انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix																																		چ	د يبا
хi																														یباچیہ	. کاد	ناب	باي. بلي کنه	ی	مير
1																											ت	ساوا	تى م	ه تفر	ىساد	اول	ارجه	,	1
2																													Ĺ	نه کش _و	نمو		1.1		
14										ولر	پ	کید	رزر	. اور	مت	۔ ر	ن ک	رال	.ميا	ب۔	طلد	ز ئى م	ر ريا	ومي						: , y			1.2	,	
23																													- 2	ر ل علي			1.3		
39																														۔ می سا			1.4		
51																														ں ۔ می ساہ			1.5		
68																														ں ۔ دی:			1.6		
72																	نيت	بنائ	وريا	تاو	درير	وجو	پاکی	خر	ت	ں ساوا	يىر قىم	ر ن ، تفر	رر نیمت	رر رائی !	ر ابتا		1.7		
70																													ï	٠,	,				_
79																										,				ه تفر •				•	2
79																															-		2.1		
95																																	2.2	,	
110																																	2.3		
114																																	2.4		
130																																	2.5		
138	3.																						ن	وتس)؛ور	بتائي	وري	بتا	جود	ى كى و	حل		2.6)	
147	٠.																							ت	ماوار	نی مہ	نفرفي	ماده	س	رمتجان	غير		2.7	•	
159	١.																										ىك	ا_اً	تعاثر	ِیار	جر		2.8		
165	,																			مک	ملی ا	٤ -	نيطه	٠٤ر	ع طر	حال	فرار	1.	2	2.8	.1				
169																														ن ن اد و			2.9		
180) .									ىل	کام	ت	باوار	امسا	زقی	تف	اده	اسر	خطح		متجانه	فير	یے	لقے۔	لرب	کے ط	لنے۔	ابد-	علوم	رادم	مق	2	.10)	

iv

نظى ساده تفر قى مساوات		3
متجانس خطی ساده تفرقی مسادات	3.1	
مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات	3.2	
غير متجانس خطی ساده تفرقی مساوات	3.3	
غیر متجانس خطی سادہ تفر قی مساوات	3.4	
	نظامِ تفرق	4
قالب اور سمتىيە كے بنیادی حقائق		
سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 نظی نظام		
ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب		
نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام		
ي في تراكيب برائے غير خطي نظام		
ع د میب ایک در جی مساوات میں تباد کہ		
۱۰۰۲ مارون کو حتایت کا متاس تعطی نظام	4.7	
نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	1.,	
2)1		
ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	طاقق تسلسا	5
ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار		٥
رىي ب ن ى داردى		
مبَسُوط طاقتى تسلىل ـ تركيب فَرومنيوس	<i>5</i> 2	
taran da antara da a	5.3	
5.3.1 علملى استعال	5.3	
مسادات بىيىل اور بىيىل تفاعل	5.4	
ساوات بىيل اور بىيل تفاعل	5.4 5.5	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6 5.7	
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات ببیل اور ببیل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 لا پلاس تاد 6.1	6
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تاباد 6.1 6.2	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس تا 6.1 6.2 6.3	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 6.1 6.2 6.3 6.4 6.5 6.6	6

عـــنوان V

لایلاس بدل کے عمومی کلیے	6.8	
مرا: سمتيات	خطىالجه	7
برر. غير سمتيات اور سمتيات	7.1	•
سر سیال از اور سایال ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۶ میل	7.2	
سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب	7.3	
ي مناه و خطح تابعيت اور غير تابعيت	7.4	
ل صلاح کا بلیت و میر مابیت	7.5	
الدروني شرب فضا	7.6	
ستي ضرب	7.7	
ن رب	7.8	
غير سمق سه ضرب اورديگر متعدد ضرب	7.9	
ير ن شه سرب اورو ير مسرو سرب	1.9	
برا: قالب، سمتىي، مقطع يه خطى نظام	خطىالجبر	8
قالب اور سمتیات به مجموعه اور غیر سمق ضرب	8.1	
قالبی ضرب "	8.2	
8.2.1 تېدىلىمى كى		
خطی مساوات کے نظام۔ گاو تی اسقاط	8.3	
8.3.1 صف زيند دار صورت		
خطى غير تالعيت در حبه قالب ـ سمتي فضا	8.4	
خطی نظام کے حل: وجو دیت، کیتا کی	8.5	
	8.6	
مقطع۔ قاعدہ کریم	8.7	
معكوس قالب_گاوُس جار دُن اسقاط	8.8	
سمتی فضا،اندرونی ضرب، خطی تبادله	8.9	
برا: امتيازي قدر مسائل قالب	خطىالج	9
بردانسیادی خدر مسائل قالب امتیازی اقدار اورامتیازی سمتیات کا حصول	9.1	
امتیازی مسائل کے چنداستعال 🐪 👢 🗓 👢 🗓 👢 🗓 دیں دیا ہے۔ دیا ہے جنداستعال 👚 دیا ہے 672	9.2	
تشاكلي، منحرف تشاكلي اور قائمه الزاويه قالب	9.3	
امتیازی اساس، وتری بناناه دودرجی صورت	9.4	
مخلوط قالب اور خلوط صورتیں	9.5	
ر قی علم الاحصاء ـ سمتی تفاعل 711	سمتی تفر	10
	10.1	
	10.2	
منحتي		
· · · · · · · · · · · · · · · · · · ·	10.4	
•••••••••••••••••••••••••••••••••••••••	10.5	
ستتحار فآراوراسراط	10.6	

vi

745																																	
751.																					ن	لوال) ۋھ	ن کم	ميدا	سمتی	غير	رق،	متى تف	س	10.8	3	
764																					يات	سمتب	كاك	رار	رتبادا	ماور	بانظا	نددې	إدل م	ت	10.9)	
769																										بميلاو	کی کیج	بران	متی مب	- 1	0.10)	
777 .																									. (رو شر	کی گر	عل	متى تفا	ر 1	0.11		
																												,			6		
781																															سمتی تکم		Ĺ
782																												ل	طی تکم	<i>;</i>	11.1		
782 . 787 .																											حل	ل کا	طی تکم	<i>;</i>	11.2	2	
796																												ىل	وہرائکم	,	11.3	;	
810																							لہ .	ا تباد	میں	أتكمل	خطى	ل کا	وہر اکم	,	11.4	ļ	
820																																	
825																																	
837																												ل	طحی تک		11.7	7	
845																																	
850																							. ر	تتعا	اورا	تائج	کے و	يلاو.	سُله کچ	م	11.9)	
861 . 866 .																						•		ء ،	٠,		ر	نوتسر	سكله سن	1 م	1.10)	
869		•	•	•		•	•	•	•	•		•	•	•	•	•	•	•		•	•			٠	٠ (الكمل	لتحطى	آزاد	اہسے	1را	1.12	2	
883																													,	نلىر	فوريئر ^ت	12	,
884																								ىل	, تىل	و نياق	، تکو	فاعل	•		/		•
889																																	
902																																	
907																																	
916																																	
923																							ول	ا حصا	بتكمل	ابغير	اسرک	ردې	رييزء	فو	12.6)	
931 . 936 .				•		•	•		•	•			•	•	•					•			٠,		•		ں ر	إنعاث	بر کاار په	?	12.7	,	
936		٠	٠	•	 •	٠	٠	٠	•	•	 •	٠		٠	•	٠		•	•		علل	ب	_ مكعر	۔ کئی	لتثيرا	نگوتی	لعبه	ببذر	قريب خ	υ	12.8	3	
940									•					•											•			مل	ريئر	فو	12.9)	
953																												ا. •• .	رمد اه	نة ټ	جزوی ^آ	. 13	2
953 .																															.رون 13.1		,
958																																	
960																																	
973																																	
979																																	
987																						رت	وحرا	ر بها	خ میر	سلار	آیکی	الساف	متنابح	IJ	13.6)	

