Convexité

Parties convexes

Solution 1

Supposons que tout barycentre de points de \mathcal{C} à coefficients positifs est dans \mathcal{C} . Soient $A, B \in \mathcal{C}$. D'après note hypothèse, pour tout $\lambda \in [0, 1]$, le barycentre de $((A, \lambda), (B, 1 - \lambda))$ est dans \mathcal{C} i.e. $[AB] \subset \mathcal{C}$.

Réciproquement, supposons que $\mathcal C$ soit convexe. On va raisonner par récurrence sur le nombre de points :

HR(n): pour toute famille de points pondérés $((A_i, \lambda_i))_{1 \le i \le n}$ de \mathcal{C} à coefficients positifs, le barycentre de cette famille est dans \mathcal{C} .

Initialisation HR(1) est vraie puisque le barycentre d'un unique point est ce point lui-même.

Hérédité Supposons HR(n) pour un certain $n \ge 1$. Soit $((A_i, \lambda_i))_{1 \le i \le n+1}$ une famille de points pondérés de \mathcal{C} à coefficients positifs. Soit G le barycentre de cette famille de points pondérés. Posons $\Lambda = \sum_{i=1}^{n+1} \lambda_i$ et $\Lambda' = \Lambda - \lambda_{n+1}$.

- Si $\Lambda' = 0$, alors $\lambda_i = 0$ pour tout $i \in [1, n]$ car une somme de termes positifs est nulle si et seulement si chacun des termes est nul. Mais alors $G = A_{n+1} \in \mathcal{C}$.
- Si $\Lambda' = \Lambda \lambda_{n+1} \neq 0$, notons G' le barycentre de la famille $((A_i, \lambda_i))_{1 \leq i \leq n}$. D'après HR(n), $G' \in \mathcal{C}$. De plus, G est le barycentre de $((G', \Lambda'), (A_{n+1}, \lambda_{n+1}))$ avec $\Lambda' \geq 0$ et $\lambda_{n+1} \geq 0$. Ainsi $G \in [G'A_{n+1}]$. Comme \mathcal{C} est convexe, $G \in \mathcal{C}$.

Conclusion HR(n) est vrai pour tout $n \ge 1$.

Solution 2

Soit A une matrice vérifiant les conditions de l'énoncé. Notons \mathcal{C} le cône $(\mathbb{R}_+)^n$. Alors \mathcal{C} est stable par A i.e. $A(\mathcal{C}) \subset \mathcal{C}$ et par A^{-1} i.e. $A^{-1}(\mathcal{C}) \subset \mathcal{C}$.

On note $(e_i)_{1 \le i \le n}$ la base canonique de \mathbb{R}^n . On va montrer que pour $x \in \mathbb{C}$, $x \in \bigcup_{i=1}^n \mathbb{R}_+ e_i$ si et seulement si

(*)
$$\forall \lambda \in]0,1[,\forall (v,z) \in \mathcal{C}, x = (1-\lambda)v + \lambda z \implies x,v,z \text{ colinéaires}$$

Soit donc $i \in [\![1,n]\!]$, $\alpha \in \mathbb{R}_+$ et $x = \alpha e_i$. Soient enfin $\lambda \in]\![0,1[,y,z \in \mathbb{C} \text{ tels que } x = (1-\lambda)y + \lambda z.$ Notons $y = (y_1,\ldots,y_n)$ et $z = (z_1,\ldots,z_n)$. On a donc pour $j \neq i$, $(1-\lambda)y_j + \lambda z_j = 0$. Or $y_j \geq 0$, $z_j \geq 0$, $1-\lambda > 0$ et $\lambda > 0$ donc $y_j = z_j = 0$. Donc $y,z \in \text{vect}(e_i)$ i.e. x,y,z sont colinéaires.

Soit $x \in \mathbb{C}$ n'appartenant pas à $\bigcup_{i=1}^n \mathbb{R}_+ e_i$. Notons $x = (x_1, \dots, x_n)$. Il existe donc $i, j \in [1, n[$ distincts tels que $x_i > 0$ et $x_j > 0$. Posons $y = x_i e_i + \sum_{k \neq j} x_k e_k$ et $z = x_j e_j + \sum_{k \neq i} x_k e_k$. On a alors $x = \frac{1}{2}y + \frac{1}{2}z$ et x, y, z non colinéaires.

Soit $i \in [\![1,n]\!]$. Soient $\lambda \in]\![0,1[\![,y,z \in \mathcal{C}$ tels que $Ae_i = (1-\lambda)y + \lambda z$. Ainsi $e_i = (1-\lambda)A^{-1}y + \lambda A^{-1}z$. Or \mathcal{C} est stable par A^{-1} donc $A^{-1}y$ et $A^{-1}z$ appartiennent à \mathcal{C} . On en déduit que e_i , $A^{-1}y$ et $A^{-1}z$ sont colinéaires. Par conséquent, Ae_i , y et z sont colinéaires. Ceci prouve que $Ae_i \in \bigcup_{j=1}^n \mathbb{R}_+ e_j$. Il existe donc des réels positifs $\lambda_1, \ldots, \lambda_n$ et une application σ de $[\![1,n]\!]$ dans lui-même telle que $Ae_i = \lambda_i e_{\sigma}(i)$. Comme A est inversible, les λ_i sont non nuls. On en déduit également que σ est injective donc bijective. En posant D la matrice diagonale dont les coefficients sont les λ_i et P la matrice de permutation associée à la permutation σ i.e. la matrice $\left(\delta_{i,\sigma(j)}\right)_{1\leq i,j\leq n}$, on a donc A = PD.

Réciproquement soient P une matrice de permutation et D une matrice diagonale dont les éléments diagonaux sont strictement positifs. Alors A = PD est bien inversible puisque P et D le sont. A est bien à coefficients positifs et $A^{-1} = D^{-1}P^{-1} = D^{-1}P^{T}$ également.

Les matrices recherchées sont donc exactement les produits d'une matrice de permutation et d'une matrice diagonale dont les éléments diagonaux sont strictement positifs.

