MINI ENSAYO DE MATEMÁTICA Nº 6

1.
$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}} =$$

- A) $\frac{29}{12}$

- B) $\frac{3}{2}$ C) 3 D) $\frac{2}{3}$

2. Para pintar una casa, Felipe demora 6 días; pero trabajando con Adrián demorarían 4 días en pintar la misma casa. ¿Cuánto tiempo demoraría Adrián en pintar él solo la casa?

- A) 2 días
- B) 6 días
- C) 8 días
- D) 10 días
- E) 12 días

3. Sea **n** un número entero par. Si 3 es un divisor de n+1, ¿cuál(es) de las siguientes afirmaciones es (son) falsa(s)?

- I) 2n + 1 es primo.
- II) n puede ser igual a 6.
- III) n + 1 es cualquier múltiplo impar de 3.
- A) Sólo II
- B) Sólo I y II
- C) Sólo I y III
- D) Sólo II y III
- E) I, II y III

- 4. $\frac{4}{2x-2} + \frac{3}{3x-3} =$
 - A) $\frac{3}{x-1}$
 - B) $\frac{7}{5x-5}$
 - C) $\frac{9}{x-1}$
 - D) $\frac{6}{x-1}$
 - E) $\frac{1}{x-1}$
- 5. En un trayecto de 560 km, un camión demoró 6 horas. Las dos primeras horas, la rapidez promedio del camión fue el doble de la rapidez promedio alcanzada en la tercera hora. Si en las últimas 3 horas, la rapidez promedio fue el triple que la alcanzada en la tercera hora, ¿cuál fue la rapidez promedio, en $\frac{km}{h}$, que alcanzó el camión en la tercera hora del trayecto?
 - A) 93
 - B) 80
 - C) 60
 - D) 50
 - E) 40
- 6. $\frac{9x^2 y^2}{3x + y}$: $\frac{y 3x}{3x + y}$ =
 - A) -1

 - B) 1 C) $\frac{3x y}{x + y}$
 - D) -(3x + y)E) (3x + y)

- 7. $\frac{x^2 5x + 6}{3x^2 8x + 4} =$
 - A) $\frac{x-3}{3x-2}$
 - B) $\frac{-5x + 7}{-8x + 7}$
 - C) -1
 - D) $\frac{x-2}{3x-2}$
 - E) $\frac{3x 2}{3 x}$
- 8. En la figura 1, las rectas L_1 y L_2 intersectan a los ejes coordenados en los puntos indicados. ¿Cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s)?
 - I) Las rectas L₁ y L₂ son paralelas.
 - II) El perímetro de la región sombreada es 13.
 - III) El área de la región sombreada es 4.

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo I y III
- E) I, II y III
- 9. En la figura 2, el trapecio ABCD es rectángulo en C y $\overline{BC}\cong \overline{CD}$. Si $\overline{AB}=16$ cm, el área del trapecio es
 - A) 96 cm²
 - B) 84 cm²
 - C) 64 cm²
 - D) 48 cm²
 - E) 36 cm²

fig. 2

10. En la circunferencia de centro O de la figura 3, la medida angular del arco ACB es 260°, entonces el ∡ACB =

B) 50°

C) 40°

D) 30°

E) no se puede calcular

fig. 3

11. En la figura 4, se presenta el triángulo equilátero ABC y las circunferencias inscrita y circunscrita a él, de centro O. Si el radio de la circunferencia inscrita es 4 cm, ¿cuál es el área de la zona sombreada? (considere $\pi=3$).

A) 64 cm²

B) 80 cm²

C) $(80 - 16\sqrt{3})$ cm²

D) $(208 - 48\sqrt{3})$ cm²

E) Faltan datos para calcularla.

fig. 4

- 12. En la figura 5, el \triangle ABC es isósceles y rectángulo en C. Si G es el centro de gravedad, y \overline{PQ} // \overline{AB} , ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) \triangle CPG es isósceles de base \overline{CP} .
 - II) El área del trapecio ABQP es igual al área del Δ CPQ.
 - III) Área $\triangle CPQ$: área $\triangle CAB = 4:9$.

A) Sólo I

B) Sólo I y III

C) Sólo II y III

D) I, II y III

E) Ninguna de ellas.

13. En el $\triangle ABC$ de la figura 6, \overline{PQ} es mediana. Si \overline{PR} pasa por el baricentro del $\triangle PBC$, entonces la razón entre las áreas de los triángulos PQR y ABC, respectivamente, es

B) 1:4

C) 1:9

D) 1:2

E) 2:7

- 14. La recta L_1 corta a los ejes coordenados en los puntos A = (0, a) y B = (b, 0), con **a** y **b** positivos, mientras que la recta L_2 lo hace en los puntos B = (b, 0) y C = (0, -a). ¿Cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s)?
 - I) $L_1 \perp L_2$.
 - II) La recta L₁, forma con los ejes coordenadas un triángulo isósceles en el primer cuadrante.
 - III) Si M es el punto medio entre A y B, entonces M está en el primer cuadrante.

- B) Sólo II
- C) Sólo III
- D) Sólo I y III
- E) Sólo II y III
- 15. Si f(x) = 3x 2 y g(x) = 2x 3, entonces ¿cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s)?

