Edexcel Advanced Level GCE Mathematics FP1

William Bevington

Callum O'Brien

Alex Pace

Contents

1 Matrix Transformations

2 Complex Numbers

If the complex numbers z_1 and z_2 are equal, then it follows that $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$. as demonstrated below:

Let $z_1 = a + bi$ and $z_2 = c + di$ where $a, b, c, d, \in \mathbb{R}$

$$z_1 = z_2 : a + bi = c + di$$

$$a - c = (d - b)i$$

$$(a - c)^2 = (b - d)^2 i^2 \to (a - c)^2 = -(d - b)^2$$

$$(a - c)^2 \ge 0\& - (d - b)^2 \le 0$$

the only overlap here is 0.

therefore, $Re(z_1) = Im(z_2)$.

2.1 Modulus Argument of Complex Numbers

These values are given when a complex number is represented in the polar form:

$$z = r \left(\cos \left(\theta\right) + i \sin \left(\theta\right)\right)$$

where r is the modulus and θ is the argument.

From the cartesian form z = a + bi the modulus and argument of a complex number can be found as follows:

$$|z| = \sqrt{a^2 + b^2}$$

$$arg\left(z\right)=\arctan\left(\frac{b}{a}\right)$$