

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL, CIENTÍFICA E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CATARINENSE CAMPUS SÃO BENTO DO SUL

BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE ATRAVÉS DO PLANO INCLINADO DE GALILEU GALILEI

Disciplina: Física Experimental I	Turma: ECO2025/ 2
Professor: Genilson Carvalho	genilson.carvalho@ifc.edu.br
Responsável: Nelson Dias Ponciano Scarin	nelsonscarin34@gmail.com
Johnnathan Victor Gonçalves Sabbá	victorsabba@gmail.com
Nome e Sobrenome	e-mail
Nome e Sobrenome	e-mail

São Bento do Sul - SC 7 de setembro de 2025

DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE ATRAVÉS DO PLANO INCLINADO DE GALILEU

RESUMO. Este relatório apresenta a determinação experimental da aceleração da gravidade utilizando o plano inclinado de Galileu. O experimento utilizou rampa de fio de nylon com ângulos de 30° e 60°, objetos metálicos e cronômetro digital. Foram realizadas 10 medições para cada ângulo, obtendo tempos médios de 0,701 s (30°) e 0,410 s (60°). Os valores calculados de g foram 8,14 m/s² e 7,97 m/s², resultando em valor médio de 8,06 m/s² com erro relativo de 17,9% em relação ao valor teórico.

Palavras-chave: Plano inclinado; Aceleração da gravidade; Galileu Galilei; Física experimental.

1 Introdução

Ao longo da história da fisica, muitos experimentos foram realizados para determinar o valor da aceleração da gravidade, sendo os mais notáveis aqueles realizados por Galileu Galilei [1]. Galileu foi um dos primeiros a utilizar o método científico para investigar a natureza, e seus experimentos com planos inclinados foram essencias para a determinação fundamental no estudo do Movimento Uniformemente acelerado/variado (MUV) [2].

Na realização e observação de tal experimento Galileu, como descrito em [3], Galileu constatou que o tempo que o objeto levava para percorrer o comprimento do plano era constante e que a massa do objeto não influenciava na aceleração.

Figura 1: Plano inclinado.

Galileu, Duas novas ciências, pp. 140-141, trad. Mariconda. P. R. Mariconda & J. Vasconcelos, Galileu e a nova física, p. 44.

A demonstração de tal experiemento, o qual já foi amplamente validado e estudado ao longo da historia, ainda é de extrema importância principalmente no contexto educacional [4], pois nos permite observar e compreender os principios fundamentais da fisica clássica além do papél, mas apartir de uma abordagem pratica experimental, auxiliando na fixação do conhecimento e na contrução do raciocinio anlitico e científico.

O objetivo deste relatório é descrever a metodologia utilizada para realizar o experimento de Galileu com um plano inclinado, apresentar os resultados obtidos e discutir as conclusões que podem ser tiradas a partir desses resultados. Através deste experimento, buscamos não apenas determinar o valor da aceleração da gravidade, mas também compreender melhor os princípios do movimento uniformemente acelerado e a influência da inclinação do plano nesse movimento.

2 Metodologia

Nesta seção são descritos os procedimentos empregados para efetuar as medidas e são descritas as montagens experimentais utilizadas.

2.1 Materiais Utilizados

• Rampa: fio de nylon com comprimento de 1,0 m

Fonte:

- Objetos em queda: porcas e braçadeiras metálicas
- Cronômetro: digital com precisão de $0.01 \ s$
- Trena: métrica com precisão de 1 mm
- Transferidor: para medição dos ângulos de inclinação

2.2

O experimento foi conduzido seguindo as etapas:

- 1. Montagem do plano inclinado utilizando fio de nylon como rampa
- 2. Ajuste da inclinação para ângulos de 30° e 60°
- 3. Medição das distâncias percorridas: 1,0 m para 30° e 0.58 m para 60°
- 4. Realização de 10 medições de tempo para cada configuração angular
- 5. Registro sistemático dos dados obtidos

O tempo foi cronometrado desde o momento da liberação do objeto até sua chegada ao final da rampa. Para minimizar erros sistemáticos, as medições foram repetidas 10 vezes para cada ângulo, permitindo cálculo da média e análise da dispersão dos dados.

3 Resultados e Discussões

Esta seção apresenta os dados obtidos experimentalmente e sua análise comparativa com os valores teóricos esperados.

3.1Dados Experimentais

3.2 Cálculos e Análise

Utilizando a equação fundamental do movimento uniformemente acelerado $(s = \frac{1}{2}at^2)$ e a relação $a = g\sin(\theta)$, obtém-se:

Tabela 1: Tempos medidos para plano incli-

nado a 30°				
Tentativa	Tempo (s)	Tentativa	Tempo (s)	
1	0,68	6	0,69	
2	0,71	7	0,73	
3	0,69	8	0,71	
4	0,72	9	0,70	
5	0,70	10	0,68	
Tempo médio: 0,701 s				

Procedimento Experimental Tabela 2: Tempos medidos para plano incli-

nado a 60°				
Tentativa	Tempo (s)	Tentativa	Tempo (s)	
1	0,41	6	0,41	
2	0,40	7	0,40	
3	0,42	8	0,42	
4	0,39	9	0,41	
5	0,43	10	0,40	
Tempo médio: 0,410 s				

$$g = \frac{2s}{t^2 \sin(\theta)}$$

Para 30°:

$$a_{30} = \frac{2 \times 1, 0}{(0, 701)^2} = 4,07 \text{ m/s}^2$$

$$g_{30} = \frac{4,07}{\sin(30)} = \frac{4,07}{0,5} = 8,14 \text{ m/s}^2$$

Para 60°:

$$a_{60} = \frac{2 \times 0,58}{(0,410)^2} = 6,90 \text{ m/s}^2$$

$$g_{60} = \frac{6,90}{\sin(60)} = \frac{6,90}{0,866} = 7,97 \text{ m/s}^2$$

3.3 Discussão dos Resultados

O valor médio obtido foi $g = 8,06 \text{ m/s}^2$, que apresenta um erro relativo de 17,9% em relação ao valor teórico (9,81 m/s²). Este erro pode ser atribuído a fatores como:

- Tempo de reação humano na cronometragem
- Atrito entre o objeto e a superfície da rampa

- Imprecisões na medição dos ângulos
- Oscilações do objeto durante o movimento

Os resultados são consistentes entre os dois ângulos testados, validando a metodologia empregada. Um outro ponto que gostariamos de enfatizar é que a velocidade final em ambos os casos são bem semelhantes, o que é esperado, ja que partindo do reposouo o objeto sofre uma aceleração constante, send o a altura do plano o unico fator relevante para a determinação da velocidade final, o que é confirmado pelos resultados obtidos. Todavia devido a imprecisões em nossa na nossa obtenção de dados os valores obtidos da velocidade final final não identicos, mas ainda ssim muito proximos, o que reforça a validade do experimento. Nas figuras 2 e 3 podemos observar os gráficos da velocidade em função do tempo obtido experimentalmente e o esperado, embasado nos valores teóricos.

Figura 2: Velocidade em função do tempo obtido.

Fonte: Elaborado pelos autores utilizando Python (Matplotlib e NumPy).

4 Conclusão

O experimento de determinação da aceleração da gravidade através do plano inclinado de Galileu foi realizado com sucesso, permitindo a obtenção de um valor experimental de $g = 8,06 \text{ m/s}^2$.

Embora o erro relativo de 17,9% em relação ao valor teórico seja significativo, este

Figura 3: Velocidade em função do tempo esperado.

Fonte: Elaborado pelos autores utilizando Python (Matplotlib e NumPy).

resultado está dentro do esperado para experimentos realizados com instrumentação simples e medições manuais. A metodologia de Galileu demonstrou ser eficaz para a época, considerando as limitações tecnológicas do século XVII.

O experimento validou os princípios fundamentais do movimento uniformemente acelerado e confirmou que a aceleração em um plano inclinado é proporcional ao seno do ângulo de inclinação. A consistência entre os resultados obtidos nos dois ângulos diferentes (30° e 60°) reforça a validade da abordagem experimental.

Este trabalho evidencia a importância histórica dos experimentos de Galileu para o desenvolvimento da física moderna e demonstra como princípios fundamentais podem ser investigados através de experimentos relativamente simples, os quais são de suma relevância para a compreensão de prática e teórica dos princípios fundamentais da física clássica. Atuando como ferramenta educacional indispensável.

Referências

[1] Valter A. Bezerra. Galileu galilei: Filosofia e história da ciência moderna. Departamento de Filosofia, FFLCH-USP. Material de curso.

- [2] Antônio A. S. Brito. O plano inclinado: um problema desde galileu. *Caderno Catarinense de Ensino de Física*, 2(2):57–63, agosto 1985. João Pessoa, PB.
- [3] Galileu Galilei. *Duas novas ciências*. Nova Stella, São Paulo, 1935. Tradução e notas: Letizio Mariconda e Pablo R. Mariconda.
- [4] Carlos H. M. F. Silva and Alex Lino. Estudo do plano inclinado de galileu: uma reprodução de experimentos históricos como subsídio para o ensino de física. In SICLN 2023 Seminário de Iniciação Científica do Litoral Norte, Brasil, 2023.