Lab#3

October 27, 2022

0.1 Lab 3: Wide data and linear models

0.1.1 Alice Wu. ID: qichaow

```
[131]: ## Import libraries
       import numpy as np
       import pandas as pd
       import seaborn as sns
       import os
       import matplotlib.pyplot as plt
       from mpl_toolkits.mplot3d import Axes3D
       from sklearn.cluster import KMeans
       from sklearn.decomposition import PCA
       from sklearn import manifold
       from matplotlib import pyplot
       from sklearn.preprocessing import StandardScaler
       from sklearn.linear_model import_
       →LogisticRegression,LinearRegression,Lasso,Ridge,ElasticNet
       from sklearn.metrics import confusion_matrix, classification_report
       from sklearn.metrics import precision_score, recall_score, f1_score
       from sklearn.model_selection import train_test_split
[132]: testX=pd.read_csv('/Users/aliceqichaowu/Desktop/38615/test_X.csv')
       trainX=pd.read_csv('/Users/aliceqichaowu/Desktop/38615/train_X.csv')
       trainY=pd.read_csv('/Users/aliceqichaowu/Desktop/38615/train_y.csv')
[133]: print(testX.info())
       print(trainX.info())
       print(trainY.info())
       testX.head(5)
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 110 entries, 0 to 109
      Columns: 17971 entries, Unnamed: 0 to ENSG00000283697
      dtypes: float64(17970), object(1)
      memory usage: 15.1+ MB
      None
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 444 entries, 0 to 443

Columns: 17971 entries, Unnamed: 0 to ENSG00000283697

dtypes: float64(17970), object(1)

memory usage: 60.9+ MB

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 444 entries, 0 to 443
Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	444 non-null	object
1	xml_neoplasm_histologic_grade	444 non-null	int64

dtypes: int64(1), object(1)
memory usage: 7.1+ KB

None

[133]:		Unnamed	: 0 ENSG00000000	0003	ENSG0000000	005	\
0	0 1576BB97-F8EA-48FF-9494-EBC7A0C97312			8849	1.685	440	
1	6.112 63F4281A-4D90-4589-879E-549097FB3459			919	19 -5.42587		
2	74CF740D-201D-40	472 6.183	8846				
3	1329E1C1-743E-45	41-9081-165572D4B	-165572D4BF47 6.3255				
4	88BBA1BF-44E0-416E-A028-04F410A3		E5D 7.162	2383	-5.539	710	
	ENSG00000000419	ENSG00000000457	ENSG00000000938	ENSG	00000000971	\	
0	8.090089	5.546588	3.412025		5.871539		
1	5.604743	4.248246	3.374033		3.370075		
2	6.093903	4.403216	5.722867		6.123209		
3	6.722632	4.509093	4.941256		3.700171		
4	6.186110	5.270282	5.412103		3.781568		
	ENSG0000001036	ENSG0000001084	ENSG0000001167	E	NSG000002826		\
0	8.395029	5.894996	6.313896	•••	3.626396		
1	6.804015	4.646287	6.236134	•••	-5.425877		
2	7.680258	4.983386	5.626569	•••	11.317818		
3	7.492606	5.031053	5.859242	•••	3.536141		
4	7.285779	4.847552	6.337205	•••	5.112772		
	ENGGOOOOOO	ENGGOOOOOOO	ENGGOOOOOOOO	EMGG	100000000100	,	
0	ENSG00000282815	ENSG00000282939	ENSG00000283063	ENSG	00000283439	\	
0	-2.640463	-7.278265	0.721287		-7.278265		
1	-2.143410	1.956699	1.377768		-5.425877		
2	-5.259782	5.093316	3.800607		-5.259782		
3	-1.362703	3.480703	0.776383		-0.999629		
4	-5.539710	4.369268	2.927849		0.791397		
	ENGG000000000460	ENGGOOOOOOOO	ENGGOOOOOOOO	EMGG	100000000000000	`	
^	ENSG00000283463	ENSG00000283526	ENSG00000283586	ENSG	4 843800	\	
0	4.672536	5.153675	-7.278265		4.843800		

