Osnove mikroprocesorske elektronike

Marko Jankovec

A/D pretvorba

A/D pretvorba 2015/2016

A/D pretvorba

Vzorčenje in zadrževanje (Sample&Hold)

Idealni in realni ADC

$$U_{ref} = 1V$$
 (ref. napetost)

$$Q = 3 bit (št. bitov)$$

$$N = 2^3 = 8 (ločljivost)$$

$$\Delta = \frac{U_{ref}}{N} = 125 \text{ mV } (LSB)$$

A/D pretvorba 2015/2016

Kvantizacija

Analog Input (V)

 $Napaka_{maks} = 1 LSB$

Kvantizacija

$$Napaka_{rms} = \frac{\Delta}{\sqrt{12}}$$
$$SNR = 20 \log(2^{Q})$$

$$U_{ref} = 1,1 \ V \ (ref. \ napetost)$$
 $Q = 10 \ bit \ (\St. \ bitov)$
 $N = (lo\v{c}ljivost - \St. \ stop.)$
 $\Delta = (LSB)$
 $Napaka_{rms} = mV$
 $SNR = dB$

Kvantizacija

$$Napaka_{rms} = \frac{\Delta}{\sqrt{12}}$$
$$SNR = 20 \log(2^{Q})$$

$$U_{ref} = 1,1 \ V \ (ref. \ napetost)$$
 $Q = 10 \ bit \ (št. \ bitov)$
 $N = 1024(ločljivost - št. \ stp.)$
 $\Delta = 1,07 \ mV \ (LSB)$
 $Napaka_{rms} = 0,31 \ mV$
 $SNR = 60 \ dB$

Napaka ničelne vrednosti

Napaka ojačenja

A/D pretvorba

Diferencialna nelinearnost

Monotonost

Integralna nelinearnost

DA pretvornik

A/D pretvornik – FLASH

A/D pretvorba

A/D pretvornik z digitalno rampo

A/D pretvorba

A/D pretvornik s postopnim približevanjem

A/D pretvornik pri ATmega 328PB (ADC)

- Resolucija 10 bit
- Integralna nelinearnost 0,5 LSB
- Absolutna napaka ±2 LSB
- Čas pretvorbe 13 260 μs
- Hitrost pretvorbe do 15 000 vzorcev/s
- 6 multipleksiranih vhodov
- Senzor temperature
- Različni viri referenčne napetosti
 - Notranja referenca 1.1 V
 - Zunanji vir
 - Napajalna napetost AVcc
- Avtomatsko proženje iz različnih virov prekinitev

Viri proženja pretvorbe

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Bit	7	6	5	4	3	2	1	0	_
(0x7B)	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	R/W	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Čas pretvorbe

- Frekvenca med 50 in 200 kHz za maksimalno 10-bit resolucijo
- Čas pretvorbe
 - za prvo pretvorbo 25 cikov
 - S/H 14,5 ciklov
 - za vse nadaljne pretvorbe: 13-14
 ciklov
 - S/H 1,5-2,5 cikla

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Izbira reference

REFS[1:0]	Voltage Reference Selection
00	AREF, Internal V _{ref} turned off
01	AV _{CC} with external capacitor at AREF pin
10	Reserved
11	Internal 1.1V Voltage Reference with external capacitor at AREF pin

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR		MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W		R/W	R/W	R/W	R/W	
Initial Value	0	0	0		0	0	0	0	

Izbira vira vhodnega

signala

MUX[3:0]	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	Temperature sensor
1001	Reserved
1010	Reserved
1011	Reserved
1100	Reserved
1101	Reserved
1110	1.1V (V _{BG})
1111	0V (GND)

Bit
(0x7C)
Read/Write
Initial Value

- Kadar je ADC onemogočen (ADEN = 0) ali
- Kadar je onemogočeno samoproženje (ADATE = 0)
- Če je vključeno samoproženje:
 - med pretvorbo, ampak šele 1 cikel po proženju
 - double buffering registra ADMUX omogoča, da se vsebina spremeni šele po končani pretvorbi
 - največkrat spreminjamo v prekinitveni rutini (ampak šele za naslednjo pretvorbo)
 - Po končani pretvorbi
 - · ampak preden se zbriše zastavica, ki je pretvorbo sprožila

