Sample problems with solutions for Homework 2

- 1. Rewrite the following expression using summation notation: $\ln \left(\prod_{k=1}^{4} x_k \right)$
- 2. Find explicit formulas for a sequence with the following recursive rules.
 - (a) $a_1 = 9$ and $a_n = 8a_{n-1}$ for $n \ge 2$
 - (b) $b_1 = 9$ and $b_n = 8nb_{n-1}$ for $n \ge 2$
- 3. Each of the following sums is equal to exactly one of the others. Please find all of the pairs.
 - (a) $\sum_{k=0}^{m+1} (3k+3)$
 - (b) $\sum_{k=1}^{m} (k+2)$
 - (c) $\sum_{k=2}^{m+3} (3k 5)$
 - $(\mathbf{d}) \sum_{k=2}^{m+2} k$
 - (e) $\sum_{k=1}^{m+2} 3k$
 - (f) $\sum_{k=0}^{m} (k+2)$
 - (g) $\sum_{k=0}^{m+1} (3k+1)$
 - (h) $\sum_{k=0}^{m-1} (k+3)$
- 4. Using the graphs below, find
 - (a) $\lim_{x \to 1^{-}} g(f(x))$
 - (b) $\lim_{x \to 1^+} g(f(x))$
 - (c) $\lim_{x \to 1^{-}} f(g(x))$
 - (d) $\lim_{x \to 1^+} f(g(x))$

Solutions

1. Explicitly expanding the product notation to see the details fully fleshed out, we see:

$$\ln\left(\prod_{k=1}^{4} x_{k}\right) = \ln(x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4})$$

$$= \ln(x_{1}) + \ln(x_{2}) + \ln(x_{3}) + \ln(x_{4})$$

$$= \sum_{k=1}^{4} \ln(x_{k})$$

- 2. To find the pattern for the following, we write terms until we see a pattern arise.
 - (a) (i) $a_1 = 9$
 - (ii) $a_2 = 8 \cdot 9$
 - (iii) $a_3 = 8 \cdot (8 \cdot 9)$
 - (iv) $a_4 = 8 \cdot (8 \cdot 8 \cdot 9)$

From this, we can see we have one more 8 multiplied each step, and the 9 is just along for the ride. Thus the general formula will be given by:

$$a_n = 9 \cdot 8^{n-1}$$

- (b) This one is similar, just a little more work:
 - i. $b_1 = 9$
 - ii. $b_2 = 8 \cdot 2 \cdot 9$
 - iii. $b_3 = 8 \cdot 3 \cdot (8 \cdot 2 \cdot 9)$
 - iv. $b_4 = 8 \cdot 4 \cdot (8 \cdot 3 \cdot 8 \cdot 2 \cdot 9)$
 - v. $b_5 = 8 \cdot 5 \cdot (8 \cdot 4 \cdot 8 \cdot 3 \cdot 8 \cdot 2 \cdot 9)$

If we look carefully, we can see a factorial pattern arise, as well as an accumulation of 8s. There is also the extra 9 that is in each term. Putting this together, we get:

$$b_n = 9 \cdot n! \cdot 8^{n-1}$$

- 3. To find which ones are equal, one could compute each sum (which would depend on m or pick one and search through the others to find the match by comparing terms. I prefer the latter, at least for such a small sampling of summations.
 - (a) = (e)
 - (b) = (h)
 - (c) = (g)
 - (d) = (f)
- 4. (a) To compute $\lim_{x\to 1^-} g(f(x))$, we start by examining the behavior of f(x) as $x\to 1^-$. We see that f(x) has a constant value of 2. Substituting x=2 into g(x) gives 0, so $\lim_{x\to 1^-} g(f(x))=0$.
 - (b) For $\lim_{x\to 1^+} g(f(x))$, we similarly examine the behavior of f(x), but this time as $x\to 1^+$. We find $\lim_{x\to 1^+} f(x)=0$. But notice that the y-values of f(x) are approaching 0 from above, and thus decreasing towards 0. Since these are the values that are substituted into g(x) we must find $\lim_{x\to 0^+} g(x)$, which gives -2.
 - (c) This time, for $\lim_{x\to 1^-} f(g(x))$, we examine the behavior of g(x) as $x\to 1^-$. We see $\lim_{x\to 1^-} g(x)=2$. But notice that the y-values are a constant value of 2. These are the values that are being substituted into f(x), so rather than taking a limit of f(x), we just need the value of f(-2), which is 2.

(d) For $\lim_{x\to 1^+} f(g(x))$, we first look at the behavior of g(x) as $x\to 1^+$. We see this limit is $\lim_{x\to 1^+} g(x)=-1$. The y-values are approaching -1 from above, which means the values are decreasing towards -1. Substituting into f(x), we see that we need $\lim_{x\to -1^+} f(x)$, which from the graph is 2.