CS 4400 Exam 2

Practice

Name:	
GT account (gtg, gth, msmith3, etc):	Section (e.g., B1):
Signature:	

- Failure to properly fill in the information on this page will result in a deduction of up to 4 points from your exam score.
- Signing signifies that you agree to comply with the Academic Honor Code of Georgia Tech.
- Calculators and cell phones are NOT allowed.

Completely fill in the box corresponding to your answer choice for each question.

4	г 🛦 1	[🗗]	$[\Omega]$	[🗖]
1.	[A]	[B]	[C]	[D]
2.	[A]	[B]	[C]	[D]
3.	[A]	[B]	[C]	[D]
4.	[A]	[B]	[C]	[D]
5.	[A]	[B]	[C]	[D]
6.	[A]	[B]	[C]	[D]
7.	[A]	[B]	[C]	[D]
8.	[A]	[B]	[C]	[D]
9.	[A]	[B]	[C]	[D]
10.	[A]	[B]	[C]	[D]
11.	[A]	[B]	[C]	[D]
12.	[A]	[B]	[C]	[D]
13.	[A]	[B]	[C]	[D]
14.	[A]	[B]	[C]	[D]
15.	[A]	[B]	[C]	[D]
16.	[A]	[B]	[C]	[D]
17.	[A]	[B]	[C]	[D]
18.	[A]	[B]	[C]	[D]
19.	[A]	[B]	[C]	[D]
20.	[A]	[B]	[C]	[D]
21.	[A]	[B]	[C]	[D]
22.	[A]	[B]	[C]	[D]
23.	[A]	[B]	[C]	[D]
24.	[A]	[B]	[C]	[D]
25.	[A]	[B]	[C]	[D]

Number missed: Final Score:	N	Jumber	missed:	Final	Score:	
-----------------------------	---	--------	---------	-------	--------	--

Pubs Database Schema

 $author(\underline{author_id},first_name,last_name)$

 $author_pub(\underline{author_id},pub_id,author_position)$

 $book(\underline{book_id}, book_title, month, year, editor)$

 $pub(pub_id, title, book_id)$

- author_id in author_pub is a foreign key referencing author
- $\bullet \ book_id$ in pub is a foreign key referencing book
- ullet editor in book is a foreign key referencing $author(author_id)$
- Primary keys are underlined

Pubs Database State

r(author)

author_id	$first_name$	$last_name$
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

 $r(author_pub)$

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

r(book) r(pub)

book_id	book_title	month	year	editor	pub_id	title	book_id
1	CACM	April	1960	8	1	LISP	1
2	CACM	July	1974	8	2	Unix	2
3	BST	July	1948	2	3	Info Theory	3
4	LMS	November	1936	7	4	Turing Machines	4
5	Mind	October	1950	NULL	5	Turing Test	5
6	AMS	Month	1941	NULL	6	Lambda Calculus	6
7	AAAI	July	2012	9			
8	NIPS	July	2012	9			

Figure 1: Relational Database Schema

Name:	_ GTAccount:	Section:
	_	

Scratch page

	Name:	GTAccount: Section:
[4]	A. B. C.	The following statements is true with regard to the relational data model? A domain for an attribute is a set of atomic values. Several attributes in one relation schema may have the same domain. A tuple in a relation consists of one value from each attribute domain of that relation. All of the above
[4]	A. B. C.	the following is the mathematical definition of a relation, $r(R)$, of degree n ? $r(R) \subseteq dom(A_1) \times dom(A_2) \times \times dom(A_n)$ $r(R) \subseteq dom(A_1) \cap dom(A_2) \cap \cap dom(A_n)$ $r(R) \subseteq dom(A_1) \cup dom(A_2) \cup \cup dom(A_n)$ none of the above
[4]	А. В. С.	Attribute values in tuples are indivisible. Facts not asserted explicitly are assumed to be false. Relations are sets. All of the above.
[4]	A. B. C.	There can be only one. The default superkey is always a minimal superkey. Every minimal superkey is a primary key. Every superkey contains a minimal superkey as a subset.
[4]	5. In a relathere? A. B. C. D.	3 6
[4]		3 6
[4]	A.	ple in a relation have a NULL value for a foreign key attribute? Yes No
[4]	A.	yele in a relation have a NULL value for a primary key attribute? Yes No
[4]	A. B.	nd of constraint cannot be specied in the relational model? referential integrity constraints semantic constraints, a.k.a., business rules entity integrity constraints
[4]	10. Meow!	True

