

Choose the correct answer:

(1) If (a+5, 3) = (8, b-1) then $\sqrt{a^2 + b^2} = \dots$

a 7

b 3

G 9

d 5

(2) If $(X^5, Y+1) = (32, \sqrt[3]{27})$, then X - Y = ...

a 0

b 4

G 2

d 5

(3) If $n(X^2) = 9$, then n(X) =

a 3

b ±3

G 9

(1) ±9

(4) If n(Y) = 3 and $n(X \times Y) = 12$, then $n(X^2) = ...$

a 4

b 16

G 9

d 2

(5) If $n(X^2) = 9$ and $n(X \times Y) = 6$, then $n(Y^2) = ...$

a 3

b 2

G 4

d 8

(6) If $X = \{2\}$ and $Y = \{3\}$, then $X \times Y =$

a 6

(b) {6}

G (2,3)

(2,3)

(7) If $X = \{5\}$, then $n(X^2) = ...$

a 1

(b) 25

G 10

d 5

(8) If $X = \{1,2\}$ and $Y = \{3,4\}$, then $(3,4) \in \dots$

a x×y

b y×x

G X²

y²

(9) If n(X) = 2 and $Y = \{1,2\}$, then $n(X \times Y) = \dots$

a 4

b 3

G 5

6

- a $n(A \times B)$
- \bullet A×B
- \bigcirc n(B×A)
- \bigcirc B×A

(11) If $X = \{3,4\}$, then $n(X \times \emptyset) = \dots$

- **a** 0
- **b** 1
- **G** 2
- **(1)** Ø

(12) If n(X) = k-2, n(Y) = k+2 and $n(X \times Y) = 5$, then k =

- **a** 3
- **b** -3
- **G** ±3
- 0

(13) If $\{2\} \times \{x,y\} = \{(2,4), (2,3)\}$, then $x-y = \dots$

- **a** 1
- **b** -1
- **G** ±1
- **(1)** 0

(14) If the point $(a,5) \in Y$ -axis, then $a = \dots$

- **a** 0
- **b** 5
- **G** -5
- **d** 25

(15) If the point $(5,b-7) \in X$ -axis, then $b = \dots$

- **a** 2
- **b** 5
- **G** 7
- **(1)**

(16) If b < 3, then the point (5,b-3) lies in the quadrant.

- a first
- **b** second
- G third
- **d** fourth

(17) If (a,b) lies in the third quadrant, then a b zero

- **a** =
- **(**) <
- **G** >
- **6** ≤

(18) If $(|x|,4) = (3,y^2)$ and (x,y) lies in 2^{nd} quadrant, then x+y=...

- **a** 7
- **b** 1
- G -1
- **d** -7

(19) If (x-2,x-4) lies in 4^{th} quadrant, then $x = \dots$

- **a** 0
- **b** 2
- **G** 3
- **d** 4

(20) If (k^2-4,k) lies on the negative direction of Y-axis, then k=....

- **a** 2
- **b** ±2
- **G** -2
- **(1)** 0

- (21) If $X \times Y = \{(1,2), (1,3), (1,4)\}$, then $n(X^2) = \dots$
 - **a** 0
- **b** 1
- **G** {(1,1)}
- **0** 9
- (22) $\{3\} \times [0,2]$ is represented by the figure

- (23) If $R = \{(1,3), (2,5), (4,3)\}$ represent a function, then its domain =
 - **a** {1,2,4}
- **(3,5,4)**
- G Z
- **(1)** N

- **a** {a}
- **(**a,b)
- (0) {a,b,c}
- **(b,c)**
- (25) The set of images of each element of the domain of the function is called the
 - a domain
- **b** codomain
 - **©** range
- d rule
- (26) If the function $f: X \rightarrow Y$, then the range \subset
 - a xxy
- **(b)** X
- G Y
- d y×x
- (27) The function $f(x) = x^5 3x^4 + 1$ is of degree.
 - (a) 4th
- **b** 9th
- **G** 5th
- **d** 2nd
- (28) The function $f(x) = x(x-x^2)$ is a polynomial of degree.
 - **a** 1st
- **b** 2nd
- G 3rd
- **d** 4th
- (29) The function $f(x) = x^2 (x^2 3x)$ is a polynomial of degree.
 - (a) 1st
- **b** 2nd
- G 3rd
- **6** 4th

موقع مذكرات جأهزة للطباعا

- (a) 1st
- **b** 2nd
- G 3rd
- **d** 4th

(31) If $f(x) = x^2-1$, then $f(1) = \dots$

- **a** 0
- **b** 2
- **G** -2
- **d** 1

(32) If $f(x) = x^2 - \sqrt{2}x$, then $f(\sqrt{2}) = \dots$

- a 4
- **b** 2
- **G** 6
- **(1)** 0

(33) If f(x) = kx + 8 and f(2) = 0, then $k = \dots$

- **a** 8
- **6**
- **G** 4
- **d** -4

- **a** {2,3}
- **(1,-1)**
- **(**0,1,2)
- **(1)** {2,1}

(35) If $(a,a) \in f$ where f(x) = 2x + 3, then a = ...

- **a** 3
- **b** -3
- **G** 0
- **d** 1

(36) If $X = \{1,2,3\} \rightarrow f(x) = x^2 - 1$, then $f(4) = \dots$

- **a** 15
- **b** 17
- **G** 3
- d undefined

(37) If the curve that represents the function $f(x) = x^2 + c$ passes through the point (0,2), then c =

- **a** 3
- **b** 2
- **G** -3
- **d** 1

(38) The vertex of the curve that represents the function $f(x) = 2x^2 - 4x + 5$ is

- **a** (1,3)
- **b** (3,1)
- **G** (-1,3)
- (3,-1)

(39) If f(x) = 5, then $f(-3) = \dots$

- **a** 5
- **b** -5
- **G** -3
- **d** -15

موقع مذكرات جاهزة للطباعة

- (40) If f(x) = 2, then $f(3) f(1) = \dots$
 - **a** 0
- **(b)** f (2)
- **G** 2
- **d** 10
- (41) If f(x) = 4, then $f(4) \div f(10) = \dots$
 - **a** 4
- $\frac{2}{5}$
- **G** 1
- **d** 10

