NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Semester 1 (2003/2004) MA4253 Mathematical Programming Tutorial 1

Q1. Let A be an $m \times n$ matrix and b be a vector in \Re^m . Show that

$$S := \{ x \in \Re^n \mid ||Ax - b|| \le 1 \}$$

is a convex set, where $\|\cdot\|$ is the Euclidean norm in \Re^m .

Q2. Which of the following sets S are polyhedra? If possible, express S in the form of $S = \{x \mid Ax \leq b, Fx = g\}$.

- (a) $S = \{y_1 a_1 + y_2 a_2 \mid -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$, where $a_1, a_2 \in \Re^n$.
- (b) $S = \{x \in \mathbb{R}^n \mid x \ge 0, e^T x = 1, \sum_{i=1}^n x_i a_i = b_1, \sum_{i=1}^n x_i a_i^2 = b_2\}$, where $a_1, \dots, a_n, b_1, b_2 \in \mathbb{R}$ and $e = (1, \dots, 1)^T$.
- (c) $S = \{x \in \Re^n \mid x \ge 0, x^T y \le 1 \ \forall \ y \text{ with } ||y|| = 1\}.$
- (d) $S = \{x \in \Re^n \mid x \ge 0, x^T y \ge 1 \ \forall \ y \text{ with } ||y|| = 1\}.$
- (e) $S = \{x \in \Re^n \mid x \ge 0, x^T y \le 1 \ \forall \ y \text{ with } \sum_i |y_i| = 1\}.$
- (f) $S = \{x \in \mathbb{R}^n \mid x \ge 0, x^T y \ge 1 \ \forall \ y \text{ with } \sum_i |y_i| = 1\}.$
- Q3. Find all extreme points of the following problem:

$$\begin{array}{ll} \min & 2x_1 + 4x_2 + 7x_3 \\ \text{s.t.} & 2x_1 + x_2 + 6x_3 \ge 5 \\ & 4x_1 - 6x_2 + 5x_3 \ge 8 \\ & x_1, x_2, x_3 \ge 0. \end{array}$$

Q4. Let $P = \{x \in \Re^3 \mid 2x_3 \ge 1, \ 4x_1 \le 3, \ x_1 + x_2 + x_3 = 1, \ x \ge 0\}$. Give two basic feasible solutions of P.

Q5. Let $P = \{x \in \mathbb{R}^n \mid Ax = b, \ x \geq 0\}$, where $A \in \mathbb{R}^{m \times n}$ is of full row rank. Show that for any basic feasible solution x of P there exists a submatrix $B \in \mathbb{R}^{m \times m}$ of A such that B is nonsingular, $B^{-1}b \geq 0$ and x is of the form $((B^{-1}b)^T \ 0)^T$.

1