Federated Adversarial Domain Adaptation

Motivation

- FL challenges:
- Data stored locally
- Model parameters trained separately
- Knowledge is highly entangled
- Domain shift

Theory

Error bound single-source domain adaptation

$$\epsilon_T(h) \le \widehat{\epsilon}_S(h) + \frac{1}{2}\widehat{d}_{\mathcal{H}\Delta\mathcal{H}}(\widehat{\mathcal{D}}_S, \widehat{\mathcal{D}}_T) + 4\sqrt{\frac{2d\log(2m) + \log(4/\delta)}{m}} + \lambda$$

Error bound unsupervised federated domain adaptation

$$\epsilon_{T}(h_{T}) \leq \underbrace{\hat{\epsilon}_{\tilde{S}}(\sum_{i \in [N]} \alpha_{i}h_{S_{i}})}_{arran on source} + \underbrace{\sum_{i \in [N]} \alpha_{i}(\frac{1}{2}\underbrace{\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\hat{\mathcal{D}}_{S_{i}}, \hat{\mathcal{D}}_{T})}_{(\mathcal{D}_{S_{i}}, \mathcal{D}_{T}) \text{ divergence}} + \lambda_{i})}_{VC\text{-Dimension Constraint}} + \underbrace{4\sqrt{\frac{2d \log(2Nm) + \log(4/\delta)}{Nm}}_{VC\text{-Dimension Constraint}}}_{VC\text{-Dimension Constraint}}$$

Module

Algorithm

Algorithm 1 Federated Adversarial Domain Adaptation

```
Input: N source domains \mathcal{D}_S = \{\mathcal{D}_{S_i}\}_{i=1}^N; a target domain \mathcal{D}_t = \{\mathbf{x}_j^t\}_{j=1}^{n_t}; N feature extractors
     \{\Theta^{G_1}, \Theta^{G_2}, ... \Theta^{G_N}\}, N disentanglers \{\Theta^{D_1}, \Theta^{D_2}, ... \Theta^{D_N}\}, N classifiers \{\Theta^{C_1}, \Theta^{C_2}, ... \Theta^{C_N}\}, N class
     identifiers \{\Theta^{CI_1}, \Theta^{CI_2}, ... \Theta^{CI_N}\}, N mutual information estimators \{\Theta^{M_1}, \Theta^{M_2}, ... \Theta^{M_N}\} trained on source
     domains. Target feature extractor \Theta^{G_t}, classifier \Theta^{C_t}. N domain identifiers \{\Theta^{DI_1}, \Theta^{DI_2}, ..., \Theta^{DI_N}\}
      Output: well-trained target feature extractor \hat{\Theta}^{G_t}, target classifier \hat{\Theta}^{C_t}.
      Model Initialization .
      1: while not converged do
      2:
                for i do=1:N
                     Sample mini-batch from from \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{n_s} and \{\mathbf{x}_i^t\}_{i=1}^{n_t};
      3:
                     Compute gradient with cross-entropy classification loss, update \Theta^{G_i}, \Theta^{C_i}.
      4:
                     Domain Alignment:
      5:
                     Update \Theta^{DI_i}, \{\Theta^{G_i}, \Theta^{G_t}\} with Eq. [4] and Eq. [5] respectively to align the domain distribution;
      6:
      7:
                     Domain Disentangle:
                     update \Theta^{G_i}, \Theta^{D_i}, \Theta^{C_i}, \Theta^{CI_i} with Eq. [6]
      8:
                     update \Theta^{D_i} and \{\Theta^{G_i}\} with Eq. \overline{7}
      9:
     10:
                     Mutual Information Minimization:
     11:
                     Calculate mutual information between the disentangled feature pair (f_{di}, f_{ds}) with M_i;
                     Update \Theta^{D_i}, \Theta^{M_i} by Eq.8;
     12:
     13:
                end for
     14:
                Dynamic weight:
                Calculate dynamic weight by Eq. 3
     15:
                Update \Theta^{C_t}, \Theta^{C_t} by aggregated \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\}, \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\} respectively with the
     16:
           computed dynamic weight;
     17: end while
18: return \Theta^{G_t}, \Theta^{C_t}
```

