Math Club Talks

Simon Xiang

The UT Math Club meets weekly and invites speakers to give talks every Tuesday at 5:00 PM! Here are some notes I've $T_E X'd$ up from some of them (not all). Source: $https://git.simonxiang.xyz/math_notes/files.html$

Contents

1	The	Borsuk-Ulam Theorem (9/15/20)	2
	1.1	Continuous Maps	2
	1.2	The Borsuk-Ulam Theorem	2
	1.3	Corollaries of BU	2
	1.4	Pancakes!	3

§1 The Borsuk-Ulam Theorem (9/15/20)

Today's speaker is Hannah Turner, a 6th year Ph.D student. We'll be talking about the Borsuk Ulam Theorem!

§1.1 Continuous Maps

We talk about maps from n-dimensional spheres to \mathbb{R}^n . Usually we talk about maps $f \colon \mathbb{R} \to \mathbb{R}$ that are continuous, "don't lift your pencil". In topology, preimage of open sets are open, AKA for $f \colon X \to Y$, points are close in Y imply sets are close in X. For the scope of this talk, assume topological spaces are metrizable.

Definition 1.1 (Sphere). We have $\mathbb{R}^n = (x_1, x_2, \dots, x_n)$ for $x_i \in \mathbb{R}$. We define the *sphere* notated S^{n-1} as the set

$$\{x_i \mid |x_i| = 1\},\$$

or the set of points that are a distance 1 from the origin. For example, $S^1 \subseteq \mathbb{R}^2$, $S^2 \subseteq \mathbb{R}^3$.

Let talk about maps $S^1 \to \mathbb{R}$. Deform the circle into squiggly things then smash it. Or you can turn it into a square then squish it. Yay for deformation retractions! Also: S^1 is compact, so it maps onto a closed and bounded interval. Note this map isn't onto.

§1.2 The Borsuk-Ulam Theorem

Theorem 1.1 (Borsuk-Ulam). Any map $f: S^n \to \mathbb{R}^n$ sends two antipodal points $(v \sim -v)$ in S^n to the same point in \mathbb{R}^n .

Example 1.1. Any map $S^1 \xrightarrow{f} \mathbb{R}$ sends two antipodal points in S^1 to the same point in \mathbb{R} . Look at g(x) = f(x) - f(-x), where $g: S^1 \to \mathbb{R}$. Our new goal: show that g(x) has a zero (this shows BU for n = 1). Pick our favorite point $x_0 \in S^1$, and assume $g(x_0) \neq 0$. So $g(x_0)$ is either positive or negative, that is $g(x_0) > 0$ or $g(x_0) < 0$. Assume $g(x_0) > 0$: what happends to $-x_0$, the antipodal point?

$$g(-x_0) = f(-x_0) - f(-(-x_0)) = f(-x_0) - f(x_0) = -(f(x_0) - f(-x_0)) = -g(x_0).$$

The $g(-x_0) < 0$. Now we apply the IVT, but we have to be a little careful. For the usual $\mathbb{R} \xrightarrow{f} \mathbb{R}$, say f(x) = 5, f(y) = 7, we hit every value in between 5 and 7. What's important: S^1 is *path-connected* (so the IVT still applies, since f is a function from a path-connected space into \mathbb{R}). Then there exists some $x \in S^1$ such that g(x) = 0, finishing the example.

The proof in higher dimensions is more difficult. There are three flavors:

- 1. Algebraic Topology: Assign an algebraic invariant. Weird equation: $H_*(\mathbb{R}P_i^n\mathbb{F}_2)$
- 2. Combinatorics: Tucker's Lemma,
- 3. Set covering (Lusternik-Schnirelmann): For S^n , any n + 1 open sets covering one of the sets must contain antipodal points (in at least one of the covering sets).

§1.3 Corollaries of BU

Definition 1.2 (Homeomorphisms). A *homeomorphism* is a continuous function $f: X \to Y$ which has a continuous inverse $f^{-1}: Y \to X$, $f \circ f^{-1} = \mathrm{id}_X$.

Example 1.2. A map which is not injective cannot have an inverse! Because then one point would map to two, breaking the rules and causing society to fall into a complete collapse.

Example 1.3. Take the map from the half open interval to the circle, that is, $f:[0,1) \to S^1$. f is continuous, has an inverse, but the inverse isn't continuous. Intuition: points at the place where the "endpoints" are identified are now very far away in the preimage of the inverse. So f is a bijection but its inverse is not continuous, so f is NOT a homeomomorphism.

Corollary 1.1. There is no homeomorphism from $S^n \to \mathbb{R}^n$. Any continuous function $f: S^n \to \mathbb{R}^n$ has f(x) = f(-x), not even one to one!

§1.4 Pancakes!

Corollary 1.2 (Pancake Theorem). Any two disks in the place can be cut exactly in half by one slice. This includes weirdly shaped disks! In general, if we have n amount of n-dimensional blobs, we would have an n-dimensional hyperplane (locally homeo to \mathbb{R}^{n-1}) in \mathbb{R}^n that slices each n-dimensional blob exactly in half.

Proof. Sketch of a proof: take our 3 objects A_1 , A_2 , A_3 . Something about normal vectors and perpendicular planes. Measure the volume? (Measures??) Pick the plane that gives half of the sandwich. Repeat for every plane in the sphere, call each plane P_x (where half of the sandwich is on each side of any P_x). Define a map $f: S^2 \to \mathbb{R}^2$ by $x \mapsto (\operatorname{vol}(A_2))$ on the positive side of P_x , $\operatorname{vol}(A_3)$ on the positive side of P_x). We know there are P_x 0 with P_x 1 by BU. Man, I wish I could TeX figures in real time. So

$$x_0 \mapsto (\text{vol}(A_2)P_{x_0}^+, \text{vol}(A_3)P_{x_0}^+),$$

 $-x_0 \mapsto (\text{vol}(A_2)P_{-x_0}^+, \text{vol}(A_3)P_{-x_0}^+),$

which are equal. The point is, we get the same plane but we're looking at it from two different directions, because $(\operatorname{vol}(A_2)P^+_{-x_0},\operatorname{vol}(A_3)P^+_{-x_0})=(\operatorname{vol}(A_2)P^-_{x_0},\operatorname{vol}(A_3)P^-_{x_0})$. $\operatorname{vol}(A_2)$ is cut in half by P_{x_0} , $\operatorname{vol}(A_3)$ is cut in half by P_{x_0} .