LAPORAN TUGAS BESAR TAHAP PERTAMA PEMBELAJARAN MESIN

CLUSTERING (UNSUPERVISED LEARNING)

Oleh:

Fadlan Akmal Ramadhan (1301190351) Kelas: IF-43-12

JURUSAN S1 INFORMATIKA
FAKULTAS INFORMATIKA
UNIVERSITAS TELKOM
BANDUNG
2021

DAFTAR ISI

D.	AFTAR ISI	Ì
1.	Pendahuluan	1
2.	Eksplorasi dan Persiapan Data	1
	2.1 Import dan Read data dari dataset yang terletak di Google Drive	1
	2.2 Drop kolom dalam dataset yang tidak perlukan	1
	2.3 Mencari <i>missing value</i> pada dataset	2
	2.4 Mendeskripsikan dataset	3
	2.5 Mengganti missing value	4
	2.6 Mengecek Kembali Info Dataframe	4
	2.7 Mengganti tipe data Objek menjadi Category untuk melakukan Pemodelan	5
	2.8 Mapping tipe data Category ke Numeric untuk melakukan pemodelan	5
	2.9 Memastikan data sudah sesuai dan siap untuk dilakukan pemodelan	6
	2.10 Mencari korelasi antara setiap fitur pada dataset	6
	2.11 Melakukan Normalisasi data	7
	2.12 Ekspor File Data yang Telah Dieksplorasi	7
3.	Pemodelan	7
	3.1 Pemilihan Kolom pada Data	7
	3.2 Pemilihan Jumlah Cluster dan Perulangan	8
	3.3 Mencari centroid acak, <i>clustering</i> , mencari jarak Euclidian, dan visualisasi le centroid pada data	
	3.4 Output visualisasi <i>Clustering</i> sejumlah k, pemanggilan fungsi, serta isi <i>Cluster</i> .	9
4.	Evaluasi	. 10
5.	Eksperimen	. 11
	5.1 Memilih Data Eksperimen	. 11
	5.2 Visualisasi plot data awal	. 11
	5.3 Pemilihan Jumlah Cluster dan Perulangan	. 11
	5.4 Memilih centroid acak, dan melakukan visualisasi plot letak centroid pada data	a12
	5.5 Melakukan <i>clustering</i> , dan melakukan visualisasi plot hasil <i>clustering</i>	. 12
6.	Kesimpulan	. 13
7.	Tambahan	. 14
	7.1 Tautan Dataset Awal	. 14
	7.2 Tautan Source Code	. 14
	7.3 Tautan Dataset Hasil Eksplorasi	. 14
	7.4 Tautan Video Presentasi	. 14

1. Pendahuluan

Laporan ini ditulis untuk memenuhi tugas besar tahap pertama mata kuliah Pembelajaran Mesin. Topik tugas besar tahap pertama yang telah ditentukan adalah *unsupervised learning*, yaitu *clustering*. Sumber data untuk diolah telah diberikan, yaitu file kendaraan_train.csv dan kendaraan_test.csv.

Clustering adalah suatu unsupervised learning, yaitu suatu tipe algoritma machine learning yang digunakan untuk menarik kesimpulan dari suatu dataset, dan mempelajari suatu data berdasarkan kedekatan untuk mencari pola-pola atau pengelompokan dalam data. K-Means dipilih sebagai metode untuk melakukan clustering dalam tugas ini.

Formulasi masalah pada tugas besar ini adalah mencari pola-pola tersembunyi pada dataset data pelanggan dengan menggunakan K-Means untuk melakukan *clustering*. Fitur yang digunakan yaitu Umur dan kanal_Penjualan. Tujuan dilakuakn clustering adalah untuk mendapatkan jarak minimum antara data point dan centroid, dan juga jarak antara centroid menggunakan perhitungan WCSS(*Within Cluster Sum of Squares*).

