# Tema V: Geometría Vectorial

# Representación geométrica de un vector

A partir de la representación de  $\mathbb{R}$ , como la recta numérica, los elementos  $(a_1,a_2)\in\mathbb{R}^2$  y  $(a_1,a_2,a_3)\in\mathbb{R}^3$  se asocian a puntos en el plano.



Los vectores se pueden representar mediante segmentos de recta dirigidos, o flechas, en  $\mathbb{R}^2$  y en  $\mathbb{R}^3$ . La dirección de la flecha indica la dirección del vector y la longitud de la flecha determina su magnitud.

## Notación:

 $\vec{v}$ ,  $\vec{y}$ ,  $\vec{z}$  representan vectores, letras minúsculas y flechas

A, B, C denotan puntos, letras mayúsculas

 $\alpha, \beta, k$  representan escalares (números reales)

 $\vec{0} = (0,0,0)$  el vector nulo

 $\vec{v} = (v_1, v_2, \dots, v_n)$  vector de  $\mathbb{R}^n$ 



# Suma y producto por un escalar

**<u>Definición (suma):</u>** Sean  $\vec{v} = (v_1, v_2, ..., v_n)$  y  $\vec{w} = (w_1, w_2, ..., w_n)$ , se define la suma de la siguiente manera:  $\vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$  (de igual manera la resta)

**Ejemplo:** Sean  $\vec{v} = (1,3,4)$  y  $\vec{w} = (3,1,4)$ . Entonces

$$\vec{v} + \vec{w} = (1,3,4) + (3,1,4) = (4,4,8)$$

## Que geométricamente se representa



# Paralelogramo definido en $\mathbb{R}^n$



Puede observarse que  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ 

**Ejemplo:** Sean  $\vec{v} = (1,3,4)$  y  $\vec{w} = (3,1,4)$ . Entonces  $\vec{v} - \vec{w} = (1,3,4) - (3,1,4) = (-2,2,0)$  y  $\vec{w} - \vec{v} = (2,-2,0)$ 



**<u>Definición (producto por un escalar)</u>**: Sea el vector  $\vec{v} = (v_1, v_2, ..., v_n)$  y el escalar  $k \in \mathbb{R}$ , entonces:  $k\vec{v} = (kv_1, kv_2, ..., kv_n)$ .

**Ejemplo:** Sea  $\vec{v} = (1,5,4)$ . Entonces  $2\vec{v} = (2,10,8)$ 



**<u>Definición:</u>** dos vectores  $\vec{v}$  y  $\vec{u}$  se dicen paralelos si existe un  $k \in \mathbb{R}$  tal que  $\vec{v} = k \cdot \vec{u}$ . Cuando k>0, los vectores tienen la misma dirección y si k<0, tienen dirección opuesta.

<u>Definición</u>: dados  $A, B \in \mathbb{R}^n$ , se llama flecha localizada de A a B al vector  $\overrightarrow{AB} = B - A \in \mathbb{R}^n$  y que geométricamente se asocia con la única flecha que se origina en el punto A y termina en el punto B. Sea  $0 = (0,0,\dots,0,0) \in \mathbb{R}^n$ , entonces  $\overrightarrow{OA} = A$  y  $\overrightarrow{OB} = B$ .



## Producto punto de un vector

Sea  $\vec{a} = (a_1, a_2, \dots, a_n)^t$  y  $\vec{b} = (b_1, b_2, \dots, b_n)^t$ . El producto escalar, o producto punto de  $\vec{a}$  y  $\vec{b}$  es el siguiente número real:  $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$ .

