Theorem 8: Orthogonal Decomposition: Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + 2$

where \hat{g} is in W and Z is in W^{\perp} . In fact, if $\{u_1, ..., u_{p}\}$ is any extragonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_2 \cdot u_1} u_1 + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

and $z = y - \hat{y}$

Theorem 9: Best Approximition Theorem

Let W be a subspace of IR^n , let y be any rector in IR^n , and \hat{y} be the anomal projects y and W. Then, \hat{y} is the closest point in W to y, in the sense that $||y-\hat{y}|| \leq ||y-y||$ for all V in W dution from \hat{y}

We call \hat{y} the best approximation of y bused an element in W. The dimension of a subspace and its orthogonal complement equals the dimension of the entire space, so $W+W^{\dagger}=IR^{N}$, where W is a subspace of IR^{N}