Introduction to Research on Spatial-temporal Data Mining

Research Overview

- Urban intelligence
 - Spatio-temporal data mining and analytics, smart city, user modeling

Outline

- Spatial-temporal data mining
 - Spatial relationship extraction
 - Geospatial IR or Spatial Keyword Search
 - POI recommendations
 - Road Network Representation for Road Network Applications
 - Region Representation for Region-Level Applications
- Trajectory data mining
 - Application in intelligent transportation
- Application of Foundation Models for Geospatial Applications

Geospatial database

Name	Lat	Long	Address	Category
National Museum	1.29682	103.84877	93 Stamford Rd, 178897	Museums
Food for Thought	1.2963	103.84876	93 Stamford Road #01-04, National Museum, 178897	Asian Fusion
Museum Carpark	1.296509	103.84794		Parking
Harry's	1.2976	103.84905	90 Stamford Rd, 178903	Bars
Food for Thought	1.29675	103.8486		Restaurant

Geospatial DB

Although convenient, this representation hinders the exploration of **geospatial** relationships between the entities

Geospatial KG

- Relationships between the entities exist and can be captured in a KG representation
- Knowledge Graphs are ubiquitous today and offer several advantages:
 - Machine-readable format
 - Can represent both entities and their relations
 - Widely adopted in AI applications
- Existing geoKGs represent only coarsegrained relationships

YAGO2Geo

DBPedia

Proposed solution

- Candidate Selection Step: Aim relationships
- Relation Prediction: Aim at ide
- The KG refinement: Aim to extra correctness

Spatial Keyword Query (Geographic IR)

Take query keywords and location as input and output retrieved objects/documents

Applications of spatial ke

Geographic search €

location-based servi

locally targeted web


```
19 km
1. Spicy House Restaurant
                                     4.0 (1 review)

    Clarke Quay • Open until Midnight

                                   4.6 km
2. 81 Seafood Restaurant
5.0 (1 review)

    Boom Lay

                                   10 km
3. Chin Huat Live Seafood
                                     4.4 (22 reviews)

    ○ Clementi • $55 • Open until 10:30 pm

                                   7.2 km
4. Hai Di Lao
                                     4.7 (3 reviews)

    Jurong • $$ • Closed until 10:30 am tomorrow
```

Spatial Keyword Query Example on Yelp (or Meituan)

Geospatial entity representation learning

Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, Fuzheng Zhang: Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword Queries. SIGMOD 2023

POI recommendation

 Given a set of POIs, and a set of users each associated with a set of visited POIs, POI recommendation is to recommend for each user new POIs that are likely to be visited.

New Types of POI recommendation

Context-aware POI recommendation

- Context: time, current location.
- E.g., Workplace + Friday Evening → Restaurant / Bar

Requirement-aware POI recommendation (w/o Group)

E.g., Mary wants to find a restaurant to have pizza with her friend Bob at 7:00 PM on Friday

Predict potential visitors for a POI (for ads)

- It can help POI owners to find potential customers for marketing
- E.g., given a POI restaurant, we want to predict potential consumers who would visit this restaurant in the next several hours

User-based CF (U)

 Assumption: the interests of the target user u can be estimated based on the check-in histories of other users who checked-in at similar POIs with u.

User-POI matrix $C^{(UL)}$

$C_{u,l}$	I_1	I_2	I_3	I_4
<i>u</i> ₁	1	1	0	0
u_2	1	1	1	0
u_3	0	1	0	1

Check-in vector of u₁

- Two steps:
 - Calculate similarities between users

similarity:
$$w_{u,v} = \frac{\sum_{l} c_{u,l} c_{v,l}}{\sqrt{\sum_{l} c_{u,l}^2} \sqrt{\sum_{l} c_{v,l}^2}}$$

Produce prediction for each candidate POI /

score:
$$\hat{c}_{u,l} = \frac{\sum_{v} w_{u,v} c_{v,l}}{\sum_{v} w_{u,v}}$$

User-based CF with Time Preference (UT)

Introduce time dimension into the matrix:

Calculate temporal similarities between users

$$w_{u,v} = \frac{\sum_{l} c_{u,l} c_{v,l}}{\sqrt{\sum_{l} c_{u,l}^{2}} \sqrt{\sum_{l} c_{v,l}^{2}}} \longrightarrow w_{u,v}^{(t)} = \frac{\sum_{t=1}^{T} \sum_{l} c_{u,t,l} c_{v,t,l}}{\sqrt{\sum_{t=1}^{T} \sum_{l} c_{u,t,l}^{2}} \sqrt{\sum_{t=1}^{T} \sum_{l} c_{v,t,l}^{2}}}$$

Produce temporal predictions

$$\hat{c}_{u,l} = \frac{\sum_{v} w_{u,v} c_{v,l}}{\sum_{v} w_{u,v}} \qquad \qquad \hat{c}_{u,t,l} = \frac{\sum_{v} w_{u,v}^{(t)} c_{v,t,l}}{\sum_{v} w_{u,v}^{(t)}}$$

 The recommendation score is calculated based on the checkins at target time t.

