MAT1140 - Oblig 2

Jon-Magnus Rosenblad

October 2018

Oppgave 1

Definisjon Vi sier en mengde er relevant til oppgaven om den er ikke-tom, totalt ordnet og endelig. En mengde som er relevant til oppgaven kaller vi en relevant mengde.

(i) Vi ønsker å vise at alle relevante mengder har et største element.

La A være en relevant mengde med kardinalitet |A|=1, dvs. mengden består av kun ett element a. Vi har at $a\geq a$, så a er det største elementet i A.

Anta at alle relevante mengder X med kardinalitet $|X| \leq k$ har et største element. Anta så at A er en relevant mengde med kardinalitet |A| = k + 1. Velg et vilkårlig element $a \in A$ og partisjonerer A i to disjunkte delmengder; $L_a = \{x \in A \mid x \leq a\}$ og $G_a = \{x \in A \mid x > a\}$. Her har vi to tilfeller: (1) $G_a = \emptyset$ og a er det største elementet, eller (2) G_a er en relevant mengde og $|G_a| \leq k$ (siden $a \notin G_a$). Siden G_a er en relevant mengde har finnes det et største element $g \in G_a$ mhp. G_a , men per definisjon av G_a har vi g > a, og siden g = a er transitiv har vi g = a and g = a er en relevant mengde har finnes det et største element for g = a and g =

Vi har dermed, ved induksjon, at alle relevante mengder har et største element.

(ii) La A være en relevant mengde med kardinalitet 1. Da finnes det bare én voksende bijeksjon $f: [0,1] \to A$, nemlig $f=\{(0,a)\}$ hvor a er det eneste elementet i A.

Anta at for alle relevante mengder X med kardinalitet k finnes det en og bare en voksende bijeksjon $g: \llbracket 0, k \llbracket \to X .$ La A være en relevant mengde med med kardinalitet k+1 og la a være det største elementet i A. Da finnes det en og bare en voksende bijeksjon $h: \llbracket 0, k \llbracket \to A \setminus \{a\} .$ Vi lager en ny avbildning $f: \llbracket 0, k+1 \rrbracket \to A$ ved å definere

$$f(x) = \begin{cases} h(x) & x \in [0, k[]\\ a & x = k+1 \end{cases}$$

Det er tydelig en surjeksjon, for om vi har en vilkårlig $y \in A$ har vi enten y = a eller $y \in A \setminus \{a\}$. Om y = a har vi f(k+1) = y, ellers har vi $(f \circ h^{-1})(y) = y$. Det er også tydelig en injeksjon, for om vi har $x, x' \in [0, k+1[x \neq x', må$

vi ha $x, x' \in [0, k[$ eller at en av x, x' = k + 1. Om $x, x' \in [0, k[$. Da har vi $f(x) = h(x) \neq h(x') = f(x')$ siden h er injektiv. Anta heller uten tap av generalitet at x = k + 1 og $x' \in [0, k[$. Da har vi f(x) = a og $f(x') = h(x') \neq a$. Dermed er f injektiv. Siden f er surjektiv og injektiv er den bijektiv.

La $f': \llbracket 0, k+1 \llbracket \to A$ være en annen strengt voksende bijeksjon. Da har vi enten f'(k+1) = a eller $f'(k+1) \neq a$. Anta f'(k+1) = a. Da har vi at $f'|_{\llbracket 0, k \rrbracket}: \llbracket 0, k \llbracket \to A \setminus \{a\}$ (dvs. restriksjonen av f' til $\llbracket 0, k \rrbracket$) er en bijeksjon, men da er $f'|_{\llbracket 0, k \rrbracket} = h$ fordi h er den eneste strengt voksende bijeksjonen fra $\llbracket 0, k \rrbracket$ til $A \setminus \{a\}$. Men da har vi f' = f.

Anta heller at $f'(k+1) \neq a$. Da har vi $f'(k+1) \in A \setminus \{a\}$ og $\exists n \in [0, k[-f'(n) = a]$. Men da har vi n < k+1 og f'(k+1) < f'(n) som motsier at f' er strengt voksende.

Dermed er f unik.

(iii) La A være en endelig mengde med kardinalitet n. Velg en vilkårlig bijeksjon $g: [0, n] \to A$. Denne bijeksjonen induserer en ordning \leq_g på A ved $g(a) \leq_g g(b) \iff a \leq b$ for alle $a, b \in [0, n]$. Denne ordningen er tydelig unik ettersom g er en bijeksjon.

La \mathcal{A} være mengden av bijeksjoner fra [0, n[til A og la \mathcal{G} være mengden av ordninger på A. La $\phi : \mathcal{A} \to \mathcal{G}$ være en avbildning definert ved $\phi(g) = \leq_g$.

