MOLECULAR ECOLOGY

Supplemental Information for:

Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations

Brenna R. Forester, Jesse R. Lasky, Helene H. Wagner, Dean L. Urban

Figure S1. The three environmental surfaces used as replicates from Lotterhos & Whitlock (2015). Colors represent values of the environment.

Figure S2. Average power (from empirical p-values) for different levels of selection (rows) from six methods (columns) using a sample size of 6 individuals per deme. Each method shows results for different sampling strategies (R = random, P = pairs, T = transects) and demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model). Only the IBD demography included very weak selection (s=0.001).

Figure S3. Average power (from empirical p-values) for different levels of selection (rows) from six methods (columns) using a sample size of 20 individuals per deme. NOTE: this figure reproduces Figure 4 from the main text, but includes the addition of Random Forest results for comparison. Each method shows results for different sampling strategies (R = random, P = pairs, T = transects) and demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model). Only the IBD demography included very weak selection (s=0.001).

Figure S4. Average true positive (top two rows, in blue) and false positive (bottom two rows, in red) rates for constrained ordinations using +/- 2.5 and 3.0 SD cutoffs. Each method and cutoff shows results for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Figure S5. Average true positive (top two rows, in blue) and false positive (bottom two rows, in red) rates for cRDA using SNP-component correlation cutoffs of alpha = 0.05, 0.01, and 0.001. Each cutoff shows results for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Figure S6. Average true positive (top two rows, in blue) and false positive (bottom two rows, in red) rates for GLM using Bonferroni-corrected cutoffs of 0.05 and 0.01, and false discovery rate (FDR) cutoffs of 0.01, 0.05, and 0.1. FDR results should be evaluated in the context of the corresponding genomic inflation factors (Table S1) to assess model calibration. Each cutoff shows results for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Figure S7. Average true positive (top two rows, in blue) and false positive (bottom two rows, in red) rates for LFMM using Bonferroni-corrected cutoffs of 0.05 and 0.01, and false discovery rate (FDR) cutoffs of 0.01, 0.05, and 0.1. FDR results should be evaluated in the context of the corresponding genomic inflation factors (Table S1) to assess model calibration. Each cutoff shows results for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Figure S8. Average counts of true positive (top rows of a and b, in blue) and false positive (bottom rows of a and b, in red) detections for two methods, RDA and LFMM, using their best cutoffs and a sample size of 6 individuals per deme. The first column shows the average number of loci detected by both methods. The second and third columns show the average number of detections that are unique to RDA and LFMM, respectively. (a) Results for GEAs using Habitat as the only predictor. (b) Results for GEAs using Habitat and the (uninformative) X-coordinate predictor. Results are presented for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Figure S9. Average true positive (top two rows, in blue) and false positive (bottom two rows, in red) rates from six methods (columns) using the habitat and uninformative x-coordinate predictors and the best cutoff for each method. Each method shows results for different sampling strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows).

Table S1: Parameters from generalized linear model (GLM) and latent factor mixed model (LFMM) runs: genomic inflation factors (GIF) for GLM and LFMM, and K for LFMM.

			6 individuals per deme			20 ind	ividuals per	deme
Demo- graphy	Sampling Design	Envir. Surface	GLM GIF	LFMM K	LFMM GIF	GLM GIF	LFMM K	LFMM GIF
1R	R	453	2.30	5	0.51	6.55	5	1.17
1R	R	950	1.81	5	0.45	4.69	5	1.02
1R	R	988	1.64	5	0.42	4.31	5	1.19
1R	Р	453	1.92	5	0.43	5.25	5	1.02
1R	Р	950	2.68	5	0.63	7.80	5	1.20
1R	Р	988	2.04	5	0.49	5.64	5	1.08
1R	Т	453	1.36	5	0.41	3.23	5	0.98
1R	T	950	1.41	5	0.36	3.44	5	1.07
1R	T	988	1.13	5	0.33	2.53	5	0.64
2R	R	453	1.70	5	0.31	4.44	5	0.50
2R	R	950	1.46	5	0.25	3.50	5	0.65
2R	R	988	2.19	5	0.27	5.94	5	0.60
2R	Р	453	1.33	5	0.27	3.39	5	0.70
2R	Р	950	1.58	5	0.35	3.97	5	0.69
2R	Р	988	1.99	5	0.27	5.43	5	0.79
2R	T	453	1.11	5	0.23	2.41	5	0.57
2R	T	950	1.25	5	0.26	2.84	5	0.67
2R	T	988	0.98	5	0.18	2.10	5	0.42
IBD	R	453	1.75	4	0.40	4.59	4	1.16
IBD	R	950	1.42	4	0.35	3.34	4	1.12
IBD	R	988	1.41	4	0.34	3.48	4	0.95
IBD	Р	453	1.67	4	0.36	4.45	4	1.20
IBD	Р	950	1.73	4	0.42	4.45	4	1.12
IBD	Р	988	1.50	4	0.36	3.83	4	0.95
IBD	T	453	1.46	4	0.48	3.67	4	1.37
IBD	T	950	1.19	4	0.32	2.72	4	1.09
IBD	Т	988	1.18	4	0.35	2.65	4	0.86
IM	R	453	0.72	1	1.12	1.10	4	0.22
IM	R	950	0.69	1	1.13	1.05	4	0.20
IM	R	988	0.70	1	1.13	1.10	4	0.16
IM	Р	453	0.71	1	1.16	1.11	2	0.56
IM	Р	950	0.70	1	1.12	1.06	2	0.53
IM	Р	988	0.69	1	1.11	1.06	2	0.52
IM	T	453	0.68	1	1.09	1.06	2	0.54
IM	Т	950	0.69	1	1.10	1.06	2	0.59
IM	Т	988	0.69	1	1.09	1.04	2	0.62

