Package 'cmsafops'

April 26, 2024

Title Tools for CM SAF NetCDF Data Version 1.4.0 **Description** The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The 'cmsafops' R-package provides a collection of R-operators for the analysis and manipulation of CM SAF NetCDF formatted data. Other CF conform NetCDF data with time, longitude and latitude dimension should be applicable, but there is no guarantee for an error-free application. CM SAF climate data records are provided for free via (https://wui.cmsaf.eu/safira). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>). URL https://www.cmsaf.eu **License** GPL (>= 3) BugReports https://github.com/cmsaf/cmsaf-r-tools/issues **Depends** R (>= 3.6)**Imports** assertthat (>= 0.2.1), fields (>= 10.3), FNN (>= 1.1), ncdf4 (>= 1.17), rainfarmr (>= 0.1), raster (>= 3.0), progress, trend, SearchTrees, utils NeedsCompilation no Repository CRAN **Suggests** cmsaf, cmsafvis, spelling (>= 2.1), testthat (>= 2.3) RoxygenNote 7.3.1 **Encoding** UTF-8 Language en-US Maintainer Steffen Kothe < Steffen . Kothe@dwd . de>

Author Steffen Kothe [aut, cre], Danny Parsons [ctb]

Date/Publication 2024-04-26 09:50:02 UTC

R topics documented:

	5
= = &	6
<u>-</u> 6 -	7
	7
calc_allDatesNc	9
calc_overlapping_time	0
calc_timestepNc	1
change_att	1
check.coordinate.system	3
cmsaf.abs	3
cmsaf.add	5
cmsaf.addc	7
cmsaf.adjust.two.files	9
cmsaf.cat	0
cmsaf.detrend	1
cmsaf.div	3
cmsaf.divc	5
cmsaf.mk.test	7
cmsaf.mul	8
cmsaf.mulc	1
cmsaf.regres	2
cmsaf.stats	4
cmsaf.stats.station.data	5
cmsaf.sub	6
cmsaf.sub.rel	8
cmsaf.subc	9
cmsaf.transform.coordinate.system	1
dayavg	2
daymax	3
daymean	5
daymin	7
daypctl	8
dayrange	0
daysd	2
daysum	3
dayvar	5
divdpm	7
extract.level	8
extract.period	0
fldcor	2
fldcover	4

fldmax	. 66
fldmean	. 68
fldmin	. 69
fldrange	. 71
fldsd	. 73
fldsum	. 74
get_basename	. 76
get_date_time	. 77
get_dimensions	. 77
get_nc_version	. 78
get_processing_time_string	. 78
get_time	. 79
get_time_info	. 79
gridboxmax	. 80
gridboxmean	. 81
gridboxmin	. 83
gridboxrange	. 85
gridboxsd	. 87
gridboxsum	. 88
gridboxvar	. 90
hourmean	. 92
hoursum	. 94
levbox_mergetime	. 95
map_regular	. 97
mermean	. 99
mon.anomaly	. 100
mon.anomaly.climatology	. 102
monavg	. 103
mondaymean	. 105
monmax	. 106
monmean	. 108
monmin	. 110
monpctl	. 111
monsd	. 113
monsum	. 115
monvar	. 117
mon_num_above	. 118
mon_num_below	
mon_num_equal	. 122
muldpm	. 124
multimonmean	. 125
multimonsum	
ncinfo	. 129
num_above	. 130
num_below	. 132
num_equal	
read file	
read never	136

remap	137
runmax	139
runmean	141
runmin	143
runrange	
runsd	
runsum	
seas.anomaly	
seasmean	
seassd	
seassum	
seasvar	
sellonlatbox	
selmon	
selperiod	
selpoint	
selpoint.multi	
seltime	
selyear	
timavg	
timcor	
timeovar	
timeoval	
timmax	
timmean	
timmin	
timpetl	
timsd	
timselmean	
timselsum	
timseisum	
trend	
trend_advanced	
wfldmean	194
ydaymax	196
ydaymean	198
ydaymin	
ydayrange	
ydaysd	
ydaysum	
ydrunmean	
ydrunsd	
ydrunsum	
year.anomaly	
yearmax	
yearmean	
yearmin	
yearrange	218

amentane nackaga	5
cmsafops-package	3

cmsa	fops-package	cmsafops: A package for analyzing and manipulating CM St. NetCDF formatted data.	4F
Index			245
	zonsum		. 243
	•		
	•		
	•		
	•		
	•		
	•		
	•		
	ymonmedian		. 228
	ymonmean		. 226
	ymonmax		. 224
	yearvar		. 223
	yearsum		. 221
	yearsd		. 219

Description

The 'cmsafops' functions are manipulating NetCDF input files and write the result in a separate output file. The functions were designed and tested for CM SAF NetCDF data, but most of the functions can be applied to other NetCDF data, which use the CF convention and time, latitude, longitude dimensions. As interface to NetCDF data the ncdf4 package is used.

Author(s)

Maintainer: Steffen Kothe < Steffen . Kothe@dwd . de>

Other contributors:

• Danny Parsons <danny@idems.international>[contributor]

See Also

Useful links:

- https://www.cmsaf.eu
- Report bugs at https://github.com/cmsaf/cmsaf-r-tools/issues

acsaf_box_mergetime Function to combine ACSAF NetCDF files and simultaneously cut a region.

Description

This function selects a region (and optionally a level) from a bunch of AC SAF NetCDF files that match the same pattern of the filename, and writes the output to a new file.

Usage

```
acsaf_box_mergetime(
  path,
  pattern,
  outfile,
  lon1 = -180,
  lon2 = 180,
  lat1 = -90,
  lat2 = 90,
  nc34 = 3
)
```

Arguments

path	The directory of input NetCDF files without / at the end (character).
pattern	A part of the filename, which is the same for all desired input files (character). The pattern has to be a character string containing a regular expression.
outfile	Filename of output NetCDF file. This may include the directory (character).
lon1	Longitude of lower left corner (numeric).
lon2	Longitude of upper right left corner (numeric).
lat1	Latitude of lower left corner (numeric).
lat2	Latitude of upper right corner (numeric). Longitude of upper right corner (numeric).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.

Value

A NetCDF file including the merged time series of the selected region is written.

See Also

```
Other data manipulation functions: add_grid_info(), box_mergetime(), cmsaf.transform.coordinate.system(), levbox_mergetime(), map_regular(), remap()
```

add_grid_info 7

Description

Adds a standard longitude/latitude grid to a file which is based on a different grid.

Usage

```
add_grid_info(infile, auxfile, outfile, overwrite = FALSE, verbose = FALSE)
```

Arguments

infile	Character containing file name or path of input file.
auxfile	Character containing file name or path of auxiliary file.
outfile	Character containing file name or path of output file. If NULL, the input file is directly edited instead.
overwrite	Logical; should existing output file be overwritten? If outfile is NULL, this parameter is ignored.
verbose	logical; if TRUE, progress messages are shown

Details

No existing data is changed. The additional grid info is added as two additional variables (lon and lat).

See Also

Other data manipulation functions: acsaf_box_mergetime(), box_mergetime(), cmsaf.transform.coordinate.system levbox_mergetime(), map_regular(), remap()

box_mergetime	Function to combine NetCDF files and simultaneously cut a region (and level).

Description

This function selects a region (and optionally a level) from a bunch of NetCDF files that match the same pattern of the filename, and writes the output to a new file. If no longitude and latitude values are given, files are only merged. All input files have to have the same grid and the same variable. The reference time of the output file is determined by the first input file.

8 box_mergetime

Usage

```
box_mergetime(
  var,
  path,
  pattern,
  outfile,
  lon1 = -180,
  lon2 = 180,
  lat1 = -90,
  lat2 = 90,
  level = NULL,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE
)
```

Arguments

var	Name of NetCDF variable (character).
path	The directory of input NetCDF files without / at the end (character).
pattern	A part of the filename, which is the same for all desired input files (character). The pattern has to be a character string containing a regular expression.
outfile	Filename of output NetCDF file. This may include the directory (character).
lon1	Longitude of lower left corner (numeric).
lon2	Longitude of upper right left corner (numeric).
lat1	Latitude of lower left corner (numeric).
lat2	Latitude of upper right corner (numeric). Longitude of upper right corner (numeric).
level	Number of level that should be extracted (integer) or NULL.
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown

Value

A NetCDF file including the merged time series of the selected region is written. The resulting file uses the meta data of the first input file.

See Also

```
Other data manipulation functions: acsaf_box_mergetime(), add_grid_info(), cmsaf.transform.coordinate.system levbox_mergetime(), map_regular(), remap()
```

calc_allDatesNc 9

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat \leftarrow seg(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create two simple example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_n1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_n2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Cut a region and merge both example CM SAF NetCDF files into one
## output file. Get path information of working directory with getwd()
## command.
box_mergetime(var = "SIS", path= tempdir(), pattern = "CMSAF_example_file_n",
outfile = file.path(tempdir(), "CMSAF_example_file_box_mergetime.nc"),
lon1 = 8, lon2 = 12, lat1 = 48, lat2 = 52)
unlink(c(file.path(tempdir(), "CMSAF_example_file_n1.nc"),
 file.path(tempdir(), "CMSAF_example_file_n2.nc"),
 file.path(tempdir(), "CMSAF_example_file_box_mergetime.nc")))
```

Description

This function is a helper function called by the CM SAF R Toolbox.

Usage

```
calc_allDatesNc(result.fileslist, ordpath)
```

Arguments

```
result.fileslist
```

A data frame containing all meta data (data.frame).

ordpath NetCDF file path

 $\verb|calc_overlapping_time| \textit{Routine to calculate overlapping time periods in two files}.$

Description

Designed for CMSAF Toolbox.

Usage

```
calc_overlapping_time(
  var1,
  infile1,
  var2 = NULL,
  infile2,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	$Filename\ of\ first\ input\ NetCDF\ file.\ This\ may\ include\ the\ directory\ (character).$
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character). Also supported formats for station data are .csv and .RData files.
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

Start date and end date are the result (list).

calc_timestepNc 11

calc_timestepNc

Designed for the CM SAF R Toolbox.

Description

This function is a helper function called by the CM SAF R Toolbox.

Usage

```
calc_timestepNc(result.fileslist, ordpath)
```

Arguments

```
\begin{tabular}{ll} result. files list & A data frame containing all meta data (data.frame). \\ \begin{tabular}{ll} ordpath & NetCDF file path \end{tabular}
```

change_att

Change attributes of a NetCDF variable.

Description

This function can change the name, standard_name, long_name, units, _FillValue and missing_value of a variable. There is no separate outfile, thus use this function with care. The values for v_name, s_name, l_name, u_name, F_val and m_val are optional and will only be changed if they are given. If an attribute is not defined yet, it is added by the function.

Usage

```
change_att(
  var,
  infile,
  v_name = NULL,
  s_name = NULL,
  l_name = NULL,
  u_name = NULL,
  F_val = NULL,
  m_val = NULL,
  val_prec = "double",
  verbose = FALSE
)
```

change_att

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
v_name	New variable name (character).
s_name	New standard name (character).
l_name	New long name (character).
u_name	New units name (character).
F_val	New fill value (numeric).
m_val	New missing value (numeric).
val_prec	Precision of the FillValue and missing value (character). Default is double.
verbose	logical; if TRUE, progress messages are shown

Value

The variable information within the infile NetCDF is changed.

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("Data1", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Change the variable and standard name of the example CM SAF NetCDF
```

check.coordinate.system 13

```
## file:
change_att(var = "Data1", infile = file.path(tempdir(), "CMSAF_example_file.nc"), v_name = "SIS",
s_name = "surface_downwelling_shortwave_flux_in_air")
unlink(file.path(tempdir(), "CMSAF_example_file.nc"))
```

check.coordinate.system

Designed for the CM SAF R Toolbox.

Description

This function is a helper function called by the CM SAF R Toolbox.

Usage

```
check.coordinate.system(nc_path, nc_temp_path, var, filelist)
```

Arguments

nc_path Path to NetCDF files which should be converted

var Name of NetCDF variable (character)

filelist NetCDF file names (data.frame)

cmsaf.abs

Determine absolute values

Description

The function determines absolute values from data of a single CM SAF NetCDF input file.

Usage

```
cmsaf.abs(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

14 cmsaf.abs

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of absolute values is written.

See Also

```
Other mathematical operators: cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.sub(), cmsaf.sub(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
```

cmsaf.add 15

```
nc_close(ncnew)

## Determine the absolute values of the example CM SAF NetCDF file and write
## the output to a new file.
cmsaf.abs(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_abs.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_abs.nc")))
```

cmsaf.add

Add the fields of two input NetCDF files.

Description

The function adds the fields of infile1 to the fields of infile2. Infiles have to have the same spatial and temporal dimension or one infile can contain only one timestep. The outfile uses the meta data of infile1.

Usage

```
cmsaf.add(
  var1,
  var2,
  infile1,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1	Name of variable in infile1 (character).
var2	Name of variable in infile2 (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown

16 cmsaf.add

nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including the added fields of infile1 and infile2 is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), cmsaf.subc(), divdpm(), muldpm()
```

```
\#\# Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
```

cmsaf.addc 17

```
nc_close(ncnew)
## Add the fields of both example CM SAF NetCDF files and write the
## result into one output file.
cmsaf.add(var1 = "SIS", var2 = "SIS", infile1 = file.path(tempdir(),
    "CMSAF_example_file_1.nc"), infile2 = file.path(tempdir(),
    "CMSAF_example_file_2.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_add.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
    file.path(tempdir(), "CMSAF_example_file_2.nc"),
    file.path(tempdir(), "CMSAF_example_file_add.nc")))
```

cmsaf.addc

Add a constant to a dataset.

Description

This function adds a given constant number to each element of a dataset.

Usage

```
cmsaf.addc(
  var,
  const = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
const	Constant number (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

18 cmsaf.addc

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'double'.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), cmsaf.subc(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Add a given number each dataset element of the example CM SAF NetCDF
## file and write the output to a new file.
cmsaf.addc(var = "SIS", const = 10, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_addc.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_addc.nc")))
```

cmsaf.adjust.two.files 19

```
cmsaf.adjust.two.files
```

Routine to adjust the time dimensions and coordinates in two files.

Description

Designed for CM SAF R Toolbox.

Usage

```
cmsaf.adjust.two.files(
  var1,
  infile1,
  var2,
  infile2,
  outfile1,
  outfile2,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile1	Filename of first output NetCDF file. This may include the directory (character).
outfile2	Filename of second output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

20 cmsaf.cat

Value

Two NetCDF files with the same time period and coordinate system are the result.

cmsaf.cat	Concatenate datasets of several NetCDF input files.	

Description

This function concatenates datasets of an arbitrary number of input files. All input files have to have the same structure with the same variable and different timesteps.

Usage

```
cmsaf.cat(var, infiles, outfile, nc34 = 4, overwrite = FALSE, verbose = FALSE)
```

Arguments

var	Name of NetCDF variable (character).
infiles	Vector with filenames of input NetCDF files. The file names may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown

Value

A NetCDF file including the merged time series is written. The resulting file uses the meta data of the first input file.

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data1 <- array(250:350, dim = c(21, 21, 1))</pre>
```

cmsaf.detrend 21

```
data2 <- array(230:320, dim = c(21, 21, 1))
## create two simple example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Cut a region and merge both example CM SAF NetCDF files into one
## output file. Get path information of working directory with getwd()
## command.
wd <- getwd()
cmsaf.cat(var = "SIS", infiles = c(file.path(tempdir(),
 "CMSAF_example_file_1.nc"), file.path(tempdir(), "CMSAF_example_file_2.nc")),
outfile = file.path(tempdir(), "CMSAF_example_file_cat.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
 file.path(tempdir(), "CMSAF_example_file_2.nc"),
 file.path(tempdir(), "CMSAF_example_file_cat.nc")))
```

cmsaf.detrend

Linear detrending of time series

Description

The function determines detrended values from data of a single NetCDF input file. All time steps should be equidistantly distributed.

