Skript zur Vorlesung Analysis II bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie ${\bf Sommersemester}~2024$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

1	[*] Das eindimensionale Riemann-Integral			5
	1.1 Das Riemann-Integral			į
	1.2 Integrabilitätskriterien			6
	Alle mit [*] markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventu Änderungen.	ıel	l r	noch

1 [*] Das eindimensionale Riemann-Integral

1.1 Das Riemann-Integral

[16. Apr] Frage: Was ist die Fläche unter einem Graphen?

Definition 1.1.1 (Zerlegung). Eine Zerlegung Z eines kompakten Intervalls I = [a, b] in Teilintervalle I_j (j = 1, ..., k) der Längen $|I_j|$ ist eine Menge von Punkten $x_0, x_1, ..., x_k \in I$ (Teilpunkte von Z) mit

$$a = x_0 < x_1 < x_2 < \cdots < x_k = b$$

und $I_j = [x_{j-1}, x_j]$. Wir setzen $\Delta x_j := x_j - x_{j-1} =: |I_j|$.

Definition 1.1.2 (Feinheit einer Zerlegung). Die Feinheit der Zerlegung Z ist definiert als die Länge des längsten Teilintervalls von Z:

$$\Delta(z) := \max(|I_1|, |I_2|, \dots, |I_k|) = \max(\Delta x_1, \Delta x_2, \dots, \Delta x_k)$$

Notation 1.1.3 (Riemannsche Zwischensumme). Wir setzen

$$B(I) = \left\{ f: I \to \mathbb{R} \mid \sup_{x \in I} |f(x)| < \infty \right\}$$

als die Menge aller beschränkten reellwertigen Funktionen auf I. In jedem I_j wählen wir ein $\xi_j \in I_j$ und setzen $\xi = (\xi_1, \xi_2, \dots, \xi_k)$. Für $f \in B(I)$ setzen wir die Riemannsche Zwischensumme

$$S_Z(f) = S_Z(f,\xi) := \sum_{j=1}^k f(\xi_j) \cdot \Delta x_j = \sum_{j=1}^k f(\xi_j) \cdot |I_j|$$

Notation 1.1.4 (Ober- und Untersumme). Für $f \in B(I)$ setzen wir

$$\underline{m}_{j} \coloneqq \inf_{I_{j}} f = \inf \{ f(x) : x \in I_{j} \}$$

$$\overline{m}_{j} \coloneqq \sup_{I_{j}} f = \sup \{ f(x) : x \in I_{j} \}$$

$$\overline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \overline{m}_{j} \cdot \Delta x_{j}$$
(Obersumme)
$$\underline{S}_{Z}(f) \coloneqq \sum_{j=1}^{k} \underline{m}_{j} \cdot \Delta x_{j}$$
(Untersumme)

Damit gilt für $x \in I_j$

$$\underline{m}_{j} \leq f(x) \leq \overline{m}_{j}$$

$$\Rightarrow \underline{m}_{j} \leq f(\xi_{j}) \leq \overline{m}_{j}$$

$$\Rightarrow \underline{S}_{Z}(f) \leq S_{Z}(f, \xi) \leq \overline{S}_{Z}(f)$$

Wir wollen die Zerlegung Z systematisch verfeinern.

Definition 1.1.5 (Verfeinerung einer Zerlegung). Eine Zerlegung Z^* von I ist eine Verfeinerung der Zerlegung Z von I, falls alle Teilpunkte von Z auch Teilpunkte von Z^* sind.

Definition 1.1.6 (Gemeinsame Verfeinerung). Die gemeinsame Verfeinerung $Z_1 \vee Z_2$ zweier Zerlegungen Z_1, Z_2 von I ist die Zerlegung von I, deren Teilpunkte gerade die Teilpunkte von Z_1 und Z_2 sind.

Lemma 1.1.7. Ist Z^* eine Verfeinerung der Zerlegung Z von I und $f \in B(I)$. Dann gilt

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z^{*}}(f) \leq \overline{S}_{Z^{*}}(f) \leq \overline{S}_{Z}(f)$$

Beweis. Z^* enthält alle Teilpunkte von Z, nur mehr.

