Les réactions d'estérification et d'hydrolyse

Chapitre 6

I. Équations de réaction

1. Estérification

$$R - C \stackrel{\bigcirc}{\sim} OH$$
 + $R' - OH$ = $R - C \stackrel{\bigcirc}{\sim} O - R'$ + H_2O
Acide carboxylique + Alcool = Ester + Eau

2. Hydrolyse

$$R-C \stackrel{\bigcirc}{<} O - R'$$
 + H_2O = $R-C \stackrel{\bigcirc}{<} O + R' - OH$
Ester + Eau = Acide carboxylique + Alcool

II. Équilibre estérification-hydrolyse

	Acide carbox	+ Alcool =	= Ester -	+ Eau
État initial	n_0	n_0	0	0
État final	$\frac{1}{3}n_0$	$\frac{1}{3}n_0$	$\frac{2}{3}n_0$	$\frac{2}{3}n_0$

La transformation associée à la réaction d'estérification est **limitée** et **lente**.

Constante d'équilibre :

$$K = \frac{n_{ester} \cdot n_{eau}}{n_{alcool} \cdot n_{acide}} = 4$$

Rendements:

Alcool I: 67%Alcool II: 60%Alcool III: 5%

III. Contrôle de l'évolution du système

1. Contrôle de la vitesse de réaction

On peut accélérer la réaction en :

- Chauffant
- Ajoutant un catalyseur (l'estérification est catalysée par les ions oxonium)

v1

2. Contrôle de l'état final

On peut augmenter le taux d'avancement en :

- Introduisant un des réactifs en excès
- Éliminant un produit (par distillation par exemple)