

STUD	ENT I	DENT	IFICAT	TION NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2019/2020

BMS2024 -ADVANCED MANAGERIAL STATISTICS

(All Sections / Groups)

19 OCTOBER 2019 2.30 pm – 4.30 pm (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 15 pages excluding the cover page.
- 2. This question paper consists of FOUR structured questions. Attempt ALL questions.
- 3. Students are allowed to use non-programmable scientific calculators with no restrictions.
- 4. A formulae list and statistical tables are attached at the end of the question paper.
- 5. Use pen to write the answers in the answer booklet provided.

QUESTION 1 (25 Marks)

Spam e-mail has become a serious and costly nuisance. An office manager believes that the average amount of time spent by office workers reading and deleting spam exceeds 25 minutes per day. He takes a random sample of 18 workers and measures the amount time each spends reading and deleting spam. The sample mean is 30 minutes. The population standard deviation is 12 minutes. Can the manager infer that he is correct?

- a) Establish the appropriate null and alternative hypotheses. (2 marks)
- b) Compute the test statistic and the p-value of the test. (6 marks)
- c) Based on the p-value obtained in (b), what is your statistical decision? Use $\alpha = 0.01$. (3 marks)
- d) State the possible Type I and Type II errors that might occur. (4 marks)
- e) At 0.05 level of significance, compute the probability of a Type II error. Given that the actual average amount of time spent reading and deleting spam is 28 minutes.

 (7 marks)
- f) Compute the power of the test. (2 marks)
- g) If the significance level is decreased, what is the effect on the power of the test.
 (1 mark)

Continued...

QUESTION 2 (25 Marks)

a) State three assumptions and one limitation for Independence t-test.

(5 marks)

b) A perfume manufacturer is trying to choose between two magazine advertising layouts. An expensive layout would include a small package of the perfume. A cheaper layout would include a 'scratch and sniff' sample of the product. The manufacturer would use the more expensive layout only if there is evidence that would lead to a higher approval rate.

The manufacturer presents the more expensive layout to four groups and determines the approval rating for each group. He presents the 'scratch and sniff' layout to five groups and again, determines the approval rating of the perfume for each group. Apply an appropriate statistical test for the listed data below at a level of significance of 0.05. Assume the listed data is non normally distributed:

Pack	Package 5		68	43	48	
Scratch	37	40	53	39	4	7

(20 marks)

Continued...

QUESTION 3 (25 Marks)

Bob Stark is conducting research on monthly expenses for medical care, including over the counter medicine. His dependent variable is monthly expenses (\$) for medical care while the independent variables are number of family members, life insurance (\$) and health insurance (\$). The summary output of the analysis is shown below:

ANOVA

	df	SS	MS	F	Significance F
Regression	3	132875933	43977657	48.48745	1.21*10-7
Residual	14	126978660	906990.4		
Total	17	322909753			
	Coefficients	Std Error	t Stat	P-value	
Intercept	144.91	1025.911	0.141246		_
Family	11.63	1.247247	9.330762	$2.19*10^{-4}$	
Life	13.70	8.786907	-1.55916	0.141272	
Health	-9.11	1.166068	7.810781	1.81*10 ⁻⁶	_

- a) State the multiple linear regression equation for the above data. (4 marks)
- b) Interpret the slope coefficient for the number of family members and health insurance relating to the monthly expenses for medical care. (4 marks)
- c) Compute the coefficient of multiple determination. Interpret the value. (4 marks)
- d) At the 5 percent level of significance, test the overall validity of the model.

 (4 marks)
- e) At the 1 percent level of significance, test if each independent variable is significantly related towards the monthly expenses for medical care. (6 marks)
- f) Determine Bob Stark's monthly expenses for his medical care if the family members are 7 persons, insured \$1377 for his life insurance and insured \$953 of his health insurance. (3 marks)

Continued...

QUESTION 4 (25 Marks)

During a study, individuals were asked to rate a product on a scale of 1-5. From the following summary output, help the researcher determine whether any significant differences exist in opinions among individuals from different regions: South, North and East. Assume that the dataset is normally distributed.

Summary Output

Groups	Count	Sum	Mean	Variance		
South	7	23	3.29	2.2381		
North	10	29	2.90	2.3222		
East	8	23	2.88	2.6964		

ANOVA

Source of Variation	SS	df	MS	F
Among Groups	0.80	2	0.40	0.1653
Within Groups	53.20	22	2.42	
Total	54	24		

- a) At the 5 percent level of significance, is there evidence of a difference in the mean exist of individually opinions from the three regions regarding the product. Conduct an appropriate statistical procedure. (10 marks)
- b) Conduct the Tukey-Kramer post-hoc test to examine which region differ in mean rating the product. Use 10 percent significance level. (15 marks)

STATISTICAL FORMULAE

A. DESCRIPTIVE STATISTICS

Sample Mean =
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 Sample Standard Deviation = $s = \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n-1} - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n(n-1)}}$

where n = number of observations $X_i = the i^{th} observation of the data$

B. HYPOTHESIS TESTING

Types of Error

Type I Error = α = P(Rejecting H₀ | H₀ is true) where, Confidence Interval = 1 - α

Type II Error = β = P(Not Rejecting H₀ | H₀ is false)

One Sample Mean Test							
σ Known	σ Unknown						
$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\overline{x} - \mu}{\sqrt[S]{\sqrt{n}}}$						

Two Sample Mean Test

Comparing Means for Two Independent Populations

[Standard Deviation (5) Known]

$$z = \frac{\overline{(x_1 - x_2) - (\mu_1 - \mu_2)}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

[Standard Deviation (o) Not Known]

$$t = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \binom{1}{n_1} + \frac{1}{n_2}}}$$

where
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$

Two Sample Mean Test

Comparing Means for Two Paired Populations

$$t = \frac{\left(\overline{D} - \mu_D\right)}{S_D / \sqrt{n}} \qquad \text{where } \overline{D} = \frac{\sum_{i=1}^n D_i}{n} \quad \text{and} \quad S_D = \sqrt{\frac{\sum_{i=1}^n D_i^2}{n-1} - \frac{\left(\sum_{i=1}^n D_i\right)^2}{n(n-1)}}$$