Table S2: RF results averaged across environments for true and false positive rates using no correction for population structure and two different approaches to correcting for population structure: using ancestry values to correct the habitat predictor only, and using ancestry values to correct both the genotypes and habitat predictor.

				True Posi	tive Rates				
		6 ind	ividuals per	deme	20 inc	20 individuals per deme			
Demo- graphy	Sampling Design	No correction	Habitat corrected	Genotypes & Habitat corrected	No correction	Habitat corrected	Genotypes & Habitat corrected		
1R	R	0.43	0.46	0.16	0.60	0.63	0.14		
1R	Р	0.40	0.43	0.15	0.67	0.66	0.14		
1R	T	0.41	0.44	0.15	0.64	0.68	0.15		
2R	R	0.53	0.55	0.13	0.75	0.77	0.16		
2R	Р	0.57	0.53	0.17	0.80	0.83	0.17		
2R	Т	0.45	0.52	0.14	0.75	0.78	0.18		
IBD	R	0.44	0.45	0.09	0.83	0.91	0.09		
IBD	Р	0.40	0.46	0.13	0.75	0.86	0.18		
IBD	Т	0.23	0.26	0.08	0.45	0.54	0.09		
IM	R	0.19	0.20	0.20	0.26	0.34	0.07		
IM	Р	0.23	0.31	0.31	0.51	0.56	0.08		
IM	Т	0.28	0.26	0.26	0.49	0.52	0.06		

				False Posi	tive Rates				
		6 ind	ividuals per	deme	20 individuals per deme				
Demo- graphy	Sampling Design	No correction	Habitat corrected	Genotypes & Habitat corrected	No correction	Habitat corrected	Genotypes & Habitat corrected		
1R	R	0.005	0.006	0.008	0.009	0.011	0.004		
1R	Р	0.004	0.006	0.006	0.013	0.011	0.004		
1R	Т	0.006	0.004	0.006	0.008	0.011	0.008		
2R	R	0.005	0.004	0.006	0.008	0.008	0.009		
2R	Р	0.006	0.005	0.005	0.012	0.012	0.010		
2R	Т	0.005	0.005	0.007	0.012	0.012	0.010		
IBD	R	0.004	0.004	0.006	0.010	0.013	0.014		
IBD	Р	0.005	0.006	0.009	0.014	0.016	0.019		
IBD	Т	0.006	0.004	0.007	0.008	0.008	0.016		
IM	R	0.006	0.005	0.005	0.009	0.009	0.027		
IM	Р	0.006	0.007	0.007	0.009	0.012	0.024		
IM	Т	0.007	0.004	0.004	0.009	0.009	0.028		

Table S3: LFMM results averaged across environments for power (from empirical *p*-values) and true and false positive rates (from 0.05 FDR cutoff) using K and K-1. GIF is the genomic inflation factor. For the 6 individual IM demography scenarios the best value of K was 1, so no reduction in K was tested for these cases.

					6 ir	ndividuals	per deme			
Demo- graphy	Sampling Design	К	GIF K	GIF K-1	Emp P K	Emp P K-1	TPR K	TPR K-1	FPR K	FPR K-1
1R	R	5	0.46	0.89	0.64	0.65	0.72	0.73	0.001	0.001
1R	Р	5	0.52	1.23	0.71	0.68	0.77	0.75	0.001	0.001
1R	Т	5	0.36	0.68	0.71	0.70	0.78	0.79	0.001	0.001
2R	R	5	0.28	0.41	0.85	0.83	0.91	0.91	0.002	0.002
2R	Р	5	0.29	0.47	0.87	0.88	0.92	0.92	0.001	0.001
2R	Т	5	0.22	0.35	0.88	0.87	0.92	0.90	0.002	0.002
IBD	R	4	0.36	0.78	0.72	0.64	0.96	0.91	0.001	0.001
IBD	Р	4	0.38	0.73	0.96	0.96	0.99	0.98	0.001	0.002
IBD	Т	4	0.38	0.68	0.51	0.35	0.76	0.63	0.001	0.002