Usage

```
cmsaf.detrend(
  var,
  infile,
  outfile,
  nc34 = 4,
```

22 cmsaf.detrend

```
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var Name of NetCDF variable (character). infile Filename of input NetCDF file. This may include the directory (character). outfile Filename of output NetCDF file. This may include the directory (character). NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 nc34 format (numeric). Default output is NetCDFv4. overwrite logical; should existing output file be overwritten? logical; if TRUE, progress messages are shown verbose Alternatively to infile you can specify the input as an object of class ncdf4 nc (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of linear detrended values is written.

See Also

```
Other temporal operators: cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
```

cmsaf.div 23

```
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the detrend values of the example CM SAF NetCDF file and write
## the output to a new file.
cmsaf.detrend(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
    outfile = file.path(tempdir(), "CMSAF_example_file_detrend.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_detrend.nc")))</pre>
```

cmsaf.div

Divide the fields of two input NetCDF files.

Description

The function divides the fields of infile1 by the fields of infile2. Infiles have to have the same spatial and temporal dimension or one infile can contain only one timestep. The outfile uses the meta data of infile1.

Usage

```
cmsaf.div(
  var1,
  var2,
  infile1,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1	Name of variable in infile1 (character).
var2	Name of variable in infile2 (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).

24 cmsaf.div

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the divided fields of infile1 and infile2 is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.subc(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(11, 11, 1))
data2 \leftarrow array(230:320, dim = c(11, 11, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
```

cmsaf.divc 25

```
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Divide the fields of both example CM SAF NetCDF files and write the
## result into one output file.
cmsaf.div(var1 = "SIS", var2 = "SIS", infile1 = file.path(tempdir(),
 "CMSAF_example_file_1.nc"), infile2 = file.path(tempdir(),
 "CMSAF_example_file_2.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_div.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file_1.nc"),
 file.path(tempdir(), "CMSAF_example_file_2.nc"),
 file.path(tempdir(), "CMSAF_example_file_div.nc")))
```

cmsaf.divc

Divide data by a constant.

Description

This function divides each element of a dataset by a given constant number.

Usage

```
cmsaf.divc(
  var,
  const = 1,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
const	Constant number (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.

26 cmsaf.divc

overwrite logical; should existing output file be overwritten?

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'double'.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), cmsaf.sub(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seg(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Divide each dataset element of the example CM SAF NetCDF file by a
## given number and write the output to a new file.
cmsaf.divc(var = "SIS", const = 100, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_divc.nc"))
```

cmsaf.mk.test 27

```
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_divc.nc")))
```

cmsaf.mk.test

Apply Mann-Kendall trend test.

Description

The function determines the trend from data of a single CM SAF NetCDF input file basing on a Mann-Kendall test.

Usage

```
cmsaf.mk.test(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If $nc34 = 3$ the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including three data layers is written. One layer contains a measure for the significance of the calculated mann-kendall statistic (S). A very high positive value of S is an indicator of an increasing trend and a very low negative value indicates a decreasing trend. Another layer (Z) contains the calculated normalized test statistic Z. A positive value of Z is an indicator of an increasing trend and a negative value indicates a decreasing trend.

28 cmsaf.mul

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(11, 11, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the trend of the example CM SAF NetCDF file and write the
## output to a new file.
cmsaf.mk.test(var = "SIS", infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_mktrend.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mktrend.nc")))
```

cmsaf.mul 29

Description

The function multiplies the fields of infile1 and infile2. Infiles have to have the same spatial and temporal dimension or one infile can contain only one timestep. The outfile uses the meta data of infile1.

Usage

```
cmsaf.mul(
  var1,
  var2,
  infile1,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1	Name of variable in infile1 (character).
var2	Name of variable in infile2 (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the multiplied fields of infile1 and infile2 is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.sub(), cmsaf.subc(), divdpm(), muldpm()
```

30 cmsaf.mul

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Multiply the fields of both example CM SAF NetCDF files and write the
## result into one output file.
cmsaf.mul(var1 = "SIS", var2 = "SIS", infile1 = file.path(tempdir(),
 "CMSAF_example_file_1.nc"), infile2 = file.path(tempdir(),
 "CMSAF_example_file_2.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_mul.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
 file.path(tempdir(), "CMSAF_example_file_2.nc"),
 file.path(tempdir(), "CMSAF_example_file_mul.nc")))
```

cmsaf.mulc 31

|--|

Description

This function multiplies each element of a dataset with a given constant number.

Usage

```
cmsaf.mulc(
  var,
  const = 1,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
const	Constant number (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'double'.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.sub(), cmsaf.subc(), divdpm(), muldpm()
```

32 cmsaf.regres

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Multiply each dataset element of the example CM SAF NetCDF file by a
## given number and write the output to a new file.
cmsaf.mulc(var = "SIS", const = 10, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_mulc.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mulc.nc")))
```

cmsaf.regres

Estimate regression parameter

Description

The function estimates the regression parameters b from data of a single NetCDF input file.

Usage

```
cmsaf.regres(
```

cmsaf.regres 33

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the regression parameters b is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 6, 0.5)
lat <- seq(45, 47, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2002-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- aperm(array(c(1:369), dim = c(3, 5, 36)), c(2, 1, 3))

## create example NetCDF</pre>
```

34 cmsaf.stats

```
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Estimate the regression parameter b values of the example CM SAF NetCDF file and write
## the output to a new file.
cmsaf.regres(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_regres.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_regres.nc")))
```

cmsaf.stats

Calculates the rmse, mae, bias, correlation in grid space of two NetCDF files. Designed for the CM SAF R Toolbox.

Description

Calculates the rmse, mae, bias, correlation in grid space of two NetCDF files. Designed for the CM SAF R Toolbox.

Usage

```
cmsaf.stats(
  var1,
  var2,
  infile1,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

Arguments

var1

Name of NetCDF variable of the first file (character).

cmsaf.stats.station.data 35

var2	Name of NetCDF variable of the second file (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output csv file. This may include the directory (character).
nc34	NetCDF version of input file. Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?; Default: FALSE
overwrite verbose	logical; should existing output file be overwritten?; Default: FALSE logical; if TRUE, progress messages are shown
verbose	logical; if TRUE, progress messages are shown Alternatively to infile1 you can specify the input as an object of class ncdf4

Value

A csv file including the rmse, mae, bias and correlation in grid space is written.

See Also

```
Other metrics: cmsaf.stats.station.data()
```

```
cmsaf.stats.station.data
```

Calculates the rmse, mae, bias, correlation over time of a NetCDF file and a dataframe (station data). Designed for the CM SAF R Toolbox.

Description

Calculates the rmse, mae, bias, correlation over time of a NetCDF file and a dataframe (station data). Designed for the CM SAF R Toolbox.

Usage

```
cmsaf.stats.station.data(
  var,
  infile,
  data_station,
  outfile,
  overwrite = FALSE,
  nc = NULL
)
```

36 cmsaf.sub

Arguments

var	Name of NetCDF variable of NetCDF file (character).
infile	Filename of input NetCDF file. This may include the directory (character).
data_station	Dataframe of RData or csv file (station data); Designed for the CM SAF R Toolbox.
outfile	Filename of output csv file. This may include the directory (character).
overwrite	logical; should existing output file be overwritten?; Default: FALSE
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A csv file including the rmse, mae, bias and correlation over time is written.

See Also

```
Other metrics: cmsaf.stats()
```

cmsaf.sub	Subtract the fields of two input NetCDF files.
	· · · · · · · · · · · · · · · · · · ·

Description

The function subtracts the fields of infile2 from the fields of infile1. Infiles have to have the same spatial and temporal dimension or one infile can contain only one timestep. The outfile uses the meta data of infile1.

Usage

```
cmsaf.sub(
  var1,
  var2,
  infile1,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

cmsaf.sub 37

Arguments

var1	Name of variable in infile1 (character).
var2	Name of variable in infile2 (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the subtracted fields of infile1 and infile2 is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.subc(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
```

38 cmsaf.sub.rel

```
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Subtract the fields of both example CM SAF NetCDF files and write the
## result into one output file.
cmsaf.sub(var1 = "SIS", var2 = "SIS", infile1 = file.path(tempdir(),
 "CMSAF_example_file_1.nc"), infile2 = file.path(tempdir(),
 "CMSAF_example_file_2.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_sub.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"), file.path(tempdir(),
 "CMSAF_example_file_2.nc"), file.path(tempdir(),"CMSAF_example_file_sub.nc")))
```

cmsaf.sub.rel

Subtract the fields of two input NetCDF files (relative). Designed for the CM SAF R Toolbox.

Description

The function subtracts the fields of infile2 from the fields of infile1. Infiles have to have the same spatial and temporal dimension.

```
cmsaf.sub.rel(
  var1,
  infile1,
  var2,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

cmsaf.subc 39

Arguments

var1	Name of variable in infile1 (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of variable in infile2 (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the subtracted fields of infile1 and infile2 is written.

Description

This function subtracts a given constant number from each element of a dataset.

```
cmsaf.subc(
  var,
  const = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

40 cmsaf.subc

Arguments

var	Name of NetCDF variable (character).
const	Constant number (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'double'.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), divdpm(), muldpm()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
```

```
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Subtract a given number from each dataset element of the example CM
## SAF NetCDF file and write the output to a new file.
cmsaf.subc(var = "SIS", const = 10, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_subc.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_subc.nc")))
```

cmsaf.transform.coordinate.system

Transform the coordinate system to -180 to 180 longitude of an infile

Description

Transform the coordinate system to -180 to 180 longitude of an infile

Usage

```
cmsaf.transform.coordinate.system(infile, var, outfile, nc = NULL)
```

Arguments

infile	Filename of input NetCDF file. This may include the directory (character).
var	Name of NetCDF variable (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the coordinate system (-180 to 180 longitude) is written.

See Also

```
Other data manipulation functions: acsaf_box_mergetime(), add_grid_info(), box_mergetime(), levbox_mergetime(), map_regular(), remap()
```

42 dayavg

dayavg	Determine daily averages	

Description

The function determines daily averages from data of a single CM SAF NetCDF input file. There is a difference between the operators dayavg and daymean. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 + 3)/3 = 2, whereas the average is (1 + 2 + miss + 3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and mean are identical.

Usage

```
dayavg(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily averages is written.

See Also

```
Other daily statistics: daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

daymax 43

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily averages of the example CM SAF NetCDF file and
## write the output to a new file.
dayavg(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_dayavg.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_dayavg.nc")))
```

daymax

Determine daily maxima

Description

The function determines daily maximum from data of a single CM SAF NetCDF input file.

```
daymax(
  var,
```

44 daymax

```
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily maximum is written.

See Also

```
Other daily statistics: dayavg(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 121))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

daymean 45

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily maximum of the example CM SAF NetCDF file and
## write the output to a new file.
daymax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_daymax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_daymax.nc")))
```

daymean

Determine daily means

Description

The function determines daily means from data of a single CM SAF NetCDF input file. There is a difference between the operators daymean and dayavg. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 + 3)/3 = 2, whereas the average is (1 + 2 + miss + 3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and mean are identical.

Usage

```
daymean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

outfile Filename of output NetCDF file. This may include the directory (character).

46 daymean

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily means is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily means of the example CM SAF NetCDF file and
## write the output to a new file.
daymean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_daymean.nc"))
```

daymin 47

```
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_daymean.nc")))
```

daymin

Determine daily minima

Description

The function determines the daily minimum from data of a single CM SAF NetCDF input file.

Usage

```
daymin(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily minimum is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

48 daypctl

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily minimum of the example CM SAF NetCDF file and
## write the output to a new file.
daymin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_daymin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_daymin.nc")))
```

daypctl

Determine daily percentiles

Description

The function determines daily percentiles from data of a single CM SAF NetCDF input file.

```
daypctl(
  var,
```

daypctl 49

```
p = 0.95,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
```

Arguments

var	Name of NetCDF variable (character).
p	Percentile number given as probability within [0, 1] (numeric). Default is 0.95.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily percentiles is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 121))

## create example NetCDF</pre>
```

50 dayrange

```
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the 90% daily percentiles of the example CM SAF NetCDF file and
## write the output to a new file.
daypctl(var = "SIS", p = 0.9, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(),"CMSAF_example_file_daypctl.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_daypctl.nc")))
```

dayrange

This function determines the diurnal range.

Description

The function calculates the difference of maximum and minimum values of hourly data from a single CM SAF NetCDF input file.

Usage

```
dayrange(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.

dayrange 51

overwrite logical; should existing output file be overwritten?

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of the diurnal range is written (character).

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat \leftarrow seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the diurnal range of the example CM SAF NetCDF file and
## write the output to a new file.
dayrange(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_dayrange.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_dayrange.nc")))
```

52 daysd

daysd

Determine daily standard deviations

Description

The function determines daily standard deviations from data of a single CM SAF NetCDF input file.

Usage

```
daysd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

infile Filename of input NetCDF file. This may include the directory (character). outfile Filename of output NetCDF file. This may include the directory (character). nc34 NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4. overwrite logical; should existing output file be overwritten? verbose logical; if TRUE, progress messages are shown nc Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).	var	Name of NetCDF variable (character).
nc34 NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4. overwrite logical; should existing output file be overwritten? verbose logical; if TRUE, progress messages are shown nc Alternatively to infile you can specify the input as an object of class ncdf4	infile	Filename of input NetCDF file. This may include the directory (character).
format (numeric). Default output is NetCDFv4. overwrite logical; should existing output file be overwritten? verbose logical; if TRUE, progress messages are shown nc Alternatively to infile you can specify the input as an object of class ncdf4	outfile	Filename of output NetCDF file. This may include the directory (character).
verbose logical; if TRUE, progress messages are shown nc Alternatively to infile you can specify the input as an object of class ncdf4	nc34	
nc Alternatively to infile you can specify the input as an object of class ncdf4	overwrite	logical; should existing output file be overwritten?
	verbose	logical; if TRUE, progress messages are shown
	nc	

Value

A NetCDF file including a time series of daily standard deviations is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydayrange(), ydaysd(), ydaysum()
```

daysum 53

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily standard deviations of the example CM SAF NetCDF file and
## write the output to a new file.
daysd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_daysd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_daysd.nc")))
```

daysum

Determine daily sums

Description

The function determines daily sums from data of a single CM SAF NetCDF input file.

```
daysum(
  var,
```

54 daysum

```
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of daily sums is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 121))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

dayvar 55

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
\#\# Determine the daily sums of the example CM SAF NetCDF file and
## write the output to a new file.
daysum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_daysum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_daysum.nc")))
```

dayvar

Determine daily variances

Description

The function determines daily variances from data of a single CM SAF NetCDF input file.

Usage

```
dayvar(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

56 dayvar

Value

A NetCDF file including a time series of daily variances is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat \leftarrow seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the daily variances of the example CM SAF NetCDF file and
## write the output to a new file.
dayvar(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_dayvar.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_dayvar.nc")))
```

divdpm 57

divdpm	Divide by days per month.	

Description

This function divides each timestep of a time series by the number of days of the corresponding month. This can be useful to convert units, such as millimeters (mm) to monthly millimeters per day (mm/d). Leap-years are included.

Usage

```
divdpm(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of the length of infile is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), cmsaf.subc(), muldpm()
```

58 extract.level

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Divide each timestep of the example CM SAF NetCDF file by the number
## of days per month and write the output to a new file.
divdpm(var = "SIS", infile= file.path(tempdir(),"CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_divdpm.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_divdpm.nc")))
```

extract.level

Extract levels from 4-dimensional NetCDF files.

Description

This function extracts one or all levels of a 4-dimensional NetCDF file. A level is defined as a dimension, which does not correspond to longitude, latitude or time. The user can choose either one specific level (given by an integer) or all levels (level = "all").

extract.level 59

Usage

```
extract.level(
  var,
  infile,
  outfile,
  level = 1,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
level	Number of level (default = 1) or all levels (level = "all") (numeric or character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the selected level is written. In case of level = "all" all levels are written in separate NetCDF files and outfile names are expanded by "_level" and the level number.

