

TPD4E1U06

ZHCSAT4D - DECEMBER 2012 - REVISED APRIL 2017

TPD4E1U06 四通道、高速 ESD 保护器件

特性

- IEC 61000-4-2 4 级 ESD 保护
 - ±15kV 接触放电
 - ±15kV 气隙放电
- IEC 61000-4-4 瞬态放电 (EFT) 保护
 - 80A (5/50ns)
- IEC 61000-4-5 浪涌保护
 - 3A (8/20µs)
- IO 电容: 0.8pF (典型值)
- 直流击穿电压: 6.5V (最小值)
- 超低泄漏电流: 10nA(最大值)
- 低 ESD 钳位电压
- 工业温度范围: -40°C 至 +125°C
- 小型、易于布线的 DCK 和 DBV 封装

应用

- **USB 2.0**
- 以太网
- 高清多媒体接口 (HDMI) 控制线路
- 移动产业处理器接口 (MIPI) 总线
- 低压差分信令 (LVDS)
- SATA

3 说明

TPD4E1U06 是一款基于四通道单向瞬态电压抑制器 (TVS) 的静电放电 (ESD) 保护二极管,具有超低电 容。该器件的 ESD 冲击消散值高于 IEC 61000-4-2 国 际标准规定的最高水平。其 0.8pF 的线路电容使其广 泛适用于各类 应用的输出电流传感电阻器和运算放大 器而得以实现。典型应用领域包括 HDMI、USB2.0、 MHL 和 DisplayPort。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TPD4E1U06DCK	SC70	2.00mm x 1.25mm
TPD4E1U06DBV	SOT-23	2.90mm x 1.60mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附

LP38690 的

电路原理图

_	\rightarrow
ш	
ш	N

1	特性	7.4 Device Functional Modes9
2	应用 1	8 Application and Implementation 10
3	说明 1	8.1 Application Information 10
4	修订历史记录 2	8.2 Typical Application 10
5	Pin Configuration and Functions	9 Power Supply Recommendations 12
6	Specifications4	10 Layout 12
	6.1 Absolute Maximum Ratings 4	10.1 Layout Guidelines 12
	6.2 ESD Ratings	10.2 Layout Example 12
	6.3 ESD Ratings—IEC Specification	11 器件和文档支持 13
	6.4 Recommended Operating Conditions 4	11.1 文档支持13
	6.5 Thermal Information	11.2 接收文档更新通知13
	6.6 Electrical Characteristics	11.3 社区资源 13
	6.7 Typical Characteristics	11.4 商标 13
7	Detailed Description 8	11.5 静电放电警告13
-	7.1 Overview	11.6 Glossary
	7.2 Functional Block Diagram 8	12 机械、封装和可订购信息13
	7.3 Feature Description 8	

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision C (October 2014) to Revision D	Page
Updated DCK and DBV Pinout image	3
Added 61000-4-5 spec to Absolute Maximum Ratings table	4
Added IEC 61000-4-5 Surge Protection section	
Added IEC 61000-4-4 EFT Protection section	8
Changes from Revision B (February 2013) to Revision C - 已添加 引脚配置和功能部分,处理额定值表,特性 说明 部分,器件功能模式,应用和实施部分,电源相关建议部分,布局部分,器件和文档支持部分以及机械、封装和可订购信息部分	Page
Changes from Revision A (December 2012) to Revision B	Page
Added C _{CROSS} data for DBV package	5

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	NO.	l/O	DESCRIPTION		
D1+	1	I/O			
D1-	6	I/O	ESD protected channel. Connect to data line as close		
D2-	4	I/O	to the connector as possible		
D2+	3	I/O			
GND	2	GND	Ground. Connect to ground		
NC	5	I/O	No connect. Can be left floating, grounded, or connected to VCC		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
	IEC 61000-4-4 EFT protection (5/50 ns)		80	Α
I _{PP}	IEC 61000-4-5 surge protection (8/20 μs) peak pulse current		3	Α
P _{PP}	IEC 61000-4-5 surge protection (8/20 μs) peak pulse power		45	W
	Operating temperature	-40	125	°C
T _{stg}	Storage temperature	-65	115	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Clastrostatia diaaharaa	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±4000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings—IEC Specification