					20 i	ndividuals	per deme	2		
Demo- graphy	Sampling Design	K	GIF K	GIF K-1	Emp P K	Emp P K-1	TPR K	TPR K-1	FPR K	FPR K-1
1R	R	5	1.13	2.62	0.72	0.68	0.73	0.73	0.001	0.001
1R	Р	5	1.10	4.04	0.74	0.68	0.77	0.73	0.001	0.002
1R	Т	5	0.89	1.61	0.73	0.72	0.79	0.78	0.002	0.001
2R	R	5	0.59	1.14	0.68	0.68	0.85	0.88	0.001	0.002
2R	Р	5	0.73	1.53	0.87	0.86	0.89	0.91	0.001	0.001
2R	Т	5	0.55	0.87	0.84	0.88	0.90	0.91	0.001	0.001
IBD	R	4	1.08	1.44	0.34	0.32	0.63	0.69	0.001	0.001
IBD	Р	4	1.09	1.65	0.84	0.84	0.91	0.96	0.001	0.002
IBD	Т	4	1.11	1.53	0.15	0.30	0.31	0.52	0.001	0.001
IM	R	4	0.19	0.41	0.54	0.45	0.68	0.55	0.001	0.001
IM	Р	2	0.54	1.70	0.75	0.80	0.88	0.94	0.001	0.002
IM	Т	2	0.58	1.71	0.80	0.79	0.88	0.94	0.001	0.002

Table S4: LFMM results for power (from empirical *p*-values) and true and false positive rates (from 0.05 FDR cutoff) using K and K-1. GIF is the genomic inflation factor. For the 6 individual IM demography scenarios the best value of K was 1, so no reduction in K was tested for these cases.

						e	individua	ls per den	ne		
Demo- graphy	Sampling Design	Envir. Surface	К	GIF K	GIF K-1	Emp P K	Emp P K-1	TPR K	TPR K-1	FPR K	FPR K-1
1R	R	453	5	0.51	1.06	0.66	0.67	0.78	0.80	0.001	0.002
1R	R	950	5	0.45	0.94	0.62	0.65	0.68	0.70	0.001	0.001
1R	R	988	5	0.42	0.66	0.64	0.64	0.69	0.68	0.000	0.001
1R	Р	453	5	0.43	0.88	0.76	0.75	0.82	0.82	0.001	0.001
1R	Р	950	5	0.63	1.71	0.71	0.70	0.76	0.74	0.001	0.001
1R	Р	988	5	0.49	1.10	0.66	0.59	0.72	0.68	0.001	0.001
1R	Т	453	5	0.41	0.90	0.75	0.75	0.85	0.86	0.001	0.001
1R	Т	950	5	0.36	0.63	0.67	0.65	0.71	0.71	0.001	0.002
1R	T	988	5	0.33	0.52	0.70	0.69	0.78	0.78	0.001	0.001
2R	R	453	5	0.31	0.46	0.92	0.91	0.94	0.94	0.003	0.002
2R	R	950	5	0.25	0.41	0.86	0.86	0.91	0.91	0.002	0.002
2R	R	988	5	0.27	0.35	0.79	0.74	0.89	0.88	0.002	0.002
2R	Р	453	5	0.27	0.45	0.87	0.88	0.93	0.92	0.001	0.002
2R	Р	950	5	0.35	0.56	0.88	0.90	0.93	0.93	0.001	0.001
2R	Р	988	5	0.27	0.40	0.87	0.87	0.90	0.90	0.002	0.001
2R	T	453	5	0.23	0.38	0.90	0.89	0.95	0.93	0.002	0.002
2R	Т	950	5	0.26	0.40	0.87	0.88	0.90	0.90	0.002	0.002
2R	T	988	5	0.18	0.27	0.88	0.85	0.90	0.88	0.001	0.001
IBD	R	453	4	0.40	0.81	0.99	0.99	1.00	0.99	0.001	0.001
IBD	R	950	4	0.35	0.83	0.79	0.58	0.97	0.91	0.002	0.002
IBD	R	988	4	0.34	0.72	0.39	0.34	0.91	0.83	0.001	0.001
IBD	Р	453	4	0.36	0.70	0.98	0.98	0.99	0.99	0.001	0.002
IBD	Р	950	4	0.42	0.81	0.99	0.99	0.99	0.99	0.002	0.002
IBD	Р	988	4	0.36	0.68	0.92	0.92	1.00	0.97	0.002	0.001
IBD	Т	453	4	0.48	0.83	0.63	0.44	0.74	0.58	0.001	0.001
IBD	Т	950	4	0.32	0.66	0.68	0.25	0.87	0.69	0.002	0.002
IBD	Т	988	4	0.35	0.55	0.21	0.36	0.68	0.63	0.001	0.003

