(A Constituent college of Somaiya Vidyavihar University)

F.Y. Btech SEM-I

APPLIED MATHEMATICS-I

QUESTION BANK-1

TOPIC – COMPLEX NUMBERS

Type -1: Review

1. Express the following in the form x + iy

(i)
$$\frac{(2+i)(1+2i)}{3+4i}$$

(ii)
$$\frac{(2+3i)^2}{1+i}$$

Find the complex conjugate of (i) $\frac{3+5i}{1+2i}$ (ii) $\frac{1+i}{1-i}$ 2.

(ii)
$$\frac{1+i}{1-i}$$

Find the value of $x^4 - 4x^3 + 4x^2 + 8x + 46$ when x = 3 + 2i3.

Find the modulus and the principal argument of 4.

(i)
$$-1 + \sqrt{3}.i$$

(ii)
$$\frac{(2-3i)(5+3i)}{3-2i}$$

Find the real part, imaginary part, modulus and argument of $(4+2i)(-3+\sqrt{2}i)$ 5.

Express the following in polar form and find their arguments 6.

(i)
$$\sqrt{3} + i$$

(ii)
$$\sin \theta + i \cos \theta$$

7. Find the square root of -5 + 12i

8. If $z_1 = 1 + i$, $z_2 = 2 - i$, $z_3 = 3 + 2i$, find

(i)
$$\left| \frac{z_1 - z_2 - i}{z_1 + z_2 + i} \right|$$

(ii)
$$|\overline{z}_2 - z_1|^2 + |\overline{z}_3 - z_1|^2$$
 (iii) $\frac{z_3}{z_1} + \frac{z_2}{z_2}$

(iii)
$$\frac{z_3}{z_1} + \frac{z_2}{z_3}$$

(iv)
$$\frac{z_1}{\overline{z}_1} - \frac{\overline{z}_1}{z_1}$$

(iv)
$$\frac{z_1}{\overline{z}_1} - \frac{\overline{z}_1}{z_1}$$
 (v) $\frac{1}{(z_2 + z_3)(z_2 - z_3)}$

(vi)
$$(z_2 - \overline{z}_2)^5$$

9. If
$$z = x + iy$$
, prove that $\left(\frac{z}{\overline{z}} + \frac{\overline{z}}{z}\right) = 2\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$

10. If $z = a \cos \theta + ia \sin \theta$, prove that $\left(\frac{z}{\overline{z}} + \frac{\overline{z}}{z}\right) = 2 \cos 2\theta$

11. Prove that
$$\left|\frac{z-1}{\overline{z}-1}\right|=1$$

12. If
$$\alpha - i\beta = \frac{1}{a - ib'}$$
, prove that $(\alpha^2 + \beta^2)(a^2 + b^2) = 1$.

13. If p is real and the complex number $\frac{1+i}{2+pi} + \frac{2+3i}{3+i}$ represents a point on the line y = x, prove that $p = -5 + \sqrt{21}$

14. If
$$x + iy = \sqrt{a + ib}$$
, prove that $(x^2 + y^2)^2 = a^2 + b^2$

15. If
$$arg.(z + 2i) = \pi/4$$
 and $arg.(z - 2i) = 3\pi/4$, find z

(A Constituent college of Somaiya Vidyavihar University)

16. If
$$|z+i| = |z|$$
 and $arg\left(\frac{z+i}{z}\right) = \frac{\pi}{4}$, find z

17. Find two complex numbers such that their sum is 6 and their product is 13.

18. If
$$sin\psi = i \tan \theta$$
, prove that $\cos \theta + i \sin \theta = \tan \left(\frac{\pi}{4} + \frac{\psi}{2}\right)$

19. Prove that
$$\frac{1+\cos\alpha+i\sin\alpha}{1-\cos\alpha+i\sin\alpha} = \cot\left(\frac{\alpha}{2}\right)$$
. $e^{i(\alpha-\pi/2)}$

20. If
$$p = \cos \theta + i \sin \theta$$
, $q = \cos \Phi + i \sin \Phi$, Show that $\frac{(p+q)(pq-1)}{(p-q)(pq+1)} = \frac{\sin \theta + \sin \Phi}{\sin \theta - \sin \Phi}$.

