Math H113 - Spring 2014 Notes

April 8, 2014

Introduction

This is a sparse collection of facts taken from Dummit and Foote, 3e. The goal is to recap the most important things Prof. Vojta has covered, with an emphasis on non-obvious results.

Confusing topics

1. 4.1 (Cycle Decompositions): The proof is hard to follow, and some statements (e.g 'Since G is a cyclic group, $G_x \subseteq G$ ') are non-intuitive.

Chapter 0/1

- 1. gcd: (m, n) = am + bn.
- 2. The Euler function: $\varphi(p^a) = p^{a-1}(p-1), \ \varphi(ab) = \varphi(a)\varphi(b) \ \text{if} \ (a,b) = 1.$
- 3. The dihedral group: $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$.
- 4. Fields $(F, F^{\times} = F \{0\})$: (F, +) and (F^{\times}, \times) are abelian groups. Note: if $|F| < \infty$, $\exists p, m \text{ s.t } |F| = p^m$.
- 5. Symmetries: $|S_n| = n!$. Disjoint cycles commute, but $S_{n\geq 3}$ is non-abelian.
- 6. Group actions on A by G: (i) $g_1(g_2a) = (g_1g_2)a$, (ii) 1a = a. $\forall g_1, g_2, a$.
 - (a) Fixing $g \in G$ in the action gives $\sigma_g \in S_A$.
 - (b) $g \mapsto \sigma_g$ is a homomorphism $(G \to S_A)$, the permutation representation).

- 1. Subgroup criterion: $H \neq \phi$ and $xy^{-1} \in H \ \forall x, y \in H$.
- 2. Centralizer: $\leq G$, commutes with A. Center: $\leq G$, commutes with G itself.

- 3. Normalizer: $\leq G$ s.t $gAg^{-1} = A \ \forall g$.
- 4. Stabilizer: fixing $a \in A$, $\leq G$ s.t ga = a. Kernel: $\forall a \in A$, $\leq G$ s.t ga = a.
- 5. If $x^m = 1$ and $x^n = 1$, $x^{(m,n)} = 1$ (in cyclic groups).
- 6. Let $x \in G$, $a \neq 0$: if $|x| = \infty$ then $|x^a| = \infty$. Else, if |x| = n, then $|x^a| = n/(n,a)$ (*).
- 7. Every subgroup of a cyclic group is cyclic, and cyclic groups of the same order are isomorphic to each other.
- 8. Let |x| = n, $H = \langle x \rangle$. Only if (n, a) = 1, $H = \langle x^a \rangle$ (count these with $\varphi(n)$). A general statement: $\langle x^m \rangle = \langle x^{(n,m)} \rangle$.
- 9. Let $A \neq \phi$ be a set of subgroups of G. Then their intersection $\langle A \rangle = \cap A \leq G$.

- 1. Given $\varphi: G \to H$; $\varphi(1_G) = 1_H$, $\ker \varphi \leq G$, and $\operatorname{im}(\varphi) \varphi \leq H$.
- 2. G/K is basically arithmetic on the fibers of φ , which are all cosets of ker φ .
- 3. The set of left cosets of any $N \leq G$ partitions G. However, the operation $uN \cdot vN = (uv)N$ is only well defined if $N \leq G$ (or equivalently $N_G(N) = G$, $gN = Ng \ \forall g$, or $gNg^{-1} \subseteq N \ \forall g$).
- 4. If $|G| < \infty$ and $H \le G$, then |H| | |G| and |G:H| = |G|/|H| (*).
- 5. If $|G| < \infty$ and $p \mid |G|$, $\exists x \in G \text{ s.t } |x| = p$.
- 6. If $|G| = p^{\alpha}m$ $(p \not | m)$, $\exists H \leq G$ s.t $|H| = p^{\alpha}$.
- 7. $\ker \varphi \unlhd G$, $G/\ker \varphi \cong \varphi(G)$, φ is 1-1 iff $\ker \varphi = 1$, and $|G:\ker \varphi| = |\varphi(G)|$.
- 8. If finite $H, K \leq G$, then $|HK| = \frac{|H||K|}{|H \cap K|}$. $HK \leq G$ only if $KH \leq G$.
- 9. Let $A, B \leq G$ and $A \leq N_G(B)$. Then $AB \leq G$, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \cong A/(A \cap B)$.
- 10. Let $H \leq K$ and $H, K \subseteq G$: then $K/H \subseteq G/H$ so $(G/H)/(K/H) \cong G/K$.
- 11. For $N \leq G$, there is a bijection between subgroups of G containing N and subgroups of G/N
- 12. To show that a homomorphism from $\varphi: G/N \to H$ is well-defined, one must prove $N \leq \ker \Phi$ (with $\Phi: G \to H$).