vii

	13.7	1 نمونه کشی:ار تعاش پذیر جھلی۔ دوابعادی مساوات موج ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	993 .	•
	13.9	1 قطبی محدد میں لایلاس	006 .	1
		13 دائری جیلی۔ مساوات بیبل		
	13.11	13 مساوات لا پلاس- نظر بير مخفّى قوه	018.	1
		13 کروی محدد میں مساوات لاپلاس۔مساوات لیزاندر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		
	13.13	13 لا پلاس تبادل برائے جزوی تفرقی مساوات	030 .	1
		, re		
14	مخلوط اعداد	مداديه مخلوط تخليل نفاعل 	1037	
	14.1	مداد سوط سان ها ن 1 مخلوطاعداد	038 .	1
	14.3	1 مخلوط سطح میں منحنیات اور خطیے	054 .	1
	14.4	1 مخلوط تفاعل ـ - حد ـ تفرق ـ تتحليلي تفاعل	059 .	1
		1 كوشي ريمان مساوات ـ		
		1		
	14.7	1 قوت نمائی تفاعل	084 .	1
	14.8	1 تىكونىاتى اور بذلولى تفاعل	089 .	1
	14.9	1 لوگار تقم به عمومی طاقت	095 .	1
		٠ ک ۀ		
15		راويه نقشه کشي عرب	1103	
		1 تشته گثی	104 .	1
		1 محافظ زاوییه نقش		
		1 مخطی کسری تبادل		
		1 مخصوص خطی کسری تبادل		
		1 نقش زیردیگر تفاعل		
	15.6	1 ريمان سطين	149 .	1
16	مخلوط تكملاب	(A	1157	
10	16.1	نات 1 مخلوط مستوی میں خطی تکمل	157	1
		۔		
	16.2	1 کوشی کا کا موال	172	1
	10.5	ا مون قامستگه شن	1/4.	1
	10.4	ا من من ما ميت قاصلول بدر يعه غير من	184.	1
	16.5	1 كوشى كاكلية تكمل	189 .	1
	16.6	1 تحلیلی نفاعل کے تفرق	194 .	1
17	ر ترتیباور ^ن	. تبا	1201	
1 /		اور سن 1 ترتیب		
	17.1	1 رئيب 1 شكل	201.	1.
	17.2	ا کس	∠∪8. 213	1.
	1 /)	ا و العول م وربت رائے رسیادر رن	41.7.	1

17.4 يک سر حقيقی ترتيب ليبنځراز ماکش برائے حقیقی تسلسل
17.5 تىلىل كى مركوزىت اورانفراخ كى آزمائشيں
17.6 تىلىل پراغال
1243 ما قتى تىلىل، ئىل تىلىل ادرلوغوں تىلىل
18.1 طايق كسلس
18.2 كا كا كا كا كا كاروپ شل كا كا
1263
18.5 طاقتی شلسل حاصل کرنے کے عملی تراکیب
18.6 كيسان استمرار
18.7 لوغون تىلىل
18.8 لامتنائل پر تخلیل پذیری-صفراور ندرت
1315 كىل بذريعه تركيب بقيه 1315
1315
19.2 متلهِ قِيم
19.3 حقیق کمل بذریعه سئله بقیه
19.4 حقیق کمل کے دیگراقیام
20 مخلوط تحليل تفاعل اور نظريه مخفى قوه
20.1 ساكن برقى سكون
20.2 دوبعدی بهاوسیال
20.3 ہارمونی تفاعل کے عمومی خواص
20.4 يوسون كلية كلمل
· •
21 اعدادی تجویت
21.1 عُلْل اور غلطيال - كمپيوٹر
21.2 وہرانے سے ماوات کاعل
21.3 تنایی فرق
ا اضافی ثبوت
•
ب منيرمعلومات
ب بین رواند 1.ب اعلی تفاعل کے مساوات

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

جارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔ یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور پول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

باب21

اعدادی تجزیه

انجینئری حساب کا متیجہ آخر کار اعدادی ہوتا ہے للذا انجینئری طالب علم کے لئے بنیادی اعدادی تو اکیب ا جاننا ضروری ہیں جن کی مدد سے دیے گئے مواد سے اعدادی جوابات اخذ کرنا ممکن ہو۔

بعض اوقات نظریہ سے حاصل کردہ جوابات عملاً قابل استعال نہیں ہوتے ہیں، مثلاً یک درجی خطی تفرقی مساوات کے حل کا تعملی کلیہ (حصہ 1.5)، خطی الجبرائی مساوات کے نظام کا مقطع کی مدد سے حل بذریعہ قاعدہ کریمر (حصہ 8.7)۔ کئی بار نظریہ صرف حل کی وجودیت کی یقین دہانی کرتا ہے لیکن اصل حل حاصل کرنے کے بارے میں کوئی مدد فراہم نہیں کرتا ہے۔

اعدادی تراکیب کی اہمیت کمپیوٹر کی ایجاد کی نظر ہے۔ ہم ان تراکیب کے نظریہ اور عملی استعال پر غور کریں گے۔تجزیہ خلل 2 پر بھی غور کیا جائے گا جو اعدادی تراکیب میں زیادہ اہمیت کے حامل ہے۔

 $\begin{array}{c} numerical\ methods^1 \\ error\ analysis^2 \end{array}$

اب 21.اعدادي تحبزيد

21.1 خلل اور غلطیاں۔ کمپیوٹر

چونکہ اعدادی تراکیب میں متناہی تعداد کے اعداد استعال کرتے ہوئے متناہی تعداد کے چال کے بعد جواب حاصل کیا جاتا ہے لہذا یہ تراکیب متناہی چال³ بین جو اصل (نا معلوم) بالکل درست حل کا نقریب⁴ بیش کرتے ہیں ماسوائے ان چند صور توں میں جب اصل جواب کافی سادہ ناطق عدد ہو اور ہم کوئی ایسا اعدادی ترکیب استعال کریں جو یہی بالکل درست جواب فراہم کرتا ہو۔

اگر کسی مقدار کی اندازاً قیمت a^* ہو اور اس کی اصل قیمت a ہو تب فرق $\xi = a^* - a$ کا حتمی خلل یا مخشراً a^* کا خلل a^* بیں۔یوں

$$a^* = a + \xi$$
 فلل + اصل قیت $a^* = a + \xi$

ہو گا۔ a^* کی اضافی خلل ξ_r کی تعریف درج ذیل ہے۔

$$\xi_r = \frac{\xi}{r} = \frac{a^* - a}{a} = \frac{\xi}{a}$$
 ($a \neq 0$)

