Date	8 October 2022	
Team ID	PNT2022TMID18710	
Project Name	Al-based localization and classification of skin	
Maximum marks		
Maximum marks	disease with erythema 2 marks	

S. N O	PAPER	AUTHOR	YEAR	ACCURACY	METHOD AND ALGORITHM
1.	AI-based localization and classification of skin disease with erythema	Ha Min Son, Wooho Jeon, Jinhyun Kim, Chan- Yeong Heo,Hye Jin Yoon,Ji Ung Park, Tai- Myoung Chung.	2021	93.5%	This model shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model.
2.	Skin Disease Detection And Classification	V.Pugazhen thi, Sagar K. Naik, Amruta D.Joshi, Shreya S. Manerkar	2019	90.15%	Global Thresholding technique is used to segment the pre processed image through which the actual affected region is obtained. Texture features, such as Energy, Entropy, Contrast, IDM, are extracted from the segmented image using Grey Level Co-occurrence Matrix. Image Quality Assessment features such as MSE and PSNR are extracted. The extracted texture features

					will be used to detect the
					presence of skin disease
					and classify the disease
					as melanoma, leprosy or
					eczema, if present, using
					the Decision tree
					technique.
3.	Skin Disease	Quan Gan,	2018	92.25%	The method of grey-
] .	Recognition	Tao Ji.	2010	72.2370	level co-occurrence
	Method	140 51.			matrix (GLCM) was
	Based on				introduced to segment
	Image Color				images of skin disease.
	and Texture				The texture and color
	Features				features of different skin
	1 catalos				disease images could be
					obtained accurately.
					Finally, by using the
					support vector machine
					(SVM) classification
					method, three types of
					skin diseases were
					identified. The
					experimental results
					demonstrate the
					effectiveness and
					feasibility of the
					proposed method.
4.	Automatic	K.A.Muhab	2021	96%	In this model, an
	skin disease	a,K. Dese,			automated system is
	diagnosis	T. M. Aga,			proposed for the
	using deep	F. T.			diagnosis of five
	learning from	Zewdu,			common skin diseases
	clinical	G. L.			by using data from
	image and	Simegn.			clinical images and
	patient				patient information
	information				using deep learning pre-
					trained mobilenet-v2
					model. Clinical images
					were acquired using
					different smartphone
					cameras and patient's
					information were
					collected during patient
					registration. Different
					data pre processing and
					augmentation techniques
					were applied to boost the
					performance of the
1	1	I		I	model prior to training.