A1) $\{x_n\}_{n\geqslant 1}$ is a bounded real sequence. Prove that there is a subsequence $\{x_{n_i}\}_{i\geqslant 1}$ such that $\lim_{i\to\infty}x_{n_i}$ exists and

$$\lim_{i o\infty}x_{n_i}=\limsup_{n o\infty}x_n.$$

Proof: Let $M=\limsup_{n\to\infty}x_n<\infty$, then for any $\varepsilon=1/i>0$ there exists $N\geqslant n_{i-1}$ such that $M\leqslant\sup_{k\geqslant N}x_k< M+\varepsilon$. Hence there exists $n_i\geqslant N$ such that $x_{n_i}\in (M-\varepsilon,M+\varepsilon)$. Take the sequence $\{x_{n_i}\}_{i\geqslant 1}$ then $\lim_{i\to\infty}x_{n_i}=\limsup_{n\to\infty}x_n$.

A2) $\{x_n\}_{n\geqslant 1}$ is a real sequence. Prove that $\{x_n\}_{n\geqslant 1}$ converges iff $\limsup_{n\to\infty}x_n=\liminf_{n\to\infty}x_n$.

Proof: Since a sub-sequence of a Cauchy sequence converge to the same value as the original sequence, ==> is trivial by A1).

<== $\lim_{n o\infty}\sup_{k\geqslant n}x_k-\inf_{k\geqslant n}x_k=0$ implies x_n is Cauchy, hence convergent.

A3) $\{x^{(k)}\}_{k\geqslant 1}\subset \mathbb{R}^n$, where $x^{(k)}=(x_1^{(k)},x_2^{(k)},\cdots,x_n^{(k)})$. Then $\{x^{(k)}\}_{k\geqslant 1}$ converges in \mathbb{R}^n iff for any $i=1,2,\cdots,n$, $\{x_i^{(k)}\}_{k\geqslant 1}$ converges.

Proof: Use Cauchy sequences and the fact that for $x=(x_1,x_2,\cdots,x_n)$,

$$\max\{|x_k|: 1\leqslant k\leqslant n\}\leqslant \|x\|\leqslant \sum_{k=1}^n |x_k|.$$

A4) Suppose $\{z_n\}_{n\geqslant 1}, \{w_n\}_{n\geqslant 1}$ are two convergent complex sequences. Prove that if $\lim_{n\to\infty}w_n\neq 0$, then the sequence $\{z_n/w_n\}_{n\geqslant 1}$ converges.

Proof: Suppose $z=\lim_{n o \infty} z_n$ and $w=\lim_{n o \infty} w_n$, then

$$\left|\frac{z_n}{w_n} - \frac{z}{w}\right| \leqslant \frac{|w| \cdot |z_n - z|}{|w \cdot w_n|} + \frac{|z| \cdot |w_n - w|}{|w \cdot w_n|}.$$

Hence $\left| rac{z_n}{w_n} - rac{z}{w}
ight| o 0$, so $\lim_{n o \infty} z_n/w_n = z/w$.

A5) Suppose $\{a_n\}_{n\geqslant 1}$ is a monotonically decreasing sequence of positive reals, and $\lim_{n\to\infty}a_n=0$. Prove that the series

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1}a_n + \dots$$

converges.

Proof: Suppose $a_n=a_1-\sum_{k=1}^n b_k$, then $b_k\geqslant 0$ and $\sum_{k=1}^\infty b_k=a_1$. The series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = \sum_{n=1}^{\infty} b_{2n} < a_1$$

clearly converges.

A6) $\{a_n\}_{n\geqslant 1}\subset \mathbb{C}.$ Prove that if $\sum_{k=1}^\infty |a_k|$ converges, then $\sum_{k=1}^\infty a_k$ converges.

Proof: $\sum_{k=1}^{\infty}|a_k|$ converges implies for any $\varepsilon>0$, there exists N such that for any $n\geqslant N$, $p\geqslant 0$, $\sum_{k=n}^{n+p}|a_k|<\varepsilon$. Note that $\left|\sum_{k=n}^{n+p}a_k\right|\leqslant \sum_{k=n}^{n+p}|a_k|$, so $\sum_{k=1}^{\infty}a_k$ converges.

