NumPy (Numerical Python), Python programlama dilinde **sayısal hesaplamalar** yapmak için tasarlanmış **yüksek performanslı** bir dizi işlemleri kütüphanesidir.

Python'un standart listelerinden farklı olarak, NumPy dizileri **homojen** yapıda olmalıdır, yani dizi içindeki tüm elemanlar aynı veri tipinden olmalıdır. Bu sayede NumPy arrayleri, Python listelerine göre **daha hızlı ve verimli** bir şekilde işlem yapar.

NumPy'ın temel özellikleri şunları içerir:

Çok boyutlu diziler (array) ve matrisler: NumPy, tek boyutlu dizilerin yanı sıra iki veya daha fazla boyuta sahip diziler oluşturmanıza ve işlemenize olanak tanır. Bu sayede tablolar, görüntüler ve diğer çok boyutlu verileri kolayca temsil edebilirsiniz.

Zengin matematiksel işlemler: NumPy, temel aritmetik işlemler (toplama, çıkarma, çarpma, bölme) yanında trigonometrik fonksiyonlar, lineer cebir işlemleri, rastgele sayı üretme gibi birçok matematiksel işleve sahiptir.

Verimli bellek yönetimi: NumPy dizileri, C programlama dilinde yazıldığı için Python listelerine göre bellek kullanımında daha verimlidir. Bu sayede büyük veri kümeleriyle çalışırken performans artışı sağlar.

NumPy, özellikle **veri bilimi**, **yapay zeka** ve **sayısal hesaplama** gerektiren bilimsel alanlarda yaygın olarak kullanılır.

```
# import numpy as np
#np da bir sey yazacaksak np yazmamız yeterlidir
##numpy arrays##
# benimListem=[20,30,40]
# print(type(benimListem))
 # np dizisine cevirebiliyoruz np.array(benimListem) seklınde yazıp
# print(np.array(benimListem))
# print(type(np.array(benimListem))) cikti olarak np.ndarrray verir
matrixListesi=[[10,20,30],[20,30,40],[30,40,50]]
# print(type(matrixListesi))
# print(matrixListesi[0][0])
#rint(np.array(matrixListesi))
##arange##
# result=list(range(0,10))
# print(result)
#rint(np.arange(0,100))
#baslangic(dahil) ,bitis(dahil degil),atlama (step size)
#print(np.arange(0,10,2))
##zeros##
```

```
#print(np.zeros(5)) #5tane 0 olusturur
#print(np.zeros((2,2))) tuple gibi vermem gerekiyor matris için
##ones##
# olusturur
# print(np.ones((5,5)))
#inspace##
#baslangıc ve bitis parametrelerini ver kac tane esit aralıga
bolunmus sayı olsun ıstersen belirt
# print(np.linspace(0,20,5)) 5 say1 olmal1 es1t aral1k olan
aralarında ve 0 dan 20. olan baslangıc bitis
#esit aralıkla daqıtılmıs sayıları yazmak ıcın kullanılır
₩ye##
#kosegen olarak 1 lerden olusan kaca kaclık bir kare matrıs
olusturur
# print(np.eye(10))
#andom
#rint(np.random.randn(8)) # tek boyutludur
# #random sayılardan olusan dızı verir istedigimiz adet eleman
sayısından olusan
print(np.random.randn(4,4)) # matris seklinde verir
# print(np.random.randint(1,10)) # 1-10 (10 dahıl degıl)arası
rasgele int deger verir
# print(np.random.randint(1,10,5)) # kac tane say1 vermes1
gerektigi en sona yazılır 1-10 arası(10dahıl degil)
# benimNumpyDizim=np.arange(30) #0-30 arası dızı olusturur 30 dahıl
degil
# print(benimNumpyDizim)
#benimRandomDizim=np.random.randint(0,100,30) # 0-100(100 dahil
degil) arası 5 tane rasgele deger
# print(benimRandomDizim)
#umpy dizi methodlari##
#reshape
#eger bir dizim varsa reshape yaptıgımda rasagele rakam veremem
#elimdeki eleman sayısı kadar olmalı carpımları matrıs olusturmak
ıcın dızımden
```