- (42) If f(2x) = 4, then $f(-x) = \dots$
 - **a** -2
- **b** -4
- **G** 4
- **d** 2
- (43) f(x) = 3x is represented by a straight line passes through the point
 - **a** (3,3)
- **(3,0)**
- **(**0,0)
- (0,3)
- (44) If the straight line that represents the function f(x) = 2x-a passes through the origin, then $a = \dots$
 - **a** -3
- **b** 2
- **G** 0
- **(1)** 3
- (45) If $(a,4) \in f$ where f(x) = 2x + b, then $6a + 3b = \dots$
 - **a** 12
- **b** 9
- **G** 6
- **d** 3
- (46) If $f(x) = x^2$ and $x \in [-2,2]$, then $f(x) \in \dots$
 - **a** [0,4]
- **(b)**]0,4[
- **(**0,1]
- (-4,4]
- (47) If (x,7) is located on Y-axis, then $5x + 1 = \dots$
 - **a** 0
- **b** 1
- **G** 5
- **(1)** 6
- (48) If (a,3) lies on the straight line that represents f(x) = 2x-5, then a =
 - **a** 1
- **(b)** 2
- **G** -2
- **d** 4
- (49) If f(x) = 3x + b and f(4) = 13, then $b = \dots$
 - **a** 1
- **b** 2
- G
- **d** 3

موقع مذكرات جأهزة للطباعة

- (50) If f(x) = x - 6 and $\frac{1}{3}f(a) = -2$, then $a = \dots$

- (51) The ordered pair (x,y) where x > 0 and y < 0 is located in the quadrant.
 - (a) 1st
- 2nd

- (52) If 2x = 7y, then $\left(\frac{x}{y}\right)^{-1} = \dots$
 - $\frac{2}{7}$
- $\frac{7}{2}$ $\frac{49}{4}$
- (53) If a,b,2,3 are proportional, then $\frac{b}{a}$ =

- **d** 2
- (54) If a,1,b,2 are proportional, then $\frac{a}{b}$ =
- $\frac{1}{2}$

- (55) If $4x^2 = 9y^2$, then $\frac{x}{y} = \dots$
 - $\frac{9}{4}$
- **b** $\frac{3}{2}$ **c** $\pm \frac{2}{3}$
- $\frac{3}{2}$

- (56) If $\frac{a+2b}{a-b} = \frac{2}{3}$, then $\frac{b}{a} = \dots$
- **b** 8

- (57) If 5a 4b = 0, then $\frac{a}{b} = \dots$

(58) If
$$\frac{5a-7b}{8a+11} = 0$$
, then $\frac{b}{a} = \dots$

- **b** $\frac{7}{5}$ **c** $\frac{-8}{7}$

(59) If
$$\frac{4}{x} = \frac{7}{y} = \frac{b}{y - x}$$
, then b =

- **b** -3
- **G** 11
- \mathbf{c} -11

(60) If
$$\frac{a}{3} = \frac{b}{8} = \frac{a + \frac{1}{2}b}{x}$$
, then $x = \dots$

- **b** 11

(61) If
$$\frac{a}{b} = \frac{c}{d} = m$$
 where $m \neq 0$, then $\frac{a \times c}{b \times d} = \dots$

- a 2m²
- \mathbf{b} \mathbf{m}^2
- C m
- **d** 2m

(62) If
$$\frac{a}{5} = \frac{b}{7}$$
, then $7a - 5b + 3 = \dots$

- **G** 5
- **d** 2

(63) If
$$\frac{x}{5} = \frac{y}{4} = \frac{x+2y}{k}$$
, then k =

- **(b)** 14
- **G** 13
- **6** 8

(64) If
$$\frac{a}{4} = \frac{b}{5}$$
 and $2a + 3b = 46$, then $a = \dots$

- **a** 2
- **(b)**
- **(1)** 8

(65) If
$$\frac{a}{b} = \frac{2}{3}$$
 and $\frac{a}{c} = \frac{4}{5}$, then b : c =

- **b** 5:6
- **G** 6:5

- a \sqrt{ab}
- $-\sqrt{ab}$
- \bullet $\pm \sqrt{ab}$

موقع مذكرات عاهزة للطباء

- (67)The third proportional of 9 and -12 is
 - **a** -16
- **G** 16
- 108
- (68)If 6 is the middle proportional between m and 2, then m =
 - **a** 8
- 12
- 18
- **d** 36

- (69) If $\frac{a}{b} = \frac{b}{c} = \frac{c}{5} = 2$, then $a = \dots$
 - 6 5×2^2
- 10
- \bigcirc 2×5³

- (70) If $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = 2$, then $\frac{a}{d} = \dots$

- 16
- **(71)** If a,2,4,b are in a continued proportional, then a + b =

- **(72)** The middle proportional between (x-2) and (x+2) is
- **b** $\sqrt{x^2-4}$ **c** x^2-4

- (73)The number that must be added to the numbers 1,3,6 to be in a continued proportional is
 - **a** 1
- 2
- \mathbf{G} 3
- **6** 4
- **(74)** If $7, x, \frac{1}{v}$ are in a continued proportional, then $x^2y = \dots$
- 14
- **G** 49
- (75) If y is the middle proportional between x and z, then $\frac{x}{z} = \dots$
- **b** $\frac{y^2}{z^2}$ **c** $\frac{z^2}{v^2}$

- (76) If $y = \frac{m}{x^2}$ where m is a constant $\neq 0$, then y α

موقع مذكرات جاهزة للطباع

If x - 2y = 0, then $x \alpha$ **(77)**

- $\Theta \frac{1}{\nu}$
- $0 \frac{1}{v^2}$

(78)The relation that represents a direct variation between x and y is

- (a) x y = 5 (b) y = x + 2 (c) $\frac{x}{3} = \frac{4}{y}$ (d) $\frac{x}{5} = \frac{y}{2}$

