"Rozwiązanie równania Laplace'a programowaniem równoległym w C++"

1. Cel.

Rozwiązać równanie różniczkowe:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = -1 \text{ in } \Omega$$

$$u = 0 \text{ on } \partial \Omega$$

Gdzie:

$$\Omega = <0,1> \times <0,1>$$

Czyli Ω jest kwadratem o boku 1.

Jest to tak zwane równanie Laplace'a.

Rozwiązanie tego równania opisuje np. profil prędkości płynu lepkiego w przepływie laminarnym przez nieskończony kanał o przekroju kwadratowym.

2. Dyskretyzacja, siatka i podejście jednowątkowe.

Stosujemy metodę różnic skończonych, dzieląc każdy z boków kwadratu na N elementów. Daje to siatkę o rozmiarze N^2 . Elementy siatki numerujemy od $0\ do\ N-1$, jak na rys. 2.1.

	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0	0	0	0	0

Rys. 2.1. – siatka dla N=10 z uzupełnionym warunkiem brzegowym

Dyskretyzacja polega na rozpisaniu równania różniczkowego tak, aby dla każdego elementu (i,j) uzyskać zależność między sąsiednimi elementami: (i-1,j), (i+1,j), (i,j-1), (i,j+1) – rys. 2.2. Korzystając ze wzoru na dyskretyzację II pochodnych, gdzie $h=\frac{1}{N}$ jest odległością między środkami kolejnych elementów, dostajemy:

$$\frac{u_{i-1,j} - 2 u_{i,j} + u_{i+1,j}}{h} + \frac{u_{i,j-1} - 2 u_{i,j} + u_{i,j+1}}{h} = -1$$

Co można przekształcić do:

$$u_{i,j} = \frac{h^2 + u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}}{4}$$

0	1	2	3	i-1	i	i+1	7	8	9
1	0	0	0	0	0	0	0	0	0
2	0								0
3	0								0
j-1	0				(i,j-1)				0
j	0			(i-1,j)	(i,j)	(i+1,j)			0
j+1	0				(i,j+1)				0
7	0								0
8	0								0
9	0	0	0	0	0	0	0	0	0
9	U	U	0	0	U	U	U	U	0

Rys. 2.2. – element (i, j) i jego elementy sąsiednie

Stosując uzyskany wzór na wszystkich "wewnętrznych" elementach siatki (czyli pomijając brzegi) dostajemy główną część 1 kroku iteracji:

$$dla \ (1 \le i, j \le N - 2) \ wykonaj:$$

$$u_{new}[i][j] := (h * h + u[i - 1][j] + u[i + 1][j] + u[i][j - 1] + u[i][j + 1]) / 4$$

Po wykonaniu pętli powyższej pętli przypisujemy dla wszystkich elementów tablicy u wartości elementów tablicy u_{new} , ale ze współczynnikiem relaksacji $\alpha=0,5$. Zastosowanie współczynnika relaksacji przyspiesza zbieżność rozwiązania:

$$u \coloneqq \alpha * u + (1 - \alpha * u_{new})$$

Dodatkowo, interesuje nas zmierzenie, jak blisko jesteśmy zadowalającego rozwiązania (a więc ile kroków iteracji będziemy jeszcze potrzebować po wykonaniu aktualnej iteracji). W tym celu wprowadzamy parametr residuum ϵ . Mierzy on zbieżność rozwiązania poprzez porównanie dwóch kolejnych iteracji:

$$\epsilon = \sqrt{\sum_{1 \leq i,j \leq N-2} \left[u_{i,j}^{new} - u_{i,j}\right]^2}$$

Całość 1 iteracji prezentuje się fragmentem kodu:

Kod 2.1. – odpowiedni tylko przy podejściu jednowątkowym

Iteracje powinny być powtarzane do momentu, gdy wartość ϵ po którejś iteracji będzie mniejsza niż założone minimum, np. ${\bf 10}^{-5}$. Wówczas w tablicy u będzie znajdowało się rozwiązanie równania różniczkowego.