Geospatial Entities

Road networks

- Applications:
 - Generate **generic representations** for various types of road network applications.
 - ☐ Trajectory-based: travel time estimation, similarity search
 - ☐ Road segment-based: traffic inference, road attribute inference

Geospatial Entities

- Results:
 - Road networks and trajectories from two cities

Dataset	#Road Segments	#Edges	#Trajectories
Chengdu	4,885	12,446	677,492
Xi'an	5,052	13,660	373,054

- Downstream applications:
 - Road label classification
 - Traffic inference
 - Trajectory similarity search
 - Travel time estimation

Experiments

▷ Road segment-based application result:

Task	R	oad Label (Classificatio	Traffic Inference					
	Chengdu		Xi	'an	Che	ngdu	Xi	Xi'an	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	MAE	RMSE	MAE	RMSE	
DW	0.522	0.493	0.552	0.524	7.32	9.14	6.78	8.57	
node2vec	0.524	0.495	0.586	0.559	7.12	9.00	6.41	8.22	
GAE	0.432	0.328	0.447	0.339	6.91	8.72	6.41	8.39	
GraphSAGE	0.452	0.324	0.466	0.347	6.48	8.52	6.12	7.98	
RFN	0.516	0.484	0.577	0.570	6.89	8.77	6.57	8.43	
IRN2Vec	0.497	0.458	0.531	0.506	6.52	8.52	6.60	8.59	
HRNR	0.541	0.527	0.631	0.609	7.03	8.82	6.52	8.45	
Toast	0.602	0.599	0.692	0.659	5.95	7.70	5.71	7.44	

Experiments

> Trajectory-based application result

Trajectory similarity search

	Che	engdu	X	Xi'an		
	MR	HR@10	MR	HR@10		
para2vec	216.92	0.251	279.38	0.205		
t2vec	46.17	0.781	38.67	0.806		
LCSS	67.72	0.487	83.94	0.469		
EDR	458.20	0.174	529.74	0.119		
Fréchet	21.17	0.847	22.79	0.894		
Toast	10.10	0.885	13.71	0.905		

Travel time estimation

	Chei	ngdu	Xi'an		
	MAE	RMSE	MAE	RMSE	
para2vec	220.45	302.72	244.73	345.49	
t2vec	165.18	240.72	207.56	311.04	
Road-Pool	151.80	223.02	185.47	293.82	
Toast	127.80	190.86	175.68	265.09	

Problem of Urban Region Representation Learning

 Urban Region Representation Learning aims at learning effective feature vectors for urban regions to serve various downstream tasks.

Data Representations

Tasks

Our motivations

An Example Building Group (Singapore Public House)

We focus on **OSM buildings**.

- Buildings, (or formally, building footprints), refer to the 2-D building polygon on the map
 - size, height, type, name...
- Building groups refers to the collection of buildings in a defined spatial area.
 - We use OSM road networks to partition buildings into building groups.

Introduction

Industrial Area

Residential Area

Example Building Groups with Specific Urban Functions

Comparing to other data types, building data has **advantages**:

Effectiveness

• Buildings directly carrying urban functions.

Availability

Buildings are readily available in OSM

Method

- **1. Partition** the city into building groups with road network.
- 2. Encode building groups with POIs and regions with Transformer-based encoders.
- 3. Train the encoder with Group-level and Region-level contrastive learning

Experiments: Land Use Inference

 Infer 5 types of land use (Residential, Industrial, Commercial, Open Space, Other)

