Spatial proteomics analysis that makes you happy

Benjamin Rombaut

https://saeyslab.sites.vib.be/en

Trustworthy Models of Cells and Tissues 4 subteams

Our tools integrate well with the scverse

(Imaging) flow cytometry

Spatial transcriptomics and proteomics

Dask is a flexible parallel computing library

A Dask Array is just a collection of NumPy Arrays

An analysis run visualized with the Dask Dashboard: docs.dask.org/en/latest/dashboard.html

Scalable imaging flow cytometry processing

Morphological profiling of image cytometry and microscopy data

Example of SCIP workflow execution

Support for storing IFC in **AnnData**Support for parallel processing with **Dask**

Maxim Lippeveld

Cytometry Part A 105, 816-828. https://doi.org/10.1002/cvto.a.24896

Unsupervised clustering of flow cytometry

Self-organizing maps for visualization and interpretation of cytometry data

Python and R version

Support for AnnData

Support for **batch parallel processing** with Dask and Numba

Artuur Couckuyt

Scalable spatial transcriptomics processing

SPArrOW

A flexible, interactive and scalable pipeline for spatial transcriptomics analysis

Runtime of whole SPArrOW pipeline on large MERSCOPE dataset with Dask and GPU acceleration

Lotte Pollaris Pollaris, L., Vanneste, B., Rombaut, B., Defauw, A., Vernaillen, F., Mortier, J., Vanhenden, W., Martens, L., Thoné, T., Hastir, J.-F., Bujko, A., Saelens, W., Marine, J.-C., Nelissen, H., Hamme, E.V., Seurinck, R., Scott, C.L., Guilliams, M., Saeys, Y., 2024. SPArrOW: a flexible, interactive and scalable pipeline for spatial transcriptomics analysis. https://doi.org/10.1101/2024.07.04.601829

Image-based spatial proteomics analysis is a lot of images

Spatial transcriptomics

Transcript locations + whole-slide cell image

Spatial proteomics

whole-slide **highly-multiplexed** images

annotated single-cell data with spatial context

Spatial proteomics with MACSima is a type of cyclical immunofluorescence

Some recent reviews and primers:

Bussi, Y., Keren, L., 2024. Multiplexed image analysis: what have we achieved and where are we headed? Nat Methods 21, 2212–2215. https://doi.org/10.1038/541592-024-02539-5

Carstens, J.L., Krishnan, S.N., Rao, A., Sorace, A.G., Seeley, E.H., Ferri-Borgogno, S., Burks, J.K., 2024. Spatial multiplexing and omics. Nat Rev Methods Primers 4, 1–19. https://doi.org/10.1038/543586-024-00330-6

Difficulties of spatial omics

Stitching artefacts

Tiling artefacts

Background noise

Staining artefacts

Outliers

Batch effects

Open-source data workflows

MCMICRO: broad focus and uses Nextflow

Nextflow/Python https://nf-co.re/mcmicro/dev

IMCDataAnalysis: focus on IMC data

Python/R https://bodenmillergroup.github.io/IMCDataAnalysis/

ark-analysis: focus on MIBI data

Python https://github.com/angelolab/ark-analysis

Harpy: focus on MACSima data and uses SpatialData

Python https://github.com/saeyslab/harpy

4 Harpy highlights

Dataset-wide quality control

2. Scalable whole-slide image processing

3. Interactive unsupervised clustering

https://github.com/saeyslab/harpy

Download only the data chunk you need from remote object storage

Quality control that scales to your whole dataset

Harpy can apply the latest cell segmentation models

Works on **any combination** of image channels in **any order** Outputs both predicted **nucleus** and **cell** mask

Goldsborough, T. et al. (2024) 'A novel channel invariant architecture for the segmentation of cells and nuclei in multiplexed images using InstanSeg'. bioRxiv, p. 2024.09.04.611150. Available at: https://doi.org/10.1101/2024.09.04.611150.

Harpy is fast because of Dask parallelisation

Fast, no memory issues

No artefacts

No manual chunks

Overlapping tiles are correct and quick

6 cells segmented using naive apply over 4 separate tiles = tile artefacts

2 cells segmented using apply over 4 tiles with Dask map_overlap = no tile artefacts... if you merge labels correctly!

