Constant maturity swaps, forward measure and LIBOR market model

Dariusz Gatarek, Deloitte&Touche and Systems Research Institute dgatarek@deloitteCE.com

Constant maturity swaps can be regarded as generalizations of vanilla interest rate swaps. In a vanilla swap one exchanges the fixed swap rate against a floating LIBOR, which involves an interest rate relevant for that particular settlement period only. In a CMS swap this will be generalized. One will exchange the fixed legs against floating legs – usually the swap rate.

It this note we give a new (for our knowledge) approximate formula for convexity adjustment based on forward measure approach and LIBOR market model. This link is interesting itself – showing that convexity adjustment is model and calibration dependent. Forward measure approach can be considered as a version of change of numeraire concept [GER, MR]. We follow [LN].

1. Forward measure paradigm

This section is devoted to the forward measure approach – a technique absolutely fundamental in pricing of interest rate derivatives. Although almost all results are known, I decided to collect them here for the reason of completeness and clarity. Some proofs are simplified and new.

Let B(t,T) be discount factors on the period [t,T] and D(t) be the instantaneous discounting i.e. a positive process with finite variation such that D(0) = 1. Sometimes $D(t)^{-1}$ is called savings account. There exists a market practice of pricing of linear products by the formula

$$Price = ED(T)\xi(T) = B(0,T)\xi(0),$$

where $\xi(t)$ is a rate (swap rate, LIBOR rate) and $\xi(0)$ is its prediction at 0 (forward rate). Sometimes the formula is not true and the difference between $ED(T)\xi(t)$ and $B(0,T)\xi(0)$ is called convexity adjustment. There are practical tricks [Hu] how to calculate convexity adjustment. However, many of these rules are theoretically inconsistent and cannot be used to derive convexity corrections for general products. Jamshidian [J] initiated systematic treatment of formulas of the type $ED(T)\xi(t)$. Let us start with collection of facts on general approach to interest rate derivatives pricing. The market is arbitrage-free if

$$M(t,T) = \frac{B(t,T)D(t)}{B(0,T)}$$

is a positive continuous martingale. Hence there exists a stochastic process $\sigma(t,T)$ such that

$$dB(t,T) = -B(t,T)(D(dt) + \sigma(t,T)dW(t))$$

and

$$dM(t,T) = -M(t,T)\sigma(t,T)dW(t)$$

Therefore

$$M(t,T) = \exp\left\{-\frac{1}{2}\int_{0}^{t}\sigma^{2}(s,T)ds - \int_{0}^{t}\sigma(s,T)dW(s)\right\}$$

Since B(T,T) = 1, D(T) = B(0,T)M(T,T).

Pricing of European interest rate derivatives consists of finding

$$E(D(T)\xi)$$
,

where ξ is an F_T -measurable random variable – the intrinsic value of the claim.

Define E_T by

$$E_T \zeta = E \zeta M(T,T)$$

for any random variable ξ . By the Girsanov theorem E_T is a probability measure under which the process

$$W_T(t) = W(t) + \int_0^t \sigma(s, T) dW(s)$$

is a Wiener process. Now

$$ED(T)\xi = B(0,T)EM(T,T)\xi = B(0,T)E_{\tau}\xi$$

Let $\xi(t)$ be stochastic process. If $\xi(t)$ is a martingale under the measure E_T , then $ED(T)\xi(t)=B(0,T)\xi(0)$.

Lemma. Let $\xi(t)$ be a stochastic processes such that $\xi(t)M(t,T)$ is a martingale under the measure E, then $\xi(t)$ is a martingale under the measure E_T .

Proof. Let ζ be an F_t -measurable random variable.

$$\begin{split} E_T \xi(t) \zeta &= EM(T,T) \xi(t) \zeta = EE \Big(M(T,T) \xi(t) \zeta \big| F_t \Big) \\ &= E \xi(t) \zeta E \Big(M(T,T) \big| F_t \Big) = E \zeta \xi(t) M(t,T) = E \zeta E \Big(\xi(T) M(T,T) \big| F_t \Big) \\ &= EE \Big(\zeta \xi(T) M(T,T) \big| F_t \Big) = EM(T,T) \xi(T) \zeta = E_T \xi(T) \zeta. \end{split}$$

Example. For the forward LIBOR rate

$$L(t,T) = \frac{1}{\delta} \left(\frac{B(t,T-\delta)}{B(t,T)} - 1 \right).$$

L(t,T)M(t,T) is a martingale.

