Coordinate rispetto ad una base

Data una base $B = [v_1, \dots, v_n]$ di \mathbb{R}^n ed un vettore $v \in \mathbb{R}^n$, le coordinate $||v||^B$ del vettore v in base B sono definite da:

$$||v||^B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \Leftrightarrow v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

Consideriamo la base $B = [v_1, v_2, v_3]$ di \mathbb{R}^3 data dai vettori

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

(verificare che i tre vettori formano una base).

Le coordinate del vettore $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ in base B sono $||v||^B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$: infatti vale (controllare!) $v = v_1 + v_2$.

Se invece la base considerata è $\vec{B}' = [v_1', v_2', v_3']$ dove

$$v_1' = \begin{bmatrix} -1\\1\\2 \end{bmatrix}, v_2' = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, v_3' = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

allora
$$||v||^{B'}=\begin{bmatrix}1/2\\1/2\\3/2\end{bmatrix}$$
: infatti vale (controllare!) $v=v_1/2+v_2/2+3v_3/2$.

Cambiamento di coordinate

Data una base B, come possiamo trovare le coordinate di un vettore v in base B? Consideriamo la matrice che ha per colonne i vettori della base B (che indichiamo ancora con B). La matrice B ha un'inversa B^{-1} (infatti, per un teorema studiato nelle slides sul determinante, B è una base se e solo se la matrice (che corrisponde a) B è invertibile) e vale:

LEMMA (Matrici di cambiamento di base)

1
$$v = B||v||^B$$
, $||v||^B = B^{-1}v$.

2 Se B' è un'altra base di \mathbb{R}^n allora

$$||v||^B = B^{-1}B'||v||^{B'}$$

Dim. 1. Se $||v||^B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$ allora, poiché $Be_1 = v_1, \dots, Be_n = v_n$ e quindi $e_1 = B^{-1}v_1, \dots, e_n = B^{-1}v_n$ avremo:

$$B^{-1}v = B^{-1}(\lambda_1v_1 + \ldots + \lambda_nv_n) = \lambda_1B^{-1}v_1 + \ldots + \lambda_nB^{-1}v_n = \lambda_1e_1 + \ldots + \lambda_ne_n \begin{vmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{vmatrix} = ||v||^B.$$

L'uguaglianza $v = B||v||^B$ segue da $||v||^B = B^{-1}v$ moltiplicando entrambi i membri a destra per la matrice B.

Dim.2. Dal punto precedente abbiamo che $||v||^B = B^{-1}v$ e $v = B'||v||^{B'}$. Sostituendo otteniamo:

$$||v||^B = B^{-1}v = B^{-1}B'||v||^{B'} = (B^{-1}B')||v||^{B'}$$

ESEMPIO Consideriamo la base e $B = [v_1, v_2, v_3]$ di \mathbb{R}^3 data dai vettori

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Abbiamo $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & -1 & 1 \end{bmatrix}$, mentre l'inversa di B (calcolarla per esercizio) è

$$B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1/2 & -1/2 \\ -1 & 1/2 & 1/2 \end{bmatrix}.$$

Se $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ allora

$$||v||^B = B^{-1}v = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1/2 & -1/2 \\ -1 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Consideriamo ora anche la base $B' = [v'_1, v'_2, v'_3]$ dove

$$v_1' = \begin{bmatrix} -1\\1\\2 \end{bmatrix}, v_2' = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, v_3' = \begin{bmatrix} 1\\0\\0 \end{bmatrix}.$$

Abbiamo $B' = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$, mentre l'inversa di B' (calcolarla per esercizio) è $(B')^{-1} = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 1 & -1/2 \\ 1 & 0 & 1/2 \end{bmatrix}$.

Per calcolare $||v||^{B'}$ possiamo allora usare la formula $||v||^{B'} = (B')^{-1}B||v||^B$, ottenendo:

$$||v||^{B'} = \begin{bmatrix} 0 & 0 & 1/2 \\ 0 & 1 & -1/2 \\ 1 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ 3/2 \end{bmatrix}$$

(verificare che i conti tornino).

Matrici e Trasformazioni Diagonali

Una matrice quadrata diagonale di dimensione n rappresenta una trasformazione $T: \mathbb{R}^n \to \mathbb{R}^n$ particolarmente semplice: il vettore e_i della base canonica ha come immagine un vettore della stessa direzione, scalato dal multiplo che si trova all'i-esimo posto lungo la diagonale della matrice.

