Théorie des Langages

TD2

Analyse Syntaxique et Grammaires LR(k)

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 3 - 27 septembre 2022 Séance 4 - 04 octobre 2022

Emmanuel Rio - emmanuel.rio@univ-tlse3.fr

Note: au début des TDs, l'approche de résolution était légèrement différente de l'approche finalement faite en fin des TDs (d'où des potentielles différences de notation).

Exercice 1:

Grammaire G_0 :

- $(0) S' \to S^{k}$
- (1) $S \rightarrow CC$
- $(2) C \rightarrow aC$
- $(3) C \rightarrow b$

Fermetures:

- \bullet I_0 :
 - $S' \rightarrow \cdot S^k$
 - $S \to \cdot CC$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k
 - (reduce 0)
- $goto(I_0, C) = I_2$
- $S \to C \cdot C$
- $C \rightarrow \cdot aC$
- $C \rightarrow \cdot b$
- $goto(I_0, a) = I_3$
- $C \rightarrow a \cdot C$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_0, b) = I_4$
 - C o b •
 - (reduce 3)
- $goto(I_2, C) = I_5$
 - $S \to CC$ •
 - (reduce 1)
- $goto(I_2, a) = I_3$
 - $C \rightarrow a \cdot C$
 - $C \rightarrow \cdot aC$
 - $C \rightarrow \cdot b$
- $goto(I_2, b) = I_4$
 - $C \rightarrow b$ •
- $goto(I_3, C) = I_6$
 - C o aC •
 - (reduce 2)
- $goto(I_3, a) = I_3$
 - $C \rightarrow a \cdot C$
 - $C \rightarrow {}^{\bullet}aC$
 - $C \rightarrow {}^{\bullet}b$

$$\bullet \ goto(I_3, b) = I_4$$

$$C \to b \bullet$$

Ce qui donne l'automate suivant :

D'où la table d'analyse :

	a	b	S	C	\$
I_0	shI_3	shI_4	shI_1	shI_2	err
I_1	err	err	err	err	reduce(0)
I_2	shI_3	shI_4	err	shI_5	err
I_3	shI_3	shI_4	err	shI_6	err
I_4	err	err	err	err	reduce(3)
I_5	err	err	err	err	reduce(1)
I_6	err	err	err	err	reduce(2)

Parse du mot abaab\$:

pile	mot	action	
λ	abaab\$	shift	
a	baab\$	shift	
ab	aab\$	reduce 3	
aC	aab\$	reduce 2	
\mathbf{C}	aab\$	shift	
Ca	ab\$	shift	
Caa	b\$	shift	
Caab	\$	reduce 3	
CaaC	\$	reduce 2	
CaC	\$	reduce 2	
CC	\$	reduce 1	
S	\$	reduce 0	
S'	\$	accept	

Grammaire G_1 :

- $(0) S' \to S^{k}$
- $(1) S \rightarrow aAc$
- $(2) A \rightarrow Abb$
- $(3) A \rightarrow b$

Fermetures:

- I_0 : $S' \to \cdot S\k $S \to \cdot aAc$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k (reduce 0)
- $goto(I_0, a) = I_2$ $S \to a \cdot Ac$ $A \to \cdot Abb$ $A \to \cdot b$
- $goto(I_2, A) = I_3$ $S \to aA \cdot c$ $A \to A \cdot bb$
- $goto(I_2, b) = I_4$ $S \to b$ • reduce(3)
- $goto(I_3, c) = I_5$ $S \to aAc$ • reduce(1)
- $goto(I_3, b) = I_6$ $A \to Ab \cdot b$
- $goto(I_6, b) = I_7$ $A \to Abb$ • reduce(2)

D'où la table d'analyse :

	a	b	c	S	A	\$
I_0	shI_2	err	err	shI_1	err	err
I_1	err	err	err	err	err	reduce(0)
I_2	shI_4	err	err	err	shI_3	err
I_3	err	shI_6	shI_5	err	err	err
I_4	err	err	err	err	err	reduce(3)
I_5	err	err	err	err	err	reduce(1)
I_6	err	shI_7	err	err	err	err
I_7	err	err	err	err	err	reduce(2)

Grammaire G_2 :

$$(0) - S' \rightarrow S^k$$

(1) -
$$S \rightarrow aAc$$

$$(2) - A \rightarrow bAb$$

$$(3) - A \rightarrow b$$

Parse du mot abbbc\$:

pile	mot	action
λ	abbbc\$	shift
a	bbbc\$	shift
ab	bbc\$	shift
abb	bc\$???

