PYTHON PROJECT: DRUG CONSUMPTION

Emine BOUCHIBA

Hasna MANNAI

Yassine CHENIK

Problems:

- What characterizes a drug consumer?
- What drugs and substances are the most correlated?
- Can we predict a future drug consumer using ML?
- How to prevent the rise of new consumers?

Summary:

- Data Preprocessing
- Data Visualization
- Machine Learning Model
- API

Conclusion

Data Preprocessing: Webscraping

Dataset before preprocessing :

	1	0.49788	0.48246	-0.05921	0.96082	0.12600	0.31287	-0.57545	-0.58331	-0.91699	 CL0.4	CL0.5	CL0.6	CL0.7	CL0.8	CL0.9	CL0.10	CL2.2
0	2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	 CL4	CL0	CL2	CL0	CL2	CL3	CL0	CL4
1	3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	 CL0	CL0	CL0	CL0	CL0	CL0	CL1	CLC
2	4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	 CL0	CL0	CL2	CL0	CL0	CL0	CL0	CL2
3	5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	 CL1	CL0	CL0	CL1	CL0	CL0	CL2	CL2
4	6	2.59171	0.48246	-1.22751	0.24923	-0.31685	-0.67825	-0.30033	-1.55521	2.03972	 CL0	CL0	CL0	CL0	CL0	CL0	CL0	CL€
1879	1884	-0.95197	0.48246	-0.61113	-0.57009	-0.31685	-1.19430	1.74091	1.88511	0.76096	 CL0	CL0	CL0	CL3	CL3	CL0	CL0	CLC
1880	1885	-0.95197	-0.48246	-0.61113	-0.57009	-0.31685	-0.24649	1.74091	0.58331	0.76096	 CL2	CL0	CL0	CL3	CL5	CL4	CL4	CLE
1881	1886	-0.07854	0.48246	0.45468	-0.57009	-0.31685	1.13281	-1.37639	-1.27553	-1.77200	 CL4	CL0	CL2	CL0	CL2	CL0	CL2	CL€
1882	1887	-0.95197	0.48246	-0.61113	-0.57009	-0.31685	0.91093	-1.92173	0.29338	-1.62090	 CL3	CL0	CL0	CL3	CL3	CL0	CL3	CL4
1883	1888	-0.95197	-0.48246	-0.61113	0.21128	-0.31685	-0.46725	2.12700	1.65653	1.11406	 CL3	CL0	CL0	CL3	CL3	CL0	CL3	CL6

Data Preprocessing: Webscraping

Scraping of "values" and "meanings" on the website of the dataset

```
2. Age (Real) is age of participant and has one of the values: Value Meaning Cases Fraction -0.95197 18-24 643 34.11% -0.07854 25-34 481 25.52% 0.49788 35-44 356 18.89% 1.09449 45-54 294 15.60% 1.82213 55-64 93 4.93% 2.59171 65+ 18 0.95%
```

 Creating "value to meaning" dataframes using BeautifulSoup and RegExp

ı		age	Meanings
	0	-0.95197	18-24
	1	-0.07854	25-34
	2	0.49788	35-44
	3	1.09449	45-54
	4	1.82213	55-64
	5	2.59171	65+

	vsa	Meanings
0	CL0	Never Used
1	CL1	Used over a Decade Ago
2	CL2	Used in Last Decade
3	CL3	Used in Last Year
4	CL4	Used in Last Month
5	CL5	Used in Last Week
6	CL6	Used in Last Day

Renaming columns:

