Tutorial 5. Principiul contracțiilor

Principiul contracțiilor este o abstractizare a metodei aproximațiilor succesive, metodă utilizată în mod empiric încă din antichitate pentru rezolvarea ecuațiilor numerice, și care a fost utilizată cu succes, de exemplu, și de către Johannes Kepler în 1621 la determinarea poziției planetelor pe orbită, rezolvând în mod iterativ ecuația care astăzi îi poartă numele¹:

$$E = M + \varepsilon \sin E$$
.

În cazul ecuațiilor diferențiale, metoda aproximațiilor succesive a fost introdusă de Joseph Liouville în 1837 și dezvoltată sistematic de Émile Picard începând cu anul 1890.

Metoda constă în determinarea puntelor fixe ale unei funcții f, adică a soluțiilor ecuației

$$x = f(x),$$

prin trecere la limită în relația de recurență

$$x_{n+1} = f(x_n), \ n = 0, 1, 2 \dots,$$

care defineşte şirul aproximațiilor succesive asociat funcției f.

Cerinţa minimală pentru ca metoda să funcţioneze este ca f să fie continuă, aceasta asigură faptul că limita şirului (x_n) , dacă există, este punct fix pentru f, dar ea nu asigură şi convergenţa lui (x_n) .

Dintre condițiile suplimentare care să asigure convergența metodei, una sa dovedit aplicabilă într-o clasă largă de situații, și a fost formulată în cadrul abstract al spațiilor liniare normate de către Ștefan Banach în teza sa de doctorat publicată în 1922: $dacă f: X \to X$ este lipschitziană cu constanța Lipschitz strict subunitară, adică dacă este o contracție, iar spațiul liniar normat $(X, \|\cdot\|)$ este complet, atunci f are un punct fix unic $x^* \in X$, și oricare ar fi termenul inițial $x_0 \in X$, șirul aproximațiilor succesive converge la x^* .

Scopul nostru aici este să demonstrăm riguros acest rezultat, numit astăzi *Teorema de punct fix a lui Banach* sau *Principiul contracțiilor*, și să prezentăm câteva aplicații ale lui.

§1. Metoda aproximaţiilor succesive

Începem prin a prezenta metoda aproximaţiilor succesive, şi am ales ca prim exemplu o metodă antică de aflare a rădăcinii pătrate, metodă care apare în scrierile rămase de la Heron din Alexandria (circa 10-70 d.H.) şi anume chiar în *Metrica*, o culegere de formule şi metode de calcul pentru lungimi, arii şi volume, multe dintre ele preluate de la babilonieni.

Exemplul 1. Fie a > 0 un număr fixat. Pentru a afla rădăcina pătrată a lui a procedăm astfel: considerăm ca aproximație inițială un număr oarecare x > 0 și calculăm numărul a/x, câtul împărțirii lui a la x. Dacă cele două numere

¹Necunoscuta E este un unghi numit anomalia excentrică, M este anomalia medie iar $\varepsilon \in (0,1)$ este excentricitatea orbitei.

sunt egale, ne oprim, deoarece în acest caz $x^2 = a$, altfel considerăm ca valoare aproximativă media aritmetică a acestor două numere, adică pe

$$\frac{1}{2}\left(x+\frac{a}{x}\right),$$

și cu această nouă aproximație repetăm pasul precedent. Indiferent de valoarea inițială a lui x, aproximațiile obținute sunt din ce în ce mai aproape de rădăcina lui a.

Cu alte cuvinte, în limbajul matematic actual, avem următoarea metodă iterativă: plecăm cu un $x_0 > 0$ orecare și calculăm, succesiv, termenii șirului

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \ n = 0, 1, 2, \dots$$
 (1)

Obținem un șir convergent la un număr $x^* \geq 0$, iar acesta verifică în mod evident ecuația limitei

$$x^* = \frac{1}{2} \left(x^* + \frac{a}{x^*} \right), \tag{2}$$

de unde rezultă că $x^* = \sqrt{a}$. Vom opri calculul efectiv al aproximațiilor x_n când observăm că s-au "stabilizat" un număr suficient de zecimale.

