Rationally Inattentive Monetary Policy

Joshua Bernstein

Rupal Kamdar

Indiana University Indiana University

June 2022 Barcelona Summer Forum

Motivation

- Lessons for optimal monetary policy are usually derived given complete information
- In reality, policy is set with limited information
 "Uncertainty about the current state of the economy is a chronic problem for policymakers" -Bernanke
- Due to limited information, policy will deviate from the full information benchmark
 - How can the policy maker minimize the impact of their mistakes?
 - What should they focus their limited attention on?
 - What are the ramifications for macroeconomic dynamics?

Contributions

- We study optimal monetary policy with rational inattention in an otherwise textbook New Keynesian model driven by demand and supply shocks
- The policy maker solves a Ramsey problem subject to a rational inattention constraint
- We study how this constraint affects the solution analytically and quantitatively

Analytical Results

- Demonstrate how the policy maker's information choices shape their expectations and the dynamics of the macroeconomy
- Rational inattention attenuates the policy maker's expectation formation process
 Monetary policy is less responsive to exogenous shocks
- Rational inattention "noises up" the policy maker's expectation formation process
 Monetary policy is subject to endogenous shocks
- Output responds relatively more to demand shocks and less to supply shocks vs. the efficient benchmark

Quantitative Results

- How does improved information processing by policy makers affect the macroeconomy?
- Outcomes converge towards the efficient benchmark
- Macro volatility and the co-movement between output and inflation all decline, consistent with empirical trends
- Optimal for policy makers to focus their attention on demand shocks
 - Intuition: persistent supply shocks have only a small effect on efficient interest rates

Literature

- Monetary policy with exogenous information Aoki (2003), Boehm and House (2019)
- Monetary policy when the private sector has limited information Paciello and Wiederholt (2014), Angeletos and La'O (2020)
- Robust monetary policy with uncertainty about private sector beliefs Woodford (2010), Adam and Woodford (2012)
- Flattening of the empirical Phillips curve McLeay and Tenreyro (2020)

Outline

- Environment
- Analytical Results
- Quantitative Results

Setting and Aggregate Shocks

- Economy is a textbook log-linear New Keynesian model
- Hatted variables denote log deviations from the deterministic steady state
- The economy is driven by two exogenous stochastic processes that drive the household discount rate $\hat{\rho}_t$ and total factor productivity (TFP) \hat{a}_t

$$\begin{split} \hat{\rho}_t &= \delta_\rho \hat{\rho}_{t-1} + \sigma_\rho e_{\rho,t}, \\ \hat{a}_t &= \delta_{\text{a}} \hat{a}_{t-1} + \sigma_{\text{a}} e_{\text{a},t}, \end{split}$$

where
$$\delta_{
ho},\delta_{ extbf{a}}\in\left[0,1\right)$$
, $e_{
ho,t}\sim\mathcal{N}\left(0,1\right)$, and $e_{ extbf{a},t}\sim\mathcal{N}\left(0,1\right)$

We interpret and refer to these as demand and supply shocks

Flexible Price Benchmark

- Suppose that the economy is subject to demand shocks $\hat{\rho}_t$ and supply shocks \hat{a}_t
- When prices are flexible and monetary policy is neutral, outcomes are
 Pareto efficient and are described by starred variables for output and the
 real interest rate that satisfy:

$$\hat{y}_t^* = rac{1+arphi}{1/\gamma + arphi} \hat{a}_t$$
 $r_t^* =
ho + \hat{
ho}_t - rac{1+arphi}{1/\gamma + arphi} (1-\delta_{ extsf{a}}) \hat{a}_t$

where $\gamma>0$ is the elasticity of intertemporal substitution and $1/\varphi$ is the Frisch labor elasticity

Equilibrium Dynamics w/ Sticky Prices

- We analyze outcomes under sticky prices in terms of their deviations from the efficient benchmark (output gap $\tilde{y}_t = \hat{y}_t \hat{y}_t^*$)
- Outcomes are described by the Euler equation and the New Keynesian Phillips curve:

$$\mathbb{E}_{t}\tilde{y}_{t+1} - \tilde{y}_{t} = \gamma \left(\iota_{t} - \mathbb{E}_{t}\pi_{t+1} - r_{t}^{*} \right)$$
$$\pi_{t} = \varphi_{y}\tilde{y}_{t} + \frac{1}{1+\rho}\mathbb{E}_{t}\pi_{t+1}.$$

