Lecture Nine: Modeling Dynamic Domains (II)

301315 Knowledge Representation and Reasoning ©Western Sydney University (Yan Zhang)

A General Solution

Transition
Transition Diagrams
The Frame Problem
Causal Laws
State Constraints
Executability Conditions

Action Language \mathcal{AL}

Syntax Semantics The Solution Transition

Translating \mathcal{AL} into ASP

The General Idea Encoding \mathcal{SD} Signature Encoding \mathcal{SD} Statements Encoding \mathcal{SD} Initial State and Actions

The Briefcase Example

Tutorial and Lab Exercises

A General Solution

- ▶ We have known how to model a dynamic domain like the Blocks World using ASP.
- ▶ Basically, we create an ASP program, which contains two parts: the initial configuration and the domain laws.
- Now beyond the Blocks World, we are looking for a general solution for modeling dynamic domains.
- One possible way to model a dynamic system is by a transition diagram - a directed graph whose
 - nodes correspond to physically possible states of the domain
 - arcs are labeled by actions.

A General Solution - Transitions

A transition $< \sigma_0, \{a_1, \cdots, a_k\}, \sigma_1 >$ of the diagram, where $\{a_1, \cdots, a_k\}$ is a set of action executable in state σ_0 , indicates that σ_1 may be a result of simultaneous execution of these actions in σ_0 .

Our representation guarantees that the effect of an action depends only on the state in which that action was executed. The way in which this state was reached is irrelevant.

A General Solution - Transition Diagrams

- ▶ A path $< \sigma_0, a_0, \sigma_1, \cdots, a_{n-1}, \sigma_n >$ of the diagram represents a possible *trajectory* of the system with initial state σ_0 and final state σ_n .
- ► The transition diagram for a system contains all possible trajectories of that system.
- Such a transition diagram can be quite complicated.
- ► Things get even more complicated because of the need to specify what is not changed by actions.

A General Solution - The Frame Problem

- ▶ The **frame problem** (first time addressed by John McCarthy in 1960s) is the problem of finding a concise and accurate representation in a formal language of what is not changed by actions.
- ▶ Notice that in our Blocks World problem, we showed a solution to the Frame Problem. We simply reduced it to finding a representation of the *Inertia Axiom* a default that states that things normally stay as they are.

A General Solution - Causal Laws

➤ A causal law represents the effect of an action, which can be defined as follows:

```
a causes f if p_0, \dots, p_m.
```

- ▶ The law says that action a, executed in a state which satisfies conditions p_0, \dots, p_m , causes fluent f to become true in the resulting state.
- We have seen the use of such laws in our Blocks World example when we defined the effect of action put(Block,Location).

A General Solution - Causal Laws

Example

Transition Diagram for a Causal Law:

a causes $\neg f$ if f.

A General Solution - State Constraints

State constraints are defined as follows, can be seen as indirect effect of actions:

f if
$$p_0, \dots, p_m$$

which say that every state satisfying conditions p_0, \dots, p_m must be also satisfy f.

- ► Finding concise ways for defining these effects is called the Ramification Problem.
- Together with the Frame Problem discussed above, the Ramification Problem caused substantial difficulties for researchers in their attempts to precisely define transitions of discrete dynamic systems.

A General Solution - State Constraints

Example

Transition Diagram Including a State Constraint.

a causes
$$\neg f$$
 if f . $\neg h$ if $\neg f$.

A General Solution - Executability Conditions

Executability conditions are represented by laws of the form

impossible
$$a_1, \dots, a_k$$
 if p_0, \dots, p_m

which say that it is impossible to execute actions a_1, \dots, a_k simultaneously in a state satisfying conditions p_0, \dots, p_m . As an example, let's add rule

impossible a if
$$\neg f$$

which says that it is impossible to perform action a in any state which contains fluent $\neg f$.

A General Solution - Executability Conditions

Example

Transition Diagram Including an Executability Condition.

a causes
$$\neg f$$
 if f
 $\neg h$ if $\neg f$
impossible a if $\neg f$

- Action languages are formal models of parts of natural language used for describing the behaviour of dynamic systems.
- ► Looking at it another way, they are tools for describing transition diagrams.