De exemplu, pentru a=16 și $x_0=29$, se obțin următoarele 10 valori calculate cu 12 zecimale exacte;

x0 = 29

x1=14.7758620689655

x2=7.92935460507786

x3=4.97358665247226

x4=4.09529048512717

x5=4.0011086242342

x6=4.00000015358839

x7=4

x8 = 4

x9 = 4

Să observăm că ecuația

$$x^2 = a$$

a fost pusă sub forma unei probleme de punct fix

$$x = f(x),$$

pentru funcția $f:(0,+\infty)\to(0,+\infty)$ dată de

$$f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right). \tag{3}$$

Justificarea convergenței șirului (x_n) este lăsată cititorului, ea poate fi stabilită, de exemplu, prin studierea mărginirii și monotoniei șirului, vezi Figura 1.

În final, precizăm că simpla transformare a unei ecuații într-o problemă de punct fix nu asigură succesul rezolvării ei prin metoda aproximațiilor sucesive.

Figura 1: Metoda lui Heron, a = 16 și $x_0 = 29$.

De exemplu, tot ecuația

$$x^2 = a$$
.

pusă acum sub forma

$$x = \frac{a}{r}$$

conduce la următorul șir periodic de "aproximații succesive":

$$x_1 = \frac{a}{x_0}$$
, $x_2 = \frac{a}{x_1} = a \cdot \frac{x_0}{a} = x_0$, $x_3 = \frac{a}{x_2} = \frac{a}{x_0} = x_1, \dots$

şir care este convergent numai dacă este şir constant, adică dacă aproximația inițială x_0 este chiar soluția căutată.

§2. Principiul contracțiilor

Cadrul natural în care funcționează metoda aproximațiilor succesive s-a dovedit a fi cel al spațiilor metrice complete. Amintim că un spațiu metric (X, d) se numește complet dacă are proprietatea că orice șir fundamental este convergent.

Spaţiile numerice (\mathbb{R}^n, d) şi (\mathbb{C}^n, d) , dotate cu distanţa uzuală, sunt spaţii metrice complete, la fel şi spaţiul funcţiilor continue $C([a, b], \mathbb{R}^n)$, dotat cu metrica convergenţei uniforme

$$d(x,y) = \sup_{t \in [a,b]} ||x(t) - y(t)||.$$

Aceste trei exemple sunt de fapt spații liniare normate $(X, \|\cdot\|)$, care sunt spații metrice complete în metrica indusă de normă, $d(x, y) = \|x - y\|$. Un astfel de spațiu normat este numit spațiu Banach.

Există şi exemple importante de spații metrice care nu sunt complete, dintre care menționăm doar mulțimea numerelor raționale \mathbb{Q} , dotată cu metrica

obișnuită, d(x,y) = |x-y|, și mulțimea funcțiilor continue $C([a,b],\mathbb{R})$, înzestrată cu metrica convergenței în medie,

$$d(x,y) = \int_a^b |x(t) - y(t)| dt.$$

Fie (X,d) un spațiu metric. Vom spune că aplicația $f:X\to X$ este o contracție pe X, dacă există constanta Lipschitz $q\in[0,1)$ astfel încât

$$d(f(x), f(y)) \le qd(x, y),$$

pentru orice $x, y \in X$.

Principiul contracțiilor are următorul enunț:

Teorema lui Banach. Dacă(X,d) este un spațiu metric complet iar aplicația $f: X \to X$ este o contracție, atunci f are un punct fix unic în X.

Mai mult, pentru orice punct inițial $x_0 \in X$, șirul aproximațiilor succesive

$$\begin{cases} x_0 \in X \\ x_{n+1} = f(x_n), & n \in \mathbb{N}, \end{cases}$$
 (4)

este convergent la punctul fix $x^* \in X$ al lui f, viteza de convergență fiind dată de estimarea

$$d(x_n, x^*) \le \frac{d(x_0, x_1)}{1 - q} q^n, \tag{5}$$

unde $q \in [0,1)$ este constanta Lipschitz a lui f.

