Date	:		Ļ,			•					
Dute	*	***	91	•••	**	**	**	*	•	**	'

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2019

(JUNE-2019 to SEPT.-2019)

Under the guidance of K. Venkanna

THEMATICS

PAPER - II : FULL SYLLABUS

TEST CODE: TEST/10: IAS(M)/04-AUG.-2019

Time: 3 Hours

Maximum Marks:

INSTRUCTIONS

- This question paper-cum-answer booklet has 48 pages and has
 - 31 PART/SUBPART questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated. '
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- 9. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 10. All rough work should be done in the space provided and scored out finally.
- The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any

READ	INSTR	UCT	ONS	ON	THE
LEFT	SIDE	OF	THIS	P	AGE
CARFE	VIIII		9.00		

Name Priya	ula. Goda	ی
Roll No.		
Test Centre		
T. 10 -11		

Medium

Do not writ	e your	Roll	Number o	r Name
anywhere				
cum-Answ				

Ī	have	read all	the	instructions	and	shall

abide by the	m		- 1
Ciar	H	mycur	D)

Thave verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED	1
1	(a)			09 7	
	(b)				
	(c)			07	11
	(d)			09	43
	(e)			89	
2	(a)			01	
	(b)				
	(c)				
	(d)				
3	(a)			14 0	
	(b)			14 6	
	(c)			18	4
	(d)-				100
4	(a)	200			
	(b)				
-	(c)				
- 1	(d)				
5	(a)	The State of the	114 1414	09	
1	(b)			09	
1	(c)			09	36
1	(d)			09	
	(e)				
5	(a)			(1)	
	(b)				- 1
	(c)			07	46
	(d)			12	
	(a)			09 7	
	(b)			09 (
	(c)			15	46
	(d)			13	The
	(a)				
	(b)				
	(c)				
	(d)				
			Total Marks		

2/20

DO NOT WRITE ON THIS SPACE

SECTION - A

(a) Show that S₃ and Z₆ are nonisomorphic groups and for every proper subgroup A of S₃ there exists a proper subgroup B of Z₆ such that A = B.

As.
$$(12)(13) = (132)$$
 $= (12)(13) \neq (13)(12)$
 $= (13)(12) = (123)$ $= (12)(13) \neq (13)(12)$
 $= (13)(12) = (123)$ $= (12)(13) \neq (13)(12)$

: o S3 4 Z6 are non-iromosphic groups.

Proper Supgroups of S3 & X6 are of order,

2 2 3. Subgroup of order 2 -> 20,3} &I,(12)} {I,(12)} {I,(13)}

subgroup of order 3 > {0,2,4} {I,(123),(132)}

Let's define a mapping.

ACS3 -> BCZ6 3.t.

the will show that f is isomorphism.

To show well defined. Let \$ (a b) = (c d)

To show outo., + \$(0)||b| \in B. \(\frac{1}{2}\) (ab) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}\) \(\f

homomorphism: - #((ab).(cd) = #(ed) +(ab) = +(c) + +(d) + +(a) + +(b)

IMS

HEAD OFFICE: 25/8, Old Rajinder Nagar Market, Delhi-40. Ph. 9999197625, 011-45629487. T (A) + T (B) (T (C) + T (D) (T (C) + T (D) (T (C) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D) + T (D) + T (D) (T (D) + T (D)

