第六章作业解答

3. 自然数集N 上的二元代数运算 * 定义为 $x * y = x^y$, * 是否满足结合律? 是否满足交换律?

解:都不满足。

4. 设 * 是集合S上的二元代数运算,且满足结合律,设x, y是S中任意元素,如果x * y = y * x, 则x = y 。试证明 * 满足等幂律。

证明:由于对S中任意的x, y和z, 有x*(y*z)=(x*y)*z, 故x*(x*x)=(x*x)*x, 于是有x*x=x。

2. 举例说明不要求可除条件而要求消去条件,即要求由 $\alpha\chi=ay$ 可推出 $\chi=y$,由 $\chi:a=y:a$ 可推出 $\chi=y$,则G不见得是一个群,若G有限怎么样?

解: 例如,全体自然数在普通乘法下,适合消去律,但不是群。若 $G=\{a_1, a_2, ..., a_n\}$,用a右乘G中各元素得 $a_1a_1, a_2a_2, ..., a_na$ 必不相同(无限也不相同),否则若 $a_1a=a_1a_2$ ($i\neq j$) ,由消去条件有 $a_1=a_1$,矛盾。所以 $G=\{a_1a_1, a_2a_1, ..., a_na\}$ (因为有限)。对任意 $b\in G$,必有 a_1 ,使 $a_1a=b$,因之方程xa=b有解。同理可知 $a_1v=b$ 有解。故G是群。

1. 计算 (123) (234) (14) (23)。

解: (123) (234) (14) (23) = (13) (24) 。

I, (1)(2)(3)(4), (1)等等

5. 证明n个元素的所有偶置换作成群(叫做n次交代群)。写出四次交代群中的元素。n次交代群的元数为何?

证明:注意到偶置换×偶置换=偶置换。易知偶置换成群。

A₄: (1), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3), (1 2) (3 4), (1 3) (2 4), (1 4) (2 3), $\frac{1}{2}$ n!.

8. 求证循环群的子群仍是循环群。

证明:若循环群G由其中元a生成。H是的子群,但不是单位元群。则H中必含有幂m>0的元a^m。因为若m<0,a^m的逆元a^{-m}也在H内,而-m>0。假定a^m是H中的最小正幂,显然H包含a^m的任意乘幂。假如又有H中任意元a^s,由S=tm+r。0≤r<m知a^r=a^s-tm=(a^s)·(a^m)·t是H中元,但m最小。而0≤r<m,故r=0,因此有a^s=(a^m)·t这表明H中任意元a^s也是a^m的乘幂,而知H为a^m生成的循环群。

10. 求证若G的元数是一个质数,则G必是循环群。

证明:设G的元数为质数P,任取G中非单位元a,则(a)是G的一个循环子群,设a的周期为r,则(a)的元数为r,因此rIP。但P是质数。显然r=P,所以G=(a),即G是由a生成的循环群。

2. 设 σ 是G到G'上的同态映射。 τ 是G'到G"上同态映射,说明 $\tau\sigma$ 是G到G"上的同态映射。并说明 $\tau\sigma$ 的核为 $\sigma^{-1}\tau^{-1}(1)$ ",其中1"是G"的青。

证明: 首先由题意, τσ是G到G"上的映射。

对任意 $\mathbf{a} \in \mathbf{G}$, $\mathbf{b} \in \mathbf{G}$,有 $\tau \sigma (\mathbf{a} \bullet \mathbf{b}) = \tau(\sigma(\mathbf{a} \bullet \mathbf{b})) = \tau(\sigma(\mathbf{a}) \bullet \sigma(\mathbf{b})) = \tau(\sigma(\mathbf{a})) \bullet \tau(\sigma(\mathbf{b})) = \tau(\sigma(\mathbf{a}) \bullet \tau \sigma(\mathbf{b}))$,故 $\tau \sigma \to \mathbf{b}$ 因此 $\tau \sigma \to \mathbf{b}$ 因此 $\tau \sigma \to \mathbf{b}$ 因此 $\tau \sigma \to \mathbf{b}$ 可态映射。

1"在τσ下在G中原像集是 $σ^-1τ^-1(1")$,τσ $(σ^-1τ^-1(1"))=1$ ",所以τσ的核为 $σ^-1τ^-1(1")$ 。

3. 设 σ 是G到G'上的同态映射。H是包含 σ 的核N的G的正规子群。H'= σ (H) ,求证

$$H$$
'是 G '的正规子群。并证明"第一同构定理": H

证明:由题意可知H'是G'的子群。对任g'∈ G',必有g∈ G,使 σ (g)=g'。所以由gHg⁻¹ \subseteq H,而 σ (gHg⁻¹)= σ (g) σ (H) σ (g)⁻¹ \subseteq σ (H)=H'。所以g'H'g'⁻¹ \subseteq H'。这表明H'是G'的正规子群。

因 \mathbf{H} '是 \mathbf{G} '的正规子群。故有同态映射 $\mathbf{\tau}$,使 \mathbf{G} '~ \overline{H} ',其核为 \mathbf{H} ',1"为 \overline{H} '的壹。又在 σ 下, \mathbf{G} ~ \mathbf{G} ',故在 $\mathbf{\tau}$ 可不了 \mathbf{G} ~ \overline{H} ' 同态核为 σ \mathbf{T} $\mathbf{\tau}$ \mathbf{T} \mathbf{H} ")。因为 \mathbf{H} \mathbf{D} \mathbf{N} ,所以 σ \mathbf{H} ")。故 \mathbf{T} \mathbf{H} 。故 \mathbf{T} \mathbf{H} 。故 \mathbf{H} \mathbf{H} 。故 \mathbf{H} \mathbf{H} 。

