Arquitectura y componentes del PC

Sistemas Informáticos

DAW

Tema 1

Sergio de Mingo (IES G.M. Jovellanos)

- 1 Introducción
- 2 El modelo Von Neumman
- 3 El computador moderno
- 4 Representación de la información
- 5 El software

Definition

Un programa es un **conjunto de instrucciones** que son leídas, entendidas y ejecutadas por el computador y un conjunto de datos usados por estas

■ Única máquina que el hombre diseño sin un propósito específico

 Su propósito se graba en un programa que la máquina entiende y ejecuta

■ Única máquina que el hombre diseño sin un propósito específico

Su propósito se graba en un programa que la máquina entiende y ejecuta

■ Un programa es un **conjunto de instrucciones** que son leídas, entendidas y ejecutadas por el computador

- Esta formado por dos tipos de componentes
 - El software o conjunto de componentes lógicos (programas)

■ El hardware o conjunto de componentes físicos y electrónicos

Un programa o software destaca por su importancia, el sistema operativo

■ El sistema operativo es el programa base del computador

 Es el primer programa que empieza a leer el computador al ser arrancado

■ Es el último que deja de leer antes de apagarse

Historia del computador

■ Existen algunos pioneros incluso en el s. XIX (incluso antes) que trabajan con autómatas mecánicos como Ada Bairon

 El inicio real se marca durante la década de 1930 y sobre todo la II Guerra Mundial

■ Computadores de propósito específico para propósitos bélicos

Historia del computador

■ Alan Touring destaca en este campo

Junto con Von Neumman desarrolla un modelo teórico tras la guerra

■ Un modelo de una máquina programable de propósito general

■ El Modelo de Von Neumman

El modelo Von Neumman

■ Es un modelo teórico

■ En el se basan todos los computadores desarrollados hasta nuestros días

 Marca la pauta para que una máquina haga cualquier cosa que un programador sepa escribir en instrucciones

Componentes

- Unidad Central de Proceso o CPU
- Memoria Principal
- Unidad de Entrada/Salida
- Buses
- Periféricos

Unidad Central de Proceso

- Su función básica es leer el programa, interpretarlo y enviar las señales eléctricas oportunas hacia los demás dispositivos para ejecutarlo
- Esta formada por:
 - Unidad Central
 - Unidad Aritmético-lógica o ALU
 - Registros

Unidad Central de Proceso

- La Unidad Central, decodifica la instrucción y la convierte en señales eléctricas
- La ALU se encarga de realizar los cálculos aritméticos y lógicos
- La función de los registros es almacenar datos fundamentales para el proceso de ejecución del programa
 - Instrucción
 - Estado
 - ...

Memoria

- En ella se aloja el programa
- En el programa están las instrucciones que queramos que haga el computador
- Se divide electrónicamente en direcciones
- Las instrucciones y los datos se alojan en direcciones

Memoria

- Cada dirección puede almacenar una instrucción o un dato
- Este programa se compone de tres instrucciones y dos datos adicionales
- En total ocupa 5 direcciones de memoria

	#1
100	#2
	#3
	#4
SUMA 6,2	#5
RESTA 4,#11	#6
SUMA #2,4	#7
	#8
	#9
	#10
140	#11
	#12

Memoria

- La memoria posee dos **registros** importantes:
 - Un registro de direcciones donde escribir a que dirección queremos acceder
 - Un registro de datos donde escribiremos o leeremos datos según el modo de uso
- También posee una línea eléctrica donde indicamos el modo (escritura o lectura)

Memoria. Modos de direccionamiento

■ Son diferentes modos de incluir datos en las instrucciones.

Inmediato: Cuando el dato va incrustado en la propia instrucción

Directo: Cuando en la instrucción viaja la dirección del dato, no el

dato mismo

Indirecto: Cuando en la instrucción viaja una dirección de memoria en

la que está la verdadera dirección del dato

Ciclo de instrucción

Definition

Es el mecanismo por el cual la CPU lee una instrucción de la memoria y la decodifica para ejecutarla

- Modo de interacción entre el dispositivo que almacena las instrucciones (la memoria) y el dispositivo que las entiende (la CPU)
- Hemos de tener en mente la estructura de la CPU estudiada anteriormente

