Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-) Tutorial 6

GAO Ming

DaSE @ ECNU

1 Apr., 2019

Tutorial 6

1. Let *A* be

$$A = \left(\begin{array}{cc} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{array}\right).$$

- a. Find the sigular values of matrix A;
- b. Find the SVD of matrix A.
- 2. Given the following 3-dimensional data

data	1	2	3
×	1	-1	4
у	2	1	3
z	1	3	-1

- a. Compute the co-variance matrix of the data;
- b. Find the principle components of the data.

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めらで

Tutorial 6 Cont'd

- 3. Given $f(x) = x^3 6x^2 + 11x 6$. Using Newton method, find all roots of the equation f(x) = 0.
- 4. Let J be the reconstruction error in matrix factorization,

$$J = \frac{1}{2} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mathbf{p}_u^T \mathbf{q}_i)^2$$

where r_{ui} is the known rating of user u for item i, $\widehat{u}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$ is the predicted rating given by user u for item i, and the set of all user-item pair (u,i), which are observed in R, be denoted by \mathcal{K} , i.e., $\mathcal{K} = \{(u,i)|r_{ui} \text{ is observed}\}.$

- $\mathcal{L} = \{(u, t)|t_{ui} \text{ is observed}\}.$
 - a. Show J is not a convex function of parameters P and Q;
 - b. Compute $\frac{\partial J}{\partial p_{uj}}$ and $\frac{\partial J}{\partial q_{ji}}$.
 - c. When we employ Gradient descent method to learning the parameters, give the update rules for parameters p_{uj} and q_{ji} .