Contents

ToC	1
computational complexity	5
def: problema in computer science	5
tipologie di problema	5
complessitá degli algoritmi e dei problemi	
esempio: codice	
def: tempo di esecuzione dell'algoritmo A	
def: complessitá temporale dell'algoritmo A	
def: complessitá di un problema	
problemi di decisione e classi di complessitá	
def: un algoritmo A risolve π	
def: classe dei problemi $TIME(g(n))$	
algoritmi non-deterministici per i problemi di decisione	
def: un algoritmo non-deterministico A risolve π	
def: classe dei problemi $NTIME(g(n))$	
esempio: algoritmo non-deterministico per il problema della clique	
osservazioni (algoritmi deterministici e non-deterministici)	
· •	
corollario: $TIME(g(n)) \subseteq NTIME(g(n))$	
efficienza e trattabilitá	
efficienza e trattabilitá: ragione 1	
efficienza e trattabilitá: ragione 2	
osservazione: macchina di turing non-deterministica	
def: codici polinomialmente correlati	
dimensione dell'input (def: codici correlati polinomialmente)	
, t	
esempio: codifica non naturale	
def: modelli computazionali simulabili in modo polinomiale	
classi P e NP	
problemi NP -completi	10
optimization problems	11
def: problema di ottimizzazione	
osservazioni (problemi di ottimizzazione)	
esempio: descrizione formale di un problema di ottimizzazione (max clique)	
def: soluzione ottima	
problema decisionale sottostante	
esempio: descrizione formale di un problema decisionale sottostante (max	12
clique)	12
osservazioni (problema decisionale sottostante)	12
classi di complessitá dei problemi di ottimizzazione: PO	13
classi di complessità dei problemi di ottimizzazione: NPO	13
PO e NPO: nella pratica	
•	13
def: relazione NPO NP – $HARD$	13
teorema: relazione tra $P \neq NP$ e risolvibilitá polinomiale dei problemi	12
NP-HARD	13
teorema: relazione tra $P=NP$ e $PO=NPO$	13
approximation	14
introduzione	
def: algorimo di r-approssimazione per problemi di minimizzazione	

def: algorimo di r-approssimazione per problemi di massimizzazione		14
determinazione del fattore di approssimazione r		
\min (analogo per \max) fattore di approssimazione r		
algoritmo: Approx-Cover per min vertex cover		
lemma: Approx-Cover forma un matching al termine dell'esecuzione .		15
• • • • • • • • • • • • • • • • • • • •		
teorema: Approx-Cover é 2-approssimante	•	
gorithmic techniques: greedy		16
caratteristiche		
problema: max 0-1 knapsack		
max 0-1 knapsack: descrizione della scelta greedy		16
algoritmo: Greedy-Knapsack		
teorema: $\forall r < 1$ Greedy-Knapsack non é r-approssimante		17
miglioramento algoritmo: Greedy-Knapsack		17
Greedy-Knapsack modificato		
lemma 1: Greedy-Knapsack modificato $m^* \leq m_j + p_j$		
lemma 2: Greedy-Knapsack modificato $m^* \leq m_{GR} + p_{\max}$		 18
teorema: Greedy-Knapsack modificato é $\frac{1}{2}$ -approssimante		18
problema: min multiprocessor scheduling		 19
algoritmo: Greedy-Graham		 19
teorema: Greedy-Graham é $2-\frac{1}{h}$ -approssimante		 19
teorema: Greedy-Graham non é r -approssimante per $r < 2 - \frac{1}{h}$		 21
migliorare il rapporto di approssimazione r per Greedy-Graham		 21
Greedy-Graham, primo miglioramento		 22
algoritmo: Ordered-Greedy		
lemma: Ordered-Greedy $t_{h+1} \leq \frac{m^*}{2}$		 22
teorema: Ordered-Greedy é $(\frac{3}{2}-\frac{1}{2h})$ -approssimante		 23
problema: max cut		
algoritmo: Greedy-Max-Cut		
teorema: Greedy-Max-Cut é $\frac{1}{2}$ -approssimante		
conclusioni sulla tecnica greedy		
gorithmic techniques: local search		26
caratteristiche		
schema di un algoritmo di ricerca locale		
complessitá		
approssimazione		
definizione dell'intorno		
definizione dell'intorno: casi estremi		
problema: max cut (giá definito precedentemente)		
algoritmo di ricerca locale per max cut		
complessitá (algoritmo di ricerca locale per max cut)		
approssimazione (algoritmo di ricerca locale per max cut)		
fatto (approssimazione (algoritmo di ricerca locale per max cut)) .		
teorema: l'algoritmo di ricerca locale é $\frac{1}{2}$ -approssimante		
TODO: esempio esecuzione algoritmo di ricerca locale su grafo		
conclusioni sulla tecnica della ricerca locale		 29
gorithmic techniques: linear programming (rounding)		30
caratteristiche		
rounding: caratteristiche		 30
problema: min weighted vertex cover		 30
ILP: min weighted vertex cover		 31

	LP: min weighted vertex cover (rilassamento lineare)	31 31 32 32
	LP: min weighted set cover (rilassamento lineare)	33
al	gorithmic techniques: dynamic programming (part 1)	34
	caratteristiche	34
	uno sguardo piú ravvicinato	34
	algoritmo: Fibonacci	34
	algoritmo: Fibonacci 2	35
	algoritmo: Fibonacci 3	
	$\verb riassumendo $	35
	top-down vs. bottom-up	36
	divide-and-conquer vs. dynamic programming	36
_1	acrithmic tochniques, dynamic programming (part 2)	36
αт	<pre>gorithmic techniques: dynamic programming (part 2) progettazione di algoritmi di programmazione dinamica</pre>	
	complessitá degli algoritmi di programmazione dinamica	
	problema: max 0-1 knapsack (giá definito precedentemente)	
	algoritmo brute force	
	progettazione dell'algoritmo di programmazione dinamica	
	definizione ricorsiva per OPT	
	definizione ricorsiva per la misura m della soluzione ottima $OPT(i,w)$.	
	riepilogo definizioni ricorsive per m e OPT	
	algoritmo: Progr-Dyn-Knapsack	
	algoritmo: Progr-Dyn-Knapsack (trovare gli oggetti inseriti)	
	teorema: l'algoritmo Progr-Dyn-Knapsack ha complessitá temporale $O(nb)$.	
	domanda: l'algoritmo Progr-Dyn-Knapsack na complessita temporale $O(nb)$.	
	algoritmo Progr-Dyn-Knapsack-Dual: approccio duale	
	definizione ricorsiva per OPT (duale)	
	definizione ricorsiva per la misura m della soluzione ottima $OPT(i,w)$.	
	algoritmo: Progr-Dyn-Knapsack-Dual	
	teorema: l'algoritmo Progr-Dyn-Knapsack-Dual ha complessitá temporale	71
	$O(n^2p_{ m max})$	41
an	proximation schemes: polynomial time approximation scheme (PTAS)	42
u۲	definizione: PTAS	42
	problema: min multiprocessor scheduling (giá definito precedentemente) .	42
	richiamiamo l'algoritmo Greedy-Graham	42
	ottenere un PTAS	43
	lemma: $t_i \leq \frac{T}{i}$	43
	PTAS: idea sottostante	44
	algoritmo: PTAS-Scheduling	44
	teorema: l'algoritmo PTAS-Scheduling ritorna sempre una soluzione $(1+$	
	ϵ)-approssimata	44
	problema: min h -processor scheduling	45
	$h ext{-processor}$ scheduling	45
	problema: min partition	46

ottenere un PTAS per il problema min partition		
lemma: algoritmo di programmazione dinamica polinomiale (schedule appro		
per i primi q jobs)		
teorema. esiste un PTAS per 11 problema min multiprocessor scheduling	•	40
approximation schemes: fully polynomial time approximation scheme (FPTAS	5)	47
definizione: FPTAS		47
FPTAS-Knapsack		
algoritmo: FPTAS-Knapsack		
lemma: $m \geq m^* - n \cdot k$ (FPTAS-Knapsack)		
teorema: FPTAS-Knapsack é un FPTAS per il problema max 0-1 knapsack		
é possibile ridurre la complessitá temporale?		
come migliorare i $bound$ per m^*		
algoritmo: New-FPTAS-Knapsack		50
alternative approaches		51
performance garantite		51
restrizione dell'insieme delle istanze		
media o analisi probabilistica		
euristiche		
algoritmi randomizzati		
algoritmi randomizzati		52
definizione: algoritmi randomizzati e r -approssimazione		52
problema: max weighted cut		52
algoritmo: Random-Cut		53
teorema: Random-Cut é $\frac{1}{2}$ -approssimante		53
problema: min weighted set cover (giá definito precedentemente)		53
algoritmo greedy per il problema min weighted set cover		54
scelta greedy		54
algoritmo: Greedy-Min-Weighted-Set-Cover		54
lemma: $m=\sum_{S_j\in\hat{C}}c_j=\sum_{i=1}^n price(o_i)$		55
lemma: $price'(o_i) \geq eff(S'_j)$		55
lemma: $price(o_i) \leq \frac{m^*}{n-i+1}$		55
teorema: Greedy-Min-Weighted-Set-Cover é H_n -approssimante		
esempio: $H_n \cdot m^*$!		56

computational complexity

def: problema in computer science

un problema π é una relazione

$$\pi \subseteq I_{\pi} \times S_{\pi}$$

dove:

- $I_\pi=$ insieme delle istanze di input del problema
- $S_{\pi}=$ insieme delle soluzioni del problema

tipologie di problema

- decisione:
 - si verifica se una data proprietá é valida per un determinato input
 - $S_\pi=\{true,false\}$ o semplicemente $S_\pi=\{0,1\}$ e la relazione $\pi\subseteq I_\pi\times S_\pi$ corrisponde ad una funzione

$$f: I_{\pi} \to \{0, 1\}$$

- esempi: soddisfacibilitá, test di connettivitá di un grafo, etc....

· ricerca:

- data un'istanza $x\in I_\pi$, si chiede di determinare una soluzione $y\in S_\pi$ tale che la coppia $(x,y)\in\pi$ appartengono alla relazione che definisce il problema
- esempi: soddisfacibilitá, clique, vertex cover, nei quali chiediamo in output un assegnamento di veritá soddisfacente, rispettivamente una clique o un vertex cover, invece di semplicemente "si" o "no"

ottimizzazione

- data un'istanza $x\in I_\pi$, si chiede di determinare una soluzione $y\in S_\pi$ ottimizzando una data misura della funzione costo
- esempi: min spanning tree, max SAT, max clique, min vertex cover, min TSP, etc....

complessitá degli algoritmi e dei problemi

- espressa in funzione della taglia dell'input (denotata come $|x|, \forall x \in I_{\pi}$)
- taglia dell'istanza x
 - quantitá di memoria necessaria a memorizzare \boldsymbol{x} in un computer
 - lunghezza $|x|_c$ della stringa che codifica x in un particolare codice naturale $c:I_\pi\to \Sigma$, dove Σ é l'alfabeto del codice c
- codice naturale
 - conciso: le stringhe che codificano le istanze non devono essere ridondanti o allungate inutilmente
 - numeri espressi in base ≥ 2

esempio: codice

ullet istanza: grafo G

- codice per G
 - $\Sigma = \{\{,\},,,0,1,2,3,4,5,6,7,8,9\}$ (simboli)
 - $c(G) = \{1, 2, 3, 4, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, 2, 1, 3, 7, 4\}$
 - * $\{1, 2, 3, 4\}$ (nodi)
 - * $\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}$ (archi)
 - * $\{2,1,3,7,4\}$ (pesi)
 - $|G|_c = 49$

def: tempo di esecuzione dell'algoritmo A

sia $t_A(x)$ il tempo di esecuzione dell'algoritmo A per l'input x, allora il tempo di esecuzione nel caso peggiore di A é:

$$T_A(n) = \max\{t_A(x) \mid |x| \le n\}, \quad \forall n > 0$$

def: complessit'a temporale dell'algoritmo A

l'algoritmo A ha complessitá temporale

• O(g(n)) se $T_A(n) = O(g(n))$, ovvero

$$\lim_{n\to\infty}\frac{T_A(n)}{g(n)}\leq c\,\text{, per una costante }c>0$$

• $\Omega(g(n))$ se $T_A(n) = \Omega(g(n))$, ovvero

$$\displaystyle \lim_{n \to \infty} \frac{T_A(n)}{g(n)} \geq c$$
 , per una costante $c > 0$

• $\Theta(g(n))$ se $T_A(n) = \Theta(g(n))$, ovvero

$$T_A(n) = \Omega(g(n))$$
 e $T_A(n) = O(g(n))$

def: complessitá di un problema

un problema ha complessitá

- O(g(n)) se esiste un algoritmo che lo risolve avente complessitá O(g(n))
- $\Omega(g(n))$ se ogni algoritmo A che lo risolve ha complessitá $\Omega(g(n))$
- $\Theta(g(n))$ se ha complessitá O(g(n)) e $\Omega(g(n))$

problemi di decisione e classi di complessitá

i problemi di decisione sono solitamente descritti da un'istanza di input (o semplicemente INPUT) e da una DOMANDA sull'input

esempi:

- soddisfacibilitá
 - INPUT: CNF (Conjunctive Normal Form) formula definita su un insieme di variabili
 - DOMANDA: esiste un assegnamento di veritá $\tau:V \to \{0,1\}$?
- clique
 - INPUT: un grafo non orientato G=(V,E) di n nodi e un intero k>0
 - DOMANDA: esiste in G una clique di almeno k nodi $(\geq k)$, ovvero un sottoinsieme $U\subseteq V$ tale che $|U|\geq k$ e $\{u,v\}\in E,\ \forall u,v\in U$?
- vertex cover
 - INPUT: un grafo non orientato G = (V, E) di n nodi e un intero k > 0
 - DOMANDA: esiste in G un vertex cover di al massimo k nodi ($\leq k$), ovvero un sottoinsieme $U \subseteq V$ tale che $|U| \leq k$ e $u \in U$ o $v \in U$, $\forall \{u,v\} \in E$?

nei problemi di decisione $I_\pi = Y_\pi \cup N_\pi$

- $Y_\pi=$ insieme di istanze positive, ovvero con soluzione 1
- $N_\pi=$ insieme di istanze negative, ovvero con soluzione 0

def: un algoritmo A risolve π

un algoritmo A risolve $\pi \iff \forall$ input $x \in I_{\pi}$, A risponde $1 \iff x \in Y_{\pi}$

def: classe dei problemi TIME(g(n))

TIME(g(n)) = classe dei problemi di decisione con complessitá O(g(n))

algoritmi non-deterministici per i problemi di decisione

essi si compongono di 2 fasi

- fase 1
 - generano in modo non-deterministico un "certificato" y
- fase 2
 - partendo dall'input x e dal certificato y, verificano se x é un'istanza positiva

def: un algoritmo non-deterministico A risolve π

un algoritmo non-deterministico A risolve π se si ferma per ogni possibile certificato y ed esiste un certificato y per cui A risponde 1 (true) $\iff x \in Y_{\pi}$

- complessitá
 - costo della fase 2
 - espressa in funzione di |x|

def: classe dei problemi NTIME(g(n))

