BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

7 de janeiro de 2024

Índice

1	Esti	struturas de Dados		
	1.1	Disjoint Set Union	6	
		1.1.1 DSU Completo	6	
		1.1.2 DSU Rollback	8	
		1.1.3 DSU Simples	10	
		1.1.4 DSU Bipartido	10	
	1.2	Operation Queue	11	
	1.3	Interval Tree	12	
1.4 Segment Tree		Segment Tree	14	
		1.4.1 Segment Tree Lazy	14	
		1.4.2 Segment Tree	15	
		1.4.3 Segment Tree 2D	16	
		1.4.4 Segment Tree Beats Max And Sum Update	18	
		1.4.5 Segment Tree Beats Max Update	21	

		1.4.6 Segment Tree Esparsa	23
		1.4.7 Segment Tree Persisente	26
		1.4.8 Segment Tree Kadani	27
	1.5	Operation Stack	29
	1.6	Fenwick Tree	29
	1.7	LiChao Tree	30
	1.8	Kd Fenwick Tree	32
	1.9	Ordered Set	33
	1.10	MergeSort Tree	34
	1.11	Sparse Table	38
		1.11.1 Disjoint Sparse Table	38
		1.11.2 Sparse Table	38
2	Gra	afos	40
	2.1	Matching	4(
		2.1.1 Hungaro	4(
	2.2	2.1.1 Hungaro	
			41
	2.3	LCA	43 43
	2.3 2.4	LCA	43 43 44
	2.3 2.4	LCA HLD Kruskal	43 43 44 45
	2.32.42.5	LCA	41 45 44 45 46

റ
o

		2.7.2 SPFA	49
	2.8	Binary Lifting	50
	2.9	Fluxo	52
	2.10	Inverse Graph	56
	2.11	2 SAT	57
	2.12	Graph Center	58
3	Stri	$\mathbf{n}\mathbf{g}$	60
	3.1	Aho Corasick	60
	3.2	Patricia Tree	61
	3.3	Prefix Function	62
	3.4	Hashing	65
	3.5	Trie	65
	3.6	Manacher	66
	3.7	Lyndon	67
	3.8	Suffix Array	68
4	Para	adigmas	71
	4.1	Mo	71
	4.2	Exponenciação de Matriz	74
	4.3	Busca Binaria Paralela	76
	4.4	Divide and Conquer	77
	4.5	Busca Ternaria	80

	4	

	4.6	DP de Permutacao	81
	4.7	Convex Hull Trick	82
	4.8	All Submasks	83
5	Mat	temática	84
	5.1	Primos	84
	5.2	NTT	86
	5.3	Eliminação Gaussiana	88
		5.3.1 Gauss Mod 2	88
		5.3.2 Gauss	89
	5.4	Sum of floor (n div i)	90
	5.5	GCD	91
	5.6	Fatoração	92
	5.7	Teorema do Resto Chinês	95
	5.8	FFT	96
	5.9	Exponenciação Modular Rápida	97
	5.10	Totiente de Euler	98
	5.11	Inverso Modular	99
6	The	eoretical	102
	6.1	Some Prime Numbers	103
		6.1.1 Left-Truncatable Prime	103
		6.1.2 Mersenne Primes	103

6.2	C++	constants	103
6.3	Linear	Operators	103
	6.3.1	Rotate counter-clockwise by θ°	103
	6.3.2	Reflect about the line $y=mx$	103
	6.3.3	Inverse of a 2x2 matrix A	104
	6.3.4	Horizontal shear by K	104
	6.3.5	Vertical shear by K	104
	6.3.6	Change of basis	104
	6.3.7	Properties of matrix operations	104

Capítulo 1

Estruturas de Dados

1.1 Disjoint Set Union

1.1.1 DSU Completo

DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função solve()

• Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0.6ms para $3 * 10^5$ queries e nodos com printf e scanf.

Possivelmente aguenta 10^6 em 3s

```
      struct full_dsu {
      };

      struct change {
      struct query {

      int node, old_size;
      int l, r, u, v, type;
```

```
};
stack<change> changes;
map<pair<int, int>, vector<query>> edges;
vector < query > queries;
vector < int > parent, size;
int number of sets, time;
full dsu(int n) {
   time = 0;
    size.resize(n + 5, 1);
    number of sets = n;
    loop(i, 0, n + 5) parent.push back(i);
int get(int a) {
    return (parent[a] == a ? a : get(parent[a]));
bool same(int a, int b) {
    return get(a) = get(b);
void checkpoint() {
    changes.push(\{-2, 0\});
void join(int a, int b) {
    a = get(a);
   b = get(b);
    if (a == b) 
        return;
    if (size[a] > size[b]) {
        swap(a, b);
    changes.push({a, size[b]});
    parent[a] = b;
    size[b] += size[a];
    —number of sets;
void rollback() {
    while (!changes.empty()) {
```

```
auto ch = changes.top();
        changes.pop();
        if (ch.node == -2) {
            break;
        size [parent [ch.node]] = ch.old size;
        parent[ch.node] = ch.node;
        ++number of sets;
void ord(int &a, int &b) {
    if (a > b) 
        swap(a, b);
void add(int u, int v) {
    ord(u, v);
    edges[{u, v}].push back({time++, (int)1e9, u, v, 0});
void remove(int u, int v) {
    ord(u, v);
    edges[\{u, v\}].back().r = time++;
// consulta se dois vertices estao no mesmo
// grupo
void question(int u, int v) {
    ord(u, v);
    queries.push back({time, time, u, v, 1});
   ++time;
// consulta a quantidade de grupos distintos
void question() {
    queries.push back({time, time, 0, 0, 1});
   ++time:
```

 $\}$ else if (r < q.l | | l > q.r) {

if (q.type && q.l == 1) {

ans[1] = number of sets;

// numero de grupos nesse tempo $// \operatorname{ans}[1] = \operatorname{same}(q.u, q.v);$

// se u e v estao no mesmo grupo

qrs aux.push back(q);

continue;

for (**auto** &q : qrs) {

} else {

rollback();

return;

```
vector < int > solve() {
    for (auto [p, v] : edges) {
        queries.insert(queries.end(), all(v));
    vector < int > vec(time, -1), ans;
    run(queries, 0, time, vec);
    for (int i : vec) {
                                                                                if (l = r) {
        if (i != -1) {
            ans.push back(i);
    return ans;
void run(const vector<query> &qrs, int 1, int r, vector<int>
   &ans) {
    if (l > r) {
        return;
                                                                                int m = (1 + r) / 2;
    checkpoint();
                                                                                run(qrs aux, l, m, ans);
    vector < query > qrs aux;
                                                                                run(qrs aux, m + 1, r, ans);
    for (auto &q : qrs) {
                                                                                rollback();
        if (!q.type \&\& q.l <= l \&\& r <= q.r) {
                                                                       };
            join(q.u, q.v);
```

1.1.2 DSU Rollback

Desfaz as últimas K uniões

• Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que $K \le q$ ueries.

Só funciona sem compressão de caminho

• Complexidade de tempo: O(log(N))

```
struct rollback dsu {
    struct change {
        int node, old size;
    stack<change> changes;
    vector < int > parent, size;
    int number of sets;
    rollback dsu(int n) {
        size.resize(n + 5, 1);
        number of sets = n;
        for (int i = 0; i < n + 5; ++i) {
            parent.push back(i);
    }
    int get(int a) {
        return (a == parent[a]) ? a : get(parent[a]);
    bool same(int a, int b) {
        return get(a) = get(b);
    void checkpoint() {
        changes.push(\{-2, 0\});
    void join(int a, int b) {
        a = get(a);
        b = get(b);
        if (a == b) {
            changes.push(\{-1, -1\});
```

```
return;
    if (size[a] > size[b]) 
        swap(a, b);
    changes.push({a, size[b]});
    parent[a] = b;
    size[b] += size[a];
    —number of sets;
void rollback(int qnt = 1 << 31) {</pre>
    for (int i = 0; i < qnt; ++i) {
        auto ch = changes.top();
        changes.pop();
        if (ch.node == -1) {
             continue;
        \mathbf{if} (ch.node == -2) {
             if (qnt == 1 << 31) {
                 break;
             —i;
             continue;
        size [parent [ch.node]] = ch.old size;
        parent[ch.node] = ch.node;
        ++number of sets;
```

1.1.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

• Complexidade de tempo: O(1) amortizado.

Une grupos.

• Complexidade de tempo: O(1) amortizado.

```
struct DSU {
                                                                                 int ra = root(a), rb = root(b);
                                                                                 if (ra == rb) {
    vector < int > pa, sz;
   DSU(int n) : pa(n + 1), sz(n + 1, 1) 
                                                                                     return;
        iota(pa.begin(), pa.end(), 0);
                                                                                 if (sz[ra] > sz[rb]) 
                                                                                     swap(ra, rb);
    int root(int a) {
        return pa[a] = (a = pa[a] ? a : root(pa[a]));
                                                                                 pa[ra] = rb;
                                                                                 sz[rb] += sz[ra];
    bool find (int a, int b) {
        return root(a) = root(b);
    void uni(int a, int b) {
```

1.1.4 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

• Complexidade de tempo: O(1) amortizado.

```
struct bipartite dsu {
    vector<int> parent;
    vector < int > color;
    int size;
    bipartite dsu(int n) {
        size = n;
        color.resize(n + 5, 0);
        for (int i = 0; i < n + 5; ++i) {
            parent.push back(i);
    pair < int, bool get (int a) {
        if (parent[a] = a) {
            return {a, 0};
        auto val = get(parent[a]);
        parent[a] = val. fi;
        color[a] = (color[a] + val.se) \% 2;
        return {parent[a], color[a]};
```

1.2 Operation Queue

Fila que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
bool same_color(int a, int b) {
    get(a);
    get(b);
    return color[a] == color[b];
}
bool same_group(int a, int b) {
    get(a);
    get(b);
    return parent[a] == parent[b];
}
bool possible_edge(int a, int b) {
    return !same_color(a, b) || !same_group(a, b);
}

void join(int a, int b) {
    auto val_a = get(a), val_b = get(b);
    parent[val_a.fi] = val_b.fi;
    color[val_a.fi] = (val_a.se + val_b.se + 1) % 2;
}
};
```

1.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

Contém funções insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID).

É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

• Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

```
• insert ()
```

- erase()
- upper bound()
- etc

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb ds/tree policy.hpp>
using namespace gnu pbds;
struct interval {
    long long lo, hi, id;
    bool operator < (const interval &i) const {
        return lo < i.lo || (lo == i.lo && hi < i.hi) ||
                (lo = i.lo \&\& hi = i.hi \&\& id < i.id);
};
template < class CNI, class NI, class Cmp Fn, class Allocator >
struct intervals node update {
    typedef long long metadata type;
    int sz = 0;
    virtual CNI node begin() const = 0;
    virtual CNI node end() const = 0;
    inline vector < int > overlaps (const long long l, const long long r)
        queue < CNI> q;
        q.push(node begin());
        vector<int> vec;
        while (!q.empty()) {
            CNI it = q.front();
            q.pop();
            if (it = node end()) 
                continue:
            if (r >= (*it) -> lo && l <= (*it) -> hi) {
```

```
vec.push back((* it)\rightarrowid);
            CNI l it = it.get l child();
            long long l \max = (l \text{ it} = \text{node end}()) ? -INF :
                l it.get metadata();
            if (l max >= l) 
                q.push(l it);
            if ((*it) -> lo <= r) {
                q.push(it.get r child());
        return vec;
    inline void operator()(NI it, CNI end it) {
        const long long l max =
            (it.get l child() = end it) ? -INF :
                it.get l child().get metadata();
        const long long r max =
            (it.get r child() = end it) ? -INF :
                it.get r child().get metadata();
        const cast<long long &>(it.get metadata()) = max((*it)->hi,
            \max(1 \max, r \max));
typedef tree<interval, null type, less<interval>, rb tree tag,
   intervals node update>
    interval tree;
```

CAPÍTULO 1. ESTRUTURAS DE DADOS

1.4 Segment Tree

1.4.1 Segment Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

```
namespace seg {
    const int MAX = 2e5 + 5;
    const ll NEUTRAL = 0; // merge(a, neutral) = a
    ll merge(ll a, ll b) {
        return a + b;
    }
    int sz; // size of the array
    ll tree[4 * MAX], lazy[4 * MAX];
    int le(int n) {
        return 2 * n + 1;
    }
    int ri(int n) {
        return 2 * n + 2;
    }
    void push(int n, int esq, int dir) {
```

```
if (lazy[n] == 0) {
    return;
}
tree[n] += lazy[n] * (dir - esq + 1);
if (esq != dir) {
    lazy[le(n)] += lazy[n];
    lazy[ri(n)] += lazy[n];
}
lazy[n] = 0;
}
void build(span<const ll> v, int n, int esq, int dir) {
    if (esq == dir) {
        tree[n] = v[esq];
} else {
        int mid = (esq + dir) / 2;
```

```
build(v, le(n), esq, mid);
build(v, ri(n), mid + 1, dir);
tree[n] = merge(tree[le(n)], tree[ri(n)]);
}

void build(span<const ll> v) {
    sz = v.size();
    build(v, 0, 0, sz - 1);
}

ll query(int l, int r, int n = 0, int esq = 0, int dir = sz - 1) {
    push(n, esq, dir);
    if (esq > r || dir < l) {
        return NEUTRAL;
    }
    if (l <= esq && dir <= r) {
        return tree[n];
    }
    int mid = (esq + dir) / 2;
    return merge(query(l, r, le(n), esq, mid), query(l, r, ri(n),</pre>
```

