ÉQUIPE ACADEMIQUE DE PHYSIQUE ET CHIMIE

Fiche de méthodes

LES ONDES

4eme Techniques

www.takiacademy.com

Fiche de méthodes

LES ONDES

4eme Techniques

www.takiacademy.com

Question 1: * Determiner l'amplitude Xm, lapuleation

wet la phose ox.

Ф	0	1-16	12/4	113	이귀
sin d	۵	1/2	[2/N	(M)	1

Chapitre : Ondes Mécaniques Progressives

exemple 2:

Determiner Ox:

or à t=0 la courbe est décosissante

* Définir les notions suivantes: a) on de transversol. b) on de longitu dinale.

trans versal Si lesens d'ebronlemen si le sens d'ebron lement perpendiculaire au sens parallèle an sens de propagation de de propagationde l'ande example: la corde exemple: levessort ebron lement ebronlement brobos of on propagotion de l'onde de l'onde

1 dimension 2 dimensions 3 dimensions conde pressort can son

Question 3: * Determiner l'epuation y (x,t):

L'oude est une fonchion ai duaviables

net t qu'on l'appelle y (x, t)

ner cas:

. On fixe n= no et t varie.

dans ce cas on parle du diagramme du temps ou bien l'equation horaire.

Chapitre : Ondes Mécaniques Progressives

* On va chercher l'equation horaire au point $\Pi \{Y_m(x,t)\}$ à partir le l'équation au point $S \{Y_s(t)\}$ $t_p: y_s(t,x) = a sin (wt + ds)$

2 = cas: on fixe t=to et x varie

de la corde ou diagrame des espèces

* pour determiner to: V = xp

avec >= V.T

Question 4:

* Donner les différentes as pets de la corde lors de l'unitisation d'un stroboscope de frequence Ne et de periode Te.

=> La corde estiomndoile

=> la corde avance l'entement dans le sens néel

3 eme cas:

=> la corde avance l'entement dans le sens inverse.

Question 5:

Determiner les abscisses x de point qui vibrent :

* enphase

+ en opposition de phase

tet en guadrature de phase avec $\Delta \phi = \frac{2\pi}{2} \times .$

·Set T sout en phase: \$\D\$ = 2KT => X = >K; KEZ 2 cas:

. Set 11 sout en opposition de phase:

: Ondes Mécaniques Progressives

gene cas :

. S et 17 sont en quadra ture avance de phase.

4 eme cas :

. Set Moont en quadrature netard Le phase

puis on met of X < L et on cherche la valeur de K.

top: L'est la longueur du fil.

. Exemple: Set 17 en opposition de phase :

Chapitre

Chapitre : Ondes Mécaniques Progressives

K	0	1	2
X	£	32	5>

* Résumons: + >

	déphasege △Φ	×	K
en phase	ZKT	K>	OCKE
en opposition de phase	(3k+1)TT	(2K+1) }	-1×K<#-1
enquadrature avance	(計+4)于	(R-4)>	1 <k<<u>*+</k<<u>
en quadreture netard	(2K_1) #	(K+4)>	- LKKK +

Question 6: tracer yn(x) et yn(t)

ler as : + Courbe de yn(x):

on calcula reperemple: $\frac{xF}{y} = 2,5 \Rightarrow xF = 2,5 >$

Remarque: pour determiner la phase of dans ce cas
on regarde la courbe ou point x f et
non pas en O => x = x f : la courbe croissante

Website: www.TakiAcademv.com

geme cas :

* courbe de y(t):

ondoit colculer: 7

exemple:

P = 1,5 => 8 = 1,5 T

Remarque:

Pour Jeterminer laphase dans ce cas on écrit à t=9 au lieu de à t=0 => a`t=0: la courbe est croissante => $\Phi_{e} = 0$

Astuces :

* Si on a une onde à 2 dimension on trace la miroir les courbes precedantes

