Rényi divergences in quantum information theory

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

Smolenice, 15. 10. 2024

What is a divergence?

 \bullet A "dissimilarity measure" on probability distributions: For probability distributions p,q

$$D(p||q) \equiv \text{how different } p \text{ is from } q.$$

A contrast functional:

$$D(p||q) \ge 0,$$
 $D(p||q) = 0 \iff p = q.$

- Not a metric (not necessarily symmetric)
- Other properties?

Rényi divergences

Axiomatic approach (A. Rényi, 1961):

There is a unique family of divergences $\{D_{\alpha}\}_{\alpha>0}$, satisfying certain postulates

$$D_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \left(\sum_{k} p_{k}^{\alpha} q_{k}^{1 - \alpha} \right), \qquad 1 \neq \alpha > 0$$
$$D_{1}(p||q) = \lim_{\alpha \to 1} D_{\alpha}(p||q) = \sum_{k} p_{k} \log \left(\frac{p_{k}}{q_{k}} \right)$$

- Fundamental quantities in information theory
- For $\alpha=1$ Kullback-Leibler divergence (relative entropy, I-divergence)

A basic property: DPI and sufficient statistics

Data processing inequality: For a transformation

 $T:\{1,\ldots,n\} \to \{1,\ldots,m\}$, with p^T , q^T induced distributions

$$D_{\alpha}(p^T \| q^T) \le D_{\alpha}(p \| q)$$

- Any reasonable divergence should satisfy DPI!

Kullback-Leibler-Csiszár Theorem: If $supp(p) \subseteq supp(q)$, $\alpha > 1$

$$D_{\alpha}(p^T || q^T) = D_{\alpha}(p || q) \iff T \text{ is a sufficient statistic for } \{p, q\} :$$

- conditional expectations $E_p[\cdot|T] = E_q[\cdot|T]$
- T contains all information needed to distinguish p from q.

Quantum divergences

Quantum information theory:

- quantum states instead of probability measures
- simplest case: density matrices

$$\rho \in M_n(\mathbb{C}), \ \rho \ge 0, \ \operatorname{Tr}\left[\rho\right] = 1$$

- general case: normal states of a von Neumann algebra
 - covers most of interesting situations
 - powerful technical tools

Quantum divergences: dissimilarity measures for quantum states

Postulates for quantum divergences?

- Postulates similar to Rényi (Müller-Lennert et al, 2013)
- In the classical case (commuting density matrices) we get the unique family of Rényi divergences $\{D_{\alpha}\}_{\alpha>0}$
- In general quantum case: no unique solution

Quantum DPI

Quantum channel: a linear map $\Phi: M_n(\mathbb{C}) \to M_m(\mathbb{C})$

• completely positive: $\mathrm{id}_k:M_k(\mathbb{C})\to M_k(\mathbb{C})$ identity map

 $\Phi \otimes \mathrm{id}_k$ is positive for any $k \geq 1$

• trace-preserving: $\operatorname{Tr}\left[\Phi(\rho)\right] = \operatorname{Tr}\left[\rho\right]$

Equivalently: $\Phi \otimes id_k$ maps states to states, for all k.

Data processing inequality for quantum divergences:

$$D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma)$$

for any quantum channel Φ and any pair of states ρ , σ .

An important quantum divergence

Quantum relative entropy (Umegaki, 1962)

$$S(\rho || \sigma) = \text{Tr} \left[\rho \left(\log(\rho) - \log(\sigma) \right) \right]$$

- satisfies postulates, DPI (Lindblad, 1975)
- fundamental in quantum information theory
- operational interpretations: quantum communication, asymptotic hypothesis testing
- related to many important quantities
- entanglement measures, uncertainty relations

Quantum Rényi divergences

Petz-type (standard) quantum Rényi divergence: (Petz, 1985,1986)

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\rho^{\alpha} \sigma^{1 - \alpha} \right], \qquad 1 \neq \alpha > 0$$

- satisfies postulates, DPI for $\alpha \in (0,2]$
- $\lim_{\alpha \to 1} D_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- operational interpretation for $\alpha \in (0,1)$: (Audenaert et al., 2008, Nagaoka, 2006)
 - asymptotic hypothesis testing (error exponents, direct part)

Quantum Rényi divergences

Minimal (sandwiched) quantum Rényi divergence: (Müller-Lennert et al, 2013, Wilde et al, 2014)

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right], \qquad 1 \neq \alpha > 0$$

- satisfies postulates, DPI for $\alpha \in [1/2, \infty)$ (Frank and Lieb, 2013)
- $\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- operational interpretation for $\alpha>1$: (Mosonyi and Ogawa, 2015)
 - asymptotic hypothesis testing (error exponents, converse part)

Quantum Rényi divergences

 $\alpha-z$ -Rényi divergence: (Jaksic et al, 2011, Audenaert and Datta, 2015)

$$D_{\alpha,z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right)^z \right], \qquad 1 \neq \alpha > 0, z > 0$$

satisfies postulates, DPI for (Zhang, 2020)

$$\alpha \in (0,1), \ \max\{\alpha,1-\alpha\} \leq z \ \text{ or } \ \alpha > 1, \ \max\{\frac{\alpha}{2},\alpha-1\} \leq z \leq \alpha$$

• $\lim_{\alpha \to 1} D_{\alpha,z}(\rho \| \sigma) = S(\rho \| \sigma), \ z > 1$