# M18: Matériaux semi-conducteurs

Louis Heitz et Vincent Brémaud



## Sommaire

| Rapport du jury                           | 3 |
|-------------------------------------------|---|
| Bibliographie                             | 3 |
| Introduction                              | 4 |
| ${f I} {f Sigma}({f T}) + {f gap \ hall}$ | 4 |
| II Rendement quantique photodiode         | 4 |
| III Linéarité réponse spectrale           | 4 |
| Conclusion                                | 4 |
| A Correction                              | 4 |
| B Commentaires                            | 4 |
| C Matériels                               | 4 |
| D Tableau présenté                        | 4 |



Le code couleur utilisé dans ce document est le suivant :

- $\bullet$   $\rightarrow$  Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- $\triangle$  Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

### Rapports du jury

## Bibliographie

[1] Compte rendu de Dihya et Elio

#### Introduction

Semi-conducteur = isolant à T=0, à température ambiante un peu conducteur. Dopé ou non dopé permet de peupler bande de conduction.

- $I \quad Sigma(T) + gap \ hall$
- II Rendement quantique photodiode
- III Linéarité réponse spectrale

#### Conclusion

Semi-conducteur intra puis dopé puis jonction. Excellents capteurs dû au fait que bonne énergie de gap pour PN.

- A Correction
- **B** Commentaires
- C Matériels
- D Tableau présenté