2. Eksplorasi dan Persiapan Data

2.1 Import dan Read data dari dataset yang terletak di Google Drive

()	<pre>1 # Read file csv kendaraaan_train sebagai df_kendaraan 2 url2_train = 'https://drive.google.com/file/d/1MscNjXBK9VAHuaMyYamyuFWfTN1MVOV-/view?usp=sharing' 3 url_train = 'https://drive.google.com/uc?id=' + url2_train.split('')[-2] 4 df_kendaraan = pd.read_csv(url_train) 5 df_kendaraan</pre>													
₽		id	Jenis_Kelamin	Umur	SIM	Kode_Daerah	Sudah_Asuransi	Umur_Kendaraan	Kendaraan_Rusak	Premi	Kanal_Penjualan	Lama_Berlangganan	Tertarik	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	1	Wanita	30.0	1.0	33.0	1.0	< 1 Tahun	Tidak	28029.0	152.0	97.0	0	
	1	2	Pria	48.0	1.0	39.0	0.0	> 2 Tahun	Pernah	25800.0	29.0	158.0	0	
	2	3	NaN	21.0	1.0	46.0	1.0	< 1 Tahun	Tidak	32733.0	160.0	119.0	0	
	3	4	Wanita	58.0	1.0	48.0	0.0	1-2 Tahun	Tidak	2630.0	124.0	63.0	0	
	4	5	Pria	50.0	1.0	35.0	0.0	> 2 Tahun	NaN	34857.0	88.0	194.0	0	
	285826	285827	Wanita	23.0	1.0	4.0	1.0	< 1 Tahun	Tidak	25988.0	152.0	217.0	0	
	285827	285828	Wanita	21.0	1.0	46.0	1.0	< 1 Tahun	Tidak	44686.0	152.0	50.0	0	
	285828	285829	Wanita	23.0	1.0	50.0	1.0	< 1 Tahun	Tidak	49751.0	152.0	226.0	0	
	285829	285830	Pria	68.0	1.0	7.0	1.0	1-2 Tahun	Tidak	30503.0	124.0	270.0	0	
	285830	285831	Pria	45.0	1.0	28.0	0.0	1-2 Tahun	Pernah	36480.0	26.0	44.0	0	
2	285831 ro	ws × 12 c	olumns											

2.2 Drop kolom dalam dataset yang tidak perlukan

```
1 df_kendaraan.drop('id',axis=1,inplace=True)
2 df_kendaraan.drop('Tertarik',axis=1,inplace=True)
```

2.3 Mencari missing value pada dataset

```
2 missing_value = df_kendaraan.isnull()
3 for column in missing_value.columns.values.tolist():
    print(column)
 5 print(missing_value[column].value_counts())
 6 print("")
 7 print("False Means There is no NaN or Missing Values in Data Frame. ")
 8 print("True Means There is NaN or Missing Values in Data Frame. ")
Jenis_Kelamin
False
True
         14440
Name: Jenis_Kelamin, dtype: int64
False
       271617
True
        14214
Name: Umur, dtype: int64
False
      271427
True
         14404
Name: SIM, dtype: int64
Kode_Daerah
False 271525
True 14306
Name: Kode_Daerah, dtype: int64
Sudah_Asuransi
False 271602
         14229
Name: Sudah_Asuransi, dtype: int64
Umur_Kendaraan
False 271556
         14275
Name: Umur_Kendaraan, dtype: int64
Kendaraan_Rusak
False 271643
         14188
Name: Kendaraan_Rusak, dtype: int64
Premi
        271262
         14569
Name: Premi, dtype: int64
Kanal_Penjualan
False
       271532
         14299
Name: Kanal_Penjualan, dtype: int64
Lama_Berlangganan
False
       271839
         13992
Name: Lama_Berlangganan, dtype: int64
False Means There is no NaN or Missing Values in Data Frame.
True Means There is NaN or Missing Values in Data Frame
```

