ANSWER KEY (AIPMT-2001)

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	3	3	1	3	3	2	2	3	2	2	1	1	1	1	2	1	2	3	2	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	2	2	2	2	1	1	2	1	1	1	2	3	1	1	1	1	2	1	3	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	1	1	1	1	2	3	2	1	1	2	2	2	1	1	1	3	2	3	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	2	3	1	1	1	2	1	1	2	2	2	3	3	3	1	1	3	2	1	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	1	2	1	1	4	2	3	1	1	1	1	1	3	1	3	3	2	4	2	1
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	2	1	1	4	1	1	4	1	2	2	3	4	1	1	4	4	3	3	4
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	4	1	3	1	1	1	2	1	3	4	2	1	4	1	1	2	1	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	1	1	1	1	4	1,2	3	1	3	3	3	1	1	2	1	2	1	2	1	2
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	2	3	3	4	1	2	4	2	1	3	1	1	1	1	1	2	1	1	1
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	2	4	4	4	2	2	3	1	1	3	3	2	2	1	2	2	2	2	4

HINTS & SOLUTIONS

5.

$$v^2 = u^2 - 2g \frac{h}{2}$$

$$0 = (10)^2 - 10h$$

$$h = 10 \text{ m}$$

6.
$$K' = K\cos^2 45^\circ = K/2$$

9.

Apply COME between max^m and min point

$$mgh = Mgh_1 + \frac{1}{2} MV^2$$

10. Equivalent ckt is

$$I = \frac{5V}{(30+20)\Omega}$$

$$I = \frac{5}{50}A$$

12.
$$E = \frac{kx^2}{2} = \frac{k^2x^2}{2k} \Rightarrow E = \frac{f^2}{2k}$$

$$\because$$
 Force is equal $\therefore E \propto \frac{1}{k}$

16. Carnot engine is an Ideal engine so its efficiency will be will be maximum

$$\therefore \ \eta_{max.} = \frac{400 - 300}{400} \ \times 100\% = 25\%$$

therefore 26% efficient engine is impossible

17. Impulse = change in momentum

$$F = \frac{\Delta P}{\Delta t} = \frac{150 \times 10^{-3} \times 20}{0.1} = 30 \text{ N}$$

18.
$$n = \frac{1}{2\ell} \sqrt{\frac{T}{\pi r^2 o}}$$

$$\rho_1 = \frac{\rho}{2}$$
, $T^1 = 2T$ and $D^1 = 2D$ या $r_1 = 2r$

$$n^1 = \frac{1}{2\ell} \sqrt{\frac{2T}{\pi (2r)^2 \frac{\rho}{2}}} \, = \frac{1}{2\ell} \sqrt{\frac{T}{\pi r^2 \rho}} \, = n$$

 \Rightarrow No change

20. Apply energy consevation
$$\frac{-GMm}{R} + \frac{1}{2} mv^2$$

$$= - \frac{GMm}{2R} \Rightarrow v = \sqrt{\frac{GM}{R}}$$

21.

$$\sin \theta c = \frac{1}{u} = \frac{1}{5/3}$$

$$\Rightarrow \frac{r}{\sqrt{4^2 + r^2}} = \frac{3}{5}$$

$$\Rightarrow$$
 $r = 3$

23. Heat flow rate =
$$\frac{KA(T_1 - T_2)}{L}$$
 = Q

when linear dimensions are doubled

$$A_1 \propto r_1^2$$
, $L_1 = L$

$$L_1 = I$$

$$A_2 \propto 4r_1^2$$

$$A_2 \propto 4r_1^2$$
, $L_1 = 2L_1 \text{ so } Q_2 = 2Q_1$

24.
$$\left| \overrightarrow{A} + \overrightarrow{B} \right|^2 = A^2 + B^2 + 2AB \cos \theta$$
$$\Rightarrow A^2 = A^2 + A^2 + 2A^2 \cos \theta$$

$$\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = 120^{\circ}$$

29. Energy density =
$$\frac{1}{2} \in_0 \frac{v^2}{d^2}$$

30.

