

CLAIMS

What is claimed is:

- 1 1. A method for detecting fluorescence emitted by cells in a wall of a body lumen,
2 comprising the steps of:
 - 3 a. introducing an autonomous solid support into a body lumen;
 - 4 b. illuminating cells in a lumen wall of the body lumen from a light source mounted
5 to the solid support with a wavelength that excites a particular fluorescent signal;
 - 6 c. detecting at a detector mounted to the solid support whether illuminated cells
7 illuminated during step b emit the particular fluorescent signal; and
 - 8 d. if the particular fluorescent signal is detected from the illuminated cells, then
9 determining at least one of an intensity and a position in the lumen wall of the detected
10 fluorescent signal.
- 1 2. The method as recited in claim 1, further comprising generating an image that indicates
2 positions in the lumen wall where the particular fluorescent signal is detected.
- 1 3. The method as recited in claim 1, wherein the particular fluorescent signal is emitted by a
2 molecule that is endogenous to certain cells in the lumen wall.
- 1 4. The method as recited in claim 1, wherein:
2 the method further comprises introducing to cells in the lumen wall including the
3 illuminated cells, an exogenous fluorescent-labeled probe that binds to or is
4 internalized by certain cells in the lumen wall; and
5 the particular fluorescent signal is emitted by the exogenous probe.
- 1 5. The method as recited in claim 1, wherein the detected fluorescent signal indicates the
2 presence or absence of abnormal cells.
- 1 6. The method as recited in claim 1, wherein the lumen wall is an intestinal wall and the
2 abnormal cells are at least one of cancer cells, colon polyps and precancerous cells.

1 7. The method as recited in claim 4, said step of introducing the exogenous fluorescent-
2 labeled probe comprising selecting the exogenous probe from a group comprising 2-
3 deoxyglucose, Annexin V, phosphonium cations, rhodamine-123, JC1, and TMRE.

1 8. The method as recited in claim 4, said step of introducing the exogenous fluorescent-
2 labeled probe comprising labeling an exogenous probe with a fluorescent marker that is a
3 member of a group comprising 5-carboxyfluorescein diacetate, succinimidyl ester (CFDA/SE), 6-
4 carboxyfluorescein diacetate, Aequorea green fluorescent protein (GFP), a two-photon
5 fluorophore (C625), red fluorescent protein (dsRed) from discosoma (coral), cyanine dye, 3,3-
6 diethylthiocarbocyanine, carboxyfluorescein diacetate succinimidyl ester (CFSE), intrinsically
7 fluorescent proteins Coral red (dsRed) and yellow (Citrine), fluoroceil, rhodamine 123,
8 Sulforhodamine (red), Dinitrophenyl (yellow), Dansyl (yellow) and safranin O

1 9. The method as recited in claim 4, said step of introducing the exogenous fluorescent-
2 labeled probe to cells in the lumen wall further comprising injecting the exogenous probe into
3 the animal.

1 10. The method as recited in Claim 4, said step of introducing the exogenous fluorescent-
2 labeled probe to cells in the lumen wall comprises releasing the exogenous fluorescent-labeled
3 probe from a reservoir on the solid support.

1 11. The method as recited in Claim 10, further comprising, before said step of illuminating
2 the cells in the lumen wall, performing the step of emitting ultrasonic waves from a sound source
3 on the solid support to enhance uptake of the exogenous probe.

1 12. The method as recited in Claim 10, further comprising, before said step of illuminating
2 the cells in the lumen wall, performing the step of generating an electric field from an electrode
3 on the solid support to enhance uptake of the exogenous probe.

1 13. A method for detecting fluorescence emitted by intestinal cells *in vivo*, comprising the
2 steps of:

- 3 a. introducing an autonomous solid support into the lumen of the intestine;
4 b. illuminating cells in the intestine wall from a light source mounted to the solid
5 support with a wavelength that excites a particular fluorescent signal;
6 c. detecting at a detector mounted to the solid support whether illuminated cells
7 illuminated during step b emit the particular fluorescent signal; and
8 d. if the particular fluorescent signal is detected from the illuminated cells, then
9 determining at least one of an intensity and a position in the intestine of the detected
10 fluorescent signal.

1 14. A method for killing abnormal cells in the intestinal tract of an animal, comprising the
2 steps of

- 3 a. administering to the animal an exogenous fluorescent-labeled probe that is
4 selectively internalized by or binds to abnormal intestinal cells;
5 b. introducing an autonomous solid support into the lumen of the intestine;
6 c. illuminating cells in the intestinal wall from a light source mounted to the solid
7 support with a wavelength that excites a particular fluorescent signal emitted by the
8 fluorescent label on the exogenous probe;
9 d. detecting at a detector mounted to the solid support whether illuminated cells
10 illuminated during step b emit the particular fluorescent signal; and
11 e. if the particular fluorescent signal is detected, then releasing a drug that kills the
12 abnormal intestinal cells.

1 15. The method as recited in claim 14, wherein the abnormal cells are at least one of cancer
2 cells, colon polyps or precancerous cells.

