Simulation neuronaler Netze

von Professor Dr. Andreas Zeil Universität Tübingen

Teil I:	E	Einführung und Neurobiologische Grundlagen	21
Kapitel	1 E	inleitung und Motivation	23
_	1.1	Was sind Neuronale Netze?	23
	1.2	Geschwindigkeitsvergleich Gehirn - Rechner	25
	1.3	100-Schritt-Regel	26
	1.4	Vergleich Konnektionismus - klassische Künstliche Intelligenz (KI)	26
	1.5	Eigenschaften neuronaler Netze	26
	1.6	Geschichte neuronaler Netze	28
	1.6.1	Frühe Anfänge (1942-1955)	28
	1.6.2	Erste Blütezeit (1955-1969)	29
	1.6.3	Die stillen Jahre (1969-1982)	29
	1.6.4	Die Renaissance neuronaler Netze (1985-heute)	32
	1.7	Bemerkungen zum vorliegenden Buch	34
Kapitel	2 B	iologische Neuronen	35
	2.1	Aufbau einer Nervenzelle	35
	2.2	Zellmembran von Nervenfasern.	39
	2.3	Fortpflanzung des Nervensignals entlang des Axons	40
	2.4	Myelinhülle	43
	2.5	Weiterleitung des Nervensignals über eine Synapse	44
	2.6	Neurotransmitter	47
	2.7	Einige Zahlen und Formeln über Neuronen	49
	2.8	Vereinfachte Modellierung von Neuronen bei der Simulation	51
Kapitel	3 Kleine Verbände von Nervenzellen		
	3.1	Die Meeresschnecke Aplysia	55
	3.2	Steuerung des Herzschlags und Blutdrucks von Aplysia	55
	3.3	Steuerung des Kiemenreflexes von Aplysia	57
Kapitel	4 G	ehirn des Menschen	59
	4.1	Struktur des Gehirns.	59
	4.2	Sensorische Nervenleitung.	6
	4.3	Sinneswahrnehmungen	62
	4.4	Motorische Nervenleitung	63
	4 5	Das autonome Nervensystem	64

	4.6	Weg der visuellen Information ins Sehfeld	64
	4.6.1	Augendominanz-Spalten des primären Sehfeldes	65
	4.7	Bereiche der Großhirnrinde	
	4.7.1	Aufteilung in funktioneil differenzierte Bereiche	66
	4.7.2	Lage funktioneil verschiedener Bereiche des Cortex	
	4.7.3	Verstehen und Produktion von Sprache und Schrift	67
Teil II	I	Konnektionistische Modelle	69
Kapitel	5 K	Konzepte des Konnektionismus	71
	5.1	Zellen als stark idealisierte Neuronen	71
	5.2	Bestandteile neuronaler Netze.	72
	5.3	Zelltypen nach Position im Netzwerk	73
	5.4	Beispiel eines Netzes: XOR-Netzwerk mit 4 Zellen	74
	5.5	Aktivierangszustand	
	5.6	Ausgabefunktion	76
	5.7	Arten von Verbindungsnetzwerken	76
	5.7.1	Netze ohne Rückkopplung (feedforward-Netze)	78
	5.7.2	Netze mit Rückkopplungen	78
	5.7.3	Hinweise zur Matrixschreibweise	80
	5.7.4	Ersetzung der Schwellenwerte durch ein "on"-Neuron	81
	5.8	Propagierungsregel und Aktivierungsfunktion	83
	5.9	Lernregel	83
	5.9.1	Theoretisch mögliche Arten des Lernens	
	5.9.2	Hebbsche Lernregel	84
	5.9.3	Delta-Regel	85
	5.9.4	Backpropagation-Regel	85
Kapitel	6 H	Komponenten neuronaler Modelle	
	6.1	Dynamische Eigenschaften der Modelle	87
	6.1.1	Synchrone Aktivierung.	87
	6.1.2	Asynchrone Aktivierung	88
	6.2 V	Weiteres über Aktivierungsfunktionen	89
	6.2.1	Lineare Aktivierungsfunktionen	89
	6.2.2	Schrittfunktion	90
	6.2.3	Sigmoide Aktivierungsfunktionen	90
	6.3	Lernen in Neuronalen Netzen	93
	6.3.1	Überwachtes Lernen	93
	6.3.2	Probleme und Fragen überwachter Lernverfahren	95
	6.3.3	Bestärkendes Lernen (reinforcement learning)	95
	6.3.4	Unüberwachtes Lernen (unsupervised learning)	95