2.4 Mendeskripsikan dataset

Tujuan deskripsi dataset salah satunya agar mendapatkan nilai mean dan modus pada tiap fitur.

```
1 print("Jenis Kelamin :\n",df_kendaraan['Jenis_Kelamin'].describe(),"\n")
     2 print("Umur :\n",df_kendaraan['Umur'].describe(),"\n")
     3 print("SIM :\n",df kendaraan['SIM'].describe(),"\n")
     4 print("Kode Daerah :\n",df_kendaraan['Kode_Daerah'].describe(),"\n")
     5 print("Asuransi :\n",df_kendaraan['Sudah_Asuransi'].describe(),"\n")
     6 print("Umur Kendaraan :\n",df_kendaraan['Umur_Kendaraan'].describe(),"\n")
     7 print("Kendaraan Rusak :\n",df_kendaraan['Kendaraan_Rusak'].describe(),"\n")
    8 print("Premi :\n",df_kendaraan['Premi'].describe(),"\n")
    9 print("Kanal Penjualan :\n",df_kendaraan['Kanal_Penjualan'].describe(),"\n")
    10 print("Lama Berlangganan :\n",df_kendaraan['Lama_Berlangganan'].describe(),"\n")

→ Jenis Kelamin:
    count
              271391
   unique
                 2
   top
               Pria
             146678
   freq
   Name: Jenis_Kelamin, dtype: object
   Umur :
    count
             271617.000000
               38.844336
   mean
   std
                15.522487
   min
                20.000000
                25.000000
   50%
                36.000000
                49.000000
   75%
   max
                85.000000
   Name: Umur, dtype: float64
   SIM:
             271427.000000
    count
   mean
                 0.997848
    std
                 0.046335
                 0.000000
   min
   25%
                 1.000000
   50%
                 1.000000
   75%
                 1.000000
                 1.000000
   Name: SIM, dtype: float64
   Kode Daerah :
             271525.000000
    count
   mean
                26.405410
                13.252714
   std
                 0.000000
   min
   25%
                15.000000
   50%
                28.000000
   75%
                35.000000
                52.000000
   max
   Name: Kode Daerah, dtype: float64
```

2.5 Mengganti missing value

Karena banyaknya missing value pada data, hingga mencapai 18%, maka missing value akan diganti dengan mean atau modus dari masing-masing kolom/fitur.

```
2 df_kendaraan['Umur'].mode()
 3 df_kendaraan["Umur"].replace(np.nan, 38.844336, inplace=True)
 5 df_kendaraan['Jenis_Kelamin'].mode()
 6 df_kendaraan["Jenis_Kelamin"].replace(np.nan, "Pria", inplace=True)
 8 df_kendaraan['SIM'].mode()
 9 df_kendaraan["SIM"].replace(np.nan, 0.997848, inplace=True)
11 df kendaraan['Kode Daerah'].mode()
12 df_kendaraan["Kode_Daerah"].replace(np.nan, 26.405410, inplace=True)
14 df_kendaraan['Sudah_Asuransi'].mode()
15 df_kendaraan["Sudah_Asuransi"].replace(np.nan, 0.458778, inplace=True)
17 df_kendaraan['Umur_Kendaraan'].mode()
18 df_kendaraan["Umur_Kendaraan"].replace(np.nan, "1-2 Tahun", inplace=True)
20 df kendaraan['Kendaraan Rusak'].mode()
21 df_kendaraan["Kendaraan_Rusak"].replace(np.nan, "Pernah", inplace=True)
23 df_kendaraan['Premi'].mode()
24 df kendaraan["Premi"].replace(np.nan, 30536.683472, inplace=True)
26 df_kendaraan['Kanal_Penjualan'].mode()
27 df_kendaraan["Kanal_Penjualan"].replace(np.nan, 112.021567, inplace=True)
29 df_kendaraan['Lama_Berlangganan'].mode()
30 df_kendaraan["Lama_Berlangganan"].replace(np.nan, 154.286302, inplace=True)
32 df kendaraan
```

