

# REVISION

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs
Bernhard Kainz

b.kainz@imperial.ac.uk

### Boolean Algebra – Truth Tables

 All possible outcomes of the operators can be written as truth tables

### Boolean Algebra – Rules

Note: A and B can be any Boolean Expression

Negation: Assignment Project Examinative: 
$$(A')' = A$$
  $(A \cdot B) \cdot C = A \cdot (B \cdot C)$   $A \cdot B = B \cdot A$   $A \cdot A' = 0$   $(A + B) \cdot C + A \cdot B = B + A$  
$$A + A' = 1$$
 WeChat: cstutorcs Distributive: 
$$A \cdot (B + C) = A \cdot B + A \cdot C$$
 
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Note the precedence

### Boolean Algebra – Rules

Single variables (Idempotent law):

https://tutorcs.com

Simplification rules with 1 and 0:

A We Chat: cstutorcs

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

### Boolean Algebra – de Morgan's Rule

```
(A + B)' = A' • B'

(A • B)' Asignment Project Exam Help

as before, A and B can be any Boolean expression

https://tutorcs.com
```

Can generalise to CBoolean variables:  $(A + B + C + D + ...)' = A' \cdot B' \cdot C' \cdot D' \cdot ...$  $(A \cdot B \cdot C \cdot D \cdot ... \cdot X)' = A' + B' + C' + D' + ... + X'$ 

### Half Adder

#### Recall

|                     | 0        | 0       | 1       | 1     |  |  |  |  |
|---------------------|----------|---------|---------|-------|--|--|--|--|
| Ass                 | signment | Project | Exam He | elp 1 |  |  |  |  |
|                     | 00       | 01      | 01      | 10    |  |  |  |  |
| https://tutorcs.com |          |         |         |       |  |  |  |  |

Truth Table

| А | WeCha<br>B | t: cstutoi<br>A + B | Sum | Carry |
|---|------------|---------------------|-----|-------|
| 0 | 0          | 0                   | 0   | 0     |
| 0 | 1          | 1                   | 1   | 0     |
| 1 | 0          | 1                   | 1   | 0     |
| 1 | 1          | 2                   | 0   | 1     |

### Full Adder



$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = (A \cdot B) + C_{in} \cdot (A \oplus B))$$

### Full Adder

Conceptually



### Latches

• SR-Latch: Truth table

| Ass <b>i</b> gnn  | nent Pro | ject©Exai | n Help |
|-------------------|----------|-----------|--------|
| 0                 | 0        | Latch     |        |
| ohttp             | s://tuto | rcs.com   | 1      |
| $1_{\mathbf{We}}$ | Chat: cs | tutores   | 0      |
| 1                 | 1        | Undefined |        |

### Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- Constructed by instingethe Projected Sanpul apthe R input signal
  - Allows for a single the si Allows for a single the silverted



### Memory

- Memories hold binary values
  - · Data (e.g. Integers neelst Pharacters) xam Help
  - · CPU Instructions hiteps: ontputer (Programs)
  - Memory Addresses (Cointers to the Structions)
- Contents remain unchanged unless overwritten with a new binary value
  - Some of them *lose* the content when power is turned off (volatile memory)

### Computer Architecture



### Summary



# Byte Addressing (Big Endian)



## Byte Addressing (Little Endian)



## 1GB (256M x 32-bit) Memory



### 1GB (256M x 32-bit) Memory

Four 256MB memory modules



## Memory Interleaving

- Example:
  - Memory = 4M words, each word = 32-bits
  - · Built with 4 A 1 Mig 32 reitmemore repetites m Help
  - For 4M words we need 22 bits for an address
  - 22 bits = 2 bits (to select row within Module)

WeChat: cstutorcs
2 20

Module Row within Module High-Order Interleave
20 2

Row within Module Module Low-Order Interleave

### MSI Chips – Multiplexer

- A multiple-input, single-output switch
- Also called MUX for short ©



- **sel** selects which of I<sub>0</sub> or I<sub>1</sub> is mapped to the output
- For example, sel = 0 selects I<sub>0</sub> and sel = 1 selects I<sub>1</sub>
- Example is called a 2-to-1 MUX
- With n selects/control lines, we can have 2<sup>n</sup> input lines