If y varies inversely as x and $x = \sqrt{3}$ when $y = \frac{2}{\sqrt{3}}$, then the (79) proportion constant =

- $\frac{2}{3}$
- **6**

(80) If \times y⁵ = constant, then \times varies inversely as

- \bigcirc y^2

(81) If $y \alpha \frac{1}{\sqrt{x}}$, then x varies

a directly as y²

- b inversely as y²
- \bigcirc inversely as \sqrt{y}

d inversely as y

(82)If y = 3x - 6, then $y \alpha$

- **a** ×
- $\frac{1}{2}$
- **G** x-2
- 0 3x 6

(83) If $\frac{y+3}{v} = \frac{x+2}{x}$, $x \neq 0$, $y \neq 0$, then $y \alpha$

- $\frac{1}{\nu}$
- **©** x+2
- $\mathbf{0}$ x+5

(84) If $y - x = \frac{2}{v} - \frac{2}{x}$, $x \neq y$, then

- (a) $y \alpha x + 1$ (b) $y \alpha x$ (c) $y \alpha \frac{1}{y^2}$

موقع مذكرات عاهزة للطباء

- (85) If 9,2x, $\frac{1}{y^2}$ are proportional, then x y =
 - $\frac{3}{2}$
- $\frac{-3}{2}$

- (86) If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = m$, then $\frac{ace}{bdf} = \dots$
 - (a) 3m
- \mathbf{b} \mathbf{m}^2
- \mathbf{G} \mathbf{m}^3
- **(1)** m
- (87) If $y \propto x$ and y = 2 as x = 4, then y =x
 - **a** 4
- **b** 3
- **G** 2
- $0 \frac{1}{2}$
- (88) The mean of the values 7,3,6,9,5 is
 - **a** 3
- **6**
- **G** 4
- **(1)** 12
- (89) The range of the values 23,22,15,18,17 is
 - **a** 8
- **(b)** 18
- **G** 19
- **d** 23
- (90) If 67 is the greatest value and the range is 27, then the smallest value is
 - **a** 67
- **(b)** 40
- **G** 27
- **(1)** 94
- (91) The most common value of set of individuals is called
 - a median
- (b) range
- **©** mode
- d mean
- (92) If the mean of the values 3k-3, 3k-1, 2k+1, 2k+3, 2k+5 is 13, then k =
 - **a** -5
- **b** 10
- **G** 5
- (93) If the range of values 2,7,a,6 is 8 where a > 0, then a =
 - **a** 4
- **b** 9
- **G** -1
- **d** 10
- (94) If $(x \overline{x})^2 = 28$ for the set 7 values, then $\sigma = \dots$
 - **a** 28
- **b** 7
- **G** 4
- **d** 2

موقع مذكرات جأهزة للطباع

- If the function $f(x) = (k-3)x^3 + 2x^m + 1$ is of 2^{nd} degree, (95)then k+m=
 - **a** 5
- **(b)** 3
- -5
- (96)The difference between the greatest value and the smallest value is called
 - a median
- **6** mean
- range
- (d) mode
- (97)If the standard deviation for the values 5, x+2 and 2y+1 is zero, then $x + y = \dots$
 - **a** 10
- 5
- 15
- **d**
- (98)The standard deviation for the values 7, 7, 7 is
 - **a** 49
- 3
- **(1) (2)**
- (99) If all individuals are equal, then
 - \mathbf{a} $\mathbf{X} = \mathbf{0}$
- 6 $\overline{X} = 0$
- $\sigma=0$
- mode=0
- (100) Which of the following arrow diagrams does not represent a function

(101) The graph of the function f where $f(x) = x^2 - 2x + 1$ is the graph number

- If the curve of the function f where $f(x) = x^2 a$ passes (102)through the point (1,0), then $a = \dots$
 - a ± 1
- \mathbf{G} 1
- Zero

موقع مذكرات جأهزة للطباعا

- (103) If $f(x) = x^{k+3} + 2k$ is a quadratic function, then $f(2) = \dots$

- -2
- (104) The graph which represents the direct variation is number

Essay problems:

- If $X = \{1,5,6\}$ and $Y = \{5\}$ and $Z = \{2,3\}$, Find: (1)
 - (a) $n(X \times Z)$.
 - (b) $(Y \cap X) \times (X Y)$.
- (2) If $X \times Y = \{(2,3), (2,6), (2,7)\}$, Find:
 - (a) X and Y.
 - (b) Y².
 - (c) $n(X^2)$.
- If $X = \{2,3\}$, $Y = \{3,4\}$ and $Z = \{4,5\}$, Find: (3)
 - (a) $Z \times (X \cap Y)$
 - (b) $(Z Y) \times X$
- If $(x+3, 8) = (5, 2^{y})$, then find the value of x and y. **(4)**
- If (x-2, 9) = (5, x+y), find the value of $\sqrt{3x+2y}$. **(5)**
- If $(x^2, |x|) = (4,3)$ and (x,y) located in the 3^{rd} quadrant, then (6) find x+y.
- If $X=\{1,3,5\}$ and $Y=\{1,2,4,5,6\}$ and R is a relation from X to **(7)** Y where aRb means a+b=7 for $a \in X$ and $b \in Y$. Write R, represent it by the arrow diagram, show that R is a function and write its range.

