

Chapitre 1

Cas archimédien

On se place donc en caractéristique 0 et sur $K = \mathbb{Q}$. Parce que un corps archimédien algébriquement clos complet est isométrique à \mathbb{C} .

1.1 Cas complet

On est soit \mathbb{C} soit \mathbb{R} .

1.2 En général

On a $r_1 + r_2$ extensions de $|.|_{\infty}$ de \mathbb{Q} à L. Avec $r_1 + 2r_2 = [L : \mathbb{Q}]$ et les complétés pour r_1 c'est \mathbb{R} . Pour r_2 c'est \mathbb{C} .

1.2 En général

Chapitre 2

Les trois types d'extensions : cas ultramétrique

2.1 Unicité sur $(\hat{K})^c$

Étant donné un corps complet K, les extensions L de K sont des corps complets et les normes sont équivalentes.

2.1.1 Extension pour les corps complets

Ce truc

$$x \mapsto |N_{L/K}(x)|^{1/[L:K]}$$

est une valeur absolue qui étend |.| donc l'unique.

2.1.2 Détails

L'équivalence de normes force l'équivalence de valeur absolues (passer par la topologie!!).

2.1.3 Passer à la clôture algébrique

D'une v.a sur K^c suffit de restreindre à L/K on garde une v.a donc l'unique!

2.2 Extensions en général via la topologie

Y'a deux manières de faire. Soit regarder K dans \hat{L} . Soit regarder L dans $(\hat{K})^c$. La première à l'avantage de sous-entendre la valeur absolue.

2.2.1 Deuxième manière

On regarde K^c dans $(\hat{K})^c$. Alors si $|.|_L$ étend |.| et

$$\tau\colon L\to K^c$$

est un plongement. On peut étendre τ à $\hat{K}.\tau(L)$ un corps complet sur \hat{K} de dimension finie. En plus la valeur absolue s'étend aussi directement et étend bien celle de \hat{K} par limite. En particulier, pour $x \in L$ $|\tau(x)|_{\hat{K}.\tau(L)} = |\tau(x)|_c$ est uniquement determinée par τ . À l'inverse n'importe quel plongement $L \to K^c$ fournit une valeur absolue.

2.3 Extensions en général via les idéaux maximaux de $L \otimes_K \hat{K}$

On note $B_L = L \otimes_K \hat{K}$. En tant qu'espace vectoriel c'est de dimension

le produit est sur K. C'est un Banach et on a des flèches

$$L \to B_L$$

via $x \mapsto x \otimes 1$ et pour tout corps complet L_i où L est dense dans $(\hat{K})^C$:

$$B_L \to L_i$$

via $x \otimes y \mapsto xy$. À gauche ça a une structure d'algèbre et donc le noyau est un idéal maximal si c'est non nul. C'est clairement non nul par la dimension.

2.3.1 Interprétation : pourquoi a pas $L_i \rightarrow B_L$

La norme $|.|_i$ sur L_i mesure que la partie associée à \mathfrak{m}_i de L sur K. Tandis que la norme naturelle sur $L \otimes_K \hat{K}$ est vraiment la norme terme à terme sur K. En gros, si par exemple L/K est totalement décomposée au dessus de |.| et (x_i) est une base normale. Alors $|.|_i$ force $|x_j|_i = |x_i|_i$ avec $j \neq i$. Tandis qu'une norme sur B_L ne mesure pas les x_i . Seulement via \hat{K} .

2.4 Calcul par la deuxième version

Comment savoir combien on a d'extension ? Il faut calculer B_L explicitement ! Par exemple :

$$\mathbb{Q}_p \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2}) \simeq \mathbb{Q}_p[X]/(X^2-2)$$

 $Les\ trois\ types\ d'extensions: cas\ ultram\'etrique$

et $\binom{2}{p}=1$ si et seulement si $p^2\equiv 1\mod 8$. Donc |.| a une ou deux extensions en fonction de p via Hensel.

2.4 Calcul par la deuxième version

Chapitre 3

À éclaircir

Bon bah simplement le calcul explicit de ${\cal B}_L$ en général!