Chapter 3: The Link Layer

Our goals:

- understand principles behind data link layer services:
 - framing
 - error detection, correction
 - reliable data transfer, flow control
 - sharing a broadcast channel: multiple access
 - link layer addressing

Overview:

- □ link layer services
- framing
- error detection, correction
- □ reliable data transfer
- multiple access protocols and LANs
- □ link layer addressing

Keypoints and Difficulties

Keypoints:

- Four framing methods
- CRC
- reliable data transfer
- multiple access protocols
- link layer addressing

Difficulties:

- CRC
- □ Flow control
- Sliding-window protocol
- □ CSMA/CD

Link layer: Introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- □ layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Princeton to Lausanne
 - o car: Princeton to JFK
 - plane: JFK to Geneva
 - o train: Geneva to Lausanne
- ☐ tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link Layer: setting the context

Link Layer: setting the context

- two physically connected devices:
 - host-router, router-router, host-host
- □ unit of data: frame

Link Layer: Implementation

- □ implemented in "adapter"
 - o e.g., PCMCIA card, Ethernet card
 - typically includes: RAM, DSP chips, host bus interface, and link interface

Multiple Access Links and Protocols

Three types of "links":

- point-to-point (single wire, e.g. PPP, SLIP)
- broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

□ switched (e.g., switched Ethernet, ATM etc)

Link Layer Services

- □ Framing, link access:
 - o encapsulate datagram into frame, adding header, trailer
 - o implement channel access if shared medium,
 - 'physical addresses' used in frame headers to identify source, dest
- Reliable delivery between two physically connected devices:
 - Reliable data transfer protocol
 - seldom used on low bit error link (fiber, some twisted pair)
 - wireless links: high error rates

Link Layer Services (more)

- ☐ Flow Control:
 - o pacing between sender and receivers
- □ Error Detection:
 - o errors caused by signal attenuation, noise.
 - o receiver detects presence of errors:
 - · signals sender for retransmission or drops frame
- □ Error Correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission

- Character count method :
 - encapsulate datagram into frame, adding header (character number)

- First and tail bound method based on character:
 - encapsulate datagram into frame, adding header, trailer (character)

- First and tail bound method based on character:
 - encapsulate datagram into frame, adding header, trailer (character)

- First and tail bound method based on character:
 - Inserting/ stuffing a Escape character before the special character in the data part

- First and tail bound method based on bit:
 - encapsulate datagram into frame, adding header, trailer (bit sequence)

- ☐ First and tail bound method based on bit:
 - Inserting a bit "0" after successive five bits "0" in the transmitter; vice versa

- Physical layer coding violation method:
 - o encapsulate datagram into frame without stuffing
 - Only be used in the networks with redundancy coding technology in the physical layer
- □ For example (IEEE 802.11 with Manchester code):
 - Bit 1 with level jump mode from high to low
 - Bit 0 with level jump mode from low to high
 - Level jump modes from high to high or from low to low can be used for beginning and ending of a frame

Exercise-1

```
1. HDLC protocol sets the bit stream 0111110001111110 after framing as ( ) A. 011111000011111010
B.01111100011111010
C.01111100011111010
```

Error Detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Parity Checking

Single Bit Parity:

Detect single bit errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Checksumming: Cyclic Redundancy Check

- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), 6
- goal: choose r CRC bits, R, such that

 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - o can detect all burst errors less than r+1 bits
- widely used in practice (ATM, HDCL)

CRC Example

Want:

D.2r XOR R = nG

equivalently:

 $D \cdot 2r = nG \times CR R$

equivalently:

if we divide D.2r by G, want reminder R

R = remainder
$$\left[\frac{D \cdot 2r}{G}\right]$$

CRC well-known generator

- \Box CRC-12: $x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$
- \Box CRC-16 : $x^{16} + x^{15} + x^2 + 1$
- \Box CRC-CCITT: $x^{16} + x^{12} + x^5 + 1$
- $\Box CRC-32: x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8} \\ +x^{7}+x^{5}+x^{4}+x^{2}+x^{1}+1$

CCITT: Consultative Committee on International Telegraphy and Telephone

ITU-T: International Telecommunications Union - Telecommunications Standardization Sector

Exercise-2

1. If the information received by an Ethernet adapter is 101101001 and the generator is $G(x) = x^3+x^2+1$, judge whether the transmission has bit error?

