Lecture 1

Overview of Coloured Petri Nets and CPN Tools

Lars Michael Kristensen
Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences

Email: lmkr@hvl.no / WWW: home.hib.no/ansatte/lmkr

My Background

- 2000: PhD from the CPN research centre at Aarhus University
 (DK) on Coloured Petri Nets and software verification.
- 2000-2002: Post-doctoral researcher at University of South Australia / Australian Defence and Technology Organisation
 - Software tool support for military command and control
 - Modelling and implementation of real-time avionics missions systems
- 2002-2009: Associate professor at Aarhus University
 - Capacity planning for web servers with Hewlett-Packard
 - Development of protocols for IPv6 with Ericsson Telebit
- Since 2009: Professor of computer science and software engineering at Western Norway Univ. of Applied Sciences
 - Establishment of a PhD programme in Computer Science: Software
 Engineering, Sensor Networks and Engineering Computing [http://ict.hvl.no]
 - T&R: programming, network technology and distributed systems, internet-of-things, model-driven software engineering and verification

CPN Textbook

Coloured Petri Nets: Modelling and Validation of Concurrent Systems

Welcome to the homepage of the CPN Book

Authors

Kurt Jensen	Lars Michael Kristensen
Department of Computer Science	Department of Computing
Aarhus University, Denmark	Western Norway University of Applied Sciences

- K. Jensen and L.M. Kristensen.
 Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer, 2009.
- Book website: www.cpnbook.org

Introduction

Coloured Petri Nets (CP-nets or CPNs) is a language for modelling and validation of concurrent and distributed systems and other systems in which concurrency, synchronisation, and communication plays a major role. The CPN textbook

Concurrent Systems

- The vast majority of software systems today can be characterised as concurrent systems
 - Structured as a collection of concurrently executing software components and applications (parallelism)
 - Operation relies on communication, synchronisation, and resource sharing

Internet protocols, cloud, IoT, web-based applications

Multi-core platforms and multi-threaded software

Automation systems and networked control systems

Complex Behaviour

- The engineering of concurrent systems is challenging due to their complex behaviour
 - Concurrently executing and independently scheduled components
 - Non-deterministic and asynchronous behaviour (e.g., timeouts, message loss, external events, ...)
 - Almost impossible for software developers to have a complete understanding of the system behaviour
 - Software testing is challenging and reproducing errors is often difficult
- Methods to support the engineering of reliable concurrent systems are highly relevant

WARNING

CHALLENGES AHEAD

Modelling

- One way to approach the challenges posed by concurrent systems is the construction of models.
- A model is an abstract representation which can be manipulated by a computer software tool

Modelling is used in most engineering disciplines

Why Modelling?

- Benefits of constructing executable models
 - Insight into the design and operation of the system
 - Completeness: results in a more complete design
 - Correctness: reveal errors and ambiguities in the design phase
- Abstraction validation using high-level and domain-specific concepts in development.
- Reliability testing and verification and prior to implementation and deployment
 - Functional properties (e.g., deadlocks, timing requirements,...)
 - Performance properties (e.g., delay, throughout, scalability,...)
- Productivity models can be used (directly or indirectly) as a basis for implementation.

Coloured Petri Nets (CPNs)

- General-purpose graphical modelling language for the engineering of concurrent systems.
- Combines Petri Nets and a programming language

Petri Nets

graphical notation concurrency communication synchronisation resource sharing

CPN ML (Standard ML)

data and data manipulation compact modelling parameterisable models

High-level Petri Nets

- Petri Nets are divided into low-level and highlevel Petri Nets
 - Low-level Petri Nets (such as Place/Transitions Nets) are primarily suited as a theoretical model for concurrency, but are also applied for modelling and verification of hardware systems
 - High-level Petri Nets (such as CP-nets and Predicate/Transitions Nets) are aimed at practical use, in particular because they allow for construction of compact and parameterised models
- High-level Petri Nets is an ISO/IEC standard*
 - The CPN modelling language and the supporting CPN Tools conform to this standard.

