Методы оптимизации Лекция 2: Выпуклые множества и их свойства

Александр Катруца

Московский физико-технический институт

10 февраля 2021 г.

На прошлой лекции

План на семестр

На прошлой лекции

- План на семестр
- Формулировки задачи оптимизации

Определение

Множество $\mathcal{X}\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{X}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Определение

Множество $\mathcal{X}\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{X}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Примеры

Многоугольники

Определение

Множество $\mathcal{X}\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{X}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Примеры

- Многоугольники
- Гиперплоскости

Определение

Множество $\mathcal{X}\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{X}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Примеры

- Многоугольники
- Гиперплоскости
- ▶ Шары в любой норме и эллипсоиды

Определение

Множество $\mathcal{X}\subseteq\mathbb{R}^n$ называется выпуклым, если для всех $\alpha\in[0,1]$ и любых $\mathbf{x},\mathbf{y}\in\mathcal{X}$ выполнено

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}.$$

Примеры

- Многоугольники
- Гиперплоскости
- ▶ Шары в любой норме и эллипсоиды
- ▶ Симметричные положительно определённые матрицы

Утверждение

Если множество $\mathcal X$ выпукло, то все точки вида $\sum_{i=1}^k \alpha_i \mathbf x_i$, где $\mathbf x_i \in \mathcal X$ и $\alpha \in \Delta_k = \{\alpha \mid \alpha_i \geq 0, \; \sum_{i=1}^k \alpha_i = 1\}$, также лежат в этом множестве. Точки такого вида называются выпуклыми комбинациями точек $\mathbf x_1, \dots, \mathbf x_k$.

Доказательство по индукции

lacktriangle База индукции: при k=1 получаем сами точки множества.

Утверждение

Если множество $\mathcal X$ выпукло, то все точки вида $\sum_{i=1}^k \alpha_i \mathbf x_i$, где $\mathbf x_i \in \mathcal X$ и $\alpha \in \Delta_k = \{\alpha \mid \alpha_i \geq 0, \; \sum_{i=1}^k \alpha_i = 1\}$, также лежат в этом множестве. Точки такого вида называются выпуклыми комбинациями точек $\mathbf x_1, \dots, \mathbf x_k$.

- lacktriangle База индукции: при k=1 получаем сами точки множества.
- ▶ Предположение: пусть выполнено $\sum_{i=1}^{m-1} \alpha_i \mathbf{x}_i \in \mathcal{X}$, где $\alpha \in \Delta_{m-1}$

Утверждение

Если множество $\mathcal X$ выпукло, то все точки вида $\sum_{i=1}^k \alpha_i \mathbf x_i$, где $\mathbf x_i \in \mathcal X$ и $\alpha \in \Delta_k = \{\alpha \mid \alpha_i \geq 0, \; \sum_{i=1}^k \alpha_i = 1\}$, также лежат в этом множестве. Точки такого вида называются выпуклыми комбинациями точек $\mathbf x_1, \dots, \mathbf x_k$.

- lacktriangle База индукции: при k=1 получаем сами точки множества.
- ▶ Предположение: пусть выполнено $\sum_{i=1}^{m-1} \alpha_i \mathbf{x}_i \in \mathcal{X}$, где $lpha \in \Delta_{m-1}$
- lacktriangle Рассмотрим точку вида $\sum_{i=1}^m \hat{lpha}_i \mathbf{x}_i$, где $\hat{lpha} \in \Delta_m$

Утверждение

Если множество $\mathcal X$ выпукло, то все точки вида $\sum_{i=1}^k \alpha_i \mathbf x_i$, где $\mathbf x_i \in \mathcal X$ и $\alpha \in \Delta_k = \{\alpha \mid \alpha_i \geq 0, \; \sum_{i=1}^k \alpha_i = 1\}$, также лежат в этом множестве. Точки такого вида называются выпуклыми комбинациями точек $\mathbf x_1, \dots, \mathbf x_k$.

- lacktriangle База индукции: при k=1 получаем сами точки множества.
- ▶ Предположение: пусть выполнено $\sum_{i=1}^{m-1} \alpha_i \mathbf{x}_i \in \mathcal{X}$, где $\alpha \in \Delta_{m-1}$
- lacktriangle Рассмотрим точку вида $\sum_{i=1}^m \hat{lpha}_i \mathbf{x}_i$, где $\hat{lpha} \in \Delta_m$
- ▶ Тогда найдётся $\hat{\alpha}_k < 1$ и $1 \hat{\alpha}_k = \sum_{i \neq k} \hat{\alpha}_i$

Утверждение

Если множество $\mathcal X$ выпукло, то все точки вида $\sum_{i=1}^k \alpha_i \mathbf x_i$, где $\mathbf x_i \in \mathcal X$ и $\alpha \in \Delta_k = \{\alpha \mid \alpha_i \geq 0, \; \sum_{i=1}^k \alpha_i = 1\}$, также лежат в этом множестве. Точки такого вида называются выпуклыми комбинациями точек $\mathbf x_1, \dots, \mathbf x_k$.

