

平衡二叉查找树(2)

胡船长

初航,我带你;远航,靠自己。

课程综述

1、顺序表与链表(3)	6、平衡二叉查找树(4)
2、栈与队列-(3)	7、堆与优先队列_(2)
3、树与二爻树(2)	8、森林和并查集_(2)
4、图的存储与遍历(3)	9、图论算法入门(2)
5、排序与查找(4)	10、字符串匹配算法(2)

第二重点 第三重点

【回顾】随堂练习-1

请按照如下顺序插入数字, 画出对应的二叉搜索树

1: [59832417]

2: [1 2 3 4 5]

【回顾】随堂练习-1

AVL 树

名称: AVL 树

发明者:

G.M. Adelson-Velsky

E.M. Landis

年代: 1962年 (55岁)

性质:

优点:

由于对每个节点的左右子树的树高做了限制,所以整棵树不会退化成一个链表

AVL 树-思考

思考:

- 1、高度为 H 的 BS 树, 所包含的节点数量在什么范围之内?
- 2、高度为H的AVL树,所包含的节点数量在什么范围之内?

AVL 树-思考

思考:

1, H <= SIZE(H) <=
$$2^{H} - 1$$

$$2 \cdot low(H - 2) + low(H - 1) + 1 \le SIZE(H) \le 2^{H} - 1$$

 $low(1) = 1, low(2) = 2, low(3) = 4, low(4) = 7 \dots$

AVL 树-左旋

AVL 树-右旋

AVL 树-失衡类型

AVL 树-LL 型

AVL 树-LR 型

AVL 树-LR 型-先左旋

随堂练习-2

请按照如下顺序插入数字, 画出对应的 AVL 树

1: [59832417]

2: [1 2 3 4 5]

随堂练习-2

SB 树

名称: Size Balanced 树

性质:

```
Size(left) >= Size(right->left)
Size(left) >= Size(right->right)
Size(right) >= Size(left->left)
Size(right) >= Size(left->right)
```

优点:

由于对每个节点的左右子树的节点数量做了 限制,所以整棵树不会退化成一个链表

课后思考

思考:

- 1、高度为 H 的 BS 树, 所包含的节点数量在什么范围之内?
- 2、高度为 H 的 SB 树, 所包含的节点数量在什么范围之内?

课后思考

请自行推导SB Tree 的插入以及删除算法

课后练习题

Leetcode 110

Leetcode 669