

CÁLCULO DIFERENCIAL E INTEGRAL I MAT - 112

Primer Examen Parcial

04 de abril de 2022

- 1. En hojas blancas, usted debe desarrollar sus respuestas de la manera más completa y clara posible. Respuestas sin justificación no serán consideradas en la revisión.
- 2. En cada hoja, usted debe colocar sus apellidos y nombres, carnet de identidad.
- 3. Esta prueba tiene una duración mínima de 1 hora; y una duración máxima de 2 horas y 15 minutos.
- 4. Esta es una prueba de 5 problemas de desarrollo. La prueba puede ser realizada con lápiz o con bolígrafo.

Problema 1. Sea $a, b, c \in \mathbb{R}$ con $a, b, c \neq 0$. Si a + b + c = 0 y $a^3 + b^3 + c^3 = a^5 + b^5 + c^5$, entonces demostrar que:

$$a^2 + b^2 + c^2 = \frac{6}{5}$$

Problema 2. Si $f: \mathbb{R} \longrightarrow \mathbb{R}$ es una función tal que:

$$f(x+y) = f(x) + f(y)$$

para todo $x, y \in \mathbb{R}$. Si f es continua en algún punto $a \in \mathbb{R}$, entonces demostrar que f es continua en \mathbb{R} .

Problema 3. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función creciente. Si $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$, entonces demostrar que:

$$\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$$

para todo entero positivo c.

Problema 4. Se quiere construir una lata cilíndrica con fondo pero sin tapa que tendrá un volumen de $30cm^3$. Determine las dimensiones de la lata que minimizarán la cantidad de material necesaria para construir la lata.

Problema 5. Un pedazo de alambre de 10m de largo está cortado en dos piezas. Una pieza está doblada en forma de cuadrado y la otra de un triángulo equilátero. ¿Cómo debe cortarse el alambre para que el área total encerrada sea:

- 1. un máximo?
- 2. un mínimo?

CÁLCULO DIFERENCIAL E INTEGRAL I MAT - 112

Soluciones Primer Examen Parcial

04 de abril de 2022

- 1. En hojas blancas, usted debe desarrollar sus respuestas de la manera más completa y clara posible. Respuestas sin justificación no serán consideradas en la revisión.
- 2. En cada hoja, usted debe colocar sus apellidos y nombres, carnet de identidad.
- 3. Esta prueba tiene una duración mínima de 1 hora; y una duración máxima de 2 horas y 15 minutos.
- 4. Esta es una prueba de 5 problemas de desarrollo. La prueba puede ser realizada con lápiz o con bolígrafo.

Problema 1. Sea $a, b, c \in \mathbb{R}$ con $a, b, c \neq 0$. Si a + b + c = 0 y $a^3 + b^3 + c^3 = a^5 + b^5 + c^5$, entonces demostrar que:

$$a^2 + b^2 + c^2 = \frac{6}{5}$$

Solución. En primer lugar, como a+b+c=0, por igualdades condicionales tenemos que:

$$a^{3} + b^{3} + c^{3} = 3abc$$

 $a^{5} + b^{5} + c^{5} = -5abc(ab + ac + bc).$

Entonces, como $a^3 + b^3 + c^3 = a^5 + b^5 + c^5$, tenemos que:

$$3abc = -5abc(ab + ac + bc)$$

$$\frac{3}{5} = -(ab + ac + bc)$$

$$\frac{6}{5} = -2(ab + ac + bc)$$

$$= -(a(b + c) + b(a + c) + c(a + b))$$

$$= -(a(-a) + b(-b) + c(-c))$$

$$= -(-a^2 - b^2 - c^2)$$

$$= a^2 + b^2 + c^2.$$

Problema 2. Si $f: \mathbb{R} \longrightarrow \mathbb{R}$ es una función tal que:

$$f(x+y) = f(x) + f(y)$$

para todo $x, y \in \mathbb{R}$. Si f es continua en algún punto $a \in \mathbb{R}$, entonces demostrar que f es continua en \mathbb{R} .

Solución. En primer lugar, como f es continua en $a \in \mathbb{R}$, tenemos que:

$$f(a) = \lim_{h \to 0} f(a+h)$$

$$= \lim_{h \to 0} (f(a) + f(h))$$

$$= \lim_{h \to 0} f(a) + \lim_{h \to 0} f(h)$$

$$= f(a) + \lim_{h \to 0} f(h)$$

$$0 = \lim_{h \to 0} f(h).$$

Por otro lado, si $x \in \mathbb{R}$, entonces tenemos que:

$$\lim_{h \to 0} f(x+h) = \lim_{h \to 0} (f(x) + f(h))$$

$$= \lim_{h \to 0} f(x) + \lim_{h \to 0} f(h)$$

$$= f(x) + \lim_{h \to 0} f(h)$$

$$= f(x) + 0$$

$$= f(x).$$

Por lo que, f es continua en $x \in \mathbb{R}$. Así, tenemos que f es continua en \mathbb{R} .

