信息学院本科生 2008-2009 学年第一学期 线性代数课程期末考试试卷 (A卷)

专小	L : 年	三级: 学	≥号:	姓名:	成绩:
说明	引: A^T 表示矩阵 A 的转置	矩阵, <i>A</i> *表示:	矩阵 A 的伴随矩阵	F, E 是单位矩 [阵, <i>0</i> 是零矩
	阵 $,A^{-1}$ 表示可逆矩阵 A	的逆矩阵 $, A $ 表	${f E}$ 示方阵 A 的行列 ${f z}$	式, ⟨α, β⟩表示向	量α, β的内积.
得	一、 客观题	: 1-3 小题)	り判断题 ,在对	的后面括号	中填" √ ",
	错的后面	括号中填"	×",4-8 为单词	先题,将正 硕	角选项前的
	字母填在	括号中.(每/	小题 2 分,共 [16分)	
1.	若对于矩阵 A, B, C	有 BA=BC	且 B <o, td="" 则:<=""><td>必有 A=C。</td><td>()</td></o,>	必有 A=C。	()
2.	任何方阵总可以经过	せ一系列初等	穿列变换化成系	付角形矩阵。	()
3.	设 A 为 n 阶矩阵,若	[λE−A ≠0,	则 λ 不是 A 的	り特征根 。	()
4.	设 A 为正交矩阵, $oldsymbol{\mathrm{I}}$	$\exists A = -1$,	则 A* =		
	$(\mathbf{A}) \mathbf{A}^{\mathrm{T}}$	$(\mathbf{B}) -\mathbf{A}^{\mathrm{T}}$	(C) A	1	(D) -A
5.	设 A, B 均为n阶正3	交矩阵, <i>C</i> =	= <i>AB</i> ,则必有_		
	(A) A+B=0	(B)	C 为正交矩阵	‡	
	(C) $ A = 0$ 或 $ B = 0$	(D)	$ \mathbf{A} + \mathbf{B} = 0$		
6.	设n阶方阵 A 与 B f	合同,则必	有		
	$(\mathbf{A}) \mathbf{A} = \mathbf{B} $		(B) $ A \neq B $		
	(C) 若 A ≠0,则·	有 <i>B</i> ≠0	$(\mathbf{D}) A = - B $		
7.	n阶实对称矩阵 A 亚	定的充要条	条件是:		
	(A) <i>A</i> 是可逆矩阵				
	(B) A的所有的特	征值均为正	值		
	(C) 可以找到一个	正交矩阵 F	,使 F^TAF 为	对角矩阵	
(D) 对某个 $X = (x_1, x_2, \dots, x_n)^T \neq 0$ 有 $X^T A X > 0$					
8.	零为方阵 <i>A</i> 的特征值	直是 A 不可認	逆的		
	(A) 充分条件	(B) 必要	条件		
	(C) 充要条件	(D) 非充	心 非必要久	<i>(</i> / +	

二、 计算题 (第1小题7分,第2小题8分,共15分)

2. 计算n(n > 2) 阶行列式D, 其中 $x_i \neq 0, i = 1, 2, ..., n$;

$$D = \begin{vmatrix} 1 & 2 & \cdots & n-1 & n+x_n \\ 1 & 2 & \cdots & (n-1)+x_{n-1} & n \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 2+x_2 & \cdots & n-1 & n \\ 1+x_1 & 2 & \cdots & n-1 & n \end{vmatrix}$$

$$\Xi \times \qquad \text{矩阵} A, B 满足 } AB-B=A , \text{ 其中} B = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

求 A。 (10 分)

四、 证明:若n维向量 $\alpha_1 \neq 0, \alpha_2$ 不能由 α_1 线性表示, α_3 不 能由 α_1, α_2 线性表示,则 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。(8 分)

得 分

五、
$$a,b$$
 为何值时,线性方程组
$$\begin{cases} x_1+x_2+x_3+x_4=0\\ x_2+2x_3+2x_4=1\\ -x_2+(a-3)x_3-2x_4=b\\ 3x_1+2x_2+x_3+ax_4=-1 \end{cases}$$

有解,无解,有无穷多解?并求有无穷多解时的方程组的通解。 (共14分)

得 分 | 六、 **已知实二次型** $f = 2x_1^2 + 2x_2x_3$,

- (1) 写出二次型的矩阵表达式:
- (2) 用正交变换把二次型化为标准形,并写出相应的 正交矩阵。 (共14分)

$$egin{array}{c} rac{\cancel{a} \ \cancel{b}}{\cancel{a}} \end{array}$$
 七、 设 R^3 的 两 个 基 $lpha_1 = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix}$, $lpha_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}$, $lpha_3 = egin{pmatrix} 1 \ 2 \ 2 \end{pmatrix}$;

$$\boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\beta}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- (1) 求由基 $\alpha_1, \alpha_2, \alpha_3$ 到 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵 P;
- (2) 已知向量 $\alpha = \alpha_1 + 3\alpha_2$,求向量 α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐 标。 (10分)

得 分

设 $A \cap B$ 都是n阶正定矩阵,证明A 合同于B 。 (8 分) 八、

得 分

已知三阶矩阵 A 和三阶列向量 X, 且向量组 九、 ${X,AX,A^2X}$ 线性无关, $A^3X = 3AX - 2A^2X$ 。 $P = (X, AX, A^2X)$, 且 AP = PB, 求矩阵 $B \circ (\pm 5 \circ A)$