Connaissances professionnelles écrites

Pos. 4 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes

Recueil de formules sans exemple de calcul, calculatrice de poche Auxiliaires:

(sans banque de données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

> - Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses vous êtes tenus de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 49,0

47,0 - 49,0 Points = Note	6,0
41,0 - 43,0 FUIIIS = NOIE	•,•
42,0 - 46,5 Points = Note	5,5
37,0 - 41,5 Points = Note	5,0
32,0 - 36,5 Points = Note	4,5
27,0 - 31,5 Points = Note	4,0
22,5 - 26,5 Points = Note	3,5
17,5 - 22,0 Points = Note	3,0
12,5 - 17,0 Points = Note	2,5
7,5 - 12,0 Points = Note	2,0
2,5 - 7,0 Points = Note	1,5
0.0 - 2.0 Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice

avant le 1er septembre 2013.

Groupe de travail USIE examen de fin d'apprentissage Créé par:

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exe	rcices	Nombre d maximal	le points obtenus
1.	5.1.1 Pour quelle raison lors du transport international et national d'énergie utilise-t-on la haute et très haute tension ?	2	
	 Citez 2 raisons. Réponses possibles: Parce qu'en augmentant la tension, on peut réduire la section des lignes. En raison du faible courant de transition la chute de tension sur la ligne reste très petite. En raison du faible courant de transition la puissance des pertes de chaleur reste très petite. 	(1 point par réponse)	
2.	5.1.3 Citez 2 avantages lorsque l'on installe du matériel sans halogène. Réponses possibles:	2	
	 En cas d'incendie le matériel sans halogène ne dégage pas de gaz toxiques et corrosifs. Dégagement de fumée beaucoup plus faible. Sécurité accrue pour les gens surpris en cas d'incendie. Simplification de la lutte contre l'incendie dans le bâtiment. Réduction des dégâts causés par le feu. 	(1 point par réponse)	
3.	5.1.4 Cochez les cases correspondantes aux disjoncteurs : I _N = 13 A, type C et D.	2	
	- Lors d'un I _{cc} plus faible, le déclenchement magnétique du disjoncteur type C, s'effectue avant le disjoncteur type D. - Lors d'une petite surcharge de courant, le déclenchement thermique du disjoncteur type C se produit avant le disjoncteur type D. - les classes de limitation du courant ne dépendent pas du type de disjoncteur. - Les disjoncteurs type D ont une plus grande capacité de déclenchement que les disjoncteurs type C	(0.5 point par réponse)	

Exer	cices	Nombre d	le points obtenus
	5.1.6		
4.	Transformateurs monophasés.	3	
	a) Quel genre de tension peut-on transformer?		
	Tension alternative.	(1)	
	b) Un transformateur en fonction produit toujours des pertes par chaleur. Citez les 2 causes de ces pertes par chaleur.		
	Pertes Cu: pertes chaleur (résistance des enroulements) Pertes Fe: pertes par courant de Foucault (tôles)	(0.5 point par réponse)	
	c) Citez la relation entre courant,tension et nombre de spires du primaire et du secondaire.		
	N. U. I.		
	$\frac{\mathbf{N_1}}{\mathbf{N_2}} = \frac{\mathbf{U_1}}{\mathbf{U_2}} = \frac{\mathbf{I_2}}{\mathbf{I_1}}$		
		(1)	
	La tension est proportionnelle au nombre de spires et le courant inversement proportionnel.		
5.	5.1.9 Citez 4 sources concrètes de champ électromagnétiques (Electrosmog) dans les ménages privés.	2	
	Réponses possibles: - WLAN - Alimentation des tableaux d'étage - Alimentation des prises - Sèche-cheveux - Cuisinière à induction - Transformateur très basse tension éclairage halogène - Natel - Téléphone sans fils - Réveil radio - Four micro-ondes	(0.5 point par réponse)	
6.	5.2.3 a) Quel sera la valeur de l'intensité lumineuse si l'on double la distance entre la source de lumière et le point à éclairer ?		
	L'intensité lumineuse diminue d'un quart.	1	
	b) Argumentez votre réponse.		
	Lorsque la distance augmente la puissance se répartit sur une plus grande surface, ce qui fait diminuer l'intensité lumineuse. La zone éclairée quadruple avec la distance.	1	
	· · · · ·		