Kapitel	7 Pe	erzeptron	97
	7.1	Schema des Perzeptrons	97
	7.2	Neuronen des Perzeptrons	98
	7.3	Lineare Trennbarkeit (linear separability)	99
	7.4	Zweistufige Perzeptrons	101
	7.5	Dreistufige Perzeptrons.	102
	7.6	Lernverfahren des Perzeptrons	103
Kapitel	8 B	ackpropagation	105
	8.1	Prinzip des Lernverfahrens Backpropagation	105
	8.2	Prinzip der Gradientenverfahren neuronaler Netze.	106
	8.3	Herleitung der Delta-Regel	107
	8.4	Herleitung der Backpropagation-Regel	108
	8.5	Probleme des Lernverfahrens Backpropagation	110
	8.5.1	Symmetry Breaking	
	8.5.2	Lokale Minima der Fehlerfläche	112
	8.5.3	Flache Plateaus	112
	8.5.4	Oszillationen in steilen Schluchten	112
	8.5.5	Verlassen guter Minima	112
	8.5.6	Wahl der Schrittweite	113
	8.5.7	Wahl des Dynamikbereichs	114
Kapitel	9 N	Modifikationen von Backpropagation	
	9.1	Momentum-Term.	115
	9.2	Fiat-Spot Elimination	116
	9.3	WeightDecay	117
	9.4	Manhattan-Training	117
	9.5	Normierung des Gradienten	118
	9.6	SuperSAB: eigene Schrittweite für jedes Gewicht	118
	9.7	Delta-Bar-Delta-Regel	119
	9.8	Verallgemeinerung auf Sigma-Pi-Zellen	119
	9.9	Second-Order Backpropagation	120
	9.10	Quickprop.	120
	9.11	Resilient Propagation (Rprop)	124
Kapitel	10 B	Backpercolation (Perc)	127
	10.1	Prinzip des Lernverfahrens Backpercolation.	127
	10.2	Backpropagation als Grundlage für Backpercolation	128
	10.3	Der Aktivierungsfehler im Backpercolation-Netzwerk	130
	10.4	Nachrichten an die Vorgänger zur Änderung der Aktivierung	131
	10.5	Adaption der Gewichte in Backpercolation	133

