學號:B03902042 系級:資工三姓名:宋子維

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature) 答:

原本取前9個小時的18種空氣汙染指標,作為輸入特徵,故總共為162種特徵,後來經過不斷的測試和domain knowledge,**選用PM10**,**PM2.5**,**O3**,**WIND DIREC**,

WIND_SPEED, WD_HR, WS_HR, RAINFALL, PM10 ** 2, PM2.5 ** 2, 總共為90種特徵,而第二及第四題的測試標準也是用這組特徵,且訓練次數為20000,初始學習率為0.5,並且使用adagrad。

2.請作圖比較不同訓練資料量對於PM2.5預測準確率的影響 答:

圖表的橫軸代表拿來訓練的月份,每個月份有471筆資料。從折線圖的趨勢來看,**資料量越大,public score越低**,但值得一提的是,這和「用什麼資料來訓練」有很大的關係:可以看到1~7和1~6這兩個點,若不訓練7月反而能使public score下降,猜想可能是因為7月的資料對於public set是noise,才會有這樣的結果出現。

訓練資料量對於PM2.5預測準確率的影響

3. 請比較不同複雜度的模型對於PM2.5預測準確率的影響答:

0~17依序代表以下18個測項: AMP_TEMP, CH4, CO, NMHC, NO, NO2, NOx, O3, PM10, PM2.5, RAINFALL, RH, SO2, THC, WD_HR, WIND_DIREC, WIND_SPEED, WS_HR。每一個測項都使用完整的9個小時,而Dot term指的是將兩個測項每小時個別相乘。

從表格可看出,並不是越多越高次的feature就能讓結果越好,有些模型反而因此產生 overfitting(如第三個)。

Linear term	Square term	Cubic term	Dot term	training loss	Public score
0~17	None	None	None	5.68531	5.95965
0~17	0~17	None	None	5.53272	5.85442
0~17	0~17	0~17	None	5.43825	6.09038
7, 8, 9, 10, 14, 15, 16, 17	8, 9	None	None	5.88212	5.64586
2, 7, 8, 9, 10, 14, 15, 16, 17	8, 9	None	None	5.82960	5.68664
2, 7, 8, 9, 10, 12, 14, 15, 16, 17	8, 9	None	None	5.78344	5.65403
2, 7, 8, 9, 10, 14, 15, 16, 17	同一次項	None	7 * 9	5.72772	5.69233
2, 7, 8, 9, 10, 12, 14, 15, 16, 17	同一次項	None	7*9	5.67329	5.63437

4. 請討論正規化(regularization)對於PM2.5預測準確率的影響答:

Regularization	Training loss	Public score	
0.01	6.14937	5.73088	
0.001	5.91889	5.65030	
0.0001	5.88604	5.64798	
0.00001	5.88264	5.64917	
0.000001	5.88216	5.64619	
0.0	5.88212	5.64586	

可以看到regularization對於public score並沒有太大的幫助,甚至加了regularization會讓 RMSE上升,可能是我使用的這組feature對training set並沒有達到overfitting, regularization才會沒什麼功用。

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一純量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸 的損失函數(loss function)為 $\sum\limits_{n=1}^{N} \left(y^n - w \cdot x^n\right)^2$ 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ \dots \ x^N]$ 表示,所有訓練資料的標註以向量 $y = [y^1 \ y^2 \ \dots \ y^N]^T$ 表示,請以 X 和 y 表示可以最小化損失函數的向量 w 。答:

$$w = (X^T X)^{-1} X^T y$$

(註:在我的hw1_best.sh中,就是用closed-form解出最佳解。)