- 4. Find the minimizer of $c^T x$ (for $c \in \mathbb{R}^n$ a constant vector and $x \in \mathbb{R}^n$ a variable) over Ω , where Ω is each of the following sets:
 - (a) The unit ball: $\{x \mid ||x||_2 \le 1\}$;
 - (b) The unit simplex: $\{x \in \mathbb{R}^n \mid x \ge 0, \sum_{i=1}^n x_i = 1\};$
 - (c) A box: $\{x \mid 0 \le x_i \le 1, i = 1, 2, \dots, n\}.$

$$A \cap \{X_n\} : C$$
 we have $-\Delta \{X_n\} \in N^{\nu}(X_n)$

(a) for unit ball
$$\{x : \|x\|_{L^{2}l}\}$$
then we have $x^{2}z - \|c\|_{L^{2}l}$
 $c^{7}x^{2}z - \|c\|_{L^{2}l}$

$$X^{d} = C_{argmin} C;$$

$$X^{d} = \begin{cases} c_{ij} & c_{ij} \\ c_{ij} & c_{ij} \end{cases}$$

$$C_{ij} = \begin{cases} c_{ij} & c_{ij} \\ c_{ij} & c_{ij} \end{cases}$$

$$C_{ij} = \begin{cases} c_{ij} & c_{ij} \\ c_{ij} & c_{ij} \end{cases}$$

for
$$\forall M \in \Omega$$
, suppose $C_i = \min_{i \in J} C_i$, then: $X_i = 1$ $X_j = 0$ $(j \neq i)$

$$M - X' = (M_1, ..., M_{i-1}, M_{i+1}, ..., M_n)$$

$$\angle C_1, M - X' > = \int_{\mathbb{R}^2} C_j M_j - C_i \quad \mathcal{I} \int_{\mathbb{R}^2} C_i M_j^2 - C_i = 0$$

(c)
$$N = \{ x \mid 0 \leq x_{i \neq 1}, \gamma_{i}, \dots, \gamma_{i} \}$$

$$X_{i}^{*} = \{ 0 \quad (i, y_{0}) \quad ($$

Q 2. Consider the unconstrained optimization problem $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$, where f is an L-smooth convex function. Assume that $\|\mathbf{x}_0 - \mathbf{x}^*\|_2 \le R$, for some $R \in (0, \infty)$, and let $f_{\epsilon}(\mathbf{x}) = f(\mathbf{x}) + \frac{\epsilon}{2R^2} \|\mathbf{x} - \mathbf{x}_0\|_2^2$. Let $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ and $\mathbf{x}^*_{\epsilon} = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} f_{\epsilon}(\mathbf{x})$. You have already shown in previous homework (with possibly minor modifications) that:

$$(\forall \mathbf{x} \in \mathbb{R}^n) : f(\mathbf{x}) - f(\mathbf{x}^*) \le f_{\epsilon}(\mathbf{x}) - f_{\epsilon}(\mathbf{x}_{\epsilon}^*) + \frac{\epsilon}{2}.$$

- (i) Prove that Nesterov's method for smooth and strongly convex minimization applied to f_{ϵ} will find a solution \mathbf{x}_k with $f(\mathbf{x}_k) f(\mathbf{x}^*) \leq \epsilon$ in $O(\sqrt{\frac{L}{\epsilon}}R\log(\frac{LR^2}{\epsilon}))$ iterations. [5pts]
- (ii) Using the lower bound for smooth minimization we have proved in class, prove the following lower bound for L-smooth and m-strongly convex optimization: any method satisfying the same assumption as we used in class (that $\mathbf{x}_k \in \mathbf{x}_0 + \mathrm{Lin}\{\nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{k-1})\}$) must take at least $k = \Omega(\sqrt{\frac{L}{m}})$ iterations in the worst case to construct a point \mathbf{x}_k such that $f(\mathbf{x}_k) f(\mathbf{x}^*) \le \epsilon$, for any $\epsilon > 0$. [10pts]
- (i) From the leature, we have: Given a smooth strongly convex function; apply (A+BGD) we have: $f(X_{K}^{out}) f(X_{K}^{out}) \leq \Sigma$ in $O\left(\int_{-M}^{L} \log_2\left(\frac{\|X_0 X^{out}\|_{2}^{2}}{\Sigma}\right)\right)$ iterations

where f is L-smooth and M-convexity

$$\begin{array}{lll}
Sina. & f_{S|X} = f_{|X|} + \frac{2}{2R^{2}} \| X - X_{0} \|_{2}^{2} \\
\nabla f_{S|X} = \nabla f_{|X|} + \frac{2}{k^{2}} (X - X_{0}) \\
\forall X, y \in \mathbb{R}^{n} \\
\| \nabla f_{S|Y} - \nabla f_{S|X} \| \leq \| \nabla f_{|Y|} - \nabla f_{|X|} \| + \frac{2}{R^{2}} \| y - x \| \\
& \leq \left(\left[+ \frac{2}{R^{2}} \right] \| y - x \| \right) \\
& = \left[\sum_{k=1}^{2} \left[+ \frac{2}{R^{2}} \right] \| y - x \| \right]
\end{array}$$

