计算方法第六次编程作业

PB20511896 王金鑫

1 题目

使用 FFT 和 IFFT 实现对规定函数的 Fourier 分析。函数 f 以及划分数 n 如下:

- 1. $f_1(t) = 0.7 \sin(2\pi \times 2t) + \sin(2\pi \times 5t), \ n = 2^4, 2^7$
- 2. $f_2(t) = 0.7 \sin(2\pi \times 2t) + \sin(2\pi \times 5t) + 0.3 \times random(t)$, 其中 random(t) 为 [0,1) 区间 内的随机数, $n = 2^7$

其中 $t \in [0,1)$,将 [0,1) 区间均匀划分为 n 份, $f_{1,k} = f_1(\frac{k}{n}), k = 0,1,\ldots,n-1$, $f_{2,k}$ 为 $f_{1,k}$ 加上一个随机扰动项, $f_{2,k} = f_{1,k} + 0.3r_k$, $r_k \in [0,1)$ 为随机数。

2 原理

由于题述的 n 均为 2 的幂次方,因此可用逐次分半算法。即将 DFT 的级数按奇偶项分开计算。

3 结果

运行结果如下图所示。

Real(g)	Imag(g)
-1.5E-16	0
4.49E-17	1.06E-17
9.38E-17	-0.35
6.43E-18	1.39E-16
-2E-19	1.11E-16
-3E-16	-0.5
-1.4E-16	-8.3E-17
1.23E-16	-2E-16
3.19E-16	0
1.1E-16	2.39E-16
-4.5E-17	1.11E-16
-3E-16	0.5
-2E-19	-1.1E-16
6.34E-17	-1.7E-16
1.42E-16	0.35
2.85E-17	-4.7E-17

图 1: n=16 时, f_1 的 FFT 结果 g_1 _16

图 2: n=128 时, f_1 的 FFT 结果 g_1_128

Real(g)	lmag(g)	-5.2E-17	1.49E-17	2.41	IF-17	-4.5E-18	1.87E	-17	4.65E-18
0.059575			3.15E-17			-3.3E-17			5.59E-17
	2.23E-17		-1.8E-17			-5.6E-17			1.58E-17
-4.2E-17			-1.4E-16			-3.4E-17			1.07E-17
	6.66E-17		-2.9E-17			-8.4E-18			1.21E-17
	4.57E-17		3.34E-17			-2.9E-18			-1E-17
-3.2E-16			-1.9E-17	6.67		0			2.53E-17
	-5.6E-17		9.44E-18			-1.7E-17			-9.4E-18
	-5.3E-17		-4.3E-17			3.87E-18			3.25E-17
	-7.2E-17		4.26E-18			2.78E-17			1.42E-16
1.17E-17			-1.8E-17			2.96E-17			2.61E-17
	-6.7E-17	-9.1E-18	-1.4E-17	i -1		0	4.46E	-17	5.17E-17
	-3.2E-17		-7E-18	3.21					1.82E-17
	-5.4E-17	9.51E-18	-1.4E-16			-2.8E-17			-1.3E-17
	3.58E-17		-3.2E-17			-2.5E-18			5.68E-17
	-4.4E-17		1.46E-17			1.66E-17			-7.7E-18
	2.67E-19		-3.4E-17			8.33E-17			1.91E-17
	-6.4E-18		2.8E-17			2.07E-18			-3.4E-17
	-1.1E-17		-1.2E-17			1.93E-17			-1.2E-17
	-4.7E-17		-1.3E-17			3.44E-17			1.09E-16
1.17E-17			-2.8E-17			5.54E-17			1.78E-17
	-3.8E-17		-5.6E-17			3.8E-17			-4.1E-17
	8.79E-17		-4.7E-18			3.12E-17			-3.3E-17
	3.91E-17		1.23E-18			-1.4E-17			-1.8E-17
	1.06E-17		-2.5E-17			-9.4E-18			4.19E-17
	-4.2E-17		8.36E-18			2.35E-17			-1.7E-17
	1.75E-17		1.36E-17			5.18E-18			-1.8E-17
(a	.)	(b)		(c))		(d)	
`	,			17 205 17	/			(/	
				-17 -2.8E-17					
				-17 3.77E-17					
				-17 -1.6E-19					
				-17 4.84E-17					
				-18 3.85E-18					
				-17 6.39E-18					
				-17 -3.7E-18					
				2.78E-17					
				-18 -7.3E-17					
				-17 5.43E-17 -17 -1.8E-17					
				-17 7.45E-18 -17 4.68E-17					
				-17 4.08E-17 E-17 7.16E-17					
				-17 7.16E-17 -17 5.52E-17					
				-17 5.52E-17 -17 1.26E-16					
				-17 1.26E-16 -16 0.5					
				-10 0.5 -17 -4.6E-17					
			2.43E						
			-1.1E						
				-17 -5.5E-17					
			1.02	-11 -0.3E-11					

图 3: n=128 时, f_2 的 FFT 结果 g_2 _128

(e)

图 4: 不同 n 下,对 f 进行 FFT 后得到的 g 的模长 |g|

图 5: n=16 时, f_1 的相关结果

图 6: n=128 时, f_1 的相关结果

Real(g2)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.02

0.01

0.02

0.01

0.02

0.01

0.02

0.01

0.02

0.01

(a) f_2 原图像, g_2 在 IFFT 后的图像,FFT 后频率 域取前 25% 后 IFFT 的图像

(b) g_2 的实部

(c) g_2 除去频率 k=0 处的点后的实部

图 7: n=128 时, f_2 的相关结果

4 结果分析

考虑到 double 型变量的有效位数为 $16\sim17$ 位,即 1×10^{-16} 的数量级属于浮点误差范围内,而图 $1\sim3$ 中对于 FFT 后取实部的结果恰好在这个数量级及以下,因此得到的 g 实部的结果并不准确。

考虑该因素后,可以在误差范围内近似的认为结果中在 10^{-16} 及以下数量级的数均为 0。由图 $5\sim7$ 可看出:

- 1. n 越大, f 向量的图像越逼近函数的图像。
- 2. 不管 n 的数目为多少, 对 g 作 IFFT 后可以得到和原函数一样的图像, 不会造成明显的影响。
- 3. 对于 f 向量 FFT 后的模长 |g|, n 的数目并不明显地影响其峰值,且也不明显地影响其分布的形状,除了由于数据点的增多导致的图像被拉宽。
- 4. n=16 和 n=128 时, g_1 的实部均在误差范围内为 0,其大小主要分布在虚部,由图 1~3 可看出。
- 5. g_2 的实部在频率 k=0 处有一个大小约为 0.06 的峰,是由 f_2 中的随机数引起的。由图 7(b) 和 (c) 可看出除去这一点外的实部均为 0,且图像与 n=128 时 g_1 的结果相符合。
- 6. 对于 f_2 ,去除掉高频部分后进行 IFFT 得到的图像与原图像形状相同,但是大小变为了原来的一半。