Lecture No.9 Set identities

SET IDENTITIES:

Let A, B, C be subsets of a universal set U.

- 1. Idempotent Laws
 - a. $A \cup A = A$
- b. $A \cap A = A$
- 2. Commutative Laws
 - a. $A \cup B = B \cup A$
- b. $A \cap B = B \cap A$
- 3. Associative Laws
 - a. $A \cup (B \cup C) = (A \cup B) \cup C$
 - b. $A \cap (B \cap C) = (A \cap B) \cap C$
- 4. Distributive Laws
 - a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$
 - b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 5. Identity Laws
 - a. $A \cup \emptyset = A$ b. $A \cap \emptyset = \emptyset$
 - c. $A \cup U = U$
- $d. A \cap U = A$
- 6. Complement Laws
 - $A \cup A^c = U \quad b. A \cap A^c = \emptyset$
 - c. $U^c = \emptyset$
- d. $\varnothing^c = U$
- 8. Double Complement Law

$$(A^c)^c = A$$

- 9. DeMorgan's Laws
 - a. $(A \cup B)^c = A^c \cap B^c$
- b. $(A \cap B)^c = A^c \cup B^c$
- 10. Alternative Representation for Set Difference

$$A - B = A \cap B^c$$

- 11. Subset Laws
 - a. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$
 - b. $C \subseteq A \cap B \text{ iff } C \subseteq A \text{ and } C \subseteq B$
- 12. Absorption Laws
 - a. $A \cup (A \cap B) = A$
- b. $A \cap (A \cup B) = A$

EXERCISE:

- 1. $A \subseteq A \cup B$
- 2. $A B \subseteq A$
- 3. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$
- 4. $A \subseteq B$ if, and only if, $B^c \subseteq A^c$
- 1. Prove that $A \subseteq A \cup B$

SOLUTION

Here in order to prove the identity you should remember the definition of Subset of a set. We will take the arbitrary element of a set then show that, that element is the member of the other then the first set is the subset of the other. So

Let x be an arbitrary element of A, that is $x \in A$.

 \Rightarrow $x \in A \text{ or } x \in B$

$$\Rightarrow$$
 $x \in A \cup B$

But x is an arbitrary element of A.

$$A \subseteq A \cup B \qquad \text{(proved)}$$

1. Prove that $A - B \subseteq A$

SOLUTION

Let
$$x \in A - B$$

$$\Rightarrow$$
 $x \in A \text{ and } x \notin B$ (by definition of $A - B$)

$$\Rightarrow$$
 $x \in A$ (in particular)

But x is an arbitrary element of A - B

$$A - B \subseteq A \qquad (proved)$$

1. Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ SOLUTION

Suppose that $A \subseteq B$ and $B \subseteq C$

Consider $x \in A$

$$\Rightarrow$$
 $x \in B$

$$\Rightarrow$$
 $x \in C$ (as $B \subseteq C$)

But x is an arbitrary element of A

$$\therefore A \subseteq C \qquad \text{(proved)}$$

1. Prove that $A \subseteq B$ iff $B^c \subseteq A^c$

SOLUTION:

Suppose
$$A \subseteq B$$
 {To prove $B^c \subseteq A^c$ }

Let $x \in B^c$

$$\Rightarrow$$
 x \notin B (by definition of B^c)

 \Rightarrow $x \notin A$

$$\Rightarrow$$
 $x \in A^c$ (by definition of A^c)

Now we know that implication and its contrapositivity are logically equivalent and the contrapositive statement of if $x \in A$ then $x \in B$ is: if $x \notin B$ then $x \notin A$ which is the definition of the $A \subseteq B$. Thus if we show for any two sets A and B, if $x \notin B$ then $x \notin A$ it means that

(as $A \subseteq B$)

$$A \subseteq B$$
. Hence

But x is an arbitrary element of B^c

$$\therefore B^c \subset A^c$$

Conversely,

Suppose
$$B^c \subseteq A^c$$
 {To prove $A \subseteq B$ }

Let $x \in A$

$$\Rightarrow x \notin A^{c}$$
 (by definition of A^{c})
$$\Rightarrow x \notin B^{c}$$
 ($\therefore B^{c} \subseteq A^{c}$)
$$\Rightarrow x \in B$$
 (by definition of B^{c})

But x is an arbitrary element of A.

$$\therefore A \subseteq B \qquad (proved)$$

EXERCISE:

Let A and B be subsets of a universal set U.

Prove that
$$A - B = A \cap B^c$$
.

