Obstruction theory via the cotangent complex

Daniel Miller

August 7, 2016

Our main example is as follows. Let k be a finite field, W(k) its ring of Witt vectors. Consider the category $\mathsf{Vaf}_{W(k)}$ of "formal varieties over W(k)." It is the opposite category of the full category of topological W(k)-algebras that are filtered projective limits of finite W(k)-algebras. We will give $\mathsf{Vaf}_{W(k)}$ a suitable subcanonical Grothendieck topology, and consider sheaves on it. Note that $\mathsf{Sh}(\mathsf{Vaf}_{W(k)})$ comes with a commutative ring object – namely the forgetful functor $\mathsf{Spf}(A) \mapsto A$. We will denote this functor by \mathscr{O} . If \mathcal{X} is a formal scheme, or just a sheaf on $\mathsf{Vaf}_{W(k)}$, we will consider \mathcal{X} as the topos $\mathsf{Sh}\left(\mathsf{Vaf}_{W(k)}\right)_{/\mathcal{X}}$. This has an obvious commutative ring object $\mathscr{O}_{\mathcal{X}} = \mathscr{O} \times \mathcal{X}$. So for the rest of this note we will work with an arbitrary ringed topos $(\mathcal{X}, \mathscr{O})$, but the reader should keep in mind this specific example.

Our main reference is [Ill71]. Also be aware that we will sometimes work with sheaves on the category of connected, pointed W(k)-formal varieties – that is the opposite category of the category of local profinite W(k)-algebras with residue field k. We will do this in the context of specific deformation problems.

Brief justification that this generalization works. Let \mathcal{X} be a topos, \mathfrak{Top} the category of all topoi and geometric morphisms. Then the "slice functor" $x \mapsto \mathcal{X}_{/x}$ from $\mathcal{X} \to \mathfrak{Top}_{/\mathcal{X}}$ is a fully faithful embedding by [Joh77, 4.38]. So there is no loss replacing a formal scheme over W(k) with the topos of sheaves over this scheme, regarded as a topos over the topos of sheaves over W(k).

1 Cotangent complex for morphisms of topoi

If \mathcal{X}, \mathcal{Y} are topoi, we call a morphism $f: \mathcal{X} \to \mathcal{Y}$ an adjoint pair (f^{-1}, f_*) , where is a morphism $f_*: \mathcal{X} \to \mathcal{Y}$ and $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is exact. If \mathcal{X} and \mathcal{Y} are ringed topoi, then a morphism $f: \mathcal{X} \to \mathcal{Y}$ must come with a morphism of ring objects $\mathscr{O}_{\mathcal{Y}} \to f_* \mathscr{O}_{\mathcal{X}}$, or equivalently $f^{-1}\mathscr{O}_{\mathcal{Y}} \to \mathscr{O}_{\mathcal{X}}$.

Definition 1.1 ([Ill71, II 1.2.7]). Let $f: \mathcal{X} \to \mathcal{Y}$ be a morphism of ringed topoi. The cotangent complex of \mathcal{X} over \mathcal{Y} is the simplicial $\mathscr{O}_{\mathcal{X}}$ -module given by $L_{\mathcal{X}/\mathcal{Y}} = L_{\mathscr{O}_{\mathcal{X}}/f^{-1}\mathscr{O}_{\mathcal{Y}}}$.

Here $L_{B/A}$ is defined as in [Ill71, II 1.2]. Our main example of interest is when \mathcal{X} is a some deformation functor for a residual Galois representation $\bar{\rho}$. The representation $\bar{\rho}$ will correspond to $\bar{\rho}$: Spf $(k) \to \mathcal{X}$, and we will be concerned with $L_{\bar{\rho}/\mathcal{X}} = L_{\mathrm{Spf}(k)/\bar{\rho}\mathcal{X}}$. This is a simplicial k-vector space.

2 Obstruction theory

Our goal is as follows. Work over a base topos \mathcal{S} . Suppose $x_0 : \mathcal{X}_0 \to \mathcal{Y}$ is a morphism and I is an $\mathscr{O}_{\mathcal{X}_0}$ -module. We are interested in extensions of x_0 to $x : \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} has the same underlying topos as \mathcal{X}_0 , but for which $\mathscr{O}_{\mathcal{X}}$ is a square-zero extension of $\mathscr{O}_{\mathcal{X}_0}$ by the ideal I.

