Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 Tentang : Baku Mutu Emisi Sumber Tidak Bergerak

MENTERI NEGARA LINGKUNGAN HIDUP,

Menimbang:

- 1. bahwa untuk mencegah terjadinya pencemaran udara dari jenis-jenis kegiatan sumber tidak bergerak perlu dilakukan upaya pengendalian pencemaran udara dengan menetapkan baku mutu emisi sumber tidak bergerak;
- 2. bahwa mengingat keputusan Menteri Negara Kependudukan dan Lingkungan Hidup Nomor: Kep-02/MENKLH/I/1988 tentang Pedoman Penetapan Baku Mutu emisi Udara Sumber Tak Bergerak saat ini perlu dilakukan penyempurnaannya;
- 3. bahwa sehubungan dengan hal tersebut di atas perlu ditetapkan keputusan Menteri Negara Lingkungan Hidup tentang Baku Mutu Emisi Sumber Tidak Bergerak

Mengingat:

- 1. Undang-undang Nomor 5 Tahun 1974 tentang Pokok-pokok Pemerintahan Di Daerah (Lembaran Negara Tahun 1974 Nomor 38, Tambahan Negara Tahun 1974 Nomor 38, Tambahan Lembaran Negara Nomor 3037);
- 2. Undang-undang Nomor 4 Tahun 1982 tentang Ketentuan-ketentauan Pokok Pengelolaan Lingkungan Hidup (Lembaran Negara R.I. Nomor 12 Tahun 1982, Tambahan Lembaran Negara R.I. Nomor 3215);
- 3. Undang-undang Nomor 5 Tahun 1984 tentang Perindustrian (Lembaran Negara Tahun 1984 Nomor 22, Tambahan Lembaran Negara Nomor 3274);
- 4. Peraturan Pemerintah Nomor 51 Tahun 1993 tentang Analisis Mengenai Dampak Lingkungan (Lembaran Negara R.I. Nomor 84 Tahun 1993, Tambahan Lembaran Negara R.I. Nomor 3538);
- 5. Keputusan Presiden Republik Indonesia Nomor 44 Tahun 1993 tentang Tugas pokok, Fungsi dan Tata Kerja Menteri Negara Serta Susunan Organisasi staff Menteri Negara;

- 6. Keputusan Presiden Republik Indonesia Nomor 103/M Tahun 1993 tentang Pengangkatan Kepala Badan Pengendalian Dampak Lingkungan;
- 7. Keputusan Presiden Republik Indonesia Nomor 77 Tahun 1994 tentang Badan pengendalian Dampak Lingkungan.

MEMUTUSKAN

Menetapkan

KEPUTUSAN MENTERI NEGARA LINGKUNGAN HIDUP TENTANG BAKU MUTU EMISI SUMBER TIDAK BERGERAK

Pasal 1

- (1) Dalam keputusan Menteri ini yang dimaksud dengan :
 - 1. Baku mutu emisi sumber tidak bergerak adalah batas maksimum emisi yang diperbolehkan dimasukkan ke dalam lingkungan;
 - 2. Emisi adalah makluk hidup, zat, energi, dan atau komponen lain yang dihasilkan dari kegiatan yang masuk atau dimasukkan ke dalam udara ambient:
 - 3. Batas maksimum adalah kadar tertinggi yang masih diperbolehkan dibuang ke udara ambient;
 - 4. Perencanaan adalah proses kegiatan rancang bangun sehingga siap untuk dilaksanakan pembangunan fisiknya;
 - 5. Menteri adalah proses kegiatan rancang bangun sehingga siap untuk dilaksanakan pembangunan fisiknya;
 - 6. Badan adalah Badan Pengendalian Dampak Lingkungan;
 - 7. Gubernur adalah Gubernur Kepala Daerah Tingkat I, Gubernur Kepala Daerah khusus Ibu kota dan Gubernur Kepala Daerah Istimewa.