 $NTIME(g(n)) = {\it classe di problemi di decisione con complessită non-deterministica} \ O(g(n))$

esempio: algoritmo non-deterministico per il problema della clique

- fase 1
 - dato in input il grafo G=(V,E), genera non-deterministicamente un sottoinsieme $U\subseteq V$ di k nodi
- fase 2
 - verifica se U é una clique, ovvero se $\{u,v\} \in E, \ \forall u,v \in U$, e in tal caso risponde 1, altrimenti risponde 0
- chiaramente l'algoritmo risolve il problema della clique, in quanto si ferma per ogni possibile sottoinsieme U ed esiste un sottoinsieme U per il quale risponde 1 se e solo se esiste una clique di k nodi in G, ovvero $\iff (G,k) \in Y_{clique}$
- complessitá: $O(n^2)$, poiché $|U| \le |V| = n$

osservazioni (algoritmi deterministici e non-deterministici)

- un algoritmo deterministico é meno potente di uno non-deterministico poiché non puó eseguire la fase 1
- se esiste un algoritmo deterministico A che risolve π , allora esiste anche un algoritmo non-deterministico A' che risolve π con la stessa complessitá come seque:
 - esso esegue al fase 1 e coincide con ${\cal A}$ nella fase 2, ignorando il certificato ${\it y}$

corollario: $TIME(g(n)) \subseteq NTIME(g(n))$

$$TIME(g(n)) \subseteq NTIME(g(n))$$

- dove:
 - TIME(g(n)) = classe dei problemi deterministicamente risolvibili in tempo O(g(n))
 - NTIME(g(n)) = classe dei problemi non-deterministicamente risolvibili in tempo O(g(n))

efficienza e trattabilitá

- un problema é trattabile se puó essere risolto efficientemente (deterministicamente)
- sono considerati trattabili o efficientemente risolvibili tutti i problemi aventi complessitá limitata da un polinomio della dimensione dell'input

TRATTABILITÁ = EFFICIENZA = POLINOMIALITÁ

efficienza e trattabilitá: ragione 1

la crescita delle funzioni polinomiali rispetto a quelle esponenziali (sia per ció che riguarda il tempo di esecuzione sia per ció che riguarda la dimensione delle istanze risolvibili entro un certo tempo di esecuzione)

efficienza e trattabilitá: ragione 2

- la composizione di polinomi é un polinomio e dunque la risolvibilitá in tempo polinomiale di un problema é indipendente da
 - il codice naturale utilizzato, poiché tutti i codici naturali sono correlati in maniera polinomiale
 - il modello computazionale adottato, se ragionevole (cioé costruibile nella pratica o meglio in grado di eseguire un lavoro limitato costante per step), in quanto tali modelli sono polinomialmente correlati, ovvero possono simularsi l'un l'altro in tempo polinomiale

osservazione: macchina di turing non-deterministica

la macchina di turing non-deterministica non é un modello di calcolo ragionevole, poiché la quantitá di lavoro svolto in ogni fase (ciascun livello dell'albero delle computazioni) cresce in modo esponenziale

def: codici polinomialmente correlati

- 2 codici c_1 e c_2 per un problema π sono correlati polinomialmente se esistono 2 polinomi p_1 e p_2 tali che, $\forall x \in I_{\pi}$:
 - $|x|_{c_1} \le p_1(|x|_{c_2})$
 - $|x|_{c_2} \le p_2(|x|_{c_1})$
- se la complessitá rispetto a c_1 é $O(q_1(|x|_{c_1}))$ per un dato polinomio q_1 , allora rispetto a c_2 é $O(q_1(p_1(|x|_{c_2}))) = O(q_2(|x|_{c_2}))$ dove q_2 é il polinomio tale che $\forall \lambda \ q_2(\lambda) = q_1(p_1(\lambda))$
- tutti i codici naturali sono correlati polinomialmente, ovvero la risolvibilitá polinomiale non dipende dal particolare codice utilizzato

dimensione dell'input (def: codici correlati polinomialmente)

qualsiasi quantitá polinomialmente correlata ad un codice naturale é dunque correlata ad un qualsiasi codice naturale possibile, dato che tutti i codici naturali sono correlati polinomialmente e che la composizione di polinomi é un polinomio

esempio: codici correlati polinomialmente

- ullet assumiamo che per ogni grafo G di n nodi
 - $|G|_{c_1} = 10n^2$
 - $|G|_{c_2} = n^3$
- se $p_1(\lambda) = 10\lambda$ e $p_2(\lambda) = \lambda^2$ abbiamo che:
 - $|G|_{c_1} = 10n^2 \le 10n^3 = p_1(|G|_{c_2})$
 - $|G|_{c_2} = n^3 \le 100n^4 = p_2(|G|_{c_1})$
- dunque i 2 codici sono correlati polinomialmente
- regola pratica:
 - 2 quantitá sono polinomialmente correlate se sono polinomi sulle stesse variabili

esempio: codifica non naturale

- test di primalitá
 - INPUT: un numero intero n>0
 - DOMANDA: n é un numero primo?
 - ALGORITMO (banale):
 - * scansiona tutti i numeri da 2 a n-1 e risponde 1 (true) se nessuno di essi lo divide
 - COMPLESSITÁ: O(n), polinomiale?
 - CODICE c_1 (naturale): n espresso in base 2, ovvero $|n|_{c_1} = \log_2 n$
 - CODICE c_2 (non naturale): n espresso in base 1, ovvero $|n|_{c_2}=n$
- dunque la complessitá dell'algoritmo é:
 - $O(2^{|n|_{c_1}})$ rispetto a c_1 , che é esponenziale
 - $O(|n|_{c_2})$ rispetto a c_2 , che é polinomiale!
- dimensione dell'input
 - correlata polinomialmente ai codici naturali $|n|_{c_1} = \log_2 n$

def: modelli computazionali simulabili in modo polinomiale

- 2 modelli computazionali M_1 e M_2 sono mutualmente simulabili in modo polinomiale se esistono 2 polinomi p_1 a p_2 tali che:
 - 1. ogni algoritmo A per M_1 con complessitá $T_A(n)$ puó essere simulato su M_2 in tempo $p_1(T_A(n))$
 - 2. ogni algoritmo A per M_2 con complessitá $T_A(n)$ puó essere simulato su M_1 in tempo $p_2(T_A(n))$
- dunque se A é polinomiale in M_1 allora é polinomiale anche in M_2 e viceversa
- tutti i modelli computazionali ragionevoli sono mutualmente simulabili in modo polinomiale, ovvero la risolvibilitá polinomiale non dipende dal particolare modello utilizzato

classi P e NP

• P= classe di tutti i problemi risolvibili deterministicamente in tempo polinomiale, ovvero

$$P = \bigcup_{k=0}^{\infty} TIME(n^k)$$

• $NP=\mbox{ classe di tutti i problemi risolvibili non-deterministicamente in tempo polinomiale, ovvero$

$$NP = \bigcup_{k=0}^{\infty} NTIME(n^k)$$

• P = NP ? nessuno lo a dimostrato

problemi NP-completi

- i problemi piú difficili di NP e tali che se $P \neq NP$ non appartengono a P, viceversa, se 1 di essi appartiene a P, allora P = NP
- finora nessuno é riuscito a trovare un algoritmo polinomiale deterministico per nessun problema $NP\text{-}\mathsf{completo}$
- congettura: $P \neq NP$

optimization problems

def: problema di ottimizzazione

un problema di ottimizzazione π é una quadrupla $(I_{\pi}, S_{\pi}, m_{\pi}, goal_{\pi})$ con:

- $I_{\pi}=$ insieme delle istanze di input di π
- $S_{\pi}(x)=$ insieme delle soluzioni ammissibili dell'istanza $x\in I_{\pi}$
- $m_\pi(x,y)=$ misura della soluzione ammissibile $y\in S_\pi(x)$ per l'input $x\in I_\pi$ (intera)
- $goal_{\pi} \in \{\min, \max\} =$ specifica se abbiamo un problema di minimizzazione o di massimizzazione

osservazioni (problemi di ottimizzazione)

- assumiamo che $m_\pi(x,y)$ é sempre un numero intero
 - i nostri modelli computazionali possono trattare solo l'approssimazione razionale dei reali
 - scalando tali reali possiamo ottenere numeri interi equivalenti
 - i valori interi rivelano giá le difficoltá intrinseche dei problemi
- quando sono chiari dal contesto (in seguito):
 - π sará omesso
 - m(x,y) =sará denotato semplicemente come m

esempio: descrizione formale di un problema di ottimizzazione (max clique)

```
• I = \text{grafo} \ G = (V, E)
```

- $S = \{U \subseteq V \mid \{u, v\} \in E, \forall u, v \in U\}$
- m(G, U) = |U|
- qoal = max

possiamo descrivere i problemi di ottimizzazione nella seguente forma, piú semplice e informale

- MAX CLIQUE
 - INPUT: grafo G = (V, E)
 - SOLUZIONE: $U \subseteq V \mid \{u, v\} \in E, \ \forall u, v \in U$
 - MISURA: |U|
- MIN VERTEX COVER
 - INPUT: grafo G = (V, E)
 - SOLUZIONE: $U \subseteq V \mid \forall \{u, v\} \in E, u \in U \lor v \in U$
 - MISURA: |U|
- MIN TSP (Traveling Salesman Problem, problema del commesso viaggiatore)
 - INPUT:
 - * insieme di cittá $C = \{c_1, c_2, \dots, c_n\}$
 - * distanza $d(c_i, c_i) \in \mathbb{N}$, per ogni coppia di cittá $(c_i, c_i) \in C$

- SOLUZIONE: un tour di tutte le cittá, ovvero una permutazione $< c_{p(1)}, c_{p(2)}, \ldots, c_{p(n)}>$ che descriva l'ordine di visita delle cittá
- MISURA: lunghezza del tour, ovvero

$$\left(\sum_{i=1}^{n-1} d(c_{p(i)}, c_{p(i+1)})\right) + d(c_{p(n)}, c_{p(1)})$$

def: soluzione ottima

- data un'istanza $x\in I_\pi$, una soluzione $y^*\in S_\pi(x)$ é ottima per x se $m(x,y^*)=goal\{m(x,y)\mid y\in S(x)\}$
- la misura di una soluzione ottima (o in modo analogo di tutte le soluzioni ottime) di x é denotata come $m^*(x)$ o semplicemente m^*

problema decisionale sottostante

ogni problema di ottimizzazione ha un problema decisionale sottostante che puó essere ottenuto introducendo un intero k nell'istanza di input e chiedendo se esiste una soluzione ammissibile di misura $\leq k$ (per min) e $\geq k$ (per max)

- problema di ottimizzazione:
 - dato un input x, trova $y \in S(x) \mid m(x,y)$ sia min o max (secondo il goal)
- problema decisionale sottostante:
 - dato un input x e un intero $k \geq 0$, esiste $y \in S(x) \mid m(x,y) \leq k$ (min) o $\geq k$ (max)

esempio: descrizione formale di un problema decisionale sottostante (max clique)

• MAX CLIQUE

- INPUT: grafo G = (V, E)

- SOLUZIONE: $U \subseteq V \mid \{u, v\} \in E, \ \forall u, v \in U$

- MISURA: |U|

• problema decisionale sottostante:

- INPUT: grafo G = (V, E) e un intero k > 0

- DOMANDA: esiste una clique U in G tale che $|U| \geq k$

osservazioni (problema decisionale sottostante)

- se esiste un algoritmo polinomiale A per il problema di ottimizzazione, allora esiste un algoritmo polinomiale anche per il problema decisionale sottostante che funziona come segue:
 - 1. esegue A per determinare la soluzione ottima y^* per l'input x
 - 2. risponde 1 (true) se $m(x, y^*) \le k$ (min) o $\ge k$ (max)
- il problema di ottimizzazione é difficile almeno quanto il problema decisionale sottostante

classi di complessitá dei problemi di ottimizzazione: PO

- un problema di ottimizzazione π appartiene alla classe PO se:
 - per ogni input x , $x \in I$ puó essere verificato in tempo polinomale
 - esiste un polinomio $p \mid \forall x \in I$ e $y \in S(x)$ vale $|y| \leq p(|x|)$
 - $\forall x \in I \text{ e } y \in S(x)$, m(x,y) puó essere calcolata in tempo polinomale (rispetto a |x|)
 - $\forall x \in I$, una soluzione ottima y^* puó essere calcolata in tempo polinomiale
- esempi: shortest path fra 2 nodi, min spanning tree, ecc...

classi di complessitá dei problemi di ottimizzazione: NPO

un problema di ottimizzazione π appartiene alla classe NPO se:

- per ogni input x, $x \in I$ puó essere verificato in tempo polinomale
- esiste un polinomio $p \mid \forall x \in I$ e $y \in S(x)$ vale $|y| \leq p(|x|)$
- $\forall x \in I \text{ e } y \in S(x)$, m(x,y) puó essere calcolata in tempo polinomale (rispetto a |x|)

esempi: max clique, min vertex cover, min TSP, ecc...

PO e NPO: nella pratica

- PO: classe dei problemi di ottimizzazione il cui problema decisionale sottostante appartiene a P
- $NPO\colon$ classe dei problemi di ottimizzazione il cui problema decisionale sottostante appartiene a NP
- chiaramente $PO \subseteq NPO$

def: relazione NPO - NP-HARD

un problema di ottimizzazione in NPO é NP-HARD se il problema decisionale sottostante é NP-Completo

teorema: relazione tra $P \neq NP$ e risolvibilitá polinomiale dei problemi NP-HARD

se $P \neq NP$, un problema di ottimizzazione NP-HARD non puó essere risolto in tempo polinomiale (poiché é difficile almeno quanto il problema decisionale sottostante)

teorema: relazione tra P = NP e PO = NPO

se P = NP allora PO = NPO

- quasi tutti i problemi che verranno presentati in seguito sono NP-HARD, ovvero non efficientemente risolvibili
- verranno progettati algoritmi per tali problemi che restituiscono soluzioni "vicine" a quelle ottime

approximation

introduzione

- DOMANDA: supponiamo di dover risolvere un problema NP-HARD, cosa dovremmo fare?
- RISPOSTA: sacrificare 1 delle 3 caratteristiche desiderate
 - 1. risolvere istanze arbitrarie del problema
 - 2. risolvere il problema di ottimalitá
 - 3. risolvere il problema in tempo polinomiale
- STRATEGIE:
 - 1. progettare algoritmi per casi speciali del problema
 - 2. progettare algoritmi di approssimazione o euristiche
 - 3. progettare algoritmi che possono richiedere tempo esponenziale
- d'ora in poi ci concentreremo sui problemi di ottizzazione NP-HARD, ovvero problemi che non possono essere risolti in modo efficiente (a meno che P=NP)
- per tali problemi verranno progettati algoritmi in grado di determinare soluzioni prossime a quelle ottime, ovvero "buone approssimazioni"

def: algorimo di r-approssimazione per problemi di minimizzazione

dato un problema di minimizzazione π e un numero $r\geq 1$, un algoritmo A é un algoritmo di r-approssimazione per π se per ogni input $x\in I$ restituisce sempre una soluzione r-approssimata, ovvero una soluzione ammissibile $y\in S(x)$ tale che

$$\frac{m(x,y)}{m^*(x)} \le r$$

def: algorimo di r-approssimazione per problemi di massimizzazione

dato un problema di massimizzazione π e un numero $r \leq 1$, un algoritmo A é un algoritmo di r-approssimazione per π se per ogni input $x \in I$ restituisce sempre una soluzione r-approssimata, ovvero una soluzione ammissibile $y \in S(x)$ tale che

$$\frac{m(x,y)}{m^*(x)} \ge r$$

determinazione del fattore di approssimazione r

- come possiamo determinare il fattore di approssimazione r se non conosciamo il valore m^{\ast} di una soluzione ottima?
- per problemi di minimizzazione (rispettivamente massimizzazione), confrontiamo il valore della soluzione restituita m(x,y) con un lower bound (rispettivamente upper bound) appropriato l(x) (rispettivamente u(x)) di $m^*(x)$
- se il loro rapporto é al massimo r (\leq) per \min o almeno r (\geq) per \max , allora l'algoritmo é r-approssimante

