Problem Set 7

D. Zack Garza

November 12, 2019

Contents

1	Problem 1	1
	1.1 Part a	1
	1.2 Part b	2
2	Problem 2 2.1 Part a:	3
	2.1 Part a:	3
	2.2 Part b:	4
3	Problem 3	4
	3.1 Part a	4
	3.2 Part b	5
4	Problem 5	5
5	Part 1	5

1 Problem 1

1.1 Part a

We want to show that $\ell^2(\mathbb{N})$ is complete, so let $\{x_n\} \subseteq \ell^2(\mathbb{N})$ be a Cauchy sequence, so $\|x^j - x^k\|_{\ell^2} \to 0$. We want to produce some $\mathbf{x} := \lim_{n \to \infty} x^n$ such that $x \in \ell^2$.

To this end, for each fixed index i, define

$$\mathbf{x}_i \coloneqq \lim_{n \to \infty} x_i^n.$$

This is well-defined since $\|x^j - x^k\|_{\ell^2} = \sum_i \left|x_i^j - x_i^k\right|^2 \to 0$, and since this is a sum of positive real numbers that approaches zero, each term must approach zero. But then for a fixed i, the sequence $\left|x_i^j - x_i^k\right|^2$ is a Cauchy sequence of real numbers which necessarily converges in \mathbb{R} .

We also have $\|\mathbf{x} - x^j\|_{\ell^2} \to 0$ since

$$\|\mathbf{x} - x^j\|_{\ell^2} = \|\lim_{k \to \infty} x^k - x^j\|_{\ell^2} = \lim_{k \to \infty} \|x^k - x^j\|_{\ell^2} \to 0$$

where the limit can be passed through the norm because the map $t \mapsto ||t||_{\ell^2}$ is continuous. So $x^j \to \mathbf{x}$ in ℓ^2 as well.

It remains to show that $\mathbf{x} \in \ell^2(\mathbb{N})$, i.e. that $\sum_i |\mathbf{x}_i|^2 < \infty$. To this end, we write

$$\|\mathbf{x}\|_{\ell^{2}} = \|\mathbf{x} - x^{j} + x^{j}\|_{\ell^{2}}$$

$$\leq \|\mathbf{x} - x^{j}\|_{\ell^{2}} + \|x^{j}\|_{\ell^{2}}$$

$$\to M < \infty,$$

where $\|\mathbf{x}_i - x^j\|_{\ell^2} \to 0$ and the second sum is finite because $x^j \in \ell^2 \iff \|x^j\|_{\ell^2} \coloneqq M < \infty$.

1.2 Part b

Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

Lemma: For any complex number z, we have

$$\Im(z) = \Re(-iz),$$

and as a corollary, we have

$$\Re(\langle x, iy \rangle) = \Re(-i\langle x, y \rangle) = \Im(\langle x, y \rangle).$$

We can compute the following:

$$||x + y||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, y \rangle)$$

$$||x - y||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, y \rangle)$$

$$||x + iy||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

$$||x - iy||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

and summing these all

$$||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x + iy|| = 4 \Re(\langle x, y \rangle) + 4i \Im(\langle x, y \rangle)$$

= $4\langle x, y \rangle$.

To conclude that a linear map U is an isometry iff U is unitary, if we assume U is unitary then we can write

$$||x||^2 := \langle x, x \rangle = \langle Ux, Ux \rangle := ||Ux||^2.$$

Assuming now that U is an isometry, by the polarization identity we can write

$$\langle Ux, \ Uy \rangle = \frac{1}{4} \left(\|Ux + Uy\|^2 + \|Ux - Uy\|^2 + i\|Ux + Uy\|^2 - i\|Ux + Uy\|^2 \right)$$

$$= \frac{1}{4} \left(\|U(x+y)\|^2 + \|U(x-y)\|^2 + i\|U(x+y)\|^2 - i\|U(x+y)\|^2 \right)$$

$$= \frac{1}{4} \left(\|x + y\|^2 + \|x - y\|^2 + i\|x + y\|^2 - i\|x + y\|^2 \right)$$

$$= \langle x, \ y \rangle.$$

2 Problem 2

Lemma: The map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ is continuous.