- lacktriangle База индукции: при k=1 получаем сами точки множества.
- ▶ Предположение: пусть выполнено $\sum_{i=1}^{m-1} \alpha_i \mathbf{x}_i \in \mathcal{X}$, где $\alpha \in \Delta_{m-1}$
- lacktriangle Рассмотрим точку вида $\sum_{i=1}^m \hat{lpha}_i \mathbf{x}_i$, где $\hat{lpha} \in \Delta_m$
- ▶ Тогда найдётся $\hat{\alpha}_k < 1$ и $1 \hat{\alpha}_k = \sum_{i \neq k} \hat{\alpha}_i$
- $igspace \sum_{i=1}^m \hat{lpha}_i \mathbf{x}_i = \sum_{i
 eq k} \hat{lpha}_i \mathbf{x}_i + \hat{lpha}_k \mathbf{x}_k = (1 \hat{lpha}_k) \sum_{i
 eq k} rac{\hat{lpha}_i}{1 \hat{lpha}_k} \mathbf{x}_i + \hat{lpha}_k \mathbf{x}_k = (1 \hat{lpha}_k) \mathbf{y} + \hat{lpha}_k \mathbf{x}_k \in \mathcal{X}$ так как множество выпукло

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств \mathcal{X}_i является выпуклым множеством:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств \mathcal{X}_i является выпуклым множеством:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

Доказательство

▶ Рассмотрим $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств \mathcal{X}_i является выпуклым множеством:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Рассмотрим $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств \mathcal{X}_i является выпуклым множеством:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Рассмотрим $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- ▶ Так как все \mathcal{X}_i выпуклы, то $\mathbf{z} \in \mathcal{X}_i, \ \forall i \in \mathcal{I}$

Теорема

Пересечение конечного или бесконечного числа выпуклых множеств \mathcal{X}_i является выпуклым множеством:

$$\mathcal{X} = \bigcap_{i \in \mathcal{I}} \mathcal{X}_i.$$

- ▶ Рассмотрим $\mathbf{x}, \mathbf{y} \in \mathcal{X} \to \mathbf{x}, \mathbf{y} \in \mathcal{X}_i, \forall i \in \mathcal{I}$
- ▶ Построим точку $\mathbf{z} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$, $\alpha \in [0, 1]$
- lacktriangle Так как все \mathcal{X}_i выпуклы, то $\mathbf{z} \in \mathcal{X}_i, \ orall i \in \mathcal{I}$
- lacktriangle Следовательно, $\mathbf{z} \in \mathcal{X}$ и \mathcal{X} выпукло

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

Доказательство

lacktriangle Пусть \mathcal{X} — выпуклое множество и $\mathbf{x},\mathbf{y}\in\mathcal{X}$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть \mathcal{X} выпуклое множество и $\mathbf{x},\mathbf{y}\in\mathcal{X}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть \mathcal{X} выпуклое множество и $\mathbf{x},\mathbf{y}\in\mathcal{X}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Покажем, что $lpha f(\mathbf{x}) + (1-lpha) f(\mathbf{y}) \in f(\mathcal{X})$, где $lpha \in [0,1]$

Теорема

Образ выпуклого множества при линейном отображении является выпуклым множеством.

- lacktriangle Пусть \mathcal{X} выпуклое множество и $\mathbf{x},\mathbf{y}\in\mathcal{X}$
- lacktriangle Пусть f линейное отображение вида $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$
- ▶ Покажем, что $lpha f(\mathbf{x}) + (1-lpha) f(\mathbf{y}) \in f(\mathcal{X})$, где $lpha \in [0,1]$
- Действительно,

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) = \alpha(\mathbf{A}\mathbf{x} + \mathbf{b}) + (1 - \alpha)(\mathbf{A}\mathbf{y} + \mathbf{b}) = \mathbf{A}(\alpha\mathbf{x} + (1 - \alpha)\mathbf{y}) + \mathbf{b} = \mathbf{A}\mathbf{z} + \mathbf{b} = f(\mathbf{z}),$$

где
$$\mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in \mathcal{X}$$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

▶ Пусть $\mathcal{X}_1, \mathcal{X}_2$ — выпуклые множества. Рассмотрим $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть $\mathcal{X}_1, \mathcal{X}_2$ выпуклые множества. Рассмотрим $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- ▶ Пусть $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ и $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ лежат в \mathcal{X} . Покажем, что в \mathcal{X} лежит точка $\alpha\hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}}$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