	10.6	Lernrate und Fehlerverstärkung	133
	10.7	Initialwerte der Gewichte für Backpercolation	
	10.8	Verallgemeinerung von Backpercolation für "Shortcut Connections"	135
Kapitel	11 Jo	ordan-Netze und Elman-Netze	137
	11.1	Repräsentation von Zeit in neuronalen Netzen	137
	11.2	Jordan-Netze	138
	11.3	Elman-Netze.	140
	11.4	Hierarchische Elman-Netze	141
	11.5	Lernverfahren der partiell rekurrenten Netze.	143
Kapitel	12 C	Gradientenverfahren für rekurrente Netze.	145
	12.1	Backpropagation Through Time (BPTT)	
	12.2	Real-Time Recurrent Learning (RTRL)	
	12.3	Kombination von BPTT und RTRL	
	12.4	Rekurrentes Backpropagation	
	12.5	Zeitabhängiges rekurrentes Backpropagation	158
Kapitel	13 C	Cascade-Correlation Learning Architecture	161
	13.1	Das Moving-Target-Problem.	
	13.2	Der Cascade-Correlation-Algorithmus	
	13.3	Vergleich von Cascade-Correlation mit anderen Verfahren	
	13.4	Diskussion von Cascade-Correlation.	
	13.5	Die Rekurrente Cascade-Correlation-Architektur	168
	13.6	Training der Rekurrenten Cascade-Correlation-Architektur	169
Kapitel	14 L	ernende Vektorquantisierung (LVQ).	171
	14.1	LVQ1	172
	14.2	LVQ2.1	174
	14.3	LVQ3	175
	14.4	OLVQ1	
	14.5	Bemerkungen zu den LVQ-Algorithmen	177
Kapitel	15 S	elbstorganisierende Karten (SOM)	179
	15.1	Prinzip der selbstorganisierenden Karten	179
	15.2	Lernverfahren der selbstorganisierenden Karten	180
	15.3	Hinweise zur Verwendung der selbstorganisierenden Karte	186
Kapitel	16 C	Counterpropagation	
	16.1	Eigenschaften des Lernverfahrens Counterpropagation	
	16.2	Counterpropagation-Netz.	
	16.3	Training der Kohonen-Schicht	192
	16.3.1	Normalisierung der Eingabe	192

	16.3.2	Veränderung der Gewichte	192
	16.3.3	Initialisierung der Gewichtsvektoren	
	16.3.4	Interpolativer Modus	195
	16.3.5	Statistische Eigenschaften des trainierten Netzes	
	16.4	Training der Grossberg-Schicht	
	16.5	Vollständiges Counterpropagation-Netz	
Kapitel	17 Ho	pfield-Netze	197
	17.1	Binäre Hopfield-Netze.	198
	17.2	Stabilität von Hopfield-Netzen	199
	17.3	Kontinuierliche Hopfield-Netze.	
	17.4	Anwendung von Hopfield-Netzen: Traveling Salesman Problem	201
	17.4.1	Abbildung des TSPauf ein Netzwerk	202
Kapitel	18 Bo	ltzmann-Maschine.	
	18.1	Die Boltzmann-Maschine als Lösung von Hopfield-Netz-Problemen	207
	18.2	Energie und Aktivierungsfunktion der Boltzmann-Maschine	
	18.3	Ein Lernverfahren für Boltzmann-Maschinen	210
	18.4	Herleitung des Lernverfahrens der Boltzmann-Maschine	
	18.5	Veranschaulichung des Simulated Annealing	214
Kapitel	19 Bio	direktionaler Assoziativspeicher (BAM)	
	19.1	Eigenschaften und Struktur des BAM	
	19.2	Einfachste Version des BAM	218
	19.3	Auffinden gespeicherter Assoziationen des BAM	
	19.4 Ko	dierung der Assoziationen des BAM	220
	19.5	Stabilität und Speicherkapazität des BAM	221
	19.6	Nicht-homogenes und kontinuierliches BAM	221
	19.7	AdaptivesBAM	222
	19.8	Diskussion des BAM	222
Kapitel	20 Ra	diale-Basisfunktionen-Netze (RBF-Netze)	225
	20.1	Idee der RBF-Netze	225
	20.2	Interpolation mit Zentrumsfunktionen.	226
	20.3	Interpolation mit Zentrumsfunktionen und Polynomen	228
	20.4	Approximation mit Zentrumsfunktionen	230
	20.5	Variationsrechnung zur Lösung des RBF-Approximationsproblems	231
	20.6	Erweiterung und Abbildung auf neuronale Netze	234
	20.6.1	Erweiterung auf mehrwertige Funktionen	234
	20.6.2	Erweiterung um linearen Anteil.	
	20.7	Hyper-Basisfunktionen-Netze(HBF-Netze)	
	20.8	Iteratives Nachtraining der RBF- und HBF-Netze	