Proof:

Let $x_n \to x$ and $y_n \to y$, then

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq \|x_n - x\| \|y_n\| + \|x\| \|y_n - y\| \\ &\to 0 \cdot M + C \cdot 0 < \infty, \end{aligned}$$

where $||y_n|| \to M$ since $y_n \to y$ implies that $||y_n||$ is bounded.

2.1 Part a:

Using the lemma, letting $\{e_n\}$ be a sequence in E^{\perp} , so $y \in E \implies \langle e_n, y \rangle = 0$. Since H is complete, $e_n \to e \in H$; we can show that $e \in E^{\perp}$ by letting $y \in E$ be arbitrary and computing

$$\langle e, y \rangle = \left\langle \lim_{n} e_{n}, y \right\rangle = \lim_{n} \left\langle e_{n}, y \right\rangle = \lim_{n} 0 = 0,$$

so $e \in E^{\perp}$.

2.2 Part b:

Let $S := \operatorname{span}_H(E)$; then the smallest closed subspace containing E is \overline{S} , the closure of S. We will proceed by showing that $E^{\perp \perp} = \overline{S}$.

$$\overline{S} \subseteq E^{\perp \perp}$$
:

Let $\{x_n\}$ be a sequence in S, so $x_n \to x \in \overline{S}$.

First, each x_n is in $E^{\perp \perp}$, since if we write $x_n = \sum a_i e_i$ where $e_i \in E$, we have

$$y \in E^{\perp} \implies \langle x_n, y \rangle = \left\langle \sum_i a_i e_i, y \right\rangle = \sum_i a_i \langle e_i, y \rangle = 0 \implies x_n \in (E^{\perp})^{\perp}.$$

It remains to show that $x \in E^{\perp \perp}$, which follows from

$$y \in E^{\perp} \implies \langle x, y \rangle = \left\langle \lim_{n} x_{n}, y \right\rangle = \lim_{n} \left\langle x_{n}, y \right\rangle = 0 \implies x \in (E^{\perp})^{\perp},$$

where we've used continuity of the inner product.

$$E^{\perp\perp}\subseteq \overline{S}$$
:

For notation convenience, we'll just write S for \overline{S} . Let $x \in E^{\perp \perp}$. Noting that S is closed, we can define P, the operator projecting elements onto S, and write

$$x = Px + (x - Px) \in S \oplus S^{\perp}$$

But since $\langle x, x - Px \rangle = 0$ because $x - Px \in E^{\perp}$ and $x \in (E^{\perp})^{\perp}$, we can rewrite the first term in this inner product to obtain

$$0 = \langle x, x - Px \rangle = \langle Px + (x - Px), x - Px \rangle = \langle Px, x - Px \rangle + \langle x - Px, x - Px \rangle,$$

where we can note that the first term is zero because $Px \in S$ and $x - Px \in S^{\perp}$, and the second term is $||x - Px||^2$.

But this says $||x - Px||^2 = 0$, so x - Px = 0 and thus $x = Px \in S$, which is what we wanted to show.

3 Problem 3

3.1 Part a

We compute

$$||e_0||^2 = \int_0^1 1^2 dx = 1$$

$$||e_1||^2 = \int_0^1 3(2x - 1)^2 = \frac{1}{2}(2x - 1)^2 \Big|_0^1 = 1$$

$$\langle e_0, e_1 \rangle = \int_0^1 \sqrt{3}(2x - 1) dx = \frac{\sqrt{3}}{4}(2x - 1) \Big|_0^1 = 0.$$

which verifies that this is an orthonormal system.

