통계학 (강좌) 중간고사 2 (16:00~18:00)

※ 답안지에 소속, 학번, 이름을 빠짐없이 기록하였는지 확인 후, 다음 물음에 대한 정답을 반드시 풀이 과정과 함께 잘 정리하여 제출하세요. 부정행위 (계산기 부정사용 포함) 적발 시 즉시 퇴실 조치할 것입니다.

- * 적절한 풀이과정이 없는 경우에는 정답으로 인정하지 않습니다.
- ※ 소수점 셋째자리까지 쓰세요.
- 1. (총 8점) 한 담배 제조회사에서는 새로 개발된 담배의 평균 타르 함량이 4mg 미만이라고 주장한다. 그 주장이 사실인가를 알아보기 위해 25개의 담배를 랜덤하게 선택해 타르 함량을 분석한 결과, 표본평균은 3.90mg, 표본표준편차는 0.14mg이었다. 다음 물음에 답하여라. 단, 전체 담배의 타르 함량은 정규분포를 따른다고 가정하자.
- (1) (3점) 담배의 평균 타르 함량에 대한 95% 신뢰구간을 구하여라.

$$\begin{array}{ll} (\frac{\pi}{\Xi} \circ \mathbb{I}) & \left(\overline{x} - t_{0.025}(n-1) \frac{s}{\sqrt{n}}, \ \overline{x} + t_{0.025}(n-1) \frac{s}{\sqrt{n}}\right) \\ & = \left(3.90 - 2.064 \frac{0.14}{\sqrt{25}}, \ 3.90 + 2.064 \frac{0.14}{\sqrt{25}}\right) \\ & = (3.842, \ 3.958) \end{array}$$

(2) (5점) 담배 회사의 주장은 타당하다고 할 수 있는가? 유의수준 5%에서 이를 검정하여라.

(풀이) 담배의 평균 타르함량을 μ 라고 하자

가설 : $H_0: \mu = 4$ $H_1: \mu < 4$

모집단의 분포는 정규분포를 따르므로 표본평균의 분포 역시 정규분포를 따른다.

검정통계량 : $\frac{\overline{X} - \mu_0}{s/\sqrt{n}} = \frac{3.9 - 4}{0.14/\sqrt{25}} = -3.571$ 이고 검정통계량은 t(24)의 분포를 따른다.

기각역 : $T \le -t_{0.05}(24) = -1.711$ 이므로 검정통계량은 기각역에 속한다. 따라서 유의수준 5%에서 귀무가설을 기각할 수 있다. 즉, 담배 회사의 주장은 타당하다고 말할 수 있다.

2. (8점) 토지 개발공사가 위촉한 두 명의 토지평가사 (A,B)의 감정가액에 차이가 있는가를 알아보기 위하여 8개의 특정지역을 선택하여 두 평가사에게 감정을 의뢰하여 구한 자료가 다음과 같다. 두 평가사의 감정결과가 동일하다고 볼 수 있는가에 대하여 유의수준 5%에서 검정을 실시하여라. 또한, 이 검정에 필요한 <u>합리적인 가정</u>을 함께 쓰시오.

지역	1	2	3	4	5	6	7	8
평가사 A	36	48	40	55	29	43	36	39

ſ									
	평가사 B	35	47	37	51	29	41	35	39
- 1	•								

(풀이) 주어진 자료는 대응표본이므로 다음과 같은 대응비교를 실시한다.

각 지역별 감정가액의 차이를 $D_i = A_i - B_i$ 로 정의하면 d = 1.5, $s_d = 1.414$ 이다.

가설 : $H_0: \mu_D=0$ $H_1: \mu_D \neq 0$

차이의 모집단이 정규분포를 따른다는 가정 하에 \overline{D} 는 정규분포를 따른다.

검정통계량 : $\frac{\overline{D} - \mu_0}{S_d / \sqrt{n}} = \frac{1.5 - 0}{1.414 / \sqrt{8}} = 3.00$ 이고 검정통계량은 t(7)의 분포를 따른다.

기각역 : $|T| \ge t_{0.025}(7) = 2.365$ 이므로 검정통계량은 기각역에 속한다. 따라서 유의수준 5%에서 귀무가설을 기각할 수 있다.