Remarque. La clé de la solution est de montrer qu'une application linéaire A telle que $A(\mathcal{C}) = \mathcal{C}$ induit une permutation des arêtes du cône (les demi-droites $\mathbb{R}_+ e_i$).

Solution 3

Notons \mathcal{E} l'épigraphe de f. Soient (x_1, y_1) et (x_2, y_2) dans \mathcal{E} et $t \in [0, 1]$. Posons $(x, y) = (1 - t)(x_1, y_1) + t(x_2, y_2) = ((1 - t)x_1 + tx_2, (1 - t)y_1 + ty_2)$. Comme f est convexe, $f(x) = f((1 - t)x_1 + tx_2) \le (1 - t)f(x_1) + tf(x_2)$. Puisque (x_1, y_1) et (x_2, y_2) sont dans \mathcal{E} , $f(x_1) \le y_1$ et $f(x_2) \le y_2$. On en déduit $f(x) \le (1 - t)y_1 + ty_2 = y$. Ainsi $(x, y) \in \mathcal{E}$. Ainsi \mathcal{E} est convexe.

Solution 4

- 1. Notons \mathcal{C}' l'ensemble des barycentres à coefficients positifs de points de \mathcal{A} .
 - Montrons que \mathcal{C}' est convexe. Soient A et B deux points de \mathcal{C}' . Alors A et B sont des barycentres à coefficients positifs de points de \mathcal{C} . Il existe donc une famille finie de points pondérés $(A_i, \lambda_i)_{i \in I}$ dont A est le barycentre. De même, il existe donc une famille finie de points pondérés $(B_j, \mu_j)_{j \in J}$ dont B est le barycentre. Mais alors pour tout $\lambda \in [0, 1]$, $(1 \lambda)A + \lambda B$ est le barycentre de la réunion des familles $(A_i, (1 \lambda)\lambda_i)_{i \in I}$ et $(B_j, \lambda \mu_j)_{j \in J}$ par associativité du barycentre. Ceci prouve que $(1 \lambda)A + \lambda B$ est un barycentre à coefficients positifs de points de \mathcal{C} et appartient donc à \mathcal{C}' . Ainsi \mathcal{C}' est convexe.

Montrons que \mathcal{C}' est le plus petit convexe contenant \mathcal{A} . Soit \mathcal{D} un convexe contenant \mathcal{A} . Alors \mathcal{D} est stable par barycentration positive. Il contient donc tous les barycentres à coefficients positifs de points de \mathcal{A} . Ainsi $\mathcal{C}' \subset \mathcal{D}$. \mathcal{C}' est donc bien le plus petit convexe contenant \mathcal{A} i.e. $\mathcal{C}' = \mathcal{C}$.

2. Notons \mathcal{C}'' l'ensembles des barycentres à coefficients positifs de n+1 points de \mathcal{A} . On a clairement $\mathcal{C}'' \subset \mathcal{C}' = \mathcal{C}$. Réciproquement soit $G \in \mathcal{C} = \mathcal{C}'$. Il existe donc $(A_1, \dots, A_p) \in \mathcal{A}^p$ et $(\lambda_1, \dots, \lambda_p) \in (\mathbb{R}_+)^p$ tel que $\sum_{i=1}^p \lambda_i = 1$ (on normalise les coefficients) et $G = \sum_{i=1}^p \lambda_i A_i$.

Supposons p > n + 1. Alors la famille $(\overline{A_1}\overline{A_i})_{\substack{2 \le i \le p \\ (\alpha_2, \dots, \alpha_p)}}$ comporte p - 1 éléments et p - 1 > n donc cette famille est liée. Il existe donc $(\alpha_2, \dots, \alpha_p) \in \mathbb{R}^{p-1}$ non nul tel que $\sum_{i=2}^p \alpha_i \overline{A_1} \overline{A_i} = 0$. Posons également $\alpha_1 = -\sum_{i=2}^p \alpha_i$. Alors

$$\sum_{i=1}^{p} \alpha_i \mathbf{A}_i = \alpha_1 \mathbf{A}_1 + \sum_{i=2}^{p} \alpha_i \mathbf{A}_i = -\sum_{i=2}^{p} \alpha_i \mathbf{A}_1 + \sum_{i=2}^{p} \alpha_i \mathbf{A}_i = \sum_{i=2}^{p} \alpha_i \overrightarrow{\mathbf{A}}_1 \overrightarrow{\mathbf{A}}_i = \overrightarrow{\mathbf{0}}$$

Puisque $\sum_{i=1}^p \alpha_i = 0$ et que les α_i ne sont pas tous nuls, il existe $j \in [1, p]$ tel que $\alpha_j < 0$. On peut alors définir

$$\tau = \min \left\{ -\frac{\lambda_i}{\alpha_i}, i \in [[1, p]], \alpha_i < 0 \right\}$$

et on pose $\mu_i = \lambda_i + \tau \alpha_i$ pour tout $i \in [1, p]$. Par construction, les μ_i sont positifs. De plus,

$$\sum_{i=1}^{p} \mu_{i} = \sum_{i=1}^{p} \lambda_{i} + \tau \sum_{i=1}^{p} \alpha_{i} = 1$$

Enfin, il existe $j \in [1, p]$ tel que $\mu_j = 0$ (l'indice pour lequel le minimum définissant τ est atteint). Il en résulte que

$$\sum_{i \in [\![1,p]\!] \setminus \{j\}} \mu_i \mathbf{A}_i = \sum_{i=1}^p \mu_i \mathbf{A}_i = \sum_{i=1}^p \lambda_i \mathbf{A}_i + \tau \sum_{i=1}^p \alpha_i \mathbf{A}_i = \mathbf{G} + \overrightarrow{\mathbf{0}} = \mathbf{G}$$

Ainsi G est un barycentre à coefficients positifs de p-1 points de A.

En répétant ce procédé, on prouve que G est un barycentre à coefficients positifs de n+1 points de \mathcal{A} .

