五、数据记录:

组号: ___19 ____; 姓名____黄亮铭_____

表 1: 二极管灯丝电流 I_f 和灯丝温度 T的关系

$I_f(\mathbf{A})$	0. 54	0. 58	0.62	0.66	0.70	0.74	0.78
T	1.93	2.00	1.88	2.07	2. 14	2. 21	2. 28
$(10^3 \mathrm{K})$)						

表 2: 不同灯丝电流和阳极电压 U_a 时测得的阳极电流值 Ia

U_a I_a I_f	16	25	36	49	64	81	100	121
0.58	35	36	36	37	38	39	39	40
0.62	93	95	96	98	100	101	103	105
0.66	225	229	233	238	242	246	250	255
0.70	527	537	547	556	565	574	583	592
0.74	1112	1139	1160	1181	1199	1219	1238	1258

六、数据处理

表 3:数据换算

$\sqrt{\text{Ua}}$ $\log I_a$ $T(10\text{K})$	4	5	6	7	8	9	10	11
200	1.54	1.56	1.56	1.57	1.58	1.59	1.59	1.60
207	1.97	1.98	1.98	1.99	2.00	2.00	2.01	2.02
214	2.35	2.36	2.37	2.38	2.38	2.39	2.40	2.41
221	2.72	2.73	274	2.75	2.75	2.76	2.77	2.77
228	3.05	3.06	3.06	3.07	3.08	3.09	3.09	3.10

表 4: 不同灯丝电温度时的零场电流及其换算值

$T(10^{3}\text{K})$	2.00	2.07	2.14	2.21	2.28
$\log I$ (A)	-4.49	-4.06	-3.68	-3.31	-2.98
$Log(1/T^2)$	-11.09	-10.69	-10.34	-10.00	-9.69
1/T(10 ⁻³)	0.50	0.48	0.47	0.45	0.44

得到斜率为-1.7982,根据公式可得金属电子逸出功为: 4.57eV,相对误差为 0.66%

七、结果陈述:

测得金属电子逸出功为: 4.57eV, 相对误差为 0.66%

八、实验总结与思考题

实验总结:

本次实验圆满完成,不仅了解了热电子发射的基本规律,还学习了理查逊直线法的数据处理。

思考题:

(1) 什么是逸出功? 改变阴极温度是否改变了阴极材料的逸出功?

金属原子外层电子受到原子核的引力束缚,要想使电子脱离原子核的引力而变为自由电子,需要对原子做功,这个功的最小值,就是金属的逸出功。逸出功是表征金属材料的量,跟温度无关,故改变阴极温度并不改变阴极材料的逸出功。

(2) 里查逊直线法有何优点?

可以不必测出阴极金属的有效发射面积 S 和与阴极化学纯度有关的系数 A 的具体数值而直接由 I 、 T 就可以得到 V 的值。

	- · · · · -		
指导教师	H 바니엄	꼽	. 1.1
1日寸 3人	ᆘᆘᄔᅜ		/Li

成绩评定:

预习 (20 分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印象	总分