Семинар 15-16. Понятие группы. Группы диэдра. Таблицы Кэли. Решетка подгрупп

 $\Gamma pynnoй$ называется множество M с заданной на нем бинарной операцией \times : $M \times M \to M$, которая удовлетворяет соотношениям:

- 1) $x \times (y \times z) = (x \times y) \times z$ (ассоциативность),
- 2) $\exists e \in M : x \times e = e \times x = x$ (существует нейтральный элемент),
- 3) $\forall \exists x^{-1} : x \times x^{-1} = x^{-1} \times x = e$ (существует обратный элемент).

Если операция на множестве M операция \times удовлетворяет только свойству 1, такую алгебраическую структуру называют nonyepynnoй, свойствам 1,2-монoudom.

Если операцию в группе ассоциируют со сложением, группу называют addumushoù, операцию обозначают +, нейтральный элемент 0. Если операцию в группе ассоциируют с умножением, группу называют мультипликативноù, операцию обозначают ·, нейтральный элемент 1.

Группа называется абелевой, если операция коммутативна, т.е. $x \times y = y \times x$.

Задача 1. Выяснить, образуют ли группу следующие множества при указанных операциях над ними.

- 1. Целые числа относительно сложения (абелева группа),
- 2. Четные числа относительно сложения (абелева группа),
- 3. Степени данного действительного числа $a, a \neq 0, a \neq \pm 1$, относительно умножения (абелева группа),
- 4. Неотрицательные целые числа относительно сложения (моноид),
- 5. Целые числа относительно вычитания (даже не полугруппа),
- 6. Рациональные числа относительно умножения (моноид),
- 7. Рациональные числа, отличные от нуля, относительно умножения (абелева группа),
- 8. Свободные векторы пространства V_3 , относительно сложения (абелева группа),
- 9. Невырожденные аффинные преобразования пространства относительно операции композиции (последовательного выполнения) (группа, но не абелева),
- 10. Действительные многочлены степени n (включая 0) от неизвестного x относительно сложения (абелева группа).

Конечные группы

Группа называется конечной, если она содержит конечное число элементов. Число элементов группы называется порядком группы. Для конечной группы возможно описание с помощью так называемой таблицы Кэли. Элементами этой таблицы являются элементы, полученные умножением элемента строки и элемента столбца. Если эта таблица симметрична, то группа абелева. В каждой строке и каждом столбце каждый элемент группы должен встречаться только один раз.

Задача 2. Составить все группы порядков 2,3,4 с точностью до изоморфизма¹.

¹Группы изоморфны, если имеют одинаковую структуру с точностью до переобозначения. Это, конечно, не строгое определение, но на данном этапе этого достаточно.

Решение: Начнем с группы порядка 2. Она содержит два элемента, один из которых должен быть нейтральным (обозначим его e). Элементы группы: a, e. Тогда единственно возможный вариант таблицы Кэли имеет вид

$$\begin{array}{c|cccc} \times & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

Получили группу, которая изоморфна *группе вычетов* порядка 2. Такая группа состоит из остатков от деления на 2 (0 и 1) относительно сложения. Ее обозначают \mathbb{Z}_2 .

Группа порядка 3 содержит 3 элемента, обозначим их e, a, b. Первая строка и первый столбец таблицы Кэли заполняется тривиально:

$$\begin{array}{c|cccc} \times & e & a & b \\ \hline e & e & a & b \\ a & a & & \\ b & b & & \end{array}$$

Рассмотрим элемент *:

Этот элемент не равен a, поскольку в строке уже встречается a, и не равен b, поскольку в столбце уже встречается b. Значит, он равен e. Заполняем таблицу до конца:

Такая группа изоморфна группе вычетов \mathbb{Z}_3 порядка 3.

Группа порядка 4 содержит 4 элемента: e, a, b, c. Заполним первую строку и первый столбец таблицы Кэли:

Рассмотрим элемент *:

Существуют два варианта выбора этого элемента: 1) $e\,,\,2)$ c. Рассмотрим их.

