(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-96583

(43)公開日 平成7年(1995)4月11日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	F I	技術表示箇所
B 3 2 B 27/00	104	8413-4F		
	Н	8413-4F		
27/08		8413-4F		
27/30	В	8115-4F		
27/32	103	8115-4F		
		審查請求	未請求 請求項の数13 FD (全 12 頁)	最終頁に続く
(21)出願番号	特願平6-197182		(71) 出願人 000002897	
			大日本印刷株式会社	
(22)出願日	平成6年(1994)8月	11日	東京都新宿区市谷加賀町一丁	目1番1号
			(72)発明者 山下 カ也	
(31)優先権主張番号	特願平5-211034		東京都新宿区市谷加賀町一丁	目1番1号
(32)優先日	平5 (1993) 8月4日	i	大日本印刷株式会社内	
(33)優先権主張国	日本(JP)		(74)代理人 弁理士 米田 潤三 (外2:	名)
		•		

(54)【発明の名称】 蓋 材

(57)【要約】

【目的】 合成樹脂製容器への高い接着性と良好な剥離性を兼ね備えた蓋材を提供する。

【構成】 蓋材に、二軸延伸樹脂層と、ヒートシーラント層と、このヒートシーラント層に隣接し二軸延伸樹脂層とヒートシーラント層との間に位置し、密度0.915~0.940g/cm³のエチレンーα・オレフィン共重合体、スチレン50~90重量%とブタジエン50~10重量%とのスチレンーブタジエンブロック共重合体、スチレン10~50重量%とブタジエン90~50重量%とのスチレンーブタジエンブロック共重合体の水素添加物およびハイインパクトポリスチレンのうち少なくともエチレンーα・オレフィン共重合体およびスチレンーブタジエンブロック共重合体を含む3種以上の樹脂により形成された中間層とを備えさせる。

【特許請求の範囲】

【請求項1】 二軸延伸樹脂層と、ヒートシーラント層 と、該ヒートシーラント層に隣接し前記二軸延伸樹脂層 と前記ヒートシーラント層との間に位置する中間層とを 備え、前記中間層は密度0.915~0.940g/cm 3 のエチレン-α・オレフィン共重合体、スチレン50 ~90重量%とブタジエン50~10重量%とのスチレ ンーブタジエンブロック共重合体、スチレン10~50 重量%とブタジエン90~50重量%とのスチレンーブ パクトポリスチレンのうち少なくともエチレン - α・オ レフィン共重合体およびスチレンーブタジエンブロック 共重合体を含む3種以上の樹脂により形成されているこ とを特徴とする蓋材。

【請求項2】 前記中間層は単層構造であり密度0.9 $15\sim0.940$ g/ cm^3 のエチレン $-\alpha$ ・オレフィン 共重合体10~90重量%と、スチレン50~90重量 %とブタジエン50~10重量%とのスチレン-ブタジ エンブロック共重合体70~30重量%との樹脂組成物 100重量部に対して、スチレン10~50重量%とブ 20 タジエン90~50重量%とのスチレン-ブタジエンブ ロック共重合体の水素添加物5~30重量部と、ハイイ ンパクトポリスチレン5~50重量部とが添加されてい る樹脂組成物により形成されていることを特徴とする請 求項1に記載の蓋材。

【請求項3】 前記中間層は単層構造であり密度0.9 15 \sim 0. 940g/ α のエチレン- α ・オレフィン 共重合体10~90重量%と、スチレン50~90重量 %とブタジエン50~10重量%とのスチレン-ブタジ エンブロック共重合体70~30重量%との樹脂組成物 30 100重量部に対して、スチレン10~50重量%とブ タジエン90~50重量%とのスチレン-ブタジエンブ ロック共重合体の水素添加物5~30重量部が添加され ている樹脂組成物により形成されていることを特徴とす る請求項1 に記載の蓋材。

【請求項4】 前記中間層は単層構造であり密度0.9 $15\sim0$. 940g/ α のエチレン $-\alpha$ ・オレフィン 共重合体10~90重量%と、スチレン50~90重量 %とブタジエン50~10重量%とのスチレン-ブタジ エンブロック共重合体70~30重量%との樹脂組成物 40 50~10重量%とのスチレンーブタジエンブロック共 100重量部に対して、ハイインパクトポリスチレン5 ~50重量部とが添加されている樹脂組成物により形成 されていることを特徴とする請求項1に記載の蓋材。

【請求項5】 前記中間層は第1樹脂層と前記ヒートシ ーラント層に接する第2樹脂層との2層構造であり、前 記第1樹脂層は密度0.915~0.940g/cm の エチレンーα・オレフィン共重合体により形成され、前 記第2樹脂層は密度0.915~0.940g/cmの エチレン-α・オレフィン共重合体10~90重量%

重量%とのスチレン-ブタジエンブロック共重合体70 ~30重量%との樹脂組成物100重量部に対して、ス チレン10~50重量%とブタジエン90~50重量% とのスチレン-ブタジエンブロック共重合体の水素添加 物5~30重量部が添加されている樹脂組成物により形 成されていることを特徴とする請求項1に記載の蓋材。 【請求項6】 前記中間層は第1樹脂層と前記ヒートシ ーラント層に接する第2樹脂層との2層構造であり、前 記第1樹脂層は密度0.915~0.940g/cm の タジエンブロック共重合体の水素添加物およびハイイン 10 エチレンーα・オレフィン共重合体により形成され、前 記第2樹脂層は密度0.915~0.940g/cm の エチレン-α・オレフィン共重合体10~90重量% と、スチレン50~90重量%とブタジエン50~10 重量%とのスチレン-ブタジエンブロック共重合体70 ~30重量%との樹脂組成物100重量部に対して、ハ イインパクトポリスチレン5~50重量部が添加されて いる樹脂組成物により形成されていることを特徴とする 請求項1に記載の蓋材。

