LAPORAN PRAKTIKUM 1

Kelompok 16

Nama Anggota Kelompok:

- Lucky Himawan Prasetya (5025241147)
- Muh. Aqil Alqadri Syahid (5025241161)
- Hosea Felix Sanjaya (5025241177)

Link Github Terkait:

https://github.com/arkananta47/Praktikum-Komnum/blob/main/praktikum1.py

Anda sudah mengerti algoritma pemrosesan metode Regula Falsi, dan anda sudah memahami cara kerjanya. Sekarang anda tinggal mengimplementasikan algoritma tersebut menjadi sebuah program komputer metode Regula Falsi (yang dapat menampilkan proses iteratif numerik, lengkap dengan grafik fungsinya).

```
import matplotlib.pyplot as plt
import numpy as np
import math
# BOLEH DIUBAH YA
def f(x):
 return math.cos(x) - 3*x
x1 = 0.3
x2 = 0.4
 # Contoh Soal 1:
 # return math.sin(x) - 5*x + 2
 #x1 = 0.4
 # x2 = 0.5
 # Contoh Soal 2:
 # return math.exp(x) - 2*x - 21
 #x1 = 3
  # x2 = 4
```

```
# Contoh Soal 3:
 # return math.cos(x) - 3*x
 # x1 = 0.3
 # x2 = 0.4
tol = 1e-5
max_iter = 100
def regula_falsi(f, x1, x2, tol=1e-5, max_iter=100):
 if f(x1) * f(x2) >= 0:
   print(f"Metode gagal: f({x1}) = {f(x1):.6f}, f({x2}) = {f(x2):.6f}")
   print("f(x1) dan f(x2) harus memiliki tanda yang berbeda.")
   return None
 print("{:<8} {:<12} {:<12} {:<12} {:<12} ".format("Iterasi", "x1", "x2", "x3", "f(x3)"))
 for i in range(max_iter):
   f1 = f(x1)
   f2 = f(x2)
   x3 = x2 - f2 * (x1 - x2) / (f1 - f2)
   f3 = f(x3)
   if abs(f3) < tol:
     return x3
   if f1 * f3 < 0:
     x2 = x3
   else:
     x1 = x3
```

```
akar = regula_falsi(f, x1, x2, tol, max_iter)

if akar is not None:

print("\nAkar ditemukan pada x = {:.6f}".format(akar))

x_vals = np.linspace(x1 - 0.5, x2 + 0.5, 400)

y_vals = [f(x) for x in x_vals]

plt.plot(x_vals, y_vals, label="f(x)", color='blue')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(akar, color='red', linestyle='--', label=f"Akar ≈ {akar:.5f}")

plt.title("Metode Regula Falsi")

plt.xlabel("x")

plt.ylabel("f(x)")

plt.grid(True)

plt.legend()

plt.show()
```

Ide Pendekatan : Regula Falsi

Kode diatas menggunakan Metode Regula Falsi (False Position Method) untuk mencari akar dari suatu fungsi non-linear f(x), yaitu nilai x yang memenuhi f(x) = 0. Tujuannya untuk mencari akar dari fungsi f(x) menggunakan metode numerik karena tidak semua fungsi bisa diselesaikan secara analitik (langsung dengan rumus).

Metode Regula Falsi adalah pendekatan numerik untuk menemukan akar fungsi dalam selang [x1, x2] dengan syarat:

- $f(x1) * f(x2) < 0 \rightarrow$ artinya tanda dari fungsi di kedua titik berbeda \rightarrow ada akar di antaranya (berdasarkan Teorema Bolzano).

Langkah-langkah metode Regula Falsi:

1. Hitung titik tengah x3 menggunakan rumus interpolasi linier:

```
x3 = x2 - f(x2) * (x1 - x2) / (f(x1) - f(x2))
```

2. Evaluasi f(x3):

- Jika |f(x3)| < toleransi, maka akar ditemukan.

- Jika f(x1) * f(x3) < 0 → akar berada di antara x1 dan x3 → set x2 = x3.
- Jika $f(x2) * f(x3) < 0 \rightarrow$ akar berada di antara x3 dan x2 \rightarrow set x1 = x3.

3. Ulangi proses hingga akar ditemukan atau jumlah iterasi maksimum tercapai.

Penjelasan Kode:

- 1. Fungsi f(x) didefinisikan terlebih dahulu (dapat diubah).
- 2. Validasi awal memastikan bahwa f(x1) dan f(x2) memiliki tanda berbeda.
- 3. Iterasi dilakukan menggunakan rumus Regula Falsi.
- 4. Jika akar ditemukan, hasil divisualisasikan menggunakan matplotlib.

Kelebihan dan Kekurangan Metode Regula Falsi:

Kelebihan:

- Lebih cepat dari metode biseksi dalam banyak kasus.
- Mempersempit interval sambil mempertahankan nilai yang lebih akurat.

Kekurangan:

- Jika fungsi mendekati linier atau mendatar di salah satu sisi, metode bisa konvergen sangat lambat.

Contoh Soal Alternatif:

- math.sin(x) 5*x + 2
- math.exp(x) 2*x 21

Ringkasan:

Metode Regula Falsi bekerja dengan menggunakan interpolasi linier antara dua titik yang memiliki tanda fungsi berbeda, lalu memperbaiki interval berdasarkan nilai fungsi titik tengah. Ini adalah metode numerik klasik untuk pencarian akar fungsi non-linear.