21. If
$$(a_1 + i \ b_1)(a_2 + i \ b_2) \dots \dots \dots (a_n + i \ b_n) = A + i \ B$$
, prove that
$$(a_1^2 + b_1^2)(a_2^2 + b_2^2) \dots \dots \dots (a_n^2 + b_n^2) = A^2 + B^2 \quad \text{and}$$

$$tan^{-1} \frac{b_1}{a_1} + tan^{-1} \frac{b_2}{a_2} + \dots \dots + tan^{-1} \frac{b_n}{a_n} = tan^{-1} \frac{B}{A}.$$

22. If
$$z_1$$
 and z_2 are two complex numbers such that $|z_1+z_2|=|z_1-z_2|$, prove that $arg.z_1-arg.z_2=\frac{\pi}{2}$

23. Prove that, if
$$|z - i| > |z + i|$$
 then $Im(z) < 0$.

24. If
$$|z - 1| = |z + 1|$$
 then prove that Re $z = 0$

25. If
$$x^2 + y^2 = 1$$
, prove that $\frac{1+x+iy}{1+x-iy} = x + iy$

26. If
$$x + iy = \frac{3}{2 + \cos \theta + i \sin \theta}$$
, prove that $(x - 1)(x - 3) + y^2 = 0$.

27. If
$$z_1, z_2$$
 are non – zero complex numbers of equal modulus and $z_1 \neq z_2$ then prove that $\frac{z_1 + z_2}{z_1 - z_2}$ is purely imaginary.

28. If
$$z_1 + z_2 + z_3 = 0$$
 and $|z_1| = |z_2| = |z_3| = k$ show that $\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} = 0$.

29. If
$$z = x + iy$$
, prove that

(i) If
$$\frac{z+i}{z+2}$$
 is real, then locus of (x, y) is a straight line.

(ii) If it is pure imaginary, then the locus of a point (x, y) is a circle. Also find radius and centre.

Type - 2: De-Moivre's Theorem

Simplify

(i)
$$\frac{(\cos 2\theta - i\sin 2\theta)^5(\cos 3\theta + i\sin 3\theta)^6}{(\cos 4\theta + i\sin 4\theta)^7(\cos \theta - i\sin \theta)^8}$$
 (ii)
$$\frac{(\cos 2\theta + i\sin 2\theta)^3(\cos 3\theta - i\sin 3\theta)^2}{(\cos 4\theta + i\sin 4\theta)^5(\cos 5\theta - i\sin 5\theta)^4}$$

2. Prove that

(i)
$$\frac{(1+i)^8(1-i\sqrt{3})^3}{(1-i)^6(1+i\sqrt{3})^9} = \frac{i}{32}$$

(ii)
$$\frac{(1+i\sqrt{3})^9(1-i)^4}{(\sqrt{3}+i)^{12}(1+i)^4} = -\frac{1}{8}$$

3. Find the modulus and the principal value of the argument of
$$\frac{(1+i\sqrt{3})^{17}}{(\sqrt{3}-i)^{15}}$$

4. Express in the form
$$a + ib$$
,
$$\frac{(1+i)^{10}}{(1+i\sqrt{3})^5}$$

5. Express $(1+7i)(2-i)^{-2}$ in the form of $r(\cos\theta+i\sin\theta)$ and prove that the second power is a

(A Constituent college of Somaiya Vidyavihar University)

negative imaginary number and the fourth power is a negative real number.

- If $x_n + iy_n = (1 + i\sqrt{3})^n$, prove that $x_{n-1}y_n x_ny_{n-1} = 4^{n-1}\sqrt{3}$. 6.
- Simplify 7.

