IN THE CLAIMS

1. (Original) A compound selected from Formula I-XV,

or a pharmaceutically acceptable salt thereof, wherein

X is N or CR14;

W is S, O, or NR¹⁵;

Y is N or CR³;

E, F, and G are each, independently, CR3 or N;

I and J are each, independently,

C=O, S, O, CR³R¹⁶ or NR¹⁵ when single bonded to both adjacent ring atoms, or N, or CR³ when double bonded to an adjacent ring atom;

K is

N or CR³ when double bonded to L or J, or

O, S, C=O, CR³R¹⁶, or NR¹⁵ when single bonded to both adjacent ring atoms, or N or CR³ when double bonded to an adjacent ring atom;

L is

N or CR¹⁶ when single bonded to all atoms to which it is attached, or C (carbon) when double bonded to K;

the 6- or 7-membered ring that contains I, J, K, and L may contain from 1 to 3 double bonds, from 0 to 2 heteroatoms, and from 0 to 2 C=O groups, wherein the carbon atom of such groups are part of the ring and the oxygen atom is a substituent on the ring;

Q is O or NR¹⁵;

 R^1 is selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $(C_3$ - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_6 alkynyl, cyano, halo, C_1 - C_6 haloalkyl, OR^7 , C_1 - C_6 alkyl- OR^7 ; C_1 - C_6 cyanoalkyl, NR^8R^9 , C_1 - C_6 alkyl- NR^8R^9 ;

 R^2 is H,

 C_1 - C_6 alkyl which optionally forms a C_3 - C_6 aminocarbocycle or a C_2 - C_5 aminoheterocycle with A or B, each optionally substituted at each occurrence with R^7 , C_3 - C_{10} cycloalkyl, or

(C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl;

or R² and R⁶ jointly form with the 2 nitrogen atoms to which they are bound a C₂-C₅ aminoheterocycle optionally substituted at each position with R⁷;

- A is $(CH_2)_m$ where m is 1,2 or 3 and is optionally mono- or di-substituted on each occurrence with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, $(C_3$ - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, cyano, halo, C_1 - C_6 haloalkyl, OR^7 , C_1 - C_6 alkyl- OR^7 ; C_1 - C_6 cyanoalkyl, OR^8R^9 , C_1 - C_6 alkyl- OR^8R^9 , or
- A and B jointly form a C₃-C₆ carbocycle, optionally substituted at each position with R⁷ or,
- A and R² jointly form a C₃-C₆ aminocarbocycle or a C₂-C₅ aminoheterocycle optionally substituted at each position with R⁷;
- B is (CH₂)_n where n is 1,2 or 3 and is optionally mono- or di-substituted on each carbon atom with C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halo, C₁-C₆ haloalkyl, OR⁷, C₁-C₆ alkyl-OR⁷; C₁-C₆ cyanoalkyl, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, or
- B and R² jointly form a C₃-C₆ aminocarbocycle or a C₂-C₅ aminoheterocycle optionally substituted at each position with R⁷;

- R³ and R¹6 are independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, cyano, halogen, C₁-C₆ haloalkyl, OR⁵, C₁-C₆ alkyl-OR⁵, C₁-C₆ cyanoalkyl, NR¹R², C₁-C₆ alkyl-NR¹R²,
- R⁴ is selected from aryl or heteroaryl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyl, C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, C₁-C₆ alkyl-OR⁷, NR⁸R⁹, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, C₁-C₆ alkyl-CONR⁸R⁹, COOR⁷, C₁-C₆ alkyl-COOR⁷, CN, C₁-C₆ alkyl-CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that at least one of the positions ortho or para to the point of attachment of the aryl or heteroaryl ring to the heterocyclic core is substituted;

R⁵ is selected from:

- C₁-C₆ alkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, each of which is substituted with 1 to 5 groups independently selected at each occurrence from halo, C₁-C₂ haloalkyl, OR⁷, cyano, NR⁸R⁹, CONR⁸R⁹, COOR⁷, SO₂NR⁸R⁹, SO₂R⁷, NR¹¹COR¹², NR¹¹SO₂R⁷;
- C₁-C₆ arylalkyl, C₁-C₆ heteroarylalkyl, C₅-C₈ arylcycloalkyl, or C₅-C₈ heteroarylcycloalkyl, where aryl is phenyl or naphthyl, and heteroaryl is 2-,3-, or 4-pyridyl, 2-, 4- or 5-pyrimidinyl, triazinyl, 1-, 2- or 4-imidazolyl, 2-, 4-, or 5-oxazolyl, isoxazolyl, indolyl, pyrazolyl, quinolyl, isoquinolyl, 2-, 4-, or 5-thiazolyl, benzothiadiazolyl, 1-, 3- or 4-pyrazolyl, 1-, 3- or 4-triazolyl, 2-triazinyl, 2-pyrazinyl, 2-, or 3-furanyl, 2-, or 3-thienyl, 2-, or 3-benzothienyl, or 1-, 2- or 5-tetrazolyl, each of which is optionally

substituted with 1 to 5 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkyl, C_1 - C_6 alkyl, C_1 - C_6 alkenyl, halogen, C_1 - C_6 haloalkyl, trifluromethylsulfonyl, OR^7 , NR^8R^9 , C_1 - C_6 alkyl- OR^7 , C_1 - C_6 alkyl- NR^8R^9 , $CONR^8R^9$, $COOR^7$, CN, $SO_2NR^8R^9$, SO_2R^7 , aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C_3 - C_{10} cycloalkyl ring, a C_3 - C_{10} cycloalkenyl ring or a heterocycloalkyl ring;

 C_3 - C_{10} cycloalkyl, $(C_3$ - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_3 - C_{10} cycloalkenyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, each of which is optionally with 1 to 6 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, OR⁷, NR⁸R⁹, with the proviso that when two OR⁷ or NR⁸R⁹ substituents are geminally located on the same carbon R7 is not H and they can form together a C2-C4 ketal, oxazoline, oxazolidine, imidazoline, or imidazolidine heterocycle, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, oxo, hydroximino, C₁-C₆ alkoximino, SO₂NR⁸R⁹, SO₂R⁷, heterocycloalkyl, aryl, heteroaryl, where aryl or heteroaryl is optionally substituted with 1 to 5 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkenyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

aryl or heteroaryl, optionally substituted with 1 to 5 substituents independently selected at

each occurrence from halogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₆ alkenyl, halogen, C₁-C₆ haloalkyl, trifluromethylsulfonyl, OR⁷, NR⁸R⁹, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, aryl, heteroaryl, heterocycloalkyl, 3-, 4-, or 5-(2-oxo-1,3-oxazolidinyl), with the proviso that 2 adjacent substituents can optionally form together a C₃-C₁₀ cycloalkyl ring, a C₃-C₁₀ cycloalkenyl ring or a heterocycloalkyl ring;

or

- 3- or 4-piperidinyl, 3-pyrrolidinyl, 3- or 4- tetrahydropyranyl, 3-tetrahydrofuranyl, 3- or 4-tetrahydropyranyl, 3- or 4-(1,1-dioxo) tetrahydrothiopyranyl, 1-azabicyclo[4.4.0]decyl, 8-azabicyclo[3.2.1]octanyl, norbornyl, quinuclidinyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from R⁷, C₁-C₆ alkyl-OR⁷, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷;
- R⁶ is selected from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₂-C₄ alkenyl, C₁-C₆ arylalkyl, C₁-C₆ heteroarylalkyl where aryl or heteroaryl are optionally substituted with 1 to 5 substituents independently selected at each occurrence from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR⁷, CN, SO₂NR⁸R⁹, SO₂R⁷, or R⁶ and R², as mentioned above, jointly form, with the 2 nitrogen atoms to which they are bound, a C₂-C₅ aminoheterocycle optionally substituted at each position with R⁷;

