An introduction to **SOIL ORGANIC MATTER**

W.M.C.J. Wijekoon - SS2101

May 2015 V.1, March 2016 V.2,

SOIL ORGANIC MATTER

- Sources:
 - Plants origin roots, vegetative parts etc
 - Animal Origin Dead bodies, Faeces
- Forms:
 - Living biomass
 - Recognizable plant residues
 - Substances no longer identifiable as plant/animal material – amorphous and colloidal mixture

Humus

o Humus:

- Not just material with plant origin
- Result of synthesis and decomposition

Humic substances

- 60 80 % of SOM
- Complex structures (aromatic rings like phenols etc)
- Highly resistant
- Dark in colour
- Amorphous

o Non humic:

- 20 30 % of SOM
- Less complex
- Less resistant to MO attacks
- Have bio-molecules with definite physical and chemical properties
- Synthesized or modified

Functions of humus

- Maintain OM content even over thousands of years
- Protecting nutrients
- Ion exchange sites
- Give colour to soil
- Maintain soil physical/chemical properties
- Formation of chelates
- · Help in mineral wathering

HOW THE OM IS BALANCED?

Compromise between addition and removal

IMPORTANCE OF OM BALANCE

OUTLINE

- Plant residue decomposition and C:N ratio
- Mineralization and immobilization of nutrients
- Influence of organic matter on soil properties
- Managing soil organic matter towards sustainable agriculture.

ILOs

- Briefly explain the term "Soil Organic Matter"
- Explain the fate of freshly added OM in the soil in varying environments
- Explain the importance of C:N ratio in soil organic matter decomposition
- Explain the effect of OM on soil chemical and physical properties
- Relate the management of SOM to the sustainability of agriculture

COMPOSITION OF SOM

 Complex and varied mixture of organic substances

 Ranges from simple substances such as sugars to complex substances like lignin, humic substances etc

• Other than C, rest of the nutrients are also included Eg. N, P, K, Mg etc

* 40% of the SOM is contained in histosols and inceptisols

COMPOSITION OF SOM

- Water 75%
- o Dry matter 25%
- Dry matter -

 - Hemicellulose 20%
 - Lignin 20%
 - Protein 8%
 - Sugars & Starch 5%
 - Fat and waxes 2%

HOW THE BALANCE IS MAINTAINED

- Addition
 - Plant litter fall
 - Death of plant
 - Dead animals

Humification

- Removal
 - Decomposition
 - Erosion?
 - Deforestation

Accelerated Oxidation

ORGANIC MATTER DECOMPOSITION

Driving factors

- A biological process
 - Large spatial scale Climate (T and RF)
 - Local scale Litter quality
 - o C:N ratio
 - o Fiber content
 - o Lignin: N ratio etc

WHAT HAPPENS DURING THE DECOMPOSITION

- Simple carbon compounds oxidized to CO₂
- Elements released/immobilized by a series of reactions N, P, K, Mg etc
- Resistant material is formed by microbial action or compound modification (Humus)

REACTIONS GENERALIZED

- Under aerobic conditions
 - R-(C, 4H) + $2O_2$ -> CO_2 + $2H_2O$ + Energy
 - Proteins which contain N and S may yield NH₄⁺, NO₃⁻ and SO₄²⁻ etc
- Under anaerobic conditions (Bacteria mediates)
 - $4C_2H_5COOH + 2H_2O \rightarrow 4CH_3COOH + CO_2 + 3 CH_4$
 - $CH_3COOH \rightarrow CO_2 + CH_4$
 - $CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$ Slow and releases little energy

RESISTANCE TO DECOMPOSITION

Component

 Sugars & Starch 5%

Protein 8%

Hemicellulose 20%

Cellulose 45%

Fat and waxes 2%

Lignins 20%

Approximate composition

MINERALIZATION

- Overall process that releases elements from organic compounds to produce inorganic forms (Minerals)
 - Released ions are readily available for plants
 - Prone to be removed from the soil

IMMOBILIZATION

- Simply the opposite of mineralization
- Microbial utilization or demand for particular mineral makes the mineral unavailable for plant use. This condition is termed as immobilization.
- Generally, N immobilization is considered as one of the main events in organic matter decomposition in the soil

C:N RATIO

- C:N Ratio of plants (Eg. Legumes 10:1 to 30:1 Saw dust 600:1)
- C:N Ratio of soil micro organisms (Eg. 5:1 to 10:1) Avg 8:1
- C:N Ratio of soil
 - Surface 8:1 to 15:1 Avg 12:1
 - Subsoil comparatively lower

C:N RATIO OF SOM

- o 40% C (Range 45- 58%)
- N content 1 6% (varies)
- Importance
 - If the C:N ratio of added material is high there will be an intense competition for soil N □
 - Determine the availability of N
 - Soil C:N is relatively constant. Therefore the C maintenance is constrained by the soil N level

- o If you add organic matter with high C:N ratio (More carbon) what will happen?
 - MO has a source of energy
 - Need N to utilize the energy to reproduce (Need N in various ways, DNA, Proteins, Enzymes ...)
 - Get N from the soil
 - Higher plants show N deficiency symptoms

.