 $\gamma=1$ ظاہر ہے اگر $|\xi|$ کی قیمت $|a^*|$ کی قیمت سے بہت کم ہو تب $\frac{\xi}{a^*}$ ہو گا۔ ہم ایک نئی مقدار $|a^*|$ متعارف کرتے ہیں جس کو ہم درستگی $|a^*|$ کہیں گے۔ یوں $|a^*|$ متعارف کرتے ہیں جس کو ہم درستگی

$$a=a^*+\gamma$$
 ورستگی $a=a^*+\gamma$ اصل قیمت $a=a^*+\gamma$

ہو گا۔ آخر میں a^* کی حد خلل 9 سے مراد عدد β ہے جس کی تعریف درج ذیل ہے۔

$$|a^* - a| \le \beta \implies |\xi| \le \beta$$

خلل کی تین قشمیں تجربی خلل، قطع چال خلل اور تعداد اعداد خلل ہیں۔ تجربی خلل اسے مراد مواد میں خلل ہے (جو تجربی ناپ کی وجہ سے ہو سکتے ہیں)۔ ہالکل درست جواب تک پہنچنے کی خاطر متناہی (یا لامتناہی) تعداد کے حسابی

finite processes³ approximation⁴

 ${
m error}^5$

relative error⁶

correction⁷

ایس کا کی تعریف کا کی تعریف کو تسلیم کرتے ہوئے آگے بڑھ سکتے ہیں۔ ہم خلال کی تعریف کو لیس کے ایس کا کی تعریف کی لیس کے ایس کا کی تعریف کی ایک تعریف کی لیس کے ایس کا کی تعریف کی ایس کا کی تعریف کی کی تعریف کی کی تعریف کی تعریف کی تعریف کی کرد کرد کرد کرد کی تع

error bound⁹

Experimental errors¹⁰

چال (قدم) درکار ہوں گے۔ حقیقت میں کسی خاص تعداد کے چال بعد حساب روک دیا جاتا ہے اور یوں قطع چال خلل 11 پیدا ہو گا۔ ہر قدم پر حساب کے دوران کمپیوٹر متناہی تعداد کے اعداد استعال کرتے ہوئے کمتر ہندسہ سے کم قیتوں کو رد کرتا ہے جس سے تعداد ہندسہ خلل 12 پیدا ہو گا جس پر ہم اب غور کرتے ہیں۔

اعشاری نظام میں ہر عدد کو متناہی یا لامتناہی تعداد کے اعشاری ہندسوں سے ظاہر کیا جاتا ہے۔ کمپیوٹر لامتناہی تعداد کے ہندسوں سے کے ہندسوں کو ذخیرہ نہیں کر سکتا ہے لہذا کمپیوٹر استعال کرتے ہوئے کی بھی عدد کو متناہی تعداد کی ہندسوں سے ظاہر کیا جاتا ہے۔ مقورہ نقطہ 13 نظام میں نقطہ اعشاریہ کے بعد مقررہ تعداد کے ہندسے پائے جاتے ہیں مثلاً 35.143 ، 0.076 ، 5.000 جبکہ غیر مقورہ نقطہ 14 نظام میں ملحوظ ہندسوں 15 کی تعداد متعین ہوتی ہے مثلاً 10 کا میں ملحوظ ہندسہ سے مراد 10 کا ہر ہندسہ ہے مادا کے طور پر سول کی تعداد چار ہے۔ عدد 10 کے محوظ ہندسہ سے مراد 10 کا ہر ہندسہ ہے مادا کے علاوہ ہر صفر بھی جانب صفر جو اعشاریہ کا مقام تعین کرتا ہو۔ (یوں اس کے علاوہ ہر صفر بھی 10 مادا کے بہلا غیر صفر عدد کی بائیں جانب صفر جو اعشاریہ کا مقام تعین کرتا ہو۔ (یوں اس کے علاوہ ہر صفر بھی 16 مادا کے طور پر 5420 ، 1.340 ، 100 میں سے ہر ایک میں چار محوظ ہندسے 16 ہیں۔

تعداد ہندسہ خلل کا قاعدہ اب بیان کرتے ہیں۔ (k ملحوظ ہندسوں تک قطع کرنے کی تعریف بھی یہی ہے پس اس میں ہندسہ کی جگہ ملحوظ ہندسہ پر کریں۔)

k+1 وال ہندسہ اور اس کے بعد تمام ہندسوں کو رد کریں۔اگر رد شدہ عدد مقام k کی اکائی کی نصف سے کم ہو تب مقام k پر ہندسہ کو تبدیل نہ کریں ("گھٹانا")۔اگر رد شدہ عدد مقام k کی اکائی کی نصف سے زیادہ ہو تب تب مقام k کی ہندسے کے ساتھ k جمع کریں ("بڑھانا")۔اگر رد شدہ عدد مقام k کی اکائی کا نصف ہو تب اگر مقام k کا ہندسہ طاق ہو تب اس کو بڑھا کر جفت بنائیں۔(مثال کے طور پر k اور k کو اشاریہ کے بعد ایک ہندسہ تک قطع کرتے ہوئے بالترتیہ k اور k واصل ہوگا۔)

اس قاعدہ کا آخری حصہ یقینی بناتا ہے کہ عدد کا کمتر حصہ رد کرتے ہوئے اوسطاً برابر مرتبہ عدد بڑھایا اور گھٹایا جاتا ہے۔

Truncation error¹¹

rounding error¹²

fixed point¹³

floating point¹⁴

significant digits¹⁵

 $^{^{16}}$ ابیاجہ ول جو k ملحوظ ہندے دیتاہو میں، جب تک کہاناجائے کہ ابیانہیں ہے، ہم فرض کرتے ہیں کہ دیا گیاعدد *a ، بالکل درست قیت a=1 آخری ہندے کی = 0.5 اکایاں مختلف ہور کیا گئا ہے۔ مثال کے طور پراگر = 0.1996 ہو سکتا ہے۔ مثال کے طور پراگر = 0.1996 ہو کہاناجائے کہ المحالی ہو سکتا ہے۔ مثال کے طور پراگر = 0.1996 ہو کہاناجائے کہ المحالی ہو سکتا ہے۔ مثال کے طور پراگر کا محالی ہو کہاناجائے کہ المحالی ہو کہاناجائے کہ کہاناجائے کہ المحالی ہو کہاناجائے کہ کہاناجائے کہ المحالی ہو کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہاناجائے کہاناجائے کہاناجائے کہ کہاناجائے کہاناجائے کہاناجائے کہ کہاناجائے کہ کہاناجائے کہ کہاناجائے کہاناجائے کہاناجائے کہ کہاناجائے کہ کہاناجائے کہانا کہانا کہاناجائے کہانا کہانا کہانا کہانا کہائے کہانا کہ کہانا

اب 21 اعدادی تحب زید

اگر ہم 1.2535 کو 3 ، 2 اور 1 اشاریہ تک قطع کریں تب ہمیں بالترتیب 1.254 ، 1.25 اور 1.3 حاصل ہو گالیکن، بغیر مزید معلومات کے، 1.25 کو ایک اشاریہ تک قطع کرنے سے ہمیں 1.2 ملتا ہے۔

تعداد ہندسہ خلل کی وجہ سے کوئی بھی حساب مکمل غلط ہو سکتا ہے۔عموماً چال کی تعداد بڑھانے سے یہ خلل بڑھتا ہے۔یوں حسابی پروگرام کو اس خلل کی نقطہ نظر سے دیکھنا ضروری ہو گا اور اس خلل کو کم سے کم کرنا لازم ہو گا۔

21.2 دہرانے سے مساوات کاحل

ہمیں عموماً مساوات

$$(21.1) f(x) = 0$$

 $\int dt \, cold \,$

اعدادی دہرانے کے طریقہ میں ہم اختیاری x_0 منتخب کرتے ہوئے درج ذیل روپ کلیہ

(21.2)
$$x_{n+1} = g(x_n)$$
 $(n = 0, 1, 2, \cdots)$

ے، بار بار حل کرتے ہوئے، ترتیب x_0, x_1, x_2, \cdots حاصل کرتے ہیں جہاں g کسی ایسے وقفہ پر معین $x_1 = g(x_0)$ کا حلقہ اسی وقفہ پر ہے۔ یوں ہم یک بعد دیگرے $g(x_0)$ کا حلقہ اسی وقفہ پر ہے۔ یوں ہم یک بعد دیگرے $g(x_0)$ ، $g(x_0)$ ،

