Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2014

Tecnologia industrial

Sèrie 3

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

En una línia de producció es duen a terme quatre operacions. Les operacions A i B, d'una durada de 25 s i 30 s, respectivament, es poden dur a terme simultàniament. Les operacions C i D tenen una durada de 30 s i 45 s, respectivament, i no es poden dur a terme simultàniament. Les operacions C i D s'han de dur a terme necessàriament després de les operacions A i B. En règim estacionari, entra una unitat cada 25 s a la línia. Quin és el temps mínim d'una unitat dins de la línia?

- a) 130 s
- **b**) 45 s
- c) 105 s
- **d**) 100 s

Qüestió 2

Un camió amb capacitat per a transportar fins a 10 tones (1 tona = $1\,000\,\mathrm{kg}$) ha de transportar 50 cotxes de $1\,200\,\mathrm{kg}$ cadascun. Quants viatges haurà de fer?

- a) 6
- **b**) 8
- **c**) 7
- **d**) 10

Qüestió 3

Un cargol M12 de pas (avanç per volta) p = 1,75 mm es cargola a una velocitat de rotació $n = 300 \, \mathrm{min^{-1}}$. Quina és la velocitat d'avanç del cargol?

- a) 14,29 mm/s
- **b**) 54,98 mm/s
- c) 25 mm/s
- d) 8,75 mm/s

Qüestió 4

Un motor elèctric té un consum de 216 W de potència i s'alimenta amb una tensió U = 36 V mitjançant una bateria de 10 A h de capacitat. Quant de temps durarà la bateria si està totalment carregada?

- *a*) 21,6 h
- **b**) 3,6 h
- c) 6 h
- **d**) 1,67 h

Qüestió 5

En un circuit elèctric, es connecten en paral·lel dues resistències iguals de valor nominal 50Ω i tolerància $\pm 2 \%$. Quina és la resistència equivalent?

- a) $100 \Omega \pm 4 \%$
- **b**) $100 \Omega \pm 2 \%$
- c) $25 \Omega \pm 2 \%$
- d) $25 \Omega \pm 1 \%$

Exercici 2

[2,5 punts en total]

Una loteria duu a terme un sorteig escollint a l'atzar un número de tres xifres. Les butlletes resulten premiades si dues o tres xifres coincideixen amb les del número escollit. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

xifres x_1 , x_2 i $x_3 = \begin{cases} 1$: coincideix amb el número escollit 0: no coincideix amb el número escollit 0: butlleta premiada: $p = \begin{cases} 1 : \text{si } \\ 0 : \text{no } \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de contactes equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

Es vol construir una estrella com la de la figura a partir d'un tauler de fusta. La botiga en calcula el cost segons l'expressió $c = c_1 s + c_2 p$, en què s és la superfície de fusta utilitzada i p és el perímetre de les peces tallades. El primer coeficient de cost és $c_1 = 10 \, \text{e/m}^2$ i l'altre coeficient de cost és $c_2 = 0.5 \, \text{e/m}$ si el perfil és senzill (com, per exemple, un triangle) o $c_2 = 1.3 \, \text{e/m}$ si el perfil és complex (com, per exemple, una estrella). Determineu:

a) La superfície, *s*, de fusta utilitzada.

[0,5 punts]

- **b**) El perímetre tallat, p_1 , si es construeix a partir de triangles com el de la figura. [1 punt]
- c) El perímetre tallat, p_2 , si es construeix tallant el perfil exterior de l'estrella. [0,5 punts]
- d) El cost de cadascuna de les opcions. Quina és la més econòmica? [0,5 punts]

Exercici 4

[2,5 punts en total]

Un vehicle utilitza gasolina de poder calorífic $p_c = 42$ MJ/L. Quan circula per un terreny horitzontal a una velocitat v = 100 km/h, el motor gasta $c_e = 4.7$ L/(100 km) i desenvolupa una potència mecànica $P_{\text{mec}} = 21$ kW. Determineu:

a) El consum, *c*, de gasolina en L/s.

[0,5 punts]

b) La potència tèrmica consumida, $P_{\text{tèrm}}$.

[0,5 punts]

c) El rendiment, η , del motor.

[0,5 punts]

d) La distància, *d*, que pot recórrer el vehicle si el dipòsit de combustible té una capacitat V = 45 L.

