Lecture 39 Singularities, Zeros, Poles and Residues

Dr. Mahesha Narayana

Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Classify singularities of complex valued functions
- Describe the concept of zero and infinity
- Define residue at a singularity of the complex valued function
- Apply Laurent series to find the residue

Topics

- Singularity
- Types of singularities
- Zeros
- Pole
- Residue

Types of Singularities

Suppose that $z = z_0$ is an isolated singularity of f(z) then

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

is the Laurent series of f(z) valid for $r < |z - z_0| < R$. The principal part of is the series

$$\sum_{k=1}^{\infty} \frac{a_{-k}}{\left(z-z_{0}\right)^{k}} = \dots + \frac{a_{-2}}{\left(z-z_{0}\right)^{2}} + \frac{a_{-2}}{\left(z-z_{0}\right)^{2}} + \frac{a_{-1}}{z-z_{0}}.$$

Based on the number of terms in the principle part we classify the singularities into three kinds

Classification

- 1. If the principal part is zero, $z = z_0$ is called a *removable* singularity.
- 2. If the principal part contains a finite number of terms, then $z = z_0$ is called a pole. If the last nonzero coefficient is a_{-n} , $n \ge 1$, then we say it is a pole of order n. A pole of order 1 is commonly called a *simple pole*.
- 3. If the principal part contains infinitely many nonzero terms, $z = z_0$ is called an *essential singularity*.

Example – 1

For the function

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots$$

z = 0 is a removable singularity as the principle part in the Laurent series is absent.

Example – 2

For the function

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \cdots$$

z = 0 is a simple pole as $a_{-1} \neq 0$ and $a_{-2} = a_{-2} = \dots = 0$.

Example – 3

The Laurent series of f(z) = 1/z(z-1) valid for 1 < |z| is

$$f(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots$$

The point $z = 0$ is an isolated singularity of $f(z)$ and the Laurent

The point z = 0 is an isolated singularity of f(z) and the Laurent series contains an infinite number of terms involving negative integer powers of z.

Does it mean that z = 0 is an essential singularity?

The answer is "NO". Since the interested Laurent series is the one with the domain 0 < |z| < 1, for which we get

$$f(z) = -\frac{1}{z} - 1 - z - z^2 - \dots$$

Thus z = 0 is a simple pole for 0 < |z| < 1.

Zeros

We say that z_0 is a zero of f if $f(z_0) = 0$. An analytic function f(z) has a zero of order n at $z = z_0$ if

$$f(z_0) = 0, f'(z_0) = 0, f''(z_0) = 0, \dots, f^{(n-1)}(z_0) = 0, f^{(n)}(z_0) \neq 0.$$

Example

The analytic function $f(z) = z \sin z^2$ has a zero at z = 0,

$$f(z) = z \sin z^2 = z^3 \left[1 - \frac{z^4}{3!} + \frac{z^8}{5!} - + \dots \right]$$

Here, we have f(0) = f'(0) = f''(0) = 0 and $f''(0) \neq 0$.

Hence z = 0 is a zero of order 3.

Relation between Poles and Zeros

If the functions f and g are analytic at $z=z_0$ and f has a zero of order n at $z=z_0$ and $g(z_0)\neq 0$, then the function F(z)=g(z)/f(z) has a pole of order n at $z=z_0$.

Example

Consider the function

$$F(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}.$$

Inspection reveals that the denominator has zeros of order 1 at z = 1 and z = -5, and a zero of order 4 at z = 2. Since the numerator is not zero at these points, F(z) has simple poles at z = 1 and z = -5 and a pole of order 4 at z = 2.

Residues

The coefficient a_{-1} of $1/(z-z_0)$ in the Laurent series is called the residue of the function f(z) at the isolated singularity z_0 .

We use this notation $a_{-1} = \text{Res}(f(z), z_0)$

Example

For the function $f(z) = 1/(z-1)^2(z-3)$ the singularities are z = 1, 3 and z = 1 is a pole of order 2.

The coefficient of 1/(z-1) is $a_{-1} = -\frac{1}{4}$.

Residues at a Simple Pole

If f(z) has a simple pole at $z = z_0$, then

$$\operatorname{Re} s(f(z), z_0) = \lim_{z \to z_0} f(z)$$

Residues at a Pole of Order m

If f(z) has a pole of order m at $z = z_0$, then

$$\operatorname{Re} s(f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \left[\frac{d^{n-1}}{dz^{n-1}} \left\{ (z - z_0)^n f(z) \right\} \right]$$

Given that the function $f(z) = 1/(z-1)^2(z-3)$ has a pole of order 2 at z = 1. Find the residue of f(z) at z = 1.

