

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis

Host Compiled Simulation for Timing and Power Estimation

Gaurav Kukreja

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis

Host Compiled Simulation for Timing and Power Estimation

Author: Gaurav Kukreja

Supervisor: Prof. Michael Gerndt Advisor: Dr. Josef Weidendorfer

Advisor: Mr. Bo Wang

Submission Date: 15th October, 2014

I confirm that this Master's Thesis is my own we and materials used.	ork and I have documented all sources
Munich, 15 th October, 2014	Gaurav Kukreja

Abstract

Simulation is a useful technique for Hardware Software Co-development. It is performed at various levels of abstraction to serve different purposes. Instruction Set Simulation is the lowest level of abstraction where the processor pipeline is simulated in detail, to allow hardware developers to test their modifications and evaluate the impact on performance. At higher levels of abstraction, simulation provides developers with a tangible environment for early software development. The focus of this project is on simulation for performance estimation, namely, estimation of time and power consumed in running a benchmark application on a target processor.

While Instruction Set Simulators are known to be highly accurate, they are difficult to develop and slow to execute because of the level of detail they address. Host Compiled Simulation is a technique to accelerate performance estimation with negligible impact on accuracy. The idea is to instrument¹ the source code, by taking into consideration the behaviour of the target processor. The instrumented source code is compiled and run on the Host Machine. The technique relies on the assumption that performance of each basic block² in the binary code can be accurately estimated on a certain processor by emulating the pipeline. Other aspects that affect performance, like resources spent in memory access can be accounted for, and a fairly accurate estimate of the time and power consumed can be estimated.

In this project, a tool to perform Host Compiled Simulation was developed. This thesis discusses the state-of-art in simulation. It explains the approach used to develop this tool. The results showing accuracy of estimations from this approach are presented.

¹Instrumentation is a technique to modify the source code of an application in order to collect statistics at run-time. This may be used to measure performance of the application, or diagnose errors.

²A basic block in a program is a series of instructions which are executed sequentially. The basic block does not contain branch instructions.

Contents

Al	Abstract			
1	Intro	oduction	1	
	1.1	Simulation	1	
	1.2	Related Work	1	
		1.2.1 Sampling Based Approach	1	
		1.2.2 Host Compiled Simulation	2	
	1.3	Focus	2	
		1.3.1 Simple Example	2	
	1.4	Thesis Outline	2	
2	Bacl	kground	3	
3	Hos	t Compiled Simulation	4	
4	Imp	lementation	5	
5	Resi	alts	6	
6	Con	clusion	7	
Li	List of Figures			
List of Tables				

1 Introduction

1.1 Simulation

Simulation is the technique to imitate the behaviour of a system. It is generally used when developing or working with the real system is expensive or difficult.

Simulation is widely used in Hardware Software Co-development. The behaviour of a processor is simulated. It allows Hardware Developers to analyse and validate the performance impacts of design decisions at early stage of hardware development. This allows them to save the crucial effort and cost involved in fabricating hardware.

The widely used approach in this area, is called Instruction Set Simulator (ISS). In ISS the processor micro-architecture is simulated in great detail. Each stage of processor pipeline is simulated along with other building blocks of the processor like Caching and Branch Prediction Units. This approach provides cycle accurate estimates of performance. However, ISS is difficult to develop and slow to execute because of the amount of details that are simulated. ISS is not suitable for simulation of long running software scenarios.

The focus of this research is to enable fast simulation of single core, embedded processors to provide accurate estimation of time and power spent in executing benchmark applications.

1.2 Related Work

Considerable work has been done in this area of research. The techniques developed can be roughly divided into two approaches.

1.2.1 Sampling Based Approach

Sampling is an approach used in statistical analysis. Small, yet representative samples are chosen from a vast amount of data. These samples are analysed in detail, and the results are interpolated to gather information about the entire data set.

In Sampling Based Approach, certain samples of the execution trace are simulated in detail using Instruction Set Simulation. The rest of the execution is carried out using Functional Simulation at a higher level of abstraction. This leads to a speed up in simulation.

Research in this area mainly focuses on developing procedures to select the samples.

1.2.2 Host Compiled Simulation

Host Compiled Simulation is based on approach of Source Code Instrumentation (SCI). SCI is the process of modifying source code to collect performance statistics and generate trace information during run-time.

In Host Compiled Simulation, the Source Code is instrumented at the basic block granularity to accumulate timing information.

To estimate the performance of an application, we must take into consideration the effects due to following optimization techniques used in modern processors.

- Processor Pipelining
- Branch Prediction
- Memory Caching and Prefetching

The instrumentation enables simulation of these

1.3 Focus

1.3.1 Simple Example

1.4 Thesis Outline

2 Background

3 Host Compiled Simulation

4 Implementation

5 Results

6 Conclusion

List of Figures

List of Tables