A SHORT INTRODUCTION TO PYTHON

Numpy, Scipy

Slides adapted from a presentation by

Essential Python Extensions

- The following packages extend Python with extra features
 - NumPy Fast, multidimensional arrays
 - SciPy Libraries of reliable, tested scientific functions
- Additional packages for Data Science (not covered today)
 - Wide range of learning algorithms (scikit-learn)
 - Tools for data manipulation (Pandas)
 - Plotting tools (Matplotlib)
 - Direct connection to R (rpy2)

PyLab

Sometimes the union of the 5 packages is called pylab

Helpful Sites

SCIPY DOCUMENTATION PAGE

http://www.scipy.org/Documentation

Wiki SciPv

Documentation

Mailing Lists

Download

Installing SciPy Topical Software

Cookbook Developer Zone

RecentChanges FindPage

Page

Immutable Page Info

Attachments

More Actions

Documentation

Note also the Installing SciPy and Cookbook areas of this web sit

Getting Started and Tutorial

. FAQ. Answers to the most frequently-asked questions.

Numpy

Numpy provides array manipulation tools for python.

- Guide to NumPy (fee-based until 2010), by Travis Oliphant.
- Numpy Glossary: Basic definitions of terms. This is perhaps
- Tentative NumPy Tutorial: Beta version of the (still empty) !
- Numpy Example List: large database demonstrating most c
- The example list can be conveniently accessed from Python
- . Numpy Example List With Doc; database derived from the c
- Extensive Numpy & Scipy Summary: External page with det
- . NumPy for MATLAB® Users: An overview the basics of NumI
- RecordArrays: A Tutorial on using Record Arrays in NumPy.
- Porting to NumPy: Provides stories and examples of porting

Scipy

SciPy is a collection of mathematical tools for scientific comp

- SciPy Tutorial: Still a work in progress. See also the (older)
- · A course on NumPy/SciPy by Dave Kuhlman
- · A tutorial focused on interactive data analysis for astronom
- History of SciPy: A summary of the events that led to SciPy
- SciPy Tutorials at MIT including DTMF and echo cancellation.
- Scientific Computing with Python (registration required) A o
- scipy Example List: make a list like "Numpy Example List"

- -

NUMPY EXAMPLES

http://www.scipy.org/Numpy Example List With Doc

Wiki

SciPy Documentation

Mailing Lists

Download

Installing SciPv

Topical Software

Cookbook

Developer Zone

RecentChanges

FindDage

Numpy Example List Wi

This is an auto-generated version of Numpy Example Contents

- 1. ...
- 2. []
- 3. T
- abs()
 absolute()
- 6. accumulate
- 7. add()

apply_along_axis()

numpy.apply_along_axis(func1d, axis, arr, *args)

Execute func1d(arr[i],*args) where func1d takes 1-D arrays and arr is an N-d array. i varies so as to apply the function along the given axis for each 1-d subarray in arr.

Example:

NUMPY

Numerical Python

What is NumPy?

- NumPy is the fundamental package for scientific computing with Python
- NumPy provides a fast built-in object, ndarray, which is a multidimensional array of a homogeneous data-type that can be manipulated in a vectorized form
 - Numpy Offers Matlab-ish capabilities within Python
- NumPy can also be used as an efficient multi-dimensional container of generic data
 - This allows NumPy to seamlessly and speedily integrate with a wide variety of databases
- Website http://www.numpy.org/
- Chronology
 - Initially developed by Travis Oliphant
 - NumPy 1.0 released October, 2006
 - ~20K downloads/month from Sourceforge
 - Doesn't count distributions that that include NumPy
 - NumPy is at the core of nearly every scientific Python

Overview of NumPy

N-Dimensional ARRAY (NDARRAY)

- A NumPy array is a homogeneous collection of "items" of the same "datatype" (dtype)
 - Can be 1-dim or N-dims
- Element of the array can be C-structure or simple datatype
- Fast algorithms on machine data-types (int, float, etc.)

