GEL-1001 Design I (méthodologie)

Méthodologie du design - Introduction Hiver 2020

Département de génie électrique et de génie informatique

Plan de la partie 1

- Design
- Contexte d'ingénierie
- Pourquoi une méthodologie ?
- Projet multi-étapes

Design - Définition

- ☐ Le terme design est couramment utilisé pour décrire l'apparence extérieure ou l'aspect esthétique d'un objet.
- ☐ En ingénierie, ce terme a une définition beaucoup plus étendue qui englobe tous les aspects de la conception d'un produit, à partir de la reconnaissance du besoin jusqu'à sa mise en service.

Design - Les démarches

✓ Les démarches prescriptives (prédictives)

La démarche prescriptive permet d'aborder un problème avec méthode et rigueur en adoptant une approche systématique. Une telle approche insiste sur la nécessité de définir de façon exhaustive un problème avant de s'attarder à proposer des solutions.

✓ Les démarches descriptives (adaptatives)

Ce type de démarche s'apparente à un processus itératif de conception par essais et erreurs, l'équipe de concepteurs part souvent d'un concept de solution envisagé au lieu de considérer la racine du problème.

Contexte d'ingénierie...

- Environnement dynamique
 - Évolution des besoins
 - Progrès scientifiques et technologiques rapides
 - Contexte économique et environnemental
 - Progrès de la concurrence
- Engagement et responsabilité
 - Sécurité, atteinte des performances, etc.
- Éthique

Contexte d'ingénierie...

Des projets de plus en plus complexes

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 Année

Contexte d'ingénierie...

Des projets multi-disciplinaires

- Complexe hydro électrique de la Baie James
 - √ 1700 m³/s 548 m de dénivelée 176 000 km²
 - 9 000 MW de potentiel
 - 1000 km de routes 200 M\$
 - √ 5 villes 5 aéroports 215 digues 3 centrales
 - Échéancier 20 ans
- Équipes d'ingénieurs et d'autres professionnels
 - Géologues, miniers
 - Hydrologues, civils
 - Chimistes
 - Électriciens, mécaniciens, informaticiens

Contexte d'ingénierie

Pourquoi une méthodologie?

- Pour maximiser les chances de réussite du projet
 - en encadrant la créativité
 - en gérant
 - ✓ la complexité
 - ✓ l'incertitude et les risques
 - ✓ la multitude de solutions
 - ✓ les ressources
 - en assurant
 - ✓ la rigueur
 - ✓ la documentation

Méthodologie de design

Il n'existe pas une méthodologie unique de conception de produit

Dans un cadre général

- ☐ Réalisation d'étapes successives et indépendantes dont les objectifs sont clairement définis en tout début de parcours.
- Chaque étape est complétée par une phase d'évaluation, qui porte l'appellation de portail.
- ☐ L'utilisation d'une telle approche permet de réduire les risques de faire fausse route en cours de projet.

Dans le cadre de Design I (méthodologie)

- Les étapes sur lesquelles le processus utilisé dans le cours insiste s'étendent de la définition des caractéristiques du produit à l'obtention d'une solution optimale, en passant par la proposition de plusieurs idées de solutions.
- ☐ Ces étapes ne reflètent qu'une fraction (moitié) de la structure de gestion d'un projet multi-étapes.

1. ÉTAPES

□ Périodes d'une durée prédéterminée au cours desquelles les tâches sont accomplies par l'équipe de travail.

Étape de travail typique

(Tirée de Buttrick, 2002)

2. PORTAILS

- □ Les portails sont des éléments ponctuels qui permettent d'évaluer l'atteinte des objectifs d'une étape et de valider la pertinence de poursuivre le projet.
- - ✓ La viabilité du projet Le projet est-il viable en lui-même? La stratégie de l'entreprise est-elle respectée? Les risques associés sont-ils acceptables?
 - ✓ La priorité du projet
 - Est-ce que des projets plus importants sont à entreprendre ou à poursuivre au détriment de ce projet? Le projet risque-t-il de mettre en péril des projets prioritaires?
 - ✓ L'état des finances
 - L'entreprise a-t-elle les ressources financières nécessaires à la poursuite du projet?

3. STRUCTURE D'UN PROJET DE CONCEPTION EN INGÉNIERIE

Définition du problème

- Pierre angulaire du projet
- Analyse détaillée des besoins du client
- Éléments à définir
 - Besoins : données et contraintes du problème
 - Objectifs : résultats attendus
 - Cahier des charges : critères d'évaluation
- Fin lorsque l'équipe dispose de suffisamment d'information pour la recherche de concepts
- Livrables : proposition et cahier des charges

Études initiales...

