Practical -9

<u>Draw the following sequences of function on the given interval ,and discuss the uniform conergence.</u>

Ques. Show that sequence of the function $\langle x^n \rangle$ is uniformly convergent on [0, 0.5]

$$\begin{split} b[n_{-}] &:= \texttt{Maximize}[\{\texttt{Abs}[x^n - 0], \ 0 \le x \le 0.5\}, \ x] \\ &\texttt{TableForm}[\texttt{Table}[\{n, \texttt{NumberForm}[\texttt{N}[b[n][[1]]], \ 12]\}, \ \{n, 1, 10\}], \\ &\texttt{TableHeadings} \to \{\{\}, \{"n", "|f_n(x) - f(x)|"\}\}] \end{split}$$

n	$ f_n(x)-f(x) $
1	0.5
2	0.25
3	0.125
4	0.0625
5	0.03125
6	0.015625
7	0.0078125
8	0.00390625
9	0.001953125
10	0.0009765625

Graphically:

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```


Conclusion: The given sequence of functions converges uniformly to the function f(x) = 0 in any closed and bounded interval [-k, k], < 0 k < 1.

Ques. Show that sequence of the function $<\frac{x}{n}>$ is uniformly convergent on [-1,1]

 $b[n_{-}] := Maximize \left[\left\{ Abs \left[\frac{x}{n} - 0 \right], -1 \le x \le 1 \right\}, x \right]$

$$\begin{split} & TableForm[Table[\{n,NumberForm[N[b[n][[1]]],12]\},\{n,1,100\}],\\ & TableHeadings \rightarrow \ \{\{\},\{"n","|f_n(x)-f(x)|"\}\}] \end{split}$$

_ [n	$ f_n(x)-f(x) $
	1	1.
	2	0.5
	3	0.333333333333
	4	0.25
	5	0.2
	6	0.166666666667
	7	0.142857142857
	8	0.125
	9	0.111111111111
	10	0.1
	11	0.0909090909091
	12	0.0833333333333
	13	0.0769230769231
	14	0.0714285714286
	15	0.0666666666667
	16	0.0625
	17	0.0588235294118 0.0555555555556
	18 19	0.0526315789474
	20	0.0520313789474
	21	0.047619047619
	22	0.047619047619
	23	0.0434782608696
	24	0.04166666666667
	25	0.04
	26	0.0384615384615
	27	0.037037037037
	28	0.0357142857143
	29	0.0344827586207
	30	0.03333333333333
	31	0.0322580645161
	32	0.03125
	33	0.030303030303
	34	0.0294117647059
	35	0.0285714285714
	36	0.02777777778
	37	0.027027027027
	38	0.0263157894737
	39	0.025641025641
	40	0.025
	41	0.0243902439024
	42	0.0238095238095
	43	0.0232558139535
	44	0.0227272727273
	45	0.02222222222

```
46
       0.0217391304348
47
       0.0212765957447
48
       0.0208333333333
49
       0.0204081632653
50
       0.02
       0.0196078431373
51
52
       0.0192307692308
53
       0.0188679245283
54
       0.0185185185185
55
       0.0181818181818
56
       0.0178571428571
57
       0.0175438596491
58
       0.0172413793103
59
       0.0169491525424
       0.0166666666667
60
61
       0.016393442623
62
       0.0161290322581
63
       0.015873015873
64
       0.015625
       0.0153846153846
65
66
       0.0151515151515
       0.0149253731343
67
68
       0.0147058823529
69
       0.0144927536232
70
       0.0142857142857
71
       0.0140845070423
       0.013888888889
72
73
       0.013698630137
74
       0.0135135135135
75
       0.0133333333333
76
       0.0131578947368
77
       0.012987012987
78
       0.0128205128205
79
       0.0126582278481
       0.0125
80
81
       0.0123456790123
       0.0121951219512
82
83
       0.0120481927711
84
       0.0119047619048
85
       0.0117647058824
86
       0.0116279069767
87
       0.0114942528736
88
       0.0113636363636
89
       0.0112359550562
90
       0.0111111111111
91
       0.010989010989
92
       0.0108695652174
       0.010752688172
93
94
       0.0106382978723
95
       0.0105263157895
96
       0.0104166666667
97
       0.0103092783505
98
       0.0102040816327
99
       0.010101010101
1 / 1 / 1
       n n1
```

Graphically:

$$\label{eq:continuous_series} \begin{split} & \text{In}[3] = g[n_, x_] := \frac{x}{n} \\ & \text{Manipulate}[\text{Plot}[\text{Table}[g[n, x], \{n, m\}], \{x, -4, 4\}, \\ & \text{PlotRange} \rightarrow \{-2, 2\}, \text{PlotStyle} \rightarrow \{\text{Magenta, Thick}\}, \text{Epilog} \rightarrow \{\text{Opacity}[.5], \\ & \text{LightOrange, EdgeForm}[\text{GrayLevel}[.5]], \text{Rectangle}[\{-a, -\epsilon\}, \{a, \epsilon\}]\}], \\ & \{\epsilon, 0.01, 0.5, 0.001, \text{Appearance} \rightarrow \text{"Labeled"}\}, \\ & \{a, 0, 10, 0.01, \text{Appearance} \rightarrow \text{"Labeled"}\}] \end{split}$$

Conclusion: The given sequence of functions converges uniformly to the function f(x) = 0 in any closed and bounded interval [a, b], b > a.