Using ID as the index :

```
first_line = list(df.columns)
dic = {}
for k in range(len(first_line)):
    dic[first_line[k]] = first_line[k]
new_row = pd.DataFrame(dic, index=[0])
df = pd.concat([new_row,df.loc[:]]).reset_index(drop=True)
```

```
df.rename(columns = {| '1':'ID',
                      '0.49788':'age',
                            '0.48246': gender',
                            '-0.05921': 'education',
                            '0.96082': country',
                            '0.12600': ethnicity'.
                            '0.31287': 'nscore',
                            '-0.57545': 'escore',
                            '-0.58331': 'oscore',
                            '-0.91699': 'ascore',
                            '-0.00665':'cscore',
                            '-0.21712':'impulsive',
                            '-1.18084':'ss',
                            'CL5': 'alcohol'.
                            'CL2': amphet',
                            'CL0': amyl',
                            'CL2.1': 'benzos',
                            'CL6': caff',
                            'CL0.1': cannabis',
                            'CL5.1': choc',
                            'CL0.2': coke',
                            'CL0.3': 'crack',
                            'CL0.4': 'ecstasy',
                            'CL0.5': heroin',
                            'CL0.6': 'ketamine',
                            'CL0.7': 'legalh'.
                            'CL0.8':'lsd',
                            "CL0.9": "meth".
```

Delete all NaN variables :

```
df=df.dropna(axis=0)
```

Modifying drug use columns to integers:

```
temp = df.columns
temp = temp[13:]
for i in temp:
    df[i] = df[i].map({'CL0':0,'CL1':1,'CL2':2,'CL3':3,'CL4':4,'CL5':5,'CL6':6})
```

Creating "values " and a " meanings " dataframes :

```
df_Meanings_Bis=df.copy(deep=True)
df_Values=df_Bis.copy(deep=True)
```

Deleting NaN values for each:

```
df_Values=df_Values.dropna(axis=0)
df_Meanings_Bis=df_Meanings.dropna(axis=0)
```

Converting the values to its corresponding "meanings":

```
df["age"].iloc[0]=AGE["Meanings"].loc[2]
Convert_To_Meanings(df,AGE,"age","Meanings")
df["gender"].iloc[0]=GENDER["Meanings"].loc[0]
Convert_To_Meanings(df,GENDER,"gender","Meanings")
df["education"].iloc[0]=EDUCATION["Meanings"].loc[5]
Convert To Meanings(df,EDUCATION,"education","Meanings")
df["country"].iloc[0]=COUNTRY["Meanings"].loc[5]
Convert_To_Meanings(df,COUNTRY,"country","Meanings");
df["ethnicity"].iloc[0]=ETHNICITY["Meanings"].loc[3]
Convert_To_Meanings(df,ETHNICITY,"ethnicity","Meanings")
df_Bis["age"].iloc[0]=float(df_Bis["age"].iloc[0])
df_Bis["gender"].iloc[0]=float(df_Bis["gender"].iloc[0])
df_Bis["education"].iloc[0]=float(df_Bis["education"].iloc[0])
df_Bis["country"].iloc[0]=float(df_Bis["country"].iloc[0])
df_Bis["ethnicity"].iloc[0]=float(df_Bis["ethnicity"].iloc[0])
```

 Delete from the dataframe rows corresponding to Semer use:

```
for i in df.index:
   if df['semer'].loc[i] > 0 :
      df = df.drop(labels=i)
```

Conversion to float for each dataframe:

```
nscore escore oscore ascore cscore impulsive ss
0.31287 -0.57545 -0.58331 -0.91699 -0.00665 -0.21712 -1.18084
```

Data visualization: General

Age

Gender

Country

Data visualization: General

1.0

8.0

0.6

0.4

0.2

0.0

Data visualization: Age

Data visualization: Age

Data visualization: Age

Data visualization: Gender

Data visualization: Gender

Data visualization: Country

Data visualization: Country

Data visualization: Ethnicity

Data visualization: Ethnicity

ML Model: Summary

How did we choose our models?

PCA

1st Model: Linear SVC

2nd Model: kNN Classifier

3rd Model: Optimized kNN

ML Model: How did we choose our models?