3. (총 17점) 제한속도가 $100 \mathrm{km/h0}$ 고속도로에 과속을 방지하기 위해 무인 단속기를 설치하였다. 이 무인 단속기는 4개의 속도 측정 센서에서 측정한 속도 X_1, \cdots, X_4 의 평균값 $\overline{X} = \frac{1}{4} \sum_{i=1}^4 X_i$ 이 유의수준 5%에서 $100 \mathrm{km/he}$ 넘었다는 강한 증거가 있을 때 과속으로 판정하고 있다. 자동차의 순간 속도가 μ km/h일 때 각각의 센서에서 측정되는 속도는 서로 독립이고 평균이 μ , 분산이 σ^2 인 정규분포를 따른다고 할 때 다음 물음에 답하시오.

(1) (2점) 자동차의 과속 여부를 판정하기 위한 귀무가설과 대립가설을 제시하시오.

(풀이) $H_0: \mu = (\leq)100 \text{ vs } H_1: \mu > 100$

(2) (5점) 모표준편차 $\sigma = 4({\rm km/h})$ 임이 알려져 있다고 하자. 이 때, 자동차를 과속으로 판정하게 되는 속도의 평균값의 범위를 구하시오.

(풀이) 실제 속도가 μ km/h인 자동차에 대해 4개의 센서에서 측정한 평균속도를 \overline{X} 라 하면 $\overline{X}\sim N(\mu,4^2/4)=N(\mu,2^2)$ 이고 귀무가설 하에서 $Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$ 이다. 유의수준이 5% 이므로

$$0.05 = P \left[Z \ge \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right] = P \left[Z \ge \frac{\overline{x} - 100}{4 / \sqrt{4}} \right]$$
에서 $\frac{\overline{x} - 100}{4 / \sqrt{4}} = z_{0.05} = 1.645$ 를 만족한다.

따라서 $\overline{X} \ge 100 + 2 \times 1.645 = 103.29$ 이다. 즉, 속도의 평균값이 103.29를 넘으면 과속으로 판정한다.

(3) (5점) 이번에는 모표준편차를 모른다고 가정하자. 4개의 속도 측정 센서에서 측정한 속도의 표본 표준편차가 4(km/h) 일 때, 자동차를 과속으로 판정하게 되는 속도의 평균값의 범위를 구하시오.

(풀이) 모표준편차를 모를 때, 스튜던트화 된 표본평균의 분포는 t-분포를 따름을 이용한다. 실제 속도가 $\mu {
m km/h}$ 인 자동차에 대해 4개의 센서에서 측정한 평균속도를 \overline{X} 라 하면 귀무가

설 하에서 스튜던트화 된 표본평균의 분포는
$$T=rac{X-\mu_0}{S/\sqrt{n}}\sim t(n-1)$$
이다.

유의수준이 5%이므로

$$0.05 = P\left[T \ge \frac{\overline{x} - \mu_0}{s/\sqrt{n}}\right] = P\left[T \ge \frac{\overline{x} - 100}{4/\sqrt{4}}\right]$$
에서 $\frac{\overline{x} - 100}{4/\sqrt{4}} = t_{0.05}(3) = 2.353$ 를 만족한다.

따라서 $\overline{X} \ge 100 + 2 \times 2.353 = 104.706$ 이다. 즉, 속도의 평균값이 104.706을 넘으면 과속으로 판정한다.

(4) (5점) 실제 속도가 102.5 km/h인 자동차를 과속이 아닌 것으로 판정하게 될 확률을 1%이하로 줄이려면 몇 개의 센서를 사용해야 하는지 구하시오. 단, 모표준편차가 $\sigma = 4(\text{km/h})$ 임이 알려져 있다고 하자.

