Projekt Zaliczeniowy - Numeryczne Modelowanie Układów Dynamicznych

Aleksander Mackiewicz-Kubiak, Kamila Wilczyńska October 20, 2025

1 Zad. 1

Dane:
$$X^{(0)} = \begin{bmatrix} 1000 \\ 2000 \\ 1500 \\ 500 \end{bmatrix}, L = \begin{bmatrix} 0 & 3 & 3 & 3 \\ 0.2 & 0 & 0 & 0 \\ 0 & 0.29 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \end{bmatrix}$$

Szukamy rozkładu populacji po 10 latach, czyli $X^{(10)}$ Wiemy, że $X^{(n)} = L \cdot X^{(n-1)} = L^2 \cdot X^{(n-2)} = \dots = L^n \cdot X^{(0)}$, gdzie jako n przyjmujemy ilosc iteracji popluacji (w naszym przypadku sa to lata)

Zatem:
$$X^{(10)} = L^{10} \cdot X^{(0)}$$

$$\text{Obliczamy $L^{10}:L^{10}$} \approx \begin{bmatrix} 0.16031514 & 0.69316265 & 0.56046762 & 0.49951015 \\ 0.03330068 & 0.16031514 & 0.13355345 & 0.12191494 \\ 0.01178511 & 0.04828598 & 0.0384002 & 0.03375168 \\ 0.00112506 & 0.00589256 & 0.00501183 & 0.00464851 \end{bmatrix}$$

$$\begin{bmatrix} 0.01178311 & 0.04828398 & 0.0384002 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.00589256 & 0.00501183 & 0.00112506 & 0.$$

By opisać zachowanie tej populacji w "długim" okresie musimy znaleźć wartość własna dominujaca dla naszej macierzy L. By być dominujaca musi ona spełniać 4 warunki:

- -musi być jednoznacznie wyznaczona
- -musi być pierwiastkiem jednokrotnym
- -odpowiadajacy jej wektor własny zawiera tylko dodatnie współrzedne
- $-|\lambda_i| < \lambda_1$, gdzie λ_i to inne wartości własne

Wartości własne dla tej macierzy L to: $\lambda_1=0.9023326, \lambda_2=-0.59809547, \lambda_3=-0.15211857+0.09540025i, \lambda_4=-0.15211857-0.09540025i$

Wszystkie wartości własne sa jednoznacznie wyznaczona i jednokrotne. Trzeci i czwarty warunek spełnia jedynie λ_1 gdyż jej wektor własny wynosi:

$$V_1 = \begin{bmatrix} 0.97392431 \\ 0.93706113 \\ 0.17104615 - 0.35362545 \cdot i \\ 0.17104615 + 0.35362545 \cdot i \end{bmatrix}$$

Zatem $\lambda_1=0.9023326$ jest wartościa własna dominujaca. Gdy nasze $n->\infty$ wtedy $\lambda_1^n->0$. A ponieważ ten układ dynamiczny można zapisać w postaci $X^{(n)}=d_1\lambda_1^nV_1+d_2\lambda_2^nV_2+d_3\lambda_3^nV_3+d_4\lambda_4^nV_4=$ $=\lambda_1^k(d_1V_1+d_2V_2(\frac{\lambda_2}{\lambda_1})^n+d_3V_3(\frac{\lambda_3}{\lambda_1})^n+d_4V_4(\frac{\lambda_4}{\lambda_1})^n)$ to nasza populacja bedzie malała w "długim" okresie.

2 Zad. 2

W tym zadaniu bedziemy używać modelu wzrostu Produktu Narodowego Brutto, który badany był w 1982 roku przez Daya. Jest on dany wzorem:

$$k_{t+1} = \sigma \frac{Bk_t^{\beta} (m - k_t)^{\gamma}}{1 + \lambda} \tag{1}$$

W naszym przykładzie przyjmujemy następujace wartości parametrów:

$$\sigma = 0.5 \quad \beta = 0.3 \quad \gamma = 0.2 \quad \lambda = 0.2 \quad m = 1$$
 (2)

Parametr k_t to stosunek ilości zaangażowanego kapitału do pracy, wobec czego jego wartości należa do przedziału (0,1). Przyjmijmy $k_0=0.1$. Dla B=1 wykres przyjmuje postać:

Natomiast dla B=3.3 wykres wyglada tak:

Patrzac na wykres możemy stwierdzić, że dla B=1 istnieje stabilny punkt stały - wykres od pewnego miejsca zbiega do jednej wartości; natomiast dla B=3.3 wykres nie zbiega nigdzie - można powiedzieć, że pojawia sie tu działanie chaotyczne.

3 Zad. 3

Najpierw pokażmy diagram bifurkacji oraz wizualizacje wykładnika Lapunova dla funkcji: $G_{x,\beta}=e^{-5x^2}+\beta$:

Wiemy, że układ jest chaotyczny jeżeli jego wykładnik Lapunova jest wiekszy od 0. Wiec z wykresu możemy sobie odczytać przykładowa wartość β , na przykład $-\frac{1}{2}$. Teraz podstawiajac ta wartośc do wzoru możemy obliczyć i wyświetlić fragment orbity od G_{200} do G_{220} :

n	Gn
200	0.405591
201	-0.060677
202	0.481760
203	-0.186659
204	0.340122
205	0.060786
206	0.481695
207	-0.186561
208	0.340277
209	0.060492
210	0.481870
211	-0.186825
212	0.339861
213	0.061283
214	0.481397
215	-0.186111
216	0.340981
217	0.059148
218	0.482660
219	-0.188016
220	0.337990

4 Zad. 4

Chcemy wygenerować trójkat Sierpińskiego przy pomocy gry w chaos. Jest to algorytm, który generuje kolejne punkty na podstawie wartości poprzednich, podstawiajac je do jednego ze wzorów, gdzie każdy z nich ma dane prawdopodobieństwo pojawienia sie. Najpierw ustalimy sobie punkty poczatkowe x_0, y_0 o wartościach [0,0].

Aby generować kolejne punkty trójkata, wykorzystamy wzory na kontrakcje:

$$[x_{n+1}; y_{n+1}] = \begin{cases} \left[\frac{x_n}{2}; \frac{y_n}{2}\right] & \text{albo} \\ \left[\frac{x_n+1}{2}; \frac{y_n}{2}\right] & \text{albo} \\ \left[\frac{2x_n+1}{4}; \frac{2y_n+\sqrt{3}}{4}\right] \end{cases}$$
(3)

gdzie za każdym razem bedzie losowany jeden z wzorów, a każdy może pojawić sie z tym samym prawdopodobieństwem. W przykładzie bedziemy generować nowe punkty 100000 razy, co zaskutkuje poniższym obrazem:

Obliczmy też wymiar fraktalny otrzymanego zbioru. Wiemy, że jest dany wzorem:

$$D = \frac{\log N}{\log \frac{1}{s}} \tag{4}$$

gdzie N to liczba samopodobnych kopii (u nas wynosi 3, po "podzieleniu" trójkata powstaja 3 takie same) a s to ich wielkość (czyli stała Lipschitza, która u nas wynosi 1/2). Wobec tego, po podstawieniu:

$$D = \frac{\log 3}{\log 2} = 1.5849625007211563 \tag{5}$$