ESPAÇOS AFINS E PROJETIVOS

1. Espaços afins e transformações afins

Considere o espaço \mathbb{R}^n mergulhado em \mathbb{R}^{n+1} com a inclusão:

$$v = (\alpha_1, \dots, \alpha_n) \mapsto \overline{v} = (\alpha_1, \dots, \alpha_n, 1)$$

Lembre que o grupo AGL_n é o grupo de transformações que podemos obter pela composição de uma transformação linear de \mathbb{R}^n e uma translação em \mathbb{R}^n . Seja $L: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear com matriz X = [L] na base canônica. Seja \bar{X} a matriz

$$\bar{X} = \begin{pmatrix} X & \underline{0}^t \\ \underline{0} & 1 \end{pmatrix}$$

onde $\underline{0}$ denota o vector nulo em \mathbb{R}^n . assum \bar{X} é uma matriz $(n+1) \times (n+1)$. A matriz \bar{X} chama-se matriz aumentada. É fácil verificar que L(v) = w se e somente se $\bar{X}\bar{v} = \bar{w}$.

Exemplo 1. Assuma que $L: \mathbb{R}^2 \to \mathbb{R}^2$ é a rotação por $\pi/4$ (por volta da origem). Então a sua matriz na base canônica é

$$X = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

A matriz aumentada que corresponde a T é

$$\bar{X} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0\\ \sqrt{2}/2 & \sqrt{2}/2 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Agora seja $b \in \mathbb{R}^n$ e defina a matriz

$$X_b = \begin{pmatrix} I & b^t \\ \underline{0} & 1 \end{pmatrix}.$$

Considere $v \in \mathbb{R}^n$. Temos que

$$X_b \bar{v} = \overline{v + b} = \overline{T_b(v)};$$

ou seja, multiplicação por X_b corresponde a translação pelo vetor b.

Exemplo 2. Seja $b = (-1, 2) \in \mathbb{R}^2$. Então

$$X_b = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Date: 30 de outubro de 2022.

Se $v = (\alpha, \beta) \in \mathbb{R}^2$, então $\bar{v} = (\alpha, \beta, 1)$ e

$$X_b \bar{v} = X_b = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha - 1 \\ \beta + 2 \\ 1 \end{pmatrix} = \overline{T_b(v)}.$$

Finalmente, se $L:\mathbb{R}^n\to\mathbb{R}^n$ é uma transformação linear com matriz X (na base canônica) e $b\in\mathbb{R}^n$, então defina

$$X_{L,b} = \begin{pmatrix} X & b^t \\ \underline{0} & 1 \end{pmatrix}.$$

É fácil verificar que

$$X_{L,b}\overline{v} = \overline{L(v) + b}.$$

Ou seja, multiplicação pela matriz $X_{L,b}$ corresponde a composição $T_b \circ L$ em $\mathrm{AGL}_n.$

Exemplo 3. Assuma que b=(-1,2) e seja $L:\mathbb{R}^2\to\mathbb{R}^2$ a rotação por $\pi/4$ como no exemplo anterior. Então a matriz

$$X_{L,b} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & -1\\ \sqrt{2}/2 & \sqrt{2}/2 & 2\\ 0 & 0 & 1 \end{pmatrix}$$

Seja $v = (\alpha, \beta) \in \mathbb{R}^2$. Então $\bar{v} = (\alpha, \beta, 1)$ e

$$\begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & -1 \\ \sqrt{2}/2 & \sqrt{2}/2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \overline{L(v) + b}.$$

Sejam $b_1, b_2 \in \mathbb{R}^n$, $L_1, L_2 \in \operatorname{GL}_n \in v \in \mathbb{R}^n$. Então

$$(T_{b_1} \circ L_1) \circ (T_{b_2} \circ L_2)v = L_1L_2v + L_1b_2 + b_1 = T_{L_1b_2+b_1} \circ (L_1 \circ L_2).$$

Pode verificar que

$$X_{L_1,b_1}X_{L_2,b_2} = X_{L_1L_2,L_1b_2+b_1}.$$

Teorema 4. O grupo AGL_n é isomorfo ao grupo de matrizes na forma

$$\{X_{L,b} \mid L \in GL_n \ e \ b \in \mathbb{R}^n\}.$$

O isomorfismo está dado por $T_b \circ L \mapsto X_{L,b}$.

