

Music recommendation service based on Facial Emotion analysis

SuYoung SoHyoun HyeWoo SangJun

1. Project Overview and Purpose

2. Project teaming and roles

3. How to Collect and Analyze Data

4. System Flow and Architecture

5. Modeling

6. System Operator Guidelines

7. Problems and Solutions

8. Conclusion and Review

O1 Project Overview and Purpose

Music recommendation service based on Facial Emotion analysis

- the rapid development of artificial intelligence
- One of the important means of expressing emotions is facial expressions
- Understand by experiencing emotion analysis, deep learning modeling and web server deployment firsthand
- Purpose of consumer UI by creating various and interesting services using API

02 Project teaming and roles

SangJun

- -R&D for Web Service **Implementation** -Streamlit Web Publishing Job -Function to upload neutral emotion photos -AWS Configuration and Web Deployment -QR code distribution **TeamLeader: SuYoung**
- -FER2013 and haarcascade deep learning
- -Implementation and Efficiency of Use Learning Model
- -The OpenCV setup and capture function
- -Streamlit Web Publishing Job
- -Presentation

HeyWoo

- -FER2013 and haarcascade deep learning
- -Implementation and Efficiency of Use Learning Model
- -The OpenCV setup and capture function
- -Streamlit Web Publishing Job

SoHyoun

- -R&D for Web Service Implementation
- -Streamlit Web Publishing Job
- -Implementing Neutral Emotional Detail User Selection
- -AWS Configuration and Web Deployment
- -QR code distribution

03 How to Collect and Analyze Data

Happiness 7295 Sadness 4839 Surprise 3197 Neutral 4966

03 How to Collect and Analyze Data

happiness

<Function>

Spotify Music recommendation method

Main Library Streamlit

convolution layer + Augment

Categorical crossentropy

After freezing, add layer

ResnetV50 + Augment

Dense(512)

-unctional

Augment Zero padding Conv Block Conv Block Conv Block Conv Block ID Block ID Block ID Block Avg Pool ID Block Max Pool BatchN Flatten Conv ReLu <u>Б</u> GlobalAvgPooling Batch Norm (512) Softmax / Sigmoid

Dense (4)

Convolution layer

batch, epoch	Activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	RMSprop	0.7396	0.5916	0.7722	0.6207	0.7707	0.6273

Add: Model's acc.xlsx - Google Sheets

ResnetV50

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	Test acc	test loss
64/50	softmax	SGD	0.8556	0.4095	0.7812	0.5819	0.7883	0.5786

Make to increase a model acc

Convert Image to Numpy Array

- sample_img=cv2.resize(sample_img, (48,48))
 sample_pix=list(sample_img.ravel())
 sample_pix=' '.join(str(s) for s in sample_pix)
 sample_pix
- 13 19 12 12 8 12 17 14 18 26 18 17 14 19 12 15 19 19 21 23 20 14 12 14 12 10 13 10 11 14 12 14 14 14 14 13 12 12 12 12 12 12 13 15 16 16 17 15 14 16 11 17 11 12 8 11 15 12 15 20 14 14 13 16 11 14 13 15 18 20 20 19 16 14 14 13 14 12 12 13 13 12 13 14 14 13 12 12 12 12 12 13 15 16 16 17 16 15 16 12 16 11 11 9 10 13 11 12 14 10 10 13 14 11 12 12 15 16 16 18 20 18 13 13 14 13 13 13 13 14 14 14 13 13 12 12 12 12 13 13 14 15 15 16 18 17 15 17 14 17 13 12 10 10 12 1 0 9 8 8 8 13 10 10 12 9 11 11 10 14 20 22 19 14 16 12 14 14 13 16 14 15 15 15 15 15 15 15 15 16 17 16 16 18 17 16 18 18 18 15 12 10 9 11 10 7 5 8 7 11 7 9 10 8 8 8 8 10 14 18 19 18 19 14 15 15 13 16 13 16 16 17 18 18 17 17 18 18 18 17 17 18 18 17 17 18 20 18 16 12 11 8 10 9 7 5 8 7 10 6 9 9 9 9 9 8 8 10 12 18 18 15 16 16 16 16 17 16 16 16 17 18 18 16 16 18 20 20 18 17 18 18 17 20 21 17 17 12 12 9 9 9 7 6 8 8 9 8 9 7 5 6 8 8 8 8 9 12 13 12 13 14 15 17 16 16 15 14 15 17 16 15 15 18 19 20 19 19 19 18 18 21 21 17 18 13 14 9 9 9 6 5 6 7 8 8 8 5 8 9 8 8