اس حصه میں دائرہ کار اور حلقہ g(x) دونوں حقیقی کیر پر ہوں گے۔زیادہ عمومی معمہ میں x یا g اور یا دونوں سمتات ہو سکتے ہیں۔

algebraic equations¹⁷

roots¹⁸

transcendental equations¹⁹

دہرانے کے تراکیب اعدادی تجزیہ کے لئے انتہائی اہم ہیں۔

مساوات 21.1 کو حل کرنے کے لئے دہرانے کے تراکیب کئی طریقوں سے حاصل کیے جا سکتے ہیں۔ہم ان میں سے تین خصوصاً اہم طریقوں پر غور کرتے ہیں۔

الجبرائی تبادل ہے ہم مساوات 21.1 کو الجبرائی طور پر تبدیل کرتے ہوئے درج ذیل روپ حاصل کر سکتے ہیں x = g(x)

جو مساوات 21.2 کی روپ میں ہے۔مساوات 21.3 کے حل کو g کا مقررہ نقطہ 20 کہتے ہیں۔ویے گئے مساوات 21.1 کے کئی مطابقتی مساوات 21.3 ہو سکتے ہیں جن کے ترتیب x_0, x_1, \dots مختلف (اور x_0 کے تابع) ہوں گے۔آئیں ایک سادہ مثال دکھتے ہیں جس میں یہ حقائق ابھر کر سامنے آتے ہیں۔

مثال 21.1: دہرانے کی ترکیب

ماوات $f(x) = x^2 - 3x + 1 = 0$ کے لئے وہرانے کی ترکیب عمل میں لائیں۔چونکہ ہمیں اس ماوات کے حل

 $x = 1.5 \mp \sqrt{1.25}$, $x_1 = 2.618034$, $x_2 = 0.381966$

معلوم ہیں، ہم دہرانے کے عمل کے دوران خلل کا رویہ دیکھ سکتے ہیں۔ہم دیے گئے مساوات سے

(21.4)
$$x = g_1(x) = \frac{1}{3}(x^2 + 1) \implies x_{n+1} = \frac{1}{3}(x_n^2 + 1)$$

کھ سکتے ہیں۔ یوں $x_0=1$ منتخب کرتے ہوئے ہمیں درج ذیل ترتیب ملتی ہے

 $x_0 = 1.000$, $x_1 = 0.667$, $x_2 = 0.481$, $x_3 = 0.411$, $x_4 = 0.390$, ...

جو چھوٹے جذر کی طرف گامزن ہے (شکل 21.1-الف)۔اگر ہم $x_0=3.000$ منتخب کریں تب درج ذیل ملتا ہے

 $x_0 = 3.000$, $x_1 = 3.333$, $x_2 = 4.037$, $x_3 = 5.766$, $x_4 = 11.414$, ...

جو منفرج ترتیب ہے (شکل 21.1-الف)۔ دی گئی مساوات سے درج زبل بھی حاصل کیا جا سکتا ہے۔

(21.5)
$$x = g_2(x) = 3 - \frac{1}{x} \implies x_{n+1} = 3 - \frac{1}{x_n}$$

fixed point²⁰

اب 21,اعب ادی تحب زیب

شكل 21.1:اشكال برائے مثال 21.1

اب x_0 منتخب کرتے ہوئے

 $x_0 = 1.000$, $x_1 = 2.000$, $x_2 = 2.500$, $x_3 = 2.600$, $x_4 = 2.615$, ...

 $x_0 = 3$ منتخب کرتے $x_0 = 3$ منتخب کرتے ہو بڑے جذر کی طرف گامزن ترتیب ہے (شکل 21.1-ب)۔اس طرح

 $x_0 = 3.000$, $x_1 = 2.667$, $x_2 = 2.625$, $x_3 = 2.619$, $x_4 = 2.618$, ...

حاصل ہوتا ہے (شکل 21.1-ب)۔ شکل کو دیکھ کر واضح ہوتا ہے کہ مر کوزیت اس صورت ہو گی جب حل کی پڑو س میں منحنی g(x) کی ڈھلوان سیدھے خط y=x کی ڈھلوان سے کم ہو۔ ہم اب دیکھتے ہیں کہ مر کوزیت کے لئے |g'(x)| < 1 کی شرط کافی ہے (جہاں خط y=x کی ڈھلوان y=x کی ڈھلوان y=x ہے)۔

اگر x_0 کا مطابقتی مساوات 21.2 سے حاصل کردہ ترتیب x_0, x_1, \dots مر تکز ہو تب ہم کہتے ہیں کہ مساوات 21.2 میں دی گئی دہرانے کی ترکیب موتکز ہے۔

ار تکاز کے لئے کافی شرط درج ذیل مسلم پیش کرتا ہے جس کے کئی اہم عملی استعال پائے جاتے ہیں۔

مسّله 21.1: (ارتكاز)

x=s کا حل x=s کا حل x=s ہیا جاتا x=s کا جاتا ہیں ہے اور فرض کریں کہ کسی ایسے وقفہ

 $|g'(x)| \leq \alpha < 1$ میں $|g'(x)| \leq \alpha < 1$ میں |g'(x)| ہو تب مساوات 21.2 عمل دی گئی دہرانے کی ترکیب |g'(x)| میں ہر |g'(x)| کے لئے مر تکز ہو گی۔

ثبوت: تفرقی علم الاحصاء کے مسکلہ اوسط قیمت کے تحت x اور s کے درمیان ایسا ج پایا جائے گا جو درج ذیل کو مطمئن کرے گا،

$$g(x) - g(s) = g'(\xi)(x - s)$$

جہاں x وقفہ J میں پایا جاتا ہے۔ چونکہ g(s)=s اور $g(x_0)$ ، $x_1=g(x_0)$ ، بیں لہذا ہمیں ورح ذیل ملتا ہے۔

$$|x_n - s| = |g(x_{n-1}) - g(s)| = |g'(\xi)| |x_{n-1} - s| \le \alpha |x_{n-1} - s|$$

$$\le \alpha^2 |x_{n-2} - s| \le \dots \le \alpha^n |x_0 - s|$$

چونکہ $|x_n-s| o 0$ اور $|x_n-s| o 0$ اور $|x_n-s|$ ہوں گے۔یوں ثبوت ممل ہوتا ہے۔

مثال 21.2: دہرانے کا طریقہ۔ مسئلہ 21.1

 $f(x)=x^3+x-1=0$ وہرانے کے طریقہ سے $f(x)=x^3+x-1=0$ کا حل تلاش کریں۔اس مساوات کا جلدی سے خاکہ بنا کر آپ دیکھ سکتے ہیں۔ x=1 کے قریب پایا جاتا ہے۔ ہم اس مساوات سے درج ذیل لکھ سکتے ہیں۔

$$x = g_1(x) = \frac{1}{1 + x^2}$$
 \Longrightarrow $x_{n+1} = \frac{1}{1 + x_n^2}$

یوں کی بھی x کے لئے x کے اپنے $\left|g_1'(x)\right| = \frac{2|x|}{(1+x^2)^2} < 1$ پر مرکوزیت پائی جائے گی۔ ہم x منتخب کرتے ہوئے درج ذیل حاصل کرتے ہیں (شکل 21.2)

 $x_1 = 0.500$, $x_2 = 0.800$, $x_3 = 0.610$, $x_4 = 0.729$, $x_5 = 0.653$, $x_6 = 0.701$, ...

