Exercise1

202005100214

October 7, 2022

本人の数学&物理作业可能含有以下内容:

Exercise 1.2. 如果 $u: \mathbb{R}^3 \to \mathbb{R}$ 是关于 (x, y, z) 的函数

$$\nabla f(u) = \frac{\mathrm{d}f}{\mathrm{d}u} \nabla u$$
$$\nabla \cdot \mathbf{A}(u) = \nabla u \cdot \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u}$$
$$\nabla \times \mathbf{A}(u) = \nabla u \times \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u}$$

Proof.

$$\nabla f(u) = (\partial_{\mu} e^{\mu})(f \circ u)(x) = \partial_{\mu}(f \circ u)(x)e^{\mu} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x^{\mu}} e^{\mu} = \frac{\mathrm{d}f}{\mathrm{d}u} \nabla u$$

$$\nabla \cdot \mathbf{A}(u) = \partial_{\mu} A^{\mu} = \partial_{\mu} (A^{\mu} \circ u)(x) = \frac{\partial A^{\mu}}{\partial u} \frac{\partial u}{\partial x^{\mu}} = \frac{\mathrm{d} \mathbf{A}}{\mathrm{d} u} \cdot \nabla u$$

$$\nabla \times \mathbf{A}(u) = \epsilon^{\mu\nu\rho} \nabla_{\mu} A_{\nu} \mathbf{e}_{\rho} = \epsilon^{\mu\nu\rho} \partial_{\mu} (A_{\nu} \circ u)(x) \mathbf{e}_{\rho} = \epsilon^{\mu\nu\rho} \frac{\partial A_{\nu}}{\partial u} \frac{\partial u}{\partial x^{\mu}} \mathbf{e}_{\rho} = \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} \times \nabla u$$

Exercise 1.3. 设 $r=x-x', \ r=\sqrt{\sum_i(x^i-x'^i)^2}, \ 定义 \ \nabla=\frac{\partial}{\partial x^\mu}e^\mu, \ \nabla'=\frac{\partial}{\partial x'^\mu}e^\mu, \ 证明$

$$\nabla r = -\nabla' r = \frac{\mathbf{r}}{r}$$

$$\nabla \frac{1}{r} = -\nabla' \frac{1}{r} = -\frac{\mathbf{r}}{r^3}$$

$$\nabla \times \frac{\mathbf{r}}{r^3} = 0$$

$$\nabla \cdot \frac{\mathbf{r}}{r^3} = -\nabla' \cdot \frac{\mathbf{r}}{r^3} = 0$$

同时求解 $\nabla \cdot \boldsymbol{r}$, $\nabla \times \boldsymbol{r}$, $(\boldsymbol{a} \cdot \nabla) \boldsymbol{r}$, $\nabla (\boldsymbol{a} \cdot \boldsymbol{r})$, $\nabla \cdot [E_0 \sin(\boldsymbol{k} \cdot \boldsymbol{r})]$, $\nabla \times [E_0 \sin(\boldsymbol{k} \cdot \boldsymbol{r})]$

Solution. 易证
$$\partial_{\mu}\left(\frac{r_{\nu}}{r^{3}}\right) = \frac{\delta_{\mu\nu}r^{2} - 3r_{\nu}r_{\mu}}{r^{5}}, \ \partial_{\mu'}\left(\frac{r_{\nu}}{r^{3}}\right) = -\frac{\delta_{\mu\nu}r^{2} - 3r_{\nu}r_{\mu}}{r^{5}}, \ \partial_{\mu}\frac{1}{r} = -\frac{r_{\mu}}{r^{3}}$$
 (a)

$$abla r = \partial_{\mu} r e^{\mu} = \frac{1}{r} r_{\mu} e^{\mu} = \frac{r}{r}$$

 $\nabla' r$ 的结果是非常显然的。

(b)

$$abla rac{1}{r} = \partial_{\mu} rac{1}{r} e^{\mu} = -rac{1}{r^3} r_{\mu} e^{\mu} = -rac{oldsymbol{r}}{r^3}$$

