Classificação de sinais de EEG com modelos de regressão funcional

Rodrigo Marcel Araujo Oliveira Araujo $^{\rm 1}$

Março de 2021

Sumário

ura dos dados de treino	2
tura dos dados de teste	2
tamento dos dados	2
poost	
Predict test	

 $^{^1}$ Número USP: 9299208

Leitura dos dados de treino

```
alcoholism_train = read.csv("Alcoholism_train.csv", sep = ',')
s2_match_train <- alcoholism_train %>% filter(matching.condition=="S2 match") %>% dplyr::select(subject
head(s2_match_train) %>% kable(caption="Dados Treino")
```

Tabela 1: Dados Treino

subject.identifier	name	sensor.value	channel
a	co2a0000369	-3,15	0
a	co2a0000369	-3,15	0
a	co2a0000369	-3,64	0
a	co2a0000369	-4,13	0
a	co2a0000369	-4,62	0
a	co2a0000369	-4,62	0

Leitura dos dados de teste

```
alcoholism_test = read.csv("Alcoholism_test.csv", sep = ',')
s2_match_test <- alcoholism_test %>% filter(matching.condition=="S2 match") %>% dplyr::select(subject.ichead(s2_match_test) %>% kable(caption="Dados Teste")
```

Tabela 2: Dados Teste

subject.identifier	name	sensor.value	channel
a	co2a0000369	-11,19	0
a	co2a0000369	-11,68	0
a	co2a0000369	-13,14	0
a	co2a0000369	-14,12	0
a	co2a0000369	-14,12	0
a	co2a0000369	-12,17	0

Tratamento dos dados

```
s2_match_train$subject.identifier <-ifelse(s2_match_train$subject.identifier=="a",0,1)
s2_match_test$subject.identifier <-ifelse(s2_match_test$subject.identifier=="a",0,1)
s2_match_train$subject.identifier <- as.factor(s2_match_train$subject.identifier)
s2_match_train$name <- as.factor(s2_match_train$name)
s2_match_train$sensor.value <- as.numeric(s2_match_train$sensor.value)
s2_match_train$channel <- as.factor(s2_match_train$channel)

s2_match_test$subject.identifier <- as.factor(s2_match_test$subject.identifier)
s2_match_test$name <- as.factor(s2_match_test$name)
s2_match_test$sensor.value <- as.numeric(s2_match_test$sensor.value)
s2_match_test$channel <- as.factor(s2_match_test$channel)</pre>
```

FDboost

```
sof_binary <- FDboost(
   subject.identifier ~ 1 +
   sensor.value +
   channel +
   name,
   data = s2_match_train,
   family = Binomial(),
   control = boost_control(mstop = 100),
   timeformula = NULL)

predictions <- predict(sof_binary, type = "response")
round_preds <- round(predictions)
table(round_preds, s2_match_train$subject.identifier)</pre>
```

```
## round_preds 0 1
## 0 1310720 0
## 1 0 1294336
```

Predict test

```
predict_model <- predict(sof_binary, newdata = s2_match_test, type = "response")
table(round(predict_model), s2_match_test$subject.identifier)</pre>
```