Languages and Grammar

Lecturer: Manar Elkady, Ph.D

Prepared by: Prof. Akram Salah

Presented by: Manar Elkady, PhD

BASIC CONCEPTS

* What is the difference between number and digit

* ما الفرق بين العدد و الرقم(الاعداد و الارقام)

- Digits (in decimal system) are a set of symbols
 - + {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (only)
 - + Symbols, don't have meaning
- Numbers have meaning
 - + Number of students in class 32
 - + Number of students at FCAI 3587
 - + Number of faculty members 423
- * A number is *represented* as a string of digits

- ★ The representation is a string, the meaning has to be interpreted.
- * The set N (natural numbers) is represented as a string of digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - +32, 3587, 423
- ★ The set Z (Integers) is represented as a string of characters {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -}
 - +46, -18, 0

- The set Q (Rational numbers) is represented as a string of characters {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, /}
 + 5/8, 3/11, -4/3
- ★ The set R (real numbers, or floating point) is represented as a string of characters {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, .}
 - +25.67, 3.14, -118.0
 - × What is the difference between 18.0 and 18

- So a number represents a quantity in real life and is written (expressed) as a string of digits.
- In the language of numbers, each number represented as a string from a set of characters coming from an alphabet.
 - + In decimal systems digits are {0, 1, ..., 9}
 - + In binary systems digits are {0, 1}
 - + In octal systems digits are {0, 1, 2, 3, 4, 5, 6, 7}

- × When I write a number I write a string.
- * The meaning is understood (interpreted) in mind.
- * For computers, the string is converted to a number through a process then stored as a value.

INTRODUCTION

- ★ To generalize, writing is string expressions that are later to be interpreted.
- Strings come from a set of primitive symbols.
 - + English expressions come from the set of 26 alphabet + set of digits + special characters
 - Words in English are strings.
 - × A sentence is a string of words
 - × Paragraph is composed of sentences.
 - + A line of text is a string.

INTRODUCTION

- + Arabic expressions come as strings from 28 alphabet, set of digits, special characters, and punctuation marks.(علامات الضبط (التشكيل)
 - × Sentences
 - × Paragraphs
 - ×

INTRODUCTION

- So, communication, in writing, of a thought (the thought in your mind) expressed as string of text, then transferred to another person who reads the string and understands the text.
- * As we communicate with computers, we express what we want as a string of text, then it will be interpreted internally to a meaning.
 - + Could be a command, data, or instruction.

BASIC CONCEPTS

- In our course, formal methods and theory of computer we will discuss three major branches of concepts.
 - + Languages
 - Forming strings for communication
 - + Grammar
 - × Rules of valid expressions
 - + Automata (Automaton)
 - "Machines" that interpret expressions

- A body of communicative symbols, whether it is made up of words, sounds, gestures, facial expressions, or visual signals that by long use by the population of a wide spread territory has became whereby the ideas or feelings of the individual members of that population are communicated or expressed.
- A system suitable for the expression of certain ideas, facts, concepts, including a set of symbols and rules for their manipulation.

- \times Alphabet Σ : finite, non empty set of symbols
- imes String: finite sequence of symbols from Σ
 - $+ \Sigma = \{a, b\},\$
 - + abab, aaabbba are strings on Σ
 - + w = abaaa called a word
 - + A language is a set of words, each is a string, defined over Σ

- \mathbf{x} $w = a_1 a_2 ... a_n$ and $v = b_1 b_2 ... b_m$
- **×** Concatenate:

$$+ wv = a_1a_2 ... a_nb_1b_2 ...b_m$$

* Reverse:

$$+ w^{R} = a_{n} ... a_{2} a_{1}$$

- \times If w = vu,
 - + v prefix of w
 - + u suffix of w

- ★ Length of a string w , |w|
 - + The number of symbols in w
- \star Empty string Λ a string with no symbols
 - $\times |\Lambda| = 0$
 - $\times \Lambda w = w\Lambda = w$, for all w
 - $\times |uv| = |u| + |v|$

- \times w is a string, w^n is concatenating w with itself n times.
 - \times (ab)² is abab
 - $+ w^0 = \Lambda$
- \times If Σ is an alphabet,
 - + Σ^* is the set of strings concatenating 0 0r more elements of Σ .
 - + Σ^+ is the set of strings concatenating 1 or more symbols.
 - $+ \Sigma^+ = \Sigma^* \{\Lambda\}.$
 - + Σ * = Σ + U { Λ }

- \star A language, L, defined over an alphabet Σ , is a subset of Σ^*
- × Any string w in a language L is called a word or a sentence.
- × We can define more than one language over the same Σ .
 - + Complement of a language $L^c = \Sigma^*$ -L.
 - + Concatenation of two languages

- * A grammar for a language tells us whether a particular sentence is well formed or not.
- * A set of rules.
- We need a precise non-ambiguous notation to describe the rules.
 - + The rules simply tells us which subset of L is accepted as a "legal" expression

English sentence

```
<sentence> -> <noun_phrase><predicate>,
 <noun_phrase> -> <articale><noun>,
 <article> {"a", "the"}
 <noun> {"boy", "dog"}
 <verb> {"walks", "runs"}
  "a boy runs"
                   Properly formed
  "the dog walks"
```


* A grammar G is a quadruple

$$G = (V, T, S, P)$$

Where:

V finite set of objects called *variables*

T finite set of objects called **terminal** symbols

S ε V is a special symbols called **start** variable

P is a finite set of **productions** or **production rules**

V & T are non-empty and disjoint

- × Production rules are the heart of a grammar
- × They specify how the grammar transforms one string to another
- * They define a language associated with a grammar G
- × Production rule in the form:

$$x \rightarrow y$$

 $x \in (V \cup T)^{+}$ & $y \in (V \cup T)^{*}$

Given a string

$$W = UXV$$

rule x -> y is applicable to w

$$z = uyv.$$

written as w => z,

w derives z or z is driven from w

$$\times$$
 If $w_1 => w_2 => ... w_n$,

we write
$$w_1 = ^* > w_n$$

* "*" indicates 0 or more steps to derive w_n from w₁

$$W = *> W$$

$$W=^+>V$$

- Applying productions in different order, a grammar generates many strings
- \times G = (V, T, S, P),

$$L(G) = \{ w \in T^* : S = ^* > w \}$$

- × L(G) is Language generated by G
- \times S => w_1 => w_2 => ... => w_n => w is **derivation** of w
- \times S, w_1 , w_2 , ..., w_n , sentential forms of the derivation

- **×** Example:
- \times Given G = ({S}, {a, b}, S, P)

Where
$$P S \rightarrow aSb$$
,

$$S \rightarrow \Lambda$$

Then
$$S => aSb=> aaSbb=>aabb$$


```
* Given G = (\{S\}, \{a, b\}, S, P)

Where P = S \rightarrow aSb,

S \rightarrow \Lambda

Then S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb

L(G) = \{a^nb^n : n \geq 0\}
```


- **×** Example:
- **×** Find a grammar that generates

$$L = \{a^nb^{n+1} : n \ge 0\}$$


```
x G ({S, A}, {a,b}, S, P)
where P S -> Ab,
A -> aAb,
```

$$A \rightarrow \Lambda$$
.

* We can write P

$$A \rightarrow aAb \mid \Lambda$$

AUTOMATA

