Модель боевых действий. Вариант 44

Alexey A. Shemyakin¹
27 February, 2021 Moscow, Russian Federation

¹RUDN University, Moscow, Russian Federation

Who is this guy

Who am i

 Я, Шемякин Алексей Александрович, — студент РУДН с 2018 - по настоящее время. Учусь на направлении Фундаментальная информатика и информационные технологии.

Цель выполнения лабораторной работы

Рассмотреть некоторые простейшие модели боевых действий – модели Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна).

Задачи выполнения лабораторной работы

- 1. Изучить три случая модели Ланчестера
- 2. Построить графики изменения численности войск
- 3. Определить победившую сторону

Рассмотреть три случая ведения боевых действий:

- 1. Боевые действия между регулярными войсками
- 2. Боевые действия с участием регулярных войск и партизанских отрядов
- 3. Боевые действия между партизанскими отрядами

В этом случае модель боевых действий между регулярными войсками описывается следующим образом:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что темп потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t) \end{cases}$$

Модель ведение боевых действий между партизанскими отрядами с учетом предположений, сделанном в предыдущем случаем, имеет вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)x(t)y(t) + P(t) \\ \frac{dy}{dt} = -h(t)y(t) - c(t)x(t)y(t) + Q(t) \end{cases}$$

Между страной X и страной Yидет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t) В начальный момент времени страна X имеет армию численностью 38000человек, а в распоряжении страны Yармия численностью в 29000 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны. Также считаем P(t), Q(t) непрерывные функции. Постройте графики изменения численности войск армии X и армии Yдля следующих случаев:

Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Figure 1: Жёсткая модель войны

Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Figure 2: Фазовые траектории системы

Результаты выполнения лабораторной работы

В результате проделанной работы мы познакомились с моделью "Войны и сражения". Проверили, как работает модель в различных ситуациях, построили графики y(t) и x(t) в рассматриваемых случаях.

Спасибо за внимание!