$12n_{0028} \ (K12n_{0028})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3.08304 \times 10^{52} u^{37} - 3.92285 \times 10^{53} u^{36} + \dots + 2.56521 \times 10^{53} b - 1.92852 \times 10^{53}, \\ &- 4.66168 \times 10^{52} u^{37} + 5.98970 \times 10^{53} u^{36} + \dots + 2.56521 \times 10^{53} a - 4.47281 \times 10^{53}, \\ &u^{38} - 13 u^{37} + \dots - 8 u + 1 \rangle \\ I_2^u &= \langle b, \ -u^5 a + 2 u^4 a + u^5 - 3 u^4 - 2 u^2 a + 3 u^3 + a^2 + a u - 2 u + 1, \ u^6 - u^5 - u^4 + 2 u^3 - u + 1 \rangle \\ I_3^u &= \langle a^3 + b + 2 a, \ a^4 - a^3 + 3 a^2 - 2 a + 1, \ u + 1 \rangle \\ I_4^u &= \langle 39 a^5 - 213 a^4 + 550 a^3 - 390 a^2 + 295 b + 748 a - 63, \ a^6 - 5 a^5 + 11 a^4 + 7 a^2 + 2 a + 1, \ u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 60 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 3.08 \times 10^{52} u^{37} - 3.92 \times 10^{53} u^{36} + \dots + 2.57 \times 10^{53} b - 1.93 \times 10^{53}, -4.66 \times 10^{52} u^{37} + 5.99 \times 10^{53} u^{36} + \dots + 2.57 \times 10^{53} a - 4.47 \times 10^{53}, \ u^{38} - 13 u^{37} + \dots - 8 u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.181727u^{37} - 2.33497u^{36} + \dots + 20.3488u + 1.74364 \\ -0.120187u^{37} + 1.52925u^{36} + \dots - 5.67119u + 0.751797 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.780745u^{37} + 9.98000u^{36} + \dots - 13.8096u + 4.94182 \\ 0.239039u^{37} - 3.07898u^{36} + \dots + 2.00450u - 1.30500 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.05713u^{37} - 13.6449u^{36} + \dots + 30.2257u - 4.50545 \\ -0.236519u^{37} + 3.03144u^{36} + \dots - 6.54670u + 2.04114 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.187039u^{37} - 2.41394u^{36} + \dots + 2.70178u + 0.223799 \\ -0.000250736u^{37} + 0.0152541u^{36} + \dots + 2.70178u + 0.223799 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0174232u^{37} - 0.223414u^{36} + \dots + 2.06976u - 0.961603 \\ 0.0147652u^{37} - 0.190086u^{36} + \dots + 2.06249u + 0.0414843 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0758911u^{37} + 9.70005u^{36} + \dots + 2.06249u + 0.0414843 \\ 0.261495u^{37} - 3.36527u^{36} + \dots + 2.54841u - 1.49543 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.858153u^{37} - 11.0889u^{36} + \dots + 2.54841u - 1.49543 \\ -0.174044u^{37} + 2.22800u^{36} + \dots + 2.8.8527u - 4.91506 \\ -0.174044u^{37} + 2.22800u^{36} + \dots + 2.8.8620u + 0.288063 \\ 0.0102207u^{37} - 0.155656u^{36} + \dots + 2.8.8620u + 0.288063 \\ 0.0102207u^{37} - 0.155656u^{36} + \dots + 0.659483u - 0.0673376 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.765395u^{37} + 9.83295u^{36} + \cdots 3.08287u + 7.31166$

Crossings	u-Polynomials at each crossing
c_1	$u^{38} + 28u^{37} + \dots + 159u + 1$
c_2, c_5	$u^{38} + 8u^{37} + \dots + 11u + 1$
c_3	$u^{38} - 8u^{37} + \dots + 17360u + 1732$
c_4, c_7	$u^{38} + 2u^{37} + \dots - 12288u + 4096$
c_6	$u^{38} - 4u^{37} + \dots - 3u + 1$
c_8, c_{11}	$u^{38} + 13u^{37} + \dots + 8u + 1$
<i>c</i> ₉	$u^{38} + 8u^{37} + \dots - 149993u + 47809$
c_{10}	$u^{38} + 2u^{37} + \dots + 575973u + 248449$
c_{12}	$u^{38} - 3u^{37} + \dots - 11264u + 1024$

