Télécommunications et ordinateurs : technologies du multimédia, des télécommunications et de l'Internet

M. Van Droogenbroeck

Avril 2004 (version 3.34)

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Détails pratiques

- Examen
 - écrit (obligatoire)
 - à livre fermé
 - deux composantes : théorie et exercices
- Notes de cours
 - disponibles à l'AEES
 - version HTML en ligne à l'adresse http://www.ulg.ac.be/ tel emm
- Transparents
 - version PDF en ligne à l'adresse http://www.ulg.ac.be/t ele cm
- CD-ROM
 - sur demande
 - contenu :
 - notes au format PDF (en couleurs) et HTML
 - transparents au format PDF (en couleurs)

Introduction

Historique

Fig. 1: Principaux pôles de développement en télécommunications.

Introduction

Historique

Fig. 1: Principaux pôles de développement en télécommunications.

- Organismes internationaux de normalisation en télécommunications
 - ITU: International Telecommunications Union
 - ISO: International Standards Organisation
 - ETSI: European Telecommunications Standards Institute
- Normalisation Internet
 - IETF: Internet Engineering Task Force (produit les RFCs)

Structure d'une chaîne de télécommunications

Fig. 2: Structure d'une chaîne de télécommunications.

Structure d'une chaîne de télécommunications numérique

Modèles de référence

Modèle OSI (Open System Interconnection)

Fig. 3: Modèle de référence OSI.

Fig. 4: Les principales fonctions des couches OSI.

Modèle Internet

FIG. 5: Éléments de l'architecture TCP/IP.

FIG. 6: Analyse du contenu d'un paquet IP.

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Signaux multimédia : table des matières

- Signaux fondamentaux
 - Caractérisation d'un son
 - Notion de fréquence
 - Description perceptive d'une image
- Signaux numériques
 - Concept
 - Définitions : bit, byte (octet)
- Numérisation
 - Filtrage, échantillonnage, quantification, interpolation
 - Définition : débit
- Autres types de signaux

Les signaux multimédia

Type de données **Exemples de traitement**

Texte	Traitement de texte Recherche
Graphique	Modification d'aspect Dessin
Audio	Filtrage Numérisation Amélioration Codage
Image	Numérisation Amélioration Codage
Vidéo	Numérisation Amélioration Codage
Signaux de synthèse	Déformation temporelle et spatiale

Caractérisation d'un son

- Intensité
- Durée
- Hauteur tonale
- Timbre

FIG. 7: Représentation d'un son.

Interprétation de la notion de fréquence

FIG. 8: Le HERTZ : unité de mesure des fréquences. Cette unité est définie comme le nombre de périodes par seconde. La fréquence du signal représenté ici est de $3\,[Hz]$.

Analyse en fréquences

Definition 1. [Transformée de FOURIER]

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi jft}dt \tag{1}$$

Transformée de FOURIER inverse :

$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{2\pi jft}df \tag{2}$$

Definition 2. [Bande passante] L'intervalle de fréquences que peut traiter un système est appelé bande passante.

Exemples:

- Bande passante de l'oreille : intervalle de fréquences $[15 \, Hz, \, 20 \, kHz]$.
- Bande passante du téléphone = [300 Hz, 3400 Hz].

En fait, tout système physique a une bande passante finie.

Perception visuelle

Fig. 9: Coupe latérale simplifiée de l'œil.

La lumière

FIG. 10: Les longueurs d'onde associées aux couleurs.

Lien entre la longueur d'onde λ et la fréquence f:

$$f = \frac{c}{\lambda} \tag{3}$$

où $c=3\times 10^8\,[m/s]$ est la vitesse de la lumière

Représentation fréquentielle des couleurs

$$\int_{\lambda} L(\lambda) \, d\lambda \tag{4}$$

Problème car trop grand nombre de capteurs nécessaires à la description de la couleur

Solution : utiliser les espaces de couleurs

Représentation fréquentielle des couleurs

$$\int_{\lambda} L(\lambda) \, d\lambda \tag{4}$$

Problème car trop grand nombre de capteurs nécessaires à la description de la couleur

Solution : utiliser les espaces de couleurs

FIG. 11: Expérience d'égalisation d'une couleur X au moyen de trois couleurs primaires A, B et C.

Diagramme chromatique RGB de la CIE

Fig. 12: Diagramme chromatique (approché!) défini par les deux variables de chrominance x et y.

D'autres espaces de couleurs

- le système de couleurs soustractifs : Cyan, Magenta et Yellow (CMY), éventuellement du noir (CMYK)
- les systèmes YIQ, YUV ou YC_bC_r

D'autres espaces de couleurs

- le système de couleurs soustractifs : Cyan, Magenta et Yellow (CMY), éventuellement du noir (CMYK)
- les systèmes YIQ, YUV ou YC_bC_r

FIG. 13: Défaut d'alignement des couleurs d'impression permettant de voir les 3 composantes de couleur CMY et la composante noire K.

Signaux numériques

Definition 3. Le bit est l'information élémentaire en informatique. Il ne peut prendre que deux valeurs, 0 ou 1. En électronique, il est par exemple représenté par des tensions différentes.

Definition 4. Un octet, ou byte en anglais, est un ensemble de 8 bits.

Definition 5. La numérisation est le nom du procédé qui réalise la conversion de l'analogique vers le numérique.

Représentation

Fig. 14: Représentation d'un signal analogique ou numérique.

Pourquoi numériser?

- Résistance au bruit
- Traitement et stockage

Fig. 15: Amplification d'un signal analogique et régénération d'un signal numérique.

Processus de conversion

Fig. 16: De l'analogique au numérique et conversion inverse.

Conditions pour l'échantillonnage

FIG. 17: Échantillonnage instantané.

Definition 6. [Fréquence d'échantillonnage]. Nombre de mesures effectuées dans un temps donné pendant la conversion d'un signal analogique en données numériques.

Conditions pour l'échantillonnage

FIG. 17: Échantillonnage instantané.

Definition 6. [Fréquence d'échantillonnage]. Nombre de mesures effectuées dans un temps donné pendant la conversion d'un signal analogique en données numériques.

Theorem 1. [Théorème de Shannon]. Pour pouvoir reconstituer un son correctement, le nombre d'échantillons pendant une seconde doit être strictement supérieur au double de la plus haute fréquence contenue dans le signal.

Repli de spectre

Fig. 18: Repli de spectre ou aliasing.

Exemple de la roue qui tourne

Processus de conversion

Fig. 19: De l'analogique au numérique et conversion inverse.

Quantification

- Passage d'un espace continu de valeurs à un espace discret de valeurs
- Introduit une approximation

Fig. 20: Signal original et échantillons quantifiés.

Codage PCM (Pulse Code Modulation)

Fig. 21: Échantillons instantanés, quantifiés et codes PCM.

Quantification : nombre de bits nécessaire

Nombre de bits	Nombre de niveaux	Valeurs possibles
1	$2^1 = 2$	$\{0, 1\}$
2	$2^2 = 4$	$\{0,1,2,3\}$
3	$2^3 = 8$	$\{0, 1, \ldots, 7\}$
8	$2^8 = 256$	$\{0,1,\ldots,255\}$
12	$2^{12} = 1024$	$\{0, 1, \ldots, 1023\}$

TAB. 1: Correspondance entre le nombre de bits et le nombre de valeurs possibles.

Processus de conversion

Fig. 22: De l'analogique au numérique et conversion inverse.

