Carrera de Especialización en Sistemas Embebidos

Presentación de Trabajo Final

Control de acuario con la CIAA Ing. Patricio Bos

Director: Ing. Juan Manuel Cruz

Jurados: Ing. Ramiro Alonso Ing. Eric Pernia Ing. Pablo Ridolfi

Agenda

Motivación

Planteo del problema a resolver

Implementación

Ensayos y validación

Demostración

Conclusiones

Agenda

Motivación

Planteo del problema a resolver Implementación

Ensayos y validación

Demostración

Conclusiones

 Ecosistema vivo y dinámico

- Ecosistema vivo y dinámico
- Interacciones complejas

- Ecosistema vivo y dinámico
- Interacciones complejas
- Uso recreativo o comercial

- Ecosistema vivo y dinámico
- Interacciones complejas
- Uso recreativo o comercial

Malas condiciones = \$

Nemo vale u\$d 300 ...

Agenda

Motivación

Planteo del problema a resolver

Implementación

Ensayos y validación

Demostración

Conclusiones

Planteo del problema a resolver

¿Qué hace falta medir?

Planteo del problema a resolver

- ¿Qué hace falta medir?
- ¿Qué hace falta controlar?

Planteo del problema a resolver

- ¿Qué hace falta medir?
- ¿Qué hace falta controlar?
- ¿Sobre qué hace falta alertar?

¿Qué hace falta medir?

Nivel de agua

¿Qué hace falta medir?

- Nivel de agua
- Temperatura

¿Qué hace falta medir?

- Nivel de agua
- Temperatura
- ▶ pH

▶ Inyección de O₂/CO₂

- Inyección de O₂/CO₂
- Iluminación

- ▶ Inyección de O₂/CO₂
- Iluminación
- Bombas de agua entrada/salida

- Inyección de O₂/CO₂
- Iluminación
- Bombas de agua entrada/salida
- Calefactor

¿Sobre qué hace falta alertar?

Parámetros fuera de rango

¿Sobre qué hace falta alertar?

- Parámetros fuera de rango
- 2 alarmas por sensor

¿Sobre qué hace falta alertar?

- Parámetros fuera de rango
- 2 alarmas por sensor
- Indicación visual: Rojo/Verde

Agenda

Motivación

Planteo del problema a resolver

Implementación

Ensayos y validación

Demostración

Conclusiones

CIAA-NXP

Arquitectura del Software

Apps	HTTP Server 2.0	Control de Acuario		
HIL	FreeRTOS v8.1	lwIP v1.4.1		
HAL	BOARD DRIVERS			
	LPCOPEN v2.16			
HARDWARE				

Interfaz Web

ACUARIO

Inicio

Control

Configuración

SENSORES

Nombre	Valor				
Nivel de Agua	13				
	1				
Temperatura	17.5				
pH	6.7				

ALARMAS

ACTUADORES

Nombre	Estado
Bomba de Agua ENTRADA	APAGADO
Bomba de Agua SALIDA	APAGADO
CALEFACTOR	APAGADO
ILUMINACIÓN	APAGADO
Bomba de OXÍGENO	APAGADO
Bomba de CO2	APAGADO

Copyright © Patricio Bos

Interfaz Web

ACUARIO

Inicio

Control

Configuración

SENSORES

Nombre	Valor
Nivel de Agua	14.5
Temperatura	17.5
pH	6.8

ALARMAS

Alarma	Estado	Control
Nivel de Agua ALTO	NORMAL	€
Nivel de Agua BAJO	NORMAL	⊌
Temperatura ALTA	NORMAL	€
Temperatura BAJA	NORMAL	€
pH ALTO	NORMAL	⊌
pH BAJA	NORMAL	⊌
		APLICAR

ACTUADORES

Nombre	Estado	Control
Bomba de Agua ENTRADA	APAGADO	INICIAR
Bomba de Agua SALIDA	APAGADO	INICIAR
CALEFACTOR	APAGADO	INICIAR
ILUMINACIÓN	APAGADO	INICIAR
Bomba de OXÍGENO	APAGADO	INICIAR
Bomba de CO2	APAGADO	INICIAR

Copyright © Patricio Bos

Interfaz Web

ACUARIO

Inicio

Control

Configuración

CONFIGURACIÓN

Configuración de red

Dirección IP: *

192.168.200.99

Máscara de red: *

255.255.255.0

Puerta de enlace: *

192.168.200.1

Copyright © Patricio Bos

▶ Webserver HTTP 2.0

- ▶ Webserver HTTP 2.0
- JavaScript

- Webserver HTTP 2.0
- JavaScript
- Server Side Includes (SSI)

- Webserver HTTP 2.0
- JavaScript
- Server Side Includes (SSI)
- Asynchronous JavaScript and XML (AJAX)

- Webserver HTTP 2.0
- JavaScript
- Server Side Includes (SSI)
- Asynchronous JavaScript and XML (AJAX)
- Common Gateway Interface (CGI)

Agenda

Motivación

Planteo del problema a resolver

Implementación

Ensayos y validación

Demostración

Conclusiones

Ensayos - Tabla de decisión

CONDICIONES						
Nivel de agua alto	Υ	N	N	N	N	N
Nivel de agua bajo	N	Υ	N	N	N	N
Temperatura alta	N	N	Υ	N	N	N
Temperatura baja	N	N	N	Υ	N	N
pH alto	N	N	N	N	Υ	N
pH bajo	N	N	N	N	N	Υ
ACCIONES						
Encender bomba de entrada de agua		Х	Х			Х
Apagar bomba de entrada de agua	Х					
Encender bomba de salida de agua	Х		х			Х
Apagar bomba de salida de agua		Х				
Encender calefactor				х		
Apagar calefactor			Х			
Encender bomba de CO2					Х	
Apagar bomba de CO2						х

Ensayos - Nivel de agua

Ensayos - Temperatura

Ensayos - pH

Agenda

Motivación
Planteo del problema a resolver
Implementación
Ensayos y validación

Demostración

Conclusiones

Agenda

Motivación
Planteo del problema a resolver
Implementación
Ensayos y validación
Demostración

Conclusiones

Conclusiones

 Se desarrolló un firmware que cumple con los criterios de aceptación.

Conclusiones

- Se desarrolló un firmware que cumple con los criterios de aceptación.
- Se aplicaron los conocimientos adquiridos en la carrera para obtener un sistema embebido sobre la CIAA-NXP.

Conclusiones

- Se desarrolló un firmware que cumple con los criterios de aceptación.
- Se aplicaron los conocimientos adquiridos en la carrera para obtener un sistema embebido sobre la CIAA-NXP.
- Se logró un código modular con posibilidades de aplicación a otros proyectos.

Trabajo Futuro

► Migrar el RTOS a freeOSEK.

Trabajo Futuro

- Migrar el RTOS a freeOSEK.
- Mejorar el soporte para cambios en el dominio de aplicación.

Trabajo Futuro

- Migrar el RTOS a freeOSEK.
- Mejorar el soporte para cambios en el dominio de aplicación.
- Optimizar el acceso desde dispositivos móbiles.

Carrera de Especialización en Sistemas Embebidos

Presentación de Trabajo Final

Control de acuario con la CIAA Ing. Patricio Bos

Director: Ing. Juan Manuel Cruz

Jurados: Ing. Ramiro Alonso Ing. Eric Pernia Ing. Pablo Ridolfi