SCHRITT 1: Angenommen Z^* enthält genau einen Teilpunkt $(y_{(l+1)})$ mehr als Z. Das heißt

$$y_j = x_j \quad \forall \, 0 \le j \le l$$

$$x_l < y_{l+1} < x_{l+1}$$

$$y_{j+1} = x_j \quad \forall \, l+1 \le j \le k$$

Dann gilt

$$\underline{S}_{Z}(f) = \sum_{j=1}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=1}^{l} \underline{m}_{j} \Delta x_{j} + \underline{m}_{l+1} \Delta x_{l+1} + \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j}$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j}^{*}} f = \underline{m}_{j}^{*} \quad \forall 0 \leq j \leq l$$

$$\underline{m}_{j} = \inf_{I_{j}} f = \inf_{I_{j+1}^{*}} f = \underline{m}_{j+1}^{*} \quad \forall j \geq l+2$$

$$I_{j} = [x_{j}, x_{j-1}] = [y_{j+1}, y_{j}] = I_{j+1}^{*} \quad \forall j \geq l+2$$

$$\Rightarrow \sum_{j=l+2}^{k} \underline{m}_{j} \Delta x_{j} = \sum_{j=l+2}^{k} \underline{m}_{j+1}^{*} \Delta y_{j+1} = \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j}$$

$$\underline{m}_{l+1} \Delta x_{l+1} = \underline{m}_{l+1} (x_{l+1} - x_{l}) = \underline{m}_{l+1} (y_{l+2} - y_{l})$$

$$= \underline{m}_{l+1} (y_{l+2} - y_{l+1} + y_{l+1} - y_{l})$$

$$= \underline{m}_{l+1} \Delta y_{l+2} + \underline{m}_{l+1} \Delta y_{l+1}$$

$$\leq \underline{m}_{l+2}^{*} \Delta y_{l+2} + \underline{m}_{l+1}^{*} \Delta y_{l+1}$$

Insgesamt ergibt sich

$$\underline{S}_{Z}(f) \leq \sum_{j=1}^{l} \underline{m}_{j}^{*} \Delta y_{j} + \underline{m}_{l+1}^{*} \Delta y_{l+1} + \underline{m}_{l+2}^{*} \Delta y_{l+2} + \sum_{j=l+3}^{k+1} \underline{m}_{j}^{*} \Delta y_{j} = \underline{S}_{Z^{*}}(f)$$

ähnlich zeigt man $\overline{S}_Z(f) \geq \overline{S}_{Z^*}(f)$.

SCHRITT 2: Sei Z^* eine beliebige Verfeinerung von Z. Wir nehmen eine endliche Folge von Einpunkt-Verfeinerungen $Z = Z_0, Z_1, Z_2, \ldots, Z_r = Z^*$. Dabei hat Z_{s+1} genau einen Punkt mehr als Z_s . Dann gilt nach SCHRITT 1, dass

$$\underline{S}_{Z}(f) \leq \underline{S}_{Z_{1}}(f) \leq \dots \leq \underline{S}_{Z^{*}}(f)$$

$$\overline{S}_{Z}(f) \geq \overline{S}_{Z_{1}}(f) \geq \dots \geq \overline{S}_{Z^{*}}(f)$$

Schritt 3: Sei $\xi^* = (\xi_1^*, \xi_2^*, \dots, \xi_l^*)$ der Zwischenpunkt zur Zerlegung Z^* . Dann gilt

$$S_{Z^*}(f) \le S_{Z^*}(f, \xi^*) \le \overline{S}_{Z^*}(f)$$

Lemma 1.1.8. Seien Z_1 , Z_2 Zerlegungen von I. Dann gilt

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f) \qquad \forall f \in B(I)$$

Beweis. Es gilt nach Lemma 1.1.7, dass

$$\underline{S}_{Z_1}(f) \le \underline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_1 \vee Z_2}(f) \le \overline{S}_{Z_2}(f)$$

