Problem Set 6

Leah Pomerantz

March 29, 2022

1 Problem 6

The table produced by R is shown below. logwages are missing at a rate of 25%. With such a high percentage missing, I would guess that it's MNAR.

2 Problem 7

The table produced by R with all the regression results is shown below. The $\hat{\beta}_1$ estimates vary. from 0.050 up to 0.062. What is consistent about all the values is that they have hugely underestimated the value of $\hat{\beta}_1$. However ,out of all the estimations, the listwise deletion and predicted values got the closest. This suggests that the data may be MCAR or MAR. It's a reminder that different methods work better/worse for different data sets, depending on the reason why the data are missing. The last two values for $\hat{\beta}_1$ are close together, suggesting that the methods are both working okay (at least working better than mean imputation), but the predicted values method still does a slightly better job at the prediction.

3 Problem 8

For my project, I plan on using data from my MA thesis. Right now, I'm thinking about looking at how having a parent's education level affects a child's education level. For example, I would expect a high school graduate mother to have a negative affect on probability of going to college, and I would expect the difference between some college and college graduate to be smaller. This prediction comes from my own experience working in admissions and recruitment. There's a steep knowledge gap in how to get a child into college, from things as simple as taking the SATs and PSATs, to taking APs, Honors classes, etc. I think having some college means that the parent will know more about how to get those things accomplished, even though they don't have a degree. That said, I only have data I can match for mothers, not fathers, so that would be a huge flaw with the model.

I think I would use an ordered logistic regression for this. I have an ordered categorical variable as my dependent variable. I've never done this type of analysis, though, so I would need to read up on it some more.

	Unique (#)	Missing (%)	Mean	SD	Min	Median	Max
logwage	670	25	1.6	0.4	0.0	1.7	2.3
hgc	16	0	13.1	2.5	0.0	12.0	18.0
tenure	259	0	6.0	5.5	0.0	3.8	25.9
age	13	0	39.2	3.1	34.0	39.0	46.0

	Listwise deletion	Mean Imputation	Predicted Values	Mice
(Intercept)	0.534	0.708	0.534	0.638
- /	(0.146)	(0.116)	(0.112)	(0.155)
hgc	0.062	0.050	0.062	0.058
	(0.005)	(0.004)	(0.004)	(0.005)
collegenot college grad	0.145	0.169	0.145	0.109
	(0.034)	(0.026)	(0.025)	(0.029)
tenure	0.050	0.038	0.050	0.043
	(0.005)	(0.004)	(0.004)	(0.005)
I(tenure^2)	-0.002	-0.001	-0.002	-0.001
	(0.000)	(0.000)	(0.000)	(0.000)
age	0.000	0.000	0.000	0.000
	(0.003)	(0.002)	(0.002)	(0.003)
marriedsingle	-0.022	-0.027	-0.022	-0.020
	(0.018)	(0.014)	(0.013)	(0.015)
Num.Obs.	1669	2229	2229	
R2	0.208	0.146	0.277	
R2 Adj.	0.206	0.144	0.275	
AIC	1179.9	1093.8	925.5	
BIC	1223.2	1139.5	971.1	
Log.Lik.	-581.936	-538.912	-454.737	
F	72.917	63.461	141.686	
RMSE	0.34	0.31	0.30	