Algorytmy numeryczne - Projekt 3

Mateusz Soroka 250999

Bartłomiej Skopiński 246830

Patryk Szczepański 246760

Grupa 1 - aplikacje internetowe i bazy danych

9 grudnia 2018

Opracowanie dotyczy obliczenia prawdopodobieństwa zagłosowania na **TAK** w głosowaniu większościowym (ang. majority). Agenci biorący udział w głosowaniu przyjmują trzy możliwe stany Y-tak, N- nie, U- niezdecydowany. W trakcie obliczeń agenci zmieniają swoje stany według następujących reguł:

- {Y, U} -> {Y, Y},
- {Y, N} -> {U, U},
- {N, U} -> {N, N},

w pozostałych przypadkach stan nie ulega zmianie.

Program został napisany w języku Java (wersja 8.0.181), testy przeprowadzono na komputerze MacBook Air wyposażonym w procesor Intel Core i5 (1,8 GHz), pamięć 8 GB 1600MHz DDR3 z wersją systemu Mojave 10.14.1. Do testów wykorzystano typ zmiennoprzecinkowy double.

Aby zbudować układ równań należy rozważyć wszystkie możliwe przypadki głosowania przy liczbie agentów równej N. Weźmy przykład gdy N=3. Układ równań prezentuje się wtedy następująco (P_{TN} , gdzie T- agenci na tak, N- agenci na nie).

Równania	Otrz	yman	a mac	ierz	kwadr	atowa	10x10)		
$\begin{split} P_{0,0} &= 0 \\ P_{0,1} &= 2/3 P_{0,2} + 1/3 P_{0,1} \\ P_{0,2} &= 2/3 P_{0,3} + 1/3 P_{0,2} \\ P_{0,3} &= 0 \\ P_{1,0} &= 2/3 P_{2,0} + 1/3 P_{1,0} \\ P_{1,1} &= 1/3 P_{2,1} + 1/3 P_{1,2} + 1/3 P_{0,0} \\ P_{1,2} &= 2/3 P_{0,1} + 1/3 P_{1,2} \\ P_{2,0} &= 2/3 P_{3,0} + 1/3 P_{2,0} \\ P_{2,1} &= 2/3 P_{1,0} + 1/3 P_{2,1} \\ P_{3,0} &= 1 \end{split}$	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{3} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$\begin{array}{c} 0 \\ -\frac{2}{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{2}{3} \\ 0 \\ 0 \\ 0 \end{array}$	$ \begin{array}{cccc} 0 & \frac{2}{3} & \\ -\frac{2}{3} & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ \end{array} $	1 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -\frac{2}{3} \\ 0 \\ 0 \\ 0 \\ \frac{2}{3} \\ 0 \end{array}$	0 0 0 0 0 -1 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{3} \\ -\frac{2}{3} \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \frac{2}{3} \\ 0 \\ 0 \\ -\frac{2}{3} \\ 0 \\ 0 \\ 0 \end{array}$	$ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 \\ -\frac{2}{3} & 0 & 0 \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{2}{3} \\ 0 \\ 1 \end{bmatrix}$

Do obliczenia prawdopodobieństwa wykorzystano układ równań liniowych oraz metody Gaussa (z częściowym wyborem elementu głównego) oraz iteracyjne: Jacobiego oraz Gaussa-Seidela.

Prawidłowość otrzymanych wyników zweryfikowano za pomocą metody Monte Carlo, losując liczbę parzystą agentów *N* z przedziału *[20, 120]* oraz biorąc stan początkowy *YES=NO=N/2*. Przewidywaną wartością prawdopodobieństwa otrzymania wyniku głosowania na tak, w sytuacji gdy

połowa agentów jest na tak, a połowa na nie, jest 0.5. Liczba iteracji w metodach iteracyjnych Jacobiego oraz Gaussa-Seidela została ustalona na 1000.

Metoda Gaussa z częściowym wyborem

Metoda Jacobiego

Metoda Gaussa-Seidela

Poniżej tabela z różnicami pomiędzy największym otrzymanym odchyłem, a wartością oczekiwaną we wszystkich trzech metodach.

Metoda Gaussa z częściowym wyborem	0.0000021800061
Metoda Jacobiego	0.001747781301818
Metoda Gaussa-Seidela	0.000023694374368

Powyższe wyniki pozwalają z wysokim prawdopodobieństwem stwierdzić, że wszystkie metody zostały zaimplementowane poprawnie. Łatwo zauważyć również, że w metodach iteracyjnych Jacobiego oraz Gaussa-Seidela odchyły od oczekiwanego wyniku są dużo większe niż w metodzie Gaussa z częściowym wyborem elementu podstawowego. Porównano zatem błędy bezwzględne pomiędzy metodą Gaussa, a metodami iteracyjnymi w zależności od liczby iteracji dla liczby agentów *N=80* i stanie początkowym *Y=34*, *N=39*.