Table 2: Land Use Inference in Singapore and New York City

Models		Singapore			New York City			
Wiodels	L1↓	KL↓	Cosine↑	L1↓	KL↓	Cosine [†]		
Urban2Vec	0.657±0.033	0.467±0.043	0.804±0.017	0.473±0.018	0.295±0.015	0.890±0.007		
Place2Vec	0.645 ± 0.039	0.451 ± 0.047	0.812 ± 0.018	0.518 ± 0.016	0.308 ± 0.012	0.878 ± 0.005		
Doc2Vec	0.679 ± 0.050	0.469 ± 0.058	0.789 ± 0.027	0.506 ± 0.015	0.299 ± 0.016	0.885 ± 0.008		
GAE	0.759 ± 0.040	0.547 ± 0.051	0.765 ± 0.022	0.589 ± 0.011	0.365 ± 0.011	0.855 ± 0.007		
DGI	0.598 ± 0.029	0.372 ± 0.032	0.846 ± 0.012	0.433 ± 0.009	0.237 ± 0.012	0.907±0.005		
Transformer	0.556 ± 0.046	0.357 ± 0.070	0.850 ± 0.026	0.436 ± 0.020	0.251 ± 0.018	0.903 ± 0.008		
RegionDCL-no random	0.535±0.054	0.321±0.066	0.863±0.030	0.422±0.011	0.234±0.010	0.910±0.005		
RegionDCL-fixed margin	0.515 ± 0.042	0.303 ± 0.040	0.872 ± 0.020	0.426 ± 0.011	0.248 ± 0.018	0.905 ± 0.008		
RegionDCL	$0.498 {\pm} 0.038$	$0.294 {\pm} 0.047$	0.879 ± 0.021	0.418 ± 0.010	0.229 ± 0.008	0.912 ± 0.004		

Experiments: Population Density Inference

Similar results in inferring the population density within regions

Table 3: Population Density Inference in Singapore and New York City

Models		Singapore			New York City	
Wiodels	MAE↓	RMSE↓	$R^2 \uparrow$	MAE↓	RMSE↓	$R^2 \uparrow$
Urban2Vec	6667.84±623.27	8737.27±902.41	0.303±0.119	5328.38±200.58	7410.42±261.89	0.522±0.028
Place2Vec	6952.34±713.30	9696.31±1239.65	0.171 ± 0.121	8109.79±175.18	10228.61 ± 261.43	0.096 ± 0.043
Doc2Vec	6982.85±650.76	9506.81±1052.25	0.206 ± 0.062	7734.56±247.99	9827.56±354.51	0.166 ± 0.031
GAE	7183.24±579.82	9374.20±913.56	0.163 ± 0.112	8010.73±290.33	10341.09±362.28	0.071 ± 0.027
DGI	6423.44±671.25	8495.16±972.87	0.305 ± 0.151	5330.11±261.77	7381.92±358.09	0.526 ± 0.032
Transformer	6837.67±716.28	9042.02±1032.99	0.269 ± 0.081	5345.17±216.30	7379.47±308.36	0.522 ± 0.039
RegionDCL-no random	6400.50±630.35	8437.89±993.41	0.364±0.075	5228.27±210.46	7278.70±322.85	0.535±0.040
RegionDCL-fixed margin	6237.61±647.54	8387.56±948.78	0.365 ± 0.107	5125.66±184.27	7159.65±250.12	0.551±0.033
RegionDCL	5807.54 ± 522.74	7942.74±779.44	0.427 ± 0.108	5020.20±216.63	6960.51±282.35	0.575±0.0

Visualization

- Cluster the building group embeddings via K-Means
- Ours are visually close to the Singapore land use ground truth
- Baseline fails.

- Input: road network and past T' traffic speed observed at sensors
- Output: traffic speed for the next T steps

Input: Observations

7:00 AM

8:00 AM

Output: Predictions

8:10AM, 8:20AM, ..., 9:00 AM

What to model?

Complex Spatial Dependency

Non-linear, non-stationary Temporal Dynamic

Diffusion Convolutional Recurrent Neural Network (DCRNN)

- Model spatial dependency with diffusion convolution of GCN
- Sequence to sequence learning with *encoder-decoder* framework of RNN

- Experiments:
 - We evaluate SAGDFN on 4 real-world datasets and we evaluate all the models on a single 32 GB Tesla V100 GPU.

STATISTICS OF OUR DATASETS

Data type	Datasets	# of sensors	Time range
Traffic	METR-LA	207	1 Mar - 30 June 2012
	London2000	2000	1 Jan - 31 Mar 2020
speed	NewYork2000	2000	1 Jan - 31 Mar 2020
Carpark lots	CARPARK1918	1918	1 May - 30 June 2021

• We perform evaluation on multivariate time series forecasting problem with **15** baselines.