Rozwiązanie może zostać wypisane do pliku z rozszerzeniem ".bmp" jako mapa kolorów, przy użyciu wbudowanej funkcji **void rysuj_kolorowy_wykres(string s, double **pole**) która jako pierwszy argument przyjmuje nazwę docelowego pliku wraz z roszerzeniem (np. "laplasjan.bmp"), a jako drugi argument tablicę o rozmiarze $N \times N$, numerowaną od (0, N-1), która ma zostać wypisana. Funkcja znajduje maksymalną i minimalną wartość w tablicy, następnie przydziela kolor czerwony wartości maksymalnej i fioletowy wartości minimalnej i wypisuje plik graficzny. Pozostałe wartości otrzymują kolory wynikające z liniowego przejścia wartości *Hue* w modelu kolorów *HSV* (https://en.wikipedia.org/wiki/HSL and HSV).

Rysunek rys. 2.3. pokazuje docelowy efekt obliczeń, jaki chcemy uzyskać.

Rys. 2.3. – poprawny rozkład prędkości w kwadracie zapisany jako mapa kolorów HSV

3. Podejście równoległe.

Mając do dyspozycji łączną liczbę **MODS** wątków, które będą wykonywać obliczenia w tym samym czasie, chcemy podzielić tablicę $N \times N$ na **MODS** fragmentów, każdy z fragmentów przekazać innemu wątkowi, przeprowadzić obliczenia na każdym z fragmentów, następnie odebrać wyniki obliczeń z każdego wątku i spoić w jeden wynik.

Poniżej analiza po kolei fragmentów kodu napisanego w C++ wykonywującego powyższy proces:

a) zmienne globalne.

```
static int N = 250;

static double dokladnosc = 1e-5;

static double h = 1./N;

static double alfa = 0.5;

// ilosc podzialow boku kwadratu
// dokladnosc obliczenia
// odleglosc oczek siatki
// wspołczynnik relaksacji
```

Kod 3a)

Zwiększanie wartości zmiennej N powoduje zwiększenie ilości obliczeń w programie, a więc wydłużenie jego czasu działania. Jest to ilość podziałów boku kwadratu.

Zmniejszenie wartości zmiennej **dokladnosc** powoje przyspieszenie działania programu, gdyż zmniejsza to ilość wykonywanych iteracji.

Wartość zmiennej h nie może być zmieniana. Jest to odległość środków 2 kolejnych elementów siatki.

Zmiana wartości zmiennej *alfa* może przyspieszyć lub spowolnić program. Jest to współczynnik relaksacji używany w iteracji.

b) pobranie numeru wątku i ilości wszystkich wątków oraz nazwy aktualnej instancji.

```
// Initialize MPI.
MPI_Init ( & argc, & argv );

// Get the number of processes.
//
MPI_Comm_size ( MPI_COMM_WORLD, & MODS );
//
// Get the individual process ID.
//
MPI_Comm_rank ( MPI_COMM_WORLD, & id );
//
// Get Processor name:
//
MPI_Get_processor_name( procName, & nameLen );

Kod 3b)
```

Funkcja MPI_Init(...) jest wymagana początku programu.

Funkcja MPI_Comm_size(...) zwraca ilość wątków do zmiennej MODS

Funkcja $MPI_Comm_rank(...)$ zwraca numer wątku do zmiennej id i przyjmuje wartości w przedziale (0, MODS - 1).

Funkcja **MPI_Get_processor_name(...)** zwraca nazwę instacji do tablicy **procName** typu char i długość tej nazwy do zmiennej **nameLen.** <u>Jeśli program zostanie uruchomiony na 2 komputerach, to nazwy instancji będą się między nimi różnić.</u>

Blok *int main (int argc, char *argv[])* jest uruchamiany tyle razy, ile jest wątków. Poszczególne uruchomenia odróżniają od siebie wartości zmiennych *id* i *procName**. W celu wykonania jakiejś operacji na tylko jednym, konkretnym wątku, niezbędne jest użycie klamr w poniższy sposób:

```
if( id == 0) {
    t = GetTickCount();
}
```