Demonstrație. Considerăm un punct $x_0 \in X$ fixat arbitrar și definim șirul (x_n) prin relația (4). Vom arăta, pentru început, că (x_n) este un șir Cauchy.

Deoarece f este o contracție, avem, pentru orice $n \in \mathbb{N}$,

$$d(x_{n+1}, x_{n+2}) = d(f(x_n), f(x_{n+1})) \le qd(x_n, x_{n+1}),$$

de unde rezultă

$$d(x_n, x_{n+1}) \le q^n d(x_0, x_1),$$

pentru orice $n \in \mathbb{N}$. De aici obținem imediat, pentru orice $n, m \in \mathbb{N}$ cu $n \leq m$,

$$d(x_n, x_m) \le \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \le d(x_0, x_1) \sum_{i=n}^{m-1} q^i \le \frac{d(x_0, x_1)}{1 - q} q^n.$$
 (6)

Am folosit majorarea dată de suma seriei geometrice

$$\sum_{i=0}^{m-n-1} q^i \le \sum_{i=0}^{\infty} q^i = \frac{1}{1-q},$$

care este convergentă deoarece constanta Lipschitz q este în intervalul [0,1).

Fie $\varepsilon > 0$ fixat arbitrar. Deoarece $\lim_{n \to \infty} \frac{d(x_0, x_1)}{1 - q} q^n = 0$ rezultă că există un $n_{\varepsilon} \in \mathbb{N}$ astfel încât $n \geq n_{\varepsilon}$ implică $\frac{d(x_0, x_1)}{1 - q} q^n < \varepsilon$. Din (6) urmează că, pentru orice $n \geq n_{\varepsilon}$ și $m \geq n_{\varepsilon}$, avem $d(x_n, x_m) < \varepsilon$, și deci (x_n) este șir Cauchy. Spațiul metric X fiind complet, rezultă că (x_n) este convergent, adică există $x^* \in X$ astfel încât

$$\lim_{n \to \infty} x_n = x^*.$$

În sfârşit, deoarece f este o contracție, este continuă și, trecând la limită în relația de recurență (4), obținem egalitățile

$$x^* = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x^*),$$

care arată că x^* este punct fix pentru f.

Pentru a demonstra unicitatea punctului fix, fie $x^{**} \in X$, cu $x^* \neq x^{**}$, un alt punct fix al lui f. Atunci $d(x^*, x^{**}) > 0$ și obținem imediat că

$$d(x^*, x^{**}) = d(f(x^*), f(x^{**})) \le qd(x^*, x^{**}) < d(x^*, x^{**}),$$

de unde rezultă o contradicție.

Estimarea (5) se obține din (6) prin trecere la limită cu $m \to \infty$.

Observație. În cazul când X este un spațiu Banach, convergența șirului (x_n) poate fi stabilită și prin convergența seriei telescopice

$$\sum_{n=0}^{+\infty} (x_{n+1} - x_n). \tag{7}$$

Într-adevăr, deoarece q < 1 și, pentru orice n,

$$||x_{n+2} - x_{n+1}|| \le q ||x_{n+1} - x_n||,$$

aplicând criteriul raportului pentru seria numerică

$$\sum_{n=0}^{+\infty} \|x_{n+1} - x_n\|$$

obţinem că aceasta este convergenă, iar completitudinea spaţiului X implică, mai departe, convergența seriei (7).

