РАЗРАБОТКА АДАПТИВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ СВЕТОФОРНЫМИ ОБЪЕКТАМИ С ИСПОЛЬЗОВАНИЕМ МАРКОВСКИХ ПРОЦЕССОВ ПРИНЯТИЯ РЕШЕНИЙ¹

Тисленко Т.И.², Семенова Д.В.³

(Сибирский федеральный университет, г. Красноярск)

В статье представлены результаты разработки программного комплекса MARLIN24, предназначенного для реализации адаптивного управления светофорными объектами. Цель разработки — оптимизация работы светофоров для сокращения суммарного времени пребывания транспортных средств в зоне действия оптических детекторов. Архитектура комплекса включает три ключевых модуля: модуль адаптивного управления, модуль имитационного моделирования транспортных потоков и модуль валидации, а также дополнительный модуль визуализации. В модуле адаптивного управления реализованы четыре подхода: фиксированный план; некоординированное подкрепленное обучение; координированное мультиагентное обучение с подкреплением; управление длительностью фаз с помощью MISO контроллера нечёткой логики (Multiple Input Single Output, MISO). Имитационное моделирование транспортных потоков для проверки результатов управления осуществляется посредством модуля микросимуляции на основе модели «разумный водитель»(Intelligent Driver Model, IDM). В модуле валидации для моделирования реалистичных показаний оптических датчиков, отражающих дорожную обстановку, используются копула-функции, принимающие на вход маргинальные распределения. Маргинальные распределения были получены на основе исторических данных об интенсивности движения за период 2019-2020 гг. Разработанный комплекс программ имитационного моделирования MARLIN24 позволяет исследовать и сравнивать между собой ряд моделей управления реальными участками дорожной сети г. Красноярска при различных условиях.

Ключевые слова: имитационное моделирование транспортных потоков, модель IDM, модель MOBIL, копулы Маршалла-Олкина, машинное обучение с подкреплением.

¹ Работа поддержана Красноярским математическим центром, финансируемым Минобрнауки РФ (Соглашение 075-02-2024-1429).

² Тисленко Тимофей Иванович, аспирант(timtisko@mail.ru).

³ Семенова Дарья Владиславовна, к.ф.-м.н., доцент (DVSemenova@sfu-kras.ru).

Одной из задач, решаемых в ходе реализации транспортной стратегии России на 2035 год [1], является увеличение пропускной способности и скоростных параметров дорожной инфраструктуры до уровня лучших мировых достижений. При этом необходимо учитывать общесоциальные целевые ориентиры транспортной стратегии: подвижность населения, снижение аварийности, рисков и угроз безопасности по видам транспорта, снижение доли транспорта в загрязнении окружающей среды. Таким образом, актуальна проблема моделирования транспортных потоков и оценки эффективности управления светофорными объектами для наиболее нагруженных участков дорожной сети.

Системы, управляющие светофорными объектами, подразделяют на те, которые корректируют сигналы светофоров в реальном времени и реагируют на текущую дорожную обстановку — АСУДД (адаптивные системы управления дорожным движением) и неадаптивные — те, которые работают согласно фиксированному плану управления. В таблице 1 представлены наиболее известные АСУДД, которые были разработаны в различные временные периоды и для различных условий движения.

Таблица 1. Распространенные модели АСУДД

Критерий	UTCS-1	SCOOT	OPAC	АСУДД «Микро»	MARLIN
город	Вашингтон	Лондон	Арлингтон, Тускон	Красноярск	Торонто
временной период	1970e	1995	1983,1989	1993	2010
длительность фаз	фиксированная		переменная		
оптимизация	офлайн	онлайн			
предсказание	нет	есть			
устройство	централизо	ованная ,		цецентрализованная	
основные ограничения	постоянный сбор данных	сенсоры далеко	только для 8 фаз	находится в разработке	«ПРОКЛЯТИЕ РАЗМЕРНОСТИ»

Одна из ранних систем управления городским дорожным движением была UTCS-1 (Urban Traffic Control System) [2]. Система UTCS-1 использовала фиксированные сигнальные планы, которые менялись в зависимости от времени суток (утренний, днев-

ной, вечерний планы). Для стабильной работы системы UTCS-1 необходимо регулярно вручную корректировать сигнальные планы, что является существенным недостатком. На данный момент считается устаревшей, так как более современные системы UTCS-2, UTCS-3, SCOOT позволяют гибко управлять дорожным движением в реальном времени.

Система SCOOT (Split Cycle Offset Optimization Technique) [3] анализирует данные о дорожной обстановке и корректирует светофорные сигналы, чтобы предотвратить образование заторов до их появления. Для работы данной системы требуется установка плотной сети индукционных петель, камер и других датчиков движения на расстоянии не менее сорока метров и не более двухста метров до регулируемых перекрёстков. Централизованное управление SCOOT направлено на устранение «эффекта волны». Однако продолжительность активной фазы в цикле светофора ограничена и не продлевается динамически, так как параметр Split задаёт её максимальный процент от времени в цикле.

Система OPAC (Optimized Policies for Adaptive Control) [4] — это адаптивная система управления светофорами, схожая по назначению с системой SCOOT, но использующая другой подход для оптимизации транспортных потоков. OPAC, разработанная в США, предназначена для улучшения дорожной ситуации в реальном времени путем адаптации фаз светофоров в зависимости от условий трафика. В системе OPAC существует ограничение в восемь фаз для каждого светофора. Это ограничение связано с практическими соображениями, поскольку каждая фаза представляет собой отдельное направление движения или определённую комбинацию разрешённых манёвров на перекрёстке (например, движение прямо, поворот налево или направо). Эти ограничения заложены аппаратно, то есть на уровне контроллеров, и не могут быть изменены конечным пользователем.