Theorem 2.1. Let $\mathcal{X}_0 \xrightarrow{x_0} \mathcal{Y}$ be a morphism over \mathcal{Y} , and I be an $\mathcal{O}_{\mathcal{X}_0}$ -module. Then there is a canonical obstruction class

$$o(x_0) \in \operatorname{Ext}^2_{\mathcal{X}_0}(L_{\mathcal{X}_0/\mathcal{Y}}, I)$$

which is 0 if and only if an extension of x_0 to $\mathcal{X} \to \mathcal{Y}$ exists. If such an extension exists, then the extensions are a $\operatorname{Ext}^1_{\mathcal{X}_0}(L_{\mathcal{X}_0/\mathcal{Y}}, I)$ -torsor, and each extension has automorphism group $\operatorname{Ext}^0_{\mathcal{X}_0}(L_{\mathcal{X}_0/\mathcal{Y}}, I)$.

Proof. This is [Ill71, III 2.1.7], where $\mathcal{Y}_0 = \mathcal{Y}$ and the base topos is hidden from notation.

3 One-dimensional representations

Let Γ be a finitely generated \mathbf{Z}_p -module. Write \mathcal{X}_{Γ} for the deformation space parameterizing lifts of 1: $\Gamma \to \mathsf{k}^{\times}$. So \mathcal{X}_{Γ} is a (formal) scheme over W(k). One way to understand the cotangent complex $L_{\mathcal{X}_{\Gamma}/W(\mathsf{k})}$ is by embedding \mathcal{X}_{Γ} into a smooth scheme.

Let $\Gamma_{\bullet} \to \Gamma$ be a minimal free resolution of Γ as a \mathbb{Z}_p -module. So $\Gamma_{\bullet} = [\Gamma_1 \hookrightarrow \Gamma_0]$. Then we have a closed embedding $\mathcal{X}_{\Gamma} \hookrightarrow \mathcal{X}_{\Gamma_0} = \mathrm{Spf}(W(\mathsf{k})[\![\Gamma_0]\!])$. Then [Ill71, III 3.3.6] tells us that

$$L_{\mathcal{X}_{\Gamma}/\operatorname{W}(\mathsf{k})} = \left[\mathfrak{a}/\mathfrak{a}^2 \to \Omega^1_{\mathcal{X}_{\Gamma_0}/\operatorname{W}(\mathsf{k})} \otimes_{\operatorname{W}(\mathsf{k})[\![\Gamma_0]\!]} \operatorname{W}(\mathsf{k})[\![\Gamma]\!]\right],$$

where $\mathfrak{a} = \ker(W(\mathsf{k})[\![\Gamma_0]\!] \twoheadrightarrow W(\mathsf{k})[\Gamma]).$

4 Take two

Suppose $\Gamma = \mathbf{Z}_p^{\oplus r} \times \bigoplus_i \mathbf{Z}/p^{n_i}$. Then

$$R = \Lambda \llbracket \Gamma \rrbracket \simeq \Lambda \llbracket s_1, \dots, s_r, t_i \rrbracket / \langle 1 - (1 - t_i)^{p^{n_i}} \rangle.$$

This gives us an obvious surjection $\Lambda[\![s,t]\!] \twoheadrightarrow R$. Let $\mathfrak a$ be its kernel. Then

$$\mathcal{L}_{R/\Lambda} \simeq \left[\mathfrak{a}/\mathfrak{a}^2 \xrightarrow{\mathrm{d}} R \, \mathrm{d}(\boldsymbol{s}, \boldsymbol{t}) \right].$$

Now, more or less by definition, $\mathfrak{a} = \langle 1 - (1 - t_i)^{p^{n_i}} \rangle$.

References

- [Ill71] Luc Illusie. Complexe cotangent et déformations. I, volume 239 of Lecture Notes in Mathematics. Springer-Verlag, 1971.
- [Joh77] P. T. Johnstone. *Topos theory*, volume 10 of *London Math. Soc. Monographs*. Academic Press, 1977.