Non-Parametric Analysis									
Wilcoxon Rank Sum Test	Wilcoxon Signed Rank Sum Test								
$Z = \frac{\left(T_1 - \mu_{T_1}\right)}{\sigma_{T_1}}$ where	$Z = \frac{\left(T_{+} - \mu_{T_{+}}\right)}{\sigma_{T_{+}}}$ where								
$\mu_{T1} = \frac{n_1(n+1)}{2} \qquad \text{and} \qquad$	$\mu_{T+} = \frac{n(n+1)}{4} \text{and} $								
$\sigma_{T_1} = \sqrt{\frac{n_1 n_2 (n+1)}{12}}$ where $n = n_1 + n_2$	$\sigma_{T_{\star}} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$								

Kruskal-Wallis Rank Test

$$H = \left[\frac{12}{n(n+1)} \sum_{j=1}^{c} \frac{T_{j}^{2}}{n_{j}} \right] - 3(n+1) \text{ where the critical value is } \chi^{2} \text{ with } df = c - 1$$

Check ranking sum: $\sum T_i = n(n+1)/2$

Chi-Square Test

$$\chi^2 = \sum_{i=1}^{n} \frac{(O-E)^2}{E}$$

where O = Frequency of Observed Values

and

E = Frequency of Expected Values

with df = c - 1

where c = number of categories

with df = (r-1)(c-1) where r = number of rows and <math>c = number of columns

ANALYSIS OF VARIANCE (ANOVA) C.

One-Way ANOV	7 A									
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F-statistic						
Among Groups	c-I	SSA	MSA = SSA/c-1	MSA/MSW						
Within Groups	n - c	SSW	MSW = SSW/n-c							
Total	n - 1	SST								
$SST = \sum_{j=1}^{c} \sum_{i=1}^{n_j} \left(X_{ij} - \overline{\overline{X}} \right)^2 \text{ or alternative formula:} $ $SST = \sum_{j=1}^{c} \sum_{i=1}^{n_j} \left(X_{ij} - \overline{\overline{X}} \right)^2 \text{ or alternative formula:} $ $SST = \left(\sum_{j=1}^{c} \sum_{i=1}^{n_i} X_{ij} \right)^2$										

$$SSA = \sum_{j=1}^{c} n_{j} \left(\overline{X}_{j} - \overline{\overline{X}} \right)^{2} \text{ and } SSW = SST - SSA$$

 $SST = \left(\sum_{i=1}^{c} \sum_{i=1}^{n_i} X_{ij}^2\right) - \frac{\left(\sum_{j=1}^{c} \sum_{i=1}^{A_{ij}} X_{ij}\right)}{n}$

where n = number of observations, c = number of groups and $\overline{X} = overall$ mean

Tukey-Kramer Procedure

Critical Range =
$$Q_U \sqrt{\frac{MSW}{2} \left[\frac{1}{n_i} + \frac{1}{n_j} \right]}$$

where $Q_u =$ the upper tail critical value from a Studentized Range Distribution having (c) degrees of freedom in the numerator and (n-c) degrees of freedom in the denominator at a given level of significance

Two-Wa	y ANOVA			raje seje.
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F-statistic
A	r -1	SSA	MSA = SSA/(r-1)	MSA / MSE
В	c-1	SSB	MSB = SSB/(c-I)	MSB / MSE
AB	(r-1)(c-1)	SSAB	MSAB = SSAB/(r-1)(c-1)	MSAB / MSE
Error	rc (n -1)	SSE	MSE = SSE/rc(n'-1)	
Total	n-1	SST		·

where,

Factor A levels are represented by the rows and Factor B levels are represented by the columns and

n = number of observations

c = number of columns

r = number of rows

n' = number of replicates

$$SST = \sum_{i=1}^{r} \sum_{i=1}^{c} \sum_{k=1}^{n'} \left(X_{ijk} - \overline{\overline{X}} \right)^{2} \qquad SSA = cn' \sum_{l=1}^{r} \left(\overline{X}_{l} - \overline{\overline{X}} \right)^{2}$$

$$SSB = rn \sum_{j=1}^{c} \left(\overline{X}j - \overline{\overline{X}} \right)^{2} \qquad \text{where } \overline{\overline{X}} = overall \ mean$$

$$SSE = (n'-1)[S_1^2 + S_2^2 + \dots + S_k^2] \quad \text{where } S_i^2 = \text{variance of each block}$$

D. REGRESSION ANALYSIS

Multiple Linear Regression

Population Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$

Sample Model: $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + e$

Adjusted R-Square = $1 - \left[\frac{(1 - R^2)(n-1)}{(n-p-1)} \right]$ where p = number of independent/predictor variables

ANOVA Table for Regression									
Source	Degrees of Freedom	Sum of Squares	Mean Squares						
Regression	p	SSR	MSR = SSR/p						
Error/Residual	n-p-1	SSE	MSE = SSE/(n-p-1)						
Total	n-1	SST							

Test Statistic for Significance of the Overall Regression Model F = MSR/MSE

Test Statistic for Significance of Each Predictor Variable

$$t_i = \frac{b_i}{S_{b_i}}$$
 and the critical value = $\pm t_{\alpha/2,(n-p-1)}$