Analyse fonctionnelle

- Décomposition fonctionnelle du problème en sous-problèmes indépendants
- Diagramme fonctionnel montrant les intrants, les fonctions et les extrants du système

Élaboration de concepts

- Inventaire de toutes les idées susceptibles d'aider à résoudre les sous-problèmes
- Classification des idées selon les fonctionnalités
- Proposition de concepts viables, complets et variés
- Rédaction des descriptions de concepts

Études initiales

- Analyse de faisabilité
 - Première épuration des concepts
 - Procurer rapidement l'information sur les chances de réussite ou de faillite du projet
 - Brève étude des concepts
 - Respectent-ils les contraintes ?
 - Atteignent-ils un seuil minimal de performance ?
 - Synthèse de faisabilité sous forme de tableau pour évaluer les aspects :
 - Physiques, économiques, temporels et socioenvironnementaux

Études détaillées...

Développement de solutions

- Retour sur la définition du problème
- Développement de concepts de solution globaux pour quantifier la performance en fonction du cahier des charges
- Rapport de développement présenté sous forme de tableau synthèse

■ Évaluation et sélection

- Réévaluation de la pertinence des critères d'évaluation en fonction des nouvelles informations obtenues
- Rapport d'évaluation : i) Élaboration d'une matrice décisionnelle pour permettre un choix objectif, ii) Analyse du choix du concept de solution global retenu

Études détaillées

Raffinement et mise en plan

- La solution retenue ne répond pas nécessairement de façon optimale à l'ensemble des critères de sélection
- Correction d'éventuels éléments négatifs subsistants
- Plan de raffinement : stratégie proposée pour combler les lacunes

Prototypage

- Premier exemplaire d'un produit construit avant la fabrication en série
- Validation expérimentale de certaines fonctionnalités du produit dans le cadre d'essais préliminaires
- Permettent de raffiner le concept

Validation

Essais expérimentaux

- Élaboration d'un plan d'essais
- Validations effectuées sur les prototypes en environnement rigoureusement contrôlé
- Les résultats des essais expérimentaux sont souvent nécessaires à l'obtention d'un prototype complet

Essais bêtas

- Validations sur des prototypes complets, dans des conditions d'utilisation réelles
- Rapports de validation
- Rapport d'avancement « prêt pour la mise en service »

Mise en service

Achèvement et transfert

- Diffusion du produit à l'extérieur de l'entreprise
- Mise à la disposition du marché et des utilisateurs

Retrait

- Rapport de clôture de projet : document interne à l'organisation qui résume toute information associée au projet dans son ensemble
- Bases qui conditionnent une éventuelle nouvelle collaboration entre les parties

Revue post-implémentation

Quelques mois après la fin du projet, la revue post-implémentation vérifie si le projet a atteint ses objectifs et si ses résultats sont conformes aux attentes initiales.

6

La revue post-implémentation n'a pas lieu immédiatement après la mise en service pour que les résultats du projet puissent être évalués.

Plan de la partie 2

Méthodologie préconisée

■ Liens avec le rapport à livrer

Méthodologie préconisée...

Processus de conception de produit proposé dans le cadre du cours.

Méthodologie préconisée

Aspect itératif du processus de design

ÉTAPE	SOUS-ÉTAPE	PHASE (I = ITÉRATION)	
Définition du problème	 Identification des besoins 		
	 Définition des objectifs 	Définition	
	 Élaboration du cahier des charges 		
Études initiales	 Analyse fonctionnelle 	Développement (i = 1)	
	 Élaboration de concepts 	Developpement (1 – 1)	
	 Analyse de faisabilité 	Évaluation (i = 1)	
Études détaillées	 Développement des solutions 	Développement (i = 2)	
	 Évaluation et sélection 	Évaluation (i = 2)	

Chapitres du rapport à livrer

chapitre	longueur maximale
Introduction	1 page
Description	1 page
Besoins et objectifs	4 🎖 pages
Cahier des charges	10 % pages
Conceptualisation et analyse de faisabilité	2623 pages
Étude préliminaire	23 _{18 pages}
Concept retenu	5 pages

Lien entre les étapes de la méthodologie préconisée et les chapitres du rapport à livrer

Méthodologie préconisée	Chapitre du rapport	Version
	Introduction Description	0
Définition du problème	Besoins et objectifs Cahier des charges	1
Études initiales	Conceptualisation et analyse de faisabilité	2
Études détaillées	Étude préliminaire	Finale
	Concept retenu	Finale

Références

- [1] Childs, P.R.N. (2004). « Mechanical Design », Elsevier Butterworth-Heinemann, Oxford, UK, 358 p.
- [2] **Buttrick**, **R.** (2002). « Gestion de projet en action », Éditions Village Mondial, Paris/Pearson Education, France, 459 p.
- [3] Ulrich, K.T. and Eppinger, S.D. (2000). « Product Design and Development », Irwin McGraw-Hill, USA, 358 p.