- ► Action language AL is parametrized by a sorted signature containing three special sorts:
 - statics,
 - fluents, and
 - actions.
- The fluents are partitioned into two sorts: inertial and defined.
- **domain properties**: statics and fluents
- domain literal domain property or its negation. We can have fluent literals and static literals.

- A set *S* of domain literals is called **complete** if for any domain property p either p or $\neg p$ is in *S*.
- ▶ *S* is called **consistent** if there is no *p* such that $p \in S$ and $\neg p \in S$.

Language \mathcal{AL} allows the following types of *statements*:

Causal Laws:

a causes
$$l_{in}$$
 if p_0, \dots, p_m

State Constraints:

/ if
$$p_0, \cdots, p_m$$

Executability Conditions:

impossible
$$a_1, \dots, a_k$$
 if p_0, \dots, p_m

where a is an action, l is an arbitrary domain literal, l_{in} is a literal formed by an inertial fluent, p_0, \dots, p_m domain literals, $k \ge 0$, and $m \ge 0$. Moreover, no negation of a defined fluent can occur in the heads of state constraints.

Definition

A system description of AL is a collection of statements of AL.

- ► A system description serves as a specification of a transition diagram of a dynamic system.
- ▶ It describes all possible trajectories of the system.
- \triangleright So, to define the meaning of \mathcal{AL} statements, we need to define the states and legal transitions of the diagram.

Defining States

- ▶ If we didn't have to worry about defined fluents, we could define states as
 - a complete and consistent set of domain literals satisfying the system's state constraints
- Unfortunately, this is not good enough to give defined fluents their intended meaning.

Example

The Problem with Defined Fluents.

Suppose we have two state constraints:

h if f h if $\neg g$

where h is a defined fluent and f and g are inertial, i.e., can only be changed by actions.

$$h \text{ if } f$$

 $h \text{ if } \neg g$

Consider the following candidate states:

$$\sigma_0 = \{f, g, h\}$$
 $\sigma_1 = \{f, g, \neg h\}$ $\sigma_2 = \{\neg f, g, h\}$ Clearly, σ_0 is a state, σ_1 is not. Why?

How about σ_2 ?

Notice that σ_2 doesn't seem to satisfy the definition of h since the truth of h doesn't follow from any of its defining rules. However, it is complete and consistent.

Action Language \mathcal{AL} - The Solution

- ➤ To capture the intended meaning of defined fluents, we turn to ASP.
- To see whether a candidate set is a state, we create an ASP program by:
 - (a) Taking all the state constraints and replacing the **if** in them by a " \leftarrow ".
 - (b) Adding the CWA for each defined fluent.
 - (c) Adding all the statics and inertial fluents from the candidate set to the program as facts.
 - (d) Adding relevant inertial rules.

Definition

A complete and consistent set of domain literals is a **state** of the transition diagram defined by a system description if it is the unique answer set of the program thus created.

Action Language \mathcal{AL} - Transition

- ► The definition of the transition relation of a diagram is also based on the notion of the answer set of a logic program.
- ► To describe a transition $< \sigma_0, a, \sigma_1 >$, we construct a program $\Pi(\mathcal{SD}, \sigma_0, a)$ consisting of
 - (a) logic programming encodings of system description \mathcal{SD} ,
 - (b) initial state σ_0 , and
 - (c) set of action a,

such that answer sets of this program determine the states where the system can move into after the execution of a in σ_0 .

Translating \mathcal{AL} into ASP - The General Idea

Recall that given a system description \mathcal{SD} and a transition $<\sigma_0, a, \sigma_1>$, where $a=\{a_0, \cdots, a_k\}$, we construct an ASP program $\Pi(\mathcal{SD}, \sigma_0, a)$, while the answer sets of $\Pi(\mathcal{SD}, \sigma_0, a)$ provide the semantics of \mathcal{SD} in terms of the transition $<\sigma_0, a, \sigma_1>$.

▶ We first define the encoding $\Pi(\mathcal{SD})$ of system description \mathcal{SD} which consists of the encoding of the signature of \mathcal{SD} and rules obtained from statements of \mathcal{SD} .

Translating \mathcal{AL} into ASP - The General Idea

- We then define the encoding $\Pi(\sigma_0, 0)$ and $\Pi(a, 0)$, where $\Pi(\sigma_0, 0)$ represents the initial state σ_0 in a logic program form, and $\Pi(a, 0)$ encodes the fact that the set of actions a is executable in σ_0 .
- ▶ Finally, we define $\Pi(\mathcal{SD}, \sigma_0, a) = \Pi(\mathcal{SD}) \cup \Pi(\sigma_0, 0) \cup \Pi(a, 0)$.

