Financial Constraints and Price Rigidities

Yang Liu

Boston College

EEA 2024 Rotterdam

Slides available at yangliu-95.github.io [Extremely Prelimenary!!!]

- Vast micro evidence that finance matters for pricing ...
 - Idea: Lack of financial resources ⇒ Unable to compete aggressively
 - Chevalier (1995), Chevalier and Scharfstein (1996), Khanna and Tice (2005), Montero and Urtasun (2014), Balduzzi et al. (2024) ...
- ... with important macro effects on inflation
 - Gilchrist et al. (2017), Kim (2021), Duval et al. (2023) ...

- Vast micro evidence that finance matters for pricing ...
 - Idea: Lack of financial resources ⇒ Unable to compete aggressively
 - Chevalier (1995), Chevalier and Scharfstein (1996), Khanna and Tice (2005), Montero and Urtasun (2014), Balduzzi et al. (2024) ...
- ... with important macro effects on inflation
 - Gilchrist et al. (2017), Kim (2021), Duval et al. (2023) ...
- This paper: Implications for price stickiness and the slope of NKPC?

Intuition under Minimal Assumptions

- Nominal rigidities effect through intertemporal trade-offs:
 - Deviating from the optimal sticky price path may raise today's earnings...
 - ... at the expense of expected earnings in the future

Intuition under Minimal Assumptions

- Nominal rigidities effect through intertemporal trade-offs:
 - Deviating from the optimal sticky price path may raise today's earnings...
 - ... at the expense of expected earnings in the future
- Binding financial constraints: Prioritize today's earnings over future earnings
 - ullet Wedge between internal/external cash flows \Rightarrow Shadow value of today's earnings \uparrow
 - The wedge can reach infinity with vertical (or very steep) financial constraints

Intuition under Minimal Assumptions

- Nominal rigidities effect through intertemporal trade-offs:
 - Deviating from the optimal sticky price path may raise today's earnings...
 - ... at the expense of expected earnings in the future
- Binding financial constraints: Prioritize today's earnings over future earnings
 - Wedge between internal/external cash flows \Rightarrow Shadow value of today's earnings \uparrow
 - The wedge can reach infinity with vertical (or very steep) financial constraints
- The "earnings" channel: Financial constraints weaken nominal rigidities by altering intertemporal trade-offs of earnings
 - Limiting case: Choose optimal flexible prices despite nominal rigidities

Introduction

Empirical Support for the Earnings Channel

- Annual panel of Indian manufacturing firms
- Financially unconstrained: Both cost pass-through and strategic complementarities are consistent with estimates in the literature
 - Amiti et al. (2019), Gagliardone et al. (2023) ...

Empirical Support for the Earnings Channel

- Annual panel of Indian manufacturing firms
- Financially unconstrained: Both cost pass-through and strategic complementarities are consistent with estimates in the literature
 - Amiti et al. (2019), Gagliardone et al. (2023) ...
- Financially constrained: Pass-through within one year is 20 p.p. higher (30% steeper) ...
 - Almost 100% cost pass-through during large cost increases
- ... and show almost zero strategic complementarity

Empirical Support for the Earnings Channel

- Annual panel of Indian manufacturing firms
- Financially unconstrained: Both cost pass-through and strategic complementarities are consistent with estimates in the literature
 - Amiti et al. (2019), Gagliardone et al. (2023) ...
- Financially constrained: Pass-through within one year is 20 p.p. higher (30% steeper) ...
 - Almost 100% cost pass-through during large cost increases
- ... and show almost zero strategic complementarity
- Thus, financial constraints significantly reduce both nominal and real rigidities

Macroeconomy and the Earnings Channel

• Non-linear NKPC: Steeper when finance-price interactions weaken price rigidities

Macroeconomy and the Earnings Channel

- Non-linear NKPC: Steeper when finance-price interactions weaken price rigidities
- Example: Large cost increases
 - Large cost increases squeeze internal cash flows and trigger financial constraints
 - More firms become constrained and inflation is amplified

Macroeconomy and the Earnings Channel

- Non-linear NKPC: Steeper when finance-price interactions weaken price rigidities
- Example: Large cost increases
 - Large cost increases squeeze internal cash flows and trigger financial constraints
 - More firms become constrained and inflation is amplified
- Monetary policy: Aggressive MP during large cost increases may amplify the earnings channel
 - Firms care less about future negative output gap
 - Likely undermine MP's stabilization effects

Literature

- Granular empirical analysis of finance and pricing
 - Chevalier (1995), Gilchrist et al. (2017), Lenzu et al. (2021), Balduzzi et al. (2024) ...
- New theory of state-dependent price rigidities and non-linear NKPC
 - Benigno and Eggertsson (2023), Blanco et al. (2024a), Blanco et al. (2024b) ...
- Complements the investment channel in NK models with financial heterogeneity
 - Khan and Thomas (2013), Ottonello and Winberry (2020), Caglio et al. (2021) ...

