CHAPTER SEVEN POLYGONS

Definition:

A polygon is a plane figure which is bounded by straight lines.

Polygons	
Number of sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	понадон
10	decagon

- A polygon has both interior as well as exterior angles.
- The interior angles of a polygon are those angles which lie within the polygon.
- The exterior angles of a polygon lie outside the polygon.

I = interior angle.

e = exterior angle.

N/B: For any polygon, the sum of the exterior angles = 360° .

Q1. Calculate the value of each exterior angle of a regular decagon.

Soln.

Decagon has 10 sides and as such 10 exterior angles.

But the sum of the exterior angles of any polygon = 360° .

 \Rightarrow 10 exterior angles = 360°.

$$\therefore 1 \text{ exterior angle} = \frac{1}{10} \times 360$$
$$= 36^{\circ}.$$

 \Rightarrow each exterior angle of a decagon = 36° .

Q2. Find the exterior angle of a regular pentagon.

Soln.

Pentagon has 5 sides, and as such 5 exterior angles. But the sum of the exterior angles of a polygon $=360^{\circ}$

 \Rightarrow 5 exterior angles = 360

 \Rightarrow 1 exterior angle = $\frac{1}{5} \times 360$

 $=72^{0}$.

 \therefore Each exterior angle of the regular pentagon =72°. For any polygon, the sum of the exterior angle and the exterior angle at any of its vertices = 180° .

Determination of the interior angle of a regular polygon:

- We must first determine the value of the exterior angle.
- Using the fact that at any vertex, exterior angle + interior angle = 180° .
 - \Rightarrow interior angle = 180° exterior angle.
- Q1. Calculate the interior angles of a regular decagon.

Soln.

Decagon has 10 exterior angles

 \Rightarrow 10 exterior angles = 360°.

 \therefore 1 exterior angle = $\frac{1}{10} \times 360$

 $=36^{\circ}$.

But at any vertex, exterior angle + interior angle = 180 0 .

 \Rightarrow 36⁰ + interior angle = 180⁰.

Interior angle = $180^{0} - 36^{0} = 144^{0}$.

The interior angle of the decagon = 144° .

Q2. Find the value of each Interior angle of a triangle.

<u>Soln.</u>

A triangle has 3 sides and as such 3 exterior angles.

 \Rightarrow 3 exterior angles = 360°

 $\therefore 1 \text{ exterior angle} = \frac{1}{3} \times 360$ $= 120^{\circ}.$

But at any vertex, interior angle + exterior angle = 180°

 \Rightarrow Interior angle + 120° = 180°

 \therefore Interior angle = 60°

Determination of the sum or the total interior angles of a polygon:

For any polygon, the sum of the interior angles = the number of sides of the polygon \times the value of one interior angle.

Q1. Calculate the sum of the interior angles of a regular decagon.

Soln.

Decagon has 10 exterior angles

 \Rightarrow 10 exterior angles = 360°

∴ 1 exterior angle = $\frac{1}{10} \times 360^{\circ}$ = 36° .

But at any vertex, interior angle + exterior angle $= 180^{\circ}$

 \Rightarrow Interior angle + 36° = 180°

 \Rightarrow Interior angle = 180 - 36

 \Rightarrow Interior angle = 144°.

But the sum of the interior angles of a decagon = interior angle \times the number of sides.

 \therefore Sum of interior angles of the decagon = $144^{\circ} \times 10 = 1440^{\circ}$.

Q2. Find the sum of the interior angles of a regular octagon.

Soln.

Octagon has eight sides and as such eight exterior angles.

 \Rightarrow 8 exterior angles = 360°

 $\therefore 1 \text{ exterior angle} = \frac{1}{8} \times 360^{\circ}$ $= 45^{\circ}.$

But at any vertex, exterior angle + interior angle = 180°

 $\therefore 45^0 + interior \ angle = 180^0$

 \Rightarrow Interior angle = $180 - 45 = 135^{\circ}$.

But the sum of interior angle = the number of sides of the polygon \times interior angle = $8 \times 135^{\circ} = 1080^{\circ}$.

Q3.The interior angles of a regular triangle are marked $20^{0} + 2x^{0}$, $10^{0} + 5x^{0}$ and $40^{0} + 4x^{0}$. Find the actual values of each of these angles.

N/B: First calculate the sum of the interior angles of the triangle.

Soln.

Triangle has 3 exterior angles

 \Rightarrow 3 exterior angles = 360°

 \therefore 1 exterior angle = $\frac{1}{3} \times 360^{\circ}$

$$= 120^{\circ}$$
.

But at any vertex, exterior angle + interior angle $= 180^{0}$

 \Rightarrow 120⁰ + interior angle = 180⁰

 \Rightarrow Interior angle = 180° - 120° = 60° .

