STRUCTURED CONTROL LANGUAGE

1. PODSTAWOWE FUNKCJE

PODSTAWOWE FUNKCJE	
Q = A	#Q := #A;
Q = A ∩ B	#Q := #A AND #B;
$Q = A \cup B$	#Q := #A OR #B;
$Q = \overline{A}$	#Q := NOT #A

PRZYKŁADY	
$Q = \bar{A} \cap B$	#Q := NOT #A AND #B;
$Q = A \cup \overline{B}$	#Q := #A OR NOT #B;
$Q = \overline{A} \cap (B \cap C)$	#Q := NOT A AND (#B OR #C);
$Q = (A \cup B) \cap \bar{C}$	#Q := (#A OR #B) AND NOT #C;

KONSTRUKCJE	
IF	IF #S1 THEN
IF + ELSE	<pre>IF #S1 AND #S2 THEN L2 := 1; ELSE L2 := 0; END_IF;</pre>
IF + IFELS	IF #S1 AND #B1 THEN #L1 := 1; ELSIF #S2 THEN #L2 := 1; END_IF;
CASE OF	CASE #krok OF 0:

RS & SR IF #SET THEN #ON := 1; END_IF; SR (set reset) nie ma możliwości dominacji setu ani resetu IF #RESET THEN #ON := 0; END_IF;

2. CZASÓWKI

TP – Time Pulse (impuls zadany) po podaniu sygnału na czasówkę, to ta będzie podawać sygnał przez podany czas	#TP(IN:=_bool_in_, PT:=_time_in_, Q=>_bool_out_, ET=>_time_out_); IN - input PT - pulse time Q - output ET - Elapsed Time
TON – Time On Delay (opóźnienie włączenia) po podaniu sygnału, zostaje on przekazany dalej po upływie danego czasu sygnał musi być podawany cały przez dany czas aby czasówka zadziałała	#TON(IN:=_bool_in_, PT:=_time_in_, Q=>_bool_out_, ET=>_time_out_); IN - input PT - pulse time Q - output ET - Elapsed Time
TOFF – Time Offf Delay (opóźnienie wyłączenia) po podaniu sygnału i jego zniknięciu na czasówkę, będzie on dalej przekazywany przez dany czas	#TOF(IN:=_bool_in_, PT:=_time_in_, Q=>_bool_out_, ET=>_time_out_); IN - input PT - pulse time Q - output ET - Elapsed Time
TONR – Time On Delay Retentive (opóźnienie włączenia z podtrzymanym czasem) po podaniu sygnału, zostaje on przekazany dalej po upływie danego czasu gdy sygnał zniknie na wejściu czasówki to i tak ona dalej podaje sygnał, aby wyłączyć czasówkę należy podać sygnał na wejście R	#TONR(IN:=_bool_in_, R:=_bool_in_, PT:=_time_in_, Q=>_bool_out_, ET=>_time_out_); IN - input R - reset PT - pulse time Q - output ET - Elapsed Time

3. TON JAKO GENERATOR IMPULSU

```
#TON1(IN:=NOT #TON2.Q,
Q=>#L1,
PT:=T#500ms);
#TON2(IN:=#TON1.Q,
PT:=T#500ms);
```

4. LICZNIKI

CTU – Count Up	#CTU(CU:=#S1, R:=#RESET, PV:=5, Q=>#L1);
licznik, który dodaje, po spełnieniu warunku PV podaje sygnał na Q	CU – count up R – reset PV – preset value Q – output (QU jeśli PV = CV, QD jeśli PV = 0 to da sygnał) CV – current value
CTD – Count Down licznik, który odejmuje, po spełnieniu warunku PV	#CTD(CD:=#S1, R:=#RESET, PV:=5, Q=>#L1); CD – count down
podaje sygnał na Q	R – reset PV – preset value Q – output (QU jeśli PV = CV, QD jeśli PV = 0 to da sygnał) CV – current value
CTUD Count Up / Down	#CTUD(CU:=#S1, CD:=#S2, R:=#RESET, LD:=#S3, PV:=10, QU=>#L1, QD=>#L2);
licznik, który ma możliwość dodawania i odejmowania, po spełnieniu warunku PV podaje sygnał na wyjście	CU – count up CD – count down R – reset PV – preset value LD – load (ładuje PV na CV) QU – output (jeśli PV = CV to da sygnał) QD – output (jeśli PV = 0 to da sygnał) CV – current value