Metody Monte Carlo - laboratorium 7

Zadanie 1

Napisać program implementujący model Monte Carlo (MC) propagacji niepewności pomiaru dla następujących danych wejściowych:

- model pomiaru: $Y = f(X_1 + X_2)$,
- wartość wejściowa X_1 opisana rozkładem N(0, 1) (rozkład Gaussa),
- \bullet wartość wejściowa X_2 opisana rozkładem N(0, 2) (rozkład Gaussa),
- M liczba prób Monte Carlo np. 10^6 ,
- prawdopodobieństwo rozszerzenia (ang. coverage probability) p = 0.9545.

Dane wyjściowe:

• estymator Y:
$$\hat{y} = \frac{1}{M} \sum_{r=1}^{M} y_r$$
, gdzie $y_r = f(x_{1r}, x_{2r}) = x_{1r} + x_{2r}$,

- odchylenie standardowe estymatora: $\sigma(\hat{y}) = \sqrt{\frac{1}{M-1} \sum_{r=1}^{M} (y_r \hat{y})^2}$
- przedział rozszerzenia (ang. coverage interval): $[y_{min}, y_{max}]$ dla zadanego prawdopodobieństwa rozszerzenia p

i następnie porównać otrzymane wyniki z obliczeniami wykonanymi zgodnie z "tradycyjnym" modelem propagacji niepewności GUM*.

Uwagi pomocnicze:

Algorytm MC składa się z następujących kroków:

- 1. określenie liczby prób Monte Carlo M
- 2. wygenerowanie M wektorów danych wejściowych X
- 3. dla każdego tak wygenerowanego wektora obliczenie odpowiadającej mu wartości Y
- 4. obliczenie danych wyjściowych (odpowiednich statystyk)
- Wyznaczanie przedziału rozszerzenia można dokonać według następującego algorytmu
- 1. przyjąć q = pM, jeżeli pM jest liczbą całkowitą lub q = część całkowita z pM + 1/2
- 2. $y_{min} = y_{(r)}$ i $y_{max} = y_{(r+q)}$, gdzie r = (M-q)/2 lub r = część całkowita z (M-q+1)/2, a

Metody Monte Carlo – laboratorium 7

 $y_{(r)}$ to dyskretna reprezentacja dystrybuanty G_{Y} , otrzymana poprzez posortowanie zbioru otrzymanych wartości y_{r} w porządku rosnącym. Sortowania tego można dokonać za pomocą funkcji standardowej qsort (yr, M, sizeof(double), $funkcja_porownujaca$). Funkcja porównująca powinna mieć postać:

```
int funkcja_porownujaca (const void * a, const void * b) {
   if (*(double*)a - *(double*)b < 0.0) return -1;
   if (*(double*)a - *(double*)b > 0.0) return 1;
   if (*(double*)a - *(double*)b == 0.0) return 0;
}
```

* Według Guide to the expression of uncertainty in measurement (GUM) wartość niepewności złożonej (odchylenie standardowe) należy wyznaczyć zgodnie z zależnością:

$$\sigma_c(y) = \sqrt{\sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma^2(x_i)}$$
 (dla danych wejściowych nie skorelowanych, w tym przypadku

$$N=2$$
 i $\frac{\partial f}{\partial x_1}=1$, $\frac{\partial f}{\partial x_2}=1$, a $\sigma(x_i)$ to odchylenia standardowe wielkości wejściowych), a przedział rozszerzenia wyznaczyć jako $\left[\mu(y)-2\sigma_c(y),\,\mu(y)+2\sigma_c(y)\right]$, gdzie $\mu(y)$ to wartość średnia.

Zadanie 2

Napisać program implementujący model MC propagacji niepewności pomiaru dla następujących danych wejściowych:

- model pomiaru: $Y = f(X_1 + X_2)$,
- wartość wejściowa X_1 opisana rozkładem prostokątnym (tj. równomiernym) R(0, 4),
- wartość wejściowa X_2 opisana rozkładem prostokątnym R(5, 6),
- M liczba prób Monte Carlo np. 10⁶,
- prawdopodobieństwo rozszerzenia p = 0.95

i wyznaczyć estymator Y, odchylenie standardowe estymatora oraz przedział rozszerzenia.