Débit

Definition 7. En multipliant le nombre de bits nécessaires à coder l'amplitude par la fréquence d'échantillonnage, on obtient le débit associé à un signal. Il s'exprime en bits par seconde [b/s].

Calcul du débit

	Son (parole - téléphone)	Son (audio)
Plus haute fréquence		
Fréquence d'échan- tillonnage		
Nombre de bits par échantillon		
Débit		

Types de représentation : résumé des principales grandeurs

Analogique	Numérique
 Fréquence 	Bit, byte (octet)
• (Résolution)	Fréquence d'échantillonnageQuantification
 Bande passante 	DébitTaux de compression

Autres types de signaux

- Texte
 - ASCII, Unicode

Contenu Structure Éléments de présentation Éléments comportementaux

Fig. 23: Composantes d'un document multimédia interactif.

- HTML, SGML
 - Style sheets
 - meta-data

- Synchronisation
 - MHEG
- Réalité virtuelle
 - VRML 2.0
- Médecine
 - DICOM

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Signaux et systèmes de télécommunications

Types de signaux

- Signal vocal ou musical
- Vidéo
- Signaux numériques

Definition 8. Le nombre de symboles transmis pendant une seconde est mesuré en bauds.

Représentation des signaux

- analogiques ou numériques,
- périodiques ou apériodiques,
- déterministes ou stochastiques,
- d'énergie ou de puissance.

Représentation

FIG. 24: Représentation d'un signal analogique ou numérique.

	Émetteur	Récepteur
Signal utile	déterministe	aléatoire
Bruit et interférences	aléatoire	aléatoire

TAB. 2: Nature des signaux dans une chaîne de télécommunications.

Energie et puissance

Definition 9. [Énergie] Sur base de cette convention, l'énergie totale du signal g(t) est définie par

$$E = \lim_{T \to +\infty} \int_{-T}^{T} |g(t)|^2 dt \tag{5}$$

$$= \int_{-\infty}^{+\infty} |g(t)|^2 dt \tag{6}$$

Definition 10. [Puissance moyenne] Il en découle une puissance moyenne du signal g(t) s'exprimant

$$P = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |g(t)|^2 dt$$
 (7)

Décibel

$$x \leftrightarrow 10\log_{10}(x) \tag{8}$$

$$P[dBm] = 10 \log_{10} \frac{P[mW]}{1[mW]}$$
 (9)

x[W]	$10\log_{10}(x)\left[dBW\right]$
1[W]	$0 \left[dBW \right]$
2[W]	3 [dBW]
0,5[W]	-3 [dBW]
5[W]	7 [dBW]
$10^{n} [W]$	$10n \left[dBW \right]$

$$10\log_{10}\left(\frac{U}{[V]}\right)^2 = 20\log_{10}\frac{U}{[V]} \tag{10}$$

$$x \leftrightarrow 20\log_{10}(x) \tag{11}$$

Bande passante

Fig. 25: Comparaison de définitions de bande passante.

Système de transmission idéal

$$\mathcal{H}(f) = Ae^{-2\pi jf\tau} \tag{12}$$

FIG. 26: Transmittance d'un système idéal.

Distorsions et bruit

Délai de groupe

$$\tau_g = -\frac{1}{2\pi} \frac{d\phi(f)}{df} \tag{13}$$

Délai de phase

$$\tau_p = -\frac{\phi(f)}{2\pi f} \tag{14}$$

Distorsions non linéaires

$$y(t) = ax(t) + bx^2(t) \tag{15}$$

- Bruit
 - additif
 - multiplicatif

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Théorie de l'information

Table des matières

- Rappels sur les probabilités
- Théorie de l'information
 - Mesure de l'information
 - Entropie d'une source
 - Débit d'information et redondance d'une source
 - Théorème de Shannon
 - Codage de Huffman
- Compression
 - Texte
 - Audio
 - Image Vidéo

Axiome des probabilités

Un espace témoin S d'événements élémentaires.

- 1. Une classe \mathcal{E} d'événements qui sont des sous-ensembles de S.
- 2. Une mesure de la probabilité p(.) assignée à chaque événement A de la classe \mathcal{E} et qui a les propriétés suivantes :
 - (a) p(S) = 1
 - **(b)** $0 \le p(A) \le 1$
 - (c) Si $A \cup B$ représente l'union de deux événements mutuellement exclusifs dans la classe \mathcal{E} , alors

$$p(A \cup B) = p(A) + p(B) \tag{16}$$

Propriétés

- 1. Si \overline{A} , appelé "non A", est le complément de A alors $p\left(\overline{A}\right)=1-p(A)$.
- 2. Si M événements mutuellement exclusifs $A_1, A_2, ..., A_M$ sont tels que :

$$A_1 \cup A_2 \cup \dots \cup A_M = S \tag{17}$$

alors

$$p(A_1) + p(A_2) + \dots + p(A_M) = 1$$
(18)

3. Si les événements A et B ne sont pas mutuellement exclusifs, la probabilité de l'événement union $A \cup B$ vaut

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) \tag{19}$$

où $p(A \cap B)$ est la probabilité de l'événement joint "A et B".

Entropie

Definition 11. L'entropie de la source est alors définie par

$$H(S) = -\sum_{i=1}^{n} p(A_i) \log_2 p(A_i)$$
 (20)

Entropie

Definition 11. L'entropie de la source est alors définie par

$$H(S) = -\sum_{i=1}^{n} p(A_i) \log_2 p(A_i)$$
 (20)

Cas particulier : source binaire comprenant les deux symboles A_1 et A_2 , telle que

$$\begin{cases} p(A_1) = k \\ p(A_2) = 1 - k \end{cases}$$

où $k \in [0, 1]$. L'entropie de cette source vaut

$$H(S) = -k \log_2 k - (1 - k) \log_2 (1 - k)$$
(21)

Fig. 27: Entropie d'une source binaire en fonction de la probabilité de ses symboles.

Débit d'information et redondance d'une source

Definition 12. [Débit d'information] Le débit d'information d'une source sera défini comme étant le produit de l'entropie de la source (valeur moyenne de l'information propre par symbole) par le nombre moyen de symboles par seconde. En notant la durée moyenne d'un symbole par $\overline{\tau}$, le débit d'information de la source sera

$$D = \frac{H(S)}{\overline{\tau}} = H(S)\overline{f} \tag{22}$$

où $\overline{f} = 1/\overline{\tau}$ est la fréquence moyenne d'émission des symboles.

Débit d'information et redondance d'une source

Definition 12. [Débit d'information] Le débit d'information d'une source sera défini comme étant le produit de l'entropie de la source (valeur moyenne de l'information propre par symbole) par le nombre moyen de symboles par seconde. En notant la durée moyenne d'un symbole par $\overline{\tau}$, le débit d'information de la source sera

$$D = \frac{H(S)}{\overline{\tau}} = H(S)\overline{f} \tag{22}$$

où $\overline{f} = 1/\overline{\tau}$ est la fréquence moyenne d'émission des symboles.

Definition 13. [Redondance] Pour indiquer l'écart entre l'entropie d'une source et sa valeur maximale possible (lorsque tous les symboles sont équiprobables), on définit la redondance de la source

$$R_S = H_{max}(S) - H(S) \tag{23}$$

$$o\grave{u} \ H_{max}(S) = \log_2 n.$$

Théorème de Shannon

Soient H(S) l'entropie d'une source et M le nombre moyen de bits associés à chaque symbole de cette source.

