第四次课后作业参考答案

May 30, 2019

必做题

1 Ex.3.1.1

1.1 b)

倒数第10个符号是1的0和1的串的集合。

解答:

1.2 c)

至多只有一对连续1的0和1的串的集合。

解答:

$$(0+10)^*(11+1+\varepsilon)(0+01)^*$$

2 Ex.3.1.2(b)

0的个数被5整除的0和1的串的集合。

解答:

3 Ex.3.1.3(a)

不包含101作为子串的所有0和1的串的集合。 解答:

包含101作为子串的DFA:

不包含101作为子串的DFA:

正则表达式为: $(0+11*00)*(\epsilon+11*+11*0)$

4 Ex.3.2.1

解答: c)

	通过直接代入	经过化简
$R_{11}^{(2)}$	$1^* + 1^*0(\epsilon + 11^*0)^*11^*$	$1^* + 1^*0(11^*0)^*11^*$
$R_{11}^{(2)}$ $R_{12}^{(2)}$ $R_{13}^{(2)}$ $R_{21}^{(2)}$ $R_{22}^{(2)}$ $R_{31}^{(2)}$ $R_{32}^{(2)}$ $R_{32}^{(2)}$ $R_{33}^{(2)}$	$1^*0 + 1^*0(\epsilon + 11^*0)^*(\epsilon + 11^*0)$	1*0(11*0)*
$R_{13}^{(2)}$	$\emptyset + 1^*0(\epsilon + 11^*0)^*0$	1*0(11*0)*0
$R_{21}^{(2)}$	$11^* + (\epsilon + 11^*0)(\epsilon + 11^*0)^*11^*$	(11*0)*11*
$R_{22}^{(2)}$	$\epsilon + 11^*0 + (\epsilon + 11^*0)(\epsilon + 11^*0)^*(\epsilon + 11^*0)$	(11*0)*
$R_{23}^{(2)}$	$0 + (\epsilon + 11^*0)(\epsilon + 11^*0)^*0$	(11*0)*0
$R_{31}^{(2)}$	$\emptyset + 1(\epsilon + 11^*0)^*11^*$	1(11*0)*11*
$R_{32}^{(2)}$	$1 + 1(\epsilon + 11^*0)^*(\epsilon + 11^*0)$	1(11*0)*
$R_{33}^{(2)}$	$\epsilon + 0 + 1(\epsilon + 11^*0)^*0$	$\epsilon + 0 + 1(11^*0)^*0$

d)

$$R_{13}^{(3)} = 1*0(11*0)*0 + 1*0(11*0)*0(\epsilon + 0 + 1(11*0)*0)*(\epsilon + 0 + 1(11*0)*0)$$

= 1*0(11*0)*0(0 + 1(11*0)*0)*

$5~\mathrm{Ex.}3.2.3$

解答:

消去状态s:

消去状态r:

正则表达式: (1 + ((00 + 010*1)(10 + 110*1)*0))*

6 Ex.3.4.2

6.1 b)

$$\begin{array}{ll} (RS+R)^*R = R(SR+R)^* \\ \text{证明:} \\ (RS+R)^*R = & (R(S+\varepsilon))^*R \\ &= & (\varepsilon+R(S+\varepsilon)+R(S+\varepsilon)R(S+\varepsilon)+R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)+\ldots)R \\ &= & R+R(S+\varepsilon)R+R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R+\ldots \\ &= & R(\varepsilon+(S+\varepsilon)R+(S+\varepsilon)R(S+\varepsilon)R+(S+\varepsilon)R(S+\varepsilon)R(S+\varepsilon)R+\ldots) \\ &= & R((S+\varepsilon)R)^* \\ &= & R(SR+R)^* \end{array}$$

6.2 d)

$$(R+S)^*S = (R^*S^*)^*$$
 解答: 不正确。 $c = T(R+S)^*S$ 相它属于 $(R^*S^*)^*S$

不正确, ε 不属于 $(R+S)^*S$,但它属于 $(R^*S^*)^*$ 。

思考题

7 Ex.3.1.3

7.1 b)

具有相同个数的0和1,使得在任何前缀中,0的个数不比1的个数多2,1的个数也不比0的个数多2,所有这种0和1的串的集合。

解答:

 $(01+10)^*$

7.2 c)

0的个数被5整除且1的个数是偶数的所有0和1的串的集合。 解答:

$8~\mathrm{Ex.}3.1.5$

在例3.1中指出,Ø是其闭包,它是有穷的两个语言之一。另一个语言是什么? **解答**:

另一个语言 $L = \{\varepsilon\}$

$9~\mathrm{Ex.}3.2.6$

解答:

- (a) $(L(A))^+$
- **(b)** *L*(*A*)的后缀
- **(c)** *L*(*A*)的前缀
- **(d)** *L*(*A*)的子串