基于需求的测试生成

黑盒测试

- 引言
- 等价类划分法
- 边界值分析法

引言

- 软件需求是设计测试的基本出发点
- 通过需求设计完整有效的测试是测试团队的一项重要任务
- 需求规范可以是非形式化的, 也可以是形式化的
 - 存在于人脑中或使用自然语言描述
 - 通过UML用例图、顺序图等建模元素可获得严格的需求规范
 - 使用形式化需求规约语言,如Z, RSML等,严格的需求规范可转换为形式化需求
 - 模型检测
- 需求规范的形式化程度与测试的自动化程度成正比
- 本章介绍两种黑盒测试的方法
 - 等价类划分
 - 边界值分析
- 测试用例的效率 = 测试发现的缺陷数量 / 所有缺陷
 - 需要: 清晰完整的需求规范 + 细致严谨的测试用例选择策略

测试用例选择问题

- 问题描述:设D是软件P的输入域,选取测试用例的子集T,以T中各元素为输入执行P,执行过程中将发现P中的所有缺陷
- 关键:如何构造测试用例集合 $T \subseteq D$,使得T能尽可能多地发现P中的缺陷
 - 输入域的规模非常庞大, 使得测试人员无法穷举所有可能的输入
 - 同时也很复杂,增加了选择测试用例的难度
- 例1:程序P的功能是对任意输入的整数序列进行升序排序。假设单个整数取值范围是[-32768,32767]. 所有处于该范围内的整数所构成的序列的集合构成程序P的输入域
 - 如果不限制序列长度,输入域是无限大的
 - 如果对序列长度限制为N>0,则输入域的大小 $S=\sum_{i=0}^N 65536^i$ 也是大到无法穷举测试

测试用例选择问题

- 例2:工资管理系统程序P以雇员记录作为输入,计算雇员的周薪。雇员记录包含以下字段,每个字段都有自己的类型和约束
 - int id; // id是长度为3的数字串, 取值范围为001~999
 - string name; // name是长度为20字符串,字符由26个字母或空格组成
 - float rate; // rate的取值范围是5~10美元/小时,以0.25美元的位数递增
 - int hours; // 工作小时, 取值范围为0~60
- 输入域为所有可能雇员记录, 其大小为999×27²⁰×21×61
- 测试用例选择方法: 从输入域中选择一个尽可能小的子集, 达到尽可能全面测试的目的

等价类划分概述

- 将输入域划分为数量尽可能少的若干子域。子域两两互不相交。右图中(a)将输入域划分为4个子域,每个子域构成一个等价类。图(b)不构成划分,因为子域1和2有交集
 - 回想离散数学中的等价关系和等价类划分的概念
- 划分原则:用同一等价类中的任意输入对软件进行测试, 软件都输出相同的结果。在这种原则下,只需从每个等 价类中选取一个输入作为测试用例即可。最终测试用例 集的大小跟划分后等价类或子域的个数相同
- 对同一输入域,可采用不同的划分方法,得到的划分可能不同,从而最终的测试用例集也不同
- 即使划分后的等价类相同,也可能会选择不同的测试用例,从而最终的测试用例集也不同

缺陷定位

- 输入域至少可分为两个子集: 合法的子集和非法的子集, 分别记为*E*和*U E*和*U*又可以继续划分为若干子集
- 等价类划分法就是要从E和U及其子集中选择适当的输入作为测试用例,以便发现 软件当中存在的错误
- 例:在软件S中,表示人员年龄的变量为整型,其合法值应在[1,120]范围内
 - $E = \{i | 1 \le i \le 120\}, \ U = \{i | i < 1 \ or \ i > 120\}$
 - 假设需求 R_1 处理所有取值在[1,60]之间的输入,而需求 R_2 处理取值在[61,120]之间的输入。可以将E划分为两个子集
 - U也可以划分为两个子集,一个表示小于1的取值,一个表示大于120的取值
 - 这样就得到四个子域,每个子域对应一个需求
 - 可从这四个子域中各取一个输入构成测试用例集,每个输入可发现对应需求中的缺陷

关系和等价类划分

- 集合论中,关系是一个n元组的集合
- 每个软件,程序,方法或函数都定义了一个输入域和输出域之间二元关系
- 例:函数addList计算并返回一个整数序列之和
 - 二元关系addList: L → Z: 如((1,2),3), ((1,3,5,7,9),25), ((), 0)等
 - 如果函数addList存在错误: $addList: L \rightarrow Z \cup \{error\}$
- 划分输入域时采用的关系为R: I → I.
 - R是I上的关系,它定义了一个等价类,I为输入域

定义: 设 R 为定义在集合 A 上的等价关系,对于 $a\in A$,集合 $[a]_R=\{x|x\in A,aRx\}$ 称为元素 a 形成的 R 等价类,简称等价类。

