1.	The Huffman encoding is							
	A greedy technique	An encoding technique	A data compression technique	All of the above				
2.	What is the range of ASCII codes?							
	0-110	0-127	0-101	0-172				
3.	In variable length assignment, the most frequent characters gets the code.							
	Smallest	Longest	Equal	None of the above				
4.	In variable size encoding, we arrange all the alphabets in order of their count.							
	Increasing	Decreasing	Either of the above	None of the above				
5.	Which of these is the best approach for Huffman encoding?							
	Exhaustive search	Greedy method	Brute force algorithm	Divide and conquer approach				
6.	In Huffman encoding, the data in a tree always occur?							
	Root	Leaves	Left subtree	Right subtree				
7.	What is the time complexity of Huffman encoding algorithm?							
	O (n)	O (log n)	O (n log n)	None of the above				
8.	In variable length assignment, the least frequent characters gets the code.							
	Smallest	Longest	Equal	None of the above				
9.	Suppose the message is 'BCCABBDDAECCBBAEDDCC'. What will be the cost of sending the message using ASCII encoding?							
	20	8	160	28				
10.	O. Suppose the message is 'BCCABBDDAECCBBAEDDCC'. In The smallest code should be assigned to alphabet.							
	A	В	C	D				
	E							
11.	1. Suppose the message is 'BCCABBDDAECCBBAEDDCC'. In The longest code should be assigned to alphabet.							
	A	В	С	D				

E								
12. Out of these methods, which one will have least cost?								
ASCII er	ncoding	Fixed size encoding	Variable size encoding	All will have same cost				
13. Out of	13. Out of these methods, which one will have most cost?							
ASCII er	ncoding	Fixed size encoding	Variable size encoding	All will have same cost				
14. Which	14. Which data structure is used in Huffman encoding?							
Stack		Graph	Min-heap	Max-heap				
15. What is the time taken by min-heap for Huffman encoding?								
O (n)		O (log n)	O (1)	None of the above				
16. The comparison tree are used for								
Searchir	ng	Sorting	Both searching and sorting	None of the above				
17. The concept of lower bound theory is based upon calculation of								
Minimun	n execution	Maximum execution	Both minimum and	None of the above				
time		time	maximum execution time					
18. In trav	3. In travelling salesman problem, the salesman has to find a path which gives the cost.							
Minimun	1	Maximum	Zero	Any of the above				
19. An n*r	9. An n^*n matrix 'A' whose elements are $a_{ij} = 0$ for $i > j$, then it is a triangular matrix.							
Upper		Lower	Medium	None of the above				
20. An n^*n matrix 'A' whose elements are $a_{ij} = 0$ for $i < j$, then it is a triangular matrix.								
Upper		Lower	Medium	None of the above				
21. For ma		e number of of first mati	rix must be equal to number of	of second				
Row, rov	V	Column, column	Row, column	Column, row				

22.	The two main measures for the efficiency of an algorithm are						
	Processor and	Complexity and	Time and space	Data and space			
	memory	classes					
23.	The time factor when determining the efficiency of algorithm is measured by						
	Counting	Counting the number	Counting the kilobytes	None of the above			
	microseconds	of key operations	of algorithm				
24.	Which of these cases does not exist in complexity theory?						
	Best case	Average case	Worst case	Null case			
25.	Choose the correct answer for the following statements:						
	I. The theory of NP-completeness provides a method of obtaining a polynomial time for NP algorithms.						
	All NP-complete problem are NP-Hard.						
	I is FALSE and II is	I is TRUE and II is	Both are TRUE	Both are FALSE			
	TRUE	FALSE	Both are ThoL	Both are TALGE			
26.	is the first step in solving the problem						
	Understanding the	Identify the Problem	Evaluate the Solution	None of these			
	Problem						
27.	is the maximur	is the maximum number of steps that can executed for the given parameters					
	Average case	Worst case	Time complexity	Best case			
28.	O(1) means computing time is						
	Constant	Quadratic	Linear	Cubic			
29.	O(n) means computing time is						
	Constant	Quadratic	Linear	Cubic			
30.	An algorithm that calls itself directly or indirectly is known as						
	Sub algorithm	Recursion	Polish notation	Traversal algorithm			