Höhere Algorithmik, WS 2014/15 — 14. Übungsblatt

20 Gummipunkte. Schriftliche Einzelabgabe bis Dienstag, 3. Februar 2015

76. Vorübung: Iterierter Logarithmus, 0 Punkte

Füllen Sie folgende Lücken aus, sodass die Aussagen für alle Zahlen x > 3 gelten. Begründen Sie Ihre Antworten.

- (a) $\lceil x/3 \rceil$ gibt an, wie oft man von x 3 subtrahieren muss, bis das Ergebnis ≤ 0 ist.
- (b) $\lceil \log_5 x \rceil$ gibt an, wie oft man x _____ muss, bis das Ergebnis ≤ 1 ist.
- (c) $\log^* x$ gibt an, wie oft man die Funktion \log_2 anwenden muss, bis das Ergebnis ≤ 1 ist.
- (d) $\lceil \log_2 \log_2 x \rceil$ gibt an, wie oft man _____ muss, bis das Ergebnis ____ ist.
- (e) $\lceil \log_3 \log_2 x \rceil$ gibt an, wie oft man _____ muss, bis das Ergebnis ____ ist.
- (f) $\lceil \log_2 \log_3 x \rceil$ gibt an, wie oft man _____ muss, bis das Ergebnis ____ ist.

Geben Sie alternative Formulierungen an, wo x als Ergebnis auftritt:

(a) $\lceil x/3 \rceil$ gibt an, wie oft man zu 0 3 addieren muss, bis das Ergebnis $\geq x$ ist.

Geben Sie zu jeder Funktion die Umkehrfunktion in der folgenden Form durch eine Ungleichung an, die x auf einer Seite enthält und für alle $n \in \mathbb{N}_{>0}$ gilt:

(a)
$$\lceil x/3 \rceil \le n \iff x \le 3n$$

(a)
$$\lceil x/3 \rceil \le n \iff x \le 3n$$
 (b) $\lceil \log_5 x \rceil \le n \iff x \le \underline{\hspace{1cm}}$ (c) ...

77. Binomialhalden, 5 Punkte

Fügen Sie die Schlüssel 45, 78, 65, 12, 32, 98, 19, 21 nacheinander in eine anfangs leere Binomialhalde ein. Führen Sie anschließend zwei deletemin-Operationen durch.

78. Binomialhalden, 0 Punkte

Überlegen Sie, wie man in Binomialhalden eine decreasekey-Operationen in logarithmischer Zeit durchführen kann.

79. Das Zollstockproblem, 10 Punkte

Gegeben ist ein Zollstock, dessen Abschnitte die Längen $a_1, \ldots, a_n \in \mathbb{N}$ haben, und ein Futteral der Länge F. Gefragt ist, ob der Zollstock so gefaltet werden kann, dass er in das Futteral passt. Jedes Gelenk des Zollstocks kann entweder gestreckt (Winkel = 180°) oder eingefaltet (Winkel = 0°) sein. Die Dicke und Breite des Zollstocks soll vernachlässigt werden.

Zeigen Sie, dass dieses Problem NP-vollständig ist.

80. Amortisierte Laufzeit eines Binärzählers, 5 Punkte

Das nebenstehenden Programmstück zählt einen als Binärzahl $(\dots b_3b_2b_1b_0)_2$ mit $b_i \in \{0,1\}$ dargestellen Zähler um 1 hoch.

Nehmen wir an, dass der Zähler auf 0 initialisiert ist und dann n-mal inkrementiert wird. T_k bezeichnet die Laufzeit für den

$$i := 0;$$

while $b_i = 1$ do
 $b_i := 0;$
 $i := i + 1;$
 $b_i := 1;$

k-ten Aufruf, wobei jedes Lesen oder Schreiben einer Binärstelle b_i als eine Operation zählt.

- (a) Was ist die maximale Laufzeit $f(n) = \max_{1 \le k \le n} T_k$ eines einzelnen Aufrufs? Bestimmen Sie die exakte Anzahl von Zugriffen auf die Binärstellen.
- (b) Zeigen Sie, dass die durchschnittliche Laufzeit $g(n) = \sum_{k=1}^{n} T_k/n$ der n Aufrufe durch eine Konstante beschränkt ist. (Hinweis A: Wie oft wird ein bestimmtes Bit b_i betrachtet? Hinweis B: Wie viele Bits werden auf 1 gesetzt?)