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = 1 - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

							a		(**)		$\Phi(x)$
.50	$\Phi(x)$	æ	$\Phi(x)$	90	$\Phi(x)$	30	$\Phi(x)$	æ	$\Phi(x)$	50	A) (30)
0.00	0.2000	0.40	0.6554	0.80	0.7881	1.50	0.8849	x-60	0.9452	2.00	0.97725
.OX	15040	·41	6501	·81	'7910	.21	-8869	-6x	9463	OI.	.97778
*02	-5080	.42	.6628	82	7939	.22	-8888	-62	9474	'02	·97831
.03	-5120	43	46664	.83	7967	.23	8907	∙63	9484	.03	97882
.04	-5160	44	6700	·84	7995	'24	8925	-64	*9495	'04	197932
0.02	0.2100	0'45	0.6736	o·85	0.8023	1.25	0.8944	r·65	0.9502	2.02	0.97982
-06	.5239	46	6772	-86	-8051	-26	-8962	-66	.9512	-06	.08030
107	•5279	.47	6808	.87	·8o78	-27	-8980	-67	9525	.07	.98077
-08	'53 1 9	-48	6844	-88	-8106	-28	-8997	-68	'9535	-08	·98124
-09	15359	-49	6879	.89	.8133	.59	-9015	-69	9545	.09	-98169
0.10	0.5398	0.20	0.6915	0.90	0.8159	1.30	0.0032	1.70	0.9554	2.10	0.98214
xx.	15438	·SI	6950	·QX	8186	-3x	9049	*7×	9564	.IX	-98237
12	15478	52	-6985	92	8212	-32	-9066	.72	9573	.12	-98300
123		53	.2019	.93	-8238	*33	9082	73	9582	.13	-9834x
114	·5517 ·5557	- 54	7054	·94	8264	134	-9000	'74	19591	·14	-98382
14	2357	34	, v 2 m	27	0204	54	, , , ,			•	
ous	0:5596	0.22	0.7088	0.95	0.8289	¥*35	0.0112	1"75	0.9599	2.12	0.98422
-16	-5636	56	7123	-96	·8315	-36	.6131	· 7 6	9608	.16	19846x
·x7	15675	57	7157	97	-8340	*37	9147	`77	9616	·17	•9 <u>8</u> 500
-x8	5714	.58	7190	·98	-8365	-38	9162	.78	9625	·x8	-98537
.19	5753	59	7224	*99	-8389	39	9177	'79	9633	-r9	98574
0.20	9.5793	0.60	0.7257	1.00	0.8413	I'40	0.9192	r·80	0.9641	2:20	0.98610
·21	5832	-6r	*7291	TO:	8438	·4X	9207	-8x	-9649	·2I	·98645
.32	·587I	-62	*7324	.03	·8461	42	9222	-82	-9656	-22	-98679
*23	-5910	-63	7357	-03	8485	43	-9236	-83	.0664	'23	98713
124	5948	-64	-7389	'04	·8508	*44	·9251	-84	-9671	'2 4	*98745
0.25	0.5987	0.65	0.7422	1.05	0.8531	1:45	0-9265	x·85	0.9678	2 25	0-98778
-26	6026	-66	*7454	-06	·855 4	-46	'9279	∙86	-9686	.26	-98809
.27	-6064	-67	-7486	.07	8577	'47	9292	·8 7	-9693	'27	198840
-28	6103	•68	7517	408	·8599	48	-9306	.88	-9699	.28	98870
.29	6141	∙69	17549	.09	-8621	. '49	.9319	-89	-9706	.29	•98899
0.30	0.6170	0.70	o-7580	1.10	0.8643	1.20	0-9332	x-90	0.9713	2:30	0.98928
.3I	6217	·7x	·7611	·II·	-8665	51	⁻ 9345	-9x	.9719	-3I	98956
.32	-6255	.73	.7642	·IZ	-8686	-52	*9357	192	.9726	-32	.98983
.33	-6293	.73	.7673	·±3	8708	.53	9379	*93	-9732	'33	.000010
.34	.6331	.74	7704	·14	8729	.54	9382	194	-9738	·3 -	-99036
0.35	0.6368	9.75	9.7734	I'IS	0-8749	1.55	0.9394	I-95	0-9744	2.35	0.99061
-36	*6406	.76	7764	-16	8770	-56	-9406	-96	-9750	-36	199086
:37	6443	.77	·7794	.17	-8790	-57	9418	-97	9756	37	99111
38	6480	.78	7823	.18	·8810	-58	9429	.98	9761	-38	99134
.39	*6517	.79	7852	.19	-8830	•59	9441	99	9767	.39	99158
0.40	0.6554	0.80	0.7881	r-20	0.8849	1 ·60	0.9452	2.00	0-9772	2.40	0-99180

NMI

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

20	$\Phi(x)$	×	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	at.	$\Phi(x)$	æ	$\Phi(x)$
2.40	0.00180	2 ·55	0.99461	2-70	0.99653	2.85	o-9978r	3.00	o-9986s	3.12	0.00018
'4I	99202	-56	99477	·7I	199664	-86	99788	·oz	∗gg86g	.16	199921
.42	.99224	.57	*99492	.72	.00674	-87	99795	.02	99874	.17	199924
*43	99245	.58	199506	.73	99683	.88	-0080I	.03	·99878	.18	199926
·44	199266	•59	99520	.74	-99693	.89	99807	.04	99882	.10	99920
2.45	0.99286	<i>2</i> -60	0.99534	2.75	0199702	2.90	0.99813	3.02	0.00886	3.20	0*99931
-46	-99303	·6x	99547	.76	*997XX	ro.	99819	-06	99889	-21	99934
'47	*99324	.62	199560	.77	199720	.92	99825	.07	100803	122	99936
-48	199343	-63	199573	178	199728	.93	18866,	-08	99896	-23	99938
'49	· 9 9361	-64	-99585	79	199736	.94	99836	.09	.00000	`24	99940
2.50	0.99379	2.65	0.00208	2.80	©199744	2,02	0.00841	3.10	0.99903	3.25	0.00042
-51	-99396	-66	199609	·8x	99752	-96	99846	·II	99906	.26	99944
.52	99413	∙ნ7	199621	·82	99760	.97	199851	122	.99910	.27	99946
53	199430	.68	99632	.83	-99767	-98	99856	-13	99913	-28	799948
"54	' 9944 6	·69	199643	-84	99774	.99	.986t	114	99916	'29	99950
2.55	0-9946I	2.70	0.99623	2.85	0-9978x	3.00	0.99865	3.12	0.99918	3.30	0.00023

