

VII ENCONTRO BRASILEIRO DE MENSURAÇÃO FLORESTAL

24 A 26 DE SETEMBRO 2025

LAVRAS - MG

AJUSTE DE MODELOS DE AFILAMENTO EM EUCALYPTUS UROPHYLLA X EUCALYPTUS GRANDIS: ALTO FUSTE E TALHADIA

Ramon Martins de Castro Melo*1; Fernanda Beatriz Rocha Fernandes1; Juliana Fonseca Cardoso1; Glauciana da Mata Ataíde2; Rosimere Cavalcante dos Santos3; Renato Vinícius Oliveira Castro2

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brasil;
²Universidade Federal de São João del-Rei, Sete Lagoas, Minas Gerais, Brasil;
²Universidade Federal do Rio Grande do Norte, Macaíba, Rio Grande do Norte, Brasil.

*E-mail: ramon.martins@ufvjm.edu.br

INTRODUÇÃO

O fuste das árvores apresenta variações de forma ao longo de seu comprimento, e o entendimento desse perfil é essencial para a estimativa precisa de volume e sortimentos da madeira. As funções de afilamento descrevem essas variações, permitindo caracterizar a produção volumétrica e a alocação de multiprodutos.

OBJETIVO

O estudo teve como objetivo avaliar as diferenças no perfil do fuste de *Eucalyptus urophylla* × *Eucalyptus grandis* (Clone I144) conduzido nos regimes de Alto Fuste e Talhadia.

MATERIAL E MÉTODOS

Os modelos de afilamento ajustados foram o de Garay (1979), Ormerod (1973), Demaerschalk (1972) e Kozak et al. (1969). Os parâmetros estatísticos avaliados foram o erro padrão da estimativa (Sy.x), coeficiente de correlação (rŷy) e viés (V). O teste de modelo de identidade aplicado para avaliar as diferenças entre o perfil do fuste dos dois regimes foi o F de Graybill.

RESULTADOS E DISCUSSÃO

Todos os parâmetros avaliados foram estatisticamente significativos e o modelo escolhido foi o de Garay (1979) por apresentar menor erro padrão da estimativa (Sy.x), menor viés (V) e coeficiente de correlação de 99% (rŷy).

Alto fuste

	β0	β1	β2	β3	Sy.x	V	ryŷ
Garay (1979)	0,2079	0,3147	0,9834	0,2656	0,49	0,028	0,99
Ormerod (1973)	-	1,2765	-	_	0,81	0,269	0,99
Demaerschalk (1972)	0,1184	1,0083	0,6763	-0,74604	0,72	0,003	0,99
Kozak et al. (1969)	0,6649	0,6863	-1,4752		2,51	0,644	0,88
	Talhadia						
	β0	β1	β2	β3	Sy.x	V	ryŷ
Garay (1979)	0,2251	0,3126	0,9829	0,2442	0,66	0,030	0,99
Ormerod (1973)	-	1,2682	-	-	0,98	0,295	0,98
Demaerschalk (1972)	0,1145	0,9528	0,6717	-0,6909	0,89	0,003	0,98
Kozak et al. (1969)	0,5866	0,7581	-1,3835		3,09	0,966	0,82

Os modelos de Ormerod (1973) e Demaerschalk (1972) apresentaram desempenho intermediário, enquanto o de Kozak et al. (1969) foi inadequado, sendo o bom ajuste confirmado para o modelo de Garay pela análise gráfica dos resíduos.

O teste F de Graybill (1976) (F = 12,84; p < 0,005) evidenciou diferenças significativas entre os perfis de fuste dos regimes Alto Fuste e Talhadia, mostrando que modelos ajustados por regime explicam melhor a variação dos dados do que um modelo único.

CONCLUSÃO

O modelo de Garay (1979) foi o mais adequado para estimar o perfil do fuste *Eucalyptus urophylla x Eucalyptus grandis* (Clone I144), e o Teste F de Graybill demonstrou que há variação significativa no perfil do fuste entre o regime de Alto Fuste e Talhadia.

