Aflevering 8

01325 Matematik 4 – 30-03-2011 – Anders Hørsted (s082382)

Opgave 7.2 ohøj

En funktion er givet ved

$$f(x) = e^{-x} \chi_{[0,1]}(x)$$

Fouriertransformationen af f findes. Først bemærkes at $f \in L^1(\mathbb{R})$. Af definition 7.1.1 fås Fouriertransformationen til

$$\begin{split} \hat{f}(\gamma) &= \int_{-\infty}^{\infty} e^{-x} \chi_{[0,1]}(x) e^{-2\pi i x \gamma} \, dx \\ &= \int_{0}^{1} e^{-x} e^{-2\pi i x \gamma} \, dx \\ &= \int_{0}^{1} e^{-(2\pi i \gamma + 1)x} \, dx \\ &= -\frac{1}{2\pi i \gamma + 1} \left[e^{-(2\pi i \gamma + 1)x} \right]_{x=0}^{1} \\ &= \frac{1}{2\pi i \gamma + 1} \left(1 - e^{-(2\pi i \gamma + 1)} \right) \end{split}$$

Opgave 7.4

Lad $f \in L^1(\mathbb{R})$. Det vises at hvis f er en ulige funktion (-f(x) = f(-x)), så gælder der at

$$\hat{f}(\gamma) = -2i \int_0^\infty f(x) \sin(2\pi x \gamma) dx$$

Af definition 7.1.1 fås at

$$\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\gamma} dx$$
$$= \int_{-\infty}^{0} f(x)e^{-2\pi ix\gamma} dx + \int_{0}^{\infty} f(x)e^{-2\pi ix\gamma} dx$$

Og da $\int_{-\infty}^{0} g(x) dx = \int_{0}^{\infty} g(-x) dx$, fås at

$$\hat{f}(\gamma) = \int_0^\infty f(-x)e^{2\pi ix\gamma} dx + \int_0^\infty f(x)e^{-2\pi ix\gamma} dx$$

$$= \int_0^\infty -f(x)e^{2\pi ix\gamma} + f(x)e^{-2\pi ix\gamma} dx$$

$$= \int_0^\infty f(x)(e^{-2\pi ix\gamma} - e^{2\pi ix\gamma}) dx$$

$$= \int_0^\infty f(x)\left(\cos(-2\pi x\gamma) + i\sin(-2\pi x\gamma) - \cos(2\pi x\gamma) - i\sin(2\pi x\gamma)\right) dx$$

$$= -2i\int_0^\infty f(x)\sin(2\pi x\gamma) dx$$

$$= -2i\int_0^\infty f(x)\sin(2\pi x\gamma) dx$$
(1)

hvor det mellem (1) og (2) benyttes at f er ulige. Alt i alt er det ønskede vist.

Opgave 1.19

Lad $\{x_k\}, \{y_k\}$ være to talfølger og $p \in [1, \infty[$. Minkowski's ulighed

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p} \tag{3}$$

skal nu vises at gælde. Først bemærkes at for p = 1 bliver (3)

$$\sum_{k=1}^{\infty} |x_k + y_k| \le \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k|$$
$$= \sum_{k=1}^{\infty} |x_k| + |y_k|$$

hvilket er sandt da $|x_k + y_k| \le |x_k| + |y_k|$, for alle x_k og y_k . I det følgende antages det derfor at p > 1, og samtidig vælges q > 1, sådan at $p^{-1} + q^{-1} = 1$. Med dette valg gælder der derfor

$$\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow$$

$$1 + \frac{p}{q} = p \Leftrightarrow$$

$$p = q(p - 1)$$

Der tages nu udgangspunkt i trekantsuligheden

$$|x_k + y_k| \le |x_k| + |y_k|$$

Da $|x_k + y_k|^{p-1} \ge 0$ fås, ved at gange på begge sider med $|x_k + y_k|^{p-1}$, at

$$|x_k + y_k|^p \le |x_k| |x_k + y_k|^{p-1} + |y_k| |x_k + y_k|^{p-1}$$

hvilket summeres op fra 1 til uendelig

$$\sum_{k=1}^{\infty} |x_k + y_k|^p \le \sum_{k=1}^{\infty} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{\infty} |y_k| |x_k + y_k|^{p-1}$$
(4)

