

UNIVERSIDADE FEDERAL DO ABC Disciplina de Bases Conceituais da Energia

Exploração dos recursos energéticos renováveis

BIOMASSA

A energia da biomassa é aquela derivada de matéria viva como:

- grãos
- as árvores e plantas aquáticas e terrestres
- resíduos agrícolas e florestais (incluindo restos de colheitas e e estrumes)
- resíduos sólidos municipais.

A energia da biomassa pode ser descrita como energia solar armazenada na forma de energia química, através do processo da fotossíntese. Ela pode ser utilizada como combustíveis sólidos, líquidos ou gasosos.

Processos de utilização da energia da biomassa

Existem 3 tipos de processos de conversão da energia da biomassa em outras formas de energia (geralmente calor). São eles:

1) Processos bioquímicos: quando há decomposição de matéria orgânica em uma atmosfera deficiente em O₂. Como exemplo, temos a produção do gás metano (CH₄ – digestão anaeróbica) e a fermentação controlada para a produção de etanol e metanol.

2) Combustão direta: queima de biomassa para produzir calor. Por exemplo, para aquecer um ambiente ou para produzir eletricidade em uma usina termoelétrica.

3) Pirólise: decomposição térmica de resíduos orgânicos em um gás ou líquido sob altas temperaturas, em atmosfera deficiente em O₂.

Biocombustíveis obtidos por fermentação

Obs: a fermentação para a produção de bebidas alcoólicas data de 4000 anos a.C. Os egípcios faziam cerveja com grãos e uva.

1) Etanol

C₂H₅OH

Obtido a partir de grãos (milho), cana de açúcar, madeira, beterraba, centeio, etc...

O etanol da cana é o que demanda menos energia no plantio/colheita. O de milho é questionável do ponto de vista energético, pois acredita-se que sua cultura pode consumir mais energia do que ele poderá disponibilizar.

2) Metanol

CH₃OH

Pode ser obtido a partir de qualquer material que contenha carbono. Geralmente é obtido a partir da destilação da madeira. Pode também ser obtido a partir do carvão ou gás natural. É utilizado em carros de corrida. É o "fogo que arde sem se ver", já que não emite chamas quando entra em combustão.

Biodiesel

Obtido a partir de óleos vegetais em geral, como o de soja. No processo, a goma e a glicerina do óleo são removidas, formando um combustível com propriedades semelhantes ao diesel – daí o nome.

O biodiesel produz aproximadamente 3 unidades energia/ 1 unid. comb. fóssil consumida na produção. É praticamente livre de enxofre e biodegradável.

O biodiesel pode ser obtido a partir de:

- Óleo de soja (1º lugar no BR)
- Óleo de canola
- Óleo de colza
- Óleo de mamona
- Óleo de algodão (cerca de 4% da produção no BR)
- Óleo de dendê
- Pinhão manso
- Óleo de crambe
- Sebo bovino (2° lugar no BR)
- Óleo residual de frituras

Soja

Crambe

Óleo de fritura

Sebo bovino

Canola

Pinhão Manso

UNIVERSIDADE FEDERAL DO ABC Disciplina de Bases Conceituais da Energia

Energia Solar

A importância da energia solar

Fonte: Schoenmaker et al. (2016)

A anatomia do Sol

Fonte: Schoenmaker et al. (2016)

- A temperatura no núcleo é de 15,7 milhões de graus Celsius e a pressão de 340 bilhões de atmosferas.
- Nessas condições, apesar de haver abundância de átomos de H, não há moléculas de H₂. As interações no interior do átomo são desfeitas, desprendendo elétrons de seus núcleos.
- É mais correto dizer que 4 núcleos de hidrogênio (prótons) formam um núcleo de hélio (partícula alfa), do que dizer 4 átomos de hidrogênio formam um de hélio.

Espectro eletromagnético e espectro solar

Fatores que influenciam a quantidade de radiação solar incidente na Terra

a) Atenuação atmosférica

Formas de aproveitamento da energia solar

a) Conversão fotovoltaica

A Figura 3.6 mostra a estrutura física de uma junção pn de uma célula fotovoltaica.

Fonte: Manual de Engenharia de Sistemas Fotovoltaicos - 2014

SISTEMAS FOTOVOLTAICOS CONECTADOS À REDE ELÉTRICA

b) Conversão térmica

Aquecimento solar

www.soletrol.com.br

Aquecimento solar

Fogão solar

Usinas termosolares

Usinas termosolares

Usinas termosolares

Usinas hidrelétricas

Usina de Itaipu – Capacidade de 14 GW

Pequenas centrais hidrelétricas

PCH Anhanguera – Volkswagen – Capacidade 23 MW

É possível aproveitar o potencial hidráulico de forma descentralizada, como no caso das PCHs.

Usinas eólicas

Parque eólico de Água Doce – SC – 110 MW

As pás das turbinas eólicas absorvem a energia mecânica do vento. Por meio de engrenagens, essa energia é transferida a um gerador elétrico, que a converte em energia elétrica.

https://www.youtube.com/watch?v=DILJJwsFl3w

Potencial Eólico Brasileiro

▶ 142.5 GW

é o potencial eólico brasileiro. Esse valor é comparável ao potencial hidrelétrico remanescente no país, de 182 GW

UNIVERSIDADE FEDERAL DO ABC Disciplina de Bases Conceituais da Energia

Exploração dos recursos energéticos renováveis – parte 2

Recordação: Modelo Exponencial

$$\frac{dN}{dt} = rN$$
$$N = N_0 e^{rt}$$

- Crítica a esse modelo
 - Modelo apresenta taxas de crescimento e mortalidade constantes, o que gera crescimento ilimitado da população

Crescimento Populacional Logístico

https://www.youtube.com/watch?v=KnSdC16lY3s&t=774s

O que significa K?

