INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4543B MSI BCD to 7-segment latch/decoder/driver

Product specification
File under Integrated Circuits, IC04

January 1995

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

DESCRIPTION

The HEF4543B is a BCD to 7-segment latch/decoder/driver for liquid crystal and LED displays. It has four address inputs (D_A to D_D), an active HIGH latch disable input (LD), an active HIGH blanking input (BI), an active HIGH phase input (PH) and seven buffered segment outputs (O_a to O_q).

DC D_A D_B D_D LD **LATCHES** 7 ВΙ **DECODER** PH 6 **DRIVERS** Oa 19 7Z72880.2 Fig.1 Functional diagram.

The circuit provides the function of a 4-bit storage latch and an 8-4-2-1 BCD to 7-segment decoder/driver. It can invert the logic levels of the output combination. The phase (PH), blanking (BI) and latch disable (LD) inputs are used to reverse the function table phase, blank the display and store a BCD code, respectively.

For liquid crystal displays a square-wave is applied to PH and the electrical common back-plane of the display. The outputs of the device are directly connected to the segments of the liquid crystal.

HEF4543BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4543BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4543BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

 $\begin{array}{lll} D_A \text{ to } D_D & \text{address (data) inputs} \\ PH & \text{phase input (active HIGH)} \\ BI & \text{blanking input (active HIGH)} \\ LD & \text{latch disable input (active HIGH)} \end{array}$

O_a to O_q segment outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Product specification

Philips Semiconductors

HEF4543B $\frac{1}{2}$

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

FUNCTION TABLE

INPUTS					OUTPUTS									
LD	ВІ	PH ⁽⁴⁾	D _D	D _C	D _B	D _A	Oa	O _b	O _c	O _d	O _e	O _f	Og	DISPLAY
Х	Н	L	Х	Х	Χ	Χ	L	L	L	L	L	L	L	blank
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
Н	L	L	L	L	L	Н	L	Н	Н	L	L	L	L	1 1
Н	L	L	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
Н	L	L	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
Н	L	L	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
Н	L	L	L	Н	Н	L	Н	L	Н	Н	Н	Н	Н	6
Н	L	L	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
Н	L	L	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
Н	L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	9
Н	L	L	Н	L	Н	L	L	L	L	L	L	L	L	blank
Н	L	L	Н	L	Н	Н	L	L	L	L	L	L	L	blank
Н	L	L	Н	Н	L	L	L	L	L	L	L	L	L	blank
Н	L	L	Н	Н	L	Н	L	L	L	L	L	L	L	blank
Н	L	L	Н	Н	Н	L	L	L	L	L	L	L	L	blank
Н	L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	blank
L	L	L	Χ	Χ	Χ	Χ				(5)				(5)
as above H as above			inverse of above				as above							

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial
- 4. For liquid crystal displays, apply a square-wave to PH. For common cathode LED displays, select PH = LOW. For common anode LED displays, select PH = HIGH.
- 5. Depends upon the BCD-code previously applied when LD = HIGH.

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$D_n \rightarrow O_n$	5			180	360	ns	153 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			55	110	ns	47 ns + (0,16 ns/pF) C _L
	5			180	360	ns	153 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			55	110	ns	47 ns + (0,16 ns/pF) C _L
$LD \rightarrow O_n$	5			170	340	ns	143 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		80	160	ns	69 ns + (0,23 ns/pF) C _L
	15			60	120	ns	52 ns + (0,16 ns/pF) C _L
	5			190	380	ns	163 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		80	160	ns	69 ns + (0,23 ns/pF) C _L
	15			60	120	ns	52 ns + (0,16 ns/pF) C _L
$BI \to O_n$	5			145	290	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
	5			125	250	ns	98 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	54 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum LD	5		60	30		ns	
pulse width; HIGH	10	t _{WLDH}	30	15		ns	
	15		20	10		ns	
Set-up time	5		40	20		ns	
$D_n \rightarrow LD$	10	t _{su}	20	5		ns	
	15		15	0		ns	
Hold time	5		0	-15		ns	
$D_n \rightarrow LD$	10	t _{hold}	15	0		ns	
	15		20	5		ns	

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	2 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$10~400~f_i + \Sigma~(f_oC_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	$33~000~f_i + \Sigma~(f_oC_L) \times V_{DD}{}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4543B are:

- Driving LCD displays.
- Driving LED displays.
- Driving fluorescent displays.
- Driving incandescent displays.
- Driving gas discharge displays.

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

Note to Figs 6 and 7: bipolar transistors may be added for gain where $V_{DD} \le 10 \text{ V}$ or $I_{out} \ge 10 \text{ mA}$.

BCD to 7-segment latch/decoder/driver

HEF4543B MSI

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.