A7) Prove that we can define the exponential function on \mathbb{C} :

$$\exp:\mathbb{C}
ightarrow\mathbb{C},\,z\mapsto\exp\left(z
ight)=e^z=\sum_{n=0}^{\infty}rac{z^n}{n!}.$$

Proof: Use A6).

A8) $\{a_n\}\subset\mathbb{C}$. Suppose for any $n\in\mathbb{N}$, $a_n\neq 0$. Let $P_n=a_1\cdot a_2\cdots a_n$. If $\lim_{n\to\infty}P_n$ exists and is not 0, we call $\prod_{n=1}^\infty a_n$ convergent and let $\prod_{n=1}^\infty a_n=\lim_{n\to\infty}P_n$. Prove that $\prod_{n=1}^\infty a_n$ converges iff for any $\varepsilon>0$, there exists N such that for any $n\geqslant N$, $p\geqslant 0$,

$$|a_n \cdot a_{n+1} \cdots a_{n+p} - 1| < \varepsilon.$$

Proof: If $\lim_{n \to \infty} P_n = P$ exists and is non-zero, then for any $\varepsilon > 0$, there exists N such that for any $n \geqslant N$, $|P_n - P| < \varepsilon P/4$ and $|P_n| > P/2$. Then for any $n \geqslant N$, $p \geqslant 0$, $|P_{n+p}/P_n - 1| < \varepsilon$.

If for any $\varepsilon>0$, there exists N such that for any $n\geqslant N$, $p\geqslant 0$, $|P_{n+p}-P_n|<\varepsilon|P_n|$, then let $\varepsilon=1$ we infer that P_n is bounded by some constant M. Hence the sequence $\{P_n\}$ is Cauchy, and $P=\lim_{n\to\infty}P_n$ cannot be zero, otherwise there is no such N for $\varepsilon=1/2$.

A9) Prove that $\exp{(x)}$ is monotonically increasing on $\mathbb R.$

Proof: For $x,y\in\mathbb{R}$,

$$\exp{(x)} \cdot \exp{(y)} = \sum_{n=0}^{\infty} rac{x^n}{n!} \cdot \sum_{m=0}^{\infty} rac{y^m}{m!} = \sum_{k=0}^{\infty} \sum_{n+m=k} rac{x^n y^n inom{k}}{k!} = \sum_{k=0}^{\infty} rac{(x+y)^k}{k!} = \exp{(x+y)}.$$

 $\exp\left(x
ight)\cdot\exp\left(-x
ight)=\exp\left(0
ight)=1$ implies $\exp\left(x
ight)>0$ for all $x\in\mathbb{R}$, so if x>y, $\exp\left(x
ight)/\exp\left(y
ight)=\exp\left(x-y
ight)>1\implies\exp\left(x
ight)>\exp\left(y
ight).$

A10) Suppose P(x) and Q(x) are polynomials of degree n,m, where m>n. Prove that

$$\lim_{n o\infty}rac{Q(n)}{P(n)}=0,\,\lim_{n o\infty}rac{Q(n)}{e^n}=0.$$

Proof: Suppose $P(x)=\sum_{k=0}^n a_k x^k$ and $Q(x)=\sum_{k=0}^m b_k x^k$, then there exists N such that for any $x\geqslant N$, $|P(x)|>|a_n|x^n/2$, $|Q(x)|\leqslant \sum_{k=0}^m |b_k|\cdot x^m$, and $e^x\geqslant x^{m+1}/(m+1)!$, hence

$$\left|rac{Q(x)}{P(x)}
ight|\leqslant rac{2\sum_{k=0}^m|b_k|}{|a_n|}\cdot x^{m-n}
ightarrow 0,\, \left|rac{Q(x)}{e^x}
ight|\leqslant (m+1)!\sum_{k=0}^m|b_k|\cdot x^{-1}
ightarrow 0.$$

