

POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza

WYDZIAŁ MATEMATYKI I FIZYKI STOSOWANEJ

ANDRII KOTOVYCH 173163

ALGORYTMY I STRUKTURY DANYCH

Projekt

kierunek studiów: Inżynieria i analiza danych

Opiekun pracy:

Prof. Mariusz Borkowski

Spis treści

1.	Wstęp	3
	Algorytm	
	Schemat blokowy	
	Pseudokod	
	Rezultaty testów	
	Wykresy złożoności czasowej oraz obliczeniowej	
	Wnioski oraz podsumowanie	
	Kod	

1. Wstęp

Zaimplementuj algorytm sortowania przez scalanie oraz algorytm sortowania przez wybieranie.

2. Algorytm

SCALANIE

- 1. Dane dzielimy na dwie równe lub prawie równe części. Dopóki uzyskane dwie części nie są posortowanymi (czyli jednoelementowymi) fragmentami ponownie dzielimy osobno każdą z powstałych części tą samą metodą;
- 2. Kiedy mamy doczynienia z dwoma posortowanymi częściami , scalamy je w jeden dłuższy posortowany fragment i zwracamy go do scalenia z jego druga połówka.;

WYBIERANIE

- 1. Tworzymy zbiór wartości posortowanych (na początku pusty);
- 2. Szukamy w naszej tablicy najmniejszej wartości, zabieramy ją i odkładamy na koniec zbioru posortowanego;

3. Schemat blokowy

Schemat blokowy scalanie

Scalaj(i_p, i_s, i_k)

Dane wejściowe

- d[] scalany zbiór
- i_p indeks pierwszego elementu w młodszym podzbiorze, $i_p \in N$
- i_s indeks pierwszego elementu w starszym podzbiorze, $i_s \in N$
- i_k indeks ostatniego elementu w starszym podzbiorze, $i_k \in N$

Dane wyjściowe

d[] - scalony zbiór

Zmienne pomocnicze

- p[] zbiór pomocniczy, który zawiera tyle samo elementów, co zbiór d[].
- i_1 indeks elementów w młodszej połówce zbioru d[], $i_1 \in \mathbb{N}$
- i_2 indeks elementów w starszej połówce zbioru d[], $i_2 \in \mathbb{N}$
- i indeks elementów w zbiorze pomocniczym p[], $i \in N$

Schemat blokowy wybieranie

Dane wejściowe

- n liczba elementów w sortowanym zbiorze, $n \in \mathbb{N}$
- d[] zbiór n-elementowy, który będzie sortowany. Elementy zbioru mają indeksy od 1 do *n*.

Dane wyjściowe

d[] - posortowany zbiór n-elementowy. Elementy zbioru mają indeksy od 1 do n. $Zmienne\ pomocnicze$

i, j - zmienne sterujące pętli, $i, j \in \mathbb{N}$

 p_{\min} - pozycja elementu minimalnego w zbiorze d[], $p_{\min} \in \mathbb{N}$

4. Pseudokod

SCALANIE

K01:
$$i_{1} \leftarrow i_{p}$$
; $i_{2} \leftarrow i_{s}$; $i \leftarrow i_{p}$
K02: **Dla** $i = i_{p}$, $i_{p} + 1$, ..., i_{k} :
jeśli $(i_{1} = i_{s}) \lor (i_{2} \le i_{k} \text{ i d}[i_{1}] > \text{d}[i_{2}])$,
to $p[i] \leftarrow \text{d}[i_{2}]$; $i_{2} \leftarrow i_{2} + 1$
inaczej $p[i] \leftarrow \text{d}[i_{1}]$; $i_{1} \leftarrow i_{1} + 1$
K03: **Dla** $i = i_{p}$, $i_{p} + 1$,..., i_{k} :
 $\text{d}[i] \leftarrow p[i]$

K04: Zakończ

WYBIERANIE

K01: **Dla**
$$j = 1, 2, ..., n - 1$$
: **wykonuj kroki** K02...K04
K02: $p_{min} \leftarrow j$

K03: **Dla**
$$i = j + 1, j + 2, ..., n$$
: **jeśli** $d[i] < d[p_{min}],$ **to** $p_{min} \leftarrow i$

K04: $d[j] \leftrightarrow d[p_{min}]$

K05: Zakończ

5. Rezultaty testów

SCALANIE

```
Sortowanie przez scalanie

2022 Andrii Kotovych

Przed sortowaniem:

96 1 68 47 96 76 30 53 80 33
Po sortowaniu:

1 30 33 47 53 68 76 80 96 96

Process finished with exit code 0
```

```
Sortowanie przez scalanie
2022 Andrii Kotovych

Przed sortowaniem:

7 98 58 99 11 13 49 98 18 75 86 91 86 94 20
Po sortowaniu:

7 11 13 18 20 49 58 75 86 86 91 94 98 98 99

Process finished with exit code 0
```

Sortowanie przez scalanie

2022 Andrii Kotovych

Przed sortowaniem:

70 10 97 50 80 85 49 48 58 66 76 28 41 95 87 63 90 50 46 65 32 57 77 8 97 Po sortowaniu:

0 10 20 70 /1 // /0 /0 50 50 57 50 47 45 44 70 74 77 00 05 07 00 05

Process finished with exit code 0

2022 Andrii Kotovych

Przed sortowaniem:

50 40 8 55 99 89 81 74 14 23 18 31 81 90 53 31 26 46 64 91 95 13 65 83 34 28 77 65 0 63

Po sortowaniu:

0 8 13 14 18 23 26 28 31 31 34 40 46 50 53 55 63 64 65 65 74 77 81 81 83 89 90 91 95 99

Process finished with exit code 6

Process finished with exit code 0

6. Wykresy złożoności czasowej oraz obliczeniowej

Moc obliczeniowa 3Ghz (około 300000000 operacji/sekunda)

SCALANIE

WYBIERANIE

7. Wnioski oraz podsumowanie

SCALANIE

Dobry i szybki algorytm względem złożoności czasowej, gorzej jest ze złożonością pamięciową bo potrzebuje jeszcze tyle samo pamięci dla tworzenia dodatkowej tablicy.

Złożoność O(n log n), tego typu algorytmy są nieco wolniejsze od algorytmów o złożoności liniowej, ale nadal bardzo wydajne.

WYBIERANIE

Prosty algorytm, wystarczy szukać minimum w przedziale, ale jest on mało wydajny i ilość operacji wiodących jest niezależna od układu danych na wejściu – porównuje nawet jeśli nie musi.

Zlóżoność obliczeniowa- Zlóżoność kwadratowa O(n^2), dwie zagnieżdżone pętli ze złożonością liniową każdej pętli.

8. Kod

WYBIERANIE

```
if (!inputFile.is open()) {
while (inputFile >> x) {
if (!outputFile.is open()) {
 outputFile << x << " ";</pre>
```

SCALANIE

```
#include <cmath>
void MergeSort(int i p, int i k)
  if(i_s - i_p > 1) MergeSort(i_p, i_s - 1);
if(i_k - i_s > 0) MergeSort(i_s, i_k);
```