(c)

$$\nabla \times \frac{\boldsymbol{r}}{r^3} = \epsilon^{\mu\nu\rho} \partial_{\mu} \left(\frac{\boldsymbol{r}}{r^3} \right)_{\nu} \boldsymbol{e}_{\rho} = \frac{1}{r^5} \epsilon^{\mu\nu\rho} (\delta_{\mu\nu} r^2 - 3r_{\mu} r_{\nu}) \boldsymbol{e}_{\rho} = \frac{-3}{r^5} \epsilon^{\mu\nu\rho} r_{\mu} r_{\nu} \boldsymbol{e}_{\rho}$$

同时交换指标位置结果不变,即 $\epsilon^{\mu\nu\rho}r_{\mu}r_{\nu}e_{\rho}=\epsilon^{\nu\mu\rho}r_{\nu}r_{\mu}e_{\rho}$,但只交换 ε 的指标会产生负值,即 $\epsilon^{\nu\mu\rho}r_{\mu}r_{\nu}e_{\rho}=-\epsilon^{\mu\nu\rho}r_{\mu}r_{\nu}e_{\rho}$,观察到 $\epsilon^{\nu\mu\rho}r_{\mu}r_{\nu}e_{\rho}=-\epsilon^{\nu\mu\rho}r_{\mu}r_{\nu}e_{\rho}$,由 r 的任意性得 $\epsilon^{\mu\nu\rho}=0$.

$$\nabla \times \frac{\mathbf{r}}{r^3} = 0$$

(d)

$$\nabla \cdot \frac{\mathbf{r}}{r^3} = \partial_{\mu} \left(\frac{\mathbf{r}}{r^3} \right)^{\mu} = \frac{1}{r^5} (\delta^{\mu}{}_{\mu} r^2 - 3r^{\mu} r_{\mu}) = \frac{1}{r^5} (3r^2 - 3r^2) = 0$$

(f)

$$\nabla \cdot \boldsymbol{r} = 3$$

$$\nabla \times \boldsymbol{r} = \epsilon^{\mu\nu\rho} \partial_{\mu} r_{\nu} \boldsymbol{e}_{\rho} = \epsilon^{\mu\nu\rho} \delta_{\mu\nu} \boldsymbol{e}_{\rho} = 0$$

$$(\boldsymbol{a} \cdot \nabla) \boldsymbol{r} = (a^{\mu} \partial_{\mu}) \boldsymbol{r} = a^{\mu} \boldsymbol{e}_{\mu} = \boldsymbol{a}$$

$$\nabla (\boldsymbol{a} \cdot \boldsymbol{r}) = (\partial_{\mu} \boldsymbol{e}^{\mu}) (a_{\nu} r^{\nu}) = a_{\nu} \partial_{\mu} r^{\nu} \boldsymbol{e}^{\mu} = a_{\nu} \delta_{\mu}^{\ \nu} \boldsymbol{e}^{\mu} = a_{\mu} \boldsymbol{e}^{\mu} = \boldsymbol{a}$$

$$\nabla \cdot [\boldsymbol{E}_0 \sin(\boldsymbol{k} \cdot \boldsymbol{r})] = \partial_{\mu} [(E_0)_{\mu} \sin(k_{\nu} r^{\nu})] = (E_0)_{\mu} \cos(k_{\nu} r^{\nu}) k_{\mu} = [\boldsymbol{E}_0 \cos(\boldsymbol{k} \cdot \boldsymbol{r})] \cdot \boldsymbol{k}$$

$$\nabla \times [\boldsymbol{E}_0 \sin(\boldsymbol{k} \cdot \boldsymbol{r})] = \epsilon^{\mu\nu\rho} \partial_{\mu} [(E_0)_{\nu} \sin(k_a r^a)] \boldsymbol{e}_{\rho} = \epsilon^{\mu\nu\rho} (E_0)_{\nu} \cos(k_a r^a) k_{\mu} \boldsymbol{e}_{\rho} = \boldsymbol{E}_0 \cos(\boldsymbol{k} \cdot \boldsymbol{r}) \times \boldsymbol{k}$$

