Interrogation écrite <u>Durée 30 mn</u> Tout document interdit

•	4	(4)
Exercice		- 4
L'ACI CICC	1	

Coche	r la ou les propositions que vous jugez valide(s)?
	$\Box \mid = \alpha \text{ ssi} \mid = \forall x \alpha$
	\square α satisfiable ssi $\forall x \alpha$ satisfiable
	\square α satisfiable ssi $\exists x \alpha$ satisfiable
	$\square \neg \alpha$ satisfiable ssi $\neg \forall x \alpha$ satisfiable
	$\Box \neg \alpha$ non satisfiable ssi $\exists x \alpha$ satisfiable
	$\Box \neg \alpha$ non satisfiable ssi $\forall x \neg \alpha$ satisfiable
Exerc	<u>sice 2</u> (2)
On cor	nsidère la formule β telle que :
	β : $\forall x P(x) \land \forall x \neg P(x) \rightarrow P(u) \land \neg P(v)$
Questi	ions:
	β est-elle valide ? Si vous pensez que oui, le montrer à l'aide d'un arbre sémantique.

3. Si vous pensez que non, donner un modèle de Herbrand de $\neg \beta$.

N.B. Pour la question 1, répondre directement sur le sujet.

Remettre une seule double feuille sans intercalaire.

Correction

Exercice 1 (3)

Cocher la ou les propositions que vous jugez valide(s)?

 $|\mathbf{x}| = \alpha \operatorname{ssi} = \forall x \alpha$

 \square α satisfiable ssi $\forall x \alpha$ satisfiable

 \mathbf{X} α satisfiable ssi $\exists x \alpha$ satisfiable

 $\neg \alpha$ satisfiable ssi $\neg \forall x \alpha$ satisfiable

 $\Box \neg \alpha$ non satisfiable ssi $\exists x \alpha$ satisfiable

 $|\mathbf{x}| \neg \alpha$ non satisfiable ssi $\forall x \neg \alpha$ satisfiable

Correction Exercice 2 (2)

- 1. Oui est β est valide.
- 2. Arbre sémantique :

 $= \beta ssi -\beta non satisfiable ssi (-\beta)_p non satisfiable$

 $(\neg \beta)_p$ non satisfiable ssi sa fermeture existentielle $\exists u \exists v (\neg \beta)_p$ (car u et v sont libres dans β).

 $\exists u \exists v (\neg \beta)_p$ est non satisfiable ssi sa forme de Skolem $\exists u \exists v (\neg \beta)_{pS}$ est non satisfiable

(0.5)

2.1.On renomme les variables liées de β : $\forall x P(x) \land \forall y \neg P(y) \rightarrow P(u) \land \neg P(v)$

2.2. $\neg \beta$: $(\forall x P(x) \land \forall y \neg P(y)) \land (\neg P(u) \lor P(v))$ (0.25 point)

2.3. $(\neg \beta)_p : \forall x \forall y ((P(x) \land \neg P(y)) \land (\neg P(u) \lor P(v)))$ (0.25 point)

2.4. $\exists u \exists v (\neg \beta)_p$: $\exists u \exists v \forall x \forall y ((P(x) \land \neg P(y)) \land (\neg P(u) \lor P(v)))$ (0.5 point)

2.5. : $(\exists u \exists v (\neg \beta)_p)_S : \forall x \forall y ((P(x) \land \neg P(y)) \land (\neg P(a) \lor P(b)))$ (0.5 point)

2.6. Ensemble de clauses issu de $(\exists u \exists v (\neg \beta)_p)_S$:

S: { P(x), $\neg P(y)$, $\neg P(a) \lor P(b)$ }

2.7. Arbre sémantique : (0.5 point)

L'arbre sémantique issu de S est clos. S est donc non satisfiable. Par conséquent $(\exists u \exists v (\neg \beta)_p)_S$ donc $\exists u \exists v (\neg \beta)_p$ est non satisfiable. On en déduit que $(\neg \beta)_p$ donc $\neg \beta$ est non satisfiable, donc $\models \beta$.