步驟一:觀察各點的鏡射重心連線。

利用鏡射矩陣得到鏡射三角形三點座標。以 $P_1(x_1,y_1)$ 為例:

$$C_1 = (x_1 \cdot \cos 2\theta_2 - y_1 \cdot \sin 2\theta_2, -y_1 \cdot \cos 2\theta_2 - x_1 \cdot \sin 2\theta_2)$$

將其整理成定理三,如下:

步驟二: $\overline{K_1A}$: $\overline{G_1A}$ 。

將鏡射三角形三點座標相加得到 $K_1 imes K_2 imes K_3$ 以 $P_1(x_1, y_1)$ 為例:

$$K_{1} = (x_{1} \cdot (1 + \cos 2\theta_{1} + \cos 2\theta_{2})$$

$$+y_{1} \cdot (\sin 2\theta_{1} - \sin 2\theta_{2}),$$

$$-y_{1} \cdot (1 + \cos 2\theta_{1} + \cos 2\theta_{2})$$

$$+x_{1} \cdot (\sin 2\theta_{2} - \sin 2\theta_{2}) + 2k)$$

步驟三:證明 $\Delta G_1 G_2 G_3$ 與 $\Delta P_1 P_2 P_3$ 相似及求出其縮放倍率。 C_1 C_1

因 $\Delta K_1 K_2 K_3$ 與 $\Delta P_1 P_2 P_3$ 相似(對應邊成固定比例) 故 $\Delta G_1 G_2 G_3$ 與 $\Delta P_1 P_2 P_3$ 相似,且縮放倍率為 $\sqrt{-3+4\left[\cos^2\theta_1+\cos^2\theta_2+\cos^2(\theta_1+\theta_2)\right]}$ 。

定理三:在對任意三角形鏡射的情況下, P_1 、 P_2 、 P_3 會分別對應到 G_1 、 G_2 、 G_3 ; $\Delta G_1G_2G_3$ 與 $\Delta P_1P_2P_3$ 相似,且 $\Delta G_1G_2G_3$ 邊長長度會分別是 $\Delta P_1P_2P_3$ 邊長的 $\frac{\sqrt{-3+4\left[\cos^2\theta_1+\cos^2\theta_2+\cos^2(\theta_1+\theta_2)\right]}}{3}$ 倍。

根據定理三,可知道對任意非正三角形鏡射重心連線形成三角形與原三角形相似,接著來討論鏡射外心的情況。

三、鏡射外心的特殊情況

經過觀察,我們發現了鏡射外心的三種特殊情況,如下:

(一)鏡射外心與 △ABC 頂點重合:

當 P_1 位在 L_1 、 L_2 、 L_3 上時, O_1 會與該直線的對邊頂點重合,以 P_1 位於 L_1 上的情況為例,外心 O_1 會是三條中垂線的交點,也就會是 L_2 和 L_3 的交點,即C點,如圖7。

將其整理成定理四,如下:

定理四:當 P_1 落在 $L_1 imes L_2 imes L_3$ 上時,鏡射外心 O_1 分別會與 $L_1 imes L_2 imes L_3$ 的對邊頂點C imes A imes B 重合。

$(二) P_1$ 落在 $t_A \cdot t_B \cdot t_C$ 上:

 P_1 只要落在過頂點的外接圓切線上, O_1 就會落在過頂點且平行對邊的直線上,如圖 8。因為當 P_1 落在過A 的直線上時, $\overline{C_1A_1}$ 中垂線恆與 \overline{BC} 平行且通過 A 點,利用平移、旋轉、翻轉可類推 P_1 落在 t_B 、 t_C 的情况也成立。

將其整理成定理五,如下:

定理五:當 P_1 落在 $t_A imes t_B imes t_C$ 上時,鏡射外心 O_1 會落在過切點且平行對邊的直線上。

$P_1 = A_1$ L_2 $C = O_1$ B B_1 L_3

圖 $7-P_1$ 位於 L_1 上,且 O_1 與C重合。

圖 $8 - P_1 \cdot P_2$ 都在 t_A 上時, $\overline{O_1O_2}$ 平行 \overline{BC} 。

(三) P_2 落在過 $\triangle ABC$ 一頂點的直線上:

 $若 P_2$ 為 $\overline{P_1A}$ 上一動點,則 O_2 也會落在 $\overline{O_1A}$ 上,如圖 $9 \circ L_A$ 會是 t_A 旋轉 ϕ ,所以 $\overline{A_1A}$ 和 $\overline{C_1A}$ 皆會 旋轉 ϕ ,因此角平分線也會旋轉 ϕ ,利用平移、旋轉、翻轉可類推 P_1 落在過 $B \circ C$ 的直線上也有此性質。将其整理成**定理六**,如下:

定理六:當 $P_1 imes P_2$ 連線通過 ΔABC 一頂點時,鏡射外心 $O_1 imes O_2$ 連線也會通過該頂點。

圖9-通過任意頂點皆有此性質。

四、P₁在特殊三角形的過頂點外接圓切線上移動之鏡射情況

(-) P_1 落在等腰直角三角形 $\triangle ABC$ 的 t_B 上:

觀察發現,當 P_1 在 t_B 上移動時, O_1 也會位在 t_B 上,因為**定理五**可知當 P_1 落在 t_A 、 t_B 、 t_C 上時, O_1 必會落在過切點且平行對邊的直線上,因此 L_3 平行 t_B , O_1 會在 t_B 上移動且兩者的水平距離為k,如圖 10。

將其整理成定理七,如下:

定理七:當 P_1 等腰直角三角形 $\triangle ABC$ 的外接圓切線 t_B 上移動時, O_1 的移動軌跡就會與 t_B 重合。

(二) P_1 落在正三角形 $\triangle ABC$ 的 $t_A \cdot t_B \cdot t_C$ 上:

觀察發現,若 P_1 位在 t_A 、 t_B 、 t_C 上,則 O_1 也會在此切線上移動,根據**定理五**, O_1 必定位於 t_A 上,因此只要算出 $\Delta A_1 B_1 C_1$ 的其中一條中垂線並求其與 t_A 的交點即可得到 O_1 坐標,而 P_1 落在 t_B 、 t_C 上的情況也可利用旋轉做解釋,如圖 11。

將其整理成定理八,如下:

定理八:當 P_1 在正三角形 ΔABC 的外接圓切線 $t_A \setminus t_B \setminus t_C$ 上移動時, O_1 的移動軌跡會與 $t_A \setminus t_B \setminus t_C$ 重合。

圖 $10-O_1$ 的移動軌跡為 t_B 。

圖 $11-O_1$ 的移動軌跡為 t_A 。