Table S4 (continued)

						2	0 individua	als per der	ne		
Demo- graphy	Sampling Design	Envir. Surface	К	GIF K	GIF K-1	Emp P K	Emp P K-1	TPR K	TPR K-1	FPR K	FPR K-1
1R	R	453	5	1.17	2.85	0.77	0.73	0.79	0.78	0.001	0.002
1R	R	950	5	1.02	3.05	0.65	0.65	0.66	0.68	0.001	0.002
1R	R	988	5	1.19	1.96	0.74	0.67	0.75	0.74	0.000	0.001
1R	Р	453	5	1.02	2.89	0.83	0.77	0.85	0.78	0.001	0.001
1R	Р	950	5	1.20	5.53	0.70	0.67	0.71	0.69	0.002	0.002
1R	Р	988	5	1.08	3.70	0.69	0.61	0.76	0.72	0.001	0.002
1R	Т	453	5	0.98	2.15	0.78	0.78	0.85	0.86	0.001	0.001
1R	T	950	5	1.07	1.61	0.65	0.64	0.70	0.71	0.001	0.001
1R	Т	988	5	0.64	1.08	0.76	0.73	0.82	0.78	0.003	0.001
2R	R	453	5	0.50	1.73	0.90	0.90	0.92	0.94	0.002	0.002
2R	R	950	5	0.65	0.93	0.82	0.85	0.88	0.89	0.001	0.001
2R	R	988	5	0.60	0.77	0.33	0.29	0.74	0.81	0.001	0.003
2R	Р	453	5	0.70	1.29	0.88	0.87	0.89	0.92	0.001	0.001
2R	Р	950	5	0.69	1.78	0.87	0.84	0.90	0.90	0.001	0.001
2R	Р	988	5	0.79	1.53	0.86	0.86	0.88	0.90	0.001	0.002
2R	Т	453	5	0.57	0.99	0.85	0.91	0.90	0.94	0.001	0.001
2R	Т	950	5	0.67	1.11	0.87	0.87	0.89	0.88	0.001	0.001
2R	Т	988	5	0.42	0.51	0.80	0.86	0.90	0.92	0.001	0.002
IBD	R	453	4	1.16	1.61	0.62	0.73	0.84	0.93	0.000	0.000
IBD	R	950	4	1.12	1.54	0.30	0.13	0.76	0.75	0.001	0.001
IBD	R	988	4	0.95	1.17	0.09	0.11	0.30	0.39	0.001	0.001
IBD	Р	453	4	1.20	1.57	0.82	0.77	0.89	0.96	0.000	0.002
IBD	Р	950	4	1.12	1.85	0.86	0.99	0.95	0.99	0.002	0.002
IBD	Р	988	4	0.95	1.54	0.83	0.76	0.90	0.92	0.002	0.001
IBD	T	453	4	1.37	1.90	0.15	0.23	0.19	0.38	0.000	0.000
IBD	Т	950	4	1.09	1.30	0.15	0.48	0.42	0.65	0.001	0.002
IBD	Т	988	4	0.86	1.39	0.16	0.18	0.33	0.53	0.002	0.001
IM	R	453	4	0.22	0.50	0.61	0.41	0.68	0.48	0.001	0.000
IM	R	950	4	0.20	0.40	0.45	0.51	0.61	0.57	0.000	0.001
IM	R	988	4	0.16	0.34	0.57	0.42	0.74	0.60	0.003	0.001
IM	Р	453	2	0.56	1.71	0.80	0.86	0.88	0.95	0.001	0.002
IM	Р	950	2	0.53	1.72	0.87	0.86	0.88	0.95	0.000	0.001
IM	Р	988	2	0.52	1.68	0.58	0.67	0.87	0.92	0.003	0.002
IM	Т	453	2	0.54	1.69	0.83	0.92	0.91	0.98	0.001	0.001
IM	Т	950	2	0.59	1.73	0.76	0.76	0.84	0.91	0.002	0.002
IM	Т	988	2	0.62	1.70	0.82	0.69	0.89	0.93	0.001	0.002

Table S5: Change in power (from empirical p-values) and true and false positive rates (from cutoffs) for RDA using three different approaches for partialling out population structure. There are no MEM corrections for the IM demography, which has no significant spatial structure. Ancestry corrections apply only to 20 individual runs, where $K \neq 1$.