1.4.2 Segment Tree

Implementação padrão de Seg Tree

- \bullet Complexidade de tempo (Pré-processamento): $\mathcal{O}(\mathcal{N})$
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

```
mid + 1, dir));
}
void update(int 1, int r, ll v, int n = 0, int esq = 0, int dir =
    sz - 1) {
    push(n, esq, dir);
    if (esq > r || dir < l) {
        return;
    }
    if (1 <= esq && dir <= r) {
        lazy[n] += v;
        push(n, esq, dir);
    } else {
        int mid = (esq + dir) / 2;
        update(1, r, v, le(n), esq, mid);
        update(1, r, v, ri(n), mid + 1, dir);
        tree[n] = merge(tree[le(n)], tree[ri(n)]);
    }
}</pre>
```

```
namespace seg {
    const int MAX = 2e5 + 5;
    int n:
    11 \text{ tree} [4 * MAX];
    ll merge(ll a, ll b) {
        return a + b;
    int le(int n) {
        return 2 * n + 1;
    int ri(int n) {
        return 2 * n + 2;
    void build(int n, int esq, int dir, const vector<ll> &v) {
        if (esq = dir) 
            tree[n] = v[esq];
        } else {}
            int mid = (esq + dir) / 2;
            build(le(n), esq, mid, v);
            build (ri(n), mid + 1, dir, v);
            tree[n] = merge(tree[le(n)], tree[ri(n)]);
    }
    void build (const vector < ll > &v) {
        n = v. size();
        build (0, 0, n - 1, v);
    11 query(int n, int esq, int dir, int l, int r) {
        if (esq > r || dir < 1) {
            return 0:
```

1.4.3 Segment Tree 2D

Segment Tree em 2 dimensões.

```
if (l \le esq \&\& dir \le r)  {
        return tree[n];
    int mid = (esq + dir) / 2;
    return merge (query (le (n), esq, mid, l, r), query (ri (n), mid +
        1, dir, l, r));
11 query(int 1, int r) {
    return query (0, 0, n-1, 1, r);
void update(int n, int esq, int dir, int x, ll v) {
    if (esq > x \mid | dir < x) {
        return;
    if (esq = dir) {
        tree[n] = v;
    } else {
        int mid = (esq + dir) / 2;
        if (x \le mid) 
            update(le(n), esq, mid, x, v);
            update(ri(n), mid + 1, dir, x, v);
        tree[n] = merge(tree[le(n)], tree[ri(n)]);
void update(int x, ll v) {
    update (0, 0, n - 1, x, v);
```

- Complexidade de tempo (Pré-processamento): O(N*M)
- Complexidade de tempo (Consulta em intervalo): O(log(N)*log(M))
- Complexidade de tempo (Update em ponto): O(log(N)*log(M))
- Complexidade de espaço: 4 * N * 4 * M = O(N*M)

```
const int MAX = 2505;
int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
int le(int x) {
    return 2 * x + 1;
int ri(int x) {
    return 2 * x + 2;
void build y(int nx, int lx, int rx, int ny, int ly, int ry) {
    if (ly = ry) {
        if (lx = rx) {
            tree[nx][ny] = mat[lx][ly];
       } else {
            tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
    } else {
        int my = (ly + ry) / 2;
        build y(nx, lx, rx, le(ny), ly, my);
       build y(nx, lx, rx, ri(ny), my + 1, ry);
        tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
    }
void build x(int nx, int lx, int rx) {
    if (lx != rx) {
        int mx = (lx + rx) / 2;
        build x(le(nx), lx, mx);
```

```
build x(ri(nx), mx + 1, rx);
    build y(nx, lx, rx, 0, 0, m-1);
void build() {
    build x(0, 0, n-1);
void update y(int nx, int lx, int rx, int ny, int ly, int ry, int x,
   int y, int v) {
    if (ly = ry) {
        if (lx = rx) 
            tree[nx][ny] = v;
        } else {
            tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
    } else {
        int my = (ly + ry) / 2;
        if (y \le my) 
            update y(nx, lx, rx, le(ny), ly, my, x, y, v);
            update y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
        tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
void update x(int nx, int lx, int rx, int x, int y, int v) {
    if (lx != rx) {
        int mx = (lx + rx) / 2;
```

1.4.4 Segment Tree Beats Max And Sum Update

Seg Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

```
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 1e9
#define fi first
#define se second
typedef pair<int, int> ii;
struct Node {
    int m1 = INF, m2 = INF, cont = 0;
    11 \text{ soma} = 0;
    queue<ii> lazy;
    void set(int v) {
        m1 = v;
        cont = 1;
        soma = v;
    void merge(Node a, Node b) {
        m1 = min(a.m1, b.m1);
        m2 = INF;
        if (a.m1 != b.m1) {
            m2 = min(m2, max(a.m1, b.m1));
        if (a.m2 != m1) {
            m2 = min(m2, a.m2);
        if (b.m2 != m1) {
            m2 = min(m2, b.m2);
        cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
        soma = a.soma + b.soma;
    void print() {
```

```
printf("%d %d %d %lld \n", m1, m2, cont, soma);
};
int n, q;
vector < Node > tree;
int le(int n) {
    return 2 * n + 1;
int ri(int n) {
    return 2 * n + 2;
void push(int n, int esq, int dir) {
    while (!tree[n].lazy.empty()) {
        ii p = tree[n].lazy.front();
        tree[n].lazy.pop();
        int op = p.fi, v = p.se;
        if (op = 0) {
             if (v \le tree[n].m1) {
                 continue;
            tree[n].soma += (11)abs(tree[n].m1 - v) * tree[n].cont;
             tree[n].m1 = v;
             if (esq != dir) {
                 tree [le(n)]. lazy. push(\{0, v\});
                 tree [ri(n)]. lazy. push(\{0, v\});
        } else if (op = 1) {
             tree [n]. soma += v * (dir - esq + 1);
             tree[n].m1 += v;
             tree[n].m2 += v;
             if (esq != dir) {
                 tree [le(n)]. lazy. push(\{1, v\});
                 tree [ri(n)]. lazy. push(\{1, v\});
```

```
void build(int n, int esq, int dir, vector<int> &v) {
    if (esq = dir) {
        tree[n].set(v[esq]);
    } else {
        int mid = (esq + dir) / 2;
        build (le(n), esq, mid, v);
        build (ri(n), mid + 1, dir, v);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void build (vector < int > &v) {
    build (0, 0, n - 1, v);
// ai = max(ai, mi) em [1, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) {
        return;
    if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
        tree[n].soma += (ll)abs(tree[n].ml - mi) * tree[n].cont;
        tree[n].m1 = mi;
        if (esq != dir)
            tree [le(n)].lazv.push({0, mi});
            tree [ri(n)]. lazy. push (\{0, mi\});
    } else {
        int mid = (esq + dir) / 2;
        update(le(n), esq, mid, l, r, mi);
        update(ri(n), mid + 1, dir, l, r, mi);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int 1, int r, int mi) {
    update(0, 0, n-1, 1, r, mi);
```

```
// soma v em [1, r]
void upsoma(int n, int esq, int dir, int l, int r, int v) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < 1) {
        return;
    if (1 \le esq \&\& dir \le r) {
        tree[n].soma += v * (dir - esq + 1);
        tree[n].m1 += v;
        tree[n].m2 += v;
        if (esq != dir) {
            tree [le(n)]. lazy. push(\{1, v\});
            tree [ri(n)]. lazy. push(\{1, v\});
    } else {
        int mid = (esq + dir) / 2;
        upsoma(le(n), esq, mid, l, r, v);
        upsoma(ri(n), mid + 1, dir, l, r, v);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void upsoma(int l, int r, int v) {
    upsoma(0, 0, n - 1, l, r, v);
// soma de [1, r]
int query(int n, int esq, int dir, int l, int r) {
    push(n, esq, dir);
    if (esq > r \mid | dir < 1) {
        return 0;
    if (1 \le esq \&\& dir \le r) {
        return tree [n]. soma;
    int mid = (esq + dir) / 2;
    return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir,
       1, r);
int query(int 1, int r) {
    return query (0, 0, n-1, l, r);
```

```
int main() {
    cin >> n;
```

1.4.5 Segment Tree Beats Max Update

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- \bullet Complexidade de espaço: 2 *4 *N = O(N)

```
#include <bits/stdc++.h>
using namespace std;

#define 11 long long
#define INF 1e9

struct Node {
   int m1 = INF, m2 = INF, cont = 0, lazy = 0;
   ll soma = 0;

void set(int v) {
   m1 = v;
   cont = 1;
}
```

tree.assign(4 * n, Node());

build(v);

```
soma = v;
}

void merge(Node a, Node b) {
    m1 = min(a.m1, b.m1);
    m2 = INF;
    if (a.m1 != b.m1) {
        m2 = min(m2, max(a.m1, b.m1));
    }
    if (a.m2 != m1) {
        m2 = min(m2, a.m2);
    }
    if (b.m2 != m1) {
```

```
m2 = min(m2, b.m2);
        cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0)
        soma = a.soma + b.soma;
   void print() {
        printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy);
};
int n, q;
vector < Node > tree;
int le(int n) {
    return 2 * n + 1:
int ri(int n) {
    return 2 * n + 2;
void push(int n, int esq, int dir) {
    if (tree[n].lazy \ll tree[n].m1) {
        return:
    tree[n].soma += (ll)abs(tree[n].ml - tree[n].lazy) * tree[n].cont;
    tree[n].m1 = tree[n].lazy;
    if (esq != dir) {
        tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
        tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
    tree[n].lazy = 0;
void build (int n, int esq, int dir, vector <int> &v) {
    if (esq = dir) 
        tree[n].set(v[esq]);
    } else {
        int mid = (esq + dir) / 2;
        build(le(n), esq, mid, v);
        build(ri(n), mid + 1, dir, v);
```

```
tree[n].merge(tree[le(n)], tree[ri(n)]);
void build(vector<int> &v) {
    build (0, 0, n - 1, v);
// ai = max(ai, mi) em [l, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) {
        return;
    if (l \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
        tree[n]. lazv = mi;
        push(n, esq, dir);
    } else {
        int mid = (esq + dir) / 2;
        update(le(n), esq, mid, l, r, mi);
        update(ri(n), mid + 1, dir, l, r, mi);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int 1, int r, int mi) {
    update(0, 0, n-1, l, r, mi);
// soma de [1, r]
int query(int n, int esq, int dir, int l, int r) {
    push(n, esq, dir);
    if (esq > r \mid | dir < l) {
        return 0;
    if (1 \le esq \&\& dir \le r) {
        return tree[n].soma;
    int mid = (esq + dir) / 2;
    return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir,
        1, r);
int query(int 1, int r) {
```

```
return query(0, 0, n - 1, 1, r);
}
int main() {
```

1.4.6 Segment Tree Esparsa

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$
- Complexidade de espaço: 4 *N = O(N)

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
cin >> n;
tree.assign(4 * n, Node());
}
```

Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
const 11 ESQ = 0, DIR = 1e9 + 7;
struct seg {
    ll tree [SEGMAX];
    int R[SEGMAX], L[SEGMAX],
        ptr = 2; // 0 is NULL; 1 is First Root
    ll op(ll a, ll b) {
        return (a + b) \% MOD;
    int le(int i) {
        if (L[i] = 0) {
            L[i] = ptr++;
        return L[i];
    int ri(int i) {
        if (R[i] = 0) {
           R[i] = ptr++;
        return R[i];
```

```
Il query (ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
    if (r < esq | | dir < 1) {
         return 0;
    if (1 \le esq \&\& dir \le r) {
         return tree[n];
    11 \text{ mid} = (\text{esq} + \text{dir}) / 2;
    return op(query(l, r, le(n), esq, mid), query(<math>l, r, ri(n), esq, mid)
        mid + 1, dir);
void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
    if (esq = dir) {
         tree[n] = (tree[n] + v) \% MOD;
    } else {
         11 \quad mid = (esq + dir) / 2;
         if (x \le mid) 
             update(x, v, le(n), esq, mid);
         } else {
             update(x, v, ri(n), mid + 1, dir);
```

```
}
    tree[n] = op(tree[le(n)], tree[ri(n)]);
}
```

