Strong Stability Preserving Integrating Factor Runge Kutta Methods

Tyler Knapp

North Carolina State University

November 11, 2020

Overview

- Introduction
- Strong Stability Preserving Methods
- Integrating Factor Methods
- 4 An AP Scheme for Compressible Euler

The Setting

We are numerically solving hyperbolic conservation laws:

$$u_t + f(u)_x = 0$$

- For a problem with a smooth solution, looking at the L_2 stability of the linearized problem is enough to ensure convergence of a consistent numerical method.
- We wish to consider problems with a discontinuous solution, where this is not enough.
- One choice is to have a method be total variation diminishing (TVD), in other words satisfying the strong stability property:

$$||u^{n+1}||_{\mathsf{TV}} \le ||u^n||_{\mathsf{TV}}$$

 A method of lines approach is popular where the spatial discretization satisfies this property when paired with forward Euler.

How does TVD help?

- One specific difficulty in getting numerical approximations on discontinuous solutions are the artificial oscillations that tend to appear near the discontinuities.
- It has been shown that if a method is TVD, it is monotonicity preserving.
- For a given numerical method this means that if $u_j^0 \ge u_{j+1}^0$ for all j then $u_i^n \ge u_{j+1}^n$ for all n, j.
- In particular this will not allow oscillations near an isolated propagating discontinuity since the initial data would be monotone.

Strong Stability Preserving

- Assume we have a high order spatial discretization that satisfies the strong stability property when paired with forward Euler.
- Applying this spatial discretization our conservation law can be written in semi-discrete form:

$$u_t = F(u)$$

- We want to evolve this with a time discretization that is higher order than forward Euler, but allows the spatial discretization to retain the strong stability property.
- By using a convex combination of forward Euler steps we can create such discretizations which are called strong stability preserving (SSP).

Review on Explicit Runge-Kutta

• For the equation $u_t = F(u)$, an explicit Runge-Kutta method can be written in Shu-Osher form: $u_t^{(0)} = u^n$

$$u^{(i)} = \sum_{j=0}^{i-1} \left(\alpha_{i,j} u^{(j)} + \Delta t \beta_{i,j} F\left(u^{(j)}\right) \right), \quad i = 1, \dots, s$$

$$u^{n+1} = u^{(s)}$$

- For consistency we need $\sum_{j=0}^{i-1} \alpha_{i,j} = 1$.
- If all $\alpha_{i,j}$ and $\beta_{i,j}$ are non-negative and a corresponding $\alpha_{i,j}$ is zero iff $\beta_{i,j}$ is zero, it is possible to rearrange each stage into a convex combination of forward Euler steps.

SSP Runge Kutta Methods

 Because the spatial discretization satisfies the strong stability property when paired with forward Euler we have:

$$||u^{n+1}|| = ||u^n + \Delta t F(u^n)|| \le ||u^n||$$

under the step size restriction $0 \le \Delta t \le \Delta t_{FE}$.

SSP Runge Kutta Methods

 When we rearrange each stage and write the Runge-Kutta scheme as a convex combination of forward Euler steps:

$$\left\| u^{(i)} \right\| = \left\| \sum_{j=0}^{i-1} \left(\alpha_{i,j} u^{(j)} + \Delta t \beta_{i,j} F\left(u^{(j)} \right) \right) \right\|$$

$$\leq \sum_{j=0}^{i-1} \alpha_{i,j} \left\| u^{(j)} + \Delta t \frac{\beta_{i,j}}{\alpha_{i,j}} F\left(u^{(j)} \right) \right\| \leq \left\| u^n \right\|$$

under the time step restriction $\Delta t \leq \min_{i,j} \frac{\alpha_{i,j}}{\beta_{i,j}} \Delta t_{FE}$ (by using the previous inequality).

• We call this method strong stability preserving so long as $C=\min_{i,j} \frac{\alpha_{i,j}}{\beta_{i,i}}>0$

Integrating Factor Methods

- We now get even more specific to conservation laws of the form $u_t = Lu + N(u)$, where L is a stiff linear operator and N is a non-stiff nonlinear operator.
- The stiff linear operator causes the need for a very small time step when using an explicit time discretization, we will solve this part exactly to alleviate this restriction.
- We do this by using the familiar integrating factor technique.

Integrating Factor Methods

Starting with $u_t = Lu + N(u)$, multiply by the matrix exponential e^{-Lt} :

$$e^{-Lt}u_t - e^{-Lt}Lu = e^{-Lt}N(u)$$
$$\left(e^{-Lt}u\right)_t = e^{-Lt}N(u)$$

Finally through a change of variables we have:

$$w_t = e^{-Lt} N\left(e^{Lt} w\right)$$

Since the stiff linear portion is being solved exactly through the matrix exponential, we are free to evolve this with an explicit time discretization.

Combining Methods

- Each stage of an explicit SSP Runge Kutta method written in Shu-Osher form, $u^{(i)}$ corresponds to the solution at time $t_i = t^n + c_i \Delta t$.
- For an explicit SSP Runge Kutta method, if these c_i values are non-decreasing, we can combine it with the integrating factor method $w_t = e^{-Lt}N\left(e^{Lt}w\right)$, and the resulting method will also be SSP.

