INFORMATION THEORY & CODING

Part 4 : Asymptotic Equipartition Property (AEP)

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

October 10, 2023

Stock Market

 Initial investment Y₀, daily return ratio r_i, in t-th day, your money is

$$Y_t = Y_0 r_1 \cdot \ldots \cdot r_t$$
.

• Now if returns ratio r_i are i.i.d., with

$$r_i = \begin{cases} 4, & \text{w.p. } 1/2\\ 0, & \text{w.p. } 1/2 \end{cases}$$

- So you think the expected return ratio is $E[r_i] = 2$.
- And then

$$E[Y_t] = E[Y_0r_1 \cdot ... \cdot r_t] = Y_0(E[r_i])^t = Y_02^t$$
???

Stock Market

- With $Y_0 = 1$, actual return Y_t goes like
 - 1 4 16 0 0 ...

- Why?
 - The 'typical' sequences will end up with 0 return.
 - Occasionally, we got high return.
 - The expected return is increasing.
 - Expectation does not show the typical feature of this random sequence. We can turn to typical set.

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X_1, X_2, \dots, X_n are n independent, identically distributed (i.i.d.) random variables, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to E[X] \qquad \text{in probability},$$

i.e. for every number $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - E[X]\right| \le \epsilon\right] = 1.$$

Definition (Convergence of random variables)

Given a sequence of random variables, $X_1, X_2, ...$, we say that the sequence $X_1, X_2, ...$ converges to a random variable X:

- **1** In probability if for every $\epsilon > 0$, $\Pr[|X_n X| \ge \epsilon] \to 0$
- ② In mean square if $E[(X_n X)^2] \rightarrow 0$
- **3** With probability 1 (a.k.a. almost surely) if $\Pr[\lim_{n\to\infty} X_n = X] = 1$

Theorem 3.1.1 (AEP)

If
$$X_1, X_2, \ldots$$
 are i.i.d. $\sim p(x)$, then
$$-\frac{1}{n}\log p(X_1, X_2, \ldots, X_n) \to H(X) \qquad \text{in probability}.$$

Proof.

Since X_i are i.i.d., so are $\log p(X_i)$. Hence, by the weak law of large numbers,

$$-rac{1}{n}\log p\left(X_1,X_2,\ldots,X_n
ight) = -rac{1}{n}\sum_i\log p\left(X_i
ight) \
ightarrow -E[\log p(X)] \qquad ext{in probability} \ = H(X)$$

Typical Set

Definition

A *typical set* $A_{\epsilon}^{(n)}$ contains all sequence realizations

$$(x_1, x_2, \dots, x_n) \in \mathcal{X}^n$$
 with

$$2^{-n(H(X)+\epsilon)} \le p(x_1, x_2, \dots, x_n) \le 2^{-n(H(X)-\epsilon)}$$
.

Theorem 3.1.2

- If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon.$
- $\Pr[(X_1, X_2, ..., X_n) \in A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for n sufficiently large.

Proof.

1. Immediate from the definition of $A_{\epsilon}^{(n)}$.

The number of bits used to describe sequences in typical set is approximately nH(X).

INFORMATION THEORY & CODING

Theorem 3.1.2

- If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon.$
- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for n sufficiently large.

Proof.

2. By Theorem 3.1.1, the probability of the event $(X_1, X_2, \ldots, X_n) \in A_{\epsilon}^{(n)}$ tends to 1 as $n \to \infty$. Thus, for any $\delta > 0$, there exists an n_0 such that for all $n \ge n_0$, we have

$$\Pr\left\{\left|-\frac{1}{n}\log p\left(X_1,X_2,\ldots,X_n\right)-H(X)\right|<\epsilon\right\}>1-\delta.$$

Setting $\delta = \epsilon$, the conclusion follows.

Theorem 3.1.2

- If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon.$
- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for n sufficiently large.

Proof.

3.

$$1 = \sum_{\mathbf{x} \in \mathcal{X}^n} p(\mathbf{x}) \ge \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} p(\mathbf{x})$$

$$\ge \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} 2^{-n(H(X) + \epsilon)}$$

$$= 2^{-n(H(X) + \epsilon)} |A_{\epsilon}^{(n)}|.$$

Theorem 3.1.2

- If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon.$
- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(X) \epsilon)}$ for n sufficiently large.

Proof.

4. For sufficiently large n, $\Pr[A_{\epsilon}^{(n)}] > 1 - \epsilon$, so that

$$\begin{split} 1 - \epsilon &< \Pr\left[A_{\epsilon}^{(n)}\right] \\ &\leq \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} 2^{-n(H(X) - \epsilon)} \\ &= 2^{-n(H(X) - \epsilon)} \left|A_{\epsilon}^{(n)}\right|. \end{split}$$

Typical set diagram

This enables us to divide all sequences into two sets

- Typical set: high probability to occur, sample entropy is close to true entropy
 - so we will focus on analyzing sequences in typical set
- Non-typical set: small probability, can ignore in general

Theorem 3.2.1

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with distribution p(x), and $X^n = X_1 X_2 ... X_n$. For arbitrarily small $\epsilon > 0$, there exists a code that maps every realization $x^n = x_1 x_2 ... x_n$ of X^n into one binary string, such that the mapping is one-to-one (and therefore invertible) and

$$E\left[\frac{1}{n}\ell(X^n)\right] \le H(X) + \epsilon$$

for a sufficiently large n.

Theorem 3.2.1

$$E\left[\frac{1}{n}\ell(X^n)\right] \leq H(X) + \epsilon.$$

for n sufficiently large.

Proof.

Description in typical set requires no more than $n(H(X) + \epsilon) + 1$ bits (correction of 1 bit because of integrality).

Description in atypical set $A_{\epsilon}^{(n)^C}$ requires no more than $n \log |\mathcal{X}| + 1$ bits.

Add another bit to indicate whether in $A_{\epsilon}^{(n)}$ or not to get whole description.

Theorem 3.2.1

$$E[\frac{1}{n}\ell(X^n)] \le H(X) + \epsilon.$$

for n sufficiently large.

Proof.

Let $\ell(x^n)$ be the length of the binary description of x^n . Then, $\forall \epsilon > 0$, there exists n_0 s.t. $\forall n > n_0$, $P(x^n) = \sum_{x^n \in A_\epsilon^{(n)}} p(x^n) \ell(x^n)$ $= \sum_{x^n \in A_\epsilon^{(n)}} p(x^n) \ell(x^n) + \sum_{x^n \in A_\epsilon^{(n)}} p(x^n) \ell(x^n)$ $\leq \sum_{x^n \leq A_\epsilon^{(n)}} p(x^n) (n(H+\epsilon)+2) + \sum_{x^n \in A_\epsilon^{(n)}} p(x^n) (n \log |\mathcal{X}|+2)$ $= \Pr[A_\epsilon^{(n)}](n(H+\epsilon)+2) + \Pr[A_\epsilon^{(n)}](n \log |\mathcal{X}|+2)$ $\leq n(H+\epsilon) + \epsilon n(\log |\mathcal{X}|) + 2$ $= n(H+\epsilon')$

where $\epsilon' = \epsilon + \epsilon \log |\mathcal{X}| + \frac{2}{r}$ can be made arbitrarily small by choosing *n* properly.

Reading

Reading: Whole Chapter 3

