E²M² 2019: Ecological & Epidemiological Modeling in Madagascar

Seasonality of tuberculosis in Madagascar

RAHERINANDRASANA Antso Hasina MD, MPH

Plan

- Background
- Questions of research
- Methods
- Results
- Future directions

Background (1)

PMC full text: J Glob Infect Dis. 2011 Jan-Mar; 3(1): 46–55.

doi: 10.4103/0974-777X.77296

Copyright/License ► Request permission to reuse

Table 1

A summary of studies deals with TB seasonality

References	Study period	Patients no.	Country	Months peak	Months decline
Akhtar and Mohammad ^(±)	January I, 1997 to December 31, 2006	4608	Kuwait	March –August (Sping- summer)	August-December (autumn-winter)
Leung et al.[7]	1999-2002	82,104	Hong Kong	July-August (summer)	January-February (winter)
Nagayama and Ohmori ^[4]	1998 and 2000–2003	NA	Japan	March-August (spring – summer)	November–February (autumn–winter)
Thorpe et al.[8]	April 1,1996 to June 31, 2001	11 11,101	India	April –June (spring)	October and December (autumn)
Ríos et al.[s]	1971-1996	9187	Spain	February-June (spring)	July-January (summer-winter)
Luquero et al.[10]	1996–2004	71,553	Spain	First peak in June and second peak in March and October	October–February (autumn–winter)
Ane-Anyangwe et al.[84]	April, 2002-July 2004	2809	South Western Cameroon	April-November (winter)	November-March (summer)
Schaaf et al.[6]	1 November 1983 to 31 October 1993	1204	South Africa	September-November (spring)	March-August (autumn-winter)
Atun et al.[42]	January 1999-December 2002	420,00	Russia	No seasons peak	
Douglas et al.[12]	1983-1992	57,313	UK	April-September (summer)	October-March (winter)
Kelsey et al.[14]	1993-1994	55	UK and Ireland	April-September (summer)	October-March (winter)
Naranbat et al.[65]	1998-2006	149,07	Mongolia	April –June (spring)	September-December (autumn-winter)

Background (2)

- Potential stimuli of seasonal tuberculosis disease: Vit D deficiency, indoor activities, seasonal change in immune function, delays in the diagnosis and treatment of tuberculosis
- Factors related to tuberculosis notification variability seasonal variation in food availability and food intake, age, sex

Background (3)

- The prevalence of tuberculosis was influenced by the time and space interaction effect
- Average temperature, rainfall, wind speed, and air pressure has influenced tuberculosis prevalence

Research questions

- 1. What is the seasonality of TB in Madagascar?
- 2. What are the drivers of TB seasonality in Madagascar?

Methods

Data

 TB data was extracted from TB register at the center of diagnostic and treatment of TB in Analakely Antananarivo.

– Period: 2010-2014

Climate data

Methods

Analysis

- Winter period: April to September
- Summer period: October to march

Question 1:

Generalized additive model

Question 2:

- Generalized linear model (drivers of seasonality)
- SEIR model to assess the mechanism of seasonality

4. Results (1)

Figure 1: distribution of tb cases by age and gender

4. Results (2)

Figure 2: seasonal variation of TB case through time by gender and TB type

4. Results (3)

Figure 3: GAM by TB type accros the time series

4. Results (5)

Figure 4: GAM by TB type within a year

Next steps

- Collect more data (more sites, more years, HIV data)
- Go through the second objective (drivers of seasonality and the mechanism of tb seasonality)

Drivers of seasonality

```
m=glm(tb_case_month~age+sexe+tb_type+rainfall+temperature +humidity, family='poisson', data=tb.data)
```

Mechanistic model

Compartments

S: susceptible

E: Exposed (Infected)

I: infectious

R: recovered

Equations

 $dS/dt = -\beta S(t)I(t) + \alpha R(t)$

 $dL/dt = \beta S(t)E(t) - \lambda L(t)$

 $dI/dt = \lambda L(t) - \gamma I(t) - \delta I(t)$

 $dR/dt = \gamma I(t) - \alpha R(t)$

Parameters

β: transmission rate

λ: progression rate

γ : recovery rate

δ: disease induced mortality

α: replenishment rate

Mechanistic model

Compartments

S: susceptible

E: Exposed (Infected)

I: infectious

R: recovered

Equations

 $dS/dt = -\beta S(t)I(t) + \alpha R(t)$ $dL/dt = \beta S(t)E(t) - \lambda L(t)$ $dI/dt = \lambda L(t) - \gamma I(t) - \delta I(t)$ $dR/dt = \gamma I(t) - \alpha R(t)$

Parameters

β: transmission rate

λ: progression rate

γ : recovery rate

δ: disease induced mortality

α: replenishment rate

$$\beta = \beta 1 * \varphi$$

MISAOTRA INDRINDRA!