Illustrative Model

- Firm i maximizes $V_{i,t}$ subject to Rotemberg adjustment costs
- $\xi_{i,t}$: shadow value of internal cash flows (EBITDA).
 - Analogous to the wedge definition of financial constraints in Kaplan and Zingales (1997)

$$V_{i,t} = \mathsf{E}_t \sum_{h=0}^{\infty} \Lambda_{t,t+h} \frac{1}{P_{t+h}} \left[\underbrace{\xi_{i,t+h}}_{\mathsf{EBITDA}} \underbrace{\left(P_{i,t+h} Y_{i,t+h} - C_{t+h} (Y_{i,t+h})\right)}_{\mathsf{EBITDA}} - \underbrace{\frac{\tau}{2} \pi_{i,t+h}^2 P_{t+h} Y_{t+h}}_{\mathsf{Adj. cost}} \right]. \tag{1}$$

Illustrative Model

- Firm i maximizes $V_{i,t}$ subject to Rotemberg adjustment costs
- $\xi_{i,t}$: shadow value of internal cash flows (EBITDA).
 - Analogous to the wedge definition of financial constraints in Kaplan and Zingales (1997)

$$V_{i,t} = \mathsf{E}_t \sum_{h=0}^{\infty} \Lambda_{t,t+h} \frac{1}{P_{t+h}} \left[\underbrace{\xi_{i,t+h}}_{\mathsf{EBITDA}} \underbrace{\left(P_{i,t+h} Y_{i,t+h} - C_{t+h} (Y_{i,t+h})\right)}_{\mathsf{EBITDA}} - \underbrace{\frac{\tau}{2} \pi_{i,t+h}^2 P_{t+h} Y_{t+h}}_{\mathsf{Adj. cost}} \right]. \tag{1}$$

• Standard Rotemberg FOC $(\epsilon_{i,t} = -\frac{\partial y_{i,t}}{\partial p_{i,t}}, \mathcal{M}_{i,t} = \frac{\epsilon_{i,t}}{\epsilon_{i,t}-1})$:

$$\pi_{i,t} = \xi_{i,t} \frac{\epsilon_{i,t} - 1}{\tau} \frac{P_{i,t} Y_{i,t}}{P_t Y_t} \left[\mathcal{M}_{i,t} M C_{i,t} \frac{P_t}{P_{i,t}} - 1 \right] + \mathsf{E}_t \Lambda_{t,t+1} \frac{Y_{t+1}}{Y_t} \pi_{i,t+1}$$
 (2)

• Let $P_{i,t}^f$ be the optimal flex price under static demand that satisfies:

$$P_{i,t} = \mathcal{M}_{i,t} M C_{i,t} P_t. \tag{3}$$

• Let $P_{i,t}^f$ be the optimal flex price under static demand that satisfies:

$$P_{i,t} = \mathcal{M}_{i,t} M C_{i,t} P_t. \tag{3}$$

Proposition (Nominal Rigidities and the Earnings Channel)

The optimal sticky price $P_{i,t}^*$ converges to $P_{i,t}^f$ as $\xi_{i,t} \to \infty$. Hence, the earnings channel weakens nominal rigidities.

$$\lim_{\xi_{i,t}\to\infty} P_{i,t}^* = P_{i,t}^f. \tag{4}$$

• Let $P_{i,t}^f$ be the optimal flex price under static demand that satisfies:

$$P_{i,t} = \mathcal{M}_{i,t} M C_{i,t} P_t. \tag{3}$$

Proposition (Nominal Rigidities and the Earnings Channel)

The optimal sticky price $P_{i,t}^*$ converges to $P_{i,t}^f$ as $\xi_{i,t} \to \infty$. Hence, the earnings channel weakens nominal rigidities.

$$\lim_{\xi_{i,t}\to\infty} P_{i,t}^* = P_{i,t}^f. \tag{4}$$

ullet In the special case of CES + CRS, the limiting case features complete cost pass-through.

