Investment plan to nurture client relationships. 5% increase in retention

> 25% increase in profits

The need

Increase customer retention rates for EuroBank.

The data

Year's closing clients data, including:

Balance, number of products, salary, tenure, country of residency, is active member.

Solution Path

- Explore and understand the data.
- Create baseline models for solution, compare, improve.
- Provide recommendations to increase customer retention by 5% (next two years).

Some considerations

- Client leaves
- Keeping a client
- Misclassifying a client

EuroBank - 180 € / year.

EuroBank + 90 € / year.

EuroBank - 90 € / year.

Actual scenario

From a random sample of 2000 clients:

393 Left

>70K €

By using the best baseline model

We are able to:

- Identify 161 at risk clients.
- Save 34k €

Results

Most interpretable model.

Saves > 15% compared to base model.

Complicated but better model.

Saves > 22 % compared to base model.

Recommendations

- Invest in surveys and special deals for customers in their 40s and 50s.
- Study the difference between services offered in Germany, compared to the rest of countries.
- Offering VIP services for clients with balance above the third quartile.
- Choose and implement one of the solutions.

Future Work

- Study customer satisfaction.
- Include data from more than a year.
- Obtain monthly ending balances.
- Generate a more robust ensembled model for predictions.

Sources:

https://www.forbes.com/sites/jiawertz/2018/09/12/dont-spend-5-times-more-attracting-new-customers-nurture-the-existing-ones/?sh=3417ab615a8e

https://unsplash.com/

Appendix

Churn based on age groups.

KNN baseline Confusion Matrix.

	precision	recall	f1-score	support
0 1	0.87 0.63	0.94 0.41	0.90 0.50	1607 393
accuracy macro avg weighted avg	0.75 0.82	0.67 0.84	0.84 0.70 0.82	2000 2000 2000
[[1511 96] [232 161]]				

Final Logistic Regression Confusion Matrix.

support	f1-score	recall	precision	
1607	0.89	0.88	0.89	0
393	0.55	0.56	0.53	1
2000	0.82			accuracy
2000	0.72	0.72	0.71	macro avg
2000	0.82	0.82	0.82	weighted avg

array([[1414, 193], [172, 221]])

Final RF Confusion Matrix.

	precision	recall	f1-score	support	
0 1	0.88 0.77	0.97 0.45	0.92 0.57	1607 393	
accuracy macro avg weighted avg	0.82 0.86	0.71 0.87	0.87 0.74 0.85	2000 2000 2000	
[[1553 54] [215 178]]					