Computer Networks

Jiaqi Zheng

Material with thanks Mosharaf Chowdhury, and many other colleagues.

Agenda

How is communication organized?

Inspiration...

CEO A writes letter to CEO B

Dear John,

Your days are numbered.

--Pat

Inspiration...

- CEO A writes letter to CEO B
 - Folds letter and hands it to administrative aide
- Aide:
 - Puts letter in envelope with CEO B's full name
 - Takes to FedEx
- FedEx Office
 - Puts letter in larger envelope
 - Puts name and street address on FedEx envelope
 - Puts package on FedEx delivery truck
- FedEx delivers to other company

The path of the letter

The path of the letter

- "Peers" in same layer understand each other
- No one else needs to
- Lowest level has most packaging

CEO	Semantic Content	CEO
Aide	Identity	Aide
FedEx	Location	FedEx

Three steps

- Decompose the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does what)

Back to the Internet: Decomposition

Applications

in built on

Reliable or unreliable transport

in built on

Best-effort global packet delivery

in built on

Best-effort local packet delivery

in built on

Physical transfer of bits

Communication organization

Applications

in built on

Reliable or unreliable transport

in built on

Best-effort global packet delivery

in built on

Best-effort local packet delivery

in built on

Physical transfer of bits

L7 Application

L4 Transport

L3 Network

L2 Data link

L1 Physical

OSI layers

- OSI stands for Open Systems Interconnection model
 - Developed by the ISO

 Session and presentation layers are often implemented as part of the application layer

Layers

- Layer: a part of a system with well-defined interfaces to other parts
- One layer interacts only with layer above and layer below
- Two layers interact only through the interface between them

Layers and protocols

 Communication between peer layers on different systems is defined by protocols

What is a Protocol?

What is a Protocol?

- An agreement between parties (in the same later) on how to communicate
- Defines the syntax of communication
 - Header → instructions on how to process payload
 - Each protocol defines the format of its headers
 »e.g., "the first 32 bits carry the destination address"
 What's my IP address?

Payload Header

What is a Protocol?

- An agreement between parties on how to communicate
- Defines the syntax of communication
- And semantics
 - "First a hello, then a request..."
 - We will study many protocols later in the semester
- Protocols exist at many levels, hardware, and software
 - Defined by standards bodies like IETF, IEEE, ITU

Protocols at different layers

ONE network layer protocol

Layer encapsulation: Protocol headers

What get's implemented where?

What gets implemented at the end systems?

- Bits arrive on wire, must make it up to application
- Therefore, all layers must exist at host!

What gets implemented in the network?

- Bits arrive on wire → physical layer (L1)
- Packets must be delivered across links and local networks → datalink layer (L2)
- Packets must be delivered between networks for global delivery → network layer (L3)
- The network does not support reliable delivery
 - Transport layer (and above) not supported

Simple Diagram

- Lower three layers implemented everywhere
- Top two layers implemented only at hosts

A closer look: End system

- Application
 - Web server, browser, mail, game
- Transport and network layer
 - typically part of the operating system
- Datalink and physical layer
 - hardware/firmware/drivers

What gets implemented in the network?

- Bits arrive on wire → physical layer (L1)
- Packets must be delivered across links and local networks → datalink layer (L2)
- Packets must be delivered between networks for global delivery → network layer (L3)
- Switches implement only physical and datalink layers (L1, L2)
- Routers implement the network layer too (L1, L2, L3)

A closer look at the network

A closer look at the network

Switches vs. Routers

- Switches do what routers do but don't participate in global delivery, just local delivery
 - Switches only need to support L1, L2
 - Routers support L1-L3

- Won't focus on the router/switch distinction
 - Almost all boxes support network layer these days

Logical communication

 A layer interact with its peers corresponding layer

Physical communication

- Communication goes down to physical network
- Then up to relevant layer

A protocol-centric diagram

Pros and cons of layering

Why layers?

- Reduce complexity
- Improve flexibility

Why not?

- Higher overheads
- Cross-layer information often useful

IP is the narrow waist of the layering hourglass

Implications of hourglass

- Single network-layer protocol (IP)
- Allows arbitrary networks to interoperate
 - Any network that supports IP can exchange packets
- Decouples applications from low-level networking technologies
 - Applications function on all networks
- Supports simultaneous innovations above and below IP
- But changing IP itself is hard (e.g., IPv4 → IPv6)

Placing network functionality

- End-to-end arguments by Saltzer, Reed, and Clark
 - Dumb network and smart end systems
 - Functions that can be completely and correctly implemented only with the knowledge of application end host, should not be pushed into the network
 - Sometimes necessary to break this for performance and policy optimizations
 - Fate sharing: fail together or don't fail at all

Summary

- Layering is a good way to organize networks
- Unified Internet layer decouples applications from networks
- E2E argument encourages us to keep IP simple