Exercise 1.5. 若电荷系统的偶极矩定义为

 $\mathbf{P}(t) = \int_{\mathcal{V}} \rho(\mathbf{r}', t) \mathbf{r}' \, \mathrm{d}\tau'$

利用 $\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$ 证明

$$\frac{\partial \boldsymbol{P}}{\partial t} = \int_{\mathcal{V}} \boldsymbol{J}(\boldsymbol{r}', t) \, \mathrm{d}\tau'$$

Proof.

$$\frac{\partial \boldsymbol{P}}{\partial t} = \int_{\mathcal{V}} \frac{\partial \rho}{\partial t} (\boldsymbol{r}',t) \boldsymbol{r}' \, \mathrm{d}\tau' = \int_{\mathcal{V}} \frac{\partial \rho}{\partial t} (\boldsymbol{r}',t) x' \, \mathrm{d}\tau' \boldsymbol{e}_x + \int_{\mathcal{V}} \frac{\partial \rho}{\partial t} (\boldsymbol{r}',t) y' \, \mathrm{d}\tau' \boldsymbol{e}_y + \int_{\mathcal{V}} \frac{\partial \rho}{\partial t} (\boldsymbol{r}',t) z' \, \mathrm{d}\tau' \boldsymbol{e}_z$$

只考察 x' 方向,有

$$\int_{\mathcal{V}} \frac{\partial \rho}{\partial t}(\mathbf{r}', t)x' \, d\tau' = -\int_{\mathcal{V}} \nabla \cdot \mathbf{J}(\mathbf{r}', t)x' \, d\tau'
= -\int_{\mathcal{V}} \nabla \cdot (x'\mathbf{J}(\mathbf{r}', t)) - \nabla x' \cdot \mathbf{J}(\mathbf{r}', t) \, d\tau'
= -\oint_{\mathcal{S}} (x'\mathbf{J}(\mathbf{r}', t)) \cdot d\mathbf{a} + \int_{\mathcal{V}} \nabla x' \cdot \mathbf{J}(\mathbf{r}', t) \, d\tau'$$

如果取 $\mathcal{S} \to \infty$,由于边界处没有电流密度,故 $\oint_{\mathcal{S}} (x' \boldsymbol{J}(\boldsymbol{r}',t)) \cdot \mathrm{d}\boldsymbol{a} = 0$,另一方面 $\nabla x' = (1,0,0)^T$,所以

$$\int_{\mathcal{V}} \frac{\partial \rho}{\partial t} (\mathbf{r}', t) x' d\tau' = \int_{\mathcal{V}} J^{x}(\mathbf{r}', t) d\tau'$$

从而得出

$$\frac{\partial \boldsymbol{P}}{\partial t} = \int_{\mathcal{V}} \boldsymbol{J}(\boldsymbol{r}', t) \, \mathrm{d}\tau'$$

Exercise 1.6. m 是常矢量,定义矢量 $A=\frac{m\times R}{R^3}$,标量 $\varphi=\frac{m\cdot R}{R^3}$,证明除 R=0 外有 $\nabla\times A=-\nabla\varphi$

Proof.
$$A_{\nu} = \epsilon_{ij\nu} m^{i} \frac{R^{j}}{R^{3}}, \quad \nabla \times \mathbf{A} = \epsilon^{\mu\nu\rho} \partial_{\mu} A_{\nu} \mathbf{e}_{\rho}, \quad \partial_{i} \left(\frac{R^{\mu}}{R^{3}}\right) = \frac{\delta^{\mu}{}_{i} R^{2} - 3R^{\mu} R_{i}}{R^{5}}$$

$$\nabla \times \mathbf{A} = \epsilon^{\mu\nu\rho} \partial_{\mu} \left(\epsilon_{ij\nu} m^{i} \frac{R^{j}}{R^{3}}\right) \mathbf{e}_{\rho}$$

$$= \epsilon^{\mu\nu\rho} \epsilon_{ij\nu} m^{i} \partial_{\mu} \left(\frac{R^{j}}{R^{3}}\right) \mathbf{e}_{\rho}$$

