Zadanie 1. Wyprowadź wzór na n-tą iterację Picarda $y_n(x)$ i oblicz jej granicę gdy $n \to \infty$ dla podanych zagadnień Cauchy'ego:

a)
$$y' = -y$$
 $y(0) = 1$,

15:32

b)
$$y' = 2yt \quad y(0) = 1$$
,

c)
$$y' = -y^2$$
 $y(0) = 0$.

a)
$$f(t,y) = -y(t)$$
 $y_0 = 1$
 $y_1 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $= 1 + S_0^t - 1 ds = 1 - t$
 $y_2 = 1 + S_0^t f(s, y_1(s)) ds = 1$
 $= 1 + S_0^t - 1 + S_0^t f(s, y_1(s)) ds = 1$
 $= 1 + S_0^t - 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 - t + \frac{t^2}{2!} - \frac{t^3}{2!} + \dots + \frac{t^n}{n!}$
 $y_0 = 1 - t + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds = 1$
 $y_0 = 1 + S_0^t f(s, y_0(s)) ds$

_ h.

$$= 1 + 5^{2} + \frac{5^{4}}{2}$$

$$y_{3} = 1 + 5^{6} 25 (1 + 5^{2} + \frac{5^{4}}{2}) ds =$$

$$= 1 + 5^{6} 25 + 25^{3} + 5^{5} ds =$$

$$= 1 + 5^{2} + \frac{5^{4}}{2} + \frac{5^{6}}{6}$$

$$y_{1} = 1 + 5^{6} 25 + 25^{3} + 5^{5} + \frac{1}{3}5^{7} ds =$$

$$= 1 + 12^{4} + \frac{1}{2} + \frac{1}{6} + \frac{1}{6$$

c) c)
$$y' = -y^2$$
 $y(0) = 0$. $f(t, y) = -y^2$

$$y_0 = 0$$

$$y_1 = \int_0^t -y_0^2 ds = 0$$

$$y_1 = 0 \xrightarrow{0.20} 0$$