SOLUTION

Let
$$x \in A - B$$

 $\Rightarrow x \in A \text{ and } x \notin B$ (definition of set difference)
 $\Rightarrow x \in A \text{ and } x \in B^c$ (definition of complement)
 $\Rightarrow x \in A \cap B^c$ (definition of intersection)

But x is an arbitrary element of A - B so we can write

$$\therefore A - B \subseteq A \cap B^c$$
....(1)

Conversely,

$$\begin{array}{l} \text{let } y \in A \cap B^c \\ \Rightarrow y \in A \text{ and } y \in B^c \\ \Rightarrow y \in A \text{ and } y \notin B \\ \Rightarrow y \in A - B \end{array} \qquad \begin{array}{l} \text{(definition of intersection)} \\ \text{(definition of complement)} \\ \text{(definition of set difference)} \end{array}$$

But y is an arbitrary element of $A \cap B^c$

$$\therefore A \cap B^c \subseteq A - B \dots (2)$$

From (1) and (2) it follows that

$$A - B = A \cap B^c$$
 (as required)

EXERCISE:

Prove the DeMorgan's Law: $(A \cup B)^c = A^c \cap B^c$ PROOF

Let
$$x \in (A \cup B)^c$$

 $\Rightarrow x \notin A \cup B$ (definition of complement)
 $x \notin A$ and $x \notin B$ (DeMorgan's Law of Logic)
 $\Rightarrow x \in A^c$ and $x \in B^c$ (definition of complement)
 $\Rightarrow x \in A^c \cap B^c$ (definition of intersection)

But x is an **arbitrary** element of $(A \cup B)^c$ so we have proved that

$$\therefore (A \cup B)^c \subseteq A^c \cap B^c \dots (1)$$

Conversely

$$\begin{array}{ll} \text{let } y \in Ac \cap B^c \\ \Rightarrow y \in A^c \text{ and } y \in B^c \\ \Rightarrow y \notin A \text{ and } y \notin B \\ \Rightarrow y \notin A \cup B \\ \Rightarrow y \in (A \cup B)^c \end{array} \qquad \begin{array}{ll} \text{(definition of intersection)} \\ \text{(definition of complement)} \\ \text{(DeMorgan's Law of Logic)} \\ \text{(definition of complement)} \end{array}$$

But y is an arbitrary element of $A^c \cap B^c$

$$\therefore A^{c} \cap B^{c} \subseteq (A \cup B)^{c} \dots (2)$$

From (1) and (2) we have

$$(A \cup B)^c = A^c \cap B^c$$

Which is the Demorgan's Law.

EXERCISE:

Prove the associative law: $A \cap (B \cap C) = (A \cap B) \cap C$ PROOF:

Consider $x \in A \cap (B \cap C)$

$$\Rightarrow x \in A \text{ and } x \in B \cap C$$
 (definition of intersection)

$$\Rightarrow x \in A \text{ and } x \in B \text{ and } x \in C$$
 (definition of intersection)

$$\Rightarrow x \in A \cap B \text{ and } x \in C$$
 (definition of intersection)

$$\Rightarrow x \in (A \cap B) \cap C$$
 (definition of intersection)

But x is an arbitrary element of $A \cap (B \cap C)$

 \therefore A \cap (B \cap C) \subset (A \cap B) \cap C.....(1)

```
Conversely
         let y \in (A \cap B) \cap C
                      \Rightarrow y \in A \cap B and y \in C
                                                              (definition of intersection)
                                                              (definition of intersection)
                      \Rightarrow y \in A and y \in B and y \in C
                      \Rightarrow y \in A and y \in B \cap C
                                                              (definition of intersection)
                      \Rightarrow y \in A \cap (B \cap C)
                                                              (definition of intersection)
        But y is an arbitrary element of (A \cap B) \cap C
                        \therefore (A \cap B) \cap C \subseteq A \cap (B \cap C).....(2)
        From (1) & (2), we conclude that
                          A \cap (B \cap C) = (A \cap B) \cap C
                                                                        (proved)
EXERCISE:
        Prove the distributive law: A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
        PROOF:
                 Let x \in A \cup (B \cap C)
                      \Rightarrow x \in A or x \in B \cap C
                                                              (definition of union)
        Now since we have x \in A or x \in B \cap C it means that either x is in A or in A \cap B
        it is in the A \cup (B \cap C) so in order to show that
        A \cup (B \cap C) is the subset of (A \cup B) \cap (A \cup C) we will consider both the cases
        when x is iu A or x is in B \cap C hence we will consider the two cases.
        CASE I:
                          (when x \in A)
                          \Rightarrow x \in A \cup B and x \in A \cup C (definition of union)
        Hence,
                                                     (definition of intersection)
                 x \in (A \cup B) \cap (A \cup C)
        CASE II:
                           (when x \in B \cap C)
        We have x \in B and x \in C
                                                     (definition of intersection)
        Now x \in B \Rightarrow x \in A \cup B
                                                     (definition of union)
        and x \in C \Rightarrow x \in A \cup C
                                                      (definition of union)
        Thus x \in A \cup B and x \in A \cup C
                               \Rightarrow x \in (A \cup B) \cap (A \cup C)
        In both of the cases x \in (A \cup B) \cap (A \cup C)
        Accordingly,
                          A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \dots (1)
Conversely,
                 Suppose x \in (A \cup B) \cap (A \cup C)
                      \Rightarrow x \in (A \cup B) and x \in (A \cup C) (definition of intersection)
        Consider the two cases x \in A and x \notin A
        CASE I:
                          (when x \in A)
                                                     (definition of union)
        We have x \in A \cup (B \cap C)
        CASE II:
                          (when x \notin A)
        Since x \in A \cup B and x \notin A, therefore x \in B
```

```
Also, since x \in A \cup C and x \notin A, therefore x \in C. Thus x \in B and x \in C
        That is, x \in B \cap C
                     \Rightarrow x \in A \cup (B \cap C)
                                                           (definition of union)
        Hence in both cases
        x \in A \cup (B \cap C)
        \therefore (A \cup B) \cap C (A \cup C) \subseteq A \cup (B \cap C) \dots (2)
        By (1) and (2), it follows that
        A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
                                                           (proved)
EXERCISE:
        For any sets A and B if A \subset B then
            (a) A \cap B = A
                                                   A \cup B = B
        SOLUTION:
                       (a) Let x \in A \cap B
                                          \Rightarrow x \in A and x \in B
                                          \Rightarrow x \in A
                                                           (in particular)
                         Hence A \cap B \subseteq A....(1)
        Conversely,
                         let x \in A.
                         Then x \in B
                                                   (since A \subseteq B)
                         Now x \in A and x \in B, therefore x \in A \cap B
                         Hence, A \subseteq A \cap B....(2)
                         From (1) and (2) it follows that
                         A = A \cap B
                                                            (proved)
            (b) Prove that A \cup B = B when A \subseteq B
        SOLUTION:
                         Suppose that A \subseteq B. Consider x \in A \cup B.
        CASE I
                         (when x \in A)
                Since A \subseteq B, x \in A \Rightarrow x \in B
        CASE II
                         (when x \notin A)
                Since x \in A \cup B, we have x \in B
        Thus x \in B in both the cases, and we have
                A \cup B \subseteq B....(1)
        Conversely
                          let x \in B. Then clearly, x \in A \cup B
                Hence B \subseteq A \cup B....(2)
                Combining (1) and (2), we deduce that
                A \cup B = B
                                          (proved)
USING SET IDENTITIES:
        For all subsets A and B of a universal set U, prove that
                                 (A - B) \cup (A \cap B) = A
        PROOF:
                LHS
                        =(A-B)\cup(A\cap B)
                         = (A \cap B^c) \cup (A \cap B)
                                                           (Alternative representation for set
                                                                    difference)
```

