Amplifier Design

احمد حسين عبدالعال على

Required Specifications:

Gain	40 db	$=10^{40/20}\approx 100$
Bandwidth	1M Hz	At $C_L = 1nF$
Power consumption	20µW	At $V_{CC} = 1.5V$

 $\stackrel{1}{=} \text{Since } BW = \frac{1}{2\pi C_{out} R_{out}} \text{(Where the dominant pole is the output's)}$

Assuming direct coupling ($f_0 \approx 0$),

 $C_{out} \cong C_L \text{ or } 1.05C_L \text{ (Taking in consideration } C_{BC} \text{)}$

So,
$$R_{out(MAX)} = \frac{1}{2\pi C_{out}BW} = \frac{1}{2\pi \times 1.05 \times 10^{-9} \times 10^6} = 151.57 \ \Omega$$

♣BW stage:

CE stage with $R_{C}=R_{out}=100~\Omega$ (Leaving margin for the other stages).

• For
$$R_1$$
, R_2 :
$$V_{th} = I_B R_{th} + V_{BE}$$

$$V_{CC} \times \frac{R_2}{R_1 + R_2} = I_B \times \frac{R_1 R_2}{R_1 + R_2} + V_{BE}$$
And since $I_B = \frac{I_S}{\beta} e^{\frac{V_{BE}}{V_t}}$

• So, for $R_2 = 1000K\Omega$, $R_1 = 1650K\Omega$ (for min current consumption in this branch).

$$|A_{VBWstage}| = g_m R_C = \frac{I_C}{V_t} R_C = \frac{12.2 \times 10^{-6} \times 100}{0.026} = 0.046923$$

 $|A_{VTotal}| = |A_{Vgainstage}|^n \times |A_{VBWstage}| = 100$
 $|A_{Vgainstage}|^n$ must be = 2131.14

♣ For The Gain Stages:

CE Stages for gain:

- First, we need to make sure that the output pole is the dominant so that the gain stages don't affect the BW
- Since C_{in} is based on the transistors parasitic capacitance which is in the pico range (Assuming 50pF)

so
$$R_{C(Stages(max))} = \frac{1}{2\pi \times 50 \times 10^{-12} \times 10^6} = 3.183 K\Omega$$

- We'll be using $1.1k\Omega$ and $1k\Omega$.
- $|A_{Vgainstage}| = \sqrt[n]{2131.14} = \sqrt[7]{2131.14} \cong 3$ (for 7 stages) But $|A_{Vgainstage}| = g_m R_C = g_m \times 1100$ must be 3 So $g_m = \frac{3}{1100} = 2.727 \, mS$, $g_m = \frac{I_C}{V_t} = 2.727 \times 10^{-3}$ $I_C = 0.026 \times 2.727 \times 10^{-3} = 70.9 \mu A$
- By using the same analysis method as before, for $R_2=1000K\Omega$, $R_1=1100K\Omega$ (for min current consumption in this branch).

Final Circuit:

Simulation Results:

Gain	Bandwidth	Power consumption
40.437 db	1.0429 Mhz	861.15 μW

♣ Results:

Spec	Required	Achieved
Gain	40 db	40.437 db
Bandwidth	1 MHz	1.0429 Mhz
Power consumption	$20~\mu W$	861.15 μW