$$\begin{aligned} &\text{fr}_L = \mu_s.N & & \text{pseudo force} = \text{ma} \\ &= \mu s.\text{mg} & = 1 \times 5 \\ &= 0.6 \times 1 \times 10 & & F = 5 \text{ N} \\ &= 6 \text{N} \end{aligned}$$

 \therefore F < fr_L block does not move static firction = applied force

$$\Rightarrow$$
 fr = 5N

34. Solve by
$$x = \frac{I_{\rho}}{\Delta}$$

35.
$$I = t^{2}e^{-t}$$

$$e = L \frac{d\ell}{dt} \text{ here emf is zero when } \frac{d\ell}{dt} = 0$$

$$\frac{d\ell}{dt} = 2te^{-t} - t^{2}e^{-t} = 0$$

$$\Rightarrow$$
 te^{-t} (t-2) = 0 \Rightarrow t = 2 sec

36.
$$\frac{I_C}{I_E} = \alpha = 0.98$$
; $\frac{I_C}{I_B} = \beta = \frac{\alpha}{1 - \alpha} = 49$

40.
$$2dsin\theta = n\lambda :: -1 \le sin \theta \le 1$$
 Therefore $\lambda_{max.} = 2d \Rightarrow \lambda_{max.} = 2 \times 2.8 \times 10^{-8} m$
$$\Rightarrow \lambda_{max.} = 5.6 \times 10^{-8} m$$

46.
$$\eta = \frac{\text{useful work}}{\text{total work}} = \frac{\text{mgh}}{\text{F} \times \text{d}} = \frac{(75\text{g}) \times 3}{250 \times 12} = 0.75$$

49. Apply conservation of linear momentum

$$\Rightarrow$$
 3mV = 30 $\sqrt{2}$ m

$$\Rightarrow$$
 V = $10\sqrt{2}$

52.
$$CH_3$$
- CH_2 - CH_2 - CH_3 - CH_3 - CH_2 CH- CH_3
intermediate Sp^2 hybrid planar

shape
$$\xrightarrow{Cl}$$
 recemic mix

planr shape (समतलीय आकृति) पर reagent का आक्रमण दोनों तरफ से हो सकता है।

70.
$$CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$$

$$\Delta H = x - y$$
 given $\Delta H = -ve$

Hence
$$x - y < 0$$
 $x < y$

71.
$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

this is a first order reaction

$$\therefore \text{ rate} = K[N_2O_5][N_2O_5] = \frac{\text{rate}}{K}$$

72. At the end of 25 hrs. activity = 0.01 M half life = 6 hrs

In 24 hrs. there are
$$\frac{24}{6}$$
 = 4 half life

Activity of susbtance after n half life = $\frac{(A)}{2^n}$

$$\Rightarrow \frac{(A)}{2^4} = 0.01 \qquad (A) = 0.16$$

74. Density = 1.17 gm/cc.

⇒ 1cc. solu. contains 1.17 gm of HCl

$$\therefore \text{ molarity} = \frac{1.17 \times 1000}{36.5 \times 1}$$

75. In peroxidase anlydrous enzyme 0.55 Se is present means, 0.5gm. Se is present in 100gm of enzyme

In a molecule of enzyme one Se atom must be present hence 78.4 gm Se will be present in

$$\frac{100}{0.5} \times 78.4 = 1.568 \times 10^4$$

Sp. vol (vol. of 1gm) cylindrical virus particle = 6.02×10^{-2} cc/gm radius of virus r = $7\text{Å} = 7 \times 10^{-8}$ cm length of virus = $\pi r^2 \ell$

$$=\frac{22}{7}\times(7\times10^{-8})^2\times10\times10^{-8}=154\times10^{-23}cc$$

wt. of one virus particle = $\frac{\text{Vol.}}{\text{Sp.vol.}}$

$$\Rightarrow \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \text{ gm}$$

76.

 \therefore mol. wt. of virus = wt. of N_A particles

$$=\frac{154{\times}10^{-23}}{6.02{\times}10^{-2}}\,\times6.02\times10^{+23}\;\text{gm/mol}$$

= 15400 gm/mol = 15.4 kg/mol