PSB: Calculation of Limits

$$\lim_{n\to\infty}\frac{n+10}{2n-1}=\frac{1}{2}.$$

$$\lim_{n o\infty}rac{\sqrt{n}+10}{2\sqrt{n}-1}=rac{1}{2}.$$

$$\lim_{n o \infty} 0. \underbrace{99 \cdots 9}_{n ext{ times}} = 1.$$

$$\lim_{n o\infty}rac{1}{n(n+3)}=0.$$

$$\lim_{n\to\infty}\frac{\cos n}{n}=0.$$

$$\lim_{n\to\infty}\frac{2^n}{n!}=0.$$

$$\lim_{n\to\infty}\frac{n!}{n^n}=0.$$

$$\lim_{n\to\infty}\sqrt{n+10}-\sqrt{n+1}=0.$$

$$\lim_{n o\infty}rac{1+2+\cdots+n}{n^2}=rac{1}{2}.$$

$$\lim_{n o \infty} rac{1^2 + 2^2 + \dots + n^2}{n^3} = rac{1}{3}.$$

B11)
$$a > 0$$

$$\lim_{n o\infty}a^{1/n}=1.$$

B12)
$$a > 1$$

$$\lim_{n\to\infty}\frac{n^{10000}}{a^n}=0.$$

B13)

$$\lim_{n o\infty}rac{2^n+n}{3^n+n^2}=0.$$

B14)

$$\lim_{n\to\infty}\frac{3^n+2^n}{3^n+n^2}=1.$$

B15)

$$\lim_{n o\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})=rac{1}{2}.$$

B16) same as B12)

B17)

$$\lim_{n o\infty}\left(1-rac{1}{n}
ight)^n=e^{-1}.$$

B18)

$$\lim_{n\to\infty}\left(1-\frac{1}{5n}\right)^{n+2019}=e^{-1/5}.$$

B19)

$$\lim_{n o \infty} (n^3 + n^2 + 9n + 1)^{1/n} = 1.$$

B20)

$$\lim_{n\to\infty} (2018^n + 2019^n)^{1/n} = 2019.$$

PSC: Riemann Rearrangement Theorem

Suppose $\sum_{n=1}^\infty a_n$ is conditionally convergent, we will prove that for and $\alpha\in\mathbb{R}\cup\{-\infty,\infty\}$, we can rearrange the sequence such that the new series sums to α . Suppose $\varphi:\mathbb{Z}_{\geqslant 1}\to\mathbb{Z}_{\geqslant 1}$ is a bijection, let $b_k=a_{\varphi(k)}$, then the sequence $\{b_k\}_{k\geqslant 1}$ is called a rearrangement of $\{a_n\}_{n\geqslant 1}$. Let all non-negative terms of $\{a_n\}_{n\geqslant 1}$, listed in the same order as in $\{a_n\}$ be c_1,c_2,\cdots , and the negative terms be d_1,d_2,\cdots .

C1) Prove that $\lim_{n o\infty}c_n=\lim_{n o\infty}d_n=0$.

Proof: Since $\sum_{n=1}^\infty a_n$ is conditionally convergent, c_n,d_n both have infinite terms and $\lim_{n\to\infty} a_n=0$. Therefore $\lim_{n\to\infty} c_n=\lim_{n\to\infty} d_n=0$.

C2) Prove that $\sum_{n=1}^{\infty}c_n=\sum_{n=1}^{\infty}b_n=\infty$.

Proof: Since $\sum_{n=1}^\infty a_n$ is not absolutely convergent, the two series can not be both convergent. If one converges and the other doesn't, then $\sum_{n=1}^\infty a_n$ will diverge. Hence they both diverge.

C3) Prove that for any $lpha\in\mathbb{R}$, there exists a rearrangement $\{b_n\}$ of $\{a_n\}$ such that $\sum_{k=1}^\infty b_k=lpha$.

Proof: Suppose $\alpha\geqslant 0$. Inductively define the indices u_i and v_i as follows ($u_0=v_0=0$): For $i\geqslant 1$, let u_i be the least index such that $u_i>u_{i-1}$ and

$$\sum_{j=1}^{u_i} c_j - \sum_{j=1}^{v_{i-1}} d_j \geqslant lpha,$$

and v_i be the least index such that $v_i>v_{i-1}$ and

$$\sum_{j=1}^{u_i} c_j - \sum_{j=1}^{v_i} d_j \leqslant lpha.$$

Let φ be the permutation such that

$$b_1=c_1,b_2=c_2,\cdots,b_{u_1}=c_{u_1},b_{u_1+1}=-d_1,\cdots,b_{u_1+v_1}=-d_{u_1},\cdots$$

Since $\sum_{n=1}^\infty c_n=\sum_{n=1}^\infty d_n=\infty$, u_i and v_i all exists, so φ is indeed a bijection. By definition we know that

$$\left|\sum_{j=1}^{u_i}c_j-\sum_{j=1}^{v_{i-1}}d_j-lpha
ight|\leqslant c_{u_i-1},$$

and

$$\left|\sum_{j=1}^{u_i} c_j - \sum_{j=1}^{v_i} d_j - lpha
ight| \leqslant d_{v_i-1}.$$

Since $\lim_{n\to\infty}c_n=\lim_{n\to\infty}d_n=0$, the two values above both tend to 0. Note that the series $\sum_{n=1}^\infty b_n$ is monotonic between these indices, hence $\sum_{n=1}^\infty b_n=\alpha$.

