机智云 - 设备串口通讯协议(v4.1.15)

产品名称:测试

生成日期: 2017-11-08

目录

• 1. 设备通讯信息

2. 约定

- 2.1传输字节序
- 2.2通信交互形式
- 2.3协议格式

3. 基本通讯协议(必须)

- 3.1获取设备信息
- 3.2 WiFi模组控制设备
- 3.3 WiFi模组读取设备的当前状态
- 3.4 设备MCU向WiFi模组主动上报当前状态
- 3.5 心跳
- 3.6 通知WiFi模组进入配置模式
- 3.7 重置WiFi模组
- 3.8 推送WiFi模组工作状态
- 3.9 非法数据包通知
- 3.10 MCU通知WiFi模组进入可绑定模式
- 3.11 MCU重启通讯模组
- 4. 扩展通讯协议(可选)
- <u>4.1 重启MCU</u>
- 4.2 MCU请求WiFi模组进入产测模式
- 4.3. MCU请求获取网络时间
- 4.4. 大数据下发:数据发起者请求向数据接收者发送大数据
- 4.5. 大数据下发:数据接收者告知数据发起者可以开始发送数据
- 4.6. 大数据下发:数据发送者向数据接收者下发数据分片
- 4.7. 大数据下发: 数据发起者向数据接收者通知取消数据下发
- 4.8. 大数据下发:数据接收者向数据发起者通知取消数据下发
- 4.9. MCU获取通讯模组的信息
 - 4.10.MCU请求通讯模组进行事务处理
 - <u>4.10.1.事务处理一:MCU请求GAgent进行设备OTA检查</u>
 - 4.10.2. 事务处理二: MCU请求GAgent进行文件下载

1. 设备通讯信息¶

通讯方式: UART

波特率: 9600

数据位: 8

奇偶校验:无

停止位: 1

数据流控:无

给WiFi模组供电电压: 3.3v, 电流(max): 150mA

2. 约定¶

2.1传输字节序¶

默认采用大端编码,即高字节在前,低字节在后。

2.2通信交互形式¶

采用一问一答,每条命令需要由接收方给出ACK应答确认消息,超时时间200ms,超时后重发,发送3次后不再尝试发送,丢弃该包数据。

2.3协议格式¶

• 指令格式

指令由以下部分按顺序组成:

包头(2B, 0xFFFF), 包长度(2B, 命令...校验和), 命令(1B), 包序号(1B), Flags(2B), 有效负载, 校验和(1B)。

包头

包头固定为0xFFFF,为一包数据的同步头,表示一包的开始。

非包头部分,如果出现0xFF的数据内容,对于发送方,需要在0xFF后添加0x55。对于接收方,如检测到非包头部分出现0xFF,需要把紧跟其后的0x55移除。

0xFF后面增加的0x55, 既不计入包长度, 也不计入校验和的计算。

• 包长度

由两个字节(2B)组成。从命令开始一直到校验和的字节长度(包括命令和校验和)。

校验和

对数据包中的包长度开始一直到有效负载的字节求和取余数,即sum(包长度...有效负载)%256。

包序号

由命令发起方给出,从0开始递增,超过255后继续从0开始。命令接收方回复ACK消息时,该字段填充接收到的sn。

• fla

分为高字节和低字节,比如falg值为0x0A0B,0A是高字节,0B是低字节;高字节是通讯协议级别的标记定义,是协议命令间通用的标记,低字节是本条协议内的标记定义,只影响本条协议,不具通用性,具体含义每条命令单独定义。

3. 基本通讯协议(必须)¶

3.1获取设备信息¶

WiFi模组上电后,需要向MCU查询设备信息。

获取信息成功后, WiFi模组才能正常工作。

WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x01
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

MCU回复设备信息, MCU => WiFi模组

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x02
4	包序号	1	对应发送包的包序号
5	flags	2	0x0000
6	通用串口协议版本号	8	字符串, 当前为"0000004"
7	业务协议版本号	8	字符串, 当前为"00000002"
8	硬件版本号	8	字符串
9	软件版本号	8	字符串
10	产品标识码	32	字符串,即product key,通过机智云官网获取
11	可绑定状态失效时间	2	可绑定状态失效时间,秒数,大端字节序。0表示设备随时可绑定;值大于0时,表示设备进入可绑定状态后的失效秒数。
12	设备属性	8	设备属性。从右向左编号成bit0~bit63。bit0=1表示设备是中控设备。bit1~bit63预留。
13	产品秘钥	32	十六进制字符串,通过机智云官网获取
14	校验和	1	0x##

3.2 WiFi模组控制设备¶

WiFi模组=>MCU

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##
5	flags	2	0x0000
6	action	1	0x01
7	attr_flags	(1B)	是否设置标志位
8	attr_vals	(5B)	设置数据值
9	校验和	1	0x##

注:

1. 是否设置标志位(attr_flags)表示相关的数据值是否为有效值,相关的标志位为1表示值有效,为0表示值无效,

从右到左的标志位依次为:

bit0: 设置LED_OnOff

bit1: 设置LED_Color

bit2: 设置LED_R

bit3: 设置LED_G

bit4: 设置LED_B

bit5: 设置Motor_Speed

2. 设置数据值(attr_vals)存放数据值,只有相关的设置标志位为1时,数据值才有效。例如数据包为

0x07 FE FE FE OA 时, 其格式为:

字节序	bit序	数据内容	说明
byte0	bit7 bit6 bit1 bit0	0ь00000111	LED_OnOff,类型为bool,值为true:字段bit0,字段值为0b1; LED_Color,类型为enum,值为3:字段bit2~bit1,字段值为0b11;
byte1		0xFE	LED_R, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte2		0xFE	LED_G, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3		0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4		0x0A	Motor_Speed, 类型为uint8, 字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10

设备MCU回复:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.3 WiFi模组读取设备的当前状态¶

WiFi模组发送:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x03
4	包序号	1	0x##

5	flags	2	0x0000
6	action	1	0x02
7	校验和	1	0x##

设备MCU回复:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x04
4	包序号	1	0x##
5	flags	2	0x0000
6	action	1	0x03
7	dev_status	(10B)	设备状态
8	校验和	1	0x##

注:

设备状态(dev_status)使用一个或多个字节表示。例如数据包为

0x07 FE FE FE 0A 01 C8 64 03 0F 时, 其格式为:

字节序	位序	数据内容	说明
byte0	bit7 bit6 bit1 bit1 bit0	0ь0000111	LED_0n0ff, 类型为bool, 值为true: 字段bit0, 字段值为0b1; LED_Color, 类型为enum, 值为3: 字段bit2 ~ bit1, 字段值为0b11;
byte1		0xFE	LED_R, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte2		0xFE	LED_G, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3		0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4		0x0A	Motor_Speed,类型为uint8,字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10

byte5	bit7 bit6 bit1 bit0	0ь00000001	Infrared,类型为bool,值为true:字段bit0,字段值为0b1;
byte6		0xC8	Temperature, 类型为uint8, 字段值为200; 实际值计算公式y=1.000000*x+(-13.000000) x最小值为0,最大值为200
byte7		0x64	Humidity, 类型为uint8, 字段值为100; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为100
byte8	bit7 bit6 bit1 bit1 bit0	0ь00000011	Alert_1,类型为bool,值为true:字段bit0,字段值为0b1; Alert_2,类型为bool,值为true:字段bit1,字段值为0b1;
byte9	bit7 bit6 bit1 bit0	0ь00001111	Fault_LED,类型为bool,值为true:字段bit0,字段值为0b1;Fault_Motor,类型为bool,值为true:字段bit1,字段值为0b1;Fault_TemHum,类型为bool,值为true:字段bit2,字段值为0b1;Fault_IR,类型为bool,值为true:字段bit3,字段值为0b1;

