CANS2D モデルパッケージ md_mhdwave

MHD線形波動

2006. 1. 9.

1 はじめに

このモデルパッケージは、2次元平面内でのMHD線形波動の伝播を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散なし磁気流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ 、 $V_z=0$ 、 $B_z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y 、磁場 B_x 、 B_y についての 2 次元 Euler 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = 0 \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = 0 \tag{3}$$

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial u}(cE_z) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(cE_z) = 0 \tag{5}$$

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x - \frac{B_y c E_z}{4\pi} \right] + \frac{\partial}{\partial y} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y + \frac{B_x c E_z}{4\pi} \right] = 0$$
(6)

$$cE_z = -V_x B_y + V_y B_x \tag{7}$$

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の大きさの 1/2 倍、 $C_{\rm S0}$ は初期一様状態の音速。密度は初期一様状態の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位
x, y	L_0
V_x, V_y	$C_{ m S0}$
t	$L_0/C_{\rm S0}$
ho	$ ho_0$
p	$ ho_0 C_{\mathrm{S0}}^2$
B_x, B_y	$\sqrt{\rho_0 C_{\mathrm{S0}}^2}$

表 1: 変数と規格化単位。 ho_0 、 C_{S0} は初期一様状態の値。

4 パラメータ・初期条件・計算条件・境界条件

|x|<1、|y|<1 の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。

$$\rho = 1$$

$$p = (1/\gamma) * \{1 + a \exp[-(r/w)^2]\}$$

$$V_x = V_y = 0$$

$$B_x = \sqrt{8\pi\alpha_0/\gamma} \cos\theta$$

$$B_y = \sqrt{8\pi\alpha_0/\gamma} \sin\theta$$

ただし、

$$r = \sqrt{x^2 + y^2}$$

で、 α_0 は初期プラズマベータの逆数。a は擾乱の振幅、w は擾乱の印加範囲。

値	コード中での変数名	設定サブルーチン名
2	gm	model
0.5	betai	model
60 度	thini	model
0.1	amp	model
0.02	wexp	model
(gm).5 betai 60度 thini).1 amp

表 2: おもなパラメータ

境界条件は、すべて自由境界条件。すなわちすなわち、x 境界ではすべての物理量のx 方向微分がゼロ、z 境界ではすべての物理量のz 方向微分がゼロ。サブルーチン bnd で設定する。 計算パラメータは以下の通り(表 3 参照)。

5 参考文献

Priest, 1982, "Solar Magnetohydrodynamics"

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	105	ix	main
グリッド数 y 方向	106	jx	main
マージン	4	margin	main
終了時刻	1	tend	main
出力時間間隔	0.05	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。