(풀이) 센서의 개수(표본의 크기)를 늘리면 표본평균의 분산이 줄어들어 판정의 정확도가 높아지게 된다. 실제 속도가 102.5km/h인 자동차를 과속이 아닌 것으로 판정하게 될 확률은 제 2종 오류가 발생할 확률이다.

$$\begin{split} 0.01 & \geq P\bigg[\frac{\overline{X} - 100}{4/\sqrt{n}} \leq 1.645 \,|\, \mu = 102.5\bigg] = P\bigg[\frac{\overline{X} - 102.5}{4/\sqrt{n}} + \frac{102.5 - 100}{4/\sqrt{n}} \leq 1.645 \,|\, \mu = 102.5\bigg] \\ & = P\bigg[Z \leq \frac{100 - 102.5}{4/\sqrt{n}} + 1.645\bigg] = P[Z \leq -0.625 \,\sqrt{n} + 1.645] \end{split}$$

이므로 $-0.625\sqrt{n}+1.645 \le z_{0.99}=-2.33$ 이다.

따라서
$$n \ge \left(\frac{-2.33 - 1.645}{0.625}\right)^2 = 40.4496$$
, 즉 41개 이상의 센서를 이용하여야 한다.

4. (총 13점) 모 마트에서는 개업 5주년을 맞이하여 추첨을 통해서 사은품을 지급하는 이벤트를 진행하려고 한다. 이를 위해 총 28개의 제비 중 당첨제비가 13개 들어 있는 주머니(A)를 사용한다고 공지를 하였다. 하지만 당첨 확률을 낮추기 위해 28개의 제비 중 당첨제비가 7개들어 있는 주머니(B)로 바꿔치기를 했다는 제보가 있어 검사해 보려고 한다. 즉, 다음과 같은 가설을 검증하려고 한다.

 H_0 : 주머니가 A이다 vs. H_1 : 주머니가 B이다.

갑과 을은 각각 다음과 같은 방식으로 귀무가설 (H_0) 의 기각여부를 결정하자고 제안했다.

갑: "주머니에서 제비를 임의로 2개 뽑아, 2개 모두 비당첨제비이면 귀무가설을 기각하겠다."을: "두 개의 주사위를 동시에 던져서 눈의 합이 5 이하이면 귀무가설을 기각하겠다."

(1) (5점) 갑, 을의 방식으로 가설을 검증할 때, 제 1종의 오류를 범할 확률을 각각 구하라. (풀이)

 $Type\ 1\ error_{\mathring{\mathbf{t}}} = P\left($ 두개모두비당첨제비가나오는사건|A|주머니)

$$= \frac{15}{28} \times \frac{14}{27} = \frac{5}{18}$$

 $Type\ 1\ error_{\frac{9}{2}}=P\ (눈의합이5이하인사건 |\ A$ 주머니) $=\frac{10}{26}=\frac{5}{18}$

(2) (5점) 갑, 을의 방식으로 가설을 검증할 때, 제 2종의 오류를 범할 확률을 각각 구하라. (풀이)

 $Type \ 2 \ error_{\mathring{\mathbf{t}}} = P \ ($ 적어도하나의당첨제비가나오는사건 $| \ B \$ 주머니)

$$=1-\frac{21}{28}\times\frac{20}{27}=\frac{4}{9}$$

 $Type \ 2 \ error_{\hat{=}} = P \ (눈의합이6이상인사건| B 주머니)$

$$=1-\frac{5}{18}=\frac{13}{18}$$

(3) (3점) 위 결과를 바탕으로 갑과 을 중에 누가 제안한 검증 방식이 더 좋은지를 간략하게 기술하시오.

(풀이) 갑과 을의 방식은 동일한 Type 1 error를 가지므로 Type 2 error가 작은 갑의 방식이 더 좋은 방식이다.

5. (8점) 연령이 비슷한 정상인 (x_1) 10명과 정신장애인 (x_2) 10명에 대하여 뇌세포 조직을 조사하여 특정효소활동에 의해 1시간 동안 생성되는 물질의 양을 조사한 결과 다음의 결과를 얻었다.

$$\overline{x_1} = 42.3$$
 $s_1 = 12.1$ $\overline{x_2} = 36.5$ $s_2 = 5.1$

정상인의 평균수치가 정신장애인의 평균수치보다 더 크다고 할 수 있는지 유의수준 5%에서 검정하시오. 두 모집단의 분포는 정규분포를 따른다고 가정하자.