3.4 设备MCU向WiFi模组主动上报当前状态¶

设备MCU发送:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x05
4	包序号	1	0x##
5	flags	2	0x0000
6	action	1	0x04
7	dev_status	(10B)	设备状态
8	校验和	1	0x##

注:

1. 设备状态 (dev_status) 使用一个或多个字节表示。例如数据包为

0x07 FE FE FE 0A 01 C8 64 03 0F 时, 其格式为:

字节序	位序	数据内容	说明

byte0	bit7 bit6	0ь00000111	LED_OnOff,类型为bool,值为true:字段bit0,字段值为0b1; LED_Color,类型为enum,值为3:字段bit2~bit1,字段值为0b11;
	bit1		
bytel		0xFE	LED_R, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte2		0xFE	LED_G, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte3		0xFE	LED_B, 类型为uint8, 字段值为254; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为254
byte4		0x0A	Motor_Speed,类型为uint8,字段值为10; 实际值计算公式y=1.000000*x+(-5.000000) x最小值为0,最大值为10
byte5	bit7 bit6 bit1 bit0	0ь00000001	Infrared,类型为bool,值为true:字段bit0,字段值为0b1;
byte6		0xC8	Temperature, 类型为uint8, 字段值为200; 实际值计算公式y=1.000000*x+(-13.000000) x最小值为0,最大值为200
byte7		0x64	Humidity, 类型为uint8, 字段值为100; 实际值计算公式y=1.000000*x+(0.000000) x最小值为0,最大值为100
byte8	bit7 bit6 bit1 bit0	0ь00000011	Alert_1,类型为bool,值为true:字段bit0,字段值为0b1; Alert_2,类型为bool,值为true:字段bit1,字段值为0b1;
byte9	bit7 bit6 bit1 bit0	0ь00001111	Fault_LED,类型为bool,值为true:字段bit0,字段值为0b1;Fault_Motor,类型为bool,值为true:字段bit1,字段值为0b1;Fault_TemHum,类型为bool,值为true:字段bit2,字段值为0b1;Fault_IR,类型为bool,值为true:字段bit3,字段值为0b1;

2. 关于发送频率。当设备MCU收到WiFi模组控制产生的状态变化,设备MCU应立刻主动上报当前状态,发送频率不受限制。 但如设备的状态的变化是由于用户触发或环境变化所产生的,其发送的频率不能快于6秒每次。建议按需上报,有特殊上报需求请联系机智云。 3. 设备MCU需要每隔10分钟定期主动上报当前状态。

wifi模组回复:

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x06
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.5 心跳¶

当WiFi模组超过55秒没有收到MCU的数据包,应向MCU发送心跳包。MCU收到心跳包后马上回复。当WiFi模组连续3次没有收到MCU的心跳回复,进行报警。

WiFi模组向MCU发送心跳, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x07
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

MCU回复WiFi模组, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x08
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.6 通知WiFi模组进入配置模式¶

当WiFi模组收到进入配置模式的指令后,让设备进入对应的SoftAP或AirLink等OnBoarding配置方式。

MCU告知WiFi模组进入配置模式, MCU => WiFi模组。

	序号	字段名称	字节长度(Byte)	内容说明
	1	固定包头	2	0xFFFF
2	2	包长度	2	len(命令校验和)

3	命令	1	0x09
4	包序号	1	0x##
5	flags	2	0x0000
6	配置方式	1	1为SoftAP方式,2为AirLink方式;配置方式不合法时,默认进入AirLink配置方式, 超时时间1分钟。softAp配置,超时时间5分钟
7	校验和	1	0x##

WiFi模组回复MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0a
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.7 重置WiFi模组**¶**

重置的内容包括WiFi模组保存的局域网WiFi SSID和密码, DID, Passcode等信息。重置后模组重启进入AirLink配置模式, 超时时间5分钟。

MCU重置WiFi模组,MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0b
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

WiFi模组回复MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0c
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.8 推送WiFi模组工作状态¶