	20.9	Wahl der Zentren und Radien in RBF-Netzen	239
Kapitel	21 P:	robabilistische Neuronale Netze (PNN)	241
_	21.1	Die Bayes-Strategie zur Mustererkennung	241
	21.2	Architektur der Probabilistischen Neuronalen Netze	
	21.3	Lernverfahren des PNN	248
	21.4	Geschwindigkeit und Generalisierungsleistung	249
	21.5	Bewertung der Eigenschaften der PNNs	250
Kapitel	22 A	daptive Resonance Theory (ART)	251
	22.1	ART-1: Klassifikation binärer Eingabemuster	252
	22.1.1	Überblick über die ART-1 Architektur	252
	22.1.2	ART-1 Comparison Layer	253
	22.1.3	ART-1 Recognition Layer	254
	22.1.4	Verstärkungsfaktoren und Reset	255
	22.1.5	Arbeitsweise von ART-1	255
	22.1.6	Leistungsüberlegungen	258
	22.1.7	Theoreme über ART-1	258
	22.2	ART-2: Ein ART-Netzwerk für kontinuierliche Eingaben	259
	22.2.1	Überblick über ART-2	259
	22.2.2	Theorie von ART-2	261
	22.2.3	ART-2 Erkennungsschicht.	263
	22.2.4	ART-2 Lernregeln.	264
	22.2.5	ART-2 Reset-Kontrolle	265
	22.2.6	ART-2 Gewichtsinitialisierung	266
	22.2.7	Wahl der Parameter bei ART-2	266
	22.3	ART-2A: Eine optimierte Version von ART-2	268
	22.4	ART-3: Modellierung der Neurotransmitter von Synapsen	270
	22.5	ARTMAP: Überwachtes Lernen mit ART-Netzen	273
	22.5.1	ARTMAP Netzarchitektur	273
	22.5.2	ARTMAP Klassifikation	274
	22.5.3	Mathematische Beschreibung von ARTMAP	276
	22.6	FuzzyART	279
	22.6.1	FuzzyART Algorithmus.	280
	22.6.2	Geometrische Interpretation von Fuzzy ART	282
Kapitel	23 N	Jeocognitron	
	23.1	Netzwerkstruktur des Neocognitrons	285
	23.1.1	S-Zellen.	286
	23.1.2	C-Zellen	
	23.2	Prozeß der Mustererkennung durch das Neocognitron	287

	23.3	Prinzip der Erkennung deformierter Muster	288
	23.4	Ein-/Ausgabecharakteristika einer S-Zelle	
	23.5	Unüberwachtes Lernen des Neocognitrons	
	23.6	Funktion der C-Zellen	
	23.7	Überwachtes Lernen des Neocognitrons	
	23.8	Neocognitron mit Selective-Attention-Mechanismus	
Kapitel	24 Ti	me-Delay-Netze (TDNN)	299
	24.1	Überblick über Time-Delay-Netze	299
	24.2	Aufbau von Time-Delay-Netzen	300
	24.3	Backpropagation für TDNNs	302
	24.3.1	Herleitung von Backpropagation für TDNNs	303
	24.3.2	Beschleunigung des Backpropagation-Algorithmus für TDNNs	306
	24.4	Hierarchische TDNNs.	308
	24.5	Multi-State TDNNs	309
	24.6	TDNN-Architekturen für mehrere Sprecher	313
	24.7	Automatische Strukturoptimierung von MS-TDNNs	316
Kapitel	25 Ve	erfahren zur Minimierung von Netzen	319
	25.1	Verschiedene Ansätze zur Verkleinerung von Netzen	319
	25.2	WeightDecay	320
	25.3	Löschen der betragsmäßig kleinsten Gewichte	320
	25.4	Optimal Brain Damage (OBD)	320
	25.5	Optimal Brain Surgeon (OBS)	322
	25.6	Skelettierung	328
	25.7	Kostenfunktion für die Gewichte verdeckter Zellen	330
	25.8	Kostenfunktion für die Ausgaben verdeckter Neuronen	332
	25.9	Vergleich der Verfahren zur Minimierung von Netzen	333
Kapitel	26 Ac	daptive Logische Netze (ALN)	335
	26.1	Idee der Adaptiven Logischen Netze	335
	26.2	Aufbau eines Adaptiven Logischen Netzwerks	336
	26.3	Generalisierung in Adaptiven Logischen Netzen	338
	26.4	Lernverfahren für Adaptive Logische Netze	339
	26.5	Topologieänderung während des Lernens	340
	26.6	Lazy Evaluation und Simulationsgeschwindigkeit bei ALNs	342
	26.7	Verarbeitung kontinuierlicher Fingabemuster	342

