Ch - Lineau programming

- * Some important tours of Lineau planning and programming:
 - 1) Decision variable: The variables which are involved in LPP are called decision variables.
 - 2) Objective function: A linear function of variables which is to be optimized i.e either maximized or minimized is called an objective function.
 - 3) Constraints: Conditions under which the objective function is to be optimised are called constraints. It is also known as equations or in equations.
 - Non-negativity constraints In some cases the value of the variables under consideration maybe positive or zero. due to which some imposed constraints are called non-negativity constraints. (2 >0, y>0)
 - 5) feasible Solution: A solution which satisfies all the constraints is called Jeasible solution.
 - 6) Feasible region: The common region or area determined by all the constraints of the L.P.P is called feasible region.
 - 1) Optimal Solution: A Solution which maximized or minimized the objective function as per the requirements is called an optimal Solution.

Points	objective function $Z = 7x + 9$	Answer	4,19	
A (310)	2 = 7(3) +0	21	[6,6) A	
B(1/2,5/2)	Z=7(1/2) + 5/2	6	F,173	
c (o,s)	Z = 7(0) + 5	5	5777	

The minimum value of the objective function is 5 at $\infty = 0$ and y = 5.

Q. Maximize: 10x +2sy

 $0 \le x \le 3$, $0 \le y \le 3$, $x + y \le 5$

To draw	2	4	through	Sign	Region Lies
x = 3	3	0	(3.0)	S = 3 U	} origin side
y = 3	0	3	(0,3)	<	J
2+4=5	0	5	(0,5) and	<	ovigin side
	5	0	(5,0)	0.10.134	

Checanita Cons

Points	objective function Z = 10 x + 25y	Answer
A (0,3)	Z = 10(3)+25(0)	30
B(2,3)	Z= (0(2)+25(3)	80
C(3,2)	2 = (0(3) +25(2)	95
0 (8,3)	Z = 10(0) + 25(3)	75
0 (010)	S = (a,e) + s2(e)	0
. The	maximum value o	objective func y = 3.

O. y 5x-3y ≥0

then 52 - 34 =0, line passes through origin

* ax+by+ c=0

$$M = -b$$

1 tre slope

2 Negative slope Declined line