Short exercises Lecture 3

Exercise 1. Draw a barcode for the persistent homology with \mathbb{Z} coefficients for the Vietoris-Rips filtration of the following point cloud in \mathbb{R}^2 :

$$X = \{(0,0), (1,2), (2,1), (4,3), (4,-3)\}$$

Proof. Let us start by defining (0) := (0,0), (1) := (1,2), (2) := (2,1), (3) := (4,3), (4) := (4,-3). We have the following distance table:

	(0)	(1)	(2)	(3)	(4)
(0)	0				
(0) (1)	$\sqrt{5}$	0			
(2)	$\sqrt{5}$	$\sqrt{2}$	0		
$ \begin{array}{c} (2) \\ (3) \end{array} $	$ \sqrt{5} $	$\sqrt{10}$	$2\sqrt{2}$	0	
(4)	5	$\sqrt{34}$	$2\sqrt{5}$	6	0

Let us now compute the Vietoris-Rips filtration.

ε < 2 :

In this case, the distance is smaller than the distance at which any point is from each other. Therefore, $R_{\varepsilon}(X)$ has maximal faces:

Then, since we have 5 connected components, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}^5$, and all the other dimensions are 0.

• $\sqrt{2} \le \varepsilon < \sqrt{5}$:

Now the only two points at distance less than $\sqrt{5}$ are (1) and (2). Therefore, we add an edge there and $R_{\varepsilon}(X)$ has maximal faces:

Since we have 4 connected components, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}^4$. The other dimensions are zero because there is no "n-hole" for $n \geq 1$.

• $\sqrt{5} \le \varepsilon < 2\sqrt{2}$:

For these values of ε , the points (0), (1) and (2) are at reach one from each other. Since the Vietoris-Rips complex is a flag complex, we will have the 2-face (012). Hence, $R_{\varepsilon}(X)$ has maximal faces:

We have 3 connected components, hence $H_0(R_{\varepsilon}(X)) = \mathbb{Z}^3$. Also, $H_1(R_{\varepsilon}(X)) = 0$, because the 1-faces come from a 2-face (hence, there is a boundary). The higher dimension homologies are zero.

• $2\sqrt{2} \le \varepsilon < \sqrt{10}$:

In this case, we add (23). Therefore, $R_{\varepsilon}(X)$ has maximal faces:

We have 2 connected components ((012), (23) and (4)), hence, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}^2$. For the higher dimensions, this is a combination of the previous one and the one before, so they are 0.

• $\sqrt{10} \le \varepsilon < 2\sqrt{5}$:

For ε in this range, we add the 1-face (13). Then we have (12), (13), (23), which is the boundary of (123). Since Vietoris-Rips is a flag complex, we have this 2-face. Hence, the maximal faces of $R_{\varepsilon}(X)$ are:

We still have 2 connected components, hence, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}^2$, and since we have two 2-faces, the higher dimensions are 0.

• $2\sqrt{5} \le \varepsilon < 5$:

Now we add the edge (34) and therefore we only have a connected component. The Vietoris-Rips complex $R_{\varepsilon}(X)$ has maximal faces:

Then, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}$ and all the higher dimensions are zero.

• $5 \le \varepsilon < \sqrt{34}$:

For this case, we add the faces (013) and (023), which in combination of the ones we had before, (012) and (123), implies that we have the 3-face (0123). We also add (04) and hence the 2-face (024). The maximal faces are:

The homology is the same, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}$ and all the higher dimensions are 0.

• $\sqrt{34} \le \varepsilon < 6$:

Now we add the 2-faces (014) and (124), which implies that we have the 3-face (0124). The maximal faces of the Vietoris-Rips complex $R_{\varepsilon}(X)$ are:

The homology remains the same, $H_0(R_{\varepsilon}(X)) = \mathbb{Z}$ and all the higher ones are zero.

• $\varepsilon \geq 6$:

Finally, all the points are within reach of each other, so $R_{\varepsilon}(X) = \Delta^4$, with a unique maximal face

Since its homotopy equivalent to a point, the homology is isomorphic to that of a point, hence $H_0(R_{\varepsilon}(X)) = \mathbb{Z}$ and all higher dimensions are zero.

In the next page, we have the geometric realisations for each interval that we are going to discuss now. You will notice that only 0-faces and 1-faces have been drawn. This is on purpose, since the Vietoris-Rips complex is a flag complex, so whenever there is a boundary for a higher face, that higher face must be there. Therefore, we know the face must be there, but its easier to see if it is not drawn.

Barcode