Teil III	\mathbf{S}	Simulationstechnik Neuronaler Netze	347
Kapitel	27 S	Software-Simulatoren neuronaler Netze	349
	27.1	NeuralWorks Professional H/Plus.	349
	27.2	BrainMaker	352
	27.3	Nestor Development System	352
	27.4	ANSimundANSpec	352
	27.5	NEURO-Compiler	353
	27.6	NEUROtools	354
	27.7	SENN++	355
	27.8	Die PDP-Simulatoren	355
	27.9	RCS (Rochester Connectionist Simulator)	356
	27.10	Neural Shell	357
	27.11	LVQ-PAKundSOM-PAK	358
	27.12	Pygmalion	359
	27.13	SNNS (Stuttgarter Neuronale Netze Simulator)	
	27.14	SESAME	364
	27.15	NeuroGraph	366
	27.16	UCLA-SFINX	368
	27.17	PlaNet	369
	27.18	Aspirin/MIGRAINES	372
	27.19	FAST	374
	27.20	VieNet2	375
	27.21	Xerion	375
	27.22	GENESIS	377
	27.23	MUME	377
	27.24	MONNET	378
	27.25	Galatea	378
	27.26	ICSIM	379
Kapitel	28 D	Der Stuttgarter Neuronale Netze Simulator (SNNS)	381
	28.1	Stuttgarter Neuronale Netze Simulator	381
	28.1.1	Geschichte des SNNS	381
	28.1.2	Struktur von SNNS	383
	28.1.3	Unterstützte Architekturen und Leistung	384
	28.2	Simulatorkern von SNNS	384
	28.3	Graphikoberfläche von SNNS	387
	28.3.1	•	
	28.3.2	Der Netzwerk-Editor	389
	28.3.3	3D-Netzwerk- Visualisierung	389
	28.4	Netzwerkbeschreibungssprache Nessus	389

	28.4.1	Die Sprache Nessus	389
	28.4.2	Beispielprogramm	
	28.4.3	Nessus-Compiler	390
	28.5	Werkzeuge zur Analyse von Netzen.	391
	28.6	Von SNNS unterstützte konnektionistische Modelle	391
	28.7	Parallele Simulatorkerne für den Parallelrechner MasPar MP-1	394
	28.8	Batch-Version und Laufzeitversion	394
	28.9	Einige Anwendungen von SNNS	394
	28.10	Projektmitarbeiter und Bezugsquelle	
Kapitel	29 Vi	sualisierungstechniken neuronaler Netze	399
	29.1	Wozu Visualisierungstechniken neuronaler Netze?	399
	29.2	Techniken zur Visualisierung der Netztopologie	399
	29.2.1	Zweidimensionale Visualisierung der Netzstruktur	400
	29.2.2	Dreidimensionale Projektion der Netzstruktur	400
	29.2.3	Stereo-3D-Visualisierung der Netzstruktur	403
	29.3	Techniken zur Visualisierung von Gewichten	404
	29.4	Techniken zur Visualisierung des zeitlichen Verhaltens von Netzen	405
	29.4.1	Fehlerkurven des Lernfehlers	405
	29.4.2	Trajektorien der Ausgaben bei rekurrenten Netzen	406
	29.5	Techniken zur Visualisierung selbstorganisierender Karten	407
	29.5.1	Selbstorganisierende Karten als Gitternetze	
	29.5.2	Vektor-Lagekarten	408
Kapitel	30 Le	istungsmessung Neuronaler Netze	413
	30.1	Einführung, Problemstellung	413
	30.1.1	Unterscheidung: Lernverfahren, Netzsimulatoren, Neurocomputer	413
	30.1.2	Das Chaos der Maßeinheiten	414
	30.1.3	Was will man überhaupt messen?	415
	30.2	Leistungsmessung von Lernverfahren	416
	30.2.1	Verschiedenartigkeit der Lernverfahren	417
	30.2.2	Vergleich der Lernverfahren für mehrstufige Feedforward-Netze	418
	30.2.3	Benchmarks für Lernverfahren.	420
	30.3	Leistungsmessung von Netzwerksimulatoren	424
	30.3.1	Problem unterschiedlicher Hardware und Software	424
	30.3.2	Unterschiedliche Implementierung der Lernverfahren	425
	30.3.3	Weitere Einflußfaktoren auf die Messungen	
	30.4	Leistungsmessung bei Parallelrechnern und Neurocomputern	
	30.4.1	Leistungsmessung neuronaler Netze auf SIMD-Parallelrechnern	
	30.4.2	Leistungsmessung neuronaler Netze auf MIMD-Parallelrechnern	
	30.4.3	Leistungsmessung neuronaler Netze auf Neuro-Chips	