			VALUE	UNIT
V	Electrostatic discharge	IEC 61000-4-2 contact ESD	±15000	V
V _(ESD)	Electrostatic discharge	IEC 61000-4-2 air-gap ESD	±15000	V

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{IO}	Input pin voltage	0	5.5	V
T _A	Operating free-air temperature	-40	125	°C

6.5 Thermal Information

		TPD4E1U06		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC-70)	UNIT
		6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	224.3	274.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	166.1	113.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	68.4	76.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	57.3	3.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.9	75.9	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.6 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{RWM}	Reverse stand-off voltage	I _{IO} = 10 μA				5.5	V
	Clamp voltage with ESD	$I_{PP} = 1 \text{ A, tp} = 8/20 \ \mu\text{s, from I/O to GND}^{(1)}$			11		V
V_{CLAMP}	strike	$I_{PP} = 3 \text{ A, tp} = 8/20 \ \mu\text{s, from I/O to GND}^{(1)}$			15		V
<u> </u>	5	Pin x to GND pin ⁽²⁾			1.0		_
R_{DYN}	Dynamic resistance	GND to pin x			0.6		Ω
C _L	Line capacitance	f = 1 MHz, V _{BIAS} = 2.5 V, 25°C			0.8	1	pF
0	Channel to channel input capacitance	Pin 2 = 0 V, f = 1 MHz, V _{BIAS} = 2.5 V, between channel pins	DCK package		0.006	0.015	
C _{CROSS}			DBV package		0.01	0.025	pF
$\Delta C_{\text{IO-TO-GND}}$	Variation of channel input capacitance	Pin 2 = 0 V , f = 1 MHz, V _{BIAS} = 2.5 V, channel_x pin to ground – channel_y pin to ground			0.025	0.07	pF
V_{BR}	Break-down voltage, IO to GND	I _{IO} = 1 mA		6.5		8.5	V
I _{LEAK}	Leakage current	V _{IO} = 2.5 V			1	10	nA

⁽¹⁾ Non-repetitive current pulse $8/20~\mu s$ exponentially decaying waveform according to IEC61000-4-5.

⁽²⁾ Extraction of R_{DYN} using least squares fit of TLP characteristics between I = 10 A and I = 20 A.

TEXAS INSTRUMENTS

6.7 Typical Characteristics

50

45

40

35

30 (M) 25 Jawod 20 d

15

10

5

0

Current

Power

20 25

Time (µs)

30 35 40 45 50

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The TPD4E1U06 is a quad channel unidirectional TVS ESD protection diode with ultra low capacitance. This device can dissipate ESD strikes above the maximum level specified by the IEC 61000-4-2 international standard. Typical application areas include HDMI, USB2.0, MHL, and DisplayPort. Its 0.8-pF line capacitance makes it suitable for a wide range of applications.

7.2 Functional Block Diagram

Figure 9. Circuit Schematic Diagram

7.3 Feature Description

7.3.1 IEC 61000-4-2 Level 4 ESD Protection

The I/O pins can withstand ESD events up to ±15-kV contact and air. An ESD/surge clamp diverts the current to ground.

7.3.2 IEC 61000-4-5 Surge Protection

The IO pins can withstand surge events up to 3 A and 45 W (8/20- μ s waveform). An ESD-surge clamp diverts this current to ground.

7.3.3 IEC 61000-4-4 EFT Protection

The IO pins can withstand an electrical fast transient burst of up to 80 A (5/50-ns waveform, 4 kV with $50-\Omega$ impedance). An ESD-surge clamp diverts the current to ground.