I)
$$f(x) - (x + 1) = g(x)$$

II)
$$g(x) + (x + 1) = f(x)$$

III)
$$f(x) - g(x) = x + 1$$

- A) Sólo II
- B) Sólo III
- C) Sólo I y III
- D) Sólo II y III
- E) I, II y III

- 16. El conjunto de todos los números reales que están a una distancia de 6 mayor que 5 y a una distancia menor que 3 de 5, es
 - A)]- ∞ , 1[\cup]11, + ∞ [
 - B)]2, 8[
 - C) $]-\infty$, $1[\cup]2$, $8[\cup]11$, $+\infty[$
 - D) IR
 - E) Ø
- 17. Si $\frac{0.001}{0.00001 \cdot 10^x} = \frac{10^x}{0.01}$, entonces $2^x =$
 - A) 0
 - B) 1
 - C) 2
 - D) 4
 - E) 8
- 18. Si $4^x + 9(9^{x-1} 1) = 2 \cdot 6^x$, con x > 0, entonces $3^x 2^x =$
 - A) -9
 - B) -3

 - C) 1 D) 3 E) 9
- 19. Si $3^x = a$ y $2^x + 1 = b$, entonces $12^x + 2 \cdot 6^x + 3^x = a$
 - A) ab
 - B) a²b
 - \dot{C}) a^2b^2
 - D) ab²
 - E' a(b + 1)

- 20. Si $f(x) = x \ y \ g(x) = x + f(x)$ entonces, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Los gráficos de ambas funciones se intersectan en el origen del sistema de coordenadas.
 - II) La solución de la ecuación g(x) = 0 es x = 0.
 - III) g(x) f(x) = f(x), para todo número real x.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Sólo I y II
 - E) I, II y III
- 21. Sean $f(x) = ax^2 + ax + a$ y $g(x) = a ax + ax^2$, con $a \ne 0$. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) f(x) = g(x) para un solo valor de x.
 - II) f(1) = g(2)
 - III) f(a) = 3g(a)
 - A) Sólo I
 - B) Sólo III
 - C) Sólo I y II
 - D) Sólo I y III
 - E) I, II y III
- 22. Si $f(x) = 2^x$, $g(x) = 3^x$ y $h(x) = 5^x$, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Existe un número real, de modo que f(x) = g(x).
 - II) f(x) + g(x) = h(x)
 - III) h(1) = g(2) f(2)
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Sólo I y III
 - E) I, II y III

- 23. Si $5^{x-1} = 7$, entonces x =
 - A) log7 + log5
 - B) $\frac{\log 7}{\log 5} 1$
 - C) $\frac{5}{\log 7} + \frac{1}{2}$
 - $D) \frac{\log 7}{\log 5} + 1$
 - E) $\frac{7}{\log 5}$
- 24. En la ecuación cuadrática $x^2 + ax + b = 0$, una de sus raíces es el doble de la otra, y el producto de ellas es igual a 18. ¿Cuál de las siguientes opciones es **siempre falsa**?
 - A) b = 2a
 - B) b = -2a
 - C) a + b = -27
 - D) a + b = 9
 - E) a:b=1:2
- 25. En la figura 7, PQRS es un cuadrado de lado 7 y ABCD es un cuadrado inscrito de lado 5. Si $\overline{AQ} = x$, entonces ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 -) Las soluciones de la ecuación $x^2 7x + 12 = 0$ son las medidas de los catetos del $\triangle AQB$.
 - II) El perímetro de uno de los triángulos es 12.
 - III) Necesariamente $\overline{AQ} = 3$ y $\overline{BQ} = 4$.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo I y II
 - D) Sólo II y III
 - E) I, II y III

fig. 7

- 26. Se puede determinar la razón entre dos números enteros positivos ${\bf a}$ y ${\bf b}$, si :
 - (1) \mathbf{a} es el doble de \mathbf{c} .
 - (2) **c** es el doble de **b**.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

- 27. En la figura 8, \overline{AB} // \overline{CD} y \overline{AC} es un diámetro de la circunferencia. El cuadrilátero ABCD es un cuadrado si :
 - (1) $\widehat{AB} = \widehat{AD}$
 - (2) $\widehat{AB} = \widehat{BC}$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

fig. 8

- 28. Sea M un número real tal que $M = 2^y 3^x$. M es positivo si :
 - (1) $2^y > 2$
 - (2) $3^x > 1$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 29. Se puede determinar el valor de log 72, si :
 - (1) Se conoce el valor de log 4.
 - (2) Se conoce el valor de log 3.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 30. Una de las raíces de la ecuación $ax^2 + bx + 2b = 0$ es -1 si :
 - (1) a + b = 0
 - (2) $a = -\frac{3}{2}$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

CLAVES

1	Α	6	D	11	С	16	E	21	С	26	С
2	Ε	7	Α	12	В	17	В	22	D	27	D
3	В	8	С	13	В	18	D	23	D	28	E
4	Α	9	Α	14	С	19	D	24	С	29	С
5	Ε	10	В	15	Ε	20	Ε	25	Ε	30	Α