• Optimal monetary policy with full-information:

$$\iota_t = r_t^* \implies \tilde{y}_t = \pi_t = 0, \quad \hat{y}_t = \hat{y}_t^*$$

Information Frictions

- We use Shannon mutual information to quantify how much information the policy maker processes about demand and supply shocks, and then uses to implement policy
- Define the average per-period mutual information between two stochastic processes: $\mathcal{I}(\{X\}; \{Y\}) = \lim_{T \to \infty} \frac{1}{T} I(\mathbf{X}; \mathbf{Y})$
- Information constraint:

$$\mathcal{I}\left(\left\{\hat{\rho}_{t}, \hat{a}_{t}\right\}; \left\{\mathbb{E}_{M, t}\left[\hat{\rho}_{t}\right], \mathbb{E}_{M, t}\left[\hat{a}_{t}\right]\right\}\right) \leq \kappa_{M}$$

Assuming independent learning and independent shocks:

$$\underbrace{\mathcal{I}\left(\{\hat{\rho}_t\}; \{\mathbb{E}_{M,t}\left[\hat{\rho}_t\right]\}\right)}_{=\kappa_{\rho}} + \underbrace{\mathcal{I}\left(\{\hat{a}_t\}; \{\mathbb{E}_{M,t}\left[\hat{a}_t\right]\}\right)}_{=\kappa_{\theta}} \leq \kappa_{M}$$

ullet Finite $\kappa_M \Longrightarrow$ policy maker cannot eliminate all uncertainty about r_t^*

Optimal Policy Problem

The optimal policy problem can be broken into two subproblems:

- First, in period t = -1 the policy maker chooses their information structure:
 - How much attention to allocate to supply vs. demand shocks?
 - ullet This division characterizes how the expectations, \mathbb{E}_M , will be formed before any information is received
- Second, in each period $t \ge 0$, the policy maker chooses ι_t given their information set
- Let me begin by discussing the second subproblem

Ramsey Problem (Second Subproblem)

• To determine the optimal choice of ι_t the policy maker solves

$$\min_{\iota_t} rac{1}{2} \mathbb{E}_{M,t} \left[ilde{y}_t^2 + rac{\xi}{1/\gamma + arphi} \pi_t^2
ight]$$

subject to

$$\pi_t = \varphi_y \tilde{y}_t + \frac{1}{1+\rho} \mathbb{E}_t \pi_{t+1}$$
$$\mathbb{E}_t \tilde{y}_{t+1} - \tilde{y}_t = \gamma \left(\iota_t - \mathbb{E}_t \pi_{t+1} - r_t^* \right)$$

ullet The optimal discretionary monetary policy satisfies $\iota_t = \mathbb{E}_{M,t}\left[r_t^*
ight]$, so:

$$\iota_{t} = \rho + \mathbb{E}_{M,t} \left[\hat{\rho}_{t} \right] - \frac{1 + \varphi}{1 + \gamma \varphi} \mathbb{E}_{M,t} \left[\hat{a}_{t} \right].$$

 Optimal monetary policy is the subjective expectation of the optimal policy under complete information

Information Structure Choice (First Subproblem)

• Recall the information constraint:

$$\underbrace{\mathcal{I}\left(\left\{\hat{\rho}_{t}\right\};\left\{\mathbb{E}_{M,t}\left[\hat{\rho}_{t}\right]\right\}\right)}_{=\kappa_{\rho}} + \underbrace{\mathcal{I}\left(\left\{\hat{a}_{t}\right\};\left\{\mathbb{E}_{M,t}\left[\hat{a}_{t}\right]\right\}\right)}_{=\kappa_{a}} \leq \kappa_{M}$$

