

Minicourse

Machine Learning Fundamentals in Python - Platform & First Model

Speaker:

Prof. Ivanovitch Silva (ivan@imd.ufrn.br)

Modern open source analytics platform powered by Python

ANACONDA NAVIGATOR

What is a Jupyter Notebook?

Mix of code and rich elements (text, figures, links, equations, etc)

Aside from JUlia, PYThon and R (JUPYTER) notebook technology also supports many other languages. https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Setup a data science environment on Cloud

https://www.datacamp.com/community/tutorials/google-cloud-data-science

https://www.datacamp.com/community/tutorials/deep-learning-jupyter-aws

Seaborn

EVOLUTION

Line plot

Area plot

Stacked plot area

Parrallel Streamchart plot

MAPS

Map

ChloropletconnectiorBubble map map map

FLOW

Network Sankey Chord diagram chart diagram

https://python-graph-gallery.com/

Other

3D

Animation Cheat sheet

Data Art

Color

Bad chart

DISTRIBUTION

DENSITY BOXPLOTHISTOGRAM

CORRELATION

Scatterplo Connected Bubble

Scatter plot plot

Heatmap

2D Correlogram density plot

RANKING

Barplot Boxplot

parallel plot

Lollipop WordcloudSpider plot

PART OF A WHOLE

Stacked barplot

Tree plot

Venn diagram

Doughnut Pie plot plot

Tree diagram

Problem definition

One challenge that hosts looking to rent their living space face is determining the optimal nightly rent price

- host_response_rate: the response rate of the host
- host_acceptance_rate: number of requests to the host that convert to rentals
- host_listings_count: number of other listings the host has
- latitude: latitude dimension of the geographic coordinates
- longitude: longitude part of the coordinates
- city: the city the living space resides
- zipcode: the zip code the living space resides
- state: the state the living space resides
- accommodates: the number of guests the rental can accommodate
- room_type: the type of living space (Private room, Shared room or Entire home/apt
- bedrooms: number of bedrooms included in the rental
- bathrooms: number of bathrooms included in the rental
- beds: number of beds included in the rental
- price: nightly price for the rental
- cleaning_fee: additional fee used for cleaning the living space after the guest leaves
- security_deposit: refundable security deposit, in case of damages
- minimum_nights: minimum number of nights a guest can stay for the rental
- maximum_nightss: maximum number of nights a guest can stay for the rental
- number_of_reviews: number of reviews that previous guests have left

K-Nearest Neighbors

our unpriced listing

price

bedrooms

Rank each listing by the similarity metric and select the first **k** listings.

dataset (ordered by similarity) similarity bedrooms price 160 0 60 0 95 0 50 0 2 350 3

Calculate the mean list price for the **k** similar listings and use as our list price.

Euclidean distance

$$d = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

$$0$$

$$26$$

$$4$$

$$1$$

$$1$$

$$6$$

$$3$$

$$3$$

$$(q_1 - p_1) + (q_2 - p_2) + \dots + (q_n - p_n)$$

$$(q_1 - p_1)^2 + (q_2 - p_2) + \dots + (q_n - p_n)$$

$$(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2$$

$$(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2$$

$$(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2$$

$$\sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

$$\sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}$$

$$\frac{\text{Squared differences}}{\text{differences}}$$

$$\frac{\text{Euclidean distance}}{\text{distance}}$$

$$\frac{\text{Euclidean distance}}{\text{equiv}}$$

$$\frac{\text{Euclidean distance}}{\text{equiv}}$$

$$\frac{\text{equiv}}{\text{equiv}}$$

$$\frac{\text{equiv}}{\text{equ$$

Euclidean distance - example

accommodates

our listing

8

Univariate case

$$d = \sqrt{(q_1 - p_1)^2}$$
 dc_listings 0 4 (4-8)² $d = |q_1 - p_1|$ 2 1 (1-8)² $d = |q_1 - p_1|$ 2 2 (2-8)²

Randomizing and sorting

```
dc listings[dc listings["distance"] == 0]["accommodates"]
26
       3
34
36
40
44
                                    CAUTION
45
48
65
66
71
       3
75
       3
                                  BIAS HAZARD
86
```


Cleaning & preparing data

```
# Brought along the changes we made to the `dc_listings` Dataframe.
dc_listings = pd.read_csv('dc_airbnb.csv')
stripped_commas = dc_listings['price'].str.replace(',', '')
stripped_dollars = stripped_commas.str.replace('\$', '')
dc_listings['price'] = stripped_dollars.astype('float')
dc_listings = dc_listings.loc[np.random.permutation(len(dc_listings))]
```


Function to make predictions

```
def predict_price(new_listing):
    temp_df = dc_listings
    temp_df['distance'] = temp_df['accommodates'].apply(lambda x: np.abs(x - new_listing))
    temp_df = temp_df.sort_values('distance')
    nearest_neighbors = temp_df.iloc[0:5]['price']
    predicted_price = nearest_neighbors.mean()
    return(predicted_price)
```


