

Course > Week 1 > Proble... > Proble...

Problem: Feedback Linearization

Feedback Linearization

0.0/15.0 points (graded)

True or false: for any underactuated system of the form $\ddot{q} = f_1(q, \dot{q}) + f_2(q, \dot{q})u$, one can choose u(x, u') so that $\dot{x} = Ax + Bu'$, where u' is a new control input.

O True			
False			

Take a robot whose dynamics are given by the manipulator equations, $H(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = B(q)u$ for $q \in \mathbb{R}^n$. The robot starts in a given initial configuration $q(0) = q_0$ and with a given initial velocity $\dot{q}(0) = \dot{q}_0$. Suppose B(q) is rank n for all q. Which of the following statements are true for **any** twice-differentiable desired trajectory $q_d : \mathbb{R} \to \mathbb{R}^n$?

- a. Feedback linearization can be used to make it so that $q\left(t
 ight)=q_{d}\left(t
 ight)$ for all $t\geq0$
- b. Feedback linearization can be used to make it so that $\dot{q}\left(t
 ight)=\dot{q}_{d}\left(t
 ight)$ for all $t\geq0$
- c. Feedback linearization can be used to make it so that $\ddot{q}\left(t
 ight)=\ddot{q}_{d}\left(t
 ight)$ for all $t\geq0$

а			
□ b			
С			

Oscillating Pendulum

Consider an actuated pendulum, where the base is forced to oscillate in simple harmonic motion, $C\sin(\omega t)$. Then, the dynamics of the pendulum angle θ are:

$$\ddot{ heta} = rac{g}{l} \sin heta - rac{C}{l} \omega^2 \sin \left(\omega t
ight) \sin heta + rac{u}{m l^2} .$$

Even with the base shaking, we would like the pendulum to spin at a constant speed, $\dot{\theta}=1$. To achieve this, we should choose $\ddot{\theta}_{des}$ to stabilize any velocity error. Use feedback linearization to find the control law such that $\ddot{\theta}=-\dot{\theta}+1$. Write the variable v for $\dot{\theta}$.

Trigonometric functions and greek letters can be written out in English, and should format properly. For example, simply write "sin(omega*t)" to form $\sin{(\omega t)}$

© All Rights Reserved