Theorem 2. [Shannon] Pour tout code utilisé pour représenter les symboles de la source, l'inégalité suivante tient toujours

$$M \ge H(S) \tag{24}$$

Théorème de Shannon

Soient H(S) l'entropie d'une source et M le nombre moyen de bits associés à chaque symbole de cette source.

Theorem 2. [Shannon] Pour tout code utilisé pour représenter les symboles de la source, l'inégalité suivante tient toujours

$$M \ge H(S) \tag{24}$$

Codage de HUFFMAN

Fig. 28: Illustration de la méthode de HUFFMAN.

Compression

Propositions théoriques importantes :

- 1. Limite théorique pour la transmission dans un canal
 - la capacité d'un canal de transmission de largeur de bande W, de rapport signal à bruit $\frac{S}{N}$, vaut

$$C = W \log_2\left(1 + \frac{S}{N}\right) \tag{25}$$

- 2. Limite théorique pour la compression sans perte
 - le nombre de bits minimum pour coder un symbole est toujours supérieur à l'entropie de source

Bases de la compression

Définition. Taux de compression

= Nombre de bits avant compression
Nombre de bits après compression

- Codage sans perte ou avec perte
- Codage perceptif

Compression de données textuelles

- Compression toujours sans perte
- Exploitation des probabilités d'occurrence
- Exemples :
 - Fax
 - Run Length Coding (codage en rafale); il s'agit d'une technique de codage d'image
 - Techniques à base de dictionnaires
 - HUFFMAN
 - LEMPEL, ZIV, WELCH (fichier d'extension ".zip")

Compression audio

Standards:

- ITU: Famille G.72x
 - DPCM
 - ADPCM
 - Adaptatif
 - CELP
- TS GSM 06.10
- MPEG-1 audio = MP3

MP3

Fig. 29: Encodeur audio MPEG-1 simplifié (MP3).

Différentes représentations pour un même son

- Problème de protection des droits
- Solution proposée par certains : marquage (watermarking)

Applications "image"

Compression d'images

- Fax
- Standards de compression pour image
 - ✗ standard JPEG (ISO)
 - ✗ GIF : solution propriétaire
 - **X** PNG
 - **✗** JPEG 2000 (ISO) : libre de tout droit

JPEG

DCT = Transformée en Cosinus

DCT⁻¹= Transformée inverse

Q = Quantification

 Q^{-1} = Quantification inverse

FIG. 30: (a) image originale, (b-c-d) images comprimées avec des taux de compression respectifs de 14, 23 et 41. Télécommunications et ordinateurs (version 3.34) M. Van Droogenbroeck 63

JPEG 2000

FIG. 31: Deux images comprimées avec un même taux de compression ; la seconde concentre l'effort de compression dans une région d'intérêt.

Compression vidéo

- H26x
- MPEG-x

Multiplexage des données

Fig. 32: Multiplexage : création d'un flux composite.

Variantes de mise en forme pour MPEG-2 :

- program stream compatible MPEG-1
- transport stream adapté aux transmissions bruitées

MPEG-2 profiles and levels

Profile	Simple	Main	SNR	Spatial	High
Low level (235 x 288 x 30Hz)		Х	Х		
Main level (720 x 576 x 30Hz)	Х	Х	X		Х
High-1440 level (1440 x 1152 x 60Hz)		X		X	Х
High level (1920 x 1152 x 60Hz)		X			X

Codeurs en cascade

Problèmes typiques :

- dégradations successives
- il vaut mieux comprimer à partir de l'original

Watermarking

Fig. 33: Schéma d'un processus de protection par watermarking.

Chiffrement partiel

Fig. 34: Une image originale et une image chiffrée partiellement.

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Modulation d'onde continue

- Introduction
 - Hypothèses
 - Modulation d'une porteuse sinusoidale
- Modulation d'amplitude
 - Modulation d'amplitude classique
 - Répartition de la puissance
 - Discussion
 - Modulations d'amplitude dérivées
- Modulation angulaire
- Bande passante requise

Modulation d'une porteuse sinusoïdale

Definition 14. Signal modulant normalisé m(t)

$$m(t) = \frac{x(t)}{x_{\text{max}}} \tag{26}$$

Hypothèse : le signal modulant m(t) est à spectre limité, c'est-à-dire que

$$\mathcal{M}(f) = 0 \quad si \quad |f| > W \tag{27}$$

Definition 15. [Bande de base] Dès lors que l'intervalle de fréquences est borné par la fréquence W, on appelle bande de base l'intervalle de fréquences [0, W].

Paramètres de modulation d'une porteuse

Definition 16. Porteuse

Fig. 35: Paramètres d'un signal modulé.

Modulation d'amplitude classique

Surmodulation

FIG. 36: Surmodulation : (a) $|k_a m(t)| < 1$. (b) $|k_a m(t)| > 1$.

Analyse spectrale

$$S(f) = \frac{A_c}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{k_a A_c}{2} \left[\mathcal{M}(f - f_c) + \mathcal{M}(f + f_c) \right]$$
 (29)

Analyse spectrale

$$S(f) = \frac{A_c}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{k_a A_c}{2} \left[\mathcal{M}(f - f_c) + \mathcal{M}(f + f_c) \right]$$
 (29)

FIG. 37: Spectres de fréquence : (a) Signal en bande de base. (b) Signal modulé.

Démodulation AM synchrone ou cohérente

$$s(t)\cos(2\pi f_c t) = \frac{A_c}{2}(1 + k_a m(t)) + \frac{A_c}{2}(\cos(4\pi f_c t) + k_a m(t)\cos(4\pi f_c t))$$

Modulations d'amplitude dérivées

- 1. Modulation à double bande latérale et porteuse supprimée (appelée en anglais "Double sideband-suppressed carrier" ou DSB-SC).
- 2. Modulation en quadrature de phase (appelée "Quadrature Amplitude Modulation" ou QAM).
- 3. Modulation à bande unique (appelée en anglais "Single sideband modulation" ou SSB).
- 4. Modulation à bande latérale résiduelle (appelée en anglais "Vestigial sideband modulation" ou VSB).

Modulation en quadrature

FIG. 38: Schéma de modulation et de démodulation d'une modulation d'amplitude en quadrature.

Démodulation SSB

Fig. 39: Schéma de démodulation SSB.

Tableau récapitulatif des modulations d'onde continue

Modulation angulaire : $A_c \cos \phi_i(t)$

- Principes et définitions
- Analyse de la modulation de fréquence analogique
- Modulation par une cosinusoïde
 - Analyse spectrale
 - Bande passante requise

Modulation angulaire : $A_c \cos \phi_i(t)$

- Principes et définitions
- Analyse de la modulation de fréquence analogique
- Modulation par une cosinusoïde
 - Analyse spectrale
 - Bande passante requise

Definition 17. La modulation de phase (Phase Modulation, PM) consiste à faire varier la phase $\phi_i(t)$ en fonction du signal modulant m(t), à savoir (on prend $\phi_c=0$)

$$\phi_i(t) = 2\pi f_c t + k_p m(t) \tag{30}$$

Definition 18. Par définition de la modulation de fréquence (Frequency Modulation, FM), la déviation instantanée $f_i(t)$ est proportionnelle au signal modulant

$$f_i(t) = f_c + k_f m(t) \tag{31}$$

Tableau de définitions

PM	FM		
$\phi_i(t)$	$f_i(t)$		
$\triangle \phi_i(t) = \phi_i(t) - (2\pi f_c t + \phi_c)$	$\triangle f_i(t) = f_i(t) - f_c$		
$\beta = \max \triangle \phi_i(t) $	$\triangle f = \max \triangle f_i(t) $		
$\phi_i(t) = 2\pi f_c t + k_p m(t)$	$f_i(t) = f_c + k_f m(t)$		
$f_i(t) = f_c + \frac{k_p}{2\pi} \frac{dm(t)}{dt}$	$\phi_i(t) = 2\pi f_c t + 2\pi k_f \int_0^t m(t')dt'$		

Liens entre modulation de phase et de fréquence

Fig. 40: Liens entre modulation de phase et modulation de fréquence.