Matrici che corrispondono a trasformazioni lineari rispetto ad una base qualsiasi

- Non sempre la base canonica per dominio e codominio è la più conveniente per rappresentare una trasformazione lineare. Per semplicità ci limitiamo a trasformazioni che hanno il dominio uguale al codominio, anche se il discorso si generalizza facilmente a tutte le trasformazioni lineari.
- Se $T: \mathbb{R}^n \to \mathbb{R}^n$ sappiamo che la matrice A che corrisponde a T (rispetto alla base canonica) verifica Av = T(v) (dove i vettori v e T(v) sono da considerarsi vettori colonna). Poiché un vettore coincide con le sue coordinate rispetto alla base canonica, avremo:

$$A||v||^{\mathcal{E}_n}=||T(v)||^{\mathcal{E}_n}$$

• La base canonica, però, non è l'unica base possibile e può essere conveniente considerare un'altra base $B = [v_1, \dots, v_n]$ e cercare una matrice A' tale che

$$A'||v||^{B} = ||T(v)||^{B}$$

Matrici che corrispondono a trasformazioni lineari rispetto ad una base qualsiasi

ESEMPIO Sia $T : \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione definita dalla matrice $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, ovvero T(x, y) = (x + y, x + y).

Se consideriamo la base $B = [v_1, v_2]$ dove $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e la matrice

 $A' = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Come vedremo, è possibile dimostrare che vale

$$A'||v||^{B} = ||T(v)||^{B}.$$

Ad esempio

$$A'\begin{bmatrix}1\\0\end{bmatrix}=A'||v_1||^B=\begin{bmatrix}2\\0\end{bmatrix}=||T(v_1)||^B.$$

Descrivere la trasformazione T tramite la matrice A' invece della matrice A è conveniente da un punto di vista computazionale.

Matrici che corrispondono a trasformazioni lineari rispetto ad una base qualsiasi

TEOREMA (matrici di trasformazioni in altre basi)

Se $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione lineare, $B = [v_1, \dots, v_n]$ è una base di \mathbb{R}^n e $M_B(T)$ è la matrice che ha come colonne le coordinate dei vettori $T(v_1), \dots, T(v_n)$ in base B, ovvero $M_B(T) = [||T(v_1)||^B, \dots, ||T(v_n)||^B]$ allora

$$M_B(T)||v||^B=||T(v)||^B.$$

Dim. Sia
$$||v||^B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$
, ovvero: $v = \lambda_1 v_1 + \ldots + \lambda_n v_n$. Si ha

$$M_{B}(T)||v||^{B} = [||T(v_{1})||^{B}, \dots, ||T(v_{n})||^{B}]\begin{bmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{bmatrix} = \lambda_{1}||T(v_{1})||^{B} + \dots + \lambda_{n}||T(v_{n})||^{B} = (*)$$

$$||\lambda_1 T(v_1) + \dots + \lambda_n T(v_n)||^B = ||T(\lambda_1 v_1 + \dots + \lambda_n v_n)||^B = ||T(v)||^B$$

 $(^{(*)}$ questa uguaglianza vale perché la funzione $||-||^B:R^n\to\mathbb{R}^n$ è lineare, infatti è rappresentata dalla matrice $B^{-1}:||w||^B=B^{-1}w$).

ESEMPIO

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione definita da T(x,y) = (3x/2 + y/2, x/2 + 3y/2).

ESEMPIO

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione definita da T(x,y) = (3x/2 + y/2, x/2 + 3y/2). Se $M_{\mathcal{E}_n}(T)$ è la matrice che corrisponde a T rispetto alla base canonica, si ha

$$M_{\mathcal{E}_n}(T) = [||T(e_1)||^{\mathcal{E}_2}, ||T(e_2)||^{\mathcal{E}_2}] = \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{bmatrix} \quad \text{e vale } M_{\mathcal{E}_n}(T)||v||^{\mathcal{E}_2} = ||T(v)||^{\mathcal{E}_2}$$

ESEMPIO

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione definita da T(x,y) = (3x/2 + y/2, x/2 + 3y/2). Se $M_{\mathcal{E}_n}(T)$ è la matrice che corrisponde a T rispetto alla base canonica, si ha

$$M_{\mathcal{E}_n}(T) = [||T(e_1)||^{\mathcal{E}_2}, ||T(e_2)||^{\mathcal{E}_2}] = \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{bmatrix} \quad \text{e vale } M_{\mathcal{E}_n}(T)||v||^{\mathcal{E}_2} = ||T(v)||^{\mathcal{E}_2}$$

Consideriamo ora un'altra base, ad esempio $B = [v_1, v_2]$ dove $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e calcoliamo la matrice $M_B(T)$ che rappresenta T rispetto a questa base, ovvero tale che

$$M_B(T)||v||^B = ||T(v)||^B.$$

ESEMPIO

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ la trasformazione definita da T(x,y) = (3x/2 + y/2, x/2 + 3y/2). Se $M_{\mathcal{E}_\eta}(T)$ è la matrice che corrisponde a T rispetto alla base canonica, si ha

$$\mathit{M}_{\mathcal{E}_n}(T) = [||\mathit{T}(e_1)||^{\mathcal{E}_2}, ||\mathit{T}(e_2)||^{\mathcal{E}_2}] = \begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \end{bmatrix} \quad \text{e vale } \mathit{M}_{\mathcal{E}_n}(T)||\mathit{v}||^{\mathcal{E}_2} = ||\mathit{T}(\mathit{v})||^{\mathcal{E}_2}$$

