

- Using the methods of Lai and Bhavnani (1975) an analytic estimate of the system modes for a spacecraft consisting of a base-body and four radial (symmetrically deployed) booms.
- McGee, Shankar, and Kemp, "Analysis of Spinning Spacecraft with Wire Booms Part 2: Out of Plane Dynamics and Maneuvers", AIAA 2009

Pure Uncoupled "Crab" Mode

$$\omega_4 = \omega_s \sqrt{\frac{r_o}{L}}$$

r_o is the radius to boom attach point L is the "effective" length of the boom

$$L = \sqrt{\frac{I_{cm} + mr_{cm}^2}{m}} = 42.875 \text{ kg-m}^2$$

equivalent point mass model is used for analytic prediction (not sim)

Spin Plane Motion

Uncoupled "Flex" Mode with Translation

$$\omega_{5,6} \simeq \omega_s \sqrt{\frac{r_o}{L}} \left(1 + \frac{m}{M} \cdot \frac{L + r_o}{r_o} \right)$$

 r_o is the radius to boom attach point L is the "effective" length of the boom m is the mass of the boom M is the mass of the base body ω_s is the spin rate

Spin Plane Motion

Coupled "Twist" Mode

$$\omega_7 = \omega_s \sqrt{\frac{r_o}{L} \cdot \frac{I_s + 4m \left(r_o + L\right)^2}{I_s}}$$

 r_o is the radius to boom attach point L is the "effective" length of the boom l_s is the spin-axis inertia of the base m is the mass of the boom ω_s is the spin rate

Spin Plane Motion

Coupled "Twist" Mode

$$\omega_{11,12} = \omega_s \sqrt{\frac{L + r_o}{L} \cdot \frac{I_t + 2m \left(r_o + L\right)^2}{I_t}}$$

 r_o is the radius to boom attach point L is the "effective" length of the boom l_t is the transverse inertia of the base ω_s is the spin rate

Out-of-Plane Motion

Coupled "Saddle" Mode

$$\omega_{13} = \omega_s \sqrt{\frac{L + r_o}{L}}$$

 r_o is the radius to boom attach point L is the "effective" length of the boom ω_s is the spin rate

Out-of-Plane Motion

Coupled "Jellyfish" Mode

$$\omega_{14} = \omega_s \sqrt{\frac{L + r_o}{L} \frac{M + 4m}{M}}$$

 r_o is the radius to boom attach point L is the "effective" length of the boom m is the mass of the boom M is the mass of the base body ω_s is the spin rate

Out-of-Plane Motion

Frequency Summary for Fully Deployed Configuration

Mode Designations			Predicted*		Simulated *		Error
Name	Spin Plane	ld	Hz	sec	Hz	sec	%
Uncoupled (Crab)	ln	W 4	0.00983	101.73	0.00995	100.50	1.21
Uncoupled + Translation (Flex)	In	ω_5, ω_6	0.00996	100.40	0.01007	99.30	1.09
Coupled (Twist)	In	ω ₇	0.01787	55.96	0.01813	55.16	1.43
Uncoupled (Saddle)	Out	ω_{13}	0.05096	19.62	0.05096	19.62	0.00
Jellyfish	Out	ω_{14}	0.05100	19.61	0.05103	19.60	0.06
Mutual Precession	Shape	-	0.05237	19.09	0.05103	19.60	2.63
Boom Nutation	Shape	-	0.05066	19.74	0.05103	19.60	0.73
Hub Nutation	Shape	-	0.02202	45.41	0.01990	50.25	10.65
* Base-body includes Mag Boom+ADP+Fuel (40% fill) rigid approximation							

April 6, 2009 Agora Dynamics Validation Page

8