Автоматизированная система управления дорожным движением (АСУДД) «Микро» [5]—наиболее широко используемая в России система, успешно применяемая в следующих регионах: Красноярский край, Иркутская область, Белгородская область,

Воронежская область, Хабаровский край, Московская область. АСУДД «Микро» является децентрализованной системой и поддерживает до шести GPRS-серверов, которые позволяют подключить до 250 перекрёстков. Детекторы АСУДД «Микро» работают на расстоянии до ста метров. Основным недостатком системы является тот факт, что реализация адаптивных алгоритмов находится в стадии разработки.

В работах [6, 20, 21, 22, 23] для адаптивного управления светофорными объектами было предложено использовать метод мультиагентного обучения с подкреплением. Данный подход получил название MARLIN (Multiagent Reinforcement Learning for Integrated Network) и был успешно применен в современной АСУДД в Канаде. Целью обучения с подкреплением является сокращение времени проезда транспортных средств через выбранные участки дорожной сети. Управление светофорными объектами считается эффективным, если транспортные средства находятся на детектируемых участках менее двух циклов. Для работы требуется установка камер на расстоянии менее ста метров от стоп-линий. Агенты (светофоры) могут работать без информации о полной дорожной обстановке и управлять движением децентрализованно. Перечисленные особенности можно отнести к достоинствам подхода на основе MARLIN. Существенным ограничением является рост вычислительной сложности при увеличении обзора агента, известный как «проклятие размерности».

Структура статьи следующая. В разделе 1 приводится общее описание работы четырех модулей комплекса MARLIN24: симуляции, визуализации, валидации и модуля адаптивного управления светофорными объектами.

В разделе 2 приводится описание работы модуля симуляции. Данный модуль предназначен для имитации показаний оптических детекторов. В 2.1 описывается модель IDM, описывающая движение транспортных средств. Он реализует микросимуляционные модели движения, предназначенные для описания перемещения транспортных средств по дорожной сети. В 2.2 приводится описание работы модуля. Включение графического интерфей-

са в модуле визуализации является опциональным и позволяет производить отладку применяемого управления. Данный модуль отображает транспортные средства, дорожную сеть, дополнительную информацию о содержании названий дорог, их координатах. Также в модуле реализована функция ускорения и замедления модельного времени, выделения маршрутов, масштабирования и перемещения области обзора.

В разделе 3 приводится описание работы модуля валидации. В 3.1 описание задачи моделирования интенсивностей транспортных потоков с использованием копул Маршалла-Олкина. В 3.2 приводится описание работы модуля на примере реальных данных, полученных с оптических детекторов.

В разделе 4 приводится описание модуля управления светофорными объектами. В 4.1 проблема управления светофорными объектами сводится к задаче мультиагентного обучения с подкреплением для одного и нескольких агентов. В 4.2 приводится схема взаимодействия модуля управления светофорными объектами с модулями симуляции и валидации.

1. Общее описание программного комплекса MARLIN24

Фокус наших исследований сосредоточен на разработке программных и математических инструментов для адаптивного управления сетью светофорных объектов участков дорожной сети города Красноярска. В настоящей работе представлен новый программный комплекс MARLIN24, реализующий часть методов новейших АСУДД. Промежуточные результаты по разработке комплекса и эксперименты представлены в [20, 21, 22, 23]. В статье в качестве примера приведены две модели участков дорожной сети города Красноярска: модель двух перекрестков (пр. Свободный–ул. Лесопарковая, пр. Свободный–ул. Годенко) и модель перекрестков микрорайона Покровский. Оценка эффективности применяемого управления и валидация полученных результатов осуществлялись с помощью симуляционных экспериментов на основе статистических данных с детекторов за 2018–2019 гг.

Общая структура комплекса MARLIN24 приведена на рисунке 1. Комплекс состоит из четырех модулей: симуляции, валидации, адаптивного управления светофорными объектами, визуализации. Модуль визуализации является опциональным. Его функционал и используемые компоненты будут описаны ниже.

Рис. 1. Структура программного комплекса MARLIN24

2. Модуль симуляции

Модуль симуляции предназначен для оценки эффективности выбранного управления светофорными объектами. В модуле реализованы две микросимуляционные модели движения, описывающие перемещения транспортных средств по дорожной сети. Первая модель IDM (Intelligent Driver Model) реализует движение транспортных средств по однополосной прямой дороге [7]. Вторая модель — MOBIL (Microscopic Optimally Balanced Intersection Lanes), описывает перестроение на многополосной дороге [8]. В процессе симуляции движения транспортных средств учитывается управление фазами и циклами светофорных объектов, а также предусмотрено имитирование показаний оптических датчиков и работы светофоров.

2.1. Модели движения транспортных средств

Для описания движения отдельных транспортных средств используется модель IDM [7]. Данная модель позволяет учитывать следующие параметры: минимальная безопасная дистанция, максимальная разрешенная скорость и коэффициент торможения транспортных средств. В таблице 2 представлены значения параметров для модели IDM, используемые далее в статье.

