WHEN IS A NOISY SIGNAL OSCILLATING AND WHEN IS IT NOISY?

SUPERVISED BY PETER SWAIN

WHEN IS A NOISY SIGNAL OSCILLATING AND WHEN IS IT NOISY?

Topics to be covered

INTRODUCTION TO PROBLEM

BAYESIAN INFERENCE AND TOY EXAMPLE

BASICS OF MODEL SELECTION

INTRODUCTION TO GAUSSIAN PROCESS

TOY EXAMPLE FOR GAUSSIAN PROCESS

WHAT PROJECT AIMS?

Prior of project

PETRI DISH BEING OBSERVED IN FLUORESCENCE ENVIRONMENT

Images acquired at regular intervals.

TIME SERIES DATA OF CELLS FROM PREVIOUS SLIDE NO MODEL IS KNOWN OF UNDERLYING PROCESS

FOURIER TRANSFORM OF TIME SERIES DATA

FFT

INTRODUCTION TO BAYESIAN FRAMEWORK

FFT

BAYES

Probability of $oldsymbol{\mathcal{E}}$ given \mathcal{H}_i

$$\mathcal{P}(\mathcal{H}_i|\mathcal{E}) = \frac{\mathcal{P}(\mathcal{E}|\mathcal{H}_i)\mathcal{P}(\mathcal{H}_i)}{\mathcal{P}(\mathcal{E})}$$

$$Posterior = \frac{likelihood \times Prior}{Marginal\ likelihood}$$

Where $\mathcal{P}(\mathcal{E}) = \mathcal{P}(\mathcal{E}|\mathcal{H}_1)\mathcal{P}(\mathcal{H}_1) + \mathcal{P}(\mathcal{E}|\mathcal{H}_2)\mathcal{P}(\mathcal{H}_2) + \mathcal{P}(\mathcal{E}|\mathcal{H}_3)\mathcal{P}(\mathcal{H}_3) + \dots$

WE WILL UNDERSTAND BAYESIAN IMPLEMENTATION WITH TOY EXAMPLE OF SUPERIMPOSED SINUSOIDAL WAVES

FFT

Secondary Signal

OBSERVATION TIME WINDOW ON SUPERIMPOSED SIGNAL

FFT

RANDOM POINTS ON CURVE WILL ACT LIKE DATA OBSERVED IN EXPERIMENT

FFT

ADDING NOISE TO DATA

FFT

OBSERVED NOISY DATA POINTS

FFT

FITTING WITH DIFFERENT NUMBER OF SINUSOIDAL

FITTING WITH DIFFERENT NUMBER OF SINUSOIDAL

10

CHANGING BELIEF USING BAYES THEOREM

Where $\mathcal{P}(\mathcal{E}) = \mathcal{P}(\mathcal{E}|\mathcal{H}_1)\mathcal{P}(\mathcal{H}_1) + \mathcal{P}(\mathcal{E}|\mathcal{H}_2)\mathcal{P}(\mathcal{H}_2) + \mathcal{P}(\mathcal{E}|\mathcal{H}_3)\mathcal{P}(\mathcal{H}_3) + \dots$

WHAT IS HIERARCHICAL BAYESIAN MODEL SELECTION?

FFT

BAYES

MODEL SELECTION

Hyper-Parameters

Parameter Value

$$\mathcal{P}(\boldsymbol{\theta}|\boldsymbol{\mathcal{E}}) = \frac{\mathcal{P}(\boldsymbol{\mathcal{E}}|\boldsymbol{\theta})\mathcal{P}(\boldsymbol{\theta})}{\mathcal{P}(\boldsymbol{\mathcal{E}})}$$

Where $\mathcal{P}(\mathcal{E}) = \int \mathcal{P}(\mathcal{E}|\boldsymbol{\theta}) \mathcal{P}(\boldsymbol{\theta}) d\boldsymbol{\theta}$

$$\mathcal{P}(w|\mathcal{E},\boldsymbol{\theta}) = \frac{\mathcal{P}(\mathcal{E}|w,\boldsymbol{\theta})\mathcal{P}(w|\boldsymbol{\theta})}{\mathcal{P}(\mathcal{E}|\boldsymbol{\theta})}$$

