Axiomes

Exercice 1 ★

Préciser pour chacun des triplets suivants les lois + et \cdot qui les munissent d'une structure d'espace vectoriel ainsi que le vecteur nul.

- 1. $(\mathbb{R}^n, +, \cdot)$
- 2. $(\mathbb{R}^{\mathbb{R}},+,\cdot)$
- 3. $(\mathbb{R}^{\mathbb{N}}, +, \cdot)$
- **4.** $(\mathbb{C}, +, \cdot)$

Exercice 2 ★

Vérifier que l'ensemble \mathbb{R}_+^* muni des lois interne et externe suivantes

$$u \coprod v = uv$$
 et $\lambda \boxdot u = u^{\lambda}$,

où u et v sont dans \mathbb{R}_+^* et $\lambda \in \mathbb{R}$, est un \mathbb{R} -espace vectoriel.

Sous-espaces vectoriels

Exercice 3 ★★

Dans l'espace vectoriel $E=\mathbb{R}^3$, on considère les ensembles suivants,

$$F = \left\{ (\lambda - 3\mu, 2\lambda + 3\mu, \lambda) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

et

G =
$$\{(x, y, z) \in E \mid x + 2y = 0\}.$$

- 1. Prouver que les ensembles F et G sont des sous-espaces vectoriels de E.
- **2.** Déterminer le sous-espace vectoriel $F \cap G$.

Exercice 4 ★

Soient E un K-espace vectoriel et X, Y deux parties de E. Prouver que

$$\text{vect}(X \cap Y) \subset \text{vect}(X) \cap \text{vect}(Y)$$
.

Donner un exemple où cette inclusion est stricte.

Exercice 5

Montrer qu'un \mathbb{K} -espace vectoriel E n'est jamais l'union de deux sous-espaces vectoriels stricts (i.e. distincts de E).

Exercice 6

- 1. $E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^3 ?
- **2.** $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^3 ?
- 3. $E_3 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0, y = z\}$ est-il un sous-espace vectoriel de \mathbb{R}^4 ?
- **4.** $E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1\}$ est-il un sous-espace vectoriel de \mathbb{R}^3 ?
- 5. $E_5 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy \ge 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^2 ?
- **6.** $E_6 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 \ge 0\}$ est-il un sous-espace vectoriel de \mathbb{R}^2 ?

Exercice 7 ★

 $\mathbb R$ est-il un sous-espace du $\mathbb R\text{-espace}$ vectoriel $\mathbb C\,?$ du $\mathbb R\text{-espace}$ vectoriel $\mathbb C\,?$

Exercice 8

Parmi les parties suivantes du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$, déterminer celles qui en sont des sous-espaces vectoriels.

1.
$$E_1 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(1) = 0 \}.$$

2.
$$E_2 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 1 \}.$$

- **3.** L'ensemble E_3 des fonctions croissantes de \mathbb{R} dans \mathbb{R} .
- **4.** L'ensemble E_4 des fonctions décroissantes de $\mathbb R$ dans $\mathbb R$.
- **5.** L'ensemble E_5 des fonctions monotones de \mathbb{R} dans \mathbb{R} .
- **6.** L'ensemble E_6 des fonctions paires de \mathbb{R} dans \mathbb{R} .
- **7.** L'ensemble E_7 des fonctions impaires de $\mathbb R$ dans $\mathbb R$.
- **8.** L'ensemble E_8 des fonctions 2π -périodiques.
- **9.** L'ensemble E_9 des fonctions périodiques.

Exercice 9

Les parties suivantes sont-elles des sous-espaces vectoriels de $E = \mathbb{R}^{\mathbb{N}}$?

- 1. L'ensemble E₁ des suites réelles convergentes.
- 2. L'ensemble E₂ des suites réelles divergentes.
- **3.** L'ensemble E₃ des suites réelles constantes.
- **4.** L'ensemble E₄ des suites réelles bornées.
- 5. L'ensemble E_5 des suites réelles de limite nulle.

6.
$$E_6 = \left\{ u \in E \mid u_n = \mathcal{O}\left(n^2\right) \right\}.$$

7.
$$E_7 = \left\{ u \in E \mid u_n \underset{n \to +\infty}{\sim} \frac{1}{n} \right\}.$$

8.
$$E_8 = \left\{ u \in E \mid \exists \alpha \in \mathbb{R}, \ u_n \underset{n \to +\infty}{\sim} \frac{\alpha}{n} \right\}.$$

Sommes de sous-espaces vectoriels

Exercice 10

Soit F le sous-espace vectoriel de \mathbb{R}^3 d'équation x+y+z=0 et G le sous-espace vectoriel de \mathbb{R}^3 d'équations $\begin{cases} x-y+2z=0\\ x+y-z=0 \end{cases}$.

