

Roll Number:

Thapar Institute of Engineering and Technology, Patiala Department of Computer Science and Engineering

Master of Computer Applications (II Semester) EST MCA205: Design and Analysis of Algorithms

June, 2022 Time: 2 hours; MM: 25

Name of Faculty: Dr. Gaurav Pareek

Note: Attempt all Questions. Be precise in answering the questions. Unnecessary details attract penalties.

Q1.	a)	Out of the LIFO, FIFO and Least Cost Branch and Bound techniques, which one is
	-	the most suitable for solving minimization problems and why? (2)
	b)	Suppose you have the coins of following denominations: 2, 3, 5, 10. Using the
		dynamic programming approach, calculate the total number of ways in which a sum of 15 can be constructed using these coins. (3)
Q2.	a)	Write the basic equation involved in the dynamic programming solution for the 0/1 knapsack problem. (1)
	b)	Consider the following instance of $0/1$ knapsack: Value[] = $\{3, 4, 5, 6\}$
		Weight[] = $\{2, 3, 4, 5\}$
		Knapsack capacity $W = 5$.
INDIA.		Use dynamic programming algorithm to maximize the total profit for the above instance.
Q3.	a)	Suppose you are required to solve the all-pair shortest path problem using the single-source shortest path algorithm like Dijkstra's algorithm. How would you do it? What will be the time complexity of your solution? (2)
	b)	Solve the following instance of the 0/1 knapsack problem using least-cost branch and bound strategy: (3)
		Value[] = {10, 10, 12, 8}
		Weight[] = $\{2, 4, 6, 9\}$
0.4	<u></u>	Knapsack capacity W = 15
Q4 <mark>.</mark>	a)	Apply the Backtracking strategy and solve the following instance of the subset sum
		problem: (5)
		Weights[] = {5, 10, 12, 13, 15, 18} Total Sum to be constructed = 30
Q5.	a)	State the Optimal Binary Search Tree Problem. Also, give an example where the
	aj	average time to access each item in a balanced binary search tree is more than in the case of unbalanced binary search tree. (2)
	b)	Use the backtracking approach to solve the 5-Queens problem. Draw a clear state-
		space tree and write your solution in the form of a 5-tuple where the i th entry indicates
		the column position of the 1" queen on the 5×5 chessboard. (3)