1.4.7 Segment Tree Persisente

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

```
push(n, esq, dir);
                                                                                       return query (n->l, esq, mid, l, r) + query <math>(n->r, mid + 1, r)
    if (esq = dir) {
                                                                                           dir, l, r);
         return new node (n \rightarrow v + v);
                                                                                  ll query(int root, int l, int r) {
                                                                                       return query (roots [root], ESQ, DIR, 1, r);
    int mid = (esq + dir) / 2;
    if (x \leq mid) 
         return new node (update (n->l, esq, mid, x, v), n->r);
                                                                                  // kth min number in [L, R] (l root can not be
                                                                                  // 0)
                                                                                  int kth(node *L, node *R, int esq, int dir, int k) {
         return new node(n\rightarrowl, update(n\rightarrowr, mid + 1, dir, x, v));
                                                                                       push(L, esq, dir);
                                                                                       push(R, esq, dir);
int update(int root, int pos, int val) {
                                                                                       if (esq = dir) {
    node *novo = update(roots[root], ESQ, DIR, pos, val);
                                                                                           return esq;
    roots.push back(novo);
    return roots.size() - 1;
                                                                                       int mid = (esq + dir) / 2;
                                                                                       int cont = R\rightarrow l\rightarrow v - L\rightarrow l\rightarrow v;
// sum in [L, R]
                                                                                       if (cont >= k) {
ll query (node *n, int esq, int dir, int l, int r) {
                                                                                           return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
    push(n, esq, dir);
    if (esq > r || dir < 1) {
                                                                                           return kth(L\rightarrow r, R\rightarrow r, mid + 1, dir, k - cont);
         return 0;
    if (l \le esq \&\& dir \le r) {
                                                                                  int kth(int l root, int r root, int k) {
                                                                                       return kth(roots[1 root - 1], roots[r root], ESQ, DIR, k);
         return n\rightarrow v;
                                                                             };
    int mid = (esq + dir) / 2;
```

1.4.8 Segment Tree Kadani

Implementação de uma Seg Tree que suporta update de soma e query de soma máxima em intervalo.

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))

- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 * N = O(N)

```
namespace seg {
    const int MAX = 1e5 + 5;
    struct node {
         ll pref, suff, sum, best;
    };
    node new node(ll v) {
        return node\{v, v, v, v\};
    const node NEUTRAL = \{0, 0, 0, 0\};
    node tree [4 * MAX];
    node merge(node a, node b) {
         11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
        ll \ suff = max(b.suff, b.sum + a.suff);
        11 \text{ sum} = a.\text{sum} + b.\text{sum}:
        11 best = max(a.suff + b.pref, max(a.best, b.best));
        return node{pref, suff, sum, best};
    int n;
    int le(int n) {
        return 2 * n + 1;
    int ri(int n) {
        return 2 * n + 2;
    void build (int n, int esq, int dir, const vector < ll > &v) {
        if (esq = dir)
             tree[n] = new node(v[esq]);
        } else {
             int mid = (esq + dir) / 2;
             build (le(n), esq, mid, v);
             build (ri(n), mid + 1, dir, v);
             tree[n] = merge(tree[le(n)], tree[ri(n)]);
```

```
void build (const vector < ll > &v) {
    n = v.size();
    build (0, 0, n - 1, v);
node query(int n, int esq, int dir, int l, int r) {
    if (esq > r \mid \mid dir < l) 
        return NEUTRAL;
    if (1 \le esq \&\& dir \le r) {
        return tree[n];
    int mid = (esq + dir) / 2;
    return merge (query (le (n), esq, mid, l, r), query (ri (n), mid +
        1, dir, l, r));
11 query(int 1, int r) {
    return query (0, 0, n-1, 1, r). best;
void update(int n, int esq, int dir, int x, ll v) {
    if (esq > x \mid | dir < x) {
        return;
    if (esq = dir) 
        tree[n] = new node(v);
    } else {
        int mid = (esq + dir) / 2;
        if (x \le mid) 
            update(le(n), esq, mid, x, v);
        } else {
            update(ri(n), mid + 1, dir, x, v);
```

```
\label{eq:tree_n} \begin{array}{ll} tree\,[\,n\,] \; = \; merge\,(\,tree\,[\,le\,(n)\,]\,, \;\; tree\,[\,ri\,(n)\,])\;; \\ \\ \} \\ \textbf{void} \;\; update\,(\textbf{int} \;\; x\,, \;\; ll \;\; v) \;\; \{ \end{array}
```

1.5 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

```
    void add(T element) {
        result = st.empty() ? element : op(element, st.top().second);
        st.push({element, result});
}

void remove() {
        T removed_element = st.top().first;
        st.pop();
}

};
```

 ${\cal O}$ vetor precisa obrigatoriamente estar indexado em 1.

- * Complexidade de tempo (Pre-processamento): O(N*log(N))
- * Complexidade de tempo (Consulta em intervalo): O(log(N))
- * Complexidade de tempo (Update em ponto): O(log(N))
- * Complexidade de espaço: 2 * N = O(N)

```
struct FenwickTree {
    int n;
    vector < int > tree;
    FenwickTree(int n) : n(n) {
        tree.assign(n, 0);
    }
    FenwickTree(vector < int > v) : FenwickTree(v.size()) {
        for (size_t i = 1; i < v.size(); i++) {
            update(i, v[i]);
        }
    }
    int lsONE(int x) {
        return x & (-x);
    }
    int query(int x) {</pre>
```

```
int soma = 0;
    for (; x > 0; x -= lsONE(x)) {
        soma += tree[x];
    }
    return soma;
}
int query(int 1, int r) {
        return query(r) - query(1 - 1);
}
void update(int x, int v) {
        for (; x < n; x += lsONE(x)) {
            tree[x] += v;
        }
};</pre>
```

1.7 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long ll;
const 11 MAXN = 1e5 + 5, INF = 1e18 + 9;
struct Line {
    11 a, b = -INF;
    ll operator()(ll x) {
        return a * x + b;
} tree [4 * MAXN];
int le(int n) {
    return 2 * n + 1;
int ri(int n) {
    return 2 * n + 2;
{f void} insert (Line line, {f int} n = 0, {f int} l = 0, {f int} r = MAXN) {
    int \ mid = (1 + r) / 2;
    bool bl = line(1) < tree[n](1);
    bool bm = line(mid) < tree[n](mid);
    if (!bm) {
```

```
swap(tree[n], line);
}
if (l == r) {
    return;
}
if (bl != bm) {
    insert(line, le(n), l, mid);
} else {
    insert(line, ri(n), mid + 1, r);
}
}

ll query(int x, int n = 0, int l = 0, int r = MAXN) {
    if (l == r) {
        return tree[n](x);
    }
    int mid = (l + r) / 2;
    if (x < mid) {
        return max(tree[n](x), query(x, le(n), l, mid));
    } else {
        return max(tree[n](x), query(x, ri(n), mid + 1, r));
    }
}</pre>
```

```
typedef long long ll;
const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
struct Line {
    11 a, b = -INF;
    __int128 operator()(ll x) {
        return ( int128) a * x + b;
} tree [4 * MAXN];
int idx = 0, L[4 * MAXN], R[4 * MAXN];
int le(int n) {
    if (!L[n]) {
       L[n] = ++idx;
    return L[n];
int ri(int n) {
    if (!R[n]) {
       R[n] = ++idx;
    return R[n];
void insert (Line line, int n = 0, ll l = -MAXR, ll r = MAXR) {
    11 \mod = (1 + r) / 2;
```

1.8 Kd Fenwick Tree

KD Fenwick Tree

Fenwick Tree em K dimensoes.

```
bool bl = line(l) < tree[n](l);
    bool bm = line(mid) < tree[n](mid);
    if (!bm) {
        swap(tree[n], line);
    if (l = r) {
        return;
    if (bl != bm) {
         insert (line, le(n), l, mid);
    } else {
         insert(line, ri(n), mid + 1, r);
int128 \text{ query}(int x, int n = 0, ll l = -MAXR, ll r = MAXR) 
    if (l = r) {
        return tree[n](x);
    11 \mod = (1 + r) / 2;
    if (x < mid) {
        return \max(\text{tree}[n](x), \text{query}(x, \text{le}(n), 1, \text{mid}));
        return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, r));
```

CAPÍTULO 1. ESTRUTURAS DE DADOS

```
* Complexidade de update: O(log^k(N)).
* Complexidade de query: O(log^k(N)).
const int MAX = 10;
11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]; // insira a
    quantidade
                                                          // necessaria de
                                                                                           return sum;
                                                               dimensoes
                                                                                      {f void} update(vector<{f int}> s, {f int} pos, {f int} v) {
int lsONE(int x) {
    return x & (-x);
                                                                                          while (s[pos] < MAX + 1) {
                                                                                               if (pos < s.size() - 1) {
                                                                                                    update(s, pos + 1, v);
11 query(vector<int> s, int pos) {
                                                                                                    tree\,[\,s\,[\,0\,]\,][\,s\,[\,1\,]][\,s\,[\,2\,]][\,s\,[\,3\,]][\,s\,[\,4\,]][\,s\,[\,5\,]][\,s\,[\,6\,]][\,s\,[\,7\,]] \ += \ v\,;
     11 \text{ sum} = 0;
    while (s[pos] > 0) {
         if (pos < s.size() - 1) {
                                                                                               s[pos] += lsONE(s[pos]);
              sum += query(s, pos + 1);
         } else {
              sum +=
                  tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]]:
```

1.9 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- \bullet find_by_order(x): retorna o item na posição x.
- \bullet order_of_key(k): retorna o número de elementos menores que k. (o índice de k)

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb ds/trie policy.hpp>
using namespace gnu pbds;
typedef tree < int, null type, less < int>, rb tree tag, tree order statistics node update> ordered set;
ordered set X;
X. insert (1);
X.insert(2);
X.insert(4);
X.insert(8);
X. insert (16);
cout \ll X. find by order(1) \ll endl; // 2
cout << *X. find by order (2) << endl; // 4
cout << *X. find by order (4) << endl; // 16
cout << (end(X) = X. find by order(6)) << endl; // true
cout \ll X. order of key(-5) \ll endl; // 0
cout \ll X. order of key(1) \ll endl; // 0
cout \ll X. order of key(3) \ll endl; // 2
cout \ll X. order of key (4) \ll endl; // 2
cout \ll X. order of key (400) \ll endl; // 5
#include <ext/pb ds/assoc container.hpp>
                                                                              template <typename T>
#include <ext/pb ds/trie policy.hpp>
                                                                              typedef tree<T, null type, less<T>, rb tree tag,
                                                                                  tree order statistics node update>
using namespace __gnu_pbds;
                                                                                  ordered set;
```

1.10 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : O(N * log(N))
- Complexidade de consulta : $O(log^2(N))$

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- Complexidade de construção : $O(N * log^2(N))$
- Complexidade de consulta : $O(log^2(N))$
- Complexidade de update : $O(log^2(N))$

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace __gnu_pbds;

namespace mergesort {
    typedef tree<ii, null_type, less<ii>>, rb_tree_tag,
        tree_order_statistics_node_update>
        ordered_set;
    const int MAX = 1e5 + 5;

int n;
    ordered_set mgtree[4 * MAX];
    vi values;

int le(int n) {
        return 2 * n + 1;
    }
    int ri(int n) {
        return 2 * n + 2;
    }
```

```
ordered_set join(ordered_set set_l, ordered_set set_r) {
    for (auto v : set_r) {
        set_l.insert(v);
    }
    return set_l;
}

void build(int n, int esq, int dir) {
    if (esq == dir) {
        mgtree[n].insert(ii(values[esq], esq));
    } else {
        int mid = (esq + dir) / 2;
        build(le(n), esq, mid);
        build(ri(n), mid + 1, dir);
        mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
    }
}
void build(vi &v) {
```

```
n = v.size();
    values = v:
    build (0, 0, n-1);
}
int less (int n, int esq, int dir, int l, int r, int k) {
    if (esq > r \mid \mid dir < 1) {
        return 0;
    if (l \le esq \&\& dir \le r) {
        return mgtree [n]. order of key(\{k, -1\});
    int mid = (esq + dir) / 2;
   return less(le(n), esq, mid, l, r, k) + less(ri(n), mid + 1,
        dir, l, r, k);
int less(int l, int r, int k) {
    return less (0, 0, n-1, l, r, k);
void update(int n, int esq, int dir, int x, int v) {
    if (esq > x \mid | dir < x) {
        return;
    if (esq = dir) 
        mgtree[n].clear(), mgtree[n].insert(ii(v, x));
   } else {
        int mid = (esq + dir) / 2;
        if (x \leq mid) {
            update(le(n), esq, mid, x, v);
        } else {
            update(ri(n), mid + 1, dir, x, v);
        mgtree[n].erase(ii(values[x], x));
```