PCA: Defining the features

Features	Description
Nscore	Neuroticism
Escore	Extraversion
Oscore	Openness to experience
Ascore	Agreeableness
Cscore	Conscientiousness
Impulsive	impulsiveness
SS	sensation seeing

PCA: Defining the targets

PCA: Defining the number of features we will use

PCA: total variance explained by the 3 first features

	Explained_Variance_Ratio	Cumulated_Variance_Ratio
0	31.583524	31.583524
1	26.291498	57.875023
2	12.887505	70.762528

PCA: final dataframe

	principal component 1	principal component 2	principal component 3	age	gender	education	country	ethnicity
0	-0.279247	-1.371571	0.674529	35- 44	Female	Professional certificate/ diploma	UK	Mixed- White/Asian
1	-0.780152	1.905536	-0.760571	25- 34	Male	Doctorate degree	UK	White
2	0.053882	-0.400647	1.700962	35- 44	Male	Professional certificate/ diploma	UK	White
3	-1.639724	-0.969600	-0.659309	18- 24	Female	Masters degree	UK	White
4	-0.338376	-1.337332	0.055615	35- 44	Female	Doctorate degree	UK	White
1880	1.373765	3.126114	-0.718232	18- 24	Female	Some college or university, no certificate or	USA	White
1881	1.046007	1.653768	-0.555810	18- 24	Male	Some college or university, no certificate or	USA	White
1882	1.552295	-2.539307	1.125537	25- 34	Female	University degree	USA	White
1883	3.607464	-1.523392	0.236595	18- 24	Female	Some college or university, no certificate or	USA	White
1884	0.371907	3.150401	-0.853361	18- 24	Male	Some college or university, no certificate or	Republic of Ireland	White

1885 rows × 8 columns

PCA: Graph of Variables (PC1 vs PC2)

PCA: Graph of Variables (PC3 vs PC1)

PCA: Graph of Variables (PC3 vs PC2)

PCA: Graph of Individuals (Age)

PCA: Graph of Individuals (Gender)

PCA: Graph of Individuals (Education)

PCA: Graph of Individuals (Country)

PCA: Graph of Individuals (Ethnicity)

LSVC: Age

Cross-Validation score : 0.347508398656215

	precision	recall	f1-score	support
10.24	0.41	0.07	0.56	126
18-24	0.41	0.87	0.56	126
25-34	0.25	0.18	0.21	98
35-44	0.29	0.15	0.20	71
45-54	0.00	0.00	0.00	64
55-64	0.00	0.00	0.00	14
65+	0.00	0.00	0.00	4
accuracy			0.37	377
macro avg	0.16	0.20	0.16	377
weighted avg	0.26	0.37	0.28	377

LSVC: Gender

Cross-Validation score : 0.588969764837626

	precision	recall	f1-score	support
Female	0.59	0.60	0.60	187
Male	0.60	0.59	0.60	190
accuracy			0.60	377
macro avg	0.60	0.60	0.60	377
weighted avg	0.60	0.60	0.60	377

Confusion Matrix:

[77 113]]

```
cm_gender = confusion_matrix(ytest_gender, yPred_lsvc_gender)
print(cm_gender)
[[113 74]
```

LSVC: Education

Cross-Validation score : 0.31038633818589023

	precision	recall	f1-score	support
Doctorate degree	0.00	0.00	0.00	17
Left school at 16 years	0.00	0.00	0.00	20
Left school at 17 years	0.00	0.00	0.00	3
Left school at 18 years	0.00	0.00	0.00	15
Left school before 16 years	0.00	0.00	0.00	4
Masters degree	0.00	0.00	0.00	61
Professional certificate/ diploma	0.00	0.00	0.00	59
Some college or university, no certificate or degree	0.37	0.72	0.49	104
University degree	0.28	0.52	0.37	94
accuracy			0.33	377
macro avg	0.07	0.14	0.09	377
weighted avg	0.17	0.33	0.23	377

```
cm_education = confusion_matrix(ytest_education, yPred_lsvc_education)
print(cm_education)
```

```
[ 0 0 0 0 0 0 0 0 11 9]
[ 0 0 0 0 0 0 0 0 0 3]
[ 0 0 0 0 0 0 0 0 8 7]
[ 0 0 0 0 0 0 0 0 0 4]
[ 0 0 0 0 0 0 0 0 26 33]
[ 0 0 0 0 0 0 0 0 75 29]
[ 0 0 0 0 0 0 0 0 45 49]
```