4. 设H和N都是G的正规子群,H \supseteq N。证明由第一同构定理推出: $\frac{G}{H}\cong \frac{G/N}{H/N}$ 证明:因为N是G的正规子群 即左曰太正:

证明:因为N是G的正规子群,则有同态映射 σ 使G \sim G/N,看 σ (H)在G/N中所有的映象。注意到G/N中元素是G中对N来看的陪集N $_{a1}$, N $_{a2}$, ..., 其中代表 a_{i} \subseteq G(i=1,2,...,)。因此H中任意元在G/N中的映象也是N的陪集,代表元应取自上面属于H的各 a_{i} 。可见H在G/N中

的象正是H/N。根据第一同构定理,H/N是G/N的正规子群,并且G/H
$$\cong$$
 H/N 。

2. 列举I/12I的所有理想。

$$\begin{array}{l} \text{\mathscr{H}:}\\ \{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7},\overline{8},\overline{9},\overline{10},\overline{11}\};\\ \{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\};\\ \{\overline{0},\overline{3},\overline{6},\overline{9}\};\\ \{\overline{0},\overline{4},\overline{8}\};\\ \{\overline{0},\overline{6}\};\\ \{\overline{0}\}\end{array}$$

5. A, B是理想N在环R中的两个剩余类。命P为所有ab的集合, a∈ A,b∈ B,则自然P⊆AB,举例说明P不见得等于AB。

解: 对整数环I,取理想5I, $I/5I=\{0,1,2,3,\frac{1}{4}\}$ 令 $A=0=\{0,5,10,...,\}$, $B=2=\{2,7,12,...\}$ 。则AB=0. 因此, $5\in AB$,但 $5\notin P$,故 $P\neq AB$ 。

解: 在R₁₇中4×13=1(mod17), 故4⁻¹=13, ⁴=3×4⁻¹=2×13=39=5(mod 17)。

2. 在 \mathbf{R}_5 中 $\sqrt{-1}$ 等于什么?

解: \mathbf{R}_5 中-1=4, $\sqrt{4}$ =±2, -2=3, 故 \mathbf{R}_5 中 $\sqrt{-1}$ 是2或3。

6. 在R2上分解x4+x3+x+1为质因式的乘积。

解: $x^4+x^3+x+1=(x+1)^2(x^2+x+1)$

3. 求证x³-3x+1在R₀上不可约。

证明:三次多项式若可约必有一次因式,必有有理根,用可能的根±1试之均不是,故不可约。

4. 求证: x5+3x2-1在R0上不可约

证明: 在 R_2 上看 $f(x)=x^5+x^2+1$ 。

f(0)=1,f(1)=1,故无一次因子。

注意 R_2 上二次质式只有 x^2+x+1 ,而 $x^5+x^2+1=(x^2+x+1)(x^3-x^2)=1$,故无二次因子。所以 x^5+3x^2-1 在 R_2 上不可约,从而在 R_0 上必不可约。

5. 求证 x⁴+3x³+3x²-5在R₀上不可约。

证明:

在R₂上看, x⁴+3x³+3x²-5=(x+1)(x³+x+1);

 $mx^3+x+1在R_2$ 上是质式(需证明);

又因为: R_0 上最高质因式次数大于等于 R_2 上最高质因式次数,所以, R_0 上最高质因式次数为3或4。

若 R_0 上最高质因式次数为4,则f(x)在 R_0 上不可约;若在 R_0 上最高质因式次数为3,则必有一次质因式。

但±**5**与±**1**均不是上式的根。故上式无一次质因式,故在 $\mathbf{R_0}$ 上不可约。

1. 求
$$\Phi_{72}(x)$$

$$\mathbf{M}: \Phi_{72}(x) = \mathbf{x}^{24} - \mathbf{x}^{12} + 1$$

1. GF (9) 中的元素可表为 $a+b\phi$ 的形式,其中a,b为0,1或-1,试列出其乘法表。解:

•	0	1	φ	1-φ	-1-φ	-1	-φ	-1 +φ	1+φ
0	0	0	0	0	0	0	0	0	0
1	0	1	φ	1-φ	-1-φ	-1	-φ	-1 +φ	1+φ
φ	0	φ	1-4	-1-φ	-1	-φ	-1+φ	1+φ	1
1-φ	0	1-φ	-1-4	-1	-φ	-1+φ	1+φ	1	φ

-1-φ	0	-1-φ	-1	-φ	-1 +φ	1+φ	1	φ	1-φ
-1	0	-1	-φ	-1 +φ	1+φ	1	φ	1-φ	-1-φ
-φ	0	-φ	-1 +φ	-1 +φ	1+φ	1	φ	-1-φ	-1
-1+φ	0	-1+φ	1+φ	1+φ	1	φ	1-φ	-1	-φ
1+φ	0	1+φ	1	1-φ	1-φ	-1-φ	-1	-φ	-1+φ