Ciclo de instrucción

- La CPU pide a la memoria, escribiendo en su registro de direcciones la dirección marcada por el Registro Contador
- 2 La memoria devuelve a la CPU el contenido de dicha dirección a través del bus
- 3 La instrucción se almacena en el Registro de Instrucción durante su procesamiento
- 4 Ahora se pedirán, de la misma manera los datos direccionados directa e indirectamente si los hay
- La Unidad Central decodifica la instrucción, usa a la ALU y ejecuta la instrucción
- 6 La ALU incrementa el Registro Contador y vuelta a empezar

La Unidad de Entrada/Salida

- Von Neumman lo pensó como un circuito electrónico aparte
- Sirve de barrera lógica entre el procesador y los periféricos
- Permite al procesador abstraerse de todo el funcionamiento de los periféricos y centrar la comunicación con la Unidad de E/S

Los Buses

- Son líneas eléctricas de comunicación.
- Poseen diferentes parámetros de medición:
 - El ancho de bus es el total del líneas en paralelo de un bus
 - La **frecuencia del bus** es el número de impulsos soportados por el bus por unidad de tiempo

Los Periféricos

- Todo dispositivo que no es la CPU o la memoria
- Permiten a la CPU comunicarse con el exterior
- Existe múltiples clasificaciones:
 - De entrada
 - De salida
 - De entrada/salida

Los Periféricos. Características

Fiabilidad

- Modo de acceso (secuencial, directo)
- Velocidad de transferencia
- Buffering

El modelo Von Neumman

El computador moderno

- Basado en el modelo anterior
- Componentes electrónicos son integrados en placas o circuitos
- Existen ciertos de arquitecturas o formas de llevar el modelo a la práctica
 - Ordenador personal
 - Telefonía móvil
 - Robótica industrial
 - ...

El ordenador personal

- Surge a finales de los 70
- Pretende ofrecer soluciones informáticas de bajo coste/rendimiento a entornos domésticos
- Múltiples fabricantes se meten en la carrera
- Hoy en día, es la arquitectura propuesta por IBM la que seguimos usando

El ordenador personal

- Fuente de alimentación
- Placa base o placa madre:
 - Chip de memoria BIOS
 - Procesador, buses y circuitería básica
 - Memoria principal
 - Puertos de expansión internos y externos
- Unidades de almacenamiento
- Cientos de periféricos

Fuente de alimentación

- Su función es convertir la corriente alterna de la red eléctrica a corriente continua
- La potencia interna suministrada es un parámetro a tener en cuenta.
 Dependerá del número de circuitos (extra) que tengamos instalados y de su consumo (tarjetas, discos, etc.)
- Suele disponer de uno o varios ventiladores de uso exclusivo
- El calor disipado y el ruido producido depende de lo cargada que trabaje la fuente. Cuanto más cerca esté la demanda de potencia del límite de la fuente mayor es la carga

Placa Base

- Es un circuito impreso en el que se conectan los componentes de un computador
- También encontramos impresos los buses para la conectividad de dichos componentes
- En el PC, dada su naturaleza modular, los conectores suelen tener la forma de zócalos de plástico para evitar el uso de soldaduras
- Hoy en día, gran parte de los componentes básicos (red, gráfica, sonido, etc.) de un PC vienen de serie integrados e impresos en la propia placa base

Procesador

- Es el elemento que realiza el trabajo de computo de cualquier computador
- Se encuentra soldado o enganchado en zócalo a la placa base
- En el PC encontramos procesadores de 64 bits y todavía de 32 bits (ancho del bus de direcciones)
- Existen multitud de arquitecturas fuera del mercado del PC: ARM, PowerPC, Alpha, DEC, etc.
- Pueden clasificarse de muchas formas. Se suelen agrupar en dos grandes grupos RISC y CISC

Procesador

- Los procesadores CISC (Complex Instruction Set Computer) surgen los primeros y se basan en amplios repertorios de instrucciones que trabajan con datos en memoria o registros
- Los procesadores RISC (Reduced Instruction Set Computer) aparecen después con repertorios más pequeños y compactos, en donde las instrucciones se combinan. Solo acceden a memoria las instrucciones de carga o almacenamiento

Procesador

- Ambas ofrecen ventajas y desventajas:
 - CISC: Programas pequeños / UC más compleja
 - RISC: Mejor paralelismo / Eficiencia energética (menos W, menos calor)
- Un ejemplo de arquitectura CISC es Intel x86, usada en la actualidad en muchos PCs domésticos
- Por contra las arquitecturas RISC se están usando en dispositivos de uso más concreto como videoconsolas (PowerPC) y en computación móvil como tablets, teléfonos, etc.(ARM)

