Лабораторная работа № 4

Тарирование приборов, измеряющих силовые характеристики.

Цель работы: научиться производить метрологическую операцию тарирования (градуировки измерительных устройств) динамометров, измеряющих усилие в (H) и динамометрических ключей , измеряющих момент пары сил (H·м).

1. Основные положения

Тарирование (градуировка) — это метрологическая операция, в результате которой делениям шкалы измерительного прибора, устройства или инструмента присваиваются соответствующие значения измеряемой величины в принятых единицах измерения с требуемой точностью этого соответствия.

Одним из способов измерения усилий, возникающих при эксплуатации технологической оснастки, является измерение с помощью динамометров различных конструкций. А для измерения моментов кручения применяют динамометрические ключи. В этих приборах используются элементы, которые при воздействии внешних сил создают уравновешивающие их силы упругости. По закону Гука сила упругости вектору деформации (удлинения пропорциональна ИЛИ противоположна ему по направлению:

$$F_v = -K \cdot \Delta L$$
 (1)

где

 F_{y} -сила упругости (H); ΔL -вектор деформации (м); K -жесткость упругого элемента (H/м);

Так как внешняя сила уравновешивается силой упругости, то $F_y=F_B$ и вектор деформации связан с внешней силой выражением:

$$\Delta L = \frac{F_{\rm B}}{K} \tag{2}$$

где

 $F_{\text{в}}$ -вектор внешней силы, воздействующей на упругий элемент прибора.

Выражение (2) справедливо для упругих деформаций, когда напряжение упругого элемента находятся в пределах пропорциональности. Пределом пропорциональности называется напряжение, при котором закон Гука (1) нарушается.

При тарировании приборов, служащих для измерения усилий и моментов, следует по закону Гука поставить каждой единице измерения деформации соответствующее изменение силы или момента. Тогда шкала измерения деформаций упругого элемента прибора превратиться в шкалу регистрации действующего усилия или момента. Например, если при

регистрации деформаций индикатором часового типа с ценой деления 0,01мм было отмечено, что деформация 0,03 мм появлялась при усилии 150 H, а деформация 0,08 мм при усилии 400 H, то это значит, что показаниями индикатора можно регистрировать усилия с ценой деления 50 H.

В практических измерениях линейная зависимость усилий от деформаций в законе Гука может быть нарушена некоторыми причинами, например, наличием зазоров, снижающих жесткость измерительной системы в начале деформирования; случайными отклонениями; силовых характеристик; погрешностями измерения деформаций. Чтобы исключить названные причины при тарировании следует правильно выбирать интервалы измеряемых усилий каждого динамометра и стремиться к максимально возможной точности регистрации измеряемых величин. Регистрацию производят в таблицах 1 или на координатной плоскости (OF; $O\Delta L$). В последнем случае, соединяя точки, можно построить тарировочный график прибора и увидеть зависимость $F=f(\Delta L)$.

Эту зависимость следует привести к линейному виду, как и для закона Гука. Такое приведение можно выполнить в результате аппроксимации табличных данных тарирования линейной зависимостью методом наименьших квадратов (МНК). В результате применения МНК к данным тарирования для каждого прибора может быть получена формула вида

$$F = B_0 + B_1 \cdot \Delta L \tag{6},$$

где

$$B_{o} = \frac{\sum F_{i} \cdot_{\Delta} L_{i} \cdot \sum_{\Delta} L_{i} - \sum F_{i} \cdot \sum_{\Delta} L_{i}^{2}}{(\sum_{\Delta} L_{i})^{2} - n\sum_{\Delta} L_{i}^{2}}$$
(7),

$$B_{1} = \frac{n \sum F_{i} \cdot_{\Delta} L_{i} - \sum_{\Delta} L_{i} \cdot \sum F_{i}}{n \cdot \sum_{\Delta} L_{i}^{2} - (\sum_{\Delta} L_{i})^{2}}$$
(8),

в_о - свободный член формулы (6) учитывающий нарушения закона Гука, вызванные случайными факторами;

 ${\tt B}_1$ – линейный коэффициент зависимости (6) или цена деления шкалы индикатора;

 $\sum F_i \cdot_{\Lambda} L_i$ - сумма произведений усилия на деформацию во всех измерениях;

 $\sum F_i$ - сумма усилий во всех измерениях;

 $\sum_{\mbox{\ensuremath{\Delta}}} L_i$ - сумма деформаций во всех измерениях;

 $\sum_{\Delta}L_i^2$ - сумма квадратов деформаций;

n – общее число измерений при тарировании.