3.2 Part b

We first note that this system spans the degree 1 polynomials in $L^2([0,1])$, since we have

$$\begin{bmatrix} 1 & 0 \\ 2\sqrt{3} & \sqrt{3} \end{bmatrix} [1, x]^t = [e_0, e_1]$$

which exhibits a matrix that changes basis from $\{1, x\}$ to $\{e_0, e_1\}$ which is invertible, so both sets span the same subspace.

Thus the closest degree 1 polynomial f to x^3 is given by the projection onto this subspace, and since $\{e_i\}$ is orthonormal this is given by

$$\begin{split} f(x) &= \sum_{i} \left\langle x^{3}, \ e_{i} \right\rangle e_{i} \\ &= \left\langle x^{3}, \ 1 \right\rangle 1 + \left\langle x^{3}, \ \sqrt{3}(2x-1) \right\rangle \sqrt{3}(2x-1) \\ &= \int_{0}^{1} x^{2} \ dx + \sqrt{3}(2x-1) \int_{0}^{1} \sqrt{3}x^{2}(2x-1) \ dx \\ &= \frac{1}{3} + \sqrt{3}(2x-1) \frac{\sqrt{3}}{6} \\ &= x - \frac{1}{6}. \end{split}$$

We can also compute

$$||f - g||_2^2 = \int_0^1 (x^2 - x + \frac{1}{6})^2 dx$$

$$= \frac{1}{180}$$

$$\implies ||f - g||_2 = \frac{1}{\sqrt{180}}.$$

4 Problem 5

5 Part 1

We use the following algorithm: given $\{v\}_i$, we set

- $e_1 = v_1$, and then normalize to obtain $\hat{e_1} = e_1/\|e_1\|$
- $e_i = v_i \sum_{k \le i-1} \langle v_i, \hat{e_i} \rangle \hat{e_i}$

The result set $\{\hat{e}_i\}$ is the orthonormalized basis.

We set $e_1 = 1$, and check that $||e_1||^2 = 2$, and thus set $\hat{e}_1 = \frac{1}{\sqrt{2}}$.

We then set

$$e_{2} = x - \langle x, \hat{e}_{1} \rangle \hat{e}_{1}$$

$$= x - \langle x, 1 \rangle 1$$

$$= x - \int_{-1}^{1} \frac{1}{\sqrt{2}} x \, dx$$

$$= x - \int \text{odd function}$$

$$= x,$$

and so $e_2 = x$. We can then check that

$$||e_2|| = \left(\int_{-1}^1 x^2 dx\right)^{1/2} = \sqrt{\frac{2}{3}},$$

and so we set $\hat{e}_2 = \sqrt{\frac{3}{2}}x$.

We continue to compute

$$\begin{split} e_3 &= x^2 - \left\langle x^2, \ \hat{e}_1 \right\rangle \hat{e}_1 - \left\langle x^2, \ \hat{e}_2 \right\rangle \hat{e}_2 \\ &= x^2 - \frac{1}{2} \int_{-1}^1 x^2 \ dx - \frac{3}{2} x \int_{-1}^1 x^3 \ dx \\ &= x^2 - \left(\frac{1}{6} x^3\right) \Big|_{-1}^1 + \frac{3}{2} x \int_{-1}^1 \text{odd function} \\ &= x^2 - \frac{1}{3}. \end{split}$$

We can then check that $||e_3||^2 = \frac{8}{45}$, so we set

$$\hat{e}_3 = \sqrt{\frac{45}{8}} (x^2 - \frac{1}{3})$$

$$= \frac{1}{2} \sqrt{\frac{45}{2}} \frac{1}{3} (3x^2 - 1)$$

$$= \frac{1}{3} \sqrt{\frac{45}{2}} \left(\frac{3x^2 - 1}{2} \right).$$

In summary, this yields

$$\hat{e}_1 = \frac{1}{\sqrt{2}}$$

$$\hat{e}_2 = x$$

$$\hat{e}_3 = \frac{1}{3}\sqrt{\frac{45}{2}} \left(\frac{3x^2 - 1}{2}\right).$$