Comparaison

Fig. 41: Signal modulant et signaux modulés respectivement en AM, PM et FM.

Bande passante requise

Estimation empirique

- [Règle de CARSON] La bande passante requise est

$$B \simeq 2\left(\triangle f + f_m\right) = 2\triangle f\left(1 + \frac{1}{\beta}\right)$$
 (32)

où f_m correspond à la plus haute composante fréquentielle non nulle du signal modulant.

Estimation numérique

Tableau récapitulatif des modulations d'onde continue

Introduction à la modulation numérique

FIG. 42: Signal modulant numérique et signaux modulés respectivement en AM, PM et FM.

Remarque : il existe plusieurs représentations analogiques pour un même signal d'information.

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Transmission de signaux numériques en bande de base

Table des matières

- Nécessité du codage
 - Capacité d'un canal
 - Transmission de données binaires
- Spectre des signaux numériques
 - Modèle théorique linéaire
- Transmission d'impulsions en bande de base
 - Codes en lignes d'émission
- Détection de signaux binaires en présence de bruit

Nécessité du codage

Definition 19. [Valence] La relation entre la rapidité de modulation R et le débit binaire D met en jeu la valence V ; elle est donnée par l'équation

$$D = R \log_2(V) \tag{33}$$

Capacité d'un canal

Theorem 3. [SHANNON-HARTLEY]

$$C = W \log_2\left(1 + \frac{S}{N}\right) \tag{34}$$

Fig. 43: Capacité d'un canal téléphonique ($W=3,7\,[kHz]$).

Transmission des données binaires

Deux méthodes :

- la transmission en bande de base, méthode correspondant à l'émission directe sur le canal de transmission, et
- la transmission par modulation d'une porteuse, méthode permettant d'adapter le signal au canal de transmission.

Caractéristiques :

- l'encombrement spectral ⇒ notion d'efficacité spectrale
- le débit, exprimé en [b/s].
- les niveaux physiques associés à chaque bit (0 ou 1) ou groupes de bits.
- probabilité d'erreur par bit transmis (bit error rate) $\Rightarrow P_e$

Spectre des signaux numériques

Modèle théorique linéaire

$$g(t) = \sum_{k=-\infty}^{+\infty} A_k \phi_k(t - kT) \tag{35}$$

$$\mathcal{G}(f) = \sum_{k=-\infty}^{+\infty} A_k \mathcal{F}\{\phi(t-kT)\}$$
 (36)

$$= \mathcal{F}\{\phi(t)\} \sum_{k=-\infty}^{+\infty} A_k e^{-2\pi j f k T}$$
(37)

$$= \Phi(f)\mathcal{F}\left\{\sum_{k=-\infty}^{+\infty} A_k \delta(t-kT)\right\}$$
 (38)

Transmission d'impulsions en bande de base

Codage

Deux technologies sont mises en œuvre pour coder les signaux numériques :

- les codages en ligne. On parle de codes linéaires.
- les codages complets, qui se réfèrent à des tables de conversion (par exemple 5B/4T, 4B/3T, 2B1Q).

Codages linéaires

On peut distinguer les principales catégories suivantes pour le codage linéaire de signaux PCM:

- Nonreturn-to-zero (NRZ),
- 2. Return-to-zero (RZ),
- 3. Codage de la phase, et
- 4. Codage multi-niveaux.

Variantes de codage

Fig. 44: Variantes de codage en ligne PCM.

Codage NRZ unipolaire

La modélisation complète du codage NRZ unipolaire est résumée dans le tableau suivant :

Symbole	Probabilité	A_k	Onde	
0	1-p	0		
1	p	\overline{V}	$1, 0 \le t < T$	

Densité spectrale de puissance

$$\gamma(f) = p(1-p)V^2T \left(\frac{\sin(\pi f T)}{\pi f T}\right)^2 + p^2V^2\delta(f)$$
(39)

Bande passante

Le spectre du signal mis en forme est infini. En théorie donc, il faudrait une bande passante infinie, ce qui n'est pas acceptable. Afin de définir une largeur pratique de bande, examinons les graphes suivants :

Pourcentage de puissance comprise dans la bande

Codage en blocs ou complets

Valeur binaire	Code quaternaire
10	+3
11	+1
01	-1
00	-3

TAB. 4: Codage 2B/1Q.

Détection de signaux binaires en présence de bruit gaussien

Position du problème

$$g(t) = \sum_{k=-\infty}^{+\infty} A_k \phi_k(t - kT) \tag{40}$$

Fig. 45: Effet du bruit sur un signal MANCHESTER.

M. Van Droogenbroeck 104

Modélisation

Fig. 47: Structure d'un détecteur linéaire.

Fig. 48: Signaux intervenant au cours de la démodulation d'un signal numérique en bande de base.

Première phase : filtrage ou corrélation

Critère

$$\eta = \frac{|g_h(T)|^2}{E\{n_h^2(t)\}} \tag{41}$$

Résultat

$$\eta \le \frac{2}{N_0} \int_{-\infty}^{+\infty} \|\mathcal{G}(f)\|^2 df \tag{42}$$

D'où la valeur maximale

$$\eta_{\text{max}} = \frac{2}{N_0} \int_{-\infty}^{+\infty} \|\mathcal{G}(f)\|^2 df = \frac{2E_b}{N_0}$$
 (43)

Definition 20. [Énergie du signal]

$$E_b = \int_{-\infty}^{+\infty} \|\mathcal{G}(f)\|^2 df = \int_0^T |g(t)|^2 dt$$
 (44)

On peut écrire le filtre optimal par

$$h_{opt}(t) = \begin{cases} kg(T-t) & 0 \le t \le T \\ 0 & \text{ailleurs} \end{cases}$$
 (45)

Implémentation du filtre adapté

En pratique, on dispose de plusieurs moyens de réaliser le filtre adapté :

1. Par convolution.

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \tag{46}$$

On échantillonne ce signal à l'instant t = T pour obtenir la valeur y[T].

2. Par corrélation. Considérons l'expression de y(t)

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)g(T - t + \tau)d\tau \tag{47}$$

à partir de quoi

$$y[T] = \int_0^T x(\tau)g(\tau)d\tau \tag{48}$$

3. Par intégration. Dans le cas particulier d'un fonction g(t)=1 sur [0,T], la formule de z(t) se réduit à

$$z(t) = \int_0^t x(\tau)d\tau \tag{49}$$

Seconde phase : détection par maximum de vraisemblance

Le signal reçu durant l'intervalle de temps T est

$$x(t) = \begin{cases} g_0(t) + n(t), & 0 \le t \le T & \text{pour } 0\\ g_1(t) + n(t), & 0 \le t \le T & \text{pour } 1 \end{cases}$$
 (50)

Par exemple, pour un signal NRZ,

$$x(t) = \begin{cases} -V + n(t), & 0 \le t \le T & \text{pour } 0\\ V + n(t), & 0 \le t \le T & \text{pour } 1 \end{cases}$$
 (51)

Au moment de prendre une décision, on peut faire deux types d'erreur :

- Sélectionner le symbole 1 alors qu'on a transmis le symbole 0; c'est l'erreur de type 1.
- 2. Sélectionner le symbole 0 alors qu'on a transmis le symbole 1; c'est l'erreur de type 2.