定义:任一序偶的集合确定了一个二元关系 R ,该集合中的任一序偶 $\langle x,y \rangle$ 可记作 $\langle x,y \rangle \in R$ 或 xRy ;不在该集合中的序偶 $\langle x,y \rangle$ 可记作 $\langle x,y \rangle \notin R$ 或 xRy 。

定义:设R为定义在集合A上的二元关系,若R是自反的、对称的、传递的,则称R为等价关系。

等价关系的例子很多,如三角形的全等、相似,方阵的相似,整数集上的模 k 同余,都是等价关系。

定义: 设 R 为定义在集合 A 上的等价关系,对于 $a\in A$,集合 $[a]_R=\{x|x\in A,aRx\}$ 称为元素 a 形成的 R 等价类,简称等价类。

例如,定义在整数集 $\mathbb Z$ 上的关系 R 代表模 3 同余,那么由 $\mathbb Z$ 的元素所产生的等价类是

$$egin{align} \ldots &= [-3]_R = [0]_R = [3]_R = \ldots = \{x | x = 3k, k \in \mathbb{Z}\}, \ \ldots &= [-2]_R = [1]_R = [4]_R = \ldots = \{x | x = 3k + 1, k \in \mathbb{Z}\}, \ \ldots &= [-1]_R = [2]_R = [5]_R = \ldots = \{x | x = 3k + 2, k \in \mathbb{Z}\}_\circ \end{aligned}$$

关系和等价类划分(二)

- 例:接收离散的输入,且对任意有效输入的处理方式都相同,此时给出有效和无效 两个等价类即可
 - 需求:函数getPrice以食品杂货店的食品名称作为输入,查询商品价格数据库并返回相应食品的价格。如果数据库中没有该食品,返回错误信息"Not Found"
 - 输入域: 所有可能的食品名称字符串, 如milk, tomato,
 - 在輸入域上定义等价关系: pFound: $I \rightarrow I$ 。数据库中存在的食品均属于同一等价类pFound,而不存在的食品均属于另一等价类pNFound. $pFound \cup pNFound = I$, $pFound \cap pNFound = \emptyset$

关系和等价类划分(三)

- 例:接收离散输入,程序运行方式依赖于具体的输入值,这些输入值可分为若干类
 - 需求:打印机自动测试软件pTest以打印机品牌和型号作为输入(通过键盘输入),从测试脚本列表中选取相应的测试脚本,然后执行脚本,验证打印机功能是否正常。该软件根据输入的打印机类型来选择相应脚本。假设有3种类型的打印机:彩色喷墨打印机(ci),彩色激光打印机(cl),彩色多功能打印机(cm)。如果输入的是HP Deskjet 6840, pTest将选择彩色喷墨打印机的脚本。设计测试用例验证脚本选择功能是否正确
 - pTest的输入域/由表示打印机品牌和型号的字符串构成,既包含有效的字符串,也包含无效的字符串。
 - 定义四个关系: $ci:I \rightarrow I, cl:I \rightarrow I, cm:I \rightarrow I, invP:I \rightarrow I.$
 - 关系cl将所有彩色激光打印机划分为一个等价类,将其他打印机划分为另一个等价类
 - invP表示无效输入的等价关系
 - 每个关系对应两个等价类,一共8个等价类,但是相互之间有重叠,不能构成划分
 - 定义pCat, 根据ci, cl, cm, invP 4个类别将pTest的输入域划分为4个等价类

AND THE REST OF THE PARTY OF TH		COLD THE THE LETTER NO. 10. IN THE COMPANY OF THE STREET
等价类	W	f
E 1	非空串	存在, 非空文件
₹ E2	非空串	不存在
E3	非空串	存在, 空文件
E4	空串	存在,非空文件
E5	空串	不存在
E 6	空串	存在,空文件

```
1 begin
2  string w, f;
3  input (w, f);
4  if (¬ exists(f)) {raise exception; return(0)};
5  if (length(w)==0)return(0);
6  if (empty(f)) return(0);
7  return(getCount(w, f));
8 end
```

关系和等价类划分(五)

前面的例子都是从程序的输入输出等价关系。有些情况下,可以从程序的输出导出等价关系。或者将两者进行结合

变量等价类划分的基本原则

表 2-1	取值范围	(range)	和字符串	(string)	变量的等价类划分原则
-------	------	---------	------	----------	------------

