機器與深度學習概論

- 預測購買酒水的高消費族群

Problem Statement

Motive

- 行銷理論中的「二八定律」
- 顧客在酒精上的花費分布圖,確實有極少數的人提供著高消費金額。
- 實際計算後發現整筆資料的前35%酒水消費金額佔了整體酒水消費金額的 80%。
- 想更進一步區分高消費與低消費族群,有利往後針對不同消費族群提供相對應的廣告投放及行銷策略。

猜測在酒水的開銷上可能較高的人可能跟一些特徵有關

Supervised Learning

Classification:

購買酒水的族群. 分成二類(高消費族群、低消費族群)

Input Model 基本資料 購買方式 活動成效 DNN SVM Year Birth NumDealsPurchases AcceptedCmp3 KNN Education NumWebPurchases AcceptedCmp4 **Decision tree Marital Status** AcceptedCmp5 NumCatalogPurchases Random forest Income **XGBoost NumStorePurchases** AcceptedCmp1 Kidhome CatBoost **NumWebVisitsMonth** AcceptedCmp2 Teenhome Recency Response 客訴 Complain

Y: MntWines Classification 1.accuracy 2.precision 3.f1 score 4.recall

基本資料

ID

Year_Birth

Education

Marital_Status

Income

Kidhome

Teenhome

Dt_Customer

Recency

購買方式

NumDealsPurchases

NumWebPurchases

NumCatalogPurchases

NumStorePurchases

NumWebVisitsMonth

客訴

Complain

各類產品花費

MntWines

MntFruits

MntMeatProducts

MntFishProducts

MntSweetProducts

MntGoldProds

活動成效

AcceptedCmp3

AcceptedCmp4

AcceptedCmp5

AcceptedCmp1

AcceptedCmp2

Response

Data Preprocess

缺失值處理 新增向度

Data Preprocess

缺失值處理

- 只有 'income' 有缺失值
- 以平均值/KNN填補

新增向度

- ◉ 從 'Year_Birth' 計算 'Age'
- 從 'Dt_Customer' 計算'Customer_Years

	ID	Year_Birth	Dt_Customer	Age	Customer_Years
0	5524	1957	04-09-2012	65	10
1	2174	1954	08-03-2014	68	8
2	4141	1965	21-08-2013	57	9
3	6182	1984	10-02-2014	38	8
4	5324	1981	19-01-2014	41	8

Exploratory Data Analysis

```
Numerical Variable histogram Correlation Heatmap factors
```


Data Preprocess

缺失值處理

- 只有 'income' 有缺失值
- 以平均值填補

新增向度

- ◉ 從 'Year_Birth' 計算 'Age'
- 從 'Dt_Customer' 計算'Customer_Years

	ID	Year_Birth	Dt_Customer	Age	Customer_Years
0	5524	1957	04-09-2012	65	10
1	2174	1954	08-03-2014	68	8
2	4141	1965	21-08-2013	57	9
3	6182	1984	10-02-2014	38	8
4	5324	1981	19-01-2014	41	8

Numerical Variable

	ID	Year_Birth	Income
count	2240.000000	2240.000000	2240.000000
mean	5592.159821	1968.805804	52247.251354
std	3246.662198	11.984069	25037.797168
min	0.000000	1893.000000	1730.000000
25%	2828.250000	1959.000000	35538.750000
50%	5458.500000	1970.000000	51741.500000
75%	8427.750000	1977.000000	68289.750000
max	11191.000000	1996.000000	666666.000000

<mark>histogram</mark>

Correlation Heatmap

- ○購賣不同品項↑
- 瀏覽網站↓
- 購買行為↑

●有兒童的家庭:

- ○購買不同品項↓
- ○購買行為↓
- ○瀏覽網站行為↑

可能影響酒水花費的因素-收入

可能影響酒水花費的因素- 年齡

可能影響酒水花費的因素-家庭成員

家中的兒童越多, 酒水的開銷有較少的趨勢

家中青少年的多寡, 與酒水的開銷無明顯趨勢

可能影響酒水花費的因素-實體店購買

	在商店購買次數	在網站購買次數	在型錄購買次數	
酒水的花費>200元	>五次	>四次	>二次	
酒水的花費>400元	>九次	>八次	>六次	

可能影響酒水花費的因素- 瀏覽行為

- 瀏覽網頁次數1~3次的顧客
 - 在酒水的花費高於瀏覽次數>4次的顧客
 - 瀏覽次數越多反倒減少花費

可能影響酒水花費的因素-活動促銷

· 不同**婚姻狀況**在酒水的開銷分佈差不多

- 酒水上的開銷與促銷次數相關係數在第一次促銷後 開始逐次遞減
- 直到第四、五次促銷時,酒精消費力與促銷次數相關 性再次提升

Metrics

Classification

Model & Insight

DNN / KNN / DecisionTree / RandomForest / XGBoost / CatBoost

DNN baseline

8 hidden layers

```
On training data:
    loss : 0.5790244340896606
    accuracy : 0.6540312767028809
    precision : 0.5
    recall : 1.0
    f1_score : [0.790833     0.51408136]

on test data:
    loss : 0.5478824377059937
    accuracy : 0.6371841430664062
    precision : 0.5
    recall : 1.0
    f1_score : [0.77839035     0.5324503 ]
```

