Stellenbosch Camp 2018: Senior Geometry Lecture 2: Inversion Basics

Definition (Circle Inversion). Let Ω be a circle with circumcentre O and radius r. We say that T is an inversion in the circle Ω if for any point $A \neq O$ in the plane the following is true:

- 1. T is a map that sends A to a point A'
- 2. A' is on the ray OA
- 3. $OA \cdot OA' = r^2$

We say that A' is the image of A.

Notation. When referencing a circle inversion called T, in a circle Ω , with centre O and radius r. There are a few accepted notations for short:

- $T(\Omega)$
- \bullet T(O,r)

Theorem 1. If A' is the image of A with respect to a circle Ω , then A is the image of A' with respect to Ω .

Theorem 2. Let A be a point on the circumference of a circle Ω . Then A is the image of A with respect to the circle Ω .

Theorem 3. Let Ω be a circle, and let A,B be 2 points. Let A' and B' be the images of A and B, with respect to Ω , respectively. Then A, A', B, and B' all lie on a common circle.

Definition (Inverting a Set of Points). Let S be a set of points (E.g. a line, a circle, etc). Then the image of S with respect to a circle Ω , denoted S', is the set containing the image of every point in S. In symbols:

$$S' := \{P' \in \overrightarrow{OP} : OP \cdot OP' = r^2, \forall P \in S\}$$

Theorem 4. Let Ω be a circle with circumcentre O, and let ℓ be a line not passing through O. Then the image of ℓ with respect to Ω is a circle passing through O.

Conversely, if Γ is a circle passing through O, then the image of Γ with respect to Ω is a line not passing through O.

Theorem 5. Let Ω be a circle with circumcentre O, and let Γ be a circle not passing through O. Then the image of Γ with respect to Ω is also a circle not passing through O.

Theorem 6. Let Ω be a circle with circumcentre O, and let ℓ be a line passing through O. Then the image of ℓ with respect to Ω is itself.

Theorem 7. Let Ω be a circle with circumcentre O, and let Γ be a circle that is orthogonal to Ω (intersecting at right angles). Then the image of Γ with respect to Ω is itself.

Theorem 8. Let T(O,r) be an inversion, and let α and β be 2 circles in the plane. Then the angles between the intersections of of the circles is invariant under T.