Where $\mathcal{P}(\mathcal{E}|\boldsymbol{\theta}) = \int \mathcal{P}(\mathcal{E}|\boldsymbol{w}) \mathcal{P}(\boldsymbol{w}|\boldsymbol{\theta}) d\boldsymbol{w}$

A WALKTHROUGH TO THE BASICS OF MODEL SELECTION

FFT

BAYES

CHOSING RANDOM POINTS ON CURVE

FFT

BAYES

ADDING GAUSSIAN NOISE TO DATA

FFT

BAYES

FINAL DATA TO BE USED IN ANALYSIS

FFT

BAYES

FITTING TO LINEAR AND 1ST DEGREE POLYNOMIAL

FITTING TO HIGHER DEGREE POLYNOMIAL

FFT

BAYES

USING BAYESIAN INFORMATION CRITERION (BIC) TO PENALIZE UNNECESSARY COMPLEXITY OF MODEL

FFT

BAYES

MODEL SELECTION

```
likelyhood - Linear Fit: -16.2692
```

likelyhood - 1st Degree Fit: -12.9734
likelyhood - 2nd Degree Fit: -11.0972
likelyhood - 3rd Degree Fit: -11.0543

likelyhood - 4th Degree Fit: -14.6380

*Higher is better

Penalty for extra parameter

$$\mathrm{BIC} = k \ln(n) - 2 \ln(\widehat{L}).$$

BIC Score - Linear Fit: 35.7574

BIC Score - 1st Degree Fit: 30.7750

BIC Score - 2nd Degree Fit: 28.6321

BIC Score - 3rd Degree Fit: 30.1559

BIC Score - 4th Degree Fit: 38.9327

*Lower is better

GAUSSIAN PROCESS REGRESSION

SWITCHING FROM WEIGHT TO FUNCTION SPACE VIEW

BAYES

MODEL **SELECTION**

GAUSSIAN PROCESS

Prior of Normal Bayesian inference

Prior of Gaussian Process

E.g. of the kernel of gaussian process

$$K(x,x_*) = \theta_1^2 \exp\left(-\frac{(x-x_1)^2}{2\theta_2^2}\right)$$

• x_i are the points on x axis, they are domain of kernel functions, which in turn gives element of covariance matrix

$$N(\mu, \Sigma) = N\left(\begin{bmatrix} \mu_X \\ \mu_{x_i} \end{bmatrix}, \begin{bmatrix} K(x, x) & K(x, x_i) \\ K(x_i, x) & K(x_i, x_i) \end{bmatrix}\right)$$

TWO STAGE OPTIMIZATION TO FIND POSTERIOR DISTRIBUTION AND PREDICTING RESULTS

FFT

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

OPTIMIZATION:

- $\operatorname{GP}\left(\mu, \acute{\Sigma}_{x,x}\right)$
- Bayesian margenal likelyhood $\mathcal{P}(\mathcal{E}|\boldsymbol{\theta}) = \int \mathcal{P}(\mathcal{E}|\boldsymbol{w}) \mathcal{P}(\boldsymbol{w}|\boldsymbol{\theta}) d\boldsymbol{w}$

• Minimisation with respect to hyper-parameter (Parameter of kernels)

$$\frac{\partial}{\partial \theta_i} \log(\boldsymbol{\mathcal{E}}|\boldsymbol{\theta}) = \frac{1}{2} \boldsymbol{\mathcal{E}}^T K^{-1} \frac{\partial K}{\partial \theta_i} K^{-1} \boldsymbol{\mathcal{E}} - \frac{1}{2} \operatorname{tr} \left(K^{-1} \frac{\partial K}{\partial \theta_i} \right)$$

PREDICTION:

$$\begin{bmatrix} \mathcal{E} \\ \mathcal{E}_* \end{bmatrix} \sim N \left(0, \begin{bmatrix} K(x, x) & K(x, x_*) \\ K(x_*, x) & K(x_*, x_*) \end{bmatrix} \right)$$

