Introduction to Computer Networks

Firewalls (§8.6.2)

Topic

- Firewalls
 - Protecting hosts by restricting network connectivity

Motivation

- The best part of IP connectivity
 - You can send to any other host
- The worst part of IP connectivity
 - Any host can send packets to you!
 - There's nasty stuff out there ...

Goal and Threat Model

- Goal of firewall is to implement a boundary to restrict IP connectivity:
 - >> You can talk to hosts as intended
 - >> Trudy can't talk to you over network

Recall Middleboxes

- Sit "inside the network" but perform "more than IP" processing on packets to add new functionality
 - NAT box, Firewall / Intrusion Detection System

Firewall as Middlebox

Operation

- Firewall has two sides:
 - Internal (organization) and external (Internet)
- For each packet that tries to cross, decide whether to:
 - >>> ACCEPT = pass unaltered; or DENY = discard silently
 - Decision is a local policy; firewall centralizes IT job

Internal (Organization)

ACCEPT External (Internet)

Design

- Key tension:
 - How to translate desired policies into packet filtering rules
- Policies are high-level statements
 - Relate to usage of apps, content
- Packet filtering is low-level
 - Limited viewpoint in the network, e.g., no app messages, encryption

Design (2)

- Stateless firewall
 - Simplest kind of firewall
 - Implements static packet filter rules
 - Typically using TCP/UDP ports
- E.g., deny TCP port 22 (telnet)
 - Can allow/disallow many types of services and destinations

Design (3)

- Stateful firewall
 - A step up from stateless
- Implements stateful packet filter rules that track packet exchanges
- NAT example: accept incoming TCP packets after internal host connects

Design (4)

- Application layer firewall:
 - Another step up
 - Implements rules based on app usage and content
 - E.g., inspect content for viruses
 - Tries to look beyond packets by emulating higher layers, e.g., by reassembling app messages

Deployment

- Firewall is placed around internal/external boundary
 - Classic setup includes DMZ (DeMilitarized Zone) to put busy
 Internet hosts on the outside for better separation

Deployment (2)

- Various device options:
 - Specialized network firewall
- Firewall in boundary device, e.g., AP
 - Firewall as part of host, e.g., in OS
- Tradeoff:
 - Centralizing simplifies IT job
 - Distributing improves protection,
 visibility into apps, and performance

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey