Soln: if
$$A \equiv 0 \mod 37 \Rightarrow no 30 \ln s$$

order $G = 1 \mod 37$
 G

$$6 = A has some B$$
 $6 = 6 mod 36$

"9 50 mod 36

2.
$$X = A \mod 37$$
, $A \neq 0$ has how many solus?

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A = g B

A

Soln:
$$\overline{F}$$

$p.r.$ mod $23 = 9(23-1)$
 $= 9(2)$
 $= 1.00 < \frac{22}{2} = 11$

4. T/F if g is a p.r. mad g, then

gz is not a p.r.

Soln:
$$(g^2)^{\frac{p-1}{2}} = g^{p-1}$$

$$\Rightarrow ord(g^2) \leq \frac{p-1}{2} \leq p-1$$

5. Let
$$p = U|k+l|$$
 be prime

Then $p = U|k+l|$ be prime

Then $p = U|k+l|$ be prime

Soln: $p = U|k+l|$ be prime

 $p = U|k+l|$ $p = U$

6. Prove that it x? - Dy = M(t) has a Solm, it has infinitely many solus. Pf. (xx) x2-Dy2 = 1 has a solu since D Sq-free. let (X1, Y1) solve (XX) · let \(\xi^2 - D\)\(\gamma^2 = M (XK, YK), where $X_{E} + Y_{E} \cdot TD = (X_{I} + Y_{I} \cdot TD)^{K}$ solves (XX) consider (Ex, Mx), where $\xi_{K} + \eta_{K} = (\xi + \eta \sqrt{D})(x_{1} + y_{1} \sqrt{D})^{K}$