Démarche

- Probabilité d'erreur lors de l'envoi du signal $g_0(t)$
- Probabilité d'erreur lors de l'envoi du signal $g_1(t)$
- Probabilité d'erreur moyenne

Probabilité d'erreur pour un signal $g_0(t)$

Supposons que l'on ait transmis un symbole 0, autrement dit le signal $g_0(t)$. Le signal reçu au récepteur est alors

$$x(t) = -V + n(t) \qquad 0 \le t \le T_b \tag{52}$$

Densités de probabilité après échantillonnage

Fig. 49: Forme des densités de probabilités $f_Y(y|0)$, $f_Y(y|1)$ et probabilités d'erreur.

Fig. 50: Densités de probabilité conditionnelles.

Résultats

On peut montrer que

$$P_{e0} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right) \tag{53}$$

où

- $-\frac{N_0}{2}$ représente la densité spectrale de puissance du bruit (en [Watt/Hz])
- $-erfc(u)=rac{2}{\sqrt{\pi}}\int_{u}^{+\infty}e^{-z^{2}}dz$ est la fonction d'erreur complémentaire

Probabilité d'erreur

Probabilité d'erreur moyenne

$$P_e = p_0 P_{e0} + p_1 P_{e1} (54)$$

$$= \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right) \tag{55}$$

Types de transmission

Deux modes logiques :

Transmission synchrone

Transmission asynchrone

Deux modes physiques :

- série
- parallèle

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Modulation numérique et modems

Table des matières

- Modulation et démodulation cohérente ou incohérente
- Modulation
 - Modulation d'amplitude cohérente
 - Modulation de phase numérique cohérente
 - Modulation de fréquence numérique cohérente
- Modems
 - Modes
 - Normes

Modulation cohérente ou incohérente

On peut distinguer deux grandes classes de modulation numérique :

- la modulation cohérente : la fréquence de la porteuse est un multiple entier du rythme d'émission $1/T_b$,
- la modulation incohérente : la fréquence de la porteuse n'est pas un multiple entier du rythme d'émission $1/T_b$.

Démodulation cohérente ou incohérente

Modulation

Hypothèse : $f_c = \frac{n_c}{T_b}$

Fig. 51: Signal modulant numérique et signaux modulés respectivement en AM, PM et FM.

Modulation d'amplitude numérique cohérente (ASK)

$$s_0(t) = \sum_{k=-\infty}^{+\infty} A_k Rect_{[0,T]}(t - kT_b) \cos(2\pi f_c t)$$
 (56)

Modulation d'amplitude numérique cohérente (ASK)

$$s_0(t) = \sum_{k=-\infty}^{+\infty} A_k Rect_{[0,T]}(t - kT_b) \cos(2\pi f_c t)$$
 (56)

Occupation spectrale?

Développement en série de Fourier de la forme

$$m_0(t) = \frac{A_0}{2} \left[1 + \frac{4}{\pi} \cos(2\pi (\frac{1}{2}f_b)t) - \frac{4}{3\pi} \cos(2\pi (\frac{3}{2}f_b)t) + \dots \right]$$

$$s_0(t) = \frac{A_0}{2} \left[\cos(2\pi f_c t) + \frac{2}{\pi} \cos(2\pi (f_c + \frac{f_b}{2})t) + \frac{2}{\pi} \cos(2\pi (f_c - \frac{f_b}{2})t) - \frac{2}{3\pi} \cos(2\pi (f_c + \frac{3f_b}{2})t) - \frac{2}{3\pi} \cos(2\pi (f_c - \frac{3f_b}{2})t) + \dots \right]$$

Conclusions

$$\gamma(f) = \left[p_0(1 - p_0) A_0^2 T_b \left(\frac{\sin(\pi f T_b)}{\pi f T_b} \right)^2 + p_0^2 A_0^2 \delta(f) \right]$$

$$\otimes \frac{\delta(f - f_c) + \delta(f + f_c)}{4}$$

$$= \frac{\gamma_{NRZ}(f - f_c) + \gamma_{NRZ}(f + f_c)}{4}$$

Definition 21. L'efficacité spectrale est définie comme le flux binaire par Hz.

La limite supérieure de l'efficacité spectrale pour l'ASK est 1 [b/s/Hz]. En pratique, elle est plutôt entre 0,65 [b/s/Hz] et 0,8 [b/s/Hz].

En présence de bruit

Fig. 52: Signal ASK en présence d'un bruit important.

Modulation numérique angulaire

Modulation de phase numérique cohérente (PSK)

$$s_0(t) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) \tag{57}$$

$$s_1(t) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t + \pi) = +\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t)$$
 (58)

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right) \tag{59}$$

Modulation numérique angulaire

Modulation de phase numérique cohérente (PSK)

$$s_0(t) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t) \tag{57}$$

$$s_1(t) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t + \pi) = +\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t)$$
 (58)

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right) \tag{59}$$

- Modulation d'amplitude en quadrature (QAM)
- Modulation de fréquence numérique cohérente (FSK)

$$s_i(t) = \begin{cases} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_i t), & 0 \le t \le T_b \\ 0, & \text{ailleurs} \end{cases}$$
 (60)

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{2N_0}} \right) \tag{61}$$

Modems

- Modes
 - simplex
 - half-duplex
 - full-duplex
- Normes

Rec.	Mode	Débit $[b/s]$	Modulation
V21	duplex	300	FSK
V22	duplex	1200	PSK
V22bis	duplex	2400	QAM
V23	semi-duplex	1200/75	FSK
V29	-	9600	QAM
V32	duplex	9600	QAM
V32bis	duplex	14400	QAM
V33	-	14400	QAM
V34	duplex	33600	QAM
V90		56000	PCM (variante)

TAB. 5: Recommandations ITU-T.

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Notions de code

Table des matières

- Introduction
- Modèle
- Codes linéaires
 - Formulation
 - Codes à parité
 - Correction et détection d'erreurs
- Efficacité de codage
- Quelques types de codage
 - Codes cycliques
 - Codes de HAMMING
 - Codes de Golay
 - Code BCH

Exemple : signaux de télévision numérique MPEG

Tension	Niveau quantifié	Équivalent binaire
-0,5 [V]	16	00010000
0 [V]	128	10000000
+0,5 [V]	240	11110000

TAB. 6: Liens entre 3 valeurs analogiques de chrominance et les niveaux quantifiés.

