ST 705 Linear models and variance components Lab practice problem set 6

February 17, 2020

- 1. Let X be an $n \times p$ matrix with rank(X) = r, and let C be a $(p-r) \times p$ matrix. If
 - (i) $\operatorname{rank}(C) = p r$ and
 - (ii) $\operatorname{column}(X') \cap \operatorname{column}(C') = \{0\},\$

then

$$\operatorname{rank} \begin{pmatrix} X \\ C \end{pmatrix} = p.$$

Proof. Let $\{u_1, \ldots, u_r\}$ be a basis for $\operatorname{column}(X')$, and $\{u_{r+1}, \ldots, u_p\}$ be a basis for $\operatorname{column}(C')$. Next, show that the vectors in $\{u_1, \ldots, u_r\}$ are linearly independent of the vectors in $\{u_{r+1}, \ldots, u_p\}$. Let $j \in \{r+1, \ldots, p\}$ and suppose that $u_j = \sum_{i=1}^r a_i u_i$, for some coefficients a_1, \ldots, a_r . Accordingly, $a_j \in \operatorname{column}(X')$, but by construction $u_j \in \operatorname{column}(C')$. Thus, $u_j \in \operatorname{column}(X') \cap \operatorname{column}(C') = \{0\}$. Since $u_1, \ldots, u_r, u_{r+1}, \ldots, u_p$ are all basis vectors they cannot be the zero vector, and so the vectors in $\{u_1, \ldots, u_r\}$ must be linearly independent of the vectors in $\{u_{r+1}, \ldots, u_p\}$.

Moreover, since $u_1, \ldots, u_p \in \mathbb{R}^p$ are a set p linearly independent vectors, they form a basis for \mathbb{R}^p . Therefore, any $v \in \mathbb{R}^p$ can be expressed as

$$v = \sum_{i=1}^{p} b_i u_i = \sum_{i=1}^{r} b_i u_i + \sum_{i=r+1}^{p} b_i u_i ,$$

$$\in \operatorname{column}(X') \in \operatorname{column}(C')$$

for some coefficients b_1, \ldots, b_p , and so there exist vectors z and w such that

$$v = X'z + C'w = \begin{pmatrix} X' & C' \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix} \in \text{column} \begin{pmatrix} X' & C' \end{pmatrix}.$$

Hence,
$$\mathbb{R}^p \subseteq \operatorname{column}\left(X' \quad C'\right) \subseteq \mathbb{R}^p$$
, and so $p = \operatorname{rank}\left(X' \quad C'\right) = \operatorname{rank}\left(X \atop C\right)$.

- 2. Denote by W a matrix with column(W) = null(P'), where P is a matrix with full column rank. Show that null(W') = column(P).
- 3. Consider the restricted linear model $Y = X\beta + U$ over the constrained parameter space $\{P'\beta = \delta\}$, for some full-column rank matrix P. Set up the Langrangian function and derive the restricted normal equations (RNE),

$$\begin{pmatrix} X'X & P \\ P' & 0 \end{pmatrix} \begin{pmatrix} \beta \\ \theta \end{pmatrix} = \begin{pmatrix} X'y \\ \delta \end{pmatrix}.$$

4. Prove that there exists a solution to the RNE.