Reliable Data Transfer

- Important in app., transport, link layers
- Top-10 list of important networking topics!

 Characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Stop-and-Wait

$$U_{\text{sender}} = \frac{L/R}{RTT + I/R} = \frac{.008}{30.008} = 0.00027$$

Stop-and-Wait

Stop-and-Wait

Pipelined Protocols

Pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged pkts

- O Range of sequence numbers must be increased
- Buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

Pipelined Protocols

- Advantage: much better bandwidth utilization than stop-and-wait
- Disadvantage: More complicated to deal with reliability issues, e.g., corrupted, lost, out of order data.
 - Two generic approaches to solving this
 - Go-Back-N protocols
 - Selective repeat protocols
- Note: TCP is not exactly either

Pipelining: Increased Utilization

Go-Back-N

Sender:

- K-bit seq # in pkt header
- "Window" of up to N, consecutive unack'ed pkts allowed

- □ ACK(n): ACKs all pkts up to, including seq # n "cumulative ACK"
 - May receive duplicate ACKs (see receiver)
- Timer for each in-flight pkt
- Timeout(n): retransmit pkt n and all higher seq # pkts in window
- Called a sliding-window protocol

GBN: Sender

- rdt_Send() called: checks to see if window is full
 - No: send out packet
 - Yes: return data to upper level
- □ Receipt of ACK(n): cumulative acknowledgement that all packets up to and including n have been received. Updates window accordingly and restarts timer
- □ Timeout: resends ALL packets that have been sent but not yet acknowledged.
 - O This is only event that triggers resend

More on Receiver

- ACK-only: the receiver always sends ACK for last correctly received packet with highest in-order seq #
- □ Receiver only sends ACKS (no NAKs)
- □ Need only remember expectedseqnum
- □ Can generate duplicate ACKs

GBN In Action

- □ GBN is easy to code but might have performance problems
- ☐ In particular, if many packets are in pipeline at one time (bandwidth-delay product large) then one error can force retransmission of huge amounts of data!
- Selective Repeat protocol allows receiver to buffer data and only forces retransmission of required packets

Selective Repeat

- Receiver individually acknowledges all correctly received pkts
 - Buffers pkts, as needed, for eventual in-order delivery to upper layer
- Sender only resends pkts for which ACK not received
 - Sender timer for each unACKed pkt
 - Compare to GBN which only had timer for base packet
- Sender window
 - N consecutive seq #'s
 - Again limits seq #s of sent, unACKed pkts
 - O Important: Window size < seq # range</p>

Selective Repeat: Sender, Receiver Windows

(b) receiver view of sequence numbers

Selective Repeat

-sender

Data from above:

If next available seq # in window, send pkt

Timeout(n):

Resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- Mark pkt n as received
- If n smallest unACKed pkt, advance window base to next unACKed seq #

-receiver

pkt n in [rcvbase, rcvbase+N-1]

- □ Send ACK(n)
- Out-of-order: buffer
- In-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 \Box ACK(n)

Otherwise:

□ Ignore

Selective Repeat In Action

Selective Repeat: Dilemma

Example:

- seq #'s: 0, 1, 2, 3
- window size=3
- Receiver sees no difference in two scenarios!
- Incorrectly passes duplicate data as new in (a)
- Q: what relationship between seq # size and window size?

GBN vs. Selective Repeat

Selective repeat is more complicated as it needs buffering at the receiver, but only retransmit packets required for retransmission

□ GBN is simpler, but can lead to large number of unnecessary retransmission

Exercises-3

1. The data link layer uses the GBN protocol, and the sender has sent frames numbered 0 ~ 7. When the timer expires, if the sender only receives the acknowledgement of frames 0, 2 and 3, the number of frames to be retransmitted by the sender is ()

A. 2 B. 3 C. 4 D.5

Exercise-3

2. Considering GBN protocol and SR protocol, assuming that the length of sequence number space is *n*, what is the maximum allowed sender window?

