libvisiongl

1.0

Generated by Doxygen 1.7.6.1

Fri Jul 5 2013 07:45:15

Contents

1	Dire	ctory Hi	ierarchy		1
	1.1	Directo	ories		1
2	File	Index			3
	2.1	File Lis	st		3
3	Dire	ctory D	ocumenta	ition	5
	3.1	src/ Di	rectory Re	ference	5
4	File	Docum	entation		7
	4.1	src/gls	l2cpp_BG.	h File Reference	7
		4.1.1	Function	Documentation	7
			4.1.1.1	vglDetectFGSimpleBGModel	7
			4.1.1.2	vglTrainSimpleBGModel	7
			4.1.1.3	vglUpdatePartialSimpleBGModel	8
	4.2	src/gls	l2cpp_sha	ders.h File Reference	8
		4.2.1	Function	Documentation	0
			4.2.1.1	shader_15_1	0
			4.2.1.2	vgl1to3Channels	0
			4.2.1.3	vglAbsDiff	0
			4.2.1.4	vglAnd	0
			4.2.1.5	vglBaricenterInit	0
			4.2.1.6	vglBlurSq3	0
			4.2.1.7	vglClear2	0
			4.2.1.8	vglContrast	0
			4.2.1.9	valCoordToColor	1

i CONTENTS

4.2.1.10	vglCopy
4.2.1.11	vglCrossingNumber
4.2.1.12	vglDeleteSkeletonCorners
4.2.1.13	vglDeleteSkeletonWarts
4.2.1.14	vglDeleteSkeletonWarts2
4.2.1.15	vglDiff
4.2.1.16	vglDilateCross3
4.2.1.17	vglDilateSq3
4.2.1.18	vglErodeCross3
4.2.1.19	vglErodeHL3
4.2.1.20	vglErodeHL5
4.2.1.21	vglErodeHL7
4.2.1.22	vglErodeSq3
4.2.1.23	vglErodeSq3off
4.2.1.24	vglErodeSq5
4.2.1.25	vglErodeSq5off
4.2.1.26	vglErodeSq7
4.2.1.27	vglErodeSqSide
4.2.1.28	vglErodeVL3
4.2.1.29	vglErodeVL5
4.2.1.30	vglErodeVL7
4.2.1.31	vglFeaturePoints
4.2.1.32	vglGaussianBlurSq3
4.2.1.33	vglGray
4.2.1.34	vglHorizontalFlip
4.2.1.35	vgllnOut
4.2.1.36	vglJulia
4.2.1.37	vglLaplaceSq3
4.2.1.38	vglMandel
4.2.1.39	vglMipmap
4.2.1.40	vglMulScalar
4.2.1.41	vglMultiInput
4.2.1.42	vglMultiOutput
4.2.1.43	vglNoise

CONTENTS iii

	4.2.1.44	vglNot	16
	4.2.1.45	vglOr	16
	4.2.1.46	vglRescale	16
	4.2.1.47	vglRgbToBgr	17
	4.2.1.48	vglRgbToHsl	17
	4.2.1.49	vglRgbToHsv	17
	4.2.1.50	vglRgbToXyz	17
	4.2.1.51	vglRobertsGradient	17
	4.2.1.52	vglSelfSum22	17
	4.2.1.53	vglSelfSum3v	17
	4.2.1.54	vglSelfSum4h	17
	4.2.1.55	vglSelfSum5h	17
	4.2.1.56	vglSelfSum5v	18
	4.2.1.57	vglSharpenSq3	18
	4.2.1.58	vglSobelGradient	18
	4.2.1.59	vglSobelXSq3	18
	4.2.1.60	vglSobelYSq3	18
	4.2.1.61	vglSum	18
	4.2.1.62	vglSumWeighted	18
	4.2.1.63	vglSwapRGB	18
	4.2.1.64	vglTeste	19
	4.2.1.65	vglTestInOut	19
	4.2.1.66	vglTestInOut2	19
	4.2.1.67	vglTestMultiInput	19
	4.2.1.68	vglTestMultiOutput	19
	4.2.1.69	vglThinBernardAux	19
	4.2.1.70	vglThinChinAux	19
	4.2.1.71	vglThresh	20
	4.2.1.72	vglThreshLevelSet	20
	4.2.1.73	vglVerticalFlip	20
	4.2.1.74	vglWhiteRohrerEdge	20
	4.2.1.75	vglXGY	20
	4.2.1.76	vglZoom	20
4.3	src/glsl2cpp_Ster	eo.h File Reference	21

iv CONTENTS

	4.3.1	Function	Documentation
		4.3.1.1	vglAbsDiffDisparity
		4.3.1.2	vglAbsDiffDisparityMipmap
		4.3.1.3	vglFindDisparity
		4.3.1.4	vglFindDisparityDiff
		4.3.1.5	vglGreenDiffDisparity
		4.3.1.6	vglHomography
		4.3.1.7	vglMapTo3D
		4.3.1.8	vglMeanMipmap
		4.3.1.9	vglMeanSq3
		4.3.1.10	vglRectify
		4.3.1.11	vglSumDiff
		4.3.1.12	vglSumDiffMipmap
		4.3.1.13	vglUndistort
4.4	src/vgll	mage.cpp	File Reference
	4.4.1	Function	Documentation
		4.4.1.1	iplPrintlmageInfo
		4.4.1.2	LoadPGM
		4.4.1.3	SavePGM
		4.4.1.4	SavePPM
		4.4.1.5	SaveYUV411
		4.4.1.6	vglBaricenterVga
		4.4.1.7	vglCErodeCross3
		4.4.1.8	vglClear
		4.4.1.9	vglCloseSq3
		4.4.1.10	vglCopyCreateImage
		4.4.1.11	vglCopyCreateImage
		4.4.1.12	vglCopyImageTex
		4.4.1.13	vglCopyImageTexFS
		4.4.1.14	vglCopyImageTexVFS
		4.4.1.15	vglCreateImage
		4.4.1.16	vglCreateImage
		4.4.1.17	vglCreateImage
		4.4.1.18	vglDistTransform5

CONTENTS v

4.4.1.19	vglDistTransformCross3	28
4.4.1.20	vglDistTransformSq3	28
4.4.1.21	vglDownload	28
4.4.1.22	vglDownloadFaster	28
4.4.1.23	vglDownloadFBO	29
4.4.1.24	vglDownloadPGM	29
4.4.1.25	vglDownloadPPM	29
4.4.1.26	vglErodeSq3Sep	29
4.4.1.27	vglErodeSq5Sep	29
4.4.1.28	vglGetLevelDistTransform5	30
4.4.1.29	vglHorizontalFlip2	30
4.4.1.30	vgllnit	30
4.4.1.31	vgllnit	30
4.4.1.32	vgllnOut_model	30
4.4.1.33	vglLoadImage	30
4.4.1.34	vglLoadPGM	30
4.4.1.35	vglMultiInput_model	31
4.4.1.36	vglMultiOutput_model	31
4.4.1.37	vglOpenSq3	31
4.4.1.38	vglPrintlmageInfo	31
4.4.1.39	vglReleaseImage	31
4.4.1.40	vglReplacelpl	31
4.4.1.41	vglSavePGM	31
4.4.1.42	vglSavePPM	32
4.4.1.43	vglThinBernard	32
4.4.1.44	vglThinChin	32
4.4.1.45	vglUpload	32
4.4.1.46	vglVerticalFlip2	33

Chapter 1

Directory Hierarchy

1.1	Dire	ectories

This directory hierarchy is sorted roughly, but not completely, alphabetically:	
Src	5

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

src/glsl2cpp_BG.h														7
src/glsl2cpp_shaders.h .														8
src/glsl2cpp_Stereo.h														2
src/vgllmage.cpp														24

File Index

Chapter 3

Directory Documentation

3.1 src/ Directory Reference

Files

- file glsl2cpp_BG.h
- file glsl2cpp_shaders.h
- file glsl2cpp_Stereo.h
- file vgllmage.cpp

Chapter 4

File Documentation

4.1 src/glsl2cpp_BG.h File Reference

```
#include "vglImage.h"
```

Functions

- void **vglDetectFGSimpleBGModel** (VglImage *img_in, VglImage *average, VglImage *variance, VglImage *foreground, float std_thresh)
- void **vglTrainSimpleBGModel** (VglImage *img_in, VglImage *average, Vgl-Image *variance, float weight)
- void **vglUpdatePartialSimpleBGModel** (VglImage *img_in, VglImage *foregorundClose, VglImage *average, VglImage *variance, float weight)

4.1.1 Function Documentation

4.1.1.1 void vgIDetectFGSimpleBGModel (Vgllmage * img_in, Vgllmage * average, Vgllmage * variance, Vgllmage * foreground, float std_thresh)

Detects foreground pixels.