2. Planos projetivos

Definição 5. A reta projetiva $\mathbb{P}^1\mathbb{F}$ sobre um corpo \mathbb{F} é o conjunto das retas em \mathbb{F}^2 que passam pela origem. Uma reta $L_{a,b} = \{(x,y) \in \mathbb{F}^2 \mid ax+by=0\} \subseteq \mathbb{F}^2$ é chamado de *ponto* na reta projetiva $\mathbb{P}^1\mathbb{F}$. Este ponto de $\mathbb{P}^1\mathbb{F}$ pode ser representato com as coordenadas [a,b] Estes coordenadas são chamadas de coordenadas homgêneas. Note que [a,b] representa um ponto em $\mathbb{P}^1\mathbb{F}$ se e somente se $(a,b) \neq (0,0)$ e $[\alpha a, \alpha b]$ representa a mesmo ponto que

[a,b] para todo $\alpha \in \mathbb{F} \setminus \{0\}$. Assim, todo ponto de $\mathbb{P}^1\mathbb{F}$ pode ser representado com as coordenadas

$$[1, b]$$
 ou $[0, 1]$

com algum $b \in \mathbb{F}$. O ponto [0,1] é frequentamente chamado de ponto em infinito e assim obtemos que $\mathbb{P}^1\mathbb{F}$ pode ser identificado com $\mathbb{F} \cup \{P_\infty\}$ onde $P_\infty = [0,1]$ é o ponto em infinito.

Definição 6. Um plano projetivo Π consiste de um conjunto \mathcal{P} de pontos, um conjunto \mathcal{L} de linhas (ou retas) e uma relação de incidência $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{I}$ tal que

- (1) Se $P_1, P_2 \in \mathcal{P}$ distintos, então existe uma linha única linha $L \in \mathcal{I}$ tal que $P_1 \in L$, $P_2 \in L$.
- (2) Se $L_1, L_2 \in \mathcal{L}$, então existe um único ponto $P \in \mathcal{P}$ tal que $P \in L_1$ e $P \in L_2$.
- (3) Existem quatro pontos que nenhuma linha é incidente com mais que dois destes pontos.

Exemplo 7 (Plano Euclediano Estendido). Considere o plano \mathbb{R}^2 com os pontos e linhas usuais. (Ou seja, os pontos são $P = (x,y) \in \mathbb{R}^2$ e as linhas são conjuntos $\{(x,y) \mid ax + by = c\}$ com $(a,b,c) \neq (0,0,0)$.) Considere a relação de equivalência \sim entre linhas onde $L_1 \sim L_2$ se e somente se L_1 e L_2 são paralelas. Seja [L] a classe de equivalência da linha L.

- (1) Para cada classe $\ell = [L]$ introduza um novo ponto P_{ℓ} (ponto no infinito) e extenda a incidência em tal modo que $P_{\ell} \in L$ se e somente se $L \in \ell$.
- (2) Introduza uma nova linha L_{∞} em tal modo que L_{∞} contem precisamente os pontos no infinito. A linha L_{∞} chama-se a linha em infinito.

A geometria obtida por este processo chama-se *Plano Euclediano Estendido* e é denotado por $E\mathbb{R}^2$. Deixamos para o leitor a verificação que $E\mathbb{R}^2$ é um plano projetivo.

Exemplo 8. Seja \mathbb{F} um corpo qualquer (pode tomar por exemplo, $\mathbb{F} = \mathbb{Q}$, $\mathbb{F} = \mathbb{R}$, $\mathbb{F} = \mathbb{C}$, ou $\mathbb{F} = \mathbb{F}_p$), e considere o espaço \mathbb{F}^3 . Seja \mathcal{P} o conjunto das retas que passam pela origem, e seja \mathcal{L} o conjunto dos planos que passam pela origem. Um ponto P é incidente com uma reta L, se $P \subseteq L$. É fácil verificar que $\mathbb{P}^3_{\mathbb{F}} = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ é um plano projetivo. Nós geralmente vamos considerar o plano $\mathbb{P}^3 = \mathbb{P}^3_{\mathbb{R}}$.