类 别	等价类	示 例		
	寺加矢	约 束	等价类代表①	
		speed ∈ [60,90]	{{50}↓,{75}↑,{92}↓}	
		area:float;	{{-1.0}↓,{15.52}↑}	
形仿英国	一个取值范围内的等价	area≥0		
取值范围 (range)	类;两个取值范围外的等 价类	age:int;	{{-1}↓,{56}↑,{132}↓}	
	W.X.	0≤age≤120		
		letter:char;	{{ʊ}↑,⟨3}↓}	
学 你由	至少分为一个包含所有 合法字符串的类和一个包 念版有非社会符单的类	fname:srting;	$\{\{\epsilon\} \downarrow, \{Sue\} \uparrow, \{Sue2\} \downarrow, \{Too Long a name\} \downarrow\}$	
字符串 (string)	含所有非法字符串的类。 合法性由字符串的长度及 其他语义特性所决定	vname:string;	{{ɛ} ↓,{shape}↑,{address1}↑,{Long variable}↓}	

① 每个等价类后的符号: ↓非法输入等价类的代表, ↑合法输入等价类的代表。

幻灯片 14

变量等价类划分的基本原则

表 2-2	枚举	(enumeration)	和数组	(array)	变量的等价类划分原则
			1. 201		

类 别	等价类	示 例 ^①		
× 25	400	约 束	等价类代表②	
枚举 (enumeration)	每个取值对应一 个等价类	auto_color∈ red, blue, green up; boolean	red ↑, blue ↑, green ↑ true ↑, false ↑	
数组 (array)	一个包含所有合 法数组的等价类, 一个空数组等价类, 以及一个包含所有 大于期望长度数组 的等价类	Jave array: int [] aName = new int [3]	[] ↓, [-10,20] ↑, [-9,0,12,15] ↓	

- ① 参见对不同项的解释。
- ② 每个等价类后的符号: ↓非法输入等价类的代表, ↑合法输入等价类的代表。

变量等价类划分的基本原则

- 复合数据类型
 - 先对内部简单类型进行等价类划分
 - 对各变量的等价类进行组合

```
在序 P2.2

1 struct R
2 {
3 string fName; // 名
4 string lName; // 姓
5 string cTitle [200]; // 课程名称
6 char grades [200]; // 课程成绩
7 }
```

一元划分和多元划分

- 一元划分:每次只考虑一个变量,每个输入变量形成对输入域的一个划分。有几个变量,就有几种划分。每种划分包含两个或多个等价类
- 多元划分:将所有输入变量的笛卡尔积作为输入域,并定义该域上的等价关系。最后只产生一种划分
- 测试用例的选择一般使用一元划分,优点是简便好管理
- 多元划分产生的等价类数量大,人工管理困难,并且有可能存在没用的等价类。但是其优点是:比一元划分测试得更充分

一元划分和多元划分

• 例: 某程序的输入为整型数据x和y, 其取值范围分别为[3,7]和[5,9]。

- 一元划分,可得6个等价类

E1: x<3

E2: 3≤x≤7

E3: x>7

E4: y<5

E5: 5≤y≤9

E6: y>9

E3: x<3, y>9

E2: x<3, 5≤y≤9

E4: 3≤x≤7, y<5

E5: 3≤x≤7, 5≤y≤9

E6: 3≤x≤7, y>9

E7: >7, y<5

E8: x>7, 5≤y≤9

E9: x>7, y>9

- 不论软件规模大小,都可以使用等价类划分法设计测试用例
- 但如果变量比较多,人工方式可能会存在困难,最好使用辅助工具
- 步骤1: 确定输入域
 - 分析并确定需求中的所有输入和输出变量,变量类型,使用条件,
 - 环境变量 (如OS类型) 可作为输入变量
 - 参考需求中对变量的约束,确定各变量的取值集合
- 步骤2: 等价类划分
 - 将每个变量的取值划分为互不相交的子集,每个子集对应一个等价类,从而构成对输入域的划分
 - 划分时,将具有相同处理方式的变量取值放到一个等价类中
- 步骤3:组合等价类(可选)
 - 假设变量X的等价类子集为 $\{X_1,X_2\}$, Y的等价类子集为 $\{Y_1,Y_2,Y_3\}$, 组合后的等价类 $E=\{X_1\times Y_1,X_1\times Y_2,X_1\times Y_3,X_2\times Y_1,X_2\times Y_2,X_2\times Y_3\}$
 - 组合爆炸问题

- 步骤4: 确定不可测的等价类
 - 有些输入数据实际测试过程中无法输入到系统中,包含这类数据的等价类称为不可测等价类
 - 例:某软件的数据只有通过GUI才能输入,而GUI中只包含了有效的数据,不包含无效的数据。因此前述步骤中生成的无效数据的等价类是不可测等价类
- 例: 为热水器温控软件设计测试用例
 - 需求: 热水器温控系统简称BCS。BCS的温控软件简称CS
 - 操作员使用的控制选项C包含3个命令(cmd):温度控制命令(temp)、系统关闭命令(shut)、请求取消命令(cancel)
 - 操作员选择C后,BCS检查V,如果V为GUI,则操作员通过GUI选择一条命令(cmd)执行。如果V为文件(file),BCS通过命令文件获取命令(cmd)执行。命令文件名由变量F表示
 - 命令temp要求操作员输入温度调节数值tempch,可选有效值为 -10, -5, 5, 10, 这4个值 记为t_valid, 其余的值记为t_invalid

