Pasos previos

- 1. Ajuste una distribución para la severidad de los reclamos y sus parámetros F_B
- 2. Parámetro size de la binomial negativa: Size*365
- 3. Determine el umbral para la parte de teoría valor extremo: q
- 4. Ajuste una distribución para la frecuencia de los reclamos y sus parámetros F_N

Algoritmo para las simulaciones y cálculo del VaR y el ES:

- 1. Determine un número m de simulaciones
- 2. Genere un vector de variables de frecuencia $(N_1, ..., N_m)$ con distribución F_N
- 3. Genere vectores de variables uniformes (0,1) de tamaño $N_1,\ldots,N_m: (U_{N_1,1},\ldots,U_{N_1,N_1}),\ldots$ $(U_{N_m,1},\ldots,U_{N_m,N_m})$
- 4. Genere vectores aleatorios de reclamaciones de tamaño N_1, \ldots, N_m : $\left(B_{N_1,1}, \ldots, B_{N_1,N_1}\right), \ldots, \left(B_{N_m,1}, \ldots, B_{N_m,N_m}\right) \text{; donde } B_{N_j,j} \text{ tiene distribución } F_B \text{ si } q < U_{N_j,j} \text{ y tiene la distribución empírica de los datos si } q > U_{N_j,j} \text{ .}$
- 5. Defina $R_j = \sum_{k=1}^{N_j} B_{N_j,k}$
- 6. Ordene los R_i de menor a mayor
- 7. Calcule el cuantil 99% de todos los R_i .
- 8. Calcule el promedio de los R_i que superan ese cuantil.