- Recallb that in the limiting case $P_{i,t} = \mathcal{M}_{i,t}MC_{i,t}P_t$
- Strategic complementarities when $\xi_{i,t} \to \infty$ depend on how $P_{-i,t}$ affects $\mathcal{M}_{i,t}$:

- Recallb that in the limiting case $P_{i,t} = \mathcal{M}_{i,t}MC_{i,t}P_t$
- Strategic complementarities when $\xi_{i,t} \to \infty$ depend on how $P_{-i,t}$ affects $\mathcal{M}_{i,t}$:

Proposition (Strategic Complementarities and the Earnings Channel)

Holding marginal costs constant,

- If $\frac{\partial \epsilon_{i,t}}{\partial p_{-i,t}} > 0$, strategic complementarities strengthen as $\xi_{i,t} \to \infty$, i.e., the earnings channel amplifies strategic complementarities.
- If $\frac{\partial \epsilon_{i,t}}{\partial p_{-i,t}} = 0$, strategic complementarities (if exist) vanish as $\xi_{i,t} \to \infty$, i.e., the earnings channel weakens strategic complementarities.

Empirical Analysis

- Propositions 1 and 2 are empirically testable predictions.
- Importantly, does the earnings channel matter quantitatively? Do we see the limiting case in the data?
- > Pass-through regressions to examine the two propositions
 - à la Amiti et al. (2019) and Gagliardone et al. (2023)

Data

- Indian CMIE Prowess database
 - Details: Goldberg et al. (2010a), Goldberg et al. (2010b), De Loecker et al. (2016) ...
- Annual panel of Indian manufacturing firms:
 - Balance sheet data
 - Product-level prices/quantities for both outputs and material inputs
 - 1992-2011: Include both high- and stable-inflation periods
- Ideal to test how finance interacts with pricing

Specification

• Double-interaction pass-through regressions: Low Past EBITDA × Marginal costs

$$\Delta p_{i,t} = \beta^{T} \mathbf{1}_{i,t}^{\text{Low EBITDA}} \Delta m c_{i,t} + \beta^{NT} \mathbf{1}_{i,t}^{\text{Not Low}} \Delta m c_{i,t} \qquad \cdots \cdots \text{Cost pass-through}$$

$$+ \gamma^{T} \mathbf{1}_{i,t}^{\text{Low EBITDA}} \Delta p_{-i,t} + \gamma^{NT} \mathbf{1}_{i,t}^{\text{Not Low}} \Delta p_{-i,t} \qquad \cdots \cdots \text{Strategic comp.}$$

$$+ \zeta \mathbf{1}_{i,t}^{\text{Low EBITDA}} + \text{Fixed Effects} + \varepsilon_{i,t}. \tag{5}$$

- Low EBITDA (25th): Proxy for high $\xi_{i,t}$
 - Lower internal cash flows, more liquidity issues when negative shocks hit
 - Sufficient within-firm variation

Instrumental Variables

- ullet Major intermediate goods: Top 10% 6-digit industries by the # of buyers
 - Assume price changes in major industries are exogenous
- IV:
 - $\Delta mc_{i,t}$: Price changes in major industries \times Cost share
 - $\Delta p_{-i,t}$: Competitors' average Δmc IV
 - and interactions with EBITDA
- Others:
 - Sample restrictions: market share; scope; size; scope; int'l trade exposure
 - Residualized IVs: Only use the idiosyncratic variation (remove industry-time FE)