Chaque ligne active de la composante de luminance est encadrée d'un délimiteur qui comporte un octet XY tel que

$$X = (1, F, V, H)$$

 $Y = P_1 P_2 P_3 P_4$ est défini comme suit

$$P_{1} = V \oplus F \oplus H$$

$$P_{2} = V \oplus F$$

$$P_{3} = F \oplus H$$

$$P_{4} = V \oplus H$$

où le OU exclusif (XOR), noté ⊕, correspond à une addition modulo 2, comme indiqué dans la table ci-après :

V	H	$P_4 = V \oplus H$
0	0	0
0	1	1
1	0	1
1	1	0

Modèle

Modèle de canal

Definition 22. Un canal discret sans mémoire est caractérisé par un alphabet d'entrée, un alphabet de sortie et un jeu de probabilités conditionnelles, p(j|i), où $1 \le i \le M$ représente l'indice du caractère d'entrée, $1 \le j \le Q$ représente l'indice du caractère de sortie, et p(j|i) la probabilité d'avoir j en réception alors que i a été émis.

$$p(0|1) = p(1|0) = p$$

 $p(1|1) = p(0|0) = 1 - p$

Probabilité d'erreur P_e vaut

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right) \tag{62}$$

Definition 23. Le taux de redondance d'un code est défini par le rapport

$$\frac{n-k}{n} \tag{63}$$

Exemple de code redondant

Correction par vote majoritaire

OK pour une erreur simple

Pas OK pour des erreurs doubles ou triples

Codes linéaires

Dans le cas du code utilisé pour MPEG

```
c_1 = \alpha_{11}m_1 \oplus \alpha_{21}m_2 \oplus \alpha_{31}m_3
c_2 = \alpha_{12}m_1 \oplus \alpha_{22}m_2 \oplus \alpha_{32}m_3
c_3 = \alpha_{13}m_1 \oplus \alpha_{23}m_2 \oplus \alpha_{33}m_3
c_4 = \alpha_{14}m_1 \oplus \alpha_{24}m_2 \oplus \alpha_{34}m_3
c_5 = m_1
c_6 = m_2
c_7 = m_3
```

Notations

- Message de départ $\overrightarrow{m} = (m_1, m_2, \dots, m_k)$
- Vecteur de parité $\overrightarrow{p} = (p_1, p_2, \dots, p_r)$
- Mot codé $\overrightarrow{c} = (c_1, c_2, \dots, c_n)$

Matrice génératrice

$$\overrightarrow{c} = \overrightarrow{m}G \tag{64}$$

La matrice G est appelée matrice génératrice. Elle a pour expression générale

$$G = \begin{bmatrix} \overrightarrow{v}_1 \\ \overrightarrow{v}_2 \\ \vdots \\ \overrightarrow{v}_k \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ \vdots & & & & \\ v_{k1} & v_{k2} & \dots & v_{kn} \end{bmatrix}$$
(65)

Dans le cas des signaux MPEG, la matrice génératrice se ramène à

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 (66)

Codes à parité

Fig. 53: Codes de parité paire pour (a) connexion série ou (b) parallèle.

Fig. 54: Performance d'une détection PSK après codage.

En-tête du protocole IP : IP header

FIG. 55: En-tête du protocole IP.

Code systématique

Definition 24. Un code est dit systématique si une partie du mot codé coïncide avec le message.

$$G = [P | I_k]$$

$$= \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1(n-k)} & 1 & 0 & \dots & 0 \\ p_{21} & p_{22} & \dots & p_{2(n-k)} & 0 & 1 & \dots & 0 \\ \vdots & & & & \vdots & 0 \\ p_{k1} & p_{k2} & \dots & p_{k(n-k)} & 0 & 0 & \dots & 1 \end{bmatrix}$$

$$(67)$$

Et donc

$$\overrightarrow{c} = (m_1, m_2, \dots, m_k)
\begin{bmatrix}
p_{11} & p_{12} & \dots & p_{1(n-k)} & 1 & 0 & \dots & 0 \\
p_{21} & p_{22} & \dots & p_{2(n-k)} & 0 & 1 & \dots & 0 \\
\vdots & & & & \vdots & 0 \\
p_{k1} & p_{k2} & \dots & p_{k(n-k)} & 0 & 0 & \dots & 1
\end{bmatrix}$$

Détection et correction d'erreurs

Matrice de contrôle de parité

$$GH^T = \underline{0} \tag{68}$$

$$H = \left[I_{n-k} \,|\, P^T \right] \tag{69}$$

Vecteur à la réception

$$\overrightarrow{r} = \overrightarrow{c} + \overrightarrow{e} \tag{70}$$

Definition 25. Le vecteur $\overrightarrow{s} = \overrightarrow{r}H^T$ est appelé vecteur syndrome d'erreur ou plus simplement syndrome.

$$\overrightarrow{s} = \overrightarrow{r}H^T \tag{71}$$

Correction d'erreur

Algorithme de correction d'erreur suivant :

- 1. Calcul du syndrome $\overrightarrow{s} = \overrightarrow{r}H^T$ sur base du signal reçu.
- 2. Détermination du vecteur d'erreur \overrightarrow{e}_j correspondant.
- 3. Estimation du mot codé réel au moyen de $\overrightarrow{c} = \overrightarrow{r} \oplus \overrightarrow{e}_{i}$.

Efficacité du codage

Distance et poids de HAMMING

Definition 26. Le poids de Hamming $w(\overrightarrow{c})$ du vecteur \overrightarrow{c} est le nombre de 1 qu'il contient.

Definition 27. Soient deux vecteurs binaires $\overrightarrow{c}_1, \overrightarrow{c}_2$, la distance de Hamming $d(\overrightarrow{c}_1, \overrightarrow{c}_2)$ est le nombre de bits qui diffèrent.

Détection, correction d'erreurs et distance minimale

On choisit le vecteur \overrightarrow{c}_i qui vérifie la relation

$$p(\overrightarrow{r}|\overrightarrow{c}_i) = \max_{\overrightarrow{c}_j} p(\overrightarrow{r}|\overrightarrow{c}_j) \tag{72}$$

Dans le cas le plus simple, le vecteur \overrightarrow{c}_i est choisi tel que

$$d(\overrightarrow{r}, \overrightarrow{c}_i) = \min_{\overrightarrow{c}_j} d(\overrightarrow{r}, \overrightarrow{c}_j) \tag{73}$$

Codes cycliques

\overrightarrow{c}	\overrightarrow{p}			\overrightarrow{m}			
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	1	1	0	1	0
3	1	0	1	0	0	1	1
4	1	1	1	0	1	0	0
5	0	0	1	1	1	0	1
6	1	0	0	1	1	1	0
7	0	1	0	0	1	1	1

TAB. 7: Éléments d'un code linéaire (7,3).

Definition 28. D'une manière générale, on appelle code cyclique un code linéaire (n,k) tel que toute permutation cyclique des bits sur un mot codé génère un autre mot codé.

Autres codes

Codes de Hamming

Les codes de HAMMING constituent un sous-ensemble des codes en blocs pour lesquels (n, k) valent

$$(n,k) = (2^m - 1, 2^m - 1 - m) (74)$$

pour m = 2, 3, ...

La probabilité d'erreur s'écrit

$$P_B \simeq p - p(1-p)^{n-1}$$
 (75)

Code de Golay étendu

Codes Bose-Chadhuri-Hocquenghem (BCH)

Codes de Reed-Solomon

Turbo-codes

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Supports de transmission

Table des matières

- Introduction
- Transmission par ligne
 - Propriétés électriques du câble
 - Modèle électrique
- Exemples de lignes
 - Lignes à paires symétriques
 - Lignes à paires coaxiales
- Fibres optiques
 - Caractéristiques physiques
 - Modes de propagation
- Propagation en espace libre
 - Antennes
 - Relation de FRIIS
 - Modèles de propagation

Introduction

Fig. 56: Comparaison de divers supports de transmission.