جبکہ چھ ہندسوں تک درست اصل جذر $s=0.682\,328$ ہیں۔ $s=0.682\,328$

$$x = g_2(x) = 1 - x^3$$
, $\left| g_2'(x) \right| = 3x^2$

بابدادی تخب زید

شكل 21.2: شكل برائے مثال 21.2

 $x_0=1$ جذر کے قریب $|g_2'|$ کی قیمت اکائی سے زیادہ ہے المذا ہم ار نکاز کی توقع نہیں کر سکتے ہیں۔ آپ $x_0=1$ ہے شروع کرتے ہوئے اپنی تسلی کر سکتے ہیں۔ $x_0=2$ ، $x_0=0.5$

مساوات f(x)=0 ، جہاں f(x)=0 قابل تفرق ہے، کو توکیب نیوٹن سے بھی حمل کیا جا سکتا ہے۔ اس ترکیب میں ہم f(x)=0 کا تخمینہ اس کے موزوں مماس سے حاصل کرتے ہیں۔ اس ترکیب میں ہم f(x)=0 کا مماس بناتے ہیں۔ یہ مماس f(x)=0 کور کو f(x) یہ قطع کرتا ہے (شکل 21.3)۔ یوں f(x)=0 کا مماس بناتے ہیں۔ یہ مماس f(x)=0 کور کو f(x)=0 کے قطع کرتا ہے (شکل 21.3)۔ یوں

$$\tan \beta = f'(x_0) = \frac{f(x_0)}{x_0 - x_1} \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

ہو گا۔اگلے قدم پر ہم

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

حاصل کرتے ہیں۔ای طرح چلتے ہوئے جذر تک پہنچا جاتا ہے۔یوں دہرانے کے طریقے کا عمومی کلیہ درج ذیل ہو گا۔

مثال 21.3: جذر المربع

کسی مثبت حقیقی عدد c کا جذر المربع حاصل کرنے کے لئے دہرانے کی ترکیب بنائیں۔اس ترکیب کو استعال کرتے ہوئے c کا جذر المربع تلاش کریں۔ہمارے پاس \sqrt{c} لیعنی c=2 کا جذر المربع تلاش کریں۔ہمارے پاس \sqrt{c} لیعنی c=2 کا جدر المربع تلاش کریں۔ہمارے پاس صورت اختیار کرتی ہے۔ f'(x)=2x

$$x_{n+1} = x_n - \frac{x_n^2 - c}{2x_n} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right)$$

اب اس ترکیب سے c=2 کا جذر المربع تلاش کرتے ہیں۔ ہم $x_0=1$ منتخب کرتے ہوئے درج ذیل حاصل کرتے ہیں۔

 $x_1 = 1.500\,000$, $x_2 = 1.416\,667$, $x_3 = 1.414\,216$, $x_4 = 1.414\,214$, \cdots

2 کا جذر المربع x_4 جواب دیتا ہیں کہ x_4 جواب دیتا x_4 دیتا

مثال 21.4: ماورائی مساوات کا دہرانے کی ترکیب سے حل مثال 21.4: ماورائی مساوات کا دہرانے کی ترکیب سے حل مساوات $f(x)=x-2\sin x$ مساوات $f(x)=x-2\sin x$ کی مساوات $1-2\cos x$ مساوات 21.6 کی صورت درج ذیل ہو گی۔

$$x_{n+1} = x_n - \frac{x_n - 2\sin x_n}{1 - 2\cos x_n} = \frac{2(\sin x_n - x_n\cos x_n)}{1 - 2\cos x_n} = \frac{N_n}{D_n}$$

باب 21.اعب دادي تخب زمه

ل برائے مثال 21.4	جدول 21.1:جدو
-------------------	---------------

x_{n+1}	D_n	N_n	x_n	n
1.901	1.832	3.483	2.000	0
1.896	1.648	3.125	1.901	1
1.896	1.639	3.107	1.896	2

 $x_0=2$ کی ترسیم سے ہم دیکھتے ہیں کہ اس کا عل $x_0=2$ کے قریب ہے۔یوں ہم جدول 21.1 حاصل کرتے ہیں۔ چواب 1.8955 ہے۔ $x_0=2$ کی ترسیم سے ہم درست جواب 1.8955 ہے۔

مثال 21.5: ترکیب نیوٹن کا الجبرائی مساوات پر اطلاق مساوات $f(x)=x^3+x-1=0$ کو ترکیب نیوٹن سے طل کریں۔مساوات 21.6 سے ورج ذیل ہو گا۔

$$x_{n+1} = x_n - \frac{x_n^3 + x_n - 1}{3x_n^2 + 1} = \frac{2x_n^3 + 1}{3x_n^2 + 1}$$

ے شروع کرتے ہوئے درج ذیل حاصل ہو گا۔ $x_0 = 1$

$$x_1 = 0.750\,000$$
, $x_2 = 0.686\,047$, $x_3 = 0.682\,340$, $x_4 = 0.682\,328$, ...

 x_4 چھ ملحظ ہندسوں تک درست ہے۔ مثال 21.2 کے ساتھ موازنہ کرنے سے آپ دیکھ سکتے ہیں کہ موجودہ مثال x_4 بہت تیزی کے ساتھ اصل حل پر مرکوز ہوتا ہے۔ اس سے دہرانے کی ترکیب کے درجہ کا تصور پیدا ہوتا ہے جس پر اب بات کی جائے گی۔

 $\zeta_{n} = g(x_{n})$ کا حل x = g(x) ایک دہرانے کی ترکیب ہے ϵ_{n} کا حل ϵ_{n} کا حل ϵ_{n} کا حل ϵ_{n} کا ور ϵ_{n} کی ϵ_{n} کی ϵ_{n} کی جہاں ϵ_{n} میں خلل ϵ_{n} جو اس حل کے قریب قریب قبیت ϵ_{n} ویق ہے۔ تب ϵ_{n} کا میں خلل ϵ_{n} متعدد بار قابل تفرق ہے لہذا ٹیلر کے کلیہ سے

$$x_{n+1} = g(x_n) = g(s) + g'(s)(x_n - s) + \frac{1}{2}g''(s)(x_n - s)^2 + \cdots$$
$$= g(s) + g'(s)\epsilon_n + \frac{1}{2}g''(s)\epsilon_n^2 + \cdots$$

 ${\rm order}^{21}$

ہے، اور ارتکاز کی صورت میں بڑی n کے لئے ϵ_n چھوٹا ہو گا لہذا ترکیب کا درجہ اس کی مرکوزیت کی ناپ ہے۔

ترکیب نیوٹن دو درجی ہے ترکیب نیوٹن کے لئے درج ذیل ہے

$$g(x) = x - \frac{f(x)}{f'(x)}, \quad g'(x) = 1 - \frac{f'f' - ff''}{(f')^2} = \frac{f(x)f''(x)}{f'(x)^2}$$

اور چونکہ g'(s)=0 ہے لہذا g'(s)=0 ہو گا؛ یوں ترکیب نیوٹن کم از کم دو درجی ہے۔ایک اور $g_1(x)=\frac{1}{1+x^2}$ بید $g''(s)=\frac{1}{1+x^2}$ ماتا ہے جو عموماً غیر صفر ہو گا۔ مثال 21.2 میں $g_1(x)=\frac{f''(s)}{f'(s)}$ اور $g'(x)=-\frac{2x}{(1+x^2)^2}$

