Actuadores

C2.3 Reto en clase

Circuito temporizador con circuito NE555

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema, elabore lo que se solicita dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C2.3_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o **enlaces a sus documentos .md**, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
 blog
 | C2.1 x.md
 | C2.2_x.md
 | C2.3_x.md
 | img
 docs
| A2.1_x.md
```


Desarrollo

1. Investigue que es la modulación por ancho de pulso y para que sirve.

La modulación por ancho de pulsos de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.

2. Calcule el valor de C y R para obtener un valor de señal de 5 segundos para el siguiente circuito temporizador mono-estable.

Valor R	Valor C
470ΚΩ	10μF

Se realizó del despeje de esta formula: Ct = 1.1 * R * C

Ct/1.1 = R * C

5s/1.1 = R * C

4.54s = R * C

Como se puede observar, se tiene que encontrar una resistencia y un capacitor que multiplicados den 4.54.

x 1	x 10	x 100	x 1.000 (K)	x 10.000 (10K)	x 100.000 (100K)	x 1.000.000 (M)
1Ω	10 Ω	100 Ω	1 KΩ	10 ΚΩ	100 KΩ	1 M Ω
$1,2 \Omega$	12Ω	120Ω	$1 \text{K2 } \Omega$	$12 \text{ K}\Omega$	120 KΩ	$1M2 \Omega$
$1,5 \Omega$	15Ω	150 Ω	$1\text{K}5\ \Omega$	$15 \text{ K}\Omega$	150 KΩ	$1M5 \Omega$
1.8Ω	18Ω	180 Ω	1K8 Ω	$18 \text{ K}\Omega$	180 KΩ	$1M8 \Omega$
$2,2 \Omega$	22Ω	220Ω	$2K2 \Omega$	$22 \text{ K}\Omega$	220 KΩ	$2M2 \Omega$
$2,7 \Omega$	27Ω	270 Ω	$2K7 \Omega$	$27 \text{ K}\Omega$	270 KΩ	$2M7 \Omega$
$3,3 \Omega$	33Ω	330Ω	$3K3 \Omega$	$33 \text{ K}\Omega$	330 KΩ	$3M3 \Omega$
$3,9 \Omega$	39Ω	390 Ω	$3K9 \Omega$	$39 \text{ K}\Omega$	390 KΩ	$3M9 \Omega$
4,7 Ω	47Ω	470Ω	$4K7 \Omega$	$47 \text{ K}\Omega$	470 KΩ	$4M7 \Omega$
$5,1 \Omega$	51Ω	510 Ω	5K1 Ω	$51 \text{ K}\Omega$	510 KΩ	$5M1\Omega$
$5,6 \Omega$	56Ω	560Ω	$5 \text{K6} \Omega$	$56 \text{ K}\Omega$	560 KΩ	$5M6 \Omega$
6,8 Ω	68 Ω	680 Ω	$6 \text{K8 } \Omega$	$68 \text{ K}\Omega$	680 KΩ	$6M8 \Omega$
8,2 Ω	82Ω	820 Ω	$8 \mathrm{K2}~\Omega$	$82~\mathrm{K}\Omega$	$820~\mathrm{K}\Omega$	$8M2 \Omega$
						$10M \Omega$

Capacitores Electrolíticos (Valores Comerciales)						
uF	uF	uF	uF	uF	uF	uF
0.1	1	10	100	1000	10000	100000
0.12	1.2	12	120	1200	12000	12
0.22	2.2	22	220	2200	22000	19
0.33	3.3	33	330	3300	33000	#F
0.47	4.7	47	470	4700	47000	4
0.56	5.6	56	560	5600	56000	i÷
0.68	6.8	68	680	6800	68000	42
0.82	8.2	82	820	8200	82000	1-

Observando las tablas anteriores de resistencias y capacitores comerciales los componentes que más se acercan a la cantidad deseada es una resistencia de $470 \mathrm{K}\Omega$ y el capacitor de $10 \mu \mathrm{F}$, ya que al multiplicarlos obtenemos 4.7s.

Si los reemplazamos en la formula:

$$Ct = 1.1 * 470 K\Omega * 10 \mu F$$

$$Ct = 5.17s$$

3. Como se podrá observar la imagen anexa corresponde a un circuito temporizador, que terminal se tendría que utilizar para activar el temporizador? Cual terminal se utilizaría si se desea integrar un actuador eléctrico?

Se utilizan las terminales 2 y 3 respectivamente.

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

Mi repositorio de Github