# 12. Konvergenzkriterien

### Satz 12.1 (Leibnizkriterium)

Sei  $(b_n)$  eine monoton fallende Nullfolge und  $a_n := (-1)^{n+1}b_n$ . Dann ist  $\sum_{n=1}^{\infty} a_n$  konvergent.

#### **Beweis**

Wie bei  $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ . Von  $(b_n) = (\frac{1}{n})$  wurde nur benutzt:  $\frac{1}{n}$  ist eine fallende Nullfolge.

**Bemerkung:** Gilt  $a_n = b_n$  ffa  $n \in \mathbb{N}$ , so gilt:  $\sum_{n=1}^{\infty} a_n$  ist genau dann konvergent, wenn  $\sum_{n=1}^{\infty} b_n$  konvergent ist.

### Satz 12.2 (Majoranten- und Minorantenkriterium)

- (1) **Majorantenkriterium**: Gilt  $|a_n| \le b_n$  ffa  $n \in \mathbb{N}$  und ist  $\sum_{n=1}^{\infty} b_n$  konvergent, so gilt:  $\sum_{n=1}^{\infty} a_n$  ist absolut konvergent.
- (2) **Minorantenkriterium**: Gilt  $a_n \ge b_n \ge 0$  ffa  $n \in \mathbb{N}$  und ist  $\sum_{n=1}^{\infty} b_n$  divergent, so gilt:  $\sum_{n=1}^{\infty} a_n$  ist divergent.

#### Beweis

- (1)  $s_n := b_1 + b_2 + \ldots + b_n$ ,  $\sigma_n := |a_1| + \ldots + |a_n| \ \forall n \in \mathbb{N}$ . O.b.d.A.:  $|a_n| \le b_n \ \forall n \in \mathbb{N}$ .  $(s_n)$  ist konvergent  $\stackrel{6.1}{\Longrightarrow} (s_n)$  ist beschränkt  $\Longrightarrow \exists c \ge 0 : a_n \le c \ \forall n \in \mathbb{N} \Longrightarrow 0 \le \sigma_n = |a_1| + |a_2| + \ldots + |a_n| \le b_1 + b_2 + \ldots + b_n = s_n \le c \ \forall n \in \mathbb{N} \Longrightarrow (\sigma_n)$  ist beschränkt  $\stackrel{11.1(1)}{\Longrightarrow} (\sigma_n)$  konvergent.
- (2) Annahme:  $\sum_{n=1}^{\infty} a_n$  ist konvergent  $\stackrel{(1)}{\Longrightarrow} \sum_{n=1}^{\infty} b_n$  ist konvergent. Widerspruch!

#### Beispiele:

- (1)  $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ ,  $a_n = \frac{1}{(n+1)^2} = \frac{1}{n^2+2n+1} \le \frac{1}{n^2+2n} \le \frac{1}{n(n+1)} =: b_n$ . Bekannt:  $\sum_{n=1}^{\infty} b_n$  konvergent  $\xrightarrow{12.2(2)} \sum_{n=1}^{\infty} a_n$  ist konvergent. Folgerung:  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  ist konvergent.
- (2)  $\sum_{n=1}^{\infty} \frac{1}{n^2 n + \frac{1}{8}}, \ a_n = \frac{1}{n^2 n + \frac{1}{8}}, \ b_n := \frac{1}{n^2}, \ \frac{a_n}{b_n} = \frac{n^2}{n^2 n + \frac{1}{8}} \to 1 \ (n \to \infty) \implies \exists m \in \mathbb{N} : \frac{a_n}{b_n} \le 2 \ \forall n \ge m \implies a_n \le 2b_n \ \forall n \ge m \ (|a_n| = a_n)$  $\sum_{n=1}^{\infty} 2b_n \text{ ist konvergent} \xrightarrow{\underline{12.2(1)}} \sum_{n=1}^{\infty} a_n \text{ ist konvergent}.$
- (3) Sei  $\alpha \in (0,1] \cap \mathbb{Q}$ :  $\frac{1}{n^{\alpha}} \geq \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{12.2(2)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$  ist divergent.

