MS-E2148 Dynamic optimization Lecture 9

Contents

- Stationary, discounted problems
- DP algorithm and infinite horizon
- Bellman equation and solving it numerically

- Material from:
 - D. Bertsekas: Dynamic Programming and Optimal Control,
 Vol. 2, Athena Scientific 2001

Discrete time problem where we minimize

$$E_{w_k} \Big\{ \alpha^N J(x_N) + \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \Big\}, \qquad k = 0, ..., N-1$$
(1)

so that

$$x_{k+1} = f(x_k, u_k, w_k)$$
 and $J_N(x) = \alpha^N J(x)$

- ▶ The problem is *stationary*: $g_k = g$ and $f_k = f$ for all k
- ▶ The problem is also *discounted*: the factor $\alpha \in (0,1)$ weights more the instant gains/losses compared to those in the future

- The minimum is $J^*(x) = \min_{\pi} J_{\pi}(x)$ and the optimal control π can be solved using DP algorithm
- ▶ If we are at stage with k stages remaining (e.g., a stage N 1, with k = 1 remaining), DP algorithm gives the expected cost-to-go

$$J_{N-k}(x) = \min_{u} E\left\{\alpha^{N-k}g(x, u, w) + J_{N-k+1}(f(x, u, w))\right\}$$
(2)

as a function of the state x

▶ (2) is the cost-to-go for the subproblem of length *k*

Let us formulate the cost-to-go in another form using the function

$$V_k(x) = \frac{J_{N-k}(x)}{\alpha^{N-k}}$$

- ► Thus, $V_N(x)$ is the cost-to-go $J_0(x)$ for the problem of length N
- ▶ The cost-to-go (2) in DP algorithm can be written

$$V_{k+1}(x) = \min_{u} E\{g(x, u, w) + \alpha V_{k}(f(x, u, w))\}, \quad k = 0, ..., N-1$$
where $V_{0}(x) = J_{N}(x)/\alpha^{N}$
(3)

- Note that (3) is "forward DP": if we have computed the optimal cost for stage N-1, V_{N-1} , we get V_N in one iteration
- ► E.g.: if we know the final cost J_N , we can compute $V_0(x) = J_N(x)/\alpha^N$, and

$$V_1(x) = \min_{u} E \left\{ g(x, u, w) + \alpha V_0(f(x, u, w)) \right\}$$
$$V_2(x) = \min_{u} E \left\{ g(x, u, w) + \alpha V_1(f(x, u, w)) \right\}$$

and so on

► The property is due to stationarity: at each stage g, and f, are of the same form.

Bellman equation

- Equation (3) can be used in solving the *infinite horizon* problem iteratively:
- ▶ For each computation of (3), we increase the length of the problem by one stage we can convert the finite length problem into infinite length by taking the limit k, $N \to \infty$:

$$V_{\infty}(x) \triangleq J^{*}(x) = \min_{u} E_{w} \left\{ g(x, u, w) + \alpha J^{*}(f(x, u, w)) \right\}$$
(4)

- Equation (4) is called the infinite horizon Bellman equation
- The total cost of the stationary, discounted, ∞ horizon problem is $J(x_0) = \lim_{N \to \infty} \sum_{k=0}^{N-1} \alpha^k g(x_k, u_k)$

The reasoning in the Bellman equation

Let us define a function (TJ)(x) that we get for each function J(x) by DP iteration:

$$(TJ)(x) = \min_{u} E_{w} \left\{ g(x, u, w) + \alpha J(f(x, u, w)) \right\}$$
 (5)

- ► TJ is the optimal cost for the one-stage problem where the current cost is g and the final cost-to-go αJ
- ► T can be seen as a mapping that transforms J into a new function like one step of DP: $J_{k+1} = TJ_k$
- ▶ This is called fixed-point iteration that converges at rate α to the unique solution of J = TJ, J^*
- ▶ The convergence requires that the stage costs are bounded $|g(x, u)| \le M$ for all x, u; this is satisfied is the state and control sets are bounded.

The reasoning in the Bellman equation

- Bellman equation says that J* is a fixed-point of mapping T
- Bellman equation is a functional equation
- It is solved by a stationary control law

$$\pi = \{\mu, \mu, \ldots\}$$

Let us also denote $J_{\pi}(x) = J^{*}(x)$ as the optimal stationary cost value.

Sometimes, the recursion of the finite stage DP algorithm is called Bellman equation for finite length problem.

Bellman equation: example

Let us maximize the infinite horizon discounted utility:

$$\sum_{k=0}^{\infty} \alpha^k \ln(u_k), \qquad \alpha \in (0,1)$$
 (6)

when the system is deterministic $x_{k+1} = \theta(x_k - u_k)$, $\theta > 0$, and the controls are bounded $u_k \in [0, x_k]$

▶ Bellman:

$$V(x) = \max_{u} \left\{ \ln(u) + \alpha V(\theta(x - u)) \right\}$$

 \Leftrightarrow we are balancing the instant utility and discounted future utility

Bellman equation: example

▶ Implicit equation is not good to solve without a trial... let us guess*) that $V(x) = a + b \ln(x)$ for some a, b:

$$a + b \ln(x) = \max_{u} \left\{ \ln(u) + \alpha a + \alpha b \ln(\theta(x - u)) \right\}$$

The first-order condition for the right-hand side maximization:

$$\frac{1}{u^*} - \frac{\alpha b}{x - u^*} = 0$$

from which $u^* = \frac{x}{\alpha b + 1}$

• (* In general, the functional equation of the form f(xy) = f(x) + f(y) is satisfied by the logarithm function)

Bellman equation: example

With the trial, the Bellman is:

$$a + b \ln(x) = \alpha a + \ln\left(\frac{x}{\alpha b + 1}\right) + \alpha b \ln\left(\theta\left(x - \frac{x}{\alpha b + 1}\right)\right)$$

from which we get the constants by comparing the multipliers $b = 1/(1 - \alpha)$; and thus the solution $u^* = (1 - \alpha)x$

- Let us define the notation for the numerical methods
- We assume a finite-state discrete-time dynamic system whereby, at state i, the use of a control u specifies the state transition probability P_{ij}(u) to the next state j.
- ▶ We call P the state transition matrix.
- ▶ Here the state i is an element of a finite state space, and the control u is constrained to take values in a given finite constraint set $U(i) \in R^m$, which may depend on the current state i.
- ▶ We can suppress w from the Bellman equation.
- $v \in R^n$ a vector of the value function; v(i) =is the value at state i
- ► Each u corresponds to a vector of utility $g(u) \in R^n$, and thus

g(i, u) = is the utility at state i with control u

- Note that there actually are m matrices; one for each control)
- With this notation, we get the vector-valued Bellman equation

$$v = \max_{u} \{ g(u) + \alpha P(u)v \}$$
 (7)

where "max" means vector operation that maximizes each row separately

This equation can be solved recursively

- Let t be the iteration number
- For an infinite length problem, we can use the value iteration:
 - 0. Set the convergence tolerance τ , and initial guess for the value function $v^0(i)$, for all states i. Let t=1. Solve the function

$$\mu^0 = \arg\max_{u} \{g(u) + \alpha P(u)v^0\}$$

1. Iteration step: update the value function

$$v^{t} = g(\mu^{t-1}) + \alpha P(\mu^{t-1}) v^{t-1}$$

2. Stopping condition: if $||v^t - v^{t-1}|| < \tau$, set

$$\mu^t = \arg\max_{u} \{g(u) + \alpha P(u)v^t\}$$

and stop; otherwise t = t + 1, return to step 1.

- For infinite length problem, we can also use the policy iteration:
 - 0. Initial guess for the optimal policy $\mu^0(i)$, for all states i. Let t = 1. Solve the value function

$$\mathbf{v}^0 = \left(\mathbf{I} - \alpha \mathbf{P}(\mu^0)\right)^{-1} \mathbf{g}(\mu^0)$$

1. Calculate a new value for the optimal policy

$$\mu^t = \arg\max_{u} \left\{ g(u) + \alpha P(u) v^{t-1} \right\}$$

2. Solve the value function

$$\mathbf{v}^t = \left(\mathbf{I} - \alpha \mathbf{P}(\mu^t)\right)^{-1} \mathbf{g}(\mu^t)$$

3. Stopping condition: if the value function does not improve $(v^t - v^{t-1} = 0)$ stop; otherwise t = t + 1, and return to step 1.

Observations

- ▶ If α < 1, the value function exists and is unique for the ∞ horizon problem
- ▶ If there is an absorbing state a, i.e., a state a for which it holds $P_{aa} = 1$, and is P_{aj} , for all states $j \neq a$, then the value function exists even when $\alpha = 1$.
- Policy iteration gives the exact solution when the number of states and controls is finite; it is based on the Newton's method where the root of Bellman equation is solved

$$\mathbf{v} - \max_{\mathbf{u}} \{ \mathbf{g}(\mathbf{u}) + \alpha \mathbf{P}(\mathbf{u}) \mathbf{v} \} = \mathbf{0}$$

Modern applications

- We assume to know the transition and cost functions in advance. We could as well assume they are unknown and must be learned through trial and error (reinforcement learning).
- Reinforcement learning can be combined with function approximation (deep reinforcement learning). One solution is to use an artificial neural network as a function approximator. It may speed up learning in finite problems, due to the fact that the algorithm can generalize earlier experiences to previously unseen states.
- Applications of reinforcement learning include AlphaGo (first computer program to beat a human professional player in the game of Go) and autonomous driving.

Summary

- Discrete time stationary, discounted problems
- Bellman equation
- Numerical methods to solve Bellman equation: value iteration, policy iteration