

CSC380: Principles of Data Science

Predictive Modeling and Classification 2

Xinchen Yu

Midterm statistics

Total points 100:

• 8 students = 100

• 24 students >= 90

• 35 students >= 80

Midterm score curving

$$new = score + \sqrt{1 - score}$$

origin_scores	new_scores	
38	45.87400787401181	
39	46.810249675906654	
40	47.74596669241483	
41	48.681145747868605	
42	49.61577310586391	
43	50.54983443527075	
44	51.48331477354788	
45	52.41619848709566	
46	53.348469228349536	
47	54.28010988928052	
48	55.211102550927976	
49	56.14142842854285	
50	57.071067811865476	
51	58.0	
52	58.92820323027551	
53	59.855654600401046	
54	60.782329983125265	
55	61.70820393249937	
56	62.633249580710796	

origin_scores	new_scores
63	69.08276253029823
64	70.0
65	70.91607978309962
66	71.8309518948453
67	72.74456264653803
68	73.65685424949238
69	74.56776436283002
70	75.47722557505166
71	76.3851648071345
72	77.29150262212919
73	78.19615242270663
74	79.09901951359278
75	80.0
76	80.89897948556636
77	81.79583152331271
78	82.69041575982342
79	83.58257569495584
80	84.47213595499957
81	85.35889894354068

new_scores	origin_scores
86.24264068711929	82
87.12310562561765	83
88.0	84
88.87298334620742	85
89.74165738677394	86
90.605551275464	87
91.46410161513775	88
92.3166247903554	89
93.16227766016839	90
94.0	91
94.82842712474618	92
95.64575131106459	93
96.44948974278317	94
97.23606797749979	95
98.0	96
98.73205080756888	97
99.41421356237309	98
100.0	99
100.0	100

Outline

- Decision tree variations
- KNN
- Model selections and evaluations

How to construct a tree

- Assign all training instances to the root of the tree. Set current node to root node.
- For each feature:
 - a. Partition all data instances at the node by the value of the feature.
 - b. Compute the accuracy from the partitioning.
- Identify feature that results in the highest accuracy. Set this feature to be the splitting criterion at the current node.

Prereqs Lecturer HasLabs					
Rating	Easy?	M?	Sys?	Thy?	Morning?
+2	у	у	n	у	n
+2	у	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	У
+1	у	y	n	n	n
+1	у	y	n	y	n
+1	n	y	n	y	n
O	n	n	n	n	У
O	у	n	n	y	У
O	n	y	n	y	n
О	у	y	y	y	У
-1	у	y	y	n	У
-1	n	n	y	y	n
-1	n	n	y	n	У
-1	у	n	y	n	У
-2	n	n	y	y	n
-2	n	y	y	n	У
-2	у	n	y	n	n
-2	у	n	y	n	У

How to construct a tree

- Partition all instances according to attribute value of the best feature.
- Denote each partition as a child node of the current node.
- For each child node:
 - If the child node is "pure" (has instances from only one class) tag it as a leaf and return.
 - b. If not set the child node as the current node and recurse to step 2.

Types of features

↑ binary features!

- Binary
- Categorical: values in {1, ..., C} e.g., occupation, blood type
 - Option 1: Instead of 2 children, have C children.
 - Option 2: Derive C features of the form "feature=c?" for every c ∈ C.

Option 1:

Types of labels

Binary

- Multiclass: What changes do we need to make?
 - Almost none!
 - Just extend the accuracy to multiclass.

Review: criterion is accuracy

Accuracy:
$$\frac{10}{20} \cdot \frac{10}{10} + \frac{10}{20} \cdot \frac{8}{10} = \frac{18}{20} = 0.9$$

- Sum of (fraction of subgroup * fraction of correct answer in subgroup)
- What if we change it to Sum of (fraction of a subgroup * some function on that subgroup)?

Different selection criterions

Notions of uncertainty: general case

Suppose in $S \subseteq \mathcal{X} \times \mathcal{Y}$, a p_k fraction are labeled as k (for each $k \in \mathcal{Y}$).

Classification error:

$$u(S) := 1 - \max_{k \in \mathcal{Y}} p_k$$

Q Gini index:

$$u(S) := 1 - \sum_{k \in \mathcal{Y}} p_k^2$$

3 Entropy:

$$u(S) := \sum_{k \in \mathcal{Y}} p_k \log \frac{1}{p_k}$$

Each is *maximized* when $p_k = 1/|\mathcal{Y}|$ for all $k \in \mathcal{Y}$ (i.e., equal numbers of each label in S)

Each is *minimized* when $p_k = 1$ for a single label $k \in \mathcal{Y}$ (so S is **pure** in label)

Different selection criterions - Gini index

$$Gini_{maths} = 1 - \left(\frac{4}{7}\right)^2 - \left(\frac{3}{7}\right)^2 = .4897 \qquad Gini_{CS} = 1 - \left(\frac{4}{4}\right)^2 - \left(\frac{0}{4}\right)^2 = 0$$

$$Gini_{others} = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

$$Gini_{CS} = 1 - \left(\frac{4}{4}\right)^2 - \left(\frac{0}{4}\right)^2 = 0$$

$$Gini_{bkgrd} = \frac{7}{15} * .4897 + \frac{4}{15} * 0 + \frac{4}{15} * 0 = .2286$$

Pick the one with lowest Gini index as root

k-Nearest Neighbors (k-NN)

Background: Train Error vs Test Error

Error := 1 - accuracy.

