

SATYRUS III: COMPILADOR PARA COMPUTADOR QUÂNTICO

Pedro Maciel Xavier

Projeto de Graduação apresentado ao Curso de Engenharia de Computação e Informação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientadores: Priscila Machado Vieira Lima Felipe Maia Galvão França

Rio de Janeiro Dezembro de 2021

SATYRUS III: COMPILADOR PARA COMPUTADOR QUÂNTICO

Pedro Maciel Xavier

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA DE COMPUTAÇÃO E INFORMAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO DE COMPUTAÇÃO.

Examinado por:	
	Prof. Nome do Primeiro Examinador Sobrenome, D.Sc.
	Prof. Nome do Segundo Examinador Sobrenome, Ph.D.
	Prof. Nome do Terceiro Examinador Sobrenome, D.Sc.
	Prof. Nome do Quarto Examinador Sobrenome, Ph.D.
	Prof. Nome do Quinto Examinador Sobrenome, Ph.D.

RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2021 Maciel Xavier, Pedro

Satyrus III: Compilador para Computador Quântico/Pedro Maciel Xavier. – Rio de Janeiro: UFRJ/ Escola Politécnica, 2021.

X, 10 p.: il.; 29,7cm.

Orientadores: Priscila Machado Vieira Lima

Felipe Maia Galvão França

Projeto de Graduação – UFRJ/ Escola Politécnica/ Curso de Engenharia de Computação e Informação, 2021. Referências Bibliográficas: p. 9 – 9.

1. Compiladores. 2. Otimização. 3. Computação Quântica. 4. Lógica. I. Machado Vieira Lima, Priscila *et al.* II. Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia de Computação e Informação. III. Título.

A alguém cujo valor é digno desta dedicatória.

Agradecimentos

Gostaria de agradecer a todos.

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ como parte dos requisitos necessários para a obtenção do grau de Engenheiro de Computação.

SATYRUS III: COMPILADOR PARA COMPUTADOR QUÂNTICO

Pedro Maciel Xavier

Dezembro/2021

Orientadores: Priscila Machado Vieira Lima Felipe Maia Galvão França

Curso: Engenharia de Computação e Informação

Apresenta-se, nesta tese, ...

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the requirements for the degree of Engineer.

SATYRUS III: COMPILER FOR QUANTUM COMPUTER

Pedro Maciel Xavier

December/2021

Advisors: Priscila Machado Vieira Lima

Felipe Maia Galvão França

Course: Computer Engineering

In this work, we present ...

Sumário

Lista de Figuras				
Li	Lista de Tabelas			
1	Inti	Introdução		
2	Rev	visão Bibliográfica	2	
	2.1	Compiladores	2	
	2.2	Lógica Proposicional	2	
	2.3	Otimização Pseudo-Booleana	2	
3	Me	todologia	4	
	3.1	Mapeamento	4	
	3.2	Tipos de Restrições	4	
		3.2.1 Restrições de Otimalidade	4	
		3.2.2 Restrições de Integridade	4	
	3.3	Cálculo das Penalidades	4	
	3.4	SATish		
	3.5	WTA	6	
4	Res	sultados e Discussões	7	
5	5 Conclusões		8	
\mathbf{R}_{0}	eferê	ncias Bibliográficas	9	
\mathbf{A}	Alg	umas Demonstrações	10	

Lista de Figuras

2.1	A estrutura básica de um compilador	2
2.2	A estrutura básica de um compilador	2

Lista de Tabelas

Introdução

Revisão Bibliográfica

2.1 Compiladores

O que é um compilador?

Figura 2.1: A estrutura básica de um compilador.

E o compilador do Satyrus?

Figura 2.2: A estrutura básica de um compilador.

2.2 Lógica Proposicional

2.3 Otimização Pseudo-Booleana

Toda função pseudo-booleana pode ser representada de maneira única por um polinômio multi-linear da forma[1]

$$\varphi(x_1,\ldots,x_n) = \sum_{\omega\in\Omega} c_\omega \prod_{i\in\omega} x_i$$

Metodologia

3.1 Mapeamento

3.2 Tipos de Restrições

O produto da compilação realizada pelo Satyrus é uma equação de energia da forma

$$E(\mathbf{x}) = E_0(\mathbf{x}) + \sum_i \lambda_i E_i(\mathbf{x})$$
(3.1)

Onde $E_0(\mathbf{x})$ representa o custo imposto pelas restrições de otimalidade e $E_i(\mathbf{x})$ aquele oriundo das restrições de integridade. Os pesos λ_i dizem respeito às penalidades aplicadas sobre cada nível i da hierarquia de restrições. Trataremos com cuidado das suas especificidades em breve.

