

# Grundlagen der Programmierung

Mathematische Grundlagen:

Strukturelle Mathematik ♦ Beweise

# Universitate Political

#### **Zentrale Konzepte**

- bei Algorithmen und bei der Programmierung:
  - Funktionen, Operationen, Relationen
  - Mengenlehre
  - Kombinatorik (Anzahl von Möglichkeiten)
- für Korrektheitsbeweise:
  - Beweisverfahren, vor allem
  - vollständige Induktion (heute)
  - strukturelle Induktion (später)



### Kombinatorische Anzahlbestimmung

# Universitate Paragram

### **Anordnung**

- Gegeben sind n voneinander unterscheidbare Objekte.
- Anordnung mit Wiederholung von Elementen Anzahl der verschiedenen Möglichkeiten der Anordnung von k Objekten, wobei jedes Objekt in der Anordnung beliebig oft auftreten darf: nk
- Anordnung ohne Wiederholung von Elementen
   Anzahl der verschiedenen Möglichkeiten der Anordnung der n Objekte (wobei jedes Objekt genau einmal verwendet wird):

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

#### **Auswahl**



- Gegeben sind n voneinander unterscheidbare Objekte.
- Auswahl ohne Wiederholung Anzahl der Möglichkeiten, k Objekte davon auszuwählen, wobei kein Objekt mehrfach ausgewählt werden kann:

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot \dots \cdot k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\binom{n}{2} = \frac{n \cdot (n-1)}{2}$$



### **Elementare Mengenlehre**



#### Zahlenbereiche

- N Menge der natürlichen Zahlen (inkl. 0)
- Menge der ganzen Zahlen
- $\mathbb{Q}_0^+$  Menge der gebrochenen Zahlen
- Menge der rationalen Zahlen
- R Menge der reellen Zahlen
- $\mathbb{R}_0^+$  Menge der nicht negativen reellen Zahlen

### Universita,

#### Mengen

- Mengen immer spezifizieren durch
  - 1. Angabe des Grundbereichs (Universums)
  - 2. Angabe der mengendefinierenden Eigenschaft

#### Beispiele:

- Menge der Studenten/-innen ist die
  - 1. Menge der Menschen (Universum: Menge aller Menschen),
  - 2. die an einer HS oder Uni immatrikuliert sind (Eigenschaft).
- Menge der geraden Zahlen:

$$M = \{ n \mid n \in \mathbb{Z} \land 2 / n \}$$

■ Allgemein:  $M = \{ n \mid n \in \mathfrak{U} \land H(n) \} = \{ n \in \mathfrak{U} \mid H(n) \}$ 

### Element, Komplementäre, leere Menge

Sei 
$$M = \{ n \in \mathcal{U} \mid H(n) \}.$$

■ Element der Menge  $x \in M$  gdw. x in  $\mathfrak{U}$  und H(x) gilt.



- Komplementäre Menge  $\overline{M} = \{ n \in \mathfrak{U} \mid \neg H(n) \}$
- Die leere Menge Ø enthält keine Elemente. Für jedes Universum  $\mathfrak U$  gilt:  $\overline{\mathfrak U} = \emptyset$ .
- Kardinalzahl/Mächtigkeit | M | einer endlichen Menge M ist die Anzahl ihrer Elemente.





Sei  $M = \{ n \in \mathcal{U} \mid H(n) \}.$ 

- $N \subseteq M$  (N Teilmenge von M) gdw. für alle  $x \in N$  auch  $x \in M$  gilt.
- $N \subset M$  (N echte Teilmenge von M) gdw.  $N \subseteq M$  und  $N \neq M$ .



N und M disjunkt/elementfremd gdw. es kein Element x gibt mit  $x \in N$  und  $x \in M$ .





