TP TS 4

Filtrage analogique d'un signal périodique

L'objectif de ce TP est de réaliser un analyseur de spectre analogique, à base d'un ALI. On réalise un filtre passe-bande qui, en modifiant sa fréquence propre, peut détecter les différentes composantes de la décompositions en séries de FOURIER du signal.

FIGURE 1 – Circuit réalisé durant ce TP

On réalise le circuit décrit dans la figure 1. D'après l'énoncé, la fonction de transfert $\underline{H}(j\omega)$ de ce circuit est :

$$\underline{H}(\mathrm{j}\omega) \triangleq \frac{v_\mathrm{s}}{v_\mathrm{e}} = \frac{H_0}{1 + \mathrm{j}Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}.$$

Ainsi, la pulsation ω_0 du circuit est donnée par l'expression suivante

$$\omega_0 = \frac{1}{C} \sqrt{\frac{R_1 + R_2}{R_1 R_2 R_3}},$$

et le facteur de qualité Q est donné par

$$Q = \frac{1}{2} \sqrt{R_3 \, \frac{R_1 + R_2}{R_1 \, R_2}}.$$

FIGURE 2 – Spectre du signal carré et gain du circuit (non à l'échelle)

On en déduit l'expression de la largeur de la bande passante $\Delta\omega$ (comme montré dans la figure 2) :

$$\Delta\omega = \frac{\omega_0}{Q} = \frac{2}{C\,R_3}.$$

Comme les valeurs de R_3 et C sont constantes (on ne fait varier que R_2), la largeur de la bande passante reste constante.

On vérifie qu'avec les valeurs des composants, le cahier des charges du filtre, donné dans l'énoncé, est respecté. On a $R_1=470\,\mathrm{k}\Omega,\,R_2\in[10\,\Omega,10\,\mathrm{k}\Omega],\,R_3=1,0\,\mathrm{M}\Omega,\,C=10\,\mathrm{nF}.$ On en déduit les valeurs de ω_0 minimales et maximales prisent pour différentes valeurs de R_2 . On a donc

$$\omega_{0,\text{max}} \cong 2.2 \times 10^4 \, \text{rad/s}$$

et

$$\omega_{0,\mathrm{min}} \cong 7.2 \times 10^2 \,\mathrm{rad/s}$$

d'où

$$f_{0,\text{max}} = 3.6 \text{ kHz}$$
 et $f_{0,\text{min}} = 1.1 \times 10^2 \text{ Hz}.$

Également, on en déduit la valeur de $\Delta\omega$ du circuit :

$$\Delta\omega \cong 2.0 \times 10^2 \text{ rad/s}, \quad \text{d'où}, \quad \Delta f \cong 32 \text{ Hz}.$$

Avec ces spécifications, le circuit respecte donc le cahier des charges : on peut isoler des fréquences allant de $100~{\rm Hz}$ à $2~{\rm kHz}$ avec une précision d'au moins $100~{\rm Hz}$.

On réalise le circuit de la figure 1 et on règle le signal d'entrée sur un signal créneau de fréquence 200 Hz et d'amplitude 2 V. Pour identifier les différentes composantes harmoniques du signal créneau, on mesure à l'oscilloscope le signal $v_{\rm s}$, et, en balayant les différentes valeurs de R_2 , on repère quand le signal observé est sinusoïdal.

Également, on note les amplitudes des signaux observés, afin d'en déduire les amplitudes C_n des harmoniques du signal.

Les résultats de cette identifications sont montrés dans la table 1. On représente également quelques acquisitions dans les figures 3, 4 et 5 (à la fin du document).

Dans la table 1, le terme A_n est l'amplitude mesurée v_s pendant l'identification de la nième harmonique. Mais, d'après l'énoncé, le gain en ω_0 est

$$|H_0| = \frac{R_3}{2R_1} \stackrel{\text{(AN)}}{=} 1,06$$

or, comme la valeur de ω_0 correspond approximativement à celle de ω_n , la pulsation de la *n*ième harmonique, on en déduit que

$$\forall n, \qquad A_n = H_0 \times C_n.$$

n	f_n	A_n	$n \times A_n$
1	$200\mathrm{Hz}$	2,7 V	2,7 V
3	$600\mathrm{Hz}$	$0.85 { m V}$	$2,5~\mathrm{V}$
5	$1000~\mathrm{Hz}$	$0,\!35~{ m V}$	1,8 V

Table 1 – Résultats de l'identification

On remarque que, pour chaque harmonique n, $n \times A_n = n \times A_n \times H_0$ est constant. Or, H_0 est constant. On en déduit que les amplitudes C_n des harmoniques du signal suivent une décroissance en $\frac{1}{n}$. Mais, dès la cinquième harmonique (donc dès 1000 Hz), nous arrivons aux limites du filtre.

On détermine également les amplitudes C_n à l'aide de la fonction FFT de l'oscilloscope et des curseurs, comme représenté sur la figure 6. On compare ces nouvelles valeurs avec celles trouvées précédemment. On montre ces valeurs dans la table 2.

n	FFT	FILTRE
1	2,5 V	2,5 V
3	0,81 V	$0,80 { m V}$
5	$0,49 { m V}$	$0.35 { m V}$
7	$0.33 { m V}$	
9	$0,\!25{ m V}$	

TABLE 2 – Comparaison des résultats pour les valeurs de C_n du circuit avec ceux de la fonction FFT de l'oscilloscope

On remarque que, pour la FFT, il y a plus de valeurs. En effet, l'oscilloscope peut analyser des fréquences plus élevées que le circuit, et donc plus d'harmoniques. On peut aisément re-vérifier la décroissance en $\frac{1}{n}$ des amplitudes C_n avec ces nouvelles valeurs plus précises, qui apparaît plus clairement qu'avec les valeurs du filtre. Ce résultat est montré dans la table 3.

n	f_n	A_n	$n \times A_n$
1	200 Hz	1,67 V	1,67 V
3	$600 \mathrm{Hz}$	$543 \mathrm{mV}$	$1,\!63~{ m V}$
5	$1000\mathrm{Hz}$	$327\mathrm{mV}$	$1,\!64{ m V}$
7	$1400\mathrm{Hz}$	$226\mathrm{mV}$	$1,\!58{ m V}$
9	$1600\mathrm{Hz}$	$165\mathrm{mV}$	$1,\!49~{ m V}$

Table 3 – Décroissance en $\frac{1}{n}$ à l'aide des mesures de la FFT de l'oscilloscope

FIGURE 3 – Acquisition du signal avec un $R_2 = 6.4 \text{ k}\Omega$

FIGURE 4 – Acquisition du signal avec un $R_2 = 3.8 \text{ k}\Omega$

FIGURE 5 – Acquisition du signal avec un $R_2 = 250 \Omega$

FIGURE 6 – FFT du signal $v_{\rm s}$

 \ddot{i}