### MSI Chips – Decoder



## MSI Chips – Decoder

#### Truth Table

| Α | ВД | ssig | nPae  | nR <sub>6</sub> F | reje | CP4E        | ix <sup>2</sup> an | n <del>14</del> 6 | 18 | D <sub>0</sub> |
|---|----|------|-------|-------------------|------|-------------|--------------------|-------------------|----|----------------|
| 0 | 0  | 0    | 0     | 0                 | 0    | 0           | 0                  | 0                 | 0  | 1              |
| 0 | 0  | 1 h  | ttps: | //tu              | torc | <b>S.QO</b> | $m_0$              | 0                 | 1  | 0              |
| 0 | 1  | 0    | , 0   | 0                 | 0    | 0           | 0                  | 1                 | 0  | 0              |
| 0 | 1  | 1    | vec   | nat:              | cştt | ugr         | <sup>28</sup> 1    | 0                 | 0  | 0              |
| 1 | 0  | 0    | 0     | 0                 | 0    | 1           | 0                  | 0                 | 0  | 0              |
| 1 | 0  | 1    | 0     | 0                 | 1    | 0           | 0                  | 0                 | 0  | 0              |
| 1 | 1  | 0    | 0     | 1                 | 0    | 0           | 0                  | 0                 | 0  | 0              |
| 1 | 1  | 1    | 1     | 0                 | 0    | 0           | 0                  | 0                 | 0  | 0              |

### MSI Chips – Calculations – Comparator



### MSI Chips – Calculations – Bit-shifter

- Faster calculations for powers of 2
- Shift left and right (multiply and divide)



- $c = 0 \rightarrow \text{shift left}$
- $c = 1 \rightarrow shift right$

## The Arithmetic Logic Unit (ALU)



# Data representation

| Bit Pattern         | 0000 | 0001 | 0010 | 0011       |                    | l , -           | 0110<br><b>Dro</b> 1 | 0111                 | 1000<br>Ev   |               | T T _ 1 | 1011 | 1100 | 1101 | 1110 | 1111 |
|---------------------|------|------|------|------------|--------------------|-----------------|----------------------|----------------------|--------------|---------------|---------|------|------|------|------|------|
| Unsigned            | 0    | 1    | 2    | 5138       | 4                  | 5               | 6                    | eçi                  | <b>E X</b> ( | <del>im</del> | 10      | 11   | 12   | 13   | 14   | 15   |
| Sign &<br>Magnitude | +0   | +1   | +2   | + <b>h</b> | tt <del>'</del> ps | : <i>//</i> 5tu | ıt&ro                | cs <sup>t.7</sup> c  | oīħ          | -1            | -2      | -3   | -4   | -5   | -6   | -7   |
| 1s<br>Complement    | +0   | +1   | +2   | +3         | / <del>+</del> 4   | :h <del>5</del> | +6<br>CS1            | +7<br>11 <b>10</b> 1 | -7<br>CS     | -6            | -5      | -4   | -3   | -2   | -1   | -0   |
| 2s<br>Complement    | +0   | +1   | +2   | +3         | +4                 | +5              | +6                   | +7                   | -8           | -7            | -6      | -5   | -4   | -3   | -2   | -1   |
| Excess-8            | -8   | -7   | -6   | -5         | -4                 | -3              | -2                   | 1                    | 0            | 1             | 2       | 3    | 4    | 5    | 6    | 7    |
| BCD                 | 0    | 1    | 2    | 3          | 4                  | 5               | 6                    | 7                    | 8            | 9             | -       | -    | -    | -    | -    | -    |

### **ASCII Character Set**

|                   |     |              |           |          |                      |       |     | Bit positions |  |
|-------------------|-----|--------------|-----------|----------|----------------------|-------|-----|---------------|--|
| Bit positions 654 |     |              |           |          |                      |       |     |               |  |
| 000               | 001 | 010          | 011       | 100      | 101                  | 110   | 111 |               |  |
| NUL               | DLE | SP           | 0         | @        | Р                    | 6     | р   | 0000          |  |
| SOH               | DC1 | !            | 1         | Α        | Q                    | а     | q   | 0001          |  |
| STX               | DC2 |              | mant      | DroBiac  | t E <mark>xan</mark> |       | r   | 0010          |  |
| ETX               | DC3 | MS#181       | mignt     |          | t Egan               | Ticip | S   | 0011          |  |
| EOT               | DC4 | \$           | 4         | D        | Т                    | d     | t   | 0100          |  |
| ENQ               | NAK | %            | 5 , ,     | Ш        | U                    | е     | u   | 0101          |  |
| ACK               | SYN | & <b>1</b> 1 | itose//ti | itorcs.  | com                  | f     | V   | 0110          |  |
| BEL               | ETB | 6            | 7         | G        | W                    | g     | W   | 0111          |  |
| BS                | CAN | (            | 8         | Η        | X                    | h     | Х   | 1000          |  |
| HT                | EM  | ) 11         | reChat    | · cdtut  | orce                 | i     | У   | 1001          |  |
| LF                | SUB | *            | CCHat     | . Cstati |                      | j     | Z   | 1010          |  |
| VT                | ESC | +            | ,         | K        | [                    | k     | {   | 1011          |  |
| FF                | FS  | ,            | <         | L        | \                    | 1     |     | 1100          |  |
| CR                | GS  | -            | =         | М        | ]                    | m     | }   | 1101          |  |
| SO                | RS  |              | >         | N        | ^                    | n     | ~   | 1110          |  |
| SI                | US  | /            | ?         | 0        | _                    | 0     | DEL | 1111          |  |