> 【請求項7】 前記中間層は第1樹脂層と前記ヒートシ ーラント層に接する第2樹脂層との2層構造であり、前 記第1樹脂層は密度0.915~0.940g/cm²の エチレンーα・オレフィン共重合体により形成され、前 記第2樹脂層は密度0.915~0.940g/cm²の エチレン-α・オレフィン共重合体10~90重量% と、スチレン50~90重量%とブタジエン50~10 重量%とのスチレン-ブタジエンブロック共重合体70 ~30重量%との樹脂組成物100重量部に対して、ス チレン10~50重量%とブタジエン90~50重量% とのスチレンーブタジエンブロック共重合体の水素添加 物5~30重量部と、ハイインパクトポリスチレン5~ 50重量部とが添加されている樹脂組成物により形成さ れていることを特徴とする請求項1に記載の蓋材。

【請求項8】 前記中間層は第1樹脂層と第2樹脂層と 前記ヒートシーラント層に接する第3樹脂層との3層構 造であり、前記第1樹脂層は密度0.915~0.94 Og/cm³のエチレン-α・オレフィン共重合体により 形成され、前記第2樹脂層は密度0.915~0.94 0g/cm³のエチレン-α・オレフィン共重合体10~ 90重量%と、スチレン50~90重量%とブタジエン 重合体70~30重量%との樹脂組成物により形成さ れ、前記第3樹脂層は密度0.915~0.940g/ cm' のエチレン $-\alpha$ ・オレフィン共重合体 $10\sim90$ 重 量%と、スチレン50~90重量%とブタジエン50~ 10重量%とのスチレンーブタジエンブロック共重合体 70~30重量%との樹脂組成物100重量部に対し て、スチレン10~50重量%とブタジエン90~50 重量%とのスチレン-ブタジエンブロック共重合体の水 素添加物5~30重量部が添加されている樹脂組成物に と、スチレン50~90重量%とブタジエン50~10 50 より形成されていることを特徴とする請求項1に記載の

蓋材。

【請求項9】 前記中間層は第1樹脂層と第2樹脂層と 前記ヒートシーラント層に接する第3樹脂層との3層構 造であり、前記第1樹脂層は密度0.915~0.94 0 g / cm³ のエチレン $-\alpha \cdot オレフィン共重合体により$ 形成され、前記第2樹脂層は密度0.915~0.94 $0g/cm^2$ のエチレン $-\alpha$ ・オレフィン共重合体 10 ~ 90重量%と、スチレン50~90重量%とブタジエン 50~10重量%とのスチレン-ブタジエンブロック共 重合体70~30重量%との樹脂組成物により形成さ れ、前記第3樹脂層は密度0.915~0.940g/ cm^3 のエチレン $-\alpha$ ・オレフィン共重合体 $10 \sim 90$ 重 量%と、スチレン50~90重量%とブタジエン50~ 10重量%とのスチレン-ブタジエンブロック共重合体 70~30重量%との樹脂組成物100重量部に対し て、ハイインパクトポリスチレン5~50重量部が添加 されている樹脂組成物により形成されていることを特徴 とする請求項1に記載の蓋材。

【請求項10】 前記中間層は第1樹脂層と第2樹脂層 と前記ヒートシーラント層に接する第3樹脂層との3層 構造であり、前記第1樹脂層は密度0.915~0.9 40g/cm³のエチレン-α・オレフィン共重合体によ り形成され、前記第2樹脂層は密度0.915~0.9 40g/cm³のエチレン-α・オレフィン共重合体10 ~90重量%と、スチレン50~90重量%とブタジエ ン50~10重量%とのスチレン-ブタジエンブロック 共重合体70~30重量%との樹脂組成物により形成さ れ、前記第3樹脂層は密度0.915~0.940g/ cm のエチレン $-\alpha$ ・オレフィン共重合体 $10\sim90$ 重 量%と、スチレン50~90重量%とブタジエン50~ 10重量%とのスチレン-ブタジエンブロック共重合体 70~30重量%との樹脂組成物100重量部に対し て、スチレン10~50重量%とブタジエン90~50 重量%とのスチレン-ブタジエンブロック共重合体の水 素添加物5~30重量部と、ハイインパクトポリスチレ ン5~50重量部とが添加されている樹脂組成物により 形成されていることを特徴とする請求項1に記載の蓋 材。

【請求項11】 前記ヒートシーラント層は、ポリエス テル樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル 40 共重合体樹脂、アクリル樹脂の少なくとも 1 種を含有す ることを特徴とする請求項1乃至10のいずれかに記載 の蓋材。

【請求項12】 前記ヒートシーラント層は、カーボン ブラック、金属微粒子、導電性微粒子、Si系有機化合 物および界面活性剤の少なくとも1種を含有することを 特徴とする請求項1乃至11のいずれかに記載の蓋材。 【請求項13】 前記ヒートシーラント層は、表面抵抗 率が10°~10°Ωの範囲内であり、電荷減衰時間が ずれかに記載の蓋材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は蓋材に係り、特に合成樹 脂製容器に用いる蓋材に関する。

[0002]

【従来の技術】従来より、各種部品、固形あるいは液状 の食品等を合成樹脂製容器に収容し、開口部を蓋材によ り密封して流通、保管することが行われている。

【0003】例えば、多数のエンボスが形成されたキャ リアテープの各エンボス部に電子部品を収納し、蓋材 (カバーテープ) をエンボス部を覆うようにキャリアテ ープ上に熱融着して密封したエンボスキャリア型テービ ングが使用されている。このようなエンボスキャリア型 テーピングに使用されるキャリアテープは、通常、ポリ 塩化ビニル、ポリスチレン、ポリエステル、ポリカーボ ネート等のシート成形が容易な材料を用いて形成されて いる。また、蓋材は、二軸延伸樹脂フィルムと、このフ ィルムの一方の面に形成されたヒートシーラント層を備 えている。そして、電子部品の実装工程において、エン ボスキャリア型テーピングに収納されている電子部品を 取り出すために蓋材が剥離可能であることが要求され る。