\min (analogo per \max) fattore di approssimazione r

se

$$\frac{m(x,y)}{l(x)} \le r$$

allora

$$\frac{m(x,y)}{m^*(x)} \le \frac{m(x,y)}{l(x)} \le r$$

algoritmo: Approx-Cover per min vertex cover

Algorithm 1 Approx-Cover

lemma: Approx-Cover forma un matching al termine dell'esecuzione

al termine dell'esecuzione dell'algoritmo di approssimazione Approx-Cover, ${\cal M}$ forma un matching, ovvero gli archi in ${\cal M}$ non condividono alcun nodo

dimostrazione:

- banalmente, ogni volta che un arco e é selezionato in M, tutti gli archi con un nodo in comune con e vegono eliminati da E
- pertanto nei passi successivi nessun arco con un nodo in comune con e puó essere selezionato dall'algoritmo

teorema: Approx-Cover é 2-approssimante

Approx-Cover é 2-approssimante

dimostrazione:

• il valore della soluzione restituita dall'algoritmo é

$$m = |U| = 2|M|$$

• sia U^* il cover ottimo. Poiché gli archi in M non condividono alcun nodo (M é un matching) e poiché ciascuno di essi deve avere un nodo in U^*

$$m^* = |U^*| \ge |M|$$

• dunque:

$$\frac{m}{m^*} \leq \frac{2|M|}{|M|} = 2$$

algorithmic techniques: greedy

caratteristiche

- la soluzione viene determinata in step
- ad ogni step l'algoritmo esegue la scelta che sembra essere la migliore in quello step, senza considerare le possibili conseguenze nei futuri step

problema: max 0-1 knapsack

- INPUT:
 - un insieme finito di oggetti ${\it O}$
 - un profitto intero p_i , $\forall o_i \in O$
 - un volume intero a_i , $\forall o_i \in O$
 - un intero positivo b (b>0)
- SOLUZIONE:
 - un sottoinsieme di oggetti $Q\subseteq O$ tale che $\sum_{o_i\in Q}a_i\leq b$
- MISURA:
 - profitto totale degli oggetti scelti, ovvero $\sum_{o_i \in O} p_i$
- senza perdere di generalitá, in seguito, assumeremo sempre che:
 - $a_i \leq b$, $\forall o_i \in O$
 - $p_i > 0$, $\forall o_i \in O$

max 0-1 knapsack: descrizione della scelta greedy

- nella scelta greedy:
 - non possiamo considerare solo il profitto degli oggetti, in quanto il loro volume potrebbe essere troppo grande
 - non possiamo considerare solo il volume degli oggetti, in quanto il loro profitto potrebbe essere troppo basso
- idea: consideriamo gli oggetti in base al profitto per unitá di volume, ovvero in base al rapporto

$$\frac{p_i}{a_i}$$
 , $\forall o_i \in O$

• l'algoritmo greedy seleziona gli oggetti in ordine decrescente di profitto per volume

algoritmo: Greedy-Knapsack

Algorithm 2 Greedy-Knapsack

```
// Q = insieme degli oggetti scelti Q=\emptyset // v = volume del sottoinsieme corrente degli oggetti scelti v=0 ordina gli oggetti in ordine decrescente di profitto per volume \frac{p_i}{a_i} siano o_1,\ldots,o_n gli oggetti elencati secondo tale ordine for i=1 to n do if v+a_i \leq b then Q=Q\cup\{o_i\} v=v+a_i end if end for return Q
```

teorema: $\forall r < 1$ Greedy-Knapsack non é r-approssimante

orall r < 1 dato, Greedy-Knapsack non é r-approssimante

dimostrazione:

- dato un intero $k=\lceil \frac{1}{r} \rceil$, consideriamo la seguente istanza di max 0-1 knapsack
- $\forall n > 2$
 - b=kn é il volume del knapsack
 - n-1 oggetti con profitto $p_i=1$ e volume $a_i=1$
 - 1 oggetto con profitto b-1 e volume b
- soluzione restituita:
 - l'insieme dei primi n-1 oggetti, ovvero m=n-1
- soluzione ottima
 - l'insieme contenente solo l'*n*-esimo oggetto, ovvero

$$m^* = b - 1 = kn - 1$$

• quindi:

$$\frac{m}{m^*} = \frac{n-1}{kn-1}$$

· cosí che:

$$(<) \ \mathsf{poich\'e} \ \frac{1}{r} > 1$$

$$\frac{m}{m^*} = \frac{n-1}{kn-1} \leq \frac{n-1}{\frac{n}{r}-1} < \frac{n-1}{\frac{n}{r}-\frac{1}{r}} = \frac{n-1}{\frac{1}{r}(n-1)} = r$$

• $\forall r < 1
ightarrow rac{m}{m^*} < r$, invece di $\forall r \leq 1
ightarrow rac{m}{m^*} \geq r$

miglioramento algoritmo: Greedy-Knapsack

- osservazione:
 - intuitivamente, Greedy-Knapsack non restituisce una buona approssimazione, poiché ignora l'oggetto avente il profitto massimo

Greedy-Knapsack modificato

- ullet calcola una soluzione greedy Q_{GR} e sia m_{GR} la misura di quest'ultima
- considera l'oggetto $O_{
 m max}$ avente il massimo profitto $p_{
 m max}$
- se $m_{GR} \geq p_{\max}$ restituisci Q_{GR} altrimenti restituisci $Q = \{O_{\max}\}$

lemma 1: Greedy-Knapsack modificato $m^* \leq m_j + p_j$

• sia o_j il primo oggetto che l'algoritmo Greedy-Knapsack non inserisce nel knapsack e sia:

$$m_j = \sum_{i=1}^{j-1} p_i$$

• allora:

$$m^* \le m_j + p_j$$

dimostrazione:

• $m^* \leq m_j + p_j$ deriva direttamente osservando semplicemente che, denotando con v la somma dei volumi dei primi j-1 oggetti scelti, $m_j + p_j$ é il valore della soluzione ottima dell'istanza in cui il volume del knapsack é $v+a_j>b$

lemma 2: Greedy-Knapsack modificato $m^* \leq m_{GR} + p_{\max}$

$$m^* \le m_{GR} + p_{\max}$$

dimostrazione:

• diretta conseguenza del procedente lemma osservando che $m_j \leq m_{GR}$ e $p_j \leq p_{\max}$, e quindi:

$$m^* \le m_j + p_j \le m_{GR} + p_{\max}$$

• intuizione: l'algoritmo restituisce una soluzione di valore $\max\{m_{GR},p_{\max}\}$, che é almeno la metá di $m_{GR}+p_{\max}$, ovvero la metá di un upper bound di m^*

$$\max\{m_{GR}, p_{\max}\} \ge \frac{m_{GR} + p_{\max}}{2}$$

teorema: Greedy-Knapsack modificato é $\frac{1}{2}$ -approssimante

Greedy-Knapsack modificato é $\frac{1}{2}$ -approssimante

dimostrazione:

• $m_{Mod} \ge \max\{m_{GR}, p_{\max}\} \ge \frac{(m_{GR} + p_{\max})}{2} \ge \frac{m^*}{2}$

problema: min multiprocessor scheduling

- INPUT:
 - insieme di n jobs P
 - numero di processori $\it h$
 - tempo di esecuzione t_i , $\forall p_i \in P$
- SOLUZIONE:
 - uno schedule per P, ovvero una funzione

$$f: P \to \{1, \ldots, h\}$$

- MISURA:
 - makespan o tempo di completamento di f, ovvero

$$\max_{i \in [1, \dots, h]} \sum_{p_j \in P \ | \ f(p_j) = i} t_j$$

algoritmo: Greedy-Graham

- scelta greedy: ad ogni step assegna un job al processore meno carico
- $T_i(j)$:
 - tempo di completamento (somma dei tempi di esecuzione dei jobs assegnati) del processore i al termine del tempo j, ovvero una volta schedulati i primi j jobs (in qualunque ordine)

Algorithm 3 Greedy-Graham

```
siano p_1,\dots,p_n i jobs elencati in un qualsiasi ordine for j=1 to n do assegna p_j al processore i avente il minimo T_i(j-1) ovvero f(p_j)=i end for return schedule i
```

- osservazione:
 - se i jobs vengono schedulati in accordo con il tempo di arrivo, l'algoritmo assegna ciascun job senza conoscere quelli futuri, ovvero ONLINE

teorema: Greedy-Graham é $2-\frac{1}{h}$ -approssimante

l'algoritmo Greedy-Graham é $2-\frac{1}{h}$ -approssimante, dove h é il numero di processori

fatto:

• dato $s \geq 0$ e h numeri $a_1, \ldots, a_h \mid a_1 + \ldots + a_h = s$, allora esiste j, $1 \leq j \leq h$, tale che

$$a_j \ge \frac{s}{h}$$

- altrimenti, contraddizione ($a_1 + \ldots + a_h < h \frac{s}{h} = s$)
- analogamente, esiste j', $1 \le j' \le h$, tale che $a_{j'} \le \frac{s}{h}$

- in altre parole, un numero é al massimo uguale alla media e uno maggiore o uguale alla media
- pertanto, $\min_j a_j \leq \frac{s}{h}$ e $\max_j a_j \geq \frac{s}{h}$

dimostrazione:

ullet sia T la somma di tutti i tempi di esecuzione dei job, ovvero

$$T = \sum_{j=1}^{n} t_j$$

- siano $T_1^*, T_2^*, \dots, T_h^*$ i tempi di completamento degli h processori nella soluzione ottima
- poiché $T_1^*+T_2^*+\ldots+T_h^*=T$ dal precedente 'fatto', esiste j tale che $T_j^*\geq rac{T}{h}$
- quindi:

$$m^* \ge T_j^* \ge \frac{T}{h}$$

- sia k il processore con il massimo tempo di completamento nello schedule f restituito dall'algoritmo, ovvero con $T_k(n)$ massimo
- ullet in piú sia p_l l'ultimo job assegnato al processore k
- dato che, per la scelta greedy, p_l é stato assegnato ad uno dei processori meno carichi all'inizio dello step l, sempre per il 'fatto' precedente, abbiamo:

$$T_k(l-1) \le \frac{\sum_{j < l} t_j}{h} \le \frac{T - t_l}{h}$$

- dato che la somma dei tempi di esecuzione di tutti i jobs assegnati prima di p_l é al massimo (\leq) $T-t_l$
- pertanto:

$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l =$$

$$= \frac{T - t_l + ht_l}{h} = \frac{T}{h} - \frac{1 + h}{h}t_l = \frac{T}{h} + \frac{h - 1}{h}t_l \le \dots$$

• poiché $\frac{T}{h} \leq m^*$ e $t_l \leq m^*$

$$\dots \le m^* + \frac{h-1}{h}m^* = \frac{hm^* + (h-1)m^*}{h} = \frac{hm^* + hm^* - m^*}{h} =$$
$$= \frac{2hm^* - m^*}{h} = \frac{2h - 1}{h}m^* = (2 - \frac{1}{h})m^*$$

• e quindi:

$$\frac{m}{m^*} \le 2 - \frac{1}{h}$$

- osservazioni:
 - quando h cresce, il rapporto di approssimazione $2-\frac{1}{h}$ tende a 2
 - l'analisi é stretta, ovvero vale il seguente teorema

teorema: Greedy-Graham non é r-approssimante per $r < 2 - \frac{1}{h}$

Greedy-Graham non é r-approssimante per $r < 2 - \frac{1}{h}$

dimostrazione:

- considera la seguente istanza:
 - h(h-1) jobs con tempo di esecuzione 1
 - 1 job con tempo di esecuzione h
- Greedy-Graham assegna i jobs nella seguente maniera:
- e quindi:

$$m = h + h - 1 = 2h - 1$$

- la soluzione ottima puó essere ottenuta assegnando il job piú lungo ad un processore e distribuendo ugualmente i jobs piú corti tra i processori restanti:
- e quindi:

$$m^* = h$$

• in conclusione:

$$rac{m}{m^*} = rac{2h-1}{h} = 2 - rac{1}{h}$$
 (diverso da $\leq 2 - rac{1}{h}$)

migliorare il rapporto di approssimazione \emph{r} per Greedy-Graham

- ullet DOMANDA: come possiamo migliorare il rapporto di approssimazione r
- richiamiamo rapidamente gli step base della dimostrazione del rapporto di approssimazione di Greedy-Graham
- abbiamo utilizzato i seguenti $lower\ bounds$ per il valore della soluzione ottima:
 - $m^* \geq \frac{T}{h}$, come in qualsiasi soluzione almeno 1 processore deve avere tempo di completamento $\frac{T}{h}$ (richiamiamo che $T = \sum_i t_i$)
 - $m^* \geq t_j$, per ogni job p_j , come in qualsiasi soluzione uno dei processori deve eseguire p_j
- abbiamo utilizzato il seguente $upper\ bound\ per\ il\ valore\ della soluzione restituita:$
 - per limitare superiormente il valore della soluzione restituita, se k é uno dei processori più carichi e p_l é l'ultimo job assegnato a k, per la scelta greedy:

$$T_k(l-1) \le \frac{\sum_{j < l} t_j}{h} \le \frac{T - t_l}{h}$$

• quindi possiamo derivare la seguente disuguaglianza:

$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l =$$

$$= \frac{T - t_l + ht_l}{h} = \frac{T}{h} - \frac{1 + h}{h}t_l = \frac{T}{h} + \frac{h - 1}{h}t_l \le \dots$$

• poiché $\frac{T}{h} \leq m^*$ e $t_l \leq m^*$

$$\dots \le m^* + \frac{h-1}{h}m^* = \frac{hm^* + (h-1)m^*}{h} = \frac{hm^* + hm^* - m^*}{h} =$$
$$= \frac{2hm^* - m^*}{h} = \frac{2h - 1}{h}m^* = (2 - \frac{1}{h})m^*$$

• idea per il miglioramento: decrementa t_l il più possibile e trova un rapporto di approssimazione migliore sfruttando le disuguaglianze

$$m \le \frac{T}{h} + \frac{h-1}{h}t_l \le m^* + \frac{h-1}{h}t_l$$

- modificando l'algoritmo e/o migliorando l'analisi vedremo come limitare superiormente t_l progressivamente con:
 - $\frac{m^*}{2}$ ($\frac{3}{2}$ -approssimante),
 - $\frac{m^*}{3}$ ($\frac{4}{3}$ -approssimante),
 - e arbitrariamente piccolo, ovvero ϵm^* ($(1+\epsilon)$ -approssimante), cioé un PTAS

Greedy-Graham, primo miglioramento

- assegnare i jobs dal piú lungo al piú corto
- ció ci consente di evitare il caso peggiore dell'algoritmo di Graham, ovvero il fatto che un job lungo arrivi alla fine, sbilanciando significativamente il carico dei processori

algoritmo: Ordered-Greedy

Algorithm 4 Ordered-Greedy

siano p_1,p_2,\ldots,p_n i job elencati in ordine decrescente di tempo di esecuzione, ovvero tale che $t_1\geq t_2\geq \ldots \geq t_n$ for j=1 to n do assegna p_j al processore i con il minimo $T_i(j-1)$, ovvero $f(p_j)=i$ end for return schedule f

• vediamo un'analisi piú semplice che porta ad un rapporto di approssimazione di circa $\frac{3}{2}$

lemma: Ordered-Greedy $t_{h+1} \leq \frac{m^*}{2}$

se n>h, allora $t_{h+1}\leq rac{m^*}{2}$

dimostrazione:

- dall'ordinamento dei jobs, i primi h+1 hanno tutti un tempo di esecuzione $\geq t_{h+1}$
- ma allora $m^* \geq 2t_{h+1}$, poiché in ogni schedule almeno 1 degli h processori deve ricevere almeno 2 dei primi h+1 job

teorema: Ordered-Greedy é $(\frac{3}{2}-\frac{1}{2h})$ -approssimante

Ordered-Greedy é $(\frac{3}{2} - \frac{1}{2h})$ -approssimante

dimostrazione:

- di nuovo sia k uno dei processori piú carichi (alla fine)
- se k ha 1 solo job, allora chiaramente la soluzione ritornata é ottima
- altrimenti considera l'ultimo job p_l assegnato a k
- dato che p_l non é il primo job assegnato a k, $l \geq h+1$ e quindi $t_l \leq t_{h+1} \leq \frac{m^*}{2}$, e cosí:

$$m \le \frac{T}{h} + \frac{h-1}{h}t_l \le m^* + \frac{h-1}{h}\frac{m^*}{2} =$$

$$= m^* + \frac{m^*(h-1)}{2h} = \frac{2hm^* + m^*(h-1)}{2h} = \frac{2hm^* + hm^* - m^*}{2h} =$$

$$= \frac{3hm^* - m^*}{2h} = (\frac{3h-1}{2h})m^* = (\frac{3h}{2h} - \frac{1}{2h})m^* = (\frac{3}{2} - \frac{1}{2h})m^*$$

• quindi:

$$\frac{m}{m^*} \le \frac{3}{2} - \frac{1}{2h}$$

problema: max cut

- INPUT: grafo G = (V, E)
- SOLUZIONE: una partizione di V in 2 sottoinsiemi V_1 e V_2 , ovvero tale che:

$$V_1 \cup V_2 = V$$
 e $V_1 \cap V_2 = \emptyset$

• MISURA: la cardinalitá del taglio, ovvero il numero di archi con un estremo (nodo) in V_1 e un estremo in V_2 , cioé:

$$|\{\{u,v\} \mid (u \in V_1 \land v \in V_2) \lor (u \in V_2 \land v \in V_1)\}|$$

algoritmo: Greedy-Max-Cut

- per semplicitá sia $V = \{1, \dots, n\}$
- l'algoritmo ad ogni step inserisce un nuovo nodo in V_1 o in V_2
- scelta greedy:
 - allo step i, il nodo i viene inserito in modo da massimizzare il numero di archi nuovi nel taglio, ovvero in V_1 se il numero di archi che ha verso i nodi giá inseriti in V_2 é maggiore (\geq) del numero di archi che ha verso quelli in V_1 , altrimenti in V_2 (<)

Algorithm 5 Greedy-Max-Cut

```
V_1 = V_2 = \emptyset
\quad \mathbf{for} \ i=1 \ \mathsf{to} \ n \ \mathsf{do}
  // \Delta_i = set di archi tra i e i nodi j < i (adiacenti)
  \Delta_i = \{\{i, j\} \in E \mid j < i\}
  // U_i = set di nodi giá inseriti (adiacenti ad i, all'inizio dello step i)
  U_i = \{j \mid \{i, j\} \in \Delta_i\}
  \delta_i = |\Delta_i| = |U_i|
  \delta_{1i} = |V_1 \cap U_i|
  \delta_{2i} = |V_2 \cap U_i|
  // chiaramente \delta_{1i}+\delta_{2i}=\delta_i
  if \delta_{1i} > \delta_{2i} then
     V_2 = V_2 \cup \{i\}
  else
     V_1 = V_1 \cup \{i\}
  end if
end for
return V_1, V_2
```

teorema: Greedy-Max-Cut é $\frac{1}{2}$ -approssimante

Greedy-Max-Cut é $\frac{1}{2}$ -approssimante

dimostrazione:

• chiaramente poiché quel taglio puó solo contenere un sottoinsieme di tutti gli archi in ${\it E}$

$$m^* \leq |E|$$

• mostriamo ora che la misura m del taglio restituita dall'algoritmo é almeno la metá del numero totale di archi, ovvero:

$$m \geq \frac{|E|}{2}$$

• ció implica chiaramente l'affermazione, poiché

$$\frac{m}{m^*} \geq \frac{\frac{|E|}{2}}{|E|} = \frac{1}{2}$$

• poiché gli insiemi Δ_i determinati dall'algoritmo formano una partizione di E e per definizione $\delta_i = |\Delta_i|$:

$$\sum_{i=1}^{n} \delta_i = \sum_{i=1}^{n} |\Delta_i| = |E|$$

• inoltre, il numero di archi aggiunti al taglio durante lo step i, ovvero con un estremo in V_1 e l'altro in V_2 (dopo l'esecuzione dell'i-esima iterazione dell'istruzione for), é:

$$\max(\delta_{1i}, \delta_{2i}) \ge \frac{(\delta_{1i} + \delta_{2i})}{2} = \frac{\delta_i}{2}$$

• quindi:

$$m = \sum_{i=1}^{n} \max(\delta_{1i}, \delta_{2i}) \ge \sum_{i=1}^{n} \frac{\delta_{i}}{2} = \frac{|E|}{2}$$

conclusioni sulla tecnica greedy

- tutti gli algoritmi visti fin ora hanno complessitá temporale polinomiale
- gli algoritmi greedy hanno buone performance in pratica poiché possono essere implementati in modo semplice
- ma come abbiamo visto, compiere la scelta che sembra migliore a ciascun singolo step, senza badare alle conseguenze future, in generale non permette di trovare la soluzione ottima

algorithmic techniques: local search

caratteristiche

- definiamo, per ogni soluzione ammissibile y, un sottoinsieme di soluzioni ammissibili "vicine" chiamato intorno di y o semplicemente neighborhood(y)
- partendo da una soluzione iniziale, si passa ripetutamente ad una soluzione migliore nell'intorno corrente, finché possibile

schema di un algoritmo di ricerca locale

- risolve una soluzione iniziale y ammissibile per l'input x (di solito una banale)
- fintanto che esiste una $y' \in neighborhood(y)$ migliore di y
 - sia y = y'
- ritorna y
- per definire un algoritmo di ricerca locale per un determinato problema é quindi sufficiente definire:
 - la soluzione iniziale
 - l'intorno delle soluzioni ammissibili

complessitá

- per ottenere una complessitá temporale polinomiale:
 - la soluzione iniziale deve essere determinata in tempo polinomiale
 - il test della condizione di guardia del while e l'eventuale conseguente determinazione di una soluzione migliore nell'intorno deve essere eseguito in tempo polinomiale
 - NOTA: l'intorno puó avere una cardinalitá esponenziale rispetto alla dimensione dell'input!
 - il numero di iterazioni del while deve essere polinomiale

approssimazione

- OTTIMO LOCALE: la soluzione y restituita é la migliore nell'intorno considerato
- per limitare il rapporto di approssimazione é sufficiente limitare il rapporto tra il valore di un qualsiasi ottimo locale con quello della misura di una soluzione ottima globale

definizione dell'intorno

- neighborhood(y):
 - sufficientemente "ricco", per ottenere buone soluzioni (ottimi locali)
 - sufficientemente "povero", per garantire una complessitá temporale polinomiale

definizione dell'intorno: casi estremi

- $neighborhood(y) = \emptyset$
 - tempo di esecuzione polinomiale (se la soluzione iniziale viene determinata in tempo polinomiale)
 - cattiva approssimazione (ogni soluzione é un ottimo locale)
- neighborhood(y) = S(x), ovvero l'insieme di tutte le soluzioni ammissibili per x
 - tempo di esecuzione non polinomiale (se il problema é NP-HARD)
 - buona approssimazione (poiché ogni ottimo locale é anche un ottimo globale)

problema: max cut (giá definito precedentemente)

- INPUT: grafo G = (V, E)
- SOLUZIONE: una partizione di V in 2 sottoinsiemi V_1 e V_2 , ovvero tale che:

$$V_1 \cup V_2 = V$$
 e $V_1 \cap V_2 = \emptyset$

• MISURA: la cardinalitá del taglio, ovvero il numero di archi con un estremo (nodo) in V_1 e un estremo in V_2 , cioé:

$$|\{\{u,v\} \mid (u \in V_1 \land v \in V_2) \lor (u \in V_2 \land v \in V_1)\}|$$

algoritmo di ricerca locale per max cut

- per definire l'algoritmo di ricerca locale, é sufficiente determinare:
 - la soluzione iniziale:

$$V_1=V$$
 , $V_2=\emptyset$

- l'intorno:
 - * dati $V=\{v_1,\ldots,v_n\}$ e V_1 , V_2 , le soluzioni dell'intorno di (V_1,V_2) sono tutte le coppie (V_{1i},V_{2i}) con $1\leq i\leq n$ che possono essere ottenute muovendo un nodo v_i da V_1 a V_2 o viceversa, ovvero:

if
$$(v_i \in V_1)$$
 $V_{1i} = V_1 \setminus \{v_i\}$ e $V_{2i} = V_2 \cup \{v_i\}$

else
$$(v_i \in V_2)$$
 $V_{1i} = V_1 \cup \{v_i\}$ e $V_{2i} = V_2 \setminus \{v_i\}$

complessitá (algoritmo di ricerca locale per max cut)

- la soluzione iniziale viene banalmente ottenuta in tempo polinomiale
- il test della guardia while e l'eventuale determinazione di una migliore soluzione nell'intorno viene effettuata in tempo polinomale come segue:
 - per ciascuna delle n soluzioni dell'intorno (n iterazioni), controlla se la soluzione corrente é migliore (n^2 iterazioni) $\to O(n^3)$
- le iterazioni nel while sono al massimo (\leq) $|E|=O(n^2)$, poiché ogni iterazione migliora la soluzione corrente, ovvero aumenta almeno di 1 il numero di archi del taglio, e vi sono |E| archi nel taglio (al massimo)
- quindi l'algoritmo ha complessitá temporale:

$$O(n^3n^2) = O(n^5)$$

approssimazione (algoritmo di ricerca locale per max cut)

• vediamo una proprietá utile a mostrare il rapporto di approssimazione dell'algoritmo:

fatto (approssimazione (algoritmo di ricerca locale per max cut))

dato un grafo G=(V,E), sia δ_i il grado di un generico nodo $v_i\in V$, allora:

$$\sum_{i=1}^{n} \delta_i = 2|E|$$

dimostrazione:

• banalmente vero, poiché ogni arco viene contato 2 volte nella somma, ovvero incrementa la somma di 2

teorema: l'algoritmo di ricerca locale é $\frac{1}{2}$ -approssimante

l'algoritmo di ricerca locale é $\frac{1}{2}$ -approssimante

dimostrazione:

• mostriamo che ogni ottimo locale (V_1, V_2) ha misura:

$$m \geq \frac{|E|}{2}$$

· ció implica:

$$\frac{m}{m^*} \geq \frac{\frac{|E|}{2}}{|E|} = \frac{1}{2}$$

- poiché $m^* \leq |E|$
- dato un ottimo locale (V_1,V_2) denotiamo con h il numero di archi interni, ovvero con entrambi gli estremi in V_1 o in V_2
- chiaramente, m+h=|E|
- per ogni nodo $v_i \in V$ definiamo i gradi interni ed esterni del nodo come seque:
 - $\delta_i^{int}=$ numero di archi che v_i ha verso i nodi nella sua stessa partizione, ovvero:

$$\delta_i^{int} = |\{v_k | \{v_i, v_k\} \in E \text{ e } (v_i, v_k \in V_1) \text{ o } (v_i, v_k \in V_2)\}|$$

- $\delta_i^{ext} =$ numero di archi che v_i ha verso i nodi nell'altra partizione, ovvero:

$$\delta_i^{ext} = |\{v_k | \{v_i, v_k\} \in E \text{ e } (v_i \in V_1, v_k \in V_2) \text{ o } (v_i \in V_2, v_k \in V_1)\}|$$

• poiché la soluzione nell'intorno (V_{1i},V_{2i}) ha misura non maggiore (\leq) di quella di (V_1,V_2) (ottimo locale), abbiamo:

$$m - \delta_i^{ext} + \delta_i^{int} \le m$$

• e quindi:

$$\delta_i^{int} - \delta_i^{ext} \le 0$$

• riassumento, su tutti i nodi, abbiamo:

$$\sum_{v_i \in V} \delta_i^{int} - \sum_{v_i \in V} \delta_i^{ext} = \sum_{v_i \in V} (\delta_i^{int} - \delta_i^{ext}) \leq 0$$

• dal fatto precedente:

$$\sum_{v_i \in V} \delta_i^{int} = 2h$$

(perché é come sommare i gradi dei nodi del grafo contenente solo gli archi interni)

• e (sempre dal fatto precedente):

$$\sum_{v_i \in V} \delta_i^{ext} = 2m$$

(perché é come sommare i gradi dei nodi del grafo contenente solo gli archi esterni)

• quindi:

$$0 \ge \sum_{v_i \in V} \delta_i^{int} - \sum_{v_i \in V} \delta_i^{ext} = 2h - 2m$$