Kod 3.2. – wykonanie operacji tylko na wątku nr q=0. Uruchomienia *int main(...)* z pozostałych wątków zignorują tę operację.

c) rozdzielenie tablicy $N \times N$ na wątki.

```
// tablica rozmiarow tablic, ktore otrzymaja poszczegolne watki: (znana wszwatkim watkom)
int *size = new int[MODS];
// watal maxmiany fragmentow tablic, ktore zostana przekazane poszczegolnym watkom:
for( q = 0; q < MODS; q++)</pre>
    size[q] = (N-2) / MODS;
// pierwsze kilka watkow dostanie o 1 wiekszy rozmiar niz pozostale:
for ( q = 0; q < (N-2) - (N-2) / MODS * MODS; <math>q++)
    size[q]++;
                                              Kod. 3c)
                                0
                                    0
                                       0
                                           0
                                               0
                                                   0
                                                       0
                                                              0
                                                                  0
                                0
                                                                  0
                                0
                                                                  0
                                                                     wgtek 1
                                0
                                                                  0
                                0
                                                                  0
```

Rys. 3.1. – wizualny podział tablicy dla N=10 na 3 wątki. 8=3+3+2

0 0 0

wątek 2

wątek 3

0

0

0

0 0 0

Wiesze pierwszy i ostatni tablicy u nie zostaną przekazane żadnemu wątkowi, gdyż nie wymagają one modyfikacji (zawsze są zerowe). Dlatego do rozdzielenia zostaje N-2 wierszy.

Tablica size[q] ma zwracać ilość wierszy, która zostanie przekazana wątkowi nr q.

0

0

0

0

0 0 0

W pierwszej chwili chwili ustalamy wartość size[q] dla każdego wątku na $\left\lfloor \frac{N-2}{MODS} \right\rfloor$.

Następnie liczymy resztę, czyli ilość wątków które nie zostały rozdzielone: $R=(N-2)-\left\lfloor \frac{N-2}{MODS} \right\rfloor$. Następnie rozmiary wątków numerowanych od 0 do R-1 zwiększamy o 1.

Przykład: rozdzielić tablicę dla N=10 na 3 wątki (MODS=3). W pierwszej chwili 8 wierszy rozejdzie się na kolejne wątki w stosunku 2: 2: 2. Następnie liczymy R=2 i modyfikujemy rozkład do 3: 3:2-rys. 3.1.

d) sposób przechowywania fragmentów tablicy przez osobne wątki.

```
// stworz tablics **u dla watku, nowiekazona o 2 wieraze (gorny i dolny):
//
double **u = new double * [size[id]+2];

for( i = 0; i <= size[id]+1; i++)
    u[i] = new double[N];</pre>
```

kod 3d)

Każdy wątek tworzy tablicę dynamiczną o rozmiarze *size[id]+2*. Dodatkowe 2 wiersze są niezbędne, ze względu na to, iż do wykonania poniższego fragmentu iteracji:

 $dla\ (1 \le i \le size[q]), (1 \le j \le N-2)$ wykonaj:

$$u_{new}[i][j] := (h * h + u[i-1][j] + u[i+1][j] + u[i][j-1] + u[i][j+1]) / 4$$

Jesteśmy zmuszeni odwoływać się do wierszy, które zostały przyporządkowane sąsiednim wątkom (1 wiersz wątku poprzedniego i 1 wiersz wątku następnego). Rozwiązaniem jest dodanie 2 wierszy do fragmentu tablicy, który przekażemy wątkowi. Dodatkowe wiersze posłużą jako warunki brzegowe podczas iteracji, a ich wartości zostaną ustalone przed iteracją. Wątek użyje tych wierszy tylko do odczytu i nie będzie modyfikował ich wartości podczas iteracji. Schematyczny sposób podziału tablicy wyjściowej do postaci, którą otrzymają wątki przedstawia rysunek rys. 3.2.

Rys. 3.2.

e) Funkcja void foo(int q, int MODS, int size, double **u).