4.1.1.2 void vglTrainSimpleBGModel (Vgllmage * img_in, Vgllmage * average, Vgllmage * variance, float weight)

Updates average and variance of background model.

4.1.1.3 void vglUpdatePartialSimpleBGModel (VglImage * img_in, VglImage * foregorundClose, VglImage * average, VglImage * variance, float weight)

Updates average and variance of background model only in pixels that are classified as background.

4.2 src/glsl2cpp_shaders.h File Reference

#include "vglImage.h"

Functions

- void shader_15_1 (VglImage *src, VglImage *dst)
- void vgl1to3Channels (VglImage *src, VglImage *dst)
- void vglAbsDiff (VglImage *src0, VglImage *src1, VglImage *dst)
- void vglAnd (VglImage *src0, VglImage *src1, VglImage *dst)
- void **vglBaricenterInit** (VglImage *src, VglImage *dst)
- void vglBlurSq3 (VglImage *src, VglImage *dst)
- void vglClear2 (VglImage *src_dst, float r, float g, float b, float a=0.0)
- void vglContrast (VglImage *src, VglImage *dst, float factor)
- void vqlCoordToColor (VqlImage *dst)
- void vglCopy (VglImage *src, VglImage *dst)
- void vglCrossingNumber (VglImage *src, VglImage *dst)
- void vglDeleteSkeletonCorners (VglImage *src, VglImage *dst, int step)
- void vglDeleteSkeletonWarts (VglImage *src, VglImage *dst)
- void vglDeleteSkeletonWarts2 (VglImage *src, VglImage *dst)
- void vqlDiff (Vqllmage *src0, Vqllmage *src1, Vqllmage *dst)
- void vglDilateCross3 (VglImage *src, VglImage *dst)
- void vglDilateSq3 (VglImage *src, VglImage *dst)
- void vglErodeCross3 (VglImage *src, VglImage *dst)
- void vglErodeHL3 (VglImage *src, VglImage *dst)
- void vglErodeHL5 (VglImage *src, VglImage *dst)
- void vglErodeHL7 (VglImage *src, VglImage *dst)
- void vglErodeSq3 (VglImage *src, VglImage *dst)
- void vglErodeSq3off (VglImage *src, VglImage *dst)
- void vglErodeSq5 (VglImage *src, VglImage *dst)
- void vglErodeSq5off (VglImage *src, VglImage *dst)
- void vglErodeSq7 (VglImage *src, VglImage *dst)
- void vglErodeSqSide (VglImage *src, VglImage *dst, int side)
- void vglErodeVL3 (VglImage *src, VglImage *dst)
- void vglErodeVL5 (VglImage *src, VglImage *dst)
- void vglErodeVL7 (VglImage *src, VglImage *dst)
- void vglFeaturePoints (VglImage *src, VglImage *dst, int type)
- void vglGaussianBlurSq3 (VglImage *src, VglImage *dst)
- void vglGray (VglImage *src, VglImage *dst)

- void vglHorizontalFlip (VglImage *src, VglImage *dst)
- void vgllnOut (Vgllmage *src, Vgllmage *dst)
- void vglJulia (VglImage *dst, float ox=0.0, float oy=0.0, float half_win=1.0, float c_real=-1.36, float c_imag=.11)
- void vglLaplaceSq3 (VglImage *src, VglImage *dst)
- void **vglMandel** (VglImage *dst, float ox=0.0, float oy=0.0, float half_win=1.0)
- void vglMipmap (VglImage *src, VglImage *dst, float lod)
- void **vglMulScalar** (VglImage *src, VglImage *dst, float factor)
- void vglMultiInput (VglImage *src0, VglImage *src1, VglImage *dst, float weight=.5)
- void vglMultiOutput (VglImage *src, VglImage *dst, VglImage *dst1)
- void **vglNoise** (VglImage *src, VglImage *dst)
- void vglNot (VglImage *src, VglImage *dst)
- void vglOr (VglImage *src0, VglImage *src1, VglImage *dst)
- void vglRescale (VglImage *src, VglImage *dst, float x0, float y0, float x1, float y1)
- void vglRgbToBgr (VglImage *src, VglImage *dst)
- void vglRgbToHsI (VglImage *src, VglImage *dst)
- void vglRgbToHsv (VglImage *src, VglImage *dst)
- void vglRgbToXyz (VglImage *src, VglImage *dst)
- void vglRobertsGradient (VglImage *src, VglImage *dst)
- void vglSelfSum22 (VglImage *src, VglImage *dst)
- void vglSelfSum3v (VglImage *src, VglImage *dst)
- void vglSelfSum4h (VglImage *src, VglImage *dst)
- void vglSelfSum5h (VglImage *src, VglImage *dst)
- void vglSelfSum5v (VglImage *src, VglImage *dst)
- void vglSharpenSq3 (VglImage *src, VglImage *dst)
- void vglSobelGradient (VglImage *src, VglImage *dst)
- void vglSobelXSq3 (VglImage *src, VglImage *dst)
- void vglSobelYSq3 (VglImage *src, VglImage *dst)
- void vglSum (VglImage *src0, VglImage *src1, VglImage *dst)
- void vglSumWeighted (VglImage *src0, VglImage *src1, VglImage *dst, float weight=.5)
- void vglSwapRGB (VglImage *src, VglImage *dst)
- void vglTestInOut (VglImage *src_dst, float r, float g, float b, float a=0.0)
- void vqlTestInOut2 (VqlImage *src dst, VqlImage *dst)
- void vglTestMultiInput (VglImage *src0, VglImage *src1, VglImage *dst, float weight=.5)
- void vglTestMultiOutput (VglImage *src, VglImage *dst, VglImage *dst1)
- void vglTeste (VglImage *src, VglImage *dst)
- void vglThinBernardAux (VglImage *src, VglImage *eroded, VglImage *dst)
- void **vglThinChinAux** (VglImage *src, VglImage *dst)
- void **vglThresh** (VglImage *src, VglImage *dst, float thresh, float top=1.0)
- void vglThreshLevelSet (VglImage *src, VglImage *dst, float thresh, float top=1.0)
- void vglVerticalFlip (VglImage *src, VglImage *dst)
- void vglWhiteRohrerEdge (VglImage *src, VglImage *dst, float radius)
- void vglXGY (VglImage *src, VglImage *dst)
- void **vglZoom** (VglImage *src, VglImage *dst, float factor)

```
4.2.1 Function Documentation
```

```
4.2.1.1 void shader_15_1 ( Vgllmage * src, Vgllmage * dst )
```

4.2.1.2 void vgl1to3Channels (Vgllmage * src, Vgllmage * dst)

Convert grayscale image to RGB

```
4.2.1.3 void vgIAbsDiff (VgIImage * src0, VgIImage * src1, VgIImage * dst)
```

Absolute difference between two images.

Referenced by vglGetLevelDistTransform5().

Logical AND between two images

Initialize image to be used in baricenter calculation. The initialization is done by storing the values (1, x, y) in each output pixel so that the summation over th whole image gives the three moments of the image.

```
R = f(x, y)
```

$$G = x * f(x, y)$$

$$B = y * f(x, y)$$

Referenced by vglBaricenterVga().

vglBlurSq3

Blur image by 3x3 square structuring element.

```
4.2.1.7 void vglClear2 (VglImage * src_dst, float r, float g, float b, float a = 0.0)
```

Clear image with given color.

```
4.2.1.8 void vglContrast ( Vgllmage * src, Vgllmage * dst, float factor )
```

Changes contrast of image by given factor.

```
4.2.1.9 void vglCoordToColor (VglImage * dst)
```

Shows coordinates of pixels as colors. Red is horizontal and green is vertical. - Coordinates and colors are defined by OpenGL, that is, between 0 and 1.

```
4.2.1.10 void vglCopy (VglImage * src, VglImage * dst)
```

Direct copy from src to dst.