Effects of the Earnings Channel on Current Prices

	(1)	(2)	(3)	(4)	(5)	(6)
Dep. variable: $\Delta p_{i,t}$	Full Spec.			Resi. IV		
Low EBITDA $\times \Delta mc_{i,t} (\hat{\beta}^T)$	0.85***	0.84***	0.86***	0.84***	0.83***	0.80***
7,1	(0.06)	(0.05)	(0.06)	(0.05)	(0.04)	(0.04)
High EBITDA $\times \Delta mc_{i,t} (\hat{\beta}^{NT})$	0.66 * * *	0.66***	0.65 * * *	0.63***	0.71 * * *	0.68***
	(0.05)	(0.06)	(0.05)	(0.05)	(0.04)	(0.04)
Low EBITDA $\times \Delta p_{-i,t} (\hat{\gamma}^T)$	0.10	0.10	0.02	0.09		
1,2,1,1	(0.08)	(0.07)	(80.0)	(0.11)		
High EBITDA $\times \Delta p_{-i,t} (\hat{\gamma}^{NT})$	0.33***	0.33***	0.26 * * *	0.34***		
,-	(80.0)	(0.09)	(0.09)	(0.13)		
Low EBITDA	0.02***	0.03***	0.02***	0.03***	0.02***	0.02***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Firm + Year + Sector FE (+ Industry)	Y	Υ				
Firm + Sector-Year FE (+ Industry-Year)			Υ	Υ	Υ	Y
R^2	0.734	0.736	0.692	0.677	0.697	0.686
N	9,564	8,884	9,564	8,884	9,562	8,884
Firms	812	783	812	783	812	783
Two-digit Sectors (Four-digit Industries)	9	25	9	25	9	25
Weak IV F-test (Cragg-Donald)	64.65	59.32	65.63	58.30	244.00	222.98
Hansen J-test — p value	0.907	0.784	0.492	0.673	0.406	0.649
$\hat{\beta}^T - \hat{\beta}^{NT}$	0.194**	0.183**	0.213**	0.212***	0.118**	0.122***
$\hat{\gamma}^T - \hat{\gamma}^{NT}$	-0.226**	-0.228**	-0.246**	-0.255**		

Notes: Weighted by average PPI-deflated sales. Standard errors are clustered by firm and sector/industry-year.

Effects of the Earnings Channel on Current Prices

- The earnings channel weakens both nominal rigidities and strategic complementarities
 - Proportion 1: $\hat{\beta}^T \hat{\beta}^{NT} \gg 0$; Cost pass-through \uparrow ; Nominal rigidities \downarrow
 - Proportion 2: $\hat{\gamma}^T \hat{\gamma}^{NT} \ll 0$; Strategic complementarities \downarrow ; Real rigidities \downarrow

Effects of the Earnings Channel on Current Prices

- The earnings channel weakens both nominal rigidities and strategic complementarities
 - Proportion 1: $\hat{\beta}^T \hat{\beta}^{NT} \gg 0$; Cost pass-through \uparrow ; Nominal rigidities \downarrow
 - Proportion 2: $\hat{\gamma}^T \hat{\gamma}^{NT} \ll 0$; Strategic complementarities \downarrow ; Real rigidities \downarrow
- Quantitatively important:
 - ullet On average, \hat{eta}^T is 30% higher than \hat{eta}^{NT}
 - ullet During large cost increases (not reported here), $\hat{eta}^T pprox 1$, fairly close to the limiting case
 - Recall that the "low EBITDA" dummy covers 25% of firm-year observations
- Robustness checks and others additional results

New Keynesian Model

- Incorporate the earnings channel into a textbook NK model
 - Today: Monopolistic competition
 - Going forward: Strategic complementarities
- Non-linearity of NKPC during large cost increases
- Policy implications

Financial Constraints

- Firms borrow to smooth cash flows (no investment):
 - Debt financing: Earnings-based borrowing constraint (EBC)

$$D_{i,t} \le \phi_i \mathsf{EBITDA}_{i,t},\tag{6}$$

• subject to debt adj. costs — so that EBC is occasionally binding

$$\mathcal{L}_{i,t} = \frac{\tau_d}{2} (D_{i,t} - \bar{D})^2 P_t Y_t, \tag{7}$$

- No equity financing:
 - Unless firms have exhausted internal cash flows and debt financing (pecking order)
- Liquidity constraint:

$$Dividend_{i,t} = Profit_{i,t} + \Delta D_{i,t} \ge 0.$$
 (8)

Monopolistic FOCs

• Let $\kappa_{i,t} = \frac{\epsilon - 1}{\tau_0} \frac{P_{i,t} Y_{i,t}}{P_t Y_t}$:

$$\pi_{i,t} = \left(1 + \xi_{i,t}^{div} + \xi_{i,t}^{ebc} \phi_i\right) \kappa_{i,t} \left[\mathcal{M}MC_{i,t} \frac{P_t}{P_{i,t}} - 1 \right] + \mathsf{E}_t \Lambda_{t,t+1} \pi_{i,t+1} \tag{9}$$

$$\xi_{i,t}^{ebc} + \tau_{d}(D_{i,t} - \bar{D}) = (1 + \xi_{i,t}^{div}) - \mathsf{E}_{t} \Lambda_{t,t+1} (1 + r_{i,t+1}^{b,r}) (1 + \xi_{i,t+1}^{div})$$
(10)