[0004]

【発明が解決しようとする課題】しかしながら、キャリ アテープへの蓋材の熱融着は、エンボスキャリア型テー ピングの輸送、保管中に蓋材が剥離して電子部品の脱落 が生じることがないように、所定の強度が要求される が、この熱融着強度が大きすぎると、電子部品の実装工 程における蓋材の剥離の際に、キャリアテープが振動し て電子部品がキャリアテープのエンボス部から飛び出す 事故が発生するという問題があった。そして、上述のよ うな従来の蓋材では、キャリアテープへの十分な熱融着 性と、電子部品使用時の良好な剥離性という相反する特 性を兼ね備えたものは未だ存在しない。

【0005】本発明は、このような事情に鑑みてなされ たものであり、合成樹脂製容器への高い接着性と良好な 剥離性を兼ね備えた蓋材を提供することを目的とする。 [0006]

【課題を解決するための手段】このような目的を達成す るために、本発明は二軸延伸樹脂層と、ヒートシーラン ト層と、該ヒートシーラント層に隣接し前記二軸延伸樹 脂層と前記ヒートシーラント層との間に位置する中間層 とを備え、前記中間層は密度0.915~0.940g /cm² のエチレン-α・オレフィン共重合体、スチレン 50~90重量%とブタジエン50~10重量%とのス チレンーブタジエンブロック共重合体、スチレン10~ 50重量%とブタジエン90~50重量%とのスチレン - ブタジエンブロック共重合体の水素添加物およびハイ 2秒以下であることを特徴とする請求項1乃至12のい 50 インパクトポリスチレンのうち少なくともエチレン-α

・オレフィン共重合体およびスチレン-ブタジエンブロ ック共重合体を含む3種以上の樹脂により形成されてい るような構成とした。

[0007]

【作用】蓋材は、二軸延伸樹脂層と、ヒートシーラント 層と、このヒートシーラント層に隣接し2軸延伸樹脂層 とヒートシーラント層との間に位置し、密度0.915 ~ 0.940 g/cm³ のエチレン $-\alpha$ ・オレフィン共重 合体、スチレン50~90重量%とブタジエン50~1 0重量%とのスチレン-ブタジエンブロック共重合体、 スチレン10~50重量%とブタジエン90~50重量 %とのスチレンーブタジエンブロック共重合体の水素添 加物およびハイインパクトポリスチレンのうち少なくと もエチレン-α・オレフィン共重合体およびスチレン-ブタジエンブロック共重合体を含む3種以上の樹脂によ り形成された中間層とを備え、との中間層とヒートシー ラント層との層間での剥離、あるいは、ヒートシーラン ト層内部での凝集破壊による剥離が可能であるため、キ ャリアテープとヒートシーラント層の間の熱融着強度に 関係なく蓋材の剥離が安定かつ確実に行える。

[0008]

【実施例】以下、本発明の実施例について図面を参照し ながら説明する。

【0009】図1は本発明の蓋材の概略断面図である。 図1において、蓋材1は二軸延伸樹脂層2と、接着層3 を介して二軸延伸樹脂層2に順に積層された中間層4と ヒートシーラント層5とを備えている。

【0010】二軸延伸樹脂層2は、ポリエチレンテレフ タレート (PET) 等のポリエステル樹脂、ポリプロピ レン等のポリオレフィン樹脂、ナイロン等のポリアミド 樹脂等の二軸延伸フィルムで形成することができる。こ のように二軸延伸樹脂層2を設けることにより、蓋材1 に耐熱性を付与することができる。二軸延伸樹脂層2の 厚さは、蓋材の使用目的に応じて適宜設定することがで き、例えば6~100μm程度とすることができる。 尚、この二軸延伸樹脂層2の接着層3が形成される面 に、必要に応じて予めコロナ処理、プラズマ処理、サン ドブラスト処理等の表面処理を施して、接着層3との接 着性を髙めてもよい。また、必要に応じて静電気発生防 止処理を施したものも使用できる。

【0011】接着層3は、低密度ポリエチレン、密度 0. $915 \sim 0$. $940 g / cm^3 のエチレン - α・オレ$ フィン共重合体、ポリエチレンビニルアセテート共重合 体、アイオノマー、ポリプロピレン、あるいは、それら の変性物のいずれかであるポリオレフィン、イソシアネ ート系、イミン系の接着剤等により形成することがで き、厚さは0.2~60μm程度が好ましい。接着層3 は、二軸延伸樹脂フィルム上に塗布あるいは押出し成形 することができ、この接着層3上に中間層4をドライラ ミネーションあるいは押し出しラミネーションすること 50 10~50重量%とブタジエン90~50重量%とのス

ができる。

【0012】中間層4は単層構造であり、密度0.91 $5\sim0$. 940 g/cm³ のエチレン $-\alpha$ ・オレフィン共 重合体、スチレン50~90重量%とブタジエン50~ 10重量%とのスチレン-ブタジエンブロック共重合 体、スチレン10~50重量%とブタジエン90~50 重量%とのスチレンーブタジエンブロック共重合体の水 素添加物およびハイインパクトポリスチレンのうち少な くともエチレン-α・オレフィン共重合体およびスチレ 10 ンーブタジエンブロック共重合体を含む3種以上の樹脂 により形成される。

【0013】中間層4の形成に使用するエチレン-α・ オレフィン共重合体は、エチレンと、例えば、ブテン、 ペンテン、ヘキセン、ヘプテン、オクテン、4-メチル ペンテン・1等との共重合体等である。このようなエチ レン $-\alpha$ ・オレフィン共重合体の密度が0.915gcm³ 未満、あるいは0.940g/cm³ を超える場合、 スチレンーブタジエンブロック共重合体との組み合わせ による中間層4の成膜性が低下してしまい好ましくな وديا 20

【0014】また、中間層4の形成に使用するスチレン ブタジェンブロック共重合体を構成するスチレン量が 50重量%未満であるとフィルムの粘着性が増して取り 扱いが難しくなり、また90重量%を超えると低温での ヒートシーラント層との密着性が悪くなり好ましくな 64.