. Основные обозничения оля мобели 1121/1					
Символ	Значение				
i	номер транспортного средства				
$s_{0,i}$	минимальная безопасная дистанция для т.с. i				
$v_{0,i}$	максимальная желательная скорость i				
δ	компонента «гладкости» ускорения				
T_i	время реакции i -го водителя				
a_i	ускорение і				
b_i	коэффициент торможения i				
s^*	желаемое расстояние между i и $i-1$				

Таблица 2. Основные обозначения для модели IDM

Модель IDM относится к классу моделей движения за лидером. Все транспортные средства рассматриваются как индивидуальные сущности, обладающие характеристиками и поведением. Водители транспортных средств регулируют скорость в зависимости от расстояния до впереди идущих и их скорости. На рисунке 2 представлено взаимное расположение и характеристики текущего автомобиля, расположенного в i-ой позиции, и (i-1)-го автомобиля, находящегося перед ним.

Рис. 2. Иллюстрация модели IDM

Система уравнений, описывающих текущую скорость i-го автомобиля и расстояние до (i-1)-го автомобиля в модели IDM в классических обозначениях имеет вид:

(1)
$$\begin{cases} \frac{dv_i}{dt} = a_i \left(1 - \left(\frac{v_i}{v_{0,i}}\right)^{\delta}\right) - a_i \left(\frac{s^* \left(v_i \Delta v_i\right)}{s_i}\right)^2, \\ a_{\text{free road}} & a_{\text{deceleration}} \\ s^* \left(v_i, \Delta v_i\right) = s_{0,i} + v_i T_i + \frac{v_i \Delta v_i}{2\sqrt{a_i b_i}}, \end{cases}$$

 $\sqrt{\frac{s(v_i)-s_{0,i}-v_{i}I_i-\frac{1}{2}\sqrt{a_ib_i}}{2\sqrt{a_ib_i}}},$ где $a_{\mathrm{free\ road}}$ обозначает ускорение, возникающее на свободной дороге, $a_{\mathrm{deceleration}}$ — замедление, возникающее при сближении транспортных средств.

При имитационном моделировании для нахождения значений скорости и ускорения использовались формулы, вытекающие из численного метода «пристрелки» [9]:

$$\begin{cases} \frac{dv}{dt}(t) = a_{\text{free road}}(t) + a_{\text{deceleration}}(t), \\ v(t + \Delta t) = v(t) + \frac{dv}{dt}(t)\Delta t, \\ x(t + \Delta t) = x(t) + v(t)\Delta t + \frac{1}{2}\frac{dv}{dt}(t)(\Delta t)^2, \\ s(t + \Delta t) = x_i(t + \Delta t) - x(t + \Delta t) - l_i. \end{cases}$$

Шаг симуляции dt выбирается как шаг по времени при численном решении системы (1).

Существенным ограничением модели IDM является ее применимость только к однополосному движению. Одним из способов расширить ее применимость к многополосным дорожным сетям является введение алгоритмов, описывающих перестроение транспортных средств. В работе используется модель МОВІL [8].

В основе модели MOBIL лежит идея о том, что водители принимают решения о перестроении и изменении скорости движения из соображений проходимости и безопасности. Конкретное изменение полосы движения, например с правой полосы движения на левую полосу, как показано на рисунке 3, зависит, как правило, от двух следующих транспортных средств на текущей полосе движения и соответственно на целевой полосе движения.

Рис. 3. Модель смены полосы MOBIL

Стимул для перестроения есть, если после первого фиктивного перестроения с правой полосы R на левую полосу L сумма собственного ускорения согласно модели IDM и ускорения соседних транспортных средств выше на порог изменения δ :

$$R \to L: \quad (\widetilde{a_i} - a_i) + m\left((\widetilde{a_{i+1}} - a_{i+1}) + (\widetilde{a_j} - a_j)\right) \geqslant \delta,$$

где $m \in \left[-\infty; \frac{1}{2}\right] \cup [1; +\infty]$ — вручную задаваемый коэффициент вежливости, символ «» обозначает измененные характеристики. В [8] предложены следующие интерпретации коэффициента m:

- $m \geqslant 1$, альтруистичное поведение: автомобиль не перестраивается, если он ухудшит общую дорожную ситуацию;
- $0 \le m \le 0.5$, реалистичное поведение: движение остальных транспортных средств менее приоритетно;
- m < 0, вредительское поведение: автомобиль перестраивается, если он замедлит остальные.

Также следует учитывать, что если транспортное средство i перестраивается на соседнюю полосу перед транспортным средством j, то коэффициент торможения j должен быть по модулю не больше, чем комфортное торможение b_j из таблицы 2. Поскольку в модели IDM скорости, а, следовательно, и ускорения связаны формулой (1) и изменяются последовательно от лидирующего транспортного средства к последующему. Поэтому ограничение на ускорение $\widetilde{a_j}$, полученное после перестроения i можно выразить следующим образом: $\widetilde{a_i} \geqslant -b_j$.

2.2. Описание работы модуля

Модуль симуляции трафика на вход получает конфигурационный файл VehicleConfig.xml, в котором содержатся такие параметры как максимально разрешенная скорость, коэффициент торможения (покрытие дороги), количество полос. Дополнительно, в модуль симуляции поступает информация о дорожной сети в виде мультиграфа map.osm, предобработанная библиотекой osmnx [10]. Для построения маршрутов транспортных средств в дорожной сети используется библиотека NetworkX [11].