Good label merging is essential

Naive dask.map_overlap harpy.im.segment Naive connected_components or squidpy.segment

No label merges at tile borders

Too many label merges at tile borders

Correct label merges

Discussion on upstreaming this approach https://github.com/scverse/spatialdata/pull/664

Interactive unsupervised clustering

Cell and **pixel** clustering workflow using FlowSOM in Python

Visualize results in notebook, with napari or with other SpatialData plugins like e.g. napari-spatialdata

Liu, C.C., Greenwald, N.F., Kong, A., McCaffrey, E.F., Leow, K.X., Mrdjen, D., Angelo, M., 2022.

Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering. https://doi.org/10.1101/2022.08.16.504171

A Example unsupervised clustering workflow

Pixel features or Cell features Unsupervised clustering Annotate clusters in napari

C Scalability comparison of SOM cluster models

B Quality comparison of SOM cluster models

Harpy output is interoperable with R

Cannoodt R, Zappia L, Morgan M, Deconinck L (2025). *anndataR: AnnData interoperability in R*. R package version 0.99.0, https://github.com/scverse/anndataR, https://anndatar.data-intuitive.com/.

Future support for complete Spatial Data object in R: https://github.com/HelenaLC/SpatialData

More on interoperability in our workshop: Polyglot programming for single-cell analysis

AUTHORS
Benjamin Rombaut

C

Louise Deconinck

C

Robrecht Cannoodt

PUBLISHED

September 12, 2024

AFFILIATIONS

Saeys lab ☑

VIB Center for Inflammation Research
Ghent University

Saeys lab ☑

VIB Center for Inflammation Research
Ghent University

Data Intuitive ☐

Overview of the **different levels** of interoperability.

Integrating them in a **single** workflow.

https://saeyslab.github.io/polygloty/

Scverse Conference 2024 workshop

Rich parallel abstractions

Easy debugging

Channels only

Hard to debug

Python-only Bio docs can be sparse

- Polyglot
- Great **nf-core** community

Python packages

Workflows

SpatialData

4 Harpy highlights

Dataset-wide quality control

2. Scalable whole-slide image processing

3. Interactive unsupervised clustering

https://github.com/saeyslab/harpy

SCIENCE MEETS LIFE

Acknowledgments

VIB-UGent Center for Inflammation Research

<u>SaeysLab</u>

Lotte Pollaris

Ruth Seurinck

Sofie Van Gassen

. . .

Yvan Saeys

VIB Spatial Catalyst

Arne Defauw

Frank Vernaillen

Julien Mortier

Evelien Van Hamme

Questions?

Benjamin.Rombaut@UGent.be

or contact the VIB Spatial Catalyst

spatial@vib.be

Benjamin Rombaut

3th of March 2024

Use a scheduler to avoid memory errors

Manual solution

Limiting cores, partitions, parallellism...

Write out temporary results to disk

Automated solution

Give all tasks to the <u>scheduler</u>

Spills older objects to disk if approaching memory limit

Can also work for GPU object spilling

Problem now is task granularity and correct memory estimation

Reasons for (not) using proprietary software

e.g. MACS iQ View provided with MACS ima platform

Strengths

End-to-end graphical and user-friendly workflow

Advanced cell type annotation with visual feedback

Python API for scripts and batch sample processing

Good for quality assessment and ground truth annotations

Weaknesses

Expensive license and fixed workstation needed

Not tested on non-MACSima data

Limited analysis options (lacks state-of the art tools)

Open-source data workflows

MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging

https://doi.org/10.1038/s41592-021-01308-y (more general)

Nextflow/Python https://nf-co.re/mcmicro/dev

IMCDataAnalysis: An end-to-end workflow for multiplexed image processing and analysis

https://doi.org/10.1038/s41596-023-00881-0_(more for IMC data)

Python/R https://bodenmillergroup.github.io/IMCDataAnalysis/

ark-analysis: Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering

https://doi.org/10.1038/s41467-023-40068-5 (more for MIBI data)

Python https://github.com/angelolab/ark-analysis

MIBI workshop 2022 (https://www.youtube.com/playlist?list=PLjNbkEm4vA26o5YvWKeyHXF8HjTJc7yB0)

Spatial Biology workshop 2023 (https://www.angelolab.com/spatial-biology-workshop)

Harpy: https://github.com/saeyslab/harpy