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

3:075	3.262 0.9994	2.72 0.60990	3.916 0.99995
3.102 0.0990	3·263 0·9994 3·320 0·9995	3 /32 0.00001	3 970 0.39996
2 2 0.0001	3.35° 0.9996	3 /39 0.99992	3'970 0'99997
3.075 0.9990 3.105 0.9990 3.138 0.9992 3.174 0.9993 3.215 0.9904	3.389 0.9996 3.480 0.9997 3.480 0.9998 3.615 0.9999	3.731 0.99990 3.759 0.99992 3.791 0.99993 3.826 0.99993	3.976 0.99996 3.976 0.99997 4.055 0.99998 4.173 0.99999 4.417 1.99999
3.174 0.0003	3.400 0.0008	3.020 0.00004	4'173 9'99999
3'215 0.0004	3.012	3.867 0.00002	4'417 7'00000

When n > 3.3 the formula $1 - \Phi(n) = \frac{e^{-in^2}}{2\sqrt{2\pi}} \left[1 - \frac{1}{n^2} + \frac{3}{n^4} - \frac{15}{n^6} + \frac{105}{n^6} \right]$ is very accurate, with relative error less than $945/n^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points $\alpha(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{-\pi(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

P	x(F)	P	x(P)	\boldsymbol{P}	x(P)	P	x(P)	P	$\varkappa(P)$	P	x(P)
50	0.0000	5.0	1.6449	3.0	2,8808	2.0	2.0537	1.0	2-3263	0.10	3.0002
45	0.1257	4.8	1.6646	2"9	1.8957	1.0	2.0749	0.0	2-3656	Ø99	3.1214
40	0.2533	4.6	1-6849	2.8	1.0110	x-8	2.0000	ଡ଼ର୍ଚ୍ଚ	2.4089	o∙oŠ	3'7559
35	0.3823	4'4	1-7060	2.7	1-9268	1.2	2.1201	0.7	214573	0.07	3.1947
30	0'5244	4.3	1.7279	2.6	1,8431	x.6	211444	0.0	2-5121	0.06	3.5388
25	0.6745	4.0	1.7507	2.2	119600	1.2	2.1701	0.2	2-5758	0.02	312905
20	o·8416	3.8	I*7744	2'4	I-9774	I-4	2.1973	0.4	2.6521	0.01	3.4100
15	1.0364	3.6	1.7991	2.3	T-9954	1.3	2 2262	0.3	2-7478	0.002	3.8006
ΙO	1.5816	3.4	1.8250	2.2	2.0141	1.2	2.2571	0.2	2.8782	0.00x	4.2640
5	1.6449	3.2	1.8522	2·I	2.0335	1.1	2.2004	D.I	3.0902	0.0002	4.4172

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_{\nu}(F)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{3}{2}\nu)} \int_{t_{\rm p}(P)}^{\infty} \frac{dt}{(1+t^2/\nu)^{\frac{1}{2}(\nu+1)}}, \label{eq:power_power}$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^a -distribution with ν degrees of freedom respectively; then $t = X_1/\sqrt{X_2/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t \ge t_{\nu}(P)$ is P/100. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t| \ge t_{\nu}(P)$ is 2P/100.

The limiting distribution of t as ν tends to invinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

P	40	30	25	20	ıg	IO	5	2.2	×	0.2	O.E	0.02
$\nu = \tau$	0.3249	0.7265	1.0000	1.3764	1.963	3.078	6-314	12.71	31.82	63.66	318-3	.636.6
2	0.3884	0.6172	0.8165	1.0607	T-386	1-886	2.020	4:303	6.065	9.925	22.33	31.60
. 3	0.2767	0.2844	07649	0.9785	1.220	1.638	2.353	3.183	4'54I	5.841	10.31	12.02
4	0-2707	0.2686	0.2402	0.0410	1.100	1.233	2-132	2.776	3 747	4.604	7'173	8.610
5	0.2672	0.5594	0.7267	019195	J-156	1'476	2.012	2:571	3.365	4.032	5:893	6.860
5 6	0.2648	O'5534	0.7176	0.9057	I-134	1'440	11943	2.447	3 T43	3.707	5.303	5.959
7 8	0.5633	0.249x	0.7111	0'8960	1.110	1'415	1.B95	2.365	2.008	3'499	4 78 ;	5.408
8	0.3610	0.5459	0.7064	0.8889	1.108	1'397	1-860	21306	2.896	3.355	4'500	5.041
9	0.5010	0.5435	0.7027	0.8834	1.100	1.383	1.833	2.262	2.821	3.520	4'39''	4.781
zo	0.2602	0-5415	0.6998	o-8791	1003	r-372	1-812	2.228	2.764	3.160	4'144	4:587
XX.	0.3296	0.2399	0.6974	0.8755	1.088	1.363	t.796	2.301	2.718	3-106	4.02	4.437
12	0.3290	0 <u>5</u> 386	0.6955	0.8726	1-083	1'356	‡782	2.175	2·68z	3.055	3,030	4'318
x3	0.2586	O'5375	0.6938	0.8702	1.079	1.320	1.771	2.160	2.650	3.013	3.85::	4'22I
14	O.32gš	0.2366	0.6924	o-8681	1.076	1.342	1.461	2.142	2.624	2.977	3.787	4'140
IS	0°2579	0.2322	0.6912	0.8662	1.074	1.341	4 .753	3.131	2.602	2.947	3:733	4'073
z 6	0.2576	0.2320	o 690x	0.8647	1-071	x:337	1.746	2,150	2.283	2.021	3.686	4'015
x7	0.2573	0.5344	0.6892	0.8633	1.069	1.333	1.740	2'110	2.567	2.898	3.646	3.965
18	0.3571	0.2338	0.6884	0.8620	I-067	1.330	1.734	5.101	2'552	2.878	3.Qzc	3.922
19	0.3260	0.2333	0.6876	0.8610	1.066	1.328	1:729	2.093	2:539	2.861	3.276	3.883
20	0.2567	0.2346	0.6870	0-8600	x-064	1.325	¥:725	2.086	2.528	2.845	3.223	3.850
21	0.2566	0.2322	0.6864	.0.8591	1.003	1.353	1.721	2.080	2.218	2.831	3.23	3.810
22	0.2564	0.2331	0.6858	0.8283	1.061	1.321	4.212	2.074	2.508	5.810	3 505	3.792
23	0.2563	0.2317	0.6853	0.8575	1.000	1.310	1.214	2.069	2.200	2.807	3.485	3.768
24	0.2563	0.2314	0.6848	0.8569	1.059	1.318	1, All	2.064	2.492	2.797	3.467	3.745
25	0.2561	0.2312	0.6844	0.8562	1.028	1.316	1 708	2.060	2.485	2.787	3.450	3.725
26	0.2560	0.2300	0.6840	0.8557	1-028	1.312	1, 706	2.056	2.479	2.779	3'435	3.202
27	0.2559	0.2306	0.6837	0.8521	1.022	1.314	1 703	2.023	2.473	2.771	3.421	3.690
28	0.3528	0.2304	0.6834	0.8546	1.026	1.313	1,701	2.048	2.467	2:763	3.408	3.674
29	0.3557	0.2302	0.6830	0.8242	1.022	1.311	x) 699	2.042	2.462	2.756	3-396	3.620
30	0.2556	0.2,300	0.6828	0.8538	1.022	1.310	1 697	2.042	2'457	2.750	3.382	3.646
32	0.2555	0.5297	0.6822	0.8530	1.024	1.300	I 694	2.037	2'449	2.738	3.362	3.623
34	0.2553	0.2294	0.6818	0.8523	1.023	1.302	1) 691	2.032	2'441	2.728	3 348	3.60x
36	0.2552	0.2291	0.6814	0.8517	1.02	1-306	t-688	2.028	2.434	2.410	3,333	3.283
38	0.5221	0.2288	0.6810	0.8512	1.021	1.304	ı⊦686	2.024	2:429	2.413	3.310	3.266
40	0.2550	0.286	0.6807	0.8502	1-050	1.303	zl 684	2.021	2.423	2.704	3 307	3.551
50	0.2547	0.5278	0.6794	018489	1.042	1.599	1 676	2.000	2.403	2.678	3.521	3.496
60	0-2545	0'5272	0.6786	0.8477	1.045	1.596	1-671	2.000	2:390	2.660	3.535	3.460
120	0.2539	0.5258	0.6765	0.8446	1.041	1.583	I \6 58	1.980	2:358	2.617	3,100	3.323
∞	0.5233	0.5244	0.6745	0.8416	1.036	1.583	±645	1-960	2.326	2.576	3.000	3.591

