14.2. Monday for MAT3006

Proposition 14.1 For all $E \in \mathcal{M} \otimes \mathcal{M}$, we have

$$\int m_Y(E_x) dx = \int m_X(E_y) dy = \pi(E), \qquad (14.1)$$

where $\pi(\cdot)$ is a measure on $\mathcal{M} \otimes \mathcal{M}$.

Here note that

$$m_X(E_y) := \int (\mathcal{X}_E)_y(x) dx$$

$$m_Y(E_x) := \int (\mathcal{X}_E)_x(y) dy$$

Proof. Construct

$$\mathcal{A} = \left\{ E \in \mathcal{M} \otimes \mathcal{M} \middle| \begin{array}{l} x \mapsto m_Y(E_x) \text{ measurable} \\ y \mapsto m_X(E_y) \text{ measurable} \\ (14.1) \text{ holds for } E \end{array} \right\}$$

Following the proof given in the last lecture, it suffices to show \mathcal{A} is a monotone class:

• Construct

$$\mathcal{A}_k = \mathcal{A} \cap \{E \in \mathcal{M} \otimes \mathcal{M} \mid E \subseteq [-k, k] \times [-k, k]\}.$$

We first show that \mathcal{A}_k is a monotone class for all $k \in \mathbb{N}$:

1. Suppose that $E_n \subseteq E_{n+1}$, $\forall n$ and $E_n \in \mathcal{A}_k$, and we aim to show $E := \bigcup_{n=1}^{\infty} E_n \in \mathcal{A}_k$. Consider the function $f_n(x) = m_Y((E_n)_x)$, which is measurable for all n, and $f_n(x) \le f_{n+1}(x)$ for all n, since $E_n \subseteq E_{n+1}$.

The MCT I implies that $f(x) = m_Y(E_x)$ is measurable with

$$\int m_Y(E_x) dx = \lim_{n \to \infty} \int m_Y((E_n)_x) dx \stackrel{(a)}{=} \lim_{n \to \infty} \pi(E_n) \stackrel{(b)}{=} \pi(E)$$

where (a) is because that $E_n \in \mathcal{A}$; and (b) is due to the exercise in Hw3. Similarly, $y \mapsto m_X(E_y)$ is measurable, with $\int m_X(E_y) dy = \pi(E)$. Therefore, $E \in \mathcal{A}$, i.e., $E \in \mathcal{A}_k$ as well.

2. Suppose that $F_i \in \mathcal{A}_k, F_i \supseteq F_{i+1}$, and we aim to show $F := \bigcap_{i=1}^{\infty} F_i \in \mathcal{A}_k$. Construct the measurable function $g_n(x) = m_Y((F_n)_x)$, and $g_n(x) \ge g_{n+1}(x)$; $|g_n(x)| \le g_1(x)$, with $g_1(x)$ integrable. (You may see the bounded rectangle in \mathcal{A}_k matters here)

The DCT implies that $g(x) = m_Y(F_x)$ is measurable, with

$$\int m_Y(F_x) dx = \lim_{n \to \infty} \int g_n dx = \lim_{n \to \infty} \pi(F_n) = \pi(F).$$

Similarly, $y \mapsto m_X(F_y)$ is measurable, with $\int m_X(F_y) dy = \pi(F)$. Therefore, $F \in \mathcal{A}_k$.

ullet Then we show $\mathcal A$ is a monotone class, i.e., closed under countable decreasing intersections.

Suppose that $F_i \in \mathcal{A}, F_i \supseteq F_{i+1}$, we aim to show that $F := \cap F_i \in \mathcal{A}$.

