Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

11 septembre 2024

Table des matières

1	Systèmes de coordonnées						
	1.1	Coord	lonnées cartésiennes	1			
	1.2	Coord	lonnées cylindriques				
	1.3	Coord	lonnées shériques				
2		Vecteurs et différentiation					
	2.1	Différe	entielle d'une fonction de plusieurs variables				
2	2.2	Vecteurs et différentiation					
		2.2.1	Nabla				
		2.2.2	Gradient				
		2.2.3	Divergence				
		2.2.4	Rotationnel				
		2.2.5	Laplacien scalaire				

1 Systèmes de coordonnées

- 1.1 Coordonnées cartésiennes
- 1.2 Coordonnées cylindriques
- 1.3 Coordonnées shériques
- 2 Vecteurs et différentiation
- 2.1 Différentielle d'une fonction de plusieurs variables

$$\mathrm{d}f(x,y,z) = \frac{\partial f}{\partial x}\,\mathrm{d}x + \frac{\partial f}{\partial y}\,\mathrm{d}y + \frac{\partial f}{\partial z}\,\mathrm{d}z$$

- 2.2 Vecteurs et différentiation
- 2.2.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}_x} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}_y} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cartésiennes

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cylindriques
$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \omega} \overrightarrow{\mathbf{u}_\varphi}$$
 en coordonnées sphériques

2.2.2 Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{\theta} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \varphi} \overrightarrow{u_\varphi}$$

en coordonnées cylindriques en coordonnées cylindriques en coordonnées sphériques

2.2.3 Divergence

$$\overrightarrow{\operatorname{div} A} = \overrightarrow{\nabla}.\overrightarrow{A}$$

$$\begin{split} \operatorname{div} \overrightarrow{A} &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \\ &= \frac{1}{r} \frac{\partial (rA_r)}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z} \\ &= \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (A_\theta \sin(\theta))}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial A_\varphi}{\partial \varphi} \end{split}$$

en coordonnées cylindriques en coordonnées cylindriques

2.2.4 Rotationnel

$$\overrightarrow{\operatorname{rot}}\overrightarrow{A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

2.2.5 Laplacien scalaire

$$\Delta f = \overrightarrow{\nabla}^2 f = \operatorname{div} \overrightarrow{\operatorname{grad}} f$$

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} \end{split}$$

en coordonnées cylindriques en coordonnées sphériques