SERIE TEMAS 2 Y 3

1. Se selecciona al azar un individuo que tiene un seguro automotriz de cierta compañía. Sea Y la cantidad de infracciones de circulación por las que el individuo ha sido citado durante los últimos tres años. La función masa de probabilidad de Y es:

у	0	1	2	3
$f_{Y}(y)$	0.6	0.25	0.10	0.05

- a) Calcular el valor esperado de las infracciones de circulación por las que un individuo ha sido citado durante los últimos tres años.
- b) Supóngase que un individuo con Y multas obtiene un recargo de $$100\ Y^2$. Calcular la cantidad esperada del recargo.
- 2. Para la siguiente función de densidad

$$f_Y(y) = \begin{cases} \lambda e^{-\lambda y} & ; y > 0\\ 0 & ; en \ otro \ caso \end{cases}$$

- a) Obtener el valor esperado de Y a partir de la función generadora de momentos
- b) Obtener la función de distribución acumulada.
- 3. El tiempo de terminación X para cierta tarea en horas, es una variable aleatoria con función de densidad de probabilidad que está dada por:

$$f_{Y}(y) = \begin{cases} x^{2} & 0 \le x < 1\\ \frac{7}{4} - \frac{3}{4}x & 1 \le x < \frac{7}{3}\\ 0 & en \ otro \ caso \end{cases}$$

- a) Obtener la función de probabilidad acumulada (o función de distribución)
- b) Calcular $P\left(X \le \frac{4}{3}\right)$ y $P\left(\frac{1}{3} \le X \le \frac{5}{3}\right)$
- c) Calcular el valor esperado de X
- d) Calcular la moda
- e) Calcular la mediana
- f) Calcular el sesgo
- 4. Suponer que X y Y son v.v.a.a. independientes con densidad de probabilidad

$$f_X(x) = \begin{cases} \frac{8}{x^3} & ; x > 2\\ 0 & ; en otro caso \end{cases}$$

$$f_Y(y) = \begin{cases} 2y & \text{; } 0 < y < 1 \\ 0 & \text{; } en \text{ otro } caso \end{cases}$$

Encontrar el valor esperado de Z = XY

5. Suponga que la fracción X de hombres atletas y la fracción Y de mujeres atletas que terminan la carrera del maratón puede describirse por la función:

$$f_{XY}(x,y) = \begin{cases} 8xy; 0 \le x \le 1, 0 \le y \le x \\ 0 ; en \ otro \ caso \end{cases}$$

- a) Obtener las funciones marginales para X y Y
- b) Determine la probabilidad de que menos de 1/4 de las mujeres que se inscribieron terminen el maratón si se sabe que exactamente la mitad de los atletas hombres sí la terminaron.
- 6. Para cada una de las siguientes funciones conjuntas, determine si X y Y son independientes. Justifique su respuesta

a)
$$g_{XY}(x,y) = 4xye^{-(x^2+y^2)}; x \ge 0, y \ge 0$$

b)
$$f_{XY}(x,y) = 3x^2y^{-3}; \ 0 \le x \le y \le 1$$

a)
$$g_{XY}(x,y) = 4xye^{-(x^2+y^2)}; x \ge 0, y \ge 0$$

b) $f_{XY}(x,y) = 3x^2y^{-3}; 0 \le x \le y \le 1$
c) $h_{XY}(x,y) = 6(1+x+y)^{-4}; x \ge 0, y \ge 0$

Obtener la covariancia de las variables aleatorias X y Y con función de probabilidad 7. conjunta:

$f_{XY}(x,y)$		x		
		1	2	3
	1	0	1	1
			<u></u>	12
V	2	1	1	0
У		- 5	9	
	3	2	1	1
		$\overline{15}$	$\frac{\overline{4}}{4}$	18

Obtener los coeficientes de correlación y determinación de Pearson de la siguiente 8. función de probabilidad conjunta:

$$f_{XY}(x,y) = \begin{cases} \frac{xy}{96}; 1 \le x \le 5, 0 \le y \le 4\\ 0; en \ otro \ caso \end{cases}$$