Sentiment Analysis Report

- 选题为情感分析。
- 模型为<u>Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language</u>

 <u>Processing</u>论文所提出的Funnel Transformer.对其简介可见repo中的PPT。其最大特点是每经过一个block(几层Transformer)之后,就会pooling序列到一半长度。
- 采用sst2数据集,用 funnel/small 配上论文的设置复现了结果之余,还做了实验检验自己关于模型结构的想法。

Figure 1: High-level visualization of the proposed Funnel-Transformer.

- 本实验的代码已经上传到GitHub <u>li1117heex/pyramidformer (github.com)</u>。
- 代码用的是Transformers的框架,预训练模型也来自于Transformers。

核心实验

作者的参数和实验结果为下表中对应的'sst2'列:

Model size	CoLA	SST-2	MRPC	STS-B	QQ	P	MNLI	QNLI	RTE	GLUE-AVG
L24H1024	66.5	94.3	92.8/90.0	91.5	89.6/9	92.2	89.4	94.1	84.5	87.8
B10-10-10	68.6	95.0	93.0/90.0	91.0	88.9/9	91.7	89.1	93.6	84.5	87.9
B8-8-8	66.6	94.8	92.6/89.7	90.7	88.8/9	91.7	89.0	93.6	82.1	87.3
L12H768	64.3	93.1	92.1/89.2	90.8	88.7/9	91.7	86.4	92.1	75.4	85.4
B6-6-6	64.3	94.2	92.8/89.7	90.1	88.7/9	91.6	87.4	92.5	78.3	86.0
B6-3x2-3x2	63.9	94.2	93.0/90.2	89.5	88.4/9	91.4	87.0	92.2	77.6	85.7
B4-4-4	62.8	93.6	92.5/89.2	89.2	88.4/9	91.3	86.0	91.6	74.3	84.8
L6H768	62.1	91.1	90.8/86.8	88.9	88.2/9	91.3	83.9	89.7	66.7	82.6
B3-4-4	59.0	93.1	90.8/87.5	88.7	88.1/9	91.0	85.8	91.1	72.5	83.6
Model size	IMDB	AG	DBpedia	Yelp2	Yelp5	Ama	zon2	Amazon5	FLOP	s #Params
L24H1024	4.724	5.053	0.653	1.874	28.84	2.4	25	32.85	1.00x	1.00x
B10-10-10	4.324	5.250	0.639	1.789	28.68	2.4	19	32,72	0.73x	1.22x
B8-8-8	4.364	5.408	0.651	1.729	28.76	2.4	47	32.85	0.58x	1.00x
L12H768	5.248	5.355	0.657	1.953	29.24	2.5	96	33.04	1.00x	1.00x
B6-6-6	4.792	5.237	0.650	1.850	28.73	2.4	99	32.79	0.88x	1.39x
B6-3x2-3x2	4.924	5.342	0.671	1.913	29.00	2.5	23	32.85	0.88x	1.00x
B4-4-4	5.152	5.382	0.659	2.032	29.33	2.5	66	33.03	0.58x	1.00x
L6H768	6.220	5.395	0.674	2.287	30.16	2.7	59	33.57	1.00x	1.00x
B3-4-4	5.396	5.342	0.653	2.000	29.60	2.5	91	33.09	1.00x	1.53x

Table 2: ELECTRA pretraining results at the base scale.

Hparam	RTE	MRPC	STS-B	CoLA	SST-2	QNLI	MNLI	QQP
Hidden dropout				0.	1			
GeLU dropout				0.	0			
Attention dropout				0.				
Max sequence length				12	8			
Batch size	16	16	16	16	32	32	64	64
Number of epochs	10	10	10	10	5	3	3	5
Learning rate decay				Line	ear			
Weight decay				0.0)1			
Warmup proportion				0.	1			
Adam epsilon				1e-	-6			
Hparam	IMDB	AG	DBpedia	Yelp-2	Yelp-5	Amaz	on-2 A	mazon-5
Hparam Hidden dropout	IMDB	AG	DBpedia	Yelp-2		Amazo	on-2 A	mazon-5
	IMDB	AG	DBpedia	0.		Amaz	on-2 A	mazon-5
Hidden dropout	IMDB	AG	DBpedia	0.	.1	Amaze	on-2 A	mazon-5
Hidden dropout GeLU dropout	512	AG 128	DBpedia	0.	.1	Amazo		512
Hidden dropout GeLU dropout Attention dropout			•	0.0	.1 .0 .1		2	
Hidden dropout GeLU dropout Attention dropout Max sequence length	512	128	128	0 0 0 512	.1 .0 .1 512	512	2	512
Hidden dropout GeLU dropout Attention dropout Max sequence length Batch size	512 32	128 32	128 64	0. 0. 512 128 3	.1 .0 .1 .1 .1 .128	512 128	2	512 128
Hidden dropout GeLU dropout Attention dropout Max sequence length Batch size Number of epochs	512 32	128 32	128 64	0 0 0 512 128 3 Lin	.1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	512 128	2	512 128
Hidden dropout GeLU dropout Attention dropout Max sequence length Batch size Number of epochs Learning rate decay	512 32	128 32	128 64	0 0 0 512 128 3 Lin	.1 .0 .1 .512 .128 .3 .3	512 128	2	512 128

Table 8: Hyper-parameters for finetuning on the GLUE benchmark and 7 text classification datasets.

我实验结果如下,基本对应。

loss	accuracy	F1
0.204	93.2	93.4

我的猜想

多加几个block会提升模型的表现,因为到后面的block的时候序列变得更短,信息会更加充分的汇集到用于分类的位于序列首位的[cls]token中。而时间消耗则基本不变,因为

在原本参数seq_len=128,模型有3个各4层的block,即 block_sizes=[4,4,4]的情况下,最终序列长度为32。我分别对5,6,7个各4层block的模型设置进行了实验,结果如下:

block	layer per block	epoch	lr	loss	accuracy	F1
5	4	5	1e-6	0.553	74.1	77.0
6	4	5	1e-6	0.696	50.9	67.5
7	4	5	1e-6	0.693	50.9	67.5

(参数

非常不佳。甚至在6,7block时得到了recall=1的荒谬结果。

我觉得有2个可能原因:

- 1. 学习率太低
- 2. 模型层数过深

以下实验结果:

block	layer per block	epoch	lr	loss	accuracy	F1
7	2	5	1e-6	0.694	53.6	62.1
6	2	5	1e-6	0.666	60.8	60.0
7	4	5	1e-5	0.698	50.9	67.5
7	4	5	1e-4	0.698	50.9	67.5

还是很荒谬。

但是在2层block搭配 1r=1e-5 时,得到了不错的结果:

block	layer per block	epoch	lr	loss	accuracy	F1
7	2	5	1e-5	0.358	87.3	87.6
7	2	5	1e-4	0.698	50.9	67.5
7	2	5	5e-6	0.368	87.5	88.1

再减少block:

block	layer per block	epoch	lr	loss	accuracy	F1
6	2	5	1e-5	0.333	87.7	88.3
4	2	5	1e-5	0.356	88.1	88.6

和原来的模型表现只差几个点,时间也节省了不少,从10min降到了6min.

结论

- 增加block只有反效果
- 其实原本的模型每个block的层数减少一些也可以接受

不足

• 对于多出来的层,参数直接用原本最后一层复制过去。这也会影响新增的block的表现。如果能找到更好的初始化方法,或者训练更加充分会好一些。

结尾

这个模型我在微软实习的这段时间里曾经研究过,还曾经从头跑过pretrain,这次算实践了一下自己的 idea.计算资源都来自微软服务器。