Hence isomospillive

IMS

7 of 52	
(c) Test for convergence the series	
1 1 1	
$\frac{1}{(\log 2)^p} + \frac{1}{(\log 3)^p} + \frac{1}{(\log 4)^p} + \dots$	[10]
n=	23
there un = - h : Unti dos(h+1))	F, -/
Here un = (logn) b; un+1= (log(n+1)) b . n=	Park I
b	ь
un = (log (n+1)) - (log n(1+2)) (l	1/ mpc
untl	A.F.
un+1 = (log (n+1)) = = (log n(1+\frac{1}{n})) = (log n)	To xt
No.	(logn)t
$= (1 + \frac{1}{\sqrt{\log(1 + \frac{1}{n})}})$	
Logn	1 1
lim $\frac{4n}{n+1}$ = $\lim_{n\to\infty} \left(1 + \frac{1}{\log n} \cdot \log(1 + \frac{1}{n})\right)^{\frac{1}{2}} = 1$	
now und hard logn (n)	Total To
« Ratio test faits.	APPENDING TO
or items	4
ow n log 4h - np log 1+ losn (h-2h2+	3 n3 /
low n eg 4h = np eg [1+ logn (1 - 2h2+	
= mps [1 - 1 - 1 - 1 - 2 (7) - p + other terms having	
= mp) (= - 2 n 4 con 3 n 3 logn.) - 2 (r	Logn 2h
(Megn	V DI
P ather terms having	denon
logn as n.	J
=) lim n log un = lim p + 0	
WIND Lunt woo logn	
- P 0<1 + P	000
the Mary James 11 90 . U. F. I.	
e By logithanic test, given se	ries,
is divergent Up.	Grand Barrier
	11

1. (d) Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and Let f(z)= · z = 5z3+12 = 0. Let h(z)=12 & g(z)=z+5z3. both h(z) & g(z) are analytic in |z|=1 (being polynomial 00 19(z) < 1 ou +z1=1. so By houche's theorem fi(z) + g(z) has same no of roots inside |2|=1 as f(z)=12 But h(z) has no root root inside. |z|=1 Again for |z|=2, consider. g(z) = 12-523. h(z) = 27. then $\frac{|g(z)|}{|h(z)|} = \frac{||z-5z^3||}{|z^7|} < \frac{||z|+5||z||^3}{||z|^7} = \frac{|z+5\cdot z^3|}{27} = \frac{|3|}{31}$ % [g(z)] so by Rouche's theorem. F(z)+g(z) has. same no. of roots. as h(z) = z7. inside 12/=2 Now : z=0 has all the root inside |z|=2 & all the twots of z7-5z3+12=0 lies incide. |z|=2 but outside |3|=1. is all the roots lie between |2|=1 4/2/-2.

9 of 52	
1. (e) Solve the following assignment problems Man [10]	
I 12 30 21 15	
Work III 18 33 9 31 44 25 24 21	
IV 23 30 28 14	
Dot - step 1: - subtracting minimum element	
Jeach now from corresponding now, we get.	
0 18 9 3.	
23 4 3 0	
0 11 14 0	
1 it have.	
Step 2:- Since all the columns don't have. Step 2:- Since all the columns don't have. atleast one zero, so subtracting minimum elevent from corresponding column.	
atteast one zero, surresponding column.	
Clement from 20. 1	
9 20 0 22	
9 12 14 0.	
step3. 18 14 9 3. By ausigning. zero	-
1 20 6) 22 from row containing	
9 20 0 22 ouly one zero 4 crossing q 12 14 0 others, 4 same in column	44
00 arrignments are. I >1, II > 3, III > 2, IV > 4.	
0. Minimum Value = 12+9+25+14	
= 60 stug	
	_

- (a) (i) If a ∈ G, define N(a) = {x ∈ G | xa = ax}. Show that N(a) is a subgroup of G. N(a) is usually called the normalizer or centralizer of a in G.
 - (ii) If H is a subgroup of G, then by the centralizer C(H) of H we mean the set (x ∈ G | xh = hx all h ∈ H). Prove that C(H) is a subgroup of G.
 - (iii) Given an example of a group G and a subgroup H such that $N(H) \neq C(H)$. Is there any containing relation between N(H) and C(H)? [6+6+6=18]