			Change in power (empirical p-values)							
			6							
			6 indiv	iduals per		20 indi	viduals per	1		
Demo-	Sampling	Envir.		MEMs	All		MEMs	All		
graphy	Design	Surface	Ancestry	uncorr.	retained	Ancestry	uncorr.	retained		
				Hab.	MEMs		Hab.	MEMs		
1R	R	453	-0.63	-0.73	-0.78	-0.33	-0.28	-0.63		
1R	R	950	-0.49	-0.53	-0.70	-0.46	-0.12	-0.57		
1R	R	988	-0.59	-0.74	-0.68	-0.38	NA	-0.67		
1R	Р	453	-0.51	-0.63	-0.62	-0.17	-0.01	-0.38		
1R	Р	950	-0.61	-0.47	-0.73	-0.38	-0.16	-0.38		
1R	Р	988	-0.56	-0.57	-0.58	-0.13	-0.22	-0.42		
1R	T	453	-0.51	-0.58	-0.92	-0.08	-0.05	-0.89		
1R	Т	950	-0.42	-0.47	-0.73	-0.25	-0.11	-0.57		
1R	T	988	-0.44	-0.55	-0.71	-0.14	-0.19	-0.70		
2R	R	453	-0.82	-0.92	-0.95	-0.52	-0.48	-0.89		
2R	R	950	-0.78	-0.66	-0.91	-0.60	-0.09	-0.72		
2R	R	988	-0.81	-0.81	-0.77	-0.78	NA	-0.78		
2R	Р	453	-0.88	-0.60	-0.80	-0.77	-0.06	-0.45		
2R	Р	950	-0.93	-0.33	-0.92	-0.70	-0.04	-0.75		
2R	Р	988	-0.79	-0.29	-0.77	-0.73	-0.15	-0.50		
2R	T	453	-0.78	-0.28	-0.94	-0.44	-0.05	-0.91		
2R	T	950	-0.77	-0.58	-0.80	-0.62	-0.06	-0.75		
2R	T	988	-0.74	-0.29	-0.72	-0.56	-0.05	-0.57		
IBD	R	453	-1.00	-1.00	-1.00	-0.95	-0.93	-1.00		
IBD	R	950	-0.92	-0.92	-0.99	-0.92	-0.83	-0.95		
IBD	R	988	-0.93	-0.93	-0.99	-0.93	NA	-0.93		
IBD	Р	453	-0.93	-0.92	-0.93	-0.93	-0.34	-0.87		
IBD	Р	950	-0.98	-0.17	-0.98	-0.92	-0.49	-0.90		
IBD	Р	988	-0.93	-0.18	-0.93	-0.93	-0.54	-0.93		
IBD	T	453	-0.93	-0.84	-0.93	-0.93	-0.69	-0.93		
IBD	T	950	-0.93	-0.92	-0.99	-0.93	-0.75	-0.93		
IBD	T	988	-0.93	-0.91	-0.93	-0.93	-0.91	-0.92		
IM	R	453	-	-	-	-0.55	-	-		
IM	R	950	-	-	-	-0.56	-	-		
IM	R	988	-	-	-	-0.59	-	-		
IM	Р	453	-	-	-	-0.76	-	-		
IM	Р	950	-	-	-	-0.81	-	-		
IM	Р	988	-	-	-	-0.66	-	-		
IM	T	453	-	-	-	-0.93	-	-		
IM	Т	950	-	-	-	-0.79	-	-		
IM	T	988	-	-	-	-0.69	-	-		

Table S5 (continued)

			Change in TPR (cutoffs)							
			6 indiv	iduals per	deme	20 indi	viduals pei	r deme		
Demo- graphy	Sampling Design	Envir. Surface	Ancestry	MEMs uncorr. Hab.	All retained MEMs	Ancestry	MEMs uncorr. Hab.	All retained MEMs		
1R	R	453	-0.53	-0.60	-0.75	-0.21	-0.22	-0.46		
1R	R	950	-0.48	-0.32	-0.70	-0.31	-0.04	-0.43		
1R	R	988	-0.39	-0.62	-0.67	-0.15	-0.81	-0.57		
1R	Р	453	-0.35	-0.54	-0.63	-0.09	-0.02	-0.30		
1R	Р	950	-0.52	-0.28	-0.58	-0.24	-0.08	-0.28		
1R	Р	988	-0.41	-0.48	-0.62	-0.15	-0.09	-0.28		
1R	Т	453	-0.29	-0.44	-0.91	-0.07	-0.05	-0.76		
1R	Т	950	-0.37	-0.32	-0.65	-0.19	-0.07	-0.45		
1R	Т	988	-0.18	-0.24	-0.70	-0.03	-0.05	-0.68		
2R	R	453	-0.72	-0.82	-0.95	-0.41	-0.26	-0.80		
2R	R	950	-0.62	-0.48	-0.89	-0.24	-0.03	-0.49		
2R	R	988	-0.79	-0.78	-0.77	-0.79	-0.92	-0.59		
2R	Р	453	-0.75	-0.48	-0.69	-0.56	-0.02	-0.28		
2R	Р	950	-0.73	-0.22	-0.77	-0.34	-0.03	-0.34		
2R	Р	988	-0.72	-0.14	-0.63	-0.57	-0.13	-0.31		
2R	Т	453	-0.68	-0.09	-0.84	-0.32	-0.05	-0.79		
2R	Т	950	-0.67	-0.35	-0.69	-0.58	-0.04	-0.54		
2R	Т	988	-0.64	-0.25	-0.61	-0.38	-0.05	-0.48		
IBD	R	453	-0.97	-0.93	-0.99	-0.93	-0.92	-0.96		
IBD	R	950	-0.92	-0.91	-0.95	-0.92	-0.58	-0.92		
IBD	R	988	-0.93	-0.93	-0.93	-0.93	-1.00	-0.93		
IBD	Р	453	-0.93	-0.91	-0.91	-0.93	-0.29	-0.76		
IBD	Р	950	-0.92	-0.10	-0.92	-0.87	-0.40	-0.87		
IBD	Р	988	-0.93	-0.12	-0.93	-0.93	-0.36	-0.93		
IBD	Т	453	-0.93	-0.63	-0.93	-0.93	-0.54	-0.90		
IBD	Т	950	-0.93	-0.87	-0.93	-0.92	-0.57	-0.89		
IBD	Т	988	-0.93	-0.79	-0.93	-0.93	-0.78	-0.91		
IM	R	453	-	-	-	-0.60	-	-		
IM	R	950	-	-	-	-0.52	-	-		
IM	R	988	-	-	-	-0.61	-	-		
IM	Р	453	-	-	-	-0.77	-	-		
IM	Р	950	-	-	-	-0.78	-	-		
IM	Р	988	-	-	-	-0.78	-	-		
IM	Т	453	-	-	-	-0.80	-	-		
IM	Т	950	-	-	-	-0.77	-	-		
IM	Т	988	-	1	-	-0.79	-	-		