See Also

```
Other selection and removal functions: extract.period(), sellonlatbox(), selmon(), selperiod(), selpoint(), selpoint.multi(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
height <- seq(0, 1000, 100)</pre>
```

60 extract.period

```
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 11, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
z <- ncdim_def(name = "height", units = "m", vals = height)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, z, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew, "height", "standard_name", "height", prec = "text")
nc_close(ncnew)
## Extract the first level of the example CM SAF NetCDF file and write
## the output to a new file.
extract.level("SIS", file.path(tempdir(),"CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_extract.level1.nc"))
## Extract all levels of the example CM SAF NetCDF file and write the
## output to a new file.
extract.level(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_extract.level2.nc"),
level = "all")
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_extract.level1.nc"),
 file.path(tempdir(), "CMSAF_example_file_extract.level2_level[1-9].nc"),
 file.path(tempdir(), "CMSAF_example_file_extract.level2_level10.nc"),
 file.path(tempdir(), "CMSAF_example_file_extract.level2_level11.nc")))
```

extract.period

Remove a time period.

Description

This function deletes a time period between a given start and end date from a time series. If start and end are the same, only this date will be removed.

```
extract.period(
  var,
  start,
```

extract.period 61

```
end,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
start	Start date as character in form of 'YYYY-MM-DD' (e.g., '2001-12-31').
end	End date as character in form of 'YYYY-MM-DD' (e.g., '2014-01-01').
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file excluding the selected time period is written.

See Also

```
Other selection and removal functions: extract.level(), sellonlatbox(), selmon(), selperiod(), selpoint(), selpoint.multi(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

fldcor

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Remove a 13-months period of the example CM SAF NetCDF file and write
## the output to a new file.
extract.period(var = "SIS", start = "2001-01-01", end = "2002-01-01",
infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_extract.period.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_extract.period.nc")))
```

fldcor

Determine correlations in grid space.

Description

The function determines correlations in grid space from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.

```
fldcor(
  var1,
  infile1,
  var2,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

fldcor 63

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of correlations in grid space is written.

See Also

Other correlation and covariance: fldcovar(), timcor(), timcovar()

```
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")</pre>
vars <- list(var1)</pre>
```

64 fldcovar

```
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the correlations in grid space of the example CM SAF NetCDF files and
## write the output to a new file.
fldcor(var1 = "SIS", infile1 = file.path(tempdir(), "CMSAF_example_file_1.nc"),
      var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
      outfile = file.path(tempdir(), "CMSAF_example_file_fldcor.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
      file.path(tempdir(), "CMSAF_example_file_2.nc"),
      file.path(tempdir(), "CMSAF_example_file_fldcor.nc")))
```

fldcovar

Determine covariances in grid space.

Description

The function determines covariances in grid space from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.

```
fldcovar(
  var1,
  infile1,
  var2,
  infile2,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

fldcovar 65

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of covariances in grid space is written.

See Also

Other correlation and covariance: fldcor(), timcor(), timcovar()

```
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")</pre>
vars <- list(var1)</pre>
```

66 fldmax

```
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the covariances in grid space of the example CM SAF NetCDF files and
## write the output to a new file.
fldcovar(var1 = "SIS", infile1 = file.path(tempdir(), "CMSAF_example_file_1.nc"),
      var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
      outfile = file.path(tempdir(), "CMSAF_example_file_fldcovar.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
      file.path(tempdir(), "CMSAF_example_file_2.nc"),
      file.path(tempdir(), "CMSAF_example_file_fldcovar.nc")))
```

fldmax

Determine the spatial maximum

Description

The function determines the maximum value of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

```
fldmax(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).
infile Filename of input NetCDF file. This may include the directory (character).

fldmax 67

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of maximum values is written.

See Also

```
Other spatial operators: fldmean(), fldmin(), fldrange(), fldsd(), fldsum(), wfldmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the maximum values of the example CM SAF NetCDF file and
## write the output to a new file.
fldmax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_fldmax.nc"))
```

68 fldmean

```
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
  file.path(tempdir(),"CMSAF_example_file_fldmax.nc")))
```

fldmean

Determine the spatial mean

Description

The function determines the mean value of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

```
fldmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of spatial means is written.

See Also

```
Other spatial operators: fldmax(), fldmin(), fldrange(), fldsd(), fldsum(), wfldmean()
```

fldmin 69

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the spatial means of the example CM SAF NetCDF file and
## write the output to a new file.
fldmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_fldmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_fldmean.nc")))
```

fldmin

Determine the spatial minimum.

Description

The function determines the minimum value of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

fldmin(

70 fldmin

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of minimum values is written.

See Also

```
Other spatial operators: fldmax(), fldmean(), fldrange(), fldsd(), fldsum(), wfldmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

fldrange 71

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the minimum values of the example CM SAF NetCDF file and
## write the output to a new file.
fldmin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_fldmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_fldmin.nc")))
```

fldrange

Determine the spatial range

Description

The function determines the difference of maximum and minimum values of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

```
fldrange(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?

72 fldrange

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4
(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of range is written.

See Also

```
Other spatial operators: fldmax(), fldmean(), fldmin(), fldsd(), fldsum(), wfldmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the range of the example CM SAF NetCDF file and
## write the output to a new file.
fldrange(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_fldrange.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_fldrange.nc")))
```

fldsd 73

fldsd	Determine the spatial standard deviation

Description

The function determines the standard deviation of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

```
fldsd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of spatial standard deviation is written.

See Also

```
Other spatial operators: fldmax(), fldmean(), fldmin(), fldrange(), fldsum(), wfldmean()
```

74 fldsum

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the standard deviation of the example CM SAF NetCDF file and
## write the output to a new file.
fldsd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_fldsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_fldsd.nc")))
```

fldsum

Determine the spatial sum

Description

The function determines the sum of each timestep from data of a single NetCDF file. The input file should contain a time series of 2D-data.

Usage

fldsum(

fldsum 75

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of sum is written.

See Also

```
Other spatial operators: fldmax(), fldmean(), fldmin(), fldrange(), fldsd(), wfldmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

76 get_basename

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
 vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the sum of the example CM SAF NetCDF file and
## write the output to a new file.
fldsum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_fldsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_fldsum.nc")))
```

get_basename

Determine the basename of a NetCDF file

Description

This function determines the basename of either a file/URL path or an 'nc' object (using nc\$filename).

Usage

```
get_basename(infile, nc = NULL)
```

Arguments

infile Filename of input NetCDF file. This may include the directory (character).

Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Details

When the origin of the file path is a local .nc file then get_basename() is equivalent to base::basename(). get_basename() also handles the case of infile/nc originating from a URL.

The value of get_basename() always ends in ".nc".

If both infile and nc are specified, infile is ignored.

Value

A character string giving the basename.

get_date_time 77

get_date_time

Get dates and times from NetCDF type date format.

Description

Get dates and times from NetCDF type date format.

Usage

```
get_date_time(times, unit)
```

Arguments

times Timesteps from netcdf data (numeric).
unit Unit from netcdf data (character).

Value

A data frame with the columns years, months, days and times. Careful: The parts of the date are of numeric type, but the times are stored as characters (levels).

Examples

```
date_time <- get_date_time(times = c(159191, 5991820),
  unit = "minutes since 1980-05-07")
date_time
date_time$years</pre>
```

get_dimensions

Designed for the CM SAF R Toolbox.

Description

This function is a helper function called by the CM SAF R Toolbox.

Usage

```
get_dimensions(id, dimnames)
```

Arguments

id An object of the class NetCDF4 dimnames Dimension names (data.frame)

 $get_nc_version$

Designed for the CM SAF R Toolbox.

Description

This function checks the nc version.

Usage

```
get_nc_version(nc34)
```

Arguments

nc34 (numeric)

Description

Get processing time string

Usage

```
get_processing_time_string(time_start, time_end)
```

Arguments

time_start start time of the process (of class "POSIXct" as given by "Sys.time()")
time_end end time of the process (of class "POSIXct" as given by "Sys.time()")

Value

a specialized string containing the processed time

get_time 79

get_time

Convert time steps to POSIXct.

Description

Times in NetCDF data are generally given in form of a time step and a time unit. This function uses both information to convert them to POSIXct time values. For the unit 'months since' an approximation of 30.4375 d is used!

Usage

```
get_time(time.unit, time.step)
```

Arguments

time.unit Time unit, which is conform to the CF convention (character).

time.step Time steps in form of a numeric or integer vector.

Value

Time in form of POSIXct is returned. Default time zone is UTC.

Examples

```
get_time(time.unit = "hours since 1987-01-01", time.step = 249109)
get_time(time.unit = "days since 1987-01-01", time.step = 9109)
```

get_time_info

Designed for the CM SAF R Toolbox.

Description

This function is a helper function called by the CM SAF R Toolbox. Not for general use.

Usage

```
get_time_info(id, dimnames, t_name)
```

Arguments

id id

 $\begin{array}{ll} \mbox{dimnames} & \mbox{dimnames} \\ \mbox{t_name} & \mbox{t_name} \end{array}$

80 gridboxmax

gridboxmax	Determine maxima of selected grid boxes	
------------	---	--

Description

The function determines maxima of selected grid boxes from data of a single CM SAF NetCDF input file.

Usage

```
gridboxmax(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of maxima of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmean(), gridboxmin(), gridboxrange(), gridboxsd(), gridboxsum(), gridboxvar()
```

gridboxmean 81

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
## Determine the maxima of selected grid boxes of the example CM SAF NetCDF file
## and write the output to a new file.
gridboxmax(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_gridboxmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
  file.path(tempdir(), "CMSAF_example_file_gridboxmax.nc")))
```

gridboxmean

Determine means of selected grid boxes

Description

The function determines means of selected grid boxes from data of a single CM SAF NetCDF input file.

82 gridboxmean

Usage

```
gridboxmean(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of means of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmin(), gridboxrange(), gridboxsd(), gridboxsum(), gridboxvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)</pre>
```

gridboxmin 83

```
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
## Determine the means of selected grid boxes of the example CM SAF NetCDF file
## and write the output to a new file.
gridboxmean(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_gridboxmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_gridboxmean.nc")))
```

gridboxmin

Determine minima of selected grid boxes

Description

The function determines minima of selected grid boxes from data of a single CM SAF NetCDF input file.

Usage

```
gridboxmin(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

84 gridboxmin

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of minima of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmean(), gridboxrange(), gridboxsd(), gridboxsum(), gridboxvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x \leftarrow ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
```

gridboxrange 85

```
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)

## Determine the minima of selected grid boxes of the example CM SAF NetCDF file
## and write the output to a new file.
gridboxmin(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_gridboxmin.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
    "CMSAF_example_file_gridboxmin.nc")))
```

gridboxrange

Determine ranges of selected grid boxes

Description

The function determines ranges of selected grid boxes from data of a single CM SAF NetCDF input file.

Usage

```
gridboxrange(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?

86 gridboxrange

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4
(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of ranges of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmean(), gridboxmin(), gridboxsd(), gridboxsum(), gridboxvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
## Determine the ranges of selected grid boxes of the example CM SAF NetCDF file and write
## the output to a new file.
gridboxrange(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_gridboxrange.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_gridboxrange.nc")))
```

gridboxsd 87

gridboxsd	Determine standard deviations of selected grid boxes

Description

The function determines standard deviations of selected grid boxes from data of a single CM SAF NetCDF input file.

Usage

```
gridboxsd(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of standard deviations of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmean(), gridboxmin(), gridboxrange(), gridboxsum(), gridboxvar()
```

88 gridboxsum

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
## Determine the standard deviations of selected grid boxes of the example CM SAF NetCDF file
## and write the output to a new file.
gridboxsd(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_gridboxsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_gridboxsd.nc")))
```

gridboxsum

Determine sums of selected grid boxes

Description

The function determines sums of selected grid boxes from data of a single CM SAF NetCDF input file.

gridboxsum 89

Usage

```
gridboxsum(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of sums of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmean(), gridboxmin(), gridboxrange(), gridboxsd(), gridboxvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)</pre>
```

90 gridboxvar

```
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
## Determine the sums of selected grid boxes of the example CM SAF NetCDF file and write
## the output to a new file.
gridboxsum(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_gridboxsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_gridboxsum.nc")))
```

gridboxvar

Determine variances of selected grid boxes

Description

The function determines variances of selected grid boxes from data of a single CM SAF NetCDF input file.

Usage

```
gridboxvar(
  var,
  lonGrid,
  latGrid,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

gridboxvar 91

Arguments

var	Name of NetCDF variable (character).
lonGrid	INTEGER Number of grid boxes in x direction
latGrid	INTEGER Number of grid boxes in y direction
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of variances of selected grid boxes is written.

See Also

```
Other grid boxes statistics: gridboxmax(), gridboxmean(), gridboxmin(), gridboxrange(), gridboxsd(), gridboxsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-03-01"), as.Date("2000-05-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 3))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data)
```

92 hourmean

```
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)

## Determine the variances of selected grid boxes of the example CM SAF NetCDF file and write
## the output to a new file.
gridboxvar(var = "SIS", lonGrid = 4, latGrid = 4, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_gridboxvar.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
    "CMSAF_example_file_gridboxvar.nc")))
```

hourmean

Determine hourly means

Description

The function determines hourly means from data of a single CM SAF NetCDF input file.

Usage

```
hourmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

hourmean 93

Value

A NetCDF file including a time series of hourly means is written.

See Also

Other hourly statistics: hoursum()

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 2), "mins")
origin <- format("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "min"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 1441))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "minutes since 1983-01-01 00:00:00",
              vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the hourly means of the example CM SAF NetCDF file
## and write the output to a new file.
hourmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_hourmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_hourmean.nc")))
```

94 hoursum

hou	rsum	
HOU	ısuıı	

Determine hourly sums

Description

The function determines hourly sums from data of a single CM SAF NetCDF input file.

