Лабораторная работа 4.5.2. Интерференция лазерного излучения

Калинин Даниил, Б01-110

9 марта 2023 г.

Цель работы: исследовать зависимость видности интерфереционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

Теоритическая справка:

Лазер

В лазере длиной L для излучения вдоль оси для резонансных частот выполняется

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L}. (1)$$

Условие генерации может выполняться для сразу нескольких колебаний с частостами f_m , разположенными в диапазоне генерации $2\Delta F$. В этом случае генерируется несколько волн – $mo\partial$ – межмодовое расстояние для которых

$$\Delta \nu = f_{m+1} - f_m = \frac{c}{2L}.\tag{2}$$

Число мод можно оценить как

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}.\tag{3}$$

Видность

Видимость интерфереционной картины – параметр, определяемый формулой

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{4}$$

где I_{max} , I_{min} — максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$
.

Здесь γ_1 отвечает за соотношение интенсивности интерферирующих волн:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = \frac{B_m^2}{A_m^2}, \, A_m$ и B_m – амплитуды волн. Параметр δ определяется устройством разделения волн.

Функция γ_2 отвечает за влияние разности хода и спектрального состава волн,

$$\gamma_2 = \frac{\sum_n A_n^2 \cos \frac{2\pi\Delta\nu nl}{c}}{\sum_n A_n^2},$$

где l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивности мод. В непрерывном пределе получим

$$\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$$

— для гауссова линии излучения с полушириной ΔF получили гауссову зависимость $\gamma_2=\gamma_2(l)$ с полушириной

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}.$$
 (6)

Последняя функция γ_3 отвечает за разность в поляризации. Если α – угол между плоскостями поляризаций волн, то

$$\gamma_3 = |\cos \alpha|. \tag{7}$$

Экспериментальная установка:

Схема экспериментальной установки представлена на рисунке 1.

Рис. 1. Схема установки

В работе используется интерферометр Майкельсона (рис. 1). Луч лазера, отражённый от зеркала 3 и прошедший через параллелепипед Френеля ($\Pi\Phi$), делится делительной призмой ДП на два луча. Первый проходит блок B_1 с поляроидом Π_1 и зеркалом B_1 , прикленным к пьезокерамике, которая может совершать малые колебания вдоль луча, с возможность изменения угла наклона зеркала. Второй проходит блок B_2 с линзой B_3 , поляроидом B_4 и зеркалом B_4 в фокальной плоскости линзы, чтобы выходящий луч, в отличие от первого, был параллелен входящему. Оба луча, проходя ДП, попадают на сферическое зеркало B_4 и интерферируют на экране. Интенсивность света считывается фотодиодом на осциллограф через щель, параллельную интерфереционным полосам, в центре экрана.

Рис. 2. Осциллограмма сигналов фотодиода.

На экране осциллографа наблюдаются колебания с изменяющимся периодом, так как на пьезокерамику подаются напряжение, из-за чего её длина колеблется.

По картине на экране осциллографа можно определить параметры видимости по следующим формулам:

$$\delta = \frac{h_1}{h_2},\tag{8}$$

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

Здесь 0 — уровень при отсутствии лучей, 1 и 2 — при закрытии одного из них. Используя δ , можно рассчитать γ_1 по формуле (5).

При условии одинаковой поляризации лучей ($\alpha = 0$),

$$\gamma_2 = \frac{\gamma}{\gamma_1}.\tag{10}$$

Если же разность хода отсутствует (l = 0), то

$$\gamma_3 = \frac{\gamma}{\gamma_1}.\tag{11}$$

Ход работы:

- 1. Изучим поляризацию лазерного луча. Введем дополнительный поляроид между лазером и РФ. Заметим, что освещение ПФ меняется в зависимости от поворота поляроида. Отсюда следует, что свет лазера поляризован линейно. Похожая картина наблюдается при размещении поляроида между РФ и ПФ, однако, при таком расположении, освещенность кубика не падает до нуля. Теперь повернем Π_1 так, чтобы установить минимальную четкость интерференционной картины. Внесем поляроид в пучок перед экраном. При вращении поляроида вновь увидем интерференционную картину. Она возникает из-за того, что два луча вновь будут иметь одну поляризацию после прохождения внесенного поляроида.
- 2. Измерение видности. Для начала подберем положение с нулевой разностью хода. Получим, что ближайшее к нулевому значение разности хода достигается при: $h_1 = 1.1 \ den.$, $h_2 = 1.25 \ den.$, $h_3 = 0.8 \ den.$, $h_4 = 4.0 \ den.$, $\gamma_2 = 0.668$. Теперь снимем зависимость h_1 , h_2 , h_3 , h_4 от угла поляризации β . Результаты занесем в таблицу 1. Теперь, для изучения зависимости $\gamma_3(\cos(\beta))$, вычислим величины γ , γ_1 , δ , γ_3 и $\cos(\beta)$.

Результаты занесем в таблицу 2.

Nº	угол β , град.	h_1 , дел.	h_2 , дел.	h_3 , дел.	h_4 , дел.
1	114.0	0.35	1.0	1.35	1.45
2	103.0	0.15	1.0	0.9	1.4
3	95.0	0.1	1.0	0.8	1.4
4	87.0	0.1	0.95	0.75	1.4
5	80.0	0.5	0.95	0.7	1.4
6	70.0	0.1	0.95	0.6	1.55
7	60.0	0.1	0.95	0.6	1.65
8	50.0	0.15	0.95	0.5	1.8
9	40.0	0.25	0.95	0.45	2.0
10	30.0	0.45	0.95	0.5	2.4
11	25.0	0.55	1.0	0.55	2.6
12	15.0	0.6	1.0	0.6	2.65

Таблица 1. Зависимость видности от угла поворота поляроида при нулевой разности хода.

$N_{\overline{0}}$	угол β , град.	$cos(\beta)$	$\sigma cos(\beta)$	γ	δ	γ_1	γ_3	$\sigma \gamma_3$
1	114.0	-0.407	0.016	0.036	0.350	0.876	0.041	0.034
2	103.0	-0.225	0.017	0.217	0.150	0.674	0.323	0.083
3	95.0	-0.087	0.017	0.273	0.100	0.575	0.474	0.138
4	87.0	0.052	0.017	0.302	0.105	0.587	0.515	0.148
5	80.0	0.174	0.017	0.333	0.526	0.951	0.351	0.060
6	70.0	0.342	0.016	0.442	0.105	0.587	0.753	0.202
7	60.0	0.500	0.015	0.467	0.105	0.587	0.795	0.210
8	50.0	0.643	0.013	0.565	0.158	0.686	0.824	0.162
9	40.0	0.766	0.011	0.633	0.263	0.812	0.779	0.112
10	30.0	0.866	0.009	0.655	0.474	0.934	0.701	0.075
11	25.0	0.906	0.007	0.651	0.550	0.957	0.680	0.065
12	15.0	0.966	0.005	0.631	0.600	0.968	0.651	0.061

Таблица 2. Расчитанные коэффициенты γ , γ_1 , δ , γ_3 и $cos(\beta)$.

Теперь построим график зависимости $\gamma_3 = \gamma_3(cos(\beta))$. Изобразим график на рисунке 3.

3. Теперь исследуем зависимость интерференционной картины от разности хода между лучами. Для этого будем перемещать блок B_2 вдоль направления распространения луча. Координата x блока будет определять разность хода. Снятые значения запишем в таблицу 3.

По полученным данным построим график зависимости $\gamma_2(x)$, изображенный на рисунке 4 На полученном графике видно два максимума: при $x_1=14\pm 2$ см. и $x_2=76\pm 2$ см. Тогда $L=\frac{1}{2}(x_2-x_1)=31.0\pm 1.4$ см. Отсюда из формулы (2)

$$\Delta \nu = \frac{c}{2L} = (4.84 \pm 0.2) \cdot 10^8$$
 Гц.

