

American International University-Bangladesh (AIUB)

Department of Computer Engineering

COE 3201: Data Communication Laboratory

Lab Report 3

Title: Study of Nyquist bit rate and Shannon capacity using MATLAB

Supervised By

SADMAN SHAHRIAR ALAM

Submitted By

Name	ID
MD. JOBAER HOSSAIN	22-47116-1

Group Members

Name	ID
RIFAH SANZIDA	22-47154-1
MD SAMIN YEASAR	22-47139-1
SHAYAN ABRAR	22-47156-1

Ans the questions

ID: AB-CDEFG-H ID: 22-47116-1

<u>a</u>
A1=A*B=2*2=4
A2=A*F=2*1=2
S=A*H=2*1=2

```
t = -1:0.001:1-1/fs; % Time duration
f1 = 40; % Frequency of first signal
f2 = 20; % Frequency of second signal
A1 = 4; % Amplitude of first signal
A2 = 2; % Amplitude of second signal
s=0.3;
x = A1*sin(2*pi*40*t) + A2*cos(2*pi*60*t); % First Signal \
n=s*randn(size(x));
ns=x+n;
SNR = snr(ns)
subplot(3,1,1)
plot(t,x,'R')
title('Normal signal');
xlabel('Time (s)');
ylabel('amplitude');
subplot(3,1,2)
plot(t,n,'B')
title('Noise signal');
xlabel('Time (s)');
ylabel('amplitude');
subplot(4,1,4)
plot(t, ns, 'G');
title('Noisy signal');
xlabel('Time (s)');
ylabel('amplitude');
bandwidth = obw(ns,fs) % Bandwidth of the signal
Max Capacity=bandwidth*log2(1+SNR)
BitRate = Max Capacity
```



```
<u>b</u>
```

```
t = -1:0.001:1-1/fs; % Time duration
f1 = 40; % Frequency of first signal
f2 = 20; % Frequency of second signal
A1 = 4; % Amplitude of first signal
A2 = 2; % Amplitude of second signal
s=0.3;
x = A1*sin(2*pi*40*t ) + A2*cos(2*pi*60*t); % First Signal\
n=s*randn(size(x));

ns=x+n;
SNR = snr(ns)
```

SNR =

5.9081

```
t = -1:0.001:1-1/fs; % Time duration
f1 = 40; % Frequency of first signal
f2 = 20; % Frequency of second signal
A1 = 4; % Amplitude of first signal
A2 = 2; % Amplitude of second signal
s=0.3;
x = A1*sin(2*pi*40*t) + A2*cos(2*pi*60*t); % First Signal\
n=s*randn(size(x));

ns=x+n;
```

bandwidth = obw(ns,fs) % Bandwidth of the signal
Max_Capacity=bandwidth*log2(1+SNR)

bandwidth = 1.9309e+03 Max_Capacity = 5.3838e+03

t = -1:0.001:1-1/fs; % Time duration f1 = 40; % Frequency of first signal f2 = 20; % Frequency of second signal A1 = 4; % Amplitude of first signal A2 = 2; % Amplitude of second signal s=0.3; x = A1*sin(2*pi*40*t) + A2*cos(2*pi*60*t); % First Signal\ n=s*randn(size(x)); ns=x+n; bandwidth = obw(ns,fs) % Bandwidth of the signal Max Capacity=bandwidth*log2(1+SNR)

BitRate = Max_Capacity

BitRate =

5.3838e+03