Propagation : équations de MAXWELL

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \tag{76}$$

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\nabla \cdot \overrightarrow{D} = \rho$$

$$\nabla \cdot \overrightarrow{B} = 0$$

$$(76)$$

$$(77)$$

$$(78)$$

$$(79)$$

$$\nabla . \overrightarrow{D} = \rho \tag{78}$$

$$\nabla . \overrightarrow{B} = 0 \tag{79}$$

Limitations

Quatre phénomènes affectent le débit associé à une onde électromagnétique.

- 1. Atténuation.
 - Perte de puissance
- 2. Distorsion
 - Ajout de versions décalées temporellement et atténuées
- 3. Dispersion
 - Déformation de la forme de l'onde transmise
- 4 Bruit
 - Erreur d'interprétation du signal émis

Transmission par ligne

Propriétés électriques du cuivre

Résistance

$$R = \frac{\rho l}{A} \tag{80}$$

Fig. 57: Résistance d'un conducteur.

Capacité

Fig. 58: Section de différentes lignes.

Inductance

$$LC = \epsilon \mu$$
 (81)

- —— Lignes de champ magnétique
- Lignes de champ électrique

Fig. 59: Configuration du champ électromagnétique en mode TEM pour quelques types de lignes.

Modèle électrique d'une ligne

FIG. 60: Segment de ligne infinitésimal.

Fig. 61: Modèle d'une ligne de transmission électrique.

Équations des "télégraphistes"

$$\frac{\partial V}{\partial z} = RI + L \frac{\partial V}{\partial t} \tag{82}$$

$$\frac{\partial I}{\partial z} = GV + C \frac{\partial V}{\partial t} \tag{83}$$

$$\frac{\partial^2 V}{\partial z^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial V^2}{\partial t^2}$$
(84)

Résolution?

 Cas particulier 1 : ligne sans perte Dans le cas d'une ligne sans perte (R = G = 0),

$$\frac{\partial^2 V}{\partial z^2} = LC \frac{\partial V^2}{\partial t^2} \tag{85}$$

$$V(z,t) = (A\cos kz + B\sin kz)(C\cos 2\pi ft + D\sin 2\pi ft)$$
(86)

Cas particulier 2 : régime permanent

En régime permanent, $V(z,t)=V(z)e^{j\omega t}$. La solution est de la forme

$$\frac{\partial^2 V}{\partial z^2} = (R + jL\omega)(G + jC\omega)V(z) = \gamma^2 V(z)$$
(87)

En prenant $\gamma = \alpha + j\beta$, on obtient

$$V(z) = V_i e^{-\gamma z} + V_r e^{\gamma z} \tag{88}$$

Paramètres secondaires et diaphonie

Impédance caractéristique Z_c

Coefficient de propagation $\gamma = \alpha + j\beta$

Relations entre les paramètres primaires et secondaires

$$Z_c = \sqrt{\frac{R + j2\pi fL}{G + j2\pi fC}} \tag{89}$$

$$\gamma = \sqrt{(R + j2\pi fL)(G + j2\pi fC)} \tag{90}$$

ADSL (Asymetric Digital Subscriber Line)

Fig. 62: Spectre d'un signal ADSL.

Diaphonie

Fig. 63: Paradiaphonie (NEXT) et télédiaphonie (FEXT).

Exemples de lignes

Lignes à paires symétriques pour transmissions numériques

[htbp]

Catégorie	Bande passante	Exemples d'utilisation		
1, 2		Distribution télépho-		
		nique (voix)		
3	$16 \left[MHz ight]$	Voix numérique, ré-		
		seaux locaux Ether-		
		$ $ net $10 \left[Mb/s \right] $ et Any		
		Lan		
4	$20 \left[MHz \right]$	Réseaux Token Ring		
5	$100 \left[MHz \right]$	Réseaux locaux		
		Ethernet 10 et		
		100 [Mb/s], Token		
		Ring et Any Lan		

Catégories de câbles.

Lignes à paires coaxiales

Fig. 64: Vue de face d'un câble coaxial.

Type	$Z_{c}\left[\Omega ight]$	$lpha \left[dB/100m ight]$ à $200 \left[MHz ight]$	$lpha \left[dB/100m ight]$ à $3 \left[GHz ight]$
RG58W	50	24	140
RG35BU	75	4,7	37

TAB. 9: Caractéristiques de deux câbles coaxiaux.

Fibre optique

FIG. 65: Rayons incident, réfléchi et réfracté.

Loi de SNELL

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Fig. 66: Cône d'acceptance.

	Multimode à saut d'indice	Multimode à grad. d'indice	Monomode
En coupe	$d = 50 \mu m$	$d=200\mu m$	$d=1$ à $9\mu m$
Profil d'indice	Rayon	Rayon	Rayon
Trajet des rayons			
Bande pas- sante	5 à 100 [<i>MHz</i>]	300 à $1000 \ [MHz]$	100 [<i>GHz</i>]

TAB. 10: Caractéristiques de différents types de fibre.

Atténuation intrinsèque α

Fig. 67: Affaiblissement théorique linéique intrinsèque.

Propagation en espace libre

Fig. 68: Modes de propagation d'ondes terrestres.

Fig. 69: Réflexion sur une surface irrégulière.

Fig. 70: Exemple de diffraction.

Antennes

Puissance isotrope

$$P_{iso} = \frac{P_E}{4\pi d^2}$$

- Gain

$$G = \frac{P_{max}}{P_{iso}} = \frac{P_{max}}{P_E/4\pi d^2}$$

Diagramme de rayonnement

Fig. 71: Diagrammes de rayonnement de deux antennes typiques.

Atténuation en espace libre : équation de FRIIS

Fig. 72: Liaison entre deux antennes.

$$\epsilon = \frac{P_E}{P_R} = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{1}{G_E G_R} \tag{91}$$

$$\epsilon = 32, 5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} - G_{E[dB]} - G_{R[dB]}$$

Multitrajet

Fig. 73: Bilan de liaison en présence d'une réflexion.

Mise en équation

$$y(t) = a_1 x(t - \tau_1) + a_2 x(t - \tau_2)$$
(92)

Dans le domaine transformé,

$$\mathcal{Y}(f) = \mathcal{X}(f) \left[e^{-\alpha d_1} e^{-2\pi j f \frac{d_1}{v}} + e^{-\alpha d_2} e^{-2\pi j f \frac{d_2}{v}} \right]$$

$$= \mathcal{X}(f) \left[e^{-\alpha d_1} e^{-2\pi j f \frac{d_1}{v}} \right] \left[1 + e^{-\alpha (d_2 - d_1)} e^{-2\pi j f \frac{d_2 - d_1}{v}} \right] = \mathcal{X}(f) \mathcal{H}(f) \mathcal{R}(f)$$

Fig. 74: Affaiblissement de puissance ϵ en fonction de la distance : (a) en espace libre (trait continu) et (b) en présence d'une réflexion (traits interrompus).

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Introduction au modèle OSI: éléments de la couche liaison

Table des matières

- Les topologies
 - Topologie et méthodes d'accès
 - Topologie physique et topologie logique
- Partage des ressources
 - Multiplexage en fréquence
 - Multiplexage temporel

Multiplexage en fréquence

Fig. 75: Principe du multiplexage en fréquence.

Fig. 76: Principe du démultiplexage en fréquence.

Multiplexage temporel

Fig. 77: Multiplex temporel.

Fig. 78: Multiplex temporel.

Fig. 79: Mot de repère.

0	1	2	 16	 30	31

FIG. 80: Structure de la trame.

