34 Computing Subgradients.
s weak per -> compute some subgrad. strong ver> full characterize subdifferential set.
1 3 1 3 10 1 CIWWO DIT Zee SUEDITION SULPTION SU
3. 4. Positive Scalar Mult.
Thm 3.35. $f: E \rightarrow (-0, \infty]$. be proper function, $d > 0$, then for
$\forall x \in don(f)$
$g(\alpha f)(x) = \alpha \partial f(x)$.
$poof: g \in af(x) \Leftrightarrow \forall y \in E, f(y) \geq f(x) + \langle g, y - x \rangle.$
That is, $df(y) \ge df(x) + \langle dg, Yx \rangle$. So $dg \in g(df)(u)$.
\$\frac{1}{\sqrt{3}}\$
Since $com(cof) = dom(f)$, $a(x) = daf(x)$.
3.4.2 Summation.
Thm 3, 36.
Let fifz: E > (-00,00] be proper combex functions, and let
XE dom(fi) 1 dom(fz)
(a) The following inclusion holds:
$2f_1(x) + 2f_2(x) \subseteq 2(f_1+f_2)(x)$. Only need clop of subgrowth.
(b). If xe int (dom(fi)) / int (dom(fi)), then
$g(f_1+f_2)(x) = 2f_1(x) + 2f_2(x), \qquad \text{proof of (b)};$
utilizes the wax formula.

poof:
(a). Let ge of (w) + of (w), then I g, E of (w), ge 2 frw st. g=9, +92
-> bye E, f, (y) ≥ f, (x) + <9,, 4x>
$f_{2}(y) \geq f_{2}(x) + \langle J_{2}(y + x) \rangle,$
$\Rightarrow (f_1 + f_2)(y) \Rightarrow (f_1 + f_2)(x) + \langle g, y \times \rangle \Rightarrow g \in \partial f_1 + f_2(x).$
(b). Define $f = f_1 + f_2$. de E.
xeint(dom(fi) = int(dom(fi)) / int (dom(f2))
By Max formula, $f'(x;d) = \max\{(g,d) : g \in \partial f(x)\} = \sigma_{g(x)}(d)$,
$ \mathcal{F}(x)(d) = f'(x)(d) + f'(x)(d) $
= $\max \left\{ \left\{ g_{1}, d \right\} : g_{1} \in \mathcal{F}_{1}(x) \right\} + \max \left\{ \left\{ g_{2}, d \right\} : g_{2} \in \mathcal{F}_{2}(x) \right\}.$
$= \max \{g_1 + g_2, d\} : g_1 \in \partial f_1(x), g_2 \in \partial f_2(x)\}$
$= (a)$ $g_1 + g_2 \in g_1(x) + g_2(x).$
9,+12, d> te 9,+2 fixed 17th
故不需之里分件.
By Lemma 2.39 (If ArB closed & convex, then JA=JB (A-B).
If(x), If(x), If (x) are compact, convex
of 1x + of sw is compact, would x.
$\Rightarrow \partial f(x) = \partial f(x) + \partial f_2(x)$
Pomark: pant (a) does not veguine convexity assumption

on

Collary 3.38. $f_1, f_2, \dots f_m : E > (-\infty, \infty)$ be proper an wex functions.

[et $x \in \bigwedge$ dom (f_i) . Then.

(a) $\sum_{i=1}^{m} of_i(x) \subseteq of_i(x)$.

(b) If $x \in \bigwedge$ int $(dom(f_i))$, then $of_i(x) = \sum_{i=1}^{m} of_i(x)$.

Colleany 331.

If, \sim for are real-valued. I $f_1, f_2, \dots f_m : E \to \mathbb{R} \quad \text{real-valued convex functions. Then}$ $fr \; \forall x \in E, \qquad \partial \left(\sum_{i=1}^m f_i \right)(x) = \sum_{i=1}^m \partial f_i(x).$

Thin 3.40. E = 12 fs is the state of the proper convex functions, and assume that $\text{One}(f_i) \neq \emptyset$. Then for any $x \in E_i$ $\text{One}(f_i) \neq \emptyset$. Then for any $x \in E_i$ $\text{One}(f_i) \neq \emptyset$. $\text{One}(f_i$

Eg: N-Norm. $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$.

Then $f = \sum_{i=1}^n f_i$, where $f(x) = |x_i|$. We have $(f_i: \mathbb{R}^n \to \mathbb{R})$ that.

of:
$$(x) = \begin{cases} sgn(x_i)e_i \end{cases}$$
, $X_i \neq 0$.
 $[-e_i, e_i]$, $X_i = 0$

$$\Rightarrow gf(x) = \sum_{i=1}^{n} gf(x) = \sum_{i \in J \neq i} sgn(x_i)e_i + \sum_{i \in J \neq x} [-e_{i}, e_{i}].$$

$$J_{\mp}(x) = \{i: X_i \neq 0\}.$$

$$I_{\infty}(x) = \{i: X_i = 0\}.$$

Hence,

$$sfx = \{z \in \mathbb{R}^n : z_i = sgn(x_i), i \in I_{\pm}(x), |z_i| \neq 1, j \in I_{o}(x)\}$$

34.3 Affine Trems formation.

$$h'(x_j d_j) = \lim_{\substack{d > 0 \ d > 0}} \frac{h(x_j d_j) - h(x_j)}{d}$$