58

$$= A \cap (B^{c} \cup B)$$

$$= A \cap U$$

$$= A$$

$$= RHS$$
Distributive Law
Complement Law
Identity Law
(proved)

The result can also be seen by Venn diagram.

EXERCISE:

For any two sets A and B prove that $A - (A - B) = A \cap B$

SOLUTION

EXERCISE:

For all set A, B, and C prove that (A - B) - C = (A - C) - B

SOLUTION

$$\begin{array}{l} LHS = (A-B)-C \\ = (A\cap B^c)-C & \text{Alternative representation of set difference} \\ = (A\cap B^c)\cap C^c & \text{Alternative representation of set difference} \\ = A\cap (B^c\cap C^c) & \text{Associative Law} \\ = A\cap (C^c\cap B^c) & \text{Commutative Law} \\ = (A\cap C^c)\cap B^c & \text{Associative Law} \\ = (A-C)\cap B^c & \text{Alternative representation of set difference} \\ = (A-C)-B & \text{Alternative representation of set difference} \\ = RHS & \text{(proved)} \end{array}$$

EXERCISE:

Simplify
$$(B^c \cup (B^c - A))^c$$

SOLUTION
$$(B^c \cup (B^c - A))^c = (B^c \cup (B^c \cap A^c))^c$$
Alternative representation for set difference
$$= (B^c)^c \cap (B^c \cap A^c)^c \qquad \text{DeMorgan's Law}$$

$$= B \cap ((B^c)^c \cup (A^c)^c) \qquad \text{DeMorgan's Law}$$

$$= B \cap (B \cup A) \qquad \text{Double Complement Law}$$

= B

Absorption Law

is the simplified form of the given expression.

PROVING SET IDENTITIES BY MEMBERSHIP TABLE:

Prove the following using Membership Table:

(i)
$$A-(A-B)=A\cap B$$

(ii)
$$(A \cap B)^c = A^c \cup B^c$$

(iii) $A - B = A \cap B^c$

(iii)
$$A - B = A \cap B^{c}$$

$$\mathbf{A} - (\mathbf{A} - \mathbf{B}) = \mathbf{A} \cap \mathbf{B}$$

A	В	A-B	A-(A-B)	A∩B
1	1	0	1	1
1	0	1	0	0
0	1	0	0	0
0	0	0	0	0

$$(\mathbf{A} \cap \mathbf{B})^{c} = \mathbf{A}^{c} \cup \mathbf{B}^{c}$$

A	В	$A \cap B$	$(A \cap B)^c$	A c	B ^c	$A^c \cup B^c$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

SOLUTION (iii):

A	В	A - B	В°	$A \cap B^c$
1	1	0	0	0
1	0	1	1	1
0	1	0	0	0
0	0	0	1	0