BST Application Multi-Level Search Tree

几株不知名的树,已脱下了黄叶 只有那两三片,多么可怜在枝上抖怯 它们感到秋来到,要与世间离别

deng@tsinghua.edu.cn

邓俊辉

2D Range Query = x-Query + y-Query

- ❖ Is there any structure which answers range query FASTER than kd-trees?
- ❖ An m-D orthogonal range query can be answered by

the INTERSECTION of m 1D queries

❖ For example, a 2D range query

can be divided into two 1D range queries:

- find all points in $[x_1, x_2]$; and then
- find in these candidates those lying in $[y_1, y_2]$

Worst Cases

```
\clubsuit Using kd-trees needs \mathcal{O}(1+\sqrt{n}) time. But here ...
```

```
❖ The x-query returns
      (almost) all points whereas
  the y-query rejects
      (almost) all
\bullet We spent \Omega(\mathbf{n}) time
  before getting r = 0 points
```


Painters' Strategy

2D Range Query = x-Query * y-Query

❖ Tree of trees

- build a 1D BBST (called x-tree)
 for the first range query (x-query);
- for each node v in the x-range tree,
 build a y-coordinate BBST (y-tree), containing
 the canonical subset associate with v
- ❖ It's an x-tree of (a number of) y-trees,
 called a Multi-Level Search Tree
- ❖ How to answer range queries with such an MLST?

2D Range Query = x-Query * y-Queries

\$\diamoles\$ Query Time =
$$\mathcal{O}(r + \log^2 n)$$
 ~ $\mathcal{O}(r + \log n)$

Query Algorithm

1. Determine the canonical subsets of points that satisfy the first query

```
// there will be O(logn) such canonical sets,
// each of which is just represented as
// a node in the x-tree
```

2. Find out from each canonical subset which points lie within the y-range

```
// To do this,
// for each canonical subset,

// we access the y-tree for the corresponding node
// this will be again a 1D range search (on the y-range)
```


Complexity: Preprocessing Time + Storage

- ❖ A 2-level search tree

 for n points in the plane

 can be built

 in $O(n \log n)$ time
- **\clubsuit** Each input point is stored in $\mathcal{O}(\log n)$ y-trees
- *A 2-level search tree for n points in the plane needs $\mathcal{O}(n \log n)$ space

Complexity: Query Time

- **�** Claim: A 2-level search tree for n points in the plane answers each planar range query $\text{in } \mathcal{O}(r + \log^2 n) \text{ time}$
- ❖ The x-range query needs $\mathcal{O}(\log n)$ time
 to locate the $\mathcal{O}(\log n)$ nodes
 representing the canonical subsets
- ❖ Then for each of these nodes, a y-range search is invoked, which needs $\mathcal{O}(\log n)$ time

Beyond 2D

- \clubsuit Let S be a set of n points in \mathcal{E}^d , $d \ge 2$
 - A d-level tree for S uses $\mathcal{O}(n \cdot \log^{d-1} n)$ storage
 - Such a tree can be constructed $\text{in } \mathcal{O}(n \cdot \log^{d-1} n) \text{ time}$
 - Each orthogonal range query of S can be answered in $\mathcal{O}(r + \log^{\mathbf{d}} n)$ time
- **\Leftrightarrow** For planar case, can the query time be improved to, say, $\mathcal{O}(\log n)$?