Exemplul 2. Definim $f: \mathbb{C} \to \mathbb{C}$ prin

$$f(z) = az + i$$

unde

$$a = \frac{9}{10}(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}).$$

Deoarece

$$|f(u) - f(v)| = |a||u - v| \le \frac{9}{10}|u - v|,$$

pentru orice u și v din \mathbb{C} , f este o contracție. Unicul său punct fix este soluția ecuației z = az + i, adică $z^* = i/(1-a)$, și acesta este limita șirului recurent

$$z_{n+1} = az_n + i, \quad n = 0, 1, 2, \dots,$$

pentru orice dată inițială $z_0 \in \mathbb{C}$.

Observaţie. În practică, în cazul când X este un spaţiu metric foarte mare, de exemplu un spaţiu liniar normat, existenţa unei contracţii potrivite pe întreg spaţiul X este foarte puţin probabilă, şi atunci se utilizează cel mai adesea următoarea variantă:

Fie $X_0 \subset X$ o submulțime închisă a spațiului metric complet (X,d) și fie $f: X_0 \to X$ o aplicație pentru care X_0 este mulțime invariantă, adică

$$f(X_0) \subset X_0$$
.

Dacă f este o contracție pe X_0 , atunci ea are un punct fix unic în X_0 .

Justificarea este imediată: este suficient să observăm mai întâi că mulţimea X_0 , fiind închisă în spaţiul metric complet X, este la rândul său un spaţiul metric complet cu metrica indusă de X, şi apoi să aplicăm apoi Teorema de punct fix a lui Banach pe (X_0, d) .

Exemplul 3. Relu
ăm funcția din Exemplul 1, $f:(0,+\infty)\to(0,+\infty)$ dată de

$$f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right),$$

și notăm $X_0 = [\sqrt{a}, +\infty)$. Este ușor de văzut că $f(X_0) \subset X_0$ și că derivata

$$f'(x) = \frac{1}{2} \left(1 - \frac{a}{x^2} \right),$$

are valorile mărginite

$$f'(x) \in \left[0, \frac{1}{2}\right),$$

pentru orice $x \in X_0$. Din Teorema creșterilor finite, aplicată pe un interval oarecare $[x, y] \subset [\sqrt{a}, +\infty)$, avem

$$|f(x) - f(y)| = |f'(\xi)||x - y| \le \frac{1}{2}|x - y|,$$

şi, prin urmare, f este o contracție pe X_0 . Cum punctul fix al lui f în X_0 este $x^* = \sqrt{a}$, rezultă că șirul lui Heron converge la rădăcina pătrată a lui a, pentru orice dată inițială $x_0 \ge \sqrt{a}$.

Pentru $x_0 \in (0, \sqrt{a})$ avem $x_1 = f(x_0) \in X_0 = [\sqrt{a}, +\infty)$ şi în continuare şirul se comportă ca în cazul precedent.

§3. Teorema lui Picard

Reluăm demonstrația teoremei lui Picard dată la curs, acum cu principiul contracțiilor, chiar dacă, din punct de vedere istoric, sitauția este în ordine inversă: metoda aproximațiilor succesive aplicată de Picard a condus, mai târziu, la stabilirea principiului contracțiilor.

Considerăm problema Cauchy

$$\begin{cases} x' = f(t, x) \\ x(a) = \xi, \end{cases}$$
 (8)

unde $f: \Delta \to \mathbb{R}^n$ este o funcție continuă oarecare definită pe un cilindru închis

$$\Delta = [a, a+h] \times B(\xi, r),$$

cu

$$B(\xi, r) = \{x \in \mathbb{R}^n \text{ pentru care } ||x - \xi|| \le r\},$$

și definim

$$M = \sup_{(t,x)\in\Delta} \|f(t,x)\| < +\infty.$$

Mai mult, considerăm că f este lipschitziană în raport cu x pe Δ , mai precis: există L > 0 astfel încât pentru orice $(t, u), (t, v) \in \Delta$, să avem

$$||f(t,u) - f(t,v)|| \le L||u - v||. \tag{9}$$

Fie $\delta \in (0, h]$ fixat, deocamdată, arbitrar. Știm că problema Cauchy (8) este echivalentă cu ecuația integrală Volterra

$$x(t) = \xi + \int_{a}^{t} f(\tau, x(\tau)) d\tau, \ t \in [a, a + \delta].$$
 (10)

Prin soluție a ecuației Volterra înțelegem o funcție $x \in C([a, a + \delta], \mathbb{R}^n)$ care verifică egalitatea (10) pentru orice $t \in [a, a + \delta]$, caz în care rezultă că x este de clasă C^1 și verifică problema Cauchy (8).

