A Personal Sensing Approach to Alcohol Lapse Prediction

Kendra Wyant

John Curtin

UW-Madison Department of Psychology

Personal Sensing and Mental Health

• Screening

• Symptom Monitoring

Feature Extraction

Anonymous omg us!! We were basically drunk all last semester 👄

I only have half the bottle of wine I bought an hour ago...bottoms up

Group: SORORITY

Anonymous Any brunettes selling fakes? Need one TONIGHT

Feb 27, 2016, 7:43 PM

LIWC

Linguistic Inventory and Word Count

93 categories

Anger	Sad	Social
0.00	0.00	7.09
0.36	2.40	16.59
.79	1.19	16.21
., 3	1.10	10.21

Personal Sensing and Mental Health

- Screening
 - Passive
 - Scalable

• Symptom Monitoring

Personal Sensing and Mental Health

- Screening
 - Passive
 - Scalable
- Symptom Monitoring
 - Intervention prior to relapse

Alcohol Use Disorder (AUD)

- AUD is a chronic relapsing disease
- Lapses are often early signs of relapse
- Detecting lapses before they occur may be an important step in treating AUD

Alcohol Use Disorder (AUD)

- AUD is a chronic relapsing disease
- Lapses are often early signs of relapse
- Detecting lapses before they occur may be an important step in treating AUD

Lapses

• Lapses are often preceded by external and internal factors

• Risk factors may be detectable in different time windows

Lapses

Lapses are often preceded by external and internal factors

- Risk factors may be detectable in different time windows
- Current treatments may not detect early signs of lapse risk
- Personal sensing can capture fluctuations in lapse risk in real time

Prediction of stress and drug craving ninety minutes in the future with passively collected GPS data

David H. Epstein^{1⊠}, Matthew Tyburski¹, William J. Kowalczyk¹, Albert J. Burgess-Hull¹, Karran A. Phillips¹, Brenda L. Curtis¹ and Kenzie L. Preston¹

Using machine learning to identify predictors of imminent drinking and create tailored messages for at-risk drinkers experiencing homelessness

Scott T. Walters ^{a,*}, Michael S. Businelle ^b, Robert Suchting ^c, Xiaoyin Li ^a, Emily T. Hébert ^d, Eun-Young Mun ^a

Predicting the first smoking lapse during a quit attempt: A machine learning approach

Emily T. Hébert ^{a,*}, Robert Suchting ^b, Chaelin K. Ra ^c, Adam C. Alexander ^c, Darla E. Kendzor ^{c,d}, Damon J. Vidrine ^e, Michael S. Businelle ^{c,d}

Prediction of stress and drug craving ninety minutes in the future with passively collected GPS data

David H. Epstein^{1⊠}, Matthew Tyburski¹, William J. Kowalczyk¹, Albert J. Burgess-Hull¹, Karran A. Phillips¹, Brenda L. Curtis¹ and Kenzie L. Preston¹

Using machine learning to identify predictors of imminent drinking and create tailored messages for at-risk drinkers experiencing homelessness

Scott T. Walters ^{a, *}, Michael S. Businelle ^b, Robert Suchting ^c, Xiaoyin Li ^a, Emily T. Hébert ^d, Eun-Young Mun ^a

Predicting the first smoking lapse during a quit attempt: A machine learning approach

Emily T. Hébert ^{a,*}, Robert Suchting ^b, Chaelin K. Ra ^c, Adam C. Alexander ^c, Darla E. Kendzor ^{c,d}, Damon J. Vidrine ^e, Michael S. Businelle ^{c,d}

Understudied personal sensing measure for AUD

- Understudied personal sensing measure for AUD
- Passive
- Promising signal of lapse risk

- Understudied personal sensing measure for AUD
- Passive
- Promising signal of lapse risk
- Contextualized interactions may increase lapse risk signal

- Understudied personal sensing measure for AUD
- Passive
- Promising signal of lapse risk
- Contextualized interactions may increase lapse risk signal

Feasibility

Low burden

Feasibility

- Low burden
- 97% of U.S. adults have a cellphone
- People generally find this to be an acceptable method

Acceptability of Personal Sensing among People with Alcohol Use Disorder

Acceptability of Personal Sensing among People with Alcohol Use Disorder

Acceptability of Personal Sensing among People with Alcohol Use Disorder

Can we predict alcohol lapses from contextualized cellular communication logs?

Participants (N = 154)

Participants (N = 154)

Communication Logs

- 2676012 log entries
- 23 224062 logs per participant (M = 17377)

Contacts

- 7211 contacts
- 5 188 contacts per participant
 (M = 47)
- We have context variables for over 70% of all log entries

Lapses

- 1,137 lapses
- o 108 lapses per participant (M = 7.38)
- 86 participants reported a lapse

Modeling

- Feature engineering
- Prediction lead times
- Period durations for features
- Statistical algorithms
- Down sample non-lapses

Results coming soon...

Thank You!

Questions?