Multiple Access Links and Protocols

Three types of "links":

- point-to-point (single wire, e.g. PPP, SLIP)
- broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

□ switched (e.g., switched Ethernet, ATM etc)

Multiple Access protocols

- single shared communication channel
- two or more simultaneous transmissions by nodes: interference
 - o collision if node receives two or more signals at the same time
 - only one node can send successfully at a time
- multiple access protocol:
 - distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
 - communication about channel sharing must use channel itself!
 - what to look for in multiple access protocols:
 - synchronous or asynchronous
 - information needed about other stations
 - robustness (e.g., to channel errors)
 - performance

Multiple Access protocols

- claim: humans use multiple access protocols all the time
- class can "guess" multiple access protocols
 - o multiaccess protocol 1:
 - o multiaccess protocol 2:
 - multiaccess protocol 3:
 - multiaccess protocol 4:

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency)
 - allocate piece to node for exclusive use
- □ Random Access
 - allow collisions
 - o "recover" from collisions
- "Taking turns"
 - tightly coordinate shared access to avoid collisions

Goal: efficient, fair, simple, decentralized

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

CDMA: two-sender interference

"Taking Turns" MAC protocols

Polling:

- master node "invites" slave nodes to transmit in turn
- Request to Send,Clear to Send msgs
- concerns:
 - o polling overhead
 - latency
 - single point of failure (master)

Token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Reservation-based protocols

Distributed Polling:

- time divided into slots
- begins with N short reservation slots
 - reservation slot time equal to channel end-end propagation delay
 - station with message to send posts reservation
 - reservation seen by all stations
- after reservation slots, message transmissions ordered by known priority

Random Access protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more trasnmitting nodes -> "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- □ Examples of random access MAC protocols:
 - ALOHA
 - slotted ALOHA
 - CSMA and CSMA/CD

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
- pkt needs transmission:
 - send without awaiting for beginning of slot
- collision probability increases:
 - \circ pkt sent at t_0 collide with other pkts sent in $[t_0-1, t_0+1]$

Pure Aloha (cont.)

P(success by given node) = P(node transmits).

P(no other node transmits in $[p_0-1,p_0]$.

P(no other node transmits in $[p_0-1,p_0]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

$$= p \cdot (1-p)^{2(N-1)}$$

... choosing optimum p as n -> infty ...

protocol constrains effective channel throughput!

Slotted Aloha

- □ time is divided into equal size slots (= pkt trans. time)
- node with new arriving pkt: transmit at beginning of next slot
- if collision: retransmit pkt in future slots with probability p, until successful.

Success (S), Collision (C), Empty (E) slots

Slotted Aloha efficiency

Q: what is max fraction slots successful?

A: Suppose N stations have packets to send

- o each transmits in slot with probability p
- oprob. successful transmission S is:

```
by any of N nodes

S = \text{Prob (only one transmits)}

= N p (1-p)^{(N-1)}

... choosing optimum p as n -> infty ...

= 1/e = .37 \text{ as } N \rightarrow infty
```

by single node: $S = p(1-p)^{(N-1)}$

At best: channel use for useful transmissions 37% of time!

CSMA: Carrier Sense Multiple Access)

CSMA: listen before transmit:

- □ If channel sensed idle: transmit entire frame
- □ If channel sensed busy, defer transmission
 - Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability)
 - Non-persistent CSMA: retry after random interval
- human analogy: don't interrupt others!

CSMA collisions

collisions can occur:

propagation delay means two nodes may not year hear each other's transmission

collision:

entire packet transmission time wasted

note:

role of distance and propagation delay in determining collision prob.

t₁

CSMA/CD collision detection

CSMA/CD (Collision Detection)

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- o collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- o persistent or non-persistent retransmission
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting
- human analogy: the polite conversationalist

Summary of MAC protocols

- □ What do you do with a shared media?
 - Channel Partitioning, by time, frequency or code
 - Time Division, Code Division, Frequency Division
 - Random partitioning (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technoligies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - Taking Turns
 - polling from a central cite, token passing

Summary of MAC protocols

channel partitioning MAC protocols:

- o share channel efficiently at high load
- inefficient at low load: delay in channel access,
 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

Exercises-4

A LAN adopts CSMA/CD protocol to realize the media access control. The data transmission rate is 10Mbps, the distance between host A and host B is 2km, and the signal propagation speed is 200000km/s. If there is a conflict when two hosts send data, how long will it take from the time when they start sending data to the time when both hosts detect the conflict? (What is the minimum and maximum duration?)

Chapter 3: Summary

- principles behind data link layer services:
 - framing
 - error detection, correction
 - o reliable data transfer
 - o sharing a broadcast channel: multiple access
- □ Next, various link layer technologies
 - LAN Model
 - Ethernet
 - WLAN

Homework

P319-322P9,11,17,22P537P5