Project 6

Jesse Adams, Dominic Orsi, Ben Puryear November 2nd, 2023

1 Let $L = \{a^nb^mc^{2n+m}|n,m \geq 0\}$. Construct a context-free grammar, G, that generates L.

Our context free grammar, G, that generates L, starts with string S:

$$\begin{split} S &\Rightarrow AB \\ A &\Rightarrow aABCC|aACC|\lambda \\ B &\Rightarrow bBC|\lambda \\ C &\Rightarrow cC\lambda \end{split}$$

2.1 State the rules for Chomsky Normal Form (CNF).

A CFG is in CNF if every rule is of the form:

$$A \Rightarrow BC$$

$$A \Rightarrow a$$

$$S \Rightarrow \lambda$$

Where:

$$a \in \Sigma$$

$$A, B, C \in V$$

S is the start variable

2.2 Convert the following grammar to CNF.

$$S \Rightarrow aA|ABA$$

$$A \Rightarrow AA|a$$

$$B \Rightarrow AbA|bb$$

2.2.1 Guarantee Start Variable is only on LHS.

No action needed

2.2.2 Eliminate all rules of $A \Rightarrow \lambda$ where $A \neq S$.

No action needed

2.2.3 Eliminate all unit rules.

No action needed

2.2.4 Fix remaining rules.

Let $U_1 \Rightarrow a$ and $U_2 \Rightarrow b$

$$S \Rightarrow U_1 A | ABA$$

$$A \Rightarrow AA|a$$

$$B \Rightarrow AU_2A|bb$$

$$U_1 \Rightarrow a$$

$$U_2 \Rightarrow b$$

Let $B_1 \Rightarrow BA$ and $B_2 \Rightarrow U_2A$

$$S \Rightarrow U_1 A | AB_1$$

$$A \Rightarrow AA | a$$

$$B \Rightarrow AB_2 | U_2 U_2$$

$$B_1 \Rightarrow BA$$

$$B_2 \Rightarrow U_2 A$$

$$U_1 \Rightarrow a$$

$$U_2 \Rightarrow b$$

This grammar is now in Chomsky Normal Form.

3 Using Example 2.14, show that the machine, M1 in Figure 2.15 recognizes 0011.

Input String	Stack Content	Rule	Description
ϵ	\$	$\epsilon, \epsilon \Rightarrow \$$	Input ϵ , pop ϵ from stack, push \$.
0	0\$	$0, \epsilon \Rightarrow 0$	Input 0, pop ϵ from stack, push 0.
0	00\$	$0, \epsilon \Rightarrow 0$	Input 0, pop ϵ from stack, push 0.
1	0\$	$1,0\Rightarrow\epsilon$	Input 1, pop 0 from stack, push ϵ .
1	\$	$1,0\Rightarrow\epsilon$	Input 1, pop 0 from stack, push ϵ .
ϵ		$\epsilon, \$ \Rightarrow \epsilon$	Input 1, pop \$ from stack, push ϵ .