LSVC: Country

Cross-Validation score : 0.6101343784994401

	precision	recall	f1-score	support
				404
18-24	0.41	0.87	0.56	126
25-34	0.25	0.18	0.21	98
35-44	0.29	0.15	0.20	71
45-54	0.00	0.00	0.00	64
55-64	0.00	0.00	0.00	14
65+	0.00	0.00	0.00	4
accuracy			0.37	377
macro avg	0.16	0.20	0.16	377
weighted avg	0.26	0.37	0.28	377

LSVC: Ethnicity

Cross-Validation score : 0.347508398656215

	precision	recall	f1-score	support
10.24	0.41	0.07	0.56	126
18-24	0.41	0.87	0.56	126
25-34	0.25	0.18	0.21	98
35-44	0.29	0.15	0.20	71
45-54	0.00	0.00	0.00	64
55-64	0.00	0.00	0.00	14
65+	0.00	0.00	0.00	4
accuracy			0.37	377
macro avg	0.16	0.20	0.16	377
weighted avg	0.26	0.37	0.28	377

```
cm_age = confusion_matrix(ytest_age, yPred_lsvc_age)
print(cm_age)

[[109  13     4     0     0     0]
     [ 73     18     6     1     0     0]
     [ 37     22     11     1     0     0]
     [ 33     16     15     0     0     0]
     [ 9     4     1     0     0     0]
     [ 2     0     1     1     0     0]]
```


kNN: Age

Cross-Validation score : 0.30509518477043673

	precision	recall	f1-score	support
18-24 25-34	0.42 0.26	0.67 0.27	0.52 0.26	126 98
35-44	0.25	0.24	0.28	71
45-54 55-64	0.22 0.00	0.08 0.00	0.11 0.00	64 14
65+	0.00	0.00	0.00	4
accuracy			0.35	377
macro avg	0.21	0.21	0.20	377
weighted avg	0.31	0.35	0.31	377

```
cm_age = confusion_matrix(ytest_age, yPred_kNN_age)
print(cm_age)

[[85 30 9 2 0 0]
  [50 26 10 10 1 1]
  [31 20 17 3 0 0]
  [28 20 10 5 1 0]
  [8 3 1 2 0 0]
  [1 0 2 1 0 0]]
```

kNN: Gender

Cross-Validation score : 0.5516517357222844

	precision	recall	f1-score	support
Female Male	0.54 0.54	0.49 0.58	0.51 0.56	187 190
accuracy macro avg weighted avg	0.54 0.54	0.54 0.54	0.54 0.53 0.53	377 377 377

Confusion Matrix:

```
cm_gender = confusion_matrix(ytest_gender, yPred_kNN_gender)
print(cm_gender)
```

[[91 96] [79 111]]

kNN: Education

Cross-Validation score : 0.20422732362821946

	precision	recall	f1-score	support
18-24 25-34	0.42 0.26	0.67 0.27	0.52 0.26	126 98
35-44	0.35	0.24	0.28	71
45-54 55-64	0.22 0.00	0.08 0.00	0.11 0.00	64 14
65+	0.00	0.00	0.00	4
accuracy			0.35	377
macro avg	0.21	0.21	0.20	377
weighted avg	0.31	0.35	0.31	377

```
cm_education = confusion_matrix(ytest_education, yPred_kNN_education)
print(cm_education)
```

```
[[ 1 0 0 0 0 2 3 9 2]
[ 1 1 0 1 0 4 1 7 5]
[ 0 0 0 0 0 1 1 1 0]
[ 1 1 0 0 0 3 2 2 6]
[ 0 0 0 0 0 2 0 1 1]
[ 6 3 1 1 0 15 4 13 18]
[ 6 3 2 2 0 7 6 17 16]
[ 6 2 3 5 0 13 15 43 17]
[ 10 9 1 0 0 15 6 35 18]]
```

