

DISPOSITIVOS SEMICONDUCTORES Evaluación Final

2 de marzo de 2022

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	

This exam contains 5 questions.

1) Tres materiales semiconductores tienen masas efectivas similares, pero distinta energía de gap. En la tabla, se resumen algunos de sus parámetros físicos a temperatura ambiente. Con cada uno de estos materiales se fabrica un diodo de juntura P^+N de iguales dimensiones y mismos dopajes, es decir que sólo difieren en el material semiconductor. Los diodos se disponen en un arreglo serie polarizados en directa a través de una fuente de tensión ($V_F=10\,\mathrm{V}$) y un resistor $(1\,\mathrm{k}\Omega)$; Cómo es la relación entre las caídas de tensión de cada uno de los diodos? (Considerar que $N_D >> n_1$ para todos los casos y que las movilidades a cada lado de la juntura son similares)

	SC 1	SC 2	SC 3
E_g (eV)	0,8	1,1	1,5
$\mu_n \ (\text{cm}^2/(\text{Vs}))$	700	900	800
$\mu_p \ (\mathrm{cm}^2/(\mathrm{Vs}))$	200	300	250

- A) $V_{D1} > V_{D2} > V_{D3}$.
- B) $V_{D3} > V_{D2} > V_{D1}$.
- C) $V_{D1} > V_{D3} > V_{D2}$
- D) $V_{D2} > V_{D3} > V_{D1}$.
- E) $V_{D1} = V_{D2} = V_{D3} = 0.7 \text{ V}$.
- F) $V_{D1} = V_{D2} = V_{D3} = V_F$.
- 2) Calcular los parámetros del amplificador de la figura $(A_{vo}; R_{IN}; R_{OUT})$. [La respuesta se considera correcta si los 3 parámetros están bien calculados]

Datos: $V_{DD} = 3.3 \,\mathrm{V}; \ R_1 = 30 \,\mathrm{k}\Omega; \ R_2 = 60 \,\mathrm{k}\Omega; \ R_3 = 4 \,\mathrm{k}\Omega; \ R_s = 3 \,\mathrm{k}\Omega; \ V_T = -0.7 \,\mathrm{V}; \ \mu \, C'_{ox} = 0.7 \,\mathrm{V}; \ \mu \,$ 120 μ A V⁻²; W/L = 50; $\lambda = 0$.

Solution:
$$V_{GS} = -V_{DD} \frac{30 \text{k}\Omega}{30 \text{k}\Omega + 60 \text{k}\Omega} = -1.1 \text{ V}$$

 $I_{DQ} = -1/2 \mu C'_{cx} W/L(V_{GS} - V_T)^2 = -480 \mu\text{A}$
 $V_{DS} = 480 \mu\text{A} \times 4 \text{k}\Omega - 3.3 \text{ V} = -1.38 \text{ V}$
 $g_m = \mu C'_{cx} W/L(V_{GS} - V_T) = 2.4 \text{ mS}; r_o \rightarrow \infty.$
 $R_{IN} = 20 \text{k}\Omega; R_{OUT} = 4 \text{k}\Omega; A_{vo} = -g_m \times R_{OUT} = -2.4 \text{ mS} \times 4 \text{ k}\Omega = -9.6$

Página 1 de 2

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 2 de marzo de 2022

3) Calcular VCEO para el circuito de la figura.

Datos:
$$\beta = 140$$
; $V_{CC} = 5 \text{ V}$; $R_{B1} = 100 \text{ k}\Omega$; $R_{B2} = 286.7 \text{ k}\Omega$; $R = 1 \text{ k}\Omega$; $V_T = 0.8 \text{ V}$; $\mu_{\text{D}} C_{\text{CM}}' W/L = 480 \,\mu\text{A} \,\text{V}^{-2}$.

Solution:
$$I_B = -\frac{5\,\mathrm{V} - 0.7\,\mathrm{V}}{286.7\,\mathrm{k}\Omega} + \frac{0.7\,\mathrm{V}}{100\,\mathrm{k}\Omega} = -7.9983\,\mathrm{\mu A}$$
 $I_C = \beta\,I_B = -1.1198\,\mathrm{mA}$
 $V_R = 1.1198\,\mathrm{V}$

$$V_{GS} = \sqrt{\frac{1.1176\,\mathrm{mA}}{0.24\,\mathrm{mA}\,\mathrm{V}^{-2}}} + 0.8\,\mathrm{V} = 2.96\,\mathrm{V}$$
 $V_{CEQ} = V_R + V_{CS} - V_{CC} = -0.9202\,\mathrm{V}$.