Pasal 2

- (1) Baku mutu emisi sumber tidak bergerak untuk jenis kegiatan:
 - Indusrti besi dan baja sebagaimana tersebut dalam Lampiran I A dan Lampiran I B;
 - 2. Industri pulp dan kertas sebagaimana tersebut dalam Lampiran II A dan Lampiran II B;
 - 3. Pembangkit lisrtik tenaga uap berbahan bakar batu bara sebagaimana tersebut dalam Lampiran III A dan Lampiran III B;

- 4. Industri semen sebagaimana tersebut dalam Lampiran IV A dan Lampiran IV B;
- (2) Bagi jenis kegiatan sebagaimana dimaksud dalam ayat (1) yang :
 - telah beroperasi sebelum dikeluarkannya keputusan ini, berlaku Baku Mutu Emisi sebagaimana dimaksud dalam Lampiran A dan wajib memenuhi Baku Mutu Emisi sebagaimana dimaksud dalam Lampiran B selambat-lambatnya tanggal 1 Januari tahun 2.000;
 - tahap perencanaannya dilakukan sebelum dikeluarkannya keputusan ini, dan beroperasi setelah dikeluarkannya keputusan ini, berlaku Baku Mutu Emisi Lampiran A dan wajib memenuhi Baku Mutu emisi Lampiran B selambat-lambatnya tanggal 1 Januari tahun 2000;
 - 3. Bagi jenis kegiatan sebagaimana tersebut dalam ayat (1) yang tahap perenacanaannya dilakukan dan beroperasi setelah dikeluarkannya keputusan ini berlaku Baku Mutu Emisi sebagaimana dimaksud dalam Lampiran B;
 - 4. Bagi jenis kegiatan sebagaimana dimaksud dalam ayat (2) diberi jangka waktu selama satu tahun sejak ditetapkannya keputusan ini untuk mencapai baku mutu emisi sebagaimana dimaksud dalam Lampiran A;
- (3) Baku mutu emisi sebagaimana dimaksud dalam ayat (1) ditinjau secara berkala sekurang-kurangnya sekali dalam lima tahun.

Pasal 3

- (1) Menteri menetapkan baku mutu emisi untuk kegiatan di luar jenis kegiatan sebagaimana dimaksud dalam pasal 2 ayat (1);
- (2) Selama baku mutu emisi sebagaimana dimaksud dalam ayat (1) belum ditetapkan, maka jenis kegiatan di luar jenis kegiatan sebagaimana dimaksud dalam Pasal 2 ayat (1) berlaku baku mutu emisi sebagaimana dimaksud dalam Lampiran V keputusan ini.

Pasal 4

Badan melakukan pembinaan , pegembangan pengendalian pencemaran udara, menetapkan pedoman teknis pemantauan kualitas udara, methoda pengambilan contoh dan analisisnya serta menyelenggarakan pendidikan dan pelatihan.

Pasal 5

- (1) Apabila diperlukan, Gubernur dapat menetapkan parameter tambahan di luar parameter sebagaimana dimaksud dalam lampiran keputusan ini dengan persetujuan Menteri;
- (2) Gubernur dapat menetapkan baku mutu emisi untuk jenis-jenis kegiatan di daerahnya lebih ketat dari ketentuan sebagaimana tersebut dalam Pasal 2 ayat (1);
- (3) Dalam menetapkan baku mutu emisi daerah sebagaimana dimaksud dalam ayat (1) dan (2), Gubernur mengikutsertakan pihak-pihak yang berkepentingan;

Pasal 6

Apabila analisis mengenai Dampak lingkungan bagi kegiatan mensyaratkan baku mutu emisi yang lebih ketat dari baku mutu emisi sebagaimana dimaksud dalam keputusan ini, maka untuk kegiatan tersebut ditetapkan baku emisi sebagaimana diisyaratkan oleh analisis mengenai dampak lingkungan.