	30.4.4	Leistungsmessung neuronaler Netze auf VLSI-Neurocomputern	429
	30.5	Mangelnde Vergleichbarkeit der Implementierungen	430
Kapitel	31 Si	mulation Neuronaler Netze auf SIMD-Parallelrechnern	431
-	31.1	Arten der Parallelität in vorwärtsgerichteten neuronalen Netzen	432
	31.2	Massiv parallele SIMD-Rechner	
	31.2.1	Connection Machine CM-2.	
	31.2.2	MasPar MP-1	
	31.2.3	MasPar MP-2	437
	31.2.4	AMTDAP	437
	31.3	Implementierungen von Backpropagation auf SIMD-Rechnern	438
	31.4	Kantenparallele, Gitterbasierte Implementierung	
	31.5	Listenbasierte Implementierung	
	31.6	Trainingsmuster-parallele Implementierungen	
	31.7	Matrix-Algebra-basierte Implementierungen	442
	31.8	Die Implementierung von Zhang	443
	31.9	Erste parallele Implementierung für die MasPar MP-1	445
	31.10	Zweite Knoten- und Trainingsmuster-parallele Implementierung	
	31.11	Eine kantenparallele Implementierung für die MasPar MP-1	448
	31.12	Vergleich der parallelen Implementierungen auf SIMD-Rechnern	449
Kapitel	32 Ne	eurocomputer-Architekturen	451
	32.1	Kriterien für Neurocomputer-Architekturen	451
	32.2	Koprozessoren für neuronale Netze	453
	32.2.1	HNC ANZA Plus.	453
	32.2.2	TI ODYSSEY	453
	32.2.3	SAICSIGMA-1	453
	32.2.4	NeuraLogixADS420	453
	32.2.5	COKOS	454
	32.2.6	Nestor/Intel NilOOO Recognition Accelerator	454
	32.3	Neurocomputer aus Standardbausteinen	456
	32.3.1	TRW Mark ffl	456
	32.3.2	TRW Mark IV	456
	32.3.3	ICSIRAP (Ring Array Processor)	456
	32.3.4	Fujitsu Neurocomputer	458
	32.3.5	MUSIC-System der ETH Zürich (1992)	459
	32.4	VLSI-Neurocomputer	462
	32.4.1	HNCSNAP	
	32.4.2	Adaptive Solutions CNAPS	463
	32.4.3	Siemens SYNAPSE-1	466
	32.4.4	Connectionist Network Supercomputer CNS-1	470