- ▶ Пусть $\mathcal{X}_1, \mathcal{X}_2$ выпуклые множества. Рассмотрим $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- ▶ Пусть $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ и $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ лежат в \mathcal{X} . Покажем, что в \mathcal{X} лежит точка $\alpha\hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}}$
- $m{
 u}$ Действительно, $lpha \hat{f x} + (1-lpha) \hat{f x} = [lpha \hat{f x}_1 + (1-lpha) \hat{f x}_1] + [lpha \hat{f x}_2 + (1-lpha) \hat{f x}_2] = {f y}_1 + {f y}_2,$ где ${f y}_1 \in \mathcal{X}_1$ и ${f y}_2 \in \mathcal{X}_2$ в силу выпуклости множеств $\mathcal{X}_1, \mathcal{X}_2.$

Теорема

Сумма Минковского выпуклых множеств является выпуклым множеством.

Доказательство

- ▶ Пусть $\mathcal{X}_1, \mathcal{X}_2$ выпуклые множества. Рассмотрим $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \{\mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in \mathcal{X}_1, \ \mathbf{x}_2 \in \mathcal{X}_2\}$
- ▶ Пусть $\hat{\mathbf{x}} = \hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2$ и $\tilde{\mathbf{x}} = \tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2$ лежат в \mathcal{X} . Покажем, что в \mathcal{X} лежит точка $\alpha\hat{\mathbf{x}} + (1-\alpha)\tilde{\mathbf{x}}$
- ▶ Действительно, $\alpha \hat{\mathbf{x}} + (1 \alpha) \tilde{\mathbf{x}} = [\alpha \hat{\mathbf{x}}_1 + (1 \alpha) \tilde{\mathbf{x}}_1] + [\alpha \hat{\mathbf{x}}_2 + (1 \alpha) \tilde{\mathbf{x}}_2] = \mathbf{y}_1 + \mathbf{y}_2,$ где $\mathbf{y}_1 \in \mathcal{X}_1$ и $\mathbf{y}_2 \in \mathcal{X}_2$ в силу выпуклости множеств $\mathcal{X}_1, \mathcal{X}_2$.

Следствие

Линейная комбинация выпуклых множеств — выпуклое множество

Выпуклая оболочка (convex hull)

Определение

Выпуклой оболочкой множества $\mathcal G$ называется следующее множество

$$\operatorname{conv}(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in \mathcal{G}, \sum_{i=1}^{k} \theta_{i} = 1, \theta_{i} \geq 0 \right\}$$

Альтернативные интерпретации

Эквивалентные формулировки

Выпуклая оболочка множества \mathcal{G} — это

- 1) минимальное по включению выпуклое множество, содержащее \mathcal{G} , то есть если \mathcal{X} выпуклое множество и $\mathcal{G}\subseteq\mathcal{X}$, то $\mathrm{conv}\,(\mathcal{G})\subseteq\mathcal{X}$
- 2) пересечение всех выпуклых множеств, содержащих ${\mathcal G}$

- $ightharpoonup \operatorname{conv}(\mathcal{G})$ выпуклое множество (проверьте по определению!)
- $ightharpoonup \mathcal{G} \subseteq \operatorname{conv}(\mathcal{G})$
- lacktriangleright $\mathcal X$ содержит все выпуклые комбинации своих точек
- ightharpoonup Если $\mathcal{G}\subseteq\mathcal{X}$, то \mathcal{X} содержит все выпуклые комбинации точек из \mathcal{G}
- ▶ А значит $\operatorname{conv}(\mathcal{G}) \subseteq \mathcal{X}$

▶ При постановке задачи допустимое множество получилось невыпуклым

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой
- Решить задачу на этом множестве

- ▶ При постановке задачи допустимое множество получилось невыпуклым
- ▶ Можно заменить само множество его выпуклой оболочкой
- ▶ Решить задачу на этом множестве
- Восстановить некоторым образом приближённое решение из исходной области

Конусы (cones)

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Конусы (cones)

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

Конусы (cones)

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

▶ Неотрицательный октант $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} o \mathsf{LP}$

Конусы (cones)

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \ \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

- ▶ Неотрицательный октант $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} \to \mathsf{LP}$
- ▶ Конус второго порядка $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \leq t\} \to \mathsf{SOCP}$

Конусы (cones)

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x \in \mathcal K$ и произвольного числа $\theta \geq 0$ выполнено $\theta \mathbf x \in \mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

- ▶ Неотрицательный октант $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \ i=1,\ldots,n\} \to \mathsf{LP}$
- ▶ Конус второго порядка $\{(\mathbf{x},t) \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\|_2 \leq t\} o \mathsf{SOCP}$
- lacktriangle Конус симметричных положительно полуопределённых матриц $\mathbf{S}^n_+ o \mathsf{SDP}$

Коническая оболочка (conic hull)

Определение

Конической оболочкой множества $\mathcal G$ называется множество точек вида $\sum_{i=1}^k \theta_i \mathbf x_i$, где $\mathbf x_i \in \mathcal G$ и $\theta_i \geq 0$ и обозначается $\mathrm{cone}\,(\mathcal G)$.

