《过程控制》作业

第三章 数字控制系统

- **1.** 已知被控对象的传递函数 $G_o(s) = \frac{K}{s(T_m s + 1)}$, 其中 T = 0.1s, $T_m = 4T$, K = 5; 试计算被控对象脉冲传递函数 $G(z) = Z[G_o(s)]$ 。
- **2.** 已知被控对象的传递函数 $G_0(s) = \frac{e^{-2s}}{s(s+1)}$, 采样周期 T=1s,期望的闭环脉冲传递函数的时间常数取为 $T_c=2s$,试用大林算法设计数字控制器 D(z)。
- 3. 理想微分 PID 数字控制器的增量型算式为:

$$u(n) = u(n-1) + \Delta u(n) \tag{1}$$

$$\Delta u(n) = q_0 e(n) + q_1 e(n-1) + q_2 e(n-2)$$
 (2)

其中 PID 参数为比例系数 K_p ,积分时间 T_i ,微分时间 T_d ,控制周期 T。试推导参数 q_0 、 q_1 、 q_2 的表达式。

- 4. 关于数字 PID 控制器的工程实现:
 - (1) 数字 PID 控制器的工程实现应考虑哪六个部分?请简单说明。
- (2) 数字 PID 控制器的无平衡无扰动切换的含义是什么?并以控制器手动自动切换过程为例进行说明。
- **5.** 查阅资料说明目前工业控制系统中模拟信号的传输有哪些标准,为什么通常采用 4~20mA 的标准?

附表 常用时间函数的 z 变换和拉氏变换

一				
序	拉氏变换	时间函数	z变换	
号	F(s)	f(t)	F(z)	
1	1	$\delta(t)$	1	1
2	e^{-kTs}	$\delta(t-kT)$	z^{-k}	z^{-k}
3	$\frac{1}{s}$	1(<i>t</i>)	$\frac{z}{z-1}$	$\frac{1}{1-z^{-1}}$
4	$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
5	$\frac{1}{s^3}$	$\frac{1}{2}t^2$	$\frac{T^2z(z+1)}{2(z-1)^3}$	$\frac{T^2z^{-1}(1+z^{-1})}{2(1-z^{-1})^3}$
6	$\frac{1}{s+a}$	e ^{-aT}	$\frac{z}{z - e^{-aT}}$	$\frac{1}{1-e^{-aT}z^{-1}}$
7	$\frac{1}{(s+a)^2}$	te ^{-aT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$	$\frac{Tz^{-1}e^{-aT}}{(1-e^{-aT}z^{-1})^2}$
8	$\frac{a}{s(s+a)}$	$1-e^{-aT}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$

*阅读材料思考题:

- (1) 请预习第四章复杂控制系统的讲义,了解复杂控制系统的结构;
- (2) 继续学习论文: Jonas Degrave, Federico Felici, Jonas Buchli, et al., Magnetic control of tokamak plasmas through deep reinforcement learning, *Nature*, 2022, Vol 602, pp 414-419.

着重学习原文的 Fig.1(f)中"Conventional control"(常规控制)及其在正文中相关内容(例如第1页第2自然段 a set of SISO PID controller)、第10页"Comparison with previous work"等。下图为 Fig.1 的部分内容。

- (3) 尝试分析控制系统的结构,并回答以下问题:
 - (i) "Conventional control"(常规控制)中,控制目标(targets)是什么?输出 y 是什么?输入 u 是哪些变量,有多少维?测量值 m(measurements)包括哪些,有多少维?
 - (ii) "Conventional control"(常规控制)的控制结构是串级控制吗?如果是串级控制,请尝试画出控制结构图,指出副回路和副参数是什么?主回路和主参数又是什么?
 - (iii) Offline feedforward generation"的作用是什么?是一种 generation

前馈 (feedforward) 控制吗?

(iv) 原文是否有提到"Conventional control"难以实现控制目标的原因?如果没有,你认为存在哪些困难?