Bangladesh University of Engineering and Technology

Course No: ME 415

Course Title: Refrigeration & Building Mechanical Systems.

Date of Submission: 23/07/2022

Assignment on Cooling Load Calculation.

Submitted by,

Name: Md. Farhan

Student ID: 201710035

Department: ME

Section: A

Location: Holding No- 124

Rokeya Ajim road Barisal sadar, Barisal

Room Specification:

Roof: Type-4, 50 mm insulation without suspended ceiling.

West, North & South wall: 125 mm brick with 25 mm plaster both sides.

East-Sunlit, dark color, Type B 203.2 H.W. concrete wall with 25.4mm insulation.

Window- Area-2.4 m^2 ; $U = 2.86 \text{ W/m}^2\text{k}$; 15 mm thickness ,light construction.

No heat transfer through floor.

Air exchange rate 1.0/h.

Light & occupants from 9.00 a.m. to 10.00 p.m.

Three occupants seated, one computer(250 W)

Door in North wall 2.1m*0.95m, 30 mm thick hard wood.

One Light 20 W.

Date: 23 July, 4.00 p.m.

Calculations:

Roof: Type-4, 50 mm insulation.

Table 12(a)--Layers : A0 E2 E3 B6 C12 E0 Table 16---R(m2K/W) : 0.059 0.099 0.05 1.173 0.029 0.121
$$R_{th} = R1 + R2 + R3 + R4 + R5 + R6 = 1.531$$
 $U = \frac{1}{R_{th}} = 0.653 \text{ Wm} 2/\text{K}$

East Wall: Sunlit, dark color, Type B 203.2 H.W. concrete wall with 25.4mm insulation.

Table 14--Layers : A0 A1 C10 B5 E1 E0

Table 16---R(m2K/W): 0.059 0.037 0.1174 0.587 0.026 0.121

 $R_{th} = R1 + R2 + R3 + R4 + R5 = 0.9474$

$$U = \frac{1}{R_{th}} = 1.06 \text{ Wm} 2 / \text{K}$$

Door: North wall 2.1m*0.95m, 30 mm thick hard wood.

From Table-17, hard wood: oak, k=0.17 W/m.K

$$R=R_d=L/k = 0.03/0.17 = 0.176$$

$$R_{th} = R_o + R_d + R_i = 0.059 + 0.176 + 0.121 = 0.356$$

$$U = \frac{1}{R_{th}} = 2.81 \text{ Wm} 2 / \text{K}$$

North, South and West walls: 125 mm brick with 25 mm plaster both sides.

From table-16, 100 mm Common brick k = 0.727 W/m.K

$$R_2 = L/k = 0.125/0.727 = 0.172$$

E1: 20 mm plaster or gypsum with k=0.7277 W/m.K

$$R=R_1=R_3=\frac{L}{k}=\frac{0.025}{0.7277}=0.0344$$

$$R_{th} = R_o + R_1 + R_2 + R_3 + R_i = 0.059 + 0.0344 + 0.172 + 0.0344 + 0.121 = 0.421$$

$$U = \frac{1}{R_{th}} = 2.38 \text{ Wm} 2 / \text{K}$$

Floor: 30 mm clay tiles with no insulation

Layer: A0 C12 C1 E0

Resistance(R): 0.059 0.029 0.053 0.121

$$C1$$
; $R = L/k = 0.03/0.571 = 0.053$

From table 16, !00 mm clay tile k=0.571

$$R_{th} = R1 + R2 + R3 + R4 = 0.059 + 0.029 + 0.053 + 0.121 = 0.262$$

$$U = \frac{1}{R_{th}} = 3.82 \text{ Wm} 2 / \text{K}$$

Cooling Load Temperature Difference:

Corrected CLTD for roof:

$$CLTD_c = [(CLTD+LM).k + (25.5-T_i) + (T_{o,av} -29.4)]f$$

For Roof, Table 12(b), CLTD = 37; Table 13, LM =0 (for July at 24° Latitude)

$$k=1$$
, $DR = 11^{\circ}$, $Ti = 25.5 °C$

$$T_{o,max} = 33 \, ^{\circ}C$$

$$T_{o,av} = T_{o,max} - \frac{DR}{2} = 33 - \frac{11}{2} = 27.5 \text{ }^{\circ}\text{C}$$

$$CLTD_c = [(37+0).1 + (25.5-25.5) + (27.5-29.4)].1 = 35.1$$

Corrected CLTD for east walls: CLTD =16 (Table 15)

