

Embedded Systems

6th june 2022

Smart Home

Team Members:

Eslam Elmowafy Nawara

Toka Mahmoud Bedeer

Salma Khaled Elsayed

Shrouk Mahmoud Hejazi

Farha Emad Mohammed

Mona Ahmed Nafea

Mahetab Mohammed Saad

Under supervision:

Dr/ Mohammed Moawad

Abstract

Here are two functions of a smart home, the user first is supposed to enter the right password using a **keypad** to get into the home and the **LCD** displays if it's the wrong or right one and **two LEDs** Red for the wrong password and Green for the Right password which then opens **the door** for seconds and closes after seconds in the opposite direction.

The LCD also displays the Temperature by using LM25 "temperature sensor" which controls the fan speed and the heater.

Objectives and Introduction

Our objective is to make use of most of the concepts we have this semester which is:

- Power Supplies
- LCD
- Keypad
- Motors
- ADC "Temperature sensor"
- PWM "The fan speed"

Components:

- PIC16F887
- LM3
- Power Supplies
- LCD 16X2
- KeyPad
- CD Motor
- Push Button
- Crystal 8MHz
- Lithium battery
- Jumpers
- LEDs
- Transistor 2n2222
- H-bridge I298n
- Resistors
- Capacitors 22pF
- Breadboard.
- FAN.
- Regulator 7805.
- Diod

Specifications:

- First, The LCD (16 x 2) is put on the home door to display 'Enter Pass' and the temperature.
- A keypad is put on the home door so the user can enter his password.
- If the user entered his password correctly, then the LCD displays
 'Welcome', a green LED lights up, the door is opened for 500 ms, and after the user enters the door is closed and the green LED lights down.
- If not, then the LCD displays 'Wrong Password' and a red LED lights up for 500 ms.
- The temperature sensor (LM35) reads the temperature and displays it on the LCD.
- If the temperature is less than 30, the heater is turned on.
- If it ranges between [30: 32], then the fan works at 80% of its velocity.
- If it ranges between [32: 34], then the fan works at 90% of its velocity.
- If it is greater than 34, then the fan works at all of its velocity.

Design & Implementation

Input Pins:

Component	Connected to
Temperature sensor	RAO
KeyPad	RB0 to RB7

Output Pins:

Component	Connected to
LCD	RD0 to RD5
Heater	RC1
FAN	RC2
Motor1	RC3
Motor2	RC4
Red LED	RC5
Green LED	RC6

Hardware Design & Implementation

Software Design & Implementation:

Initialize and declaration:

```
sbit LCD_RS_Direction at TRISDO_bit;
    sbit LCD RS at RD0 bit;
    sbit LCD EN Direction at TRISD1 bit;
    sbit LCD_EN at RDl_bit;
    sbit LCD_D4_Direction at TRISD2_bit;
    sbit LCD_D4 at RD2_bit;
    sbit LCD_D5_Direction at TRISD3_bit;
    sbit LCD D5 at RD3 bit;
    sbit LCD_D6_Direction at TRISD4_bit;
   sbit LCD_D6 at RD4_bit;
    sbit LCD D7 Direction at TRISD5 bit;
    sbit LCD_D7 at RD5_bit;
    char i;
    char pass[] = {'7','7','7','7'}; //Door password
    char check[5];
    char sw_press = 0;
    char x=0;
    char passwordValid;
20
   char text[7]:
    unsigned int buffer;
    int volt;
    unsigned int temp;
   char key_val()
  ₽ {
        portb=1;
       delay ms(20);
       if(portb.b4 == 1) return '1';
       else if(portb.b5 == 1) return '2';
else if(portb.b6 == 1) return '3';
30
       portb=2;
        delay_ms(20);
        if(portb.b4 == 1) return '4';
     else if(portb.b5 == 1) return '5';
```

```
else if(portb.b6 == 1) return '6';
        portb=4;
40
        delay_ms(20);
        if(portb.b4 == 1) return '7';
        else if(portb.b5 == 1) return '8';
else if(portb.b6 == 1) return '9';
         return '@';
  pvoid main() {
       ANSELH = 0x00; //configure PORTB as digital
        ANSEL = 0 \times 01;
                         //configure PORTA pin0 as analog
        TRISB = 0xF0;
        TRISC = 0x00;
        TRISA = 0 \times 01;
50
        portc =0;
        portb =0;
        PWM1_init(1000);
        LCD_Init();
        lcd_cmd(_lcd_clear);
        lcd_cmd(_LCD_CURSOR_OFF);
        delay_ms(10);
        lcd_out(1,1,"Enter pass: ");
        for(i=0; i<4; i++) eeprom_write(i,pass[i]);</pre>
             /*PASSWORD*/
           sw_press = key_val();
             if(sw_press != '@')
                 check[x] = sw_press;
                 lcd_chr(1,12+x,sw_press);
```

Password check:

```
if(x>3)
 · []
                       passwordValid =1;
                       for(i=0; i<4; i++) if(check[i] != eeprom_read(i)) passwordValid = 0;</pre>
                       if(passwordValid){
                           lcd_cmd(_lcd_clear);
lcd_out(1,1,"WLECOME");
                           portc.b6 = 1; //green led on
portc.b3 = 1; //door motor turns clockwise to open
delay_ms(500);
90
                           portc.b3 = 0; //stop door motor to enter home
                           delay_ms(500);
                           portc.b4 = 1; //door motor turns counter clockwise to close
                           delay_ms(500);
                           portc.b4 = 0; //stop door motor
portc.b6 = 0; //turn off green led
                           lcd_cmd(_lcd_clear);
                           lcd_out(1,1,"Enter pass: ");
                        }else{
                           portc.b5 = 1; //red led on
                           lcd_cmd(_lcd_clear);
                          lcd_out(1,1,"WORNG PASSWROD!");
delay_ms(500);
                           portc.b5 = 0; //turn off red led
                           lcd_cmd(_lcd_clear);
                           lcd_out(1,1,"Enter pass: ");
                       x=0;
100
              sw_press = '@';
              /***Temprature reading**/
              buffer = ADC read(0);
              volt = buffer*4.88;
```

Controlling Fan speed

```
106
             temp = volt/10;
            Inttostr(temp,text);
            LCD_OUT(2,1,"Temp= ");
            LCD_OUT_CP(text);
            LCD_Chr_CP(" ");
110
            LCD_Chr_CP('C');
            /***Fan***/
            if(temp>=30 && temp<32)
                PWMl_stop();
               PWM1_set_duty(204); //speed of fan is 80%
                PORTC.b1=0;
            else if(temp>=32 && temp<34)
120
                PWMl_stop();
                PWM1_set_duty(230); //speed of fan is 90%
                PORTC.bl=0;
            else if(temp>=34)
                PWMl_stop();
                PWM1_set_duty(255); //speed of fan is 100%
                PORTC.b1=0;
130
            else if(temp<30)
            PWM1_stop();
PWM1_set_duty(0); //turn off fan
                PORTC.b1=1; //turn on heater.
            delay_ms(10);
             PWM1_start();
140 L
```

Testing:

Testing all functions separately.