• To determine their information allocation, the policy maker minimizes the discounted expected welfare loss (conditional on the optimal policy)

$$\min_{\kappa_{\rho}, \kappa_{a}} \frac{1}{2} \mathbb{E}_{M,-1} \left[\sum_{t=0}^{\infty} \beta^{t} \left(\tilde{y}_{t}^{2} + \frac{\xi}{1/\gamma + \varphi} \pi_{t}^{2} \right) \right]$$

subject to

$$\kappa_{\rho} + \kappa_{\mathsf{a}} \le \kappa_{\mathsf{M}}$$

Analytical Results

- Assume shocks are i.i.d. over time $(\delta_{\rho} = \delta_{a} = 0)$
- How does the policy maker form their expectations?
- Derive properties of $E_{M,t}$ in terms of the information capacity allocated to demand and supply shocks
 - κ_{ρ} and κ_{a} where $\kappa_{\rho} + \kappa_{a} = \kappa_{M}$

Policy Maker Expectations

Policy maker's expectations of supply and demand shocks:

$$E_{M,t}\hat{a}_{t} = (1 - 1/2^{2\kappa_{a}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{a}} - 1}/2^{2\kappa_{a}})\sigma_{a}v_{t}$$

$$E_{M,t}\hat{\rho}_{t} = (1 - 1/2^{2\kappa_{\rho}})\hat{\rho}_{t} + (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t}$$

where $v, u \sim N(0, 1)$

- Limited information $(\kappa_a < \infty) \Rightarrow$ policy maker attenuates their expectation towards their prior, $\hat{a}_t = 0$
- Processing some information $(\kappa_a > 0)$ \Rightarrow expectation formation is subject to noise
- Similar intuition for $E_{M,t}\hat{\rho}_t$

Policy Maker Expectations

Policy maker's expectations of supply and demand shocks:

$$E_{M,t}\hat{a}_{t} = (1 - 1/2^{2\kappa_{a}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{a}} - 1}/2^{2\kappa_{a}})\sigma_{a}v_{t}$$

$$E_{M,t}\hat{\rho}_{t} = (1 - 1/2^{2\kappa_{\rho}})\hat{\rho}_{t} + (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t}$$

where $v, u \sim N(0, 1)$

- Limited information $(\kappa_a < \infty) \Rightarrow$ policy maker attenuates their expectation towards their prior, $\hat{a}_t = 0$
- Processing some information $(\kappa_a > 0)$ \Rightarrow expectation formation is subject to noise
- Similar intuition for $E_{M,t}\hat{\rho}_t$

Optimal Path for Nominal Rates

Now we can write the optimal path of nominal (equal to real) rates as:

$$\iota_{t} = \rho + (1 - 1/2^{2\kappa_{\rho}})\hat{\rho}_{t} + (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t}
- \frac{1+\varphi}{1+\gamma\varphi}((1 - 1/2^{2\kappa_{\sigma}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{\sigma}} - 1}/2^{2\kappa_{\sigma}})\sigma_{\sigma}v_{t})$$

- Muted response to to exogenous demand and supply shocks (relative to the efficient benchmark where $\iota_t^* = \rho + \hat{\rho}_t \frac{1+\varphi}{1/\gamma+\varphi}(1-\delta_a)\hat{a}_t)$
- Endogenous and stochastic shocks to optimal monetary policy that a policy maker with full information could avoid
- Informational trade-off: monetary policy responds more strongly and more precisely to the shock that the policy maker pays more attention

Optimal Path for Nominal Rates

Now we can write the optimal path of nominal (equal to real) rates as:

$$\iota_{t} = \rho + (1 - 1/2^{2\kappa_{\rho}})\hat{\rho}_{t} + (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t} \\
- \frac{1+\varphi}{1+\gamma\varphi}((1 - 1/2^{2\kappa_{a}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{a}} - 1}/2^{2\kappa_{a}})\sigma_{a}v_{t})$$

- Muted response to to exogenous demand and supply shocks (relative to the efficient benchmark where $\iota_t^* = \rho + \hat{\rho}_t \frac{1+\varphi}{1/\gamma+\varphi}(1-\delta_a)\hat{a}_t)$
- Endogenous and stochastic shocks to optimal monetary policy that a policy maker with full information could avoid
- Informational trade-off: monetary policy responds more strongly and more precisely to the shock that the policy maker pays more attention