### 12. Konvergenzkriterien

- (4) Sei  $\alpha \geq 2, \alpha \in \mathbb{Q}$ :  $\frac{1}{n^{\alpha}} \leq \frac{1}{n^2} \ \forall n \in \mathbb{N} \xrightarrow{12.2(1)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$  ist konvergent.
- (5) In der Übung gezeigt: Ist  $\alpha > 0$ ,  $\alpha \in \mathbb{Q}$ :  $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$  ist konvergent genau dann, wenn  $\alpha > 1$ . Bemerkung: Ist später die allgemeine Potenz  $a^x$   $(a > 0, x \in \mathbb{R})$  bekannt, so zeigt man analog:  $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \iff \alpha > 1 \ \forall \alpha \in \mathbb{R}$ .

### Definition ( $\infty$ als Limes Superior)

Ist  $(\alpha_n)$  eine Folge und  $\alpha_n \geq 0 \ \forall n \in \mathbb{N}$  und ist  $(\alpha_n)$  nicht nach oben beschränkt, so setzte  $\limsup_{n \to \infty} \alpha_n := \lim \sup_{n \to \infty} \alpha_n := \infty$ .

Vereinbarung:  $x < \infty \ \forall x \in \mathbb{R}$ 

### Satz 12.3 (Wurzelkriterium)

Sei  $(a_n)$  eine Folge und  $\alpha := \limsup \sqrt[n]{|a_n|}$ .

- (1) Ist  $\alpha < 1 \implies \sum_{n=1}^{\infty} a_n$  absolut konvergent
- (2) Ist  $\alpha > 1 \implies \sum_{n=1}^{\infty} a_n$  divergent
- (3) Ist  $\alpha = 1$ , so ist keine allgemeine Aussage möglich.

#### **Beweis**

- (1)  $\alpha < 1$ . Sei  $\varepsilon > 0$  so, dass  $x := \alpha + \varepsilon < 1$ . 9.2  $\Longrightarrow \sqrt[n]{|a_n|} < \alpha + \varepsilon = x$  ffa  $n \in \mathbb{N} \Longrightarrow |a_n| < x^n$  ffa  $n \in \mathbb{N}$ .  $\sum_{n=1}^{\infty} x^n$  ist konvergent  $\Longrightarrow$  Behauptung.
- (2) (i)  $\alpha > 1$ ,  $\alpha < \infty$ : Sei  $\varepsilon > 0$  so, dass  $\alpha \varepsilon > 1$ . 9.2  $\Longrightarrow \sqrt[n]{|a_n|} > \alpha \varepsilon > 1$  für unendlich viele  $n \in \mathbb{N} \implies |a_n| > 1$  für unendlich viele  $n \in \mathbb{N} \implies |a_n| > 0 \implies \sum_{n=1}^{\infty} a_n$  ist divergent.
  - (ii)  $\alpha = \infty \implies \sqrt[n]{|a_n|} > 1$  für unendlich viele  $n \in \mathbb{N} \xrightarrow{\text{wie eben}} \sum_{n=1}^{\infty} a_n$  ist divergent.
- (3) Siehe Beispiele