If $\xi(t)$ is not a martingale, it may happen that $ED(T)\xi(t) \neq B(0,T)\xi(0)$ and we have to introduce a convexity adjustment what is the topic of the next section. We may take discounting with respect to multiple cash flows as in the case of swaptions. Let δ be accrual period for both interest rates and swaps. We assume it constant for simplicity. Define consecutive swap points as $T_{i+1} = T_i + \delta$ for certain initial $T = T_0 < \delta$. Accept notation $E_n = E_{T_n}$ and $W_n = W_{T_n}$. Forward LIBOR rates are defined as $L_n(t) = L(t, T_n)$ and forward swap rates as

(1.2)
$$S_{nN}(t) = \frac{\sum_{i=n+1}^{N} B(t, T_i) L_i(t)}{\sum_{i=n+1}^{N} B(t, T_i)} = \frac{B(t, T_n) - B(t, T_N)}{\delta \sum_{i=n+1}^{N} B(t, T_i)}.$$

Let

$$D(S_{nN}) = \sum_{i=n+1}^{N} D(T_i),$$

Pricing of European swap derivative consists of finding

$$E(D(S_{nN})\xi),$$

where ξ is an $F_{T_{n+1}}$ -measurable random variable – the intrinsic value of the claim. Since M(t,T) is a positive continuous martingale,

$$M(t, S_{nN}) = \frac{\sum_{i=n+1}^{N} B(0, T_i) M(t, T_i)}{\sum_{i=n+1}^{N} B(0, T_i)} = D(t) \frac{\sum_{i=n+1}^{N} B(t, T_i)}{\sum_{i=n+1}^{N} B(0, T_i)}$$

also is. Moreover

$$dM(t,S_{nN}) = -\frac{\sum_{i=n+1}^{N} B(0,T_i)M(t,T_i)}{\sum_{i=n+1}^{N} k_i B(0,T_i)} \cdot \frac{\sum_{i=n+1}^{N} B(0,T_i)M(t,T_i)\sigma(t,T_i)}{\sum_{i=n+1}^{N} B(0,T_i)M(t,T_i)} dW(t)$$

$$= -M(t,S_{nN}) \frac{\sum_{i=n+1}^{N} B(t,T_i)\sigma(t,T_i)}{\sum_{i=n+1}^{N} B(t,T_i)} dW(t)$$

Therefore E_{nN} defined by

$$E_{nN}\varsigma = E\varsigma M(T_{n+1}, S_{nN})$$

is a probability measure under which the process

$$W_{nN}(t) = W(t) + \int_{0}^{t} \frac{\sum_{i=n+1}^{N} B(s, T_i) \sigma(s, T_i)}{\sum_{i=n+1}^{N} B(s, T_i)} ds$$

is a Wiener process. Hence

$$ED(S_{nN})\xi = \sum_{i=n+1}^{N} B(0,T_i)EM(T_i,T_i)\xi = \sum_{i=n+1}^{N} B(0,T_i)EM(T_{n+1},T_i)\xi = E_{nN}\xi \sum_{i=n+1}^{N} B(0,T_i).$$

Moreover

$$M(t,S_{nN})S_{nN}(t) = D(t)\frac{\sum_{i=n+1}^{N}B(t,T_{i})}{\sum_{i=n+1}^{N}B(0,T_{i})}\frac{B(t,T_{n}) - B(t,T_{N})}{\sum_{i=n+1}^{N}B(t,T_{i})} = D(t)\frac{B(t,T_{n}) - B(t,T_{N})}{\sum_{i=n+1}^{N}B(0,T_{i})}.$$

Hence $S_{nN}(t)M(t,S_{nN})$ is a martingale under the measure E, and then the forward swap $S_{nN}(t)$ rate is a martingale under E_{nN} .

2. Constant Maturity Swaps in the LIBOR market model

In the LIBOR market model of interest rate dynamics we assume that the LIBOR rates satisfy the following stochastic equations:

(1.4)
$$dL_n(t) = \sigma(t, T_n) \gamma_n(t) L_n(t) dt + \gamma_n(t) L_n(t) dW(t),$$

where $\gamma_n(t)$ is instantaneous volatility and

$$\sigma(t,T_n) = \sum_{T_j > t + \delta}^n \frac{\delta L_j(t) \gamma_j(t)}{1 + \delta L_j(t)}.$$

Let us examine relation between convexity adjustment on the scholar example of settled in arrears swaps. The floating leg payment at time T_n is equal $\delta L_{n+1}(T_n)$. By the forward measure paradigm

$$Claim = \delta ED(T_n)L_{n+1}(T_n) = \delta B(0,T_n)E_nL_{n+1}(T_n)$$
.