* https://www.iso.org/standard/38225.html

CPN @ Atlas Copco

 Developing a model-driven software development approach and supporting infrastructure

CPN Tools: editing, validation, and verification (design time)

C++ execution engine for deployment and real-time execution (run-time)

 The CPN model is directly used as the pump controller software implementation.

CPN @ Schneider Electric

Dependability evaluation and capacity planning of large industrial automation architectures

Performance - Reliability Availability - Safety

CPN Tools [<u>www.cpntools.org</u>]

Practical use of CPNs is supported by CPN Tools

- Editing and syntax check
- Interactive- and automatic simulation
- Verification based on state space exploration
- Simulation-based performance analysis

CPN Tools Demo

- User-interaction with CPN Tools
 - Index and workspace
 - Binders and tool palettes drag-and-drop
 - Contextual menus right click

Examples of CPN Tools users

North America

- Boeing
- ♦ Hewlett-Packard
- **♦** Samsung Information **Systems**
- National Semiconductor Corp.
- ◆ Fujitsu Computer Products
- Honeywell Inc.
- MITRE Corp.,
- **Scalable Server Division**
- E.I. DuPont de Nemours Inc.
- Federal Reserve System
- Bell Canada
- ♦ Nortel Technologies, Canada

Asia

- Mitsubishi Electric Corp., Japan
- ◆ Toshiba Corp., Japan◆ SHARP Corp., Japan
- ♦ Nippon Steel Corp., Japan
- Hongkong Telecom Interactive Multimedia System

Europe

- Alcatel Austria
- Siemens Austria
- Bang & Olufsen, Denmark
- Nokia, Finland
- ◆ Alcatel Business Systems, France
- Peugeot-Citroën, France
- **Dornier Satellitensysteme**, Germany
- SAP AG, Germany
- ♦ Volkswagen AG, Germany
 ♦ Alcatel Telecom, Netherlands
- Rank Xerox, Netherlands
- Sydkraft Konsult, SwedenCentral Bank of Russia
- Siemens Switzerland
- **Goldman Sachs, UK**

http://cs.au.dk/cpnets/industrial-use/

CPN models are formal

- The CPN modelling language has a mathematical definition of both its syntax and semantics.
- The formal representation is important
 - Would have been impossible to develop a sound and powerful CPN language without it
 - Provides the foundation for the definition of the behavioural properties and for the formal analysis and verification methods

Outline

Module I: Modelling and CPN Tools [today]

- Motivation and overview of Coloured Petri Nets
- The syntax and semantics of the basic constructs of the Coloured Petri Nets (CPNs) modelling language
- Modules for hierarchical structuring of large CPN models
- Application of CPN Tools for construction and simulation of CPN models

Module II: Verification and Applications [tomorrow]

- The basic concepts of state spaces and how they are computed
- Introduce standard behavioural properties of CPNs
- Checking standard behavioural properties using state spaces
- A larger example on the industrial use of CPNs and CPN Tools

Do not hesitate to ask questions along the way!

Resources

K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer, 2009.

www.cpnbook.org

Practical use of CPN Tools is extensively documented at www.cpntools.org

Research papers on Coloured Petri Nets

- K. Jensen and L.M. Kristensen. Coloured Petri Nets: A Graphical Language for Modelling and Validation of Concurrent Systems. Communications of the ACM, Vol. 58, No. 6, pp. 61-70, 2015.
- K. Jensen, L.M. Kristensen, L. Wells. Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems. Intl. Journal on Software Tools for Technology Transfer, Vol. 9, pp. 213-254, Springer, 2007.
- L.M. Kristensen and S. Christensen: Implementing Coloured Petri Nets using a Functional Programming Language. In Higher-order and Symbolic Computation, Vol. 17, pp. 207-243, 2004.

Course Material

 Slides, models, and papers are available via the github repository at https://github.com/lmkr/cpncourse

Clone the gitrepository or download as a zip-file

CPN Tools Installation

 CPN Tools can be downloaded and installed via www.cpntools.org

Running on Mac OS / Linux via a virtual machine or emulator.

 Some installations of Windows required the application to be run as administrator.

