

Липецкий государственный технический университет

Беляев Дмитрий Юрьевич

Математическое моделирование энергосиловых и тепловых режимов на станах холодной прокатки

Направление 01.04.04 Прикладная математика

Научный руководитель к.ф.-м.н., доцент

Орешина М.Н.

Цель и задачи

Цель работы – создание пакета прикладных программ и интерфейса для моделирования энергосиловых и тепловых режимов на станах холодной прокатки

Задачи:

- расчет энергосиловых параметров;
- формулировка краевых задач для очага деформации и межклетевого промежутка;
- сведение полученной дифференциальной задачи к конечно-разностной;
- формализация задачи расчета напряженно-деформированного состояния рабочего слоя рабочего валка в контакте с полосой;
- разработка комплекса прикладных программ.

Прокатное производство

Рисунок 1. Общая схема проката на непрерывном стане

Рисунок 2. Общая схема проката на реверсивном стане Беляев Д.Ю. Слайд 2

Моделирование энергосиловых режимов

Напряжения в очаге деформации

$$dp_{back} = \left(K_c + \frac{\mu_k p_{back}}{\tan \phi}\right) \frac{dh}{h}, \quad dp_{forw} = \left(K_c - \frac{\mu_k p_{forw}}{\tan \phi}\right) \frac{dh}{h}, \quad (1)$$

где $K_c=1,15\sigma_T$ — сопротивление деформации полосы, σ_T — предел текучести полосы, μ_k — коэффициент трения, ϕ — угол между касательной к поверхности валка и горизонтальной поверхностью, h — толщина полосы в очаге.

Контактные напряжения

$$p_{contact}(x) = \min_{x \in [0,L]} \left(p_{back}(x); p_{forw}(x) \right), \tag{2}$$

где x — координата по очагу деформации, x^* — точка пересечения p_{back} и p_{forw} , h_{neutr} — толщина полосы в точке x^* .

$$x_{step} = rac{L}{M}$$
 – шаг по очагу, L – длина очага, M – число точек в очаге,

$$x_i=i\cdot x_{step}$$
 – узлы, $au=rac{t_{max_k}}{M}$ – шаг по времени, $t_{max_k}=rac{L}{V_k}$ – время

моделирования, V_k – скорость на k-ом очаге, $t_i=i\cdot au$ – узлы.

Беляев Д.Ю.

Слайд 3

Моделирование энергосиловых режимов (продолжение)

Плотность теплового потока, генерируемого трением в зоне контакта

$$q_i = \tau_i \cdot w_{slip_i}, \tag{3}$$

где $au_i = \mu_k \cdot p_{contact_i}$ – касательные напряжения, $w_{slip_i} = \left| V_k \cdot \left(\frac{h_{neutr}}{h_i} - 1 \right) \right|$ – скорость скольжения, V_k – скорость полосы на k-ом очаге, h_i – толщина полосы в i-ой точке.

Функция теплового источника для полосы в очаге деформации

$$f_i = \frac{\Delta T_{def_i}}{t_i}, \quad \Delta T_{def_i} = \frac{\eta \cdot \sum_{x=0}^{N} K_{c_i} \ln \frac{h_i}{h_{i-1}}}{c_{\mathsf{n}} \lambda_{\mathsf{n}}}, \tag{4}$$

где $\eta=0,85$ – коэффициент выходного потока тепла от пластической деформации, $c_{\rm п}$ – удельная теплоемкость полосы, $\lambda_{\rm n}$ – коэффициент теплопроводности полосы.

Моделирование тепловых режимов в очаге деформации. Полоса

 $t_{max_k} = \frac{L}{V_k}$ – время моделирования, L – длина очага, V_k – скорость на k-ом очаге. u,w – распределение температур на валке и полосе.

