Chapter 6: Linear Transformations

Cheng Chang, Ph.D.
Department of Math & CS
Mercy College

Contents

1.	Introduction to Linear Transformations	2
2.	The Kernel and Range of a Linear Transformation	4
2.1	. The Kernel of a Linear Transformation	4
2.2	. The Range of a Linear Transformation	4
2.3	. Isomorphisms of Vector Spaces	5
3.	Matrices for Linear Transformations	7

1. Introduction to Linear Transformations

Recall that a real-valued function is a rule that assigns each number in the domain to a unique number in the codomain. In this section, we will look at a very important category of functions (or transformations), the domain and the codomain of these functions are vector spaces.

Definition 1.1. Let V and W be vector spaces. The function

$$T:V \to W$$

is a linear transformation of V into W when the two properties below are true for all \vec{u} and \vec{v} in V and for any scalar c.

- (1) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- (2) $T(c\vec{u}) = cT(\vec{u})$

Example 1.1. Show that the function below is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 .

$$T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$$

Some functions are not linear transformations, as demonstrated in the next example.

Example 1.2. Consider the following functions from \mathbb{R} to \mathbb{R} .

- (1) $f(x) = \sin x$ is not a linear transformation.
- (2) $f(x) = x^2$ is not a linear transformation.
- (3) f(x) = x + 1 is not a linear transformation.

Two simple linear transformations are the **zero transformation** and the **identity transformation**, which are defined below.

- (1) $T(\vec{v}) = \vec{0}$, for all \vec{v}
- (2) $T(\vec{v}) = \vec{v}$, for all \vec{v}

Next, we look at some properties about linear transformations.

Theorem 1.1. Let T be a linear transformation from V into W, where \vec{u} and \vec{v} are in V. Then the properties listed below are true.

- (1) $T(\vec{0}) = \vec{0}$
- (2) $T(-\vec{v}) = -T(\vec{v})$
- (3) $T(\vec{u} \vec{v}) = T(\vec{u}) T(\vec{v})$
- (4) If $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$, then

$$T(c_1\vec{v}_1 + \dots + c_n\vec{v}_n) = c_1T(\vec{v}_1) + \dots + c_nT(\vec{v}_n).$$

In the next two examples, we explore the relationship between linear transformations among \mathbb{R}^n and the linear transformations defined by matrix multiplications.

Example 1.3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T(1,0,0) = (2,-1,4)$$

$$T(0,1,0) = (1,5,-2)$$

$$T(0,0,1) = (0,3,1).$$

Find T(2, 3, -2).

Example 1.4. Define the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ as

$$T(\vec{v}) = A\vec{v} = \begin{bmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}.$$

- (1) Find $T(\vec{v})$ when $\vec{v} = (2, -1)$.
- (2) Show that T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 .

It turns out that all the linear transformations from \mathbb{R}^n into \mathbb{R}^m are given by matrices.

Theorem 1.2. Let A be an $m \times n$ matrix. The function T defined by

$$T(\vec{v}) = A\vec{v}$$

is a linear transformation from \mathbb{R}^n into \mathbb{R}^m . In order to conform to matrix multiplication with an $m \times n$ matrix, $n \times 1$ matrices represent the vectors in \mathbb{R}^n and $m \times 1$ matrices represent the vectors in \mathbb{R}^m .

Finally, we look at some interesting examples about linear transformations.

Example 1.5. Show that the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ represented by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

has the property that it rotates every vector in \mathbb{R}^2 counterclockwise about the origin through the angle θ .

Example 1.6. The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ represented by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

is a projection in \mathbb{R}^3 . If $\vec{v} = (x, y, z)$ is a vector in \mathbb{R}^3 , then $T(\vec{v}) = (x, y, 0)$. In other words, T maps every vector in \mathbb{R}^3 orthogonal projection in the xy-plane.

Example 1.7. Consider $T: P \to \mathbb{R}$ defined by

$$T(p) = \int_{a}^{b} p(x) \, dx$$

where p is a polynomial function. Show that T is a linear transformation from P, the vector space of polynomial functions, into \mathbb{R} , the vector space of real numbers.

