

AIOPS在携程的探索与实践

徐新龙@携程技术保障中心

目录

- **1** 运维面临的挑战
 - 2 AIOps的理解、定位和现状
 - 3 携程的探索与实践场景介绍
 - 4 AIOps未来展望

快速发展下给运维带来的挑战

运维:一群把脑袋系在裤腰带上,积极可爱的人

大数据时代下运维的挑战

- 运维数据规模大、增长速度快
 - 数**十万**+台主机
 - 成千上万种监控指标
 - 实时数据 TB/天
 - 人工查找数据成本越来越大
- 运维数据价值与数据成本之间的平衡
 - 监控指标"熵"减严重,问题难以觉察
 - 采集端统计指标,数据变更成本更高

目录

- 1 运维面临的挑战
- 2 AIOps的理解、定位和现状
 - 3 携程的探索与实践场景介绍
 - 4 AIOps未来展望

AIOps: 运维技术的发展趋势

• 运维方式的转变 脚本时代 – 工具时代 – 自动化时代 – 智能时代

AlOps: Al for IT Operations

AIOps 是 Gartner 在2016年提出的概念 ,其预测到2020年,将近50%的企业将会在他们的业务和 IT 运维方面采用 AIOps 。

AIOps人员结构转变

AIOps现状和实践内容

- 初级阶段
- 单场景AI运维
- 场景探索阶段
- 先行者大都是互联网企业

发展AIOps的挑战

AIOps 相关人才稀缺,运维开发人员不了解算法,而算法工程师不熟悉运维领域。

需要新的技术平台支撑 AI 算法的场景应用; 算法研发成本高周期长。

数据仓库建设

多样化的技术栈、IT 架构的复杂和动态变化是 AI 统一数据集建设的挑战。

目录

- 1 运维面临的挑战
- 2 AIOps的理解、定位和现状
- 3 携程的探索与实践场景介绍
 - 4 AIOps未来展望

AIOps实践场景

异常指标检测

通过机器学习替代传统 的固定阈值方案

اللك

资源混合部署

Online资源非业务高峰 期间运行Offline作业

4

故障诊断

报警风暴中快速定位出故障根源

弹性扩缩容

设计容量模型,动态调配生产资源

整体架构设计

业务支撑

网站可用性保障

数据中心成本优化

运维效率提升

服务质量提升

解 决 方 案 故障发现

异常检测

故障预测

故障关联

故障定位

故障传播图

分析报告

根源定位

故障处理

故障自愈

智能决策

性能优化

容量优化

弹性扩缩容

混合部署

应用/资源画像

沟通协作

ChatOps

流程管理

能 建 设

自动化运维平台

持续交付/集成

作业平台

全链路压测

流量调度

运维知识库

故障特征 专家经验

RCA分析 趋势特征 面向AIOps的算法集

回归算法

分类算法

聚类算法

降维算法

运维AI平台

机器学习算法、深度学习、开放算力、学件

数据仓库

发布数据、变更数据、应用数据、访问日志数据、业务数据、订单数据

服务器

网络设备

存储

操作系统

数据库

中间件

大数据

容器

(一) 监控时序的异常检测 提升告警质量

监控时序指标

订单指标

业务指标

应用指标

基础监控指标

异常检测流程

算法介绍

有无标注

- 监督类
 - 分类、回归
- 半监督类
 - 分类、回归、聚类
- 无监督类
 - 聚类、降维

有无参数

- 有参模型
 - 假设分布: Gaussian、 Grubbs、Tukey等
 - AR、MA、ARMA、Holt-Winters、LSTM等
- 无参模型
 - 直方图、熵、iForest等

基于统计分布的异常检测

基于统计特性的异常检测

基于频域滤波

方法:DFT(离散傅里叶变换)

$$F(k) = \sum_{n=0}^{\infty} f(n) \cdot e^{-j\frac{2\pi}{N}nk}$$
 其中 ω由 $\frac{2\pi}{N}$ 格替代

FFT(快速傅里叶变换)

基于频域滤波

时间序列周期发现

- 自相关技术
- 频域滤波技术
- 频谱分析技术
- 时频转换
- M

实践总结

- 应用告警准确率、召回率达90%+和95%+
- 应用告警全面替换为智能模式
- 大部分时序数据都无标注
- 不是所有时序都需要被"智能"检测
- 不同的场景使用不同的检测算法
- 异常检测的质量评估是个难点

