$y' = \frac{\cos(2+\cos(x)-\sin(x)-\sin(x))}{(2+\cos(x))^2}$ 

 $=\frac{2\cos x + 1}{(2+\cos x)^2}$ 

 $=\frac{-2\sin x (2+\cos x) + 2(2\cos x + 1)\sin x}{(2+\cos x)^3}$ 

## Recall the guidelines:

- A. domain
- B. intercepts
- C. symmetry
- D. asymptotes
- E. increase/decrease (and critical numbers)
- F. local maxima/minima
- G. concavity (and inflection points)
- H. sketch the graph

## 1. Sketch the graph by applying the guidelines:

$$y = \frac{\sin x}{2 + \cos x}, \qquad 0 \le x \le 2\pi$$

domain: all real numbers

X-intercepts: Sinx=00 X=0, T, 2TT  $y'' = \frac{-2\sin x (2+\cos x)^2 - (2\cos x+1)2(2+\cos x)}{(2+\cos x)^4}$ 

y-intercept: y=0

Symmetry: periodic w. period  $2\pi$ asymptotes: none
Crit #s:  $2\cos x + 1 = 0 \Leftrightarrow \cos x = -\frac{1}{2}$   $x = \frac{2\pi}{3}, \frac{4\pi}{3}$ 

infl. pts:  $\sin x = 0$  or  $\cos x - l = 0$   $x = o(\pi) 2\pi$   $= \frac{2\sin x(\cos x - l)}{(2 + \cos x)^3}$ 

increasing: (0,2%) U(45/3,271)

decreasing: (273,473)

Concave up: (7,24)

Concardoun: (0,2)

OLUTIONS



| ×    | 191  | y  | y " |
|------|------|----|-----|
| 0    | 0    | +  | O O |
| 273  | 1/13 | 0  |     |
| TT   | 0    | _  | 0   |
| 4773 | -/3  | 0  | +   |
| 211  | 0    | 1+ | 0   |

ketch the graph by applying the guidelines:  

$$y = \frac{1}{x^2 - 4} \implies y' = -\left(x^2 - 4\right)^2 \left(2x\right) = \frac{-2x}{\left(x^2 - 4\right)^2} \qquad y'' = \frac{2\left(3x^2 + 4\right)}{\left(x^2 - 4\right)^3}$$

domain: 
$$(-\infty, -2)U(-2, 2)U(2, \infty)$$
  
intercepts:  $(0, -1/4)$   
Symmetry: even  
asymptotes:  $X=-2, X=2, y=0$   
Crit #5:  $X=0$ 

$$\frac{\times y y' y''}{-\infty 0}$$
 concave up:  $(-0, -2)U(2, \infty)$   
 $\frac{\times y y' y''}{-\infty 0}$  concave down:  $(-2, +2)$   
 $\frac{\times y y' y''}{-\infty 0}$  concave down:  $(-2, +2)$ 



## 3. Sketch the graph by applying the guidelines:

$$y = \frac{x}{\sqrt{x^2 + 1}} \implies y' = \frac{1}{(x^2 + 1)^{3/2}} \quad y'' = \frac{-3x}{(x^2 + 1)^{5/2}}$$

Inst. pts: 
$$x=0$$
 $x \mid y \mid y' \mid y''$ 
 $x \mid y \mid y' \mid y''$ 

Concave up:  $(-\infty,0)$ 

Concave down:  $(0,00)$ 
 $(0,00)$ 