Wewnątrz tej funkcji wykonywane iteracje na fragmencie tablicy wątku nr **q**. **MODS** to ilość wszystkich wątków, **size** to przydzielona wątkowi ilość wierszy (bez pomocniczych dwóch wierszy), **u** to tablica zadeklarowana dynamicznie w **int main(...)** (dzięki temu będzie ją można dynamicznie usunąć wywołaniem wewnątrz **int main(...)**).

Kod 3e)

Od tego momentu przechodzimy z analizą kodu do wnętrza funkcji foo(...).

f) pierwsze przybliżenie rozwiązania.

```
// pierwaze "przyblizenie" rozwiazania **u wraz z warunkami brzegowymi:
//
for( i = 0; i <= size+1; i++)
    for( j = 0; j < N; j++)
        u[i][j] = 0;</pre>
```

Kod 3f)

Wiersze pomocnicze zapisujemy wartościami 0. Jeśli nie zostaną zmodyfikowane, to pozostaną zerowe (będzie tak w przypadku pierwszego i ostatniego wątku). Pozostałym elementom również przydzielamy wartość 0, choć nie licząc elementów brzegowych o indeksach j=0 i j=N-1, mogą to być inne wartości.

g) rozpoczęcie iteracji.

Kod 3g)

Wejdź do pętli i kontynuuj ją dopóki wartość zmiennej eps jest większa niż wartość ustalonej na początku programu zmiennej dokladnosc.

h) Komunikacja między wątkami podczas obliczeń.

```
// wvslii watkom poprzedniemu i pastepnemu gorny i dolny wiersz LICZONEJ CZESCI tablicy:
//
if( q-1 >= 0)
    MPI_Isend ( u[1], N, MPI_DOUBLE, q-1, 1, MPI_COMM_WORLD, &request);
if( q+1 < MODS)
    MPI_Isend ( u[size], N, MPI_DOUBLE, q+1, 2, MPI_COMM_WORLD, &request);

// otrzwnai gorny i dolny wiersz od watkow poprzedniego i pastepnego: (TYLKO DO ODCZYTU)
//
if( q-1 >= 0)
    MPI_Recv ( u[0], N, MPI_DOUBLE, q-1, 1, MPI_COMM_WORLD, &status );
if( q+1 < MODS)
    MPI_Recv ( u[size+1], N, MPI_DOUBLE, q+1, 2, MPI_COMM_WORLD, &status );
Kod 3h)</pre>
```

Na początku każdej iteracji dany wątek przesyła wątkom kolejnemu i poprzedniego odpowiednie, swoje wiersze tablicy, nie czekając na odbiór przez te wątki. **Wyjątki**: pierwszy wątek nie przesyła wiersza wątki poprzedniemu, ostatni wątek nie przesyła wiersza wątkowi kolejnemu.

Następnie dany wątek odbiera odpowiednie 2 wiersze, które są mu wysyłane przez równoległe wątki. Dopóki dany wątek q nie odbierze w pełni tych wierszy, nie może przejść dalej w kodzie.

Tak, jak zostało opisane w c) każdy wątek potrzebuje informacji o 2 wierszach należących do sąsiednich wątków. Muszą one zostać odebrane przed wykonywaniem obliczeń.

MPI_Isend (u[1], N, MPI_DOUBLE, q-1, 1, MPI_COMM_WORLD, &request) – przesyła pierwszy obliczeniowy wiersz tablicy u, mający N elementów typu double wątkowi poprzedniemu i <u>nie czeka</u> na odbiór tego wiersza przez ów wątek. Tag wysyłki = 1.

MPI_Isend (u[size], N, MPI_DOUBLE, q+1, 2, MPI_COMM_WORLD, &request) – przesyła ostatni obliczeniowy wiersz tablicy **u** wątkowi kolejnemu i <u>nie czeka</u> na odbiór wiersza przez ów wątek. Tag wysyłki = 2.