Solution 5

C'est évident graphiquement mais on peut le prouver. Soient (x_1, y_1) et (x_2, y_2) deux points de C. Soit également $\lambda \in [0, 1]$. Posons $(X, Y) = (1 - \lambda)(x_1, y_1) + \lambda(x_2, y_2) = ((1 - \lambda)x_1 + \lambda x_2, (1 - \lambda)y_1 + \lambda y_2)$. Par inégalité triangulaire,

$$|X| \le |(1 - \lambda)x_1| + |\lambda x_2| = (1 - \lambda)|x_1| + \lambda|x_2| \le 1 - \lambda + \lambda = 1$$

$$|Y| \le |(1 - \lambda)y_1| + |\lambda y_2| = (1 - \lambda)|y_1| + \lambda|y_2| \le 1 - \lambda + \lambda = 1$$

Ainsi $(X, Y) \in C$. Ceci prouve que C est convexe.

Remarque. De manière générale, un produit cartésien de convexes est un convexe. Il suffit alors de remarquer que $C = [-1,1]^2$ pour conclure. En effet, [-1,1] est un intervalle de \mathbb{R} donc un convexe.

Solution 6

Soit $(x, y) \in (C_1 + C_2)^2$. ALors il existe $(x_1, y_1) \in C_1^2$ et $(x_2, y_2) \in C_2^2$ tels que $x = x_1 + x_2$ et $y = y_1 + y_2$. Soit $\lambda \in [0, 1]$. Alors

$$(1 - \lambda)x + \lambda y = [(1 - \lambda)x_1 + \lambda y_1] + [(1 - \lambda)x_2 + \lambda y_2]$$

Or, par convexité de C_1 et C_2 , $(1-\lambda)x_1 + \lambda y_1 \in C_1$ et $(1-\lambda)x_2 + \lambda y_2 \in C_2$. Ainsi $(1-\lambda)x + \lambda y \in C_1 + C_2$ de sorte que $C_1 + C_2$ est convexe.

Inégalités

Solution 7

La restriction f de sin à $[0, \frac{\pi}{2}]$ est concave (considérer le signe de la dérivée seconde). La tangente à \mathcal{C}_f en 0 a pour équation y=x. La corde reliant les points de \mathcal{C}_f d'abscisse 0 et $\frac{\pi}{2}$ a pour équation $y=\frac{2}{\pi}x$. La fonction f étant concave, la courbe \mathcal{C}_f est comprise entre cette tangente et cette corde d'où l'inégalité voulue.

Solution 8

- 1. f est dérivable deux fois sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $f''(x) = \frac{1}{x} > 0$. Donc f est convexe sur \mathbb{R}_+^* .
- 2. Soit $x \in]0,1[$. Par convexité de $f,\frac{1}{2}(f(x)+f(1-x)) \ge f\left(\frac{x+1-x}{2}\right) = f\left(\frac{1}{2}\right)$ i.e. $\frac{1}{2}(x\ln x + (1-x)\ln(1-x) \ge \frac{1}{2}\ln\frac{1}{2}$ et donc $x\ln x + (1-x)\ln(1-x) \ge \ln\frac{1}{2}$. Un passage à l'exponentielle donne l'inégalité demandée.

Solution 9

1. Rappelons que $\frac{1}{b-a} \int_a^b f(t) \, dt$ est par définition la valeur moyenne de f sur [a,b]. L'inégalité à démontrer est donc une inégalité de concavité : la moyenne du logarithme est inférieure au logarithme de la moyenne. Malheureusement nous n'avons accès aux inégalités de concavité que pour le cas discret : on va donc s'y ramener via les sommes de Riemann.

Soit $n \in \mathbb{N}^*$. Posons $a_k = a + k \frac{b-a}{n}$ pour $0 \le k \le n-1$. Par concavité de ln, on a :

$$\frac{1}{n} \sum_{k=0}^{n-1} \ln(f(a_k)) \le \ln\left(\frac{1}{n} \sum_{k=0}^{n-1} f(a_k)\right)$$

Comme $\ln \circ f$ et f sont continues sur [a, b], le théorème sur les sommes de Riemann nous dit que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln(f(a_k)) = \frac{1}{b-a} \int_a^b \ln(f(t)) dt \quad \text{et} \quad \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(a_k) = \frac{1}{b-a} \int_a^b f(t) dt$$

On a donc l'inégalité demandée par passage à la limite.

REMARQUE. L'inégalité en question porte le nom d'inégalité de Jensen.

2. Notons $I_n = \frac{1}{n} \int_1^n \left(1 + \frac{1}{t}\right)^t dt$.

Remarquons que $\left(1+\frac{1}{t}\right)=\exp\left(t\ln\left(1+\frac{1}{t}\right)\right)$ pour tout $t\in[1,n]$. Or on a classiquement $\ln(1+u)\leq u$ (par concavité de ln par exemple). Donc $\left(1+\frac{1}{t}\right)\leq e$ pour tout $t\in[1,n]$. On obtient donc $\mathrm{I}_n\leq\frac{(n-1)e}{n}$.

Par ailleurs, en utilisant la première question, on a

$$\ln(\mathbf{I}_n) \ge \frac{1}{n-1} \int_1^n \ln\left(\left(1 + \frac{1}{t}\right)^t\right) dt = \frac{1}{n-1} \int_1^n t \ln\left(1 + \frac{1}{t}\right) dt$$

Posons $u_n = \frac{1}{n-1} \int_1^n t \ln \left(1 + \frac{1}{t}\right) dt$. Par intégration par parties :

$$\begin{split} \int_{1}^{n} t \ln \left(1 + \frac{1}{t}\right) \, \mathrm{d}t &= \frac{1}{2} \left[t^{2} \ln \left(1 + \frac{1}{t}\right)\right]_{1}^{n} + \frac{1}{2} \int_{1}^{n} \frac{dt}{1 + \frac{1}{t}} &= \frac{n^{2}}{2} \ln \left(1 + \frac{1}{n}\right) - \frac{1}{2} \ln 2 + \frac{1}{2} \left(1 - \frac{1}{t+1}\right) \, \mathrm{d}t \\ &= \frac{n^{2}}{2} \ln \left(1 + \frac{1}{n}\right) - \frac{1}{2} \ln 2 + \frac{1}{2} \left[t - \ln(t+1)\right]_{1}^{n} = \frac{n^{2}}{2} \ln \left(1 + \frac{1}{n}\right) + \frac{n}{2} - \frac{1}{2} \ln(n+1) + \frac{1}{2} \ln 2 - \frac{1}{2} \ln n + \frac{1}{2} \ln n$$

Par conséquent, $\lim_{n \to +\infty} u_n = 1$. On a l'encadrement de I_n suivant : $e^{u_n} \le I_n \le \frac{(n-1)e}{n}$. Le théorème des gendarmes nous assure que (I_n) converge vers e.

