PRÁCTICO 5: CONGRUENCIAS

Ejercicio 1. Probar que la relación de congruencia módulo m es una relación de equivalencia.

Ejercicio 2. Sea m un entero fijo y suponga que $a \equiv b \pmod{m}$. Probar las siguientes propiedades:

- i) $\lambda a \equiv \lambda b \pmod{m}$ para todo $\lambda \in \mathbb{Z}$ y $a^n \equiv b^n \pmod{m}$ para todo $n \in \mathbb{N}$;
- ii) si p(x) es un polinomio con coeficientes enteros entonces $p(a) \equiv p(b) \pmod{m}$.

Ejercicio 3. Probar que $a \equiv b \pmod{mh}$ si y solo si $a \equiv b + hi \pmod{m}$ para algún $i, 0 \le i < m$.

Ejercicio 4.

- **a**. Si $a \equiv 22 \pmod{14}$, hallar el resto de dividir a a por 2, por 7 y por 14.
- **b**. Si $a \equiv 13 \pmod{5}$, hallar el resto de dividir a $33a^3 + 3a^2 197a + 2$ por 5.
- **c**. Hallar, para cada $n \in \mathbb{N}$, el resto de la división de $\sum_{i=1}^n (-1)^i \cdot i!$ por 36.

Ejercicio 5.

- a. Probar que si a y b son enteros y p un número primo entonces $(a+b)^p \equiv a^p + b^p \pmod p$ ¿Vale el resultado si p no es primo?
- **b**. Probar (por inducción) el Teorema de Fermat: $a^p \equiv a \pmod{p}$, para todo a entero y todo primo p.

Ejercicio 6. Encontrar las soluciones de la ecuación: $x^2 - 1 \equiv 0 \pmod{35}$.

Ejercicio 7. Sea $n \in \mathbb{N}$ cuya representación en base 10 es $a_k a_{k-1} \cdots a_2 a_1 a_0$.

- **a**. Probar que $n \equiv 2a_1 + a_0 \pmod{4}$.
- **b**. Probar que $n \equiv 4a_2 + 2a_1 + a_0 \pmod{8}$.
- **c**. Enunciar y demostrar un resultado similar a los anteriores para 2^k .

Ejercicio 8.

- **a**. Demostrar que $10^n \equiv (-1)^n \pmod{11}$.
- **b**. Enunciar y probar un criterio de divisibilidad entre 11.
- **c**. Hallar el dígito d, de modo que el número 2d653874 sea múltiplo de 11.

Ejercicio 9.

- a. Probar que 2 es invertible módulo n si y solamente si n es impar. En tal caso, hallar el inverso.
- **b**. Resolver la ecuación $2x + 1 \equiv 0 \pmod{69}$.

Ejercicio 10.

- **a**. Determinar el último dígito de 3^{55} .
- **b**. Hallar el resto de la división de 12^{1257} entre 5.
- **c**. Hallar $71^{10} \pmod{141}$.

Ejercicio 11.

El número de la cédula uruguaya tiene la forma $x_1x_2...x_7$ - x_8 donde cada $x_i, i = 1, 2...8$ es un dígito de 0 a 9. El dígito verificador x_8 se calcula de la siguiente manera. Sea

$$c = \sum_{i=1}^{7} a_i \cdot x_i,$$

donde $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (2, 9, 8, 7, 6, 3, 4)$. Entonces x_8 es: $r \equiv -c \pmod{10}$, $0 \le r < 10$.

- a. Verificar que el dígito verificador de su cédula se obtiene mediante la fórmula dada arriba.
- b. Investigar si el dígito verificador detecta el error de copiar mal un dígito (de los primeros 7).
- c. Probar que el dígito verificador detecta el error de intercambiar dos dígitos consecutivos de los x_1, x_2, \ldots, x_7 (en el sentido del ejercicio anterior).
- d. Escribir un programa para comprobar si una secuencia de 8 dígitos es un número de cédula o no.

Ejercicio 12. Resolver cada una de las congruencias siguientes:

- **a**. $3x \equiv 7 \pmod{16}$.
- **c.** $3x+9 \equiv 8x+61 \pmod{64}$. **e.** $9x+3 \equiv 5 \pmod{18}$.

- **b**. $2x + 8 \equiv 5 \pmod{33}$.
- **d**. $6x 1 \equiv 5 \pmod{12}$.

Ejercicio 13.

- **a**. Probar que para todo $a \in \mathbb{Z}$ se cumple que $a^2 \equiv 0$ ó $1 \pmod{4}$.
- b. Muestre que el número 3426345351002345472543622 no es cuadrado perfecto ni cubo perfecto (sug: para la primer parte use congruencia módulo 4 y para la segunda congruencia módulo 9)
- **c**. Probar que ningún número de la sucesión $a_1 = 11$, $a_2 = 111$, $a_3 = 1111$, $a_4 = 11111$,... es un cuadrado perfecto.

Ejercicio 14. Sea p(x) un polinomio con coeficientes enteros tal que p(0) = 1, p(1) = 2 y p(2) = 4. Probar que p(x) no tiene raices enteras.