

Reconocimiento de Patrones

Version 2022-2

SVM

Dr. José Ramón Iglesias
DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

SVM: Máquinas vectoriales de soporte

1) Lineal con separación perfecta

2) Lineal sin separación perfecta

3) No lineal

SVM: Máquinas vectoriales de soporte

1) Lineal con separación perfecta

2) Lineal sin separación perfecta

3) No lineal

Línea de decisión b_1

1)
$$b_1 = b_2 = b$$
.

Línea de decisión 1) $b_1 = b_2 = b$. $b_1 = b$

1)
$$b_1 = b_2 = b_3$$

Línea de decisión

1)
$$b_1 = b_2 = b$$
.

Línea de decisión

- 1) $b_1 = b_2 = b$.
- 2) b debe maximizarse.

Línea de decisión

- 1) $b_1 = b_2 = b$.
- 2) b debe maximizarse.

- 1) $b_1 = b_2 = b$.
- 2) b debe maximizarse.

- 1) $b_1 = b_2 = b$.
- 2) b debe maximizarse.
- 3) Solución: $g(\mathbf{x})$

Ideas clave de SVM:

- 1) $b_1 = b_2 = b$.
- 2) b debe maximizarse.
- 3) Solución: $g(\mathbf{x})$

Línea de decisión

$$g(\mathbf{x}) = \sum_{i=1}^{N} \lambda_i z_i \mathbf{x_i}^\mathsf{T} \mathbf{x} + a_0$$

 \mathbf{x}_N

La solución de SVM

TESTING: si $g(\mathbf{x}) > 0$ entonces clase = +1 en caso contrario clase = -1

Línea de decisión

(testing) Dato de prueba

Línea de decisión

(testing)
Dato de
prueba
?

SVM: Máquinas vectoriales de soporte

1) Lineal con separación perfecta

2) Lineal sin separación perfecta

3) No lineal

¿Cómo definir la línea de decisión cuando no hay una separación perfecta?

¿Cómo definir la línea de decisión cuando no hay una separación perfecta? Consideramos sólo las muestras clasificadas erroneamente

¿Cómo definir la línea de decisión cuando no hay una separación perfecta? Consideramos sólo las muestras clasificadas erroneamente

SVN

SVM: Máquinas vectoriales de soporte

1) Lineal con separación perfecta

2) Lineal sin separación perfecta

3) No lineal

SVM lineal en nuevo sistema de coordenadas

SVM: Máquinas vectoriales de soporte

SVM: Máquinas vectoriales de soporte

$$g(h(\mathbf{x})) = \sum_{i=1}^{N} \lambda_i z_i h(\mathbf{x_i})^{\mathsf{T}} h(\mathbf{x}) + a_0$$

$$g(h(\mathbf{x})) = \sum_{i=1}^{N} \lambda_i z_i < h(\mathbf{x_i}), h(\mathbf{x}) > +a_0$$

No se necesita $h(\mathbf{x})$, solo es necesario el kernel $< h(\mathbf{x_i}), h(\mathbf{x}) >$

SVM: Kernels

$$K(\mathbf{x}', \mathbf{x}) = \langle h(\mathbf{x}'), h(\mathbf{x}) \rangle =$$

linear $\langle \mathbf{x}', \mathbf{x} \rangle$

polynomial $(1 + \langle \mathbf{x}', \mathbf{x} \rangle)^n$

radial basis $\exp(-||\mathbf{x}' - \mathbf{x}||^2/c)$

sigmoid $\tanh(K_1\langle \mathbf{x}', \mathbf{x}\rangle + K_2)$

SVM: El truco del Kernel

La separación lineal es imposible

La separación lineal es perfecta

Ejemplos

Ejemplo

Ejemplo

SVM-LIN

Ejemplo

SVM-RBF

