Name: Run Zeng

Student ID: 20794087

Email: r24zeng@uwaterloo.ca

Question 1

- a) There are 4 execution paths totally.
 - 1. [1, 2, 3, 4, 9, 11, 12, 13, 17]
 - 2. [1, 2, 3, 4, 9, 11, 14, 15, 16, 17]
 - 3. [1, 2, 5, 6, 7, 9, 11, 12, 13, 17]
 - 4. [1, 2, 5, 6, 7, 9, 11, 14, 15, 16, 17]

b)

PATH 1

Edge	Symbolic State (PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0; y \mapsto Y_0$	true
$2 \rightarrow 3$	$x \mapsto X_0+1; y \mapsto Y_0$	$X_0 + Y_0 > 10$
$3 \rightarrow 4$	$x \mapsto X_0+1; y \mapsto Y_0-2$	$X_0 + Y_0 > 10$
$4 \rightarrow 9$	$x \mapsto X_0+3; y \mapsto Y_0-2$	$X_0 + Y_0 > 10$
$9 \rightarrow 11$	$x \mapsto X_0+3; y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 > 25$
$11 \rightarrow 12$	$x \mapsto 3X_0+9; y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 > 25$
$12 \rightarrow 13$	$x \mapsto 3X_0+9; y \mapsto 2Y_0-4$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 > 25$
$13 \rightarrow 17$	$x \mapsto 3X_0+9; y \mapsto 2Y_0-4$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 > 25$

PATH 2

Edge	Symbolic State (PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0; y \mapsto Y_0$	true
$2 \rightarrow 3$	$x \mapsto X_0+1; y \mapsto Y_0$	$X_0 + Y_0 > 10$
$3 \rightarrow 4$	$x \mapsto X_0+1; y \mapsto Y_0-2$	$X_0 + Y_0 > 10$
$4 \rightarrow 9$	$x \mapsto X_0+3; y \mapsto Y_0-2$	$X_0 + Y_0 > 10$
$9 \rightarrow 11$	$x \mapsto X_0+3; y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$
$11 \rightarrow 14$	$x \mapsto X_0+3; y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$
$14 \rightarrow 15$	$x \mapsto 4X_0+12; y \mapsto Y_0-2$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$
$15 \rightarrow 16$	$x \mapsto 4X_0+12; y \mapsto 4X_0+3Y_0+6$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$
$16 \rightarrow 17$	$x \mapsto 4X_0+12; y \mapsto 4X_0+3Y_0+6$	$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$

PATH 3

Edge	Symbolic State (PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0; y \mapsto Y_0$	true
$2 \rightarrow 5$	$x \mapsto X_0; y \mapsto Y_0$	$X_0 + Y_0 \le 10$
$5 \rightarrow 6$	$x \mapsto X_0; y \mapsto Y_0 + 7$	$X_0 + Y_0 \le 10$
$6 \rightarrow 7$	$x \mapsto X_0-3; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10$
$7 \rightarrow 9$	$x \mapsto X_0-1; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10$
$9 \rightarrow 11$	$x \mapsto X_0-1; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 > 15$
$11 \rightarrow 12$	$x \mapsto 3X_0+9; y \mapsto Y_0-2$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 > 15$
$12 \rightarrow 13$	$x \mapsto 3X_0+9; y \mapsto 2Y_0-4$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 > 15$
$13 \rightarrow 17$	$x \mapsto 3X_0+9; y \mapsto 2Y_0-4$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 > 15$

PATH 4

Edge	Symbolic State (PV)	Path Condition (PC)
$1 \rightarrow 2$	$x \mapsto X_0; y \mapsto Y_0$	true
$2 \rightarrow 5$	$x \mapsto X_0; y \mapsto Y_0$	$X_0 + Y_0 \le 10$

$5 \rightarrow 6$	$x \mapsto X_0; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10$
$6 \rightarrow 7$	$x \mapsto X_0-3; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10$
$7 \rightarrow 9$	$x \mapsto X_{0}-1; y \mapsto Y_{0}+7$	$X_0 + Y_0 \le 10$
$9 \rightarrow 11$	$x \mapsto X_{0}-1; y \mapsto Y_{0}+7$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$
$11 \rightarrow 14$	$x \mapsto X_{0}-1; y \mapsto Y_{0}+7$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$
$14 \rightarrow 15$	$x \mapsto 4X_0-4; y \mapsto Y_0+7$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$
$15 \rightarrow 16$	$x \mapsto 4X_0-4; y \mapsto 4X_0+3Y_0+17$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$
$16 \rightarrow 17$	$x \mapsto 4X_0-4; y \mapsto 4X_0+3Y_0+17$	$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$

c) PATH 1:
$$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 > 25$$
, feasible $X_0 = 10, Y_0 = 10$

PATH 2:
$$X_0 + Y_0 > 10 \land 2X_0 + 2Y_0 \le 25$$
, feasible $X_0 = 1, Y_0 = 10$

PATH 3:
$$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 > 15$$
, feasible $X_0 = 4, Y_0 = 4$

PATH 4:
$$X_0 + Y_0 \le 10 \land 2X_0 + 2Y_0 \le 15$$
, feasible $X_0 = 1, Y_0 = 1$

Question 2

- a) $\neg a_1 \lor \neg a_2 \quad \neg a_1 \lor \neg a_3 \quad \neg a_1 \lor \neg a_4 \quad \neg a_2 \lor \neg a_3 \quad \neg a_2 \lor \neg a_4 \quad \neg a_3 \lor \neg a_4$
- b) Every vertice can be allocated a propositional variable a_v . According to syntax of propositional logic, $F_1 \rightarrow F_2$ is equal to $\neg F_1 \lor F_2$. Therefore, for propositional variable $a_v \rightarrow a_u$, " $\neg a_v \lor a_u$ " means from vertice v to u is reachable. When the path between v_{init} and v_{end} is reachable, according to CNF, if and only if $a_{init} \land a_{end} = true$, the path is satisfied.

So the left of graph Figure 1 can be represented as:

Satisfied path 1: $\neg a_{init} \lor a_1 \qquad \neg a_1 \lor a_{end} \qquad a_{init} \land a_{end}$ Satisfied path 2: $\neg a_{init} \lor a_2 \qquad \neg a_2 \lor a_{end} \qquad a_{init} \land a_{end}$ Which can be simplified as : $\neg a_{init} \lor a_1 \lor a_2 \qquad \neg a_{init} \lor a_{end}$

The right of graph Figure 1 can be represented as:

Unsatisfied Path 1: $\neg a_{init} \lor a_1$ $\neg a_{end} \lor a_1$ $a_{init} \land a_{end}$ Unsatisfied Path 2: $\neg a_{init} \lor a_2$ $\neg a_{end} \lor a_1$ $a_{init} \land a_{end}$

In conclusion, the satisfied path can be showed as $\neg a_{init} \lor a_v \qquad \neg a_v \lor a_u \qquad a_{init} \land a_{end}$ Simplified as: $\neg a_v \lor a_u \qquad a_{init} \land a_{end} \quad (v, u \in V)$

c) at-most-one(a1, a2,, ai,an)

List all clauses:

 $\neg a_i \lor \neg a_j$ (i from 1 to n, j from i to n, $i \le j$)

Question 3

a) Assume: constint/1—term is a constant integer
int/1—term is an integer
≤/2—one term is equal or less than the other term
value/2—the value of x th row and y th column in magic square
sum/n—the sum of all n values
r/0—row
c/0—column
n/0—size of columns or rows of the square grid

Constrains of magic square:

- 1) $int(n) \land 1 \le n$
- 2) $int(x) \land 1 \le x \le n$
- 3) $int(y) \land 1 \le y \le n$
- 4) $int(q) \land 1 \le y \le n$
- 5) $int(p) \land 1 \le y \le n$
- 6) constint(r) $\land 1 \le r \le n$
- 7) constint(c) $\land 1 \le c \le n$
- 8) value(x, y) \neq value(p, q)
- 9) $1 \le \text{value}(x,y) \le n^2$
- 10) $sum(value(r, 1), value(r, 2), ..., value(r, n)) = n(n^2+1)/2$
- 11) $sum(value(1, c), value(2, c), ..., value(n, c)) = n(n^2+1)/2$
- 12) $x = y \implies sum(value(x, y)) = n(n^2+1)/2$
- 13) $x+y=n \implies sum(value(x, y)) = n(n^2+1)/2$

Question 3

e) My code is in test_sym.py, which is the last test unit.

Question 5

a) According to the algebraic rules of FOL:

$$\forall x \cdot \exists y \cdot P(x) \lor Q(y)$$

$$\equiv \forall x \cdot \exists y \cdot (P(x) \lor Q(y))$$

$$\equiv \forall x \cdot (\exists y \cdot (P(x) \lor \exists y \cdot Q(y)))$$

$$\equiv (\forall x \cdot (P(x)) \lor (\exists y \cdot Q(y))$$

Therefore, the FOL must be valid.

b) The FOL is invalid. For example:

Let domain S={a, b}. Assume model of P is P^M ={(a, b)}, model of Q is Q^M ={(b, b)}. Because when x=a, P(a,y) is true, Q(a, y) is false. So this formula is true. When x=b, P(b,y) is false, Q(b,b) is true. So this formula is also true. Therefore M={S, P^M, Q^M}, M=($\forall x \cdot \exists y \cdot P(x,y) \lor Q(x,y)$).

However, for right formula, when x=b, $\exists y \cdot P(b,y)$ is false. When x=a, $\exists y \cdot Q(a,y)$ is false. Therefore, M of left formula is not M of right formula. Then the sentence is false.

c) 1, According to FOL formula and model (P₁):

x < y and z < y and x < z and $z \ge x$

Simplify to say, x < z < y is the model. So satisfy.

2, According to FOL formula and model (P_2): y=x+1 and y=z+1 and z=x+1 and $x\neq z+1$

Simply to say, x=z and z=x+1 conflict. So not satisfy.

3, According to FOL formula and model (P_3): $x \subseteq y$ and $z \subseteq z$ and $z \subseteq z$. The model can be represented by this figure.

d) isArray(A) \land 0<i<len(A) $\forall x, \forall y \cdot 0 \le x < i < y < len(A) \implies read(A,x) < read(A,y)$

e) isArray(A)
$$\land$$
 isArray(B) \land (len(A)=len(B))

$$(\forall x \cdot 0 \le x < len(A)) \Rightarrow (\exists y \cdot 0 \le y < len(B)) \land (read(A,x) = read(B,y))$$

$$(\forall y \cdot 0 \le y < len(A)) \Rightarrow (\exists x \cdot 0 \le x < len(B)) \land (read(B,y) = read(A,x))$$

f) Define isOnStack(x, y) means to check y is on stack x so return true. Define isNotOnStack(x, y) means to check y is not on stack x so return true. $x=nil \Rightarrow empty(x)=true$

$$\forall x \cdot empty(x) \Rightarrow \neg empty(push(x, y))$$

$$\forall x, y \cdot top(push(x, y)) = y$$

$$\forall x, y \cdot pop(push(x, y)) = x$$

isOnStack(push(x, y),y)=true

isNotOnStack(pop(x), top(x)) = true