**Ejemplo:** sea  $\vec{a} = (1,2,3)^t$  y  $\vec{b} = (-2,1,1)^t$ 

$$\vec{a} \cdot \vec{b} = 1 \cdot -2 + 2 \cdot 1 + 3 \cdot 1 = 3$$

**Teorema:** si  $\vec{u}$  y  $\vec{v}$  son dos vectores cualesquier de  $\mathbb{R}^n$ , entonces:

- 1)  $\vec{u} \cdot \vec{u} > 0$  si  $\vec{u} \neq 0$  además  $\vec{u} \cdot \vec{u} = 0$  si  $\vec{u} = 0$
- 2)  $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

## Norma de un vector

Si  $\vec{u} = (u_1, u_2, ..., u_n)^t$  es un vector de  $\mathbb{R}^n$ , se llama norma (o magnitud de  $\vec{u}$ ) y se denota

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

**Ejemplo:** si  $\vec{u} = (1, 2, 3)^t$ 

$$\|\vec{u}\| = \sqrt{(1,2,3) \cdot (1,2,3)} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

**Teorema:** si  $\vec{u}, \vec{v} \in \mathbb{R}^n$  y  $a \in \mathbb{R}$  se cumplen la siguientes propiedades:

- 1)  $\|\vec{u}\| \ge 0$  y  $\|\vec{u}\| = 0 \Leftrightarrow \vec{u} = 0$
- $2) \quad \left\| \vec{au} \right\| = |a| \left\| \vec{u} \right\|$
- 3)  $\|\vec{u} \vec{v}\| = \|\vec{v} \vec{u}\|$
- 4)  $|\vec{u} \vec{v}| \le ||\vec{u}|| \cdot ||\vec{v}||$  (designaldad de Cauchy-Schwarz)
- 5)  $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$  (designaldad triangular)

**Observación:** un vector  $\vec{v} \in \mathbb{R}^n$  es unitario si  $||\vec{v}|| = 1$ .

$$\vec{v} = (1,0,0) \Rightarrow ||(1,0,0)|| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

#### Distancia entre dos vectores

Dados dos vectores  $\vec{u} = (u_1, u_2, ..., u_n)^t$  y  $\vec{v} = (v_1, v_2, ..., v_n)^t$  en  $\mathbb{R}^n$  se define la distancia entre estos vectores como a norma del vector diferencia.

$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = ||\vec{v} - \vec{u}||, \text{ es decir, } d(\vec{u}, \vec{v}) = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + \dots + (v_n - u_n)}$$



**Teorema:** Sean  $A, B, C \in \mathbb{R}^n$  arbitrarios, entonces:

- 1) d(A,B) = d(B,A)
- 2)  $d(A,B) \le d(A,C) + d(C,B)$

### Ángulo entre dos vectores

Si  $\vec{u}, \vec{v} \in \mathbb{R}^n$  no nulos, el ángulo entre estos vectores es el valor  $\theta$  único,  $\theta \in [0, \pi]$ , tal que:

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} \quad \text{o bien } \theta = \arccos \left( \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} \right)$$

**Ejemplo:** sean  $\vec{u} = (0, 2, 2), \vec{v} = (2, 0, 2)$ . Calcule el ángulo entre  $\vec{u}$  y  $\vec{v}$ .

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{(0,2,2) \cdot (2,0,2)}{\|(0,2,2)\| \cdot \|(2,0,2)\|} = \frac{0 \cdot 2 + 2 \cdot 0 + 2 \cdot 2}{\sqrt{0^2 + 2^2 + 2^2} \cdot \sqrt{2^2 + 0^2 + 2^2}}$$

$$\cos\theta = \frac{4}{\sqrt{8} \cdot \sqrt{8}} = \frac{1}{2}$$

$$\theta = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

### Proyección ortogonal

**Teorema:** los vectores  $\vec{u}, \vec{v} \in \mathbb{R}^n$  son ortogonales o perpendiculares si y solo si  $\vec{u} \cdot \vec{v} = 0$  (es decir, si el ángulo entre ellos es  $\frac{\pi}{2}$ ).

