Digital Image Processing

Mini Project #1

Depth measurement

Seyed Hesamoddin Hosseini

خلاصه

یک سیستم طراحی می کنیم که با آن بتوانیم عمق را بسنجیم. این پروژه به دو مرحله اصلی تقسیم می شود. ابتدا باید به کمک چند آزمایش و ثبت تصویر در عمق های تعیین شده مختلف، اندازه فاصله کانونی دوربین (f) و... را بدست آوریم. سپس با دانستن f و سایر پارامتر های بدست آمده، تصویری در عمق مجهول ثبت کنیم و عمق را اندازه گیری نماییم.

شرح پروژه: مرحله اول:

یافتن فاصله کانونی دوربین (f) و فاصله نقاط نورانی در دو تصویر متفاوت (d):

Figure 1 ساختار کلی سیستم عمق سنج

برای این منظور ابتدا دوربین و پوینتر را در مکانی ثابت با فاصله 310 mm نسبت به هم قرار می دهیم. به طوری که پوینتر و خط عمود بر مرکز عدسی لنز دوربین با سطح افق موازی باشند. حال پرده ای در فاصله Zo از setup قرار داده و نور پوینتر را بر روی پرده می اندازیم و تصویر آن را ثبت می کنیم.

سپس پرده راه در فاصله Zk از setup قرار داده و مرحله قبل را تکرار می نماییم.

حال می خواهیم مقدار d را بدست آوریم. برای این کار ابتدا تصاویر را باینری می نماییم تا شدت روشنایی در پیکسل هایی که نشان دهنده نور لیزر هستند، دقیقا برابر با 1 شود.

```
img1 bw = im2bw(img1);
```

در عمل، تصویر نقطه نور لیزر، بیش از یک پیکسل را شامل می شود. پس باید برای بدست آوردن یک نقطه، میانگین row و col را برای پیکسل هایی که شدت روشنایی آن ها 1 بود، بدست آوریم.

```
[row,column] = find(img1_bw == 1);
row_avg_1 = sum(row)/length(row);
col_avg_1 = sum(column)/length(column);
```

دوربین مورد استفاده در این آزمایش Canon EOS 700D می باشد که در آن:

Image Sensor Size: 22.3 x 14.9 mm

Max Resolution: 5184 x 3456 pixel

Focal Length: 18mm

بنابر این برای محاسبه مقدار d باید اختلاف col نقطه روشن را در دو تصویر بر حسب پیکسل محاسبه کنیم و سپس آن را به میلیمتر تبدیل نماییم.

حال به کمک فرمول زیر، مقدار مجهول D را بدست می آوریم:

$$\frac{D}{b} = \frac{Z_o - Z_k}{Z_o}$$

و در انتها برای محاسبه فاصله کانونی دوربین از فرمول زیر استفاده می کنیم:

$$\frac{d}{f} = \frac{D}{Z_k}$$

نتایج حاصل برای مقادیر مختلف Zk و Zo به شرح زیر می باشد: (واحد ها بر حسب میلی متر می باشند)

Zo	Zk	f	Real f
2350	1200	16.33	18
2000	1200	17.0	18
2350	1600	18.3	18

مرحله دوم:

با داشتن مقادیر f_{1},b_{2} و ... حال می توانیم تصویری در عمق مجهول ثبت نماییم و سپس به کمک فرمول زیر، عمق تصویر (Zk) را محاسبه نماییم

$$Z_k = \frac{Z_o}{1 + \frac{Z_o}{fb}d}$$

عمق مجهول بدست آمده	عمق مجهول واقعى	
1641	1600	
2017	2000	

پيوست:

سورس کد پروژه با نرم افزار متلب:

```
clear;
%unit: Millimeter
b = 310;
Zo = 2350;
Zk = 1200;
sensor width = 22.3;
%get first image
img1 = imread('D:/sample1.jpg');
figure
subplot(2,2,1); imshow(img1,[]); title('image 1');
img1 bw = im2bw(img1);
[img height, img width] = size(img1 bw);
subplot(2,2,2); imshow(img1 bw,[]); title('image 1 binary');
[row,column] = find(img1 bw == 1);
row avg 1 = sum(row)/length(row);
col avg 1 = sum(column)/length(column);
%get second image
img2 = imread('D:/sample2.jpg');
subplot(2,2,3); imshow(img2,[]); title('image 2');
img2 bw = im2bw(img2);
subplot(2,2,4); imshow(img2 bw,[]); title('image 2 binary');
[row,column] = find(img2 bw == 1);
row avg 2 = sum(row)/length(row);
col avg 2 = sum(column)/length(column);
%Calculate Parameters
d = abs(col avg 2 - col avg 1) * (sensor width / img width);
D = ((Zo - Zk) * b) / Zo;
f = (Zk * d) / D
%Depth measurement
img target = imread('D:/target.jpg');
```

```
img_target_bw = im2bw(img_target);
figure
imshow(img_target_bw,[]); title('image target binary');

[row,column] = find(img_target_bw == 1);
row_avg_target = sum(row)/length(row);
col_avg_target = sum(column)/length(column);

%Calculate Parameters
d = abs(col_avg_target - col_avg_2) * (sensor_width / img_width);

Zk = Zo / (1 + ((Zo * d) / (f * b)))
```