# Chatterjee (2018), 'Market Power and Spatial Competition in Rural India'

Nishaad Rao and Anirudh Yadav

December 8, 2018

#### **Environment**

- ► *S* regions (independent for now)
- One crop (we'll add more later)
- Within each region,
  - farmers,  $f \in \{1, ..., F\} \equiv \mathcal{F}$
  - ▶ intermediares,  $m \in \{1, ..., M\} \equiv M$
- ▶ Iceberg trade costs:  $\tau_{fm} > 1$ .
- Partial equilibrium (demand side is exogenously given)

## **Technology**

Farmers have Cobb-Douglas production technology,

$$y_f = \tilde{A}_f \left( h_f^{\gamma} l_f^{\nu} \prod_{k=1}^K (x_f^k)^{\alpha_k} \right)$$

- $\{x^k\}$  intermediate inputs, prices  $\{w^k\}$  (exogenously given)
- $\blacktriangleright$   $h_f$  and  $l_f$  are endowments of land and labor (i.e. fixed).

#### Market choice

► Farmer's problem is to choose the market *m* that maximizes profit (note the trade cost):

$$\max_{m \in \mathcal{M}} \left\{ \frac{p^f(m)y_f}{\tau_{fm}} \right\}$$

#### Price determination

- ▶ Once farmer f reaches market m, all costs are sunk.
- ► Farmer's price is determined via Nash Bargaining.
- Farmer's outside option:

$$\underline{p}(m) = \max_{k \in \mathcal{M} \setminus \{m\}} \left\{ \frac{p^f(k)}{\tau_{mk}} \right\}$$

Intermediary's outside option is zero.

## Price determination: Nash bargaining

NB outcome is the solution to

$$\max_{\lambda} (\lambda - \underline{p}(m)q_m)^{\delta} (p_m^r q_m - \lambda)^{1-\delta}$$

- $\triangleright \lambda$  is farmer's income
- $p_m^r$  is the retail price (exogenous)

## Equilibrium

Set of farmer prices  $p^f(\cdot)$ , intermediate input choices  $\{x_f^k\}_{k\in\mathcal{K},f\in\mathcal{F}}$ , and the optimal market choice of each farmer  $\{\mu(f)\}_{f\in\mathcal{F}}$ :

- 1. Farmers maximize profits;
- 2. Farmers optimally choose the market to sell their output;
- At each market, the farmer's price is determined by the NB solution, assuming that NB in all other markets have reached an agreement.

## Equilibrium – solution

Solution to NB problem:

$$p^f(m)=(1-\delta)\underline{p}(m)+\delta p_m^r$$
 using  $p^f(m)=\lambda/q_m$ .

- ▶ System of M equations in M endogenous variables  $\{p^f(m)\}_{m \in \mathcal{M}}$
- ▶ **T1**: Equilibrium exists and is unique.
- ▶ L1: Given retail prices, removing the interregional trading restriction improves farmer prices.
  - ⇒ Intuition: farmer's outside option is better!

## Data + estimation + calibration

## Counterfactual 1:

## **Appendix**

#### Causal estimates

- Basic idea: choose market pairs that are close together but separated by a border
- ► Factors that affect price (other than spatial competition) should be similar for the market pairs.
- ▶ For each market pair (m, m') estimate:

$$\Delta \log p_{cmdt}^f = \beta_1(\Delta \mathsf{comp}_m) + \gamma_{ss'} + \tilde{\epsilon}_{cmdt}$$

### Causal estimates

Table: Border Discontinuity Regressions

|                  | Distance between market pairs (km) |       |       |
|------------------|------------------------------------|-------|-------|
|                  | < 25                               | < 30  | < 35  |
| $\hat{\beta}_1$  | 0.025                              | 0.035 | 0.036 |
| Robust std. err. | 0.011                              | 0.013 | 0.009 |

#### Estimation + calibration

▶ Parameterize  $\tau$ :

$$\tau_{mkct} = \begin{cases} 1 & \text{if } m = k \\ 1 + A \cdot d_{mk} + \epsilon_{mct} & \text{if } m \neq k \\ \infty & \text{if } m, k \text{ in diff states} \end{cases}$$
 
$$\epsilon_{mct} \sim \mathcal{N}(0, \sigma^2)$$

• Estimate  $(\delta, \sigma^2, A)$  using SMM.

## Model fit

