Teoría de Colas

Oscar Quiñonez

8 de octubre de 2020

1. Objetivo

En la presente simulación, se intenta reproducir la llamada"Teoría de colas" utilizando un archivo que contiene números primos previamente generados.

2. Metodología

Esta simulación fue realizada usando como herrameinta el programa Python 3, donde se examinó el archivo que contenía miles de números primos y que la ser ejecutado, se varío el uso de los núcleos que tiene el procesador instalado en el ordenador. Para realizar esta simulación fue necesario el uso de las instrucciones [3] de la tarea 3, donde se menciona que los números primos deben de tener por lo menos 8 dígitos, además del apoyo en el repositorio Schaeffer [2] como base de l código utilizado.

3. Resultados y Discusión

Al realizar la simulación en Python 3 se obtuvieron una serie de datos para 1000, 2000, 3000 y hasta 4000 números del archivo auxiliar, a partir de los cuales se pudieron generar dos tipos de gráficas, una con respecto al uso de los núcleos contra la cantidad de datos y otra de núcleos contra tiempo. Se pueden observar estas gráficas a continuación.

Figura 1: Magnitudes del vector

4. Conclusión

La simulación de la "Teoría de colas" usando números primos usando 8 dígitos nos ayudó a variar el uso de los núcleos en el procesador y con ello, la diferencia del tiempo que se pude ver en las gráficas. En el repositorio[1] se puede encontrar las gráficas y las características del procesador.

Referencias

- [1] O. Quiñonez. tareados, September 2020. URL https://github.com/ OscarNANO/OscarNANO/tree/master/tareatres.
- [2] E. Schaeffer. Práctica 3, September 2020. URL https://github.com/satuelisa/Simulation/blob/master/QueuingTheory/ordering.py.
- [3] E. Schaeffer. Práctica 3: Teoría de colas, September 2020. URL https://elisa.dyndns-web.com/teaching/comp/par/p3.html.