Federated Adversarial Alignment

$$L_{\substack{adv_{DI_i} \\ \Theta^{DI_i}}}(\mathbf{X}^{S_i}, \mathbf{X}^T, G_i, G_t) = -\mathbb{E}_{\mathbf{x}^{s_i} \sim \mathbf{X}^{s_i}} \left[\log DI_i(G_i(\mathbf{x}^{s_i})) \right] - \mathbb{E}_{\mathbf{x}^t \sim \mathbf{X}^t} \left[\log (1 - DI_i(G_t(\mathbf{x}^t))) \right].$$

$$L_{adv_G}(\mathbf{X}^{S_i}, \mathbf{X}^T, DI_i) = -\mathbb{E}_{\mathbf{x}^{s_i} \sim \mathbf{X}^{s_i}} [\log DI_i(G_i(\mathbf{x}^{s_i}))] - \mathbb{E}_{\mathbf{x}^t \sim \mathbf{X}^t} [\log DI_i(G_t(\mathbf{x}^t))]$$

Algorithm

Algorithm 1 Federated Adversarial Domain Adaptation

```
Input: N source domains \mathcal{D}_S = \{\mathcal{D}_{S_i}\}_{i=1}^N; a target domain \mathcal{D}_t = \{\mathbf{x}_j^t\}_{j=1}^{n_t}; N feature extractors
     \{\Theta^{G_1}, \Theta^{G_2}, ... \Theta^{G_N}\}, N disentanglers \{\Theta^{D_1}, \Theta^{D_2}, ... \Theta^{D_N}\}, N classifiers \{\Theta^{C_1}, \Theta^{C_2}, ... \Theta^{C_N}\}, N class
     identifiers \{\Theta^{CI_1}, \Theta^{CI_2}, ... \Theta^{CI_N}\}, N mutual information estimators \{\Theta^{M_1}, \Theta^{M_2}, ... \Theta^{M_N}\} trained on source
     domains. Target feature extractor \Theta^{G_t}, classifier \Theta^{C_t}. N domain identifiers \{\Theta^{DI_1}, \Theta^{DI_2}, ..., \Theta^{DI_N}\}
      Output: well-trained target feature extractor \hat{\Theta}^{G_t}, target classifier \hat{\Theta}^{C_t}.
      Model Initialization .
      1: while not converged do
      2:
                for i do=1:N
                     Sample mini-batch from from \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{n_s} and \{\mathbf{x}_i^t\}_{i=1}^{n_t};
      3:
                     Compute gradient with cross-entropy classification loss, update \Theta^{G_i}, \Theta^{C_i}.
      4:
                     Domain Alignment:
      5:
                     Update \Theta^{DI_i}, \{\Theta^{G_i}, \Theta^{G_t}\} with Eq. [4] and Eq. [5] respectively to align the domain distribution;
      6:
      7:
                     Domain Disentangle:
                     update \Theta^{G_i}, \Theta^{D_i}, \Theta^{C_i}, \Theta^{CI_i} with Eq. [6]
      8:
                     update \Theta^{D_i} and \{\Theta^{G_i}\} with Eq. \overline{7}
      9:
     10:
                     Mutual Information Minimization:
     11:
                     Calculate mutual information between the disentangled feature pair (f_{di}, f_{ds}) with M_i;
                     Update \Theta^{D_i}, \Theta^{M_i} by Eq.8;
     12:
     13:
                end for
     14:
                Dynamic weight:
                Calculate dynamic weight by Eq. 3
     15:
                Update \Theta^{C_t}, \Theta^{C_t} by aggregated \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\}, \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\} respectively with the
     16:
           computed dynamic weight;
     17: end while
18: return \Theta^{G_t}, \Theta^{C_t}
```

Representation Disentanglement

$$\underset{\boldsymbol{\Theta}^{G_{i}},\boldsymbol{\Theta}^{D_{i}},\boldsymbol{\Theta}^{C_{I}},\boldsymbol{\Theta}^{C_{I}}}{L_{cross-entropy}} = -\mathbb{E}_{(\mathbf{x}^{s_{i}},\mathbf{y}^{s_{i}})\sim\widehat{\mathcal{D}}_{s_{i}}} \sum_{k=1}^{K} \mathbb{1}[k=\mathbf{y}^{s_{i}}]log(C_{i}(f_{di})) - \mathbb{E}_{(\mathbf{x}^{s_{i}},\mathbf{y}^{s_{i}})\sim\widehat{\mathcal{D}}_{s_{i}}} \sum_{k=1}^{K} \mathbb{1}[k=\mathbf{y}^{s_{i}}]log(CI_{i}(f_{ds}))$$

$$L_{ent}_{\Theta^{D_i},\Theta^{G_i}} = -\frac{1}{N_{s_i}} \sum_{j=1}^{N_{s_i}} \log CI_i(f_{ds}^j) = -\frac{1}{N_{s_i}} \sum_{j=1}^{N_{s_i}} \log CI_i(D_i(G_i(\mathbf{x}^{s_i})))$$

Algorithm

Algorithm 1 Federated Adversarial Domain Adaptation

```
Input: N source domains \mathcal{D}_S = \{\mathcal{D}_{S_i}\}_{i=1}^N; a target domain \mathcal{D}_t = \{\mathbf{x}_j^t\}_{j=1}^{n_t}; N feature extractors
     \{\Theta^{G_1}, \Theta^{G_2}, ... \Theta^{G_N}\}, N disentanglers \{\Theta^{D_1}, \Theta^{D_2}, ... \Theta^{D_N}\}, N classifiers \{\Theta^{C_1}, \Theta^{C_2}, ... \Theta^{C_N}\}, N class
     identifiers \{\Theta^{CI_1}, \Theta^{CI_2}, ... \Theta^{CI_N}\}, N mutual information estimators \{\Theta^{M_1}, \Theta^{M_2}, ... \Theta^{M_N}\} trained on source
     domains. Target feature extractor \Theta^{G_t}, classifier \Theta^{C_t}. N domain identifiers \{\Theta^{DI_1}, \Theta^{DI_2}, ..., \Theta^{DI_N}\}
      Output: well-trained target feature extractor \hat{\Theta}^{G_t}, target classifier \hat{\Theta}^{C_t}.
      Model Initialization .
      1: while not converged do
      2:
                for i do=1:N
                     Sample mini-batch from from \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{n_s} and \{\mathbf{x}_i^t\}_{i=1}^{n_t};
      3:
                     Compute gradient with cross-entropy classification loss, update \Theta^{G_i}, \Theta^{C_i}.
      4:
                     Domain Alignment:
      5:
                     Update \Theta^{DI_i}, \{\Theta^{G_i}, \Theta^{G_t}\} with Eq. [4] and Eq. [5] respectively to align the domain distribution;
      6:
      7:
                     Domain Disentangle:
                     update \Theta^{G_i}, \Theta^{D_i}, \Theta^{C_i}, \Theta^{CI_i} with Eq. [6]
      8:
                     update \Theta^{D_i} and \{\Theta^{G_i}\} with Eq. \overline{7}
      9:
     10:
                     Mutual Information Minimization:
     11:
                     Calculate mutual information between the disentangled feature pair (f_{di}, f_{ds}) with M_i;
                     Update \Theta^{D_i}, \Theta^{M_i} by Eq.8;
     12:
     13:
                end for
     14:
                Dynamic weight:
                Calculate dynamic weight by Eq. 3
     15:
                Update \Theta^{C_t}, \Theta^{C_t} by aggregated \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\}, \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\} respectively with the
     16:
           computed dynamic weight;
     17: end while
18: return \Theta^{G_t}, \Theta^{C_t}
```

Mutual Information

$$I_{\theta} \colon \widehat{I(\mathcal{P};\mathcal{Q})}_{n} = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{\mathcal{P}\mathcal{Q}}^{(n)}} [T_{\theta}] - \log(\mathbb{E}_{\mathbb{P}_{\mathcal{P}}^{(n)} \otimes \widehat{\mathbb{P}}_{\mathcal{Q}}^{(n)}} [e^{T_{\theta}}]).$$

$$I(\mathcal{P};\mathcal{Q}) = \int \int \mathbb{P}_{\mathcal{P}\mathcal{Q}}^{n}(p,q) \, \widetilde{T}(p,q,\theta) - \log(\int \int \mathbb{P}_{\mathcal{P}}^{n}(p) \mathbb{P}_{\mathcal{Q}}^{n}(q) e^{T(p,q,\theta)})$$

$$I(\mathcal{P},\mathcal{Q}) = \frac{1}{n} \sum_{i=1}^{n} T(p,q,\theta) - \log(\frac{1}{n} \sum_{i=1}^{n} e^{T(p,q',\theta)})$$