【0015】そして、中間層4におけるエチレン $-\alpha$ ・ オレフィン共重合体とスチレンーブタジエンブロック共 重合体との混合比は、合成樹脂製容器に蓋材1を熱融着 30 した後に剥離する際の剥離強度と、蓋材1の透明性とに 大きく影響する。本発明では、中間層4におけるエチレ ン-α・オレフィン共重合体とスチレン-ブタジエンブ ロック共重合体との混合比は、エチレン-α・オレフィ ン共重合体10~90重量%、スチレン-ブタジエンブ ロック共重合体70~30重量%とする。エチレン-α ・オレフィン共重合体量が30重量%未満、スチレン-ブタジエンブロック共重合体が70重量%を超える場 合、中間層4の成膜性が低くなり蓋材の透明性も低下し 好ましくない。一方、エチレン-α・オレフィン共重合 40 体量が70重量%を超え、スチレンーブタジエンブロッ ク共重合体が30重量%未満である場合、中間層4とヒ ートシーラント層5との密着力が小さすぎ、蓋材の剥離 強度が適性な強度を下回り好ましくない。

【0016】中間層4にスチレンーブタジエンブロック 共重合体の水素添加物およびハイインパクトポリスチレ ンを用いて4種の樹脂により形成する場合、上記のよう なエチレン-α・オレフィン共重合体10~90重量% と、スチレンーブタジエンブロック共重合体70~30 重量%との樹脂組成物100重量部に対して、スチレン チレン-ブタジエンブロック共重合体の水素添加物を5 ~30重量部添加し、ハイインパクトポリスチレンを5 ~50重量部添加することが好ましい。

【0017】スチレンーブタジエンブロック共重合体の 水素添加物の含有量が5重量部未満の場合、スチレン-ブタジエンブロック共重合体の水素添加物を添加する効 果が発現されず、また30重量部を超えると得られるフ ィルムの耐ブロッキング性が不十分となり好ましくな い。スチレン-ブタジエンブロック共重合体の水素添加 物として添加したものが、実際には水素添加物になって 10 いない場合、この共重合体はブタジエン成分の高いもの であるため、酸化され易く中間層4の形成時にゲルが発 生し易くなる。

【0018】また、無水添加物を用いた場合、成膜精度 が悪く、フィルム化が難しい場合がある。

【0019】また、ハイインパクトポリスチレンの添加 量が5重量部未満の場合、ハイインパクトポリスチレン を添加する効果が発現されず、また50重量部を超える と、中間層4の透明性が悪くなり好ましくない。

【0020】また、上記の中間層4は、エチレンーα・ オレフィン共重合体10~90重量%と、スチレンーブ タジエンブロック共重合体70~30重量%との樹脂組 成物100重量部に対して、スチレンーブタジエンブロ ック共重合体の水素添加物のみを5~30重量部添加し て3種の樹脂を含有した樹脂組成物により形成されても よい。また、エチレン-α・オレフィン共重合体10~ 90重量%と、スチレンーブタジエンブロック共重合体 70~30重量%との樹脂組成物100重量部に対し て、ハイインパクトポリスチレンのみを5~50重量部 添加して3種の樹脂を含有した樹脂組成物により形成さ れてもよい。

【0021】このような単層構造の中間層4の厚さは、 通常10~60μm程度が好ましい。中間層の厚さが1 0μm未満の場合、成膜性が悪く、また60μmを超え ると蓋材1の熱融着性が悪くなる。

【0022】また、本発明の蓋材1は、中間層4を多層 構造とすることができる。

【0023】図2は、中間層を2層構造とした本発明の 蓋材の例を示す概略断面図であり、中間層 4 は第 1 樹脂 層4aと第2樹脂層4bとから構成されている。

【0024】この場合、第1樹脂層4aは、密度0.9 $15\sim0.940$ g/cm³のエチレン $-\alpha$ ・オレフィン 共重合体により形成することができる。

【0025】また、第2樹脂層4bは、密度0.915 ~0.940g/cm³のエチレン-α・オレフィン共重 合体10~90重量%と、スチレン50~90重量%と ブタジエン50~10重量%とのスチレン-ブタジエン ブロック共重合体70~30重量%との樹脂組成物10 0重量部に対して、スチレン10~50重量%とブタジ

ク共重合体の水素添加物5~30重量部が添加されてい る樹脂組成物により形成することができる。さらに、第 2樹脂層4 bは、密度0. 915~0. 940 g/cm³ のエチレン-α・オレフィン共重合体10~90重量% と、スチレン50~90重量%とブタジエン50~10 重量%とのスチレンーブタジエンブロック共重合体70 ~30重量%との樹脂組成物100重量部に対して、ハ イインパクトポリスチレン5~50重量部が添加されて いる樹脂組成物により形成することもできる。また、第 2樹脂層4bは、密度0.915~0.940g/cm3 のエチレン-α・オレフィン共重合体10~90重量% と、スチレン50~90重量%とブタジエン50~10 重量%とのスチレンーブタジエンブロック共重合体70 ~30重量%との樹脂組成物100重量部に対して、ス チレン10~50重量%とブタジエン90~50重量% とのスチレンーブタジエンブロック共重合体の水素添加 物5~30重量部と、ハイインパクトポリスチレン5~ 50重量部とが添加されている樹脂組成物により形成す ることができる。

