MAST90125: Bayesian Statistical Learning

Lecture 23 & 24: Bayesian inference for Gaussian processes

Feng Liu and Guoqi Qian

A re-cap from the last lecture

- In the last lecture, we introduced the Gaussian process prior, and attempted to summarise some of its features.
- ► However, we did not perform Bayesian inference for any Gaussian process model. This will be the focus of today's lecture. There are two cases to consider,
 - Where observations **y** are noisy, i.e. $\mathbf{y} = \mu(\mathbf{x}) + \epsilon$.
 - lacktriangle Where observations ${f y}$ are noiseless, i.e. ${f y}={m \mu}({f x})$.

Noiseless observations

- Nhen dealing with noiseless observations $\mathbf{y} = \mu(\mathbf{x})$, what quantities do we want to make inference on?
- Since $\mu(x)$ is a random function of x, our primary interest will be on $\mu(x)$ at those points \tilde{x} that have not been observed.
- ► How would we make inference on this? Remember the Gaussian process prior is defined for all possible values of **x**, so we can write,

$$\rho\begin{pmatrix} \boldsymbol{\mu}(\mathbf{x}) \\ \boldsymbol{\mu}(\tilde{\mathbf{x}}) \end{pmatrix} = \mathcal{N}\bigg(\begin{pmatrix} \boldsymbol{m}(\mathbf{x}) \\ \boldsymbol{m}(\tilde{\mathbf{x}}) \end{pmatrix}, \begin{pmatrix} \boldsymbol{k}(\mathbf{x},\mathbf{x}) & \boldsymbol{k}(\mathbf{x},\tilde{\mathbf{x}}) \\ \boldsymbol{k}(\tilde{\mathbf{x}},\mathbf{x}) & \boldsymbol{k}(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) \end{pmatrix}\bigg).$$

- So what are we interested in?
 - ▶ The distribution of $\mu(\tilde{\mathbf{x}})$ conditional on $\mu(\mathbf{x})$, $p(\mu(\tilde{\mathbf{x}})|\mu(\mathbf{x}))$.

Predicting $\mu(\tilde{\mathbf{x}})$ in the noiseless case

For $\mu(x)$, $\mu(\tilde{x})$, the density function is,

$$p\begin{pmatrix} \boldsymbol{\mu}(\mathbf{x}) \\ \boldsymbol{\mu}(\tilde{\mathbf{x}}) \end{pmatrix} = \frac{e^{-\frac{\left(\boldsymbol{\mu}(\mathbf{x})' - \boldsymbol{m}(\mathbf{x})' \quad \boldsymbol{\mu}(\tilde{\mathbf{x}})' - \boldsymbol{m}(\tilde{\mathbf{x}})'\right)\begin{pmatrix} \boldsymbol{k}(\mathbf{x},\mathbf{x}) & \boldsymbol{k}(\mathbf{x},\tilde{\mathbf{x}}) \\ \boldsymbol{k}(\tilde{\mathbf{x}},\mathbf{x}) & \boldsymbol{k}(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) \end{pmatrix}^{-1}\begin{pmatrix} \boldsymbol{\mu}(\mathbf{x}) - \boldsymbol{m}(\tilde{\mathbf{x}}) \\ \boldsymbol{\mu}(\tilde{\mathbf{x}}) - \boldsymbol{m}(\tilde{\mathbf{x}}) \end{pmatrix}}{2}}{\left(2\pi\right)^{\frac{n+\tilde{n}}{2}} \det\begin{pmatrix} \boldsymbol{k}(\mathbf{x},\mathbf{x}) & \boldsymbol{k}(\mathbf{x},\tilde{\mathbf{x}}) \\ \boldsymbol{k}(\tilde{\mathbf{x}},\mathbf{x}) & \boldsymbol{k}(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) \end{pmatrix}^{\frac{1}{2}}}$$

- Based on what we have learned from the course so far, what we need to do is extract the component of the kernel that is a function of $\mu(\tilde{\mathbf{x}})$. However you will note that will require us to determine the blocks of the inverse matrix of k.
- ► To do this, the block matrix inverse formula will help

$$\begin{pmatrix} \textbf{A} & \textbf{B} \\ \textbf{C} & \textbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \textbf{A}^{-1} + \textbf{A}^{-1} \textbf{B} (\textbf{D} - \textbf{C} \textbf{A}^{-1} \textbf{B})^{-1} \textbf{C} \textbf{A}^{-1} & -\textbf{A}^{-1} \textbf{B} (\textbf{D} - \textbf{C} \textbf{A}^{-1} \textbf{B})^{-1} \\ -(\textbf{D} - \textbf{C} \textbf{A}^{-1} \textbf{B})^{-1} \textbf{C} \textbf{A}^{-1} & (\textbf{D} - \textbf{C} \textbf{A}^{-1} \textbf{B})^{-1} \end{pmatrix}.$$

