

1.

2.

3.

ÁLGEBRA LINEAL 124 Prof. Mario Marotti

Nombre Nota	
1ª. prueba parcial 6 de Septiembre de 2017 En todos los ejercicios, justifique cada paso con la mayor claridad posible	
(a) Hallar la solución general del sistema siguiente por escalerización: $\begin{cases} x-3y+z+t=-4\\ 2x-y-3z-3t=2\\ x+y-z+3t=4\\ 3x-4y-2z-2t=-2 \end{cases}$	(1.0 puntos)
$(3x - 4y - 2z - 2t = -2)$ (b) ¿Qué rango tienen la matriz A y la matriz ampliada A^* del sistema? J respuesta sin calcular determinantes.	ustifique su (0.5 puntos)
(a) Encuentre k para que el producto de las matrices A y B conmute, es que $AB = BA$. ¿Conmuta para algún otro valor? Explique brevemente. $A = \begin{pmatrix} 3 & -4 \\ -5 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 7 & 4 \\ 5 & k \end{pmatrix}$ (b) ¿Es posible que el producto de una matriz A 4 x 2 y otra B 2 x 4 confexplique brevemente.	(1.0 puntos)
(a) Halle las matrices M_{23} y M_{12} (elementales 3 x 3) correspondientes respectivamente a las siguientes operaciones por filas de la matriz I_3 (nidentidad 3 x 3): Operación 1) Intercambiar filas F_2 y F_3 . Operación 2) Intercambiar filas F_1 y F_2 .	natriz

- (b) Halle la matriz producto: $M = M_{12} \times M_{23}$ (0.5 puntos)
- (c) Pruebe que, siendo M^3 el cubo de la matriz M, se cumple: $M^3 = I_3 \hspace{1.5cm} \textbf{(0.5 puntos)}$
- 4. Dada la ecuación matricial A.X = B siguiente:

$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & k+2 & k+7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix}$$

- (a) Hallar el valor de k para el cual la matriz A es singular. ¿Existe solución en ese caso? (0.5 puntos)
- (b) Resolver para k=2, hallando previamente la matriz inversa A^{-1} . (1.0 puntos)

Ejercico 1

(a)
$$(3)$$
 (b) (3) (c) (3) (d) (3) (e) (3) (e) (3) (f) (3) (f) (3) (f) (3) (g) (3) (g)

(5) No es posible. Ax B sevie una matriz 4x4

$$M_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 4 & 0 \end{pmatrix} \qquad M_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 7 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = M$$

Multiplicando M x M x M = I.

Ejerciaio 9:

(e) A es singular
$$\iff$$
 det $A = 0$
det $A = 0 + 2(k+2) + 0 - (0+0+k+7)$
det $A = k-3$ det $A = 0 \iff$ $k=3$

(b)
$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 9 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 9 \\
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 4 & 9 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{F_1 \longleftrightarrow F_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 4 & 9 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{F_3 = F_3 - 4F_2}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -9 & 0 & 1 \end{pmatrix} \xrightarrow{F_2' = F_2 - 2F_3} \begin{pmatrix} 7 & 0 & 0 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & -9 & 0 & 1 \end{pmatrix}$$

Solveion:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 9 & 0 & -2 \\ -4 & 0 & 1 \end{pmatrix} \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 9 & 0 & -2 \\ -4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$