Name: XIE, MINGLANG Student ID: z5228006

```
Name: MINGLANG XIE
                                            ZID: 25228006
      let A bep. B be P2
Q1:
  Algorithm 1: Q1(P.P2)
         answer + 0;
         while P. 1= NULL and P. != NULL do to docio(P.) > docio(P.) + hen
               if docto (P.) == docto (P2) then
                        行 まずな(B2)
                        92 ← skip To (do. IDCP2));
              P. L shop To (docID(P2));
else if duID(P,) > docID(P2) then
                        Add Comw
                         Add (answer, docIU(P2));
                         P2 Knex skip To (doc I) (P2));
               else
                        P. L skip To (doc IO(P.));
                               if ? != NULL then
              end 13
          end while
                                      while P2!=NULL do
                                              Add Comanswer, da IDLP2));
      return answer
                                               P2 = hext(P2);
                                      end while
```

Q2:

For applying r-encoding compute

ka = Llog_k] ka = Llog_k] kr = k-2^{Llog_k}

unary binary

 $k_r = k - 2^{kd}$

Prove

· For a value x, its 7-encoded value takes at most 2(0g2(x)+1 bits.

Sor unary part, the rencoded takes

Kd = Llogzk | parbits.

Sor binury part, Y-encoded takes

log_(kr)

Since kr is a dinteger, and we need to convert it to binary for explanating. The

... Kd + log_(kr) is at most 2 log_(x), plus a zero flag for plus a zero between unary and binary, whick takes 1 bit r-encoded takes at most 2 log_(x) +1 bits.

· The compressed posting list (using r codes on the gaps) takes at must n.log(2n2, bits

(b) P*Q*R

R\$PQ* is the query sochrild by permuterm index

Sor Permuterm query processing is rotate query wild-card to the righ, so that *15 occur at the end. However, Bigram indexes Enumerate all k-grams (sequence of kchars) occurring in any term, and Sinds terms based on a query consisting of k-grams

Q4:

- (a) The sub-indexes after dumping the current in-memory sindex to the dosk in Ix.
- cb) \$ The size is Estignized
- there will be 3 sub-indexes: 2M, 4M, 8M which mean the total times are merged is 11.

quayd 2 dr Syston 1, precision at rank 8 = ======== Sur System 2, Precision at rank 8= }

2. Recall = # relevant doc on result

total relevant abos in system

(Rank#, Recall)

System 1: (Rank 3, Rank 6, Rank 9) Sys 1: (3, 4), (6, ±), (9, 2)

System 1: (no perfect)

System 1: (no perfect)

System 1: (no perfect)

(Rank 1, Rank 2, Rank 3)

(Rank 1, Rank 2, Rank 3)

 $MAP(a) = |a| \frac{1}{5} \frac{1}{5}$

Sys2: MAP = = (MAP3 +MAP4)== 1.583 = 0.792

(c) For Q1

system 1: prezision	recall	interpolated precision	
1	3/6	4 652/28	7
5 \$ 4	4 16 416 416	4/6	7
Labada de	516	6/10 6/10 6/10 Ans 1 0.6	Í

Q6:

-	1		
7	1		
1	11	•	

1.000	Relavant	Non-Referent	Total	
Val	1+生=圣	1任语	2+1=3	
X,=0	2+3=5	1+2=3	3+1=4	
Total	3+1=4	2+1=3	5+2=1	

× 2.		1 1	
1 12.	Relavant	Non-Relevant	Total
002	2性宝	の七生三生	2+1=3
X3=1	1+3=3	213=3	3+1=4
X3:50	3+1=4	24123	5+2=7

$$\begin{array}{|c|c|c|c|c|}\hline 7.6a & 3+1=4 & 2+1=3 & 5+2=7 \\\hline P_1 \approx \frac{1}{2} & r_1 \approx \frac{(n-s)}{(N-s)} & C_1 \approx \frac{1}{2} & (N,n,S,s) = \log \frac{s/(S-s)}{(m-s)/(N-n-S-s)} \\\hline P_2 = \frac{2}{4} = \frac{3}{8}, & r_2 = \frac{2}{3} = \frac{1}{2} & c_3 = \log \frac{2}{3} & c_4 = \log \frac{2}{3} \\\hline P_3 = \frac{5}{4} = \frac{1}{8}, & r_3 = \frac{1}{3} = \frac{1}{6} & c_4 = \log \frac{2}{3} & c_5 = \log \frac{2}{3} \\\hline \end{array}$$

The order
$$\Rightarrow$$
 D_1 , $RSV = C_1 + C_3 = \{oy \stackrel{?}{\leq} + log \stackrel{?}{\leq} = 0.69897\}$
 D_2 , $RSV = 0$
 D_3 , $RSV = C_4 = \{oy \stackrel{?}{\leq} = -0.22185\}$
 D_4 , $RSV = C_3 = \{og \stackrel{?}{\leq} = 0.92082\}$
 D_5 , $RSV = 0$

:. The order of D4, D1, D3, D2, D5.

Q7:

$$P(Q|d_{r}) = (0.8 \cdot \frac{7}{6} + 0.2 \cdot 0.8) \cdot (0.8 \cdot \frac{1}{10} + 0.2 \cdot 0.1) \cdot (0.8 \cdot \frac{1}{10} + 0.2 \cdot 0.025)$$

$$\cdot (0.8 \cdot \frac{1}{10} + 0.2 \cdot 0.025) \cdot (0.8 \cdot \frac{0}{10} + 0.2 \cdot 0.025) \cdot (0.8 \cdot \frac{0}{10} + 0.2 \cdot 0.025)$$

$$= 1.3005 \times 6^{-8}$$

. Document I is ranked higher

Q8:

- (a) . Duplication is widespread on the web
 - · If the appage just setched is already in the index of not Sutter power. t

cb) hashed shirgles: {1,7,15,81}

 $h_i(x) = \{(7+1 \mod 31) \mod 13, (49+1 \mod 31) \mod 13, (105+1 \mod 31) \mod 13, (567+1 \mod 31) \mod 3\}$ = $\{8, 6, 9, 6\}$

 $h_3(x) = \{(18 + 26 \mod 31) \mod 3, (126 + 26 \mod 31) \mod 3, (270 + 26 \mod 31) \mod 3, (145 + 8+26 \mod 31) \mod 3\}$ = $\{0, 2, 4, 1\}$