MPI_Recv (u[0], N, MPI_DOUBLE, q-1, 1, MPI_COMM_WORLD, &status) - odbiera od wątku poprzedniego wiersz mający N elementów i zapisuje go w tablicy u jako wiersz o indeksie 0. Czeka, dopóki wiersz mający N elementów nie zostanie w całości wysłany przez poprzedni wątek. Tag = 1 odbierze wysyłkę z tagiem = 1.

MPI_Recv (u[size+1], N, MPI_DOUBLE, q+1, 2, MPI_COMM_WORLD, &status) — odbiera od wątku następnego wiersz i zapisuje go w tablicy u jako wiersz o indeksie size+1. Czeka, dopóki wiersz mający N elementów nie zostanie w całości wysłany przez kolejny wątek. Tag = 2 odbierze wysyłkę z tagiem = 2.

i) wykonanie iteracji na wszystkich elementach obliczeniowych przydzielonych danemu wątkowi.

Analog do kodu kod 2.1.

j) komunikacja między wątkami w celu obliczenia błędu iteracji.

Liczymy $\epsilon = \sqrt{\sum_{1 \leq i,j \leq N-2} \left[u_{i,j}^{new} - u_{i,j}\right]^2}$. Ale jest trudniej, bo mamy obliczenia równoległe.

```
// watek glowny sumuje eps nadeslane ze wszystkich watkow:
if( q != 0) {
    // naipierw wyslii glownemu watkowi swoia czesc sumy:
    MPI_Send ( &eps, 1, MPI_DOUBLE, 0, 3, MPI_COMM_WORLD);
    // mastennie odbierz od niego sume wszystkich:
    MPI_Recv ( &eps, 1, MPI_DOUBLE, 0, 4, MPI_COMM_WORLD, &status);
else {
    // naipierw odbierz eps od wszystkich watkow i zsumui:
    for( i = 1; i < MODS; i++) {
       MPI_Recv ( &eps_rest, 1, MPI_DOUBLE, i, 3, MPI_COMM_WORLD, &status);
       eps += eps rest;
    // nastennie odeslii kazdenu watkowi sume:
    eps = sqrt(eps);
    for( i = 1; i < MODS; i++)
       MPI_Send ( &eps, 1, MPI_DOUBLE, i, 4, MPI_COMM_WORLD);
}
```

Aby tego dokonać, musimy wybrać jeden wątek, który będzie zbierał i sumował składniki sumy z pozostałych wątków (i dodawał swoją część), liczył $\sqrt{}$ i odsyłał wynik wszystkim wątkom. Toteż robi powyższy fragment kodu.

MPI_Send (&eps, 1, MPI_DOUBLE, 0, 3, MPI_COMM_WORLD) – wyślij swoją część sumy wątkowi nr 0. Wątek nr 0 tego nie robi.

MPI_Recv (&eps, 1, MPI_DOUBLE, 0, 4, MPI_COMM_WORLD, &status) — odbierz sumę sum od wątka nr 0. Wątek nr 0 tego nie robi.

MPI_Recv (&eps_rest, 1, MPI_DOUBLE, i, 3, MPI_COMM_WORLD, &status) – jako wątek główny odbierz część sumy od wątka nr i.

MPI_Send (&eps, 1, MPI_DOUBLE, i, 4, MPI_COMM_WORLD) – jako wątek główny odeślij sumę sum wątkowi nr i.

k) wysłanie swojej części tablicy wątkowi głównemu po uzyskaniu zbieżności.

Na koniec funkcji *foo(...)* wyślij wszystkie wiersze (z rozwiązaniem) wątkowi nr 0 (głównemu).

MPI_Send (u[i], N, MPI_DOUBLE, 0, 5, MPI_COMM_WORLD) – jako wątek inny niż główny wyślij wiersz nr i, mający N elementów wątkowi nr 0. Tag wysyłki = 5.

Od tego momentu wracamy z analizą kodu do bloku **int main(...)**, do miejsca gdzie wywołana została funkcja **foo(...)**.