C4) Prove that there exists a rearrangement $\{x_k\}$ of $\{a_n\}$ such that $\sum_{k=1}^\infty x_k = \infty$.

Proof: Define u_i and v_i as in C3), such that

$$\sum_{j=1}^{u_i}c_j-\sum_{j=1}^{v_{i-1}}d_j\geqslant i\geqslant \sum_{j=1}^{u_i}c_j-\sum_{j=1}^{v_i}d_j.$$

Same as C3) define the sequence x_k and clearly $\sum_{n=1}^{\infty} x_k = \infty$.

PSD: Cesàro Sum

For a real sequence $\{a_n\}_{n\geqslant 1}$, let $\sigma_n=rac{a_1+a_2+\cdots+a_n}{n}$.

D1) Suppose $\lim_{n o\infty}a_n=a$, prove that $\lim_{n o\infty}\sigma_n=a$.

Proof: For any n>0,

$$|\sigma_n - a| \leqslant \sum_{i=1}^N rac{|a_i - a|}{n} + \sum_{i=N+1}^n rac{|a_i - a|}{n} \leqslant rac{MN}{n} + arepsilon(N),$$

where $M=|a|+\sup_{i\leqslant N}|a_i|$, and $\varepsilon(N)=\sup_{i>N}|a_i-a|$. By $\lim_{n\to\infty}a_n=a$ we know $\varepsilon(N)\to 0$, hence $\lim_{n\to\infty}\sigma_n=a$.

D2) Construct a divergent sequence $\{a_n\}$ such that $\lim_{n o\infty}\sigma_n=0$.

Solution: $a_n=(-1)^{n-1}$, $\sigma_n\in[0,1/n]$.

D3) Determine whether there exists $\{a_n\}_{n\geqslant 1}$ such that for any $n\geqslant 1$, $a_n>0$ and $\limsup_{n\to\infty}a_n=\infty$ but $\lim_{n\to\infty}\sigma_n=0$.

Solution: Let

$$a_n = egin{cases} 2^{-n}, & n
eq 2^k, \ k, & n = 2^k. \end{cases}$$

Then $\limsup_{n o \infty} a_n = \infty$ and $a_n > 0$, but for any n, suppose $n \in [2^{k-1}, 2^k]$, then

$$\sigma_n \leqslant rac{1}{n} \cdot \left(1 + rac{k(k+1)}{2}
ight) \leqslant rac{k(k+1)}{2^{k-1}}.$$

Hence $\lim_{n \to \infty} \sigma_n = 0$.

D4) For $k\geqslant 1$, denote $b_k=a_{k+1}-a_k$. Prove that for any $n\geqslant 2$, $a_n-\sigma_n=\sum_{k=1}^{n-1}kb_k/n$.

Proof:

$$\sum_{k=1}^{n-1} k b_k = \sum_{k=1}^{n-1} k (a_{k+1} - a_k) = (n-1) a_n - \sum_{k=1}^{n-1} a_k = n (a_n - \sigma_n).$$

D5) Suppose $\lim_{k o\infty}kb_k=0$ and $\{\sigma_n\}_{n\geqslant 1}$ converges. Prove that $\{a_n\}_{n\geqslant 1}$ also converges.

Proof: By D1), $\lim_{k o\infty}kb_k=0$ implies

$$\lim_{n o\infty}a_n-\sigma_n=\lim_{n o\infty}rac{\sum_{k=1}^{n-1}kb_k}{n}=\lim_{k o\infty}kb_k=0.$$

Therefore $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sigma_n$ exists.

D6) Suppose $\{kb_k\}_{k\geqslant 1}$ is bounded, i.e. $b_k=O(k^{-1})$, and $\lim_{n\to\infty}\sigma_n=\sigma$. Prove that $\lim_{n\to\infty}a_n=\sigma$.

