!(intergalactic popular beverage)

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

This Photo by Unknown Author is licensed under CC BY-SA

SLURM: Workload manager for HPC batch cluster

S. Ravichandran* and Dennis Foley*
*ABCS, *IT Operations

LBR, FNLCR

Agenda

- To introduce the SLURM scheduler/resource manager batch system replacing the current PBS job scheduler
 - Why the change?

- Key SLURM commands
 - Compare with PBS

Couple of examples using SLURM

What is SLURM

- Simple Linux Unified Resource Manager
 - Written in C (half a million-lines of code)

 Linux utility for Resource management for job scheduling and resource management

- Open source utility widely used in other computing centers
 - Research centers, across the globe

Why Enterprise Information Technology is migrating to SLURM?

 Make the new batch system compatible with CIT's Beowulf computing cluster

 Linux distribution OS will change from <u>Ubuntu</u> to CentOS in the next six months

 The proprietary Moab/Torque scheduler/resource manager will be replaced by SLURM during the migration

New System aiming to bring a large performance boost

Information gleaned from Dr. Doug O'Neal's email

- Servers
 - HPE DL360 Gen 14 servers (no hyper-threading)
- System
 - 2 Intel Skylake processors
 - 18 physical cores each running at 2.7GHz.
 - 768GB memory, SSD system disk, and a 960GB SSD scratch disk.
- Few systems
 - 2 Nvidia GTX 1080Ti graphics cards
 - Support image processing and machine learning efforts
- Contact x 5115 for any questions on the new batch

Useful commands

- sinfo: View information & status of SLURM nodes and partitions
 - pbsnodes -a
- sbatch/scancel: Submit/cancel a batch (script) to SLURM
 - qsub/qdel
- sacct: To display accounting data for all jobs
- squeue: To view information about all jobs located in SLURM scheduling queue
 - squeue –u username

https://slurm.schedmd.com/

sinfo: information on nodes & partitions

```
bash-4.2$
          sinfo
PARTITION
                  TIMELIMIT
          AVAIL
                              NODES
                                     STATE NODELIST
quick
                    4:00:00
                                      idle fr-s-hpc-a2-[02-08]
              up
                 10-00:00:0
                                      idle fr-s-hpc-a2-[03-08]
norm*
              up
unlimited
                   infinite
                                      idle fr-s-hpc-a2-[07-08]
              up
```

PARTITION

- quick partition contains 7 nodes (for now, each node = 16 cores)
- normal partition contains 6 nodes
- unlimited partition contains 2 nodes

TIMELIMIT

• 4:00:00 means hr:min:sec

Examples

How to submit a job using AMBER as an example

PBS -> SLURM

PBS	SLURM	What it means?
qsub <job-file></job-file>	sbatch <job-file></job-file>	Submit the script to queue
qsub –I	salloc <options></options>	Request interactive job
showstart	squeue –start	Display estimated start time
qstat <-u username>	squeue <-u username>	Check jobs for username
qstat <queue></queue>	squeue –p <partition></partition>	Display queue/partition information
qstat –f <job-id></job-id>	scontrol show job <job-id></job-id>	Display detailed job details (WorkDir, .e or .o output file dir location etc.)
qdel <job-id></job-id>	scancel <job-id></job-id>	Delete <job-id></job-id>

```
#PBS -S /bin/csh -N VINA-1 -r n -c n
#PBS -l pvmem=2gb
#PBS -l walltime=18:10:00
#PBS -l nodes=1:ppn=16
```

```
#!/usr/bin/tcsh
#SBATCH --export=NONE
#SBATCH --partition=norm
#SBATCH --job-name=VINA-1
#SBATCH --output=VINA-1.out
#SBATCH --nodes=1
#SBATCH --ntasks=16
#SBATCH --time=18:10:00
#SBATCH --mem-per-cpu=2gb
```

sinfo

```
bash-4.2$ sinfo
PARTITION AVAIL
                 TIMELIMIT
                            NODES
                                   STATE NODELIST
                   4:00:00
                                    idle fr-s-hpc-a2-[02-08]
quick
             up
             up 10-00:00:0
                                6 idle fr-s-hpc-a2-[03-08]
norm*
unlimited
                  infinite
                                    idle fr-s-hpc-a2-[07-08]
             up
```

sbatch scancel 532

```
[ravichandrans@fr-s-hpc-a2-01 Amber_SLURM]$ sbatch amber16_tutorial_3.batch
Submitted batch job 532
```

SQUEUE squeue –u ravichandrans

```
[ravichandrans@fr-s-hpc-a2-01 Amber_SLURM]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

532 norm AMBER16 ravichan R 0:50 1 fr-s-hpc-a2-03
```

sacct

```
[ravichandrans@fr-s-hpc-a2-01 Vina SLURM]$ cat Vina2018-1.pbs
#!/usr/bin/tcsh
#SBATCH --export=NONE
#SBATCH --partition=norm
#SBATCH --job-name=VINA-1
#SBATCH --output=VINA-1.out
#SBATCH --nodes=1
#SBATCH --ntasks=16
#SBATCH --time=18:10:00
#SBATCH --mem-per-cpu=2gb
setenv VINA autodock vina 1 1 2 linux x86/bin/vina
cd /users/priapp/$USER/SLURM/Vina SLURM
```

\$VINA/vina --config vina conf.txt


```
[ravichandrans@fr-s-hpc-a2-01 Vina_SLURM]$ sbatch VINA.batch
Submitted batch job 534
[ravichandrans@fr-s-hpc-a2-01 Vina_SLURM]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

534 norm VINA-1 ravichan R 0:08 1 fr-s-hpc-a2-03
```

```
[ravichandrans@fr-s-hpc-a2-01 Vina SLURM]$ tail VINA-1.out
         -6.4 1.455
                        2.465
  2
                1.316 2.442
         -6.3
         -6.2 1.264 2.253
        -5.8 1.192 1.791
  6
        -5.5 1.762
                         3.063
        -4.6
             2.734 6.611
        -4.1 1.185 2.521
  9
         -3.8 1.485
                     2.275
 10
         -3.6
                1.751
                      2.158
Writing output ... done.
```

```
#SBATCH --export=NONE
                                                         H-Ras and C-Raf1
                          Partition key says where to run
#SBATCH --partition=norm
                                                            Complex
#SBATCH --job-name=AMBER16 MPI T3
#SBATCH --output=res amber16 t3.txt
#SBATCH --nodes=1
#SBATCH --ntasks=16
                          Example: 18 hours and 10 minutes
#SBATCH --time=18:10:00
#SBATCH --mem-per-cpu=10qb
set NODE = "`hostname -s`"
module load amber
# Please make sure the NCPUS match the "--ntasks" key value
set NCPUS = 16
setenv MYHOME /scratch/cluster tmp/$USER/Amber16-Test
set P SANDER = "$AMBERHOME/bin/sander.MPI"
cp $AMBER TUTORIAL 3 DATA/* .
mpirun -n $NCPUS ${P SANDER} -O -i min.in -o min.out -p ras-raf solvated.prmtop \
      -c ras-raf solvated.inpcrd -r min.rst -ref ras-raf solvated.inpcrd
module unload amber
module unload intel parallel
```

Additional Information

https://slurm.schedmd.com/

- HPC NIH
 - https://hpc.nih.gov/docs/pbs2slurm.html

This Photo by Unknown Author is licensed under CC BY-NC-ND

Thanks

Ravi & Dennis