A5. Regresión Logística

Francisco Castorena, A00827756

2023-10-20

```
library(tidyverse)
library(ISLR)
```

Warning: package 'ISLR' was built under R version 4.2.3

Trabaja con el set de datos Weekly, que forma parte de la librería ISLR. Este set de datos contiene información sobre el rendimiento porcentual semanal del índice bursátil S&P 500 entre los años 1990 y 2010. Se busca predecir el tendimiento (positivo o negativo) dependiendo del comportamiento previo de diversas variables de la bolsa bursátil S&P 500.

Encuentra un modelo logístico para encontrar el mejor conjunto de predictores que auxilien a clasificar la dirección de cada observación.

Se cuenta con un set de datos con 9 variables (8 numéricas y 1 categórica que será nuestra variable respuesta: Direction). Las variables Lag son los valores de mercado en semanas anteriores y el valor del día actual (Today). La variable volumen (Volume) se refiere al volumen de acciones. Realiza:

1. El análisis de datos. Estadísticas descriptivas y coeficiente de correlación entre las variables.

```
data <- Weekly
head(data,10)</pre>
```

```
##
    Year
         Lag1
              Lag2
                   Lag3
                         Lag4
                              Lag5
                                    Volume Today Direction
## 1
    1990
        Down
    Down
    Uр
    1990
        3.514 -2.576 -0.270 0.816
                             1.572 0.1616300
                                          0.712
                                                    Uр
    1990
        0.712 3.514 -2.576 -0.270 0.816 0.1537280
                                                    Uр
        1.178 0.712 3.514 -2.576 -0.270 0.1544440 -1.372
    1990
                                                  Down
    1990 -1.372 1.178
                   0.712
                        3.514 -2.576 0.1517220
                                          0.807
                                                    Uр
                                                    Uр
    1990
        0.807 -1.372 1.178
                        0.712
                             3.514 0.1323100
                                          0.041
        0.041
             0.807 - 1.372
                       1.178
                             0.712 0.1439720
                                                    Uр
## 10 1990
        1.253
                   0.807 -1.372
                             1.178 0.1336350 -2.678
             0.041
                                                  Down
```

glimpse(Weekly)

summary(Weekly)

```
##
        Year
                                        Lag2
                                                           Lag3
                      Lag1
##
   Min.
          :1990
                  Min. :-18.1950
                                    Min. :-18.1950
                                                      Min.
                                                            :-18.1950
                  1st Qu.: -1.1540
                                                      1st Qu.: -1.1580
##
   1st Qu.:1995
                                    1st Qu.: -1.1540
   Median:2000
                  Median : 0.2410
                                    Median: 0.2410
                                                      Median: 0.2410
##
   Mean
         :2000
                       : 0.1506
                                    Mean : 0.1511
                                                      Mean : 0.1472
                  Mean
                                                      3rd Qu.: 1.4090
##
   3rd Qu.:2005
                  3rd Qu.: 1.4050
                                    3rd Qu.: 1.4090
##
   Max.
          :2010
                  Max. : 12.0260
                                    Max. : 12.0260
                                                      Max. : 12.0260
                                           Volume
                                                            Today
        Lag4
                          Lag5
                                              :0.08747
                                                               :-18.1950
##
   Min.
         :-18.1950
                     Min. :-18.1950
                                       Min.
                                                         Min.
   1st Qu.: -1.1580
                     1st Qu.: -1.1660
                                       1st Qu.:0.33202
                                                        1st Qu.: -1.1540
##
                     Median : 0.2340
   Median : 0.2380
                                       Median :1.00268
                                                        Median: 0.2410
                     Mean : 0.1399
   Mean : 0.1458
                                       Mean :1.57462
                                                        Mean : 0.1499
   3rd Qu.: 1.4090
                     3rd Qu.: 1.4050
                                                         3rd Qu.: 1.4050
                                       3rd Qu.:2.05373
##
   Max. : 12.0260
                     Max. : 12.0260
                                              :9.32821
##
                                       Max.
                                                        Max. : 12.0260
##
   Direction
##
   Down: 484
##
   Up :605
##
##
##
##
```

pairs(Weekly)

