Real-time Pedestrian Modelling: Implementing the Ensemble Kalman Filter for an Agent-Based Model

Keiran Suchak — 200888140

May 13, 2019

Abstract

This is the abstract.

Contents

1	Introduction	6
2	Literature Review	7
3	Method	8
4	Results	9
5	Conclusion	10

List of Figures

List of Tables

Notes

- What is data assimilation?
- What is the Ensemble Kalman Filter?
- What are Agent-Based Models?
- How do people model pedestrians?
- EnKF: options for generating observations:
 - External (the old way):
 - * observations come from a previous run of the model
 - * therefore, they are independent
 - * the problem here is that the ensemble members probably have been set with the wrong entrances and exits for agents
 - * this is likely more realistic, ie when modelling people we ultimately won't know where they intend to go
 - * but I don't think that we can overcome this without parameter estimation DA.
 - Internal (the new way):
 - * observations come from the base_model
 - * all ensemble members are deep copies of the base_model
 - * consequently, they have the same parameters and initial conditions
 - * the problem with this is that is not realistic
 - * but we're going to do it anyway (for now)

Chapter 1 Introduction

This is the introduction.

Chapter 2

Literature Review

This is the literature review.

There has been some work on this stuff (Ward et al. 2016, Wang & Hu 2015).

Chapter 3

Method

This is the method.

Chapter 4 Results

These are the results.

Chapter 5 Conclusion

This is the conclusion.

Bibliography

Wang, M. & Hu, X. (2015), 'Data assimilation in agent based simulation of smart environments using particle filters', Simulation Modelling Practice and Theory 56, 36–54.

Ward, J. A., Evans, A. J. & Malleson, N. S. (2016), 'Dynamic calibration of agent-based models using data assimilation', *Royal Society open science* **3**(4), 150703.