Bариант 1. * = e. Заполним оставшуюся часть таблицы:

Эта группа изоморфна \mathbb{Z}_4 , группе вычетов 4 порядка, если переобозначить $e=0,\ a=1,\ b=3,\ c=2.$

Вариант 2. * = c. Получим:

Теперь рассмотрим элемент •:

Если $\bullet = e$, то заполненная таблица Кэли имеет вид

но эта группа изоморфна \mathbb{Z}_4 , при переобозначении $e=0,\,a=1,\,b=2,\,c=3,$ или

Эта группа не изоморфна \mathbb{Z}_4 . Она называется *четверной группой Клейна* и обозначается V_4 .

Если $\bullet = a$, то заполненная таблица Кэли имеет вид

Однако эта группа опять изоморфна \mathbb{Z}_4 , при переобозначении $e=0,\ a=2,\ b=1,\ c=3,$ или при $e=0,\ a=2,\ b=3,\ c=1.$

Таким образом, существуют всего 2 группы четвертого порядка: 1) \mathbb{Z}_4 , 2) четверная группа Клейна.

Также группы вычетов \mathbb{Z}_n можно ассоциировать с группами C_n вращений правильного n-угольника, с операцией композиции вращений.

Можно определить степень элемента группы. Например, для положительных k $a^k = a \cdot a \cdot \cdots \cdot a$ (k раз). Также будем считать, что $a^0 = e$, а a^{-k} — элемент, обратный к a^k .

Отображение $\varphi \colon M \to N$ из группы (M, \cdot) в группу (N, \times) называется гомоморфизмом, если оно сохраняет операцию в группах, то есть $\varphi(x) \times \varphi(y) = \varphi(x \cdot y)$.

Рассмотрим пару теоретических задач.

Задача 3. Для каких групп G отображение $f: G \to G$, определенное правилом $f(x) = x^2$, будет гомоморфизмом?

Решение: Рассмотрим левую и правую части равенства $\varphi(x) \times \varphi(y) = \varphi(x \cdot y)$ в данном случае:

$$f(x) \cdot f(y) = x^2 y^2 = xxyy,$$

$$f(x \cdot y) = (x \cdot y)^2 = xyxy.$$

Сравнив выражения xxyy и xyxy, получаем xy = yx.

Ответ: Для абелевых групп.

Задача 4. Доказать, что если $a^2=e$ для любого элемента a группы G, то эта группа абелева.

Решение: Докажем коммутативность операции · группы:

$$a \cdot b = b \cdot b \cdot a \cdot b \cdot a \cdot a = b \cdot (b \cdot a)^2 \cdot a = b \cdot a.$$

Коммутативность доказана.

Порождающие элементы

Пусть группа состоит только из степеней некоторого элемента g (как положительных, так и отрицательных). Такие группы называют $uu\kappa nuveckumu$, а элемент g — порождающим элементом группы. Есть два разных случая:

- 1) Все степени различны. Тогда получаем бесконечную циклическую группу. Любая бесконечная циклическая группа изоморфна \mathbb{Z} , то есть группе целых чисел с операцией сложения.
- 2) Существуют $k \neq l$, такие, что $g^k = g^l$. Если k > l, то $g^{k-l} = e$. Эта группа конечна. Любая конечная циклическая группа изоморфна \mathbb{Z}_n , то есть группе вычетов n-го порядка, или C_n , группе вращений правильного n-угольника.

Наименьшее из натуральных чисел m такое, что $a^m = e$, называется nopядком элемента e группы. Порядок порождающего элемента циклической группы равен порядку группы. В конечной группе порядок элемента группы делит порядок группы.

Задача 5. Вычислить порядки всех элементов в \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , определить порождающие элементы этих групп.

Ответ: 1) В \mathbb{Z}_2 : ord(0) = 1, ord(1) = 2. 1 — порождающий элемент.