Usage

```
hoursum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of hourly sums is written.

See Also

```
Other hourly statistics: hourmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
```

levbox_mergetime 95

```
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 2), "mins")
origin <- format("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "min"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 1441))
## create example NetCDF
x \leftarrow ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "minutes since 1983-01-01 00:00:00",
              vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the hourly sums of the example CM SAF NetCDF file
## and write the output to a new file.
hoursum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_hoursum.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_hoursum.nc")))
```

levbox_mergetime

Function to combine NetCDF files and simultaneously cut a region and level.

Description

This function selects a region and a level from a bunch of CM SAF NetCDF files that match the same pattern of the filename, and writes the output to a new file. If no longitude and latitude values are given, files are only merged. All input files have to have the same rectangular grid and the same variable. The reference time of the output file is determined by the first input file.

Usage

```
levbox_mergetime(
  var,
  level = 1,
```

96 levbox_mergetime

```
path,
pattern,
outfile,
lon1 = -180,
lon2 = 180,
lat1 = -90,
lat2 = 90,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE
)
```

Arguments

var	Name of NetCDF variable (character).
level	Number of level that should be extracted (integer).
path	The directory of input NetCDF files without / at the end (character).
pattern	A part of the filename, which is the same for all desired input files (character). The pattern has to be a character string containing a regular expression.
outfile	Filename of output NetCDF file. This may include the directory (character).
lon1	Longitude of lower left corner (numeric).
lon2	Longitude of upper right left corner (numeric).
lat1	Latitude of lower left corner (numeric).
lat2	Latitude of upper right corner (numeric). Longitude of upper right corner (numeric).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown

Value

A NetCDF file including the merged time series of the selected region is written. The output NetCDF file contains only the selected level.

See Also

```
Other data manipulation functions: acsaf_box_mergetime(), add_grid_info(), box_mergetime(), cmsaf.transform.coordinate.system(), map_regular(), remap()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
```

map_regular 97

```
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
level \leftarrow c(1:5)
data1 <- array(250:350, dim = c(21, 21, 5, 1))
data2 <- array(230:320, dim = c(21, 21, 5, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
1 <- ncdim_def(name = "level", units = "1", vals = level)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, 1, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_n1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew, "level", "standard_name", "level", prec = "text")
nc_close(ncnew)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[2], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_n2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew, "level", "standard_name", "level", prec = "text")
nc_close(ncnew)
## Cut a region and levl, and merge both example CM SAF NetCDF files
## into one output file. First get path information of working
## directory.
levbox_mergetime(var = "SIS", level = 1, path = tempdir(),
 pattern = "CMSAF_example_file_n", outfile = file.path(tempdir(),
 "CMSAF_example_file_levbox_mergetime.nc"), lon1 = 8, lon2 = 12,
 lat1 = 48, lat2 = 52)
unlink(c(file.path(tempdir(), "CMSAF_example_file_n1.nc"),
 file.path(tempdir(), "CMSAF_example_file_n2.nc"),
 file.path(tempdir(), "CMSAF_example_file_levbox_mergetime.nc")))
```

98 map_regular

Description

The function interpolates the irregular gridded data of infile using grid information of auxfile. The intention of this function is to remap CLAAS level-2 data onto a regular gridded lon / lat grid. By default, a nearest neighbor interpolation provided by get.knnx is used.

Usage

```
map_regular(
  var,
  infile,
  auxfile,
  outfile,
  dxy = 0.05,
  dxy_factor = 1,
  method = "nearest",
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file (irregular gridded). This may include the directory (character). The data of infile are interpolated.
auxfile	Filename auxiliary file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
dxy	Grid resolution of the regular output grid in degrees (numeric). Default is $0.05^{\circ}.$
dxy_factor	In case of nearest neighbor all grid points with distance $>$ (dxy * dxy_factor) are set to NA (numeric). Default is 1.
method	Method used for remapping (character). Default and so far the only option is "nearest" for nearest-neighbor interpolation.
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the interpolated data of infile on a regular lon / lat grid with a spatial resolution of dxy.

mermean 99

See Also

```
Other data manipulation functions: acsaf_box_mergetime(), add_grid_info(), box_mergetime(), cmsaf.transform.coordinate.system(), levbox_mergetime(), remap()
```

mermean

Determine meridional means

Description

The function determines meridional means from data of a single CM SAF NetCDF input file.

Usage

```
mermean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of meridional means is written.

100 mon.anomaly

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the meridional means of the example CM SAF NetCDF file and write
## the output to a new file.
mermean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_mermean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mermean.nc")))
```

mon.anomaly

Determine monthly anomalies

Description

The function subtracts from each timestep of a time series the corresponding multi-year monthly mean. To get monthly anomalies, the input file should contain monthly mean values.

Usage

```
mon.anomaly(
```

mon.anomaly 101

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of differences is written.

See Also

```
Other monthly statistics: mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(11, 11, 132))</pre>
```

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly anomalies of the example CM SAF NetCDF file and
## write the output to a new file.
mon.anomaly(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_mon.anomaly.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mon.anomaly.nc")))
```

mon.anomaly.climatology

Designed for the CM SAF R Toolbox.

Description

This function is a helper function (warming stripes plot, trend plot, time series plot) called by the CM SAF R Toolbox.

Usage

```
mon.anomaly.climatology(
  var,
  infile,
  outfile,
  climatology_file,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).
infile Filename of input NetCDF file. This may include the directory (character).

monavg 103

outfile	Filename of output NetCDF file. This may include the directory (character).
climatology_fi	le
	Filename of input NetCDF climatology file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

monavg

Determine monthly averages

Description

The function determines monthly averages from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data. There is a difference between the operators monavg and monmean. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 + 3)/3 = 2, whereas the average is (1 + 2 + miss + 3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and mean are identical.

Usage

```
monavg(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

104 monavg

Value

A NetCDF file including a time series of monthly averages is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly averages of the example CM SAF NetCDF file and
## write the output to a new file.
monavg(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_monavg.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monavg.nc")))
```

mondaymean 105

mondaymean	Determine mean monthly daily variations	

Description

The function determines mean monthly daily variations values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
mondaymean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of mean monthly daily variations is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), monmax(), monmean(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

106 monmax

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
lon \leftarrow seq(5, 8, 0.5)
lat \leftarrow seq(45, 48, 0.5)
time <- seq(ISOdate(2000, 3, 1), ISOdate(2000, 5, 31), "hours")
origin <- format("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:272, dim = c(7, 7, 2185))
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
v <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
              vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "short",</pre>
                 longname = "Surface Incoming Shortwave Radiation")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew, "SIS", "standard_name", "SIS_standard", prec = "text")
nc_close(ncnew)
## Determine the mean monthly daily variations of the example CM SAF NetCDF file and
## write the output to a new file.
mondaymean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_mondaymean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mondaymean.nc")))
```

monmax

Determine monthly maxima.

Description

The function determines monthly maximum values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monmax(
```

monmax 107

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly maxima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 91))</pre>
```

108 monmean

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly maximum of the example CM SAF NetCDF file and
## write the output to a new file.
monmax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_monmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monmax.nc")))
```

monmean

Determine monthly means

Description

The function determines monthly mean values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data. There is a difference between the operators monmean and monavg. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 + 3)/3 = 2, whereas the average is (1 + 2 + miss + 3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and mean are identical.

Usage

```
monmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

monmean 109

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly means is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
```

110 monmin

```
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the monthly mean of the example CM SAF NetCDF file and
## write the output to a new file.
monmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
    outfile = file.path(tempdir(), "CMSAF_example_file_monmean.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_monmean.nc")))
```

monmin

Determine monthly minima

Description

The function determines monthly minimum values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monmin(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly minima is written.

monpctl 111

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly minimum of the example CM SAF NetCDF file and
## write the output to a new file.
monmin(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_monmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monmin.nc")))
```

112 monpctl

Description

The function determines monthly percentiles values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monpctl(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  p = 0.95,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
р	Percentile number given as probability within [0, 1] (numeric). Default is 0.95.
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly variance is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
```

monsd 113

```
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
 vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the 90% monthly percentiles of the example CM SAF NetCDF
## file and write the output to a new file.
monpctl(var = "SIS", p = 0.9, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_monpctl.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monpctl.nc")))
```

monsd

Determine monthly standard deviations

Description

The function determines monthly standard deviation values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monsd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
```

114 monsd

```
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly standard deviation is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
```

monsum 115

```
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the monthly standard deviation of the example CM SAF NetCDF
## file and write the output to a new file.
monsd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file_nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_monsd.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_monsd.nc")))</pre>
```

monsum

Determine monthly sums

Description

The function determines monthly sums from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monsum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

116 monsum

Value

A NetCDF file including a time series of monthly sums is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly sums of the example CM SAF NetCDF file and
## write the output to a new file.
monsum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_monsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monsum.nc")))
```

monvar 117

m	n	n	٧a	ır

Determine monthly variance

Description

The function determines monthly variance values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
monvar(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly variance is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

mon_num_above

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly variance of the example CM SAF NetCDF
## file and write the output to a new file.
monvar(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_monvar.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_monvar.nc")))
```

mon_num_above

Number of timesteps per month above a threshold.

Description

This function counts the number of timesteps above a certain threshold for each month and grid point of a dataset ($x \ge thld$). This operator should be applied to data with temporal resolution < monthly (e.g., daily).

mon_num_above 119

Usage

```
mon_num_above(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly maxima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmean(), monstl(), monst
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")</pre>
```

mon_num_below

```
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly number of timesteps above a threshold of the example
## CM SAF NetCDF file and write the output to a new file.
mon_num_above(var = "SIS", thld = 300, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_mon_num_above.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mon_num_above.nc")))
```

mon_num_below

Number of timesteps per month below a threshold.

Description

This function counts the number of timesteps below a certain threshold for each month and grid point of a dataset ($x \le thld$). This operator should be applied to data with temporal resolution < monthly (e.g., daily).

Usage

```
mon_num_below(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

mon_num_below 121

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of monthly maxima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
```

mon_num_equal

```
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the monthly number of timesteps below a threshold of the example
## CM SAF NetCDF file and write the output to a new file.
mon_num_below(var = "SIS", thld = 300, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
    outfile = file.path(tempdir(), "CMSAF_example_file_mon_num_below.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_mon_num_below.nc")))
```

mon_num_equal

Number of timesteps per month equal a threshold.

Description

This function counts the number of timesteps equal a certain threshold for each month and grid point of a dataset (x == thld). This operator should be applied to data with temporal resolution < monthly (e.g., daily).

Usage

```
mon_num_equal(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

mon_num_equal 123

Value

A NetCDF file including a time series of monthly maxima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), monavg(), mondaymean(), monmax(), monmean(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seg(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the monthly number of timesteps equal a threshold of the example
## CM SAF NetCDF file and write the output to a new file.
mon_num_equal(var = "SIS", thld = 300, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_mon_num_equal.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_mon_num_equal.nc")))
```

124 muldpm

Description

This function multiplies each timestep of a time series by the number of days of the corresponding month. This can be useful to convert units, such as monthly millimeters per day (mm/d) to millimeters (mm). Leap-years are included.

Usage

```
muldpm(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of the length of infile is written.

See Also

```
Other mathematical operators: cmsaf.abs(), cmsaf.add(), cmsaf.addc(), cmsaf.div(), cmsaf.divc(), cmsaf.mul(), cmsaf.mulc(), cmsaf.sub(), cmsaf.subc(), divdpm()
```

multimonmean 125

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Multiply each timestep of the example CM SAF NetCDF file with the
## number of days per month and write the output to a new file.
muldpm(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_muldpm.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_muldpm.nc")))
```

multimonmean

Determine multi-monthly means

Description

The function determines multi-monthly mean values from data of a single CM SAF NetCDF input file. The months are given as a vector of integers from 1 to 12. This allows means of user-defined seasons.

126 multimonmean

Usage

```
multimonmean(
  var,
  month = c(1),
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
month	Months which should be averaged, in form of a comma separated vector of integer values from 1 to 12 (integer).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-monthly means is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)</pre>
```

multimonsum 127

```
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x \leftarrow ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the mean of the monsoon seas from June to September of the
## example CM SAF NetCDF file and write the output to a new file.
multimonmean(var = "SIS", month = c(6, 7, 8, 9), infile =
 file.path(tempdir(), "CMSAF_example_file.nc"), outfile =
 file.path(tempdir(), "CMSAF_example_file_multimonmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_multimonmean.nc")))
```

multimonsum

Determine multi-monthly sums

Description

The function determines multi-monthly sums from data of a single CM SAF NetCDF input file. The months are given as a vector of integers from 1 to 12. This allows sums of user-defined seasons.

Usage

```
multimonsum(
  var,
  month = c(1),
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

128 multimonsum

Arguments

var	Name of NetCDF variable (character).
month	Months which should be averaged, in form of a comma separated vector of integer values from 1 to 12 (integer).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-monthly sums is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(0:150, dim = c(11, 11, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("rain", "mm", list(x, y, t), -1, prec = "short")</pre>
```

ncinfo 129

```
vars <- list(var1)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the sum of the monsoon seas from June to September of the
## example CM SAF NetCDF file and write the output to a new file.
multimonsum(var = "rain", month = c(6, 7, 8, 9), infile =
    file.path(tempdir(), "CMSAF_example_file.nc"), outfile =
    file.path(tempdir(), "CMSAF_example_file_multimonsum.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file_nc"),
    file.path(tempdir(), "CMSAF_example_file_multimonsum.nc")))</pre>
```

ncinfo

Get information about the content of a NetCDF file.

Description

Shows the content of a NetCDF file in three different detail levels.

Usage

```
ncinfo(infile, info = "s", verbose = FALSE, nc = NULL)
```

Arguments

infile	Filename of input NetCDF file. This may include the directory (character).
info	The output can be: long ('l'), medium ('m') and short ('s') (character). Default is short ('s'). The option 'l' additionally returns a list object with file information.
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

prints the content of the infile NetCDF.

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
```

num_above

```
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
 vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Get information on a medium detail level of the example CM SAF NetCDF
ncinfo(infile = file.path(tempdir(), "CMSAF_example_file.nc"), info = "m")
unlink(file.path(tempdir(), "CMSAF_example_file.nc"))
```

num_above

Number of timesteps above a threshold.

Description

This function counts the number of timesteps above a certain threshold for each grid point of a dataset ($x \ge thld$).

Usage

```
num_above(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

num_above 131

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'integer'.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
```

num_below

```
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Count the number of timesteps above a threshold of each grid point
## of the example CM SAF NetCDF file and write the output to a new file.
num_above(var = "SIS", thld = 300, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_num_above.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_num_above.nc")))</pre>
```

num_below

Number of timesteps below a threshold.

Description

This function counts the number of timesteps below a certain threshold for each grid point of a dataset ($x \le thld$).

Usage

```
num_below(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

num_below 133

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'integer'.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Count the number of timesteps below a threshold of each grid point
## of the example CM SAF NetCDF file and write the output to a new file.
num_below(var = "SIS", thld = 300, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_num_below.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_num_below.nc")))
```

num_equal

num_equal	Number of timesteps equal a threshold.	

Description

This function counts the number of timesteps equal a certain threshold for each grid point of a dataset (x == thld).

Usage

```
num_equal(
  var,
  thld = 0,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
thld	Threshold (numeric).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the manipulated data fields of infile is written. Standard output precision is 'integer'.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

read_file 135

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Count the number of timesteps equal a threshold of each grid point
## of the example CM SAF NetCDF file and write the output to a new file.
num_equal(var = "SIS", thld = 300, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_num_equal.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_num_equal.nc")))
```

read_file

Designed for the CM SAF R Toolbox.

Description

This function is a helper function called by the CM SAF R Toolbox.

Usage

```
read_file(infile, var_name, nc = NULL)
```

read_ncvar

Arguments

infile	Filename of input NetCDF file. This may include the directory (character).
var_name	Name of NetCDF variable (character).
nc	Alternatively to infile you can specify the input as an object of class ncdf4
	(as returned from ncdf4::nc_open).

read_ncva	ar Read NetC	CDF variable.	

Description

This simple function reads a variable of a NetCDF file into R.

Usage

```
read_ncvar(var, infile, verbose = FALSE, nc = NULL)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4

(as returned from ncdf4::nc_open).

Value

The output is a list object including the variable and the corresponding time variable. The dimension of the chosen variable is most commonly a two or three dimensional array.

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

remap 137

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Load the data of variable 'SIS' of the example file into R. To
## access the data use e.g., my.data$SIS
my.data <- read_ncvar(var = "SIS", infile = file.path(tempdir(),</pre>
 "CMSAF_example_file.nc"))
unlink(file.path(tempdir(), "CMSAF_example_file.nc"))
```

remap

Grid interpolation.

Description

The function interpolates the data of infile1 to the grid of infile2. From infile2 only the grid information is used. By default, a nearest neighbor interpolation provided by get.knnx is used. For interpolation between regular grids a simple bilinear interpolation as provided by interp.surface.grid as well as a conservative remapping as provided by remapcon can be chosen.

Usage

```
remap(
  var,
  infile1,
  infile2,
  outfile,
  method = "nearest",
  dxy_factor = 1,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc1 = NULL,
  nc2 = NULL
)
```

138 remap

Arguments

var	Name of NetCDF variable (character).
infile1	Filename of first input NetCDF file. This may include the directory (character). The data of infile1 are interpolated.
infile2	Filename of second input file. This may include the directory (character). The grid information of infile2 are the target grid for the interpolation. This File may also be an ASCII-File containing the grid information.
outfile	Filename of output NetCDF file. This may include the directory (character).
method	Method used for remapping (character). Options are "bilinear" for bilinear interpolation, "conservative" for conservative remapping (only for regular grids, respectively) and "nearest" for nearest-neighbor interpolation. Default is "nearest".
dxy_factor	In case of nearest neighbor all grid points with distance $>$ (dxy * dxy_factor) are set to NA (numeric). Default is 1.
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the interpolated data of infile1 on the grid of infile2 is written.

