Linear Algebra

Md. Jalil Piran, Ph.D.
 Professor (Associate)
 Computer Science and Engineering
 Sejong University

Outline

- Introduction
- Vectors
- Matrices
- Linear Equations
- Solving System of Linear Equations
- Matrix Multiplication
- Inverse
- Determinant

Determinant

- The determinant of a square matrix is a scalar that provides information about the matrix.
 - Invertibility of the matrix.
- Learning Target
 - The determinants for 2×2 and 3×3 matrices
 - The properties of Determinants
 - The formula of Determinants
 - Cramer's Rule

Determinant

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$det(A) = ad$$
$$-bc$$

$$A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_4 & \alpha_5 & \alpha_6 \\ \alpha_7 & \alpha_8 & \alpha_9 \end{bmatrix}$$

$$det(A) =$$

$$a_1 a_5 a_9 + a_2 a_6 a_7 + a_3 a_4 a_8$$

$$-a_3 a_5 a_7 - a_2 a_4 a_9 - a_1 a_6 a_8$$

Determinant

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

•
$$3 \times 3$$
 $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$

- Basic Property 1:
 - det(I) = 1

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$det(I_2) = 1$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(I_3) = 1$$

Basic Property 2:

 Exchanging rows reverses the sign of determinant.

$$det \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = 1$$

$$det \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix} = -1$$

$$A \xrightarrow{\text{exchange two rows}} A'$$

$$det(A) = K = det(A') = -K$$

$$det \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = 1$$

$$det \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{pmatrix} = -1$$

$$det \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = 1$$

$$det \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix} = 1$$

- Basic Property 2:
 - Exchange rows reverse the sign of determinant

If a matrix A has 2 equal rows
$$det(A) = 0$$

- Basic Property 3:
 - Determinant is "linear" for each row

$$det \begin{pmatrix} \begin{bmatrix} ta & tb \\ c & d \end{bmatrix} \end{pmatrix} = tdet \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$$

- Basic Property 3:
- If A is $n \times n$, find det(2A)?

$$det(2A) = 2^n det(A)$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$det(A) = -2$$

$$t = 4$$

$$\det(tA) = \det\left(\begin{bmatrix} 4*1 & 4*2 \\ 3 & 4 \end{bmatrix}\right) = \det\left(\begin{bmatrix} 4 & 8 \\ 3 & 4 \end{bmatrix}\right) = -8$$

- Basic Property 3:
 - Determinant is "linear" for each row

- Basic Property 3:
 - Determinant is "linear" for each row

$$det \left(\begin{bmatrix} a + a' & b + b' \\ c & d \end{bmatrix} \right) = det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) + det \left(\begin{bmatrix} a' & b' \\ c & d \end{bmatrix} \right)$$

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \det(A) = -2$$

$$A = \begin{bmatrix} 6 & 7 \\ 3 & 4 \end{bmatrix} \qquad \det(A) = 3$$

$$A = \begin{bmatrix} 5 & 5 \\ 3 & 4 \end{bmatrix} \qquad \det(A) = 5$$

- Basic Property 3:
 - Determinant is "linear" for each row

• Subtract $k \times row i from row j$

$$det\left(\begin{bmatrix} a & b \\ c - ka & d - kb \end{bmatrix}\right)$$

Determinant doesn't change

$$-ka \quad d - kb]$$

$$= det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} + det \begin{pmatrix} \begin{bmatrix} a & b \\ -ka & -kb \end{bmatrix} \end{pmatrix}$$

$$= det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} - kdet \begin{pmatrix} \begin{bmatrix} a & b \\ a & b \end{bmatrix} \end{pmatrix} = det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$$

- Basic Property 3:
 - Determinant is "linear" for each row

• Subtract $k \times row i from row j$

Determinant doesn't change

$$det \left(\begin{bmatrix} 1 & 2 \\ 3 - (5*1) & 4 - (5*2) \end{bmatrix} \right)$$

$$= det \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) + det \left(\begin{bmatrix} 1 & 2 \\ -5*1 & -5*2 \end{bmatrix} \right)$$

$$= det \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) - 5*det \left(\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \right) = det \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$$

- Basic Property 1: det(I) = 1
- Basic Property 2: Exchange rows reverse the sign of determinant.
- Basic Property 3: Determinant is "linear" for each row.