Proof: Note that for m < n,

$$a_n-\sigma_n=rac{m}{n-m}(\sigma_n-\sigma_m)+rac{1}{n-m}\sum_{k=m+1}^n a_n-a_k.$$

Therefore since σ_n is a Cauchy sequence, and $|a_n-a_k|\leqslant M(n-k)/k$, we can choose n,m to show that $\lim_{n\to\infty}a_n-\sigma_n=0$.

PSE: Definition of $\sqrt[n]{x}$ and b^x

E1) Given $n\in\mathbb{N}$ and x>0, prove that if $y_1,y_2>0$ satisfy $y_1^n=x=y_2^n$, then $y_1=y_2$.

Proof: Note that $y_1^{n-1} + y_1^{n-2}y_2 + \cdots + y_2^{n-1} > 0$, and

$$0=y_1^n-y_2^n=(y_1-y_2)\cdot (y_1^{n-1}+y_1^{n-2}y_2+\cdots+y_2^{n-1}).$$

Hence $y_1 = y_2$.

E2) Prove that if x>0, then the set $E(x)=\{t\in\mathbb{R}:t^n< x\}$ is non-empty and has an upper-bound.

Proof: Note that $0 \in E(x)$ and E(x) has the upper-bound $\max\{1, x\}$.

E3) Prove that $y = \sup E(x)$ satisfy $y^n = x$ and y > 0.

Proof: $y=\sup E(x)\implies y^n=x$ since t^n is continuous on $\mathbb R$, and $y^n=x$ and $0\in E(x)$ implies y>0.

E4) Prove that the mapping $\sqrt[n]{\cdot}:\mathbb{R}_{>0}\to\mathbb{R}_{>0}, x\mapsto \sqrt[n]{x}=y$ is well-defined. Denote $\sqrt[n]{x}$ as $x^{1/n}$.

Proof: Use E3).

E5) Prove the $\sqrt[n]{\cdot}:\mathbb{R}_{>0} o\mathbb{R}_{>0}$ is a bijection.

Proof: By E1) it is injective, and $\sqrt[n]{y^n} = y$ implies it is surjective. Hence it is a bijection.

E6) a,b>0 , $n\in\mathbb{N}$, prove that $(ab)^{1/n}=a^{1/n}b^{1/n}$.

Proof: Use E5) and $(xy)^n = x^n y^n$.

E7) Suppose b>1, $m,n,p,q\in\mathbb{Z}$ where n,q>0. Let $r=\frac{m}{n}=\frac{p}{q}$, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Proof: Use $(b^m)^q = (b^p)^n$ and E5).

E8) Prove that for any $r \in \mathbb{Q}$, $r \mapsto b^r$ is well-defined.

Proof: For r=p/q, where $q>0,\gcd(p,q)=1$, let $b^r=(b^p)^{1/q}$, then for any r=m/n, $b^r=(b^m)^{1/n}$.

E9) Prove that for $r,s\in\mathbb{Q}$, $b^{r+s}=b^rb^s$.

Proof: Suppose r=p/q, s=m/n , where n,q>0 , then

$$b^{r+s} = b^{(mq+np)/nq} = (b^{mq} \cdot b^{np})^{1/nq} = (b^m)^{1/n} \cdot (b^p)^{1/q} = b^r b^s.$$

E10) For $x\in\mathbb{R}$, let $B(x)=\{b^t:t\in\mathbb{Q},t\leqslant x\}$. Prove that B(x) is non-empty and has an upper-bound. Define $b^x=\sup B(x)$.

Proof: B(x) is clearly non-empty and bounded by $b^{\lfloor x \rfloor + 1}$.

E11) Prove that if $r\in\mathbb{Q}$, then

$$b^r = \sup B(r), \, orall r \in \mathbb{Q}.$$

Proof: $b^r \in B(r)$ and since b^t is monotonically increasing, $b^r \geqslant \sup B(r)$, hence $b^r = \sup B(r)$.

E12) Prove that for any $x,y\in\mathbb{R}$, $b^{x+y}=b^xb^y$.

Proof: For any $b^t \in B(x)$, $b^s \in B(y)$, $t \leqslant x$ and $s \leqslant y$, so $t+s \leqslant x+y$ and $b^{t+s} \in B(x+y)$, hence $b^{x+y} \geqslant b^x b^y$. For any $b^t \in B(x+y)$, t can be written in the form t=u+v where $b^u \in B(x)$, $b^v \in B(y)$, so $b^{x+y} \leqslant b^x b^y$.

