2402 Assignment | LIU Hengche 57854329

P(atlast 1) = 1 - P(none) =
$$1 - \frac{36^5}{62^5} = \frac{26739583}{28629151} \approx 0.934$$

so the probability of ortanily at least one special character is 0.5375

(l2 (a).
$$P = \frac{1}{(88)} = \frac{1}{12271512} \approx 8.1\times 6^{-8}$$

.: probability of whining first prize is 8.1×6^{-8}

$$|b| p = \frac{(1 \times 42)}{(6 \times 8)} = \frac{21}{(022626)} \approx [2.0535 \times]0^{-5}$$

Q30 game: E # F #
Q 2 games: E \(\frac{1}{2}\times \frac{1}{4}\) \(\frac{1}{4}\times \frac{1}{4}\)
B) 3 games: E 3 x 1/3 E 3 x 1/3 G 2 x 1/3 H 1/3
4 games E 3×44 F 3×44 G 3×44 H 3×44
50 in total P(E)=4+8+3+3=111
P(F) = 11)
$P(G) = \frac{2}{6k} + \frac{1}{16} + \frac{3}{256} = \frac{27}{256}$
$P(G) = \frac{2}{6k} + \frac{1}{16} + \frac{3}{256} = \frac{27}{256}$ $P(H) = \frac{4}{256} + \frac{3}{256} = \frac{7}{256}$
:. Emily should get 768 × 111 = [333] dollars
Fronk should get 768 x 111 = [333] dollars
Grace should get 768 × 27 = 1911 dollars
Harry should get 768x 256 = [2] dollars
Q4 (a). P(B)-P(B)= [0.25]
(0.05 (0.05) 0.15) SO P(at lease 1 defect) = 0.25
(b) P=P(B)-P(AB)=0.05, SoP(And B)=0.05
(c) P(none) = 1-P(AUB) = 1-0.25=[0.75]
(d). P(A)+P(B)-21(AB) = 0.05+0.15=[0.]
: P (one defeats) = 0.2

1	1
/	/

(85 (a). = (1/1500-1/700) + = (1/100 - 1/700)
	= + 1/4 + = 1/4 = -0.592
	so expected utility change is -0.592
	(b). ± (/12000 - /1/200) + ± (/1600 -/1/200))
_	= 1/2 + 1/2 = 1/5 = -0.0912
	So expected utility change is [-0.0912]
	(C). 1 (Inbooo - In5200) + 1 (INGOO - In5200)
	$= \frac{1}{2} \left \frac{60}{51} + \frac{1}{2} \right \frac{42}{51} = \frac{1}{2} \left \frac{315}{338} \right = -0.0352$
	so expected whity change is -0.0351]

Q6 (a). X											1
	. P	0	145	45	745	好好	5/4	45	745	845	9	
	Y	0			3,							C.
	P	9 45	8 45	745	<u>6</u> 45	5 45	445	45	45	1/5	0/45	22.74
(X,X)	(0,1)	•••		A STATE OF THE RESIDENCE OF THE PARTY OF THE	2)						A New York	(5,9)
P	45		45	4	,	· 4	<u>!</u> .		- 4	<u> </u> -	15	45
	(* 363 t											

(4) $E(X) = \sum_{i} X_i P(X) = \frac{1}{45} X_i + \frac{2}{45} X_i + \frac{2}{45} X_i + \dots + \frac{q}{45} X_i q$ $= \frac{1+2^2 + \dots + q^2}{45} = \frac{285}{45} = \frac{57}{9} = \frac{17}{3} = 6.33$ $Var(X) = E(X^2) - (EX)^2 = \frac{1+2^2 + \dots + q^3}{45} = (\frac{19}{3})^2$ $= 45 - \frac{361}{9} = \frac{44}{9} = \frac{44}{9} = \frac{11}{3} = 3.67$ $E(Z) = \frac{1}{45} X_i + \frac{1}{45} X_i + \frac{1}{45} X_i + \dots + \frac{1}{45} X_i q = \frac{169}{45} = \frac{11}{3} = 3.67$ $E(Z^2) = \frac{1}{45} X_i^2 + \frac{1}{45} X_i^2 + \frac{1}{45} X_i^2 + \dots + \frac{1}{45} X_i q^2 = \frac{825}{45} = \frac{55}{3} = [8.3]$ $Var(Z) = E(Z^3) - (EA)^2 = \frac{55}{3} - \frac{11}{3} = \frac{144}{9} = 14.67$ $overall, E(X) = \frac{19}{3} \approx 6.33, Var(X) = \frac{44}{9} \approx 4.89$ $E(A) = \frac{11}{3} \approx 3.67, Var(A) = \frac{44}{3} \approx 14.67.$

Q7. (a). Sn \sim B(n, P). This is because first n trials are independent and probability is P.

(b). 7m~ B(M, P) same Reason as (a).

Trials are independent with equal probability

are Bernaulli trials, Then (Sn+7m)~ B (h+m, P)

(<u>r</u>	$\int_{0}^{\infty} P(X=S_{1},Y=T_{M}) = C_{1}^{S_{1}} P^{S_{1}} (I-P)^{n-S_{1}} \times (I_{m}^{T_{m}} P^{T_{m}} (I-P)^{n-T_{m}}.$
	since all the trials are independent), this is P(X=Sn) *P(Y=Tm)
	So $P(X=S_n, Y=7_m) = P(X=S_n) \times P(Y=7_m)$
	50 Sn. 7m one independent.
8	1. since 2= x+t, then var(2)= var(x) + var(t),
	E(Z)= E(X)+E(Y)
Ģ	we have: molo (1-Po) + m, P, (1-P1) = (nopo+m, P1) (1- molo+m, P1) (F(7))
<u>-</u>	at's 6 place $E(z) - (m_0 p_0^2 + m_1 p_1^2) \le E(z) - \frac{E(z)^2}{m_0 + m_1}$
U-	we need to prove mopo2 + m_1 p_1 > (E2)2 no+m,
	=) morpor + mom (Port by) + mily; > morpor + 5 mom Politim
. .	=> mom_ (ptp1) > 2 mom_ (pop)
ากผ	e (moto, m, to) then =) (2+1)4 >, 2 pop,
	=) (Po-P1) 20 always stands true.
S	o we have proved the statement. When the equality holds,
	$(P_0 - P_1)^2 = 0$, then $P_0 = P_1$
-	
_	