Cluster Analysis With an Application to NBA data

Patrick Simpson

Xavier University

February 2, 2020

Outline

What cluster analysis is

• A short example

An application to NBA data

Background

• Clustering is ubiquitous in everyday life

 Cluster analysis methods attempt to group objects based on quantitative data

Early uses

Types of Cluster Analysis

Centroid Clustering

Density Clustering

Distribution Clustering

Connectivity Clustering

Hierarchical Clustering

- Two different approaches
 - Agglomerative
 - Divisive

Agglomerative Hierarchical Clustering Algorithm

• Begin with an NxN proximity matrix

 Merge the most similar clusters N-1 times until there is only one cluster remaining

 After each interation, the proximity matrix is updated with N-1 rows and columns

Creating the Proximity Matrix

There are different measures of distance between two objects; in this model Euclidean Distance is used.

Definition

Let x and y be two points. The Euclidean Distance function between x and y can be expressed as: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

Creating the Proximity Matrix (cont.)

- Single Linkage
- Average Linkage
- Complete Linkage

Definition

Let G and H represent two clusters. The dissimilarity d(G,H) between G and H is computed from the set of pairwise observation dissimilarities ij where one member of the pair i is in G and the other j is in H. The dissimilarity of G and H with complete linkage is computed as follow:

$$d_{CL}(G,H) = \max_{i \in G, j \in H} d_{ij}$$

	1	2	3	4	5
1	0.000000	2.236068	10.630146	9.433981	10.440307
2	2.236068	0.000000	8.602325	7.211103	9.055385
3	10.630146	8.602325	0.000000	3.162278	4.472136
4	9.433981	7.211103	3.162278	0.000000	7.071068
5	10.440307	9.055385	4.472136	7.071068	0.000000

	12	3	4	5
12	0.000000	10.630146	9.433981	10.440307
3	10.630146	0.000000	3.162278	4.472136
4	9.433981	3.162278	0.000000	7.071068
5	10.440307	4.472136	7.071068	0.000000

	12	34	5
12	0.00000	10.630146	10.440307
34	10.63015	0.000000	7.071068
5	10.44031	7.071068	0.000000

	12	345	
12	0.00000	10.63015	
345	10.63015	0.00000	

12345

12345 0

Dendogram

