VDT: GENERAL-PURPOSE VIDEO DIFFUSION TRANSFORMERS VIA MASK MODELING

アブスト

- 。 Video Diffusion Transformer (VDT)と呼ばれる拡散モデルベースの動画生成モデルにTransformerを導入したモデルを提案
- 。 temporal (時系列), spatial (空間的)なアテンションモジュールを導入すること によって、これらの表現をよく学習できるようにした
- 。 spatial-temporal maskを導入することによって、様々な動画生成タスクの学習 を可能にした

イントロ

- Transformerは拡散モデルで使用されるU-Netなどに比べると、長期の時系列 情報をアテンションモジュールによって保持できる
- 。 また、Transformerはスケールする:スケールさせることで精度がどんどん良 くなる
- 。 spatial-temporal maskによって、以下の動画生成タスクを可能にした

• 提案手法

- 動画をそのままVDT入れると計算量が膨大になるので、学習済みのVAEによって特徴量してからVDTに入れる
 - H/8, W/8にする
- 。 ViTと同様に空間方向にN×Nのoverlapしないパッチに分ける
 - spatial and temporal positional embeddingを入れる
- 。 Transformer Blockに時系列情報を入れるために、Layer Normalization層に時 系列情報を入れる

$$adaLN(h,t) = t_{scale}LayerNorm(h) + t_{shift},$$

- 。 VDT modelを動画予測用にする
 - 条件付けフレームをLayer Normalization層に入れる

$$adaLN(h, c) = c_{scale}LayerNorm(h) + c_{shift},$$

- 条件付けフレームをCross Attentionで導入
 - 条件付けフレームをkeyとvalueに使用し、ノイズが乗っかったフレームをqueryとして使用する
 - 条件付けフレームとノイズが乗っかったフレームにspatial and temporal maskを入れることで以下の動画生成を実現

実験

- 。 データセット
 - Unconditional Generation
 - UCF101, TaiChi, Sky Time-Lapse
 - Video Prediction
 - · CityScapes, Physion
- 。 評価指標
 - FVD, SSIM, PSNR
- 。 条件付け方法
 - token concatenationが一番良かったので、それを使用

Table 2: Video prediction on Physion (128 \times 128) conditioning on 8 frames and predicting 8. We compare three video prediction schemes.

Methods	FVD↓	SSIM↑	PSNR ↑
Ada. LN	270.8	0.6247	16.8
Cross-Attention	134.9	0.8523	28.6
Token Concat	129.1	0.8718	30.2

。 結果

Table 4: Unconditional video generation results on UCF-101. * means the model trained on the full dataset (train + test).

Method	Resolution	FVD↓
GAN:		
TGANv2 (Saito et al., 2020)	$16 \times 128 \times 128$	1209.0
MoCoGAN* (Tulyakov et al., 2018)	$16 \times 128 \times 128$	838.0
DIGAN (Yu et al., 2022)	$16 \times 128 \times 128$	655.0
DIGAN* (Yu et al., 2022)	$16 \times 128 \times 128$	577.0
TATS (Ge et al., 2022)	$16 \times 128 \times 128$	420.0
Diff. based on U-Net with Pre:		
VideoFusion* (Luo et al., 2023)	$16 \times 128 \times 128$	220.0
Make-A-Video* (Singer et al., 2022)	$16 \times 256 \times 256$	81.3
Diff. based on U-Net:		
PVDM* (Yu et al., 2023)	$16 \times 256 \times 256$	343.6
MCVD (Voleti et al., 2022)	$16 \times 64 \times 64$	1143.0
VDM* (Ho et al., 2022b)	$16 \times 64 \times 64$	295.0
Diff. based on Transformer:		
VDT	$16 \times 64 \times 64$	225.7

Table 5: Video prediction on Cityscapes (128 × 128) conditioning on 2 and predicting 28 frames.

Table 6: VQA accuracy on Physion-Collide.

Model

Accuracy

Cityscapes	FVD↓	SSIM↑
SVG-LP (Denton & Fergus, 2018)	1300.3	0.574
vRNN 1L (Castrejon et al., 2019)	682.1	0.609
Hier-vRNN (Castrejon et al., 2019)	567.5	0.628
GHVAE (Wu et al., 2021)	418.0	0.740
MCVD-spatin (Voleti et al., 2022)	184.8	0.720
MCVD-concat (Voleti et al., 2022)	141.4	0.690
VDT	142.3	0.880

Model	Accuracy
Object centric: Human (upper bound)	80.0
SlotFormer (Wu et al., 2022b)	69.3
Scene centric:	
PRIN (Qi et al., 2021)	57.9
pVGG-lstm (Bear et al., 2021)	58.7
pDEIT-lstm (Bear et al., 2021)	63.1
VDT (Ours)	65.3