Contrôle de géométrie descriptive N°4

Durée : 1 heure 45 minutes Barème sur 10) points	
Unité : 1 cm.		
NOM:	Groupe	
1. Données : • une droite t ; • un point Ω .		
On considère le cercle γ tangent à t et de centre Ω ; construire l diamètres conjugués de γ_2 en indiquant les tangentes aux exté		pts
2. Données : • deux points A et B ; • la 1ère projection d'un point P .		
Soit Σ la sphère de diamètre AB .		
2.1 Indiquer le contour apparent de Σ sur le sol et le mur.	0,5	pt
2.2 On considère $\mathcal C$ le petit cercle de Σ situé dans le plan norm $P\in \Sigma$. Construire la tangente à $\mathcal C$ en P . Choisir la solut est de plus grande cote.	tion pour laquelle P	pts
${\bf 2.3}$ Indiquer les axes de ${\cal C}_2$ avec les tangentes aux extrémités	s de ceux-ci. 0,5	pt

- **3.** Données: un point P;
 - une droite g.

Soit Δ un cylindre admettant une base circulaire δ de rayon 4 située dans le sol.

3.1 Construire le centre D de δ sachant que g est la génératrice de contact d'un plan tangent à Δ passant par P.

Retenir la solution pour laquelle D est de plus grande abscisse.

1,5 pts

- 3.2 Indiquer le contour apparent de Δ sur le sol et le mur, puis construire la section de Δ par un plan horizontal de cote 5.
- **4.** Données: \bullet deux points S et O.
 - les 1ère et 2ème traces d'un plan ϕ .

On considère un cône Θ de sommet S et dont la base est un cercle ε de centre O et rayon 3,5 situé dans le sol. On coupe Θ par le plan ϕ ; soit ε' la section ainsi obtenue.

4.1 Construire les asymptotes de ε' .

1,5 pts

4.2 Soit k une génératrice du contour apparent de Θ sur le mur ; retenir celle dont le pied sur ε est de plus grande ordonnée. Construire M', le point de ε' situé sur k ainsi que la tangente t' à ε' en M'.

Dispositions: cf. feuilles annexes.

 $\begin{array}{c} B_2 \\ + \end{array}$

A₂ +

 $_{+}$ A_{l}

+ B_1

 P_1