Universal Functions (UFUNC)

- Functions that operate element-by-element and return result
- Fast-loops registered for each fundamental datatype
 - $\sin(x) = [\sin(x_i), i = 0 ... N]$
 - $x + y = [x_i + y_i, i = 0 ... N]$

Arrays in Python

- Python doesn't include a built-in multi-dimensional array
- Lists ok for storing small amounts of one-dimensional data

```
>>> a = [1,3,5,7,9]

>>> print(a[2:4])

[5, 7]

>>> b = [[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]

>>> print(b[0])

[1, 3, 5, 7, 9]

>>> print(b[1][2:4])

[6, 8]
```

```
>>> a = [1,3,5,7,9]

>>> b = [3,5,6,7,9]

>>> c = a + b

>>> print c

[1, 3, 5, 7, 9, 3, 5, 6, 7, 9]
```

- But, can't use directly with arithmetical operators (+, -, *, /, ...)
- Need efficient arrays with arithmetic and better multidimensional tools

Introducing NumPy Arrays

SIMPLE ARRAY CREATION

```
>>> a = array([0,1,2,3])
>>> a
array([0, 1, 2, 3])
```

CHECKING THE TYPE

```
>>> type(a)
<type 'array'>
```

NUMERIC 'TYPE' OF ELEMENTS

```
>>> a.dtype
dtype('int32')
```

NUMBER OF DIMENSIONS

```
>>> a.ndim
1
```

ARRAY SHAPE

```
# shape returns a tuple
# listing the length of the
# array along each dimension.
>>> a.shape
(4,)
>>> shape(a)
(4,)
```

ARRAY SIZE

```
# size reports the entire
# number of elements in an
# array.
>>> a.size
4
>>> size(a)
4
```

Introducing NumPy Arrays

ARRAY COPY

```
# create a copy of the array
>>> b = a.copy()
>>> b
array([0, 1, 2, 3])
```

CONVERSION TO LIST

```
# convert a numpy array to a
# python list
>>> a.tolist()
[0, 1, 2, 3]

# For 1D arrays, list also
# works equivalently, but
# is slower
>>> list(a)
[0, 1, 2, 3]
```

Setting Array Elements

ARRAY INDEXING

```
>>> a[0]

0

>>> a[0] = 10

>>> a

[10, 1, 2, 3]
```

FILL

```
# set all values in an array.
>>> a.fill(0)
>>> a
[0, 0, 0, 0]

# This also works, but may
# be slower
>>> a[:] = 1
>>> a
[1, 1, 1, 1]
```

⚠ BEWARE OF TYPE COERSION

```
>>> a.dtype
dtype('int32')
# assigning a float to
# an int32 array will
# truncate decimal part
>>> a[0] = 10.6
>>> a
[10, 1, 2, 3]
# fill has the same behavior
>>> a.fill(-4.8)
>>> a
[-4, -4, -4, -4]
```

Multi-Dimensional Arrays (ndarray)

MULTI-DIMENSIONAL ARRAYS

(ROWS, COLUMNS)

```
>>> a.shape
(2, 4)
>>> shape(a)
(2, 4)
```

ELEMENT COUNT

```
>>> a.size
8
>>> size(a)
8
```

NUMBER OF DIMENSIONS

```
>>> a.ndims
```

GET/SET ELEMENTS

ADDRESS FIRST ROW USING SINGLE INDEX

```
>>> a[1]
array([10, 11, 12, -1])
```

Array Slicing

SLICING WORKS MUCH LIKE STANDARD PYTHON SLICING

STRIDES ARE ALSO POSSIBLE

>>> a[2::2,	::2]	
array([[20,	22,	24],
[40,	42,	44]])

Slices Are References

Slices are references to memory in original array. Changing values in a slice also changes the original array.

```
>>> a = array((0,1,2,3,4))

# create a slice containing only the
# last element of a
>>> b = a[2:4]
>>> b[0] = 10

# changing b changed a!
>>> a
array([ 1,  2, 10, 3, 4])
```

Fancy Indexing in 2D

```
# Indexing by position
>>> a[(0,1,2,3,4),(1,2,3,4,5)]
array([ 1, 12, 23, 34, 45])
>>> a[3:,[0, 2, 5]]
array([[30, 32, 35],
       [40, 42, 45]])
       [50, 52, 5511)
# Indexing with Booleans
>>>  mask = array([1,0,1,0,0,1],
                 dtype=bool)
>>> a[mask,2]
array([2,22,52])
```


Unlike slicing, fancy indexing creates copies instead of views into original arrays.

