Functions with Unbounded Input

Motivating Example

Consider the function $f(x) = \frac{1}{x-2}$, graphed below:

(a) What happens to the output of f as the input increases without bound? Write your answer in limit notation.

(b) What happens to the output of f as the input decreases without bound? Write your answer in limit notation.

(c) What happens to the output of f at x = 2?

Left/Right Hand Limits

Definition 1.3.1 (Left/Right Hand Limit)

Let f be a function defined on an interval containing some constant c (except possibly at c itself).

- If f(x) approaches the value of L_1 as x approaches c from the left, then the **left-hand limit** of f is L_1 , and is written
- If f(x) approaches the value of L_2 as x approaches c from the right, then the **right-hand** limit of f is L_2 , and is written

Example 1.3.2. For
$$f(x) = \frac{1}{x-2}$$
, find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$.

Example 1.3.3.

Use a calculator to numerically examine the limit behavior of $f(x) = \frac{1}{x-2}$ at x=2.

x	f(x)	x	f(x)	
1.9		2.1		
1.99		2.01		
1.999		2.001		$ \lim_{x \to 2} f(x) = $
1.9999		2.0001		
1.99999		2.00001		
$\lim_{x \to 2^-} f(x) =$		$\lim_{x \to 2^+} f(x) =$		

Chapter 1.3

Example 1.3.4. Use the graph of g to answer the following:

- (a) $\lim_{x \to 4^{-}} g(x) =$ (d) $\lim_{x \to 3^{-}} g(x) =$
- (b) $\lim_{x \to 4^+} g(x) =$ (e) $\lim_{x \to 3^+} g(x) =$
- (c) $\lim_{x \to 4} g(x) =$ (f) $\lim_{x \to 3} g(x) =$

Examine the limit behavior of the function $g(t) = \frac{3t^2 - 9}{t - 3}$ at t = 3. Round to the nearest tenth if necessary.

20 Chapter 1.3 **Example 1.3.6.** Use a calculator to examine the limit behavior of the function $r(p) = \frac{p^2 - 64}{p + 8}$ at p = -8. Round to the nearest thousandth if necessary.

Example 1.3.7. Use a calculator to examine the limit behavior of the function $P(y) = \frac{3^y}{2y-5}$ at y=2.5. Round your answer to 2 decimal places.

Continuity

Definition 1.3.8 (Continuity)

A function f(x), defined on some input interval containing c, is said to be **continuous** at c if and only if the following conditions are satisfied:

- (1)
- (2)
- (3)

A function is continuous on any open interval (a, b) if it is continuous at every point inside the interval. If a function is not continuous at the input x = c, then we say that f is

____ at c.

Example 1.3.9. Identify any points of discontinuity in the function $f(x) = \frac{1}{x-2}$. Explain why the function is discontinuous at those points.

Example 1.3.10. Identify any points of discontinuity in the function g(x) in Example 3.4. Explain why the function is discontinuous at those points.

Example 1.3.11. Use the graph to find the following:

(a) $\lim_{x \to 1^+} f(x)$

(e) $\lim_{x \to 3^+} f(x)$

(i) $\lim_{x \to 0^+} f(x)$

(b) $\lim_{x \to 1^-} f(x)$

(f) $\lim_{x \to 3^-} f(x)$

 $(j) \lim_{x \to 0^-} f(x)$

(c) $\lim_{x \to 1} f(x)$

(g) $\lim_{x\to 3} f(x)$

(k) $\lim_{x\to 0} f(x)$

- (d) Is f continuous at x = 1?
- (h) Is f continuous at x = 3? (l) Is f continuous at x = 0?

Properties of Limits

Let f(x) and g(x) be continuous functions over some input interval containing c, and k be some arbitrary constant. Then, we have the following properties of limits:

- (1) Constant Rule:
- (2) Sum Rule:
- (3) Constant Multiple Rule:
- (4) Replacement Rule: If f(c) is defined at c, then
- (5) Product Rule:
- (6) Quotient Rule:
- (7) If f(x) can be factored as $f(x) = h(x) \cdot k(x)$, and g(x) can also be factored as $g(x) = j(x) \cdot k(x)$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{h(x) \cdot k(x)}{j(x) \cdot k(x)} = \lim_{x \to c} \frac{h(x)}{j(x)}$$

i.e. common factors may be canceled across fractions under the limit

Example 1.3.12. Algebraically determine the limits of the following:

(a)
$$\lim_{x \to 5} 9$$

(b)
$$\lim_{z \to 3} (4z - 5)$$

(c)
$$\lim_{t \to -3} \frac{t^2 - 4t - 21}{t + 3}$$

(d)
$$\lim_{m \to 13} \frac{m}{m^2 + 4m}$$

(e)
$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$

Example 1.3.13. Determine the limit: $\lim_{h\to 0} \frac{(5+h)^2 - 25}{h}$

Example 1.3.14. Let $f(x) = \begin{cases} x^2 & x < -1 \\ 1 & x \ge -1 \end{cases}$. Algebraically determine the following limits and answer the questions:

(a) $\lim_{x \to -1^-} f(x)$

(b) $\lim_{x \to -1^+} f(x)$

(c) f(-1)

(d) Is f continuous at x = -1? Why?

(e) Graph f(x). Do your answers make sense?

Example 1.3.15. Let $h(t) = \begin{cases} 3^t - 9 & t < 2 \\ t^2 - 4 & t \ge 2 \end{cases}$. Algebraically determine the following limits and answer the questions:

(a) $\lim_{t \to 2^-} h(t)$

(b) $\lim_{t \to 2^+} h(t)$

(c) h(2)

(d) Is h continuous at t = 2? Why?

(e) Graph h(t). Do your answers make sense?