(二) 应用异常智能诊断

提高故障排查效率、快速止损

智能故障诊断 — 告警风暴

03:59	Q		03:58 Q		03:57 Q		03:56 Q		03:55 Q		03:54 Q		03:53 Q		03:52 Q	
系统		^	系统	^	系统	^	系统	^	系统	个	系统	个	系统	个	系统	^
CONTRACTOR OF THE	9976	2022109	100009976	2045641	100009976	2025858	100009976	2039563	100009976	2008270	100009976	1995868	100009976	2045089	100009976	2081922
10000	4883	80946	100004883	77092	100004883	90726	100004883	85047	100004883	88959	100004883	83204	100004883	87624	100004883	81954
33030	4	31133	330304	33976	330304	34961	330304	42910	330304	44528	330304	43477	110443	40009	110443	46735
10000	3801	26142	100003801	26704	100003801	27268	110443	31132	110443	40872	110443	41427	330304	38604	330304	34388
11091	1	24970	100012089	24826	110443	25706	100003801	26613	110911	26125	100003801	25608	100012089	30429	100012089	28499
10001	2089	23777	110911	23130	110911	24859	110911	25761	100003801	25765	110911	24204	110911	25290	100003801	26137
11044	3	21509	110443	22529	100012089	22528	100012089	18661	110595	16970	110102	16327	100003801	25158	110911	23871
11010	2	16308	110102	14324	110102	15725	110102	15226	100012089	16463	110595	15978	110102	18145	110595	17902
10000	9770	11274	100009770	11251	110595	11468	100009770	11256	110102	15399	100012089	15241	100009770	11252	110102	16323
11059	5	7938	110595	10804	100009770	11335	100005602	8654	100009770	11286	100009770	11363	110595	10514	100009770	11385
10000	5602	7789	100005602	8317	100005602	8655	110595	7856	100009762	10102	100005602	8887	100005602	8811	100005602	8554
11051			110106		110511		110511		100005602		110511	5305	110511	5727	110511	5295
11010	6	3445	110511	3515	110106	3992	110106	4270	110511	5679	110106	2789	100002575	2862	110106	3292
10000	2575	2679	100002575	2934	100002575	2772	100002575	2488	110106	3696	100002575	2767	110106	2696	100002575	2794
99022	6	1442	990226	1676	110921	1506	990226	2197	100002575	2631	990226	1746	990226	1192	990226	1196
03:51	Q		03:50 Q		03:49 Q		03:48 Q		03:47 Q		03:46 Q		03:45 Q		03:44 Q	
系统		个	系统	个	系统	^	系统	^	系统	个	系统	^	系统	个	系统	\uparrow
10000	9976	2064521	100009976	1988155	100009976	2045554	100009976	2040288	100009976	2098111	100009976	2358764	100009976	2253260	100009976	2070839
10000			100004883		100004883		100004883		100004883		100012055	Control of the last	100003381	100	100003381	90465
11044			110443		330304		330304		330304		100003381		100007342		100003260	
33030			330304		110443		100003801		100001083		100006181		100000460		100004883	
11059			110595		100003801		110911		100003801		100007342		100012055		100006181	38957
10000			100003801		110911		110443		100005602		100000460		100006181		100007481	
11091			110911		100012089		100001083		110911		100007481		100007481		100009423	
10001			100012089		110595		100012089		100012089		100014872		100009762		100003801	22192
11010			110102		110102		110102		110443		100005602		100003944		100003944	
10000			100009770		100009770		100009770		110102		100004883		100014872		110102	20023
10000			100005602		100005602		110595		100007481		100009762		100007859		110911	16803
10000			100002575		100002575		100005602		100009762		100003260		100003260		100012089	200007
11051			100004198		100004198		120417		120417		100000248		100005602		330304	13427
10000	2575	2749	110106	2367	110106	2177	100004198	2983	100007457	11089	100014135	29846	100004883	41106	100013934	12949

Which one is the Root Cause?

应用调用关系

故障影响因子一专家经验

故障关联性诊断

1. 相关性打分、聚合

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} \quad \text{ \sharp th $Cov(X,Y)$} = E[(X-\mu_x)(Y-\mu_y)]$$

2. 后验概率打分

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

相关性打分

应用指标告警事件A

发布事件B量化

告警相关性聚合

告警应用A

告警应用B

相关系数 $\rho = 0.98$

后验概率打分

- 事件A表示告警事件
- 事件B表示变更事件
- P(A|B)代表似然概率
- P(A)、P(B)分别表示先验概率
- P(B|A)表示后验概率

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

快速定位RCA

RCA分析结果: **发布导致**

实践总结

- 故障诊断由原来数十分钟将至分钟级
- 告警质量是故障诊断的前提
- 故障影响因子分析+专家经验知识库是核心
- 服务调用链挖掘+关联打分是关键
- 诊断结果的质量评估是个难点

目录

- 2 运维面临的挑战
- **2** AIOps的理解、定位和现状
- 3 携程的探索与实践场景介绍
- 4 AIOps未来展望

AIOps的思考和总结

- AI是"他山之石"
 - 出发点和落脚点都是Ops
 - 自动化是AIOps实践的前提
- 实践一定要结合自身场景
 - 场景在先
 - 警惕"拿来主义"
- 紧跟行业动向
- 学术界+工业界

AIOps愿景:无人值守的运维

脑:

数据->决策 数据->知识

手:

基于确定逻辑的 自动化工具

运维大数据平台: 采样、抓包、埋点、拨测、日志等

自动执行工具: 重启、回 滚、流量调度、扩缩容、跨 机房迁移等

AIOps在路上

"We always overestimate the change that will occur in the next two years and underestimate the change that will occur in the next ten."

"我们总是高估了未来两年内将发生的变化,而低估了未来10年内将要发生的变革。"

—— Bill Gates

Join us, reaching beyond your walls

Thanks

CIS SRE CIS AIOPS

荣誉出品

本PPT来自2018携程技术峰会 更多技术干货,请关注"携程技术中心"微信公众号

