Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 13

Álgebra Relacional Operações Binárias

- ✓ Pode haver ambiguidade quando a mesma relação aparece mais de uma vez em uma consulta.
- ✓ Nesses casos → renomear relação.

✓ Representação:

$$\rho_x(r)$$

✓ Exemplo:

Exemplo

▶ Cliente (número-cliente, nome-cliente, rua, cidade)

Obter todos os nomes de clientes que moram na mesma rua e na mesma cidade que "Maria"

✓ Para obter a rua e a cidade de Maria.

 $\pi_{\text{rua,cidade}}(\sigma_{\text{nome-cliente}=\text{"Maria"}}(\text{cliente}))$

Exemplo

- ▶ Cliente (número-cliente, nome-cliente, rua, cidade)
- ✓ Para encontrar outros clientes que moram na mesma rua e cidade:
 - devemos nos referir à relação cliente mais de uma vez.
- ✓ Já sabemos encontrar a rua e a cidade da Maria:

```
\pi_{\text{rua,cidade}}(\sigma_{\text{nome-cliente}="Maria"}(\text{cliente}))
```

Como fazemos ???

Exemplo

- ▶ Cliente (número-cliente, nome-cliente, rua, cidade)
- ✓ Para encontrar outros clientes que moram na mesma rua e cidade:
 - devemos nos referir à relação cliente mais de uma vez.

```
π <sub>rua,cidade</sub> (σ <sub>nome-cliente ="Maria"</sub> (cliente))
```

Agora basta fazer o Produto Cartesiano!

Exemplo

▶ Cliente (número-cliente, nome-cliente, rua, cidade)

✓ Fazemos referência a clienteMaria quando desejamos nos referir à rua e à cidade de Maria.

Exercícios

- ✓ Considere os seguintes esquemas de relação:
 - ▶ Professor (<u>prof-numero</u>, prof-nome, prof-rua, prof-cidade, prof-telefone)
 - ▶ Aluno (<u>alu-numero</u>, alu-nome, alu-rua, alu-cidade)
 - ▶ Disciplina (<u>disc-codigo</u>, disc-nome, disc-quant-aulas-semana)
 - ► Matricula(<u>alu-numero,disc-codigo, ano, semestre,</u> nota, frequencia)
 - ProfessorDisciplina (prof-numero, disc-codigo)
- ✓ Usando os conceitos de Álgebra Relacional, encontre:
- 1. Os nomes de todos os <u>professores</u> que moram na mesma cidade que a professora Rita.
- 2. Os nomes de todos os <u>alunos</u> que moram na mesma cidade que a professora Rita.
- 3. Os nomes de todas as disciplinas que têm a quantidade de aulas maior que a quantidade de aulas da disciplina "Banco de Dados".
- 4. Os nomes de todos os alunos que tiraram nota maior que o aluno "Bruno Meira" na disciplina 986.
- 5. Os nomes de todos os alunos que tiraram nota maior que a aluna "Maria Martins" na disciplina "Sistemas Operacionais".

Compatibilidade de relações

✓ Duas relações A(a₁, a₂, .. aₙ) e B(b₁, b₂, ..bₙ) são ditas compatíveis em domínio se ambas têm o mesmo grau n e se:

Dom (a_i) = Dom (b_i) , $1 \le i \le n$.

Exemplo:

Aluno (nome, idade, curso)

Professor (nome, idade, depto)

Funcionario (nome, depto, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto) = char(5)

Aluno é compatível com Professor, mas não é com Funcionário.

Compatibilidade de relações

- ✓ A semântica de uma relação não é importante, mas sim sua estrutura.
- ✓ No caso, a ordem dos atributos vale mais do que o fato dos tipos de dados serem distintos.

Exemplo:

```
Aluno = ( nome, idade, curso)
```

Professor = (nome, idade, depto)

Funcionario = (nome, depto, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto) = char(5)

Aluno é compatível com Professor, mas não é com Funcionário.

Operação União

- ✓ Reúne resultados de duas ou mais consultas.
- ✓ Representação:

- ✓ Exemplo:
 - ► Conta (<u>número-conta</u>, número-cliente, saldo,agência)
 - ▶ Empréstimo (<u>número-empréstimo</u>, número-cliente, valor, agência)

Obter todos os clientes da agência "Centro"

Operação União

Obter todos os clientes da agência "Centro"

- Conta (<u>número-conta</u>, número-cliente, saldo,agência)
- ▶ Empréstimo (<u>número-empréstimo</u>, número-cliente, valor, agência)
- ✓ Para obter os clientes que têm conta na agência "Centro"
 π número-cliente (σ agência = "Centro" (Conta))
- ✓ Para obter os clientes que têm empréstimo na agência "Centro"

✓ União das duas consultas anteriores

$$\pi_{\text{número-cliente}}(\sigma_{\text{agência} = \text{"Centro"}}(\text{Conta})) \ U$$
 $\pi_{\text{número-cliente}}(\sigma_{\text{agência} = \text{"Centro"}}\text{Empréstimo}))$

Operação União

✓ Observações:

- São eliminadas tuplas duplicadas.
- As relações devem ser compatíveis:
 - As relações devem ter o mesmo grau (número de atributos)
 - Os domínios do *i-ésimo* atributo da relação r₁ e do *i-ésimo* atributo da relação r₂ devem ser os mesmos.