Bemerkung 1.1.9. Für I = [a, b] und $f \in B(I)$ gilt immer

$$|I| \cdot \inf_{I} f \leq \underline{S}_{Z}(f) \leq \overline{S}_{Z}(f) \leq |I| \cdot \sup_{I} f$$

für alle Zerlegungen Z von I. Somit sind

$$\left\{ \overline{S}_{Z}(f):Z\text{ ist eine Zerlegung von }I\right\}$$

und

$$\{\underline{S}_Z(f): Z \text{ ist eine Zerlegung von } I\}$$

beschränkte, nicht-leere Teilmengen von \mathbb{R} .

Definition 1.1.10 (Ober- und Unterintegral). Es sei I = [a, b] und $f \in B(I)$. Dann definieren wir

$$\overline{J}(f) \coloneqq \inf \left\{ \overline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Oberintegral)
$$\underline{J}(f) \coloneqq \sup \left\{ \underline{S}_Z(f) : Z \text{ ist Zerlegung von } I \right\}$$
 (Unterintegral)

Lemma 1.1.11. Es sei Z eine Zerlegung von I. Dann gilt

$$S_Z(f) < J(f) < \overline{J}(f) < \overline{S}_Z(f)$$

Beweis. Nach Lemma 1.1.8 gilt für zwei beliebige Zerlegungen $\mathbb{Z}_1,\,\mathbb{Z}_2$

$$\underline{S}_{Z_1}(f) \le \overline{S}_{Z_2}(f)$$

Wir fixieren Z_2 und erhalten

$$\Rightarrow \sup \big\{ \underline{S}_{Z_1}(f) : Z_1 \text{ ist eine Zerlegung von } I \big\} \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \overline{S}_{Z_2}(f)$$

$$\Rightarrow \underline{J}(f) \leq \inf \big\{ \overline{S}_{Z_2}(f) : Z_2 \text{ ist eine Zerlegung von } I \big\}$$

$$\Rightarrow \underline{J}(f) \leq \overline{J}(f)$$

$$\Rightarrow \underline{J}(f) \leq \overline{J}(f)$$

$$\Rightarrow \underline{S}_{Z}(f) \leq \underline{J}(f) \leq \overline{J}(f) \leq \overline{S}_{Z}(f)$$

Definition 1.1.12 (Integral). Es sei I = [a, b]. $f \in B(I)$ heißt (Riemann-)integrierbar, falls

$$\underline{J}(f) = \overline{J}(f)$$

In diese Fall nennen wir $J(f)\coloneqq \underline{J}(f)=\overline{J}(f)$ das bestimmte Integral von f über [a,b] und schreiben

$$\int_a^b f(x) dx = \int_a^b f dx = \int_I f(x) dx = \int_I f dx =: J(f)$$

Die Klasse der Riemann-integrierbaren Funktionen $f \in B(I)$ nennen wir R(I).

[18. Apr] Beispiel 1.1.13 (Konstante Funktion). f(x) := c auf [a, b] für eine Konstante $c \in \mathbb{R}$. Dann gilt

$$\int_{a}^{b} f(x) \, \mathrm{d}x = c \cdot (b - a)$$

Beispiel 1.1.14. Die Funktion $f:[0,1]\to\mathbb{R}$

$$f(x) := \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{sonst} \end{cases}$$

ist nicht Riemann-integrierbar, weil $\overline{J}(f) = 1$ und $\underline{J}(f) = 0$.

1.2 Integrabilitätskriterien

Satz 1.2.1 (1. Kriterium). Es sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn

$$\forall \varepsilon > 0 \; \exists \, \text{Zerlegung} \; Z \; \text{von} \; I \; \text{mit} \; \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

Beweis. "←" Nach Lemma 1.1.11 gilt

$$\underline{S}_Z(f) \le \underline{J}(f) \le \overline{J}(f) \le \overline{S}_Z(f)$$

