differentiating component by component
differentiating component by component
$L'(0)$; = d ($\sum_{k=1}^{n} \chi_{ki}$ ln θ_{1}^{n} + ($n-\sum_{k=1}^{n} \chi_{ki}$) ln($1-\theta_{1}^{n}$) = $\sum_{k=1}^{n} \chi_{ki}$ 1 +(-1) $n-\sum_{k=1}^{n} \chi_{ki}$ (1- θ_{1}^{n})
$L^{\dagger}(\Theta)_{i}=0$
7
$= \sum_{k=1}^{n} \sum_{k=1}^{n} x_{ki}$ $= \sum_{k=1}^{n} x_{ki}$ $= \sum_{k=1}^{n} x_{ki}$ $= \sum_{k=1}^{n} x_{ki}$
-0i
$=) (1-0i) \sum_{k=1}^{n} x_{ki} = (n-\sum_{k=1}^{n} x_{ki}) 0i$
$= \frac{1}{2} \frac{2\pi i}{k_{21}} \left(\frac{1}{k_{21}} - \frac{1}{k_{21}} \frac{2\pi i}{k_{21}} \right) = \frac{1}{2} \frac{2\pi i}{k_{21}}$
Di; MLE of Di
bince the result will be the same for iz1 to d, we can write the equation in vector from
$\frac{\partial z}{\partial z} = \frac{1}{n} \frac{\sum_{k \neq l} x_k}{\sum_{k \neq l} x_{k}}.$
Natural 1

DATE

(16) very is the method undesirable? even though the method is the variance will be dange for langer values of n and that is not decirable. as $6^2 = E[(24-4)^2]$: variance. and the 200t mean squared larors 6 which is independent of on this method. There is no gu that this ceror will approach o at all even if n is increased whereases, the conventional method gives reducing the RMS even us $= \frac{1}{n^2} \left[\left[\left[\left(x_i - u \right)^2 \right] \right]$ we can we that, as n -> 00 RMS evar -> 0