Suppose we have trained a function \hat{f} on $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^m$ using a supervised learning algorithm.

• Train error: Evaluate on D.

$$\widehat{err}_D(f) \coloneqq \frac{1}{|D|} \sum_{(x,y) \in D} \mathbf{I}\{f(x) \neq y\}$$

• Test error: Evaluate on $D' = \{(x^{(i)}, y^{(i)})\}_{i=1}^{m'}$ not used for training.

Q: Choose one:

(1) train error \geq test error (2) train error \approx test error (3) train error \leq test error

Background: Train Error

Suppose our train set:

Index	Ground Truth	Predicted
0	0	1
1	1	1
2	0	0
3	0	1
4	1	0
5	0	0

$$\widehat{err}_D(f) := \frac{1}{|D|} \sum_{(x,y) \in D} \mathbf{I}\{f(x) \neq y\}$$

$$\frac{1}{6} \cdot (1+0+0+1+1+0) = \frac{1}{2}$$

Background: Workflow of Training a Classifier

Standard practice:

• Given a data set D, split it into train set D_{train} and D_{test}

• large data: 90-10 ratio (these are guidelines only)

medium data: 80-20 ratio

small data: 70-30 ratio

• Train on D_{train} and evaluate error rate on D_{test} . You trust that D_{test} will be the performance when you deploy the trained classifier.

k-nearest neighbor: main concept

- Train set: $S = \{ (x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)}) \}$
- <u>Idea</u>: given a new, unseen data point x, its label should resemble the labels of nearby points
- · What function?
 - Input: $x \in \mathbb{R}^d$

E.g., Euclidean distance

- From S, find the k nearest points to x from S; call it N(x)
- Output: the majority vote of $\{y_i: i \in N(x)\}$
 - For regression, take the average label.

Basics

How to extract features as **real values**?

- Binary features: Take 0/1
- Categorical {1,...,C} (e.g., movie genres)
 - Binary vector of length C. Set c-th coordinate 1 and 0 otherwise. one-hot encoding

id	color		id	С
1	red		1	
2	blue	One Hot Encoding	2	
3	green		3	
4	blue		4	

id	color_red	color_blue	color_green
1	1	0	0
2	0	1	0
3	0	0	1
4	0	1	0

Basics

How to extract features as **real values**?

- Binary features: Take 0/1
- Categorical {1,...,C} (e.g., movie genres)
 - Binary vector of length C. Set c-th coordinate 1 and 0 otherwise. one-hot encoding

Distance:

- (popular) Euclidean distance: $d(x, x') = \sqrt{\sum_{i=1}^{d} (x_i x_i')^2}$
- Manhattan distance : $d(x, x') = \sum_{i=1}^{d} |x_i x'_i|$

A total of d dimensions/features: i from 1 to d

Euclidean distance

Suppose there are only 2 features, and we have 2 data points A and B:

Q: If we shift a feature, would the distance change?

no

Q: What about scaling a feature?

yes

Issue: features in different scales

Suppose our train set:

Index	Weight (lbs)	Shoe size
0	130	9
1	180	10.5
2	100	6
3	210	12
4	155	7.5
5	170	9.5
6	90	7

Features in different scales can be problematic: "weight" is the dominance in the distance.

Make sure features are scaled fairly

- Features having different scale can be problematic. (e.g., weights in lbs vs shoe size)
- [Definition] Standardization
 - For each feature f, compute $\mu_f = \frac{1}{m} \sum_{i=1}^m x_f^{(i)}$, $\sigma_f = \sqrt{\frac{1}{m} \sum_{i=1}^m \left(x_f^{(i)} \mu_f \right)^2}$
 - Then, transform the data by $\forall f \in \{1, ..., d\}, \forall i \in \{1, ..., m\}, \ x_f^{(i)} \leftarrow \frac{x_f^{(i)} \mu_f}{\sigma_f}$

after transformation, each feature has mean 0 and variance 1

- Be sure to keep the "standardize" function and apply it to the test points.
 - Save $\{(\mu_f, \sigma_f)\}_{f=1}^d$
 - For test point x^* , apply $x_f^* \leftarrow \frac{x_f^* \mu_f}{\sigma_f}$, $\forall f$

Standardization

After transformation, each feature has mean 0 and variance 1.

- Given: labeled data D
- Training
 - Compute and save $\{(\mu_f, \sigma_f)\}_{f=1}^d$
 - Compute and save standardization of D
- Test
 - Given x^* , apply standardization $x_f^* \leftarrow \frac{x_f^* \mu_f}{\sigma_f}$, $\forall f$
 - Compute k nearest neighbors $N(x^*)$
 - Predict by majority vote label in $N(x^*)$ (average label for regression tasks)

Issues 1: irrelevant features

Q: how did we deal with irrelevant features in decision trees?

not all features are used because (a) we stop adding features when having 0 local accuracy, (b) prune the tree

Issue 2: choosing k

Comparison

	Decision Tree	k-NN
 Interpretability 	good	bad
 Sensitivity to irrelevant features 	low	high
• train time	$O(dm^2 + dm \log m)$	O(dm)
• test time	depth of the tree worst: $O(\min\{d, m\})$ best: $\log(m)$	$O(m(d + \log(m)))$ bad
• test time space comple	exity worst: $O(m)$ in general: much smaller	$\Theta(dm)$

Model Selection and Evaluation

Model Selection / Assessment

Partition your data into Train-Validation-Test sets

- Ideally, Test set is kept in a "vault" and only peek at it once model is selected
- Small dataset: 50% Training, 25% Validation, 25% Test (very loose rule set by statisticians)
- For large data (say a few thousands), 80-10-10 is usually fine.

Hyperparameters vs Parameters

<u>hyperparameter:</u> parameters of the model that are <u>not trained automatically</u> by ML algorithms (e.g., k in KNN).

<u>parameters</u>: those that are trained automatically (e.g., tree structures in decision tree)

Tuning hyperparameters

Validation set method:

- For each hyperparamter $h \in H$
 - Train \hat{f} on train set with h
 - Compute the error rate of \hat{f} on validation set
- Choose the best performing hyperparameter h*
- Use h^* to retrain the final model \hat{f}^* with both train and validation set.
- Finally, evaluate \hat{f}^* on test set to estimate its future performance.

Pro tip

• Do not use arithmetic grids; use geometric grids.

Tuning hyperparameters

K-fold cross validation

- Randomly partition train set S into K disjoint sets; call them fold₁, ..., fold_K
- For each hyperparameter $h \in \{1, ..., H\}$

K=10 is standard, but K=5 is okay, too

- For each $k \in \{1, ..., K\}$
 - train \hat{f}_k^h with $S \setminus \text{fold}_k$
 - measure error rate $e_{h,k}$ of \hat{f}_k^h on fold_k
- Compute the average error of the above: $\widehat{err}^h = \frac{1}{K} \sum_{k=1}^K e_{h,k}$
- Choose $\hat{h} = \arg\min_{h} \widehat{err}^{h}$
- Train \hat{f}^* using S (all the training points) with hyperparameter h
- Finally, evaluate \hat{f}^* on test set to estimate its future performance.

Use when (1) the dataset is small (2) ML algorithm's retraining time complexity is low (e.g., kNN)

5-fold cross validation

Scikit-Learn

Python library for machine learning. Install using Anaconda:

\$ conda install -c conda-forge scikit-learn

Or using PyPi:

\$ pip install -U scikit-learn

Preprocessing: Encoding Labels

Oftentimes, categorical labels come as strings, which aren't easily modeled (e.g., with Naïve Bayes),

```
>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']
```

LabelEncoder transforms these into integer values, e.g. for categorical distributions

fit() is doing the heavy work: create the mapping from string to integers

Can undo using inverse_transform so we don't have to store two copies of the data

Preprocessing: Z-Score

Typical ML workflow starts with *pre-processing* or *transforming* data into some useful form, which Scikit-Learn calls *transformers*:

```
>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler()
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
```

Standardization:

$$z = \frac{x-\mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Features are standardized independently (columns of X)

Easily do cross validation for model selection / evaluation...

```
from sklearn.model_selection import cross_val_score
import numpy as np

#create a new KNN model
knn_cv = KNeighborsClassifier(n_neighbors=3)

#train model with cv of 5
cv_scores = cross_val_score(knn_cv, X, y, cv=5)

#print each cv score (accuracy) and average them
print(cv_scores)
print('cv_scores mean:{}'.format(np.mean(cv_scores)))
```

Scikit-Learn

Models can be fit using the fit() function. E.g., Random Forest Classifier,

fit() Generally accepts 2 inputs

- Sample matrix X—typically 2d array (n_samples, n_features)
- Target values Y—real numbers for regression, integer for classification

k-Nearest Neighbors

Train / evaluate the KNN classifier for each value K,

```
from sklearn.neighbors import KNeighborsClassifier

error = []

# Calculating error for K values between 1 and 40

for i in range(1, 40):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, y_train)
    pred_i = knn.predict(X_val)
    error.append(np.mean(pred_i != y_val))

    vector operation!
```


Print error:

in practice: use geometric grid like 1,2,4,8,...