See Also

```
Other data manipulation functions: acsaf_box_mergetime(), add_grid_info(), box_mergetime(), cmsaf.transform.coordinate.system(), levbox_mergetime(), map_regular()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
lon2 <- seq(5, 15, 1)
lat2 <- seq(45, 55, 1)
time <- c(as.Date("2000-01-01"), as.Date("2001-02-01"))</pre>
```

runmax 139

```
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create two example NetCDF files
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncvar_put(ncnew, var1, data1)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon2)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat2)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time[1], unlim = TRUE)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew, var1, data2)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Interpolate the fields of both example CM SAF NetCDF file 1 to the
## coarser grid of file 2 and write the result into one output file.
remap(var = "SIS", infile1 = file.path(tempdir(),"CMSAF_example_file_1.nc"),
 infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_remap.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
 file.path(tempdir(), "CMSAF_example_file_2.nc"),
 file.path(tempdir(), "CMSAF_example_file_remap.nc")))
```

runmax

Determine running maxima

Description

The function determines running maxima from data of a single CM SAF NetCDF input file.

Usage

```
runmax(
  var,
```

140 runmax

```
nts = 6,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps. Default is 6.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of running maxima is written.

See Also

```
Other running statistics: runmean(), runmin(), runrange(), runsd(), runsum(), ydrunsean(), ydrunsd(), ydrunsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(11, 11, 132))</pre>
```

runmean 141

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the running maxima of the example CM SAF NetCDF file and write
## the output to a new file.
runmin(var = "SIS", nts = 10, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_runmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_runmax.nc")))
```

runmean

Determine running means

Description

The function determines running mean values from data of a single CM SAF NetCDF input file.

Usage

```
runmean(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.

142 runmean

infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of running means is written.

See Also

```
Other running statistics: runmax(), runmin(), runrange(), runsd(), runsum(), ydrunmean(), ydrunsd(), ydrunsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2006-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(11, 11, 60))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create("CMSAF_example_file.nc", vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the running means of the example CM SAF NetCDF file and write
```

runmin 143

```
## the output to a new file.
runmean(var = "SIS", nts = 10, infile = "CMSAF_example_file.nc", outfile =
   "CMSAF_example_file_runmean.nc")
unlink(c("CMSAF_example_file.nc", "CMSAF_example_file_runmean.nc"))
```

runmin

Determine running minima

Description

The function determines running minima from data of a single CM SAF NetCDF input file.

Usage

```
runmin(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of running minima is written.

144 runrange

See Also

```
Other running statistics: runmax(), runmean(), runrange(), runsd(), runsum(), ydrunmean(), ydrunsd(), ydrunsum()
```

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the running minima of the example CM SAF NetCDF file and write
## the output to a new file.
runmin(var = "SIS", nts = 10, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_runmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_runmin.nc")))
```

runrange

Determine running range

Description

The function calculates the running difference of maximum and minimum values from data of a single CM SAF NetCDF input file.

runrange 145

Usage

```
runrange(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of running range is written.

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runsd(), runsum(), ydrunmean(), ydrunsd(), ydrunsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")</pre>
```

runsd runsd

```
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(11, 11, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create("CMSAF_example_file.nc", vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the running range of the example CM SAF NetCDF file and write
## the output to a new file.
runrange(var = "SIS", nts = 10, infile = "CMSAF_example_file.nc",
outfile = "CMSAF_example_file_runrange.nc")
unlink(c("CMSAF_example_file.nc", "CMSAF_example_file_runrange.nc"))
```

runsd

Determine running standard deviation

Description

The function determines running standard deviation from data of a single CM SAF NetCDF input file.

Usage

```
runsd(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var

Name of NetCDF variable (character).

runsd 147

nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including a time series of running standard deviation is written.

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runrange(), runsum(), ydrunmean(), ydrunsd(), ydrunsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
```

148 runsum

```
## Determine the running standard deviation of the example CM SAF NetCDF
## file and write the output to a new file.
runsd(var = "SIS", nts = 10, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_runsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_runsd.nc")))
```

runsum

Determine running sums

Description

The function determines running sums from data of a single CM SAF NetCDF input file.

Usage

```
runsum(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of running sums is written.

seas.anomaly 149

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runrange(), runsd(), ydrunmean(), ydrunsd(), ydrunsum()
```

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the running sums of the example CM SAF NetCDF file and write
## the output to a new file.
runsum(var = "SIS", nts = 10, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_runsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_runsum.nc")))
```

seas.anomaly

Determine seasonal anomalies.

Description

The function determines the seasonal means of a time series and subtracts the corresponding multiseasonal means to get seasonal anomalies. seas.anomaly

Usage

```
seas.anomaly(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If $nc34 = 3$ the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of seasonal anomalies is written.

See Also

```
Other seasonal statistics: seasmean(), seassd(), seassum(), seasvar(), yseasmax(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

seasmean 151

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the seasonal anomalies of the example CM SAF NetCDF file
## and write the output to a new file.
seas.anomaly(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_seas.anomaly.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_seas.anomaly.nc")))
```

seasmean

Determine seasonal means

Description

The function determines seasonal mean values from data of a single CM SAF NetCDF input file. The seasonal mean is only determined if all three months of a season are available. For (north-) winter this are January. February and the December of the previous year (DJF). The other seasons are MAM, JJA, and SON.

Usage

```
seasmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).
infile Filename of input NetCDF file. This may include the directory (character).

152 seasmean

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of seasonal means is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seassd(), seassum(), seasvar(), yseasmax(), yseasmean(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the seasonal means of the example CM SAF NetCDF file and
## write the output to a new file.
seasmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
```

seassd 153

```
outfile = file.path(tempdir(), "CMSAF_example_file_seasmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_seasmean.nc")))
```

seassd

Determine seasonal standard deviations

Description

The function determines seasonal standard deviations values from data of a single CM SAF NetCDF input file. The seasonal standard deviations is only determined if all three months of a season are available. For (north-) winter this are January, February and the December of the previous year (DJF). The other seasons are MAM, JJA, and SON.

Usage

```
seassd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of seasonal standard deviations is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassum(), seasvar(), yseasmean(), yseasmin(), yseassd()
```

154 seassum

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the seasonal standard deviations of the example CM SAF NetCDF file and
## write the output to a new file.
seassd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_seassd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_seassd.nc")))
```

seassum

Determine seasonal sums

Description

The function determines seasonal sum values from data of a single CM SAF NetCDF input file. The seasonal sum is only determined if all three months of a season are available. For (north-) winter this are January, February and the December of the previous year (DJF). The other seasons are MAM, JJA, and SON.

seassum 155

Usage

```
seassum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If $nc34 = 3$ the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of seasonal sums is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seasvar(), yseasmax(), yseasmean(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

156 seasvar

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the seasonal sums of the example CM SAF NetCDF file and
## write the output to a new file.
seassum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_seassum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_seassum.nc")))
```

seasvar

Determine seasonal variances

Description

The function determines seasonal variances values from data of a single CM SAF NetCDF input file. The seasonal variances is only determined if all three months of a season are available. For (north-) winter this are January, February and the December of the previous year (DJF). The other seasons are MAM, JJA, and SON.

Usage

```
seasvar(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).
infile Filename of input NetCDF file. This may include the directory (character).

seasvar 157

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including a time series of seasonal variances is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seassum(), yseasmax(), yseasmean(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the seasonal variances of the example CM SAF NetCDF file and
## write the output to a new file.
seasvar(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
```

158 sellonlatbox

```
outfile = file.path(tempdir(),"CMSAF_example_file_seasvar.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
file.path(tempdir(),"CMSAF_example_file_seasvar.nc")))
```

sellonlatbox

Select a region by longitude and latitude.

Description

This function cuts a region from data of a CM SAF NetCDF file. The region is selected by giving the coordinates of the lower left and upper right corner of an rectangular grid area.

Usage

```
sellonlatbox(
  var,
  infile,
  outfile,
  lon1 = -180,
  lon2 = 180,
  lat1 = -90,
  lat2 = 90,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
var	Name of NetCD1 variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
lon1	Longitude of lower left corner (numeric).
lon2	Longitude of upper right left corner (numeric).
lat1	Latitude of lower left corner (numeric).
lat2	Latitude of upper right corner (numeric).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

sellonlatbox 159

Value

A NetCDF file including the selected region is written.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), selmon(), selperiod(), selpoint(), selpoint.multi(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Cut a region of the example CM SAF NetCDF file and write the output
## to a new file.
sellonlatbox(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_sellonlatbox.nc"),
lon1 = 8, lon2 = 12, lat1 = 48, lat2 = 52)
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_sellonlatbox.nc")))
```

160 selmon

selmon Extract a list of months.	
----------------------------------	--

Description

This function selects a given list of months from a time series.

Usage

```
selmon(
  var,
  month = c(1),
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
month	Months, which should be selected, in form of a comma separated vector of integer values from 1 to 12 (integer).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of the selected month is written.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selperiod(), selpoint(), selpoint.multi(), seltime(), selyear()
```

selperiod 161

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Select all March and June values of the example CM SAF NetCDF file
## and write the output to a new file.
selmon(var = "SIS", month = c(3, 6), infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
 "CMSAF_example_file_selmon.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_selmon.nc")))
```

selperiod

Extract a list of dates.

Description

This function selects a time period from a time series.

Usage

```
selperiod(
```

selperiod selperiod

```
var,
start,
end,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
start	Start date as character in form of 'YYYY-MM-DD' (e.g., '2001-12-31').
end	End date as character in form of 'YYYY-MM-DD' (e.g., '2001-12-31').
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the selected time period is written.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selmon(), selpoint(), selpoint.multi(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")</pre>
```

selpoint 163

```
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Select a 13-months period of the example CM SAF NetCDF file and write
## the output to a new file.
selperiod(var = "SIS", start = "2001-01-01", end = "2002-01-01",
 infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_selperiod.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_selperiod.nc")))
```

selpoint

Extract data at a given point.

Description

This function extracts all data at a given point. A point is given by a pair of longitude and latitude coordinates. The function will find the closest grid point to the given coordinates and extracts the data for this point. The output-file can be optional in NetCDF or csv. The outfile is checked for the correct file extension.

Usage

```
selpoint(
  var,
  infile,
  outfile,
  lon1 = 0,
  lat1 = 0,
  format = "nc",
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

164 selpoint

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
lon1	Longitude of desired point (numeric).
lat1	Latitude of desired point (numeric).
format	Intended output format. Options are nc or csv. Default is nc (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF or csv file including the selected point is written. The csv file is tested for use in Excel and includes two columns (Time and Data), which are separated by ';'.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selmon(), selperiod(), selpoint.multi(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
```

selpoint.multi 165

```
vars <- list(var1)
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Select a point of the example CM SAF NetCDF file and write the output
## to a csv-file.
selpoint(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_selpoint.nc"),
lon1 = 8, lat1 = 48, format = "csv")

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file.nc")))</pre>
```

selpoint.multi

Extract data at multiple points.

Description

This function extracts all data at given points. The points are given by a pair of vectors with longitude and latitude coordinates. The function will find the closest grid points to the given coordinates and extracts the data for these points. For each point a separate output file is written. The output-files can be optional in NetCDF or csv. Input can be a single NetCDF file (given by the infile attribute) or a bunch of NetCDF files (given by the path and pattern attributes).

Usage

```
selpoint.multi(
  var,
  infile,
  path,
  pattern,
  outpath,
  lon1,
  lat1,
  station_names = NULL,
  format = "nc",
  nc34 = 4,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var

Name of NetCDF variable (character).

166 selpoint.multi

infile	Filename of input NetCDF file. This may include the directory (character). Infile is not needed if path and pattern are given.
path	Directory of input files (character). Will not be used if infile is given.
pattern	Pattern that all desired files in the 'path' directory have in common (character).
outpath	Directory where output files will be stored (character).
lon1	Longitude vector of desired points (numeric vector). Must have the same length as lat1.
lat1	Latitude vector of desired points (numeric vector). Must have the same length as lon1.
station_names	Optional vector of names, which will be used for the output files (character vector). Must have the same length as lon1 and lat1.
format	Intended output format. Options are nc or csv. Default is nc (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

For each pair of longitude and latitude coordinates one separate NetCDF or csv file including the selected data is written. The csv files are tested for use in Excel and include four columns (Time; Data; Longitude; Latitude), which are separated by ';'. If station_names are defined, the output files will be named according to this vector. Otherwise, the output files will be named as selpoint_longitude_latitude.format. Already existing files will be overwritten in case that station_names are given or renamed (e.g., selpoint1_longitude_latitude.nc) in case that no station_names are given.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selmon(), selperiod(), selpoint(), seltime(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")</pre>
```

seltime 167

```
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Select two points of the example CM SAF NetCDF file and write the
## output to a csv-file.
selpoint.multi(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outpath = tempdir(), lon1 = c(8, 9), lat1 = c(48, 49),
 station_names = c("A", "B"), format = "csv")
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(), "A.csv"),
 file.path(tempdir(), "B.csv")))
```

seltime

Extract specific timestep.

Description

This function selects a given list of times from a time series.

Usage

```
seltime(
  var,
  hour_min = c("00:00:00"),
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var

Name of NetCDF variable (character).

168 seltime

hour_min	Times, which should be selected, in form of a vector of character values in the form of 'HH:MM:SS' (e.g. c('12:00:00') (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including a time series of the selected times is written.

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selmon(), selperiod(), selpoint(), selpoint.multi(), selyear()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(ISOdate(2000, 1, 1), ISOdate(2000, 1, 6), "hours")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 121))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
```

selyear 169

```
## Select all 12:00 and 21:00 values of the example CM SAF NetCDF file
## and write the output to a new file.
seltime(var = "SIS", hour_min = c("12:00:00", "21:00:00"),
  infile = file.path(tempdir(), "CMSAF_example_file.nc"),
  outfile = file.path(tempdir(), "CMSAF_example_file_seltime.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
  file.path(tempdir(), "CMSAF_example_file_seltime.nc")))
```

selyear

Extract a list of years.

Description

This function selects a given list of years from a time series.

Usage

```
selyear(
  var,
  year = c(2000),
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
year	Year in form of a comma separated vector of integer values (e.g. c(2000,2015)) (integer).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of the selected years is written.

170 timavg

See Also

```
Other selection and removal functions: extract.level(), extract.period(), sellonlatbox(), selmon(), selperiod(), selpoint(), selpoint.multi(), seltime()
```

```
## Create an example NetCDF file with a similar structure
## as used by CM SAF. The file is created with the ncdf4 package.
## Alternatively example data can be freely downloaded here:
## <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5,15,0.5)
lat <- seq(45,55,0.5)
 time <- seq(as.Date('2000-01-01'), as.Date('2010-12-31'), 'month')
origin <- as.Date('1983-01-01 00:00:00')
 time <- as.numeric(difftime(time,origin,units='hour'))</pre>
 data <- array(250:350,dim=c(21,21,132))</pre>
## create example NetCDF
 x <- ncdim_def(name='lon',units='degrees_east',vals=lon)</pre>
 y <- ncdim_def(name='lat',units='degrees_north',vals=lat)</pre>
 t <- ncdim_def(name='time',units='hours since 1983-01-01 00:00:00',
 vals=time,unlim=TRUE)
 var1 <- ncvar_def('SIS','W m-2',list(x,y,t),-1,prec='short')</pre>
 vars <- list(var1)</pre>
 ncnew <- nc_create(file.path(tempdir(), 'CMSAF_example_file.nc'), vars)</pre>
 ncvar_put(ncnew, var1, data)
 ncatt_put(ncnew,'lon','standard_name','longitude',prec='text')
 ncatt_put(ncnew,'lat','standard_name','latitude',prec='text')
 nc_close(ncnew)
## Select all values of the year 2003 and 2006 of the example CM SAF
## NetCDF file and write the output to a new file.
 selyear(var = "SIS", year = c(2003,2006), infile = file.path(tempdir(),
  'CMSAF_example_file.nc'), outfile = file.path(tempdir(),
  'CMSAF_example_file_selyear.nc'))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_selyear.nc")))
```

timavg 171

Description

The function determines the all-time average from data of a single CM SAF NetCDF input file and is useful to calculate climatological means. The function limits the timesteps, which are read at once, to avoid RAM overflow. There is a difference between the operators timavg and timmean. The mean is regarded as a statistical function, whereas the average is found simply by adding the sample members and dividing the result by the sample size. For example, the mean of 1, 2, miss and 3 is (1 + 2 + 3)/3 = 2, whereas the average is (1 + 2 + miss + 3)/4 = miss/4 = miss. If there are no missing values in the sample, the average and mean are identical.