2. The Kernel and Range of a Linear Transformation

2.1. The Kernel of a Linear Transformation.

Definition 2.1. Let $T: V \to W$ be a linear transformation. Then the set of all vectors \vec{v} in V that satisfy $T(\vec{v}) = \vec{0}$ is the **kernel** of T and is denoted by $\ker(T)$.

Example 2.1. The kernel of the zero transformation $T: V \to W$ consists of all of V because $T(\vec{v}) = \vec{0}$ for every \vec{v} in V. That is, $\ker(T) = V$.

The kernel of the identity transformation $T: V \to V$ consists of the single element $\vec{0}$. That is, $\ker(T) = \{\vec{v}\}.$

Example 2.2. Find the kernel of the projection $T: \mathbb{R}^3 \to \mathbb{R}^3$ represented by T(x,y,z) = (x,y,0).

Sometimes, the kernel of a linear transformation is not so obvious.

Example 2.3. Find the kernel of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ represented by

$$T(x_1, x_2) = (x_1 - 2x_2, 0, -x_1).$$

Example 2.4. Find the kernel of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(\vec{x}) = A\vec{x}$, where

$$A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix}.$$

The next theorem states that the kernel of every linear transformation $T:V\to W$ is a subspace of V.

Theorem 2.1. The kernel of a linear transformation $T: V \to W$ is a subspace of the domain V.

As we mentioned in the last section, all the linear transformations among \mathbb{R}^n are defined by matrices. In the next example, we shows how to find a basis for the kernel of a transformation defined by a matrix.

Example 2.5. Define $T: \mathbb{R}^5 \to \mathbb{R}^4$ by $T(\vec{x}) = A\vec{x}$, where \vec{x} is in \mathbb{R}^5 and

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}.$$

Find a basis for $\ker(T)$ as a subspace of \mathbb{R}^5 .

Theorem 2.2. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation $T(\vec{x}) = A\vec{x}$. Then the kernel of T is equal to the solution space of $A\vec{x} = \vec{0}$.

2.2. The Range of a Linear Transformation.

The kernel is one of the two critical subspaces associated with a linear transformation. The other is the range of T.

Theorem 2.3. The range of a linear transformation $T: V \to W$ is a subspace of W.

In the next theorem, we look at the range of a linear transformation defined by a matrix.

Theorem 2.4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation $T(\vec{x}) = A\vec{x}$. Then the column space of A is equal to the range of T.

The next definition gives the dimensions of the kernel and the range of a linear transformation.

Definition 2.2. Let $T: V \to W$ be a linear transformation. The dimension of the kernel of T is called the **nullity** of T and is denoted by $\operatorname{nullity}(T)$. The dimension of the range of T is called the **rank** of T and is denoted by $\operatorname{rank}(T)$.

Theorem 2.5. Let $T: V \to W$ be a linear transformation from an n-dimensional vector space V into a vector space W. Then the sum of the dimensions of the range and kernel is equal to the dimension of the domain. That is,

$$rank(T) + nullity(T) = n.$$

Example 2.6. Find the rank and nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the matrix

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Example 2.7. Let $T: \mathbb{R}^5 \to \mathbb{R}^7$ be a linear transformation.

- (1) Find the dimension of the kernel of T when the dimension of the range is 2.
- (2) Find the rank of T when the nullity of T is 4.
- (3) Find the rank of T when $ker(T) = {\vec{0}}$.

Theorem 2.6. Let $T: V \to W$ be a linear transformation. Then T is one-to-one if and only if $\ker(T) = \{\vec{0}\}.$

Theorem 2.7. Let $T: V \to W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if the rank of T is equal to the dimension of W.

Theorem 2.8. Let $T: V \to W$ be a linear transformation with vector spaces V and W, both of dimension n. Then T is one-to-one if and only if it is onto.

Example 2.8. Consider the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ represented by $T(\vec{x}) = A\vec{x}$. Find the nullity and the rank of T, and determine whether T is one-to-one, onto, or neither.

$$a. A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad b. A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$c. A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix} \quad d. A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

2.3. Isomorphisms of Vector Spaces.

Distinct vector spaces such as \mathbb{R}^3 and $M_{3,1}$ can be thought of as being "essentially the same"—at least with respect to the operations of vector addition and scalar multiplication. Such spaces are isomorphic to each other.