- Comparison with baselines on Traffic Speed dataset
 - METR-LA: it consists of traffic speed measurements obtained from loop detectors deployed on the road network of LA County. Specifically, the dataset comprises the records from 207 sensors over four months from March to June in 2012, resulting in a total of 34,272 time slices. The sampling frequency is 5 minutes.

PERFORMANCE COMPARISON ON METR-LA DATASET.										
METR-LA		Horizon 3	3		Horizon 6			Horizon 12		
WILTK-LA	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	
ARIMA	3.99	8.21	9.6%	5.15	10.45	12.7%	6.9	13.23	17.4%	
VAR	4.42	7.89	10.2%	5.41	9.13	12.7%	6.52	10.11	15.8%	
SVR	3.99	8.45	9.3%	5.05	10.87	12.1%	6.72	13.76	16.7%	
LSTM	3.44	6.30	9.6%	3.77	7.23	10.9%	4.37	8.69	13.2%	
DCRNN	2.77	5.38	7.3%	3.15	6.45	8.8%	3.6	7.60	10.5%	
STGCN	2.88	5.74	7.6%	3.47	7.24	9.6%	4.59	9.4	12.7%	
GRAPH WaveNet	2.69	5.15	6.9%	3.07	6.22	8.4%	3.53	7.37	10.0%	
GMAN	2.80	5.55	7.4%	3.12	6.49	8.7%	3.44	7.35	10.0%	
AGCRN	2.87	5.58	7.7%	3.23	6.58	9.0%	3.62	7.51	10.4%	
MTGNN	2.69	5.18	6.9%	3.05	6.17	8.2%	3.49	7.23	9.9%	
ASTGCN	4.86	9.27	9.2%	5.43	10.61	10.1%	6.51	12.52	11.6%	
STSGCN	3.31	7.62	8.1%	4.13	9.77	10.3%	5.06	11.66	12.9%	
GTS	2.67	5.27	7.21%	3.04	6.25	8.4%	3.46	7.31	10.0%	
STEP	2.61	4.98	<u>6.5%</u>	2.96	<u>5.97</u>	8.0%	<u>3.37</u>	<u>6.99</u>	9.6%	
D2STGNN(c)	2.57	<u>4.93</u>	<u>6.5 %</u>	<u>2.94</u>	<u>5.97</u>	<u>7.9 %</u>	3.41	7.15	9.6%	
SAGDFN	<u>2.56</u>	5.00	<u>6.5%</u>	<u>2.94</u>	6.05	<u>7.9</u> %	<u>3.37</u>	7.17	<u>9.5%</u>	

- Comparison with baselines on Carpark dataset
 - CARPARK1918: it contains parking lot availability recordings collected by the Land Transport Authority (LTA) of Singapore. Specifically, the dataset contains records from 1918 carparks over two months from May to June in 2021. The sampling frequency of the dataset is 5 minutes, resulting in a total of 17,569 time slices.

PERFORMANCE COMPARISON ON CARPARK1918 DATASET. (RESULTS MARKED '×' FOR MODEL ENCOUNTERING THE OOM ISSUE)

CARPARK1918		Horizon :	3		Horizon 6	5		Horizon 1	2
CARFARRI910	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
ARIMA	3.31	7.41	7.4%	5.59	10.03	12.1%	9.15	16.68	14.1%
VAR	5.45	10.81	13.5%	7.41	14.63	19.9%	10.65	20.17	27.3%
SVR	17.71	47.42	16.11%	19.35	47.93	20.2%	21.92	49.00	22.3%
LSTM	3.15	8.90	7.0%	5.48	12.29	11.7%	9.23	18.92	16.0%
DCRNN	2.59	7.69	7.0%	4.18	10.09	10.9%	6.31	14.19	14.0%
STGCN	×	×	×	×	×	×	×	×	×
GRAPH WaveNet	7.84	17.26	15.9%	8.67	19.04	16.8%	10.49	22.75	19.8%
GMAN	×	×	×	×	×	×	×	×	×
AGCRN	×	×	×	×	×	×	×	×	×
MTGNN	3.74	9.88	8.6%	4.97	12.33	12.2%	7.57	17.02	15.8%
ASTGCN	×	×	×	×	×	×	×	×	×
STSGCN	×	×	×	×	×	×	×	×	×
GTS	×	×	×	×	×	X	×	×	×
STEP	×	×	×	×	×	×	×	×	×
D2STGNN(c)	×	×	×	×	×	×	×	×	×
SAGDFN	<u>2.26</u>	<u>7.74</u>	<u>6.0%</u>	<u>3.77</u>	<u>10.07</u>	<u>10.2 %</u>	<u>5.36</u>	<u>13.17</u>	<u>12.7 %</u>

Dynamic data: Trajectories

Intelligent transportation systems: ETA

• Given a route on the road network, we aim to learn its travel time distribution (Probability Density Function) with the consideration of real-time traffic.