- 2) В \mathbb{Z}_3 : ord(0) = 1, ord(1) = 3, ord(2) = 3, 1 и 2 порождающие элементы.
- 3) В \mathbb{Z}_4 : ord(0) = 1, ord(1) = 4, ord(2) = 2, ord(3) = 3, 1 и 3 порождающие элементы.

Группы диэдра

 $\Gamma pynnoй\ \partial u \ni \partial pa\ D_n$ называется группа преобразований правильного n-угольника, переводящих правильный n-угольник в себя, с операцией композиции преобразований. Есть два вида таких преобразований:

- 1) n вращений относительно центра правильного n-угольника, на угол, кратный $\frac{360^{\circ}}{n}$.
- 2) n симметрий относительно осей симметрии правильного n-угольника.

Порядок группы диэдра D_n равен 2n.

Подмножество элементов группы называется *подгруппой*, если оно замкнуто относительно операции группы и само по себе является группой. Например, группа вращений C_n правильного n-угольника является подгруппой группы диэдра D_n .

Задача 6. Построить таблицу Кэли группы диэдра D_3 , выписать все подгруппы.

Решение: Изобразим сначала все повороты:

Здесь

- R_0 поворот на 0° , то есть тождественное преобразование (нейтральный элемент группы),
- R_{120} поворот на 120° ,
- R_{240} поворот на 240°.

А потом все симметрии:

Здесь

- L_A симметрия относительно оси, проходящей через точку A и середину BC,
- L_B симметрия относительно оси, проходящей через точку B и середину AC,
- L_C симметрия относительно оси, проходящей через точку C и середину AB.

Составим таблицу Кэли этой группы:

	R_0	R_{120}	R_{240}	L_A	L_B	L_C
R_0	R_0	R_{120}	R_{240}	L_A	L_B	L_C
R_{120}	R_{120}	R_{240}	R_0	L_C	L_A	L_B
R_{240}	R_{240}	R_0	R_{120}	L_B	L_C	L_A
L_A	L_A	L_B	L_C	R_0	R_{120}	R_{240}
L_B	L_B	L_C	L_A	R_{240}	R_0	R_{120}
L_C	L_C	L_A	R_{240} R_{0} R_{120} L_{C} L_{A} L_{B}	R_{120}	R_{240}	R_0

Группа имеет три подгруппы:

- 1) $\{R_0\}$ (тривиальная подгруппа),
- $2) \{R_0, R_{120}, R_{240}\},\$
- 3) D_3 .

Множество симметрий не образует подгруппу (в результате композиции двух симметрий получается поворот).

Вычислим порядки элементов группы:

$$\operatorname{ord}(R_0) = 1$$
, $\operatorname{ord}(R_{120}) = 3$, $\operatorname{ord}(R_{240}) = 3$, $\operatorname{ord}(L_A) = 2$, $\operatorname{ord}(L_B) = 2$, $\operatorname{ord}(L_C) = 2$.

Видно, что в этой группе нет элемента порядка 6, а потому группа не является циклической. В качестве системы порождающих элементов можно выбрать R_{120} (или R_{240}) и любую симметрию².

Задача 7. Построить таблицу Кэли группы диэдра D_4 , выписать все подгруппы. **Решение:** Изобразим сначала все повороты:

Здесь

- R_0 поворот на 0° , то есть тождественное преобразование (нейтральный элемент группы),
- R_{90} поворот на 90° ,
- R_{180} поворот на 180° ,
- R_{270} поворот на 270°

А потом все симметрии:

Здесь

- \bullet H- симметрия относительно горизонтальной оси,
- ullet V симметрия относительно вертикальной оси,
- D симметрия относительно диагональной оси (по главной диагонали),
- D' симметрия относительно диагональной оси (по побочной диагонали).