	Name: _		GTAccount:	Section:
	Refer t	o database schema in Figure	1 for the remaining questions.	
[4] 11	. What	is the degree of the <i>author</i> re	lation?	
	-	A. 2		
		B. 3		
		C. 9		
[4] 12	. The au	uthor_pub relation has how ma	any superkeys?	
		A. 1		
	•	B. 2		
		C. 3		
[4] 13		ne tuple <6, 'Teen', 'Cand' ty violation?	les'> be inserted into the author relation	n without causing
		A. Yes		
		B. No		
[4] 14		ne tuple <10, NULL, 'Pointe ty violation?	ers'> be inserted into the author relation	a without causing
	-	A. Yes		
		B. No		
[4] 15		eletion of the second tuple in ty violation for which relation	in the $author$ relation (<2, 'Dennis', 'R as?	itchie'>) causes
		A. author_pub		
		B. book		
		C. pub		
	-	D. A and B above.		
[4] 16	how m	any other tuples will be delet	l relations and the tuple <2, 'Dennis', 'led from the database?	Ritchie'> is delete
		A. 0		
		B. 2		
		C. 3		
[4] 17	. How m	any tuples will be returned b	by the following relational algebra query?	
			$\pi_{book_title}(book)$	
	-	A. 7		
		B. 5		
		C. 2		
		D. 1		

		Name: _	GTAcco	ount:	Section:
[4]	18.	What o	question does the following expression answer?		
			$ \pi_{author_id}(author) - \pi_{editor} $	(book)	
		1	A. How many authors are book editors.		
]	B. How many authors are not book editors.		
		(C. What are the names of the authors who are book ϵ	editors.	
]	D. What are the names of the authors who are not be	ook editors.	
[4]	19.	Which editors	${\bf n}$ of the following relational algebra expressions returns ${\bf s}?$	the names of all author	ors who are book
		4	A. $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(beta)))$	(ook))*author)	
			B. $\pi_{first_name,last_name}(author\bowtie_{author_id=editor}book)$		
		(C. $\pi_{first_name,last_name}(author * author_pub)$		
[4]	20.		n of the following relational algebra expressions returns editors?	s the names of all auth	nors who are not
			A. $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(beta)))$	(ook))*author)	
]	B. $\pi_{first_name,last_name}(author\bowtie_{author_id=editor}book)$		
		(C. $\pi_{first_name,last_name}(author * author_pub)$		
[4]	21.		n of the following relational algebra expressions returns one publication in the database?	s the names of all auth	nors who have at
			A. $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(beta)))$	(ook))*author)	
			B. $\pi_{first_name,last_name}(author\bowtie_{author_id=editor}book)$		
		(C. $\pi_{first_name,last_name}(author * author_pub)$		
[4]	22.		n of the following relational algebra expressions returns er 2000 ?	books that were publi	shed before 1960
			A. $\sigma_{year<1960}(book) \wedge \sigma_{year>2000}(book)$		
]	B. $\sigma_{year<1960}(book) \cup \sigma_{year>2000}(book)$		
		(C. $\sigma_{year < 1960 \land year > 2000}(book)$		
[4]	23.	How m	many tuples are returned by the following relational alg	gebra expression?	
			$author \bowtie_{author_id=editor} b$	pook	
			A. 8		
			B. 11		
		(C. 13		
[4]	24.	What	question does the following relational algebra expression	on answer?	
			$author*(author_pub*(\sigma_{month='July}))$	y'(book)*pub))	
			A. Which authors were born in July?		
]	B. Which authors authored a pub that was published	in July?	
		(C. Which authors edited books that were published in	n July?	
[4]	25.	How m	nany tuples does the previous relational algebra expres	ssion return?	
			A. 1		
]	B. 2		

C. 3D. 4