Tuesday, September 28, 2021 7:27 AM

Chapter 1

INFINITE SERIES

$$1 + 1 + 1 + 1 + \dots = ?$$

$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = ? 2$$

we need the language of sequences and seres

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = ?$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = ?$$

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$
 Euler

Let
$$(u_n)_{n=1}^{\infty}$$
 be a sequence of numbers.

$$S = u_1 + u_2 + u_3 + \dots = \sum_{n=1}^{\infty} u_n$$

5

Partial sum
$$S_n = u_1 + u_2 + ... + u_n = \int_{i=1}^{n} u_i$$

If $\lim_{n \to \infty} s_n = x_i + x_i + ... + x_n = \int_{i=1}^{n} u_i$

If $\lim_{n \to \infty} s_n = x_i + x_i + ... + x_n = \int_{i=1}^{n} u_i$

(diverges)

It $\lim_{n \to \infty} s_n = \lim_{n \to \infty} x_n + x_n + x_n = x_n$
 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} x_n + x_n = x_n$

And $\lim_{n \to \infty} s_n = \lim_{n \to \infty} x_n = x_n + x_n$
 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} x_n = x_n + x_n$
 $\lim_{n \to \infty} s_n = x_n + x_n + x_n + x_n = x_n$
 $\lim_{n \to \infty} s_n = x_n + x_n + x_n + x_n = x_n$
 $\lim_{n \to \infty} s_n = x_n + x_n + x_n + x_n = x_n$
 $\lim_{n \to \infty} s_n = x_n + x_n + x_n + x_n = x_n + x_n + x_n = x_n$
 $\lim_{n \to \infty} s_n = x_n + x_n + x_n + x_n = x_n + x_n + x_n + x_n + x_n = x_n + x_n$

Example
$$s = 1 + n + n^{2} + n^{3} + \dots \qquad (n \neq 1)$$

$$u_{n} = n^{n-1}$$

$$u_{n} = \sum_{l=1}^{n} u_{l} = \sum_{l=1}^{n} n^{l-1} = \frac{1-n^{n}}{1-n}$$

$$\lim_{n \to \infty} \frac{1-n^{n}}{1-n} \text{ exists } \Leftrightarrow |n| < 1$$

$$\text{The series } s \text{ converges } \Leftrightarrow |n| < 1$$

$$\lim_{n \to \infty} \frac{1-n^{n}}{1-n} = \frac{1}{1-n}$$

$$s = a + ar + ar^{2} + ar^{3} + \dots = (a \neq 0, n \neq 1)$$

$$geometric series (chuẩn hình họz)$$

$$s converges \Leftrightarrow |n| < L$$

$$s = \frac{a}{1 - r} \quad \text{when } |n| < L$$

$$Example \quad p - series (Euler series)$$

$$S(p) = 1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \frac{1}{4^{p}} + \dots$$

$$S(p) \quad \text{converges} \Leftrightarrow p > 1$$

$$When \quad p \leq L, \quad S(p) \quad \text{diverges}$$

$$1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots = 2$$

$$N = \frac{1}{2}, \quad a \in L$$

$$= \frac{1}{1 - \frac{1}{2}}$$
Sequences (Series allow us to compute infinite additions.)
$$Dictum \quad A \quad \text{series is a runn ber}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 2$$

 $1+1+1+1+... = \infty$ 1-1+1-1+1-1...- nonexistent, $s_1 = 1$, $s_2 = 0$, $s_3 = 17s_4 = 0$, --- $len s_n does not exist$

2 questions:

- 1) Does a seres converge or diverge?
- 2) If a series converges,

 compute this series.

 3 is often more difficult than 1.

	10.0	_	
Necessary	condition	tor	convergence

Theorem (Necessary condition for convergence) Let S= Un be a senes If s converges, then $\lim_{n\to\infty}u_n=0$ $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + - - - dweges$ $u_n = \frac{1}{n} \longrightarrow 0 \quad (p-senes, p=1)$ s converges =) un -> 0 s converges $(+ u_n \rightarrow 0)$ (necessary condition for convergence, not a sufficient condition) (χ_n) / $\sum_{n=1}^{\infty} \chi_n$ conveges (y_n) , $\sum_{n \in I} y_n$ converges $\sum_{n=1}^{\infty} (x_n \pm y_n) = \sum_{n=1}^{\infty} x_n \pm \sum_{n=1}^{\infty} y_n$

$$\sum_{n=1}^{\infty} (x_n \pm y_n) = \sum_{n=1}^{\infty} x_n \pm \sum_{n=1}^{\infty} y_n$$

$$k \in \mathbb{R}$$

$$k \in \mathbb{R}$$

$$k = k$$

$$k = k$$

Integral Tes
Tuesday, September 2

A series III or a non-negative series

(positive series) $\begin{cases}
u_n > 0
\end{cases}$

Integral lest

Theoren Suppose f(x) is a continuous function on $(1, \infty)$; f(x) > 0; f(x) is non-increasing