TABLE 12(a). 10 PER CENT POINTS OF THE F-DISTRIBUTION

The function tabulated is $F(P) = F(P|\nu_1, \nu_2)$ defined by the equation

$$\frac{P}{100} = \frac{\Gamma(\frac{1}{2}\nu_1 + \frac{1}{2}\nu_2)}{\Gamma(\frac{1}{2}\nu_1) \Gamma(\frac{1}{2}\nu_2)} \nu_1^{\frac{1}{2}\nu_1} \nu_2^{\frac{1}{2}\nu_2} \int_{F(P)}^{\infty} \frac{F^{\frac{1}{2}\nu_1 - 1}}{(\nu_2 + \nu_2 F)^{\frac{1}{2}(\nu_1 + \nu_2)}} dF,$$

for P=10, 5, 2.5, 1, 0.5 and 0.1. The lower percentage points, that is the values $F'(P)=F'(P|\nu_1,\nu_2)$ such that the probability that $F\leqslant F'(P)$ is equal to P/100, may be found by the formula

$$F'(P|\nu_1,\,\nu_2)\,=\,1/F(P|\nu_2,\,\nu_1),$$

(This shape applies only when $\nu_1\geqslant 3.$ When $\nu_1<3$ the mode is at the origin.)

$\nu_1 =$	x	2	3	4	5	6	7	8	IO	12	24	80
P2 = 1		49.50	53.28	55.83	57:24	58.20	58.01	59:44	60.13	60.71	62.00	
2	8.526	9.000	9:162	9.243	9.293	9.326	9:349	9,367	9.392	9.408		63.33
3	5'538	5.462	5:391	5.343	5:309	5.582	5.566	5'252	5.530	5.516	9.450	9.491
- 4	4.242	4.322	4.101	4'107	4'051	4.010	3'979	3'955	3.920	3.896	5·176 3·831	5'134
						,	2 212	3 933	2 920	3.090	3.031	3.761
5		3.780	3,610	31520	3'453	3:405	3:368	3'339	3'297	3:268		
6	3'775	3.463	3'289	3.181	3.108	3'055	3'014	2.083	21937	2.002	3.101 3.101	3.102
7		3*257	3'074	2.96I	2.883	2.827	2.785	2.752	2·703	2.668		2.722
8	3 458	3-113	2'924	2-806	2.726	2.668	2.624	2.589	2.238	2.202	2.575	2.471
9	3.360	. 31006	2.813	2-693	2.611	2.221	2.202	2.460	2.416	_	2.404	2.293
						- 55-	- 3-3	~ 409	*410	2.379	2.277	2.120
10	D 3	2.924	2.728	2.605	2.222	2:461	2'414	2:377	21323	2.284	2:178	
II	D	2.860	2,660	2,236	2.451	2.380	2.342	2.304	2:248	21209	-	2.055
12		2.807	2,606	2.480	2 394	2-331	2'283	2.242	2·188		2,100	1.972
13	3,136	2.763	2.260	2-434	2.347	2.283	2'234	2.102	z·138	2.147	2.036	1.004
14	3.105	2.726	2.222	2'395	2.307	2.243	2 193	2.124	2.002	2.097	1.083	1.846
2			_			15	3.3	~ -34	2 095	2.054	1.938	1.797
15	3.073	2.695	2'490	2-361	2.273	2:208	2.158	2.110	2.050	2'017	1.800	
16	3.048	2-668	2'462	2,333	2'244	2.178	2.128	2.088	2.028	1.085	1.866	1.755
17	3.026	2.645	2'437	2,308	2.318	2.125	2.105	2.001	2.001	1.028	1.836	1.218 1.686
18	3.007	2.624	2.416	2.286	2.136	2,130	2,070	2-038	X 977	, -	1,810	
19	2.990	2.606	2.397	2.266	2.176	2.100	2.058	2'017	1.026	1.033		1.657
							2 030	2017	1.950	1.912	1.787	1.631
20	2.975	2.289	2.380	21249	2.158	2.001	2.040	1.000	1.937	1.802	1.767	6
21	2.961	2.272	2.362	2'233	2.142	2.075	2.023	1.982	1'920	1.875	1-748	1.607
22	21949	2.201	2.321	2'219	2.128	2.000	2.008	1.967	1.904	1.850		1.286
23	2.937	2.249	2.339	2.207	2.112	2.047	1.002	1.953	1.800	1.845	1.731	1.262
24	2.927	2:538	2:327	2.102	2.103	2.035	1.083	I 933	1.877	1.832	1.716	1.249
				" •	_		- 703	• 770	1 0//	1.032	1.202	1.233
25	2.018	2.228	2.317	2.184	2.002	2.024	1.971	1,020	1.866	1.820	1.680	*****
26	5.000	2.219	2.307	2.174	2.082	2.014	1.661	1.010	1.855	1.800	1.659 1.677	1.218
27	2.001	2.211	2:299	2.162	2.073	2.005	1.022	1.000	1.845	1.200	1.666	1.204
28	2.894	2.203	2.201	2.157	2.064	1.000	1.043	1,000	1.836			1491
29	2.887	2:495	2.283	2.140	2.057	1.988	1.032	1.803	1-827	1.790	1.656	1'478
			_	",	7	,	- 223	1 092	1 027	1.481	1.647	1'467
30	2.881	2.489	2.276	2.142	21040	1.080	1.927	1.884	1.810	T-MINA.	6-0	
32	2.869	2:477	2.263	2 129	2.036	1.967	1.013	1.870	1.805	1.773	1.638	1.456
34	2.859	2.466	2.252	2.118	2.024	1.955	1.001	1.858		1.758	1.622	1.437
36	2.850	2.456	2.243	2.108	2'014	1.945	1.801	1.847	1.793	1.745	1.608	1.419
38	2.842	2 448	2.234	2.000	2.005	1.935	1.881	1.838	1.781	1.734	7.295	1'404
						- 203	7.001	1.030	1.772	1.724	1.584	1,300
40	2.832	2.440	2.226	2.001	1.997	1.927	1.873	1-829	T1050	w.m.	m - 44 m - 1	
60	2.791	2:393	2.177	2.041	1.046	1.875	1.810	1-029	1.763	1.715	1.374	1.377
120	2.748	2*347	2.130	1 992	1.896	1.824	1.767	1.775	1.707	x-657	1.211	1.501
