

건물 안전성 데이터 마이닝 및 분석을 통한 위험성 지표 개발

Introduction

우리나라의 지난 10년간 연 평균 화재건수는 41,571건, 인명피 해는 2,242명, 재산피해는 5,607억원이다. 2021년도에는 건 축/구조물 화재의 발생건수가 전체 화재 건수의 66.2%를 차지 하고 있으며 유형별 화재 중 매년 가장 큰 인명, 재산피해 규모를 차지한다.

2021년도 화재발생건수

2015

1조 099억 2021

본 연구에서는 건물 화재에 대한 화재 피해(인명피해, 재산피해) 를 예측하는 모델을 개발하여 화재 위험성 지표(화재피해등급) 를 산출하고자 한다. 해당 지표를 활용해 건물 화재 위험도를 실 시간으로 분석하고 선제적인 대응전략을 수립하여 화재 발생에 의한 피해를 최소화 할 수 있을 것으로 기대한다.

Materials and Methods

Data Set

건물 단위의 화재피해등급 예측을 위해 건물별 데이터 수집

데이터명	설명	출처		
전기에너지	2020년 건물별 전기에너지 사용량	건축데이		
가스에너지	2020년 건물별 가스에너지 사용량	터개방		
화재출동현황	사랑인명피해수, 화재발생 시각, 현 장안전센터거리, 시간단위날씨(기 온, 풍속, 가시거리), 재산피해액	서울소방 재난본부		
상대습도	2017~2020년 시간별 상대 습도 데이터	기상청		

데이터 전처리

- 변수 선택 : 결측치 1% 이상 변수 제거 및 분석 목적에 맞지 않는 데이터 분류
- 실효습도 변수 생성 : 상대습도 데이터로 2017년~2020년 의 실효습도 변수 생성(건조도를 나타내는 지수)
- 결측치 및 이상치 처리

[최종 데이터] (21253 rows × 10 columns)

	사망인명피해	수 화새발생/	이 현상안선	센터거리	시간단위기온	시간단위풍족
0)	0	0	3	0.2	2.2
1		0 1	5	2	9.3	1.9
시	간단위가시거리	재산피해액	실효습도	전기사용	용량(KWh) 가	스사용량(KWh)
	491	13391	54.273750	1809	6.210463	11774.10017
	703	35	49.554054	1809	6.210463	11774.10017

모델링

[인명피해 발생여부 예측] -> 로지스틱 회귀분석

	coef	std err	z	P> z	[0.025	0.975]
현장안전센터거리	0.0038	0.031	0.121	0.903	-0.058	0.066
시간단위기온	0.0801	0.037	2.177	0.029	0.008	0.152
시간단위풍속	0.1648	0.032	5.176	0.000	0.102	0.227
시간단위가시거리	-0.0140	0.032	-0.434	0.664	-0.077	0.049
실효습도	-0.1159	0.037	-3.129	0.002	-0.188	-0.043
전기사용량(KWh)	-0.0240	0.041	-0.587	0.557	-0.104	0.056
가스사용량(KWh)	0.0685	0.040	1.733	0.083	-0.009	0.146
화재발생시각_새벽	-2.7225	0.080	-34.033	0.000	-2.879	-2.566
화재발생시각_저녁	-3.4376	0.096	-35.714	0.000	-3.626	-3.249
화재발생시각_주간	-3.0664	0.051	-59.747	0.000	-3.167	-2.966
Α			~ ~			

Accuracy: 92.8%

[재산 피해액 예측] -> 다중선형 회귀분석

	coef	std err	t	P> t	[0.025	0.975]
현장안전센터거리	0.0222	0.001	30.520	0.000	0.021	0.024
시간단위기온	-0.0023	6.43e-05	-35.036	0.000	-0.002	-0.002
시간단위풍속	0.0117	0.001	20.427	0.000	0.011	0.013
시간단위가시거리	7.688e-05	1.04e-06	73.648	0.000	7.48e-05	7.89e-05
실효습도	0.0077	5.03e-05	153.122	0.000	0.008	0.008
전기사용량(KWh)	1.073e-06	7.47e-08	14.359	0.000	9.27e-07	1.22e-06
가스사용량(KWh)	2.081e-07	4.81e-08	4.325	0.000	1.14e-07	3.02e-07
화재발생시각_새벽	0.1463	0.003	58.069	0.000	0.141	0.151
화재발생시각_저녁	0.1296	0.003	51.461	0.000	0.125	0.135
화재발생시각_주간	0.1395	0.002	62.676	0.000	0.135	0.144

R-Squared: 83.1%

Results

화재피해등급 도출

 $X_{\pi_1 \wedge \pi_2 \cap \pi_3 \cap \pi_4} = MinMax(ŷ 예상표해액)$

 $X_{\mathcal{O}_{\mathcal{B}}\Pi/\partial I \mathcal{I}/\mathcal{O}} = MinMax(\hat{y}_{\mathcal{O}_{\mathcal{B}}\Pi/\partial I}$ 화륙)

Y한재미해지수 = $\sqrt{X_{재산미해지수}} * X_{인명미해지수} * 100$

 $(0 \le Y_{\vec{o} \mid \vec{X} \mid \vec{D} \mid \vec{o} \mid \vec{X} \mid \vec{A} \mid$

해 DataSet 및 Code 확인할 수 있습니다.

화재피해등급	화재피해지수	건물 수
1	66 이상	26
2	33 이상 66 미만	1,744
3	33 미만	19,482
		21,252

Real-time Framework

실시간으로 동적인 데 이터를 수집하고 처리 하기 위한 소켓 프로그 래밍

대용량 데이터 처리를 위한 분산 처리 시스템 구축 및 실시간 화재 위험도 예측

선제적인 대응이 가능 한 실시간 모니터링