Problema 3. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función creciente. Si $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$, entonces demostrar que:

$$\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$$

para todo entero positivo c.

Solución. En primer lugar, notemos que:

$$\lim_{x \to \infty} \frac{f(2^m x)}{f(x)} = \lim_{x \to \infty} \left(\frac{f(2^m x)}{f(2^{m-1} x)} \frac{f(2^{m-1} x)}{f(2^{m-2} x)} \dots \frac{f(2x)}{f(x)} \right) \\
= \lim_{x \to \infty} \left(\frac{f(2^m x)}{f(2^{m-1} x)} \right) \lim_{x \to \infty} \left(\frac{f(2^{m-1} x)}{f(2^{m-2} x)} \right) \dots \lim_{x \to \infty} \left(\frac{f(2x)}{f(x)} \right) \\
= 1,$$

para todo $m \ge 1$. Entonces, como $c \ge 1$, tenemos que existe un entero $n \ge 0$ tal que:

$$2^n \le c \le 2^{n+1}.$$

De donde, como f es creciente, se sigue que:

$$f(2^n x) \le f(cx) \le f(2^{n+1} x)$$

para todo x > 0.

Así, tenemos que
$$\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$$
.

Problema 4. Se quiere construir una lata cilíndrica con fondo pero sin tapa que tendrá un volumen de $30cm^3$. Determine las dimensiones de la lata que minimizarán la cantidad de material necesaria para construir la lata.

Solución. Sean h la altura y r el radio del cilindro. Entonces, como el volumen del cilindro es $V = \pi r^2 h = 30$, consideremos la siguiente función:

$$\begin{array}{ccc} A: & (0,+\infty) & \longrightarrow & \mathbb{R} \\ & r & \longmapsto & A(r) := \pi r^2 + 2\pi r \Big(\frac{30}{\pi r^2}\Big) = \pi r^2 + \frac{60}{r}, \end{array}$$

Luego, obtenemos que:

$$A'(r) = 2\pi r - \frac{60}{r^2}$$
$$A''(r) = 2\pi + \frac{120}{r^3}$$

De donde, tenemos que los puntos críticos de A están dados por:

$$A'(r) = 0$$

$$2\pi r - \frac{60}{r^2} = 0$$

$$r = \sqrt[3]{\frac{30}{\pi}}$$

Por otro lado, notemos que:

$$A''\left(\sqrt[3]{\frac{30}{\pi}}\right) = 2\pi + \frac{120}{\frac{30}{\pi}}$$
$$= 2\pi + 4\pi$$
$$= 6\pi$$
$$> 0.$$

Por lo que, $r = \sqrt[3]{\frac{30}{\pi}}$ es un mínimo local de A.

Así, tenemos que las dimensiones de la lata que minimizarán la cantidad de material necesaria para construir la lata son $r=\sqrt[3]{\frac{30}{\pi}}\approx 2.1215688358941103$ y $h=\frac{30}{\pi\sqrt[3]{\frac{30}{\pi}}^2}\approx 2.1215688358941109$.

Problema 5. Un pedazo de alambre de 10m de largo está cortado en dos piezas. Una pieza está doblada en forma de cuadrado y la otra de un triángulo equilátero. ¿Cómo debe cortarse el alambre para que el área total encerrada sea:

- 1. un máximo?
- 2. un mínimo?

Soluci'on. Sea x la longitud de la cuerda para formar el cuadrado. Entonces, consideremos la siguiente funci\'on:

$$\begin{array}{cccc} A: & (0,+\infty) & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & A(x) := \left(\frac{x}{4}\right)^2 + \left(\frac{10-x}{3}\right)^2 \frac{\sqrt{3}}{4}, \end{array}$$

Luego, obtenemos que:

$$A'(x) = \frac{x}{8} - \frac{\sqrt{3}}{6} \left(\frac{10 - x}{3}\right)$$
$$A''(x) = \frac{1}{8} + \frac{\sqrt{3}}{18}.$$

De donde, tenemos que los puntos críticos de A están dados por:

$$A'(x) = 0$$

$$\frac{x}{8} - \frac{\sqrt{3}}{6} \left(\frac{10 - x}{3}\right) = 0$$

$$x = \frac{\frac{5\sqrt{3}}{9}}{\frac{1}{8} + \frac{\sqrt{3}}{18}}$$

$$= \frac{40}{11} (3\sqrt{3} - 4).$$

Por otro lado, notemos que:

$$A\left(\frac{40}{11}(3\sqrt{3}-4)\right) = \frac{25}{11}(3\sqrt{3}-4)$$

$$\approx 2.71853$$

$$A(0) = \frac{25\sqrt{3}}{9}$$

$$\approx 4.81125$$

$$A(10) = \frac{25}{4}$$

$$= 6.25000.$$

Así, tenemos que para que el área total encerrada por el alambre se mínima $x = \frac{40}{11}(3\sqrt{3} - 4)$ y para que el área total encerrada por el alambre se máxima x = 10.

