Compito di prova 1

Corso di MATEMATICA per il Corso di Laurea Triennale in SCIENZE NATURALI E AMBIENTALI

Docente: Alessio Barbieri, E-mail: alessio.barbieri@unitus.it

Nome e Cognome:

Numero di Matricola:

Tempo: 3 ore. Non sono ammesse calcolatrici, appunti personali o libri.

Esercizio	D1	D2	E1	E2	E3	Σ
Voto						

Parte Teorica

Domanda 1. (3 punti) Indicare quale delle seguenti è la definizione di

$$\lim_{x \to x_0} f(x) = \ell,$$

per $f: I \subseteq \mathbb{R} \to \mathbb{R}, x_0, \ell \in \mathbb{R}^* \text{ con } x_0 \in I'$.

- $\boxed{a} \exists (a_n)_n \subseteq I \setminus \{x_0\} \text{ con } \lim_{n \to \infty} a_n = x_0 \text{ tale che } \lim_{n \to \infty} f(a_n) = \ell$
- $b \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n \ell| < \varepsilon \ \forall n \ge n_0$
- [c] $\forall (a_n)_n \subseteq I \setminus \{x_0\}$ tale che $\lim_{n\to\infty} a_n = x_0$ si ha $\lim_{n\to\infty} f(a_n) = \ell$
- d $\forall (a_n)_n \subseteq I$ tale che $\lim_{n\to\infty} a_n = \ell$ si ha $\lim_{n\to\infty} f(a_n) = f(x_0)$

Domanda 2. (3 punti) Il seguente problema

$$\begin{cases} y' = 2y^{\frac{2}{3}} \\ y(0) = 0 \end{cases}$$

è un esempio di problema di Cauchy che soddisfa una sola delle seguenti proprietà. Quale?

- a Ammette infinite soluzioni,
- \overline{b} Ammette un'unica soluzione locale che non è globale,
- \overline{c} Non ammette soluzioni,
- d Ammette un'unica soluzione globale.

Parte Pratica

Esercizio 1. (8 punti) Determinare i valori di $a, b \in \mathbb{R}$ affinché la funzione $f : \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} x^2 + ax + b, & \text{se } x \le 1, \\ \frac{\ln(x)}{x}, & \text{se } x > 1, \end{cases}$$

sia continua e derivabile in \mathbb{R} .

Soluzione:
$$a = b = b$$

Esercizio 2. (8 punti) Risolvere il seguente integrale

$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{1 + \cos^2(x)} \, dx.$$

|--|

Esercizio 3. (10 punti) Data la funzione

$$f(x) = \frac{e^x}{x^2 - 4}$$

determinarne: dominio, eventuali simmetrie, intersezioni con gli assi, segno, eventuali asintoti ed eventuali massimi e minimi. Tracciarne infine un grafico qualitativo qui sotto.

