

K-Means Algorithm

Prepared For: Prepared By:

Mr. Henry Chang Machine Learning and Business Intelligence CS550 Summer 2021 Northwestern Polytechnic University

Ms. Nagalla, Santhi Sree ID:19568

Table of Contents

- ★ What is K-Means Algorithm?
- ★ Centroid-based algorithm
- ★ Clustering Diagram
- * Steps Decide Number of Clusters
 - Create First Clustering
 - Euclidean distance to the Cluster Mean
 - Recalculate Mean Vector
 - Individual's Distance to 2 clusters
 - Relocation
- ★ Programming:-
 - Importing Libraries & Dataset
 - Find Optimal Number of Clusters
 - Train the model to Predict Y
 - Visualizing the Clusters
 - Formed Clusters
- ★ References

What is K-Means Algorithm?

- K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering problems in machine learning or data science.
- It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way that each dataset belongs only one group that has similar properties.
- Here K defines the number of predefined clusters that need to be created in the process, as if K=2, there will be two clusters, and for K=3, there will be three clusters, and so on.

Centroid-based algorithm

- It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of this algorithm is to minimize the sum of distances between the data point and their corresponding clusters.
- The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters, and repeats the process until it does not find the best clusters. The value of k should be predetermined in this algorithm.

K center points or centroids

The k-means clustering algorithm mainly performs two tasks:

- Determines the best value for K center points or centroids by an iterative process.
- Assigns each data point to its closest k-center. Those data points which are near to the particular k-center, create a cluster.

Clustering Diagram

- Hence each cluster has data points with some commonalities, and it is away from other clusters.
- The below diagram explains the working of the K-means Clustering Algorithm:

Steps - Decide Number of Clusters

The working of the K-Means algorithm is explained in the below steps:

- Step-1: Select the number K to decide the number of clusters.(Ex- 2 clusters)
- Step-2: Select random K points or centroids. Find the minimum and maximum centroids.

			Centroid = (A+B)/2
Subject	Α	В	centroid
1	1.5	1	1.25
2	1	2	1.5
3	2	3.5	2.75
4	5	6	5.5
5	3.5	4	3.75
6	4.5	5	4.75
7	2.5	4.5	3.5
		Min =	1.25
		Max =	5.5

Create First Clustering

How to calculate the centroid of N points

- centroid x = (x1 + x2 + x3 + xn) / n
- centroid_y = (y1 + y2 + y3 + yn) / n

 Step-3: Let the A & B values of the two individuals furthest apart (using the Euclidean distance measure), define the initial cluster means.

	Individual	Mean Vector
Group 1	1 1	(1.5, 1.0)
Group 2	4	(5.0, 6.0)

Euclidean distance to the Cluster Mean

Step-4: Calculate the distance of each subject and the 2 centroids.

The remaining individuals are now examined in sequence and allocated to the cluster to which they are closest, in terms of Euclidean distance to the cluster mean.

			Centroid = (A+B)/2	Distance from Centroid	Distance from Centroid
Subject	Α	В	centroid	1.25	5.5
1	1.5	1	1.25	0	4.25
2	1	2	1.5	0.25	4
3	2	3.5	2.75	1.5	2.75
4	5	6	5.5	4.25	C
5	3.5	4	3.75	2.5	1.75
6	4.5	5	4.75	3.5	0.75
7	2.5	4.5	3.5	2.25	2

Recalculate Mean Vector

 The mean vector is recalculated each time a new member is added.

$$1.5 = (1.5 + 1.0 + 2.0) / 3$$

$$2.2 = (1.0 + 2.0 + 3.5) / 3$$

$$3.9 = (5.0 + 3.5 + 4.5 + 2.5) / 4$$

$$4.9 = (6.0 + 4.0 + 5.0 + 4.5) / 4$$

Cluster 1					Cluster 2			
Subject	individual			Mean vector	individ ual			Mean vector
1	1	1.5	1	(1.5,1.0)	4	5	6	(5.0,6.0)
2	1,2	1.25	1.5	(1.2,1.5)	4	5	6	(5.0,6.0)
3	1,2,3	1.5	2.1666667	(1.5,2.2)	4	5	6	(5.0,6.0)
4	1,2,3	1.5	2.1666667	(1.5,2.2)	4,5	4.25	5	(4.3,5.0)
5	1,2,3	1.5	2.1666667	(1.5,2.2)	4,5,6	4.333333	5	(4.3,5.0)
6	1,2,3	1.5	2.1666667	(1.5,2.2)	4,5,6,7	3.875	4.875	(3.9,4.9)

Individual's Distance to 2 clusters

Check the result of the new clustering.

	Individual	Mean Vector (centroid)
Cluster 1	1, 2,3	(1.5, 1.0)
Cluster 2	4, 5, 6, 7	(5.0, 6.0)

Step 5: Then, we compare each individual's distance to its own cluster mean and to that of the opposite cluster. For example,

To calculate the distance of two points.

• $\operatorname{sqrt}((x1 - x2)^2 + (y1 - y2)^2)$

Individual's Distance to 2 clusters

The distance between individual 1 and the centroid of Cluster 1.

