SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY::PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road-517583

QUESTIONBANK (DESCRIPTIVE)

Subject with Code: Chemistry (23HS0801) **Course & Branch**: B.Tech.; EEE, CSM, CAD & IOT

Year & Sem: I Year & I Sem Regulation: R23

UNIT-I STRUCTURE AND BONDING MODELS

	Write the following		
1	a) Bond order b) Heisenberg Uncertainty principle c) Schrodinger wave	[L1] [CO1]	[10M]
	equation d) Significance of Ψ and Ψ^2 e) HOMO and LUMO		
2	a) Explain Planck's Quantum Theory.	[L2] [CO1]	[5M]
	b) Write short notes on Wave-Particle duality of matter	[L2] [CO1]	[5M]
3	a) Write the postulates of molecular orbital theory.	[L2] [CO1]	[5M]
	b) Calculate the bond order in O_2 , O_2^+ and O_2^- .	[L3] [CO1]	[5M]
4	a) Derive Schrodinger wave equation?	[L3] [CO1]	[8M]
	b) Explain the significance of the Ψ and Ψ^2 .	[L2] [CO1]	[2M]
5	a) Explain de Broglie's dual nature hypothesis	[L2] [CO1]	[5M]
	b) What is Heisenberg's uncertainty principle?	[L1] [CO1]	[5M]
6	a) Sketch the molecular orbital diagram for Oxygen (O2). Explain its bond	[L3] [CO1]	[5M]
	order and magnetic property based on MOT theory.	[L3] [CO1]	[5M]
	a) Explain π - molecular orbital of 1, 3- Butadiene with a neat sketch.	[L3] [C01]	
7	a) Illustrate the molecular orbital diagram of CO molecule and calculate its bond	[L2] [CO1]	[5M]
	order and explain its magnetic property.		
	b) Explain the molecular orbital diagram for N ₂ molecule and calculate its bond order and explain its magnetic property.	[L2] [CO1]	[5M]
	a) Explain π - molecular orbital of Benzene with a neat sketch.	[L2] [CO1]	[6M]
8	b) Differentiate bonding and anti-bonding molecular orbitals.	[L3] [CO1]	[4M]
9			
9	Derive equation for a particle in one dimensional box.	[L3] [CO1]	[10M]
10	a) Calculate the bond order of CO, N ₂ , F ₂ , O ₂ and explain the magnetic	[L3] [CO1]	[5M]
	properties based on MOT theory.	[L2] [CO1]	[5M]
	b) Explain HOMO and LUMO energy levels of Benzene molecule.		_
11	Discuss the important postulates of Molecular Orbital Theory with merits and	[L2] [CO1]	[10M]
	demerits.		

Course Code: 23HS0801

UNIT -II MODERN ENGINEERING MATERIALS

			1
1	Define the following		
	a) Semiconductor b) Superconductor c) Intrinsic and Extrinsic Semiconductor	[L1] [CO2]	[10M]
	d) Supercapacitor e) Nanomaterial		
2	a) Explain in detail about principle and classification of semiconducting	[L2] [CO2]	[6M]
	materials.		
	b) Summarize the important applications of Semiconductors.	[L2] [CO2]	[4M]
3	Discuss about the principle, classification and applications of	[L1] [CO2]	[10M]
	Superconductors.		
4	a) Draw the band diagrams for conductors, semi-conductors and Insulators.	[L2] [CO2]	[5M]
	b) Explain the applications of nanomaterials.	[L2] [CO2]	[5M]
5	a) Write the Properties of Nano materials.	[L2] [CO2]	[5M]
	b) What are the different types of CNTs?	[L1] [CO2]	[5M]
6	a) What is meant by Nano materials? How the Nano materials Classified.	[L1] [CO2]	[4M]
	c) Discuss the properties of Carbon nanotubes.	[L2] [CO2]	[6M]
7	a) Write a short note on classification of Carbon Nano Tubes.	[L1] [CO2]	[5M]
	d) Write a note on applications of fullerenes.	[L1] [CO2]	[5M]
8	a) Compare the band diagrams of Insulators, Semi-conductors and	[L3] [CO2]	[5M]
	Conductors.	[L2] [CO2]	[5M]
	e) Write short notes on Intrinsic and Extrinsic Semiconductors.		
9	a) Discuss the classification and properties Graphene nanoparticles.	[L2] [CO2]	[6M]
	b) Outline the important applications of Graphine nanoparticles.	[L2] [CO2]	[4M]
10	a) Explain the basic principle and Classifications of Super Capacitors.	[L2] [CO2]	[6M]
	b) Discuss applications of Super Capacitors.	[L2] [CO2]	[4M]
11	a) Explain about p-type and n-type semiconductor.	[L1] [CO2]	[5M]
	b) Discuss about Type-I and Type-II Superconductors with examples.	[L2] [CO2]	[5M]

UNIT III ELECTROCHEMISTRY AND APPLICATIONS

1	Define the following		
	a) Single electrode potential b) Primary Battery c) Second Battery d)	[L1] [CO3]	[10M]
	Electrochemical sensor e) Oxidation and Reduction		