Algorithm

Algorithm 1 Federated Adversarial Domain Adaptation

```
Input: N source domains \mathcal{D}_S = \{\mathcal{D}_{S_i}\}_{i=1}^N; a target domain \mathcal{D}_t = \{\mathbf{x}_j^t\}_{j=1}^{n_t}; N feature extractors
     \{\Theta^{G_1}, \Theta^{G_2}, ... \Theta^{G_N}\}, N disentanglers \{\Theta^{D_1}, \Theta^{D_2}, ... \Theta^{D_N}\}, N classifiers \{\Theta^{C_1}, \Theta^{C_2}, ... \Theta^{C_N}\}, N class
     identifiers \{\Theta^{CI_1}, \Theta^{CI_2}, ... \Theta^{CI_N}\}, N mutual information estimators \{\Theta^{M_1}, \Theta^{M_2}, ... \Theta^{M_N}\} trained on source
     domains. Target feature extractor \Theta^{G_t}, classifier \Theta^{C_t}. N domain identifiers \{\Theta^{DI_1}, \Theta^{DI_2}, ..., \Theta^{DI_N}\}
      Output: well-trained target feature extractor \hat{\Theta}^{G_t}, target classifier \hat{\Theta}^{C_t}.
      Model Initialization .
      1: while not converged do
      2:
                for i do=1:N
                     Sample mini-batch from from \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{n_s} and \{\mathbf{x}_i^t\}_{i=1}^{n_t};
      3:
                     Compute gradient with cross-entropy classification loss, update \Theta^{G_i}, \Theta^{C_i}.
      4:
                     Domain Alignment:
      5:
                     Update \Theta^{DI_i}, \{\Theta^{G_i}, \Theta^{G_t}\} with Eq. [4] and Eq. [5] respectively to align the domain distribution;
      6:
      7:
                     Domain Disentangle:
                     update \Theta^{G_i}, \Theta^{D_i}, \Theta^{C_i}, \Theta^{CI_i} with Eq. [6]
      8:
                     update \Theta^{D_i} and \{\Theta^{G_i}\} with Eq. \overline{7}
      9:
     10:
                     Mutual Information Minimization:
     11:
                     Calculate mutual information between the disentangled feature pair (f_{di}, f_{ds}) with M_i;
                     Update \Theta^{D_i}, \Theta^{M_i} by Eq.8;
     12:
     13:
                end for
     14:
                Dynamic weight:
                Calculate dynamic weight by Eq. 3
     15:
                Update \Theta^{C_t}, \Theta^{C_t} by aggregated \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\}, \{\Theta^{C_1}, \Theta^{C_2}, ..., \Theta^{C_N}\} respectively with the
     16:
           computed dynamic weight;
     17: end while
18: return \Theta^{G_t}, \Theta^{C_t}
```

Dynamic Attention

- Gap statistics: $I = \sum_{r=1}^{k} \frac{1}{2n_r} \sum_{i,j \in C_r} ||f_i^t f_j^t||_2$
- Gap statistics gain: $I_i^{gain} = I_i^{p-1} I_i^p$
- Mask on the gradients: $Softmax(I_1^{gain}, I_2^{gain}, ..., I_N^{gain})$

Conclusion

$$\epsilon_{T}(h_{T}) \leq \underbrace{\widehat{\epsilon}_{\tilde{S}}(\sum_{i \in [N]} \alpha_{i} h_{S_{i}})}_{error \ on \ source} + \underbrace{\sum_{i \in [N]} \alpha_{i} \left(\frac{1}{2} \underbrace{\widehat{d}_{\mathcal{H}\Delta\mathcal{H}}(\widehat{\mathcal{D}}_{S_{i}}, \widehat{\mathcal{D}}_{T})}_{(\mathcal{D}_{S_{i}}, \mathcal{D}_{T}) \ divergence} + \underbrace{4\sqrt{\frac{2d \log(2Nm) + \log(4/\delta)}{Nm}}_{VC\text{-Dimension Constraint}}}_{VC\text{-Dimension Constraint}}$$

Improving Federated Learning Personalization via MAML

Motivation

- Similarity between FL and MAML
- Finetune improve global model and personalized model
- Fedavg model is easier to personalized than traditional model

Introduction

- interpret existing FL algorithm in the light of existing MAML algorithms
- novel modification of FedAvg
- demonstrate that FedAvg optimize for personalized performance, as opposed to quality of the global model.

