

US Census Analysis

DECEMBER 11TH 2024

OLIVIER LAPABE-GOASTAT

Executive Summary

- Based on the US Census dataset, the goal is to predict whether an individual is earning more than 50k\$ per year
- This is a **first baseline** focus was on making the code **modular** for further improvement
- From 36 features down to 12: EDA helped to select and regroup main features
- Best model:
 - **LightGBM** (with num_leaves=50, max_depth=7, learning_rate=0.1, n_estimations=200)
 - Results on Val Dataset: F1-score=0.91, Recall=0.93, Precision=0.89
 - Results on **Test Dataset**: **F1-score=0.88**, Recall=0.88, Precision=0.88
- Top 3 feature importance : Age, Occupation (work), Capital income

Agenda

- 1. Context and Goal
- 2. Proposed metrics
- 3. EDA and Feature Engineering
- 4. Data prep : Encoding, Scaling and Resampling
- 5. Model evaluation and selection
- 6. Ideas for further improvements

1. Context and Goal

 Context: US Census dataset containing detailed information for ~300,000 individuals (e.g., age, occupation)

Goals:

- Identify **characteristics** that are associated with a person making more or less than \$50,000 per year
- Build a **classification model** that identifies if a person is making more or less than \$50,000 per year

2. Proposed metrics

precision: $\frac{TP}{TP+FP}$

recall: $\frac{TP}{TP+FN}$

F1 score :
harmonic mean
between both

Hypothesis: False Positives and False Negatives are equally bad (to be discussed)

→ 1st step : Metric for model selection PR-AUC: Area under the curve precision x recall

→ 2nd step: Metric for threshold optimization
 F1 score: Harmonic mean between precision and recall

3. EDA and Feature Engineering – Target: 'income bracket'

- ~200,000 individuals in train dataset
- Used 'instance weight' indicating the weight of each observation to represent the full US population
- 6% of the US population earns more than 50k\$ The dataset is unbalanced
 - → Necessity to resample for training

3. EDA and Feature Engineering – Categorical data (1/3)

- 4 features about migration with 50%+ of data missing
 - → Remove migration features

- Cramer's V Score indicate correlation of features with income bracket
 - → Keep features above score of 0.2 for baseline

3. EDA and Feature Engineering – Categorical data (2/3)

- 2 features about household indications are strongly correlated
 - → Keep 'detailed household and family stat' (no losing of information)
- Same for industry indications
 - → Keep 'detailed industry recode'
- Same for occupation indications
 - → Keep 'detailed occupation code'

3. EDA and Feature Engineering – Categorical data (3/3)

- **Education feature** can be simplified by **grouping** some labels without losing too much information:
 - Below 12th grade
 - Associates degrees
 - Prof school and Doctorate degrees

3. EDA and Feature Engineering – Non-categorical data (1/3)

- 'wage per hour' is not much correlated with our target
 - → We remove this feature

3. EDA and Feature Engineering – Non-categorical data (2/3)

- 2 features are correlated: 'nums persons worked for employer' and 'weeks worked in year'
- But no clear sign of causality link between both
 - → We keep both features

3. EDA and Feature Engineering – Non-categorical data (3/3)

- The first principal component is explained by the
 2 previously seen features
 - → No action for now
- The second principal component is mainly explained by 'dividends from stocks and capital gains'
 - → We add these two features into a new one: 'capital income'

4. Data prep: Encoding, Scaling and Resampling

Action		Details	
A.	Remove rows with missing values	• 0 missing values	
B.	Split train dataset into train / val	 80/20 split, stratified according to target 	
C.	Encode categorical features (without data leakage)	 One-hot encoding for lower cardinality (<=10) Target encoding for high cardinality (>10) 	
D.	Scale non-categorical features (without data leakage)	 MinMax scaling used (data not following gaussian distribution) → Features between [0, 1] 	
E.	Sampling and weighting	Oversampling of under-represented '1' targetWeighting according to 'instance weight'	