Course Code: 23HS0801

2	a) Define Electrochemical cell? Explain the construction, working	[L1] [CO3]	[6M]
	principle and mechanism of an Electrochemical cell.		
	b) What is single electrode potential? Calculate the single electrode potential	[L3] [CO3]	[4M]
	of zinc in 0.05M ZnSO ₄ solution at 298.15 K. $\{E^0_{Zn/Zn}^{2+} = -0.763V\}$		
3	Derive the Nernst equation for a single electrode potential and explain the	[L2] [CO3]	[10M]
	terms in equation and write its applications.		
4	a) Explain construction and working of Daniel cell	[L1] [CO3]	[5M]
	b) Calculate the emf of iron-copper voltaic cell [Fe/Fe ⁺² //Cu ⁺² /Cu] with	[L3] [CO3]	[5M]
	standard potential of copper and iron as $+0.34$ V and -0.44 V respectively.		
5	Discuss the titration curves obtained in the following Acid – Base		
	Conductometric titrations		
	a) Strong acid with weak base	[L3] [CO3]	[5M]
	b) Weak acid with strong base	[L3] [CO3]	[5M]
6	a) What is primary Battery? Write about construction, cell reactions and	[L1] [CO4]	[6M]
	applications of Zinc-Air battery.		
	b) Differentiate Primary and Secondary Batteries with examples.	[L2] [CO4]	[4M]
7	a) Discuss about potentiometric sensors with examples.	[L2] [CO4]	[5M]
	b) Explain amperometric sensors with examples.	[L2] [CO4]	[5M]
8	Discuss the titration curves obtained in the following Acid - Base		
	Conductometric titrations		
	a) Weak acid with weak base	[L3] [CO3]	[5M]
	b) Strong acid with strong base	[L3] [CO3]	[5M]
9	Write a note on construction, cell reactions and applications of Lithium-Ion	[] 2] [CO4]	[10]
	rechargeable cell.	[L2] [CO4]	[10M]
	a) Define Fuel cell? Describe the Construction and Working principle and	[L2] [CO4]	[5M]
10	uses of Polymer electrolyte membrane fuel cell.		
	b) Write short note on Hydrogen-Oxygen fuel cell.	[L2] [CO4]	[5M]
11	a) Discuss of construction and working of conductivity cell.	[L2] [CO3]	[5M]
	b) Explain about Potentiometric redox titrations	[L2] [CO3]	[5M]

UNIT-IV POLYMER CHEMISTRY

	1	Explain the following	[L1] [CO5]	[10M]
		a) Polymer b) Monomer c) Polymerization d) Conducting polymers		[TOWI]
		e) Biodegradable polymer		
ſ	2	a) What is functionality of monomer? Explain in detail.	[L1] [CO5]	[5M]
		b) Discuss preparation, properties and applications of Teflon.	[L1] [CO5]	[5M]

Course Code: 23HS0801

3	Explain different types of polymerizations with examples in detail.	[L2] [CO5]	[10M]
4	Explain the following mechanism.		
	a) Free radical addition polymerization.	[L2] [CO5]	[5M]
	b) Anionic addition polymerization.	[L2] [CO5]	[5M]
5	a) Distinguish between Chain growth and step growth polymerization withexamples.	[L3] [CO5]	[5M]
	b) Write about Co-ordination or Ziegler-Natta polymerization.	[L2] [CO5]	[5M]
6	a) Discuss the synthesis, properties and applications of Polyvinyl Chloride	[L2] [CO5]	[5M]
	(PVC) polymer.		
	b) Distinguish between Thermoplastics and Thermosetting plastics.	[L2] [CO5]	[5M]
7	a) Describe the preparation, properties and uses of Bakelite.	[L4] [CO5]	[5M]
	b) Write about cationic addition polymerization.	[L3] [CO5]	[5M]
8	a) Write about synthesis, properties and applications of Poly Glycolic Acid.	[L2] [CO5]	[5M]
	b) Write about synthesis, properties and applications of Poly Lactic Acid.	[L2] [CO5]	[5M]
9	Describe the preparation, properties and uses of the following		
	a) Nylon-6, 6	[L2] [CO5]	[5M]
	b) Carbon Fibers	[L2] [CO5]	[5M]
10	a) Write the mechanism of conduction and engineering applications of Poly acetylene conducting polymer.	[L1] [CO5]	[5M]
	b) Write the mechanism of conduction and engineering applications of polyaniline conducting polymer.	[L2] [CO5]	[5M]
11	a) Write the preparation, properties and application of Buna-S rubber and Buna-N rubber.	[L2] [CO5]	[6M]
	a) Write the applications of conducting polymers.	[L2] [CO5]	[4M]

UNIT-V INSTRUMENTAL METHODS AND APPLICATIONS

1	Define the following a) Beer-Lamber law b) Electromagnetic radiation c) Chromatography d) Stationary phase e) Mobile phase	[L1] [CO6]	[10M]
2	a) Explain the different regions of electromagnetic spectrum.	[L1] [CO6]	[5M]
	b) Derive equation for Beer – Lambert's law.	[L2] [CO6]	[5M]
3	a) Discuss principle of UV-Visible Spectroscopy.	[L2] [CO6]	[4M]
	b) Sketch the Instrumentation of UV-Visible spectroscopy and explain its components.	[L2] [CO6]	[6M]
4	Explain the various possible electronic transitions occurs in a molecule by absorbing the UV-Visible radiation.	[L2] [CO6]	[10M]

5	a) Give an account on principle and instrumentation of IR spectroscopy.	[L2] [CO6]	[6M]
	b) Write the applications of IR spectroscopy.	[L2] [CO6]	[4M]
6	a) Explain in detail about Fundamental modes of IR Spectroscopy.	[L2] [CO6]	[5M]
	b) Discuss about selection rules of IR Spectroscopy.	[L2] [CO6]	[5M]
7	a) What is meant by Chromatography? Write about principle and	[L2] [CO6]	[6M]
	instrumentation of HPLC chromatography with neat diagram.		
	b) Write about the important applications of HPLC Chromatography.	[L2] [CO6]	[4M]
8	a) Explain various classifications of Chromatographic technique.	[L2] [CO6]	[6M]
8	b) Write about important applications of UV-Visible Spectroscopy.	[L2] [CO6]	[4M]
9	a) What is the use of detector in chromatographic technique and what are the	[L2] [CO6]	[4M]
	different types of detectors used in HPLC technique.		
	b) Discuss the principle and applications of IR Spectroscopy	[L2] [CO6]	[6M]
10	a) Discuss about different components in HPLC technique.	[L2] [CO6]	[5M]
	b) Explain the classification of chromatographic methods based on type of	[L2] [CO6]	[5M]
	mobile phase and stationary phase.		
11	a) Explain in detail about Stretching and bending vibrations.	[L2] [CO6]	[5M]
	b) Discuss the basic components of UV-Visible spectroscopy.	[L2] [CO6]	[5M]

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY::PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road-517583

BIT BANK (OBJECTIVE)

Subject with Code: Chemistry (23HS0801)	Course & Branch: B.Tech.; EEE, CSM, CAD & IOT
---	---

Regulation: R23 Year & Sem: I Year & I Sem

UNIT -I STRUCTURE AND BONDING MODELS

1.	How many bondir	ng molecular orbitals are	found in 1,3 butadien	e	[]
	A) Three	B) Four	C) Two	D) Zero		
2.	Which of the follo	owing ions is diamagneti	c?		[]
	A) N_2^+	B) O_2	C) Be ₂ ⁺	D) NO ⁺		
3.	Which of the follo	owing diatomic molecule	es have bond order three	ee	[]
	A) F ₂	B) Cl ₂	$C) O_2$	D) N ₂		
4.	The bond order of	f heteronuclear diatomic	molecules of NO and	l CN-	[]
	A) 2 & 3	B) 3 & 2	C) 2 & 2.5	D) 1.5 & 2		
5.	Number of molecu	ular orbitals present in be	enzene molecule is		[]
	A) Four	B) Zero	C) Three	D) Six		
6.	There is net force	of attraction due to pres	sence of greater number	er of bonding molecular	г	1
	orbitals over anti l	bonding molecular orbita	als, then the bond orde	r is	Ĺ]
	A) Positive	B) Negative	C) Zero	D) None		
7.	The electrical con-	ductivity of a metal decr	eases with rise in_		[]
	A) Pressure	B) Temperature	C) pH	D) Both A&B		
8.	Which of the follo	owing is paramagnetic in	nature?		[]
	A) CN ⁻	B) NO ⁺	C) NO	D) CN ⁺		
9.	,	owing is diamagnetic in i	nature?		[]
	A) He ₂	B) H ₂	C) H_2^-	D) Both A&B	-	-
10.	Which of the follo	owing pair of molecule/io	ons are paramagnetic i	n nature	[]
	A) $N_2^+ \& N_2^-$	B) $N_2^- \& N_2$	C) $N_2 \& N_2^+$	D) $N_2 \& N_2^{2-}$		
11.	Which of the follo	owing pair of molecule/io	ons are paramagnetic i	n nature	[]
	A) $O_2^+ \& O_2^{2-}$	B) $O_2 \& O_2^-$	C) O^{2-} & O_2	D) $O_2^+ \& O_2^{2-}$		
12.	Which of the follo	owing Formula to determ	nine the node of molec	cular orbitals	[]
	A) n	B) n+1	C) 2n-1	D) n-1		
13.	How many bonding	ng molecular orbitals are	found in 1,3 butadien	e	[]
	A) 3	B) 4	C) 2	D) 0		
14.	Which hybridizati	ion of carbon in benzene	2		[]
	OUEMICTDY				D 1	
	CHEMISTRY				Page 1	

	A) SP	B) SP^2	C) SP^3	D) SP^3d^2		
15.	Which theory explain	ns the photoelectric effect			[]
	A) Planck's Theory	B) Bohr atomic model	C) J.J. Thomson model	D) Rutherford model		
16.	The individual partic	ele of matter is known as			[]
	A) Atom	B) Electron	C) Neutron	D) Proton		
17.	The electrons fill lov	ver energy orbitals before the	hey fill higher energy or	bitals	[]
	A) Paulis exclusion principle	B) Aufbau principle	C) Hund's Rule	D) Slater's Rule		
18.		and within a fairly easily de	efined region of space		[]
	A) Orbit	B) protons	C) Orbitals	D) Nucleus	L	_
19.	<i>'</i>	volved around the nucleus i	n a definite path	,	ſ]
	A) Orbit	B) Protons	C) Orbitals	D) Molecule	L	_
20.	,	electron experiences in an	atom with multiple elec	trons	[]
	A) Orbit	B) Orbitals	-	D) Aufbau principle	L	
21.	According to Schrod	linger wave equation electro	· ·		[]
	A) Particle	B) Wave	C) Matter	D) All of these		
22.	<i>'</i>	ing ions is diamagnetic?			[]
	A) N ₂ ⁺	B) O ₂ -	C) Be ₂ ⁺	D) NO ⁺		
23.	The bond order in or	rder in O ₂ ⁺ ion is _			[]
	A) 2	B) 2.5	C) 1.5	D) 3		
24.	The bond order in N	2 ⁺ is the same as in			[]
	A) CN ⁻	B) O ₂ -	C) NO	D) F ₂		
25.	<i>'</i>	formed by combination of	orbitals		Γ]
	A) s-s orbitals	B) p-p orbitals	C) d-d orbitals	D) s-p orbitals	-	_
26.		ing molecule is not homonu	ıclear	_	[]
	A) H ₂	B) N ₂	C) O ₂	D) NO	-	-
27.		een a pair of orbitals of the	same type		[]
	A) Attractive	B) Repulsive	C) There is no interaction	D) None of the mentioned	-	
28.	The value of Ψ^2 is al	ways			[]
	A) Negative	B) Positive	C) Both	D) None		
29.	Orbitals has	complex shape.			[]
	A) s - orbitals	B) d - orbitals	C) f - orbitals	D) Molecular orbitals		
30.	The CO molecule co	ontained one σ and π	oonds		[]
	A) 1	B) 2	C) 4	D) 3		
31.	Substances which ar	e attracted towards magnet	ic field is known as		[]
	A) Paramagnetic	B) Diamagnetic	C) Ferromagnetic	D) Antiferromagnetic		
32.	Among the following	which is not a heteronuclear r	nolecule		[]
	A) CO	B) NO	C) F ₂	D) CN		
33.	Potential energy of a r	particle in the box in one dime	nsional system		Γ	1