【0026】このような第1樹脂層4aおよび第2樹脂 層4bの厚さは、それぞれ5~30 μ m、5~30 μ m 程度とすることができる。

【0027】図3は、中間層を3層構造とした本発明の 蓋材の例を示す概略断面図であり、中間層4は第1樹脂 層4a、第2樹脂層4bおよびヒートシーラント層5に 接する第3樹脂層4cとから構成されている。

【0028】この場合、第1樹脂層4aは、密度0.9 $15\sim0$. 940g/cm のエチレン $-\alpha$ ・オレフィン 共重合体により形成され、第2樹脂層4bは、密度0. $915\sim0.940\,\mathrm{g/cm^3}$ のエチレン $-\alpha\cdot$ オレフィ ン共重合体10~90重量%と、スチレン50~90重 量%とブタジエン50~10重量%とのスチレン−ブタ ジエンブロック共重合体70~30重量%との樹脂組成 物により形成することができる。

【0029】そして、第3樹脂層4cは、密度0.91 $5\sim0$. 940 g/cm³ のエチレン $-\alpha$ ・オレフィン共 重合体10~90重量%と、スチレン50~90重量% とブタジエン50~10重量%とのスチレン-ブタジエ ンブロック共重合体70~30重量%との樹脂組成物1 40 00重量部に対して、スチレン10~50重量%とブタ ジェン90~50重量%とのスチレンーブタジエンブロ ック共重合体の水素添加物5~30重量部が添加されて いる樹脂組成物により形成される。また、第3樹脂層4 cは、密度0.915~0.940g/cm3 のエチレン -α·オレフィン共重合体10~90重量%と、スチレ ン50~90重量%とブタジエン50~10重量%との スチレンーブタジエンブロック共重合体70~30重量 %との樹脂組成物100重量部に対して、ハイインパク トポリスチレン5~50重量部が添加されている樹脂組 エン90~50重量%とのスチレン-ブタジエンブロッ 50 成物により形成することもできる。さらに、第3樹脂層

4 cは、密度0.915~0.940g/cm³のエチレンーα・オレフィン共重合体10~90重量%と、スチレン50~90重量%とブタジエン50~10重量%とのスチレンーブタジエンブロック共重合体70~30重量%との樹脂組成物100重量部に対して、スチレン10~50重量%とブタジエン90~50重量%とのスチレンーブタジエンブロック共重合体の水素添加物5~30重量部と、ハイインパクトポリスチレン5~50重量部とが添加されている樹脂組成物により形成することもできる。

【0030】とのような第1樹脂層4a、第2樹脂層4 b および第3樹脂層4 c の厚さは、それぞれ $3\sim20~\mu$ mの範囲で設定することができる。

【0031】上述のような中間層4は、ドライラミネーション法あるいは押し出しラミネーション法により形成することができる。

【0032】本発明の蓋材1が上記のような中間層4を 具備することにより、合成樹脂製容器に熱融着された蓋 材1を剥離する際、中間層4とヒートシーラント層5と の層間における剥離、あるいは、ヒートシーラント層5 内部での凝集破壊による剥離が生じる。との場合の剥離 強度は、後述するヒートシーラント層5と合成樹脂製容 器との熱融着強度よりも弱いものであり、100~12 00g/15mmの範囲であることが好ましい。剥離強度が 100g/15mm未満になると、蓋材を熱融着した後の容 器を移送する際に、中間層4とヒートシーラント層5と の層間における剥離、あるいは、ヒートシーラント層5 内部での凝集破壊による剥離が生じ、内容物が脱落する 危険性がある。また、剥離強度が1200g/15mmを超 えると、蓋材の剥離の際に合成樹脂製容器が振動して内 容物が飛び出すおそれがあり好ましくない。尚、上記の 剥離強度は、23℃、40%RH雰囲気下における18 0°剥離(剥離速度=300 mm/分)の値である。

【0033】したがって、蓋材1は、ヒートシーラント層5による合成樹脂製容器への熱融着強度を充分高くして熱融着したうえで、合成樹脂製容器から確実に剥離することができる。

【0034】Cこで、上記のような中間層4とヒートシーラント層5との層間における剥離(層間剥離)を生じさせるか、または、ヒートシーラント層5内における凝集破壊による剥離を生じさせるかは、ヒートシール条件を制御することにより適宜選択することができる。すなわち、ヒートシール時の条件を厳しくする(加熱温度を高く、加熱時間を長く、加圧を強くする)ことにより中間層4とヒートシーラント層5との層間剥離を生じさせることができ、ヒートシール時の条件を緩くすることによりヒートシーラント層5内における凝集破壊による剥離を生じさせることができる。上記のヒートシール条件の具体例としては、層間剥離の場合、加熱温度=140~200℃、加熱時間=0.5~2.0秒、加圧=1.

