Classroom Exercises

- 1. If $\overline{PQ} \cong \overline{XY}$, can you conclude that $\widehat{PQ} \cong \widehat{XY}$? Why or why not?
- 2. If $\overline{PQ} \cong \overline{RS}$, can you conclude that $\widehat{PQ} \cong \widehat{RS}$? Why or why not?

3. Study the diagram at the right and tell what theorem justifies each statement.

a.
$$LK = 8$$

b.
$$OE = 3$$

c.
$$\widehat{LK} \cong \widehat{GH}$$

4.
$$AB = 16$$
 $OM = 6$ radius = ?

5.
$$PQ = 10$$

radius = 13
 $OM = \frac{?}{}$

6. Supply reasons to complete a proof of Theorem 9-6, part (2), for one circle.

Given:
$$\bigcirc O$$
: $\overline{AB} \cong \overline{CD}$:

$$\overline{OY} \perp \overline{AB}$$
; $\overline{OZ} \perp \overline{CD}$

Prove:
$$OY = OZ$$

Proof:

Statements

Reasons

- 1. Draw radii \overline{OA} and \overline{OC} .
- 2. $\overrightarrow{OY} \perp \overrightarrow{AB}$; $\overrightarrow{OZ} \perp \overrightarrow{CD}$
- 3. $\overline{AB} \cong \overline{CD}$, or AB = CD
- 4. $\frac{1}{2}AB = \frac{1}{2}CD$
- 5. $AY = \frac{1}{2}AB$; $CZ = \frac{1}{2}CD$
- 6. AY = CZ, or $\overline{AY} \cong \overline{CZ}$
- 7. $\overline{OA} \cong \overline{OC}$
- 8. rt. $\triangle OYA \cong \text{rt. } \triangle OZC$
- 9. $\overline{OY} \cong \overline{OZ}$, or OY = OZ

- . 2
- 2 ?
- 3. ?
- 4. ?
- 5. ?
- 6. _?
- 7. _?
- 8. _?
- 9. _ ?
- 7. Suppose that in Theorem 9-6, the words "circle" and "circles" are replaced by "sphere" and "spheres." Is the resulting statement true?