$$= \frac{1}{R^{5}} \epsilon^{\mu\nu\rho} \epsilon_{ij\nu} m^{i} (\delta^{j}{}_{\mu} R^{2} - 3R^{j} R_{\mu}) \mathbf{e}_{\rho}$$

$$= \frac{1}{R^{5}} (\delta^{\mu}{}_{j} \delta^{\rho}{}_{i} - \delta^{\mu}{}_{i} \delta^{\rho}{}_{j}) (\delta^{j}{}_{\mu} R^{2} - 3R^{j} R_{\mu}) m^{i} \mathbf{e}_{\rho}$$

$$= \frac{1}{R^{5}} \left[\delta^{\mu}{}_{j} \delta^{\rho}{}_{i} \delta^{j}{}_{\mu} R^{2} \mathbf{e}_{\rho} - 3\delta^{\mu}{}_{j} \delta^{\rho}{}_{i} 3R^{j} R_{\mu} m^{i} \mathbf{e}_{\rho} - \delta^{\mu}{}_{i} \delta^{\rho}{}_{j} \delta^{j}{}_{\mu} R^{2} \mathbf{e}_{\rho} + 3\delta^{\mu}{}_{i} \delta^{\rho}{}_{j} R^{j} R_{\mu} m^{i} \mathbf{e}_{\rho}\right]$$

$$= \frac{1}{R^{5}} \left[-3R^{2} \mathbf{m} + 3\mathbf{R} (\mathbf{R} \cdot \mathbf{m})\right]$$

$$\begin{split} -\nabla\varphi &= -\partial_{\mu}\left(m_{i}\frac{R^{i}}{R^{3}}\right)\boldsymbol{e}^{\mu} \\ &= -\frac{1}{R^{5}}m_{i}(\delta^{i}{}_{\mu}R^{2} - 3R^{i}R_{\mu})\boldsymbol{e}^{\mu} \\ &= -\frac{1}{R^{5}}\left[m_{i}\delta^{i}{}_{\mu}R^{2}\boldsymbol{e}^{\mu} - 3m_{i}R^{i}R_{\mu}\boldsymbol{e}^{\mu}\right] \\ &= -\frac{1}{R^{5}}\left[3R^{2}\boldsymbol{m} - 3\boldsymbol{R}(\boldsymbol{R}\cdot\boldsymbol{m})\right] \end{split}$$

Exercise 1.7. 有一内外半径分别为 r_1 , r_2 的空心介质球,介质电容率为 ε ,介质内均匀带静止自由电荷密度 ρ_f ,求

 \Box

- (1) 空间各点电场
- (2) 极化电荷和极化面电荷分布

Solution. 半径内包裹的电荷量

$$Q(r) = (r^3 - r_1^3) \frac{4}{3} \pi \rho_f$$

- $r_1 < r < r_2$ 时,由 $\oint_{\mathcal{S}} \mathbf{D} \cdot d\mathbf{a} = Q(r)$ 得 $D4\pi r^2 = (r^3 r_1^3) \frac{4}{3} \pi \rho_f$; 于是 $D = \frac{r^3 r_1^3}{3r^2} \rho_f$ 。由 $E = \frac{D}{\varepsilon}$ 得 $E = \frac{r^3 r_1^3}{3\varepsilon r^2} \rho_f$.
- $r > r_2$ 时, $E = \frac{D}{\varepsilon_0}$, 故 $E = \frac{r_2^3 r_1^3}{3\varepsilon_0 r_2^2} \rho_f$.
- $r < r_1$ 时,由于 Q = 0,故 D = 0,得 E = 0。

边界处

$$(\boldsymbol{P}_2 - \boldsymbol{P}_1) \cdot \boldsymbol{e}_n = -\sigma_P$$

成立,区别于电荷密度 ρ ,电荷面密度用 σ 表示。另外 $\mathbf{P}=\chi_e\varepsilon_0\mathbf{E}\Rightarrow\mathbf{P}=(\varepsilon_0-\varepsilon)\mathbf{E}$, \mathbf{P} 与 \mathbf{E} 共线时有 $P=(\varepsilon_0-\varepsilon)E$.