	A) Zero	B) Infinite	C) Positive	D) Negative		
34.	According to Planks qua	ntum theory, the small packe	ets of electromagnetic rad	liation is known as	[]
	A) Quanta	B) Photon	C) Both A & B	D) None of this		
35.	The energy of quanta is	equals to			[]
	A) hυ/2	B) hv	C) hv/4	D) None of this		
36.	More energetic electrom	agnetic radiation among this	<u> </u>		[]
	A) X-rays	B) UV-rays	C) Radio waves	D) IR rays		
37.	•	g's hypothesis, if the position	n of a particle known exac	ctly, velocity will be	[]
	A) Zero	B) Highest	C) Lowest	D) Infinite		
38.	Energy order of bonding	molecular orbitals of p-orbi	tals in O2 molecule is		[]
	A) $\sigma 2p_x < \pi 2p_y = \pi 2p_z$	B) $\pi 2p_y = \pi 2p_z < \sigma 2p_x$	C) $\sigma 2p_x = \pi 2p_y < \pi 2p_z$	D) $\pi 2p_z < \sigma 2p_x = \pi 2p_y$		
39.	The orbitals responsible	for π bonding in a molecu	ıle		[]
	A) P _y orbital	B) P _x orbital	C) Pz orbital	D) Both A & C		
40.	Highest Occupied Molec	cular Orbital (HOMO) in 1,3	-Butadiene is		[]
	A) π_1	B) π_2	A) π^*_{3}	d) π [*] ₄		
	, -					
		IIN	NIT -II			
		MODERN ENGINEE				
1.	The resistivity of a sup	per conductor is			ſ	1
	A) Zero	B) Finite	C) Infinite	D) None	-	-
2.	*	ctor is obtained by doping	pure Si with	,	[]
	A) Pentavalent		C) Trivalent	D) A11	_	-
	impurity	B) Tetravalent impurity	impurity	D) All		
2	Which of the followin	g nanomaterial show effec	ctive catalytic activity for	or methanation of	r	1
3.	$CO + H_2$ at low temper	•	, ,		Ĺ	J
	A) D II I'	D) D 11 11 11 11 11	C) M C	D) Rhodium		
	A) Palladium	B) Palladium colloids	C) MoS_2	Hydrosols		
4.	Fullerenes and Dendri	mers are considered as	in Nanoscale		[]
	A) One dimensional	B) Three dimensional	C) Two dimensional	D) None of these		
		b) Three difficusional	C) I wo difficultional	D) None of these		
5.	Nanowires and Nanot	ubes arein Nanosca	ale		[]
	A) One dimensional	D) Thurs dimensional	C) Two dimensional	D) Nove of these		
		B) Three dimensional	C) Two dimensional	D) None of these		
6.	The term Nano Stands	s for			[]
	A) 1 Billionth of	D) 1 D'III' (1 CM)	C) 1 Billionth of	D) N C 41		
	centimeter	B) 1 Billionth of Meter	Foot	D) None of these		
7		g important properties of I	Nanomaterials differ sig	gnificantly from other	r	7
7.	materials			•	L	J
	A) High surface	D) I C	C) Increase constant	D) None of these		
	area	B) Lower surface area	size	•		

8.		which of the following nanomaterial act as sensors of gases like NO ₂ and NH ₃ on the asis of increasing electrical conductivity					
	A) Carbon Nanotubes	B) Thin film	C) Zinc Oxide	D) Palladium			
9.	Which of the followin	g nano wires show Photolu	ıminescence		[]	
	A) Zinc Oxide	B) Semi-Conductor	C) Silicon	D) Carbon			
10.	In Nanomaterials, ato	ms or molecules are fabrica	ated in nanoscale range		[]	
	A) 1-10 nm	B) 100-120 nm	C) 10-20 nm	D) 20-30 nm			
11.	Who is the father of N	Vanomaterial Science			[]	
	A) Grahambel	B) Dalton	C) Richard Feynmen	D) Newton			
12.	Which of the followin	g is considered as one dime	ensional in the nanoscal	e	[]	
	Quantum Dots	B) Carbon Nanotubes	C) Fullerenes	D) Thin films			
13.	A Nanocrystal of 10 n	ım in size has approximatel	ly of atoms on the surface	ce	[]	
	A) 80%	B) 20%	C) 15%	D) 5%			
14.	Zinc oxide Nanowires	exhibits at room temperate	ure as		[]	
	A) Magnetic Materials	B) UV Laser	C) Storage device	D) Super Conductors			
15.	The Nano tubes of Mo	oS_2 and CoS_2 are used as			[]	
	A) Semi-Conductors	B) Insulators	C) Storage device	D) Solid Lubricants			
16.	The Nanotubes of Mo	S ₂ and WS ₂ used as			[]	
	A) Solid lubricants	B) Super conductors	C) Semiconductors	D) Catalyst			
17.	An n-type semiconduc	ctor is obtained by doping p	oure Si with		[]	
	A) Pentavalent impurity	B) Tetravalent impurity	C) Trivalent impurity	D) All			
18.	- ·	emiconductors increases wi	th		[]	
	A) Increase in temperature	B) Decrease in temperature	C) Increase in Pressure	D) None of these			
19.	1	n band in semiconductor is			ſ	1	
	A) Lies lower in energy	B) Not occupied with electrons	C) Fill with electrons	D) None of these	_	-	
20.		ess negative charge created	intype of semi	iconductor.	[]	
	A) P-type semiconductor	B) N-type semiconductor	C) Intrinsic semiconductor	D) None of these			
21.		ange of Type-I supercondu			[1	
	A) Below 8 K	B) Above 8 K	C) Above 100 K	D) None of these	-	-	
22.	Meissner effect exhibit	· ·	,	,	1	1	
	A) Type – II Superconductors	B) Type – I superconductors	C) Bother A & B	D) None of these	L	,	
23.	•	nich materials behave as su	nerconductors is called		Г	1	
_J .	A) Absolute	B) Mean temperature	C) Critical	D) Crystalline	L	J	
	,	D) Moun temperature	C) Citicul	•			
	CHEMISTRY			Page 4			