	Jenis_Kelamin	Umur	SIM	Kode_Daerah	Sudah_Asuransi	Umur_Kendaraan	Kendaraan_Rusak	Premi	Kanal_Penjualan	Lama_Berlangganan
0	Wanita	30.0	1.0	33.0	1.0	< 1 Tahun	Tidak	28029.0	152.0	97.0
1	Pria	48.0	1.0	39.0	0.0	> 2 Tahun	Pernah	25800.0	29.0	158.0
2	Pria	21.0	1.0	46.0	1.0	< 1 Tahun	Tidak	32733.0	160.0	119.0
3	Wanita	58.0	1.0	48.0	0.0	1-2 Tahun	Tidak	2630.0	124.0	63.0
4	Pria	50.0	1.0	35.0	0.0	> 2 Tahun	Pernah	34857.0	88.0	194.0
285826	Wanita	23.0	1.0	4.0	1.0	< 1 Tahun	Tidak	25988.0	152.0	217.0
285827	Wanita	21.0	1.0	46.0	1.0	< 1 Tahun	Tidak	44686.0	152.0	50.0

2.6 Mengecek Kembali Info Dataframe

2.7 Mengganti tipe data Objek menjadi Category untuk melakukan Pemodelan

Dalam melakukan pemodelan data type objek tidak dapat dilakukan, sehingga tipe data perlu diubah.

```
[43] 1 object_column = df_kendaraan.select_dtypes(['object']).columns
        2 category column = df kendaraan.select dtypes(['category']).columns
        3 df_kendaraan[object_column]=df_kendaraan[object_column].apply(lambda x: x.astype('category'))
       5 df_kendaraan.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 285831 entries, 0 to 285830
      Data columns (total 10 columns):
                            Non-Null Count
       # Column
                                    -----
      ---
       0 Jenis_Kelamin 285831 non-null category
1 Umur 285831 non-null float64
       2 SIM 285831 non-null float64
3 Kode_Daerah 285831 non-null float64
4 Sudah_Asuransi 285831 non-null float64
5 Umur_Kendaraan 285831 non-null category
6 Kendaraan_Rusak 285831 non-null category
7 Premi 285831 non-null category
           Premi 285831 non-null float64
Kanal_Penjualan 285831 non-null float64
       9 Lama_Berlangganan 285831 non-null float64
      dtypes: category(3), float64(7)
      memory usage: 16.1 MB
```

2.8 Mapping tipe data Category ke Numeric untuk melakukan pemodelan

		1 0 1				U	•			•		
14]	<pre>1 df_kendaraan[object_column] = df_kendaraan[object_column].apply(lambda x: x.cat.codes) 2 df_kendaraan[category_column] = df_kendaraan[category_column].apply(lambda x: x.cat.codes) 3 4 df_kendaraan</pre>											
>		Jenis_Kelamir	n (Umur	SIM	Kode_Daerah	Sudah_Asuransi	Umur_Kendaraan	Kendaraan_Rusak	Premi	Kanal_Penjualan	Lama_Berlangganan
	0	1	1	30.0	1.0	33.0	1.0	1	1	28029.0	152.0	97.0
	1	()	48.0	1.0	39.0	0.0	2	0	25800.0	29.0	158.0
	2	()	21.0	1.0	46.0	1.0	1	1	32733.0	160.0	119.0
	3	1	1	58.0	1.0	48.0	0.0	0	1	2630.0	124.0	63.0
	4	()	50.0	1.0	35.0	0.0	2	0	34857.0	88.0	194.0
	285826	1	1	23.0	1.0	4.0	1.0	1	1	25988.0	152.0	217.0
	285827	1	1	21.0	1.0	46.0	1.0	1	1	44686.0	152.0	50.0
	285828	1	1	23.0	1.0	50.0	1.0	1	1	49751.0	152.0	226.0
	285829	()	68.0	1.0	7.0	1.0	0	1	30503.0	124.0	270.0
	285830	()	45.0	1.0	28.0	0.0	0	0	36480.0	26.0	44.0
	285831 rd	ows × 10 columns	6									

2.9 Memastikan data sudah sesuai dan siap untuk dilakukan pemodelan

2.10 Mencari korelasi antara setiap fitur pada dataset

Berdasarkan heatmap, dapat diketahui bahwa antara masing-masing fitur pada dataset tidak terlalu berkorelasi, karena fitur pada dataset banyak yang berbentuk categorical.

2.11 Melakukan Normalisasi data

Dilakukan scaling pada data menggunakan MinMax scaling agar proses perhitungan data pada proses K-Means lebih cepat, dan membuat range nilai menjadi sama, yaitu pada rentang [0,1].

