工科数学分析期末试题(A卷)

班级	学 号	姓名
54.纵	すり	灶口

(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷不得拆散.)

题号	_	1.1	11]	四	五.	六	七	八	九	十	+ 1	总分
得分												

- 一. 填空题 (每小题 4 分, 共 20 分)
- 2. 设 $z = \ln(\sqrt{x} + \sqrt{y})$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$ _______。
- 3. 设曲面 $\Sigma: z = \sqrt{a^2 x^2 y^2}$,则曲面积分 $\iint_{\Sigma} z^2 dS =$ ______。
- 5. 函数 $f(x) = \ln x$ 在 x = 1 处的泰勒级数为______。
- 二. (8分) 将积分 $I = \int_{-a}^{a} dy \int_{0}^{\sqrt{a^2 y^2}} y^2 \sqrt{x^2 + y^2} dx$ 化成极坐标系下的累次积分,并计算此积分的值。
- 三. (8 分) 求 $f(x,y) = x^3 + y^3 3(x^2 + y^2)$ 的极值。
- 四. (8 分)(1) 求抛物面 $z=1+x^2+y^2$ 在点(1,0,2) 处的切平面;
 - (2) 设此切平面与该抛物面及圆柱面 $(x-1)^2+y^2=1$ 所围成的立体 Ω 的体密度 $p(x,y,z) = \frac{1}{\sqrt{x^2+y^2}} , \ \, 求 \Omega$ 的质量M 。
- 五. (8分)设u = f(x, y, z)有一阶连续偏导数,y = y(x)和 z = z(x)分别由方程 $e^{xy} y = 0$ 和 $e^z xz = 0$ 所确定,求 $\frac{du}{dx}$ 。

- 六. (8分) 利用高斯公式计算曲面积分 $I = \iint_{\Sigma} \frac{x dy dz + (z+1)^2 dx dy}{\sqrt{x^2 + y^2 + z^2}}$, 其中 Σ 是下半球面 $z = -\sqrt{1-x^2-y^2}$ 的上侧。
- 七. (8分) 设L是柱面 $x^2+y^2=1$ 与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,计算曲线积分 $I=\iint_{\mathbb{R}}xzdx+xdy+y^2dz$ 。
- 八. $(8 \, \text{分})$ 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数。
- 九. (8分) 将函数 f(x) = x 1 ($0 \le x \le \pi$) 展开成余弦级数,并求 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和。
- 十. $(8\, \mathcal{G})$ 设函数 f(x,y) 满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$,且 f(0,y) = y, 计算曲线积分 $I = \int_L \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy$, 其中 L 是抛物线 $y = x^2$ 从 (0,0) 到 (1,1) 的一段弧。
- 十一. $(8\, \mathcal{G})$ 讨论级数 $\sum_{n=1}^{\infty} [f(a+\frac{1}{n^p})-f(a)]$ (a,p 是实数, p>0) 的收敛性,其中 f(x) 单增,二阶可导且 $f''(a)\neq 0$ 。