10

0~5.0 kqf/cm² 程度であり、凝集破壊の場合、加 熱温度=100~150℃、加熱時間=0.1~1.0 秒、加圧=0.5~3.0 kgf/cm² 程度である。 【0035】本発明の蓋材1のヒートシーラント層5 は、ポリエステル樹脂、ポリウレタン樹脂、塩化ビニル - 酢酸ビニル共重合体樹脂、アクリル樹脂の少なくとも 1種からなる熱可塑性樹脂で形成されている。2種以上 の熱可塑性樹脂の組み合わせとしては、例えば、ポリウ レタン樹脂と塩化ビニルー酢酸ビニル共重合体樹脂との 10 混合樹脂 (混合比率は9:1~4:6の範囲が好まし い)、ポリエステル樹脂と塩化ビニル-酢酸ビニル共重 合体樹脂との混合樹脂(混合比率は1:1~9.5: 0. 5の範囲が好ましい)、アクリル樹脂と塩化ビニル - 酢酸ビニル共重合体樹脂との混合樹脂(混合比率は 1:1~9.5:0.5の範囲が好ましい) 等を挙げる ことができる。

【0036】また、ヒートシーラント層5には、カーボンブラック、金、銀、ニッケル、アルミ、銅等の金属微粒子、酸化錫、酸化亜鉛および酸化チタン等の金属酸化物に導電性を付与した導電性微粒子、硫酸バリウムに導電性を付与した導電性微粒子、硫化亜鉛、硫化銅、硫化カドミウム、硫化ニッケル、硫化パラジウム等の硫化物に導電性を付与した導電性微粒子、Si系有機化合物、界面活性剤等を含有させることができる。この場合、ヒートシーラント層5における熱可塑性樹脂と導電性微粒子等との混合比率は、10:1~1:10の範囲であることが好ましい。導電性微粒子等の混合比率が上記の範囲未満であると、導電性微粒子等を混合する効果が得られず、また上記の範囲を超えると、合成樹脂製容器へのヒートシーラント層5の熱融着強度が低くなりすぎて好ましくない。

【0037】尚、ヒートシーラント層5の厚さは0.1 ~ 10μ m、特に $1\sim5\mu$ mの範囲が好ましい。

【0038】とのようなヒートシーラント層5は、その 表面抵抗率が22°C、40%RH下において10°~1 0¹²Ωの範囲内であり、また、23±5℃、12±3% RH下において、5000Vから99%減衰するまでに 要する電荷減衰時間が2秒以下であり、優れた静電気特 性を有する。上記の表面低効率が1012を超えると、 静電気拡散効果が極端に悪くなり、電子部品を静電気破 壊から保護することが困難になり、また、10°Ω未満 になると、外部から蓋材を介して電子部品に電気が通電 する可能性があり、電子部品が電気的に破壊される危険 性がある。一方、静電気により発生する電荷の拡散速度 の目安である電荷減衰時間が2秒を超える場合、静電気 拡散効果が極端に悪くなり、電子部品を静電気破壊から 保護することが困難になる。尚、上記の表面抵抗率およ び電荷減衰時間は、米国の軍規格であるMIL-B-8 1705 Cに準拠して測定することができる。

50 【0039】ヒートシーラント層5には、必要に応じて

分散安定剤、ブロッキング防止剤等の添加剤を含有させ ることができる。

【0040】上記のようなヒートシーラント層5は、中 間層4上に塗布形成することができる。

【0041】そして、本発明の蓋材1は中間層4とヒー トシーラント層5との層間における剥離、あるいは、ヒ ートシーラント層5内部での凝集破壊による剥離が生じ るので、合成樹脂製容器への熱融着条件に左右されると となく安定した剥離性能を有する。このような層間剥離 を図4乃至図7を参照して説明する。先ず、図4および 10 詳細に説明する。 図5に示されるように、例えば、エンボス部12を備え たキャリアテープ11に、図1に示されるような蓋材1 が熱融着される。この熱融着は、エンボス部12の両端 部に所定の幅でライン状に行われる。図示例では、ライ ン状の熱融着部分Hを斜線部で示してある。この状態 で、蓋材1の中間層4とヒートシーラント層5との密着 強度またはヒートシーラント層5の破壊強度は100~ 1200g/15mmの範囲であり、ヒートシーラント層5 とキャリアテープ11との熱融着強度よりも小さいもの 剥離する際、上記の中間層4とヒートシーラント層5と の層間剥離が生じる場合は、図6に示されるようにライ ン状の熱融着部分Hにおいてヒートシーラント層5はキ ャリアテープ11に熱融着されたままであり、中間層4 とヒートシーラント層5との層間で剥離が生じる。した がって、蓋材1はヒートシーラント層5のうちライン状 の熱融着部分Hをキャリアテープ上に残した状態で剥離 される。一方、蓋材1をキャリアテープ11から剥離す る際、上記のヒートシーラント層5内部の凝集破壊によ る剥離が生じる場合は、図7に示されるようにライン状 30 の熱融着部分Hにおいてヒートシーラント層5の一部が キャリアテープ11に熱融着されたままで、一部が蓋材 1とともに取り除かれるようにしてヒートシーラント層 5内部での剥離が生じる。したがって、ヒートシーラン ト層5とキャリアテープ11の熱融着強度に関係なくヒ ートシーラント層5の破壊強度に応じて蓋材1は剥離さ

【0042】すなわち、本発明の蓋材1は、キャリアテ ープ11に対する高い熱融着性と、剥離時の容易な剥離 性という、相反する特性を兼ね備えている。

【0043】上記のような本発明の蓋材の使用対象とな る合成樹脂製容器としては、ポリ塩化ビニル(PV C)、ポリスチレン (PS)、ポリエステル (A-PE)T、PEN、PET-G、PCTA)、ポリプロピレン (PP)、ポリカーボネート(PC)、ポリアクリロニ トリル(PAN)、アクリロニトリループタジエンース チレン共重合体 (ABS) 等の樹脂製容器、または、こ れらに静電気対策として導電性カーボン微粒子、金属微 粒子、酸化錫や酸化亜鉛、酸化チタン等の金属酸化物に 面活性剤を練り込んだり塗布したもの等を挙げることが できる。また、PS系樹脂シートまたはABS系樹脂シ ートの片面あるいは両面にカーボンブラックを含有した PS系またはABS系樹脂フィルムまたはシートを共押 出しにより一体的に積層してなる複合プラスチックシー トを形成したものも挙げられる。あるいは、導電性処理 として、プラスチックフィルム表面に、導電性高分子を