Sei $\varepsilon > 0$, dann gilt

$$0 \le \overline{J}(f) - \underline{J}(f) \le \overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$$

$$\Rightarrow 0 \le \overline{J}(f) - \underline{J}(f) \le 0$$

$$\Rightarrow f \in R(I)$$

" \Rightarrow "Angenommen $f \in R(I)$, das heißt

$$\begin{split} \overline{J}(f) &= \underline{J}(f) \\ \overline{J}(f) &= \inf \left\{ \overline{S}_Z(f) : Z \text{ ist eine Zerlegung von } I \right\} \\ \underline{J}(f) &= \sup \left\{ \underline{S}_Z(f) : Z \text{ ist eine Zerlegung von } I \right\} \end{split}$$

Das heißt zu $\varepsilon>0$ existieren Zerlegungen $Z_1,\,Z_2$ von I mit

$$\overline{J}(f) + \frac{\varepsilon}{2} > \overline{S}_{Z_1}(f)$$

$$\underline{J}(f) - \frac{\varepsilon}{2} < S_{Z_2}(f)$$

Da $f \in R(I)$ gilt $\underline{J}(f) = \overline{J}(f)$. Wir definieren die gemeinsame Verfeinerung $Z \coloneqq Z_1 \vee Z_2$. Dann gilt

$$\overline{S}_{Z}(f) - \underline{S}_{Z}(f) < \overline{J}(f) + \frac{\varepsilon}{2} - \left(\underline{J}(f) - \frac{\varepsilon}{2}\right)$$

$$= \overline{J}(f) - \underline{J}(f) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Satz 1.2.2 (2. Kriterium). Sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \text{Zerlegungen} \ Z \text{ von } I \text{ mit Feinheit } \Delta(Z) < \delta \colon \overline{S}_Z(f) - \underline{S}(f) < \varepsilon$

Beweis. "←" wird von Satz 1.2.1 bereits impliziert.

" \Rightarrow " Sei $f \in R(I)$ und $\varepsilon > 0$. Dann gilt nach Satz 1.2.1, dass eine Zerlegung $Z' = (x'_0, x'_1, \dots, x'_l = b)$ von I mit

$$\overline{S}_Z(f) - \underline{S}_Z(f) < \frac{\varepsilon}{2}$$

existiert. Wähle eine andere Zerlegung Z von I mit $\Delta(Z) < \delta$, wobei $\delta > 0$ noch später gewählt wird. Setze $Z^* = Z' \vee Z$. Nach Lemma 1.1.7 und Satz 1.2.1 gilt

$$\overline{S}_{Z^*}(f) - \underline{S}_{Z^*}(f) < \frac{\varepsilon}{2}$$

Wir wollen die Ober- und Untersumme von Z^* mit denen in Z vergleichen.

$$\overline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t} \cdot |I_{t}|$$

wobei $I_j = [x_{j-1}, x_j]$. Da Z^* eine Verfeinerung von Z ist, sind alle Teilpunkte von Z auch Teilpunkte von Z^* . Das heißt die Intervalle I_j (zu Z) unterscheiden sich von den Intervallen I_j^* (zu Z^*) sofern Punkte x'_{ν} (Teilpunkte von Z^*) im Inneren von I_j liegen. Also gilt

$$I_Z^* \cap I_i \neq \varnothing \Rightarrow I_Z^* \subseteq I_i$$

Frage: Wie viele Intervalle I_j existieren maximal, für die I_j eine Verfeinerung von Z oder ? hinter reellen I_j^* ist? Dann muss mindestens ein Punkt von der Zerlegung Z' unterhalb von I_j liegen. Wir haben l Punkte in Zerlegung Z'. Das heißt die Anzahl solcher Intervalle I_j ist maximal l.

