

Autonomes Fahren SS 2019

Multi-Sensor-Data-Fusion 2

Technische Universität München

- An Ontology is a formal naming and definition of types, properties and interrelationships of entities that fundamentally exist for a particular domain of discourse.
- Web Ontology Language (OWL) is a family of knowledge representation knowledges fo authoring ontologies.
- An Ontology describing families might include axioms stating that a "hasMother" property is only present between two individuals when "hasParent" is also present, and individuals of class "HasTypeOBlood" are never related via "hasParent" to members of the "HasTypeABBlood".

- Individual: Instances or objects
- Classes: Sets, collections, concepts, types of objects
- Attributes: Aspects, properties, features, parameters of objects
- Relations: Ways in which classes and individuals can be related
- Function terms: Complex structures formed from certain relations
- Restrictions: Formal stated descriptions to restrict input
- Rules: Statements for logical inferences
- Axioms: Assertions in a logical form

Individual: Thorsten

Classes: Persons

Attributes: <has as name> Thorsten

• Relations: <is the father of> Maria

- Famous example OWL Pizza
- Class hierarchy:
 - Thing
 - Pizza
 - Vegetarian
 - Cheesey
 - Mageherita
 - Hot_And_Spicy
 - Seafood
 - Pizza_topping
 - Tomato_topping
 - Mozarella_topping
 - Spicy_beef_topping
 - Pepperoni_topping
 - Pizza_base
 - Thick crust
 - Thin_crust

- Famous example OWL Pizza (https://protegewiki.stanford.edu/wiki/File:Alr-matrix-objproperties.png)
- Class hierarchy:
 - Thing
 - Pizza
 - Vegetarian
 - Cheesey
 - Mageherita
 - Hot And Spicy
 - Seafood
 - Pizza_topping
 - Tomato_topping
 - Mozarella_topping
 - Spicy_beef_topping
 - Pepperoni topping
 - Pizza base
 - Thick crust
 - Thin crust

- Symmetric: hasSpouse relates A with B if it relates B with A.
- Inverse: hasParent as inverse property of hasChild
- Transitive: Interlinks two individuals A and C when A is interlinked with B and B with C.
- Anti_Symmetric: If A is connected with B, B is not connected with A.
- Reflexive: Relates everything to itself
- Irreflexive: No individual can be related to itself through this property

Axiom	Condition
SubObjectPropertyOf(OPE1 OPE2)	$(OPE_1)^{OP} \subseteq (OPE_2)^{OP}$
SubObjectPropertyOf(ObjectPropertyChain(OPE $_1$ OPE $_n$) OPE)	$\forall y_0,, y_n : (y_0, y_1) \in (OPE_1)^{OP} \text{ and } \text{ and } (y_{n-1}, y_n) \in (OPE_n)^{OP} \text{ imply } (y_0, y_n) \in (OPE)^{OP}$
EquivalentObjectProperties(OPE_1 OPE_n)	$(OPE_j)^{OP} = (OPE_k)^{OP}$ for each $1 \le j \le n$ and each $1 \le k \le n$
DisjointObjectProperties(OPE ₁ OPE _n)	$(OPE_j)^{OP} \cap (OPE_k)^{OP} = \emptyset$ for each $1 \le j \le n$ and each $1 \le k \le n$ such that $j \ne k$
ObjectPropertyDomain(OPE CE)	$\forall x, y : (x, y) \in (OPE)^{OP} \text{ implies } x \in (CE)^{C}$
ObjectPropertyRange(OPE CE)	$\forall x, y : (x, y) \in (OPE)^{OP} \text{ implies } y \in (CE)^{C}$
InverseObjectProperties(OPE ₁ OPE ₂)	$(OPE_1)^{OP} = \{ (x, y) (y, x) \in (OPE_2)^{OP} \}$
FunctionalObjectProperty(OPE)	$\forall x, y_1, y_2 : (x, y_1) \in (OPE)^{OP} \text{ and } (x, y_2) \in (OPE)^{OP} \text{ imply } y_1 = y_2$
InverseFunctionalObjectProperty(OPE)	$\forall x_1, x_2, y : (x_1, y) \in (OPE)^{OP} \text{ and } (x_2, y) \in (OPE)^{OP} \text{ imply } x_1 = x_2$
ReflexiveObjectProperty(OPE)	$\forall x: x \in \Delta_I \text{ implies } (x, x) \in (OPE)^{OP}$
<pre>IrreflexiveObjectProperty(OPE)</pre>	$\forall \ x : x \in \Delta_I \text{ implies } (x, x) \notin (OPE)^{OP}$
SymmetricObjectProperty(OPE)	$\forall x, y : (x, y) \in (OPE)^{OP} \text{ implies } (y, x) \in (OPE)^{OP}$
AsymmetricObjectProperty(OPE)	$\forall x, y : (x, y) \in (OPE)^{OP} \text{ implies } (y, x) \notin (OPE)^{OP}$
TransitiveObjectProperty(OPE)	$\forall x, y, z : (x, y) \in (OPE)^{OP} \text{ and } (y, z) \in (OPE)^{OP} \text{ imply } (x, z) \in (OPE)^{OP}$

