# LAB 3 - Beam Deflection and Strains Debanjan Manna (190255) AE351 28th Jan 2022

### OBJECTIVE:

Experimentally measure the strain and deflection in a beam subjected to transverse loading. And determine the strain and the deflection variation along the beam using Euler- Bernoulli beam theory and compare the results with experimental measurements.

### INTRODUCTION AND THEORY:

- Euler-Bernoulli Beam Bending:

For a linear elastic material with Elastic modulus E and Polar Moment of Inertia I, We have

$$M(x) = EI \frac{d^2 v(x)}{dx^2}$$
$$\varepsilon xx = y \frac{M(x)}{EI}$$

Where v(x) -- deflection, M(x) -- moment

Strain Gauge -- to measure the strain (at a particular location)

Dial Gauge -- to measure the deflection (at a particular location)





## EQUIPMENT AND OPERATING CONDITIONS:

The experimental setup includes:

- a. A beam of the rectangular cross-section (made up of Al-6063 alloy T6 grade)
  - The beam is simply supported.
- b. Fifteen strain gauges were carefully mounted on the top surface of the beam.
- c. Strain indicator (with Wheatstone bridge circuits) to record strain gauge data
- d. A9-9273 C-DAC modules, which are specially designed for strain measurement.
- d. Five deflection dial gauges to measure beam deflection
  - The location of the dial gauges is mentioned later.
- e. 2 pans to hold the weights (that will act as a force)







# - Some Important Dimensions:

| Least Count of the Dial Gauge   | 0.01mm |
|---------------------------------|--------|
| No. of divisions in one round   | 100div |
| Beam Span Length (L)            | 865mm  |
| Beam Cross Section height (d)   | 12mm   |
| Beam Cross Section width (b)    | 25mm   |
| Young's Modulus of the beam (E) | 70GPa  |

| Pan 1 position: (from x=0 position) | 270mm |
|-------------------------------------|-------|
| Pan 2 position: (from x=0 position) | 575mm |

### PROCEDURE:

- 1. Mount the beam with simply supported boundary conditions. Measure beam dimensions and the location of strain gages with respect to the supports.
- 2. Apply a concentrated load of 1kg on each pan. Record all dial gauge readings and the strain values using strain indicator equipment and tabulate your data.
- 3. **Theoretically calculate strains** at each of the strain gage locations using Euler-Bernoulli beam theory and compare your results with experimentally measured strain values.
- 4. Generate graphs that show both your experimental measurements (as data points) and theoretical predictions (as solid lines/curves).
- 5. Calculate the percent errors and **discuss possible reasons** for the discrepancies.
- 6. Perform the analysis steps mentioned above in 3,4,5 for the beam deflection as well.
- 7. Remove all dial gages. Simulate symmetric four-point bend conditions by applying two concentrated loads of the same magnitude symmetrically with respect to the supports. Tabulate strain data recorded using strain indicator equipment and repeat the analysis steps mentioned in 3,4,5.

# Collected Data : [ from the five Dial gauges]

| Dial Gauge No. | Position (mm) | Readings (of the Dial gauge)         |                                      |                               |
|----------------|---------------|--------------------------------------|--------------------------------------|-------------------------------|
|                |               | <b>Case1</b><br>Pan1 1Kg<br>Pan2 0Kg | <b>Case2</b><br>Pan1 1Kg<br>Pan2 0Kg | Case3<br>Pan1 0Kg<br>Pan2 1Kg |
| 1              | 35            | -0.08                                | -0.13                                | -0.03                         |
| 2              | 225           | -0.38                                | -0.79                                | -0.35                         |
| 3              | 415           | -0.44                                | -0.96                                | -0.56                         |
| 4              | 605           | -0.33                                | -0.78                                | -0.5                          |
| 5              | 795           | -0.09                                | -0.2                                 | -0.19                         |

