# A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media

## **BigSmall**

Xin Liu, Qisi Wang, Shu Wang, Yaqi Zhang, Yeyu Zhang

### The Problem

$$\begin{cases} -\nabla \cdot a \nabla u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

$$a(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^{n \times n}$$

# Heterogeneous Media

a(x) can be random or periodic





### Periodical Media

$$\begin{cases} -\nabla \cdot a(\frac{x}{\epsilon}) \nabla u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

a(y) periodic in y with period Y and smooth

# Hard to Capture (Aliasing)

$$P = 1.5$$

$$\epsilon = 0.05$$

$$a(\mathbf{x}) = \frac{1}{(1 + P\sin(2\pi x/\epsilon))(1 + P\sin(2\pi y/\epsilon))}$$





For the solvers to not see the fictitious aliasing behavior, we need sampling rate higher twice the frequency of  $a(\mathbf{x})$ 

## Difficulty with Traditional FEM



Time: ≈ 2.79 s Mem: ≈ 78.13 KB



Time: ≈ 223.71 s Mem: ≈ 11.92 GB

### Intuition

- Difficulties
  - Finer grid => Size of problem is tremendous.
  - Coarser grid => Bad accuracy
    - Discretization doesn't capture the small scale information imbedded in the operator  $-\nabla \cdot a\nabla$ .

### Intuition

- Difficulties
  - Finer grid => Size of problem is tremendous.
  - Coarser grid => Bad accuracy
    - Discretization doesn't capture the small scale information imbedded in the operator  $-\nabla \cdot a\nabla$ .
- Solution
  - Solve the problem on courser grid, but
  - Capture the fine features in a(x) into to the basis function and thus include these info into the discrete operator.

### **Basis Construction**

Construct basis functions  $\phi$  for a cell based on PDE local to the cell (adaptive to structure in  $a(\mathbf{x})$ ):

$$-\nabla \cdot a\nabla \phi_K^i = 0$$

In element K for node i

#### **Basis Construction**

Construct basis functions  $\phi$  for a cell based on PDE local to the cell (adaptive to structure in  $a(\mathbf{x})$ ):

$$-\nabla \cdot a \nabla \phi_K^i = 0$$

In element K for node i



### **Basis Boundaries**

"The reduced problems are obtained by deleting terms with partial derivatives in the direction normal to  $\partial K$  and having the coordinate normal to  $\partial K$  as a parameter."

### **Basis Boundaries**

On a rectangular cell, for example

Obtaining a boundary condition  $\mu^i$  along y direction

$$\frac{\partial}{\partial y}a_{\mu}(y)\frac{\partial \mu^{i}(y)}{\partial y} = 0$$

$$\mu^{i}(y_{i}) = 1, \mu^{i}(y_{j}) = 0$$



### **Basis Boundaries**



### **Basis Construction**

$$a(\mathbf{x}) = \frac{1}{(1 + P\sin(2\pi x/\epsilon))(1 + P\sin(2\pi y/\epsilon))}$$

P = 1.5



### **Basis Construction**



### **Basis Function Properties**

#### For rectangular cells

 If a(x) is separable (i.e. a(x, y) = b(x)c(y)).

$$\phi^{i}(x,y) = \mu_{1}^{i}(x)\mu_{2}^{i}(y)$$

- $\bullet \qquad \sum \phi_i = 1$
- $\phi_i$  are compatible across the boundaries.





### Variational form

Seek for 
$$u \in H^1_0(\Omega)$$
 Seek for  $u \in V_h$  Such that  $b(u,v) = l(v) \forall v \in H^1_0(\Omega)$  Such that  $b(u,v) = \int_\Omega a_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_i}$ , Where  $b(u,v) = \int_\Omega a_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_i}$ ,  $b(u,v) = \int_\Omega a_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_i}$ ,  $l(v) = \int_\Omega fv dx$ 

### Assemble A and f

$$A_{ij} = \sum_{K \in \mathcal{K}_{ij}} \int_{K} (\nabla \phi_K^i)^T a \nabla \phi_K^j dx$$
$$f_i = \sum_{K \in \mathcal{K}_i} \int_{K} f \phi_K^i dx$$

### **Numerical Experiment**

Media

$$a(\mathbf{x}) = \frac{1}{(1 + 1.5sin(2\pi x/0.05))(1 + 1.5sin(2\pi y/0.05))}$$

Grid

[0,1]x[0,1] Rectangular domain.

Machine

intel i7-6700k

16 Gb Memory



### Results



Time: 27.01 s / 6.93 s

Mem: 1.22 Mb



Time: 223.75 s Mem: 11.92 Gb

### Results



Time: 27.01 s / 6.93 s

Mem: 1.22 Mb



Time: 2.71 s Mem: 78.13 Kb

#### Discussion

#### In general

- Basis construction is highly parallelizable, since only the local info of the cell is required to compute the basis functions.
- The nodal basis function only overlaps among neighboring nodes (A sparse)
- Spatial complexity is O(M<sup>d</sup> + N<sup>d</sup>).
  - If A is assembled in a cell-based fashion, the basis in previous cells can be dumped in a serial implementation.

#### Discussion

#### In general

- Basis construction is highly parallelizable, since only the local info of the cell is required to compute the basis functions.
- The nodal basis function only overlaps among neighboring nodes (A sparse)
- Space complexity is O(M<sup>d</sup> + N<sup>d</sup>). If A is assembled in a cell-based fashion, the basis in previous cells can be dumped in a serial implementation.



### Discussion

#### Periodicity

- If discretized at integer multiples of period (i.e.  $H = k\varepsilon$ ). The set of basis functions are the same in each cell.
- Space complexity O(M<sup>d</sup> + N<sup>d</sup>)

a(x,y) Separable (a(x, y) = b(x)c(y)) with rectangular cells

Don't need to solve the PDE on the cell.

# Q&A

Thanks!