

Finding Rare Events in Text

Debanjana Banerjee Senior Data Scientist, Walmart Global Tech

Sep 15th, 2021 Workshop, Open Data Science Conference, India

Walmart * Global Tech

Hello, fellow explorers!

Your Instructor for the day!!

Debanjana Banerjee Senior Data Scientist, Walmart Global Tech

- Born and bred in the world of Statistics (I worship the old gods!)
- 4+ years in the industry
 In love with the diverse ML use cases retail has to offer

Our Agenda today

- 1. Introduction & Examples
- 2. Rare Events in Text: Defining Characteristics
- 3. Q&A 🚜
- 4. Text Mining
- 5. PU Learning
- 6. Q&A
- <u>7. Break</u>
- 8. Semi Supervised Learners
- 9. iCASSTLe
- 10. Q&A 🎎

View slides for this workshop here:

github.com/debanjana-banerjee/Finding-Rare-Events-in-Text-ODSC-2021-

Available after the session!

Wands at the ready!

We will communicate on the Event X Ai Platform

Channel: wed-debanjana-banerjee-finding-rare-events-in-text

What do we need to do before we get started?

- 1. Create a folder named **FRET** on your Google Drive with sufficient space (+300MB)
- 2. Download GloVe file shared and load to folder FRET on your Google drive (this may take a while!)
- 3. Two data files will be shared shortly. We will load those onto the same folder on Google Drive

Finding Rare Events in Text – what is it all about?

debanjana-banerjee

Rare Events in Consumer Safety

Non-Reportable Reviews

- Product Enquiry
- Compliments
- User guidance
- Discounts
- Sharing product info, etc.

Let's look at a few examples!

Safety-Reportable Reviews

- Allergen Ingredients
- Safety guidelines on electronics
- Slippery tubs
- Brake safety on bikes, etc.

Rare Events are not the same as Anomalies

Anomalies

- Generally, do not adhere to specification (i.e., cannot be described by a common theme)
- Variability in rate of imbalance is limited (rate of imbalance is always very high)
- · Calls for unsupervised learning
- Sample dependent

Rare Events

- Adhere to certain specification (i.e., usually described by a common theme)
- Allows variability in rate of imbalance (depending on degree of rarity)
- May pertain to supervised or, unsupervised learning
- Sample independent

Rare Events in Text

Defining Characteristics

Depending on the specification, a rare event is likely to have inclination toward a polar sentiment

Depending on the specification, a rare event is likely to have inclination toward a polar sentiment

Depending on the specification, a rare event is likely to have inclination toward a polar sentiment

Depending on the specification, a rare event is likely to have inclination toward a polar sentiment

Safety-Reportable Reviews

"My salad was stale. The lettuce had blackened"

Sentiment Polarity: -0.12

Token Sensitivity

Review A

"Customer stated ABC microwave started smoking when she used it"

Review B

"Customer stated ABC microwave worked smoothly when she used it"

Token Sensitivity

Review A

"Customer stated ABC microwave started smoking when she used it"

Review C

"Customer stated he purchased the bike a year ago and the chains came off"

Review B

"Customer stated ABC microwave worked smoothly when she used it"

Review D

"Customer stated he purchased the bike a week ago and the chains came off"

Token Sensitivity

Review A

"Customer stated ABC microwave **started smoking** when she used it"

Review C

"Customer stated he purchased the bike **a year ago** and the chains came off"

Review B

"Customer stated ABC microwave worked smoothly when she used it"

Review D

"Customer stated he purchased the **bike a** week ago and the chains came off"

For rare events in text, only certain tokens in the text dictate reportability or, non-reportability of the case

Data Availability

Data Availability

Non-Reportable Reviews

- Product Enquiry
- Compliments
- User guidance
- Discounts
- Sharing product info, etc.

Of these, your data may show only a few kind!

- Freshness of Produce
- **Allergen Ingredients**
- Safety guidelines on electronics
- Slippery tubs
- Brake safety on bikes, etc

No or, poor record of quality non-reportables

Data Quality Issues in Rare Event Extraction

Poor Quality and low quantity of Positives (Reportables)

Poor Quality or, no record of Negatives (Non-Reportables)

Positive Unlabeled Learning

Questions so far?

Please post on Event X Ai Platform

Channel: wed-debanjana-banerjee-finding-rare-events-in-text

Text Mining

Text Pre-Processing

- Text Cleaning
- Lemmatization
- Numeric Representation of Text

Please upload the following csv's to FRET folder in google drive

- FRET_Test.csv
- FRET_Positive.csv

Let's try this hands-on!

Notebook link is shared on wed-debanjana-banerjee-finding-rare-events-in-text

What are Text Embeddings?

Embeddings are numeric representation of meaningful words (or, phrases) such that their inter-relationships are preserved in the vector forms.

Training your own text embeddings using a corpus

Context Window

• Term Co-occurrence Matrix

Original Text 1

• The child got a rash from the diapers

Original Text 2

• The diapers did not fit my child

Cleaned Text 1

• child got rash diaper

Cleaned Text 2

• diaper not fit child

TCM

Vocab: child, got, rash, diaper, not, fit

Context Window: ∞

	child	got	rash	diaper	not	fit
child	0	1	1	2	1	1
got	1	0	1	1	0	0
rash	1	1	0	1	0	0
diaper	2	1	1	0	1	1
not	1	0	0	1	0	1
fit	1	0	0	1	1	0

		(L	
		١	5	
		(1	
١			Š	
		(C	
i	L			

	w_1	w_2	w_3	W_4	w_5
w_1	y_{11}	<i>y</i> ₁₂	<i>y</i> ₁₃	<i>y</i> ₁₄	<i>y</i> ₁₅
w_2	y ₂₁	y_{22}	y_{23}	y_{24}	y_{25}
w_3	<i>y</i> ₃₁	<i>y</i> ₃₂	<i>y</i> ₃₃	<i>y</i> ₃₄	<i>y</i> ₃₅
w_4	y ₄₁	y_{42}	<i>y</i> ₄₃	y_{44}	y_{45}
w_5	y ₅₁	y_{52}	y_{53}	y_{54}	y_{55}

Factors						
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	<i>x</i> ₄₁	<i>x</i> ₅₁		
<i>x</i> ₁₂	<i>x</i> ₂₂	<i>x</i> ₃₂	<i>x</i> ₄₂	x ₅₂		
X^T						

TCM

	w_1	w_2	w_3	w_4	w_5
w_1	y_{11}	y_{12}	<i>y</i> ₁₃	y_{14}	<i>y</i> ₁₅
w_2	y_{21}	y_{22}	y_{23}	y_{24}	y_{25}
W_3	<i>y</i> ₃₁	<i>y</i> ₃₂	y_{33}	y ₃₄	<i>y</i> ₃₅
w_4	y_{41}	y_{42}	y_{43}	y_{44}	y_{45}
w_5	y ₅₁	y ₅₂	y_{53}	y_{54}	y ₅₅

 β_{12} β_{22} β_{31} β_{32} β_{41}

Embedding for token w₁

 β_{42} $\beta_{5\underline{1}}$ β_{52}

Factors							
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	<i>x</i> ₄₁	<i>x</i> ₅₁			
<i>x</i> ₁₂	x_{22}	x_{32}	<i>x</i> ₄₂	<i>x</i> ₅₂			

 X^T

TCM

Global Tech

	w_1	w_2	W_3	W_4	w_5
w_1	y_{11}	y_{12}	<i>y</i> ₁₃	<i>y</i> ₁₄	<i>y</i> ₁₅
w_2	y ₂₁	<i>y</i> ₂₂	y_{23}	y_{24}	y_{25}
w_3	<i>y</i> ₃₁	<i>y</i> ₃₂	<i>y</i> ₃₃	<i>y</i> ₃₄	y_{35}
W_4	y ₄₁	<i>y</i> ₄₂	<i>y</i> ₄₃	y_{44}	<i>y</i> ₄₅
w_5	y ₅₁	y ₅₂	y ₅₃	y ₅₄	y_{55}

тсм

Embedding for token w_1

Factors							
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	<i>x</i> ₄₁	<i>x</i> ₅₁			
<i>x</i> ₁₂	<i>x</i> ₂₂	<i>x</i> ₃₂	<i>x</i> ₄₂	<i>x</i> ₅₂			

 X^T

Embedding for token w_5

Matrix Factorization

Tokens

	w_1	w_2	W_3	W_4	w_5
w_1	y_{11}	y_{12}	<i>y</i> ₁₃	<i>y</i> ₁₄	<i>y</i> ₁₅
w_2	y_{21}	y_{22}	y_{23}	y_{24}	y_{25}
w_3	<i>y</i> ₃₁	<i>y</i> ₃₂	y_{33}	y_{34}	y_{35}
w_4	y_{41}	y_{42}	y_{43}	y_{44}	y_{45}
w_5	y_{51}	y_{52}	y_{53}	y_{54}	y_{55}

TCM

Embedding for token W₁

token w₅

 \approx

Positive Unlabeled (PU) Learning

Data Quality Issues in Rare Event Extraction

Poor Quality and low quantity of Positives (Reportables)

Poor Quality or, no record of Negatives (Non-Reportables)

Positive Unlabeled Learning

Rare Event Extraction as a Binary Classification technique

Rare Event of Interest: Consumer Safety

Negative

The text (review) is non-reportable
True > 99% of the times

Positive

The text (review) is safety-reportable
True < 1% of the times

Training Data in an ideal set-up

debanjana-banerjee

Training Data in a PU set-up (way more probable!)

debanjana-banerjee

Problem Formulation in an Imbalanced PU classifier

- Binary Classification
- Two classes Positive & Negative
- Class imbalance Positive is a Rare Event
- Few examples available from Positive class
 - Data quality unknown
- No example available from Negative class
- Exact Rate of Imbalance unknown

Quick Break

Back in 10 mins

Semi Supervised Learners

When do we use semi-supervised learning?

