실험계획 - 1주차 강의

실험계획의 기본개념에 대한 소개

시립대학교 통계학과 2021년 3월 2일 실험의 의미

관련 개념과 용어

실험계획법의 목적

제어된 실험

실험설계의 기본원리

실험의 의미

실험이란?

Experiment

An experiment is a procedure carried out to support, refute, or validate a hypothesis.

Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated.

Experiments vary greatly in goal and scale, but always rely on repeatable procedure and logical analysis of the results.

(출처: 위키백과, 영어)

실험이란?

■ 실험(experiment)

실험(實驗)은 가설이나 이론이 실제로 들어맞는지를 확인하기 위해 다양한 조건 아래에서 여러가지 측정을 실시하는 일이다. 지식을 얻기 위한 방법의 하나이다.

실험은 관찰(측정도 포함)과 함께 과학의 기본적인 방법의 하나이다. 다만 관찰이 대상 그 자체를 있는 그대로 알아보는 일이라면, 실험은 어떤 조작을 가해 그에 따라 일어나는 변화를 조사하고 결론을 내는 일이다.

(출처: 위키백과, 한국어)

통계적 실험계획의 시작

Figure 1: An aerial view of Rothamsted's Broadbalk field, site of the Broadbalk Wheat Experiment since 1843. 출처: Langkjær-Bain, R. (2018), Where the seeds of modern statistics were sown. Significance, 15: 14-19. https://doi.org/10.1111/j.1740-9713.2018.01144.x

통계적 실험계획의 현재

Figure 1: Widgets tested for MSN Real Estate

Figure 2: MSN Real Estate site (http://realestate.msn.com) wanted to test different designs for the "Find a home" widget. 출처: Kohavi, Ron, et al. "Trustworthy online controlled experiments: Five puzzling outcomes explained." Proceedings of the 18th ACM SIGKDD international conference. 2012.

관련 개념과 용어

요인과 수준

원인과 결과를 주장할 때 다음과 같은 용어가 사용된다.

■ 요인(factor)

결과에 영향을 미칠수 있는 변수, 즉 **결과가 변하는 원인이 될** 수 있는 것

• 수준(level) 요인이 가질 수 있는 형태들이나 값

처리(treatment)는 실험자가 실험에서 고려하는 요인과 수준들의 조합을 의미한다.

7

주장에서의 요인, 수준 그리고 결과

다음의 주장에서 요인,수준, 처리을 생각해 보세요. 또한 주장하는 사람이 관심있는 결과의 변화가 무었인지 생각해 봅시다.

- 주장 1: 실험실에서 온도를 20도에서 40도로 올리니까 바이러스가 10% 감소했어요!
- 주장 2: 상품 검색 사이트에서 상품 정보의 배치를 변경하니까 고객들이 갑자기 증가했어요!!
- 주장 3: 혈압이 높아서 A약 1정을 먹었는데 효과가 없어서 2 정을 먹었더니 혈압이 나아졌어요!
- 주장 4: 오랫동안 여러 가지 약을 써보아도 무릅 통증이 계속 되었는데 A약을 써보니까 통증이 나아졌어요!

주장에서의 요인, 수준 그리고 결과

다음의 주장에서 요인,수준, 처리을 생각해 보세요. 또한 주장하는 사람이 관심있는 결과의 변화가 무었인지 생각해 봅시다.

- 주장 5: TV 홈쇼핑에서 몸에 좋다는 A 건강식품을 먹고 눈이 잘 보이고 피곤하지 않아요!
- 주장 6: 제품 광고팀에서 TV 광고의 모델을 변경했더니 매출액이 늘었어요!
- 주장 7: 다른 학원에 갔더니 전보다 성적이 올랐어요!
- 주장 8: 코로나 바이러스 때문에 스트레스가 심해졌어요!

