COMP110: Principles of Computing

5: Computational Complexity

Learning outcomes

- Explain the notion of computability
- ▶ Use "big O" notation to express computational complexity
- Apply appropriate algorithms to achieve efficiency

Computability

Computability theory

- ► Let A and B be **sets** of elements
 - ▶ NB: A may be **infinite**
- A function f : A → B is computable if there exists a Turing machine which computes f
 - ▶ I.e. given an encoding of $a \in A$ as input, the Turing machine outputs an encoding of f(a)

An uncomputable function

The halting problem

- ➤ A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{\text{true}, \text{false}\}$
- ▶ There is **no** Turing machine that computes f
- ▶ f is uncomputable

Church-Turing Thesis

- A system (e.g. a computer or programming language) is **Turing complete** if it can implement any given Turing machine
- If a function is effectively calculable, then it is computable by a Turing machine
- Effectively calculable = there is a method or algorithm for computing it
- So in terms of computability, Turing machines are as powerful as computers can be

Halting revisited

- Write a software tool that, given a Python program, predicts whether that program can go into an infinite loop
- Your tool must work for all Python programs
- ▶ Is this possible?

Computation time

Resources

- ► All programs use resources
 - Time
 - Memory
 - Network bandwidth
 - Power
 - **.**..
- ▶ Often **time** is the resource we care about the most
 - Particularly in games: want to maintain a good frame rate free of lag or stuttering

Basic time measurement in Python

Repeating for better accuracy

Scaling

- ► Timing is dependent on hardware and software issues
- We are often less interested in how many milliseconds a particular computation takes on today's hardware, and more interested in how the execution time scales with the problem size

Search

Search

- We have a list of names, each with some data associated
- ► We want to find one of them

Linear search

```
procedure FIND(name, list)
  for each item in list do
    if item.name = name then
        return item
    end if
  end for
  throw "Not found"
end procedure
```

How long does it take?

Socrative room code: FALCOMPED

- Suppose there are 25 items in the list
- ► In the **best case**, how many items do we need to visit before finding the one we want?
- ► How about in the worst case?

How long does it take?

Socrative room code: FALCOMPED

- ► If there are 25 items in the list, the worst case number of items visited is 25
- ► How about if there are 50 items?
- ► How about 100 items?
- If the number of items doubles, what happens to the amount of time the search takes?

Linear time

- The running time of linear search is proportional to the size n of the list
- Linear search is said to have linear time complexity
- ► Also written as O(n) time complexity

Searching a sorted list

► If the list is **sorted** in alphabetical order, we can do better than linear...

Binary search

```
procedure FIND(name, list)
   if list is empty then
      throw "Not found"
   end if
   mid ← the "middle" item of the list
   if name = mid.name then
      return mid
   else if name < mid.name then
      return FIND(name, first half of list)
   else if name > mid.name then
      return FIND(name, second half of list)
   end if
end procedure
```

How long does it take?

Socrative room code: FALCOMPED

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?
- ► The running time is logarithmic or O(log n)

Hidden complexity

if name < mid.name then
 return FIND(name, first half of list)
else if name > mid.name then
 return FIND(name, second half of list)
end if

- Careful how you implement this!
- ► Copying (half of) a list is linear O(n)
- ► The actual running time would be O(n log n)
- Use pointers into the list instead of copying

Binary search done wrong

```
def binary_search(name, mylist):
    if mylist == []:
        raise ValueError("Not found")
    mid = len(mylist) / 2
    mid_name = mylist[mid_index].name
    if name == mid_name:
        return mid
    elif name < mid_name:</pre>
        return binary_search(name, mylist[:mid])
    else:
        return binary_search(name, mylist[mid+1:])
```

Binary search done right

```
def binary_search(name, mylist, start, end):
    if end <= start:</pre>
        raise ValueError("Not found")
    mid = (start + end) / 2
    mid_name = mylist[mid].name
    if name == mid_name:
        return mylist[mid]
    elif name < mid_name:</pre>
        return binary_search(name, mylist, start, mid)
    else:
        return binary_search(name, mylist, mid+1, end)
```

