Demostraciones en la lógica proposicional

Matemática estructural y lógica ISIS-1104

■ Un axioma es una proposición que se asume cierta.

- Un axioma es una proposición que se asume cierta.
- Un teorema es una proposición que se demuestra.

- Un axioma es una proposición que se asume cierta.
- Un teorema es una proposición que se demuestra.
- Un lema es un teorema chiquito.

- Un axioma es una proposición que se asume cierta.
- Un teorema es una proposición que se demuestra.
- Un lema es un teorema chiquito.
- Una demostración es una derivación.

Los axiomas que vamos a ver acá son equivalencias

$$\mathit{LHS} \equiv \mathit{RHS}$$

Los axiomas que vamos a ver acá son equivalencias

$$LHS \equiv RHS$$

y se utilizan de la siguiente forma:

Siempre que vea LHS lo puedo reemplazar por RHS

Siempre que vea RHS lo puedo reemplazar por LHS

Los axiomas que vamos a ver acá son equivalencias

$$LHS \equiv RHS$$

y se utilizan de la siguiente forma:

Siempre que vea LHS lo puedo reemplazar por RHS

Siempre que vea RHS lo puedo reemplazar por LHS

Es decir, son como **reglas de inferencia** pero **bidireccionales**.

Conmutatividad

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Conmutatividad

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Asociatividad

$$(p \lor q) \lor r \equiv q \lor (p \lor r)$$

 $(p \land q) \land r \equiv q \land (p \land r)$

Conmutatividad

$$p \lor q \equiv q \lor p$$
$$p \land q \equiv q \land p$$

Asociatividad

$$(p \lor q) \lor r \equiv q \lor (p \lor r)$$

 $(p \land q) \land r \equiv q \land (p \land r)$

Absorción

$$p \wedge (p \vee q) \equiv p$$

 $p \vee (p \wedge q) \equiv p$

Distribución

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Distribución

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Todo o nada

$$p \land \neg p \equiv False$$

 $p \lor \neg p \equiv True$

Distribución

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Todo o nada

$$p \land \neg p \equiv False$$

 $p \lor \neg p \equiv True$

Identidad

$$p \lor False \equiv p$$

 $p \land True \equiv p$

• Piso, techo

$$p \land False \equiv False$$

 $p \lor True \equiv True$

• Piso, techo

$$p \land False \equiv False$$

 $p \lor True \equiv True$

Idempotencia

$$p \wedge p \equiv p$$
$$p \vee p \equiv p$$

• Piso, techo

$$p \wedge False \equiv False$$

 $p \vee True \equiv True$

Idempotencia

$$p \wedge p \equiv p$$
$$p \vee p \equiv p$$

Doble negación

$$\neg \neg p \equiv p$$

Leyes de De Morgan

$$\neg(p \land q) \equiv (\neg p \lor \neg q)$$

 $\neg(p \lor q) \equiv (\neg p \land \neg q)$

Demuestre que
$$p \equiv (p \land q) \lor (p \land \neg q)$$

Demuestre que $p \equiv (p \land q) \lor (p \land \neg q)$

Demostración:

Demuestre que $p \equiv (p \land q) \lor (p \land \neg q)$

Demostración:

Tenemos dos opciones

Demuestre que $p \equiv (p \land q) \lor (p \land \neg q)$

Demostración:

Tenemos dos opciones

■ Partiendo de p usar axiomas hasta llegar a $(p \land q) \lor (p \land \neg q)$.

Demuestre que $p \equiv (p \land q) \lor (p \land \neg q)$

Demostración:

Tenemos dos opciones

- Partiendo de p usar axiomas hasta llegar a $(p \land q) \lor (p \land \neg q)$.
- Partiendo de $(p \land q) \lor (p \land \neg q)$ usar axiomas hasta llegar a p.

Demuestre que $p \equiv (p \land q) \lor (p \land \neg q)$

Demostración:

Tenemos dos opciones

- Partiendo de p usar axiomas hasta llegar a $(p \land q) \lor (p \land \neg q)$.
- Partiendo de $(p \land q) \lor (p \land \neg q)$ usar axiomas hasta llegar a p.

