Actions

Kai Prince

2025-08-13

Table of contents

Definition 0.1 (Bekka and Mayer (2000) Section 2). An action of a group, Γ , on a measurable space (X, \mathcal{B}) is a measurable mapping

$$\Gamma \times X \to X, \ (\gamma, x) \mapsto \gamma.x$$

with the following properties:

- 1. Associativity: For all $\gamma, \gamma' \in \Gamma, x \in X$, then $\gamma.(\gamma'.x) = (\gamma \cdot \gamma').x$
- 2. Identity: There exists an identity element $e \in \Gamma$ such that e.x = x for all $x \in X$.
- 3. Quasi-Invariance: For any $B \in \mathcal{B}$ and for all $\gamma \in \Gamma$, we have $\mu(\gamma.B) = 0$ if and only if $\mu(B) = 0$.

The action of Γ is also ergodic if it satisfies the additional property:

4. If $B \in \mathcal{B}$ and $\mu(B) = \mu(\gamma B)$ for any $\gamma \in \Gamma$, then $\mu(B) = 0$ or $\mu(X \setminus B) = 0$.

Remark 0.1. We don't require invertability in order to use actions and could instead use a monoid, M, defining the pre-image of M on (X, \mathcal{B}) as a measurable mapping

$$M \times X \to \mathcal{B}, \ (m, x) \mapsto m^{-1}.x$$

such that

$$m^{-1}.x = \{x' \in X : m.x' = x\}.$$

Definition 0.2. A topological dynamical system under the action of Γ , denoted (X,Γ) , is a compact metric space X that has continuous surjective maps, $(\gamma,x) \mapsto \gamma.x$, for all $\gamma \in \Gamma$.

Definition 0.3. Let $x \in X$, $\Phi = (\Phi_N)_{N \in \mathbb{N}}$ be a Følner sequence in Γ and μ a probability measure on X. Where δ_x is the Dirac mass at x, if

$$\frac{1}{|\Phi_N|} \sum_{\gamma \in \Phi_N} \delta_{\gamma.x} \xrightarrow{\text{weakly*}} \mu \text{ as } N \to \infty,$$

then we say x is generic for μ with respect to Φ and we denote this with $x \in \text{gen}(\mu, \Phi)$.

We are interested in how the action of a group Γ transforms functions on (X, \mathcal{B}, μ) so we must identify the associated definitions within functional analysis.

We define the map $U_{\gamma}: \mathrm{L}^2(X) \to \mathrm{L}^2(X)$ where $f \mapsto f \circ U_{\gamma}$ as the Koopman operator induced by $\gamma \in \Gamma$. We find that the Koopman operator induced by Γ is a unitary operator and the group homomorphism $U: \Gamma \to \mathcal{U}(\mathrm{L}^2(X))$ is the unitary representation of Γ on $\mathrm{L}^2(X)$, where $\mathcal{U}(\mathrm{L}^2(X))$ is the set of all unitary operators on $\mathrm{L}^2(X)$.

Bekka, M. B. and Mayer, M. (2000). Ergodic theory and topological dynamics of group actions on homogeneous spaces. Cambridge University Press. https://doi.org/10.1017/cbo9780511758898.

 $^{^{1}\}mathrm{consider}$ tempered separately as the FCP construction only depends on sequential compactness