09/230111

COMPOUNDS THAT INHIBIT INTERACTION BETWEEN SIGNAL TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF

The invention disclosed herein was made with Government support under Grant No. R01GM55147-01 from the National Institutes of Health of the United States Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

BACKGROUND

Throughout this application, various publications are referenced by author and date. Full citations for these publications may be found listed alphabetically at the end of the specification immediately preceding Sequence Listing and the claims. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

25

30

The State City, State St

ļ4

ļ-

10

Fas (APO-1/CD95) and its ligand have been identified as important signal-mediators of apoptosis (Itoh, et al. 1991) The structural organization of Fas (APO-1/CD95) has suggested that it is a member of the tumor necrosis factor receptor superfamily, which also includes the p75 nerve growth factor receptor (NGFR) (Johnson, 1986), the T-cell-activation marker CD27 (Camerini, et al. 1991), the Hodgkin-lymphoma-associated antigen CD30 (Smith, et al. (1993), the human B cell antigen CD40 (Stamenkovic, et al. 1989), and T cell antigen OX40 (Mallett, et al. 1990). Genetic mutations of both Fas associated with and its ligand have been lymphoproliferative and autoimmune disorders in mice (Watanabe-Fukunaga, et al. 1992; Takahashi, et al. 1994).

35

Furthermore, alterations of Fas expression level have been thought to lead to the induction of apoptosis in T-cells infected with human immunodeficiency virus (HIV) (Westendorp, et al. 1995).

5

10

15

Several Fas-interacting signal transducing molecules, such as Fas-associated phosphatase-1 (FAP-1) (Figure 1) (Sato, et al. 1995) FADD/MORT1/CAP-1/CAP-2 (Chinnaiyan, et al. 1995; Boldin, et al. 1995; Kischkel, et al. 1995) and RIP (Stanger, et al. 1995), have been identified using yeast two-hybrid and biochemical approaches. All but FAP-1 associate with the functional cell death domain of Fas and overexpression of FADD/MORT1 or RIP induces apoptosis in cells transfected with these proteins. In contrast, FAP-1 is the only protein that associates with the negative regulatory domain (C-terminal 15 amino acids) (Ito, et al. 1993) of Fas and that inhibits Fas-induced apoptosis.

FAP-1 (PTPN13) has several alternatively-spliced forms 20 that are identical to PTP-BAS/hPTP1E/PTPL1, (Maekawa, et al. 1994; Banville, et al. 1994; Saras, et al. 1994) and contains a membrane-binding region similar to those found in the cytoskeleton-associated proteins, ezrin, (Gould et al. 1989) radixin (Funayama et al. 1991) moesin (Lankes, 25 et al. 1991), neurofibromatosis type II gene product (NFII) (Rouleau, et al. 1993), and protein 4.1 (Conboy, et al. 1991), as well as in the PTPases PTPH1 (Yang, et al. 1991), PTP-MEG (Gu, et al. 1991), and PTPD1 (Vogel, FAP-1 intriguingly contains six GLGF 1993). 30 (PDZ/DHR) repeats that are thought to mediate intra-and inter-molecular interactions among protein domains. The third GLGF repeat of FAP-1 was first identified as a specific interaction with showing the C-terminus of Fas receptor (Sato, et al. 1995). 35 suggests that the GLGF domain may play an important role in targeting proteins to the submembranous cytoskeleton

and/or in regulating biochemical activity. GLGF repeats have been previously found in guanylate kinases, as well as in the rat post-synaptic density protein (PSD-95) (Cho, et al. 1992), which is a homolog of the Drosophila tumor lethal-(1)-disc-large-1 suppressor protein, [dlg-1](Woods, et al 1991; Kitamura, et al. 1994). These repeats may mediate homo- and hetero-dimerization, which could potentially influence PTPase activity, binding to Fas, and/or interactions of FAP-1 with other signal transduction proteins. Recently, it has also been reported that the different PDZ domains of proteins interact with the C-terminus of ion channels and other proteins (Figure 1) (TABLE 1) (Kornau, et al. 1995; Kim, et al. 1995; Matsumine, et al. 1996).

15

20

10

5

TABLE 1. Proteins that interact with PDZ domains.

• · · · · · · · · · · · · · · · · · · ·			
Protein	C-terminal	Associated	Reference
	sequence	protein	
Fas (APO-1/CD95)	SLV	FAP-1	2
NMDA receptor NR2 subunit	SDV	PSD95	3
Shaker-type K+ channel	TDV	PSD95 & DLG	4
APC	TEV	DLG	5

10

15

20

SUMMARY OF THE INVENTION

invention provides a composition capable inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L) (Sequence I.D. No.: the cytoplasmic protein may contain the 1). Further, acid sequence $(K/R/Q) - X_n - (G/S/A/E) - L - G - (F/I/L)$ (Sequence I.D. No.: 2), wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In a preferred embodiment, the amino acid sequence is SLGI (Sequence I.D. No.: 3). Further, the invention provides for a composition when the signal-transducing protein has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L) (Sequence I.D. No.: 4), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

This invention also provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L). Further this invention provides for a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I) and a cytoplasmic protein.

This invention also provides for a method inhibiting the proliferation of cancer cells, specifically, where the cancer cells are derived from organs comprising the

colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head, thymus and neck, or the cells are derived from either T-cells or B-cells.

5

10

25

30

This invention also provides for a method of treating cancer in a subject in an amount of the composition of effective to result in apoptosis of the cells, specifically, where the cancer cells are derived from organs comprising the thymus, colon, liver, breast, ovary, testis, lung, stomach, spleen, kidney, prostate, uterus, skin, head and neck, or the cells are derived from either T-cells or B-cells.

This invention also provides for a method of inhibiting the proliferation of virally infected cells, specifically wherein the virally infected cells are infected with the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adenovirus, Human T-cell lymphtropic virus, type 1 or HIV.

This invention also provides a pharmaceutical composition comprising compositions capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

This invention also provides a pharmaceutical composition comprising compounds identified to be capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein.

20

25

35

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Diagram of Fas-associated phosphatase-1 protein, showing the six GLGF (PDZ/DHR) domain repeats; comparison of similar membrane binding sites with other proteins and proteins that contain GLGF (PDZ/DHR) repeats.

- Figures 2A, 2B, 2C and 2D. Mapping of the minimal region of the C-terminal of Fas required for the binding to FAP-1. Numbers at right show each independent clone (Figures 2C and 2D).
 - 2A. Strategy for screening of a random peptide library by the yeast two-hybrid system.
- 15 2B. Alignment of the C-terminal 15 amino acids of Fas between human (Sequence I.D. No.: 5), rat (Sequence I.D. No.: 6), and mouse (Sequence I.D. No.: 7).
 - 2C. The results of screening a semi-random peptide library. Top row indicates the amino acids which were fixed based on the homology between human and rat. Dash lines show unchanged amino acids.
 - The results of screening a random peptide library 2D. (Sequence I.D. No.: 8, Sequence I.D. No.: Sequence I.D. No.: 10, Sequence I.D. No.: 11. Sequence I.D. No.: Sequence I.D. 12, No : 13, Sequence I.D. No.: 14, Sequence I.D. No.: 15, Sequence I.D. No.: 16, Sequence I.D. No.: 17, respectively).
- Figures 3A, 3B and 3C. Inhibition assay of Fas/FAP-1 binding in vitro.
 - 3A. Inhibition assay of Fas/FAP-1 binding using the C-terminal 15 amino acids of Fas. GST-Fas fusion protein (191-355) was used for *in vitro* binding assay (lane 1, 3-10). GST-Fas fusion protein (191-320) (lane 2) and 1 mM human PAMP (N-terminal 20 amino acids of proadrenomedullin, M.W. 2460.9)

10

25

30

(lane 3) were used as negative controls. The concentrations of the C-terminal 15 amino acids added were 1 (lane 4), 3 (lane 5), 10 (lane 6), 30 (lane 7), 100 (lane 8), 300 (lane 9), and 1000 μ M (lane 10).

- 3B. Inhibition assay of Fas/FAP-1 binding using the truncated peptides corresponding to the C-terminal 15 amino acids of Fas. All synthetic peptides were acetylated for this inhibition assay (Sequence I.D. No.: 4, Sequence I.D. No.: 18, Sequence I.D. No.: 19, Sequence I.D. No.: 20, Sequence I.D. No.: 21, Sequence I.D. No.: 22, Sequence I.D. No.: 23, respectively).
- 3C. Inhibitory effect of Fas/FAP-1 binding using the scanned tripeptides.

Figures 4A, 4B, 4C and 4D.

- 4A. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in yeast.
- 20 4B. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in vitro.
 - 4C. Immuno-precipitation of native Fas with GST-FAP-1.
 - 4D. Inhibition of Fas/FAP-1 binding with Ac-SLV or Ac-SLY.

Figures 5A, 5B, 5C, 5D, 5E and 5F. Microinjection of Ac-SLV into the DLD-1 cell line. Triangles identify the cells both that were could be microinjected with Ac-SLV and that showed condensed chromatin identified. On the other hand, only one cell of the area appeared apoptotic

- other hand, only one cell of the area appeared apowhen microinjected with Ac-SLY.
- 5A. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown in phase contrast.
- 35 5B. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown in phase contrast.

10

15

25

- 5C. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown stained with FITC.
- 5D. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown stained with FITC.
- 5E. Representative examples of the cells microinjected with Ac-SLV in the presence of 500 ng/ml CH11 are shown with fluorescent DNA staining with Hoechst 33342.
 - 5F. Representative examples of the cells microinjected with AC-SLY in the presence of 500 ng/ml CH11 are shown in fluorescent DNA staining with Hoechst 33342.

Figure 6. Quantitation of apoptosis in microinjected DLD-1 cells.

Figures 7A, 7B, 7C, 7D, 7E, 7F, 7G, and 7H.

- 20 7A. Amino acid sequence of human nerve growth factor receptor (Sequence I.D. No.: 24).
 - 7B. Amino acid sequence of human CD4 receptor (Sequence I.D. No. 25).
 - 7C. The interaction of Fas-associated phosphatase-1 to the C-terminal of nerve growth factor receptor (NGFR) (p75).
 - 7D. Amino acid sequence of human colorectal mutant cancer protein (Sequence I.D. No.: 26).
 - 7E. Amino acid sequence of protein kinase C, alpha type.
- 30 7F. Amino acid sequence of serotonin 2A receptor (Sequence I,D. No.: 27).
 - 7G. Amino acid sequence of serotonin 2B receptor (Sequence I.D. No.: 29).
- 7H. Amino acid sequence of adenomatosis polyposis coli 35 protein (Sequence I.D. No.: 29).

Figure 8. Representation of the structural characteristics of p75 NGFR (low-affinity nerve growth factor receptor).

5 Figure 9. Comparison of the C-terminal ends of Fas and p75 NGFR.

Figure 10. In vitro interaction of ³⁵S-labeled FAP-1 with various receptors expressed as GST fusion proteins. The indicated GST fusion proteins immobilized on glutathione-Sepharose beads were incubated with in vitro translated, ³⁵S-labeled FAP-1 protein. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.

15

10

Figures 11A and 11B. In vitro interaction ³⁵S-labeled FAP-1 with GST-p75 deletion mutants.

20

11A.

11B.

Schematic representation of the GST fusion proteins containing the cytoplasmic domains of p75 and p75 deletion mutants. Binding of FAP-1 to the GST fusion proteins with various p75 deletion mutants is depicted at the right and is based on data from (11B).

25

Interaction of in vitro translated, ³⁵S-labeled FAP-1 protein with various GST fusion proteins immobilized on glutathione-Sepharose beads. After the beads were washed, retained FAP-1 protein was analyzed by SDS-PAGE and autoradiography.

30

35

Figure 12. The association between LexA-C-terminal cytoplasmic region of p75NGFR and VP16-FAP-1. The indicated yeast strains were constructed by transformation and the growth of colonies was tested. +/- indicates the growth of colonies on his plate.

30

35

DETAILED DESCRIPTION OF THE INVENTION

As used herein, amino acid residues are abbreviated as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

- In order to facilitate an understanding of the material which follows, certain frequently occurring methods and/or terms are best described in Sambrook, et al., 1989.
- 15 The present invention provides for a composition capable inhibiting specific binding between a signaltransducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis 20 encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids. Further, the cytoplasmic protein may contain the amino acid sequence $(K/R/Q)-X_n$ -(G/S/A/E)-L-G-(F/I/L), wherein X represents any amino acid which is selected from the group comprising the twenty 25 naturally occurring amino acids and n represents at least 2, but not more than 4. Specifically, in a preferred embodiment, the cytoplasmic protein contains the amino acid sequence SLGI.

The amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$ is also well-known in the art as "GLGF (PDZ/DHR) amino acid domain." As used herein, "GLGF (PDZ/DHR) amino acid domain" means the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$.

In a preferred embodiment, the signal-transducing protein

has at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids.

The compositions of the subject invention may be, but not limited to, antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins. The composition may be naturally occurring and obtained by purification, or may be non-naturally occurring and obtained by synthesis.

Specifically, the composition may be a peptide containing sequence (S/T) - X - (V/I/L) - COOH, wherein each represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. In preferred embodiments, the peptide contains one of the following sequences: DSENSNFRNEIQSLV, RNEIQSLV, NEIQSLV, EIQSLV, IQSLV, OSLV, SLV, IPPDSEDGNEEQSLV, DSEMYNFRSQLASVV, IDLASEFLFLSNSFL, PPTCSQANSGRISTL, SDSNMNMNELSEV, QNFRTYIVSFV, RETIESTV, RGFISSLV, TIQSVI, ESLV. A further preferred embodiment would be an organic compound which has the sequence Ac-SLV-COOH, wherein the Ac represents an acetyl and each represents a peptide bond.