 (a) (i) Find the elements in Z₁₂ which are zero divisors. (ii) Is there any integral domain which has six elements? [15] Z12 .= {0,1,23,4,5,6,7,8,9,10,11} then. 2.6= 0 in 212. 3.4= 0 " 8.3 = 0 2,3,4,6,8,9 & 10 are zero divisors. (ii) let R be an Integral domain such that 0(R)=6. But we know that every finite integral domain is a field. Enoof: - Let f be a finite non-zero ID. having on elements a1, a21 ... an. => f = commutative eving without zero divisors. we will prove every non-zero element of flows multiplicative inveril cousider acf, s.t. a = 0. then aa, aa, ... , aan cf (closure property) If possible a ai = a aj for some i + j => a(ai-aj) =0 = a=0 or ai=aj on and # any If it is both not true. : aai, aazi. , gan are distinct elements of F att =) q = ani for somei.

a = aai = aia (: Fis commutative) let bef., consider ab= (aai) b =) a (b-aib) =0 => b-aib=0 => b=aib=bai =) ai is multiplicative identity of f for convenience let a =1. so f is sing with unity. as lef =) 1= aaj for some j => aj is multiplicative inverse of a ef so f is field. By using this result IR is also field.

But we know that o(field) = p for some print but o(R) = 6 which is composite no. There is no ID with 6 elements. 3. (b) (i) Show that $\int_0^{\infty} \frac{b \sin ax - a \sin bx}{x^2} dx = ab \log(b/a)$, 0 < b < a. (ii) Prove that the series $\sum (-1) \frac{n x^2 + n}{n^2}$ converges uniformly in any closed and bounded interval [a, b], but does not converge absolutely for any real x. 1) b sinax -a sinbx dx. [5+10=15] let $\phi(x) = \frac{\sin x}{x} + x > 0$. then \$ is continuous on (0,0) & lim sinx = 1 lim p(x) = 0 :. (p(an)- p(bx) dx = (1-0) log[b] o sin an - sin bx dx = log &.

sin an - sin bx dx = ab log (b) Hence

sin ax - a sin bx dx = ab log (b) Hence

ii) Given series. Zt1) mazit+n tet un= (-1) ". Yn= x2+1 2 2 (4/6) Vn+1-Vn = 3(+n+1) - 2(2+2) = x2 [1 - 1] + (1 - 1) <0 Hx+(ab) so vn is a decreasing sequence. 00 By. & lt vn = lt nx2+h = lt 1+ x2 = 0. 00 lt 400 & vn. is a decreasing seg. >> By heibnitz test for atternating series. given peries. O is converging. Every converging series is uninformly convergent on closed and bounded interval. Now to show that 1 is not absolutely convergent [[(1) 227h] = [2 x27h] let yn= h. then lim not 1/n = 1. = finite quantity. is by comparison test I'm & I noill But by p-tell & i'd divergent, so is [1/2. 00 series 1) is not absolutely convergent

				18 01 52					
3. (c)		$\begin{array}{l} \text{nplex meth} \\ 3x_1 + 5x_2 + \end{array}$		he LP pro	blem:				AD 1
100	subject to	the const	raints :						ape (s)
1	$2x_1 + 3x_2$	≤ 8 , $2x_2 + 3$	$5x_3 \le 10, 3$	$3x_1 + 2x_2$	$4x_3 \le 1$	5, and	x ₁ , x ₂ , x	3 ≥ 0.	[20]
Red	ucing	geven	pho	blem	to	stan	dara	1 for	
	Max z							- i	
3.6		1+3×							
	3 ×	1+2×2	+423	+52=	15		24 24		
		2 + 5× 5			3/2/			3 5 0	
199 L		E+ I					5215		
SI	mplex	table	0 1%.			St	ack	varia	stu.
0		0		4	0	0	D		
CB	B.V.	124	7/2	23	S,	52	23	16-	0
0			(3)	0	1	0	0	8	8/3
			2	4	0	1		15	15/2=
0	S2 S3	3		5	0	0	1		C
		4	2				0	110.	
Zi:	E (EBAS)	13	5	4	ő	0	8		Charles I
cj =	Σ (ε _β α;)	1	1.	/			0	- 1	Actual to
17.171		SI	- out	going	val	iable	4	iq iv	comin
		3	5	9	0	0	0		0,
CB	B.V.	261	22	×3	51	S2 5	53	b -	3
5	962	2/3	1	0	1/3	0	0	8/3	
0	S2		0	4 -	243	1	0	29/3	9/12
0		5/3		3		O	1 1	19/3.	145
	53	-4/3	0	0	-2/3	0	0	1	Tr.
1	4	10/3	5	/	2/3				18 1
	cj	-1/3	0/	4	-5/3	0	0 .1		
				Je.					0.
	2	ca- inc	oney	g vari	able	1			
		0 - 0	ulgoid	y var	iable	t.			Ser I
		3- 0	1	0					11511
-	-								

