

Analyse de Fourier

Base globale

• Sinusoïdes de fréquences variant arithmétiquement

Fourier fenétré et filtres de Gabor

• Base locale

• Fonctions de base: produit de sinusoïdes et de gaussiennes

Ondelettes

• Base locale

• Fréquences variant géométriquement

• Fonction de base de forme indépendante de l'echelle

Bien plus de degrés de libertés que pour la TF dans le choix des fonctions de base

 Gère les signaux périodiques, apériodiques de manière naturelle

• La théorie intègre de fait les signaux de support fini

• Localisation en temps ET en fréquence

Fonctions d'echelle: $\Phi^{i} = \begin{bmatrix} \varphi_{1}^{i} & \varphi_{2}^{i} & \dots & \varphi_{n_{i}}^{i} \end{bmatrix}^{t}$ Raffinabilité: $\varphi_{k}^{i}(x) = \sum_{i} h_{k+i}^{j} \varphi_{k+i}^{j}(x) \quad \Phi^{i} = H^{i} \Phi^{i+1}$

Fonctions d'ondelettes: $\Psi^i = \begin{bmatrix} \psi_1^i & \psi_2^i & \dots & \psi_{n_{i+1}-n_i}^i \end{bmatrix}$

Raffinabilité: $\psi_k^j(x) = \sum g_{k+1}^j \phi_{k+1}^j(x) \quad \Psi^i = G^i \Phi^{i+1}$

Mise en oeuvre: Modèle défini par un jeu de m+1 paramètres $\lambda_0,...,\lambda_m$ On se donne un niveau de résolution n initial: $\lambda^n = \begin{bmatrix} \lambda_0^n,...,\lambda_m^n \end{bmatrix}^T$ Mise en oeuvre: Modèle défini par un jeu de m+1 paramètres $\lambda_0, ..., \lambda_m$ On se donne un niveau de résolution n initial: $\lambda^n = \begin{bmatrix} \lambda_0^n, ..., \lambda_m^n \end{bmatrix}^T$ Représentation multirésolution: Jeu d'approximations successives mettant en œuvre des moyennes λ^k et des détails γ^k . $\lambda^k = \begin{bmatrix} \lambda_0^k, ..., \lambda_{m_k}^k \end{bmatrix}^T \quad \text{avec} \quad 0 \leq k \leq n \quad \text{et} \quad 0 \leq m_k \leq m_n$ $\gamma^k = \begin{bmatrix} \gamma_0^k, ..., \gamma_{m_{k+1}^{-m_k}}^k \end{bmatrix}^T$

Mise en oeuvre: Modèle défini par un jeu de m+1 paramètres $\lambda_0, \dots, \lambda_m$.

On se donne un niveau de résolution n initial: $\lambda^n = \begin{bmatrix} \lambda_0^n, \dots, \lambda_m^n \end{bmatrix}^T$ Représentation multirésolution: Jeu d'approximations successives mettant en œuvre des moyennes λ^k et des détails γ^k . $\lambda^k = \begin{bmatrix} \lambda_0^k, \dots, \lambda_{m_k}^k \end{bmatrix}^T \quad \text{avec} \quad 0 \le k \le n \quad \text{et} \quad 0 \le m_k \le m_n$ $\gamma^k = \begin{bmatrix} \gamma_0^k, \dots, \gamma_{m_{k+1}}^k, m_k \end{bmatrix}^T$ analyse synthèse $\lambda^n = \lambda^{n-1} = \dots = \lambda^2 = \lambda^1 = \lambda^0$

- Ondelettes orthogonales: propriétés

 Ppleines orthogonalité des éléments impliqués
 (fonctions de bases, e.v.)

 Outils numériques puissants (evaluation de l'erreur lors de l'utilisation en compression)
- Ondelettes orthogonales: exemples

 ondelettes de Haar

 ondelettes de Shannon

 ondelettes de battle-lemarié

 ondelettes de daubechies

Ondelettes bi-orthogonales: propriétés

pour chaque fonction impliquée, existence d'une fonction duale

chaque espace vectoriel défini ainsi un espace dual

cas particulier: la semi-orthogonalité

cadre bien plus souple que la pleine orthogonalité

Formulation matricielle: 4 filtres H^i , G^i , \widetilde{H}^i , \widetilde{G}^i vérifiant $\left[H^i \quad G^i \right] \widetilde{\widetilde{G}}^i = \widetilde{\widetilde{G}}^i \left[H^i \quad G^i \right] = 1$ Elèments de multiprésolution en modèlisation géométrique

Exemples d'ondelettes bi-orthogonales

• ondelettes B-splines (semi-orthogonales ou non)

• ondelettes de cohen, daubechies et feauveau

• ondelettes sphériques

Synthèse vocale: fort parallèle entre les ondelettes biorthogonales et les filtres QMF

paquets d'ondelettes, ondelettes à forte composante fréquentielle (ex: Morlet)

Haut: signal original (son /A/).

Bas: même son synthétisé avec 16 coefficients d'ondelettes

Imagerie Médicale

Astrophysique

Analyse financière

Analyse fractale, chaos, turbulence

Statistiques

Décomposition d'opérateurs linéaires (equa diffs, éq. Intégrales)

...

Intérêt en informatique graphique:
utilisable a priori partout où la notion de fonction (ou de signal, selon ce que l'on manipule) intervient

** Traitement d'image extraction multi-résolution des contours