7.3.4 IO Capacitance

The capacitance between each I/O pin to ground is 0.8 pF.

7.3.5 DC Breakdown Voltage

The DC breakdown voltage of each I/O pin is a minimum of 6.5 V. This ensures that sensitive equipment is protected from surges above the reverse standoff voltage of 5.5 V.

7.3.6 Ultra Low Leakage Current

The I/O pins feature an ultra-low leakage current of 10 nA (Maximum) with a bias of 2.5 V.

7.3.7 Low ESD Clamping Voltage

The I/O pins feature an ESD clamp that is capable of clamping the voltage to 11 V (IPP = 1 A).

7.3.8 Industrial Temperature Range

This device features an industrial operating range of -40°C to +125°C.

Feature Description (continued)

7.3.9 Small, Easy-to-Route Packages

The layout of this device makes it simple to add protection to the design. Industry standard packages allow for easy additions to the board and easy layout.

7.4 Device Functional Modes

The TPD4E1U06 is a passive integrated circuit that triggers when voltages are above V_{BR} or below the forward diode drop. During ESD events, voltages as high as ± 15 kV can be directed to ground via the internal diode network. Once the voltages on the protected line fall below the trigger levels of TPD4E1U06 (usually within 10s of nano-seconds) the device reverts to passive.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPD4E1U06 is a TVS diode array which is typically used to provide a path to ground for dissipating ESD events on hi-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. The low R_{DYN} of the triggered TVS holds this voltage, V_{CLAMP} , to a safe level for the protected IC.

8.2 Typical Application

For this design example, one TPD4E1U06 device is being used in a dual USB 2.0 application. This provides a complete port protection scheme.

Figure 10. Dual USB 2.0 Application

Typical Application (continued)

8.2.1 Design Requirements

Given the USB 2.0 application, the parameters in Table 1 are known.

Table 1. Design Parameters

DESIGN PARAMETER	VALUE
Signal range on pins 1, 3, 4, or 6	0 V to 5 V
Operating frequency	240 MHz

8.2.2 Detailed Design Procedure

8.2.2.1 Signal Range on Pins 1, 3, 4, or 6

The TPD4E1U06 has 4 identical protection channels for signal lines. The symmetry of the device provides flexibility when selecting which of the 4 I/O channels protect which signal lines. Any I/O supports a signal range of 0 to 5.5 V.

8.2.2.2 Operating Frequency

The TPD4E1U06 has a capacitance of 0.8 pF (typical), supporting USB 2.0 data rates.

8.2.3 Application Curve

Figure 11. Insertion Loss Graph

9 Power Supply Recommendations

This device is a passive ESD device so there is no need to power it. Take care not to violate the recommended I/O specification (0 V to 5.5 V) to ensure the device functions properly.

10 Layout

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

10.2 Layout Example

Figure 12. PCB Layout Recommendation

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

请参阅如下相关文档:

- 阅读和理解 ESD 保护数据表
- 《ESD 布局指南》
- TTPD4E1U06DCK EVM 用户指南
- TPD4E1U06DBV EVM 用户指南

11.2 接收文档更新通知

要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹。单击右上角的"提醒我" (Alert me) 按钮。点击后,您将每周定期收到已更改的产品信息(如果有的话)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。

11.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 71 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPD4E1U06DBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	(NG4, NG4P)	Samples
TPD4E1U06DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(BP6, BP8, BPI) (BPP, BPP, BPS)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Apr-2020

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficults are normal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD4E1U06DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPD4E1U06DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
TPD4E1U06DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

www.ti.com 24-Apr-2020

*All dimensions are nominal

7 till difficienciale di c momina								
Device	Device Package Type		Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TPD4E1U06DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0	
TPD4E1U06DCKR	SC70	DCK	6	3000	180.0	180.0	18.0	
TPD4E1U06DCKR	SC70	DCK	6	3000	180.0	180.0	18.0	

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司