Leg. Curso: 3R1

Prof: Jorge Guerra Barros Prof: R. Gastón Araguás

Tercer examen parcial de Teoría de los Circuitos I

Tema 1. Encontrar el circuito simple en conexión triángulo equivalente del circuito de la figura

Tema 2. Al siguiente sistema trifásico de tensión $V_{AB}=380\angle0^\circ$ y de secuencia indirecta CBA se le conectan dos vatímetros en la línea A y en la línea B

se pide:

- a. lectura de P_A y P_B y de aquí la potencia total
- b. verificación de la potencia total
- c. diagrama fasorial completo indicando las magnitudes que mide cada vatímetro

Si utiliza el método del desplazamiento del neutro, como dato adicional se tiene que $V_{ON}=52,9 \angle -10,9^\circ$

- Tema 3. Explicar el fenómeno de sobretensión en los elementos reactivos de un circuito RLC serie alimentado por un generador de tensión constante y frecuencia variable. Graficar en un plano Ω vs. ω (plano |Z|) los módulos de todas las impedancias y mostrar en el gráfico en que zonas se produce la sobretensión. Graficar además los módulos de la tensión total $|V_T|$, tensión en el inductor $|V_L|$ y capacitor $|V_C|$ en otro plano V vs. ω destacando las zonas de sobretensión en cada elemento.
- **Tema 4.** El circuito equivalente de un capacitor real viene dado por un inductor L en serie con una resistencia llamada ESR (por el ingles Equivalent Serial Resistor) y con un capacitor ideal C que representa la capacidad propiamente dicha del elemento real. Además, en paralelo se encuentra la resistencia de fuga del dieléctrico de muy elevado valor.

Curso: 3R1

TEORÍA DE LOS CIRCUITOS I

Prof: Jorge Guerra Barros Prof: R. Gastón Araguás

Si los valores de un capacitor real son $L=2nH,\, ESR=0, 1\Omega,\, C=4, 7\mu F$ y $R_D=10M\Omega,$ se pide:

- a. graficar el lugar geométrico de admitancia del circuito cuando ω varía entre 0 e ∞
- b. señalar en el gráfico los valores óhmicos de corte del lugar con el eje real y los valores de frecuencia ω para estos cortes
- **c**. determinar el rango de frecuencia para el cuál el elemento tiene carácter capacitivo