12

【0044】次に、実験例を示して本発明の蓋材を更に

形成させたものも挙げることができる。

(実験例) 二軸延伸樹脂層として、二軸延伸ポリエチレ ンテレフタレート(PET)フィルム(東洋紡績(株) 製 エスペット6140、厚さ12μm、コロナ処理 品)を準備した。また、接着剤として、ポリエチレンイ ミン溶液(日本触媒化学(株)製 P-100)を準備 した。さらに、接着層として、低密度ポリエチレン(L DPE) (三井石油化学(株) 製 ミラソン16-P) を準備した。

【0045】次に、中間層を形成するために、エチレン となっている。次に、蓋材1をキャリアテープ11から 20 -α・オレフィン共重合体として下記の線状低密度ポリ エチレン(L·LDPE)、およびスチレン70~90 重量%とブタジエン30~10重量%とのスチレンーブ タジエンブロック共重合体(S·B共重合体)として下 記のS・B共重合体、スチレン20~50重量%とブタ ジエン80~50重量%とのスチレン-ブタジエンブロ ック共重合体(S·B共重合体)の水素添加物として下 記のS・B共重合体水素添加物、およびハイインパクト ポリスチレン(HIPS)を準備した。また、スチレン 20~50重量%とブタジエン80~50重量%とのス チレン-ブタジエンブロック共重合体(S·B共重合 体)の無水素添加物として下記のS・Bブロックエラス トマーを準備した。

> 【0046】L·LDPE : 三井石油化学工業(株) 製ウルトゼックス3550A

密度=0.925g/cm³

S·B共重合体: 旭化成工業(株) 製アサフレックス8

S·B共重合体水素添加物:旭化成工業(株)製タフテ ックH1041

40 HIPS :旭化成工業(株)製スタイロン475

S・Bブロックエラストマー: 旭化成工業(株) 製タフ プレンA

次に、このような各材料を用いて、先ず、PETフィル ムに接着剤を塗布後、押し出しラミネーション法によっ てLDPE層(厚さ20μm)を介して下記の表1に示 される混合条件で中間層(単層構造、厚さ30µm)を 形成した。その後、中間層上に下記の組成のヒートシー ラント層用塗布液をグラビアリバース法にて塗布してヒ **導電製を付与した導電製微粉末、Si系有機化合物、界 50 ートシーラント層(厚さ2μm)を形成して、蓋材(試**

14

料1~11、比較試料1~5)を作成した。

(ヒートシーラント層用塗布液の組成)

ポリウレタン樹脂

(日本ポリウレタン工業(株)製 ニッポラン5120) …30 重量部

塩化ビニルー酢酸ビニル共重合体樹脂

(ユニオンカーバイド(株)製 ビニライト VAGH) … 7.5 重量部

導電性微粉末

(三菱マテリアル(株)製 導電性微粒子T-1) …62.5重量部

[0047]

* *【表1】

表 1

畫材	中間層の組成						
	L-LDPE	S·B 共重合体	S·B 共重合体 水素添加物	HIPS	S·B ブロック エラストマー		
試料1	7 5	2 5	10				
試料2	75	2 5	10	20			
試料3	70	30	1 0				
試料4	70	30	15	30			
試料5	60	4 0		10			
試料6	60	40	10	10			
試料7	60	40	15	25			
試料8	50	50	10	10			
試料9	50	50	15	50			
試料10	40	60	15	30			
試料11	4 0	60	1 0	20			
比較試料1	100				100		
比較試料 2	100			100			
比較試料3		100	40	60			
比較試料4		100	30	30			
比較試料 5	100						

*表1中の数値は重量部を示す。

また、上記のような各材料を用いて、先ず、PETフィルムに接着剤を塗布後、押し出しラミネーション法によってLDPE層(厚さ 20μ m)を介してL・LDPE層からなる第1層(厚さ 12μ m)と下記の表2に示される組成の第2層(厚さ 15μ m)を形成して図2に示されるような中間層(2層構造、厚さ 30μ m)を形成

した。その後、中間層上に上記の組成のヒートシーラント層用塗布液をグラビアリバース法にて塗布してヒートシーラント層(厚さ $2 \mu m$)を形成して、蓋材(試料 $1 2 \sim 17$ 、比較試料 $6 \sim 8$)を作成した。

[0048]

【表2】

表 2

16

	中間層(第2層)の組成							
遊 材	L.LDPE	S·B 共重合体	S·B 共重合体 水素添加物	нірѕ	S·B ブロック エラストマー			
設料12	7 5	2 5	10					
試料13	75	2 5	10	20				
試料14	60	40		10				
試料15	60	40	15	2 5				
試料16	4 0	60	15	3 0				
試料17	40	60	10	20				
比較試料 6	100				100			
比較試料7		100	4 0	60				
比較試料8		100	3 0	3 0				

*表1中の数値は重量部を示す。

さらに、上記のような各材料を用いて、先ず、PETフ ィルムに接着剤を塗布後、押し出しラミネーション法に E層からなる第1層(厚さ10μm)と下記の表3に示 される組成の第2層(厚さ10 µm)および第3層(厚 さ10μm)を形成して図3に示されるような中間層 (3層構造、厚さ30μm)を形成した。その後、中間*

* 層上に上記の組成のヒートシーラント層用塗布液をグラ ビアリバース法にて塗布してヒートシーラント層(厚さ よってLDPE層(厚さ20 μ m)を介してL・LDP 20 2μ m)を形成して、蓋材(試料 $18\sim25$ 、比較試料 9~12)を作成した。

[0049]

