Exercises 4

软件工程一班 张逸松 57 号

October 15, 2019

1.18

- 1) Suppose there are 2n people at first, and after first stage, there will still n people alive. obviously, The i-th person in new circle is the (2i-1)-th person in last circle. Let J(n) = k, so that J(2n) = 2k-1 = 2J(n)-1.
- 2) Suppose there are 2n+1 people at first, there will n+1 people alive after first stage. Further more, the first person will be killed. At this time, the *i-th* person in new circle (with n people) is the (2i+1)-th person in last circle. Let J(n) = k, so that J(2n) = 2k + 1 = 2J(n) + 1.

2.1

a) k = 3. b) It is not a linear homogeneous recurrence relations with constant coefficient. c) k = 4. d) It is not a linear homogeneous recurrence relations with constant coefficient. e) It is not a linear homogeneous recurrence relations with constant coefficient. f) k = 2 g) It is not a linear homogeneous recurrence relations with constant coefficient.

2.10

$$r^{3} - 3r^{2} - 3r - 1 = (r - 1)(r + 1)^{2} = 0 \Rightarrow r = -1, 1, 1$$

$$a_{n} = \alpha_{1} \cdot (-1)^{n} + (\alpha_{2,0} + \alpha_{2,1}n) \cdot 1^{n}$$

$$5 = \alpha_{1} + \alpha_{2,0}$$

$$-9 = -\alpha_{1} + \alpha_{2,0} + \alpha_{2,1}$$

$$15 = \alpha_{1} + \alpha_{2,0} + 2\alpha_{2,1}$$

$$(1)$$

$$\begin{aligned} \alpha_1 &= \frac{19}{2} \quad \alpha_{2,0} = -\frac{9}{2} \quad \alpha_{2,1} = 5 \\ a_n &= \frac{19}{2} \cdot (-1)^n + (-\frac{9}{2} + 5n) \cdot 1^n \end{aligned}$$

2.15

a)
$$a_n = \alpha \cdot 2^n + 3^{n+1}$$

b)
$$a_1 = 2\alpha + 9 = 5 \Rightarrow \alpha = -2 \Rightarrow a_n = -2 \cdot 2^n + 3^{n+1}$$

4.4

a)
$$a_0 = -64, a_1 = 144, a_2 = -108, a_3 + 27$$
 and $a_n = 0$ for all $n \ge 4$.

b)
$$a_0 = 1, a_3 = 3, a_6 = 3, a_9 = 1$$
 and $a_n = 0$ for others.

c)
$$a_n = 5^n$$

d)
$$a_n = (-3)^{n-3}$$
 for $n \ge 3$, and $a_{0,1,2} = 0$.

e)
$$a_0 = 8, a_1 = 3, a_2 = 2$$
, and $a_n = 0$ for other odd n while $a_n = 1$ for other even n .

f)
$$a_4n = 1$$
 for $n \ge 1$, $a_{1,2,3} = -1$ and $a_0 = 0$.

g)
$$a_n = n - 1$$
 for $n \ge 2$ and $a_{0,1} = 0$

h)
$$a_n = \frac{2^{n+1}}{n!}$$

6.2

solutions.