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Signature

The signature of a given \mathcal{SD} contains: statics, inertial fluents, defined fluents, and actions.

$\mathcal{S}\mathcal{D}$	$Signature(\mathcal{SD})$
static g	g
inertial fluent f	fluent(inertial, f)
defined fluent f	fluent(defined, f)
action a _i	action(a _i)

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Statements

Now the encoding of statements of $\mathcal{S}\mathcal{D}$ is defined as follows:

$\mathcal{S}\mathcal{D}$ Statements	$\Pi(\mathcal{SD})$ Rules
	Setting step:
	$\#const\ n=1.$
	step(0n).
For each causal law	$holds(I,I+1) \leftarrow holds(p_0,I), \cdots,$
a causes l if p_0, \dots, p_m	$holds(p_m, I),$
	occurs(a, I).
For each state constraint	$holds(I,I) \leftarrow holds(p_0,I), \cdots,$
/ if p_0, \cdots, p_m	$holds(p_m, I)$.
	CWA for defined fluents *
	$-holds(F,I) \leftarrow fluent(defined,F),$
	not $holds(F, I)$,
	step(I).

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Statements

Continued.

$\mathcal{S}\mathcal{D}$ Statements	$\Pi(\mathcal{SD})$ Rules
For each executability cond.	$-occurs(a_0, I)$ or \cdots or
impossible a_0, \dots, a_k	$-occurs(a_k, I) \leftarrow holds(p_0, I), \cdots,$
if p_0, \cdots, p_m	$holds(p_m, I),$
	Inertia rules *
	$holds(F, I + 1) \leftarrow fluent(inertial, F),$
	holds(F,I),
	not-holds(F, I+1),
	I < n.
	$-holds(F, I+1) \leftarrow fluent(inertial, F),$
	-holds(F,I),
	not $holds(F, I + 1)$,
	l < n.

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Statements

Continued.

$\mathcal{S}\mathcal{D}$ Statements	$\Pi(\mathcal{SD})$ Rules
For each action(a)	CWA for actions *
	$-occurs(a, I) \leftarrow not \ occurs(a, I),$
	step(I), $action(a)$.

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Initial State and Actions

$\mathcal{S}\mathcal{D}$ Initial State	$\Pi(\sigma_0,0)$ Rules
For each $I \in \sigma_0$	holds(1,0).

\mathcal{SD} Actions	$\Pi(\alpha,0)$ Rules
For each $a_i \in a$	$occurs(a_i, 0)$.

$$\Pi(\mathcal{SD},\sigma_0,a) = \Pi(\mathcal{SD}) \cup \Pi(\sigma_0,0) \cup \Pi(a,0).$$

Translating \mathcal{AL} into ASP - Encoding \mathcal{SD} Initial State and Actions

Definition

Let \mathcal{SD} be a system description of \mathcal{AL} , σ_0 the initial state, and a a set of actions. $\Pi(\mathcal{SD}, \sigma_0, a)$ is specified as above. Then for transition $<\sigma_0, a, \sigma_1>$, the *resulting state* σ_1 from this transition is defined as

$$\sigma_1 = \{I \mid holds(I, 1) \in A\},\$$

where A is an answer set of $\Pi(\mathcal{SD}, \sigma_0, a)$.

The scenario: Consider a briefcase with two clasps. We have an action, toggle, which moves a given clasp into the up position if the clasp is down, and vice versa. If both clasps are in the up position, the briefcase is open; otherwise, it is closed.

Briefcase domain: the transition diagram

Briefcase domain: Signature

- ightharpoonup sort $clasp = \{1, 2\}$
- ightharpoonup inertial fluent up(C) which holds if clasp C is up
- defined fluent open which holds if both clasps are up
- ▶ action toggle(C) which toggles clasp C
- ▶ Note C can be 1 and 2 in above

Briefcase domain: System Description

 \mathcal{SD}_{bc} contains the following statements:

Causal laws:

```
toggle(1) causes up(1) if \neg up(1)
toggle(2) causes up(2) if \neg up(2)
toggle(1) causes \neg up(1) if up(1)
```

toggle(2) causes $\neg up(1)$ if up(1)

State Constraint:

open if up(1), up(2)

Briefcase domain: State

We assume the initial state $\sigma_0 = {\neg up(1), up(2), \neg open}$.