Pasal 7

- (1) Setiap penanggung jawab jenis kegiatan sebagaimana dimaksud dalam Pasal 2 ayat (1) wajib memenuhi ketentuan sebagaimana berikut : membuat cerobong emisi yang dilengkapi dengan sarana pendukung dan alat pengaman;
- (2) memasang alat ukur pemantauan yang melitputi kadar dan laju alir volume untuk setiap cerobong emisi yang tersedia serta alat ukur arah dan kecepatan angin;
- (3) melakukan pencatatan harian hasil emisi yang dikeluarkan dari setiap cerobong emisi;
- (4) menyampaikan laporan hasil pemeriksaan sebagaimana dimaksud dalam huruf (c) kepada Gubernur dengan tembusan Kepala Badan sekurang-kurangnya sekali dalam 3 (tiga) bulan;
- (5) melaporkan kepada Gubernur serta kepala Badan apabila ada kejadian tidak normal dan atau dalam keadaan darurat yang mengakibatkan baku mutu emisi dilampaui.

(6) Kepala Badan menetapkan pedoman teknis pembuatan unit pengendalian pencemaran udara sebagaimana dimaksud ayat (1) pasal ini.

Pasal 8

Persyaratan sebagaimana dimaksud dalam Pasal 6 dan Pasal 7 dicantumkan dalam izin Ortodonansi Gangguan.

Pasal 9

Dengan berlakunya keputusan ini, maka Baku Mutu Udara emisi sumber tak bergerak sebagaimana dimaksud dalam Keputusan Menteri Negara kependudukan dan Lingkungan Hidup Nomor : kep-02/MENKLH/I/1988 tentang Pedoman Penetapan Baku Mutu Lingkungan, dinyatakan tidak berlaku lagi.

Pasal 10

Keputusan ini mulai berlaku pada tanggal ditetapkan.

Di tetapkan di : Jakarta Pada tanggal : 7 Maret 1995

Menteri Negara Lingkungan Hidup,

ttd.

Sarwono Kusumaatmadja

Lampiran I-A Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI BESI DAN BAJA (BERLAKU EFEKTIF TAHUN 1995)

Sumber RDALB		Parameter DAIB	Batas Maksimum (mg/m³)	
1.	Penanganan Bahan Baku (Raw Material Handling)	Total Partikel	600	
2.	Tanur Oksigen Basa (Basic Oxygen Furnace)	Total Partikel	600	
3.	Tanur Busur Listrik (Electric Arc Furnace)	Total Partikel	600	
4.	Dapur Pemanas (Reheating Furnace)	Total Partikel	600 P R D A I	
5.	Dapur Proses Pelunakan Baja (Annealing Furnace)	Total Partikel	600	
6.	Proses Celup Lapis Metal	Total Partikel	600	
	(Acid Pickling & Regeneration)	Hydrochloric Acid Fumes (HCl)	10	
7.	Tenaga Ketel Uap	Total Partikel	400	
	(Power Boiler)	Sulfur Dioksida (SO ₂)	1200	
	PRDATEAPRDATE	Nitrogen Oksida (NO ₂)	1400	
8.	Semua Sumber	Opasitas	40%	

- Nitrogen oksida ditentukan sebagai NO₂.
- Volume gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Untuk sumber pembakaran, partikulat dikoreksi sebesar 10% oksigen.
- Opasitas digunakan sebagai indikator praktis pemantuan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95 % waktu normal selama tiga bulan.

