cs361 Assignment 3

Ryan Scherbarth

February 21, 2024

1 Average Running time of Quick Select

Given that the average running time of quick select is:

$$\mathbf{T(n)} = (n-1) + \frac{2}{n} \sum_{j=\frac{n}{2}}^{n-1} \mathbf{T(j)}$$

Assuming we have an even distribution, we can prove by induction.

1.1 Base Case

Let n = 2, and let our guess function be 4n:

$$T(2) = (2-1) + \frac{2}{2} \sum_{j=\frac{2}{2}}^{2-1} T(j)$$

$$T(2) = 1\sum_{j=1}^{1} T(j)$$

$$T(2) = 1 + 1 = 2$$

$$T(2) = 2 \le 8$$

1.2 Inductive Step

We next need to prove that n = k + 1 to be true:

$$T(k+1) = (k+1-1) + \frac{2}{k+1} \sum_{j=\frac{k+1}{2}}^{k+1-1} T(j)$$

$$T(k+1) = (k) + \frac{2}{k+1} \sum_{j=\frac{k+1}{2}}^{k} T(j)$$

$$T(k+1) = k + \frac{8}{k+1} \left(\sum_{j=1}^{k} j - \sum_{j=1}^{\frac{k+1}{2} - 1} j \right)$$

$$T(k+1) = k + \frac{8}{k+1} \left(\frac{k(k+1)}{2} + \frac{\frac{k+1}{2} \left(\frac{k+1}{2} - 1 \right)}{2} \right)$$

$$T(k+1) = k + \frac{8}{k+1} \left(\frac{k^2 + k}{2} - \frac{k^2 - k + 2}{4} \right)$$

$$T(k+1) = k + \frac{8}{k+1} \left(\frac{k^2 + 3k - 2}{4} \right)$$

$$T(k+1) = k + \frac{2k^2 + 6k - 4}{k+1}$$

$$T(k+1) = k + \frac{2k^2 + 6k}{k+1} - \frac{4}{k+1} = k + \frac{2(k+1)}{k+1} - \frac{4}{k+1}$$

$$T(k+1) = 3k - \frac{4}{k+1}$$

The induction step holds true so long as it is true that $T(k+1) \leq 4n$

$$3k - \frac{4}{k+1} \le 4(k+1)$$
$$-\frac{4}{k+1} \le 4k+4$$
$$-4 \le k^2 + 5k + 4$$
$$0 \le k^2 + 5k + 8$$

Holds true for all $k \geq w$, Therefore, via proof by induction, $T(n) = \leq 4n$ for all n > 1.

2 Average Running Time of Quicksort

2.1 Average Running Time

The recurrence equation for the average running time of quicksort, assuming an even distribution, is as follows:

$$T(n) = n + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i-1))$$

While similar to the Quick Select Time function, when using Quicksort we also must keep in mind that each time we split an array into a sub-array, the sizes of both these arrays will depend on each other. In Quick Select we can simply just ignore whatever was not in the new sub-array we chose to continue searching in after creating each partition, But that doesn't work in Quicksort. We still need

to come back and sort both sides after creating a partition. For this reason, we slightly modify the time function to track both sub-arrays based off of the other.

I've come to this guess function by noting that our running time has two dependent factors; Firstly we have the partitioning step, which is what gives us our n linear time. After making all of the partitions, we just need to merge these partitions together, which gives us log(n) logarithmic time.

2.2 Guess function

Here, I chose to use a guess function of:

$$f(n) = n * log(n)$$

I chose this as my guess function because I had the hypothesis that regardless of what the average case would be, due to the recursive nature of the function, it would still move in logarithmic time.

2.3 Proof by Induction

2.3.1 Base Case

Let n=1,

$$T(1) = 1 * log(1) = 0$$

In our base step, we need to prove that $T(n) \le c * f(n)$ for any n, Thus, our base case is trivially true that $T(1) \le c * f(n)$, simplifying to $0 \le 0$.

2.3.2 Inductive Step

To prove our inductive step, we need to prove $T(m) \le c * f(m)$ for all m < n

$$T(n) = n + \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i-1))$$

$$T(n) \le n + \frac{c}{n} \sum_{i=0}^{n-1} (f(i) + f(n-i-1))$$

$$T(n) \le n + \frac{c}{n} \sum_{i=0}^{n-1} (2f(i))$$

$$T(n) \le n + \frac{2c}{n} \sum_{i=0}^{n-1} (f(i))$$

$$T(n) \le n + \frac{2c}{n} * n * log(n)$$

$$T(n) \le n + 2c * log(n)$$

$$T(n) \le 3c * log(n)$$

Therefore, via proof by induction, we have proven that Quicksort has an average running time, when using even distribution, and a guess function of f(n) = n * log(n), of T(n) = n * log(n). Thus, T(n) = O(f(n))