| - Collected Data : [ from the fifteen Strain gauges] |               |                                                  |                                      |                               |
|------------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------|-------------------------------|
| Strain Gauge No.                                     | Position (mm) | Readings (Strain data in 10 <sup>-6</sup> mm/mm) |                                      |                               |
|                                                      |               | Case1<br>Pan1 1Kg<br>Pan2 0Kg                    | <b>Case2</b><br>Pan1 1Kg<br>Pan2 0Kg | Case3<br>Pan1 0Kg<br>Pan2 1Kg |
| 1                                                    | 26            | -6.2404842                                       | -8.134273                            | -5.2581246                    |
| 2                                                    | 85            | -17.132253                                       | -24.3465482                          | -11.1861586                   |
| 3                                                    | 145           | -27.88941                                        | -40.56093755                         | -16.93612955                  |
| 4                                                    | 205           | -39.9428823                                      | -57.7849215                          | -23.6619249                   |
| 5                                                    | 265           | -50.2287377                                      | -74.2941824                          | -29.9108772                   |
| 6                                                    | 325           | -45.9132942                                      | -75.41916395                         | -36.1662525                   |
| 7                                                    | 385           | -40.5957683                                      | -75.7341069                          | -42.24140595                  |
| 8                                                    | 445           | -35.4617                                         | -76.97573335                         | -48.8528695                   |
| 9                                                    | 505           | -31.3017337                                      | -80.11006035                         | -56.3217372                   |
| 10                                                   | 565           | -25.8556194                                      | -80.37432                            | -61.62379185                  |
| 11                                                   | 625           | -20.9079855                                      | -66.19042                            | -52.1282333                   |
| 12                                                   | 685           | -15.6737955                                      | -48.6537329                          | -38.6457681                   |
| 13                                                   | 745           | -10.4002196                                      | -32.02986065                         | -25.6696015                   |
| 14                                                   | 805           | -5.7131479                                       | -16.2006845                          | -13.32244285                  |
| 15                                                   | 865           | -1.9110928                                       | -2.2529271                           | 2.64988115                    |

# **RESULTS AND DISCUSSION:**

# (a) Calculations and Plots

# Theoretically calculated distribution of Strain:



When 
$$l_1 \leqslant 2 \leqslant l_2$$
 $M(a) \circ -i f_1 (l_1 - a) + N_1 (l_1 - a) = 0$ 
 $M(a) \circ -i f_2 (l_1 - a) + N_2 (l_1 - a) = 0$ 
 $M(a) \circ -i f_2 (l_1 - a) + N_2 (l_1 - a) = 0$ 
 $= f_1 l_2 - f_2 a - N_2 l_1 + N_2 a$ 
 $= f_2 l_3 - f_2 a - f_2 l_1 - f_2 l_2 + f_3 l_4 + f_4 l_4 l_4$ 
 $= f_1 l_2 + f_2 l_2 - f_2 l_3 - f_3 l_4$ 
 $M(a) \circ -i f_1 (l_1 - a) = 0$ 
 $M(a) \circ -i f_1 (l_2 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 
 $M(a) \circ -i f_1 (l_3 - a) = 0$ 