ونے کی صورت میں ترکیب نیوٹن مشکلات پیدا کرتا ہے لیکن f'(x)=0 ہونے کی صورت میں ترکیب نیوٹن مشکلات پیدا کرتا ہے لیکن حل کے قریب f(x)=0 کی ترسیم کو دیکھتے ہوئے، ترکیب نیوٹن کی جیومیٹریائی تصور کو مد نظر رکھتے ہوئے عموماً اس مشکل سے چھٹکارا حاصل کرنا ممکن ہوگا۔ اگر درکار حل کے قریب f'(x)=0 ہو تب f(x)=0 کی بہتر قیمت حاصل کرنا ضروری ہوگا۔ ایس مساوات کو بد خو f'(x)=0 اور f'(x)=0 کو بد خو f'(x)=0 کو بد خو f'(x)=0 کی بہتر ہیں۔

اس اس کو حل کرنے کی تیسری ترکیب جس کو مقام غلط کی ترکیبf(x)=0 کو حل کرنے کی تیسری ترکیب بین مختی f(x)=0 کا مشاہہ وتر تصور کیا جاتا ہے (شکل 21.4)۔ یہ وتر محور x کو

(21.7)
$$x_1 = \frac{x_0 f(b) - b f(x_0)}{f(b) - f(x_0)}$$

x کے عل X_0 کے حل f(x)=0 کے قریب ہو گا۔ اگلے قدم پر اس سے بہتر حل

(21.8)
$$x_2 = \frac{x_1 f(b) - b f(x_1)}{f(b) - f(x_1)}$$

حاصل کیا جاتا ہے۔ اس طرح بتدر سے بہتر حل حاصل کیے جا سکتے ہیں۔ b کو X_0 کے قریب کرنے سے ارتکاز کو بہتر بنایا جا سکتا ہے۔ عموماً قیاس کے ذریعہ ایسا کرنا ممکن ہو گا۔

 $^{{\}rm ill\text{-}conditioned^{22}}$ method of false position 23

باب 21,اعب ادی تحب زیب

شکل 21.4: منحنی کامشابہ وترسے کیا گیاہے

مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 وه جذر تلاش کریں جو x=1 اور x=1 المراح والمراح وال

$$x_1 = \frac{0.5 \cdot 1 - 1 \cdot (-0.375)}{1 - (-0.375)} = 0.64$$

ماتا ہو گا جبکہ مساوات 21.8 سے 21.8 ماتا ہے۔ہم اسی طرح بتدریج بہتر حل تلاش کر سکتے ہیں۔ $x_2=0.672$

سوالات

سوال 21.1 نین $x_0=1$ کا جذر ترکیب نیوٹن میں $x_0=1$ کا جذر ترکیب نیوٹن میں $x_0=1$ کے کر تین قدم چلتے ہوئے $x_0=1$ تاراش کریں۔ $x_1=1.900\,000$ جواب:

سوال 21.2: $x_0=2$ کا جذر ترکیب نیوٹن میں $x_0=2$ کے کر تین قدم سوال 21.2: $x_0=2$ کے کر تین قدم حلتے ہوئے تلاش کریں۔ $x_1=1.478$ کواب:

 $x_0=1$ سوال 21.3 سوال 21.1 میں دیے گئے مساوات کے جذر 0.9 میں دیے 1.1 اور 1.9 ہیں۔ اگرچہ جذر 0.9 جزر 0.9 اور 1.1 کے قریب ہے لیکن ترکیب نیوٹن ان کی جگہ جذر 1.9 تلاش کرتا ہے۔ ایسا کیوں ہے؟ x_0 کی کوئی اور قیمت منتخب کرتے ہوئے ترکیب نیوٹن سے جذر 1.1 حاصل کریں۔ جواب: تفاعل $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر مماس $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ ہوئے ہیں۔

سوال 21.4 تا سوال 21.7 میں دیے مساوات کی ترکیب نیوٹن کی مدد سے تمام جذر تلاش کریں۔

سوال 21.4: cos *x* = *x* جواب: 0.739

 $x + \ln x - 2$:21.5 موال 1.577 جواب:

 $2x + \ln x - 1$:21.6 سوال 0.687 :جواب:

 $x^4 - 0.1x^3 - 0.82x^2 - 0.1x - 1.82$:21.7 سوال -1.3, 1.4 جواب:

سوال 21.8: وکھائیں کہ مثال 21.2 میں $|g_1'(x)|$ کی زیادہ سے زیادہ قیت $\tilde{x}=\pm\frac{1}{\sqrt{3}}$ پر حاصل ہو گی اور کہ یہ قیت $|g_1'(x)|=\frac{3\sqrt{3}}{8}=0.65$ برابر ہے۔

سوال 21.9: ایما کیوں ہے کہ مثال 21.1 میں یک سر ترتیب حاصل ہوتی ہے لیکن مثال 21.2 میں ایما نہیں ہوتا ہے؟

سوال 21.10: مثال 21.2 کی آخر میں دہرانے کی ترکیب سے حاصل قیمتوں کو از خود حاصل کریں اور شکل 21.2 کی طرز کا شکل بنائیں۔

اب 21 اعدادی تحب زید

سوال 21.12: سوال 21.11 میں دیے گئے مساوات کا جذر x=1 کے قریب پایا جاتا ہے۔مساوات کو $x=\sqrt[3]{x}$ کی $x=\sqrt[5]{x}+\sqrt[3]{x}$ کی $x=\sqrt[5]{x}+\sqrt[3]{x}+\sqrt[3]{x}$ کی $x=\sqrt[5]{x}+\sqrt[3]{x$

سوال 21.14: وہرانے کی ترکیب استعال کرتے ہوئے دکھائیں کی مساوات $x = \tan x$ کا کم تر جذر تقریباً $x = \tan x$ عماوات کو بیا جاتا ہے؛ مساوات کو جدر $x_0 = \frac{3\pi}{2}$ کے قریب پایا جاتا ہے؛ مساوات کو $x = \pi + \tan^{-1} x$

سوال 21.15 کی ترکیب سے حاصل کرتے ہوئے $\sqrt{5}$ کو مثال 21.3 کی ترکیب سے حاصل کرتے ہوئے ہوئے $\sqrt{5}$ استعال کرتے ہوئے ظل حاصل کریں۔ $\sqrt{5}=2.236\,068$ جواب: x_1,x_2,x_3,x_4 جواب: $\epsilon_4=0.000\,000$ ، $\epsilon_3=0.000\,043$ ، $\epsilon_2=0.013\,932$ ، $\epsilon_1=0.236\,068$

سوال 21.16: و کھائیں کہ مثال 21.3 میں ہارے یاس

$$x_{n+1}^2 - c = \frac{1}{4} \left(x_n - \frac{c}{x_n} \right)^2$$

ہے جو در شکی کی ناپ ہے۔د کھائیں کہ تقریباً

$$\left|x_n - \sqrt{c}\right| \approx \frac{1}{2} \left|x_n - \frac{c}{x_n}\right|$$

ہو گا۔ اس کا اطلاق سوال 21.15 پر کریں۔

سوال 21.17: شبت x محور پر ایبا وقفہ تلاش کریں کہ c=2 لیتے ہوئے مسئلہ 21.1 کی شرط کو مثال 21.3 کے دہرانے کی ترکیب مطمئن کرتی ہو۔ $x \geq \sqrt{\frac{2}{1+2\alpha}}$, $\alpha < 1$ جواب: $\alpha < 1$

سوال 21.18: جذر الکعب کے لئے ترکیب نیوٹن بنائیں۔اس ترکیب کو استعال کرتے ہوئے $x_0=2$ سے شروع کر کے تین قدم چل کر $\sqrt[3]{7}$ تلاش کریں۔

