

# UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

# FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA



# LABORATORIO DE INGENIERÍA DE CONTROL PRACTICA N° 2

#### MANEJO DE POLINOMIOS EN EL MATLAB

#### **OBJETIVO**

Hacer uso de los comandos de *matlab* para el manejo de polinomios.

#### **MATLAB**

Otras características importantes de *matlab* están relacionadas con funciones polinomiales como son: Raíces, multiplicación, suma y división de polinomios, así como evaluación y derivada de los mismos.

#### Polinomios.

En *matlab* un polinomio se representa por un vector fila cuyos componentes son los coeficientes del polinomio en orden descendente.

Por ejemplo el polinomio

$$x^4 + 3x^3 + 0x^2 + 5x + 4$$

se representa en matlab como se muestra

Nota: observe que el coeficiente 0 es incluido en el vector.



# Raíces de polinomios.

Las raíces de un polinomio se encuentran con el comando *roots* 

Las raíces, por convención, son vectores columna.



### Coeficientes de un polinomio a partir de sus raíces.

El comando *poly* se utiliza para la obtención de los coeficientes del polinomio a partir de sus raíces, así, para las raíces anteriores.

$$c = \begin{bmatrix} -3.3407 \\ 0.5021 + 1.246i \\ 0.5021 - 1.246i \\ -0.6635 \end{bmatrix}$$

Se obtiene un vector con los coeficientes del polinomio, el polinomio sería:

$$p = x^4 + 3x^3 + 0x^2 + 5x + 4$$



#### Multiplicación de polinomios.

Considére los siguientes polinomios:

$$a = x^3 + 3x^2 + 4x - 1$$

$$b = 2x^3 - 4x^2 + 3x + 6$$

El producto está dado por el comando conv

El resultado obtenido corresponde a.

$$c = 2x^6 + 2x^5 - x^4 - 3x^3 + 34x^2 + 21x - 6$$
 El resultado nos da un vector de 7 elementos, que corresponde a un polinomio de orden 6.

# Adición de polinomios.

No existe un comando especial para la suma de polinomios, se trabaja con la suma estándar de vectores. Para los polinomios anteriores, se tiene.

$$d = a + b$$

$$d = 3x^3 - x^2 + 7x + 5$$

Los polinomios deben ser del mismo orden.

Cuando los polinomios son de diferente orden, deberán agregarse ceros a la izquierda para ajustar el orden de los polinomios, por ejemplo sumar c con d obtenemos

$$e = 2x^6 + 2x^5 - x^4 + 33x^2 + 28x - 1$$







### División de polinomios.

Para dividir dos polinomios, se utiliza el comando *deconv*.

Para dividir el polinomio c entre el polinomio b



# Derivada de un polinomio.

El comando *polyder* sirve para obtener la derivada de un polinomio.

Por ejemplo, al derivar el polinomio

$$d = 2x^4 - 3x^3 + 5x^2 - 2x + 6$$

#### Obtenemos

$$g = 8x^3 - 9x^2 + 10x - 2$$



# Evaluación de polinomios.

Para evaluar un polinomio, se utiliza el comando *polyval*.

Por ejemplo al evaluar el polinomio p1 para x = 2

$$p1(x) = 2x^3 + 3x^2 - 7x + 5$$

$$p1(2) = 2(2)^3 + 3(2)^2 - 7(2) + 5 = 19$$



#### Evaluar un polinomio para una serie de puntos

Si se crea un vector x con 31 elementos que van desde -1 hasta 2 con incrementos de 0.1.

El comando f = polyval(p1, x) genera un vector f que es la evaluación del polinomio p1 para cada uno de los 31 elementos del vector x

# Graficar un polinomio

Ya que tenemos los vectores x y f, se pueden utilizar para graficar el polinomio utilizando el comando **plot** 

Para este ejemplo: La gráfica del polinomio *p*1 se muestra en la siguiente figura.





#### REPORTE

1. Crear los siguientes polinomios:

$$p1 = x^4 - x^3 + 3x^2 + 25x + 10$$
$$p2 = 3x^2 + 12x - 9$$

Obtenga la ecuación del polinomio resultante para las siguientes puntos

- 1.1. La multiplicación de p1 por p2 (comando conv)
- 1.2. La suma de *p1* más *p2*, y la resta *p1* menos *p2* (observe que los polinomios son de diferente orden)
- 1.3. La división de p1 entre p2, muestre el resultado y el residuo (comando **deconv**)
- 1.4. La derivada del polinomio p1 y p2 (comando polyder)

Determine lo siguiente:

- 1.5. Las raíces del polinomio p1 y p2 (comando roots)
- 1.6. Si las raíces de un polinomio son x = -3 + 3i, x = -3 3i, x = 5, x = 7, encuentre los coeficientes del polinomio y la ecuación del polinomio (comando *poly*)
- 1.7. Evaluar el polinomio p1 para x = 5 y el polinomio p2 para x = -10 (comando **polyval**)
- 2. Grafique el siguiente polinomio

$$p(x) = x^3 - 25x^2 - 10x + 1$$

para valores de x desde -10 hasta 10 con incrementos de 0.1, coloque las etiquetas 'x' y 'p(x)', con cuadrícula y título el 'x^3-25x^2-10x+1'.

3. Conclusiones