

Drop & Keep

Null Values

- There are 5 missing values in 2 rows
- Considering the sample size, it is safe to remove all 2 rows

	Value	s	K	tau	r	BS
292	8.625	NaN	NaN	NaN	0.03003	Over
818	NaN	431.284616	NaN	0.230159	0.02972	Over

Outliers

- There are 3 outliers in S and τ
- There are several outliers in r

Overview

Start from 4

We have four basic independent variables in our dataset.

- S
- K
- r
-]

3 Methods

We view the data from 3 different aspects to construct relevant features.

- Profitability
- Future & Present Values
- Bins

We have 19 variables with business significance in total.

\ Hoooooray! /

Feature Details

Method	Name	Formula	Comments	
	K-S Ratio	K/S	The increase of the asset value	
Profitability	K-S Difference	K-S		
	K-S Ratio per Day	K/(S*T)	The break even increase of the asset value per day	
	Risk-free FV	S*(1+r)^T	The risk free future value of the asset (based on Current Asset Value)	
	Risk-free FV Difference	K-Risk-free FV	The difference between Risk-free FV and K	
Future &	Risk-free FV Proportion	(K-(Risk-free FV))/K	The proportion of difference between Risk-free FV and K to K	
Present	Asset Interest Rate	(K/S)^(1/τ)-1	The theoretical interest rate of the asset	
Values	Asset Interest Rate Difference	Asset Interest Rate - r	The difference between Asset Interest Rate and r	
	Asset Interest Rate Proportion	(Asset Interest Rate-r)/Asset Interest Rate	The proportion of difference between Asset Interest Rate and r	
	Risk-free PV	K/(1+r) ^ˆ τ	The risk free present value of the asset (based on Strike Price of Option)	
	Quintile of S/ Quintile of K/ Quintile of r	\	Approximately equally bin data into 5 parts	
Bins	extremely low K	K < 404	54 out of 1675 observations	
	extremely high r	r > 0.031	274 out of 1675 observations	

Forward Selection

SequentialFeatureSelector function

Regression: scoring = 'r2'

add variables in this order	variable name	
1	risk_free_gap_abs	
2	tau	
3	risk_free_rate_prop	
4	risk_free_FV	
5	K	
6	KS_tau_ratio	
7	r_asset	
8	K_bin	
9	is_high_r	
10	r_bin	
11	r	
12	S	
13	is_low_K	
14	KS_diff	
15	risk_free_gap_prop	
16	KS_ratio	
17	S_bin	
18	risk_free_rate_abs	
19	S_expected	

Classification: scoring = 'accuracy'

add variables in this order	variable name	
1	KS_ratio	
2	risk_free_FV	
3	r_bin	
4	is_low_K	
5	S_bin	
6	KS_tau_ratio	
7	S_expected	
8	r	
9	K_bin	
10	r_asset	
11	risk_free_gap_abs	
12	K	
13	risk_free_rate_abs	
14	is_high_r	
15	KS_diff	
16	tau	
17	S	
18	risk_free_rate_prop	
19	risk_free_gap_prop	

Model Exploration and Selection

Linear Models:

Regression: Linear Regression

Classification: Logistic Regression

Prediction Accuracy

Nonlinear Models:

Random Forest

Elastic Net

Neural Network

Support Vector Machine

K-Nearest Neighbors

Light Gradient Boosting Machine

eXtreme Gradient Boosting

Model Exploration

Split training data

70% → training 30% → testing

Training set

Include different numbers of variables: 3, 5, 10, 15, 19

Training set

5-fold cross-validation GridSearchCV function → best parameter settings

Testing set

Predict the values or labels Calculate out-of-sample R² and accuracy

Model Performance (Regression)