Usage

```
timavg(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the temporal average is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

172 timcor

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seg(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the climatology of the example CM SAF NetCDF file and write
## the output to a new file.
timavg(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_timavg.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_timavg.nc")))
```

timcor

Determine correlations over time.

Description

The function determines correlations over time from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.

Usage

```
timcor(
  var1,
```

timcor 173

```
infile1,
var2,
infile2,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc1 = NULL,
nc2 = NULL
)
```

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of correlations over time is written.

See Also

Other correlation and covariance: fldcor(), fldcovar(), timcovar()

```
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)

## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)</pre>
```

174 timcovar

```
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 \leftarrow array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the correlations over time of the example CM SAF NetCDF files and
## write the output to a new file.
timcor(var1 = "SIS", infile1 = file.path(tempdir(), "CMSAF_example_file_1.nc"),
      var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
      outfile = file.path(tempdir(),"CMSAF_example_file_timcor.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
      file.path(tempdir(), "CMSAF_example_file_2.nc"),
      file.path(tempdir(), "CMSAF_example_file_timcor.nc")))
```

timcovar

Determine covariances over time.

Description

The function determines covariances over time from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.

Usage

```
timcovar(
  var1,
  infile1,
```

timcovar 175

```
var2,
infile2,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc1 = NULL,
nc2 = NULL
)
```

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of first input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of second input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of covariances over time is written.

See Also

Other correlation and covariance: fldcor(), fldcovar(), timcor()

```
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- as.Date("2000-05-31")</pre>
```

176 timcumsum

```
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 <- array(250:350, dim = c(21, 21, 1))
data2 <- array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the covariances over time of the example CM SAF NetCDF files and
## write the output to a new file.
timcovar(var1 = "SIS", infile1 = file.path(tempdir(),"CMSAF_example_file_1.nc"),
      var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
      outfile = file.path(tempdir(), "CMSAF_example_file_timcovar.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
      file.path(tempdir(), "CMSAF_example_file_2.nc"),
      file.path(tempdir(), "CMSAF_example_file_timcovar.nc")))
```

timcumsum

Accumulate data of NetCDF file.

Description

Computes the accumulation of the given variable over time. The resulting outfile has the same dimensions as the infile.

Usage

```
timcumsum(
  var,
  infile,
  outfile,
```

timmax 177

```
nc34 = 4,
overwrite = FALSE,
na_replace = "mean",
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of variable in infile (character).
infile	Character containing file name or path of input file.
outfile	Character containing file name or path of output file. If NULL, the input file is directly edited instead.
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	Logical; should existing output file be overwritten? If outfile is NULL, this parameter is ignored.
na_replace	Replacing NA values with either 'mean' or 'previous' for monthly mean or previous value, respectively (character).
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

timmax Determine all-time maxima.

Description

The function determines all-time maximum values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

Usage

```
timmax(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

178 timmax

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of all-time maxima is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
```

timmean 179

```
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)

## Determine the all-time maximum of the example CM SAF NetCDF file and
## write the output to a new file.
timmax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_timmax.nc"))

unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_timmax.nc")))
```

timmean

Determine all-time mean.

Description

The function determines the all-time mean from data of a single CM SAF NetCDF input file and is useful to calculate climatological means. The function limits the timesteps, which are read at once, to avoid RAM overflow.

Usage

```
timmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the temporal mean is written.

180 timmin

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmin(), timpctl(), timsd(), trend(), trend_advanced()
```

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the climatology of the example CM SAF NetCDF file and write
## the output to a new file.
timmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_timmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_timmean.nc")))
```

timmin

Determine all-time minima.

Description

The function determines all-time minimum values from data of a single CM SAF NetCDF input file. This function is applicable to 3-dimensional NetCDF data.

timmin 181

Usage

```
timmin(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of all-time minima is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timpctl(), timsd(), timsum(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2000-03-31"), "days")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
```

182 timpctl

```
data <- array(250:350, dim = c(21, 21, 91))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the all-time minimum of the example CM SAF NetCDF file and
## write the output to a new file.
timmin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_timmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(),"CMSAF_example_file_timmin.nc")))
```

timpctl

Determine percentile over all timesteps.

Description

The function determines a given percentile over all timesteps from data of a single CM SAF NetCDF input file.

Usage

```
timpctl(
  var,
  p = 0.95,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

Percentile number given as probability within [0, 1] (numeric). Default is 0.95.

timpctl 183

infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of all-time seasonal standard deviations is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timsd(), trend(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t \leftarrow ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
```

184 timsd

```
## Determine the 90% percentile of the example CM SAF NetCDF file and
## write the output to a new file.
timpctl(var = "SIS", p = 0.9, infile = file.path(tempdir(),
    "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
    "CMSAF_example_file_timpctl.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
    file.path(tempdir(), "CMSAF_example_file_timpctl.nc")))
```

timsd

Determine all-time standard deviations.

Description

The function determines all-time standard deviation values from data of a single CM SAF NetCDF input file.

Usage

```
timsd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of all-time standard deviations is written.

timselmean 185

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsum(), trend(), trend_advanced()
```

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the all-time seasonal standard deviation of the example CM
## SAF NetCDF file and write the output to a new file.
timsd(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_timsd.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_timsd.nc")))
```

timselmean

Determine time selection means

Description

The function determines the mean values for a pre-selected number of timesteps from data of a single CM SAF NetCDF input file.

186 timselmean

Usage

```
timselmean(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of input timesteps for each output timestep
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of time selection means is written.

See Also

Other time range statistics: timselsum()

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2006-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
```

timselsum 187

```
data <- array(250:350, dim = c(11, 11, 60))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create("CMSAF_example_file.nc", vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the time selection means of the example CM SAF NetCDF file
## and write the output to a new file.
timselmean(var = "SIS", nts = 10, infile = "CMSAF_example_file.nc",
outfile = "CMSAF_example_file_timselmean.nc")
unlink(c("CMSAF_example_file.nc", "CMSAF_example_file_timselmean.nc"))
```

timselsum

Determine time selection sums

Description

The function determines the sums for a pre-selected number of timesteps from data of a single CM SAF NetCDF input file.

Usage

```
timselsum(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

nts Number of input timesteps for each output timestep

infile Filename of input NetCDF file. This may include the directory (character).

188 timselsum

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of time selection sums is written.

See Also

Other time range statistics: timselmean()

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the time selection sums of the example CM SAF NetCDF file
## and write the output to a new file.
timselsum(var = "SIS", nts = 10, infile = file.path(tempdir(),
 "CMSAF_example_file.nc"), outfile = file.path(tempdir(),
```

timsum 189

```
"CMSAF_example_file_timselsum.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
file.path(tempdir(),"CMSAF_example_file_timselsum.nc")))
```

timsum

Determine all-time sum.

Description

The function determines the temporal sum from data of a single CM SAF NetCDF input file and is useful to calculate climatological sums. The function limits the timesteps, which are read at once, to avoid RAM overflow.

Usage

```
timsum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including the temporal sum is written.

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), trend(), trend_advanced()
```

190 trend

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
 vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the all-time sum of the example CM SAF NetCDF file and
## write the output to a new file.
timsum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_timsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_timsum.nc")))
```

trend

Determine linear trends.

Description

The function determines the trend from data of a single CM SAF NetCDF input file basing on a simple linear model. Depending on the file size, this function could be very time consuming, thus there are two available options. Option 1 (default) is using an apply approach and will read the whole data in once. This option is quite fast, but requires enough memory. Option 2 is using the same calculation, but reads the data pixel by pixel, which is very slow, but can also be applied for large data files, which would not fit into the memory at once.

trend 191

Usage

```
trend(
  var,
  infile,
  outfile,
  option = 1,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
option	The way of data handling. Option = 1 is fast but memory consuming (default). Option = 2 is slow, but needs much less memory. Input is either 1 or 2 (numeric).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including three data layers is written. One layer (trend1) contains the linear trend multiplied by the number of time steps. In older versions of the package (<=1.7) the trend was given in the same way as trend1. Another layer (trend2) contains just the calculated linear trend. An additional layer contains a measure for the significance of the calculated trends, which was derived using the 95 % confidence interval. The significance is calculated from the lower and upper value of the 95% confidence interval: lower or upper value <0: sig = 0 (not significant); lower and upper value <0: sig = 1 (positive significant)

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend_advanced()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
```

192 trend_advanced

```
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the trend of the example CM SAF NetCDF file and write the
## output to a new file.
trend(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_trend.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_trend.nc")))
```

trend_advanced

Determine multiple linear trends.

Description

The function determines the trend from data of two CM SAF NetCDF input files basing on a multiple linear model. Learn more http://www.sthda.com/english/articles/40-regression-analysis/168-multiple-linear-regression-in-r/

Usage

```
trend_advanced(
  var1,
  infile1,
  var2,
```

trend_advanced 193

```
infile2,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc1 = NULL,
nc2 = NULL
)
```

Arguments

var1	Name of NetCDF variable of the first data set (character).
infile1	Filename of input NetCDF file. This may include the directory (character).
var2	Name of NetCDF variable of the second data set (character).
infile2	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwri	te logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc1	Alternatively to infile1 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).
nc2	Alternatively to infile2 you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including four data layers is written. One layer (trend1) contains the linear trend based on the time steps. Another layer (trend2) contains linear trend based on var2. The two other layers contain a measure for the significance of the calculated trends, which was derived using the 95 % confidence interval. The significance is calculated from the lower and upper value of the 95% confidence interval: lower or upper value < 0: sig = 0 (not significant); lower and upper value < 0: sig = 1 (positive significant)

See Also

```
Other temporal operators: cmsaf.detrend(), cmsaf.mk.test(), cmsaf.regres(), num_above(), num_below(), num_equal(), timavg(), timmax(), timmean(), timmin(), timpctl(), timsd(), timsum(), trend()
```

```
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
```

194 wfldmean

```
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data1 \leftarrow array(250:350, dim = c(11, 11, 1))
data2 \leftarrow array(230:320, dim = c(11, 11, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
             vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")</pre>
vars <- list(var1)</pre>
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)</pre>
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)</pre>
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the multiple linear trend of the example CM SAF NetCDF files and
## write the output to a new file.
trend_advanced(var1 = "SIS", infile1 = file.path(tempdir(), "CMSAF_example_file_1.nc"),
      var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
      outfile = file.path(tempdir(), "CMSAF_example_file_trend_advanced.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file_1.nc"),
      file.path(tempdir(), "CMSAF_example_file_2.nc"),
      file.path(tempdir(), "CMSAF_example_file_trend_advanced.nc")))
```

wfldmean

Determine the weighted spatial mean.

Description

The function determines area weighted mean values from data of a single file. The calculation is based on the 'weighted mean' function of the raster package.

wfldmean 195

Usage

```
wfldmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of area weighted spatial means is written.

See Also

```
Other spatial operators: fldmax(), fldmean(), fldmin(), fldrange(), fldsd(), fldsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 10, 0.5)
lat <- seq(45, 50, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(11, 11, 132))</pre>
```

196 ydaymax

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the spatial means of the example CM SAF NetCDF file and
## write the output to a new file.
wfldmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_wfldmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_wfldmean.nc")))
```

ydaymax

Determine multi-year daily maxima

Description

The function determines multi-year daily maximum from data of a single CM SAF NetCDF input file

Usage

```
ydaymax(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

outfile Filename of output NetCDF file. This may include the directory (character).

ydaymax 197

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily maximum is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymean(), ydaymin(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 730))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily maximum of the example CM SAF NetCDF file
## and write the output to a new file.
ydaymax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_ydaymax.nc"))
```

198 ydaymean

```
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
  file.path(tempdir(),"CMSAF_example_file_ydaymax.nc")))
```

ydaymean

Determine multi-year daily means.

Description

The function determines multi-year daily mean values from data of a single CM SAF NetCDF input file.

Usage

```
ydaymean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily means is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymin(), ydayrange(), ydaysd(), ydaysum()
```

ydaymin 199

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(11, 11, 730))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily mean of the example CM SAF NetCDF file
## and write the output to a new file.
ydaymean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ydaymean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ydaymean.nc")))
```

ydaymin

Determine multi-year daily minima

Description

The function determines multi-year daily minimum from data of a single CM SAF NetCDF input file.

Usage

```
ydaymin(
```

200 ydaymin

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including a time series of multi-year daily minimum is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydayrange(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 730))

## create example NetCDF</pre>
```

ydayrange 201

```
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily minimum of the example CM SAF NetCDF file
## and write the output to a new file.
ydaymin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ydaymin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ydaymin.nc")))
```

ydayrange

Determine multi-year daily range

Description

The function determines multi-year daily range from data of a single CM SAF NetCDF input file.

Usage

```
ydayrange(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?

202 ydayrange

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4
(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily range is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydaysd(), ydaysum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 730))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily range of the example CM SAF NetCDF file
## and write the output to a new file.
ydayrange(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_ydayrange.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
"CMSAF_example_file_ydayrange.nc")))
```

ydaysd 203

ydaysd	Determine multi-year daily standard deviations	

Description

The function determines multi-year daily standard deviations from data of a single CM SAF NetCDF input file.

Usage

```
ydaysd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily standard deviations is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydayrange(), ydaysum()
```

204 ydaysum

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(11, 11, 730))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily standard deviations of the example
## CM SAF NetCDF file and write the output to a new file.
ydaysd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ydaysd.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"), file.path(tempdir(),
 "CMSAF_example_file_ydaysd.nc")))
```

ydaysum

Determine multi-year daily sums

Description

The function determines multi-year daily sums from data of a single CM SAF NetCDF input file.

Usage

```
ydaysum(
var,
```

ydaysum 205

```
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily sums is written.

See Also

```
Other daily statistics: dayavg(), daymax(), daymean(), daymin(), daypctl(), dayrange(), daysd(), daysum(), dayvar(), ydaymax(), ydaymean(), ydaymin(), ydayrange(), ydaysd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2009-01-01"), as.Date("2010-12-31"), "day")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 730))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

206 ydrunmean

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily sums of the example CM SAF NetCDF file
## and write the output to a new file.
ydaysum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(),"CMSAF_example_file_ydaysum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"), file.path(tempdir(),
"CMSAF_example_file_ydaysum.nc")))
```

ydrunmean

Determine multi-year daily running means.

Description

The function determines multi-year daily running mean values from data of a single CM SAF NetCDF input file.

Usage

```
ydrunmean(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).

ydrunmean 207

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily running means is written.

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runrange(), runsd(), runsum(), ydrunsd(), ydrunsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily running means of the example CM SAF
## NetCDF file and write the output to a new file.
ydrunmean(var = "SIS", nts = 10, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_ydrunmean.nc"))
```

208 ydrunsd

```
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
  file.path(tempdir(),"CMSAF_example_file_ydrunmean.nc")))
```

ydrunsd

Determine multi-year daily running standard deviations

Description

The function determines multi-year daily running standard deviation values from data of a single CM SAF NetCDF input file.

