Kacper Kłos

5 maja 2025

W raporcie analizowaliśmy zachowanie kabla przy bardzo szybkich sygnałach. Wysyłaliśmy sygnały o napięciu 5 V mający 100 ns oraz 10 ns trwa zwiększenie napięcia z 0 do 5 V. Badamy dwa kable o wartości referencyjnej impedancji równej 75 Ω . Wpierw wydłużając kabel badaliśmy jak zmienia się czas z jakim sygnał dochodzi z powrotem, orzymane wyniki pozwoliły wyznaczyć nam prędkości sygnału na $v_{\rm good}=(9,892\pm0,032)\times10^7\,{\rm m/s}$ oraz $v_{\rm bad}=(11,341\pm0,080)\times10^7\,{\rm m/s}$. Następnie na koniec kabla przyłożyliśmy opornik o zmiennym oporze i wyznaczyliśmy zależnść napięcia sygnału odbitego od oporu, przy pomocy tych wyników wyznaczyliśmy impedencję $Z_{\rm good}=(73,9\pm1,1)\,\Omega$ oraz $Z_{\rm bad}=(77,7\pm1,3)\,\Omega$. Na koniec przy pomocy tych wyników wyznaczyliśmy pojemność i indukcyjność na jednostkę długości kabla, wynoszące kolejno $c_{\rm good}=(1,367\pm0,020)\times10^{-10}\,{\rm F/m},\,c_{\rm bad}=(1,135\pm0,021)\times10^{-10}\,{\rm F/m},\,l_{\rm good}=(7,47\pm0,11)\times10^{-7}\,{\rm H/m},\,l_{\rm bad}=(6,85\pm0,12)\times10^{-7}\,{\rm H/m}$

1 Wyniki Pomierów

Wpierw badaliśmy czas potrzebny do odbicia sygnału dla kabla dobrego i złego z impedencją $75\,\Omega.$

Nr	Dobry kabel		Zły kabel	
	d [m]	t [ns]	d [m]	t [ns]
1	30	154	20	84
2	60	304	40	164
3	40	206	40	174
4	80	406	80	346
5	65	332	60	264
6	130	662	120	524
7	80	404	80	356
8	160	810	160	708
9	_	_	100	438
10	_	=	200	872

Tablica 1: Porównanie pomiarów odległości d i czasu t dla dobrego i uszkodzonego kabla.

Rysunek 1: Wykres czasu między wysłanym a odebranym sygnałem t od długości kabla d.

Dopasowując prostą do danych (tab. 1) i wzoru:

$$t = \frac{d}{v} + b$$

otrzymujemy prędkość dla dobrago kable $v_{\rm good}$ (fig. 1a) oraz dla złego $v_{\rm bad}$ (fig. 1b)

$$v_{\text{good}} = (9.892 \pm 0.032) \times 10^7 \,\text{m/s}$$
 $v_{\text{bad}} = (11.341 \pm 0.080) \times 10^7 \,\text{m/s}$

Następnie mierzymy napięcie odbitego sygnały od oporu podłączonego do końca kabla.

Nr	Dobry kabel		Zły kabel	
	$R [\Omega]$	U [V]	$R [\Omega]$	U [V]
1	21,242	-1,200	5,949	-1,760
2	67,889	-0,080	21,741	-1,160
3	51,489	-0,400	50,467	-0,440
4	98,712	$0,\!320$	73,712	-0,040
5	154,450	0,800	99,180	0,280
6	229,724	1,080	154,913	0,680
7	346,970	1,400	228,870	0,960
8	426,380	1,600	324,130	1,200
9	502,590	1,680	423,340	1,480
10	5,985	-1,920	502,510	1,520

Tablica 2: Porównanie pomiarów rezystancji R i napięcia U dla dobrego i uszkodzonego kabla.

Rysunek 2: Wykres napięcia odbitego sygnału U od oporu na końcu przewodu R

Dopasowując krzywą do wzoru otrzymanego w [1]:

$$U_1 = U_0 \frac{R_L - Z}{R_L - Z}$$

Gdzie U_1 - napięcie odbierane, U_0 - napięcie generowane, R_L - opór opciążenia, Z - impedencja.

Oraz korzystając z otzymanych danych (tab. 2) przy traktowaniu U_0 i Z jako zmienną do której dopasowujemy otrzymujemy $Z_{\rm good}$ (fig. 2a) dla dobrego kabla i $Z_{\rm bad}$ (fig. 2b) dla złego.

$$Z_{\rm good} = (73.9 \pm 1.1)\,\Omega \quad Z_{\rm bad} = (77.7 \pm 1.3)\,\Omega \label{eq:Zgood}$$

Korzystając z ponownie z wzorów obecnych w [1] możemy wyznaczyć pojemność c i indukcyjność l na jednostkę długości

 $c = \frac{1}{vZ} \quad l = \frac{Z}{v}$

Co przy naszych wartościach odpowiada:

$$c_{\text{good}} = (1,367 \pm 0,020) \times 10^{-10} \,\text{F/m}$$
 $l_{\text{good}} = (7,47 \pm 0,11) \times 10^{-7} \,\text{H/m}$ $c_{\text{bad}} = (1,135 \pm 0,021) \times 10^{-10} \,\text{F/m}$ $l_{\text{bad}} = (6,85 \pm 0,12) \times 10^{-7} \,\text{H/m}$

2 Analiza wyników

Podczas badania mogliśmy zauważyć że sygnał wysyłany przez kabel zły znaczniej niż kabel dobry tłumił sygnały. W dodatku wyniki uzyskane przez kabel dobry miały mniejsze niepewności od tego złego, co skutkuje w tym że w przypadku impedencji wyznaczonych przez nas ta dla dobrego kabla mieści się w wartości referencyjnej $75\,\Omega$ podczas gdy wartość dla kabla złego, jest nieznacznie większa.

Jeśli mowa o błędzie to dla obu pomiarów błąd wynika z rozdzielczości oscyloskopu oraz generatora sygnałów. W przypadku pomiaru prędkości sygnału są to jedyne błędy, dlatego znajduje się on poniżej 1% wyniku. Lecz w przypadku pomiarów napięcia błąd jest większy i wynika on głównie z trudności określenia dokładnego napięcia odbitego, które na przestrzeni czasu trwania odbitego sygnału spadało. Poza tym obecny jest niewielki błąd wynikający z rozdzielczości multimetra którym mierzyliśmy opór opornika na końcu kabla. Trzeba też wspomnieć że połączenia kabli mogły również zakłócić wyniki, jednak jest to pomijalne.

Literatura

[1] Kabel Koncentryczny; Piotr Fita, Uniwersytet Warszawski.