Vi ser at \leq_g er total på A ettersom g er en bijeksjon og $\leq_{\mathbb{N}}$ er total på $[\![0,n[\![$. Vi ser også at under \leq_g er g voksende og dermed er g den unike voksende bijeksjonen fra $[\![0,n[\![$ på A, så ϕ er injektiv. Vi har også at hver ordning på A har en unik voksende bijeksjon fra $[\![0,n[\![$ til A, så ϕ er surjektiv. Dermed er ϕ en bijeksjon, så $|\mathcal{A}| = |\mathcal{G}|$.

La \leq være en vilkårlig ordning på A. Da finnes det en og bare en voksende bijeksjon $f: [0, n] \to A$ under ordningen \leq .

Videre definerer vi \mathcal{B} som mengden bijeksjoner fra $\llbracket 0, n \rrbracket$ til $\llbracket 0, n \rrbracket$ og $\sigma : \mathcal{B} \to \mathcal{A}$ ved $\sigma(h) = f \circ h$. Vi ser at for alle $l \in \mathcal{A}$ har vi $\sigma(f^{-1} \circ l) = l$, så σ er surjektiv. Videre vet vi at om vi $h, h' \in \mathcal{B}$ og $h \neq h'$, har vi $\sigma(h) = f \circ h \neq f \circ h' = \sigma(h)$ ettersom f er en bijeksjon, så σ er injektiv. Dermed er σ en bijeksjon.

La $\psi = \phi \circ \sigma : \mathcal{B} \to \mathcal{G}$. Siden ψ er en komposisjon av bijeksjoner er det en bijeksjon, så $|\mathcal{B}| = |\mathcal{G}|$.

Oppgave 2

Anta at A er en delmengde av $\mathbb N$ uten minste element. Da har vi at $[0,1] \cap A = \emptyset$ for ellers ville 0 vært et minste element i A ettersom det er det minste elementet i $\mathbb N$

Anta at $\llbracket 0, k \llbracket \bigcap A = \emptyset$. Da har vi at $\llbracket 0, k+1 \llbracket \bigcap A = \emptyset$ for ellers ville k+1 vært et minste element i A. Dermed har vi ved induksjon at $\forall n \in \mathbb{N} \quad \llbracket 0, n \llbracket \bigcap A = \emptyset$. Da må A være den tomme mengden, for ellers finnes det en $a \in A$, men vi har at $a \in \llbracket 0, a+1 \rrbracket$ og $\llbracket 0, a+1 \llbracket \bigcap A = \emptyset$, som er en motsigelse. Vi har derfor at alle ikke-tomme delmengder av \mathbb{N} har et minste element, så \mathbb{N} er velordnet.

Oppgave 3

La A være velordnet og $f: A \to A$ være strengt voksende. Anta for motsigelse at det finnes en $a \in A$ f(a) < a. Vi definerer følgen $\{u_n\}_{n \in \mathbb{N}}$ ved

$$u_0 = b$$

$$\forall n \in \mathbb{N} \quad u_{n+1} = f(u_n)$$

Anta for en vilkårlig $k \in \mathbb{N}$, $u_k < f(u_k) = u_{k+1}$. Da har vi $u_{k+1} = f(u_k) < f(u_{k+1})$ ettersom f er strengt voksende. Dermed har vi ved indusksjon $\forall n \in \mathbb{N}$ $u_n < f(u_n)$. Men dette er umilig siden da har ikke mengden av elementer i følgen noe minste element, som motsier at A er velordnet.

Oppgave 4

(i) La A, B være to ordnede mengder. Vi definerer en relasjon på $A \times B$ ved, for alle $(x, y), (x', y') \in A \times B$:

$$(x,y) \le (x',y') \Longleftrightarrow (x <_A x') \lor (x = x' \land y \le_B y')$$

Siden $x = x \land y \leq_B y$ for alle $(x,y) \in A \times B$ har vi $(x,y) \leq (x,y)$ og dermed er \leq refleksiv.

Videre har vi at om $(x,y) \le (x',y') \land (x',y') \le (x,y)$ har vi

$$((x <_A x') \lor (x = x' \land y \leq_B y')) \land ((x' <_A x) \lor (x = x' \land y' \leq_B y))$$

men vi kan ikke ha at både $(x <_A x') \land (x' <_A x)$ så vi må ha x = x', men da kan vi fortsatt ikke ha hverken $x <_A x'$ eller $x' <_A x$, så vi må ha både $y \leq_B y'$ og $y' \leq_B y$, men da har vi y = y', så (x,y) = (x',y'). Dermed er \leq antisymmetrisk.