Eg B.V. $\frac{3}{2}$ $\frac{5}{2}$ $\frac{1}{2}$ $\frac{3}{2}$
S
4
Cy 1/15 0 -17/15 0 -4/5+ 21 > incoming variable, , 52 -) outgoing. New simplex. table. CB. BV. 24 ×2 ×3 51 52 53. B. 24 0 0 -241 15/41 -12/41 89/41 4. ×3. 0 0 1 -2/41 4/44 5/11 62/41
21 > incoming variable, ,52 -) outgoing, New simplex. table. CB. BV. 24 ×2 ×3 51 52 53. B 5 ×4 0 1 0 15/41 -12/41 50/41 3 ×4 0 0 - 2/41 15/41 -12/41 89/41 4. ×3. 0 0 1 -2/41 4/44 5/11 62/41
New simplex. table. CB. BV. $x_1 x_2 x_3 \le 1 \le 2 \le 3$. CB. BV. $x_1 x_2 x_3 \le 1 \le 2 \le 3$. b 5 x_2 0 1 0 $15/41^{-19}41^{-2}/41$ $50/41$ 3 x_2 0 0 - $2/41$ $15/41^{-12}/41$ $89/41$ 4. x_3 . 0 0 1 $-2/41$ $4/44$ $5/11$ $62/41$
New simplex. table. CB. BV. $x_1 x_2 x_3 \le 1 \le 2 \le 3$. CB. BV. $x_1 x_2 x_3 \le 1 \le 2 \le 3$. b 5 x_2 0 1 0 $15/41^{-19}41^{-2}/41$ $50/41$ 3 x_2 0 0 - $2/41$ $15/41^{-12}/41$ $89/41$ 4. x_3 . 0 0 1 $-2/41$ $4/44$ $5/11$ $62/41$
CB. BV. $\frac{1}{24}$ \frac
3 24 0 0 - 241 15/41 -12/41 89/41 4. x3. 0 0 1 -2/41 4/44 5/11 62/41
3 24 0 0 - 241 15/41 -12/41 89/41 4. x3. 0 0 1 -2/41 4/44 5/11 62/41
9.
10 10
A
obtained
~1: 89/41, 22=50 4 x3=62 41
10 max z = 3 (89/41) + 5 (41) + 4 (62)
= 247+250+248 = 768 Ans