35

20

25

30

An example of the subject invention is provided <u>infra</u>. Acetylated peptides may be automatically synthesized on

15

20

30

35

an Advanced ChemTech ACT357 using previously published procedures by analogy. Wang resin was used for each run and N°-Fmoc protection was used for all amino acids, and then 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequently HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac_2O/DMF . The acetylated peptide was purified by HPLC and characterized by FAB-MS and 1H -NMR.

10 Further, one skilled in the art would know how to construct derivatives of the above-described synthetic peptides coupled to non-acetyl groups, such as amines.

This invention also provides for a composition capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein.

The compositions of the subject invention includes antibodies, inorganic compounds, organic compounds, peptides, peptidomimetic compounds, polypeptides or proteins, fragments or derivatives which share some or all properties, e.g. fusion proteins.

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein and a cytoplasmic protein containing the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses

10

15

20

25

30

35

separating the alternative amino acids, which comprises (a) contacting the cytoplasmic protein bound to the signal-transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the signal-transducing protein bound to the cytoplasmic protein and the bound cytoplasmic protein to form a complex; and (b) detecting the displaced transducing protein or the complex formed in step (a) wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein.

The inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein may affect the transcription activity of a reporter gene.

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the transducing protein is displaced.

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not histidine limited to, resistant genes, resistant genes, β -galactosidase gene.

WO 98/05347 PCT/US97/12677

-14-

Further the cytoplasmic protein may be bound to a solid support. Also the compound may be bound to a solid support and comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

An example of the method is provided infra. One can identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct methods of detection such as immuno-precipitation of the cytoplasmic protein and the compound bound to a detectable marker. Further, one could use indirect methods of detection that would detect the increase or decrease in levels of As discussed infra, one could construct expression. synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into the L40-strain with an appropriate cell line having an appropriate reporter gene. One could then detect whether inhibition had occurred by detecting the levels of expression of the In order to detect the expression levels reporter gene. of the reporter gene, one skilled in the art could employ a variety of well-known methods, e.g. two-hybrid systems in yeast, mammals or other cells.

25

30

35

5

10

15

20

Further, the contacting of step (a) may be <u>in vitro</u>, <u>in vivo</u>, and specifically in an appropriate cell, e.g. yeast cell or mammalian cell. Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk cells, Cos cells, etc.

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells (including gram positive cells), fungal cells, insect cells, and other animals cells.

Further, the signal-transducing protein may be a cell surface receptor, signal transducer protein, or a tumor suppressor protein. Specifically, the cell surface protein is the Fas receptor and may be expressed in cells derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, lung, stomach, prostate, uterus, skin, head, and neck, or expressed in cells comprising T-cells and B-cells. In a preferred embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

15

10

Further, the signal transducer protein may be Protein Kinase- $C-\alpha$ -type.

20

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase-1.

25

30

35

This invention also provides a method of identifying a compound capable of inhibiting specific binding between a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids, and a cytoplasmic protein which comprises (a) contacting the signal-transducing protein bound to the cytoplasmic protein with

10

15

20

25

a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to displace the cytoplasmic protein bound to the signal-transducing protein and bound signal-transducing protein to form a complex; and (b) detecting the displaced cytoplasmic protein or the complex of step (a), wherein the displacement indicates that the compound is capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein. inhibition of the specific binding between the signal-transducing protein and the cytoplasmic protein affects the transcription activity of a reporter gene. Further, in step (b), the displaced signal-transducing protein or the complex is detected by comparing the transcription activity of a reporter gene before and after the contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the cytoplasmic protein is displaced.

Further, in step (b), the displaced cytoplasmic protein or the complex is detected by comparing the transcription activity of a reporter gene before and after contacting with the compound in step (a), where a change of the activity indicates that the specific binding between the signal-transducing protein and the cytoplasmic protein is inhibited and the transducing protein is displaced.

30

35

As used herein, the "transcription activity of a reporter gene" means that the expression level of the reporter gene will be altered from the level observed when the signal-transducing protein and the cytoplasmic protein are bound. One can also identify the compound by detecting other biological functions dependent on the binding between the signal-transducing protein and the

cytoplasmic protein. Examples of reporter genes are numerous and well-known in the art, including, but not limited to, histidine resistant genes, ampicillin resistant genes, β -galactosidase gene.

5

Further, the cytoplasmic protein may be bound to a solid support or the compound may be bound to a solid support, comprises an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

15

10

An example of the method is provided infra. One could identify a compound capable of inhibiting specific binding between the signal-transducing protein and the cytoplasmic protein using direct methods of detection such as immuno-precipitation of the cytoplasmic protein compound bound with a detectable Further, one could use indirect methods of detection that would detect the increase or decrease in levels of gene As discussed infra, one could construct synthetic peptides fused to a LexA DNA binding domain. These constructs would be transformed into L40-strain with an appropriate cell line having a reporter gene. One could then detect whether inhibition had occurred by detecting the levels of the reporter gene. methods are also well known in the art, such as employing a yeast two-hybrid system to detect the expression of a reporter gene.

25

30

20

Further the contacting of step (a) can be <u>in vitro</u> or <u>in vivo</u>, specifically in a yeast cell or a mammalian cell. Examples of mammalian cells include, but not limited to, the mouse fibroblast cell NIH 3T3, CHO cells, HeLa cells, Ltk cells, Cos cells, etc.

35

Other suitable cells include, but are not limited to, prokaryotic or eukaryotic cells, e.g. bacterial cells

10

20

30

35

(including gram positive cells), fungal cells, insect cells, and other animals cells.

Further, the signal-transducing protein is a cell surface signal transducer protein, orsuppressor protein. Specifically, the cell surface protein is the Fas receptor and is expressed in cells derived from organs comprising thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or expressed in cells T-cells comprising and B-cells. In preferred a embodiment, the T-cells are Jurkat T-cells.

Further, the cell-surface receptor may be a CD4 receptor, p75 receptor, serotonin 2A receptor, or serotonin 2B receptor.

Further, the signal transducer protein may be Protein Kinase- $C-\alpha$ -type.

Further, the tumor suppressor protein may be a adenomatosis polyposis coli tumor suppressor protein or colorectal mutant cancer protein.

Further, the cytoplasmic protein contains the amino acid sequence SLGI, specifically Fas-associated phosphatase1.

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the above-described composition, specifically, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

30

35

WO 98/05347 PCT/US97/12677

-19-

This invention also provides a method of inhibiting the proliferation of cancer cells comprising the compound identified by the above-described method, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

The invention also provides a method of treating cancer in a subject which comprises introducing to the subject's cancerous cells an amount of the above-described composition effective to result in apoptosis of the cells, wherein the cancer cells are derived from organs including, but not limited to, thymus, liver, kidney, colon, ovary, breast, testis, spleen, stomach, prostate, uterus, skin, head and neck, or wherein the cancer cells are derived from cells comprising T-cells and B-cells.

As used herein "apoptosis" means programmed cell death of the cell. The mechanisms and effects of programmed cell death differs from cell lysis. Some observable effects of apoptosis are: DNA fragmentation and disintegration into small membrane-bound fragments called apoptotic bodies.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

The invention also provides for a method of inhibiting the proliferation of virally infected cells comprising the above-described composition or the compound identified by the above-described, wherein the virally infected cells comprise Hepatitis B virus, Epstein-Barr

10

20

25

30

35

virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

The invention also provides a method of treating a virally-infected subject which comprises introducing to the subject's virally- infected cells the above-described composition effective to result in apoptosis of the cells or the compound identified by the above-described method of claim 27 effective to result in apoptosis of the cells, wherein the virally infected cells comprise the Hepatitis B virus, Epstein-Barr virus, influenza virus, Papilloma virus, Adeno virus, Human T-cell lymphtropic virus, type 1 or HIV.

Means of detecting whether the composition has been effective to result in apoptosis of the cells are well-known in the art. One means is by assessing the morphological change of chromatin using either phase contrast or fluorescence microscopy.

This invention also provides for a pharmaceutical composition comprising the above-described composition of in an effective amount and a pharmaceutically acceptable carrier.

This invention also provides for a pharmaceutical composition comprising the compound identified by the above-described method of in an effective amount and a pharmaceutically acceptable carrier.

This invention further provides a composition capable of specifically binding a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, and the X

WO 98/05347 PCT/US97/12677

-21-

represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids. The composition may contain the amino acid sequence (G/S/A/E)-L-G-(F/I/L), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, and each slash within such parentheses separating the alternative amino acids. In a preferred embodiment, the composition contains the amino acid sequence $(K/R/Q)-X_n-(G/S/A/E)-L-G-(F/I/L)$. wherein X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino acids and n represents at least 2, but not more than 4. In another preferred embodiment, the composition contains the amino acid sequence SLGI.

15

20

25

30

35

10

5

This invention further provides a method for identifying compounds capable of binding to a signal-transducing protein having at its carboxyl terminus the amino acid sequence (S/T)-X-(V/L/I), wherein each - represents a peptide bond, each parenthesis encloses amino acids which are alternatives to one other, each slash within such parentheses separating the alternative amino acids, the X represents any amino acid which is selected from the group comprising the twenty naturally occurring amino which comprises (a) contacting the transducing protein with a plurality of compounds under conditions permitting binding between a known compound previously shown to be able to bind to the signaltransducing protein to form a complex; and (b) detecting the complex formed in step (a) so as to identify a compound capable of binding to the signal-transducing protein. Specifically, the identified compound contains the amino acid sequence (G/S/A/E)-L-G-(F/I/L). further preferred embodiment, the identified compound contains the amino acid sequence SLGI.

Further, in the above-described method, the signal-

10

15

20

25

30

35

transducing protein may be bound to a solid support. Also, the compound may be bound to a solid support, and may comprise an antibody, an inorganic compound, an organic compound, a peptide, a peptidomimetic compound, a polypeptide or a protein.

Further, the signal-transducing protein may be a cell-surface receptor or a signal transducer. Specifically, the signal-transducing protein may be the Fas receptor, CD4 receptor, p75 receptor, serotonin 2A receptor, serotonin 2B receptor, or protein kinase- $C-\alpha$ -type.

This invention also provides a method of restoring negative regulation of apoptosis in a cell comprising the above-described composition or a compound identified by the above-described method.

As used herein "restoring negative regulation of apoptosis" means enabling the cell from proceeding onto programmed cell death.

For example, cells that have functional Fas receptors and Fas-associated phosphatase 1 do not proceed programmed cell death or apoptosis due to the negative regulation of Fas by the phosphatase. However, if Fasassociated phosphatase 1 is unable to bind to the carboxyl terminus of the Fas receptor ((S/T)-X-(V/L/I) region) , e.g. mutation or deletion of at least one of the amino acids in the amino acid sequence (G/S/A/E)-L-Gthe cell will proceed to apoptosis. introducing a compound capable of binding to the carboxyl terminus of the Fas receptor, one could mimic the effects of a functional phosphatase and thus restore the negative regulation of apoptosis.

This invention also provides a method of preventing apoptosis in a cell comprising the above-described

composition or a compound identified by the above-described method.

This invention also provides a means of treating pathogenic conditions caused by apoptosis of relevant cells comprising the above-described composition or the compound identified by the above-described method.

This invention is illustrated in the Experimental Details section which follows. These sections are set forth to aid in an understanding of the invention but are not intended to, and should not be construed to, limit in any way the invention as set forth in the claims which follow thereafter.

15

20

25

30

35

FIRST SERIES OF EXPERIMENTS

Experimental Details

5 Methods and Materials

1. Screening a semi-random and random peptide library.

numerous mutations in restricted PCR mutagenesis with sequence, degenerate oligonucleotides was employed according to a protocol described elsewhere (Hill, et al. 1987). Based on the homology between human and rat, two palindromic sequences were designed for construction of semi-random library. two primers used 5'-CGGAATTCNNNNNNNNAACAGCNNNNNNNNAATGAANNNCAAAGTCTGNN (30) NTGAGGATCCTCA-3' (Seq. I.D. No.: and 5'-CGGAATTCGACTCAGAANNNNNNAACTTCAGANNNNNNATCNNNNNNNNNGT CTGAGGATCCTCA-3' (Seq. I.D. No.: 31). Briefly, the two primers (each 200 pmol), purified by HPLC, were annealed at 70 °C for 5 minutes and cooled at 23 °C for 60 minutes. A Klenow fragment (5 U) was used for filling in with a dNTP mix (final concentration, 1 mM per each dNTP) at 23°C for 60 minutes. The reaction was stopped with 1 μ l of 0.5 M EDTA and the DNA was purified with ethanol The resulting double-stranded DNA was precipitation. digested with EcoRI and BamHI and re-purified by electrophoresis on non-denaturing polyacrylamide gels. The double-strand oligonucleotides were then ligated into the EcoRI-BamHI sites of the pBTM116 plasmid. ligation mixtures were electroporated into the E. coli XL1-Blue MRF' (Stratagene) for the plasmid library. The large scale transformation was carried out as previously The plasmid library was transformed into reported. cells L40-strain (MATa, trp1, leu2, his3, LYS2: (lexAop)4-HIS3, URA3:: (lexAop)9-lacZ) carrying the plasmid pVP16-31 containing a FAP-1 cDNA (Sato, et al.

WO 98/05347

And that then the small that the the the thing then that then that the

1995). Clones that formed on histidine-deficient medium (His*) were transferred to plates containing 40 μ g/ml X-gal to test for a blue reaction product (ß-gal*) in plate and filter assays. The clones selected by His* and ß-gal* assay were tested for further analysis. The palindromic oligonucleotide, 5'-CGGAATTC-(NNN)₄₋₁₅-TGAGGATCCTCA-3' (Seq. I.D. No. 32), was used for the construction of the random peptide library.