Observăm că ecuația (10) poate fi scrisă sub forma problemei de punct fix

$$x = \Gamma(x),$$

cu $x \in C([a, a + \delta], \mathbb{R}^n)$, dacă prin $\Gamma(x)$ înțelegem funcția dată de formula

$$\Gamma(x)(t) = \xi + \int_{a}^{t} f(\tau, x(\tau)) d\tau, \quad t \in [a, a + \delta].$$
 (11)

Considerăm spațiul $X=C([a,a+\delta],\mathbb{R}^n)$ dotat cu metrica convergenței uniforme,

$$d(x,y) = ||x - y|| = \sup_{t \in [a,a+\delta]} ||x(t) - y(t)||,$$

şi, pentru început, dorim să găsim o submulțime închisă $X_0 \subset X$ astfel încât să fie bine definită aplicația $x \in X_0 \mapsto \Gamma(x) \in X$.

Pentru ca $\Gamma(x)(t)$ să poată fi calculat pentru orice $t \in [a, a + \delta]$, este necesar ca x(t) să nu părăsească bila $B(\xi, r)$ din \mathbb{R}^n , adică

$$||x(t) - \xi|| \le r, \quad \forall t \in [a, a + \delta],$$

relație echivalentă cu

$$\sup_{t \in [a, a+\delta]} ||x(t) - \xi|| \le r.$$

Definim aşadar funcţia constantă $\widetilde{\xi}$: $[a, a + \delta] \to \mathbb{R}^n$,

$$\widetilde{\xi}(t) = \xi \ \forall t,$$

și notăm cu $X_0 = \mathcal{B}(\widetilde{\xi}, r)$ bila închisă din $C([a, a + \delta], \mathbb{R}^n)$, centrată în $\widetilde{\xi} \in X$ și de rază r:

$$\mathcal{B}(\widetilde{\xi},r) = \{x \in C([\,a,a+\delta\,],\mathbb{R}^n) \text{ pentru care } \|x-\widetilde{\xi}\| \leq r\}.$$

Pentru orice $x \in X_0$, funcția $\Gamma(x)$ dată de (11) este definită pe $[a, a + \delta]$ şi, mai mult, este continuă. Am arătat astfel că aplicația

$$\Gamma: X_0 \to X$$

este bine definită.

Acum ne propunem să vedem în ce condiții submulțimea închisă X_0 este invariantă, adică $\Gamma(X_0) \subset X_0$. Pentru orice $x \in X_0$, avem

$$\|\Gamma(x) - \widetilde{\xi}\| = \sup_{t \in [a,a+\delta]} \|\Gamma(x)(t) - \xi\| \le \sup_{t \in [a,a+\delta]} \int_a^t \|f(\tau,x(\tau))\| d\tau \le \delta M.$$

Urmează că, dacă

$$\delta \le \frac{r}{M},\tag{12}$$

atunci $\Gamma(x) \in \mathcal{B}(\widetilde{\xi}, r)$ pentru orice $x \in \mathcal{B}(\widetilde{\xi}, r)$.

