

FAKULTÄT

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

Databases and Information Systems (DIS) – Quiz 2

Universität Hamburg

Modern DBS: NoSQL Systems

Which graph models include edge and vertex properties? Which model is used in neo4j?

RDF Graph

Weighted Graph

Property Graph

Weighted Graph

Directed Graph

Canonical Property
Graph

Which graph models include edge and vertex properties? Which model is used in neo4j?

RDF Graph Weighted Graph Property Graph

Weighted Graph Directed Graph Canonical Property Graph

Family of Graph Data Models

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Creator: Name = Bob

Which of the following elements can directly be modelled using neo4j?

Entities with properties

Edge properties

Multivalued properties

N-ary relationships

N:M relationships

Which of the following elements can directly be modelled using neo4j?

Entities with properties

Edge properties

Multivalued properties

N-ary relationships

N:M relationships

Entity with Properties

Entity relationship model

Schema typically implicit, i.e. given with instances

```
(ja:Person { name: 'Jane Austen', yearOfBirth: 1775 })
```

Instance

Person

name="Jane Austen" yearOfBirth=1775

Person

<id>: 175 yearOfBirth: 1775 name: Jane Austen

Relationships (N:M)

Entity relationship model


```
Bath
Vertices
            (ja:Person { name: 'Jane Austen', yearOfBirth: 1775 })
            (wb:Person { name: 'William Blake', yearOfBirth: 1757 })
            (lo:City {name: 'London'})
            (ba:City {name: 'Bath'})
                                                                                         Jane
            (fe:City {name: 'Felpham'})
                                                                                         Austen
            (ja)-[:livedIn {since: 1775}]->(lo)
Edges
            (ja)-[:livedIn {since: 1800}]->(ba)
            (wb)-[:livedIn {since: 1757}]->(lo)
            (wb)-[:livedIn {since: 1800}]->(fe)
                                                               Felpham
                                                                                      London
                                                                                livedIn
                                                                          Blake
```


n-ary relationships (with n>2)

Entity relationship model


```
(ja:Person { name: 'Jane Austen', yearOfBirth: 1775 })
(wh:Publisher { name: 'Whitehall' })
(sas:Book {title: 'Sense and Sensibility' })
(pub:Publication {year: 1811 })
(pub)-[:author]->(ja)
(pub)-[:book]->(wh)
(pub)-[:publisher]->(sas)
```


Multivalued properties


```
(wb:Person {name: 'William Blake', hadOccupation: ['Poet', 'Painter', 'Printmaker']})
```


<id>: 183 hadOccupation: Poet, Painter, Printmaker name: William Blake

Name 3 different ways of representing graph data in a database system.

Name 3 different ways of representing graph data in a database system.

Adjacency Matrix

Compress Sparse Row (CSR)

$$\left(egin{array}{ccccc} 0 & 1 & 2 & 3 \ a & & c \ 1 & b & & e \ 2 & d & i & f \ 3 & & h & g \end{array}
ight)$$

Position for row # in other two arrays:

Representations: Adjacency List

Source vertex with outgoing edges...

$$egin{array}{ccccc} 0 & 1 & 2 & 3 \\ 0 & a & c \\ 1 & b & e \\ 2 & d & i & f \\ 3 & h & g \end{array} egin{array}{c}$$

...without edge labels

$$0 \rightarrow (0,2)$$

 $1 \rightarrow (1,3)$
 $2 \rightarrow (0,1,2)$

$$2 \rightarrow (0,1,2)$$

...with edge labels

$$0 \rightarrow ([0,a],[2,c])$$

$$3 \rightarrow ([1,h],[2,g])$$

...with edge properties

$$1 \rightarrow ([1,b],[3,e])$$
 $1 \rightarrow ([1,b,(weight=3)],[3,e,(weight=2)])$

$$2 \rightarrow (0,1,2)$$
 $2 \rightarrow ([0,d],[1,i],[2,f])$ $2 \rightarrow ([0,d,(weight=5)],[1,i,(weight=2)],...)$

$$3 \rightarrow ([1,h],[2,g])$$
 $3 \rightarrow ([1,h,(weight=9)],[2,g,(weight=7)])$

The same!