Array Calculation Methods

SUM FUNCTION

```
>>> a = array([[1,2,3],
               [4,5,6]], float)
# Sum defaults to summing all
# *all* array values.
>>> sum(a)
21.
# supply the keyword axis to
# sum along the 0th axis.
>>> sum(a, axis=0)
array([5., 7., 9.])
# supply the keyword axis to
# sum along the last axis.
>>> sum(a, axis=-1)
array([6., 15.])
```

SUM ARRAY METHOD

```
# The a.sum() defaults to
# summing *all* array values
>>> a.sum()
21.

# Supply an axis argument to
# sum along a specific axis.
>>> a.sum(axis=0)
array([5., 7., 9.])
```

PRODUCT

```
# product along columns
>>> a.prod(axis=0)
array([ 4., 10., 18.])

# functional form
>>> prod(a, axis=0)
array([ 4., 10., 18.])
```

Min/Max

MIN

```
>>> a = array([2.,3.,0.,1.])
>>> a.min(axis=0)
0.
# use Numpy's amin() instead
# of Python's builtin min()
# for speed operations on
# multi-dimensional arrays.
>>> amin(a, axis=0)
0.
```

ARGMIN

```
# Find index of minimum value.
>>> a.argmin(axis=0)
2
# functional form
>>> argmin(a, axis=0)
2
```

MAX

```
>>> a = array([2.,1.,0.,3.])
>>> a.max(axis=0)
3.
```

```
# functional form
>>> amax(a, axis=0)
3.
```

ARGMAX

```
# Find index of maximum value.
>>> a.argmax(axis=0)
1
# functional form
>>> argmax(a, axis=0)
1
```

Statistics Array Methods

MEAN

```
>>> a = array([[1,2,3],
               [4,5,6]], float)
# mean value of each column
>>> a.mean(axis=0)
array([ 2.5, 3.5, 4.5])
>>> mean(a, axis=0)
array([2.5, 3.5, 4.5])
>>> average(a, axis=0)
array([2.5, 3.5, 4.5])
# average can also calculate
# a weighted average
>>> average(a, weights=[1,2],
           axis=0)
array([ 3., 4., 5.])
```

STANDARD DEV./VARIANCE

```
# Standard Deviation
>>> a.std(axis=0)
array([ 1.5,  1.5,  1.5])

# Variance
>>> a.var(axis=0)
array([2.25,  2.25,  2.25])
>>> var(a, axis=0)
array([2.25,  2.25,  2.25])
```

Other Array Methods

CLIP

POINT TO POINT

```
# Calculate max - min for
# array along columns
>>> a.ptp(axis=0)
array([ 3.0,  3.0,  3.0])
# max - min for entire array.
>>> a.ptp(axis=None)
5.0
```

ROUND

```
# Round values in an array.
# Numpy rounds to even, so
# 1.5 and 2.5 both round to 2.
>>> a = array([1.35, 2.5, 1.5])
>>> a.round()
array([ 1., 2., 2.])

# Round to first decimal place.
>>> a.round(decimals=1)
array([ 1.4, 2.5, 1.5])
```

Universal Functions (ufunc)

- ufuncs are objects that rapidly evaluate a function element-byelement over an array.
- Core piece is a 1-d loop written in C that performs the operation over the largest dimension of the array
- For 1-d arrays it is equivalent to but much faster than list comprehension

```
>>> type(np.exp)
<type 'numpy.ufunc'>
>>> x = array([1,2,3,4,5])
>>> print np.exp(x)
[2.71828, 7.38905, 20.08553, 54.59815, 148.41315]
>>> print [math.exp(val) for val in x]
[2.71828, 7.38905, 20.08553, 54.59815, 148.41315]
# note: values reformatted to fit slide
```

Vectorizing Functions

VECTORIZING FUNCTIONS

Example

```
# special.sinc already available
# This is just for show.
def sinc(x):
    if x == 0.0:
        return 1.0
    else:
        w = pi*x
        return sin(w) / w
```

SOLUTION

```
>>> from numpy import vectorize
>>> vsinc = vectorize(sinc)
>>> vsinc([1.3,1.5])
array([-0.1981, -0.2122])
```

```
# attempt
>>> sinc([1.3,1.5])
TypeError: can't multiply
sequence to non-int
>>> x = r_[-5:5:100j]
>>> y = vsinc(x)
>>> plot(x, y)
```


