LABORATORIO

4

RESPUESTA EN FRECUENCIA DE AMPLIFICADORES

OBJETIVOS:

Determinar la banda de paso de un amplificador, las frecuencias de corte y obtener un diagrama de Bode del mismo.

En esta experiencia, el estudiante desarrollará las siguientes destrezas:

- Realizar teorética y experimentalmente el análisis aproximado para obtener las frecuencias de polo de un amplificador en emisor común, además de las frecuencias de corte inferior y superior.
- Predecir el comportamiento en frecuencia de un amplificador BJT en configuración de emisor común a través de la simulación.

MATERIALES:

- 1 transistor BJT NPN (2N2222, NTE 2321, etc.)
- Placa de pruebas (Protoboard or Breadboard)
- 3 capacitores de al menos 400 pF, 1 μF, 1.59 μF y 15.9 μF
- Resistores de 1 K, 2 K, 2 K, 50 K y 150 K.
- Multímetro
- Alambres para conexiones
- Generador de funciones
- 1 fuente de voltaje DC

PARTE I: PUNTO DE POLARIZACIÓN Y PARAMETROS A BAJA SEÑAL

Figura L4.1.

	generador. Rel		C_{π}	Сμ	h _{FE}	R_q	
	11	f_eta	σ_{π}	Ομ	TIFE	, rg	
	1.1.1 Defina	a los parámetro	s investigados f₁	, f_{β} .			
1.2	Dibuje el circuito para el análisis DC. Calcule el valor de $I_{B},\ I_{C}$ y V_{CE} .						
	$I_{B(calculada)} = $		$I_{C(\text{calculada})} = $		$V_{CE({ m calculada})} = $		
1.3	Dibuje el circuito	o para el análisis	s en pequeña se	ñal (ignore r_o)	. Calcule los valo	res de g_m y r_δ .	
	$g_{m(calculada)} = $			$ au_{\pi(ext{calculada})}$	=		
1.4	los valores del prespecto hágase	ounto 1.3, utilice ela a su profeso	una señal alterr r . $I_{C(simulada)} = $	na de frecuenci			
1.5	Arme el circuito mostrado en la Figura L4.1 en un protoboard, y mida experimentalmente los valores encontrados mediante simulación en el punto 1.4.						
	$I_{B(experimental)} = $		$I_{C(\exp eximental)} = 1$		$V_{CE(experimental)}$	=	
	$g_{m(experimental)} = $ _			$r_{\pi(ext{exp}\textit{erimento})}$	_{ul)} =		
1.6		mulados y expe	rimentales: se o	btienen aproxir	puntos 1.2 a 1.5, nadamente los m		
	RTE 2: CALCU ECUENCIA DE	_	_	POLO A BAJ	A FRECUENCIA	ΑY	
	baja señal, y las	resistencias equ		desde cada ur		aproximación de sadores grandes.	

 $\omega_{PC1} = \underline{\hspace{1cm}} \omega_{PC2} = \underline{\hspace{1cm}} \omega_{PC3} = \underline{\hspace{1cm}}$

	o el método de la apr a de corte inferior de		olo dominante de baja frecuencia, calcule la emisor común:	
	$\omega_{CI} = $		$f_{CI} = \underline{\hspace{1cm}}$	
		ma de las frecuer	ncias, calcule la frecuencia de corte inferior d	lel
	$\omega_{CI} = $		$f_{CI} = \underline{\hspace{1cm}}$	
2.4 Realice la simulada:		spuesta en frecu	encia para encontrar la frecuencia de corte in	nferior
	$\omega_{CI} = $		$f_{CI} = \underline{\hspace{1cm}}$	
		e, mediante la uti	lización del circuito de la Figura L4.1, la frecu	uencia
	$\omega_{CI} = $		$f_{CI} = \underline{\hspace{1cm}}$	
Qué dife خ 2.6 puede del		ntre las frecuenc	as de corte simulada y la experimental ?. ¿	A qué se
•			s métodos teóricos estudiados ?, ¿cuál da mexperimental ? y ¿ por qué ?.	ejores
	CALCULO DE FRE		POLO A ALTA FRECUENCIA Y	
baja seña		equivalentes vist	de frecuencias altas utilizando la aproximaci as desde cada uno de los condensadores pe ores numéricos.	
$\omega_{PC4} = _$		$\omega_{PC\pi} = $	$\omega_{PC\mu}=$	
	o el método de la apr a de corte superior d		olo dominante de alta frecuencia, calcule la n emisor común:	
	a de corte superior d	lel amplificador e		
frecuencia 3.3 Utilizando	a de corte superior d $\omega_{CI} =$	lel amplificador e ma de las consta	n emisor común:	
frecuencia 3.3 Utilizando	a de corte superior d $\omega_{CI}=$ o el método de la surficador en emisor co	lel amplificador e ma de las consta mún:	n emisor común: $f_{CI}=$ ntes de tiempo, calcule la frecuencia de corte	
frecuencia 3.3 Utilizando del amplif	a de corte superior d $\omega_{CI}=$ o el método de la surficador en emisor cor $\omega_{CI}=$	lel amplificador e ma de las consta mún:	n emisor común: $f_{CI} = $	e inferior
frecuencia 3.3 Utilizando del amplif 3.4 Realice la	a de corte superior d $\omega_{CI}=$ o el método de la surficador en emisor cor $\omega_{CI}=$ a simulación de la res	lel amplificador e	n emisor común: $f_{CI} = \underline{\hspace{1cm}}$ ntes de tiempo, calcule la frecuencia de corte $f_{CI} = \underline{\hspace{1cm}}$	e inferior

2.8 Encuentre experimentalmente,	mediante la utilización	del circuito de la F	Figura L4.1, la frecue	ncia
de corte superior del amplificac	lor:			

	Ć
$\omega_{CI} =$	$t_{cr} \equiv$
ω_{CI} —	$J \alpha = $

- 3.5 ¿ Qué diferencia encuentra entre las frecuencias de corte simulada y la experimental ?. ¿ A qué se puede deber ?.
- 2.9 ¿ Cuál es mejor aproximación de entre los dos métodos teóricos estudiados ?, ¿cuál da mejores resultados respecto a la frecuencia de corte experimental ? y ¿ por qué ?.
- 3.6 ¿ Cuál es la función del condensador C4?