90	2.706	2.303	2.084	1'945	1.847	1.774	1.717	1.022	1-652	1.001	1'447	1.103
			•	2 TO	~ -1/	- 174	* /*/	1.0/0	1.299	1.246	1,383	1.000

TABLE 12(b). 5 PER CENT POINTS OF THE F-DISTRIBUTION

If $F = \frac{X_1}{\nu_1} / \frac{X_2}{\nu_2}$, where X_1 and X_2 are independent random variables distributed as χ^2 with ν_1 and ν_2 degrees of freedom respectively, then the probabilities that $F \geqslant F(P)$ and that $F \leqslant F'(P)$ are both equal to P/100. Linear interpolation in ν_1 and ν_2 will generally be sufficiently accurate except when either $\nu_1 > 12$ or $\nu_2 > 40$, when harmonic interpolation should be used.

(This shape applies only when $\nu_1 \geqslant 3$. When $\nu_1 < 3$ the mode is at the origin.)

$\nu_1 =$	r	2	3	4	5	6	7	8	IO	12	24	90
$\nu_2 = \mathbf{r}$	161.4	199.5	215'7	224.6	230'2	234.0	236.8	238.0	241'9	243.0	249°I	254'3
2	18.21	19.00	19-16	19.25	19.30	10.33	19:35	19:37	19:40	10.41	19'45	19.50
3	10-13	9.552	9-277	9.117	0.013	8.941	8.887	8.845	8-786	8 745	8.630	8:526
4	7:709	6.944	6.59x	6.388	6-256	6.163	6.094	6.041	5.964	5'912	5.774	5.628
						_			2 5-4	3 3	J 11T	3 000
5	6.608	5.786	5.409	5.132	5'050	4.020	4.876	4.818	4'735	4.678	4:527	4.365
6	5.987	5'143	4'757	4.534	4.387	4.284	4.207	4.147	4.060	4.000	3.841	3.660
7	2,201	4.737	4.342	4'120	3.972	3.866	3.787	3.726	3.637	3.575	3.410	3.530
8	2.318	4'459	4.066	3.838	3.687	3.281	31500	3.438	3'347	3.284	3-115	2.928
9	5-117	4.256	3.863	3.633	3.482	3.374	3'293	3.230	3.137	3'973	2.900	2.707
									0 -0,	0 -15	- ,	- /-/
ro	4.965	4-103	3.708	3.478	3.326	3.217	3.135	3.072	2.978	2.013	2.737	2:538
II	4.844	3.085	3.282	3 357	3.504	3.002	3.015	2'948	2.854	2.788	2-600	2.404
12	4.747	3.885	3.490	3.529	3.100	2.996	2.013	2.849	2.753	2 687	2.505	2.296
13	4.667	3-806	3.411	3.179	3.022	2.915	2.832	2.767	2.671	2.604	2.420	2.206
14	4.600	3.739	3:344	3.115	2.958	2-848	2.764	2.699	2.602	2.534	2.349	2.131
											- 045	5-
15	4°543	3.685	3.287	3.056	2.901	2.790	2.707	2.641	2.24	2'475	2-288	2.066
x6	4.494	3.634	3-239	3.002	2.852	2.741	2.657	2.501	2.494	2.425	2.235	2.010
17	4'452	3.202	3-197	2.965	5.810	2.699	2.614	2.548	2.450	2·381	5.100	1.000
18	4.414	3.555	3.100	21928	2.773	2.661	2.577	2.510	2.412	2.342	2.120	1.012
19	4.381	3.22	3'127	2.895	2.740	2.628	2 544	2.477	2.378	2.308	2.114	1.878
										- 5		,-
20	4.321	31493	3-098	2.866	27711	2:599	2.514	2.447	2:348	2.278	2.082	1 843
21	4'325	3.467	3.072	2.840	2.685	2.573	2.488	2'420	2.321	2.250	2.054	1.812
22	4'301	3*443	3*049	2.817	2.66r	2.249	2.464	2:397	2.207	2.226	2.028	1.783
23	4.279	3.422	3-028	2.796	2.640	21528	2.442	2:375	2.275	2'204	2.002	x-757
24	4.260	3.403	3.000	2.776	2.621	2.208	2'423	2.355	2.255	2.183	1.984	I 733
										_		
25	4.242	3.382	2-99I	2.759	2.603	2.490	24405	2.337	2.236	2.165	1'964	1.711
26	4'225	3,369	2.975	2.743	2-587	2'474	2.388	2.321	2.550	2.148	1'946	1.691
27	4.310	3°354	· 2·960	2-728	2.572	2.459	2'373	2.302	2.204	2.132	1.930	1.672
28	4.196	3.340	2.947	2.714	2-558	2'445	2.350	2-291	2-190	2.118	1.015	1.654
29	4.183	3.358	2'934	2.701	2.545	2.432	2.346	2.278	2.177	2-104	I.goI	1.638
								-				-
30 -	4-171	3.319	2.022	2.690	2*534	2.421	2.334	2.266	2.165	2.002	x·887	1.622
32	4'149	3.295	2.901	≈ ∙668	2.212	2:399	2.313	2.244	21142	2.070	1.864	1.504
34	4.130	3.276	2.883	2-650	2*494	2-380	2.294	2.222	2.123	2.050	x-843	1.260
36	4.113	3-259	2.866	2.634	2-477	2.364	2.277	2.200	2.100	2.033	1-824	1.547
38	4.098	3*245	2.852	2.619	2.463	2.349	2.262	2.104	2.001	2.017	x-808	1.527
							•		•			
40	4.085	3.535	2.839	2.606	2.449	2.336	2.249	2-180	2.077	2.003	1.793	1.500
60	4.001	3.120	2.758	2.525	2.368	2.254	2.167	2.097	1.993	1.012	1.700	1.380
120	3.020	3.072	2.680	2.447	2.200	2.175	2.087	2.016	1.010	x 834	1.608	1'254
8	3-841	2.996	2.603	2.372	2.214	2.000	2.010	1.038	1.831	1.752	1.217	1,000

