Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

https://est711.github.io/

Sumário

- Propriedades de Uma Estatística Suficiente
- Teorema de Rao-Blackwell
- Completude e Unicidade
- Teorema de Lehmann-Scheffé

Propriedades de Uma Estatística Suficiente

Seja que X_1, X_2, \ldots, X_n seja uma amostra aleatória de uma variável aleatória com função de densidade ou função de massa de probabilidade $f(x;\theta), \ \theta \in \Omega$. Observemos que uma estatística suficiente não é única. Seja $Y_1 = u_1(X_1, X_2, \ldots, X_n)$ uma estatística suficiente para θ . Denote por $f_{Y_1}(y,\theta)$ a fdp de Y_1 . Seja $Y_2 = g(Y_1)$ uma estatística, em que g é uma função bijetora, então pela definição de Estatística Suficiente temos,

$$\frac{f(x_1;\theta)f(x_2;\theta)\dots f(x_n;\theta)}{f_{Y_1}(y,\theta)} = H(x_1,x_2,\dots,x_n)$$

$$\Rightarrow f(x_1;\theta)f(x_2;\theta)\dots f(x_n;\theta) = f_{Y_1}(y,\theta)H(x_1,x_2,\dots,x_n)$$

Pelo teorema de Neyman (Critério da fatoração),

$$f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = k_1(y_1, \theta) k_2(x_1, x_2, \dots, x_n)$$

$$= k_1(g^{-1}(y_2), \theta) k_2(x_1, x_2, \dots, x_n)$$

$$= k_1^*(y_2, \theta) k_2(x_1, x_2, \dots, x_n),$$

logo Y_2 também é uma estatística suficiente para θ .

Propriedades Básicas

Das propriedades básicas de Esperança Condicional, segue que, se X_1 e X_2 são variáveis aleatórias tais que a variância de X_2 existe, então

$$egin{aligned} & E[X_2] = E[E(X_2|X_1)] \ & \mathsf{Var}(X_2) = \mathsf{Var}[E(X_2|X_1)] + \underbrace{E[\mathsf{Var}(X_2|X_1)]}_{\geq 0} \ \end{aligned} \ \Rightarrow \mathsf{Var}(X_2) \geq \mathsf{Var}[E(X_2|X_1)].$$

Propriedades Básicas

vamos considerar a estatística suficiente Y_1 como X_1 e Y_2 , uma estatística não-viesada de θ , como X_2 . Assim, X_2 é um estimador não viesado de θ e X_1 uma estatística suficiente para θ . Defina, $\xi(y_1) = E(Y_2|Y_1 = y_1)$. Logo, podemos escrever $\xi(Y_1) = E(Y_2|Y_1)$ e,

$$E[\xi(Y_1)] = E(E(Y_2|Y_1)) = E(Y_2) = \theta$$

 $Var[\xi(Y_1)] = Var(E(Y_2|Y_1)) \le Var(Y_2).$

Esses resultados podem ser enunciados como um teorema.

Teorema de Rao-Blackwell

Teorema 1

Seja X_1, X_2, \ldots, X_n , uma amostra aleatória de uma distribuição (contínua ou discreta) com função de densidade ou função de massa de probabilidade $f(x;\theta), \ \theta \in \Omega$. Seja $Y_1 = u_1(X_1,X_2,\ldots,X_n)$ uma estatística suficiente para θ e $Y_2 = u_2(X_1,X_2,\ldots,X_n)$ um estimador não-viesado de θ . Considere, ainda, $E(Y_2|y_1) = \xi(y_1)$. Então $\xi(Y_1)$ é um estimador não-viesado de θ e sua variância é menor ou igual à de Y_2 .

