## Напоминание из предыдущей части

# Постановка задачи



# Идеалистичный критерий

### Критерий

$$H_d(\mathcal{U} \cup N_r, N_r) \neq 0 \equiv D_r = D - N_r \subset \mathcal{U}.$$

Как доказывать:

Примем на веру утверждение из текста, что  $H_d(D_r \cup \Sigma, \Sigma) = \mathbb{Z}$ . В одну сторону утверждение отсюда следует.

Выделим области  $Err=D_r-U$  и  $\overline{N_r}=\mathbb{R}^n-D_r$ . Применим двойственность Александера:  $H_d(\mathbb{R}^d-Err,\overline{N_r})=H^0(D_r,Err)=0$ . Но по вырезанию гомологии слева равны гомологиям исходной пары.

### Напоминание

- Мы постулировали существование радиуса  $r_s$  шаров покрытия, для которого комплекс Рипса по центрам шаров вкладывается в комплекс Чеха. Пока не пояснив, зачем это нужно.
- Мы постулировали умение узлов детектировать другие в радиусе  $r_s$  и границу в радиусе  $r_f$ .
- Мы построили комплексы Рипса  $R_s$  на всех узлах и  $F_s$  на узлах, лежащих не дальше  $r_f$  от границы всей области.
- Проверили, что ранее определённый критерий для  $H_d(R_s,F_s)$  не работает, но заметили, что препятствие исчезает, если увеличивать радиус комплекса.
- Сформулировали достаточное условие, которое и доказывается при должных технических условиях в статье. А именно нетривиальность отображения  $H_d(R_s,F_s) \xrightarrow{i_*} H_d(R_w,F_w)$ , где  $r_w$  ещё один радиус детектирования других узлов.

# Все введённые константы на одном рисунке

### Соотношения

 $r_w > r_c$ ,  $r_c > r_s$  (не пояснено),  $r > r_f$ . Для приложений авторы строят оптимальные точные оценки.



## Новая часть

# Подробнее про $r_s$

### Теорема 1

Пусть X — множество узлов.  $C_\epsilon$  — комплекс Чеха покрытия шарами радиуса  $\epsilon$  с центрами в X. Тогда  $R_\varepsilon\subset C_\epsilon\subset R_{2\epsilon}$ , где  $\epsilon\geq \sqrt{\frac{d}{2(d+1)}}\varepsilon$ .

Правое включение очевидно.

### Левое эквивалентно следующему:

Пусть X — множество точек  $\mathbb{R}^d$  диаметра не больше  $\varepsilon$ . Тогда шары радиуса  $\epsilon$  с центрами в этих точках имеют общую точку.

## Теорема об опорной гиперплоскости

Пусть A и B — два дизьюнктных замкнутых выпуклых множества. Тогда существует вектор v и константа c такие, что для всех  $a \in A$  (v,a) > c, а для всех  $b \in B$  (v,b) > c. Если B — одна точка, второе неравенство можно заменить на равенство.

Доказываем для множеств X мощности d'+1, где  $d'\leq d$ . Рассмотрим функцию  $f(y)=max(d(x_i,y))$ . Она имеет глобальный минимум  $y_0$  и соответствующие ему критические точки с  $d(x,y_0)=f(y_0)$ .

Пусть  $y_0$  не лежит в выпуклой оболочке критических точек. Тогда выполнены условия теоремы об опорной гиперплоскости. Вычитая второе условие из первого, получаем  $(v,x-y_0)>0$ .

Проведём выкладки для  $\lambda>0$ .

$$(x - y_0, x - y_0) = (x - (y_0 + \lambda v) + \lambda v, x - (y_0 + \lambda v) + \lambda v) = (x - (y_0 + \lambda v), x - (y_0 + \lambda v)) + 2(x - (y_0 + \lambda v), \lambda v) + (\lambda v, \lambda v).$$

$$2(x - (y_0 + \lambda v), \lambda v) = 2\lambda(x - y_0, v) - 2\lambda^2(v, v);$$
  

$$(x - y_0, x - y_0) = (x - (y_0 + \lambda v), x - (y_0 + \lambda v)) + 2\lambda(x - y_0, v) - (\lambda v, \lambda v)$$

Для достаточно маленьких лямбд получили, что  $d(x,y_0+\lambda v) < d(x,y_0)$ . Противоречие с минимальностью. Следовательно,  $y_0$  лежит в выпуклой оболочке критических точек.

Запишем эту выпуклую комбинацию с  $a_0$  — наибольшим коэффициентом:  $y_0 = a_0 x_0 + \ldots + a_{d''} x_{d''}$ .

Сдвинем на  $y_0$ :  $0 = a_0 x_0' + \ldots + a_{d''} x_{d''}'$ 

Выразим  $x'_0$ , скалярно на него домножим:

$$-f(y_0)^2 = -(x_0', x_0') = \sum_{i=1}^{d''} \frac{a_i}{a_0}(x_i, x_0)$$

Для какого-то i справа верно, что  $\frac{a_i}{a_0}(x_i,x_0)) \leq -\frac{(x_0',x_0')}{d''}$ , что можно ослабить как  $\frac{f(y_0)^2}{d} \leq -(x_0',x_0')$ . При этом  $f(y_0)^2 = (x_0',x_0') = (x_i',x_i')$ .

Суммируем: 
$$f(y_0)^2(1+\frac{2}{d}+1) \leq (x_0',x_0')-2(x_0',x_i')+(x_i',x_i')=(x_0'-x_i',x_0'-x_i')=(x_0-x_i,x_0-x_i)\leq \varepsilon^2$$
.

Получаем  $f(y_0) \leq \frac{\varepsilon}{2} \sqrt{\frac{2d}{d+1}}$ . Значит, шары радиуса правой части с центрами в точках набора встретятся в  $y_0$ .



### Теорема Хелли

Пусть  $X_1, X_2, \dots, X_n$  — конечный набор выпуклых подмножеств  $R_n$  таких, что пересечение любых d+1 из них непусто. Тогда пересечение всех непусто.

Применение теоремы к шарам покрытия доказывает теорему 1.

### Лемма

#### Лемма

Если попарные расстояния набора точек  $X=\{x_0,\dots,x_k\}$  не превосходят  $\delta$ , расстояние от любой точки их выпуклой оболочки до какой-то из них не превосходит  $\epsilon=\delta\sqrt{\frac{d}{2(d+1)}}.$ 

Запишем уравнение для p как для точки выпуклой оболочки, сдвинем его на p, скалярно перемножим с общей точкой шаров из коплекса Чеха на X радиуса  $\epsilon$ .

Среди слагаемых справа есть хотя бы одно неположительное, т.е.

$$(x_i',y') \leq 0$$
. Тогда  $\epsilon \geq (x_i-y,x_i-y) = (x_i'-y',x_i'-y') = (x_i',x_i')-2(x_i',y')+(y',y') \geq (x_i',x_i') = (x-p,x-p)$ .

Если k < d, d можно заменить на k, работая в подпространстве.



## Следствие

### Утверждение

Если  $r_c \geq r_s \sqrt{\frac{d}{2(d+1)}}$  и некоторое множество узлов образует симплекс в  $R_s$ , геометрическая реализация этого симплекса (выпуклая оболочка его вершин) целиком лежит в  $\mathcal{U}$ .

Следовательно, признак верен для случая, когда  $D-N_r$  целиком содержится в d-симплексе  $R_s$ . Этот тривиальный случай обосновывает требование  $r_c>r_s$  и даёт точную связь констант.

## Ещё одно геометрическое утверждение

### **Утверждение**

Либо геометрическая реализация любого симплекса  $F_s$  лежит в  $\overline{N_r}$ , либо  $\mathcal{D}_r \subset \mathcal{U}$ .

Параллельно с доказательством дадим выражение для r.

### Теорема Каратеодори

Пусть  $P\subset \mathbb{R}^d$  — множество, а  $x\in Conv(P)$  — точка в его выпуклой оболочке. Тогда x можно записать как выпуклую комбинацию не более чем d+1 точки.

По теореме Каратеодори достаточно проверить d-мерный остов  $F_s$ .

Для любого геометрического симплекса на узлах размерности не больше, чем d-1, верно, что любая его точка отстоит от какой-то из его вершин не более чем на  $r_s\sqrt{\frac{d-1}{2d}}$ . Вершины лежат на расстоянии не больше  $r_f$  от границы, следовательно, мы получили по неравенству треугольника наименьшее возможное значение  $r=r_s\sqrt{\frac{d-1}{2d}}+r_f$ .

Рассуждение для d-мерного остова можно провести так же, утолщив границу, но этого можно не делать. Пусть  $\sigma-d$ -симплекс. Граница этого симплекса лежит в d-1-мерном остове, следовательно, в  $\overline{N_r}$ . Следовательно, или он полностью содержит  $D_r$  (см. опять первый рисунок статьи), либо он весь в  $\overline{N_r}$ .

July 28, 202

# Доказательство теоремы

## Основной признак

Из нетривиальности отображения  $H_d(R_s,F_s) \xrightarrow{i_\star} H_d(R_w,F_w)$  следует, что  $D_r \in \mathcal{U}.$ 

Из точной последовательности пары и предыдущего утверждения возникает следующая коммутативная диаграмма (игнорируем случай, учитываемый следствием теоремы 1):

$$H_d(R_s, F_s) \xrightarrow{\delta_{\star}} H_{d-1}(F_s)$$

$$\downarrow || \qquad \qquad \downarrow ||$$

$$H_d(\mathbb{R}^d, \overline{N_r}) \xrightarrow{\delta_{\star}} H_{d-1}(\overline{N_r})$$

Пусть  $[\alpha] \in H_d(R_s, F_s)$  — эдемент с нетривиальным образом под действием  $i_\star$ . Рассмотрим  $|\delta_\star([\alpha])| = |[\partial \alpha]|$ .



# Первый случай: $|\delta_{\star}([\alpha])| \neq 0$

Пусть Err непусто. Поскольку  $|R_s|\in \mathcal{U}$ , геометрическая реализация  $(R_s,F_s)$  лежит в  $(\mathbb{R}^d-Err,\overline{N_r})$ . Мы уже знаем, что  $H_d(\mathbb{R}^d-Err,\overline{N_r})$ , следовательно,  $|\delta_\star([\alpha])|=0$ . Противоречие.

# Второй случай: $|\delta_{\star}([\alpha])| = 0$ . Шаг 1

Докажем, что геометрический цикл  $|\delta_{\star}(\alpha)|$  лежит в некоторой узкой полосе, окаймляющей  $\Sigma$ .

По конструкции относительных гомологий верно, что  $\delta_\star(\alpha) \subset F_s$ .

Зададим функцию знакового расстояния h(y), положительную снаружи от  $\Sigma$ . На симплексе  $\sigma\subset\partial\alpha$  она положительна. При этом  $\sigma$  — граница симплекса  $\tau$  из  $\alpha$ , то есть из  $Rips_{r_s}-\mathcal{F}_{r_s}$ . Для другой вершины  $\tau$  y h(y)<0.

Пусть p — внутренняя точка  $\tau$ . По неравенству треугольника  $h(p) \leq h(y) + d(p,y) < 0 + r_s = r_s$ . p отстоит от какой-то вершины  $x \in \tau$  на  $r_s \sqrt{\frac{d-1}{2d}}$ , имеем  $h(p) \geq h(x) - d(p,x) \geq 0 - r_s \sqrt{\frac{d-1}{2d}}$ . Тем самым мы запихнули любой симплекс границы относительного цикла в полосу S около  $\Sigma$ .

July 28, 2023

# Утверждение о полосе и дополнительные условия

### **Утверждение**

Пусть S гомеоморфна d-1-многообразию, умноженному на отрезок, и накрывается отрезками длины не больше  $\Delta$ . Пусть X — набор точек, формирующих цикл  $[\gamma] \in H_{d-1}(R_{\epsilon}(X))$  и  $\gamma$  целиком лежит в S.

Тогда 
$$[y]\in H_{d-1}(S)=0$$
 влечёт  $[y]\in H_{d-1}(Rips_{arepsilon}(X))$ , где  $arepsilon=\sqrt{\Delta^2+2\epsilon^2\frac{d-1}{d}}.$ 

Рассмотрим покрытие U шарами радиуса  $\frac{\Delta}{2}$  с центрами во всех точках кривой  $\gamma$ . Оно лежит в покрытии U' шарами радиуса  $\frac{\varepsilon}{2}$  с центрами в точках X. См. рисунок. Выбор эпсилонов позволяет применить теорему 1, то есть  $\gamma$  гомологически нетривиален в объединении покрытия U'.



Существует (по двойственности Александера) точка  $p \in S-U'$ , вокруг которой обходит  $\gamma$ . Но тогда отрезок через p, соединяющий границы, пересекает  $\gamma$  дважды, а значит, p лежит в одном из шаров U. Противоречие.

### $\mathbf{\mathsf{\mathsf{\mathsf{Y}}}}$ словие на S

S — полоса толщины  $\Delta = r_s(1+\sqrt{\frac{d-1}{2d}})$ . Нам нужно подвести её под условие утверждения. Для этого авторы требуют гладкость S, разделяют S на два независимых многообразия, внутреннее и внешнее, и ограничивают снизу радиусы инъективности  $\Sigma$  в этих двух многообразиях. В итоге S распадается в объединение окрестностей  $\mathbb{R}^{d-1} \times I$ .

По предположению случая  $\partial \alpha$  гомологичен нулю в S. Значит, при увеличении радиуса до  $r_m = \sqrt{\Delta^2 + r_s(1+\sqrt{\frac{d-1}{2d}})} = \sqrt{\frac{7d-5+2\sqrt{2d(d-1)}}{2d}}$   $[\partial \alpha] \in H_{d-1}(F_m)$  зануляется.



July 28, 2023

# Завершение доказательства и точное условие на

 $r_w > r_s$ 

Рассмотрим коммутативную диаграмму, составленную из точных последовательностей пар для Рипсов разных радиусов (В статье).

Оставшийся диаграммный поиск покажу тоже на статье. В нём возникает дополнительное требование на связь  $r_m$  и  $r_w$ , которое нужно, чтобы пропустить вложение через комплекс Чеха. И существенное утверждение, что  $H_d(P\in\mathbb{R}^d)=0$ .