Cosmic Watch:

Investigating Cosmic Muons With Planes

MIT Department of Physics 12/06/21

Vedang Lad

Partner: Bryan Sperry

The Oh-My-God Particle

- Ultra-high-energy cosmic ray particles
- Fly's Eye Cosmic Ray Detector
- 0.9999999999999999999951c
- 40 million times faster than LHC
- $3.2 \pm 0.9 \times 10^{20} \text{ eV}$ (Most are 10^6 eV to 10^9 eV)

What? Who? Why?

- Where do they come from?
 - Research today
 - Our galaxy
 - Sun
 - Neighboring galaxies
 - Pulsars
 - Supernovas

What? Who? Why?

- 74% ionized hydrogen (free protons)
- 18% from helium nuclei
 (two protons and two neutrons)
- 8% trace amounts of heavier elements

The Cosmic Watch

Goal

Investigate the relationship between count rate of cosmic muons as a function of altitude

- 1. Determine the function between altitude and counts
- 2. See how well the function describes the experimental data
 - 3. Determine how energies vary across flights

Experimental Setup

Experimental Setup

American Airlines Flights

Flight Number, Date and Time	Max Altitude (km)	Duration (s)
653 11/18 9:45 am	10.97 ± 0.88	7250±580
5326 11/18 1:21 pm	7.92±0.63	3438±275
4917 11/21 6:21 am	10.67±0.85	3668±293
2152 11/21 9:00 am	9.46±0.76	3995±319

- Background radiation
- Decay altitude
- Similarities

- Background radiation
- Decay altitude
- Similarities

Connecting Altitude and Rate

Rate
$$[Hz] = \alpha e^{\beta \cdot Altitude[t-\gamma]} + \delta$$

Altitude[t- γ]: Flight data taken from flightaware.com, taken at 30 second intervals, interpolated with cubic spline

 γ factor to allow for fit to match up takeoff and landing time

How well does the fit describe the data?

Rate
$$[Hz] = \alpha e^{\beta \cdot Altitude[t-\gamma]} + \delta$$

- We have found $\alpha \beta \gamma \delta$ for each flight
- Use our Cosmic Watch data to go from rate to altitude
- Discover the exponential relationship!

The Latitude Effect

The Latitude Effect

- Magnetic field behaves like dipole magnet
- Uniform across latitudes

The Latitude Effect

- Magnetic field behaves like dipole magnet
- Uniform across latitudes
 Uncertainty Value: 5%
 - Deviation of counts at constant altitude

Weather

- Varies based on flight number, flight location, and flight altitude
- Pressure, temperature, etc.
- Alters the presence of background radiation

Weather

- Varies based on flight number, flight location, and flight altitude
- Pressure, temperature, etc.
- Alters the presence of background radiation

Uncertainty Value: 6%

• Largest deviations in pressure along flight path

Conclusion

• Experimentally confirms that at higher altitudes we find more cosmic rays

(Flight 3)
$$Rate [Hz] = \alpha e^{\beta \cdot Altitude} [t - \gamma] + \delta$$

$$\alpha = 0.33 \pm 0.04 \quad \beta = 0.26 \pm 0.03 \quad \gamma = 322 \pm 41 \quad \delta = -0.25 \pm 0.03$$

- Four flights, two detectors, two days
- Relationship between counts, energy, and altitude

Future experiments:

- Investigate flight paths through repeat flights
- Use Cosmic Watch data to uncover magnetic anomalies

nank YOU

Calculated SiPM peak voltage [mV]