Exer	cices						Nombre o	e points obtenus
7.	5.4.4 a) Com donn		la table	de véri	té ci-de	essous selon le schéma de fonction logique	4	
	1 1 1 1	le. I ₂	l ₃ 1 1 1	I ₄ 1 0 0	Q 1 1 1 0	I ₁	(0.5 point par réponse)	
	Un ir	0 plétez l nterrupt –	0 le schéireur acti	1 ma électionné c	1 etrique orrespo	ci-dessous avec 4 interrupteurs. ondant à la fonction logique 1.	(0.5 point par réponse)	
8.	- La ch - En ra borna - La te	narge daison dees sous	ses corr lisponib e la gra s charge à vide tr	espond le triple nde rés e diminu iple.	lantes. .istance ue forte	e interne la tension aux ement. is fois plus grand.	2 (0.5 point par réponse)	

Exer	cices	Nombre d	e points obtenus
	5.2.9	maximal	obtends
9.	Expliquez la fonction d'une diode couplée en parallèle à un relais à courant continu.	2	
	Réponse possible :		
	Lors de la coupure d'alimentation de la bobine du relais à courant continu, il se produit une self induction de polarisation inverse. Celle-ci est court-circuitée par la diode.		
10.	5.3.1 Un condensateur est selon le schéma équivalent ci-contre alimenté du réseau en 230 V / 50 Hz.	3	
	R = 150 Ω; C = 44 μF.		
	a) Déterminez les courants I, I_R et I_C . Schéma équivalent		
	Solution:		
	$X_{C} = \frac{1}{2 \cdot \pi \cdot f \cdot C} = \frac{1}{2 \cdot \pi \cdot 50 \text{Hz} \cdot 44 \cdot 10^{-6} \text{F}} = \frac{72,34 \Omega}{2 \cdot \pi \cdot 50 \text{Hz} \cdot 44 \cdot 10^{-6} \text{F}}$		
	$I_{R} = \frac{U}{R} = \frac{230 \text{ V}}{150 \Omega} = \frac{1,53 \text{ A}}{100 \Omega}$ $U = 230 \text{ V}$	(0.5 point par réponse)	
	$I_{C} = \frac{U}{X_{C}} = \frac{230 \text{ V}}{72,34 \Omega} = \frac{3,18 \text{ A}}{200000000000000000000000000000000000$		
	b) Quel est l'angle de déphasage du circuit ?		
	Solution:		
	$\cos \varphi = \frac{I_R}{I} = \frac{1,53 \text{ A}}{3,53 \text{ A}} = 0,433$		
	$\varphi = \operatorname{angl.cos}(0,433) = \underbrace{\frac{64,31^{\circ}}{}}_{}$	(0.5 point par réponse)	

Exer	cices	Nombre d	e points obtenus
11.	5.3.1 Dans une bobine de relais alimentée en 48 V AC, circule un courant de 20mA. Lorsque l'on alimente cette même bobine en 48 V DC, il y circule un courant de 120 mA.	3	22.01100
	Calculez:		
	a) L'impédance de la bobine.		
	$Z = \frac{U_{AC}}{I_{AC}} = \frac{48 \text{ V}}{0,02 \text{ A}} = \frac{2'400 \Omega}{}$	(1)	
	b) La résistance de la bobine.		
	$R = \frac{U_{DC}}{I_{DC}} = \frac{48 \text{ V}}{0,12 \text{ A}} = \frac{400 \Omega}{1000000000000000000000000000000000000$	(1)	
	c) L'inductance de la bobine.		
	$X_L = \sqrt{Z^2 - R^2} = \sqrt{(2'400 \Omega)^2 - (400 \Omega)^2} = \underline{2'366,43 \Omega}$ $L = XI / oméga = 2366 / 314 = 7,54 H$	(1)	
12.	5.3.3 Un diviseur de tension dont R_1 = 60 Ω et R_2 = 40 Ω est alimenté par une tension de 60 V.	3	
	a) Calculez la tension de sortie à vide U_2 de ce diviseur de tension. $ \frac{U_2}{U} = \frac{R_2}{R_1 + R_2} \Rightarrow U_2 = \frac{U \cdot R_2}{R_1 + R_2} = \frac{60 \text{V} \cdot 40 \Omega}{60 \Omega + 40 \Omega} = \frac{24 \text{V}}{24 \text{C}} $	(1)	
	b) Calculez la tension de sortie de ce diviseur de tension lorsque l'on y raccorde une résistance de charge de 160 Ω .		
	$\begin{split} R_{2b} &= \frac{R_2 \cdot R_b}{R_2 + R_b} = \frac{40 \Omega \cdot 160 \Omega}{40 \Omega + 160 \Omega} = 32 \Omega \\ U_2 &= \frac{U \cdot R_{2b}}{R_1 + R_{2b}} = \frac{60 V \cdot 32 \Omega}{60 \Omega + 32 \Omega} = \underline{\frac{20,87 V}{800 \Omega}} \end{split}$	(1.0 point par réponse)	