1 16. The method as recited in claim 14, said step of releasing the drug that kills the abnormal
2 cells comprises releasing the drug from a reservoir on the solid support introduced into the lumen
3 of the intestine.

1 17. The method as recited in claim 14, said step of releasing the drug that kills the abnormal
2 cells comprises releasing the drug from a reservoir on a different solid support introduced into
3 the lumen of the intestine.

1 18. The method as recited in Claim 14, further comprising the step of emitting ultrasonic
2 waves from a sound source on the solid support to enhance uptake of the drug.

1 19. The method as recited in Claim 10, further comprising the step of generating an electric
2 field from an electrode on the solid support to enhance uptake of the drug.

1 20. A method for killing abnormal cells in the intestinal tract of an animal, comprising the
2 steps of

- 3 a. administering to the animal an amount of one or more exogenous probes that is
4 selectively internalized by or binds to abnormal intestinal cells, wherein the at least one
5 probe is bound to a fluorescent label and at least one probe is bound to a light-activated
6 toxin;
- 7 b. introducing an autonomous solid support into the lumen of the intestine;
- 8 c. illuminating cells in the intestinal wall from a light source mounted to the solid
9 support with a wavelength that excites a particular fluorescent signal emitted by the
10 fluorescent label on the exogenous probe;
- 11 d. detecting at a detector mounted to the solid support whether illuminated cells
12 illuminated during step b emit the particular fluorescent signal; and
- 13 e. if the particular fluorescent signal is detected, then illuminating the cells with light
14 to activate the light-activated toxin to kill the abnormal cells.

1 21. The method as recited in claim 20, said step of administering the amount of one or more
2 exogenous probes further comprising selecting the exogenous probe from a group comprising
3 hematoporphyrin, 5-aminoluvulinic acid (ALA), photofrin, polyhematoporphyrin, and
4 mesotetrahydroxyphenylchlorin.

- 1 22. A method for determining the efficacy of treatment of cancer in the upper and lower
2 intestinal tract in an animal comprising the steps of
3 a. administering to the animal having cancer of the upper or lower intestinal tract an
4 amount of an exogenous fluorescent-labeled probe that is selectively internalized or
5 bound by the cancer cells;
6 b. illuminating cells in the intestinal wall from a light source mounted to a first
7 autonomous solid support introduced into the lumen of the intestine with a wavelength
8 that excites a particular fluorescent signal emitted by the fluorescent label on the
9 exogenous probe in the cancer cells;
10 c. detecting at a detector mounted to the first solid support the fluorescent signal
11 emitted by the exogenous probe in cancer cells illuminated during step b to determine a
12 first amount of fluorescent emission;
13 d. after step c, administering treatment to the animal having cancer of the upper or
14 lower intestinal tract to eliminate the cancer cells;
15 e. after step d, administering to the animal an amount of the exogenous fluorescent-
16 labeled probe;
17 f. illuminating cells in the intestinal wall from a light source mounted to a second
18 autonomous solid support introduced into the lumen of the intestine with the wavelength
19 that excites the particular fluorescent signal;
20 g. detecting at a detector mounted to the second solid support the fluorescent signal
21 emitted by the exogenous probe in cancer cells illuminated during step f to determine a
22 second amount of fluorescent emission; and
23 h. determining an efficacy of the treatment based on a difference between the first
24 and second amounts of fluorescent emission.

1 23. The method as recited in claim 22, wherein the first solid support is the same as the
2 second solid support.

1 24. The method as recited in claim 22, wherein the first solid support is different from the
2 second solid.

1 25. A capsule for detecting fluorescence emitted by cells in a wall of a body lumen in an
2 animal, comprising:
3 a solid support that fits inside a body lumen;
4 a light source mounted to the solid support for generating light with a wavelength that
5 excites a particular fluorescent signal in certain molecules;
6 a first optical element mounted to the solid support for illuminating a section of a lumen
7 wall of the body lumen with light from the light source;
8 a detector mounted to the solid support for generating measurements based on the
9 particular fluorescent signal;
10 a second optical element mounted to the solid support for directing onto the detector the
11 particular fluorescent signal emitted from the section illuminated; and
12 a data transfer system for transferring data based on the measurements to a monitoring
13 unit outside the animal.

1 26. The capsule as recited in Claim 25, the second optical element further comprising a filter
2 to block out light at wavelengths not part of the particular fluorescent signal.

1 27. The capsule as recited in Claim 25, the second optical element further comprising a
2 shutter to block out light at times when the light source is illuminated.

1 27. The capsule as recited in Claim 25, wherein the illuminated section is a band along an
2 inner circumference of the body lumen.

1 28. The capsule as recited in Claim 27, the first optical element further comprising a
2 transparent band in an outer cover of the solid support.

1 29. The capsule as recited in Claim 28, the first optical element further comprising an axicon
2 to convert a light pulse on an axial beam from the light source into a radial band of light that
3 passes through the transparent band.

1 30. The capsule as recited in Claim 28, the first optical element further comprising a coherent
2 bundle of optical fibers that cause a light pulse on an axial beam from the light source to diverge
3 to multiple radial beams of light that pass through the transparent band.

