

La función ζ de Riemann

Julio César Pardo Dañino

Facultad de Ciencias

7 de mayo de 2020

La extensión analítica

Finalizaremos nuestro estudio con una introducción muy básica a la extensión analítica de la función ζ . También daremos algunos resultados que se deben a ella y hablaremos de manera breve sobre la famosa hipótesis de Riemann

La extensión analítica

Recordemos que definimos la función ζ de Riemann como

La extensión analítica

Recordemos que definimos la función ζ de Riemann como

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 para $\Re(s) > 1$

La extensión analítica

Recordemos que definimos la función ζ de Riemann como

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 para $\Re(s) > 1$

uno de los primeros objetivos de Riemann fue ver si esta función se podía extender a todo el plano complejo. Esto lo lleva a demostrar el siguiente teorema.

Teorema (Riemann)

La función ζ es una función meromorfa en todo \mathbb{C} , con un único polo simple en s=1, y satisface la ecuación funcional

$$\zeta(1-s) = 2(2\pi)^s \Gamma(s) \cos\left(\frac{\pi s}{2}\right) \zeta(s)$$

donde Γ es la extensión de la función $\Gamma(s) = \int_0^\infty \exp(-x) x^{s-1} dx$ para $\Re(s) > 0$

La extensión analítica

• Analicemos a detalle este teorema

La extensión analítica

- Analicemos a detalle este teorema
- La función ζ definida por $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ es una función bien definida para todo $\Re(s) > 1$, al extenderla a $\mathbb{C} \setminus \{1\}$, quiere decir que ζ puede tomar valores en $\mathbb{C} \setminus \{1\}$, sin embargo **no quiere decir** que para todo $s \in \mathbb{C} \setminus \{1\}$, se cumpla que $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$, esta igualdad **únicamente se da cuando** $\Re(s) > 1$.

La extensión analítica

- Analicemos a detalle este teorema
- La función ζ definida por $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ es una función bien definida para todo $\Re(s) > 1$, al extenderla a $\mathbb{C} \setminus \{1\}$, quiere decir que ζ puede tomar valores en $\mathbb{C} \setminus \{1\}$, sin embargo **no quiere decir** que para todo $s \in \mathbb{C} \setminus \{1\}$, se cumpla que $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$, esta igualdad **únicamente se da cuando** $\Re(s) > 1$.
- Al decir que ζ es meromorfa, se entiende que es analítica (derivable en el sentido de variable compleja) en todo $\mathbb{C} \setminus \{1\}$.

La extensión analítica

• Analicemos a detalle este teorema

La extensión analítica

- Analicemos a detalle este teorema
- Que ζ tiene un polo en s=1, quiere decir que en dicho punto ζ tiene una singularidad ($\zeta(1)=\infty$) que puede ser removida al multiplicar la ζ por s-1.

La extensión analítica

- Analicemos a detalle este teorema
- Que ζ tiene un polo en s=1, quiere decir que en dicho punto ζ tiene una singularidad ($\zeta(1)=\infty$) que puede ser removida al multiplicar la ζ por s-1.
- La ecuación funcional mostrada, ayuda a relacionar valores de la función ζ ya extendida en términos de la función $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ definida para todo $\Re(s) > 1$. Por ejemplo, podemos notar que gracias a esta ecuación funcional tenemos una fórmula explicita para calcular valores de la función ζ extendida tales que $\Re(s) < 0$

Valores especiales de la función ζ

Recordemos que anteriormente relacionamos la función ζ con el número π de la siguiente forma

Valores especiales de la función ζ

Recordemos que anteriormente relacionamos la función ζ con el número π de la siguiente forma

Teorema (Euler)

Para todo $n \in \mathbb{Z}^+$ se cumple que

$$\zeta(2n) = \frac{(-1)^{n-1} (2\pi)^{2n} B_{2n}}{2 (2n)!}$$

Siendo B_n el n-ésimo número de Bernoulli.

