SSH 框架在软件工程 J2EE 三层架构体系中的应用

温立辉

(南海东软信息技术职业学院 广东佛山 528225)

摘要:以J2EE项目的一个子系统为背景.对J2EE三层架构体系作相关的论述.对SSH框架的项目中的应用作相应的探讨.对Struts、Spring、 Hibernate在框架中各自角色有较详细的说明,并结合项目实例做了可行性的论证,从理论整合到项目开发中的实际应用作了相关的的探讨。 关键词:SSH框架 三层架构 Struts Spring Hibernate J2EE

中图分类号:TP31 文献标识码:A

文章编号:1672-3791(2009)11(a)-0079-02

在计算机科学领域,随着interne的广泛 应用和网络技术的发展.基于Web的应用 系统已成为趋势。而在这些应用系统中,有 -大部分是种基于J2EE的多层Web应用系 统。在这种企业级J2EE多层架构体系中,目 前在软件开发市场最主流的框架就是SSH, 即使用Struts、Spring、Hibernate三种开发技 术对应用系统进行整合。

1 SSH 框架概述

1.1 综述

SSH是目前软件开发Java平台企业级 应用中最主流的框架,它是由三种主流框 架整合而成.即由Struts+Spring+Hibernate三 条梁柱支撑起来的Web应用系统。在生产企 业中,小至一般日常信息管理系统,大至省 级电信管理平台,都可以见到SSH的身影。

在J2EE三层架构体系中,如图1:客户 端、服务器端、持久化层,三个层面构成完 整的Web应用平台。一般来说由浏览器实 现客户端的功能,客户端通过http、https或 其它协议发送请求至服务器,由控制器分 析判断客户端请求的类型,再根据分析结 果调用相应的模型即模块来处理请求.再 根据处理结果把相应的数据用JDBC的方 式持久化到数据库层.最后再根据处理结 果.由控制器调相应的视图响应客户端。

在SSH框架的三层架构体系中,控制器 的角色是由Struts来担当,而模型层是通过 Spring来实现系统功能, Hibernate则充当 JDBC的角色,负责将业务逻辑数据持久化 到数据库层。

1.2 Struts 框架

MVC是系统架构中非常普遍的设计模 式,由三大部分组成:Model-View-Controller,即由模型、视图、控制器三部分 交互而成。在传统的MVC模式中,Controller一般是由Servlet实现请求分发的角色, 由JavaBean实现Model层的功能,JSP实现 View视图的响应。当三层架构体系中,用户 请求从浏览器端发送服务器端时,请求被 分发到Controller,由控制器进行分析判断, 并根据分析结果调用相应的Model层来处 理客户端的请求,最后根据处理结果,调用 相应的View层来响应客户端的请求。

Struts是一种基于MVC模式的框架,非 常广泛地应用于各种企业级应用系统中。 其主要由配制文件、ActionForm及Action类 构成。通过配制文件配制请求对应的 ActionForm及Action类,ActionForm存储请

求对应的属性值,Action类处理请求的转

容器启动时就会自动对Struts框架相关 属性进行初始化.客户端发送请求过来时.先 读取配制文件的相关信息,再根据相关信息 把请求依次传递给相关的ActionForm、Action 类.最后根据处理结果及配制文件的相关信 息调相应的视图响应请求。

1.3 Spring 框架

Spring是一种轻量级组件,运行时加 载,引入Spring框架就可以使我们在编程过 程中,依赖运行时注入而不是编程实现.从 而进一步降低了高层模块与低层模块的之 间的耦合性,实现模块在功能层面的重用。 Spring有两种模式,分别为IoC及AOP。

IoC是Spring最重要的核心概念,也叫 控制反转,也就是我们常说的依赖注入。使 用IoC模式,Spring容器会自动注入配置文 件中设定的对象,而不必在程序代码中维 护对象的依赖关系。

AOP也叫代理模式,是Spring框架的重 要组成部分,使用AOP模式能方便地就应 用系统加入业务逻辑以外的横切关注点, 如:日志、安全、事务等服务。

1.4 Hibernate 框架

Hibernate是ORM组件,其底层封闭了 JDBC技术来连接数据库,有自身的API,使 用该技术时,直接调用Hibernate API即可, 而无须过多关注JDBC的具体实现,使用该 组件的效率要优于直接使用JDBC,因而, 在软件工程中应用得非常广泛。

ORM也称为对象关系映射,是面向对 象语言的对象持久化技术。简单的来说就 是将面向对象编程过程中的一个数据对象 通过映射对应到数据库中的相关表,并将 相关数据存储到数据表中。

Hibernate通过配制文件,配制数据库 的相关连接属性,相关插件能自动生成Hibernate增、删、查、改等多种方法,效率较 高,广泛用于各种Web应该系统中。

2 基于SSH框架的设计开发实例分析

2.1 系统概述

SSH框架在Web系统设计中应用非常 广泛,三种组件对应的技术角色各不相同, 只要搭配、整合得当,就能极大提高系统的 健壮性、可维护性,对于系统日后升级、功 能扩充、功能移植等管理活动非常有裨益。

我们以网络机器人也谷称小i机器人 (类似MSN的聊天工具),中的一个Web子系 统来对SSH框架作进一步的设计及整合的 分析与说明。

> Web子系统就是要实现如下几方面的 (下转81页)

图 1 SSH 框架三层架构体系模型

图 2 网络机器人结构模型

如下的现场设备安装系统图,如图2所示。

在安装的过程中,我们将分布式光线 传感检测设备放到被测点,对被测点实施 实时测量。光路部分采用脉冲激光发生器, 它能产生间隔为12.2ns的1320nm波长的脉 冲光。通过1个光耦合器分离反射回来的散 射光,其中反射回来的Raman散射光被光 电二极管检测到。反射信号被放大和调制 后,通过高速的A/D转换,送到计算机采样 处理。因为Raman散射光与温度相关,所以 可以通过电压的变化,求得温度的变化。