Optimal Path for Nominal Rates

Now we can write the optimal path of nominal (equal to real) rates as:

$$egin{aligned} \iota_t &=
ho + (1 - 1/2^{2\kappa_
ho})\hat{
ho}_t + (\sqrt{2^{2\kappa_
ho} - 1}/2^{2\kappa_
ho})\sigma_
ho u_t \ &- rac{1 + arphi}{1 + \gammaarphi}((1 - 1/2^{2\kappa_s})\hat{a}_t + (\sqrt{2^{2\kappa_s} - 1}/2^{2\kappa_s})\sigma_s v_t) \end{aligned}$$

- Muted response to to exogenous demand and supply shocks (relative to the efficient benchmark where $\iota_t^* = \rho + \hat{\rho}_t \frac{1+\varphi}{1/\gamma+\varphi}(1-\delta_a)\hat{a}_t$)
- Endogenous and stochastic shocks to optimal monetary policy that a policy maker with full information could avoid
- Informational trade-off: monetary policy responds more strongly and more precisely to the shock that the policy maker pays more attention

Output Dynamics

 Combining the nominal rate, Euler equation and New Keynesian Phillips curve, we can solve for output:

$$\hat{y}_{t} = \gamma (\hat{\rho}_{t}/2^{2\kappa_{\rho}} - (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t})
+ \frac{1+\varphi}{1/\gamma+\varphi} ((1-1/2^{2\kappa_{\theta}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{\theta}} - 1}/2^{2\kappa_{\theta}})\sigma_{\theta}v_{t})$$

- Compare to efficient output process: $\hat{y}_t^* = \frac{1+\varphi}{1/\gamma+\varphi}\hat{a}_t$
- Output responds less to supply shocks
 - $\bullet \ \ \mathsf{Muted} \ \mathsf{real} \ \mathsf{rate} \ \mathsf{response} \Rightarrow \mathsf{less} \ \mathsf{intertemporal} \ \mathsf{substitution} \\$
- Output responds more to demand shocks
 - Larger gap between real rate and discount rate ⇒ more intertemporal substitution
- Output has endogenous fluctuations driven by noisy expectations

Output Dynamics

 Combining the nominal rate, Euler equation and New Keynesian Phillips curve, we can solve for output:

$$\hat{y}_{t} = \frac{\gamma(\hat{\rho}_{t}/2^{2\kappa_{\rho}} - (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t})}{+\frac{1+\varphi}{1/\gamma+\varphi}((1-1/2^{2\kappa_{\theta}})\hat{a}_{t} + (\sqrt{2^{2\kappa_{\theta}} - 1}/2^{2\kappa_{\theta}})\sigma_{\theta}v_{t})}$$

- Compare to efficient output process: $\hat{y}_t^* = rac{1+arphi}{1/\gamma+arphi}\hat{a}_t$
- Output responds less to supply shocks
 - $\bullet \ \ \mathsf{Muted} \ \mathsf{real} \ \mathsf{rate} \ \mathsf{response} \Rightarrow \mathsf{less} \ \mathsf{intertemporal} \ \mathsf{substitution} \\$
- Output responds more to demand shocks
 - Larger gap between real rate and discount rate ⇒ more intertemporal substitution
- Output has endogenous fluctuations driven by noisy expectations

Output Dynamics

 Combining the nominal rate, Euler equation and New Keynesian Phillips curve, we can solve for output:

$$\begin{split} \hat{y}_t &= \gamma (\hat{\rho}_t/2^{2\kappa_{\rho}} - (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_t) \\ &+ \frac{1+\varphi}{1/\gamma + \varphi} ((1 - 1/2^{2\kappa_{\theta}})\hat{a}_t + (\sqrt{2^{2\kappa_{\theta}} - 1}/2^{2\kappa_{\theta}})\sigma_{\theta}v_t) \end{split}$$