当WiFi模组工作状态发生了变化后,把最新的状态成功推送到MCU。

WiFi模组向MCU推送WiFi的工作状态,WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0d
4	包序号	1	0x##
5	flags	2	0x0000
6	WiFi模组工作状态	2	●bit0: 是否开启了SoftAP模式,0为关,1为开 ●bit1: 是否开启了Station模式,0为关,1为开 ●bit2: 是否开启了配置(OnBoarding)模式,0为关,1为开,当SoftAP模式为开(bit0为1),配置使用的是SoftAP,当 SoftAP模式为关(bit0为0),配置使用的是AirLink方式配置 ●bit3: 是否开启了绑定模式,0为关,1为开 ●bit4: WiFi模组是否已成功连接上了无线路由器,0为未连接,1为已连接 ●bit5: WiFi模组是否已成功连接上了无线路由器,0为未连接,1为已连接 ●bit6~bit7: 保留 ●bit8~bit10: 仅当WiFi模组已成功连接上无线路由器(请看bit4)后值才有效,三个位合起来表示一个整型值,值范围为0~7,表示WiFi模组当前连接无线路由器的信号强度(RSSI),0为最低,7为最高 ●bit11: 是否有App在线,0为否,1为是 ●bit12: 是否处于产测模式,0为否,1为是 bit13~bit15: 保留
7	校验和	1	0x##

MCU回复WiFi模组, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0e
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.9 非法数据包通知¶

WiFi模组回应MCU对应包序号的数据包非法, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x11
4	包序号	1	0x##
5	flags	2	0x0000
6	错误码	1	1为校验和错误,2为命令不可识别,3为其它错误,4文件类型不匹配,0和5~255保留。
7	校验和	1	0x##

MCU回应WiFi模组对应包序号的数据包非法, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x12
4	包序号	1	0x##
5	flags	2	0x0000
6	错误码	1	1为校验和错误,2为命令不可识别,3为其它错误,4,文件类型不匹配,0和5~255保留。
7	校验和	1	0x##

3.10 MCU通知WiFi模组进入可绑定模式¶

MCU通知WiFi进入可绑定模式后,WiFi模组启动可绑定时间倒计时,计为0后变为不可绑定状态。

可绑定时间由"获取设备信息"章节中"可绑定状态失效时间"字段得到。

WiFi模组上电后,默认进入可绑定模式。

MCU请求WiFi模组进入可绑定模式, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x15
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

WiFi模组回应MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x16
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

3.11 MCU重启通讯模组¶

MCU发出命令后,模组需要回复ACK表示接受命令成功后再重启。

MCU重启WiFi模组, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF

2	包长度	2	len(命令校验和)
3	命令	1	0x29
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

WiFi模组回复MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x2a
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4. 扩展通讯协议(可选) ¶

4.1 重启MCU¶

WiFi模组请求重启MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x0f
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

MCU向WiFi模组确认,MCU => WiFi模组。

MCU回复WiFi模组后需等待600毫秒再进行重启,这是为了避免WiFi模组没收到ACK而重复请求重启MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x10
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.2 MCU请求WiFi模组进入产测模式¶

MCU请求WiFi模组进入产测模式, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x13
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

WiFi模组回应MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x14
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.3. MCU请求获取网络时间¶

MCU请求获取网络时间, MCU => WiFi模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x17
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

WiFi模组回应MCU, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x18
4	包序号	1	0x##
5	flags	2	0x0000
6	年	2	当前时区, eg. 2015
7	月	1	当前时区

8	日	1	当前时区
9	时	1	当前时区
10	分	1	当前时区
11	秒	1	当前时区
12	NTP时间	4	1970年1月1日至今的秒数(零时区时间)
13	校验和	1	0x##

当模组端没有获取到网络时间时,返回全0.