Теорема

Выпуклый конус содержит все конические оболочки своих элементов

Теорема

Коническая оболочка множества \mathcal{G} — это минимальный выпуклый конус, который содержит \mathcal{G} , то есть если \mathcal{K} выпуклый конус и $\mathcal{G}\subseteq\mathcal{K}$, то $\mathrm{cone}\,(\mathcal{G})\subseteq\mathcal{K}$.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

Доказательство

ightharpoonup Пусть ${\cal A}$ подпространство

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть $\mathcal A$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1 \in \mathcal A$, $\mathbf x_2 \in \mathcal A$ и $\theta \in \mathbb R$ точка $\theta \mathbf x_1 + (1-\theta) \mathbf x_2 \in \mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число
 - $lack \mathsf{P}$ Пусть $\mathbf{x}_1,\mathbf{x}_2\in\mathcal{A}$, тогда $rac{1}{2}(\mathbf{x}_1+\mathbf{x}_2)=rac{1}{2}\mathbf{x}_1+\left(1-rac{1}{2}
 ight)\mathbf{x}_2=\mathbf{y}\in\mathcal{A}$

Определение

Множество $\mathcal A$ называется аффинным, если для любых $\mathbf x_1\in\mathcal A$, $\mathbf x_2\in\mathcal A$ и $\theta\in\mathbb R$ точка $\theta\mathbf x_1+(1-\theta)\mathbf x_2\in\mathcal A$.

Аффинное множество и подпространство

Подпространство в \mathbb{R}^n — это аффинное множество, содержащее 0.

- ightharpoonup Пусть ${\cal A}$ подпространство
 - $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A} \to \mathbf{z}_1 = \theta \mathbf{x}_1 \in \mathcal{A}, \ \mathbf{z}_2 = (1 \theta) \mathbf{x}_2 \in \mathcal{A}$
 - $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 = \mathbf{z}_1 + \mathbf{z}_2 \in \mathcal{A}$
- ▶ Пусть \mathcal{A} аффинное множество и $0 \in \mathcal{A}$.
 - ▶ Пусть $\mathbf{x} \in \mathcal{A}$ и $\theta \in \mathbb{R}$, тогда $\theta \mathbf{x} = (1 \theta)0 + \theta \mathbf{x} \in \mathcal{A}$ замкнутость для умножения на число
 - ightharpoonup Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, тогда $rac{1}{2}(\mathbf{x}_1+\mathbf{x}_2) = rac{1}{2}\mathbf{x}_1 + \left(1-rac{1}{2}
 ight)\mathbf{x}_2 = \mathbf{y} \in \mathcal{A}$
 - ▶ $\mathbf{z} = \mathbf{x}_1 + \mathbf{x}_2 = 2\mathbf{y} \in \mathcal{A}$ замкнутость относительно сложения элементов

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

Доказательство

▶ Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- ▶ Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- ▶ Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ▶ В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq \mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- lack Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ightharpoonup В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq\mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$
- lacktriangle Аналогично показывается, что $\mathcal{L}_1 \subseteq \mathcal{L}_2 o \mathcal{L}_1 = \mathcal{L}_2$

Определение

Аффинное множество \mathcal{A}_1 параллельно аффинному множеству \mathcal{A}_2 если $\mathcal{A}_1=\mathcal{A}_2+\mathbf{a}$ для некоторого \mathbf{a}

Утверждение

Любое аффинное множество ${\mathcal A}$ параллельно единственному подпространству

- lack Пусть $\mathcal{A} \parallel \mathcal{L}_1$ и $\mathcal{A} \parallel \mathcal{L}_2$. Значит $\mathcal{L}_1 \parallel \mathcal{L}_2$ и $\mathcal{L}_2 = \mathcal{L}_1 + \mathbf{a}$
- $0 \in \mathcal{L}_2 \to -\mathbf{a} \in \mathcal{L}_1 \to \mathbf{a} \in \mathcal{L}_1$
- ightharpoonup В силу замкнутости подмножества относительно сложения $\mathcal{L}_1\supseteq\mathcal{L}_1+\mathbf{a}=\mathcal{L}_2$
- lacktriangle Аналогично показывается, что $\mathcal{L}_1 \subseteq \mathcal{L}_2 o \mathcal{L}_1 = \mathcal{L}_2$
- Рассмотрим некоторый вектор $\mathbf{y} \in \mathcal{A}$ и множество $\mathcal{A} \mathbf{y} = \mathcal{A} + (-\mathbf{y})$, которое является аффинным и содержит 0, следовательно, подпространство

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

Доказательство

▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - lack Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = heta \mathbf{x}_1 + (1- heta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффинню

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - lacktriangle Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = heta \mathbf{x}_1 + (1- heta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = \theta \mathbf{Ax}_1 + (1 \theta) \mathbf{Ax}_2 = \theta \mathbf{b} + (1 \theta) \mathbf{b} = \mathbf{b}$, а значит \mathcal{A} аффинню
- lacktriangle Рассмотрим произвольное аффинное множество ${\cal A}$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^\perp и его базис $\mathbf{a}_1, \dots, \mathbf{a}_m$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- ▶ Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - ▶ Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = heta \mathbf{Ax}_1 + (1- heta)\mathbf{Ax}_2 = heta \mathbf{b} + (1- heta)\mathbf{b} = \mathbf{b}$, а значит $\mathcal A$ аффиннно
- Рассмотрим произвольное аффинное множество А
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^{\perp} и его базис $\mathbf{a}_1, \dots, \mathbf{a}_m$
 - $\mathcal{L} = (\mathcal{L}^{\perp})^{\perp} = \{ \mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = 0, \ i = 1, \dots, m \} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = 0 \}$

Формулировка

Множество аффинно iff оно представимо в виде $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ для некоторой матрицы $\mathbf{A} \in \mathbb{R}^{m \times n}, m < n$ и вектора \mathbf{b} .

- Рассмотрим $\mathcal{A} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$ и покажем, что оно аффинно по определению
 - lack Пусть $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{A}$, рассмотрим $\mathbf{z} = heta \mathbf{x}_1 + (1- heta) \mathbf{x}_2$
 - $ightharpoonup \mathbf{Az} = \theta \mathbf{Ax}_1 + (1 \theta) \mathbf{Ax}_2 = \theta \mathbf{b} + (1 \theta) \mathbf{b} = \mathbf{b}$, а значит \mathcal{A} аффинню
- lacktriangle Рассмотрим произвольное аффинное множество ${\cal A}$
 - lacktriangle Для него существует подпространство $\mathcal{L} \parallel \mathcal{A}$
 - ▶ Рассмотрим ортогональное подпространство \mathcal{L}^{\perp} и его базис $\mathbf{a}_1,\dots,\mathbf{a}_m$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из $\mathcal{X}.$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из $\mathcal{X}.$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

Доказательство

▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- ▶ Покажем, как сделать одним слагаемым меньше

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k egin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix}=0$ для некоторого набора γ_k не равных нулю одновременно

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} = 0$ для некоторого набора γ_k не равных нулю одновременно
- lacktriangle Обозначим $au=\min_{\gamma_i>0}rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i=lpha_i- au\gamma_i$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- ▶ Пусть $\mathbf{x} = \sum_{i=1}^m \alpha_i \mathbf{x}_i$, где $\alpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} = 0$ для некоторого набора γ_k не равных нулю одновременно
- ▶ Обозначим $au = \min_{\gamma_i > 0} rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i = lpha_i au \gamma_i$
- $\sum_{i=1}^{m} \hat{\alpha}_i = \sum_{i=1}^{m} \alpha_i \tau \sum_{i=1}^{m} \gamma_i = 1$

Формулировка

Пусть $\mathcal{X}\subseteq\mathbb{R}^n$, тогда любую точку из $\mathrm{conv}\,(\mathcal{X})$ можно представить как выпуклую комбинацию не более чем n+1 точки из \mathcal{X} .

- lacktriangle Пусть $\mathbf{x} = \sum_{i=1}^m lpha_i \mathbf{x}_i$, где $lpha \in \Delta_m$, $\mathbf{x}_i \in \mathcal{X}$ и m > n+1
- ▶ Покажем, как сделать одним слагаемым меньше
- lacktriangle Если $lpha_j=0$, тогда \mathbf{x}_j можно исключить
- ▶ Пусть все $\alpha_i > 0$
- ▶ Так как m>n+1, то $\sum_{k=1}^m \gamma_k \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} = 0$ для некоторого набора γ_k не равных нулю одновременно
- lacktriangle Обозначим $au=\min_{\gamma_i>0}rac{lpha_i}{\gamma_i}$ и рассмотрим $\hat{lpha}_i=lpha_i- au\gamma_i$
- $\sum_{i=1}^{m} \hat{\alpha}_i = \sum_{i=1}^{m} \alpha_i \tau \sum_{i=1}^{m} \gamma_i = 1$
- $\sum_{i=1}^{m} \hat{\alpha}_i \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \tau \sum_{i=1}^{m} \gamma_i \mathbf{x}_i = \mathbf{x}$

Продолжение доказательства

▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j

Продолжение доказательства

- ▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j
- ightharpoonup Продолжая аналогично, сократим число слагаемых до n+1

Продолжение доказательства

- ▶ По построению существует j такой что $\hat{\alpha}_j = 0$, значит можно исключить \mathbf{x}_j
- ightharpoonup Продолжая аналогично, сократим число слагаемых до n+1

Упражнение

Докажите, что если $\mathcal{X}\subseteq\mathbb{R}^n$, то любая точка из $\mathrm{cone}\,(\mathcal{X})$ может быть представлена в виде конической комбинации не более чем n точек из \mathcal{X} .