测量传感系统的温度解析度为1.空 间解析度为1.5M:扫频光源的输出功率为 3MW,大于Raman散射2.45W的功率要求。

图 3 测试结果图

测试结果如图3所示,在加热区,测量温度 出现明显的变化,该变化与人工测试结果 基本吻合。

3 结论分析

本方案采用分布式光纤温度传感系统 对煤矿井下温度进行测量,获取并分析了 相关的参数。该方案最大的优势就是采用 一套检测装置对光纤所能到达的所有地方 的温度进行测量,光纤本身被作为传感器 使用。该测温系统与传统的热电耦测温模 式相比,具有系统简单、投资成本低、易于 现场施工等特点,由于光纤本身具有本质 安全防爆、抗电磁干扰、耐腐蚀等特性,所 以适宜在煤炭行业推广应用。

参考文献

- [1] 李芙玲,郭红.煤矿井下智能温度测量 系统的研究[J].煤矿机械,2007,28(8): $97 \sim 99$
- [2] 徐健,马宾.分布式光纤温度传感系统 在煤矿冻结表土段温度测量中的应用 [J]. 工矿自动化,2007,4.
- [3] 王慧文,江先进,赵长明,等.光纤传感 技术与应用[M].北京:国防工业出版 社 2001
- [4] 张良瑞.在红点区域的红外测温中光纤 传感器的应用[J].陕西科技大学学报,
- [5] 付建伟,肖立志,张元中.油气井永久性 光纤传感器的应用及其进展[J].地球物 理学进展,2004.

(上接79页)

功能,如图2:普通用户功能:教说话、改作 业及名师排行;管理员功能:信息审核、信 息管理、用户管理。

2.2 持久化层

在数据库连接方面,使用mysql数据库 即可满足需求。本应用的Web子系统部分 只需建立四张表,分别为:MESSAGE(信 息),MSUSER(用户),USERTYPE(用户类 型), VOTE(投票)。系统采用Hibernate技术 连接数据库,应实现如下几步。

2.2.1 创建对象关系映射文件

以上四张表应该对应于面向对象编程 的四个JavaBean,表中每个字段分别对应于 JavaBean的每一个属性,通过O/R映射文件 连接JavaBean与数据表。

2.2.2 创建Hibernate配置文件

Hibernate直接从配置文件hibernate. properties中读取和数据库连接有关的信 息,需要将相关信息写入其中。

2.2.3 通过Hibernate API实现具体的 DAO数据访问

每一个JavaBean都有一个对应的DAO 类型,在该型中实现了该对象相关数据增、 删、改、查的功能,除此之外还能根据需要 调用Session的createQuery()方法编写HQL 语句以实现其它更为复杂的功能。

2.3 业务逻辑层

Web子系统的业务逻辑层由Spring实 现,Sprin的运行时注入由配置文件 applicationContext.xml控制。配置文件都是 一些关于Bean的定义,包括数据源的配置, SessionFactory的配置以及Service Beans的

Spring运行时注入的特性,也就是需要 用到某个属性时,才调用类文件中属性对 应的set与get的方法去设置和获取相关对 象属性值,因而每一个运行时注入的属性 在相应的类文件中都有set与get的方法,每 个属性都应以bean的形式标明。

Spring框架处理的是业务逻辑层,是从 Struts所对应的控制层转发过来,还必须在 其所对应的Struts配制文件中加以标明 Spring配制文件所在的位置。

2.4 控制层

Struts框架对应的是系统中的控制层, 是整个系统架构的枢纽部分。控制层负责 程序中业务流程的走向,视图层的重定向 响应,以及系统中各模块的装配。控制层部 分对日后系统功能的扩充、升级、移植等都 相当重要。Struts的配置应用应实现以下二

2.4.1 创建Struts框架配置文件

Struts配置文件为:struts-config.xml, 在文件中应标明请求的路径、请求对应的 Action、请求所对应的ActionForm,以及 forward的视图路径等。

2.4.2 修改部署文件web.xml

在系统应用程序部署文件中添加 Struts初始化项目:url与ActionMapping对应 关系,即:ActionServlet、struts-config.xml 文件所有位置等。

至此,一个SSH的网络机器人的Web子 系统的架构就搭建起来,Web子系统中各

业务功能,就能在此框架下一步步实现。前 台业务页面,发送请求到服务器端,由控制 层负责转发到业务层,再由业务层处理,通 过ORM组件持久化到数据库,最后根据处 理结果,由控制层指派相应的jsp视图页面 响应。

SSH框架搭建的应用系统,视图、业务 逻辑、控制、持久化,各层次分明,Struts、 Spring、Hibernate分别担当不同的角色,职 责清晰,极为有利于系统的运行、维护、扩 充、升级、移植、复用等,进一步降低软件开 发周期,以及维护成本,提高效率。同时,各 模块之间交互过程中耦合性降低,内聚加 强,进一步提高了系统的健壮性。

参考文献

- [1] 王全彬.MVC架构模式在Java开发中的 应用[J].四川理工学院学报(自然科学 版),2009,2,22(1):38~40.
- 陈家瑞.J2EE应用开发课程教学改革探 讨[J].福建电脑,2009(1):211.
- [3] 拓守恒.基于J2EE的多层架构的Web信 息系统构建与设计[J].电脑开发与应用 (第22卷第1期):41~57.
- [4] 赵少卡.基于Struts+Spring+Hibernate 框架的信息交流平台的设计与实现[J]. 计算机与现代化,2009(2):62~66.
- [5] 林信良.Spring技术手册[M].电子工业 出版社,2006,6.