

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2022

PAUTA INTERROGACIÓN 2

Pregunta 1

Una posible solución para esta pregunta es construyendo los siguientes transductores \mathcal{T}_1 y \mathcal{T}_2 , con $\Sigma = \{a\}$ su alfabeto de input y $\Omega = \{b, c\}$ su alfabeto de output:

Es fácil ver que: $[|\mathcal{T}_1|] = \{(a^n, b^n c^m) \mid n, m \geq 0\}$, y que $[|\mathcal{T}_2|] = \{(a^n, b^m c^n) \mid n, m \geq 0\}$. Luego, tenemos que $[|\mathcal{T}_1|] \cap [|\mathcal{T}_2|] = \{(a^n, b^n c^n) \mid n \geq 0\}$.

Por contradicción, supongamos que $[|\mathcal{T}_1|] \cap [|\mathcal{T}_2|]$ es una relación racional. Se tiene que $\pi_2([|\mathcal{T}_1|] \cap [|\mathcal{T}_2|]) = \{b^nc^n \mid n \geq 0\}$, y notamos que **no** es un lenguaje regular. Por teorema visto en clases, sabemos que las proyecciones de las relaciones racionales son lenguajes regulares. Luego, llegamos a una contradicción, y queda demostrado que $[|\mathcal{T}_1|] \cap [|\mathcal{T}_2|]$ no es una relación racional.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1.5 puntos) Por construir \mathcal{T}_1
- (1.5 puntos) Por construir \mathcal{T}_2
- (1 puntos) Por expresar la relación definida por $[|\mathcal{T}_1|] \cap [|\mathcal{T}_2|]$
- (1 puntos) Por identificar que $\pi_2(||\mathcal{T}_1|| \cap ||\mathcal{T}_2||)$ no es un lenguaje regular
- (1 puntos) Por concluir que $[|\mathcal{T}_1|] \cap [|\mathcal{T}_2|]$ no es una relación racional

Nota: Es correcto proponer otros transductores \mathcal{T}_1 y \mathcal{T}_2 , mientras cumplan que $\pi_1([|\mathcal{T}_1|] \cap [|\mathcal{T}_2|])$ no sea un lenguaje regular, o que $\pi_2([|\mathcal{T}_1|] \cap [|\mathcal{T}_2|])$ no sea un lenguaje regular.

Pregunta 2

Sean los lenguajes L_1 y L_2 definidos de la siguiente forma:

$$L_1 = \{a^i b^j c^k d^l \mid 2i = l \land 3j = k\}$$

$$L_2 = \{a^i b^j c^k d^l \mid 2i = k \land 3j = l\}$$

En este caso, L_1 es un lenguaje libre de contexto mientras que L_2 no lo es. A continuación se demuestran ambas afirmaciones.

1) L_1 es LLC:

Para demostrar que L_1 es libre de contexto, procedemos a diseñar una gramática para el lenguaje y explicar su correctitud. La gramática generada es de la forma:

$$\mathcal{G}: X \to aXdd \mid Y$$
$$Y \to bYccc \mid \epsilon$$

La gramática se construye de forma recursiva desde los extremos hasta el centro. Nos aseguramos con las derivaciones de X de agregar las letras a y d en los extremos de la palabra correspondientes, procurando seguir la proporción pedida. Luego, al cambiar de variable a Y, agregamos en el centro las letras b y c que también siguen su propia proporción pedida. Finalmente, solo es posible seguir agregando b y c, o terminar la palabra.

2) L_2 no es LLC:

Para demostrar que L_2 no es LLC, usaremos el contrapositivo del lema de bombeo para lenguajes libres de contexto. Sea un N > 0, definimos la siguiente palabra z perteneciente al lenguaje:

$$z = a^N b^N c^{2N} d^{3N}$$

Y sea la siguiente descomposición cualquiera para z:

$$z = uvwxy$$

Con $vx \neq \epsilon$ y $|vwx| \leq N$. Según la estructura que tome dicha descomposición, podemos tener la siguientes tres posibilidades:

1. $vwx \in a^*b^*$. En este caso, sea i=0 de forma que la palabra queda como:

$$uv^0wx^0y = a^{N_1}b^{N_2}c^{2N}d^{3N} (1)$$

Lo que fuerza a que $N_1 < N$ ó $N_2 < N$, por lo que la palabra nueva no pertenece a L_2 .