Rezultat pretvorbe

Merjenje proti masi

$$ADC = \frac{U_{IN}}{U_{REF}} 1024$$

Diferencialno merjenje

$$ADC = \frac{U_{INp} - U_{INn}}{U_{REF}} GAIN 512$$

ADLAR = 1

Bit (0x79) (0x78)

15 14 13 12 11 10 ADC9 ADC8 ADC7 ADC5 ADC4 ADC3 ADC2 ADC6 ADC1 ADC0

ADCL ADCL

ADLAR = 0

Bit (0x79) (0x78)

15	14	13	12	11	10	9	8
-	-	-	-	-	-	ADC9	ADC8
ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
7	6	5	4	3	2	1	0

ADCH ADCL

A/D pretvorba

Ekvivalentno vezje vhoda AD pretvornika

Zmanjšanje šuma ADC

- ADC noise reduction mode
- Pogoji
 - omogočen ADC noise reduction način (SM2..0 = 001)
 - ročno proženje pretvorbe (ADATE = 0)
 - omogočena prekinitev ob končani pretvorbi (ADIE = 1)
- Sprožitev AD pretvorbe
 - ADC mora biti omogočen (ADEN = 1)
 - pretvorbo sproži ASM ukaz "sleep"
 - procesor gre v stanje nizke porabe (koda se ne izvaja)
 - zbudi ga prekinitev ob končani pretvorbi

Zmanjšanje šuma ADC

- Analogne povezave naj bodo čim krajše
- AVCC povezan na VCC preko LC filtra
- Uporaba ADC noise canceller načina
- Če so vhodi ADC uporabljeni hkrati kot I/O pini, jih ne preklapljati v času pretvorbe
- Onemogočitev vhodnih digitalnih ojačevalnikov I/O pinov

ADC6D

R/W

ADC5D

R/W

0

ADC4D

R/W

0

ADC3D

R/W

0

Bit

(0x7E)

Read/Write

Initial Value

ADC7D

R/W

0

Raciometrična pretvorba

$$ADC = \frac{R_{\chi}}{(R + R_{\chi})} 1024$$

$$ADC = \frac{R - R_x}{R + R_x} 1024 = k * \frac{F}{FS} 1024$$

A/D pretvorba

Povečanje ločljivosti (oversampling & dithering)

- Podvojitev frekvence vzorčenja x4 (povprečenje 4 vzorcev) doda 1 bit ločljivosti
- Dodatek šuma vsaj 1 LSB

Na koncu se pričakuje, da znate

- predstaviti teorem vzorčenja, zadrževanja in kvantizacije
- prepoznati glavne vire napak pri AD-pretvorbi
- razložiti delovanje in primerjati lastnosti različnih principov AD-pretvorbe
- s pomočjo podatkovnega lista analizirati pomen registrov in nastaviti ustrezno delovanje AD-pretvornika v mikrokrmilnikih AVR
- izbrati najprimernejši vir referenčne napetosti glede na aplikacijo

At the end we expect you to be able to

- describe the sample & hold theory and quantization
- recognize the most important inaccuracy sources of ADconversion
- explain different principles of AD conversion and compare their advantages and disadvantages
- analyze the meaning of ADC control registers using a datasheet and be able to set them to the correct values to achieve the desired mode of operation for AVR microcontrollers
- select the appropriate reference source for your application

Literatura/Literature

knjiga/ povezava book/ link	poglavje/ chapter
ATmega328PB datasheet	28
Programming and customising the AVR microcontroller	6.7
Introduction to Microcontrollers	2.4
<u>Dithering - povečanje ločljivosti A/D pretvornika</u>	pdf
Uporaba komparatorja za integracijski A/D pretvornik	pdf
<u>Lastnosti in kalibracija AD pretvornika</u>	pdf
O raciometrični pretvorbi	pdf

Priprava na laboratorijsko vajo

- Inicializacija AD:
 - PC0..PC3 -> HiZ vhodi
 - PORTC=?, DDRC=?
 - Izključiti digitalne vmesnike na PC0..PC3
 - DIDR0 =?
 - Referenca AVCC, desna poravnava, ročno proženje, hitrost konverzije znotraj specifikacij
 - ADCSRA=?, ADCSRB=?
- Delo z EEPROM-om:
 - Preuči funkcije v avr/eeprom.h
 - Pred glavno while(1) zanko
 - Branje EEPROMA z lokacije 0
 - Povečaj prebrano vrednost za 1
 - Pisanje na lokacijo 0 EEPROM-a