WHAT IS CLAIMED IS:

5

10

15

20

25

1. A method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment, comprising administering to the patient an anti-diabetic effective amount of a compound represented by formula I:

or a pharmaceutically acceptable salt or solvate thereof wherein:

 R^1 is selected from the group consisting of: H, C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl,

said alkyl, Aryl, Heteroaryl and Heterocyclyl being optionally substituted with one to four substituents independently selected from R⁶;

 R^2 is selected from the group consisting of: H, C_{1-10} alkyl, $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heterocyclyl CO_2R^4 and $C(O)NR^4R^5$,

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^3 is selected from the group consisting of: $C_{1\text{--}10}$ alkyl and Aryl, said alkyl and Aryl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^4 is selected from the group consisting of: H, C_{1-10} alkyl, Aryl, Heteroaryl, Heterocyclyl, said alkyl, Aryl, Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^5 is selected from the group consisting of: C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl, said alkyl, cycloalkyl, Aryl Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

when R² represents C(O)C₁₋₁₀alkyl, each R⁶ is independently selected from the group consisting of: halo, Aryl, Heteroaryl, Heterocyclyl, OR⁷, SR⁷, S(O)_mR⁸, S(O)₂OR⁸, S(O)_mNR⁷R⁸, NO₂, NR⁷R⁸, O(CR⁹R¹⁰)_nNR⁷R⁸, C(O)R⁸, CO₂R⁷, CO₂(CR⁹R¹⁰)_nCONR⁷R⁸, OC(O)R⁸, CN, C(O)NR⁷R⁸, NR⁷C(O)R⁸, NR⁷C(O)NR⁸R⁹, CR⁷(NOR⁸), (CR⁹R¹⁰)_n-Aryl, (CR⁹R¹⁰)_n-Heteroaryl, (CR⁹R¹⁰)_n-Heterocyclyl, CF₃ and OCF₃.

and when R^2 is C(O)Aryl, C(O)Heteroaryl or C(O)Heterocyclyl, and when R^6 is a substituent on R^3 , R^4 and R^5 , each R^6 is independently selected from the group consisting of halo, C_{1-7} alkyl, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R10)_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R10)_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8R^9$, $OC(O)NR^8R^9$, $OC(O)NR^8R^9$, $OC(O)NR^8R^9$, $OC(O)NR^8R^9$, $OC(O)NR^8R^9$, $OC(O)NR^9R^9$, $OC(O)NR^9$,

5

10

15

wherein m is 0, 1 or 2 and n is an integer from 1 to 7, and the alkyl, Heterocyclyl, Aryl and Heteroaryl groups and portions are optionally substituted with 1-4 substituents selected from a group independently selected from R¹¹;

 R^7 , R^9 and R^{10} are independently selected from the group consisting of: H, C_{1-7} alkyl, Aryl, Ar- C_{1-10} alkyl and mono-, di- and tri- halo substituted Ar- C_{1-10} alkyl,

or one R⁹ and one R¹⁰ are taken together with the atoms to which they are attached and any intervening atoms and represent a ring of 3 to 8 members containing 0-2 heteroatoms independently selected from O, S and N;

 R^8 is selected from the group consisting of: $\,C_{1\text{--}10}\,\text{alkyl},\,\text{Aryl}$ and $C_{1\text{--}10}\text{alkyl}\text{-Aryl};$ and

 R^{11} is selected from the group consisting of: halo, CN, $C_{1\text{-4}}$ alkyl, Aryl, CF₃ and OH.

- 2. A method of treating type 2 diabetes in accordance with claim 1 wherein the compound administered is a compound of formula I or a pharmaceutically acceptable salt or solvate thereof wherein R¹ represents C₁₋₁₀alkyl.
- 3. A method of treating type 2 diabetes mellitus in accordance with claim 2 wherein R¹ represents C₁₋₄alkyl.
 - 4. A method of treating type 2 diabetes mellitus in accordance with claim 3 wherein R¹ represents methyl.

5. A method of treating type 2 diabetes mellitus in accordance with claim 1 wherein R^2 is selected from the group consisting of: $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heterocyclyl, CO_2R^4 and $C(O)NR^4R^5$,

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of C(O)C₁₋₁₀alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents independently selected from R⁶.