- **1.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- **2.** Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer la projection de (x, y, z) sur F (resp. G) parallélement à G (resp. F).

Exercice 11

On note E l'ensemble des suites réelles convergentes, F l'ensemble des suites réelles de limite nulle et G l'ensemble des suites réelles constantes.

- **1.** Montrer que E, F, G sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- **2.** Montrer que $E = F \oplus G$.

Exercice 12

On note $E = \mathbb{R}^{\mathbb{R}}$, $F = \{ f \in \mathbb{R}^{\mathbb{R}}, \ f(0) + f(1) = 0 \}$ et G l'ensemble des fonctions constantes sur \mathbb{R} .

- 1. Montrer que F et G sont des sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.

Exercice 13

On considère les équations différentielles suivantes :

$$(\mathcal{E}): y''' - y = 0$$

$$(\mathcal{E}): y''' - y = 0$$
 $(\mathcal{F}): y'' + y' + y = 0$ $(\mathcal{G}): y' - y = 0$

$$(\mathcal{G}): y' - y = 0$$

On note E, F et G les ensembles respectifs des solutions à valeurs réelles de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) . Les solutions de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) sont toutes de classe \mathcal{C}^{∞} sur \mathbb{R} , ce qu'on ne demande pas de montrer. On note $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} .

- **1.** Montrer que E est un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$.
- **2.** Montrer que $F \subset E$ et $G \subset E$.
- **3.** Donner les solutions des équations différentielles (\mathcal{F}) et (\mathcal{G}) .
- **4.** Montrer que F et G sont des sous-espaces vectoriels de E et donner pour chacun une famille génératrice.
- 5. a. Soit $y \in E$. On pose $y_1 = 2y y' y''$ et $y_2 = y + y' + y''$. Montrer que $y_1 \in F \text{ et } y_2 \in G.$
 - **b.** Montrer que F et G sont supplémentaires dans E.
- **6.** En déduire l'ensemble des solutions de (\mathcal{E}) .

Exercice 14 ★

Soient F, G deux sous-espaces vectoriels de E. Quelles assertions parmi les suivantes sont vraies en général?

1. $F \cap G \subset F + G$;

4. F + F = F:

2. $F \cup G \subset F + G$;

5. $F \cup (F \cap G) \subset F + G$;

3. $F \subset F + G$:

6. F + G = G + F.

Exercice 15

Ouestions ouvertes

Soient F,G et H trois sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E.

1. Que pensez-vous de la proposition suivante,

$$F + G = F$$
 si et seulement si $F \supset G$?

2. Que pensez-vous de la proposition suivante,

$$F + G = F + H \implies G = H$$
?

Exercice 16 ★★

Soient F, G et H trois sous-espaces vectoriels d'un K-espace vectoriel E tels que

$$F + H = G + H$$
, $F \cap H = G \cap H$,

et $F \subset G$. Prouver que F = G.

Exercice 17 ★

Parties paires et impaires d'une fonction

On note $E = \mathbb{R}^{\mathbb{R}}$, P le sous-ensemble de E formé par les fonctions paires et I le sousensemble de E formé par les fonctions impaires.

- 1. Montrer que P et I sont deux sous-espaces supplémentaires dans E.
- 2. Pour tout $f \in E$, la projection du vecteur f sur P parallèlement à I est appelée partie paire de f. On définit de même la partie impaire de f. Calculer les parties paire et impaire des fonctions suivantes : le cosinus, le sinus, l'exponentielle, f: $x \mapsto x^4 + x$.

Exercice 18 ★★

Un petit pas vers Lagrange

Soient $E = \mathcal{C}^0([0,1], \mathbb{R})$, \mathcal{C} l'ensemble des fonctions constantes sur [0,1], et \mathcal{A} l'ensemble des éléments de E s'annulant en E1.

- 1. Montrer que \mathcal{C} et \mathcal{A} sont des sous-espaces vectoriels supplémentaires dans E.
- 2. Montrer que \mathcal{C} est également un supplémentaire dans E du sous-espace suivant

$$\mathcal{N} = \left\{ f \in \mathcal{E} \mid \int_0^1 f(t)dt = 0 \right\}.$$

- **3.** Calculer les projections sur \mathcal{C} parallèlement à \mathcal{A} puis à \mathcal{N} d'une fonction $f \in \mathcal{E}$.
- **4.** Donner d'autres exemples de supplémentaires de $\mathcal C$ dans E.