	temperature		temperature	temperature		
24.	Which of the followin	g material has highest crit	tical temperature		[]
	A) Hg	B) Cd	C) Pb	D) MgB ₂		
25.	After doping, the posi	tive hole formed in	type of semiconducto	r.	[]
	A) P-type	B) N-type	C) Intrinsic	D) Name of the second		
	semiconductor	semiconductor	semiconductor	D) None of these		
26.	The distinct properties	s of nanomaterials are due	e to		[]
	A) Large surface area	B) Quantum effect	C) Both A & B	D) None of these		
27.	Example for one dime	ensional nanomaterial is			[]
	A) Nanowires	B) Dendrimers	C) Surface coatings	D) None of these		
28.	Carbon nanotubes are	also called as			[]
	B) Fullerenes	B) Buckytubes	C) Graphenes	D) None		
29.	<i>'</i>	Type – II superconductor	r is		[1
	A) Nb ₃ Al	B) MgB ₂	A) Both A & B	C) Hg	_	
30.	The fullerene is consist	. •	,	, 6	Γ	1
	A) 12 pentagonal and 20 hexagonal rings	B) 20 pentagonal and 12 hexagonal	C) 15 pentagonal and 15 hexagonal	D) None of these	-	-
31.	•	ore and release the energy	is		ſ	1
	A) Superconductor	B) Supercapacitor	C) Semiconductor	D) Conductor	L	-
32.	, -	ercapacitors are separated	· ·	,	Γ]
	A) Electrolyte	B) Insulators	C) Isolators	D) Bothe B & C	L	-
33.	•	trical double layer superca	•	,	Γ	1
	A) Metal oxides	B) Carbon or its derivatives	C) Conducting polymers	D) None of these	L	-
34.	The formation of elec-	trical double layer is assoc	1 •		ſ	1
	A) Hybrid capacitors	B) Pseudo-capacitors	C) Electrical double layer capacitors	D) None of these	-	-
35.	The electrodes in elec	trochemical supercapacito	ors are made up of		[]
	A) Conducting polymers	B) Metal oxides	C) Bother A & B	D) Only B		
36.	Pseudo-supercapacito	rs store and release the en	ergy by		[]
	A) Formation of					
	electrical double layer	B) Redox reaction	C) Both A & B	D) None of these		
37.	The supercapacitor us	es electrodes with differen	nt properties is		[]
	A) Hybrid supercapacitor	B) Pseudo-capacitors	C) Electrical double layer capacitors	D) None of these		
38.	Graphene is aA) Zero dimensional	B) One dimensional	C) Two dimensional	D) Three dimensional	[]
	CHEMISTRY			Page 5		
	31 ILIVII 3 I I V I			I age 3		

	material	material	material	material		
39.	The basic element th	nat forms the graphene is			[-
	A) Hydrogen	B) Oxygen	C) Carbon	D) None of these		
40.	No of carbon atoms	present in Buckminster ful	lerene are		[]
	A) 60	B) 70	C) 80	D) 75		
		UNI	Г-ІІІ			
		ELECTROCHEMISTRY	Y AND APPLICATION	NS		
1.	A galvanic cell conv	verts			[]
	A) Chemical	B) Electrical energy	C) Chemical energy	D) Electrical energ	y	
	energy into	into chemical energy	into heat energy	into heat energy		
	electrical energy					
2.	The electrochemical	cell that converts electrica	l energy into chemical e	nergy is	[]
	A) Daniel Cell	B) Electrolytic cell	C) Galvanic cell	D) All of these		
3.	In galvanic cell, oxid	dation and reduction occur	s at, respectively		[]
	A) Cathode and	B) Anode and Cathode	C) Electrolyte	D) None of these		
	Anode					
4.	If $E^0 Ag^+/Ag=0.799$	$V \text{ and } E^0 Zn^{2+}/Zn = -0.763$	V, then		[1
	A) Ag can oxidize	B) Ag can reduce Zn ²⁺	C) Zn can reduce	D) Zn ²⁺ can be	-	-
	H_2 to H^+	, 0	Ag+	reduced by H ₂		
5.		conduct electricity because	e it is	·	[]
	A) Almost not	B) Decomposed easily	C) Low boiling	D) Neutral	L	-
	ionized	, 1	,	,		
6.		ing is not a non-electrolyte	?		[1
	A) Acetic acid	B) Glucose	C) Ethanol	D) Urea	L	-
7.	<i>'</i>	ing is a primary reference of	,	,	[]
	A) Calomel	B) Hydrogen electrode	C) Glass electrode	D) None of these	-	-
	electrode	, •	,	,		
8.		ing is an example for stron	g acid		[]
	A) CH ₃ COOH	B) HCl	C) HNO ₃	D) Both B & C	-	-
9.	*	ing is an example for stron	,	D) Both B & C	[]
· .	A) NaOH	B) KOH	C) Ca(OH) ₂	D) All of these	L	
10.	,	ing is an example for weak	, , , ,	_ ,	Г	1
10.		B) HCN	C) HCOOH	D) All of these	L]
11	A) HF Which of the follows	,	,	D) I'm of these	Г	1
11.	A) NH ₃	ing is an example for weak B) NH4OH	D) CH ₃ NH ₂	D) All of these	L]
12.	*	lded to CuSO ₄ solution, co	,	, , , , , , , , , , , , , , , , , , ,	Г]
12.	A) Oxidation of	B) Hydrolysis of CuSO ₄			L ⊦	J
	Cu ²⁺	b) Hydrorysis of Cu5O4	c) formation of cuso4	D) Reduction of Cu		
13.	The main purpose of	f salt bridge in the voltaic c	eell is		[]
	A) To maintain flow	B) To maintain charge	C) Barrier for electron	D) None of these		
		•		,	Daga (
	CHEMISTRY			ı	Page 6	

	of electrons	neutrality of solution	transfer			
14.	The difference in po	tential of the two half-cell	s at a cell known as		[]
	A) EMF of the cell	B) standard electrode	C) Reduction	D) Oxidation		
15.	The tendency of an ions is called	electrode to lose (or) gain	electrons when it is in	contact with its own	[]
16.	A) Hydration The difference of poelectrode is called	B) Oxidation tential which causes the flo	C) Reduction ow of current from one e	D) Electrode potential electrode to another]]
	A) Oxidation	B) Reduction	C) Neutralization	D) Electro motive force		
17.	The potential of the	standard hydrogen electrod	le is		[]
	A) 1 V	B) 0 V	C) 10 V	D) 0.5 V		
18.	<i>'</i>	lution is directly proportion	nal to		[]
	A) No. of ions	B) Mobility of ions	C) Both A & B	D) Neither A & B	L	-
19.	*	in Strong acid vs Strong ba B) 'S' Shape	<i>'</i>	<i>'</i>	[]
20.	, -	trations, the concentration	, <u>.</u>	•		
20.	solution being titrate	ed.			[]
	A) Four	B) Two	C) Three	D) Ten		
21.	In primary battery, the	he electrode reactions are			[]
	A) Irreversible	B) Reversible	C) Constant	D) None of these		
22.	The anode and cathode in Zn-air battery respectively is					
	A) Zn metal & Air	B) Porous carbon paste& Zn metal	C) Zn metal & Porous carbon paste	D) Air & Zn metal		
23.	In secondary battery	, the electrode reactions are	2		[]
	A) Irreversible	B) Constant	C) Reversible	D) None of these		
24.	With increase in dilution, the conductivity of a soltion					
	A) Decreases	B) Does not change	C) Increases	D) Increases first than decreases		
25.	In the cell: $Cu/Cu^{+2}/cu^{+2}$	/Ag ⁺ /Ag, which of the is n	ot correct		[]
	A) 'Ag' electrode is the negative electrode	B) 'Cu' electrode is the negative electrode	C) Ag ⁺ reduced to Ag	D) Cu is oxidized to Cu ⁺²		
26.	The indicator electro	de in the potentiometric se	ensor is		[]
	A) Calomel electrode	B) Bulb electrode	C) Hydrogen electrode	D) None these		
27.	The bulb electrode is	S			[]
	A) Selective to H ⁺ ions	B) Selective to metal ions	C) Both A & B	D) None of these	-	-
28.	Glucometer is examp	ple for			[1
	A) Potentiometric	B) Conductometric	C) Amperometric	D) None of these	L	1