OPCIÓ B

Exercici 3 [2,5 punts en total]

La figura mostra les dimensions d'una grua amb contrapès a la base. La massa del contrapès és $m_{\rm c}=12\,500\,{\rm kg}$ i la massa de la resta d'elements de la grua es considera negligible. Determineu:

a) La massa màxima, $m_{\text{màx}}$, que pot elevar la grua, amb el ganxo situat a l'extrem, sense que bolqui. [1 punt]

La grua s'utilitza per a fer pujar una massa $m=1~000~{\rm kg}$ fins a una altura $\Delta h=20~{\rm m}$, amb el ganxo situat a 15 m de l'eix de la torre. La velocitat d'elevació de la càrrega és $v=30~{\rm m/min}$. Determineu:

b) L'energia mecànica, $E_{\rm mec}$, necessària per a fer l'elevació.

[1 punt]

c) La potència, P_m , que ha de desenvolupar el motor.

[0,5 punts]

Exercici 4

[2,5 punts en total]

En un centre d'ensenyament, el consum diari d'aigua calenta sanitària és c = 850 L. Cal incrementar la temperatura de l'aigua $\Delta t = 20$ °C i per això s'hi instal·len 20 captadors solars de rendiment $\eta = 0,45$ i superfície s = 1,3 m². La calor específica de l'aigua és $c_e = 4,18$ J/(g °C). Determineu:

a) L'energia diària que cal per a escalfar l'aigua.

[0,5 punts]

b) L'energia diària que ha de captar cadascun dels captadors.

[1 punt]

c) Si la població on està situat el centre té una mitjana anual de sol de 2 600 h, quina és la potència mitjana necessària de radiació solar per unitat de superfície? [1punt]

Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Convocatòria 2014

Tecnologia industrial

Sèrie 4

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

El Vitallium és un aliatge utilitzat en odontologia i en la fabricació de pròtesis que conté un 65 % de cobalt (Co), un 30 % de crom (Cr) i un 5 % de molibdè (Mb). Quina quantitat de Vitallium es pot obtenir amb 15 kg de crom?

- *a*) 15 kg
- **b**) 30 kg
- c) 70 kg
- d) 50 kg

Qüestió 2

En l'ajust 36 G7/h6, la tolerància G7 del forat és $\binom{+34}{+9}$ µm i la h6 de l'eix és $\binom{0}{-13}$ µm. Quin és el joc màxim d'aquest ajust?

- a) 22 μm
- **b**) 47 μm
- c) 34 µm
- *d*) No hi ha joc en aquest ajust.

Qüestió 3

La substitució de 10 bombetes incandescents de 60 W per 10 bombetes de LED de 7 W comporta un estalvi energètic, després de 100 h de funcionament, de

- a) 530 kW h.
- **b**) 60 kW h.
- c) 53 kW h.
- *d*) 16,67 kW h.

Qüestió 4

El full de característiques d'un acceleròmetre indica que, per a l'interval de mesures comprès entre 0.5 m/s^2 i 100 m/s^2 , la precisió és de $\pm 10 \text{ mm/s}^2$ i $\pm 0.5 \%$ de la lectura. Quin és l'error màxim d'una lectura de 15 m/s^2 ?

- a) 85 mm/s^2
- **b**) $15 \,\mathrm{mm/s^2}$
- c) $10.5 \,\mathrm{mm/s^2}$
- $d) 500 \,\mathrm{mm/s^2}$

Qüestió 5

Una barra d'acer inoxidable té una llargària $L=250\,\mathrm{mm}$ a 20 °C. El coeficient de dilatació tèrmica de l'acer inoxidable és $\alpha_{\mathrm{inox}}=17,3\times10^{-6}\,\mathrm{K}^{-1}$. A quina temperatura la barra s'haurà allargat un 0,1 %?

- *a*) 58,70 °C
- **b**) 173 °C
- c) 32,50 °C
- d) 77,80°C

Exercici 2

[2,5 punts en total]

Una màquina expenedora automàtica disposa d'una pantalla tàctil amb un sistema de menús. La màquina retorna al menú principal si es prem el botó habilitat per a aquesta finalitat, després de fer una comanda o quan transcorren 30 segons sense que ningú toqui la pantalla. Responeu a les qüestions que hi ha a continuació utilitzant les variables d'estat següents:

botó menú:
$$b = \begin{cases} 1: \text{ premut} \\ 0: \text{ no premut} \end{cases}$$
; comanda: $c = \begin{cases} 1: \text{ realitzada} \\ 0: \text{ no realitzada} \end{cases}$

