网络层:数据平面、控制平面

数据平面

- 本地,每个路由器的功能
- 决定从路由器输入端口 到达的分组如何转发到 输出端口
- 转发功能

控制平面

- 全网范围内的逻辑
- 决定数据报如何在路由器之间 路由,决定数据报从源到目标 主机之间的端到端路径
- 2个控制平面方法:
 - 传统的路由算法: 在路由器中被实现
 - software-defined networking (SDN): 在远程的服务器中实现

R3 (教材 P199-P200)

网络层的关键功能

网络层功能:

- □ 转发: 将分组从路由器 的输入接口转发到合适 的输出接口
- □ *路由*: 使用路由算法来 决定分组从发送主机到 目标接收主机的路径
 - o路由选择算法
 - ○路由选择协议

类比:

- □转发: 通过单个路口的 过程
- □路由: 从源到目的的路 由路径规划过程

转发是指将分组从一个输入链路接口转移到适当的输出链路接口的路由器本地动作. 转发发生的时间很短, 通常用硬件实现.

路由选择是指确定分组从源到目的地所采取的端到端路径的网络范围处理过程.发生的时间较长,通常为几秒,因此用软件实现.

R10 (教材 P208)

经**内存**交换. 分组从输入端口处被复制到处理器内存中. 处理器从其首部中提取目的地址, 在转发表中找出适当的输出端口, 并把该分组复制到该输出端口的缓存中.

经**总线**交换. 分组从输入端口经过总线发送到所有输出端口, 只有与该分组 匹配的输出端口会把分组留下来.

经**互联网络**交换. 交换机由 2N 条总线组成互联网络, 连接 N 个输入口和 N 个输出口. 通过控制网络中的交点使分组到达对应的输出端口. 这种纵横式网络能够并行发送多个分组.

R11 (教材 P209)

如果分组到达输入端口的速率**超过**交换结构处理速率,则分组将需要在输入端口排队。当队列增长到**溢出**输入端口缓冲区时,出现分组丢失。

如果交换结构速度至少是输入线速度的 n 倍,则可以消除分组丢失,其中 n 是输入端口的数量。

R17 (教材 P215)

8 比特的协议字段值指示了 IP 数据报的数据部分应交给哪个特定的运输层协议。

R30 (教材 P214 P228)

有一些类似功能的字段

IPV4	IPv6
版本	版本
服务类型	流量类型
数据报长度	有效载荷长度
协议	下一个首部
寿命 (TTL)	跳限制

R33 (教材 P232)

基于目的地转发的转发表仅包含 IP 报头字段以及对应的输出链路接口; 而 OpenFlow 流表包含(1)首部字段值集合:用于匹配;(2)计数器集合:当 分组与流表条目匹配时进行更新;(3)当分组匹配流表项时所采取的动作集合。

Р5

a)前缀匹配		链路接口
11100000	00	0
11100000	01000000	1
1110000		2
11100001	1	3
其他		3

还可写为:

前缀匹配		链路接口
11100000	00	0
11100000	01000000	1
11100000		2
11100001	0	2
其他		3

b) 根据最长前缀匹配,这三个数据报转发的接口依次是 3、2、3.

P6

目的地址范围	链路接口
00000000 - 00111111	0
01000000 - 01011111	1
01100000 - 01111111	2
10000000 - 10111111	2
11000000 - 111111111	3

接口 0 的地址数量为: $2^{\circ}6 = 64$ 接口 1 的地址数量为: $2^{\circ}5 = 32$

接口 2 的地址数量为: $2^6 + 2^5 = 64 + 32 = 96$

接口 3 的地址数量为: 2⁶ = 64

P10

前缀匹配	链路接口
11100000 00 (224.0/10)	0
11100000 01000000 (224.64/16)	1
1110000 (224/7)	2
11100001 1 (225. 128/9)	3
其他	3

前缀匹配	链路接口
11100000 00 (224.0/10)	0
11100000 01000000 (224.64/16)	1
11100000 (224/8)	2
11100001 0 (225.0/9)	2
其他	3

P14

最大传输单元 (MTU) 为 700 字节, 其中要包含 20 个字节的 IP 首部, 能够存放 680 字节的数据。数据报为 2400 字节, 除去 20 字节的 IP 首部, 共有 2380 字节的数据。

分片的个数为 2380/680≈4。

四个分片的标识号均为 422, 片偏移字段分别为 0、85、170、255, 标志分别为

1, 1, 1, 0.

P15

使用 TCP 进行数据传输, $5MB \approx 5 \times 10^{\circ} 6$ B 或 $5 \times 1024 \times 1024 = 5242880B$,一个 TCP 报文段包括 20 字节 IP 首部和 20 字节 TCP 首部,所以需要($5 \times 10^{\circ} 6$)/1460 ≈ 3425 或 $5242880/1460 \approx 3592$ 个数据报。

ppt 例题:

IP 分片和重组

注意是减20还是减40,以及数据本身包含头部与否。

P16

a. 三个主机接口地址为 192. 168. 1. 1、192. 168. 1. 2、192. 168. 1. 3,路由器的接口地址为 192. 168. 1. 4。

b. NAT 转换表为:

WAN 端		LAN 端	
24. 34. 112. 235,	4000	192. 168. 1. 1,	3345
24. 34. 112. 235,	4001	192. 168. 1. 1,	3346
24. 34. 112. 235,	4002	192. 168. 1. 2,	3445
24. 34. 112. 235,	4003	192. 168. 1. 2,	3446
24. 34. 112. 235,	4004	192. 168. 1. 3,	3545
24. 34. 112. 235,	4005	192. 168. 1. 3,	3546

附加题:

假定从 198.16.0.0 开始有大量连续的 IP 地址可用,现在 4 个组织 A、B、C、D 按照顺序依次申请 4000、2000、4000 和 8000 个地址。对于每一个申请,请利用 w. x. y. z/s 的形式写出所分配的第一个 IP 地址、最后一个 IP 地址以及掩码。

分配 IP 地址时要以 2" 为基准分配。对 4000、2000、4000、8000 分别取以 2 为底的对数再向上取整,分别为 12、11、12、13。

起始地址	终止地址	掩码
198. 16. 0. 0	198. 16. 15. 255	198. 16. 0. 0/20
198. 16. 16. 0	198. 16. 23. 255	198. 16. 16. 0/21
198. 16. 32. 0	198. 16. 47. 255	198. 16. 32. 0/20
198. 16. 64. 0	198. 16. 95. 255	198. 16. 64. 0/19

一个路由器刚刚接收到一下新的 IP 地址: 57.6.96.0/21、57.6.104.0/21、57.6.112.0/21和57.6.120.0/21.如果所有这些地址都是用同一条出境线路,试问它们可以被聚合码?如果可以,它们被聚合到那个地址上?如果不可以,请问为什么?

The state of the s				The second secon	N
57. 6. 96. 0	00111001	00000110	01100000	00000000	
57. 6. 104. 0	00111001	00000110	01101000	00000000	
57. 6. 112. 0	00111001	00000110	01110000	00000000	
57. 6. 120. 0	00111001		01111000	00000000	
可以聚合到 57.	6. 96. 0/19。 <mark>[</mark>	32_13_19	1 '- ! <u>5 </u>	8	L
		10-10			

可以聚集 前面19位相同 后面从000000000000000到 13个11..11111

一个自治系统有 5 个局域网, LAN1 至 LAN4 上的主机数分别为: 200, 100, 60 和 15。LAN5 是连接 LAN1-LAN4 的,该自治系统分配到的 IP 地址块为 30. 138. 118/23. 试给出每一个局域网的分配地址,在下表中填上分配的地址块和可用于标识主机的起始地址与结尾地址,并画出拓扑结构。

本题有多种答案,满足地址不重合,地址数符合要求,注意可用地址去除主机号为全0和全1。

将 30.138.118/23 写为 00011110 10001010 01110110 000000000 第一个 LAN 需要 200 个地址,由于 $2^7 < 200 + 2 < 2^8$,所以给它分配的地址 块为 30.138.118.0/24。

其首地址为 30.138.118.1, 尾地址为 30.138.118.254

第二个 LAN 需要 100 个地址,由于 2^6 < $100+2<2^7$,所以给它分配的地址块为 30.138.119.0/25

其首地址为 30.138.119.1, 尾地址为 30.138.119.126

第三个 LAN 需要 60 个地址,由于 2^5 < 60 + 2 < 2^6 ,所以给它分配的地址块为 30.138.119.128/26

其首地址为 30.138.119.129, 尾地址为 30.138.119.190

第四个 LAN 需要 15 个地址,由于 2^4 < 15 + 2 < 2^5 ,所以给它分配的地址块为 30.138.119.192/27

其首地址为 30.138.119.193, 尾地址为 30.138.119.222

第五个 LAN 需要 4 个地址, 由于 2^2 < 4 + 2 < 2^3 , 所以给它分配的地址块为 30. 138. 119. 224/29

其首地址为 30.138.119.225, 尾地址为 30.138.119.230