

LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

510.84 Ilur mo.391-396 cop.2

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

Digitized by the Internet Archive in 2013

IlbN No 394 Report No. 394

HIGH ORDER STIFFLY STABLE METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Mall

by

M. K. Jain V. K. Srivastava

April 1970

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN · URBANA, ILLINOIS

THE LIGHT RY UP THE

Report No. 394

HIGH ORDER STIFFLY STABLE METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS*

Ъу

M. K. Jain V. K. Srivastava

April 1970

Department of Computer Science University of Illinois Urbana, Illinois 61801

* This report is supported in part by contract U. S. AEC AT(11-1)1469 and in part by the National Science Foundation under grant N3F-GJ-217, and by the Department of Computer Science, University of Illinois, Urbana-Champaign.

ACKNOWLEDGMENT

We wish to thank Professor C. W. Gear for his helpful suggestions. Thanks are also extended to Miss Barbara Hurdle for typing the final manuscript.

Ordinary differential equations with greatly different time constants arise in a wide variety of important physical problems. The predictor-corrector method of solution is examined here.

The existence of stiffly stable methods of order as high as eight has been known for some time. In this report, we have examined a class of methods for finding methods of order greater than eight. We find that the choice of

$$\sigma(\xi) = \xi^{k-r} (\xi - c)^r$$
, $r = 0, 1, 2, ... k and $-1 \le c \le 1$$

leads to the methods of order k as high as eleven for some c and r. The multistep methods are stiffly stable for $k \le 9$ if r = 3, for k < 10 if r = 4, and for k < 11 if r = 6.

We found no twelfth order and higher stiffly stable methods. However, if we select

$$(P_r)$$
 $\sigma(\xi) = \xi^{k-r} (\xi^r - c^r)$ or

$$(Q_r)$$
 $\sigma(\xi) = \xi^{k-r} \sum_{i=0}^r \xi^{r-i} c^i$

where $r = 0, 1, 2, ... k and <math>-1 \le c < 1$.

We obtain stiffly stable methods of P type if k \leq 6 and of Q type if k \leq 7.

TABLE OF CONTENTS

																									Page
ABSTRACT																									
1. INTR	ODUC'	TIO	N.		•		٠	٠	•	٠	٠	٠	٠	٠	٠		٠	٠		٠	•	٠	٠	٠	1
2. HIGH	ORD	ER	STI	FF	LY		STA	BI	E	ME	TH	IOI	S									٠	٠	٠	4
3. CONC	LUSI	ONS	٠				•				٠		٠	٠	٠	•	٠	٠	٠		٠	٠	٠		8
LIST OF	REFE	REN	CES	· ·				•		٠			٠	٠	•	•	٠	٠		٠	٠		٠		9
APPENDIX	I.						•	•		٠				٠	٠	٠	٠	٠	•	۰	٠		٠	٠	10
APPENDIX	II		٠			•	•			•				٠	•	٠	٠	٠	٠	•	٠	•	•	٠	20
APPENDIX	III												٠	٠			٠	٠		٠	٠			٠	35

LIST OF FIGURES

igure		Page
1	Stability and Accuracy Region	3
2	Locus of $\rho(\xi)/\sigma(\xi)$ $\xi = e^{i\theta}$, $\theta \in [0, 2\pi)$	41
3	Seventh Order Formulas	42
4	Eighth Order Formulas	43
5	Ninth Order Formulas	44
6	Tenth Order Formulas	45
7	Eleventh Order Formulas	46
8	Fifth Order Formula of Class II	47

1. INTRODUCTION

The mathematical analysis of the problems encountered in reactor calculations, circuit analysis and chemical kinetics often leads to stiff systems of ordinary differential equations, i.e. systems with widely separated time constants. The standard methods for the numerical integration of the ordinary differential equations are not well suited to the stiff differential equations for reasons of stability, the time steps have to be adopted to the fast decaying components while one is interested in the slowly decaying ones.

A number of authors have proposed special algorithms to overcome this difficulty (Lawson [1], Richard, Lanning and Torrey [2], and Liniger and Willoughby [3]). However, there has remained still a strong desire to develop methods of Runge-Kutta or multistep type with improved stability and accuracy properties so that the above difficulty is diminished. The object of this investigation is to develop high order stiffly stable multistep methods. A linear k-step method for the numerical solution of

$$y' = f(t, y), y(t_0) = \eta$$

can be written in the form

(1)
$$\alpha_0 y_{n+1} = \sum_{i=1}^{k} \alpha_i y_{n+1-i} + h \sum_{i=0}^{k} \beta_i y_{n+1-i}^{\prime}$$

with $\alpha_0 \neq 0$ and $|\alpha_k| + |\beta_k| \neq 0$ or symbolically,

(2)
$$\rho(E) y_{n+1-k} = h \sigma(E) y'_{n+1-k}$$

where E is the translation operator (Ey $_{\rm n}$ = y $_{\rm n+1}$) and ρ and σ are polynomials defined by

$$\rho(\xi) = \alpha_0 \xi^k - \alpha_1 \xi^{k-1} - \alpha_2 \xi^{k-2} - \dots - \alpha_k$$

(3)
$$\sigma(\xi) = \beta_0 \xi^k + \beta_1 \xi^{k-1} + \beta_2 \xi^{k-2} + \ldots + \beta_k$$

Therefore, this formula can only be used if one knows the values of the solution at k successive points. These k values will be assumed to be given. Further, it can be assumed without loss of generality that the polynomials $\rho(\xi)$ and $\sigma(\xi)$ have no common factors since in general case, (1) can be reduced to an equation of lower order.

<u>Definition 1.1.</u> The formula (1) will be said to be of order $p \ge 0$ if it fulfills the p + 1 conditions

(4)
$$\alpha_0 = \sum_{i=1}^k \alpha_i$$

$$\alpha_0 = \sum_{i=1}^k (1-i)^s \alpha_i + s \sum_{i=0}^k (1-i)^{s-1} \beta_i, s = 1, 2, \dots p$$

Thus the method is of order p if for any $y \in c^{(p+2)}$ and for some nonzero c_{p+1} .

(5)
$$\alpha_{0} y_{n+1} = \sum_{i=1}^{k} \alpha_{i} y_{n+1-i} + h \sum_{i=0}^{k} \beta_{i} y'_{n+1-i} + c_{p+1} h^{p+1} y'_{(t)}$$

$$+ o(h^{p+2})$$

where $y^{(p+1)}$ is the (p+1)-st derivative of y evaluated for some t between t_{n+1-k} and t_{n+1} . The last two terms represent the truncation error.

Multistep methods were first investigated by Dahlquist [4] who defined the following:

<u>Definition 1.2.</u> A multistep method is called A-stable if all solutions of (1) tend to zero, as $n \to \infty$, when it is applied to the differential equation of the form $y' = \lambda y$ and λ is a (complex) constant with negative real parts.

He then proved that the order p of an A-stable linear multistep method cannot exceed two. The order two method with the smallest error term is the trapezoidal rule. Widlund [5] has shown the

existence of methods of orders three and four which are stable in the wedge $|\arg(h\lambda) - \pi| < \alpha$ of the negative half plane for any $\alpha < \frac{\pi}{2}$. Norsett [6] has extended these results to the methods of orders five and six. Gear [7,8] has used the conditions which are necessary for stiff differential equations. The requirements are shown in Figure 1.

Stability and Accuracy Region

Thus the numerical methods suitable for stiff differential equations depend on the parameters D, θ , α and on the definition of accuracy. Gear has termed such methods as stiffly stable methods and has obtained methods of order as high as six for suitable parameters D, θ , and α . Dill [9] has used computer graphic techniques for finding methods of orders seven and eight. We shall show here that the methods of order as high as eleven can be obtained for suitable parameters.

2. HIGH ORDER STIFFLY STABLE METHODS

The discretization error of the multistep method is defined as the difference between the value y_n calculated from (1) and the exact solution $y(t_n)$.

Define

$$\varepsilon_n = y_n - y(t_n)$$

Then the error ε_n obeys the difference equation

(6)
$$(\alpha_0 - h\lambda\beta_0)\varepsilon_{n+1} = \sum_{i=1}^{k} (\alpha_i + h\lambda\beta_i)\varepsilon_{n+1-i} - T_n$$

for the equation $y' = \lambda y$.

Assuming that

$$\varepsilon_i = \xi^i$$

we get from (6) the well known characteristic equation for ξ ,

$$(\alpha_{0} - h\lambda\beta_{0})\xi^{n+1} - \sum_{i=1}^{k} (\alpha_{i} + h\lambda\beta_{i})\xi^{n+1-i} + T_{n}(y, t_{n}, h) = 0$$

where T_n is the truncation error for the exact solution. For convergence, it is necessary to bound the solution of the imhomogeneous difference equation (7) (see, Henrici [10]). It depends on the stability of the corresponding homogeneous equation obtained from (7) with T_n set to zero. This difference equation is stable if and only if all the roots of the polynomial equation

$$(\alpha_0 - h\lambda\beta_0)\xi^{n+1} - \sum_{i=1}^k (\alpha_i + h\lambda\beta_i)\xi^{n+1-i} = 0$$

or symbolically

(8)
$$\rho(\xi) - h\lambda \sigma(\xi) = 0$$

lie in or on the unit circle and those lying on the unit circle have multiplicity of one. It should be noted that it is an asymptotic condition only and is concerned with the convergence of y_n to y(t) with $h=(t-t_0)/n$ as $n\to\infty$ or $h\lambda\to 0$. If stiff equations are to be integrated with large values of h, then large values of $h\lambda$ must not make (8) unstable. Letting $h\lambda\to\infty$, the roots of (8) approach those of $\sigma(\xi)=0$. This implies that the polynomial $\sigma(\xi)$ must not have roots outside the unit circle and those roots ξ_i for which $|\xi_i|=1$ are simple. Further, $\sigma(\xi)$ is of degree k and has no common root with $\rho(\xi)$. The stiff stability can be investigated as follows.

We want h λ values such that (8) has roots inside the unit circle or on the unit circle and simple. The region is bounded by the locus of $\rho(\xi)/\sigma(\xi)$ in the h λ -plane for $\xi=e^{i\theta}$, $\theta \in [0,2\pi]$. This locus can be plotted in h λ plane and is of the type as shown in Figure 2. At h λ = infinity, the method is stable if $\sigma(\xi)$ is stable, so that any region connected to that point will be stable by continuity argument. If we prescribe k, then for stiffly stable methods the polynomial $\sigma(\xi)$ should be such that its roots lie within the unit circle or on the unit circle and simple. Another restriction on $\sigma(\xi)$ is that it has no common factor with $\rho(\xi)$. Since $\rho(\xi)$ will always have a root at +1, $\sigma(\xi)$ must not have a root at +1. The locus of $\rho(\xi)/\sigma(\xi)$ for $\xi=e^{i\theta}$, $\theta \in [0,2\pi]$ should be as shown in Figure 2.

Selecting Coefficients of $\sigma(\xi)$

We shall consider the stiffly stable methods for which k=p. A k-step stiffly stable method of order p (=k) requires the solution of p + 1 equations in 2k + 1 unknowns (β_0 can be taken as 1). The k + 1 unknowns α_i , the coefficients of the polynomial $\rho(\xi)$ can be determined in terms of k unknowns β_i , the coefficients of the polynomial $\sigma(\xi)$. The expressions for α_i in terms of β_i as obtained on solving the equations (4) are given in Appendix 1.

Besides the above methioned restrictions on $\sigma(\xi)$, these arbitrary coefficients β_i can be chosen to

- 1. control numerical stability,
- 2. minimize computational efforts, and
- 3. minimize the truncation error.

Gear has chosen $\beta_i = 0$, $i = 1, 2, \ldots k$, i.e. $\sigma(\xi) = \xi^k$ and obtained stiffly stable methods for $k \le 6$. $k \ge 7$ does not give a stable method. These methods satisfy (1) and (2). Dill has prescribed $\beta_0 = 1$ and $\beta_1 = -.99$, i.e. $\sigma(\xi) = \xi^{k-1}(\xi - 0.99)$ and obtained a seventh order formula. For eighth order formula he has selected $\sigma(\xi) = \xi^{k-2}(\xi^2 - 1.8\xi + .81)$. These formulas also satisfy the criterion (2).

We have investigated a class of methods which will satisfy the essential property (1). Some of our formulas will also satisfy (2) and (3).

Class I

Choose

(9)
$$\sigma(\xi) = \xi^{k-r}(\xi - c)^r, r = 0, 1, 2, ... k$$

where

$$-1 \le c < 1.$$

We find

There are no twelfth order and higher stiffly stable methods. Appendix 2 contains some of the special case formulas. The values of the parameters D, c, $\max |\xi|$ (ξ_i being the roots of $\rho(\xi)=0$) and c_{p+1} (the coefficients of the truncation error) are also given. The section of the locus $\rho(\xi)/\sigma(\xi)$ for seventh to eleventh order formulas for different values of r are shown in Figures 3 to 7, respectively.

Class II

Here we take $\sigma(\xi)$ of the following form

$$(P_r)$$
 $\sigma(\xi) = \xi^{k-r} (\xi^r - c^r)$

$$(Q_r)$$
 $\sigma(\xi) = \xi^{k-r} \sum_{i=0}^{k} \xi^{r-i} c^i$

where r = 0, 1, 2, ... k and $-1 \le c < 1$.

The above P_r and Q_r type formulas for r = 0 reduce to the case considered by Gear and are stiffly stable for $k \le 6$.

By prescribing the values of \mathbf{c} consistent with the stability requirement, a locus was obtained which indicated the existence of suitable parameters D and Θ for a stiffly stable method. These results are given in the table below.

r > 6 does not indicate the existence of stiffly stable methods. Appendix 3 shows the coefficients for various order formulas of P_r and Q_r type. The values of the parameters c, D, $\max |\xi|$ and c_{p+1} are also tabulated. The section of the locus of $\rho(\xi)/\sigma(\xi)$ for fifth order method is shown in Figure 8.

3. CONCLUSIONS

The stiffly stable methods of order as high as eight are already known. The aim of the present investigation has been to develop methods of order higher than eight.

We have investigated the following classes of methods:

(1)
$$\sigma(\xi) = \xi^{k-r} (\xi - c)^r$$

(2)
$$\sigma(\xi) = \xi^{k-r} (\xi^r - c^r)$$

(3)
$$\sigma(\xi) = \xi^{k-r} \sum_{i=0}^{r} \xi^{r-i} c^{i}$$

where r = 0, 1, 2, ... k and $-1 \le c < 1$.

We find that the choice (1) leads to the methods of order as high as eleven. The methods are stiffly stable for $k \le 9$ if r = 3, for $k \le 10$ if r = 4, and for $k \le 11$ if r = 6. Further, we found no twelfth order and higher methods. The stiffly stable methods of the types(2) and (3) do not exist for $k \ge 8$. A comparitive study of the methods developed in this report is under investigation.

REFERENCES

- [1] Lawson, J. D. "Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants," SIAM 4, 3 (1967), pp. 372-380.
- [2] Richard, P. I., Lanning, W. D., and Torrey, M. D. "Numerical Integration of Large, Highly-Damped, Nonlinear Systems," SIAM Review 7, 3 (1965), pp. 376-380.
- [3] Liniger, W. and Willoughby, R. A. "Efficient Numerical Integration of Stiff Systems of Ordinary Differential Equations," IBM Research Report RC 1970, December 1967.
- [4] Dahlquist, G. "A Special Stability Criterion for Linear Multistep Methods," BIT 3 (1963), pp. 22-43.
- [5] Widlund, O. B. "A Note on Unconditionally Stable Linear Multistep Methods," BIT 7 (1967), pp. 65-70.
- [6] Norsett, S. P. "A Criterion for $A(\alpha)$ -Stability of Linear Multistep Methods," BIT $\underline{9}$ (1969), pp 259-263.
- [7] Gear, C. W. "Numerical Integration of Stiff Ordinary Differential Equations," University of Illinois, Department of Computer Science Report No. 221, January 1967.
- [8] Gear, C. W. "The Automatic Integration of Stiff Ordinary Differential Equations," Proceedings IFIP Congress, Edinburgh, August 1968.
- [9] Dill, C. "A Computer Graphic Technique for Finding Numerical Methods for Ordinary Differential Equations," University of Illinois, Department of Computer Science Report No. 295, January 1969.
- [10] Henrici, P. "Discrete Variable Methods in Ordinary Differential Equations," John Wiley and Sons, Inc., New York, 1962.

APPENDIX I

A. Third Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{2} \alpha_{i+1} y_{n-i} + h \sum_{i=0}^{3} \beta_i y'_{n+1-i}$$

$$T_n = -(3\beta_0 - \beta_1 + \beta_2 - 3\beta_3) \frac{h^4}{12} y_n^{(4)}$$

B. Fourth Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{3} \alpha_{i+1} y_{n-i} + h \sum_{i=0}^{4} \beta_i y'_{n+1-i}$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 25 & 3 & -1 & 1 & -3 \\ 48 & -10 & -8 & 6 & -16 \\ -36 & 18 & 0 & -18 & 36 \\ 16 & -6 & 8 & 10 & -48 \\ -3 & 1 & -1 & 3 & 25 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix}$$

$$T_n = -(12\beta_0 - 3\beta_1 + 2\beta_2 - 3\beta_3 + 12\beta_4) \frac{h^5}{60} y_n^{(5)}$$

C. Fifth Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{l_4} \alpha_{i+1} y_{n-i} + h \sum_{i=0}^{5} \beta_i y_{n+1-i}^{\dagger}$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{bmatrix} = \begin{bmatrix} 137 & 12 & -3 & 2 & -3 & 12 \\ 300 & -65 & -30 & 15 & -20 & 75 \\ -300 & 120 & -20 & -60 & 60 & -200 \\ 200 & -60 & 60 & 20 & -120 & 300 \\ -75 & 20 & -15 & 30 & 65 & -300 \\ 12 & -3 & 2 & -3 & 12 & 137 \\ \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}$$

$$T_n = -(10\beta_0 - 2\beta_1 + \beta_2 - \beta_3 + 2\beta_4 - 10\beta_5) \frac{h^6}{60} y_n^{(6)}$$

D. Sixth Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{5} \alpha_{i+1} y_{n-1} + h \sum_{i=0}^{6} \beta_i y_{n+1-i}^{i}$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix} = \begin{bmatrix} 147 & 10 & -2 & 1 & -1 & 2 & -10 \\ 360 & -77 & -24 & 9 & -8 & 15 & -72 \\ 150 & -35 & -45 & 30 & -50 & 225 \\ 400 & -100 & 80 & 0 & -80 & 100 & -400 \\ 83 & 84 & 64 & 72 & -15 & 8 & -9 & 24 & 77 & -360 \\ 24 & 77 & -15 & 8 & -9 & 24 & 77 & -360 \\ 25 & 66 & -10 & 2 & -1 & 1 & -2 & 10 & 147 \\ \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \end{bmatrix}$$

$$T_{n} = -(60\beta_{0} - 10\beta_{1} + 4\beta_{2} - 3\beta_{3} + 4\beta_{4} - 10\beta_{5} + 60\beta_{6}) \frac{h^{7}}{420} y_{n}^{(7)}$$

E. Seventh Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{6} \alpha_{i+1} y_{n-i} + h \sum_{i=0}^{7} \beta_i y_{n+1-i}^{\dagger}$$

(1.5)

			_							_	_	
	α _O		1089	60	-10	4	- 3	4	-10	60		ВО
	α_{1}		2940	- 609	-140	42	- 28	35	-84	490		β1
	α ₂		-4410	1260	-329	- 252	126	140	315	1764		β2
	α ₃		4900	- 1050	700	- 105	-420	350	-700	3675		β3
420	α ₁₄	=	-3675	700	-350	420	105	-700	1050	-4900		β ₄
	α ₅		1764	-315	140	-126	252	329	-1260	4410		β ₅
	α ₆		-490	84	- 35	28	-42	140	609	- 2940		β ₆
	α ₇	A distantish for a	60	-10	14	- 3	14	-10	60	1089		β7

$$T_{n} = -(105\beta_{0} - 15\beta_{1} + 5\beta_{2} - 3\beta_{3} + 3\beta_{4} - 5\beta_{5} + 15\beta_{6} - 105\beta_{7}) \frac{h^{8}}{840} y_{n}^{(8)}$$

$$^{\alpha}_{0} \mathbf{y}_{n+1} = ^{7}_{i=0} \mathbf{x}_{i+1} \mathbf{y}_{n-i} + \mathbf{h} \mathbf{x}_{i=0} \mathbf{y}_{i}^{\prime} + \mathbf{1} - \mathbf{i}$$

(1.6)

- _	В	β	82	В3	84	B ₅	B ₆	β7	88	
1	-105	096-	3920	-9408	14700	-15680	11760	-6720	2283	
	15	140	-588	1470	-2450	2940	-2940	1338	105	
	1	-48	210	-560	1050	-1680	798	240	-15	
	M	30	-140	420	-1050	378	420	09-	10	
	$\widetilde{\mathbb{C}}$	-32	168	-672	0	672	-168	32	<u>~</u>	
	5	09	-420	-378	1050	-420	140	-30	m	
	-15	-240	-798	1680	-1050	260	-210	7 8	-5	
	105	-1338	2940	-2940	2450	1470	588	-140	15	
	2283	6720	-11760	15680	-14700	9408	-3920	096	-105	
					11					
-	O Ø	α L	22	α 3	α	α 22	9	α7	80	
					840					

$$\mathbf{T_n} = -(2808_0 - 358_1 + 108_2 - 58_3 + ^48_4 - 58_5 + 108_6 - 358_7 + 2808_8) \frac{h^9}{2520} \mathbf{y_n^{(9)}}$$

G. Ninth Order Formula:

(1.7)

_										
	80	8,1	82	B 33	ВД	8	B 6	В7	88	8
	280	2835	-12960	35280	-63504	79380	-70560	45360	-22680	7129
	-35	-360	1680	-470h	8820	-11760	11760	-10080	4329	280
	10	105	-50 lt	1470	-2940	4410	-5880	2754	630	-35
	-5	-5 ^h	270	-840	1890	-3780	1554	1080	-135	10
	ή-	7+5	-240	840	-2520	504	1680	-360	09	-5
	-	09-	360	-1680	-504	2520	-840	240	-45	7,
	10	135	-1080	-1554	3780	-1890	840	-270	54	-5
	-35	-630	-2754	5880	-4410	2940	-1470	504	-105	10
(280	-4329	10080	-11760	11760	-8820	4074	-1680	360	-35
	7129	22680	-45360	70560	-79380	63504	-35280	12960	-2835	280
'						11				
 	O 0	α _J	N o	m 8	420	,, ,,	99	σ ²	∞ 7	30
*				-	(((2520		4		

$$\mathbf{T_n} = -(2528_0 - 288_1 + 78_2 - 38_3 + 28_4 - 28_5 + 38_6 - 78_7 + 288_8 - 2528_9) \frac{\mathbf{h}^{10}}{2520} \frac{\mathbf{y}^{(10)}}{\mathbf{y}^{(10)}}$$

(1.8)

B _O	B ₁	B ₂	83	βλ	85	. B6	β7	88	8 ₉	β ₁₀
-252	-2800	14175	-43200	88200	-127008	132300	-100800	26700	-25200	7381
28	315	-1620	2040	-10584	15876	-1764o	15120	-11340	7609	252
	-80	420	-1344	2940	†0Δ†-	5880	-6720	3069	260	-28
m	35	-189	630	-1470	2646	-4410	1914	945	-105	
-2	-24	135	-480	1260	-3024	924	1440	-270	710	<u>۳</u>
N	25	-150	009	-2100	0	2100	009-	150	-25	Ø
<u>۳</u>	- 40	270	-1440	-92⅓	3024	-1260	η 80	-135	24	7
_	105	-945	-191 ⁴	4410	-2646	1470	-630	189	-35	m
-28	-560	-3096	6720	-5880	η01η	-2940	1344	-420	80	
252	6094-	11340	-15120	17640	-15876	10584	-5040	1620	-315	28
7381	25200	-56700	100800	-132300	127008	-88200	43200	-14175	2800	-252
					II					
o o	α	20	უ უ	$^{\dagger}_{\infty}$	α 2	9	σ ₇	80 8	80	α10
					2520					

$$T_{\rm n} = -(25208_{\rm 0} - 2528_{\rm 1} + 568_{\rm 2} - 218_{\rm 3} + 128_{\rm 4} - 108_{\rm 5} + 128_{\rm 6} - 218_{\rm 7} + 568_{\rm 8} - 2528_{\rm 9} + 25208_{\rm 10}) \frac{\rm h^{11}}{27720} \frac{\rm y^{(11)}}{\rm y^{(11)}}$$

Eleventh Order Formula:

$$\alpha_0 y_{n+1} = \sum_{i=0}^{L} \alpha_{i+1} y_{n-i} + h \sum_{i=0}^{L} \beta_i y'_{n+1-i}$$

(1.9)

2520	30492	-169400	571725	-1306800	2134440	-2561328	2286900	-1524600	762300	-304920	83711	
-252	-3080	17325	-59400	138600	-232848	291060	-277200	207900	-138600	53471	2520	
95	693	-3960	13860	-33264	58212	-77616	83160	-83160	36839	5544	-252	
-21	-264	1540	-55 th	13860	-25872	38808	-55440	24519	9240	-92h	95	
12	154	-92h	3465	-9240	19404	-38808	14124	13860	-2310	308	-21	
-10	-132	825	-3300	0066	-27720	4620	19800	-4950	1100	-165	12	
12	165	-1100	0564	-19800	-4620	27720	0066-	3300	-825	132	-10	
-21	-308	2310	-13860	-14124	38808	-19404	9240	-3465	924	-154	12	
99	924	-92 ⁴ 0	-24519	55440	-38808	25872	-13860	5544	-1540	264	-21	
-252	-554h	-36839	83160	-83160	91911	-58212	33264	-13860	3960	-693	95	
2520	-53471	138600	-207900	277200	-291060		-138600	59400	-17325	3080	-252	
83711	304920	-762300	1524600 -207900	-2286900	2561328 -291060	-2134440 232848	1306800 -138600	-571725	169400	-30492	2520	i
						11						
ω ο	αJ	2	ر س	ħρ	22	9	σ7	© 8	00	0,70	α11	
						27720						,

B10

89

B 8

B6

8

8

82

83

В

β11

 $\mathbf{T_n} = -(2310\beta_0 - 210\beta_1 + 42\beta_2 - 14\beta_3 + 7\beta_4 - 5\beta_5 + 5\beta_6 - 7\beta_7 + 14\beta_8 - 42\beta_9 + 210\beta_{10} - 2310\beta_{11}) \frac{h^{12}}{27720} \hat{\mathbf{y}}_n^{(12)}$

APPENDIX II

A. Third Order Formulas

Table 1 $\alpha - \beta$ Coefficients

r	0	1	2	3
α	11	49	257	1548
α_1	18	99	642	4131
α2	- 9	- 63	- 531	-3672
α 3	2	13	146	1089
β _O	6	30	200	2000
βl		-18	-280	-4200
β2			98	2940
β ₃	And the second s			- 686

Table 2 Values of the Parameters

r	0	1	2	3
C	0	0.6	0.7	0.7
D	-0.083	-0.014	-0.003	-0.003
D $\max \xi , \xi \neq 1$	0.426	0.515	0.754	0.839
C _{p+1}	-0.1364	-0.1837	-0.3807	-0.8551

B. Fourth Order Formulas

Table 1 $\alpha - \beta$ Coefficients

r	0	1	2	3	14
αο	25	91	489	38849	5177
α _l	48	222	472	139934	19024
α_2	-36	- 198	-1620	-188922	-26244
α 3	16	82	768	113330	16112
α_{14}	- 3	-15	-131	- 25493	-3715
βο	12	48	300	32000	7500
β		- 36	- 480	-81600	-24000
β2			192	69360	28800
β3				- 19652	-15360
β ₄					3072

Table 2 Values of the Parameters

r	0		2		
C	0	0.75	0.8	0.8	0.8
D	-0.667	-0.164	-0.018	-0.007	-0.011
$\max \xi $, $\xi \neq 1$	0.561	0.752	0.821	0.858	0.896
$\begin{array}{c} & & \\$	-0.096	-0.1253	-0.1849	-0.3546	-0.9740

Table 1 α - β Coefficients

r	0	1	2	3	14	5
αο	137	512	1877	166528	22157	154637
αl	300	1395	6090	622875	92700	705200
α2	-300	-1560	- 7860	- 925500	-155460	-1288700
α3	200	980	5180	684500	130760	1179800
α_{14}	- 75	- 360	-1815	- 252750	- 55215	-541175
α ₅	12	57	282	37425	9372	99152
β ₀	60	240	960	96000	15360	187500
βl		-180	-1440	-216000	-46080	- 750000
β2			540	162000	51840	1200000
β3				-40500	- 25920	- 960000
β ₄					4860	384000
β ₅						61440

Table 2
Values of Parameters

r	t .		2			5
C	0					
D	-2.327	-0.905	-0.272	-0.067	-0.033	-0.29
$\max \xi , \xi \neq 1$	0.709	0.749	0.755	0.793	0.832	0.895
$\begin{array}{c} & \text{D} \\ \text{max} \xi , \ \xi \neq 1 \\ & \text{C} \\ \text{p+1} \end{array}$	-0.0730	-0.0898	-0.1156	-0.1596	-0.2507	-0.7455

D. Sixth Order Formulas

Table 1 $\alpha - \beta$ Coefficients

r	0	1	2	3	4	5	6
α0	147	284	2094	7725	65539	269927	0.75194
α_{1}	360	797	7392	31293	307832	1396940	4.20548
α2	-450	-1050	-11115	- 52965	- 599970	-3018050	-9.81212
α ₃	400	900	9520	48640	621520	3485600	12.22517
α ₄	-225	- 250	- 5070	- 26055	-361265	-2270525	-8.57888
α ₅	72	159	1584	7875	111864	-711252	3.215
α ₆	-10	- 22	-217	- 1063	-14442	-115290	-0.50269
βΟ	60	120	960	3840	37500	187500	1
β		- 60	-1440	-8640	-120000	- 750000	-5.1
β2			540	6480	144000	1200000	10.8375
β 3				-1620	- 76800	- 960000	-12.2825
β ₄					15360	384000	7.83009
β 5						-61440	-2.66223
β ₆							0.37715

Table 2
Values of the Parameters

r	0	1	2	3	14	5	6
C	0	0.5	0.75	0.75	0.8	0.8	0.85
D	-6.071	-3.607	-1.191	-0.409	-0.078	-0.039	-0.051
$\frac{r}{c}$ D $\max \xi , \xi \neq 1$	0.863	0.789	0.760	0.785	0.837	0.896	0.930
C _{p+1}	-0.0583	-0.0654	-0.0843	-0.1071	-0.1569	-0.2521	-0.8605

Table 1 $\alpha - \beta$ Coefficients

7	1.24548	7.63841	-20.16032	29.69023	-26.35385	14.10059	-4,21113	0.54155	Ч	-5.25	11.8125	-14.76563	11.07422	-4.98340	1.24585	-0.13348
9	1.67631	9.53216	-23.37143	32.06217	-26.60398	13.36277	-3.76441	0.45903	Н	-4.32	7.776	96494.7-	4.03108	-1.16095	0.13931	
7	81200622	420194355	-93 9294720	1180211550	-903689850	423191097	-112549080	13137270	42×106	-147x10 ⁶	2058x10 ⁵	-14406x10 ⁴	50421x10 ³	-7058940		
4	1264853	5956076	-7453194 -12184662	14201740	-5803560 -10307185	4701396	-1252286	149766	6×10 ⁵	-164×10 ⁴	1764×10 ³	-144060 -8232x10 ²	144060			
m	946928	3998694	-7453194	8170015	-5803560	2674518	-727454	87909	42x10	-882×10 ³	6174×10 ²	-144060				
S	402710	1469020	-2474801	2624300	-1893150	893060	-245595	29876	168x10 ³	-2184x10 ²	70980					
1	21000	21299	-104580	111650	-82600	39375	-10892	1330	84x10 ²	-5460						
Si	0	гσ	n g	ಹ	$\alpha_{\frac{1}{4}}$	72	8	ω_7	80	В	β 2	в З	β	8	8	β 7

Table 2 Values of the Parameters

7	0.75	-0.121	0.880	-0.3613
9	0.72	-0.146	0.876	-0.0546 -0.0629 -0.0765 -0.0935 -0.1211 -0.1783 -0.3613
5	0.65 0.7 0.7 0.72	D -7.745 -4.142 -1.781 -0.761 -0.315 -0.146	0.918 0.819 0.718 0.789 0.805 0.876	-0.1211
77	0.7	-0.761	0.789	-0.0935
m	0.7	-1.781	0.718	-0.0765
N	0.65	-4.142	0.819	-0.0629
Н	c 0.65	-7.745	0.918	-0.0546
ы	บ	А	nax ξ , ξ≠1	Cp+1
			max	

	∞	1.0	m	0	_	- t	<u>~</u>												
	~	1.61696	10.66413	-31.03600	52.08747	-55.15654	37.74248	-16.29790	4.05987	-0.44654	Н	-5.36	12.5692	-16.84273	14.10578	-7.5607	2.53283	-0.48486	19010
		1.86044	11.60897	-32.02335	51.08433	-51.60880	33.84335	-14.07537	3.39473	-0.36341	П	69.4-	9.4269	-10.5267	7.05289	-2.83526	0.63321	-0.06061	
- 8 Coefficients	9	1.90132	11.89502	-32.67612	51.56311	-51.21458	32.85002	-13.31444	3.12358	-0.32527	7	-4.62	8.8935	-9.13066	5.27295	-1.62407	0.20842		
α - B Coe	7	2.06451	12.08742	-31.05578	45.96841	-43.15704	26.51760	-10.49343	2.45952	-0.26207	Н	-14	4.9	-5.12	2.048	-0.32768			
	4	1173707	6215008	-14564992	20023808	-17951500	10873632	-4352208	1041792	-112233	525×10 ³	-168x10 ⁴	2016×10 ³	-10752x10 ²	215040				
	3	15837335	76598820	-165829860	216404314	-190945650	117025860	-47684420	11515710	-1247439	672×10 ⁴	-17136x10 ³	145656x10 ²	-4126920					
	2	208185	893400	-1769838	2233280	-1996050	1250760	-514850	125088	-13605	84×103	-1512×10 ²	04089						
	r	0	д	N 8	ო გ	α,	S S	9	20	8 8	во	В	82	83	β,	8	8 9	87	8

Table 2 Values of the Parameters

80	79.0	-0.292	0.848	-0.2026
7	75.0 75.0 77.0	-0.347	0.823 0.848	-0.1369
9	0.77	-0.259	0.936	-0.1268
10	0.8	-3.327 -1.589 -0.572 -0.259 -0.347 -0.292	0.854 0.817 0.890 0.936	-0.0998
4	0.8	-1.589	0.817	-0.0785
m	0.85	-3.327	0.854	-0.0631
8	6.0	D -6.913	0.908	-0.0562 -0.0631 -0.0785 -0.0998 -0.1268 -0.1369 -0.2026
ы	U	Д	max \(\xi \) \(\xi \) \(\xi \)	C p+1

Table 1 g Coefficients 1 ರ

3 h 5 6 7 8 9 2.49233 2.38020 2.27073 2.16627 1.99009 1.96470 1.91402 12.99166 13.51294 13.94253 14.02673 13.88969 13.6420 13.34177 -31.14321 -35.21017 -38.47621 -40.77223 -43.36442 -42.62482 -41.94745 46.71954 55.14848 63.28275 70.19263 79.63084 78.74159 78.15897 49.44600 -58.74204 -69.12855 -79.31378 -94.90159 -74.15604 -85.32877 20.70050 -23.66824 -27.880777 -32.55587 -71.54640 -42.82670 -43.90716 7.50696 8.58943 9.87995 11.46606 14.74203 15.46492 16.02593 7.50696 8.58943 9.87995 11.46606 14.74203 15.46492 16.02593 7.50696 8.58943 9.87995 11.46606 14.74203 15.4649 16.02593 1 1 1 1 </th <th>- 1</th> <th>0 8</th> <th></th> <th>-3 V₂</th> <th>α 3</th> <th></th> <th></th> <th></th> <th>α_7</th> <th></th> <th>д О</th> <th>80</th> <th>β .</th> <th>80</th> <th></th> <th>Вц</th> <th>β₅</th> <th>B6</th> <th>B 7</th> <th>88</th> <th></th>	- 1	0 8		-3 V ₂	α 3				α_7		д О	80	β .	80		Вц	β ₅	B6	B 7	88	
2.27073 2.16627 1.99009 1.96470 13.94253 14.02673 13.88969 13.64420 -38.47621 -40.77223 -43.36442 -42.62482 -23.248911 61.31624 76.40558 77.46088 -27.80777 -32.55587 -41.54640 -42.82670 -27.80777 -32.55587 -41.54640 -42.82670 -27.80777 -32.55587 -41.54640 0.31903 1 1 1 1 1 -4 -4.5 -5.25 -5.28 -5.12 -8.4375 11.8125 12.1968 -5.12 -8.4375 -14.76563 -16.09977 -20.32768 1.4609 11.07422 13.28231 -0.32768 -1.42383 -4.9834 -7.01306 0.17798 1.245845 -0.43641 -0.32768 -1.42383 -4.9834 -7.01306 0.003600	m	2.49233	2,99166	1.14321	6.71954	0,44600	8.03174	0.70050	7.50696	1.62759	0.15970	П	2.7	2.43	-0.729						
2.16627 1.99009 1.96470 14.02673 13.88969 13.64420 14.02673 13.88969 13.64420 -40.77223 -43.36442 -42.62482 -1 70.19263 79.63084 78.74159 -79.31378 -94.96159 -94.90653 -9 61.31624 76.40558 77.46088 -32.55587 -41.54640 -42.82670 -1 11.46606 14.74203 15.46492 -2.42841 -3.10011 -3.30787 0.23490 0.29446 0.31903 1 1 1 1 1 1 1 24.5 -5.25 -5.28 8.4375 11.8125 12.1968 -8.4375 11.07422 13.28231 4.74609 11.07422 13.28231 70.19383 -4.9834 -7.01306 0.17798 1.24585 2.31431 -0.13348 -0.43641	7	2.38020	13.61294	-35.21017	55.14848	-58.74204	44.52186	-23,86824	8.58943	-1,85330	0.18124	П	-3.4	4.335	-2.4565	0.52201					
1.99009 1.96470 13.88969 13.64420 13.88969 13.64420 13.88969 13.64420 143.36442 -42.62482 -1 19.63084 78.74159 79.63084 78.74159 79.63084 78.74159 76.40558 77.46088 76.40558 77.46088 76.40558 77.46088 14.74203 15.46492 14.74203 15.46492 11.8125 2.31903 11.8125 12.1968 11.07422 13.28231 11.07422 13.28231 11.07422 13.28231 11.07428 2.31431 -0.13348 -0.43641	5	2.27073	13.94253	-38.47621	63.28275	-69.12855	52.48911	-27.80777	9.87995	-2.11718	0.20612	г	-74	4.9	-5.12	2.048	-0.32768				
1.96470 13.64420 13.64420 13.64420 -42.62482 -94.90653 -94.90653 -94.90653 -94.90653 -15.46492 15.46492 15.46492 15.46492 -7.01306 -7.01306 -7.01306 -7.01306 -0.43641 0.03600	9	2.16627	14.02673	-40.77223	70.19263	-79.31378	61.31624	-32.55587	11.46606	-2.42841	0.23490	Н	-4.5	8.4375	-8.4375	4.74609	-1.42383	0.17798			
	7	1.99009	13.88969	-43.36442	79.63084	-94.96159	76.40558	-41.54640	14.74203	-3.10011	0.29446	П	-5.25	11.8125	-14.76563	11.07422	4.9834	1.24585	-0.13348		
9 1.91402 13.34177 -41.94745 78.15897 -95.16604 78.53287 -43.90716 16.02593 -3.46162 0.33673 1 1 -5.4 12.96 -1.00777 0.16117	00	1.96470	13.64420	-42.62482	78.74159	-94.90653	77.46088	-42.82670	15.46492	-3.30787	0.31903	П	-5.28	12.1968	-16.09977	13.28231	-7.01306	2.31431	-0.43641	0.03600	
	0,	1.91402	13.34177	-41.94745	78.15897	-95.16604	78.53287	-43.90716	16.02593	-3.46162	0.33673	П	-5.4	12.96	-18.144	16.3296	-9.79776	3.9191	-1.00777	0.16117	80010

Table 2 Values of the Parameters

7 8 9	0.75 0.66 0.6	D -7.358 -3.720 -1.908 -1.045 -0.445 -0.559 -0.669	0.919 0.809 0.853	-0.0552 -0.0643 -0.0750 -0.0871 -0.1122 -0.1182 -0.1298
9		-0.47		[[1.0- [
	0.75	-1.045	0.892	-0.087
70	0.85 0.8	-1.908	0.843	-0.0750
†7	0.85	-3.720	0.907 0.881 0.843 0.892	-0.0643
m	6.0	-7.358	2.06.0	-0.0552
ы	ט	Q	max \(\xi \) \	ر 14-7

Table 1 α - β Coefficients

24	77	5	9	7	8	6	10
00	2.49504	2.44094	2.35486	2.39698	2.25826	2.16251	2.13072
η	15.46091	15.64456	15.91264	15.59497	15.88893	15.82665	15.67034
g N	-43.99996	-46.13535	-49.2588	-47.1692	-51.39958	-53.12941	-52.9723
m g	77.57873	83.70712	92.82348	88.05197	101.08168	107.97756	108.56297
σ [†]	-95.82305	-104.87119	-118.9178	-112.89273	-134.22254	-147.34856	-149.48435
Z S	87.19381	95.38026	108.84106	103.93186	125.92003	141.1519	144.4678
9	-58.55592	-63.55040	-72.15990	-69.33003	-84.49431	-96.08968	-99.14149
α_7	28.12647	30.30430	34.09694	32.88301	39.96810	45.84452	47.62567
Ф 8	-9.10910	-9.77631	-10.91500	-10.53770	-12.71736	-14.64359	-15.29600
g 01	1.78241	1.90815	2.12081	2.04686	2.44941	2.82162	2.95944
α10	-0.15927	-0.17020	-0.18859	-0.18203	-0.21610	-0.24849	-0.26138
во	Ч	Н	П	Н	٦	П	;— :
β,	-3.68	- 1/4	-4.5	7.4-	96.4-	-5.4	-5.5
82	5.0784	4.9	8.43749	7.56	10.7632	12.96	13.6125
8 8	-3.11475	-5.12	-8.43749	-7.56	-13.34637	-18.144	-19.965
84	0.71639	2.048	4.74608	4.536	10.34344	16.3296	19.21631
8		-0.32768	-1.42382	-1.63296	-5.13034	-9.79776	-12.68277
8			0.17798	0.32659	1.59041	3.9191	5.81293
87				-0.02799	-0.28173	-1.00777	-1.82692
88					0.02183	0.15117	0.37680
20						-0.01008	-0.04605
810							0.00253

Table 2 Values of the Parameters

N	†	5	9	7	ω	0	
5	3 0.92	0.8	0.75	9.0	0.8 0.75 0.6 0.62 0.6 0.55	9.0	0.5
Д	D -7.442	-5.01	-2.948	-3.572	-5.01 -2.948 -3.572 -1.8 -1.3 -1.2	-1.3	-1.2
$\max \xi $, $\xi \neq 1$	η26.0	0.861	0.895	0.884	0.895 0.884 0.833 0.851 0.890	0.851	0.89
C 0+1	0.0550 -0.0594 -0.0671 -0.0637 -0.0776 -0.0894	4650.0-	-0.0671	-0.0637	9220.0-	4680.0-	-0.09

11	2.32677	17.79747	-63.74501	141.45530	-216.23096	238.82776	-194.02640	115.57017	-49.28591	14.28216	-2.52311	0.20531	Н	5.5	13.75	-20.625	20.625	-14.4375	7.21879	-2.57812	0.64453	-0.10742	0.01074	-0.00049
10	2.35005	17.85686	-63.45946	139.67537	-211.87533	232.48794	-187.91836	111.53332	-47.45853	13.73657	-2.42574	0.19740	Н	-5.4	13.122	-18.89568	17.85642	-11.57096	5.20693	-1.60671	0.32536	406£0.0-	0.00211	
0	2,38615	17.87224	-62.58565	135.86498	-203.69435	221.52748	-177.99983	105.30284	-44.75489	12.95729	-2.29064	0.18669	Н	-5.22	12.1104	-16.38941	14.25878	-8.2701	3.19777	-0.79487	0.11526	-0.00743		
80	2.39530	17.96195	-62.71853	135.37824	-201.57263	217.81506	-174.17547	102.75886	-43.63909	12.64249	-2.23834	0.18276	J	-5.2	11.83	-15.379	12.49544	-6.49763	2.11173	-0.39218	0.03186			
7	2.43777	17.92604	-61.3217	129.87183	-190.48681	203.88645	-162,40845	95.87160	-40.84183	11.87800	-2.10998	0.17264	\vdash	76.4-	10.5861	-12.52688	8.89409	-3.78888	0.8967	-0.09095				
9	2.48725	17.81293	-59.32633	122.76072	-177.17122	188.21685	-149.91619	88,86983	-38.05524	11.11267	-1.97898	0.16221	Н	-4.68	9.126	-9.49104	5.55226	-1.7323	0.2252					
r	00	٦ ت	801	ಶ್	70	250	9	α	80 8	300	α 10	α 11	β0	β1	82	83	84	85	86	β7	88	^а 0	β 10	В 11

Table 2 Values of the Parameters

APPENDIX III

A. Third Order Formulas

Table 1 α - β Coefficients

Polynomial	P ₂	Q ₂	P ₃	Q ₃
α _O	185	167	1321	1126
α _l	342	294	2007	1962
α ₂	-171	- 165	-639	-954
α ₃	14	38	-47	118
β	96	96	750	750
β	0	-24	0	-450
β2	-54	6	0	270
β ₃			-162	- 162

Table 2
Values of the Parameters

Polynomial	P ₂	Q ₂	P ₃	^Q 3
C	-0.75		0.6	-0.6
D		-0.06		
$\max \xi , \xi \neq 1$	0.747	0.477	0.6128	0.5529
C _{p+1}	-0.1054	-0.1587	-0.1726	-0.2558

B. Fourth Order Formulas

Table 1 $\alpha - \beta$ Coefficients

Polynomial	P ₂	Q ₂	P ₃	Q ₃	Q ₄
α ₀	101	93	1063	185	13897
α _l	200	204	2128	402	29844
α ₂	-144	-180	-1884	-342	-23904
α3	56	84	880	158	8812
α_{14}	-11	-15	- 61	-33	- 855
βο	48	48	500	96	7500
β	0	<u>-</u> 24	0	-48	-4500
β ₂	-12	12	0	24	2700
β3			256	-12	-1620
В					972

Table 2 Values of the Parameters

Polynomial	P ₂	Q ₂	P ₃	^Q 3	Q ₄
C	-0.5	-0.5	-0.8	-0.5	-0.6
D	-0.557	-0.414	-0.462	-0.472	-0.363
$\max \xi , \xi \neq 1$	0.527	0.662	0.833	0.578	0.6545
C D $\max \xi , \xi \neq 1$ C C $p+1$	-0.0911	-0.1204	-0.0820	-0.1243	-0.1504

C. Fifth Order Formulas

Table 1 $\alpha - \beta$ Coefficients

Polynomial	P ₂	Q ₂	P ₃	Q ₃	P ₄	Q ₁	Q ₅
αο	551	3137	138458	208	439	2077	4142
αl	1230	8320	310935	517	964	5150	10225
α ₂	-1180	-10220	-343740	- 572	- 972	- 5660	-11120
α 3	740	7160	214580	388	664	3760	7220
α ₁₄	-285	- 2515	- 53130	-148	- 253	-1415	-2530
α 5	46	392	9813	23	36	242	347
β	240	1500	60000	96	192	960	1920
β	0	-1200	0	-48	0	-480	- 960
β ₂	- 60	960	0	24	0	240	480
β3			43740	-12	0	-120	-240
В					-12	60	120
β_5							- 60

Table 2
Values of the Parameters

Polynomial	P ₂	Q ₂	P 3	Q ₃	P ₄	Q ₄	Q ₅
	-0.5						
D	-2.325	-1.077	-1.101	-1.571	-2.250	-1.553	-1.449
$\max \xi , \xi \neq 1$	0.637	0.892	0.949	0.728	0.741	0.6875	0.722
C _{p+1}	-0.0708	-0.0975	-0.0670	-0.0875	-0.0720	-0.0886	-0.0913

D. Sixth Order Formulas

Table 1 $\alpha - \beta$ Coefficients

Polynomial	Q ₂	P ₃	Q ₃	P ₄	Q, 5
α _O	3443	18439	5655	1472401	4520
α_{1}	10156	45576	15655	3619208	12493
α ₂	-14810	-59130	-21125	-4572030	-16790
α ₃	13280	50000	3760	4192080	14780
α_{14}	- 7105	-25245	-10525	-2334035	-8200
α ₅	22208	8424	3306	662376	2615
α ₆	- 306	-1186	-455	- 95198	- 378
βΟ	1500	7500	2400	6x10 ⁵	1920
β	-1200	0	-1200	0	- 960
β2	960	0	600	0	480
β3		3840	-300	0	-240
β ₄				-144060	120
β ₅					-60

Table 2
Values of the Parameters

Polynomial	Q ₂	P ₃	Q ₃	P ₄	Q ₅
C	-0.8	-0.8	-0.5	-0.7	-0.5
D	-2.069	-4.452	-3.808	-4.694	-3.944
$\max \xi , \xi \neq 1$ C_{p+1}	0.934	0.868	0.861	0.933	0.839
C _{p+1}	-0.0732	-0.0566	-0.0671	-0.0573	-0.0677

E. Seventh Order Formulas

Table 1 $\alpha - \beta$ Coefficients

Polynomial	Q ₂	P ₃
α _O	412310	136400684
α_{1}	1342600	370394682
α2	-2287481	-568618092
α3	2519300	605263295
α_{14}	-1809150	-430428180
α ₅	85 3160	211815954
α ₆	-234675	-59320212
α_{7}	28556	729323 7
βΟ	168000	525x10 ⁵
β	-142800	0
β2	121380	0
β3		28946820

Table 2
Values of the Parameters

Polynomial	Q ₂	P ₃
С	-0.85	-0.82
D	-4.530	-12.022
$\max \xi , \xi \neq 1$	0.992	0.927
C _{p+1}	-0.0589	0.0474

LIST OF FIGURES

Figure 2 $\label{eq:figure 2} \text{Locus of } \rho(\xi)/\sigma(\xi) \quad \xi = e^{\mbox{$\rm i$} \Theta}, \; \Theta \; \epsilon[0, \; 2\pi]$

Seventh Order Formulas

Eighth Order Formulas

riguic)

Ninth Order Formulas

Figure 6
Tenth Order Formulas

Eleventh Order Formulas

Fifth Order Formula of Class II

Form AEC-427 (6/68) AECM 3201

U.S. ATOMIC ENERGY COMMISSION UNIVERSITY—TYPE CONTRACTOR'S RECOMMENDATION FOR DISPOSITION OF SCIENTIFIC AND TECHNICAL DOCUMENT

(See Instructions on Reverse Side)

		, 000 ,	20110112 011 71111111 0100 7			
1.	AEC REPORT NO. C00-1469-0162	2. TITLE	HIGH ORDER STIFF ORDINARY DIFFERE	FLY STABLE METHODS ENTIAL EQUATIONS	FOR	
3.	TYPE OF DOCUMENT (Check one): a. Scientific and technical report b. Conference paper not to be published in a journal: Title of conference Date of conference Exact location of conference Sponsoring organization c. Other (Specify)					
4.	RECOMMENDED ANNOUNCEMENT AND DISTRIBUTION (Check one):					
5. REASON FOR RECOMMENDED RESTRICTIONS:						
6.	C. W. Gear, Professor and Principle Investigator					
	Department of Computer Science University of Illinois Urbana, Illinois 61801					
	Signature Roberto	jear.		Date April 1970		
7.	FOR AEC USE ONLY AEC CONTRACT ADMINISTRATOR'S COMMENTS, IF ANY, ON ABOVE ANNOUNCEMENT AND DISTRIBUTION RECOMMENDATION:					
3.	PATENT CLEARANCE: a. AEC patent clearance has been granted by responsible AEC patent group. b. Report has been sent to responsible AEC patent group for clearance. c. Patent clearance not required.					