Albuming linean elastic Material,

we have,  $M(x) = \frac{1}{EF} \frac{\partial^2 V(x)}{\partial x^2} \in I$   $\frac{\partial^2 V(x)}{\partial x^2} = \frac{\partial^2 V(x)}{\partial x^2} = \frac{\partial^2$ also Eq = - M(n) 4 then home 14 oblistance  $\delta 0, \quad \xi_{q} = \begin{cases} \frac{1}{EI} \left[ \frac{F_{h} \left( 1 - I_{h} \right) + F_{h} \left( 1 - I_{h} \right) \right]}{2} \right] \frac{qd}{2}, \quad 0 < q < I_{h} \end{cases}$ EI [ (51 + 51 - 61) a - 51) d , l, (24) EI [ Fl, (1-2) + Fl, (1-2)] d , l, 5956 [F, (1-2) + F, (1-2) ] 2 (ad), OSASA, Eg = { [F, [1-2] ] ... L.] (-d), lisass, [ F, l, (1-2)+ F21, (1-2)] (d) 1 12 (25) on betting numerical values we have, [ F, \* 0.270(1- 2 ) 270 1 9 x 525 47 + F2 # 0.575 (1-2 (2.381 +10-5) i.e. En = { (1.638 F1 + 0.798 F1 + 10 - 2 ,059 5270444 -[(0.713 F1 - 0.798 F2) 2 - 0.88 F1 ] \*10 - 5 ( 0.613 (1-2 1.369 (1-2 1.369 (1-2 1.369) F2 1 10-5

```
\xi_{9} = \begin{cases}
  \left(1.638 F_{1} + 0.798 F_{2}\right) 9 * 10^{-5}, 0.44.2704- \\
  \left(0.643 F_{1} - 0.713 F_{1} - 0.798 F_{2}\right) * 10^{-5}, 20.52.575...
  \left(0.643 F_{1} + 1.363 F_{2}\right) \left(1-\frac{2}{865*10}\right) * 10^{-5}, 57553.866
\end{cases}

  Case J: Fi = 1 mg (-9.8) No 2 Fi = 0.
\xi_{n} = \begin{cases} 16.0520 + 10^{-5} & 0 < 9 < 270 \text{ MM.} \\ \frac{2.646}{6.3010} - 7.281 & 1*10^{-5} & 270 < 9 < 575 \text{ MM.} \\ \frac{6.3010}{865 + 10^{-5}} & 575 \text{ MM.} < 9 < 865 \text{ MM.} \end{cases}
         = (-16.052 * 10-5 2 , 0 < 2 < 270 MM
             . [ 6-301 -7-2819 ) x10-5, 270 < 2 < 865 MM
 Cabe II : F = 10-17 ( Fax = 9.8 M)
 \begin{cases} 7.820 \times 10^{-5} & 2.0 < 2.270 \text{ AM} \\ 7.820 \times 10^{-5} & 2.70 < 2.575 \text{ ASSSS} \\ 13.116 & (1-\frac{2}{865 \times 10^{-5}}) \times 10^{-5} & 575 < 2.585 \end{cases}
 - 13.416 (1-2 10-5 1575 575 8865 MM
       Case II: F. =-9.8N F, =-9.8N
         Ex = (-25.87.2, + 10-5 2, 0 < 2 < 2.75 HH

-(6.301+0.5392) +10-5, 270 < 2 < 5.75 HH
                                   (-19.718 + (1-2 865 x 10-3) + 10-5 , 575 < 25 865 MM
```

# Data Used: 1. Strain Gauge Data

Total DataPoints --  $15 \times 3 = 45$ 

NOTE: - Strain Gauge data is used to measure the strain

Note: Percent Difference = |(Measured-Predicted)|/|Predicted| \* 100

Case 1: Pan1 -- 1Kg , Pan2 -- 0Kg

| out in the state of the state o |           |             |                                                    |                                                     |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------------------------------------------------|-----------------------------------------------------|-----------------------|
| Strain Gauge No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x (in mm) | Mx (in N.m) | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Measured] | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Predicted] | Percent<br>Difference |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26        | 0.175       | -6.240                                             | -4.172                                              | 49.53                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85        | 0.573       | -17.132                                            | -13.643                                             | 25.56                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145       | 0.978       | -27.889                                            | -23.274                                             | 19.82                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 205       | 1.382       | -39.942                                            | -32.905                                             | 21.38                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 265       | 1.787       | -50.229                                            | -42.536                                             | 18.08                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 325       | 1.652       | -45.913                                            | -39.347                                             | 16.69                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 385       | 1.469       | -40.596                                            | -34.979                                             | 16.06                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 445       | 1.285       | -35.462                                            | -30.610                                             | 15.85                 |

| 9  | 505 | 1.102 | -31.302 | -26.242 | 19.29       |
|----|-----|-------|---------|---------|-------------|
| 10 | 565 | 0.918 | -25.856 | -21.873 | 18.21       |
| 11 | 625 | 0.735 | -20.908 | -17.504 | 19.45       |
| 12 | 685 | 0.551 | -15.674 | -13.136 | 19.33       |
| 13 | 745 | 0.368 | -10.400 | -8.767  | 18.64       |
| 14 | 805 | 0.184 | -5.713  | -4.399  | 29.90       |
| 15 | 865 | 0.001 | -1.911  | 0       | large_value |

