Introduction to Robotics: Perception, Mechanics, Dynamics and Control

Fall 2021

Instructor:	Donghyun Kim	Time:	Tue Thur 4:00 – 5:15 PM
Email:	donghyunkim@cs.umass.edu	Place:	Marston Hall 132

TAs:

- Shifan Zhu (shifanzhu@umass.edu)
- Daniel Marew (dmarew@umass.edu)
- Komal Garg (komalpremcha@umass.edu)(Grader)

Office Hours:

- Wed 3:00 4:00 pm (LGRC 325)
- Fri 2:00 3:00 pm (LGRC 308)

Objectives: This class is designed as a first course in robotics. We will cover the basics of robotics including motor control, spatial representations, actuation, and machine learning in robotics. Students will build a dynamics simulation in order to reinforce the readings and the written exercises. Over the course of the semester, a library of hierarchical skills will be built to support an increasingly integrated robotic application.

Grading Policy: Homework (40%) and Quizzes (15%), Midterm 1 (20%), Midterm 2 (20%), Final Project(5%).

Late Policy: Assignments should be handed in by 11:50 PM on the posted due date. There will not be a penalty until the next morning (8:00 AM) but after that time, they are considered 1 day late. You will have four late days for every assignment with a penalty of 5% of your score for every late day. After four days, the assignment will receive a zero.

Class Policy:

• Regular attendance is essential and expected.

Academic Honesty: Lack of knowledge of the academic honesty policy is not a reasonable explanation for a violation.

COMPSCI403 September 23, 2021

Tentative Course Outline:

	Date	Lecture contents	Quiz	нw
Week 1	09/02 (Thu)	Do you like a robot? What's the robot and robotics research?	No; first week	HW#1 Robot definition/ github & matlab setting
Week 2 09/07 (7	09/07 (Tue)	Review of Linear algebra and convex optimization	Q1. Linear algebra	HW#2 parallel linkage (due on Sunday night)
09/09 (Thu)		2D Kinematics: forward/inverse kinematics, Jacobian.	Q1. Ellical algebra	112 paraner mixage (due on Sanday mgnt)
Week 5	09/14 (Tue)	Holonomic/ nonholonomic systems	Q2. 2 D.O.F planar manipulator kinematics	HW#3 Frame representation
	09/16 (Thu)	Spatial representation	2.2 Dien plana manipulater miteriatie	
Week 4 09	09/21 (Tue)	Spatial Kinematics	Q3. Z- rotation orientation matrix	HW#4 3D open chain forward kinematics
	09/23 (Thu)	Inverse Kinematics and Orientation in 3D space	Q3.2 Totalion offentation matrix	
con 5	09/28 (Tue)	Dynamics	Q4. Relationship between SO(3), Quaternion, and Euler angle	HW#5 Planar openchain dynamics simulation
	09/30 (Thu)	Lagrangian dynamics 1	Q1. Relationship between 50(5), Quaternion, and Euler ungle	
Week o	10/05 (Tue)	Lagrangian dynamics 2	Q5. Multi-body dynamics	HW#6 OSC test and contact test
	10/07 (Thu)	Operational space control	Q5. Main body dynamics	
WCCK /	10/12 (Tue)	Contact dynamics 1	Q6. Operational space control	No homework (Exam)
	10/14 (Thu)	Contact dynamics 2	Qu. Operational space control	
Week o	10/19 (Tue)	Exam 1	No quiz (after Exam)	HW#7 Contact implementation
	10/21 (Thu)	Whole-Body Control	The quite (uner Enum)	
WCCK)	10/26 (Tue)	Feedback control, spring damper, Laplace transform	Q7. Gain margin vs phase margin	HW#8 whole-body control
	10/28 (Thu)	Stability analysis	Q, r Guin margin vo praise margin	
Week 10	11/02 (Tue)	LQR	Q8. LQR	HW#9 LQR cart-pole
	11/04 (Thu)	Trajectory optimization 1	40.241	
Week 11	11/09 (Tue)	Trajectory optimization 2	Q9. Trajectory optimization vs path planning	HW#10 Jump optimization
	11/11 (Thu)	Veterans' Day	Q5. Trajectory optimization vs pain planning	
WCCK 12	11/16 (Tue)	Model predictive control	Q10. A* explanation	No homework (Exam)
	11/18 (Thu)	Exam 2	Q10.74 explanation	
Week 13	11/23 (Tue)	Seminar (Prof. Sehoon Ha @ GATech)		No homework. Thanksgiving!
	11/25 (Thu)	Thanksgiving		
Week 14	11/30 (Tue)	Reinforcement learning - overview		HW#11 Installation of Raisim and example codes te
	12/02 (Thu)	Reinforcement learning - Software introduction and examples		
Week 15	12/07 (Tue)	Reinforcement learning - Recent research	-	Final Project due 12/16