II. Методические указания

Для выполнения лабораторной работы необходимы: набор динамометров камертонного типа; пружинные динамометры; регулируемый динамометрический ключ; установка для создания регулируемого усилия.

Пружинный динамометр (Рис.3.

- 1 основание; 2 фланец нижний; 3 пружина тарельчатая; 4 фланец верхний; 5 подшипник опорный;

- 6 втулка;

- 7 кронштейн верхний;

- 8 индикатор; 9 винт стопорный; 10 кронштейн нижний; 11 крепежные винты; 12 гайка.)

Создание переменного внешнего усилия $F_{\rm B}$ на установке, изображенной на рис.5, обеспечивается как размещением разного числа грузов 11 на подвеске 10, так и различным соотношением длин L и l.

Перед тарированием динамометра или динамометрического ключа система противовес 3 — рычаг 9 — подвеска 10 приводятся в равновесие. Для этого подбирается такое положение противовеса 3 и фиксируется стопором 13, которое уравновешивает момент создаваемый относительно оси вала 4 весом рычага 9 и подвески 10. После этого устанавливаются на подвеску 10 грузы 11, которые будут создавать момент внешней силы, равный

$$M_{B} = \sum_{i=1}^{n} m_{11} \cdot g \cdot L$$
 (3)

где

 $M_{\rm B}$ -момент внешней силы (H·м);

n -количество грузов 11; m₁₁ -масса груза 11(кг);

 $g=9.81 \text{ м/c}^2$ -ускорение свободного падения;

L=0,5м -длина рычага 9.

При установке динамометра 8 на расстоянии ℓ от оси вала 4 его сила упругости F_v через переходник 7 создаст момент, равный

$$F_{y} \cdot \ell = M_{B}. \tag{4}$$

Тогда $F_y = \sum\limits_{i=1}^n m_{11} \cdot g \cdot \frac{L}{\ell}$, а со стороны рычага 9 на диаметр 8 будет действовать равная силе упругости внешняя сила $F_{_B}$.

$$F_{B} = \sum_{i=1}^{n} m_{11} \cdot g \cdot \frac{L}{\ell}. \tag{5}$$

Деформация динамометра, вызванная силой $F_{\text{в}}$, будет регистрироваться индикатором 6 на рис.5.

Величины деформаций динамометров, нагруженных внешней силой $F_{\rm B}$, определяется индикаторами часового типа (3 на рис. 2 и 8 на рис. 3) с ценой деления 0,01мм. Для измерения крутящего момента динамометрический ключ, изображенный на рис. 4, устанавливается сменным ключом 2 (рис. 4) на квадратную ступень 5 вала 4 (рис. 5). Противодействие внешнему моменту $M_{\rm B}$ будет оказываться штангой 4, заканчивающейся рукояткой 9 (рис. 4). Под действием момента $M_{\rm B}$ штанга 9 будет изгибаться относительно неподвижного кронштейна 3. Величина изгиба (деформации) регистрируется индикатором 6, который крепится в подвижном кронштейне 5. Перемещение кронштейна 5 по штанге 4 создает возможность изменения длины ℓ , обеспечивающей большую или меньшую жесткость упругой системы инструмента. Наименьшая жесткость при наибольшей длине ℓ .

Величина $M_{\text{в}}$, определенная по формуле (3), будет соответствовать деформации, которая фиксируется индикатором 6 (рис. 4) и отмечается на тарировочном графике, у которого ось ординат будет представлять момент $M_{\text{в}}$ в $H\cdot M$.

Результаты тарирования следует представлять сперва в таблице 1, а затем переносить на тарировочный график.

Таблица 1 Результаты тарирования

Номер измерения	1	2	3	 n	Σ
Усилие F _в (H)					
$(Момент M_{\scriptscriptstyle B} (H\cdot M))$					
Деформация $_{\Delta}$ L (0,01 мм)					
$F \cdot_{\Delta} L$					
Δ L ²					
Расчетное F _в (Расчетный М _в)					

III. Порядок выполнения работы.

- 1. Группа студентов (2-3 человека) получает набор динамометров у преподавателя.
- 2. Получает указания о выборе значения ℓ (см. рис. 5) для каждого динамометра.