Table S5 (continued)

			Change in FPR (cutoffs)							
			6 indiv	iduals per	deme	20 indi	viduals pei	r deme		
Demo- graphy	Sampling Design	Envir. Surface	Ancestry	MEMs uncorr. Hab.	All retained MEMs	Ancestry	MEMs uncorr. Hab.	All retained MEMs		
1R	R	453	0.0016	0.0018	0.0016	0.0012	0.0007	0.0018		
1R	R	950	0.0017	0.0011	0.0016	0.0002	0.0000	0.0013		
1R	R	988	0.0014	0.0013	0.0026	0.0009	-0.0001	0.0015		
1R	Р	453	0.0008	0.0018	0.0014	0.0009	0.0000	0.0008		
1R	Р	950	0.0013	0.0017	0.0026	0.0005	0.0006	0.0015		
1R	Р	988	0.0008	0.0011	0.0020	0.0000	0.0007	0.0010		
1R	Т	453	0.0005	0.0016	0.0029	0.0001	0.0000	0.0017		
1R	Т	950	0.0008	0.0009	0.0018	0.0004	0.0004	0.0013		
1R	Т	988	0.0008	0.0005	0.0017	0.0005	0.0004	0.0015		
2R	R	453	0.0017	0.0016	0.0027	0.0012	0.0007	0.0017		
2R	R	950	0.0019	0.0015	0.0022	0.0012	0.0004	0.0017		
2R	R	988	0.0026	0.0012	0.0020	0.0021	-0.0002	0.0011		
2R	Р	453	0.0017	0.0013	0.0019	0.0016	0.0003	0.0010		
2R	Р	950	0.0027	0.0011	0.0021	0.0016	0.0003	0.0019		
2R	Р	988	0.0021	0.0004	0.0018	0.0013	0.0003	0.0011		
2R	Т	453	0.0014	0.0008	0.0017	0.0007	0.0000	0.0024		
2R	Т	950	0.0024	0.0005	0.0028	0.0018	0.0003	0.0016		
2R	Т	988	0.0019	0.0011	0.0017	0.0010	0.0002	0.0011		
IBD	R	453	0.0024	0.0022	0.0025	0.0023	0.0017	0.0026		
IBD	R	950	0.0025	0.0019	0.0022	0.0020	0.0008	0.0020		
IBD	R	988	0.0031	0.0030	0.0029	0.0025	0.0000	0.0027		
IBD	Р	453	0.0024	0.0021	0.0019	0.0027	0.0003	0.0016		
IBD	Р	950	0.0020	0.0003	0.0029	0.0022	0.0009	0.0021		
IBD	Р	988	0.0028	0.0004	0.0033	0.0027	0.0014	0.0023		
IBD	Т	453	0.0024	0.0013	0.0012	0.0018	0.0010	0.0028		
IBD	Т	950	0.0024	0.0021	0.0025	0.0016	0.0015	0.0012		
IBD	Т	988	0.0019	0.0019	0.0014	0.0012	0.0013	0.0012		
IM	R	453	-	-	-	0.0021		-		
IM	R	950	-	-	-	0.0020	-	-		
IM	R	988	-	-	-	0.0022	-	-		
IM	Р	453	-	-	-	0.0021	-	-		
IM	Р	950	-	-	-	0.0021	-	-		
IM	Р	988	-	-	-	0.0016	-	-		
IM	Т	453	-	-	-	0.0028	-	-		
IM	Т	950	-	-	-	0.0029	-	-		
IM	Т	988	-	-	-	0.0026	-	-		

 Table S6: Percent variance explained for Random Forest models.