Exer	cices	Nombre d	e points obtenus
	5.3.2	тахта	Obtonido
13.	Un moteur et un dispositif de chauffage par résistance (installation de ventilation) sont raccordés au réseau triphasé.	3	
	Calculez pour toute l'installation :		
	a) La puissance active.		
	$P_{am} = \frac{P_m}{\eta} = \frac{4 kW}{0.82} = 4.88 kW$ $P = 6 kW$ $\eta = 0.82$ $\cos \varphi = 0.78$		
	$P_{atot} = P_{R} + P_{am} = 6 kW + 4,88 kW = 10,88 kW$	(1)	
	b) La puissance réactive.		
	$\cos \varphi = 0.78; \Rightarrow \tan \varphi = 0.802$		
	$Q_{M} = \tan \varphi \cdot P_{am} = 0.802 \cdot 4.88 kW = \underbrace{3.91 kvar}_{max}$	(1)	
	c) La puissance apparente.		
	$S_{inst} = \sqrt{P_{am}^2 + Q_{M}^2} = \sqrt{(10,88 kW)^2 + (3,91 kvar)^2} = 11,56 kVA$	(1)	
	5.2.4		
14.	L'illustration ci-contre nous montre le principe d'une installation moderne de traitement d'eau chaude.	3	
	a) Comment nomme-t-on cette installation?		
	Pompe à chaleur	(1)	
	b) Citez les 4 composants mentionnés sur l'illustration.		
	1 = Condensateur		
	2 = Détendeur	(0.5!-:	
	3 = Evaporateur	(0.5 point par réponse)	
	4 = Compresseur		

Nombre de points **Exercices** 5.2.8/5.3.2 Une entreprise consomme en moyenne 28 KW de puissance active et respectivement 37 kvar de puissance réactive. a) Le facteur de puissance pour la charge non compensée ? b) Le facteur de puissance, lorsque l'on raccorde en parallèle, une batterie de compensation de 15 kvar? c) La puissance réactive après compensation de l'installation ? Le problème peut être résolu graphiquement ou par calcul. Pour la solution graphique utilisez svp le quart de cercle dessiné. cos φ₂ COS Q1 38.2 ⁰ 52.5 ⁰ QL-Qc S₁ Qc Q_L Solution graphique: a) $\cos \varphi_1$ mesuré= 61mm correspond $\cos \varphi_1$ = 0,61 b) $\cos \varphi_2$ mesuré=79 mm correspond $\cos \varphi_2$ =0,79 (1.0 point par réponse) c) $\mathbf{Q_2} = \mathbf{Q_1} - \mathbf{Q_C} = 73.5\,\text{m}\,\text{m} - 30\,\text{m}\,\text{m} = 43.5\,\text{m}\,\text{m}$, correspond21,75 kvar Solution par calcul: b) $\tan \phi_2 = \frac{Q_1 - Q_C}{P} = \frac{37 k var - 15 k var}{28 k W} = 0,786; \implies \cos \phi_2 = \underbrace{0,786}_{}$ c) $Q_2 = tan \phi_2 \cdot P = 0.786 \cdot 28kW = 22.0kvar$

