

Image classification with Convolutional Neural Networks

Lecture 5

Course of: Signal and imaging acquisition and modelling in environment

20/03/2024

Federico De Guio - Matteo Fossati

Digital images (reminder)

- From Wikipedia: "A digital image is an image composed of picture elements, also known as pixels, each with finite, discrete quantities of numeric representation for its intensity."
 - o Images can be **greyscale**, where each pixel value is the grey intensity, or **colored**
- Convolutional Neural Networks are a powerful family of neural networks that are specifically designed for the **Digital Images Processing Task**

Colored images

- Colored images are usually coded with the RGB color model: each pixel is associated to three numbers, corresponding to the Red, Green and Blue intensity
- An RGB image is therefore represented by a matrix (weight)x(height)x3
- A greyscale image is (weight)x(height)x1

Our goal:
Classify images using ML

Images classification with DNN

- In principle a FF DNN could be used to classify images
 - Flatten the image into a 1D vector of pixels
- In practice, if we take a **64x64 grayscale** image:
 - o 1D vector of 4096 values → **4096 nodes in the input layer**
 - o if the (fully connected) inner layer has **500 nodes**, we will have 4096x500 = **2048000 weights** between the input and the hidden layer
 - o Account for a factor 3 for colored images...

Convolutional Neural Networks (CNN)

- To flat an image into a 1D array is not the best way to model images
 - o any spatial relationship in the data is ignored
- A CNN **maintains the spatial structure of the data**, and is better suited for finding spatial relationships in the image data
- The idea behind: use filters that automatically learns the most discriminants features in an image, such as edges, filled patterns, specific geometric forms and so on...

Convolutional Neural Networks (CNN)

- Basic idea: assume that features are translation invariant
 - \circ \rightarrow share the parameters across (x, y)
- Advantages:
 - Save a lot of parameters
 - o fast, highly **parallelizable** on GPUs

The convolutional layer

- It is the core building block of a Convolutional Network
- The CONV layer's parameters consist of a set of learnable filters.
- Each filter outputs an activation map → Conv layer outputs a volume

With: stride=1 and padding=0

- 1. How many filters are there? **36**
- 2. What's the depth of each filter? **16**
- 3. What's the output size? 3 x 3 x 36

The convolutional layer - the math behind

• A discrete **convolution between two vectors** with finite size **x** and **w** is mathematically defined as:

$$\mathbf{y} = \mathbf{x} * \mathbf{w} \rightarrow y[i] = \sum_{k=-\infty}^{+\infty} x[i-k] w[k]$$

- w is typically called the filter or kernel
- The index i runs through each element of the output vector y
- In machine learning applications we always deal with finite feature vectors

The convolutional layer - the math behind

• Let's assume that \mathbf{x} and \mathbf{w} have \mathbf{n} and \mathbf{m} elements respectively, where $m \le n$:

$$y = x * w \rightarrow y[i] = \sum_{k=0}^{k=m-1} x [i+m-k]w[k]$$

- It's important to notice that **x** and **w** are indexed in different directions in this summation
- Computing the sum with one index going in the reverse direction is equivalent to computing the sum with **both indices in the forward direction after flipping one of those vectors**
- This operation is repeated in a sliding window approach to get all the output elements

The convolutional layer - a practical example

$$x = [3 \ 2 \ 1 \ 7 \ 1 \ 2 \ 5 \ 4], w = [\frac{1}{2}, \frac{3}{4}, 1, \frac{1}{4}]$$

Step 2: For each output element i, compute the dot-product x[i:i+4]. w^r

(move the filter two cells)

Padding layer

- The result of this convolution is a tensor with a smaller shape than the input one
- To preserve/increase shape a **padding procedure** can be applied
 - o It consists in padding zero pixels to input tensor
 - o Usually, a **same padding** procedure is used, meaning that the output vector has the same size as the input one.

Moving along the input: Strides

- One concept introduced in the previous example is the **number of cells the filter is moved when shifted** across the vector x (to pass from a y index to another)
- It is called strides
- Example: N=7, filter=3

The output size

• The size of the vector obtained by a convolution can be calculated as follows:

$$o = \left[\frac{n+2p-m}{s}\right] + 1$$

- o = output dimension
- n = input dimension
- p = padding
- m = kernel size
- s = stride

Convolution in 2D

Extend what we said in 2D:

$$Y = X * W \rightarrow Y[i,j] = \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} X[i - k_1, j - k_2] W[k_1, k_2]$$

ullet $X_{n1 \times n2}$ and $W_{m1 \times m2}$ are now two matrices o Y is a **2D matrix** as well

Example:

- input matrix $X_{3\times 3}$
- kernel matrix $W_{3\times 3}$
- p=(1, 1)
- stride s=(2, 2)

Convolution in 2D

• Rotate the filter to perform the sum on indices running in the same directions

How does a convolutional layer work on a RGB image?