I) deklaracja tablicy zbierającej wyniki.

```
// stwarz tablice dynamiczna do prezentacii wynikow:
//
if (id == 0) {
    double **v;

    v = new double * [N];

    for( i = 0; i < N; i++)
        v[i] = new double[N];</pre>
```

Kod 3I)

W wątku nr 0 (głównym) zadeklaruj tablicę pod nazwą v, która będzie tablicą wyników.

m) odebranie wyników od wszystkich wątków i połączenie w całość.

Powyższy kod wykonuje się tylko na wątku nr 0 (głównym).

Najpierw przepisz zawartość tablicy \boldsymbol{u} do tablicy \boldsymbol{v} . Tablica \boldsymbol{u} zawiera część rozwiązania z pierwszymi wierszami wyniku. Pod indeksem 0 tablicy \boldsymbol{u} kryje się tablica pomocnicza, wypełniona zerami – ją również przepisz. Zatem przepisane zostanie **size[0]+1** wierszy.

Następnie przepisuj do tablicy \mathbf{v} po kolei wszystkie wiersze przesłane z pozostałych wątków – podpunkt k).

 MPI_Recv (v[k++], N, MPI_DOUBLE , i, 5, MPI_COMM_WORLD , &status) – obierz 1 wiersz od wątku nr i i zapisz go jako kolejny wiersz w tablicy wyników v. Łącznie do odebrania z wątku nr i jest size[i] wierszy.

Ostatni wiersz tablicy wyników \mathbf{v} nie zostanie odebrany, ale został on wypełniony zerami na etapie deklaracji tablicy.

n) "wypisanie" tablicy v do pliku graficznego.

Dokonuje tego opisana już wcześniej w pkt. 2. funkcja *void rysuj_kolorowy_wykres(string s, double **pole).*

o) Zakończenie wątku.

Dokonuje tego komenda MPI_Finalize().

4. Wyniki obliczeń na klastrze dla różnych konfiguracji instancji.

Postanowiono porównać czas działania programu na 5 konfiguracjach:

- a) 8 instancji każda po 1 wątek (n=8,ppn=1).
- b) 8 instancji każda po 2 wątki (n=8,ppn=2).
- c) 4 instancje każda po 4 wątki (n=4,ppn=4).
- d) 4 instancje każda po 8 wątków (n=4,ppn=8).
- e) jedna szybka instancja 32-wątkowa (n=1,ppn=32).

Dla programu z parametrami N=250, $\epsilon=10^{-5}$.

Wyniki czasów obliczeń przedstawiono na **rys. 4.9. i rys. 4.10.** przy czym wyniki dla instancji 32-wątkowej zostały przeskalowane tak, aby jej czas wykonania na 1 wątku odpowiadał czasowi wykonania instancji 8-wątkowych na 1 wątku (ok. 267s).

Rys. 4.9. – czas obliczeń w zależności od liczby wątków dla różnych konfiguracji

Rys. 4.10. – czas obliczeń w zależności od liczby wątków dla różnych konfiguracji na skali logarytmicznej

Widzimy, że dla ilości wątków = 8 każda konfiguracja zwraca wyraźnie inny czas działania. Jest to spowodowane opóźnieniem wywołanym **komunikacją między instancjami**, która <u>jest dużo wolniejsza</u> niż komunikacja bezpośrednia między wątkami jednej instancji

Jeśli dysponujemy instancjami **1- lub 2-wątkowymi**, to zwiększanie liczby tych instancji **przyspiesza** działanie programu. Jednakże, w przypadku instancji **4-wątkowej zwiększanie liczby instancji jest nieopłacalne i prawie nie przyspiesza działania programu.** W przypadku instancji **8-wątkowych** zwiększenie liczby instancji powoduje **spowolnienie działania programu**. Najlepszym rozwiązaniem jest użycie jednej instancji o dużej ilości wątków (np. 32).

Czas obliczeń dla jednej instancji o dużej ilości wątków **skaluje się potęgowo** z ilością wątków, co widać jako linię prostą na **rys. 4.10.** Jeśli dochodzi czas wymiany informacji między kilkoma instancjami, to linia przestaje być prosta, a czas obliczeń jest gorszy niż potęgowy.