Referenced by vglCopyCreateImage(), vglDistTransform5(), vglGetLevelDistTransform5(), vglThinBernard(), and vglThinChin().

```
4.2.1.11 void vglCrossingNumber (Vgllmage * src, Vgllmage * dst)
```

Crossing number is defined as the number of ocurrences of the pattern 01 in the neihborhood of a pixel.

Neighborhood of pixel P is indexed as follows:

References:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

T. M. Bernard and A. Manzanera, Improved low complexity fully parallel thinning algorithms, 1999

Deletes corner from skeleton.

Receive as input the image with the skeleton to be thinned. Receives also the step. must be called once with step 1 and once with step 2.

Neighborhood pixels is indexed as follows:

```
P3 P2 P1
P4 P8 P0
P5 P6 P7
```

Pixels deleted are the ones that mach the pattern and its rotations by 90deg.

```
\begin{array}{ccccc}
0 & 0 & x \\
0 & 1 & 1 \\
x & 1 & 0
\end{array}
```

References:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

T. M. Bernard and A. Manzanera, Improved low complexity fully parallel thinning algorithms, 1999

```
4.2.1.13 void vglDeleteSkeletonWarts (VglImage * src, VglImage * dst)
```

Deletes warts from skeleton. Receive as input the image with the skeleton to be thinned. Neighborhood pixels are indexed as follows:

```
P3 P2 P1
P4 P P0/8
P5 P6 P7
```

Pixels deleted are the ones that mach the pattern and its rotations by 45deg.

 $\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}$

That is the same as delete the pixels with crossing number = 1 and neighbor number = 3

References:

Ke Liu et al., Identification of fork points on the skeletons of handwritten chinese characters

```
4.2.1.14 void vglDeleteSkeletonWarts2( VglImage * src, VglImage * dst )
```

Deletes warts from skeleton. Receive as input the image with the skeleton to be thinned. Neighborhood pixels are indexed as follows:

P3 P2 P1

P4 P P0/8

P5 P6 P7

Pixels deleted are the ones that mach the pattern and its rotations by 45deg.

100110100

110110100

110110110

111110110

111110111

That is the same as delete the pixels with crossing number = 1 and neighbor number >=3

References:

Ke Liu et al., Identification of fork points on the skeletons of handwritten chinese characters

```
4.2.1.15 void vgIDiff ( VgIImage * src0, VgIImage * src1, VgIImage * dst )
```

Image src0 minus src1.

4.2.1.16 void vgIDilateCross3 (VgIImage * src, VgIImage * dst)

Dilation of image by 3x3 cross structuring element.

4.2.1.17 void vglDilateSq3 (VglImage * src, VglImage * dst)

Dilation of image by 3x3 square structuring element.

Referenced by vglCloseSq3(), and vglOpenSq3().

4.2.1.18 void vgIErodeCross3 (VgIImage * src, VgIImage * dst)

Erosion of image by 3x3 cross structuring element.

Referenced by vglCErodeCross3(), vglDistTransform5(), vglDistTransformCross3(), vglGetLevelDistTransform5(), and vglThinBernard().

4.2.1.19 void vgIErodeHL3 (VgIImage * src, VgIImage * dst)

Erosion of image by horizontal line with 3 pixels.

Referenced by vglErodeSq3Sep().

4.2.1.20 void vgIErodeHL5 (VgIImage * src, VgIImage * dst)

Erosion of image by horizontal line with 5 pixels.

Referenced by vglErodeSq5Sep().

4.2.1.21 void vgIErodeHL7 (VgIImage * src, VgIImage * dst)

Erosion of image by horizontal line with 7 pixels.

4.2.1.22 void vgIErodeSq3 (VgIImage * src, VgIImage * dst)

Erosion of image by 3x3 square structuring element.

Referenced by vglCloseSq3(), vglDistTransform5(), vglDistTransformSq3(), vglGetLevelDistTransform5(), and vglOpenSq3().

4.2.1.23 void vglErodeSq3off (Vgllmage * src, Vgllmage * dst)

Erosion of image by 3x3 square structuring element. Uses an offset array with 9 elements. Slower than vglErodeSq3.

```
4.2.1.24 void vglErodeSq5 ( VglImage * src, VglImage * dst )
```

Erosion of image by 5x5 square structuring element.

```
4.2.1.25 void vgIErodeSq5off (Vgllmage * src, Vgllmage * dst)
```

Erosion of image by 3x3 square structuring element. Uses an offset array with 25 elements. Slower than vglErodeSq5.

```
4.2.1.26 void vglErodeSq7 ( VglImage * src, VglImage * dst )
```

Erosion of image by 7x7 square structuring element.

```
4.2.1.27 void vgIErodeSqSide (VgIImage * src, VgIImage * dst, int side )
```

Erosion of image by square structuring element. The parameter "side" is the dimension of the square side in pixels.

```
4.2.1.28 void vgIErodeVL3 ( VgIImage * src, VgIImage * dst )
```

Erosion of image by vertical line with 3 pixels.

Referenced by vglErodeSq3Sep().

```
4.2.1.29 void vgIErodeVL5 ( VgIImage * src, VgIImage * dst )
```

Erosion of image by vertical line with 5 pixels.

Referenced by vglErodeSq5Sep().

```
4.2.1.30 void vgIErodeVL7 (VgIImage * src, VgIImage * dst)
```

Erosion of image by vertical line with 7 pixels.

```
4.2.1.31 void vgIFeaturePoints (VgIImage * src, VgIImage * dst, int type)
```

Feature Points are defined as function of the crossing number and number of neighbors of a pixel.

The number of neighbors is indicated as Nb. Crossing number is defined as

Nc = number of occurrences of the pattern 01 in the neighborhood of P

Neighborhood pixels are indexed as follows:

P3 P2 P1

P4 P P0

P5 P6 P7

All the ending points are feature points. Are defined as Se = { $P \mid Nc(P) = 1$ }

Feature points type 1, denoted as S1, are defined as S1 = { $P \mid Nc(P) >= 3$ }

Feature points type 2, denoted as S2, are defined as S1 = $\{P \mid Nb(P) >= 3\}$

Feature points type 3, denoted as S3, are defined as S3 = { P \mid Nc(P) >= 3 or Nb(P) >= 4 }

References:

Ke Liu et al., Identification of fork points on the skeletons of handwritten chinese characters

4.2.1.32 void vglGaussianBlurSq3 (VglImage * src, VglImage * dst)

Blurs image by 3x3 square gaussian structuring element.

4.2.1.33 void vglGray (VglImage * src, VglImage * dst)

Convert image to grayscale by calculating the scalar product of (r, g, b) and (.2125, .7154, .0721).

4.2.1.34 void vglHorizontalFlip (VglImage * src, VglImage * dst)

Flip image horizontally i.e. left becomes right.

Image flip done by shader.

4.2.1.35 void vgIInOut (VgIImage * src, VgIImage * dst)

vglInOut

Test and model for IN_OUT semantics

4.2.1.36 void vglJulia (Vgllmage * dst, float ox = 0.0, float oy = 0.0, float $half_win = 1.0$, float $c_real = -1.36$, float $c_imag = .11$)

Calculate Julia set

4.2.1.37 void vglLaplaceSq3 (VglImage * src, VglImage * dst)

Laplacian of image by 3x3 square structuring element.

```
4.2.1.38 void vglMandel (Vgllmage * dst, float ox = 0.0, float oy = 0.0, float half_win = 0.0
         1.0)
Calculate Mandelbrot set
4.2.1.39 void vglMipmap ( Vgllmage * src, Vgllmage * dst, float lod )
Get specified level of detail.
4.2.1.40 void vglMulScalar (VglImage * src, VglImage * dst, float factor)
Multiply image by scalar.
4.2.1.41 void vglMultiInput ( Vgllmage * src0, Vgllmage * src1, Vgllmage * dst, float weight
         = .5)
VglAdd
Sum of two images.
4.2.1.42 void vglMultiOutput (Vgllmage * src, Vgllmage * dst, Vgllmage * dst1)
vglGray
Convert image to grayscale
4.2.1.43 void vglNoise (VglImage * src, VglImage * dst)
Add gaussian noise to image
4.2.1.44 void vglNot ( VglImage * src, VglImage * dst )
Inverts image.
4.2.1.45 void vgIOr (VgIImage * src0, VgIImage * src1, VgIImage * dst)
Logical OR between two images
Referenced by vglCErodeCross3().
4.2.1.46 void vgIRescale (VgIImage * src, VgIImage * dst, float x0, float y0, float x1, float
         y1)
```