Valores especiales de la función ζ

A partir de la ecuación funcional, se puede obtener una gama de valores especiales para la función ζ extendida, dados por el siguiente resultado

Valores especiales de la función ζ

A partir de la ecuación funcional, se puede obtener una gama de valores especiales para la función ζ extendida, dados por el siguiente resultado

Teorema

Para todo $n \in \mathbb{Z}^+$ se cumple que

$$\zeta(1-n) = \frac{(-1)^{n-1} B_n}{n}$$

Siendo B_n el n-ésimo número de Bernoulli.

Un error difundido

El resultado anterior y **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$ nos lleva a un error muy difundido.

Un error difundido

El resultado anterior y **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$ nos lleva a un error muy difundido. Si consideramos n=2, el resultado anterior nos dice que

Un error difundido

El resultado anterior y **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$ nos lleva a un error muy difundido. Si consideramos n=2, el resultado anterior nos dice que

$$\zeta(1-2) = \zeta(-1) = \frac{(-1)^{2-1}B_2}{2} = -\frac{1}{12}$$

Un error difundido

El resultado anterior y **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$ nos lleva a un error muy difundido. Si consideramos n=2, el resultado anterior nos dice que

$$\zeta(1-2) = \zeta(-1) = \frac{(-1)^{2-1}B_2}{2} = -\frac{1}{12}$$

ahora, si cometemos **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$, tendríamos que $\zeta(-1) = \sum_{n=1}^{\infty} n$, lo que nos lleva a la clara **contradicción**

Un error difundido

El resultado anterior y **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$ nos lleva a un error muy difundido. Si consideramos n=2, el resultado anterior nos dice que

$$\zeta(1-2) = \zeta(-1) = \frac{(-1)^{2-1}B_2}{2} = -\frac{1}{12}$$

ahora, si cometemos **la equivocación** de considerar que la función ζ extendida es igual a $\sum_{n=1}^{\infty} n^{-s}$, tendríamos que $\zeta(-1) = \sum_{n=1}^{\infty} n$, lo que nos lleva a la clara **contradicción**

$$\sum_{n=1}^{\infty} n = -\frac{1}{12}$$

Los ceros triviales de la función ζ

Un resultado sobre los números de Bernoulli, nos dice que para todo $n \in \mathbb{Z}^+$ tenemos que $B_{2n+1} = 0$.

Los ceros triviales de la función ζ

Un resultado sobre los números de Bernoulli, nos dice que para todo $n \in \mathbb{Z}^+$ tenemos que $B_{2n+1} = 0$. Esto combinado al teorema anterior nos indica que

Los ceros triviales de la función ζ

Un resultado sobre los números de Bernoulli, nos dice que para todo $n \in \mathbb{Z}^+$ tenemos que $B_{2n+1} = 0$. Esto combinado al teorema anterior nos indica que

$$\zeta(1 - (2n+1)) = \frac{(-1)^{(2n+1)-1} B_{2n+1}}{2n+1} = 0$$
 para todo $n \in \mathbb{Z}^+$

Los ceros triviales de la función ζ

Un resultado sobre los números de Bernoulli, nos dice que para todo $n \in \mathbb{Z}^+$ tenemos que $B_{2n+1} = 0$. Esto combinado al teorema anterior nos indica que

$$\zeta(1 - (2n+1)) = \frac{(-1)^{(2n+1)-1} B_{2n+1}}{2n+1} = 0 \quad \text{para todo} \quad n \in \mathbb{Z}^+$$

de lo que concluimos que $\zeta(-2n) = 0$ para todo $n \in \mathbb{Z}^+$.

Los ceros triviales de la función ζ

Un resultado sobre los números de Bernoulli, nos dice que para todo $n \in \mathbb{Z}^+$ tenemos que $B_{2n+1} = 0$. Esto combinado al teorema anterior nos indica que

$$\zeta(1 - (2n+1)) = \frac{(-1)^{(2n+1)-1} B_{2n+1}}{2n+1} = 0 \quad \text{para todo} \quad n \in \mathbb{Z}^+$$

de lo que concluimos que $\zeta(-2n) = 0$ para todo $n \in \mathbb{Z}^+$. Los números s = -2n con $n \in \mathbb{Z}^+$ son conocidos como los ceros triviales de la función ζ .

