

Review Exercise 6

Q.1 Ch	oose the	correct	answer.
--------	----------	---------	---------

(i) H.C.F of
$$p^3q - pq^3$$
 and $p^5q^2 - pq^5$ is

(a)
$$pq(p^2-q^2)$$

(b)
$$pq(p-q)$$

(c)
$$p^2q^2(p-q)$$

(d)
$$pq(p^3 - q^3)$$

(ii) **H.C.F of**
$$5x^2y^2$$
 and $20x^3y^3$ is _____

(a)
$$5x^2y^2$$

(b)
$$20x^3y^3$$

(c)
$$100x^5y^5$$

(iii) **H.C.F** of
$$x-2$$
 and x^2+x-6

(a)
$$x^2 + x - 6$$

(b)
$$x+3$$

(c)
$$x-2$$

(d)
$$x + 2$$

(iv) H.C.F of
$$a^3 + b^3$$
 and $a^2 - ab + b^2$

(a)
$$a+b$$

(b)
$$a^2 - ab + b^2$$

(c)
$$(a-b)^2$$

(d)
$$a^2 + b^2$$

(v) **H.C.F** of
$$x^2 - 5x + 6$$
 and $x^2 - x - 6$ is

(a)
$$x-3$$

(b)
$$x+2$$

(c)
$$x^2 - 4$$

(d)
$$x-2$$

(vi) H.C.F of
$$a^2 - b^2$$
 and $a^3 - b^3$ is_____

(a)
$$a-b$$

(b)
$$a+b$$

(c)
$$a^2 + ab + b^2$$

(d)
$$a^2 - ab + b^2$$

(vii) **H.C.F** of
$$x^2 + 3x + 2$$
, $x^2 + 4x + 3$ and $x^2 + 5x + 4$ is_____

(a)
$$x+1$$

(b)
$$(x+1)(x+2)$$

(c)
$$x+3$$

(d)
$$(x+4)(x+1)$$

(viii) L.C.M of
$$15x^2$$
, $45xy$ and $30xyz$ is_____

(a)
$$90xyz$$

(b)
$$90x^2yz$$

(c)
$$15xyz$$

(d)
$$15x^2yz$$

(ix) L.C.M of
$$a^2 + b^2$$
 and $a^4 - b^4$ is_____

(a)
$$a^2 + b^2$$

(b)
$$a^2 - b^2$$

(c)
$$a^4 - b^4$$

(d)
$$a-b$$

(a) Sum

(c) Product

(d) Quotitent

(xi) Simplify
$$\frac{a}{9a^2-b^2} + \frac{1}{3a-b}$$
 is_____

(c)
$$\frac{4a+b}{9a^2-b^2}$$

(d) $\frac{b}{9a^2-b^2}$

(xii) Simplify $\frac{a^2 + 5a - 14}{a^2 - 3a - 18} \times \frac{a+3}{a-2} =$

(a)
$$\frac{a+7}{a-6}$$

(b) $\frac{a+7}{a-2}$

(c)
$$\frac{a+3}{a-6}$$

(d) $\frac{a-2}{a+3}$

(xiii) Simplify the $\frac{a^3 - b^3}{a^4 - b^4} \div \frac{a^2 + ab + b^2}{a^2 + b^2} = \underline{\hspace{1cm}}$

(a)
$$\frac{1}{a+b}$$

(b) $\frac{1}{a-b}$

(c)
$$\frac{a-b}{a^2+b^2}$$

(d) $\frac{a+b}{a^2+b^2}$

(xiv) Simplify $\left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{x}{x+y}\right) = \underline{\hspace{1cm}}$

(a)
$$\frac{x}{x+y}$$

(b) $\frac{y}{x+y}$

(c)
$$\frac{y}{x}$$

(d) $\frac{x}{y}$

(xv) The square root of $a^2 - 2a + 1$ is

(a)
$$\pm (a+1)$$

(b) $\pm (a-1)$

(c)
$$a-1$$

(d) a+1

(xvi) What should be added to complete the square of $x^4 + 64$?

(a)
$$8x^2$$

(b) $-8x^2$

(c)
$$16x^2$$

(d) $4x^2$

(xvii) The square root to $x^4 + \frac{1}{x^4} + 2$ is_____

(a)
$$\pm \left(x + \frac{1}{x}\right)$$

(b)
$$\pm \left(x^2 + \frac{1}{x^2}\right)$$

(c)
$$\pm \left(x - \frac{1}{x}\right)$$

(d)
$$\pm \left(x^2 - \frac{1}{x^2}\right)$$

b

ANSWER KEYS

		THIS WELL INDIS							
1	b	5	a	9	c	13	a	1	
2	a	6	a	10	C	14	d		
3	C	7	a	11	c	15	b		
4	b	8	b	12	a	16	С		

Q.2 Find the H.C.F of the following by factorization.

$$8x^4 - 128, 12x^3 - 96$$

Solution:

$$8x^{4} - 128 = 8(x^{4} - 16) = 8[(x)^{2} - (4)^{2}]$$
$$= 2 \times 2 \times 2(x^{2} + 4)(x^{2} - 4)$$
$$= 2 \times 2 \times 2(x^{2} + 4)(x + 2)(x - 2)$$

$$12x^{3} - 96 = 12(x^{3} - 8)$$

$$= (12(x^{3} - 2^{3}))$$

$$= 12(x - 2)(x^{2} + 2x + 4)$$

$$2 \times 2 \times 3(x-2)(x^2+2x+4)$$

$$\mathbf{H.C.F} = 2 \times 2(x-2)$$

$$=4(x-2)$$

Q.3 Find the H.C.F of the following by division method $y^3 + 3y^2 - 3y - 9$, $3y^2 - 8y - 2y$.

Solution:
$$y^3 + 3y^2 - 3y - 9$$
,

$$= y^3 + 3y^2 - 3y - 9$$

$$y^{3} + 3y^{2} - 8y - 24 y^{2} + 3y^{2} - 3y - 9$$

$$\pm y^{2} \pm 3y^{2} \pm 8y \pm 24$$

$$5y + 15$$

$$5(y + 3)$$

$$y^{2} - 8$$

$$y + 3 y + 3 y - 8 y - 24$$

$$\pm y 3 \pm 3 y$$

$$-8 y - 24$$

$$\pm 8 y \pm 24$$

H.C.F =
$$(y+3)$$

Q.4 Find the L.C.M of the following by factorization.

$$12x^2 - 75$$
, $6x^2 - 13x - 5$, $4x^2 - 20x + 25$

Solution:

$$12x^{2} - 75 = 3(4x^{2} - 25)$$

$$= 3[(2x)^{2} - (5)^{2}]$$

$$= 3(2x - 5)(2x + 5)$$

$$6x^{2} - 15x + 2x - 5 = 3x(2x - 5) + 1(2x - 5)$$

$$= (2x - 5)(3x + 1)$$

$$4x^{2} - 20x + 25 = 4x^{2} - 10x - 10x + 25$$

$$= 2x(2x - 5) - 5(2x - 5)$$

$$= (2x - 5)(2x - 5)$$

Common factor = (2x-5)

Non common factor = 3(3x+1)(2x-5)2x+5

 $L.C.M = common factor \times non common factor$

L.C.M =
$$(2x-5)3(3x+1)(2x+5)(2x-5)$$

L.C.M =
$$3(2x+5)(2x-5)^2(3x+1)$$

Q.5 If H.C.F of $x^4 + 3x^3 + 5x^2 + 26x + 56$ and $x^4 + 2x^3 - 4x^2 - x + 28$ is $x^2 + 5x + 7$ find their L.C.M.

Solution:
$$p(x) = x^4 + 3x^3 + 5x^2 + 26x + 56$$
 and $q(x) = x^4 + 2x^3 - 4x^2 - x + 28$

$$HCF = x^2 + 5x + 7$$
, LCM=?

$$L.CM = \frac{P(x) \times q(n)}{H.C.F}$$

L.C.M =
$$\frac{\left(x^4 + 3x^2 + 5x^2 + 26x + 56\right) \times \left(x^4 + 2x^3 - 4x^2 - x + 28\right)}{\left(x^2 + 5x + 7\right)}$$

$$x^{2} + 5x + 7) x^{4} + 2x^{3} - 4x^{2} - x + 28$$

$$\pm x^{4} \pm 5x^{3} \pm 7x^{2}$$

$$-3x^{3} - 11x^{2} - x + 28$$

$$\pm 3x^3 \mp 15x^2 \mp 21x$$

$$+4x^{2} + 20x + 28$$

 $\pm 4x^{2} \pm 20x \pm 28$

0

$$x^2 - 3x + 4$$

$$L.CM = \frac{(x^4 + 3x^3 + 5x^2 + 26x + 56)(x^4 + 2x^3 - 4x^2 - x + 28)}{(x^2 + 5x + 7)}$$

$$L.CM = (x^4 + 3x^3 + 5x^2 + 26x + 56)(x^2 - 3x + 4)$$

Q.6 Simplify: Solution:

(i)
$$\frac{3}{x^3 + x^2 + x + 1} - \frac{3}{x^3 - x^2 + x - 1}$$
Solution:
$$\frac{3}{x^3 + x^2 + x + 1} - \frac{3}{x^3 - x^2 + x - 1}$$

$$= \frac{3}{x^2 (x + 1) + 1(x + 1)} - \frac{3}{x^2 (x - 1) + 1(x - 1)}$$

$$= \frac{3}{(x^2 + 1)(x + 1)} - \frac{3}{(x - 1)(x^2 + 1)}$$

$$= \frac{3(x - 1) - 3(x + 1)}{(x + 1)(x - 1)(x^2 + 1)}$$

$$= \frac{3x - 3 - 3x - 3}{(x - 1)(x - 1)(x^2 + 1)}$$

$$= \frac{-6}{(x + 1)(x - 1)(x^2 + 1)} = \frac{-6}{(x^2 - 1)(x^2 + 1)}$$

$$= \frac{-6}{(x^4 - 1)}$$

$$= \frac{6}{1 - x^4}$$

(ii) $\frac{a+b}{a^2-b^2} \div \frac{a^2-ab}{a^2-2ab+b^2}$ Solution: $\frac{a+b}{a^2-b^2} \div \frac{a^2-ab}{a^2-2ab+b^2}$ $= \frac{a+b}{a^2-b^2} \times \frac{a^2-2ab+b^2}{a^2-ab}$ $= \frac{a+b}{(a-b)(a+b)} \times \frac{(a-b)^2}{a(a-b)}$

$$= \frac{\left(a - b\right)^2}{a\left(a - b\right)^2}$$
$$= \frac{1}{a}$$

Find the square root by using factorization. $\left(x^2 + \frac{1}{x^2}\right) + 10\left(x + \frac{1}{x}\right) + 27 \quad (x \neq 0)$. **Q.**7

Solution:
$$(x^2 + \frac{1}{x^2} + 10\left(x + \frac{1}{x}\right) + 27$$

$$= (x^2 + \frac{1}{x^2} + 10\left(x + \frac{1}{x}\right) + 25 + 2$$

$$= x^2 + \frac{1}{x^2} + 2 + 10\left(x + \frac{1}{x}\right) + 25$$

$$= \left(x + \frac{1}{x}\right)^2 + 2\left(x + \frac{1}{x}\right) \times 5 + (5)^2$$

$$= \left[x + \frac{1}{x} + 5\right]^2$$
Taking the square root

$$\sqrt{\left(x^{2} + \frac{1}{x^{2}}\right) + 10\left(x + \frac{1}{x}\right) + 27} = \sqrt{\left[x + \frac{1}{x} + 5\right]^{2}}$$

$$= \pm \left(x + \frac{1}{x} + 5\right)$$

Find the square roots by using division method. $\frac{4x^2}{v^2} + \frac{20x}{v} + 13 - \frac{30y}{r} + \frac{9y^2}{r}$ Q.8 **Solution:**

$$\frac{2x}{y} + 5 - \frac{3y}{x}$$

$$\frac{2x}{y} \sqrt{\frac{4x^{2}}{y^{2}} + \frac{20x}{4} + 13 - \frac{30y}{x} + \frac{9y^{2}}{x^{2}}}$$

$$\frac{\pm \frac{4x^{2}}{y^{2}}}{\frac{4x}{y} + 5} \sqrt{\frac{20x}{y} + 13 - \frac{30y}{x} + \frac{9y^{2}}{x^{2}}}$$

$$\pm \frac{20x}{y} \pm 25$$

$$\frac{4x}{y} + 10 - \frac{3y}{x} - 12 - \frac{30x}{x} + \frac{9y^{2}}{x^{2}}$$

$$= 12 + \frac{30x}{x} \pm \frac{9y^{2}}{x^{2}}$$

Square root =
$$\pm \left[\frac{2x}{y} + 5 - \frac{3y}{x} \right]$$

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: <u>WWW.FREEILM.COM</u>]

[EMAIL: FREEILM786@GMAIL.COM]

[PAGE: <u>7 OF 7</u>]