Announcements

No class Monday 11/27 (day after Fall Break)

Quiz 3: Fri. 11/10 in class

Midferm 3: Wed. 11/15 7:00-8:30pm Noyes 217

We already know using greedy coloring that $\chi(G) \leq \Delta(G) + 1$

And equality is possible.

$$\chi(k_n) = n = \Delta(k_n) + 1$$

 $\chi(c_{2k+1}) = 3 = \Delta(c_{2k+1}) + 1$

Brooks' Thm (5.1.22): If G is connected and G is not a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Pf: Let G be a connected graph, and let $k = \Delta(G)$.

If k=0, G=K1

If k=1, G= k2

If h=2, G is an odd cycle or an even cycle or a path. In the latter two cases, G is bipartite, so $\chi(G)=2=\Delta(G)$.

Assume $k \ge 3$, and use greedy coloring. Want every vertex. to have $\le k-1$ lower-index neighbors.

Case 1: G is not k-regular. Choose $v_n \in V(G)$ s.t. $d(v_n) < k$. Let T be a spanning trae of G and choose an ordering of $V(G) = \{v_1, \dots, v_n\}$ s.t.

(<) \longleftrightarrow $d_{\tau}(v_i,v_n) \ge d_{\tau}(v_i,v_n)$

Hence, every vertex other than v_n has ≥ 1 higher-indexed neighbor, so every vertex has $\leq k-1$ lower-indexed neighbors.

Case 2: G is k-regular and has a cut vertex x. Then we use the previous method on all components of G:x, along wl x, and, permuting colors if necessary, this gives a proper coloring of G.

Case 3: G is k-regular and 2-connected.

First, suppose that $\exists v_n \in V(G)$ s.t. $N(v_n) \ni V_1, V_2 \bowtie V_1$ and v_2 not adjacent and $G \setminus \{v_1, v_2\}$ is connected. Then, color up and v_2 the same color, and use the spanning tree trick on $G \setminus \{v_1, v_2\}$. Every vertex

 $V_3,...,V_{n-1}$ has $\leq k-1$ earlier neighbors, while V_n has ≥ 2 neighbors of the same color.

Finally, we show that every k-reg. 2-conn. graph G has such vertices. Let $x \in V(G)$. Since G is 2-conn., G.x is conn. If G.x is 2-conn, let

 $\Lambda' = X$

Ve have distance 2 from x (exists since G is reg.,)

Ve be a common neighbor of Vi, Ve

G> {v, | v2} = G > {x, v2} is conn. \

If G> x is not 2-conn., let H, H2, ---, H;

be the maximal connected subgraph of G1x with no cut-vertices ("blocks"). These subgraphs may contain more than one cut vertex, but at least two, say H and H', contain exactly one ("leaf blocks")

Let v, & H ~ N(x) v_r = X

Last time: showed that for all G, $\chi(G) \geq \omega(G)$, and for interval graphs, $\chi(G) = \omega(G)$.

Turns out $\chi(G)$ can be way bigger than $\omega(G)$. In fact,

Thm 5.2.3: For all $k \ge 1$, there exists a triangle-free graph G with $\chi(G) = k$.

Def 5.2.1: Let G be a simple graph with $V(G) = \{v_1, ..., v_n\}$. Let $V = \{u_1, ..., u_n\}$.

Mycielski's construction sives a graph G':= Myc(G) with

V(G) = V(G) U U U {w}

E(G) = E(G) 1 {u, V | 1 sign, v ∈ N(vi)} 1 {u, w | 1 sign}

Class activity: Find

- a) Myc(Kz)
- b) Myc (Myc (K2))

Pf of Thm 5.2.3: