Séquence 04 - TP01 - Îlot 04

Lycée Dorian Renaud Costadoat Françoise Puig

Géométrie pour la mécanique

Référence S04 - TP01 - I04
Compétences Mod2-C11: Modélisation géométrique et cinématique des mouvements entre solides indéformables
Description Déterminer une fermeture géométrique et vérifier expérimentalement.
Système Plateforme Stewart

Problématique du TP:

Déterminer une loi d'entrée/sortie géométrique

- MODELISER

Modéliser la loi d'entrée/sortie

On donne le paramétrage suivant pour la géométrie de la plateforme.

Des données sur le système sont disponibles ici : Ressources système.

Question 1 Écrire les vecteurs $\overrightarrow{O_FB_i}$, $\overrightarrow{B_iA_i}$ et $\overrightarrow{A_iO_M}$ dans les bases respectives $B_F(\overrightarrow{x_F},\overrightarrow{y_F},\overrightarrow{z_F})$, $B_i(\overrightarrow{x_i},\overrightarrow{y_i},\overrightarrow{z_i})$ et $B_M(\overrightarrow{x_M},\overrightarrow{y_M},\overrightarrow{z_M})$. On mesurera r_M , r_F , α et β directement sur le système et on prendra $\|\overrightarrow{B_iA_i}\| = l_i$ variable.

On donne le vecteur $\overrightarrow{O_FO_M} = x.\overrightarrow{x_F} + y.\overrightarrow{y_F} + z.\overrightarrow{z_F}$. x, y et z sont supposés connus. De même, θ_1, θ_2 et θ_3 sont supposés connus.

Question 2 Écrire $\overrightarrow{O_FB_i}$ en fonction de α et de i.

Question 3 Écrire $\overrightarrow{O_MA_i}$ en fonction de β et de i.

Question 4 Écrire x_M , y_M et z_M dans la base $B_F(\overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$.

Question 5 A partir des résultats précédents, écrire $\overrightarrow{B_iA_i}$ dans la base $B_F(\overrightarrow{x_F}, \overrightarrow{y_F}, \overrightarrow{z_F})$.

Question 6 Déterminer alors chaque longueur l_i .

EXPERIMENTER

Vérifier le calcul des longueurs l_i .

Télécharger le fichier Modèle Solidworks.

Question 7 Ouvrir le fichier assemblage de la plateforme et vérifier sont paramétrage. On pourra vérifier en déplaçant les pièces à la main que les contraintes ont été correctement mises en place.

Télécharger le fichier Modèle Simscape.

- Question 8 Simuler le modèle simulink (version 2016a), vérifier les données affichées.
- **Question 9** Recopier la formule de la première partie dans le bloc fonction et comparer les résultats des deux modèles.

Utilisation de Matlab Simscape

La procédure suivante explique comment utiliser Matlab afin de simuler un modèle Simscape.

Ce modèle a été construit à partir des pièces, assemblages et contraintes d'un modèle Solidworks. Ce dernier n'est pourtant pas nécessaire pour le faire tourner.

Procédure:

- Dézipper l'archive à télécharger ici Modèle Simscape,
- Lancer Matlab 🍑 MATLAB R2016b
- Depuis Matlab, naviguer dans le dossier dézippé jusqu'au dossier contenant les fichiers « .slx » et « Simscape »,

<table-cell-rows>

→ 🔁 🛜 🌗 → P: → Mes do

Faire un clic-droit sur le dossier « Simscape » et cliquer sur « Add to Path »,

 Double-cliquer sur le fichier correspondant au TP et à la version de Matlab utilisée, il doit avoir une extension en « slx ».

Correction 1

Question 1:

$$\overrightarrow{AB} = a \cdot \overrightarrow{y_0}, \overrightarrow{AC} = l(t) \cdot \overrightarrow{x_1}$$
 et $\overrightarrow{BC} = b \cdot \overrightarrow{x_2}$, avec a=112mm et b=81mm.

Question 2:
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

Question 3:

$$l(t) \cdot \cos\theta_1 = b \cdot \cos\theta_2 \tag{1}$$

$$l(t) \cdot sin\theta_1 = a + b \cdot sin\theta_2 \tag{2}$$

Question 4:

$$tan\theta_1 = \frac{a + b \cdot sin\theta_2}{b \cdot cos\theta_2} \tag{3}$$

Question 5:

$$\theta_1 = \arctan\left(\frac{a + b \cdot \sin\theta_2}{b \cdot \cos\theta_2}\right) \tag{4}$$

Question 6:

$$b \cdot \sin\theta_{1} \cdot \cos\theta_{2} = a \cdot \cos\theta_{1} + b \cdot \sin\theta_{2} \cdot \cos\theta_{1}$$

$$b \cdot (\sin\theta_{1} \cdot \cos\theta_{2} - \sin\theta_{2} \cdot \cos\theta_{1}) = a \cdot \cos\theta_{1}$$

$$b \cdot \sin(\theta_{1} - \theta_{2}) = a \cdot \cos\theta_{1}$$

$$\theta_{1} - \theta_{2} = \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$

$$\theta_{2} = \theta_{1} - \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$
(5)