SEQUENTIAL LOGIC CIRCUITS

INSTRUCTORS: NAME :N.A.S.HARSHIMA

MS. G.H.T.RANEESHA REGISTRATION NO:EN109012

MS. M.D.C.D.PEIRIS INDEX NO :22/ENG/108

MS. P.M.D.G.PIYARATHNE GROUP :04

PRACTICAL DATE: 22/11/2024

SUBMISSION DATE:06/12/2024

PRELIMINARY WORK

1.In combinational logic circuits output depends only on the input but in the sequential logic circuits output depends on the current inputs and past states.

- 2. The reason is not using set = reset =0, Q and the \bar{Q} (output and opposite value of the output) both are getting 1. It can't be happened. In latch Q and the \bar{Q} should not be equal $(Q \neq \bar{Q})$. Here this basic requirement violates.
- 3. NOR and NAND gates have different logics even though they use for getting S-R latch

Table01: Characteristic table for NOR gate S-R latch

S	R	Q	Q
0	0	Men	nory
0	1	0	
1	0	1	0
i	1	Unde	fined

Table02: Characteristic table for NAND gate S-R latch

S	R	Q	Q
0	0	Inva	alid
0	1	1	0
1	0	0	1
1	1	Men	nory

According to the above two tables we can see that the output for same input in NOR gate S-R latch is opposite for the output in NAND gate S-R latch. Therefore, if we replace NOR gate S-R latch for NAND gate S-R latch it won't work properly.

4. In S-R flipflop when S=1 and R=1 output becomes unpredictable but in the case of JK flip flop the output will toggle to the opposite state. It is the major advantage.

5.

Table 03: function table of JK flipflop

CLK	J	K	Q
Ţ	0	0	Q
	0	L.	0
	1	0	T
	1	1	Q

6.

Figure 01: Output wave form for a JK flip flop

7. Operating time is fast Accuracy is high

Figure 02: Circuit diagram for 4-bit asynchronous counter

Figure 03: Timing diagram for each bit of the 4-bit asynchronous counter

PRACTICAL WORK

A. Basic transparent (D-type) Latches

1.

Figure 3: Circuit of a basic transparent, D-type latch

- a) I. When ENABLE = 1 and D = 0 , Q = 0 $\,$
 - II. When ENABLE =1 and D = 1, Q = 1
- b) No
- c)

Table 04: Function table of D type latch

Iı	Output	
Enable	D	Q_{n+1}
0	X	Q_n
1	0	0
1	1	1

B. Introduction to J-K flip flop

1.

Figure 4: Demonstrating the operation of the PRE and CLR inputs on a 7476 dual JK filp-flop.

Table 05: Data Table of PRE and CLR inputs operations

PRE	<u>CLR</u>	Q	$ar{Q}$	Mode (SET /RESET /NO change)
1	0	0	1	RESET
1	1	0	1	NO change
0	1	1	0	SET
1	1	1	0	NO change

2.

Figure 5: Circuit diagram of the J and K inputs operation on a 7476 dual JK flip-flop.

Table 06: Data table of J and K inputs operations

J	K	CLK	Q	$ar{Q}$	Mode (SET /RESET /NO change)
1	0		1	0	SET
1	1		1	0	NO change
0	1		0	1	RESET
1	1		0	1	NO change

C. Ripple Counters 1.

Figure 6: Circuit of a 1-bit binary counter

Tabel 07: Data table of a one-bit binary counter

Count (Decimal)	LED1(ON/OFF)	Q Output IC 1A(0,1)
0	OFF	0
1	ON	1

b)

Figure 7: Circuit of a 3-bit binary counter

Table 08: Data table of a 3-bit binary counter

COUNT(Decimal)	LED status (ON/OFF)			(Q outputs (0/1)
	LED3	LED2	LED1	IC 1A	IC 1B	IC 2A
0	OFF	OFF	OFF	0	0	0
1	ON	OFF	OFF	0	0	1
2	OFF	ON	OFF	0	1	0
3	ON	ON	OFF	0	1	1
4	OFF	OFF	ON	1	0	0
5	ON	OFF	ON	1	0	1
6	OFF	ON	ON	1	1	0
7	ON	ON	ON	1	1	1

D. Synchronous Binary Counter

1.

Figure 8: 3-bit binary synchronous counter

Table 09: Data table of a 3-bit binary synchronous counter

	LED status (ON/OFF)			Q outputs (0/1)		
COUNT(Decimal)	LED3	LED2	LED1	IC 1A	IC 1B	IC 2A
0	OFF	OFF	OFF	0	0	0
1	ON	OFF	OFF	1	0	0
2	OFF	ON	OFF	0	1	0
3	ON	ON	OFF	1	1	0
4	OFF	OFF	ON	0	0	1
5	ON	OFF	ON	1	0	1
6	OFF	ON	ON	0	1	1
7	ON	ON	ON	1	1	1