În sfârșit, cerem ca Γ să fie o contracție. Pentru orice $x,y\in X_0$, avem majorările

$$\begin{split} \|\Gamma(x)-\Gamma(y)\| &= \sup_{t\in[a,a+\delta]} \|\int_a^t (f(\tau,x(\tau))-f(\tau,y(\tau))d\tau\| \leq \\ &\leq \int_a^{a+\delta} \|f(\tau,x(\tau))-f(\tau,y(\tau))\|d\tau \leq L\delta \sup_{\tau\in[a,a+\delta]} \|x(\tau)-y(\tau)\| \leq \\ &\leq L\delta \|x-y\|, \end{split}$$

și, prin urmare, pentru ca Γ să fie o contracție este suficient să cerem

$$\delta < \frac{1}{L}.\tag{13}$$

Aplicând acum teorema de punct fix a lui Banach, obţinem următoarea variantă a teoremei lui Picard:

Teoremă. Fie $f: \Delta = [a, a+h] \times B(\xi, r) \to \mathbb{R}^n$ o funcție continuă pe Δ care satisface condiția Lipschitz pe $B(\xi, r)$, adică există L > 0 astfel încât pentru orice $(t, u), (t, v) \in \Delta$, să avem

$$||f(t,u) - f(t,v)|| \le L||u - v||,$$

şi fie

$$\delta = \min\left\{h, \frac{r}{M}, \frac{1}{2L}\right\}.$$

unde $M = \sup_{(t,x)\in\Delta} ||f(t,x)||.$

Atunci pe intervalul $[a, a + \delta]$ problema Cauchy (8) are o soluție unică

$$x^*: [a, a+\delta] \to B(\xi, r)$$

și aceasta este limita uniformă pe $\left[\,a,a+\delta\,\right]$ a șirului de funcții

$$x_k : [a, a + \delta] \to B(\xi, r), \ k = 0, 1, 2 \dots,$$

definit recurent astfel

$$x_{k+1}(t) = \xi + \int_a^t f(\tau, x_k(\tau)) d\tau$$
, pentru $t \in [a, a + \delta], k = 0, 1, 2 \dots$

 $cu \ x_0 : [a, a + \delta] \to B(\xi, r)$ o funcție continuă oarecare.

În plus, are loc următoarea formulă de evaluare a erorii

$$||x_k(t) - x^*(t)|| \le \frac{M\delta}{1 - L\delta} \cdot \frac{1}{2^k},$$

pentru orice $k \in \mathbb{N}$ și $t \in [a, a + \delta]$.

§4. Exerciții

Exercițiul 1. Fie X o mulțime nevidă oarecare înzestrată cu $metrica\ discretă$

$$d(x,y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

Arătați că (X, d) este un spațiu metric complet în care principiul contracțiilor se reduce la afirmația banală: "orice funcție constantă are un punct fix unic".

Exercițiul 2. Fie X mulțimea șirurilor formate numai din 0 sau 1,

$$X = \{x = (x_0, x_1, x_2, \dots) \text{ cu } x_i \in \{0, 1\}\},\$$

și fie $d: X \times X \to \mathbb{R}^+$ dată de

$$d(x,y) = \sum_{k=0}^{\infty} \frac{|x_k - y_k|}{2^k}.$$

Arătați că (X, d) este un spațiu metric complet în care operatorii de deplasare la stânga și la dreapta, S și D, definiți de

$$x = (x_0, x_1, x_2, \dots) \mapsto S(x) = (x_1, x_2, x_3, \dots)$$

şi

$$x = (x_0, x_1, x_2, \dots) \mapsto D(x) = (0, x_0, x_1, \dots),$$

sunt aplicații lipschitziene, D fiind chiar o contracție. Studiați punctele fixe și comportarea șirului aproximațiilor succesive pentru aceste două aplicații.

Exercițiul 3. Fie $f:[a,b] \to \mathbb{R}$ și $k:[a,b] \times [a,b] \to \mathbb{R}$ două funcții continue și λ un număr real fixat.

Arătați, folosind principiul contracțiilor, că dacă $|\lambda|$ este suficient de mic, atunci există o singură funcție continuă $x:[a,b]\to\mathbb{R}$ care să verifice ecuația integrală Fredholm

$$x(t) = f(t) + \lambda \int_{a}^{b} k(t, s)x(s) ds, \qquad (14)$$

pentru orice $t \in [a, b]$.