- ovvero $m \geq h$
- quindi (aggiungendo m su entrambi i lati e dividendo per 2), otteniamo:

$$\frac{2m}{2} \ge \frac{(m+h)}{2} = m \ge \frac{(m+h)}{2} = \frac{|E|}{2}$$

TODO: esempio esecuzione algoritmo di ricerca locale su grafo

conclusioni sulla tecnica della ricerca locale

• come gli algoritmi greedy, gli algoritmi di ricerca locale hanno buone performance nella pratica e portano alla determinazione di buone euristiche (algoritmi che eseguono bene nella pratica ma che di solito non hanno prestazioni garantite in termini di tempo o approssimazione)

algorithmic techniques: linear programming (rounding) caratteristiche

- il problema é formulato come un programma lineare intero (ILP: integer linear program)
- programma lineare intero: programmi lineare + vincoli di interezza
- esiste un algoritmo con complessitá temporale polinomale (algoritmo ellissoide) per risolvere problemi lineari, ma...
- risolvere un programma lineare intero é un problema NP-HARD
- la formulazione come ILP consente di utilizzare potenti mezzi generali che, in base alle proprietá dell'ILP, sono in grado di fornire algoritmi con buona approssimazione:
 - rounding (arrotondamento)
 - primal-dual (primale-duale)

rounding: caratteristiche

- il problema é formulato come un programma lineare
- il rilassamento lineare (LP) viene ottenuto dall'ILP rilassando i vincoli d'interezza, ovvero sostituendoli con adeguati vincoli lineari (sugli interi)
- la soluzione ottenuta (ottima per LP) é arrotondata ad una vicina soluzione intera ammissibile per ILP
- la misura m della soluzione ottenuta é in seguito confrontata con quella della soluzione ottima LP, ovvero m_{LP}^* , cioé un limite inferiore (min) o superiore (max) per m^*

min problems

problema: min weighted vertex cover

- INPUT:
 - un grafo G = (V, E)
 - un costo intero c_i associato ad ogni $v_i \in V$
- SOLUZIONE:

$$U \subseteq V \mid v_j \in U \lor v_k \in U$$
, $\forall \{v_j, v_k\} \in E$

• MISURA: costo totale di U, ovvero

$$\sum_{v_j \in U} c_j$$

ILP: min weighted vertex cover

- funzione obiettivo: $\min \sum_{j=1}^n c_j x_j$
- vincoli: $x_j + x_k \ge 1$, $\forall \{v_j, v_k\} \in E$
- vincoli interi: $x_i \in \{0,1\}$, $\forall v_i \in V$, $\forall j$ con $1 \le j \le n$

LP: min weighted vertex cover (rilassamento lineare)

- $\min \sum_{j=1}^{n} c_j x_j$
- $x_j + x_k \ge 1$, $\forall \{v_j, v_k\} \in E$
- $x_j \le 1$, $\forall v_j \in V$ (superfluo)
- $x_j \ge 0$, $\forall v_j \in V$

algoritmo: Round-Vertex-Cover

Algorithm 6 Round-Vertex-Cover

determina l'ILP associato all'istanza in input risolvi il rilassamento lineare LP dell'ILP sia $< x_1^*, x_2^*, \ldots, x_n^* >$ la risultante soluzione ottima dell'LP $\forall v_j$ sia $x_j = 1$ se $x_j^* \geq \frac{1}{2}$ e $x_j = 0$ se $x_j^* < \frac{1}{2}$ return il cover U associato a $< x_1^*, x_2^*, \ldots, x_n^* >$, ovvero tale che $U = \{v_j \in V \mid x_j = 1\}$

teorema: l'algoritmo Round-Vertex-Cover é 2-approssimante

l'algoritmo Round-Vertex-Cover é 2-approssimante

dimostrazione:

- é sufficiente mostrare che:
 - 1. x_1, x_2, \ldots, x_n é ammissibile per l'ILP (esso soddisfa tutti i vincoli), ovvero U é un cover
 - 2. $\frac{m}{m_{TP}^*} \leq 2$ e quindi anche $\frac{m}{m^*} \leq \frac{m}{m_{TP}^*} \leq 2$
- DIMOSTRIAMO 1.
 - dall'ammissibilitá di $< x_1^*, x_2^*, \dots, x_n^*>$ per LP, per ogni arco $\{v_j, v_k\} \in E$ vale $x_j^* + x_k^* \ge 1$
 - ovvero $x_j^* \ge 0.5$ o $x_k^* \ge 0.5$, cosí che $x_j=1$ o $x_k=1$, e quindi $x_j+x_k \ge 1$ é soddisfatto in ILP
- DIMOSTRIAMO 2.

$$m = \sum_{j=1}^{n} c_j x_j \dots$$

- (dall'arrotondamento: $x_i \leq 2x_i^*$)

$$m = \sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} c_j 2x_j^* = 2 \sum_{j=1}^{n} c_j x_j^* \dots$$

-
$$(\sum_{j=1}^{n} c_j x_j^* = m_{LP}^*)$$

$$m = \sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} c_j 2x_j^* = 2 \sum_{j=1}^{n} c_j x_j^* = 2m_{LP}^*$$

- ovvero:

$$\frac{m}{m^*} \le \frac{m}{m_{LP}^*} \le 2$$

problema: min weighted set cover

- INPUT:
 - un universo $U = \{o_1, o_2, \dots, o_n\}$ di n oggetti
 - una famiglia $\hat{S} = \{S_1, S_2, \dots, S_h\}$ di h sottoinsiemi di U
 - un costo intero c_j associato ad ogni $S_j \in \hat{S}$
- SOLUZIONE: un cover di U, ovvero una sottofamiglia $\hat{C} \subseteq \hat{S}$ tale che:

$$\bigcup_{S_i \in \hat{C}} S_j = U$$

• MISURA: costo totale del cover, ovvero

$$\sum_{S_j \in \hat{C}} c_j$$

- f= frequenza massima di un oggetto nel sottoinsieme \hat{S} , ovvero ciasun oggetto occorre in al massimo f sottoinsiemi
- dato un insieme di n elementi $\{1,2,\ldots,n\}$ (chiamato universo) e una collezione S di m insiemi, la cui unione eguaglia l'universo, il problema del set cover consiste nell'identificare il più piccolo sottoinsieme di S la cui unione equaglia l'universo

ILP: min weighted set cover

- funzione obiettivo: $\min \sum_{j=1}^h c_j x_j$
- vincoli: $\sum_{S_i|o_i\in S_i} x_j \geq 1$, $\forall o_i\in U$
- vincoli interi: $x_j \in \{0,1\}$, $\forall S_j \in \hat{S}$

LP: min weighted set cover (rilassamento lineare)

- $\min \sum_{j=1}^{h} c_j x_j$
- $\sum_{S_j | o_i \in S_j} x_j \ge 1$, $\forall o_i \in U$
- $x_j \le 1$, $\forall S_j \in \hat{S}$ (superfluo)
- $x_j \geq 0$, $\forall S_j \in \hat{S}$

algoritmo: Round-Set-Cover

Algorithm 7 Round-Set-Cover

determina l'ILP associato all'istanza in input risolvi il rilassamento lineare LP dell'ILP sia $< x_1^*, x_2^*, \ldots, x_n^* >$ la risultante soluzione ottima dell'LP $\forall S_j$ sia $x_j = 1$ se $x_j^* \geq \frac{1}{f}$ e $x_j = 0$ se $x_j^* < \frac{1}{f}$ return il cover risultante, ovvero $\hat{C} = \{S_j \in \hat{S} \mid x_j = 1\}$

teorema: l'algoritmo Round-Set-Cover é f-approssimante ($f \ge 1$)

l'algoritmo Round-Set-Cover é f-approssimante ($f \ge 1$)

dimostrazione:

- é sufficiente mostrare che:
 - 1. x_1, x_2, \ldots, x_n é ammissibile per l'ILP
 - 2. $\frac{m}{m_{LP}^*} \leq f$ e quindi anche $\frac{m}{m^*} \leq \frac{m}{m_{LP}^*} \leq f$
- DIMOSTRIAMO 1.
 - dall'ammissibilitá di $< x_1^*, x_2^*, \dots, x_n^* > ext{ per LP, } \ orall o_i \in U$

$$\sum_{S_i \mid o_i \in S_i} x_j^* \ge 1$$

- e poiché la somma ha al massimo (\leq) f termini, deve esistere S_j contenente o_i tale che $x_i^* \geq \frac{1}{f}$, ovvero tale che $x_j = 1$, e quindi:

$$\sum_{S_j \mid o_i \in S_j} x_j \ge 1$$

• DIMOSTRIAMO 2.

$$m = \sum_{j=1}^{h} c_j x_j \dots$$

- (dall'arrotondamento: $x_j \leq fx_i^*$)

$$m = \sum_{j=1}^{h} c_j x_j \le \sum_{j=1}^{h} c_j f x_j^* = f \sum_{j=1}^{h} c_j x_j^* \dots$$

- $(\sum_{j=1}^{h} c_j x_j^* = m_{LP}^*)$

$$m = \sum_{j=1}^{h} c_j x_j \le \sum_{j=1}^{h} c_j f x_j^* = f \sum_{j=1}^{h} c_j x_j^* = f m_{LP}^*$$

- ovvero:

$$\frac{m}{m^*} \leq \frac{m}{m_{LP}^*} \leq f$$

algorithmic techniques: dynamic programming (part 1) caratteristiche

- come nel paradigma divide-and-conquer, suddividi il problema in sottoproblemi più piccoli, risolvi ricorsivamente ciasun sottoproblema e combina le soluzioni dei sottoproblemi per formare la soluzione al problema originale
- ricorrenza facile da calcolare che consente di determinare la soluzione ad un sottoproblema dalla soluzione di sottoproblemi piú piccoli
- differentemente da divide-and-conquer, i sottoproblemi non sono indipendenti, ma si sovrappongono, ovvero durante le decomposizioni occorrono frequentemente gli stessi sottoproblemi
- idea: ciascun sottoproblema viene risolto solo una volta, ció riduce la complessitá temporale
- differentemente da divide-and-conquer, di solito é con approccio bottom-up invece che top-down, ovvero partendo da sottoproblemi piú piccoli e risolvendo progressivamente quelli piú grandi, fino al problema iniziale

uno sguardo piú ravvicinato...

- il paradigma divide-and-conquer é basato sulla decomposzione dei problemi in sottoproblemi piú piccoli:
 - risolvi ricorsivamente i sottoproblemi
 - combina le soluzioni dei sottoproblemi per determinare la soluzione del problema iniziale
- se un problema di taglia n é decomposto in k sottoproblemi di taglie $n_1,n_2,\ldots,n_k< n$, rispettivamente, allora la complessitá temporale puó essere espressa dall ricorrenza

$$T(n) = T(n_1) + T(n_2) + \ldots + T(n_k) + C(n)$$

con C(n) = tempo per combinare le k sottosoluzioni

- la ricorrenza puó essere risolta con metodi differenti, come ad esempio il ricorso al celebre Master Theorem
- un classico esempio di applicazione di divide-and-conquer é il calcolo dei numeri di Fibonacci
- l'algoritmo deriva direttamente dalla definizione ricorsiva di tali numeri

algoritmo: Fibonacci

- caso base: $(n \le 2)$ F(1) = F(2) = 1
- caso induttivo: (n > 2) F(n) = F(n-1) + F(n-2), n

Algorithm 8 Fibonacci

```
\begin{array}{ll} \textbf{if} & n=1 \text{ or } n=2 \text{ then} \\ & \textbf{return} & 1 \\ & \textbf{else} \\ & \textbf{return} & Fibonacci(n-1) + Fibonacci(n-2) \\ \textbf{end if} \end{array}
```

• complessitá temporale:

$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$

· che restituisce:

$$T(n) = O(2^n)$$

- albero delle chiamate ricorsive:
 - nota:
 - * inefficiente: gli stessi sottoproblemi vengono risolti ripetutamente per molte volte

algoritmo: Fibonacci 2

- programmazione dinamica:
 - memorizza la soluzione di ciascun sottoproblema in una tabella o in un array, cosí da evitare di risolverli ripetutamente
 - $\operatorname{nell'algoritmo}$ risultante, F é un array esterno globale visibile a tutte le chiamate ricorsive
- nuovo albero delle chiamate ricorsive

Algorithm 9 Fibonacci 2

```
\begin{array}{l} \textbf{if} \ n=1 \ \textbf{or} \ n=2 \ \textbf{then} \\ F[n]=1 \\ \textbf{return} \quad F[n] \\ \textbf{else} \\ \textbf{if} \ F[n] \ \acute{\textbf{e}} \ \textbf{stato} \ \textbf{gi\'{a}} \ \textbf{assegnato} \ \textbf{then} \\ \textbf{return} \quad F[n] \\ \textbf{else} \\ F[n]=Fibonacci(n-1)+Fibonacci(n-2) \\ \textbf{return} \quad F[n] \\ \textbf{end} \ \textbf{if} \\ \textbf{end} \ \textbf{if} \end{array}
```

algoritmo: Fibonacci 3

Algorithm 10 Fibonacci 3

```
F[1]=1

F[2]=1

for i=3 to n do

F[i]=F[i-1]+F[i-2]

end for

return F[n]
```

riassumendo

- in programmazione dinamica:
 - il problema iniziale puó essere ricorsivamente decomposto in sottoproblemi
 - gli stessi sottoproblemi occorrono molte volte e sono risolti una volta soltanto

- la soluzione di un sottoproblema puó essere ottenuta combinando quelle dei sottoproblemi piú piccoli
- 2 possibili implementazioni:
 - top-down (con annotazione in tabella)
 - bottom-up

top-down vs. bottom-up

- top-down
 - sfrutta l'annotazione in tabella
 - PRO: risolve solo i sottoproblemi strettamente necessari
 - CON: overhead derivante dalla catena di chiamate ricorsive
- bottom-up
 - é la scelta tipica nella programmazione dinamica
 - PRO: é in ogni caso generalmente piú efficiente perché elimina il peso della ricorsione, il quale incide maggiormente sulle prestazioni
 - CON: risolve anche i problemi non necessari

divide-and-conquer vs. dynamic programming

- divide-and-conquer
 - tecnica ricorsiva
 - approccio top-down (problemi divisi in sottoproblemi)
 - utile quando i sottoproblemi sono indipendenti (ovvero differenti)
 - altrimenti, qli stessi sottoproblemi vengono risolti piú volte
- dynamic programming
 - tecnica iterativa
 - tipicamente approccio bottom-up
 - utile quando i sottoproblemi si sovrapppongono (ovvero coincidono)
 - ciasun sottoproblema viene risolto una volta soltanto

algorithmic techniques: dynamic programming (part 2) progettazione di algoritmi di programmazione dinamica

- fornire una decomposizione ricorsiva dei sottoproblemi
- calcolare le sottosoluzioni in maniera bottom-up, ovvero partendo dai sottoproblemi di taglia piú piccola
 - utilizzare una tabella per memorizzare i risultati dei sottoproblemi
 - evitare il calcolo delle stesse soluzioni sfruttando la tabella
- combinare le soluzioni dei sottoproblemi giá risolti per costruire quelle dei sottoproblemi di taglia maggiore, fino alla risoluzione del problema originale

complessitá degli algoritmi di programmazione dinamica

- consideriamo la seguente tabella:
 - $n = \text{taglia dei sottoproblemi } (1, 2, \dots, n)$
 - $k = \text{parametri dei sottoproblemi } (p_1, p_2, \dots, p_k)$
- taglia della tabella = numero di sottoproblemi = nk
- complessitá:
 - [taglia della tabella] × [tempo per combinare le soluzioni]
 - il tempo per combinare le soluzioni é sempre banalmente polinomiale
 - la complessitá é polinomale se la tabella ha taglia polinomale, ovvero se é presente un numero polinomale di differenti sottoproblemi

problema: max 0-1 knapsack (giá definito precedentemente)

- INPUT:
 - un insieme finito di oggetti ${\it O}$
 - un profitto intero p_i , $\forall o_i \in O$
 - un peso intero w_i , $\forall o_i \in O$
 - un intero positivo b (b>0)
- SOLUZIONE:
 - un sottoinsieme di oggetti $Q \subseteq O$ tale che $\sum_{a_i \in O} w_i \leq b$
- MISURA:
 - profitto totale degli oggetti scelti, ovvero $\sum_{o_i \in O} p_i$
- senza perdere di generalitá, in seguito, assumeremo sempre che:
 - $w_i \leq b$, $\forall o_i \in O$
 - $p_i > 0$, $\forall o_i \in O$

algoritmo brute force

- semplice algoritmo che enumera tutti i possibili 2^n sottoinsiemi degli n elementi
- sceglie la migliore combinazione (miglior profitto)
- l'algoritmo di programmazione solitamente ha performance migliori

progettazione dell'algoritmo di programmazione dinamica

- · definizione:
 - OPT(i,w) = sottoinsieme con profitto massimo di oggetti $1,2,\dots,i$ con limite di peso w
- fatto:
 - OPT(n,b) = soluzione ottima del problema iniziale
- le seguente alternative possono occorrere per OPT(i, w):
 - 1. OPT non seleziona l'oggetto i