Xiucheng Li et al., Learning Travel Time Distributions with Deep Generative Model. WWW 2019

Dynamic data: Trajectories

• Intelligent transportation systems: route inference

 Given the origin and destination, we aim to predict the most likely traveling route on the road network and score the likelihood of a given route.

Xiucheng Li et al., Spatial Transition Learning on Road Networks with Deep Probabilistic Models. ICDE 2021

Dynamic data: Trajectories

- Intelligent transportation systems: trajectory enrichment
 - Trajectories can be sparse and incomplete due to technical issues.

 These low-quality trajectories are not good for the analysis and model development in traffic management systems.

Introduction to Foundation Models

Foundations Models (FMs) represent a paradigm shift in Al

Advantages:

- Self-supervised pre-training
- Task-agnostic —> FMs develop capabilities that generalise across tasks
- Able to access <u>Internet-scale</u> amount of (unlabelled) data
- Easy to deploy to downstream applications (fine-tune or zero-shot)

Foundation Models

Task-Specific Models

Training **specific** models for **specific** tasks

Question Answering Models

Machine Translation Models

Common Sensing Reasoning Models

Reading Comprehension Models

Natural Language Inference Models

Image Classification Models

Text-to-image Generation Models

Image Editing Models

Paradigm

shift

Foundation Models

A large task-agnostic pre-trained model which can be adapted via fine-tuning or few-shot/zero-shot learning on a wide range of domains. (Bommasani et al, 2021)

GPT-3 (Brown et al., 2020)

Few-shot Adaptation

Various NLP Tasks

- Closed Book Question Answering
- Machine Translation
- Common Sense Reasoning
- Reading Comprehension
- Natural Language Inference
- ...

DALL-E 2 (Ramesh et al., 2022)

Zero-shot Transfer

Various CV Tasks

- Text-to-image generation
- Image Completion
- Image Editing
- Style Transfer
- ..

Foundation Models in Different Domains

AGI on Geospatial Problems

How do the existing cutting-edge foundation models perform when compared with the state-of-the-art fully supervised task-specific models on various geospatial tasks?

Gengchen Mai, Weiming Huang, et al. . On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. ACM TSAS 2024

Geospatial Semantics

• Investigate the performance of **GPT-3** on some well established **geospatial semantic tasks**:

Typonym Recognition

Location Description Recognition

^{*}toponyms: proper names of places, also known as place names and geographic names.

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

Task 1 & 2: Toponym Recognition & Location Description Recognition

Typonym Recognition

Location
Description
Recognition

Typonym recognition: FMs (e.g., GPT-2/3) consistently outperform the fully-supervised baselines with only 8 few-shot examples

Location Description
 Recognition: GPT-3 achieves the
 best Recall score across all
 methods

			Toponym I	Recognition	Location D	escription	Recognition
	Model	#Param	Hu2014	Ju2016	Ha	veyTweet	2017
			Accuracy ↓	Accuracy ↓	Precision ↓	Recall↓	F-Score ↓
	Stanford NER (nar. loc.) [30]	-	0.787	0.010	0.828	0.399	0.539
	Stanford NER (bro. loc.) [30]	-	-	0.012	0.729	0.44	0.548
	Retrained Stanford NER [30]	-	-	0.078	0.604	0.410	0.489
(4)	Caseless Stanford NER (nar. loc.) [30]	-	-	0.460	0.803	0.320	0.458
(A)	Caseless Stanford NER (bro. loc.) [30]	-	-	0.514	0.721	0.336	0.460
	spaCy NER (nar. loc.) [44]	-	0.681	0.000	0.575	0.024	0.046
	spaCy NER (bro. loc.) [44]	-	-	0.006	0.461	0.304	0.366
	DBpedia Spotlight[99]	-	0.688	0.447	-	-	-
	Edinburgh [7]	-	0.656	0.000	-	-	-
(B)	CLAVIN [134]	-	0.650	0.000	-	-	-
	TopoCluster [23]	-	0.794	0.158	-	-	-
	CamCoder [33]	-	0.637	0.004	-	-	-
(C)	Basic BiLSTM+CRF [77]	-	-	0.595	0.703	0.600	0.649
(C)	DM NLP (top. rec.) [139]	-	-	0.723	0.729	0.680	0.703
	NeuroTPR [135]	-	0.675 [†]	0.821	0.787	0.678	0.728
	GPT2 [115]	117M	0.556	0.650	0.540	0.413	0.468
	GPT2-Medium [115]	345M	0.806	0.802	0.529	0.503	0.515
	GPT2-Large [115]	774M	0.813	0.779	0.598	0.458	0.518
(D)	GPT2-XL [115]	1558M	0.869	0.846	0.492	0.470	0.481
(D)	GPT-3 [15]	175B	0.881	0.811*	0.603	0.724	0.658
	InstructGPT [106]	175B	0.863	0.817*	0.567	0.688	0.622
	ChatGPT (Raw.) [104]	176B	0.800	0.696*	0.516	0.654	0.577
	ChatGPT (Con.) [104]	176B	0.806	0.656*	0.548	0.665	0.601