TABLE 8. PERCENTAGE POINTS OF THE x2-DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{\chi_{\nu}^{2}(P)}^{\infty} x^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}x} dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \geqslant \chi^2_{\nu}(P)$. For $\nu > \text{100}$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu-1}$ and unit variance.

(The above shape applies for $\nu \gg 3$ only. When $\nu < 3$ the mode is at the origin.)

P	50	40	30	20	10	5	2.2	r	0.2	0.1	0.02
$\nu = r$	0.4549	0.7083	1.074	1.642	2.706	3·84x	5.024	6-635	7.879	10.83	12:12
2	r-386	1-833	2.408	3.510	4.605	5.99I	7:378	9.210	10.60	13.82	15:20
3	2-366	2.946	3.665	4.642	6.251	7.815	9.348	11.34	12.84	16.27	17.73
4	3.357	4.042	4.878	5.989	7.779	9.488	11.14	13.58	14-86	18.47	20.00
5 6	4.321	5.133	6.064	7-289	9-236	11.07	12.83	15.09	16-75	20.52	22.11
	5.348	6.511	7.231	8.558	10.64	12.29	14.45	16.81	18.55	22:46	24.10
7	6.346	7.283	8.383	9.803	12.02	14.07	16.01	18-48	20.58	24.35	26.02
8	7:344	8.321	9.524	11.03	13.36	12.21	17.23	20.00	21.95	26.12	27.87
9	81343	9-414	10.66	12.24	14.68	16-92	19.02	21.67	23.59	27.88	29.67
IO	9.342	10.47	11.78	I3'44	15.99	18-31	20.48	23.21	25.19	29.59	31.42
II	10.34	11.23	12.90	14.63	17:28	19.68	21.92	24.72	26-76	31.26	33.14
12	11.34	12.28	14.01	15.81	18-55	21.03	23:34	26-22	28-30	32.01	34.82
13	12.34	13.64	15.12	16.98	19-81	22.36	24.74	27.69	29.82	34'53	36.48
14	13.34	14.69	16-22	18.12	21.06	23.68	26.13	29.14	31.35	36.13	38.11
15	14.34	15.73	17:32	19.31	22.31	25.00	27:49	30.28	32.80	37.70	39.72
x6	75.34	16.78	18.42	20.47	23.54	26.30	28-85	32.00	34'27	39.25	41.31
17	16.34	17.82	19.21	21.61	24.77	27.59	30.10	33.41	35.72	40.79	42.88
28	17:34	18.87	20.60	22.76	25.99	28.87	31'53	34.81	37.16	42.31	44'43
19	18.34	19.91	21.69	23.90	27:20	30.14	32.85	36.19	38-58	43.82	45 97
20	19.34	20.95	22.77	25.04	28.41	31.41	34.17	37:57	40.00	45'31	47.50
21	20.34	21.00	23.86	26.17	29.62	32.67	35 48	38.93	41.40	46.80	49.01
22	21.34	23.03	24.94	27.30	30.81	33.92	36.78	40.29	42.80	48.27	50.21
23	22.34	24.07	26-02	28.43	32.01	35'17	38.08	41.64	44-18	49.73	52.00
24	23.34	25'11	27.10	29.55	33.30	36.42	39.36	42.98	45.26	51.18	53.48
25	24'34	26.14	28.17	30.68	34.38	37.65	40.65	44'31	46.93	52.62	54:95
26	25 34	27.18	29-25	31.79	35.56	38.89	41.92	45.64	48.29	54.05	56·41
27	26.34	28.21	30.32	32.91	36.74	40.11	43'19	46.96	49.64	55.48	57.86
28	27:34	29.25	31.39	34.03	37.92	41.34	44.46	48.28	50:99	56.89	59:30
29	28.34	30.58	32.46	35.14	30.00	42.56	45.72	49.59	52.34	58.30	60.73
30	29:34	31.32	33.23	36.25	40.26	43.77	46.98	50.89	53.67	59.70	62-16
32	31.34	33:38	35.66	38.47	42.58	46.10	49.48	53.49	56.33	62:49	65.00
34	33.34	35'44	37.80	40.68	44.90	48.60	51.97	56.06	58.96	65.25	67.80
36	35.34	37.50	39.92	42.88	47.21	51.00	54.44	58.62	6x-58	67.99	70.20
38	37:34	39.56	42.05	45.08	49.21	53.38	56.90	61.16	64.18	70-70	73.35
40	39:34	41.62	44.16	47.27	51.81	55.76	59*34	63.69	66.77	73.40	76.09
50	49.33	21.80	54.72	28.16	63.17	67.50	71.42	76.15	79.49	86.66	89.56
60	59.33	62.13	65.23	68.97	74.40	79:08	83.30	88-38	91.95	99.61	102'7
70	69.33	72.36	75.69	79.71	85.23	90.23	95.02	100.4	104.2	112.3	115.6
80	79:33	82-57 .	86-12	90.41	96-58	101.0	106-6	112.3	116.3	124.8	128.3
90	89.33	92.76	96.52	IOI.I	107.6	113.1	118.1	124.1	128.3	137.2	140.8
100	99.33	102.0	106.9	111.2	118.2	124.3	129.6	135-8	140.2	149.4	153.2

