Reinforcement Learning

Lecture 5: Monte-Carlo & Temporal-Difference Learning

S. M. Ahsan Kazmi

Recap

Last lecture:

- Planning via DP for a known MDP
 - Policy Evaluation
 - Policy Iteration
 - Value Iteration
 - Extensions (Dynamic Programming)

This lecture:

- Model-free prediction to estimate values in an unknown MDP
 - Monte-Carlo Learning
 - Temporal-Difference Learning

Recap: Markov decision process (MDP)

- A Markov decision process (MDP) is a Markov reward process with decisions.
- It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- \blacksquare \mathcal{S} is a finite set of states
- \blacksquare A is a finite set of actions
- lacksquare $\mathcal P$ is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- lacksquare R is a reward function, $\mathcal{R}_s^{a} = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- $ightharpoonup \gamma$ is a discount factor $\gamma \in [0, 1]$.

Monte-Carlo Learning

Monte-Carlo Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions/rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
 - Caveat: can only apply MC to episodic MDPs
- All episodes must terminate

Monte-Carlo Policy Evaluation

Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

The **return** is the total discounted reward (for an episode ending at time T > t):

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

The value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right]$$

We can just use **sample average** return instead of **expected** return We call this **Monte Carlo policy evaluation**

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state *s*
- The first time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

First-Visit Monte-Carlo Policy Evaluation

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$

 $V \leftarrow$ an arbitrary state-value function

 $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S}$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow$ return following the first occurrence of s

Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state *s*
- Every time-step t that state s is visited in an episode
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- Again, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

Example

- 4 states MC: A, B, C, and a terminal state D. Assume the policy is random. The transition reward is -1.
 - Episode 1: A \rightarrow B \rightarrow C \rightarrow D
 - Episode 2: $A \rightarrow C \rightarrow B \rightarrow C \rightarrow D$
- First-Visit Monte Carlo
 - Episode 1:
 - V(A) = -3V(B) = -2
 - V(C) = -1
 - $\bullet V(D) = 0$ (terminal)
 - Episode 2:

$$\bullet V(A) = ((-3) + (-4)) / 2 = -3.5$$

- $\bullet V(B) = ((-2) + (-2)) / 2 = -2.0$ $\bullet V(C) = ((-1) + (-3)) / 2 = -2.0$

- Every Visit Monte Carlo
 - Episode 1: V(A) = -3
 - V(B) = -2
 - V(C) = -1
 - $\bullet V(D) = 0$ (terminal)
 - Episode 2:
 - $\bullet V(A) = ((-3) + (-4)) / 2 = -3.5$ $\bullet V(B) = ((-2) + (-2)) / 2 = -2.0$

 - $\bullet V(C) = (-1 + -3 + -1) / 3 = -1.67$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$egin{aligned} \mathcal{N}(S_t) \leftarrow \mathcal{N}(S_t) + 1 \ V(S_t) \leftarrow V(S_t) + rac{1}{\mathcal{N}(S_t)} \left(G_t - V(S_t)
ight) \end{aligned}$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Summary

MC has several **advantages** over DP:

- Can learn directly from interaction with the environment
- No need for full models
- No need to learn about ALL states (no bootstrapping)
- Less harmed by violating Markov property
- MC methods provide an alternate policy evaluation process

Temporal-Difference Learning

Temporal-Difference Learning(TD)

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions/rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value V (S_t) toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

TD target for prediction

- The TD target: $R_{t+1} + \gamma V(S_{t+1})$
 - it is an estimate like MC target because it samples the expected value
 - it is an estimate like the DP target because it uses the current estimate of V

Algorithm

```
Input: the policy \pi to be evaluated
Initialize V(s) arbitrarily (e.g., V(s) = 0, \forall s \in S^+)
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      A \leftarrow action given by \pi for S
      Take action A; observe reward, R, and next state, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
       S \leftarrow S'
   until S is terminal
```

Figure 6.1: Tabular TD(0) for estimating v_{π} .

Example

4 states MC: A, B, C, and a terminal state D. Assume the policy is random. The transition reward is -1, α =0.5, γ =1.

- Episode 1: $A \rightarrow B \rightarrow C \rightarrow D$
- Episode 2: $A \rightarrow C \rightarrow B \rightarrow C \rightarrow D$

 $\bullet V(A) = -0.5 + 0.5(-1 + 1 \times (-0.5) - (-0.5)) = -1.0$ $\bullet V(C) = -0.5 + 0.5(-1 + 1 \times (-0.5) - (-0.5)) = -1.0$ $\bullet V(B) = -0.5 + 0.5(-1 + 1 \times (-1.0) - (-0.5)) = -1.0$ $\bullet V(C) = -1.0 + 0.5(-1 + 1 \times 0 - (-1.0)) = -1.5$

TD learning

- Episode 1:

Episode 2:

- $\bullet V(B) = 0 + 0.5(-1 + 1 \times 0 0) = -0.5$ $\bullet V(C) = 0 + 0.5(-1 + 1 \times 0 - 0) = -0.5$
- $\bullet V(D) = 0$ (terminal)
- $\bullet V(A) = 0+0.5(-1+1\times0-0)=-0.5$

Rule: $V(s)=V(s)+\alpha(R(s')+\gamma V(s')-V(s))$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Example: Driving Home

- Consider driving home:
 - Each day you drive home
 - Your goal is to try and predict how long it will take at particular stages
 - When you the leave office you note the time, day, & other relevant info
- Consider the policy evaluation or prediction task

Example: Driving Home

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Driving home as an RL problem

			V(s)	V(office)
	$Elapsed\ Time$		Predicted	Predicted
State	(minutes)	R	Time to Go	$Total\ Time$
leaving office, friday at 6	0	5	30	30
reach car, raining	5	15	35	40
exiting highway	20	10	15	35
2ndary road, behind truck	30	10	10	40
entering home street	40	3	3	43
arrive home	43		0	43

- Goal: update the prediction of total time leaving from office, while driving home
 - With MC we would need to wait for a termination until we get home then
 calculate Gt for each step of the episode, then apply our updates

Driving home as an RL problem

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until the end of the episode before a return is known

TD can learn without the outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

Both MC and TD converge (under certain assumptions), but which is faster?

Random Walk Example

- C is start state, episodic, undiscounted γ = 1
- π is left or right with equal probability in all states
- termination at either end
- ▶ rewards +1 on **right** termination, 0 otherwise
- what does $v_{\pi}(s)$ tell us?
 - probability of termination on right side from each state, under random policy
 - what is $v_{\pi} = [A B C D E]$?
 - v_{π} = [1/6 2/6 3/6 4/6 5/6]
- Initialize V(s) = 0.5 $\forall s \in \mathcal{S}$

TD and MC

Batch MC and TD

- Batch Updating: train completely on a finite amount of data
 - e.g., train repeatedly on 10 episodes until convergence.
- Compute updates according to TD or MC, but only update estimates after each complete pass through the data.
- For any finite Markov prediction task, under batch updating, TD converges for sufficiently small α .
- Constant-α MC also converges under these conditions, but to a different answer!

Random Walk under Batch Updating

- After each new episode, all episodes seen so far are treated as a batch
- This growing batch is repeatedly processed by TD and MC until convergence

End of lecture