Truncation Experiment Results

Serena Zhang, 7/29/2021

Introduction

Truncate the number of digits after the decimal point and to test how that affects number recognition precision with the small subsets of the MNIST data set downloaded from http://pireddie.com/projects/mnist-in-csv/.

Test 1

Methodology

To do truncation and get the desired number of digits after the decimal point, I used the following function where the value numDigits should be no more than 18 (explained later).

```
func truncate(m *mat.Dense) {
    rows, columns := m.Dims()
    tenthPower := math.Pow(10, float64(numDigits))
    for r:=0; r<rows; r++ {
        for c:=0; c<columns; c++ {
            m.Set(r, c, float64(int(m.At(r, c) * tenthPower)) / tenthPower)
        }
    }
}</pre>
```

I truncated the floating numbers in net.outputWeights and net.hiddenWeights in the "train" section as well as in hiddenInputs, hiddenOutputs, finalInputs, and finalOutputs in the "predict" section.

Results

The following charts show the precisions of when the number of digits after the decimal point range from 3 to 18.

digits	precision			_		D: :						
3	0.2011	Pre	ecisi	on vs. I	runcati	on Digit	S					
4	0.8703		1.00									
5	0.9279											
6	0.9538											
7	0.9553		0.75									
8	0.9555											
9	0.9555	5										
10	0.9555	Precision	0.50	+								
11	0.9555	Pre		/								
12	0.9555		0.05	/								
13	0.9555		0.25									
14	0.9555											
15	0.9555		0.00									
16	0.9555		0.00	4	6	8	10	12	14	16	18	
17	0.9555	Number of Digits Following Decimal Point After Truncation										
18	0.9555		Tanks of Signal Sharing Booman Sint Actor Transaction									

Caveat: when calculating int(m.At(r, c)), because the max_int64 is 9,223,372,036,854,775,807, if numDigits > 18, that expression will overflow to a negative value. Thus, I only truncate up to 18 digits after the decimal point.

Test 2

Methodology

I wrote the following function that truncates a given number of bits from the floating number.

```
func truncateMantissa(a float64) float64{
       isNegative := a < ∅
       if(isNegative){
               a = -a
       }
       i := uint64(math.Float64bits(a))
       originalExponent := i>>52
       if originalExponent==0 {
               return 0
       }
       exponent := int64(originalExponent - 1023)
       if exponent>=0 {
               if exponent<11 {</pre>
                       mantissa = mantissa<<exponent</pre>
               } else {
                       fmt.Println("value too big")
                       return 0
       } else {
               mantissa = mantissa>>(-exponent)
       // truncate the given number of bits (numBits)
       var bitMask uint64 = getBitMask(numBits)
       mantissa = mantissa & bitMask
       if exponent>=0 {
               mantissa = mantissa>>exponent
       } else {
               mantissa = mantissa<<(-exponent)</pre>
       truncated := originalExponent<<52 + mantissa & 0xffffffffffff</pre>
       if isNegative {
               truncated = 1<<63 + truncated
       return math.Float64frombits(truncated)
```

I truncated the floating numbers in net.outputWeights and net.hiddenWeights in the "train" section as well as in hiddenInputs, hiddenOutputs, finalInputs, and finalOutputs in the "predict" section.

The code snippet is as the following:

Results

I performed 2 tests with the ladder having additional truncation in the helper functions.

Test 2.1
Truncation in functions Train and Predict

Bits Truncated	Precision										
20	0.9555										
21	0.9555										
22	0.9555										
23	0.9555										
24	0.9555	Description	D:4	т	- 4 -	-1					
25	0.9555	Precision	n vs. Bits	3 Irunc	ate	a					
26	0.9555	1.0000									
27	0.9554	1.0000									
28	0.9554										
29	0.9552										
30	0.9554	0.7500									
31	0.9550	0.7000									
32	0.9540										
33	0.9514	Ē									
34	0.9444	<u>ිනි</u> 0.5000			$-\!$						
35	0.9324	Precision 0.5000									
36	0.9213	Δ.									
37	0.9033										
38	0.8768	0.2500									
39	0.8577										
40	0.8197										
41	0.4720										
42	0.0974	0.0000	0 4	45		40	35		30	25	20
43	0.0974	3.			7		33	33			
44	0.0974					Bi	ts Trur	cated			
45	0.0974										
46	0.0974										
47	0.0974										
48	0.0974										
49	0.0958										
50	0.0980										

Test 2.2

50

0.0974

Truncation in functions Train, Predict, as well as dot, apply, scales, multiply, add, subtract, max_weights, min_weights

The additional code snippet is as the following:

