Multimedia Networking Communication Protocols

Thomas C. Schmidt t.schmidt@ieee.org HAW Hamburg

Agenda

- Multimedia Communication Requirements
 - Signalling Demands
- Legacy VoIP/VCoIP: H.323
- The Internet Multimedia Protocol Suite
- Session Initiation Protocol

QoS – Layered Model

Multimedia Communication Across IP Networks

Information about Media Transport need to be shared between partners and sometimes with the network.

- o Provide application-specific framing.
- o Communicate media-specific intelligence & metadata.
- Place media signalling information in network transport.

Signalling Demands

Media Types can be announced by MIME, but in Real-Time Communication demands remain:

- Session Information
- Session Negotiation
- Timer Information
- Coding Details
- Time-dependent Stati
- Address Information
- Session Announcement

- Application based connection handling
- Dialogs need media agreement
- Partners need a clock tick
- Time/context dependent metadata
- Communication may adapt to user or network needs
- Matching users to devices
- Advertising sessions

Agenda

- Multimedia Communication Requirements
- Legacy VoIP/VCoIP: H.323
 - Basic Components
 - Signalling Protocols
 - Common Scenarios
- The Internet Protocol Suite
- Session Initiation Protocol

H.323 Voice & Video over IP

- o ITU-T Recommendation for Voice/Video conferencing over IP
 - Currently H.323 Version 4 (November 2000)
- o Transfers digital telephony onto IP Layer
- o Main functionalities
 - Bearer-Control-Function
 - Registration, Admission, Status (RAS)
 - Call Signalling
 - Gateway Service to PSTN
- o Widely implemented architecture, though legacy protocos in use

H.323 Interconnects

H.323 System Components

o Terminal

H.323 client, either IP-phone, VCoIP station or software

o Gatekeeper

Directory Service for user-address translation, signalling service, supplementary services, bandwidths control

o Gateway

Gateway services between IP and PSTNs

o Multipoint Conference Unit

Reflector server for group communication

H.323-Standard						ISO-OSI-Reference	
Video Codecs	Audio Codecs	-	M	lanagement/ Contr	7 - 6 - 5 -		
H.26x	G.7xx GSM 6.10	R T C P	R A S	Signalling H.225.0	H.245	5 -	c a t i o
UDP TCP						4	Т
		3	r a n s p o r t				
	L	2					
		1					

H.323 – Umbrella Standard

Hamburg University of Applied Sciences

H.225 Signalling

o IP-Correspondent of ISDN Signalling (Q.931)

o Simulates a circuitswitched network bymanaging bidirectionallogical channels

H.245 Conference Control

- o Legacy protocol to coordinate conferencing parties from different networks (IP, PSTN, ATM, ...)
- o Negotiates possible modes for media exchange (codecs)
- o Configures media streams (including transport addresses)
- o May carry user input from DTMF ...
- o Defines multipoint conferences
- o Initiates privacy mechanisms (H.235)
- o Provides channel maintenance messages

H.323 Signalling:

Direct-routed call

- 1. Caller Gatekeeper (RAS)
 - Admission Request (ARQ)
 - Admission Confirm/Reject (ACF/ARJ)
 - ⇒ destCallSignalAddress
- 2. Caller Callee (H.225.0)
 - setup
- 3. Gatekeeper Callee (RAS)
 - ARQ ACF/ARJ
- 4. Callee Caller (H.225.0)
 - connect
- 5. Caller Callee (H.245)
 - Control Channel Established

RAS signalling remains optional:

Direct routing works without

Gatekeeper

<u>urg...., oo......</u>

H.323 Signalling:

Gatekeeper-routed call

- 1. Caller Gatekeeper
 - Admission Request (ARQ)
 - Admission Confirm/Reject (ACF/ARJ)
 - setup
- 2. Gatekeeper Callee
 - setup
 - ARQ ACF/ARJ
 - connect
- 3. Gatekeeper Caller
 - connect
- 4. Caller Gatekeeper Callee
 - Control Channel Established (H.245)

Call control requires operational

Gatekeeper

H.323 Scenario

H.323 - Basic Configuration

o Setting up Devices, a Dial-Plan + Routing at Gatekeeper/PBX

- o Configuring Interfaces + Services at Gateway
- o Setting up Security (H.235 rarely implemented)

