# Modelli di Programmazione Lineare Intera Presenza di Costi Fissi



### Presenza di costi fissi

Analizziamo due classi di problemi in cui si deve tenere conto dei costi fissi

- Problemi di Gestione delle Scorte
- Problemi di Localizzazione di Impianti

## Problemi di gestione delle scorte

Uso dei costi fissi

Nell'ambito di problemi di allocazione di risorse abbiamo parlato di modelli *multiperiodo*:

problemi in cui la pianificazione della produzione è effettuata su un orizzonte temporale formato fa più periodi elementari e si suppone di poter immagazzinare della merce prodotta tra un periodo e l'altro

Vediamo un modello più generale che tiene conto della presenza di costi fissi in ogni periodo elementare

### Formulazione Generale

### Problemi di gestione delle scorte

Supponiamo di voler pianificare la produzione di un bene in un periodo  $T=\{1,\ldots,t\}$ 

In ogni periodo è possibile immagazzinare una certa quantità di questo bene che potrà essere usata nel periodo successivo

Supponiamo di avere i seguenti dati:

- $d_i$ , i = 1, ..., t: domanda nel periodo  $i \in T$  (da soddisfare esattamente)
- $c_i$ , i = 1, ..., t: costo della produzione di un'unità di bene nel periodo  $i \in T$
- $f_i$ , i = 1, ..., t: costo dell'avviamento della produzione nel periodo  $i \in T$
- $b_i$ , i = 1, ..., t 1: costo di stoccaggio di un'unità di bene nel periodo  $i \in T$



### Formulazione Generale

### Problemi di gestione delle scorte

### • Variabili:

- $x_i \ge 0$ , i = 1, ..., t:
  quantità di bene prodotto nel periodo  $i \in T$
- ▶  $s_i \ge 0$ , i = 1, ..., t 1: quantità di bene immagazzinato nel periodo  $i \in T$
- ▶  $\delta_i \in \{0,1\}$ , i = 1, ..., t:  $\delta_i = 1$  se nel periodo  $i \in T$  c'è produzione
- Funzione Obiettivo: minimizzare i costi

tivo: minimizzare i costi 
$$\sum_{i=1}^{t} (c_i x_i + f_i \delta_i) + \sum_{i=1}^{t} b_i s_i$$

$$x \text{ is produtione}$$

$$x \text{ is produtione}$$

$$dell'i-e \text{ hmo be ne}$$

$$della quanhta' x$$

$$| \mathbf{a} | \mathbf{b} | \mathbf{c} |$$

### Formulazione Generale

### Problemi di gestione delle scorte

- Vincoli :
  - ▶ Vincoli di domanda:

$$x_1 = d_1 + s_1$$
  
 $s_{i-1} + x_i = d_i + s_i, i = 2, ..., t - 1$   
 $s_{t-1} + x_t = d_t$ 

▶ Presenza dei costi fissi:

$$x_i - M\delta_i \leq 0$$

M può essere posto pari a  $\sum_{i=1}^{t} d_i$ 

► Nonnegatività:

$$x_i \ge 0, \ s_i \ge 0, \ i = 1, \dots, t$$

▶  $\delta_i \in \{0,1\}, i = 1,...,t$ 



Un'industria deve pianificare la produzione di un unico prodotto per i prossimi tre mesi

La domanda mensile che il mercato è in grado di assorbire è nel primo, nel secondo e nel terzo mese pari rispettivamente a 120, 150 e 90 tonnellate

Questa industria dispone di magazzini e quindi ha la possibilità di stoccare le quantità prodotte nel primo o nel secondo mese, ma al termine del trimestre non intende lasciare scorte in magazzino

Lo stoccaggio ha un costo unitario (in migliaia di Euro per tonnellata) pari a 2

Per la produzione di ciascuna tonnellata di prodotto l'industria deve sostenere un costo (variabile nei tre mesi) pari a 10, 12 e 11 migliaia di Euro rispettivamente nel primo, nel secondo e nel terzo mese

Per avviare la produzione in ogni mese l'industria ha un costo di set-up pari a 3000 euro

Si deve determinare quanto produrre mensilmente e quanto stoccare nei primi due mesi in modo da minimizzare il costo complessivo



Si tratta di problemi che nascono nell'ambito della pianificazione industriale che possono essere schematizzati nel seguente modo:

- $A_1, \ldots A_n$ : aree distribuite su un territorio dove poter costruire una fabbrica/ aprire un negozio/ ...
- $p_i$ :
  massima capacità produttiva dell'impianto aperto nell'area  $A_i$
- $f_i$ :
  costo fisso per l'apertura dell'impianto aperto nell'area  $A_i$
- $C_1, \ldots C_m$ : siti dei magazzini ai quali deve essere trasportata la merce prodotta
- $r_j$ : domanda del sito  $C_j$ , j = 1, ..., m

Dati

- $f_{ij}$ :
  costo fisso costruzione della strada da  $A_i$  a  $C_j$ ,  $i=1,\ldots,n$   $j=1,\ldots,m$
- $c_{ij}$ : costo del trasporto di un'unità di merce da  $A_i$  a  $C_j$ ,  $i=1,\ldots,n$   $j=1,\ldots,m$
- $M_{ij}$ :
  quantitativo massimo di merce trasportabile da  $A_i$  a  $C_j$ ,  $i=1,\ldots,n$   $j=1,\ldots,m$

### Si vuole determinare:

- quante fabbriche costruire e su quali aree
- quali strade costruire

in modo da soddisfare le richieste dei clienti minimizzando i costi

- di costruzione delle fabbriche
- di costruzione delle strade
- del trasporto della merce

e determinando il piano per il trasporto della merce

#### Formulazione generale

### • Variabili:

- $extstyle imes x_{ij} \geq 0, \ i=1,\ldots,n; \ j=1,\ldots,m:$  quantità di merce trasportata dalla fabbrica costruita in  $A_i$  al sito  $C_j, \quad i=1,\ldots,n \ j=1,\ldots,m$
- $m{\delta}_i \in \{0,1\}, \ i=1,\ldots,n$ :  $\delta_i=1$  se viene costruita una fabbrica in  $A_i$
- ▶  $y_{ij} \in \{0,1\}$ , i = 1, ..., n; j = 1, ..., m: se viene costruita la strada che collega  $A_i$  e  $C_i$

### Formulazione generale

Vincoli di Richiesta:

$$\sum_{i=1}^n x_{ij} = r_j, \quad j = 1, \dots, m$$

- Vincoli Logici:
  - ightharpoonup Se  $x_{ii} > 0$  allora  $y_{ii} = 1$ :

$$x_{ij} - M_{ij}y_{ij} \leq 0, \quad i = 1, ..., n; \ j = 1, ..., m$$

▶ Se  $\sum_{i=1}^{m} x_{ij} > 0$  allora  $\delta_i = 1$ 

$$\sum_{i=1}^m x_{ij} - p_i \delta_i \leq 0, \quad i = 1, \dots, n$$

• Vincolo sulla quantità di fabbriche da aprire:  $\sum_{i=1}^{n} \delta_{i} \leq q$ 



Formulazione generale

• Funzione obiettivo: Minimizziamo i costi di

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$
 + trasporto  $\sum_{i=1}^{n} f_{i} \delta_{i}$  + apertura delle fabbriche  $\sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} y_{ij}$  costruzione delle strade

Una compagnia di distribuzione deve rifornire i suoi clienti  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  e  $C_5$  che sono dislocati in località diverse di una regione

Per ottimizzare il rifornimento la compagnia vuole costruire un numero di depositi non superiore a due disponendo di tre possibili zone dove costruirli

A seconda della zona in cui vengono costruiti, i tre possibili depositi hanno un costo di costruzione e una capacità massima diversi

|            | Costo costruzione | Capacità massima |
|------------|-------------------|------------------|
| Deposito 1 | 10000             | 180              |
| Deposito 2 | 15000             | 230              |
| Deposito 3 | 13000             | 500              |

Il quantitativo di merce (in tonnellate) richiesto da ciascun cliente è riportato nella tabella che segue insieme ai costi (in migliaia di euro) del trasporto di una unità di merce da ciascuno dei possibili depositi a ciascun cliente

|            | <b>C</b> <sub>1</sub> | $C_2$ | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> |
|------------|-----------------------|-------|----------------|----------------|----------------|
| Richiesta  | 91                    | 170   | 135            | 153            | 110            |
| Deposito 1 | 15                    | 13    | 27             | 9              | 7              |
| Deposito 2 | 12                    | 21    | 34             | 21             | 3              |
| Deposito 3 | 7                     | 10    | 2              | 17             | 12             |