HIERARCHICAL STRUCTURE OF GAUSSIAN PROCESS

FFT

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

Hyper-Parameters

Parameter Value

$$\mathcal{P}(\boldsymbol{\theta}|\boldsymbol{\mathcal{E}}) = \frac{\mathcal{P}(\boldsymbol{\mathcal{E}}|\boldsymbol{\theta})\mathcal{P}(\boldsymbol{\theta})}{\mathcal{P}(\boldsymbol{\mathcal{E}})}$$

Where $\mathcal{P}(\mathcal{E}) = \int \mathcal{P}(\mathcal{E}|\boldsymbol{\theta}) \mathcal{P}(\boldsymbol{\theta}) d\boldsymbol{\theta}$

Minimisation w.r.t Q

- Gradient decent
- Monte Carlo

Gaussian Process Prior

Analytical Integral (function of Q)

$$\mathcal{P}(w|\mathcal{E},\boldsymbol{\theta}) = \frac{\mathcal{P}(\mathcal{E}|w,\boldsymbol{\theta})\mathcal{P}(w|\boldsymbol{\theta})}{\mathcal{P}(\mathcal{E}|\boldsymbol{\theta})}$$

Where $\mathcal{P}(\mathcal{E}|\boldsymbol{\theta}) = \int \mathcal{P}(\mathcal{E}|\boldsymbol{w}) \mathcal{P}(\boldsymbol{w}|\boldsymbol{\theta}) d\boldsymbol{w}$

SAMPLING PRIOR FUNCTIONS FROM RBF KERNEL

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

RBF Kernel

$$K(x,x_*) = \theta_1^2 \exp\left(-\frac{(x-x_1)^2}{2\theta_2^2}\right)$$

SAMPLING PRIOR FUNCTIONS FROM MIXED KERNELS

FFT

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

Mixed Kernel

$$K_{1}(x, x_{*}) = \theta_{1}^{2} \exp\left(-\frac{(x-x_{1})^{2}}{2\theta_{2}^{2}}\right)$$

$$K_{2}(x, x_{*}) = \theta_{3}^{2} \exp\left(-\frac{(x-\hat{x})^{2}}{2\theta_{4}^{2}} - \frac{2\sin^{2}(\pi(x-\hat{x}))}{\theta_{5}^{2}}\right)$$

$$K_{3}(x, x_{*}) = \theta_{6}^{2} \left(1 + \frac{(x-\hat{x})^{2}}{2\theta_{8}\theta_{7}^{2}}\right)^{-\theta_{8}}$$

$$K = K_{1} + K_{2} + K_{3}$$

GAUSSIAN PROCESS REGRESSION RESULT WITH 5 DATA POINTS ON PREVIOUS TOY EXAMPLE

LOOKING CLOSER AT CONFIDENCE INTERVALS OF GPR RESULTS

FFT

BAYES

MODEL SELECTION

GPR RESULT WITH LINEAR KERNEL

FFT

BAYES

MODEL SELECTION

GPR RESULT WITH PERIODIC KERNEL

FFT

BAYES

MODEL SELECTION

GPR RESULT WITH RBF KERNEL

FFT

BAYES

MODEL SELECTION

GPR RESULT WITH MIXED KERNEL

FFT

BAYES

MODEL SELECTION

RESULTS WITH EVEN COMPLEX KERNELS

FFT

BAYES

MODEL SELECTION

*RESULTS WITH EVEN COMPLEX KERNELS

FFT

BAYES

MODEL SELECTION

MODEL SELECTION WITH GAUSSIAN PROCESS REGRESSION

FFT

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

MODEL SELECTION:

Factors to consider

- Likelihood
- Information Criterion
- Prior Knowledge
- Intuition

AIM OF THE PROJECT

FFT

BAYES

MODEL SELECTION

GAUSSIAN PROCESS

CONCLUSION

Train model

Domain Adaptation

Classification

- White Noise
- Model selection
- Hyperparameter interpretation

- Model adaptation
- Hyperparameter Bound

When Is A Noisy Signal

Oscillating And When is it Noisy?

THANK YOU

RITESH BALAYAN S2456148@ED.AC.UK