Mathematic Binary Operators element by element

```
a + b \rightarrow add(a,b)
a - b → subtract(a,b)
a % b \rightarrow remainder(a,b)
```

MULTIPLY BY A SCALAR

```
>>> a = array((1,2))
>>> a*3.
array([3., 6.])
```

ELEMENT BY ELEMENT ADDITION

```
>>> a = array([1,2])
>>> b = array([3,4])
>>> a + b
array([4, 6])
```

```
a * b \rightarrow multiply(a,b)
a / b \rightarrow divide(a,b)
  a ** b \rightarrow power(a,b)
```

ADDITION USING AN OPERATOR **FUNCTION**

```
>>> add(a,b)
array([4, 6])
```

IN PLACE OPERATION

```
# Overwrite contents of a.
# Saves array creation
# overhead
>>> add(a,b,a) \# a += b
array([4, 6])
>>> a
array([4, 6])
```

Comparison and Logical Operators

```
equal (==) not_equal (!=) greater (>)
greater_equal (>=) less (<) less_equal (<=)
logical_and logical_or logical_xor
```

2D EXAMPLE

Bitwise Operators work only on Integer arrays

```
bitwise_and (&) invert (~) right_shift(a,shifts)
bitwise_or (|) bitwise_xor left_shift (a,shifts)
```

BITWISE EXAMPLES

```
>>> a = array((1,2,4,8))
>>> b = array((16,32,64,128))
>>> bitwise or(a,b)
array([ 17, 34, 68, 136])
# bit inversion
>>> a = array((1,2,3,4), uint8)
>>> invert(a)
array([254, 253, 252, 251], dtype=uint8)
# left shift operation
>>> left shift(a,3)
array([ 8, 16, 24, 32], dtype=uint8)
```

Matrix

- For two dimensional arrays NumPy defined a special matrix class in module matrix
 - Objects are created either with matrix() or mat() or converted from an array with method asmatrix()

```
>>> import numpy
>>> m = numpy.mat([[1,2],[3,4]])
# or
>>> a = numpy.array([[1,2],[3,4]])
>>> m = numpy.mat(a)
# or
>>> a = numpy.array([[1,2],[3,4]])
>>> m = numpy.array([[1,2],[3,4]])
>>> m = numpy.asmatrix(a)
```

Note that the statement m = mat(a) creates a copy of array 'a',
 whereas, method m = asmatrix(a) returns a new reference to the
 same data

Broadcasting

- Multiple inputs must be "broadcasted" to the same shape
 - All arrays are promoted to the same number of dimensions
 - All dimensions of length 1 are expanded as needed

 The trailing axes of both arrays must either be 1 or have the same size for broadcasting to occur

Matrix Objects

STRING CONSTRUCTION

TRANSPOSE ATTRIBUTE

INVERTED ATTRIBUTE

DIAGONAL

```
>>> a.diagonal()
matrix([[1, 5, 6]])
>>> a.diagonal(-1)
matrix([[3, 1]])
```

SOLVE

Matrix vs. Array

- Operator *, dot(), and multiply():
 - Array '*' means element-wise multiplication; dot() is used for matrix mul.
 - Matrix '*' means matrix multiplication; multiply() is used for element-wise mul.
- Handling of vectors (rank-1 arrays)
 - Array the vector shapes 1xN, Nx1 are different things. Operations like A[:,1] return a rank-1 of shape N, not a rank-2 of shape Nx1. Transpose a rank-1 array does nothing
 - Matrix rank-1 arrays are always upgraded to 1xN or Nx1 matrices (row or column vectors). A[:,1] returns a rank-2 matrix of shape Nx1
- Handling of higher-rank arrays (rank > 2)
 - Array objects can have rank > 2
 - Matrix objects always have exactly rank 2
- Convenience attributes
 - Array has a . T attribute, which returns the transpose of the data
 - Matrix has .T, .H, .I, and .A attributes, which return the conjugate transpose, inverse, and asarray() of the matrix, respectively.
- Convenience constructor
 - Array constructor takes (nested) Python sequences as initializers
 - Matrix constructor additionally takes a convenient string initializer