Predicting $\mu(\tilde{\mathbf{x}})$ in the noiseless case

Using the block matrix inverse formula, the sub-matrices $k_{(\mathbf{x},\mathbf{x})}^*$, $k_{(\mathbf{x},\tilde{\mathbf{x}})}^*$ and $k_{(\tilde{\mathbf{x}},\tilde{\mathbf{x}})}^*$ of the inverse of $\mathbf{k} = \begin{pmatrix} k_{(\mathbf{x},\mathbf{x})} & k_{(\tilde{\mathbf{x}},\tilde{\mathbf{x}})} \\ k_{(\tilde{\mathbf{x}},\tilde{\mathbf{x}})} & k_{(\tilde{\mathbf{x}},\tilde{\mathbf{x}})} \end{pmatrix}$ are:

$$k_{(\mathbf{x},\mathbf{x})}^{*} = k(\mathbf{x},\mathbf{x})^{-1} + k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},\tilde{\mathbf{x}})(k(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) - k(\tilde{\mathbf{x}},\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},\tilde{\mathbf{x}}))^{-1}k(\tilde{\mathbf{x}},\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}$$

$$k_{(\mathbf{x},\tilde{\mathbf{x}})}^{*} = -k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},\tilde{\mathbf{x}})(k(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) - k(\tilde{\mathbf{x}},\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},\tilde{\mathbf{x}}))^{-1}$$

$$k_{(\tilde{\mathbf{x}},\tilde{\mathbf{x}})}^{*} = (k(\tilde{\mathbf{x}},\tilde{\mathbf{x}}) - k(\tilde{\mathbf{x}},\mathbf{x})k(\mathbf{x},\mathbf{x})^{-1}k(\mathbf{x},\tilde{\mathbf{x}}))^{-1}$$
(1)

Substituting the results in (1) into $p\left(\frac{\mu(x)}{\mu(\tilde{x})}\right)$ and extracting the component of the joint kernel that is a function of $\mu(\tilde{x})$, we obtain:

$$= \frac{(\mu(\tilde{\mathbf{x}}) - m(\tilde{\mathbf{x}}))'(k(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) - k(\tilde{\mathbf{x}}, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, \tilde{\mathbf{x}}))^{-1}(\mu(\tilde{\mathbf{x}}) - m(\tilde{\mathbf{x}})) - 2(\mu(\mathbf{x}) - m(\mathbf{x}))'k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, \tilde{\mathbf{x}})(k(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) - k(\tilde{\mathbf{x}}, \mathbf{x})k(\mathbf{x}, \mathbf{x})^{-1}k(\mathbf{x}, \tilde{\mathbf{x}}))^{-1}(\mu(\tilde{\mathbf{x}}) - m(\tilde{\mathbf{x}}))}{2}$$

Predicting $\mu(\tilde{\mathbf{x}})$ in the noiseless case

From the kernel in (2), we can deduce that,

$$\mu(\tilde{\mathbf{x}}) - \mathbf{m}(\tilde{\mathbf{x}}) | \mu(\mathbf{x}) \sim \mathcal{N}(\mathbf{k}(\tilde{\mathbf{x}}, \mathbf{x}) \mathbf{k}(\mathbf{x}, \mathbf{x})^{-1} (\mu(\mathbf{x}) - \mathbf{m}(\mathbf{x})), \mathbf{k}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) - \mathbf{k}(\tilde{\mathbf{x}}, \mathbf{x}) \mathbf{k}(\mathbf{x}, \mathbf{x})^{-1} \mathbf{k}(\mathbf{x}, \tilde{\mathbf{x}})).$$

lacktriangle Which means that the posterior distribution of $\mu(ilde{x})$ is,

$$\mu(\tilde{\mathbf{x}}) \sim \mathcal{N}(\mathbf{m}(\tilde{\mathbf{x}}) + \mathbf{k}(\tilde{\mathbf{x}}, \mathbf{x})\mathbf{k}(\mathbf{x}, \mathbf{x})^{-1}(\mu(\mathbf{x}) - \mathbf{m}(\mathbf{x})), \mathbf{k}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) - \mathbf{k}(\tilde{\mathbf{x}}, \mathbf{x})\mathbf{k}(\mathbf{x}, \mathbf{x})^{-1}\mathbf{k}(\mathbf{x}, \tilde{\mathbf{x}})).$$

