

DEPARTMENT OF BIOSTATISTICS

False Discovery Rates for Second-Generation *p*-Values in Large-Scale Inference

Valerie F. Welty, Jeffrey D. Blume

Virtual ENAR March 23rd, 2020

Outline

- Metrics of statistical evidence
- False discovery rate (FDR) review
- Second-generation p-value (SGPV) introduction
- FDR for SGPV
- Examples
- Take home message

Metrics of statistical evidence

Metric	Statistic(s)	Example(s)	
Strength of evidence	M	<i>Test result</i> p-value	
Propensity for study to yield misleading evidence	$\Pr(M \in \Gamma \mid H_0)$ $\Pr(M \notin \Gamma \mid H_1)$	Sensitivity, specificity Type I error Type II error Type S error	
Propensity for observed results to be misleading*	$\Pr(H_0 \mid M \in \Gamma)$ $\Pr(H_1 \mid M \notin \Gamma)$	PPV, NPV FDR FNR	

^{*} dependent on prevalence/prior, $Pr(H_0)$

Metrics of statistical evidence

Metric	Statistic(s)	Example(s)
Strength of evidence	M	Test result p-value
Propensity for study to yield misleading evidence	$\Pr(M \in \Gamma \mid H_0)$ $\Pr(M \notin \Gamma \mid H_1)$	Sensitivity, specificity Type I error Type II error Type S error
Propensity for observed results to be misleading*	$ \frac{\Pr(H_0 \mid M \in \Gamma)}{\Pr(H_1 \mid M \notin \Gamma)} $	PPV, NPV FDR FNR

^{*} dependent on prevalence/prior, $Pr(H_0)$

• Large-scale inference

	Null	Non-null	Total
Reject	V	V-R	R
Inconclusive	U	N-R-U	N-R
Total	N_0	$N-N_0$	N

• False discovery proportion (FDP):

$$FDP = Q = \begin{cases} V/R & \text{if } R > 0\\ 0 & \text{if } R = 0 \end{cases}$$

• False discovery rate (FDR) is the expected false discovery proportion

$$FDR = E[Q] = E\left[\frac{V}{R} \mid R > 0\right] \cdot \Pr(R > 0) + E[0] \cdot \Pr(R = 0)$$

• False discovery rate (FDR) is the expected false discovery proportion

$$FDR = E[Q] = E\left[\frac{V}{R} \mid R > 0\right] \cdot \Pr(R > 0)$$

$$pFDR \qquad \text{the "positive false discovery rate"}$$

• Probabilistic interpretation of the pFDR (Storey 2003):

$$pFDR(\Gamma) = E\left[\frac{V}{R} \mid R > 0; \Gamma\right] = Pr(H_0 = 0 \mid M \in \Gamma)$$

under a given set of assumptions

• Probabilistic interpretation of the pFDR (Storey 2003):

$$pFDR(\Gamma) = E\left[\frac{V}{R} \mid R > 0; \Gamma\right] = \Pr(H_0 = 0 \mid M \in \Gamma)$$

under a given set of assumptions

Second-generation p-value

- Interval null hypothesis
 - > Clinically unimportant/trivial, undetectable, measurement error, etc.
- Differentiates between when the data support:
 - ➤ Alternative hypothesis
 - ➤ Null hypothesis
 - ➤ Both, to some degree or strictly inconclusive

Second-generation p-value

• Provides a single-number summary of when the data support only null effects, only meaningful alternative effects, or are inconclusive

Second-generation p-value

• Provides a single-number summary of when the data support only null effects, only meaningful alternative effects, or are inconclusive

•
$$pFDR_{\delta} = Pr(H_0 \mid p_{\delta} = 0)$$

$$= \frac{Pr(p_{\delta} = 0 \mid H_0) \cdot P(H_0)}{Pr(p_{\delta} = 0)}$$

$$= \left[1 + \frac{P(p_{\delta} = 0 \mid H_1)}{P(p_{\delta} = 0 \mid H_0)} \frac{P(H_1)}{P(H_0)}\right]^{-1}$$

•
$$pFDR_{\delta} = Pr(H_0 \mid p_{\delta} = 0)$$

$$= \frac{Pr(p_{\delta} = 0 \mid H_0) \cdot P(H_0)}{Pr(p_{\delta} = 0)}$$

Estimation?

$$= \left[1 + \frac{P(p_{\delta} = 0 \mid H_1)}{P(p_{\delta} = 0 \mid H_0)} \frac{P(H_1)}{P(H_0)}\right]^{-1}$$

•
$$pFDR_{\delta} = Pr(H_0 \mid p_{\delta} = 0)$$

$$= \frac{Pr(p_{\delta} = 0 \mid H_0) \cdot P(H_0)}{Pr(p_{\delta} = 0)}$$

Estimation?

$$= \left[1 + \frac{P(p_{\delta} = 0 \mid H_{1})}{P(p_{\delta} = 0 \mid H_{0})} \cdot 1\right]^{-1}$$

•
$$pFDR_{\delta} = Pr(H_0 \mid p_{\delta} = 0)$$

$$= \frac{Pr(p_{\delta} = 0 \mid H_0) \cdot P(H_0)}{Pr(p_{\delta} = 0)}$$

Estimation?

"power"
$$= \left[1 + \frac{P(p_{\delta} = 0 \mid H_{1})}{P(p_{\delta} = 0 \mid H_{0})} \cdot 1 \right]^{-1}$$

•
$$pFDR_{\delta} = Pr(H_0 \mid p_{\delta} = 0)$$

$$= \frac{Pr(p_{\delta} = 0 \mid H_0) \cdot P(H_0)}{Pr(p_{\delta} = 0)}$$

Estimation?

"power"
$$= \left[1 + \frac{P(p_{\delta} = 0 \mid H_{1})}{P(p_{\delta} = 0 \mid H_{0})} \cdot 1\right]^{-1}$$

"type I error"

$\widehat{m{ heta}}$	$\widehat{\sigma}/\sqrt{n}$	p-value	SGPV	std. err for pFDR estimate	p-value pFDR	sgpv pFDR
1	0.125	1.3 x10^-15	0.5			
2	0.25	1.3 x10^-15	0			
6	0.75	1.3 x10^-15	0			
12	1.5	1.3 x10^-15	0			
24	3	1.3 x10^-15	0			

$\widehat{m{ heta}}$	$\widehat{\sigma}/\sqrt{n}$	p-value	SGPV	std. err for pFDR estimate	p-value pFDR	sgpv pFDR
1	0.125	1.3 x10^-15	0.5	0.125	0.048	NA
2	0.25	1.3 x10^-15	0	0.25	0.048	2.6 x 10^-09
6	0.75	1.3 x10^-15	0	0.75	0.048	9.9 x10^-04
12	1.5	1.3 x10^-15	0	1.5	0.048	8.5 x10^-03
24	3	1.3 x10^-15	0	3	0.048	2.1 x10^-02

$\widehat{m{ heta}}$	$\widehat{\sigma}/\sqrt{n}$	p-value	SGPV	std. err for pFDR estimate	p-value pFDR	sgpv pFDR
1	0.125	1.3 x10^-15	0.5	1.125	0.2574	NA
2	0.25	1.3 x10^-15	0	1.125	0.1046	0.03
6	0.75	1.3 x10^-15	0	1.125	0.0476	0.0044
12	1.5	1.3 x10^-15	0	1.125	0.0476	0.0044
24	3	1.3 x10^-15	0	1.125	0.0476	0.0044

Take home messages

- Report the propensity for the observed results to be misleading (FDR/pFDR) along with the measure of evidence
 - ➤ In addition to the interval estimate
- The second-generation p-value incorporates clinical relevance, reduces type I error and false discovery rate
- Behavior of the pFDR for second-generation p-values highly dependent upon estimation methods/assumptions

R package sgpv

https://github.com/weltybiostat/sgpv

Support and references

TREAT Research Group (Dept. of Thoracic Surgery) and Statistical Evidence in Data Science (SEDS) Lab

- Jeffrey Blume (PI) (<u>statisticalevidence.com</u>)
- Thomas Stewart
- Megan Hollister
- Yi Zuo

Blume JD, Greevy RA, Welty VF, Smith JR, Dupont WD (2019) An Introduction to Second-Generation *p*-Values, The American Statistician, 73:sup1, 157-167, DOI: 10.1080/00031305.2018.1537893

Blume JD, D'Agostino McGowan L, Dupont WD, Greevy RA Jr (2018) Secondgeneration *p*-values: Improved rigor, reproducibility, & transparency in statistical analyses. PLoS ONE 13(3): e0188299. https://doi.org/10.1371/journal.pone.0188299

References continued

Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *J Royal Statistical Soc Ser B Methodol* **57**, 289–300 (1995).

Storey, J. D. The positive false discovery rate: a Bayesian interpretation and the q-value. *Ann Statistics* **31**, 2013–2035 (2003).