Crossings	Riley Polynomials at each crossing
c_1	$y^{38} - 28y^{37} + \dots - 10893y + 1$
c_2,c_5	$y^{38} + 28y^{37} + \dots + 159y + 1$
<i>c</i> ₃	$y^{38} - 84y^{37} + \dots + 436784552y + 2999824$
c_4, c_7	$y^{38} + 70y^{37} + \dots + 134217728y + 16777216$
<i>C</i> ₆	$y^{38} + 4y^{37} + \dots + 19y + 1$
c_8, c_{11}	$y^{38} + y^{37} + \dots - 84y + 1$
<i>C</i> 9	$y^{38} + 48y^{37} + \dots + 51838210455y + 2285700481$
c_{10}	$y^{38} - 84y^{37} + \dots + 1086486467931y + 61726905601$
c_{12}	$y^{38} - 69y^{37} + \dots - 7864320y + 1048576$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.872556 + 0.495557I		
a = 0.505994 - 0.202943I	0.91553 + 4.18220I	3.10264 - 7.31279I
b = -0.690714 - 0.617908I		
u = 0.872556 - 0.495557I		
a = 0.505994 + 0.202943I	0.91553 - 4.18220I	3.10264 + 7.31279I
b = -0.690714 + 0.617908I		
u = -1.029200 + 0.216658I		
a = -0.422423 + 0.457150I	1.91078 - 0.79833I	4.44525 - 0.45789I
b = -0.209980 + 0.250980I		
u = -1.029200 - 0.216658I		
a = -0.422423 - 0.457150I	1.91078 + 0.79833I	4.44525 + 0.45789I
b = -0.209980 - 0.250980I		
u = -0.933302 + 0.093882I		
a = -2.24303 + 4.72814I	1.67684 - 2.65330I	7.7232 - 16.8130I
b = 0.300084 + 0.412662I		
u = -0.933302 - 0.093882I		
a = -2.24303 - 4.72814I	1.67684 + 2.65330I	7.7232 + 16.8130I
b = 0.300084 - 0.412662I		
u = -1.130550 + 0.077748I		
a = 1.43764 - 2.54970I	2.15015 + 1.46241I	0 14.08993I
b = -0.392217 - 0.325280I		
u = -1.130550 - 0.077748I		
a = 1.43764 + 2.54970I	2.15015 - 1.46241I	0. + 14.08993I
b = -0.392217 + 0.325280I		
u = 1.094840 + 0.358324I		
a = -0.425261 - 0.241871I	-0.61516 + 8.47206I	-1.23185 - 12.18265I
b = 0.269512 + 0.935520I		
u = 1.094840 - 0.358324I		
a = -0.425261 + 0.241871I	-0.61516 - 8.47206I	-1.23185 + 12.18265I
b = 0.269512 - 0.935520I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.851367 + 0.892503I		
a = -0.001244 - 0.292263I	0.067821 - 0.704860I	2.00000 + 2.96425I
b = -0.962152 - 0.487944I		
u = -0.851367 - 0.892503I		
a = -0.001244 + 0.292263I	0.067821 + 0.704860I	2.00000 - 2.96425I
b = -0.962152 + 0.487944I		
u = 0.697244 + 0.310286I		
a = 0.159158 + 0.892544I	-3.35491 + 0.78621I	-8.48784 - 2.29609I
b = 0.334991 - 0.821597I		
u = 0.697244 - 0.310286I		
a = 0.159158 - 0.892544I	-3.35491 - 0.78621I	-8.48784 + 2.29609I
b = 0.334991 + 0.821597I		
u = 0.110487 + 0.652381I		
a = -0.913173 + 0.555160I	-1.32113 - 1.32492I	-1.95750 + 1.98412I
b = 0.154768 + 0.641440I		
u = 0.110487 - 0.652381I		