где $a_{\rm n}^2=\frac{\lambda_{\rm n}}{\rho_{\rm n}c_{\rm n}}$, $\lambda_{\rm n}$ – коэффициент теплопроводности, $\rho_{\rm n}$ – плотность, $c_{\rm n}$ – удельная теплоемкость, f(z,t) — функция теплового источника, q(t) – плотность теплового потока от трения, $C_2(z)$ – распределение температур по глубине полосы на входе в очаг деформации.

Моделирование тепловых режимов в очаге деформации. Валок

$$\begin{cases} u'_{t} - a_{\mathsf{B}}^{2} u''_{zz} = 0, & z \in \left[\frac{d}{2}, R + \frac{d}{2}\right], t \in [0, t_{max_{k}}], \\ u(z, 0) = C_{1}(z), & z \in \left[\frac{d}{2}, R + \frac{d}{2}\right], \\ u\left(\frac{d}{2} + R, t\right) = C_{3}, & t \in [0, t_{max_{k}}], \\ u\left(\frac{d}{2}, t\right) = w\left(\frac{d}{2}, t\right), & t \in [0, t_{max_{k}}], \end{cases}$$
(6)

где $a_{\rm B}^2=\frac{\lambda_{\rm B}}{\rho_{\rm B}\mathcal{C}_{\rm B}}$, $\lambda_{\rm B}$ – коэффициент теплопроводности валка, $\rho_{\rm B}$ – плотность стали валка, $c_{\rm B}$ – удельная теплоемкость валка, R – радиус валка, $C_1(z)$ – распределение температур по глубине рабочего слоя валка на входе в очаг деформации, C_3 – температура в центре валка.

Моделирование тепловых режимов на межклетевом промежутке

 $t_{max_k} = \frac{S}{V_{m_k}}$ – время моделирования, S – длина межклетевого промежутка, V_{m_k} – скорость на межклетевом промежутке

$$\begin{cases} w_{t}^{'} - a_{n}^{2}w_{zz}^{''} = 0, & z \in \left[0, \frac{d}{2}\right], t \in [0, t_{max_{k}}], \\ w(z, 0) = C_{4}(z), & z \in \left[0, \frac{d}{2}\right], \\ \frac{\partial w}{\partial z}(0, t) = 0, & t \in [0, t_{max_{k}}], \\ \frac{\partial w}{\partial z}\left(\frac{d}{2}, t\right) = -\frac{\alpha}{\lambda_{n}}\left(w\left(\frac{d}{2}, t\right) - \theta(t)\right), & t \in [0, t_{max_{k}}], \end{cases}$$

$$(7)$$

где $a_{\rm n}^2=\frac{\lambda_{\rm n}}{\rho_{\rm n}c_{\rm n}}$, $\lambda_{\rm n}$ – коэффициент теплопроводности стали, $\rho_{\rm n}$ – плотность стали, $c_{\rm n}$ – удельная теплоемкость стали, $C_4(z)$ – распределение температур по глубине полосы на входе в межклетевой промежуток, α – коэффициент теплообмена, $\theta(t)$ – температура окружающей среды. Беляев Д.Ю.

Максимальные скалывающие напряжения

$$\tau_{max}(\eta) = -\frac{\eta p_{cp}}{2\pi} \left[\frac{k_1}{a_1} \ln \frac{(a-a_1)^2 + \eta^2}{a^2 + \eta^2} - \frac{k_1 - p_0}{a - a_1} \ln \frac{\eta^2}{(a-a_1)^2 + \eta^2} + \frac{k_2 - p_0}{b_1} \ln \frac{b_1^2 + \eta^2}{\eta^2} - \frac{k_2}{b_1} \ln \frac{4b_1^2 + \eta^2}{b_1^2 + \eta^2} \right] + \frac{6f_{cp}}{\pi} \left[1 - 2\frac{\eta}{a} \arctan \frac{a}{\eta} + \frac{a}{\eta} + \frac{\eta}{b_1} \arctan \frac{2b_1}{\eta} + \frac{\eta^2}{a^2} \ln \left(\frac{a^2}{\eta^2} + 1 \right) + \frac{\eta^2}{4b_1^2} \ln \left(\frac{4b_1^2}{\eta^2} + 1 \right) \right],$$