- Limited Training Data
 - Usually labeled by experts
 - Hence, expensive
- Huge amount of unlabeled data
- Classes can be assumed to be distinctly separable
- Feature X is highly 'informative' about label Y

Is our use case eligible for SSL?

Limited Training Data

- Incomplete Training Data
- Only positive examples available
- Huge amt of unlabeled data

Customer reviews database is huge

When do we use semi-supervised learning?

- Limited Training Data
 - Usually labeled by experts
 - Hence, expensive
- Huge amount of unlabeled data
- Classes can be assumed to be distinctly separable
- Feature *X* is highly 'informative' about label *Y*

Is our use case eligible for SSL?

- Limited Training Data
 - Incomplete Training Data
 - Only positive examples available
- Huge amt of unlabeled data

- Customer reviews database is huge
- We will assume

- Classes are distinctly separable
- Text is enough to identify positive cases i.e., *X* is informative about *Y*

 Entropy is a measure of randomness (stability) in a random variable

- Entropy is a measure of randomness (stability) in a random variable
- Entropy of our label Y given X: $H(Y|X) = E(-\ln P(Y|X))$

- Entropy is a measure of randomness (stability) in a random variable
- Entropy of our label *Y given X*:

$$H(Y|X) = E(-\ln P(Y|X))$$

Given the value of X, how stable is the value of Y

- Entropy is a measure of randomness (stability) in a random variable
- Entropy of our label Y given X:

$$H(Y|X) = E(-\ln P(Y|X))$$

Given the value of X, how stable is the value of Y

Y can take only two values: 0 and 1

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if X actually has enough information about Y
 - i.e., H(Y|X) is low

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

- SSL claims X is informative about Y
 - i.e., *X* alone can act as a good predictor for *Y*
- High H(Y|X) indicates Y can have high variance for fixed values of X
- SSL uses unlabeled data to make predictions on Y
 - This makes sense only if *X* actually has enough information about *Y*
 - i.e., H(Y|X) is low
 - Y is stable for given ε -nbh of X

iCASSTLe

Algorithm Overview

Stage I Classification

Perform Semi Supervised Classification using the enhanced training data to obtain final positive cases

Stage II Classification

form a single measure of reportability event of interest)

(positive association with the rare

Component Scores

Get component scores dictating degree of reportability (positive association with the rare event of interest)

thresholds on RScore to obtain representative training data

Combine component scores to

Component Scores for Reportability & RScore Formulation

Get component scores dictating

Component Scores

degree of reportability (positive association with the rare event of interest) Combine component scores to form a single measure of reportability (positive association with the rare event of interest)

Sentiment Score

Keyword Score

Similarity Score

Similarity with labeled positives

Component Scores for Reportability & RScore Formulation

event of interest)

Stage I Classification: Obtaining Training Negatives

Global Threshold for RScore

 $m{Q}_{LR}^{K1}: K_{1\ th}$ quantile of the Rscore values for labeled positive examples

Local Threshold for RScore

 Q_U^{K1} : $K_{2\ th}$ quantile of the Rscore values for unlabeled cases

Anything not classified as Stage I
Positive is labeled as
Stage I Negative

Stage I Classification

Perform filtering based on derived thresholds on RScore to obtain representative training data The j^{th} unlabeled case is classified as Stage I Positive iff $RScore_j > min(Q_{LR}^{K1}, Q_U^{K2})$

Stage II Classification: SSL

Labeled Data for Stage II (SSL)

- Original labeled Positives
- Top K% of positives + negatives obtained in **Stage I** (ranked by RScore)

Unlabeled Data for Stage II (SSL)

All original test cases except top K% of positives + negatives obtained in **Stage I** (ranked by RScore)

Stage II Classification

Perform Semi Supervised Classification using the enhanced training data to obtain final positive cases

Q&A

Please post on Event X Ai Platform

Channel: wed-debanjana-banerjee-finding-rare-events-in-text

Thank You!

debanjanabanerjee1993@gmail.com github.com/debanjana-banerjee linkedin.com/in/debanjana-banerjee

Appendix