1 31. The capsule as recited in Claim 28, the first optical element further comprising a rotating
2 mirror that reflects a light pulse on an axial beam from the light source to a rotating radial beam
3 that passes through the transparent band.

1 32. The capsule as recited in Claim 25, wherein the first optical element prevents light of the
2 light source from impinging on the detector.

1 33. The capsule as recited in Claim 28, the second optical element further comprising an
2 axicon to convert a band of light that passes through the transparent band from the illuminated
3 section of lumen wall to one or more beams of light that strike the detector.

1 34. The capsule as recited in Claim 28, the second optical element further comprising a
2 coherent bundle of optical fibers that causes multiple radial beams of light that pass through the
3 transparent band from the illuminated section of the lumen wall to converge on the detector.

1 35. The capsule as recited in Claim 28, the second optical element further comprising a
2 rotating mirror that reflects in turn multiple radial beams of light that pass through the transparent
3 band from the illuminated section of the lumen wall onto the detector.

1 36. The capsule as recited in Claim 25, the detector further comprising a single sensor that
2 integrates light in the particular fluorescent signal over the whole illuminated section.

1 37. The capsule as recited in Claim 25, the detector further comprising an array of sensors
2 that distinguishes light intensity in the particular fluorescent signal among different portions of
3 the illuminated section.

1 38. The capsule as recited in Claim 25, the detector further comprising a sensor that
2 distinguishes light intensity in the particular fluorescent signal from the illuminated section
3 among different times after the light source has stopped illuminating the section.

1 39. The capsule as recited in Claim 25, the data transfer system further comprising a
2 processor to generate pixels for an image based on the measurements.

1 40. The capsule as recited in Claim 39, each pixel representing an intensity of the particular
2 fluorescent signal integrated over the illuminated section.

1 41. The capsule as recited in Claim 39, each pixel representing an intensity of the particular
2 fluorescent signal for one portion of the illuminated section.

1 42. The capsule as recited in Claim 25, further comprising.
2 a reservoir for storing at least one of an exogenous fluorescent-labeled probe and a drug
3 for killing abnormal cells; and
4 a release mechanism to release contents of the reservoir upon command.

1 43. The capsule as recited in Claim 42, further comprising an electrode for generating an
2 electric field to enhance uptake of the contents of the reservoir by cells in the lumen wall after
3 release of the contents.

1 44. The capsule as recited in Claim 42, further comprising an acoustic transducer for
2 generating acoustic waves to enhance uptake of the contents of the reservoir by cells in the lumen
3 wall after release of the contents.

1 45. The capsule as recited in Claim 25, further comprising at least one of a navigating system
2 and a wireless power transfer system.

1 46. The capsule as recited in Claim 25, further comprising a position control system for
2 working against peristaltic action by the walls of the lumen on the solid support.

1 47. A monitoring unit for presenting fluorescence emitted by cells in a wall of a body lumen
2 in an animal, comprising:

3 a receiver for receiving data from a capsule that fits inside a body lumen, the capsule
4 including:
5 a solid support,
6 a light source mounted to the solid support for generating light with a wavelength
7 that excites a particular fluorescent signal in certain molecules,
8 a detector mounted to the solid support for generating measurements based on the
9 particular fluorescent signal emitted by an illuminated section of the lumen
10 wall, and
11 a data transfer system for transferring data based on the measurements to the
12 receiver; and
13 a processor to generate an image based on the data; and
14 a display for presenting the image to a user.

1 48. The monitoring unit as recited in Claim 47, wherein
2 the receiver is configured to obtain position measurements based on a position of the
3 capsule in the body lumen; and
4 the processor is configured to determine the position of the capsule based on the position
5 measurements from the receiver.

1 49. The monitoring unit as recited in Claim 47, wherein:
2 the fluorescent signal is emitted by an exogenous fluorescent-labeled probe that is
3 selectively internalized by or binds to abnormal cells in the lumen wall;
4 the capsule includes
5 a reservoir for storing at least one of an exogenous fluorescent-labeled probe and a
6 drug for killing abnormal cells,
7 a release mechanism to release contents of the reservoir upon command, and
8 a capsule receiver for receiving the command;
9 the processor is configured to determine when to release the contents of the reservoir; and
10 the monitoring unit further comprises a transmitter to transmit the command to the
11 capsule receiver.

- 1 50. A system for detecting fluorescence emitted by cells in a wall of a body lumen in an
2 animal, comprising:
3 a capsule including
4 a solid support that fits inside a body lumen,
5 a light source mounted to the solid support for generating light with a wavelength
6 that excites a particular fluorescent signal in certain molecules,
7 a detector mounted to the solid support for generating measurements based on the
8 particular fluorescent signal emitted from an illuminated section of the body
9 lumen, and
10 a data transfer system for transferring data based on the measurements; and
11 a monitoring unit including
12 a receiver for receiving the data from the capsule,
13 a processor to generate an image based on the data, and
14 a display for presenting the image to a user.