1	2	3	4	Calificación

Análisis Avanzado - Primer parcial

13/05/2021

1. Sea $A \subseteq \mathbb{R}$ un subconjunto acotado superiormente y no vacío. Probar que si A no tiene máximo, entonces existe una sucesión $(a_n)_{n\in\mathbb{N}}\subseteq A$ estrictamente creciente tal que

$$\lim_{n \to \infty} a_n = \sup(A).$$

2. Consideremos el conjunto $\mathcal{X} \subseteq \mathcal{P}(\mathbb{N})$ dado por

$$\mathcal{X} = \{ E \subseteq \mathbb{N} : \text{ existen } p \text{ primo y } m \in \mathbb{N} \text{ tales que } \#E = p^m \}.$$

Hallar el cardinal de $\mathcal{P}(\mathbb{N}) \setminus \mathcal{X}$.

- 3. Sea (E,d) un espacio métrico completo. Sea $(A_n)_{n\in\mathbb{N}}$ una sucesión de subconjuntos acotados no vacíos de E tales que
 - $A_{n+1} \subseteq A_n$ para todo $n \ge 1$.
 - $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0.$

Probar que existe $x \in E$ tal que toda bola centrada en x contiene a algún A_n .

4. Sean (E,d),(E',d') espacios métricos. Sea $f:E\to E'$ continua tal que $f^{-1}(K')$ es compacto para todo $K'\subseteq E'$ compacto.

Probar que f(F) es cerrado para todo $F \subseteq E$ cerrado.

Justifique todas sus respuestas, no omita detalles y sea claro al escribir.