Каждый шаг по времени t в модуле симуляции может быть отображен в модуле визуализации с использованием библиотеки рудате. Модуль визуализации отрисовывает дорожную сеть, транспортные средства и отладочную информацию, а также позволяет изменять модельное время.

3. Модуль валидации

В модуле валидации решается задача имитационного моделирования интенсивности движения транспортного потока. В данной работе под интенсивностью транспортного потока будем понимать число автомобилей, проезжающих через поперечное сечение участка дорожной сети в единицу времени. В модуле предусмотрены два способа подсчета интенсивности: первый способ, учитывающий количество машин за фиксированный временной интервал dt [22], второй — величину временного интервала между проездом двух автомобилей [23].

3.1. Моделирование интенсивностей транспортных потоков

На практике оптические датчики закреплены за соответствующей отдельной полосой и движение по полосам, как правило, является зависимым. Обозначим множество детектируемых участков Zones, |Zones| = Z.

Пусть случайная величина X_z с функцией распределения $F_z(x)$ есть временной интервал между проездом двух автомобилей через сечение детектируемого участка в зоне $z,z\in Zones$. Тогда система зависимых случайных величин (X_1,\ldots,X_Z) с совместной функцией распределения $H(x_1\ldots x_Z)$ описывает интенсивность движения транспортных потоков через детектируемый участок дорожной сети Zones.

По теореме Скляра [12] совместная функция распределения представима копулой ${\cal C}$

(2)
$$H_{X_1...X_Z}(x_1,...,x_Z) = C(F_1(x_1),...,F_Z(x_Z).$$

Для описания совместного распределения временных интервалов проезда автомобилей будем использовать копулы Маршалла-Олкина [12, 13] при $0\leqslant\theta_z\leqslant1,\widetilde{z}=\arg\min(u_1^{-\theta_1},\dots,u_Z^{-\theta_Z})$

(3)
$$C(u_1, \dots, u_Z; \overline{\theta}) = u_{\widetilde{z}}^{-\theta_{\overline{z}}} \prod_{z \in Zones} u_z.$$

Для копулы Маршалла-Олкина совместная плотность $h(x_1,\ldots,x_Z)$ при $u_z=F_z(x_z)$ примет следующий вид

(4)
$$h(x_1, \dots, x_Z) = (1 - \theta_{\widetilde{z}}) u_{\widetilde{z}}^{-\theta_{\widetilde{z}}} \prod_{z \in Zones} f_z(x_z).$$

3.2. Описание модуля валидации

В комплексе MARLIN24 предусмотрена имитация показаний оптических датчиков. Она может быть осуществлена с помощью модуля валидации. Модуль валидации предназначен для численного моделирования случайных величин, описывающих интенсивность движения транспортных средств.

Иллюстрация работы оптических датчиков приведена на рисунке 4а, зоны работы оптических датчиков — на рисунке 4б. Опишем совместное распределение интенсивностей движения на примере полос 1 и 2 рисунка 4б. Пусть случайная величина X с функцией распределения F(x) описывает длину временного интервала Δt_i между проездом автомобилей i и i+1 через сечение детектируемого участка на полосах 1. Случайная величина Y с функцией распределения G(y) — длину временного интервала Δt_j на второй полосе соответственно. Процедура вычисления длин интервалов Δt_i следующая. В таблице фиксируется дискретная временная отметка с частотой обновления детектора 300 секунд, например t_i . Когда транспортное средство i перемещается в зону обзора оптического датчика, счетчик транспортных средств M увеличивается на 1. Длина временного интервала между проездом двух автомобилей определяется как $\Delta t_i = \frac{300}{M}$.

отметки $t_{i+1}=t_i+300$. Упорядоченные по дискретному разбиению t совокупности интервалов $\{(\Delta t_i, \Delta t_j)\}$ образуют выборку, которая используется для анализа совместного распределения интенсивности движения на разных полосах.

Рис. 4. а)скриншот окна комплекса MARLIN24; б)зоны оптических датчиков (жёлтый цвет)

Этап предобработки состоит в оценивании плотности распределений случайных величин X и Y, описывающих число детектируемых транспортных средств на полосах 1 и 2 соответственно на основе данных, полученных с оптических детекторов города Красноярска с 2019 по 2020 год. На первом шаге строятся ядерные оценки плотности с ядром Епанечникова [15]. Далее формулируется упрощающее предположение о том, что каждая из рассматриваемых случайных величин представима в виде смеси нормальных распределений. С использованием ЕМалгоритма [16], на вход которого продавались значения ядерной оценки плотности, определяются параметры смесей. Результаты этапа предобработки на 10-й итерации ЕМ алгоритма и вид маргинальных плотностей распределений случайных величин X и Y приведены на рисунке 5а) и рисунке 5б).

Рис. 5. Результаты этапа предобработки: оценка плотностей маргинальных плотностей: а) X; б) Y

Для этапа имитационного моделирования среднесуточных интенсивностей была разработана модификация метода дискретной суперпозиции Монте-Карло для генерации значений случайной величины (X,Y) [17, 23].

Гистограмма выборки, полученной моделированием копулой Маршалла-Олкина с параметрами $\overline{\theta} = \left(\frac{9}{10}, \frac{1}{4}\right)$ и функция плотности распределения (4) представлены на рисунке 6.