•
$$sqrt((1.8 - 1.0)^2 + (2.3 - 1.0)^2) = 1.5$$

The distance between individual 1 and the centroid of Cluster 2.

•
$$sqrt((4.1 - 1.0)^2 + (5.4 - 1.0)^2) = 5.4$$

individual	Distance to mean (centroid) of Cluster 1 :(1.5,2.2)	Distance to mean (centroid) of Cluster 1:(3.9,4.9)
1	1.166666667	4.544914741
2	0.527046277	4.065863992
3	1.424000624	2.325134405
4	5.190803834	1.590990258
5	2.713136766	0.951971638
6	4.126472801	0.637377439
7	2.538591035	1.425219281

Relocation

• Each individual's distance to its own cluster mean should be smaller that the distance to the other cluster's mean.

• Step 6: However, in this example each individual is now nearer its own cluster mean than that of the other cluster and the iteration stops, choosing the latest partitioning as the final cluster solution.

• The iteration stops until no more relocations occur.

Ī	Mean Vector
Individual	(centroid)
1, 2,3	(1.5, 1.0)
4, 5, 6, 7	(5.0, 6.0)
	1, 2,3

Importing Libraries & Dataset

•		
1mport	numnv	ac nm
IIII DOI U	mump y	as IIII
1	1 2	

- import matplotlib.pyplot as mtp
- import pandas as pd

Importing	the	Dataset:
-----------	-----	----------

Next, we will import the dataset that we need to use. So here, we are

Using the KMean.csv dataset. It can be imported using the below code:

from google.colab import files

uploaded = files.upload()

dataset = pd.read csv('KMean.csv')

0 1.5 1.0

1.0 2.0

2 2.0 3.5

5.0 6.0

4 3.5 4.0

4.5 5.0

6 2.5 4.5

Extracting Independent Variables

• Here we don't need any dependent variable for data pre-processing step as it is a clustering problem, and we have no idea about what to determine. So we will just add a line of code for the matrix of features.

```
\circ x = dataset.iloc[:, [0,1]].values
```

• As we can see, we are extracting only 3rd and 4th feature. It is because we need a 2d plot to visualize the model, and some features are not required, such as customer id.

```
array([[1.5, 1.],[1., 2.],[2., 3.5],[5., 6.], [3.5, 4.], [4.5, 5.],[2.5, 4.5]]) //Output of x
```

Find Optimal Number of Clusters

- The elbow method uses the WCSS(Within-Cluster-Sum-of-Squares) concept to draw the plot by plotting WCSS values on the Y-axis and the number of clusters on the X-axis. So we are going to calculate the value for WCSS for different k values ranging from length of array.
 - Finding optimal number of clusters using the elbow method. from sklearn.cluster import KMeans wcss_list= [] #Initializing the list for the values of WCSS
 - Using for loop for iterations from Length of Array.
 for i in range(1,len(x)+1):
 kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42)
 kmeans.fit(x)
 wcss list.append(kmeans.inertia)

Plot Clusters & WCSS Graph

• Fitted the model on a matrix of features and then plotted the graph between the number of clusters and WCSS.

After executing the above code, we will get the below output:

- \rightarrow mtp.plot(range(1,len(x)+1), wcss_list
- mtp.title('The Scores of each seven individuals')
- mtp.xlabel('Number of clusters(k)')
- mtp.ylabel('wcss_list')
- > mtp.show()

Train the model to Predict Y

- There are 2 clusters that need to be formed first line is the same as above for creating the object of KMeans class.
- In the second line of code, we have created the dependent variable y_predict to train the model.
- By executing the above lines of code, we will get the y_predict variable.

```
#training the K-means model on a dataset

kmeans = KMeans(n_clusters=2, init='k-means++', random_state= 42)

y_predict= kmeans.fit_predict(x)

array([1, 1, 1, 0, 0, 0, 0], dtype=int32) //Output
```

Visualizing the Clusters

- The last step is to visualize the clusters. As we have 2 clusters for our model, so we will visualize each cluster one by one.
- To visualize the clusters will use scatter plot using mtp.scatter() function of matplotlib.

```
#visulaizing the clusters
mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c = 'blue', label = 'Cluster 1')
#for first cluster
mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c = 'green', label = 'Cluster
2') #for second cluster
mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c =
'yellow', label = 'Centroid')
```

Formed Clusters

mtp.title('Clusters of Scores)
mtp.xlabel('X')
mtp.ylabel('Y')
mtp.legend()
mtp.show()

• The output image is clearly showing the Two different clusters with different colors. The clusters are formed between scores of two parameters of the dataset.

References

- https://npu85.npu.edu/~henry/npu/classes/data_science/algorithm/slide/k-means_exa_mple.html
- https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning
- https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/february/data-clustering-detecting-abnormal-data-using-k-means-clustering
- Google Slides URL -

https://docs.google.com/presentation/d/1AHTCcFo-U9RtmfT-_72u_d0ardA2yWy0niLxuSQJqIY/edit?usp=sharing

GitHub URL -

https://github.com/santhinagalla/Machine-Learning/tree/main/Unsupervised%20Learning/KMean