2. $vwx \in b^*c^*$. Es este caso, sea i = 0:

$$uv^0wx^0y = a^Nb^{N_2}c^{N_3}d^{3N} (2)$$

Lo que fuerza a que $N_2 < N$ ó $N_3 < 2N$, por lo que la palabra nueva no pertenece a L_2 .

3. $vwx \in c^*d^*$. Es este caso, sea i = 0:

$$uv^0wx^0y = a^Nb^Nc^{N_3}d^{N_4} (3)$$

Lo que fuerza a que $N_3 < 2N$ ó $N_4 < 3N$, por lo que la palabra nueva no pertenece a L_2 .

Al ser analizadas todas las posibilidades de descomposición para la palabra z, se demuestra que L_2 no es un lenguaje libre de contexto.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (0.5 puntos) Por indicar que L_1 es LLC y que L_2 no lo es.
- (2 puntos) Por generar la gramática correspondiente para L_1 .
- (0.75 puntos) Por explicar la correctitud de la gramática generada.
- \blacksquare (1 punto) Por seleccionar una palabra z adecuada para el lema de bombeo de L_2 .
- (0.25 puntos) Por seleccionar la descomposición z = uvwxy adecuada, junto a sus restricciones.
- (1.5 puntos) Por analizar correctamente todas las posibilidades de la descomposición anterior de z.

Pregunta 3

Pregunta 3

Sea L un lenguaje libre de contexto y el lenguaje h(L) definido como:

$$h(L) = \{h(w) \mid w \in L\}.$$

Sea $\mathcal{G} = \{V, \Sigma, P, S\}$ en forma normal de Chomsky (CNF) tal que $L(\mathcal{G}) = L \setminus \{\epsilon\}$, por teorema visto en clases. Se define $h(\mathcal{G}) = (V \cup \{S'\}, \Omega, P', S')$ tal que:

$$\begin{array}{ll} P^{'} = & \{X \rightarrow YZ \mid X \rightarrow YZ \in P\} \\ & \cup & \{X \rightarrow h(a) \mid X \rightarrow a \in P\} \\ & \cup & \{S^{'} \rightarrow S\} \\ & \cup & \{S^{'} \rightarrow \epsilon \mid \epsilon \in L\} \end{array}$$

Por demostrar: $h(L) = L(h(\mathcal{G}))$

 (\subseteq) Si $u \in h(L)$, sea $w \in L$ tal que h(w) = u. Como $w \in L(\mathcal{G})$ sea T un árbol de derivación de \mathcal{G} sobre w.

Sea h(T) el árbol T donde reemplazando cada hoja $a \in \Sigma$ por h(a). Entonces, por construcción es fácil ver que h(T) es árbol de derivación de $h(\mathcal{G})$ con h(w).

Si
$$u = \epsilon \Rightarrow S \Rightarrow \epsilon \ y \ \epsilon \in L(h(\mathcal{G})).$$

- (⊇) Sea $u \in L(h(\mathcal{G}))$ y sea T árbol de derivación de $h(\mathcal{G})$ sobre u. Sea T' el árbol tal que para cada nodo de la forma $X(b_1 ... b_k)$ lo reemplazamos por X(a) con $a \in \Sigma$ tal que $h(a) = b_1 ... b_k$. Sea w la palabra en las hojas de T':
 - h(w) = u
 - $\blacksquare T^{'}$ es árbol de derivación de \mathcal{G} sobre w

Por lo tanto, $u \in h(L)$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (0.5 puntos) Por manejar correctamente la función h (respeta la concatenación)
- (1.5 puntos) Por conservar las derivaciones del tipo $X \to YZ$
- (1.5 puntos) Por conservar las derivaciones del tipo $X \to a$
- (0.5 puntos) Por incluir el ϵ en la gramática
- (2 puntos) Por demostrar correctamente cada lado (1 punto c/u)

Pregunta 4

Una posible solución para esta pregunta es modificar el algoritmo eval-NFAonthefly visto en clases. Específicamente, en lugar de llevar dos conjuntos S y S_{old} para llevar los estados en los que van las ejecuciones al leer la i-ésima letra de w, se llevará un **contador** de los sufijos que hay en cada estado al leer la i-ésima letra. En el nuevo algoritmo, S y S_{old} corresponderán a arreglos de tamaño |Q|=m, donde cada entrada del arreglo le corresponde a un estado $j \in Q$, y esta llevará la cuenta de sufijos de la palabra que al ejecutar $\mathcal A$ llegan al estado j.