Dodatkowo w programie proszę wyznaczyć histogramy funkcji gęstości prawdopodobieństwa X_1 , X_2 , Y i przedstawić je w formie graficznej. Jakiego rozkładu należy oczekiwać?

Metody Monte Carlo – laboratorium 7

Zadanie 3

(Opracowane na podstawie: JCGM 101:2008 Guide to the expression of uncertainty in measurement – Propagation of distributions using a Monte Carlo method – rozdział 9.5.)

Napisać program implementujący model MC propagacji niepewności pomiaru dla następujących danych wejściowych:

• model pomiaru:
$$Y = X_1 + X_2 + X_3 + X_4 - X_1 [X_8(X_6 + X_7) + X_5 X_9] - K$$

Wejście	Rozkład	Parametry
X_1	$t_{v}(\mu,\sigma^{2})$	$\mu = 50000623 \text{ nm}, \ \sigma = 25 \text{ nm}, \ \nu = 18$
X_2	$t_{v}(\mu,\sigma^{2})$	$\mu = 215 \text{ nm}, \ \sigma = 6 \text{ nm}, \ \nu = 24$
X_3	$t_{v}(\mu,\sigma^{2})$	$\mu = 0 \text{ nm}, \sigma = 4 \text{ nm}, v = 5$
X_4	$t_{v}(\mu,\sigma^{2})$	$\mu = 0 \text{ nm}, \sigma = 7 \text{ nm}, v = 8$
X_5	R(a,b)	$a = 9.5 \times 10^{-6} {}^{\circ}\text{C}^{-1}, b = 13.5 \times 10^{-6} {}^{\circ}\text{C}^{-1}$
X_6	$N(\mu,\sigma^2)$	$\mu = -0.1 \text{ °C}, \sigma = 0.2 \text{ °C}$
X_7	U(a,b)	a = -0.5 °C, $b = 0.5$ °C
X_8	Ctrap(a,b,d)	$a = -1.0 \times 10^{-6} {}^{\circ}\text{C}^{-1}, b = 1.0 \times 10^{-6} {}^{\circ}\text{C}^{-1}, d = 0.1 \times 10^{-6} {}^{\circ}\text{C}^{-1}$
X_9	Ctrap(a,b,d)	$a = -0.050 ^{\circ}\text{C}, b = 0.050 ^{\circ}\text{C}, d = 0.025 ^{\circ}\text{C}$
K	50 mm	

i wyznaczyć estymator Y, odchylenie standardowe estymatora oraz przedział rozszerzenia dla p = 0.99.

Porównać otrzymane wyniki z danymi ze strony 55 dokumentu JCGM 101:2008 (http://www.bipm.org/utils/common/documents/jcgm/JCGM 101 2008 E.pdf)

Uwagi:

• $t_v(\mu, \sigma^2)$ – rozkład ten otrzymamy korzystając z następującej zależności: $\xi = \mu + \sigma t$, gdzie t to zmienna losowa wylosowana zgodnie z centralnym rozkładem t (Studenta) o v stopniach swobody; do wygenerowania t proszę wykorzystać funkcję gsl_ran_tdist ($const_rgsl_rng_rstran_tdist_rstrange)$ r, $double_rstrange$ r, doubl

Metody Monte Carlo – laboratorium 7

- R(a,b) rozkład prostokątny: $\xi = a + (b-a)r$, gdzie r = R(0,1),
- $N(\mu, \sigma^2)$ rozkład Gaussa: $\xi = \mu + \sigma t$, gdzie t to zmienna losowa wylosowana zgodnie z rozkładem N(0, 1); proszę wykorzystać funkcję $gsl_ran_gaussian$ ($const \ gsl_rng * r$, $double \ sigma$) z biblioteki gsl,
- U(a,b) -rozkład arc sin: $\xi = \frac{a+b}{2} + \frac{b-a}{2} \sin(2\pi r)$, gdzie r = R(0, 1),
- Ctrap(a,b,d) rozkład prostokątny z niepewnymi wartościami kresów: $\xi=a_s+(b_s-a_s)r_2$, $a_s=(a-d)+2\,d\,r_1$, $b_s=(a+b)-a_s$, zaś $r_1,r_2=R(0,1)$.