Repetition

Theorem

Assume $X \sim \mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$ and L is the Cholesky factor of Σ (i.e., $\Sigma = \mathbf{L}\mathbf{L}^T$). Then

- 1) $X \sim \mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$ implies $Z = \mathbf{L}^{-1}(X \boldsymbol{\mu}) \sim \mathcal{N}_n(\mathbf{0}, \mathbf{I})$.
- 2) $\mathbf{Z} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{I})$ implies $\mathbf{X} = \mathbf{L}\mathbf{Z} + \boldsymbol{\mu} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Note: This states that all *n*-dimensional multivariate Gaussian distributions are linear transformations of each other.

Theorem

If

$$m{X} = (m{X}_{\mathrm{A}}, m{X}_{\mathrm{B}}) \sim \mathcal{N}_{n_{\mathrm{A}} + n_{\mathrm{B}}} \left(egin{bmatrix} m{\mu}_{\mathrm{A}} \\ m{\mu}_{\mathrm{B}} \end{bmatrix}, egin{bmatrix} \Sigma_{\mathrm{AA}} & \Sigma_{\mathrm{AB}} \\ \Sigma_{\mathrm{BA}} & \Sigma_{\mathrm{BB}} \end{bmatrix}
ight),$$

where $\boldsymbol{X}_{\mathrm{A}}$ is n_{A} -dimensional and $\boldsymbol{X}_{\mathrm{B}}$ is n_{B} -dimensional, then

$$X_{\mathrm{A}}|X_{\mathrm{B}} = x_{\mathrm{B}} \sim \mathcal{N}_{n_{\mathrm{A}}}(\mu_{\mathrm{C}}, \Sigma_{\mathrm{C}}),$$

where

$$\mu_{\mathrm{C}} = \mu_{\mathrm{A}} + \Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} (\boldsymbol{x}_{\mathrm{B}} - \boldsymbol{\mu}_{\mathrm{B}})$$
$$\Sigma_{\mathrm{C}} = \Sigma_{\mathrm{AA}} - \Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} \Sigma_{\mathrm{BA}}.$$

Note: Calculating conditional distributions is just linear algebra.

Note 2: Used **a lot** in everything from simple to complex models, but, in practice, compatitons are done by computers.

Simulation from $\mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$

Input:

n: dimension

 μ : mean vector

 Σ : covariance matrix

Algorithm:

1. calculate Cholesky factorization $\Sigma = \mathbf{L}\mathbf{L}^{\mathrm{T}}$.

2. for i = 1 ... n

3. draw $z_i \sim \mathcal{N}(0,1)$

4. end

5. set $\boldsymbol{x} = \mathbf{L}\boldsymbol{z} + \boldsymbol{\mu}$

Output: \boldsymbol{x} is a simulation from $\mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$.

Definition

The stochastic process $\{B(t): t \geq 0\}$ with state space $\mathbb R$ is called **Brownian** motion with variance parameter $\sigma^2 > 0$ if

- 1) $B(s+t) B(s) \sim \mathcal{N}(0, t\sigma^2)$ for $s \ge 0$ and t > 0.
- 2) for $0 \le t_1 < t_2 \le t_3 < t_4$,

$$B(t_2) - B(t_1)$$
 and $B(t_4) - B(t_3)$

are independent.

3) B(0) = 0 (and the realizations are continuous).

Note: Point 2) is equivalent to independent increments when increments follow Gaussian distributions.