**<u>Ejemplo:</u>** los vectores  $\vec{w} = (1, 0, \sqrt{2})$  y  $\vec{v} = (-2, 1, \sqrt{2})$ , son ortogonales

$$\vec{w} \cdot \vec{v} = (1, 0, \sqrt{2}) \cdot (-2, 1, \sqrt{2}) = 1 \cdot -2 + 0 \cdot 1 + \sqrt{2} \cdot \sqrt{2} = 0$$

note que: 
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = 0$$
  $\Rightarrow \theta = \arccos(0) = \frac{\pi}{2}$ 



# Proyección ortogonal

Si  $\vec{v}, \vec{w} \in \mathbb{R}^n$  y  $\vec{w} \neq 0$ , se llama proyección ortogonal de  $\vec{v}$  sobre  $\vec{w}$  y se denota  $\operatorname{Proy}_{\vec{w}}^{\vec{v}}$  al vector:  $\operatorname{Proy}_{\vec{w}}^{\vec{v}} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{w}\|^2} \cdot \vec{w}$ , el vector  $\vec{v} - \operatorname{Proy}_{\vec{w}}^{\vec{v}}$  se conoce como la componente de  $\vec{v}$  ortogonal a  $\vec{w}$ .



**Ejemplo:** sea  $\vec{v} = (5,0,\sqrt{2})$  y  $\vec{w} = (2,1,\sqrt{2})$ , encuentre  $\text{Proy}_{\vec{w}}$ 

$$\text{Proy}_{\vec{w}}^{\vec{v}} = \frac{\vec{w} \cdot \vec{v}}{\|\vec{w}\|^2} \cdot \vec{w} = \frac{(2, 1, \sqrt{2}) \cdot (5, 0, \sqrt{2})}{\|(2, 1, \sqrt{2})\|^2} \cdot (2, 1, \sqrt{2})$$

$$= \frac{2 \cdot 5 + 1 \cdot 0 + \sqrt{2} \cdot \sqrt{2}}{2^2 + 1^2 + \left(\sqrt{2}\right)^2} \cdot \left(2, 1, \sqrt{2}\right)$$

$$=\frac{12}{7}\left(2,1,\sqrt{2}\right)=\left(\frac{24}{7},\frac{12}{7},\frac{12\sqrt{2}}{7}\right)$$

**Observación:** Sean  $\vec{u}, \vec{v} \in \mathbb{R}^n$ , entonces:

1) 
$$Si \ \vec{u} \cdot \vec{v} = 0 \Rightarrow \theta = \frac{\pi}{2}$$

2) 
$$Si \ \vec{u} \cdot \vec{v} < 0 \Rightarrow \frac{\pi}{2} < \theta < \pi$$

3) 
$$Si \ \vec{u} \cdot \vec{v} > 0 \Rightarrow 0 < \theta < \frac{\pi}{2}$$

# **Producto Cruz** (producto vectorial en $\mathbb{R}^3$ )

Sea  $\vec{v} = (v_1, v_2, v_3)$  y  $\vec{w} = (w_1, w_2, w_3)$  dos vectores de  $\mathbb{R}^3$  entonces el producto cruz de  $\vec{v}$  con  $\vec{w}$  es un nuevo vector de  $\mathbb{R}^3$ , denotado por  $\vec{v} \times \vec{w}$ .

$$\vec{v} \times \vec{w} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ \vec{v_1} & \vec{v_2} & \vec{v_3} \\ \vec{w_1} & \vec{w_2} & \vec{w_3} \end{vmatrix}$$

donde  $\overrightarrow{e_{\scriptscriptstyle 1}}, \overrightarrow{e_{\scriptscriptstyle 2}}, \ \overrightarrow{e_{\scriptscriptstyle 3}}$  son los vectores canónicos de  $\mathbb{R}^3$ 

$$\overrightarrow{e_1} = (1,0,0), \overrightarrow{e_2} = (0,1,0), \overrightarrow{e_3} = (0,0,1)$$

**Ejemplo:** si  $\vec{v} = (1,2,3)$  y  $\vec{w} = (2,-1,0)$  encuentre  $\vec{v} \times \vec{w}$ 

$$\vec{v} \times \vec{w} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ 1 & 2 & 3 \\ 2 & -1 & 0 \end{vmatrix} = \vec{e_1} \begin{vmatrix} 2 & 3 \\ -1 & 0 \end{vmatrix} - \vec{e_2} \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} + \vec{e_3} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix}$$
$$= \vec{3}\vec{e_1} + \vec{6}\vec{e_2} - \vec{5}\vec{e_3}$$
$$= (3, 6, -5)$$

