

Lane Segmentation Week 6

HCT CV Course

主要内容

学习目标

- 理解Semantic Segmentation Metrics
- 理解Semantic Segmentation Loss
- 理解优化算法
- 理解调整学习率的算法
- 理解权重初始化的方法
- 掌握单卡/多卡训练方法
- 掌握分阶段训练的策略

training strategy

- Collect more data
- Train algorithm longer
- Try Adam instead of gradient descent
- Add regularizations
- Network architecture
- •

training strategy

- One of the challenges with building machine learning systems is that there's so many things you could try, so many things you could change.
- hyperparameters

The No Free Lunch Theorem

 Learning theory claims that a machine learning algorithm can generalize well from finite training set of examples. This seems to contradict some basic principles of logic.

The No Free Lunch Theorem

 no machine learning algorithm is universally any better than any other

The No Free Lunch Theorem

 If we make assumptions about the kinds of probability distributions we encounter in real-world applications, then we can design learning algorithms that perform well on these distributions.

Watch your data !!!!!!

Bayes Error

human-level performance

- define your key priorities
- based on observations of performances and dataset

Bias

- human-level performance
- Underfitting

Variance

Overfitting

Training

- 观察数据
- 确定Baseline
- 对Baseline模型进行优化
- ablation study

Baseline

- no data augmentation
- no big model
- low resolution
- little tricks

Baseline

 https://github.com/gujingxiao/Lane-Segmentation-Solution-For-BaiduAl-Autonomous-Driving-Competition/blob/master/train.py

Training

- Data Generator
- Metrics
- Loss
- Model
- Optimazition

Orthogonalization

Normalization

Gradient of larger parameter dominates the update

Both parameters can be updated in equal proportions

Note

number of training epochs

 Too many epochs can lead to overfitting of the training dataset, whereas too few may result in an underfit model. Early stopping is a method that allows you to specify an arbitrary large number of training epochs and stop training once the model performance stops improving on a hold out validation dataset.

Early-Stop

```
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
# This callback will stop the training when there is no improvement in
# the validation loss for three consecutive epochs.
model.fit(data, labels, epochs=100, callbacks=[callback],
validation_data=(val_data, val_labels))
```


Early-Stop

save model

early stop

单卡/多卡

Model

- MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation
- https://arxiv.org/abs/1902.04049

DeepLab v3+

BN/GN/LRN

Metrics

CityScape

https://www.cityscapes-dataset.com/benchmarks/

TP/FP/FN/TN

我们可以使用一个 2x2 混淆矩阵来总结我们的"狼预测"模型, 该矩阵描述了所有可能出现的结果(共四种):

真正例 (TP):

• 真实情况: 受到狼的威胁。

• 牧童说:"狼来了。"

• 结果: 牧童是个英雄。

假负例 (FN):

• 真实情况: 受到狼的威胁。

• 牧童说: "没有狼"。

结果:狼吃掉了所有的羊。

假正例 (FP):

• 真实情况: 没受到狼的威胁。

• 牧童说: "狼来了。"

• 结果: 村民们因牧童吵醒他们而感到非常生气。

真负例 (TN):

• 真实情况: 没受到狼的威胁。

• 牧童说: "没有狼"。

• 结果: 大家都没事。

真正例是指模型将正类别样本正确地预测为正类别。同样,真负例是指模型将负类别样本正确地预测为负类别。

假正例是指模型将负类别样本错误地预测为正类别,而假负例是指模型将正类别样本错误地预测为负类别。

Precision/Recall

confusion matrix

airplane	923	4	21	8	4	1	5	5	23	6
automobile	5	972	2					1	5	15
bird	26	2	892	30	13	8	17	5	4	3
cat	12	4	32	826	24	48	30	12	5	7
Ö deer	5	1	28	24	898	13	14	14	2	1
Lue Class dog	7	2	28	111	18	801	13	17		3
frog	5		16	27	3	4	943	1	1	
horse	9	1	14	13	22	17	3	915	2	4
ship	37	10	4	4		1	2	1	931	10
truck	20	39	3	3			2	1	9	923

F-Score

F1 score is the harmonic mean of precision and recall. Values range from 0 (bad) to 1 (good).

Pixel Accuracy

Pixel Accuracy

class imbalance

 Unfortunately, class imbalance is prevalent in many real world data sets, so it can't be ignored. Therefore, I present to you two alternative metrics that are better at dealing with this issue

Jaccard Index/IoU

mloU

 For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them.

CityScape

https://www.cityscapes-dataset.com/benchmarks/

Loss

Loss

- A collection of loss functions for medical image segmentation
- https://github.com/JunMa11/SegLoss

Cross-Entropy

Entropy

$$D_{KL}(p \parallel q) = H(p,q) - H(p)$$

Cross entropy

ce loss

$$Cross-entropy\ loss = -\sum_{c=1}^{N} Y\ \log{(P)}$$

bce loss

$$-(y_i \log(p_i) + (1-y_i) \log(1-p_i))$$

Information Theory

- Probability and Information Theory
- http://www.deeplearningbook.org/contents/ prob.html

Probability

- frequentist probability
- Bayesian probability

Bayes's Rule

we knowP(y | x) and need to knowP(x | y)

$$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}.$$

Conditional Probability

$$P(y = y \mid x = x) = \frac{P(y = y, x = x)}{P(x = x)}.$$

What is Information

- Probability
- frequentist probability

self-information

- Likely events should have low information content, and in the extreme case, events that are guaranteed to happen should have no information contentwhatsoever.
- Less likely events should have higher information content.
- Independent events should have additive information. For example, findingout that a tossed coin has come up as heads twice should convey twice asmuch information as finding out that a tossed coin has come up as headsonce.

self-information

$$I(x) = -\log P(x).$$

大道至简

Kullback-Leibler (KL) divergence

$$D_{\mathrm{KL}}(P||Q) = \mathbb{E}_{\mathbf{x} \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{\mathbf{x} \sim P} \left[\log P(x) - \log Q(x) \right].$$

Kullback-Leibler (KL) divergence

nll loss

cross-entroy loss

dice loss

- V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
 Segmentation
- https://arxiv.org/abs/1606.04797

Laplace smoothing

Dice

$$Dice \ loss = 1 - \frac{2|G \cap S|}{|G| + |S|}$$

Combinations

$$ext{CE}\left(p,\hat{p}
ight) + ext{DL}\left(p,\hat{p}
ight)$$

Note that CE returns a tensor, while DL returns a scalar for each image in the batch. This way we combine local (CE) with global information (DL).

loU and Dice Coefficient

Weight Initialization

- Initializing all weights to 0
- Initializing weights randomly

Weight Initialization

- Xavier
- Uniform
- Kaiming

Learning Rate

- Weight Initialization
- BN
- Adam...

Learning Rate

- Decay
- Cycle
- Warmup

Exponential Weighted Moving Average

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$

...

SGD+Momentum

- 手动挡
- 对学习率等超参数敏感

Adam

- 自动挡
- 最常用

课程总结

- mloU的计算方法
- Loss的种类和组合
- Adam优化方法
- 调整学习率的算法和实现
- 单卡/多卡的训练方法

重难点

- mloU
- dice loss
- Adam
- Cycle LR
- 单卡/多卡训练的实现

课程作业

• 使用Pytorch/Tensorflow实现项目训练

一所专注前沿互联网技术领域的创新实战大学