- 6. A method of treating type 2 diabetes in accordance with claim 5 wherein R² is C(O)C₁₋₄alkyl, C(O)-Aryl, C(O)-Heteroaryl or C(O)-Heterocyclyl, and the C₁₋₄alkyl, Aryl,
 10 Heteroaryl and Heterocyclyl portions are optionally substituted with 1-2 groups selected from R⁶; and R⁶ is selected from the group consisting of: halo, Aryl, Heteroaryl, Heterocyclyl, OR⁷, NR⁷R⁸, CF₃ and OCF₃;and the Aryl, Heteroaryl and Heterocyclyl portions are optionally substituted with halo, C₁₋₄alkyl and CF₃.
- 7. A method of treating type 2 diabetes in accordance with claim 1 wherein R^3 is C_{1-10} alkyl with 0-1 R^6 groups attached.
- 8. A method of treating type 2 diabetes in accordance with claim 1 wherein R^4 is H, C_{1-10} alkyl or Aryl, said alkyl and Aryl groups being optionally substituted with 1-3 R^6 groups
 - 9. A method of treating type 2 diabetes in accordance with claim 1 wherein R^5 is C_{1-10} alkyl having 1-2 R^6 groups attached.
- 25 In the property of the pro
- A method of treating type 2 diabetes in accordance with claim 1 wherein:

 R^1 represents C_{1-10} alkyl;

 R^2 is selected from the group consisting of: $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heterocyclyl, CO_2R^4 and $C(O)NR^4R^5$,

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of C(O)C₁₋₁₀alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents

independently selected from R⁶;

5

10

15

R³ is C₁₋₁₀alkyl with 0-1 R⁶ groups attached;

R⁴ is H or C₁₋₁₀alkyl optionally substituted with 1-2 R⁶ groups;

 R^5 is C_{1-10} alkyl having 1-2 R^6 groups attached;

 R^6 is independently selected from the group consisting of halo, C_{1-7} alkyl, Aryl, Heteroaryl, Heterocyclyl, OR^7 , CN, $(CR^9R^{10})_n$ -Aryl, $(CR^9R^{10})_n$ -Heteroaryl, $(CR^9R^{10})_n$ -Heterocyclyl, CF_3 and OCF_3 ;

wherein n is an integer from 1 to 3, and the alkyl, Aryl, Heteroaryl and Heterocyclyl groups and portions are optionally substituted with 1-2 substituents selected from a group independently selected from R¹¹;

 R^7 , R^9 and R^{10} are independently selected from the group consisting of: H, C_{1-7} alkyl, Ar- C_{1-10} alkyl and mono-, di- and tri- halo substituted Ar- C_{1-10} alkyl, and

 R^{11} is selected from the group consisting of: halo, CN, $C_{1\text{-4}}$ alkyl, Aryl, CF $_3$ and OH.

12. A method of treating type 2 diabetes in accordance with claim 11 wherein: R^1 represents methyl;

 R^3 represents C_{1-10} alkyl, and R^2 is selected from the table below:

	R ²	
CH ₃	CO₂Et	CO ₂ -t-Bu
—CO ₂ CH ₂ —	CI —CO ₂ -CH ₂ —	
-CO ₂ -CH ₂ -CI	−CO ₂ -CH ₂ NC	−CO ₂ -CH ₂ − CN
CO ₂ -CH ₂	-CO ₂ -CH ₂ -	−CO ₂ -CH ₂ −√CF ₃

-C(O)-N-CH₂-	C(O)-N-CH ₂ -√	—C(O)-N-CH ₂ —F
—C(O)N(CH ₃) ₂	—C(O)-N-CH ₂ —	−C(O)-N-CH ₂ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
-C(O)-N-CH ₂ -t-Bu	—C(O)-N-CH₂—	-C(O)-N-CH ₂ -
C(O)-N-CH ₂	-C(O)-N-CH ₂ -F	-C(O)-N-CH ₂ -CI
-C(O)-N-CH ₂ -t-Bu	-C(O)·N	

13. A method of treating type 2 diabetes mellitus in accordance with claim 1 wherein the compound adminstered is selected from the group consisting of:

 $N\hbox{-}(3\hbox{-}cyano\hbox{-}4,5\hbox{-}dimethyl thien\hbox{-}2\hbox{-}yl) cyclohexane carbox a mide;}$

isopropyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-carboxylate; tert-butyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-carboxylate;

tert-butyl 4-cyano-5-[(cyclobutylcarbonyl)amino]-3-methylthiophene-2-

carboxylate;

tert-butyl 4-cyano-5-[(cyclopentylcarbonyl)amino]-3-methylthiophene-2-

10 carboxylate;

5

tert-butyl 4-cyano-5-[(cyclohexylcarbonyl)amino]-3-methylthiophene-2-

carboxylate;

tert-butyl 4-cyano-5-(isobutyrylamino)-3-methylthiophene-2-carboxylate;

tert-butyl 4-cyano-5-[(2,2-dimethylpropanoyl)amino]-3-methylthiophene-2-

15 carboxylate;

		benzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-carboxylate;
		2-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		3-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
5	carboxylate;	
		4-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		2-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
10		3-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		4-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
1.5	1 1.	2-naphthylmethyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
15	carboxylate;	
		3-(trifluoromethyl)benzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-
	metnyitniopn	ene-2-carboxylate;
	aanh ay amida	N-benzyl-4-cyano-N-ethyl-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
20	carboxamide	
20	mathulthianh	4-cyano-N-cyclopentyl-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3-
	meuryitmoph	ene-2-carboxamide; N benzyl 4 cyano 5 [(2 athylbutanovl)amina] N 3 dimathylthianhana 2
	carboxamide	N-benzyl-4-cyano-5-[(2-ethylbutanoyl)amino]-N,3-dimethylthiophene-2-
	carboxamide	4-cyano-5-[(2-ethylbutanoyl)amino]-N,N,3-trimethylthiophene-2-carboxamide;
25		N-benzyl-4-cyano-5-[(2-ethylbutanoyl)amino]-N-isopropyl-3-methylthiophene-2
	carboxamide	
	· Caroonamac	4-cyano-5-[(2-ethylbutanoyl)amino]-N-[1-(hydroxymethyl)-2,2-dimethylpropyl]-
	3-methyl-N-(2-naphthylmethyl)thiophene-2-carboxamide;
		N-(tert-butyl)-4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-
30	naphthylmeth	nyl)thiophene-2-carboxamide;
	1 ,	4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-naphthylmethyl)-N-(1,2,2-
	trimethylprop	pyl)thiophene-2-carboxamide;
	, , , , , , , , , , , , , , , , , , ,	4-cyano-N-cyclopentyl-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-
	nanhthylmeth	nyl)thionhene-2-carboxamide:

4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-naphthylmethyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)thiophene-2-carboxamide;

N-(tert-butyl)-4-cyano-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3-methylthiophene-2-carboxamide;

4-cyano-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3-methyl-N-(1,2,2-trimethylpropyl)thiophene-2-carboxamide;

4-cyano-N-(2,4-dichlorobenzyl)-5-[(2-ethylbutanoyl)amino]-N-isopropyl-3-methylthiophene-2-carboxamide, and

N-{3-cyano-4-methyl-5-[(4-phenylpiperidin-1-yl)carbonyl]thien-2-yl}-2-ethylbutanamide, and the pharmaceutically acceptable salts and solvates of the compounds listed above.

14. A pharmaceutical composition which is comprised of a compound of formula I:

$$R^1$$
 CN O R^3 R^3

15

20

25

30

5

10

or a pharmaceutically acceptable salt or solvate thereof wherein:

 R^1 is selected from the group consisting of: H, $C_{1\text{--}10}$ alkyl, Aryl, Heteroaryl and Heterocyclyl,

said alkyl, Aryl, Heteroaryl and Heterocyclyl being optionally substituted with one to four substituents independently selected from R⁶;

 R^2 is selected from the group consisting of: H, C_{1-10} alkyl, $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heteroaryl

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^3 is selected from the group consisting of: C_{1-10} alkyl and Aryl, said alkyl and Aryl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^4 is selected from the group consisting of: H, C_{1-10} alkyl, Aryl, Heteroaryl, Heterocyclyl, said alkyl, Aryl, Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^5 is selected from the group consisting of: C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl, said alkyl, cycloalkyl, Aryl Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

when R^2 represents $C(O)C_{1-10}$ alkyl, each R^6 is independently selected from the group consisting of: halo, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R^{10})_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R^{10})_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8$, O

5

10

15

20

25

30

and when R² is C(O)Aryl, C(O)Heteroaryl or C(O)Heterocyclyl, and when R⁶ is a substituent on R³, R⁴ and R⁵, each R⁶ is independently selected from the group consisting of halo, C₁₋₇alkyl, Aryl, Heteroaryl, Heterocyclyl, OR⁷, SR⁷, S(O)_mR⁸, S(O)₂OR⁸, S(O)_mNR⁷R⁸, NO₂, NR⁷R⁸, O(CR⁹R10)_nNR⁷R⁸, C(O)R⁸, CO₂R⁷, CO₂(CR⁹R10)_nCONR⁷R⁸, OC(O)R⁸, CN, C(O)NR⁷R⁸, NR⁷C(O)R⁸, OC(O)NR⁷R⁸, NR⁷C(O)OR⁸, NR⁷C(O)NR⁸R⁹, CR⁷(NOR⁸), (CR⁹R¹⁰)_n-Aryl, (CR⁹R¹⁰)_n-Heteroaryl, (CR⁹R¹⁰)_n-Heterocyclyl, CF₃ and OCF₃;

wherein m is 0, 1 or 2 and n is an integer from 1 to 7, and the alkyl, Heterocyclyl, Aryl and Heteroaryl groups and portions are optionally substituted with 1-4 substituents selected from a group independently selected from R¹¹;

 R^7 , R^9 and R^{10} are independently selected from the group consisting of: H, C_{1-7} alkyl, Aryl, Ar- C_{1-10} alkyl and mono-, di- and tri- halo substituted Ar- C_{1-10} alkyl,

or one R⁹ and one R¹⁰ are taken together with the atoms to which they are attached and any intervening atoms and represent a ring of 3 to 8 members containing 0-2 heteroatoms independently selected from O, S and N;

 R^8 is selected from the group consisting of: $\,C_{1\text{--}10}\,\text{alkyl},\,\text{Aryl}$ and $\,C_{1\text{--}10}\,\text{alkyl},\,\text{Aryl}$ and

 R^{11} is selected from the group consisting of: halo, CN, C_{1-4} alkyl, Aryl, CF₃ and OH in combination with a pharmaceutically acceptable carrier.

15. A method of preventing or delaying the onset of type 2 diabetes mellitus in a mammalian patient in need thereof, comprising administering to said patient a compound of formula I:

or a pharmaceutically acceptable salt or solvate thereof wherein:

5

10

15

20

25

30

 R^1 is selected from the group consisting of: H, C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl,

said alkyl, Aryl, Heteroaryl and Heterocyclyl being optionally substituted with one to four substituents independently selected from R⁶;

 R^2 is selected from the group consisting of: H, C_{1-10} alkyl, $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heterocyclyl CO_2R^4 and $C(O)NR^4R^5$,

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^3 is selected from the group consisting of: C_{1-10} alkyl and Aryl, said alkyl and Aryl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^4 is selected from the group consisting of: H, $C_{1\text{--}10}$ alkyl, Aryl, Heteroaryl, Heterocyclyl, said alkyl, Aryl, Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^5 is selected from the group consisting of: C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl, said alkyl, cycloalkyl, Aryl Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

when R^2 represents $C(O)C_{1-10}$ alkyl, each R^6 is independently selected from the group consisting of: halo, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R^{10})_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R^{10})_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8$, OC

and when R^2 is C(O)Aryl, C(O)Heteroaryl or C(O)Heterocyclyl, and when R^6 is a substituent on R^3 , R^4 and R^5 , each R^6 is independently selected from the group consisting of halo, C_{1-7} alkyl, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R10)_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R10)_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8$, OC

wherein m is 0, 1 or 2 and n is an integer from 1 to 7, and the alkyl, Heterocyclyl, Aryl and Heteroaryl groups and portions are optionally substituted with 1-4 substituents selected from a group independently selected from R¹¹;

