Name: _____

1. (1 pt) Label the Acid and Base reactants in the following equation and draw a line to each conjugate:

$$HCO_3^-_{(aq)} + H_2O_{(l)} \Longrightarrow H_2CO_{3(aq)} + OH_{(aq)}^-$$

2. (1 pt) Find the $[OH^-]$ and pH of a 0.100 M LiOH solution.

3. (1 pt) What is the $[OH^{-}]$ and pH of a 0.225 M Sr $(OH)_2$ solution?

4. (1 pt) Find the $[OH^-]$ and pH of a 0.010 M Ba $(OH)_2$ solution.

5. (1 pt) Label the Brønsted-Lowry base and its conjugate acid in the following reaction:

$$NH_{3(aq)} + H_2O_{(l)} \Longleftrightarrow NH_4^{}{}_{(aq)} + OH_{(aq)}^{}$$

6. (1 pt) Draw the movement of electrons in the following Structural Equation and label the Lewis acid and Lewis base.

- 7. (4 pts) Identify each substance as an acid or a base and write a chemical equation showing how it is an acid or a base according to the Arrhenius definition.
 - (a) $HNO_{3(aq)}$
 - (b) $NH_{4(aq)}^{+}$
 - (c) KOH_(aq)
 - (d) $HC_2H_3O_{2(aq)}$
- 8. (4 pts) Write the formula for the conjugate base of each acid.
 - (a) HCl
 - (b) H_2SO_3
 - (c) HCHO₂
 - (d) HF

9. (1 pt) These three diagrams represent three different solutions of the binary acid HA. Water molecules have been omitted for clarity and hydronium ions (H_3O^+) are represented by hydrogen ions (H^+) . Rank the acids in order of decreasing acid strength.

11. (1 pt) Calculate the pH and pOH of a solution where
$$[H_3O^+]=2.2\times 10^{-6}~M.$$

- 12. (3 pts) Calculate the $[H_3O^+]$ and $[OH^-]$ for each solution.
 - (a) pH = 8.55
 - (b) pH = 11.23
 - (c) pOH = 11.13

13. (1 pt) What mass of HI should be present in 0.250 L of solution to obtain a solution with pH = 1.25?

14.	(2 pts) Determine the $[H_3O^+]$ and pH of a 0.200 M solution of Lithium Hydroxide (Assume you have 1.00 L of solution).

15. (1 pt) Identify the Lewis acid and Lewis base from among the reactants in the following equation:

$$Zn_{(aq)}^{2+} + 4\,NH_{3(aq)} \Longrightarrow Zn(NH_3)_4^{\,2+}{}_{(aq)}$$

16. (1 pt) Identify the Lewis acid and Lewis base from among the reactants in the following reaction:

$$F_{(aq)}^- + BF_{3(aq)} \Longrightarrow BF_4^-_{(aq)}$$

17. (1 pt) Determine the pH of $0.045 \text{ M Sr}(OH)_2$.

18. (1 pt) Write the molecular equation that takes place when aqueous solutions of ammonium chloride and sodium hydroxide are mixed and label the Brønsted-Lowry acid and base.

19. (1 pt) Lactic acid is a weak acid found in milk. Its calcium salt is a source of calcium for growing animals. A saturated solution of this salt, which we can represent as $Ca(Lact)_2$ has a $[Ca^{2+}] = 0.26$ M. Assuming the salt is completely dissociated (pretend its actually a strong acid), find its pH.

20. (1 pt) A solution of 0.23 mol of the chloride salt of protonated quinine (QH $^+$), a weak organic base, in 1.0 L of solution has pH = 4.58. Find the concentration of quinine.

21. (1 pt) Draw the movement of electrons in the following Structural Equation and label the Lewis acid and Lewis base.