- (8) If $X=\{1,3,5\}$ and R is a function on X where $R=\{(a,3), (b,1), (1,5)\}$. Find the value of a+b.
- (9) If $f(x)=2x^2-5x+2$, prove that $f(2)=f(\frac{1}{2})$
- (10) If f is a function on X where $X=\{3,4,5,6\}$ and f (3)=3, f (4)=5, f (5)=5, f (6)=5. represent f by an arrow diagram, write f and find its range.
- (11) If the straight line which represents the function f(x)=ax+b intersects X-axis at (3,0) and Y-axis at (0,-3), find the value of a and b.
- (12) If $(2a,5a) \in f$ where f(x)=2x+5, find the value of a and identify the intersection points of the straight line with the coordinates axes.
- (13) If $f(x)=(3-a)x^2+(b+5)x+4$ is a constant function. Find the value of a+b.
- (14) If the vertex of the curve of the function $f(x)=x^2-ax+3$ is (2,k). Find the value of a and k.
- (15) Represent graphically the function $f(x)=4-x^2$, where $x \in [-3,3]$ and from the graph identify:
 - (a) The vertex.
 - (b) The equation of the axis of symmetry.
 - (c) The maximum or minimum value.
- (16) Represent graphically the function $f(x)=x^2+2x+1$, where $x \in [-4,2]$ and from the graph identify:
 - (a) The vertex.
 - (b) The equation of the axis of symmetry.
 - (c) The maximum or minimum value.
- (17) If $\frac{x-2y}{x+3y} = \frac{1}{3}$, find the value $\frac{y}{x}$.

(18) If
$$\frac{x}{y} = \frac{2}{3}$$
, find the value of $\frac{3x + 2y}{6y - x}$.

- (19) Find the number that if added to the two terms of the ratio 7:11 it becomes 2:3
- (20) Find the number must be added to each of the numbers 3,5,8 and 12 to be proportional.
- (21) Find the number if subtract its triple from the two terms of the ratio 49:69 it becomes 2:3.
- (22) Find the number if we added its square to the two terms of the ratio 7:11 it becomes 4:5
- (23) If $\frac{a+b}{b} = \frac{c+d}{d}$, prove that a, b, c and d are proportional.
- (24) If $\frac{a}{b-a} = \frac{c}{d-c}$, prove that a, b, c and d are proportional.
- (25) If a, b, c and d are proportional, prove that:

(a)
$$\frac{3a+c}{5a-2c} = \frac{3b+d}{5b-2d}$$

(b)
$$\frac{a^2+b^2}{ab+cd}=\frac{a}{b}$$

(c)
$$\frac{ac}{bd} = \left(\frac{a-c}{b-d}\right)^2$$
.

- (26) If $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$, prove that $\frac{2y-z}{3x-2y+z} = \frac{1}{2}$.
- (27) If $\frac{a}{2} = \frac{b}{3} = \frac{c}{4} = \frac{2a b + 5c}{3x}$, find the value of x.
- (28) If $\frac{x}{a-b+c} = \frac{y}{b-c+a} = \frac{z}{c-a+b}$, prove that $\frac{x+y}{a} = \frac{y+z}{b}$.

(29) If
$$\frac{x}{2a+b} = \frac{y}{2b-c} = \frac{z}{2c-a}$$
, prove that
$$\frac{2x+y}{4a+4b-c} = \frac{2x+2y+z}{3a+6b}$$
.

(30) If
$$\frac{a+b}{4} = \frac{b+c}{5} = \frac{c+a}{7}$$
, prove that $\frac{a+b+c}{8} = \frac{a}{3}$.

- (31) If a, 3, 9, b are in a continued proportion, find the value of a and b.
- (32) If $\frac{a^2+b^2}{b^2}=\frac{b^2+c^2}{c^2}$, prove that b is a middle proportion between a and c where ac is a positive quantity.
- (33) If b is a middle proportion between a and c, prove that:

(a)
$$\frac{a}{c} = \frac{b^2}{c^2}$$
.

(b)
$$\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}$$
.

- (34) If Y varies directly as X and Y=20 as X=7, Find the relation between X and Y, then find the value of X as Y=4.
- (35) If Y α X and Y=14 as X=42, Find:
 - (a) The relation between Y and X.
 - (b) The value of Y as X=60.
- (36) If $Y \alpha \frac{1}{x}$ and Y=3 as X=2, Find:
 - (a) The relation between Y and X.
 - (b) The value of Y as X=1.5
- (37) If $\frac{a+2b}{6} = \frac{b+3c}{3}$, prove that a α b.
- (38) If $x^2y^2 6xy + 9 = 0$, prove that $y \alpha \frac{1}{x}$.

- (39) If $4x^2 + 9y^2 = 12xy$, prove that y αx .
- (40) From the opposite table:

(a)	Determine	the	type	of	variation.
-----	-----------	-----	------	----	------------

- (b) Find the constant of variation.
- (c) Find the value of y as x=3

X	2	4	6
У	6	3	2

- (41) If y=z+5, $z \alpha \frac{1}{x}$ and y=6 as x=2. Find the relation between x and y, then find the value of y as x=1
- (42) Calculate the mean and the standard deviation of the following values:
 - (a) 15, 6, 8, 12, 4.
 - (b) 5, 6, 7, 8, 9.
- (43) Calculate the standard deviation of the following frequency distributions:

(-)	Values	0	1	2	თ	4	5
(a)	Frequency	9	15	17	25	20	14

(L)	Sets	0-	2-	4-	6-	8-
(0)	Frequency	1	5	9	თ	2

Drawn problems:

(1) The opposite figure represents the curve of the function f where $f(x) = x^2 + k$. Find:

- (a) The value of k.
- (b) The coordinates of B and C.
- (c) the area of triangle with vertices A,B,C

(2) The \overrightarrow{AO} represents a linear function f where f(x) = nx+k and the area of the \triangle ABO is 4 square units. Find the value of n and k.

(3) The opposite figure represents the curve of the quadratic function f where $f(x) = 4-kx^2$, if the area of \triangle ABC is 8 square units, Find:

- (a) The value of k.
- (b) The coordinates of B.
- (c) The maximum or minimum value.
- (d) The equation of the axis of symmetry.
- **(4)** The opposite figure represents the curve of the function f where $f(x) = x^2 - m$, Find:

- (a) The value of m.
- (b) The area of \triangle ABC.