a = -0.913173 - 0.555160I	-1.32113 + 1.32492I	-1.95750 - 1.98412I
b = 0.154768 - 0.641440I		
u = 0.224375 + 1.325980I		
a = 0.096188 + 1.029440I	-6.74677 + 2.59569I	0
b = 1.75400 + 1.85534I		
u = 0.224375 - 1.325980I		
a = 0.096188 - 1.029440I	-6.74677 - 2.59569I	0
b = 1.75400 - 1.85534I		
u = -0.281259 + 0.487374I		
a = 1.158940 - 0.418649I	-0.61371 + 2.86891I	-0.25435 - 4.83204I
b = 1.336190 - 0.226899I		
u = -0.281259 - 0.487374I		
a = 1.158940 + 0.418649I	-0.61371 - 2.86891I	-0.25435 + 4.83204I
b = 1.336190 + 0.226899I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.12152 + 1.66606I		
a = 0.019900 - 0.800533I	-6.26733 - 3.08288I	0
b = -1.10703 - 1.69579I		
u = 0.12152 - 1.66606I		
a = 0.019900 + 0.800533I	-6.26733 + 3.08288I	0
b = -1.10703 + 1.69579I		
u = 1.40051 + 1.03446I		
a = 1.000780 - 0.696492I	-16.2164 + 7.5794I	0
b = -0.98102 - 2.10542I		
u = 1.40051 - 1.03446I		
a = 1.000780 + 0.696492I	-16.2164 - 7.5794I	0
b = -0.98102 + 2.10542I		
u = 1.24001 + 1.25622I		
a = -0.795058 + 0.781650I	-12.39510 + 1.09723I	0
b = 0.41366 + 2.27352I		
u = 1.24001 - 1.25622I		
a = -0.795058 - 0.781650I	-12.39510 - 1.09723I	0
b = 0.41366 - 2.27352I		
u = 1.28856 + 1.21540I		
a = 0.770618 - 0.850146I	-12.2225 + 8.2203I	0
b = -0.58138 - 2.41986I		
u = 1.28856 - 1.21540I		
a = 0.770618 + 0.850146I	-12.2225 - 8.2203I	0
b = -0.58138 + 2.41986I		
u = 1.45865 + 1.07373I		
a = -0.932042 + 0.820199I	-15.9377 + 14.9717I	0
b = 1.14222 + 2.13195I		
u = 1.45865 - 1.07373I		
a = -0.932042 - 0.820199I	-15.9377 - 14.9717I	0
b = 1.14222 - 2.13195I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.137741 + 0.126546I		
a = 0.67206 + 4.46519I	-0.42860 - 2.78462I	1.78865 + 4.97070I
b = 0.730737 + 0.068723I		
u = -0.137741 - 0.126546I		
a = 0.67206 - 4.46519I	-0.42860 + 2.78462I	1.78865 - 4.97070I
b = 0.730737 - 0.068723I		
u = 0.135837 + 0.044906I		
a = 4.46953 + 0.98915I	1.12636 + 1.44186I	2.40380 - 3.54555I
b = -0.615656 - 0.694581I		
u = 0.135837 - 0.044906I		
a = 4.46953 - 0.98915I	1.12636 - 1.44186I	2.40380 + 3.54555I
b = -0.615656 + 0.694581I		
u = 1.07616 + 1.52432I		
a = -0.618148 + 0.747510I	-17.7767 + 1.7959I	0
b = -0.22384 + 3.07549I		
u = 1.07616 - 1.52432I		
a = -0.618148 - 0.747510I	-17.7767 - 1.7959I	0
b = -0.22384 - 3.07549I		
u = 1.14268 + 1.63665I		
a = 0.559572 - 0.668950I	-17.5824 - 5.0951I	0
b = 0.32782 - 2.75595I		
u = 1.14268 - 1.63665I		
a = 0.559572 + 0.668950I	-17.5824 + 5.0951I	0
b = 0.32782 + 2.75595I		