kNN: Country

Cross-Validation score : 0.5227323628219485

	precision	recall	f1-score	support
Australia Canada Other Republic of Ireland UK	0.00 1.00 0.00 0.00 0.62	0.00 0.06 0.00 0.00 0.80	0.00 0.11 0.00 0.00 0.70	14 18 29 3 211
USA accuracy macro avg weighted avg	0.36 0.33 0.49	0.34 0.20 0.54	0.35 0.54 0.19 0.49	377 377 377

```
cm_country = confusion_matrix(ytest_country, yPred_kNN_country)
print(cm_country)
```

```
[[ 0 0 0 0 7 7]

[ 0 1 0 0 14 3]

[ 0 0 0 0 16 13]

[ 0 0 0 0 1 2]

[ 3 0 4 0 168 36]

[ 0 0 3 0 64 35]
```

kNN: Ethnicity

Cross-Validation score : 0.9071668533034715

	precision	recall	f1-score	support
Asian	0.00	0.00	0.00	2
Black	0.00	0.00	0.00	5
Mixed-Black/Asian	0.00	0.00	0.00	1
Mixed-White/Asian	0.00	0.00	0.00	6
Mixed-White/Black	0.00	0.00	0.00	4
Other	0.00	0.00	0.00	17
White	0.91	0.99	0.95	342
accuracy			0.90	377
macro avg	0.13	0.14	0.14	377
weighted avg	0.82	0.90	0.86	377

Confusion Matrix:

cm_ethnicity = confusion_matrix(ytest_ethnicity, yPred_kNN_ethnicity)
print(cm_ethnicity)
[[0 0 0 0 0 0 2]

OPkNN: Age

Getting the best parameters to optimize our kNN model:

```
param_grid={'n_neighbors':np.arange(1,50),'metric':['euclidean','manhattan']}
grid=GridSearchCV(KNeighborsClassifier(),param_grid,cv=5)
model=grid.fit(xtrain_age,np.ravel(ytrain_age))
OPkNN_estimator_age=grid.best_estimator_
OPkNN_estimator_age
```

KNeighborsClassifier(metric='euclidean', n_neighbors=24)

Getting the best score: The one with (metric='euclidean', n_neighbors=32)

```
CV_OPkNN_age=grid.best_score_
CV_OPkNN_age
```

OPkNN: Gender

Getting the best parameters to optimize our kNN model:

```
param_grid={'n_neighbors':np.arange(1,100),'metric':['euclidean','manhattan']}
grid=GridSearchCV(KNeighborsClassifier(),param_grid,cv=5)
model=grid.fit(xtrain_gender,np.ravel(ytrain_gender))
OPkNN_estimator_gender=grid.best_estimator_
OPkNN_estimator_gender
```

KNeighborsClassifier(metric='euclidean', n_neighbors=89)

Getting the best score : The one with (metric='manhattan', n_neighbors=72)

```
CV_OPkNN_gender=grid.best_score_
CV_OPkNN_gender
```

OPkNN: Education

Getting the best parameters to optimize our kNN model:

```
param_grid={'n_neighbors':np.arange(1,100),'metric':['euclidean','manhattan']}
grid=GridSearchCV(KNeighborsClassifier(),param_grid,cv=5)
model=grid.fit(xtrain_education,np.ravel(ytrain_education))
OPkNN_estimator_education=grid.best_estimator_
OPkNN_estimator_education
```

KNeighborsClassifier(metric='manhattan', n neighbors=73)

Getting the best score: The one with (metric='euclidean', n_neighbors=95)

```
CV_OPkNN_education=grid.best_score_
CV_OPkNN_education
```

OPKNN: Country

Getting the best parameters to optimize our kNN model :

```
param_grid={'n_neighbors':np.arange(1,100), 'metric':['euclidean', 'manhattan']}
grid=GridSearchCV(KNeighborsClassifier(), param_grid, cv=5)
model=grid.fit(xtrain_country, np.ravel(ytrain_country))
OPkNN_estimator_country=grid.best_estimator_
OPkNN_estimator_country
```