Demography	Design	Env	PVE: 6 ind./deme	PVE: 20 ind./deme
1R	R	453	0.86	0.85
1R	R	950	0.81	0.80
1R	R	988	0.81	0.79
1R	Р	453	0.88	0.87
1R	Р	950	0.90	0.88
1R	Р	988	0.88	0.88
1R	Т	453	0.83	0.82
1R	Т	950	0.87	0.86
1R	Т	988	0.82	0.80
2R	R	453	0.85	0.84
2R	R	950	0.80	0.80
2R	R	988	0.81	0.79
2R	Р	453	0.87	0.86
2R	Р	950	0.90	0.88
2R	Р	988	0.89	0.88
2R	Т	453	0.83	0.82
2R	Т	950	0.86	0.86
2R	Т	988	0.82	0.80
IBD	R	453	0.85	0.84
IBD	R	950	0.81	0.79
IBD	R	988	0.81	0.79
IBD	Р	453	0.88	0.86
IBD	Р	950	0.89	0.88
IBD	Р	988	0.89	0.88
IBD	Т	453	0.85	0.83
IBD	Т	950	0.84	0.84
IBD	Т	988	0.82	0.80
IM	R	453	0.83	0.82
IM	R	950	0.85	0.83
IM	R	988	0.81	0.80
IM	Р	453	0.88	0.87
IM	Р	950	0.91	0.89
IM	Р	988	0.88	0.88
IM	Т	453	0.86	0.85
IM	Т	950	0.88	0.86
IM	Т	988	0.85	0.85

Table S7: Correlations between habitat and x- and y-coordinates of demes; average and maximum trend in neutral markers; average and maximum levels of local adaptation.

			Correla	ations:				al trend: v./deme	Local ada	•	Local ada	•
Demo- graphy	De- sign	Env	Hab. and X	Hab. and Y	Avg.	Max.	Avg.	Max.	Avg	Max.	Avg.	Max.
1R	R	453	0.00	0.65	0.11	0.61	0.20	0.79	0.49	0.76	0.55	0.80
1R	R	950	0.05	0.63	0.11	0.63	0.20	0.80	0.37	0.68	0.42	0.70
1R	R	988	0.03	0.55	0.11	0.64	0.20	0.80	0.36	0.65	0.42	0.67
1R	Р	453	0.00	0.84	0.12	0.64	0.21	0.80	0.52	0.80	0.57	0.80
1R	Р	950	0.00	0.69	0.13	0.68	0.22	0.83	0.52	0.83	0.56	0.83
1R	Р	988	-0.11	0.70	0.12	0.62	0.21	0.82	0.44	0.83	0.50	0.84
1R	T	453	0.13	0.82	0.13	0.67	0.23	0.84	0.42	0.70	0.46	0.71
1R	T	950	0.12	0.83	0.12	0.68	0.22	0.84	0.38	0.73	0.42	0.76
1R	T	988	-0.14	0.78	0.12	0.60	0.21	0.80	0.36	0.70	0.41	0.73
2R	R	453	0.00	0.65	0.14	0.71	0.25	0.83	0.55	0.74	0.62	0.75
2R	R	950	0.05	0.63	0.13	0.70	0.24	0.83	0.45	0.67	0.51	0.68
2R	R	988	0.03	0.55	0.14	0.69	0.25	0.83	0.42	0.68	0.49	0.70
2R	Р	453	0.00	0.84	0.14	0.70	0.25	0.85	0.58	0.80	0.64	0.81
2R	Р	950	0.00	0.69	0.14	0.76	0.26	0.85	0.61	0.83	0.66	0.84
2R	Р	988	-0.11	0.70	0.15	0.73	0.26	0.84	0.54	0.83	0.61	0.84
2R	Т	453	0.13	0.82	0.15	0.80	0.27	0.91	0.49	0.71	0.55	0.73
2R	Т	950	0.12	0.83	0.14	0.70	0.26	0.87	0.45	0.74	0.51	0.76
2R	Т	988	-0.14	0.78	0.14	0.70	0.26	0.82	0.41	0.71	0.48	0.71
IBD	R	453	0.00	0.65	0.06	0.42	0.11	0.58	0.61	0.72	0.65	0.74
IBD	R	950	0.05	0.63	0.06	0.43	0.10	0.59	0.48	0.68	0.52	0.69
IBD	R	988	0.03	0.55	0.06	0.41	0.10	0.56	0.44	0.68	0.48	0.69
IBD	Р	453	0.00	0.84	0.06	0.43	0.11	0.56	0.63	0.81	0.68	0.82
IBD	Р	950	0.00	0.69	0.07	0.44	0.11	0.63	0.68	0.83	0.72	0.83
IBD	Р	988	-0.11	0.70	0.06	0.41	0.10	0.57	0.60	0.83	0.64	0.84
IBD	T	453	0.13	0.82	0.07	0.47	0.12	0.63	0.43	0.71	0.46	0.71
IBD	Т	950	0.12	0.83	0.06	0.56	0.10	0.69	0.42	0.71	0.46	0.72
IBD	Т	988	-0.14	0.78	0.07	0.41	0.11	0.58	0.35	0.69	0.37	0.69
IM	R	453	0.00	0.65	0.02	0.25	0.02	0.22	0.17	0.74	0.26	0.79
IM	R	950	0.05	0.63	0.02	0.18	0.02	0.20	0.16	0.76	0.24	0.82
IM	R	988	0.03	0.55	0.02	0.25	0.02	0.28	0.18	0.72	0.26	0.77
IM	Р	453	0.00	0.84	0.02	0.17	0.02	0.18	0.26	0.82	0.38	0.87
IM	Р	950	0.00	0.69	0.02	0.20	0.02	0.22	0.27	0.85	0.40	0.87
IM	Р	988	-0.11	0.70	0.02	0.20	0.02	0.20	0.26	0.82	0.39	0.86
IM	Т	453	0.13	0.82	0.02	0.21	0.02	0.18	0.25	0.76	0.38	0.81
IM	Т	950	0.12	0.83	0.02	0.19	0.02	0.21	0.24	0.82	0.36	0.84
IM	Т	988	-0.14	0.78	0.02	0.27	0.02	0.22	0.25	0.80	0.37	0.83