	-									
1	2				- 30					
										9
						9. (3-1 '				
100										
							0)(
										-
			- 20					74		
-										
			15							
										1
						4				m.Te
										-
1 1				Phis .						-
									130	70
1										3
4 10	I at I	be a se								8
4. (a)	Let F	R be a co	mmutativ	ve ring w	ith ider	ntity, 1 ≠ 0. Th	en an	ideal M o	f R is ma	ximal
4. (a)	let F	R be a co d only if	mmutativ	ve ring w i field.	ith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	
4. (a)	if an	R be a co d only if	mmutativ	ve ring w i field.	ith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	iximal
4. (a)	let I if an	R be a co d only if	mmutativ	ve ring w i field.	rith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	
4. (a)	if an	R be a co d only if	mmutativ	ve ring w a field.	rith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	
4. (a)	if an	R be a co d only if	mmutativ	ve ring w a field.	vith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	
4. (a)) Let I if an	R be a co d only if	mmutativ	ve ring w a field.	vith ider	ntity, 1 ≠ 0. Th	ien an	ideal M o	f R is ma	
4. (a)	n an	d only if	K/M is a	neld.						
4. (a)	n an	d only if	K/M is a	neld.						
4. (a)	n an	d only if	K/M is a	neld.						
4. (a)	n an	d only if	K/M is a	neld.						
4. (a)	ir an	d only if	K/M is a	neld.						
4. (a)	ir an	d only if	K/M is a	neld.						
4. (a)	ir an	d only if	K/M is a	neld.						
4. (a)	ir an	d only if	K/M is a	neld.						
4. (a)	ir an	d only if	K/M is a	neld.						
4. (a)	ir an	a only ii	K/M is a	neld.					The state of the s	[12]
4. (a)	ir an	a only ii	K/M is a	neld.					The state of the s	[12]
4. (a)	ir an	a only ii	K/M is a	neld.					The state of the s	[12]
4. (a)	ir an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]
	li an	a only ii	K/M is a	neld.					The state of the s	[12]

SECTION - B

5. (a) Find the partial differential equation of the family of planes, the sum of whose x, y, z intercepts is equal to unity.

bet given plane be. 光+ 古+ = 1 where atb+cel

 $= \frac{2}{a} + \frac{7}{b} + \frac{7}{1-a-b} = 1. - 0$

Partiabliff @ w. r.t. ze we get

Again particuly diff. O w.s.t. y we get

From (3) = = = -(5)

from eg. @ 43, we get pa+ 1=a+b => a(1-p+b)=1

Similarly b = b + 1 - 12.

then c = - 12 ptg = 199

20 εq 1 0 reduces to x + y - 2 = 1 2/ p+q+ρ 1 1/ p+q+ρ 1 2/ p+ρ 1 2/ p+ρ 1 2/ p+ρ 1 2/ p+ρ 1 2/ p

 (b) Find a complete integral of (p² + q²) x = pz. Given F(x,y,z,p,q)= (b2+q2)x-pz. =0. charpit's auxillary eg are. dx = dy = dz = db = d9 - fx+b+z = fy+9+z. $\frac{dx}{-2px+2} - \frac{dy}{-2p^2x+2p-2q^2x} = \frac{dp}{p^2+q^2-p^2} = \frac{d2}{-2p^2}$ From last @ eghs. db = dq =) p2+q2= a2 (say). - 3. from () & D. | p= q2x | Hence 9= Ja= ax2 = 2 72 a2x2= 9. co dz= bdx+ qdy = a2x dx + 9/22-a2x2 dy =) Zdz = a2xdx+a/z2a2x2dy. 2 => 2(zdz - atudn) = ady. => = (z3-a3x3)/2(22dz-2a2xdx) = a/dy. $\frac{1}{2} \cdot \frac{(x^2 - a^2x^2)^2}{1/2} = ay + b.; b is constant$ => 122 ain = ay + b =1 2= a3e2 = (ay+b) 2 stus

5. (c) For an integral $\int f(x)dx$, show that the two-point Gauss quadrature rule is given $\int_{1}^{1} f(x) dx = f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right). \text{ Using this rule, estimate } \int_{2}^{1} 2xe^{x} dx.$ [10] any interval. La, b] can be thansformed to [-1,1] using transformation. x = 6-9++ 6+9 then If(x) dx = I 2kq(xx). where weight function w(x)=1. For 2-point formula. JE(N) dx = 20 f(No) +2, f(Ni) To determine 20, 4, 20, 21., making method exact for f(x) = 1, x, x2, x3. 7(x)=1: 2= 20+2, 7(x) = x : 0 = 20x6+21x1 $f(x) = x^2 : \frac{2}{3} = \lambda_0 x_0^2 + \lambda_1 x_1^2$. $f(x) = x^3 : 0 = \lambda_0 x_0^3 + \lambda_1 x_1^3$. Eliminating 20., we get 7, x13- A, x1x2=0 2) 2,24 (21-40)(x1+20)=0 As 2, to, not x, => x4+x0=0 => x1=-x0. 4 70-2=0 =) 20=21 then 20=2=1 O) 202 = 1/3 Ox 20= , = + 1/3 . 4 x1= + 1/3. onethod its given by . St(x)dn= + (1)++ (1)