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

Доказательство

▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- $f extbf{ iny}$ По теореме Каратеодори произвольный элемент ${f z}\in {
 m conv}\,(\mathcal G)$ можно представить в виде ${f z}=\sum_{i=1}^{n+1}lpha_i{f g}_i$, где ${f g}_i\in\mathcal G$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- lacktriangle По теореме Каратеодори произвольный элемент $\mathbf{z}\in\mathrm{conv}\left(\mathcal{G}
 ight)$ можно представить в виде $\mathbf{z}=\sum_{i=1}^{n+1}lpha_{i}\mathbf{g}_{i}$, где $\mathbf{g}_{i}\in\mathcal{G}$
- $conv (\mathcal{G}) = f(\Delta_{n+1} \times \mathcal{G} \times \ldots \times \mathcal{G})$

Утверждение

Выпуклая оболочка компактного множества $\mathcal{G}\subseteq\mathbb{R}^n$ является компактом

- ▶ Пусть $f:\Delta_{n+1}\times\mathbb{R}^n\times\ldots\times\mathbb{R}^n\to\mathbb{R}^n$ такая функция, что $f(\alpha,\mathbf{x}_1,\ldots,\mathbf{x}_{n+1})=\sum_{i=1}^{n+1}\alpha_i\mathbf{x}_i$
- ▶ f непрерывна, Δ_{n+1} компакт
- lacktriangle По теореме Каратеодори произвольный элемент $\mathbf{z}\in\mathrm{conv}\left(\mathcal{G}
 ight)$ можно представить в виде $\mathbf{z}=\sum_{i=1}^{n+1}lpha_{i}\mathbf{g}_{i}$, где $\mathbf{g}_{i}\in\mathcal{G}$
- $conv (\mathcal{G}) = f(\Delta_{n+1} \times \mathcal{G} \times \ldots \times \mathcal{G})$
- Непрерывная функция отображает компакт в компакт

Внутренность

Внутренность множества

Внутренность множества ${\mathcal G}$ состоит из точек ${\mathcal G}$, таких что:

$$\operatorname{int}\left(\mathcal{G}\right)=\{\mathbf{x}\in\mathcal{G}\mid\exists\varepsilon>0,B(\mathbf{x},\varepsilon)\subset\mathcal{G}\},$$

где
$$B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \mid \|\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon\}$$

Q: приведите пример непустого выпуклого множества с пустой внутренностью

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

Доказательство

lacktriangle $\dim \mathcal{X}$ — это размерность аффинной оболочки \mathcal{X}

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\,(\mathcal{X})$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown $\to \dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangle $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ightharpoonup Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq exttt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ▶ Рассмотрим максимальный набор линейно независимых векторов $\{{\bf a}_1,\dots,{\bf a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq \mathtt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangledown \to $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \text{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \ge \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - ightharpoonup Рассмотрим максимальный набор линейно независимых векторов $\{{f a}_1,\dots,{f a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq exttt{span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)$

 - $ightharpoonup conv (\mathbf{a}_1, \dots, \mathbf{a}_n, 0) \subset \mathcal{X}$

Теорема

Выпуклое множество $\mathcal{X}\subseteq\mathbb{R}^n$ имеет непустую внутренность iff $\dim\mathcal{X}=n$

- lacktriangle $\dim \mathcal{X}$ это размерность аффинной оболочки \mathcal{X}
- ▶ Пусть существует $\mathbf{x} \in \mathrm{int}\left(\mathcal{X}\right)$
 - lacktriangle Тогда найдётся шар $B(\mathbf{x},r)$ такой что $B\subseteq\mathcal{X}$
 - ▶ Но это значит что $\dim \mathcal{X} \geq \dim B = n$. Тогда $\dim \mathcal{X} = n$
- ▶ Пусть $\dim \mathcal{X} = n$

 - Рассмотрим максимальный набор линейно независимых векторов $\{{\bf a}_1,\dots,{\bf a}_m\}$ лежащих в ${\cal X}$
 - lacktriangle Тогда $\mathcal{X} \subseteq \mathtt{span}(\mathbf{a}_1, \dots, \mathbf{a}_m)$

 - $ightharpoonup conv (\mathbf{a}_1, \dots, \mathbf{a}_n, 0) \subset \mathcal{X}$
 - ▶ Открытое множество $\{\sum_{i=1}^n \alpha_i \mathbf{a}_i \mid \alpha > 0, \sum_{i=1}^m \alpha_i < 1\} \subset \mathcal{X} \to \operatorname{int}(\mathcal{X}) \neq \emptyset$

