Finding the Number of Clusters in a Dataset: A Review and Simulation Study

Hossein Parsaei

Ph.D. Candidate

Systems Design Engineering Department

- > Clustering
- > Finding the number of clusters in a dataset
- > Experimental results
- **Conclusions**

Clustering

- The process of grouping a set of objects into several clusters such that:
 - 1. Objects within a cluster are as similar as possible.
 - 2. Objects from different clusters are as dissimilar as possible.

Example

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Applications

- Pattern recognition
- Bioinformatics
- Petroleum geology
- Image segmentation
- Data analysis
- Data mining

Challenges

- No prior knowledge
- Which similarity measure?
- Which clustering algorithm?
- How to evaluate the results?
- How many clusters?

Which Result?

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Finding the Right Number of Clusters

- Many methods have been proposed (Milligan & Cooper 1985; Gordon 1999).
- The best performs are presented here:
 - 1.Gap statistics
 - 2.Prediction strength method
 - 3. Jump method
 - 4. Calinski and Harabasz method
 - 5. Hartigan method
 - 6.Krzanowski and Lai method
 - 7. Silhouette statistic

How do they work?

- The more clusters the better quality (e.g., the smaller the MSE/ within cluster variance).
- > Small knee-point near the correct value.
- > But how to detect?

Gap Statistic

- > Computes a reference for MSE vs. K
- ➤ Looks for max. gap between the two curves.

Gap Statistic: Reference Cluster

Observations

Bounding Box (aligned with feature axes)

Random Samples (reference)

Gap Statistic: Reference Cluster

Jump Method

- Transforms the curve of MSE: $Jump_k = MSE_k^{-\frac{p}{2}}$ p: effective # of features.
- Looks for max(jump)

Prediction Strength Method

- Considers clustering as a supervised classification problem
- Looks for max(prediction strength)

Prediction Strength Method

Illustration of intuition behind the prediction strength idea

Calinski and Harabasz Method

Optimum number of clusters in a data is the value of K which maximizes $CH_K = \frac{\text{trace}(SSB_K)/(K-1)}{\text{trace}(SSW_K)/(N-K)}$

SSW: within-cluster scatter matrix

SSB: between-cluster scatter matrix

$$SSW_K = \sum_{i=1}^K \sum_{\underline{x} \in c_i} (\underline{x} - \underline{m}_i) (\underline{x} - \underline{m}_i)^T$$

$$SSB_K = \sum_{i=1}^K N_i (\underline{m}_i - \underline{m}) (\underline{m}_i - \underline{m})^T$$

 m_i : the center of cluster C_i

m: the total sample mean of the given data.

Example for CH index

Data

CH index Vs. K

Hartigane Method

The best number of clusters is the smallest K

$$Har_K = \left[\frac{\operatorname{trace}(SSW_K)}{\operatorname{trace}(SSW_{K+1})} - 1\right] \times (N - K - 1) \le 10$$

Krzanowski and Lai Method

The right number of clusters is the value of K which maximizes $KL_K = \left| \frac{DIFF_K}{DIFF_{K+1}} \right|$,

$$DIFF_K = (K-1)^{\frac{2}{p}} trace(SSW_{K-1}) - K^{\frac{2}{p}} trace(SSW_K)$$

- 1. For $K < \widehat{K}$, both $DIFF_K$ and $DIFF_{K+1}$ should be large.
- 2. For $K > \hat{K}$, both $DIFF_K$ and $DIFF_{K+1}$ should be small.
- 3. For $K = \hat{K}$, $DIFF_K$ should be large, but $DIFF_{K+1}$ should be small.

Example for KL index

Silhouette Statistic

- First presented by Rousseeuw (1987) to show graphically how well each pattern is classified to a cluster.
- For each pattern *i* in class Cr

$$Sil_i = \frac{b(i) - a(i)}{\max\{b(i), a(i)\}}$$

a(i)= average distance to all other patterns in Cr.

b(i)= average distance to all other patterns in other clusters.

Silhouette Statistic

- $-1 \leq Sil_i \leq 1$
- Sil=1 : good assignment
- Sil=-1: wrong (bad) assignment
- Sil=0: don't know; pattern could be belong to either its current cluster or its nearest cluster.

Using Sil Index to Find the best K

- mean(Sil) reflects the within-cluster compactness and between-cluster separation of the resulting clusters
- So the best K maximizes mean(Sil)

Experiment

Investigate the accuracy of these 7 methods in estimating the correct number of clusters when:

- 1.data set contains clusters of different shapes;
- 2.clusters become less and less separable;
- 3.number of samples in a data set are decreased;
- 4.dimension of the data are increased.
- 5.data are clustered using different clustering algorithms

Experimental Results

- Single-cluster data set
 - a. Single 2-d Gaussian distribution with zero mean and unit covariance.
 - b.As (1), but the variance of two features are not equal.
 - c.As (2), but with some correlation.
 - d.Uniform distribution U[0,1]
 - e.Highly correlated features: x = y = t + z with t increasing by 0.01 from -0.5 to 0.5, z is Gaussian noise.

Data set 5

Overall accuracy

Accuracy Vs. Dataset Used

Accuracy Vs. Clustering Method

SI: single-link

Cl: complete-link AVE: average link CL: centroid link

Accuracy Vs. Number of Patterns

Accuracy Vs. Dimension of Data

$$Jump_k = MSE_k^{-\frac{p}{2}}$$

2-cluster dataset

Overall Accuracy

Accuracy Vs. Dataset Used

Overlapping Clusters

Figure 15. Results for overlapping clusters. High value of Δ show well separation between the two clusters.

Unbalanced Clusters

Figure 16. Results for two clusters with different sample sizes. The first cluster contains 100 observations and the second one contains 100α observations.

Multiple-cluster Dataset

a. Three clusters in two dimensions

Multiple-cluster Dataset

- b. Three clusters in ten dimensions: generated as in (a), but centered at zeros(1,10), 1.6*ones(1,10), (1.6,-1.6, ...,-1.6). Each cluster contains 50 observations.
- c. Four clusters in ten dimensions with randomly chosen centers.
- d. Six clusters in two dimension

Overall Accuracy

Figure 18. Overall accuracy of the eight studied methods applied to multi-cluster data sets.

Accuracy Vs. Dataset Used

Accuracy Vs. Clustering Method

Summary

- Review seven important methods proposed for finding the right number of clusters in a data set.
- The performance of a method may depend on both the using clustering algorithm and the given dataset.
- The performance of the jump method drops drastically as the dimension of data increases.
- The gap statistic method is the best method for both onecluster.
- The gap/pc method performed better than the gap/uni.
- Non of the studied methods worked well for all data and all clustering algorithms used.
- We should apply different methods and synthesize the results.

Thanks Questions?

A Study of Clustering Applied to Multiple Target Tracking Algorithm

Pavlina Konstantinova, Milen Nikolov, and Tzvetan Semerdjiev

Data Association in Target Tracking

- Associate the received observations to existing tracks.
- The most important step in target tracking

Challenges

- The targets may be:
 - 1.closely spaced
 - 2.not detected in successive scans
 - 3. move in large groups.
- Measurement noise

Problem Formulation

Assign M observations to N targets,

$$\min \sum_{i=1}^n \sum_{j=1}^m c_{ij} \zeta_{ij}$$

S.t.
$$\begin{cases} \sum_{j=1}^{m} \zeta_{ij} = 1 & i = 1,...,n \\ \sum_{i=1}^{n} \zeta_{ij} = 1 & j = 1,...,m \end{cases}$$

$$\zeta_{ij} = \begin{cases} 1 & \text{if the observation j is assigned to track i} \\ 0 & \text{otherwhise} \end{cases}$$

$$\zeta_{ij} = \begin{cases} 1 & \textit{if the observation j is assigned to track i} \\ 0 & \textit{otherwhise} \end{cases}$$

$$c_{ij} = \begin{cases} d_{ij}^2 & \textit{if the observation is in the track's gate } (d_{ij}^2 < G) \\ \infty & \textit{otherwhise} \end{cases}$$

Solution

- Try all possible assignments, but it is very computationally expensive.
- •Use clustering technique, reduce search space for each target.
 - 1.Clustering
 - 2 For each cluster:
 - 2.1 Initialization of the assignment matrix
 - 2.2. Filling up the assignment matrix and solving the assignment problem
 - 2.3. Checking the validity of the solution and making associations
 - 3. Track filtering

Clustering Procedure

```
For each observation received in the current scan

NumOfGates=0; //the number of gates in which the observation is fallen

For each track

If the observation is in the track gate

NumOfGates= NumOfGates+1;

If the track is not included in cluster form new cluster for the track

NumOfClusters= NumOfClusters + 1;

Write the observation in track list.

If NumOfGates > 1 i.e. the observation falls in the gate of other track

If OldCluster ≠ <track's cluster> then MERGE clusters

If track's cluster is not the last - compress cluster's array

else

OldCluster=Track's cluster

End for each track

End for each observation

Form clusters for tracks without observations (to be filtered "by memory")
```

- Merge two clusters, If an observation is in the cluster of two tracks
- The maximal number of clusters < the number of tracked tracks.

Experimental Setup

8 groups of targets, each group consists of 21 moving targets

Results

	1	1	T							· • /
No	Number	Number	Execution time [sec]							
of experi-	of groups	of targets	Pentium S,		Pentium 2, 266 MHz		Celeron, 300 MHz		AMD Athlon,	
ments			without clusters	with clusters	without clusters	with clusters	without clusters	with clusters	without clusters	with clusters
1	8	168	122.02	67.22	47.89	22.68	42.53	27.31	10.11	5.60
2	7	147	79.15	54.32	28.89	18.80	28.71	21.68	6.43	4.45
3	6	126	53.16	42.10	17.87	13.95	20.62	16.89	4.34	3.46
4	5	105	38.94	31.92	12.42	10.43	14.79	12.68	3.14	2.58
5	4	84	26.36	23.95	8.24	7.36	10.12	8.98	2.14	1.81
6	3	63	16.76	16.37	5.90	4.78	6.29	5.80	1.32	1.15
7	2	42	9.23	8.73	2.75	2.70	3.51	3.42	0.66	0.66
8	1	21	3.80	3.80	1.10	1.10	1.50	1.50	0.22	0.22

Results

 $Relative \ Computation \ time = \frac{Computation \ time \ without \ clustering}{Computation \ time \ with \ clustering}$

Summary

- Data association step is a crucial step in multiple target tracking.
- Can be computationally expensive especially for large scenario with many targets.
- Using clustering in data association step saves significant computational time.

Thanks Questions?