Supposons que G_2 soit LR(k)

Alors, quelque soit k, lorsqu'on souhaite parser les mots du type :

$$a b^n b b^n c$$
 avec $n \ge k$

On ne sait pas quand appliquer reduce(3), ce qui n'est pas en accord avec la définition d'une grammaire LR(k).

Donc G_2 n'est pas LR(k)

Grammaire G_3 :

$$(0) - S' \to S\k$

$$(1) - S \to aAc$$

$$(2) - A \rightarrow bbA$$

$$(3) - A \rightarrow b$$

Fermetures:

- I_0 : $S' \to \cdot S,\k $S \to \cdot aAc,\$$
- $goto(I_0, S) = I_1$ $S' \to S \cdot \k (reduce 0)
- $goto(I_0, a) = I_2$ $S \to a \cdot Ac$ $A \to bbA, c$ $A \to b, c$
- $goto(I_2, A) = I_3$ $S \to aA \cdot c$
- $goto(I_2, b) = I_4$ $A \to b \cdot bA, c \text{ shift on b}$ $A \to b \cdot c \text{ reduce}(3) \text{ on c}$
- $goto(I_3, c) = I_5$ $S \to aAc$ • reduce(1)
- $goto(I_4, b) = I_6$ $A \to bb \cdot A$ $A \to \cdot bbA, c$ $A \to \cdot b, c$
- $goto(I_6, A) = I_7$ $A \to bbA$ • reduce(2)
- $goto(I_6, b) = I_4$

D'où la table d'Analyse :

	a	b	c	\$	S	A
$\overline{I_0}$	shI_2	err	err	err	shI_1	err
I_1	err	err	err	red(0)	err	err
I_2	err	shI_4	err	err	err	shI_3
I_3	err	err	shI_5	err	err	err
I_4	err	shI_6	red(3)	err	err	err
I_5	err	err	err	red(1)	err	err
I_6	err	shI_4	err	err	err	shI_7
I_7	err	err	red(2)	err	err	err

Grammaire G_4 :

$$(0) - S' \to S\k$

$$(1) - S \rightarrow Sa$$

$$(2) - S \rightarrow a$$

Fermetures:

•
$$I_0$$
:
 $S' \rightarrow \cdot S, \$$
 $S \rightarrow \cdot Sa, a$
 $S \rightarrow \cdot a, *$
 $S \rightarrow \cdot A, \$$

•
$$goto(I_0, S) = I_1$$

 $S' \to S \cdot ,\$ \text{ red}(0) \text{ and accept on }\$$
 $S \to S \cdot a,\$ \text{ shift on a}$
 $S \to S \cdot a,a \text{ shift on a}$

•
$$goto(I_0, a) = I_2$$

 $S \to a \cdot ,\$ \operatorname{red}(2)$
 $S \to a \cdot ,a \operatorname{red}(2)$

•
$$goto(I_1, a) = I_3$$

 $S \to Sa \cdot ,\$ \operatorname{red}(1)$
 $S \to Sa \cdot , a \operatorname{red}(1)$

Ce qui donne l'automate suivant :

Parse du mot aaaaa\$:

pile	mot	action	
I_0	aaaaa\$	shift	
I_0 a I_2	aaaa\$	red(2)	
$I_0 \to I_1$	aaaa\$	shift	
$I_0 ext{ S } I_1 ext{ a } I_3$	aaa\$	red(1)	
$I_0 \le I_1$	aaa\$	shift	
$I_0 ext{ S } I_1 ext{ a } I_3$	aa\$	red(1)	
$I_0 \le I_1$	aa\$	shift	
$I_0 ext{ S } I_1 ext{ a } I_3$	a\$	red(1)	
$I_0 \le I_1$	a\$	shift	
$I_0 ext{ S } I_1 ext{ a } I_3$	\$	red(1)	
$I_0 \le I_1$	\$	red(0)	accept