10

15

20

25

5

2. Synthesis of peptides

Peptides were automatically synthesized on an Advanced ChemTech ACT357 by analogy to published procedures (Schnorrenberg and Gerhardt, 1989). Wang resin (0.2-0.3 mmole scale) was used for each run and N°-Fmoc protection was employed for all amino acids. Deprotection was achieved by treatment with 20% piperidine/DMF and coupling was completed using DIC/HOBt and subsequent HBTU/DIEA. After the last amino acid was coupled, the growing peptide on the resin was acetylated with Ac₂O/DMF. The peptide was cleaved from the resin with concomitant removal of all protecting groups by treating with TFA. The acetylated peptide was purified by HPLC and characterized by FAB-MS and $^1\text{H}\text{-NMR}$.

- Inhibition asssay of Fas/FAP-1 binding using the Cterminal 15 amino acids of Fas.
- 30 HFAP-10 cDNA (Sato, et al. 1995) subcloned into the Bluescript vector pSK-II (Stratagene) vitro-translated from an internal methionine codon in the presence of 35S-L-methionine using a coupled in vitro transcription/translation system (Promega, TNT lysate) and T7 RNA polymerase. The resulting 35S-labeled protein 35 was incubated with GST-Fas fusion proteins that had been immobilized on GST-Sepharose 4B affinity beads

(Pharmacia) in a buffer containing 150 mM NaCl, 50 mM Tris [pH 8.0], 5 mM DTT, 2 mM EDTA, 0.1 % NP-40, 1 mM PMSF, 50 μ g/ml leupeptin, 1 mM Benzamidine, and 7 μ g/ml pepstatin for 16 hours at 4 °C. After washing vigorously 4 times in the same buffer, associated proteins were recovered with the glutathione-Sepharose beads by centrifugation, eluted into boiling Laemmli buffer, and analyzed by SDS-PAGE and fluorography.

- 10 4. Inhibition assay of terminal 15 amino acids of Fas and inhibitory effect of Fas/FAP-1 binding using diverse tripeptides.
- In vitro-translated [35]HFAP-1 was purified with a NAP-5 column (Pharmacia) and incubated with 3 µM of GST-fusion proteins for 16 hours at 4°C. After washing 4 times in the binding buffer, radioactivity incorporation was determined in a b counter. The percentage of binding inhibition was calculated as follows: percent inhibition = [radioactivity incorporation using GST-Fas (191-335) with peptides radioactivity incorporation using GST-Fas (191-320) with peptides] / [radioactivity incorporation using GST-Fas (191-335) without peptides radioactivity incorporation using GST-Fas (191-320) without peptides].
 - 5. Interaction of the C-terminal 3 amino acids of Fas with FAP-1 in yeast and in vitro.
- The bait plasmids, pBTM116 (LexA)-SLV, -PLV, -SLY, and -SLA, were constructed and transformed into L40-strain with pVP16-FAP-1 or -ras. Six independent clones from each transformants were picked up for the analysis of growth on histidine-deficient medium. GST-Fas, -SLV, and PLV were purified with GST-Sepharose 4B affinity beads (Pharmacia). The methods for in vitro binding are described above.

Und that that the

WO 98/05347 PCT/US97/12677

-27-

6. Immuno-precipitation of native Fas with GST-FAP-1 and inhibition of Fas/FAP-1 binding with Ac-SLV.

GST-fusion proteins with or without FAP-1 were incubated with cell extracts from Jurkat T-cells expressing Fas. The bound Fas was detected by Western analysis using anti-Fas monoclonal antibody (F22120, Transduction Laboratories). The tripeptides, Ac-SLV and Ac-SLY were used for the inhibition assay of Fas/FAP-1 binding.

10

15

20

25

5

7. Microinjection of Ac-SLV into the DLD-1 cell line. DLD-1 human colon cancer cells were cultured in RPMI 1640 medium containing 10% FCS. For microinjection, cells were plated on CELLocate (Eppendorf) at 1 X 105 cells/2 ml in a 35 mm plastic culture dish and grown for 1 day. Just before microinjection, Fas monoclonal antibodies CH11 (MBL International) was added at the concentration of 500 ng/ml. All microinjection experiments were performed using an automatic microinjection system (Eppendorf transjector 5246, micro-manipulator 5171 and Femtotips) 1995). Synthetic tripeptides (Pantel, et al. suspended in 0.1% (w/v) FITC-Dextran (Sigma)/K-PBS at the concentration of 100 mM. The samples were microinjected into the cytoplasmic region of DLD-1 cells. 20 hours postinjection, the cells were washed with PBS and stained with 10 μ g/ml Hoechst 33342 in PBS. incubation at 37°C for 30 minutes, the cells photographed and the cells showing condensed chromatin were counted as apoptotic.

30

8. Quantitation of apoptosis in microinjected DLD-1 cells.

For each experiment, 25-100 cells were microinjected.

Apoptosis of microinjected cells was determined by assessing morphological changes of chromatin using phase contrast and fluorescence microscopy (Wang, et al., 1995;

WO 98/05347 PCT/US97/12677

-28-

McGahon, et al., 1995). The data are means +/- S.D. for two or three independent determinations.

Discussion

5

10

15

20

25

30

35

In order to identify the minimal peptide stretch in the C-terminal region of the Fas receptor necessary for FAP-1 binding, an in vitro inhibition assay of Fas/FAP-1 binding was used using a series of synthetic peptides as well as yeast two-hybrid system peptide libraries (Figure 2A). First, semi-random libraries (based on the homology between human and rat Fas) (Figures 2B and 2C) of 15 amino acids fused to a LexA DNA binding domain were constructed and co-transformed into yeast strain L40 with pVP16-31 (Sato, et al. 1995) that was originally isolated as FAP-1. After the selection of 200 His colonies from an initial screen of 5.0 X 106 (Johnson, et al. transformants, 100 colonies that were β -galactosidase positive were picked for further analysis. Sequence analysis of the library plasmids encoding the C-terminal 15 amino acids revealed that all of the C-termini were either valine, leucine or isoleucine residues. a random library of 4-15 amino acids fused to a LexA DNA binding domain was constructed and screened according to this strategy (Figure 2D). Surprisingly, all of the third amino acid residues from the C-termini were serine, and the results of C-terminal amino acid analyses were identical to the screening of the semi-random cDNA libraries. No other significant amino acid sequences were found in these library screenings, suggesting that the motifs of the last three amino acids (tS-X-V/L/I) are very important for the association with the third PDZ domain of FAP-1 and play a crucial in protein-protein interaction as well as for the regulation of Fas-induced apoptosis. To further confirm whether the last three amino acids are necessary and sufficient for Fas/FAP-1 binding, plasmids of the LexA-SLV, -PLV, -PLY,

10

15

20

25

30

35

-SLY, and -SLA fusion proteins were constructed and co-transformed into yeast with pVP16-FAP-1. The results showed that only LexA-SLV associated with FAP-1, whereas LexA-PLV, -PLY, -SLY, and -SLA did not (Figure 4A). In vitro binding studies using various GST-tripeptide fusions and *in vitro*-translated FAP-1 were consistent with these results (Figure 4B).

In addition to yeast two-hybrid approaches, in vitro inhibition assay of Fas/FAP-1 binding was also used. First, a synthetic peptide of the C-terminal 15 amino acids was tested whether it could inhibit the binding of Fas and FAP-1 in vitro (Figure 3A). The binding of in vitro-translated FAP-1 to GST-Fas was dramatically reduced and dependent on the concentration of the synthetic 15 amino acids of Fas. In contrast with these results, human PAMP peptide (Kitamura, et al. 1994) as a negative control had no effect on Fas/FAP-1 binding activity under the same biochemical conditions. Second, the effect of truncated C-terminal synthetic peptides of Fas on Fas/FAP-1 binding in vitro was examined. As shown in Figure 3B, only the three C-terminal amino acids (Ac-SLV) were sufficient to obtain the same level of inhibitory effect on the binding of FAP-1 to Fas as achieved with the 4-15 synthetic peptides. Furthermore, Fas/FAP-1 binding was extensively investigated using the scanned tripeptides to determine the critical amino acids residues required for inhibition (Figure 3C). results revealed that the third amino acids residues from the C-terminus, and the C-terminal amino acids having the strongest inhibitory effect were either serine or threonine; and either valine, leucine, or isoleucine, respectively. However, there were no differences among the second amino acid residues from the C-terminus with respect to their inhibitory effect on Fas/FAP-1 binding. These results were consistent with those of the yeast two-hybrid system (Figures 2C and 2D). Therefore, it was

10

15

20

25

30

35

WO 98/05347 PCT/US97/12677

-30-

concluded that the C-terminal three amino acids (SLV) are critical determinants of Fas binding to the third PDZ domain of FAP-1 protein.

To further substantiate that the PDZ domain interacts with tS/T-X-V/L/I under more native conditions, GST-fused FAP-1 proteins were tested for their ability to interact with Fas expressed in Jurkat T-cells. The results revealed that the tripeptide Ac-SLV, but not Ac-SLY, abolished in a dose-dependent manner the binding activity of FAP-1 to Fas proteins extracted from Jurkat T-cells (Figures 4C and 4D). This suggests that the C-terminal amino acids tSLV are the minimum binding site for FAP-1, and that the amino acids serine and valine are critical for this physical association.

To next examine the hypothesis that the physiological association between the C-terminal three amino acids of Fas and the third PDZ domain of FAP-1 is necessary for the in vivo function of FAP-1 as a negative regulator of transduction, Fas-mediated signal a microinjection experiment was employed with synthetic tripeptides in a colon cancer cell line, DLD-1, which expresses both Fas and FAP-1, and is resistant to Fas-induced apoptosis. The experiments involved the direct microinjection of the synthetic tripeptides into the cytoplasmic regions of single cells and the monitoring of the physiological response to Fas-induced apoptosis in vivo. The results showed that microinjection of Ac-SLV into DLD-1 cells dramatically induced apoptosis in the presence Fas-monoclonal antibodies (CH11, 500 ng/ml) (Figures 5A, 5E and Figure 6), but that microinjection of Ac-SLY and PBS/K did not (Figures 5B, 5F and Figure 6). results strongly support the hypothesis that the physical association of FAP-1 with the C-terminus of Fas is protecting cells Fas-induced essential for from apoptosis.

-31-

5

10

15

In summary, it was found that the C-terminal SLV of Fas is alone necessary and sufficient for binding to the third PDZ domain of FAP-1. Secondly, it is proposed that the new consensus motif of tS/T-X-V/L/I for such binding to the PDZ domain, instead of tS/T-X-V. It is therefore possible that FAP-1 plays important roles for the modulation of signal transduction pathways in addition to its physical interaction with Fas. Thirdly, demonstrated that the targeted induction of Fas-mediated apoptosis in colon cancer cells by direct microinjection tripeptide Ac-SLV. the Further investigations including the identification of a substrate(s) of FAP-1 and structure-function analysis will provide insight to the potential therapeutic applications of interaction in cancer as well as provide a better understanding of the inhibitory effect of FAP-1 on Fas-mediated signal transduction.

10

15

20

25

30

SECOND SERIES OF EXPERIMENTS

FAP-1 was originally identified as a membrane-associated protein tyrosine phosphatase which binds to the Cterminus of Fas, and possesses six PDZ domains (also known as DHR domain or GLGF repeat). PDZ domain has recently been shown as a novel module for specific protein-protein interaction, and it appears to important in the assembly of membrane proteins and also in linking signaling molecules in a multiprotein complex. In recent comprehensive studies, it was found that the third PDZ domain of FAP-1 specifically recognized the sequence motif t(S/T)-X-V and interacts with the Cterminal three amino acids SLV of Fas (Fig. 9). to investigate the possibility that FAP-1 also interacts with the C-terminal region of p75NGFR (Fig. 8), an in vitro binding assay, was performed as well as, a yeast two-hybrid analysis by using a series of deletion mutants The results revealed that the C-terminal of p75NGFR. cytoplasmic region of p75NGFR, which is highly conserved (Fig. among all species, interacts with FAP-1 Furthermore, the C-terminal three amino acids SPV of p75NGFR were necessary and sufficient for the interaction with the third PDZ domain of FAP-1 (Fig. 11A and 11B). Since FAP-1 expression was found highest in fetal brain, these findings imply that interaction of FAP-1 with p75NGFR plays an important role for signal transduction pathway via p75NGFR in neuronal cells as well as in the formation of the initial signal-transducing complex for p75NGFR.

WO 98/05347

PCT/US97/12677

REFERENCES

1. Banville, D., et al. <u>J. Biol.Chem.</u> **269**: 22320-22327 (1994).

- 2. Boldin, M. P. et al. <u>J. Biol. Chem</u>. **270**: 7795-7798 (1995).
- 3. Camerini, D., et al. <u>J. Immunol</u>. **147**: 3165-3169 10 (1991).
 - 4. Chao, M.V. and B.L. Hempstead <u>TINS</u> 18: 321-326 (1995).
- 5. Chinnaiyan, A. M., et al. <u>Cell</u> 81: 505-512 (1995).
 - 6. Cho, K.-O., et al. <u>Neuron</u> 9: 929-942 (1992).
- 7. Conboy, J. G., et al. <u>J. Biol. Chem.</u> **266**: 8273-8280 (1991).
 - 8. Doyle, D.A., et al. <u>Cell</u> 85: 1067-1076 (1996).
- 9. Funayama, N., et al. <u>J. Cell Biol.</u> **115**: 1039-1048 25 (1991).
 - 10. Gould, K. L., et al. <u>EMBO J.</u> 8: 4133-4142 (1989).
- 11. Gu, M. X., et ak. <u>Proc. Natl. Acad. Sci. U.S.A.</u> 88: 5867-5871 (1991).
 - 12. Hill, D. E., et al. <u>Meth. Enzymol</u>. **155**, 558-568 (1987).
- 35 13. Ito, N., and Nagata, S. <u>J. Biol. Chem</u>. **268**: 10932-10937 (1993).

15

20

25

30

27.