Teorema de Rao-Blackwell

Teorema 1

Seja X_1, X_2, \ldots, X_n , uma amostra aleatória de uma distribuição (contínua ou discreta) com função de densidade ou função de massa de probabilidade $f(x;\theta), \ \theta \in \Omega$. Seja $Y_1 = u_1(X_1,X_2,\ldots,X_n)$ uma estatística suficiente para θ e $Y_2 = u_2(X_1,X_2,\ldots,X_n)$ um estimador não-viesado de θ . Considere, ainda, $E(Y_2|y_1) = \xi(y_1)$. Então $\xi(Y_1)$ é um estimador não-viesado de θ e sua variância é menor ou igual à de Y_2 .

Demonstração

Ver slide anterior de propriedades básicas!

Este teorema nos diz que, na busca por um EMVU (Estimador de Mínima Variância Não-viesado) de um parâmetro, podemos restringir essa busca a funções da estatística suficiente. Se começarmos com um estimador não-viesado Y_2 , podemos sempre melhorá-lo calculando $E(Y_2|y_1)=\xi(y_1)$, de modo que $\xi(Y_1)$ seja um estimador não-viesado com uma variância menor que a de Y_2 .

Teorema

Teorema 2

Sejam X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição com função de densidade ou função de massa de probabilidade $f(x;\theta), \theta \in \Omega$. Se uma estatística suficiente $Y_1 = u_1(X_1, X_2, \ldots, X_n)$ para θ existe e se um estimador de máxima verossimilhança $\hat{\theta}$ para θ também existe de forma única, então $\hat{\theta}$ é uma função da estatística suficiente $Y_1 = u_1(X_1, X_2, \ldots, X_n)$.

Demonstração

Seja $f_{Y_1}(y_1; \theta)$ a função de densidade ou função de massa de probabilidade de Y_1 . Então, pela definição de suficiência (teorema de Neyman), a função de verossimilhança

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$

= $f_{Y_1}[u_1(x_1, x_2, \dots, x_n); \theta] H(x_1, x_2, \dots, x_n)$
= $k_1(y_1, \theta) k_2(x_1, x_2, \dots, x_n)$

Assim, L e $k_1(y_1,\theta)$, como funções de θ , são maximizadas simultaneamente. Por hipótese, o EMV $\hat{\theta}$ existe e é único, logo, há apenas um valor de θ que maximiza L e, portanto, $k_1[u_1(x_1,x_2,\ldots,x_n);\theta]$, esse valor de θ deve ser uma função de $u_1(x_1,x_2,\ldots,x_n)$. Portanto, o EMV $\hat{\theta}$ é uma função da estatística suficiente $Y_1=u_1(X_1,X_2,\ldots,X_n)$.

Sabemos, de aulas anteriores, que, em geral, os EMVs são estimadores assintoticamente não-viesados de θ . Portanto, uma maneira de proceder é encontrar uma estatística suficiente e, em seguida, encontrar o EMV. Com base nisso, muitas vezes podemos obter um estimador não-viesado que é uma função da estatística suficiente. Esse processo é ilustrado no exemplo a seguir.

Sejam $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} exp(\theta)$.

Suponha que desejamos um EMVU (Estimador de Variância Mínima Não-viesado) para θ .

$$\ell(\theta) = n \log \theta - \theta \sum_{i=1}^{n} x_i \tag{1}$$

 $\hat{\theta}=rac{1}{ar{X}}$ é o EMV de heta. Também podemos verificar que $ar{X}$ é uma estatística suficiente para heta.

Note que $\hat{\theta} = \frac{n}{Y_1}$ é uma função da estatística suficiente Y_1 . Além disso, como $\hat{\theta}$ é o EMV de θ , ele é assintoticamente não-viesado. Portanto, como um primeiro passo, vamos determinar sua esperança. Neste problema, X_i são variáveis aleatórias independentes e identicamente distribuídas com distribuição Gama $\Gamma(1,1/\theta)$; portanto, $Y_1 = \sum_{i=1}^n X_i$ segue uma distribuição $\Gamma(n,1/\theta)$. Assim,

$$E(\hat{\theta}) = E\left(\frac{n}{Y_1}\right) = nE\left(\frac{1}{\sum_{i=1}^{n} X_i}\right)$$