Рис. 6. Сравнение эмпирической h_{XY}^* с параметрами $\overline{\theta} = \left(\frac{9}{10}, \frac{1}{4}\right)$ и теоретической h_{XY} функции плотности с.в. (X,Y)

Сравнение значений выборки с моделируемыми значениями (X,Y) приведено на рисунке 7. Справа на рисунке 7 изображены моделируемые временные интервалы, которые используются при моделировании транспортных потоков, которые участвуют в отладке работы комплекса MARLIN24.

 $Puc. \ 7. \ Cравнение моделируемых значений и выборки <math>(X,Y)$

4. Модуль адаптивного управления светофорными объектами

Опишем задачу управления светофорным объектом как задачу управления агентом в стохастической среде. Агент (светофорный объект) не располагает ресурсами и решает задачу целесообразности активации той или иной фазы. Обозначим множество всех действий агента символом \mathcal{A} . Среда — детектируемые перекрестки с оптическими датчиками, которые распознают машины на отрезках дорог за сто метров до стоп-линий. Состояние среды отражает активность фаз светофорных объектов и время, которое машины находятся в детектируемой зоне. Обозначим множество всех состояний символом \mathcal{S} .

В качестве математической модели сети светофоров в работе рассматривается управляемый марковский процесс с конечным числом действий и состояний. Таким образом, проблема управления светофорными объектами сводится к задаче мультиагентного обучения с подкреплением (Multiagent Reinforcement Learning).

4.1. Задача мультиагентного обучения с подкреплением для светофорных объектов

Опишем поведение светофорных объектов (агентов) с помощью марковского процесса принятия решений $\langle \mathcal{S}, \mathcal{A}, \mathbb{P}, r \rangle$ [18]. Процесс принятия решений для агента будет выглядеть следующим образом. В момент времени t агент наблюдает состояние среды $s_t \in \mathcal{S}$ и выбирает действие $a_t \in \mathcal{A}$. Среда отвечает гене-

рацией наград $R_t = r(s_t, a_t)$ и переходит в состояние $s_{t+1} = s'$ с вероятностью $p(s' \mid s_t, a_t)$ согласно матрице переходов \mathbb{P} .

Функция оценки эффективности применяемого управления $\delta = \{a_t, t \in \mathbb{N}\}$, составляющая траекторию процесса, $\mathcal{T} = \{s_0, a_0, s_1, a_1, \dots, s_T, a_T\}$ получается как функция:

(5)
$$V = \sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t+1} \mid s_{t}, \delta_{t}\right) = \lim_{T \to \infty} \mathbb{E}_{\mathcal{T}} \sum_{t=0}^{T} \gamma^{t} R_{t},$$

где величина $0<\gamma<1$, называется коэффициентом переоценки и показывает во сколько раз уменьшается отложенное вознаграждение за один временной шаг. Переоценка задает приоритет получения награды в ближайшее время перед получением той же награды через некоторое время. Математический смысл условия $0<\gamma<1$ состоит в том, чтобы гарантировать ограниченность функционала V.

Формальная постановка задачи вычисления оценки эффективности управления светофорным объектом представлена ниже.

Дано: марковский процесс принятия решения $\langle \mathcal{S}, \mathcal{A}, \mathbb{P}, r \rangle$ для

управления светофорным объектом, активная в началь-

ный момент времени фаза светофорного объекта $s_0.$

Найти: управление светофорного объекта $\delta^* = \{a_t^*\}_{0 \leqslant t < \infty},$ которое доставит максимум функции оценки его

эффективности (5).

Решение задачи поиска оптимального совокупного управления светофорными объектами дорожной сети ищется методом динамического программирования согласно принципу оптимальности Вальда—Беллмана. В задаче управления фазами светофорного объекта уравнение Вальда—Беллмана имеет вид [21]

(6)
$$V^* = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} p(s' \mid s, a) (r(s, a) + \gamma V^*(s')).$$

Формула (6) может быть переписана в итерационной записи, называемой Q-обучением [18]. Функция суммарных вознаграждений при оптимальном управлении на шаге t имеет вид

$$V^*\left(\{s_{t'},\delta\}_{t'\in\mathbb{N},\ t'\leqslant t}\right) = \max_{a\in\mathcal{A}} Q_t(s_t,a).$$

Считаем, что нам известно состояние среды s_{t+1} и оптимальное управление a_{t+1} на шаге t+1, соответствующий итерации l, и условимся, что итерация Q идет по индексу l, тогда функция Q для агента представима в рекурсивном виде

$$Q_{l+1}(s,a) = \underbrace{p(s_{t+1}|s,a)}_{\alpha_l} \left(r_{t+1} + \gamma V^*(s_{t+1})\right) + \underbrace{\sum_{s' \in \mathcal{S}/s_{t+1}}}_{l-\alpha_l} p(s'|s,a) \left(r(s'|s,a) + \gamma V(s')\right) = \underbrace{\sum_{s' \in \mathcal{S}/s_{t+1}}}_{l-\alpha_l} Q_l(s_{t+1},a') + \left(1 - \alpha_l\right) Q_l(s,a).$$

Цель поиска оптимального совокупного управления светофорными объектами дорожной сети заключается в увеличении максимального совокупного вознаграждения, определяемого функцией Q. Для задачи поиска оптимального управления светофорным объектом справедливы следующие утверждения [21]:

- существует единственное точное решение;
- оценка точности приближенного решения на n-ом шаге имеет вид $\rho(Q_n,Q_0)\leqslant \frac{\gamma^n\rho(Q_1,Q_0)}{1-\gamma},$ где $Q_l\in\mathbb{R}_{\infty}^{|\mathcal{A}|+|\mathcal{S}|}$ вектора значений Q(s,a) на шаге l, $\forall q,w\in\mathbb{R}_{\infty}^{|\mathcal{A}|+|\mathcal{S}|}$ расстояние $\rho(q,w)=\max_{j\in\mathbb{N},\ j\leqslant |\mathcal{A}|+|\mathcal{S}|}|q_j-w_j|$;
- приближенное решение находится согласно формулам

(7)
$$V^*(s) = \max_{a \in \mathcal{A}} \lim_{l \to +\infty} Q_l(s, a),$$

(8)
$$a_t(s) = \arg\max_{a' \in \mathcal{A}} Q_l(s, a').$$

4.2. Описание модуля

Схема подсчета функции оценки эффективности управления управления светофорными объектами представлена на рисунке 8.

В имитационной среде (SIMULATION) моделируется транспортные потоки с интенсивностями, полученными в модуле

МОДУЛЬ АДАПТИВНОГО УПРАВЛЕНИЯ СВЕТОФОРНЫМИ ОБЪЕКТАМИ QLEARNING FLCONTROL day time $p(s' \mid s, a)$ r(s, a)VEHICLE tcf vehicles Q(s, a)MCOUNT DETECTOR reward TIME SUMM моделируемые т.с. phase фазы фаза длинна TrafficLight1, s, aTrafficLight2, SIMULATION TrafficLightK

Рис. 8. Схема алгоритма управления светофорными объектами в комплексе MARLIN24

валидации, автомобили перемещаются в имитационной среде (SIMULATION) пока не выйдут из ее зоны покрытия. При попадании машины на детектируемый участок дорожной сети z, во вспомогательном модуле, имитирующем поступление информации с оптических датчиков (VEHICLE DETECTOR), пары, состоящие из указателей на объект машины и текущего времени модели, добавляются в одну из коллекций tcf (time collection forward) для выбранного вручную множества светофорных объектов TrafficLight1, ..., TrafficLightK. На следующем шаге симуляции машины удаляются из коллекции tcf, при проезде через зону. В течении периода времени dt во вспомогательном модуле выбора управления вызывается процесс переключения фаз (QLEARNING), реализующий управление согласно выбранной стратегии совокупного управления.

В качестве альтернативы процессу переключения фаз светофора (QLEARNING), использующемуся по умолчанию в модуле адаптивного управления светофорными объектами, можно выбрать изменение длительности фазы в следующем цикле. Данный подход был успешно реализован с помощью контроллера нечеткой логики (FLCONTROL) в работе [21].

5. Вычислительные эксперименты

Для исследования представленных в работе моделей были проведены серии вычислительных экспериментов. Эксперименты проводились на ПК с процессором Intel Core i7-10510U $\text{CPU} @ 1.80 \Gamma \Gamma$ ц и оперативной памятью объемом $8 \Gamma \text{Б}$.

Опишем подробнее процесс подсчета политики управления $\hat{\pi}(a|s)$, опираясь на структурную схему комплекса MARLIN24 на рисунке 1. Модуль адаптивного управления светофорными объектами загружает управляющий конфигурационный файл trafficLightConfig.xml. В конфигурационном файле содержится информация о возможных направлениях движения, количестве фаз и циклах светофорных объектов. Далее комплекс программных средств MARLIN24 связывает показания датчика в имитационном модуле и рассчитывает оптимальное управление для светофорных объектов.

Приведем рассуждения, исходя из которых считается функция вознаграждения. Для каждой полосы определено число машин на отрезке дороги, начинающемся с детектора и заканчивающемся стоп-линией перекрестка. Пусть $r: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ — функция

вознаграждения агента при изменении наблюдаемого состояния s_t при действии $a_t = \delta(s_t)$. В момент времени t для каждого состояния s_t значение функции $r(s_t, a_t) = R_t$ определяется как суммарное время, затраченное всеми машинами из I(s',t) на ожидание активации состояния s' действием $a_t, R_t = \sum\limits_{i \in I(s',t)} (t-t_i)$

Далее для построенного множества светофорных объектов TL и зон детекции z вычисляются функция наград r(s,a) число проехавших машин (MCOUNT), суммарное время проезда через детектируемые участки дорожной сети (TIME_SUMM) и обучающие функции Q. При симуляции, формируется двумерная выборка $\mathcal{X} = \{(s_i,a_i)\}_{i=1}^T$ объемом T порядка 10^6 . В результате управления δ^* , принятого из соображений увеличения значения функции оценки эффективности Q, рассчитывается несмещенная оценка распределения $\mathcal{P} = \{p(s,a) | s \in \mathcal{S}, a \in \mathcal{A}\}$ двумерной случайной величины (s,a), где функция p(s,a) — вероятность того, что в состоянии s агент принял решение s. На основании выборочных вероятностей $\hat{p}(s,a)$ вычисляются оценки политики агента $\hat{\pi}(a|s)$ для каждого $s \in \mathcal{S}$

$$\hat{\pi}(a|s) = \frac{\hat{p}(s,a)}{\sum_{a \in \mathbb{A}} \hat{p}(s,a)} = \frac{\hat{p}(s,a)}{\hat{p}(s)}.$$