$$\overline{S}_{Z}(f) - \overline{S}_{Z^{*}}(f) = \sum_{j} \overline{m}_{j} \cdot |I_{j}| - \sum_{t} \overline{m}_{t}^{*} \cdot \left|I_{j}^{*}\right|$$

$$= \sum_{j} \left(\overline{m}_{j} \cdot |I_{j}| - \sum_{t:I_{z}^{*} \subseteq I_{j}} \overline{m}_{t}^{*} \cdot |I_{t}^{*}|\right)$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{t}^{*}|$$

$$\overline{S}_{Z}(f) - \overline{S}_{Z}(f) = \sum_{j} \sum_{t:I_{t}^{*}} \left(\underline{\overline{m}_{j} - \overline{m}_{t}^{*}}\right) \cdot |I_{t}^{*}|$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{z}^{*}|$$

$$= \sum_{j} \sum_{t:I_{t}^{*}} (\overline{m}_{j} - \overline{m}_{t}^{*}) \cdot |I_{z}^{*}|$$

$$f(x) = f(y) + f(x) - f(y)$$

$$\leq f(y) + \sup_{s_{1}, s_{2} \in I} \{f(s_{1}) - f(s_{2})\}$$

$$f(x) \leq f(y) + 2 \|f\|_{\infty}$$

genauso

$$f(x) = f(y) + f(x) - f(y)$$

$$\geq f(y) + \inf_{s_1, s_2 \in I} \{ f(s_1) - f(s_2) \}$$

$$\geq f(y) - 2 \|f\|_{\infty}$$

$$\Rightarrow \overline{m}_j = \sup_{s \in I_j} f(x) \le 2 \|f\|_{\infty} + f(y) \quad \forall y \in I_t^*$$

$$\Rightarrow \overline{m}_j \le 2 \|f\|_{\infty} + \sup_{?} f = 2 \|f\|_{\infty} + \overline{m}_z^*$$

$$\vdots \quad ????$$

Genauso zeigt man

$$\begin{split} \underline{S}_{Z}(f) - \underline{S}_{Z^{*}}(f) &\geq -2 \|f\|_{\infty} l \cdot \delta \\ \Rightarrow \overline{S}_{Z}(f) &\leq \overline{S}_{Z^{*}} + 2 \|f\|_{\infty} l \cdot \delta \\ \underline{S}_{Z}(f) &\geq \underline{S}_{Z^{*}} - 2 \|f\|_{\infty} l \cdot \delta \\ \Rightarrow \overline{S}_{Z}(f) - \underline{S}_{Z}(f) &\leq \overline{S}_{Z^{*}}(f) + 2 \|f\|_{\infty} l \delta - (\underline{S}_{Z^{*}}(f) - 2 \|f\|_{\infty} l \cdot \delta) \\ &= ? \\ &< \frac{\varepsilon}{2} + 4 \|f\|_{\infty} l \cdot \delta \end{split}$$

Jetzt wähle $\delta = \frac{\varepsilon}{\delta \left(\|f\|_{\infty} + 1 \right) \cdot l}$

$$\Rightarrow \ \leq \frac{\varepsilon}{2} + 4 \left\| f \right\|_{\infty} \cdot \frac{\varepsilon}{\delta \left(\left\| f \right\| + 1 \right) \cdot l} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

sofern um $\Delta(z) < \delta$ ist.

Anwendung 1.2.3. Zerlegung Z_n von I mit Feinheit $\Delta(Z_n) \to 0$ für $n \to \infty$. ξ_n Zwischenpunkt von Zerlegung Z_n . Die Riemannnsumme

$$S_{z_n}(f,\xi_n) = \sum_{j=1}^{k_n} f\left(\xi_j^n\right) \cdot \left|I_j^n\right|$$

konvergiert gegen J(f) falls $f \in R(I)$.

19. Apr] **Bemerkung 1.2.4.** Sei $z=(x_0,x_1,\ldots,x_k)$ Zerlegung von I=[a,b] und $\zeta=(\zeta_1,\zeta_2,\ldots,\zeta_k)$ Zwischenpunkt zur Zerlegung Z, sodass

$$x_{i-1} \le \zeta_i \le x_i \quad \forall j = 1, \dots, k$$

Dann ist die Riemannsche Zwischensumme

$$S_Z(f) = \sum_{j=1}^k f(\zeta_j) \cdot |I_j|$$

linear in f.