Emotion, Pixel Integration, Save as DataFrame

	emotion	pixels
0	5.0	10 8 7 9 10 21 25 37 39 34 45 82 82 82 88 93 9
1	5.0	69 78 83 92 97 107 124 119 58 32 62 79 106 157
2	5.0	219 217 218 218 224 151 59 75 51 50 107 163 14
3	5.0	254 253 255 254 255 255 250 101 33 54 73 74 64
4	5.0	99 98 82 78 69 56 53 55 51 52 58 67 83 110 118
20292	6.0	47 53 84 119 93 62 51 56 52 56 56 56 57 57 57
20293	6.0	30 23 25 21 28 36 50 77 97 104 110 113 119 127
20294	6.0	42 31 6 6 0 3 3 0 0 0 10 71 133 169 187 198 20
20295	6.0	220 221 195 129 122 128 131 123 126 135 140 14
20296	6.0	118 24 15 16 34 31 56 85 87 89 90 103 106 112

20297 rows × 2 columns

ResnetV50

Sparse categorical crossentropy

Functional
BatchN
Dense
BatchN
Drop out

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	SGD	0.3115	1.8336	0.405	1.2954	0.3927	1.3192

Fine tuning

Sparse categorical crossentropy

After releasing the freeze, except the bottom 9 layer and freeze again Add New Layer Again

Functional BatchN Dense Drop out	Dense
---	-------

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	Adam	0.5845	1.0043	0.5149	1.1067	0.5178	1.1257

Convolution layer + Augment

Categorical crossentropy

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	RMSprop	0.8513	0.3879	0.8073	0.5149	0.8081	0.5113

Confusion matrix

	presicion	recall	f1-score	support
(Happiness) 0	0.91	0.87	0.89	1459
(Sadness) 1	0.76	0.68	0.72	968
(Surprise) 2	0.87	0.90	0.88	640
(Neutral) 3	0.67	0.77	0.72	993
accuracy			0.80	4060
macro avg	0.80	0.80	0.80	4060
weighted avg	0.81	0.80	0.81	4060

Image test prediction

After Capturing, analyze facial emotions from the camera

A song recommendation to calm your heart down for your surprised feelings

어이쿠! 많이 놀라셨나요? 당신을 진정시켜줄 노래입니다. 기분 좋은 하루 보내세요~

사진 업로드 기능 Photo Upload function

기분이 좋으시네요.

당신을 행복하게해 줄 노래입니다!

기분 좋은 하루 보내세요^^

Recommend a happy song for happy emotions

Neutral Emotion Selection Function

Web server

QR code

07 Problems and Solutions

A Solution plan

Reset camera capture part with JavaScript

Conclusion and Review

08 Conclusion and Review

Fewer people and less time

It is regrettable that various attempts could not be made due to the sudden decrease in the number of people. As the project deadline is approaching, it is very sorry that the cam drive could not be completed on the web.

Bad things

A lack of planning

It took a lot of time to solve problems because specific plans and accurate information of tools were not identified in advance.

Communication and cooperation among team members

It was a time to feel once again how important communication between team members is in a team project, and it was meaningful to be able to combine and produce good results

Good things

Acquire a variety of skills and knowledge

Through the project, I was able to study and learn knowledge that was not present in addition to each major. It was good to be able to understand deep learning and face recognition principles and to be able to access various technologies.

THANK YOU

Music Recommendation