Area in 2D and Volume in 3D have the above properties

Can we say determinant is the "Volume" also in high dimension?

Determinants for Upper Triangular Matrix

$$U = \begin{bmatrix} d_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{bmatrix}$$

Does not change the determinant

$$det(U) = det \begin{pmatrix} \begin{bmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{bmatrix} \end{pmatrix}$$

$$=d_1d_2\cdots d_ndet\begin{pmatrix}\begin{bmatrix}1&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&1\end{bmatrix}\end{pmatrix}$$

=1

$$det(U) = d_1 d_2 \cdots d_n$$
 (Products of diagonal)

Determinants for Upper Triangular Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
$$det(A) = 1 \times 4 \times 6 = 24$$

$$B = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 10 & 11 & 12 \\ 0 & 0 & 0 & 13 & 14 \\ 0 & 0 & 0 & 0 & 15 \end{bmatrix}$$

$$\det(B) = 1 \times 6 \times 10 \times 13 \times 15 = 11700$$

Determinants vs. Invertible

A

Elementary row operation

det(A)

det(R)

$$= \pm k_1 k_2 \cdots det(A)$$

Exchange: Change sign

Scaling: Multiply k

nothing Add row:

If A is invertible, R is identity

$$det(R) = 1 \implies det(A) \neq 0$$

If A is not invertible, R has zero row

$$det(R) = 0 \implies det(A) = 0$$

Example

A is invertible

$$det(A) \neq 0$$

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 4 & 7 \end{bmatrix}$$

For what scalar *c* is the matrix not invertible?

$$det(A) = 0$$

$$det A = 1 \cdot 0 \cdot 7 + (-1) \cdot c \cdot 2 + 2 \cdot (-1) \cdot 1$$
$$-2 \cdot 0 \cdot 2 - (-1) \cdot (-1) \cdot 7 - 1 \cdot c \cdot 1$$
$$= 0 - 2c - 2 - 7 - c = -3c - 9$$

Not invertible
$$\longrightarrow$$
 $-3c - 9 = 0$ \Longrightarrow $c = -3$

More Properties of Determinants

$$det(A + B) \neq det(A) + det(B)$$

- det(AB) = det(A)det(B)
- $det(A^{-1})$?

• $det(A^2)$?

$$det(A^2) = det(A)det(A) = det(A)^2$$

• $det(A^T) = det(A)$

Cofactor Expansion

- $A: n \times n$ matrix.
- A_{ij} : the submatrix of A obtained by removing the i^{th} row and the j^{th} column.

$$A_{ij} = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{l1} & \cdots & a_{lj} & \cdots & a_{ln} \\ \vdots & & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} i^{th} \text{row}$$

$$j^{th} \text{row}$$

Cofactor Expansion

• Pick row 1

$$c_{ij}$$
: (i,j) -cofactor

$$\det(A) = a_{i1}c_{i1} + a_{i2}c_{i2} + \dots + a_{in}c_{in}$$

 $\det(A) = a_{11}c_{11} + a_{12}c_{12} + \dots + a_{1n}c_{1n}$

• Or pick column *j*

$$\det(A) = a_{1j}c_{1j} + a_{2j}c_{2j} + \dots + a_{nj}c_{nj}$$
$$c_{ij} = (-1)^{i+j} \det A_{ij}$$

