Housing Case Study: Multiple Linear Regression

Problem Statement

A real estate company in Delhi wants to:

- Identify key factors affecting housing prices (e.g., area, number of bedrooms, parking).
- Build a linear regression model to predict house prices based on those factors.
- Evaluate model accuracy to determine how well the variables predict prices.

Tools and Libraries Used

- NumPy: Numerical computations
- Pandas: Data handling and preprocessing
- Matplotlib & Seaborn: Data visualization
- Scikit-learn: Linear regression model and evaluation
- Statsmodels: Statistical analysis and diagnostics

Approach and Key Steps

- 1. Data Loading & Exploration:
 - Read dataset and inspect using head(), info(), describe().
- 2. Data Cleaning:
 - Handled missing values and converted categories if needed.
- 3. Visualization:
 - Correlation matrix and scatterplots to understand relationships.
- 4. Feature Selection:
 - Removed irrelevant or highly correlated features.
- 5. Model Building:
 - Split data, trained model using LinearRegression.
- 6. Model Evaluation:
 - Analyzed R², Adjusted R², residuals, and VIF for multicollinearity.

Data Visualization

Housing Case Study: Multiple Linear Regression

Housing Case Study: Multiple Linear Regression

Results

A robust regression model was developed that included statistically significant variables. The coefficients provided insight into how each factor impacts the property price. The model demonstrated a strong fit, indicated by a high R² score.

Key Learnings

- Multiple linear regression can effectively model and predict property prices.
- Ensuring assumptions such as linearity and no multicollinearity is crucial.
- Thoughtful feature selection improves both model performance and interpretability.