또한, 필요시 다음과 같은 t 분포의 근사자유도를 사용하시오.

$$df = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{1}{n_1 - 1}(S_1^2/n_1)^2 + \frac{1}{n_2 - 1}(S_2^2/n_2)^2}$$

(풀이) 정상인의 모집단을 $N(\mu_1,\sigma_1^2)$ 이라고 하고 정신 장애인의 모집단을 $N(\mu_2,\sigma_2^2)$ 라고 하자. 주어진 문제는 독립 이표본 검정문제 이므로 모평균의 비교에 앞서 등분산 여부에 관한 사전 검정을 시행한다.

가설:
$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2
eq \sigma_2^2$

검정 통계량 : $f = \frac{S_1^2}{S_2^2} = \frac{146.41}{26.01} = 5.6290$ 이고 검정통계량은 F(9,9)의 분포를 따른다.

기각역 : $F \geq F_{0.025}(9,9) = 4.026$ or $F \leq F_{0.975}(9,9) = \frac{1}{F_{0.025}(9,9)} = 0.2483$ 이므로 검정

통계량은 기각역에 속한다. 따라서 귀무가설을 기각 할 수 있고, 두 분산의 차이가 있다고 말할 수 있다.

분산 검정 결과에 따라 이분산 가정 독립 이표본 검정을 시행한다.

가설 :
$$H_0: \mu_1 - \mu_2 = 0$$
 $H_1: \mu_1 - \mu_2 > 0$

검정통계량:
$$t = \frac{(\overline{x_1} - \overline{x_2}) - 0}{\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}} = \frac{42 \cdot 3 - 36 \cdot 5}{\sqrt{\frac{146 \cdot 41}{10} + \frac{26 \cdot 01}{10}}} \approx 1.3968 \quad \text{이고 검정통계량은 근사적으로}$$

t(12)의 분포를 따른다.

$$\therefore df = \frac{(146.41/10 + 26.01/10)^2}{1/9 \cdot (146.41/10)^2 + 1/9 \cdot (26.01/10)^2} = 12.09989 \approx 12$$

기각역 : $T \ge t_{0.05}(12) = 1.782$ 이므로 검정통계량의 관측값은 기각역에 속하지 않는다. 따라서 귀무가설을 기각할 수 없다. 즉, 정상인의 평균수치가 정신장애인의 평균 수치에 비해 더 크다고 할 수 없다.

- 6. (총 8점) 최근에 한 조사기관에서는 대학졸업자 중에서 20%가 자신의 전공을 살릴 수 있는 직장에 입사한다고 발표하였다. 그러나 대학졸업자들이 결과에 대해 이의를 제기하자 이 발표가 사실인가를 알아보기 위하여 400명의 대학졸업자를 임의로 선발하여 조사한 결과 100명이 전공을 살릴 수 있는 직장에서 일하고 있었다.
- (1) (5점) 조사기관의 발표가 타당하다고 할 수 있는지를 유의수준 5%에서 검정하여라.

 $(풀 \circ)$ 자신의 전공을 살릴수 있는 직장에 입사한 대학 졸업자의 비율을 p 라고 하자.

가설 :
$$H_0: p = 0.2$$
 $H_1: p \neq 0.2$

검정 통계량 : $np_0 = 400 \times 0.2 \ge 5$, $n(1-p_0) = 400 \times 0.8 \ge 5$ 이므로

$$\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} = \frac{0.25-0.2}{\sqrt{0.2(1-0.2)/400}} = 2.5$$
 이고 검정통계량은 $N(0,1)$ 의 분포를 따른다.

기각역 : $|Z| \ge z_{0.025} = 1.96$ 이므로 검정통계량은 기각역에 속하므로 귀무가설을 기각할 수 있다. 따라서 조사기관의 발표는 타당하다고 볼 수 없다.

(2) (3점) 모비율에 대한 95% 신뢰구간을 구하시오.