Rescales corners of image to given corners

```
4.2.1.47 void vglRgbToBgr ( VglImage * src, VglImage * dst )
```

Converts image RGB to BGR color space

```
4.2.1.48 void vgIRgbToHsI (VgIImage * src, VgIImage * dst)
```

Converts image RGB to HSL color space

```
4.2.1.49 void vgIRgbToHsv (VgIImage * src, VgIImage * dst)
```

Converts image RGB to HSV color space

```
4.2.1.50 void vgIRgbToXyz ( VgIImage * src, VgIImage * dst )
```

Converts image RGB to XYZ color space.

```
4.2.1.51 void vglRobertsGradient (Vgllmage * src, Vgllmage * dst)
```

Roberts gradient of image

```
4.2.1.52 void vglSelfSum22 ( VglImage * src, VglImage * dst )
```

Stores in output pixel the sum of 4 adjacent pixels of the input image. The width and height of the output image must be half of the input image.

Referenced by vglBaricenterVga().

```
4.2.1.53 void vglSelfSum3v ( VglImage * src, VglImage * dst )
```

Stores in output pixel the sum of 3 adjacent pixels of the input image. The height of the output image must be 1/3th of the input image.

Referenced by vglBaricenterVga().

```
4.2.1.54 void vglSelfSum4h ( VglImage * src, VglImage * dst )
```

Stores in output pixel the sum of 4 adjacent pixels of the input image. The width of the output image must be 1/4th of the input image.

Referenced by vglBaricenterVga().

```
4.2.1.55 void vglSelfSum5h ( VglImage * src, VglImage * dst )
```

Stores in output pixel the sum of 5 adjacent pixels of the input image. The width of the output image must be 1/5th of the input image.

Referenced by vglBaricenterVga().

```
4.2.1.56 void vglSelfSum5v (VglImage * src, VglImage * dst )
```

Stores in output pixel the sum of 5 adjacent pixels of the input image. The height of the output image must be 1/5th of the input image.

Referenced by vglBaricenterVga().

```
4.2.1.57 void vglSharpenSq3 (VglImage * src, VglImage * dst)
```

Sharpens image using 3x3 square window.

```
4.2.1.58 void vglSobelGradient (VglImage * src, VglImage * dst)
```

Sobel gradient of image

```
4.2.1.59 void vglSobelXSq3 ( VglImage * src, VglImage * dst )
```

Sobel edge filtering in X direction.

```
4.2.1.60 void vglSobelYSq3 ( VglImage * src, VglImage * dst )
```

Sobel edge filtering in Y direction.

```
4.2.1.61 void vglSum ( VglImage * src0, VglImage * src1, VglImage * dst )
```

Sum of two images.

Referenced by vglDistTransform5(), vglDistTransformCross3(), and vglDistTransform5q3().

```
4.2.1.62 void vglSumWeighted ( VglImage * src0, VglImage * src1, VglImage * dst, float weight = .5 )
```

Weighted sum of two images. The first image is multiplied by weight, and the second, by 1 - weight. Default weight is 0.5.

```
4.2.1.63 void vgISwapRGB (VgIImage * src, VgIImage * dst)
```

Convert image from RGB to BGR and vice versa.

```
4.2.1.64 void vglTeste (VglImage * src, VglImage * dst)
```

vglDilate

Dilation of image by 3x3 square structuring element.

```
4.2.1.65 void vgITestInOut (VgIImage * src_dst, float r, float g, float b, float a = 0.0)
```

Test and model for IN_OUT semantics

```
4.2.1.66 void vglTestInOut2 ( VglImage * src_dst, VglImage * dst )
```

Test and model for IN_OUT semantics, with double output.

```
4.2.1.67 void vglTestMultiInput ( VglImage * src0, VglImage * src1, VglImage * dst, float weight = . 5 )
```

Test and model for multiple input functions.

```
4.2.1.68 void vglTestMultiOutput (VglImage * src, VglImage * dst, VglImage * dst1)
```

Test and model for multiple output functions.

```
4.2.1.69 void vglThinBernardAux (VglImage * src, VglImage * eroded, VglImage * dst )
```

Return one step of thinning. Algorithm by Bernard and Manzanera 1999. Receive as input the image to be thinned and its erosion by a elementary cross structuring element. Neighborhood pixels are indexed as follows:

```
P3 P2 P1
```

P4 P8 P0

P5 P6 P7

References:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

T. M. Bernard and A. Manzanera, Improved low complexity fully parallel thinning algorithms, 1999

Referenced by vglThinBernard().

```
4.2.1.70 void vglThinChinAux (Vgllmage * src, Vgllmage * dst)
```

Return one step of thinning. Algorithm by Chin, Wan Stover and Iverson, 1987. - Receive as input the image to be thinned, buffer image and number of times to iterate. Neighborhood pixels are indexed as follows:

```
    x
    x
    P10
    x
    x

    x
    P3
    P2
    P1
    x

    P11
    P4
    P0
    P8
    P9

    x
    P5
    P6
    P7
    x

    x
    x
    P12
    x
    x
```

References:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

R. T. Chin et al., A one-pass thinning algorithm and its parallel implementation, 1987 Referenced by vglThinChin().

```
4.2.1.71 void vglThresh (VglImage * src, VglImage * dst, float thresh, float top = 1.0)
```

Threshold of image. If value is greater than threshold, output is top, else, output is 0. Default top value is 1.

Referenced by vglDistTransform5(), vglDistTransformCross3(), and vglDistTransform5q3().

```
4.2.1.72 void vglThreshLevelSet ( VglImage * src, VglImage * dst, float thresh, float top = 1.0 )
```

Threshold of image. If value is equal to level, output is top, else, output is 0. Default top value is 1. Use after some Distance Transform to get a single distance level set.

```
4.2.1.73 void vgIVerticalFlip ( VgIImage * src, VgIImage * dst )
```

Flip image vertically i.e. top becomes bottom.

Image flip done by shader.

```
4.2.1.74 void vglWhiteRohrerEdge (VglImage * src, VglImage * dst, float radius )
```

Finds edge by using a White-Rohrer mask.

```
4.2.1.75 void vgIXGY ( VgIImage * src, VgIImage * dst )
```

Stores sobel edge filtering in X direction in red channel grayscale in y and sobel edge filtering in Y direction in green channel

```
4.2.1.76 void vglZoom ( VglImage * src, VglImage * dst, float factor )
```

Zoom image by factor.

4.3 src/glsl2cpp_Stereo.h File Reference

```
#include "vglImage.h"
```

Functions

- void vglAbsDiffDisparity (VglImage *img_ref, VglImage *img_2, VglImage *dst, float disparity)
- void vglAbsDiffDisparityMipmap (VglImage *img_ref, VglImage *img_2, Vgl-Image *dst, float disparity, float max_lod)
- void vglFindDisparity (VglImage *img_dif, VglImage *img_disp, float disparity)
- void vglFindDisparityDiff (VglImage *img_sum, VglImage *img_disp, VglImage *img_best, float disparity)
- void vglGreenDiffDisparity (VglImage *img_ref, VglImage *img_2, VglImage *dst, float disparity)
- void **vglHomography** (VglImage *img_src, VglImage *img_dst, float *f_homo)
- void vglMapTo3D (VglImage *img_map, VglImage *img_3d, float f, float b, float D, float disp_k=0.0, float h=10.0)
- void vglMeanMipmap (VglImage *img_dif, VglImage *img_out, float max_lod)
- void vglMeanSq3 (VglImage *img_dif, VglImage *img_out)
- void vglRectify (VglImage *img_src, VglImage *img_dst, float *f_dist, float *f_proj, float *f_homo)
- void vglSumDiff (VglImage *img_dif, VglImage *img_out)
- void vglSumDiffMipmap (VglImage *img_dif, VglImage *img_out, float max_lod)
- void vglUndistort (VglImage *img_src, VglImage *img_dst, float *f_dist, float *f_proj)

4.3.1 Function Documentation

4.3.1.1 void vglAbsDiffDisparity (VglImage * img_ref, VglImage * img_2, VglImage * dst, float disparity)

Calculate absolute difference between img_ref and img_2. Disparities considered are in the closed interval [4*disparity, 4*disparity+3].

