19-0117; Rev 1; 11/94

High-Speed, CMOS, Quad, SPST Analog Switch

General Description

Maxim's HI-201HS is a monolithic, CMOS, quad, single-pole-single-throw (SPST), high-speed analog switch featuring fast switching times (tOFF, tON \leq 50ns) and low on resistance (50 Ω max). It is pin compatible with the industry-standard DG201A.

Maxim's new high-voltage silicon-gate technology increases the maximum supply-voltage rating to 44V. This improvement allows continuous operation with ±20V supplies, which is not permitted with the original manufacturer's devices. Maxim's HI-201HS operates from dual supplies ranging from ±5V to ±20V, or from single supplies from +12V to +20V. Logic levels are TTL-/CMOS-compatible with single or dual supplies within these ranges.

Maxim's HI-201HS is guaranteed not to latch up if power supplies are disconnected while the analog-switch inputs are present, provided the switch continuous-current ratings are not exceeded. When powered up, the HI-201HS will switch analog signals up to the power-supply rails.

Applications

Automatic Test Equipment (ATE) Heads-Up Displays Communication Systems Sample-and-Hold Circuits Military Integrator Reset Circuits

Features

- ♦ Guaranteed Single-Supply Operation: +12V to +20V
- ♦ Guaranteed Dual Supplies: ±5V to ±20V
- ♦ Fast Switching Times: ton = 30ns toff = 40ns
- ♦ Low, 50Ω Max On Resistance
- **♦ TTL-/CMOS-Compatible**
- **♦ 44V Max Supply Rating**

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE			
HI3-0201HS-5	0°C to +70°C	16 Plastic DIP			
HI6-0201HS-5	0°C to +70°C	16 Narrow SO			
HI1-0201HS-5	0°C to +70°C	16 CERDIP			
HI0-0201HS-6	0°C to +70°C	Dice*			
HI3-0201HS-9	-40°C to +85°C	16 Plastic DIP			
HI6-0201HS-9	-40°C to +85°C	16 Narrow SO			
HI1-0201HS-9	-40°C to +85°C	16 CERDIP			
HI1-0201HS-2	-55°C to +125°C	16 CERDIP			
HI4-0201HS-8	-55°C to +125°C	20 LCC**			

- * Contact factory for dice specifications.
- ** Contact factory for availability.

Functional Diagram

HI-201HS GATE P SOURCE SWITCH DRAIN OUTPUT OUTPUT

Pin Configurations

MAXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V-	
V+	
GND	
Digital Inputs Vs, VD (Note 1) (V 4V) to (V+ + 4V) or	30mA
(whichever occur	s first)
Current (any terminal, except S or D)	30mA
Continuous Current, S or D	20mA
Peak Current, S or D	
(pulsed at 1ms, 10% duty cycle max)	40mA

Continuous Power Dissipation (TA = +70°C, Note 2)
16-Pin DIP (derate 10.53mW/°C above +70°C) 842mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C) 762mW
16-Pin CERDIP (derate 10.00mW/°C above +70°C) 800mW
20-Pin LCC (derate 9.09mW/°C above +70°C) 727mW
Operating Temperature Ranges:
HI-0201HS-5/-6 0°C to +70°C
HI-0201HS-940°C to +85°C
HI-0201HS-2/-855°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10sec)+300°C

Note 1: Signals on Sx, Dx, or INx exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.

Note 2: All leads soldered or welded to PC board.

Stresses beyond those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V+ = 15V, V- = -15V, GND = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

				HI	-201HS-2	-8	HI-2			
PARAMETER	SYMBOL			MIN (Note 3)	TYP (Note 4)	MAX	MiN (Note 3)	TYP (Note 4)	MAX	UNITS
SWITCH										
Analog-Signal Range	VANALOG			-15	_	15	-15		15	V
Drain-Source On Resistance (Note 5)	fDS (on)	$V_D = \pm 10V$,	$V_D = \pm 10V$, $V_{IN} = 0.8V$, $I_S = 1mA$		30	50		30	50	Ω
Source-Off Leakage Current	IS (off)	V1N = 3.0V	Vs = 14V, VD = -14V	-1	±0.01	1	-1	±0.01	1	nA
			Vs = -14V, VD = 14V	-1	±0.02	1	-1	±0.02	1	
Drain-Off Leakage Current	ID (off)	V/w 2.0V/	VD = 14V, VS = -14V	-1	±0.01	1	-1	±0.01	1	nA
		VIN = 3.0V	V _D = -14V, V _S = 14V	-1	±0.02	1	-1	±0.02	1	
Drain-On Leakage Current (Note 6)		$V_D = -14V$, $V_{IN} = 0.8V$ $V_D = 14V$, $V_{IN} = 0.8V$		-1	±0.10	1	-1	±0.10	1	Ι.
	ID (on)			-1	±0.15	1	-1	±0.15	1	nA
LOGIC INPUT										
Input Current with Input Voltage High	INH	V _{IN} = 3.0V		-1	0	1	-1	0	1	
		V:N = 15V		-1	0	1	-1	0	1	μΑ
Input Current with Input Voltage Low	HNL	V _{IN} = 0.8V		-1	0	1	-1	0	1	μА

ELECTRICAL CHARACTERISTICS (continued) (V+ = 15V, V- = -15V, GND = 0V, TA = +25°C, unless otherwise noted.)