KNeighborsClassifier(metric='euclidean', n neighbors=90)

Getting the best score: The one with (metric='euclidean', n_neighbors=98)

```
CV_OPkNN_country=grid.best_score_
CV_OPkNN_country
```

OPKNN: Ethnicity

Getting the best parameters to optimize our kNN model :

```
param_grid={'n_neighbors':np.arange(1,100), 'metric':['euclidean', 'manhattan']}
grid=GridSearchCV(KNeighborsClassifier(), param_grid, cv=5)
model=grid.fit(xtrain_ethnicity, np.ravel(ytrain_ethnicity))
OPkNN_estimator_ethnicity=grid.best_estimator_
OPkNN_estimator_ethnicity
```

KNeighborsClassifier(metric='euclidean', n neighbors=10)

Getting the best score: The one with (metric='euclidean', n_neighbors=6)

```
CV_OPkNN_ethnicity=grid.best_score_
CV_OPkNN_ethnicity
```

ML: Comparison Between Models (with 3 PC)

	Linear SVC	kNN	Optimized kNN	Chosen Model
Targets				
age	0.347508	0.305095	0.375314	OPkNN
gender	0.588970	0.551652	0.652503	OPkNN
education	0.310386	0.204227	0.334875	OPkNN
country	0.610134	0.522732	0.621357	OPkNN
ethnicity	0.907167	0.907167	0.913795	OPkNN

PCA with 4 PCA

	Explained_Variance_Ratio	Cumulated_Variance_Ratio
0	31.583524	31.583524
1	26.291498	57.875023
2	12.887505	70.762528
3	9.650704	80.413231

ML: Comparison Between Models (with 4 PC)

	Linear SVC	kNN	Optimized kNN	Chosen Model
Targets				
age	0.326148	0.339362	0.383281	OPkNN
gender	0.633875	0.541153	0.641231	OPkNN
education	0.297004	0.228135	0.326246	OPkNN
country	0.618085	0.586226	0.612088	LSVC
ethnicity	0.904507	0.904507	0.914457	OPkNN

Algorithm to predict an individual

WEB/API

Frontend of the web page

API code

We save the model using pickle

```
!pip install flask-ngrok
from flask import *
from flask_ngrok import run_with_ngrok
from flask import Flask,request, url_for, redirect, render_template
import pickle
import numpy as np
app = Flask( name )
model1=pickle.load(open("/content/finalized_model_age.pkl", 'rb'))
model2=pickle.load(open("/content/finalized_model_gender.pkl", 'rb'))
model3=pickle.load(open("/content/finalized_model_education.pkl", 'rb'))
model4=pickle.load(open("/content/finalized_model_country.pkl", 'rb'))
model5=pickle.load(open("/content/finalized_model_ethnicity.pkl", 'rb'))
```

API code

```
@app.route('/')
@app.route('/predict',methods=['POST','GET'])
def predict(score1,score2,score3):
    I=np.array([score1,score2,score3]).reshape(1,3)
    age=model1.predict(I)[0]
    gender=model2.predict(I)[0]
    education=model3.predict(I)[0]
    country=model4.predict(I)[0]
    ethnicity=model5.predict(I)[0]
    s=""
    s+="\n"+"Individual : "+"\n"+"Age : "+age+"\n"+"Gender : "+gender+"\n"+"Education : "+education+"\n"+"Country : "
    return s
if __name__ == '__main__':
    app.run(debug=True)
```

Conclusion:

- Young people tend to be using more drugs.
- Men tend to be using more <u>hard</u> drugs, but it is equal for <u>light drugs</u>, <u>alcohol</u> <u>and nicotine</u> -> explanation: opposite personalities
- Education doesn't seem to make a big difference in drug use but <u>does</u> <u>change for nicotine addiction</u>.
- Cannabis is a <u>gateway</u> into using new drugs.
- Countries where cannabis is <u>legal</u> have <u>more</u> drug consumers.
- Personality does have a <u>big impact</u> on drug consumption; especially openness to experience, impulsiveness and sensation seeing.