Agenda

- Multimedia Communication Requirements
- Legacy VoIP/VCoIP: H.323
- The Internet Multimedia Protocol Suite
 - → Real-Time Media Transport
 - → Session Description
 - → Session Negotiation and Announcement
- Session Initiation Protocol

Multimedia Communication: The Internet Protocol Suite

Real-time Transport Protocol

RTP/RTCP (V2, RFC 3550, Schulzrinne et al 2003)

- End-to-end transmission of real-time data
- RTP identifies and synchronises data streams
- RTCP transmits controls to allow for adaptation

Sessions

Identify parties, sort and order packets

Timestamps

Decorate packets with temporal alignment

Media-specific Signalling

Extendable profiles according to media requirements

A Typical Application Scenario

Voice or Video Conference

- Two party (IP unicast) or group (IP multicast)
- Transport of media data: RTP packets within UDP
- RTP provides timing, ordering and identification
- Media specific encodings carried within RTP: e.g. frame type, layers, adaptive schemes
- Audio and video as two separate RTP streams
- Resynchronisation of streams (mixing) and transcoding (translation)
- Privacy via SRTP profile
- RTCP reports on receivers and reception quality

RTP Entities

o Transport Address

Combination of network (IP) address and port as defining an endpoint

o RTP media type

Any collection of payload types within a single RTP session

o RTP session

One communication between a pair of transport addresses

o RTP multimedia session

A set of RTP sessions among a common group of participants

o Mixer

An intermediate system receiving RTP packets while changing formats or packet combinations

RTP Entities (2)

o Synchronisation source (SSRC)

Source of a synchronised RTP stream, identified by the SSRC id

o Contributing source (CSRC)

Source of a synchronised RTP stream contributing to a combined stream produced by a mixer, identified by the CSRC id

o Translator

An intermediate system forwarding RTP packets without changing SSRC, but possibly modifying payloads

o Monitor

An application receiving RTCP packets for diagnostics

RTP Fixed Base Header

Version(V): 2 bit Payload Type(PT): 7 bit

Padding(P): 1 bit Sequence Number: 16 bit

Extension(X): 1 bit Timestamp: 32 bit

CSRC count (CC): 4 bit SSRC: 32 bit

Marker (M): 1 bit CSRC: 0 to 15 items, 32 bits each

RTP & Media Encoding

- RTP is intentionally left open to further media specifications and data interpretation within Profiles:
- o Payload Type Identifies format and interpretation of the RTP payload (Audio/Video: RFC 3551)
- Marker Interpretation of the Marker is defined by a profile, e.g. marking frame boundaries
- o Extension Headers May be defined in Profiles to carry additional, specific information

RTP Profiles: Header Chain

RTP allows for the encoding of media-specific information by possible (a chain of) Extension Headers.

- o The extension bit indicates a following RTP header.
- o The payload type indicates the profile of extension header type and of the payload data.

RTP MPEG Extension Header

```
0
                                              BFC
  MBZ
                  TR
```

MBZ: For future use

Type (T): MPEG-2 set to 1

Transport Reference (TR): Temporal Reference of current

picture within GOP(0-1023)

ActiveN (AN): Set 1, if N-Bit is used to signal changes in

picture header

N: New-Picture-Header

S: Sequence-Header-Present **FBV**:

B: Beginning-of-Slice

E: End-of-Slice

P: Picture Type

BFC:

FFV:

FFC:

MPEG-2-Vector-Identifier

Real-time Transport Control Protocol

- o RTCP provides feedback to the all members of the RTP session by a periodic transmission of control packets using the same distribution as data (e.g., multicast).
- o RTCP feedback reports on
 - reception statistics on quality, i.e., loss, delay, jitter
 - faults to diagnose network problems
 - distribution properties, i.e., receivers of the session
- o RTCP facilitates flow control & adaptive coding, but also multicast session surveillance
- o RTCP reports adapt to network capacities and session members

RTCP Packet Types

Sender Report: transmit and receive statistics from active senders

- Delay, Jitter, Packet Loss, NTP timestamp, ...

Receiver Report: transmit and receive statistics from passive receivers

- Delay, Jitter, Packet Loss, ...

Source Description Items:

- Cname, Name, Email, Phone, Location, Tool, Note, ...

Bye: Leave Session

Application Specific Functions

RTCP Compound Packaging

For efficiency reasons RTCP reports can be concatenated to form a compound packet.

