MDM-2021 Assignment 2

Jeyhun Yagublu (SN:1011331) October 24, 2021

1 Task 4

In this task, you should study an alternative internal validation index, τ . Use only the spiral.txt data from the previous task.

1.1 A)

Task: Compute τ for the previously obtained clusterings by K-means and spectral clustering. Which clustering is now the best one?

Answer: I have written my own function for finding the tao index value:

```
def Gaussian_similarity_f(x_i,x_j, sigma) :
    distance=np.linalg.norm(x_i - x_j)**2
    return math.exp((-distance)/(2*(sigma**2)))
def c_i_j (labels,i,j) :
    if (labels[i]==labels[j]):
        return 1
    else:
        return 0
def tao_index (data , labels, sigma) :
    tao=0;
    for i in range (0,len(labels)):
        nominator=0;
        denominator=0
        for j in range (0,len(labels)) :
            if(j!=i):
                similarity=Gaussian_similarity_f(data.loc[i],data.loc[j],sigma)
                nominator=nominator+c_i_j(labels,i,j)*similarity
                denominator=denominator+similarity
        tao=tao+nominator/denominator
    tao=tao/len(labels)
    return tao
```

Figure 1: Custom function for tao index

Table 1: Result of clustering

	SI	DB	NMI	τ
K-means	$0.3600 \text{ for K}{=}3$	0.8779 for K=3	0.0066 for K=5	0.9711 for K=2
Spectral	0.0253 for K=2	5.4585 for K = 5	1.0 for K=3	0.9996 for K=2

We can see that according to τ index better clustering is still Spectral clustering but with K=2. I should mention that K=3 was very close with value 0.9994.

1.2 B)

Task: Compare the results with the ones indicated by Silhouette and Davies-Bouldin indices. Discuss the results. Is index a better choice in this case?

Answer: As we can see τ index did better job than SI and DB in Spec-

Table 2: Result of clustering

	SI	DB	NMI	τ
K-means	0.3600 for K=3	0.8779 for K=3	0.0066 for K=5	0.9711 for K=2
Spectral	0.0253 for K=2	5.4585 for K = 5	1.0 for K=3	0.9996 for K=2

tral clustering but it failed for the K-means clustering. Overall i found that my implementation of τ index didn't perfom well since all of its values were quite high and quite close to each other.

PS. I have tried hard and lost a lot of time on debugging for possible mistakes but couldn't find anything wrong in the code of τ index so if there is something wrong I would be very happy if I could get any feedback from the checking person. Thank you in advance!