II.
$$I_2^u = \langle b, -u^5a + u^5 + \dots + a^2 + 1, u^6 - u^5 - u^4 + 2u^3 - u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ u^{5} - u^{4} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{5} + u^{4} + 2u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{5}a + 2u^{3}a - 2u^{2}a - au + 2a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + 2u^{4} + au - 2u^{2} + 2a + u \\ -2u^{5}a + 2u^{3}a - 2u^{2}a - au + 2a \end{pmatrix}$$

(ii) Obstruction class = 1

$$= -u^{5}a + 5u^{4}a + u^{5} + u^{3}a - 7u^{4} - 5u^{2}a + 3u^{3} - au + 4u^{2} + a - 6u - 1$$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^6$
c_2	$(u^2+u+1)^6$
c_4, c_7	u^{12}
c_{6}, c_{9}	$(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^2$
c_8, c_{10}, c_{12}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$
c_{11}	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^6$
c_4, c_7	y^{12}
c_{6}, c_{9}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$
$c_8, c_{10}, c_{11} \\ c_{12}$	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.002190 + 0.295542I		
a = -0.82520 + 2.42341I	1.89061 - 2.95419I	11.02954 + 8.16480I
b = 0		
u = -1.002190 + 0.295542I		
a = 2.51133 - 0.49706I	1.89061 + 1.10558I	-0.484082 - 0.231437I
b = 0		
u = -1.002190 - 0.295542I		
a = -0.82520 - 2.42341I	1.89061 + 2.95419I	11.02954 - 8.16480I
b = 0		
u = -1.002190 - 0.295542I		
a = 2.51133 + 0.49706I	1.89061 - 1.10558I	-0.484082 + 0.231437I
b = 0		
u = 0.428243 + 0.664531I		
a = 0.489858 + 0.681154I	-1.89061 + 1.10558I	-1.04064 - 1.99047I
b = 0		
u = 0.428243 + 0.664531I		
a = -0.834826 + 0.083652I	-1.89061 - 2.95419I	-3.79900 + 4.11613I
b = 0		
u = 0.428243 - 0.664531I		
a = 0.489858 - 0.681154I	-1.89061 - 1.10558I	-1.04064 + 1.99047I
b = 0		
u = 0.428243 - 0.664531I		
a = -0.834826 - 0.083652I	-1.89061 + 2.95419I	-3.79900 - 4.11613I
b = 0		
u = 1.073950 + 0.558752I		
a = 0.458424 - 0.081263I	7.72290I	2.83009 - 4.64337I
b = 0		
u = 1.073950 + 0.558752I		
a = -0.299588 - 0.356375I	3.66314I	-2.53591 - 3.55776I
b = 0		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.073950 - 0.558752I		
a = 0.458424 + 0.081263I	-7.72290I	2.83009 + 4.64337I
b = 0		
u = 1.073950 - 0.558752I		
a = -0.299588 + 0.356375I	-3.66314I	-2.53591 + 3.55776I
b = 0		

III.
$$I_3^u = \langle a^3 + b + 2a, \ a^4 - a^3 + 3a^2 - 2a + 1, \ u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a\\-a^{3} - 2a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a^{3} + a^{2} - 2a + 2\\a^{3} - a^{2} + 3a - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a^{3} - a - 1\\-a^{3} + a^{2} - 2a + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a^{2}\\0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a\\a^{3} - a^{2} + 3a - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a^{2} + a + 1\\a^{3} - a^{2} + 3a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{3} + a^{2} - 2a + 2\\2a^{3} - a^{2} + 5a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-7a^2 2a 3$

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 2u^3 + 3u^2 - u + 1$
c_2, c_4	$u^4 + u^2 + u + 1$
<i>c</i> ₃	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_5, c_7	$u^4 + u^2 - u + 1$
c_6	$u^4 + 2u^3 + 3u^2 + u + 1$
c_8	$(u+1)^4$
c_{9}, c_{10}	$u^4 - u^3 + 3u^2 - 2u + 1$
c_{11}	$(u-1)^4$
c_{12}	u^4