 $L_{n+1}(t)$ satisfies the equation

$$dL_{n+1}(t) = \gamma_{n+1}(t)L_{n+1}(t)dW_n(t) + \frac{\delta \gamma_{n+1}^2(t)L_{n+1}^2(t)}{1 + \delta L_{n+1}(t)}dt.$$

This equation may be solved numerically. If we linearise the drift we may get an approximate solution

$$L_{n=1}(T_n) \cong L_{n+1}(0) \exp \left(\int_0^{T_n} \gamma_{n+1}(t) dW_n(t) + \left(\frac{\delta L_{n+1}(0)}{1 + \delta L_{n+1}(0)} - \frac{1}{2} \right) \int_0^{T_n} \gamma_{n+1}^2(t) dt \right).$$

Taking into consideration that

$$T_n \sigma_{n+1}^2 = \int_0^{T_n} \gamma_{n+1}^2(t) dt$$
,

where σ_{n+1} is the market volatility of the caplet starting at T_n , we get the well known convexity adjustment formula

$$E_n L_{n+1}(T_n) \cong L_{n+1}(0) \exp \left(\frac{\delta L_{n+1}(0) T_n \sigma_{n+1}^2}{1 + \delta L_{n+1}(0)} \right).$$

Return to the CMS example. The floating leg payment at time T_{n+1} is equal $\delta S_{nN}(T_n)$. By the forward measure paradigm

$$CMS = \delta E(D(T_{n+1})S_{nN}(T_n)) = \delta B(0, T_{n+1})E_{n+1}S_{nN}(T_n).$$

By [G,R] forward swap rate $S_{nN}(t)$ satisfies

$$\begin{split} dS_{nN}(t) &= S_{nN}(t) \sum_{k=n+1}^{N} R_{nN}^{k}(t) \gamma_{k}(t) dW_{nN}(t) \\ &= S_{nN}(t) \sum_{k=n+1}^{N} R_{nN}^{k}(t) \gamma_{k}(t) \left(dW(t) + \frac{\sum_{i=n+1}^{N} B(t, T_{i}) \sigma(t, T_{i})}{\sum_{i=n+1}^{N} B(t, T_{i})} dt \right) \\ &= S_{nN}(t) \sum_{k=n+1}^{N} R_{nN}^{k}(t) \gamma_{k}(t) \left(dW_{n+1}(t) + \sum_{i=n+2}^{N} Q_{kN}^{i}(t) \gamma_{i}(t) dt \right), \end{split}$$

where

$$R_{nN}^{i}(t) = \frac{\delta L_{i}(t)}{1 + \delta L_{i}(t)} \frac{B(t, T_{n}) \sum_{k=i}^{N} B(t, T_{k}) + B(t, T_{N}) \sum_{k=n+1}^{i-1} B(t, T_{k})}{\left(B(t, T_{n}) - B(t, T_{N})\right) \sum_{k=n+1}^{N} B(t, T_{k})}$$

and

$$Q_{kN}^{l}(t) = \frac{\delta L_{l}(t) \sum_{j=l}^{N} B(t, T_{j})}{\left(1 + \delta L_{l}(t)\right) \sum_{j=l+1}^{N} B(t, T_{i})}.$$

By the approximation

$$dS_{nN}(t) \approx S_{nN}(t) \sum_{k=n+1}^{N} R_{nN}^{k}(0) \gamma_{k}(t) \left(dW_{n+1}(t) + \sum_{i=n+2}^{N} Q_{kN}^{i}(0) \gamma_{i}(t) dt \right).$$

