HW2 Solution

- 1. Simplify the following Boolean expressions (do not use K-map) to a minimum number of literals. After simplification, draw the logic diagrams of the circuits that implement the original and simplified expressions, respectively.
 - (a) x'yz+xy'z+xyz+xyz'
 - (b) (x'y'+xw')(x'w+yz).

- 2. Use DeMorgan's theorem to remove the complement outside the braces:
 - (a) ((x'+w)y+wyz+x'z(x+y))',
 - (b) (x(y'+z)+y'z(x+w))',
 - (c) (x(y+y'(z+w)))',
 - (d) (xy'+y(x+z))'.

(c)
$$(x(y+y'|z+w|))'$$

= $x'+(y+y'|z+w|)'$
= $x'+y'(y'|z+w|)'$
= $x'+y'(y+|z+w|)'$
= $x'+y'(y+|z+w|)'$
(d) $(xy'+y(x+z))'$
= $(xy')'(y|x+z)'$
= $(x'+y)(y'+|x+z|)'$
= $(x'+y)(y'+|x+z|)$

- 3. We can perform logical operations on strings of bits by considering each pair of corresponding bits separately (called *bitwise* operation). Given two eight-bit strings A=11010101 and B=01110001, evaluate the eight-bit result after the following logical operations:
 - (a) AND,
 - (b) XNOR,
 - (c) NOT A.

4. Obtain the truth table of function F=x'yz'+w'y+wyz' and express it in sum-of-minterms and product-of-maxterms forms.

w	X	У	Z	x'yz'	w'y	wyz'	F	Minterms	Maxterms
0	0	0	0	0	0	0	0	w'x'y'z'	w+x+y+z
0	0	0	1	0	0	0	0	w'x'y'z	w+x+y+z'
0	0	1	0	1	1	0	1	w'x'yz'	w+x+y'+z
0	0	1	1	0	1	0	1	w'x'yz	w+x+y'+z'
0	1	0	0	0	0	0	0	w'xy'z'	w+x'+y+z
0	1	0	1	0	0	0	0	w'xy'z	w+x'+y+z'
0	1	1	0	0	1	0	1	w'xyz'	w+x'+y'+z
0	1	1	1	0	1	0	1	w'xyz	w+x'+y'+z'
1	0	0	0	0	0	0	0	wx'y'z'	w'+x+y+z
1	0	0	1	0	0	0	0	wx'y'z	w'+x+y+z'
1	0	1	0	1	0	1	1	wx'yz'	w'+x+y'+z
1	0	1	1	0	0	0	0	wx'yz	w'+x+y'+z'
1	1	0	0	0	0	0	0	wxy'z'	w'+x'+y+z
1	1	0	1	0	0	0	0	wxy'z	w'+x'+y+z'
1	1	1	0	0	0	1	1	wxyz'	w'+x'+y'+z
1	1	1	1	0	0	0	0	wxyz	w'+x'+y'+z'

Truth table:對應至上表 w, x, y, z, F 這 5 行

Sum-of-minterms:

$$\begin{aligned} F &= w'x'yz' + w'x'yz + w'xyz' + w'xyz + wx'yz' + wxyz' \\ &= \Sigma(2,3,6,7,10,14) \end{aligned}$$

Product-of-maxterms:

$$F=(w+x+y+z)(w+x+y+z')(w+x'+y+z)(w+x'+y+z')(w'+x+y+z)(w'+x+y+z')$$

$$(w'+x+y'+z')(w'+x'+y+z)(w'+x'+y+z')(w'+x'+y'+z')$$

$$=\pi(0,1,4,5,8,9,11,12,13,15)$$

- 5. For the Boolean function F=x'y'z+xy'z+xyz+x'yz,
 - (a) Obtain the truth table of F.
 - (b) Draw the logic diagram for F.
 - (c) Use Boolean algebra to simplify the function F to a new function, G, with minimum number of literals.
 - (d) Obtain the truth table of G and show it is the same as that of F.
 - (e) Draw the logic diagram for G and compare the number of literals and gates with those of F.

