Let G=(V,E) be the undirected graph depicted below with edge weights Shown next to the edges:

O (4 Points) Find a minimum-weight Spanning tree using Prim's algorithm with r= a in Step 1. Your answer should include the sequence of edges listed in the order they are selected by the algorithm as well as an illustration of the spanning tree.

V	Node					
S	X	b	C	Id	19	19
{}	1 %nil	00/ni	00/nil	00/ni	100/ni	00/n11
X		9/x	1/0	00/nil	00/nil	00/nil
Step alp			1/00	3/6	4/6	00/nil
a,b,c				3/6	4/6	5/6
a, b, c,d					1/4	-1/d
a,b,cidis	V				-2/9	
- a,b,c,d,P,						

4> Thus, nodes a,b,c,d, P, & are connected via. Paths ab,ac,bd,d 7,2%. We get the following tree:

thus, we select (In the Sollowing order

about 69.7.

abd

thus, the weight of the MST is: 1+0+3-1-2=1

We get the following ordered sequence: {ab, ac, bd, dq, qp}

a) (1 Point) List the edges in non-decreasing order as edge weights:

edge (node-Pair)	Weight
29	0-2
29	-1
ab	0
XC	1
dP.	
bC	2
. bd	3
. 60	4
CV.	5
Cd	7

union(d,2): (D'O' @' D' O'

union (a,b):

union (d, P) forms a cycle so skip (its weight is higher then others in age)
union (b, c) forms a cycle so skip (its weight is higher)

Nate that:

union (b, d):

Union (c, d)

U

We get the following ordered sequence: {pq, dq, ab, ac, bd}

6) (1 Point) Construct an optimal solution to (DMST) in the Proof of Theorem 8.3 by making use of the answer in (b):

Mote:

Max $\sum_{A \in A} ((|V| - K(A)) y_A)$ (DMST) S.L. $\sum_{A \in A: e \in A} (y_A) \leq Ce$ $\forall e \in E$ $\forall_A \leq O$ $\forall_A \in A, A \neq E$ \forall_E is gree

given: $\begin{cases}
Ce_i - Ce_{i+1} & \text{if } A = \{e_1, \dots, e_i\} \\
y_A = \{Ce_m & \text{if } A = E \\
0 & \text{otherwise}
\end{cases}$

Acknowledgement: No Help Receaved

We See the following i

A	J JA	K(A)	Note:
£e,3	-2-(-1)=-1	5	e3 D e2 e3 P
{e1,e2}	-1-0=-1	4	Q e e Le e
{e11e21e3}	0-1=-1	3	e4 0 e3
{e1,,e4}	1-1=0	2	edges are ordered such that
{ey-105}	1-2=-1	2	Ca sin & Cem
Eer, -1863	2-3=-1	2	
{e1,ez}	3-4=-1	1	
{e1,,e8}	4-5=-1		
{e,,,eq}	5-7=-2		•
{e1,,e10}	7		

Sain

max = ((V -K	((A)) 4A) Note:
S.t2 =-2	EAGR (4A) =-1-1-1+0-1-1-1-2+7=-2
-24-1	IVI=6 as there's Six nodes
-240	
-241	
-241	All Constraints are satisfied, thus we see that!
-242	$\max \sum ((V -K(A))(g_A))$
-243	Max Z ((IVI K(A))(JA))
-2 = 4 b	= (6-(5))(-1)+(6-(4))(-1)+(6-(3))(-1)
-245	+ (6-(2))(0)+(6-(2))(-1)+(6-(2))(-1)
-247	+ (6-(1))(1)+(6-(1))(-1)+(6-(1))(-2)
-160	+(6-(1))(7)
-140	= (1)(-1) + (2)(-1) + (3)(-1) + (4)(2) + (4)(-1) + (4)(-1)
-140	+(6)(-1)+(6)(-1)+(5)(-2)+(5)(7)
040	=-1-2-3-4-4-5-5-10+35
-140	
-140	(thus, an optimal Solution to the DMST is 1)
-140	
=150	