실험계획법의 목적

과학적 사고를 위한 통계적 방법을 제시하는 실험계획법

- 위에서 본 여러 가지 주장에서 제시된 처리(요인 및 수준의 변화)가 결과의 원인이라는 **증거가 얼마나 강한가요(strength of evidence)**? 과학적 사고는 의심에서 시작합니다.
- 인과관계의 주장에 대한 **진위를 파악할 수 있는(validation)** 통계적 개념과 방법을 제공하는 것이 실험계획(Design of Experiment)이다.
- 더 나아가 실험계획은 최적의 결과(optimality)에 도달할 수 있는 수준을 파악할 수 있는 방법를 제공한다.

통계학자를 싫어하는 이유!?

질문하고... 문제를 제기하고... 의심하고...

- 관계/인과
- 자료/측정
- 실험/관측
- 통제/비교
- 재현/반복
- 표본/개수

실험계획법의 요소

■ 설계 (Design)

진위를 파악할 수 있는 방법을 제시하며 최소의 노력(비용, 시간, 실험횟수)으로 최대 효과(정보)를 얻자.

■ 분석 (Analysis)

실험 데이터를 가공해서 유용한 지식으로 전환하는 과정. 유의한 요인 효과? 결과(출력변수)와 요인(입력변수)의 관계?

■ 최적화 (Optimization)

최적조건은? 재현성은? (Post Analysis)

제어된 실험

제어된 실험

- 일반적으로 우리가 실험이라고 말하는 것은 **제어된 실험** (controlled experiment)를 말한다.
- 그러면 제어된 실험은 무었인가? 제어된 실험은
 - 실험자가 원하는 요인과 수준, 즉 처리를 실험 대상에 배정하는 과정을 통제할 수 있고
 - 처리를 제외한 다른 모든 요인들과 그 수준이 동일하게 통제되어서
 - 처리가 결과에 어떤 영향을 미쳤는지 파악할 수 있는 실험을 말한다.
- 이러한 실험은 완벽하게 제어된 실험(perfectly controlled experiment)라고 부르며 생물이나 물리 분야에서 잘 설계된 이상적인 실험실에서 수행하는 실험으로 보통의 경우 실현하는 것이 쉽지 않다.

실험자, 실험단위 그리고 환경

다음의 예제로 제시된 실험들에서 다음을 생각해 보자.

- 1. 실험을 관리하고 수행하는 주체 (experimenter; 실험자 또는 연구자)
- 2. 실험의 대상이 되는 주체 (experimental unit; 실험단위)
- 3. 실험의 장소, 소요 기간 등 여러 가지 환경 요인(environment; 실험환경)
- 예제 1: 생물학 연구실에서 화학성분 A가 실험쥐의 생존에
 미치는 영향을 알아내는 실험
- 예제 2: 제약회사에서 새로 개발한 바이러스 치료제의 효능과 안전성을 확인하는 실험
- 예제 3: 종자회사가 개발한 새로운 과일의 맛과 생산성을 확인하는 실험
- 예제 4: 식품회사에서 커피믹스를 생산할 때 커피,설탕,프림의 최적 비율을 알아내는 실험

제어된 실험

다음의 예제로 제시된 실험들에서 다음을 생각해 보자.

- 1. 어떤 처리(요인,수준)의 효과를 알아 보기 위한 것인지?
- 2. 완벽하게 제어된 실험으로 만들기 위하여 통제되어야 할 요인과 수준은?
- 예제 1: 생물학 연구실에서 화학성분 A가 실험쥐의 생존에 미치는 영향을 알아내는 실험
- 예제 2: 제약회사에서 새로 개발한 바이러스 치료제의 효능과 안전성을 확인하는 실험
- 예제 3: 종자회사가 개발한 새로운 과일의 맛과 생산성을 확인하는 실험
- 예제 4: 식품회사에서 커피믹스를 생산할 때 커피,설탕,프림의 최적 비율을 알아내는 실험

제어할 수 없는 처리 - 제어된 실험이 불가능한 연구

- 흡연이 건강에 영향을 미치는지 알아보는 연구
 - 실험자가 실험대상에 흡연 여부를 지정할 수 없다.
 - (강제로 흡연 여부을 지정할 수 있다고 해도) 사람의 유전적인 특성, 습관, 생활 환경 등이 모든 실험대상에 걸쳐서 다른 요인의 수준이 동일하도록 통제할 수 없다.
- 실험은 불가능하고 **관측연구(Observational study)**를 수행할 수 있다.
- 흡연자 집단과 비흡연자 집단의 차이를 알아보는 연구는 실험이 아니라 관측연구이다.

