MATH 262: Homework #7

Jesse Farmer

08 March 2005

1. Show that if X has a countable basis $\{B_n\}$ then every basis \mathbb{C} for X contains a countable basis for X. Since $\{B_n\}$ and \mathbb{C} are bases for the same topology, it follows that for every $x \in X$ and m there exists a n and $C_{n,m}$ such that $x \in B_n \subset C_{n,m} \subset B_m$.

Let $x \in X$ and let $x \in B_m \in \{B_n\}$. Then there exists some $C_{n,m}$ such that $x \in C_{n,m} \subset B_m$. If $x \in C_{n_1,m_1} \cap C_{n_2,m_2}$ then there exists n', B_{n_3} , C_{n',n_3} such that

$$x \in C_{n',n_3} \subset B_{n_3} \subset B_{n_1} \cap B_{n_2} \subset C_{n_1,m_1} \cap C_{n_2,m_2}$$

Hence the $\{C_{n,m}\}$ form a countable basis.

2. Let X have a countable basis and let A be an uncountable subset of X. Show that uncountably many points of A are limit points of A.

Let $\{B_i\}$ be a countable basis for X and Z be the set of all points that are not limit points of X. For every $z \in Z$ there exists a neighborhood U_z of z which is disjoint from all other points of X, and there is some $x \in B_k \subset U_z$. But then the B_k must be disjoint, and hence $Z = \bigcup B_k$ is countable as it is the countable union of countable sets (singletons, in fact). If A is an uncountable subset of X then it must have an uncountable number of limit points since otherwise it would be the union of two countable sets, viz., the set of all limits points of A and $Z \cap A$ (which is countable from the argument above), and hence countable itself.

3. (a) Show that every metrizable space with a countable dense subset X has a countable basis. Let (X, ρ) be a metric space and $A \subset X$ a countable dense subset. For every x there exists a

neighborhood U of x and a basis element $B_{\epsilon}(x)$ with $\epsilon < 1$ such that $x \in B_{\epsilon}(x) \subset U$. Since A is dense in X, there exists some $a \in B_{\frac{\epsilon}{3}}(x)$ so that $\rho(x,a) < \frac{\epsilon}{3}$. Then

$$B_{\frac{2\epsilon}{3}}(a)\subset B_{\epsilon}(x)$$

and choosing an integer n such that $\frac{\epsilon}{3} < \frac{1}{n} < \frac{2\epsilon}{3}$ (which is possible since the interval has length less than 1), it follows that

$$x \in B_{\frac{1}{n}}(a) \subset B_{\frac{2\epsilon}{3}}(a) \subset B_{\epsilon}(x)$$

Therefore the collection of sets $\left\{B_{\frac{1}{n}}(a) \mid n \in \mathbb{Z}_+, a \in A\right\}$ form a countable basis for X.

1

(b) Show that every metrizable Lindelöf space has a countable basis.

Let (X, ρ) be a metric Lindelöf space. Consider the open cover $\mathcal{B} = \left\{ B_{\frac{1}{n}}(x) \mid x \in X \right\}$, for some fixed $n \in \mathbb{Z}_+$. Since X is Lindelöf there exists a countable subcover \mathcal{B}' . Define

$$A_n = \left\{ a \in X \mid B_{\frac{1}{n}}(a) \in \mathcal{B}' \right\}$$

and

$$A = \bigcup_{n \in \mathbb{Z}_+} A_n$$

Since the A_n are countable it follows that A is also countable. We claim that A is a dense, so that the condition from the previous part is satisfied and therefore X has a countable basis. Let $x \in X$ and U be a neighborhood of x containing the basis element $B_{\epsilon}(x)$. Choose $\frac{1}{n} < \epsilon$. Since A_n is a subcover there exists some a such that $x \in B_{\frac{1}{n}}(a)$. But then $a \in B_{\frac{1}{n}}(x) \subset B_{\epsilon}(x) \subset U$. Therefore x is in the closure of A, and hence A is dense in X. From the previous part X is second-countable.