$$nE\left(\frac{1}{\sum_{i=1}^{n} X_{i}}\right) = n \int_{0}^{\infty} \frac{\left(\frac{1}{\theta}\right)^{n}}{\Gamma(n)} t^{-1} t^{n-1} e^{-\frac{t}{\theta}} dt$$

$$= n \int_{0}^{\infty} \frac{\left(\frac{1}{\theta}\right)^{n}}{\Gamma(n)} t^{(n-1)-1} e^{-\frac{t}{\theta}} dt$$

$$= \frac{n}{\theta^{n} \Gamma(n)} \int_{0}^{\infty} \underbrace{t^{(n-1)-1} e^{-\frac{t}{\theta}}}_{\text{Núcleo da densidade de uma } \Gamma(n-1,\theta)} dt$$

$$= \frac{n}{\theta^{n} \Gamma(n)} \int_{0}^{\infty} \frac{\left(\frac{1}{\theta}\right)^{(n-1)}}{\Gamma(n-1)} t^{(n-1)-1} e^{-\frac{t}{\theta}} \frac{\Gamma(n-1)}{\left(\frac{1}{\theta}\right)^{(n-1)}} dt$$

$$= \frac{n\Gamma(n-1)}{\frac{\theta^{n}}{\theta^{(n-1)}} \Gamma(n)} = \theta \frac{n}{n-1}$$

Portanto, o estimador $\tilde{\theta} = \hat{\theta} \frac{(n-1)}{n}$ é um estimador não viesado de variância mínima para θ

Observação: Como o estimador não-viesado $\xi(Y_1)$, em que $\xi(Y_1) =$ $E(\hat{\theta}|y_1)$, possui uma variância menor do que o estimador não-viesado Y_2 de θ , às vezes, raciocinamos da seguinte maneira. Seja a função $\Upsilon(y_3) = E[\xi(Y_1)|Y_3 = y_3]$, onde Y_3 é uma estatística que não é suficiente para θ . Pelo teorema de Rao-Blackwell, temos $E[\Upsilon(Y_3)] = \theta$ e $\Upsilon(Y_3)$ possui uma variância menor do que $\xi(Y_1)$. Consequentemente, $\Upsilon(Y_3)$ deve ser melhor do que $\xi(Y_1)$ como um estimador não-viesado de θ . No entanto, isso não é verdade, porque Y_3 não é suficiente; assim, θ está presente na distribuição condicional de Y_1 , dado $Y_3 = y_3$, e na média condicional $\Upsilon(y_3)$. Embora de fato $E[\Upsilon(Y_3)] = \theta$, $\Upsilon(Y_3)$ nem sequer é uma estatística, pois envolve o parâmetro desconhecido θ e, portanto, não pode ser usado como uma estimativa.

Completude

Definição 1

Seja a variável aleatória Z do tipo contínuo ou discreto, com função de densidade ou massa de probabilidade que pertence à família $\{h(z;\theta),\theta\in\Omega\}$. Se a condição E[u(Z)]=0, para todo $\theta\in\Omega$, implica que u(z) seja igual a zero, exceto em um conjunto de pontos com probabilidade zero, então para cada $h(z;\theta)$, $\theta\in\Omega$, a família $\{h(z;\theta):\theta\in\Omega\}$ é chamada de família completa de funções de densidade ou massa de probabilidade.

 $X_1,\ldots,X_n \overset{\text{iid}}{\sim} \mathsf{Poisson}(\theta)$. Sabemos que $\sum_{i=1}^n X_i$ é uma estatística suficiente para θ e $Z = \sum_{i=1}^n X_i \sim \mathsf{Poisson}(n\theta), \ \Omega = (0,+\infty)$. Seja $u(\cdot)$ tal que $E(u(Z)) = 0, \ \forall \theta > 0$.

$$0 = E(u(Z)) = \sum_{z=0}^{+\infty} u(z) \frac{(n\theta)^z}{z!} e^{-n\theta}$$

$$\Rightarrow 0 = \sum_{z=0}^{+\infty} u(z) \frac{n^z}{z!} \theta^z, \forall \theta > 0$$

$$\Rightarrow \frac{u(z)n^z}{z!} = 0, \ \forall z \in \{0, 1, \ldots\} \Rightarrow u(z) = 0, \forall z \in \{0, 1, \ldots\}$$