#### Beispiele:

- (1)  $\sum_{n=1}^{\infty} \frac{1}{n}$  ist divergent.  $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \to 1$ , also  $\alpha = 1$ .
- (2)  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  ist konvergent.  $\sqrt[n]{\frac{1}{n^2}} = (\frac{1}{\sqrt[n]{n}})^2 \to 1$ , also  $\alpha = 1$ .
- (3)  $\sum_{n=1}^{\infty} \underbrace{(-1)^n (1 + \frac{1}{n})^{-n^2}}_{=:a_n} \cdot \sqrt[n]{|a_n|} = (1 + \frac{1}{n})^{-n} = \frac{1}{(1 + \frac{1}{n})^n} \to \frac{1}{e} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ ist absolut konvergent.}$
- (4) Sei  $(a_n)$  eine Folge und  $x \in \mathbb{R}$  mit  $a_n := \begin{cases} \frac{1}{2^n} & \text{für } n \text{ gerade} \\ n \cdot x^n & \text{für } n \text{ ungerade} \end{cases}$ Betrachte  $\sum_{n=1}^{\infty} a_n$ .  $\alpha_n := \sqrt[n]{|a_n|} = \begin{cases} \frac{1}{2} & \text{für } n \text{ gerade} \\ \sqrt[n]{n}|x| & \text{für } n \text{ ungerade} \end{cases}$ .

 $\alpha_{2n} = \frac{1}{2} \to \frac{1}{2}. \ \alpha_{2n-1} = \sqrt[2n-1]{2n-1} \cdot |x| \to |x|. \ \text{A16} \implies \mathscr{H}(\alpha_n) = \{\frac{1}{2}, |x|\}.$  Ist  $|x| < 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut.}$  Ist  $|x| > 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n \text{ divergiert.}$  Sei |x| = 1:  $|a_{2n-1}| = |(2n-1)x^{2n-1}| = 2n-1 \implies a_n \nrightarrow 0 \implies \sum_{n=1}^{\infty} a_n \text{ ist divergent.}$ 

(5) Sei  $p \in \mathbb{N}$  und  $q \in \mathbb{R}$  und |q| < 1. Behauptung:  $\lim_{n \to \infty} n^p q^n = 0$ . Beweis:  $a_n := n^p q^n$ .  $\sqrt[n]{|a_n|} = \sqrt[n]{n^p}|q| = (\sqrt[n]{n})^p|q| \to |q| < 1 \xrightarrow{12.3} \sum_{n=1}^{\infty} a_n \text{ ist absolut konvergent } \Longrightarrow a_n \to a_n$ 

## Satz 12.4 (Quotientenkriterium)

Sei  $(a_n)$  eine Folge in  $\mathbb{R}$  und  $a_n \neq 0$  ffa  $n \in \mathbb{N}$ .  $\alpha_n := \frac{a_{n+1}}{a_n}$  (ffa  $n \in \mathbb{N}$ ).

- (1) Ist  $|\alpha_n| \ge 1$  ffa  $n \in \mathbb{N} \implies \sum_{n=1}^{\infty} a_n$  ist divergent.
- (2) Es sei  $(\alpha_n)$  beschränkt,  $\beta := \liminf |\alpha_n|$  und  $\alpha := \limsup |\alpha_n|$ .
  - (i) Ist  $\beta > 1 \implies \sum_{n=1}^{\infty} a_n$  ist divergent.
  - (ii) Ist  $\alpha < 1 \implies \sum_{n=1}^{\infty} a_n$  ist absolut konvergent.
  - (iii) Ist  $\alpha = \beta = 1$ , so ist keine allgemeine Aussage möglich.

### Beweis

O.B.d.A.:  $a_n \neq 0 \ \forall n \in \mathbb{N}$ 

- (1) Dann:  $|a_2| \ge |a_1| > 0$ ,  $|a_3| \ge |a_2| \ge |a_1| > 0$ , ... allgemein:  $|a_n| \ge |a_1| > 0 \ \forall n \in \mathbb{N} \implies$  $a_n \nrightarrow 0 \implies \text{die Behauptung.}$
- (2) (i) Sei  $\beta > 1$ , Sei  $\varepsilon > 0$  so, dass  $\beta \varepsilon > 1$ . 9.2  $\Longrightarrow |\alpha_n| > \beta \varepsilon > 1$  ffa  $n \in \mathbb{N} \implies$ die Behauptung.
  - (ii) Sei  $\alpha < 1$ . Sei  $\varepsilon > 0$  so, dass  $x := \alpha + \varepsilon < 1$ . 9.2  $\Longrightarrow |\alpha_n| < \alpha + \varepsilon = x$  ffa  $n \in \mathbb{N}$ . Dann:  $|a_2| \leq |a_1|x$ ,  $|a_3| \leq |a_2|x \leq |a_1|x^2$ ,... allgemein:  $|a_n| \leq |a_n1|x^{n-1}$  ffa  $n \in \mathbb{N}$ .  $\sum_{n=1}^{\infty} |a_1|x^{n-1} \text{ ist konvergent } \xrightarrow{12.2} \sum_{n=1}^{\infty} a_n \text{ ist absolut konvergent.}$
  - (iii) siehe Beispiele

