

SECOND SEMESTER 2020-2021

Course Handout Part II

Date: 15/01/2021

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

LPTU : 2012 **Course No.** : ME F218

Course Title : Advanced Mechanics of Solids

Instructor-in-charge : Prof. M. S. DASGUPTA

Tutorial Instructors: J S Rathore, Gaurav Watts, Venkatesh Kadbur Prabhakar Rao

- **1. Course Description:** The course starts with generalized Hooke's law and three dimensional stress strain relations putting emphasis on Materials-Mechanics linkage to elucidate mechanical properties of materials. It also includes Energy methods; Torsion of non-circular members; Shear center and Asymmetrical bending of beams; Curved beams; Thick cylinders.
- 2. **Scope and Objective of the Course:** The course deals with in-depth analysis of some advanced topics in Mechanics of Solids, necessary for Mechanical Engineering students, beyond what is covered in the common course Mechanics of Solids.

3. Text books:

T1: "Advanced Mechanics of Materials" - Arthur P., Boresi and R.J. Schinid, John Wiley, 6th Edition.

Reference books:

R1: "Advanced Mechanics & Solids" - L.S. Srinath, Tata Mc.Graw-Hill Publishing Co. 2nd Edition, 2003

R2: "Advanced Mechanics of Solids" – Otto T. Bruhns, Springer Verlag, 2003

R3: "Advanced Mechanics of Materials" – R. Davis Cook and Warren C. Young, Prentice Hall 2nd Edition, 1998.

4. Lecture Plan:

	Module	Lecture Session &	Chap/Sec (Book)	Learning Outcome
lass		Tutorial Session		

1	Review of elementary	Introduction & review of	CH1 (TB1)	Quick revision of
1	Mechanics of Materials	elementary mechanics of	CITT (1DT)	Important
	and methods of	solids, methods of analysis,		Concepts in
	analysis, failure analysis	failures in design.		First level course on
	& properties of material	randres in design.		Engg.
	& properties of material	Tutorial 1		
				mechanics
2-4	Energy methods and applications	Principle of stationary potential energy, Castigliano's theorem, Deflections in statically	CH5 (TB1)	Ability to identify, formulate and solve variety problems of
		determinate structures and		statics using energy
		statically indeterminate		method
		structures, applications to		
		curved beam treated as straight		
		beams.		
		Tutorial 2		
5-	Theories of stress and	Stress at a point, stress on an	CH2 (TB1)	Comprehend nuance
9	strain	arbitrarily oriented plane,		of continuum
		transformation of stress,		mechanics, its
		principal stresses, differential		implications and
		equations of motion of a		numerical problem
		deformable body, deformation,		solving.
		strain theory, small		
		displacement theory		
		Tutorial 3 & 4		
10-	Linear stress strain	Generalized Hooke's Law,	CH3 (TB1)	Computing stress
12	temperature relations.	anisotropic and isotropic	, ,	and strain for
		elasticity, thermoelasticity for		anisotropic material
		isotropic materials, Hook's law		-
		for orthotropic material		
		Tutorial 5		
1 1	<u> </u>			<u> </u>

13-	member	Torsion of prismatic bar, Saint Venant's Semi-inverse method, linear elastic solutions, Prandtle elastic membrane analogy Tutorial 6	CH 6.1- 6.6 (TB1)	Formulation and solution of stress arising out of torsion in a general structural member.
18- 21		Non-symmetrical loading, bending and deflection of straight beams Tutorial 7	CH7.1- 7.3(TB1)	Formulation and solution of stress arising out of bending in a general structural member.
22-23		Shear flow in thin-walled beam cross sections, Shear Center for channel section. Tutorial 8	CH 8.1- 8.3 (TB1)	Appreciate the concept of Shear center computation of same.
24- 25	Curved beams	Location of neutral axis, radial stress, correction of circumferential stress and deflections of curved beams. Tutorial 9		Appreciate the concept and compute bending stress in a beam with finite radius of curvature.

Please Do Not Print Unless Necessary

Evaluation Scheme :

Evaluation Component	Weightage (%)	Duration (Minutes)	Date of Evaluation
Mid Semester Test	30	60	
Tutorial	30	-	Evenly spaced throughout the semester
Comprehensive Examination	40	120	As announced in the Timetable

* Tutorials will be utilized for numerical problem solving under guidance of tutorial instructor and the same will be evaluated. Best <u>four</u> performances <u>out of evaluated ones for each student will be counted for aggregate marks.</u>

Chamber Consultation Hour: To be announced in the class.

Notices: If any, will be displayed in Nalanda.

Make-up policy: No makeup is allowed for Tutorials.

Instructor-in-charge

ME F218