Anta $(x,y) \leq (x',y')$ og $(x',y') \leq (x'',y'')$. Da har vi to muligheter for den første ulikheten, nemlig $x <_A x'$ eller $x = x' \wedge y \leq_B y$. Anta $x <_A x'$. Da har vi $x <_A x''$ så $(x,y) \leq (x'',y'')$. Anta så heller at x = x' og at $y \leq_B y'$. Da har vi x = x'' eller $x <_A x'' \wedge y \leq_B y''$ ved transitivitet av \leq_B , så $(x,y) \leq (x'',y'')$. Dermed er \leq transitiv.

Siden \leq er refleksiv, antisymmetrisk og transitiv er det en ordensrelasjon på $A\times B.$

(ii) Anta A, B er velordnet. La X være en vilkårlig ikketom delmengde av $A \times B$. Vi definerer $A' = \{a \in A \mid \exists b \in B \mid (a,b) \in X\}$. Siden A er velordnet og A' er ikke-tom, har A' et minste element. La α være dette minste elementet. Så definerer vi $B' = \{b \in B \mid (\alpha,b) \in X\}$. Siden B er velordnet og B' er ikke-tom har B' et minste element β . Vi har så at $(\alpha,\beta) \leq x$ for alle $x \in X \setminus (\{\alpha\} \times B')$ siden α er minste element i A'. Videre har vi at (α,β) er minste element i $\{\alpha\} \times B'$ siden β er minste element i B'. Dermed er (α,β) minste element i X.

Oppgave 5

(i) La A være en mengde med minst to elementer. Da finnes det to forskjellige elementer $a,b\in A$. Anta for motsigelse at $A^{\mathbb{N}}$ er tellbart. Da finnes en bijeksjon $\phi:\mathbb{N}\to A^{\mathbb{N}}$ slik at vi kan nummerere elementene i $A^{\mathbb{N}}$. Vi definerer så en avbildning $f:\mathbb{N}\to A$ definert ved

$$f(x) = \begin{cases} a & (\phi(x))(x) = b \\ b & \text{ellers} \end{cases},$$

men denne avbildningen er forskjellig fra alle andre avbildninger i $A^{\mathbb{N}}$, som er en motsigelse ettersom det er en avbildning i $A^{\mathbb{N}}$, så $A^{\mathbb{N}}$ er ikke-tellbar.

(ii) La $f: \mathbb{N} \to \{0,1\}$ være en avbildning. Vi definerer for hver f avbildningen $g_f: \mathbb{N} \to \mathbb{N}$ ved¹

$$g_f(n) = \begin{cases} n & f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) = 0\\ n+1 & f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) = 1 \land 2 \mid n\\ n-1 & f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) = 1 \land 2 \nmid n \end{cases}$$

La G være mengden av slike avbildninger og $\phi: \{0,1\}^{\mathbb{N}} \to G$ være avbildningen slik at $\phi(f) = g_f$. ϕ er tydelig en surjeksjon. Vi ser også at om vi har $f, f' \in \{0,1\}^{\mathbb{N}}$ og $f \neq f'$ må det finnes $n \in \mathbb{N}$ $f(n) \neq f'(n)$, men da har vi $g_f(2n) \neq g_{f'}(2n)$, og dermed er $g_f \neq g_{f'}$, så ϕ er en injeksjon. Dermed er ϕ en bijeksjon og $|G| = |\{0,1\}^{\mathbb{N}}|$.

Videre tar vi for oss en vilkårlig $g_f \in G$. Vi ser at $g_f \circ g_f = \mathrm{id}_{\mathbb{N}}$, så g_f er en bijeksjon. La $\overline{\mathbb{N}^{\mathbb{N}}}$ være mengden bijeksjoner fra \mathbb{N} til \mathbb{N} . Da har vi $G \subseteq \overline{\mathbb{N}^{\mathbb{N}}}$, så $|G| \leq \left|\overline{\mathbb{N}^{\mathbb{N}}}\right|$. Videre har vi at $\{0,1\}^{\mathbb{N}}$ er ikke-tellbar (fra forrige deloppgave) og $|G| = \left|\{0,1\}^{\mathbb{N}}\right|$, så G er ikke-tellbar, men da er heller ikke $\overline{\mathbb{N}^{\mathbb{N}}}$ tellbar.

 $^{^1}$ Visuelt kan den tolkes som at de naturlige tallene deles inn i par slik at hvert partall parres med det neste oddetallet. Om f(n)=1 byttes parnummer n plass og ellers forblir de slik de står.