Themen der 1. Klausur am 16.10.2023

- Influenz und "Dosenphysik" → Ladung (-sberechnung siehe Aufgaben S. 13), Stromstärke und Elektroskop
- Elektrisches Feld, elektrische Feldstärke E und Grieskornbilder →
 Eigenschaften des E-Feldes, Formeln und Dipolbildung bei
 Grieskornbildern, Flächenladungsdichte σ, Feld eines
 Plattenkondensators und einer Quellladung
- Kraft F auf Probeladung im Plattenkondensator und zwischen zwei kugelförmigen Ladungen → Coulombkraft

$$I = \frac{Q}{t}$$

$$\sigma = \frac{Q}{A} = \varepsilon_0 E$$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

$$\overline{F = qE}$$

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$$

Herleitung des Coulombschen Geset kugelförmigen Ladungen

- Oberfläche A einer kugelförmigen Ladung: $A=4\pi r^2$
- Für die Flächenladungsdichte σ folgt:

$$\sigma = \frac{Q}{A} = \frac{Q}{4\pi r^2}$$

Bearbeiten Sie im Buch S. 17 Nr. A2) und S. 19 Nr. A1) und A3).

• Mit $\sigma = \varepsilon_0 \cdot E$ folgt die Gleichung:

$$\varepsilon_0 \cdot E = \frac{Q}{4\pi r^2}$$

• Für die Feldstärke E ergibt sich nach teilen durch ε_0 :

$$E = \frac{Q}{4\pi r^2 \varepsilon_0} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2}$$

• Mit der Formel für die elektrische Kraft F_{el} gilt:

$$F_{el} = qE = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$$

Gravitationskonstante $\gamma = 6,67 \cdot 10^{-11} \frac{m^3}{kgs^2}$

• 100 Jahre nach Newton erstmals mit Hilfe einer Gravitationswaage bestimmt

Gravitationsfeld (-stärke: G*=g)

• Jeder Körper erzeugt allein aufgrund seiner Masse in seiner Umgebung ein Gravitationsfeld. Das Feld ist Träger der Kraft, die in einem Raumpunkt auf einen dort befindlichen Körper wirkt.

Größenvergleich der gravitativen und der elektrischen Anziehungskraft am Beispiel zweier Elektronen

- $F_G = \gamma rac{m_e^2}{r^2}$... mit m_e der Elektronenmasse
- $F_{el}=rac{1}{4\piarepsilon_0}rac{e^2}{r^2}$... mit e der Elektronenladung
- Verhältnis: $\frac{F_{el}}{F_G}$

Bestimmen Sie das Verhältnis und **geben** Sie **an**, um welchen Faktor welche der beiden Kräfte größer ist als die andere.