Korollar 1.2.5. Sei $f \in B(I)$. Dann gilt $f \in R(I)$ genau dann, wenn für jede Folge $(Z_n)_n$ von Zerlegungen Z_n von I mit Feinheit $\Delta(z_n) \to 0$ für $n \to \infty$ und jede Folge $(\xi_n)_n$ von Zwischenpunkten ξ_n zugehörig zu Z_n ein Grenzwert $\lim_{n \to \infty} S_{Z_n}(f, \xi_n)$ existiert.

Darüber hinaus ist in diesem Fall obiger Grenzwert unabhängig von der Wahl der Zerlegung Z_n und der Zwischenpunkten ξ_n und es gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} S_{Z_n}(f, \xi_n)$$

Beweis. "⇒ " Sei $f \in R(I)$ zu $\varepsilon > 0$ \exists $\delta > 0$: $\overline{S}_Z(f) - \underline{S}_Z(f) < \varepsilon$ \forall Zerlegungen Z von I mit $\Delta(z) < \delta$. Da $\Delta(z_n) \to 0$ für $n \to \infty$

$$\Rightarrow \exists N \in \mathbb{N}_0 : \Delta(Z_n) < \delta \quad \forall n \geq N$$

und

$$\underline{S}_{Z}(f) \leq \underline{J}(f) = J(f) \leq \overline{S}_{Z}(f)$$

$$\underline{S}_{Z}(f) \leq S_{Z_{n}}(f, \xi_{n}) \leq \overline{S}_{Z_{n}}(f)$$

$$\Rightarrow |J(f) - S_{Z_{n}}(f, \xi_{n})| < \varepsilon \quad \forall n \geq N$$

das heißt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = J(f) = \int_a^b f \, \mathrm{d}x$$

" \Leftarrow " SCHRITT 1: Angenommen $\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$ existiert für jede Folge $(Z_n)_n$ von Zerlegungen von I mit $\Delta(Z_n)\to 0$ und jede Wahl von Zwischenpunkten $(\xi_n)_n$ zu Z_n . Seien $(Z_n^1)_n$, $(Z_n^2)_n$ zwei solche Folgen von Zerlegungen mit $(\xi_n^1)_n$, $(\xi_n^2)_n$ zugehörigen Folgen von Zwischenpunkten. Sei $(Z_n)_n$ eine neue Folge von Zerlegungen von I_n webei $Z_n = Z_n^2$ und

von Zwischenpunkten. Sei $(Z_n)_n$ eine neue Folge von Zerlegungen von I, wobei $Z_{2k} = Z_k^2$ und $Z_{2k-1} = Z_k^1$, außerdem sei $\xi_{2k} = \xi_k^2$ und $\xi_{2k-1} = \xi_k^1$. Dann wissen wir, dass

$$\lim_{n\to\infty} S_{Z_n}(f,\xi_n)$$

existiert und gilt

$$\lim_{n \to \infty} S_{Z_n}(f, \xi_n) = \lim_{n \to \infty} S_{Z_{2n}}(f, \xi_{2n})$$

$$= \lim_{n \to \infty} S_{Z_{2n-1}}(f, \xi_{2n-1})$$

$$= \lim_{n \to \infty} S_{Z_n^2}(f, \xi_n^2)$$

$$= \lim_{n \to \infty} S_{Z_n^1}(f, \xi_n^1)$$

SCHRITT 2: (Später)

Satz 1.2.6. Der Raum R(I) auf einem kompakten Intervall I = [a, b] ist ein Vektorraum und $J: R(I) \to \mathbb{R}$ $f \mapsto J(f) = \int_a^b f \, \mathrm{d}x$ ist eine lineare Abbildung. Für $f, g \in R(I)$ und $\alpha, \beta \in \mathbb{R}$ folgt $\alpha f + \beta g \in R(I)$ und $J(\alpha f + \beta g) = \alpha J(f) + \beta J(g)$.