<u>Propiedades del producto Cruz:</u> Sean  $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$  y  $a \in \mathbb{R}$  un escalar. Se definen las siguientes propiedades:

1) 
$$\overrightarrow{w} \times \overrightarrow{0} = \overrightarrow{0} \times \overrightarrow{w} = \overrightarrow{0}$$

2) 
$$\vec{v} \times \vec{w} = -(\vec{w} \times \vec{v}) = -\vec{w} \times \vec{v}$$

3) 
$$\vec{av} \times \vec{w} = a(\vec{v} \times \vec{w})$$

4) 
$$\vec{v} \times \vec{av} = \vec{0}$$

4) 
$$\vec{v} \times \vec{av} = \vec{0}$$
  
5)  $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$ 

6) El vector  $\vec{v} \times \vec{w}$  es ortogonal a  $\vec{v}$  y  $\vec{w}$ 

7) 
$$(\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \times \vec{w})$$

8) 
$$(\vec{u} \times \vec{v}) \times \vec{w} = (\vec{u} \cdot \vec{w}) \cdot \vec{v} - (\vec{v} \cdot \vec{w}) \cdot \vec{u}$$

**Teorema:** si  $\theta$  es el ángulo entre dos vectores  $\vec{u}, \vec{v} \in \mathbb{R}^3$ , entonces  $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| sen\theta$ 

**Observación:** En  $\mathbb{R}^3$  el paralelogramo generado por  $\vec{u}$  y  $\vec{v}$  (no nulos) es el siguiente



$$A = b \cdot h = \left\| \vec{u} \right\| h$$

$$sen\theta = \frac{h}{\|\vec{v}\|} \implies h = \|\vec{v}\| sen\theta$$

$$A = \|\vec{u}\| \|\vec{v}\| sen\theta$$

$$A = \left\| \vec{u} \right\| \left\| \vec{v} \right\| \frac{\left\| \vec{u} \times \vec{v} \right\|}{\left\| \vec{u} \right\| \left\| \vec{v} \right\|}$$

$$\Rightarrow A = \|\vec{u} \times \vec{v}\|$$

**Ejemplo:** sean  $\vec{u} = (1,2,3)$  y  $\vec{v} = (1,3,0)$ . Calcule el área del paralelogramo generado por  $\vec{u}$  y  $\vec{v}$ .

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ 1 & 2 & 3 \\ 1 & 3 & 0 \end{vmatrix} = \vec{e_1} \begin{vmatrix} 2 & 3 \\ 3 & 0 \end{vmatrix} - \vec{e_2} \begin{vmatrix} 1 & 3 \\ 1 & 0 \end{vmatrix} + \vec{e_3} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = (-9, 3, 1)$$

$$A = \|\vec{u} \times \vec{v}\| = \sqrt{(-9)^2 + 3^2 + 1^2} = \sqrt{91}$$

Volumen de un Paralelepípedo generado por:  $\vec{w}, \vec{u}, \vec{v} \in \mathbb{R}^3$ 

$$V = \pm \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

## Referencias bibliográficas

Anton, H. (2004) Introducción al Álgebra Lineal. (5<sup>ta</sup> edición). Limusa: México.

Arce, C., Castillo, W., González, J. (2004). *Álgebra Lineal.* (3<sup>ra</sup> edición). Editorial UCR: Costa Rica.

Barrantes, H. (2012). Elementos de Álgebra Lineal. EUNED: Costa Rica.

Grossman, S., Flores, J. (2012). Álgebra Lineal. (7<sup>ma</sup> edición). Mc-GrawHill: México.

Sánchez, Jesús. (2020). *Álgebra lineal fundamental: teoría y ejercicios*. Editorial UCR: Costa Rica.

Sánchez, Jesús. (2020). MA1004 álgebra lineal: Exámenes resueltos. En revisión.