Aim: Temperature to voltage converter using Instrumentation Amplifier.

Objectives:

- 1. To measure the effect of change in resistance for bridge balance and unbalanced conditions.
- 2. To convert temperature into electrical voltage and calculate the percentage of errors.

Pre-Lab Quiz:

1. Derive the relation between change in temperature and output voltage.

Ans:

When bridge is balanced, we get,

$$V_A = V_B$$

Therefore,

$$\frac{\Delta R(V_{DC})}{R_A + R_T} = \frac{R_\Delta(V_{DC})}{R_B + R_C}$$

When there is change in the physical quantity being measured the voltage V_A will no longer be equal to V_B .

Now,

$$V_B = \frac{R_B(V_{DC})}{R_B + R_C}$$

But due to the change in resistance of the transducer device and is now given as

$$V_A = \frac{R_A(V_{DC})}{R_A + R_T + \Delta R}$$

$$V_{Diff} = V_B - V_A$$

$$V_{Diff} = \frac{R_B(V_{DC})}{R_B + R_C} - \frac{R_A(V_{DC})}{R_A + R_T + \Delta R}$$

If
$$R_A = R_B = R_C = R_T = R$$

$$V_{Diff} = \frac{R(V_{DC})}{2R} - \frac{R(V_{DC})}{2R + \Delta R}$$

$$V_{Diff} = \frac{\Delta R(V_{DC})}{2(2R + \Delta R)}$$
If $V_{Diff} > 0$,
$$V_{A} < V_{B}$$

$$V_{O} = \frac{R_{3}}{R_{2}} V_{Diff}$$

$$V_{O} = \left(\frac{R_{3}}{R_{2}}\right) \left(\frac{\Delta R(V_{DC})}{2(2R + \Delta R)}\right)$$
If $\Delta R << 2R$

$$V_{O} = \left(\frac{R_{3}}{R_{2}}\right) \left(\frac{\Delta R}{4R}\right) (V_{DC})$$

Reference Book:

1. Ramakant A. Gayakwad- op-amp and Linear Integrated Circuits, Pearson Education; Fourth edition.

Theoretical Calculations:

Design Specifications	Calculation
$V_{CC} = +15 \text{ V}$ $V_{EE} = -15 \text{ V}$	When, $\frac{R_C}{R_B} = \frac{R_T}{R_A}$, $V_O = 0$ V, as $\Delta R = 0$
$\begin{split} V_{DC} &= 5 \text{ V} \\ R_1 &= 10 \text{ k}\Omega \\ R_f &= 100 \text{ k}\Omega \\ \\ R_A &= R_B = R_C = 10 \text{ k}\Omega \end{split}$	When, $\frac{R_C}{R_B} = \frac{R_T + \Delta R}{R_A}$, $V_O = \frac{R_f}{R_1} (V_A - V_B)$

Practical Circuit Diagram:

Requirements:

Select the necessary equipment/apparatus/components required for this experiment and list all of them in below-given space:

Name of Equipment/Components	Range/Value/Specification	
Op-Amp IC	μΑ741	Voltage Amplifier
Resistors	$10 \text{ k}\Omega$, $100 \text{ k}\Omega$	To limit current
Supply Voltage	$V_{EE} = V_{CC} = 15 \text{ V}$	To power all the components
$R_T \rightarrow Thermistor$	103 (10 kΩ at 25°C)	Temp. dependent resistor
Voltmeter	0 – 20 V	To measure Voltage

Procedure:

- 1. Instrumentation Amplifier:
- Connect the circuit as per the circuit diagram.
- Now, change the Temperature Resistor (Thermistor) R_T and observe the results. $V_O = \frac{R_f}{R_1} (V_A V_B)$

$$V_O = \frac{R_f}{R_1} \left(V_A - V_B \right)$$

Observation:

Sr No	Resistance R _T	Voltage V _A	Voltage V _B	Output voltage
	$(k\Omega)$	(V)	(V)	Vo
1.	1	2.15	2.14	-33.9 μV
2.	2	1.58	2.15	1.14 V
3.	3	1.33	2.14	1.70 V
4.	4	1.20	2.14	1.90 V
5.	5	1.103	2.14	2.077 V

Post Lab Quiz:

Design and Simulate Strain gauge bridge interface for pressure measurement using instrumentation amplifier.

Here, instead of thermistor a pressure measuring component Strain Gauge (SG) is used. When pressure change is experienced, SG changes resistance and corresponding voltage output is obtained.

Conclusion:

In this experiment, we see how we can implement operational amplifier as an Instrumentation Amplifier. We specifically saw how to use the op-Amp as an Instrumentation Amplifier which responds to changes in temperature or in pressure.

Assessment:

1.	Experimental	Develops and	Experimental	It doesn't follow the
	Procedure	implement the	Procedure most often	experimental
	(3 Marks)	most logical	followed but	procedure. Not
		experimental	occasionally oversight	included pre-lab
		procedures.	leads to loss of	and post-lab
		Included	experimental	exercise.
		prelab and	efficiency and /or loss	(1 Marks)
		post-lab	of data. Partially	
		exercise.	included pre-lab and	
		(3 Marks)	post-lab exercise.	
			(2 Marks)	
2.	Result and	Tries to	Achieve the desired	Unable to achieve
	measurement error	achieve the	results. He is aware of	the desired results.

3 Marks)	results from different viewpoints. He is aware of measurement error and able to account for it statistically. (3 Marks)	measurement error but does not account for it statistically. (2 Marks)	Is unaware of measurement error. (1 Marks)
 Ocumentation 4 Marks)	Report writing in the proper format for all experiments (No, Date, Objective, Apparatus with specifications, software used if any (4 Marks)	Most of the lab report is in format but some of the formatting guidelines are missed. (2 Marks)	Experiments not written in a pre-lab proper format. (1 Marks)

Signature of Faculty Member with date: