ECE 313 Notes

Lecture 2: Axioms of Probability

1. Set Operation

$$A \cup B, A \cap B, A^c$$

In general, union means OR, intersection means AND, complement means NOT.

 $A \cap B$ 的并集, $A \cap B$ 的交集,A 的补集

Notes:

- ullet For any event E , $E\cap E^c=arnothing$, $E\cup E^c=\Omega$
- Two events A, B are **mutually exclusive** (互斥), if $A \cap B = \emptyset$
- For the two mutually exclusive events A, B,

$$P(A \cup B) = P(A) + P(B)$$

• If A, B are not mutually exclusive,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2. Karnaugh Map

We can conclude some formulas in this Karnaugh map:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

3. Axioms and Properties

3.1 Event Axioms

集合 \mathcal{F} (表示事件的集合) 需要满足以下三个基本公理:

Axiom E.1 样本空间 (Sample Space) Ω 是一个事件 (i.e. $\Omega \in \mathcal{F}$)

Axiom E.2 如果 A 是一个事件 (event),那么 A 的补集也是一个事件 (i.e. $if A \in \mathcal{F} then A^c \in \mathcal{F}$)

Axiom E.3 如果 A 和 B 都是事件,那么它们的并集(union) $A \cup B$ 也是一个事件 (i.e. $if\ A, B\ in\ \mathcal{F}\ then\ A \cup B \in \mathcal{F}$) 如 果 A_1, A_2, \ldots 是一系列事件(a list of events),那么这些事件的并集 $A_1 \cup A_2 \cup \cdots$ 也是一个事件。

3.2 Event Properties

Property e.4 空集 \varnothing 是一个事件(即 $\varnothing \in \mathcal{F}$)。

这是因为 Ω 是一个事件(由 Axiom E.1),而 $\varnothing=\Omega^c$,根据 Axiom E.2 可知 Ω^c 是一个事件,所以 \emptyset 是事件。

Property e.5 如果 $A \ni B$ 都是事件,那么 AB (即 $A \cap B$) 也是事件。 这是因为根据 De Morgan 定律有

$$AB = (A^c \cup B^c)^c$$

由 Axiom E.2 可知 A^c 、 B^c 都是事件,Axiom E.3 可知它们的并集 $A^c \cup B^c$ 是事件,再由 Axiom E.2 知其补集也是事件,即 AB 是事件。

Property e.6 更一般地,若 B_1, B_2, \dots 是一系列事件,则它们的交集 $B_1B_2 \dots$ 也是事件。 这是因为

$$B_1B_2\cdots = (B_1^c \cup B_2^c \cup \cdots)^c$$

由 Property e.5 的证明逻辑可知这一式子是事件。

3.3 Probability Axioms

概率测度 P 需要满足以下三个基本公理:

Axiom P.1 对于任意事件 A,有

Axiom P.2 如果 $A,B\in\mathcal{F}$,且 A 与 B 互斥(mutually exclusive),则

$$P(A \cup B) = P(A) + P(B)$$

更一般地,若 E_1, E_2, \ldots 是一组两两互斥(mutually exclusive)的事件(可以是可数无限组),则

$$P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$$

Axiom P.3

$$P(\Omega) = 1$$

若 Axiom P.1–P.3 成立(且事件公理 Axiom E.1–E.3 也成立),则概率测度 P 会满足一些直觉上合理的性质,我们列出如下:

3.4 Probability Properties

Property p.4 对任意事件 A,有

$$P(A^c) = 1 - P(A)$$

这是因为 A 与其补集 A^c 是互斥的,且 $\Omega = A \cup A^c$,由 Axiom P.2 与 P.3 可得

$$P(A) + P(A^c) = P(A \cup A^c) = P(\Omega) = 1$$

Property p.5 对任意事件 A,有

$$P(A) \leq 1$$

这是因为 $P(A)=1-P(A^c)\leq 1$,而 $P(A^c)\geq 0$ 由 Axiom P.1 得。

Property p.6

$$P(\varnothing) = 0$$

因为 \emptyset 与 Ω 是互补集,由 p.4 与 Axiom P.3 得

$$P(\varnothing) = 1 - P(\Omega) = 0$$

Property p.7 若 $A \subseteq B$,则

因为 $B=A\cup (A^cB)$,而 A与 A^cB 互斥,且 $P(A^cB)\geq 0$,所以

$$P(B) = P(A) + P(A^cB) \ge P(A)$$

Property p.8

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

因为 $A \cup B = (AB^c) \cup (A^cB) \cup (AB)$, 三者互斥, 所以

$$P(A \cup B) = P(AB^{c}) + P(A^{c}B) + P(AB)$$

= $(P(AB^{c}) + P(AB)) + (P(A^{c}B) + P(AB)) - P(AB)$
= $P(A) + P(B) - P(AB)$

Property p.9

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

这是对 Property p.8 的三事件扩展,可以类似地进行证明。

4. Example

There-event Karnaugh Map (On Page 14)

Let an experiment consist of rolling two fair dice, and define the following three events about the numbers showing:

$$A = \{sum \ is \ even\}$$

 $B = \{sum \ is \ a \ multiple \ of \ three \}$

 $C = \{the numbers are the same\}$

Tips: Use the three-event Karnaugh Map

$\underline{\hspace{1cm}}^{c}$		B		
14,16,23,25 32,34,41,43, 52,56,61,65			12,21,36,45, 54,63	A'
13,26,31,35, 46,53,62,64	11,22,44,55	33,66	15,24,42,51	A
C^{c}	C		C^{c}	

 Ω 中共有6 imes 6 = 36 种可能的情况,将它们均填入上图中,

如果要求事件 $A\cap B\cap C$ 发生的概率,可以从图上得知:

$$ABC = \{33, 66\}$$

$$P(ABC) = \frac{|ABC|}{|\Omega|} = \frac{2}{36} = \frac{1}{18}$$

Summary

1. 集合运算

• 基本运算:

。 并集 (∪) 表示"或": $A \cup B$

。 交集 (\cap) 表示"且": $A \cap B$

o 补集 $(^c)$ 表示"非": A^c

• 互斥事件

当
$$A \cap B = \emptyset$$
时: $P(A \cup B) = P(A) + P(B)$

• 非互斥事件

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2. 事件公理

1. **必然事件**: Ω 和空集 \emptyset 都是事件

2. 运算封闭性:事件对以下运算封闭:

 \circ 补集: 若 A 是事件,则 A^c 也是事件

。 并集: 若 A,B 是事件,则 $A\cup B$ 是事件

o 交集: 若 A, B 是事件,则 $A \cap B$ 是事件

3. 概率公理

- 1. 非负性 $P(E) \geq 0$ for every event E in \mathcal{F}
- 2. **可加性**(互斥事件)

$$P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i) \quad \stackrel{\text{def}}{=} E_i \cap E_j = \emptyset \ orall \ i
eq j$$

3. **归一性** $P(\Omega) = 1$

4. 重要性质

1. 补事件概率

$$P(A^c) = 1 - P(A)$$

2. 包含关系

若
$$A \subseteq B$$
,则 $P(A) \le P(B)$

- 3. 容斥原理:
 - 两事件

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

○ 三事件

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$