4.4.大数据下发:数据发起者请求向数据接收者发送大数据¶

大数据(大于900字节)上传、下发及MCU OTA需要用到该条协议指令。

发起者请求向接收者发送大数据。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x19
4	包序号	1	0x##
5	flags	2	0x0000
6	数据大小	4	请求传送的数据字节大小
7	数据校验码长度	2	len(数据校验码)
8	数据校验码		数据校验码的内容,使用MD5校验算法(十六进制,32)
9	校验和	1	0x##

接收者回应发起者(表示收到通知)。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1a
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.5. 大数据下发:数据接收者告知数据发起者可以开始发送数据¶

大数据(大于900字节)上传、下发及MCU OTA需要用到该条协议指令。

接收者告知发起者可以开始发送数据。

大文件传输细节约定:

数据发起者中的文件格式如果是hex文件,数据接收者以bin格式索取,此时数据发起者就使用数据分片大小,以bin类型数据下发;但是如果数据发起者中的文件格式是bin,接收者以hex类型索取,则返回无效命令,命令中的错误码是4,表示文件类型不

匹配。

以hex文件索取文件时,分片大小无效,填充0。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1b
4	包序号	1	0x##
5	flags	2	低字节定义, bit0: 是否按照HEX格式进行一行一包的传输, (0: 否, 1: 是); 如果采用HEX格式传输, 一包只发送一行, 长度不定。 其余填0
6	数据校验码长度	2	len(数据校验码)
7	数据校验码		向WiFi模组回传准备接收数据的数据校验码的内容. 数据校验码的内容,使用MD5校验算法(十六进制,32)
8	分片大小	2	大数据需要分片传送。由MCU指定数据分片的大小,分片大小建议设为128B
9	校验和	1	0x##

发起者回应接收者。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1c
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.6. 大数据下发:数据发送者向数据接收者下发数据分片¶

大数据(大于900字节)上传、下发及MCU OTA需要用到该条协议指令。

发送者向接收者发送数据分片。

以hex文件传输数据时,总分片数无效,填充0,是否传输完毕,根据Flags的bit1位来判断。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1d
4	包序号	1	0x##
5	flags	2	bit0: 是否按照HEX格式进行一行一包的传输, (0: 否, 1: 是); 如果采用HEX格式传输, 一包只发送一行, 长度不定, 每包都需要置此标记位为1。bit1: 此包是否是文件最后一包, (0: 否, 1: 是); 当传输文件的最后一包(最后一行)时,需要置此位为1。 其余位填0
6	分片序号	2	当前数据包的分片序号,分片序号从1开始计算

7	总分片数	2	
8	分片数据内容	实际长度	
9	校验和	1	0x##

接收者回应发起者,每一个数据帧都需要及时回应。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0xle
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.7. 大数据下发:数据发起者向数据接收者通知取消数据下发¶

大数据(大于900字节)上传、下发及MCU OTA需要用到该条协议指令。

发起者向接收者通知取消数据下发。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x1f
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

接收者回应发起者。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x20
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.8. 大数据下发:数据接收者向数据发起者通知取消数据下发¶

大数据(大于900字节)上传、下发及MCU OTA需要用到该条协议指令。

接收者向发起者通知取消数据下发。

1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x27
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

发起者回应发起者。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x28
4	包序号	1	0x##
5	flags	2	0x0000
6	校验和	1	0x##

4.9. MCU获取通讯模组的信息¶

通讯模组上电后,进入正常工作模式后,MCU可以向通讯模组查询相关信息。

MCU向通讯模组请求模组信息, MCU => 通讯模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x21
4	包序号	1	0x##
5	flags	2	0x0000
6	type	1	本版本固定为0x00: 返回基本信息
7	校验和	1	0x##

WiFi模组回复MCU信息, WiFi模组 => MCU。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x22
4	包序号	1	0x##
5	flags	2	0x0000
6	模组类型	1	0x01: WiFi模组
7	通用串口协议版本号	max 8	字符串,形如"00000004"