- R⁷ is H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, C₁-C₃ haloalkyl, or heterocycloalkyl, C₁-C₈ alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C₁-C₈ alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C₁-C₆ arylalkyl or C₁-C₆ heteroarylalkyl each optionally substituted with 1 to 5 substituents independently selected at each occurrence from halogen, C₁-C₆ haloalkyl, OR¹³, NR⁸R⁹, C₁-C₆ alkyl-OR¹³, C₁-C₆ alkyl-NR⁸R⁹, CONR⁸R⁹, COOR¹³, CN, SO₂NR⁸R⁹, SO₂R¹³, with the proviso that when R⁷ is SO₂R¹³, R¹³ cannot be H;
- R^8 and R^9 are independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_6 alkenyl, C_3 - C_{10} cycloalkenyl, C_2 - C_6 alkynyl, heterocycloalkyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl, or R^8 and R^9 , taken together, can form a C_3 - C_6 aminocarbocycle or a C_2 - C_5 aminoheterocycle each optionally substituted at each occurrence with C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkenyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, heterocycloalkyl, C_1 - C_8 alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, C_1 - C_8 alkanoyl, aroyl, heteroaroyl, aryl, heteroaryl, C_1 - C_6 arylalkyl or C_1 - C_6 heteroarylalkyl;
- R^{11} is selected from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl,
- R¹² is selected from H, aryl, heteroaryl, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, (C₃-C₁₀ cycloalkyl) C₁-C₆ alkyl, optionally substituted with OR⁷, NR⁸R⁹[, C₃-C₆ aminocarbocycle, or C₂-C₅ aminoheterocycle;
- R^{13} is independently selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, with the

proviso that for SO₂NR⁸R⁹, SO₂R¹³, R¹³ cannot be H;

 R^{14} is H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, halo, or CN; and

 R^{15} is selected at each occurrence from H, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, (C_3 - C_{10} cycloalkyl) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_2 - C_6 alkyl- OR^7 , C_2 - C_6 cyanoalkyl, C_2 - C_6 alkyl- NR^8R^9 .

Cancel Claims 2-75.

76. (original) A compound of claim 1 of formula XV and isomers thereof, stereoisomeric forms thereof, or mixture of stereoisomeric forms thereof, and pharmaceutically acceptable salt or prodrug forms thereof, selected from the group consisting of:

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is cyclopentyl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is cyclohexyl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is tetrahydropyranyl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is 3,4-dimethoxyphenethyl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is 1-pyrimidin-2-yl-piperidin-4-yl,

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R^1 is Me, R^3 is Me, R^4 is 2,4,6-trimethylphenyl, R^2 is H, A is methylene, B is methylene, R^5 is hydrogen, R^6 is cyclopentyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R^1 is Me, R^3 is Me, R^4 is 2,4,6-trimethylphenyl, R^2 is H, A is methylene, B is methylene, R^5 is hydrogen, R^6 is cyclohexyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R^1 is Me, R^3 is Me, R^4 is 2,4,6-trimethylphenyl, R^2 is H, A is methylene, B is methylene, R^5 is hydrogen, R^6 is tetrahydropyranyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R^1 is Me, R^3 is Me, R^4 is 2,4,6-trimethylphenyl, R^2 is H, A is methylene, B is methylene, R^5 is hydrogen, R^6 is 3,4-dimethoxyphenethyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,4,6-trimethylphenyl, R² is H, A is methylene, B is methylene, R⁵ is

hydrogen, R⁶ is 1-pyrimidin-2-yl-piperidin-4-yl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is cyclopentyl;

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is cyclohexyl,

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is tetrahydropyranyl,

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is 3,4-dimethoxyphenethyl,

a compound of formula XV wherein X is CH, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is 1-pyrimidin-2-yl-piperidin-4-yl,

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen,

R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is

methylene, R⁵ is hydrogen, R⁶ is cyclopentyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen,

R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is

methylene, R⁵ is hydrogen, R⁶ is cyclohexyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen,

R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is

methylene, R⁵ is hydrogen, R⁶ is tetrahydropyranyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen, R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is methylene, R⁵ is hydrogen, R⁶ is 3,4-dimethoxyphenethyl;

a compound of formula XV wherein X is N, Y is carbon, Q is oxygen,

R¹ is Me, R³ is Me, R⁴ is 2,6-dichloro-4-methoxyphenyl, R² is H, A is methylene, B is

methylene, R⁵ is hydrogen, R⁶ is 1-pyrimidin-2-yl-piperidin-4-yl.

Cancel Claims 77 - 91.

Respectfully submitted,

JOHN RICHÁRDS

LADAS & PARRY 26 WEST 61ST STREET NEW YORK, NEW YORK 10023

REG.NO.31053(212)708-1915