Ques. Show that sequence of the function $<\frac{x^2}{n}>$ is uniformly convergent on [0, 8]

n	$ f_n(x)-f(x) $
1	64.
2	32.
3	21.3333333333
4	16.
5	12.8
6	10.6666666667
7	9.14285714286
8	8.
9	7.11111111111
10	6.4

Ques. Show that sequence of the function $< f_n(x) = \frac{x}{x+n} > is uniformly convergent on [0, 8]$

$$w[n_{-}] := Maximize \left[\left\{ Abs \left[\frac{x}{x+n} - 0 \right], 0 \le x \le 10 \right\}, x \right]$$

n	$ f_n(x)-f(x) $
1	0.909090909091
2	0.833333333333
3	0.769230769231
4	0.714285714286
5	0.666666666667
6	0.625
7	0.588235294118
8	0.55555555556
9	0.526315789474
10	0.5

Graphically:

$$ln[13] := 1[n_, x_] := \frac{x}{x+n}$$

Manipulate[Plot[Table[l[n, x], {n, m}], {x, 0, 20},
 PlotRange → {-0.5, 1.5}, PlotStyle → {Blue, Thick}, Epilog → {Opacity[.5],
 LightOrange, EdgeForm[GrayLevel[.5]], Rectangle[{-a, -ε}, {a, ε}]}],
 {ε, 0.01, 0.5, 0.001, Appearance → "Labeled"},
 {a, 0, 30, 0.01, Appearance → "Labeled"},
 {m, 1, 50, 1, Appearance → "Labeled"}]

Conclusion: The given sequence of functions converges uniformly to the function f(x) = 0 in any closed and bounded interval [0, k], k > 0.

Ques. Show that sequence of the function <

$$\frac{(x)^2 + nx}{n} > \text{ is uniformly convergent on [-5, 5]}$$

$$ln[9]:= h[n_, x_] := \frac{(x)^2 + n x}{n}$$

 $Manipulate \Big[Plot \Big[Table[h[n, x], \{n, m\}], \{x, -5, 5\}, PlotRange \rightarrow \{-4, 4\}, \{n, m\} \Big] \Big] \Big]$

 ${\tt PlotStyle} \rightarrow \ \{{\tt Magenta, Thick}\} \,, \, {\tt Epilog} \rightarrow \, \Big\{{\tt Opacity[.5]} \,, \, {\tt LightOrange} \,, \,$

EdgeForm[GrayLevel[.5]], Rotate [Rectangle[$\{-a, -\epsilon\}, \{a, \epsilon\}], \frac{\pi}{4}$]],

 $\{\epsilon, 0.01, 0.5, 0.001, Appearance \rightarrow "Labeled"\},$

 $\{a, 0, 10, 0.01, Appearance \rightarrow "Labeled"\},$

 $\{m, 1, 50, 1, Appearance \rightarrow "Labeled"\}$

Conclusion: The given sequence of functions converges uniformly to the function f(x) = x in any closed and bounded interval [-k, k], k > 0.

Ques. Show that sequence of the function $<\frac{n x}{1+n^2 x^2}$ > is uniformly convergent on [-2, 2]

$$ln[7] = b[n_, x_] := \frac{n x}{1 + n^2 x^2}$$

Manipulate[Plot[Table[b[n, x], {n, m}], {x, -2, 2},
 PlotRange → {-1, 1}, PlotStyle → {Magenta, Thick}, Epilog → {Opacity[.5],
 LightOrange, EdgeForm[GrayLevel[.5]], Rectangle[{-a, -e}, {a, e}]}],
 {e, 0.01, 0.5, 0.001, Appearance → "Labeled"},
 {a, 0, 10, 0.01, Appearance → "Labeled"},

Conclusion: The given sequence of functions converges uniformly to the function f(x) = 0 in any interval [1, k], k > 1.

Ques. Show that sequence of the function $<\frac{n\,x}{1+n\,x}>$ is uniformly convergent on [0, 1]

Conclusion: The given sequence of functions converges uniformly to the function f(x) = 1 in any closed and bounded interval [a, b], b > a > 0.