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_2, c_4, c_5 c_7	$y^4 + 2y^3 + 3y^2 + y + 1$
<i>c</i> ₃	$y^4 - y^3 + 2y^2 + 7y + 4$
c_8, c_{11}	$(y-1)^4$
c_9,c_{10}	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_{12}	y^4

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.395123 + 0.506844I	-0.98010 + 7.64338I	-3.08487 - 3.81741I
b = -0.547424 - 1.120870I		
u = -1.00000		
a = 0.395123 - 0.506844I	-0.98010 - 7.64338I	-3.08487 + 3.81741I
b = -0.547424 + 1.120870I		
u = -1.00000		
a = 0.10488 + 1.55249I	2.62503 + 1.39709I	13.5849 - 5.3845I
b = 0.547424 + 0.585652I		
u = -1.00000		
a = 0.10488 - 1.55249I	2.62503 - 1.39709I	13.5849 + 5.3845I
b = 0.547424 - 0.585652I		

$$IV. \ I_4^u = \langle 39a^5 + 295b + \dots + 748a - 63, \ a^6 - 5a^5 + 11a^4 + 7a^2 + 2a + 1, \ u + 1
angle$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.132203a^{5} + 0.722034a^{4} + \cdots - 2.53559a + 0.213559 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0610169a^{5} - 0.410169a^{4} + \cdots + 0.477966a + 1.13220 \\ -0.369492a^{5} + 2.09492a^{4} + \cdots - 2.06102a - 0.633898 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.115254a^{5} - 0.552542a^{4} + \cdots - 1.43051a + 0.583051 \\ -0.593220a^{5} + 2.93220a^{4} + \cdots - 2.81356a - 1.11864 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.379661a^{5} - 1.99661a^{4} + \cdots + 1.64068a + 0.155932 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.308475a^{5} + 1.68475a^{4} + \cdots - 1.58305a + 0.498305 \\ -0.369492a^{5} + 2.09492a^{4} + \cdots - 2.06102a - 0.633898 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.213559a^{5} + 0.935593a^{4} + \cdots + 0.827119a - 0.962712 \\ 0.522034a^{5} - 2.62034a^{4} + \cdots + 1.75593a + 0.464407 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0813559a^{5} - 0.213559a^{4} + \cdots + 1.63729a + 0.176271 \\ 0.176271a^{5} - 0.962712a^{4} + \cdots - 0.952542a - 0.284746 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{119}{59}a^5 - \frac{600}{59}a^4 + \frac{1300}{59}a^3 + \frac{108}{59}a^2 + \frac{411}{59}a + \frac{189}{59}a^3 + \frac{108}{59}a^3 + \frac{108}{59$$

Crossings	u-Polynomials at each crossing
c_1	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
c_2, c_4	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_3	$(u^3 - u^2 + 1)^2$
c_5, c_7	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_6	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c ₈	$(u+1)^6$
c_9, c_{10}	$u^6 - 2u^3 + 4u^2 - 3u + 1$
c_{11}	$(u-1)^6$
c_{12}	u^6