Beweis. Schritt 1: Sei $h:I\to\mathbb{R}$ und Zerlegung Z von Imit zugehörigen Intervallen Ij. Dann gilt

$$\begin{split} \overline{m}_j &= \sup_{x \in I_j} h(x) \quad \underline{m}_j = \inf_{y \in I_j} h(y) \\ &\Rightarrow \overline{m}_j - \underline{m}_j = \sup_{x \in I_j} h(x) - \inf_{y \in I_j} h(y) \\ &= \sup_{x \in I_j} h(x) + \sup_{y \in I_j} (-h(y)) \\ &= \sup_{x, y \in I_j} (h(x) - h(y)) \\ &= \sup_{x, y \in I_j} (h(y) - h(x)) \qquad \qquad \text{(Vertauschen von } x, y) \\ &= \sup_{x, y \in I_j} (|h(x) - h(y)|) \end{split}$$

$$\overline{m}_j(h) - \underline{m}_j(h) = \sup_{x,y \in I_j} (|h(x) - h(y)|) \tag{1}$$

Nehmen $h = \alpha f + \beta g$; $f, g \in R(I)$; $\alpha, \beta \in \mathbb{R}$

$$\begin{split} h(x) - h(y) &= \alpha \left(f(x) - f(y) \right) + \beta \left(g(x) - g(y) \right) \\ |h(x) - h(y)| &\leq |\alpha| \left| f(x) - f(y) \right| + |\beta| \left| g(x) - g(y) \right| \\ \Rightarrow \overline{m}_j(h) - \underline{m}_j(h) &= \sup_{x \in I_j} h(x) - \inf_{y \in I_j} h(y) \\ &\stackrel{(1)}{=} \sup_{x,y \in I_j} \left(|h(x) - h(y)| \right) \\ &\leq |\alpha| \cdot \sup_{x,y \in I_j} \left| f(x) - f(y) \right| + |\beta| \cdot \sup_{x,y \in I_j} \left| g(x) - g(y) \right| \\ \Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) &= \sum_j \left(\overline{m}_j(h) - \underline{m}_j(h) \right) \left| I_j \right| \\ &\leq |\alpha| \sum_j \left(\overline{m}_j(f) - \underline{m}_j(f) \right) \left| I_j \right| + |\beta| \sum_j \left(\overline{m}_j(g) - \underline{m}_j(g) \right) \left| I_j \right| \\ \Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) &\leq |\alpha| \left(\overline{S}_Z(f) - \underline{S}_Z(f) \right) + |\beta| \left(\overline{S}_Z(g) - \underline{S}_Z(g) \right) \\ \Rightarrow \forall \varepsilon > 0 \ \exists \ Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2\left(1 + |\alpha| + |\beta|\right)} \\ \forall \varepsilon > 0 \ \exists \ Z_2 \colon \overline{S}_{Z_2}(g) - \underline{S}_{Z_2}(g) < \frac{\varepsilon}{2\left(1 + |\alpha| + |\beta|\right)} \end{split}$$

Wähle $Z = Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_{Z}(h) - \underline{S}_{Z}(h) < |\alpha| \frac{\varepsilon}{2(1 + |\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{2(1 + |\alpha| + |\beta|)}$$
$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

nach Satz 1.2.1 ist $h = \alpha f + \beta g$ Riemann-integrierbar.

Schritt 2: Für Zwischensummen

$$S_Z(h,\xi) = \sum_j h(\xi_j) |I_j|$$
$$= \alpha S_Z(f,\xi) + \beta S_Z(g,\xi)$$

haben wir Linearität!

Für $h, f, g \in R(I)$ gilt nach Korollar 1.2.5

$$J(h) = \lim_{n \to \infty} S_{Z_n}(h, \xi_n)$$

$$= \lim_{n \to \infty} (\alpha S_{Z_n}(f, \xi_n) + \beta S_{Z_n}(g, \xi_n)) \qquad (\Delta(Z_n) \to 0)$$

$$\stackrel{1.2.5}{=} \alpha \lim S_{Z_n}(f, \xi_n) + \beta \lim_{n \to \infty} S_{Z_n}(g, \xi_n)$$

$$= \alpha J(f) + \beta J(g)$$

Satz 1.2.7. Seien $f, g \in R(I)$. Dann folgt $f \cdot g \in R(I)$ sowie $|f| \in R(I)$. Ist außerdem $|g| \ge c > 0$ auf I für ein konstantes c > 0, so ist auch $\frac{f}{g} \in R(I)$.