E13*) Prove that when b=e, the function derived from E10) (denoted as e^x) is the same as $\exp{(x)}=\sum_{n=0}^\infty x^n/n!$.

Proof: From $\exp{(1)}=e$, $\exp{(0)}=1$ and $\exp{(x+y)}=\exp{(x)}\cdot\exp{(y)}$ we know that for $n\in\mathbb{Z}$, $\exp{(n)}=e^n$. For $r=p/q\in\mathbb{Q}$,

$$(e^r)^q = e^p = \exp{(p)} = \exp{(r)^q},$$

so by E5) $e^r = \exp{(r)}$. Since $\exp{}$ is continuous, for any $x \in \mathbb{R}$, $e^x = \exp{(x)}$.

PSF

Given $\alpha>0$ and $x_1>\sqrt{\alpha}$, we define inductively $\{x_n\}_{n\geqslant 1}$:

$$x_{n+1}=rac{1}{2}igg(x_n+rac{lpha}{x_n}igg), n\geqslant 1.$$

F1) Prove that $\{x_n\}$ is monotonically decreasing and $\lim_{n \to \infty} x_n = \sqrt{\alpha}$ (which is defined in E).

Proof: Note that

$$x_{n+1}-x_n=rac{lpha-x_n^2}{2x_n}.$$

Hence we can prove by induction that $x_n>\sqrt{\alpha}$ and $x_n>x_{n+1}$. x_n is decreasing and bounded, so $\lim_{n\to\infty}x_n=A$ exists, and $A=(A+\alpha/A)/2$. Therefore $\lim_{n\to\infty}x_n=A=\sqrt{\alpha}$.

F2) Let
$$arepsilon_n=x_n-\sqrt{lpha}.$$
 Prove that $arepsilon_{n+1}=rac{arepsilon_n^2}{2x_n}<rac{arepsilon_n^2}{2\sqrt{lpha}}.$

Proof:

$$rac{arepsilon_n^2}{2x_n} = rac{x_n^2 + lpha - 2x_n\sqrt{lpha}}{2x_n} = rac{1}{2}igg(x_n + rac{lpha}{x_n}igg) - \sqrt{lpha} = x_{n+1} - \sqrt{lpha} = arepsilon_{n+1}.$$

F3) Prove that if $\beta=2\sqrt{\alpha}$, then $\varepsilon_{n+1}<\beta(\varepsilon_1/\beta)^{2^n}$.

Proof: $\varepsilon_{n+1}/\beta < (\varepsilon_n/\beta)^2$, hence $\varepsilon_{n+1} < \beta(\varepsilon_1/\beta)^{2^n}$.

F4) Let $lpha=3, x_1=2$. Verify that $arepsilon_1/eta<0.1$, $arepsilon_5<4\cdot 10^{-16}$, $arepsilon_6<4\cdot 10^{-32}$.

Now we consider lpha>1 and $y_1>\sqrt{lpha}$, and define

$$y_{n+1}=rac{lpha+y_n}{1+y_n}=y_n+rac{lpha-y_n^2}{1+y_n}, n\geqslant 1$$

F6) Prove that $\{y_{2k-1}\}$ is monotonically decreasing.

Proof: Note that

$$y_{n+2} = rac{lpha + y_{n+1}}{1 + y_{n+1}} = rac{lpha + rac{lpha + y_n}{1 + y_n}}{1 + rac{lpha + y_n}{1 + y_n}} = rac{2lpha + (lpha + 1)y_n}{(lpha + 1) + 2y_n},$$

hence

$$y_{n+2}-y_n=rac{2(lpha-y_n^2)}{(lpha+1)+2y_n},\,y_{n+2}-\sqrt{lpha}=rac{(\sqrt{lpha}-1)^2}{(lpha+1)+2y_n}(y_n-\sqrt{lpha}).$$

Therefore $y_1 > \sqrt{\alpha}$ implies $\sqrt{\alpha} < y_{2n+1} < y_{2n-1}$.

F7) Prove that $\{y_{2k}\}$ is monotonically increasing.

Proof: $y_2=(\alpha+y_1)/(1+y_1)<\sqrt{\alpha}$, so same as F6), $y_{2k}>y_{2k-2}$ and $y_{2k}<\sqrt{\alpha}$.