Solution 10

Pour simplifier, supposons que Γ soit le cercle trigonométrique. Soit $A_0 \dots A_{n-1}$ un polygone à n côtés inscrit dans Γ . Comme ce polygone est convexe, on peut supposer les sommets A_0, \dots, A_{n-1} rangés dans cet ordre (trigonométrique par exemple) sur le cercle Γ . Pour simplifier, les indices i seront à considérer modulo n dans la suite.

Notons θ_i la mesure de l'angle $(\overrightarrow{OA_i}, \overrightarrow{OA_{i+1}})$ comprise entre 0 et 2π pour $0 \le i \le n-1$. On a donc $\sum_{i=0}^{n-1} \theta_i = 2\pi$. L'aire $\mathcal A$ du polygone $A_0 \dots A_{n-1}$ est la somme des aires orientées des triangles OA_iA_{i+1} pour $0 \le i \le n-1$. Ainsi l'aire du polygone est $\sum_{n=1}^{n-1} \sin \theta_i$. Remarquons en particulier que l'aire d'un polygone régulier à n côtés est donc $n \sin \frac{2\pi}{n}$.

• Supposons que tous les θ_i soient dans $[0, \pi]$. La fonction sin étant concave sur $[0, \pi]$, l'inégalité de concavité généralisée montre que

$$\sum_{i=0}^{n-1} \frac{1}{n} \sin \theta_i \le \sin \left(\sum_{i=0}^{n-1} \frac{1}{n} \theta_i \right)$$

car $\sum_{i=0}^{n-1} \frac{1}{n} = 1$. Puisque $\sum_{i=0}^{n-1} \theta_i = 2\pi$, on en déduit

$$\mathcal{A} = \sum_{i=0}^{n-1} \sin \theta_i \le n \sin \frac{2\pi}{n}$$

L'aire \mathcal{A} est donc majorée par l'aire d'un polygone régulier à n côtés inscrit dans Γ .

• Supposons maintenant qu'il existe $j \in [0, n-1]$ tel que θ_j soit strictement supérieur à π . Comme $\sum_{\substack{0 \le i \le n-1 \ i \ne j}} \theta_i = 2\pi - \theta_j < \pi$ et que les

 θ_i sont positifs, tous les θ_i pour $i \neq j$ sont dans l'intervalle $[0, \pi]$. Par concavité de la fonction sin sur $[0, \pi]$, on obtient :

$$\begin{split} \sum_{\substack{0 \leq i \leq n-1 \\ i \neq j}} \frac{1}{n-1} \sin \theta_i & \leq \sin \left(\sum_{\substack{0 \leq i \leq n-1 \\ i \neq j}} \frac{1}{n-1} \theta_i \right) \\ & \leq \sin \left(\frac{2\pi - \theta_j}{n-1} \right) \end{split}$$

Comme $\theta_j > \pi$ et $n \ge 3$,

$$0 \le \frac{2\pi - \theta_j}{n - 1} < \frac{\pi}{n - 1} \le \frac{\pi}{2}$$

Puisque sin est strictement croissante sur $\left[0, \frac{\pi}{2}\right]$,

$$\sin\left(\frac{2\pi-\theta_j}{n-1}\right) < \sin\frac{\pi}{n-1}$$

Puisque $\sin \theta_i < 0$,

$$\mathcal{A} = \sin \theta_j + \sum_{\substack{0 \le i \le n-1 \\ i \ne j}} \sin \theta_i$$

$$< (n-1) \sin \frac{\pi}{n-1}$$

Si n=3, on a donc $\mathcal{A}<2$. Or l'aire d'un triangle équilatéral inscrit dans Γ est $3\frac{\sqrt{3}}{2}>2$. Si $n\geq 4$, alors

$$0 \le \frac{\pi}{n-1} \le \frac{2\pi}{n} \le \frac{\pi}{2}$$

Par croissance de sin sur $\left[0, \frac{\pi}{2}\right]$

$$\mathcal{A} < (n-1)\sin\frac{\pi}{n-1} \le (n-1)\sin\frac{2\pi}{n} < n\sin\frac{2\pi}{n}$$

L'aire \mathcal{A} ne peut donc être maximale puisqu'elle est strictement inférieure à celle d'un polygone régulier à n côtés inscrit dans Γ .

Solution 11

Remarquons tout d'abord que le membre de gauche est bien défini i.e. que $\frac{1}{b-a}\int_a^b f(t)\,\mathrm{d}t$ appartient bien à f([a,b]). En effet, f est continue sur le segment [a,b] donc $f([a,b])=[m,\mathrm{M}]$ avec $m=\min_{[a,b]}f$ et $\mathrm{M}=\max_{[a,b]}f$. Puisque $m\leq f\leq \mathrm{M}$ sur [a,b], $m\leq \frac{1}{b-a}\int_a^b f(t)\,\mathrm{d}t\leq \mathrm{M}$ en intégrant.

Posons alors pour $n \in \mathbb{N}^*$

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$$

$$T_n = \frac{b-a}{n} \sum_{k=0}^{n-1} \varphi \circ f\left(a + k \frac{b-a}{n}\right)$$

Le théorème sur les sommes de Riemann permet d'affirmer que (S_n) et (T_n) convergent respectivement vers $\int_a^b f(t) dt$ et $\int_a^b \phi \circ f(t) dt$. De plus, l'inégalité de convexité généralisée montre que

$$\varphi\left(\frac{1}{n}\sum_{k=0}^{n-1}f\left(a+k\frac{b-a}{n}\right)\right) \le \frac{1}{n}\sum_{k=0}^{n-1}\varphi\circ f\left(a+k\frac{b-a}{n}\right)$$

ce qui s'écrit encore

$$\varphi(\frac{1}{b-a}\mathbf{S}_n) \le \frac{1}{b-a}\mathbf{T}_n$$

La continuité de φ permet alors d'obtenir l'inégalité voulue par passage à la limite.