Example: "An Ontology based approach to relax traffic regulation for autonomous vehicle assistance" Philippe Morignot, Fawzi Nashashib; 12th IASTED International Conference on Artificial Intelligence and Applications (AIA'13), Austria (2013)

Example: "An Ontology based approach to relax traffic regulation for autonomous vehicle assistance" Philippe Morignot, Fawzi Nashashib; 12th IASTED International Conference on Artificial Intelligence and Applications (AIA'13). Austria (2013)

Example: "An Ontology based approach to relax traffic regulation for autonomous vehicle assistance" Philippe Morignot, Fawzi Nashashib; 12th IASTED International Conference on Artificial Intelligence and Applications (AIA'13), Austria (2013)

Example: "An Ontology based approach to relax traffic regulation for autonomous vehicle assistance" Philippe Morignot, Fawzi Nashashib; 12th IASTED International Conference on Artificial Intelligence and Applications (AIA'13), Austria (2013)

SWRL Rules:

```
CrossableZone(?s), Car(?a), Car(?b),
Lane(?l1), Lane(?l2),
hasEmotion(?a, Nervous),
isAfter(?a, ?b),
hasBesides(?l1, ?s), hasBesides(?l2, ?s),
hasMotion(?a, Stopped),
isOn(?a, ?l1), isOn(?b, ?l1), DifferentFrom (?l1, ?l2),
isClear(?l2)
->
isNextOn(?a, ?l2)
```

```
Car(?a), Car(?b),
hasNextMotion(?a, Forward),
isBefore(?a, ?b)
->
hasNextMotion(?b, Forward)
```

```
DrivableZone(?s), Car(?a), Car(?b), Lane(?l), hasEmotion(?a, Nervous), isAfter(?a, ?b), hasBesides(?l, ?s), hasMotion(?a, Stopped), isOn(?a, ?l), isOn(?b, ?l), isIllegal(?l, ?s), -> isNextOn(?a, ?s)
```

```
Car(?a), Car(?b),
hasMotion(?a, Stopped),
isBefore(?a, ?b)
->
hasMotion(?b, Stopped)
```


Example: "Ontology-Based Traffic Scene Modeling, Traffic Regulations Dependent Situational Awareness and Decision-Making for Automated Vehicles", M. Büchel, G. Hinz et. Al. in *IEEE Intelligent Vehicles Symposium*, 2017.

Example: "Ontology-Based Traffic Scene Modeling, Traffic Regulations Dependent Situational Awareness and Decision-Making for Automated Vehicles", M. Büchel, G. Hinz et. Al. in *IEEE Intelligent Vehicles Symposium*, 2017.

Example: "Ontology-Based Traffic Scene Modeling, Traffic Regulations Dependent Situational Awareness and Decision-Making for Automated Vehicles", M. Büchel, G. Hinz et. Al. in *IEEE Intelligent Vehicles Symposium*, 2017.

Example: "Ontology-Based Traffic Scene Modeling, Traffic Regulations Dependent Situational Awareness and Decision-Making for Automated Vehicles", M. Büchel, G. Hinz et. Al. in *IEEE Intelligent Vehicles Symposium*, 2017.

 $contains Traffic Light\ some\ Traffic Light\ and$ contains Traffic Regulating Person $exactly\ 0\ Traffic Regulating Person$

Traffic Light Regulated Intersection (?scen1)

 $\land Vehicle(?vehicle1) \land isOn(?vehicle1,?lane)$

 $\land isPartOf(?vehicle1,?scen1)$

 $\land containsTrafficLight(?lane,?light)$

 $\land hasColor(?light, Red)$

 $\Rightarrow hasToWaitForTrafficLight(?vehicle1,?light)$

RoadSegment(?road)

 $\land preferredLane(?trafficregulations,"right")$

 $\land hasRightMostLane(?road,?lane)$

 $\land \ has Traffic Regulations (?road, ?traffic regulations)$

 $\Rightarrow hasPreferredLane(?road,?lane)$

Example: "Ontology-Based Traffic Scene Modeling, Traffic Regulations Dependent Situational Awareness and Decision-Making for Automated Vehicles", M. Büchel, G. Hinz et. Al. in *IEEE Intelligent Vehicles Symposium*, 2017.

 $contains Traffic Light\ exactly\ 0\ Traffic Light\ and$ contains Traffic Regulating Person $exactly\ 0\ Traffic Regulating Person$

UncontrolledIntersection(?scen1)

 $\land Vehicle(?vehicle1) \land Vehicle(?vehicle2)$

 $\land isPartOf(?vehicle1,?scen1)$

 $\land \ hasConflictingConnector(?c1,?c2)$

 \land hasIntention(?vehicle1, ?c1) \land hasIntention(?vehicle2, ?c2)

 $\Rightarrow hasToGiveWay(?vehicle1,?vehicle2)$

Traffic Regulated Person Intersection (?scen1)

 $\land \ Vehicle(?vehicle1) \ \land \ contains(?scen1,?vehicle1)$

 $\land isOn(?vehicle1,?lane1) \land isBlockedBy(?lane1,?police)$

 $\Rightarrow hasToWaitForTRP(?vehicle1,?police)$