Denominator									N	umerate	or	
df	2	3	4	5	6	7	8	9	10	11	12	13
1	8.93	13.44	16.36	18.49	20.15	21.50	22.64	23.62	24.48	25,24	25.92	26.5
2	4.13	5.73	6.77	7.54	8.14	8.63	9.05	9.41	9.73	10.01	10.26	10.4
3	3.33	4.47	5.20	5.74	6.16	6.51	6.81	7.06	7.29	7.49	7.67	7.83
. 4	3.02	3.98	4.59	5.04	5.39	5.68	5.93	6.14	6.33	6.49	6.65	6.78
5	2.85	3:72	4.26	4.66	4.98	5.24	5.46	5.65	5.82	5.97	6.10	6.22
6	2.75	3.56	4.07	4.44	4.73	4.97	5.17	5.34	5.50	5.64	5.76	5.88
7	2.68	3.45	3.93	4.28	4.56	4.78	4.97	5.14	5.28	5.41	5.53	5.64
8	2.63	3.37	3.83	4.17	4.43	4.65	4.83	4.99	5.13	5.25	5.36	5.46
9	2.59	3.32	3.76	4.08	4.34	4.55	4.72	4.87	5.01	5.13	5.23	5.33
10	2.56	3.27	3.70	4.02	4.26	4.47	4.64	4.78	4.91	5.03	5.13	5.23
11	2.54	3.23	3.66	3.97	4.21	4.40	4.57	4.71	4.84	4.95	5.05	5.15
12	2.52	3.20	3.62	3.92	4.16	4.35	4.51	4.65	4.78	4.89	4.99	5.08
13	2.50	3.18	3.59	3.89	4.12	4.30	4.46	4.60	4.72	4.83	4.93	5.02
14	2.49	3.16	3.56	3.85	4.08	4.27	4.42	4.56	4.68	4.79	4.88	4.97
15	2.48	3.14	3.54	3.83	4.05	4.24	4.39	4.52	4.64	4.75	4.84	4.93
16	2.47	3.12	3.52	3.80	4.03	4.21	4.36	4.49	4.61	4.71	4.81	4.89
17	2.46	3.11	3.50	3.78	4.00	4.18	4.33	4.46	4.58	4.68	4.77	4.86
18	2.45	3.10	3.49	3.77	3.98	4.16	4.31	4.44	4.55	4.65	4.75	4.83
19	2.45	3.09	3.47	3.75	3.97	4.14	4.29	4.42	4.53	4.63	4.72	4.80
20	2.44	3.08	3.46	3.74	3.95	4.12	4.27	4.40	4.51	4.61	4.70	4.78
21	2.43	3.07	3.45	3.72	3	4.11	4.26	4.38	4.49	4.59	4.68	4.76
22	2.43	3.06	3.44	3.71	3.92	4.10	4.24	4.36	4.47	4.57	4.66	4.74
23	2.42	3.05	3.43	3.70	3.91	4.08	4.23	4.35	4.46	4.56	4.64	4.72
24	2.42	3.05	3.42	3.69	3.90	4.07	4.21	4.34	4.45	4.54	4.63	4.71
25	2.42	3.04	3.42	3.68	3.89	4.06	4.20	4.32	4,43	4.53	4.61	4.69
26	2.41	3.04	3.41	3.68	3.88	4.05	4.19	4.31	4.42	4.52	4.60	4.68
27	2.41	3.03	3.40	3.67	3.87	4.04	4.18	4.30	4.41	4.50	4.59	4.67
28	2.41	3.03	3.40	3.66	3.87	4.03	4.17	4.29	4.40	4.49	4.58	4.66
29	2.40	3.02	3.39	3.65	3.86	4.02	4.16	4.28	4.39	4.48	4.57	4.65
30	2.40	3.02	3.39	3.65	3.85	4.02	4.16	4.28	4.38	4.47	4.56	4.64
40	2.38	2.99	3.35	3.61	3.80	3.96	4.10	4.22	4.32	4.41	4.49	4.56
60	2.36	2.96	3.31	3.56	3.76	3.91	4.04	4.16	4.25	4.34	4.42	4.49
80	2.35	2.95	3.29	3.54	3.73	3.89	4.01	4.13	4.22	4.31	4.39	4.46
120	2.34	2.93	3.28	3.52	3.71	3.86	3.99	4.10	4,19	4.28	4.35	4.42
240	2.34	2.92	3.26	3.50	3.68	3.83	3.96	4.07	4.16	4.24	4.32	4.39
∞ '	2.33	2.90	3.24	3.48	3.66	3.81	3.93	4.04	4.13	4.21	4.29	4.35

NMI