Homework #8

Eric Tao Math 235: Homework #8

November 20, 2022

2.1

Problem 5.2.18. Suppose that $f:[a,b]\to\mathbb{C}$. Show that there exists partitions Γ_k of [a,b] such that Γ_{k+1} is a refinement of Γ_k for each k, and $S_{\Gamma_k}\nearrow V[f;a,b]$ as $k\to\infty$.

Solution. First, we wish to show that for any partition Γ_k and refinement Γ_{k+1} , that $S_{\Gamma_k} \leq S_{\Gamma_{k+1}}$.

Let $S_{\Gamma_k} = \{a = x_0 < \dots < x_i = b\}$ and $S_{\Gamma_{k+1}} = \{a = y_0 < \dots < y_j = b\}$ be a refinement, where i < j and for every $0 \le i' \le i$, there exists a j' such that $x_{i'} = y_{j'}$.

Look at one pair of $x_{i'}, x_{i'+1}$. If, in the refinement, we have that $x_{i'} = y_{j'}$ and $x_{i'+1} = y_{j'+1}$, then we have that $|f(x_{i'+1}) - f(x_{i'})| = |f(y_{j'+1}) - f(y_{j'})|$. Else, suppose not. Then, we have that $x_{i'} = y_{j'}$ and $x_{i'+1} = y_{j'+n}$ for some n. Then, by liberal usage of the triangle inequality, we have that:

$$|f(x_{i'+1}) - f(x_{i'})| = |f(y_{j'+n}) - f(y_{j'})| = |f(y_{j'+n}) - f(y_{j'}) + \sum_{k=1}^{n-1} (f(y_{j'+k}) - f(y_{j'+k}))| = |\sum_{k=1}^{n} (f(y_{j'+k}) - f(y_{j'+(k-1)}))| \le \sum_{k=1}^{n} |f(y_{j'+k}) - f(y_{j'+(k-1)})|$$

Since we may do this for every $0 \le i' \le i$, that means that $S_{\Gamma_k} \le S_{\Gamma_{k+1}}$.

First, assume $V[f; a, b] < \infty$. Now, since V[f; a, b] is the supremum of S_{Γ} over every partition Γ , we may construct a sequence Γ_k of partitions such that $V[f; a, b] - S_{\Gamma_k} < 1/k$.

In particular now, define a new sequence of partitions as such. Let $\Gamma'_1 = \Gamma_1$. Then, take $\Gamma'_i = \Gamma'_{i-1} \cup \Gamma_i$, where we understand the union operation as meaning to take every point in Γ'_{i-1} , Γ_i and create a partition with all points. We notice that for each i, Γ'_i is a refinement of both Γ'_{i-1} , Γ_i . Then, we have that $\Gamma'_{i-1} \leq \Gamma'_i$ from the work we did above, and further, we know that $V[f;a,b] - 1/k \leq S_{\Gamma'_i} \leq V[f;a,b]$ by the choice of the Γ_i 's. Thus, we have an increasing sequence of refinements that converges to V[f;a,b].

The unbounded case is clear, instead of taking $V[f; a, b] - S_{\Gamma_k} < 1/k$, we simply take $S_{\Gamma_k} > k$ for each $k \ge 1$, and proceed in the same way.

Problem 5.2.21. Assume that $E \subseteq \mathbb{R}$ is measurable, and suppose that $f: E \to \mathbb{R}$ is Lipschitz on the set E, that is, there exists a $K \geq 0$ such that:

$$|f(x) - f(y)| \le K|x - y|$$
 for all $x, y \in E$

Prove that $|f(A)|_e \leq K|A|_e$, for any $A \subseteq E$.

Solution. Let $\{Q_k\}_k$ be a collection of boxes such that $A \subseteq \bigcup_k Q_k$. Let's look at one specific box, Q_i . Since $A \subseteq E$, we can take $d_i = \sup(\{x - y : x, y \in E \cap Q_i\})$, where we notice $d_i \leq \operatorname{Vol}(Q_i)$ Consider the image of $f(E \cap Q_i)$. Since f is Lipschitz, and $Q_i \cap E$ an intersection of measurable sets, the image is measurable. In particular, we notice that, for $x, y \in E \cap Q_i$, we have:

$$|f(x) - f(y)| \le K|x - y| \le Kd_i$$

Then, if we fix an x, that means $f(E \cap Q_i)$ can be contained within an interval of length Kd_i . We may repeat this process for each Q_i . We notice, since Q_k covers A, then so must $E \cap Q_k$. So, we have that

$$|\cup_k f(E \cap Q_k)|_e \le \Sigma_k(Kd_k) \le K\Sigma_k(d_k) \le K\Sigma_k \operatorname{Vol}(Q_k)$$

Since we can do this for any cover by boxes Q_k of A, $f(A) \subseteq \bigcup_k f(E \cap Q_k)$ for every collection of boxes, and via the properties of the infimum, we have that:

$$|f(A)|_e \le K|A|_e$$

Problem 5.2.22. Fix a, b > 0 and define:

 $f(x) = \begin{cases} |x|^a \sin(|x|^{-b}), & x \neq 0 \\ 0, & x = 0 \end{cases}$

Prove the following:

- (a) $f \in BV[-1,1] \iff a > b$
- (b) If a = b then $f \in C^{\alpha}[-1, 1]$ with exponent $\alpha = \frac{b}{b+1}$.
- (c) $C^{\alpha}[-1,1]$ is not contained in BV[-1,1] for any $0 < \alpha < 1$.

Solution. (a)

First, we notice that f is symmetric across x = 0, and so we restrict ourselves to looking on [0, 1], and we may drop the absolute values. Computing f' on (0, 1], we find that

$$f' = ax^{a-1}\sin(x^{-b}) + x^a\cos(x^{-b}) - bx^{-b-1} = ax^{a-1}\sin(x^{-b}) - bx^{a-b-1}\cos(x^{-b})$$

Problem 5.2.23. (a) Suppose that $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of complex-valued functions $f_n:[a,b]\to\mathbb{C}$ and that $f_n\to f$ pointwise on [a,b]. Prove that:

$$V[f; a, b] \le \liminf_{n \to \infty} V[f_n; a, b]$$

(b) Exhibit functions f_n , f such that $f_n \in BV[a, b]$ for each $n \in \mathbb{N}$ and $f_n \to f$ pointwise, but $f \notin BV[a, b]$.

Solution.
$$\Box$$

Problem 5.2.26. Prove the following:

(a) ||f|| = V[f; a, b] defines a seminorm on BV[a, b] and

$$||f||_{BV} = V[f; a, b] + ||f||_u : f \in BV[a, b]$$

is a norm on BV[a, b].

- (b) BV[a, b] is a Banach space with respect to $\|\cdot\|_{BV}$.
- (c) $||f||_{BV'} = V[f; a, b] + |f(a)|$ defines an equivalent norm for BV[a, b]. That is, it is a norm, and there exists $C_1, C_2 > 0$ such that:

$$C_1 || f ||_{BV} \le || f ||_{BV'} \le C_2 || f ||_{BV} : f \in BV[a, b]$$

Solution. (a)

Clearly, we have that $V[f; a, b] \ge 0$ for any $f \in BV[a, b]$, because it is the supremum of non-negative numbers. Then, we need only check for the triangle inequality, and factoring scalars.

Let $f, g \in BV[a, b]$, and fix a partition $\Gamma = \{a = x_0 < ... < x_n = b\}$. We notice, by the triangle inequality on the complex numbers, we have that, for each (x_i, x_{i+1}) :

$$|f + g(x_{i+1}) - f + g(x_i)| = |f(x_{i+1}) + g(x_{i+1}) - f(x_i) - g(x_0)| \le |f(x_{i+1}) - f(x_i)| + |g(x_{i+1}) - g(x_i)|$$

Since this is true for every interval in the partition, this implies then that $S_{\Gamma}^{f+g} \leq S_{\Gamma}^{f} + S_{\Gamma}^{g}$, where we use S_{Γ}^{f} to denote the sum for the function f. Then, since the variation is simply the supremum over all partitions, and this holds for every partition, we have that:

$$||f + g|| = V[f + g; a, b] \le V[f; a, b] + V[g; a, b] = ||f|| + ||g||$$

Now, let $k \in \mathbb{R}$. Consider now ||kf||. Again, looking at any partition Γ , we see that:

$$|kf(x_{i+1}) - kf(x_i)| = |k||f(x_{i+1}) - f(x_i)|$$

Since this is true for each interval in our partition, it implies that $S_{\Gamma}^{kf} = |k|S_{\Gamma}^{f}$. Again, via the properties of the supremum, this implies then that ||kf|| = |k|||f||.

Now, we look at $||f||_{BV} = V[f;a,b] + ||f||_u : f \in BV[a,b]$. Because of the fact that we have shown that V[f;a,b] is a seminorm on BV[a,b] and that we already know that $||f||_u$ is a norm, we know that this is already a seminorm. Then, it suffices to show that $||f||_{BV} = 0 \implies f = 0$. Since both portions are non-negative, this implies, in particular, $||f||_u = 0$. But, because this is a norm, this implies that f = 0, and we are done. Thus, this is a norm.

- (b)
- (c)

First, we look at the case $f(a) \geq 0$. Then, using the Jordan decomposition on f = g - h for g, h monotone increasing, and the seminorm properties to see that $V[f; a, b] \leq V[g; a, b] + V[h; a, b]$, we conclude that $f(a) \leq ||f||_u \leq f(a) + V[f; a, b]$, since to maximize |f|, we would need V[h; a, b] = 0. We can actually see that this argument works for f(a) < 0, where instead of taking the positive distance, we take V[g; a, b] = 0 to maximize |f|. So, we actually have that $|f(a)| \leq ||f||_u \leq |f(a)| + V[f; a, b]$.

Then, we take $C_1 = 1, C_2 = 2$.

From $|f(a)| \leq ||f||_u$, we can add V[f; a, b] to both sides to obtain:

$$||f||_{\mathrm{BV}'} = V[f; a, b] + |f(a)| \le V[f; a, b] + ||f||_u = ||f||_{\mathrm{BV}}$$

, so we have that $C_1 ||f||_{BV'} = ||f||_{BV'} \le ||f||_{BV}$

Further, we have that from the other side, we obtain:

$$||f||_u \le |f(a)| + V[f;a,b] \implies V[f;a,b] + ||f||_u \le |f(a)| + 2V[f;a,b]$$

so we can see that:

$$C_2||f||_{\mathrm{BV}'} = 2|f(a)| + 2V[f;a,b] \ge |f(a)| + 2V[f;a,b] \ge V[f;a,b] + ||f||_u = ||f||_{\mathrm{BV}}$$

Thus, these norms are equivalent. If you really want the other inclusion, we can reverse the inclusions by dividing via the constants. \Box

2.2

Problem 5.3.5. Assume that $E \subseteq \mathbb{R}^d$ satisfies that $0 < |E|_e < \infty$, and let \mathcal{B} be a Vitali covering of E. Given an $\epsilon > 0$, prove that there exist a countable collection of balls $B_k \in \mathcal{B}$ such that

$$|E \setminus \bigcup_k B_k|_e = 0$$
 and $\Sigma_k |B_k| < |E|_e + \epsilon$

 \Box