Memoria RAM

- Se distribuye en módulos de memoria forman el banco total de memoria disponible
- Generalmente el PC permite ampliar la memoria pinchando módulos en zócalos
- En computadores de pequeño tamaño, estos módulos suelen ir integrados en la propia placa base sin posibilidad de ser aumentados en número
- Su velocidad de acceso (para escribir o leer) es un parámetro crucial a la hora de optimizar el rendimiento del computador

Memoria RAM

- Algunos tipos de memoria algo antiguos:
 - EDO-RAM: Última memoria asíncrona (1995)
 - SDRAM: Primera memoria síncrona con en reloj del bus de memoria
 - DDR SDRAM: Trabaja en ambos flancos del ciclo del reloj
 - DDR2 SDRAM: Doble de trabajo que la anterior. Hasta cuatro operaciones por ciclo
 - DDR3 SDRAM: Menor consumo eléctrico

Discos y almacenamiento

- El computador necesita un dispositivo de almacenamiento de gran capacidad y no volátil
- El disco duro (mecánico-magnético) ha sido el componente que cumplía esta función de forma tradicional
- Hoy en día la tecnología de la Memoria Flash y las unidades de estado sólido (SSD) están cambiando esta tendencia
- Además de tener un formato físico dependiente de su naturaleza. El sistema operativo que lo manipula suele necesitar aplicarle un formato lógico (formateo)

Discos y almacenamiento: Disco duro

- El disco duro es un dispositivo mecánico formado por varios discos apilados y un brazo con cabezas lectoras/escritoras situadas sobre cada uno de ellos
- El grabado y la lectura se realizan en base a campos magnéticos
- Son dispositivos mecánicos: son lentos, provocan ruido, sensibles a vibraciones y sufren desgaste
- Las dimensiones de las cabezas y su sensibilidad magnética han sido los principales límites de su capacidad

Discos y almacenamiento: Disco duro

Discos y almacenamiento: Flash

- Es dispositivo electrónico formado por transistores (puertas lógicas)
- Al no tener componentes mecánicos son más rápidos, sin ruido y no sufren con vibraciones o golpes
- Utilizados como memoria no volátil, aunque requieren cierto refresco
- Las unidades de estado solido (SSD) se basan en tecnología Flash

La información

- Es la materia prima de la informática
- Está formada por datos y por instrucciones dirigidas al ordenador para manipularlos
- Tanto los datos como las instrucciones deben estar codificadas en códigos binarios

Los códigos

- Un alfabeto es un conjunto de símbolos
- Un código es una tabla de asociación entre símbolos de dos alfabetos diferentes
- Por ejemplo: el Código Braille o el Código Morse
- Los ordenadores, por restricciones de tipo técnicas y eléctricas, solo pueden usar un alfabeto de dos símbolos (Códigos binarios)

Los códigos

■ Todos el software (datos e instrucciones) está codificado en códigos de dos símbolos

- Existen varios códigos binarios
- Todos usan dos símbolos (0 y 1) pero los combinan de forma diferente

Los códigos

Códigos numéricos:

- Permiten codificar valores numéricos
- Ejemplos: Binario natural, BCD, etc...

■ Códigos alfanuméricos:

- Permiten codificar valores numéricos y no numéricos
- Ejemplos: ASCII-7, ISO-8859-1, Unicode, ...

Otros códigos no binarios:

- Usados para simplificar la notación
- Ejemplo: Hexadecimal

El código binario

- Solo posee dos símbolos
- En informática representan dos tipos de voltaje eléctrico
- La unidad mínima de información es el bit (0 ó 1)
- 8 bits forman un byte

El código binario

■ Otras equivalencias:

1 Kilobyte (Kb)	1024 Bytes
1 Megabyte (Mb)	1024 Kilobytes
1 Gigabyte (Gb)	1024 Megabytes
1 Terabyte (Tb)	1024 Gigabytes

Conversión de Binario a Decimal

- El código binario natural es ponderado: cada dígito tiene un peso en función de su posición (igual que el decimal)
- El numero decimal será la suma de los pesos de cada bit
- Para calcular el peso de un bit usaremos:

$$X * 2^{i}$$

■ Siendo X el bit, e *i* su posición

Conversión de Binario a Decimal

- El número binario 11 tiene el valor decimal 3
- $1*2^1+1*2^0=3$

- El número binario 1001 tiene el valor decimal 9
- $1 * 2^3 + 0 * 2^2 + 0 * 2^1 + 1 * 2^0 = 9$

Conversión de Decimal a Binario

- Basado en sucesivas divisiones entre 2
- En cada división tomaremos el resto, para comprobar realmente si el cociente es o no divisible entre dos
- Es similar a factorizar el número

