Evaluation

Huang LiChuang of Wie-Biotech

Contents

1	摘要		2
2	研究	设计流程图	3
3	材料	和方法	3
4	分析	结果	9
	4.1	网络药理学和 PPI	5
	4.2	肠道菌分析	4
	4.3	代谢物分析	7
	4.4	肠道菌和代谢物整合	8
	4.5	药物和肠道菌的相互作用	Ć
		4.5.1 通过机器学习预测	Ć
		4.5.2 药物被肠道菌代谢	10
		4.5.3 分子相似性	12
	4.6	分子对接	13
5	结论		1 4
\mathbf{R}	efere	nce	1 4
\mathbf{L}	ist	of Figures	
	1	PPI network for targets	4
	2	Enrichment analysis	4
	3	Flow chart of qiime2 processing	Ę
	4	Qiime2 quality control	6
	5	Gut microbiome abundance	6
	6	Use MetaboAnalyst for analysis of metabolites	7
	7	Identify compounds with SIRIUS 4 OPTIONAL	8
	8	Correlation of metabolites with microbiota	Ć
	9	Machine learning prediction of drug towards microbiota	10
	10	Drug metabolized by microbiota	11

11	Chemical modification by microbiota	12
12	Molecule similarity	12
13	Autodock vina binding affinity	13

List of Tables

1 摘要

以下为需要评估的内容以及相应的答复:

- 1. 用网络药理学分析中药方的主要活性成分,对比文献研究现状挑选 4 个左右的活性成分作为候选药物成分
 - 可分析主要成分,结合目标疾病筛选主要活性成分。
 - 可从 HERB (http://herb.ac.cn/Download/) 获取成分信息(该数据库整合了较多的其他数据库)。
 - 目标疾病是否为糖尿病肾病? 且有代谢组数据? 如果为(中药方成分的)非靶向代谢组,则能根据非靶向代谢组数据鉴定更多的化合物用于网络药理学分析,而不是只通过数据库筛选。
 - 可进一步通过 PPI 网络和通路富集分析筛选活性成分1。
 - 可查阅文献(较为主观,可作为辅助手段)
- 2. 分析糖尿病肾病肠道差异菌群
 - 需要 16s RNA 数据,或从 GEO 公共数据库获取(https://www.ncbi.nlm.nih.gov/gds/?term=16s)。
 - 可用 qiime2 (https://qiime2.org/) 筛选肠道差异菌群^{2,3}。
- 3. 分析糖尿病肾病代谢组学差异
 - 需明确,是人的肾脏的代谢组,还是肠道菌的代谢组(因为上述有肠道菌分析,容易混淆)。
 - 可分为挖掘公共数据库(GNPS: https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) 和 客户提供代谢数据的情况。
 - 如果是客户提供,请考虑:
 - 包含对照组和模型组的数据,需要生物学重复,最好为非靶向代谢组数据(这种情况下,能 鉴定和找到最多的差异代谢物)
 - 如果是非靶向代谢组,需要数据鉴定。可分为谱图匹配性鉴定(常规方法),和预测性鉴定(例如,SIRIUS⁴)。
 - 如果是靶向代谢组,已知目标代谢物,则不需要额外的鉴定,根据分子量比对即可。
 - 需确认代谢组数据的采集是否包含 MS^2 。如果仅包含 MS^1 ,则鉴定准确度会相对偏低。如果 是靶向代谢组,仅有 MS^1 亦可。
 - 以标准的方法: PCA 聚类, OPLS-DA 聚类、VIP、P 值筛选差异代谢物。
 - 还可以结合不同 Feature selection 算法进一步筛选,例如 LASSO, EFS⁵ 等。
 - 差异代谢物可通路富集分析,结合疾病,进一步筛选。可用方法为 MetaboAnalyst (https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml)⁶。
 - 根据上述情况不同,工作量会大不相同。可做大量分析,也可仅做少量分析。
- 4. 分析差异菌群与差异代谢物的相关性(桑基图)
 - 16s RNA 和代谢组的多组学分析7。
 - 对差异菌群和差异代谢物关联性分析,桑基图、热图均可(热图可能更直观,见 Fig. 8)。
- 5. 结合药物成分筛选目标菌群和相关代谢物