Determinant for 2×2 matrix

$$c_{ij} = (-1)^{i+j} det(A_{ij})$$

• Define det([a]) = a

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$det(A) = ad - bc$$

Pick the first row

$$det(A) = ac_{11} + bc_{12}$$

$$c_{11} = (-1)^{1+1}det([d]) = d$$

$$c_{12} = (-1)^{1+2}det([c]) = -c$$

Determinant for 3×3 matrix

$$c_{ij} = (-1)^{i+j} det(A_{ij})$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 Pick row 2

$$\det(A) = a_{21}c_{21} + a_{22}c_{22} + a_{23}c_{23}$$

$$4 \qquad 5 \qquad 6$$

$$(-1)^{2+1}det(A_{21}) \qquad (-1)^{2+2}\det(A_{22}) \qquad (-1)^{2+3}det(A_{23})$$

$$A_{21} = \begin{bmatrix} 2 & 3 \\ 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad A_{22} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad A_{23} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 5 \\ 7 & 8 & 9 \end{bmatrix}$$

Formula for A⁻¹

$$\bullet \quad A^{-1} = \frac{1}{\det(A)} C^T$$

$$C = \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{bmatrix}$$

- det(A): scalar
- C: cofactors of A (C has the same size as A, so does C^T)
- C^T is adjugate of A

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \qquad A^{-1}$$

$$= \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} \qquad = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$= ad - bc \qquad C^{T} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Formula for A⁻¹

•
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, $A^{-1} = ?$

$$A^{-1} = \frac{1}{\det(A)} C^T$$

$$det(A) = aei + bfg + cdh - ceg - bdi - afh$$

$$C = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & - \begin{vmatrix} d & f \\ g & i \end{vmatrix} & + \begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & - \begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ + \begin{vmatrix} b & c \\ e & f \end{vmatrix} & - \begin{vmatrix} a & c \\ d & f \end{vmatrix} & + \begin{vmatrix} b & c \\ e & f \end{vmatrix} \end{bmatrix}$$

Formula for A⁻¹

Proof:
$$AC^T = det(A)I_n$$

$$A^{-1} = \frac{1}{\det(A)} C^T$$

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} c_{11} & \cdots & c_{n1} \\ \vdots & \ddots & \vdots \\ c_{1n} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} det(A) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & det(A) \end{bmatrix}$$
Transpose

Cramer's Rule

$$A^{-1} = \frac{1}{\det(A)} C^T$$

$$x_1 = \frac{\det(B_1)}{\det(A)}$$

$$Ax = b$$

$$x = A^{-1}b$$

$$x_2 = \frac{\det(B_2)}{\det(A)}$$

$$= \frac{1}{\det(A)}C^Tb$$

$$x_j = \frac{\det(B_j)}{\det(A)}$$

Cramer's Rule

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -2 & 3 & -1 \\ 4 & 0 & 1 \end{bmatrix}$$

$$A_{11} = \begin{vmatrix} 3 & -1 \\ 0 & 1 \end{vmatrix} = 3 \qquad A_{12} = -\begin{vmatrix} -2 & -1 \\ 4 & 1 \end{vmatrix} = -2 \qquad A_{13} = \begin{vmatrix} -2 & 3 \\ 4 & 0 \end{vmatrix} = -12$$

$$\det(A) = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

$$= 0.3 + 1.(-2) + 2.(-12) = -26$$

• $det(A) \neq 0 \Rightarrow A \text{ is invertible}$

$$A_{21} = -\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \qquad A_{22} = \begin{vmatrix} 0 & 2 \\ 4 & 1 \end{vmatrix} = -8 \qquad A_{23} = -\begin{vmatrix} 0 & 1 \\ 4 & 0 \end{vmatrix} = -4$$

$$A_{31} = \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = -7 \qquad A_{32} = -\begin{vmatrix} 0 & 2 \\ -2 & -1 \end{vmatrix} = -4 \qquad A_{33} = \begin{vmatrix} 0 & 1 \\ -1 & 3 \end{vmatrix} = 2$$

$$A^{-1} = -\frac{1}{26} \begin{bmatrix} 3 & -1 & -7 \\ -2 & -8 & -4 \\ -12 & 4 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{3}{26} & \frac{1}{26} & \frac{7}{26} \\ \frac{1}{13} & \frac{4}{13} & \frac{2}{13} \\ \frac{6}{13} & -\frac{2}{13} & -\frac{1}{13} \end{bmatrix}$$

Office: #432, Daeyang AI Center, Phone: 010-8999-8586, email: piran@sejong.ac.kr