- r_2 面上, $P_2 = 0$, $P_1 = (\varepsilon \varepsilon_0)E_1 = (\varepsilon \varepsilon_0)\frac{r_2^3 r_1^3}{3\varepsilon r_2^2}\rho_f$, 因此 $\sigma_P = (\varepsilon \varepsilon_0)\frac{r_2^3 r_1^3}{3\varepsilon r_2^2}\rho_f$.
- r_1 面上, $P_0 = 0$, $P_1 = (\varepsilon \varepsilon_0)(\varepsilon \varepsilon_0)\frac{r_1^3 r_1^3}{3\varepsilon r_1^2}\rho_f = 0$, 所以 $\sigma_P = 0$.

Exercise 1.8. 内外 i 半径分别为 r_1 , r_2 的中空导体圆柱,沿着轴向有恒定均匀自由电流 J_f ,导体内磁导率为 μ ,求磁感应强度和磁化电流。

Solution. 由 $\oint_L \mathbf{H} \cdot d\mathbf{l} = I_f + \int_{\mathcal{S}} \frac{\partial \mathbf{D}}{\partial t} d\mathbf{a}$, 以及 $\frac{\partial \mathbf{D}}{\partial t} = 0$ 得 $\oint_L \mathbf{H} \cdot d\mathbf{l} = I_f$.

- $r_1 < r < r_2$ 时, $\oint_L \mathbf{H} \cdot d\mathbf{l} = H2\pi r = (\pi r_2^2 \pi r_1^2)J_f \frac{\pi r^2 \pi r_1^2}{\pi r_2^2 \pi r_1^2}$,得出 $H = \frac{(r^2 r_1^2)J_f}{2r}$ 。目测可知 \mathbf{H} 的方向是 $\mathbf{J} \times \mathbf{r}$ 的方向,所以上式左右分别乘 $\hat{\mathbf{H}}$, $\hat{\mathbf{J}} \times \hat{\mathbf{r}}$,得 $\mathbf{H} = \frac{(r^2 r_1^2)J_f \times \mathbf{r}}{2r^2}$,再用 $\mathbf{B} = \mu \mathbf{H}$ 得 $\mathbf{B} = \frac{\mu(r^2 r_1^2)J_f \times \mathbf{r}}{2r^2}$.
- $r > r_2$ 时, $H = \frac{(r_2^2 r_1^2)J_f}{2r}$, 即得 $H = \frac{(r_2^2 r_1^2)\boldsymbol{J}_f \times \boldsymbol{r}}{2r^2}$, $\boldsymbol{B} = \frac{\mu(r_2^2 r_1^2)\boldsymbol{J}_f \times \boldsymbol{r}}{2r^2}$
- $r < r_1$ 时, J = 0, 故 $\mathbf{B} = 0$.

在边界处取一高度不太高的截面,切向方向为 Δl ,通过该截面的磁化电流为(P.27.(5.9)).

$$I_M = (\boldsymbol{e}_n \times \Delta \boldsymbol{l}) \cdot \boldsymbol{a}_M$$

为了区别电流密度与电流线密度,用 a 表示电流线密度。

$$(\boldsymbol{M}_2 - \boldsymbol{M}_1) \cdot \Delta \boldsymbol{l} = I_M = (\boldsymbol{e}_n \times \Delta \boldsymbol{l}) \cdot \boldsymbol{a}_M = (\boldsymbol{a}_M \times \boldsymbol{e}_n) \cdot \Delta \boldsymbol{l}$$

 $(M_2-M_1)=(a_M\times e_n)$ 两端同时叉乘 e_n ,利用 123=213-312 公式以及 e_n 与 a_M 正交;得到 $e_n\times (M_2-M_1)=a_M$.