Lampiran II-A Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI PULP DAN KERTAS (BERLAKU EFEKTIF TAHUN 1995)

 A F	Sumber RDALBA	P R D A Parameter D A I E	Batas Maksimum (mg/m³)
1.	Tungku Recovery	Total Partikel	400
	(Recovery Furnace)	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	20 A P E D A
2.	Tanur Putar Pembakaran Kapur	Total Partikel	400
(Lime Klin)		Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	40
3.	Tangki Pelarutan Lelehan B A	Total Partikel A P F D A I B	A P R 1400
	(Smelt Disolving Tank)	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	40
4. A. I	Digester	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	14 A P R D A
5.	Unit Pemutihan	Klorin (Cl ₂)	15
	(Bleach Plant)	Klorin dioksida (ClO ₃)	130
6.	Tenaga Ketel Uap R D A R B A	Total Partikel APRDALE	A P E 1400
	(Power Boiler)	Sulfur Dioksida (SO ₂)	1200
		Nitrogen Oksida (NO ₂)	1400
7.	Semua Sumber PRDALBA	Opasitas BAPRDALB	A P R 40%

Catatan:

- TRS ditentukan sebagai H2. TRS meliputi adanya senyawa Hidrogen Sulfida, Metil Merkaptan, Dimetil Sulfida, Dimetil Disulfida.

- Nitrogen oksida ditentukan sebagai NO₂.
- Koreksi 8% oksigen untuk Tungku Recovery.
- Koreksi 7% oksigen untuk Boiler.
- Koreksi 10% untuk sumber lain (selain Tungku Recovery dan Boiler).
- Volume gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Opasitas digunakan sebagai indikator praktis pemantuan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95 % waktu normal selama tiga bulan.

Lampiran III-A Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK PEMBANGKIT LISTRIK TENAGA UAP BERBAHAN BAKAR BATUBARA (BERLAKU EFEKTIF TAHUN 1995)

PRD	Parameter Parameter	Batas Maksimum (mg/m ³)	R D A
1, 1, 1	Total Partikel		300
₽ 2. □	Sulfur Dioksida (SO ₂)	APEDALE	1500
3.	Nitrogen Oksida (NO ₂)	STATE OF	1700
4.	Opasitas		40%

- Nitrogen oksida ditentukan sebagai NO₂.
- Konsentrasi partikulat dikoreksi sebesar 3% O₂.
- Volume Gas dalam keadaan standar (25°C dan Tekanan 1 atm).
- Opasitas digunakan sebagai indikator praktis pemantauan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95% waktu operasi normal selama tiga bulan.

Lampiran IV-A Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI SEMEN (BERLAKU EFEKTIF TAHUN 1995)

Sumber Sumber		Parameter	Batas Maksimum (mg/m³)	
1.	Tungku Recovery	Total Partikel	150	
	(Kilns)	Sulfur Dioksida (SO ₂)	1500	
R 1	ALBAPEDALBAP	Nitrogen Oksida (NO ₂)	1800	
4	2 344 34	Opasitas	35%	
2.	Pendingin Terak (Clinker Coolers)	Total Partikel	150	
3.	Milling Grinding Alat Pengangkut (Conveying) Pengepakan (Bagging)	Total Partikel	150	
4.	Tenaga Ketel Uap	Total Partikel	400	
	(Power Boiler)	Sulfur Dioksida (SO ₂)	1200	
		Nitrogen Oksida (NO ₂)	1400	

- Nitrogen oksida ditentukan sebagai NO₂.
- Volume Gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Konsentrasi partikel untuk sumber pembakaran (misal: Kiln) harus dikoreksi sampai 7% oksigen.
- Standar diatas berlaku untuk proses kering.
- Batas maksimum total partikel untuk:
 - (i) Proses basah = 250 mg/m^3
 - (ii) Shaft kiln = 500 mg/ m^3
- Opasitas digunakan sebagai indikator praktis pemantauan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95% waktu operasi normal selama tiga bulan.

