9. THERMODYNAMICS RELATIONS

MATHEMATICAL THEOREMS	
$dz = Mdx + Ndy \text{ is exact differential equation,}$ $\left[\frac{\partial M}{\partial y}\right]_x = \left[\frac{\partial N}{\partial x}\right]_y$	$If z = f(x, y),$ $\left[\frac{\partial x}{\partial y}\right]_{z} \cdot \left[\frac{\partial y}{\partial z}\right]_{x} \cdot \left[\frac{\partial z}{\partial x}\right]_{y} = -1$

PROPERTIES						
GIBB'S FUNCTION		HELMHOLTZ FUNCTION				
Open System Availability Function.		Closed System Availability Function.				
G = H - TS	g = h - Ts	F = U - TS	f = u - Ts			
COEFFICIENT OF VOLUME EXPANSIVITY		ISOTHERMAL COMPRESSIBILITY				
$\beta = \frac{1}{v} \left[\frac{\partial v}{\partial T} \right]_P > 0 (Due \ to \ Expansion)$		$K_T = \frac{1}{v} \left[\frac{\partial v}{\partial P} \right]_T < 0 (Due \ to \ Compression)$				
$C_P = T \left[\frac{\partial s}{\partial T} \right]_P$		$C_V = T$	$-\left[\frac{\partial s}{\partial T}\right]_{V}$			

MAXWELL'S EQUATIONS		
Derived from 1st TdS Equation,	Derived from 2 nd TdS Equation,	
du = Tds - Pdv (It's exact differential)	dh = Tds + vdP (It's exact differential)	
$\therefore \left[\frac{\partial T}{\partial v} \right]_{\mathcal{S}} = \left[\frac{-\partial P}{\partial \mathcal{S}} \right]_{\mathcal{V}}$	$\therefore \left[\frac{\partial T}{\partial P} \right]_{S} = \left[\frac{-\partial v}{\partial S} \right]_{P}$	
Derived from $g = h - Ts$	Derived from $f = u - Ts$	
$\Rightarrow dg = dh - d(Ts) = vdP - sdT$	$\Rightarrow df = du - d(Ts) = -Pdv - sdT$	
$\therefore \left[\frac{\partial v}{\partial T} \right]_P = \left[\frac{-\partial s}{\partial P} \right]_T$	$\therefore \left[\frac{\partial P}{\partial T} \right]_{v} = \left[\frac{\partial s}{\partial v} \right]_{T}$	

$s = f(T, v) \Rightarrow Tds = T \left[\frac{\partial s}{\partial T} \right]_v dT + T \left[\frac{\partial s}{\partial v} \right]_T dv = C_V dT + T \left[\frac{\partial P}{\partial T} \right]_v dv \cdots (1)$	From, Above mentioned C_P , C_V Equations,
$s = f(T, P) \Rightarrow Tds = T \left[\frac{\partial s}{\partial T} \right]_P dT + T \left[\frac{\partial s}{\partial P} \right]_T dP = C_P dT - T \left[\frac{\partial v}{\partial T} \right]_P dP \cdots (2)$	3 rd and 4 th Maxwell's equation.
$dT = \frac{T}{C_P - C_V} \left\{ \left[\frac{\partial v}{\partial T} \right]_P dP + \left[\frac{\partial P}{\partial T} \right]_v dv \right\} \cdots (3)$	Equating above (1) & (2),
$s = f(P, v) \Rightarrow s = \left[\frac{\partial T}{\partial P}\right]_{v} dP + \left[\frac{\partial T}{\partial v}\right]_{P} dv \cdots (4)$	From the maths theorem,
$\left[\frac{\partial T}{\partial P}\right]_{v} = \frac{T}{C_{P} - C_{V}} \left[\frac{\partial v}{\partial T}\right]_{P} \cdots (5)$	Equating above (3) & (4),
$T = f(P, v) \Rightarrow \left[\frac{\partial P}{\partial v}\right]_T \cdot \left[\frac{\partial v}{\partial T}\right]_P \cdot \left[\frac{\partial T}{\partial P}\right]_v = -1 \Rightarrow \left[\frac{\partial T}{\partial P}\right]_v = -1/\left[\frac{\partial P}{\partial v}\right]_T \cdot \left[\frac{\partial v}{\partial T}\right]_P \cdots (6)$	From the maths theorem,
$C_P - C_V = -T \left[\frac{\partial v}{\partial T} \right]_P^2 \left[\frac{\partial P}{\partial v} \right]_T$	From (5) & (6)

MAYER'S EQUATION : $C_P - C_V = -T \left[\frac{\partial v}{\partial T} \right]_P^2 \left[\frac{\partial P}{\partial v} \right]_T = \frac{T v \beta^2}{K_T}$	From definition of $K_T \& \beta$.

INTERNAL ENERGY EQUATION: It's valid for Real & ideal Gas.	From Mayer's equation, equation
$du = C_V dT + \left[T \left[\frac{\partial P}{\partial T} \right]_v - P \right] dv = f(dT, dv)$	(1) and 1st TdS Equation.
$uu = c_V u I + \begin{bmatrix} I & \overline{\partial T} \end{bmatrix}_v - F \end{bmatrix} uv = J(uI, uv)$	For ideal Gas, $T\left[\frac{\partial P}{\partial T}\right]_{v} = P$
ENTHALPY EQUATION: It's valid for Real & ideal Gas.	From Mayer's equation, equation
$dh = C_P dT + \left[T \left[\frac{\partial v}{\partial T} \right]_P - v \right] dP = f(dT, dP)$	(2) and 2 nd TdS Equation.
$un = c_p u + \left[\left[\frac{\partial}{\partial T} \right]_p - \nu \right] u - f(u + u + v)$	For ideal Gas, $T\left[\frac{\partial v}{\partial T}\right]_P = v$
JOULE-THOMSON COEFFICIENT EQUATION: It's valid for Real &	From Enthalpy equation, & for
ideal Gas.	Throttling process $dh = 0$
$\mu = \left[\frac{dT}{dP}\right]_h = \frac{1}{C_P} \left[T \left[\frac{\partial v}{\partial T} \right]_P - v \right]$	For ideal Gas, $\mu = 0$