模拟赛

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	负二进制	旋转减半数	进入太戈	上机体验
英文题目与子目录名	negbin	half	tiger	line
可执行文件名	negbin	half	tiger	line
输入文件名	negbin.in	half.in	tiger.in	line.in
输出文件名	negbin.out	half.out	tiger.out	line.out
每个测试点时限	1秒	1秒	1秒	1秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	有	有	有	有
结果比较方式	全文比较,过滤末行后空行,不过滤中间行行末空格			
题目类型	传统	传统	传统	传统
运行内存上限	256M	256M	256M	256M

二、提交源程序文件名

对于 C++语言	negbin.cpp	half.cpp	tiger.cpp	line.cpp

三、编译命令(不包含任何优化开关)

对于 C++语言	g++ -o negbin	g++ -o half	g++ -o tiger	g++ -o line
	negbin.cpp -1m	half.cpp -1m	tiger.cpp -1m	line.cpp -1m

负二进制

(negbin.cpp)

【问题描述】

除了二进制 , -2 也可以作为进制的基数 , 我们称这种新的表示方法为负二进制。这种特殊进制的优点是:

- 不论正负,任何整数都有且只有一种表示方法;
- 表示负数不用负号 -

负二进制以 -2 作为基数, 从最低位开始, 每位的权重依次为 1,-2,~4,-8,16, ,...例如:

$$(111)-2=(-2)2+(-2)1+(-2)0=3$$

$$(1011)-2=(-2)3+(-2)1+(-2)0=-9$$

$$(11010)-2=(-2)4+(-2)3+(-2)1=6$$

给定一个以十进制表示的整数 n, 请输出 n 的负二进制表示, 头部不要出现多余的 0。

【输入格式】输入文件 negbin.in

单个整数,表示n。

【输出格式】输出文件 negbin.out

单个字符串, 表示 n 的负二进制表示。

【输入输出样例1】

negbin.in	negbin.out
-13	110111

【样例说明】-32+16-0+4-2+1=-13

【数据规模】

对于 50% 的数据 , -100≤n≤100 ;

对于 100% 的数据 , -109≤n≤109。

旋转减半数

(half.cpp)

时空限制:1s/256M,测试数据共10组

【问题描述】

842105263157894736 是一个很有趣的数字,因为如果将第一位数字 8 移动到最后,可以得到421052631578947368 恰好是原来数字的一半。

这样旋转后恰好减半的数字在其他进制中也存在。比如在二进制下,10101010 就是一个旋转后减半的数字:

(1010)2=(0101)2+(0101)2

给定一个正整数 b,请求出 b 进制下最小的旋转减半数,所谓旋转减半数,就是将第一位数字移动到最后一位后,得到的新数字恰好在 b 进制下为原数字大小的一半。

如果不存在这样的数字,输出 None

【输入格式】输入文件 half.in

单个整数表示 b

【输出格式】输出文件 half.out

若干个自然数,每个数字表示一位数字,每位数字在 0 到 b-1 之间,第一位不能为 0,每个数字间有一个空格。若不存在这样的数字,输出 None。

【输入输出样例1】

half.in	half.out
2	10

【样例说明】10=01+01

【输入输出样例 2】

half .in	half.out
10	105263157894736842

【样例说明】105263157894736842=52631578947368421+52631578947368421

【数据规模】

对于 30% 的数据, 2≤b≤10;

对于 60% 的数据, 2≤b≤200;

对于 100% 的数据, 2≤b≤2000。

进入太戈

(tiger.cpp)

【问题描述】

太戈空间是一个令人向往的空间。但是在进入太戈空间之前,你需要先通过无人区,一块 M*N 格构成的区域,每个格子上有一个正整数。行的编号从 1, 2,...M, 列的编号从 1,2,...,N。格子(r,c)表示第 r 行第 c 列的格子。

你现在位于左上角的格子(1,1),太戈的入口在右下角(M,N)。你所在的格子上是正整数 x,你可以跳跃到任意格子(a,b),只要满足 x=a*b 的条件。例如现在所在格子数字是 6,那么可以跳到(2,3)。需要注意的是跳跃不能超过区域的边界,如果区域尺寸是 5*6,从数字 6 的格子可以跳跃到(2,3), (3,2), (1,6), (6,1),但是总共 5 行,所以(6,1)是无法到达的。

【输入格式】输入文件 tiger.in

第一行一个整数 M (1 ≤ M ≤ 1000)。第二行一个整数 N (1 ≤ N ≤ 1000)。接下来 M 行,每行 N 个正整数 , 用空格分开,表示区域每个格子上的数字,每个数字均不超过 1000000。

【输出格式】输出文件 tiger.out

如果可以到达入口,输出yes,否则输出no。

【输入输出样例 1】

tiger.in	tiger.out
3 4	yes
3 10 8 14	
1 11 12 12	
6239	

【样例说明】起点(1,1)上的数字是 3 , 可以到达(1,3)。(1,3)上的数字是 8 , 可以跳到(2,4)。(2,4)上的数字是 12 , 可以跳到(3,4)。

【数据规模】

对于 20% 数据, 1≤m≤10,1≤n≤10;

对于 50% 数据, 1≤m≤50,1≤n≤50;

对于 70% 数据, 1≤m≤200,1≤n≤200;

对于 100% 数据, 1≤m≤1000,1≤n≤1000;

上机体验

(line.cpp)

时空限制:1s/256M,测试数据共10组

【问题描述】

冬令营上某公司赞助了一台超级计算机。每位与会人员都想要到超级计算机上体验一番。

由于只有一台超级计算机,人们体验时难免会排队等待。参会共 n 人(1≤n≤10⁵),每个人都有个安排,在 t_i时间来体验,体验共持续 l_i时间。由于入会时间不等,先入会的人资历老,在体验时有优先权。

现场是这样的,如果计算机有人使用,那么新来的人需要等待。如果计算机当前无人使用,那么前来的人可以直接上机体验,并且持续 l₁分钟,然后走人,后面的人继续上机体验。如果等待的人不止 1 个,那么按照资历先后,由资历最老的人先上机,其他人继续等待。

请问所有人体验完,排队队伍里等待时间最长的人等了多久?等待时间计算规则为这个人上机时间减去到达时间。

【输入格式】输入文件 line.in

输入的第一行包含 n。接下来 n 行按资历顺序给出了 n 个人的信息(按照资历从大到小给出)。每行包含一个人的到达时间和持续时间。持续时间为不超过 10⁴ 的正整数,到达时间为不超过 10⁹ 的正整数。

【输出格式】输出文件 line.out

所有人中最长等待时间。

【输入输出样例1】

line.in	line.out
5	10
25 3	
105 30	
20 50	
10 17	
100 10	

【样例说明】有 5 个人(按输入中的顺序编号为 1..5)。4 号最先到达(时间 10),在结束之前(时间 27)1 号和 3 号都到达了。由于 1 号资历老,所以先轮到他,他从到达到开始共等待了 2 个单位时间。1 号在时间 30 结束,随后 3 号开始,从他到达开始共计等待了 10 单位时间。在一段没有人后,5 号到达,在他正在使用的时间里 2 号也到达了,在 5 个单位时间之后轮到 2 号。过程中等待时间最长的是 3 号。

【数据规模】

对于 10% 数据,1≤n≤10

对于 30% 数据, 1≤n≤10⁴

对于 100%的数据, 1≤n≤10⁵