#### Potenzmenge

Menge aller Teilmengen:

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

■ *Beispiel* für *M* = {1,2,3} :

$$\mathcal{P}(M) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, M\}$$

■ Sei |*M*| = *n*. Dann gilt

$$|\mathcal{P}(M)| = \sum_{k=0}^{n} {n \choose k} = 2^n$$
 (Beweis in den Übungen)





Vereinigung
 M ∪ N = { n | n ∈ M ∨ n ∈ N }



■ Durchschnitt  $M \cap N = \{ n \mid n \in M \land n \in N \}$ 



■ Differenz  $M \setminus N = \{ n \mid n \in M \land n \notin N \}$ 



# Universitate Paradami

#### **Tupel: Mengen mit Anordnung**

- Endliche Menge: Menge mit endlich vielen Elementen.
- n-Tupel: Es gibt ein erstes, zweites usw. und letztes Element einer endlichen Menge mit n Elementen. Dasselbe Element kann mehrfach auftreten.
- Schreibweise:  $(x_1, x_2, ..., x_n)$
- n = 2: (geordnetes) Paar  $(x_1, x_2)$
- n = 3: Tripel  $(x_1, x_2, x_3)$



### **Kartesisches Produkt (Kreuzprodukt)**

■ 
$$M_1 \times M_2 \times ... \times M_n$$
  
=  $\{(x_1, x_2, ..., x_n) \mid x_i \in M_i \text{ für alle } i, 1 \le i \le n \}$ 

Beispiel:

Seien 
$$M = \{1,2,3\}$$
 und  $N = \{a,b\}$ .

$$M \times N = \{ (1,a), (1,b), (2,a), (2,b), (3,a), (3,b) \}$$

■ Falls  $M_1 = M_2 = ... = M_n = M$ :  $M^n$ 



### Relationen



### Relationen (intuitiv)

- Beziehungen
  - zwischen zwei Objekten (binäre Relationen)
  - oder mehreren (n) Objekten (n-stellige Relationen)
- Beispiele:

Verwandtschaft von *n* Personen; Gleichheit oder <-Beziehung zweier Zahlen; Ähnlichkeit zweier Dreiecke



### **Relationen (formal)**



■ binäre Relation:  $R \subseteq M \times N$ 

■ *n*-stellige Relation:  $R \subseteq M_1 \times M_2 \times ... \times M_n$ 

■ *n*-stellige Relation über M:  $R \subseteq M^n$ 

#### Beispiele:

- Nachfolger-Relation (binäre Relation über  $\mathbb Z$  oder  $\mathbb N$ )
- Kleiner-als-Relation (binäre Relation über  $\mathbb Z$  oder  $\mathbb R$  oder ...)
- Quadratzahl-Relation (binäre Relation z.B. über N)
- Summen-Relation (dreistellige Relation z.B. über N)

### **Beispiele (formal)**

lacktriangle Nachfolger-Relation über  $\mathbb N$ :

$$R_{\text{succ}} = \{ (m,n) \mid n = m+1 \} = \{ (0,1), (1,2), (2,3), \ldots \}$$

■ Kleiner-als-Relation über N :

$$R_{<} = \{ (m,n) \mid n - \text{m ist positiv } \}$$
  
=  $\{ (0,1), (0,2), ..., (1,2), (1,3), ... \} \supseteq R_{\text{succ}}$  (Teilrelation)

■ Quadratzahl-Relation über N:

$$Q = \{ (m,n) \mid n = m^2 \} = \{ (0,0), (1,1), (2,4), (3,9), ... \}$$

lacksquare Summen-Relation über  $\mathbb N$  :

$$S = \{ (a,b,c) \mid c = a+b \}$$
  
 $z.B. (0,3,3) \in S, (1,2,3) \in S, (3,3,6) \in S, (3,5,8) \in S$ 

### Repräsentation *n*-stelliger als binäre Relationen



- Sei  $R \subseteq M_1 \times M_2 \times ... \times M_{n-1} \times M_n$ .
- Die binäre Repräsentation von R ist die Relation  $R^b \subseteq (M_1 \times M_2 \times ... \times M_{n-1}) \times M_n$  mit  $(x_1, x_2, ..., x_{n-1}, x_n) \in R$  gdw.  $((x_1, x_2, ..., x_{n-1}), x_n) \in R^b$
- z.B. Summenrelation:  $S^b = \{ ((a,b), c) \mid c = a + b \}$
- Binäre Relationen erlauben die Schreibweise x R y für  $(x,y) \in R$ .



#### **Definitions- und Wertebereich**

- Sei R eine binäre Relation von M in N.
- Definitionsbereich von RD(R) = {  $x \in M \mid \exists y \in N. (x,y) \in R$  }
- Wertebereich von R  $W(R) = \{ y \in N \mid \exists x \in M. (x,y) \in R \}$
- Bildmenge eines Elements aus D(R)

$$R(x) = \{ y \in N \mid (x,y) \in R \}$$



### Binäre Relationen von/aus und in/auf

- Sei  $R \subseteq M \times N$ .
- R ist Relation aus M in N.
- R ist Relation von M in N, falls D(R) = M.
- R ist Relation aus M auf N, falls W(R) = N.
- R ist Relation von M auf N, falls D(R) = M und W(R) = N.
- Beispiele:
  - Quadratzahl-Relation über N: von N in N
  - Summen-Relation über  $\mathbb{N}$ : von  $\mathbb{N}^2$  auf  $\mathbb{N}$

# Universitate Political Pol

#### **Funktionen (Abbildung)**

- Eine (totale) Funktion f von M in N, f: M → N, ist eine binäre Relation
  - **von** *M* in *N*, die
  - eindeutig ist.
- Eine Relation  $R \subseteq M \to N$  heißt **eindeutig**, falls mit jedem  $x \in M$  höchstens ein  $y \in N$  in Relation R steht: Falls  $(x,y) \in R$  und  $(x,z) \in R$ , dann gilt y = z.
- Daher kann man R(x) = y schreiben. (Oder  $x \mapsto y$ )



#### **Argument und Bild**

■ Sei  $f: M \rightarrow N$  eine Funktion.

■ Jedes  $x \in D(f) = M$  heißt **Argument** von f.

■ Jedes  $y \in W(f) \subseteq N$  heißt **Bild/Funktionswert** von f.



#### Eigenschaften von Funktionen

- Sei  $f: M \rightarrow N$  eine Funktion.
- f ist surjektiv, falls W(f) = N.
- f ist injektiv (eineindeutig), falls aus  $f(x_1) = f(x_2)$  folgt, dass  $x_1 = x_2$  gilt.
  - ➤ Jedes Element des Wertebereichs ist Bild von genau einem Argument.
- f ist bijektiv, falls f surjektiv und injektiv ist.
  - eineindeutige Abbildung von Mauf N



# Universita,

#### Partielle Funktionen

- Eine partielle Funktion **aus** *M* in *N* ist eine eindeutige binäre Relation **aus** *M* in *N*.
- $\blacksquare f: M \rightarrow N$
- *Beispiel:*Wurzelfunktion über den natürlichen Zahlen  $\{(m,n) \in \mathbb{N}^2 \mid m = n^2\} = \{(0,0), (1,1), (4,2), (9,3), ...\}$
- Beispiel: Wurzelfunktion über den reellen Zahlen
  - $\triangleright$  **Einschränkung** auf  $\mathbb{R}_0^+$  ist totale Funktion.



#### Mehrstellige Funktionen

■ Eine *n*-stellige Funktion ist eine Funktion, die eine binäre Repräsentation einer (*n*+1)-stelligen Relation ist.

$$f: (M_1 \times M_2 \times ... \times M_{n-1} \times M_n) \longrightarrow N$$

- Diese können als **mehrsortige** *n***-stellige Operationen** aufgefasst werden.
- Beispiel:  $M_1 = \mathbb{N}$ ,  $M_2 = N = Menge aller Kreise in der Ebene; <math>(n, K) \mapsto K'$  (konzentrische Streckung von K um Faktor n)

# Universitate Paragraphic Parag

#### **Operationen**

■ Eine *n*-stellige Operation ist eine *n*-stellige Funktion über einer Menge *M*.

$$o: M^n \longrightarrow M$$

- Beispiel
  - Addition natürlicher Zahlen

$$+: \mathbb{N}^2 \longrightarrow \mathbb{N} \text{ mit } (m,n) \mapsto m+n$$



#### Eigenschaften binärer Relationen

- Sei  $R \subseteq M^2$  eine binäre Relation über M.
- R ist **reflexiv** gdw.  $(x,x) \in R$  für alle  $x \in M$ .
- R ist **transitiv** gdw. <u>aus</u>  $(x,y) \in R$  und  $(y,z) \in R$  <u>folgt</u>, dass auch  $(x,z) \in R$ .
- R ist symmetrisch gdw.  $\underline{aus}(x,y) \in R$  folgt, dass  $\underline{auch}(y,x) \in R$ .
- R ist antisymmetrisch gdw.  $\underline{aus}(x,y) \in R$  und  $(y,x) \in R$  folgt, dass x = y.



#### Ordnungsrelationen

- Halbordnungsrelation in Menge M
   binäre Relation über M, die reflexiv, transitiv
   und antisymmetrisch ist
  - **■** *z.B.* ≤, ≥, ⊆, ⊇
- Ordnungsrelation in M

Halbordnungsrelation R in M, wobei für alle x, y aus M x R y oder y R x

- $z.B. \le$ ,  $\ge$  in den Zahlenbereichen
- nicht ⊆, ⊇

# Universitate Paragram

### Äquivalenzrelationen

- Binäre Relation, die reflexiv, transitiv und symmetrisch ist
- Beispiele:
  - Verwandtschaft von Personen
  - Ähnlichkeit und Kongruenz geometrischer Figuren
  - Gleichheit
  - Waren mit gleichem Preis
  - Zahlen mit gleichem absoluten Betrag
  - . . .



### **Mathematische Beweise**

#### Direkte und indirekte Beweise Induktionsbeweise

### Joiversital,

#### **Direkte Beweise**

- Mathematische Sätze sagen aus, dass unter gewissen
  - Voraussetzungen (Liste von Aussagen  $A_1, A_2, ..., A_k$ )
  - eine Behauptung (Aussage B) gilt.

#### Direkter Beweis

- dass die Behauptung aus den Voraussetzungen folgt
- durch fortgesetzte logische Schlüsse:

$$A_1 \wedge A_2 \wedge ... \wedge A_k \Rightarrow ... \Rightarrow B$$

# Universitation of the state of

#### **Indirekte Beweise**

- Hinzunahme der negierten Behauptung zu den Voraussetzungen (Annahme)
- Herleiten einer unerfüllbaren Aussage (Widerspruch) durch logisches Schließen

$$A_1 \wedge A_2 \wedge ... \wedge A_k \wedge \neg B \Rightarrow ... \Rightarrow$$
false

- Schema:
  - > Annahme: Die Verneinung der Behauptung gilt.
  - Logische Schlüsse bis zu einem Widerspruch.
  - Die Annahme muss falsch sein, die Behauptung also gelten.

# Universitate Para Contraction of the Contraction of

#### Vollständige Induktion

- Für Behauptungen über (fast) alle natürlichen Zahlen
- Ist eine Aussage über  $\mathbb{N}$  für ein  $n_0 \in \mathbb{N}$  wahr und folgt ihre Gültigkeit für jede größere natürliche Zahl aus der Gültigkeit für ihren Vorgänger, dann gilt die Aussage für alle natürlichen Zahlen  $n \ge n_0$ .



#### Beispielbeweis

**Satz.** Für alle  $n \ge 1$  gibt es genau  $2^n$  verschiedene Folgen der Länge n von Binärziffern.

#### **Beweis** (VI nach n):

**IA** (n = 1): Es gibt genau die  $2^1 = 2$  Folgen 0 und 1.

**IS** 
$$(n \rightarrow n+1)$$
:

- Nach IV gibt es genau 2<sup>n</sup> verschiedene Folgen w der Länge n.
- Für jedes w der Länge n gibt es genau die Folgen w0 und w1 der Länge n+1.
- Somit gibt es genau  $2^n + 2^n = 2^{n+1}$  verschiedene Folgen der Länge n+1.

# Universitate Para Contraction of the Contraction of

#### Verallgemeinerte Induktion

- Lässt sich eine Aussage über natürliche Zahlen (ab  $n_0$ ) für jede natürliche Zahl aus der Gültigkeit der Aussage für alle kleineren natürlichen Zahlen (ab  $n_0$ ) ableiten, so gilt die Aussage für alle natürlichen Zahlen (ab  $n_0$ ).
- Beispiel: Sei fib:  $\mathbb{N} \to \mathbb{N}$  die Fibonacci-Funktion mit fib(0) = fib(1) = 1 und fib(n) = fib(n-2) + fib(n-1) für  $n \ge 2$ .
- Satz. Für alle  $n \in \mathbb{N}$  gilt fib $(n) \leq 2^n$ .
- Für  $n \le 1$ :  $fib(0) = 1 \le 2^0$  und  $fib(1) = 1 \le 2^1$ .
- Für n > 1:  $fib(n) = fib(n-2) + fib(n-1) \le 2^{n-2} + 2^{n-1} \le 2^n$ .