Table S8: Parameters from cRDA runs: number of axes retained by the parallel analysis criterion, and component axes significantly correlated with the constrained ordination axis. Results shown for all selection strengths and simulation data with weak selection only.

	All selection strengths					ths	Weak selection only			
		6 ind.		20ind		6 ind.		20ind		
Demo-	De-	F	Ret.	Signif.	Ret.	Signif.	Ret.	Signif.	Ret.	Cirulf Comm
graphy	sign	gn Env	axes	Comp.	axes	Comp.	axes	Comp.	axes	Signif. Comp.
1R	R	453	540	2	1800	2	540	3	0	0
1R	R	950	540	2	1800	2	540	2	1800	0
1R	R	988	540	2	1800	2	540	2	1800	9
1R	Р	453	540	2	1800	2	540	2	0	0
1R	Р	950	540	2	1800	2	540	2	1800	2
1R	Р	988	540	2	1800	2	540	2	1800	8, 11, 1300
1R	T	453	540	2	1800	2	540	3	1800	7, 995, 1421
1R	T	950	540	2	1800	2	540	3	1800	1277
1R	T	988	540	2	1800	2	540	2	1800	7, 9
2R	R	453	540	2	1800	2	540	2	1800	1, 2
2R	R	950	540	2	1800	2	540	1, 2	1800	1, 2
2R	R	988	540	1, 2	1800	1, 2	540	1, 2	1800	1, 1348
2R	Р	453	540	2	1800	2	540	2	1800	2
2R	Р	950	540	2	1800	2	540	2	1800	2
2R	Р	988	540	2	1800	2	540	1, 2	1800	1, 2
2R	T	453	540	2	1800	2	540	2	1800	2
2R	T	950	540	2	1800	2	540	2	1800	1, 2
2R	T	988	540	2	1800	2	540	2	1800	2
IBD	R	453	540	1	1800	1	540	1	1800	1
IBD	R	950	540	1	1800	1	540	1	1800	1
IBD	R	988	540	1	1800	1	540	1	1800	1
IBD	Р	453	540	1	1800	1	540	1	1800	1
IBD	Р	950	540	1	1800	1	540	1	1800	1
IBD	Р	988	540	1	1800	1	540	1	1800	1
IBD	Т	453	540	1	1800	1	540	1	1800	1
IBD	Т	950	540	1	1800	1	540	1	1800	1
IBD	T	988	540	1	1800	1	540	1	1800	1
IM	R	453	540	1	1800	1	0	0	0	0
IM	R	950	540	1	1800	1	0	0	1800	137, 1254
IM	R	988	540	1	1800	1	0	0	1800	47
IM	Р	453	540	1	1800	1	0	0	1800	3, 1726
IM	Р	950	540	1	1800	1	0	0	1800	1, 370, 402, 462, 494, 1521
IM	Р	988	540	1	1800	1	0	0	1800	2, 66, 207, 1295, 1385
IM	Т	453	540	1	1800	1	0	0	1800	3, 891, 1311, 1559, 1785
IM	Т	950	540	1	1800	1	0	0	1800	5, 1600
IM	Т	988	540	1	1800	1	540	125	1800	1, 845, 1219, 1681