HEAD OFFICE: 25/8, Old Rajinder Nagar Market, Delhi-40, Ph. 9999187625, 011-45629887.

BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.

REGIONAL OFFICE: 1-10-237, Ind Floor, Room No. 202 R.K'S Kancham's Blue Sapphire Ashok Nagar Hyderabed-20. Mobile No: 09652351152, 09652651152

Www.ima-4matha.cem || Ernalt: Irns-4matha-gensil, Chim

The state of the

Convert:

(i) 46655 given to be in the decimal system into one in base 6.

(ii) (11110.01)₂ into a number in the decimal system.

[10]

(1)

6	46659	5/
	7175	5
	1295	5 1
	215	5
7	35	5
	5.	5

·· (46655), (555556)6.

41) (11110,01)2 into a number en decimal

= (1x24+1x23+1x2+1x2+0x2° 0x2+1x22)10

(e) If $u = (ax - by)/(x^2 + y^2)$ $v = (ay + bx)/(x^2 + y^2)$ w = 0, investigate the nature of motion of the liquid.

6. (b) Reduce the equation $\frac{\partial^2 z}{\partial x^2} + 2(\frac{\partial^2 z}{\partial x \partial y}) + \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and hence solve it. Given PDE can be written as 2+25+t=0. - 1 then Comparing with Rits&+Tt=0, we get R=1, S=2, T=1. Characteristic eg 4 is. $= \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{$ o's characteristic eg " is. dy -1=0 => dy-dx=0 => 7-x=c het [u= x-y] 4 [ve = x+y] (" = 240) $\frac{\partial u}{\partial x} = 1, \frac{\partial u}{\partial y} = -1, \frac{\partial u}{\partial x} = 1, \frac{\partial u}{\partial y} = 1$ then p = 32 34 + 32 32 = 32 + 32 1= 322 24 + 2. 222 ie + 322 24 = 322 + 2 322 + 322 . 9 = 32 34 + 32 32 = - 32 + 32 . $8 = -\frac{3^{2}z}{3u^{2}} \cdot \frac{3u}{3x} + \frac{3^{2}z}{3u \cdot 3u} \cdot \frac{3u}{3x} + \frac{3^{2}z}{3u \cdot 3u} \cdot \frac{3u}{3x} + \frac{3^{2}z}{3u^{2}} \cdot \frac{3u}{3u}$ $= -\frac{3^{12}}{34^{2}} + \frac{3^{12}}{34^{2}}$ t = - 32 34 - 352 34 + 352 34 + 352 36 = 22 + 322 . - 2 2231

Substituting values of. 1, 1 & t in 1 we get => / 22 =0 is required canonical form. To find soly, integrating @ w.r.t. v we get 22 = \$(4) , \$ is an abethary function. Again integrating $z = \left(\phi(u)dv + \psi(u)\right)$ Z = re p(4) + \$4(1), y = aessithery feth 00 Z = (x+y) + (x-y) + + (x-y) Is the required 4014. (c) Solve $r + s - 6t = y \cos x$. [08](07 DO-6012) Z = y cosx. Auxillary Equ is m2+m-6=0 => m=2,-3. P. I . = 1 4 cosx. = (N-20') (0+30') &y cosna) = 2-20 (c+3x) coshdn.; c=4-3x. 1 (c+3x) sinx - [3 simdx]

