Untitled Honours Project

Alasdair Nam Thang Tran

A thesis submitted in partial fulfilment of the degree of Bachelor of Science (Honours) at The Department of Computer Science Australian National University

August 2015

© Alasdair Nam Thang Tran

Typeset in Palatino by TEX and LATEX $2_{\mathcal{E}}$.

Except where otherwise indicated, this thesis is my own original work. Alasdair Nam Thang Tran 21 August 2015

Acknowledgements

Acknowledgement stuff ...

Abstract

Abstract of my thesis...

Contents

Ac	cknowledgements	vii				
Aŀ	ostract	ix				
Co	ontents	xi				
1	Introduction	1				
	1.1 Motivation	1				
	1.2 Organisation	1				
2	Background					
	2.1 Spectroscopy and Photometry	3				
	2.2 Machine Learning	3				
	2.3 Active Learning	3				
3	Experimental Protocol	5				
	3.1 Hyper-parameter Optimisation	5				
	3.2 Active Learning Routine	5				
	3.3 Class Proportion Estimation	5				
	3.4 Performance Measures	5				
4	Results and Discussion					
	4.1 Active Learning Results	7				
	4.2 Some More Results	7				
5	Conclusion	11				
	5.1 Future Work	11				
A	Guide to Using mclearn	13				
	A.1 Installation	13				
	A.2 Usage and Examples	13				
В	Vectorisation of the Variance Estimation	15				
Bi	bliography	17				

xii Contents

Introduction

- 1.1 Motivation
- 1.2 Organisation

Background

2.1 Spectroscopy and Photometry

Differences between spectroscopy and photometry.

Figure 2.1: Vega spectrum.

2.2 Machine Learning

Here a citation from [Wolf 2014]

2.3 Active Learning

Experimental Protocol

- 3.1 Hyper-parameter Optimisation
- 3.2 Active Learning Routine
- 3.3 Class Proportion Estimation
- 3.4 Performance Measures

Results and Discussion

The dataset

Learning curve with random sampling.

- 4.1 Active Learning Results
- 4.2 Some More Results

Figure 4.1: Distribution of the classes in the training set.

Figure 4.2: Learning curves.

Conclusion

5.1 Future Work

12

Guide to Using mclearn

- A.1 Installation
- A.2 Usage and Examples

Vectorisation of the Variance Estimation

In estimating the variance of the unlabelled pool, there are two matrices we wish to compute.

Bibliography

WOLF, C. 2014. Milky Way dust extinction measured with QSOs. *Monthly Notices of the Royal Astronomical Society* 445, 4252–4258. (p. 3)