- 4. Определим полуширину главного максимума по уровню $\approx \gamma_2$. Рассмотрим вертикали до границы "купола" через пиковую точку и получим: $l_{\frac{1}{2}}=7.8\pm0.9$ см.
- 5. Определим диапазон частот, в которых происходит генерация продольных мод: $\Delta\nu_{nonn.}=(2.31\pm0.27)\cdot10^9$ Гц.
- 6. Оценим число продольных мод, генерируемых лазером: $n = (5.8 \pm 0.8) \Rightarrow n \in \{5, 6\}$

Рис. 3. График зависимости $\gamma_3(cos(\beta))$

Рис. 4. График зависимости $\gamma_2(x)$

$N_{\overline{0}}$	x, cm.	h_1 , дел.	h_2 , дел.	h_3 , дел.	h_4 , дел.	γ	δ	γ_1	γ_2	$\sigma \gamma_2$
1	10.5	1.1	0.85	0.9	3.1	0.550	1.294	0.992	0.555	0.059
2	10.0	2.2	2.4	2.4	4.0	0.250	0.917	0.999	0.250	0.021
3	12.0	2.3	0.8	2.6	3.8	0.188	2.875	0.875	0.214	0.028
4	14.0	2.2	1.2	2.3	4.6	0.333	1.833	0.956	0.349	0.028
5	16.0	2.2	3.2	4.7	7.0	0.197	0.688	0.983	0.200	0.012
6	18.0	2.2	1.2	2.6	4.2	0.235	1.833	0.956	0.246	0.023
7	22.0	2.2	2.2	3.8	5.2	0.156	1.000	1.000	0.156	0.014
8	26.0	2.2	3.9	4.8	5.6	0.077	0.564	0.960	0.080	0.011
9	30.0	2.2	1.0	3.2	3.3	0.015	2.200	0.927	0.017	0.017
10	36.0	2.2	2.0	4.2	4.4	0.023	1.100	0.999	0.023	0.012
11	42.0	2.2	0.6	2.6	3.2	0.103	3.667	0.821	0.126	0.027
12	46.0	2.2	1.2	3.4	3.6	0.029	1.833	0.956	0.030	0.015
13	50.0	2.2	0.8	3.0	3.0	0.000	2.750	0.884	0.000	0.000
14	56.0	2.4	0.4	2.6	2.8	0.037	6.000	0.700	0.053	0.029
15	62.0	2.4	0.4	2.8	3.0	0.034	6.000	0.700	0.049	0.027
16	64.0	2.4	0.4	2.6	3.0	0.071	6.000	0.700	0.102	0.032
17	66.0	2.4	0.4	2.6	3.2	0.103	6.000	0.700	0.148	0.037
18	70.0	2.4	0.4	2.8	3.2	0.067	6.000	0.700	0.095	0.030
19	74.0	2.4	0.8	2.6	4.0	0.212	3.000	0.866	0.245	0.029
20	76.0	2.5	1.0	2.7	4.3	0.229	2.500	0.904	0.253	0.026
21	78.0	2.8	1.2	3.2	4.6	0.179	2.333	0.917	0.196	0.020
22	82.0	3.2	1.6	4.4	5.2	0.083	2.000	0.943	0.088	0.012
23	88.0	3.4	2.2	3.4	4.0	0.081	1.545	0.977	0.083	0.015

Таблица 3. Зависимость γ_2 от разности хода.

Заключение:

В работе была изучена видность интерференционной картины от угла поворота поляроида: $\gamma_3(\cos(\beta))$, также была изучена зависимость интерференционной картины от разности хода между лучами: $\gamma_2(x)$, определено расстояние L между зеркалами оптического резонатора, а также получено межмодовое расстояние $\Delta \nu$.