CHEM110 – Chapter 5 Chemical Bonding and Molecular Structure

Dr Daniel Keddie

Room 2.02 – Riggs Building C23

daniel.keddie@une.ede.au

- <u>V</u>alence <u>Shell Electron Pair Repulsion theory
 </u>
- molecular shape is determined by repulsions between pairs of electrons
- To minimise these repulsions, electron pairs around an inner atom within a molecule will be situated as far apart as possible

VSEPR procedure:

- Draw the Lewis structure of the molecule
- Count the number of sets of bonding pairs (BP) and lone pairs (LP) of electrons

• Use the following table:

Number of sets of electron pairs	Geometry of sets of electron pairs
2	linear
3	trigonal planar
4	tetrahedral
5	trigonal bipyramidal
6	octahedral

 Modify the geometry if necessary, considering repulsions are in the order

Two sets of electron pairs \rightarrow linear

The two sets of electron pairs need to be situated as far apart as possible

→ Linear arrangement / linear shape

Example: CO₂

$$O = C = O$$

two sets of electron pairs around the C atom

linear shape bond angle = 180°

Three sets of electron pairs → trigonal planar

Three sets of electron pairs around an inner atom need to be situated as far apart as possible

→ In trigonal planar, the sets are oriented at 120° to each other and are coplanar

3 BP

2BP+1LP

Four sets of electron pairs → tetrahedral

4 BP

lone pairs = 0

3BP+1LP

lone pairs = 2

2BP+2LP

Five sets of electron pairs → trigonal bipyramidal

5 BP

4BP+1LP

3BP+2LP

2BP+3LP

Six sets of electron pairs \rightarrow octohedral geometry

Worked Example 5.4:

Determine the shape of the hydronium ion, H₃O⁺, using VSEPR theory. Make a sketch of the ion that shows the three-dimensional shape, including any lone pairs that may be present.

5.5 Properties of Covalent Bonds

Dipole moment

- Most chemical bonds are polar (one end slightly positive, the other slightly negative)
- Bond polarities can lead to molecules with dipole moment
- Dipole moment depend on bond polarities $(\Delta \chi)$ and on molecular shape

5.5 Properties of Covalent Bonds

Worked Example 5.5:

Does either CIF₅ or XeF₄ have a dipole moment?

Interactive Problem

Does CIF₅ have a dipole moment?

A. Yes

B. No

square pyramidal

 ClF_5 lone pairs = 1

Does XeF₄ have a dipole moment?

A. Yes

B. No

square planar

 XeF_4 lone pairs = 2

5.5 Properties of Covalent Bonds

Bond length

- Bond length of a covalent bond is the nuclear separation distance at which the molecule is most stable
- At this distance, attractive interactions are maximised relative to repulsive interactions
- Bond lengths vary between 70 and 250 pm $(1pm = 10^{-12}m)$

5.5 Properties of Covalent Bonds

Bond energy

- It is the amount of energy that must be supplied to break a chemical bond
- Bond energies increase as more electrons are shared between the atoms
- Bond energies increase as the electronegativity difference ($\Delta \chi$) between bonded atoms increases
- Bond energies decrease as bonds become longer

Two ways to think about chemical bonding:

- Valence bond theory (localised bonds)
- Molecular orbital theory (delocalised bonds)

Delocalisation requires a more complicated analysis but explain chemical properties that localised bonds cannot

Orbital overlap

- Bonding orbitals are created by combining atomic orbitals
- Example: H₂, as 2 hydrogen atoms approach each other, the overlap of their 1s orbitals increases

Conventions of the orbital overlap model

- Each electron in a molecule is assigned to a specific orbital
- No two electrons in a molecule have identical descriptions (Pauli exclusion principle; Ch 4)
- The electrons in molecules occupy the lowest energy orbital available (Aufbau principle; Ch 4)
- Only the valence orbitals are needed to describe bonding

Hybridisation of atomic orbital

- Hybrid orbitals are combinations of atomic orbitals
- The process by which we combine them is called hybridisation

 sp^3 hybrid orbital (example of methane CH_4) Electron configuration of carbon $1s^22s^22p^2$ Valence orbitals are 2s and 2p orbitals They are mixed to form a new hybrid orbital sp^3 (4s character – 4p character)

 sp^3 hybrid orbital (example of methane) In terms of energy of sp^3 hybrid orbital must be $\frac{1}{4}E_{2s} + \frac{3}{4}E_{2p}$

atomic orbitals

 sp^3 hybrid orbitals

sp³ hybrid orbital (example of methane)

Methane forms from orbital overlap between the hydrogen 1s orbitals and the sp^3 hybrid orbital of carbon

atom

sp³ hybridisation is not limited to carbon

Worked Example 5.7:

Describe the bonding of the hydronium ion, H₃O⁺, in terms of hybrid orbitals

 sp^2 hybrid orbital (example of BF₃) Electron configuration of boron $1s^22s^22p^1$ (1/3 s character – 2/3 p character)

sp hybrid orbital (example of BeH₂) Electron configuration of berylium $1s^22s^22p^0$ (½s character – ½p character)

Multiple bonds

Procedure:

- Determine the Lewis structure
- Use the Lewis structure to determine the type of hybridisation
- Construct the σ bond framework
- -Add the π bonds

Multiple bonds – example of ethene Double bond

ball-and-stick model

Carbon atoms sp² hybridised

Orbital picture of bonding one σ bond and one π bond

Multiple bonds-example of ethyne Triple bond

$$H-C\equiv C-H$$

Carbon atoms sp hybridised

Orbital picture of bonding one σ bond and two π bonds

Worked Example 5.7:

Hydrogen cyanide, HCN, is an extremely poisonous gas. Approximately half a million tonnes of HCN is produced each year, most of which is used to prepare starting materials for polymers. Construct a complete bonding picture for HCN and sketch various orbitals.