Choose the correct answer:

(1)	The straight line whose slope $m_1=2$ intersects a straight line in
	one point, then the slope $m_2 \neq \dots$

a 2

- **b** -2
- $\bigcirc \frac{1}{2}$
- $\frac{-1}{2}$
- (2) The are of triangle that bounded by the straight lines: x = 0, y = 0 and 3x-4y=12 is square unit
 - **a** 4

- **6**
- **G** 12
- **(1)**
- (3) ABCD is a square in which A(1,0) and B(5,-3), then the perimeter of the square is length unit
 - **a** 5

- **(b)** 10
- **G** 20
- **d** 15
- (4) If C(2,-1) is the midpoint of \overline{AB} , A(2,3), then the coordinates of B is
 - **a** (1,2)
- **(2,1)**
- (2,-5)
- (-5,2)
- (5) The distance between (0,0) and (3,-4) is length unit.
 - **a** 1

- **b** 5
- **G** -1
- **d** 7
- (6) The equation of the straight line passes through (3,5) and parallel to X-axis is
 - a y=3
- **b** X=3
- **G** Y=5
- \bigcirc X=5
- (7) \overline{AB} is a diameter in the circle M, A(-2,3) and B(6,-5), then the coordinates of M is
 - **a** (4,4)
- **(-2,1)**
- **G** (2,-1)
- (-1,2)

- $\frac{-4}{3}$
- $\frac{-3}{4}$

(9) The distance between the point (3,-4) and the X-axis equals length unit.

- **a** -3
- **b** 4
- **G** -4
- **d** 3

(10) The straight line whose slope equals to the additive identity is parallel to the straight line whose equation is

- a y=x
- **b** Y=1
- \mathbf{C} X=1
- Y=-X

(11) If the X-axis bisect \overline{AB} where A(4,2) and B(-2,y), then y=.....

a 3

- **b** 2
- **G** -2
- **d** 4

(12) Two perpendicular straight lines, the slope of the first is $\frac{-1}{4}$ and the slope of the second is 4k, then k =

a 4

- **6** 1
- **G** -4

(13) If the two straight lines: x+y=5 and kx+2y=0 are parallel, then $k = \dots$

- **a** -2
- **b** -1
- **G** 1
- **d** 2

(14) If the straight line whose equation bx+a=cy and passing through the origin, then = 0

- a b×c
- **(b)**
- G b
- **d** a

(15) The straight line whose equation y=x passing through

- **a** (-1,0)
- **(**0,0)
- **G** (1,0)
- (0,-1)

(16) The slope of the straight line whose equation cx+ay=b is

- $\frac{-a}{b}$
- $\frac{-a}{c}$
- $\frac{-c}{a}$

- (17) If $\frac{5}{4}$ and $\frac{k}{2}$ are two slopes of two perpendicular straight lines, then k =

- (18) A circle, its center is the origin point, and its radius length is 3 length units, then the point belongs to the circle.
 - **a** (1,3)
- **(b)** $(-2, \sqrt{5})$ **(c)** (3,1)
- (2.1)
- (19) The perpendicular distance between y=3 and y=-2 is
 - **a** 1

- **(** 2
- 3
- 5
- (20) If \overrightarrow{AB} // \overrightarrow{CD} and the slope of \overrightarrow{AB} =-2, then the slope of CD is
 - **a** -2

- d undefined
- (21) The equation of the straight line L is

- \mathbf{a} X=1
- **G Y=X**
- \mathbf{O} $\mathbf{Y} = -\mathbf{X}$
- (22) ABCD is a parallelogram, then slope of \overrightarrow{AB} = the slope of
 - a AD
- (h) AC
- G BC
- (I) CD
- (23) The length of the intercepted part of Y-axis by the straight line 3y=4x-12 equals length unit.
 - a 3

- 12 **d**
- The circumference of a circle whose center (0,0) and passing (24) through the point (3,4) is length unit.
 - 0 5π
- **(b)** 10π
- Θ 4 π
- **0** 6π

- (25) The slope of the straight line which makes an angle of measure θ with the positive direction of X-axis is
 - a $\sin \theta$
- Θ tan θ
- d $\sin \theta + \theta$
- (26) \overline{AB} is a diameter in a circle where A(-1,5) and B(3,1), then the coordinates of the center is
 - **a** (2,6)
- **(1,3)**
- \mathbf{G} (4, -4)
- (-4,4)
- (27) The slope of the straight line that parallel to the Y-axis (perpendicular to X-axis) is
 - **a** 0
- **b** 1
- **G** -1
- **1** undefined

(28) In the opposite figure: ABCD is a rectangle. AD = length unit.

a 9

- **b** 12
- **G** 13
- **(1)**
- (29) If (0,a) belongs to the straight line 3x-4y+12=0, then a =
 - **a** -3
- **(b)** 4
- **G** 3
- **d** -4
- (30) The equation of the straight whose slope is 1 and passing through the origin is
 - \mathbf{a} X=1
- **b** Y=1
- G Y=X
- Y=-X
- (31) The slope of the straight line which makes an angle of measure 45° with the positive direction of X-axis is
 - **a** 1

- **b** -1
- **G** 0
- **d** 2
- (32) If \overrightarrow{AB} is parallel to x-axis where A(8,3) and B(2,k), then k=...
 - **a** 8
- **b** 0
- **G** 3
- **(1)** 2
- (33) If $\overrightarrow{AB} \perp \overrightarrow{CD}$, A(-1,2) and B(0,0), then the slope of \overrightarrow{CD} is
 - **a** -2
- G 2
- **d** 2

(34) If the distance between (a,0) and (0,1) is 1 length unit, then a

- **a** -1

- **a** ±1

(35) If the slope of the straight line ax-y+5=0 is 3, then a = ...

- 5
- \bullet -5
- 3

(36) The straight line passing through (-1,-1) and (4,4) makes an angle with positive direction of X-axis of measure°

- **a** 30
- 45
- 60
- **(1)** 135

(37) The slope of the straight line $2y = \frac{1}{2}(3 - 5x)$ is

- $\frac{-5}{2}$
- $\frac{-5}{4}$ $\frac{3}{4}$

(38) The straight line 3x+4y=9 is perpendicular to the straight line whose slope is

 $\frac{4}{3}$

- **b** $\frac{3}{4}$ **c** $\frac{-4}{3}$
- $\frac{-3}{4}$

(39) ABCD is a square and A(2,-5), B(-1,-1), then its perimeter is length unit.

a 5

- 20
- 28

If the slopes of two straight lines are equal, then the two straight lines are

perpendicular

parallel

© intersecting

skew

(41) The length of the Y intercept by the straight line 2x-3y=6equals length unit.