• r_2 面上, $M_2=0$,所以 $-e_n\times M_1=a_M$;同时 $M_1=\chi_M H_1=\left(\frac{\mu}{\mu_0}-1\right)H_1$,可见 $a_M=\left(\frac{\mu}{\mu_0}-1\right)e_n\times H_1$, e_n 与 r方向一致。

$$\begin{split} \left(\frac{\mu}{\mu_0} - 1\right) \boldsymbol{e}_n \times \boldsymbol{H}_1 &= \left(\frac{\mu}{\mu_0} - 1\right) \left[\boldsymbol{e}_n \times \left(\frac{1}{2}\boldsymbol{J}_f \times \boldsymbol{r} - \frac{r_1^2}{2r^2}\boldsymbol{J}_f \times \boldsymbol{r}\right)\right]_{r=r_2} \\ &= \left(\frac{\mu}{\mu_0} - 1\right) \left[\frac{r^2 - r_1^2}{2r}\right]_{r=r_2} J_f \\ &= \left(\frac{\mu}{\mu_0} - 1\right) \frac{r_2^2 - r_1^2}{2r_2} J_f \end{split}$$

- r_1 面上, $M_0 = 0$,所以 $e_n \times M_1 = a_M$,借用上面的推倒得到 $a_M = \left(\frac{\mu}{\mu_0} 1\right) \frac{r_1^2 r_1^2}{2r_1} J_f = 0$.
- $r_1 < r < r_2$, 利用 $\frac{1}{\mu_0} \nabla \times \mathbf{B} = \mathbf{J}_f + \mathbf{J}_M + \mathbf{J}_P + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$, 得到 $\frac{1}{\mu_0} \nabla \times \mathbf{B} \mathbf{J}_f = \mathbf{J}_M$, 最终得 $\mathbf{J}_M = \left(\frac{\mu}{\mu_0} 1\right) \mathbf{J}_f$

$$\nabla \times \boldsymbol{B} = \nabla \times \left[\frac{\mu(r^2 - r_1^2) \boldsymbol{J}_f \times \boldsymbol{r}}{2r^2} \right]$$

$$= \frac{\mu}{2} \nabla \times (\boldsymbol{J}_f \times \boldsymbol{r}) - \frac{\mu r_1^2}{2} \nabla \times (\boldsymbol{J} \times \frac{\boldsymbol{r}}{r^2})$$

$$= \frac{\mu}{2} \left[(\boldsymbol{r} \cdot \nabla) \boldsymbol{J}_f - (\nabla \cdot \boldsymbol{J}_f) \boldsymbol{r} + (\nabla \cdot \boldsymbol{r}) \boldsymbol{J}_f - (\boldsymbol{J}_f \cdot \nabla) \boldsymbol{r} \right]$$

$$- \frac{\mu r_1^2}{2} \left[(\frac{\boldsymbol{r}}{r^2} \cdot \nabla) \boldsymbol{J}_f - (\nabla \cdot \boldsymbol{J}_f) \frac{\boldsymbol{r}}{r^2} + (\nabla \cdot \frac{\boldsymbol{r}}{r^2}) \boldsymbol{J}_f - (\boldsymbol{J}_f \cdot \nabla) \frac{\boldsymbol{r}}{r^2} \right]$$

$$= \frac{\mu}{2} \left[0 - 0 + 3 \boldsymbol{J}_f - \boldsymbol{J}_f \right] - \frac{\mu r_1^2}{2} \left[0 - 0 + \frac{1}{r^2} \boldsymbol{J}_f - \frac{1}{r^2} \boldsymbol{J}_f \right]$$

$$= \mu \boldsymbol{J}_f$$

Exercise 1.9. 证明均匀介质内部的极化电荷密度总是满足 $\rho_P = -\left(1 - \frac{\varepsilon_0}{\varepsilon}\right) \rho_f$.