Example – Array and Matrix Calc.

```
>>> A = np.array([[n+m*10 for n in range(5)] for m in range(5)])
>>> v1 = arange(0, 5)
>>> A
array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 44]])
>>> \tau1
array([0, 1, 2, 3, 4])
>>> np.dot(A, A)
array([[ 300, 310, 320, 330, 340],
       [1300, 1360, 1420, 1480, 1540],
       [2300, 2410, 2520, 2630, 2740],
       [3300, 3460, 3620, 3780, 3940],
       [4300, 4510, 4720, 4930, 5140]])
>>> np.dot(A,v1)
array([ 30, 130, 230, 330, 430])
>>> np.dot(v1,v1)
30
```

Examples – Array and Matrix Calc.

```
# Alternatively, we can cast the array objects to the type
matrix. This # changes the behavior of the standard
arithmetic operators +, -, * to # use matrix algebra.
>>> M = np.matrix(A)
>>> v = np.matrix(v1).T
>>> 77
matrix([[0],
        [1],
        [2],
        [3],
        [4]])
>>> M*v
matrix([[ 30],
        [130],
        [230],
        [330],
        [430]])
>>> v.T * v # inner product
matrix([[30]])
```

Concluding Remarks

- Using arrays wisely
 - Array operations are implemented in C or Fortran
 - Optimized algorithms i.e. fast!
 - Python loops (i.e. for i in a:...) are much slower
 - Prefer array operations over loops, especially when speed important
 - Also produces shorter code, often more readable
- Matrix or Array, which one to use?
 - Short answer Use Array
 - They are the standard vector/matrix/tensor type of NumPy. Many NumPy functions return arrays, not matrices
 - There is a clear distinction between element-wise and linear algebra operations
 - You can have standard vectors or row/column vectors if you like
 - The main disadvantage of using the array type is that you will have to use dot() instead of '*' matrix multiplication
- NumPy for Matlab Users
 - http://wiki.scipy.org/NumPy_for_Matlab_Users

SCIPY

Scientific Python

SciPy Overview

Available at <u>www.scipy.org</u>

CURRENT PACKAGES

- Special Functions (scipy.special)
- Signal Processing (scipy.signal)
- Image Processing (scipy.ndimage)
- Fourier Transforms (scipy.fftpack)
- Optimization (scipy.optimize)
- Numerical Integration (scipy.integrate)
- Linear Algebra (scipy.linalg)

- Input/Output (scipy.io)
- Statistics (scipy.stats)
- Fast Execution (scipy.weave)
- Clustering Algorithms (scipy.cluster)
- Sparse Matrices (scipy.sparse)
- Interpolation (scipy.interpolate)
- More (e.g. scipy.odr, scipy.maxentropy)

Image Processing

```
# The famous lena image is packaged with scipy
>>> from scipy import lena, signal
>>> lena = lena().astype(float32)
>>> imshow(lena, cmap=cm.gray)
# Blurring using a median filter
>>> fl = signal.medfilt2d(lena, [15,15])
>>> imshow(fl, cmap=cm.gray)
```

LENA IMAGE

MEDIAN FILTERED IMAGE

Image Processing

```
# Edge detection using Sobel filter
>>> from scipy.ndimage.filters import sobel
>>> imshow(lena)
>>> edges = sobel(lena)
>>> imshow(edges)
```

NOISY IMAGE

FILTERED IMAGE

Statistics

scipy.stats --- CONTINUOUS DISTRIBUTIONS

over 80 continuous distributions!

METHODS

pdf

cdf

rvs

ppf

stats

Statistics

scipy.stats --- Discrete Distributions

10 standard discrete distributions (plus any arbitrary finite RV)

METHODS

pdf

cdf

rvs

ppf

stats

Using Stats Objects

DISTRIBUTIONS

```
# Sample normal dist. 100 times.
>>> samp = stats.norm.rvs(size=100)

>>> x = r_[-5:5:100j]
# Calculate probability dist.
>>> pdf = stats.norm.pdf(x)
# Calculate cummulative Dist.
>>> cdf = stats.norm.cdf(x)
# Calculate Percent Point Function
>>> ppf = stats.norm.ppf(x)
```


Statistics

scipy.stats --- Basic Statistical Calculations on Data

```
•numpy.mean, numpy.std, numpy.var, numpy.cov
```