В ходе серии из 1000 симуляций были построены усредненные кривые обучения функции оценки эффективности управления \hat{Q} при равновесной по Нэшу стратегии [24]. Кривые обучения Q^0 для светофорного объекта 0 и Q^1 для светофорного объекта 1 приведены на рисунке 9, где синим цветом отмечены графики принимаемых значений Q для каждой эпохи по модельному времени t, красным цветом — их усредненные значения \hat{Q} . В результате эффективного управления время ожидания транспортного средства в среднем не превышает длины цикла светофорного объекта. Также было продемонстрировано, что значительного улучшения управления при расширении покрытия дорожной сети может и не быть. Таким образом, координированное управление светофорными объектами в целях ускорения вычислений может

быть рассмотрено только в тех участках, где его применение дает ощутимое улучшение в управлении. В остальных случаях может быть рассмотрен некоординированный подход, и, следовательно, «проклятие размерности», возникающее с ростом размерности матриц при вычислениях, не является серьезной проблемой.

Puc. 9. Пример сходимости кривой обучения <math>Q

6. Заключение

В статье описан программный комплекс MARLIN24 для адаптивного управления сетью светофорных объектов. Комплекс имеет модульную архитектуру, включающую компоненты: адаптивного управления, симуляции, валидации и визуализации.

С помощью разработанного программного комплекса было проведено сравнение четырех подходов [20]: координированного управления (MARLIN), некоординированного управления (MARL), фиксированного плана (FIXED), управления с переменной длительностью фаз (FUZZY). Координированное управление MARLIN продемонстрировало улучшение среднего времени ожидания на 30%.

В данной работе отличительной чертой модуля валидации является применение копул Маршалла-Олкина при моделировании транспортных потоков. Модуль адаптирован для эмпирических данных города Красноярска. В условиях ограниченной эмпирической информации это позволило, во-первых, параметрически описать зависимость случайных величин, во-вторых, упростить моделирование случайных величин, описывающих интенсивность

движения по полосам, и, в-третьих, увеличить объём выборки моделируемых данных.

различных показателей Сравнение эффективрассчитанных координированного ности, для адапсветофорными тивного управления объектами (MARLIN), некоординированного дорожной сети участка адаптивного управления (MARL), для светофорных объектов с фиксированным координационным планом (FIXED) и с переменной длительностью фаз (FUZZY) представлено в таблице 3. Модели MARL и MARLIN превосходят FIXED и FUZZY по всем показателям производительности и являются одинаково эффективными при отсутствии неприемлемых совместных решений.

Сравнительный анализ эффективности управления в [21] показал, что среднее время ожидания участников движения при использовании MARLIN24 сопоставимо с результатами системы АСУДД24. Это подтверждает конкурентноспособность MARLIN24 для разгрузки сложных участков дорожной сети. Сравнение различных показателей эффективности, рассчитанных для различных режимов управления светофорными объектами участка дорожной сети представлено в таблице 3.

Таблица 3. Сравнение показателей эффективности управления

Модель	Среднее ожидание, $\left(\frac{ce\kappa.}{\textit{маш.}}\right)$	MCOUNT, (маш.)	TIME_SUMM, (сек.)
FIXED	14.9	4409	65770
MARL	9.4	4415	41360
прирост	5.5	6	24410
MARLIN	9.4	4412	41286
прирост	5.6	3	24484.2
FUZZY	14.9	4401	65668
прирост	0.0	-8	-102.8
MARL vs. FIXED	37.2%	0.1%	37.1%
MARLIN vs. FIXED	37.3%	0.1%	37.2%
MARL vs. FUZZY	37.2%	0.3%	37.0%

Литература

- 1. Транспортная стратегия Российской Федерации, утверждена распоряжением Правительства Российской Федерации от 22 ноября 2008 года №1734-р. 2008. Дата обращения: 25.06.2024. http://mintrans.gov.ru.
- 2. Carini, Raymond N. Application of the UTCS-1 Network Simulation Model to Select Optimal Signal Timings in a Multi-Linear Street System / Raymond N. Carini // Interim Report. Publication for Urban Traffic Control System. Joint Highway Research Project. 1977. P. 164.
- 3. Chandler, M.J.H. SCOOT and Bus Detection. OTRC Proc. Annual Summer Meeting / M.J.H. Chandler // Traffic Control Studies in London. 1990. Vol. P269. Pp. 111–128.
- 4. Gartner, N.H. OPAC: Strategy for Demand-responsive Decentralized Traffic Signal Control / N.H. Gartner // IFAC Proceedings Volumes. 1990. Vol. 23. Pp. 241–244.
- 5. АСУДД «МИКРО-М». Дата обращения: 25.06.2024. http://asud55.ru/archives/1346.
- El-Tantawy, S. Multiagent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC): Methodology and Large-Scale Application on Downtown Toronto / S. El-Tantawy, B. Abdulhai, H. Abdelgawad // IEEE Transactions on Intelligent Transportation Systems. – 2013. – Vol. 14, no. 3. – Pp. 1140– 1150.
- Treiber, M. Congested traffic states in empirical observations and microscopic simulations / M. Treiber, A. Hennecke, D. Helbing // Transportation Physics Reviews E. – 2000. – Vol. 62. – Pp. 1805–1824.
- 8. Treiber, M. Realistische Mikrosimulation von StraBenverkehr mit einem einfachen Modell / M. Treiber, D. Helbing // 16. Symposium "Simulationstechnik ASIM 2002"Rostock. 2002. Pp. 514–520.

