```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import statsmodels.formula.api as smf
    import statsmodels.api as sm
    from statsmodels.graphics.regressionplots import influence_plot
```

Out[2]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	R&D Spend	Administration	Marketing Spend	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

EDA

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

Out[4]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	RDS	ADMS	MKTS	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [5]: data1[data1.duplicated()] # No duplicated data

Out[5]:

RDS ADMS MKTS State Profit

In [6]: data1.describe()

Out[6]:

	RDS	ADMS	MKTS	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

Correlation Analysis

```
In [7]: data1.corr()
```

Out[7]:

	RDS	ADMS	MKTS	Profit
RDS	1.000000	0.241955	0.724248	0.972900
ADMS	0.241955	1.000000	-0.032154	0.200717
MKTS	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

In [8]: sns.set_style(style='darkgrid')
sns.pairplot(data1)

Out[8]: <seaborn.axisgrid.PairGrid at 0x22dcfa0ba60>

Model Building

```
In [9]: model=smf.ols("Profit~RDS+ADMS+MKTS",data=data1).fit()
```

Model Testing

```
In [10]: # Finding Coefficient parameters
         model.params
Out[10]: Intercept
                      50122.192990
         RDS
                          0.805715
         ADMS
                         -0.026816
         MKTS
                          0.027228
         dtype: float64
In [11]: # Finding tvalues and pvalues
         model.tvalues , np.round(model.pvalues,5)
Out[11]: (Intercept
                       7.626218
          RDS
                       17.846374
          ADMS
                       -0.525507
          MKTS
                        1.655077
          dtype: float64,
          Intercept
                       0.00000
          RDS
                       0.00000
          ADMS
                       0.60176
          MKTS
                       0.10472
          dtype: float64)
In [12]: # Finding rsquared values
         model.rsquared , model.rsquared_adj # Model accuracy is 94.75%
Out[12]: (0.9507459940683246, 0.9475337762901719)
In [13]: # Build SLR and MLR models for insignificant variables 'ADMS' and 'MKTS'
         # Also find their tvalues and pvalues
In [14]: | slr a=smf.ols("Profit~ADMS",data=data1).fit()
         slr_a.tvalues , slr_a.pvalues # ADMS has in-significant pvalue
Out[14]: (Intercept
                       3.040044
          ADMS
                       1.419493
          dtype: float64,
          Intercept
                       0.003824
          ADMS
                       0.162217
          dtype: float64)
```

```
In [15]: | slr_m=smf.ols("Profit~MKTS", data=data1).fit()
         slr_m.tvalues , slr_m.pvalues # MKTS has significant pvalue
Out[15]: (Intercept
                       7.808356
          MKTS
                       7.802657
          dtype: float64,
          Intercept 4.294735e-10
          MKTS
                       4.381073e-10
          dtype: float64)
In [16]: mlr_am=smf.ols("Profit~ADMS+MKTS",data=data1).fit()
         mlr_am.tvalues , mlr_am.pvalues # varaibles have significant pvalues
Out[16]: (Intercept
                       1.142741
          ADMS
                       2.467779
          MKTS
                       8.281039
          dtype: float64,
          Intercept 2.589341e-01
          ADMS
                       1.729198e-02
          MKTS
                       9.727245e-11
          dtype: float64)
```

Model Validation

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

```
In [17]: # 1) Collinearity Problem Check
# Calculate VIF = 1/(1-Rsquare) for all independent variables

rsq_r=smf.ols("RDS~ADMS+MKTS",data=data1).fit().rsquared
vif_r=1/(1-rsq_r)

rsq_a=smf.ols("ADMS~RDS+MKTS",data=data1).fit().rsquared
vif_a=1/(1-rsq_a)

rsq_m=smf.ols("MKTS~RDS+ADMS",data=data1).fit().rsquared
vif_m=1/(1-rsq_m)

# Putting the values in Dataframe format
d1={'Variables':['RDS','ADMS','MKTS'],'Vif':[vif_r,vif_a,vif_m]}
Vif_df=pd.DataFrame(d1)
Vif_df
```

Out[17]:

	Variables	Vif
0	RDS	2.468903
1	ADMS	1.175091
2	MKTS	2 326773

```
In [18]: # None variable has VIF>20, No Collinearity, so consider all varaibles in Regress
```

```
In [19]: # 2) Residual Analysis
# Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q')
plt.title("Normal Q-Q plot of residuals")
plt.show()
```



```
In [20]: list(np.where(model.resid<-30000))</pre>
```

Out[20]: [array([49], dtype=int64)]

```
In [21]: # Test for Homoscedasticity or Heteroscedasticity (plotting model's standardized

def standard_values(vals) : return (vals-vals.mean())/vals.std() # User defined
```

```
In [22]: plt.scatter(standard_values(model.fittedvalues),standard_values(model.resid))
    plt.title('Residual Plot')
    plt.xlabel('standardized fitted values')
    plt.ylabel('standardized residual values')
    plt.show()
```


In [23]: # Test for errors or Residuals Vs Regressors or independent 'x' variables or pred # using Residual Regression Plots code graphics.plot_regress_exog(model,'x',fig)

In [24]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'RDS',fig=fig)
plt.show()


```
In [25]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'ADMS',fig=fig)
plt.show()
```