			HI-201HS-2/-8			HI-201HS-5/-6/-9					
PARAMETER	SYMBOL	CONDITIONS	MIN (Note 3)	TYP (Note 4)	MAX	MIN (Note 3)	TYP (Note 4)	MAX	UNITS		
DYNAMIC		***									
Turn-On Time	ton	Figure 6			30	50		30	50	ns	
Turn-Off Time	toff	Ciones C			40	50		*40	50		
Turn-Oπ Time	toff2	Figure 6	Figure 6		150			150		ns	
Output Settling Time					180			180		ns	
Charge Injection	Q	CL = 1000pF, VGEN = 0\	I , RGEN = 0Ω		10			10		рC	
Source-Off Capacitance	Cs (off)	VS = 0V, VIN = 5V	f = 140kHz		10			10		рF	
Drain-Off Capacitance	C _D (off)	Vs = 0V, VIN = 5V	f = 140kHz		10			10		pF	
Channel-On Capacitance	CD (on) [†] CS (on)	$V_D = V_S = 0V$, $V_{IN} = 0V$	f = 140kHz		30			30		ρF	
Off Isolation		$V_{IN} = 3V_{RMS}, Z_{L} = 1k\Omega$	f = 100kHz		72			72		dB	
Crosstalk (Channel-to-Channel)		VS = 2.0V, f = 100kHz			90			90		dB	
SUPPLY											
Positive Supply Current	l+	All channels on or off		-3.0	3.8	6.5	-3.0	3.8	6.5	mA	
Negative Supply Current	l-				1.0			1.0		mA	
Power-Supply Range for Continuous Operation	VOP	(Note 5)		±4.5		±20	±4.5		±20	٧	

ELECTRICAL CHARACTERISTICS

(V+ = 15V, V- = -15V, GND = 0V, TA = TMIN to TMAX, unless otherwise noted.)

*				HI-201HS-2/-8			HI-201HS-5/-6/-9			
PARAMETER	ARAMETER SYMBOL CONDITIONS		MIN (Note 3)	TYP (Note 4)	MAX	MIN (Note 3)	TYP (Note 4)	MAX	UNITS	
SWITCH										
Analog-Signal Range	VANALOG			-15		15	-15		15	V
Drain-Source On Resistance (Note 5)	rDS (on)	V _D = ±10V,	VIN = 0.8V, IS = 1mA			75			75	Ω
Source-Off Leakage Current	lo / m	VIN = 3.0V	Vs = 14V, VD = -14V	-100	_	100	-50		50	nA
	IS (off)		Vs = -14V, VD = 14V	-100		100	-50		50	
Drain-Off Leakage Current	D (off)	VIN = 3.0V	V _D = 14V, V _S = -14V	-100		100	-50		50	nA
		VIN = 3.0V	VD = -14V, VS = 14V	-100		100	-50	_	50	
Drain-On Leakge Current (Note 6)	ID (on)	VD = -14V, VIN = 0.8V		-100		100	-50		50	
		V _D = 14V, V	/N = 0.8V	-100		100	-50		50	nA
LOGIC INPUT										
Input Current with Input Voltage High	linh	VIN = 3.0V		-1.0		1.0	-1.0		1.0	
		VIN = 15V		-1.0		1.0	-1.0		1.0	μA
Input Current with Input Voltage Low	INL	V _{IN} = 0.8V		-1.0		1.0	-1.0		1.0	μА
DYNAMIC										
Turn-On Time	ton	See Figure 6				75			75	ns
Turn-Off Time	toff	See Figure 6				75			75	ns
SUPPLY		_								
Positive Supply Current	1+	All channels on or off				10			10	mA
Negative Supply Current	1-	All channels on or off		6			6			mA

Note 3: The algebraic convention where the most negative value is a minimum and the most positive a maximum is used in this data sheet.

Note 4: Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

Note 5: Electrical characteristics, such as on resistance, will change when power supplies other than ±15V are used.

Note 6: ID(on) is leakage from driver into on switch.

Protecting Against Fault Conditions

Fault conditions occur when power supplies are turned off and input signals are still present, or when overvoltages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If this current must be kept at low (µA) levels, we recommend adding external protection diodes (Figure 1).

To provide protection for overvoltages up to 20V above the supplies, place a 1N4001 or 1N914 type diode in series with the positive and negative supplies, as shown in Figure 1. Adding these diodes will reduce the analog-signal range to 1V below the positive supply and 1V above the negative supply.

Figure 1. Protection Against Fault Conditions

Figure 2. On Resistance

Figure 3. On Leakage Current

Figure 4. Off Leakage Current

Figure 6. Switching-Time Test Circuit

_ Pin Configurations (continued)

Package Information

_Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

1