CFL closure Proofs

Context-Free Languages - Closure Properties (Complete Proofs)

(F)

Overview of CFL Closure Properties

CFLs are CLOSED under:

- Union (∪)
- Concatenation (·)
- Kleene Star (*)

CFLs are NOT CLOSED under:

- Intersection (∩)
- Complement ()

Key Insight: The closure properties that work are those that can be implemented by "choosing" or "sequencing" derivations from component grammars. Operations requiring "coordination" between different parts fail.

Theorem 1: CFL Closure Under Union

Statement: If L_1 and L_2 are context-free, then $L_1 \cup L_2$ is context-free.

₽ F

Proof Idea:

Create a new grammar that can generate strings from either original grammar by adding a new start symbol with productions that "choose" between the two languages.

Proof:

Step 1: Let $G_1 = (V_1, \Sigma_1, R_1, S_1)$ generate L_1 and $G_2 = (V_2, \Sigma_2, R_2, S_2)$ generate L_2 .

Step 2: WLOG, assume $V_1 \cap V_2 = \emptyset$ (rename variables if necessary).

Step 3: Construct G = (V, Σ, R, S) where:

- $V = V_1 \cup V_2 \cup \{S\}$ (S is new start symbol)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $\bullet \ \ R = R_1 \cup R_2 \cup \{S \rightarrow S_1, \, S \rightarrow S_2\}$

Step 4: Prove $L(G) = L_1 \cup L_2$:

 \subseteq : If $w \in L(G)$, then $S \Rightarrow^* w$. The derivation starts $S \to S_1$ or $S \to S_2$.

- If $S \to S_1$, then $S_1 \Rightarrow^* w$ using only R_1 , so $w \in L_1$
- If $S \to S_2$, then $S_2 \Rightarrow^* w$ using only R_2 , so $w \in L_2$
- Therefore $w \in L_1 \cup L_2$

 \supseteq : If $w \in L_1 \cup L_2$:

- If $w \in L_1$, then $S_1 \Rightarrow^* w$, so $S \to S_1 \Rightarrow^* w$
- If $w \in L_2$, then $S_2 \Rightarrow^* w$, so $S \to S_2 \Rightarrow^* w$
- Therefore w ∈ L(G)

Theorem 2: CFL Closure Under Concatenation

Statement: If L_1 and L_2 are context-free, then $L_1 \cdot L_2$ is context-free.

Proof Idea:

Force every string to be decomposed into two parts: first part generated by G₁, second part by G₂. The new start symbol coordinates this sequencing.

Proof:

Step 1: Let $G_1 = (V_1, \Sigma_1, R_1, S_1)$ generate L_1 and $G_2 = (V_2, \Sigma_2, R_2, S_2)$ generate L_2 .

Step 2: WLOG, assume $V_1 \cap V_2 = \emptyset$.

Step 3: Construct G = (V, Σ, R, S) where:

- $V = V_1 \cup V_2 \cup \{S\}$ (S is new start symbol)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$

Step 4: Prove L(G) = $L_1 \cdot L_2$:

 \subseteq : If $w \in L(G)$, then $S \Rightarrow^* w$.

- The derivation starts $S \rightarrow S_1S_2$
- So $S_1S_2 \Rightarrow^* W$
- This means w = uv where $S_1 \Rightarrow^* u$ and $S_2 \Rightarrow^* v$
- Therefore $u \in L_1$, $v \in L_2$, so $w \in L_1 \cdot L_2$
- \supseteq : If $w \in L_1 \cdot L_2$, then w = uv where $u \in L_1$, $v \in L_2$.
 - $S_1 \Rightarrow^* u$ and $S_2 \Rightarrow^* v$

- So S \rightarrow S₁S₂ \Rightarrow * uv = w
- Therefore w ∈ L(G)

Example:

Theorem 3: CFL Closure Under Kleene Star

Statement: If L is a context-free language, then L* is context-free.

Proof Idea:

 L^* means "zero or more concatenations of strings from L." We need a grammar that can generate ϵ (zero strings) or recursively build longer concatenations.

Proof:

Step 1: Let $G = (V, \Sigma, R, S_1)$ generate L.

Step 2: Construct G' = (V', Σ , R', S) where:

- V' = V ∪ {S} (S is new start symbol)
- R' = R \cup {S \rightarrow ϵ , S \rightarrow SS₁}

Step 3: Prove L(G') = L*:

 \subseteq : If $w \in L(G')$, then $S \Rightarrow^* w$.