21.3 متانى فرق

وال 21.19: مثبت عدو c کا k وال جذر حاصل کرنے کے لئے ترکیب نیوٹن بنائیں۔ $f(x)=x^k-c$, $x_{n+1}=(1-\frac{1}{k})x_n+\frac{c}{kx_n^{k-1}}$:جواب:

سوال 21.20: $x^4=2$ کا حقیقی جذر بذریعہ غلط مقام دہرانے کی ترکیب حاصل کریں۔ جواب: 0, 1

سوال 21.21: $x^4 = 2x$ كا حقیقی جذر بذریعه غلط مقام دہرانے كی ترکیب حاصل كریں۔ $x^4 = 2x$ وجواب: $x^4 = 2x$ عربیہ عاصل كریں۔

سوال 21.22: $3 \sin x = 2x$ کا حقیقی جذر بذریعہ غلط مقام دہرانے کی ترکیب حاصل کریں۔ جواب: 0, 1.49

سوال 21.23: سوال 21.20 میں حاصل کردہ شبت جذر ہر صورت اصل جذر سے معمولی کم ہو گا۔اییا کیوں ہے؟

سوال 21.24: ترکیب نیوٹن میں f'(x) کا حساب کرنا ہوتا ہے۔ عملی استعال میں جمعی بھاریہ قدم کافی پیچیدہ ثابت ہو سکتا ہے۔ f'(x) سے چھٹکارا حاصل کرنا کا ایک طریقہ یہ ہے کہ اس کی جگہ f'(x) استعال کیا جائے۔ یوں حاصل کردہ کلیہ کا غلط مقام کلیہ کے ساتھ کیا تعلق پایا جاتا ہے؟

سوال 21.25: فرض کریں بند وقفہ I میں g استمراری ہے اور اس کا حلقہ بھی I میں پایا جاتا ہے۔ دکھائیں کہ مساوات x=g(x) کا کم از کم ایک حل اس وقفہ میں پایا جائے گا۔ دکھائیں کہ اس وقفہ میں مساوات کے زیادہ جذر بھی ممکن ہیں۔

21.3 تنابى فرق

متنائی فرق کا استعال اعدادی تجزیہ کے کئی شاخوں میں پایا جاتا ہے مثلاً دو قیمتوں کے درمیان قیمت کا تخمینہ لگانے میں، جدول کی جانج پڑتال میں، تخمینہ لگانے میں، تفرق میں، اور تفرقی مساوات کے حل میں۔ ہم فرض کرتے ہیں

ا كاجدول فرق $f(x)=x^3$, $x=-3(1)$ كاجدول فرق:21

x	$f(x) = x^3$	پہلا فرق	دوسرا فرق	تيسرا فرق	چو تھا فرق
- 3	-27				
		19			
-2	-8	_	-12		
	4	7	_	6	0
-1	-1	1	-6	(0
0	0	1	0	6	0
	U	1	U	6	U
1	1	1	6	U	0
	-	7	Ü	6	Ü
2	8		12		
		19			
3	27				

کہ ہمیں تفاعل f کی اعدادی قیمتوں $f_j = f(x_j)$ کا جدول دیا گیا ہے جہاں نقطے f ایک جیسے فاصلے پر ہیں۔

جدول فرق میں فرق کو ظاہر کرنے کے تین مختلف طریقے رائج ہیں۔ان میں سے جو بھی طریقہ استعال کیا جائے، جدول میں نہ کوئی فرق تبدیل ہو گا اور نا ہی اس کا مقام۔ پہلی (اور غالباً اہم ترین) اظہار جس کو وسطی فوق²⁷ کہتے

first difference²⁴

يردي گايين $x=b\cdots$ $x=a+2h\cdot x=x+h\cdot x=a$ يردي گايين $x=a(h)b^{25}$

second difference²⁶

central difference²⁷

21.3. تنانى فرق

ول فرق _ ملحوظ ہند سوں کی تعداد چارہے۔	امِو $f(x) = \frac{1}{x}$, $x =$	جدول 21.3: تفاعل 2(0.2) =
--	-----------------------------------	---------------------------

x	$f(x) = x^3$	پہلا فرق	دوسرا فرق	تيسرا فرق
1.0	1.0000			
		-1667		
1.2	0.8333		477	
		-1190		-180
1.4	0.7143		297	
		-893		-98
1.6	0.6250		199	
		-694		-61
1.8	0.5556		138	
		-556		
2.0	0.5000			

ہیں درج ذیل ہے

$$\delta^2 f_m = \delta f_{m+1/2} - \delta f_{m-1/2}$$

ہو گا۔ دیگر فرق بھی اس طرح حاصل کیے جاتے ہیں۔ ایک جیسی زیر نوشت والے اجزاء ایک ہی صف میں پائے جاتے ہیں۔ (دھیان رہے کہ ضروری نہیں ہے کہ جدول میں x کی سب سے چھوتی قیت x_0 ہو۔ مثال کے طور $\delta f_{1/2} = -0.0694$ ، $f_0 = 0.6250$ بیں؛ تب $x_0 = 0.6250$ ہیں؛ تب $x_0 = 0.0199$ بین ہم $x_0 = 0.0199$ ہوں گے۔)

باب.21 اعب دادی تحب زید

دوسری اظہار جس کو آگھے فوق^{28 کہتے} ہیں درج ذیل ہے

ہے۔اسی طرح

$$\Delta^2 f_m = \Delta f_{m+1} - \Delta f_m$$

 $\Delta f_0 = -0.0694$ ، $f_0 = 0.6250$ لیا جائے تب $x_0 = 1.6$ مثال کے طور پر اگر جدول 21.3 میں 21.3 میں $\Delta^2 f_0 = 0.0138$ ، $\Delta^2 f_0 = 0.0138$ ، $\Delta^2 f_0 = 0.0138$ ، رخ لیروں پر پائے جائیں گے۔

تیسری اظہار جس کو پیچھے فرق^{29 کہتے} ہیں درج ذیل ہے

ور
$$\nabla f_1 = f_1 - f_0$$
 اور $\nabla f_0 = f_0 - f_{-1}$ ، $\nabla f_{-1} = f_{-1} - f_{-2}$ بیان $\nabla f_m = f_m - f_{m-1}$

forward difference²⁸ backward difference²⁹

21.3. تناى فرق

جدول 21.4: فلطى تمام فرق ميں پھيل جاتى ہے۔ يہاں نفاعل 2.0(0.1) جدول 4x, x=2.0(0.1) ہيں ہے۔ يہاں نفاعل 2.6x

x	\sqrt{x}		فرق		\sqrt{x}		فرق			ا يھيلنا	کی € ک	غلة
2.0	1.4142				1.41412							
		349				349						
2.1	1.4491		-8		1.4491		8					
		341		1		341		<u>11</u>				ϵ
2.2	1.4832		-7		1.4832		<u>3</u>				ϵ	
		334		-1		<u>344</u>		-31		ϵ		-3ϵ
2.3	1.5166		-8		<u>1.5176</u>		-28		ϵ		-2ϵ	
		326		1		<u>316</u>		<u>31</u>		$-\epsilon$		3ϵ
2.4	1.5492		-7		1.5492		<u>3</u>				ϵ	
		319		2		319		$-\underline{8}$				$-\epsilon$
2.5	1.5811		-5		1.5811		<u>-5</u>					
		314				314						
2.6	1.6125				1.6125							

ہو گا۔اس طرح درج ذیل ہو گا اور باقی اجزاء بھی اس طرح حاصل کیے جاتے ہیں۔

$$\nabla^2 f_m = \nabla f_m - \nabla f_{m-1}$$

ایک جیسے زیر نوشت والے اجزاء تر چھی کلیروں پر اوپر رخ یا جدول میں پیچھیے رخ لکیروں پر بائے جاتے ہیں۔ جدول کی آخر میں حساب کے دوران پیچیے فرق عموماً زیادہ مدد گار ثابت ہوتا ہے۔