Proof. 首先从 $\nabla \cdot (\varepsilon_0 \boldsymbol{E} + \boldsymbol{P}) = \rho_f$ 得出 $\rho_P = \varepsilon_0 \nabla \cdot \boldsymbol{E} - \rho_f$. 再者,利用 $\boldsymbol{P} = \chi_e \varepsilon_0 \boldsymbol{E} = (\varepsilon - \varepsilon_0) \boldsymbol{E}$ 得到 $-\rho_P = \nabla \cdot \boldsymbol{P} = (\varepsilon - \varepsilon_0) \nabla \cdot \boldsymbol{E}$. 联立两个方程

$$\begin{cases} \rho_P = \varepsilon_0 \nabla \cdot \boldsymbol{E} - \rho_f \\ \rho_P = -(\varepsilon - \varepsilon_0) \nabla \cdot \boldsymbol{E} \end{cases}$$

解得 $\rho_P = -\left(1 - \frac{\varepsilon_0}{\varepsilon}\right) \rho_f$.

Exercise 1.10. 证明两个闭合的恒定电流圈之间的相互作用力大小相等,方向相反。

Proof. 定义光滑环闭道路 $\Gamma_a:I_a\to\mathbb{R}^3$, $\Gamma_b:I_b\to\mathbb{R}^3$, 其像点分别表示为 Γ_a , Γ_b , 稳定电流分别表示为 I_a , I_b , 参数分别使用 t, τ 。根据 $\mathbf{B}(\mathbf{r})=\frac{\mu_0}{4\pi}\int_{\mathcal{V}}\frac{\mathbf{J}(\mathbf{r}')\times\mathbf{i}}{\imath^3}\,\mathrm{d}\tau'$, 得出道路 Γ_a 在 Γ_b 上一点的磁感应强度为

$$\boldsymbol{B}_{ab}(\tau) = \frac{\mu_0 I_a}{4\pi} \oint_{\Gamma_a} \frac{1}{|\Gamma_b(\tau) - \Gamma_a(t)|^3} \dot{\Gamma}_a(t) \times (\Gamma_b(\tau) - \Gamma_a(t)) dt$$

其中 $\dot{\Gamma}_a(t) = ((\dot{\Gamma}_a)^1, (\dot{\Gamma}_a)^2, (\dot{\Gamma}_a)^3)(t)$,为了方便,后文用 A(t), $B(\tau)$ 代替 $\Gamma_a(t)$, $\Gamma_b(\tau)$,用 a(t), $b(\tau)$ 代替 $\dot{\Gamma}_a(t)$, $\dot{\Gamma}_b(\tau)$,于是

$$B_{ab}(\tau) = \frac{\mu_0 I_a}{4\pi} \oint_{\Gamma_a} \frac{1}{|B - A|^3} a \times (B - A) dt$$
$$B_{ba}(t) = \frac{\mu_0 I_b}{4\pi} \oint_{\Gamma_b} \frac{1}{|A - B|^3} b \times (A - B) d\tau$$

考察 Γ_b 的受力情况

$$F_{ab} = \oint_{\Gamma_b} B_{ab}(\tau) \times (I_b \, \mathrm{d}l_b) = I_b \oint_{\Gamma_b} B_{ab}(\tau) \times b(\tau) \, \mathrm{d}\tau$$

展开后得到

$$\begin{split} F_{ab} &= \frac{\mu_0 I_a I_b}{4\pi} \oint\limits_{\Gamma_b} \oint\limits_{\Gamma_a} \frac{1}{|B-A|^3} \epsilon^{\mu\nu\rho} \epsilon_{ij\mu} a^i (B^j - A^j) b_\nu \boldsymbol{e}_\rho \, \mathrm{d}t \, \mathrm{d}\tau \\ &= \frac{\mu_0 I_a I_b}{4\pi} \oint\limits_{\Gamma_b} \oint\limits_{\Gamma_a} \frac{1}{|B-A|^3} (\delta^\nu{}_i \delta^\rho{}_j - \delta^\nu{}_j \delta^\rho{}_i) a^i (B^j - A^j) b_\nu \boldsymbol{e}_\rho \, \mathrm{d}t \, \mathrm{d}\tau \\ &= \frac{\mu_0 I_a I_b}{4\pi} \oint\limits_{\Gamma_b} \oint\limits_{\Gamma_a} \frac{1}{|B-A|^3} (a^\nu A^\rho b_\nu \boldsymbol{e}_{rho} - a^\nu A^\rho b_\nu \boldsymbol{e}_\rho - a^\rho B^\nu b_\nu \boldsymbol{e}_\rho + a^\rho A^\nu b_{nu} \boldsymbol{e}_\rho) \, \mathrm{d}t \, \mathrm{d}\tau \\ &= \frac{\mu_0 I_a I_b}{4\pi} \left[\oint\limits_{\Gamma_b} \oint\limits_{\Gamma_a} \frac{(a \cdot b)(B-A)}{|B-A|^3} \, \mathrm{d}t \, \mathrm{d}\tau - \oint\limits_{\Gamma_a} \oint\limits_{\Gamma_b} \frac{(B-A)}{|B-A|^3} \cdot \mathrm{d}B \, \mathrm{d}A \right] \\ &= \frac{\mu_0 I_a I_b}{4\pi} \oint\limits_{\Gamma_b} \oint\limits_{\Gamma_a} \frac{(a \cdot b)(B-A)}{|B-A|^3} \, \mathrm{d}t \, \mathrm{d}\tau \end{split}$$