```
mgtree[n].insert(ii(v, x));
                  void update(int x, int v) {
                                   update(0, 0, n-1, x, v);
                                    values[x] = v;
                   // ordered set debug query(int n, int esq, int
                   // dir, int 1, int r) {
                                                if (esq > r \mid \mid dir < 1) return
                                                ordered set(); if (l \le esq \&\& dir \le esq \&\&
                                                r) return mgtree [n]; int mid = (esq +
                                                dir) / 2; return
                                                join (debug query (le (n), esq, mid, l,
                                                r), debug query(ri(n), mid+1, dir, l,
                                                r));
                  // ordered set debug query(int l, int r)
                  // {return debug query(0, 0, n-1, 1, r);}
                   // int greater(int n, int esq, int dir, int l,
                   // int r, int k) {
                                                if (esq > r \mid \mid dir < 1) return 0;
                                                if (1 \le esq \&\& dir \le r) return
                                               (r-l+1) - mgtree [n]. order of key({k,
                                               1e8); int mid = (esq + dir) / 2;
                                               return greater (le(n), esq, mid, l, r,
                                                k) + greater(ri(n), mid+1, dir, l, r,
                                                k);
                   // int greater(int l, int r, int k) {return
                  // greater(0, 0, n-1, 1, r, k);
};
```

```
namespace mergesort {
    const int MAX = 1e5 + 5;
    int n;
    vi mgtree [4 * MAX];
    int le(int n) {
        return 2 * n + 1:
    int ri(int n) {
        return 2 * n + 2;
    void build (int n, int esq, int dir, vi &v) {
        mgtree[n] = vi(dir - esq + 1, 0);
        if (esq = dir) {
            mgtree[n][0] = v[esq];
        } else {
            int mid = (esq + dir) / 2;
            build (le(n), esq, mid, v);
            build(ri(n), mid + 1, dir, v);
            merge (mgtree [le(n)].begin(),
                  mgtree [le(n)].end(),
                  mgtree [ri(n)]. begin(),
                  mgtree[ri(n)].end(),
                  mgtree[n].begin());
    void build (vi &v) {
        n = v.size();
        build (0, 0, n - 1, v);
```

```
int less (int n, int esq, int dir, int l, int r, int k) {
    if (esq > r \mid \mid dir < 1) {
        return 0:
    if (1 \le esq \&\& dir \le r) {
        return lower bound (mgtree [n]. begin (), mgtree [n]. end (), k)
            - mgtree[n].begin();
    int mid = (esq + dir) / 2;
    return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1,
        dir, l, r, k);
int less(int l, int r, int k) {
    return less (0, 0, n-1, 1, r, k);
// vi debug query(int n, int esq, int dir, int
// 1, int r) {
       if (esq > r \mid \mid dir < 1) return vi();
       if (1 \le esq \&\& dir \le r) return
       mgtree[n]; int mid = (esq + dir) / 2;
       auto vl = debug query(le(n), esq, mid,
       l, r); auto vr = debug query(ri(n),
       mid+1, dir, l, r); vi ans =
       vi(vl.size() + vr.size());
       merge(vl.begin(), vl.end(),
           vr.begin(), vr.end(),
           ans.begin());
       return ans;
// vi debug query(int l, int r) {return
// debug query(0, 0, n-1, 1, r);}
```

1.11 Sparse Table

1.11.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

Pré-processamento em $O(n \log n)$.

```
struct dst {
   const int neutral = 1;
#define comp(a, b) (a | b)
   vector < vector < int >> t;
   dst (vector < int > v) {
      int n, k, sz = v.size();
      for (n = 1, k = 0; n < sz; n <<= 1, k++)
        ;
      t.assign(k, vector < int > (n));
      for (int i = 0; i < n; i++) {
            t[0][i] = i < sz ? v[i] : neutral;
      }
      for (int j = 0, len = 1; j <= k; j++, len <<= 1) {
            for (int s = len; s < n; s += (len << 1)) {
                t[j][s] = v[s];
                t[j][s - 1] = v[s - 1];</pre>
```

1.11.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

• Complexidade de tempo (Pré-processamento): O(N * log(N))

- Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N))
- Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1)
- Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
struct SparseTable {
                                                                                   int res = 2e9;
    int n, e;
    vector < vector < int >> st;
    SparseTable(vector<int> &v) : n(v.size()), e(floor(log2(n))) {
        st.assign(e + 1, vector < int > (n));
                                                                                           1 += 1 << i;
        for (int i = 0; i < n; i++) {
            st[0][i] = v[i];
                                                                                   return res;
        for (int i = 1; i \le e; i++) {
            for (int j = 0; j + (1 << i) <= n; j++) {
                st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1)[i]))
    // O(log(N)) Query for non overlap friendly
                                                                          };
    // operations
    int logquery(int l, int r) {
```

```
for (int i = e; i >= 0; i--) {
        if ((1 << i) <= r - l + 1) 
            res = min(res, st[i][1]);
// O(1) Query for overlab friendly operations
// ex: max(), min(), gcd(), f(x, y) = x
int query(int 1, int r) {
    // if (l > r) return 2e9;
    int i = ilogb(r - l + 1);
    return \min(st[i][1], st[i][r - (1 << i) + 1]);
```

Capítulo 2

Grafos

2.1 Matching

2.1.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
const ll INF = 1e18 + 18;

vector<pair<int , int>>> result;

ll hungarian(int n, int m, vector<vector<int>>> &A) {
    vector<int> u(n + 1) , v(m + 1) , p(m + 1) , way(m + 1);
    for (int i = 1; i <= n; i++) {</pre>
```

```
p[0] = i;
int j0 = 0;
vector <int> minv(m + 1, INF);
vector <char> used(m + 1, false);
do {
    used[j0] = true;
    ll i0 = p[j0], delta = INF, j1;
```

```
41
```

```
for (int j = 1; j <= m; j++) {
    if (!used[j]) {
        int cur = A[i0][j] - u[i0] - v[j];
        if (cur < minv[j]) {
            minv[j] = cur, way[j] = j0;
        }
        if (minv[j] < delta) {
            delta = minv[j], j1 = j;
        }
    }
}
for (int j = 0; j <= m; j++) {
    if (used[j]) {
        u[p[j]] += delta, v[j] -= delta;
    } else {
        minv[j] -= delta;</pre>
```

2.2 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table Complexidade de tempo:

- \bullet O(Nlog(N)) Preprocessing
- O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
using namespace std;
#define INF 1e9
#define fi first
#define se second
typedef pair <int, int> ii;
vector < int > tin , tout;
vector < vector < int>> adj;
vector<ii> prof;
vector < vector < ii >> st;
int n, timer;
void SparseTable(vector<ii> &v) {
    int n = v.size();
    int e = floor(log2(n));
    st.assign(e + 1, vector < ii > (n));
    for (int i = 0; i < n; i++) {
        st[0][i] = v[i];
    for (int i = 1; i \le e; i++) {
        for (int j = 0; j + (1 << i) <= n; j++) {
            st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1)[j])
                1))]);
void et dfs(int u, int p, int h) {
    tin[u] = timer++;
    prof.emplace back(h, u);
    for (int v : adj[u]) {
        if (v != p) {
            et dfs(v, u, h + 1);
            prof.emplace back(h, u);
```

```
tout[u] = timer++;
void build(int root = 0) {
    tin.assign(n, 0);
    tout.assign(n, 0);
    prof.clear();
    timer = 0;
    et dfs(root, root, 0);
    SparseTable(prof);
int lca(int u, int v) {
    int l = tout[u], r = tin[v];
    if (l > r) 
        swap(1, r);
    int i = floor(log2(r - l + 1));
    return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
int main() {
    cin >> n;
    adj.assign(n, vector < int > (0));
    for (int i = 0; i < n - 1; i++) {
        int a, b;
        cin \gg a \gg b;
        adj[a].push back(b);
        adj[b].push back(a);
    build();
```

2.3 HLD

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N)
- \bullet Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura)
- Point Query/Update: O(Complexidade de query da estrutura)
- LCA: O(Log(N))
- Subtree Query: O(Complexidade de query da estrutura)
- Complexidade de espaço: O(N)

```
vector < ll > aux(v.size());
    for (int i = 0; i < (int)v.size(); i++) {
        aux[pos[i]] = v[i];
    seg::build(aux);
void build (int root,
           vector < i3 > &edges) { // use this if
                                 // weighted edges
    build (root);
    e = 1;
    vector < ll > aux(edges.size() + 1);
    for (auto [u, v, w] : edges) {
        if (pos[u] > pos[v]) {
            swap(u, v);
        aux[pos[v]] = w;
    seg::build(aux);
11 query(int u, int v) {
    if (pos[u] > pos[v]) {
        swap(u, v);
    if (head[u] = head[v]) {
        return seg::query(pos[u] + e, pos[v]);
    } else {
```

```
ll qv = seg :: query(pos[head[v]], pos[v]);
        11 qu = query(u, pai[head[v]]);
        return merge (qu, qv);
void update(int u, int v, ll k) {
    if (pos[u] > pos[v]) {
        swap(u, v);
    if (head[u] = head[v]) {
        seg::update(pos[u] + e, pos[v], k);
        seg::update(pos[head[v]], pos[v], k);
        update(u, pai[head[v]], k);
int lca(int u, int v) {
    if (pos[u] > pos[v]) {
        swap(u, v);
    return (head [u] = head [v] ? u : lca(u, pai [head [v]]);
11 query subtree(int u) {
    return seg::query(pos[u], pos[u] + sz[u] - 1);
```

2.4 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Utiliza [DSU](../../Estruturas%20de%20Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)

• Complexidade de tempo (Construção): O(M log N)

```
struct Edge {
    int u, v, w;
    bool operator<(Edge const &other) {</pre>
        return w < other.w;
};
vector < Edge > edges, result;
int cost;
struct DSU {
    vector < int > pa, sz;
    DSU(int n) {
        sz.assign(n + 5, 1);
        for (int i = 0; i < n + 5; i++) {
            pa.push back(i);
    }
    int root(int a) {
        return pa[a] = (a = pa[a] ? a : root(pa[a]));
    bool find (int a, int b) {
        return root(a) = root(b);
    void uni(int a, int b) {
```

2.5 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
int ra = root(a), rb = root(b);
        if (ra == rb) {
            return;
        if (sz[ra] > sz[rb]) 
            swap(ra, rb);
        pa[ra] = rb;
        sz[rb] += sz[ra];
};
void kruskal(int m, int n) {
    DSU dsu(n);
    sort(edges.begin(), edges.end());
    for (Edge e : edges) {
        if (!dsu.find(e.u, e.v)) {
            cost += e.w;
            result.push back(e); // remove if need only cost
            dsu.uni(e.u, e.v);
```

```
int n;
                          // number of nodes
vector < vector < int >> adj; // adjacency list of graph
vector < bool > visited;
vector < int > tin, low;
int timer;
void dfs (int u, int p = -1) {
    visited[u] = true;
    tin[u] = low[u] = timer++;
    for (int v : adj[u]) {
        if (v = p) {
            continue;
        if (visited[v]) {
            low[u] = min(low[u], tin[v]);
        } else {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
```

2.6 Stoer-Wagner Min Cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
int bestCost = INF;
vector < int > v[MAXN];
for (int i = 0; i < n; i++) {
    v[i]. assign(1, i);
int w[MAXN], sel;
bool exist [MAXN], added [MAXN];
memset(exist, true, sizeof(exist));
for (int phase = 0; phase < n - 1; phase++) {
    memset(added, false, sizeof(added));
    memset(w, 0, sizeof(w));
    for (int j = 0, prev; j < n - phase; j++) {
        sel = -1;
        for (int i = 0; i < n; i++) {
            if (exist[i] && !added[i] && (sel == -1 || w[i] >
                w[sel]))
                sel = i;
        if (j = n - phase - 1) 
            if (w[sel] < bestCost) {</pre>
```

```
bestCost = w[sel];
bestCut = v[sel];
}
v[prev].insert(v[prev].end(), v[sel].begin(),
v[sel].end());
for (int i = 0; i < n; i++) {
        adj[prev][i] = adj[i][prev] += adj[sel][i];
}
exist[sel] = false;
} else {
    added[sel] = true;
    for (int i = 0; i < n; i++) {
        w[i] += adj[sel][i];
}
    prev = sel;
}
prev = sel;
}
return bestCost;</pre>
```