RTP Programming (C++)

Choose/bind RTP stack (no standardized API)

Example: JRTPLIB – http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib

```
Create session: (specify port)
     RTPSession sess; status=sess.Create(5000);
Send RTP Data: (specify address, payloadtype, mark, timestamp increment)
      sess.AddDestination(addr,5000);
      sess.SendPacket("1234567890",10,4,false,13);
Receive RTP Data:
      if (sess.GotoFirstSourceWithData()) {
          do
                RTPPacket *pack;
                pack = sess.GetNextPacket();
                // process packet
                delete pack;
              } while (sess.GotoNextSourceWithData());
```


RTP Programming (Java)

(One) RTP stack is part of the Java Media Framework 2 (http://java.sun.com/products/java-media/jmf)

JMF RTP API is built of the following components:

Session Managers: Maintains session participants, streams & statistics

RTP Events/Listeners: Report on sessions, send/receive streams & remote participants

RTP Data: Predefined audio & video formats (extensible), transport protocol independent data handlers with input and output data streams

RTP Controls: Formats, sessions, buffers, statistics ...

RTP Programming (Java)

RTP Reception

RTP Transmission

SDP Session Description Protocol

- o IETF RFC 4556 (Handley et. al., MMusic)
- o General description of multimedia sessions:
 - Media details
 - Transport addresses & properties
 - User / session metadata

o Focuses the purposes

- Session announcement (e.g. via SAP)
- Session invitation
- Real-time streaming
- Within MIME, e.g., in emails or http
- SDP is only a format, independent of its actual transport

SDP Parameters

Parameter	m/o	Name	Meaning
a	0	Attributes	Additional properties (SDP-extension)
b	0	Bandwidth	Necessary bandwidth
С	0	Connection Information	More information on media stream
е	0	Email Address	Email address of the "owner"
i	0	Session Information	Additional information in text format
k	0	Encryption Key	Security key for media streams
m	m	Media	Name and address of the media stream
0	m	Owner	Initiator (owner) of a session
р	0	Phone Number	Telephone number of the "owner"
r	0	Repeat	Repetition
S	m	Session Name	Session name
t	m	Time	Session duration
u	0	URI	Identifier of session description
V	m	Version	Version of the used protocol
Z	0	Time Zone Adjustment	Time zone adjustment

Session Announcement

o Simple Session Announcement via SAP

- IETF experimental RFC 2974 (v2)
- Periodic multicast of SDP data + optional authentication

o Internet Media Guide Framework

- General content description scheme derived from Electronic Program Guides (digital TV broadcasting)
- Current standardisation effort in IETF MMUSIC
- Goal1: arbitrary content meta data support
- Goal2: interoperation of any suitable distribution mechanism (push/pull unicast, multicast, ...)

Internet Media Guides

- o Abstract meta-data types: Complete, Delta, Pointer (URI to meta data)
- o Packaging in flexible envelopes
- o Additional distribution "Transceiver" for proxying, combining, filtering, personalisation ...

SDP Offer / Answer Model (RFC 3264)

Objective:

Provide a mechanism by which two parties arrive at a common view of a multimedia session using SDP.

Offer:

Send SDP message with 0 to n media streams m=""", which the offerer is willing to send or receive (including transport binding).

Answer:

Reply with a counter matching SDP message, containing all offered media streams, correspondently marked as 'sendrecv'/ 'send/recvonly' or 'inactive'.

Multicast:

Provides a single view of a unidirectional stream (direct matching).

Agenda

- Multimedia Communication Requirements
- Legacy VoIP/VCoIP: H.323
- The Internet Multimedia Protocol Suite
- Session Initiation Protocol
 - → SIP Architecture & Components
 - → SIP Messages
 - → SIP Extensions: Events & Presence
 - → SIP Conferencing
 - → Further Functions

SIP - Session Initiation Protocol

- o IETF RFC 3261+ (Schulzrinne et al 2002)
- o Signalling control protocol for multimedia sessions
- o Main functionalities support
 - Call setup: ringing & establishment
 - Call handling: sustaining, transferring & termination
 - User location: discovery of user presence
 - User availability: discovery of user's call willingness
 - User capabilities: determination of media parameters for use
- o Increasing number of implementations for VoIP, conferencing, presence and messaging services