Hence

$$E_{n+1}S_{nN}(T_n) \approx S_{nN}(0) \exp \left(\sum_{l=n+2}^{N} \sum_{i=n+1}^{N} R_{nN}^i(0) \varphi_{il}^n Q_{nN}^l(0) \right),$$

where

$$\varphi_{kl}^n = \int_0^{T_n} \gamma_l(t) \gamma_k(t) dt.$$

Hence the convexity adjustment is model and even calibration dependent! Take the simplest case of single dimensional LIBOR market model. By [G,R]

$$T_n \sigma_{nN}^2 \approx \sum_{l=n+1}^N \sum_{i=n+1}^N R_{nN}^i(0) \varphi_{il}^n R_{nN}^l(0),$$

where σ_{nN} is the market volatility of the swap on the time period $[T_n, T_N]$. By [G,R]

$$R_{nN}^{i}(t) \approx \frac{B(t, T_i)L_i(t)}{\sum_{k=n+1}^{N} B(t, T_k)L_k(t)}$$

and hence

$$\sum_{i=n+1}^{N} R_{nN}^{i}(0) \approx 1.$$

If we assume that $\varphi_{il}^n = T_n \sigma_{nN}^2 = \text{const}$, what is equivalent to taking single factor model we have

$$E_n S_{nN}(T_n) \approx S_{nN}(0) \exp \left(T_n \sigma_{nN}^2 \sum_{i=n+2}^N Q_{nN}^i(0) \right) \approx S_{nN}(0) \left(1 + T_n \sigma_{nN}^2 \sum_{i=n+2}^N Q_{nN}^i(0) \right).$$

Analogously, the price of call option on $S_{nN}(T_n)$ settled at T_{n+1} is equal

$$Option \cong \delta B(0, T_{n+1}) \Big(S_{nN}(0) N(h) - KN \Big(h - \sigma_{nN} \sqrt{T_n} \Big) \Big),$$

where

$$h = \frac{\ln S_{nN}(0) - \ln K + \left(\sum_{i=n+2}^{N} Q_{nN}^{i}(0) + \frac{1}{2}\right) T_{n} \sigma_{nN}^{2}}{\sigma_{nN} \sqrt{T_{n}}}.$$

3. Example

Convexity adjustments were calculated for N = 10Y and forward interest rates and volatilites given in the table. Correction equal $\sum_{i=n+2}^{N} Q_{nN}^{i}(0)$ is listed in the last row.

Volatility	40,0%	39,0%	38,0%	37,0%	36,0%	35,0%	34,0%	33,0%	32,0%	31,0%
Rate	2,1%	2,2%	2,3%	2,4%	2,5%	2,6%	2,7%	2,8%	2,9%	3,0%
Time	1Y	2Y	3Y	4Y	5Y	6Y	7Y	8Y	9Y	10Y
Bond	97,9%	95,8%	93,7%	91,5%	89,3%	87,0%	84,7%	82,4%	80,1%	77,7%
Correction	1,7%	2,6%	2,9%	2,8%	2,4%	1,8%	1,2%	0,7%	0,2%	

4. References

- [B] Eric Benhamou, Pricing convexity adjustment with Wiener chaos, London School of Economics. Working paper (2000).
- [BGM] A. Brace, D. Gatarek and M. Musiela, The market model of interest rate dynamics, Mathematical Finance 7 (April 1997), 127-156
- [G] D. Gatarek, Calibration of the LIBOR Market Model: Three Prescriptions, SSRN working paper http://papers.ssrn.com/sol3/papers.cfm?abstract_id=359000
- [GER] H. Geman, N. El Karoui and J. Rochet, "Changes of Numeraire, Changes of Probability Measure and Option Pricing," Journal of Applied Probability (1995), Vol. 32, pp. 443–458.
- [H] Patrick Hagan, CMS convexity correction. Nomura Global Financial, Products, INC. Working paper (2001).
- [Hu] John Hull, Options, Futures, and Other Derivatives (4th Edition), Prentice Hall, New Jersey (2000).
- [J] Farshid Jamshidian, Libor and swap market models and measures, Finance and Stochastics 1, 293-330 (1997).
- [LN] Yinqiu Lu, Salih Neftci, Convexity Adjustments and Forward Libor Model Case of Constant Maturity Swaps, ISMA working paper (2002)
- [MR] M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, Springer-Verlag (1997).
- [P] Antoon Pelsser, Mathematical Foundation of Convexity Correction, Quantitative Finance 3 (February 2003) 59-65
- [Pu] Dmitry Pugachevsky, Forward CMS rate adjustment. Risk March (2001), 125-128.
- [R] Riccardo Rebonato, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model and Beyond, Princeton University Press (2002)