2.12 Ekspor File Data yang Telah Dieksplorasi

```
[89] 1 # Export data hasil eksplorasi
2
3 hasil_eksplorasi = normalize_data[['Umur', 'Kanal_Penjualan']]
4 hasil_eksplorasi.to_csv("Hasil_Eksplorasi.csv")
```

3. Pemodelan

3.1 Pemilihan Kolom pada Data

Kolom yang digunakan adalah Umur dan kanal_Penjualan, dipilih berdasarkan korelasi yang digambarkan dalam heatmap.

```
[51] 1 # Visualisasi Plot Data Awal
2 plt.scatter(data[:,0], data[:,1], s = 7)
3 plt.title('Plot Data Awal')
Taut(0.5 1.0 'Plot Data Awal')
```

Text(0.5, 1.0, 'Plot Data Awal')

3.2 Pemilihan Jumlah Cluster dan Perulangan

Jumlah cluster yang dipilih berjumlah k=3, dan perulangan dilakukan sebanyak n=100.

```
[79] 1 # Jumlah Cluster adalah 3
2 k = 3
3
4 # Perulangan dilakukan 100 kali
5 n = 100
```

3.3 Mencari centroid acak, *clustering*, mencari jarak Euclidian, dan visualisasi letak centroid pada data

```
[80] 1 # Mencari Centroid Acak berjumlah k-Cluster pada suatu data frame
      2 def randCentroid(k,data):
      3 centroid = np.array([]).reshape(data.shape[1],0)
         for i in range(k):
          rand = rd.randint(0,data.shape[0]-1)
           centroid = np.c_[centroid, data[rand]]
     7 return centroid
     9 # Melakukan Clustering Pada Suatu Data Frame
     10 def clustering(jarakMin,data):
     11 i = 0
         for i in range(k):
          cent[i+1] = np.array([]).reshape(2,0)
     13
     14 for i in range(data.shape[0]):
          cent[minimum[i]] = np.c_[cent[minimum[i]],data[i]]
     15
     16 for i in range(k):
          cent[i+1] = cent[i+1].T
     17
     18 for i in range(k):
     19
          centroid[:,i] = np.mean(cent[i+1], axis = 0)
     20 return cent
     22 # Mencari Jarak Euclidian dari suatu data frame sejumlah k-Cluster
     23 def jarakEuclid(k,data):
     24 euclidian = np.array([]).reshape(data.shape[0],0)
     25 for i in range(k):
         dist = np.sum((data-centroid[:,i])**2, axis = 1)
     26
     27
          euclidian = np.c_[euclidian, dist]
    28 return euclidian
```

```
[81] 1 centroid = randCentroid(k,data)
2
3 # Visualisasi Plot Centroid Acak pada Data
4 plt.scatter(data[:,0],data[:,1], s = 7)
5 plt.scatter(centroid[0,:], centroid[1,:],marker='o', c='r', label='Centroid', s = 100)
6 plt.title('Random Centroid')
7 plt.legend
8 plt.show()
```