DNN final

3 hidden layers

```
On training data:
    loss : 0.007712917868047953
    accuracy : 0.9988088011741638
    precision : 0.9993961453437805
    recall_2 : 0.9857057929039001
    f1_score : [0.99315387 0.99125874]

on test data:
    loss : 1.050164818763733
    accuracy : 0.8785714507102966
    precision : 0.8963531851768494
    recall_2 : 0.8339285850524902
    f1_score : [0.8908555 0.81885856]
```



```
for i in range(1, 100):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(x_train, y_train)
    pred_i = knn.predict(x_test)
    error.append(np.mean(pred_i != y_test))
```

找出最適合的k值

找出最佳k值的預測結果

參數設定

Kidhome: 0.0 0.0004 Teenhome: 0.0231 Recency: NumDealsPurchases: 0.0054 NumWebPurchases: 0.069 NumCatalogPurchases: 0.59 NumStorePurchases: 0.0994 NumWebVisitsMonth: 0.0437 AcceptedCmp3: 0.0 AcceptedCmp4: 0.004 AcceptedCmp5: 0.018 AcceptedCmp1: 0.0103 AcceptedCmp2: 0.0 Complain: 0.0 Response: 0.0005 0.022 Age: Customer Years: 0.008 Education_2n Cycle: 0.0081 Education Basic: 0.0 Education Graduation: 0.0093 Education Master: 0.0 Education PhD: 0.0 Marital Status Absurd: 0.0 Marital_Status_Alone: 0.0 Marital Status Divorced: 0.0 Marital Status Married: 0.0031 Marital Status Single: 0.0 Marital_Status_Together: 0.0036 Marital Status Widow: 0.0 Marital Status YOLO: 0.0

0.0822

Income:

Decision Tree Model

參數調整:增加 max leaf nodes = 10

0.0534 Income: Kidhome: 0.0 Teenhome: 0.0 Recency: 0.0 NumDealsPurchases: 0.0 NumWebPurchases: 0.0737 NumCatalogPurchases: 0.7256 NumStorePurchases: 0.1006 NumWebVisitsMonth: 0.0258 AcceptedCmp3: 0.0 AcceptedCmp4: 0.0 AcceptedCmp5: 0.0209 AcceptedCmp1: 0.0 AcceptedCmp2: 0.0 Complain: 0.0 0.0 Response: 0.0 Age: Customer Years: 0.0 Education 2n Cycle: 0.0 Education Basic: 0.0 Education Graduation: 0.0 Education Master: 0.0 Education PhD: 0.0 Marital Status Absurd: 0.0 Marital Status_Alone: 0.0 Marital Status Divorced: 0.0 Marital Status Married: 0.0 Marital Status Single: 0.0 Marital Status Together: 0.0 Marital_Status_Widow: 0.0 Marital Status YOLO: 0.0

Decision Tree Model

結果評估

baseline

• 限制最大葉節點

Experimental Results

初步結果(Baseline)

- without standardization
- without impute income
- without one-hot (drop)
- include income's outlier

model	acc	precision	f_score	recall
DNN	0.6372	0.5	0.6554	1
SVM	0.852	0.725	0.7797	0.8435
KNN	0.8252	0.7477	0.7711	0.7960
Decision tree	0.8791	0.7659	0.8521	0.9602
RandomForest	0.9025	0.8657	0.8657	0.8657
XGBoost	0.8953	0.8357	0.8599	0.8856
CatBoost	0.9043	0.8627	0.8691	0.8756

調整後結果(Final)

- with standardization
- imputed income with KNN
- one-hot categorical features
- not included income's outlier

model	acc	precision	f_score	recall
DNN	0.6372 0.8786	0.5 0.8964	0.6554 0.8549	1 0.8340
SVM	0.852 0.8804	0.725 0.8182	0.7797 0.8431	0.8435 0.8696
KNN	0.8252 0.8464	0.7477 0.8418	0.7711 0.7760	0.7960 0.7198
DecisionTree	0.8791 0.8446	0.7659 0.7564	0.8521 0.8027	0.9602 0.8551
RandomForest	0.9025 0.9160	0.8657 0.8478	0.8657 0.8924	0.8657 0.9420
XGBoost	0.8953 0.8946	0.8357 0.8162	0.8599 0.9227	0.8856 0.8662
CatBoost	0.9043 0.9161	0.8627 0.8419	0.8691 0.8934	0.8756 0.9517

Discussions

預測及EDA後發現, 原本認為會顯著影響結果的特徵, 跟預期的不一樣

	預期狀況	實際結果
	收入較高	● 符合預期 ● 在EDA階段或模型的特徵重要性皆顯示為關鍵特徵
顧客屬性	家中沒有兒童及青少年	 在EDA階段發現:家中的兒童↑, 酒水的開銷↓ 然而此特徵在Decision tree model中, 沒有扮演特別關鍵的特徵
	顧客年齡	◆ 在EDA階段發現:年齡與酒水開銷沒有正向趨勢◆ 此特徵在Decision tree model中重要性佔0.022
購買方式	多在店面購買	● 在EDA階段發現:不同銷售通路的次數會與銷售總額有關連,但因數據不足無法 推論多在何種通路購買
促銷活動成效	第一次看到廣告後便會購買	 在EDA階段發現:第四、五次投放廣告時,酒精消費力與廣告投放次數相關性再次提升,甚至大於第一次投放 「第五次投放廣告接受度」在Decision tree model中重要性佔0.021

-Thanks!

Any questions?