Liczba iteracji	Błąd Gauss - Gauss-Seidel	Błąd Gauss - Jacobii
100	0.17342103813911655	0.17342772922658295
500	3.4238364535765786E-4	0.00797670523302449
1000	2.2252669595879127E-8	1.3421696458543186E-5
2000	1.6653345369377348E-16	3.415354110636315E-11
3500	1.6653345369377348E-16	1.6653345369377348E-16
5000	1.6653345369377348E-16	1.6653345369377348E-16

Jak więc widać, liczba iteracji ma znaczący wpływ na dokładność obliczeń. Używanie metod iteracyjnych przy tego typu obliczeniach ma sens tylko i wyłącznie wtedy, kiedy liczba iteracji ustalona jest na odpowiednio wysoką. Dla przeprowadzanego eksperymentu nie ma sensu ustawiać liczby iteracji na większą niż 3500, ponieważ obie metody osiągają wtedy maksymalny najmniejszy błąd bezwzględny. Poniżej tabela z porównaniem czasów wykonania algorytmu w metodach iteracyjnych w zależności od liczby iteracji dla liczby agentów *N=80*. Dla porównania czas wykonania algorytmu metodą Gaussa z częściowym wyborem wynosi 12.368s.

Liczba iteracji	Metoda Gaussa-Seidela	Metoda Jacobiego
100	2.137s	1.843s
500	10.188s	9.448s
1000	20.31s	19.213
2000	41.267s	35.662s
3500	71.442s	63.347s
5000	103.736s	90.784s

Zestawiając ze sobą wyniki błędów bezwzględnych oraz czasów wykonywania metod iteracyjnych można dojść do wniosku, że metoda Gaussa-Seidela najlepsze wyniki osiąga dla liczby iteracji 2000, a metoda Jacobiego dla 3500, jednak czas wykonywania algorytmu dla liczby iteracji 3500 jest niemal połowę większy niż dla 2000. Metoda Gaussa z częściowym wyborem przy liczbie agentów *N*=80 wykonuje się 12.368s, a nadal daje najdokładniejsze wyniki.

Porównano także wyniki wszystkich trzech metod w zależności od $\it N$ i trzech dokładności, odpowiednio 10^{-6} , 10^{-10} oraz 10^{-14} .

Tabela przedstawiająca wyniki z dokładnością do 10^{-6}

			Metoda			
N	Y	N	Gaussa	Jacobiego	Gaussa-Seidela	
120	57	54	0,676638	0,674869	0,676612	
110	54	55	0,436662	0,435772	0,436654	
100	40	37	0,695771	0,695514	0,695769	
90	30	30	0,500000	0,499920	0,500000	
80	30	25	0,835390	0,835379	0,835390	
60	20	20	0,500000	0,500000	0,500000	
30	10	10	0,500000	0,500000	0,500000	

Tabela przedstawiająca wyniki z dokładnością do $\,10^{-10}$

			Metoda			
N	YES	NO	Gaussa	Jacobiego	Gaussa-Seidela	
120	57	54	0,6766383944	0,6748687398	0,6766119494	
110	54	55	0,4366622936	0,4357717544	0,4366537595	
100	40	37	0,6957711329	0,6955144655	0,6957694048	
90	30	30	0,5000000000	0,4999198993	0,4999996733	
80	30	25	0,8353903922	0,8353790591	0,8353903711	
60	20	20	0,5000000000	0,4999998195	0,5000000000	
30	10	10	0,499999959	0,499999959	0,4999999959	

Tabela przedstawiająca wyniki z dokładnością do 10^{-14}

			Metoda			
N	Y	N	Gaussa	Jacobiego	Gaussa-Seidela	
120	57	54	0,67663839440719	0,67486873980742	0,67661194937996	
110	54	55	0,43666229364408	0,43577175437628	0,43665375950730	
100	40	37	0,69577113289336	0,69551446554075	0,69576940479395	
90	30	30	0,4999999999999	0,49991989929493	0,49999967327504	
80	30	25	0,83539039222515	0,83539039222515	0,83539037113147	
60	20	20	0,5000000000000	0,49999981951701	0,4999999996189	
30	10	10	0,4999999588421	0,4999999588420	0,4999999588420	

Jak można zauważyć na powyższych tabelach, wraz ze zmniejszeniem dokładności, wyniki otrzymywane różnymi metodami są bardziej zbliżone, a przy małych rozmiarach planszy oraz małych dokładnościach są wręcz takie same. Wniosek z tego płynący jest taki, że im większa dokładność tym lepsze wyniki otrzymujemy.

Zakres prac członków zespołu

Mateusz Soroka	Bartłomiej Skopiński	Patryk Szczepański
Przeniesienie metody Gaussa z częściowym wyborem z poprzedniego projektu	Matematyczne opracowanie wariantów algorytmu	Przeprowadzanie testów
Refaktoryzacja kodu	Opracowanie metody Jacobiego	Opracowanie zapisu danych z testów do CSV
Implementacja Monte Carlo	Opracowanie metody Gaussa-Seidela	Sporządzenie wykresów
Zredagowanie sprawozdania	Implementacja wszystkich wariantów algorytmów	Poprawki w sprawozdaniu