SIP Protocol

- o End-to-end application protocol transported via UDP or TCP
- o Designed to establish, modify and terminate stateful multimedia communication (sessions/conferences/instant messaging ...)
- o Signalling component, not an architecture like H.323, operates in combination with
 - RTP/RTCP for media transport
 - SDP for session description
 - SAP for session announcement
 - Gateway Control Protocol for PSTN gateway control
- o Extendable, but minimal implementation requirements
- o Security mechanisms and transport layer encryption SIPS

 Prof. Dr. Thomas Schmidt http://www.informatik.haw-hamburg.de/-schmidt •

SIP Components

o SIP Addresses: URIs

Telephone numbers, sip:user@domain, sip:phone_number@host, ...

SIP Messages

HTTP-like transactions: $sip://< request-URI> request \rightarrow response$

User agent server / SIP Server

Receives session requests, may perform service registering & control, AAA, proxying, location services, ...

User agent client / SIP Client

Initiates a session

o SIP Protocol

SIP Protocol (contd.)

- o SIP is a multi-layered application protocol
 - Upper layer: Transaction user
 - Third layer: Transaction process layer
 - Second layer: Transport layer
 - Low layer: Syntax & encoding
- o Interactions between components are transactional
 - Every request needs at least one response
 - A SIP dialog is a P2P relationship between two User Agents that persists for some time
- o SIP participants form an overlay
- o Media traffic is in parallel to SIP traffic
 - Media session parameters are included in the SDP

SIP Session Initiation: User Transaction Layer

SIP Messages

Inspired by SMTP encoding: Text style & extension headers,

borrows: To, From, Date and Subject header

o Generic Message:

```
Request-Line / Status-Line
*message-header
```

[message-body]

o Request (Request-Line):

Method Request-URI SIP-Version

o Response (Status-Line):

SIP-Version Status-Code Reason-Phrase

O Methods: Invite, ACK, CANCEL, ByE, REGISTER ingestate this senschaften Hamburg

• Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

SIP Message Example: Call Initiation

Transaction ID

```
INVITE sip:snoopy@dog.net SIP/2.0
```

Via: SIP/2.0/UDP pc.brown.com; branck=z9hG4bK776asdhds

Max-Forwards: 70

To: Snoopy <sip:snoopy@dog.net>

From: Charlie <sip:charlie@brown.com>;tag=192830177

Call-ID: a84b4c76e66710@pc33.dog.net

CSeq: 314159 INVITE

Subject: Tales from the Red Baron ...

Contact: <sip:charlie@sun17.brown.com>

Content-Type: application/sdp

Content-Length: 142

Member ID

Session ID

Response: Call Acceptance

Proxy Transaction

```
SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.peanuts.org;branch=z9hG4bK77ef
 ;received=192.0.2.2
Via: SIP/2.0/UDP pc3.brown.com;branch€z9hG4bK776asdhds
 ;received=141.22.13.122
                                             Init. Transact
To: Snoopy <sip:snoopy@dog.net>;tag=a79e45
From: Charlie <sip:charlie@brown.com>;tag=1928301774
Call-ID: (a84b4c76e66710@pc33.dog.net)
                                          New Member ID
CSeq: 314159 INVITE
Contact: <sip:RB.Snoopy@airterm.dog.net
Content-Type: application/sdp
Content-Length: 148
                                          Same Session
```

(Snoopy's SDP not shown)

Basic SIP Session Handling

Registering with a Proxy

- o A SIP Proxy server is an infrastructural entity for call routing based on presence information
- o UAC may register with 'their' Proxies:

```
REGISTER sip:registrar.dog.net SIP/2.0

Via: SIP/2.0/UDP 141.22.8.8:5060;branch=z9hG687b

Max-Forwards: 70

To: Snoopy <sip:snoopy@dog.net>
From: Snoopy <sip:snoopy@dog.net>;tag=7654

Call-ID: 147@141.22.8.8

CSeq: 44 REGISTER

Contact: <sip:RB.Snoopy@airterm.dog.net>;expires=3600

Content-Length: 0
```

SIP Redirect and Gateway Services

SIP Address Resolution

SIP Locating Users/Servers

Extending SIP

SIP's functionality can be easily extended by adding new 'Request-Response dialogs':