2.7 Shortest Paths

2.7.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

```
const int MAX = 505, INF = 1e9 + 9;

vector < ii > adj [MAX];
int dist [MAX] [MAX];

void dk(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            dist[i][j] = INF;
        }
    }
    for (int s = 0; s < n; s++) {
        priority_queue<ii, vector<ii>, greater<ii>>> fila;
        dist[s][s] = 0;
        fila.emplace(dist[s][s], s);
```

```
const int MAX = 1e5 + 5, INF = 1e9 + 9;
vector<ii> adj [MAX];
int dist [MAX];

void dk(int s) {
    priority_queue<ii, vector<ii>, greater<ii>>> fila;
    fill(begin(dist), end(dist), INF);
    dist[s] = 0;
```

```
while (!fila.empty()) {
    auto [d, u] = fila.top();
    fila.pop();
    if (d != dist[s][u]) {
        continue;
    }
    for (auto [w, v] : adj[u]) {
        if (dist[s][v] > d + w) {
            dist[s][v] = d + w;
            fila.emplace(dist[s][v], v);
        }
    }
}
```

```
fila.emplace(dist[s], s);
while (!fila.empty()) {
    auto [d, u] = fila.top();
    fila.pop();
    if (d != dist[u]) {
        continue;
    }
    for (auto [w, v] : adj[u]) {
        if (dist[v] > d + w) {
```

dist[v] = d + w;

```
49
```

```
fila.emplace(dist[v], v);
const int MAX = 1e5 + 5, INF = 1e9 + 9;
                                                                                       return dist[t];
vector < ii > adj [MAX];
                                                                                  if (d != dist[u]) {
                                                                                       continue;
int dist[MAX];
int dk(int s, int t) {
                                                                                   for (auto [w, v] : adj[u]) {
                                                                                       if (dist[v] > d + w) {
    priority queue<ii, vector<ii>, greater<ii>>> fila;
                                                                                           dist[v] = d + w;
    fill (begin (dist), end (dist), INF);
                                                                                           fila.emplace(dist[v], v);
    dist[s] = 0;
    fila.emplace(dist[s], s);
    while (!fila.empty()) {
        auto [d, u] = fila.top();
        fila.pop();
                                                                              return -1;
        if (u == t) {
```

2.7.2 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
const int MAX = 1e4 + 4;
const 11 \text{ INF} = 1e18 + 18;
vector < ii > adj [MAX];
ll dist [MAX];
void spfa(int s, int n) {
    fill (dist, dist + n, INF);
    vector < int > cnt(n, 0);
    vector < bool > inq(n, false);
    queue<int> fila;
    fila.push(s);
    inq[s] = true;
    dist[s] = 0;
    while (!fila.empty()) {
        int u = fila.front();
        fila.pop();
        inq[u] = false;
```

2.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- \bullet Pré-processamento: O(N * $\log(N))$
- \bullet Consulta do k-ésimo ancestral de u
: $O(\log(N))$
- LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
namespace st {
    int n, me, timer;
    vector < int > tin , tout;
    vector<vector<int>> st;
    void et dfs(int u, int p) {
        tin[u] = ++timer;
        st[u][0] = p;
        for (int i = 1; i \le me; i++) {
            st[u][i] = st[st[u][i-1]][i-1];
        for (int v : adj[u]) {
            if (v != p) {
                et dfs(v, u);
        tout[u] = ++timer;
    void build(int n, int root = 0) {
        n = n;
        tin.assign(n, 0);
        tout.assign(n, 0);
        timer = 0;
       me = floor(log2(n));
        st.assign(n, vector<int>(me + 1, 0));
        et dfs(root, root);
    bool is ancestor(int u, int v) {
namespace st {
    int n, me;
    vector < vector < int >> st;
    void bl dfs(int u, int p) {
        st[u][0] = p;
        for (int i = 1; i \le me; i++) {
            st[u][i] = st[st[u][i-1]][i-1];
```

```
return tin[u] \ll tin[v] \&\& tout[u] \gg tout[v];
int lca(int u, int v) {
    if (is ancestor(u, v)) {
        return u;
    if (is ancestor(v, u)) {
        return v;
    for (int i = me; i >= 0; i--) {
        if (!is ancestor(st[u][i], v)) {
            u = st[u][i];
    return st [u][0];
int ancestor (int u,
             int k) { // k-th ancestor of u
    for (int i = me; i >= 0; i---) {
        if ((1 << i) & k) {
            u = st[u][i];
    return u;
```

```
}
for (int v : adj[u]) {
    if (v != p) {
        bl_dfs(v, u);
    }
}
```

2.9 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

Útil para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
const long long INF = 1e18;
struct FlowEdge {
    int u, v;
    long long cap, flow = 0;
    FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) {
};
struct EdmondsKarp {
    int n, s, t, m = 0, vistoken = 0;
    vector < Flow Edge > edges;
    vector < vector < int >> adj;
    vector < int > visto;
    EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        visto.resize(n);
    }
    void add edge(int u, int v, long long cap) {
        edges.emplace back(u, v, cap);
        edges.emplace back(v, u, 0);
        adj[u].push back(m);
        adj[v].push back(m + 1);
        m += 2;
    int bfs() {
        vistoken++;
        queue<int> fila;
        fila.push(s);
        vector < int > pego(n, -1);
        while (!fila.empty()) {
            int u = fila.front();
            if (u = t) {
                break;
```

```
fila.pop();
            visto[u] = vistoken;
            for (int id : adj[u]) {
                if (edges[id].cap - edges[id].flow < 1) {
                     continue:
                int v = edges[id].v;
                if (visto[v] = -1) {
                     continue:
                fila.push(v);
                pego[v] = id;
        if (pego[t] == -1) {
            return 0;
        long long f = INF;
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            f = min(f, edges[id].cap - edges[id].flow);
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            edges [id]. flow += f;
            edges[id ^ 1].flow -= f;
        return f;
    long long flow() {
        long long maxflow = 0;
        while (long long f = bfs()) {
            \max flow += f;
        return maxflow;
};
```

```
struct MinCostMaxFlow {
    int n, s, t, m = 0;
    11 \text{ maxflow} = 0, \text{ mincost} = 0;
    vector < Flow Edge > edges;
    vector < vector < int >> adj;
    MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) 
        adj.resize(n);
    void add edge(int u, int v, ll cap, ll cost) {
        edges.emplace back(u, v, cap, cost);
        edges.emplace back(v, u, 0, -cost);
        adj [u]. push back (m);
        adj[v].push back(m + 1);
        m += 2;
    bool spfa() {
        vector < int > pego(n, -1);
        vector<ll> dis(n, INF);
        vector < bool > inq(n, false);
        queue < int > fila;
        fila.push(s);
        dis[s] = 0;
        inq[s] = 1;
        while (! fila.empty()) {
            int u = fila.front();
            fila.pop();
            inq[u] = false;
            for (int id : adj[u]) {
                 if (edges[id].cap - edges[id].flow < 1) {
                     continue:
                 }
```

```
int v = edges[id].v;
                 if (dis[v] > dis[u] + edges[id].cost) {
                     dis[v] = dis[u] + edges[id].cost;
                     pego[v] = id;
                     if (!ing[v]) {
                         inq[v] = true;
                         fila.push(v);
        if (pego[t] == -1) {
            return 0;
        11 	ext{ f} = INF:
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            f = min(f, edges[id].cap - edges[id].flow);
            mincost += edges[id].cost;
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            edges [id]. flow += f;
            edges [id ^1]. flow = f;
        \max flow += f;
        return 1;
    ll flow() {
        while (spfa())
        return maxflow;
};
```

```
typedef long long ll;
const 11 \text{ INF} = 1e18;
struct FlowEdge {
    int u, v;
    11 cap, flow = 0;
    FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) {
};
struct Dinic {
    vector < Flow Edge > edges;
    vector<vector<int>> adj;
    int n, s, t, m = 0;
    vector < int > level, ptr;
    queue < int > q;
    Dinic(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        level.resize(n);
        ptr.resize(n);
    }
    void add edge(int u, int v, ll cap) {
        edges.emplace back(u, v, cap);
        edges.emplace back(v, u, 0);
        adj[u].push back(m);
        adj[v].push back(m + 1);
        m += 2;
    bool bfs() {
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int id : adj[u]) {
                 if (edges[id].cap - edges[id].flow < 1) {
                     continue:
                 int v = edges[id].v;
```

```
if (level[v] != -1) {
                continue;
            level[v] = level[u] + 1;
            q.push(v);
    return level [t] !=-1;
ll dfs(int u, ll f) {
    if (f == 0)  {
        return 0;
    if (u = t) {
        return f;
    for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
        int id = adj[u][cid];
        int v = edges[id].v;
        if (level[u] + 1 != level[v] || edges[id].cap -
            edges[id].flow < 1) {
            continue;
        ll tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
        if (tr == 0) {
            continue;
        edges[id].flow += tr;
        edges[id ^ 1].flow -= tr;
        return tr;
   return 0;
11 flow() {
    11 \text{ maxflow} = 0;
    while (true) {
        fill (level.begin(), level.end(), -1);
        level[s] = 0;
        q.push(s);
```

```
if (! bfs()) {
    break;
}
fill(ptr.begin(), ptr.end(), 0);
while (ll f = dfs(s, INF)) {
    maxflow += f;
};

    return maxflow;
};
```

2.10 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

 \bullet Complexidade de tempo: O(N log N + N log M)

```
#include <bits/stdc++.h>
                                                                                     f.pop();
                                                                                     for (int y : nodes) {
using namespace std;
                                                                                         if (adj[x].count(y) == 0) {
                                                                                             aux.insert(y);
set < int > nodes;
vector < set < int >> adj;
                                                                                     for (int y : aux) {
void bfs(int s) {
    queue<int> f;
                                                                                         f.push(y);
    f.push(s);
                                                                                         nodes.erase(y);
    nodes.erase(s);
    set < int > aux;
                                                                                     aux.clear();
    while (!f.empty()) {
        int x = f.front();
```

2.11 2 SAT

Resolve problema do 2-SAT.

• Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
struct sat2 {
    int n;
    vector < vector < int >> g, gt;
    vector < bool > used;
    vector < int > order, comp;
    vector < bool > assignment;
    // number of variables
    sat2(int n) {
        n = 2 * (n + 5);
        g.assign(n, vector<int>());
        gt.assign(n, vector<int>());
    void add edge(int v, int u, bool v sign, bool u sign) {
        g[2 * v + v sign].push back(2 * u + !u sign);
        g[2 * u + u sign].push back(2 * v + !v sign);
        gt [2 * u + !u \text{ sign}]. push back (2 * v + v \text{ sign});
        gt[2 * v + !v sign].push back(2 * u + u sign);
    void dfs1(int v) {
        used[v] = true;
        for (int u : g[v]) {
            if (!used[u]) {
                 dfs1(u);
```

```
}
order.push_back(v);

}
void dfs2(int v, int cl) {
    comp[v] = cl;
    for (int u : gt[v]) {
        if (comp[u] == -1) {
            dfs2(u, cl);
        }
    }

bool solve() {
    order.clear();
    used.assign(n, false);
    for (int i = 0; i < n; ++i) {
        if (!used[i]) {
            dfs1(i);
        }
    }

comp.assign(n, -1);
    for (int i = 0, j = 0; i < n; ++i) {
        int v = order[n - i - 1];
}
</pre>
```

2.12 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
const int INF = 1e9 + 9;
vector < vector < int >> adj;
struct GraphCenter {
    int n, diam = 0;
    vector < int > centros, dist, pai;
    int bfs(int s) {
        queue<int> q;
        q.push(s);
        dist.assign(n + 5, INF);
        pai.assign(n + 5, -1);
        dist[s] = 0;
        int maxidist = 0, maxinode = 0;
        while (!q.empty()) {
            int u = q. front();
            q.pop();
            if (dist[u] >= maxidist)
```

```
return false;
}
assignment[i / 2] = comp[i] > comp[i + 1];
}
return true;
}
};
```

```
maxidist = dist[u], maxinode = u;
}
for (int v : adj[u]) {
    if (dist[u] + 1 < dist[v]) {
        dist[v] = dist[u] + 1;
        pai[v] = u;
        q.push(v);
    }
}
diam = max(diam, maxidist);
return maxinode;
}
GraphCenter(int st = 0) : n(adj.size()) {
    int d1 = bfs(st);
    int d2 = bfs(d1);
    vector<int> path;
    for (int u = d2; u != -1; u = pai[u]) {
```

```
59
```

```
path.push_back(u);

path.push_back(u);

int len = path.size();

if (len % 2 == 1) {
    centros.push_back(path[len / 2]);
} else {

centros.push_back(path[len / 2]);
};
```

Capítulo 3

String

3.1 Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

 $Complexidade de tempo: \ O(|S|+|T|), \ onde \ |S| \ \acute{e} \ o \ somat\acute{o}rio \ do \ tamanho \ das \ strings \ e \ |T| \ \acute{e} \ o \ tamanho \ do \ texto$