But the sum of the interior angles of the triangle = the number of sides \times interior angle = $3 \times 60 = 180^{\circ}$.

But the interior angles of the triangle are given as $20^0 + 2x^0$, $10^0 + 5x^0$ and $40^0 + 4x^0$. The sum of these interior angles = $20^0 + 2x^0 + 10^0 + 5x^0 + 40^0 + 4x^0$

$$= 20^{0} + 10^{0} + 40^{0} + 2x^{0} + 5x^{0} + 4x^{0} = 70^{0} + 11x.$$

But the sum of the interior angles of the polygon or triangle = 180°

$$\Rightarrow$$
 70 + 11 x = 180⁰

$$\Rightarrow 11x = 180^{0} - 70 = 110^{0}$$

$$\Rightarrow x = \frac{110}{11} = 10^{\circ}$$
.

 \therefore The angle marked $20^{0} + 2x = 20 + 2(10) = 20^{0} + 20^{0} = 40^{0}$.

The angle marked $10^0 + 5x^0 = 10^0 + 50(10) = 10 + 50^0 = 60^0$.

Lastly, the angle marked $40^{0} + 4x^{0} = 40 + 4(10) = 40 + 40 = 80^{0}$.

Q4. The angles of a pentagon are marked x^0 , $(x^0 + 20^0)$, $(x^0 + 25^0)$, $2x^0$ and $(2x^0 + 5)$.

- (a) Find the value of x.
- (b) Determine the value of each of those angles. Soln.

Pentagon has 5 exterior angles.

5 exterior angles = 360°

∴ 1 exterior angle =
$$\frac{1}{5}$$
 × 360
= 72°.

But at any vertex, exterior angle + interior angle $= 180^{\circ}$

$$\Rightarrow$$
72° + interior angle = 180°

$$\Rightarrow$$
 interior angle = $180 - 72 = 108^{\circ}$.

Sum of the interior angles of the pentagon = number of sides \times interior angle = $5 \times 108 = 540^{\circ}$.

The given angles which are x^0 , $x + 20^0$, $x + 25^0$, 2x and $2x + 5^0$ are the interior angles of the pentagon.

Sum of these interior angles = $x^0 + x + 20^0 + x + 25^0 + 2x + 2x + 5^0$ = 7x + 50.

Since the sum of the interior angles of the pentagon has been calculated to be equal to $540^{0} \Rightarrow 7x + 50 = 540^{0} \Rightarrow 7x = 540 - 50 \Rightarrow 7x = 490$

$$\Rightarrow x = \frac{490}{7} = 70, : x = 70^{\circ}.$$

The value of the angle marked $x^0 = 70^0$.

The value of the one marked $x + 20^0 = 70 + 20 = 90^0$.

The angle marked $x + 25 = 70 + 25 = 95^{\circ}$.

The angle marked $2x = 2 \times 70 = 140^{\circ}$.

Lastly, the angle marked $2x + 5 = 2(70) + 5 = 140 + 5 = 145^0$

Q5.

Determine the value of x.

Soln.

The given figure has five sides (a pentagon) and as such has five exterior angles.

5 exterior angles = 360°

 \Rightarrow 1 exterior angle = $\frac{1}{5} \times 360$

$$=72^{0}$$
.

But at any vertex, interior angle + exterior angle $= 180^{0}$

 \Rightarrow 72⁰ + interior angle = 180⁰

 \Rightarrow interior angle = $180 - 72 = 108^{\circ}$.

The sum of the interior angles of the pentagon = number of sides \times interior angle = $5 \times 108 = 540^{\circ}$.

The sum of the interior angles of the given figure = $x + 2x + 3x + 2x + 30^{0} + x + 20^{0} = 9x + 50$

$$\Rightarrow 9x + 50^0 = 540^0$$

$$\Rightarrow$$
 9x = 540 - 50 = 490

$$\Rightarrow$$
 9x = 490 \Rightarrow x = $\frac{490}{9}$ = 54

$$\therefore x = 54^{\circ}$$

Q6.

Calculate the value of *x*.

Soln.

The given figure is a quadrilateral and as much has four exterior angles.

4 exterior angles = 360°

 \therefore 1 exterior angle = $\frac{1}{4} \times 360^{\circ}$

$$=90^{0}$$
.

But at a vertex, exterior angle + interior angle $= 180^{0}$

 \Rightarrow 90° + interior angle = 180°

 \Rightarrow interior angle = 180 - 90 = 90.

Sum of the interior angles of a polygon = number of sides \times interior angle

$$= 4 \times 90 = 360^{\circ}$$
.