cor(Weekly[, -9])

```
##
                             Lag1
                                         Lag2
                                                     Lag3
                                                                  Lag4
                 Year
          1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Year
         -0.03228927 \quad 1.000000000 \quad -0.07485305 \quad 0.05863568 \quad -0.071273876
## Lag1
         -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag2
         -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag3
## Lag4
         -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5
         -0.03051910 \ -0.008183096 \ -0.07249948 \ \ 0.06065717 \ -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today
        -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
##
                           Volume
                 Lag5
                                         Today
         ## Year
         -0.008183096 -0.06495131 -0.075031842
## Lag1
## Lag2
         -0.072499482 -0.08551314 0.059166717
          0.060657175 -0.06928771 -0.071243639
## Lag3
## Lag4
          -0.075675027 -0.06107462 -0.007825873
          1.000000000 -0.05851741 0.011012698
## Lag5
## Volume -0.058517414 1.00000000 -0.033077783
## Today
          0.011012698 -0.03307778 1.000000000
attach(Weekly)
plot(Volume)
```


2. Formula un modelo logístico con todas las variables menos la variable "Today". Calcula los intervalos de confianza para las . Detecta variables que influyen y no influyen en el modelo. Interpreta el efecto de la variables en los odds (momios).

```
modelo.log.m <- glm(Direction ~ . -Today, data= Weekly, family = binomial)
summary(modelo.log.m)</pre>
```

```
##
   glm(formula = Direction ~ . - Today, family = binomial, data = Weekly)
##
## Deviance Residuals:
##
       Min
                  1Q
                       Median
                                     3Q
                                             Max
## -1.7071 -1.2578
                       0.9941
                                 1.0873
                                          1.4665
##
##
   Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
##
   (Intercept) 17.225822
                           37.890522
                                        0.455
                                                 0.6494
                                       -0.448
                                                 0.6545
## Year
                -0.008500
                            0.018991
## Lag1
                -0.040688
                            0.026447
                                       -1.538
                                                 0.1239
                 0.059449
                                        2.204
                                                 0.0275 *
## Lag2
                            0.026970
## Lag3
                -0.015478
                            0.026703
                                       -0.580
                                                 0.5622
## Lag4
                -0.027316
                            0.026485
                                       -1.031
                                                 0.3024
## Lag5
                -0.014022
                            0.026409
                                       -0.531
                                                 0.5955
                 0.003256
                            0.068836
                                        0.047
                                                 0.9623
## Volume
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.2 on 1081 degrees of freedom
## AIC: 1502.2
##
## Number of Fisher Scoring iterations: 4
contrasts(Direction)
##
       Uр
## Down 0
## Up
confint(object = modelo.log.m, level = 0.95)
## Waiting for profiling to be done...
                                 97.5 %
##
                      2.5 %
## (Intercept) -56.985558236 91.66680901
## Year
               -0.045809580 0.02869546
## Lag1
               -0.092972584 0.01093101
## Lag2
               0.007001418 0.11291264
## Lag3
               -0.068140141 0.03671410
## Lag4
               -0.079519582 0.02453326
## Lag5
               -0.066090145 0.03762099
## Volume
               -0.131576309 0.13884038
```

Podemos ver en el modelo generado anteriormente que la única variable significativa es Lag2 debido a que tiene un p-value menor a 0.05.

Gráfico de las variables significativas

```
ggplot(data = Weekly, mapping = aes(x = Direction, y = Lag2)) +
geom_boxplot(aes(color = Direction)) +
geom_point(aes(color = Direction)) +
theme_bw() +
theme(legend.position = "null")
```


3. Divide la base de datos en un conjunto de entrenamiento (datos desde 1990 hasta 2008) y de prueba (2009 y 2010). Ajusta el modelo encontrado.

```
# Training: observaciones desde 1990 hasta 2008
datos.entrenamiento <- (Year < 2009)
# Test: observaciones de 2009 y 2010
datos.test <- Weekly[!datos.entrenamiento, ]</pre>
# Verifica:
nrow(datos.entrenamiento) + nrow(datos.test)
## integer(0)
# Ajuste del modelo logístico con variables significativas
modelo.log.s <- glm(Direction ~ Lag2, data = Weekly,</pre>
family = binomial, subset = datos.entrenamiento)
summary(modelo.log.s)
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly,
##
       subset = datos.entrenamiento)
##
```

```
## Deviance Residuals:
     Min 1Q Median
##
                             3Q
                                    Max
## -1.536 -1.264 1.021 1.091
                                  1.368
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
                         0.06428 3.162 0.00157 **
## (Intercept) 0.20326
                         0.02870 2.024 0.04298 *
## Lag2
               0.05810
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1354.7 on 984 degrees of freedom
##
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
## Number of Fisher Scoring iterations: 4
```