Составим таблицу Кэли этой группы:

	R_0	R_{90}	R_{180}	R_{270}	H	V	D	D'
R_0	R_0	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	R_0	D'	D	H	V
R_{180}	R_{180}	R_{270}	R_0	R_{90}	V	H	D'	D
R_{270}	R_{270}	R_0	R_{90}	R_{180}	D	D'	V	H
H	H	D	V	D'	R_0	R_{180}	R_{90}	R_{270}
V	V	D'	H	D	R_{180}	R_0	R_{270}	R_{90}
D	D	V	D'	H	R_{270}	R_{90}	R_0	R_{180}
D'	D'	H	D	V	R_{90}	R_{270}	R_{180}	R_0

 $[\]overline{^2}$ Если элементы R_{120} и L_A порождают группу, это означает, что любой элемент группы может быть представлен в виде $R_{120}^k L_A^m$ или $L_A^m R_{120}^k$.

Подгруппы в D_4 :

- 1) $\{R_0\}$,
- 2) $\{R_0, R_{180}\},\$
- 3) $\{R_0, R_{90}, R_{180}, R_{270}\},\$
- 4) $\{R_0, H\}, \{R_0, V\}, \{R_0, D\}, \{R_0, D'\},$
- 5) $\{R_0, R_{180}, H, V\}, \{R_0, R_{180}, D, D'\},\$
- 6) D_4 .

Систему порождающих образует поворот R_{90} (или R_{270}) и любая симметрия.

Решетка подгрупп

Решеткой подгрупп называется множество всех подгрупп, упорядоченное по включению.

Задача 8. Построить решетку подгрупп групп диэдра D_3 , D_4 .

Решение: Группа D_3 имеет только 3 подгруппы, которые можно упорядочить по включению следующим образом:

Для группы D_4 решетка подгрупп имеет вид:

Построение решетки подгрупп в общем случае — довольно сложная задача, но для циклических групп она упрощается.

Задача 9. Построить решетку подгрупп группы вращений правильного шестиугольника.

Решение: Эта группа состоит из шести элементов:

$$\{R_0, R_{60}, R_{120}, R_{180}, R_{240}, R_{300}\}.$$

Найдем порядки элементов

$$\operatorname{ord}(R_0) = 1$$
, $\operatorname{ord}(R_{60}) = 6$, $\operatorname{ord}(R_{120}) = 3$, $\operatorname{ord}(R_{180}) = 2$, $\operatorname{ord}(R_{240}) = 3$, $\operatorname{ord}(R_{300}) = 5$.

По теореме Лагранжа порядок подгруппы делится на порядок группы. Поэтому группа C_6 имеет следующие подгруппы:

- 1) $\{R_0\}$ (для элементов порядка 1),
- $\{R_0, R_{180}\}\$ (для элементов порядка 2 и их делителей),
- 3) $\{R_0, R_{120}, R_{240}\}$ (для элементов порядка 3 и их делителей),
- 4) C_6 (для элементов порядка 6 и их делителей). Таким образом, решетка подгрупп имеет вид

Задача 10. Построить решетку подгрупп циклической группы \mathbb{Z}_{12} .

Решение: Эта группа состоит из 12 элементов: $\{0, 1, ..., 11\}$. Каждую подгруппу образуют те элементы группы, которые кратны делителям числа 12: 1, 2, 3, 4, 6, 12. Таким образом, группа \mathbb{Z}_{12} имеет следующие подгруппы:

- 1) Кратны 1: $\{0, 1, 2, \dots, 11\},\$
- 2) Kpathi 2: $\{0, 2, 4, 6, 8, 10\}$,
- 3) Кратны 3: $\{0, 3, 6, 9\}$,
- 4) Кратны 4: $\{0,4,8\}$,
- 5) Кратны 6: {0,6},
- 6) Кратны 12: {0}.

Решетка подгрупп имеет вид

Задачи для самостоятельного решения

Задача 1. Вычислить порядки всех элементов в \mathbb{Z}_6 , \mathbb{Z}_8 , \mathbb{Z}_9 , определить порождающие элементы этих групп.

Задача 2. Вычислить порядки всех элементов в V_4 , определить систему порождающих элементов.

Задача 3. Построить решетку подгрупп циклических групп $\mathbb{Z}_{18}, \mathbb{Z}_{20}, \mathbb{Z}_{24}.$