Thai Tweet Sentimental Analysis

นายประยุกต์ เจตสิกทัต | นายพงศกร อุชุปาละ

ที่มาและความสำคัญ

ขอบเขตของการศึกษา

- จำแนกทวีต "ภาษาไทย"
- จำแนกอารมณ์ "<mark>เชิงบวก" หรือ "เชิงลบ"</mark> เท่านั้น
- อนุมานอารมณ์ของ Train Data จาก Emoticon

เครื่องมือ

swath

โปรแกรมตัดคำภาษาไทย

โครงสร้างของระบบ

- ตาราง Tweets
- ตาราง Tweets หลังทำการ Preprocess
- ตาราง Tweets หลังทำการตัดคำ
- ตารางความน่าจะเป็นของ Class
- ต่างรางความน่าจะเป็นของ Feature (Given Class)

1. ดิงทวิตจาก API

- Query
 - http://search.twitter.com/search.json?
 rpp=100&q=:) OR:(&lang=th)

2. Preprocessing (1/3)

- คัดเลือกและจำแนก Train Data
 - Emoticon เชิงบวก
 - =),:),:),:-), (;, (;, (-;,:D,;D,^_^^,^^,<3
 - Emoticon เชิงสบ
 - :(,:(,:-(,TT,T_T,--",--"

2. Preprocessing (2/3)

- ตัดสัญลักษณ์อื่นๆ ทิ้ง
 - :p,:P,>^<,>_<,>_<, >3<, -3-,:3, = =, -_-, - -a
 - ตัวเลข
 - สัญลักษณ์พิเศษต่างๆ เช่น #, @, \$, %, \r, \n

2. Preprocessing (3/3)

- Tokenization
 - แทนที่ @mention ด้วย (:username)
 - แทนที่ #hashtag ด้วย (:hashtag)
 - แทนที่ URL ด้วย (:url)

3. ตัดคำ

- ใช้โปรแกรม SWATH
 - ตัดทวีตที่ไม่สามารถแปลงเป็น CP874 ทิ้ง
- ตัด | หน้าสุด และหลังสุด (ถ้ามี)
- ตัดช่องว่างทิ้ง

4. คำนาณ P(C)

- P(+) = Positive Tweets / Total Tweets
- P(-) = Negative Tweets / Total Tweets

5. คำนาณ P(f|C)

- ลักษณะ
 - Unigram
 - Bigram
- เลือกเฉพาะ Feature ที่ปรากฏใน Class นั้นๆ 2 ครั้งขึ้นไป

7. เตรียม Test Data

- เลือกทวีตที่ไม่ซ้ำกับ Train Data จำนวน 100 ทวีต
- จำแนกอารมณ์ด้วยคน

8. การทดสอบ

- นำ Test Data มา Preprocess และตัดคำ
- ดึง Feature ทั้งหมดออกมา
- แทน Feature ที่ไม่รู้จักเสมือนว่ามีปรากฏอยู่ ในแต่ละ Class I ครั้ง
- จำแนกด้วย Naive Bayes Classifier

$$C_{nb} = \underset{c \in \{+,-\}}{\operatorname{arg} \max} P(c) \prod_{i} P(f_{i}|c)$$

Naive Bayes Classifier

Train Data

- จำนวน 67,047 ทวีต
 - เชิงบวก 54,737 ทวิต (78.72%)
 - เชิงลบ 14,797 ทวีต (21.2%)

Features

- Unigram 5,068 features
- Bigram 66,291 features
- Unigram + Bigram 71,259 features

Test Data

- จำนวน 100 ทวีต
 - เชิงบวก 50 ทวีต (50.00%)
 - เชิงลบ 50 ทวีต (50.00%)

Results

ความถูกต้อง	Unigram	Bigram	Unigram + Bigram
โดยรวม	82%	81%	87%
กลุ่มเชิงบวก	78%	80%	78%
กลุ่มเชิงลบ	86%	82%	96%

สรุปผลการทดลอง

- การใช้ Unigram + Bigram ให้ผลลัพธ์ดีที่สุด
- สามารถจำแนกข้อมูลเชิงลบได้ถูกต้อง มากกว่าเชิงบวก
 - Train Data เชิงบวกมากกว่าเชิงลบุมาก
 - มีการใช้ Emoticon <mark>เชิงบวก</mark>กันอย่าง พร่าเพรื่อ

ปัญหาที่พบ

- การจำแนกด้วย Emoticon ไม่เหมาะสมกับ ภาษาไทย
- คำศัพท์แปลกๆ จำนวนมากที่ไม่สามารถตัด ได้อย่างถูกต้อง

ข้อเสนอแนะ

- ควรเลือก Train Data ให้ดีขึ้น
 - อาจใช้ Semi-Supervised
- ควรเพิ่ม Class จำแนกอารมณ์เฉยๆ ด้วย
- ต่อยอดโดยนำไปจำแนกข้อความทั่วไป เช่น บทความ