UNIVERSIDAD MAYOR DE SAN ANDRES

FACULTAD DE CIENCIAS PURAS Y NATURALES

FILA A

Apellidos que inician de la A a la M

NOMBRE:		
CURSO:	.ASIGNATURA:	
C.I.:	.FECHA:	.EXAMEN:

FIRMA ESTUDIANTE

EJERCICIOS

- 1.- (6 pts) Si g es una función diferenciable y que $f_{(x)}=xg_{(x^2+x)}$ para todo x. Si $f_{(2)}=f'_{(2)}=3$ determinar $g'_{(6)}$
- 2.- (6 pts) Determinar la derivada de la función $f_{(x)}=x^x$
- 3.- (6 pts) Sea $f: \mathbb{R} \to \mathbb{R}$ una función con derivada continua y $f'_{(x)} \neq 0$ para todod $x \in \mathbb{R}$, además $f_{(3)} = 3$ y $f'_{(3)} = 2$. Sea $f_{(y)}^{-1}$ su función inversa. Determinar $\frac{d}{dy} \left(\sqrt{f_{(y)}^{-1}} \right)_{(3)}$
- 4.- (6 pts) Encontrar los valores que satisfacen el teorema del valor medio para la función $f_{(x)} = \sqrt{4x-x^2} + x$
- 5.- (6 pts) Calcular la recta tangente a la gráfica de la función $f_{(x)} = x^2 + 2x$ en el punto (1,3). Diga en que punto se intersectan la recta $g_{(x)} = 0$ y la recta tangente a la gráfica de $f_{(x)} = x^2 + 2x$ que tiene pendiente m = 4

UNIVERSIDAD MAYOR DE SAN ANDRES

FACULTAD DE CIENCIAS PURAS Y NATURALES

FILA B

Apellidos que inician de la N a la Z

NOMBRE:		
CURSO:	ASIGNATURA:	
C.I.:	FECHA:	.EXAMEN:

FIRMA ESTUDIANTE

EJERCICIOS

1.- (6 pts) Si la función $f: \mathbb{R} \to \mathbb{R}$ satisface $f_{(x^2)}f''_{(x)} = f'_{(x)}f'_{(x^2)}$ para todo $x \in \mathbb{R}$ dado que $f_{(1)} = 1$ y $f'''_{(1)} = 8$, determinar el valor de $f'_{(1)} + f''_{(1)}$

2.- (6 pts) Sea $f: \mathbb{R} \to \mathbb{R}$ con $f_{(0)} = 1$ y tal que, para cualesquiera $x, h \in \mathbb{R}$ satisface

$$f_{(x+h)} - f_{(x)} = 8xh - 2h + 4h^2$$

el valor de $f'_{(2)}$ es

3.- (6 pts) Sea $f: \mathbb{R} \to \mathbb{R}$ una función con derivada continua y $f'_{(x)} \neq 0$ para todod $x \in \mathbb{R}$, además $f_{(3)} = 3$ y $f'_{(3)} = 2$. Sea $f_{(y)}^{-1}$ su función inversa. Determinar $\frac{d}{dy} \left(\sqrt{f_{(y)}^{-1}} \right)_{(3)}$

4.- (6 pts) Verificar que se cumpla las condiciones del teorema de Rolle en el intervalo [0, 1] para la función $f_{(x)} = x^3 + 5x^2 - 6x$ y determinar un valor adecuado c que satisfaga la conclusión de este teorema

5.- (6 pts) Calcular la recta tangente a la gráfica de la función $f_{(x)} = x^2 + 2x$ en el punto (1,3) ¿En que punto la gráfica de $f_{(x)} = x^3 + 2x^2 + 1$ tiene pendiente igual a cero?

Universidad Mayor de San Andrés Facultad de Ciencias Puras y Naturales Carrera de Matemática

EXAMEN FINAL - CÁLCULO I La Paz, 4 de diciembre de 2022 FILA 2

District many	

Instrucciones.

- 1. El examen es estrictamente de desarrollo y tiene una duración de 1hr y 30min.
- 2. Escriba lo más claro posible.
- 3. Utilize una hoja por ejercicio y cada hoja debe tener sus Apellidos, Nombre y Firma.
- 1. Encuentre la derivada de la función.

$$F(x) = \int_0^{e^{2x}} t^3 dt$$

2. Calcule la integral

$$\int \cos \sqrt{2x-1} dx$$

3. Calcule la siguiente integral [Sugerencia: $sen^2 x = \frac{1}{2}(1 - cos(2x))$]:

$$\int x \arcsin x \, dx$$

- 4. Calcule el valor (o los valores) de $c \in \mathbb{R}$ tales que el área de la región delimitada por las parábolas $y_1 = 2c^2 2x^2$ y $y_2 = 2x^2 2c^2$ es $\frac{128}{3}$. (Ayuda: considere $y_2 \le y_1$)
- 5 Determine la longitud de la gráfica de $y^2 = 16x^3$ de (0,0) al punto (1,4).