Sin pérdida de generalidad, suponga que el autómata \mathcal{A} tiene como conjunto de estados $Q = \{0, 1, \dots, m-1\}$. Si los m estados de \mathcal{A} no son números, estos pueden ser ordenados arbitrariamente y ser asignados a números. También suponemos, sin pérdida de generalidad, que \mathcal{A} es un autómata sin ϵ -transiciones. Luego, escribimos el siguiente algoritmo:

```
\#SUFFIX-DFA(\mathcal{A} = (Q, \Sigma, \Delta, I, F), w = a_1 a_2 \dots a_n)
S, S_{old} \leftarrow \text{Arreglos de largo } m, \text{ y entradas con valor } 0
for i = 1 to n do
    S_{old} \leftarrow S
    S \leftarrow [0]
                                                         // arreglo de 0s
    S_{old}[0] \leftarrow S_{old}[0] + 1
    for j = 0 to m - 1 do
         S[\delta(j, a_i)] \leftarrow S[\delta(j, a_i)] + S_{old}[j]
    end for
end for
C \leftarrow 0
for j \in F do
    C \leftarrow C + S[j]
end for
return C
```

Para la demostración de la correctitud del algoritmo, usaremos inducción sobre el tamaño de w, para mostrar que en toda iteración el arreglo S lleva correctamente la cantidad de sufijos de $a_1...a_{i-1}$ que llegan a cada estado.

- CB: Antes de empezar a leer letras de w, se da que el estado inicial de \mathcal{A} no tiene sufijos y no se ha pasado por ningún otro estado. Esto se ve representado correctamente al inicializar las entradas de S como 0.
- **HI**: Suponemos que luego de procesar $a_1 \cdots a_i$ se cumple que, para todo estado j, S[j] es igual al número de sufijos de \mathcal{A} sobre $a_1 \cdots a_i$ que llegan al estado j.
- **TI**: Por HI, S lleva correctamente la cantidad de ejecuciones por estado en la i-ésima iteración. En la iteración i+1, se asigna a S_{old} los valores de S, y S se reinicializa con valores 0. Luego, por cada transición (j_1, a_{i+1}, j_2) del autómata, a $S[j_2]$ se le suma la cantidad de sufijos de j_1 . Al realizar esto sobre todas las transiciones del autómata, se cumple que S[j] es igual al número de sufijos de $a_1 \cdots a_{i+1}$ al ejecutar A que llegan a $j \in Q$.

Ya demostrado que el S lleva correctamente la cantidad de sufijos que llegan a cada estado para cualquier largo de w. La cantidad de sufijos de w que son aceptados por \mathcal{A} será la suma de la cantidad de sufijos de las ejecuciones que llegaron a estados finales del autómata después de leer las n letras de w. Esto se guarda en la variable C al final del algoritmo, y se retorna dicho valor. Luego, el algoritmo propuesto retorna correctamente la cantidad de sufijos de w que son aceptados por \mathcal{A} .

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 puntos) Por llevar un contador para cada estado.
- (1.5 puntos) Por actualizar correctamente S y S_{old}
- (1.5 puntos) Por actualizar correctamente $S[\delta(j, a_i)]$
- (1 puntos) Por contar los sufijos.
- (1 puntos) Por demostrar correctitud.

Nota 1: No era correcto si:

- el algoritmo tiene un tiempo de ejecución mayor al pedido, por tanto se asignaron 0 puntos a esta solución.
- si solo se escribe el algoritmo NFA-onthefly' sin cambios, por tanto se asignaron 0 puntos a esta solución.

Nota 2: Si el autómata se "invierte" para leer la palabra de derecha a izquierda, había que tener cuidado en darse cuenta que al invertir el autómata queda no-determinista. Para esto debían demostrar que el autómata invertido acepta el mismo lenguaje y después aprovechar el autómata invertido correctamente. En muchos casos esto no ocurrió y por tanto se asignaron 0 puntos a esta solución. Se recomienda consultar al profesor, si su solución esta en este caso.