Siddhardhan

Logistic Regression - intuition

About Logistic Regression:

- 1. Supervised Learning Model
- 2. Classification model
- 3. Best for Binary Classification Problem
- 4. Uses Sigmoid function

$$\hat{\mathbf{Y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

 \hat{Y} - Probability that (y = 1)

 $\hat{Y} = P(Y=1 \mid X)$

X - input features

Siddhardhan

w – weights (number of weights is equal to the number of input features in a dataset)

b - bias

 $\hat{Y} = \sigma(Z)$

Linear Regression

Advantages:

- 1. Easy to implement
- 2. Performs well on data with linear relationship
- 3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

- High dimensional dataset causes over-fitting
- 2. Difficult to capture complex relationships in a dataset
- 3. Sensitive to Outliers
- 4. Needs a larger dataset

X	-9	-8	0	8	9
Ŷ					

$$Z = 5X + 10$$

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$X = -9$$

$$Z = 5(-9) + 10$$

$$Z = -35$$

$$\hat{Y} = \frac{1}{1 + e^{35}}$$

$$\hat{Y} = 0$$

$$X = -8$$

$$Z = 5(-8) + 10$$

$$Z = -30$$

$$\hat{Y} = \frac{1}{1 + e^{30}}$$

$$\hat{Y} = 0$$

$$X = 0$$

$$Z = 5(0) + 10$$

$$Z = 10$$

$$\hat{Y} = \frac{1}{1 + e^{-10}}$$

$$\hat{Y} = 1$$

$$X = 8$$

$$Z = 5(8) + 10$$

$$Z = 50$$

$$\hat{Y} = \frac{1}{1 + e^{-50}}$$

$$\hat{Y} = 1$$

$$X = 9$$

$$Z = 5(9) + 10$$

$$Z = 55$$

$$\hat{Y} = \frac{1}{1 + e^{-55}}$$

$$\hat{Y} = 1$$

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

Sigmoid Function

Inference:

If Z value is a large positive number,

$$\hat{\mathbf{y}} = \frac{1}{1+0}$$

Siddhardhan

$$\hat{Y} = 1$$

If Z value is a large negative number,

$$\hat{\gamma} = \frac{1}{1 + (large\ positive\ number)}$$

$$\hat{Y} = 0$$

0

Siddhardhan

Loss Function & Cost Function for Logistic Regression

Loss Function

Loss function measures how far an estimated value is from its true value.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Gradient Descent With Local minima

Gradient Descent With Global minima

Loss Function

Loss function measures how far an estimated value is from its true value.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Gradient Descent With Local minima

Gradient Descent With Global minima

Loss Function for Logistic Regression

Binary Cross Entropy Loss Function (or) Log Loss:

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

Siddhardhan

When y = 1,
$$\Rightarrow$$
 L(1, \hat{y}) = -(1 log \hat{y} + (1 - 1) log (1 - \hat{y})) \Rightarrow L(1, \hat{y}) = - log \hat{y}

We always want a smaller Loss Function value, hence, \hat{y} should be very large, so that $(-\log \hat{y})$ will be a large negative number.

When y = 0,
$$\Rightarrow$$
 L(0, \hat{y}) = -(0 log \hat{y} + (1 - 0) log (1 - \hat{y})) \Rightarrow L(0, \hat{y}) = -log (1 - \hat{y})

We always want a smaller Loss Function value, hence, \hat{y} should be very small, so that $-\log(1-\hat{y})$ will be a large negative number.

Cost Function for Logistic Regression

Loss function (L) mainly applies for a single training set as compared to the cost function (J) which deals with a penalty for a number of training sets or the complete batch.

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

Siddhardhan

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

('m' denotes the number of data points in the training set)

Siddhardhan

Gradient Descent for Logistic Regression

About Logistic Regression:

Siddhardhan

- 1. Supervised Learning Model
- 2. Classification model
- 3. Best for Binary Classification Problem
- 4. Uses Sigmoid function
- 5. Binary Cross Entropy Loss Function (or) Log Loss

$$\hat{Y} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

$$J(w, b) = \frac{1}{m} \Sigma(L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \Sigma(y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

Gradient Descent

Gradient Descent in 3 Dimension

Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

Siddhardhan

w --> weight

b --> bias

L --> Learning Rate

dw --> Partial Derivative of cost function with respect to w

db --> Partial Derivative of cost function with respect to b

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Logistic Regression model:

- Sigmoid Function
- Updating weights through Gradient Descent
- Derivatives

$$\hat{Y} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$