WO 98/05347 PCT/US97/12677

-34-

- 14. Itoh, N. et al. Cell 66: 233-243 (1991).
- 15. Johnson, D. et al. Cell 47: 545-554 (1986).
- 5 16. Kim, E., et al. Nature 378: 85-88 (1995).
 - 17. Kischkel, F. C. et al. EMBO J. 14: 5579-5588 (1995).
 - 18. Kitamura, K. et al. <u>FEBS Lett</u>. **351**: 35-37 (1994).

19. Kornau, H.-C., et al. <u>Science</u> **269**:1737-1740 (1995).

- 20. Lankes, W. T., and Furthmayr, H. <u>Proc. Natl. Acad.</u>
 <u>Sci. U.S.A.</u> 88: 8297-8301 (1991).
- 21. Maekawa, K., et al. <u>FEBS Letters</u> **337**: 200-206 (1994).
 - 22. Mallett, S., et al. <u>EMBO J</u>. 9: 1063-1068 (1990).
- 23. Matsumine, A. et al. <u>Science</u> 272: 1020-1023 (1996).
 - 24. McGahon, A. J. et al. Meth. Cell Biol. 46: 153-185 (1995).
- 25. Pantel, K. et al. <u>J. Natl. Cancer Inst</u>. **87**: 1162-1168 (1995).
 - 26. Rouleau, G. et al. <u>Nature</u> **363**: 515-521 (1993).
- 28. Sambrook, J., et al.(1989) <u>Molecular Cloning: a laboratory manual. Second Edition.</u> Cold Spring Harbor Laboratory Press.
- 35 29. Sato, T., et al. <u>Science</u> 268: 411-415 (1995).
 - 30. Schnorrenberg, G. and Gerhardt H. Tetrahedron 45:

7759-7764 (1989).

31. Saras, J., et al. <u>J. Biol. Chem.</u> **269**, 24082-24089 (1994).

5

- 32. Smith, C. A. et al. Cell 73: 1349-1360 (1993).
- 33. Stamenkovic, I., et al. <u>EMBO J.</u> 8: 1403-1410 (1989).

10

- 34. Stanger, B. Z., et al. Cell 81: 513-523 (1995).
- 35. Takahashi, T. et al. Cell 76: 969-976 (1994).
- 15 36. Vogel, W., et al. (1993). <u>Science</u> **259**: 1611-1614 (1993).
 - 37. Watanabe-Fukunaga, R., et al. <u>Nature</u> **356**: 314-317 (1992).

20

- 38. Wang, X. W., et al. <u>Cancer Res</u>. **55**: 6012-6016 (1995).
 - 39. Westendorp, M. O. et al. Nature 375: 497-500 (1995).

25

- 40. Woods, D.F. and Bryant, P.J. <u>Cell</u> **66**: 451-464 (1991).
- 41. Yang, Q., and Tonks, N. K. <u>Proc. Natl. Acad. Sci.</u>
 30 <u>U.S.A.</u> **88**: 5949-5953 (1991).

-36-

SEQUENCE LISTING

-	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Takaaki Sato and Junn Yanagisawa
10	(ii)	TITLE OF INVENTION: COMPOUNDS THAT INHIBIT THE INTERACTION BETWEEN SIGNAL-TRANSDUCING PROTEINS AND THE GLGF (PDZ/DHR) DOMAIN AND USES THEREOF
	(iii)	NUMBER OF SEQUENCES: 33
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham LLP (B) STREET: 1185 Avenue of the Americas (C) CITY: New York (D) STATE: New York
20		(E) COUNTRY: U.S.A. (F) ZIP: 10036
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: Not Yet Known (B) FILING DATE: 18-JUL-1997 (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: White, John P (B) REGISTRATION NUMBER: 28,678 (C) REFERENCE/DOCKET NUMBER: 0575/48962-A-PCT/JPW/JKM
40	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (212) 278-0400 (B) TELEFAX: (212) 391-0525
	(2) INFO	RMATION FOR SEQ ID NO:1:
45	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii)	MOLECULE TYPE: peptide
	(iii)	HYPOTHETICAL: NO
55	(iv)	ANTI-SENSE: NO
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:
60	Gly 1	/Ser/Ala/Glu Leu Gly Phe/Ile/Leu
	(2) INFO	RMATION FOR SEQ ID NO:2:
65	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid

-37-

	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>
_	(ii) MOLECULE TYPE: peptide
5	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
	Lys/Arg/Gln Xaa(n) Gly/Ser/Ala/Glu Leu Gly Phe/Ile/Leu 1
15	(2) INFORMATION FOR SEQ ID NO:3:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
^ -	(ii) MOLECULE TYPE: peptide
25	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
	Ser Leu Gly Ile 1
35	(2) INFORMATION FOR SEQ ID NO:4:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
45	(ii) MOLECULE TYPE: peptide
45	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
	Ser/Thr Xaa Val/Ile/Leu 1
55	(2) INFORMATION FOR SEQ ID NO:5:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
65	(ii) MOLECULE TYPE: peptide
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

-38-

Asp Ser Glu Asn Ser Asn Phe Arg Asn Glu Ile Gln Ser Leu Val 5 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Ser Ile Ser Asn Ser Arg Asn Glu Asn Glu Gly Gln Ser Leu Glu 20 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Ser Thr Pro Asp Thr Gly Asn Glu Asn Glu Gly Gln Cys Leu Glu 35 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids 40 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 45 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Glu Ser Leu Val 50 1 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 60 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Thr Ile Gln Ser Val Ile 65

(2) INFORMATION FOR SEQ ID NO:10:

PCT/US97/12677

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids 5 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Arg Gly Phe Ile Ser Ser Leu Val 15 (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: 20 (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Arg Glu Thr Ile Glu Ser Thr Val 30 (2) INFORMATION FOR SEQ ID NO:12: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: 45 Gln Asn Phe Arg Thr Tyr Ile Val Ser Phe Val (2) INFORMATION FOR SEQ ID NO:13: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: 60 Ser Asp Ser Asn Met Asn Met Asn Glu Leu Ser Glu Val

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

of the the time there are the the the the time time time that the

65

(A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: 10 Pro Pro Thr Cys Ser Gln Ala Asn Ser Gly Arg Ile Ser Thr Leu 5 (2) INFORMATION FOR SEQ ID NO:15: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: 25 Ile Asp Leu Ala Ser Glu Phe Leu Phe Leu Ser Asn Ser Phe Leu 5 10 30 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single 35 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Asp Ser Glu Met Tyr Asn Phe Arg Ser Gln Leu Ala Ser Val Val 5 10 45 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid 50 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: Ile Pro Pro Asp Ser Glu Asp Gly Asn Glu Glu Gln Ser Leu Val 60 (2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid 65 (C) STRANDEDNESS: single (D) TOPOLOGY: linear

	-41-
	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
5	Gln Ser Leu Val 1
7.0	(2) INFORMATION FOR SEQ ID NO:19:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
20	Ile Gln Ser Leu Val
25	(2) INFORMATION FOR SEQ ID NO:20:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
	Glu Ile Gln Ser Leu Val 1 5
40	(2) INFORMATION FOR SEQ ID NO:21:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
	Asn Glu Ile Gln Ser Leu Val 1 5
55	(2) INFORMATION FOR SEQ ID NO:22:
60	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
65	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

-42-

Arg Asn Glu Ile Gln Ser Leu Val

5	(2)	INFOR	TAMS	гои і	FOR S	SEQ :	ID NO	0:23	:								
10		(i)	(A)	JENCI LEM TYI STI	NGTH:	: 15 amino EDNES	amin o ac: SS: s	no ao id singl	cids								
		(ii)	MOLI	CUL	TYI	?E: 1	pept:	ide									
15		(xi)	SEQ	JENCI	E DES	CRI	PTIO	1: SI	EQ II	ои с	:23:						
		Asp 1	Ser	Glu	Asn	Ser 5	Asn	Phe	Arg	Asn	Glu 10	Ile	Gln	Ser	Leu	Val 15	
20	(2)	INFOR	TAMS	ION I	FOR S	SEO :	ID N	0:24	:								
25		(i)	(A) (B) (C)	UENCI LEI TYI STI	GTH: PE: 6 RANDI	: 42 amino EDNES	7 am: 5 ac: 5S: 8	ino a id singl	acids	5							
30		(ii) (xi)					. <u>-</u>		20 TI	O NO	. 24 .						
35		Met 0	_									Asp (Gly 1	Pro 1	Arg 1	Leu I 15	Leu
		Leu	Leu	Leu	Leu 20	Leu	Gly	Val	Ser	Leu 25	Gly	Gly	Ala	Lys	Glu 30	Ala	Cys
40		Pro	Thr	Gly 35	Leu	Tyr	Thr	His	Ser 40	Gly	Glu	Cys	Cys	Lys 45	Ala	Cys	Asn
		Leu	Gly 50	Glu	Gly	Val	Ala	Gln 55	Pro	Cys	Gly	Ala	Asn 60	Gln	Thr	Val	Cys
45		Glu 65	Pro	Cys	Leu	Asp	Ser 70	Val	Thr	Phe	Ser	Asp 75	Val	Val	Ser	Ala	Thr 80
		Glu	Pro	Cys	Lys	Pro 85	Cys	Thr	Glu	Cys	Val 90	Gly	Leu	Gln	Ser	Met 95	Ser
50		Ala	Pro	Cys	Val 100	Glu	Ala	Asp	Asp	Ala 105	Val	Cys	Arg	Cys	Ala 110	Tyr	Gly
55		Tyr	Tyr	Gln 115	Asp	Glu	Thr	Thr	Gly 120	Arg	Cys	Glu	Ala	Cys 125	Arg	Val	Cys
		Glu	Ala 130	Gly	Ser	Gly	Leu	Val 135	Phe	Ser	Cys	Gln	Asp 140	Lys	Gln	Asn	Thr
60		Val 145	Cys	Glu	Glu	Cys	Pro 150	Asp	Gly	Thr	Tyr	Ser 155	Asp	Glu	Ala	Asn	His 160
		Val	Asp	Pro	Cys	Leu 165	Pro	Cys	Thr	Val	Cys 170	Glu	Asp	Thr	Glu	Arg 175	Gln
65		Leu	Arg	Glu	Cys		Arg	Trp	Ala	Asp		Glu	Cys	Glu	Glu 190	Ile	Pro

-43-

									-4	<i>3</i> -							
		Gly	Arg	Trp 195	Ile	Thr	Arg	Ser	Thr 200	Pro	Pro	Glu	Gly	Ser 205	Asp	Ser	Thr
5		Ala	Pro 210	Ser	Thr	Gln	Glu	Pro 215	Glu	Ala	Pro	Pro	Glu 220	Gln	Asp	Leu	Ile
		Ala 225	Ser	Thr	Val	Ala	Gly 230	Val	Val	Thr	Thr	Val 235	Met	Gly	Ser	Ser	Gln 240
10		Pro	Val	Val	Thr	Arg 245	Gly	Thr	Thr	Asp	Asn 250	Leu	Ile	Pro	Val	Tyr 255	Cys
15		Ser	Ile	Leu	Ala 260	Ala	Val	Val	Val	Gly 265	Leu	Val	Ala	Tyr	Ile 270	Ala	Phe
13		Lys	Arg	Trp 275	Asn	Ser	Cys	Lys	Gln 280	Asn	Lys	Gly	Gly	Ala 285	Asn	Ser	Arg
20		Pro	Val 290	Asn	Gln	Thr	Pro-	Pro 295	Pro	Glu	Gly	Glu	Lys 300	Ile	His	Ser	Asp
		Ser 305	Gly	Ile	Ser	Val	Asp 310	Ser	Gln	Ser	Leu	His 315	Asp	Gln	Gln	Pro	His 320
25		Thr	Gln	Thr	Ala	Ser 325	Gly	Gln	Ala	Leu	Lys	Gly	Asp	Gly	Gly	Leu 335	Tyr
30		Ser	Ser	Leu	Pro 340	Pro	Ala	Lys	Arg	Glu 345	Glu	Val	Glu	Lys	Leu 350	Leu	Asn
		Gly	Ser	Ala 355	Gly	Asp	Thr	Trp	Arg 360	His	Leu	Ala	Gly	Glu 365	Leu	Gly	Tyr
35		Gln	Pro 370	Glu	His	Ile	Asp	Ser 375	Phe	Thr	His	Glu	Ala 380	Cys	Pro	Val	Arg
		Ala 385	Leu	Leu	Ala	Ser	Trp 390	Ala	Thr	Gln	Asp	Ser 395	Ala	Thr	Leu	Asp	Ala 400
40		Leu	Leu	Ala	Ala	Leu 405	Arg	Arg	Ile	Gln	Arg 410	Ala	Asp	Leu	Val	Glu 415	Ser
45		Leu	Cys	Ser	Glu 420	Ser	Thr	Ala	Thr	Ser 425	Pro	Val					
	(2)	INFO	TAMS	ION I	FOR S	SEQ :	ID NO	25	:								
50		(i)	(A) (B) (C)	LEI TYI	NGTH PE: & RANDI	ARACT 458 amin EDNES	3 am: 5 ac: 5S: 8	ino a id sing]	acids	5							
55		(ii)	MOLI	ECULI	E TY	PE: 1	pept:	ide									
		(xi)	SEQ	UENC	E DES	SCRI	PTIO	1: SI	EQ II	ои с	25:						
60		Met 1	Asn	Arg	Gly	Val 5	Pro	Phe	Arg	His	Leu 10	Leu	Leu	Val	Leu	Gln 15	Leu
		Ala	Leu	Leu	Pro 20	Ala	Ala	Thr	Gln	Gly 25	Lys	Lys	Val	Val	Leu 30	Gly	Lys
65		Lys	Gly	Asp 35	Thr	`Val	Glu	Leu	Thr 40	Cys	Thr	Ala	Ser	Gln 45	Lys	Lys	Ser