INTERPRETING FEDAVG AS A META LEARNING ALGORITHM

Algorithm 1 Connects FL and MAML (left), Reptile Batch Version(middle), and FedAvg (right).

```
Require: : Reptile Step K.
OuterLoop/Server learning rate \alpha
                                                                                                              Require: FedAvg Local Epoch E.
InnerLoop/Client learning rate \beta
                                                         function InnerLoop(\theta, T_i, \beta)
                                                                                                                  function ClientUpdate(\theta, T_i, \beta)
Initial model parameters \theta
                                                             Sample K-shot data D_{i,k} from T_i.
                                                                                                                       Split local dataset into batches B
while not done do
                                                             \theta_i = \theta
                                                                                                                       \theta_i = \theta
    Sample batch of tasks/clients \{T_i\}
                                                             for each local step i from 1 to K do
                                                                                                                       for each local epoch i from 1 to E do
                                                                                                                           for batch b \in B do
    for Sampled task/client T_i do
                                                                  \theta_i = \theta_i - \beta \nabla_{\theta} L(\theta_i, D_{i,k})
                                                                                                                                \theta_i = \theta_i - \beta \nabla_{\theta} L(\theta_i, b)
        if FL then
             g_i, w_i = ClientUpdate(\theta, T_i, \beta)
                                                                                                                           end for
         else if MAML then
                                                                                                                       end for
                                                             end for
                                                             Return g_i = \theta_i - \theta
             g_i = InnerLoop(\theta, T_i, \beta)
                                                                                                                       Return g_i = \theta_i - \theta
         end if
                                                         end function
                                                                                                                  end function
    end for
                                                     Require: : Meta Batch Size M.
                                                                                                              Require: Clients per training round M.
    if FL then
                                                         function OuterLoop(\theta, \{g_i\}, \alpha)
                                                                                                                  function ServerUpdate(\theta, \{g_i, w_i\}, \alpha)
         \theta = ServerUpdate(\theta, \{g_i, w_i\}, \alpha)
                                                             \theta = \theta + \alpha \frac{1}{M} \sum_{i=1}^{M} g_i
                                                                                                                       \theta = \theta + \alpha \sum_{i=1}^{M} w_i g_i / \sum_{i=1}^{M} w_i
    else if MAML then
                                                             Return \theta
        \theta = OuterLoop(\theta, \{g_i\}, \alpha)
                                                                                                                       Return \theta
    end if
                                                         end function
                                                                                                                  end function
end while
```

INTERPRETING FEDAVG AS A META LEARNING ALGORITHM

$$\begin{split} g_{FedSGD} &= \frac{-\beta}{T} \sum_{i=1}^{T} \frac{\partial L_i(\theta)}{\partial \theta} = \frac{1}{T} \sum_{i=1}^{T} g_1^i. \\ \theta_K^i &= U_K^{i}(\theta) = \theta - \beta \sum_{j=1}^{K} g_j^i = \theta - \beta \sum_{j=1}^{K} \frac{\partial L_i(\theta_j)}{\partial \theta} \\ &\frac{\partial U_K^i(\theta)}{\partial \theta} = I - \beta \frac{\partial \sum_{j=1}^{K} g_j^i}{\partial \theta} = I - \beta \sum_{i=1}^{K} \frac{\partial^2 L_i(\theta_j)}{\partial \theta^2}. \end{split}$$

$$g_{MAML} = \frac{\partial L_{MAML}}{\partial \theta} = \frac{1}{T} \sum_{i=1}^{T} \frac{\partial L_i(U_K^i(\theta))}{\partial \theta} = \frac{1}{T} \sum_{i=1}^{T} L_i'(U_K^i(\theta))(I - \beta \sum_{j=1}^{K} \frac{\partial^2 L_i(\theta_j)}{\partial \theta^2})$$

$$g_{FOMAML}(K) = \frac{1}{T} \sum_{i=1}^{T} L_i'(U_K^i(\theta))I = \frac{1}{T} \sum_{i=1}^{T} L_i'(\theta_K^i) = \frac{1}{T} \sum_{i=1}^{T} g_{K+1}^i$$

$$g_{FedAvg} = \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{K} g_j^i = \frac{1}{T} \sum_{i=1}^{T} g_1^i + \sum_{j=1}^{K-1} \frac{1}{T} \sum_{i=1}^{T} g_{j+1}^i = g_{FedSGD} + \sum_{j=1}^{K-1} g_{FOMAML}(j)$$

Personalized FedAvg

Algorithm 2 Personalized FedAvg

- 1: Run FedAvg(E) with momentum SGD as server optimizer and a relatively larger E.
- 2: Switch to Reptile(K) with Adam as server optimizer to fine-tune the initial model.
- 3: Conduct personalization with the same client optimizer used during training.

	Initial Acc	Personalized Acc
Reptile(1) Finetuned test clients	0.8320 (0.0133)	0.8764 (0.0017)
Reptile(1) Finetuned train clients	0.8577 (0.0019)	0.8927 (0.0015)
Reptile(10) Finetuned test clients	0.8116 (0.0148)	0.8858 (0.0014)
Reptile(10) Finetuned train clients	0.8612 (0.0020)	0.9028(0.0009)

Table 2: Test performance on clients seen and unseen during FL-training

Challenges for FL

- adaptation to the statistical heterogeneity
- optimize the personalized performance and global model
- Influence on capacity to personalize
- Solely optimizing have negative impact

Challenges for MAML

- consider the performance of the initial model
- Importance of fast convergence
- Datasets with a natural user/client structure being established for FL

Future Work

- How does the training algorithm impact personalization ability of the trained model?
- Is there something we can measure that will predict the adaptability of the model?
- Is it something we can directly optimize for, potentially leading to novel optimization methods?