Noisy observations

- When dealing with noisy observations $\mathbf{y} = \mu(\mathbf{x}) + \epsilon$, where $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$, what quantities do we want to make inference on?
- Since the random function $\mu(\mathbf{x})$ at the points \mathbf{x} may not be known, presumably we are interested in predicting the random function at the observed points \mathbf{x} as well as at points that have not been observed.
- ▶ We know from how the model has been set up that

$$\begin{array}{rcl} \rho(\mathbf{y}|\mu(\mathbf{x})) & = & \mathcal{N}(\mu(\mathbf{x}), \boldsymbol{\Sigma}) \\ \rho(\mu(\mathbf{x})) & = & \mathcal{N}(\boldsymbol{m}(\mathbf{x}), \boldsymbol{k}(\mathbf{x}, \mathbf{x})), \end{array}$$

which implies that

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{m}(\mathbf{x}), \mathbf{k}(\mathbf{x}, \mathbf{x}) + \mathbf{\Sigma})$$

Noisy observations

Hence we can work with the joint density of \mathbf{y} and $\mu(\tilde{\mathbf{x}})$, just like how we worked with the joint density of $\mu(\mathbf{x})$ and $\mu(\tilde{\mathbf{x}})$ in the noiseless case. The joint distribution is \mathbf{y} and $\mu(\tilde{\mathbf{x}})$ is,

$$\rho\begin{pmatrix}\mathbf{y}\\\boldsymbol{\mu}(\tilde{\mathbf{x}})\end{pmatrix} = \mathcal{N}\bigg(\begin{pmatrix}\boldsymbol{m}(\mathbf{x})\\\boldsymbol{m}(\tilde{\mathbf{x}})\end{pmatrix},\begin{pmatrix}\boldsymbol{k}(\mathbf{x},\mathbf{x}) + \boldsymbol{\Sigma} & \boldsymbol{k}(\mathbf{x},\tilde{\mathbf{x}})\\\boldsymbol{k}(\tilde{\mathbf{x}},\mathbf{x}) & \boldsymbol{k}(\tilde{\mathbf{x}},\tilde{\mathbf{x}})\end{pmatrix}\bigg).$$

Note: The set of points we want to make predictions at $\tilde{\mathbf{x}}$ can include points where we have noisy observations, \mathbf{y} .

What else do you want to make inference on?

- In determining the posterior distribution for $\mu(\tilde{x})$, what did we implicitly assume?
 - ▶ That m(x) and k(x,x) were known.
- ► If we were dealing with noisy observations, if there is anything we want to make inference on?
 - ightharpoonup The variance-covariance matrix Σ .
- We will now discuss how to perform Bayesian inference for these parameters. For this, we will assume $\Sigma = \sigma^2 \mathbf{I}$ and \mathbf{y} is noisy.
 - In doing this, we will focus on the component of $p(\mathbf{y}|\mu(\mathbf{x}), \sigma^2)p(\mu(\mathbf{x})|m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$ that is a function of the additional parameter of interest. We will then discuss whether this has a form that lends itself to conjugacy.

How would you make inference on m(x)

- If we want to make inference on m(x), we can either marginalise $\mu(x)$ out or not.
 - If we marginalise out $\mu(\mathbf{x})$, we are dealing with the likelihood $p(\mathbf{y}|\mathbf{m}(\mathbf{x}), \mathbf{k}(\mathbf{x}, \mathbf{x})) = \mathcal{N}(\mathbf{m}(\mathbf{x}), \mathbf{k}(\mathbf{x}, \mathbf{x}) + \sigma^2 \mathbf{I})$.
 - If we do not marginalise out $\mu(x)$, we are dealing with the Gaussian process prior $p(\mu(x)|m(x), k(x,x)) = \mathcal{N}(m(x), k(x,x))$.
- Can you see any problems?
 - It is likely that k(x, x) will have parameters that require estimation. Therefore it will be easier to work with conditional posteriors $p(m(x)|k(x, x), \cdot)$.
 - By implication, this suggests we want to construct a Gibbs sampler.
 - ▶ What about the prior for $p(\mathbf{m}(\mathbf{x}))$?
 - The choice of prior for p(m(x)) will depend on whether you assume m(x) is parametric $m(x) = f(x, \theta)$ or not. If you assume a parametric form m(x), you would want a prior for θ .