(플이)
$$\left(\hat{p} - z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{0.025}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

= $\left(0.25 - 1.96\sqrt{\frac{0.25(1-0.25)}{400}}, 0.25 + 1.96\sqrt{\frac{0.25(1-0.25)}{400}}\right)$
= $(0.208, 0.292)$

- 7. (총 20점) A과목에 대한 새로운 학습법이 개발되었다. 새롭게 개발된 학습법을 통한 학생들의 학습 성취도를 평가하려 한다. 정확한 평가를 위해 O/X 문제를 출제하여 A과목에 대한 사전지식이 있는 학생들을 실험 대상에서 제외하려고 한다. "사전 지식이 전혀 없는 학생은 O/X문제의 정답률이 50%이다"라고 가정하고 다음 물음에 답하시오.
- (1) (5점) (표본의 크기가 작은 경우) 학생들에게 O/X 문제를 5문제씩 출제하여 A과목에 대한 사전지식이 있는다는 강한 증거가 있을 때 해당 학생을 실험 대상에서 제외한다고 할 때 몇 문제 이상 맞힌 학생을 제외하는 것이 타당한지 설명하시오. (단, 유의수준은 5%)
- 1) $H_0: p=1/2$ (사전 지식이 없다) vs $H_1: p>1/2$ (사전 지식이 있다)로 두고 유의수준 5%에서 검정을 실시한다.

맞힌 문제 수를 X 라 하면 귀무가설하에서 $X \sim B(5,1/2)$ 이고

유의확률
$$P(X \ge x) = \sum_{k=x}^5 C_k \frac{1}{2^5}$$
는 다음과 같다.

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5
p-value	1.000	0.969	0.813	0.500	0.188	0.031

따라서 유의수준이 5%인 경우 5문제 모두 맞힌 학생을 실험대상에서 제외하면 된다.

- (2) (5점) (1)과 같은 방법으로 사전지식이 있는 학생을 제외하였을 때 실제로는 사전지식이 있어 정답률이 80%인 학생을 실험대상에서 제외하지 못하게 될 확률을 구하시오.
- (풀이) 정답률이 80%인 학생이 5문제를 풀어서 <math>x문제를 맞힐 확률은

$$P(X \ge x) = {}_5C_x(rac{4}{5})^x(rac{1}{5})^{5-x}$$
이므로 이 학생이 5문제 중 하나라도 틀릴 확률은

$$1 - P(X = 5) = 1 - {}_5C_5(\frac{4}{5})^5 \approx 1 - 0.328 = 0.672$$
이다.

따라서, 정답률이 80%인 학생을 사전 지식이 없는 것으로 판단할 확률은 67.2%이다.

(3) (5점) (표본의 크기가 큰 경우) (2)와 같은 문제점을 파악한 실험자는 문제수를 25문제로 늘렸다고 한다. 이제 몇 문제 이상 맞힌 학생을 실험대상에서 제외하는 것이 좋은지 구하고, 이 경우 실제로는 사전지식이 있어 정답률이 80%인 학생을 실험대상에서 제외하지 못하게 될 확률을 구하시오.

 $(풀 \circ)$ n = 25로 충분히 크므로 정규근사를 이용할 수 있다.

25문제 중 정답 수를 X라 하면 H_0 하에서 $X \sim B(25,1/2) pprox N(25/2,(5/2)^2)$ 이고

유의수준 5%에서 기각역은
$$X \geq \frac{25}{2} + z_{0.05} \frac{5}{2} \approx 16.6$$
이다.

따라서, 17문제 이상 맞힌 학생을 실험대상에서 제외하면 된다.

이 때, 정답률이 80%인 학생이 정답을 맞힌 문제수를 Y 라 하면

 $Y \sim B(25,4/5) pprox N(20,2^2)$ 이므로

이 학생이 맞힌 문제의 수가 16 이하일 확률을 구하면

$$P(Y \le 16.5) = \Phi(\frac{16.5 - 20}{2}) \approx 0.040$$
 (연속성 수정을 고려)이다.

즉 정답률이 80%인 학생이 실험 대상에 포함될 확률은 4%로 낮아진다.

(4) (5점) (3)과 같은 방법으로 선택한 실험대상 학생 5명의 점수가 다음과 같다. 이 학생들의 정답률에 차이가 있다고 할 수 있는지 검정하시오. (단, 유의수준은 5%)

	학생1	학생2	학생3	학생4	학생5	평균
정답 수	12	16	11	15	11	13
오답 수	13	9	14	10	14	12

(풀이) $H_0: p_1=p_2=\cdots=p_5=p$ (정답률이 동일하다) vs $H_1:/$ (정답률에 차이가 있다)로 두고 유의수준 5%에서 검정을 실시한다.