Almost the same!

Compressed Sparse Column

target-oriented

source-oriented

Property Table Approaches

Triple Table

Subj.	Prop.	Obj.
ID1	type	BookType
ID1	title	"XYZ"
ID1	author	"Fox, Joe"
ID1	copyright	"2001"
ID2	type	CDType
ID2	title	"ABC"
ID2	artist	"Orr, Tim"
ID2	copyright	"1985"
ID2	language	"French"
ID3	type	BookType
ID3	title	"MNO"
ID3	language	"English"
ID4	type	DVDType
ID4	title	"DEF"
ID5	type	CDType
ID5	title	"GHI"
ID5	copyright	"1995"
ID6	type	BookType
ID6	copyright	"2004"

(Clustered) property table

Property Table

Subj.	Type	Title	copyright
ID1	BookType	"XYZ"	"2001"
ID2	CDType	"ABC"	"1985"
ID3	BookType	"MNP"	NULL
ID4	DVDType	"DEF"	NULL
ID5	CDType	"GHI"	"1995"
ID6	BookType	NULL	"2004"

Left-Over Triples

Subj.	Prop.	Obj.
ID1	author	"Fox, Joe"
ID2	artist	"Orr, Tim"
ID2	language	"French"
ID3	language	"English"

Property-Class Table

Class: BookType

Subj.	Title	Author	copyright
ID1	"XYZ"	"Fox, Joe"	"2001"
ID3	"MNP"	NULL	NULL
ID6	NULL	NULL	"2004"

Class: CDType

Subj.	Title	Artist	copyright
ID2	"ABC"	"Orr, Tim"	"1985"
ID5	"GHI"	NULL	"1995"

Left-Over Triples

Subj.	Prop.	Obj.
ID2	language	"French"
ID3	language	"English"
ID4	type	DVDType
ID4	title	"DEF"

Reduce numbers of subject-subject self joins necessary to reconstruct entities

Which of the following are distance measures in graphs?

Degree Eccentricity

Diameter Radius

Which of the following are distance measures in graphs?

Basic Concepts: Measures

Degree (Valency)

Degree of a vertex *v*

$$\deg_{in} = 2$$
 $\deg_{out} = 3$

$$\deg(v) = \deg_{out}(v) + \deg_{in}(v)$$

Degree of a graph G

$$\deg(G) = \max_{v \in V} \deg(v)$$

Degree distribution

→ Probability distribution of vertex degree in a graph

Distance

→ Number of edges in a shortest path connecting two vertices

Eccentricity

 \rightarrow Longest shortest path starting from v

Average Distance

- in the graph

Radius

→ Minimum eccentricity of any vertex in the graph

$$r(G) = 2$$

Diameter

→ Maximum eccentricity of any vertex in the graph

$$d(G)=4$$

What do the letters CRUD (in relation to NoSQL DBs) stand for?

What do the letters CRUD (in relation to NoSQL DBs) stand for?

Key value store:

Basic key-value mapping with a simple API for CRUD operations

Create Read Update Delete

Which operations are offered by every key-value store?

Which operations are offered by every key-value store?

Key-Value Stores

Basic key-value mapping with a simple API for CRUD operations

Create Read Update Delete

Horizontal partitioning

users:1:a 4711

users:1:b

"[12, 34, 45, 67, 89]"

users:2:a

01101010010110010101001...

users:2:b

"[12, ABC, 3212, 0xff]"

CRUD realized by at least 3 types of queries

Put: Add a new pair Get: Retrieve a pair

Delete

Additional Operators implemented by some systems

Merge

MuliGet/MGet

MSet

• • •

Which are the variants for merging levels in an LSM tree?

Which are the variants for merging levels in an LSM tree?

Tiering

Leveling

LSM Trees: Merging

LSM Tiering

- Keep up to T-1 (sorted) runs per level L
- Merge all runs of L_i into 1 run of L_{i+1}
 - L1
 - L2
 - L3

LSM Leveling

- Keep 1 (sorted) run per level L
- Sort-Merge run of L_i with L_i+1
 - L1
 - L2
 - L3

Data Warehouses and OLAP

Which of the following are characteristics of Data Warehouses?