- If derivation uses $S \to \epsilon$, then $w = \epsilon \in L^*$
- If derivation uses $S \to SS_1$, then w = uv where $S \Rightarrow^* u$ and $S_1 \Rightarrow^* v$
- By induction: u ∈ L* and v ∈ L, so w = uv ∈ L*

 \supseteq : If $w \in L^*$, then either:

- $w = \epsilon$: Use $S \rightarrow \epsilon$
- $\textbf{w} = \textbf{w}_1 \textbf{w}_2 ... \textbf{w}_k \text{ where each } \textbf{w}_i \in \textbf{L} \text{: Use } S \rightarrow SS_1 \Rightarrow^* SS_1 \textbf{w}_1 \rightarrow SS_1 \textbf{w}_1 \Rightarrow^* SS_1 \textbf{w}_1 \textbf{w}_2 ... \textbf{w}_{k-1} \rightarrow S_1 \textbf{w}_1 \textbf{w}_2 ... \textbf{w}_{k-1} \\ \Rightarrow^* \textbf{w}_1 \textbf{w}_2 ... \textbf{w}_k = \textbf{w}$

Alternative Construction (often cleaner):

• R' = R \cup {S $\rightarrow \epsilon$ | S₁S}

This generates strings by: $S \to S_1S \to S_1S_1S \to ... \to S_1S_1...S_1\epsilon$

Example:

```
L = \{a^nb^n \mid n \ge 1\} \colon S_1 \to ab \mid aS_1b
L^* \colon S \to \epsilon \mid S_1S
Result \colon L^* = \{(a^nb^n)^k \mid n \ge 1, k \ge 0\}
```

Theorem 4: CFLs are NOT Closed Under Intersection

Statement: There exist context-free languages L_1 and L_2 such that $L_1 \cap L_2$ is not context-free.

Proof Idea:

Find two CFLs whose intersection forces a coordination that CFGs cannot handle - typically requiring equal counts of three or more different symbols.

Proof (Classic Counterexample):

Step 1: Define the languages:

- $L_1 = \{a^i b^j c^j \mid i, j \ge 1\}$
- $L_2 = \{a^i b^i c^j \mid i, j \ge 1\}$

Step 2: Show L₁ and L₂ are context-free:

For L₁:

```
S_1 \rightarrow AC
A \rightarrow aA \mid a
C \rightarrow bCc \mid bc
```

For L₂:

```
S_2 \rightarrow AB
A \rightarrow aAb \mid ab
B \rightarrow cB \mid c
```

Step 3: Find the intersection: $L_1 \cap L_2 = \{a^ib^jc^j \mid i, j \ge 1\} \cap \{a^ib^ic^j \mid i, j \ge 1\} = \{a^ib^jc^j \mid i \ge 1\}$

Step 4: Prove $L_1 \cap L_2$ is not context-free using the CFL Pumping Lemma:

Let p be the pumping length. Consider $s = a^p b^p c^p \in L_1 \cap L_2$.

By the pumping lemma, s = uvwxy where $|vwx| \le p$, $|vx| \ge 1$, and $uv^iwx^iy \in L_1 \cap L_2$ for all $i \ge 0$.

Case Analysis:

- Case 1: vwx spans only one type of symbol (all a's, all b's, or all c's) Then pumping changes count of only one symbol type, breaking the equality requirement.
- Case 2: vwx spans two types of symbols Since |vwx| ≤ p, it cannot span all three types. Pumping changes at most two symbol counts, but we need all three to remain equal.

In all cases, pumping fails to maintain $a^ib^ic^i$ pattern. Therefore $L_1 \cap L_2$ is not context-free.

Theorem 5: CFLs are NOT Closed Under Complement

Statement: There exists a context-free language L such that L is not context-free.

9

Proof Idea:

Use the non-closure under intersection and De Morgan's laws. If CFLs were closed under complement, they would also be closed under intersection.

Proof (Reduction from Intersection):

Step 1: Assume, for contradiction, that CFLs are closed under complement.

Step 2: Let L₁ and L₂ be any context-free languages.

Step 3: By De Morgan's law: $L_1 \cap L_2 = \overline{L}_1 \cup \overline{L}_2$

Step 4: If CFLs are closed under complement:

- L

 1 would be context-free
- L2 would be context-free

Step 5: Since CFLs are closed under union:

- Therefore $L_1 \cap L_2$ would be context-free

Step 6: This contradicts Theorem 4 (CFLs not closed under intersection).

Therefore, CFLs are not closed under complement.

Direct Counterexample:

Alternative Proof: Consider L = $\{a^ib^jc^k \mid i \neq j \text{ or } j \neq k\}$

Step 1: Show L is context-free: L = $\{a^ib^jc^k \mid i \neq j\} \cup \{a^ib^jc^k \mid j \neq k\}$

Each component is CFL (can be shown with appropriate grammars), and CFLs are closed under union.

Step 2: Find the complement: $\bar{L} = \{a^ib^jc^k \mid i = j \text{ and } j = k\} = \{a^ib^ic^i \mid i \geq 0\}$

Therefore \bar{L} is not context-free, proving CFLs are not closed under complement.

Summary Table

Operation	Regular Languages	Context-Free Languages	Decidable Languages
Union (U)	✓ Closed	✓ Closed	✓ Closed
Intersection (∩)	✓ Closed	X Not Closed	✓ Closed
Complement (¯)	✓ Closed	X Not Closed	✓ Closed
Concatenation (·)	✓ Closed	✓ Closed	✓ Closed
Kleene Star (*)	✓ Closed	✓ Closed	✓ Closed

Key Insight: As we move up the Chomsky hierarchy, we gain expressive power but lose closure properties. This reflects the fundamental trade-off between computational power and structural constraints in formal language theory.