Chapter 7 Wireless and Mobile Networks

A note on the use of these Powerpoint slides: We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to sait your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following.

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
 If you post any sides on a waw site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

 The additional properties of the properties of th

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Wireless and Mobile Networks 7-1

Ch. 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - · wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Wireless and Mobile Networks 7-2

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 6.73 IEEE 802.11 wireless LANs ("Wi-Fi")
- 67.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless and Mobile Networks 7-3

Elements of a wireless network

Wireless and Mobile Networks 7-4

Elements of a wireless network

Elements of a wireless network

1

Elements of a wireless network

Characteristics of selected wireless links

Wireless and Mobile Networks 7-8

Elements of a wireless network

Elements of a wireless network

r ad hoc mode —

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless and Mobile Networks 7-10

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless and Mobile Networks 7-11

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless and Mobile Networks 7-13

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

BPSK (1 Mbps)

Wireless and Mobile Networks 7-14

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Wireless and Mobile Networks 7-15

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

Wireless and Mobile Networks 7-16

CDMA encode/decode

Wireless and Mobile Networks 7-17

CDMA: two-sender interference

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links. characteristics
- CDMA 7.3 IEEE 802.11 wireless
- LANs ("Wi-Fi") 7.4 Cellular Internet Access
- - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless and Mobile Networks 7-19

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - · all hosts use same chipping

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae 2.4-5 GHz range

- up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

Wireless and Mobile Networks 7-20

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka 'cell") in infrastructure mode contains:
 - · wireless hosts
 - · access point (AP): base station
 - · ad hoc mode: hosts only

Wireless and Mobile Networks 7-21

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - · AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - · scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - · selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's

Wireless and Mobile Networks 7-22

802.11: passive/active scanning

passive scanning:

- (I) beacon frames sent from APs (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent
- from APs
 (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

Wireless and Mobile Networks 7-23

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
- · don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - · can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender 1 if sense channel idle for DIFS then transmit entire frame (no CD) sender receiver 2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2 802.11 receiver - if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem)

Wireless and Mobile Networks 7.3

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Wireless and Mobile Networks 7-26

Collision Avoidance: RTS-CTS exchange

Wireless and Mobile Networks 7-27

802.11 frame: addressing

Wireless and Mobile Networks 7-28

802.11 frame: addressing

Wireless and Mobile Networks 7-29

802.11 frame: more

802.11: mobility within same subnet

- HI remains in same IP subnet: IP address can remain same
- switch: which AP is associated with HI?
 - self-learning (Ch. 5): switch will see frame from HI and "remember" which switch port can be used to reach HI

Wireless and Mobile Networks 7-31

802.11: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Wireless and Mobile Networks 7-32

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - · AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

Wireless and Mobile Networks 7-33

802.15: personal area network

- Iess than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

Wireless and Mobile Networks 7-34

Chapter 7 outline

7.1 Introduction

Wireless

7.2 Wireless links, characteristicsCDMA

7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

7.4 Cellular Internet access

- architecture
- standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless and Mobile Networks 7-35

Components of cellular network architecture

Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum

 combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots

CDMA: code division multiple access

Wireless and Mobile Networks 7-37

2G (voice) network architecture

Wireless and Mobile Networks 7-38

3G (voice+data) network architecture

Wireless and Mobile Networks 7-39

3G (voice+data) network architecture

Wireless and Mobile Networks 7-40

3G versus 4G LTE network architecture

4G: differences from 3G

- all IP core: IP packets tunneled (through core IP network) from base station to gateway
- no separation between voice and data all traffic carried over IP core to gateway

Functional split of major LTE components

Radio+Tunneling: UE – eNodeB – PGW

Quality of Service in LTE

- QoS from eNodeB to SGW: min and max guaranteed bit rate
- QoS in radio access network: one of 12 QCI values