где $\eta=\frac{y}{L}$, y — координата по глубине валка, L — длина очага, p_{cp} — средние нормальные напряжения, τ_{cp} — среднее касательные напряжения, $k_1=\frac{1,15\sigma_{in}-\sigma_{back}}{p_{cp}}$ и $k_2==\frac{1,15\sigma_{out}-\sigma_{forw}}{p_{cp}}$, σ_{in} и σ_{out} — начальное и конечное значение предела текучести, σ_{forw} и σ_{back} — переднее и заднее натяжение, $a=1-\frac{\gamma}{\alpha}$, $a_1=0,25-0,5\frac{\gamma}{\alpha}$, $b_1=0,5\frac{\gamma}{\alpha}$, γ — угол, характеризующий положение нейтрального сечения, α — угол захвата, $p_0=\frac{p_{max}}{p_{cp}}=\frac{4}{3}\left(2-k_1\left[1-\frac{\gamma}{\alpha}\left(1-\frac{k_2}{k_1}\right)\right]\right)$ — показатель неравномерности распределения давления.

Модуль редактирования файла с технологическими параметрами

Рисунок 4. Главное окно программы

Рисунок 5. Окно добавления стана

Рисунок 6. Окно добавления марки стали

Программа для вычисления распределения температур прокатного производства (ХП). Расчет

Рисунок 7. Окно после выполнения расчета Беляев Д.Ю.

Графическое представление некоторых энергосиловых и тепловых характеристик

Рисунок 8. Тепловой поток, генерируемый трением

Рисунок 11. Контактные напряжения

Рисунок 9. Предел текучести

Рисунок 12. Максимальные скалывающие напряжения

Рисунок 10. График температур на поверхности полосы

Рисунок 13. График температур по глубине полосы

Слайд 11

Полоса в продольном сечении

Рисунок 14. График распределения температур в продольном сечении

Полоса в поперечном сечении

Рисунок 15. График распределения температур в поперечном сечении

Настройка коэффициентов теплообмена. Пример 1

Ширина полосы = 1040, марка стали – ВПС, $T_{\rm эм}=50$, $T_{\rm возд}=20$. Исходные данные приведены в таблице 1.

Таблица 1. Исходные данные

<i>k</i> -й проход	Скорость, $\frac{M}{MUH}$	Усилия, т	T_{b_k} , т	T_{f_k} , т	Толщина, мм
0	-	-	_	_	2,274
1	153	1080	9,2	22,5	1,532
2	507	1036	16,3	20,6	0,984
3	504	1088	10,7	12,9	0,630
4	529	1114	6,6	8,3	0,420
5	404	1236	5,1	6,2	0,285

Таблица 2. Коэффициенты теплообмена, $\frac{BT}{M^2 \cdot Q}$

k-й проход	Зона1	Зона2	Зона3	Зона4	Зона4	Зона3	Зона2	Зона1
1	2000э	2000э	1000э	1000э	1000в	685в	5в	5в
2	15э	15э	40э	1300э	1300в	770в	10в	10в
3	440э	440э	800э	1300э	1300в	800в	85в	85в
4	10э	10э	400э	1500э	1500в	150в	10в	10в
5	100э	100э	800э	1070э	1070в	107в	84в	84в

Настройка коэффициентов теплообмена. Пример 1 (продолжение)

Таблица 3. Пирометр, °C

k-й проход	Входная моталка	До очага	После очага	Выходная
				моталка
1	82,11049	68,21401	121,4183	119,3993
2	119,7977	119,1666	187,0934	191,6016
3	187,4124	173,2124	218,5094	208,3001
4	208,5213	204,4753	231,3628	230,2496
5	233,5801	213,5334	203,4249	189,9884

Таблица 4. Программа, °С

k-й проход	Входная моталка	До очага	После очага	Выходная
				моталка
1	82	68,2209	121,908	118,638
2	118,64	118,039	190,397	187,319
3	187,325	173,208	218,893	208,287
4	208,323	204,467	232,759	230,19
5	230,333	213,074	203,272	189,887

Пример 2

Ширина полосы = 1030, марка стали – 0303, $T_{\rm эм}=50$, $T_{\rm возд}=20$. Исходные данные приведены в таблице 5.