(i)
$$(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta - i \sin \theta)^n$$
 (ii) $\left(\frac{1 + \cos \theta + i \sin \theta}{1 + \cos \theta - i \sin \theta}\right)^n$

- Prove that $\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} = \sin\theta+i\cos\theta$ Hence deduct that $\left(1 + \sin\frac{\pi}{5} + i\cos\frac{\pi}{5}\right)^5 + i\left(1 + \sin\frac{\pi}{5} - i\cos\frac{\pi}{5}\right)^5 = 0.$
- If $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ and \overline{z} is the conjugate of z find the value of $(z)^{15} + (\overline{z})^{15}$.
- **10.** Prove that, if n is a positive integer, then

(i)
$$(a+ib)^{m/n} + (a-ib)^{m/n} = 2(\sqrt{a^2+b^2})^{m/n} cos(\frac{m}{n}tan^{-1}\frac{b}{a})$$

(ii)
$$(\sqrt{3}+i)^{120}+(\sqrt{3}-i)^{120}=2^{121}$$

- If n is a positive integer, prove that $(1+i)^n + (1-i)^n = 2 \ 2^{n/2} \cos n \ \pi/4$ Hence, deduce that $(1+i)^{10} + (1-i)^{10} = 0$
- Prove that $\left(\frac{-1+i\sqrt{3}}{2}\right)^n + \left(\frac{-1-i\sqrt{3}}{2}\right)^n$ is equal to -1 if $n=3k\pm 1$ and 2 if n=3k where k is an
- If α, β are the roots of the equation $x^2 2x + 4 = 0$, prove that $\alpha^n + \beta^n = 2^{n+1} cos(n\pi/3)$.
- Deduce that $\alpha^{15} + \beta^{15} = -2^{16}$ (ii) Deduce that $\alpha^6 + \beta^6 = 128$
- **14.** If α , β are the roots of the equation $z^2 \sin^2 \theta z \cdot \sin 2\theta + 1 = 0$, prove that $\alpha^n + \beta^n = 2\cos n \,\theta \, cosec^n \theta$
- If $a = \cos 3\alpha + i \sin 3\alpha$, $b = \cos 3\beta + i \sin 3\beta$, $c = \cos 3\gamma + i \sin 3\gamma$, prove that $\sqrt[3]{\frac{ab}{c}} + \sqrt[3]{\frac{c}{ab}} = 2\cos(\alpha + \beta - \gamma)$
- **16.** If $x + \frac{1}{x} = 2\cos\theta$, $y + \frac{1}{y} = 2\cos\emptyset$, $z + \frac{1}{z} = 2\cos\psi$, prove that

 - (i) $xyz + \frac{1}{xyz} = 2\cos(\theta + \Phi + \psi)$ (ii) $\sqrt{xyz} + \frac{1}{\sqrt{xyz}} = 2\cos\left(\frac{\theta + \Phi + \psi}{2}\right)$
 - (iii) $\frac{x^m}{v^n} + \frac{y^n}{x^m} = 2\cos(m\theta n\Phi)$ (iv) $\frac{\sqrt[m]{x}}{\sqrt[n]{y}} + \frac{\sqrt[n]{y}}{\sqrt[m]{x}} = 2\cos\left(\frac{\theta}{m} \frac{\emptyset}{n}\right)$
- **17.** If $x + \frac{1}{x} = 2\cos\theta$ then prove that $\frac{x^{2n}+1}{x^{2n-1}+x} = \frac{\cos n\theta}{\cos(n-1)\theta}$ and $\frac{x^{2n}-1}{x^{2n-1}-x} = \frac{\sin n\theta}{\sin(n-1)\theta}$
- **18.** If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$, $c = \cos \gamma + i \sin \gamma$, prove that $\frac{(b+c)(c+a)(a+b)}{abc} = 8\cos\frac{(\alpha-\beta)}{2}\cos\frac{(\beta-\gamma)}{2}\cos\frac{(\gamma-\alpha)}{2}$

(A Constituent college of Somaiya Vidyavihar University)

19. If a, b, c are three complex numbers such that a + b + c = 0, prove that

(i)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$
 and (ii) $a^2 + b^2 + c^2 = 0$

(ii)
$$a^2 + b^2 + c^2 = 0$$

If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and $\sin \alpha + \sin \beta + \sin \gamma = 0$, Prove that 20.

(i)
$$\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0$$
, $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$.

(ii)
$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{3}{2}$$

(iii)
$$cos(\alpha + \beta) + cos(\beta + \gamma) + cos(\gamma + \alpha) = 0.$$

(iv)
$$\sin(\alpha + \beta) + \sin(\beta + \gamma) + \sin(\gamma + \alpha) = 0$$
.

(v)
$$\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$$

(vi)
$$\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$$

21. If $a\cos\alpha + b\cos\beta + c\cos\gamma = a\sin\alpha + b\sin\beta + c\sin\gamma = 0$, Prove that $a^3 \cos 3\alpha + b^3 \cos 3\beta + c^3 \cos 3\gamma = 3abc \cos(\alpha + \beta + \gamma)$ and

$$a^3 \sin 3\alpha + b^3 \sin 3\beta + c^3 \sin 3\gamma = 3 abc \sin(\alpha + \beta + \gamma)$$

22. If $x_r = cos\left(\frac{2}{3}\right)^r \pi + i sin\left(\frac{2}{3}\right)^r \pi$, prove that

(i)
$$x_1 x_2 x_3 ... \infty = 1$$
,

(ii)
$$x_0 x_1 x_2 ... \infty = -1$$

If $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \dots \dots \dots (\cos n \theta + i \sin n \theta) = i$, then show that the 23. general value of $\theta = \left[2r + \frac{1}{n(n+1)}\right]\pi$

Type -3: Roots of Complex numbers

Find the cube roots of unity. If ω is a complex cube root of unity prove that 1.

(i)
$$1 + \omega + \omega^2 = 0$$

(ii)
$$\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$$

- Prove that the n nth roots of unity are in geometric progression. 2.
- 3. Show that the sum of the n nth roots of unity is zero.
- Prove that the product of n nth roots of unity is $(-1)^{n-1}$ 4.
- Find all the values of the following: 5.

(i)
$$(-1)^{1/5}$$

(ii)
$$(-i)^{1/2}$$

(ii)
$$(-i)^{1/3}$$
 (ix) $(1-i\sqrt{3})^{1/4}$

- Find the continued product of all the values of $\left(\frac{1}{2} \frac{i\sqrt{3}}{2}\right)^{3/4}$ 6.
- Find all the value of $(1+i)^{2/3}$ and find the continued product of these values. 7.
- 8. Solve the equations

(i)
$$x^9 + 8x^6 + x^3 + 8 = 0$$

(ii)
$$x^4 - x^3 + x^2 - x + 1 = 0$$

(iii)
$$(x+1)^8 + x^8 = 0$$

- If $(x+1)^6 = x^6$, show that $x = -\frac{1}{2} i \cot \frac{\theta}{2}$ where $\theta = \frac{2k\pi}{6}$, k = 0,1,2,3,4,5. 9.
- Show that the roots of $(x+1)^7 = (x-1)^7$ are given by $\pm i \cot \frac{r\pi}{7}$, r = 1,2,3.

(A Constituent college of Somaiya Vidyavihar University)

- **11.** If α , α^2 , α^3 , ... α^6 are the roots of $x^7 1 = 0$, find them and prove that $(1 \alpha)(1 \alpha^2)$ $(1 \alpha^6) = 7$.
- **12.** Prove that $x^5 1 = (x 1)\left(x^2 + 2x\cos\frac{\pi}{5} + 1\right)\left(x^2 + 2x\cos\frac{3\pi}{5} + 1\right) = 0.$
- **13.** Solve the equation $z^n = (z+1)^n$ and show that the real part of all the roots is -1/2.
- **14.** If $a = e^{i 2\pi/7}$ and $b = a + a^2 + a^4$, $c = a^3 + a^5 + a^6$, then prove that b & c are roots of quadratic equation $x^2 + x + 2 = 0$.
- **15.** Prove that (i) $\sqrt{1 cosce(\theta/2)} = (1 e^{i\theta})^{-1/2} (1 e^{-i\theta})^{-1/2}$

(iv)
$$\sqrt{1-sce(\theta/2)} = (1+e^{i\theta})^{-1/2} - (1+e^{-i\theta})^{-1/2}$$

- **16.** If 1+2i is a root of the equation $x^4-3x^3+8x^2-7x+5=0$, find all the other roots.
- 17. Find the roots common to $x^{12} 1 = 0$ and $x^4 x^2 + 1 = 0$