FIG. 81: Structure de la trame au niveau bit.

FIG. 82: Multitrame.

Table des matières

- Introduction
- Les signaux multimédia
- Signaux et systèmes de télécommunications
- Théorie de l'information et compression
- Modulation d'onde continue
- Numérisation
- Transmission de signaux numériques en bande de base
- Modulation numérique et modems
- Codes
- Supports de transmission
- Introduction au modèle OSI : éléments de la couche liaison
- Principes de fonctionnement du réseau GSM

Principes de fonctionnement du réseau GSM

Table des matières

- Principales caractéristiques
- L'architecture du réseau et les éléments
- Le canal physique
- Les protocoles
- La typologie des paquets (bursts)

Le concept cellulaire

Fig. 83: Figure représentant un motif élémentaire et un ensemble de motifs.

Un cellule se caractérise :

- par sa puissance d'émission,
- par la fréquence de porteuse utilisée pour l'émission radio-électrique et
- par le réseau auquel elle est interconnectée.

Estimation du rapport de puissance porteuse à bruit

Signaux perturbateurs:

- 1. Les interférences de puissance totale I qui sont dues aux signaux émis par les autres stations :
 - (a) Les interférences co-channel qui sont dues aux signaux émis par les autres stations de base utilisant la même fréquence.
 - (b) Les interférences de canaux adjacents dues aux signaux émis par les stations de base utilisant des fréquences voisines.
- 2. Le bruit, de puissance N, provenant principalement du bruit de fond du récepteur.

Dès lors, on a le rapport

$$\frac{C}{N+I} \tag{93}$$

Synthèse des principales caractéristiques du GSM

La norme GSM prévoit que la téléphonie mobile par GSM occupe deux bandes de fréquences aux alentours des $900\,[MHz]$:

- 1. la bande de fréquence $890-915\,[MHz]$ pour les communications montantes (du mobile vers la station de base) et
- 2. la bande de fréquence $935 960 \, [MHz]$ pour les communications descendantes (de la station de base vers le mobile).

Comparaison des normes GSM et DCS-1800

	GSM	DCS-1800
Bande de fréquences (↑)	890, 2 - 915 [MHz]	1710 - 1785 [MHz]
Bande de fréquences (↓)	935, 2 - 960 [MHz]	1805 - 1880 [MHz]
Nombre d'intervalles de temps	8	8
par trame TDMA		
Écart duplex	$45 \left[MHz ight]$	$95 \left[MHz \right]$
Rapidité de modulation	$271 \left[kb/s \right]$	$271 \left[kb/s \right]$
Débit de la parole	$13 \left[kb/s \right]$	$13 \left[kb/s \right]$
Débit maximal de données	$12\left[kb/s\right]$	$12\left[kb/s\right]$
Accès multiple	Multiplexage	Multiplexage
	fréquentiel et	fréquentiel et
	temporel	temporel
Rayon de cellules	0,3 à $30[km]$	$0,1$ à $4\left[km ight]$
Puissance des terminaux	2 à 8 $[W]$	$0,25$ et $1\left[W ight]$

TAB. 12: Comparaison des systèmes GSM et DCS-1800.

Architecture du réseau

L'architecture d'un réseau GSM peut être divisée en trois sous-systèmes :

- 1. Le sous-système radio contenant la station mobile, la station de base et son contrôleur.
- 2. Le sous-système réseau ou d'acheminement.
- 3. Le sous-système opérationnel ou d'exploitation et de maintenance.

Télécommunications et ordinaleMS (TELES CONTRE L'ACTION Maintenance Center

M. Van Droogenbroeck

Le sous-système radio

Le sous-système radio gère la transmission radio. Il est constitué de plusieurs entités dont

- le mobile,
- la station de base (BTS, Base Transceiver Station) et
- un contrôleur de station de base (BSC, Base Station Controller).

Antenne GSM (Rockhampton, Queensland, Australie)

Antenne GSM (station de métro Rogier, Bruxelles)

Le téléphone et la carte SIM (Subscriber Identity Module)

Paramètres	Commentaires				
Données administratives					
PIN/PIN2	Mot de passe demandé à chaque connexion				
Données liées à la sécurité	onnées liées à la sécurité				
Clé K_i	Valeur unique, connue de la seule carte SIM et du HLR				
Données relatives à l'utilisateur					
IMSI	Numéro international de l'abonné				
MSISDN	Numéro d'appel d'un téléphone GSM				
Données de "roaming"					
TMSI	Numéro attribué temporairement par le réseau à un abonné				
Données relatives au réseau					
Mobile Country Code (MCC), Mobile Network Code	Identifiants du réseau mobile de l'abonné				

Le sous-système réseau, appelé Network Switching Center (NSS)

Le NSS est constitué de :

- Mobile Switching Center (MSC)
- Home Location Register (HLR) / Authentication Center (AuC)
- Visitor Location Register (VLR)
- Equipment Identity Register (EIR)

L'enregistreur de localisation nominale (HLR)

Le HLR contient à la fois

- toutes les informations relatives aux abonnés : le type d'abonnement, la clé d'authentification K_i –cette clé est connue d'un seul HLR et d'une seule carte SIM–, les services souscrits, le numéro de l'abonné (IMSI), etc
- ainsi qu'un certain nombre de données dynamiques telles que la position de l'abonné dans le réseau –en fait, son VLR– et l'état de son terminal (allumé, éteint, en communication, libre, ...).

Canal physique

Combinaison d'un multiplexage fréquentiel (FDMA) et d'un multiplexage temporel (TDMA).

Multiplexage fréquentiel

Aussi, si on indique par F_u les fréquences porteuses montantes et par F_d les fréquences porteuses descendantes, les fréquence porteuse sont :

$$F_u(n) = 890, 2 + 0, 2 \times (n - 1) [MHz]$$
 (94)

$$F_d(n) = 935, 2 + 0, 2 \times (n - 1) [MHz]$$
 (95)

où $1 \le n \le 124$.

La modulation

La technique de modulation utilisée pour porter le signal à haute fréquence est la modulation GMSK (Gaussian Minimum Shift Keying).

Fig. 85: Création d'un signal modulé par MSK au départ d'un train d'impulsions.

Multiplexage temporel

Chaque canal de communication est divisé en 8 intervalles de temps de 0,577 [ms] chacun.

Definition 29. [Trame] Ainsi, on définit une trame élémentaire de 8 intervalles pour une durée de $8 \times 0,577 = 4,615 [ms]$.

Hiérarchie de trames

Fig. 86: Organisation des multiples de trames.

Le saut de fréquences ou Frequency Hopping

Fig. 87: Principe du saut de fréquence.

Configuration du Frequency Hopping

La configuration des sauts se fait au moyen de paramètres tels que :

- le Cell Allocation, la liste des numéros des fréquences utilisées dans une cellule,
- le Mobile Allocation, la liste des numéros des fréquences disponibles pour les sauts.
- le Hopping Sequence Number, une valeur comprise entre 0 et 63, servant à initialiser le générateur pseudo-aléatoire,
- le Mobile Allocation Index Offset, une valeur comprise entre 0 et 63 qui identique quel décalage doit être utilisé. Cette valeur de décalage est convenue à l'initialisation de l'appel et elle diffère d'un mobile à l'autre.

Pile de protocoles

Fig. 88: Piles de protocoles de différents sous-systèmes du réseau GSM.

Typologie des paquets (bursts)

Fig. 89: Structures des 5 types de burst définis par la norme GSM.