QCI	RESOURCE TYPE	PRIORITY	PACKET DELAY BUDGET (MS)	PACKET ERROR LOSS RATE	EXAMPLE SERVICES
1	GBR	2	100	10-2	Conversational voice
2	GBR	4	150	10-3	Conversational video (live streaming)
3	GBR	5	300	106	Non-conversational video (buffered streaming)
4	GBR	3	50	10 ⁻³	Real-time gaming
5	Non-GBR	1	100	106	IMS signaling
6	Non-GBR	7	100	10 ³	Voice, video (live streaming), interactive gaming
7	Non-GBR	6	300	10-6	Video (buffered streaming)
8	Non-GBR	8	300	106	TCP-based (for example, WWW, e-mail), chat, FTP, p2p file sharing, progressive video and others
9	Non-GBR	9	300	10-6	

Wireless and Mobile Networks 7-45

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless and Mobile Networks 7-46

What is mobility?

• spectrum of mobility, from the *network* perspective:

Wireless and Mobile Networks 7-47

Mobility: vocabulary

Mobility: more vocabulary

Wireless and Mobile Networks 7-49

How do *you* contact a mobile friend:

Mirolage and Mobile Notworks 7 F

Mobility: approaches

- let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - · routing tables indicate where each mobile located
 - · no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Wireless and Mobile Networks 7-51

Mobility: approaches

- let routing handle it: routers advertise permanent address of mobil not residence via usual routing table ex scalable
 - routing table to millions of ere each mobile located mobile.
 - no changes to

let end-systems handle it:

- indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
- direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Wireless and Mobile Networks 7-52

Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile

Wireless and Mobile Networks 7-53

Mobility via indirect routing

Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-networkmobile
 - inefficient when correspondent, mobile are in same network

Wireless and Mobile Networks 7-55

Indirect routing: moving between networks

- suppose mobile user moves to another network
 - · registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

Wireless and Mobile Networks 7-56

Mobility via direct routing

Wireless and Mobile Networks 7-57

Mobility via direct routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - · what if mobile changes visited network?

Wireless and Mobile Networks 7-58

Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Wireless and Mobile Networks 7-59

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Mobile IP

- RFC 3344
- has many features we've seen:
 - home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-apacket)
- three components to standard:
 - · indirect routing of datagrams
 - · agent discovery
 - · registration with home agent

Wireless and Mobile Networks 7-61

Mobile IP: indirect routing

Wireless and Mobile Networks 7-62

Mobile IP: agent discovery

 agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)

Wireless and Mobile Networks 7-63

Mobile IP: registration example

Components of cellular network architecture

Wireless and Mobile Networks 7-6

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - · could be home network

GSM: indirect routing to mobile

Wireless and Mobile Networks 7-6

GSM: handoff with common MSC

- handoff goal: route call via new base station (without interruption)
- · reasons for handoff:
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

Wireless and Mobile Networks 7-68

GSM: handoff with common MSC

- VLR Mobile Switching Center?
- 1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

Wireless and Mobile Networks 7-69

GSM: handoff between MSCs

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

Wireless and Mobile Networks 7-70

GSM: handoff between MSCs

- anchor MSC: first MSC visited during call
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- optional path minimization step to shorten multi-MSC chain

Wireless and Mobile Networks 7-71

Handling Mobility in LTE

- Paging: idle UE may move from cell to cell: network does not know where the idle UE is resident
 - paging message from MME broadcast by all eNodeB to locate UE
- handoff: similar to 3G:
 - preparation phase
 - execution phase
 - completion phase

Mobility: cellular versus Mobile IP

cellular element	Comment on cellular element M	obile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information	Home agent
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

Wireless and Mobile Networks 7-73

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
 - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
 - TCP interprets loss as congestion, will decrease congestion window un-necessarily
 - · delay impairments for real-time traffic
 - limited bandwidth of wireless links

Wireless and Mobile Networks 7-74

Chapter 7 summary

Wireless

- wireless links:
 - · capacity, distance
 - · channel impairments
- CDMA
- IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless case studies channel characteristics
- cellular access
 - architecture
 - standards (e.g., 3G, 4G LTE)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - · direct, indirect routing care-of-addresses

 - mobile IP
 - mobility in GSM, LTE
- impact on higher-layer protocols