= 0-201 [Bn+c) sinx +3 cosx] = (D-201) [Ysinx + 3 cosx] = ((c-2x) sinx +3 cosx) dx ; 4= c-2x. =-(c-2x) cosx + (-2) cosx dx + 3 sinx & - ycosx - 2 sinx + 3 sinx P.I = -yeosx + siux . General & X= C.f. + P. E. Z= 4, (4+2x)+B(4-3x)+Linnycosx 6. (d) Find the steady state temperature distribution in a thin rectangular plate bounded by the lines x = 0, x = a, y = 0, y = b. The edges x = 0, x = a, y = 0 are kept at temperature zero while the edge y = b is kept at 100°C. [18] dol' Given Peroblem is a laplace. Eg 324 + 342 = 0 where u(0,4)=0, u(a,4)=0 -@ 4(x,0)=0, u(x,b)=100.-3 He will solve et by variable separable method u(x,y) = x(x),y(y) - (y substituting 1 in 1 we get Since x & y are independent, so both side are equal to some constant say k.

8-(5) => X"-KX=0 -4 y"+ ky = 0 -0 Using 2 24. X(0) Y(9)=0 4 X(a) Y(y) 20 or x(0) - 2 x(a) = 0 = 0 K= 0., don't satisfy Care [k=0 then soly of 6. X(x): Ax+B - 0. using boundary conditions we get A=B=0 which is trivial sol. Care # 1 1 1 2; 2 7 0. 5014 of 6) is X(x) = 4exx+8e-xx using B.C. we get A=B=0, again trivial sol Case III let k=-22, 2 = 0. then sol of 6. is X(x) = Acos/x+ Bein/x using B.C. @ & @ gives. A=0 & 0= Acosza+Buinza. =) sin 74=0 Hence non-zero sol Xn(x). of 6 are given by Xn(x): By sin nex using k=-72 = - m22 in (7), we get=) y= n22 = 0 Myn (y) = chenky -nky Y(0)=0=) Yn(y)=0, =) &n=-Ch.

80 Yn(4) = Cn (e a - e - nk/a) = ah sin nky - (1) (o General sol" is

[4(x,y): En sin nox kinh nxy]; En=28nCn. Putting j=b in 10 we get. 100 = En sen nax sin hab which is fourier sine series 4 hence En = $\frac{2}{a}\int_{0}^{100} \sin n\pi \, dx = \frac{260}{a} \left[-\frac{\omega \sin n\pi x}{n\pi x} \right]_{0}^{4}$ = $\frac{200}{n\pi} \left[1 - (-1)^{m} \right] \cos \operatorname{sech} \ln \frac{\pi x}{a} = \begin{cases} 0 & \text{if } n = 2m \\ 400 & \text{cosech} \ln \frac{\pi x}{a} \end{cases}$ $\frac{(2m-1)\pi}{n\pi} \left[\frac{(2m-1)\pi x}{n\pi} \right]_{0}^{4}$ $\frac{(2m-1)\pi}{n\pi} \left[\frac{(2m-1)\pi x}{n\pi} \right]_{0}^{4}$ $\frac{(2m-1)\pi}{n\pi} \left[\frac{(2m-1)\pi x}{n\pi} \right]_{0}^{4}$ required Xoy 7. (a) Using Gauss Seidel iterative method and the starting solution $x_1 = x_2 = x_3 = 0$ determine the solution of the following system of equations in two iterations 10x, $-x_2 - x_3 = 8$, $x_1 + 10x_2 + x_3 = 12$, $x_1 - x_2 + 10x_3 = 10$. Rewritting given equations as x1 = 1 [8+x2+x3] $x_2 = \frac{1}{10} [12 - x_1 - x_3]$ $x_3 = \frac{1}{10} [10 - x_1 + x_2]$ Again given initial soi is x1=x2=x3=0 ° 24 = 0.8, x2 = 1.12, x3 = 1.032. After (Ist iteration) Iteration I-21 = 0.8+ 0.1 × 112 +0.1 × 1.032 = 1.0152

$$x_2 = \frac{1}{10} [12 - 1 \times 1.0152 - 1 \times 1.032]$$

$$= 0.99532$$
 $x_3 = 1 - 0.1 \times 1.0152 - 0.1 \times 0.99532$

$$= 0.99803$$
6. After 2nd Iteration.
$$x_1 = 1.0152$$

$$x_2 = 0.99532$$

$$x_3 = 0.99203$$
Ans.