- **a** -6
- (G)
- 2

موقع مذكرات جاهزة للطباعة

- (42) The equation of Y-axis is
 - a X=0
- **b** Y=0
- G Y=X
- XY=1
- (43) The points (-3,0), (0,3) and (3,0) are vertices of triangle whose type
 - a scalene

b isosceles

G obtuse-angled

- d isosceles and right-angled
- (44) If the slope of a straight line is greater than 0, then the angle with the positive direction of X-axis is
 - a obtuse
- **(b)** acute
- **G** right
- d straight
- (45) If the slope of the straight line y+ax+b=0 is -3 and passing through (1,4), then a+b=....
 - **a** 4
- **b** 7
- **G** -4
- **d** -7
- (46) If the slope of the straight line passing through the two points (k,2k+1) and (k-2,4k-1) is 3, then $k = \dots$
 - **a** 2

- **b** -2
- **G** 3
- **d** -3
- (47) If the straight line y=(a-1)x + 5 is parallel to the straight line that passing the two points (1,2) and (3,8), then $a = \dots$
 - **a** 3

- **b** 4
- **G** -4
- **d** 7

(48) In the opposite figure: 3 OA = 4 OB, then the equation of \overrightarrow{AB} is

(a) $y = \frac{-3}{4}x + 3$

b $y = \frac{-3}{4}x - 3$

(1) $y = \frac{-4}{3}x - 3$

- (49) If the straight line $x \sqrt{3}y = 2$ makes an angle with the positive direction of x-axis of measure $(2k+20)^{\circ}$, then $k = \dots$
 - **a** 30
- **(b)** 20
- 10
- **d** 5
- (50) If $\sin \theta = \cos 2\theta$ where θ is an acute angle, then $\theta =^{\circ}$
 - **a** 45
- 30
- **G** 60

- $\frac{\sin \theta}{\cos \theta} = \dots$

- tan θ
- \bullet sin θ
- d cos θ
- (52) ABC is an isosceles triangle and $tan(\frac{A}{2}) = 1$, then tan B =

- (53) $\tan \theta \times \cos \theta = \dots$
 - a $\cos \theta$
- \bullet sin θ

- (54) ABC is a right-angled triangle at B and $AB = \frac{1}{2}AC$, then $\cos A = \dots$
- **b** $\frac{\sqrt{3}}{2}$ **c** $\frac{1}{\sqrt{2}}$
- $\frac{1}{\sqrt{3}}$
- (55) ABC is a triangle where $m(\angle B) = m(\angle A) + m(\angle C)$, then $\tan \frac{B}{2} = \dots$
 - **a** 45
- **6** 1

- (56) 4 cos 30 tan 60 =

- **b** $2\sqrt{3}$
- 12
- (57) If $\cos 2\theta = \frac{1}{2}$ where θ is an acute angle, then $\theta = \dots^{\circ}$
 - 15
- 30
- 60

- (58) If $\tan \frac{3x}{2} = 1$ where x is an acute angle, then $m(\angle x) = \dots$

- 60
- (59) If $\cos \frac{x}{2} = \frac{\sqrt{3}}{2}$ where x is an acute angle, then $\sin x =$
- **b** $\frac{\sqrt{3}}{2}$ **c** $\frac{2}{\sqrt{3}}$

Essay problems:

- If $2 \sin x = \sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ}$, find the value (1) of x.
- ABC is a right angled triangle at B and $2AB = \sqrt{3}AC$, find the (2) trigonometrical ratios of $(\angle B)$.
- If the ratio between two supplementary angles is 3:5, find (3) the measure of each of them.
- If $\sin (2x+20) = \cos (x+50)$, find the value of x. (4)
- ABC is a right-angled triangle at C, AB=13 cm, BC=12cm. **(5)** Prove that: $\sin A \cos B + \cos A \sin B = 1$
- Find the equation of a straight line whose slope is 2 and **(6)** intercepts the positive direction of Y-axis a part of length 7 units.
- Find the equation of a straight line whose slope $\frac{-1}{2}$ and **(7)** passing through the point (3,5).
- Find the equation of a straight line which passes through the (8) points (2,3) and (-3,2).

- (9) Find the equation of a straight line which passes through the point (3,-5) and parallel to the straight line x+2y-7=0
- (10) Find the equation of a straight line which passes through the point (1,2) and perpendicular to the straight line which passes through the points (3,2) and (5,-4).
- (11) Find the equation of a straight line whose slope equals the slope of the straight line $\frac{y-1}{x} = \frac{1}{3}$ and intercepts the negative direction of Y-axis a part of length 3 units.
- (12) Find the equation of a straight line which intercepts the two axes two positive parts of length 4 and 9 respectively.
- (13) ABCD is a square in which A(5,4) and C(-1,6). Find the equation of \overrightarrow{BD} .
- (14) ABCD is a rhombus in which A(1,3) and C(6,0). Find the equation of \overrightarrow{BD} .
- (15) Find the equation of the straight line which passes through A(2,3) and B(-1,3) then prove that $C \in \overrightarrow{AB}$ where C(2k+1,4k+1).
- (16) ABC is a triangle where A(1,3), B(5,-2), C(3,4), D is the midpoint of \overline{AB} , \overline{DE} // \overline{BC} intersects \overline{AD} in E. Find: (a) the length of \overline{DE} . (b) the equation of \overline{DE}
- (17) The opposite table represents a linear relation:

x	1	2	3
f(x)	1	3	a

- (a) Find the equation of the straight line.
- (b) Find the length of y intercept.
- (c) Find the value of a.
- (18) If A(-3,4), B(5,-1) and C(3,5). Find the equation of the straight line which passes through A and the mid point of \overline{BC} .