```
1
                 4.560829
                                  3.735085
                                                  -5.425877
                                                                     4.105789
       2
                 4.966710
                                  2.829487
                                                  -5.259782
                                                                     5.118704
       3
                 4.794226
                                 -5.399485
                                                  -5.399485
                                                                     4.660878
                                                  -5.539710
                                                                     4.812787
       4
                 4.542333
                                  4.628775
          ENSG00000283697
       0
                 4.302864
                 4.803357
       1
       2
                 5.024979
       3
                 4.684343
       4
                 4.524834
       [5 rows x 17971 columns]
[231]: # Check missing values
       print('There are %i nan in the dataframe' % trainY.isna().sum().sum())
      There are 0 nan in the dataframe
[134]: \# Set up X_{test}, X_{train}, and y
       y = trainY.iloc[:,1:]
       X_train = trainX.iloc[:,1:]
       X_test= testX.iloc[:,1:]
[135]: # Normalization
       scaler = StandardScaler() # normalization: zero mean, unit variance
       scaler.fit(X_train) # scaling factor determined from the training set
       X_train = scaler.transform(X_train)
       X_test = scaler.transform(X_test) # apply the same scaling to the test set
      0.1.2 1. Try different linear models: linear regression, logistic regression, Ridge
            regression, LASSO
```

```
[51]: ## Linear regression:
      # accruacy: 0.91666 (private), 0.84375 (public)
      mdl_lar= LinearRegression()
      mdl_lar.fit(X_train, y)
      y_pred_LaR_temp = np.squeeze(mdl_lar.predict(X_test))
      y_pred_LaR=[]
      for i in y_pred_LaR_temp:
          if i>0.5:
              y_pred_LaR.append(1)
          else:
              y_pred_LaR.append(0)
      # [ x for x in y_pred_LaR if x != 0 ]
```

```
[75]: ## Logistic regression
    # accruacy: 0.88888 (private), 0.83870 (public)
    mdl_lr = LogisticRegression('none')
    mdl_lr.fit(X_train, y)
    y_pred_lr_temp = np.squeeze(mdl_lr.predict(X_test))
    y_pred_LR=[]
    for i in y_pred_lr_temp:
        if i>0.5:
            y_pred_LR.append(1)
        else:
            y_pred_LR.append(0)
```

/Users/aliceqichaowu/opt/anaconda3/lib/python3.8/sitepackages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples,), for example using ravel().
return f(*args, **kwargs)

```
[65]: ## Ridge regression
    # accruacy: 0.91666 (private), 0.84375 (public)
    mdl_rr = Ridge(alpha=0.1)
    mdl_rr.fit(X_train, y)
    y_pred_rr_temp = np.squeeze(mdl_rr.predict(X_test))
    y_pred_RR=[]
    for i in y_pred_rr_temp:
        if i>0.5:
            y_pred_RR.append(1)
        else:
            y_pred_RR.append(0)
```

```
[66]: ## Lasso regression:
    # accruacy: 0.87671 (private), 0.86567 (public)
    mdl_las = Lasso(alpha=0.1)
    mdl_las.fit(X_train, y)
    y_pred_las_temp = np.squeeze(mdl_las.predict(X_test))
    y_pred_Las=[]
    for i in y_pred_las_temp:
        if i>0.5:
            y_pred_Las.append(1)
        else:
            y_pred_Las.append(0)
```

```
[73]: ## Elastic Net
    # accruacy: 0.87323 (private), 0.84848 (public)
    mdl_en = ElasticNet(alpha=0.1)
    mdl_en.fit(X_train, y)
    y_pred_en_temp = np.squeeze(mdl_en.predict(X_test))
    y_pred_EN=[]
```

```
for i in y_pred_en_temp:
    if i>0.5:
        y_pred_EN.append(1)
    else:
        y_pred_EN.append(0)
```

0.1.3 2. Test regularization parameters:

- Try L1 (lasso) and L2 (ridge) on logistic regression; Try lasso and ridge regression models with with different alpha values
- After trying different models, I found out the logistic model wirh penalty='elasticnet', solver='saga', l1_ratio=0.5 has the highest accuracy 0.90140 (private score) and 0.88888 (public score).