- High τ_d : Prefer internal cash flows (changing $\pi_{i,t}$) over raising debt
- Low τ_d : Easier to borrow until EBC binds, similar to credit lines
- If no $\{\pi_{i,t}, D_{i,t}\}$ can satisfy all constraints, resort to equity financing (Dividend_{i,t} < 0)

Mechanism: Marginal Cost Shocks in PE

- Idiosyncratic MC shock
- No effect on prices during normal cost increase ...
- ullet ... because firms borrow to smooth cash flows (small au_d)
- Pass-through: 59% at t=4 ($\kappa=0.1$)

Figure: Normal Cost Increase

troduction Theory Empirical NKPC Conclusions Appendix
0000 000 00000 000000 0

Mechanism: Marginal Cost Shocks in PE

- Different pricing during large shocks ...
- ... because firms exhaust both EBITDA and debt financing
- Pass-through: 82% at t = 4 (due to DRS)
- $\max \xi = 10 \ (\kappa \approx 0.6)$ when liquidity constraint violated: Close enough to the limiting case

Figure: Large Cost Increase

Monetary Policy Dilemma

- In GE, monetary policy reacts to cost-push shocks by lowering \hat{y}_t and real wages
 - No much dilemma in flex-wage models Flex-wage IRFs

Monetary Policy Dilemma

- ullet In GE, monetary policy reacts to cost-push shocks by lowering \hat{y}_t and real wages
 - No much dilemma in flex-wage models Flex-wage IRFs
- Dilemma under sticky wages:
 - Lower \hat{y}_t only mildly reduces real wages
 - ullet Lower \hat{y}_t further squeezes profit margins and amplifies the earnings channel
 - More generally: When marginal costs not sensitive to the output gap

Monetary Policy Dilemma

- ullet In GE, monetary policy reacts to cost-push shocks by lowering \hat{y}_t and real wages
 - No much dilemma in flex-wage models Flex-wage IRFs
- Dilemma under sticky wages:
 - Lower \hat{y}_t only mildly reduces real wages
 - ullet Lower \hat{y}_t further squeezes profit margins and amplifies the earnings channel
 - More generally: When marginal costs not sensitive to the output gap
- NK + Taylor rule example (next slide)
 - Sticky wages à la Schmitt-Grohé and Uribe (2016)
 - Financial heterogeneity: Different fixed costs; No idiosyncratic shock for simplicity

Standard Taylor Rule ($\phi_{\pi}=1.5,\ \phi_{\hat{\mathbf{v}}}=0.125$)

Large w₊ ↑↑

$$\bullet \ \Delta = +8\%, \ \rho = 0.75$$

- Initial $\pi_t = 16.3\%$: +1.86% due to the earnings channel
 - Nonlinear: Small shocks

Figure: Standard Taylor Rule

15

15

Stronger Taylor Rule ($\phi_{\pi}=1.75$, $\phi_{\hat{y}}=0.125$)

- Initial $\pi_t = 16.9\%$: +2.47% due to the earnings channel
- Average NKPC slope slightly higher
- Stronger MP has no deflation effect!

Figure: Stronger Taylor Rule

Going Forward

- Strategic complementarities
- Monetary and credit policy
- ..

Appendix

 ${\sf Appendix}$

Empirical - Robustness Checks

• Additional results are reported in the paper: back

- Non-binary EBITDA dummy
- Non-linear effects of $\Delta mc_{i,t}$
- Effects on future prices
- Effects on output, margins, and borrowing
- Additional controls for firm size (fully interacted)
- Pre-determined variable assumption
- Predicted input prices by firm type

roduction Theory Empirical NKPC Conclusions Appendix
000 000 00000 000000 0 0000000

Flexible Prices

Figure: Standard Taylor Rule

5

-15

0

Output Gap

10

15

Flexible Prices

Figure: Strong Taylor Rule

15

15

• Strong Taylor rule

Normal Shocks

- Wage shock: +4%
- The earnings channel muted

Figure: Normal Shocks

