Отчет по заданию номер 2+

Нозимов Дилшодхон, группа 23151

Вариант 11. Метод итераций по подобластям, приближаем решение мономами, для QR разложения использовать метод вращений Гивенса.

$$\frac{d^4w(x)}{dx^4} = x^2(1-x)^2 e^x,$$

$$w(0) = 0,$$

$$w(l) = 0,$$

$$w_x(0) = 0,$$

$$w_x(l) = 0.$$

Усложнение: реализовать ускорение по Крылову.

Реализация

Алгоритм был реализован на языке Python с помощью библиотеки numpy, в котором матричные операции написаны на языке C++. Характеристики компьютера, на котором выполнялось задание:

Процессор: 1,1 GHz 2-ядерный процессор Intel Core m3

Память: 8 ГБ 1867 MHz LPDDR3

Графика: Intel HD Graphics 515 1536 МБ

Результаты:

На рисунке 1 приведены точные и приближенные решения задачи для разных К. На рисунке 2 приведены графики ошибок при использовании ускорения по Крылову и при начальном приближении с решения на сетке K/2.

В таблице 1 вместо начальных приближений $c_{ij}=0.4$ использовались c_{ij} полученные на K/2 сетке. Это ускорило решение почти в 2 раза. В добавок было применено ускорение по Крылову, где $K*(N+1)*0.75\;(N=4)$ итераций происходит само ускорение.

Так же в таблицах 3, 4, 5 и 6 приведены результаты численных экспериментов при различных К.

Рис. 1. Приближенное решение, полученное МКНК при K = 5 (a) K = 10 (б) K = 40 (в) K = 160 (г).

Таблица 1. Результаты численных расчетов методом итерации по подобластям с другим подходом выбора начальных приближений.

K	N_{iter}	$t_{sol}(c)$	N_{iter}	$t_{sol}(c)$	$\mu(A_i)$	$\mu(A_b)$
		$c_{ij}=0.4$		$c_{ij}(K/2)$		
5	78	0.08	78	0.08	1.21e+02	6.98e+01
10	261	0.53	197	0.40	1.21e+02	6.98e+01
20	1004	4.10	677	2.82	1.21e+02	6.98e+01
40	4032	32.92	2463	20.20	1.21e+02	6.98e+01
80	16144	266.09	8817	145.87	1.21e+02	6.98e+01
160	60672	2021.96	35090	1156.03	1.21e+02	6.98e+01

Таблица 2. Результаты численных расчетов методом итерации по подобластям с применением ускорения по Крылову.

K	N_{iter}	$t_{sol}(c)$	N_{iter}	$t_{sol}(c)$
		$c_{ij}=0.4$		$c_{ij}(K/2)$
5	19	0.04	19	0.04
10	38	0.15	38	0.18
20	139	1.22	76	0.69
40	302	5.19	301	5.82
80	2486	83.42	1807	61.24
160	13825	924.50	7595	503.94

Таблицы [3, 4, 5, 6] — результаты численных расчетов при различных K. $K{=}10$

K	N _{iter}	$t_{sol}(c)$
5	11	0.05
10	51	0.36
20	391	6.23
40	43233	2569.12
80	128342	4323.78

K = 20

K	N _{iter}	$t_{sol}(c)$
5	21	0.11
10	21	0.23
20	101	1.15
40	37123	2212.01
80	113432	3532.77

K=40

K	N_{iter}	$t_{sol}(c)$
5	41	0.20
10	41	0.35
20	41	0.44
40	2361	59.82

80	39265	1924.23

K=80

K	N_{iter}	$t_{sol}(c)$
5	81	0.36
10	81	1.01
20	111	2.20
40	721	27.22
80	2321	109.33

Рис. 2. Графики ошибок при использовании ускорения по Крылову и при начальном приближении с решения на сетке K/2

Вывод: путём изменения начальных приближений и ускорения по Крылову мы добились ускорения в 4 раза.