	32.5	Ein Simulatorkern von SNNS auf dem Neurocomputer CNAPS	472
Kapitel	33	VLSI-Neuro-Chips	477
	33.1	Klassifikation von Neuro-Chips	477
	33.2	Digitale VLSI-Chips für neuronale Netze	478
	33.2	.1 Adaptive Solutions CNAPS-1064 Chip	478
	33.2	.2 Siemens MA16	480
	33.2	.3 Nestor/Intel NilOOO	482
	33.2	.4 ICSI CNS-1 Torrent	484
	33.2	.5 NeuraLogix NLX420	486
	33.2	.6 WSI-Neurocomputer von Hitachi	487
	33.3	Analoge VLSI-Chips für neuronale Netze	487
	33.3	.1 AT&TChips	487
	33.3	.2 BellcoreChip	488
	33.3	.3 Intel ETANN (N10)	488
	33.3	.4 Weitere analoge VLSI-Neuro-Chips	491
Teil IV	τ	Anwendungen neuronaler Netze	493
Kapitel	34	Prognose des Intensitätsverlaufs eines NH3-Lasers	495
	34.1	Trainings- und Testdaten des Laser-Prognoseproblems	495
	34.2	Auswahl einer Netzwerkarchitektur	497
	34.3	Ergebnisse der Prognose der Laserintensität	498
Kapitel	35	Ähnlichkeitsanalyse biologisch aktiver Moleküle	
	35.1	E	
	35.2	Wichtige Eigenschaften selbstorganisierender Karten	502
	35.3		
	35.4		
	35.5		
	35.6		
	35.7	Abbildung von Moleküloberflächen auf die Oberfläche einer Kugel.	508
Kapitel	36	Bahnregelung in Ringbeschleunigern und Speicherringen	
	36.1	<i>6</i>	
	36.2	E	
	36.3		
	36.4		
	36.5	Bewertung der Ergebnisse	517
Kapitel	37	Texturanalyse mit neuronalen Netzen.	
	37.1	Texturen und Texturmerkmale	520

	37.2	Texturanalyse mit neuronalen Netzen	522
	37.3	Verbesserungen des Verfahrens	527
	37.4	Qualitätskontrolle von Natursteinplatten	
	37.5	Bewertung.	530
Kapitel	38 Pr	ognose der Sekundärstruktur von Proteinen	533
	38.1	Einführung.	533
	38.2	Der Ansatz von Quian und Sejnowski.	536
	38.3	Partiell rekurrente Netze zur Vorhersage der Proteinstruktur	538
	38.4	Vergleich der Verfahren.	539
Kapitel	39 St	euerung autonomer Fahrzeuge mit neuronalen Netzen	541
	39.1	ALVTNN	
	39.1.1	Erste Version von ALVTNN	543
	39.1.2	Zweite Version von ALVTNN	546
	39.2	VTTAund OSCAR	547
	39.2.1	Erste Version des neuronalen Reglers von OSCAR	549
	39.2.2	Zweite Version des neuronalen Reglers von OSCAR	550
	39.2.3	Ergebnisse der Simulationen und der Testfahrten mit OSCAR	551
TeilV	A	usblick	555
Kapitel	40 A	usblick	557
	40.1	Weitere aktuelle Forschungsthemen	557
	40.1.1	Komplexitätstheorie neuronaler Netze	557
	40.1.2	Hierarchischer Aufbau neuronaler Netze	560
	40.1.3	Neuronale Regler (Neural Control)	562
	40.1.4	Neuronale Netze und Fuzzy-Logik	563
	40.1.5	Neuronale Netze und Evolutionsalgorithmen	566
	40.2	Weitere aktuelle Anwendungsbereiche neuronaler Netze	569
	40.2.1	Neuronale Netze in der Robotik.	569
	40.2.2	Spracherkennung mit neuronalen Netzen	570
	40.2.3	Gesichtserkennung mit neuronalen Netzen	571
	40.3	Ausblick	573
Literatu	r		575
Stichwo	rtverzeic	hnis	609