문제 수가 동일하므로 학생별 정답과 오답의 기대도수는 각각 13과 12로 동일하고 관측도수와 기대도수의 차이의 제곱은 아래 표와 같다.

	학생1	학생2	학생3	학생4	학생5	합계
정답 수	1	9	4	4	4	22
오답 수	1	9	4	4	4	22

각 셀별 기대도수가 모두 5 이상으로 충분히 크므로 카이제곱 검정을 할 수 있으며

카이제곱통계량
$$\chi_0^2=\sum_{i=1}^5\sum_{j=1}^2\frac{(O_{ij}-\widehat{E_{ij}})^2}{\widehat{E_{ij}}}=rac{22}{13}+rac{22}{12}pprox 3.526$$
이고

 $\chi^2(4)$ 인 분포를 따르므로 유의수준 5%에서 $\chi^2_0=3.526 \le \chi^2_{0.05}(4)=9.488$ 로 귀무가설을 기각할 수 없다.

즉, 학생들의 정답률이 동일하다는 귀무가설을 기각할 수 없다.

8. (8점) 어느 회사에서 1일 3교대로 작업을 하고 있다. 작업조에 따라 불량률이 다른지를 알아보기 위해 주간조에서 생산한 150개, 야간조에서 120개와 심야조에서 130개를 뽑아 불량품과 양호품의 개수를 조사한 결과가 다음과 같다.

작업조 상태	주간	야간	심야	합계
불량품	25	20	15	60
양호품	125	100	115	340
합계	150	120	130	400

작업조에 따른 제품의 불량률은 차이가 있는가? 유의수준 5%에서 이를 검정하시오.

(풀이) 주어진 자료는 동질성 검정을 위한 표본 설계 방법을 따르고 있다. 따라서 적절한 가설 은 다음과 같다.

 H_0 : 작업조에 따른 불량률은 모두 동일하다.

 $H_{\!\scriptscriptstyle 1}$: 작업조에 따른 불량률은 모두 동일하지 않다. (Not $H_{\!\scriptscriptstyle 0}$)

각 셀별 기대도수는 다음과 같다.

작업조 상태	주간	야간	심야
불량품	22.5	18	19.5
양호품	127.5	102	110.5

검정통계량 :
$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = 1.81$$

기각역 : $\chi^2 \ge \chi^2_{0.05}(2) = 5.99$ 이므로 검정통계량은 기각역에 속하지 않는다. 따라서 귀무가설을 기각할 수 없다. 즉, 작업조에 따른 불량률은 차이가 없다고 볼 수 있다.

- 9. (총 10점, 각 2점) 다음 명제에 대하여 맞으면 O, 틀리면 X로 답하시오.
- (1) 유의수준 0.05에서 귀무가설 H_0 을 기각시키지 못했더라도 유의수준 0.01에서 귀무가설 H_0 을 기각시킬 수 있다.(X)
- (2) 유의확률이 0.1일 때 귀무가설을 기각하게 되는 유의수준의 최대값은 0.1이다.(X)
- (3) 가설검정에서 제 1종의 오류를 범할 확률과 제 2종의 오류를 범할 확률의 합은 1이다. (X
- (4) 모비율에 대한 이표본 z-검정과 카이제곱통계량을 이용한 2×2 분할표에 대한 동질성 검정의 결과는 일치한다. (\bigcirc)
- (5) 표본분산과 모분산이 정확히 일치하는 경우 t-분포를 이용해 구한 신뢰구간이 정규분포를 이용하여 구한 신뢰구간에 비해 더 넓다. (\bigcirc)

표준 정규 분포표 $P(Z \le Z)$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

t 분포표 χ^2 분포표 $t_{\alpha}\colon P(T\geq t_{\alpha})=\alpha,\ T\sim t(df) \qquad \chi^2_{\alpha}\ \colon\ P(\chi^2\geq \chi^2_{\alpha})=\alpha,\ \chi^2\sim \chi^2(df)$