Considere a família $\{h(z,\theta); \theta > 0\}$ dada por

$$h(z;\theta) = \frac{1}{\theta}e^{-\left(\frac{Z}{\theta}\right)}, \ \theta > 0, \ \text{ou seja}, \ Z \sim \exp(\theta).$$

Considere a família $\{h(z,\theta); \theta > 0\}$ dada por

$$h(z;\theta) = \frac{1}{\theta}e^{-\left(\frac{z}{\theta}\right)}, \ \theta > 0, \ \text{ou seja}, \ Z \sim \exp(\theta).$$

$$E(u(Z)) = 0, \forall \theta > 0 \Rightarrow \int_0^{+\infty} u(z) \frac{1}{\theta} e^{-\left(\frac{Z}{\theta}\right)} dz = 0, \forall \theta > 0$$
$$\Rightarrow \int_0^{+\infty} u(z) e^{-\left(\frac{Z}{\theta}\right)} dz = 0, \forall \theta > 0$$

Notem que $\ell(\theta) = \int_0^{+\infty} u(z)e^{-\left(\frac{z}{\theta}\right)} dz = 0$ é a transformada de Laplace de $u(\cdot)$. Assim, $\ell(\theta) = 0 \Rightarrow u(z) = 0, \forall z > 0$.

Seja $Y1=u_1(X_1,X_2,...,X_n)$ uma estatística suficiente para θ . Tome $\xi(Y_1)$ tal que $E(\xi(Y_1))=\theta$. Seja $\psi(Y_1)$ outra função de Y_1 de forma que, também tenhamos $E[\psi(Y_1)]=\theta$ para todos os valores de θ , $\theta\in\Omega$. Portanto, $E[\xi(Y_1)-\psi(Y_1)]=0$, $\theta\in\Omega$. Se a família de Y_1 é completa, $\xi(Y_1)-\psi(Y_1)=0$, ou seja, $\xi(Y_1)=\psi(Y_1)$. Assim, $\xi(Y_1)$ é a única (com prob=1) função de Y_1 que é um estimador não viesado para θ .

Seja $Y1=u_1(X_1,X_2,...,X_n)$ uma estatística suficiente para θ . Tome $\xi(Y_1)$ tal que $E(\xi(Y_1))=\theta$. Seja $\psi(Y_1)$ outra função de Y_1 de forma que, também tenhamos $E[\psi(Y_1)]=\theta$ para todos os valores de θ , $\theta\in\Omega$. Portanto, $E[\xi(Y_1)-\psi(Y_1)]=0$, $\theta\in\Omega$. Se a família de Y_1 é completa, $\xi(Y_1)-\psi(Y_1)=0$, ou seja, $\xi(Y_1)=\psi(Y_1)$. Assim, $\xi(Y_1)$ é a única (com prob=1) função de Y_1 que é um estimador não viesado para θ .

A conclusão anterior juntamente com o Teorema de Rao-Blackwel garantem que $\xi(Y_1)$ é o ENVVUM de θ , conforme próximo teorema.

Teorema 3

Seja Y_1 uma estatística suficiente para θ e assuma que a família de Y_1 é completa. Se existe uma função $\xi(\cdot)$ tal que $E(\xi(Y_1)) = \theta$, $\forall \theta \in \Omega$, então, $\xi(Y_1)$ é o ENVVUM de θ .

https://est711.github.io/

Para 🗥

- Exercícios da seção 7.3: 1,3,4,5,6
- Exercícios da seção 7.4: 1,2,3,4,5,7,8,9

Referências I

- Bolfarine, Heleno e Mônica Carneiro Sandoval (2001). Introdução à inferência estatística. Vol. 2. SBM.
- Casella, George e Roger L Berger (2021). Statistical inference. Cengage Learning.
- Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.