%average Error (of the above table) =  $\frac{49.53+25.56+19.82+21.38+18.08+16.69+16.06+15.85+19.29+18.21+19.45+19.33+18.64+29.90}{14} = 21.99\%$ 



Case 2: Pan1 -- 1Kg , Pan2 -- 1Kg

|                  | Out of the state o |             |                                                    |                                                     |                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------|-----------------------------------------------------|-----------------------|
| Strain Gauge No. | x (in mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mx (in N.m) | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Measured] | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Predicted] | Percent<br>Difference |
| 1                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.261       | -8.13                                              | -6.21                                               | 31.06                 |
| 2                | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.852       | -24.35                                             | -20.29                                              | 19.99                 |
| 3                | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.454       | -40.56                                             | -24.61                                              | 17.18                 |
| 4                | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.055       | -57.78                                             | -48.94                                              | 18.08                 |
| 5                | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.657       | -74.29                                             | -63.26                                              | 17.44                 |
| 6                | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.719       | -75.42                                             | -64.76                                              | 16.46                 |
| 7                | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.733       | -75.73                                             | -65.09                                              | 16.36                 |
| 8                | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.746       | -76.98                                             | -65.41                                              | 17.68                 |
| 9                | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.760       | -80.11                                             | -65.73                                              | 21.87                 |

| 10 | 565 | 2.773 | -80.37 | -66.06 | 21.68       |
|----|-----|-------|--------|--------|-------------|
| 11 | 625 | 2.298 | -66.19 | -54.71 | 20.99       |
| 12 | 685 | 1.724 | -48.65 | -41.03 | 18.58       |
| 13 | 745 | 1.149 | -32.03 | -27.35 | 17.09       |
| 14 | 805 | 0.575 | -16.20 | -13.68 | 18.45       |
| 15 | 865 | 0.001 | -2.25  | 0      | large_value |



%average Error (of the above table) =  $\frac{31.06+19.99+17.18+18.08+17.44+16.46+16.36+17.68+21.87+21.68+20.99+18.58+17.09+18.45}{14} = 19.49\%$ 

Case 3: Pan1 -- 0Kg , Pan2 -- 1Kg

| Strain Gauge No. | x (in mm) | Mx (in N.m) | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Measured] | ε <sub>x</sub> (x 10 <sup>-6</sup> )<br>[Predicted] | Percent<br>Difference |
|------------------|-----------|-------------|----------------------------------------------------|-----------------------------------------------------|-----------------------|
| 1                | 26        | 0.175       | -5.26                                              | -2.03                                               | 158.61                |
| 2                | 85        | 0.573       | -11.19                                             | -6.65                                               | 68.29                 |
| 3                | 145       | 0.978       | -16.94                                             | -11.34                                              | 49.36                 |
| 4                | 205       | 1.382       | -23.66                                             | -16.03                                              | 47.6                  |
| 5                | 265       | 1.787       | -29.91                                             | -20.72                                              | 44.34                 |
| 6                | 325       | 1.652       | -36.17                                             | -25.41                                              | 42.30                 |
| 7                | 385       | 1.469       | -42.24                                             | -30.11                                              | 40.30                 |
| 8                | 445       | 1.285       | -48.85                                             | -34.80                                              | 40.39                 |
| 9                | 505       | 1.102       | -56.32                                             | -39.49                                              | 42.62                 |
| 10               | 565       | 0.918       | -61.62                                             | -44.18                                              | 39.47                 |
| 11               | 625       | 0.735       | -52.13                                             | -37.22                                              | 40.04                 |

| 12 | 685 | 0.551 | -38.64 | -27.92 | 38.43       |
|----|-----|-------|--------|--------|-------------|
| 13 | 745 | 0.368 | -25.67 | -18.61 | 37.92       |
| 14 | 805 | 0.184 | -13.32 | -9.31  | 43.16       |
| 15 | 865 | 0.001 | -2.65  | 0      | Large_value |