- 确定输入域
- 输入域 $I = V \times F \times cmd \times tempch \cup \{file, cmd_file, temp, t_invalid\}$

变量	种类	类型	取值
V	环境变量	枚举	GUI, file
$\boldsymbol{\mathit{F}}$	环境变量	字符串	文件名
cmd	GUI 或文件方式输入	枚举	{temp, cancel, shut}
tempch	GUI 或文件方式输入	枚举	$\{-10, -5, 5, 10\}$

• 等价类划分

变量	等价类划分
V	GUI , file , undefined
$oldsymbol{F}$	$\{f_valid\}$, $\{f_invalid\}$
cmd	{ {temp}, {cancel}, {shut}, {c_invalid}}
tempch	$\{-10\}, \{-5\}, \{5\}, \{10\}, \{t_invalid\}$

- 组合等价类
 - 共3*2*4*5=120个等价类
 - {(GUI,f_valid,temp,-10)}
 - {(GUI,f valid,temp,-5)}
 - {(GUI,f valid,temp,t invalid)}
- 去除不可测等价类
 - 只有temp命令才需要tempch: 去掉所有的{(_,_,{cmd}\ {temp},_)}: (3*2*3*5=90)
 - 在GUI方式下,不允许非法tempch值,再去掉2个不可测等价类
 - 当V为undefined时,不需要读取cmd和tempch的具体值,再去掉5个不可测等价类
 - 当F为无效文件名时,不需要获取cmd和tempch的具体值,再去掉5个不可测等价类
- 最后还剩 (120-90-2-5-5=18) 个等价类 (还有问题)
 - $\{(GUI, f_valid, temp, t_valid)\} (4^{\uparrow}), \{(GUI, f_invalid, temp, t_valid)\} (4^{\uparrow})$
 - $-\{(GUI,_,cancel,NA)\}$ (2个) , $\{(GUI,_,shut,NA)\}$ (2个)
 - $\{(file, f_valid, temp, t_valid \cup t_invalid)\}$ (5↑), $\{(file, f_invalid, NA, NA)\}$
 - $\{(undefined, NA, NA, NA)\}$ (1个)

边界处的错误

- 经验表明程序员在处理等价类边界附近时容易出错
- 例:当 $x \le 0$ 时,方法M需要计算函数f1,否则计算f2。方法M的一个错误就在于程序员将 $x \le 0$ 写成了x < 0
- 此时,将x = 0作为测试用例运行M,可发现这一错误。但是,如果测试用例来自于等价类时,比如 $x \in \{-4,7\}$,就不会发现这个错误。此时x = 0正好处于两个等价类 $x \le 0$ 和x > 0的边界上。

边界值分析 (Boundary Value Analysis)

- 边界值分析(BVA)是一种有效的测试用例选择方法,可以发现位于等价类边界上的错误
- 边界或边界附近选取测试用例。等价类划分法从等价类中选取测试用例,而边界值 法从等价类
- 两者之间可能重叠

主要步骤

- 步骤1:使用一元划分法划分输入域。有多少个变量就有多少种划分
- 步骤2: 为每种划分确定边界。也可利用输入变量之间的特定关系确定边界
- 步骤3: 设计测试用例,确保每个边界值至少出现在一个测试输入数据中

例子

- 需求:函数fP有两个整型输入变量code和qty,分别表示商品编码和采购数量。fP 访问数据库查询code编码对应产品的单价,描述信息和总的采购价格。当code和 qty中任意一个为非法输入时,显示错误信息
- 为两个变量创建等价类。假设code变量的有效输入区间为[99,999], 采购数量qty的有效输入区间为[1,100]。得到如下等价类:
 - code变量的等价类: E1: <99, E2: 有效区间取值, E3: >999
 - qty变量的等价类: E4: <1, E5: 有效区间取值, E6: >100
- 确定边界:
 - *和x标识
 - 共12个,每个变量6个

例子(续)

- 设计测试用例
 - t1和t6中两个变量均取非法值, 无法发现只检查一个变量合法性的错误
 - 需要添加新测试用例
 - t7:(code=98,qty=45)
 - t8:(code=1000,qty=45)
 - t9:(code=250,qty=0)
 - t10:(code=250,qty=101)
- $T = \{t2, t3, t4, t5, t7, t8, t9, t10\}$
- t2和t5同时出现两个变量的边界值,有什么

```
T={ t1: (code=98, qty=0),
t2: (code=99, qty=1),
t3: (code=100, qty=2),
t4: (code=998, qty=99),
t5: (code=999, qty=100),
t6: (code=1000, qty=101) f
```

- If(code <99 && qty < 1) {
- 报错
- •