- Compare to efficient output process: $\hat{y}_t^* = rac{1+arphi}{1/\gamma+arphi}\hat{a}_t$
- Output responds less to supply shocks
 - $\bullet \ \ \mathsf{Muted} \ \mathsf{real} \ \mathsf{rate} \ \mathsf{response} \Rightarrow \mathsf{less} \ \mathsf{intertemporal} \ \mathsf{substitution} \\$
- Output responds more to demand shocks
 - Larger gap between real rate and discount rate ⇒ more intertemporal substitution
- Output has endogenous fluctuations driven by noisy expectations

Inflation Dynamics

Substituting the dynamics for output into the New Keynesian Phillips curve:

$$\pi_{t} = \varphi_{y} \gamma (\hat{\rho}_{t}/2^{2\kappa_{\rho}} - (\sqrt{2^{2\kappa_{\rho}} - 1}/2^{2\kappa_{\rho}})\sigma_{\rho}u_{t})$$
$$+ \varphi_{y} \frac{1+\varphi}{1/\gamma+\varphi} (-\hat{\mathbf{a}}_{t}/2^{2\kappa_{a}} + (\sqrt{2^{2\kappa_{a}} - 1}/2^{2\kappa_{a}})\sigma_{a}v_{t})$$

- Inflation responds to demand and supply shocks, in sharp contrast with its stability under the full information policy
- Inflation responds positively to demand shocks, but negatively to supply shocks
- The inflation response to each shock depends on the information allocation
 - More response to the shock that the policy maker devotes less attention

Inflation Dynamics

• Substituting the dynamics for output into the New Keynesian Phillips curve:

$$\begin{split} \pi_t &= \varphi_y \gamma (\hat{\rho}_t / 2^{2\kappa_\rho} - (\sqrt{2^{2\kappa_\rho} - 1} / 2^{2\kappa_\rho}) \sigma_\rho u_t) \\ &+ \varphi_y \frac{1 + \varphi}{1 / \gamma + \varphi} (-\hat{a}_t / 2^{2\kappa_\partial} + (\sqrt{2^{2\kappa_\partial} - 1} / 2^{2\kappa_\partial}) \sigma_a v_t) \end{split}$$

- Inflation responds to demand and supply shocks, in sharp contrast with its stability under the full information policy
- Inflation responds positively to demand shocks, but negatively to supply shocks
- The inflation response to each shock depends on the information allocation
 - More response to the shock that the policy maker devotes less attention

Information Allocation (IID Assumption)

- Having characterized the optimal monetary policy and equilibrium dynamics, we can solve for the optimal information allocation (the first subproblem)
- The policy maker minimizes ex-ante utility loss, subject to their information constraint:

$$\min_{\kappa_{\rho},\kappa_{a}} \frac{1}{2} \left(\frac{\sigma_{\rho}^{2}}{2^{2\kappa_{\rho}}} + \left(\frac{1+\varphi}{1+\gamma\varphi} \right)^{2} \frac{\sigma_{a}^{2}}{2^{2\kappa_{a}}} \right)$$

subject to:

$$\kappa_{\rho} + \kappa_{\mathsf{a}} \le \kappa_{\mathsf{M}}$$

Information Allocation (IID Assumption)

Solution:

$$\kappa_{a} = \begin{cases} 0 & \text{if} & \log_{2}(\frac{1+\varphi}{1+\gamma\varphi}\sigma_{a}/\sigma_{\rho}) \leq -\kappa_{M}, \\ \frac{1}{2}\kappa_{M} + \frac{1}{2}\log_{2}(\frac{1+\varphi}{1+\gamma\varphi}\sigma_{a}/\sigma_{\rho}) & \text{if} & \log_{2}(\frac{1+\varphi}{1+\gamma\varphi}\sigma_{a}/\sigma_{\rho}) \in (-\kappa_{M}, \kappa_{M}), \\ \kappa_{M} & \text{if} & \log_{2}(\frac{1+\varphi}{1+\gamma\varphi}\sigma_{a}/\sigma_{\rho}) \geq \kappa_{M}, \end{cases}$$

and
$$\kappa_{\rho} = \kappa_{M} - \kappa_{a}$$

- The policy maker chooses their information allocation based on the welfare gains from reducing demand shock variance vs. supply shock variance
- κ_a is increasing in the relative gain from reducing the welfare impact of supply shocks

Quantitative Exercise

- Relax i.i.d. shocks assumption and solve model numerically
 - Set parameters governing preferences and technology consistent with literature
 - Calibrate parameters governing the exogenous shock processes and the information processing capacity
- Consider a range of values for κ_M and ask how an increase in κ_M affects macro dynamics?
- Should the policy maker pay more attention to demand or supply shocks?

