Convolutional Neural Networks

MNIST

각 이미지는 28x28 픽셀로 되어있으며, 0~255의 숫자로 되어있다.

MNIST Training

Deep Neural Networks

CNN(Convolutional Neural Networks)

이미지의 특성을 고려하기 위한 딥러닝 알고리즘

CNN(Convolutional Neural Networks)

Convolution Layer 이후 Fully connected layer를 거쳐 분류한다.

Data Split

Training data: 모델을 학습할 때 사용되는 데이터

Validation data: 학습과정에서 1epoch 단위로 학습된 모델의 성능을 평가하는 데이터

Test data: 학습이 완료된 모델을 최종적으로 평가하는 데이터

One-hot Encoding

```
Integer-valued labels:
[5 0 4 1 9 2 1 3 1 4]
One-hot labels:
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
```

데이터의 label을 벡터 값으로 표현하는 방법

Convolutional Layer

이미지와 가중치가 있는 필터를 계산하여 특징을 추출한다.

Max Pooling

7 10 6 5	5 4 1 0	0 21 7 8	3 2 0 4	10	7 10 6 5	5 4 1 0	0 21 7 8	3 2 0 4	→	10 21
7	5	0	3	10 21	7	5	0 21	3		10 21
6	1 0	7	0	$\rightarrow \frac{10 21}{6}$	6	1	7	0	-	6 8

Convolution 이후 결과에서 가장 큰 값을 갖는 수를 사용해 계산을 줄일 수 있다.

MNIST CNN

Convolution, Max pooling, Fully connected를 거쳐 MNIST 학습 가능

Learning Curve

Train loss는 감소하는데 Validation loss는 증가하면 Over-fitting되고 있다고 판단할 수 있다.

Cheer Up