LM =0 ,k=1 , Ti =25.5 °C,
$$T_{o,av} = 27.5$$
 °C

$$CLTD_c = [(16+0).1 + (25.5-25.5) + (27.5-29.4)].1 = 14.1$$

Corrected CLTD for glass, $CLTD_g = 8$ (Table 20)

Heat Conduction through Partition Walls: $\mathbf{Q} = \mathbf{U} \cdot \mathbf{A} \cdot \mathbf{T} \mathbf{D}$

SL NO	Item	Description	Area,A(m2)	U(W/m ² . K)	TD	Q(W) U*A*TD
1	Partition walls	North	$4.2 \times 3.2 -$ $2.1 \times 0.95 = 11.45$	2.38	4.5	122.6
2	Partition walls	West	3.6×3.2 - $2.1 \times 0.95 = 9.53$	2.38	4.5	102.1
3	Partition walls	South	$4.2 \times 3.2 = 13.44$	2.38	4.5	143.94
4	Door	North	$2.1 \times 0.95 = 1.995$	2.81	4.5	25.23
5	Floor	Bottom	$4.2 \times 3.6 = 15.12$	3.82	4.5	259.92

Total 653.82 W

$$TD=T_{o,max} - T_i = 30 - 25.5 = 4.5 \text{ }^{\circ}\text{C}$$

SL NO	Item	Description	Area,A(m2)	U(W/m².K	CLTDc	Q(W) U*A*CLTD
1	Roof	Тор	$4.2 \times 3.6 = 15.12$	0.653	35.1	346.55
2	Sunlit Walls	East	3.6×3.2-2.4 = 9.12	1.06	14.1	136.31
3	Sunlit Glass	East, Window	2.4	2.86	8	54.912

Total 537.8 W

Heat gain through glasses

$$Q = A.$$
 SC. SHGF_{max}. CLF

Area A =
$$2.4 \text{ m}^2$$
; SC = 0.88 (Table-21); SHGF_{max} = $672 \text{ Table } 18(a)$

CLF = 0.25 (Table 19) east & light construction

$$Q = A.$$
 SC. SHGF_{max}. CLF

$$= 2.4 \times 0.88 \times 672 \times 0.25$$

$$= 354.82 \text{ W}$$

In our case $4.2 \times 3.6 \times 3.2$ m room with 1.0 ACH

$$V = 48.4 \text{ m}^3$$
; $V = 48.4 \text{ m}^3/\text{hr} = 0.01344 \text{ m}^3/\text{sec}$.

Latent heat gain, $Q_L = \rho h_{fg} V(wo - wi)$

wo = 0.0207 kg moisture/dry air, at dbt = 33 °C, wbt = 27 °C

wi = 0.0102 kg moisture/dry air, at 25.50 °C dbt and 50% RH

Latent heat gain, $Q_L = \rho h_{fg} V(wo - wi)$

$$=3010000V(wo-wi)$$

$$=3010000\times0.01344\times(0.0207-0.0102)$$

$$= 424.8 \text{ W}$$

Sensible heat gain,
$$Q_S = \rho C_p v(To - Ti)$$

= 1200×0.01344×(33-25.5)
=121 W

Table 28, Qs = 75 W,
$$Q_L$$
 = 55 W
Total Qs = $4 \times 75 = 300$ W

$$Q_L = 4 \times 55 = 220 \text{ W}$$

Heat Gain Due to equipments, $Q = P \times CLF$ = 250×1 = 250 W

Cooling Load Due to lights , Qs = PL×BF×D×CLF = $20 \times 1.2 \times 1 \times 0.85 = 20.4 \text{ W}$

PL = 20 W

BF = 1.2 (Fluorescent Light)

D = 1

CLF = 0.85 (assume)

SL No	Item with Description	Qs(W)	QL(W)	Q = Qs + $QL (W)$
1	Heat Conduction through partition walls.	653.82		653.82
2	Heat Conduction through sunlit walls, glasses and roof.	537.8		537.8
3	Solar heat gain through glasses.	354.82		354.82
4	Cooling load for air exchange.	121	424.8	545.8
5	Heat Gain due to occupants.	300	220	520
6	Heat gain due to equipments.	250		250
7	Heat gain due to lights.	20.4		20.4

Total 2882.64 W

Total Cooling Load =
$$2882.64$$
 W
$$= \frac{2882.64}{1000 \times 3.51}$$

$$= 0.82 \text{ TR}$$

$$= 1 \text{ TR}$$