- 2.1. Coordenadas homogêneas. Considere o plano $E\mathbb{R}^2$ estendido. Introduzimos coordenadas homogêneas para pontos e retas.
 - (1) Seja $p=(x,y)\in\mathbb{R}^2$. A tripla $[\lambda x,\lambda y,\lambda]$ é coordenada homogênea para p com $\lambda\in\mathbb{R}\setminus\{0\}$.
 - (2) Seja p um ponto em infinito que corresponde a uma classe paralela de linhas ax + by + c = 0 com $a, b \in \mathbb{R}$ fixados. A tripla $[\lambda a, \lambda b, 0]$ é coordenada homogênea de p com qualquer $\lambda \in \mathbb{R} \setminus \{0\}$.
 - (3) Seja ℓ uma reta a equação ax + by + c = 0. Então a tripla [a, b, c] é coordenada homegênea para ℓ .

(4) Seja ℓ a reta no infnito. Então $[0,0,\lambda]$ é coordenada homogênea de ℓ para qualquer $\lambda \in \mathbb{R} \setminus \{0\}$.

Lema 9. Todo ponto e toda reta em $E\mathbb{R}^2$ possui coordenadas homogêneas. Além disso $[\alpha_1, \alpha_2, \alpha_3]$ e $[\beta_1, \beta_2, \beta_3]$ representam o mesmo ponto/reta se e somente se existe $\lambda \in \mathbb{R} \setminus \{0\}$ tal que $\beta_i = \lambda \alpha_i$ para todo $i \in \{1, 2, 3\}$.

Demonstração. Segue as definições.

Lema 10. Seja p um ponto e ℓ uma reta representados pelas coordenadas [a, b, c] e [u, v, w]. Temos que $p \in \ell$ se e somente se $[a, b, c] \cdot [u, v, w] = 0$. (produto escalar)

Demonstração. Segue as definições.

Lema 11. Assuma que $[u_1, v_1, w_1]$ e $[u_2, v_2, w_2]$ são retas distintas em \mathbb{ER}^2 . Temos que as coordenadas homegeneas do único ponto na interseção das duas retas são dadas pelo produto vetorial $[u_1, v_1, w_1] \times [u_2, v_2, w_2]$.

Demonstração. Note que o produto misto

$$[u_1, v_1, w_1] \cdot ([u_1, v_1, w_1] \times [u_2, v_2, w_2]) = \det \begin{pmatrix} u_1 & u_1 & u_2 \\ v_1 & v_1 & v_2 \\ w_1 & w_1 & w_2 \end{pmatrix} = 0.$$

Uma conta similar mostra que $[u_2, v_2, w_2] \cdot ([u_1, v_1, w_1] \times [u_2, v_2, w_2]) = 0$. Então o ponto com coordenadas homogêneas $[u_1, v_1, w_1] \times [u_2, v_2, w_2]$ está nas duas linhas. Pelos axiomas do plano projetivo, este é o único ponto nas duas retas.

Note que $[u_1, v_1, w_1] \times [u_2, v_2, w_2] \neq [0, 0, 0]$ são retas distintas, e assim $[u_1, v_1, w_1]$ e $[u_2, v_2, w_2] \neq [0, 0, 0]$.

Lema 12. Assuma que $[a_1, b_1, c_1]$ e $[a_2, b_2, c_2]$ são pontos distintos em \mathbb{ER}^2 . Temos que as coordenadas homegeneas da única reta que passa por estes dois pontos são dadas pelo produto vetorial $[a_1, b_1, c_1] \times [a_2, b_2, c_2]$.

Demonstração. Igual ao lema anterior.

Lema 13. Assuma que $p_1 = [a_1, b_1, c_1]$, $p_2 = [a_2, b_2, c_2]$ e $p_3 = [a_3, b_3, c_3]$ são pontos em $E\mathbb{R}^2$. Os pontos p_1, p_2, p_3 são collineares se e somente se

$$\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = 0.$$

Demonstração. Se $p_2 = p_3$, então os três pontos são collineares e o determinante no teorema é também igual a zero. Assuma que $p_2 \neq p_3$. Os pontos p_1 , p_2 , e p_3 são collineares se e somente se o ponto p_1 está na reta determinada por p_2 e p_3 . Isso occorre se e somente se

$$0 = p_1 \cdot (p_2 \times p_3) = \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

Lema 14. Assuma que $\ell_1 = [u_1, v_1, w_1]$, $\ell_2 = [u_2, v_2, w_2]$ e $\ell_3 = [u_3, v_3, w_3]$ são retas em $E\mathbb{R}^2$. As retas ℓ_1, ℓ_2, ℓ_3 são concorrentes se e somente se

$$\det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = 0.$$