Conversión de Decimal a Binario

■ El número decimal 90 es el número binario 1011010

```
90 : 2 = 45 Resto 0

45 : 2 = 22 Resto 1

22 : 2 = 11 Resto 0

11 : 2 = 5 Resto 1

5 : 2 = 2 Resto 1

2 : 2 = 1 Resto 0

1 : 2 = 0 Resto 1
```

El código hexadecimal

- Usado normalmente para simplificar notación
- Cada dígito hexadecimal equivale siempre a 4 bits.
- Por ejemplo, una ristra de 16 bits puede simplificarse con 4 dígitos hexadecimales

Dígitos hexadecimales: 0,1,2,3...,8,9,A,B,C,D,E,F

Conversión de Hexadecimal a Decimal

- El código hexadecimal también es ponderado:
- El numero decimal será la suma de los pesos de cada dígito
- Para calcular el peso de un dígito usaremos:

$$X * 16^{i}$$

■ Siendo X el dígito, e i su posición

Conversión de Hexadecimal a Decimal

- El número hexadecimal 71B tiene el valor decimal 1819
- $7*16^2 + 1*16^1 + B*16^0 = 1819$

- El número hexadecimal 20 tiene el valor decimal 32
- $2 * 16^1 + 0 * 16^0 = 32$

Hexadecimal y Binario

- El código hexadecimal también es usado en informática como notación simplificada del binario
- Cada dígito hexadecimal se sustituye siempre por 4 dígitos binarios o bits
- Siempre se comienza a agrupar desde la derecha

Códigos numéricos

Dec	Bin	Hex	Dec	Bin	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	Α
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	Е
7	0111	7	15	1111	F

Códigos alfanuméricos: ASCII

- Usa 7 bits para codificar cada dígito
- Solo codifica 128 (2⁷) caracteres
- Codifica caracteres del alfabeto inglés, números, símbolos de puntuación y no imprimibles
- Faltan numerosos símbolos de otros alfabetos

Códigos alfanuméricos: ISO-8859-1

- Es una ampliación del juego de caracteres ASCII
- Los 128 primeros caracteres son ASCII pero al añadir 1 bit más codifican otros 128 caracteres más
- En total codifican 256 (2⁸) caracteres
- Añaden caracteres como: ñ, ß, ç, ...
- También conocido como Latin1

Códigos alfanuméricos: Unicode

- Estándar de codificación para recoger todos los alfabetos del mundo
- Diferentes implementaciones: **UTF-8**, UTF-16, etc.
- UTF-8 es una de las implementaciones más usadas
 - Utiliza hasta 4 bytes por carácter
 - Es capaz de representar todos los caracteres Unicode (2³²)
 - Problema: códigos de longitud variable

Lenguajes de programación

- Derivación del lenguaje natural
- Suele poseer una sintaxis muy estricta
- Destinada a ser traducida literalmente a lenguaje máquina
- La traducción se denomina compilación

La Compilación

- Traducción del lenguaje de programación al lenguaje máquina
- La lleva a cabo otro programa llamado compilador
- Lee el código fuente y traduce cada palabra a código máquina
- A partir del código fuente genera otro archivo llamado código objeto o ejecutable

La Compilación

Compiladores e intérpretes

- Existe otro método para la ejecución de programas
- Un intérprete es un programa que, tras ser ejecutado, lee el archivo fuente
- No lo traduce a lenguaje máquina. Lo lee, lo interpreta y adopta el comportamiento que la instrucción fuente determina

Interpretación

Ejemplos

- Compilados
 - C, C++
 - Pascal
- Interpretados
 - PHP
 - Python
- Híbridos
 - Java
 - Visual Basic .NET

Distribución del software

- El software debe distribuirse con el código objeto
- Puede o no distribuirse junto con el código fuente
- El acceso al código fuente es un debate abierto y encendido en el mundo informático
- Cuestiones éticas, de seguridad, marketing, económicas, etc.

Distribución del software

- Licencias: Cesión de ciertos permisos al usuario que adquiere el software
- Diferentes tipos:
 - Cerradas y restrictivas: Windows, Oracle, etc.
 - Abiertas y restrictivas: GPL.
 - Abiertas y sin límites: MIT

(cc) Sergio de Mingo

Some rights reserved. This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Spain License, available at http://creativecommons.org/licenses/by-sa/3.0/

http://apuntes-fp.blogspot.com

sergio. demingo gil @educa.madrid.org