- (1)  $\sum_{n=1}^{\infty} \frac{1}{n}$  ist divergent.  $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1$ , also  $\alpha = \beta = 1$ .
- (2)  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  ist konvergent.  $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1$ , also  $\alpha = \beta = 1$ .

### Beispiel 12.5 (Exponentialfunktion)

Für  $x \in \mathbb{R}$  betrachte die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

45

Für welche  $x \in \mathbb{R}$  konvergiert diese Reihe (absolut)?.

Klar: für x = 0 konvergiert die Reihe.

Sei  $x \neq 0$  und  $a_n = \frac{x^n}{n!}$ ;

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n}\right| = \frac{|x|}{n+1} \to 0 \quad (n \to \infty) \quad (\text{also } \alpha = \beta = 0)$$

 $12.4 \implies \sum_{n=0}^{\infty} \frac{x^n}{n!}$  ist absolut konvergent für alle  $x \in \mathbb{R}$ .

Also wird durch  $E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$   $(x \in \mathbb{R})$  eine Funktion  $E : \mathbb{R} \to \mathbb{R}$  definiert. Diese Funktion E heißt die **Exponentialfunktion**.

$$E(0) = 1, E(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

**Bemerkung:** Später zeige wir:  $E(r) = e^r \ \forall r \in \mathbb{Q}$ . Dann definieren wir  $e^x := E(x) \ (x \in \mathbb{R})$ .

**Motivation:**  $b_n:=(-1)^n \quad (n\in\mathbb{N}),\ b_n\nrightarrow 0 \Longrightarrow \sum_{n=1}^\infty b_n=b_1+b_2+\dots$  ist divergent.  $a_1:=b_1+b_2,\ a_2:=b_3+b_4,\dots$  also:  $a_n=0\ \forall n\in\mathbb{N} \Longrightarrow \sum_{n=1}^\infty a_n=(b_1+b_2)+(b_3+b_4)+\dots$  ist konvergent. Also: "Im Allgemeinen darf man Klammern in konvergenten Reihen nicht weglassen."

### Satz 12.6 (In konvergenten Folgen darf man Klammern setzen)

Sei  $\sum_{n=1}^{\infty} a_n$  konvergent und es seien  $n_1, n_2, \ldots \in \mathbb{N}$  mit  $n_1 < n_2 < \ldots$ . Setze  $b_1 := a_1 + \ldots + a_{n_1}, b_2 := a_{n_1+1} + \ldots + a_{n_2}$ , allgemein:  $b_k := a_{n_{k-1}+1} + \ldots + a_{n_k}$   $(k \ge 2)$ . Dann ist  $\sum_{n=1}^{\infty} b_n$  konvergent und  $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$ .

### Beweis

 $s_n := a_1 + a_2 + \ldots + a_n; \ \sigma_k := b_1 + b_2 + \ldots b_k.$  Es ist  $\sigma_k = a_1 + a_2 + \ldots + a_{n_k} = s_{n_k} \implies \sigma_k$  ist eine Teilfolge von  $s_n \stackrel{8.1(3)}{\Longrightarrow} (\sigma_k)$  konvergent und  $\lim_{k \to 0} \sigma_k = \lim_{n \to \infty} s_n.$