Regression result April 15

Xiaolan

Preparation

The true share for provinces in 2021 are

share_true %>% data.frame() %>% "colnames<-"(unique(regdat\$region)) %>%
 "rownames<-"(unique(regdat\$crop)) %>% pander::pander()

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	48.09	71.14	62.93	43.31
${f rice}$	1.77	13.53	12.03	25.67
soybean	10.22	4.08	2.4	25.81
wheat	5.06	0.07	0.06	0.45

The **expected profit** of crop i in province j and year t is defined as

$$E\pi_{ijt} = \tilde{y}_{ijt}(\tilde{p}_{it} - c_{ijt}) + \tilde{d}_{ijt}$$

where:

- \tilde{p}_{it} : future price (yuan per kilogram) averaged in March for November delivery in year t
- c_{ijt} : the realized cost (yuan per kilogram) of crop i in province j and year t
- \tilde{y}_{ijt} : the yield (kilogram per mu) of crop i in province j averaged in the past three years, $\{t-3, t-2, t-1\}$.
- \tilde{d}_{ijt} : the expected subsidy (yuan per mu) of crop i in province j weighted for the past two years, with $\tilde{d}_{ijt} = 0.67 * d_{ij,t-1} + 0.33 * d_{ij,t-2}$

The **realized profit** of crop i in province j and year t is defined as

$$\pi_{ijt} = y_{ijt}(p_{ijt} - c_{ijt}) + d_{ijt}$$

where p_{ijt} is the realized price (yuan per kilogram) for crop i in province j and year t.

Thus, the expected revenue of crop i in province j and year t is

$$Er_{ijt} = \tilde{y}_{ijt}\tilde{p}_{it} + \tilde{d}_{ijt} = E\pi_{ijt} + \tilde{y}_{ijt}c_{ijt}$$

We define the relative revenue of crop i to a baseline crop wheat as:

$$rr_{ijt} = r_{ijt}/r_{4jt}$$

OLS regression

Suppose s_{ijt} is the share of cropland area for crop i in province j and year t. Let $s_{0jt} = 1 - \sum_{i=1}^{4} s_{ijt}$. We define $z_{ijt} = \log(s_{ijt}/s_{0jt})$ as the dependent variable.

Model 1: Use expected profit as explanatory variable

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{4} E\pi_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

where

- u_i : fixed effect for province j.
- ϵ_{ijt} : random error, assumed i.i.d. with normal distribution

Model 2: Use expected revenue

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{4} Er_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

Model 3: Use expected relative revenue

$$z_{ijt} = \beta_{i0} + \sum_{k=1}^{3} Err_{kjt}\beta_{ik} + u_j + \epsilon_{ijt}$$

Some figures:

(1) Expected profit against acreage share for corn:

```
ggplot(aes(x = pfex_corn, y = share), data = regdat %>% filter(crop == "corn")) + geom_point() +
  geom_smooth(method = "lm") +
  facet_wrap(~region, nrow = 2, scales = "free_y")+
  labs(x = "expected profit for corn", y = "acreage share")
```

'geom_smooth()' using formula 'y ~ x'

(2) Expected revenue against acreage share:

```
ggplot(aes(x = revex_corn, y = share), data = regdat %>% filter(crop == "corn")) + geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~region, nrow = 2, scales = "free_y")+
labs(x = "expected revenue for corn", y = "acreage share")
```

'geom_smooth()' using formula 'y ~ x'

(3) Logriathm of expected revenue against acreage share:

```
ggplot(aes(x = revex_corn, y = log(share)), data = regdat %>% filter(crop == "corn")) + geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~region, nrow = 2, scales = "free_y")+
labs(x = "Logriathm of expected revenue", y = "acreage share")
```

'geom_smooth()' using formula 'y ~ x'

Model 1 Regression

```
##
                                Corn
                                          Rice
                                                  Sovbean
                                                             Wheat
##
                                          (2)
                                                    (3)
                                                             (4)
                                (1)
                                        -0.001
                              -0.0005
                                                  -0.001
                                                             0.001
## pfex_corn
                                        (0.0004) (0.0004) (0.001)
##
                              (0.0004)
##
                              -0.001*** -0.001***
                                                  0.00002
                                                            0.001***
## pfex rice
                                                  (0.0001) (0.0002)
                              (0.0001) (0.0001)
##
##
                              0.0003
                                        0.0003
                                                  0.001**
## pfex_soy
                                                            0.001
                              (0.0004)
                                        (0.0005)
                                                  (0.001)
                                                            (0.001)
##
                              0.0004
                                        0.001*
                                                  0.001
                                                            -0.0002
## pfex_wheat
                              (0.0005)
                                        (0.001)
##
                                                  (0.001)
                                                            (0.001)
##
## regionNeimenggu
                              0.493*** -2.937*** -1.312*** -2.418***
##
                              (0.134) (0.142) (0.154)
                                                          (0.244)
##
## regionJilin
                              1.816***
                                        0.019
                                                 -1.230*** -5.911***
##
                               (0.108)
                                        (0.115)
                                                (0.124)
                                                           (0.197)
##
## regionLiaoning
                              1.306***
                                       -0.157 -2.078*** -5.432***
                              (0.105)
                                                 (0.121)
                                                          (0.192)
##
                                        (0.112)
##
                            1.699*** 0.996*** 0.857*** -2.624***
## regionHeilongjiang
##
                              (0.111) (0.118)
                                                 (0.128) (0.202)
##
                                         80
                                                   80
## Observations
                                80
                                                              80
                               0.901 0.966 0.938
## R2
                                                             0.978
## Adjusted R2
                               0.890
                                        0.963
                                                 0.931
                                                             0.975
## Residual Std. Error (df = 72) 0.340
                                                0.390
                                        0.361
                                                             0.619
## F Statistic (df = 8; 72) 82.015*** 258.523*** 136.528*** 399.086***
## =========
## Note:
                                            *p<0.1; **p<0.05; ***p<0.01
##
## Model 1 Results
## =
## 3
## -
```

```
data = regdat %>% filter(crop == "wheat"))
stargazer(lm_corn_rev, lm_rice_rev, lm_soy_rev, lm_wheat_rev, title = "Model 2 Results", column.labels =
```