Usage

```
ydrunsd(
  var,
  nts = 6,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year daily running standard deviations is written.

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runrange(), runsd(), runsum(), ydrunmean(), ydrunsum()
```

ydrunsum 209

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(10, 15, 0.5)
lat <- seq(50, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(11, 11, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily running standard deviations of the example
## CM SAF NetCDF file and write the output to a new file.
ydrunsd(var = "SIS", nts = 10, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ydrunsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ydrunsd.nc")))
```

ydrunsum

Determine multi-year daily running sums

Description

The function determines multi-year daily running sum values from data of a single CM SAF NetCDF input file.

Usage

```
ydrunsum(
```

210 ydrunsum

```
var,
nts = 6,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
nts	Number of consecutive timesteps. Computes running statistical values over a selected number of timesteps.
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc.open)

Value

A NetCDF file including a time series of multi-year daily running sums is written.

See Also

```
Other running statistics: runmax(), runmean(), runmin(), runrange(), runsd(), runsum(), ydrunmean(), ydrunsd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
```

year.anomaly 211

```
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year daily running sums of the example CM SAF
## NetCDF file and write the output to a new file.
ydrunsum(var = "SIS", nts = 10, infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ydrunsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_ydrunsum.nc")))
```

year.anomaly

Determine annual anomalies.

Description

The function determines the annual means of a time series and subtracts the climatology from each mean to get annual anomalies.

Usage

```
year.anomaly(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).
infile Filename of input NetCDF file. This may include the directory (character).

212 year.anomaly

outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual anomalies is written.

See Also

```
Other annual statistics: yearmax(), yearmean(), yearmin(), yearrange(), yearsd(), yearsum(), yearvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual anomalies of the example CM SAF NetCDF file and
## write the output to a new file.
year.anomaly(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
```

yearmax 213

```
outfile = file.path(tempdir(), "CMSAF_example_file_year.anomaly.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
file.path(tempdir(), "CMSAF_example_file_year.anomaly.nc")))
```

yearmax

Determine annual maxima

Description

The function determines annual maxima from data of a single CM SAF NetCDF input file.

Usage

```
yearmax(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual maxima is written.

See Also

```
Other annual statistics: year.anomaly(), yearmean(), yearmin(), yearrange(), yearsd(), yearsum(), yearvar()
```

214 yearmean

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual maxima of the example CM SAF NetCDF file and write
## the output to a new file.
yearmax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yearmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearmax.nc")))
```

yearmean

Determine annual means

Description

The function determines annual mean values from data of a single CM SAF NetCDF input file.

Usage

```
yearmean(
  var,
```

yearmean 215

```
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual means is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmin(), yearrange(), yearsd(), yearsum(), yearvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF

x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
```

216 yearmin

```
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
\#\# Determine the annual means of the example CM SAF NetCDF file and
## write the output to a new file.
yearmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yearmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_yearmean.nc")))
```

yearmin

Determine annual minima

Description

The function determines annual minima from data of a single CM SAF NetCDF input file.

Usage

```
yearmin(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

yearmin 217

Value

A NetCDF file including a time series of annual minima is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmean(), yearrange(), yearsd(), yearsum(), yearvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat \leftarrow seg(45, 55, 0.5)
time <- seg(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual minima of the example CM SAF NetCDF file and write
## the output to a new file.
yearmin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_yearmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearmin.nc")))
```

218 yearrange

yearrange	Determine annual range	

Description

The function calculates the difference of maximum and minimum values by yearly from data of a single CM SAF NetCDF input file.

Usage

```
yearrange(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual range is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmean(), yearmin(), yearsd(), yearsum(), yearvar()
```

yearsd 219

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual range of the example CM SAF NetCDF file and write
## the output to a new file.
yearrange(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yearrange.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearrange.nc")))
```

yearsd

Determine annual standard deviation

Description

The function determines annual standard deviation from data of a single CM SAF NetCDF input file.

Usage

```
yearsd(
```

220 yearsd

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc open).

Value

A NetCDF file including a time series of annual standard deviation is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmean(), yearmin(), yearrange(), yearsum(), yearvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF</pre>
```

yearsum 221

```
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual standard deviation of the example CM SAF NetCDF file
## and write the output to a new file.
yearsd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yearsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearsd.nc")))
```

yearsum

Determine annual sums

Description

The function determines annual sums from data of a single CM SAF NetCDF input file.

Usage

```
yearsum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?

222 yearsum

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4
(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual sums is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmean(), yearmin(), yearrange(), yearsd(), yearvar()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < - seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual sums of the example CM SAF NetCDF file and write
## the output to a new file.
yearsum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_yearsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearsum.nc")))
```

yearvar 223

yearvar	Determine annual variance

Description

The function determines annual variance from data of a single CM SAF NetCDF input file.

Usage

```
yearvar(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of annual variance is written.

See Also

```
Other annual statistics: year.anomaly(), yearmax(), yearmean(), yearmin(), yearrange(), yearsd(), yearsum()
```

224 ymonmax

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the annual variance of the example CM SAF NetCDF file and write
## the output to a new file.
yearvar(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yearvar.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yearvar.nc")))
```

ymonmax

Determine multi-year monthly maxima.

Description

The function determines multi-year monthly maximum values from data of a single CM SAF NetCDF input file.

Usage

```
ymonmax(
```

ymonmax 225

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly maxima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmean(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

226 ymonmean

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly maximum of the example CM SAF NetCDF
## file and write the output to a new file.
ymonmax(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ymonmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_ymonmax.nc")))
```

ymonmean

Determine multi-year monthly means.

Description

The function determines multi-year monthly mean values from data of a single CM SAF NetCDF input file.

Usage

```
ymonmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

outfile Filename of output NetCDF file. This may include the directory (character).

ymonmean 227

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3
	format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4
	(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly means is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monpetl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmedian(), ymonmin(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly mean of the example CM SAF NetCDF
## file and write the output to a new file.
```

ymonmedian ymonmedian

```
ymonmean(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
  outfile = file.path(tempdir(),"CMSAF_example_file_ymonmean.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
  file.path(tempdir(),"CMSAF_example_file_ymonmean.nc")))
```

ymonmedian

Determine multi-year monthly medians.

Description

The function determines multi-year monthly median values from data of a single CM SAF NetCDF input file.

Usage

```
ymonmedian(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly medians is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmin(), ymonsd(), ymonsum()
```

ymonmin 229

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly mean of the example CM SAF NetCDF
## file and write the output to a new file.
ymonmedian(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ymonmedian.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ymonmedian.nc")))
```

ymonmin

Determine multi-year monthly minima.

Description

The function determines multi-year monthly minimum values from data of a single CM SAF NetCDF input file.

Usage

```
ymonmin(
```

230 ymonmin

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly minima is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monpetl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonsd(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))</pre>
```

ymonsd 231

```
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly minimum of the example CM SAF NetCDF
## file and write the output to a new file.
ymonmin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ymonmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ymonmin.nc")))
```

ymonsd

Determine multi-year monthly standard deviations.

Description

The function determines multi-year monthly standard deviation values from data of a single CM SAF NetCDF input file.

Usage

```
ymonsd(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

outfile Filename of output NetCDF file. This may include the directory (character).

232 ymonsd

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3
	format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly standard deviations is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmin(), monpetl(), monsd(), monsum(), monvar(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonsum(), ymonsum()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly standard deviation of the example CM
## SAF NetCDF file and write the output to a new file.
```

ymonsum 233

```
ymonsd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
  outfile = file.path(tempdir(), "CMSAF_example_file_ymonsd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
  file.path(tempdir(), "CMSAF_example_file_ymonsd.nc")))
```

ymonsum

Determine multi-year monthly sums.

Description

The function determines multi-year monthly sums from data of a single CM SAF NetCDF input file.

Usage

```
ymonsum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year monthly sums is written.

See Also

```
Other monthly statistics: mon.anomaly(), mon_num_above(), mon_num_below(), mon_num_equal(), monavg(), mondaymean(), monmax(), monmean(), monmin(), monpctl(), monsd(), monsum(), monvar(), multimonmean(), multimonsum(), ymonmax(), ymonmean(), ymonmedian(), ymonmin(), ymonsd()
```

234 yseasmax

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(0:250, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SDU", "h", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year monthly sum of the example CM SAF NetCDF
## file and write the output to a new file.
ymonsum(var = "SDU", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_ymonsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_ymonsum.nc")))
```

yseasmax

Determine multi-year seasonal maxima.

Description

The function determines multi-year seasonal maximum values from data of a single CM SAF NetCDF input file.

Usage

```
yseasmax(
```

yseasmax 235

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc. open).

Value

A NetCDF file including a time series of multi-year seasonal maxima is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seassum(), seasvar(), yseasmean(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF</pre>
```

236 yseasmean

```
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year seasonal maximum of the example CM SAF
## NetCDF file and write the output to a new file.
yseasmax(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yseasmax.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yseasmax.nc")))
```

vseasmean

Determine multi-year seasonal means.

Description

The function determines multi-year seasonal mean values from data of a single CM SAF NetCDF input file. The seasonal mean is only determined if all three months of a season are available. For (north-) winter this are January. February and the December of the previous year (DJF). The other seasons are MAM, JJA, and SON.

Usage

```
yseasmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var Name of NetCDF variable (character).

infile Filename of input NetCDF file. This may include the directory (character).

outfile Filename of output NetCDF file. This may include the directory (character).

yseasmean 237

nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year seasonal means is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seassum(), seasvar(), yseasmax(), yseasmin(), yseassd()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon < -seg(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(),"CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year seasonal means of the example CM SAF NetCDF
## file and write the output to a new file.
yseasmean(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_yseasmean.nc"))
```

238 yseasmin

```
unlink(c(file.path(tempdir(),"CMSAF_example_file.nc"),
  file.path(tempdir(),"CMSAF_example_file_yseasmean.nc")))
```

yseasmin

Determine multi-year seasonal minima.

Description

The function determines multi-year seasonal minimum values from data of a single CM SAF NetCDF input file.

Usage

```
yseasmin(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of multi-year seasonal minima is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seassum(), seasvar(), yseasmax(), yseasmean(), yseassd()
```

yseassd 239

Examples

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data \leftarrow array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year seasonal minimum of the example CM SAF
## NetCDF file and write the output to a new file.
yseasmin(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yseasmin.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_yseasmin.nc")))
```

yseassd

Determine multi-year seasonal standard deviations.

Description

The function determines multi-year seasonal standard deviation values from data of a single CM SAF NetCDF input file.

Usage

```
yseassd(
```

240 yseassd

```
var,
infile,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc.open)

Value

A NetCDF file including a time series of multi-year seasonal standard deviations is written.

See Also

```
Other seasonal statistics: seas.anomaly(), seasmean(), seassd(), seassum(), seasvar(), yseasmax(), yseasmean(), yseasmin()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)

## create some (non-realistic) example data

lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data <- array(250:350, dim = c(21, 21, 132))

## create example NetCDF</pre>
```

zonmean 241

```
x \leftarrow ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the multi-year seasonal standard deviation of the example
## CM SAF NetCDF file and write the output to a new file.
yseassd(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_yseassd.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(),"CMSAF_example_file_yseassd.nc")))
```

zonmean

Determine zonal means

Manager of MatCDE and inlate (also and an)

Description

The function determines zonal means from data of a single CM SAF NetCDF input file.

Usage

```
zonmean(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?

242 zonmean

verbose logical; if TRUE, progress messages are shown

nc Alternatively to infile you can specify the input as an object of class ncdf4
(as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of zonal means is written.

See Also

Other zonal statistics: zonsum()

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")</pre>
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the zonal means of the example CM SAF NetCDF file and write
## the output to a new file.
zonmean(var = "SIS", infile = file.path(tempdir(),"CMSAF_example_file.nc"),
 outfile = file.path(tempdir(), "CMSAF_example_file_zonmean.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_zonmean.nc")))
```

zonsum 243

zonsum

Determine zonal sums

Description

The function determines zonal sums from data of a single CM SAF NetCDF input file.

Usage

```
zonsum(
  var,
  infile,
  outfile,
  nc34 = 4,
  overwrite = FALSE,
  verbose = FALSE,
  nc = NULL
)
```

Arguments

var	Name of NetCDF variable (character).
infile	Filename of input NetCDF file. This may include the directory (character).
outfile	Filename of output NetCDF file. This may include the directory (character).
nc34	NetCDF version of output file. If nc34 = 3 the output file will be in NetCDFv3 format (numeric). Default output is NetCDFv4.
overwrite	logical; should existing output file be overwritten?
verbose	logical; if TRUE, progress messages are shown
nc	Alternatively to infile you can specify the input as an object of class ncdf4 (as returned from ncdf4::nc_open).

Value

A NetCDF file including a time series of zonal sums is written.

See Also

```
Other zonal statistics: zonmean()
```

```
## Create an example NetCDF file with a similar structure as used by CM
## SAF. The file is created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <a href="https://wui.cmsaf.eu/">https://wui.cmsaf.eu/</a>
library(ncdf4)
```

244 zonsum