Solution Res
$$(f(z), 1) = \frac{1}{1!} \lim_{z \to 1} \left[\frac{d}{dz} \{ (z-1)^2 f(z) \} \right]$$
$$= \lim_{z \to 1} \left[\frac{d}{dz} \left\{ \frac{1}{z-3} \right\} \right]$$
$$= \lim_{z \to 1} \left[\frac{-1}{(z-3)^2} \right]$$
$$= -\frac{1}{4}$$

Residue at Simple Pole – Aliter

If f can be written as f(z) = g(z)/h(z) and has a simple pole at z_0 (note that $h(z_0) = 0$ and $g(z_0) \neq 0$), then

$$\operatorname{Re} s(f(z), z_0) = \frac{g(z_0)}{h'(z_0)}$$

This is because

$$\lim_{z \to z_0} \left\{ (z - z_0) \frac{g(z)}{h(z)} \right\} = \frac{\lim_{z \to z_0} g(z)}{\lim_{z \to z_0} \left\{ \frac{h(z) - h(z_0)}{z - z_0} \right\}} = \frac{g(z_0)}{h'(z_0)}$$

Find the residues at each of simple poles of the function $f(z) = 1/(z^4 + 1)$.

Solution The polynomial $z^4 + 1$ can be factored as

$$(z-z_1)(z-z_2)(z-z_3)(z-z_4).$$

We see that $z_1 = e^{\pi i/4}$, $z_2 = e^{3\pi i/4}$, $z_3 = e^{5\pi i/4}$, $z_4 = e^{7\pi i/4}$

are simple poles of f(z)

Res
$$(f(z), z_1) = \frac{1}{4z_1^3} = \frac{1}{4}e^{-3\pi i/4} = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$

Res
$$(f(z), z_2) = \frac{1}{4z_2^3} = \frac{1}{4}e^{-9\pi i/4} = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$

Res
$$(f(z), z_3) = \frac{1}{4z_3^3} = \frac{1}{4}e^{-15\pi i/4} = \frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i$$

Res
$$(f(z), z_4) = \frac{1}{4z_4^3} = \frac{1}{4}e^{-21\pi i/4} = -\frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i$$

Find the order of each pole and residue at it of

$$\frac{(1-2z)}{z(z-1)(z-2)}$$

Solution: The poles of f(z) are given by z=0,1,2

Residue of f(z) at (z=0) =
$$\lim_{z\to 0} (z-0)f(z) = \lim_{z\to 0} \frac{z(1-2z)}{z(z-1)(z-2)} = 1/2$$

Residue of f(z) at (z=1) =
$$\lim_{z\to 0} (z-1)f(z) = \lim_{z\to 1} \frac{(z-1)(1-2z)}{z(z-1)(z-2)} = 1$$

Residue of f(z) at (z=2)=
$$\lim_{z\to 0} (z-2)f(z) = \lim_{z\to 2} \frac{(z-2)(1-2z)}{z(z-1)(z-2)} = -3/2$$

• Determine the residue of $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at its simple poles.

- The poles of f(z) are z=1,1,1,1,1,2,3
- The simple poles of the function are z=2 and z=3

$$R(2) = \lim_{z \to 2} \frac{(z-2)z^3}{(z-1)^4(z-2)(z-3)} = -8$$

$$R(3) = \lim_{z \to 2} \frac{(z-3)z^3}{(z-1)^4(z-2)(z-3)} = 27/16$$

 Determine the poles and residue at each pole of the function f(z)=cotz

Solution:
$$f(z) = \cot z = \cos z$$

The poles of the function f(z) are given by

$$Sinz = 0$$
, $z = n\pi$, where $n = 0, \pm 1, \pm 2, \pm 3...$

Residue of f(z) at
$$z = n\pi$$
 is $= \frac{\cos z}{\frac{d}{dz}(\sin z)} = \frac{\cos z}{\cos z} = 1$

Determine the poles and residue at each pole of the function $f(z) = \frac{z}{\sin z}$

Solution: Poles are determined by putting sinz=0 = $\sin n\pi = 0 \Rightarrow z = n\pi$

Residue
$$=\left(\frac{z}{\cos z}\right)_{z=n\pi} = \frac{n\pi}{\cos n\pi} = \frac{n\pi}{(-1)^n}$$

Session Summary

• If the Laurent series ,

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$
, where $a_n = \frac{1}{2\pi i} \oint_C \frac{f(s)}{(s - z_0)^n} ds$

- 1. contains finitely many terms, say m terms, we say z_0 is a pole of order m (A pole of order one is called as simple pole).
- 2. contains infinitely many terms then is called as an essential singularity
- The coefficient a_{-1} of $1/(z-z_0)$ in the above Laurent series is called the residue of f(z) at z_0 and we write $a_{-1} = \text{Res}(f(z), z_0)$.
- We say that z_0 is a zero of f(z) if $f(z_0) = 0$.
- An analytic function f(z) is said to have a zero of order n at z_0 if $f(z_0) = f'(z_0) = \dots = f^{(n-1)}(z_0) = 0$ and $f^{(n)}(z_0) \neq 0$ in the Taylor series expansion of f(z) about $z = z_0$.

