Superheterodyne Receiver, Sampling, PCM, Transmission of FM and AM Signals over Non-Linear Channels: Examples

S.N. Merchant
Gaurav S. Kasbekar
Dept. of Electrical Engineering
IIT Bombay

Example: Superheterodyne Receiver

- A superheterodyne FM receiver operates in the frequency range: $f_c \in [88 \, \mathrm{MHz}, 108 \, \mathrm{MHz}]$
- We require that image frequency f_c^\prime lie outside [88 MHz, 108 MHz] for every f_c
- Want minimum required f_{IF}
- Recall: $f'_c = f_c + 2f_{IF}$
- So $f_c + 2f_{IF} \ge 108$ MHz for every f_c
- So $f_{IF} \ge \frac{108-88}{2} = 10 \text{ MHz}$
- Next, assume that $f_{IF} = 10 \text{ MHz}$
- Want range of variations in $f_{I.O}$
- Recall: $f_{LO}=f_c+f_{IF}=f_c+10$
- So required range:

□[98 MHz, 118 MHz]

Ref: B.P. Lathi, Z. Ding, "Modern Digital and Analog Communication Systems", 4th ed.

Example: Natural Sampling

- In natural sampling, an analog signal g(t) is multiplied by a periodic train of rectangular pulses c(t)
 - \square pulse repetition frequency of periodic train: f_s
 - \Box duration (respectively, amplitude) of each rectangular pulse: T (respectively, 1/T)
- Assume that time t=0 corresponds to midpoint of a rectangular pulse in c(t)
- Want spectrum of signal s(t) that results from the use of natural sampling
- Fourier series expansion of c(t):
 - $\Box c(t) = \sum_{n=-\infty}^{\infty} f_s \operatorname{sinc}(nf_s T) e^{j2\pi n f_s t}$
- s(t):
 - $\Box c(t)g(t) = \sum_{n=-\infty}^{\infty} f_s \operatorname{sinc}(nf_s T) g(t) e^{j2\pi n f_s t}$
- S(f):
 - $\square \quad \sum_{n=-\infty}^{\infty} f_{S} \operatorname{sinc}(nf_{S}T) G(f nf_{S})$

(b) Switching Waveform with Duty Cycle $d = \tau/T_s = 1/3$

Example: Natural Sampling (contd.)

- 1) Recall: $S(f) = \sum_{n=-\infty}^{\infty} f_s \operatorname{sinc}(nf_s T) G(f nf_s)$
- Under what conditions can g(t) be recovered exactly from its naturally sampled version?
- Assume that g(t) is bandlimited with G(f) = 0 for $f \notin (-W, W)$; also, $f_s > 2W$
- Then by 1), the different frequencyshifted replicas of G(f) in the spectrum S(f) will not overlap
- Hence, G(f), and therefore the signal g(t), can be recovered exactly by passing s(t) through a low-pass filter of bandwidth W

(c) Resulting PAM Signal (natural sampling, $d = \tau/T_c = 1/3$)

Example: PCM

- A PCM system uses a uniform quantizer and represents each quantized value using 7 bits
- Bit rate of system equals 50×10^6 bps
- Want maximum message bandwidth for which system operates satisfactorily
- Nyquist rate:
 - \square 2W, where W is message bandwidth
- So $2W \times 7 \le 50 \times 10^6$
- Hence, $W \leq 3.57$ Mbps
- Suppose a sinusoidal modulating wave of amplitude ${\cal A}_m$ and frequency 1 MHz is applied to input
- Assume that quantizer divides the range $[-A_m, A_m]$ into intervals of equal sizes
- Output signal-to-quantization noise ratio:

$$\Box \left(\frac{3P}{m_{max}^2}\right) 2^{2R}$$

- P:
 - $\Box \frac{A_m^2}{2}$
- m_{max} :
 - $\Box A_m$
- Substituting above values of P and m_{max} , and R=7, we get the above ratio to be:
 - \Box 1.5 × 2¹⁴ = 43.91 dB

Effect of Sending FM Signal over Non-linear Channel

- Consider FM signal:
 - $\Box s(t) = A_c \cos[2\pi f_c t + \phi(t)]$
 - \Box where $\phi(t) = 2\pi k_f \int_0^t m(\tau) d\tau$
- Sent over a channel with following input-output characteristic:
 - $\Box v_o(t) = a_1 v_i(t) + a_2 v_i^2(t) + a_3 v_i^3(t)$
 - lacktriangle where a_1 , a_2 and a_3 are constants
- Recall the trigonometric identity: $\cos^3\theta = \frac{1}{4}(3\cos(\theta) + \cos(3\theta))$
- Output of channel:
 - $v_o(t) = \frac{1}{2}a_2A_c^2 + \left(a_1A_c + \frac{3}{4}a_3A_c^3\right)\cos[2\pi f_c t + \phi(t)] + \frac{1}{2}a_2A_c^2\cos[4\pi f_c t + 2\phi(t)] + \frac{1}{4}a_3A_c^3\cos[6\pi f_c t + 3\phi(t)]$
- Can message signal m(t) be recovered from $v_o(t)$?
 - lacktriangle Yes, assuming that f_c is much larger than bandwidth of FM signal
- Recovery:
 - \square Input $v_o(t)$ to band-pass filter with mid-band frequency f_c
- Output:
- $v_o'(t)$ is scaled version of s(t)
- Thus, FM signals robust to transmission over non-linear channels of above type
- So FM widely used in satellite communication systems
 - permits the use of highly non-linear amplifiers, which are required for producing a high-power output at radio frequencies

Effect of Sending AM Signal over Non-linear Channel

- Consider AM signal:
 - $\Box s(t) = A_c[1 + k_a m(t)] \cos[2\pi f_c t]$
 - Sent over a channel with following input-output characteristic:
 - $\Box v_o(t) = a_1 v_i(t) + a_2 v_i^2(t) + a_3 v_i^3(t)$
 - \square where a_1 , a_2 and a_3 are constants
- Output of channel:
 - $\Box v_{o}(t) = \frac{\frac{1}{2}a_{2}A_{c}^{2}[1 + k_{a}m(t)]^{2} + (a_{1}A_{c}[1 + k_{a}m(t)] + \frac{3}{4}a_{3}A_{c}^{3}[1 + k_{a}m(t)]^{3})\cos[2\pi f_{c}t] + \frac{1}{2}a_{2}A_{c}^{2}[1 + k_{a}m(t)]^{2}\cos[4\pi f_{c}t] + \frac{1}{4}a_{3}A_{c}^{3}[1 + k_{a}m(t)]^{3}\cos[6\pi f_{c}t]$
- Can message signal m(t) be recovered from $v_o(t)$?
 - ☐ Difficult to recover it; cannot be recovered using envelope detection
- Thus, AM signal gets distorted when transmitted over non-linear channels of above type