Math 115 - Midterm 1 Theorems

- 1. Corollary. Let $a = \prod_p p^{\alpha(p)}$, $b = \prod_p p^{\beta(p)}$, $c = \prod_p p^{\gamma(p)}$.
 - (a) $ab = c \iff \alpha(p) + \beta(p) = \gamma(p) \ \forall p$.
 - (b) $a \mid c \iff \alpha(p) \le \gamma(p) \ \forall p$.
 - (c) c is a common divisor of a and b iff $\gamma(p) \leq \min(\alpha(p), \beta(p)) \ \forall p$.
 - (d) $gcd(a, b) = \prod_{p} p^{\min(\alpha(p), \beta(p))}$.
 - (e) $lcm(a, b) = \prod_{n} p^{\max(\alpha(p), \beta(p))}$.
 - (f) c is the square of an integer iff $\gamma(p)$ is even for all p.
- 2. Pascal's Identity. $\binom{\alpha+1}{k+1} = \binom{\alpha}{k+1} + \binom{\alpha}{k}$.
- 3. Binomial Theorem. $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$.
- 4. **Theorem.** If $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
- 5. **Euler's Theorem.** If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.
- 6. Fermat's Little Theorem. Let p be a prime. Then:
 - (a) $\forall a \in \mathbb{Z}$ and a not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$.
 - (b) $\forall a \in \mathbb{Z}, a^p \equiv a \pmod{p}$.
- 7. Wilson's Theorem. If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.
- 8. Solvability of $x^2 \equiv -1 \pmod{p}$. Let p be a prime. Then, $x^2 \equiv -1 \pmod{p}$ has a solution $x \in \mathbb{Z}$ iff p = 2 or $p \equiv 1 \pmod{4}$.
- 9. Fermat's Theorem on Sum of Squares. Let p be a prime such that $p \equiv 1 \pmod{4}$. Then p can be written as $p = a^2 + b^2$ with $a, b \in \mathbb{Z}$.

- 10. Solving Degree 1 Congruences. Let $a, b \in \mathbb{Z}$ and let $g = \gcd(a, m)$. Then:
 - (a) The congruence $ax \equiv b \pmod{m}$ has a solution iff $g \mid b$.
 - (b) If (a) is true, then $\frac{a}{g}x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$ has a solution modulo $\frac{m}{g}$.
- 11. Chinese Remainder Theorem. If $x \equiv a_1 \pmod{m_1}, \ldots, x \equiv a_k \pmod{m_k}$ (where the m_i 's are pairwise relatively prime), then let $M = m_1 m_2 \cdots m_k$ and $y_i = \text{inverse}\left(\frac{M}{m_i} \pmod{m_i}\right)$. Then, a solution to the simultaneous congruence is given by $x \equiv a_1 \frac{M}{m_1} y_1 + \cdots + a_k \frac{M}{m_k} y_k \pmod{M}$.
- 12. **Theorem.** If $m \in \mathbb{Z}_{>0}$, then $\phi(m) = \left(\prod_{p \text{ prime}, p \mid m} (1 \frac{1}{p})\right) \cdot m$.
- 13. **RSA Cryptography Lemma.** Suppose $m \in \mathbb{Z}_{>0}$ and gcd(a, m) = 1. Let $h, h' \in \mathbb{Z}_{>0}$ such that $hh' \equiv 1 \pmod{\phi(m)}$. Then $a^{kk'} \equiv a \pmod{m}$.
- 14. **Primality Testing.** If there is an integer a such that 0 < a < m and $a^{m-1} \not\equiv 1 \pmod{m}$, then m is not prime.
- 15. **Hensel's Lemma.** To solve the congruence $f(x) \equiv 0 \pmod{p^k}$, first find the solutions to $f(x) \equiv 0 \pmod{p}$. Then, for each solution a_1 to $f(x) \equiv 0 \pmod{p}$, "lift" its solution by the recurrence relation $a_2 = a_1 f(a_1) \overline{f'(a_1)}$, where $\overline{f'(a_1)}$ is found by solving $f'(a_1) \overline{f'(a_1)} \equiv 1 \pmod{p}$ for $\overline{f'(a_1)}$. To higher powers, we generalize this recurrence relation to $a_{j+1} = a_j f(a_j) \overline{f'(a_1)}$.