Los ceros no triviales de la función ζ Recordemos el producto de Euler

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

de él, se deduce que ζ no tiene ceros en el semiplano $\Re(s) > 1$.

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

de él, se deduce que ζ no tiene ceros en el semiplano $\Re(s) > 1$.

Ahora, como Γ no tiene ceros, de la ecuación funcional de la función ζ y descontando los ceros triviales, tenemos que $s \in \mathbb{C}$ es un cero de ζ si y solo si 1-s lo es,

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

de él, se deduce que ζ no tiene ceros en el semiplano $\Re(s) > 1$.

Ahora, como Γ no tiene ceros, de la ecuación funcional de la función ζ y descontando los ceros triviales, tenemos que $s \in \mathbb{C}$ es un cero de ζ si y solo si 1-s lo es, en consecuencia el semiplano $\Re(s) < 0$ no tiene ceros.

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

de él, se deduce que ζ no tiene ceros en el semiplano $\Re(s) > 1$.

Ahora, como Γ no tiene ceros, de la ecuación funcional de la función ζ y descontando los ceros triviales, tenemos que $s \in \mathbb{C}$ es un cero de ζ si y solo si 1-s lo es, en consecuencia el semiplano $\Re(s) < 0$ no tiene ceros.

En conclusión tenemos que todos los ceros no triviales de ζ cumplen que $0 \le \Re(s) \le 1$

Los ceros no triviales de la función ζ

Recordemos el producto de Euler

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad \Re(s) > 1$$

de él, se deduce que ζ no tiene ceros en el semiplano $\Re(s) > 1$.

Ahora, como Γ no tiene ceros, de la ecuación funcional de la función ζ y descontando los ceros triviales, tenemos que $s \in \mathbb{C}$ es un cero de ζ si y solo si 1-s lo es, en consecuencia el semiplano $\Re(s) < 0$ no tiene ceros.

En conclusión tenemos que todos los ceros no triviales de ζ cumplen que $0 \le \Re(s) \le 1$ y más aún, estos ceros están distribuidos simétricamente con respecto a la recta vertical $\Re(s) = 1/2$.

La hipótesis de Riemann

Es aquí donde Riemann conjetura su célebre hipótesis:

La hipótesis de Riemann

Es aquí donde Riemann conjetura su célebre hipótesis: **todos los ceros** no triviales de la función $\zeta(s)$ cumplen que $\Re(s) = 1/2$.

12/15

La hipótesis de Riemann

Es aquí donde Riemann conjetura su célebre hipótesis: **todos los ceros** no triviales de la función $\zeta(s)$ cumplen que $\Re(s) = 1/2$.

Hadamard, demostró que la función ζ no tiene ceros no triviales tales que $\Re(s) = 1$ y consecuentemente tampoco tiene ceros no triviales tales que $\Re(s) = 0$.

La hipótesis de Riemann

Es aquí donde Riemann conjetura su célebre hipótesis: **todos los ceros** no triviales de la función $\zeta(s)$ cumplen que $\Re(s) = 1/2$.

Hadamard, demostró que la función ζ no tiene ceros no triviales tales que $\Re(s) = 1$ y consecuentemente tampoco tiene ceros no triviales tales que $\Re(s) = 0$. Esto nos indica que todos los ceros no triviales de ζ cumplen que $0 < \Re(s) < 1$

La hipótesis de Riemann

Es aquí donde Riemann conjetura su célebre hipótesis: **todos los ceros** no triviales de la función $\zeta(s)$ cumplen que $\Re(s) = 1/2$.