- 4. Show that if X has a countable dense subset then every collection of disjoint open sets in X is countable. Let A be a countable dense subset of X and O a collection of nonempty disjoint open sets. If $U \in \mathcal{O}$ then there exists some $a \in A$ with $a \in U$. Since the sets in O are disjoint they cannot contain the same a, and therefore the cardinality of O at most the cardinality of A, i.e., O is countable.
- 5. Show that if X is normal then every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

Let A and B be disjoint closed sets. Since X is normal there exist disjoint neighborhoods U_1 and V_1 such that $A \subset U_1$ and $B \subset V_1$. But then $X \setminus U_1$ is closed with $V_1 \subset X \setminus U_1$, and similarly, $U_1 \subset X \setminus V_1$. Again, by the normality of X there exist disjoint neighborhoods U_2 and V_2 such that $V_1 \subset X \setminus U_1 \subset U_2$ and $U_1 \subset X \setminus U_1 \subset V_2$. Since $X \setminus V_1$ and $X \setminus U_1$ are closed it follows that $\overline{U}_1 \subset V_2$ and $\overline{V}_1 \subset U_2$. Hence U_2 and V_2 are precisely the neighborhoods for which we were looking.

6. Let $f, g: X \to Y$ be continuous and Y a Hausdorff space. Show that $\{x \in X \mid f(x) = g(x)\}$ is closed in X.

Let $f, g: X \to Y$ be any two continuous functions and Y be Hausdorff. Then the set

$$C = \{x \in X \mid f(x) = g(x)\}$$

is closed. This follows from the fact that $x \in X \setminus C$ then there exist disjoint neighborhoods U, V of f(x) and g(x) respectively, and $x \in f^{-1}(U) \cup f^{-1}(V)$, i.e., $X \setminus C$ is open.

7. Show that a closed subspace of a normal space is normal.

Let X be normal and $Y \subset X$ a closed subspace. Let A and B be two closed subsets in Y. From the definition of the subspace topology, $A = Y \cap A'$ and $B = Y \cap B'$ where A' and B' are closed in X, and therefore A and B are also closed. Since X is normal there exist disjoint U and V such that $A \subset U$ and $B \subset V$. But then $U \cap Y$ and $V \cap Y$ are open sets in Y which separate A and B, and hence Y is normal.

8. Show that every regular Lindelöf space is normal.

Let A and B be disjoint closed subsets of a regular Lindelöf space X. Since they are closed they are also Lindelöf as subspaces of X. By the regularity of X choose a neighborhood U_x for every point $x \in A$ such that $x \in U_x \subset \overline{U}_x \subset X \setminus B$, which is open. Then there exist a countable subcover of $\{U_x\}$, call it $\{U_n\}$ where $n \in \mathbb{Z}_+$. Similarly, there is a countable cover of B by open sets $\{V_n\}$. Define

$$U_n' = U_n \setminus \bigcup_{i=1}^n \overline{V}_i$$

and similarly define a V'_n . The $\{U'_n\}$ and $\{V'_n\}$ are open as they are the set different between an open set and a closet set. Moreover, they are still covers of A and B, respectively. Let $U = \bigcup_{n \in \mathbb{Z}_+} U'_n$ and $V = \bigcup_{n \in \mathbb{Z}_+} V'_n$. These are open neighborhoods of A and B.

Assume for contradiction that there exists an $x \in U \cap V$. Then $x \in U'_k \cap V'_j$ for some j, k. If j = k then $x \in U_k \cap V_k$, which is impossible by our construction from the regularity of X. So assume without loss of generality that j < k. Then V'_j is disjoint from both U'_k and U_k by construction, again, which is also a contradiction. Therefore there exist disjoint neighborhoods around A and B, i.e., X is normal.

- 9. Is \mathbb{R}^{ω} normal in the product topology? In the uniform topology? \mathbb{R}^{ω} is metrizable in both topologies, and therefore normal in both topologies.
- 10. (a) Show that a connected normal space having more than one point is uncountable. Let X be a connected normal space with at least two distinct points $x, y \in X$. From Urysohn's lemma there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1. Since X is connected and f is continuous, f(X) = [0,1], and therefore the cardinality of X must be at least that of [0,1], i.e., X is uncountable.
 - (b) Show that a connected regular space having more than one point is uncountable. Let X be a connected regular space. If X is countable then X is Lindelöf. Since X is also regular, from a previous problem, it follows that X is normal, and hence from the previous part X is uncountable a contraction.
- 11. Give a direct proof of the Urysohn lemma for a metric space (X, ρ) by setting

$$f(x) = \frac{\rho(x, A)}{\rho(x, A) + \rho(x, B)}$$

It follows directly that $0 \le \rho(x, A) \le \rho(x, A) + \rho(x, B)$ and therefore that $0 \le f(x) \le 1$ for all $x \in X$. If $x \in A$ then $\rho(x, A) = 0$ and f(x) = 0. If $x \in B$ then $\rho(x, B) = 0$ and f(x) = 1. Since no point is in both A and B, $\rho(x, A) + \rho(x, B)$ never vanishes, and hence f is continuous.