The sum of the interior angles of the given polygon = $x^0 + 2x^0 + 2x^0 + 30^0 + 4x^0 + 10^0 = 9x + 40^0$

$$\Rightarrow 9x + 40^0 = 360^0$$

$$\Rightarrow$$
 9x = 360⁰ - 40 = 320⁰

$$x = 35.5^{\circ}$$
.

Q7.

Find the value of x.

Soln.

The given figure has five sides (pentagon), and as such has five exterior angles.

5 exterior angles $= 360^{\circ}$

$$\therefore$$
 1 exterior angle = $\frac{1}{5} \times 360$

$$=72^{0}$$
.

But at a vertex, interior angle + exterior angle $= 180^{0}$

 \Rightarrow interior angle + $72^0 = 180^0$

 $\therefore \text{ interior angle} = 180^{0} - 72^{0}$

 \Rightarrow Interior angle = 108°.

Sum of the interior angles of the given figure = number of sides \times interior angle = $5 \times 108^0 = 540^0$.

The sum of the interior angles of the given figure = 4x + 4x + 2x + 2x + 3x = 15x

$$\therefore 15x = 540^0 \Rightarrow x = \frac{540}{15} = 36$$

$$\Rightarrow$$
 x = 36°.

N/B: The sum of the exterior angles of any polygon is equal to 360° .

Find the value of x.

N/B: All the given angles are exterior angles.

Soln.

The given figure is a polygon (pentagon) and has five exterior angles.

But the sum of the exterior angles of a polygon = 360°

$$\Rightarrow x^0 + 50^0 + 3x^0 + x^0 + 36^0 + 2x^0 = 360^0$$

$$\Rightarrow$$
 7x + 86 = 360 => 7x = 360 - 86 = 274⁰.

$$\therefore x = \frac{274}{7} = 39$$

$$\Rightarrow$$
 x = 39⁰.

Q9

Determine the value of x.

N/B: The exterior angles of the given figure are $8x^0$, 80^0 , $x + 60^0$ and $x + 20^0$.

Soln.

Sum of the exterior angles of the given figure = $8x^0 + 80^0 + x + 60^0 + x + 20^0$ = 10x + 160.

Since the given figure is a polygon (i.e a quadrilateral), then the sum of its exterior angles is 360° .

$$\Rightarrow 10x + 160 = 360^{\circ}$$

$$\Rightarrow$$
 10x = 360 - 160 = 200

$$\Rightarrow x = \frac{200}{10} = 20^{\circ}.$$

Q10.

Calculate the values of the angles marked $2x^0$ and x + 4.

Soln.

The sum of the exterior angles of the given figure which is a polygon

$$= 70 + 100 + x + 40 + 2x + x + 10 = 220 + 4x.$$

Since the sum of the exterior angles of a polygon = 360° , then $220 + 4x = 360^{\circ}$

$$\Rightarrow$$
 4x = 360 - 220 = 140

$$\Rightarrow x = \frac{140}{4} = 35.$$

The value of the angle marked $2x = 2(35^{\circ}) = 70^{\circ}$.

Also the value of the angle marked x + 40 = 35 + 40 = 75..

Determination of the number of sides of a polygon:

The number of sides of any polygon =
$$\frac{360^{0}}{exterior \ angle}$$

Q1. The exterior angle of a polygon is 72⁰. How many sides has this polygon? Soln.

Number of sides =
$$\frac{360^{\circ}}{exterior \ angle} = \frac{360^{\circ}}{72^{\circ}} = 5 \ sides$$
.

Q2. Given that the exterior angle of a polygon is 45°, determine its number of sides.

Soln.

Number of sides =
$$\frac{360^{\circ}}{exterior \ angle}$$

$$=\frac{360}{45}=8$$
 sides.

Q3. Determine the number of sides of a polygon, whose interior angle is 140° .

N/B: First find the exterior angle and use it to divide 360° .

Soln.

At any vertex, exterior angle + interior angle $= 180^{0}$

$$\Rightarrow$$
 exterior angle + $140^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 exterior angle = $180^{\circ} - 140^{\circ}$

 \Rightarrow exterior angle = 40° .

Number of sides = $\frac{360^0}{exterior \ angle}$

$$=\frac{360}{40}=9$$
 sides.

Q4. Determine the name of a polygon, whose interior angle is 135°.

N/B: By determining the number of sides, we can know the name of such a polygon.

Soln.

At any vertex, exterior angle + interior angle $= 180^{\circ}$.

 \therefore exterior angle + 135⁰ = 180⁰

 \Rightarrow exterior angle = 180 - 135 = 45.

Number of sides =
$$\frac{360^{\circ}}{exterior \ angle} = \frac{360}{45} = 8 \ sides$$
.

... The polygon has 8 sides and as such it is an octagon.