Definition 2.3. A linear transformation $T: V \to W$ that is one-to-one and onto is called an **isomorphism**. Moreover, if V and W are vector spaces such that there exists and isomorphism from V to W, then V and W are **isomorphic** to each other.

Theorem 2.9. Two finite-dimensional vector spaces V and W are isomorphic if and only if they are of the same dimension.

Example 2.9. The vector spaces below are isomorphic to each other.

- (1) \mathbb{R}^4
- (2) $M_{4,1}$
- (3) $M_{2,2}$
- $(4) P_3$
- (5) $V = \{(x_1, x_2, x_3, x_4, 0) : x_i \text{ is a real number}\}$

3. Matrices for Linear Transformations

In this section, we will see that for linear transformation involving finite-dimensional vector spaces, matrix representation is always possible.

The key to representing a linear transformation $T:V\to W$ by a matrix is to determine how it acts on a basis for V.

Theorem 3.1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that, for the standard basis vectors $\vec{e_i}$ of \mathbb{R}^n ,

$$T(\vec{e}_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, T(\vec{e}_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, T(\vec{e}_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

Then the $m \times n$ matrix whose n columns correspond to $T(\vec{e_i})$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that $T(\vec{v}) = A\vec{v}$ for every \vec{v} in \mathbb{R}^n . A is called the **standard matrix** for T.

Example 3.1. Find the standard matrix for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (x - 2y, 2x + y).$$

The next theorem emphasizes the usefulness of matrices for representing linear transformations.

Theorem 3.2. Let $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations with standard matrices A_1 and A_2 , respectively. The **composition** $T : \mathbb{R}^n \to \mathbb{R}^p$, defined by $T(\vec{v}) = T_2(T_1(\vec{v}))$, is a linear transformation. Moreover, the standard matrix A for T is the matrix product

$$A = A_2 A_1$$
.

Example 3.2. Let T_1 and T_2 be linear transformations from \mathbb{R}^3 into \mathbb{R}^3 such that $T_1(x, y, z) = (2x + y, 0, x + z)$ and $T_2(x, y, z) = (x - y, z, y)$.

Find the standard matrices for the compositions $T = T_2 \circ T_1$ and $T' = T_1 \circ T_2$.

Another benefit of matrix representation is that it can represent the inverse of a linear transformation.

Definition 3.1. If $T_1: \mathbb{R}^n \to \mathbb{R}^n$ and $T_2: \mathbb{R}^n \to \mathbb{R}^n$ are linear transformations such that for every \vec{v} in \mathbb{R}^n ,

$$T_2(T_1(\vec{v})) = \vec{v}$$
 and $T_1(T_2(\vec{v})) = \vec{v}$

then T_2 is the inverse of T_1 , and T_1 is said to be invertible.

Theorem 3.3. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then the conditions listed below are equivalent.

- (1) T is invertible.
- (2) T is an isomorphism.

(3) A is invertible.

If T is invertible with standard matrix A, then the standard matrix for T^{-1} is A^{-1} .

Example 3.3. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3).$$

Show that T is invertible, and find its inverse.

Finally, we will consider the more general problem of finding a matrix for a linear transformation $T:V\to W$, where B and B' are ordered bases for V and W, respectively.

Theorem 3.4. Let V and W be finite-dimensional vector spaces with bases B and B', respectively, where

$$B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}.$$

If $T: V \to W$ is a linear transformation such that

$$[T(\vec{v}_1)]_{B'} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, [T(\vec{v}_2)]_{B'} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, [T(\vec{v}_n)]_{B'} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

Then the $m \times n$ matrix whose n columns correspond to $[T(\vec{v_i})]_{B'}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

is such that $[T(\vec{v})]_{B'} = A[\vec{v}]_B$ for every \vec{v} in V.

Example 3.4. Let $D_x: P_2 \to P_1$ be the differential operator that maps a polynomial p of degree 2 or less onto its derivative p'. Find the matrix for D_x using the bases

$$B = \{1, x, x^2\}$$
 and $B' = \{1, x\}$.

Example 3.5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$. Find the matrix for T relative to the bases.

$$B = \{(1,2), (-1,1)\}$$
 and $B' = \{(1,0), (0,1)\}.$