-44-

	Ile	Gln 50	Phe	His	Trp	Lys	Asn 55	Ser	Asn	Gln	Ile	Lys 60	Ile	Leu	Gly	Asn
5	Gln 65	Gly	Ser	Phe	Leu	Thr 70	Lys	Gly	Pro	Ser	Lys 75	Leu	Asn	Asp	Arg	Ala 80
	Asp	Ser	Arg	Arg	Ser 85	Leu	Trp	Asp	Gln	Gly 90	Asn	Phe	Pro	Leu	Ile 95	Ile
10	Lys	Asn	Leu	Lys 100	Ile	Glu	Asp	Ser	Asp 105	Thr	Tyr	Ile	Cys	Glu 110	Val	Glu
15	Asp	Gln	Lys 115	Glu	Glu	Val	Gln	Leu 120	Leu	Val [.]	Phe	Gly	Leu 125	Thr	Ala	Asn
13	Ser	Asp 130	Thr	His	Leu	Leu	Gln 135	Gly	Gln	Ser	Leu	Thr 140	Ile	Thr	Leu	Glu
20	Ser 145	Pro	Pro	Gly	Ser	Ser 150	Pro	Ser	Val	Gln	Cys 155	Arg	Ser	Pro	Arg	Gly 160
	Lys	Asn	Ile	Gln	Gly 165	Gly	Lys	Thr	Leu	Ser 170	Val	Ser	Gln	Leu	Glu 175	Leu
25	Gln	Asp	Ser	Gly 180	Thr	Trp	Thr	Cys	Thr 185	Val	Leu	Gln	Asn	Gln 190	Lys	Lys
30	Val	Glu	Phe 195	Lys	Ile	Asp	Ile	Val 200	Val	Leu	Ala	Phe	Gln 205	Lys	Ala	Ser
	Ser	Ile 210	Val	Tyr	Lys	Lys	Glu 215	Gly	Glu	Gln	Val	Glu 220	Phe	Ser	Phe	Pro
35	Leu 225	Ala	Phe	Thr	Val	Glu 230	Lys	Leu	Thr	Gly	Ser 235	Gly	Glu	Leu	Trp	Trp 240
	Gln	Ala	Glu	Arg	Ala 245	Ser	Ser	Ser	Lys	Ser 250	Trp	Ile	Thr	Phe	Asp 255	Leu
40	_		-	260					265				Asp	270		
45	Gln	Met	Gly 275	Lys	Lys	Leu	Pro	Leu 280	His	Leu	Thr	Leu	Pro 285	Gln	Ala	Leu
	Pro	Gln 290	Tyr	Ala	Gly	Ser	Gly 295	Asn	Leu	Thr	Leu	Ala 300	Leu	Glu	Ala	Lys
50	305					310					315		Met			320
					325					330			Pro		335	
55				340					345				Ala	350		
60	_		355					360					Ala 365			
		370				_	375					380	Glu			
65	Lys 385	Val	Leu	Pro	Thr	Trp 390	Ser	Thr	Pro	Val	Gln 395	Pro	Met	Ala	Leu	Ile 400
	Val	Leu	Gly	Gly	Val	Ala	Gly	Leu	Leu	Leu	Phe	Ile	Gly	Leu	Gly	Ile

-45-

						405					410					415	
_		Phe	Phe	Cys	Val 420	Arg	Cys	Arg	His	Arg 425	Arg	Arg	Gln	Ala	Glu 430	Arg	Met
5		Ser	Gln	Ile 435	Lys	Arg	Leu	Leu	Ser 440	Glu	Lys	Lys	Glu	Cys 445	Gln	Cys	Pro
10		His	Arg 450	Phe	Gln	Lys	Thr	Cys 455	Ser	Pro	Ile						
	(2)	INFO	TAMS	ON I	FOR S	SEQ]	ID NO):26:	:								
15		(i)	(B)	LEN TYI STI	E CHA NGTH: PE: & RANDE POLOC	828 mino EDNES	ami aci	ino a id sing]	acida	5							
20		(ii)	MOLE	CULI	TYI	PE: p	pepti	ide									
		(xi)	SEQU	JENCI	E DES	CRII	OITS	1: SE	EQ II	ON C	:26:						
25		Met 1	Asn	Ser	Gly	Val 5	Ala	Met	Lys	Tyr	Gly 10	Asn	Asp	Ser	Ser	Ala 15	Glu
30		Leu	Ser	Glu	Leu 20	His	Ser	Ala	Ala	Leu 25	Ala	Ser	Leu	Lys	Gly 30	Asp	Ile
30		Val	Glu	Leu 35	Asn	Lys	Arg	Leu	Gln 40	Gln	Thr	Glu	Arg	Glu 45	Asp	Leu	Leu
35		Glu	Lys 50	Lys	Leu	Ala	Lys	Ala 55	Gln	Cys	Glu	Gln	Ser 60	His	Leu	Met	Arg
		Glu 65	His	Glu	Asp	Val	Gln 70	Glu	Arg	Thr	Thr	Leu 75	Arg	Tyr	Glu	Glu	Arg 80
40		Ile	Thr	Glu	Leu	His 85	Ser	Val	Ile	Ala	Glu 90	Leu	Asn	Lys	Lys	Ile 95	Asp
45		Arg	Leu	Gln	Gly 100	Thr	Thr	Ile	Arg	Glu 105	Glu	Asp	Glu	Tyr	Ser 110	Glu	Leu
		Arg	Ser	Glu 115	Leu	Ser	Gln	Ser	Gln 120	His	Glu	Val	Asn	Glu 125	Asp	Ser	Arg
50		Ser	Met 130	Asp	Gln	Asp	Gln	Thr 135	Ser	Val	Ser	Ile	Pro 140	Glu	Asn	Gln	Ser
		Thr 145	Met	Val	Thr	Ala	Asp 150	Met	Asp	Asn	Cys	Ser 155	Asp	Ile	Asn	Ser	Glu 160
55		Leu	Gln	Arg	Val	Leu 165	Thr	Gly	Leu	Glu	Asn 170	Val	Val	Cys	Gly	Arg 175	Lys
60		Lys	Ser	Ser	Cys 180	Ser	Leu	Ser	Val	Ala 185	Glu	Val	Asp	Arg	His 190	Ile	Glu
		Gln	Leu	Thr 195	Thr	Ala	Ser	Glu	His 200	Cys	Asp	Leu	Ala	Ile 205	Lys	Thr	Val
65		Glu	Glu 210	Ile	Glu	Gly	Val	Leu 215	Gly	Arg	Asp	Leu	Tyr 220	Pro	Asn	Leu	Ala
		Glu	Glu	Arg	Ser	Arg	Trp	Glu	Lys	Glu	Leu	Ala	Gly	Leu	Arg	Glu	Glu

-46-

	225					230					235					240
E	Asn	Glu	Ser	Leu	Thr 245	Ala	Met	Leu	Cys	Ser 250	Lys	Glu	Glu	Glu	Leu 255	Asn
5	Arg	Thr	Lys	Ala 260	Thr	Met	Asn	Ala	Ile 265	Arg	Glu	Glu	Arg	Asp 270	Arg	Leu
10	Arg	Arg	Arg 275	Val	Arg	Glu	Leu	Gln 280	Thr	Arg	Leu	Gln	Ser 285	Val	Gln	Ala
	Thr	Gly 290	Pro	Ser	Ser	Pro	Gly 295	Arg	Leu	Thr	Ser	Thr 300	Asn	Arg	Pro	Ile
15	Asn 305	Pro	Ser	Thr	Gly	Glu 310	Leu	Ser	Thr	Ser	Ser 315	Ser	Ser	Asn	Asp	Ile 320
20	Pro	Ile	Ala	Lys	Ile 325	Ala	Glu	Arg	Val	Lys 330	Leu	Ser	Lys	Thr	Arg 335	Ser
20	Glu	Ser	Ser	Ser 340	Ser	Asp	Arg	Pro	Val 345	Leu	Gly	Ser	Glu	Ile 350	Ser	Ser
25	Ile	Gly	Val 355	Ser	Ser	Ser	Val	Ala 360	Glu	His	Leu	Ala	His 365	Ser	Leu	Gln
	Asp	Cys 370	Ser	Asn	Ile	Gln	Glu 375	Ile	Phe	Gln	Thr	Leu 380	Tyr	Ser	His	Gly
30	Ser 385	Ala	Ile	Ser	Glu	Ser 390	Lys	Ile	Arg	Glu	Phe 395	Glu	Val	Glu	Thr	Glu 400
35	Arg	Leu	Asn	Ser	Arg 405	Ile	Glu	His	Leu	Lys 410	Ser	Gln	Asn	Asp	Leu 415	Leu
35	Thr	Ile	Thr	Leu 420	Glu	Glu	Cys	Lys	Ser 425	Asn	Ala	Glu	Arg	Met 430	Ser	Met
40	Leu	Val	Gly 435	Lys	Tyr	Glu	Ser	Asn 440	Ala	Thr	Ala	Leu	Arg 445	Leu	Ala	Leu
	Gln	Tyr 450	Ser	Glu	Gln	Cys	Ile 455	Glu	Ala	Tyr	Glu	Leu 460	Leu	Leu	Ala	Leu
45	Ala 465	Glu	Ser	Glu	Gln	Ser 470	Leu	Ile	Leu	Gly	Gln 475	Phe	Arg	Ala	Ala	Gly 480
50	Val	Gly	Ser	Ser	Pro 485	Gly	Asp	Gln	Ser	Gly 490	Asp	Glu	Asn	Ile	Thr 495	Gln
30	Met	Leu	Lys	Arg 500	Ala	His	Asp	Cys	Arg 505	Lys	Thr	Ala	Glu	Asn 510	Ala	Ala
55	Lys	Ala	Leu 515	Leu	Met	Lys	Leu	Asp 520	Gly	Ser	Cys	Gly	Gly 525	Ala	Phe	Ala
	Val	Ala 530	Gly	Cys	Ser	Val	Gln 535	Pro	Trp	Glu	Ser	Leu 540	Ser	Ser	Asn	Ser
60	His 545	Thr	Ser	Thr	Thr	Ser 550	Ser	Thr	Ala	Ser	Ser 555	Cys	Asp	Thr	Glu	Phe 560
65	Thr	Lys	Glu	Asp	Glu 565	Gln	Arg	Leu	Lys	Asp 570	Tyr	Ile	Gln	Gln	Leu 575	Lys
03	Asn	Asp	Arg	Ala 580	Ala	Val	Lys	Leu	Thr 585	Met	Leu	Glu	Leu	Glu 590	Ser	Ile

-47-

									-4	/-							
		His	Ile	Asp 595	Pro	Leu	Ser	Tyr	Asp 600	Val	Lys	Pro	Arg	Gly 605	Asp	Ser	Gln
5		Arg	Leu 610	Asp	Leu	Glu	Asn	Ala 615	Val	Leu	Met	Gln	Glu 620	Leu	Met	Ala	Met
		Lys 625	Glu	Glu	Met	Ala	Glu 630	Leu	Lys	Ala	Gln	Leu 635	Tyr	Leu	Leu	Glu	Lys 640
10		Glu	Lys	Lys	Ala	Leu 645	Glu	Leu	Lys	Leu	Ser 650	Thr	Arg	Glu	Ala	Gln 655	Glu
15		Gln	Ala	Tyr	Leu 660	Val	His	Ile	Glu	His 665	Leu	Lys	Ser	Glu	Val 670	Glu	Glu
15		Gln	Lys	Glu 675	Gln	Arg	Met	Arg	Ser 680	Leu	Ser	Ser	Thr	Ser 685	Ser	Gly	Ser
20		Lys	Asp 690	Lys	Pro	Gly	Lys	Glu 695	Cys	Ala	Asp	Ala	Ala 700	Ser	Pro	Ala	Leu
		Ser 705	Leu	Ala	Glu	Leu	Arg 710	Thr	Thr	Cys	Ser	Glu 715	Asn	Glu	Leu	Ala	Ala 720
25		Glu	Phe	Thr	Asn	Ala 725	Ile	Arg	Arg	Glu	Lys 730	Lys	Leu	Lys	Ala	Arg 735	Val
30		Gln	Glu	Leu	Val 740	Ser	Ala	Leu	Glu	Arg 745	Leu	Thr	Lys	Ser	Ser 7 50	Glu	Ile
30		Arg	His	Gln 755	Gln	Ser	Ala	Glu	Phe 760	Val	Asn	Asp	Leu	Lys 765	Arg	Ala	Asn
35		Ser	Asn 770	Leu	Val	Ala	Ala	Tyr 775	Glu	Lys	Ala	Lys	Lys 780	Lys	His	Gln	Asn
		Lys 785	Leu	Lys	Lys	Leu	Glu 790	Ser	Gln	Met	Met	Ala 795	Met	Val	Glu	Arg	His 800
40		Glu	Thr	Gln	Val	Arg 805	Met	Leu	Lys	Gln	Arg 810	Ile	Ala	Leu	Leu	Glu 815	Glu
45		Glu	Asn	Ser	Arg 820	Pro	His	Thr	Asn	Glu 825	Thr	Ser	Leu				
	(2)	INFO	RMAT:	ION 1	FOR :	SEQ :	ID NO	0:27	:								
50		(i)	(A (B (C	UENCI) LEI) TYI) STI) TOI	NGTH PE: RAND	: 67: amino EDNE:	2 am: 5 ac: 5S: 4	ino a id sing:	acida	5							
55		(ii)	MOL	ECUL	E TY	PE:]	pept:	ide									
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	ои о	:27:						
60		Met 1	Ala	Asp	Val	Phe 5	Pro	Gly	Asn	Asp	Ser 10	Thr	Ala	Ser	Gln	Asp 15	Val
		Ala	Asn	Arg	Phe 20	Ala	Arg	Lys	Gly	Ala 25	Leu	Arg	Gln	Lys	Asn 30	Val	His
65		Glu	Val	Lys 35	Asp	His	Lys	Phe	Ile 40	Ala	Arg	Phe	Phe	Lys 45	Gln	Pro	Thr

