```
We do this with the double-angle formula
\begin{align*}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta),
\end{align*}
which we can rewrite as
\begin{align*}
  &= \cos^2(\theta) - (1 - \cos^2(\theta))\\
  &= 2\cos^2(\theta)-1.
\end{align*}
```

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

```
We do this with the double-angle formula
\begin{align*}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta),
\intertext{which we can rewrite as}
  &= \cos^2(\theta) - (1 - \cos^2(\theta))\\
  &= 2\cos^2(\theta)-1.
\end{align*}
```

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

Align

math/align-numbers

```
The double-angle formula can now be rewritten as

\begin{align}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
  \nonumber\\
  &= 2\cos^2(\theta)-1.

\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{1}$$

```
The double-angle formula can now be rewritten as 

\begin{align*}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta)-1.
\\end{align*}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1.$$

Align

math/align-tag

```
The double-angle formula can now be rewritten as 

\begin{align*}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta)-1. \\tag{$ * $}
\end{align*}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{*}$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

Also in use

math/also-in-use

```
AA \(\sqrt{2}\)
BB \[\sqrt{3}\]
CC $$ \sqrt{4} $$
```

AA
$$\sqrt{2}$$
 BB $\sqrt{3}$ CC $\sqrt{4}$

math/arrows

```
\DeclareMathOperator{\Image}{Image}
a \iff b, a\implies b, a\mapsto b
\lim_{x\to 0}\frac{\sin(x)}{x} = 1
\Image(f) = \mathbb{R}_{\geq 0}
```

$$a \iff b, a \implies b, a \mapsto b$$

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

$$\mathsf{Image}(f) = \mathbb{R}_{\geq 0}$$

Formula	Code		Formula	Coc	le	
$\sqrt{2}$	\$	\$	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	<i>\$</i>	\$	x_1	\$	<i>\$</i>	
$6 \geq 3$	<i>\$</i>	\$	x_1^2	\$	\$	
$a^{2} + b^{2}$	\$	<i>\$</i>	a^{2+b^2}	\$		\$

Formula	Code		Formula	Coc	le	
$\sqrt{2}$	\$\sqrt	{2} \$	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	\$	<i>\$</i>	x_1	\$	\$	
$6 \geq 3$	\$	\$	x_1^2	\$	\$	
$a^2 + b^2$	\$	\$	a^{2+b^2}	\$		\$

Formula	Code	Formula	Code	
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	³ √8	\$	\$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ \$	
$6 \geq 3$	\$ \$	x_1^2	\$ \$	
$a^2 + b^2$	\$ \$	a^{2+b^2}	\$	\$

Formula	Code	Formula	Code	
$\sqrt{2}$	\$\sqrt{2} \$	$\sqrt[3]{8}$	\$	\$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ \$	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$	
$a^2 + b^2$	\$ \$	a^{2+b^2}	\$	\$

Formula	Code	Formula	Coc	le	
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$	<i>\$</i>	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$	\$	
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$		\$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	³ √8	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

math/basics

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	³ √8	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

\$ x^22 \$: x²2

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

\usepackage{commath}

```
\label{eq:condition} $$ \dod{\sin(x)}{x}, \dpd{f(x,y)}{x}, \partial_x f $$ \int_{0}^{\int x}e^{-x}\dif x = 1 $$
```

$$\frac{\mathsf{d} \sin(x)}{\mathsf{d} x}, \frac{\partial f(x, y)}{\partial x}, \partial_x f$$

$$\int_0^\infty e^{-x} \, \mathrm{d}x = 1$$

De trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometric identity is

$$\sin^2(\theta) + \cos^2(\theta) = 1. \tag{1}$$

Formulas

math/inline

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

Formulas

math/inline

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity is \$ \sin^2(\theta) + \cos^2(\theta) = 1 \$.
```

Formulas

math/inline

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

```
\usepackage{amsmath,amssymb}
\usepackage{commath,mathtools}
```

```
\begin{align*}
  \left.\left[x^2\right]\right|_{x=0}^{x=2} = 4
\end{align*}
```

$$\left[x^2\right]\Big|_{x=0}^{x=2}=4,$$

```
\begin{align*}
  &f(\sum_{i=1}^{n}x_i)\\
  &f\left(\sum_{i=1}^{n}x_i\right)
\end{align*}
```

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$


```
\ce{CO2 + C -> 2 CO}\\
$\ce{CO2 + C -> 2 CO}$\\
\ce{CD2 + C -> 2 CO}$\\
\ce{CH4 + 2 $\left(\ce{O2 + 79/21 N2}\right)$}
%$\ce{CH4 + 2 \left(\ce{O2 + 79/21 N2}\right)}$ % Error
```

$$\begin{array}{l} \mathsf{CO}_2 + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CO}_2 + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CH}_4 + 2\left(\mathsf{O}_2 \,+\, \tfrac{79}{21}\,\mathsf{N}_2\right) \end{array}$$

Some examples are taken from the mhchem package documentation (see below)

More example can be found in the documentation of mhchem, see https://ctan.org/pkg/mhchem

Formulas: Mathematical relations

math/relations

Formula	Code	Formula	Code
$a \leq b$	\$ a \leq b \$	$a \geq b$	\$ a \geq b \$
a < b	\$ a < b \$	a > b	\$ a > b \$
$a\ll b$	\$ a \11 b \$	$a\gg b$	\$ a \gg b \$
a = b	\$ a = b \$	$a\simeq b$	$\$$ a \simeq b $\$$
$a \neq b$	$\$$ a \neq b $\$$	approx b	<pre>\$ a \approx b \$</pre>
$a\sim b$	\$ a \sim b \$	a [*] b	<pre>\$ a \stackrel{*}{=}b \$</pre>

math/structures

```
\begin{align*}
R(\theta) = \begin{pmatrix}
    \cos(\theta) & -\sin(\theta)\\
    \sin(\theta) & \cos(\theta)
\end{pmatrix},\quad
\abs{x} = \begin{cases}
    x & \text{if $ x \geq 0$}\\
    -x & \text{if $ x < 0$}
\end{cases}
\end{align*}</pre>
```

$$R(\theta) = egin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad |x| = egin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$$

Foutief	\vec{F}_{tot}	
Correct		
Foutief		
Hint		
Correct		
Code A		
Code B		

Foutief	\vec{F}_{tot}	$ec{\mathcal{F}}_{tot}$
Correct		
Foutief		
Hint		
Correct		
Code A		
Code B		

Foutief	\vec{F}_{tot}	$ec{F}_{tot}$
Correct	<pre>\vec{F}_{\text{tot}}</pre>	$ec{\mathcal{F}}_{tot}$
Foutief		
Hint		
Correct		
Code A		
Code B		

Foutief	\vec{F}_{tot}	$ec{\mathcal{F}}_{tot}$
Correct	<pre>\vec{F}_{\text{tot}}</pre>	$ec{\mathcal{F}}_{tot}$
Foutief	<pre>\vec{F_{\text{tot}}}</pre>	
Hint		
Correct		
Code A		
Code B		

Foutief	\vec{F}_{tot}	$ec{\mathcal{F}}_{tot}$
Correct	<pre>\vec{F}_{\text{tot}}</pre>	$ec{\mathcal{F}}_{tot}$
Foutief	<pre>\vec{F_{\text{tot}}}</pre>	
Hint	\vec{abc}	abc abc
Correct		
Code A		
Code B		
Code B		

Foutief	\vec{F}_{tot}	$ec{\mathcal{F}}_{tot}$
Correct	<pre>\vec{F}_{\text{tot}}</pre>	$ec{\mathcal{F}}_{tot}$
Foutief	<pre>\vec{F_{\text{tot}}}</pre>	$\vec{F_{\text{tot}}}$
Hint	\vec{abc}	abc abc
Correct		
Code A		
Code B		

Foutief \\vec{F}_{\text{tot}} \\
$$\vec{F}_{tot}$$
 \\ Correct \\\vec{F}_{\text{tot}}} \\ \vec{F}_{tot} \\ Foutief \\\\vec{F}_{\text{tot}}} \\ F_{tot} \\ \\ F_{tot} \\ F_{tot} \\ F_{tot} \\ F_{tot} \\ \\ F_{tot} \\ \\ F_{tot} \\ F_{tot} \\ \\ F_{tot} \

Foutief
$$\sqrt{F_{\text{tot}}}$$
 $\vec{F_{\text{tot}}}$

Hint \vec{abc}
$$\vec{abc}$$

Correct
$$\sqrt{F}_{\text{tot}}$$

Code B
$$\{x_0\}^2$$

math/symbols-ref

So many! And there are lots more :-)

CTAN symbol list:

http://mirrors.ctan.org/info/symbols/comprehensive/symbols-a4.pdf

Detexify:

http://detexify.kirelabs.org/classify.html

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$	\$	5 · 6	\$	\$
α,β,γ	\$	\$	A,B,Γ	\$	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	\$	\$
$\phi, arphi$	\$	<i>\$</i>	${\mathbb P}$	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dot	s,x_n \$	5 · 6	\$	\$
α, β, γ	\$		\$ A,B,Γ	\$	\$
$\epsilon, arepsilon$	\$		\$ ${\cal P}$	\$	\$
$\phi, arphi$	\$	\$	${\mathbb P}$	\$	<i>\$</i>

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x	_n \$	5 · 6	\$	\$
α, β, γ	\$\alpha,\beta	a,\gamma \$	A,B,Γ	\$	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	\$	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x	_n <i>\$</i>	5 · 6	\$	\$
$lpha,eta,\gamma$	\$\alpha,\beta	a,\gamma \$	A,B,Γ	\$	\$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\va</pre>	arepsilon \$	${\cal P}$	\$	\$
$\phi, arphi$	\$	\$	${\mathbb P}$	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	\$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$	\$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$	<i>\$</i>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$	\$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$	\$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$	\$
ϕ, φ	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$5\cdot 6	\$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamm	a \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$	\$
ϕ, φ	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
ϕ, φ	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$ \$

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
ϕ, φ	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<pre>\$ \mathbb{P} \$</pre>

math/text

```
sin(x)
\vec{F}_{tot}
```

 $$ \operatorname{vec}{F} {tot} $$

```
\sin(x)
\vec{F}_{tot}
```

```
$ \sin(x) $
$ \vec{F}_{\text{tot}}$
```

Formulas: Vectors

math/vectors

Formula	Code	Formula	Code
\vec{x}	\$ \vec{x} \$	$ec{\mathcal{F}}_{tot}$	<pre>\$ \vec{F}_{\text{tot}} \$</pre>
×	<pre>\$ \mathbf{x} \$</pre>	$\hat{\imath}+6\hat{k}$	<pre>\$ \hat{\imath} + 6\hat{k} \$</pre>
$\ \vec{x}\ $	<pre>\$ \norm{\vec{x}} \$</pre>	$ abla imes \mathbf{A}$	$$ \hat A $

$$\vec{F}_{tot}$$
, \vec{F}_{tot}