CS240, Spring 2022 Assignment 1: Question 1

Q1a) Prove that $7n^4 - 5n^2 + 6 \in O(n^4)$

We will start with the following observations:

1)
$$n \le n^4$$
 which implies $n \le 6n^4$ $\forall n \ge 1$

2)
$$-n \le 0$$
 which implies $-5n^2 \le 0$ $\forall n \ge 1$

Applying both identities to the equation we started with gives us:

$$7n^4 - 5n^2 + 6 < 7n^4 + 6n^4 \qquad \forall n > 1$$

Simplifying we get:

$$7n^4 - 5n^2 + 6 \le 13n^4 \quad \forall n \ge 1$$

Thus c = 13 and $n_0 = 1$, which by first principles proves that $7n^4 - 5n^2 + 6 \in O(n^4)$.

Q1b) Prove that $7n^4 - 5n^2 + 6 \in \Omega(n^4)$

Again we will start with some more observations:

1)
$$7n^4 = 2n^4 + 5n^4$$

2)
$$6 \ge 0$$

Applying both identities to the equation we started with gives us:

$$7n^4 - 5n^2 + 6 \ge 2n^4 + 5n^4 - 5n^2$$

We will now isolate the terms $5n^4 - 5n^2$ and discover when the equation is positive:

$$5n^4 - 5n^2 \ge 0$$
$$5n^4 \ge 5n^2$$
$$n^2 > 1$$

Therefore when $n \ge 1$ the overall equation would be smaller if the terms are removed, so it follows that:

$$7n^4 - 5n^2 + 6 \ge 2n^4 + 5n^4 - 5n^2 \ge 2n^4$$
 $\forall n \ge 1$

Thus c = 2 and $n_0 = 1$, which by first principles proves that $7n^4 - 5n^2 + 6 \in \Omega(n^4)$.

Q1c) Prove that $5n^2 + 15 \in o(n^3)$

We can start by making the following observation:

1)
$$1 \le 1 * n^2$$
 which implies $15 \le 15n^2$ $\forall n \ge 1$

Therefore we can get the following equality:

$$5n^2 + 15 \le 5n^2 + 15n^2$$
 $\forall n \ge 1$
 $5n^2 + 15 \le 20n^2$ $\forall n \ge 1$

In order to get a n^3 on the right side we can do the following:

$$5n^2 + 15 \le \frac{20}{n}n^3 \qquad \forall n \ge 1$$

For $5n^2 + 15 \in o(n^3)$, it must be the case that for any value of c > 0:

$$5n^2 + 15 \le \frac{20}{n}n^3 \le cn^3 \qquad \forall n \ge 1$$

At the moment $5n^2 + 15$ is not relevant so we can remove it and solve for n_0 :

$$\frac{20}{n}n^3 \le cn^3 \qquad \forall n \ge 1$$
$$n \ge \frac{20}{c} \quad \forall n \ge 1$$

Therefore $n \geq \frac{20}{c}$ and $n \geq 1$ which tells us that:

$$n_0 = \lceil rac{20}{c}
ceil$$

Thus for any value c > 0 we can get a value for n_0 such that:

$$5n^2 + 15 \le \frac{20}{n}n^3 \le cn^3 \qquad \forall n \ge n_0$$

Which by first principles proves that $5n^2 + 15 \in o(n^3)$.