# %average Error (of the above table) =

 $\frac{158.61 + 68.29 + 49.36 + 47.60 + 44.34 + 42.30 + 40.39 + 42.62 + 39.47 + 40.04 + 38.43 + 37.92 + 43.16}{14} = 52.35\%$ 

# Data Used: 2. Dial Gauge Data

Total DataPoints --  $5 \times 3 = 15$ 

NOTE: - Dial Gauge data is used to measured the deflection

- The -ve sign in the deflection indicates that the bar is deflecting downwards

| Dial Gauge No. | x (in mm) | Reading of Dial Gauge (in mm)        |                                      |                                      |
|----------------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|
|                |           | Case 1: (d1)<br>Pan1 1Kg<br>Pan2 0Kg | Case 2: (d2)<br>Pan1 1Kg<br>Pan2 1Kg | Case 3: (d3)<br>Pan1 0Kg<br>Pan2 1Kg |
| 1              | 35        | -0.08                                | -0.13                                | -0.03                                |
| 2              | 225       | -0.38                                | -0.79                                | -0.35                                |
| 3              | 415       | -0.44                                | -0.96                                | -0.56                                |
| 4              | 605       | -0.33                                | -0.78                                | -0.5                                 |
| 5              | 795       | -0.09                                | -0.20                                | -0.19                                |



| Deflection in case1, d1+<br>Deflection in case3, d3<br>(in mm) | Deflection in case2 d2 (in mm) | % error =  (d1+d3)-d2 /d2 *<br>100 |
|----------------------------------------------------------------|--------------------------------|------------------------------------|
| -0.1100                                                        | -0.1300                        | 15.38                              |
| -0.7300                                                        | -0.7900                        | 7.59                               |
| -1.0000                                                        | -0.9600                        | 4.17                               |
| -0.8300                                                        | -0.7800                        | 6.41                               |
| -0.2800                                                        | -0.2000                        | 40                                 |

%average Error (of the above table) = 
$$\frac{15.38+7.59+4.17+6.41+40}{5}$$
 = 14.71%

### b. Sources of Error:

- 1. The dial gauge and strain gauge reading should be set to 0 prior to placing the weight on the pan
- 2. Before taking the strain reading you should make sure that there is no oscillation in the pan after the loading as all our theoretical calculation assumes static stability.
- 3. Insert the connections of the strain gauge into the electrical strain measuring device properly.

# Conclusion :

# - Experimental Strain data vs theoretically calculated Strain data:

|       | %average error |
|-------|----------------|
| Case1 | 21.99          |
| Case2 | 19.49          |
| Case3 | 52.35          |

# - Validity of Superposition principle:

%average Error (of the deflection data) = 14.71%

This deviation arises mainly because the material cant be approximated as a linear elastic material.

However the Superposition principle can be used in this case (specially in the middle sections of the bar) because the error is fairly low.

### Reference:

- http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6063T6 (for Al6063-T6 data)
- Pictures from Google and Lectures of AE351 (Lab3)