- For each channel color there is a different filter
- The three outputs are added together
- The output of a convolutional layer with a multi-layer input is a single layer

Strides and padding in 2D

- Zero-padding and strides concepts are the same of 1D case
- The output size of a 2D filter is still calculable with the formula seen before, applied on width and height separately

Input dimension Zero-padding Kernel dimension

The pooling layer

- According to zero-padding and strides it is possible to change (usually reduce) the input dimension
- This task can be also performed with a "Pooling" layer
- Two kinds of pooling:
 - Maximum Pooling (or Max Pooling): Calculate the maximum value for each patch of the feature map.
 - **Average Pooling:** Calculate the average value for each patch on the feature map.

The effect of the pooling layer

The effect of the pooling layer

Max Pooling

- It basically introduces a local invariance
 - o Small changes in a local neighbourhood do not change the result of max-pooling

$$X_1 = \begin{bmatrix} 10 & 255 & 125 & 0 & 170 & 100 \\ 70 & 255 & 105 & 25 & 25 & 70 \\ 255 & 0 & 150 & 0 & 10 & 10 \\ 0 & 255 & 10 & 10 & 150 & 20 \\ 70 & 15 & 200 & 100 & 95 & 0 \\ 35 & 25 & 100 & 20 & 0 & 60 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} 100 & 100 & 100 & 50 & 100 & 50 \\ 95 & 255 & 100 & 125 & 125 & 170 \\ 80 & 40 & 10 & 10 & 125 & 150 \\ 255 & 30 & 150 & 20 & 120 & 125 \\ 30 & 30 & 150 & 100 & 70 & 70 \\ 70 & 30 & 100 & 200 & 70 & 95 \end{bmatrix}$$

$$\xrightarrow{\max pooling P_{2x2}} \begin{bmatrix} 255 & 125 & 170 \\ 255 & 150 & 150 \\ 70 & 200 & 95 \end{bmatrix}$$

- Why we use it?
 - Pooling decreases the size of features \rightarrow higher efficiency
 - o Reduces the risk of overfitting
- Typically, pooling is assumed to be non-overlapping (pooling size = stride)

The big picture

Take away messages

- FILTERS WEIGHTS ARE **LEARNT FROM DATA DURING TRAINING**
- THE NETWORK LEARNS WHICH ARE THE MOST DISCRIMINANT PATTERNS
- A CNN PERFORMS THE **CLASSIFICATION** BY READING THESE **EXTRACTED FEATURES**
- ON THE CONTRARY, A **DNN** READS ONLY **PIXELS VALUES**

CNN recap

• Typically, a convolutional layer is composed of:

CNN recap

• Typically, a convolutional layer is composed of:

CNN recap

• Typically, a convolutional layer is composed of:

Dense layers for classification

- Now we must **flatten the final output** and feed it to a regular FFNN for classification purposes
- Adding a Fully-Connected layer is a way of **learning non-linear combinations of the high-level features** (from filters)
 - o The image is flattened into a column vector
 - Then fed to a fully-connected neural network

Different loss functions for different classification problems

• Depending on the type of problem and the type of output, we should choose the **appropriate loss** function to train our model

Loss function	Usage	Examples	
		Using probabilities	Using logits
		from_logits=False	from_logits=True
BinaryCrossentropy	Binary	y_true: 1	y_true: 1
	classification	y_pred: 0.69	y_pred: 0.8
CategoricalCrossentropy	Multiclass	y_true: 0 0 1	y_true: 0 0 1
	classification	y_pred: 0.30 0.15 0.55	y_pred: 1.5 0.8 2.1
Sparse	Multiclass	y_true: 2	y_true: 2
CategoricalCrossentropy	classification	y_pred: 0.30 0.15 0.55	y_pred: 1.5 0.8 2.1

• **Logit**: sometimes preferred due to numerical stability reasons

$$\operatorname{logit}(p) = \operatorname{ln}\!\left(rac{p}{1-p}
ight)$$

DNN regularization argument apply also for CNN

Dropout: to avoid overfitting

• Data augmentation: invariance to translation

Good practice

- Since **the first convolutional filters** learn high level features in the image in input and the input size is larger than in inner layers, the **number of filters is relatively small** to not insert too many weights
- A good practice is to increment this number in the subsequent convolutional steps
- Dropout can be inserted not only between dense layers but also between a Conv layer and its input

An example:
Cats vs Dogs

Hands on example

- A dataset containing photos of dogs and cats is provided
 - o Pre-processing the images
 - Creating a model
 - Training and testing
 - Evaluating performances
 - o Improving the model!
- Have a look <u>here!</u>

Your turn

Aerial images

- Scene classification with 21 categories
- Images available <u>here</u>