The four differences are stored in the RGBA image dst.

4.3.1.2 void vglAbsDiffDisparityMipmap (VglImage * img_ref, VglImage * img_2, VglImage * dst, float disparity, float max_lod)

Calculates average absolute difference between img_ref and img_2 at levels of detail in [0, max_lod]. Disparities considered are in the closed interval [4*disparity, 4*disparity+3].

The four differences are stored in the RGBA image dst.

4.3.1.3 void vgIFindDisparity (Vgllmage * img_dif, Vgllmage * img_disp, float disparity)

Find best disparity. The first input image, img_dif, contains absolute differences between a pair of images at disparities [4*disparity, 4*disparity+3].

The second input image contains the smallest differences found in channel R, and corresponding disparity value in channel A, Is also an output image, and is updated whenever a smaller difference is found.

4.3.1.4 void vglFindDisparityDiff (Vgllmage * img_sum, Vgllmage * img_disp, Vgllmage * img_best, float disparity)

Do the same as vglFindDisparity, but the smallest difference is stored in img_best, and corresponding disparity in img_disp. Both are input and output images.

4.3.1.5 void vglGreenDiffDisparity (Vgllmage * img_ref, Vgllmage * img_2, Vgllmage * dst, float disparity)

Calculate absolute difference between green channel of img_ref and img_2. Disparities considered are in the closed interval [4*disparity, 4*disparity+3].

The four differences are stored in the RGBA image dst.

4.3.1.6 void vgIHomography (VgIImage * img_src, VgIImage * img_dst, float * f_homo)

Apply homography in img_src and stores result in img_dst.

Important: for matrices the emponents are written in column major order:

$$mat2 m = mat2 (1, 2, 3, 4) \Leftrightarrow m = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

In C we build the matrix in line major order, then we must transpose the matrix before using it in OpenGL context.

4.3.1.7 void vgIMapTo3D (VgIImage * img_map , VgIImage * img_3d , float f, float

Convert depth map to affine reconstruction

This algorithm ignores the infinite homography.

img_map: input depth map

img_3d: output reconstruction

f: focal length in pixels

b: baseline in cm

D: fixation point or maximum depth

is_float: if true, output image will store z in cm. If false output image will store z as 255 * (depth / D). if depth == D then z = 0.

disp_k: If set, single disparity will be used.

h: height of camera in cm

4.3.1.8 void vgIMeanMipmap (Vgllmage * img_dif, Vgllmage * img_out, float max_lod)

Mean of pixel values of levels of detail in [0, max_lod]. Result is stored in img_out.

4.3.1.9 void vgIMeanSq3 (VglImage * img_dif, VglImage * img_out)

Mean filter with a 3x3 square mask.

4.3.1.10 void vgIRectify (VgIImage * img_src, VgIImage * img_dst, float * f_dist, float * f_proj, float * f_homo)

Undistort, correct projection and rectify img_src and stores result in img_dst, for use with stereo algorithm

The input float array f_dist contains the coefficient of radial distortion, and f_proj contains the intrinsinc parameters of the camera: center of projection (x and y); focal length in pixels (x and y). The focal lengths are the same when the pixels are square.

The input float array f_homo contains the homography that rectifies the image.

Important: for matrices the emponents are written in column major order:

$$mat2 m = mat2 (1, 2, 3, 4) \Leftrightarrow m = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

In C we build the matrix in line major order, then we must transpose the matrix before using it in OpenGL context.

4.3.1.11 void vglSumDiff (Vgllmage * img_dif, Vgllmage * img_out)

VglSumDiff

Sum of differences

4.3.1.12 void vglSumDiffMipmap (VglImage * img_dif, VglImage * img_out, float max_lod)

VglSumDiffMipmap

Sum of differences

4.3.1.13 void vglUndistort (Vgllmage * img_src, Vgllmage * img_dst, float * f_dist, float * f_proj)

Correct camera lens distortion of img_src and stores the result in img_dst.

The input float array f_dist contains the coefficient of radial distortion, and f_proj contains the intrinsinc parameters of the camera: center of projection (x and y); focal length in pixels (x and y). The focal lengths are the same when the pixels are square.

Reference:

http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_cv.htm#cv 3d

4.4 src/vgllmage.cpp File Reference

#include <iostream> #include <GL/freeglut_std.h> #include
<GL/freeglut_ext.h> #include <opencv2/highgui/highgui.hpp> #include "vglContext.h" #include "vglImage.h" #include
"vglLoadShader.h" #include "glsl2cpp shaders.h"

Functions

- int vallnit ()
- int vgllnit (int w, int h)
- void vglUpload (VglImage *image, int swapRGB)
- Vgllmage * vglCopyCreateImage (Vgllmage *img_in)
- VglImage * vglCopyCreateImage (IpIImage *img_in, int dim3, int has_mipmap)
- VglImage * vglCreateImage (VglImage *img_in)
- Vgllmage * vglCreatelmage (lpllmage *img_in, int dim3, int has_mipmap)
- VglImage * vglCreateImage (CvSize size, int depth, int nChannels, int dim3, int has_mipmap)
- void vglReleaselmage (VglImage **p_image)
- void vglReplacelpl (VglImage *image, lplImage *new_ipl)
- void vglDownloadFaster (VglImage *image)
- void vglDownload (VglImage *image)
- void vglDownloadFBO (VglImage *image)
- void vglDownloadPPM (VglImage *image)
- void vglDownloadPGM (VglImage *image)
- VglImage * vglLoadImage (char *filename, int iscolor, int has_mipmap)
- void iplPrintlmageInfo (IplImage *ipl)
- void **vglPrintlmageInfo** (VglImage *image)
- void vglCopylmageTex (VglImage *src, VglImage *dst)
- void vglCopylmageTexFS (VglImage *src, VglImage *dst)
- void vglCopylmageTexVFS (VglImage *src, VglImage *dst)
- void vglVerticalFlip2 (VglImage *src, VglImage *dst)
- void vglHorizontalFlip2 (VglImage *src, VglImage *dst)

- void vglClear (VglImage *image, float r, float g, float b, float a)
- void **vglOpenSq3** (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void vglCloseSq3 (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void vglErodeSq3Sep (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void vglErodeSq5Sep (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void vglCErodeCross3 (VglImage *src, VglImage *mask, VglImage *dst, Vgl-Image *buf, int times)
- int SavePPM (char *filename, int w, int h, void *savebuf)
- int vglSavePPM (VglImage *img, char *filename)
- int SavePGM (char *filename, int w, int h, void *savebuf)
- int vglSavePGM (VglImage *img, char *filename)
- IpIImage * LoadPGM (char *filename)
- VgIImage * vgILoadPGM (char *filename)
- int SaveYUV411 (char *filename, int w, int h, void *savebuf)
- void vglDistTransformCross3 (VglImage *src, VglImage *dst, VglImage *buf, VglImage *buf2, int times)
- void vglDistTransformSq3 (VglImage *src, VglImage *dst, VglImage *buf, Vgl-Image *buf2, int times)
- void vglDistTransform5 (VglImage *src, VglImage *dst, VglImage *buf, Vgl-Image *buf2, int times)
- void vglGetLevelDistTransform5 (VglImage *src, VglImage *dst, VglImage *buf, VglImage *buf2, int times)
- void vglThinBernard (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void **vglThinChin** (VglImage *src, VglImage *dst, VglImage *buf, int times)
- void vglBaricenterVga (VglImage *src, double *x_avg, double *y_avg, double *pix_count)
- void vglMultiOutput_model (VglImage *src, VglImage *dst, VglImage *dst1)
- void vgllnOut_model (Vgllmage *dst, Vgllmage *dst1)
- void vglMultiInput_model (VglImage *src0, VglImage *src1, VglImage *dst)

4.4.1 Function Documentation

4.4.1.1 void ipIPrintImageInfo (lpllmage * ipl)

Print information about image.

Print width, height, depth and number of channels

4.4.1.2 IpIImage* LoadPGM (char * filename)

Load image data from PGM file, 1 channel, unsigned byte

Referenced by vglLoadPGM().