Health Geography

Task 4: US County-Level Dementia Time Series Forecasting

Listing 4. US county-level Alzimier time series forecasting with LLMs by zero-shot learning. Yellow block: the historical time series data of one US county. Orange box: the outputs of InstructGPT. Here, we use Santa Barbara County, CA as an example and the correct answer is 373.

Table 3. Evaluation results of various GPT models and baselines on the US county-level dementia time series forecasting task. We use same model set and evaluation metrics as Table 2.

	Model	#Param	MSE ↓	MAE ↓	MAPE ↓	R ² ↑
(A) Simple	Persistence [103, 107]	-	1,648	16.9	0.189	0.979
(B) Supervised ML	ARIMA [58]	-	1,133	15.1	0.193	0.986
(C) Zero shot LLMs	GPT2 [115]	117M	77,529	92.0	0.587	-0.018
	GPT2-Medium [115]	345M	226,259	108.1	0.611	-2.824
	GPT2-Large [115]	774M	211,881	94.3	0.581	-1.706
	GPT2-XL [115]	1558M	162,778	99.8	0.627	-1.082
	GPT-3 [15]	175B	1,105	14.5	0.180	0.986
	InstructGPT [106]	175B	831	13.3	0.179	0.989
	ChatGPT (Raw.) [104]	176B	4,115	23.2	0.217	0.955
	ChatGPT (Con.) [104]	176B	3,402	20.7	0.231	0.944

Urban Geography

Task 6: Street View Image-Based Urban Noise Intensity Classification

Fig. 6. Some street view image examples in *SingaporeSVI*579 dataset. The image caption indicates the noise intensity class this image belongs to and the numbers in parenthesis indicate the original noise intensity scores from Zhao et al. [162].

Table 6. Evaluation results of various vision-language foundation models and baselines on the urban street view image-based noise intensity classification dataset, SingaporeSVI579 [162]. We classify models into two groups: (A) Supervised finetuned convolutional neural networks (CNNs); (B) Zero-shot learning with visual-language foundation models (VLFMs). We use accuracy and weighted F1 scores as evaluation metrics. The best scores for each group are highlighted.

	Model	#Param	Accuracy	F1
	AlexNet [74]	58M	0.452	0.405
(A) Summariand Finature of CNNs	ResNet18 [37]	11M	0.493	0.442
(A) Supervised Finetuned CNNs	ResNet50 [37]	24M	0.500	0.436
	DenseNet161 [48]	27M	0.486	0.382
	OpenCLIP-L [54, 113, 127]	427M	0.128	0.089
(B) Zero-shot FMs	OpenCLIP-B [54, 113, 127]	2.5B	0.169	0.178
(b) Zero-shot FWS	BLIP [81, 82]	3.9B	0.452	0.405
	OpenFlamingo-9B [11]	8.3B	0.262	0.127

GPT-3 Fewshot Learning for Geospatial Semantic Tasks

 Shortcoming of text FMs: by design they are unable to handle other data modality, e.g., geo-coordinates, toponym resolution/geoparsing

The predicted coordinates are not accurate

(b) [TEXT]: the city of <u>Fairview</u> had a population of 260 as of july 1, 2015. ...

A Multimodal City FM for GeoAl

Vision: a multimodal City FM for GeoAl that use their geospatial relationships as alignments among different data modalities.

Summary

- Spatial-temporal data mining
 - Spatial relationship extraction
 - Geospatial IR or Spatial Keyword Search
 - POI recommendations
 - Road Network Representation for Road Network Applications
 - Region Representation for Region-Level Applications
- Trajectory data mining
 - Application in intelligent transportation
- Application of Foundation Models for Geospatial Applications