晶体二极管和三极管的测试

一. 实验目的

- 1. 学习使用万用表对晶体二极管和三极管进行粗测,并判别晶体管的工作状态。
- 2. 测试晶体三极管的输入和输出特性。

二. 电路原理简述

同一型号的晶体管由于分散性其参数差异很大,因此,在使用晶体管前需要测试它的特性,晶体管的特性曲线有输入特性曲线和输出特性曲线,输入特性曲线是指参量变量 U_{ce} =常数时, I_b =f (U_{be})的关系曲线;输出特性曲线是指参变量 I_b =常数时, I_c =f (U_{ce})关系曲线.对应不同的参变量,可的一族曲线,图 1-1 就是某个晶体管的特性曲线,从特性曲线上可以求的管子的 β , I_{ceo} 的参数,上述特性曲线可以用逐点测试法测得。

本实验以 9013 晶体管为例。逐点测试法的测试电路如图 1-2, 图中 R_{w1} 用于调节基极电流 I_b , R_{w2} 用于调节集电极电压 U_{c2} , 测试输入特性时, R_{w2} 用做调节参变量 U_{ce} , 并在测试过程中保持 U_{ce} =正常数. 测试输出特性时, R_{w1} 用做调节参变量 I_b , 逐点测试, 每给定一个参变量可测的一条特性曲线, 为了获的一族特性曲线, 需调节一系列参变量进行多次测量。

在放大电路中,必须设置静态工作点,图 1-3 为固定偏置电路,调节偏置电阻 R₄,可以调节静态工作点。

晶体管的直流(静态)工作状态可以用万用表检测. 当管子处于截止区时, U_{ce}=U_{cc}; 管子处于饱和区时, 集电极正偏;在实际工作中, 常用上述方法来判别放大电路是否正常工作。实验原理图如图 1-4 所示。

图 1-4

三. 实验设备

	7 W A B		
	名称	数量	型号
1.	直流稳压电源	1台	MC1095
2.	万用表	1 个	500型/MF47型(学校自备)
3.	直流微安表 (指针式)	1 个	0~100 μ A
4.	开关	2 只	单刀双投*1 双刀双投*1
5.	电阻	4 只	$2k \Omega *1 25k \Omega *1$
			330k Ω *2
7.	电位器	3 只	$1k \Omega *1 2.2k \Omega *1$
			220k Ω *1
8.	二极管	1 只	1N4007*1
9.	三极管	2 只	9013*1 9012*1
10.	短接桥和连接导线	若干	P8-1 和 50148
11.	实验用9孔插件方板		297mm $ imes 300$ mm

四. 实验内容与步骤

1. 测量晶体管输入特性 按图 1-4 接线, K_1 置于"1", K_2 置于"3",使参变量 U_{cE} =0,调节 R_{w1} 改变

 U_{BE} ,使 I_{B} 如表 1-1 所列之值。读出相应的 U_{BE} 值,测取 I_{B} =f (U_{BE}) $|_{UCE=0}$ 特性。

表 1-1

I _B (μA) U _{BE} (V) 测试条件	0	1	2	3	5	10	20	40	60	80
$U_{CE}=0$	0	0.32	0.37	0.44	0.48	0.52	0.55	0.58	0.59	0.60
U _{CE} =2.01V	0	0.48	0. 52	0.55	0.58	0.62	0.64	0. 67	0.68	0.69

 K_2 置于"1",调节 R_{w2} ,使参变量 U_{CE} =2V,并保持 U_{CE} 值不变;调节 R_{w1} 重复上

述步骤, 测取 I_B=f(U_{BE})|_{UCE=2V}特性。

2. 测量晶体管输出特性

调节 R_{w1} 使参变量 I_B 分别为 10 μ A、20 μ A、30 μ A,调节 R_{w2} 使 U_{CE} 如表 1 -2 所列之值,做 I_c =f (U_{CE}) $|_{I_b=常数}$ 的特性曲线。

表 1-2

U _{CE} (V) I _C (mA) 测试条件	0	1	2	3	5	10
$I_{\rm B}=10~\mu$ A	0	1.0	1. 1	1.1	1.1	1.1
I _B =20 μ A	0	3. 1	3. 1	3. 2	3. 2	3. 4
I _B =30 μ A	0	6. 4	6. 4	6. 5	6.6	7.0

五. 分析与讨论

根据表 1-1、表 1-2 的数据画出特性曲线,求晶体管的 β 值。 (word 的平滑曲线做的比较抽象)