- 首先需要获取药物成分的靶点。可通过 Binding DB 获取 https://www.bindingdb.org/rwd/bind/index.jsp。
- 通过(人的)代谢物的通路富集结果(步骤3)得到相应蛋白,可对药物靶点取交集。
- 通过机器预测药物和肠道菌互作^{8,9}。目前似乎存在一系列方法,需要探索找到合适的方法。
- 若上述方法简便容易,以下或许可以不用考虑:
 - 关于药物-肠道菌互作¹⁰,药物作用于菌,得到代谢物(细菌的代谢物,而非人)。
 - 想要从药物中筛选,需要细菌的代谢物信息(这一步骤可能存在一定苦难,需要结合实际筛 选的细菌考虑)。
 - 上述, 肠道菌代谢物的获取是关键步骤之一, 可以从 gutMGene (http://bio-annotation.cn/gutmgene/home.dhtml) 获取。
 - 通过计算药物和肠道菌代谢物的分子相似性,推测是否存在药物-菌作用关系¹¹(具有不确定性)
- 6. 代谢小分子靶点蛋白分析(这个看能不能用分子对接的方式获取)
 - 只要上述(步骤 5)的药物和靶点都具备,即可以分子对接方式分析。
- 7. 广泛的靶点蛋白与糖尿病肾病差异基因取交集,筛选候选基因
 - 结合疾病的公共数据库筛选进一步筛选,例如 genecards https://www.genecards.org/。
 - 需要明确,这里还能进一步通过分析其他 GEO 数据筛选差异基因,再结合筛选。是否需要?

总体上,工作量较大,视情况可能需要 1-3 周。

- 2 研究设计流程图
- 3 材料和方法
- 4 分析结果

以下内容为仅为示例。

4.1 网络药理学和 PPI

Figure 1为图 PPI network for targets 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-56-42.png)

Figure 1: PPI network for targets

Figure 2为图 enrichment analysis 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 13-03-48.png)

Figure 2: Enrichment analysis

4.2 肠道菌分析

Figure 3为图 flow chart of qiime2 processing 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-26-30.png)

Figure 3: Flow chart of qiime2 processing

Figure 4为图 qiime2 quality control 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-36-35.png)

Figure 4: Qiime2 quality control

Figure 5为图 gut microbiome abundance 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-40-38.png)

Figure 5: Gut microbiome abundance

代谢物分析 4.3

Figure 6为图 use MetaboAnalyst for analysis of metabolites 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-32-20.png)

Figure 6: Use MetaboAnalyst for analysis of metabolites

Figure 7为图 identify compounds with SIRIUS 4 OPTIONAL 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-28-15.png)

Figure 7: Identify compounds with SIRIUS 4 OPTIONAL

4.4 肠道菌和代谢物整合

Figure 8为图 correlation of metabolites with microbiota 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 11-24-36.png)

Figure 8: Correlation of metabolites with microbiota

4.5 药物和肠道菌的相互作用

4.5.1 通过机器学习预测

来自于综述文章,需要找到合适的方法。

Figure 9为图 machine learning prediction of drug towards microbiota 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 13-38-39.png)

Figure 9: Machine learning prediction of drug towards microbiota

4.5.2 药物被肠道菌代谢

Figure 10为图 drug metabolized by microbiota 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 13-13-48.png)

Graphical Abstract

Figure 10: Drug metabolized by microbiota

Figure 11为图 chemical modification by microbiota 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 13-16-48.png)

Figure 11: Chemical modification by microbiota

4.5.3 分子相似性

Figure 12为图 molecule similarity 概览。

(对应文件为 ~/Pictures/Screenshots/Screenshot from 2023-08-24 12-52-35.png)

Figure 12: Molecule similarity

4.6 分子对接

Figure 13为图 autodock vina binding affinity 概览。

(对应文件为 ../2023_06_30_eval/figs/Docking_Affinity.pdf)

Figure 13: Autodock vina binding affinity

5 结论

Reference

- 1. Murtaza, N. et al. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Reports 41, (2022).
- 2. Rai, S. N. et al. Microbiome data analysis with applications to pre-clinical studies using qiime2: Statistical considerations. Genes \& Diseases 8, (2021).
- 3. Wang, X. et al. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. *Microbiome* 7, (2019).
- 4. Dührkop, K. et al. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods 16, 299–302 (2019).
- 5. Neumann, U., Genze, N. & Heider, D. EFS: An ensemble feature selection tool implemented as r-package and web-application. *BioData Mining* **10**, 21 (2017).
- 6. Pang, Z., Chong, J., Li, S. & Xia, J. MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. *Metabolites* (2020) doi:10.3390/metabo10050186.
- 7. Zhang, T. *et al.* Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin a metabolism in the guttestis axis. *Gut* **71**, (2021).
- 8. McCoubrey, L. E., Gaisford, S., Orlu, M. & Basit, A. W. Predicting drug-microbiome interactions with machine learning. *Biotechnology Advances* **54**, (2022).
- 9. McCoubrey, L. E., Elbadawi, M., Orlu, M., Gaisford, S. & Basit, A. W. Machine learning uncovers adverse drug effects on intestinal bacteria. *Pharmaceutics* 13, (2021).
- 10. Javdan, B. *et al.* Personalized mapping of drug metabolism by the human gut microbiome. *Cell* **181**, (2020).
- 11. Gandini, E. et al. Molecular similarity perception based on machine-learning models. *International Journal of Molecular Sciences* 23, (2022).