4.4.1.3 int SavePGM (char * filename, int w, int h, void * savebuf)

Save image data to PGM file, 1 channel, unsigned byte

Referenced by vglSavePGM().

```
4.4.1.4 int SavePPM ( char * filename, int w, int h, void * savebuf )
```

Save image data to PPM file, 3 channels, unsigned byte

Time to save a VGA image = 3.5ms

Referenced by vglSavePPM().

```
4.4.1.5 int SaveYUV411 (char * filename, int w, int h, void * savebuf)
```

Save compressed YUV411 image data to file.

Requires one half of the disk space required to save an uncompressed PPM.

```
4.4.1.6 void vglBaricenterVga ( Vgllmage * src, double * x_avg, double * y_avg, double * pix_count )
```

Calculates baricenter of vga image.

```
The resuld is stored in image RGB with one pixel. R = M(0, 0) = sum(f(x, y)) G = M(1, 0) = sum(x * f(x, y)) B = M(0, 1) = sum(y * f(x, y))
```

Reference:

William K. Pratt, Digital Image Processing, Second Edition

References vglBaricenterInit(), vglCreateImage(), vglDownload(), vglSelfSum22(), vglSelfSum3v(), vglSelfSum4h(), vglSelfSum5h(), and vglSelfSum5v().

```
4.4.1.7 void vgICErodeCross3 ( VgIImage * src, VgIImage * mask, VgIImage * dst, VgIImage * buf, int times )
```

Morpological conditional erosion by cross structuring element 3x3. A buffer is required. Source and destination may be the same.

The structuring element is a 3x3 cross. The parameter "times" indicates how many times the erosion will be applied.

References vglErodeCross3(), and vglOr().

```
4.4.1.8 void vglClear (VglImage * image, float r, float g, float b, float a)
```

Referenced by vglDistTransform5(), vglDistTransformCross3(), and vglDistTransform5q3().

```
4.4.1.9 void vglCloseSq3 ( VglImage * src, VglImage * dst, VglImage * buf, int times )
```

Morphological closing by square structuring element. A buffer is required. Source and destination may be the same.

The structuring element is a 3x3 square. The parameter "times" indicates how many times the closing will be applied.

References vglDilateSq3(), and vglErodeSq3().

4.4.1.10 Vgllmage* vglCopyCreateImage(Vgllmage * img_in)

Create image with same format and data as img_in.

References vglCopy(), and vglCreateImage().

4.4.1.11 Vgllmage* vglCopyCreateImage (lpllmage * img_in, int dim3, int has_mipmap)

Create image with same format and data as img_in

References vglCreateImage(), and vglUpload().

4.4.1.12 void vglCopyImageTex (VglImage * src, VglImage * dst)

Copy data from src texture to dst texture

4.4.1.13 void vglCopyImageTexFS(VglImage * src, VglImage * dst)

Copy data from src texture to dst texture using a fragment shader

4.4.1.14 void vglCopyImageTexVFS (VglImage * src, VglImage * dst)

Copy data from src texture to dst texture using a fragment shader and a vertex shader

4.4.1.15 Vgllmage * vglCreateImage (Vgllmage * img_in)

Create image with same format as img_in

Referenced by vglBaricenterVga(), vglCopyCreateImage(), vglCreateImage(), and vglLoadPGM().

4.4.1.16 Vgllmage* vglCreateImage(lpllmage * img_in, int dim3, int has_mipmap)

Create image with same format as img_in

References vglCreateImage().

4.4.1.17 Vgllmage* vglCreateImage (CvSize size, int depth, int nChannels, int dim3, int has_mipmap)

Create image as described by the parameters

References vglUpload().

```
4.4.1.18 void vgIDistTransform5 ( VgIImage * src, VgIImage * dst, VgIImage * buf, VgIImage * buf2, int times )
```

Distance transform given by alternating an elementary cross and a square 3x3.

Perform successive erorions on input image thresholded to 1/256. The sum of the erosions results is returned as the distance transform result.

References vglClear(), vglCopy(), vglErodeCross3(), vglErodeSq3(), vglSum(), and vgl-Thresh().

```
4.4.1.19 void vglDistTransformCross3 (VglImage * src, VglImage * dst, VglImage * buf, VglImage * buf2, int times )
```

Distance transform given by elementary cross.

Perform successive erorions on input image thresholded to 1/256. The sum of the erosions results is returned as the distance transform result.

References vglClear(), vglErodeCross3(), vglSum(), and vglThresh().

```
4.4.1.20 void vglDistTransformSq3 ( VglImage * src, VglImage * dst, VglImage * buf, VglImage * buf2, int times )
```

Distance transform given by square 3x3.

Perform successive erorions on input image thresholded to 1/256. The sum of the erosions results is returned as the distance transform result.

References vglClear(), vglErodeSq3(), vglSum(), and vglThresh().

```
4.4.1.21 void vgIDownload ( VgIImage * image )
```

Force transfer of image from GPU to RAM. Add RAM as valid context.

Transfer done by glGetTexImage. Color order is compatible with ipIImage, that is, BGR.

Time to transfer a VGA image = 2.5ms

References vglPrintlmageInfo().

Referenced by vglBaricenterVga().

4.4.1.22 void vgIDownloadFaster (VgIImage * image)

Force transfer of image from GPU to RAM. Add RAM as valid context.

Transfer done by glReadPixels. Color order is compatible with iplImage, that is, BGR.

Time to transfer a VGA image = 1.0 to 1.5ms

References vglPrintlmageInfo().

4.4.1.23 void vglDownloadFBO (VglImage * image)

Force transfer of image from FBO to RAM. Add RAM as valid context.

Transfer done by glReadPixels. Color order is compatible with iplImage, that is, BGR.

References vglPrintlmageInfo().

4.4.1.24 void vgIDownloadPGM (VgIImage * image)

Transfer image from GPU to RAM in format suitable for saving as PGM.

Use it imediately before vglSavePGM. It is different from vglDownload in two points. The unpack alignment is 1 and color is grayscale

Time to transfer a VGA image = 10ms

Referenced by vglSavePGM().

4.4.1.25 void vgIDownloadPPM (VgIImage * image)

Transfer image from GPU to RAM in format suitable for saving as PPM.

Use it imediately before vglSavePPM. It is different from vglDownload in two points. The unpack alignment is 1 and color order is RGB

Time to transfer a VGA image = 3ms

Referenced by vglSavePPM().

4.4.1.26 void vglErodeSq3Sep (VglImage * src, VglImage * dst, VglImage * buf, int times)

Morpological erosion by square structuring element 3x3. A buffer is required. Source and destination may be the same.

The structuring element is a 3x3 square. The parameter "times" indicates how many times the erosion will be applied.

References vglErodeHL3(), and vglErodeVL3().

4.4.1.27 void vglErodeSq5Sep(VglImage * src, VglImage * dst, VglImage * buf, int times)

Morpological erosion by square structuring element 5x5. A buffer is required. Source and destination may be the same.

The structuring element is a 5x5 square. The parameter "times" indicates how many times the erosion will be applied.

References vglErodeHL5(), and vglErodeVL5().

```
4.4.1.28 void vglGetLevelDistTransform5 ( VglImage * src, VglImage * dst, VglImage * buf, VglImage * buf2, int times )
```

Get level curve of distance transform5

Perform successive erorions on input image thresholded to 1/256. The returned image is the difference between the results obtained in the iterations "times" and "times" - 1.

References vglAbsDiff(), vglCopy(), vglErodeCross3(), and vglErodeSq3().

```
4.4.1.29 void vglHorizontalFlip2 ( VglImage * src, VglImage * dst )
```

Flip image horizontally, that is, left becomes right.

Image flip done by texture mapping, that is, by the fixed pipeline.

```
4.4.1.30 int vglInit()
```

Initialize GLUT and create output window with default size (1280, 960).

Referenced by vglUpload().

```
4.4.1.31 int vglInit (int w, int h)
```

Initialize GLUT and create output window with size (w, h).

```
4.4.1.32 void vglInOut_model ( VglImage * dst, VglImage * dst1 )
```

Test and model for IN_OUT semantics.

First parameter is input and output. Second parameter is output.

```
4.4.1.33 Vgllmage* vglLoadImage ( char * filename, int iscolor, int has_mipmap )
```

Load image from file to new VgIImage.