同样, 考察 Γ_a 的受力情况, 得到

$$F_{ba} = -\frac{\mu_0 I_a I_b}{4\pi} \oint_{\Gamma_b} \oint_{\Gamma_b} \frac{(a \cdot b)(B - A)}{|B - A|^3} dt d\tau$$

Exercise 1.11. 平行板电容器有两层介质,厚度分别为 l_1, l_2 ,电容率为 $\varepsilon_1, \varepsilon_2$,在两板接上电动势为 ξ 的电池

- (1) 电容器两板上的自由电荷面密度 ω_f
- (2) 介质分界面上的自由电荷面密度 ω_f
- (3) 若介质漏电, 电导率为 σ_1 , σ_2 , 电流达到恒定时, 上述结果如何?

Solution.

(1) 由 $e_n \cdot (D_2 - D_1) = \sigma_f$ 得, 极板 1 上满足 $D_1 - D_{10} = \omega_{f_1}$, 极板 2 上满足 $D_{20} - D_2 = \omega_{f_2}$, 介质分界面不存在自由电荷, 所以 $D_2 - D_1 = \omega_{f_3} = 0$. 同时由 $\mathbf{D} = \varepsilon \mathbf{E}$, 得下述方程

$$\begin{cases} \varepsilon_1 E_1 = \omega_{f_1} \\ \varepsilon_2 E_2 = -\omega_{f_2} \\ E_1 l_1 + E_2 l_2 = \xi \\ \varepsilon_1 E_1 - \varepsilon_2 E_2 = 0 \end{cases}$$

解得 $E_1 = \frac{\varepsilon_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $E_2 = \frac{\varepsilon_1 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $\omega_{f_1} = \frac{\varepsilon_1 \varepsilon_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $\omega_{f_2} = -\frac{\varepsilon_1 \varepsilon_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $\omega_{f_3} = 0$. (2) 根据欧姆定律 $\mathbf{J} = \sigma \mathbf{E}$, 以及介质电流恒定,得 $J = \sigma_1 E_1 = \sigma_2 E_2$,求解下述方程组

$$\begin{cases} E_1 l_1 + E_2 l_2 = \xi \\ \omega_1 E_1 = \omega_2 E_2 \\ \varepsilon_1 E_1 = \omega_{f_1} \\ \varepsilon_2 E_2 = -\omega_{f_2} \\ \varepsilon_2 E_2 - \varepsilon_1 E_1 = \omega_{f_3} \end{cases}$$

解得
$$E_1 = \frac{\sigma_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$$
, $E_2 = \frac{\sigma_1 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $\omega_{f_1} = \frac{\varepsilon_1 \sigma_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$, $\omega_{f_2} = \frac{\varepsilon_2 \sigma_1 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}$.
$$\omega_{f_3} = \frac{\varepsilon_2 \sigma_1 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2} - \frac{\varepsilon_1 \sigma_2 \xi}{\varepsilon_2 l_1 + \varepsilon_1 l_2}.$$