Solution 12

La courbe de f étant située au-dessus de ses cordes, on obtient en comparant l'aire d'un trapèze à une intégrale

$$\forall x \in [0, 1], x \frac{f(x) + f(0)}{2} \le \int_0^x f(t) \, dt$$

Remarque. Si l'examinateur n'est pas convaincu par cet argument géométrique, on peut affirmer qu'un paramétrage de la corde passant par les points de la courbe d'abscisses 0 et x est

 $t \mapsto \frac{f(x) - f(0)}{x - 0}t + f(0)$

Ainsi

$$\forall t \in [0, x], \ \frac{f(x) - f(0)}{x}t + f(0) \le f(t)$$

et donc

$$\int_0^x \left(\frac{f(x) - f(0)}{x} t + f(0) \right) dt \le \int_0^x f(t) dt$$

ce qui donne le résultat escompté.

Puisque f(0) = 1, on a donc

$$\forall x \in [0, 1], x \frac{f(x) + 1}{2} \le \int_0^x f(t) dt$$

On pose alors $F(x) = \int_0^x f(t) dt$. En intégrant sur [0, 1],

$$\frac{1}{2} \int_0^1 x f(x) \, \mathrm{d}x + \frac{1}{4} \le \int_0^1 F(x) \, \mathrm{d}x$$

En intégrant par parties, on obtient

$$\int_0^1 F(x) dx = F(1) - \int_0^1 x f(x) dx = \int_0^1 f(t) dt - \int_0^1 x f(x) dx$$

En reprenant le résultat précédent, on a donc

$$\frac{3}{2} \int_0^1 x f(x) \, dx + \frac{1}{4} \le \int_0^1 f(t) \, dt$$

ou encore

$$3\int_0^1 x f(x) \, dx \le 2\int_0^1 f(t) \, dt - \frac{1}{2}$$

Par ailleurs,

$$\left(\int_0^1 f(t) \, \mathrm{d}t - \frac{1}{2}\right)^2 \ge 0$$

donc

$$\left(\int_0^1 f(t) \, \mathrm{d}t\right)^2 \ge \int_0^1 f(t) \, \mathrm{d}t - \frac{1}{4}$$

En reprenant la dernière inégalité, on obtient bien

$$3\int_0^1 x f(x) \, dx \le 2 \left(\int_0^1 f(t) \, dt \right)^2$$

ou encore

$$\int_0^1 x f(x) \, dx \le \frac{2}{3} \left(\int_0^1 f(x) \, dx \right)^2$$

Solution 13

Remarquons que

$$\ln(G_n) = \frac{1}{n} \sum_{k=1}^n \ln(a_k)$$

Puisque $\sum_{k=1}^{n} \frac{1}{n} = 1$, on obtient par concavité de ln,

$$\ln(G_n) \le \ln\left(\frac{1}{n}\sum_{k=1}^n a_k\right) = \ln(A_n)$$

donc $G_n \leq A_n$.

En appliquant ce qui précède aux réels strictement positifs $\frac{1}{a_1}, \dots, \frac{1}{a_n}$

$$\sqrt[n]{\prod_{k=1}^{n} a_k} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_k}$$

ou encore

$$\frac{1}{{\rm G}_n} \leq \frac{1}{{\rm H}_n}$$

et donc $H_n \leq G_n$.

Solution 14

1. f est de classe C^2 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f''(x) = \frac{e^x}{(1 + e^x)^2} \ge 0$$

La fonction f est donc convexe sur \mathbb{R} .

2. Posons $y_k = \ln(x_k)$ pour $k \in [1, n]$. Par convexité de f sur \mathbb{R} , on a

$$f\left(\sum_{k=1}^{n} \frac{y_k}{n}\right) \le \sum_{k=1}^{n} f\left(\frac{y_k}{n}\right)$$

et, par croissance de l'exponentielle,

$$1 + \left(\prod_{k=1}^n e^{y_k}\right)^{1/n} \le \left(\prod_{k=1}^n (1 + e^{y_k})\right)^{1/n}$$

c'est-à-dire

$$1 + \left(\prod_{k=1}^{n} x_k\right)^{1/n} \le \left(\prod_{k=1}^{n} (1 + x_k)\right)^{1/n}$$

3. Appliquons l'inégalité démontrée à la question précédente aux nombres $x_k = \frac{b_k}{a_k}$. On obtient

$$1 + \left(\prod_{k=1}^{n} \frac{b_k}{a_k}\right)^{1/n} \le \left(\prod_{k=1}^{n} (1 + \frac{b_k}{a_k})\right)^{1/n}$$

puis en multipliant par

$$\left(\prod_{k=1}^{n} a_k\right)^{1/n} > 0$$

on aboutit à

$$\left(\prod_{k=1}^{n} a_{k}\right)^{1/n} + \left(\prod_{k=1}^{n} b_{k}\right)^{1/n} \le \left(\prod_{k=1}^{n} (a_{k} + b_{k})\right)^{1/n}$$

Solution 15

1. Soit $(u, v) \in (\mathbb{R}_+^*)^2$. Par concavité de ln sur \mathbb{R}_+^* , puisque $\frac{1}{p} + \frac{1}{q} = 1$,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \geq \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(u^q)$$

c'est-à-dire,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \ge \ln(uv)$$

Ainsi par croissance de la fonction exponentielle,

$$uv \le \frac{u^p}{p} + \frac{u^q}{q}$$

2. Posons pour tout $k \in [1, n]$

$$x'_{k} = \frac{x_{k}}{\left(\sum_{k=1}^{n} x_{k}^{p}\right)^{1/p}}$$
 et $y'_{k} = \frac{y_{k}}{\left(\sum_{k=1}^{n} y_{k}^{q}\right)^{1/q}}$

