Problema 15. Sigui A un anell en el qual per a cada element $y \in A$ se satisfà una igualtat $y^n = y$ per a algun nombre enter $n \ge 2$ (que depèn de y). Proveu que tot ideal primer és maximal.

Observació 1. Siguin A un anell, $J \subseteq A$ ideal. $-1 \in J \Leftrightarrow 1 \in J$, per ser J un ideal i, en particular, un subgrup (existència de l'element simètric i -(-x) = x).

Observació 2. Amb la mateixa notació, siguin $a, b \in A$, tals que $a + b \in J$. $a \in J$ si, i només si, $b \in J$.

Solució.

Siguin A un anell, $I \subseteq J \subseteq A$ ideals de A, I ideal primer.

Suposem $J \subseteq A$. Veiem que, per aquesta hipòtesi, J = I.

Prenem un $y \in J$ qualsevol. Sabem que $\exists n \geq 2$ natural tal que $y^n = y$. Per tant, $y^n - y = 0 \Rightarrow y(y^{n-1} - 1) = 0$. $0 \in I$ ja que I és subgrup, i com que I és primer, $y^{n-1} - 1 \in I$ o $y \in I$. Veiem que $y^{n-1} - 1 \notin J$ (i, per tant, $y^{n-1} - 1 \notin I$, ja que $I \subseteq J$). Procedim per absurd.

Si $y^{n-1} - 1 \in J \to -1 \in J \to 1 \in J$ per les observacions. Per tant, $J \cap A^* \neq \emptyset \to J = A$. I això es contradictori amb la hipòtesi inicial. Per tant, $y^{n-1} - 1 \notin I$, com deiem.

A partir d'aquesta afirmació, i com I és un ideal primer i $y(y^{n-1}-1)=0 \in I$ tenim que un dels dos termes del producte ha de ser de I. Per tant $y \in I$ i, com ja teníem l'altra inclusió, I=J.

Així, J = A o bé J = I, és a dir, I és maximal.