Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Examples of Chapter 2: Looking at Data

Kimmo Vehkalahti and Brian S. Everitt 8 October 2018

Contents

Examples	2
Table 2.1: Crime Rates for Drinkers and Abstainers	2
Figure 2.1	3
Figure 2.2	4
Figure 2.3	5
Figure 2.4	6
Figure 2.5	7
Figure 2.8	8
Figure 2.10	9
Figure 2.11	10
Table 2.2: Number of "and Then" Statements Made by 50 Children	11
Table 2.3: Number of "and Then" Statements Made by 50 Adults	11
Figure 2.12	12
Figure 2.14	13
Figure 2.15	14
Figure 2.16	15
Table 2.4: Field Dependence Measure and Time to Complete a Task	16
Figure 2.17	17
Figure 2.18	18
Figure 2.19	19
Table 2.5: Time Spent Looking After Car	20
Figure 2.20	21
Figure 2.21	23
Figure 2.22	25
Figure 2.24	26
Figure 2.25	27
Table 2.6: Measure of Resistance Made on Five Different Types of Electrode	28
Figure 2.26	29
Figure 2.27	30
Figure 2.28	31
Figure 2.29	32
Figure 2.31	33
Figure 2.32	34
Figure 2.33	35
Figure 2.34	36
Figure 2.35	37
Figure 2.38	38
Figure 2.39	40

Examples

Table 2.1: Crime Rates for Drinkers and Abstainers

```
drink <- c(50, 88, 155, 379, 81)
abst <- c(43, 62, 110, 300, 158)
drink <- 100*drink/sum(drink)
abst <- 100*abst/sum(abst)
da <- cbind(drink, abst)
da

## drink abst
## [1,] 6.640106 6.389302
## [2,] 11.686587 9.212481
## [3,] 20.584329 16.344725
## [4,] 50.332005 44.576523
## [5,] 10.756972 23.476969</pre>
```

```
labels <- c("Arson", "Rape", "Violence", "Stealing", "Fraud")
par(mfrow = c(1,2))
pie(drink, density = -10, labels = labels, col = 0, lwd = 2)
title("Drinkers")
pie(abst, density = -10, labels = labels, col = 0, lwd = 2)
title("Abstainers")</pre>
```

Drinkers

Abstainers

Figure 2.2

```
par(mfrow = c(1,2))
labs <- c("A", "R", "V", "S", "F")
barplot(drink, names.arg = labs, col = 1, lwd = 2, ylab = "Percent", ylim = c(0,55))
title("Drinkers")
barplot(abst, names.arg = labs, col = 1, lwd = 2, ylab = "Percent", ylim = c(0,55))
title("Abstainers")</pre>
```



```
band <- c(7.0, 12.0, 8.0, 13.0, 7.2, 11.5, 7.4, 11.6, 8.2, 12.2)
labels1 <- paste("Band", 1:10)
par(mfrow = c(1,1))
pie(band, density = -10, labels = labels1, col = 0, lwd = 2)</pre>
```



```
require("lattice")

## Loading required package: lattice
dotplot(1:10 ~ band, ylab = "Band", xlab = "Percentage", lwd = 3)
```


Figure 2.5

```
require("lattice")
dimnames(da) <- list(labels, c("Drinkers", "Abstainers"))
dotplot(da, groups = FALSE, xlab = "Percentage", ylab = "Crime")</pre>
```


Life expectancy at birth (years)

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

http://lmdvr.r-forge.r-project.org/

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

http://lmdvr.r-forge.r-project.org/

Table 2.2: Number of "and Then..." Statements Made by 50 Children

```
kids <- c(18, 15, 22, 19, 18, 17, 18, 20, 17, 12, 16, 16, 17, 21, 23, 18, 20, 21, 20, 20, 15, 18, 17, 19, 20, 23, 22, 10, 17, 19, 19, 21, 20, 18, 18, 24, 11, 19, 31, 16, 17, 15, 19, 20, 18, 18, 40, 18, 19, 16) kids
```

[1] 18 15 22 19 18 17 18 20 17 12 16 16 17 21 23 18 20 21 20 20 15 18 17 ## [24] 19 20 23 22 10 17 19 19 21 20 18 18 24 11 19 31 16 17 15 19 20 18 18 ## [47] 40 18 19 16