This function uses cvLoadImage to read image file.

References vglUpload().

```
4.4.1.34 Vgllmage* vglLoadPGM ( char * filename )
```

Load image from PGM file, 1 channel, unsigned byte

References LoadPGM(), and vglCreateImage().

4.4.1.35 void vglMultiInput_model (Vgllmage * src0, Vgllmage * src1, Vgllmage * dst)

Test and model for functions with multiple input images.

First and second parameters are input. Third parameter is output.

4.4.1.36 void vglMultiOutput_model (Vgllmage * src, Vgllmage * dst, Vgllmage * dst1)

Test and model for functions with multiple output images.

First parameter is input. Second and third parameters are output.

4.4.1.37 void vglOpenSq3 (VglImage * src, VglImage * dst, VglImage * buf, int times)

Morpological opening by square structuring element. Opening is an erosion followed by a dilation. A buffer is required. Source and destination may be the same.

The structuring element is a 3x3 square. The parameter "times" indicates how many times the erosion will be applied.

References vglDilateSq3(), and vglErodeSq3().

4.4.1.38 void vglPrintImageInfo (VglImage * image)

Print information about image.

Print width, height, depth, number of channels, OpenGL texture handler, OpenGL FBO handler, and current valid context (RAM, GPU or FBO).

Referenced by vglDownload(), vglDownloadFaster(), vglDownloadFBO(), and vglUpload().

4.4.1.39 void vglReleaseImage (VglImage ** p_image)

Release memory occupied by image in RAM and GPU

4.4.1.40 void vglReplacelpl (Vgllmage * image, lpllmage * new_ipl)

Replace IplImage, stored inside a VgIImage, with new IpIImage.

Both new and old images must have exactly the same properties, dimensions, depth, type etc. Is useful when grabbing frames from a camera.

References vglUpload().

4.4.1.41 int vglSavePGM (VglImage * img, char * filename)

Save image to PGM file, 1 channel, unsigned byte

References SavePGM(), and vglDownloadPGM().

4.4.1.42 int vglSavePPM (VglImage * img, char * filename)

Save image to PPM file, 3 channels, unsigned byte

References SavePPM(), and vglDownloadPPM().

4.4.1.43 void vglThinBernard (VglImage * src, VglImage * dst, VglImage * buf, int times)

Structuring element thinning. Algorithm by Bernard and Manzanera 1999.

Receive as input the image to be thinned. The second image is an auxiliary image. The third image stores the result. Both the second and third images must have the same size and type as the first input image.

The fourth parameter is the number of iterations.

Reference:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

T. M. Bernard and A. Manzanera, Improved low complexity fully parallel thinning algorithms, 1999

References vglCopy(), vglErodeCross3(), and vglThinBernardAux().

```
4.4.1.44 void vglThinChin (VglImage * src, VglImage * dst, VglImage * buf, int times )
```

Structuring element thinning. Algorithm by Chin, Wan Stover and Iverson, 1987.

Receive as input the image to be thinned, buffer image and number of times to iterate.

Neighborhood pixels are indexed as follows:

P3 P2 P1

P4 P8 P0

P5 P6 P7

Reference:

M. Couprie, Note on fifteen 2D parallel thinning algorithms, 2006

R. T. Chin et al., A one-pass thinning algorithm and its parallel implementation, 1987 References vglCopy(), and vglThinChinAux().

```
4.4.1.45 void vgIUpload ( VgIImage * image, int swapRGB )
```

Send image data from RAM to GPU. Add GPU as valid context.

If swapRGB is true, channels R and B are swapped.

References vglInit(), and vglPrintlmageInfo().

Referenced by vglCopyCreateImage(), vglCreateImage(), vglLoadImage(), and vgl-ReplaceIpI().

4.4.1.46 void vglVerticalFlip2 (Vgllmage * src, Vgllmage * dst)

Flip image vertically, that is, top becomes bottom.

Image flip done by texture mapping, that is, by the fixed pipeline.

Index

LoadPGM	vglDeleteSkeletonWarts2, 12
vgllmage.cpp, 25	vglDiff, 12
SavePGM	vglDilateCross3, 12
vgllmage.cpp, 25	vglDilateSq3, 13
SavePPM	vglErodeCross3, 13
vglImage.cpp, 25	vglErodeHL3, 13
SaveYUV411	vglErodeHL5, 13
vgllmage.cpp, 26	vglErodeHL7, 13
	vglErodeSq3, 13
glsl2cpp_BG.h	vglErodeSq3off, 13
vglDetectFGSimpleBGModel, 7	vglErodeSq5, 13
vglTrainSimpleBGModel, 7	vglErodeSq5off, 14
vglUpdatePartialSimpleBGModel, 7	vglErodeSq7, 14
glsl2cpp_Stereo.h	vglErodeSqSide, 14
vglAbsDiffDisparity, 21	vglErodeVL3, 14
vglAbsDiffDisparityMipmap, 21	vglErodeVL5, 14
vglFindDisparity, 21	vglErodeVL7, 14
vglFindDisparityDiff, 22	vglFeaturePoints, 14
vglGreenDiffDisparity, 22	vglGaussianBlurSq3, 15
vglHomography, 22	vglGray, 15
vglMapTo3D, 22	vglHorizontalFlip, 15
vglMeanMipmap, 23	vgllnOut, 15
vglMeanSq3, 23	vglJulia, 15
vglRectify, 23	vglLaplaceSq3, 15
vglSumDiff, 23	vglMandel, 15
vglSumDiffMipmap, 23	vglMipmap, 16
vglUndistort, 23	vglMulScalar, 16
glsl2cpp_shaders.h	vglMultiInput, 16
shader_15_1, 10	vglMultiOutput, 16
vgl1to3Channels, 10	vglNoise, 16
vglAbsDiff, 10	vglNot, 16
vglAnd, 10	vglOr, 16
vglBaricenterInit, 10	vglRescale, 16
vglBlurSq3, 10	vglRgbToBgr, 16
vglClear2, 10	vglRgbToHsl, 17
vglContrast, 10	vglRgbToHsv, 17
vglCoordToColor, 10	vglRgbToXyz, 17
vglCopy, 11	vglRobertsGradient, 17
vglCrossingNumber, 11	vglSelfSum22, 17
vglDeleteSkeletonCorners, 11	vglSelfSum3v, 17
vglDeleteSkeletonWarts, 11	vglSelfSum4h, 17
	•

vglSelfSum5h, 17 vglCErodeCross3 vglSelfSum5v, 18 vgllmage.cpp, 26 vglSharpenSq3, 18 vglClear vglSobelGradient, 18 vgllmage.cpp, 26 vglSobelXSq3, 18 vglClear2 glsl2cpp_shaders.h, 10 vglSobelYSq3, 18 vglCloseSq3 vglSum, 18 vgllmage.cpp, 26 vglSumWeighted, 18 vglContrast vglSwapRGB, 18 glsl2cpp_shaders.h, 10 vglTestInOut, 19 vglCoordToColor vglTestInOut2, 19 glsl2cpp_shaders.h, 10 vglTestMultiInput, 19 vglCopy vglTestMultiOutput, 19 glsl2cpp_shaders.h, 11 valTeste, 18 vglThinBernardAux, 19 vglCopyCreateImage vglThinChinAux, 19 vgllmage.cpp, 27 vglCopylmageTex vglThresh, 20 vgllmage.cpp, 27 vglThreshLevelSet, 20 vglCopyImageTexFS vglVerticalFlip, 20 vglWhiteRohrerEdge, 20 vgllmage.cpp, 27 vglCopyImageTexVFS vgIXGY, 20 vgllmage.cpp, 27 vglZoom, 20 vglCreateImage iplPrintlmageInfo vgllmage.cpp, 27 vgllmage.cpp, 25 vglCrossingNumber glsl2cpp_shaders.h, 11 shader 15 1 vglDeleteSkeletonCorners glsl2cpp_shaders.h, 10 glsl2cpp_shaders.h, 11 src/ Directory Reference, 5 vglDeleteSkeletonWarts src/glsl2cpp_BG.h, 7 glsl2cpp_shaders.h, 11 src/glsl2cpp_Stereo.h, 21 vglDeleteSkeletonWarts2 src/glsl2cpp_shaders.h, 8 glsl2cpp_shaders.h, 12 src/vgllmage.cpp, 24 vglDetectFGSimpleBGModel glsl2cpp_BG.h, 7 vgl1to3Channels vglDiff glsl2cpp_shaders.h, 10 glsl2cpp_shaders.h, 12 vglAbsDiff vglDilateCross3 glsl2cpp_shaders.h, 10 glsl2cpp_shaders.h, 12 vglAbsDiffDisparity vglDilateSq3 glsl2cpp_Stereo.h, 21 glsl2cpp_shaders.h, 13 vglAbsDiffDisparityMipmap vglDistTransform5 glsl2cpp_Stereo.h, 21 vgllmage.cpp, 28 vglAnd vglDistTransformCross3 glsl2cpp_shaders.h, 10 vgllmage.cpp, 28 vglBaricenterInit vglDistTransformSq3 vgllmage.cpp, 28 glsl2cpp_shaders.h, 10 vglDownload vglBaricenterVga vgllmage.cpp, 26 vgllmage.cpp, 28 vglBlurSq3 vglDownloadFBO vgllmage.cpp, 29 glsl2cpp_shaders.h, 10