```
const int K = 26;
struct Vertex {
   int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
   bool term = false;
   vector<int> idxs;
   char pch;
   Vertex(int p = -1, char ch = '$') : p(p), pch(ch) {
      fill(begin(next), end(next), -1);
      fill(begin(go), end(go), -1);
   }
};
```

```
vector < Vertex > aho(1);
void add_string(const string &s, int idx) {
   int v = 0;
   for (char ch : s) {
      int c = ch - 'a';
      if (aho[v].next[c] == -1) {
            aho[v].next[c] = aho.size();
            aho.emplace_back(v, ch);
      }
      v = aho[v].next[c];
   }
   aho[v].term = true;
```

```
aho[v].idxs.push back(idx);
int go(int u, char ch);
int get link(int u) {
    if (aho[u].link = -1) {
        if (u = 0 | | aho[u].p = 0) {
            aho[u]. link = 0;
            aho[u].link = go(get link(aho[u].p), aho[u].pch);
    return aho[u].link;
int go(int u, char ch) {
    int c = ch - 'a';
    if (aho[u].go[c] = -1) {
        if (aho[u]. next[c] != -1) {
            aho[u].go[c] = aho[u].next[c];
            aho[u].go[c] = u == 0 ? 0 : go(get link(u), ch);
    return aho[u].go[c];
int exi(int u) {
```

3.2 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

• Criar: patricia tree pat;

```
if (aho[u]. exi != -1) {
        return aho[u].exi;
    int v = get link(u);
    return aho[u]. exi = (v = 0 \mid | aho[v]. term ? v : <math>exi(v));
void process(const string &s) {
    int st = 0;
    for (char c : s) {
        st = go(st, c);
        for (int aux = st; aux; aux = exi(aux)) {
            aho[aux].cont++;
    for (int st = 1; st < aho sz; st++) {
        if (!aho[st].term) {
            continue;
        for (int i : aho[st].idxs) {
            // Do something here
            // idx i ocurs + aho[st].cont times
            h[i] += aho[st].cont;
```

- Inserir: pat.insert("sei la");
- Remover: pat.erase("sei la");
- Verificar existência: pat.find("sei la") != pat.end();
- Pegar palavras que começam com um prefixo: auto match = pat.prefix_range("sei");
- Percorrer *match*: for(auto it = match.first; it != match.second; ++it);
- Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower_bound("sei");
- Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper bound("sei");

TODAS AS OPERAÇÕES EM O($|\mathbf{S}|$)

NÃO ACEITA ELEMENTOS REPETIDOS

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
vector < int > pi (string &s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {
        while (j > 0 && s[i] != s[j]) {
           j = p[j - 1];
                                                                              return p;
        if (s[i] = s[j]) {
vector<int> pi(string &s) {
                                                                              t += '$';
   vector < int > p(s.size());
                                                                              vector < int > p = pi(t), match;
                                                                              for (int i = 0, j = 0; i < s.size(); i++) {
    for (int i = 1, j = 0; i < s.size(); i++) {
        while (j > 0 \&\& s[i] != s[j]) {
                                                                                  while (j > 0 \&\& s[i] != t[j]) {
           j = p[j - 1];
                                                                                      j = p[j - 1];
        if (s[i] = s[j]) {
                                                                                  if (s[i] = t[j]) {
                                                                                      j++;
           j++;
       p[i] = j;
                                                                                  if (j = t.size() - 1)  {
                                                                                      match.push back(i - j + 1);
   return p;
                                                                              return match;
vector < int > kmp(string &s, string t) {
```

```
vector < int > pi (string s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {
        while (j > 0 \&\& s[i] != s[j]) {
            j = p[j - 1];
        if (s[i] = s[j]) {
            j++;
        p[i] = j;
    return p;
vector<int> prefixCount(string s) {
struct AutKMP {
    vector < vector < int >> nxt;
    vector < int > pi(string &s) {
        vector < int > p(s.size());
        for (int i = 1, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != s[j]) {
                j = p[j - 1];
            if (s[i] = s[j]) {
                j++;
            p[i] = j;
        return p;
    void setString(string s) {
        s += '#';
        nxt.assign(s.size(), vector < int > (26));
        vector < int > p = pi(s);
        for (int c = 0; c < 26; c++) {
```

```
vector < int > p = pi(s + '#');
int n = s.size();
vector < int > cnt(n + 1, 0);
for (int i = 0; i < n; i++) {
    cnt[p[i]]++;
}
for (int i = n - 1; i > 0; i--) {
    cnt[p[i - 1]] += cnt[i];
}
for (int i = 0; i <= n; i++) {
    cnt[i]++;
}
return cnt;
}</pre>
```

3.4 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
   const long long LIM = 10000006;
   long long p, m;
   vector < long long > pw, hsh;
   hashing(long long _p, long long _m) : p(_p), m(_m) {
      pw.resize(LIM);
      hsh.resize(LIM);
      pw[0] = 1;
      for (int i = 1; i < LIM; i++) {
            pw[i] = (pw[i - 1] * p) % m;
      }
   }
   void set_string(string &s) {
      hsh[0] = s[0];</pre>
```

3.5 Trie

Estrutura que guarda informações indexadas por palavra.

66

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
                                                                                  int get_value(string &s) {
   map<char, int> trie[100005];
                                                                                      \mathbf{int}^{-}\mathbf{id} = 0;
    int value [100005];
                                                                                      for (char c : s) {
    int n nodes = 0;
    void insert (string &s, int v) {
                                                                                          if (!trie[id].count(c)) {
        int id = 0;
                                                                                               return -1;
        for (char c : s) {
                                                                                          id = trie[id][c];
            if (!trie[id].count(c)) {
                 trie[id][c] = ++n nodes;
                                                                                      return value[id];
            id = trie[id][c];
        value[id] = v;
```

3.6 Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s[i...j] seja um palindromo.

 $\ ^{*}$ Complexidade de tempo: O(N)

```
      struct manacher {
      solve_odd(s);

      long long n, count;
      solve_even(s);

      vector<int> d1, d2;
      return count;

      long long solve(string &s) {
      void solve_odd(string &s) {

void solve_odd(string &s) {
```

```
for (int i = 0, l = 0, r = -1; i < n; i++) {
    d1. resize(n);
    for (int i = 0, l = 0, r = -1; i < n; i++) {
                                                                                  int k = (i > r) ? 0 : min(d2[l + r - i + 1], r - i + 1);
        int k = (i > r) ? 1 : min(d1[1 + r - i], r - i + 1);
                                                                                  while (0 \le i - k - 1 \&\& i + k < n \&\& s[i - k - 1] == s[i
        while (0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) {
                                                                                      k++;
                                                                                  count += d2[i] = k--;
        count += d1[i] = k--;
                                                                                  if (i + k > r) 
        if (i + k > r) 
                                                                                      l = i - k - 1;
            l = i - k;
            r = i + k;
                                                                                      r = i + k;
void solve even(string &s) {
                                                                      } mana;
    d2.resize(n);
```

67

3.7 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
68
```

```
string min cyclic shift(string s) {
                                                                                          k++;
    s += s;
    int n = s.size();
    int i = 0, ans = 0;
    while (i < n / 2) {
                                                                                  while (i \le k) {
        ans = i;
        int j = i + 1, k = i;
        while (j < n \&\& s[k] <= s[j]) {
            if(s[k] < s[j]) {
                                                                              return s.substr(ans, n / 2);
                k = i;
            } else {
vector<string> duval(string const &s) {
    int n = s.size();
                                                                                      j++;
    int i = 0;
    vector < string > factorization;
                                                                                      factorization.push back(s.substr(i, j - k));
    while (i < n) {
        int j = i + 1, k = i;
                                                                                      i += j - k;
        while (j < n \&\& s[k] <= s[j]) {
            if (s[k] < s[j]) {
                k = i:
                                                                              return factorization;
            } else {
                k++;
```

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

- * Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
- * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
pair < int, int > busca (string &t, int i, pair < int, int > &range) {
    int esq = range.first, dir = range.second, L = -1, R = -1;
    while (esq \ll dir) {
        int mid = (esq + dir) / 2;
        if (s[sa[mid] + i] == t[i]) {
            L = mid;
        if (s[sa[mid] + i] < t[i]) {
            esq = mid + 1;
        } else {}
            dir = mid - 1;
    }
    esq = range.first, dir = range.second;
    while (esq \le dir) {
        int mid = (esq + dir) / 2;
        if (s[sa[mid] + i] = t[i]) 
            R = mid;
```

```
if (s[sa[mid] + i] <= t[i]) {
        esq = mid + 1;
     } else {
        dir = mid - 1;
     }
}
return {L, R};
}
// count ocurences of s on t
int busca_string(string &t) {
    pair < int, int > range = {0, n - 1};
    for (int i = 0; i < t.size(); i++) {
        range = busca(t, i, range);
        if (range.first == -1) {
            return 0;
        }
}
return range.second - range.first + 1;
}</pre>
```

```
const int MAX_N = 5e5 + 5;

struct suffix_array {
    string s;
    int n, sum, r, ra[MAX_N], sa[MAX_N], auxra[MAX_N], auxsa[MAX_N],
        c[MAX_N], lcp[MAX_N];

void counting_sort(int k) {
        memset(c, 0, sizeof(c));
        for (int i = 0; i < n; i++) {
             c[(i + k < n) ? ra[i + k] : 0]++;
        }
        for (int i = sum = 0; i < max(256, n); i++) {
             sum += c[i], c[i] = sum - c[i];
        }
        for (int i = 0; i < n; i++) {
             sum += c[i], c[i] = sum - c[i];
        }
        for (int i = 0; i < n; i++) {
             suxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
        }
}</pre>
```

```
    for (int i = 0; i < n; i++) {
        ra[i] = auxra[i];
    }
    if (ra[sa[n - 1]] == n - 1) {
        break;
    }
}

void build_lcp() {
    for (int i = 0, k = 0; i < n - 1; i++) {
        int j = sa[ra[i] - 1];
        while (s[i + k] == s[j + k]) {
            k++;
        }
        lcp[ra[i]] = k;
        if (k) {
            k--;
        }
}
</pre>
```

```
}

void set_string(string _s) {
    s = _s + '$';
    n = s.size();
    for (int i = 0; i < n; i++) {
        ra[i] = s[i], sa[i] = i;
    }
    build_sa();
    build_lcp();
    // for (int i = 0; i < n; i++)
    // printf("%2d: %s\n", sa[i], s.c_str() +
    // sa[i]);
}

int operator[](int i) {
    return sa[i];
}
sa;
</pre>
```

Capítulo 4

Paradigmas

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

• Complexidade de tempo (Query offline): O(N * sqrt(N))

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $O(Q * N^{(2/3)})$

vector<int> vec;

namespace mo {

```
typedef pair <int, int> ii;
                                                                               inline int get answer() {
int block sz; // Better if 'const';
                                                                                   // TODO: extract the current answer of the
                                                                                   // data structure
namespace mo {
                                                                                   return 0;
    struct query {
        int l, r, idx;
        bool operator < (query q) const {
                                                                               vector<int> run() {
            int l = l / block sz;
                                                                                   vector < int > answers (queries.size());
            int ql = q.l / block sz;
                                                                                   sort(queries.begin(), queries.end());
            return ii( l, (l \& 1 ? -r : r)) < ii(ql, (ql \& 1 ?
                                                                                   int L = 0;
               -q.r : q.r));
                                                                                   int R = -1;
                                                                                   for (query q : queries) {
    };
                                                                                       while (L > q.1) {
    vector < query > queries;
                                                                                           add(--L);
    void build(int n) {
                                                                                       while (R < q.r) {
                                                                                           add(++R);
        block sz = (int) sqrt(n);
        // TODO: initialize data structure
                                                                                       while (L < q.l) {
    inline void add query(int 1, int r) {
                                                                                           remove (L++);
        queries.push back({1, r, (int)queries.size()});
                                                                                       while (R > q.r) {
    inline void remove(int idx) {
                                                                                           remove (R--);
        // TODO: remove value at idx from data
        // structure
                                                                                       answers[q.idx] = get answer();
    inline void add(int idx) {
                                                                                   return answers;
        // TODO: add value at idx from data
        // structure
                                                                          };
typedef pair <int, int> ii;
                                                                               struct query {
                                                                                   int l, r, t, idx;
typedef tuple < int, int, int iii;
int block sz; // Better if 'const';
                                                                                   bool operator < (query q) const {
```

int l = l / block sz;

int r = r / block sz;

```
int ql = q.l / block sz;
        int qr = q.r / block sz;
        return iii (1, (1 \& 1 ? - r : r), (r \& 1 ? t : -t)) < return iii (1, (1 \& 1 ? - r : r), (r \& 1 ? t : -t))
                iii ( ql, ( ql & 1 ? - qr : qr), ( qr & 1 ? q.t :
                    -q.t));
};
vector < query > queries;
vector < ii > updates;
void build (int n) {
    block sz = pow(1.4142 * n, 2.0 / 3);
    // TODO: initialize data structure
inline void add query(int 1, int r) {
    queries.push back({l, r, (int)updates.size(),
        (int) queries. size() });
inline void add update(int x, int v) {
    updates.push back(\{x, v\});
inline void remove(int idx) {
    // TODO: remove value at idx from data
    // structure
inline void add(int idx) {
    // TODO: add value at idx from data
    // structure
inline void update(int l, int r, int t) {
    auto &[x, v] = updates[t];
    if (1 \le x \&\& x \le r) {
        remove(x);
    swap(vec[x], v);
    if (1 \le x \&\& x \le r) 
        add(x);
```

```
inline int get answer() {
        // TODO: extract the current answer from
        // the data structure
        return 0;
    vector<int> run() {
        vector < int > answers (queries.size());
        sort(queries.begin(), queries.end());
        int L = 0;
        int R = -1;
        int T = 0;
        for (query q : queries) {
            while (T < q.t) {
                update(L, R, T++);
            while (T > q.t) {
                update(L, R, —T);
            while (L > q.l) {
                add(--L);
            while (R < q.r) {
                 add(++R);
            while (L < q.1) {
                remove (L++);
            while (R > q.r) {
                remove (R--);
            answers[q.idx] = get answer();
        return answers;
};
```