-48-

	Phe	Cys 50	Ser	His	Cys	Thr	Asp 55	Phe	Ile	Trp	Gly	Phe 60	Gly	Lys	Gly	Gly
5 .	Phe 65	Gln	Cys	Gln	Val	Cys 70	Cys	Phe	Val	Val	His 75	Lys	Arg	Cys	His	Glu 80
	Phe	Val	Thr	Phe	Ser 85	Cys	Pro	Gly	Ala	Asp 90	Lys	Gly	Pro	Asp	Thr 95	Asp
10	Asp	Pro	Arg	Ser 100	Lys	His	Lys	Phe	Lys 105	Ile	His	Thr	Tyr	Gly 110	Ser	Pro
15	Thr	Phe	Cys 115	Asp	His	Cys	Gly	Ser 120	Leu	Leu	Tyr	Gly	Leu 125	Ile	His	Gln
13	Gly	Met 130	Lys	Cys	Asp	Thr	Cys 135	Asp	Met	Asn	Val	His 140	Lys	Gln	Cys	Val
20	Ile 145	Asn	Val	Pro	Ser	Leu 150	Cys	Gly	Met	Asp	His 155	Thr	Glu	Lys	Arg	Gly 160
	Arg	Ile	Tyr	Leu	Lys 165	Ala	Glu	Val	Ala	Asp 170	Glu	Lys	Leu	His	Val 175	Thr
25	Val	Arg	Asp	Ala 180	Lys	Asn	Leu	Ile	Pro 185	Met	Asp	Pro	Asn	Gly 190	Leu	Ser
30	Asp	Pro	Tyr 195	Val	Lys	Leu	Lys	Leu 200	Ile	Pro	Asp	Pro	Lys 205	Asn	Glu	Ser
30	Lys	Gln 210	Lys	Thr	Lys	Thr	Ile 215	Arg	Ser	Thr	Leu	Asn 220	Pro	Gln	Trp	Asn
35	Glu 225	Ser	Phe	Thr	Phe	Lys 230	Lėu	Lys	Pro	Ser	Asp 235	Lys	Asp	Arg	Arg	Leu 240
	Ser	Val	Glu	Île	Trp 245	Asp	Trp	Asp	Arg	Thr 250	Thr	Arg	Asn	Asp	Phe 255	Met
40	Gly	Ser	Leu	Ser 260	Phe	Gly	Val	Ser	Glu 265	Leu	Met	Lys	Met	Pro 270	Ala	Ser
45	Gly	Trp	Tyr 275	Lys	Leu	Leu	Asn	Gln 280	Glu	Glu	Gly	Glu	Tyr 285	Tyr	Asn	Val
40	Pro	Ile 290	Pro	Glu	Gly	Asp	Glu 295	Glu	Gly	Asn	Met	Glu 300	Leu	Arg	Gln	Lys
50	Phe 305	Glu	Lys	Ala	Lys	Leu 310	Gly	Pro	Ala	Gly	Asn 315	Lys	Val	Ile	Ser	Pro 320
	Ser	Glu	qeA	Arg	Lys 325	Gln	Pro	Ser	Asn	Asn 330	Leu	Asp	Arg	Val	Lys 335	Leu
55	Thr	Asp	Phe	Asn 340	Phe	Leu	Met	Val	Leu 345	Gly	Lys	Gly	Ser	Phe 350	Gly	Lys
60	Val	Met	Leu 355	Ala	Asp	Arg	Lys	Gly 360	Thr	Glu	Glu	Leu	Tyr 365	Ala	Ile	Lys
60	Ile	Leu 370	Lys	Lys	Asp	.Val	Val 375	Ile	Gln	Asp	Asp	Asp 380	Val	Glu	Cys	Thr
65	Met 385	Val	Glu	Lys	Arg	Val 390	Leu	Ala	Leu	Leu	Asp 395	Lys	Pro	Pro	Phe	Leu 400
	Thr	Gln	Leu	His	Ser	Cys	Phe	Gln	Thr	Val	Asp	Arg	Leu	Tyr	Phe	Val

-49-

								•	_							
					405					410					415	
F	Met	Glu	Tyr	Val 420	Asn	Gly	Gly	Asp	Leu 425	Met	Tyr	His	Ile	Gln 430	Gln	Val
5	Gly	Lys	Phe 435	Lys	Glu	Pro	Gln	Ala 440	Val	Phe	Tyr	Ala	Ala 445	Glu	Ile	Ser
10	Ile	Gly 450	Leu	Phe	Phe	Leu	His 455	Lys	Arg	Gly	Ile	Ile 460	Tyr	Arg	Asp	Leu
	Lys 465	Leu	Asp	Asn	Val	Met 470	Leu	Asp	Ser	Glu	Gly 475	His	Ile	Lys	Ile	Ala 480
15	Asp	Phe	Gly	Met	Cys 485	Lys	Glu	His	Met	Met 490	Asp	Gly	Val	Thr	Thr 495	Arg
20	Thr	Phe	Cys	Gly 500	Thr	Pro	Asp	Tyr	Ile 505	Ala	Pro	Glu	Ile	Ile 510	Ala	Tyr
20	Gln	Pro	Tyr 515	Gly	Lys	Ser	Val	Asp 520	Trp	Trp	Ala	Tyr	Gly 525	Val	Leu	Leu
25	Tyr	Glu 530	Met	Leu	Ala	Gly	Gln 535	Pro	Pro	Phe	Asp	Gly 540	Glu	Asp	Glu	Asp
	Glu 545	Leu	Phe	Gln	Ser	Ile 550	Met	Glu	His	Asn	Val 555	Ser	Tyr	Pro	Lys	Ser 560
30	Leu	Ser	Lys	Glu	Ala 565	Val	Ser	Ile	Cys	Lys 570	Gly	Leu	Met	Thr	Lys 575	His
35	Pro	Ala	Lys	Arg 580	Leu	Gly	Cys	Gly	Pro 585	Glu	Gly	Glu	Arg	Asp 590	Val	Arg
	Glu	His	Ala 595	Phe	Phe	Arg	Arg	Ile 600	Asp	Trp	Glu	Lys	Leu 605	Glu	Asn	Arg
40	Glu	Ile 610	Gln	Pro	Pro	Phe	Lys 615	Pro	Lys	Val	Cys	Gly 620	Lys	Gly	Ala	Glu
	Asn 625	Phe	Asp	Lys	Phe	Phe 630	Thr	Arg	Gly	Gln	Pro 635	Val	Leu	Thr	Pro	Pro 640
45	Asp	Gl'n	Leu	Val	Ile 645	Ala	Asn	Ile	Asp	Gln 650	Ser	Asp	Phe	Glu	Gly 655	Phe
50	Ser	Tyr	Val	Asn 660	Pro	Gln	Phe	Val	His 665	Pro	Ile	Leu	Gln	Ser 670	Ala	Val
	(2) INFO	RMATI	ON I	FOR S	SEQ :	D NO	0:28:	:								
55	(i)	(B)	LEI TYI STI	E CHA NGTH PE: & RANDI POLO	: 47 amino EDNE	l am: o ac: SS: s	ino a id singl	acids	5							
60	(ii)	MOLE	ECULI	E TYI	PE:]	pept:	ide					•				
	(xi)	SEQU	JENC!	E DES	SCRI	PTIO	N: SI	EQ II	ои с	:28:						
65	Met 1	Asp	Ile	Leu	Cys 5	Glu	Glu	Asn	Thr	Ser 10	Leu	Ser	Ser	Thr	Thr 15	Asn

-50-

	Ser	Leu	Met	Gln 20	Leu	Asn	Asp	Asp	Thr 25	Arg	Leu	Tyr	Ser	Asn 30	Asp	Phe
5	Asn	Ser	Gly 35	Glu	Ala	Asn	Thr	Ser 40	Asp	Ala	Phe	Asn	Trp 45	Thr	Val	Asp
	Ser	Glų 50	Asn	Arg	Thr	Asn	Leu 55	Ser	Cys	Glu	Gly	Cys 60	Leu	Ser	Pro	Ser
10	Cys 65	Leu	Ser	Leu	Leu	His 70	Leu	Gln	Glu	Lys	Asn 75	Trp	Ser	Ala	Leu	Leu 80
15	Thr	Ala	Val	Val	Ile 85	Ile	Leu	Thr	Ile	Ala 90	Gly	Asn	Ile	Leu	Val 95	Ile
10	Met	Ala	Val	Ser 100	Leu	Glu	Lys	Lys	Leu 105	Gln	Asn	Ala	Thr	Asn 110	Tyr	Phe
20	Leu	Met	Ser 115	Leu	Ala	Ile	Ala	Asp 120	Met	Leu	Leu	Gly	Phe 125	Leu	Val	Met
	Pro	Val 130	Ser	Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Tyr	Arg 140	Trp	Pro	Leu	Pro
25	Ser 145	Lys	Leu	Cys	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Thr 160
30	Ala	Ser	Ile	Met	His 165	Leu	Cys	Ala	Ile	Ser 170	Leu	Asp	Arg	Tyr	Val 175	Ala
	Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala
35	Phe	Leu	Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met
	Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu
40	Gly 225	Ser	Cys	Leu	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240
45	Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Cys	Val	Ser 270	Asp	Leu
50	Gly	Thr	Arg 275	Ala	Lys	Leu	Ala	Ser 280	Phe	Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
	Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
55	Ser 305	Tyr	Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
60	Ala	Cys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
- •	Cys	Pro	Phe	Phe 340	Ile	Thr	Asn	Ile	Met 345	Ala	Val	Ile	Cys	Lys 350	Glu	Ser
65	Cys	Asn	Glu 355	Asp	Val	Ile	Gly	Ala 360	Leu	Leu	Asn	Val	Phe 365	Val	Trp	Ile
	Gly	Tyr	Leu	Ser	Ser	Ala	Val	Asn	Pro	Leu	Val	Tyr	Thr	Leu	Phe	Asn

-51-

		370				375					380				
_	Lys 385	Thr Ty	r Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
5	Glu	Asn Ly	s Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
10	Leu	Ala Ty	r Lys 420		Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
	Lys	Gln As		Lys	Thr	Thr	Asp 440	Asn	Asp	Cys	Ser	Met 445	Val	Ala	Leu
15	Gly	Lys Gl 450	n His	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
20	Asn 465	Glu Ly	s Val	Ser	Cys 470	Val									
	(2) INFO	RMATION	FOR	SEQ	ID N	0:29	:								
25	(i)	(B) T	CE CH ENGTH YPE: TRAND OPOLO	: 48 amin EDNE	l am o ac: SS: s	ino a id sing:	acida	5							
30	(ii)	MOLECU	LE TY	PE:]	pept:	ide									
	(xi)	SEQUEN	CE DE	SCRI	PTIO	N: SI	EQ II	OM C	:29:						
35	Met 1	Ala Le	u Ser	Tyr 5	Arg	Val	Ser	Glu	Leu 10	Gln	Ser	Thr	Ile	Pro 15	Glu
	His	Ile Le	u Gln 20	Ser	Thr	Phe	Val	His 25	Val	Ile	Ser	Ser	Asn 30	Trp	Ser
40	Gly	Leu Gl 35		Glu	Ser	Ile	Pro 40	Glu	Glu	Met	Lys	Gln 45	Ile	Val	Glu
45	Glu	Gln Gl 50	y Asn	Lys	Leu	His 55	Trp	Ala	Ala	Leu	Leu 60	Ile	Leu	Met	Val
	Ile 65	Ile Pr	o Thr	Ile	Gly 70	Gly	Asn	Thr	Leu	Val 75	Ile	Leu	Ala	Val	Ser 80
50	Leu	Glu Ly	s Lys	Leu 85	Gln	Tyr	Ala	Thr	Asn 90	Tyr	Phe	Leu	Met	Ser 95	Leu
	Ala	Val Al	a Asp 100	Leu	Leu	Val	Gly	Leu 105	Phe	Val	Met	Pro	Ile 110	Ala	Leu
55	Leu	Thr Il		Phe	Glu	Ala	Met 120	Trp	Pro	Leu	Pro	Leu 125	Val	Leu	Cys
60	Pro	Ala Tr 130	p Leu	Phe	Leu	Asp 135	Val	Leu	Phe	Ser	Thr 140	Ala	Ser	Ile	Met
00	His 145	Leu Cy	s Ala	Ile	Ser 150	Val	Asp	Arg	Tyr	Ile 155	Ala	Ile	Lys	Lys	Pro 160
65	Ile	Gln Al	a Asn	Gln 165	Tyr	Asn	Ser	Arg	Ala 170	Thr	Ala	Phe	Ile	Lys 175	Ile
	Thr	Val Va	l Trp	Leu	Ile	Ser	Ile	Gly	Ile	Ala	Ile	Pro	Val	Pro	Ile