```
[165]: ## Logistic regression
       # LR1 (logitstic, penalty='l1', solver='liblinear'): 0.85714 (private), 0.81967
        \hookrightarrow (public)
       # LR2 (logitstic, penalty='elasticnet', solver='saga', l1 ratio=0.5): 0.90140, 0.
       →88888
       # LR2, alpha=100: 0.79120, 0.76404
       mdl_lr1 = LogisticRegression(penalty='l1',solver='liblinear')
       mdl_lr2 = LogisticRegression(penalty='elasticnet', solver='saga', l1_ratio=0.5)
       mdl_en_a1 = ElasticNet(alpha=1)
       mdl_en_a100 = ElasticNet(alpha=100)
       mdl_lr1.fit(X_train, y)
       mdl_lr2.fit(X_train, y)
       mdl_en_a1.fit(X_train, y)
       mdl_en_a100.fit(X_train, y)
       y_pred_lr_temp1 = np.squeeze(mdl_lr1.predict(X_test))
       y_pred_lr_temp2 = np.squeeze(mdl_lr2.predict(X_test))
       y_pred_en_a1_temp=np.squeeze(mdl_en_a1.predict(X_test))
       y_pred_en_a100_temp=np.squeeze(mdl_en_a100.predict(X_test))
       y_pred_LR1=[]
       y_pred_LR2=[]
       y_pred_en_a1=[]
       y_pred_en_a100=[]
       for i in y_pred_en_a100_temp:
           if i>0.5:
               y_pred_en_a100.append(1)
           else:
               y_pred_en_a100.append(0)
```

```
/Users/aliceqichaowu/opt/anaconda3/lib/python3.8/site-
packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
    return f(*args, **kwargs)
/Users/aliceqichaowu/opt/anaconda3/lib/python3.8/site-
packages/sklearn/utils/validation.py:63: DataConversionWarning: A column-vector
y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
    return f(*args, **kwargs)
/Users/aliceqichaowu/opt/anaconda3/lib/python3.8/site-
packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was
reached which means the coef_ did not converge
    warnings.warn("The max iter was reached which means "
```

0.1.4 3. Random shuffle

• Model accuracy: 0.67605 (private), 0.65671 (public)

We can see that the random model will have a random chance level

```
[130]: from sklearn.utils import shuffle
    X_ran, y_ran = shuffle(X_train, y)

reg = LinearRegression()
    reg.fit(X_ran,y_ran)

y_pred_ran_temp = reg.predict(X_test)
    y_pred_ran=[]
    for i in y_pred_ran_temp:
        if i>0.5:
            y_pred_ran.append(1)
        else:
            y_pred_ran.append(0)
# y_pred_ran
```

0.1.5 4. Feature importance: find out the 10 most important features

```
[224]: importance = np.flip(np.argsort(mdl_lr2.coef_[0]))
importance10=importance[0:10]
all_feat=testX.columns[1:]
```

```
all_arr=np.array(all_feat)
print(all_arr[importance10])
plt.barh(all_arr[importance10], np.flip(np.sort(mdl_lr2.coef_[0]))[0:10])
plt.title('Feature importance: 10 most important features')

['ENSG00000177947' 'ENSG00000180316' 'ENSG00000136352' 'ENSG00000135116'
'ENSG00000136535' 'ENSG00000004848' 'ENSG00000130595' 'ENSG00000144290'
'ENSG000000248546' 'ENSG000000197416']
```

[224]: Text(0.5, 1.0, 'Feature importance: 10 most important features')

0.1.6 5. Visualize the dataset: implement tSNE to visualize the clusters

• Here, we can see it is hard to differentiate two classes with tSNE

```
tsne = manifold.TSNE(random_state=42,n_components=2)
X_tsne = tsne.fit_transform(X_train)
colors = {0:'b', 1:'r'}
fig1,ax = plt.subplots()
ax.scatter(X_tsne[:,0], X_tsne[:,1],c=trainY.iloc[:,-1].map(colors), s=2)
ax.set_xlabel('tSNE 1')
ax.set_ylabel('tSNE 2')
plt.title('Training data visualized by tSNE')
```

[234]: Text(0.5, 1.0, 'Training data visualized by tSNE')

[]: