Tutorial: Foundations of Non-truthful Mechanism Design

Part I: Equilibrium Analysis Tutor: Jason Hartline

Schedule:

Part la: 10-10:45am (http://ec20.sigecom.org/tech/tutorial)
Part lb: 11-11:45am (http://ec20.sigecom.org/tech/tutorial)

Exercises: 12-1pm (http://ec20.sigecom.org/tech/tutorial-exercises)

(https://tinyurl.com/non-truthful-exercises)

Protocol:

During session, panelest will answer clarifying questions in chat.

In post-session Q/A, "raise hand" to ask question.

Tutorial Cochairs

Brendan Lucier

Sigal Oren

Panelists

Yiding Feng

Yingkai Li

Foundations of Non-truthful Mechanism Design http://jasonhartline.com/tutorial-non-truthful/

Jason Hartline

Northwestern University

hartline@northwestern.edu

EC Tutorial 2020

Mechanism Design: identify mechanism that has good equilibrium.

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Issues:

- practical mechanisms are not truthful.
- not without loss for simple or prior-independent mechanisms.
- non-trivial to undo the revelation principle.

Mechanism Design: identify mechanism that has good equilibrium.

Revelation principle: if exists mechanism with good equilibrium, then exists mechanism with good truthtelling equilibrium. [Myerson '81]

Proof: truthful mechanism can simulate equilibrium strategies in non-truthful mechanism.

Consequence: literature focuses on truthful mechanisms.

Issues:

- practical mechanisms are not truthful.
- not without loss for simple or prior-independent mechanisms.
- non-trivial to undo the revelation principle.

Goal: theory for non-truthful mechanism design.

Part I

Equilibrium Analysis

- 1 Warmup: Second-price and First-Price Auction Examples
- 2 Single-dimensional Environments
- Revenue Equivalence and Applications
 - Characterizing Bayes-Nash equilbrium
 - Solving for Equilibrium
 - Uniqueness of Equilibrium
- 4 Robust Analysis of Equilibria

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- winner pays second-highest bid.

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- **Fact:** uniform r.v.s evenly divide their interval in expectation.

$$v_1, v_2 \sim U[0, 1]$$

$$\Rightarrow$$

E.g.,
$$v_1, v_2 \sim U[0, 1]$$
 \Rightarrow $\mathbf{E}[v_{(1)}] = 2/3, \ \mathbf{E}[v_{(2)}] = 1/3$

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

$$\text{E.g.,} \qquad \mathsf{v}_1, \mathsf{v}_2 \sim \textit{U}[0,1] \qquad \Rightarrow \qquad \mathbf{E}\big[\mathsf{v}_{(1)}\big] = 2/3, \; \mathbf{E}\big[\mathsf{v}_{(2)}\big] = 1/3$$

Example (Two agents, uniform values, second-price auction)

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

$$\text{E.g.,} \qquad \mathsf{v}_1, \mathsf{v}_2 \sim \textit{U}[0,1] \qquad \Rightarrow \qquad \mathbf{E}\big[\mathsf{v}_{(1)}\big] = 2/3, \; \mathbf{E}\big[\mathsf{v}_{(2)}\big] = 1/3$$

Example (Two agents, uniform values, second-price auction)

• Expected welfare in equilibrium:

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

E.g.,
$$v_1, v_2 \sim U[0, 1]$$
 \Rightarrow $\mathbf{E}[v_{(1)}] = 2/3, \ \mathbf{E}[v_{(2)}] = 1/3$

Example (Two agents, uniform values, second-price auction)

 \bullet Expected welfare in equilibrium: $\textbf{E}\big[\textbf{v}_{(1)}\big]=2/3$

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

E.g.,
$$v_1, v_2 \sim U[0, 1]$$
 \Rightarrow $\mathbf{E}[v_{(1)}] = 2/3, \ \mathbf{E}[v_{(2)}] = 1/3$

Example (Two agents, uniform values, second-price auction)

- Expected welfare in equilibrium: $\mathbf{E}[v_{(1)}] = 2/3$
- Expected revenue in equilibrium:

Definition (Second-price Auction, SPA)

- agents bid.
- winner is highest bidder.
- 3 winner pays second-highest bid.

Thm: Truthful bidding is dominant strategy equilibrium in SPA.

Recall: Uniform Distribution U[0,1]

- cumulative distribution function F(z) = z
- probability density function f(z) = 1
- Fact: uniform r.v.s evenly divide their interval in expectation.

E.g.,
$$v_1, v_2 \sim U[0, 1]$$
 \Rightarrow $\mathbf{E}[v_{(1)}] = 2/3, \ \mathbf{E}[v_{(2)}] = 1/3$

Example (Two agents, uniform values, second-price auction)

- Expected welfare in equilibrium: $\mathbf{E}[v_{(1)}] = 2/3$
- Expected revenue in equilibrium: $\mathbf{E}[v_{(2)}] = 1/3$

Definition (First-price Auction, FPA)

• agents bid. • winner is highest bidder. • winner pays their bid.

Definition (First-price Auction, FPA)

agents bid.winner is highest bidder.winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Definition (First-price Auction, FPA)

1 agents bid. **2** winner is highest bidder. **3** winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

Definition (First-price Auction, FPA)

agents bid.winner is highest bidder.winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

"Guess and verify" approach:

• Guess that agent 2 bids "half of value"

Definition (First-price Auction, FPA)

• agents bid. • winner is highest bidder. • winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

Definition (First-price Auction, FPA)

1 agents bid. **2** winner is highest bidder. **3** winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\textbf{E}[\text{utility}(v,b)] = (v-b) \times \textbf{Pr}[1 \text{ wins with bid b}]$$

Definition (First-price Auction, FPA)

agents bid.winner is highest bidder.winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\textbf{E}[\text{utility}(v,b)] = (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 b] = F(2 b) = 2 b}$$

Definition (First-price Auction, FPA)

1 agents bid. 2 winner is highest bidder. 3 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{Pr[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = \textbf{\textit{F}}(2 \, b) = 2 \, b} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{aligned}$$

Definition (First-price Auction, FPA)

agents bid.winner is highest bidder.winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

"Guess and verify" approach:

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{Pr[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = \textit{F}(2 \, b) = 2 \, b} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{aligned}$$

• To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.

Definition (First-price Auction, FPA)

agents bid.winner is highest bidder.winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = F(2 \, b) = 2 \, b} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{aligned}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2

Definition (First-price Auction, FPA)

agents bid.
 winner is highest bidder.
 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{split} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = \textbf{\textit{F}}(2 \, b) = 2 \, b}_{\textbf{\textit{E}}} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{split}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.

Definition (First-price Auction, FPA)

agents bid.
 winner is highest bidder.
 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{split} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = \textbf{\textit{F}}(2 \, b) = 2 \, b}_{\textbf{\textit{E}}} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{split}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.
- Equilibrium welfare:

Definition (First-price Auction, FPA)

1 agents bid. 2 winner is highest bidder. 3 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = F(2 \, b) = 2 \, b} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{aligned}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.
- Equilibrium welfare: $\mathbf{E}[v_{(1)}] = \frac{2}{3}$;

Definition (First-price Auction, FPA)

1 agents bid. 2 winner is highest bidder. 3 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{split} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{\textbf{Pr}[b_2 \le b] = \textbf{Pr}[v_2/2 \le b] = \textbf{Pr}[v_2 \le 2 \, b] = \textbf{\textit{F}}(2 \, b) = 2 \, b}_{\textbf{\textit{E}}} \\ &= (v-b) \times 2 \, b = 2 \, v \, b - 2 \, b^2 \end{split}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.
- Equilibrium welfare: $\mathbf{E}[v_{(1)}] = 2/3$; revenue:

Definition (First-price Auction, FPA)

1 agents bid. 2 winner is highest bidder. 3 winner pays their bid.

Qstn What are strategies? Equilibrium welfare? Equilibrium revenue?

Example (Two agents, uniform values, first-price auction)

- Guess that agent 2 bids "half of value"
- Calulate agent 1's utility with value v and bid b:

$$\begin{aligned} \textbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\textbf{Pr}[1 \text{ wins with bid b}]}_{Pr[b_2 \le b] = Pr[v_2/2 \le b] = Pr[v_2 \le 2b] = F(2b) = 2b} \\ &= (v-b) \times 2b = 2vb - 2b^2 \end{aligned}$$

- To maximize, take derivative $\frac{d}{db}$ and set to zero, solve.
- Optimal to bid b = v/2 \Rightarrow "b(v) = v/2" is equilibrium.
- Equilibrium welfare: $\mathbf{E}[v_{(1)}] = \frac{2}{3}$; revenue: $\mathbf{E}[v_{(1)}/2] = \frac{2}{3}\frac{1}{2} = \frac{1}{3}$

Section 2

Single-dimensional Environments

References:

• Hartline (202?) "Mechanism Design and Approximation" Chapter 2

Single-dimensional Linear Environments

Model

• agents: $\{1, \ldots, n\}$; values: $\mathbf{v} = (v_1, \ldots, v_n)$; bids: $\mathbf{b} = (b_1, \ldots, b_n)$

Single-dimensional Linear Environments

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- ullet feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{\boldsymbol{x}}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\boldsymbol{\mathcal{p}}}: \mathbb{R}^n \to \mathbb{R}^n$

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\boldsymbol{p}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} p_{i}(\mathbf{b})$

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\boldsymbol{\rho}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} \mathbf{p}_{i}(\mathbf{b})$

Example (Single-item Environments; First-price Auction)

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\mathbf{z}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} \mathbf{p}_{i}(\mathbf{b})$

Example (Single-item Environments; First-price Auction)

• feasibility constraint: $\mathcal{X} = \{ \mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1 \}$

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- ullet feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism (\tilde{x}, \tilde{p}) :
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\boldsymbol{\rho}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} p_{i}(\mathbf{b})$

Example (Single-item Environments; First-price Auction)

- feasibility constraint: $\mathcal{X} = \{ \mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1 \}$
- highest-bid-wins: $\tilde{\boldsymbol{x}}(\mathbf{b}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{i} b_{i} x_{i}$

Model

- agents: $\{1,\ldots,n\}$; values: $\mathbf{v}=(\mathsf{v}_1,\ldots,\mathsf{v}_n)$; bids: $\mathbf{b}=(\mathsf{b}_1,\ldots,\mathsf{b}_n)$
- linear utility: $v_i x_i p_i$ for allocation $x_i \in [0, 1]$ and payment $p_i \in \mathbb{R}$
- feasibility constraint: $\mathcal{X} \subset [0,1]^n$
- mechanism $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$:
 - ex post bid allocation rule: $\tilde{x}: \mathbb{R}^n \to \mathcal{X}$
 - ex post bid payment rule: $\tilde{\mathbf{z}}: \mathbb{R}^n \to \mathbb{R}^n$
- welfare: $\sum_{i} v_{i} \tilde{x}_{i}(\mathbf{b})$; revenue: $\sum_{i} \mathbf{p}_{i}(\mathbf{b})$

Example (Single-item Environments; First-price Auction)

- feasibility constraint: $\mathcal{X} = \{ \mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1 \}$
- highest-bid-wins: $\tilde{\boldsymbol{x}}(\mathbf{b}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{i} b_{i} x_{i}$
- winner-pays-bid: $\tilde{p}_i(\mathbf{b}) = b_i \, \tilde{x}_i(\mathbf{b})$

Three Stages of Mechanism Design

ex ante: before values are drawn

(v random)

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ex post allocation rule: $x(\mathbf{v}) = \tilde{x}(b(\mathbf{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{x}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid v_i];$$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{x}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \ | \ v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{p}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \ | \ v_i]$$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{z}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

- $\bullet \ \tilde{x}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{x}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]; \ \tilde{p}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{z}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]$
- $\bullet \ x_i(v_i) = \mathsf{E}_{\mathsf{v}}[x_i(v_i, \mathsf{v}_{-i}) \mid v_i];$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

- $\bullet \ \tilde{x}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{x}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]; \ \tilde{p}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{z}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]$
- $x_i(v_i) = \mathbf{E}_{\mathbf{v}}[\mathbf{x}_i(v_i, \mathbf{v}_{-i}) \mid v_i];$ $p_i(v_i) = \mathbf{E}_{\mathbf{v}}[\mathbf{p}_i(v_i, \mathbf{v}_{-i}) \mid v_i]$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{p}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $p(\mathbf{v}) = \tilde{p}(b(\mathbf{v}))$

- $\bullet \ \tilde{x}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{x}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]; \ \tilde{p}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{z}_i(\mathsf{b}_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]$
- $\bullet \ x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]; \qquad p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

Three Stages of Mechanism Design

- ex ante: before values are drawn (v random)
- interim: an agent's perspective at bid time $(v_i \text{ known}; \mathbf{v}_{-i} \text{ random})$
- ex post: after bids and values are known (v known)

Value Allocation and Payment Rules

Compose ex post mechanism (\tilde{x}, \tilde{z}) and bid strategy b:

- ullet ex post allocation rule: $oldsymbol{x}(oldsymbol{v}) = ilde{oldsymbol{x}}(oldsymbol{b}(oldsymbol{v}))$
- ex post payment rule: $\mathbf{p}(\mathbf{v}) = \tilde{\mathbf{p}}(\mathbf{b}(\mathbf{v}))$

- $\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{x}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{z}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$
- $\bullet \ x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]; \qquad p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{x}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\mathbf{z}}_i(b_i, \mathbf{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

$$\bullet \ x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[\underset{\boldsymbol{x}_i}{\boldsymbol{x}_i}(\mathsf{v}_i, \mathbf{v}_{-i}) \mid \mathsf{v}_i]; \qquad p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[\underset{\boldsymbol{z}_i}{\boldsymbol{z}_i}(\mathsf{v}_i, \mathbf{v}_{-i}) \mid \mathsf{v}_i]$$

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{x}_i(\mathsf{b}_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]; \ \tilde{p}_i(\mathsf{b}_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(\mathsf{b}_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid \mathsf{v}_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

equilibrium bids:
$$b_i(\mathsf{v}_i) = \mathsf{v}_i/2$$
; feasibility: $\mathscr{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i \mathsf{x}_i \leq 1\}$

	ex post	interim
bid allocation rule		
value allocation rule		

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{x}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

equilibrium bids:
$$b_i(\mathsf{v}_i) = \mathsf{v}_i/2$$
; feasibility: $\mathcal{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i \mathsf{x}_i \leq 1\}$

	ex post	interim
bid allocation rule	$\tilde{\boldsymbol{x}}(\mathbf{b}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{i} b_{i} x_{i}$	
value allocation rule		

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{x}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

equilibrium bids:
$$b_i(\mathsf{v}_i) = \mathsf{v}_i/2$$
; feasibility: $\mathscr{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i \mathsf{x}_i \leq 1\}$

	ex post	interim
bid allocation rule	$\tilde{\boldsymbol{x}}(\mathbf{b}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_i b_i x_i$	$\tilde{x}_i(b_i) = 2b_i$
value allocation rule		

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{x}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

Example (two agents, uniform values, first-price auction)

equilibrium bids: $b_i(\mathsf{v}_i) = \mathsf{v}_i/2$; feasibility: $\mathscr{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i \mathsf{x}_i \leq 1\}$

	ex post	interim
	$ ilde{m{x}}(\mathbf{b}) \in argmax_{\mathbf{x} \in \mathcal{X}} \sum_i b_i x_i$	$\tilde{x}_i(b_i) = 2b_i$
value allocation rule	$oldsymbol{x}(\mathbf{v}) \in argmax_{\mathbf{x} \in \mathcal{X}} \sum_i {}^{v_i}/2 x_i$	

Interim Allocation and Payment Rules

$$\bullet \ \tilde{x}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{x}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]; \ \tilde{p}_i(b_i) = \mathbf{E}_{\mathbf{v}}[\tilde{\boldsymbol{p}}_i(b_i, \boldsymbol{b}_{-i}(\mathbf{v}_{-i})) \mid v_i]$$

•
$$x_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[x_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i];$$
 $p_i(\mathsf{v}_i) = \mathsf{E}_{\mathsf{v}}[p_i(\mathsf{v}_i, \mathsf{v}_{-i}) \mid \mathsf{v}_i]$

equilibrium bids:
$$b_i(\mathbf{v}_i) = \mathbf{v}_i/2$$
; feasibility: $\mathcal{X} = \{\mathbf{x} \subset [0,1]^n : \sum_i x_i \leq 1\}$

	ex post	interim
bid allocation rule	$ ilde{m{x}}(\mathbf{b}) \in argmax_{\mathbf{x} \in \mathcal{X}} \sum_i b_i x_i$	$\tilde{x}_i(b_i) = 2b_i$
value allocation rule	$ \mathbf{x}(\mathbf{v}) \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{X}} \sum_{i} v_i / 2 x_i$	$x_i(v_i) = v_i$

Section 3

Revenue Equivalence and Applications

References:

- Myerson (1981) "Optimal Auction Design"
- 2 Chawla, Hartline (2013) "Auctions with unique equilibria"
- Martline (202?) "Mechanism Design and Approximation" Chapter 2

Bayes-Nash Equilibrium

Definition (Bayes-Nash equilibrium, BNE)

A strategy profile b such that for all i and v_i , bidding $b_i = b_i(v_i)$ is a best response when other agents bid $b_{-i}(\mathbf{v}_{-i})$ with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}|_{v_i}$.

Notation

- value profile w.o. agent *i*'s value: $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n)$
- conditional distribution of F given v_i : $F_{-i}|_{v_i}$ (if indep. $F_{-i}|_{v_i} = F_{-i}$)

Bayes-Nash Equilibrium

Definition (Bayes-Nash equilibrium, BNE)

A strategy profile b such that for all i and v_i , bidding $b_i = b_i(v_i)$ is a best response when other agents bid $b_{-i}(\mathbf{v}_{-i})$ with $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}|_{v_i}$.

Example (Two agents, uniform values, first-price auction)

Strategies **b** as " $\forall i$, $b_i(v_i) = v_i/2$ " is a Bayes-Nash equilibrium.

- values are U[0,1]
- bids under b are U[0, 1/2]
- best response to bid U[0, 1/2] is $b_i(v_i) = v_i/2$

Notation

- value profile w.o. agent *i*'s value: $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n)$
- conditional distribution of F given v_i : $F_{-i}|_{v_i}$ (if indep. $F_{-i}|_{v_i} = F_{-i}$)

Proposition

```
(x, p) are induced by BNE of some b, F, and (\tilde{x}, \tilde{p}) if and only if: \forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z) (and bids not in the range of b are weakly dominated.)
```

Proposition

```
(\boldsymbol{x}, \boldsymbol{p}) are induced by BNE of some \boldsymbol{b}, \boldsymbol{F}, and (\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}}) if and only if: \forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \geq v_i x_i(z) - p_i(z) (and bids not in the range of \boldsymbol{b} are weakly dominated.)
```

Theorem (Myerson '81)

- (x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:
- (monotonicity) x_i is monotonically non-decreasing
- (payment identity) $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of **b** are weakly dominated; often $p_i(0) = 0$)

Proposition

(x, p) are induced by BNE of some b, F, and (\tilde{x}, \tilde{p}) if and only if: $\forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z)$ (and bids not in the range of b are weakly dominated.)

Theorem (Myerson '81)

(x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:

- (monotonicity) x_i is monotonically non-decreasing
- (payment identity) $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of **b** are weakly dominated; often $p_i(0) = 0$)

Proposition

 $(\boldsymbol{x}, \boldsymbol{p})$ are induced by BNE of some \boldsymbol{b} , \boldsymbol{F} , and $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$ if and only if: $\forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \geq v_i x_i(z) - p_i(z)$ (and bids not in the range of \boldsymbol{b} are weakly dominated.)

Theorem (Myerson '81)

(x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:

- (monotonicity) x_i is monotonically non-decreasing
- (payment identity) $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of $oldsymbol{b}$ are weakly dominated; often $p_i(0)=0$)

Proposition

 $(\boldsymbol{x}, \boldsymbol{p})$ are induced by BNE of some \boldsymbol{b} , \boldsymbol{F} , and $(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$ if and only if: $\forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \geq v_i x_i(z) - p_i(z)$ (and bids not in the range of \boldsymbol{b} are weakly dominated.)

Theorem (Myerson '81)

(x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:

- (monotonicity) x_i is monotonically non-decreasing
- **(payment identity)** $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of $oldsymbol{b}$ are weakly dominated; often $p_i(0)=0$)

Proposition

(x, p) are induced by BNE of some \mathbf{b} , \mathbf{F} , and (\tilde{x}, \tilde{p}) if and only if: $\forall i, v_i, z : v_i x_i(v_i) - p_i(v_i) \ge v_i x_i(z) - p_i(z)$ (and bids not in the range of \mathbf{b} are weakly dominated.)

Theorem (Myerson '81)

(x,p) are induced by BNE of some b, F, and (\tilde{x},\tilde{p}) if and only if:

- (monotonicity) x_i is monotonically non-decreasing
- (payment identity) $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(z) dz + p_i(0)$.

(and bids not in the range of **b** are weakly dominated; often $p_i(0) = 0$)

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalence

Cor: revenue equivalence: same BNE allocation ⇒ same BNE revenue.

Method of Revenue Equivalence

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Method of Revenue Equivalence

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Two examples: for i.i.d. first-price auctions

- solving for symmetric Bayes-Nash equilibrium
- 2 non-existence of symmetric Bayes-Nash equilbrium

Method of Revenue Equivalence

Cor: revenue equivalence: same BNE allocation \Rightarrow same BNE revenue.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Two examples: for i.i.d. first-price auctions

- solving for symmetric Bayes-Nash equilibrium
- on-existence of symmetric Bayes-Nash equilbrium

Consequence: BNE of FPA is unique, symmetric, and welfare-maximal.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

Proof.

• Guess highest-valued agent wins.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- o payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- o payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.
- \bullet by mech. rules: $\textbf{E}[\text{SPA payment for } v \ | \ v \ \text{wins}] = \textbf{E}\big[v_{(2)} \ | \ v_{(2)} < v\big]$

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.
- by mech. rules: $\mathbf{E}[\mathsf{SPA} \ \mathsf{payment} \ \mathsf{for} \ \mathsf{v} \ | \ \mathsf{v} \ \mathsf{wins}] = \mathbf{E} \big[\mathsf{v}_{(2)} \ | \ \mathsf{v}_{(2)} < \mathsf{v} \big]$
- by mech. rules: **E**[FPA payment for $v \mid v$ wins] = b(v)

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.
- by mech. rules: $\mathbf{E}[SPA \text{ payment for } v \mid v \text{ wins}] = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$
- by mech. rules: **E**[FPA payment for $v \mid v$ wins] = b(v)
- revenue equivalence: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

Method of Revenue Equivalance

Equate two equations for payments:

- payments from mechanism rules.
- payments from revenue equivalance.

Thm: In i.i.d. FPA, symmetric BNE is: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$

- Guess highest-valued agent wins.
- FPA is revenue equivalent to SPA.
- by mech. rules: $\mathbf{E}[SPA \text{ payment for } v \mid v \text{ wins}] = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$
- by mech. rules: **E**[FPA payment for $v \mid v$ wins] = b(v)
- revenue equivalence: $b(v) = \mathbf{E}[v_{(2)} \mid v_{(2)} < v]$
- check guess: $\mathbf{E}[v_{(2)} \mid v_{(2)} < v]$ is monotone in v

Restriction for Lecture: single-item auction, continuous strategies

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

Proof of Corollary.

• agent 1 and 2 face random reserve "max($b_3, ..., b_n$)"

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

- agent 1 and 2 face random reserve "max($b_3, ..., b_n$)"
- by theorem, their strategies are symmetric.

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

- agent 1 and 2 face random reserve "max $(b_3, ..., b_n)$ "
- by theorem, their strategies are symmetric.
- same for player 1 and i.

Restriction for Lecture: single-item auction, continuous strategies

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Corollary

i.i.d. n-agent first-price auctions have no asymmetric equilibria.

- agent 1 and 2 face random reserve "max($b_3, ..., b_n$)"
- by theorem, their strategies are symmetric.
- same for player 1 and i.
- so all strategies are symmetric.

Revenue equivalence \Rightarrow two formulas for agent's utility:

•
$$u(v) = (v - b(v)) x(v)$$
 (first-price payment rule)

② $u(v) = \int_0^v x(z) dz$ (paymend identity / revenue equivalence)

Revenue equivalence \Rightarrow two formulas for agent's utility:

②
$$u(v) = \int_0^v x(z) dz$$
 (paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Revenue equivalence \Rightarrow two formulas for agent's utility:

•
$$u(\mathbf{v}) = (\mathbf{v} - b(\mathbf{v})) x(\mathbf{v})$$
 (first-price payment rule)

$$u(v) = \int_0^v x(z) dz$$
 (paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

Revenue equivalence \Rightarrow two formulas for agent's utility:

•
$$u(\mathbf{v}) = (\mathbf{v} - b(\mathbf{v})) x(\mathbf{v})$$
 (first-price payment rule)

②
$$u(v) = \int_0^v x(z) dz$$
 (paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

ullet assume strategies cross twice at v' and v''

Revenue equivalence \Rightarrow two formulas for agent's utility:

$$u(v) = \int_0^v x(z) dz$$
 (paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

 \bullet assume strategies cross twice at v' and v''

Revenue equivalence \Rightarrow two formulas for agent's utility:

$$u(v) = \int_0^v x(z) dz$$
 (paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

- \bullet assume strategies cross twice at v' and v''
- ullet so by Lemma, $x_1({\sf v})>x_2({\sf v})$ for ${\sf v}\in({\sf v}',{\sf v}'')$

Revenue equivalence \Rightarrow two formulas for agent's utility:

(first-price payment rule)

$$u(v) = \int_0^v x(z) dz$$

(paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

- \bullet assume strategies cross twice at v' and v''
- ullet so by Lemma, $x_1({\sf v})>x_2({\sf v})$ for ${\sf v}\in({\sf v}',{\sf v}'')$

• so by (2):
$$u_1(v'') - u_1(v') = \int_{v'}^{v''} x_1(z) dz$$

$$> \int_{\mathsf{v}'}^{\mathsf{v}''} x_2(\mathsf{z}) \, d\mathsf{z} = u_2(\mathsf{v}'') - u_2(\mathsf{v}')$$

Revenue equivalence \Rightarrow two formulas for agent's utility:

(first-price payment rule)

$$u(v) = \int_0^v x(z) dz$$

(paymend identity / revenue equivalence)

Theorem

i.i.d. 2-agent first-price auction with (unknown) random reserve has no asymmetric equilibrium (continuous, bounded values)

Proof (by contradiction):

- \bullet assume strategies cross twice at v' and v''
- ullet so by Lemma, $x_1({\sf v})>x_2({\sf v})$ for ${\sf v}\in({\sf v}',{\sf v}'')$

- so by (2): $u_1(v'') u_1(v') = \int_{v'}^{v''} x_1(z) dz$
 - $> \int_{\mathsf{v}'}^{\mathsf{v}''} x_2(\mathsf{z}) \, \mathsf{d}\mathsf{z} = u_2(\mathsf{v}'') u_2(\mathsf{v}')$
- ullet but by Lemma and (1): $u_1(\mathsf{v}') = u_2(\mathsf{v}')$ and $u_1(\mathsf{v}'') = u_2(\mathsf{v}'')$

Lem: At v if $b_1(v) > b_2(v)$ then $x_1(v) > x_2(v)$, and equal if equal.

Proof by Picture.

Lem: At v if $b_1(v) > b_2(v)$ then $x_1(v) > x_2(v)$, and equal if equal.

Proof by Picture.

Lem: At v if $b_1(v) > b_2(v)$ then $x_1(v) > x_2(v)$, and equal if equal.

Proof by Picture.

I.i.d. winner-pays-bid position auctions

Definition (Winner-pays-bid Position Auction [cf. Edelman, Ostrovsky, Schwarz '07])

- *n* positions, allocation probabilities \mathbf{w} with $w_1 \geq \ldots \geq w_n$,
- agents assigned to positions in order of bid,
- agents pay bid if allocated.

l.i.d. winner-pays-bid position auctions

Definition (Winner-pays-bid Position Auction [cf. Edelman, Ostrovsky, Schwarz '07])

- *n* positions, allocation probabilities **w** with $w_1 \ge ... \ge w_n$,
- agents assigned to positions in order of bid,
- agents pay bid if allocated.

Example

I.i.d. winner-pays-bid position auctions

Definition (Winner-pays-bid Position Auction [cf. Edelman, Ostrovsky, Schwarz '07])

- *n* positions, allocation probabilities **w** with $w_1 \ge ... \ge w_n$,
- agents assigned to positions in order of bid,
- agents pay bid if allocated.

Example

Theorem (Chawla, Hartline '13)

BNE of i.i.d. winner-pays-bid postion auction is unique, symmetric, and welfare-optimal.

Section 4

Robust Analysis of Equilibria

References:

- Borodin, Lucier (2010) "Price of anarchy for greedy auctions"
- Syrgkanis, Tardos (2013) "Composable and efficient mechanisms"
- O Hoy, Hartline, Taggart (2014) "Price of anarchy for auction revenue"
- Dütting, Kesselheim (2015) "Algorithms against anarchy: Understanding non-truthful mechanisms"
- Hoy, Nekipelov, Syrgkanis (2017) "Welfare guarantees from data"
- Martline (202?) "Mechanism Design and Approximation" Chapter 6

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- 2 run allocation algorithm.
- winners pay their bids.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

• 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.
- equilibrium bids:* 100.01 and 100

* approximate Nash equilibrium.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive ad space)

- 1 item, 2 agents, winner-pays-bid highest-bids-win mechanism
- values: 101 and 100.
- equilibrium bids:* 100.01 and 100
- outcome: 101 wins at 100.01; welfare: 101; optimal welfare: 101.
 - * approximate Nash equilibrium.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space)

• 1 exclusive item or 3 shared items.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space)

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space)

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.
- equilibrium bids:* 100.01, 100.00, 0, 0, 0.

Definition (Winner-pays-bid Mechanism)

- solicit bids.
- ② run allocation algorithm. ← which algorithms are good?
- winners pay their bids.

Definition (Highest-bids-win)

allocate to the feasible set of agents with highest total bid.

Example (exclusive or shared ad space)

- 1 exclusive item or 3 shared items.
- 2 exclusive agents, values: 101 and 100.
- 3 shared agents, values: 99, 98, 97.
- equilibrium bids:* 100.01, 100.00, 0, 0, 0.
- outcome: 101 wins at 100.01; welfare: 101; optimal welfare: 294.

Geometry of Best Response "utility or competition is high"

Geometry of Best Response "utility or competition is high" $\tilde{x}(\cdot)$

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

Geometry of Best Response

"utility or competition is high"

- winner-pays-bid utility:
 - $u(v,b) = (v-b)\tilde{x}(b)$
- \tilde{x} is cdf of rand. critical bid \hat{b}

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}} [\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

- ullet $ilde{x}$ is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}} [\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathbf{z})) d\mathbf{z}$$

Geometry of Best Response

"utility or competition is high"

$$u(v,b) = (v-b)\tilde{x}(b)$$

- ullet $ilde{x}$ is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}} [\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathbf{z})) \, d\mathbf{z}$$

Lem: In BNE:
$$u(v) + \hat{B} \ge e^{-1/e}v$$

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Definition (conversion ratio μ)

"high competition ⇒ high rev"

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Lem: In BNE: $u(v) + \hat{B} \ge e^{-1/e}v$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathsf{OPT}(\hat{\mathbf{B}}) / \mathsf{Rev}(\mathbf{b})$

Geometry of Best Response

"utility or competition is high"

- winner-pays-bid utility: $u(v, b) = (v - b)\tilde{x}(b)$
- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}} [\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathbf{z})) \, d\mathbf{z}$$

Lem: In BNE: $u(v) + \hat{B} \ge e - 1/e V$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathsf{OPT}(\hat{\mathbf{B}}) / \mathsf{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Lem: In BNE: $u(v) + \hat{B} \ge e^{-1/e}v$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathsf{OPT}(\hat{\mathbf{B}}) / \mathsf{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Proof.

From lemma:

$$\mathsf{u}_i(\mathsf{v}_i) + \hat{\mathsf{B}}_i \ge e - 1/e\,\mathsf{v}_i$$

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$\underline{u}(v,b) = (v-b)\,\tilde{\underline{x}}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Lem: In BNE: $u(v) + \hat{B} \ge e^{-1/e}v$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathsf{OPT}(\hat{\mathbf{B}}) / \mathsf{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Proof.

From lemma:

$$u_i(v_i) + \hat{B}_i \ge e^{-1/e} v_i$$

For welfare-otimal $\boldsymbol{x}^*(\mathbf{v})$:

$$u_i(v_i) + \hat{B}_i x_i^*(\mathbf{v}) \ge e^{-1/e} v_i x_i^*(\mathbf{v})$$

Geometry of Best Response

"utility or competition is high"

- winner-pays-bid utility:
- $u(\mathsf{v},\mathsf{b}) = (\mathsf{v} \mathsf{b})\,\tilde{x}(\mathsf{b})$
- \tilde{x} is cdf of rand. critical bid b
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Lem: In BNE: $u(v) + \hat{B} \ge e^{-1/e}v$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathrm{OPT}(\hat{\mathbf{B}})/\mathrm{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Proof.

From lemma:

$$u_i(v_i) + \hat{B}_i \ge e - 1/e v_i$$

For welfare-otimal $\boldsymbol{x}^*(\mathbf{v})$:

$$u_i(v_i) + \hat{B}_i x_i^{\star}(\mathbf{v}) \ge \frac{e-1}{e} v_i x_i^{\star}(\mathbf{v})$$

Sum over agents i, apply conversion rate $Util(\mathbf{v}) + \mu \operatorname{Rev}(\mathbf{v}) \ge e^{-1/e} \operatorname{OPT}(\mathbf{v})$

Geometry of Best Response

"utility or competition is high"

winner-pays-bid utility:

$$u(v,b) = (v-b)\tilde{x}(b)$$

- \tilde{x} is cdf of rand. critical bid \hat{b}
- expected critical bid:

$$\hat{\mathbf{B}} = \mathbf{E}_{\hat{\mathbf{b}} \sim \tilde{x}}[\hat{\mathbf{b}}] = \int_0^\infty (1 - \tilde{x}(\mathsf{z})) \, d\mathsf{z}$$

Lem: In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \mathrm{OPT}(\hat{\mathbf{B}})/\mathrm{Rev}(\mathbf{b})$

Theorem

BNE welfare is $\mu e/e - 1$ -approx.

Proof.

From lemma:

$$u_i(v_i) + \hat{B}_i \ge e - 1/e v_i$$

For welfare-otimal $\boldsymbol{x}^*(\mathbf{v})$:

$$u_i(v_i) + \hat{B}_i x_i^*(\mathbf{v}) \ge e^{-1/e} v_i x_i^*(\mathbf{v})$$

Sum over agents i, apply conversion rate $Util(\mathbf{v}) + \mu \operatorname{Rev}(\mathbf{v}) \ge e^{-1/e} \operatorname{OPT}(\mathbf{v})$

Take expectations:

$$\mu$$
 Welfare $\geq e - 1/e$ OPT

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

• By geometry: $u(v) + \hat{B} \ge 1/2 v$

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

 \bullet By geometry: $u(v)+\hat{\mathrm{B}}\geq 1/\!2\,v$

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

 \bullet By geometry: $u(v)+\hat{\mathrm{B}}\geq 1/\!2\,v$

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

 \bullet By geometry: $u(v)+\hat{\mathrm{B}}\geq {}^{1}\!/_{\!2}\,v$

Lemma

In BNE:
$$u(v) + \hat{B} \ge e - 1/e v$$

Proof.

 \bullet By geometry: $u(v)+\hat{\mathrm{B}}\geq 1/\!2\,v$

• More careful analysis gives e - 1/e.

Analysis of Conversion Ratio

Definition (conversion ratio μ)

"high competition \Rightarrow high rev"

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \mathsf{max}_{\mathbf{b}} \; \mathsf{OPT}(\hat{\mathbf{B}}) / \mathsf{Rev}(\mathbf{b})$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

Proof.

for any b

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any b
- expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j \neq i} \mathrm{b}_j$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any **b**
- expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j \neq i} \mathrm{b}_j$
- Rev(**b**)

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any **b**
- ullet expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j
 eq i} \mathrm{b}_j$
- $Rev(\mathbf{b}) = max_i b_i$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any b
- ullet expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j
 eq i} \mathrm{b}_j$
- $Rev(\mathbf{b}) = \max_i b_i = \max_i \max_{i \neq i} b_i$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any b
- ullet expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathsf{b}}_i = \mathsf{max}_{j
 eq i} \, \mathsf{b}_j$
- $Rev(\mathbf{b}) = \max_i b_i = \max_i \max_{i \neq i} b_i = \max_i \hat{B}_i$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

- for any b
- expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j \neq i} \mathrm{b}_j$
- $Rev(\mathbf{b}) = max_i b_i = max_i max_{j\neq i} b_i = max_i \hat{B}_i = OPT(\hat{\mathbf{B}})$

Definition (conversion ratio μ)

"high competition \Rightarrow high rev" $\mu = \max_{\mathbf{b}} \text{OPT}(\hat{\mathbf{B}}) / \text{Rev}(\mathbf{b})$

Theorem

Conversion ratio of first-price auction is $\mu = 1$.

Proof.

- for any b
- ullet expected critical bids are $\hat{\mathrm{B}}_i = \hat{\mathrm{b}}_i = \max_{j
 eq i} \mathrm{b}_j$
- $\mathsf{Rev}(\mathbf{b}) = \mathsf{max}_i \, \mathsf{b}_i = \mathsf{max}_i \, \mathsf{max}_{j \neq i} \, \mathsf{b}_i = \mathsf{max}_i \, \hat{\mathsf{B}}_i = \mathsf{OPT}(\hat{\mathbf{B}})$

Properties of Conversion Ratio

- not an equilibrium property.tight in some environments.
- closed under simultaneous composition.
- closed under randomization.

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, ..., m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, \dots, m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

A Nash equilibrium:

- ullet agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, ..., m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, \dots, m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

A Nash equilibrium:

- agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, ..., m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Nash welfare = 1; optimal welfare = m.

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, \dots, m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

A Nash equilibrium:

- agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, ..., m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Nash welfare = 1; optimal welfare = m.

Conversation ratio is $\mu = m$:

Theorem (e.g., Lucier, Borodin '10)

winner-pays-bid highest-bids-win mechanisms can have very bad equilibria.

Example (Single-minded Combinatorial Auction)

Preferences:

- m items; m+2 agents.
- agent $i \in \{1, \dots, m\}$ values bundle $S_i = \{i\}$ at $v_i = 1$.
- agent $h \in \{m+1, m+2\}$ values bundle $S_h = \{1, \dots, m\}$ at $v_h = 1$.

A Nash equilibrium:

- agents $h \in \{m+1, m+2\}$ bid $b_h = 1$ (one wins, one loses)
- agents $i \in \{1, ..., m\}$ bid $b_i = 0$ (all lose)
- all agent utilities = 0 for bids ≤ 1 .

Nash welfare = 1; optimal welfare = m.

Conversation ratio is $\mu = m$:

$$\hat{\mathbf{B}}_i = 1; \ \hat{\mathbf{B}}_h = 1; \ \mathsf{OPT}(\hat{\mathbf{B}}) = m; \ \mathsf{Rev}(\mathbf{b}) = 1.$$

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Theorem (Lehmann, O'Callaghan, Shoham '02)

Greedy by $b_i/\sqrt{|S_i|}$ winner-pays-bid algorithm is $\beta = \sqrt{m}$ approximation.

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Theorem (Lehmann, O'Callaghan, Shoham '02)

Greedy by $b_i/\sqrt{|S_i|}$ winner-pays-bid algorithm is $\beta = \sqrt{m}$ approximation.

Corollary (cf. Borodin, Lucier '10)

The BNE welfare of the greedy winner-pays-bid mechanism is $\sqrt{m} e/e - 1$.

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Theorem (Lehmann, O'Callaghan, Shoham '02)

Greedy by $b_i/\sqrt{|S_i|}$ winner-pays-bid algorithm is $\beta = \sqrt{m}$ approximation.

Corollary (cf. Borodin, Lucier '10)

The BNE welfare of the greedy winner-pays-bid mechanism is $\sqrt{m} e/e - 1$.

Theorem (Dütting, Kessleheim '15)

Conversion ratio μ for any winner-pays-bid single-minded CA is $\Omega(\sqrt{m})$.

Definition (Greedy Winner-pays-bid Mechanism)

1 bidders bid, **2** allocate greedily by $\phi_i(b_i)$, **3** winners pay their bids.

Theorem (Hartline, Hoy, Taggart '14)

Conversion ratio μ of greedy winner-pays-bid mechanism equals approximation ratio β of greedy algorithm.

Theorem (Lehmann, O'Callaghan, Shoham '02)

Greedy by $b_i/\sqrt{|S_i|}$ winner-pays-bid algorithm is $\beta=\sqrt{m}$ approximation.

Corollary (cf. Borodin, Lucier '10)

The BNE welfare of the greedy winner-pays-bid mechanism is $\sqrt{m} e/e - 1$.

Theorem (Dütting, Kessleheim '15)

Conversion ratio μ for any winner-pays-bid single-minded CA is $\Omega(\sqrt{m})$.

Qstn How can near optimal non-truthful mechaisms be designed?

Parts II and III

Part II: Non-truthful Sample Complexity

- Counterfactual Estimation
- 2 I.i.d. Position Auctions
- General Reduction to I.i.d. Position Auctions

Part III: Simplicity, Robustness, & the Revelation Gap

- Revelation Gap
- 2 Implementation Theory