olusturur

```
#esult=benimRandomDizim.reshape(6,5) #6 satır 5 sutun
# print(result)
max ve min
# result=benimNumpyDizim.max()
# print(result)
#rgmax max. elemanın kacıncı ındekste oldugunu verir
#argmin min. elemanın kacıncı ındekste olduğunu verir
# print(benimNumpyDizim.argmax())
#hape deger donduru guncellemez guncel dızımın seklini bize verir
# print(benimNumpyDizim.shape)
#ndeksleme
# benimDizim=np.arange(0,15)
# print(benimDizim)
# #numpy dizilerindede indeksler 0 dan baslar
# print(benimDizim[0])
# #slicing
print(benimDizim[3:5]) # 5 dahıl degıl (stoping ındeks)
benimDizim[3:8]=-5 #3-8.indeksler arasi degerler -5 oldu
# print(benimDizim) # ayrı dızı olusturmadı dızımdekı elemanları
degsitirdi
baskaDizi=np.arange(0,24)
# slicingDizisi=baskaDizi[4:9]
# print(slicingDizisi)
#licingDizisi=700 #type ne bakarsak ınt olmus olur dırek ınt dgere
esitlemis oluruz
# slicingDizisi[:]=700
# #tum elemanları 700 e esitlendi
# print(slicingDizisi) #baska dızıyı cagırırsak 4 ve 9 ındeks
aralıgındakı degerlerde degisti ve 700 e esitlendi
# print(baskaDizi) # orijinalini degistirmeden yapamk ıstersek
#rnekDizi=np.arange(0,24)
# ornekDiziKopyasi=ornekDizi.copy()
# #ornek dızı ve ornek dızı kopyası ayrı bır dızı olmus oldu
# ornekDiziKopyaSlicing=ornekDiziKopyasi[3:6]
```

```
# ornekDiziKopyaSlicing[:]=800
# print(ornekDiziKopyaSlicing)
# print(ornekDiziKopyasi)
# print(ornekDizi)
#hatrix
# benimListem=[[10,20,30],[20,30,40],[40,50,60]]
# benimMatrixDizim=np.array(benimListem)
# print(benimMatrixDizim)
# print(benimMatrixDizim[0])
# print(benimMatrixDizim[1][2])
# print(benimMatrixDizim[1,2]) #yukarki satırla aynı ısleve sahıp
# #slicing
print(benimMatrixDizim[1:,2]) # 1.indeksteki satır baslayıp geeri
kala nsutunlardakı 2. ındekstekı sutun elemanını verir
#print(benimMatrixDizim[2:,1:]) 2.indeksteki satirdan baslar sona
kadar 2.ındekteki sutundaki elemanları verir
# yeniListe=[[0,1,2,3,4],[5,6,7,8,9],[10,11,12,13,14],
[15,16,17,18,19],[20,21,22,23,24]]
# yeniMatrix=np.array(yeniListe)
# print(yeniMatrix[0,2,4]) #0.2.ve 4. indeks satirlarini bana verir
matrix seklinde
#sıra vermek zorundada degılım fancy matrıx demektir bu
#pereasyonlar
# yeniBirDizi=np.random.randint(1,100,20)
# print(yeniBirDizi)
# print(yeniBirDizi>24)
# sonucDizisi=yeniBirDizi>24
# print(sonucDizisi)
# print(yeniBirDizi[sonucDizisi]) #filtereleme islemi yapmıs oluruz
(sadece trueleri alır)
#print(yeniBirDizi[yeniBirDizi>24]) yukarıdakıyle aynı ıslemı yapar
# sonDizi=np.arange(0,24)
# print(sonDizi+sonDizi) # 2 diziyi toplar
# sonuc=sonDizi*sonDizi
```

```
# print(sonuc)
# sonuc2=sonDizi-sonDizi
# print(sonuc2)
# print(sonDizi/sonDizi)
#0/0 belirsizligine nan deyip digerlerine 1 der
# print(np.sqrt(sonDizi)) #dizinin karekokunu alir
```

PANDAS