- 9. Зализняк, В.Е. Численные методы. Основы научных вычислений: учебное пособие для бакалавров / В.Е. Зализняк. ЮРАЙТ, 2012. С. 356.
- 10. Boeing, G., OSMnx: Python for Street Networks. Дата обращения: 25.06.2024. https://osmnx.readthedocs.io/.
- 11. NetworkX Developers, NetworkX. Дата обращения: 25.06.2024. https://networkx.org/.
- 12. Nelsen, R. B., An Introduction to Copulas. Springer, 2006. 270 c.
- 13. Marshall, A.W. Families of Multivariate Distributions / A.W. Marshall, I. Olkin // Journal of the American Statistical Association. 1988. Vol. 83, no. 403. Pp. 834–841.
- Quesada-Molina, J.J. Bivariate copulas with quadratic sections / J.J. Quesada-Molina, J.A. Rodriguez-Lallena // Journal of Nonparametric Statistics. – 1995. – Vol. 5, no. 4. – Pp. 323–337.
- 15. Epanechnikov, V. A., "Non-Parametric Estimation of a Multivariate Probability Density,"Theory of Probability and Its Applications, 1969, pp. 153–158.
- 16. C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2007.
- 17. А. В. Войтишек, Основы метода Монте-Карло: Учебное пособие, ред. В. Н. Задорожный. Новосибирск: НГУ, 2010. $108~\rm c.$
- 18. Sutton, R.S. Reinforcement Learning: An Introduction / R.S. Sutton, A.G. Barto. Cambridge, MA: The MIT Press, 2015. Pp. 145–147.
- 19. Zadeh, L. A. Fuzzy Sets, Fuzzy Logic, Fuzzy Systems / L. A. Zadeh. World Scientific Press, 1996.
- 20. Tislenko, T.I. Multiagent Reinforcement Learning for Integrated Network: Applying to a Part of the Road Network of Krasnoyarsk City / T.I. Tislenko, D.V. Semenova, N.A. Sergeeva et al. // IEEE 16th International Conference on Application of Information and Communication Technologies (AICT). – 2022. – Pp. 1–5.
- 21. Tislenko, T.I. Modeling and Comparison of Different

- Management Approaches on the Intersections Network / T.I. Tislenko, D.V. Semenova, A.A. Soldatenko // 2023 IEEE 26th International Conference, Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN). 2023. Pp. 25–29.
- 22. Тисленко, Т.И. Моделирование интенсивностей транспортных потоков при помощи копул Маршала-Олкина, // ИТ. НАУКА. КРЕАТИВ. Т. 5. Системы управления, информационные технологии и математическое моделирование : материалы I Междунар. форума (Омск, 14–16 мая 2024 г.) : в 5 Ч. / науч. ред. П. С. Ложников, отв. ред. И. Г. Ольгина. Омск: Издательство ОмГТУ, 2024. 70 с.
- 23. Тисленко, Т.И. Моделирование интенсивностей транспортных потоков для модуля валидации комплекса MARLIN24 / Т.И. Тисленко // Информационные технологии и математическое моделирование (ИТММ-2024): Материалы XXIII Международной конференции имени А.Ф. Терпугова. Томск: Издательство ТГУ, 2024. С. 336–341.
- 24. Nash, J., "Equilibrium Points in N-Person Games,"Proceedings of the National Academy of Sciences, vol. 36, no. 1, 1950, pp. 48–49.

DEVELOPMENT OF AN ADAPTIVE TRAFFIC LIGHT CONTROL SYSTEM USING MARKOV DECISION PROCESSES

Timofey I. Tislenko, Siberian Federal University, Krasnoyarsk, postgraduate student (timtisko@mail.ru).

Darya V. Semenova, Siberian Federal University, Krasnoyarsk, Cand.Sc. (Physics and Mathematics), assistant professor (DVSemenova@sfu-kras.ru).

Abstract: The paper presents the results of development of the MARLIN24 software suite, designed to implement adaptive control of traffic light systems. The primary objective of the development is to optimize the operation of traffic signals in order to minimize the total time vehicles spend within the detection zones of optical sensors. The architecture of the software suite comprises three principal modules: the adaptive control module, the traffic flow simulation module, and the validation module, complemented by an additional visualization module. The adaptive control module integrates four control approaches: fixed-time planning, uncoordinated reinforcement learning, coordinated multi-agent reinforcement learning, and phase duration control based on a MISO fuzzy logic controller (Multiple Input Single Output, MISO). Traffic flow simulation for performance evaluation is conducted via a microsimulation module utilizing the "Intelligent Driver Model" (IDM). The validation module employs copula functions to generate realistic optical sensor data reflecting actual traffic conditions, with marginal distributions derived from historical traffic intensity data collected during 2019–2020. The MARLIN24 software suite facilitates the analysis and comparison of multiple traffic control models on realworld sections of the road network in Krasnoyarsk under various conditions.

Keywords: traffic flow simulation, IDM model, MOBIL model, Marshall-Olkin copulas, reinforcement learning.

УДК 519.1,519.2,519.6,519.8(075), 004.42, 519.85 ББК 221.7

Статья представлена к публикации членом редакционной коллегии ...

Поступила в редакцию ... Дата опубликования ...