

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein

Gabarito da EP da Aula 19

Observações:

- 1. Em algumas questões serão dadas o desenvolvimento e em outras apenas a resposta.
- 2. É importante que você tente resolver cada exercício justificando cada passo <u>antes</u> de ler o gabarito. Desta forma, você estará mais preparado para entender o raciocínio usado, será capaz de avaliar onde acertou e onde errou.
- 3. Lembre-se que muitos exercícios podem ser resolvidos usando raciocínios diferentes. Nós desenvolvemos apenas um, tente encontrar outras formas, ajuda a compreender melhor os conceitos.
- 1. Considere cada par de grafos abaixo e verifique se são isomorfos. Justifique sua resposta.

(a) Resposta: $G_1 \in G_2$ são isomorfos.

Justificativa: Observe que $G_1=C_5$ e $G_2=\overline{C_5}=C_5$, ou seja, G_1 e G_2 representam o mesmo grafo com rotulações diferentes.

Mais formalmente, seja $f: V(G_1) \to V(G_2)$ tal que:

v	f(v)
a	1
b	3
c	5
d	2
e	4

f é injetiva
(1 a 1) e sobrejetiva. Para f ser isomorfa precisamos verificar se:

$$(v,w) \in E(G_1) \Leftrightarrow (f(v),f(w)) \in E(G_2), \forall v,w \in V(G_1)$$
 tal que $(v,w) \in E(G_1)$.

$$(a,b) \in E(G_1) \leftrightarrow (1,3) \in E(G_2)$$

$$(b,c) \in E(G_1) \leftrightarrow (3,5) \in E(G_2)$$

$$(c,d) \in E(G_1) \leftrightarrow (5,2) \in E(G_2)$$

$$(d,e) \in E(G_1) \leftrightarrow (2,4) \in E(G_2)$$

$$(e,a) \in E(G_1) \leftrightarrow (4,1) \in E(G_2)$$

Logo, f é isomorfismo e G_1 é isomorfo a G_2 .

(b) Resposta: H_1 e H_2 não são isomorfos.

Justificativa: H_2 contém dois triângulos (K_3) induzidos pelos conjuntos de vértices $\{1,2,6\}$ e $\{3,4,5\}$ e H_1 não contém nenhum triângulo, logo H_1 e H_2 não são isomorfos.

(c) Resposta: L_1 e L_2 não são isomorfos.

Justificativa: Sabemos que dois grafos isomorfos tem necessariamente a mesma sequência de graus (consequência da propriedade que o isomorfismo preserva adjacências). A recíproca não é verdadeira, ou seja, grafos com sequência diferentes de graus não são isomorfos.

A sequência de graus de L_1 é: (2,2,2,3,3,3). A sequência de graus de L_2 é: (2,2,2,3,3,4).

Logo, L_1 e L_2 não são isomorfos.

- 2. Verifique se cada uma das afirmações abaixo é verdadeira ou falsa. Se for verdadeira, prove, se for falsa dê um contra-exemplo.
 - (a) Se G e H são isomorfos então eles têm o mesmo número de vértices e o mesmo número de arestas.

Resposta: Verdadeira.

Se G e H são isomorfos então:

(1) existe uma função $f:V(G)\to V(H)$ injetora e sobrejetora, e além disso:

$$(2) (v, w) \in E(G) \Leftrightarrow (f(v), f(w)) \in E(H).$$

De (1) temos que como f é injetora (1 a 1) e sobre isso significa que cada $v \in V(G)$ é correspondente a um único $u \in V(H)$ e vice-versa, isto é, a cada $u \in V(H)$ corresponde um único $v = f^{-1}(u) \in V(G)$. Logo, |V(G)| = |V(H)|.

De (1) e (2) temos que a cada aresta (v, w) corresponde a uma única aresta $(f(v), F(w)) \in E(H)$ e vice-versa. Logo, |E(G)| = |E(H)|.

(b) Se G e H têm o mesmo número de vértices e o mesmo número de arestas então eles são isomorfos.

Resposta: Falsa.

Como contra-exemplo, podemos considerar os grafos L_1 e L_2 do exercício 1.

$$|V(L_1)| = |V(L_2)| = 6$$

 $|E(L_1)| = |E(L_2)| = 8$

Mas, eles não são isomorfos, como visto no exercício 1, item c.

(c) Se G e H são grafos isomorfos então eles têm a mesma sequência de graus.

Resposta: Verdadeiro.

Como G e H são isomorfos então existe um isomorfismo f entre eles e o isomorfismo preserva adjacências, isto é, vértices correspondentes $v \in V(G)$ e $f(v) \in V(H)$ têm as mesmas adjacências e portanto o mesmo grau. E, como |V(G)| = |V(H)| as sequências de graus de V e H são iguais.

Logo, possuem a mesma sequência de graus.

(d) Se G e H têm a mesma sequência de graus então eles são isomorfos.

Resposta: Falsa.

Como contra-exemplo podemos considerar os grafos H_1 e H_2 do exercício 1.

Os grafos H_1 e H_2 possuem a mesma sêquência de graus, que é: (3,3,3,3,3,3), mas não são isomorfos como visto no exercício anterior.

3. Determine a matriz de adjacência e a matriz de incidência do grafo L_1 de 1.c.

Resposta:

A matriz de adjacência do grafo L_1 é:

$$\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)$$

E, a matriz de incidência do grafo ${\cal L}_1$ é:

4. Desenhe o grafo cuja matriz de adjacência é dada por:

$$\left(\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)$$

Resposta: O grafo G correspondente a matriz de adjacência é:

5. Desenhe o grafo cuja matriz de incidência é dada por:

Resposta: O grafo H correspondente a matriz de incidência é: