LP08 – Notion de viscosité d'un fluide. Ecoulements visqueux.

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Notion de viscosité

1. Expérience introductive

	Viscosité dynamique	Viscosité cinématique
	$\eta (Pa.s)$	$\nu = \frac{\eta}{\rho} \left(m^2 / s \right)$
Eau (20°C)	10^{-3}	$1,006\ 10^{-6}$
Air (20°C)	$18, 2 \ 10^{-6}$	$15,1\ 10^{-6}$
Glycérine (20°C)	1,49	$1180 \ 10^{-6}$
Mercure (20°C)	$1,55 \ 10^{-3}$	$0,116\ 10^{-6}$
CO ₂ (20°C, 1 atm.)	$14,7 \ 10^{-6}$	$8,03\ 10^{-6}$
H ₂ (20°C, 1 atm.)	$8,83\ 10^{-6}$	$105 \ 10^{-6}$

Type d'interface	Ecoulement parfait (Euler)	Ecoulement visqueux (Navier-Stokes)
Paroi solide	$(v_{\perp})_{fluide} = (v_{\perp})_{paroi}$ $p_{fluide} = p_{paroi}$	$ec{v}_{fluide} = ec{v}_{paroi}$ $p_{fluide} = p_{paroi}$
Interface fluide (sans tension de surface)	$(v_{\perp})_1 = (v_{\perp})_2$ $p_1 = p_2$	$egin{aligned} ec{v}_1 &= ec{v}_2 \ p_1 &= p_2 \ \eta_1 \left(rac{\partial v_x}{\partial z} ight)_1 &= \eta_2 \left(rac{\partial v_x}{\partial z} ight)_2 \end{aligned}$
Interface fluide (avec tension de surface)	$(v_{\perp})_1 = (v_{\perp})_2$ $P_1 - P_2 = \gamma \left(\frac{1}{R} + \frac{1}{R'}\right)$	$ec{v}_1 = ec{v}_2$