Lampiran V-A Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK JENIS KEGIATAN LAIN (BERLAKU EFEKTIF TAHUN 1995)

Parameter PRDAIBAPRDAIBAPRDA	Batas Maksimum	
Bukan Logam	The Ment Shellen	
1. Amonia (NH ₃)	1	
2. Gas Klorin (Cl ₂)	IEAPREPEDALEAPEPED. 15	
3. Hidrogen Klorida (HCl)	3/10/10/10	
4. Hidrogen Fluorida (HF)	20	
5. Nitrogen Oksida (NO ₂)	1700	
6. Opasitas	40%	
7. Partikel	400	
8. Sulfur Dioksida (SO ₂)	1500	
9. Total Sulfur Tereduksi (H ₂ S)	70	
(Total Reduced Sulphur)		
Logam		
10. Air Raksa (Hg) грага ва рага д		
11. Arsen (As)	25	
12. Antimon (Sb)	21(1)(1)(1)(2)	
13. Kadmium (Cd)	15	
14. Seng (Zn)	100	
15. Timah Hitam (Pb)	LEAPRIPEDALEAPERD 25	

Catatan:

- Volume Gas dalam keadaan standar (25°C dan tekanan 1 atm).

Lampiran I-B Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI BESI DAN BAJA (BERLAKU EFEKTIF TAHUN 2000)

Sumber R D A I B		Parameter DAIB	Batas Maksimum (mg/m³)	
1.	Penanganan Bahan Baku (Raw Material Handling)	Total Partikel	150	
2.	Tanur Oksigen Basa (Basic Oxygen Furnace)	Total Partikel	150	
3.	Tanur Busur Listrik (Electric Arc Furnace)	Total Partikel	150	
4.	Dapur Pemanas (Reheating Furnace)	Total Partikel	150 P R D A	
5.	Dapur Proses Pelunakan Baja (Annealing Furnace)	Total Partikel	150	
6.	Proses Celup Lapis Metal	Total Partikel	150	
	(Acid Pickling & Regeneration)	Hydrochloric Acid Fumes (HCl)	15	
7.	Tenaga Ketel Uap	Total Partikel	230	
	(Power Boiler)	Sulfur Dioksida (SO ₂)	800	
	PRDATEAPRDATE	Nitrogen Oksida (NO ₂)	1000	
8.	Semua Sumber	Opasitas	20%	

- Nitrogen oksida ditentukan sebagai NO₂.
- Volume gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Untuk sumber pembakaran, partikulat dikoreksi sebesar 10% oksigen.
- Opasitas digunakan sebagai indikator praktis pemantuan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95 % waktu normal selama tiga bulan.

Lampiran II-B Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI PULP DAN KERTAS (BERLAKU EFEKTIF TAHUN 2000)

 A. F	Sumber B A B A	PRO Parameter DALE	Batas Maksimum (mg/m³)
1.	Tungku Recovery	Total Partikel	230
	(Recovery Furnace)	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	10 APEDAI
2.	Tanur Putar Pembakaran Kapur	Total Partikel	350
(Lime Klin)	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	28	
3.	Tangki Pelarutan Lelehan B A	Total Partikel A P F D A I B	A P R 260
	(Smelt Disolving Tank)	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	28
4. A. I	Digester	Total Sulfur Tereduksi (Total Reduced Sulphur - TRS)	10 A P R D A I
5.	Unit Pemutihan	Klorin (Cl ₂)	10
	(Bleach Plant)	Klorin dioksida (ClO ₃)	125
6.	Tenaga Ketel Uap II D A I B A	Total Partikel APRDALE	A P E [230]
	(Power Boiler)	Sulfur Dioksida (SO ₂)	800
		Nitrogen Oksida (NO ₂)	1000
7.	Semua Sumber PRDALBA	Opasitas B A P R D A B	A P R 35%

- TRS ditentukan sebagai H₂. TRS meliputi adanya senyawa Hidrogen Sulfida, Metil Merkaptan, Dimetil Sulfida, Dimetil Disulfida.
- Nitrogen oksida ditentukan sebagai NO₂.
- Koreksi 8% oksigen untuk Tungku Recovery.

- Koreksi 7% oksigen untuk Boiler.
- Koreksi 10% untuk sumber lain (selain Tungku Recovery dan Boiler).
- Volume gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Opasitas digunakan sebagai indikator praktis pemantuan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95% waktu normal selama tiga bulan.