3.4 Output visualisasi *Clustering* sejumlah k, pemanggilan fungsi, serta isi *Cluster*

```
[82] 1 cluster = {}

2
3 for i in range(n):
4    minimum = np.argmin(jarakEuclid(k,data), axis = 1) + 1
5    cent = {}

6
7    # Menghitung Mean Masing-Masing Cluster
8    cluster = clustering(minimum,data)
9
10    # Visualisasi Plot Hasil Clustering
11 color = ['c','y','g']
12 labels = ['Cluster 1','Cluster 2','Cluster 3']
13 for i in range(k):
14    plt.scatter(cluster[i + 1][:,0], cluster[i + 1][:,1], c = color[i], label = labels[i], s = 7)
15    plt.scatter(centroid[0,:], centroid[1,:], marker = 'o', c = 'r', label = 'Centroid', s = 100)
16    plt.title('Clustering')
17    plt.show()
18
19    # Note: Runtime About 2m
```



```
[83] 1 for i in range(k):
      2 print(f"Cluster {i+1}: ", "\n")
      3 print(cluster[i+1], "\n")
 Cluster 1:
     [[-1.36066707e-01 2.46780453e-01]
      [-2.74528246e-01 2.96163169e-01]
      [-2.74528246e-01 2.46780453e-01]
      [-2.43759015e-01 2.46780453e-01]
[-2.28374399e-01 2.82165450e-09]
      [-1.82220553e-01 2.46780453e-01]]
     Cluster 2:
     [[ 0.14085637 -0.51247881]
      [ 0.11008714 -0.50013313]
      [ 0.09470252 -0.53099732]
      [ 0.43316406 -0.53099732]
      [ 0.32547175 -0.53099732]
      [ 0.38701022 -0.50630597]]
     Cluster 3:
     [[ 2.94702524e-01 7.39409473e-02]
      [ 1.71625601e-01 -1.48281275e-01]
      [ 2.33164062e-01 7.39409473e-02]
      [ 1.71625601e-01 2.82165450e-09]
      [ 3.87010216e-01 7.39409473e-02]
      [ 6.08927254e-10 -1.29762756e-01]]
```

4. Evaluasi

Evaluasi hasil dari algoritma K-Means dilakukan secara manual menggunakan $Elbow\ Method$. Terbukti bahwa jumlah centroid dan kluster terbaik ada di k=3.

```
1 # Within Cluster Sum of Squares
2 wcss = []
3 for i in range(1, 11):
     kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 50)
      kmeans.fit(data)
8 #·Visualisasi·Plot·Banyaknya·Cluster·dan·Distorsi
9 plt.plot(range(1, 11), wcss)
10 plt.xlabel('Banyaknya Cluster')
11 plt.ylabel('Distorion')
12 plt.show()
13 # Average Runtime 12s
  8000
  7000
  6000
  5000
  4000
  3000
  2000
  1000
                     Banyaknya Cluster
```

5. Eksperimen

Untuk eksperimen, dipilih fitur umur dan kanal_Penjualan, dengan k=3, dan dilakukan iterasi sebanyak n=100, untuk memastikan proses iterasi pada seluruh data telah dilakukan.

5.1 Memilih Data Eksperimen

Data eksperimen yang telah dilakukan proses normalisasi, dan data yang digunakan hanya 50.000, untuk mempersingkat waktu running time.

5.2 Visualisasi plot data awal

```
1 # Visualisasi Plot Data Awal
2 plt.scatter(dataEksperimen[:,0], dataEksperimen[:,1], s = 7)
3 plt.title('Plot Data Awal')
```


5.3 Pemilihan Jumlah Cluster dan Perulangan

Jumlah cluster yang dipilih adalah k = 3, dengan perulangan 100 kali

```
[88] 1 # Jumlah Cluster k = 3
2 k = 3
3
4 # Perulangan n dilakukan 100 kali
5 n = 100
```

5.4 Memilih centroid acak, dan melakukan visualisasi plot letak centroid pada data

```
1 centroid = randCentroid(k,dataEksperimen)
2
3 # Visualisasi Plot Centroid Acak pada Data
4 plt.scatter(data[:,0], data[:,1], s = 7)
5 plt.scatter(centroid[0,:], centroid[1,:], marker = 'o', c = 'r', label = 'Centroid', s = 100)
6 plt.title('Random Centroid')
7 plt.legend
8 plt.show()
C-

Random Centroid
```