```
## create some (non-realistic) example data
lon \leftarrow seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- seq(as.Date("2000-01-01"), as.Date("2010-12-31"), "month")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))</pre>
data <- array(250:350, dim = c(21, 21, 132))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)</pre>
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)</pre>
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 \leftarrow ncvar\_def("SIS", "W m-2", list(x, y, t), -1, prec = "short")
vars <- list(var1)</pre>
ncnew <- nc_create(file.path(tempdir(), "CMSAF_example_file.nc"), vars)</pre>
ncvar_put(ncnew, var1, data)
ncatt_put(ncnew, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew)
## Determine the zonal sums of the example CM SAF NetCDF file and write
## the output to a new file.
zonsum(var = "SIS", infile = file.path(tempdir(), "CMSAF_example_file.nc"),
outfile = file.path(tempdir(), "CMSAF_example_file_zonsum.nc"))
unlink(c(file.path(tempdir(), "CMSAF_example_file.nc"),
 file.path(tempdir(), "CMSAF_example_file_zonsum.nc")))
```

Index

* annual statistics	* grid boxes statistics
year.anomaly,211	gridboxmax, 80
yearmax, 213	gridboxmean, 81
yearmean, 214	gridboxmin,83
yearmin, 216	gridboxrange, 85
yearrange, 218	gridboxsd,87
yearsd, 219	gridboxsum,88
yearsum, 221	gridboxvar,90
yearvar, 223	* hourly statistics
* correlation and covariance	hourmean, 92
fldcor, 62	hoursum, 94
fldcovar, 64	* mathematical operators
timcor, 172	cmsaf.abs, 13
timcovar, 174	cmsaf.add, 15
* daily statistics	cmsaf.addc, 17
dayavg, 42	cmsaf.div, 23
daymax, 43	cmsaf.divc, 25
daymean, 45	cmsaf.mul, 28
daymin, 47	cmsaf.mulc, 31
daypctl, 48	cmsaf.sub, 36
dayrange, 50	cmsaf.subc, 39
daysd, 52	divdpm, 57
daysum, 53	muldpm, 124
dayvar, 55	* meridional statistics
ydaymax, 196	mermean, 99
ydaymean, 198	* metrics
ydaymin, 199	cmsaf.stats, 34
ydayrange, 201	cmsaf.stats.station.data,35
ydaysd, 203	* monthly statistics
ydaysum, 204	mon.anomaly, 100
* data manipulation functions	mon_num_above, 118
<pre>acsaf_box_mergetime, 6</pre>	mon_num_below, 120
add_grid_info,7	mon_num_equal, 122
<pre>box_mergetime, 7</pre>	monavg, 103
<pre>cmsaf.transform.coordinate.system,</pre>	mondaymean, 105
41	monmax, 106
levbox_mergetime, 95	monmean, 108
map_regular, 98	monmin, 110
remap, 137	monpctl, 111

monsd, 113	wfldmean, 194
monsum, 115	* temporal operators
monvar, 117	cmsaf.detrend, 21
multimonmean, 125	cmsaf.mk.test, 27
multimonsum, 127	cmsaf.regres, 32
ymonmax, 224	num_above, 130
ymonmean, 226	num_below, 132
ymonmedian, 228	num_equal, 134
ymonmin, 229	timavg, 170
ymonsd, 231	timmax, 177
ymonsum, 233	timmean, 179
* running statistics	timmin, 180
runmax, 139	timpctl, 182
runmean, 141	timsd, 184
runmin, 143	timsum, 189
runrange, 144	trend, 190
runsd, 146	trend_advanced, 192
runsum, 148	* time range statistics
ydrunmean, 206	timselmean, 185
ydrunsd, 208	timselsum, 187
ydrunsum, 209	* zonal statistics
* seasonal statistics	zonmean, 241
seas.anomaly, 149	zonsum, 243
seasmean, 151	,
seassd, 153	acsaf_box_mergetime, 6, 7, 8, 41, 96, 99, 138
seassum, 154	add (cmsaf.add), 15
seasvar, 156	add_grid_info, 6, 7, 8, 41, 96, 99, 138
yseasmax, 234	addc (cmsaf.addc), 17
yseasmean, 236	
yseasmin, 238	box_mergetime, 6, 7, 7, 41, 96, 99, 138
yseassd, 239	36X_mer geerme, 6, 7, 7, 71, 70, 77, 136
* selection and removal functions	calc_allDatesNc,9
extract.level, 58	calc_overlapping_time, 10
extract.period, 60	calc_timestepNc, 11
sellonlatbox, 158	cat (cmsaf.cat), 20
selmon, 160	change_att, 11
selperiod, 161	
selpoint, 163	check.coordinate.system, 13 cmsaf.abs, 13, 16, 18, 24, 26, 29, 31, 37, 40,
selpoint.multi, 165	57, 124
seltime, 167	cmsaf.add, 14, 15, 18, 24, 26, 29, 31, 37, 40,
selyear, 169	57, 124
* spatial operators	cmsaf.addc, 14, 16, 17, 24, 26, 29, 31, 37, 40,
fldmax, 66	57, 124
fldmean, 68	cmsaf.adjust.two.files, 19
fldmin, 69	cmsaf.cat, 20
fldrange, 71	cmsaf.detrend, 21, 28, 33, 131, 133, 134,
fldsd, 73	171, 178, 180, 181, 183, 185, 189,
fldsum, 74	191, 193

cmsaf.div, 14 , 16 , 18 , 23 , 26 , 29 , 31 , 37 , 40 , ext 57 , 124	ract.level, 58, 61, 159, 160, 162, 164, 166, 168, 170
cmsaf.divc, $14, 16, 18, 24, 25, 29, 31, 37, 40,$ ext $57, 124$	ract.period, 59, 60, 159, 160, 162, 164, 166, 168, 170
cmsaf.mk.test, 22, 27, 33, 131, 133, 134, 171, 178, 180, 181, 183, 185, 189, fld	cor, 62, 65, 173, 175
171, 170, 100, 101, 105, 105, 105,	covar, 63, 64, 173, 175
171,175	max, 66, 68, 70, 72, 73, 75, 195
Cilibar : iliax, 17, 10, 10, 27, 20, 20, 31, 37, 70,	mean, 67, 68, 70, 72, 73, 75, 195
57,121	min, 67, 68, 69, 72, 73, 75, 195
	range, 67, 68, 70, 71, 73, 75, 195
37,127	sd, 67, 68, 70, 72, 73, 75, 195
Cilisar : 1 egr es, 22, 20, 32, 131, 133, 134, 171,	sum, <i>67</i> , <i>68</i> , <i>70</i> , <i>72</i> , <i>73</i> , 74, <i>195</i>
170, 100, 101, 103, 103, 107, 171,	
193 get	. knnx, <i>98</i> , <i>137</i>
cmsaf.stats, 34, 36 get.	_basename, 76
cmsaf.stats.station.data, 35, 35	_date_time, 77
cmsaf.sub, 14, 16, 18, 24, 26, 29, 31, 36, 40, get.	_dimensions, 77
57, 124 get.	_nc_version, 78
cmsaf.sub.rel, 38 get	_processing_time_string,78
cmsaf.subc, 14, 16, 18, 24, 26, 29, 31, 37, 39, get.	_time, 79
57, 124 get	_time_info,79
cmsaf.transform.coordinate.system, $6-8$, gri	dboxmax, 80, 82, 84, 86, 87, 89, 91
41, 96, 99, 138 gri	dboxmean, 80, 81, 84, 86, 87, 89, 91
cmsafops (cmsafops-package), 5	dboxmin, 80, 82, 83, 86, 87, 89, 91
	dboxrange, 80, 82, 84, 85, 87, 89, 91
	dboxsd, 80, 82, 84, 86, 87, 89, 91
-	dboxsum, 80, 82, 84, 86, 87, 88, 91
-	dboxvar, 80, 82, 84, 86, 87, 89, 90
daymax, 42, 43, 46, 47, 49, 51, 52, 54, 56, 197,	
198, 200, 202, 203, 205 hou	rmean, 92, <i>94</i>
	rsum, <i>93</i> , 94
197, 198, 200, 202, 203, 205	
daymin, 42, 44, 46, 47, 49, 51, 52, 54, 56, 197,	erp.surface.grid, <i>137</i>
108 200 202 203	
daypctl, 42, 44, 46, 47, 48, 51, 52, 54, 56,	box_mergetime, 6-8, 41, 95, 99, 138
107 100 200 202 203	_regular, 6-8, 41, 96, 97, 138
	mean, 99
107 100 200 202 203	anomaly, 100, 104, 105, 107, 109, 111,
daysd, 42, 44, 46, 47, 49, 51, 52, 54, 56, 197,	. anomary, 100, 104, 105, 107, 107, 111,
198, 200, 202, 203, 205	
daysum, 42, 44, 46, 47, 49, 51, 52, 53, 56, 197,	112, 114, 116, 117, 119, 121, 123,
	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232,
198, 200, 202, 203, 205 mon	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233
	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233 .anomaly.climatology, 102
dayvar, 42, 44, 46, 47, 49, 51, 52, 54, 55, 197, mon.	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233 .anomaly.climatology, 102 _num_above, 101, 104, 105, 107, 109, 111,
dayvar, 42, 44, 46, 47, 49, 51, 52, 54, 55, 197, mon. 198, 200, 202, 203, 205	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233 .anomaly.climatology, 102 _num_above, 101, 104, 105, 107, 109, 111, 112, 114, 116, 117, 118, 121, 123,
dayvar, 42, 44, 46, 47, 49, 51, 52, 54, 55, 197, 198, 200, 202, 203, 205 div (cmsaf.div), 23	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233 anomaly.climatology, 102 _num_above, 101, 104, 105, 107, 109, 111, 112, 114, 116, 117, 118, 121, 123, 126, 128, 225, 227, 228, 230, 232,
dayvar, 42, 44, 46, 47, 49, 51, 52, 54, 55, 197, 198, 200, 202, 203, 205 div (cmsaf.div), 23 divc (cmsaf.divc), 25	112, 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 232, 233 .anomaly.climatology, 102 _num_above, 101, 104, 105, 107, 109, 111, 112, 114, 116, 117, 118, 121, 123,

126, 128, 225, 227, 228, 230, 232,	num_above, 22, 28, 33, 130, 133, 134, 171,
233	178, 180, 181, 183, 185, 189, 191,
mon_num_equal, 101, 104, 105, 107, 109, 111,	193
112, 114, 116, 117, 119, 121, 122,	num_below, 22, 28, 33, 131, 132, 134, 171,
126, 128, 225, 227, 228, 230, 232,	178, 180, 181, 183, 185, 189, 191,
233	193
monavg, 101, 103, 105, 107, 109, 111, 112,	num_equal, 22, 28, 33, 131, 133, 134, 171,
114, 116, 117, 119, 121, 123, 126,	178, 180, 181, 183, 185, 189, 191,
128, 225, 227, 228, 230, 232, 233	193
mondaymean, 101, 104, 105, 107, 109, 111,	
112, 114, 116, 117, 119, 121, 123,	raster package, 194
126, 128, 225, 227, 228, 230, 232,	read_file, 135
233	read_ncvar, 136
monmax, 101, 104, 105, 106, 109, 111, 112,	remap, 6-8, 41, 96, 99, 137
114, 116, 117, 119, 121, 123, 126,	remapcon, 137
128, 225, 227, 228, 230, 232, 233	runmax, 139, <i>142</i> , <i>144</i> , <i>145</i> , <i>147</i> , <i>149</i> , <i>207</i> ,
monmean, 101, 104, 105, 107, 108, 111, 112,	208, 210
114, 116, 117, 119, 121, 123, 126,	runmean, <i>140</i> , 141, <i>144</i> , <i>145</i> , <i>147</i> , <i>149</i> , <i>207</i> ,
128, 225, 227, 228, 230, 232, 233	208, 210
monmin, 101, 104, 105, 107, 109, 110, 112,	runmin, <i>140</i> , <i>142</i> , 143, <i>145</i> , <i>147</i> , <i>149</i> , <i>207</i> ,
114, 116, 117, 119, 121, 123, 126,	208, 210
128, 225, 227, 228, 230, 232, 233	runrange, 140, 142, 144, 144, 147, 149, 207,
monpctl, 101, 104, 105, 107, 109, 111, 111,	208, 210
114, 116, 117, 119, 121, 123, 126,	
128, 225, 227, 228, 230, 232, 233	runsd, 140, 142, 144, 145, 146, 149, 207, 208, 210
monsd, 101, 104, 105, 107, 109, 111, 112, 113,	
116, 117, 119, 121, 123, 126, 128,	runsum, <i>140</i> , <i>142</i> , <i>144</i> , <i>145</i> , <i>147</i> , 148, 207, 208, 210
225, 227, 228, 230, 232, 233	208, 210
monsum, 101, 104, 105, 107, 109, 111, 112,	
114, 115, 117, 119, 121, 123, 126,	seas.anomaly, 149, 152, 153, 155, 157, 235,
128, 225, 227, 228, 230, 232, 233	237, 238, 240
monvar, 101, 104, 105, 107, 109, 111, 112,	seasmean, 150, 151, 153, 155, 157, 235, 237,
114, 116, 117, 119, 121, 123, 126,	238, 240
128, 225, 227, 228, 230, 232, 233	seassd, 150, 152, 153, 155, 157, 235, 237,
mul (cmsaf.mul), 28	238, 240
mulc (cmsaf.mulc), 31	seassum, 150, 152, 153, 154, 157, 235, 237,
muldpm, 14, 16, 18, 24, 26, 29, 31, 37, 40, 57,	238, 240
124	seasvar, 150, 152, 153, 155, 156, 235, 237,
multimonmean, 101, 104, 105, 107, 109, 111,	238, 240
112, 114, 116, 117, 119, 121, 123,	sellonlatbox, 59, 61, 158, 160, 162, 164,
125, 128, 225, 227, 228, 230, 232,	166, 168, 170
233	selmon, 59, 61, 159, 160, 162, 164, 166, 168,
multimonsum, 101, 104, 105, 107, 109, 111,	170
112, 114, 116, 117, 119, 121, 123,	selperiod, 59, 61, 159, 160, 161, 164, 166,
126, 127, 225, 227, 228, 230, 232,	168, 170
233	selpoint, 59, 61, 159, 160, 162, 163, 166,
	168, 170
ncdf4 package, 5	selpoint.multi, 59, 61, 159, 160, 162, 164,
ncinfo, 129	165, <i>168</i> , <i>170</i>

seltime, 59, 61, 159, 160, 162, 164, 166, 167, ydrunsd, 140, 142, 144, 145, 147, 149, 207, 208, 210 170 selvear, 59, 61, 159, 160, 162, 164, 166, 168, ydrunsum, 140, 142, 144, 145, 147, 149, 207, 169 208, 209 sub (cmsaf.sub), 36 year.anomaly, 211, 213, 215, 217, 218, 220, 222, 223 subc (cmsaf.subc), 39 yearmax, 212, 213, 215, 217, 218, 220, 222, 223 timavg, 22, 28, 33, 131, 133, 134, 170, 178, yearmean, 212, 213, 214, 217, 218, 220, 222, 180, 181, 183, 185, 189, 191, 193 223 timcor, 63, 65, 172, 175 yearmin, 212, 213, 215, 216, 218, 220, 222, timcovar, 63, 65, 173, 174 timcumsum, 176 yearrange, 212, 213, 215, 217, 218, 220, 222, timmax, 22, 28, 33, 131, 133, 134, 171, 177, 223 180, 181, 183, 185, 189, 191, 193 yearsd, 212, 213, 215, 217, 218, 219, 222, 223 timmean, 22, 28, 33, 131, 133, 134, 171, 178, yearsum, 212, 213, 215, 217, 218, 220, 221, 179, 181, 183, 185, 189, 191, 193 223 timmin, 22, 28, 33, 131, 133, 134, 171, 178, yearvar, 212, 213, 215, 217, 218, 220, 222, 180, 180, 183, 185, 189, 191, 193 223 timpctl, 22, 28, 33, 131, 133, 134, 171, 178, ymonmax, 101, 104, 105, 107, 109, 111, 112, 180, 181, 182, 185, 189, 191, 193 114, 116, 117, 119, 121, 123, 126, timsd, 22, 28, 33, 131, 133, 134, 171, 178, 128, 224, 227, 228, 230, 232, 233 180, 181, 183, 184, 189, 191, 193 ymonmean, 101, 104, 105, 107, 109, 111, 112, timselmean, 185, 188 114, 116, 117, 119, 121, 123, 126, timselsum, 186, 187 128, 225, 226, 228, 230, 232, 233 timsum, 22, 28, 33, 131, 133, 134, 171, 178, ymonmedian, 101, 104, 105, 107, 109, 111, 180, 181, 183, 185, 189, 191, 193 112, 114, 116, 117, 119, 121, 123, trend, 22, 28, 33, 131, 133, 134, 171, 178, 126, 128, 225, 227, 228, 230, 232, 180, 181, 183, 185, 189, 190, 193 233 trend_advanced, 22, 28, 33, 131, 133, 134, ymonmin, 101, 104, 105, 107, 109, 111, 112, 171, 178, 180, 181, 183, 185, 189, 114, 116, 117, 119, 121, 123, 126, 191, 192 128, 225, 227, 228, 229, 232, 233 ymonsd, 101, 104, 105, 107, 109, 111, 112, wfldmean, 67, 68, 70, 72, 73, 75, 194 114, 116, 117, 119, 121, 123, 126, 128, 225, 227, 228, 230, 231, 233 ydaymax, 42, 44, 46, 47, 49, 51, 52, 54, 56, ymonsum, 101, 104, 105, 107, 109, 111, 112, 196, 198, 200, 202, 203, 205 114, 116, 117, 119, 121, 123, 126, ydaymean, 42, 44, 46, 47, 49, 51, 52, 54, 56, 128, 225, 227, 228, 230, 232, 233 197, 198, 200, 202, 203, 205 yseasmax, 150, 152, 153, 155, 157, 234, 237, ydaymin, 42, 44, 46, 47, 49, 51, 52, 54, 56, 238, 240 197, 198, 199, 202, 203, 205 yseasmean, 150, 152, 153, 155, 157, 235, 236, ydayrange, 42, 44, 46, 47, 49, 51, 52, 54, 56, 238, 240 197, 198, 200, 201, 203, 205 yseasmin, 150, 152, 153, 155, 157, 235, 237, ydaysd, 42, 44, 46, 47, 49, 51, 52, 54, 56, 197, 238, 240 198, 200, 202, 203, 205 yseassd, 150, 152, 153, 155, 157, 235, 237, ydaysum, 42, 44, 46, 47, 49, 51, 52, 54, 56, 238, 239 197, 198, 200, 202, 203, 204 ydrunmean, 140, 142, 144, 145, 147, 149, 206, zonmean, 241, 243 208, 210 zonsum, 242, 243