-52-

			:	180					185					190		
_	Lys	Gly 1	Ile (195	Glu	Thr	Asp	Val	Asp 200	Asn	Pro	Asn	Asn	Ile 205	Thr	Cys	Val
5	Leu	Thr I 210	Lys (Glu	Arg	Phe	Gly 215	Asp	Phe	Met	Leu	Phe 220	Gly	Ser	Leu	Ala
10	Ala 225	Phe I	Phe '	Thr	Pro	Leu 230	Ala	Ile	Met	Ile	Val 235	Thr	Tyr	Phe	Leu	Thr 240
	Ile	His A	Ala :	Leu	Gln 245	Lys	Lys	Ala	Tyr	Leu 250	Val	Lys	Asn	Lys	Pro 255	Pro
15	Gln	Arg I		Thr 260	Trp	Leu	Thr	Val	Ser 265	Thr	Val	Phe	Gln	Arg 270	Asp	Glu
20	Thr	Pro C	Cys 2 275	Ser	Ser	Pro	Glu	Lys 280	Val	Ala	Met	Leu	Asp 285	Gly	Ser	Arg
20	Lys	Asp I 290	Lys 2	Ala	Leu	Pro	Asn 295	Ser	Gly	Asp	Glu	Thr 300	Leu	Met	Arg	Arg
25	Thr 305	Ser 7	Thr	Ile	Gly	Lys 310	Lys	Ser	Val	Gln	Thr 315	Ile	Ser	Asn	Glu	Gln 320
	Arg	Ala S	Ser :	Lys	Val 325	Leu	Gly	Ile	Val	Phe 330	Phe	Leu	Phe	Leu	Leu 335	Met
30	Trp	Cys I		Phe 340	Phe	Ile	Thr	Asn	Ile 345	Thr	Leu	Val	Leu	Cys 350	Asp	Ser
25	Cys	Asn G	Gln '	Thr	Thr	Leu	Gln	Met 360	Leu	Leu	Glu	Ile	Phe 365	Val	Trp	Ile
35	Gly	Tyr \ 370	Val i	Ser	Ser	Gly	Val 375	Asn	Pro	Leu	Val	Tyr 380	Thr	Leu	Phe	Asn
40	Lys 385	Thr I	Phe .	Arg	Asp	Ala 390	Phe	Gly	Arg	Tyr	Ile 395	Thr	Cys	Asn	Tyr	Arg 400
	Ala	Thr I	Lys	Ser	Val 405	Lys	Thr	Leu	Arg	Lys 410	Arg	Ser	Ser	Lys	Ile 415	Tyr
45	Phe	Arg A		Pro 420	Met	Ala	Glu	Asn	Ser 425	Lys	Phe	Phe	Lys	Lys 430	His	Gly
50	Ile	Arg A	Asn 435	Gly	Ile	Asn	Pro	Ala 440	Met	Tyr	Gln	Ser	Pro 445	Met	Arg	Leu
30	Arg	Ser \$	Ser	Thr	Ile	Gln	Ser 455	Ser	Ser	Ile	Ile	Leu 460	Leu	Asp	Thr	Leu
55	Leu 465	Leu :	Thr	Glu	Asn	Glu 470	Gly	Asp	Lys	Thr	Glu 475	Glu	Gln	Val	Ser	Val 480
	Val															
60	(2) INFO															
65	(1)	(B) (C)	LEN TYP STR	GTH: E: & ANDI	: 284 amino	13 ar 5 ac: 5S: 8	nino id sing:	acio	is							

65

WO 98/05347 PCT/US97/12677

-53-

(ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: 5 Met Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn 10 His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly 15 Gln Ile Asp Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser 20 Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro 25 Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu 30 Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Ala Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu 35 Asn Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu 40 Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln 200 Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile 45 215 Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr 50 Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp Ala Glu Arg Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala 260 265 270 55 Thr Ser Gly Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr 280 Ala Ser Val Leu Ser Ser Ser Ser Thr His Ser Ala Pro Arg Arg Leu 60 Thr Ser His Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser

Met Leu Gly Thr His Asp Lys Asp Met Ser Arg Thr Leu Leu Ala

330

-54-

	Met	Ser	Ser	Ser 340	Gln	Asp	Ser	Cys	Ile 345	Ser	Met	Arg	Gln	Ser 350	Gly	Cys
5	Leu	Pro	Leu 355	Leu	Ile	Gln	Leu	Leu 360	His	Gly	Asn	Asp	Lys 365	Asp	Ser	Val
	Leu	Leu 370	Gly	Asn	Ser	Arg	Gly 375	Ser	Lys	Glu	Ala	Arg 380	Ala	Arg	Ala	Ser
10	Ala 385	Ala	Leu	His	Asn	Ile 390	Ile	His	Ser	Gln	Pro 395	Asp	Asp	Lys	Arg	Gly 400
15	Arg	Arg	Glu	Ile	Arg 405	Val	Leu	His	Leu	Leu 410	Glu	Gln	Ile	Arg	Ala 415	Tyr
	Cys	Ser	Thr	Cys 420	Trp	Glu	Trp	Gln	Glu 425	Ala	His	Glu	Pro	Gly 430	Met	Asp
20	Gln	Asp	Lys 435	Asn	Pro	Met	Pro	Ala 440	Pro	Val	Glu	His	Gln 445	Ile	Cys	Pro
	Ala	Val 450	Cys	Val	Leu	Met	Lys 455	Leu	Ser	Phe	Asp	Glu 460	Glu	His	Arg	His
25	Ala 465	Met	Asn	Glu	Leu	Gly 470	Gly	Leu	Gln	Ala	Ile 475	Ala	Glu	Leu	Leu	Gln 480
30	Val	Asp	Cys	Glu	Met 485	Tyr	Gly	Leu	Thr	Asn 490	Asp	His	Tyr	Ser	Ile 495	Thr
30	Leu	Arg	Arg	Tyr 500	Ala	Gly	Met	Ala	Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp
35	Val	Ala	Asn 515	Lys	Ala	Thr	Leu	Cys 520	Ser	Met	Lys	Gly	Cys 525	Met	Arg	Ala
	Leu	Val 530	Ala	Gln	Leu	Lys	Ser 535	Glu	Ser	Glu	Asp	Leu 540	Gln	Gln	Val	Ile
40	Ala 545	Ser	Val	Leu	Arg	Asn 550	Leu	Ser	Trp	Arg	Ala 555	Asp	Val	Asn	Ser	Lys 560
45	Lys	Thr	Leu	Arg	Glu 565	Val	Gly	Ser	Val	Lys 570	Ala	Leu	Met	Glu	Cys 575	Ala
13	Leu	Glu	Val	Lys 580	Lys	Glu	Ser	Thr	Leu 585	Lys	Ser	Val	Leu	Ser 590	Ala	Leu
50	Trp	Asn	Leu 595	Ser	Ala	His	Cys	Thr 600	Glu	Asn	Lys	Ala	Asp 605	Ile	Cys	Ala
	Val	Asp 610	Gly	Ala	Leu	Ala	Phe 615	Leu	Val	Gly	Thr	Leu 620	Thr	Tyr	Arg	Ser
55	Gln 625	Thr	Asn	Thr	Leu	Ala 630	Ile	Ile	Glu	Ser	Gly 635	Gly	Gly	Ile	Leu	Arg 640
60	Asn	Val	Ser	Ser	Leu 645	Ile	Ala	Thr	Asn	Glu 650	Asp	His	Arg	Gln	Ile 655	Leu
	Arg	Glu	Asn	Asn 660	Cys	Leu	Gln	Thr	Leu 665	Leu	Gln	His	Leu	Lys 670	Ser	His
65	Ser	Leu	Thr 675	Ile	Val	Ser	Asn	Ala 680	Cys	Gly	Thr	Leu	Trp 685	Asn	Leu	Ser
	Ala	Arg	Asn	Pro	Lys	Asp	Gln	Glu	Ala	Leu	Trp	Asp	Met	Gly	Ala	Val

-55-

	690			695		70	0	
5	Ser Met 705	Leu Lys	Asn Leu 710		s Ser Ly	ys His Ly 715	s Met Ile	Ala Met 720
3	Gly Ser	Ala Ala	Ala Leu 725	Arg Ası		et Ala As: 30	n Arg Pro	Ala Lys 735
10	Tyr Lys	Asp Ala 740	Asn Ile	Met Se	r Pro G] 745	ly Ser Se	r Leu Pro 750	Ser Leu
	His Val	Arg Lys 755	Gln Lys	Ala Le		la Glu Le	u Asp Ala 765	Gln His
15	Leu Ser 770	Glu Thr	Phe Asp	Asn Ile 775	e Asp As	sn Ile Se 78	r Pro Lys O	Ala Ser
20	His Arg 785	Ser Lys	Gln Arg 790	_	s Gln Se	er Leu Ty 795	r Gly Asp	Tyr Val 800
20	Phe Asp	Thr Asn	Arg His 805	Asp As	Asn Ar 81	-	o Asn Phe	Asn Thr 815
25	Gly Asn	Met Thr 820	Val Leu	Ser Pro	Tyr Le 825	eu Asn Th	r Thr Val 830	Leu Pro
	Ser Ser	Ser Ser 835	Ser Arg	Gly Se		sp Ser Se	r Arg Ser 845	Glu Lys
30	Asp Arg 850	Ser Leu	Glu Arg	Glu Arg	g Gly Il	le Gly Le	u Gly Asn O	Tyr His
35	Pro Ala 865	Thr Glu	Asn Pro 870	Gly Th	r Ser Se	er Lys Arg 875	g Gly Leu	Gln Ile 880
33	Ser Thr	Thr Ala	Ala Gln 885	Ile Ala	a Lys Va 89		ı Glu Val	Ser Ala 895
40	Ile His	Thr Ser 900	Gln Glu	Asp Arg	g Ser Se 905	er Gly Se	r Thr Thr 910	Glu Leu
	His Cys	Val Thr 915	Asp Glu	Arg Ası 920		eu Arg Arg	g Ser Ser 925	Ala Ala
45	His Thr 930	His Ser	Asn Thr	Tyr Ası 935	n Phe Th	nr Lys Se: 94	r Glu Asn O	Ser Asn
50	Arg Thr 945	Cys Ser	Met Pro 950		a Lys Le	eu Glu Ty: 955	r Lys Arg	Ser Ser 960
30	Asn Asp	Ser Leu	Asn Ser 965	Val Se		er Asp Gly 70	y Tyr Gly	Lys Arg 975
55	Gly Gln	Met Lys 980	Pro Ser	Ile Gl	u Ser Ty 985	yr Ser Gl	u Asp Asp 990	Glu Ser
	Lys Phe	Cys Ser 995	Tyr Gly	Gln Ty:		la Asp Le	u Ala His 1005	Lys Ile
60	His Ser		His Met	Asp Asp 1015	p Asn As	sp Gly Gl	u Leu Asp 20	Thr Pro
65	Ile Asn 1025	Tyr Ser	Leu Lys 103		r Asp Gl	lu Gln Le 1035	u Asn Ser	Gly Arg 1040
65	Gln Ser	Pro Ser	Gln Asn 1045	Glu Ar		la Arg Pro 050	o Lys His	Ile Ile 1055

-56-

	Glu Asp	Glu Ile 106		Gln	Ser	Glu	Gln 1065		Gln	Ser	Arg	Asn 1070		Ser
5	Thr Thr	Tyr Pro	Val	Tyr	Thr	Glu 1080		Thr	Asp	Asp	Lys 1089		Leu	Lys
	Phe Glr 109	Pro His	Phe		Gln 1095		Glu	Cys	Val	Ser 110		Tyr	Arg	Ser
10	Arg Gly 1105	Ala Asn		Ser 1110		Thr	Asn	Arg	Val 1115		Ser	Asn	His	Gly 1120
15	Ile Asr	Gln Asn	Val 1125		Gln	Ser	Leu	Cys 1130		Glu	Asp	Asp	Tyr 1135	
15	Asp Asp	Lys Pro 114		Asn	Tyr	Ser	Glu 1145		Tyr	Ser	Glu	Glu 1150		Gln
20	His Glu	Glu. Glu 1155	Glu	Arg	Pro	Thr 1160		Tyr	Ser	Ile	Lys 1165	-	Asn	Glu
	Glu Lys 117	Arg His 'O	Val .	-	Gln 1175		Ile	Asp	Tyr	Ser 1180		Leu	Lys	Ala
25	Thr Asp 1185	lle Pro		Ser 1190		Lys	Gln	Ser	Phe 1195		Phe	Ser	Lys	Ser 1200
30	Ser Ser	Gly Gln	Ser 1205		Lys	Thr	Glu	His 1210		Ser	Ser	Ser	Ser 1215	
30	Asn Thr	Ser Thr 122		Ser	Ser	Asn	Ala 1225	-	Arg	Gln	Asn	Gln 1230		His
35	Pro Ser	Ser Ala 1235	Gln	Ser .	Arg	Ser 1240	_	Gln	Pro	Gln	Lys 1245		Ala	Thr
	Cys Lys	Val Ser	Ser		Asn 1255		Glu	Thr	Ile	Gln 1260		Tyr	Cys	Val
40	Glu Asp 1265	Thr Pro		Cys 1270		Ser	Arg	Cys	Ser 1275		Leu	Ser	Ser	Leu 1280
45	Ser Ser	Ala Glu	Asp 1285		Ile	Gly	Cys	Asn 1290		Thr	Thr	Gln	Glu 1295	
43	Asp Ser	Ala Asn 130		Leu	Gln	Ile	Ala 1305		Ile	Lys	Glu	Lys 13 1 0		Gly
50	Thr Arg	Ser Ala 1315	Glu -	Asp	Pro	Val 1320		Glu	Val	Pro	Ala 1325		Ser	Gln
	His Pro	Arg Thr	Lys		Ser 1335		Leu	Gln	Gly	Ser 1340		Leu	Ser	Ser
55	Glu Ser 1345	Ala Arg		Lys 1350		Val	Glu	Phe	Ser 1355		Gly	Ala	Lys	Ser 1360
60	Pro Ser	Lys Ser	Gly 1365		Gln	Thr	Pro	Lys 1370		Pro	Pro	Glu	His 1379	-
60	Val Glr	Glu Thr 138		Leu	Met	Phe	Ser 1385		Cys	Thr	Ser	Val 1390		Ser
65	Leu Asp	Ser Phe 1395	Glu	Ser .	Arg	Ser 1400		Ala	Ser	Ser	Val 1405		Ser	Glu
	Pro Cys	Ser Gly	Met	Val	Ser	Gly	Ile	Ile	Ser	Pro	Ser	Asp	Leu	Pro

