19/04/24	Ic: Tulonial - 2
9 · 4 :	23 da - y3. dy = 3my (y. dn - n. dy)
	$n^3 dx + 3n^2y - y^3 dy - 3ny^2 dn$.
	(n3-3ny -) dx + (3nj-y3).dy =0
	$\left(n^3 - 3ny^4\right) dx = \left(-3ny + y^3\right) dy$
	egt is homogeneous.
	y = u.x
	$\frac{dy}{dn} = \frac{n^3 - 3ny^2}{y^3 - 3n^2y}$
	1
	$\frac{u + n \cdot du}{dx} = \frac{n^3 - 3ny^2}{3 - 3ny}$
	$= n^3 - 3n \cdot u^2 n^2$ $u^3 \cdot n^3 - 3 \cdot n^2 \cdot un$
	$= n^3 \left(1 - 3u^2 \right)$
	23 L u3 - 3u)
	$\frac{X \cdot du}{dx} = \frac{1 - 3u^2}{u^3 - 3u} + (-u)$
	= 1-3u ² [-{u ³ -3u)]
	$u^3 - 3u$
	$\times du = (1 - 3u^2 - u^4 + 3u^2)$
Rainbow	$d\times$ u^3-3u

So
$$\log x = 1 \cdot \log \left[\frac{1 - y^2}{x^2} \right]$$

So $\log x = 1 \cdot \log \left[\frac{x^2 \cdot (x^2 - y^2)^2}{(x^2 - y^2)^2} \right]$

So $\log x = 1 \cdot \log \left[\frac{x^2 \cdot (x^2 - y^2)^2}{(x^2 - y^2)^2} \right]$

So $\log x = 1 \cdot \log \left[\frac{x^2 \cdot (x^2 - y^2)^2}{(x^2 - y^2)^2} \right]$

Equation is homogeneous.

So put $y = v \cdot n$.

So $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - n^2$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - n^2$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - n^2$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - n^2$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - 1 \cdot y^2 - 1$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - 1 \cdot y^2 - 1$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - 1 \cdot y^2 - 1 \cdot y^2 - 1$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - 1 \cdot y^2 - 1 \cdot y^2 - 1$
 $\lim_{x \to \infty} y = 1 \cdot y^2 + y^2 \cdot y^2 - 1 \cdot y^$

inbow

·· / dv / (v 2 + v Jv 2 - 1) Jax + c = 10g x + c $I = \begin{cases} av \\ v(v^2 - v(t^2 - i) \end{cases}$ take V = 8 km du = sccu tanudu = | Secu-tanu Secu [Secu [Jsecu-1] + secu-1] C secutaru + Seczu-1 Sisu du

cosu [1 - sisu + 1 -)

cosu cosu 1 sis cosu du sis +1 - cos 2 u 0 3 0 Sisu Cosu du since + singu Sisu +1 1ct six +1=E · · · caru · du = dt Rainbow

= In. t = In. (sisu +1) dt In (Sis (Sec 1 v) +1 = In [Jr2-1 + 1] $\frac{dy}{dt} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$ $V + n \cdot dV = V + tan V$ -. Got V.dV = 1 .dx. Integrating, we get Jotv. dv = In.x + In.c. .: In siov = In n.c -. Sis v = nc. siny/x = c.x пвош