# Network Servers and Infrastructure Assignment 3

#### Q1: State the Ethernet generations

The Ethernet LAN was developed in the 1970s. Since then, it has gone through four generations: Standard



Q2: Draw the Ethernet frame and define its fields

| Preamble | SFD    | Destination address | Source address | Туре   | Data and padding     | CRC    |
|----------|--------|---------------------|----------------|--------|----------------------|--------|
| 7 byte   | 2 byte | 6 byte              | 6 byte         | 2 byte | min:46 byte max:1500 | 4 byte |

Preamble: This is a pattern of alternative 0's and 1's which indicates starting of the frame and allow sender and receiver to establish bit synchronization

SFD: This is a 1-Byte field which is always set to 10101011

Destination address: MAC address of machine for which data is destined.

Source Address: MAC address of source machine

Type: indicates the length of entire Ethernet frame

Data: This is the place where actual data is inserted, also known as Payload

CRC: This field contains a 32-bits hash code of data

## Q3: Define the type of the following destination addresses:

a. 45:30:10:21:10:1A

(multicast) because second number is odd

b. 4C:20:1B:2E:08:EE

(unicast) because second number C is even

c. FF:FF:FF:FF:FF

(Broadcast)

Q4: Define the flowing terms:

10Base2 [medium + medium Length]

10Base5 [medium + medium Length]

10Base-T [medium + medium Length]

10Base-F [medium + medium Length]

| 10Base2  | Thin coaxial  | 185m |
|----------|---------------|------|
| 10Base5  | Thick coaxial | 500m |
| 10Base-T | 2 UTP         | 100m |
| 10Base-F | 2 Fiber       | 2000 |

#### **Collision domain:**

A section of a network connected by a shared medium or through repeaters where data packets can collide with one another when being sent

#### **Collision:**

Superposition of two signals

# 100Base-TX [medium + medium Length]:

| 100Base-TX | STP | 100m |
|------------|-----|------|
|            |     |      |

# 100Base-FX [medium + medium Length]:

| 100Base-FX | Fiber | 185m |
|------------|-------|------|
|            |       |      |

### Q5: How the address below is sent out online?

#### 47:20:1B:2E:08:EE

| Hex Decimal | 47       | 20       | 1B       | 2E       | 08       | EE       |
|-------------|----------|----------|----------|----------|----------|----------|
| Binary      | 01000111 | 00100000 | 00011011 | 00101110 | 00001000 | 11101110 |
| Transmitted | 11100010 | 00000100 | 11011000 | 01110100 | 00010000 | 01110111 |

# Q6: Compare between LS and DV algorithms

| Link State                           | Distance vector   |  |
|--------------------------------------|-------------------|--|
| Security: all messages authenticated | No authentication |  |
| multiple same-cost paths allowed     | Only one Path     |  |
| Hierarchical: large- domains         | Small-Domains     |  |
| Use unicast and multicast for update | Use broadcast     |  |

# Q7: Compare between Inter-As routing and Intra-AS routing using examples

|          | Performance          | Policy                                                     | Protocols        |
|----------|----------------------|------------------------------------------------------------|------------------|
| INTRA-AS | focus on performance | There is no policy because single admin                    | RIP<br>OSPF      |
|          |                      |                                                            | IGPR             |
| INTER-AS | focus on policy      | NEED POLICY                                                | BGP (iBGP, eBGP) |
|          |                      | EX:                                                        |                  |
|          |                      | ADMIN WANTS<br>CONTROL OVER HOW ITS<br>TRAFFIC ROUTED, WHO |                  |

NET

ROUTES THROUGH ITS