Costruire un modello lineare che rappresenti il problema in analisi per soddisfare esattamente la richiesta minimizzando il costo complessivo trascurando la possibilità di costruire ulteriori collegamenti rispetto a quelli esistenti e supponendo che non ci siano limitazioni sulle quantità massime di merci trasportabili

| Variabili        | :   | Χij             |     | i            | = /    | 1, 2       | , 3       |             | j             | = 4       | 1,       | . , ;      | 5     |     | _ ( | Jua   | ıvh. | ta   | dı   |     | mez     | ce         | t  | ras         | por      | tati | au |        |     |
|------------------|-----|-----------------|-----|--------------|--------|------------|-----------|-------------|---------------|-----------|----------|------------|-------|-----|-----|-------|------|------|------|-----|---------|------------|----|-------------|----------|------|----|--------|-----|
|                  |     |                 |     |              |        |            |           |             |               |           |          |            |       |     |     | d     | al   | de   | १०४  | 1to | )       | Di         | a  | C;          | j        |      |    |        |     |
|                  | (   | S; =            | -   | 0            |        | Şe<br>O    | v<br>alte | ien<br>l'ie | e<br>hn<br>nh | 10<br>(0) | tu<br>de | raq<br>ofi | to    |     |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
|                  |     | ΜſΛ             |     | <u>3</u>     |        | 5          | C         | ij          | X             | ij        | )        |            | (     | tsa | ٦ ، | dı_   | t    | za 8 | Spoi | цю  |         |            |    |             |          |      |    |        |     |
|                  |     |                 | +   | =            | 3<br>) | , = '<br>₽ | ; δ       |             | ).            |           | . (      | cost       | . , , | 5.0 |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
|                  |     |                 |     | i            | = 1    | l          | ١         |             | 10.           | 000       | 61       | - 1        | - 1   | 5.0 | 00  | f 2   |      | t    | 13.  | 00  | 000     | 3          |    |             |          |      |    |        |     |
|                  |     |                 |     | 3<br>= 1     | X      | in         | =         | 9           | 1             |           |          |            |       |     |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
|                  |     |                 | i   | 3<br>=1      | Х      | i z        | 2         |             | <b>1</b>      | 0         |          | o          | V     | INC | OLI | DI    |      | DMI  | AND  | A   |         |            |    |             |          |      |    |        |     |
|                  |     |                 |     | 3            | :      |            |           | 1           |               |           |          |            |       |     |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
| D.   L.          |     |                 |     | =            |        |            |           |             |               |           |          |            |       |     | •   |       | 1    |      |      | _   |         |            |    |             |          |      |    |        |     |
| Dobbia           |     |                 | ule | _ \<br>[ _ / |        | inco       |           |             |               |           | ľ        |            |       | to  |     |       |      |      |      |     | :<br>ጉጠ | .0         |    |             |          |      |    |        |     |
|                  | δi  | =               |     | C            | )      |            |           |             |               | ιħ        |          | J          |       |     |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
|                  | j : | 5<br>><br>= 1   | Χ;, | j            | >      | 0          |           | +           | <b>-&gt;</b>  | (         | S;       | 2          | 1     |     |     |       |      |      |      |     |         |            |    |             |          |      |    |        |     |
| icoli<br>Ogici — |     | 5<br>2 )<br>= 1 | Xن  | -            | Ŋ      | li d       | ì         | <u>८</u>    | 0             |           |          |            |       | i = | = / | ا, کہ | 3    |      | (    | Dan | hul'    | <b>Μ</b> ; | lu | nıt<br>100' | e<br>Nta | શ્ર  | ev | ore    |     |
| io al pius       | +   | δ1 -            | + 6 | ر<br>ر       | +      | б з        |           | <u>_</u>    | 2             |           |          |            |       |     |     |       |      |      |      | _   |         |            |    |             | A S I    |      |    | \- e\$ | ,wo |
| due de pont      | 1   | Xij             | د   | O            | 7      | _          | 1         |             | 3             |           | i        | _          | 1.    | 5   |     |       |      |      |      | C   | ALL T   | IUI        |    | fat         | Π 6 (    | 1111 | H  |        |     |