

Model Development Phase Template

Date	21 June 2024		
Te am ID	740665		
Project Ti tle	Optic rop:S mart Agricultural Production Optimization Engine		
Maximum Marks	4Marks		

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2, random_state=0)

print("The shape of x train",x_train.shape)
print("The shape of x test", x_test.shape)
print("The shape of y train",x_train.shape)
print("The shape of y test", x_test.shape)
```

```
plt.rcParams['figure.figsize']=(10,4)
WCSS=[]
for i in range(1,11):
    km=KMeans(n_clusters=i,init="k-means++", max_iter=300,n_init=10,random_state=0)
    km.fit(x)
    WCSS.append(km.inertia_)
plt.plot(range (1,11), WCSS)
plt.title("The Elbow method", fontsize=20)
plt.xlabel("No of clusters")
plt.ylabel("WCSS")
plt.show()
```



```
km=KMeans(n_clusters=4,init="k-means++", max_iter=300,n_init=10,random_state=0)
y_means=km.fit_predict(x)
a=df['label']
y_means=pd.DataFrame(y_means)
z=pd.concat([y_means,a],axis=1)
z=z.rename(columns={0:'cluster'})
print("lets check the results after applying the K-Means clustering analysis \n")
print("Crops in First cluster:", z[z['cluster']==0] ['label'].unique())
print("----")
print("Crops in Second cluster:", z[z['cluster']==1]['label'].unique())
print("-----")
print("Crops in Third cluster:", z[z['cluster']==2]['label'].unique())
print("----")
print("Crops in Fourth cluster:", z[z['cluster']==3]['label'].unique())
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
from sklearn.metrics import confusion_matrix
plt.rcParams["figure.figsize"]=(10,10)
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True,cmap='Wistia')
plt.title("Confusion matrix for logistic regression", fontsize=15)
plt.show()
from sklearn.metrics import classification report
cr=classification_report(y_test,y_pred)
print(cr)
```

Model Validation and Evaluation Report:

Model	Classification Report	F1 Score	Confusion Matrix
-------	-----------------------	-------------	------------------

Kmeans, Linear regression

from sklearn.metrics import classification_report
cr=classification_report(y_test,y_pred)
print(cr)

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	4
banana	1.00	1.00	1.00	22
blackgram	0.83	0.90	0.86	21
chickpea	1.00	1.00	1.00	24
coconut	1.00	1.00	1.00	19
coffee	1.00	0.95	0.97	20
cotton	0.91	0.91	0.91	22
grapes	1.00	1.00	1.00	6
jute	0.88	0.82	0.85	17
kidneybeans	0.83	1.00	0.91	20
lentil	0.94	0.94	0.94	17
maize	0.83	0.88	0.86	17
mango	0.95	1.00	0.98	21
mothbeans	0.91	0.81	0.86	26
mungbean	0.92	0.92	0.92	13
muskmelon	1.00	1.00	1.00	14
orange	1.00	1.00	1.00	25
papaya	1.00	0.95	0.98	21
pigeonpeas	1.00	0.78	0.88	18
pomegranate	1.00	1.00	1.00	20
rice	0.89	0.96	0.92	25
watermelon	1.00	1.00	1.00	21
accuracy			0.94	413
macro avg	0.95	0.95	0.95	413
veighted avg	0.95	0.94	0.94	413

94%