Table 2.3: Number of "and Then..." Statements Made by 50 Adults

```
adults <- c(10, 12, 5, 8, 13, 10, 12, 8, 7, 11, 11, 10, 9, 9, 11, 15, 12, 17, 14, 10, 9, 8, 15, 16, 10, 14, 7, 16, 9, 1, 4, 11, 12, 7, 9, 10, 3, 11, 14, 8, 12, 5, 10, 9, 7, 11, 14, 10, 15, 9) adults
```

[1] 10 12 5 8 13 10 12 8 7 11 11 10 9 9 11 15 12 17 14 10 9 8 15 ## [24] 16 10 14 7 16 9 1 4 11 12 7 9 10 3 11 14 8 12 5 10 9 7 11 ## [47] 14 10 15 9

Figure 2.14

```
boxplot(kids, ylab = "Number of 'and then...' statements")
```


Figure 2.15

```
boxplot(kids, adults, names = c("Children", "Adults"),
    ylab = "Number of 'and then...' Statements")
```


Figure 2.16

```
par(mfrow = c(1,2))
qqnorm(kids, main = "Children")
qqnorm(adults, main = "Adults")
```


Table 2.4: Field Dependence Measure and Time to Complete a Task

```
#time to complete test; row and corner group data
timer <- c(317, 464, 525, 298, 491, 196, 268, 372, 370, 739, 430, 410)
eftr <- c(59, 33, 49, 69, 65, 26, 29, 62, 31, 139, 74, 31)
#
timec <- c(342, 222, 219, 513, 295, 285, 408, 543, 298, 494, 317, 407)
eftc <- c(43, 23, 9, 128, 44, 49, 87, 43, 55, 58, 113, 7)
te2 <- cbind(timer, eftr, timec, eftc)
te2</pre>
```

```
##
         timer eftr timec eftc
##
   [1,]
           317
                 59
                      342
                            43
   [2,]
                 33
                      222
                             23
##
           464
##
   [3,]
           525
                 49
                      219
                             9
##
    [4,]
           298
                 69
                      513
                           128
##
   [5,]
                      295
           491
                 65
                             44
##
   [6,]
           196
                 26
                      285
                            49
           268
   [7,]
##
                 29
                      408
                            87
##
    [8,]
           372
                 62
                      543
                            43
## [9,]
           370
                 31
                      298
                            55
## [10,]
           739
                139
                      494
                            58
## [11,]
                 74
           430
                      317
                           113
## [12,]
           410
                 31
                      407
                             7
```

Figure 2.17

Table 2.5: Time Spent Looking After Car

```
##
    sex age extro time
## 1
      2 55
               40
## 2
      2 43
               45
                    79
## 3
      1 57
               52
                    33
## 4
      2 26
               62
                    63
## 5
      1 22
               31
                    20
## 6
      1 32
               28
                    18
```


hist(age, ylab = "Frequency", xlab = "Age", main = "")

boxplot(time, ylab = "Age")

hist(extro, ylab = "Frequency", xlab = "Extroversion", main = "")

boxplot(time, ylab = "Extroversion")

Table 2.6: Measure of Resistance Made on Five Different Types of Electrode

```
resis <- c(500, 400, 98, 200, 250, 660, 600, 600, 75, 310, 250, 370, 220, 250, 220, 72, 140, 240, 33, 54, 135, 300, 450, 430, 70, 27, 84, 135, 190, 180, 100, 50, 82, 73, 78, 105, 180, 32, 58, 32, 90, 180, 220, 34, 64, 200, 290, 320, 280, 135, 15, 45, 75, 88, 80, 160, 200, 300, 300, 330, 250, 400, 50, 50, 92, 170, 310, 230, 20, 150, 66, 1000, 1050, 280, 220, 107, 48, 26, 45, 51)

resis <- matrix(resis, nrow = 16, byrow = T)

dimnames(resis) <- list(NULL, c("E1", "E2", "E3", "E4", "E5"))

resis
```

```
##
          E1
               E2
                    E3 E4 E5
    [1,] 500
##
              400
                    98 200 250
##
    [2,] 660
              600
                   600 75 310
   [3,] 250
              370
                   220 250 220
##
##
   [4,] 72
              140
                   240 33 54
##
    [5,] 135
              300
                   450 430
                            70
##
   [6,] 27
               84
                   135 190 180
##
   [7,] 100
               50
                   82
                       73 78
   [8,] 105
##
                   32
              180
                       58
                           32
##
   [9,] 90
              180
                   220
                       34 64
## [10,] 200
              290
                   320 280 135
## [11,]
         15
               45
                   75
                       88 80
## [12,] 160
                   300 300 330
              200
## [13,] 250
              400
                   50
                       50 92
## [14,] 170
              310
                  230
                       20 150
## [15,] 66 1000 1050 280 220
## [16,] 107
               48
                    26
                       45
                           51
```

