Chapitre 1

Notions de base en Electronique Analogique

Justine Philippe

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Le courant électrique

Définition:

Le courant électrique est un déplacement de charges électriques.

Par convention, le sens du courant correspond à l'inverse du sens de déplacement des électrons.

Le courant électrique

Le courant électrique caractérise donc un déplacement d'une quantité de charge qui traverse une section S par unité de temps Δt .

L'intensité du courant électrique se mesure en Ampère (A).

$$I = \frac{\Delta Q}{\Delta t} \ (C/s) \ ou \ (A)$$

Le courant électrique

Quelques ordres de grandeurs :

• T.G.V.: 500 A à 300 km/h, 1000 A au démarrage

Foudre: 1 kA à 100 kA

Electronique : mA, µA, nA, pA

La tension électrique

- La tension est égale à la **différence de potentiel** entre deux pôles d'un dipôle. Elle est à l'origine de la circulation du courant électrique dans un dipôle. Elle se note U et son unité est le **volt (V)**.
- On note plus précisément U_{AB} la tension aux bornes du dipôle AB et on dirige la flèche de B vers A.

Le dipôle idéal

Propriétés:

- 2 terminaux
- Décrit une relation entre le courant *i* et la tension *v*
- Ne peut être subdivisé en autres éléments

Convention récepteur et générateur

Convention récepteur

Convention générateur

Permet de formaliser le sens positif du courant

Eléments d'un circuit

5 dipôles de base:

- Source de courant Eléments actifs

- Source de tension J Convention générateur
- Résistance
- Inductance
- Condensateur

Eléments passifs Convention récepteur

La plupart des systèmes peuvent être modélisés par des sources et des éléments passifs

Eléments d'un circuit

La masse d'un circuit est un point de référence de potentiel nul.

Ex. Si
$$V_B = 2$$
 Volts $U_{BC} = ?$

$$U_{BC} = ?$$

$$U_{BC} = V_B - V_C = V_B = 2 V$$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

La loi d'Ohm

- La résistance définit le rapport entre la différence de potentiel aux bornes du dipôle et le courant le traversant
- La résistance est donc exprimée en
 - Volts par Ampère \equiv Ohms (Ω)

Puissance dissipée par une résistance

$$P = v \cdot i = R \cdot i^2$$

$$P = v \cdot i = \frac{v^2}{R}$$

- La résistance dissipe la puissance
- La puissance s'exprime en Watts (W)
 - Volts Ampères ≡ Watts

Sources de tension et de courant idéal

 Une <u>source de tension</u> idéale maintient une tension constante, quel que soit le courant la traversant

I = |I'|
I peut être positif,
négatif ou nul

 Une <u>source de courant</u> idéale maintient un courant constant, quelle que soit la tension la traversant

Sources de tension et de courant idéal

• Représentations schématiques d'une source de tension idéale :

• Représentations schématiques d'une source de courant idéale :

Circuit ouvert et circuit fermé

Circuit ouvert, ou « coupe-circuit »

Circuit fermé, ou « court-circuit »

Quelle est la tension aux bornes du circuit ouvert?

$$1 - v = 0 V$$

$$2 - v = \infty$$

$$3 - v = 1 V$$

4 - v peut prendre n'importe quelle valeur

Quelle est la valeur de résistance d'un court-circuit ?

$$3 - R = 1 \Omega$$

4 - R peut prendre n'importe quelle valeur

Circuit ouvert et circuit fermé

Circuit ouvert

- R = c
- i = (
- Une tension peut exister aux bornes

Circuit fermé

- R =
- V =
- Un courant peut circuler dans le « fil »

Nœuds d'un circuit

 Un nœud est un point qui connecte deux ou plusieurs éléments dans un circuit

Mailles dans un circuit

• Combien de mailles dans ce circuit ?

Mailles dans un circuit

• Combien de mailles dans ce circuit ?

Association série - parallèle

Lois de Kirchhoff

- Loi des nœuds (KCL)
 - > Sur un nœud, la somme des courants est nulle
- Loi des mailles (KVL)
 - > Dans une maille, la somme des tensions est nulle

Lois des nœuds

Relation:

$$i_1 - i_2 + i_3 + i_4 = 0$$

$$i_1 + i_3 + i_4 = i_2$$

Lois des mailles

 Relations dans les trois mailles:

$$E_1 = V_1 + V_2$$

 $E_2 = V_2 + V_3$
 $E_1 = V_1 + E_2 - V_3$

Exemple : le diviseur de tension

$$1 - V = 10 V$$

$$2 - V = 3.33 V$$

$$3 - V = 7 V$$

$$4 - V = 3 V$$

$$5 - V = 1,428 V$$

6 – Autre réponse

Exercice

$$\begin{array}{c|c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$1 - I = 3 A$$

$$2 - I = 9 A$$

$$3 - I = 4 A$$

$$4 - I = 2,4 A$$

$$5 - I = 0 A$$

6 – Autre réponse

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Source de tension réelle

• Modèle du générateur de **Thévenin**

Source de courant réelle

• Modèle du générateur de **Norton**

I = |I'|V peut être positif,négatif ou nul

V1: tension à vide

Icc : courant de court-circuit

R : résistance interne (linéarisation)

Influence de la charge

Notion de point de fonctionnement :

Point de fonctionnement correspondant au couple source/charge

$$Rc \rightarrow 0$$
: court-circuit
 $V = 0$
 $I = Icc$

$$Rc \rightarrow \infty$$
: coupe-circuit $V = V1$ $I = 0$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Modèle équivalent de Thévenin et Norton

 Tout circuit (ou partie de circuit) peut être mis sous la forme d'un générateur équivalent de Thévenin ou Norton

Méthode pour déterminer un équivalent Thévenin

- Trouver Eth et Rth
 - Eth → tension à vide
 - Rth → Résistance équivalente
- Eth?

$$E_{th} = E_1 \cdot \frac{R_1}{R_1 + R_2}$$

Méthode pour déterminer un équivalent Thévenin

- Rth?
 - On « éteint » toutes les sources (non commandées)
 - ➤ Source de tension → circuit fermé

➤ Source de courant → circuit ouvert

On déduit la résistance équivalente vue des nœuds A et B

Méthode pour déterminer un équivalent Norton

- Trouver In et Rn
 - In → courant de court-circuit
 - Rn → Résistance équivalente

$$I_n = \frac{E_1}{R_2}$$

- Rn?
 - Même méthode que précédemment

$$R_n = R_1 // R_2$$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Théorème de superposition

- Les sources doivent être indépendantes
- Les tension et les courants dans le circuit sont la somme de chaque contribution calculée en annulant toutes les sources sauf une

Théorème de superposition

$$V = V1 + V2 + V3$$

$$V = E1 \frac{R2}{R1 + R2} + E2 \frac{R1}{R1 + R2} - I1(R1//R2)$$

Sommaire

- Quelques définitions
- Loi d'Ohm, loi des nœuds, loi des mailles
- Sources de courant, sources de tension
- Equivalent Thévenin-Norton
- Théorème de superposition
- Théorème de Millman

Théorème de Millman

Théorème relatif aux générateurs de tension :

- Les n générateurs de tension en parallèle, de résistance interne Rk et de f.e.m. Ek peuvent être remplacés par un unique générateur de tension :
 - De résistance interne : $R = \frac{1}{\sum_{k=1}^{n} \frac{1}{R_k}}$
 - De force électromotrice : $E = R \sum_{k=1}^{n} \frac{E_k}{R_k}$

Théorème de Millman

Théorème relatif au potentiel d'un point :

Le théorème de Millman est l'écriture de la loi des nœuds sous la forme de potentiels :

Au nœud A, on peut écrire à partir du modèle de Norton :

$$V_A G_{eq} = I_1 - I_2 + I_3$$
 avec $G_{eq} = G_1 + G_2 + G_3$; $G_k = \frac{1}{R_k}$; $I_k = \frac{V_k}{R_k}$

D'où :
$$V_A = \frac{\frac{V_1}{R_1} - \frac{V_2}{R_2} + \frac{V_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \implies V_{noeud} = \frac{\sum_{k=1}^{n} \frac{V_k}{R_k}}{\sum_{k=1}^{n} \frac{1}{R_k}}$$

$$V_{noeud} = \frac{\sum_{k=1}^{n} \frac{V_k}{R_k}}{\sum_{k=1}^{n} \frac{1}{R_k}}$$

Récapitulatif (à savoir)

- Outils pour analyser les circuits
 - Loi d'Ohm
 - Loi des mailles, loi des nœuds
 - Théorème de superposition
 - Théorème de Millman
- Equivalences Thévenin Norton
 - Savoir déterminer l'équivalent de tout circuit

Fin du Chapitre 1

JUNIA ISEN