According to Taylor's theorem:

$$f_{\Sigma(Y)} - f_{\Sigma(X)} > (\nabla f_{[X]}, Y - X) + 2 \frac{\Sigma}{R^2} (X - X_0), Y - X > + 2 \frac{\Sigma}{R^2} ||Y - X||_L^2$$

$$= \langle \nabla f_{\Sigma(X)}, Y - X > + \frac{\Sigma}{2R^2} ||Y - X||_L^2$$

$$= M^{\frac{2}{3}} = \frac{\Sigma}{R^2}$$

Then applying
$$(A+MD)$$
 we have:
$$f_{\Sigma}(X_{\Sigma}^{\text{ant}}) - f_{\Sigma}(X_{\Sigma}^{\text{ant}}) \stackrel{?}{=} \frac{\Sigma}{2} \text{ in }$$

$$O\left(\sqrt{\frac{L+\frac{\Sigma}{R^{2}}}{E}} \log\left(\frac{2(L+\frac{\Sigma}{R^{2}})R^{2}}{E}\right)\right)$$

$$= O\left(\sqrt{\frac{L}{2}} R \log\left(\frac{LR^{2}}{2}\right)\right) \text{ iteration.}$$

(ii) According to the theorem: for any $1 \le k \le \frac{1}{2}(n-1)$, exists a function $f \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ any method satisfy the assumption:

$$f(x_{k}) - f(x^{*}) = \frac{3L\|x - x^{*}\|_{v}^{v}}{3x(k+1)^{v}}$$

If
$$x = \frac{1}{3}m \|x_0 - x^{*}\|_{v}^{2}$$
 S.t.

$$f(x_0) - f(x^{*}) \le \frac{1}{3}m$$

must take $k = 2(\sqrt{\frac{1}{m}})$

5.

Q 4. In this part, you will compare the heavy ball method to Nesterov's method for smooth and strongly convex optimization. Your problem instance is the following one-dimensional instance: $\min_{x \in \mathbb{R}} f(x)$, where

$$f(x) = \begin{cases} \frac{25}{2}x^2, & \text{if } x < 1\\ \frac{1}{2}x^2 + 24x - 12, & \text{if } 1 \le x < 2\\ \frac{25}{2}x^2 - 24x + 36, & \text{if } x \ge 2. \end{cases}$$

Prove that f is m-strongly convex and L-smooth with m=1 and L=25. What is the global minimizer of f? (Justify your answer.)

Run Nesterov's method and the heavy-ball method, starting from $x_0 = 3.3$. Plot the optimality gap of Nesterov's method and the heavy ball method over 100 iterations. What do you observe? What does this plot tell you? [30pts]

4. Since
$$f$$
 is smooth and strongly convex:

(rasider Taylor's theorem. for $\forall x,y \in R'$ $P=y+x$
 $|\nabla f(y) - \nabla f(x)| = |\int_0^1 \nabla^2 f(x+vP) P dv|$
 $= |\int_0^1 25 P dv| \le 25 |y-x|$

For $\forall x,y \in R'$ $P=y+x$
 $f(y) - f(x) - \nabla f(x) \cdot P = \frac{1}{2}\nabla^2 f(x) \cdot P^2$

Then f is m -convexity and L smooth.

 $L=25$. $m=1$
 $\forall f(x) = 1$
 $\forall f(x) = 1$

Q 5. Suppose that I give you an algorithm (let's call it AGD-G) that given an initial point $\mathbf{x}_0 \in \mathbb{R}^n$ and gradient access to an L-smooth function $f: \mathbb{R}^n \to \mathbb{R}$ (where $0 < L < \infty$) after k iterations returns a point $\mathbf{x}_k \in \mathbb{R}^n$ that satisfies:

$$\|\nabla f(\mathbf{x}_k)\|_2 \le \sqrt{\frac{2L(f(\mathbf{x}_0) - f(\mathbf{x}^*))}{(k+1)^2}}.$$

Note that AGD-G does not need to know the value of L.

Show that you can use AGD-G to obtain an algorithm that for any m-strongly convex and L-smooth function and any $\epsilon>0$ can construct a point \mathbf{x}_k with $f(\mathbf{x}_k)-f(\mathbf{x}^*)\leq \epsilon$ in $k=O\Big(\sqrt{\frac{L}{m}}\log\big(\frac{L\|\mathbf{x}_0-\mathbf{x}^*\|_2^2}{\epsilon}\big)\Big)$ iterations. Your algorithm should work without the knowledge of the values of L and m.

Extract

Since
$$(AGD-G)$$
 have:

 $\|\nabla f(x_0)\|_{2} \le \int \frac{1}{2} \|f(x_0) - f(x_0)\|_{2} \le \int \frac{1}{2} \|x_0 - x^0\|_{2} \le \int$

$$\begin{array}{lll} \text{d}: & \text{for } j=1: G \\ & \text{X}_{j}^{\text{out}} = AGD - G\left(\frac{X_{j-1}^{\text{out}}}{X_{j-1}^{2}} + \frac{2L}{m}\right) \\ & \text{WANT}; & \|X_{j}^{\text{out}} - X^{*}\|_{2}^{2} \leq 2 \\ & \text{G? } & \text{Mg}_{2}\left(\frac{\|X_{0} - X^{*}\|_{2}^{2}}{2}\right) \end{array}$$

hon,
$$f(\chi_{G}^{ont}) - f(\chi_{G}^{v}) \leq \frac{1}{2} \|\chi_{G}^{ont} - \chi_{G}^{v}\|_{2}^{2} \leq \frac{1}{2} \leq \frac{2}{2}$$
Let $\overline{S} = \frac{1}{2} \leq \frac{2}{2} = \overline{S}$

Then:
$$f(x_G^{ont} - x^{\nu}) \le \overline{\xi}$$

When $G > log_2\left(\frac{L\|X_0 - X^{\nu}\|_2^2}{2\overline{\xi}}\right)$

$$k = 0 \left(\frac{L}{m} \cdot \log_2 \frac{L \| \chi_0 - \chi^* \|_{L^2}}{2} \right)$$