F8) Prove that $\lim_{n o\infty}y_n=\sqrt{lpha}$.

Proof: $\{y_{2n-1}\}$ is decreasing and bounded by $\sqrt{\alpha}$, so $\lim_{n\to\infty}y_{2n-1}=A$ exists and $A=(2\alpha+(\alpha+1)A)/((\alpha+1)+2A)$, so $A=\sqrt{\alpha}$. Likewise $\lim_{n\to\infty}y_{2n}=\sqrt{\alpha}$, hence $\lim_{n\to\infty}y_n=\sqrt{\alpha}$.

F9) Compare the rates of convergence between x_n and y_n .

Solution: Let $\delta_n=|y_n-\sqrt{\alpha}|$, then $\delta_n\sim c^n\delta_1$, hence x_n converges faster then y_n .

PSG: Banach-Mazur Game

Alice and Bob are playing a game: Alice selects a closed interval W_1 first, then Bob choose a subinterval L_1 of W_1 , such that the length of L_1 is less than half of the length of W_1 ; they take turns choosing intervals W_n and L_n , such that $L_n \subset W_n \subset L_{n-1}$ and $|L_n| < |W_n|/2 < |L_{n-1}|/4$, obtaining

$$W_1 \supset L_1 \supset W_2 \supset L_2 \supset \cdots \supset W_n \supset L_n \supset \cdots$$

Alice and Bob find that

$$igcap_{n\geqslant 1}W_n=igcap_{n\geqslant 1}L_n=\{x\}$$

is a real number. If $x\in\mathbb{Q}$ then Alice wins, otherwise Bob wins. Who has a winning strategy? **Solution:** Bob will win. We show that if \mathbb{Q} is replaced with any set M that is of first category, Bob can still win.

M can be written as the union of a countable number of nowhere dense sets. Then in every move of Bob, he can choose L_n such that it does not intersect the nth such nowhere dense set. Hence the final number x is not in M.

Problem H

Consider the set $\mathcal{P}=\{\{p_n\}_{n\geqslant 1}: p_n\in\mathbb{Z}, p_1\geqslant 2, p_{n+1}\geqslant p_n^2\}.$

H1) For any $p=\{p_n\}_{n\geqslant 1}\in \mathcal{P}$, define the sequence

$$a_n = \prod_{k=1}^n \left(1 + rac{1}{p_k}
ight).$$

Prove that $f(p)=\lim_{n o\infty}a_n$ exists and $f(p)\in(1,2].$ Proof: Note that $p_n\geqslant p_1^{2^{n-1}}$, then

$$a_n\leqslant \prod_{k=1}^n\left(1+rac{1}{p_1^{2^{k-1}}}
ight)=rac{1-p_1^{-2^n}}{1-p_1^{-1}}<rac{1}{1-p_1^{-1}}.$$

So the sequence $\{a_n\}$ is monotonic and bounded, hence $f(p)=\lim_{n\to\infty}a_n$ exists. Since $a_n\in(1+1/p_1,\frac{1}{1-p_1^{-1}})$, we obtain $f(p)\in[1+1/p_1,\frac{1}{1-p_1^{-1}}]\subset(1,2]$.

H2) Prove that $f:\mathcal{P} o (1,2]$ is a bijection.

Proof: For any $p=\{p_n\}, q=\{q_n\}\in\mathcal{P}$, if $p\neq q$, take the least k such that $p_k\neq q_k$ and suppose $q_k\geqslant p_k+1$, then for any n>k,

$$a_n = \prod_{t=1}^n \left(1 + \frac{1}{p_t}\right) \geqslant \prod_{t=1}^k \left(1 + \frac{1}{p_t}\right) \cdot \left(1 + \frac{1}{p_{k+1}}\right)$$
 $b_n = \prod_{t=1}^n \left(1 + \frac{1}{q_t}\right) \leqslant \prod_{t=1}^{k-1} \left(1 + \frac{1}{p_t}\right) \cdot \frac{1 - q_k^{-2^{n-k}}}{1 - q_k^{-1}}$

Therefore

$$b_n\leqslant\prod_{t=1}^k\left(1+rac{1}{p_t}
ight)\leqslant(1+C)a_n$$

for all n>k where $C=p_{k+1}^{-1}>0$, hence $f(q)\leqslant (1+C)f(p)< f(p)$, hence f is injective. For any $x\in (1,2]$, inductively define $p=\{p_n\}\in \mathcal{P}$ as follows: For any $n\geqslant 1$, Let t be the least integer such that $a_n\leqslant x$ and $t\geqslant p_{n-1}^2$ (clearly such t exists). If $a_n=x$, then let $p_n=t-1$, $p_m=p_n^{2^{m-n}}$ for all m>n, then f(p)=x. Otherwise let $p_n=t$. Note that for any n such that $p_n>p_{n-1}^2$,

$$|x-a_n|\leqslant 2^{-2^n},$$

therefore f(p)=x, and f is surjective.

