Comp 330 Assignment 1

Question 1

• Question 1.1

Equivalence class R:

• Reflexive: xRx

Symmetry: xRy <=> yRx
Transitive: xRy & yRz => xRz

Preorder:

Reflexive

Transitive

Proof:

Reflexive

 $a \sim a \Leftrightarrow a R a \& a R a$

As R is a preorder its reflexive then ~ is also reflexive

• Symmetric

 $a R b \& b R a \Leftrightarrow a \sim b$ $b R a \& a R b \Leftrightarrow b \sim a$ $a R b \& b R a \Leftrightarrow a \sim b$

Then ~ is symmetric

• Transitive

$$a R b \& b R c \rightarrow a R c$$
 $c R b \& b R a \rightarrow c R a$
 $a R b \& b R a \& b R c \& c R b \rightarrow a R c \& c R a$
 $a \sim b \& b \sim c \rightarrow a \sim c$

Then ~ is transitive and thus an equivalence class

Type equation here.

• Question 1.2

We have

- [a] the set of element equivalent to a with ~ equivalence
- [b] the set of element equivalent to b with ~ equivalence

Case 1: a is equivalent to b

Then by definition of equivalent classes [a] = [b]

Then for any $x \in [a]$ and $y \in [b]$, $x \sim y \rightarrow xRy$

Thus it's well defined in this case

Case 2: a is not equivalent to b

Then $[a] \neq [b]$

Then for any $x \in [a]$ and $y \in [b]$, not $x \sim y \rightarrow not \ xRy$

Thus its well defined

• Question 1.3

$$[a] \le [b] \& [b] \le [a]$$

$$aRb \& bRa$$

 $a\sim b$

But as $a \sim b$ then [a] and [b] are the same set ([a] = [b]) and then \leq is anti-symmetric

Question 2

- Question 2.a
- Reflexive

Let
$$x = x_1 x_2 \dots x_n$$

For all $i, x_i = x_i$ then the first condition cannot be competed

However x is a prefix of x then $x \le x$

Transitive

```
Let x=x_1x_2\dots x_n and y=y_1y_2\dots y_m and z=z_1z_2\dots z_s We also have x\leq y and y\leq z Let i such that either x_i=a and y_i=b Let j such that either y_j=a and z_j=b We know that for all k< i, x_k=y_k We know that for all k< j, y_k=z_k
```

If i < j then for all k < i, $x_k = z_k$ but as $x_i = a$ and $y_i = b$ and $y_i = z_i$ then $z_i = b$ and then $x \le z$. If i > j then for all k < j, $x_k = z_k$ but as $y_j = a$ and $z_j = b$ and $x_j = y_j$ then $x_j = a$ and then $x \le z$. If i = j then either x = y or y = z and thus $x \le z$.

Similarly if x is a prefix of y or y is a prefix of z we get $x \le z$

• Anti-symmetric

Let
$$x = x_1 x_2 \dots x_n$$
 and $y = y_1 y_2 \dots y_m$

Let $x \le y$ and $y \le x$ then

- $\exists i \ s.t \ x_i = a \ and \ y_i = b \ and \ \forall \ k < i, x_k = y_k$
- $\exists j \ s.t \ x_j = b \ and \ y_j = a \ and \ \forall \ k < j, x_k = y_k$

However those two conditions are not possible to satisfy at the same time.

Similarly if x is shorter than y then the $y \le x$ conditions won't be satisfied. Same for y shorter than x

Then m=n and as the first conditions showed for all k, $x_k=y_k$ then x=y

So it's anti-symmetric

• Question 2.b

It's not well founded.

Indeed we can have a sequence of a and b named $w = aa \dots ab$

Let w' be the word compose of a and w: w' = aaa ... ab

But w' is smaller than w.

We can repeat this step indefinitely so there is no minimal element

Question 3

Question 3.1

1

• Question 3.2

• Question 3.3

Question 4

• Rev(L)

Let $M(S, s_0, \delta_1, F)$ be a machine that recognize L

Let $N(T, t_0, \delta_2, F_0)$ with

- $T = S \cup \{t_0\}$
- ullet t_0 is a new state that has ϵ transistions to all final states in $\ F$
- \bullet $F_0 = S_0$
- $\delta_1(x,a)$ all transitions in M are reversed

• *Init(L)*

Let $M(S, s_0, \delta_1, F)$ be a machine that recognize L

Let $N(T, t_0, \delta_2, F_0)$ with

- \bullet T = S
- $t_0 = s_0$
- $F_0 = F$
- $\delta_1(x,a) = \delta_2(x,a)$

New transitions have been added that loop on the final states

Question 5

Let $M(S, s_0, \delta_1, F)$ be a machine that recognize L

Let $N(T, t_0, \delta_2, F_0)$ be a machine that recognize lefthalf(L)

- $T = S * S \cup \{t_1\}$. So S * S keep track of the current state of M as well as the state that can reach an accept state of M in i move steps where i is the current length of the word we are reading
- t_0 we have an ϵ move s_0 and note that we are 0 steps from an accepted state
- $F_0 = \{(x, x) | x \in S\}$ So we accept only if the current state is at x, and x is at i steps from an accept state of M
- $(\delta_1(x,a),z)=(\delta_2(x,y),a)$ where $\forall z$ that satisfies the previous equation, $\exists c \in \Sigma$ with $\delta_2(z,c)=y$