5.5 Melakukan clustering, dan melakukan visualisasi plot hasil clustering

```
1 cluster = {}
2
3 for i in range(n):
    min = np.argmin(jarakEuclid(k,dataEksperimen), axis = 1) + 1
     cent = {}
     # Menghitung Mean Masing-Masing Cluster
     cluster = clustering(min,dataEksperimen)
8
10 # Visualisasi Plot Hasil Clustering
11 color = ['c','y','g']
12 labels = ['Cluster 1', 'Cluster 2', 'Cluster 3']
13 for i in range(k):
14 \quad \texttt{plt.scatter}(\texttt{cluster}[\texttt{i+1}][:,0], \ \texttt{cluster}[\texttt{i+1}][:,1], \ \texttt{c} = \texttt{color}[\texttt{i}], \ \texttt{label} = \texttt{labels}[\texttt{i}], \ \texttt{s} = 7)
15 plt.scatter(centroid[0,:], centroid[1,:], marker = 'o', c = 'r', label = 'Centroid', s = 100)
16 plt.title('Clustering')
17 plt.xlabel("Umur")
18 plt.ylabel("Kanal Penjualan")
19 plt.show()
20
21 # Note: Runtime About 3m
```



```
1 for i in range(k):
  2 print(f"Cluster {i+1}: ", "\n")
      print(cluster[i+1], "\n")
Cluster 1:
 [[-1.36066707e-01 2.46780453e-01]
  [-2.74528246e-01 2.96163169e-01]
[-2.74528246e-01 2.46780453e-01]
  [-2.43759015e-01 2.46780453e-01]
  [-2.28374399e-01 2.82165450e-09]
  [-1.82220553e-01 2.46780453e-01]]
 Cluster 2:
 [[ 0.14085637 -0.51247881]
    0.11008714 -0.50013313]
  [ 0.09470252 -0.53099732]
  [ 0.43316406 -0.53099732]
  [ 0.32547175 -0.53099732]
  [ 0.38701022 -0.50630597]]
 [[ 2.94702524e-01 7.39409473e-02]
   [ 1.71625601e-01 -1.48281275e-01]
  [ 2.33164062e-01 7.39409473e-02]
  [ 1.71625601e-01 2.82165450e-09]
[ 3.87010216e-01 7.39409473e-02]
  [ 6.08927254e-10 -1.29762756e-01]]
```

6. Kesimpulan

Berdasarkan hasil dari program Tugas besar yang telah dilakukan, dapat disimpulkan bahwa:

- 1. Konsep Algoritma K-Means Clustering dapat dilakukan untuk mencari pola-pola tersembunyi pada suatu dataset.
- 2. Proses *cleansing data*, eksplorasi data, *pre-processing*, serta pemilihan data sangatlah krusial dalam proses *Clustering*.
- 3. Diperlukan korelasi dalam memilih dan menentukan fitur/kolom pada suatu dataset yang akan dilakukan *clustering*.
- 4. Menentukan jumlah centroid acak yang tepat, sehingga hasil *clustering* data yang didapatkan maksimal. Untuk menemukan jumlah centroid yang tepat dan sebagai evaluasi dibutuhkan *Elbow Method*. Pada percobaan ini, jumlah k yang terbaik adalah k = 3.
- 5. Berdasarkan hasil evaluasi menggunakan Elbow Method, dapat dilihat bahwa semakin banyak jumlah k yang digunakan saat proses clustering K-Means maka jarak antara data dan centroid semakin kecil.
- 6. Perlunya memiliki fitur/kolom pada suatu dataset yang baik dan tepat sebagai bahan *clustering*, sehingga dapat menghasilkan pola *clustering* data yang bagus.

7. Tambahan

7.1 Tautan Dataset Awal

Google Drive - kendaraan_train.csv

https://drive.google.com/file/d/1MscNjXBK9VAHuaMyYamyuFWfTN1 MVOV-/view?usp=sharing

Google Drive - kendaraan_test.csv

https://drive.google.com/file/d/1BNEpAiE66kN5jw3K0HeHA2RQOEA CfFsK/view?usp=sharing

7.2 Tautan Source Code

Google Colabs -

Tubes-PembelajaranMesin_Clustering-1301190351.ipynb

https://colab.research.google.com/drive/1ej_fKCCT49DBvbLYIMViLGC2KQ-DPJHt?usp=sharing

7.3 Tautan Dataset Hasil Eksplorasi

Google Drive - Hasil_Eksplorasi.csv

 $\frac{https://drive.google.com/file/d/14lAKJcsC2M13tmVqEfrGbY4cNy5Y1c}{dy/view?usp=sharing}$

7.4 Tautan Video Presentasi

Youtube

https:/youtu.be/mMuvi08H_fw