JEE MAINS 2023 April 13 - Shift 1

EE24BTECH11061 - Rohith Sai

Single Correct 1) For $x \in \mathbb{R}$, two real valued functions f(x) and g(x) are such that, $g(x) = \sqrt{x} + 1$

2) Let the equation of plane passing through the line of intersection of the planes x + 2y + az = 2 and x - y + z = 3 be 5x - 11y + bz = 6a - 1. For $c \in \mathbb{Z}$, the distance

c) -3

d) 1

and $f \circ g(x) = x + 3 - \sqrt{x}$. Then f(0) is equal to

a) 5

b) 0

	of this plane from the point $(a, -c, c)$ is $\frac{2}{\sqrt{a}}$, then $\frac{a+b}{c}$ is equal to	
	a) -4 b) 2	c) -2 d) 4
3)	3) Fractional part of the number $\frac{4^{2022}}{15}$ is equal to	
	a) $\frac{4}{15}$ b) $\frac{8}{15}$	c) $\frac{1}{15}$ d) $\frac{14}{15}$
4)	Let $y = y_1(x)$ and $y = y_2(x)$ be the solution curves of the differential equation $\frac{dy}{dx} = y + 7$ with initial conditions $y_1(0) = 0$ and $y_2(0) = 1$ respectively. Then the curves $y = y_1(x)$ and $y = y_2(x)$ intersect at	
	a) no pointb) infinite number of points	c) one pointd) two points
5)	5) The area of the region enclosed by the curve $f(x) = max\{\sin x, \cos x\}, -\pi \le x \le \pi$ and the x-axis is	
	a) $2\sqrt{2}(\sqrt{2} + 1)$ b) $4\sqrt{2}$	c) 4 d) $2(\sqrt{2} + 1)$