Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И Лобачевского»

Отчёт по лабораторной работе № 218 «Измерение ёмкости конденсатора»

Выполнили:

Студенты 2 курса, ВШОП Φ

Зинягин Алексей

Мурзина Полина

Дата допуска: 05.10.22 г.

Дата лабораторной работы: 05.10.22 г.

Дата отчета: 12.10.22 г.

Цель работы: измерить емкость конденсатора, включенного в мостовую схему, с помощью гальванометра и осциллографа.

Оборудование: конденсаторы известной емкости и неизвестной, генератор (способный выдавать напряжение типа «меандр»), два магазина сопротивлений, гальванометр, осциллограф, источник постоянного напряжения, ключ.

Теоретические обоснования.

В данной работе для измерения емкости конденсатора используется измерительный мост. В мостовых схемах элементы цепи соединяют «четырехугольником», в одну диагональ которого включают источник напряжения, а в другую – измерительный прибор. При определенном соотношении между параметрами элементов измерительный прибор показывает отсутствие напряжения в диагонали (баланс моста).

Рассмотрим схему, представленную на рис. 1, где R_1 , R_2 — магазины сопротивлений, C_1 — конденсатор известной емкости, C_x — измеряемая емкость, G — прибор для измерения напряжений, E — источник напряжения. Ключ K может быть замкнут на T (конденсаторы заряжаются от источника напряжения) или на контакт S (конденсаторы разряжаются через сопротивления).

Рассмотрим процесс зарядки конденсатора после замыкания ключа K на контакт T. При этом будем считать, что сопротивление измерительного прибора R_G бесконечно большое, а источника напряжения r пренебрежимо мало. Это будет выполняться, если

$$R_G \gg R_1, R_2 \gg r$$

Запишем второй закон Кирхгофа для контура DATD, получим: $i_1R_1+\frac{q_1}{\mathsf{C}_1}=E$ (1), где i_1 - ток, идущий через сопротивление R_1 , а q_1 – заряд конденсатора C_1 .

Поскольку R_G велико, ток через измерительный прибор пренебрежимо мал, тогда $i_1 = \frac{dq_1}{dt}$. Подставим в уравнение (1), разделим на R_1 и получим:

$$\frac{dq_1}{dt} + \frac{q_1}{R_1C_1} = \frac{E}{R_1}; \frac{dq_1}{q_1 - EC_1} = -\frac{dt}{C_1R_1}$$

Учитывая начальное условие ($q_1 = 0$ при t = 0), находим:

$$q_1(t) = C_1 E * \left(1 - e^{\frac{-t}{R_1 C_1}}\right) (2)$$

 R_1C_1 — постоянная времени RC- цепи, имеет размерность времени. Ее величина определяет, насколько быстро заряжается конденсатор. По формуле (2) за время $\tau = R_1C_1$ заряд конденсатора достигает значения $q_1(\tau) = C_1E(1-e^{-1})$, что составляет примерно 0,63 значения C_1E , к которому стремиться заряд при $t \to \infty$.

Из формулы (2) мы так же можем получить выражение для напряжения U_1 на конденсаторе C_1 :

$$U_1(t) = E * \left(1 - e^{\frac{-t}{R_1 C_1}}\right) (3);$$

Аналогично рассмотрим контур DBTD и найдем напряжение на втором конденсаторе:

$$U_{x}(t) = E * \left(1 - e^{\frac{-t}{R_{2}C_{x}}}\right)$$
 (4);

Напряжение на измерительном приборе U_G равно разности напряжений на конденсаторах:

$$U_G(t) = U_1(t) - U_{x}(t) = E * \left(e^{\frac{-t}{R_2 C_x}} - e^{\frac{-t}{R_1 C_1}}\right)$$
 (5)

Из формулы (5) видно, что если выполняется равенство $C_1R_1=C_xR_2$ (6), то $U_G=0$. Данное условие называется балансом моста. Если оно нарушено, то в процессе зарядки конденсаторов U_G будет отличным от нуля. Это может быть обнаружено при достаточной чувствительности и быстродействии измерительного прибора. На рис. 2 представлены графики напряжений $U_1(t), U_x(t), U_G(t)$ в отсутствии баланса моста.

После замыкания ключа К на S происходит разряд конденсаторов, в ходе которого напряжения изменяются следующим образом:

$$U_1(t) = E * e^{\frac{-t}{R_1 C_1}}, \ U_x(t) = E * e^{\frac{-t}{R_2 C_x}}$$
 (7);

$$U_G(t) = E * \left(e^{\frac{-t}{R_1C_1}} - e^{\frac{-t}{R_2C_x}}\right)$$
 (8);

При балансе моста напряжение на измерительном приборе так же равно нулю.

Для измерения неизвестной емкости конденсатора C_x следует, подбирая значения сопротивлений, добиться баланса моста. При этом из условия (6) неизвестная емкость находится как:

$$C_{x} = \frac{C_{1}R_{1}}{R_{2}}$$
 (9);

Следует учитывать, что времена зарядки/ разрядки конденсаторов и длительность импульса U_G оказываются достаточно малыми, поэтому отклик прибора будет зависеть не

только от чувствительности, но и от его инерционных свойств. В данной работе мы проводим измерения как в инерционном, так и в безынерционном режиме.

При безынерционном наблюдении прибор успевает отслеживать все изменения измеряемой величины, таким прибором может быть осциллограф, обладающий достаточным быстродействием для наблюдения формы импульсов $U_G(t)$. О величине разбаланса моста можно судить по максимальному значению напряжения $U_G(t)$.