Относительная внутренность и замыкание

Относительная внутренность

Относительной внутренностью множества ${\mathcal G}$ называют следующее множество:

$$\operatorname{relint}\left(\mathcal{G}\right) = \left\{\mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \operatorname{aff}\left(\mathcal{G}\right) \subseteq \mathcal{G}\right\}$$

Относительная внутренность и замыкание

Относительная внутренность

Относительной внутренностью множества ${\cal G}$ называют следующее множество:

relint
$$(\mathcal{G}) = \{ \mathbf{x} \in \mathcal{G} \mid \exists \varepsilon > 0, B(\mathbf{x}, \varepsilon) \cap \text{aff } (\mathcal{G}) \subseteq \mathcal{G} \}$$

Замыкание

Замыканием множества $\mathcal G$ называют множество $\mathrm{cl}\,(\mathcal G)=\bigcap_{r>0}\mathcal G(r)$, где $\mathcal G(r)$ — это множество точек, удалённых от $\mathcal G$ меньше чем на r. Также это множество совпадает с множеством всех предельных точек множества $\mathcal G$.

Теорема

Замыкание выпуклого множества есть выпуклое множество

Теорема

Замыкание выпуклого множества есть выпуклое множество

Теорема

Замыкание выпуклого множества есть выпуклое множество

Доказательство

▶ По определению $\operatorname{cl}\left(\mathcal{G}\right) = \bigcap_{r>0} \mathcal{G}(r)$

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ▶ Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества
- $ightharpoonup \mathcal{G}(r)$ выпуклое множество, как сумма Минковского выпуклых множеств

Выпуклость замыкания

Теорема

Замыкание выпуклого множества есть выпуклое множество

- lacktriangle По определению $\operatorname{cl}\left(\mathcal{G}
 ight) = igcap_{r>0} \mathcal{G}(r)$
- ightharpoonup Покажем, что $\mathcal{G}(r)$ выпуклое множество для фиксированного r
- $ightharpoonup \mathcal{G}$ и B(0,r) выпуклые множества
- $ightharpoonup \mathcal{G}(r)$ выпуклое множество, как сумма Минковского выпуклых множеств
- $ightharpoonup \operatorname{cl}(\mathcal{G})$ выпуклое множество как пересечение выпуклых множеств

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

Доказательство

▶ Пусть $\mathcal{A} = \mathrm{aff}\,(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 - \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}
 ight)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- ightharpoonup Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a\in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b\in\mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a,\mathbf b)\subset\mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- ▶ Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha {\bf a} + (1 \alpha) {\bf b}', \alpha r)$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X)$.

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что $\mathbf{c} \in \operatorname{relint}\left(\mathcal{X}\right)$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha \mathbf{a} + (1 \alpha) \mathbf{b}', \alpha r)$
- $\|\mathbf{c} (\alpha \mathbf{a} + (1 \alpha)\mathbf{b}')\| = \|(1 \alpha)(\mathbf{b} \mathbf{b}')\| \le \alpha r \to \mathbf{c} \in B$

Предварительная теорема

Пусть $\mathcal X$ выпуклое множество, $\mathbf a \in \mathrm{relint}\,(\mathcal X)$ и $\mathbf b \in \mathrm{cl}\,(\mathcal X)$, тогда $(\mathbf a, \mathbf b) \subset \mathrm{relint}\,(\mathcal X).$

- ▶ Пусть $\mathcal{A} = \operatorname{aff}(\mathcal{X})$, $\mathbf{c} = \alpha \mathbf{a} + (1 \alpha) \mathbf{b}$ и $\alpha \in (0, 1)$
- lacktriangle Покажем, что ${f c}\in {
 m relint}\,({\cal X})$
- lacktriangle Выберем r>0 такой что $B({f a},r)\cap {\cal A}\subset {\cal X}$ и точку ${f b}'$ что $\|{f b}-{f b}'\|\leq rac{lpha r}{1-lpha}$
- ► Пусть $B = \alpha B(\mathbf{a}, r) + (1 \alpha)\mathbf{b}'$
- ▶ Заметим, что справедливо равенство $B = B(\alpha \mathbf{a} + (1 \alpha) \mathbf{b}', \alpha r)$
- $||\mathbf{c} (\alpha \mathbf{a} + (1 \alpha) \mathbf{b}')|| = ||(1 \alpha)(\mathbf{b} \mathbf{b}')|| \le \alpha r \to \mathbf{c} \in B$
- $B \cap \mathcal{A} = \alpha(B(\mathbf{a}, r) \cap \mathcal{A}) + (1 \alpha)\mathbf{b}' \subset \alpha \mathcal{X} + (1 \alpha)\mathcal{X} \subset \mathcal{X}$