- OPT seleziona il migliore tra $\{1,2,\ldots,i-1\}$ utilizzando il limite di peso w
- 2. OPT seleziona l'oggetto i
 - OPT seleziona il migliore tra $\{1,2,\ldots,i-1\}$ utilizzando il limite di peso $w-w_i$
- assumiamo che OPT(k, w) sia la soluzione ottima per gli elementi $\{o_1, o_2, \dots, o_k\}$
- nota: la soluzione ottima OPT(k+1,w) potrebbe non corrispondere a OPT(k,w)
- anche perché OPT(k+1,w) potrebbe non essere un superset di OPT(k,w)

definizione ricorsiva per OPT

- possiamo dunque fornire la seguente definizione ricorsiva per *OPT*:
 - $OPT(i, w) = \emptyset$ se i = 0
 - OPT(i, w) = OPT(i 1, w) se $w_i > w$
 - OPT(i,w) = scelta migliore tra OPT(i-1,w) e $OPT(i-1,w-w_i) \cup \{o_i\}$ (altrimenti, $wi \leq w$)

definizione ricorsiva per la misura m della soluzione ottima OPT(i,w)

- in termini di misura m(i,w) della soluzione ottima OPT(i,w)
 - m(i, w) = 0 se i = 0
 - m(i, w) = m(i 1, w) se $w_i > w$
 - $m(i, w) = \max\{m(i-1, w), m(i-1, w-w_i) + p_i\}$ (altrimenti, $w_i \le w$)
- chiaramente, $m^* = m(n, b)$

riepilogo definizioni ricorsive per m e OPT

- come risultato, questo significa che il miglior sottoinsieme di k oggetti con vincolo di peso w é (mutua esclusione):
 - il miglior sottoinsieme di (k-1) oggetti con peso totale w
 - il miglior sottoinsieme di (k-1) oggetti con peso totale $w-w_k$, piú il contributo (il suo profitto) del k-esimo oggetto
 - quindi per quando riguarda la seguente formula ricorsiva:
 - * $OPT(i, w) = \emptyset$ se i = 0
 - * OPT(i, w) = OPT(i-1, w) se $w_i > w$
 - * OPT(i,w) = scelta migliore tra OPT(i-1,w) e $OPT(i-1,w-w_i) \cup \{o_i\}$ (altrimenti, $w_i \leq w$)
 - o il k-esimo oggetto non puó essere parte della soluzione (poiché il suo solo peso é cosí grande che l'oggetto stesso non entra nel knapsack)
 - altrimenti, scegliamo la soluzione migliore tra:
 - * la soluzione che include il nuovo oggetto
 - * la soluzione migliore che non include il nuovo oggetto

Algorithm 11 Progr-Dyn-Knapsack

```
// inizializzazione a 0 della prima riga dell'array bidimensionale M (da 1 a
b)
for w=1 to b do
 M[0, w] = 0
end for
^{\prime\prime} inizializzazione a 0 della prima colonna dell'array bidimensionale M (da 0
for i = 0 to n do
 M[i,0] = 0
end for
for i=1 to n do
 for w=1 to b do
   if w_i > w then
     M[i, w] = M[i - 1, w]
   else
     M[i, w] = \max\{M[i-1, w], M[i-1, w-w_i] + p_i\}
   end if
 end for
end for
return M[n,b]
```

algoritmo: Progr-Dyn-Knapsack

- l'algoritmo Progr-Dyn-Knapsack per il problema max 0-1 knapsack, trova il massimo valore che puó essere inserito dentro il knapsack
- il valore viene memorizzato in M[n,b] al termine della procedura
- per scoprire quali sono gli oggetti che sono stati inseriti nella soluzione ottima, bisogna tornare indietro nella tabella:
 - dobbiamo memorizzare in qualche modo ciascun oggetto aggiunto

algoritmo: Progr-Dyn-Knapsack (trovare gli oggetti inseriti)

Algorithm 12 Progr-Dyn-Knapsack (trovare gli oggetti inseriti)

```
i=n k=w if M[i,k] \neq M[i-1,k] then marca l'oggetto i come 'inserito nel knapsack' i=i-1 k=k-w_i else // assumi che l'oggetto i-esimo non sia stato inserito nel knapsack i=i-1 end if
```

teorema: l'algoritmo Progr-Dyn-Knapsack ha complessitá temporale O(nb)

la complessitá temporale dell'algoritmo Progr-Dyn-Knapsack é O(nb)

dimostrazione:

- l'algoritmo impiega O(1) per ciascuna entry della tabella
- vi sono O(nb) entry nella tabella

- dopo aver calcolato i valori possiamo risalire per trovare la soluzione ottima:
 - prendi l'elemento o_i in $OPT(i, w) \iff M[i-1, w] < M[i, w]$

domanda: l'algoritmo Progr-Dyn-Knapsack é polinomiale?

l'algoritmo Progr-Dyn-Knapsack é polinomiale? (suggerimento: considera il caso in cui $b = 2^n$)

risposta:

- per essere polinomiale, la complessitá dovrebbe essere polinomiale nel logaritmo dei valori codificati nell'istanza in input, ovvero rispetto a $\log b$
- questa complessitá é chiamata **pseudo-polinomale**, ovvero polinomale nella dimensione e nei valori in input, non solo nella dimensione dell'input

algoritmo Progr-Dyn-Knapsack-Dual: approccio duale

- definizione:
 - OPT(i,p)= sottoinsieme di peso minimo di oggetti $1,2,\ldots,i$ con profitto almeno pari a p (\geq)
- domanda: quale sottoproblema corrisponde alla soluzione ottima?
- le sequente alternative possono occorrere per OPT(i, p):
 - 1. OPT non seleziona l'oggetto i
 - OPT seleziona il migliore tra $\{1,2,\ldots,i-1\}$ utilizzando il limite di profitto p
 - 2. OPT seleziona l'oggetto i
 - OPT seleziona il migliore tra $\{1,2,\ldots,i-1\}$ utilizzando il limite di profitto $p-p_i$

definizione ricorsiva per *OPT* (duale)

- possiamo dunque fornire la seguente definizione ricorsiva per *OPT*:
 - OPT(i, p) =non definito se i = 0
 - OPT(i,p) =scelta migliore tra OPT(i-1,p) e $\{o_i\}$ se $p_i \geq p$
 - OPT(i,p) = scelta migliore tra OPT(i-1,p) e $OPT(i-1,p-p_i) \cup \{o_i\}$ (altrimenti $p_i < p$, non definito se entrambi non sono definiti)

definizione ricorsiva per la misura v della soluzione ottima OPT(i,p)

- in termini di peso v(i,p) della soluzione ottima OPT(i,p)
 - $v(i,p) = \infty$ se i = 0
 - $v(i, p) = \min\{v(i-1, p), w_i\}$ se $p_i \ge p$
 - $v(i,p) = \min\{v(i-1,p), v(i-1,p-p_i) + w_i\}$ (altrimenti, $p_i < p$)

algoritmo: Progr-Dyn-Knapsack-Dual

Algorithm 13 Progr-Dyn-Knapsack-Dual

```
// inizializzazione a \infty della prima riga dell'array bidimensionale V (da 1 a
for p=1 to P do
 V[0,p] = \infty
end for
// inizializzazione a \infty della prima colonna dell'array bidimensionale V (da
0 \ \mathsf{a} \ n)
for i = 0 to n do
 V[i,0] = \infty
end for
for i=1 to n do
 if p_i \geq p then
     V[i, p] = \min\{V[i-1, p], w_i\}
     V[i, p] = \min\{V[i-1, p], V[i-1, p-p_i] + w_i\}
    end if
 end for
end for
return \max p \mid V[n,p] \leq b
```

- problema: come dovremmo scegliere P?
- risposta: grande abbastanza da includere l'ottimo, ovvero qualunque $upper\ bound\ {\rm di}\ m^*$, cioé $P\geq m^*$
- scelta:

$$P = np_{\max} \ge \sum_{i=1}^{n} p_i \ge m^*$$
 , $(p_{\max} = \max p_j)$

teorema: l'algoritmo Progr-Dyn-Knapsack-Dual ha complessitá temporale $O(n^2p_{\mathrm{max}})$

l'algoritmo Progr-Dyn-Knapsack-Dual ha complessitá temporale $O(n^2p_{\max})$

dimostrazione:

- l'algoritmo impiega O(1) per ogni entry della tabella
- vi sono $O(nP) = O(n^2p_{\max})$ entry nella tabella
- dopo il calcolo del valori, possiamo risalire per trovare la soluzione ottima:
 - prendi l'elemento o_i in $OPT(i,p) \iff V[i-1,p] > V[i,p]$

approximation schemes: polynomial time approximation scheme (PTAS)

definizione: PTAS

- un algoritmo A per un problema di ottimizzazione $\pi \in NPO$, é un polynomial time approximation scheme per π se, data un'istanza in input $x \in I_{\pi}$ e un numero razionale $\epsilon > 0$, esso ritorna una soluzione $(1+\epsilon)$ -approssimata (per \min) o $(1-\epsilon)$ -approssimata (per \max) in tempo polinomiale rispetto alla dimensine dell'istanza x
- nota: la complessitá temporale puó essere esponenziale in $\frac{1}{\epsilon}$ (esempio $O(n^{\frac{1}{\epsilon}})$)
- la complessitá di un PTAS puó crescere 'drammaticamente' quando ϵ decresce
- **nota:** per ogni valore fisso di ϵ , un PTAS corrisponde ad un algoritmo di $(1+\epsilon)$ -approssimazione di tempo polinomale (o $(1-\epsilon)$)

problema: min multiprocessor scheduling (giá definito precedentemente)

- INPUT:
 - insieme di n jobs P
 - numero di processori $\it h$
 - tempo di esecuzione t_i , $\forall p_i \in P$
- SOLUZIONE:
 - uno schedule per P, ovvero una funzione

$$f: P \to \{1, \ldots, h\}$$

- MISURA:
 - makespan o tempo di completamento di f, ovvero

$$\max_{i \in [1,\dots,h]} \sum_{p_j \in P \mid f(p_j) = i} t_j$$

richiamiamo l'algoritmo Greedy-Graham

- scelta greedy:
 - ad ogni step assegna un job ad uno dei processori correntemente meno carichi
- richiamiamo rapidamente gli step base della dimostrazione del rapporto di approssimazione di Greedy-Graham
 - $T_i(j) =$ tempo di completamento del processore i alla fine del tempo j (h = numero di processori)
- abbiamo utilizzato i sequenti $lower \ bounds$ per m^* :
 - $m^* \geq \frac{T}{h}$, in qualsiasi soluzione almeno 1 processore deve avere tempo di completamento $\frac{T}{h}$ (richiamiamo che $T = \sum_j t_j$)
 - $m^* \geq t_j$, per ogni job p_j , in qualsiasi soluzione uno dei processori deve eseguire p_i
- abbiamo utilizzato il seguente *upper bound* per il valore della soluzione restituita:

– per limitare superiormente il valore della soluzione restituita, se k é uno dei processori più carichi e p_l é l'ultimo job assegnato a k, per la scelta greedy:

$$T_k(l-1) \le \frac{\sum_{j < l} t_j}{h} \le \frac{T - t_l}{h}$$

• quindi possiamo derivare la seguente disuguaglianza:

$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l =$$

$$= \frac{T - t_l + ht_l}{h} = \frac{T}{h} - \frac{1 + h}{h}t_l = \frac{T}{h} + \frac{h - 1}{h}t_l \le \dots$$

• poiché $\frac{T}{h} \leq m^*$ e $t_l \leq m^*$

$$\dots \le m^* + \frac{h-1}{h}m^* = \frac{hm^* + (h-1)m^*}{h} = \frac{hm^* + hm^* - m^*}{h} =$$
$$= \frac{2hm^* - m^*}{h} = \frac{2h - 1}{h}m^* = (2 - \frac{1}{h})m^*$$

• idea per il miglioramento: decrementa t_l il più possibile e trova un rapporto di approssimazione migliore sfruttando le disuguaglianze

$$m \le \frac{T}{h} + \frac{h-1}{h}t_l \le m^* + \frac{h-1}{h}t_l$$

- modificando l'algoritmo e/o migliorando l'analisi vedremo come limitare superiormente t_l progressivamente con:
 - $\frac{m^*}{2}$ ($\frac{3}{2}$ -approssimante),
 - $\frac{m^*}{3}$ ($\frac{4}{3}$ -approssimante),
 - e arbitrariamente piccolo, ovvero ϵm^* ($(1+\epsilon)$ -approssimante), cioé un PTAS
- mostriamo ora come far diventare t_l arbitrariamente piccolo, cioé ϵm^* , ottenendo una $(1+\epsilon)$ -approssimazione, ovvero un PTAS

ottenere un PTAS...

