Pràctica de LISP Novembre de 2011

Dibuix 3D

En aquesta pràctica es demana que s'implementin les funcions necessaries per gestionar un entorn de dibuix de figures 3D.

S'hauràn d'implementar els patrons de tres figures tridimensionals: un cub, un prisma triangular i un octaedre

Seguint el mateix esquema que la definició de la piràmide quadrangular següent:

nom: prisma

punts: '((-0.5 -0.5 0) (0.5 -0.5 0) (0.5 0.5 0) (-0.5 0.5 0) (0 0 1))

arestes: '((1 2) (2 3) (3 4) (4 1) (1 5) (2 5) (3 5) (4 5))

cares: '((1 2 3 4) (1 5 6) (2 6 7) (3 7 8) (4 8 5))

color: '(255 255 255)

On cada cara de la llista indica les arestes que la formen i cada aresta els punts que té. Finalment la llista de punts dóna la coordenada 3D de cada vèrtex respecte al sistema de coordenades triat.

Totes aquestes característiques s'hauran de guardar a una llista de propietats per a cada patró

Utilitzant la llibreria "tortuga.lsp" de dibuix 2D s'han d'escriure les següents funcions:

• (crea-figura nom patró color): És una funció que permet la creació d'una figura 3D a partir del patró triat.

```
ex: (crea-figura 'cub1 'cub '(255 0 0))
```

crea un cub anomenat cub1 a partir del patró cub i de color vermell i el guarda dins una llista anomenada "figures"

- (borra-figura f): borra la figura f de la llista "figures"
- (borra-figures): borra tot el contingut de la llista "figures"
- (pinta-figura f): dibuixa la figura f a partir de les coordenades (x,y) de cada punt, la z no s'ha d'utilitzar pel dibuixat, únicament pels càlculs posteriors
- (pinta-figures): pinta totes les figures de la llista "figures"
- (trasllada-figura f x y z): trasllada la figura f, a unitats a l'eix x, b unitats a l'eix y i c unitats a l'eix z
- (rota-figura f x y z): rota la figura f, a unitats respecte a l'eix x, b unitats respecte a l'eix y i c unitats respecte a l'eix z
- (escala-figura f x y z): escala la figura f, un factor a respecte a l'eix x, un factor b respecte a l'eix y i un factor c respecte a l'eix z
- (repeteixn n f): repeteix n vegades la funció f
- (inicia-figura f): posa la figura f a la seva posició inicial (matriu identitat a la transformació)

Per fer les trasllacions, rotacions i escalats s'utilitzaran les matrius de transformacions de 4x4. Una matriu es representarà en forma de llista de llistes:

i cada una de les transformacions es representarà de la següent forma:

Trasllació:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ Tx & Ty & Tz & 1 \end{bmatrix}$$

on Tx, Ty i Tz indiquen la trasllació respecte a cada eix

Escalat:

$$\begin{bmatrix} Ex & 0 & 0 & 0 \\ 0 & Ey & 0 & 0 \\ 0 & 0 & Ez & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

on Ex, Ey i Ez indiquen els factors d'escalat respecte a cada eix

Rotació respecte a l'eix X:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha & 0 \\ 0 & -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

on alfa és l'angle de rotació en radians

Rotació respecte a l'eix Y:

$$\begin{bmatrix} \cos \alpha & 0 & -\sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ \sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

on alfa és l'angle de rotació en radians

Rotació respecte a l'eix Z:

$$\begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

on alfa és l'angle de rotació en radians

Abans de dibuixar cada vertex, s'han d'aplicar les transformacions que s'han fet multiplicant per la matriu de transformació. Això vol dir que per a cada figura també s'haurà de guardar una matriu de 4x4 dins la llista de propietats, inicialment serà la matriu identitat.

Les diferents transformacions que s'aplican a una figura es van concatenant multiplicant les matrius per a cada una de les transformacions, de manera que si un cub es trasllada i es rota, primer multiplicarem la matriu de l'objecte per la de trasllació i després per la de rotació.

Pensau que les matrius són de 4x4 per tant, a l'hora de multiplicar un punt per la matriu haureu d'afegir un 1 al final del punt. Exemple: si el punt és el (0.5 -0.5 1), a l'hora de multiplicar haureu de posar (0.5 -0.5 1 1). Això es fa per poder acumular totes les transformacions (inclosa la trasllació) dins una única matriu.

Notes:

- Aquest exercici s'ha de fer en grups de dues persones.
- S'ha d'entregar el dimarts 29 de novembre.
- Mecanisme d'entrega: Enviar per Mail a l'adreça <u>ramon.mas@uib.es</u> seguint les següents normes:
 - o El "subject" del correu electrònic ha d'indicar "LISP"
 - El missatge ha d'incloure un fitxer adjunt que tindrà com a nom els noms dels dos components del grup, separats per guió. El fitxer adjunt ha de contenir el codi font en format text i amb les funcions comentades (els comentaris en LISP s'escriuen precedits del caràcter ";").
- El procediment per comprovar el funcionament de l'exercici consistirà en copiar la informació rebuda i aferrar-la dins l'intèrpret de LISP per posteriorment comprovar l'execució de les funcions. Comprovau si aquest procediment funciona amb el vostre fitxer abans d'enviar-lo.

Criteris d'avaluació:

- Per a l'avaluació es considerarà:
 - o La correctesa de les funcions implementades
 - o L'organització i comentaris del codi font