

DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

2º Teste de Cálculo A

Duração: 90 min.

_ Nr.: _____ Curso: MIEC Nome: __

Grupo I

(6 valores) Sem indicar os cálculos efectuados, apresente apenas o resultado final.

- 1. Seja $h(x) = \int_{-\infty}^{x^2} \cos(-t^2) dt$. Determine a expressão da função h'(x).
- 2. Escreva o integral (ou a soma de integrais) que permite calcular a área da região sombreada, limitada pelas curvas $y = x^4 - 2x^2$, x = 2 e y = 0).

- 3. Considere o arco da curva de equação $y=e^{x^2}+1$, entre os pontos A=(0,2) e B=(1,e+1). O integral que permite calcular o comprimento deste arco de curva é:
- 4. Considere a região plana A definida pelas condições: $x^2 + y^2 \le 9$, $x \ge 0$. Escreva o integral em coordenadas polares que permite calcular a área da região A.
- 5. Indique e classifique uma equação cartesiana para a curva representada em coordenadas polares por $\rho =$ $4\sin\theta$.
- 6. Escreva a série $\frac{3}{e}+\frac{5}{e^2}+\frac{7}{e^3}+\frac{9}{e^4}+\dots$ utilizando o símbolo de somatório.

$$\bullet \ \operatorname{sen} \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$

•
$$\operatorname{sen} \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

•
$$\sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$
 • $\sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ • $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

Apresente TODOS cálculos efectuados.

1. Calcule o integral definido $\int_1^9 \frac{\sqrt{x}}{\sqrt{x}+1} \ dx$, usando a substituição $x=t^2$.

- 2. Considere a região plana A definida pelas condições: $y+x^2 \leq 4$ e $y \leq x$ e $y \geq 0$.
 - (a) Faça um esboço da região A.

(b)	Indique o integral	(ou a som	a de integrais)	que lh	e permite	calcular	o volume	gerado	pela r	otação	da	região	A
	em torno da recta	u = 0.											

 $3.\,$ Estude a natureza das seguintes séries numéricas e, se possível, calcule a sua soma:

(a)
$$\sum_{n=1}^{+\infty} \frac{6}{3^n}.$$

(b)
$$\sum_{n=1}^{+\infty} \frac{n^n}{n!}.$$

4. Se possível, determine o valor do integral
$$\int_0^{+\infty} \frac{2}{\sqrt[3]{e^x}} dx$$
.