- proviamo a far diventare t_l piú piccolo possibile
- possiamo sfruttare il sequente lemma:

lemma: $t_i \leq \frac{T}{i}$

se t_1,t_2,\ldots,t_n sono ordinati in maniera decrescente e $t_1+t_2+\ldots+t_n=T$, allora:

$$\forall i$$
 , $1 \leq i \leq n$ $t_i \leq \frac{T}{i}$

dimostrazione:

• assumiamo per contraddizione che $t_i > \frac{T}{i}$, allora:

$$t_1 + t_2 + \ldots + t_i \ge i \cdot t_i > i \cdot \frac{T}{i} = T$$

• contraddizione, poiché $T = \sum_{i=1}^n t_i$

PTAS: idea sottostante

- calcola la soluzione ottima per i primi q jobs
- completa assegnando in maniera greedy i restanti jobs
- se otteniamo $t_l \leq \epsilon \cdot m^*$, allora:

$$m \le \frac{T}{h} + (\frac{h-1}{h}) \cdot t_l < \frac{T}{h} + t_l \le m^* + \epsilon \cdot m^* = (1+\epsilon)m^*$$

- partendo dal lemma precedente, é sufficiente assegnare q in modo tale che, poiché l>q
- questo vale per

$$q = \lceil \frac{h}{\epsilon} \rceil$$

• anzi, le disuguaglianze

$$t_l \le \frac{T}{l} \le \frac{T}{q+1} \le \epsilon \cdot \frac{T}{h} \le \epsilon \cdot m^*$$

sono vere se consideriamo

$$q \ge \frac{h}{\epsilon} - 1$$

algoritmo: PTAS-Scheduling

Algorithm 14 PTAS-Scheduling

ordina i jobs in modo decrescente rispetto ai tempi di esecuzione t_i sia p_1, p_2, \ldots, p_n la risultante sequenza ordinata con $t_1 \geq t_2 \geq \ldots \geq t_n$ calcola lo schedule ottimo f per i primi $q = \lceil \frac{h}{\epsilon} \rceil$ jobs for j = q+1 to n do assegna p_j al processore i con minimo $T_i(j-1)$ // ovvero $f(p_j) = i$ end for return schedule f

teorema: l'algoritmo PTAS-Scheduling ritorna sempre una soluzione $(1+\epsilon)$ -approssimata

l'algoritmo PTAS-Scheduling ritorna sempre una soluzione $(1+\epsilon)$ -approssimata

dimostrazione:

- sia $t \leq m^*$ il tempo di completamento della soluzione ottima per i primi q jobs
 - se $m \le t$, ovvero la fase greedy non ha incrementato il tempo di completamento, allora l'algoritmo ritorna la soluzione ottima
 - se m>t, allora nuovamente, denotando con k il processore più carico al termine dell'algoritmo e con p_l l'ultimo job assegnato a k nella fase greedy:

$$m = T_k(n) = T_k(l-1) + t_l \le \frac{T - t_l}{h} + t_l = \frac{T}{h} + \frac{h-1}{h}t_l < \frac{T}{h} + t_l \le m^* + \epsilon \cdot m^* = (1 + \epsilon)m^*$$

ovvero

$$\frac{m}{m^*} \le 1 + \epsilon$$

- quindi l'algoritmo soddisfa il requisito di approssimazione per PTAS, ma é un PTAS?
- complessitá:
 - l'ordinamento iniziale richiede $O(n \cdot \log n)$ step temporali
 - la ricerca esaustiva di una soluzione ottima per i primi q jobs richiede al massimo $O(h^{\frac{h}{\epsilon}})$, poiché vi sono al massimo $h^q \approx h^{\frac{h}{\epsilon}}$ possibili soluzioni (h possibili scelte per ciascuno dei q jobs)
 - l'ultimo for esegue al massimo n iterazioni, ciascuna delle quali richiede O(h)
 - quindi, la complessitá temporale generale é:

$$O(n \cdot \log n + h^{\frac{h}{\epsilon}} + n \cdot h)$$

- tale complessitá é esponenziale in h, e dunque puó essere esponenziale nella dimensine dell'input (per esempio se h=n)
- quindi **non abbiamo un PTAS**, a meno che non fissiamo h in modo tale che sia un valore costante dato (ad esempio: $h=2,h=3,\ldots h=100,\ldots$)
- fissare h costante é equivalente a dire che h non dipende dall'istanza di input, o analogamente che non é parte dell'input
- in altre parole esso corrisponde a considerare il sequente problema:

problema: min h-processor scheduling

- INPUT:
 - insieme di n jobs P
 - tempo di esecuzione t_i , $\forall p_i \in P$
- SOLUZIONE:
 - uno schedule per P, ovvero una funzione

$$f: P \to \{1, \dots, h\}$$

- MISURA:
 - makespan o tempo di completamento di f, ovvero

$$\max_{i \in [1,\dots,h]} \sum_{p_i \in P \mid f(p_i) = i} t_j$$

teorema: l'algoritmo PTAS-Scheduling é un PTAS per il problema min h-processor scheduling

l'algoritmo PTAS-Scheduling é un PTAS per il problema min h-processor scheduling

dimostrazione:

• come giá visto, la complessitá temporale di PTAS-Scheduling é:

$$O(n \cdot \log n + h^{\frac{h}{\epsilon}} + n \cdot h)$$

- che é polinomale nella dimensione dell'input (ma esponenziale in $\frac{1}{2}$)
- approssimazione: $1+\epsilon$

• **nota:** min h-processor scheduling con h=2 coincide con il famoso min partition problem, che a sua volta ammette un PTAS

problema: min partition

- INPUT:
 - insieme di oggetti X
 - peso intero positivo a_i , $\forall o_i \in X$
- SOLUZIONE:
 - una partizione di X in 2 sottoinsiemi X_1 e X_2 , tale che

$$X_1 \cap X_2 = \emptyset$$
 e $X_1 \cup X_2 = X$

• MISURA:

$$\max\{\sum_{o_i \in X_1} a_i, \sum_{o_i \in X_2} a_i\}$$

ottenere un PTAS per il problema min partition

- chiaramente, gli oggetti corrispondono ai jobs, i pesi ai tempi di esecuzione e i 2 sottoinsiemi ai 2 processori
- \bullet é possibile estendere il precedente risultato per ottenere un PTAS per il problema min multiprocessor scheduling, ovvero per ogni (non costante) numero h di processori
- richiamiamo che nella precedente dimostrazione di approssimazione di PTAS, denotando con t il tempo di completamento dello schedule ottimo ottenuto per i primi q jobs, abbiamo 2 casi:
 - 1. $m \le t$, ovvero la fase greedy non accresce il tempo di completamento, allora l'algoritmo restituisce la soluzione ottima poiché $t \le m^*$
 - 2. m>t, in tal caso vengono applicati gli step abituali per la parte greedy
- idea: la dimostrazione dell'approssimazione continua ad essere valida se, invece di determinare l'ottimo per i primi q jobs, determiniamo una soluzione approssimata per questi ultimi, ovvero tale che $t \leq (1+\epsilon)m^*$

lemma: algoritmo di programmazione dinamica polinomiale (schedule approssimato per i primi q jobs)

esiste un algoritmo di programmazione dinamica che determina in tempo polinomale uno scheduling per i primi q jobs avente tempo di completamento $t \leq (1+\epsilon)m^*$

teorema: esiste un PTAS per il problema min multiprocessor scheduling

esiste un PTAS per il problema min multiprocessor scheduling

approximation schemes: fully polynomial time approximation scheme (FPTAS)

definizione: FPTAS

- un algoritmo A per un problema di ottimizzazione $\pi \in NPO$, é un fully polynomial time approximation scheme per π se, data un'istanza in input $x \in I_{\pi}$ e un numero razionale $\epsilon > 0$, esso ritorna una soluzione $(1+\epsilon)$ -approssimata (per min) o $(1-\epsilon)$ -approssimata (per max) in tempo polinomiale, entrambe rispetto alla dimensione dell'istanza x e in $\frac{1}{\epsilon}$
- **nota:** FPTAS mantiene una buona complessitá temporale quando ϵ decresce
- esempio:
 - $O(n \cdot \log n + 2^{\frac{1}{\epsilon}}) \to \text{non \'e un FPTAS}$
 - $O(\frac{n \cdot \log n}{\epsilon^2}) \to \acute{\mathrm{e}}$ un FPTAS
- nella pratica dobbiamo stare attenti a far sí che $\frac{1}{\epsilon}$ (o una funzione piú logaritmica) non compaia in un esponente

FPTAS-Knapsack

- sappiamo che Progr-Dyn-Knapsack-Dual ha una complessitá temporale pseudo-polinomiale $O(n^2 \cdot p_{max})$
- dove $p_{max} = \max p_j$ é il massimo profitto di un oggetto
- se possiamo approssimare i profitti originali con profitti piú piccoli allora la complessitá viene ridotta, ottenendo comunque una buona approssimazione
- diamo un'occhiata piú ravvicinata a quest'idea:
- · idea:
 - 1. approssimiamo i profitti di multipli di k per un parametro intero adatto k>0

$$p_i' = \lfloor \frac{p_i}{k} \rfloor \cdot k$$

- 2. se k é sufficiente piccolo, i nuovi profitti p_i' approssimano sufficientemente i profitti originali p_i , quindi una soluzione ottima per p_i' approssima bene la soluzione ottima per i profitti originali p_i
- 3. scalando tutti i profitti p'_i , dividendoli per k, ovvero

$$p_i' = \frac{\lfloor \frac{p_i}{k} \rfloor \cdot k}{k} = \lfloor \frac{p_i}{k} \rfloor$$

otteniamo un'istanza equivalente con profitti piú piccoli

4. **complessitá:** l'algoritmo di programmazione dinamica duale applicato a questa istanza produce quindi una complessitá minore

$$O(n^2 \cdot p'_{max}) = O(n^2 \cdot \frac{p_{max}}{k})$$

- 5. approssimazione:
 - errore al massimo k per ogni oggetto scelto, ovvero al massimo $n\cdot k$ in totale
 - dunque, $m \ge m^* n \cdot k$
- 6. **idea:** scegli k sufficientemente grande da ottenere una complessitá polinomale e sufficientemente piccolo da fornire una buona approssimazione

$$k = \lfloor \frac{\epsilon \cdot p_{max}}{n} \rfloor$$

algoritmo: FPTAS-Knapsack

Algorithm 15 FPTAS-Knapsack

 $k = \lfloor \frac{\epsilon \cdot p_{max}}{n} \rfloor$

trova la soluzione ottima per l'istanza con profitti scalati $p_i'=\lfloor\frac{p_i}{k}\rfloor$ utilizzando l'algoritmo di programmazione dinamica pseudo-polinomale Progr-Dyn-Knapsack-Dual

sia S l'insieme di oggetti ritornati

return S

· complessitá:

$$O(n^2 \cdot p'_{max}) = O(n^2 \cdot \frac{p_{max}}{k}) = O(\frac{n^2 \cdot p_{max}}{\frac{\epsilon \cdot p_{max}}{n}})) = O(\frac{n^3}{\epsilon})$$

· approssimazione o errore:

$$\frac{m}{m^*} \geq \frac{m^* - n \cdot k}{m^*} = 1 - \frac{n \cdot k}{m^*} \geq 1 - \frac{n \cdot k}{p_{max}} \geq 1 - \frac{\frac{n \cdot \epsilon \cdot p_{max}}{n}}{p_{max}} = 1 - \epsilon$$

dunque:

$$\frac{m}{m^*} \ge 1 - \epsilon$$

• **nota:** non abbiamo scalato i pesi, perché non é garantito che tornando ai pesi originali la soluzione resti ammissibile (potrebbe superare il peso totale b)

lemma: $m \ge m^* - n \cdot k$ (FPTAS-Knapsack)

$$m \geq m^* - n \cdot k$$

dimostrazione:

• sia $S=\{o_{j1},o_{j2},\ldots,o_{jh}\}$ e sia $S^*=\{o_{i1},o_{i2},\ldots,o_{il}\}$ la soluzione ottima, allora:

$$m = p_{i1} + p_{i2} + \ldots + p_{ih}$$
 e $m^* = p_{i1} + p_{i2} + \ldots + p_{il}$

• assumiamo per contraddizione che $m < m^* - n \cdot k$

$$\lfloor \frac{p_{i1}}{k} \rfloor + \ldots + \lfloor \frac{p_{il}}{k} \rfloor \ge (\frac{p_{i1}}{k} - 1) + \ldots + (\frac{p_{il}}{k} - 1) =$$

$$= \frac{p_{i1} + \ldots + p_{il}}{k} - l \ge \frac{p_{i1} + \ldots + p_{il}}{k} - n = \frac{m^*}{k} - n > \ldots$$

• (dall'ipotesi $m < m^* - n \cdot k$)

$$\ldots > \frac{m+n\cdot k}{k} - n = \frac{m}{k} = \frac{p_{j1} + \ldots + p_{jh}}{k} \ge \lfloor \frac{p_{j1}}{k} \rfloor + \ldots + \lfloor \frac{p_{jh}}{k} \rfloor$$

• contraddizione: poiché S^* sarebbe una soluzione strettamente migliore di S per l'istanza con profitti scalati, quindi contraddicendo l'ottimalitá di Progr-Dyn-Knapsack-Dual per l'istanza con profitti scalati

teorema: FPTAS-Knapsack é un FPTAS per il problema max 0-1 knapsack

· complessitá:

$$O(\frac{n^2 \cdot p_{max}}{k}) = O(\frac{n^2 \cdot p_{max}}{\frac{\epsilon \cdot p_{max}}{n}}) = O(\frac{n^3}{\epsilon})$$

• approssimazione: (dal lemma precedente)

$$\frac{m}{m^*} \geq \frac{m^* - n \cdot k}{m^*} = 1 - \frac{n \cdot k}{m^*} \geq 1 - \frac{n \cdot k}{p_{max}} \geq 1 - \frac{n \cdot \frac{\epsilon \cdot p_{max}}{n}}{p_{max}} = 1 - \epsilon$$

é possibile ridurre la complessitá temporale?

• complessitá temporale della programmazione dinamica:

$$O(n \cdot \sum_{j} p_{j}) = O(n \cdot n \cdot p_{max}) = O(n^{2} \cdot p_{max})$$

• complessitá con i profitti scalati:

$$O(n \cdot \sum_{j} \frac{p_{j}}{k}) = O(n \cdot \frac{n \cdot p_{max}}{k}) = O(\frac{n^{2} \cdot p_{max}}{k})$$

• approssimazione:

$$1 - \frac{n \cdot k}{m^*} \ge 1 - \frac{n \cdot k}{p_{max}}$$

- nota: p_{max} e $n \cdot p_{max}$ rispettivamente sono il lower bound e l'upper bound per m^* , ovvero $p_{max} \leq m^* \leq n \cdot p_{max}$
- **nota:** p_{max} puó essere piú piccolo di m^* e $n \cdot p_{max}$ puó essere piú grande
- domanda: é possibile fornire dei bound migliori per m^* ?
- osservazioni:
 - utilizzando un lower bound migliore per m^* e mantenendo lo stesso k otteniamo una migliore approssimazione e analogamente incrementando k (riducendo la complessitá) manteniamo la stessa approssimazione
 - utilizzando un $upper\ bound$ migliore per m^* e mantenendo lo stesso k otteniamo una migliore approssimazione e analogamente decrementando k (migliorando l'approssimazione) manteniamo la stessa complessitá

come migliorare i bound per m^*

- richiamiamo l'algoritmo Modified-Greedy $\frac{1}{2}$ -approssimante e sia M_{mod} la misura della soluzione da esso ritornata
- per definizione di approssimazione e poiché $M_{mod} \leq m^*$

$$M_{mod} \le m^* \le 2 \cdot M_{mod}$$

• quindi, considerando

$$P' = \lceil \frac{2 \cdot M_{mod}}{k} \rceil$$

come massimo profitto in Progr-Dyn-Knapsack-Dual (ovvero P^\prime é il numero di colonne nella tabella di Progr-Dyn-Knapsack-Dual), otteniamo una migliore complessitá...

impostando il parametro

$$k = \lfloor \frac{\epsilon \cdot M_{mod}}{n} \rfloor$$

ed eseguendo Progr-Dyn-Knapsack-Dual Modificato sull'istanza con profitti scalati

$$p_i' = \lfloor \frac{p_i}{k} \rfloor$$

otteniamo la seguente approssimazione e complessitá temporale

· complessitá:

$$O(\frac{n \cdot M_{mod}}{k}) = O(\frac{n \cdot M_{mod}}{\frac{\epsilon \cdot M_{mod}}{n}}) = O(\frac{n^2}{\epsilon})$$

approssimazione:

$$\frac{m}{m^*} \ge 1 - \frac{n \cdot k}{m^*} \ge 1 - \frac{n \cdot k}{M_{mod}} \ge \frac{n \cdot \frac{\epsilon \cdot M_{mod}}{n}}{M_{mod}} = 1 - \epsilon$$

algoritmo: New-FPTAS-Knapsack

Algorithm 16 New-FPTAS-Knapsack

calcola M_{mod} eseguendo l'algoritmo Modified-Greedy e sia $k = \lfloor \frac{\epsilon \cdot M_{mod}}{n} \rfloor$ trova la soluzione ottima per l'istanza con profitti scalati $p_i' = \lfloor \frac{p_i}{k} \rfloor$ utilizzando l'algoritmo Progr-Dyn-Knapsack-Dual Modificato sia S l'insieme di oggetti ritornati **return** S

domanda: possiamo evitare il calcolo di P' all'interno di Progr-Dyn-Knapsack-Dual Modificato?