7. (b) Using Lagrange interpolation formula calculate the value of f(3) from the following table of values of x and f(x):

X 0 1 2 4 5 6

F(x) 1 14 15 5 6 19

[10]

Given values are. 2020, 24=1, 22=2, 23=4, 24=5, 25=6. 4(0)=1, f(1)=14, f(2)=15, f(3)=5, f(4)=6, f(5)=19.

for x=3., Laghayge's interpolation formula is.

\$\for \text{x=3.}, \text{Laghayge's interpolation formula is.}

\$\for \text{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_5)(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_2)(x-x_3)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_5)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_5)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_5)(x-x_4)(x-x_5) \text{(x-x_5)}

\$\for \text{(x-x_6)(x-x_5)(x-x_6)(x-x_5) \text{(x-x_6)(x-x_6)}

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6) \text{(x-x_6)(x-x_6)}

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)(x-x_6)

\$\for \text{(x-x_6)(x-

7. (c) Given $\frac{dy}{dx} = y - x$ where y(0) = 2, using the Runge-Kutta fourth order method, find y(0.1) and y(0.2). Compare the approximate solution with its exact solution $(e^{0.1} = 1.10517, e^{0.2} = 1.2214)$

Given: x=0, J(0)=2.

dy: J-x; h=0.1.

To find. J(0.1) & J(0.2)

for J(0.1)

y(0.1) = J(0)+k.

Where k = f(k_1+k_2+2(k_2+k_3))

& k_1 = k f(x_0, y_0) = 0.1 f(0,2) = 0.2

K2- 7 + (20 + 1/2 1 fo + K1) = 0.17 (0.05, 2.1) = 0.1 × 2.05 = 0.205 K3= hf(20+1/2, yo+ K2) = 0.17(0.05,2.1025)=0.1×2.0525=0.2052. Ky = K(f(xoth, yo+k3)) = 0.1 \$ (0.1, 2.2052) = 0.210525 then K= { [0.2+0.210525+2(0.205+0.2052)] = 0,20517 8. A(0.1) = A(0) +K = 2. 50214. for y (0,2). J(0.1) = 2.20517, h=01, x=01. K1 = 011 7 (011, 2.20517) = 0.210517. k2 = 0.1 \$ (0.15, 2.3104) = 0.21604. k3 = 0.1 f (0.15, 23132) = 0.21 645 ky = 6.1 f(0.2, 2.42147) = 0.23275 00 K= 0.2162. 4(0.2)= 4(0.1)+K= 2.42137. Eraor (4(0.1)-e.1]= 12.20517-1.10517)=1.1 4 7 (0.2) - e 2) = 2.42137 - 1.2214 = 1.2.

IMS

BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower, Mukherjee Nagar, Delhi-9.

REGIONAL OFFICE: 1-10-237, Ind Floor, Room No. 202 R.K.S Kancham's Blue Sapphire Ashok Nagar Hyderabad-20. Mobile No: 09652351152, 09652861152 www.ims4maths.com | Email: ims4maths@gmail.com P.T.O.

INDIA'S No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2018)

OUR RANKERS AMONG TOP 10 IN IFoS

AIR-01 IFoS-2015

AIR-03 IFoS-2016

AIR-05

AIR-03 IFoS-2014

AIR-06 IFoS-2015

AIR-04 IFoS-2014

AIR-07 IFoS-2012

AIR-04 IFoS-2010

AIR-09 IFoS-2018

AIR-05

AIR-10 IFoS-2017

ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 CPh.:011-45629987, 9999197625 www.ims4maths.com e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

