

OPTIMIZING TRUSS STRUCTURES WITH NATURAL FREQUENCY CONSTRAINTS USING THE CROSS-ENTROPY METHOD

Marcos Vinicius Issa¹

Americo Cunha Jr¹
Francisco José da Cunha Pires Soeiro¹
Anderson Pereira²

Rio de Janeiro State University – UERJ¹
Pontifícia Universidade Católica do Rio de Janeiro²

December 07, 2023

Evolution wheel

Evolution wheel

http://langevo.blogspot.com/2016/01/germanic-wheels-non-linear-evolution.html https://simulatemore.mscsoftware.com/automated-structural-optimization-in-msc-nastran/

Outline

- 1 Introduction
- 2 Optimization Framework
- 3 Numerical Results
- 4 Final Remarks

Introduction

Research challenges and proposal

Some challenges:

- Gradient based methods are not possible in some cases
- Metaheuristics may be an alternative, but may have high computational cost or may be prohibitive.
- Finding a metaheuristic is a research challenge
- Cross-entropy method (CE) has been used successful in combinatorial optimization and estimation of rare events in the last two decades

Research proposal:

Propose a Cross-entropy framework for structural optimization and investigate its accuracy and efficiency

Generic formulation of optimization problem

Find
$$\mathbf{x}^{\star} = \operatorname*{argmax} \mathcal{J}(\mathbf{x})$$
 , such that $p_i(\mathbf{x}) = 0 \ i = 1, 2, \ldots, M$, $q_j(\mathbf{x}) \leq 0 \ j = 1, 2, \ldots, N$.

- $ightharpoonup \mathcal{J}$: objective function
- ightharpoonup x: vector with the design variables
- lacktriangle Dual relationship: $\min \mathcal{J}(extbf{ extit{x}}) = \max [-\mathcal{J}(extbf{ extit{x}})]$

Optimization Framework

Balance equations from continuum mechanics

Balance of linear momentum:

$$abla \cdot oldsymbol{\sigma}(oldsymbol{u}) = oldsymbol{0}$$

Balance angular momentum:

$$\sigma(u) = \sigma^{T}(u)$$

Kinematic relationship:

$$\boldsymbol{\epsilon}(\boldsymbol{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}} \right)$$

Constitutive relationship:

$$\sigma(u) = \mathcal{C} : \epsilon(u)$$

Boundary conditions

$$\sigma(u) \cdot n = t \text{ in } \Gamma_N$$
 $u = u^D \text{ in } \Gamma_D$

Structural integrity criteria

Natural frequencies

$$\omega \ge \omega^*$$

where natural frequencies are obtained from

$$[{m K}] {m \phi} = \omega^2 [{m M}] {m \phi} \, \, ext{(eigenvalue problem)}$$

- $[{\it K}]
 ightarrow {
 m stiffness matrix}$
- $[\mathit{\textbf{M}}]
 ightarrow ext{mass matrix}$

Optimization statement

Find x* which minimize

$$\mathcal{J}(extbf{ extit{x}}) = \int_{\mathfrak{Truss}}
ho(extbf{ extit{x}}) \, extit{d} extit{V}$$
 (mass of structure)

such that

$$\omega_1 \geq \omega_1^*, \; \cdots, \omega_k \geq \omega_k^*$$
 (natural frequency)

with

$$\mathbf{x}_{min} \leq \mathbf{x} \leq \mathbf{x}_{max}$$
 (design limits)

Cross-entropy for optimization

Key Idea: "Transform" the optimization problem into a rare-event estimation problem.