[lassical

Integration of data from different source systems

No user updates

Transaction-oriented organization of data

Historic data

Analysis-oriented organization of data

Real time data

Which of the following are characteristics of Data Warehouses?

Massica (

Integration of data from different source systems

No user updates

Transaction-oriented organization of data

Historic data

Analysis-oriented organization of data

Real time data

Characteristics of DWHs

Analysis-oriented organization of data

Domain-oriented, models a specific application goal

Historic data

Data is kept over a long period of time

and data level of multiple databases

Integration of data from different source systems

Integrated database, integration on structural

No user updates

(almost) no updates and deletes (technical updates / deletes only, quality assurance)

UH
Universität Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Fill in the steps involved in creating the Data Warehouse

Data-Warehouse-System

Fill in the steps involved in creating the Data Warehouse

Data-Warehouse-System

What happens during the ETL step?

Data acquisition and transformation

Which of the following statements about ADAPT are wrong?

Different hierarchies of the same dimension can have different leaf nodes.

Attributes can be assigned to a whole cube, a dimension, and individual levels.

Self-precedence can be modelled

A cube must have exactly 3 dimensions.

Which of the following statements about ADAPT are wrong?

Different hierarchies of the same dimension can have different leaf nodes.

Attributes can be assigned to a whole cube, a dimension, and individual levels.

Self-precedence can be modelled

A cube must have exactly 3 dimensions.

Conceptual Models: ADAPT

Name two relational schemas typically used in OLAP and briefly explain them.

Name two relational schemas typically used in OLAP and briefly explain them.

Star schema

- One fact table and multiple dimension tables
- Dimension tables are not necessarily normalized
- Fact table is linked directly to all dimension tables via a foreign key

Snowflake schema

- One fact table and multiple dimension tables
 - → Smaller memory footprint than star schema
- Dimension tables are normalized
 → Introduces more joins in the
 queries

Galaxy schema

- Multiple fact tables
- Dimension tables are shared
- Joining fact tables (which are usually huge) is extremely inefficient
 - → Long query execution times

Star Schema

Snowflake Schema

Galaxy Schema

Which of the following is/are not (a) typical method(s) of relational mapping of hierarchies?

Horizontal Mapping

Recursive Vertical Mapping

Diagonal Mapping

Iterative Horizontal Mapping

Vertical Mapping

Random Mapping

Which of the following is/are <u>not</u> (a) typical method(s) of relational mapping of hierarchies?

Horizontal Mapping

Recursive Vertical Mapping

Diagonal Mapping

Iterative Horizontal Mapping

Vertical Mapping

Random Mapping

Relational Mapping of Hierarchies

Vertical Mapping

Product			Product g	roup			Product family		Category				
	ID	Product	ID2	ID	Product group	ID3		ID	Product family	ID4	-	ID	Category
	1	Flour X	1	1	Flour	1		1	Bakery goods	1		1	Food
	2	Sugar Y	2	2	Sugar	1		2	Beverages	1			
	3	Water Z	3	3	Water	2							

Relation product

Horizontal Mapping

ID	Product	Product group	Product family	Category
1	Flour X	Flour	Bakery goods	Food
2	Sugar Y	Sugar	Bakery goods	Food
3	Water Z	Water	Beverages	Food

ID	Product	Product group	Product family	Category
1	Flour X	Flour	Bakery goods	Food
2	Sugar Y	Sugar	Bakery goods	Food
3	Water Z	Water	Beverages	Food

Relation product

ID	Product	ParentID
1	Food	NULL
2	Bakery goods	1
3	Beverages	1
4	Flour	2
5	Sugar	2
6	Water	3
7	Flour X	4
8	Sugar Y	5
9	Water Z	6

Recursive Vertical Mapping

Data Mining

Into which components can time series typically be decomposed?

Into which components can a time series typically be decomposed?

Is Piecewise aggregate approximation (PAA) a shape-based or a feature based representation for time series?

Shape-based

Feature-based

What is the difference to symbolic aggregate approximation?

Is Piecewise aggregate approximation (PAA) a shape-based or a feature based representation for time series?

Shape-based

Feature-based

What is the difference to symbolic aggregate approximation?