A geração de $E(\mathbf{x})$ supõe resolver um problema de programação inteira onde as entradas de \mathbf{x} assumem valores binários e deseja-se minimizar o valor de $E(\mathbf{x})$.

$$\min E(\mathbf{x}) \tag{3.2}$$
t.q. $\mathbf{x} \in \mathbb{B}^n$

3.2.1 Restrições de Otimalidade

3.2.2 Restrições de Integridade

3.3 Cálculo das Penalidades

Cada penalidade λ_i é construída de maneira que a violação de qualquer cláusula pertencente ao *i*-ésimo nível induza à energia total um valor maior do que aquele gerado pela violação de todas as cláusulas presentes nos níveis inferiores. De maneira um pouco mais abstrata, é preciso que a penalidade λ_i , somada ao custo da

configuração de menor valor dos níveis anteriores, seja maior do que a mais alta energia que estes possam proporcionar.

Tendo isso em mente, definimos

$$E(\mathbf{x})|_{i} = E_{0}(\mathbf{x}) + \sum_{j < i} \lambda_{j} E_{j}(\mathbf{x})$$

como sendo a equação de energia correspondente aos níveis de penalidade inferiores a i. Seu custo é idêntico àquele obtido por $E(\mathbf{x})$ em estados que não violam restrições do nível i em diante.

Assim, dizemos ser necessário que

$$\lambda_i > \max E(\mathbf{x})|_i - \min E(\mathbf{x})|_i \tag{3.3}$$

Aqui lembramos que cada $E_j : \mathbb{B}^n \to \mathbb{N}$ com j > 0 conta o número n_j de cláusulas violadas no nível j. Portanto, para as funções relativas às restrições de integridade, temos max $E_j(\mathbf{x}) = n_j$ e min $E_j(\mathbf{x}) = 0$. Isso nos permite reescrever (3.3) como

$$\lambda_i > \mu_0 + \sum_{j < i} \lambda_j \, n_j \tag{3.4}$$

onde $\mu_0 = \max E_0(\mathbf{x}) - \min E_0(\mathbf{x})$.

Tomando a diferença entre as penalidades de níveis consecutivos é possível obter uma expressão para calcular cada λ_i eficientemente através de um processo iterativo. A partir de (3.4) fazemos

$$\lambda_{i+1} - \lambda_i > \left(\mu_0 + \sum_{j \le i} \lambda_j \, n_j\right) - \left(\mu_0 + \sum_{j < i} \lambda_j \, n_j\right) = \lambda_i \, n_i$$

ou seja,

$$\lambda_{i+1} > \lambda_i (n_i + 1)$$

Escolhendo $\varepsilon > 0$ arbitrariamente pequeno, escrevemos

$$\lambda_{i+1} = \lambda_i \left(n_i + 1 \right) + \varepsilon \tag{3.5}$$

Ainda nos resta calcular μ_0 . Conhecer máximo e mínimo de $E_0(\mathbf{x})$, a princípio, é simplesmente o caso irrestrito do próprio problema que desejamos resolver. Sabendo, contudo, que $E_i(\mathbf{x})$ é da forma

$$E_i(\mathbf{x}) = \sum_{\omega \in \Omega_i} c_\omega \prod_{k \in \omega} \mathbf{x}_k \tag{3.6}$$

podemos obter cotas inferiores e superiores através de seus coeficientes c_{ω} . Para a cota inferior, somaremos todos os valores negativos, uma vez que é sempre possível escolher $\mathbf{x}=0$ para obter tal limite. Para a cota superior, consideramos os valores estritamente positivos. Em ambos os casos, não poderíamos esquecer de adicionar eventuais termos constantes, isto é, c_{ω} quando $\omega=\varnothing$. Como tomaremos imediatamente a diferença entre as cotas, isso não será relevante. Concluindo,

$$\mu_0 = \sum_{\omega \in \Omega_0} \frac{c_\omega + |c_\omega|}{2} - \sum_{\omega \in \Omega_0} \frac{c_\omega - |c_\omega|}{2}$$

$$= \sum_{\omega \in \Omega_0} |c_\omega| \tag{3.7}$$

- 3.4 SATish
- 3.5 WTA

Resultados e Discussões

Os resultados...

Conclusões

As conclusões...

Referências Bibliográficas

[1] BOROS, E., HAMMER, P. L., 2002, "Pseudo-Boolean optimization", Discrete Applied Mathematics, v. 123, n. 1, pp. 155-225. ISSN: 0166-218X. doi: https://doi.org/10.1016/S0166-218X(01)00341-9. Disponível em: https://www.sciencedirect.com/science/article/pii/S0166218X01003419.

Apêndice A

Algumas Demonstrações