Optics

Reflection: $\theta_1 = \theta_2$; Snell's law for refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Images form by refraction: $\frac{n_o}{o} + \frac{n}{i} = \frac{n - n_o}{R}$; n_o is the index of refraction where object is, and n is the index of refraction of the other medium. Note that the interface is a spherical surface.

Equation for spherical mirrors and thin lenses: $\frac{1}{6} + \frac{1}{i} = \frac{1}{6}$

Mirrors: f = R/2; thin lenses: $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$, where R_1 is radius of first surface the light from the object meets. Focal length is the same for either side of the lens.

Rules for signs:

- 1. The object distance o is positive if it is in the same side as the incoming light
- 2. The image distance i is positive if it is in the same side as the outgoing light
- 3. The radius is positive if the center C is in the side of the outgoing light

Note: for mirrors, the opposite of incoming light or outgoing light side is the dark side

Magnification: lateral $m = \frac{h\nu}{h} = -\frac{i}{o}$. Angular magnification $M_{\theta} = \left| \frac{\theta_i}{\theta_0} \right|$.

The strength of the eyeglass lens and magnifying lens is given by $d = \frac{1 \text{ m}}{f}$ in units of diopters.

Near sighted: Signs far away are blurry; solution: take an object at infinity and move its image to far

Far sighted: cannot read the paper at Near point; solution: put object at Near point and take it image to closest point

Magnifying Lens: $M_{\theta}=\frac{0.25~\mathrm{m}}{f}$ Compound microscope: $M=-\frac{(25~cm)}{f_2}\frac{1}{\frac{o_1}{f_1}-1}$.

Diffracting telescope: $M = \left| \frac{f_1}{\epsilon} \right|$.

Wave optics:

Two slits (N=2) bright fringes happens when $d\sin\theta_m=\pm m\lambda$ for m=1,2,3,..., while dark fringes when $d\sin\theta_n=\pm (n-1/2)\lambda$ for n=1,2,3,...;n,m are called the order. (N>2) minima are found at $d\sin\theta_k=\pm\frac{k}{N}\lambda$, where $\frac{k}{N}\neq m$, (not a integer multiple).

Bragg diffraction: $2d \sin \alpha = m\lambda$ where α is the angle between the incoming x-ray and the crystal structure plane

Single opening (one slit) produces a central peak with first minima at $\sin \theta = \pm \frac{\lambda}{a}$

Circular openings has the first dark circle at $\sin \theta = 1.22 \frac{\lambda}{3}$.

Parallel light through a lens is not focus at a point but rather within an Airy disk or radius $r = 1.22 \frac{\lambda f}{d}$; since the best ratio $\frac{f}{d} \approx 1$ then the smallest diameter of a dot is about 2.5 λ

Energy momentum relation for matter and radiation: $E^2 = p^2c^2 + m^2c^4$.

An amazing result found in nature: E = hf and $p = h/\lambda$

for light relation between them is simple: $f = c/\lambda$

for matter is: $f^2 = c^2/\lambda^2 + m^2c^4/h^2$