Calibration

We calibrate the parameters governing the exogenous shock processes and the information processing capacity to target 5 summary statistics from our sample:

Parameter	Value	Target	Data	Model
δ_{a}	0.951	$AC(\hat{y})$	0.871	0.812
σ_{a}	0.005	$SD(\hat{y})$	0.015	0.018
$\delta_{ ho}$	0.644	$AC(\pi)$	0.336	0.364
$\sigma_{ ho}$	0.006	$SD(\pi)$	0.015	0.011
κ_{M}^{*}	0.844	$Cov(\hat{y},\pi)/V(\hat{y})$	0.233	0.228

Optimal to Focus on Demand Shocks

Optimal information allocation, expressed as percentages of κ_M ($\kappa_M^*=0.84$)

κ_{N}	0.57	0.62	0.68	0.73	0.79	0.84	0.9	0.95	1.01	1.07	1.12
$\kappa_{\it a}$	55	51	48	45	43	41	39	38	36	35	34
$\kappa_{ ho}$	45	49	52	55	57	59	61	62	64	65	66

Two effects:

- Supply shocks are more persistent in our calibration, so their variance is also larger
 policy maker should pay relatively more attention to supply shocks
- Persistent supply shocks have a weak effect on the efficient real rate $(r_t^* = \rho + \hat{\rho}_t \frac{1+\varphi}{1/\gamma + \varphi}(1-\delta_a)\hat{a}_t) \implies$ policy maker should pay relatively less attention to supply shocks

Macro Volatility Declines in κ_M

As κ_{M} increases, outcomes approach their efficient counterparts

Empirical Decline in Macro Volatility and Phillips Curve

Consistent with an increase in processing capacity, there has been a decline in macroeconomic volatility and the correlation between inflation and real activity

Extensions

- Linear marginal information cost
 - Results are robust and can be mapped from one approach to the other
- Random walk supply shocks
 - Assuming $\delta_a = 1$, r_t^* does not depend on supply shocks at all and the policy maker pays attention only to demand shocks
- Mark up shocks
 - The policy maker still chooses an optimal information allocation to try and get as close to the efficient allocation as possible - key takeaways remain the same
- Alternative information cost
 - Results robust to using the neighborhood-based information cost function proposed by Hébert and Woodford (2020)

Conclusion

- We solve the rationally inattentive optimal monetary policy problem in a New Keynesian model
- Policy responds less to exogenous shocks, but is endogenously noisy
- Typically, policy makers should focus on understanding demand factors
- Improvements in information processing are consistent with the decline in macro volatility and the disappearing co-movement between output and inflation in the data

FOMC Minutes: Text Analysis

- Compile the text of the FOMC Minutes from 1976
- Remove 179 stop words such as 'and', 'the', and 'we'
- Create a list of the 1,000 most commonly used words and manually classify each word as being demand- or supply-related or neither
 - Example demand-related words: consumer, spending, sentiment
 - Example supply-related words: energy, industrial, shipments
- Given the subjective nature of this allocation, we include analyses not only
 on the identified demand-related and supply-related words, but also on the
 use of the exact words 'demand' and 'supply'

FOMC Minutes: Demand and Supply Counts

'Demand and demand-related words are consistently used more than 'supply' and supply-related words. Consistent with our calibration where 59% of processing capacity is allocated to demand and 41% to supply factors

(a) 'Demand' or 'Supply' Word Count

(b) Demand- or Supply-Related Word Count

FOMC Minutes: Demand and Supply Percents

We find demand-related terminology has modestly increased relative to supply-related terminology over time - consistent with a small increase in information processing capacity

(a) 'Demand' or 'Supply', % of 'Demand' & 'Supply'

(b) Demand or Supply-Related Words,% of Demand & Supply-Related