High-Dimensional Metrics

Victor Chernozhukov, Christian Hansen, Martin Spindler 2015-09-27

Overview

function	methods	comment
rlasso	summary, print, predict, model.matrix	default and formula interface
rlogisticlasso	summary, print, predict, model.matrix	default and forumla interfac
rlassoLM	print, summary, confint, plot	default and formula (TBD)
rlassoIV	print, summary, confint	default interface
rlassoMany	print, summary, confint	default interface
rlassoATE, rlassoLATET, rlassoLATET	print, summary, confint	

To Do:

- rename functions
- choice of lambda
- joint CIs
- significance for logistic lasso
- wrap function for rlassoIV, rlassoMany, rlassoLM
- formula interface for rlassoIV, rlassoMany: design
- plots for all functions?
- further testing
- documentation and vignettes

Example

rlasso

Generating data:

```
set.seed(2)
n <- 100
p <- 20
px <- 5
X <- matrix(rnorm(n*p), ncol=p)
Xnew <- matrix(rnorm(n*p), ncol=p)
beta <- c(rep(2,px), rep(0,p-px))
y <- X %*% beta + rnorm(n)</pre>
```

rlasso

```
11 <- rlasso(X,y, intercept=TRUE, normalize=TRUE, post=TRUE) # default interface
12 <- rlasso(y~X) # formula interface</pre>
```

```
print(11)
##
## Call:
\#\# rlasso.default(x = X, y = y, post = TRUE, intercept = TRUE, normalize = TRUE)
## Coefficients:
##
     V1
            ٧2
                    VЗ
                           ۷4
                                  ۷5
                                         ۷6
                                                ۷7
                                                       8
                                                              ۷9
                                                                    V10
## 2.079 1.934 2.076 2.034 1.792 0.000
                                            0.000
                                                    0.000 0.000
                                                                  0.000
            V12
                  V13
                        V14
                                 V15
                                        V16
                                               V17
                                                      V18
                                                             V19
                                                                     V20
## 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
summary(11, all=FALSE) # show only coefficient which are not zero
##
## Call:
## rlasso.default(x = X, y = y, post = TRUE, intercept = TRUE, normalize = TRUE)
## Post-Lasso Estimation: TRUE
##
## Total number of variables: 20
## Number of selected variables: 5
##
## Residuals:
       \mathtt{Min}
                  1Q Median
                                    3Q
## -2.15819 -0.64003 0.03704 0.74504 2.12253
##
##
     Estimate
## V1
         2.079
## V2
         1.934
## V3
         2.076
## V4
         2.034
## V5
         1.792
##
## Residual standard error: 1.016
head(predict(11))
##
              [,1]
## [1,] -0.2739370
## [2,] -6.8242088
## [3,] 8.5583774
## [4,] -8.7417950
## [5,] -0.8918198
## [6,] 6.1379824
head(predict(11, newdata=Xnew))
```

[,1]

##

```
## [1,] -8.1342684

## [2,] 3.0357902

## [3,] 0.7342197

## [4,] 7.8477857

## [5,] 1.5141399

## [6,] -2.0305342
```

rlogisticlasso

Generating data:

```
set.seed(2)
n <- 100
p <- 20
px <- 5
X <- matrix(rnorm(n*p), ncol=p)
Xnew <- matrix(rnorm(n*p), ncol=p)
beta <- c(rep(2,px), rep(0,p-px))
ystar <- X %*% beta + rnorm(n)
y <- as.integer(ystar >=0)
```

rlogisticlasso

```
13 <- rlogisticlasso(X,y, intercept=TRUE, normalize=TRUE, post=TRUE) # default interface 14 <- rlogisticlasso(y~X) # formula interface
```

methods for rlogisticlasso

```
#print(l3)
summary(13, all=FALSE) # show only coefficient which are not zero
```

```
##
## Call:
## rlogisticlasso.default(x = X, y = y, post = TRUE, intercept = TRUE,
## normalize = TRUE)
##
## Post-Lasso Estimation: TRUE
##
## Total number of variables: 20
## Number of selected variables: 2
##
## Estimate
## V1 1.471
## V3 1.888
```

head(predict(13))

```
## [,1]
## [1,] 0.2939060
## [2,] 0.1451806
## [3,] 0.9995185
```

```
## [4,] 0.2026698
## [5,] 0.1127571
## [6,] 0.6900044
head(predict(13, newdata=Xnew))
##
              [,1]
## [1,] 0.02658591
## [2,] 0.79455253
## [3,] 0.31579760
## [4,] 0.53468016
## [5,] 0.26317655
## [6,] 0.11540817
rlassoLM
Generating data:
set.seed(2)
n <- 100
p <- 20
px <- 5
X <- matrix(rnorm(n*p), ncol=p)</pre>
Xnew <- matrix(rnorm(n*p), ncol=p)</pre>
beta \leftarrow c(rep(2,px), rep(0,p-px))
y <- X %*% beta + rnorm(n)
rlassoLM
rLM <- rlassoLM(X,y, index=c(1,2,9)) # I: selection of variables for inference
## Warning in rlasso.default(x, d, ...): No variables selected!
## Warning in rlasso.default(x, d, ...): No variables selected!
## Warning in rlasso.default(x, d, ...): No variables selected!
methods
print(rLM)
##
## Call:
## rlassoLM.default(x = X, y = y, index = c(1, 2, 9))
## Coefficients:
                 ٧2
##
        V1
## 2.0786 1.9344 -0.1231
```

```
summary(rLM)
```

```
## [1] "Estimation of the effect of selected variables in a high-dimensional regression"
## coeff. se. t-value p-value
## V1 2.07863 0.09196 22.60258 0.000
## V2 1.93439 0.10640 18.18037 0.000
## V9 -0.12315 0.12091 -1.01850 0.308
```

confint(rLM)

```
## V1 1.8961064 2.261154
## V2 1.7232172 2.145566
## V9 -0.3631186 0.116826
```

plot(rLM, main="Estimated coefficients for selected variables")

```
## [1] "Estimation of the effect of selected variables in a high-dimensional regression"
## coeff. se. t-value p-value
## V1 2.07863 0.09196 22.60258 0.000
## V2 1.93439 0.10640 18.18037 0.000
## V9 -0.12315 0.12091 -1.01850 0.308
```

Estimated coefficients for selected variables

NULL