Briefcase domain: Transition

$$<\sigma_0, \{toggle(1)\}, \sigma_1>$$

- In order to obtain σ_1 , we construct an ASP program $\Pi(\mathcal{SD}_{bc}, \sigma_0, \{toggle(1)\})$, and then compute its answer sets
- Recall that

```
\begin{split} &\Pi(\mathcal{SD}_{bc}, \sigma_0, \{\textit{toggle}(1)\}) = \\ &\Pi(\mathcal{SD}_{bc}) \cup \Pi(\sigma_0, 0) \cup \Pi(\{\textit{toggle}(1)\}, 0) \end{split}
```

```
Encoding SD_{bc}: \Pi(SD_{bc})
  %% Signature
  fluent(inertial,up(1)).
  fluent(inertial,up(2)).
  fluent (defined, open).
  %% Setting step and clasp numbers.
  #const n=1.
  step(0..n).
  \#const c=2.
  clasp(1..c).
```

```
Encoding SD_{bc}: \Pi(SD_{bc})
 %% Causal laws
  %% %% toggle(C) causes up(C) if -up(C)
  holds(up(C), I+1) :- occurs(toggle(C),I),
                        -holds(up(C),I).
 %% toggle(C) causes -up(C) if up(C)
  -holds(up(C), I+1) :- occurs(toggle(C),I),
                         holds(up(C),I).
 %% State constraint
  holds(open,I) := holds(up(1),I), holds(up(2),I).
```

```
%% CWA for defined fluents
-holds(F,I) :- fluent(defined,F),
               not holds(F,I), step(I).
%% Inertial rules
holds(F,I+1) :- fluent(inertial,F),
                holds(F,I),
                not -holds(F,I+1),
                T < n.
-holds(F,I+1) :- fluent(inertial,F),
                 -holds(F,I),
                 not holds(F,I+1),
                 I < n.
```

```
%% CWA for actions
  -occurs(toggle(C),I) :- not occurs(toggle(C),I),
                             step(I), clasp(C).
Encoding \sigma_0: \Pi(\sigma_0, 0):
  %% Initial state
  -holds(up(1),0).
  holds(up(2),0).
  -holds(open,0).
```

```
Encoding \sigma_0: \Pi(\sigma_0, 0):
  %% Initial state
  -holds(up(1),0).
  holds(up(2),0).
  -holds(open,0).
Encoding actions: \Pi(\{toggle(1)\}, 0):
  %% Actions
  occurs(toggle(1),0).
```

Very importantly, in *clingo*, we need to make every rule be *safe*, i.e., each variable occurring in the head, must also occur in the positive body.

Note: If we allow two toggle actions to be executed at the same time, the briefcase will never be opened from initial state:

$$\sigma_0 = \{\neg up(1), up(2), \neg open\}!$$

We name this program *briefcase.lp*. Running this program under *clingo*.

Tutorial and Lab Exercises

Consider the Blocks World we studied earlier. Suppose the Blocks World has the following system description \mathcal{SD}_{BW} :

```
Causal law:
       put(B, L) causes on(B, L)
State constraints:
       \neg on(B, L_2) if on(B, L_1), L_1 \neq L_2
       \neg on(B_2, B) if on(B_1, B), B_1 \neq B_2
       above(B, L) if on(B, L)
       above (B, L) if on(B, B_1), on(B_1, L)
Executability conditions:
       impossible put(B, L) if on(B_1, B)
       impossible put(B_1, B) if on(B_2, B)
```

Tutorial and Lab Exercises

- 1. Encode \mathcal{SD}_{BW} to $\Pi(\mathcal{SD}_{BW})$.
- 2. Suppose σ_0 is shown as follows:

Encode σ_0 and action $put(b_2, b_4)$ to $\Pi(\sigma_0, 0)$ and $\Pi(\{put(b_2, b_4)\}, 0)$, respectively. Then run program $\Pi(\mathcal{SD}_{BW}, \sigma_0, \{put(b_2, b_4)\})$ on *clingo*.