Mathematical logic Lecher 6 13.11 2023 Theorem 2. Let p be a egairlacockon

on the ett A. The pray xy EA, the following

statements or equivalent: (i) 28 y (ii) 7 ∈ 8 < n > = { n' e 4 | 282' } (iii) 9< m7 = 9< y7 (iv) g (x7 n g (3) ≠ \$ the on ditions (il - (N) say that Remorks. 1). the set { S(x) | x e A } is a pertidon of A because if (1) $\bigcup g(x) = A$, because g(x) by reflexing g(x) if $g(x) + g(y) = g(x) \cap g(y) = g(x)$ Def me denti A/g = { g(x) | x ∈ A} This pard him is called the suchest (factor) set of A w.r.t g. (modulo g/ XII S(x) = 1 [2] & clan of & modelo S. Ruch 21 Consider the relation & of Lecture 5. 9 (1) = [1, 2] = 9 (2). 9- (3) = [3,4,5] = 9- (4) = 9- (5) 9- (6) = [0] . We get A/g = [1,1] (54,7), (6) = 7-

3) One colleton 5= (A, A12), we way always con sider the set of se drow ? g(x) 1 x & A? Their gis an egriveline e, this set is a partition Prof of the 2 (i) (ii) by the dy of g(x). (i) = 1 (iii) Assume Mt 19 y. Because of symmetry of a example to pour that g(x) = g(z). let 2 e S(x). Then we have 292. From xgy, ne get ggx (59 (57) no for 2 to for , y g ≥ , hence . z ∈ g < y 7. (ili) = 1(i/ A some Mt g(x) = g(z). By (R) we kne y & S(J7, here y & S(x) hue x g y. (i) = r (iv) A source that x g), so g e g (x7. g = g < 70 g () 7 + Ø Buf yegg). Hen (ir) = 1 (i) A sum the 7 2 = g(x) () (g) So x 9 2 and y 9 2. By (5), we have 2 5 y. By (T) it pllow that 2 Sy. Remote Then has theorem say but the concept of equilibrelation and partition are esseably the same. Horeover: of The particle, the St. Daneguiverel, and when Afr = 17 http://fortst.nes an eswiv.rel., the Ap is a pertine, and we have Sale = 8

Functions and equivalence relations
Def 1. Let J: A - 3 B m < Function. The kernel of f (dented kerf) is the relation on A defined applians; relation on A defined applians;
They. 1. Let f: A - 3 h h = febr. The
i). Reef 13 (1 eswelle relation on A 2). A/kerf = f f b) be Im f }. Part i). (R). × kerf × (=, f(x)=f(x)) the +x=A
(T): Am × kufy and y kuf 2. Then: f(x) = fo1 and for 1= fo1 = fo1 = fo1
= ? x kerf 2 (S). Arm x kerf \(\) = ? \(\)
2) 18 del / / lear f = { (kurf) (x) 2 e A }. Let 2 e A . Let 5:= far e Im f We orly and to prove At (kurf) (x7 = f ⁻¹ (6)
(led let g e A. helm y c (lerf) (x) = 7 x leafy (=, far = f(x k=, fr) = f(x))

Def 2 let g be an egenden relation on A. The counted projection amocieted to g 1) the fucks of P : A - A/g Proporting properties:

Allowing properties:

1). P is surjective. (ie. Imp = A/g) 2). ker p = 9 9nof D. we har A/g = { g(x) | x & A } for of gent ca/g who xeA, we have PAI=g(x), here pg 15 strjæetra. 2). Let a, g e A. We have: x lear p y = s p(a) = p(y) = s(x) = s(y) = 2py the king = 9. 2 inta.

Theorem (he 1st factority how theorem) Let f: A - Dhe specher. Perf Jung Canonical inclusion

Perf Jung Imf Then I! bijente freh f: Alery - h f s. K. the diagn 13 commutate, i.e. (this is the canonial decorps show 11) Proof (!) (unique nem of J) We comme that Jexist and we prove that it is unisue. We hope treeA : f & 1= (20 To Part) (21) = 2(T(Part a1)) = = \(\big(\left(\text{ker } \frac{1}{2} \left(\text{x} \gamma \gamma) \right) Here I ((kerf 1 (=>) (is only defiel of xet (3). Let $\{f: A/kerf \longrightarrow Im f\}$ $\{f: (kerf)(x)\} = f(x) \in lmf$ · the def of \$ is given by asy the reprentatue x e (keof) (~7. We han ho son Pet the def of & does not defend on the choice http://papefkit.net repre sext = Lius.

Indied, let y ∈ (kerf) (x), i.e. x kerf y here (kerf) (x) = (kerf) (x)?. The \$\frac{7}{4}(\frac{1}{2} + \frac{1}{2}) = f(3) = f(x) « we shar tit J 1s rjecture. Let rig & A s. L. $\overline{f}((k_r f)(x_7)) = \overline{f}((k_r f)(g_7))$ $= f(x) = f(y) = x \ker f y = x$ 7m2, (kerf) (x7 = (kerf) (5). e we don that J 13 angeste. Let be luf. The I read s.t. f(x)=h Then f(ker f)(xy) = k. flera J is swjective. a we how that the diagram is commute live: let ne A. Wehane; (20 Folkers) (21) = 2 (f (Plang (21)) = $= \int \left(\frac{|x|}{|x|} \right) \langle x \rangle = \int \frac{|x|}{|x|} \int \frac{|x|}{|x|} |x|$ Mu 20 J. Phy = J. 51,52 Henework

