零死角玩转STM32—M4系列

ADC-模数转换器

淘宝: firestm32.taobao.com

野火论坛: www.firebbs.cn

主讲内容

 01
 硬件设计

 01
 实验设计

参考资料:《零死角玩转STM32》

"ADC—电压采集"章节

硬件设计

开发板上板载了一个滑动变阻器,端子通过排针引出,默认通过调帽接到PBO,也可以把调帽拔 掉,用杜邦线连接其他的具有ADC功能的GPIO。

硬件设计

STM32F407ZGT6 ADC IO 分配					
ADC1	10	ADC2	10	ADC3	10
通道0	PA0	通道0	PA0	通道0	PA0
通道1	PA1	通道1	PA1	通道1	PA1
通道2	PA2	通道2	PA2	通道2	PA2
通道3	PA3	通道3	PA3	通道3	PA3
通道4	PA4	通道4	PA4	通道4	PF6
通道5	PA5	通道5	PA5	通道5	PF7
通道6	PA6	通道6	PA6	通道6	PF8
通道7	PA7	通道7	PA7	通道7	PF9
通道8	PB0	通道8	PB0	通道8	PF10
通道9	PB1	通道9	PB1	通道9	PF3
通道10	PC0	通道10	PC0	通道10	PC0
通道11	PC1	通道11	PC1	通道11	PC1
通道12	PC2	通道12	PC2	通道12	PC2
通道13	PC3	通道13	PC3	通道13	PC3
通道14	PC4	通道14	PC4	通道14	PF4
通道15	PC5	通道15	PC5	通道15	PF5
通道16	连接内部温度传感器	通道16	连接内部VSS	通道16	连接内部VSS
通道17	连接内部Vrefint	通道17	连接内部VSS	通道17	连接内部VSS

实验设计

- 1-独立模式-单通道-中断(不使用DMA)
- 2-独立模式-单通道-DMA
- 3-独立模式-多通道-DMA
- 4-三重模式-单通道-交替采集
- 5-双重模式-多通道-规则同步

独立模式-单通道-中断(不使用DMA)

- 1-初始化ADC的GPIO(单通道配置一个即可)
- 2-配置ADC初始化结构体
- 3-配置通道的转换顺序、配置中断、打开ADC、触发

ADC开始转换

4-编写main函数,中断服务函数

独立模式-单通道-中断(不使用DMA)

独立模式-单通道-使用DMA

- 1-初始化ADC的GPIO(多通道配置多个GPIO)
- 2-配置ADC初始化结构体、DMA初始化结构体
- 3-配置通道的转换顺序、使能DMA请求、使能DMA、
- 打开ADC、触发ADC开始转换
- 4-编写main函数

独立模式-单通道-使用DMA

独立模式-多通道-使用DMA

- 1-初始化ADC的GPIO(多通道配置多个GPIO)
- 2-配置ADC初始化结构体、DMA初始化结构体
- 3-配置通道的转换顺序、使能DMA请求、使能DMA、
- 打开ADC、触发ADC开始转换
- 4-编写main函数

独立模式-多通道-使用DMA

三重模式-单通道-交替采集

- 1-初始化ADC的GPIO(单通道配置一个即可)
- 2-配置ADC初始化结构体(三个ADC都要配置)
- 3-配置通道的转换顺序、配置DMA(是否三个ADC都
- 要配置?)、触发ADC开始转换(主ADC触发即可)
- 4-编写main函数

三重模式-单通道连续转换-使用DMA

双重模式-多通道-规则同步

- 1-初始化ADC的GPIO(多单通道)
- 2-配置ADC初始化结构体(两个ADC都要配置)
- 3-配置通道的转换顺序、配置DMA(是否三个ADC的
- DMA都要配置?)、触发ADC开始转换(主ADC触
- 发即可)
- 4-编写main函数

双重模式-多通道-规则同步

零死角玩转STM32—M4系列

野火论坛: www.firebbs.cn

淘宝: firestm32.taobao.com