### Análise Gráfica

continuação

#### Gilberto Pereira Sassi

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Estatística

05 de maio de 2016

1/11

ilberto Sassi (UFF) Gráficos 05 de maio de 2016

## Exemplo

Um grupo de 82 estudantes de medicina cursando disciplinas correspondentes até o quarto da Universidade Estadual do Maranhão (UEMA) responderam o Inventário para de Depressão de Beck (IDB). Obtemos a seguinte tabela de distribuição de frequência.

Tabela 1: Distribuição de Frequência para Nível de Depressão entre os estudantes de medicina.

| Distribuição de Frequência |            |           |             |  |  |  |  |
|----------------------------|------------|-----------|-------------|--|--|--|--|
| Grau de Depressão          | Frequência | Proporção | Porcentagem |  |  |  |  |
| Sem ou Mínimo              | 42         | 0,5122    | 51,22       |  |  |  |  |
| Leves                      | 29         | 0,3537    | 35,37       |  |  |  |  |
| Moderado                   | 8          | 0,0976    | 9,76        |  |  |  |  |
| Graves                     | 3          | 0,0366    | 3,66        |  |  |  |  |
| Total                      | 82         | 1,0000    | 100,00      |  |  |  |  |

### Gráfico de Barras

Figura 1: Gráfico de Barras para o nível de depressão entre os estudantes de medicina da UEMA.



### Gráfico em Setores

Figura 2: Gráfico em Setores para o nível de depressão entre os estudantes de medicina da UEMA.



# Exemplo

As taxas médias de incremento populacional da última década das 30 maiores municípios do Brasil estão dados abaixo:

Tabela 2: Taxa média de incremento populacional nas 30 maiores cidades do Brasil na última década.

| 0.0  | 1.00 | 1.00 | 1.00 | 0.10 | 0.40 | 0.70 | 0.00 | 0.00 | 0.00 |
|------|------|------|------|------|------|------|------|------|------|
| 0.9  |      |      |      |      |      |      |      |      |      |
| 3.67 | 3 73 | 3 96 | 4 07 | 4 1  | 4 17 | 4 26 | 4.3  | 4 65 | 5 09 |
|      |      |      |      |      |      |      |      |      |      |
| 5.28 | 5.36 | 5.41 | 5.54 | 5.84 | 6.54 | 7.35 | 1.// | 8.14 | 8.45 |

# Exemplo

| Distribuição de Frequência |            |           |             |  |  |  |  |  |
|----------------------------|------------|-----------|-------------|--|--|--|--|--|
| Incremento Populacional    | Frequência | Proporção | Porcentagem |  |  |  |  |  |
| 0   2                      | 4          | 0,1333    | 13,33       |  |  |  |  |  |
| 2 -4                       | 9          | 0,3000    | 30,00       |  |  |  |  |  |
| 4 6                        | 12         | 0,4000    | 40,00       |  |  |  |  |  |
| 6 8                        | 3          | 0,1000    | 10,00       |  |  |  |  |  |
| 8   10                     | 2          | 0,0667    | 6,67        |  |  |  |  |  |
| Total                      | 30         | 1,0000    | 100,00      |  |  |  |  |  |

### Gráfico de Barras

Relembrando que no gráfico de barras observamos a altura das barras.



### Gráfico de Setores.

Relembrando que no gráfico de setores observamos a área ou tamanho de cada setor.



# Histograma

O Histograma é um gráfico de contíguas e observamos a área dentro da barra. Assim, precisamos ajustar a altura da barra conforme a tabela a seguir:

| Base   | Proporção | Altura                                          |  |  |
|--------|-----------|-------------------------------------------------|--|--|
| 0   2  | 0,1333    | $\frac{0,133}{2} = 0,07$                        |  |  |
| 2   4  | 0,3000    | $\frac{0.3}{2} = 0,15$                          |  |  |
| 4   6  | 0,4000    | $\frac{0.4}{2} = 0,20$                          |  |  |
| 6   8  | 0,1000    | $\frac{0\overline{,}1}{2} = 0,05$               |  |  |
| 8   10 | 0,0667    | $\frac{\frac{0.1}{2}}{\frac{0.0667}{2}} = 0.05$ |  |  |
| Total  | 1.0000    | _                                               |  |  |

# Histograma



### Ramos-e-folhas

Primeiro arrendondamos os valores em uma casa decimal.

Tabela 3: Dados arrendondados em uma casa decimal.

| 0.9 | 1.3 | 1.8 | 1.9 | 2.1 | 2.4 | 2.8 | 2.8 | 2.9 | 3.6 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 3.7 |     |     |     |     |     |     |     |     |     |
| 5.3 | 5.4 | 5.4 | 5.5 | 5.8 | 6.5 | 7.4 | 7.8 | 8.1 | 8.5 |

Figura 3: Gráficos de ramos usando os valores arrendondados na Tabela 3.

```
0 | 9
1 | 3
1 | 89
2 | 14
2 | 889
3 | 677
4 | 011233
4 | 7
5 | 1344
5 | 58
6 | 5
7 | 3
7 | 8
8 | 14
```