Problem 1

Are the following statements TRUE or FALSE? Explain why.

- (a) If π is rational, then so is 2
- (b) If π is irrational, then so is 2

Solution

- (a) True, since $False \rightarrow True$
- (b) False, since $True \rightarrow False$

Problem 2

Consider the statement: "If an animal is an rhinoceros, then it has a horn."

- (a) Write down the CONVERSE of this statement.
- (b) Write down the CONTRAPOSITIVE of this statement.

Solution

- (a) "If an animal has a horn, then it is a rhinoceros"
- (b) "If an animal does not have a horn, then it is not a rhinoceros"

Problem 3

Let x be a real number. Using the definition of rational number, write a direct proof of the following: If x is rational, then $x^2 + 5$ is also rational.

Proof. Let x be a rational number.

$$x=\frac{a}{b}, \text{ where } a,b \text{ are integers and } b\neq 0$$

$$x^2=\frac{a^2}{b^2}$$

$$x^2+5=\frac{a^2}{b^2}+5$$

$$x^2+5=\frac{a^2+5b^2}{b^2}, \text{ which is rational.}$$

Problem 4

Let x be a positive real number. Using the definition of a rational number, write a proof by contraposition of the following: If x irrational, then $\sqrt{x+6}$ is also irrational.

Proof. (By contraposition) Let $\sqrt{x+6}$ be rational.

$$\sqrt{x+6}=\frac{a}{b}, \text{ where } a,b \text{ are integers and } b\neq 0$$

$$x+6=\frac{a^2}{b^2}$$

$$x=\frac{a^2}{b^2}-6$$

$$x=\frac{a^2-6b^2}{b^2}, \text{ which is rational}$$

Problem 5

let n be an integer. Using the definition of odd/even, write a proof of the following: n is even if and only if $2n^2 + 5n + 7$ is odd.

Proof. $(p \Rightarrow q)$ Suppose that n is even.

$$n=2(k), \text{ where } k \text{ is an integer}$$

$$2n^2+5n+7=2(2k)^2+5(2k)+7$$

$$2n^2+5n+7=8k^2+10k+7$$

$$2n^2+5n+7=8k^2+10k+6+1$$

$$2n^2+5n+7=2(4k^2+5k+3)+1, \text{ which is odd.}$$

 $(\neg p \Rightarrow \neg q)$ Suppose that n is odd.

$$n=2(k)+1, \mbox{ where } k \mbox{ is an integer}$$

$$2n^2+5n+7=2(2k+1)^2+5(2k+1)+7$$

$$2n^2+5n+7=8k^2+18k+14$$

$$2n^2+5n+7=2(4k^2+9k+7), \mbox{ which is even}.$$

Problem 6

Using the definition of odd and even, write a proof of the following: $n^2 + 3n + 7$ is odd.

Proof. (By cases) Suppose that n is even.

$$n=2(k), \mbox{ where k is an integer}$$

$$n^2+3n+7=(2k)^2+3(2k)+7$$

$$n^2+3n+7=4k^2+6k+7$$

$$n^2+3n+7=4k^2+6k+6+1$$

$$n^2+3n+7=2(2k^2+3k+3)+1, \mbox{ which is odd.}$$

Suppose that n is odd.

$$n=2(k)+1, \text{ where k is an integer}$$

$$n^2+3n+7=(2k+1)^2+3(2k+1)+7$$

$$n^2+3n+7=4k^2+10k+11$$

$$n^2+3n+7=4k^2+10k+10+1$$

$$n^2+3n+7=2(2k^2+5k+5)+1, \text{ which is odd.}$$

Problem 7

Prove that there exists positive integers a, b such that $a^2 + b^2 = 100$

Proof. (By example)

$$6^2 + 8^2 = 100$$