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

• -

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
76
```

```
// TO DO: Preencher a Matriz que vai ser
            res = mult(res, b);
                                                                              // exponenciada T[0][1] = 1; T[1][0] = 1;
        b = mult(b, b);
        \exp /= 2;
                                                                              mat prod = exp mod(T, exp);
   return res;
                                                                              mat vec:
                                                                              vec.assign(dim, vi(1));
// MUDA MUITO DE ACORDO COM O PROBLEMA
                                                                              for (int i = 0; i < \dim; i++) {
                                                                                  vec[i][0] = dp[i]; // Valores iniciais
// LEIA COMO FAZER O MAPEAMENTO NO README
ll solve (ll exp, ll dim) {
    if (exp < dim) 
                                                                              mat ans = mult(prod, vec);
        return dp[exp];
                                                                              return ans [0][0];
   T. assign (dim, vi (dim));
```

4.3 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

 $\bullet \ \ Complexidade \ de \ tempo: \ O((N+Q)log(N)\ *\ O(F)), \ onde \ N\ \'e\ o\ tamanho\ do\ espaço\ de\ busca, \ Q\ \'e\ o\ n\'umero\ de\ consultas\ e\ O(F), \ o\ custo\ de\ avalia\~c\~ao\ da\ fun\~c\~ao.$

```
// um mapa
    r = n;
                                                                                  for (auto &vec : queries) {
    mid = (1 + r) / 2;
                                                                                       advance search (i++);
                                                                                      for (auto q : vec) {
void add query(long long v) {
                                                                                           auto [v, id, l, r] = q;
    queries [mid]. push back(\{v, id++, l, r\});
                                                                                           if (1 > r) {
                                                                                               continue:
void advance search(long long v) {
                                                                                           go = 1;
    // advance search
                                                                                           // return while satisfies
                                                                                           if (satisfies(i, v, l, r)) {
                                                                                               ans[i] = get ans();
bool satisfies (long long mid, int v, long long l, long long r) {
                                                                                               long long mid = (i + 1) / 2;
    // implement the evaluation
                                                                                               queries [mid] = query(v, id, l, i - 1);
                                                                                               long long mid = (i + r) / 2;
                                                                                               queries [mid] = query(v, id, i + 1, r);
bool get ans() {
    // implement the get ans
                                                                                       vec.clear();
void parallel binary search(long long l, long long r) {
    bool go = 1;
    while (go) {
        go = 0;
                                                                      } // namespace name
        int i = 0; // outra logica se for usar
```

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

.

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

```
<!- *Read in [English](README.en.md)* ->
```

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
namespace DC {
                                                                                      compute (mid + 1, r, opt, optr);
    vi dp before, dp cur;
    void compute(int 1, int r, int optl, int optr) {
        if (1 > r) {
                                                                                  ll solve(int n, int k) {
                                                                                       dp before. assign (n + 5, 0);
             return;
                                                                                      dp cur.assign(n + 5, 0);
                                                                                       for (int i = 0; i < n; i++) {
        int mid = (1 + r) >> 1;
        pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
                                                                                           dp before[i] = query(0, i);
        for (int i = optl; i \le min(mid, optr); i++) {
             best = max(best,
                                                                                       for (int i = 1; i < k; i++) {
                         \{(i ? dp before[i - 1] : 0) + query(i, mid), \}
                                                                                           compute (0, n - 1, 0, n - 1);
                         i }); // min() se quiser minimizar
                                                                                           dp before = dp cur;
                                                                                      return dp before [n-1];
        dp cur[mid] = best.first;
        int opt = best.second;
        compute (1, \text{ mid} - 1, \text{ optl}, \text{ opt});
```

```
namespace DC { struct range { // eh preciso definir a forma // de calcular o range vi freq; ll sum = 0; int l = 0, r = -1;
```

```
void advance r(int v) { // Mover o 'r' do range
                              // para a direita
        sum += freq[v];
        freq[v]++;
        r++;
    void advance l(int v) { // Mover o 'l' do range
                              // para a direita
        freq[v]--;
        sum = freq[v];
        1++;
    void back_r(int v) { // Mover o 'r' do range
                           // para a esquerda
        freq[v]--;
        sum = freq[v];
        r ---;
    void clear (int n) { // Limpar range
        1 = 0;
        r = -1;
        sum = 0;
        freq.assign(n + 5, 0);
} s;
vi dp before, dp cur;
void compute(int 1, int r, int optl, int optr) {
    if (l > r) {
        return;
    int mid = (1 + r) >> 1;
    pair < ll, int > best = \{0, -1\}; //\{INF, -1\} se quiser minimizar
    while (s.l < optl) {
        s.advance l(v[s.1]);
    while (s.l > optl) {
        s.back l(v[s.l-1]);
    \mathbf{while} \ (\mathbf{s.r} < \mathbf{mid}) \ \{
```

```
s.advance r(v[s.r + 1]);
    while (s.r > mid) {
        s.back r(v[s.r]);
    vi removed:
    for (int i = optl; i \le min(mid, optr); i++) {
        best =
            min (best,
                \{(i ? dp before[i - 1] : 0) + s.sum, i\}); //
                    min() se quiser minimizar
        removed.push back(v[s.l]);
        s.advance l(v[s.1]);
    for (int rem : removed) {
        s.back l(v[s.l-1]);
    dp cur[mid] = best.first;
    int opt = best.second;
   compute (1, \text{ mid} - 1, \text{ optl}, \text{ opt});
    compute(mid + 1, r, opt, optr);
ll solve(int n, int k) {
    dp before.assign(n, 0);
    dp cur.assign(n, 0);
    s.clear(n);
    for (int i = 0; i < n; i++) {
        s.advance r(v[i]);
        dp before[i] = s.sum;
    for (int i = 1; i < k; i++) {
        s.clear(n);
        compute (0, n - 1, 0, n - 1);
        dp before = dp cur;
    return dp before [n-1];
```

4.5 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). Versão para espaços discretos.

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

4.6 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
// chega no final
}

long double res = 1e13; // pode ser maior se precisar
for (int i = 0; i < n; i++) {
    if (!(mask & (1 << i))) {
        long double aux = solve(i, mask | (1 << i), n);
        if (mask) {
            aux += dist[atual][i];
        }
        res = min(res, aux);
}
```

```
return dp[atual][mask] = res;
```

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x. Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas Complexidade de tempo:

- Inserir reta: O(1) amortizado
- Consultar x: O(log(N))
- Consultar x quando x tem crescimento monotônico: O(1)

```
}
11 get_binary_search(11 x) {
    int esq = 0, dir = fila.size() - 1, r = -1;
    while (esq <= dir) {
        int mid = (esq + dir) / 2;
        if (op(x, fila[mid].second)) {
            esq = mid + 1;
            r = mid;
        } else {
            dir = mid - 1;
        }
}
</pre>
```

4.8 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $O(3^N)$

int mask;

```
    return fila[r].first.get(x);
}
// O(1), use only when QUERIES are monotonic!
11 get(ll x) {
    while (fila.size() >= 2 && op(x, fila[1].second)) {
        fila.pop_front();
    }
    return fila.front().first.get(x);
}
```

```
for (int sub = mask; sub; sub = (sub -1) & mask) { }
```

Capítulo 5

Matemática

5.1 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

 \bullet Complexidade de tempo: O(N * $\log(\log(N)))$

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

 \bullet Complexidade de tempo: O(log(N))

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $O(N^{(1/2)})$

```
vector < bool > sieve (int n) {
    vector < bool > is prime(n + 5, true);
    is prime[0] = false;
    is prime[1] = false;
   long long sq = sqrt(n + 5);
    for (long long i = 2; i \le sq; i++) {
        if (is prime[i]) {
bool is prime(int n) {
    for (long long d = 2; d * d <= n; d++) {
        if (n % d == 0) {
            return false:
long long power(long long base, long long e, long long mod) {
    long long result = 1;
    base %= mod;
    while (e) {
        if (e & 1) {
            result = ( int128) result * base % mod;
       base = (\__int128)base * base \% mod;
        e >>= 1;
   return result;
```

```
for (long long j = i * i; j < n; j += i) {
               is prime[j] = false;
bool is composite (long long n, long long a, long long d, int s) {
   long long x = power(a, d, n);
   if (x = 1 | | x = n - 1) {
       return false;
   for (int r = 1; r < s; r++) {
       x = (int128)x * x \% n;
       if (x = n - 1) {
```

return false;

```
d >>= 1, ++r;
}
return true;
}

bool miller_rabin(long long n) {
    if (n < 2) {
        return false;
    }
    int r = 0;
    long long d = n - 1;
    while ((d & 1) == 0) {
        return true;
    }
}

d >>= 1, ++r;
}
for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
        return true;
    }
    if (is_composite(n, a, d, r)) {
        return false;
    }
}
return true;
}
```

5.2 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

• Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10^9 e 10^{18} é necessário codar também [big convolution](big convolution.cpp).

```
typedef long long ll;
typedef vector<ll> poly;

ll root_1[3] = {116744195LL, 313564925LL, 642907570LL};

ll root_pw[3] = {1LL << 23, 1LL << 21};

ll mod[3] = {998244353LL, 1004535809LL, 1092616193LL};

ll modInv(ll b, ll m) {
    ll e = m - 2;
</pre>
```

11 mod mul(11 a, 11 b, 11 m) {

return (int128) a * b % m;

```
ll res = 1;
    while (e) {
        if (e & 1) {
            res = (res * b) \% m;
        e /= 2;
        b = (b * b) \% m;
   return res;
void ntt(poly &a, bool invert, int id) {
    ll n = (ll) a. size(), m = mod[id];
    for (11 i = 1, j = 0; i < n; ++i) {
        ll bit = n \gg 1;
        for (; j >= bit; bit >>= 1) {
            j = bit;
       j += bit;
        if (i < j) {
            swap(a[i], a[j]);
    for (11 len = 2, wlen; len \leq n; len \leq 1) {
        wlen = invert ? root 1[id] : root[id];
        for (ll i = len; i < root pw[id]; i <<= 1) {
            wlen = (wlen * wlen) \% m;
        for (11 i = 0; i < n; i += len) {
            11 \ w = 1;
            for (11 j = 0; j < len / 2; j++) {
```

```
11 u = a[i + j], v = (a[i + j + len / 2] * w) % m;
                a[i + j] = (u + v) \% m;
                a[i + j + len / 2] = (u - v + m) \% m;
                w = (w * wlen) \% m;
    if (invert) {
        ll inv = modInv(n, m);
        for (11 i = 0; i < n; i++) {
            a[i] = (a[i] * inv) \% m;
poly convolution (poly a, poly b, int id = 0) {
    11 n = 1LL, len = (1LL + a.size() + b.size());
    while (n < len) {
        n *= 2;
    a.resize(n);
   b.resize(n);
    ntt(a, 0, id);
    ntt(b, 0, id);
    poly answer(n);
    for (11 i = 0; i < n; i++) {
        answer[i] = (a[i] * b[i]);
    ntt(answer, 1, id);
    return answer;
```

11 ext gcd(11 a, 11 b, 11 &x, 11 &y) {

if (!b) {

```
return a;
} else {
            ll g = ext_gcd(b, a % b, y, x);
            y -= a / b * x;
            return g;
}