Таблица 5. Исходные данные

k-й проход	Скорость, $\frac{M}{MUH}$	Усилия, т	T_{b_k} , т	T_{f_k} , т	Толщина, мм
0	_	-	-	-	2,021
1	131	785	10,2	18,7	1,334
2	274	772	12,2	16,6	0,934
3	393	738	7,1	8,3	0,671
4	257	720	4,6	5,7	0,521

Таблица 6. Коэффициенты теплообмена, $\frac{BT}{M^2 \cdot {}^{\circ}C}$

k-й проход	Зона1	Зона2	Зона3	Зона4	Зона4	Зона3	Зона2	Зона1
1	700в	700в	700в	850э	850в	280в	10в	10в
2	10э	10э	10э	2290э	2290в	575в	10в	10в
3	170э	170э	170э	2950э	2950в	720в	10в	10в
4	10э	10э	10э	2040э	2040в	500в	5в	5в

Пример 2 (продолжение)

Таблица 7. Пирометр, °C

k-й проход	Входная моталка	До очага	После очага	Выходная
				моталка
1	74,41118	60,71149	113,1083	109,4117
2	108,8148	111,3995	131,304	134,9157
3	133,1143	127,559	134,2169	132,2713
4	131,5456	132,7785	107,1856	108,0586

Таблица 8. Программа, °С

k-й проход	Входная моталка	До очага	После очага	Выходная
				моталка
1	74	60,6263	113,877	111,567
2	111,571	111,197	136,564	133,014
3	133,018	127,347	136,8	132,538
4	132,54	132,208	112,183	107,633

Выводы

- Разработаны модели для расчета на станах холодной прокатки энергосиловых и тепловых характеристик.
- Выполнен расчет максимальных скалывающих напряжений.
- Реализован модуль для создания и редактирования файла с технологическими параметрами.
- Создана программа, реализующая расчет энергосиловых и тепловых режимов. Представление и сохранение всех расчетных значений в табличной или графической форме.
- Выполнено сравнение фактических температур с расчетными при заданных коэффициентах теплообмена.

Публикации

- **1** Беляев Д.Ю., Орешина М.Н. Моделирование теплового режима контакта валок-полоса при холодной прокатке. Материалы научной конференции по проблемам технических наук 2014 г. 26-28 с.
- **2** Беляев Д.Ю., Орешина М.Н., Пименов В.А. Разработка математических моделей энергосиловых и тепловых режимов в очаге деформации при холодной прокатке. Материалы областного профильного семинара «Школа молодых ученых» по проблемам технических наук 2015 г. 19-20 ноября 2015 г. − 17-19 с.
- **3** Беляев Д.Ю. Моделирование теплового режима контакта валокполоса в очаге деформации при холодной прокатке. VII Международная студенческая электронная научная конференция РАЕ «Студенческий научный форум» − 2015 15 февраля − 30 марта 2015 г. http://www.scienceforum.ru/2015/1352/9558

Публикации

- Феляев Д.Ю., Орешина М.Н. Математическое моделирование теплового режима непрерывной холодной прокатки. Двенадцатая всероссийская научно − практическая конференция с международным участием «Современные проблемы горно-металлургического комплекса. Наука и производство». 25-27 ноября 2015 г., г. Старый Оскол. − 119-125 с.
- **5** Беляев Д.Ю., Орешина М.Н., Пименов В.А. Разработка программного обеспечения для моделирования энергосиловых и тепловых режимов на станах холодной прокатки. XII Международная конференция «Современные сложные системы управления». 25-27 октября 2017 г., г. Липецк (подана заявка).

Спасибо за внимание!