Figure 2.26

pairs(resis)

Resistance measured by first electrode

```
# Compare the correlations with/without the outliers:

# cor(resis[, c(1, 2)])

## E1 E2

## E1 1.0000000 0.4103945

## E2 0.4103945 1.0000000

#

cor(resis[-c(1, 2, 15), c(1, 2)])

## E1 E2

## E1 1.0000000 0.8773492

## E2 0.8773492 1.0000000
```

Figure 2.28

Given : sex

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

http://lmdvr.r-forge.r-project.org/

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

 $\rm http://lmdvr.r-forge.r-project.org/$

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

http://lmdvr.r-forge.r-project.org/

Example taken with permission from:

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R, Springer.

 $\rm http://lmdvr.r-forge.r-project.org/$


```
RATES <- read.table("data/deathrates.txt", sep = ' ' , header = TRUE)</pre>
require(ggplot2)
## Loading required package: ggplot2
p1 <- ggplot(RATES, aes(x = year, y = rate))</pre>
p2 <- p1 + geom_line() + geom_point(shape=22, size=2, fill = "black")</pre>
p3 <- p2 + theme_bw() + theme(panel.grid.major = element_blank(),
                                 panel.grid.minor = element_blank())
p4a <- p3 + scale_x_continuous(name = "(a)")
p5a <- p4a + scale_y_continuous(name = "Death Rate by Million")
p4b <- p3 + scale_x_continuous(name = "(b)")
p5b <- p4b + scale_y_continuous(name = "Death Rate by Million",
                                   breaks = seq(0, 500, 100), limits = c(0, 500))
p5a; p5b
                                               500
                                             Death Rate by Million
Death Rate by Million
                                               100
```

Source of the data (with the jittered NumIncJ variable manually added):

Dalal, S. R., Fowlkes, E. B. and Hoadley, B. (1988). Risk analysis of the space shuttle: Pre-Challenger prediction of failure. *Journal of the American Statistical Association*, 84, 945–957.

```
require(dplyr)
## Loading required package: dplyr
## Attaching package: 'dplyr'
  The following objects are masked from 'package:stats':
##
##
       filter, lag
  The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
orings <- read.table("data/orings.txt", header = TRUE)</pre>
orings
##
      Flight
                  Date TempF NumInc NumIncJ
## 1
           1
              4/12/81
                          66
                                   0
                                        0.00
## 2
           2 11/12/81
                                   1
                                        0.95
                          70
## 3
           3 3/22/82
                          69
                                   0
                                        0.00
           5 11/11/82
                          68
                                   0
                                        0.00
## 4
## 5
           6 4/04/83
                          67
                                   0
                                       -0.10
## 6
           7
              6/18/83
                          72
                                   0
                                        0.00
           8 8/30/83
                          73
                                        0.00
## 7
                                   0
           9 11/28/83
                          70
                                   0
                                       -0.10
## 8
## 9
        41-8 2/03/84
                          57
                                   1
                                        1.00
        41-C 4/06/84
## 10
                          63
                                   1
                                        1.00
## 11
        41-D 8/30/84
                          70
                                   1
                                        1.05
## 12
        41-G 10/05/84
                          78
                                   0
                                        0.00
        51-A 11/08/84
                                   0
                                        0.00
## 13
                          67
## 14
        51-C 1/24/85
                          53
                                   3
                                        3.00
## 15
        51-D 4/12/85
                          67
                                   0
                                        0.10
## 16
        51-8 4/29/85
                          75
                                   0
                                        0.00
## 17
        51-G 6/17/85
                          70
                                   0
                                        0.10
## 18
        51-F 7/29/85
                          81
                                   0
                                        0.00
                                       -0.05
## 19
        51-1 8/27/85
                          76
                                   0
## 20
        51-J 10/03/85
                          79
                                   0
                                        0.00
                                   2
## 21
        61-A 10/30/85
                          75
                                        2.00
## 22
        61-8 11/26/85
                          76
                                   0
                                        0.05
## 23
        61-C
             1/12/86
                          58
                                        1.00
                                   1
```

orings123 <- orings %>% filter(NumInc > 0.5)