D'après l'inégalité de Young, pour tout $k \in [1, n]$,

$$x_k' y_k' \le \frac{x_k'^p}{p} + \frac{y_k'^q}{q}$$

En additionnant ces n inégalités membre à membre, on obtient,

$$\sum_{k=1}^{n} x_k' y_k' \le A + B$$

οù

$$A = \frac{1}{p} \frac{\sum_{k=1}^{n} x_{k}^{p}}{\sum_{k=1}^{n} x_{k}^{p}} = \frac{1}{p} \qquad \text{et} \qquad B = \frac{1}{q} \frac{\sum_{k=1}^{n} y_{k}^{q}}{\sum_{k=1}^{n} y_{k}^{q}} = \frac{1}{q}$$

On a donc,

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{1/p} \left(\sum_{k=1}^{n} y_k^q\right)^{1/q}$$

3. On remarque que, pour tout entier naturel $k \in [1, n]$,

$$(x_k + y_k)^p = x_k(x_k + y_k)^{p-1} + y_k(x_k + y_k)^{p-1}$$

Par application de l'inégalité de Hölder à p > 1 et $q = \frac{p}{p-1} > 0$ (on a bien 1/p + 1/q = 1), on obtient

$$\sum_{k=1}^{n} x_k (x_k + y_k)^{p-1} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

puis une seconde fois,

$$\sum_{k=1}^{n} y_k (x_k + y_k)^{p-1} \le \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

et donc, en sommant ces deux inégalités,

$$\sum_{k=1}^{n} (x_k + y_k)^p \le \left[\left(\sum_{k=1}^{n} x_k^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p \right)^{\frac{1}{p}} \right] \left(\sum_{k=1}^{n} (x_k + y_k)^p \right)^{\frac{p-1}{p}}$$

En divisant l'inégalité de ci-dessus par

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}} > 0$$

on obtient donc,

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}$$

Solution 16

1. L'inégalité $H(p) \ge 0$ est claire car pour tout $i \in [1, n]$, $p_i \ge 0$ et $\ln(p_i) \ge 0$ car tous les p_i sont inférieurs à 1. Remarquons que la fonction ln est concave sur \mathbb{R}_+^* car elle y est de classe C^2 et $\ln'': x \mapsto \frac{1}{x^2}$ y estpositive.

Comme $\sum_{i=1}^{n} p_i = 1$

$$\sum_{i=1}^{n} p_i \ln(\frac{1}{p_i}) \le \ln\left(\sum_{i=1}^{n} \frac{1}{p_i} \cdot p_i\right)$$

ou encore

$$H(p) \le \ln(n)$$

2. Toujours par concavité de ln,

$$\sum_{i=1}^{n} p_i \ln \left(\frac{q_i}{p_i} \right) \le \ln \left(\sum_{i=1}^{n} p_i \cdot \frac{q_i}{p_i} \right) = \ln(1) = 0$$

ce qui donne l'inégalité voulue.

Théorie

Solution 17

Raisonnons par l'absurde et supposons que f ne soit pas convexe. Il existe donc $a,b \in \mathbb{R}$ tels que a < b et $x \in [a,b]$ tel que $f(x) > \phi(x)$ où ϕ : $t \in [a,b] \mapsto \frac{f(b)-f(a)}{b-a}(t-a)+f(a)$ (le graphe de f n'est pas toujours au-dessus de ses cordes). Notons g: $t \in [a,b] \mapsto f(t)-\phi(t)$, g est continue sur le segment [0,1] donc elle atteint sa borne supérieure M sur ce segment. Comme

Notons $g: t \in [a,b] \mapsto f(t) - \varphi(t)$. g est continue sur le segment [0,1] donc elle atteint sa borne supérieure M sur ce segment. Comme g(x) > 0, M > 0. Soit $E = \{t \in [a,b] \mid g(t) = M\}$. Cette partie est non vide et majorée donc admet une borne supérieure g(t) = g(t) = g(t). Par continuité de g, g(y) = g(t) = g(t) (considérer une suite d'éléments de g(t) = g(t)).

Puisque g(a) = g(b) = 0, on a a < y < b. De plus, g(y) > 0 et g est continue, donc il existe $\varepsilon > 0$ tel que $[y - \varepsilon, y + \varepsilon] \subset [a, b]$ et g(t) > 0 pour tout $t \in [y - \varepsilon, y + \varepsilon]$. Posons $c = y - \varepsilon$ et $d = y + \varepsilon$.

- Pour $t \in [c, y], g(t) \leq M$ puisque g est majorée par M.
- Pour $t \in]y, d], g(t) < M$ par maximalité de y.

Il s'ensuit que $\int_{c}^{\infty} g(t) dt \le M(d-c)$. On ne peut avoir égalité sinon on aurait g(t) = M pour tout $t \in [c,d]$ en utilisant la continuité de g et on a vu que ce n'était pas le cas pour $t \in [y, d]$.

D'une part, $M = g(y) = g\left(\frac{c+d}{2}\right) = f\left(\frac{c+d}{2}\right) - \varphi\left(\frac{c+d}{2}\right)$. D'autre part, $\int_{0}^{d} g(t) dt = \int_{0}^{d} f(t) dt - \int_{0}^{d} \varphi(t) dt$. Un dernier petit calcul donne:

$$\int_{c}^{d} \varphi(t) dt = \int_{c}^{d} \left[\frac{f(b) - f(a)}{b - a} (t - a) + f(a) \right] dt = \frac{f(b) - f(a)}{b - a} \left(\frac{(d - a)^{2}}{2} - \frac{(c - a)^{2}}{2} \right) + f(a)(d - c) = (d - c)\varphi\left(\frac{c + d}{2} \right) + f(a)(d -$$

On en déduit que $f\left(\frac{c+d}{2}\right) > \int_{0}^{d} f(t) dt$ d'où une contradiction avec l'inégalité de l'énoncé.

REMARQUE. Il est fortement conseillé de faire un petit dessin pour bien comprendre ce qui se passe.