8	硬件版本号	max 8	字符串,形如"HFLPB100"
0	世代版本专	max o	子行中,形如 HPLPB100
9	软件版本号	max 8	字符串,形如"04020100"
10	MAC	max 16	以'\0'结束的字符串,全大写, 比如mac地址: 5CF9388AE8F0,传输"5CF9388AE8F0\0"。 没获取到时返回"\0"
11	ip	max 16	以'\0'结束的字符串,比如ip: 192.168.100.254,传输"192.168.100.254\0" 没获取到时返回"\0"
12	设备属性	8	设备属性,预留。
13	校验和	1	0x##

4.10.MCU请求通讯模组进行事务处理¶

说明:

- 1. 此过程为MCU申请模组做事务处理的通用流程,一共两次交互,每次交互两次通讯,因为事务处理需要一段时间,第一个来回和 第二个来回之间不可用阻塞的方式进行等待。
- 2. 具体的事务处理数据,参见下方事务附录

MCU向通讯模组请求事务处理, MCU => 通讯模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x23
4	包序号	1	0x##
5	flags	2	0x0000
6	事务数据1	包长度 - 5	
7	校验和	1	0x##

通讯模组响应MCU,表示收到请求。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x24
4	包序号	1	0x##
5	flags	2	0x0000
6	事务数据2	包长度 - 5	
7	校验和	1	0x##

在此期间,MCU不可以进行阻塞等待,通常会有秒级的时间间隔。

通讯模组事务处理完成后,通知MCU处理结果。

	序号	字段名称	字节长度(Byte)	内容说明	
--	----	------	------------	------	--

1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x25
4	包序号	1	0x##
5	flags	2	0x0000
6	事务数据3	包长度 - 5	
7	校验和	1	0x##

MCU响应通讯模组。

序号	字段名称	字节长度(Byte)	内容说明
1	固定包头	2	0xFFFF
2	包长度	2	len(命令校验和)
3	命令	1	0x26
4	包序号	1	0x##
5	flags	2	0x0000
6	事务数据4	包长度 - 5	
7	校验和	1	0x##

4.10.1. 事务处理一:MCU请求GAgent进行设备OTA检查¶

事务数据1: MCU向通讯模组进行子设备OTA检查, MCU => 通讯模组。

序号	字段名称	字节长度(Byte)	内容说明
1	SubCmd	1	0x01
2	PK	32	字符串
3	DID	32	字符串(预留,置0)
4	硬件版本号	8	字符串
5	软件版本号	8	字符串
6	TAG	1	Bit_0=0: 不需要GAgent比较结果,仅需要传送软件版本号和URL。 Bit_0=1: 需要GAgent比较结果,如果需要升级,直接发送大文件
7	SDID	4	子设备的SDID

事务数据2: 空。

事务数据3: 通讯模组通知MCU OTA检查结果。

当TAG为0的时候,不需要GAgent比较结果,仅需要传送软件版本号和URL

序号	字段名称	字节长度(Byte)	内容说明
1	SubCmd	1	0x02
2	Soft Version	8	字符串
3	URL Length	2	字符串(预留,置0)
4	URL	URL Length	

不判断是否需要升级,不进行大文件发送。

当TAG为1的时候,需要GAgent比较结果,如果需要升级,直接发送大文件

序号	字段名称	字节长度(Byte)	内容说明
1	SubCmd	1	0x02
2	Result		处理结果 0x00: 不需要升级; 0x01: 需要升级;

当需要升级时,模组在发送本命令并得到MCU的回复后,便立即启动大文件发送。

事务数据4:空。

4.10.2. 事务处理二: MCU请求GAgent进行文件下载¶

事务数据1: MCU向通讯模组进行文件下载, MCU => 通讯模组。

序号	字段名称	字节长度(Byte)	内容说明
1	SubCmd	1	0x03
2	URL Length	2	
3	URL	URL Length	

事务数据2: 空。

事务数据3: 通讯模组通知MCU OTA检查结果。

序号	字段名称	字节长度(Byte)	内容说明
1	SubCmd	1	0x04
2	Result	1	处理结果 0x00: 成功; 0x01: 失败;