¹A useful theorem for later: gH = H iff $g \in H$.

- 13. $(a_1a_2...a_m) = (a_1a_m)(a_1a_{m-1})...(a_1a_2)$. The sign of a permutation (i.e the parity of the number of 2-cycles $\epsilon(\sigma) \in \{\pm 1\}^2$) is representation-independent.
- 14. $\epsilon: S_n \to \{\pm 1\}$ is a surjective homomorphism. $\ker \epsilon = A_n$, the group of even permutations. Note $S_n/A_n \cong \epsilon(S_n) = \{\pm 1\}$ and $|A_n| = \frac{n!}{2}$.
- 15. For $H \leq G$ and |G:H| = p prime, then for all $K \leq G$, either $K \leq H$ or $(G = HK \text{ and } |K:K \cap H| = p)$
- 16. The commutator subgroup $N = \langle x^{-1}y^{-1}xy|x,y \in G \rangle$ is normal, and G/N is always abelian.
- 17. "Normal in" relation NOT transitive: $A \subseteq B \land B \subseteq C \not \Longrightarrow A \subseteq C$
- 18. In general, $H \times (G/H) \ncong G$

Chapter 4

- 1. $\sigma_g: A \to A \ (a \mapsto ga)$, and $\varphi: G \to S_A \ (g \mapsto \sigma_g)$. Note: the kernel of the action $\cap_{a \in A} G_a = \ker \varphi$.
- 2. For $A \neq \phi$, the actions of G on A and the homomorphisms $G \to S_A$ are bijective. Let $a \sim b$ iff a = gb for some $g \in G$: then \sim partitions G, and the order of the equivalence class (i.e orbit) containing a is $|G:G_a|$.
- 3. Elements in G effect the same permutation on A iff they're in the same coset of the kernel of the action.
- 4. Let $H \leq G$, A be the set of left cosets of H in G, and G act on A (with $\pi_H : G \to S_A$). Then the action is transitive, $G_{1H} = H$, and $\ker \pi_H = \bigcap_{x \in G} xHx^{-1}$ (giving the largest normal subgroup of G in H).
- 5. If |G| = n, $G \cong H$ for some $H \leq S_n$. If p is the smallest prime s.t p|n, then any subgroup $H \leq G$ s.t |G:H| = p is normal.

- 1. Given a direct product $G_1 \times G_2 \times ... \times G_n$, $G_i \cong \{(1,...,g_i,...,1) \mid g_i \in G_i\}$.
- 2. Let $G = \langle A \rangle$ ($A \subseteq G$, finite). Then $G \cong \mathbb{Z}^r \times Z_{n_1} \times Z_{n_2} \times ... \times Z_{n_s}$ s.t $r \geq 0$, $n_j \geq 2 \ \forall j$, and $n_{i+1}|n_i$ for $1 \leq i < s$ uniquely (up to isomorphism).
- 3. Let $n = \prod n_i$: if p|n then $p|n_1$. If n is a product of distinct primes, then Z_n is the only abelian group of order n (up to isomorphism).

²An *m*-cycle is composed of m-1 transpositions, immediately giving $\epsilon(\sigma) = Parity(m-1)$.

³ 'Faithful' actions have kernels equal to $\{1_G\}$

 $^{^4}$ 'Transitive' actions induce only one orbit in A.

⁵The projection $\pi: G \to G_i$ is $g \mapsto g[i]$.