Lampiran III-B Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK PEMBANGKIT LISTRIK TENAGA UAP BERBAHAN BAKAR BATUBARA (BERLAKU EFEKTIF TAHUN 2000)

PRO	Parameter Parameter	Batas Maksimum (mg/m ³)
1.	Total Partikel	150
₽ 2. □	Sulfur Dioksida (SO ₂) APRDALEBAER	A R D A 1 B 750
3.	Nitrogen Oksida (NO ₂)	850
4.	Opasitas	20%

- Nitrogen oksida ditentukan sebagai NO₂.
- Konsentrasi partikulat dikoreksi sebesar 3% O₂.
- Volume Gas dalam keadaan standar (25°C dan Tekanan 1 atm).
- Opasitas digunakan sebagai indikator praktis pemantauan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95% waktu operasi normal selama tiga bulan.

Lampiran IV-B Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK INDUSTRI SEMEN (BERLAKU EFEKTIF TAHUN 2000)

Sumber ALBAP		Parameter	Batas Maksimum (mg/m ³)	
1.	Tungku Recovery	Total Partikel	80	
	(Kilns)	Sulfur Dioksida (SO ₂)	800	
	ALBAPRDALBAP	Nitrogen Oksida (NO ₂)	1000	
	2 34 1 3V	Opasitas	20%	
2.	Pendingin Terak (Clinkers Coolers)	Total Partikel	80 LEAPED	
3.	Milling Grinding Alat Pengangkut (Conveying) Pengepakan (Bagging)	Total Partikel	80	
4.	Tenaga Ketel Uap	Total Partikel	230	
	(Power Boiler)	Sulfur Dioksida (SO ₂)	800	
		Nitrogen Oksida (NO ₂)	1000	

- Nitrogen oksida ditentukan sebagai NO₂.
- Volume Gas dalam keadaan standar (25°C dan tekanan 1 atm).
- Konsentrasi partikel untuk sumber pembakaran (misal: Kiln) harus dikoreksi sampai 7% oksigen.
- Standar diatas berlaku untuk proses kering.
- Batas maksimum total partikel untuk:
 - (i) Proses basah = 250 mg/m^3
 - (ii) Shaft kiln = 500 mg/m^3
- Opasitas digunakan sebagai indikator praktis pemantauan dan dikembangkan untuk memperoleh hubungan korelatif dengan pengamatan total partikel.
- Pemberlakuan BME untuk 95% waktu operasi normal selama tiga bulan.

Lampiran V-B Keputusan Menteri Negara Lingkungan Hidup No. 13 Tahun 1995 tanggal 7 Maret 1995

BAKU MUTU EMISI UNTUK JENIS KEGIATAN LAIN (BERLAKU EFEKTIF TAHUN 2000)

Parameter PRDAIBAPRD	Batas Maksimum
Bukan Logam	& State State State
1. Amonia (NH ₃)	0,5
2. Gas Klorin (Cl ₂)	A I E A P R P R D A I E A P R P R D A
3. Hidrogen Klorida (HCl)	3/11/15
4. Hidrogen Fluorida (HF)	10
5. Nitrogen Oksida (NO ₂)	1000
6. Opasitas	35%
7. Partikel	350
8. Sulfur Dioksida (SO ₂)	800
9. Total Sulfur Tereduksi (H ₂ S)	35
(Total Reduced Sulphur)	
Logam	
10. Air Raksa (Hg)	A LEAPROPEDALEAPEPEI ⁵ A
11. Arsen (As)	50 66 1 1 5 66 16 18 18 18 18 18 18 18 18 18 18 18 18 18
12. Antimon (Sb)	
13. Kadmium (Cd)	8
14. Seng (Zn)	50
15. Timah Hitam (Pb)	12

Catatan:

- Volume Gas dalam keadaan standar (25°C dan tekanan 1 atm).