Widerstände im Gleichstromkreis -Parallelschaltung-

Messungen

	S₁ geöffnet					S₁ geschlossen				
U	l _{ges}	I _{R1}	I _{R2}	U_{R1}	U_{R2}	l _{ges}	I _{R1}	I _{R2}	U _{R2}	U _{R2}
1V	889,5μ	503,57mA	0V	1V	0V	1,63mA	503,57μΑ	503,57μΑ	1V	1V
2V	1,90mA	1,83mA	0V	2V	0V	3,47mA	1,83mA	1,83mA	2V	2V
3V	2,83mA	2,81mA	0V	3V	0V	6,09mA	2,81mA	2,81mA	3V	3V
4V	3,74mA	3,86mA	0V	4V	0V	8,06mA	3,86mA	3,86mA	4V	4V
5V	5,09mA	4,65mA	0V	5V	0V	10,07mA	4,65mA	4,65mA	5V	5V
6V	6,04mA	6,01mA	0V	6V	0V	11,96mA	6,01mA	6,01mA	6V	6V
7V	7,02mA	7,07mA	0V	7V	0V	13,90mA	7,01mA	7,01mA	7V	7V
8V	7,98mA	7,95mA	0V	8V	0V	15,80mA	7,95mA	7,95mA	8V	8V
9V	9,01mA	9,07mA	0V	9V	0V	17,89mA	9,07mA	9,07mA	9V	9V
10V	10,03mA	10,14mA	0V	10V	0V	19,84mA	10,14mA	10,14mA	10V	10V
11V	10,99mA	11,02mA	0V	11V	0V	21,74mA	11,02mA	11,02mA	11V	11V
12V	11,87mA	11,91mA	0V	12V	0V	23,49mA	11,91mA	11,91mA	12V	12V

3. Berechnung der Spannung

$$U_{ges} = U_1 = U_2 = 1 = 1 = 1$$

$$U_{ges} = 1$$

4. Veränderung des Stromes durch zuschalten von R2

Der Gesamtstrom verdoppelt sich fast durch Schließens des Schalters, es entsteht eine Parallelschaltung mit einem Verbraucher mehr, der den gleichen Widerstand hat wie R1.

Der Strom durch R1 bleibt gleich da es sich durch die Zuschaltung von R2 um eine Parallelschaltung handelt.

S₁ geöffnet
$$Iges = \frac{U}{Rges}$$
 S₂ geschlossen
$$Iges = \frac{12 v}{1000 \Omega} = 0,012 A \qquad Iges = \frac{1}{\frac{1}{1000} + \frac{1}{1000}} = 24 mA$$

5. Erläuterungen der Messergebnisse und Methoden

Das erste Kirchhoffe Gesetz besagt, das die Teilströme zusammen den Gesamtstrom ergeben, wenn S_1 geschlossen ist besteht eine Parallelschaltung und das Gesetz trifft zu.

Der Unterschied zwischen Spannungs- und Strommessgerät ist der Innenwiderstand. Dieser muss beim Spannungsmessgerät sehr hoch sein um bei der Messung kein Kurzschluss zu verursachen. Ein Kurzschluss würde den Strom vom Widerstand ableiten. In einer Reihenschaltung ergibt sich durch den Effekt der Spannungsteilung so ein anderer Wert und die Messung ist verfälscht.

Ein Strommessgerät benötigt ein Widerstand nahezu NULL um das Messergebnis nicht durch eine Widerstandserhöhung zu manipulieren.