- 4) Se diseña un amplificador emisor común sin realimentación y sin carga, polarizado con una única R_B y una única R_C . A la entrada, la fuente de señal presenta una tensión v_* pico y una resistencia serie R_s no nula. Al implementar el amplificador, el transistor utilizado tiene un β considerablemente mayor que lo estimado en la etapa de diseño. ¿Qué consecuencias tendrá esto sobre el desempeño del amplificador? (Considerar despreciable el efecto Early).
 - A) El amplificador podría distorsionar por alinealidad.
 - B) El amplificador podría distorsionar por saturación.
 - C) El amplificador podría distorsionar por corte.
 - D) La Avo disminuirá considerablemente.
 - E) La R_{OUT} disminuirá considerablemente.
 - F) La R_{IN} disminuirá considerablemente.
- 5) Diodos de potencia: ¿Qué consideraciones constructivas se tienen en cuenta al fabricar un diodo PN de potencia?
 - A) Los dopajes deben ser altos en la juntura para aumentar E_0 y soportar mayores ten-
 - B) Los dopajes deben ser altos para aumentar ϕ_B y aumentar $V_{BE(ON)}$.
 - C) Lejos de la juntura metalúrgica, el dopaje debe disminuir para reducir su conductividad.
 - D) El área del diodo debe ser grande para poder manejar corrientes altas.
 - E) El área del diodo debe ser grande para aumentar la capacidad del diodo, y mejorar su tiempo de respuesta.

Página 2 de 2

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 8 de marzo de 2022

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	
This area -		

This exam contains 5 questions.

- 1) Dos diodos de juntura PN sólo se diferencian por haber sido fabricados con distinto material semiconductor, manteniendo iguales entre sí su geometría y niveles de dopaje de cada lado de la juntura. Como consecuencia, se obtienen dos corrientes de saturación inversa distintas para cada uno de ellos: $I_{S1}=0.1\,\mathrm{pA}$ y $I_{S2}=5\,\mathrm{fA}$. Se disponen en un arreglo serie polarizados en inversa a través de una fuente de tensión ($V_F=5\,\mathrm{V}$) y un resistor ($2\,\mathrm{k}\Omega$). ¿Cómo es la relación entre las caídas de tensión de cada uno de los diodos?
 - A) $V_{D1} \simeq 0$ y $V_{D2} \simeq -V_{E}$.
 - B) $V_{D1} \simeq -V_F \text{ y } V_{D2} \simeq 0.$
 - C) $V_{D1} \simeq 0$ y $V_{D2} \simeq 0$.
 - D) $V_{D1} \simeq -V_F \times V_{D2} \simeq -V_F$
 - E) $V_{D1} \simeq -V_F/2$ y $V_{D2} \simeq -V_F/2$.
- 2) Un MOSFET de canal N está conectado de la siguiente forma: el drain conectado a la fuente de alimentación de $V_{DD}=3.3\,\mathrm{V}$, el source conectado al cátodo de un diodo zener, y el gate del transistor está conectado a una fuente de tensión (V_G) que controla la corriente de drain. Los parámetros del transistor son $\mu\,C_{ox}'\,W/L=10\,\mathrm{mA}\,\mathrm{V}^{-2}$ y $V_T=1\,\mathrm{V}$. El ánodo del diodo zener está conectado a tierra, y sus parámetros son $V_Z=1.2\,\mathrm{V}$, $I_{min}=0.5\,\mathrm{mA}$ y $I_{max}=10\,\mathrm{mA}$. Calcular los valores extremos que puede tomar la tensión de gate $(V_{G,min},y,V_{G,max})$ para que el diodo funcione en la región de zener. La respuesta se considera correcta si los 2 valores están bien calculados.

$$\begin{array}{ll} \mbox{Solution: Cuando } I_D = I_{min}, V_{GS} = V_T + \sqrt{\frac{I_{\min}}{1/2\mu}C_{os}^{1}w/L}} = 1\,\mbox{V} + \sqrt{\frac{0.5}{5}}\mbox{V} = 1.316\,\mbox{V, entonces} \\ V_G = V_Z + V_{GS} = 2.516\,\mbox{V.} \\ \mbox{Cuando } I_D = I_{max}, \ V_{GS} = V_T + \sqrt{\frac{I_{Gas}}{1/2\mu}C_{os}^{2s}w/L}} = 1\,\mbox{V} + \sqrt{\frac{10}{5}}\mbox{V} = 2.414\,\mbox{V, entonces} \\ V_Z + V_{GS} = 3.614\,\mbox{V.} \\ \end{array}$$

- 3) ¿Cuál de las siguientes opciones es incorrecta respecto de las corrientes de un transistor TBJ PNP polarizado en MAD?
 - A) La corriente de huecos en la QNR de la base es por difusión.
 - B) La corriente de huecos en la QNR del emisor es por arrastre.
 - C) La corriente de huecos en la SCR de la juntura Base-Colector es por difusión.
 - D) La corriente de electrones en la QNR de la base es por arrastre.
 - E) La corriente de electrones en la SCR de la juntura Base-Emisor es por difusión.
- 4) Se implementa un amplificador emisor común sin realimentación con un transistor NPN con parámetros $\beta=500$ y $V_A\to\infty$. La tensión de alimentación es $V_{CC}=9$ V, y el transistor está polarizado con dos resistencia de base siendo $R_{B1}=10\,\mathrm{k}\Omega$ entre la fuente de alimentación y la base del transistor, $R_{B2}=1\,\mathrm{k}\Omega$ entre la base del transistor y tierra, y una resistencia de colector, $R_C=100\,\Omega$ conectada a la fuente de alimentación. A la entrada del amplificador, se

Página 1 de 2

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 8 de marzo de 2022

conecta una señal senoidal (v_s) de tension pico 12 mV y resistencia serie $R_s = 50 \,\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular A_{vo} , R_{IN} y R_{OUT} . La respuesta se considera correcta si los 3 parámetros están bien calculados.

Solution:
$$I_B = \frac{9V - 0.7V}{10k\Omega} - \frac{0.7V}{1k\Omega} = 130 \,\mu\text{A}$$
.
 $I_{CQ} = \beta I_{BQ} = 65 \,\text{mA}$. $V_{CEQ} = 9 \,\text{V} - 6.5 \,\text{V} = 2.5 \,\text{V}$.
 $g_m = 2.51 \,\text{S}$. $r_{\pi} = 199 \,\Omega$. $r_o = \rightarrow \infty$.
 $R_{IN} = 163.3 \,\Omega$, $R_{OUT} = 100 \,\Omega$, $A_{vo} = -251$.

5) En un mismo chip de Silicio se fabrican 1 millón de inversores CMOS con las siguientes características: $\mu_n C'_{ox} = 80 \,\mu\text{A} \,\text{V}^{-2}$; $\mu_p C'_{ox} = 40 \,\mu\text{A} \,\text{V}^{-2}$; $(W/L)_p = 2 \times (W/L)_n = 5$; $V_{Tn} = 0.5 \,\text{V}$ y $V_{Tp} = -0.6 \,\text{V}$. El proceso de fabricación tiene una tensión de alimentación $V_{DD} = 1.8 \,\text{V}$ y la carga de cada inversor puede considerarse una capacidad constante de valor $C_L = 10 \,\text{fF}$. Todos los inversores tienen conectado a su entrada una señal cuadrada de frecuencia f. Se sabe que por el tipo de encapsulado $\theta_{JC} = 10 \,^{\circ}\text{C} \,\text{W}^{-1}$ y $\theta_{CA} = 20 \,^{\circ}\text{C} \,\text{W}^{-1}$ y que la temperatura máxima de juntura es $T_{j,max} = 125 \,^{\circ}\text{C}$. Calcular la frecuencia de trabajo (f) máxima del chip cuando tiene adosado un disipador de $\theta_{dis} = 2 \,^{\circ}\text{C} \,\text{W}^{-1}$ y la temperatura del ambiente puede alcanzar los $60 \,^{\circ}\text{C}$.

Solution: La resistencia equivalente es: $\theta = (20\,^{\circ}\text{C W}^{-1}//2\,^{\circ}\text{C W}^{-1}) + 10\,^{\circ}\text{C W}^{-1} = 11.818\,^{\circ}\text{C W}^{-1} \simeq 12\,^{\circ}\text{C W}^{-1}$. La potencia máxima es entonces: $P_{max} = \frac{125\,^{\circ}\text{C} - 60\,^{\circ}\text{C}}{11.818\,^{\circ}\text{C W}^{-1}} = 5.5\,\text{W} \simeq 5.42\,\text{W}$. De la expresión de potencia disipada en un inversor se puede despejar: $P_D = N \times f \times C_L \times C_$

 $V_{DD} = 5.5 \text{ W}.$ $f = \frac{5.5 \text{ W}}{N \times C_L \times V_{DD}^2} = 169.75 \text{ MHz} \simeq 167.28 \text{ MHz}.$

Página 2 de 2