Business Analytics Practicum (MGT 4803)

Zhaohu (Jonathan) Fan

Information Technology Management Scheller College of Business Georgia Institute of Technology April 4, 2024

Second Presentation

- Second Presentation:
 - **Original Plan:** April 4, 5:00 PM 6:15 PM
 - **Updated Plan :** Rescheduled to April 11, 5:00 PM 6:15 PM

Data dictionary w/new metrics

Metric	Definition
STR_NBR	Unique Identifier for Store Number
YEAR	Fiscal Year that the data is being aggregated
WEEK	Fiscal Week that the data is being aggregated
CLEARANCE_NO_HOME_PCT	Clearance NH \$ / Total Clearance \$
TOTAL_TASK	# of tasks sent out to a store
COMPLETE_TASK	# of tasks sent completed by a store
RESENT_TASK_CNT	# of tasks that had to be resent, due to original incompletion of task.
AGED_WC_PCT	# of Open Aged Will Calls/# of total Open Will Calls
SKU	Stock Keeping Unit, unique identifier for a product.
CULL_MD_PCT	Cull Markdown \$ / Total Sales \$ (for products elligible for Cull MD)
DMG_MD_PCT	Damaged Markdown \$ / Total Sales \$ (for products elligible for Dmg MD)
BOSS_RTV_PCT	Cancelled BOSS Orders that were RTVed / Total Cancelled BOSS Orders
BOSS Order	Buy Online, Ship to Store
RTV	Return to Vendor
RTV_DEL_PCT	Lost RTV Deleted Tag \$ / Total RTV Tag \$

Final Presentation

- Final Presentation:
 - ∘ **Plan A:** May 2, 5:00 PM − 6:15 PM
 - ∘ **Plan B:** April 25, 5:00 PM − 6:15 PM

User Interface (UI) vs User Experience (UX)

User Interface (UI)

User Interface (UX)

High-level understanding of the architecture through dashboard

- Please click on the link provided below
 - Executive Overview (Demo)

How do we use data to navigate business performance over different periods?

How do we use data to navigate business performance over different periods? Trend Analysis

What is trend analysis?

- Day-over-day Change
- Week-over-week Change
- Month-over-month Change
- Year-over-year Change

3 Steps to calculate Day-over-Day

Step 1: Identify the Values

- Previous Day's Value (Monday): 150 visitors
- Current Day's Value (Tuesday): 175 visitors

3 Steps to Calculate Day-over-Day

Step 1: Identify the Values

- Previous Day's Value (Monday): 150 visitors
- Current Day's Value (Tuesday): 175 visitors

Step 2: Calculate the Change in Value

- Subtract the Previous Day's Value from the Current Day's Value.
- Change in Value = Current Day's Value Previous Day's Value
- Change in Value = 175 visitors 150 visitors = 25 visitors

3 Steps to Calculate Day-over-Day

• Step 2: Calculate the Change in Value

- Subtract the Previous Day's Value from the Current Day's Value.
- Change in Value = Current Day's Value Previous Day's Value
- Change in Value = 175 visitors 150 visitors = 25 visitors

• Step 3: Calculate the Percentage Change

- To find out the percentage increase or decrease, you divide the Change in Value by the Previous Day's Value and then multiply by 100 to convert it to a percentage.
- Percentage Change = (Change in Value / Previous Day's Value) * 100
- \circ Percentage Change = (25 visitors / 150 visitors) * 100 = 16.67 %

What is trend analysis (cont'd)

• Day-over-day Change:

• Identifies immediate trends and short-term performance impacts.

• Week-over-week Change:

 Reveals weekly trends and is especially useful for spotting anomalies or effects of short-term marketing campaigns.

• Month-over-month Change:

 Highlights longer-term trends and the effectiveness of monthly strategies or operational changes.

• Year-over-year Change:

 Offers insights into long-term trends, seasonality, and annual performance comparison, crucial for strategic planning and forecasting.

Why is trend analysis important?

- Helps identify both short-term and long-term trends.
 - **Seasonality and Patterns:** Useful for spotting seasonal trends and cyclic patterns.
 - Anomaly Detection: Indicates anomalies through sudden changes, prompting further investigation.
 - Performance Measurement: Measures the impact of specific actions or events on performance.
 - **Forecasting**: Enhances forecasting models with insights on expected changes under similar future conditions.
 - **Strategic Planning:** Reveals long-term trends and shifts for better strategic planning.
 - **Customization and Precision:** Offers relevance to different businesses based on their operational cycle and decision-making needs.

Project goals (TechSavvy Insights (Team #1))

 Project focused on providing insights on current value creation for tasks assigned to stores

Project goals (Wet Paint Watchers (Team #3))

 Project focused on developing a sustainable dashboard to track value and impact continuously Open for discussion

Events

- Can we **identify any patterns or trends in the time series data** that occurred over the last week?
 - What were the most common types of events, and how frequently did they occur?
 - Were there any specific days or times when the events spiked?
 - Have any of the events been repeated from previous days, indicating a persistent issue?

Events

- What steps have been taken to address these errors so far?
 - How do these error rates compare to the previous week's?
 - Are there any correlations between the errors and recent changes or updates in our machines or processes?
 - What preventive measures can we implement to reduce the occurrence of these events in the future?