1. Define new Request Methods

```
Examples: JOIN, SUBSCRIBE, MESSAGE, ...
```

2. Define appropriate Response Status-Lines

```
Examples: MOVED, TURN, ...
```

3. Define call sequence behaviour

Numerous RFCs and I-Drafts around

SIP Event Packages

- o States of SIP services can be extended to event-type notifications (RFC 3265)
- o Event information are encoded in XML as "Event Packages"
- o New methods: SUBSCRIBE and NOTIFY
- o Many new functions, e.g.,
 - Invite dialog state
 - Feature key events
 - Updating IMGs
 - Conferencing
 - Push-to-talk
 - Presence

SIP Presence Event Package

- o Indication of online availability for community use 'Buddy List' with prioritised contact info
- o Conveys rich presence information on Activities (playing), Mood (confused), Place (noisy in aircraft), Relationships (friend), clear text Note ...
- o Presence Information Data Format (PIDF, RFC 3863) can be extended by personal attributes
- o Commonly combined with Instant Messaging:
 - Short individual messages using the MESSAGE method
 - Session-based messaging using the MSRP protocol

Conferencing with SIP

- o Support of multi-party sessions is a vital core function
- o Conference: Instance of a multi-party conversation
- o Many flavours of conferencing:
 - Centralized versus distributed
 - Ad hoc versus scheduled
 - Tightly versus loosely coupled

o Rich application domain:

- Audio-/ videoconferencing
- Distributed gaming (MMOGs)
- Presence & Instant Messaging services
- Foreseen as part of the IMS (MBMS)

3-Way Conference

- o Typical Scenario: Two parties in a call extend conversation to a 3rd member (ad hoc)
- o Could be handled implicitly by application, but
 - No explicit group context (wiretapping!)
 - No way to switch relaying party
- o SIP introducesconference Focusin Contact header
 - explicit conference URI
 - -isfocus tag

Large Scale Conferences

- o Conference control by a dedicated conference controller or via multicast signalling
- o Media distribution decoupled, typically by multicast or a (strong) MCU
- o Additional functions
 - REFER 3rd party invite
 - conference event states
 - floor control

SIP via Group Communication

- o S_{new} sends its INVITE to (*,G)
 - All group members answer to (*,G)
- Out-of-Band agreement on addressing & SDP

0

Architecture of Tightly Coupled Conferences

o Centralised focus maintains signalling relationship with all members

o Directs media streams by conducting mixers (central, cascaded) or use of multicast media

o Additional service functions,e.g., Notification & Policies

Media Distribution via SSM

o Media distribution in a tightly coupled conference may be centralised based on SSM

o All streams are submitted to one mixer S

o Each member subscribes to (S, G)

Media flows are distributed
 according along a Source
 Specific distribution tree rooted at S

Application Layer Mobility with SIP

- o Two types: personal & midcall mobility
- o Personal mobility:
 - Multiple registration: with home and visited registrar
 - On call registrar returns "temporarily moved to"
- o Midcall mobility
 - Mobile host issues a re-INVITE with its new session & contact data

SIP Mobility

SIP Unified Messaging

SIP Programming

A general purpose Java SIP stack is JAIN SIP (http://jain-sip.dev.java.net)

Java SIP stacks are also available from the Java Community Process

Server Side: SIP Servlet API (http://jcp.org/en/jsr/detail?id=116)

Terminal Side: SIP API for J2ME (http://jcp.org/en/jsr/detail?id=180)

Core architecture:

- One SipStack (interface) with several SipProviders, sending or receiving Request/Response messages
- SIP address factory
- SIP header factory
- SIP message factory

Many commercial C/C++ SIP stacks. Open Source Versions:

GNU: oSIP (http://www.gnu.org/software/osip)

reSIProcate (http://www.resiprocate.org/) – Minimal UAC example here ====

Reading

- > D.B. Johnston: SIP, Artech House, 2003.
- ➤ Sinnreich, Johnston: Internet Communications Using SIP, 2nd Ed. Wiley & Sons, New York, 2006.
- Syed Ahson, Mohammad Ilyas (Ed.): SIP Handbook: Services, Technologies, and Security, CRC Press, Boca Raton, November 2008.
 Chapter on Group Conferencing here.
- ➤ TERENA: The IP Telephony Cookbook, March 2004, <u>http://www.terena.org/activities/iptel/contents1.html</u>.
- IETF Documents: <u>www.rfc-editor.org</u>.
- > ITU Documents: www.itu.int .