 R^7 , R^9 and R^{10} are independently selected from the group consisting of: H, C_{1-7} alkyl, Aryl, Ar- C_{1-10} alkyl and mono-, di- and tri- halo substituted Ar- C_{1-10} alkyl,

or one R⁹ and one R¹⁰ are taken together with the atoms to which they are attached and any intervening atoms and represent a ring of 3 to 8 members containing 0-2 heteroatoms independently selected from O, S and N;

5

10

15

20

and

OH

 R^8 is selected from the group consisting of: C_{1-10} alkyl, Aryl and C_{1-10} alkyl-Aryl;

R¹¹ is selected from the group consisting of: halo, CN, C₁₋₄alkyl, Aryl, CF₃ and

said compound bein administered in an amount that is effective to prevent or delay the onset of type 2 diabetes mellitus.

16. A method of treating, preventing or delaying the onset of a disease or condition in a type 2 diabetes mellitus patient, said disease or condition being selected from the group consisting of: dyslipidemia selected from elevated serum cholesterol, elevated serum triglycerides, elevated serum low density lipoproteins and low levels of serum high density lipoprotein, microvascular or macrovascular changes and the sequellae of such conditions selected from coronary heart disease, stroke, peripheral vascular disease, hypertension, renal hypertension, nephropathy, neuropathy and retinopathy,

said method comprising administering to the type 2 diabetic patient a compound of formula I:

or a pharmaceutically acceptable salt or solvate thereof wherein:

 R^{1} is selected from the group consisting of: H, $C_{1\text{--}10} alkyl,\,Aryl,\,Heteroaryl\,and\,Heterocyclyl,$

said alkyl, Aryl, Heteroaryl and Heterocyclyl being optionally substituted with one to four substituents independently selected from R⁶;

 R^2 is selected from the group consisting of: H, C_{1-10} alkyl, $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl, C(O)Heterocyclyl CO_2R^4 and $C(O)NR^4R^5$,

5

10

15

20

25

30

the alkyl, Aryl, Heteroaryl and Heterocyclyl portions of $C(O)C_{1-10}$ alkyl, C(O)Aryl, C(O)Heteroaryl and C(O)Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 $R^3 \ is \ selected \ from \ the \ group \ consisting \ of: \ C_{1\text{--}10} alkyl \ and \ Aryl, \ said \ alkyl \ and \ Aryl \ being \ optionally \ substituted \ with \ one \ to \ four \ substituents \ independently \ selected \ from \ R^6;$

 R^4 is selected from the group consisting of: H, C_{1-10} alkyl, Aryl, Heteroaryl, Heterocyclyl, said alkyl, Aryl, Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

 R^5 is selected from the group consisting of: C_{1-10} alkyl, Aryl, Heteroaryl and Heterocyclyl, said alkyl, cycloalkyl, Aryl Heteroaryl, and Heterocyclyl being optionally substituted with one to four substituents independently selected from R^6 ;

when R^2 represents $C(O)C_{1-10}$ alkyl, each R^6 is independently selected from the group consisting of: halo, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R^{10})_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R^{10})_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8R^9$, $OC(O)NR^9$,

and when R^2 is C(O)Aryl, C(O)Heteroaryl or C(O)Heterocyclyl, and when R^6 is a substituent on R^3 , R^4 and R^5 , each R^6 is independently selected from the group consisting of halo, C_{1-7} alkyl, Aryl, Heteroaryl, Heterocyclyl, OR^7 , SR^7 , $S(O)_mR^8$, $S(O)_2OR^8$, $S(O)_mNR^7R^8$, NO_2 , NR^7R^8 , $O(CR^9R10)_nNR^7R^8$, $C(O)R^8$, CO_2R^7 , $CO_2(CR^9R10)_nCONR^7R^8$, $OC(O)R^8$, CN, $C(O)NR^7R^8$, $NR^7C(O)R^8$, $OC(O)NR^7R^8$, $OC(O)NR^8R^9$, $OC(O)NR^9$, OC(O)

wherein m is 0, 1 or 2 and n is an integer from 1 to 7, and the alkyl, Heterocyclyl, Aryl and Heteroaryl groups and portions are optionally substituted with 1-4 substituents selected from a group independently selected from R¹¹;