При инерционном наблюдении прибор не обладает достаточным быстродействием для отслеживания изменений измеряемой величины. Типичным прибором, реализующим инерционное наблюдение, является высокочувствительный нуль-гальванометр, установленный в диагональ моста. Время установления стрелки в гальванометре существенно больше времени зарядки/разрядки конденсаторов. Процесс измерения в этом случае можно представить в виде двух последовательных этапов: из-за проходящего через гальванометр кратковременного тока, рамка гальванометра получает некоторый момент импульса (приобретает угловую скорость), а когда ток уже прекратился, рамка отклоняется на некоторый угол. Такой режим измерений называют баллистическим. В этом режиме отклонение стрелки гальванометра пропорционально прошедшему через гальванометр заряду. В данном режиме следует учитывать, что у чувствительных гальванометров условие $R_G\gg R_1,R_2$, как правило, не выполняется. Однако если между точками A и B разность потенциалов отсутствует, то ток через измерительный прибор будет равен нулю при любом значении R_G , следовательно, величина этого сопротивления не будет влиять на условие баланса моста.

Экспериментальная часть.

1. Собрали схему, представленную на рис. 3:

2. Далее подали с генератора на вход измерительного моста напряжение типа «меандр», подключили к точкам A и D осциллограф, выставили R_2 максимально возможным ($R_2=99999$ Ом), наблюдали осциллограммы напряжения $U_1(t)$ при разных значениях сопротивления R_1 , измерили соответствующее время заряда(разряда) конденсатора – τ . Затем произвели расчет постоянной времени R_1C_1 , где $C_1=1\pm0,002$ мкФ,результаты занесли в Табл.1 и построили график зависимости $R_1C_1(\tau)$ (рис. 4).

R_1 , кОм	1	2	3	4	5	6	7	8	9
т, мс	1	2	3	4	5	5,8	6,9	8,2	8,9

Таблица 1.

По графику мы видим, что полученную зависимость с хорошим приближением можно считать линейной, что совпадает с теорией, так как $\tau = R_1 C_1$.

- 2. Наблюдали несколько осциллограмм напряжения на конденсаторе известной емкости $U_1(t)$ при различных значениях постоянной времени цепочки (увеличивали R_1). С генератора при этом подавалось напряжение одной и той же частоты. Исходя из качественных соображений, конденсатор должен перестать успевать заряжаться и график будет «обрываться» раньше.
- 3. Далее было произведено определение неизвестной ёмкости конденсатора C_x с помощью неинерционного измерения, используя осциллограф. Для заданного R_1 будем измерить три значения R_2 : два $-R_2'$, R_2'' , при которых максимальная разность напряжений на AB равно 200 мВ (Табл.2), одно $R_{2\text{ш}}$, при котором напряжение на AB равно нулю (Табл.3).

R_1 , Om	R_2' , Om	$R_2^{\prime\prime}$, Om	R_{2cp} , Ом	C_{χ} , мк Φ	ΔC_{χ} ,
					мкФ
50	5,3	4	4,65	10,75	0,064
150	13,2	14,8	14	10,71	0,042
200	•••	2.10	•	10 = 1	0.000
300	29,2	26,8	28	10,71	0,039
1500	135,1	144,5	139,8	10,72	0,038
3000	291	267,3	279,15	10,74	0,038
4500	399,9	439,9	419,9	10,71	0,037

R_1 , Om	$R_{2 \text{III}}$, Ом	C_{x} , мк Φ		
50	4,5	11,1		
150	13,9	10,79		
300	27,9	10,75		
1500	141	10,63		
3000	280	10,71		
4500	420,5	10,7		

Табл. 3

Из сравнения графиков, полученных для двух методов определения R_2 , не трудно заметить, что первый даёт большую точность.

$$C_x = (10,72 \pm 0,1)$$
 мкФ

4. Собрали схему, приведенную на рис. 1 с гальванометром в качестве измерительного прибора. Измерили неизвестную емкость C_x . Для заданного R_1 будем измерять три значения R_2 : одно, при котором стрелка гальванометра не отклоняется (напряжение на AB равно нулю) и два, при которых стрелка отклоняется на единицу цены деления. Результаты занесли в Табл. 4.

E, B	R_1 , Ом	R_2'	$R_2^{\prime\prime}$, Om	R_{2cp} ,	C_x ,	ΔC_{χ} ,
		Ом		Ом	мкФ	мкФ
	50	6,7	2,1	4,4	11,3	0,059
	150	17	10,9	13,95	10,75	0,048
	300	25	30,6	27,8	10,79	0,041
12	1500	135	143,5	139,25	10,77	0,039
	3000	288	270	279	10,75	0,038
	4500	409	429	419	10,73	0,037
	50	5,5	3,5	4,5	11,1	0,057
	150	14,8	13	13,9	10,79	0,046
36	300	26,5	29,4	27,95	10,73	0,042
	1500	136,6	142	139,3	10,77	0,038
	3000	274,7	281,3	278	10,79	0,038
	4500	412,9	417	414,95	10,84	0,038

Табл. 4

$$C_x = (10,84 \pm 0,15)$$
 мкФ

5. Из полученных результатов из п. 3., п. 4 построили графики зависимостей погрешностей измерений от R_1 .

Выводы.

- При проведении неинерционных измерений сняли R_2 двумя способами. Выяснили, что первый метод, при котором мы измеряем два значения сопротивления R_2', R_2'' , при которых максимальная разность напряжений на AB равна 200мB, точнее.
- Провели измерения неизвестной емкости двумя методами: неинерционного измерения (получили значение $C_x = (10,72 \pm 0,1)$ мкФ и инерционного $C_x = (10,84 \pm 0,15)$ мкФ)
- Определили, что измерения неинерционным метод имеют большую точность.