•stats.skew, stats.kurtosis, stats.moment

scipy.stats.bayes_mvs --- Bayesian mean, variance, and std.

```
# Create "frozen" Gamma distribution with a=2.5
>>> qrv = stats.qamma(2.5)
>>> grv.stats() # Theoretical mean and variance
(array(2.5), array(2.5))
# Estimate mean, variance, and std with 95% confidence
>>> vals = grv.rvs(size=100)
>>> stats.bayes mvs(vals, alpha=0.95)
((2.52887906081, (2.19560839724, 2.86214972438)),
 (2.87924964268, (2.17476164549, 3.8070215789)),
 (1.69246760584, (1.47470730841, 1.95115903475)))
# (expected value and confidence interval for each of
# mean, variance, and standard-deviation)
```

Statistics

Continuous PDF Estimation using Gaussian Kernel Density Estimation

```
# Sample normal dist. 100 times
>>> rv1 = stats.norm()
>>> rv2 = stats.norm(2.0,0.8)
                                           0.35
>>> samp = r [rv1.rvs(size=100),
                                           0.30
               rv2.rvs(size=100)1
                                           0.25
                                           0.20
# Kernel estimate (smoothed histogram)
                                           0.15
>>> apdf = stats.kde.gaussian kde(samp)
                                           0.10
>>> x = linspace(-3, 6, 200)
                                           0.05
>>> plot(x, apdf(x),'r')
 Histogram
>>> hist(x, bins=25, normed=True)
```

Linear Algebra

scipy.linalg --- FAST LINEAR ALGEBRA

- Uses ATLAS if available --- very fast
- •Low-level access to BLAS and LAPACK routines in modules linalg.fblas, and linalg.flapack (FORTRAN order)
- High level matrix routines
 - •Linear Algebra Basics: inv, solve, det, norm, 1stsq, pinv
 - •Decompositions: eig, lu, svd, orth, cholesky, qr, schur
 - •Matrix Functions: expm, logm, sqrtm, cosm, coshm, funm (general matrix functions)

Linear Algebra

LU FACTORIZATION

EIGEN VALUES AND VECTORS

```
>>> from scipy import linalg
>>> a = array([[1,3,5],
               [2,5,1],
               [2,3,6]])
# compute eigen values/vectors
>>> vals, vecs = linalq.eiq(a)
# print eigen values
>>> vals
array([ 9.39895873+0.j,
       -0.73379338+0.i
        3.33483465+0.11
# eigen vectors are in columns
# print first eigen vector
>>> vecs[:,0]
array([-0.57028326,
       -0.41979215,
       -0.706081831)
# norm of vector should be 1.0
>>> linalq.norm(vecs[:,0])
1.0
```

Optimization

scipy.optimize --- unconstrained minimization and root finding

Unconstrained Optimization

fmin (Nelder-Mead simplex), fmin_powell (Powell's method), fmin_bfgs
 (BFGS quasi-Newton method), fmin_ncg (Newton conjugate gradient),
 leastsq (Levenberg-Marquardt), anneal (simulated annealing global
 minimizer), brute (brute force global minimizer), brent (excellent 1-D
 minimizer), golden, bracket

Constrained Optimization

fmin_l_bfgs_b, fmin_tnc (truncated newton code), fmin_cobyla
 (constrained optimization by linear approximation), fminbound (interval
 constrained 1-d minimizer)

Root finding

```
fsolve (using MINPACK), brentq, brenth, ridder, newton, bisect,
  fixed point (fixed point equation solver)
```

Optimization

EXAMPLE: Non-linear least-squares data fitting

```
# fit data-points to a curve
# demo/data fitting/datafit.py
>>> from numpy.random import randn
                                                                    True
                                                                  Samples
>>> from numpy import exp, sin, pi
                                                                    Estimated
>>> from numpy import linspace
                                         20
>>> from scipy.optimize import leastsq
>>> def func(x,A,a,f,phi):
                                         15
      return A*exp(-a*sin(f*x+pi/4))
>>> def errfunc(params, x, data):
                                         10
      return func(x, *params) - data
>>> ptrue = [3,2,1,pi/4]
                                         5
>>> x = linspace(0, 2*pi, 25)
>>> true = func(x, *ptrue)
>>> noisy = true + 0.3*randn(len(x))
>>> p0 = [1,1,1,1]
>>> pmin, ier = leastsq(errfunc, p0, args=(x, noisy))
>>> pmin
array([3.1705, 1.9501, 1.0206, 0.70341)
```

THANK YOU