Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If NIC transmits entire frame without collision, NIC is done with frame!
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from $\{0,1,2,...,2^m-1\}$. NIC waits K:512 bit times, returns to Step 2
 - more collisions: longer backoff interval

Minimum Packet Size

- Why enforce a minimum packet size?
- Give a host enough time to detect collisions
- In Ethernet, minimum packet size = 64 bytes (two 6-byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes
- What is the relationship between minimum packet size and the length of the LAN?

Minimum Frame Size

- $t = 2 \epsilon$: A detects collision
- a minimum frame size equal to number of bits transmitted during one round trip is required to detect all collisions.
- Min ethernet frame size is 512 bits i.e., 64 bytes for 10Mbps/100Mbps (51.2us at 10Mbps)
- 512 bytes for 1000Mbps (Why Increased?)
- LAN Cable length = Speed of light (in twisted/coax/fiber) * time to transmit minimum frame size/2
- LAN length = (min_frame_size)*(light_speed)/(2*bandwidth)

IEEE 802.11 (Wi-Fi): multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with detected ongoing transmission by another node
- 802.11: no collision detection!
 - difficult to sense collisions: high transmitting signal, weak received signal due to fading
 - · can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/CollisionAvoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

CSMA/CA timers

Short InterFrame Spacing (SIFS)

Distributed InterFrame Spacing (DIFS) Larger than SIFS, to give ACK priority over data

Avoiding collisions (more)

idea: sender "reserves" channel use for data frames using small reservation packets

- sender first transmits small request-to-send (RTS) packet to AP using CSMA
 - RTSs may still collide with each other (but they're short)
- AP broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions
- Avoid data frame collisions using small reservation Frames!

Collision Avoidance: RTS-CTS exchange

Backoff - more complex example