In SAX, values are discretized into an alphabet.

- Data Types
 - Metrics
- Handling of Missing Data
 - **Outlier Detection**
- **Dimensionality Reduction**
 - **Value Count Reduction**

- Transform a series to segments
- Time-dependent representation
 - High compression

Piecewise aggregate approximation (PAA)

→ Represent each segment by its mean

Symbolic aggregate approximation (SAX)

→ Discretize the mean into an alphabet

Handling of Missing Data

Outlier Detection

Dimensionality Reduction

Value Count Reduction

\hat{x}^1	а	а	С	d
	‡	‡	‡	‡
$\hat{\chi}^2$	a	b	а	b

 $d_{SAX}(\hat{\underline{x}}^i, \hat{\underline{x}}^j) = \sqrt{T/W} \cdot \sqrt{\sum_{w=1}^W cell(\hat{x}_w^i, \hat{x}_w^j)^2}$ cell returns the minimum distance of two symbols:

	a	b	C	d
a	0	0	0.67	1.34
b	0	0	0	0.67
C	0.67	0	0	0
d	1.34	0.67	0	0

SAX

PCA

Standardize all values per dimension

value-mean/standard deviation

Compute the covariance matrix

 $cov(x,y)=(\sum (x-(mean(x))(y-mean(y))))/number of data points$

Standardized data set * Feature vector = New Dataset (reduced to x dimensions)

Sort elements of Eigenvectors in descending order and pick those that belong to top x Eigen values → Feature Vectors

Which distance measures for clusters are shown here?

Which distance measures for clusters are shown here?

Single link

Average link

Complete link

Canonical entity

Clustering Methods

K-Means

Canopy Clustering

Hierarchical Clustering

Incremental Clustering

Distance measures for clusters

Single link Minimal distance between two data points

Complete link

Maximal distance between two data points

Average link

Average distance between two data points

Canonical entity

Distance between two cluster representatives (e.g. the centroids)

Big Data Analysis

Which operators require shuffling if they are distributed?

Which operators require shuffling if they are distributed?

Parallel Operators

Join: Symmetric Repartitioning

"Repartitioned join"

- Both join partners are repartitioned after the join attribute
- High communication costs

→ Avoid!

Join: Asymmetric Repartitioning

re-partition only B on join-key using same partitioning function as table A

(not on join key)

Join: Fragment and Replicate

partitioned data (across two nodes A_1 and A_2)

Replicate (all fragments of) smaller table (here: table A) to all nodes

partitioned data (across two nodes B₁ and B₂)

Which of the following are shuffling methods for distributed operators?

Range-based N:M

Column-based N:M

1:1

N:1

Remote N:1

Which of the following are shuffling methods for distributed operators?

Range-based N:M

Column-based N:M

1:1

N:1

Remote N:1

Data Shuffling: Details

Data Shuffling can use different partitioning strategies (range vs. hash-partitioning, N:M vs. N:1) to re-partition data during query execution

Range-based N:M

Hash-based N:M

N:1 (no part. function)

Name 3 possible reasons for data skew

Name 3 possible reasons for data skew

Different partition sizes

Distribution function leading to different fragment sizes

Different hit rates per partition in range queries

•••

Name 3 possible reasons for data skew

The Data Skew

Observation: Unequal processing time of partial operations (execution skew) impairs parallelization

Execution skew often goes back to data skew:

Differently sized data sets per partial operation due to non-uniform distribution of attribute values und tuples

See handout!

Big Data Analytics

22

What is the main difference between the Kappa architecture and the Lambda architecture?

What is the main difference between the Kappa architecture and the Lambda architecture?

The Kappa architecture only has a speed layer while the Lambda architecture also has a batch layer

Lambda Architecture

 \rightarrow see lecture 16

→ Batch & Stream processing

Disadvantage

2 code bases & 2 deployments, e.g. Hadoop & Storm

Kappa Architecture

→ No batch layer!

Which functions must be implemented by the application developer when using a map-reduce framework?

Map

Shuffle

Reduce

Which functions must be implemented by the application developer when using a map-reduce framework?

Map

Shuffle

Reduce

Name 3 frameworks for batch processing

Framework Overview