- **Linear Regression**: # of variables: 19
 - R² in training: 0.9929, R² in testing: 0.9932
- Random Forest: # of variables: 10; Best set of parameters: {'max_depth': 25, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 90}
 - o R² in training: 0.9984, R² in testing: 0.9989
- Elastic Net: # of variables: 19; Best set of parameters: {'alpha': 0.0001, 'l1_ratio': 0.99}
 - o R² in training: 0.9895, R² in testing: 0.9906
- **Neural Network**: # of variables: 19; Best set of parameters: {'activation': 'logistic', 'alpha': 0.001, 'hidden_layer_sizes': (30, 30), 'learning_rate': 'adaptive', 'max_iter': 3000, 'solver': 'adam'}
 - R² in training: 0.9987, R² in testing: 0.9987
- **Epsilon-Support Vector Regression**: # of variables: 3; Best set of parameters: {'kernel': 'rbf', 'gamma': 'auto', 'C': 10000, 'epsilon': 0.01, 'shrinking': 'True'}
 - \circ R² in training: 0.9977, R² in testing: 0.9992
- K-Nearest Neighbors: # of variables: 5; Best set of parameters: {'leaf_size': 1, 'n_neighbors': 8, 'p': 1}
 - R² in training: 0.9898, R² in testing: 0.5448
- **Light Gradient Boosting Machine**: # of variables: 19; Best set of parameters: {'learning_rate': 0.1, 'max_depth': 20, 'min_child_samples': 10, 'n_estimators': 200}
 - R² in training: 0.9985, R² in testing: 09991
- **eXtreme Gradient Boosting**: # of variables: 5; Best set of parameters: {'learning_rate': 0.1, 'max_depth': 5, 'min_child_weight': 5, 'n_estimators': 500, 'nthread': 4, 'objective': 'reg: squarederror'}
 - o R² in training: 0.9989, R² in testing: 0.9993

Model Performance (Classification)

- Logistic Regression: # of variables: 10
 - R² in training: 0.9206, R² in testing: 0.9165
- Random Forest: # of variables: 10; Best set of parameters: {'max_depth': 25, 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 10}
 - R² in training: 0.9275, R² in testing: 0.9324
- Elastic Net: # of variables: 15; Best set of parameters: {'alpha': 0.00065, 'l1_ratio': 0.73, 'learning_rate': 'optimal', 'penalty': 'elasticnet'}
 - R² in training: 0.9198, R² in testing: 0.9066
- **Neural Network**: # of variables: 10; Best set of parameters: {'activation': 'logistic', 'alpha': 0.01, 'hidden_layer_sizes': (30, 30), 'learning_rate': 'constant', 'max_iter': 2000, 'solver': 'adam'}
 - R² in training: 0.9232, R² in testing: 0.9105
- Support Vector Machine: # of variables: 10; Best set of parameters: {'C': 1, 'kernel': 'rbf', 'gamma': scale, 'shrinking': 'False', probability: 'False'}
 - o R² in training: 0.9322, R² in testing: 0.9264
- K-Nearest Neighbors: # of variables: 19; Best set of parameters: {'leaf_size': 1, 'n_neighbors': 14, 'p': 1}
 - R² in training: 0.9318, R² in testing: 0.5714
- Light Gradient Boosting Machine: # of variables: 10; Best set of parameters: {'learning_rate': 0.2, 'max_depth': 20, 'min_child_samples': 20, 'n_estimators': 50}
 - R² in training: 0.9292, R² in testing: 0.9364
- **eXtreme Gradient Boosting**: # of variables: 15; Best set of parameters: {'eval_metric': 'error', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_weight': 5, 'n_estimators': 100, 'nthread': 4, 'objective': 'binary:logistic'}
 - R² in training: 0.9335, R² in testing: 0.9404

Final Model

eXtreme Gradient Boosting (XGBoost):

- Highest out-of-sample R²
- Highest accuracy (lowest classification error)

Regression:

Number of variables: 5

Best set of parameters: {'learning_rate': 0.1, 'max_depth': 5, 'min_child_weight': 5, 'n_estimators': 500, 'nthread': 4, 'objective': 'reg: squarederror'}

R² in training: 99.89%

R² in testing: 99.93%

Classification:

Number of variables: 15

Best set of parameters: {'eval_metric': 'error', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_weight': 5, 'n_estimators': 100, 'nthread': 4, 'objective': 'binary: logistic'}

Accuracy in training: 93.35%

Accuracy in testing: 94.04%

Summary

Data Cleaning

Checked outliers and missing values Dropped rows with missing values and extreme outliers

Feature Engineering

Created 15 new variables using the given four variables

Feature Selection

Applied the forward stepwise selection method

Model Exploration

Tried different algorithms and tuned models with different hyperparameters

Limitations and Future Steps

Limitations & Future Steps

Limitation

- Limited data on political, social, economic events
- Lack of domain expertise during feature engineering
- Limited computational power

Current model

TESLA

Future Steps

- Gather more data
- Seek domain experts' advice
- Upgrade our computational power to improve the tuning process
- Use different feature selection methods