	AZS	_5	7, 70	-	=======================================		Ŧi .	7	4	- 11		-
- 1	满	分	16	12	21		-14		L	Λ.	л.	+
H				12	- 21	28	10	5	8			
- 1	得	分									-	-
Ī	评礼	έλ										١
L	VI 1	5/\										
												1

一、填空题(每题4分,共16分)

2.
$$x=0$$
是函数 $y=\frac{\sin x}{x}$ 的第 _____类间断点(填写"一"或者"二").

3. 已知
$$y=4x-\sin 2x$$
,则函数的微分 $dy=$ $(4-2(6)2X)$ dy

4. 若函数
$$f(x) = \begin{cases} 1+x, x \neq 0, \\ a, x=0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _______

- 二、选择题 (每题3分,共12分)
- 1. 下面极限正确的是(

(A)
$$\lim_{n\to\infty}\frac{\sin n}{n}=10$$

选择题 (每题 3 分, 共 12 分)
下面极限正确的是 ().

(A)
$$\lim_{n\to\infty} \frac{\sin n}{n} = 10$$
 (B) $\lim_{n\to\infty} (1+n)^{\frac{1}{n}} = e$

(D)
$$\lim_{n \to \infty} n \sin\left(\frac{1}{n}\right) = 0$$

$$(C)$$
 x^2-2x^3

(D)
$$\sin x - \cos x$$

3.
$$\Re f(x) = 2017x^{2017} + 2016x^{2016} + \dots + 2x^2 + x$$
. $\Re f'(0) = ($

- (A) 2017
- (B)0

如果函数 f(x) 在 x_0 处可导,则 f(x) 在 x_0 处连续.

- (B) 如果函数 f(x) 在 x_0 处连续,则 f(x) 在 x_0 处可导.
- (C) 如果函数 f(x) 在 x_o 处连续,则 f(x) 在 x_o 处可微.
- (D) 如果 f(x) 在 x = 0 处没有意义,则 $\lim_{x \to 0} \frac{f(x)}{x}$ 一定不存在.

三、求以下极限(毎題7分,共21分)

1.
$$\lim_{x \to 1} \frac{\sin x}{x\sqrt{3+x^2}} = \frac{5\ln 1}{2}$$
 2. $\lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x} \frac{x^2}{\frac{1}{2}x^2} = 2 - 3$. $\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2}\right)$

四、计算题(每题7分,共28分)

1. 已知
$$y = e^x \cos x$$
, 求函数的二阶导数 y^x . $-2 e^{x} \sin x$

2. 求由方程
$$y^2 = x + \sin y$$
 确定的隐函数的导数 $\frac{dy}{dx}$. $y' = \frac{1}{y' - (s')}$

4. 已知
$$y = \sqrt{\frac{x(1+x)}{1+x^2}}$$
 (x>0), 求函数的导数 y'.

五、求函数 $f(x) = 2x - \frac{2}{3}x^3$ 的单调区间、凹凸区间和拐点. (10 分)

六、已知
$$f(x) = \begin{cases} \frac{2}{3}x^3, & x \le 1, \\ 2x^2, & x > 1 \end{cases}$$
 如果何函数 $f(x)$ 在 $x = 1$ 处是否可导?如果导数存在,请求出 $f'(1)$,否则,请证明中,(5.45)

求出 f'(l); 否则,请说明理由. (5分)

七、证明题(共8分)

- 1. 当x>0时,我们熟知有不等式sinx<x成立。请您给出证明。(4分)
- 2. 设 f(x) 在区间[0,1]上连续,在区间(0,1) 内可导,且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$.

证明: (1) 至少存在一点 ξ ∈ (0,1)使 ƒ(ξ) = ξ. 東 点、 えって

(2) 至少存在一点 η∈(0,1)使f'(η)=1.(4分)