Задание на первую неделю.

- 1. Пусть A_n число натуральных решений уравнения 2x+3y=n, т. е. $A_1=A_2=A_3=A_4=0, A_5=1 \ (x=1,y=1),\ldots$
- (i) Найдите производящую функцию последовательности A_n , $n=1,2,\ldots$
- (ii) Найдите θ -асимптотику A_n .
- (iii) Найдите явное аналитическое выражение для A_n .

На каждой итерации по крайней мере одно число уменьшается, поэтому процедура конечна. Более того, понадобится не более $O(|x|_{unary})$ итераций. В частности, если $x=2^{200}$, то оценка превышает число протонов во вселенной, т. е. практически бессмысленна. Если бы удалось получить оценку вида $O([|x|_{binary}]^{O(1)})$ (как говорят, "полиномиальную" по длине [∂eou чной] записи), то это было бы гораздо более убедительным свидетельством эффективности алгоритма.

Попробуем получить более точную оценку трудоемкости. Пусть для $1 \le i \le m \ x_i$ и, соответственно, y_i обозначают значения параметров x и y на i-й итерации алгоритма (например, $x_1 = x$, $y_1 = y$). Также положим $s_i = x_i + y_i$.

- (i) Покажите, что $s_i \le 2/3 \cdot s_{i-1}$.
- (ii) Вычислите $\gcd(\mathsf{F}_{\mathfrak{m}+2},\mathsf{F}_{\mathfrak{m}+1}),$ где $\mathsf{F}_{\mathfrak{n}}$ это \mathfrak{n} -е число Фибоначчи.
- 3. Найдите Θ -асимптотику рекуррентности, которая определяется в следующем тексте.

Colour the edges of a complete graph of n vertices by three colours so that the number of triangles all whose edges get a different colour is maximal. Denote this maximum by $G_3(k)$. They conjectured that $G_3(k)$ is obtained as follows: clearly $G_3(1) = G_3(2) = 0$, $G_3(3) = 1$, $G_3(4) = 4$.

Suppose $G_3(k_1)$ has already been determined for every $k_1 < k$. Then

$$\begin{split} G_3(k) &= G_3(u_1) + G_3(u_2) + G_3(u_3) + G_3(u_4) + \\ &\quad + u_1 u_2 u_3 + u_1 u_2 u_4 + u_1 u_3 u_4 + u_2 u_3 u_4, \end{split}$$

where $u_1 + u_2 + u_3 + u_4 = k$ and the u's are as nearly equal as possible.

- 4. (i) Вычислите число правильно составленных скобочных выражений, содержащих п скобок, в которых в любом непустом префиксе число открывающих скобок больше числа закрывающих.
- (ii) Найдите явное аналитическое выражение для производящей функции чисел BR_{4n+2} правильных скобочных последовательностей длины 4n+2 (ответ в виде суммы ряда не принимается).
- 5. Оцените трудоемкость рекурсивного алгоритма, разбивающего исходную задачу размера n на три задачи размером $\lceil \frac{n}{\sqrt{3}} \rceil 5$, используя для этого $10\frac{n^3}{\log n}$ операций.
- 6. Рассмотрим детерминированный алгоритм поиска медианы по кальке известного линейного алгоритма, где используется разбиение массива на четвёрки элементов, в каждой из которых определяется нижсняя медиана, т. е. из в каждой четверки выбирается второй по порядку элемент (элементы можно считать различными). Приведите рекуррентную оценку числа сравнений в этой процедуре и оцените сложность такой модификации.
- 7. Функция натурального аргумента $S(\mathfrak{n})$ задана рекурсией:

$$S(n) = \begin{cases} 100, & n \le 100 \\ S(n-1) + S(n-3), & n > 100 \end{cases}$$

Оцените число рекурсивных вызовов процедуры $S(\cdot)$ при вычислении $S(10^{12})$.

- 8 (Доп). Оцените как можно точнее высоту дерева рекурсии для рекуррентности $\mathsf{T}(\mathfrak{n})=\mathsf{T}(\mathfrak{n}-\lfloor\sqrt{\mathfrak{n}}\rfloor)+\mathsf{T}(\lfloor\sqrt{\mathfrak{n}}\rfloor)+\Theta(\mathfrak{n}).$
- 9 (Доп). Оцените трудоемкость рекурсивного алгоритма, разбивающего исходную задачу размера n на n задач размеров $\lceil \frac{n}{2} \rceil$ каждая, используя для этого O(n) операций.