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_4, c_5 c_7	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
<i>c</i> ₃	$(y^3 - y^2 + 2y - 1)^2$
c_8, c_{11}	$(y-1)^6$
c_9,c_{10}	$y^6 + 8y^4 - 2y^3 + 4y^2 - y + 1$
c_{12}	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.052721 + 0.753034I	-2.75839	-2.43992 - 2.50363I
b = -0.284920 - 1.115140I		
u = -1.00000		
a = 0.052721 - 0.753034I	-2.75839	-2.43992 + 2.50363I
b = -0.284920 + 1.115140I		
u = -1.00000		
a = -0.195217 + 0.332027I	1.37919 - 2.82812I	3.08014 + 1.90022I
b = 0.498832 - 1.001300I		
u = -1.00000		
a = -0.195217 - 0.332027I	1.37919 + 2.82812I	3.08014 - 1.90022I
b = 0.498832 + 1.001300I		
u = -1.00000		
a = 2.64250 + 2.20145I	1.37919 + 2.82812I	-2.14022 - 3.69351I
b = -0.713912 + 0.305839I		
u = -1.00000		
a = 2.64250 - 2.20145I	1.37919 - 2.82812I	-2.14022 + 3.69351I
b = -0.713912 - 0.305839I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
<i>c</i> ₁	$(u^{2} - u + 1)^{6}(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{38} + 28u^{37} + \dots + 159u + 1)$
<i>c</i> ₂	$(u^{2} + u + 1)^{6}(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{38} + 8u^{37} + \dots + 11u + 1)$
<i>c</i> ₃	$(u^{2} - u + 1)^{6}(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot (u^{38} - 8u^{37} + \dots + 17360u + 1732)$
c_4	$u^{12}(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{38} + 2u^{37} + \dots - 12288u + 4096)$
c_5	$(u^{2} - u + 1)^{6}(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{38} + 8u^{37} + \dots + 11u + 1)$
<i>c</i> ₆	$(u^4 + 2u^3 + 3u^2 + u + 1)(u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)^2$ $\cdot (u^6 + 3u^5 + 4u^4 + 2u^3 + 1)(u^{38} - 4u^{37} + \dots - 3u + 1)$
<i>c</i> ₇	$u^{12}(u^4 + u^2 - u + 1)(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{38} + 2u^{37} + \dots - 12288u + 4096)$
c_8	$((u+1)^{10})(u^6 - u^5 + \dots - u + 1)^2(u^{38} + 13u^{37} + \dots + 8u + 1)$
c_9	$(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{6} - 2u^{3} + 4u^{2} - 3u + 1)$ $\cdot (u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)^{2}$ $\cdot (u^{38} + 8u^{37} + \dots - 149993u + 47809)$
c_{10}	$(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{6} - 2u^{3} + 4u^{2} - 3u + 1)$ $\cdot ((u^{6} - u^{5} - u^{4} + 2u^{3} - u + 1)^{2})(u^{38} + 2u^{37} + \dots + 575973u + 248449)$
c_{11}	$((u-1)^{10})(u^6 + u^5 + \dots + u + 1)^2(u^{38} + 13u^{37} + \dots + 8u + 1)$
c_{12}	$u^{10}(u^6 - u^5 + \dots - u + 1)^2(u^{38} - 3u^{37} + \dots - 11264u + 1024)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^6)(y^4 + 2y^3 + \dots + 5y + 1)(y^6 - y^5 + \dots + 8y^2 + 1)$ $\cdot (y^{38} - 28y^{37} + \dots - 10893y + 1)$
c_2,c_5	$(y^{2} + y + 1)^{6}(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{38} + 28y^{37} + \dots + 159y + 1)$
c_3	$(y^{2} + y + 1)^{6}(y^{3} - y^{2} + 2y - 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot (y^{38} - 84y^{37} + \dots + 436784552y + 2999824)$
c_4, c_7	$y^{12}(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{38} + 70y^{37} + \dots + 134217728y + 16777216)$
c_6	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot ((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2)(y^{38} + 4y^{37} + \dots + 19y + 1)$
c_8, c_{11}	$(y-1)^{10}(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$ $\cdot (y^{38} + y^{37} + \dots - 84y + 1)$
<i>c</i> ₉	$(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)(y^{6} + 8y^{4} - 2y^{3} + 4y^{2} - y + 1)$ $\cdot (y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)^{2}$ $\cdot (y^{38} + 48y^{37} + \dots + 51838210455y + 2285700481)$
c_{10}	$(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)(y^{6} + 8y^{4} - 2y^{3} + 4y^{2} - y + 1)$ $\cdot (y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)^{2}$ $\cdot (y^{38} - 84y^{37} + \dots + 1086486467931y + 61726905601)$
c_{12}	$y^{10}(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$ $\cdot (y^{38} - 69y^{37} + \dots - 7864320y + 1048576)$