vglDownloadFaster	vglHomography
vgllmage.cpp, 28	glsl2cpp_Stereo.h, 22
vglDownloadPGM	vglHorizontalFlip
vgllmage.cpp, 29	glsl2cpp_shaders.h, 15
vglDownloadPPM	vglHorizontalFlip2
vgllmage.cpp, 29	vgllmage.cpp, 30
vglErodeCross3	vgllmage.cpp
glsl2cpp_shaders.h, 13	LoadPGM, 25
vglErodeHL3	SavePGM, 25
glsl2cpp_shaders.h, 13	SavePPM, 25
vglErodeHL5	SaveYUV411, 26
glsl2cpp_shaders.h, 13	iplPrintImageInfo, 25
vglErodeHL7	vglBaricenterVga, 26
glsl2cpp_shaders.h, 13	vglCErodeCross3, 26
vglErodeSq3	vglClear, 26
glsl2cpp_shaders.h, 13	vglCloseSq3, 26
vglErodeSq3Sep	vglCopyCreateImage, 27
vgllmage.cpp, 29	vglCopyImageTex, 27
vglErodeSq3off	vglCopyImageTexFS, 27
glsl2cpp_shaders.h, 13	vglCopyImageTexVFS, 27
vglErodeSq5	vglCreateImage, 27
glsl2cpp_shaders.h, 13	vglDistTransform5, 28
vglErodeSq5Sep	vglDistTransformCross3, 28
vgllmage.cpp, 29	vglDistTransformSq3, 28
vglErodeSq5off	vglDownload, 28
glsl2cpp_shaders.h, 14	vglDownloadFBO, 29
vglErodeSq7	vglDownloadFaster, 28
glsl2cpp_shaders.h, 14	vglDownloadPGM, 29
vglErodeSqSide	vglDownloadPPM, 29
glsl2cpp_shaders.h, 14	vglErodeSq3Sep, 29
vglErodeVL3	vglErodeSq5Sep, 29
glsl2cpp_shaders.h, 14	vglGetLevelDistTransform5, 29
vglErodeVL5	vglHorizontalFlip2, 30
glsl2cpp_shaders.h, 14 vglErodeVL7	vglInOut_model, 30 vglInit, 30
glsl2cpp_shaders.h, 14	vgllLoadImage, 30
vglFeaturePoints	vglLoadPGM, 30
glsl2cpp_shaders.h, 14	vglMultiInput_model, 30
vglFindDisparity	vglMultiOutput_model, 31
glsl2cpp_Stereo.h, 21	vglOpenSq3, 31
vglFindDisparityDiff	vglPrintImageInfo, 31
glsl2cpp_Stereo.h, 22	vglReleaseImage, 31
vglGaussianBlurSq3	vglReplacelpl, 31
glsl2cpp_shaders.h, 15	vglSavePGM, 31
vglGetLevelDistTransform5	vglSavePPM, 31
vglImage.cpp, 29	vglThinBernard, 32
vglGray	vglThinChin, 32
glsl2cpp_shaders.h, 15	vglUpload, 32
vglGreenDiffDisparity	vglVerticalFlip2, 32
glsl2cpp_Stereo.h, 22	vgllnOut
J /	-

glsl2cpp_shaders.h, 15 glsl2cpp_shaders.h, 16 vglInOut_model vglRgbToBgr vgllmage.cpp, 30 glsl2cpp_shaders.h, 16 vallnit vglRgbToHsl vgllmage.cpp, 30 glsl2cpp_shaders.h, 17 vglJulia vglRgbToHsv glsl2cpp_shaders.h, 17 glsl2cpp_shaders.h, 15 vglRgbToXyz vglLaplaceSq3 glsl2cpp_shaders.h, 15 glsl2cpp_shaders.h, 17 vglLoadImage vglRobertsGradient glsl2cpp_shaders.h, 17 vgllmage.cpp, 30 vglLoadPGM vglSavePGM vgllmage.cpp, 30 vgllmage.cpp, 31 vglMandel vglSavePPM glsl2cpp_shaders.h, 15 vgllmage.cpp, 31 vglSelfSum22 vglMapTo3D glsl2cpp_Stereo.h, 22 glsl2cpp_shaders.h, 17 vglMeanMipmap vglSelfSum3v glsl2cpp_shaders.h, 17 glsl2cpp_Stereo.h, 23 vglMeanSq3 vglSelfSum4h glsl2cpp_Stereo.h, 23 glsl2cpp_shaders.h, 17 vglMipmap valSelfSum5h glsl2cpp_shaders.h, 17 glsl2cpp_shaders.h, 16 vglMulScalar valSelfSum5v glsl2cpp_shaders.h, 16 glsl2cpp_shaders.h, 18 vglMultiInput vglSharpenSq3 glsl2cpp_shaders.h, 18 glsl2cpp_shaders.h, 16 vglMultiInput_model vglSobelGradient vgllmage.cpp, 30 glsl2cpp_shaders.h, 18 vglMultiOutput vglSobelXSq3 glsl2cpp_shaders.h, 16 glsl2cpp_shaders.h, 18 vglMultiOutput_model vglSobelYSq3 vgllmage.cpp, 31 glsl2cpp_shaders.h, 18 vglNoise vglSum glsl2cpp_shaders.h, 18 glsl2cpp_shaders.h, 16 vglNot vglSumDiff glsl2cpp_shaders.h, 16 glsl2cpp_Stereo.h, 23 vglOpenSq3 vglSumDiffMipmap vgllmage.cpp, 31 glsl2cpp_Stereo.h, 23 vglOr vglSumWeighted glsl2cpp_shaders.h, 16 glsl2cpp_shaders.h, 18 vglPrintlmageInfo vglSwapRGB vgllmage.cpp, 31 glsl2cpp_shaders.h, 18 valRectify vglTestInOut glsl2cpp_Stereo.h, 23 glsl2cpp_shaders.h, 19 vglReleaselmage vglTestInOut2 vgllmage.cpp, 31 glsl2cpp_shaders.h, 19 vglReplacelpl vglTestMultiInput vgllmage.cpp, 31 glsl2cpp_shaders.h, 19 vglRescale vglTestMultiOutput

```
glsl2cpp_shaders.h, 19
vglTeste
    glsl2cpp_shaders.h, 18
vglThinBernard
    vgllmage.cpp, 32
vglThinBernardAux
    glsl2cpp_shaders.h, 19
vglThinChin
    vgllmage.cpp, 32
vglThinChinAux
    glsl2cpp_shaders.h, 19
vglThresh
    glsl2cpp_shaders.h, 20
vglThreshLevelSet
    glsl2cpp_shaders.h, 20
vglTrainSimpleBGModel
    glsl2cpp_BG.h, 7
vglUndistort
    glsl2cpp_Stereo.h, 23
vglUpdatePartialSimpleBGModel
    glsl2cpp_BG.h, 7
vglUpload
    vgllmage.cpp, 32
vglVerticalFlip
    glsl2cpp_shaders.h, 20
vglVerticalFlip2
    vgllmage.cpp, 32
vglWhiteRohrerEdge
    glsl2cpp_shaders.h, 20
vglXGY
    glsl2cpp_shaders.h, 20
vglZoom
    glsl2cpp_shaders.h, 20
```