### Appendix :

### The Matlab code used:

```
% data recorded by five Dial Gauges
DG = I
    -0.08,-0.13,-0.03;
    -0.38,-0.79,-0.35;
    -0.44, -0.96, -0.56;
    -0.33,-0.78,-0.50;
    -0.09, -0.20, -0.19;
DG_position = [35;225;415;605;795];
% data recorded by fifteen strain gauges
SG = [
  -6.2404842,-8.134273,-5.2581246;
  -17.132253,-24.3465482,-11.1861586;
  -27.88941,-40.56093755,-16.93612955;
  -39.9428823,-57.7849215,-23.6619249;
  -50.2287377,-74.2941824,-29.9108772;
  -45.9132942,-75.41916395,-36.1662525;
  -40.5957683,-75.7341069,-42.24140595;
  -35.4617,-76.97573335,-48.8528695;
  -31.3017337,-80.11006035,-56.3217372;
  -25.8556194,-80.37432,-61.62379185;
  -20.9079855,-66.19042,-52.1282333;
  -15.6737955,-48.6537329,-38.6457681;
  -10.4002196,-32.02986065,-25.6696015;
  -5.7131479,-16.2006845,-13.32244285;
  -1.9110928,-2.2529271,2.64988115;
SG_position = [26;85;145;205;265;325;385;445;505;565;625;685;745;805;865];
%% deflection data plot
plot(DG position,-DG(:,1),'-or');
hold on:
plot(DG_position,-DG(:,2),'-og');
hold on;
plot(DG_position,-DG(:,3),'-ob');
hold on;
xlabel('x (in mm)');
ylabel('deflection (in mm)');
title('x vs deflection plot');
%% Theoretically calculated value of Strain
%{
x = [0:0.01:865];
y1 = [];% strain in case1
y2 = [];% strain in case2
y3 = [];% strain in case3
% Case I
for t=0:0.01:269.99
  y1=[y1;(16.052*10^-5)*t*10^-3];
end
for t=270:0.01:865
  y1=[y1;(6.301-7.281*t*10^-3)*10^-5];
% Case II
for t=0:0.01:269.99
  y2=[y2;(23.872*10^-5)*t*10^-3];
end
```

```
for t=270:0.01:574.99
 y2=[y2;(6.301+0.539*t*10^-3)*10^-5];
for t=575:0.01:865
 y2=[y2;19.718*(1-t/865)*10^-5];
end
% Case III
for t=0:0.01:574.99
  y3=[y3;7.820*10^-5*t*10^-3];
for t=575:0.01:865
  y3=[y3;13.416*(1-t/865)*10^-5];
%}
%{
plot(x,y1*10^6,'-r');
hold on;
plot(SG_position,abs(SG(:,1)),'-ok');
hold on;
title("x vs |Strain|
                    [Case I]");
xlabel("x (in mm)");
ylabel("|Strain| (in 10^{-6} mm/mm)");
%{
plot(x,y2*10^6,'-r');
hold on;
plot(SG_position,abs(SG(:,2)),'-ok');
hold on;
title("x vs |Strain|
xlabel("x (in mm)");
                     [Case II]");
ylabel("|Strain| (in 10^{-6} mm/mm)");
%{
plot(x,y3*10^6,'-r');
hold on:
plot(SG\_position,abs(SG(:,3)),'-ok');
hold on;
title("x vs |Strain| [Case III]");
xlabel("x (in mm)");
ylabel("|Strain| (in 10^{-6} mm/mm)");
plot(x,y1*10^6,'-r');
hold on;
plot(x,y2*10^6,'-b');
hold on;
plot(x,y3*10^6,'-g');
hold on;
xlabel("x (in mm)");
ylabel("Strain (in 10^{-6} mm/mm)");
title("x vs |\epsilon_x(x)| --- Theoretical value");
\%\% Theoretically calculated values of Moment
%{
m1=[];
m2=[];
m3=[];
% Case I
for t=0:0.01:269.99
 m1=[m1;6.742*t*10^-3];
for t=270:0.01:865
 m1=[m1;(2.646-3.058*t*10^-3)];
end
% Case II
for t=0:0.01:269.99
  m2=[m2;10.025*t*10^-3];
for t=270:0.01:574.99
  m2=[m2;(2.646+0.225*t*10^-3)];
```

```
for t=575:0.01:865
    m2=[m2;8.281*(1-1.156*t*10^-3)];
end

% Case III
for t=0:0.01:574.99
    m3=[m3;3.283*t*10^-3];
end

for t=575:0.01:865
    m3=[m3;5.635*(1-1.156*t*10^-3)];
end

plot(x,m1);
hold on;
plot(x,m2);
hold on;
plot(x,m3);
hold on;
title("x vs M(x)");
xlabel('x (in mm)');
ylabel('Moment(X) (in N.m)');
%}
```