df \ α	0.10	0.05	0.025	0.01	df \ α	0.975	0.95	0.90	0.10	0.05	0.025
1	3.078	6.31	12.71	31.82	1	0.00	0.00	0.02	2.71	3.84	5.02
2	1.886	2.920	4.303	6.965	2	0.05	0.10	0.21	4.61	5.99	7.38
3	1.638	2.353	3.182	4.541	3	0.22	0.35	0.58	6.25	7.81	9.35
4	1.533	2.132	2.776	3.747	4	0.48	0.71	1.06	7.78	9.49	11.14
5	1.476	2.015	2.571	3.365	5	0.83	1.15	1.61	9.24	11.07	12.83
6	1.440	1.943	2.447	3.143	6	1.24	1.64	2.20	10.64	12.59	14.45
7	1.415	1.895	2.365	2.998	7	1.69	2.17	2.83	12.02	14.07	16.01
8	1.397	1.860	2.306	2.896	8	2.18	2.73	3.49	13.36	15.51	17.53
9	1.383	1.833	2.262	2.821	9	2.70	3.33	4.17	14.68	16.92	19.02
10	1.372	1.812	2.228	2.764	10	3.25	3.94	4.87	15.99	18.31	20.48
11	1.363	1.796	2.201	2.718	11	3.82	4.57	5.58	17.28	19.68	21.92
12	1.356	1.782	2.179	2.681	12	4.40	5.23	6.30	18.55	21.03	23.34
13	1.350	1.771	2.160	2.650	13	5.01	5.89	7.04	19.81	22.36	24.74
14	1.345	1.761	2.145	2.624	14	5.63	6.57	7.79	21.06	23.68	26.12
15	1.341	1.753	2.131	2.602	15	6.26	7.26	8.55	22.31	25.00	27.49
16	1.337	1.746	2.120	2.583	16	6.91	7.96	9.31	23.54	26.30	28.85
17	1.333	1.740	2.110	2.567	17	7.56	8.67	10.09	24.77	27.59	30.19
18	1.330	1.734	2.101	2.552	18	8.23	9.39	10.86	25.99	28.87	31.53
19	1.328	1.729	2.093	2.539	19	8.91	10.12	11.65	27.02	30.14	32.85
20	1.325	1.725	2.086	2.528	20	9.59	10.85	12.44	28.41	31.41	34.17
21	1.323	1.721	2.080	2.518	21	10.28	11.59	13.24	29.62	32.67	35.48
22	1.321	1.717	2.074	2.508	22	10.98	12.34	14.04	30.81	33.92	36.78
23	1.319	1.714	2.069	2.500	23	11.69	13.09	14.85	32.01	35.17	38.08
24	1.318	1.711	2.064	2.492	24	12.40	13.85	15.66	33.20	36.42	39.36
25	1.316	1.708	2.060	2.485	25	13.12	14.61	16.47	34.38	37.65	40.65

F 분포표 $F_{0.05}:\ P(F\!\ge\!F_{0.05})\!=\!0.05,\, F\!\sim\!F(df_1,\!df_2)$

							df_1						
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	161.4	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.91	244.69
2	18.51	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396	19.405	19.413	19.419
3	10.12	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	8.763	8.745	8.729
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.936	5.912	5.891
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	4.655
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.027	4.000	3.976
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637	3.603	3.575	3.550
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347	3.313	3.284	3.259
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.102	3.073	3.048
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.943	2.913	2.887
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.818	2.788	2.761
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.717	2.687	2.660
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.635	2.604	2.577
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.565	2.534	2.507
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.507	2.475	2.448

F 분포표 $F_{0025}:\ P(F \ge F_{0025}) \!=\! 0.025,\ F \!\sim\! F(\!df_1,\!df_2)$

							df_1						
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	647.7	799.50	864.16	899.58	921.84	937.11	948.21	956.65	963.28	968.62	973.02	976.70	979.83
2	38.50	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387	39.398	39.407	39.415	39.421
3	17.44	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473	14.419	14.374	14.337	14.304
4	12.21	10.649	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.844	8.794	8.751	8.715
5	10.00	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.568	6.525	6.488
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.410	5.366	5.329
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.709	4.666	4.628
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295	4.243	4.200	4.162
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.912	3.868	3.831
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.665	3.621	3.583
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3.526	3.474	3.430	3.392
12	6.554	5.096	4.474	4.121	3,891	3.728	3.607	3.512	3.436	3.374	3.321	3.277	3.239
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.197	3.153	3.115
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	3.095	3.050	3.012
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	3.008	2.963	2.925