PRACTICAL-1 A-Utility Start CSV to HORUS

import pandas as pd sInputFileName = '/content/Country.csv' InputData = pd.read_csv(sInputFileName, encoding = "latin-1") print('Input Data Values =========") print(InputData, "\n==========")

Processing Rules

ProcessData = InputData

Remove columns ISO-2-Code and ISO-3-CODE

ProcessData.drop('ISO-2-CODE', axis = 1, inplace = True)

ProcessData.drop('ISO-3-Code', axis = 1, inplace = True)

Rename Country and ISO-M49

ProcessData.rename(columns = {'Country': 'CountryName'}, inplace = True)

ProcessData.rename(columns = {'ISO-M49': 'CountryNumber'}, inplace = True)

Set new Index

ProcessData.set index('CountryNumber', inplace = True)

Sort data by CurrencyNumber

ProcessData.sort_values('CountryName', axis = 0, ascending =False, inplace=True)

print('\n=====Process Data Values=====')

print(ProcessData)

Output Agreement

OutputData=ProcessData

sOutputFileName='/content/drive/MyDrive/Country.csv'

OutputData.to csv(sOutputFileName, index = False)

print('CSV to HORUS - Done')

Output:			
Input Data Values ========			
Country	y ISO-2-CODE	ISO-3-Code	ISO-M49
0 Afghanista	n AF	AFG	4
1 Aland Island	s AX	ALA	248
2 Albani	a AL	ALB	8
3 Algeria	a DZ	DZA	12
4 American Samo	a AS	ASM	16
242 Wallis and Futuna Island	s WF	WLF	876
243 Western Sahar	a EH	ESH	732
244 Yeme:	n YE	YEM	887
245 Zambi	a ZM	ZMB	894
246 Zimbabw	e ZW	ZWE	716
[247 rows x 4 columns]			
======Process Data			
	CountryName		
CountryNumber			
716	Zimbabwe		
894	Zambia		
887	Yemen		
	tern Sahara		
876 Wallis and Fut	ana Islands		
1.0			
	rican Samoa		
12	Algeria		
8	Albania		
	and Islands		
	Afghanistan		
[247 rows x 1 columns]			
CSV to HORUS - Done			

PRACTICAL-1 B-Image to Horus

from skimage import io import pandas as pd import matplotlib.pyplot as plt import numpy as np sInputFileName='/content/audi.jpg' InputData = io.imread(sInputFileName, pilmode='RGBA') plt.imshow(InputData) InputData.shape print('Input Data Values') print('X: ',InputData.shape[0]) print('Y: ', InputData. shape[1]) print('RGBA: ', InputData.shape[2]) ProcessRawData=InputData.flatten() y=InputData.shape[2] + 2 x=int(ProcessRawData.shape[0]/y) ProcessData=pd.DataFrame(np.reshape(ProcessRawData, (x, y))) **ProcessRawData** ProcessData=pd.DataFrame(np.reshape(ProcessRawData, (x, y))) sColumns=['XAxis', 'YAxis', 'Red', 'Green', 'Blue', 'Aplha'] ProcessData.columns=sColumns **ProcessData** print('Rows: ',ProcessData.shape[0]) print('Columns :',ProcessData.shape[1]) OutputData = ProcessData OutputData.to csv('Image to HORUS.csv', index = False)

Output:

Input Data Values

X: 168 Y: 300 RGBA: 4 Rows: 33600 Columns: 6