جدول میں کسی مجھی فرق کو اب تین مختلف علامتوں سے ظاہر کیا جا سکتا ہے۔ مثال کے طور پر جدول 21.3 میں ہم $x_0=0.0893=\delta f_{-1/2}=\Delta f_{-1}=\nabla f_0$ لیں تب $x_0=1.6$ $\delta^n f_m=\Delta^n f_{m-n/2}=\nabla^n f_{m+n/2}$

ہو گا۔

جدول میں غلطیوں تکی نشاندہ ہی کرنے کے لئے فرق کا سہارا لیا جاتا ہے۔ جیسا جدول 21.4 میں دکھایا گیا ہے، تفاعل میں خلل e جلد تمام فرق میں پھیل جاتا ہے۔ یوں فرق میں بہت زیادہ اتر چڑھاو تفاعل کی قیمت میں غلطی کو ظاہر کرتی ہے۔ ظاہر ہے کہ کم تعداد کی ملحوظ ہندسوں کی بنا معمولی اتر چڑھاو ہر صورت پائی جائے گی۔ اب 21.اعدادي تحبزيد

نقاعل کو کثیر رکنی سے ظاہر کرنے میں بھی فرق اہم کردار ادا کرتا ہے۔قدم n لیتے ہوئے n در جی کثیر رکنی $p_n(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n$ جدول فرق میں تمام n ویں فرق مستقل $p_n(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n$ برابر) ہوں گے اور ان سے بلند فرق صفر ہوں گے۔اییا اس لئے ہو گا کہ پہلا فرق

$$p_n(x+h) - p_n(x) = a_0[(x+h)^n - x^n] + \dots = a_0nhx^{n-1} + \dots$$

کا درجہ n-1 ہے، دوسرے فرق کے کثیر رکنی کا درجہ n-2 ہو گا اور اس کے پہلے جزو کا عددی سر $a_0n(n-1)h^2$ ہو گا، وغیرہ وغیرہ وغیرہ یوں اگر تفاعل f کے جدول فرق میں n ویں فرق کسی حلقہ میں تقریباً مستقل ہوں تب جدول کی قیتوں کو اس حلقہ میں n درجی کثیر رکنی p_n سے ظاہر کیا جا سکتا ہے۔ آئیں دیے f کی صورت میں کثیر رکنی p_n کے حصول کی ایک ترکیب دیکھیں۔

مثال 21.7: تفاعل کو کثیر رکنی سے ظاہر کرنا

جدول 21.4 میں دوسرا فرق تقریباً متعقل (-2 کے براب) ہیں۔ یوں ہم دو درجی کثیر p_2 رکنی تلاش کر سکتے ہیں جو دیے گے تفاعل کے مشابہ ہو گا۔ ہم پہلے جدول فرق بناتے ہیں۔ یہ فرض کرتے ہوئے کہ تمام دوسرے فرق شیک شیک -7 کے برابر ہیں ہم حلقہ کے وسط میں تفاعل کی کوئی قیمت اور پہلا فرق منتخب کرتے ہیں مثلاً $a_02!h^2$ اور $a_02!h^2$ جس سے جدول 21.5 حاصل ہوتا ہے۔ $a_02!h^2$ کا پہلے عددی سرکو $a_02!h^2$ عاصل $a_02!h^2$ اور $a_02!h^2$

$$p_2(x) = -0.0350x^2 + 0.4915x + 0.5713$$

ہو گا۔اس مثال سے آپ دکیھ سکتے ہیں کہ فرق کو استعال کرتے ہوئے کثیر رکنی حاصل کرنے سے پہلے مشابہ کثیر رکنی کی درنتگی کا معیار جانا جا سکتا ہے۔مشابہ کثیر رکنی کی حصول کے دیگر تراکیب پر اگلے ھے میں غور کیا جائے گا۔

21.3. تناى فرق

جدول 21.5: تفاعل $f(x)=\sqrt{x}$ کودودر جی کثیر رکنی p_2 ے ظاہر کرنا

х	$p_2(x)$	فرق
2.0	1.4143	
		348
2.1	1.4491	-7
		341
2.2	1.4832	-7
		<u>334</u>
2.3	<u>1.5166</u>	
	4 = 400	327
2.4	1.5493	-7
	4 =04.0	320
2.5	1.5813	-7
		313
2.6	1.6126	

باب.21 اعب دادی تحب زیه

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

یو نکہ مساوات 1.1 خطی اور متجانس ہے للذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ y_1 اور ونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

انسانی ثبوت ضمیب المنافی ثبوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو 'z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 3.1 کا استعال کیا گیا ہے۔مساوات 7.1-ب کو z=-z کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=-z کھا جا سکتا ہے۔یوں مساوات 5.1 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = \left| q \right| \left| 2yy' \right| \le \left| q \right| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ p = p استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 5.1 کھا جا سکتا ہے۔ $p \leq |p|$ جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا اس سے

$$z' \le (1+|p|+|q|)z$$

ماتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 7.1 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \\ \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پ $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ ہو در کار ثبوت ہے۔

1396 ضمير المنافى ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(...2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{let} \quad e^{\ln x} = x \quad \text{where } a = x \text{ for } a =$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

 $10^{-\log x} = 10^{\log \frac{1}{x}} = \frac{1}{x}$ اور $10^{\log x} = 10^{\log x} = 10^{\log x}$ کیا الٹ 10^x

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احسائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا دور کی عرصہ $\sin x$ ہو گا۔ $\sin x$ طاق ہے لیخی $\sin x$ $\sin x$ ہو گا جبکہ $\cos x$ میں جفت ہے لیخی $\cos x$ میں جفت ہے لیخی ہے۔

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

(...8)
$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$
$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

$$(-.9) \sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$$

(.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

ٹینجنٹ، کوٹینجنٹ، سیکنٹ، کوسیکنٹ (شکل 3.ب-الف، ب)

(.15)
$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc = \frac{1}{\sin x}$$
(.16)
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \quad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹىنجنٹ اور كو ٹىنجنٹ

بذلولي تفاعل (بذلولي سائن sin hx وغيره - شكل 4.ب-الف، ب)

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.19)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(21)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما نفاعل (شکل 5.ب) کی تعریف درج زیل کمل ہے
$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, \mathrm{d}t \qquad (\alpha>0)$$

(ب) تفوس خط x tanh ع جبكه نقطه دار خط coth x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب ہے α کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 22.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 23.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جے دوبارہ مساوات 23.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times1$ ملتا ہے۔ای طرح بار بار مساوات 23.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 23.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \dots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.25) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 22.ب اور مساوات 25.ب منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔ مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے یعنی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 25.ب اور مساوات 26.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علی مساوات 26. میں مساوات کے بیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.29) P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt (\alpha > 0)$$

(...30)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.31) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

(...32)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

$$(-.33) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 33.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تکمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

(4.34)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $\operatorname{erf} \infty = 1$

(ب.35)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.س)

(...36)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 6. ب: تفاعل خلل ـ

1
اور $rac{\pi}{8}$ اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.38) \qquad \qquad s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

$$(-.39) Si(x) = \int_0^x \frac{\sin t}{t} dt$$

کے برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

(.40)
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

complementary functions 1

تكمل كوسائن

$$(-.41) si(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt (x > 0)$$

تكمل قوت نمائي

تكمل لوگارهمي

(i.43)
$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$