

| \$'8      | ng functions en thear                                         | deocenoking | Order of  | gravo.  |
|-----------|---------------------------------------------------------------|-------------|-----------|---------|
| - Arrangt |                                                               |             | ( lægnest | growth) |
|           | $\frac{2^{n}}{n^{2}} - Cutsic$ $\frac{n^{2}}{n^{2}} - Quadro$ |             | - Of~     |         |
|           | logn - Proeas                                                 | 80°         | 08 1      |         |
| <u> </u>  | ogn - logarith<br>c - constant                                | t function  | Clowest   | growth) |



 $10n^2 + 4n + 2 \le 11n^2$  for n > 5Compairing with standard form, 1.e  $f(n) \le Cxg(n)$   $\forall 1 n > n_0$ .  $f(n) = O(n^2)$   $f(n) = O(n^2)$  $6 \times 2^{n} + n^{2} \leq 7 \times 2^{n} \qquad \text{for } n > 4$  Compairing with standard form  $\text{fcn} = 6 \times 2^{n} + n^{2}$   $\text{gcn} = 7 \times 2^{n}$  2 = 7  $n_{0} = 4$  $\frac{f(n)}{6x^2+n^2} = O(2^n)$ Note: gcn) should be as small function of

n for which fcn = ocgcn)

should be true



Compaignage with extendard form i.e.  $\begin{cases} (n) > \frac{1}{2} \log n \end{cases} = \frac{9}{2} n$   $\begin{cases} (n) = \frac{3}{2} n + 2 \end{cases} = \frac{9}{2} n$   $\begin{cases} (n) = \frac{3}{2} n + 2 \end{cases} = \frac{9}{2} n$ 3n+2 = 2(n) (ii)  $10n^2 + 4n + 2 > n^2$  for n > 1 > 0compaigner with standard form 1.e.  $f(n) > c \times g(n) \rightarrow n$  $f(n) = 10n^2 + 4n + 2$ ,  $g(n) = n^2$  C = 1,  $n_0 = 1$  $lon^2 + 4n + 2 = 2(n^2)$  $6 \times 2^{n} + n^{2} > 2^{n}$  for n > 1, 0 Comparing with standard form.  $f(n) = 6 \times 2^{n} + n^{2}$   $g(n) = 2^{n}$  $2^{1} \cdot 6 \times 2^{n} + n^{2} = \Omega(2^{n})$ Note: gen) should be as large function of n for which fen? = 2(gen)) 12 + rue.





then use 0-notation. [exact time complexity]

O-notato of sure of exact teme

complexity.