L'ordonnancement

Différents niveaux de planification

- Plan de vente
- PDP (moyen terme)
- MRP
- Ordonnancement (Court terme)

Définition

Affecter les tâches aux ressources pour obtenir un ordonnancement optimal par rapport à un objectif fixé

Objectifs

- Minimiser les retards: le min du max du retard
- Minimiser le temps moyen passé dans le système (\bar{f})
- Minimiser le Makespan (C_Max) :le temps de fin de toutes les opérations (voir annexe)

Méthode d'ordonnancement

1. Les règles de priorités (ou ordonnancement)

- SPT: shortest processing time
- FIFO: first In First Out (PEPS)
- EDD: Earliest Delivery Date (pas de due date)
- LPD : Longest Processing Date

2. Les heuristiques

- Spécifiques à chaque type de problème

3. Les modèles d'optimisation

Typologie d'atelier : FLOW SHOP (PB1)

- Atelier a cheminement unique
- Processus linéaire
- Les étapes de transformation sont identiques pour tous les produits

Algorithme JONHSON: FLOW SHOP à DEUX postes de travail successifs

Algorithme JONHSON MODIFIÉ: FLOW SHOP à + DE DEUX postes de travail successifs

Concept de Machines Virtuelles : on regroupe les machines, puis on applique l'algorithme Johnson *traditionnel*

PB1_Algorithme JONHSON MODIFIÉ: EXEMPLE

Job	Machine (M1)	Machine (M2)	Machine (M3)
J1	8	7	6
J2	7	3	10
J3	4	6	8
J4	5	2	9

Iter 1: Johnson sur M1 & M3

Job	(M1)	(M3)
J1	8	6
J2	7	10
J3	4	8
J4	5	9

étape1:{J3, ...} étape2 :{J3, J4, ...} étape3 :{J3, J4, ..., J1} étape4 :{J3, J4, J2, J1} Seq1:{J3, J4, J2, J1}

Iter 2: Johnson sur M'1 & M'2

Job	M'1= <i>M1+M2</i>	M'2= M2+M3
J1	15	13
J2	10	13
J3	10	14
J4	7	11

étape1:{J4, ...} étape2 :{J4, J3, ...} étape3 :{J4, J3, J2...} étape4 :{J4, J3, J2, J1} Seq2:{J3, J3, J2, J1}

Obj	Seq1	Seq2
\overline{f}	31,25	29
C_max	43	40

➤ En utilisant Lekin on trouve que Séquence 2 meilleure que Séquence 1

Typologie d'atelier : JOB SHOP (PB2)

- Ateliers à cheminement multiple
- Variété de produit individuels dont la production requiert divers types de machines dans des séquences variées

ALGORITHME DE JACKSON

(basé sur Johnson)

PB2 Algorithme JACKSON: EXEMPLE

	Gamme opératoire			
	1 ^{ére} Opération		2 ^{ème} Opération	
Produit	Machine	Durée	Machine	Durée
P1	Α	3		
P2	Α	5	В	4
P3	Α	3	В	7
P4	В	5		
P5	В	2	А	4
P6	В	4	Α	4
P7	Α	4		
P8	Α	5	В	5
P9	В	2		
P10	В	6	Α	3

ETAPE_0

- 1) E1 : ensemble des tâches comportant une seule opération sur A
- 2) E2 : ensemble des tâches comportant une seule tâche sur B
- 3) E3 : ensemble des tâches comportant une première opération sur A, une deuxième sur B
- 4) E4 : ensemble des tâches comportant une première opération sur B, une deuxième sur A

• E1: P1, P7 (A)

• E2: P4, P9 (B)

• E3: P2, P3, P8 (A-B)

• E4: P5, P6, P10 (B-A)

PB2_Algorithme JACKSON: EXEMPLE

	Gamme opératoire			
B 1. 11	1 ^{êre} Opération		2 ^{éme} Opération	
Produit	Machine	Durée	Machine	Durée
P1	А	3		
P2	Α	5	В	4
P3	А	3	В	7
P4	В	5		
P5	В	2	Α	4
P6	В	4	Α	4
P7	Α	4		
P8	Α	5	В	5
P9	В	2		
P10	В	6	Α	3

ETAPE_1

5) Ordonner E3 avec Algorithme de Johnson

E3	A	В
P1	5	4
Р3	3	7
P8	5	5

Seq1:{P3, P8, P1}

ETAPE_2

6) Ordonner E4 avec Algorithme de Johnson

E4	В	Α
P5	2	4
P6	4	4
P10	6	3

Seq2:{P5, P6, P10}

PB2 Algorithme JACKSON: EXEMPLE

	Gamme opératoire			
	1 ^{ére} Opération		2 ^{éme} Opération	
Produit	Machine	Durée	Machine	Durée
P1	А	3		
P2	Α	5	В	4
P3	Α	3	В	7
P4	В	5		
P5	В	2	Α	4
P6	В	4	Α	4
P7	А	4		
P8	Α	5	В	5
P9	В	2		
P10	В	6	Α	3

ETAPE_3

7) Effectuer les tâches sur A dans l'ordre : E3 E1 E4 A: P3,P8,P2, P1,P7,P5, P6,P10 (8 tâches)

ETAPE_4

8) Effectuer les tâches sur B dans l'ordre : E4 E2 E3 B: P5,P6,P10, P4,P9,P3, P8,P2 (8 tâches)

On récapitule ©

Flow Shop à 2 machines successives

Johnson

Flow Shop à PLUS DE 2 machines

Johnson Modifié

LABORATOIRE 5 : Logiciel LEKIN

- Panoplie de prologiciels
 - PME: Recherches sur Google avec "Job scheduling software"
 - Grande entreprise: Souvent un module d'un système ERP ou MRP2

• Lekin: facile d'utilisation et gratuit (Licence éducation)

Heuristiques

- General SB (Shifting Bottleneck) Routine: Optimise la majorité des objectifs dans un cas de Job Shop
- Shifting Bottleneck/sum(wt): Optimise l'objectif Total weighted tardiness dans un cas de Job Shop
- Shifting Bottleneck/Tmax: Optimise à la fois Maximum Tardiness et Makespan dans un cas de Job Shop
- Local Search: Heuristique qui vise à optimiser tous les objectifs dans un cas de Job Shop (N'est pas tout le temps possible)

Les fonctions objectives

- Makespan : La différence de temps entre le début et la fin d'une séquence de tâches (Minimise le temps du dernier produit à la dernière machine)
- Total flow time: La somme totale de toutes les séquences
- Total tardiness: La somme des délais
- Total weighted flow time: La somme totale de toutes les séquences pondérées
- Total weighted tardiness: La somme des délais pondérées

Les règles de priorités

- ATCS: Apparent tardiness cost with setups
- EDD (DP): Earliest Delivery Date
- MS (MLM): Minimum Slack
- FCFS (PEPS): First-Come First Serve
- LPT (LTR): Longest Processing Time
- SPT (TOC): Shortest Processing Time
- WSPT: Weighted Shortest Processing Time
- CR (RC): Critic Ratio

Rapport Lab5

Fichier Word: des captures d'écrans (eh oui, encore!)

Pour chaque problème, structurez votre réponse ainsi :

Solution 1) Résolution par Algorithme Algorithme choisi (et pourquoi) Résolution du problème avec algorithme choisi : Texte, Tableau (On doit comprendre que vous sachez ce que vous faites)

Solution 2 et 3) Règles de priorités/heuristiques LEKIN La séquence Obtenue, Diagramme de GANTT, Graphique avec mesure de Performance

Répondre aux questions : Justification de votre choix d'ordonnancement (solution 1,2 ou 3)