Exercice 19

Somme de deux plans

On note $E = \mathbb{R}^3$ et

$$F = \{(x, y, z) \in E \mid x + y - z = 0\}$$

et

$$G = \{(a - b, a + b, a - 3b) \mid a, b \in \mathbb{R}\}.$$

- 1. Etablir que F et G sont des sev de E.
- **2.** Déterminer $F \cap G$.
- **3.** Prouver que F + G = E. La somme est-elle directe?

Exercice 20 ★★

Soient A, B et C trois sev d'un K-ev E. On note

$$F = (A \cap B) + (A \cap C), G = A \cap (B + (A \cap C))$$

et $H = A \cap (B + C)$.

- 1. Montrer que F et G sont des sev de H.
- **2.** Etablir que F = G.
- **3.** A-t-on toujours F = G = H?

Exercice 21 ★★

Calcul d'une intersection

Soient F, G, F' et G' quatre sev d'un \mathbb{K} -ev E tels que $F \cap G = F' \cap G'$. Etablir que

$$(F + (G \cap F')) \cap (F + (G \cap G')) = F.$$

Exercice 22

On note E l'espace vectoriel réel des fonctions dérivables de $\mathbb R$ dans $\mathbb R$. Soient $\mathcal N$ et $\mathcal A$ les sous-ensembles de E définis par,

$$\mathcal{A} = \{ f \in \mathbf{E} \mid f \text{ affine} \}$$

et

$$\mathcal{N} = \{ f \in \mathbf{E} \mid f(0) = f'(0) = 0 \}.$$

- 1. Prouver que \mathcal{A} et \mathcal{N} sont deux sous-espaces vectoriels de E.
- **2.** Montrer que \mathcal{A} et \mathcal{N} sont supplémentaires dans E.
- **3.** Déterminer la projection sur \mathcal{A} parallèlement à \mathcal{N} d'une fonction $f \in E$. **Remarque.** On rappelle qu'une fonction f de \mathbb{R} dans \mathbb{R} est affine si et seulement si il existe deux réels a et b tels que $\forall t \in \mathbb{R}$, f(t) = at + b.

Familles de vecteurs

Exercice 23

Soit
$$\mathcal{F} = ((1, -2, 1), (2, -3, 1), (-1, 3, -2)).$$

- 1. Le vecteur (2,1,3) est-il combinaison linéaire de la famille \mathcal{F} ?
- 2. Même question pour le vecteur (2, 5, -7).

Exercice 24 ★★★

Soit $E = \mathbb{R}^{\mathbb{R}}$ l'espace vectoriel sur \mathbb{R} des applications de \mathbb{R} dans \mathbb{R} . Pour tout $n \in \mathbb{N}$, on pose

$$f_n: x \mapsto \cos^n(x)$$
 et $g_n: x \mapsto \cos(nx)$.

Montrer que pour tout *n* positif,

$$\operatorname{vect}(f_k, 0 \le k \le n) = \operatorname{vect}(g_k, 0 \le k \le n).$$

Exercice 25

Soient $a \in \mathbb{R}$, $E = \mathbb{R}^3$ et

$$u = (1, -1, 1), v = (0, 1, a).$$

Déterminer une condition *nécessaire et suffisante* portant sur a pour que $(1, 1, 2) \in \text{vect}(u, v)$.

Exercice 26

Donner une famille génératrice des espaces vectoriels suivants.

- **1.** Le plan de \mathbb{R}^3 d'équation x + y + z = 0.
- **2.** Le \mathbb{R} -espace vectoriel des solutions à valeurs réelles de l'équation différentielle y'' + 2y' + 2y = 0.
- **3.** Le \mathbb{C} -espace vectoriel des suites (u_n) à valeurs complexes vérifiant $u_{n+2} + (2 3i)u_{n+1} (5+i)u_n = 0$ pour tout $n \in \mathbb{N}$.

Exercice 27

On définit les vecteurs de \mathbb{R}^3 suivants

$$a = (1, 2, -3)$$

$$b = (3, 2, -2)$$

$$c = (-1, 2, -4)$$

$$d = (-6, -8, 11)$$

Montrer que vect(a, b) = vect(c, d).