Beweis. Es sei $h(x) = f(x) \cdot g(x)$ für $x \in I$. Dann gilt

$$|h(x) - h(y)| = |f(x)g(x) - f(y)g(y)|$$

1 [*] Das eindimensionale Riemann-Integral

$$\begin{split} & = |g(x) \left(f(x) - f(y) \right) + f(y) \left(g(x) - g(y) \right)| \\ & \leq \|g\|_{\infty} \cdot |f(x) - f(y)| + \|f\|_{\infty} \cdot |g(x) - g(y)| \\ \|f\|_{\infty} & = \sup_{x \in I} |f(x)| < \infty \end{split}$$

Z Zerlegung von I ist I_i ; Teilintervalle

$$\begin{split} \overline{S}_{Z}(h) - \underline{S}_{Z}(h) &= \sum_{j} \left(\overline{m}_{j}(h) - \underline{m}_{j}(h) \right) \cdot |I_{j}| \\ \overline{m}_{j}(h) - \underline{m}_{j}(h) &= \sup_{I_{j}} h - \inf_{I_{j}} h = \sup_{x,y \in I_{j}} |h(x) - h(y)| \\ &\leq \|g\|_{\infty} \left(\overline{m}_{j}(f) - \underline{m}_{j}(f) \right) + \|f\|_{\infty} \left(\overline{m}_{j}(y) - \underline{m}_{j}(g) \right) \\ \overline{S}_{Z}(h) - \underline{S}_{Z}(h) &\leq \|f\|_{\infty} \cdot \left| \overline{S}_{Z}(g) - \underline{S}_{Z}(g) \right| + \|g\|_{\infty} \left(\overline{S}_{Z}(f) - \underline{S}_{Z}(f) \right) \end{split}$$

 $\operatorname{Zu} \varepsilon > 0$

$$\exists Z_1 \colon \overline{S}_{Z_1}(f) - \underline{S}_{Z_1}(f) < \frac{\varepsilon}{2(1 + ||f||_{\infty})}$$
$$\exists Z_2 \colon \overline{S}_{Z_2}(f) - \underline{S}_{Z_2}(f) < \frac{\varepsilon}{2(1 + ||g||_{\infty})}$$

Es sei $Z := Z_1 \vee Z_2$

$$\Rightarrow \overline{S}_Z(h) - \underline{S}_Z(h) \leq \|f\|_{\infty} \cdot \left(\overline{S}_Z(g) - \underline{S}_Z(g)\right) + \|g\|_{\infty} \cdot \left(\overline{S}_Z(f) - \underline{S}_Z(f)\right) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Das heißt $h = f \cdot g \in R(I)$ nach Satz 1.2.1.

Für |f| verwende

$$\begin{split} ||f(x)| - |f(y)|| &\leq |f(x) - f(y)| \\ \Rightarrow \overline{m}_j(|f|) - \underline{m}_j(|f|) &= \sup_{x,y \in I_j} (||f(x)| - |f(y)||) \\ &\leq \sup_{x,y \in I_j} (|f(x) - f(y)|) \\ &= \overline{m}_j(f) - \underline{m}_j(f) \end{split}$$

wie vorher folgt also $|f| \in R(I)$.

Für $\frac{f}{g}$ muss nur $\frac{1}{g}$ betrachtet und die Multiplikationsregel angewendet werden. Es gilt

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \frac{|g(x) - g(y)|}{|g(x)| |g(y)|}$$

$$\leq \frac{1}{\varepsilon^2} |g(x) - g(y)|$$

$$\Rightarrow \overline{m}_j \left(\frac{1}{y} \right) - \underline{m}_j \left(\frac{1}{y} \right) \leq \frac{1}{\varepsilon^2} \left(\overline{m}_j(y) - \underline{m}_j(y) \right)$$

Dann wie vorher.