- (19) Find the equation of the straight line which passes through the point (3,5) and intercepts a part of the positive direction of X-axis of length 4 units.
- (20) Find the equation of line of symmetry of \overline{XY} where X(3,-2) and Y(-5,6).
- (21) If the distance between (a,5) and (6,1) is $2\sqrt{5}$, find the value of a.
- (22) If A(x,3), B(3,2), C(5,1) and AB=BC, find the value of x.
- (23) If C(x,-3) is the midpoint of AB where A(-3,y) and B(9,-7), find the value of x and y.
- (24) Prove that A(4,3), B(1,1) and C(-5,-3) are collinear.
- (25) If (1,1), (3,5) and (5,a) are collinear, find the value of a.
- (26) Prove that the triangle whose vertices are A(5,-5), B(-1,7) and C(15,15) is right-angled at B, then find its area.
- (27) Determine the type of \triangle ABC according to the length of its sides where A(-2,4), B(3,1) and C(4,5).
- (28) If A(5,3), B(6,-2), C(1,-1) and D(0,4). Prove that ABCD is a rhombus and find its area.
- (29) ABCD is a parallelogram in which A(3,4), B(2,-1), C(-4,-3). Find the coordinates of D.
- (30) If A(3,-2), B(-5,0), C(8,-9) and D(0,7) prove that <u>ABDC</u> is a parallelogram.

Drawn Problems:

(1)	
(-)	From the opposite figure, Find:
	From the opposite figure, Find: (a) the coordinates of A and B
	(b) The area of \triangle AOB.

In the opposite figure, if \overrightarrow{AB} intercepts
In the opposite figure, if \overrightarrow{AB} intercepts Y-axis in the positive direction a part of 3
units and AB = 5 units.

(3) The equation of \overrightarrow{AB} is CX+Y+D=0, find the value of C and D.

(4) The equation of \overrightarrow{OC} is Y=X, find the coordinates of C.

Find: the equation of AB

(5) In the opposite figure, if $tan(\angle ABO) = \frac{4}{3}$,

Find:

- (a) $m(\angle BAO)$
- (b) the coordinates of B

(d) The equation passes through O and perpendicular to \overrightarrow{AB}

- (6) In the opposite figure, ABO is an equilateral triangle, D is the midpoint of AB, Find:
 - (a) The slope of \overrightarrow{AB} .
 - (b) The equation of \overrightarrow{OD} .
 - (c) If $(5\sqrt{3}, k) \in \overrightarrow{OD}$, find the value of k.

(7)	ABCD is	a rectangle,	find length o	of \overline{AD} .
------------	---------	--------------	---------------	----------------------

(8) Find the length of each AD and OB

(9) Find:

- (b) The equation of \overrightarrow{AB} .
- (c) tan (∠ABO)

(10) From the opposite figure, Find:

- (a) The length of \overline{AB} .
- (b) The coordinates of D.
- (c) $m(\angle ABO)$.
- (d) The slope of the perpendicular to \overrightarrow{AB} .
- (e) The equation of the straight which parallel to \overrightarrow{AB} and passes through the origin.

(f) sin A cos B + cos A sin B

(11) If $L_1//L_2$, the equation of L_1 is $y=\frac{2}{3}x+2$ and AB=5 units. Find the equation of L_2 .

(12) In the opposite figure :

$$\overline{AD} \perp \overline{BC}$$
, AC = 17 cm.,

$$DC = 15 \text{ cm.}$$
, $AB = 10 \text{ cm.}$

Find the value of:

 $3 \tan (\angle C) + \sin (\angle B)$

ABC is a triangle in which: $m (\angle A) = 90^{\circ}$

, AC = 15 cm. and AB = 20 cm.

(14) In the opposite figure :

XYZ is a triangle, $m (\angle Y) = 90^{\circ}$

XY = 5 cm., XZ = 13 cm.

Find: $\sin X \cos Z + \cos X \sin Z$

THIRD: ACCUMULATIVE SKILLS

		J. MUUUMU	MIII II	
(1)	The sum of 1	measure of accu	mulative angles	at point =°
	a 90	b 180	© 270	d 360
(2)	The sum of 1	measures of inte	erior angles of t	he pentagon =°
	a 180	(b) 360	6 540	d 720
(3)	The number	of diagonals of	the hexagon = .	
	a 6	(b) 3	G 12	0 9
(4)	ABC is a tric	angle in which <i>m</i>	$(\angle B) = 3m(\angle A) = 9$	0° , then $m(\angle C) =^{\circ}$
	a 30	6 45	6 60	d 90
(5)	ABCD is a po	arallelogram m(∠	$(A): m(\angle B) = 1:$	3, then $m(\angle B) =^{\circ}$
	a 45	(b) 135	G 120	d 115
(6)	If 3,7,L are	lengths of side	s of triangle, th	nen L may =
	a 3	6 4	6 7	(1)
(7)		osceles triangle, ne third side ma	•	two sides 3cm and
	a 3	b 7	G 4	1 0
(8)		angle in which Al		
	a 1	b 3	© 0	0 2
(9)	The number	of axes of symr	netry of a circle	e is
	a 0	b 1	G 4	d infinite

- (10) ABC is a triangle in which $m(\angle B) > m(\angle C)$, then
 - a AC-AC<0
- \bullet AC-AB \leq 0 \bullet BC \leq AB
- (I) AC>AB
- The base angles of the isosceles triangle are (11)
 - a congruent

b supplementary

G equal

- d complementary
- (12)The angle of measure supplements an angle of measure 120°.
 - **a** 120
- 240
- **G** 60
- **d** 30
- (13) The quadrilateral whose diagonals perpendicular and equal en length is called
 - a square
- (h) rhombus
- **G** circle
- d rectangle
- (14)The volume of a cuboid whose dimensions $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$ is cm³
 - (a) $2\sqrt{6}$
- **(** 3√6
- **6** $2\sqrt{3}$
- **d** 6
- (15)The measure of exterior angle of an equilateral triangle is ...°
 - **a** 60
- **b** 80
- **C** 100
- **d** 120