Solution 18

1. Soient $(x, y) \in \mathbb{R}^2$ tel que x < y. On applique l'inégalité de l'énoncé au couple (x, y) et (y, x) de sorte que

$$F(y) - F(x) \ge (y - x)f(x)$$
 et $F(x) - F(y) \ge (x - y)f(y)$

On obtient alors $f(x) \le \frac{\mathrm{F}(y) - \mathrm{F}(x)}{v - x} \le f(y)$. Ceci prouve que f est croissante.

2. Soit $x \in \mathbb{R}$. Pour y > x, on a $f(x) \le \frac{F(y) - F(x)}{y - x} \le f(y)$ donc, d'après le théorème des gendarmes et la continuité de f, $\lim_{y \to x^+} \frac{F(y) - F(x)}{y - x} = \frac{F(y) - F(x)}{y - x}$

Pour x < y, on a de même $f(y) \le \frac{F(y) - F(x)}{y - x} \le f(x)$ donc, d'après le théorème des gendarmes et la continuité de f, $\lim_{y \to x^-} \frac{F(y) - F(x)}{y - x} = \frac{F(y) - F(x)}{y - x}$

On en déduit que F est dérivable en x de dérivée F'(x) = f(x). Ainsi F est dérivable sur \mathbb{R} et F' = f, ce qui prouve que F est une primitive de f.

3. F' = f est croissante sur \mathbb{R} donc F est convexe.

Solution 19

Supposons f non constante. Il existe donc $p \in \mathbb{Z}$ tel que $f(p) \neq f(p+1)$. Posons a = f(p+1) - f(p) et supposons a < 0. Remarquons que l'inégalité de l'énoncé peut se traduire par :

$$\forall n \in \mathbb{Z}, f(n+1) - f(n) \le f(n) - f(n-1)$$

On a donc pour $n \ge p$, $f(n+1) - f(n) \le f(p+1) - f(p) = a$. De plus, $f(n) - f(p) = \sum_{k=p}^{n-1} f(k+1) - f(k) \le (n-p)a$ et donc $f(n) \le f(p) + (n-p)a$. Comme a < 0, $\lim_{n \to +\infty} f(n) = -\infty$, ce qui contredit le fait que f est minorée. On prouve de la même manière que si a > 0, $\lim_{n \to -\infty} f(n) = -\infty$.

Par conséquent, f est constante.

Solution 20

Notons \mathcal{C} l'ensemble des fonctions convexes sur \mathbb{R} inférieures à f. \mathcal{C} est non vide puisqu'il contient la fonction nulle. Pour $x \in \mathbb{R}$, l'ensemble $\{h(x) \mid h \in \mathbb{C}\}\$ est donc non vide et majoré par f(x): il possède donc une borne supérieure que l'on note g(x). Par définition, on a bien $h \le g$ pour tout $h \in \mathcal{C}$. Il suffit maintenant de voir que g est convexe. Soient $x, y \in \mathbb{R}$, $t \in [0, 1]$. Pour tout $h \in \mathcal{C}$,

$$h((1-t)x + ty) \le (1-t)h(x) + th(y) \le (1-t)g(x) + tg(y)$$

En passant à la borne supérieure sur h, on obtient donc

$$g((1-t)x + ty \le (1-t)g(x) + gf(y)$$

ce qui prouve que g est convexe.

Reste à démontrer l'unicité. Supposons qu'il existe deux fonctions g_1 et g_2 vérifiant les conditions de l'énoncé. On a alors $g_1 \ge g_2$ et $g_2 \le g_1$ et donc $g_1 = g_2$.

Solution 21

1. Soit $x \in \mathbb{R}$. L'ensemble $\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_2 + x_3 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_2 + x_3 = x\}$ $x_2 = x$.

Soit $(x, y) \in E_h$. On a donc y > h(x). Mais par définition de h, il existe $(x_1, x_2) \in \mathbb{R}^2$ tel que $x_1 + x_2 = x$ et $y > f(x_1) + f(x_2) \ge h(x)$. Soit $\varepsilon = y - f(x_1) - f(x_2)$ et posons alors $y_1 = f(x_1) + \frac{\varepsilon}{2}$ et $y_2 = f(x_2) + \frac{\varepsilon}{2}$. On a bien $(x_1, y_1) \in E_f$ et $(x_2, y_2) \in E_g$. Ainsi $(x, y) = (x_1, y_1) + (x_2, y_2) \in E_f + E_g.$

Soit $(x, y) \in E_f + E_g$. Il existe donc $(x_1, y_1) \in E_f$ et $(x_2, y_2) \in E_g$ tel que $(x, y) = (x_1, y_1) + (x_2, y_2)$. On a alors $y = y_1 + y_2 > y_2 + y_3 = y_1 + y_2 = y_2 + y_3 = y_3 = y_3 + y_3 = y_3 =$ $f(x_1) + f(x_2) \ge h(x)$ puisque $x = x_1 + x_2$. Ainsi $(x, y) \in E_h$.

Par double inclusion, $E_h = E_f + E_g$.

L'unicité vient du fait que h est uniquement définie par E_h . En effet, pour tout $x \in \mathbb{R}$, $h(x) = \inf\{y, (x, y) \in E_f\}$.

2. On prouve classiquement que $\varphi: \mathbb{R} \to \mathbb{R}_+$ est convexe si et seulement si E_{φ} est convexe. On prouve de même que si A et B sont deux parties convexes de \mathbb{R}^2 , alors A + B est convexe.

Ainsi, si f et g sont convexes, E_f et E_g le sont et, par conséquent, $E_h = E_f + E_g$ est également convexe. Finalement, h est convexe.

3. Prenons $f = g = 1 + \sin$. Alors pour tout $x \in \mathbb{R}$,

$$h(x) = \inf\{2 + \sin(x_1) + \sin(x_2), \ x_1 + x_2 \in \mathbb{R}\}$$

$$= 2 + \inf_{y \in \mathbb{R}} \left(\sin\left(\frac{x}{2} + y\right) + \sin\left(\frac{x}{2} - y\right) \right)$$

$$= 2 + 2 \inf_{y \in \mathbb{R}} \left(\sin\frac{x}{2} \cos y \right)$$

$$= 2 - 2 \left| \sin\frac{x}{2} \right|$$

f et g sont bien de classe \mathcal{C}^{∞} tandis que h ne l'est pas.