Construct

$$F_i^{(k)} = F_i \cap ([-k, k] \times [-k, k]),$$

which implies $F_i^{(k)} \supseteq F_{i+1}^{(k)}$, $F_i^{(k)} \in \mathcal{A}_k$. We denote $F^{(k)} = \bigcap_{i=1}^{\infty} F_i^{(k)}$. The previous result implies that $F^{(k)} \in \mathcal{A}_k$, i.e.,

$$\int m_Y((F^{(k)})_X) \, dx = \pi(F^{(k)})$$

Now note that $F^{(1)} \subseteq F^{(2)} \subseteq \cdots$, and $F = \bigcup_{k \in \mathbb{N}} F^{(k)}$. Therefore, applying MCT gives

$$\int m_Y(F_x) dx = \lim_{k \to \infty} \int m_Y((F^{(k)})_x) dx = \lim_{k \to \infty} \pi(F^{(k)}) = \pi(F).$$

Therefore, *F* satisfies (14.1), i.e., $F \in \mathcal{A}$

Theorem 14.3 — Tonelli's Theorem. Let $F : \mathbb{R}^2 \to [0, \infty]$ be measurable under the space $(\mathbb{R}^2, \mathcal{M} \otimes \mathcal{M}, \pi)$. Then

$$\begin{cases} x \mapsto \int F(x, y) \, dy \\ y \mapsto \int F(x, y) \, dx \end{cases}$$
 is measurable,

and

$$\int F d\pi = \int \left(\int F(x, y) dx \right) dy = \int \left(\int F(x, y) dy \right) dx$$

Proof. Let

$$\phi_n(x,y) = \sum_{k=0}^{4^n} (k \cdot 2^{-n}) X_{F^{-1}([k \cdot 2^{-n},(k+1) \cdot 2^{-n}])} + 2^n X_{F^{-1}(2^n,\infty]}$$

We just re-write the terms above as $\sum_k \alpha_k \chi_{E_k}$. Our constructed $\phi_n(x,y)$ is a monotone increasing simple function such that $\phi_n \to F$ pointwise. It follows that

$$\int F \, \mathrm{d}\pi = \lim_{n \to \infty} \int \phi_n \, \mathrm{d}\pi \tag{14.2a}$$

$$= \lim_{n \to \infty} \int \left(\sum_{k} \alpha_k \chi_{E_k} \right) d\pi \tag{14.2b}$$

$$= \lim_{n \to \infty} \sum_{k} \alpha_{k} \int X_{E_{k}} d\pi = \lim_{n \to \infty} \sum_{k} \alpha_{k} \pi(E_{k})$$
 (14.2c)

$$= \lim_{n \to \infty} \sum_{k} \alpha_{k} \int \left(\int \mathcal{X}_{E_{k}}(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y \tag{14.2d}$$

$$= \lim_{n \to \infty} \int \int \left(\sum_{k} \alpha_k \chi_{E_k}(x, y) \right) dx dy$$
 (14.2e)

$$= \lim_{n \to \infty} \int \left(\int \phi_n(x, y) \, \mathrm{d}x \right) \mathrm{d}y \tag{14.2f}$$

$$= \int \lim_{n \to \infty} \left(\int \phi_n(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y \tag{14.2g}$$

$$= \int \int \lim_{n \to \infty} \phi_n(x, y) \, \mathrm{d}x \, \mathrm{d}y \tag{14.2h}$$

$$= \int \int F(x,y) \, \mathrm{d}x \, \mathrm{d}y \tag{14.2i}$$

where (14.2a) is by the MCT I on ϕ_n ; (14.2c) is by the linearity of integral; (14.2d) is by proposition (14.1) (14.2e) is by the linearity of integral; (14.2g) is by the MCT I on

 $f_n(y) = \int \phi_n(x, y) \, dx$; (14.2h) is by the MCT I on $g_n(x) = \phi_n(x, y)$; (14.2i) is because that $\phi_n(x, y) \to F(x, y)$.

Theorem 14.4 — **Fubini's Theorem.** Suppose that $F: \mathbb{R}^2 \to [-\infty, \infty]$ is integrable, then

$$\int F d\pi = \int \left(\int F(x, y) dx \right) dy = \int \left(\int F(x, y) dy \right) dx$$

Proof. Suppose $F = F^+ - F^-$, where F^\pm are both integrable. Applying Tonell's theorem on both F^- and F^+ and the linearity of integrals gives the desired result.