	sensors	sensors	sensors			
29.	Amperometric senso	or is useful to findout the fo	llowing		[]
	A) Estimation of	B) pH of solution	C) Estimation of uric	D) Cell potential		
	Glucose		acid			
30.	Which of the follow	ing is secondary battery			[]
	A) Zn-Air battery	B) Lead acid battery	C) Li-ion Battery	D) None of these		
31.	Which of the follow	ing is primary battery			[]
	A) NICAD battery	B) Lead acid battery	C) Zn-air battery	D) Lithium-ion battery		
32.	The electrodes in con	nductivity cell are made up	of		[]
	A) Carbon	B) Platinum electrodes	C) Hydrogen	D) None of these		
	derivatives		electrodes			
33.	Cell constant of a co	onductometric cell	_		[]
	A) Increases with	B) Depends on the	C) Decreases with	D) Is independent of		
	dilution	nature of electrolyte	dilution	the nature of		
				electrolyte		
34.	The anode and catho	de in Li-ion battery respec	tively are		[]
	A) LiCoO ₂ &	B) Porous Carbon &	C) Graphite &	D) None of these		
	Graphite	Graphite	LiCoO ₂			
35.	The Li-ion battery w	orks by			[]
	A) Redox reaction	B) Transfer of Li-ions	C) H ⁺ ions	D) None of these		
	involved in it	between the electrodes	transportation			
36.	What is the voltage p	produced by the H ₂ -O ₂ fuel	cell, operating under sta	andard conditions	[]
	A) 1.0 V	B) 1.23 V	C) 2.0 V	D) 0.5 V		
37.	H ₂ -O ₂ fuel cells are	used as auxiliary energy so	urce in		[]
	A) Aeroplanes	B) Trains	C) Space vehicles	D) Automobile engines		
38.	Which of the following is not true in the case of fuel cells					
	A) They store	B) They do not store	C) Efficiency is twice	D) Reactants are		
	chemical energy	chemical energy		supplied constantly		
39.	In nolymar alactroly	te membrane fuel cells, the	power plant	unefor of	Г	7
39.	1 0	B) Electrode material	C) H ⁺ ions	D) None	L]
40	A) Electrons The indicator electrons		,	D) None	г	1
40.		ode in potentiometric titrati B) Hydrogen electrode	C) Platinum	D) None of these	L]
	A) Calomel	b) Hydrogen electrode	electrode	D) None of these		
	electrode		electrode			
		UNI	Γ-ΙV			
		POLYMER O				
1.	A plastic which can	be softening on heating and	•		[]
	A) Thermosetting	B) Thermoplastic	C) Thermite	D) Bakelite		
2.	Molecular mass of p	olymer is			ſ	1

	A) Large	B) Small	C) Negligible	D) Very small		
3.		vas derived from the Greek	word, poly means	•	[]
	A) Mono	B) Many	C) Dimer	D) Monomer	L	_
4.		st used in co-ordination cha	in polymerization is		[1
	A) Nickel	B) Ziegler-Natta	C) Palladium	D) Platinum	Ľ	-
_		catalyst			_	
5.		ing is an example for homo		D) 411 C.1	[]
	A) Teflon	B) PVC	C) Polythene	D) All of these		
6.		ober is mainly done by addi	<u></u>	D) 7 0	[]
7	A) Oxygen gas	B) MgO ₂	C) Sulphur	D) ZnO		,
7.		condensation polymerization		D) D 1 1	[]
	A) Polythene	B) Teflon	C) Bakelite	D) Polypropylene		
8.	Fluorine atoms are p		a	D) = 0	[]
	A) Nylon	B) Styrene	C) Polythene	D) Teflon		
9.	Bakelite is chemical	•			[]
	A) Polybutylene	B) Phenol-	C) Polystyrene	D) Polypropylene		
	- a	Formaldehyde resin			_	
10.		nde up of the monomers			[J
	A) Butadiene + Phenol	B) Butadiene + Styrene	C) Butadiene + Acrylonitrile	D) Styrene + Phenol		
11.	Homopolymer is ma	ide up of			[]
	A) Different kinds of monomer units	B) Same monomer units	C) Both of these	D) None		
12.		resin is commercially known	as		[]
	A) Nylon	B) PVC	C) Bakelite	D) Teflon	L	,
13.	Buna-S rubber is als	,	,	,	[]
15.	A) Nitrile rubber	B) Polyurethane	C) Styrene rubber	D) Butyl rubber	L	J
14	Nylon is a	•	o, 20 , 2000	_,,	[]
	A) Polyester	B) Polyamide	C) Vinyl polymer	D) PVC	L	J
15.		nnization makes rubber		_,	[]
15.	A) Soft	B) Hard	C) Elastic	D) Swells oils	L	J
16.	Buna-N rubber is als		C) Elastic	b) swens ons	[]
10.	A) Nitrile rubber	B) Polyurethane	C) Styrene rubber	D) Butyl rubber	L	J
17.	· ·	oduced by co-polymerization		D) Butyl luodel	г	1
1/.		B) Butadiene + Styrene	C) Butadiene +	D) Styrene + Phenol	[]
	A) Butadiene +	b) buttachene Styrene	Acrylonitrile	b) Styrene + 1 henor		
10	Pheno Puna Number is my	ada un af tha manamara	1101/1011101110		г	1
18.	A) Butadiene+	ade up of the monomers B) Butadiene + Styrene	C) Butadiene +	D) Styrene + Phenol	[]
	Phenol	b) butadiene + Styrene	Acrylonitrile	D) Stylene + I henor		
19.	Nitrogen atoms are	present in	7 tory romaine		[1
1).	A) Teflon	B) Polythene	C) Nylon	D) Polyvinyl chloride	L	J
	•	,			0	
	CHEMISTRY			Page	9	