Hadamard, demostró que la función ζ no tiene ceros no triviales tales que $\Re(s)=1$ y consecuentemente tampoco tiene ceros no triviales tales que $\Re(s)=0$. Esto nos indica que todos los ceros no triviales de ζ cumplen que $0<\Re(s)<1$

En 1914, Hardy demostró que ζ tiene una infinidad de ceros tales que $\Re(s)=1/2$

La función ζ y el teorema de los números primos

Hemos mencionado la relación de la función ζ con los números primos a través del producto de Euler, pero esta conexión se hace más evidente al hablar de el teorema de los números primos.

La función ζ y el teorema de los números primos

Hemos mencionado la relación de la función ζ con los números primos a través del producto de Euler, pero esta conexión se hace más evidente al hablar de el teorema de los números primos. Recordemos que la función $\pi(x)$ denota la cantidad de números primos menores o iguales a $x \in \mathbb{R}$.

La función ζ y el teorema de los números primos

Hemos mencionado la relación de la función ζ con los números primos a través del producto de Euler, pero esta conexión se hace más evidente al hablar de el teorema de los números primos. Recordemos que la función $\pi(x)$ denota la cantidad de números primos menores o iguales a $x \in \mathbb{R}$. El teorema de los números primos dice lo siguiente

La función ζ y el teorema de los números primos

Hemos mencionado la relación de la función ζ con los números primos a través del producto de Euler, pero esta conexión se hace más evidente al hablar de el teorema de los números primos. Recordemos que la función $\pi(x)$ denota la cantidad de números primos menores o iguales a $x \in \mathbb{R}$. El teorema de los números primos dice lo siguiente

$$\lim_{x \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$$

La función ζ y el teorema de los números primos

La demostración del teorema de los números primos tiene una estrecha relación con la función ζ .

La función ζ y el teorema de los números primos

La demostración del teorema de los números primos tiene una estrecha relación con la función ζ . De hecho, Hadamard y de la Vallée-Poussin demostraron, independientemente en 1896 que la ley de distribución de los números primos es equivalente a la afirmación de que la función ζ no tiene ceros tales que $\Re(s)=1$,

La función ζ y el teorema de los números primos

La demostración del teorema de los números primos tiene una estrecha relación con la función ζ . De hecho, Hadamard y de la Vallée-Poussin demostraron, independientemente en 1896 que la ley de distribución de los números primos es equivalente a la afirmación de que la función ζ no tiene ceros tales que $\Re(s)=1$, y en consecuencia obtienen el teorema de los números primos.

La función ζ y el teorema de los números primos

La demostración del teorema de los números primos tiene una estrecha relación con la función ζ . De hecho, Hadamard y de la Vallée-Poussin demostraron, independientemente en 1896 que la ley de distribución de los números primos es equivalente a la afirmación de que la función ζ no tiene ceros tales que $\Re(s)=1$, y en consecuencia obtienen el teorema de los números primos.

$$\pi(x) \sim \frac{x}{\ln(x)}$$

La función ζ y el teorema de los números primos

Aunque se tiene la equivalencia asintótica, falta medir el orden del error $\pi(x) - \frac{x}{\ln(x)}$.

La función ζ y el teorema de los números primos

Aunque se tiene la equivalencia asintótica, falta medir el orden del error $\pi(x) - \frac{x}{\ln(x)}$. Y es aquí donde entra la famosa hipótesis de Riemann,

La función ζ y el teorema de los números primos

Aunque se tiene la equivalencia asintótica, falta medir el orden del error $\pi(x) - \frac{x}{\ln(x)}$. Y es aquí donde entra la famosa hipótesis de Riemann, ya que de ser cierta, el error se puede acotar de la mejor manera posible, concrétamente se tendría que

La función ζ y el teorema de los números primos

Aunque se tiene la equivalencia asintótica, falta medir el orden del error $\pi(x) - \frac{x}{\ln(x)}$. Y es aquí donde entra la famosa hipótesis de Riemann, ya que de ser cierta, el error se puede acotar de la mejor manera posible, concrétamente se tendría que

$$\pi(x) = \frac{x}{\ln(x)} + O\left(\sqrt{x}\ln(x)\right)$$