For each analysis problem

- Sketch data design (i.e. structure)
- Math equations for model
- Linear model syntax

Grouping scales in radon data

- You identified these potential grouping scales:
- State, county, house, floor, radon sensor
- Hierarchical structure: nested

Sketch

State = extent scope of inference

County (- grouping variable

House

Floor breaked

Not a grouping

Not a grouping

OF houses in each

variable since

no replicate hors

ensors.

Fixed vs random

- Floor: fixed effect
 - deterministic model for parameters
 - shared characteristic
- County: random effect
 - stochastic model for parameters
 - model by group (parameters vary by group)
 - model accounts for correlation among houses within counties

We could alternatively model county as a fixed effect: model parameters would be deterministic

Model 1: random effects

Writing model 1

Basic multilevel model, no predictors

j[i] is the county (j) of house i

Alt parameterization

Additive decomposition

$$c_j \sim \mathrm{Normal}(0, \sigma_c^2)$$
 Variance among counties stochastic model $h_i \sim \mathrm{Normal}(0, \sigma_h^2)$ Variance among houses within counties stochastic model

Linear model syntax

```
log_radon \sim 1 + (1|county)
```

We considered code for the radon example. See 10_3_radon_multilevel.md

Multilevel model - radon

Multilevel model - radon

Frequentist

Bayesian