- K Capacidade suporte do meio
 - Densidade máxima de animais que podem ocupar uma determinada área
 - Lotação de pastagem
 - Confinamento
 - Criações intensivas
 - Granjas avícolas e de suínos
- Adensamento populacional
- Favorecimento da transmissão de patógenos

Modelo de Crescimento Logístico (Densidade-Dependente)

https://www.youtube.com/watch?v=KnSdC16lY3s&t=774s

Modelo de Crescimento Logístico (Densidade-Dependente)

1. Recursos naturais e a função logística

Figura 1 – Função logística representando a evolução da quantidade de recursos naturais renováveis.

Fonte: Notas de aula do Prof. João Manoel Losada Moreira – UFABC ENE 2425 2018 https://sites.google.com/site/en2416energiaambientesociedade/

Figura 2 – Limite acima do qual o crescimento da quantidade de recursos naturais sofre impedimentos.

Fonte: Notas de aula do Prof. João Manoel Losada Moreira — UFABC ENE 2425 2018 https://sites.google.com/site/en2416energiaambientesociedade/

Exercício resolvido:

Após uma intervenção governamental, em 2018, uma floresta que vinha sofrendo uma agressiva degradação devido à intervenção humana (extração) deixou de ser desmatada. A partir de 2018, a área da floresta em função do tempo passou a apresentar uma taxa de crescimento natural, F(t), cujo comportamento temporal pode ser descrito pela função logística, isto é:

$$F(t) = \frac{dX(t)}{dt} = rX(t)\left(1 - \frac{X(t)}{X_s}\right)$$

onde X(t) é a área da floresta, em km², r é o coeficiente de reposição natural da floresta, expresso em ano^{-1} , e X_S é a capacidade de suporte da floresta, sendo F(t) expressa em km²/ano. Em 2018, a taxa de crescimento natural da floresta foi estimada em 5000 km²/ano e a área da floresta foi estimada 1 milhão de km², o que corresponde a 50% da área que ela apresentava antes de qualquer intervenção humana (extração). Com base nessas informações, determine:

- a) a área da floresta em função do tempo, X(t), a partir de 2018.
- b) a área da floresta em 2050.

a)

$$\begin{split} \frac{dX(t)}{dt} &= rX(t) \left(1 - \frac{X(t)}{X_S}\right) \\ \frac{dX(t)}{X(t) \left(1 - \frac{X(t)}{X_S}\right)} &= rdt \end{split}$$

Reescreva o lado esquerdo da equação:

$$\frac{dX(t)}{X(t)\left(1-\frac{X(t)}{X_S}\right)} = \frac{dX(t)X_S}{X(t)\left(X_S-X(t)\right)} = dX(t)\left[\frac{1}{X(t)} + \frac{1}{X_S-X(t)}\right]$$

Substitua o resultado na segunda equação:

$$dX(t)\left[\frac{1}{X(t)} + \frac{1}{X_S - X(t)}\right] = rdt$$

Integre:

$$\int_{X(0)}^{X(t)} \left[\frac{1}{X(t)} + \frac{1}{X_S - X(t)} \right] dX(t) = \int_0^t r dt$$

$$\{ \ln X(t) - \ln[X_S - X(t)] \}_{X(0)}^{X(t)} = rt_0^t$$

Inverta a ordem dos logaritmos e troque o sinal do lado direito:

$$\left\{\ln[X_S - X(t)] - \ln X(t)\right\}_{X(0)}^{X(t)} = -rt_0^t$$

$$\ln \frac{X_S - X(t)}{X_S - X(0)} - \ln \frac{X(t)}{X(0)} = -rt$$

$$\ln \frac{\frac{X_S - X(t)}{X_S - X(0)}}{\frac{X(t)}{X(0)}} = -rt$$

$$\frac{\frac{X_S - X(t)}{X_S - X(0)}}{\frac{X(t)}{X(0)}} = e^{-rt}$$

$$\frac{X_{S} - X(t)}{X_{S} - X(0)} = \frac{X(t)}{X(0)}e^{-rt}$$

$$X_{S} - X(t) = \left[\frac{X_{S} - X(0)}{X(0)}e^{-rt}\right]X(t)$$

$$X(t) - X_S = -\left[\frac{X_S - X(0)}{X(0)}e^{-rt}\right]X(t)$$

$$X(t) + \left[\frac{X_S - X(0)}{X(0)}e^{-rt}\right]X(t) = X_S$$

$$X(t)\left[1+\frac{X_S-X(0)}{X(0)}e^{-rt}\right]=X_S$$

$$X(t) = \frac{X_S}{\left[1 + \frac{X_S - X(0)}{X(0)}e^{-rt}\right]}$$

Do enunciado, $X_S = 2.000.000 km^2$, $F(0) = 5.000 \frac{km^2}{ano} e X(0) = 1.000.000 km^2$. Basta, então, encontrar o valor de r:

$$F(0) = rX(0) \left(1 - \frac{X(0)}{X_S} \right)$$

$$5000 \frac{km^2}{ano} = r. 10000000km^2 \left(1 - \frac{1000000km^2}{2000000km^2} \right)$$

$$r = 0.01ano^{-1}$$

Finalmente:

$$X(t) = \frac{2.000.000 \, km^2}{\left[1 + \frac{2.000.000 - 1.000.000}{1.000.000} e^{-0.01t}\right]}$$
$$X(t) = \frac{2.000.000 \, km^2}{\left[1 + e^{-0.01t}\right]}$$

b) Considerando X= 0 em 2018, teremos X = 32 em 2050. Substituindo:

$$X(32) = \frac{2.000.000 \ km^2}{[1 + e^{-0.01 \times 32}]} = 1.158.649 \ km^2$$