How to select best split point in Decision Trees?

- Gini impurity
- Chi-Square
- Entropy / Information Gain

- Gini impurity
- Chi-Square
- Entropy / Information Gain
- Reduction in Variance

Variance =
$$\Sigma [(X - \mu)^2] / n$$

Variance =
$$\Sigma [(X - \mu)^2] / n$$

Variance =
$$\Sigma [(X - \mu)^2] / n$$

Variance ~ 6

Variance =
$$\Sigma [(X - \mu)^2] / n$$

```
1 1 1
1 1 1
```

Variance =

0

Variance =
$$\Sigma [(X - \mu)^2] / n$$

2 ⁶ 7 4 7 9

Variance ~ 6

1 ¹ 1 1 1 1

Variance =

0

Properties of Variance

- Used when target is continuous
- Split with lower variance is selected

Calculate the variance of each child node

- Variance = $\Sigma [(X \mu)^2] / n$
- Calculate the variance of each split as weighted average variance of each child node

Split on Performance in Class

- Plays Cricket = 1
- Do not play Cricket = 0

Split on Performance in Class

- Above Average node:
 - \bigcirc Mean = (8*1 + 6*0) / 14 = 0.57
 - O Variance = $[8*(1-0.57)^2 + 6*(0-0.57)^2] / 14 = 0.245$
- Below Average node:
 - \bigcirc Mean = (2*1 + 4*0) / 6 = 0.33
 - O Variance = $[2*(1-0.33)^2 + 4*(0-0.33)^2] / 6 = 0.222$
- Variance: Performance in Class: (14/20)*0.245 + (6/20)*0.222 = 0.238

Students = 20
Play Cricket = 10
Do not play = 10
Prob. play = 0.5
Prob. Not play =
Below 5

 $\begin{smallmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ \end{smallmatrix}$

 $\begin{smallmatrix}0&&&&&0\\1&0&&&0\end{smallmatrix}$

Average

Students = 14
Play Cricket = 8
Do not play = 6
Prob. play = 0.57
Prob. Not play = 0.43

Students = 6 Play Cricket = 2 Do not play = 4 Prob. play = 0.33 Prob. Not play = 0.67

Split on Class

- Class IX node:
 - \bigcirc Mean = (8*1 + 2*0) / 10 = 0.8
 - O Variance = $[8*(1-0.8)^2 + 2*(0-0.8)^2] / 10 = 0.16$
- Class X node:
 - \bigcirc Mean = (2*1 + 8*0) / 10 = 0.2
 - O Variance = $[2*(1-0.2)^2 + 8*(0-0.2)^2] / 10 = 0.16$
- Variance: Class: (10/20)*0.16 + (10/20)*0.16 = 0.16

Students = 20 Play Cricket = 10 Do not play = 10 Prob. play = 0.5 Prob. Not play = 0.5

 $\begin{bmatrix}1&0&\\&1&&1\\0&&1\\&1&1&1\end{bmatrix}$

Students = 10 Play Cricket = 8 Do not play = 2 Prob. play = 0.8 Prob. Not play = 0.2

$$\begin{smallmatrix}0&&&&0\\&1&0&&0\\&0&&0&1\\0&&&0&0\end{smallmatrix}$$

Students = 10 Play Cricket = 2 Do not play = 8 Prob. play = 0.2 Prob. Not play = 0.8

Split	Variance
Performance in Class	0.238
Class	0.16

Split	Variance
Performance in Class	0.238
Class	0.16

Split on Class

Thank You!