alternative approaches

performance garantite

- finora abbiamo considerato approcci con performance garantite
- · pro:
 - approssimazione e tempo di esecuzione garantiti per ogni istanza in input
 - prende in considerazione il caso peggiore
- contro:
 - alcuni problemi non ammettono algoritmi con performance garantite
 - per alcuni problemi non sono noti algoritmi con performance garantite
 - a volte, cattivi comportamenti nella pratica

restrizione dell'insieme delle istanze

- performance garantite nel sottoinsieme delle istanze in input che sono significative o di interesse
- · pro:
 - permette di applicare nuovamente l'approccio con performance garantite
- contro:
 - performance garantite solo per il sottoinsieme scelto di istanze o per un caso particolare
- esempio: metric TSP (con disequazioni triangolari)

media o analisi probabilistica

- in generale, assumendo una distribuzione di probabilitá dell'istanza, essa eguaglia la media o la performance attesa, alcune volte con alta probabilitá
- pro:
 - puó accorgersi di buoni comportamenti pratici dell'algoritmo
 - é un metodo analitico, ovvero basato su dimostrazioni matematiche
- contro:
 - non ha performance garantite
 - l'analisi é spesso complessa
 - spesso la distribuzione delle istanze in input é sconosciuta

euristiche

- algoritmi con un buon comportamento pratico ma solitamente con performance non dimostrabili
- · pro:
 - buon comportamento pratico
- contro:
 - performance spesso non dimostrabili

algoritmi randomizzati

- effetuano scelte randomiche durante la computazione
- le soluzioni ritornate possono essere differenti per esecuzioni differenti sullo stesso input
- esse sono infatti variabili random (per ogni istanza vi sono diverse soluzioni, ciascuna restituita con una certa probabilitá determinata in accordo con le scelte randomiche dell'algoritmo)
- é mostrato che, fissata una qualsiasi istanza, il valore atteso delle performance é buono o la performance é buona con alta probabilitá (sempre in accordo con le scelte randomiche)
- · pro:
 - sono generalmente semplici
 - sono veloci (sia analiticamente che in pratica)
- contro:
 - incertezza del risultato per ogni istanza fissata
 - impossibilitá di fare scelte realmente randomiche (sebbene esse possano essere simulate)

algoritmi randomizzati

- $m \rightarrow$ é una variabile randomica
- $E(m) \to$ é il valore atteso di m calcolato in accordo con le scelte randomiche dell'algoritmo

definizione: algoritmi randomizzati e r-approssimazione

• un algoritmo randomizzato A é r-approssimante se:

$$rac{E(m)}{m^*} \leq r$$
 (per min)

$$rac{E(m)}{m^*} \geq r$$
 (per \max)

problema: max weighted cut

- INPUT:
 - grafo G = (V, E)
 - peso non-negativo $w_{ij} > 0$, $\forall \{v_i, v_j\} \in E$
- SOLUZIONE: partizione di V in 2 sottoinsiemi V_1 e V_2 tale che

$$V_1 \cap V_2 = \emptyset$$
 e $V_1 \cup V_2 = V$

• MISURA: peso del taglio, ovvero

$$\sum_{\{v_i,v_j\}\in E\mid (v_i\in V_1\wedge v_j\in V_2)\vee (v_i\in V_2\wedge v_j\in V_1)}w_{ij}$$

algoritmo: Random-Cut

Algorithm 17 Random-Cut

```
V_1 = \emptyset V_2 = \emptyset \textbf{for } i = 1 \text{ to } n \textbf{ do} \text{inserisci } v_i \text{ in } V_1 \text{ con probabilitá } \frac{1}{2} \text{ indipendentemente dagli altri nodi (oppure in } V_2) \textbf{end for} \textbf{return} \quad V_1 \text{ e } V \setminus V_1 \text{ (} \equiv V_2 \text{)}
```

• chiaramente, l'algoritmo é polinomale

teorema: Random-Cut é $\frac{1}{2}$ -approssimante

Random-Cut é $\frac{1}{2}$ -approssimante

dimostrazione:

- sia x_{ij} la variabile randomica "l'arco $\{v_i,v_j\}$ " é nel taglio"
- allora

$$m = \sum_{\{v_i, v_i\} \in E} w_{ij} \cdot x_{ij}$$

• quindi

$$E(m) = E(\sum_{\{v_i, v_j\} \in E} w_{ij} \cdot x_{ij}) = \sum_{\{v_i, v_j\} \in E} w_{ij} \cdot E(x_{ij}) =$$

$$= \sum_{\{v_i, v_j\} \in E} w_{ij} \cdot P(x_{ij} = 1) =$$

$$= \sum_{\{v_i, v_j\} \in E} w_{ij} \cdot P((v_i \in V_1 \land v_j \in V_2) \lor (v_i \in V_2 \land v_j \in V_1)) =$$

$$= \sum_{\{v_i, v_j\} \in E} w_{ij} \cdot P(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}) = \frac{1}{2} \cdot \sum_{\{v_i, v_j\} \in E} w_{ij} \ge \frac{m^*}{2}$$

• dunque

$$\frac{E(m)}{m^*} \ge \frac{1}{2}$$

problema: min weighted set cover (giá definito precedentemente)

- INPUT:
 - un universo $U = \{o_1, o_2, \dots, o_n\}$ di n oggetti
 - una famiglia $\hat{S} = \{S_1, S_2, \dots, S_h\}$ di h sottoinsiemi di U
 - un costo intero c_i associato ad ogni $S_i \in \hat{S}$
- SOLUZIONE: un cover di U, ovvero una sottofamiglia $\hat{C} \subseteq \hat{S}$ tale che:

$$\cup_{S_i \in \hat{C}} S_j = U$$

• MISURA: costo totale del cover, ovvero

$$\sum_{S_j \in \hat{C}} c_j$$

- f= frequenza massima di un oggetto nel sottoinsieme \hat{S} , ovvero ciasun oggetto occorre in al massimo f sottoinsiemi
- dato un insieme di n elementi $\{1,2,\dots,n\}$ (chiamato universo) e una collezione S di m insiemi, la cui unione eguaglia l'universo, il problema del set cover consiste nell'identificare il piú piccolo sottoinsieme di S la cui unione eguaglia l'universo

algoritmo greedy per il problema min weighted set cover

- nota: nella scelta dei sottoinsiemi da inserire nel cover:
 - non possiamo considerare solo i costi, perché in proporzione non potremmo coprire abbastanza elementi di ${\cal U}$
 - non possiamo considerare solo il numero di oggetti coperti, poiché potremmo incorrere in un costo eccessivo
- scelta greedy: ad ogni step scegli il sottoinsieme avente costo minimo per il nuovo oggetto coperto

scelta greedy

• ad un dato step j in cui nell'ordine l'algoritmo ha selezionato j-1 sottoinsiemi S_1,\dots,S_{j-1} , l'efficacia di un sottoinsieme S_k non ancora scelto é definito come:

 $eff(S_k) = \frac{c_k}{|S_k \cap \overline{C_{i-1}}|}$

· dove:

- $c_k = \mathsf{costo} \; \mathsf{di} \; S_k$
- $C_{i-1} = (S_1 \cup \ldots \cup S_{i-1})$
- $\overline{C_{i-1}} = U \setminus C_{i-1}$ (insieme degli elementi non ancora selezionati in U)
- $|S_k \cap \overline{C_{j-1}}| =$ insieme degli elementi in S_k non ancora selezionati in U)
- nello step j scegli un sottoinsieme S_j di efficacia minima, ovvero tale che $eff(S_i) = \min\{eff(S_k) \mid S_k \text{ non \'e stato ancora scelto}\}$

algoritmo: Greedy-Min-Weighted-Set-Cover

Algorithm 18 Greedy-Min-Weighted-Set-Cover

```
 \begin{array}{l} \textit{//} \textit{C} = \text{insieme degli oggetti coperti} \\ \textit{C} = \emptyset \\ \textit{//} \hat{\textit{C}} = \text{insieme dei sottoinsiemi scelti nel cover} \\ \hat{\textit{C}} = \emptyset \\ \textit{j} = 1 \\ \textbf{while } \textit{C} \neq \textit{U} \textbf{ do} \\ \text{sia } S_j \text{ il sottoinsieme di efficacia minima} \\ \hat{\textit{C}} = \hat{\textit{C}} \cup S_j \\ \text{per ogni oggetto } o_i \in S_j \cap \overline{\textit{C}} \text{, sia } price(o_i) = eff(S_j) \\ \textit{C} = \textit{C} \cup S_j \\ \textit{j} = \textit{j} + 1 \\ \textbf{end while} \\ \textbf{return } \hat{\textit{C}} \end{array}
```

lemma: $m = \sum_{S_j \in \hat{C}} c_j = \sum_{i=1}^n price(o_i)$

$$m = \sum_{S_i \in \hat{C}} c_j = \sum_{i=1}^n price(o_i)$$

dimostrazione:

- banale, inquanto la somma dei price degli oggetti coperti durante lo step j é proprio c_j
- ullet in altre parole, il costo totale c_k viene suddiviso tra gli oggetti coperti

lemma: $price'(o_i) \ge eff(S_j)$

- $\forall j$, data una qualunque scelta di sottoinsiemi S'_j,\dots,S'_t , che forma un cover con i sottoinsiemi S_1,\dots,S_{j-1} scelti dall'algoritmo greedy all'inizio dello step j
- $\forall o_i$ (oggetto) non ancora coperto all'inizio dello step j

$$price'(o_i) \ge eff(S_i)$$

dove:

- S_i é il sottoinsieme scelto dall'algoritmo greedy allo step j
- $eff(S_i)$ é l'efficacia del sottoinsieme S_i
- $price'(o_i)$ é l'efficacia del sottoinsieme S_l' che copre o_i assumendo che, partendo dallo step j, la scelta greedy é effettuata solo tra i sottoinsiemi S_1', \ldots, S_t'

dimostrazione:

- é sufficiente osservare che $eff(S_j)$ é il $min\ covering\ price$ per l'oggetto allo step i
- e che l'efficacia di un sottoinsieme non scelto puó solo aumentare durante gli step successivi
- poiché il suo costo é fisso, ma alcuni altri oggetti possono essere coperti durante i successivi step (scelta di ulteriori sottoinsiemi)
- quindi il $price'(o_i)$, ovvero l'efficacia del sottoinsieme S'_l ($eff(S'_l)$) con $l \geq j$ tra S'_j, \ldots, S'_t che lo copre é almeno uguale a (\geq) $eff(S_j)$

lemma: $price(o_i) \leq \frac{m^*}{n-i+1}$

- siano o_1,\ldots,o_n gli oggetti elencati nell'ordine di covering dell'algoritmo greedy (ovvero tale che gli oggetti coperti durante lo step j vegono elencati dopo quelli coperti negli step precedenti e prima di quelli coperti negli step successivi)
- allora

$$price(o_i) \leq \frac{m^*}{n-i+1}$$
 $\forall i$, $1 \leq i \leq n$

dimostrazione:

• all'inizio dello step j, poiché gli insiemi non ancora scelti di una soluzione ottima possono coprire tutti gli oggetti non coperti con un costo generale al massimo pari a m^* :

ullet esiste un sottoinsieme S_k di efficacia al massimo pari a

$$\frac{m^*}{|\overline{C_{j-1}}|}$$

dove $\overline{C_{j-1}}$ é i sottoinsieme di oggetti non ancora coperti all'inizio dello step j

- infatti, se non é questo il caso, dato che il $price(o_i) = eff(S_j)$ del sottoinsieme S_j scelto dall'algoritmo greedy
- dal precedente lemma, per ogni possibile scelta di sottoinsiemi restanti per completare il cover, ovvero per ogni possibile price degli oggetti rimanenti:

$$\sum_{o_i \in \overline{C_{j-1}}} price'(o_i) \geq \sum_{o_i \in \overline{C_{j-1}}} eff(S_j) > \sum_{o_i \in \overline{C_{j-1}}} \frac{m^*}{|\overline{C_{j-1}}|} = |\overline{C_{j-1}}| \cdot \frac{m^*}{|\overline{C_{j-1}}|} = m^*$$

- contraddizione: all'ipotesi che esiste una scelta di sottoinsiemi che copre i restanti oggetti con un costo al massimo parti a m^{\ast}
- quindi:

$$price(o_i) \le \frac{m^*}{|\overline{C_{j-1}}|}$$

• ma $|\overline{C_{j-1}}| \geq n-i+1$ poiché $o_i,\ldots,o_n \in \overline{C_{j-1}}$ e dunque:

$$price(o_i) \le \frac{m^*}{n-i+1}$$

teorema: Greedy-Min-Weighted-Set-Cover é H_n -approssimante

l'algoritmo Greedy-Min-Weighted-Set-Cover é H_n -approssimante, con $H_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+1$

dimostrazione:

$$m = \sum_{i=1}^{n} price(o_i) \le \sum_{i=1}^{n} \frac{m^*}{n-i+1} = m^* (\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1) = m^* \cdot H_n$$

• da cui:

$$\frac{m}{m^*} \le H_n$$

• nota: $\forall n > 1 \rightarrow \ln(n+1) \leq H_n \leq \ln(n) + 1$

• quindi r ha una dipendenza logaritmica dalla dimensione dell'input

esempio: $H_n \cdot m^*$!

- ullet il rapporto di approssimazione dell'algoritmo greedy é almeno H_n
- considera infatti la seguente istanza:
 - S_1 : 1 oggetto, costo $c_1 = \frac{1}{\pi}$
 - S_2 : 1 oggetto, costo $c_2 = \frac{1}{n-1}$
 - S_3 : 1 oggetto, costo $c_3 = \frac{1}{n-2}$

- . .

- S_n : 1 oggetto, costo $c_n=1$
- S_{n+1} : n oggetti, costo $c_{n+1}=1+\epsilon$ (con $\epsilon>0$, arbitrariamente piccolo)
- esecuzione:
 - step 1:

 - * $eff(S_1) < eff(S_{n+1}) = \frac{1}{n} < \frac{1+\epsilon}{n}$ * scelgo l'insieme di efficacia minima S_1
 - step 2:

 - * $eff(S_2) < eff(S_{n+1}) = \frac{1}{n-1} < \frac{1+\epsilon}{n-1}$ * scelgo l'insieme di efficacia minima S_2

 - l'algoritmo ${\bf non}$ sceglierá mai il sottoinsieme S_{n+1}
- quindi:

$$m = \sum_{j=1}^{n} \frac{1}{j} = H_n$$

 $m^* = 1 + \epsilon$

(con $\epsilon > 0$, arbitrariamente piccolo)

• dunque:

$$\frac{m}{m^*} = \frac{H_n}{1+\epsilon}$$

• allora, per $\epsilon \to 0$:

$$\frac{m}{m^*} \to H_n$$

• dunque la misura della soluzione restituita dall'algoritmo greedy, per alcune istanze, é H_n volte quella ottima!