Khôlles: Maths

Kylian Boyet, George Ober

13 novembre 2023

Table des matières

1	Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.	2
2	Technique de l'intégration par parties.	2
3	Technique du changement de variable.	3
4	Montrer que, pour f T -périodique sur \mathbb{R} , pour tout $a \in \mathbb{R}$, $\int_a^{a+T} f(t)dt = \int_0^T f(t)dt$	3
5	Résolution de $a_1y' + a_0y = b$ sur J par équivalence avec la méthoded du facteur intégrant sous l'hypothèse $\forall t \in I, a_1(t) \neq 0$. On précisera les hypothèses analytiques sur a_0, a_1 et b .	3

1 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

Démonstration. Soit $m \in \mathbb{Z}$ et $n \in \mathbb{N}^*$, on pose :

$$I_m = \int_0^{2\pi} e^{imt} dt.$$

Bien sûr, $I_0 = 2\pi$ et pour tout $m \neq 0$, $I_m = 0$.

Soit alors le polynôme $P \in \mathbb{C}_n[z]$, de coefficients les $a_k \in \mathbb{R}$, pour $k \in [0, n]$, s'annulant sur le cercle $\Omega(O, r)$, centré en l'origine (O), et de rayon $r \in \mathbb{R}^*$. De fait, soit $t \in \mathbb{R}$ et $s \in \mathbb{Z}$, on a :

$$P(re^{it}) = 0$$

$$P(re^{it}) e^{-st} = 0$$

$$\int_{0}^{2\pi} P(re^{it}) e^{-st} dt = 0$$

$$\sum_{k \in [0,n]} a_k r^k \int_{0}^{2\pi} e^{ikt} e^{-st} dt = 0$$

$$\sum_{k \in [0,n]} a_k r^k \int_{0}^{2\pi} e^{i(k-s)t} dt = 0.$$

Mais pour tout polynôme :

$$\sum_{k \in \llbracket 0, n \rrbracket} a_k r^k \int_0^{2\pi} e^{i(k-s)t} dt = \left\{ \begin{array}{ccc} 2\pi a_s r^s & \text{si } s \in \llbracket 0, n \rrbracket \\ 0 & \text{si } s \in \mathbb{Z} \backslash \llbracket 0, n \rrbracket \end{array} \right.$$

En particulier, en combinant les deux :

$$\forall s \in [0, n], \quad 2\pi a_s r^s = 0 \implies a_s = 0,$$

car $2\pi r^s \neq 0$, d'où $P = \widetilde{0}$ sur tout \mathbb{C} .

2 Technique de l'intégration par parties.

Démonstration. Soient $u, v \in \mathcal{D}^1(I, J)$, deux fonctions définies, continues et dérivables sur I à valeurs dans J, deux intervalles non-triviaux de \mathbb{R} . Soient $a, b \in \mathbb{R}$, a < b et I = [a, b]. De manière générale :

$$\int_{[a,b]} (uv)'(x)dx = [(uv)(x)]_a^b.$$

Mais aussi:

$$\int_{[a,b]} (uv)'(x)dx = \int_{[a,b]} (u'v)(x) + (v'u)(x)dx = \int_{[a,b]} (u'v)(x)dx + \int_{[a,b]} (v'u)(x)dx.$$

Donc finalement :

$$\int_{[a,b]} (u'v)(x)dx + \int_{[a,b]} (v'u)(x)dx = [(uv)(x)]_a^b.$$

Ce qui s'écrit aussi,

$$\int_{[a,b]} (u'v)(x)dx = [(uv)(x)]_a^b - \int_{[a,b]} (v'u)(x)dx.$$

3 Technique du changement de variable.

Démonstration. Soient $(f', \varphi') \in \mathcal{C}^0(I, \mathbb{R}) \times \mathcal{C}^0(J, I)$, deux fonctions définies et continues sur I et J à valeurs dans \mathbb{R} et I. I, J deux intervalles non-triviaux de \mathbb{R} . Soient $a, b \in \mathbb{R}$, a < b et J = [a, b]. D'après le théorème fondamental de l'analyse, f' et φ' admettent des primitives sur I et J, on note f une primitive de f' et φ une primitive de φ' , ainsi il est possible de calculer de la manière suivante (les notations ont un sens):

$$\int_{\varphi([a,b])} f'(t)dt = [f(t)]_{\varphi([a,b])}.$$

On suppose $\varphi(b) > \varphi(a)$, quitte à les inverser, ainsi :

$$\int_{[\varphi(a),\varphi(b)]} f'(t)dt = f(\varphi(b)) - f(\varphi(a)) = f \circ \varphi(b) - f \circ \varphi(a) = [f \circ \varphi(t)]_{[a,b]} = \int_{[a,b]} (f' \circ \varphi)(t) \varphi'(t) dt$$

4 Montrer que, pour f T-périodique sur \mathbb{R} , pour tout $a \in \mathbb{R}$, $\int_a^{a+T} f(t)dt = \int_0^T f(t)dt$

Démonstration. plus tard

5 Résolution de $a_1y'+a_0y=b$ sur J par équivalence avec la méthoded du facteur intégrant sous l'hypothèse $\forall t\in I, a_1(t)\neq 0$. On précisera les hypothèses analytiques sur a_0, a_1 et b.