Νικόλαος Ε. Κολοκοτρώνης Αναπληρωτής Καθηγητής

Κρυπτοσυστήματα ιδιωτικού κλειδιού

ΚΡΥΠΤΟΓΡΑΦΙΑ: 2η εργασία

1.	Υλοποιήστε τον αλγόριθμο κρυπτογράφησης/αποκρυπτογράφησης ΤΕΑ σε γλώσσα
	ANSI C (ο κώδικας να είναι επαρκώς σχολιασμένος). Για την υλοποίησή σας:

	or o to moomary rail our and orthopinary officially	Mara 4/1. 1 cm (1/1 arta/tam) art 1 art 4.							
α)	Να κατασκευάσετε αρχεία κειμένου με για τον έλεγχο της ορθότητας της υλοπο								
	α.1. Το 1° αρχείο θα περιέχει ζεύγη ($\it M$,	C) για όλα τα M όταν $K=0$.							
	α.2. Το 2° αρχείο θα περιέχει ζεύγη (<i>K</i> ,	C) για όλα τα K όταν $M = 0$.							
β)	β) Να συμπληρώσετε στον ακόλουθο πίνακα τα υποκλειδιά που παράγονται α το κλειδί $K = ale 9$ (στο δεκαεξαδικό σύστημα) σε κάθε γύρο								
	β.1. $k^1 = $ β.2. $k^2 = $								
	β.3. $k^3 = $ β.4. $k^4 = $								
γ)	Να δημιουργήσετε 1GiB τυχαίων δεδομένων (2 ²⁶ μηνύματα) και να μετρήσε την ταχύτητα της κρυπτογράφησης κι αποκρυπτογράφησης. Συμπληρώστε στοιχεία και δώστε screenshots:								
	γ.1. Κρυπτογράφηση:	sec							
	γ.2. Αποκρυπτογράφηση:	sec							

- 2. Προκειμένου να προχωρήσετε σε κρυπτανάλυση του αλγορίθμου ΤΕΑ, με τη χρήση της γραμμικής και διαφορικής κρυπτανάλυσης:
 - α) Βρείτε τον πίνακα γραμμικών προσεγγίσεων καθώς και τον πίνακα κατανομής διαφορών για το κουτί αντικατάστασης του αλγορίθμου.
 - β) Χρησιμοποιήστε την ανωτέρω πληροφορία ώστε να βρείτε τα 10 καλύτερα γραμμικά και διαφορικά χαρακτηριστικά του αλγορίθμου για 3 γύρους.
- 3. Υλοποιήστε μια από τις μεθόδους γραμμικής ή διαφορικής κρυπτανάλυσης και να εφαρμόσετε τα χαρακτηριστικά που βρήκατε. Θεωρήστε ότι τα κείμενα που έχετε αναχαιτίσει είναι κρυπτογραφημένα με το κλειδί K = ale 9 (άγνωστο όμως σε εσάς). Τι ποσοστό επιτυχίας είχατε και πόσα ζεύγη M, C) χρειαστήκατε;

ΚΡΥΠΤΟΓΡΑΦΙΑ 2η εργασία

Παράρτημα. Ο κρυπταλγόριθμος ΤΕΑ

Ο συμμετρικός κρυπταλγόριθμος ΤΕΑ (toy encryption algorithm) που απεικονίζεται στο Σχήμα 1 είναι ένας τμηματικός αλγόριθμος 4 γύρων, του οποίου η σχεδίαση βασίζεται σε δίκτυα αντικατάστασης–αντιμετάθεσης (SPNs).

Σχήμα 1. Ο κρυπταλγόριθμος ΤΕΑ

Ο κρυπταλγόριθμος δέχεται ως είσοδο 16 bit κλειδί και επεξεργάζεται τμήματα απλού κειμένου μήκους 16 bit. Το 4x4 κουτί αντικατάστασης S δίνεται στον ακόλουθο πίνακα

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	6	4	С	5	0	7	2	е	1	f	3	d	8	а	9	b

Ο αλγόριθμος επέκτασης του κλειδιού *K* είναι απλός. Σε κάθε γύρο πραγματοποιούνται αριστερές (κυκλικές) ολισθήσεις 2 θέσεων και στη συνέχεια αντιμετάθεση (με εξαίρεση τον τελευταίο γύρο) για την παραγωγή του *i*—στου υποκλειδιού.

Σελ. 2 από 2 Ν. Κολοκοτρώνης