MACHINE LEARNING OF SIGNIFICANT TERMS

LANCASTER UNIVERSITY, SCC460, GROUP EPSILON

INFORMED SOLUTIONS (IS)

- Specialise in digital transformation, artificial intelligence, and data analytics
- Solve complex business problems
- Involved in Planning and Land Management, Healthcare, Energy, and Government

MOTIVATION

Currently - for a document set:

- IS system sorts/categorises documents based on significant terms
- IS data pre-processing removes non-English terms
- Problem many business specific terms are removed, e.g. 'cil'

Ideally:

- Don't discard non-English terms
- Use NLP techniques that don't require a specific language
- Find significant non-English terms
- Then add them to the IS dictionary keep words

RESEARCH QUESTIONS

- Conduct a comparison of techniques to find the significance of non-English terms:
 - I. What NLP techniques can be used to find significant terms?
 - 2. Can a technique be used for terms not in a dictionary? Can they be adapted?
 - 3. What are the advantages and disadvantages of each short-listed technique?
 - 4. What is the performance like on an unstructured dataset?
- Provide a Machine Learning Pipeline for the recommended technique

DESCRIPTION OF THE DATASET

OVERVIEW OF THE PROCESS

- Pre-processing from documents to word lists
- Formatting Word lists to useable data (DataFrames and counts)
- Generating significant terms for each technique
- Compare results
- Classification

FLOW CHART OF PRE-PROCESSING

PRE-PROCESSING

STEP I:

EXTRACT TEXT

- Currently only processing PDFs
- Will implement optical character recognition

STEP 3:

TOKENIZATION

Splitting body of text into words

STEP 4:

CONVERT TO LOWER CASE

- Dictionaries only have lowercase
- Different case, different symbol

PRE-PROCESSING

STEP 5:

REMOVE SPECIAL CHARS

- Creates challenges to further processing
- Special characters and numbers are irrelevant
- Most models do not consider punctuation

STEP 7:

CHECK HYPHENATED WORDS

- Split up hyphenated words into individual words
- E.g. short-term, full-scale

PRE-PROCESSING

STEP 8:

LEMMATIZATION

- Converts words to its base form
- Multiple forms of a word causes noise and inaccuracy

STEP 9:

REMOVE STOP WORDS

- Set of commonly used words in a language
- Unimportant words
- Removal allows focus on important words instead

	Sample text with Stop	Without Stop Words
	Words	
	GeeksforGeeks – A Computer	GeeksforGeeks , Computer Science,
	Science Portal for Geeks	Portal ,Geeks
	Can listening be exhausting?	Listening, Exhausting
	I like reading, so I read	Like, Reading, read

STEP 10:

COMPARETO DICTIONARY

 Distinguish between English and Non- English words

FORMATTING

STEP 12:

FIND COUNTS FOR EACH WORD

- Calculate how many instances of each word are in each document, and in the corpus.
- Directly gives us 'bag of words'

NLPTECHNIQUES

BAG OF WORDS

- Used to extract features from text
- Represents each document/string of text as a bag
- Disregards the grammar and gives out the frequency/count of every feature
- Discards structure and order of the words in a document

LATENT DIRICHLET ALLOCATION (LDA)

- Used for topics extraction from a corpus of documents
- A topic is represented as a weighted list of words
- Fast to run and intuitive basically, bag of words with weights
- · Major drawback is it requires a lot of fine tuning

TEXT RANK

- Graph-based algorithm used for keyword extraction and text summarization
- Based on Google's PageRank
- Each word is a node
- Measures the relationship between two or more words
- Calculates the weight for each word

OTHER TECHNIQUES CONSIDERED

TF-IDF

- Used for document similarity, not corpus term significance
- Can be adapted, but not ideal

BERT

- Relies on semantics of words
- Can't easily get semantics of non-English

HDP

- Similar to LDA
- Implementation complexity

RESULTS & COMPARISON

Bag of words

- Instant execution
- Human approach
- No deep analysis

BAG	OF WORDS:	
	words	numFound
Θ	altrincham	296
1	cil	185
1 2 3 4 5 6 7	centre	167
3	•	132
4	©	115
5	ltd	94
6	wal4	94
7	trafford	89
8 9	bowdon	82
	rwp	72
10	hha	62
11	db	58
12	ful	51
13	wal5	50
14	mm	43

LDA

- Fast execution
- Actual ML model (can be improved with training)
- Needs hand tuning
- Non-deterministic

CEMIS	TM (with 20 topies 20	(OVIVORAC):				
	SIM (with 20 topics, 20 l					
NOTE	:: This list changes even					
	words numFound					
Θ	rooflight	43				
1	rwp	72				
2	cil	185				
3	sqm	25				
1 2 3 4 5 6 7 8	johnwoodarchitect.co.uk	14				
5	denotes	16				
6	bowdon	82				
7	21st	41				
8	al	33				
9	0	14				
10	hha	62				
11	mh	41				
12	altrincham	296				
13	relates	26				
14	ltd	94				

TextRank

- Very slow execution
- Actual ML model (easy to train)
- Results sometimes unusual
- Close to Bag-of-words

TEXTRANK:						
	words	numFound				
Θ	altrincham	296				
1	mm	43				
2	wal4	94				
3	trafford	89				
4	bowdon	82				
5	rwp	72				
6	altrincham	296				
7	ltd	94				
8	al	33				
9	cil	185				
0 1 2 3 4 5 6 7 8 9 10 11	ltd	94				
11	ppe	15				
12	rooflight	43				
13	mh	41				
14	wal5	50				

FUTURE WORKS

- Classification:
 - Can we sort documents based on keywords?
 - E.g. LDA 'topics'
- Validation:
 - Request a list of top words expected from IS
 - For classification:
 - Explore existing system
 - Does our non-English data improve their system?