Solution 22

On pressent à l'aide d'un dessin que f est convexe et impaire si et seulement si f est linéaire.

Comme f est impaire, f(0) = 0. Puisque f est convexe, l'application $t \mapsto \frac{f(t) - f(0)}{t - 0} = \frac{f(t)}{t}$ est croissante sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .

Soit $x \in]0,1]$. Alors $\frac{f(x)}{x} \le \frac{f(1)}{1}$. De même, $\frac{f(-x)}{-x} \ge \frac{f(-1)}{-1}$ donc, par imparité de $f, \frac{f(x)}{x} \ge \frac{f(1)}{1}$. Finalement, f(x) = xf(1). Soit $x \in [1,+\infty[$. On a à nouveau $\frac{f(x)}{x} \ge \frac{f(1)}{1}$ et $\frac{f(-x)}{-x} \le \frac{f(-1)}{-1}$ i.e. $\frac{f(x)}{x} \le \frac{f(1)}{1}$. On en déduit encore que f(x) = xf(1). Finalement, f(x) = xf(1) pour tout $x \in \mathbb{R}^*$ puis pour tout $x \in \mathbb{R}^*$ par imparité de f. Enfin, cette égalité est vraie pour x = 0 puisque

f(0) = 0. Ainsi f(x) = xf(1) pour tout $x \in \mathbb{R}$, ce qui prouve bien que f est linéaire.

Réciproquement, une fonction linéaire et bien convexe et impaire.

Solution 23

1. Supposons qu'il existe deux réels x_1 et x_2 tels que $x_1 < x_2$ et $f(x_1) \neq f(x_2 = Alors) = \frac{f(x_2) - f(x_1)}{x_2 - x_2} \neq 0$. Supposons p > 0. Par l'inégalité des trois pentes,

$$\forall x > x_2, \ \frac{f(x) - f(x_2)}{x - x_2} \ge p$$

ou encore

$$f(x) \ge p(x - x_2) + f(x_2)$$

ainsi

$$\lim_{x \to +\infty} f(x) = +\infty$$

ce qui absurde car f est majorée.

Supposons p < 0. Par l'inégalité des trois pentes,

$$\forall x < x_1, \ \frac{f(x) - f(x_1)}{x - x_1} \ge p$$

ou encore

$$f(x) \ge p(x - x_1) + f(x_1)$$

ainsi

$$\lim_{x \to +\infty} f(x) = +\infty$$

ce qui absurde car f est majorée. On en déduit que f est constante

2. La conclusion précédente n'est plus valable comme en témoigne l'exemple de la fonction $f: x \mapsto e^{-x}$. f est convexe car de classe C^2 et de dérivée seconde positive. Elle est pourtant majorée sur \mathbb{R}_+ .

Solution 24

Supposons que f admette un minimum local en a. Alors il existe b > a tel que $b \in I$ et $f(x) \ge f(a)$ pour tout $x \in [a, b]$. Par l'inégalité des trois pentes, pour tout x > b,

$$\frac{f(x) - f(a)}{x - a} \ge \frac{f(b) - f(a)}{b - a} \ge 0$$

et ainsi $f(x) \ge f(a)$.

De même, il existe c < a tel que $c \in I$ et $f(x) \ge f(a)$ pour tout $x \in [c, a]$. Par l'inégalité des trois pentes, pour tout x < c,

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(c) - f(a)}{c - a} \le 0$$

et ainsi $f(x) \ge f(a)$.

Finalement, $f(x) \ge f(a)$ pour tout $x \in I$.

Divers

Solution 25

1. Posons $z = (\varphi_1 - \varphi_2)^2$. On a successivement

$$z' = 2(\varphi_1 - \varphi_2)(\varphi_1 - \varphi_2)'$$

puis

$$z'' = 2\left[(\varphi_1 - \varphi_2)' \right]^2 + 2(\varphi_1 - \varphi_2)(\varphi_1 - \varphi_2)'' = 2\left[(\varphi_1 - \varphi_2)' \right]^2 + f(\varphi_1 - \varphi_2)^2 \ge 0$$

2. On en déduit que z est convexe. Puisque $\varphi_1(a) = \varphi_2(b) = 0$, $\varphi \le 0$ sur [a, b]. De plus, $z = (\varphi_1 - \varphi_2)^2 \ge 0$ sur [a, b]. On en déduit que z = 0 sur [a, b] i.e. $\varphi_1 = \varphi_2$.

Solution 26

Notons (S_n) la suite des sommes partielles de la série $\sum_{n\in\mathbb{N}}a_n$. Celle-ci est non nulle à partir d'un certain rang puisqu'elle converge vers 1. Par inégalité de convexité généralisée,

$$f\left(\sum_{k=0}^{n} \frac{a_k}{S_n} x_k\right) \le \sum_{k=0}^{n} \frac{a_k}{S_n} f(x_k)$$

On obtient alors le résultat par passage à la limite.

Solution 27

Par une première intégration par parties

$$\int_0^{2\pi} f(t)\cos(t) dt = \left[f(t)\sin t\right]_0^{2\pi} - \int_0^{2\pi} f'(t)\sin t dt = -\int_0^{2\pi} f'(t)\sin t dt$$

Par une seconde intégration par parties

$$\int_0^{2\pi} f(t)\cos(t) dt = \left[f'(t)\cos t\right]_0^{2\pi} - \int_0^{2\pi} f''(t)\cos t dt = f'(2\pi) - f'(0) - \int_0^{2\pi} f''(t)\cos t dt$$

Enfin,

$$\int_0^{2\pi} f(t)\cos(t) dt = \int_0^{2\pi} f''(t) dt - \int_0^{2\pi} f''(t)\cos t dt = \int_0^{2\pi} f''(t)(1-\cos t) dt$$

Puisque f est convexe sur $[0, 2\pi]$, $f''(t) \ge 0$ pour tout $t \in [0, 2\pi]$. De plus, $1 - \cos t \ge 0$ pour tout $t \in [0, 2\pi]$. Finalement

$$\int_0^{2\pi} f(t)\cos(t) \, \mathrm{d}t \ge 0$$