How would you make inference on σ^2

Making inference for σ^2 will be very similar to making inference for the residual variance in regression. To see why, consider the likelihood

$$\rho(\mathbf{y}|\boldsymbol{\mu}(\mathbf{x}), \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \boldsymbol{\mu}(x_i))^2}{2\sigma^2}} = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{-\frac{(\mathbf{y} - \boldsymbol{\mu}(\mathbf{x}))'(\mathbf{y} - \boldsymbol{\mu}(\mathbf{x}))}{2\sigma^2}}.$$

If we work with the precision, $\tau = (\sigma^2)^{-1}$, we would get the kernel of a gamma distribution,

$$p(\mathbf{y}|\boldsymbol{\mu}(\mathbf{x}), au) \propto \tau^{\frac{n}{2}} e^{-\frac{\tau(\mathbf{y}-\boldsymbol{\mu}(\mathbf{x}))'(\mathbf{y}-\boldsymbol{\mu}(\mathbf{x}))}{2}},$$

which means if we assume a gamma prior for τ , we will obtain a Gamma conditional posterior.

$$p(\tau|\mathbf{y}, \boldsymbol{\mu}(\mathbf{x}), \boldsymbol{k}(\mathbf{x}, \mathbf{x})) = \mathsf{Ga}(\alpha + n/2, \beta + (\mathbf{y} - \boldsymbol{\mu}(\mathbf{x}))'(\mathbf{y} - \boldsymbol{\mu}(\mathbf{x}))/2).$$

How would you make inference on k(x, x)

ightharpoonup Typically it will be assumed that k(x, x) can be written as,

$$\mathbf{k}(\mathbf{x}, \mathbf{x}) = \sigma_K^2 \mathbf{g}(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta}),$$

where σ_K^2 is a scale parameter, and $g(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta})$ controls correlation between different elements.

Making inference on σ_K^2 is just like making inference for a variance component in random regression. To see why, extract the component of the Gaussian process prior that is a function of σ_K^2 ,

$$p(\boldsymbol{\mu}(\mathbf{x})|\boldsymbol{m}(\mathbf{x}),\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta}),\sigma_K^2) = \frac{1}{(2\pi\sigma_K^2)^{r/2}\det(\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta}))^{1/2}}e^{-\frac{(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))'\mathbf{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta})^{-}(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))}{2\sigma_K^2}},$$

where r is the rank of the matrix $g(\mathbf{x}, \mathbf{x}, \theta)$.

How would you make inference on $k(\mathbf{x}, \mathbf{x})$: σ_K^2

▶ Just like in the case of σ^2 , if we work with the precision $\tau_K = (\sigma_K^2)^{-1}$, we can extract the kernel of a gamma distribution,

$$p(\boldsymbol{\mu}(\mathbf{x})|\boldsymbol{m}(\mathbf{x}),\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta}),\tau_K) \propto \tau_K^{r/2} e^{-\frac{\tau_K(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))'\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta})^{-}(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))}{2}}.$$

which means if we assume a gamma prior for τ_K , we will obtain a Gamma conditional posterior,

$$p(\tau_K|\boldsymbol{\mu}(\mathbf{x}),\boldsymbol{m}(\mathbf{x}),\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta})) = \mathsf{Ga}(\alpha_K + \frac{r}{2},\beta_K + \frac{(\boldsymbol{\mu}(\mathbf{x}) - \boldsymbol{m}(\mathbf{x}))'\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta})^-(\boldsymbol{\mu}(\mathbf{x}) - \boldsymbol{m}(\mathbf{x}))}{2}).$$

How would you make inference on $k(x, x) : g(x, x, \theta)$

- Unlike with σ^2 , σ_K^2 or $\mu(\mathbf{x})$, you cannot guarantee that $g(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta})$ will be in a form such that you will see any conjugacy properties.
- Moreover, if we consider the component of the joint distribution that is a function of $g(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta})$,

$$p(\boldsymbol{\mu}(\mathbf{x})|\boldsymbol{m}(\mathbf{x}),\boldsymbol{g}(\mathbf{x},\mathbf{x},\boldsymbol{\theta}),\tau_K) \ \propto \ \tau_K^{r/2} e^{-\frac{\tau_K(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))'g(\mathbf{x},\mathbf{x},\boldsymbol{\theta})^-(\boldsymbol{\mu}(\mathbf{x})-\boldsymbol{m}(\mathbf{x}))}{2}},$$

you will notice that it is the inverse that appears, rather than $g(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta})$.

▶ To get around this, we would use a Metropolis step within the overall Gibbs sampler to update the parameters θ .

Shifting to R

- ▶ To conclude this lecture, we will simulate a noisy Gaussian process.
- ▶ We will then attempt to estimate the parameters using the framework outlined on the previous slides.