SIMPLE ILLUSTRATION OF C:N RATIO AND ITS IMPORTANCE

 MO need 8 pats of C for every part of N they incorporate into their body (as their C:N ratio is 8:1)

 MOs can metabolize only 1/3 of the total carbon they consume

 There fore for every 1 g of N they incorporate they need

$$3 \times 8 = 24 \text{ g of } C$$

Therefore when you add organic matter their C:N ratio should not exceed

25:1

to prevent micro organism scavenging for soil N

- Example
- 8000 kg of dry leaf litter was added to the soil
- Composition
 - 42 % carbon
 - 0.65 % N
 - Therefore C:N ratio 42:0.65 = 65:1

- Amount of C in plant residue
 - $8000 \times 42/100 = 3360 \text{ kg}$
- Only 1/3 is incorporated
 - $3360 \times 1/3 = 1120 \text{ kg}$
- C:N ratio of MOs 8:1
 - Amount of N need to incorporate 1120 kg C =
 - 1120 / 8 = 140 kg

- N coming from the leaf litter =
 - $8000 \times 0.65/100 = 52 \text{ kg}$
- Micro organism need 140 kg
- Residue supply only 52 kg
- \circ Deficit = 140 52 kg = 88 kg
- If the process goes like this MOs may take this 88 kg N from the soil N pool

INFLUENCE OF ORGANIC MATTER ON SOIL PROPERTIES

- SOM can reduce soil erosion (acting as a cover)
- Increase the soil moisture content.(WHC)(Drainage)
- Support the reproduction of MO
- Increase soil nutrient level.
- Can help to stop leaching of nutrients.
- Improve soil aeration.
- Improve the availability nutrients.
- Influence the soil temperature.
- Can improve the soil structure.
- Can improve the CEC.
- Buffering of soil reactions.

Reduce N availability.

- Increase the diversity and the activity of SMO.
- Provide special bio-molecules.

MANAGING SOIL ORGANIC MATTER TOWARDS SUSTAINABLE AGRICULTURE

- What is sustainability?
- Maintain the Carbon pool.
- Recycling of materials in the environment.
- Reduce utilization of chemical fertilizers.
- Maintain good soil structure.
- Improve biotic and abiotic relationships in a soil system.
- Reduce ground water contamination.
- Increase the vigor of the plants

- A farmer has 15 tons of fresh crop residue
- He also has 1 ton of compost
- He wishes to add these to the field in a good way

Composition of the material is as follows

	% moisture	% Carbon	% N
Crop residue	50	40 (Dry basis)	1 (Dry basis)
Compost	40	40 (Dry basis)	10 (Dry basis)

• Farmer has urea in his stock as an inorganic fertilizer

Recommend a suitable combination of above items to be applied to his field

EXAMPLE CALCULATION ON C:N RATIO

Scenario of application of crop residue (CR) only

Weight of crop residue (CR) = 15,000 kg

Dry weight of the CR = $15,000 \text{ kg} \times (100-50)/100$

= 7,500 kg

C:N ratio = 40:1

Amount of carbon in CR = $7500 \times 40/100$

= 3,000 kg

Amount of N in CR = $7500 \times 1/100$

=75 kg

Amount of N required to utilize the carbon in crop residue

 $= 3000 \times (1/3) \times (1/8)$

=125 kg

EXAMPLE CALCULATION ON C:N RATIO

$$= 125 - 75 \text{ kg}$$

$$=50 \text{ kg}$$

Alternatives the farmer has

Add compost or

Add urea or

Add both

Compost is preferred – (economically and environmentally)

C:N ratio

= 4 : 1 (More nitrogen)

Dry weight of compost

 $= 1,000 \times (100 - 40) / 100$

=600 kg

Carbon in compost

 $= 600 \times 40/100$

= 240 kg

EXAMPLE CALCULATION ON C:N RATIO

N in compost $= 600 \times 10/100$

=60 kg

If apply CR and compost in combination

Total amount of carbon = 3000 + 240 kg

= 3240 kg

Required amount of N = $3240 \times 1/24$

= 135 kg

Total N supplied by CR and compost

= 60 + 75 kg

= 135 kg

• A perfect combination!

1

GLOBAL CARBON CYCLE AND SOM

- Explain how?
- What are the greenhouse gases emitted from soil?
- What are the consequences of global warming?