Exe	cices	Nombre d maximal	le points obtenus
16.	5.2.2 Le propriétaire d'une maison, a fait installer il y a 10 ans un éclairage à basse tension comprenant 8 lampes halogènes de 35 W. Pour des raisons d'économie d'énergie, il désire maintenant les remplacer par des modules LED 3 W. Les lampes halogènes installées ont un rendement lumineux de 20 lm/W, les modules LED prévus 70 lm/W. Combien de modules LED 3 W doit-on installer pour obtenir le même rendement lumineux ?	2	
	Solution : $\begin{split} P_{tot} &= n \cdot P_1 = 8 \cdot 35 \ W = \underline{280 \ W} \\ \Phi &= \eta_{hal.} \cdot P_{tot} = 20 \frac{lm}{W} \cdot 280 \ W = \underline{5'600 lm} \\ P_{LED} &= \frac{\Phi}{\eta_{LED}} = \frac{5'600 lm}{70 \frac{lm}{W}} = \underline{80 \ W} \\ n &= \frac{P_{LED}}{P_{LED1}} = \frac{80 \ W}{3 \ W} = 26,6 \ LED \Rightarrow 27 \ modules LED \end{split}$	(0.5 point par réponse)	
17.	5.3.5 Un voltmètre numérique dispose d'un affichage à 4,5 chiffres, digits Sa classe de précision est de 0,5 et son erreur d'affichage de ± 3 digits. Quelle est l'erreur absolue affichée, lorsqu'avec cet appareil on mesure une tension de 240 V? L'appareil n'affiche pas la valeur de l'erreur! note 4,5 digits = 20000 points de mesure soit de 0 à 19'999 Solution: valeur affichée : -240.0 sensibilité (valeur d'un digit d'erreur) : 0.1 V Erreur absolue:	2	
	$Er_{abs} = \frac{cl. \cdot mes.}{100 \%} + digits \cdot I = \frac{0.5 \% \cdot 240 \text{ V}}{100 \%} + 3 \cdot 0.1 = 1.5 \text{ V}$ Erreur d'affichage:	(1)	
	± 1,5 V ===================================	(1)	

cices	Nombre o	d e o
5.3.4 Sur un réceau triphacé 4 file, avec un analyseur	3	
Sur un réseau triphasé 4 fils, avec un analyseur de réseau nous mesurons les valeurs affichées.	3	
Déterminez graphiquement le courant dans le neutre I _N . (analyseur réseau)		
Echelle: 1 cm		
U ₁		
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		
Scope Setup Save		
Monit		
I1		
The state of the s		
To Company		
2		
and the second s		
l ₂		
I ₃ I _N I ₃ '		
\bigcup_{2}		
Solution:		
I _N mesuré = 26,5 mm		
26 Emm E A		
$I_N = \frac{26.5 \mathrm{mm} \cdot 5 \mathrm{A}}{10 \mathrm{mm}} = 13.25 \mathrm{A}$		
iviiiii =====		
Tolérance ± 1,5 A, (résultat max. 14,75 A, min. 11,75 A)		
(1 point pour les courants dessinés, 1 point pour le sens des courants, 1		
point pour le résultat)		
	1	1

	Nombre d	e points obtenus
19. L'enroulement primaire d'un transformateur de sonnerie (selon dessin) a 2300 spires. L'enroulement secondaire est divisé en rapport1:2 Entre les bornes 0 et 2, nous mesurons une tension à vide de 12 V.	3	obtenus
a) Calculez le nombre de spires au secondaire des enroulements partiels. $N_2 = \frac{N_1 \cdot U_2}{U_1} = \frac{2'300 \text{spires} \cdot 12 \text{V}}{230 \text{V}} = 120 \text{spires}$ $N_{2/0-1} = \frac{N_2}{3} = \frac{120 \text{spires}}{3} = \frac{40 \text{spires}}{3}$ $N_{2/1-2} = \frac{N_2 \cdot 2}{3} = \frac{120 \text{spires} \cdot 2}{3} = \frac{80 \text{spires}}{3}$	(1.0 point par réponse)	
b) Quelle tension à vide (à l'exception des 12 V) peut-on aussi mesurer sur ce transformateur ? Solution: $U_{2/0-1} = \frac{U_2}{3} = \frac{12 \text{ V}}{3} = \frac{4 \text{ V}}{3}$ $U_{2/1-2} = \frac{U_2 \cdot 2}{3} = \frac{12 \text{ V} \cdot 2}{3} = 8 \text{ V}$	(0.5 point par réponse)	
Total	49	