Integrals in Polar

Pre-lecture for 6/26

General Idea

What if we convert f(x, y) into polar coordinates?

- Things can simplify if we have terms like x^2+y^2 and y/x
- Recall: $x = rcos(\theta)$, $y = rsin(\theta)$
- But we need to figure out what dA becomes
- \circ Normally, dA = dx dy

Converting dA

- Split the region R we're integrating into radial slices
- Find the area of each slice
- Conclusion: $dA = r dr d\theta$

The Conversion Process

- ∫∫_R f(x, y) dA = ∫∫_R f(rcosθ, rsinθ) r dr dθ
 Now we need to figure out the bounds on r, θ
- Draw R
- For r: closest and furthest points in R from origin
- For θ : smallest & largest angle for which angle θ line intersects R

Usage Warning

- Polar coordinates are useful on circular regions
- Converting bounds is messy or impossible for general regions
- Use your judgement to see if polar is worth it
- Even a simple rectangle becomes messy

Practice Problems

Problems

- Let R be the annulus centered at the origin with inner radius 2 and outer radius 3. Find $\iint_{\mathbb{R}} (1+x+y+xy) dx dy$
- For the same R, find $\iint_R (|x|+|y|+x^2+y^2) dx dy$
- Find the volume inside $z = x^2+y^2$ and below z = 16
- Find the volume under the sphere $x^2 + y^2 + z^2 = 9$, above the plane z = 0, and inside the cylinder $x^2 + y^2 = 5$

Scratchwork