Example Method

The method SSPIFRK(3,3)⁺ is given:

$$\begin{split} u^{(1)} &= \frac{1}{2} e^{\frac{2}{3}\Delta t L} u^n + \frac{1}{2} e^{\frac{2}{3}\Delta t L} \left(u^n + \frac{4}{3}\Delta t N \left(u^n \right) \right) \\ u^{(2)} &= \frac{2}{3} e^{\frac{2}{3}\Delta t L} u^n + \frac{1}{3} \left(u^{(1)} + \frac{4}{3}\Delta t N \left(u^{(1)} \right) \right) \\ u^{n+1} &= \frac{59}{128} e^{\Delta t L} u^n + \frac{15}{128} e^{\Delta t L} \left(u^n + \frac{4}{3}\Delta t N \left(u^n \right) \right) \\ &+ \frac{27}{64} e^{\frac{1}{3}\Delta t L} \left(u^{(2)} + \frac{4}{3}\Delta t N \left(u^{(2)} \right) \right) \end{split}$$

Notation: SSPIFRK(s,p)⁺ has s stages and is order p. The + denotes the nondecreasing c_i values.

Our Application

- We plan on using an SSPIFRK method as a component of an asymptotic preserving (AP) scheme to solve the compressible Euler equations for any Mach number.
- A quick review on AP schemes:

Asymptotic Preserving (AP) Schemes

- Asymptotic preserving schemes are used on multi-scale problems, phenomena that can be viewed at microscopic and macroscopic levels by different models.
- Often these models are connected by a scaling parameter ε , such that when $\varepsilon \to 0$, solutions of the microscopic model converge to solutions of the macroscopic model.

Solving Multi-Scale Problems

Why not just use any numerical method to solve the microscopic model and take ε small to get the macroscopic solution too?

- In many cases using an explicit scheme yields a convergence criterion where grid size is dependant on ε .
- We can try to use an implicit scheme to avoid this dependence, but even so we are not guaranteed a numerical solution consistent with the macroscopic model's solution as $\varepsilon \to 0$.

AP Scheme

- \mathcal{F}^0 : Macroscopic model
- ullet $\mathcal{F}^{arepsilon}$: Microscopic model
- ullet $\mathcal{F}^{arepsilon}_{\delta}$: Numerical discretization of microscopic model
- ullet \mathcal{F}^0_δ : Numerical discretization of macroscopic model

Figure:

AP Scheme

- \mathcal{F}^0 : Incompressible Euler
- $\mathcal{F}^{\varepsilon}$: Compressible Euler
- ullet $\mathcal{F}^{arepsilon}_{\delta}$: Numerical discretization of Compressible Euler
- ullet \mathcal{F}^0_δ : Numerical discretization of Incompressible Euler
- \bullet ε in this case is the Mach number.

Figure:

Compressible Euler

We can write the non-dimensionalized compressible Euler equations in divergence form as:

$$\frac{\partial U}{\partial t} + \nabla \cdot F(U) = 0$$

where:

$$U = \begin{pmatrix} \rho \\ \rho \mathbf{u} \\ \rho E \end{pmatrix}, F(U) = \begin{pmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} \otimes \mathbf{u} + \frac{\rho}{\varepsilon^2} \mathbf{Id} \\ (\rho E + \rho) \mathbf{u} \end{pmatrix}$$

Here ρ is density, ${\bf u}$ is velocity, $\rho {\bf u}$ is momentum, E is total specific energy, ρE is total energy, and ρ is pressure.

Also
$$\varepsilon = \frac{u_{\rm ref}}{\sqrt{p_{\rm ref}/p_{\rm ref}}}$$
 is the mach number.

Compressible Euler

The system is closed by an equation of state:

$$p = (\gamma - 1) \left(\rho E - \frac{\varepsilon^2}{2} \rho \|\mathbf{u}\|^2 \right)$$

where $\gamma > 1$ is the ratio of specific heats.

Applying SSPIFRK

• First split the flux term F into a non-stiff nonlinear term \hat{F} and a stiff linear term \tilde{F} .

$$\hat{F}(U) = \begin{pmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} \otimes \mathbf{u} + \rho \mathbf{Id} \\ (\rho E + \Pi) \mathbf{u} \end{pmatrix}, \tilde{F}(U) = \begin{pmatrix} 0 \\ \frac{1 - \varepsilon^2}{\varepsilon^2} \rho \mathbf{Id} \\ (\rho - \Pi) \mathbf{u} \end{pmatrix}$$

So $F = \tilde{F} + \hat{F}$ and Π is an auxiliary variable depending on pressure.

We now have

$$\frac{\partial U}{\partial t} + \nabla \cdot \hat{F}(U) + \nabla \cdot \tilde{F}(U) = 0$$

Tyler Knapp

Applying SSPIFRK

- Next apply an appropriate spatial discretization to the flux term to get the problem into a semi-discrete form.
- Then we can apply the SSPIFRK method to the problem.
 Hopefully by solving the linear part exactly, we remove the stability constraint due to epsilon completely.

References

Leah Isherwood, Zachary Grant, Sigal Gottlieb (2018)
Strong Stability Preserving Integrating Factor Runge–Kutta Methods
arXiv:1708.02595v2 [math.NA]

Randall J. LeVeque (1990)

Numerical Methods for Conservation Laws