5. Model evaluation and selection – Selected models for first baseline

- Option 1: GOFAI models, e.g.:
 - Logistic Regression
 - Decision Trees-based
 - Support Vector Classifier
- Option 2: Neuronal Networks, e.g.:
 - Multi-Layer Neuronal Network
 - Transformer-based models (e.g., TabTransformer)

Logistic regression:

- Simple and fast baseline
- Good explainability
- Does not handle high-dimensional data well

Random Forest:

- Copes with non-linearity
- · Handles well high-dimensional data
- Medium explainability with feature importance

XGBoost (Level-wise growth):

- Often powerful for binary classification tasks
- Slower and requires careful tuning of hyperparameters

LightGBM (Leaf-wise growth):

- Lighter than XGBoost
- More prone to overfitting than XGBoost

5. Model evaluation and selection – Results

Hypothesis: False Positives and False Negatives are equally bad (to be discussed)

- → 1st step Metric for model selection : PR-AUC (Area under the curve precision x recall)
- \rightarrow 2nd step Metric for threshold optimization : F1 score : Harmonic mean between precision and recall

Results on Validation Dataset	Logistic Regression	Random Forest	XGBoost	LightGBM
PR-AUC	0.94	0.95	0.96	0.96
Best Threshold	0.41	0.47	0.44	0.50
F1-score	0.88	0.89	0.89	0.91
Recall	0.93	0.93	0.93	0.93
Precision	0.83	0.86	0.86	0.89

5. Model evaluation and selection – LightGBM results (1/2)

Hyperparameters Grid Search (optimum in bold):

• num_leaves: 10, 30, **50**, 70, 90

• max_depth: 3, 5, **7**, 10

• learning_rate: 0.01, 0.05, **0.1**, 0.3, 0.5

• n_estimators: 50, 100, **200**, 500

	LightGBM - Val	LightGBM - Test
PR-AUC	0.96	-
Best Threshold	0.50	-
F1-score	0.91	0.88
Recall	0.93	0.88
Precision	0.89	0.88

5. Model evaluation and selection – LightGBM – Top 10 feature importance

Age, capital income and job description (occupation and industry) are the main drivers to evaluate if an individual is earning more than 50k\$ per year

6. Ideas for further improvement

Data preparation:

- Feature Engineering: Reduce or increase number of features, ITW with US CENSUS office
- Encoding: Try hashing encoding for high cardinality features
- Resampling: Try SMOTE (create synthetic examples of minority class)
- Scaling: Try other scaling (e.g., Standard)
- Train / Val split : Try Cross-Validation

Model evaluation and selection:

- Try custom cost functions (to penalize more FP and/or FN)
- Try to optimize other hyperparameters (e.g., min_child_weight)
- Try other other models, e.g.,:
 - Support Vector Classifier
 - Multi-Layer Neuronal Network
 - Transformer-based models (e.g., TabTransformer)
- Model deployment (e.g., CI/CD, API and endpoint for inference)

Annexes

5. Model evaluation and selection – Logistic Regression

Hyperparameters Grid Search (optimum in bold):

C: 0.01, 0.1, 1penalty: I1, I2

• Solver : libnear

	LogReg - Val	LogReg - Test
PR-AUC	0.94	-
Best Threshold	0.41	-
F1-score	0.88	0.87
Recall	0.93	0.92
Precision	0.83	0.82

5. Model evaluation and selection – Random Forest

Hyperparameters Grid Search (optimum in bold):

• max_depth: 5, 7, **10**, 50

• n_estimators: 50, 100, **200**, 500

	RForest - Val	RForest - Test
PR-AUC	0.95	-
Best Threshold	0.47	-
F1-score	0.89	0.87
Recall	0.93	0.9
Precision	0.86	0.85

5. Model evaluation and selection – XGBoost

Hyperparameters Grid Search (optimum in bold):

• max_depth: **3,** 5, 7, 10

• learning_rate: 0.01, 0.05, 0.1, **0.3**, 0.5

• n_estimators: 50, 100, **200**, 500

	XGBoost - Val	XGBoost - Test
PR-AUC	0.96	-
Best Threshold	0.44	-
F1-score	0.89	0.88
Recall	0.93	0.91
Precision	0.86	0.85