 R^7 , R^9 and R^{10} are independently selected from the group consisting of: H, C_{1-7} alkyl, Aryl, Ar- C_{1-10} alkyl and mono-, di- and tri- halo substituted Ar- C_{1-10} alkyl,

or one R⁹ and one R¹⁰ are taken together with the atoms to which they are attached and any intervening atoms and represent a ring of 3 to 8 members containing 0-2 heteroatoms independently selected from O, S and N;

 R^8 is selected from the group consisting of: $\,C_{1\text{--}10}\,\text{alkyl},\,\text{Aryl}$ and $C_{1\text{--}10}\text{alkyl}\text{-Aryl};$ and

 R^{11} is selected from the group consisting of: halo, CN, $C_{1\text{--}4}alkyl,\,Aryl,\,CF_3$ and OH.

said compound being administered in an amount that is effective for treating,
preventing or delaying the onset of such disease or condition.

		17. A compound selected from the group consisting of:
		tert-butyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-carboxylate;
		tert-butyl 4-cyano-5-[(cyclobutylcarbonyl)amino]-3-methylthiophene-2-
10	carboxylate;	
		tert-butyl 4-cyano-5-[(cyclopentylcarbonyl)amino]-3-methylthiophene-2-
	carboxylate;	
		tert-butyl 4-cyano-5-[(cyclohexylcarbonyl)amino]-3-methylthiophene-2-
	carboxylate;	
15		tert-butyl 4-cyano-5-(isobutyrylamino)-3-methylthiophene-2-carboxylate;
		tert-butyl 4-cyano-5-[(2,2-dimethylpropanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		benzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-carboxylate;
		2-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
20	carboxylate;	
		3-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		4-chlorobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
25		2-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	-
		3-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		4-cyanobenzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
30	carboxylate;	
		2-naphthylmethyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-
	carboxylate;	
		3-(trifluoromethyl)benzyl 4-cyano-5-[(2-ethylbutanoyl)amino]-3-
	methylthiophene-2-carboxylate;	

carboxamide; 4-cyano-N-cyclopentyl-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3methylthiophene-2-carboxamide; 5 N-benzyl-4-cyano-5-[(2-ethylbutanoyl)amino]-N,3-dimethylthiophene-2carboxamide; 4-cyano-5-[(2-ethylbutanoyl)amino]-N,N,3-trimethylthiophene-2-carboxamide; N-benzyl-4-cyano-5-[(2-ethylbutanoyl)amino]-N-isopropyl-3-methylthiophene-2carboxamide; 10 4-cyano-5-[(2-ethylbutanoyl)amino]-N-[1-(hydroxymethyl)-2,2-dimethylpropyl]-3-methyl-N-(2-naphthylmethyl)thiophene-2-carboxamide; N-(tert-butyl)-4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2naphthylmethyl)thiophene-2-carboxamide; 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-naphthylmethyl)-N-(1,2,2trimethylpropyl)thiophene-2-carboxamide; 15 4-cyano-N-cyclopentyl-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2naphthylmethyl)thiophene-2-carboxamide; 4-cyano-5-[(2-ethylbutanoyl)amino]-3-methyl-N-(2-naphthylmethyl)-N-(1,2,3,4tetrahydronaphthalen-1-yl)thiophene-2-carboxamide; 20 N-(tert-butyl)-4-cyano-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3methylthiophene-2-carboxamide; 4-cyano-5-[(2-ethylbutanoyl)amino]-N-(4-fluorobenzyl)-3-methyl-N-(1,2,2trimethylpropyl)thiophene-2-carboxamide; 4-cyano-N-(2,4-dichlorobenzyl)-5-[(2-ethylbutanoyl)amino]-N-isopropyl-3-25 methylthiophene-2-carboxamide, and N-{3-cyano-4-methyl-5-[(4-phenylpiperidin-1-yl)carbonyl]thien-2-yl}-2ethylbutanamide, and the pharmaceutically acceptable salts and solvates of the compounds listed above.

N-benzyl-4-cyano-N-ethyl-5-[(2-ethylbutanoyl)amino]-3-methylthiophene-2-