Can we date an artist's work from catalogue photographs?

Alex Brown

Masters student, Computer Science, Aberystwyth University

Lloyd Roderick

PhD student, School of Art, Aberystwyth University and the National Library of Wales

Dr Hannah Dee

Computer Science, Aberystwyth University

and **Professor Lorna Hughes**The National Library of Wales

Sunset, Anglesey Sir John "Kyffin" Williams, 2004

Snowdon, the Traeth, and the Frightened Horse. Sir John "Kyffin" Williams, 1948

The man who painted in Welsh

- Sir John "Kyffin" Williams (1918-2006)
- Active for 6+ decades, with 2-3 paintings each week
 - Many paintings are in public collections
 - An unknown number are in private homes
- Epileptic
- Distinct periods in the work e.g. a spell in Patagonia (where it rains less than in Wales)

Lle Cul, Patagonia. Sir John "Kyffin" Williams, 1969

Is it possible to guess the date of unknown paintings?

- For some paintings in public collections, dates are not known.
- Experts date this painting somewhere between 1970 and 1990
- Can we do better through computer vision?

Traeth Coch. Sir John "Kyffin" Williams, ????

Dataset facts and figures

- Over 300 Kyffin Williams artworks
- Collected online from catalogues and websites
- Various sizes & resolutions
- Uncontrolled capture environments
- We only use paintings where we know the date, which limits us to 102 paintings

Leave-one-out Methodology

- Take a painting
- Work out statistical image representations for that and all the other paintings
- Find the nearest N other paintings in feature space
 - Using χ^2 distance
- Assign the mean year of these N paintings to the test painting

Methodological considerations

- Allows us to maximise the power of the dataset
- Would be better if we had more to work with (more paintings, more known dates)
- Some popular years skew results
 - e.g. lots of paintings in 1969/1970

- We have actual and predicted year for all paintings
- Thus we can correlate these (using Pearsons r) and test for significance

Image processing: colour

- Kyffin Williams' paintings are often described as gloomy
- Does this change with time?
- We used colour-based features to investigate this
- Despite uncontrolled image capture settings, we found positive correlations with all three measures

COLOUR features

Mean RGB

Mean HSV

Colour histograms

Image processing: lines and edges

- Kyffin Williams' paintings seem to get blockier
- In order to try and use this observation we investigated two main line-based features
- These capture a rough mixture of how many edge pixels there are in a painting, and what orientation these are in

EDGE features

Count of Canny edge pixels

Steerable filters

Image processing: texture descriptors

- We used Gabor filters, and discrete derivative filters
- Both of these were used to build a histogram of line orientations representing the dominant angles of paint strokes
- In this work Gabor bandwidth was fixed, and orientation varied

TEXTURE features

Gabor filters

Discrete
derivative filters
(used to build a
histogram of
oriented
gradients)

Evaluation

- There is no "gold standard" to compare against
- We use a leave-one-out methodology, combined with K-nearest neighbours to assign dates.
- Thus K is a parameter we need to consider
 - K = 1 has the effect of assigning the year of the nearest painting in feature space
 - K = 102 has the effect of giving each painting the date of the mean year
- By graphing the correlation of predicted year against actual year, we can investigate what values of K work best here

A graph of K against r

HOG (Discrete Derivatives): 4 orientations ---HOG (Discrete Derivatives): 8 orientations ---HOG (Discrete Derivatives): 16 orientations ----

Another way to evaluate prediction

- It seems that a K value around 7 or 8 works best for most of our feature sets
- Using this value, and our best performing metric, we can come up with another evaluation method
 - Based upon difference between predicted and actual year
- C(n) is the percentage of paintings for which our classifier manages to date the artwork in question within n years of actual painting date.
- Our best method (Gabor filters, 4 orientations) can date 71% of paintings to within 15 years.

Expert knowledge

- Artistic exemplars: ask an expert (Dr Paul Joyner, of the National Library of Wales)
- Statistical exemplars: Closest painting to centroid in feature space for that year.
- Rather than use K-nearest neighbours, use closest exemplar

Method	r	P(r)	C(15)
Artistic exemplar	0.328	< 0.0001	57%
Statistical exemplar	0.383	< 0.0001	61%
Centroid	0.403	<0.0001	64%

So...

Can we date an artist's work from catalogue photographs?

- We get strong correlations between predicted and actual date
- Our guess falls within 15 years for the majority of paintings (71%)

Sort of.

Issues and further work

- Dataset issues
 - Size (102 paintings)
 - Capture issues
- Impossibility of comparison
 - if you find a scholar who can date a painting, they know the work already
- Feature selection and combination

- Try a different classifier
 - Nearest Neighbour problematic with a sparse dataset
- Test on another artist
 - Simple features
 - No artist specific models
- Incorporation of other metadata e.g. size
 - Location is of interest

Sir John "Kyffin" Williams - Ceg y Ffos, 1969

Summary:

A bag-of-visual-words approach to dating paintings, using KNN to guess the year

Any questions?

Contact:

Hannah Dee hmd1@aber.ac.uk

Image: Portrait by Bernard Mitchell, http://www.llgc.org.uk/index.php? id=httpwwwllgcorguktypo3sys