The openLegislature project

Dan Häberlein, Peggy Lucke, J. Nathanael Philipp, Alexander Richter

Universität Leipzig

Outline

- Introduction
 - Corpus
 - Questions
- 2 Methods
 - Architecture
 - Preprocessing
 - Algorithms
- 3 Results
 - Achieved Artifacts
 - Statistics
 - Significant Words
- 4 Outlook
 - Next Steps

Informations

Introduction

Plenary Protocols from Bundestag

- stenographic reports in PDF
- open to the public
- siehe bundestag.de [3]
- size of corpus circa 10GB →more than 3900 PDF

Questions to the information in the corpus

Statistic:

- How many speakers are in one legislative period/total?
- How many speeches from one party/speaker?

Keyword-search:

• Which speaker spoke to a special topic?

Why this questions?

We want more transparency! The answers are there, but too difficult to reach for all other people. That will be changed!

Architectural process for data extraction and preparation

- Usage of Listener Patterns [5]
- Usage of Github-Library Async [4] for easy creation of concurrent process chains

Methods

Preprocessing:

- stop word filter
- lower case transformation
- word count for SLDA
- tf-idf for log-likelihood
- cooccurrences per speaker

Methods

Algorithms:

- Log-likelihood
- Topic Modell / SLDA

"Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic idea is that documents are represented as random mixtures over latent topics, where each topic is characterized by a distribution over words.", siehe [2] In supervised latent Dirichlet allocation (sLDA), we add to LDA a response variable associated with each document, [1]

SLDA Methods

- single step approach
 - create single dataset for an election period
 - calculate top words for each speaker
- 2 two step approach
 - create dataset for each protocol
 - calculate top words for each speaker
 - merge results for an election period
 - calculate top words for each speaker

achieved artifacts

- unstructured Textfiles avaiable (PDF / TXT) for all election periods
- semi-structured XML files processed from PDF
- Metadatabase (NEO4J) with data of all election periods
- XPath query's on XML-Files

Achieved Artifacts

- NoSQL Database:
 - all speeches
 - Speaker with all Speeches
 - appearance of words by speech
 - Speakerstatistics over all election periods
 - Partystatistics over all election periods
- website for browsing corpusdata/-statistics with visualisations
- imput files for SLDA (ARFF-files) generated (for 18th election period)
- SLDA output: significant words for each speaker of the 18th election period

Statistics

- 18 election periods
- 7004 speaker
- 679910 speeches
- 39 partys
- But: data not as clean as possible
 - typing errors: e.g. "CSU/CSU", "Pawelcyzk" "Pawelczyk" "Pawelzcyk"
 - parsing problems

Statistics: Speeches pro election period

18th election period, second session: Thomas Oppermann

- 1. staat
- 2. verhandeln
- 3. snowden
- 4. nsa
- 5. praxis
- 6. geheimdienste
- 7. ausspioniert
- 8. hören
- 9. möglichkeit
- 10. schutz

Results

Significant Words for Speeches

18th election period, third session: Oskar Lafontaine

- 1. waffenexporte
- 2. währung
- 3. ökonomisch
- 4. zukunftsaufgaben
- 5. währungsspekulation
- 6. übernachtungen
- 7. verteilung
- 8. waggons
- 9. zug
- 10. schneller

Significant Words for Speeches

18th election period: Angela Merkel

- 1. wohnung
- 2. verlangt
- 3. okay
- 4. osten
- 5. stadt
- 6. unterwegs
- 7. ordnung
- 8. überwunden
- 9. zielt
- 10. vermeiden

What are our next tasks we need to accomplish?

- finalize our results, make them human accessable
- provide (easy) query interface for everyday users
- extend statistical webpage

Last steps until the end of the semester

- reprocess xml parsing
- finish result visualization
- connect our data with the meta data database (e.g. match every speeker to gouvernment / opposition)
- Log Likelihood on the GPU with our corpus

- D. M. Blei and J. D. McAuliffe. "Supervised Topic Models". In: *ArXiv e-prints* (Mar. 2010). arXiv: 1003.0783 [stat.ML].
- David M Blei, Andrew Y Ng, and Michael I Jordan. "Latent dirichlet allocation". In: the Journal of machine Learning research 3 (2003), pp. 993–1022.
- Bundestagsprotokolle. Website. Available online at http://suche.bundestag.de/plenarprotokolle/search.formvisited on March 26th 2014. 2014.
- Benoit Sigoure. Async Library. Github. https://github.com/stumbleupon/async. 2010.
- Christian Ullenboom. Java ist auch eine Insel. Galileo Computing, 2010. ISBN: 3836215063. URL: http://www.amazon.com/Java-ist-auch-eine-Insel/dp/3836215063%3FSubscriptionId% 3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative% 3D165953%26creativeASIN%3D3836215063.