In [1]:

```
# Basic overview of pytesseract. Python-tesseract is an optical character recognition
  (OCR) tool for python.
# That is, it will recognize and "read" the text embedded in images.
# Python-tesseract is a wrapper for Google's Tesseract-OCR Engine.
# It is also useful as a stand-alone invocation script to tesseract,
# as it can read all image types supported by the Pillow and Leptonica imaging librarie
s, including jpeg, png,
# gif, bmp, tiff, and others. Additionally, if used as a script,
# Python-tesseract will print the recognized text instead of writing it to a file.
```

In [9]:

```
import pytesseract
import cv2
import numpy as np
import matplotlib.pyplot as plt
```

In [3]:

#the address of the tesseract present in your system
pytesseract.pytesseract.tesseract_cmd = r'C:\\Program Files\\Tesseract-OCR\\tesseract.e
xe'

In [5]:

recognizing and extracing the text of any computerized document is efficient, but rec
ognizing the
the text from an image or handwriting is tricky. We need to remove all the noise from
the image to make it efficient

In [17]:

```
# Lets check for computerized image
img_color = cv2.imread('E:\\Learning\\Computer_Vision\\Digit Recognition\\text3.png')
plt.imshow(img_color)
plt.show()
```


In [15]:

```
# image_to_string function is use for extracting text from image
# the text is extracted quite easily
print(pytesseract.image_to_string(img_color))
```

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Adobe G aramond, Adobe

Intelligent Document Platform, Adobe PDF, Adobe Reader, Adobe Solutions Ne twork, Aldus, Dis-

tiller, ePaper, Extreme, FrameMaker, Illustrator, InDesign, Minion, Myria d, PageMaker, Photo-

shop, Poetica, PostScript, and XMP are either registered trademarks or trademarks of Adobe

'Systems Incorporated in the United States and/or other countries. Microso ft and Windows are

either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries. Apple, Mac, Macintosh, and Power Macintosh are trademarks of Apple Computer,

Inc,, registered in the United States and other countries. IBM is a regist ered trademark of IBM

Corporation in the United States. Sun is a trademark or registered trademark of Sun Microsys-

tems, Inc. in the United States and other countries. UNIX is a registered trademark of The Open

Group. SVG is a trademark of the World Wide Web Consortium; marks of the W 3C are registered

and held by its host[institutions MIT, INRIA and Keio. Helvetica and Times are registered trade-

marks of Linotype-Hell AG and/or its subsidiaries. Arial and Times New Rom an are trademarks of

'The Monotype Corporation registered in the US. Patent and Trademark Offic e and may be regis-

tered in certain other jurisdictions. ITC Zapf Dingbats is a registered tr ademark of International

'Typeface Corporation. Ryumin Light is a trademark of Morisawa & Co., Ltd. All other trademarks

are the property of their respective owners.

In [19]:

```
# but if we look at any handwritten document or photographed image , it is a bit diffic
ult
img_color = cv2.imread('E:\\Learning\\Computer_Vision\\Digit Recognition\\text3.jpg')
plt.imshow(img_color)
plt.show()
```


In [21]:

```
# lets try to extract without cleaing the image
print(pytesseract.image_to_string(img_color))
# output is gibrish, we need to clean the image first
```

y the most widely used multivariate dependence tech-

Multiple regression is undoubted]
Opularity of regression has been its ability to predict and

nique. The primary basis for the p

explain metric variables. But what happens when nonmetric dependent variables make

multiple regression unsuitable? This chapter introduces two techniques—dis criminant

analysis and logistic regression—that address the Situation of a nonmetric dependent vari-

able. In this type of situation, the researcher is interested in the prediction and explanation $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

he category in which an object is located, such as why a

of the relationships that affect t person Is or is not a customer, or if a firm will succeed or fail. The two major objectives of

this chapter are the following:

In [43]:

```
# not lets try hand written image
img = cv2.imread('E:\\Learning\\Computer_Vision\\Digit Recognition\\shand.jpg')
plt.imshow(img)
plt.show()
```


In [44]:

```
# lets try to extract without cleaning the image
print(pytesseract.image_to_string(img))
```

Rudder Arnalytics North Goast

medica | Structure Web

In [36]:

here the spelling of 'medical' is categorized differently

In [45]:

```
# lets the clean the image and check the output
blue_lower=np.array([25,10,10],np.uint8)
blue_upper=np.array([255,60,60],np.uint8)

mask = cv2.inRange(img, blue_lower, blue_upper)
print(pytesseract.image_to_string(mask))
```

Rudder Analytics North Coast

ae leres penne Web

In [47]:

```
# extracting only blue color and making everything else black
blue_lower=np.array([25,10,10],np.uint8)
blue_upper=np.array([255,60,60],np.uint8)
mask = cv2.inRange(img, blue_lower, blue_upper)
plt.imshow(mask)
plt.show()
```


In [50]:

```
# dialating the image
kernel = np.ones((3,3), np.uint8)
img_dilation = cv2.dilate(mask, kernel, iterations=1)
plt.imshow(img_dilation)
plt.show()
```


In [51]:

```
# lets try to run on this image
print(pytesseract.image_to_string(img_dilation))
```

Rudder Analytics North Coast

medical Structure Web

In [52]:

```
# yeeahhh, its working
# but still the accuracy of pytesseract is a lot dependent on the quality of image, so
we should not entirely reply on
# pytesseract
# we need to create our own model
```