► Hypothesis: there is single maximum

$$\gamma^* = \mathcal{J}(\mathbf{x}^*) = \max \mathcal{J}(\mathbf{x})$$

Penalized formulation

Find x* which

$$\mathbf{x}^{\star} = \operatorname{argmax} \left\{ \mathcal{J}(\mathbf{x}) + \sum_{i=1}^{K} \nu_i \, \max \left\{ 0, q_i(\mathbf{X}) \right\} \right\}$$

 $\nu_i < 0$ measures the importance (cost) of the ith penalty

Rare-event probability estimation

Rare-event probability estimation

Cross-entropy framework

Given a random design vector $\mathbf{X} \sim f(\mathbf{x}; \mathbf{v})$ and fixed reference level $\gamma \approx \gamma^* = \max \mathcal{J}(\mathbf{x})$ one has that $\mathcal{J}(\mathbf{X}) \geq \gamma$ is a rare-event.

Cross-Entropy Method:

Generates an "optimal sequence" of estimators $(\widehat{\gamma}_t,\widehat{\mathbf{v}_t})$ such that

$$\widehat{\gamma}_t \xrightarrow{a.s.} \gamma^{\star} \text{ and } f\left(\mathbf{x}, \widehat{\mathbf{v}}_t\right) \xrightarrow{a.s.} \delta\left(\mathbf{x} - \mathbf{x}^{\star}\right)$$

Optimal: "minimize KL divergence between $\delta\left(\mathbf{x}-\mathbf{x}^{\star}\right)$ and $f\left(\cdot\,,\,\mathbf{v}\right)$ "

R. Y. Rubinstein and Dirk P. Kroese, Simulation and the Monte Carlo Method, Wiley, 3rd Edition, 2017.

Cross-entropy schematic

Numerical Results

Truss - 10 bars and 6 nodes

Design variables: 10 A_e

$$L = 9.144 \text{ m}; E = 6.89 \text{x} 10^{10} \text{ N/m}^2$$

Natural frequency constraint

$$\min_{\mathbf{x}} m = \sum_{e=1}^{10} \rho A_e L_e \qquad \mathbf{x} = \{A_e\}$$

s.t

$$\omega_{\mathrm{1}} \geq$$
 7 Hz, $\omega_{\mathrm{2}} \geq$ 15 Hz and $\omega_{\mathrm{3}} \geq$ 20 Hz

with

65.4
$$mm^2 \le A_e \le 5000 \text{ mm}^2$$

 $m_{ad} = 454 \text{ kg}$

V. Ho-Huu and T. Vo-Duy and T. Luu-Van and L. Le-Anh and T. Nguyen-Thoi, **Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme**, Automation in Construction, 68:81-94, 2016.

Boxplot GA and CE

Natural frequency results

Method	$\omega_{ exttt{1}}$	$\omega_{\mathtt{2}}$	ω_3	
GA	7.0	16.6	20.0	
CE	7.0	16.2	20.0	

*Natural frequencies in ${\it Hz}$

Natural frequency results

Method	mass (kg)		
CE	531		
HS	535		
FA	531		

Method	$\omega_{ exttt{1}}$	$\omega_{\mathtt{2}}$	ω_3	
CE	7.0	16.2	20.0	
HS	7.0	16.7	20.1	
FA	7.0	16.1	20.0	

*Natural frequencies in Hz

Leticia F. F. Miguel and Leandro F. F. Miguel, Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms, Expert Systems with Applications, 10:9458–9467, 2012.

Natural frequency results

Method	A ₁	<i>A</i> ₂	<i>A</i> ₃	<i>A</i> ₄	A ₅	<i>A</i> ₆	A ₇	A ₈	A ₉	A ₁₀
CE					٠	•				
HS					•	•				
FA					۰	•				

Initial model:

Optimized model:

Final Remarks

Concluding remarks

Conclusions:

- ► CE is a metaheuristic which may be used in structural optimization
- The results indicate that CE performs favorably compared to GA, HS and FA
- In summary, CE demonstrates strong performance and efficiency in the considered structural optimization problem

Future directions:

► Improve the CE for structural optimization

Acknowledgments

Companies:

Financial support:

Thank for your attention!

Questions?!

marcos.issa@uerj.br