【表3】

	中間層(第2層、第3層)の組成								
验 材	第 2 暦		\$P\$ 8 MB						
	L-LDPE	S·B 共銀合体	L-LDPB	S·B 共重合体	S·B 共重合体 水素添加物	нірѕ	S-B ブロック エラストマー		
試料 18	75	2 5	7 5	2 5	10				
試料19	60	4 0	75	2 5	10				
試料20	40	60	75	2 5	10				
試料21	60	40	75	2 5	10	20			
試料22	60	40	60	40		10			
試料23	60	40	60	40	15	2 5			
試料24	60	40	40	60	15	30			
試料25	60	40	40	60	10	20			
比較試料 9	100		100				100		
比較試料10		100	100				100		
比較試料11	100								
比較試料12	100			100	4 0	60			

*表1中の数値は重量部を示す。

次に、上記の各蓋材(試料1~25、比較試料1~1 2) について、ヘーズ度、全光線透過率、表面抵抗率、 電荷減衰時間を下記の条件で測定した。また、導電性ボ リ塩化ビニル樹脂基材 (太平化学 (株) 製 XEG4 7) に上記の各蓋材をヒートシールバーを用いて下記の 2種の条件で熱融着し、その後、下記の条件で剥離強度 を測定した。

(ヘーズ度および全光線透過率の測定条件)スガ試験機 (株)製カラーコンピューターSM-5SCにて測定した。 (表面抵抗率の測定条件) 22℃、40%RH下におい て、三菱油化(株)製ハイレスタIPにて測定した。 (電荷減衰時間の測定条件) 23±5℃、12±3%R H下において、5000Vから99%減衰するまでに要 50 する時間を、MIL-B-81705Cに準拠して、E

17 TS社(Electro-Tech Systems.Inc) 製のSTATIC DECAY

* HTH-100 にて測定した。 (剥離速度=300 mm/分、1 80°剥離)

18

各蓋材に関する上記項目の測定結果と剥離形態を下記の

表4に示した。 [0050]

【表4】

①:150℃、0.5秒、3.0 kgf/cm² ②:140℃、0.4秒、1.0 kgf/cm²

METER-406C にて測定した。

(熱融着条件)

(剥離強度の測定条件) 23℃、40% RH下におい

て、東洋ボールドウィン(株)製テンシロン万能試験機*

表 4

•							
蓋 材	ヘーズ度 (%)	全光線 透過率(%)	表面 抵抗率 (Ω)	電荷減 衰時間 (秒)	剥離強度 (g/15mm)	剥離形態 条件①	剥離形態 条件②
1234567890123456789012345 特科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科科	60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70 60~70	800 - 900 800 - 800 800 - 800	1 0 ° 1 0 °	0. 1 0. 1	3 7 5 0 7 7 0 7 7 5 0 0 7 7 5 0 0 7 7 8 0 0 9 3 0 0 0 9 5 7 5 8 0 0 9 5 7 5 5 7 8 0 0 9 5 0 0 0 9 5 0 0 0 9 5 0 0 0 0	西爾洛西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西西	是
共共 2 共共 4 4 致 1 2 致 1 2 2 3 3 4 4 5 6 6 7 7 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$60 \sim 70$	8000 8000 8000 8000 8000 8000 8000 800	1 0 6 1 0 6	0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1	8 2 0 1 3 0 0 1 6 0 0 1 8 0 0 8 2 0 1 6 0 0 1 8 0 0 8 2 0 1 6 0 0 1 8 0 0	層級磁磁層層磁級層層磁級 刺破破破剥剥破破剥剥破破剥剥破破剥剥破破剥剥破破剥剥破破剥剥破破剥剥破破剥剥破	凝集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集集

*剥離形態…層間剥離:中間層とヒートシーラント層との界面で剥離が生じ、基材にヒート

シーラント層が残る形態。 界面剥離:基材面とヒートシーラント層との間で剥離が生じる形態。 凝集破壊1:ヒートシーラント層内部が破壊され剥離される形態。

凝集破壊2:中間層内部が破壊され剥離される形態。

[0051]

【発明の効果】以上詳述したように、本発明によれば蓋 材を構成するヒートシーラント層に隣接し二軸延伸樹脂 層とヒートシーラント層との間に位置する中間層は、密 度0.915~0.940g/cm³のエチレン-α・オ

エン50~10重量%とのスチレン-ブタジエンブロッ ク共重合体、スチレン10~50重量%とブタジエン9 0~50重量%とのスチレンーブタジエンブロック共重 合体の水素添加物およびハイインパクトポリスチレンの うち少なくともエチレンーα・オレフィン共重合体およ レフィン共重合体、スチレン50~90重量%とブタジ 50 びスチレン-ブタジエンブロック共重合体を含む3種以 上の樹脂により形成されているため、蓋材を剥離する際に中間層とヒートシーラント層の層間における剥離、あるいは、ヒートシーラント層内部での凝集破壊による剥離が生じ、これにより、ヒートシーラント層の高い接着性を維持したまま、良好な剥離性を得ることができ、蓋材の合成樹脂製容器への熱融着条件の設定が容易となる。

【図面の簡単な説明】

【図1】本発明の蓋材の概略断面図である。

【図2】本発明の蓋材の他の例を示す概略断面図である。

【図3】本発明の蓋材の他の例を示す概略断面図である。

【図4】本発明の蓋材をキャリアテープ上に熱融着した 状態を示す斜視図である。

【図5】図4のV-V線における断面図である。

*【図6】キャリアテープから蓋材を剥離した状態を示す 図5相当図である。

20

【図7】キャリアテープから蓋材を剥離した状態を示す 図5相当図である。

【符号の説明】

1…蓋材

2…二軸延伸樹脂層

3…接着層

4…中間層

10 4 a …第 1 樹脂層

4b…第2樹脂層

4 c…第3樹脂層

5…ヒートシーラント層

11…キャリアテープ

12…エンボス部

【図1】

【図2】

【図4】

【図5】

【図7】

フロントページの続き

(51)Int.Cl.⁶ B 6 5 D 73/02

識別記号 庁内整理番号 FI

技術表示箇所

K