Strings are represented as sequence of characters. E.g. **Fred** is encoded as follows:

| English        | F         | r         | е         | d         |
|----------------|-----------|-----------|-----------|-----------|
| ASCII (Binary) | 0100 0110 | 0111 0010 | 0110 0101 | 0110 0100 |
| ASCII (Hex)    | 46        | 72        | 65        | 64        |

## Two's Complement – BNA Summary

#### Addition

Add the values, discarding any carry-out bit

### Assignment Project Exam Help

- Subtraction
  - Negate the subtracted and the subtraction of the subtract

#### Overflow

#### WeChat: cstutorcs

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

## Floating point zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

 Zones of expressibility: https://tutorcs.com



# Normalised forms (base 10)

| Number                                                                                                                    | Normalised form                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 23.24×s1ghment Pro                                                                                                        | ject Exam. Blely 10 <sup>5</sup> |
| $-4.01 \times 10^{-3}$                                                                                                    | $-4.01 \times 10^{-3}$           |
| -4.01 × 10 <sup>-3</sup><br>https://tutor<br>343 000 × 10 <sup>0</sup><br>WeChat: cs<br>0.000 000 098 9 × 10 <sup>0</sup> | $3.43 \times 10^5$               |
| $0.000\ 000\ 098\ 9 \times 10^{\circ}$                                                                                    | 9.89 $\times 10^{-8}$            |

### Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

• 
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = 12499925$$
 futores.com

| 32 | 16 <b>W</b> | eChat: | cstútoro | 2S 2 | 1 |
|----|-------------|--------|----------|------|---|
|    | 0           | 1      | 1        | 0    | 1 |

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer: 
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

### Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we multiply the goefficients and add the exponents
- Example:

WeChat: cstutorcs

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$
  
=  $14.04 \times 10^3$ 

• We must also **normalise the result**, so final answer is  $1.404 \times 10^4$ 

### Floating point addition

• A floating point addition such as  $4.5 \times 10^3 + 6.7 \times 10^2$  is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1 + N_2 = (M_1 \times 10^{E_1}) + (M_2 \times 10^{E_2})$$
  
https://tutorcs.com  
 $M_1 + M_2 \times 10^{E_2-E_1}) \times 10^{E_1}$ 

#### WeChat: cstutorcs

 To align, choose the number with the smaller exponent and shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$
  
=  $5.17 \times 10^{3} = 5.2 \times 10^{3}$   
(rounded)

## IEEE Single precision format (32-bit)

Exponent Significand Sign

1 hasignment Project Exan? The p

- Coefficient is calletone significand in the IEEE standard
- Value represented is ±1. F × 2<sup>E-127</sup>
   We Chat: cstutorcs
   The normal bit (the 1.) is omitted from the significand field → a hidden bit
- Single precision yields 24 bits (approx. 7 decimal digits) of precision)
- Normalised ranges in decimal are approximately:

$$-10^{38}$$
 to  $-10^{-38}$ , 0,  $10^{38}$  to  $10^{-38}$ 

### Special values

• IEEE formats can encode five kinds of values: **zero**, **normalised numbers**, **denormalised numbers**, **infinity** and **not-a-number (NaNe)** roject Exam Help

Single precision representations:

https://tutorcs.com

| IEEE value         | Sign<br>field W | Exponent /eChat: ( | Significand<br>CStutorcs | True<br>exponent | Value                                   |
|--------------------|-----------------|--------------------|--------------------------|------------------|-----------------------------------------|
| ±0                 | 0 or 1          | 0                  | 0 (all zeros)            |                  | $\pm 0.0 \times 2^{0}$                  |
| ± denormalised no. | 0 or 1          | 0                  | Any non-zero bit pattern | -126             | $\pm 0. \mathrm{F} \mathrm{x} 2^{-126}$ |
| ±normalised no.    | 0 or 1          | 1 254              | Any bit pattern          | <b>−126 127</b>  | ±1. F x 2 <sup>E-127</sup>              |
| <u>+</u> ∞         | 0 or 1          | 255                | 0 (all zeros)            |                  | $\pm 1.0 \times 2^{128}$                |
| Not-a-number       | 0 or 1          | 255                | Any non-zero bit pattern |                  | ±1. F x 2 <sup>128</sup>                |

