

MODELLING FORUM 2014

gSAFT

Advances in thermodynamic modelling in gPROMS

Thomas Lafitte – Senior Scientist

gPROMS product family

General mathematical modelling

Advanced process modelling environment

Sector-focused modelling tools

Chemicals & Petrochemicals

Process flowsheeting

Advanced model libraries for reaction & separation

Life Sciences, Consumer, Food, Spec & Agrochem

Solids process optimisation

Crystallization process optimisation

Oral absorption

Power & CCS

CCS system modelling

Fuel Cells & Batteries

Fuel cell stack & system design

Oil & Gas

Flare networks & depressurisation

Wastewater Treatment

Wastewater systems optimisation

The gPROMS platform

Equation-oriented modelling & solution engine

Materials modelling SAFI Multiflash

Model deployment tools

Enterprise Objects

Deploy models in common engineering software

Physical properties in gPROMS

Multiflash®

- coupled with DIPPR® databank
- used within most gPROMS-family products

aqueous and mixed solvent electrolytic systems

CAPE-OPEN thermo physical property interface

allows access to Aspen Properties[®]
and other CAPE-OPEN compliant
physical property systems

- Next-generation physical properties technology
- Based on SAFT equation of state
 - theory developed by the Molecular Systems Engineering group at Imperial College London

Equations of State

SAFT-y Mie Equation of State

SAFT: Chapman, Gubbins, Jackson, Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990)

SAFT-VR SW: Gil-Villegas, Galindo, Whitehead, Mills, Jackson, Burgess, J. Chem. Phys., 106, 4168 (1997)

SAFT-y SW: Lymperiadis, Adjiman, Jackson, Galindo, Fluid Phase Equilib., 274, 85 (2008)

SAFT-VR Mie: Lafitte, Apostolakou, Avendaño, Galindo, Adjiman, Muller, Jackson, J. Chem. Phys., 139, 154504 (2013)

SAFT-y Mie: Papaioannou, Lafitte, Avendaño, Adjiman, Jackson, Muller, Galindo, J. Chem. Phys., 140, 054107 (2014)

SAFT-γ Mie molecular model – I

 Each molecule comprises one or more (generally non-identical) functional groups

alcohols

carbonate ion

paracetamol

SAFT-y Mie molecular model – II

Each functional group comprises one or more identical segments

Interactions between segments

dispersion/repulsion (van der Waals) forces

hydrogen bonding via off-centre electron donor/acceptor ("association") sites

ionic (coulombic) forces

Apply Statistical Thermodynamics \rightarrow SAFT γ Mie Equation of State

Increasing strength

Using gSAFT in gPROMS models

gSAFT code architecture

Example 1: HF + H₂O separation process

modelling with gPROMS ProcessBuilder

modelling with ProcessBuilder

Importance of molecular level description

Complex self interactions

Water

SAFT representation

Hydrogen fluoride

SAFT representation

Highly non-ideal mixture

- Need to account for cluster formation between HF and H₂O
- Leads to extreme negative azeotrope

Example 2: LAO separation process

Molecules of interest to LAO process

and their functional group decomposition

Molecular structure

SAFT-γ Mie databank

group	CH ₃	CH ₂	H ₂ C=CH	аСН	аССН3	H ₂ C=CH2
CH ₃						
CH ₂						
H ₂ C=CH						
аСН						
аССН3						
H ₂ C=CH2						

gSAFT group parameters: Linear α -Olefins

Molecular structure:

- SAFT-γ Mie parameters estimated from pure component vapour pressure & saturated liquid densities
 - CH₃- and -CH₂- parameters from pure alkanes
 - H₂C=CH- parameters from pure 1-butene, 1-hexene and 1-octene

groups	σ [Å]	λ _{rep} [-]	λ_{att} [-]	S
CH ₃	XXX	XXX	XXX	XXX
CH ₂	XXX	XXX	XXX	XXX
H ₂ C=CH	XXX	XXX	XXX	XXX

ε/k _B [K]	CH ₃	CH ₂	H ₂ C=CH
CH ₃	XXX		
CH ₂	XXX	XXX	
H ₂ C=CH	XXX	XXX	XXX

gSAFT group parameters: Ethylene

Molecular structure:

 SAFT-γ Mie parameters estimated using vapour pressure & saturated liquid densities of pure ethylene

groups	σ [Å]	λ _{rep} [-]	λ_{att} [-]	S
H ₂ C=CH ₂	XXX	XXX	XXX	XXX

ε/k _B [K]	H ₂ C=CH ₂
H ₂ C=CH ₂	XXX

gSAFT group parameters: Toluene

Molecular structure:

- SAFT-γ Mie parameters estimated from pure component vapour pressure & saturated liquid densities
 - aCH parameters from pure benzene
 - aCCH₃ parameters from pure toluene

groups	σ [Å]	λ_{rep} [-]	λ_{att} [-]	S
аСН	XXX	XXX	XXX	XXX
aCCH ₃	XXX	XXX	XXX	XXX

ε/k _B [K]	аСН	aCCH ₃
аСН	XXX	
aCCH ₃	XXX	XXX

Ethylene

vapour pressure – saturated densities

- NIST WebBook (http://webbook.nist.gov/chemistry/)

α-Olefins – vapour pressure

- NIST WebBook (http://webbook.nist.gov/chemistry/)
- Forziati et al., J. Res. Nat. Bur. Stand., 45, 5 (1950)
- Vargaftik, N.B., Tables on the Thermophysical properties of Liquids and Gases, Hemisphere Publishing (1975)

α-Olefins – Saturated densities

- NIST WebBook (http://webbook.nist.gov/chemistry/)
- Vargaftik, N.B., Tables on the Thermophysical properties of Liquids and Gases, Hemisphere Publishing (1975)

α-Olefins – heat of vaporisation

NB. Pure predictions – none of these data used for parameter estimation

- Vargaftik, N.B., Tables on the Thermophysical properties of Liquids and Gases, Hemisphere Publishing (1975)

Vapour-Liquid Equilibrium: 1-Hexene + Toluene

Vapour-Liquid Equilibrium: Ethylene + 1-Butene

Vapour-Liquid Equilibrium: 1-Butene + 1-Hexene

NB. Pure predictions – none of these data used for parameter estimation

LAO separation process

modelling with ProcessBuilder/SAFT-y Mie (gSAFT)

LAO separation process

modelling with ProcessBuilder/SAFT-y Mie (gSAFT)

Summary

- gSAFT: industrial-strength implementation of
 - two state-of-the-art thermodynamic models
 - advanced phase equilibrium algorithms
- Parameter databases being continually augmented
- SAFT-γ Mie group contribution method: step change in capability to <u>predict</u> material behaviour with little/no experimental data
- Straightforward usage in gPROMS models
 - no changes required to existing models
- Release as part of gPROMS Platform v4.0 (April 2014)
 - immediate use within gPROMS ProcessBuilder & gCCS

