Newton's method for approximating zeros of functions

Let q be a continuously differentiable function on \mathbb{R} .

Suppose that $g(x_*) = 0$, $g'(x_*) \neq 0$, and x_0 is sufficiently close to x_* .

For $n \ge 0$, let $x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$, that is

$$x_{n+1} = F(x_n)$$
, where $F(x) = x - \frac{g(x)}{g'(x)}$.

Then the sequence $x_n = F^n(x_0)$ converges to x_* .

• The same applies to a function $g: \mathbb{C} \to \mathbb{C}$.

Question. Given a zero z_* of g, what does the set of numbers $z \in \mathbb{C}$ such that $F^n(z) \to z_*$ looks like?

Example 1. $g(z) = z^2 - 1$ has two zeros, -1 and 1.

$$F(z) = z - \frac{g(x)}{g'(x)} = z - \frac{z^2 - 1}{2z}$$
 for $z \neq 0$.

If $z = bi \neq 0$, then F(z) = di and $F^n(z)$ does not converge to 1 or -1.

If z = x + iy with x > 0, then $F^n(z) \to 1$.

If z = x + iy with x < 0, then $F^n(z) \to -1$.

Example 2. $g(z) = z^3 - 1$ has three zeros:

$$z_1 = 1$$
, $z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_3 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

$$F(z) = z - \frac{g(x)}{g'(x)} = z - \frac{z^3 - 1}{3z^2}$$
 for $z \neq 0$.

One might guess that the complex plane is divided into three sectors, and in each one $F^n(z)$ converges to the corresponding zero.

But instead ...