20.	Co-polymerization	is also known as			[]
	A) Step growth	B) Chain growth	C) Stereo specific	D) Coordination		
	polymerization	polymerization	polymerization	polymerization		
21.	Addition-polymeriz	cation is also known as			[]
	A) Step growth	B) Chain growth	C) Stereo specific	D) Coordination		
	polymerization	polymerization	polymerization	polymerization		
22.	The repeating units	present in a polymer chair	in are known a_		[]
	A) Monomer	B) Dimers	C) Polymer	D) Tetramers		
23.	The number of bone	ding sites in a monomer is	s known as		[]
	A) Degree of	B) Tacticity	C) Functionality	D) Silicones		
	polymerization					
24.	An example of The	rmoplastic is			[]
	A) Polystyrene	B) PVC	C) Polythene	D) All of these		
25.	An Example of co-	polymer is	-		[]
	A) PVC	B) Polythene	C) Teflon	D) Buna-S	-	-
26.	,	e is the monomer of	,	,	[]
	A) Nylon-6,6	B) Polythene	C) Teflon	D) PVC	L	J
27.	, ,	erization is also known as	,	,	[]
_,,	A) Step growth	B) Chain growth	C) Stereo specific	D) Coordination	L	J
	polymerization	polymerization	polymerization	polymerization		
28.	Styrene rubber is al	so known as			[]
20.	A) Buna-S	B) Nytrile	C) Thikol	D) Vulcanized rubber	L	J
29.	,	, •	th materials consisting of	,		
۷).		mm in diameter.	th materials consisting of	extremely timi moers	[]
	A) 0.025	B) 0.010	C) 0.015	D) 0.020		
30.	*	ndensation polymer is	,	2) 0.020	[]
50.	A) PVC	B) Polythene	 C) Nylon-6,6	D) Teflon	L	J
31.	Bakelite is a excellen	, •	C) Ttylon 0,0	D) Tenon	г	1
31.		B) Semiconductor	C) Insulator	D) None of these	L	J
32.	A) Conductor Thermoplastics are p	•	C) modator	D) None of these	г	1
32.		B) Addition	C) Co-polymerization	D) Coordination	L	J
	A) Condensation polymerization	polymerization	c) co porymenzation	polymerization		
33.	Thermosetting plastic	• •		F	[]
00.	A) Co-	B) Coordination	C) Condensation	D) Addition	L	J
	polymerization	polymerization	polymerization	polymerization		
34.			involves treatment of polyme	- ·	Γ]
	A) Metal	B) Lewis acid	C) Lewis base	D) None of these	-	-
35.		g, example for conducting po	olymers is/are		ſ	1
	A) Polyvinyl	B) Polyaniline	C) Polyacetylene	D) Both B & C	-	•
	Chloride					
36.	The carbon nanofiber	rs are present using the follo	owing precursor		[]

	A) Rayon	B) Polyacrylonitrile	C) Both A & B	D) PVC		
37.	Hetero polymer is n	nade up of			[]
	A) Same monomer units	B) Different monomer units	C) Both of these	D) None of these		
38.	In preparation of cond	ducting polymer, n-doping inv	volves treatment of polyme	er with	[]
	B) Lewis acid	C) Lewis base	C) Plastics	D) None of these		
39.	Polyglycolic acid and	Polylactic acid are examples	for polymers		[]
	A) Conducting polymers	B) Elastomers	C) Bio-degradable polymers	D) Plastics		
40.	Among the following	, bio-degradable polymer is			[]
	A) Polyvinyl chloride	B) Polylactic acid	C) Polyacetylene	D) Polyaniline		
			J NIT-V			
		INSTRUMENTAL MET	THODS AND APPLICA	ATIONS		
1.	In the equation, A =	εbc, what quantity is repre	sented by "ε"?		[]
	A) Absorptivity	(B) Molar absorptivity	(C) Path length	(D) None of these		
2.	Among the given el	ectromagnetic radiation, wh	hich has lowest energy		[]
	A) UV rays	B) IR rays	C) Visible Rays	D) Radio waves		
3.	Which of the given	electromagnetic radiation h	as lowest wavelength		[]
	A) X-rays	B) Radio waves	C) IR rays	D) Visible Rays		
4.	In electromagnetic s	spectrum, visible region ran	age is		[]
	A) 1 μm – 100 μm	B) $1 \text{ nm} - 10 \text{ nm}$	C) $1 \text{ cm} - 10 \text{ cm}$	D) 400 nm – 700 nm		
5.	Highest energy radi	ation among the visible rad	iation is		[]
	A) Blue	B) Red	C) Green	D) Yellow		
6.	Beer – Lambert's la	w not applicable when			[]
	A) Monochromatic	B) High concentration	C) Constant	D) None of this		
	light	of sample	Temperature			
7.	UV-Vis spectroscop	by, only $\sigma \to \sigma^*$ transitions	are shown by		[]
	A) Saturated	B) Unsaturated	C) Alcohols	D) None of these		
	Compounds	Compounds				
8.	Which of the following	ng electromagnetic radiation h	as highest wavelength		[]
	A) X- rays	B) Cosmic rays	C) Radio waves	D) Gamma rays		
9.	UV-Vis spectroscop transition(s)?	by of organic compounds is	usually concerned with	which electronic	[]
	A) $\sigma \rightarrow \sigma^*$	B) n $\rightarrow \sigma^*$	C) n $\rightarrow \pi^* \& \pi \rightarrow \pi^*$	D) None of these		
10.	,	py provides valuable inforn	, , , , , , , , , , , , , , , , , , ,	,	[]
	A) Molecular weigh	• •	C) Conjugation	D)Functional groups		-
11.	,	y used monochromators are		,	[]
	A) Light	B) Prisms	C) Lamp	D) None		_
12.	The UV radiation sou	· ·	, 1	,	[]
	A) Deuterium Lamp	B) Tungsten Lamp	C) Nichrome wire	D) Nerst Glober	-	-
	CHEMISTRY			Page	: 11	

