# LC24: Optimisation d'un procédé chimique

## Expérience 1 : Effet de la pression sur l'équilibre entre $NO_{2(g)}$ et $N_2O_{4(g)}$





même couleur donc déplacement vers la droite

## Expérience 2 : Evolution du produit de solubilité de l'iodure de plomb(II) avec la température

#### Equilibre:

$$PbI_{2(s)} = Pb_{(aq)}^{2+} + 2I_{(aq)}^{-}$$

$$s = [Pb^{2+}]_{eq} = \frac{[I^-]_{eq}}{2}$$

Loi de Kolrausch : 
$$\sigma = 2s[\lambda_{\frac{1}{2}Pb^{2+}}^{0} + \lambda_{I^{-}}^{0}]$$

$$K_S(T) = \frac{\sigma(T)^3}{2[\lambda_{\frac{1}{2}Pb^{2+}}^0 + \lambda_{I^-}^0]^3 (C^0)^3}$$

Mesure de  $K_S$  pour plusieurs T en mesurant  $\sigma$  pour des solutions saturées portées à ces T

#### **Expérience 3:** Dismutation des ions thiosulfate en milieu acide

#### • Réaction de dismutation (lente) :

$$S_2O_{3(aq)}^{2-} + 2H_3O_{(aq)}^+ = S_{(s)} + SO_{2(aq)} + 3H_2O$$

opaque

$$V_0 = 10 \text{ mL}$$
 de thiosulfate de sodium à 0,25 mol. L<sup>-1</sup>

+

 $V_1 = 5 \text{ mL d'acide}$  chlorhydrique concentré

+

$$V_2 = 40 \text{ mL d'eau}$$

| T (°C) | 20 | 30 | 40 | 50 | 60 |
|--------|----|----|----|----|----|
| t (s)  |    |    |    |    |    |

$$\triangleright$$
 On trace t = f(T)

### Catalyse hétérogène appliquée à la synthèse de l'ammoniac

- Catalyseur: grains poreux d'oxydes de fer (FeO,  $Fe_3O_4Fe_2O_3$ )
- Processus réactionnel en trois temps :
  - $\triangleright$  Chimisorption dissociative des molécules  $N_2$  et  $O_2$

$$N_{2(g)} + 2s = 2N_s$$
  
 $H_{2(g)} + 2s = 2H_s$ 

Réactions surfaciques entre atomes chimisorbés

$$N_S + H_S = NH_S + S$$

$$NH_S + H_S = NH_{2S}$$

$$NH_{2S} + H_S = NH_{3S}$$

> Désorption de la molécule d'ammoniac

$$NH_{3s} = NH_{3(g)} + s$$