

```
vst [N+1] = & false };
void b/s (Source, )
     Queue <int> 9;
      9. engueure (source);
vist(source) = True;
    while (19. is Empty ()) d
          U = 9. dequene();
        for (all V connected to u) <
               y(vst[v] = = false) d

vst[v] = True;

g.engueue(v);
            0(1+6)
```

int finddegree (u, v, N) & vst[N+1] = { false 4; Queue < Pair < int, int> > 9 first Second (Node) & Degree) vst[u]== Tone; q.engueue (u, 0); while (19. is Empty()) } w = q. dequene (); node = w. fixt(); degree = w. second(); for (all nodes 3 connected to made) of if (vst[3]== fabre) < if (3==V) d return degree+1;

Grid Pro Stems

Source 4	1	1	1	0	0	1	0	0	
	0	1	1	0	1	1	1	0	
	1	1	1	1	0	1	1	1	
	1	1	0	0	0	1	O	0	
	1	1	1	1	1	1	1	1_	-> Dest
	0	1	1	1	1	1	0	1	
	9	0	0	1	1	0	1	1	

$$\begin{array}{ccc}
0 & & & & & \\
1 & & & & & \\
\end{array}$$

Given source & dest cell. find the min distance 5/10 them

$$(i-1, j-1) \qquad (i-1, j+1)$$

$$(i, j-1) \qquad (i, j+1)$$

$$(i+1, j-1) \qquad (i+1, j+1)$$

Given an undirected weighted graph where the weights of the edges is \$\delta 1, 2\f hind the shortest distance to ever node fom a given source mode. $\langle 1, 1 \rangle, \langle 3, 2 \rangle \langle 9, 1 \rangle$ $\langle 2,2 \rangle$, $\langle 6,2 \rangle$ $\langle 9,1 \rangle$ $\langle 10,1 \rangle$ <2,1>, <4,2> <6,1> <3,22,<7,2>,<5,1>

$$7.C. = O(\underline{V' + E'})$$

$$= O(V + E + 2E)$$

$$= O(V + 3E)$$

$$\frac{T.C}{=0} \left(v+\varepsilon\right)$$

Min Heap (dist, node >

</pr>

< 15, 8) -> < (8, 7)

Dijekstra's Algorithm

T.C. = 0 (V+ Elog(E))

int[] dijiketoa (source) &

dist[N+1] = < 00 };

dist[source] = 0

Minblego (Pair Lint, int) mh;

fixet sawnd

Distance Node

mh. insert (< 0, source >);

while (1 mh. is Empty ()) d

x = mh. getMin();

distance $x = x \cdot fixt()'$, $Node_x = x \cdot fixt()'$

if (distance x \le dist [Node x]) \

for (all u connected to Nodex) & du = distance x + Wx-u if (du < dist[u]) < dist[u] = du mh.insest (du, u>); anterview Pross 2) Prim's Algo (MST)

2) Multi Source BFS

Running Median (Mep) (Problems)