 $u_n = f(n)$ $= \int_1^\infty f(x) dx \quad \text{converges, then } \sum_{n=1}^\infty u_n \text{ converges}$

(2) If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} u_n diverges$

Example p-series $1 + \frac{1}{2P} + \frac{1}{3P} + \frac{1}{4P} + --$

Put $f(x) = \frac{1}{x^p}$, so $u_n = f(n)$

. f(x) is continuous, f(x) > 0

. For $x > \Delta$, f(x) is non-(rcreasing $S = 1 + \frac{1}{2P} + \frac{1}{3P} + --- conveges / divege?$ $\int f(x) dx = \int x^{-p} dx$ $\int_{\infty} \int_{\infty} x^{-p} dx = \frac{x}{-p+1} + c$ $\int_{\infty} \int_{\infty} x^{-1} dx = \left[\ln x \right]_{1}^{\infty} dx \text{ erges}$ $Tenda = \begin{bmatrix} x^{-p+1} \end{bmatrix}_{1}^{\infty}$ converge when p > 1diverge when p < 1 $\int_{1}^{\infty} x^{-p} dx$ converge when p > 1diverge when p > 1Integral Test so 1 converge when p>1 dwoge when $p \leq 1$ you need to verify the conditions/ hypotheses before using the theorem.

$$P^{2} = \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots = \frac{11^{2}}{6}$$

$$BEAUTIFUL!$$
There is a general formula for
$$1 + \frac{1}{2^{2}k} + \frac{1}{3^{2}k} + \frac{1}{4^{2}k} + \dots = \frac{11^{2}}{6}$$

$$2eta values$$
wikipedia

Comparison Tests Theoren (Convergence Test 1) Let $\sum_{n=1}^{\infty} \chi_n$, $\sum_{n=1}^{\infty} y_n$ be positive senes $x_n \leq y_n$ Suppose (1) If $\int_{n=1}^{\infty} y_n$ converges, then $\int_{n=1}^{\infty} x_n$ converges (2) If $\sum_{n=1}^{\infty} x_n$ diveges, then $\sum_{n=1}^{\infty} y_n$ diveges $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \sum_{n=1}^{\infty} \frac{1}{n} converge$ Example $\frac{1}{n^2+1} < \frac{1}{n^2}$ $\frac{1}{n^2+1} < \frac{1}{n^2+1}$ $\frac{1}{n^2+1} < \frac{1}{n^2$ Theorem (Companson Test 2) Let $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ be 2 positive sents Suppose $\lim_{n\to\infty} \frac{x_n}{y_n} = L$ then $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ have the same convergence / divergence > <u>|</u> | Example

heorem of d'Alambert
Theorem (d'Alanbert)
Suppose $\sum_{n=1}^{\infty} x_n$ us a possitive sones
and $\lim_{n\to\infty} \frac{\chi_{n+1}}{\chi_n} = \lim_{n\to\infty} \frac{\chi_{n+1}}{\chi_n}$
(1) If $L < 1$: the serbs C
(1) If L > 1 r the series d
(2) \rightarrow
Example $\frac{\infty}{n=1}$ $\frac{n}{2}$

Example $\frac{x_{n}}{2^{n}} = \frac{n}{2^{n}}$ $\frac{x_{n}}{x_{n}} = \frac{n}{2^{n+1}} = \frac{n+1}{2^{n+1}} = \frac{n+1}{2} \cdot \frac{2^{n}}{n}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $\lim_{n \to \infty} \frac{x_{n+1}}{x_{n}} = \frac{1}{2} \cdot \frac{1}{2$

Theorem of Cauchy

Theorem (Cauchy)

Suppose $\sum_{n=1}^{\infty} \chi_n$ is a possible series and $\lim_{n\to\infty} \sqrt{x_n} = L exists$

- (1) If L < 1, the seres converges
- (2) If L > 1, the series diverges
- (3) If L = 1, inconclusive -

$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n+1} \right)^{n}$$

$$\chi_{n} = \left(\frac{2n+1}{3n+1}\right)^{n} > 0$$

 $x_n = \frac{2n+1}{3n+1}$ Cauchy the seres

$$\xrightarrow{n\to\infty} \frac{2}{3} < 1$$

converges

1 Integral Test

2 Companson Tests

d'Alanbert's theorem

Cauchy's theorem

Alternating Series

Tuesday, September 28, 2021 9:36 AM

$$1 + \frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots$$

$$1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \cdots$$

$$1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \cdots$$

$$1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 - \frac{1}{2} + \frac{1}{3^{2}} - \frac{1}{4^{2}} + \frac{1}{5^{2}} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

$$1 + \frac{1}{2} - \frac{1}{3^{2}} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