30 s sense activitat:
$$t = \begin{cases} 1: \text{si} \\ 0: \text{no} \end{cases}$$
; retorn al menú principal: $m = \begin{cases} 1: \text{si} \\ 0: \text{no} \end{cases}$

- a) Escriviu la taula de veritat del sistema i indiqueu els casos que no són possibles. [1 punt]
- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent. [0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

La porta de garatge de la figura s'acciona manualment fent una força vertical, F, a l'extrem A. En el punt B, la porta rep l'acció d'un contrapès $F_{\rm cp} = 500\,{\rm N}$, el pes de la porta, $F_{\rm pes}$, i una força horitzontal provinent de la guia, $F_{\rm guia}$. La massa de la porta és $m=30\,{\rm kg}$. Per tal de mantenir la porta immobilitzada a $\alpha=45^{\circ}$, determineu:

a) La força, F, necessària.

[1 punt]

b) La força que fa la barra CD.

[1 punt]

c) La força horitzontal, F_{guia} , que rep la porta de la guia en el punt B. [0,5 punts]

 $L_1 = 0.6 \text{ m}$ $L_2 = 1.06 \text{ m}$ $\alpha = 45^{\circ}$

Exercici 4

[2,5 punts en total]

En un habitatge, s'utilitza una bomba elèctrica per a fer pujar l'aigua procedent d'una cisterna. La bomba eleva un volum $V = 45\,600\,\mathrm{L}$ d'aigua en un temps $t = 8\,\mathrm{h}$ de funcionament a una altura $h = 10,4\,\mathrm{m}$. Determineu:

a) El treball, *W*, fet per la bomba.

[1 punt]

- **b**) El rendiment de la bomba, η_b , si s'acciona mitjançant un motor elèctric de potència $P_{\rm m} = 525 \, {\rm W}.$ [0,5 punts]
- *c*) La pressió mitjana, *p*, de funcionament de la bomba.

[1 punt]

OPCIÓ B

Exercici 3

[2,5 punts en total]

Una torradora de pa consta, bàsicament, de dues resistències, collocades a banda i banda de l'espai on s'introdueix la llesca de pa, i d'un termòstat que permet regular el grau de torrat que es desitja. Les dues resistències són de fil de nicrom de diàmetre $d=0.4\,\mathrm{mm}$ i de llargària $L=3.5\,\mathrm{m}$ cadascuna i estan connectades en sèrie. La torradora s'alimenta amb una tensió $U=230\,\mathrm{V}$ i la resistivitat del nicrom a 20 °C és $\rho_{20}=10.8\times10^{-7}\,\Omega\,\mathrm{m}$. Determineu:

a) La resistència total, R_{20} , de la torradora a 20 °C.

[1 punt]

La resistivitat varia amb la temperatura segons l'expressió següent, en què $\alpha = 0.4 \times 10^{-3}$ °C⁻¹ és el coeficient de temperatura de la resistència elèctrica del nicrom i ΔT és l'increment de temperatura des del valor de referència de 20 °C:

$$\rho = \rho_{20} \left(1 + \alpha \, \Delta T \right)$$

Si el fil de nicrom s'escalfa fins a 600 °C, determineu:

- **b**) La resistència total, R_{600} , de la torradora quan el fil de nicrom és a 600 °C. [1 punt]
- c) La variació de la intensitat que circula per les resistències a 20 °C i a 600 °C.

[0,5 punts]

Exercici 4

[2,5 punts en total]

En un gran premi de Fórmula 1 del circuit de Montmeló, un vehicle ha circulat a una velocitat mitjana $v = 192 \,\mathrm{km/h}$ i ha tingut un consum mitjà de combustible per volta $c_{\rm m} = 2.5 \,\mathrm{kg}$. El combustible utilitzat tenia una densitat $\rho = 0.74 \,\mathrm{kg/L}$. El circuit té una longitud $d = 4.655 \,\mathrm{km}$ i el gran premi es disputava a 66 voltes. Determineu:

a) El consum del vehicle, c, en L/(100 km).

[1 punt]

- **b**) El temps, *t*, que ha necessitat el vehicle per a completar el gran premi en hores, minuts, segons i mil·lèsimes de segon. [1punt]
- c) La massa de combustible, m_{comb} , que portava inicialment el vehicle si en finalitzar la cursa li n'ha sobrat un 1,5 %. [0,5 punts]