- IF $AB \equiv \overline{CD}$, then $AB CD = \dots$ (16)
 - **a** 0
- **(** 1
- \mathbf{G} -1
- **d** 2
- The image of the point (-3,7) by reflection in Y-axis is (17)
 - **a** (3,7)
- **(b)** (-3,-7)
- \mathbf{G} (3, -7)
- (-3,7)
- From the opposite figure, the area of the (18)shaded part is cm²

- \mathbf{a} 4π
- **(b) 16π**
- \odot 2 π
- \odot 9 π

موقع مذكرات جاهزة للطباعة

- \mathbf{a} 2π
- **(b)** 5π
- \mathbf{G} π +4
- **1** $4\pi + 4$

(20)In \triangle ABC, if $m(\angle C) = m(\angle A) + m(\angle B)$, then ABC is

- a cute-angled triangle
- © right-angled triangle
- **(b)** isosceles triangle
- d obtuse-angled triangle

In any triangle ABC, AB + BC - AC > (21)

- **a** 0
- C AC
- d otherwise

(22)The sum of lengths of any two sides in a triangle is the length of the third side.

- a more than b less than
- c equal to
- d twice

(23)The type of the angle of measure 108° is

- a right
- **b** obtuse
- **G** acute
- d reflex

(24)If ABCD is a parallelogram, then AB + CD =

- **a** 2AC
- (b) 2BC
- C 2BD
- **(1)** 2CD

(25)If ABCD is a parallelogram and $m(\angle A) + m(\angle C) = 150^{\circ}$, then $m(\angle B) = \dots^{\circ}$

- **a** 75
- 30
- 105
- 100

(26)Two equal complementary angles, the measure of each of them is°

- **a** 50
- 60
- 45
- 30

(27)The length of side opposite to the angle of measure 30° in the right angled triangle equals the length of the hypotenuse.

- **a** 2

موقع مذكرات جأهزة للطباعة

			rep. 1 st term 20	
(28)	In the \triangle ABC	C, if AB > AC, 1	then $m(\angle B)$ n	n(∠C).
	a >	(b)	c =	d =
(29)	The concurre	ence point of me	dians of triangle	divides each
	median in the	2 ratio: :	from the vertex	₹.
	a 1:1	b 2:3	G 1:2	d 2:1
(30)	The circumfe	rence of a circl	e whose its dian	neter length 14 cm
	is cm			
	a 7	b 22	G 44	d 14
(31)	The image of	(-4,5) by a tro	anslation (2,-3)	is
	a (-2,-2)	(2,-2)	G (2,2)	(-2,2)
(32)	ABC is a righ	nt-angled triang	le at B, AB = 3a	cm, $BC = 4cm$,
	then the are	a of triangle = .	cm²	
	a 9	b 6	G 12	d 7
(33)	If the perim	eter of a square	e is 16 cm, then	its area = cm ²
	a 64	b 16	G 8	d 4
(34)	The sum of r	neasure of two	supplementary a	ngles =°
	a 360	b 270	© 180	d 90
(35)	Which of the	e following are s	ides of a right-	angled triangle?
	a 3,4,6	b 5,12,13	6 ,8,9	d 9,5,14
(36)	The isosceles	s trapezium has	axes of s	ymmetry
	a 1	b 2	© 0	d 3
(27)	The about	(acatamala) baa		
(37)		•	axes of s	
	a 0	6 1	G 2	d 3
(38)	The square h	as axes o	of symmetry	
	a 1	b 2	G 3	d 4
w.Cryp2Day.com	Mohamed Ala	zmazy 34	Mahm	oud Moheb

Choose the correct answer:

1.	D	2.	A	3.	A	4.	В
5.	C	6.	D	7.	A	8.	D
9.	A	10.	В	11.	A	12.	A
13.	C	14.	A	15.	C	16.	D
17.	C	18.	C	19.	C	20.	C
21.	В	22.	D	23.	A	24.	A
25.	C	26.	C	27.	C	28.	C
29.	A	30.	A	31.	A	32.	D
33.	D	34.	D	35.	В	36.	D
37.	В	38.	A	39.	A	40.	A
41.	C	42.	C	43.	C	44.	C
45.	A	46.	A	47.	В	48.	D
49.	A	50.	В	51.	D	52.	A
53.	A	54.	A	55.	D	56.	C
57.	A	58.	A	59.	A	60.	A
61.	В	62.	A	63.	C	64.	D
65.	C	66.	C	67.	C	68.	C
69.	В	70.	C	71.	C	72.	D
73.	C	74.	A	75.	В	76.	D
77.	A	78.	D	79.	C	80.	В
81.	В	82.	C	83.	A	84.	C
85.	C	86.	C	87.	D	88.	В
89.	A	90.	В	91.	C	92.	C
93.	D	94.	D	95.	C	96.	C
97.	В	98.	D	99.	C	100.	C
101.	D	102.	C	103.	C	104.	A

Choose the correct answer:

1.	A	2.	В	3.	C	4.	C
5.	В	6.	C	7.	C	8.	В
9.	В	10.	В	11.	C	12.	В
13.	D	14.	D	15.	В	16.	D
17.	D	18.	В	19.	D	20.	A
21.	C	22.	D	23.	C	24.	В
25.	C	26.	В	27.	D	28.	A
29.	C	30.	C	31.	A	32.	C
33.	В	34.	В	35.	D	36.	В
37.	В	38.	A	39.	В	40.	В
41.	D	42.	A	43.	D	44.	В
45.	C	46.	В	47.	В	48.	В
49.	D	50.	В	51.	В	52.	A
53.	В	54.	A	55.	В	56.	C
57.	В	58.	В	59.	В		

THIRD: ACCUMULATIVE SKILLS

1.	D	2.	C	3.	D	4.	C
5.	В	6.	C	7.	В	8.	В
9.	D	10.	D	11.	A	12.	C
13.	A	14.	D	15.	D	16.	A
17.	A	18.	A	19.	C	20.	C
21.	A	22.	A	23.	В	24.	D
25.	C	26.	C	27.	В	28.	В
29.	D	30.	C	31.	D	32.	B
33.	В	34.	C	35.	В	36.	A
37.	C	38.	D				