// convolution mod 1,097,572,091,361,755,137
poly big_convolution(poly a, poly b) {
            poly r0, r1, answer;
            r0 = convolution(a, b, 1);
            r1 = convolution(a, b, 2);
```

5.3 Eliminação Gaussiana

5.3.1 Gauss Mod 2

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes em \mathbb{Z}_2 (inteiros módulo 2).

• Complexidade de tempo: $O(n^3/32)$

```
// a solucao do sistema (caso exista)
int gauss(vector<bitset <N>> a, int n, int m, bitset <N> &ans) {
    vector <int>    where (m, -1);

for (int col = 0, row = 0; col < m && row < n; col++) {
    for (int i = row; i < n; i++) {
        if (a[i][col]) {</pre>
```

```
swap(a[i], a[row]);
break;
}

if (!a[row][col]) {
    continue;
}
where[col] = row;

for (int i = 0; i < n; i++) {
    if (i != row && a[i][col]) {
        a[i] ^= a[row];
    }
}
row++;
}

for (int i = 0; i < m; i++) {
    if (where[i] != -1) {
        ans[i] = a[where[i]][m] / a[where[i]][i];</pre>
```

5.3.2 Gauss

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes reais.

• Complexidade de tempo: $O(n^3)$

```
 \begin{array}{lll} \textbf{int} & \texttt{gauss}(\texttt{vector} < \texttt{vector} < \texttt{double} >> \texttt{a}, & \texttt{vector} < \texttt{double} > & \texttt{ans}) & \texttt{\{} \\ & \textbf{int} & \texttt{n} = (\texttt{int}) \texttt{a.size}(); \\ & \textbf{int} & \texttt{m} = (\texttt{int}) \texttt{a}[\texttt{0}]. & \texttt{size}() - \texttt{1}; \\ \end{array}
```

```
vector < int > where (m, -1);
for (int col = 0, row = 0; col < m && row < n; ++col) {
    int sel = row;
    for (int i = row; i < n; ++i) {
        if (abs(a[i][col]) > abs(a[sel][col])) {
   if (abs(a[sel][col]) < EPS) 
        continue;
    for (int i = col; i \le m; ++i) {
       swap(a[sel][i], a[row][i]);
    where [col] = row;
    for (int i = 0; i < n; ++i) {
        if (i!= row) {
            double c = a[i][col] / a[row][col];
            for (int j = col; j \le m; ++j) {
                a[i][j] -= a[row][j] * c;
   ++row;
```

```
ans.assign(m, 0);
for (int i = 0; i < m; ++i) {
    if (where[i]!= -1) {
        ans[i] = a[where[i]][m] / a[where[i]][i];
    }
}
for (int i = 0; i < n; ++i) {
    double sum = 0;
    for (int j = 0; j < m; ++j) {
        sum += ans[j] * a[i][j];
    }
    if (abs(sum - a[i][m]) > EPS) {
        return 0;
    }
}

for (int i = 0; i < m; ++i) {
    if (where[i] == -1) {
        return INF;
    }
}
return 1;
}</pre>
```

5.4 Sum of floor (n div i)

Computa

$$\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$$

• Complexidade de tempo: $O(\sqrt{n})$

5.5 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

 \bullet Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: O(log(n))

```
long long gcd(long long a, long long b) {
    return (b == 0) ? a : gcd(b, a % b);

int extended_gcd(int a, int b, int &x, int &y) {
    x = 1, y = 0;
    int x1 = 0, y1 = 1;
    while (b) {
        int q = a / b;
        tie(x, x1) = make_tuple(x1, x - q * x1);

11 extended_gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    } else {
```

5.6 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $O(\sqrt{n})$

```
tie(y, y1) = make_tuple(y1, y - q * y1);
    tie(a, b) = make_tuple(b, a - q * b);
}
return a;
}

ll g = extended_gcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}
```

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX)
- Complexidade de tempo: Fatoraração O(quantidade de fatores de N)
- Complexidade de espaço: O(MAX)

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $O(N^{1/2})$

```
namespace sieve {
    const int MAX = 1e4;
    int lp[MAX + 1], factor[MAX + 1];
    vector<int> pr;
    void build() {
                                                                                         vector < int > factorize (int x) {
         for (int i = 2; i \le MAX; ++i) {
                                                                                              if (x < 2) {
              if (lp[i] = 0) {
                                                                                                   return {};
                  lp[i] = i;
                  pr.push back(i);
                                                                                              vector < int > v;
                                                                                              for (int lpx = lp[x]; x >= lpx; x = factor[x]) {
              for (int j = 0; i * pr[j] <= MAX; ++j) {
                                                                                                   v.emplace back(lp[x]);
                  lp[i * pr[j]] = pr[j];
                  factor[i * pr[j]] = i;
                                                                                              return v;
                  if (pr[j] == lp[i]) {
                       break;
long long mod mul(long long a, long long b, long long m) {
                                                                                                  \mathbf{\hat{x}} = ++\mathbf{i}, \ \mathbf{y} = \mathbf{f}(\mathbf{x});
    return (__int128)a * b % m;
                                                                                              \mathbf{if} ((\mathbf{q} = \text{mod mul}(\text{prd}, \text{max}(\mathbf{x}, \mathbf{y}) - \text{min}(\mathbf{x}, \mathbf{y}), \mathbf{n}))) 
long long pollard rho(long long n) {
    auto f = [n](long long x) {
         return mod mul(x, x, n) + 1;
    long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
                                                                                         return _{gcd}(prd, n);
    while (t++\% 40 | | \gcd(prd, n) == 1) {
// usa miller rabin.cpp!! olhar em
                                                                                    vector < long long > factorize (long long n) {
// matematica/primos usa pollar rho.cpp!! olhar em
                                                                                         if (n == 1) {
// matematica/fatoracao
```

```
95
```

```
return {};
}
if (miller_rabin(n)) {
    return {n};
}
```

```
long long x = pollard_rho(n);
auto l = factorize(x), r = factorize(n / x);
l.insert(l.end(), all(r));
return l;
```

5.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

Retorna -1 se a resposta não existir.

```
11 extended_gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    } else {
        ll g = extended_gcd(b, a % b, y, x);
        y -= a / b * x;
        return g;
    }
}

11 crt(vector<ll> rem, vector<ll> mod) {
    int n = rem.size();
    if (n == 0) {
```

```
return 0;
}

__int128 ans = rem[0], m = mod[0];
for (int i = 1; i < n; i++) {
    l1 x, y;
    l1 g = extended_gcd(mod[i], m, x, y);
    if ((ans - rem[i]) % g != 0) {
        return -1;
    }
    ans = ans + (__int128)1 * (rem[i] - ans) * (m / g) * y;
    m = (__int128)(mod[i] / g) * (m / g) * g;
    ans = (ans % m + m) % m;
}
return ans;
}</pre>
```

5.8 FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): O(N * log(N))
- Complexidade de tempo (considerando alto overhead): $O(n * log^2(n) * log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
typedef vector < cd> poly;
const double PI = acos(-1);
\mathbf{void} fft (poly &a, \mathbf{bool} invert = 0) {
    int n = a.size(), log n = 0;
    while ((1 << log n) < n)  {
        log n++;
    for (int i = 1, j = 0; i < n; ++i) {
        int bit = n \gg 1;
        for (; j >= bit; bit >>= 1) {
            i = bit;
        j += bit;
        if (i < j) {
            swap(a[i], a[j]);
    double angle = 2 * PI / n * (invert ? -1 : 1);
    poly root (n / 2);
    for (int i = 0; i < n / 2; ++i) {
        root[i] = cd(cos(angle * i), sin(angle * i));
    }
```

```
for (long long len = 2; len \leq n; len \leq 1) {
        long long step = n / len;
        long long aux = len / 2;
        for (long long i = 0; i < n; i += len) {
            for (int j = 0; j < aux; ++j) {
                cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
                a[i + j] = u + v;
                a[i + j + aux] = u - v;
   if (invert) {
        for (int i = 0; i < n; ++i) {
            a[i] /= n;
vector<long long> convolution(vector<long long> &a, vector<long long>
   &b) {
   int n = 1, len = a.size() + b.size();
   \mathbf{while} (n < len) {
        n <<= 1;
   a.resize(n);
```

```
b.resize(n);
poly fft_a(a.begin(), a.end());
fft(fft_a);
poly fft_b(b.begin(), b.end());
fft(fft_b);

poly c(n);
for (int i = 0; i < n; ++i) {
    c[i] = fft_a[i] * fft_b[i];
}
fft(c, 1);</pre>
```

5.9 Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

- Complexidade de tempo: O(log(exp)).
- Complexidade de espaço: O(1)

```
11 exp_mod(11 base, 11 exp) {
    11 b = base, res = 1;
    while (exp) {
        if (exp & 1) {
            res = (res * b) % MOD;
        }
}
```

```
b = (b * b) % MOD;
exp /= 2;
}
return res;
}
```

5.10 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $O(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

• Complexidade de tempo: O(N * log(log(N)))

```
vector <int> phi_1_to_n(int n) {
   vector <int> phi(n + 1);
   for (int i = 0; i <= n; i++) {
      phi[i] = i;
   }
  for (int i = 2; i <= n; i++) {
      if (phi[i] == i) {</pre>
```

```
}
    result -= result / i;
}
if (n > 1) {
    result -= result / n;
```

```
}
return result;
```

5.11 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the [exp_mod](/Matemática/Exponenciação%20Modular%20Rápida/exp_mod.cpp) algorithm, thus expects MOD to be prime.

* Time Complexity: O(log(MOD)).

* Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

 $Uses\ the\ [extended_gcd] (/Matem\'{a}tica/GCD/extended_gcd.cpp)\ algorithm,\ thus\ expects\ MOD\ to\ be\ coprime\ with\ a.$

Returns -1 if this assumption is broken.

* Time Complexity: $O(\log(MOD))$.

* Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

* Time Complexity: O(MAX).

```
* Space Complexity: O(MAX).
```

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

return exp mod(a, MOD - 2);

```
* Time Complexity: \mathcal{O}(\mathcal{MAX}).
```

```
* Space Complexity: O(MAX).
```

```
int inv(int a) {
   int x, y;
   int g = extended_gcd(a, MOD, x, y);
   if (g == 1) {
```

Capítulo 6

Theoretical

CAPÍTULO 6. THEORETICAL

6.1 Some Prime Numbers

6.1.1 Left-Truncatable Prime

Prime number such that any suffix of it is a prime number 357,686,312,646,216,567,629,137

6.1.2 Mersenne Primes

Prime numbers of the form $2^m - 1$

Exponent (m)	Decimal representation
2	3
3	7
5	31
7	127
13	8,191
17	131,071
19	524,287
31	2,147,483,647
61	$2,3*10^{18}$
89	$6,1*10^{26}$
107	$1,6*10^{32}$
127	$1,7*10^{38}$

6.2 C++ constants

Constant	C++ Name	Value
π	M_PI	3.141592
$\pi/2$	M_PI_2	1.570796
$\pi/4$	M_PI_4	0.785398
$1/\pi$	M_1_PI	0.318309
$2/\pi$	M_2_PI	0.636619
$2/\sqrt{\pi}$	M_2_SQRTPI	1.128379
$\sqrt{2}$	M_SQRT2	1.414213
$1/\sqrt{2}$	M_SQRT1_2	0.707106
e	M_E	2.718281
$\log_2 e$	M_LOG2E	1.442695
$\log_{10} e$	M_LOG10E	0.434294
ln 2	M_LN2	0.693147
ln 10	M_LN10	2.302585

6.3 Linear Operators

6.3.1 Rotate counter-clockwise by θ°

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

6.3.2 Reflect about the line y = mx

$$\frac{1}{m^2+1} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}$$

6.3.3 Inverse of a 2x2 matrix A

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

6.3.4 Horizontal shear by K

$$\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$$

6.3.5 Vertical shear by K

$$\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$$

6.3.6 Change of basis

 \vec{a}_{β} are the coordinates of vector \vec{a} in basis β .

 \vec{a} are the coordinates of vector \vec{a} in the canonical basis.

 $\vec{b1}$ and $\vec{b2}$ are the basis vectors for β .

C is a matrix that changes from basis β to the canonical basis.

$$C\vec{a}_{\beta} = \vec{a}$$

$$C^{-1}\vec{a} = \vec{a}_{\beta}$$

$$C = \begin{bmatrix} b1_x & b2_x \\ b1_y & b2_y \end{bmatrix}$$

6.3.7 Properties of matrix operations

$$(AB)^{-1} = A^{-1}B^{-1}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(A^{-1})^{T} = (A^{T})^{-1}$$
$$(A+B)^{T} = A^{T} + B^{T}$$
$$det(A) = det(A^{T})$$
$$det(AB) = det(A)det(B)$$

Let A be an NxN matrix:

$$det(kA) = K^N det(A)$$