Consideriamo ora un'altra base, ad esempio $B = [v_1, v_2]$ dove $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e calcoliamo la matrice $M_B(T)$ che rappresenta T rispetto a questa base, ovvero tale che

$$M_B(T)||v||^B = ||T(v)||^B.$$

Poiché $M_B(T) = [||T(v_1)||^B, ||T(v_2)||^B]$, calcoliamo $T(v_1) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $T(v_2) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, da cui si vede facilmente che $||T(v_1)||^B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, mentre $||T(v_2)||^B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Quindi: $M_B(T) = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ Usando la base B la matrice $M_B(T)$ è diagonale e riferendoci alla base B possiamo calcolare T più velocemente di quanto si possa fare rispetto alla base canonica.

COME PASSARE DA $M_B(T)$ a $M_{B'}(T)$ E VICEVERSA

Siano B, B' due basi di \mathbb{R}^n .

$$BM_B(T)B^{-1} = M_{\mathcal{E}_n}(T), \qquad B^{-1}M_{\mathcal{E}_n}(T)B = M_B(T),$$

 $B'^{-1}BM_B(T)B^{-1}B' = M_{B'}(T)$

(dove B, B' sono considerate come matrici con colonne date dai vettori della base corrispondente).

Dim. Supponiamo che $B = [v_1, \dots, v_n]$. Calcoliamo la prima colonna della matrice $BM_B(T)B^{-1}$:

$$BM_B(T)B^{-1}e_1 = BM_B(T)||e_1||^B = B||T(e_1)||^B = T(e_1) = ||T(e_1)||^{\mathcal{E}_n}$$

Quindi la prima colonna della matrice $BM_B(T)B^{-1}$ coincide con la prima colonna della matrice $M_{\mathcal{E}_n}(T)$. Procedendo in modo simile per le altre colonne si dimostra la prima uguaglianza.

La seconda uguaglianza si ottiene dalla prima moltiplicando a sinistra per B^{-1} e a destra per B.

La terza uguaglianza si ottiene da $B'^{-1}M_{\mathcal{E}_n}(T)B'=M_{B'}(T)$ sostituendo $M_{\mathcal{E}_n}(T)$ con $BM_B(T)B^{-1}$.

RICETTARIO PER MATRICI DI TRASFORMAZIONI IN ALTRE BASI

• Data una trasformazione lineare $T : \mathbb{R}^n \to \mathbb{R}^n$ e una base $B = [v_1, \dots, v_n]$ di \mathbb{R}^n , la matrice che rappresenta T nella base B si indica con $M_B(T)$ e verifica

$$M_B(T) = [||T(v_1)||^B, \dots, ||T(v_n)||^B], \qquad M_B(T)||v||^B = ||T(v)||^B.$$

• In particolare, la matrice che corrisponde a T nella base canonica \mathcal{E}_n è quella che abbiamo sempre utilizzato per rappresentare T:

$$M_{\mathcal{E}_n}(T) = [||T(\mathbf{e}_1)||^{\mathcal{E}_n}, \dots, ||T(\mathbf{e}_n)||^{\mathcal{E}_n}], \qquad M_{\mathcal{E}_n}(T)||v||^{\mathcal{E}_n} = ||T(v)||^{\mathcal{E}_n}.$$

Le matrici $M_B(T)$ e $M_{\mathcal{E}_n}(T)$ si ricavano l'una dall'altra tramite le matrici di cambiamento di base:

$$M_{\mathcal{E}_n}(T) = BM_B(T)B^{-1}, \qquad M_B(T) = B^{-1}M_{\mathcal{E}_n}B$$

ESERCIZI

① Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione definita da T(x,y,z) = (2y,3y-x,2z). Considerare i vettori $v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ e $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ e calcolare la matrice

$$M_B(T)$$

dove B è la base $B = [v_1, v_2, v_3]$.

ESERCIZI

■ Sia $T : \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione definita da T(x,y,z) = (2y,3y-x,2z). Considerare i vettori $v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ e $v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ e calcolare la matrice

$$M_B(T)$$

dove *B* è la base $B = [v_1, v_2, v_3]$.

SOL Poiché $T(v_1) = 2v_1$, $T(v_2) = 2v_2$ e $T(v_3) = v_3$ ne segue che

$$M_B(T) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Verificare che

$$BM_B(T)B^{-1} = M_{\mathcal{E}_n}(T)$$

SOL

$$B = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad B^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & -1 & 0 \end{bmatrix}$$

