Matrizes

VETORES E MATRIZES

- Estruturas de dados que contém várias variáveis do mesmo tipo;
- Qual a diferença de vetores para matrizes?

40 4

• Vetores são, na verdade, matrizes de uma única dimensão:

Vetores

4 6 3 maria jota

Matrizes

3	M	J	K	1.
4	G	A	C	9.
12	L	Z	Н	

1.1	7.5	9.2	8.8
9.0	1.3	5.5	7.9

MATRIZES

- As matrizes são, comumente referenciadas através de suas dimensões (quantidade de linhas e colunas)
- A notação comum é: LxC, onde
 - L é a dimensão vertical (quantidade de linhas)
 - C é dimensão horizontal (quantidade de colunas)

Matrizes bidimensionais

- Declaração:
 - Primeiro o tipo de dado: int, float, double, ...;
 - Segundo o nome da variável: usando as mesmas convenções de uma variável comum;

Tipo de Dado	Nome da Variável	Tamanho da Variável
Int	Nome_da_variavel	[linhas][colunas]

- O índice à esquerda indexa as linhas, e o da direita indexa as colunas.
- •Os índices variam de zero ao valor declarado;

Matrizes bidimensionais

Exemplo: preenchendo uma matriz:

```
int MatrizX [20][10];
int count=0;
for (i=0; i<20; i++)
{
    for (j=0; j<10; j++)
    {
        MatrizX[i][j] = count;
        count++;
    }
}</pre>
```


Matrizes bidimensionais

```
Exemplo: Exibindo dados de uma matriz:
```

```
:
int MatrizX [20][10];
int count=0;
for (i=0; i<20; i++)
{
    for (j=0; j<10; j++)
    {
       printf("%4d", MatrizX[i][j]);
    }
    printf("\n");
}</pre>
```


MATRIZES Exercícios

- 1. Criar um algoritmo que leia uma matrizes 3x3. Em seguida, exiba a soma dos elementos de cada uma das linhas.
- 2. Escreva um algoritmo que leia uma matriz 4x3. Em seguida, receba um novo valor do usuário e verifique se este valor se encontra na matriz. Caso o valor se encontre na matriz, escreva a mensagem "O valor se encontra na matriz". Caso contrário, escreva a mensagem "O valor NÃO se encontra na matriz".
- 3. Crie um algoritmo que leia uma matriz 5x5. Em seguida, conte quantos números pares existem na matriz.

MATRIZES

4. Crie um algoritmo que leia uma matriz 3x3 e calcule a soma dos valores das colunas da matriz. Ex:

I	1	2	2	Soma da coluna 1: 8
	3	2	3	Soma da coluna 2: 5
Ī	4	1	1	Soma da coluna 3: 6

- 5. Crie um algoritmo que calcule a média dos elementos de uma matriz 5x2.
- 6. Crie um algoritmo que leia uma matriz 3x3 e crie uma nova matriz que seja a matriz transposta da primeira (troque as linhas por colunas).

 Matriz Transposta

Ex:

Matriz			Z	M	atrız	Tra	nspo	5
	1	2	3		1	4	7	İ
	4	5	6		2	5	8	I
	7	8	9		3	6	9	ĺ