Absolute Convergence, Conditional Convergence
A senes $28,2021$ 9:40 AM 20
n = 1
Theorem If $\sum_{n=1}^{\infty} x_n $ converges,
then $\sum_{n=1}^{\infty} a_n$ converges
By the theorem, if a series is absolutely converge
then $\sum_{n=1}^{\infty} x_n $ converges and $\sum_{n=1}^{\infty} x_n$ converges
Example $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots - \frac{1}{3^2}$
$= \underbrace{\sum_{n=1}^{\infty} (-1)^{n+1}}_{n} $ is absolutely convergent.
because $\sum_{n=1}^{\infty} \left (-1)^{n+1} \frac{1}{n^2} \right = \sum_{n=1}^{\infty} \frac{1}{n}$ conveges
Example $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{3}$

Example
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} \quad \text{converges}$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n!} \quad \text{diverges}$$

harmonic sories

(chain stien hora)

We say that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is conditionally convergent,

Not absolutely convergent

alternating harmonic series

A series $\sum_{n=1}^{\infty} x_n$ is conditionally convergent

(bán hái tu)

I harmonic sories

A series $\sum_{n=1}^{\infty} x_n$ is conditionally convergent

(bán hái tu)

A series $\sum_{n=1}^{\infty} |x_n|$ diverges

That $\sum_{n=1}^{\infty} |x_n|$ diverges

A series $\sum_{n=1}^{\infty} x_n$ converges

Leibniz's criterion Tuesday, September 28, 2021 9:49 AM
1 (Lathouz s contenion)
$\begin{array}{c} & & \\$
If (2,) = 1 to a decreasing sequence
Suppose $\sum_{n=1}^{\infty} (-1) \times_n$ $(x_n) = 1$
then the alternating series converges
Example $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{4}$
(alternating harmonic series) (chuốn tiên hoà dan dan) (chuốn tiên hoà dan dan)
(chuốn Tiên hoa đan dân)
$= \sum_{n=1}^{\infty} \left(-1\right)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} \left(-1\right)^{n+1} \chi_n$
$= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \times_n$
Leibniz's criterion the alternating harmonic series converges Conduct anally Does it converge absolutely
Leibniz's criterion the alternating harmonic series converges
(condut onally)
absolutely

Generalised d'Alambert's criterion

Tuesday, September 28, 2021 9:57 AM

Generalised d'Alambert's criterion Suppose $\sum_{n=1}^{\infty} x_n$ is a series such that $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} = |x_n|$

(1) If L<1, then the series converges (absolutely)

(2) If L > 1, then $\sum_{n \in I} |x_n| dwegers$

(3) If L = 1, inconclusive

Generalised Cauchy's criterion Suppose $\leq x_n$ is a series such that $\lim_{n\to\infty} \frac{1}{n} |x_n| = \lim_{n\to\infty} \frac{1}{n$ (4) If L < 1, then the series converges (absolutely) (2) If L > 1, then $\sum_{n=1}^{\infty} |x_n|$ diverges (3) If L = L, inconclusive |

Rearrangement of Series

Trueday, September 22, 2021 1005 AM

$$\frac{1}{1} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{4^{$$

Theorem (Dinchlet) Suppose $\sum_{n=1}^{\infty}$ x, is an absolutely convergent sones

ther any rearrangement of this series also converges absolutely to the same value as the original series

Applying Convergence Tests Tuesday, September 28, 2021 10:11 AM
Until now, we have many convergence tests
For positive senes, we have
. Integral (e)
. 2 Companson tests
. A Pambert's crtenon
. Cauchy's crtenon
Guchy's criterion For alternating sents, we have Leibniz's criterion
For arbitrary sones, we have generalised d'Alambert's criterion
generalised Cauchy's criterion
- Can like
any of the above convergence issue
Comptines, you have to compute
different convergence tests in order to check convergence / divergence

What is the application of series?

beautiful mathematics! (this is true, mathematics study mathematics because it is beautiful.)

A series is a number! 0.9999 ==== A Seres of functions is a function! A FUNCTION CAN OF TEN BE REPRESENTED BY A SERIES OF FUNCTIONS! Messer sones representations allow us to compute functions, their dervatives, I their integrals. SPECIAL FUNCTIONS Gamma, Bessel, Zeta -> use seres to understand these functions DICTUM! (1) A series is a number!

2) A series of functions is a function!

3) A function can often be represented by a series of functions!