

1
/24

Fig. 1

Fig. 2

Fig. 3

4/
24

Fig. 4

5
/24

Fig. 5

6/
24

Fig. 6

SUB 1

DETERMINE THE SUM OF SQUARES OF A DIFFERENCE
BETWEEN A THEORETICAL VALUE AND AN ACTUAL MEASUREMENT
VALUE OF SPECTRAL REFLECTANCE RATIO IN A MEASUREMENT
WAVELENGTH RANGE OF FROM λ_1 TO λ_2 AT A SELECTED FILM
THICKNESS d [CALCULATED IN THE FORM OF AN EVALUATION
FUNCTION E(d)]

INITIALIZATION FOR VARYING λ IN A
MEASUREMENT WAVELENGTH RANGE OF FROM
 λ_1 TO λ_2 $\lambda = \lambda_1$, $E_d = 0$

ST11

DETERMIRNE THE SUM OF SQUARES OF A DIFFERENCE
BETWEEN A THEORETICAL VALUE AND AN ACTUAL
MEASUREMENT VALUE $R_{meas}(\lambda)$ AT A SELECTED FILM
THICKNESS d

$$E_\lambda = [R_{meas}(\lambda) - R_{calc}(\lambda)]^2$$

$$E_d = E_d + E_\lambda$$

A THEORETICAL VALUE $R_{calc}(\lambda)$ CAN BE CALCULATED IN
ACCORDANCE WITH THE FOLLOWING FORMULA WHEN AN
ABSORPTION COEFFICIENT IS ZORO

$$R_{calc}(\lambda) = r_1^2 + r_2^2 + 2 * r_1 * r_2 * \cos\delta$$

WHEREIN

$$r_1 = (1-n_1)/(1+n_1);$$

$$r_2 = (1-n_b)/(1+n_b);$$

$$\delta = 4\pi n_1 d / \lambda$$

n_1 : INDEX OF REFRACTION OF FILM;

n_b : INDEX OF REFRACTION OF SUBSTRATE;

d : FILM THICKNESS ; AND

λ : MEASUREMENT WAVELENGTH RANGE (λ_1 TO λ_2)

ST12

ADD A RESOLUTION $\Delta\lambda$ IN A DIRECTION OF A MEASUREMENT
WAVELENGTH RANGE TO λ $\lambda = \lambda + \Delta\lambda$

ST13

ST14

$\lambda \leq \lambda_2$?

Y

ST15

ASSIGN AN EVALUATION VALUE E_d TO AN EVALUATION
FUNCTION $E(d)$ $E(d) = E_d$

EXIT A SUB1 FUNCTION

7
/24

Fig. 7

8/
24

Fig. 8

9/
24

Fig. 9

10
/24

Fig. 10

$11/24$

Fig. 11

12/
24

Fig. 12

$\frac{13}{24}$

Fig. 13

14
/24

Fig. 14

Fig. 15

$\frac{16}{24}$

Fig. 16

Fig. 17

17
/24

Fig. 18

Fig. 19

19
/24

Fig. 20

20
/24

Fig. 21

Fig. 22

22/
24

Fig. 23

23/
24

Fig. 24

Fig. 25

24/
24

Fig. 26