- ✓ Permite encontrar tuplas que estão em uma relação e não estão em outra.
- ✓ Representação:

$$r_1 - r_2$$

- ✓ Exemplo:
 - ► Conta (<u>número-conta</u>, número-cliente, saldo,agência)
 - ▶ Empréstimo (<u>número-empréstimo</u>, número-cliente, valor, agência)

Obter todos os clientes da agência "Centro" que tenham uma conta, mas não tenham empréstimo

- ✓ Permite encontrar tuplas que estão em uma relação e não estão em outra.
- ✓ Representação:

$$\mathbf{r_1} - \mathbf{r_2}$$

- ✓ Exemplo:
 - ► Conta (<u>número-conta</u>, número-cliente, saldo,agência)
 - ▶ Empréstimo (<u>número-empréstimo</u>, número-cliente, valor, agência)

Obter todos os clientes da agência "Centro" que tenham uma conta, mas não tenham empréstimo

$$\pi_{\text{número-cliente}}(\sigma_{\text{agência} = \text{``Centro''}}(\text{Conta})) - \pi_{\text{número-cliente}}(\sigma_{\text{agência} = \text{``Centro''}}(\text{Empréstimo}))$$

- ✓ Exemplo:
 - Conta (<u>número-conta</u>, número-cliente, saldo,agência)

Obter o maior saldo da relação conta usando a operação de diferença

- ✓ Exemplo:
 - Conta (número-conta, número-cliente, saldo, agência)

Obter o maior saldo da relação conta usando a operação de diferença

1. Obter uma relação temporária que contém todas as contas para as quais existe uma conta com saldo maior.

 $\pi_{Conta.saldo}(\sigma_{Conta.saldo < Contamaior.saldo}(Conta X \rho_{Contamaior}(Conta)))$

2. Fazer a diferença entre a relação *conta* e a relação obtida no passo 1.

$$\pi_{saldo}$$
 (Conta) –

 $\pi_{\text{Conta.saldo}}(\sigma_{\text{Conta.saldo}} < \sigma_{\text{Contamaior.saldo}}(Conta X \rho_{\text{Contamaior}}(Conta)))$

Exercícios

✓ Considere os seguintes esquemas de relação:

- Disciplina (<u>código-disc</u>,nome-disc,curso,série)
- Aluno (número-aluno, nome, rua, cidade)
- AlunoRegular(<u>número-aluno,código-disc</u>)
- AlunoDP (número-aluno, código-disc, dia-semana)

✓ Usando os conceitos de Álgebra Relacional vistos até aqui, encontre:

- 1.Todos os números de alunos que cursam a disciplina de código 35 como dependência.
- 2. Todos os números de alunos que cursam a disciplina de código 35 como aluno regular.
- 3. Todos os números de alunos que cursam a disciplina de código 35 como aluno regular ou dependência.
- 4. Todos os números de alunos que cursam a disciplina "Introdução à Teoria da Computação" como dependência.
- 5. Todos os números de alunos que cursam a disciplina "Sistemas Operacionais" como aluno regular ou dependência.
- 6. Todos os números de alunos que fazem disciplinas regulares e também fazem DP.

Exercícios

✓ Considere os seguintes esquemas de relação:

- Disciplina (<u>código-disc</u>,nome-disc,curso,série)
- ▶ Aluno (<u>número-aluno</u>, nome, rua, cidade)
- AlunoRegular (<u>número-aluno,código-disc</u>)
- AlunoDP (<u>número-aluno, código-disc</u>, dia-semana)
- ✓ Usando os conceitos de Álgebra Relacional vistos até aqui, encontre:
- 7. Todos os nomes de alunos que fazem disciplinas regulares e também DP.
- 8. Nomes dos alunos que fazem <u>somente</u> disciplinas como aluno regular (não fazem dependências).
- 9. Nomes dos alunos que fazem <u>alguma disciplina de dependência</u> do curso de Computação de quinta-feira.
- 10. Nomes e números dos alunos que fazem <u>alguma disciplina</u> do curso de Computação (regular ou dependência)
- 11. Nomes dos alunos que fazem qualquer disciplina regular, fazem DP de Sistemas Operacionais, mas não fazem DP de Banco de Dados.

Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 13

Álgebra Relacional Operações Binárias