Model Deletion Diagnostics (checking Outliers or

-30000

Influencers)

Out[29]: (49, 0.28808229275432584)

Two Techniques: 1. Cook's Distance & 2. Leverage value

```
# 1. Cook's Distance: If Cook's distance > 1, then it's an outlier
In [27]:
         # Get influencers using cook's distance
         (c,_)=model.get_influence().cooks_distance
Out[27]: array([3.21825244e-05, 3.27591036e-03, 3.23842699e-02, 2.17206555e-02,
                 1.44833032e-02, 1.17158463e-02, 2.91766303e-03, 3.56513444e-03,
                 4.04303948e-05, 4.86758017e-03, 1.51064757e-02, 1.63564959e-02,
                 1.15516625e-02, 4.01422811e-03, 6.12934253e-02, 3.40013448e-02,
                 8.33556413e-03, 3.30534399e-03, 2.16819303e-03, 4.07440577e-02,
                 4.25137222e-04, 1.09844352e-02, 2.91768000e-03, 2.76030254e-04,
                 5.04643588e-03, 3.00074623e-03, 3.41957068e-03, 2.98396413e-02,
                 1.31590664e-03, 1.25992620e-04, 4.18505125e-05, 9.27434786e-06,
                 7.08656521e-04, 1.28122674e-04, 2.09815032e-02, 6.69508674e-03,
                 5.55314705e-02, 6.55050578e-05, 5.61547311e-02, 1.54279607e-03,
                 1.84850929e-03, 1.97578066e-03, 1.36089280e-04, 2.05553171e-02,
                 1.23156041e-04, 9.03234206e-02, 5.45303387e-02, 5.33885616e-03,
                 1.90527441e-01, 2.88082293e-01])
In [28]:
         # Plot the influencers using the stem plot
         fig=plt.figure(figsize=(20,7))
         plt.stem(np.arange(len(data1)),np.round(c,5))
         plt.xlabel('Row Index')
         plt.ylabel('Cooks Distance')
         plt.show()
           0.20
          0.15
0.15
           0.10
In [29]: # Index and value of influencer where C>0.5
         np.argmax(c) , np.max(c)
```

In [30]: # 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff v
influence_plot(model)
plt.show()


```
In [31]: # Leverage Cuttoff Value = 3*(k+1)/n ; k = no.of features/columns & n = no. of do
k=data1.shape[1]
n=data1.shape[0]
leverage_cutoff = (3*(k+1))/n
leverage_cutoff
```

Out[31]: 0.36

In [32]: data1[data1.index.isin([49])]

Out[32]:

	RDS	ADMS	MKTS	State	Profit
49	0.0	116983.8	45173.06	California	14681.4

Improving the Model

Out[33]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	RDS	ADMS	MKTS	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

Model Deletion Diagnostics and Final Model

```
In [34]: while np.max(c)>0.5 :
    model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c) , np.max(c)
    data2=data2.drop(data2.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    data2
else:
    final_model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    final_model.rsquared , final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.9613162435129847

```
In [35]: final_model.rsquared
```

Out[35]: 0.9613162435129847

Out[36]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92

	RDS	ADMS	MKTS	State	Profit
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

Model Predictions

```
In [37]: # say New data for prediction is
new_data=pd.DataFrame({'RDS':70000,"ADMS":90000,"MKTS":140000},index=[0])
new_data
```

Out[37]:

```
        RDS
        ADMS
        MKTS

        0
        70000
        90000
        140000
```

```
In [38]: # Manual Prediction of Price
final_model.predict(new_data)
```

Out[38]: 0 108727.154753 dtype: float64

```
In [39]: # Automatic Prediction of Price with 90.02% accurcy
          pred_y=final_model.predict(data2)
          pred_y
Out[39]: 0
                190716.676999
                187537.122227
          1
          2
                180575.526396
          3
                172461.144642
          4
                170863.486721
          5
                162582.583177
                157741.338633
          6
          7
                159347.735318
          8
                151328.826941
          9
                154236.846778
          10
                135507.792682
          11
                135472.855621
          12
                129355.599449
          13
                127780.129139
          14
                149295.404796
          15
                145937.941975
          16
                117437.627921
          17
                130408.626295
          18
                129129.234457
          19
                116641.003121
          20
                117097.731866
          21
                117911.019038
          22
                115248.217796
          23
                110603.139045
          24
                114051.073877
          25
                103398.054385
          26
                111547.638935
          27
                114916.165026
          28
                103027.229434
          29
                103057.621761
          30
                100656.410227
          31
                 99088.213693
          32
                100325.741335
          33
                 98962.303136
          34
                 90552.307809
          35
                 91709.288672
          36
                 77080.554255
          37
                 90722.503244
                 71433.021956
          38
          39
                 85147.375646
          40
                 76625.510303
          41
                 76492.145175
          42
                 72492.394974
          43
                 62592.049718
          44
                 67025.731107
          45
                 50457.297206
          46
                 58338.443625
          47
                 49375.776655
```

48

dtype: float64

51658.096812

table containing R^2 value for each prepared model

```
In [40]: d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_model.table=pd.DataFrame(d2)
table
```

Out[40]:

	Prep_Models	Rsquared	
0	Model	0.950746	
1	Final_Model	0.961316	

```
In [ ]:
```