Hölders ulighed anvendt på første led på højresiden i (4) giver at

$$\sum_{k=1}^{\infty} |x_k| |x_k + y_k|^{p-1} \le \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p} \left(\sum_{k=1}^{\infty} |x_k + y_k|^{(p-1)q} \right)^{1/q}$$

$$= \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p} \left(\sum_{k=1}^{\infty} |x_k + y_k|^p \right)^{1-1/p}$$

hvor det er benyttet at p = q(p-1) og $q^{-1} = 1 - p^{-1}$. Dette resultat, og et helt tilsvarende for det andet led på højresiden i (4), indsættes i (4) og giver

$$\sum_{k=1}^{\infty} |x_k + y_k|^p \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1-1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p} \left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1-1/p}$$

$$= \left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1-1/p} \left(\left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p}\right)$$
(5)

Da (3) er triviel sand for $\sum_{k=1}^{\infty} |x_k + y_k|^p = 0$, antages i det følgende at summen er større end 0. Der kan derfor divideres med

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1 - 1/p}$$

i (5) hvilket giver

$$\left(\sum_{k=1}^{\infty} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{1/p}$$

der netop er Minkowski's ulighed, og det ønskede er derfor vist.

Opgave 5.15

Det vises at $C_c(\mathbb{R})$ er et underrum af $L^p(\mathbb{R})$, for alle $p \in [1,\infty[$. Først vises at $C_c(\mathbb{R})$ er en delmængde af $L^p(\mathbb{R})$. Lad derfor $f \in C_c(\mathbb{R})$. Der findes nu et interval [a,b], sådan at f(x) = 0 for $x \notin [a,b]$. Da f er kontinuert antager den både sit infimum og supremum på [a,b] og derfor eksisterer $\max_{x \in [a,b]} |f(x)|^p$. Der gælder derfor at

$$\int_{-\infty}^{\infty} |f(x)|^p dx = \int_a^b |f(x)|^p dx$$

$$\leq \int_a^b (b-a) \cdot \max_{x \in [a,b]} |f(x)| dx$$

$$\leq \infty$$

og dermed er $f \in L^p(\mathbb{R})$. Da f var valgt vilkårligt, gælder derfor at $f \in C_c(\mathbb{R}) \Rightarrow f \in L^p(\mathbb{R})$, og derfor $C_c(\mathbb{R}) \subseteq L^p(\mathbb{R})$.

Lad nu $\alpha, \beta \in \mathbb{C}$ og $f, g \in C_c(\mathbb{R})$. Der eksisterer intervaller $[a_f, b_f]$ og $[a_g, b_g]$, sådan at f(x) = 0 for $x \notin [a_f, b_f]$, og g(x) = 0 for $x \notin [a_g, b_g]$. For funktionen $\alpha f + \beta g$ gælder derfor at $(\alpha f + \beta g)(x) = 0$ for $x \notin [a_f, b_f] \cup [a_g, b_g]$, og $\alpha f + \beta g$ har derfor kompakt support. Da f og g er kontinuerte, vides fra gymnasiet at $\alpha f + \beta g$ også er kontinuert. Alt i alt fås at

$$\alpha f + \beta g \in C_c(\mathbb{R})$$

for alle $f,g \in C_c(\mathbb{R})$ og alle $\alpha,\beta \in \mathbb{C}$, og af lemma 1.2.7 fås nu at $C_c(\mathbb{R})$ er et underrum af $L^p(\mathbb{R})$, for et vilkårligt valgt $p \in [1,\infty[$.

Det skal nu vises at $C_0(\mathbb{R})$ ikke er et underrum af $L^p(\mathbb{R})$, for nogen værdier af $p \in [1,\infty[$. For et arbitrært, men fast valgt p, defineres funktionen f_p ved

$$f_p \coloneqq \begin{cases} 1 & \text{hvis } -1 < x < 1 \\ \frac{1}{|x|^{1/p}} & \text{ellers} \end{cases}$$

Først bemærkes at f_p er kontinuert. Samtidig gælder der for et vilkårligt p at

$$f_p(x) \to 0 \text{ for } x \to \pm \infty$$

Derfor er $f_p \in C_0(\mathbb{R})$. Samtidig gælder der at

$$\int_{-\infty}^{\infty} |f_p(x)|^p dx > \int_{1}^{\infty} |f_p(x)|^p dx$$
$$= \int_{1}^{\infty} \frac{1}{x}$$
$$= \infty$$

så integralet $\int_{-\infty}^{\infty} |f_p(x)|^p dx$ konvergerer altså ikke, og derfor er $f_p \notin L^p(\mathbb{R})$. For et vilkårligt valgt p, vil f_p altså være et element i $C_0(\mathbb{R})$, men ikke i $L^p(\mathbb{R})$, og $C_0(\mathbb{R})$ er derfor ikke en delmængde af $L^p(\mathbb{R})$, uanset valg af p. Derfor er $C_0(\mathbb{R})$ ikke et underrum af $L^p(\mathbb{R})$, som var hvad der skulle vises.