H3) Prove that \mathcal{P} is uncountable.

Proof: By H2) and the fact that (1,2] is uncountable.

Problem I: Binary Expansion

Consider the set $S = \{ \{s_n\}_{n \ge 0} : s_n \in \{-1, 1\} \}$.

I1) For any $s=\{s_n\}_{n\geqslant 0}\in \mathcal{S}$, define the sequence

$$c_n = \sum_{k=0}^n rac{s_0 s_1 \cdots s_k}{2^k}.$$

Prove that $h(s)=\lim_{n\to\infty}c_n$ exists and $h(s)\in[-2,2]$. Proof: h(s) exists since c_n is clearly a Cauchy sequence, and $c_n\in[-2,2]$ hence $h(s)\in[-2,2]$.

I2) Prove that $h:\mathcal{S} \to [-2,2]$ is surjective. Determine whether is is injective.

Proof: Consider any $x\in[-2,2]$, we can choose s_n such that $|c_n-x|\leqslant 2^{-n}$. Hence there exists $s=\{s_n\}\in\mathcal{S}$ such that $h(s)=\lim_{n\to\infty}c_n=x$, so h is surjective. Consider $s=\{1,-1,1,1,1,\cdots\}\in\mathcal{S}$ and $s'=\{-1,-1,1,1,\cdots\}$, then h(s)=h(s')=0, hence h is not injective.

I3) For $s=\{s_n\}_{n\geqslant 0}\in\mathcal{S}$, prove that

$$2\sin\left(rac{\pi}{4}c_n
ight)=s_0\sqrt{2+s_1\sqrt{2+\cdots+s_n\sqrt{2}}}.$$

Proof: We prove by induction on n. The base n=0 is trivial. If the statement holds for n-1, then let $s'=\{s_{n+1}\}_{n\geqslant 0}\in\mathcal{S}$, we have

$$2\sin\left(rac{\pi}{4}c_n
ight)=2\sin s_0\left(rac{\pi}{4}+rac{1}{2}\cdotrac{\pi}{4}c_{n-1}'
ight)=s_0\sqrt{2+\sin\left(rac{\pi}{4}c_{n-1}'
ight)}.$$

By the induction hypothesis, the statement also holds for n.

14) Calculate the limit

$$\lim_{n\to\infty}\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}$$

Solution: Consider $s=\{s_n=1\}_{n\geqslant 0}\in \mathcal{S}$, then $c_n=2-2^n$ hence $\lim_{n o\infty} 2\sin\left(\pi c_n/4\right)=2$.

Problem J

Problem: $k\geqslant 2$ is a given integer. Define the sequence $\{a_n\}$ as follows:

$$a_0>0$$
 already given, $a_{n+1}=a_n+a_n^{-1/k}, n\geqslant 0.$

Calculate $\lim_{n o \infty} a_n^{k+1}/n^k$.

Solution: It is easy to see that $a_n o \infty$, hence

$$egin{aligned} \lim_{n o \infty} rac{a_n^{rac{k+1}{k}}}{n} &= \lim_{n o \infty} a_n^{rac{k+1}{k}} - a_n^{rac{k+1}{k}} &= \lim_{n o \infty} a_n^{rac{k+1}{k}} \left(\left(1 + rac{a_{n+1} - a_n}{a_n}
ight)^{rac{k+1}{k}} - 1
ight) \ &= \lim_{n o \infty} a_n^{rac{k+1}{k}} \left(\left(1 + a_n^{-rac{k+1}{k}}
ight)^{rac{k+1}{k}} - 1
ight) = rac{k+1}{k}. \end{aligned}$$

Therefore

$$\lim_{n\to\infty}\frac{a_n^{k+1}}{n^k}=\bigg(1+\frac{1}{k}\bigg)^k.$$