Model 2 Regression

#summary(lm_rice_rev)

		;	у	
	Corn (1)	Rice (2)	Soybean (3)	Wheat (4)
revex_corn	0.001 (0.0004)	0.0004 (0.0004)	-0.0003 (0.0005)	-0.000 (0.001
revex_rice	0.001***	0.001** (0.0004)	0.001**	-0.000 (0.001
revex_soy	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)	-0.00 (0.001
revex_wheat	0.001** (0.0005)		-0.0003 (0.001)	0.000 (0.001
regionNeimenggu			-2.896*** (0.929)	
regionJilin		-3.347*** (0.832)		-3.663 (1.511
regionLiaoning		-3.948*** (0.885)		-3.197 (1.606
regionHeilongjiang		-2.184*** (0.783)	-0.644 (0.856)	-0.56 (1.420
Observations R2 Adjusted R2 Residual Std. Error (df = 72)		80 0.967 0.964 0.355	80 0.939 0.932 0.388	80 0.976 0.974 0.644
F Statistic (df = 8; 72) ====================================	91.522***		138.425*** ========= 1; **p<0.05;	
Model 2 Results = 3 -				

```
#summary(lm_soy_rev)
#summary(lm_wheat_rev)
```

Model 3 Regression

## ## ##	Model 3 Results				
##				у	
##		Corn	Rice	Soybean	Wheat
##		(1)	(2)	(3)	(4)
##	rr_corn	0.368	0 324	-0.311	-0 820
##	11_60111			(0.321)	
##		(0.1200)	(0.1=0.1)	(****==,	(****
##	rr_rice	-0.350***	-0.254***	0.017	0.269***
##		(0.040)	(0.040)	(0.044)	(0.070)
##					
	rr_soy		0.138		
##		(0.439)	(0.437)	(0.476)	(0.762)
	regionNeimenggu	-0.012	-3.341***	-1.422***	-1.443***
##				(0.294)	
##					
##	regionJilin		-0.112		-4.934***
##		(0.392)	(0.390)	(0.425)	(0.680)
##		0.000	0.400	0.007	4 000
##	regionLiaoning	0.830***		-2.227*** (0.305)	
##		(0.201)	(0.279)	(0.305)	(0.407)
	regionHeilongjiang	1.371***	0.901***	0.767**	-1.761***
##	0	(0.335)		(0.364)	
##					
##					
	Observations	80	80	80	80
##	R2	0.883	0.965	0.935	0.976

```
## Adjusted R2
                            0.872
                                    0.962
                                              0.928
                                                       0.974
## Residual Std. Error (df = 73) 0.367
                                    0.365
                                              0.398
                                                       0.636
## F Statistic (df = 7; 73)
                          78.822*** 288.269*** 149.405*** 430.786***
## Note:
                                       *p<0.1; **p<0.05; ***p<0.01
##
## Model 3 Results
## =
## 3
## -
#summary(lm_corn_rr)
#summary(lm_rice_rr)
#summary(lm_soy_rr)
#summary(lm_wheat_rr)
```

Prediction Results True Result in 2021

```
share_true %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
    "rownames<-"(unique(regdat$crop)) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	48.09	71.14	62.93	43.31
\mathbf{rice}	1.77	13.53	12.03	25.67
soybean	10.22	4.08	2.4	25.81
wheat	5.06	0.07	0.06	0.45

Model 1 Prediction

```
share_est_pf %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
   "rownames<-"(unique(regdat$crop)) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	43.26	68.81	62.04	43.66
${f rice}$	1.45	12.37	15.22	22.58
soybean	9.66	4.85	3.25	23.33
wheat	7.64	0.06	0.15	1

Model 2 Prediction

```
share_est_rev %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
   "rownames<-"(unique(regdat$crop)) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	56.49	73.76	67.52	46.33
\mathbf{rice}	1.72	13.1	14.74	24.68

	Neimenggu	Jilin	Liaoning	Heilongjiang
soybean wheat	7.43 2.49	$3.7 \\ 0.02$	2.61 0.05	$21.48 \\ 0.37$

Model 3 Prediction

```
share_est_rr %>% data.frame() %>% "colnames<-"(unique(regdat$region)) %>%
   "rownames<-"(unique(regdat$crop)) %>% pander::pander()
```

	Neimenggu	Jilin	Liaoning	Heilongjiang
corn	48.71	71.74	60.2	45.64
\mathbf{rice}	1.57	12.84	14.4	23.63
soybean	9.09	3.98	3.21	22.23
$\mathbf{w}\mathbf{h}\mathbf{e}\mathbf{a}\mathbf{t}$	3.73	0.03	0.13	0.56

```
MSE1 <- rowMeans((share_true - share_est_pf)^2)
MSE2 <- rowMeans((share_true - share_est_rev)^2)
MSE3 <- rowMeans((share_true - share_est_rr)^2)

cbind(MSE1, MSE2, MSE3) %>% "colnames<-"(paste0("Model", 1:3)) %>%
    "rownames<-"(unique(regdat$crop)) %>% pander::pander()
```

MSE Results

	Model1	Model2	Model3
corn	7.418	26.9	3.407
\mathbf{rice}	5.293	2.128	2.574
$\mathbf{soybean}$	1.945	6.68	3.69
wheat	1.742	1.653	0.4469