- 4. Let $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Then $G \cong A_1 \times \dots \times A_k$ where $|A_i| = p_i^{\alpha_i}$. Each $A_i \cong Z_{p_i^{\beta_1}} \times \dots \times Z_{p_i^{\beta_t}}$ where $\beta_i \geq \beta_{i+1}$ and $\sum_i^t \beta_i = \alpha_i$.
- 5. $Z_m \times Z_n \cong Z_{mn}$ iff (m,n) = 1, so $Z_n \cong Z_{p_1^{\alpha_1}} \times ... \times Z_{p_n^{\alpha_k}}$.
- 6. The group exponent is the smallest positive integer s.t $x^n = 1 \ \forall x \in G$.
- 7. The elementary abelian group of order p^n : $E_{p^n} = (Z_p)^n$ Each non-identity element has order p, and there are p+1 subgroups of order p in E_{p^2}

Chapter 6

- 1. Let F(S) be the group of words formed from S. Given a map $\psi: S \to G$, there exists a unique homomorphism $\Phi: F(S) \to G$ s.t $\Phi|_S = \psi$.
- 2. Because Φ is a homomorphism, $\Phi(s_i^{\epsilon_i}...) = \psi(s_i)^{\epsilon_i}...$
- 3. Empty word: (1,1,...). Reduced word: $s_{i+1} \neq s_i^{-1}$ and $s_i = 1 \Rightarrow s_{k>i} = 1$.
- 4. Subgroups of free groups are also free groups.
- 5. Let $S \subseteq G$ s.t $G = \langle S \rangle$. A presentation of G is some (S, R) s.t ker Φ is the smallest normal subgroup containing $\langle R \rangle$. G is finitely generated if S is finite, and finitely presented if R is also finite.
- 6. Any free abelian group of rank n is $\cong \mathbb{Z}^n$

- 1. Rings: (R, +) is abelian, \times is associative/distributive. If \times commutes, so does R. If $1 \in R$, $1r = r1 \ \forall r$. If $1 \neq 0$ and every nonzero element has an inverse, R is a division ring. Commutative division rings are fields.
- 2. Let $a, b \in R$ be nonzero. Then a0 = 0a = 0. Zero divisors: ab = 0 or ba = 0. The set of units (i.e uv = vu = 1) is R^{\times} .
- 3. Integral domains are commutative rings (with $1 \neq 0$) with no zero divisors. Zero divisors cannot be units, therefore fields have no zero divisors.
- 4. Finite integral domains are fields. Subrings are $\leq R$ and closed under \times .
- 5. R[x]: $(ab)x^k = \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^k a_{k-i} b_i$. Note: $R \subset R[x]$ (as the constant polynomials) and R[x] is commutative iff R is.
- 6. If R is an integral domain, deg(ab) = deg(a) + deg(b), $R[x]^{\times} = R^{\times}$, and R[x] is an integral domain.
- 7. Square matrices: $(a_{ij}) \in M_n(R)$. Invertible: $GL_n(R)$.

- 8. Fix a commutative ring R with $1 \neq 0$ and let G be a finite group. Group rings RG contain all formal sums $\sum_i r_i g_i \ r_i \in R$. Addition is done componentwise, and RG always has zero divisors.
- 9. Ring homomorphism: $\varphi : R \to S$ s.t $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$. ker $\varphi = \{r \in R \mid \varphi(r) = 0_S\}$, as if φ were a group homomorphism.
- 10. $I = \ker \varphi$ is a subring of R (and an ideal/normal subgroup thereof), $\operatorname{im}(\varphi)$ is a subring of S. If $\alpha \in \ker \varphi$, then $r\alpha$, $\alpha r \in R \ \forall r \in R$.
- 11. Ideals: if $rI \subseteq I$, $Ir \subseteq I$, and I subring of R. R/I is a quotient ring s.t (r+I)+(s+I)=(r+s)+I and $(r+I)\times(s+I)=rs+I$. $R/\ker\varphi\cong\varphi(R)$. Note: every ideal is the kernel of a ring homomorphism and vice versa.
- 12. Let A be a subring and B an ideal of R. Then A+B is a subring of R, $A\cap B$ is an ideal of A, and $(A+B)/B\cong A/(A\cap B)$.
- 13. Let $I \subseteq J$ be ideals of R, then $(R/I)/(J/I) \cong R/J$.
- 14. For ideals I of R, there is a bijection between subrings of R containing I and subrings of R/I
- 15. Ideal math: $I + J = \{i + j \mid i \in I, j \in J\}$, IJ is the set of all finite sums of elements of the form ij, and I^n are all n-length products within I.
- 16. I + J is the smallest ideal containing I and J, and $IJ \subseteq I \cap J$
- 17. If R is a commutative ring with a 1, and I + J = R, then $IJ = I \cap J$