13.	The Visible radiation s	ource is			[]
	A) Deuterium Lamp	B) Tungsten Lamp	C) Nichrome wire	D) Nerst Glober		
14.	The cuvettes used in th	e UV- Visible spectroscop	y are made up of		[]
	A) Steel	B) Quartz	C) Silicate glass	D) Both B & C		
15.	Generally, the thicknes	s of the cuvette is	_		[]
	A) 1 cm	B) 2 cm	C) 10 cm	D) 1 m		
13.	The commonly used de	etector in UV-Visible spect	troscopy is		[]
	A) Globay cell	B) Bolometers	C) Photomultiplier tubes	D) None of this		
14.	IR Spectroscopy is also	known as			[]
	A) Vibrational	B) Electronic	C) Rotational	D) None of this		
	Spectroscopy	Spectroscopy	Spectroscopy			
15.	Chage in the inter-aton	nic distance along the bond	l axis is known as		[]
	A) Bending	B) Scissoring	C) Stretching	D) Rocking		
16.	In plane bending's are	known as			[]
	A) Wagging	B) Scissoring	C) Stretching	D) Twisting		
17.	The source of Infrared	radiation is			[]
	A) Nernst Glober	B) Hydrogen Lamp	C) Nichrome wire	D) Both A & C		
18.	The functional group re	egion in IR Spectroscopy r	_		[]
	A) $4000 \text{ cm}^{-1} - 1300$	B) 2000 cm ⁻¹ – 1000 cm	$^{-1}$ C) 1300 cm ⁻¹ – 900 cm ⁻¹	D) $900 \text{ cm}^{-1} - 400 \text{ cm}^{-1}$		
	cm ⁻¹	1				
19.	The molecules that are	not active in IR Spectrosc			[]
	A) H_2O	B) H ₂	C) Cl ₂	D) Both B & C		
20.	Which of the following	g is not an IR vibrational m			[]
	A) Stretching	B) Scissoring	C) Rolling	D) Rocking		
21.	The commonly used to	-	ctional groups in molecules		[]
	A) UV-Visible	B) IR Spectroscopy	C) HPLC	D) None of these		
	Spectroscopy					
22.		•	can be seen in the range of _		[]
	A) $3700 \text{ cm}^{-1} - 3100$	B) 2250 cm ⁻¹ – 2000 cn	n ⁻¹ C) 3200 cm ⁻¹ – 2800	D) $900 \text{ cm}^{-1} - 600 \text{ cm}^{-1}$		
22	cm ⁻¹		cm ⁻¹		r	,
23.		he vibrational spectroscopy		D) M C.1	L]
	A) $v = \pm 1, 2, 3$	B) $v = 0$	C) $v = 0, 1$	D) None of these	_	-
24.	The mid IR range is	D) 200 10 -1	C) 12000 1000 -1	D) M C.1	L	j
	A) $4000 - 200 \text{ cm}^{-1}$	B) 200 – 10 cm ⁻¹	C) $12800 - 4000 \text{ cm}^{-1}$	D) None of these	_	-
25.	•	es the relationship between		5)	Ĺ	J
	A) Reflected radiation	B) Energy scattered	C) Energy absorption	D) energy absorption		
	and concentration	radiation and concentration	and concentration	and reflected radiation		
26.	The following spectros	copy is used to find coloring	ngs in food samples		Γ	1
20.	A) UV-Visible	B) Chromatography	C) IR Spectroscopy	D) None of these	Ĺ	J
	spectroscopy	2) cin officionity	o, it speedoscopy	2,110110 01 111000		
27.	The transmittance can	give by			ſ	1

CHEMISTRY

Page 12

	A) I_0/I	B) $I + I_0$	C) I \times I ₀	D) I/I ₀		
28.	What are the detectors	s used in IR spectroscopy?	?		[]
	A) Photo	(B) Barriel layercell	(C) Photo multiplier	(D) none		
	conductivity cell		tubes			
29.	•	nalytical method used to sep	parate and analyze		[]
	A) Simple mixtures	B) Viscous mixtures	C) Complex mixtures	D) Metals		
30.	In chromatography, the	stationary phase can be			[]
	A) Solid or liquid	B) Solid only	C) Liquid or gas	D) Liquid only		
31.	In chromatography, the	stationary phase can be			[]
	A) Liquid	B) Gas	C) Solid	D) Solid or Liquid		
32.	_	nalyte after sample injection	to reach the detector is ca	alled	[]
	A) Passage time	B) Solute migration	C) Adjusted	D) Retention time		
	_	rate	retention time			
33.	In HPLC Chromatograp	bhy, the mobile and stationar	ry phases respectively		[]
	A) Gas, Solid	B) Liquid, Gas	C) Liquid, Solid	D) Gas, Liquid		
34.	In chromatography, the	mobile phase can be			[]
	A) Solid	B) Liquid	C) Gas	D) B & C		
35.	HPLC stands for				[]
	A) High Pressure	B) High Performance	C) High Placed Liquid	D) Both A & B		
	Liquid	Liquid Chromatography	Chromatography			
	Chromatography					
36.	The composition of the solvent during an isocratic elution in HPLC					
	A) Changes	B) Changes in a serious	C) Remains constant	D) None of these		
	continuously	of steps				
37.	In the reverse phase HP	LC, the column and mobile	phase are		[]
	A) Non-polar solvent	B) Non-polar solvent	C) Polar solvent and	D) Any of the above		
	and non-polar column	and polar column	non-polar column			
38.	In HPLC chromatograp	•			[]
	A) Gas	B) Liquid	C) Solid	D) Both A & B		
39.	The gradient elution of	composition of the solvent is	n HPLC means		[]
	A) Mobile phase is	B) Mobile phase is	C) Both A & B	D) None of these		
	constant	variable				
40.	The commonly used det	ectors in HPLC chromatogr			[]
	A) Refractive index	B) UV-Vis detector	C) Mass-spectrometric	D) All of these		

detector

detector