제어할 수 없는 다른 요인 - 평균적으로 제어된 실험이 가능한 연구

- 탄수화물의 섭취가 비만에 어떤 영향을 미치는지에 알아보는 연구
 - 실험자가 실험대상(사람)에 탄수화물의 섭취를 제어할 수 있지만
 - 유전적인 특성, 습관, 생활 환경 등이 모든 실험대상(사람)에 걸쳐서 동일하도록(또는 유사하도록) 통제할 수 없다.
- 완벽하게 제어할 수 없는 다른 요인들을 랜덤화를 이용하여
 평균적으로 제어할 수 있다.

랜덤화

- 실험자가 조정하는 처리 이외의 다른 요인들을 완벽하게 제어할 수 없는 경우가 흔하다.
- 이러한 경우 평균적으로 다른 요인을 통제할 수 있는 방법은 랜덤화(임의화, randomization)이다.
- 실험자가 실험단위에 처리를 지정할 때 무작위로, 즉 랜덤하게 지정한다.
- 예를 들어 임상 실험에서 A약과 B약을 환자들에게 랜덤하게 지정하면 환자들의 다른 요인들의 분포(성별, 나이, 키, 몸무게 등)는 두 처리 집단(A약 vs B약)사이에 어떤 차이가 있을까?

랜덤화의 결과

Figure 3: 실험대상자를 4개의 처리군에 배정하는 임의화 임상실험. 출처: The prevention of progression of arterial disease and diabetes (POPADAD) trial

랜덤화의 결과

Baseline characteristics. Values are medians (interquartile ranges) unless stated otherwise				
Characteristics	(n=320)	placebo (n=318)	(n=320)	placebo (n=318)
Mean (SD) age (years)	61.0 (10.0)	60.0 (10.1)	60.0 (10.3)	60.1 (9.7)
No (%) women	169 (53)	183 (58)	181 (57)	180 (57)
Time since diagnosis of diabetes (years)	6.7 (2.9-12.9)	6.0 (2.7-13.0)	5.7 (2.4-11.7)	6.4 (2.6-11.6)
No (%) treated with insulin	107 (33)	112 (35)	96 (30)	91 (29)
Smoking status:				
No (%) current smokers	105 (33)	99 (31)	106 (33)	87 (27)
No (%) former smokers	113 (35)	107 (34)	111 (35)	116 (36)
No (%) never smokers	102 (32)	112 (35)	103 (32)	115 (36)
Body mass index (kg/m ²)	29.7 (26.2-33.3)	28.7 (25.2-33.0)	29.4 (26.1-33.5)	29.2 (25.8-33.2)
Mean (SD) systolic blood pressure (mm Hg)	146 (22)	143 (21)	144 (20)	147 (21)
Mean (SD) diastolic blood pressure (mm Hg)	79 (10)	78 (10)	79 (10)	80 (11)

Figure 4: 실험대상자를 임의 배정한 후에 4개의 처리군의 인구/의학적 분포 . 출처: The prevention of progression of arterial disease and diabetes (POPADAD) trial

4개의 처리군 별로 연령, 성비, 흡연율, 혈압 등 처리를 제외한 여러가지 요인들의 평균값이 크게 다르지 않고 유사하다.

실험설계의 기본원리

실험설계의 기본원리 (R.A.Fisher)

1. 랜덤화(randomization)

 실험의 객관성, 데이터의 대표성을 보장. 처리를 랜덤하게 결정.

2. 블록화(blocking)

 비슷한 실험 환경을 묶어서 블록으로. 실험의 정밀도를 증가시킴 (추정량의 분산 감소).

3. 반복(replication)

- 동일 처리에서 두 번 이상 실험.
- 반복 실험을 해야 실험오차의 크기(특성치의 산포) 추정이 가능.