Γ_{ee} Measurement from Beginning to End

Jim Pivarski

Method

Use production process $e^+e^- \to \Upsilon$, integrated over e^+e^- energy

$$\Gamma_{ee} = \frac{M_{\Upsilon}^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE,$$

Integral will be replaced by a fit to production lineshape, excluding ISR tail

Lineshape scans were acquired in November 2001 – September 2002

Method

Measure cross-section by counting hadrons, correct for leptons with $(1 - 3\mathcal{B}_{\mu\mu})$

Hadron cuts:

- (a) largest track momentum < 70% beam energy
- (b) visible energy > 40% of center-of-mass energy
- (c) event vertex XY within 5 mm of beamspot
- (d) event vertex Z within 7.5 cm of beamspot

Issues (Table of Contents):

- Hadronic efficiency
- Backgrounds
- Luminosity
- Cross-section stability
- Beam-energy measurement stability
- Fitting

And then

- Preliminary results

Hadronic Efficiency

 $\Upsilon(1S)$ measured directly in $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$

- $\pi^+\pi^-$ chosen to satisfy trigger
- Corrected for boost, track/shower confusion

Hadronic efficiency is $(97.8 \pm 0.5)\%$

Hadronic Efficiency

 $\Upsilon(1S)$ measured directly in $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$

- $\pi^+\pi^-$ chosen to satisfy trigger
- Corrected for boost, track/shower confusion

Hadronic efficiency is $(97.8 \pm 0.5)\%$

Correct $\Upsilon(2,3S)$ for cascades to leptons

$$\mathcal{B}_{X\ell^+\ell^-} = (1.5 \pm 0.4)\%$$

$$\mathcal{B}_{X\ell^+\ell^-} = (1.4 \pm 0.5)\%$$

Hadronic efficiency is $(96.1 \pm 0.6)\%$ (2S) and $(96.2 \pm 0.7)\%$ (3S)

Backgrounds

Explicitly subtract cosmic rays and beam-gas, effectively subtract the rest in the fit

Luminosity

Surik and Brian determined luminosity calibration to 1.3% (CBX 05-17)

We use $\gamma\gamma$ for point-by-point luminosity (no backgrounds from Υ), and the above average to normalize all luminosities

Cross-section Stability

All off-resonance runs at a given energy reproduce the same cross-section, within statistics

Cross-section **in**stability $\lesssim 0.03$ nb

Beam-energy Measurement Stability

- weekly scans were short and independent
- measurements alternated above and below resonance peak
- a point of high slope was repeated in the scan

Beam-energy Measurement Stability

- weekly scans were short and independent
- measurements alternated above and below resonance peak
- a point of high slope was repeated in the scan

Beam-energy instability $\lesssim 0.07 \text{ MeV}$

Fitting

Parameters:

- 1. Area without tail (MeV nb) $\longrightarrow \Gamma_{ee}$ (keV)
- 2. Beam energy spread (MeV)
- 3. Background level (nb)
- 4–15. Upsilon mass for each weekly scan (MeV)

Fit function:

- Breit-Wigner ⊗ Gaussian ⊗ ISR tail (Kuraev and Fadin 0.1% calculation)
 Includes interference term (small effect)
- 2. $\tau^+\tau^-$ background peaks under signal, precisely subtracted with Jean's $\mathcal{B}_{\tau\tau}$
- 3. Smooth backgrounds: 1/s and $\log s$

Fit Results

 $\Upsilon(1S)$ Pull Distributions: $\chi^2/\text{ndf} = 230/195 = 1.2$, C.L. = 4%

 $\Upsilon(2\mathrm{S})$ Pull Distributions: $\chi^2/\mathrm{ndf}=58/66=0.87,\,\mathrm{C.L.}=76\%$

 $\Upsilon(3\mathrm{S})$ Pull Distributions: $\chi^2/\mathrm{ndf}=155/165=0.94,\,\mathrm{C.L.}=70\%$

Summary of Uncertainties

Contribution to Γ_{ee}	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Statistical*	0.7%	1.6%	2.2%
$(1-3\mathcal{B}_{\mu\mu})$	0.2%	0.2%	0.3%
Hadronic efficiency	0.5%	0.6%	0.7%
Luminosity calibration	1.3%	1.3%	1.3%
Cross-section stability	0.1%	0.1%	0.1%
Beam-energy stability	0.2%	0.2%	0.2%
Shape of the fit function	0.05%	0.06%	0.05%
Total	1.6%	2.2%	2.7%

^{*}Statistical uncertainty is dominated by run-by-run luminosity measurement $(e^+e^- \to \gamma\gamma)$ counting) and contains background subtractions.

Preliminary Results

Quantity	Value	Uncertainty
$\Gamma_{ee}(1S)$	$1.336 \pm 0.009 \pm 0.019 \text{ keV}$	1.6%
$\Gamma_{ee}(2S)$	$0.616 \pm 0.010 \pm 0.009 \text{ keV}$	2.2%
$\Gamma_{ee}(3S)$	$0.425 \pm 0.009 \pm 0.006 \text{ keV}$	2.7%
$\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$	$0.461 \pm 0.008 \pm 0.003$	1.8%
$\Gamma_{ee}(3S)/\Gamma_{ee}(1S)$	$0.318 \pm 0.007 \pm 0.002$	2.4%
$\Gamma_{ee}(3S)/\Gamma_{ee}(2S)$	$0.690 \pm 0.019 \pm 0.006$	2.8%

Will be presented at EPS, Lattice05

Preliminary Results

Comparison with Theory

Theoretical calculation of $\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$ (hep-lat:0507013, 13 July 2005)

Strong dependence on lattice spacing $(\Gamma_{ee} \propto |\psi(0)|^2$, one point on the lattice) "Fine" unquenched result: $(13 \pm 5)\%$ higher than experiment.