4. Formula el modelo logístico sólo con las variables significativas en la base de entrenamiento.

```
# Vector con nuevos valores interpolados en el rango del predictor Lag2:
nuevos_puntos <- seq(from = min(Weekly$Lag2), to = max(Weekly$Lag2),
by = 0.5)

predicciones <- predict(modelo.log.s, newdata = data.frame(Lag2 = nuevos_puntos),se.fit = TRUE, type = "response")</pre>
```

5. Representa gráficamente el modelo.

```
# Límites del intervalo de confianza (95%) de las predicciones
CI_inferior <- predicciones$fit - 1.96 * predicciones$se.fit
CI_superior <- predicciones$fit + 1.96 * predicciones$se.fit
# Matriz de datos con los nuevos puntos y sus predicciones
datos_curva <- data.frame(Lag2 = nuevos_puntos, probabilidad =</pre>
predicciones$fit, CI.inferior = CI_inferior, CI.superior = CI_superior)
# Codificación 0,1 de la variable respuesta Direction
Weekly$Direction <- ifelse(Weekly$Direction == "Down", yes = 0, no = 1)
ggplot(Weekly, aes(x = Lag2, y = Direction)) +
geom_point(aes(color = as.factor(Direction)), shape = "I", size = 3) +
geom_line(data = datos_curva, aes(y = probabilidad), color = "firebrick") +
geom_line(data = datos_curva, aes(y = CI.superior), linetype = "dashed") +
geom_line(data = datos_curva, aes(y = CI.inferior), linetype = "dashed") +
labs(title = "Modelo logístico Direction ~ Lag2", y = "P(Direction = Up |
Lag2)", x = "Lag2") +
scale_color_manual(labels = c("Down", "Up"), values = c("blue", "red")) +
guides(color=guide legend("Direction")) +
theme(plot.title = element_text(hjust = 0.5)) +
theme bw()
```

Modelo logístico Direction ~ Lag2

6. Evalúa el modelo con las pruebas de verificación correspondientes (Prueba de chi cuadrada, matriz de confusión).

```
anova(modelo.log.s, test ='Chisq')
```

```
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Direction
##
## Terms added sequentially (first to last)
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
## NULL
                           984
                                   1354.7
                           983
                                   1350.5 0.04123 *
## Lag2
             4.1666
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Cálculo de la probabilidad predicha por el modelo con los datos de test
prob.modelo <- predict(modelo.log.s, newdata = datos.test, type = "response")</pre>
# Vector de elementos "Down"
pred.modelo <- rep("Down", length(prob.modelo))</pre>
```

```
# Sustitución de "Down" por "Up" si la p > 0.5
pred.modelo[prob.modelo > 0.5] <- "Up"</pre>
Direction.0910 = Direction[!datos.entrenamiento]
# Matriz de confusión
matriz.confusion <- table(pred.modelo, Direction.0910)</pre>
library(vcd)
## Warning: package 'vcd' was built under R version 4.2.3
## Loading required package: grid
##
## Attaching package: 'vcd'
## The following object is masked from 'package:ISLR':
##
       Hitters
##
mosaic(matriz.confusion, shade = T, colorize = T,
gp = gpar(fill = matrix(c("green3", "red2", "red2", "green3"), 2, 2)))
```


mean(pred.modelo == Direction.0910)

[1] 0.625

Interprétalo en el contexto del problema. Añade posibles es buen modelo, en qué no lo es, cuánto cambia)

La adición de la variable "Lag2" mejora el modelo en términos estadísticos y parece proporcionar información útil para predecir la dirección. Sin embargo, la precisión del modelo (62.5%) sugiere que el modelo todavía tiene margen de mejora y no es extremadamente preciso en sus predicciones. Puede considerarse un modelo razonable para predecir la dirección, pero existen oportunidades para explorar otros predictores o técnicas de modelado que puedan mejorar su rendimiento.