Congratulations! You passed!

Grade received 85.71% **To pass** 80% or higher

Go to next item

1/1 point

1. This aim of this quiz is to familiarise yourself with vectors and some basic vector operations.

For the following questions, the vectors ${f a},{f b},{f c},{f d}$ and ${f e}$ refer to those in this diagram:

The sides of each square on the grid are of length 1. What is the numerical representation of the vector \boldsymbol{a} ?

- $\bigcirc \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- $leftsymbol{\odot}$ $\begin{bmatrix} 2\\2 \end{bmatrix}$
- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Correct

You can get the numerical representation by following the arrow along the grid.

2.

Which vector in the diagram corresponds to $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$?

- \bigcirc Vector ${f a}$
- $\bigcirc \ \ \text{Vector} \, \mathbf{b}$
- O Vector **c**
- left Vector \mathbf{d}
- **⊘** Correct

You can get the numerical representation by following the arrow along the grid.

3.

What vector is $2\mathbf{c}$?

Please select all correct answers.

- □ a
- □ e
- \Box $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$

0 / 1 point

1/1 point

⊘ Correct

A scalar multiple of a vector can be calculated by multiplying each component.

You didn't select all the correct answers

4.

1/1 point

What vector is $-\mathbf{b}$?

Please select all correct answers.

✓ Correct

A scalar multiple of a vector can be calculated by multiplying each component.

$$\square \quad \begin{bmatrix} -2\\1 \end{bmatrix}$$

□ e

✓ d

5. In the previous videos you saw that vectors can be added by placing them start-to-end. For example, the following diagram represents the sum of two new vectors, ${f u}+{f v}$:

1/1 point

The sides of each square on the grid are still of length 1. Which of the following equations does the diagram represent?

$$\bigcirc \ \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

- $\bigcirc \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \\
 \bigcirc \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \\
 \textcircled{\bullet} \begin{bmatrix} 2\\1 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}$

- **⊘** Correct

We can see that summing the vectors by adding them start-to-end and adding up the individual $\,$ components gives us the same answer.

1/1 point

1/1 point

6. Let's return to our vectors defined by the diagram below:

What is the vector $\mathbf{b} + \mathbf{e}$?

- \circ
- \circ
- **⊘** Correct

Vectors are added together entry by entry. They can also be thought of as adding start to end, like in the

7.

What is the vector $\mathbf{d} - \mathbf{b}$?

- $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$

- \odot

Remember that vectors add by attaching the end of one to the start of the other, and that multiplying by