Grammaire G'_4 :

$$(0) - S' \to S\k$

$$(1) - S \to aS$$

$$(2) - S \to a$$

Fermetures:

- I_0 : $S' \rightarrow \cdot S, \$$ $S \rightarrow \cdot aS, \$$ $S \rightarrow \cdot a, \$$
- $goto(I_0, S) = I_1$ $S' \to S$ • , \$ red(0)
- $goto(I_0, a) = I_2$ $S' \to a \cdot S$, \$ shift on S $S \to a \cdot aS$, \$ shift on a $S \to a \cdot a$, \$ shift on a $S \to a \cdot s$, \$ reduce(2) on \$ $S \to a \cdot S$ and $S \to a \cdot S$ reduce(2) on \$

- $goto(I_2, S) = I_3$ $S' \to aS \cdot , \$ \operatorname{red}(1)$
- $goto(I_2, a) = I_2$ $S' \to a \cdot S, \$$ shift on S $S \to a \cdot aS, \$$ shift on a $S \to a \cdot a, \$$ shift on a $S \to a \cdot , \$$ reduce(2) on \$

pile	mot	action	
I_0	aaaaa\$	shift	
I_0 a I_2	aaaa\$	shift	
I_0 a I_2 a I_2	aaa\$	shift	
I_0 a I_2 a I_2 a I_2	aa\$	shift	
I_0 a I_2 a I_2 a I_2 a I_2	a\$	shift	
I_0 a I_2 a I_2 a I_2 a I_2 a I_2	\$	red(2)	
I_0 a I_2 a I_2 a I_2 a I_2 S I_2	\$	red(1)	
I_0 a I_2 a I_2 a I_2 S I_2	\$	red(1)	
I_0 a I_2 a I_2 S I_2	\$	red(1)	
$I_0 \ { m a} \ I_2 \ { m S} \ I_2$	\$	red(1)	
$I_0 \; \mathrm{S} \; I_1$	\$	red(0)	accept

Grammaire G_5 :

- $(0) S' \rightarrow S^{k}$
- (1) $S \rightarrow aAd$
- $(2) S \rightarrow bAB$
- $(3) A \rightarrow cA$
- $(4) A \rightarrow c$
- $(5) B \rightarrow d$

Fermetures:

- \bullet I_0 :
 - $S' \rightarrow \cdot S, \$$
 - $S \rightarrow \cdot aAd, \$$
 - $S \rightarrow bAB,$ \$
- $goto(I_0, S) = I_1$ $S' \to S \cdot , \$ \operatorname{red}(0)$
- $goto(I_0, a) = I_2$
 - $S \to a \cdot Ad,$ \$
 - $A \rightarrow \cdot cA, d$
- $A \rightarrow \cdot c, d$
- $goto(I_0, b) = I_3$
 - $S \to b \cdot AB,$ \$
 - $A \rightarrow \cdot cA, d \ first(B\$) = d$
 - $A \rightarrow \cdot c, d \ first(B\$) = d$
- $goto(I_2, A) = I_4$
- $S \to aA \cdot d, \$$
- $goto(I_2, c) = I_5$
 - $A \rightarrow c \cdot A, d$
 - $A \rightarrow \cdot cA, d$
 - $A \rightarrow \cdot c, d$
 - $A \to c \cdot , d \operatorname{red}(4)$ on d
- $goto(I_3, A) = I_6$
 - $S \to bA \cdot B,$ \$
 - $B \rightarrow \cdot d.$
- $goto(I_3, c) = I_5$
- $goto(I_4, d) = I_7$
- $S \to aAd \cdot , \$ \operatorname{red}(1)$
 - $A \to cA \cdot , d \operatorname{red}(3)$
- $goto(I_6, B) = I_9$

• $goto(I_5, A) = I_8$

 $S \rightarrow bAB \cdot ,\$ \operatorname{red}(2)$

•
$$goto(I_6, d) = I_10$$

 $B \to d$ • , \$ red(5)

D'où G_5 est LR(1).