Относительная внутренность выпуклого множества — выпуклое множество

Относительная внутренность выпуклого множества — выпуклое множество

Относительная внутренность выпуклого множества — выпуклое множество

Доказательство

ightharpoonup relint $(\mathcal{X}) \subset \mathrm{cl}\,(\mathcal{X})$

Относительная внутренность выпуклого множества — выпуклое множество

- ightharpoonup relint $(\mathcal{X}) \subset \mathrm{cl}\,(\mathcal{X})$
- ▶ По предыдущей теореме выберем $\mathbf{x} \in \operatorname{relint}\left(\mathcal{X}\right), \mathbf{y} \in \operatorname{relint}\left(\mathcal{X}\right) \subset \operatorname{cl}\left(X\right)$

Относительная внутренность выпуклого множества — выпуклое множество

- ightharpoonup relint $(\mathcal{X}) \subset \operatorname{cl}(\mathcal{X})$
- ▶ По предыдущей теореме выберем $\mathbf{x} \in \operatorname{relint}(\mathcal{X}), \mathbf{y} \in \operatorname{relint}(\mathcal{X}) \subset \operatorname{cl}(X)$
- ▶ Точка вида $\alpha \mathbf{x} + (1 \alpha)\mathbf{y} \in \operatorname{relint}(\mathcal{X})$, $\alpha \in [0, 1]$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

Теорема

Пусть \mathcal{X} выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(\operatorname{cl}(\mathcal{X})) = \operatorname{relint}(\mathcal{X})$

Теорема

Пусть \mathcal{X} выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(\operatorname{cl}(\mathcal{X})) = \operatorname{relint}(\mathcal{X})$

1a relint
$$(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$

Теорема

Пусть $\mathcal X$ выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(cl(\mathcal{X})) = relint(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$
- 2a $\mathcal{X} \subset \operatorname{cl}(\mathcal{X}) \Rightarrow \operatorname{relint}(\mathcal{X}) \subset \operatorname{relint}(\operatorname{cl}(\mathcal{X}))$

Теорема

Пусть \mathcal{X} выпуклое множество. Тогда

- 1. $\operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) = \operatorname{cl}\left(\mathcal{X}\right)$
- 2. relint $(\operatorname{cl}(\mathcal{X})) = \operatorname{relint}(\mathcal{X})$

- 1a relint $(\mathcal{X}) \subset \mathcal{X} \Rightarrow \operatorname{cl}\left(\operatorname{relint}\left(\mathcal{X}\right)\right) \subset \operatorname{cl}\left(\mathcal{X}\right)$
- 1b Пусть $\mathbf{x}_0 \in \operatorname{relint}(\mathcal{X})$, рассмотрим $\mathbf{x} \in \operatorname{cl}(\mathcal{X})$. Тогда $(\mathbf{x}_0, \mathbf{x}) \subset \operatorname{relint}(\mathcal{X})$. Значит $\mathbf{x} \in \operatorname{relint}(\mathcal{X})$ или $\mathbf{x} \in \partial \operatorname{relint}(\mathcal{X})$. Следовательно, $\mathbf{x} \in \operatorname{cl}(\operatorname{relint}(\mathcal{X}))$
- 2a $\mathcal{X} \subset \operatorname{cl}(\mathcal{X}) \Rightarrow \operatorname{relint}(\mathcal{X}) \subset \operatorname{relint}(\operatorname{cl}(\mathcal{X}))$
- 2b Пусть $\mathbf{x} \in \mathrm{relint}\,(\mathrm{cl}\,(\mathcal{X}))$, рассмотрим точку $\mathbf{y}_{\alpha} = (1-\alpha)\mathbf{x}_0 + \alpha\mathbf{x}$ при $\alpha > 1$, тогда $\alpha \to 1, \mathbf{y}_{\alpha} \to \mathbf{x}$. Выберем достаточно близкое к 1 α_0 , для которого $\mathbf{y}_{\alpha_0} \in \mathrm{cl}\,(\mathcal{X})$. Тогда $\mathbf{x} = \frac{1}{\alpha_0}\mathbf{y}_{\alpha_0} + \left(1 \frac{1}{\alpha_0}\right)\mathbf{x}_0 \in \mathrm{relint}\,(\mathcal{X})$

▶ Выпуклое множество

- Выпуклое множество
- ▶ Конусы

- ▶ Выпуклое множество
- Конусы
- ▶ Операции, сохраняющие выпуклость

- Выпуклое множество
- Конусы
- ▶ Операции, сохраняющие выпуклость
- Критерий аффинности

- Выпуклое множество
- Конусы
- ▶ Операции, сохраняющие выпуклость
- Критерий аффинности
- ▶ Топологические свойства выпуклых множеств

- Выпуклое множество
- Конусы
- Операции, сохраняющие выпуклость
- Критерий аффинности
- ▶ Топологические свойства выпуклых множеств
- Относительная внутренность и замыкание