Usualmente la segunda es más fácil.

Partimos de

$$(p \land q) \lor (p \land \neg q)$$

Partimos de

$$(p \wedge q) \vee (p \wedge \neg q)$$

Usando distribución

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$

Partimos de

$$(p \wedge q) \vee (p \wedge \neg q)$$

Usando distribución

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$

Usando todo o nada

$$p \lor (q \land \neg q) \equiv p \lor False$$

Partimos de

$$(p \wedge q) \vee (p \wedge \neg q)$$

Usando distribución

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$

Usando todo o nada

$$p \lor (q \land \neg q) \equiv p \lor False$$

Usando identidad

$$p \lor False \equiv p$$

Partimos de

$$(p \wedge q) \vee (p \wedge \neg q)$$

Usando distribución

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$

Usando todo o nada

$$p \lor (q \land \neg q) \equiv p \lor False$$

Usando identidad

$$p \lor False \equiv p$$

Luego concluimos que

$$(p \land q) \lor (p \land \neg q) \equiv p$$

• Otra forma de escribir esta prueba es

$$(p \land q) \lor (p \land \neg q) \equiv p \lor (q \land \neg q)$$
 (distribución)
 $\equiv p \lor \mathit{False}$ (todo o nada)
 $\equiv p$ (identidad)

Otra forma de escribir esta prueba es

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$
 (distribución)
 $\equiv p \vee False$ (todo o nada)
 $\equiv p$ (identidad)

■ Tras bastidores simplemente estamos mostrando que $p \equiv (p \land q) \lor (p \land \neg q)$ es **verdadera** sin importar que valores puedan llegar a tomar $p \lor q$.

Otra forma de escribir esta prueba es

$$(p \wedge q) \vee (p \wedge \neg q) \equiv p \vee (q \wedge \neg q)$$
 (distribución)
 $\equiv p \vee False$ (todo o nada)
 $\equiv p$ (identidad)

- Tras bastidores simplemente estamos mostrando que $p \equiv (p \land q) \lor (p \land \neg q)$ es **verdadera** sin importar que valores puedan llegar a tomar $p \lor q$.
- Cuando una proposición es verdadera siempre, decimos que es una tautología.

Ejercicio: Probando otra equivalencia

Ejercicio: Probando otra equivalencia

• Ahora ustedes demuestren que $\neg q \lor (p \land q) \equiv \neg q \lor p$

 \ldots que pasa cuando me piden probar algo que no es una equivalencia?

Pruebas en general

Pruebas en general

 Pedir una demostración de p es lo mismo que pedir una demostración de que p es una tautología.

Pruebas en general

- Pedir una demostración de p es lo mismo que pedir una demostración de que p es una tautología.
- En otras palabras, basta mostrar que a partir de p puedo llegar a True.

$$p \equiv True$$

Ejemplo

Ejemplo

Demuestre que $p \land (p \Rightarrow q) \Rightarrow q$

Ejemplo

Demuestre que $p \land (p \Rightarrow q) \Rightarrow q$

Demostración:

$$p \land (p \Rightarrow q) \Rightarrow q \equiv p \land (\neg p \lor q) \Rightarrow q$$
 (def. \Rightarrow)
$$\equiv (p \land \neg p) \lor (p \land q) \Rightarrow q$$
 (distribución)
$$\equiv False \lor (p \land q) \Rightarrow q$$
 (todo o nada)
$$\equiv (p \land q) \Rightarrow q$$
 (identidad)
$$\equiv \neg (p \land q) \lor q$$
 (def. \Rightarrow)
$$\equiv (\neg p \lor \neg q) \lor q$$
 (De Morgan)
$$\equiv \neg p \lor (\neg q \lor q)$$
 (asociatividad)
$$\equiv \neg p \lor True$$
 (todo o nada)
$$\equiv True$$
 (piso, techo)

Ejercicio

Ejercicio

■ Ahora ustedes demuestren que $p \land q \Rightarrow p$