Binary search vs linear search

Socrative room code: FALCOMPED

- So binary search is better than linear search... right?
- ► Discuss in pairs
- On Socrative, post one reason why, or one situation where, linear search may be a better choice than binary search

Hashing

- Come up with a hashing function which maps elements to numbers
- ► Example: assign A = 1, B = 2, C = 3 etc, and add them together
- Use these numbers to assign each element to a "bin" where it can be found

:	:	
112	Ward, Jessica	
113	Baker, Theresa	
114	Collins, Jane	
115	_	
116	_	
117	Hughes, Aaron	
118	_	
119	_	
120	_	
121	_	
122	Brown, Janet	
123	_	
124	_	
125	Gonzalez, Adam	
	Lewis, Rose	
126	_	
127	_	
128	_	
129	_	
130	_	
131	_	
132	Young, Frank	
	,	
:	:	

Hash look-up

_	
_	
Kelly, Philip	
Cox, Shirley	
Clark, Stephanie	
Scott, Michelle	
Miller, Jeremy	
e	

"Lopez, Jeffrey" 12 + 15 + 16 + 5 + 26 + 10 + 5 + 6 + 6 + 18 + 5 + 25 = 149

How long does it take?

- ► If there are no "collisions", look-up time is constant or O(1)
 - (NB: constant with respect to n)
- ► I.e. doubling the size of the list does not change the look-up time
- When there are collisions, need to fall back on something like linear or binary search within each bin

Don't reinvent the wheel!

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- ► Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

```
[person for person in people if person.name ←
== "Lopez, Jeffrey"]
```

- ► Binary search in Python:
 - ▶ The bisect module
- ► Hash tables in Python:
 - ▶ The dict (dictionary) data structure

More on complexity

Common complexity classes

"Faster"	Constant	<i>O</i> (1)
\uparrow	Logarithmic	$O(\log n)$
	Fractional power	$O(n^k), k < 1$
	Linear	O(n)
	Quadratic	$O(n^2)$
	Polynomial	$O(n^k), k > 1$
\downarrow	Exponential	$O(e^n)$
"Slower"	Factorial	O(n!)

Common complexity classes

Working with big O notation

- ► Can ignore leading constants
 - If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- ► Take only the **dominant term**
 - ► The term that is largest when n is large
 - If an algorithm takes $0.1n^3 + 300n^2 + 7000$ operations, it is $O(n^3)$
- Multiply compound algorithms
 - If an algorithm does n "things" and each "thing" is O(n), then the overall algorithm is $O(n^2)$

Quadratic complexity

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$
- Doubling the number of objects would quadruple the time required!
- Cleverer methods exist that are more scalable
 - Further reading: spatial hashing, quadtrees, octrees, Verlet lists

Exponential complexity

- ► A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p=2,3,\ldots,m do q\leftarrow m/p if q is an integer then return p,q end if end for
```

- ▶ Since $m \le 2^n 1$, in the worst case this is $O(2^n)$
 - Actually even slower because division is not O(1)
- ► Adding 1 to *n* potentially **doubles** the running time!

Aside: a famous unanswered question in computing

- A problem is "in P" if it can be solved with an algorithm running in O(n^k) time
- A problem is in NP if a potential solution can be checked in O(n^k) time
 - Equivalently, it can be solved with an algorithm running in $O(n^k)$ time on an infinitely parallel machine
- ▶ Are there any problems in NP but not in P?

P versus NP

- ▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...
- ▶ It is believed that $P \neq NP$, so large instances of NP-hard problems are not solvable in a feasible amount of time
 - Many types of cryptography are based on this assumption
 - Quantum computers are "infinitely parallel" in a sense so can solve some large NP-hard problems

Caveats

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time
- Software development is all about choosing the right tool for the job
 - If you need scalability, choose a scalable algorithm
 - Otherwise, choose simplicity

Summary

- ► Time complexity tells us how the running time of an algorithm scales with the size of the data it is given
- Choice of data structures and algorithms can have a large impact on the efficiency of your software
- ... but only if scalability is actually a factor

Exercise Sheet ii

Due now

Worksheet C

Due in 2 weeks' time (No class next week)