-57-

		1410					1415						1420					
_	Asp 1425		Pro	Gly	Gln	Thr 1430		Pro	Pro	Ser	Arg 1435		Lys	Thr	Pro	Pro 1440		
5	Pro	Pro	Pro	Gln	Thr 1445		Gln	Thr	Lys	Arg 1450		Val	Pro	Lys	Asn 1455			
10	Ala	Pro	Thr	Ala 1460		Lys	Arg	Glu	Ser 1465		Pro	Lys	Gln	Ala 1470		Val		
	Asn	Ala	Ala 1475		Gln	Arg	Val	Gln 1480		Leu	Pro	Asp	Ala 1485		Thr	Leu		
15	Leu	His 1490		Ala	Thr	Glu	Ser 1495		Pro	Asp	Gly	Phe 1500		Cys	Ser	Ser		
	Ser 1505		Ser	Ala	Leu	Ser 1510		Asp	Glu	Pro	Phe 1515		Gln	Lys	Asp	Val 1520		
20	Glu	Leu	Arg	Ile	Met 1525		Pro	Val	Gln	Glu 1530		Asp	Asn	Gly	Asn 1535			
25	Thr	Glu	Ser	Glu 1540	Gln	Pro	Lys	Glu	Ser 1545		Glu	Asn	Gln	Glu 1550		Glu		
	Ala	Glu	Lys 1555		Ile	Asp	Ser	Glu 1560		Asp	Leu	Leu	Asp 1565		Ser	Asp		
30	Asp	Asp 1570		Ile	Glu	Ile	Leu 1575		Glu	Cys	Ile	Ile 1580		Ala	Met	Pro		
	Thr 1585	-	Ser	Ser	Arg	Lys 1590		Lys	Lys	Pro	Ala 1595		Thr	Ala	Ser	Lys 1600		
35	Leu	Pro	Pro	Pro	Val 1605		Arg	Lys	Pro	Ser 1610		Leu	Pro	Val	Tyr 1615			
40	Leu	Leu	Pro	Ser 1620		Asn	Arg	Leu	Gln 1625		Gln	Lys	His	Val 1630		Phe		
	Thr	Pro	Gly 1635		Asp	Met	Pro	Arg 1640		Tyr	Cys	Val	Glu 1645		Thr	Pro		
45	Ile	Asn 1650		Ser	Thr	Ala	Thr 1655		Leu	Ser	Asp	Leu 1660		Ile	Glu	Ser		
	Pro 1665		Asn	Glu	Leu	Ala 1670		Gly	Glu	Gly	Val 1675		Gly	Gly	Ala	Gln 1680		
50	Ser	Gly	Glu	Phe	Glu 1685		Arg	Asp	Thr	Ile 1690		Thr	Glu	Gly	Arg 1695			
55	Thr	Asp	Glu	Ala 1700	Gln O	Gly	Gly	Lys	Thr 1705		Ser	Val	Thr	Ile 1710		Glu		
	Leu	Asp	Asp 171		Lys	Ala	Glu	Glu 1720		Asp	Ile	Leu	Ala 1729		Cys	Ile		
60	Asn	Ser 1730		Met	Pro	Lys	Gly 173		Ser	His	Lys	Pro 1740		Arg	Val	Lys		
	Lys 1745		Met	Asp	Gln	Val 175		Gln	Ala	Ser	Ala 175		Ser	Ser	Ala	Pro 1760		
65	Asn	Lys	Asn	Gln	Leu 176!		Gly	Lys	Lys	Lys 177		Pro	Thr	Ser	Pro 177			

								,	0 -							
	Lys	Pro	Ile	Pro 1780		Asn	Thr	Glu	Tyr 1785		Thr	Arg	Val	Arg 1790	Lys)	Asn
5	Ala	Asp	Ser 1799	_	Asn	Asn	Leu	Asn 1800		Glu	Arg	Val	Phe 1809		Asp	Asn
	Lys	Asp 1810		Lys	Lys	Gln	Asn 1815		Lys	Asn	Asn	Ser 1820	-	Asp	Phe	Asn
10	Asp 1825		Leu	Pro	Asn	Asn 1830		Asp	Arg	Val	Arg 1835		Ser	Phe	Ala	Phe 1840
15	Asp	Ser	Pro	His	His 1845		Thr	Pro	Ile	Glu 1850		Thr	Pro	Tyr	Cys 1855	
13	Ser	Arg	Asn	Asp 1860		Leu	Ser	Ser	Leu 1865	_	Phe	Asp	Asp	Asp 1870	Asp)	Val
20	Asp	Leu	Ser 1875		Glu	Lys	Ala	Glu 1880		Arg	Lys	Ala	Lys 1885		Asn	Lys
	Glu	Ser 1890		Ala	Lys	Val	Thr 1895		His	Thr	Glu	Leu 1900		Ser	Asn	Gln
25	Gln 1905		Ala	Asn	Lys	Thr 1910		Ala	Ile	Ala	Lys 1915		Pro	Ile	Asn	Arg 1920
30	Gly	Gln	Pro	Lys	Pro 1925		Leu	Gln	Lys	Gln 1930		Thr	Phe	Pro	Gln 1935	
	Ser	Lys	Asp	Ile 1940		Asp	Arg	Gly	Ala 1945		Thr	Asp	Glu	Lys 1950	Leu)	Gln
35	Asn	Phe	Ala 1955		Glu	Asn	Thr	Pro 1960		Cys	Phe	Ser	His 1965		Ser	Ser
	Leu	Ser 1970		Leu	Ser	Asp	Ile 1975		Gln	Glu	Asn	Asn 1980		Lys	Glu	Asn
40	Glu 1985		Ile	Lys	Glu	Thr 1990		Pro	Pro	Asp	Ser 1995		Gly	Glu	Pro	Ser 2000
45	Lys	Pro	Gln	Ala	Ser 2005		Tyr	Ala	Pro	Lys 2010		Phe	His	Val	Glu 2015	
• 5	Thr	Pro	Val	Cys 2020		Ser	Arg	Asn	Ser 2025		Leu	Ser	Ser	Leu 2030	Ser	Ile
50	Asp	Ser	Glu 2035	_	Asp	Leu	Leu	Gln 2040		Cys	Ile	Ser	Ser 2045		Met	Pro
	Lys	Lys 2050	_	Lys	Pro	Ser	Arg 2055		Lys	Gly	Asp	Asn 2060		Lys	His	Ser
55	Pro 2065	_	Asn	Met	Gly	Gly 2070		Leu	Gly	Glu	Asp 2075		Thr	Leu	Asp	Leu 2080
60	Lys	Asp	Ile	Gln	Arg 2085		Asp	Ser	Glu	His 2090		Leu	Ser	Pro	Asp 2095	
80	Glu	Asn	Phe	Asp 2100		Lys	Ala	Ile	Gln 210		Gly	Ala	Asn	Ser 2110	Ile	Val
65	Ser	Ser	Leu 211		Gln	Ala	Ala	Ala 2120		Ala	Cys	Leu	Ser 212		Gln	Ala
	Ser	Ser	Asp	Ser	Asp	Ser	Ile	Leu	Ser	Leu	Lys	Ser	Gly	Ile	Ser	Leu

-59-

	. 21	30				213	5				2140)			
5	Gly Se 2145	r Pro	Phe	His	Leu 215		Pro	Asp	Gln	Glu 215		Lys	Pro	Phe	Thr 2160
3	Ser As	n Lys	Gly	Pro 2169	_	Ile	Leu	Lys	Pro 2170	_	Glu	Lys	Ser	Thr 217	
10	Glu Th	r Lys	Lys 2180		Glu	Ser	Glu	Ser 218		Gly	Ile	Lys	Gly 2190	_	Lys
	Lys Va	1 Tyr 219		Ser	Leu	Ile	Thr 2200	_	Lys	Val	Arg	Ser 2205		Ser	Glu
15	Ile Se	r Gly 10	Gln	Met	Lys	Gln 221		Leu	Gln	Ala	Asn 2220		Pro	Ser	Ile
20	Ser Ar 2225	g Gly	Arg	Thr	Met 2230		His	Ile	Pro	Gly 2235		Arg	Asn	Ser	Ser 2240
	Ser Se	r Thr	Ser	Pro 2245		Ser	Lys	Lys	Gly 2250		Pro	Leu	Lys	Thr 2255	
25	Ala Se	r Lys	Ser 2260		Ser	Glu	Gly	Gln 2265		Ala	Thr	Thr	Ser 2270		Arg
	Gly Al	a Lys 227		Ser	Val	Lys	Ser 2280		Leu	Ser	Pro	Val 2285		Arg	Gln
30	Thr Se	r Gln 90	Ile	Gly	Gly	Ser 229		Lys	Ala	Pro	Ser 2300		Ser	Gly	Ser
35	Arg As 2305	p Ser	Thr	Pro	Ser 231	_	Pro	Ala	Gln	Gln 231		Leu	Ser	Arg	Pro 2320
	Ile Gl	n Ser	Pro	Gly 2325	_	Asn	Ser	Ile	Ser 2330		Gly	Arg	Asn	Gly 2335	
40	Ser Pr	o Pro	Asn 2340		Ile	Ser	Gln	Leu 2349		Arg	Thr	Ser	Ser 2350		Ser
	Thr Al	a Ser 235		Lys	Ser	Ser	Gly 2360		Gly	Lys	Met	Ser 2365	-	Thr	Ser
45	Pro Gl 23	y Arg 70	Gln	Met	Ser	Gln 2375		Asn	Leu	Thr	Lys 2380		Thr	Gly	Leu
50	Ser Ly 2385	s Asn	Ala	Ser	Ser 239		Pro	Arg	Ser	Glu 239	_	Ala	Ser	Lys	Gly 2400
	Leu As	n Gln	Met	Asn 240		Gly	Asn	Gly	Ala 241		Lys	Lys	Val	Glu 241	
55	Ser Ar	g Met	Ser 242		Thr	Lys	Ser	Ser 242		Ser	Glu	Ser	Asp 2430		Ser
	Glu Ar	g Pro 243		Leu	Val	Arg	Gln 244		Thr	Phe	Ile	Lys 244		Ala	Pro
60	Ser Pr 24	o Thr 50	Leu	Arg	Arg	Lys 245		Glu	Glu	Ser	Ala 2460		Phe	Glu	Ser
65	Leu Se 2465	r Pro	Ser	Ser	Arg 247		Ala	Ser	Pro	Thr 247		Ser	Gln	Ala	Gln 2480
	Thr Pr	o Val	Leu	Ser 248		Ser	Leu	Pro	Asp 249		Ser	Leu	Ser	Thr 249	

-60-

	Ser Ser	Val Gln 250		Gly Tr	rp Arg Lys 2505	Leu Pro	Pro Asn 251	
5	Pro Thr	Ile Glu 2515	Tyr Asr	-	ly Arg Pro 520	Ala Lys	Arg His 2525	Asp Ile
	Ala Arg 253		Ser Glu	Ser Pr 2535	ro Ser Arg	Leu Pro 254		Arg Ser
10	Gly Thr 2545	Trp Lys	Arg Glu 255		er Lys His	Ser Ser 2555	Ser Leu	Pro Arg 2560
15	Val Ser	Thr Trp	Arg Arg 2565	Thr Gl	ly Ser Ser 257		Ile Leu	Ser Ala 2575
13	Ser Ser	Glu Ser 258		Lys Al	la Lys Ser 2585	Glu Asp	Glu Lys 2590	
20	Asn Ser	Ile Ser 2595	Gly The	-	ln Ser Lys 500	Glu Asn	Gln Val 2605	Ser Ala
	Lys Gly 261		Arg Lys	: Ile Ly 2615	ys Glu Asn	Glu Phe 262		Thr Asn
25	Ser Thr 2625	Ser Gln	Thr Val		er Gly Ala	Thr Asn 2635	Gly Ala	Glu Ser 2640
30	Lys Thr	Leu Ile	Tyr Glr 2645	Met Al	la Pro Ala 265		Lys Thr	Glu Asp 2655
30	Val Trp	Val Arg 266		Asp Cy	ys Pro Ile 2665	Asn Asn	Pro Arg 2670	-
35	Arg Ser	Pro Thr 2675	Gly Asr		ro Pro Val 880	Ile Asp	Ser Val 2685	Ser Glu
	Lys Ala 269		Asn Ile	Lys As 2695	sp Ser Lys	Asp Asn 270		Lys Gln
40	Asn Val 2705	Gly Asn	Gly Ser 271		ro Met Arg	Thr Val 2715	Gly Leu	Glu Asn 2720
45	Arg Leu	Asn Ser	Phe Ile 2725	: Gln Va	al Asp Ala 273	-	Gln Lys	Gly Thr 2735
43	Glu Ile	Lys Pro 274	-	Asn As	en Pro Val 2745	Pro Val	Ser Glu 2750	
50	Glu Ser	Ser Ile 2755	Val Glu	_	nr Pro Phe 760	Ser Ser	Ser Ser 2765	Ser Ser
	Lys His		Pro Ser	Gly Th 2775	nr Val Ala	Ala Arg 278		Pro Phe
55	Asn Tyr 2785	Asn Pro	Ser Pro		ys Ser Ser	Ala Asp 2795	Ser Thr	Ser Ala 2800
60	Arg Pro	Ser Gln	Ile Pro 2805	Thr Pr	ro Val Asn 281		Thr Lys	Lys Arg 2815
60	Asp Ser	Lys Thr 282		Thr Gl	lu Ser Ser 2825	Gly Thr	Gln Ser 283	
65	Arg His	Ser Gly 2835	Ser Ty		al Thr Ser 840	Val		

	(2) INFORMATION FOR SEQ ID NO:31:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: other nucleic acid	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	CGGAATTCNN NNNNNNAAC AGCNNNNNNN NNAATGAANN NCAAAGTCTG NNNTGAGGAT	60
20	CCTCA	65
	(2) INFORMATION FOR SEQ ID NO:32:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: other nucleic acid	
	(iv) ANTI-SENSE: NO	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
33	CGGAATTCGA CTCAGAANNN NNNAACTTCA GANNNNNNAT CNNNNNNNN GTCTGAGGAT	60
	CCTCA	65
40	(2) INFORMATION FOR SEQ ID NO:33:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 65 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: other nucleic acid	
20	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
55	CGGAATTCNN NNNNNNNNN NNNNNNNNN NNNNNNNNN NNNTGAGGAT	60
	CCTCA	65