Homework 4

Songyu Ye

September 27, 2025

Problem 1 Let p be a prime number, and n a positive integer greater than 1. Find an example for each of the following with brief justifications.

- (1) A degree n extension of \mathbb{Q} in which p is inert (i.e. the ring of integers in the extension possesses a unique prime \mathfrak{q} above p, and the inertial degree $f_{\mathfrak{q}/p}$ is equal to n).
- (2) A degree n extension of \mathbb{Q} in which p is totally ramified.

Hint: You can apply results of Serre, I.6 after localizing at p.

Remark: There's nothing special about \mathbb{Q} . The same question can be answered similarly with any global field in place of \mathbb{Q} .

Solution:

(1) Pick any monic irreducible polynomial $m(x) \in \mathbb{F}_p[x]$ of degree n. Lift its coefficients to \mathbb{Z} to get $f(x) \in \mathbb{Z}[x]$ with the same degree and reduction $\overline{f} = m$. Let $K = \mathbb{Q}(\alpha)$ with $f(\alpha) = 0$.

Since \overline{f} is irreducible over \mathbb{F}_p , Gauss's lemma gives that f is irreducible over \mathbb{Q} , so $[K:\mathbb{Q}]=n$. Over a finite field, every irreducible polynomial is separable; hence $\gcd(\overline{f},\overline{f}')=1$. In particular, \overline{f} has distinct roots and so the discriminant $\operatorname{disc}(\overline{f})\neq 0$ in \mathbb{F}_p (If one computes the discriminant over \mathbb{Z} and then reduce mod p, one gets the discriminant of the reduced polynomial \overline{f}). This means $p\nmid \operatorname{disc}(f)$.

The relationship between the discriminant of f and that of K is given by

$$\operatorname{disc}(f) = \operatorname{disc}(K) \cdot [\mathcal{O}_K : \mathbb{Z}[\alpha]]^2.$$

which implies that $p \nmid [\mathcal{O}_K : \mathbb{Z}[\alpha]]$. Therefore, Dedekind's theorem applies to f and p. By Dedekind's theorem, the factorization of (p) in \mathcal{O}_K matches the factorization of \overline{f} in $\mathbb{F}_p[x]$. Since \overline{f} is irreducible of degree n, we get a single prime \mathfrak{q} above p with residue degree $f_{\mathfrak{q}/p} = n$. Hence p is inert.

(2) Recall the following proposition from Serre's Local Fields.

Proposition 0.1 (Serre Proposition 1.6.17). Let A be a local ring with residue field k. Let $f \in A[x]$ be a monic polynomial. Let $B_f = A[x]/(f)$ free and finite type A-algebra. Suppose A is a DVR and f has the form

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0, \quad a_i \in \mathfrak{m}_A \text{ for all } i, \quad a_0 \notin \mathfrak{m}_A^2.$$

i.e. f is Eisenstein. Then B_f is a DVR with uniformizer the class of x in B_f , and residue field of B_f is k.

Apply this proposition to $A = \mathbb{Z}_{(p)}$, the localization of \mathbb{Z} at the prime ideal (p), with $f(x) = x^n - p$. Then $B_f = \mathbb{Z}_{(p)}[x]/(x^n - p)$ is a DVR with residue field \mathbb{F}_p . The corresponding field extension is $K = \operatorname{Frac}(B_f) = \mathbb{Q}(\sqrt[n]{p})$. The minimal polynomial $f(x) = x^n - p$ is Eisenstein at p, so $[K : \mathbb{Q}] = n$. Eisenstein at p implies that p is totally ramified in K because the residue field extension is trivial and therefore the ramification index must be n.

Problem 2 Let A be a Dedekind domain, $K = \operatorname{Frac}(A)$. Let L/K be a finite separable extension with normal closure M of L so that M is Galois over K. Let \mathfrak{p} be a prime ideal of A. Fix a prime ideal \mathfrak{t} of M above \mathfrak{p} . (By convention, this means \mathfrak{t} is a nonzero prime in the integral closure of A in M such that \mathfrak{t} divides \mathfrak{p} .) Denote by $D_{\mathfrak{t}}(M/K)$ the decomposition group of \mathfrak{t} in M/K.

(i) Define a map

$$Gal(M/K) \to \{\text{primes of } L \text{ above } \mathfrak{p}\}, \qquad \sigma \mapsto \sigma(\mathfrak{t}) \cap L.$$

Show that this map induces a bijection

$$\operatorname{Gal}(M/L)\backslash \operatorname{Gal}(M/K)/D_{\mathfrak{t}}(M/K) \xrightarrow{\sim} \{\text{primes of } L \text{ above } \mathfrak{p}\}.$$

(ii) Assume that $Gal(M/K) \simeq S_3$, the symmetric group in 3 variables, that $D_{\mathfrak{t}}(M/K)$ and Gal(M/L) are order 2 subgroups of Gal(M/K) which are equal (not just isomorphic). Use part (i) to verify that \mathfrak{p} does *not* split completely in L.

Remark: The point of (ii) is that when the decomposition group of \mathfrak{t} is not normal in $\operatorname{Gal}(M/K)$, the prime \mathfrak{t} need not split completely in the decomposition field, which is L here. A concrete example for (ii) can be given when

$$K = \mathbb{Q}, \quad L = \mathbb{Q}(\sqrt[3]{2}), \quad M = \mathbb{Q}(\sqrt[3]{2}, \zeta_3).$$

By the Chebotarev density theorem, or by explicit computation, you can find \mathfrak{t} such that $(\mathfrak{t}, M/K)$ is the unique nontrivial element of $\operatorname{Gal}(M/L)$. Then all the conditions of (ii) are satisfied.

Solution:

(i) Let
$$G = \operatorname{Gal}(M/K)$$
, $H = \operatorname{Gal}(M/L)$, and fix a prime \mathfrak{t} of M above $\mathfrak{p} \subset A$. Define $\Phi : G \longrightarrow \{\text{primes of } L \text{ above } \mathfrak{p}\}, \qquad \sigma \longmapsto (\sigma \mathfrak{t}) \cap L$.

Since σ is a K-automorphism, it fixes \mathfrak{p} and therefore the contraction of $\sigma \mathfrak{t}$ to L is a prime of L above \mathfrak{p} . In particular, the target of Φ is correct.

Moreover, the map Φ is right D_t -invariant and left H-invariant:

If
$$d \in D_{\mathfrak{t}}(M/K) = \{g \in G : g\mathfrak{t} = \mathfrak{t}\}$$
, then

$$\Phi(\sigma d) = (\sigma d \mathfrak{t}) \cap L = (\sigma \mathfrak{t}) \cap L = \Phi(\sigma)$$

If $h \in H$ (so h fixes L), then

$$\Phi(h\sigma) = (h\sigma\mathfrak{t}) \cap L = h((\sigma\mathfrak{t}) \cap L) = (\sigma\mathfrak{t}) \cap L = \Phi(\sigma)$$

Thus Φ is constant on double cosets $H\sigma D_{\mathfrak{t}}$.

So Φ descends to a map

$$\overline{\Phi}: H\backslash G/D_{\mathfrak{t}} \longrightarrow \{\text{primes of } L \text{ above } \mathfrak{p}\}.$$

Now I claim that $\overline{\Phi}$ is surjective and injective.

Let \mathfrak{q} be a prime of L above \mathfrak{p} . Choose a prime \mathfrak{t}' of M above \mathfrak{q} . Because M/K is Galois, there exists $\sigma \in G$ with $\sigma \mathfrak{t} = \mathfrak{t}'$. Then $\overline{\Phi}(H\sigma D_{\mathfrak{t}}) = (\sigma \mathfrak{t}) \cap L = \mathfrak{q}$.

Suppose $\overline{\Phi}(H\sigma_1D_{\mathfrak{t}}) = \overline{\Phi}(H\sigma_2D_{\mathfrak{t}})$. Then $(\sigma_1\mathfrak{t}) \cap L = (\sigma_2\mathfrak{t}) \cap L =: \mathfrak{q}$. Primes of M above the same \mathfrak{q} form a single H-orbit (see remark), so there is $\tau \in H$ with $\tau\sigma_1\mathfrak{t} = \sigma_2\mathfrak{t}$. Hence $\sigma_2^{-1}\tau\sigma_1 \in D_{\mathfrak{t}}$, i.e. $\sigma_2 \in H\sigma_1D_{\mathfrak{t}}$. Thus the double cosets coincide.

Therefore $\overline{\Phi}$ is a bijection:

$$H\backslash G/D_{\mathfrak{t}} \stackrel{\sim}{\longrightarrow} \{\text{primes of } L \text{ above } \mathfrak{p}\}.$$

(ii) Assume $G \simeq S_3$, |G| = 6, and that both $H = \operatorname{Gal}(M/L)$ and $D_{\mathfrak{t}}(M/K)$ are order 2 subgroups and are equal. Then [L:K] = |G|/|H| = 3.

By (i), the primes of L above \mathfrak{p} are in bijection with the double cosets $H \setminus G/H$. Take $H = \langle (12) \rangle \leq S_3$ for concreteness. There are two double cosets, H and H(13)H. One can check that the latter has size 4. Thus there are exactly two primes of L above \mathfrak{p} . If \mathfrak{p} split completely in L, there would be [L:K]=3 distinct primes over \mathfrak{p} . Therefore \mathfrak{p} does not split completely in L.

Remark 0.2 (This remark is just for myself). Suppose M/K is finite Galois (i.e. finite, separable, normal). For any intermediate field $K \subseteq L \subseteq M$:

M/L is separable: Take any $\alpha \in M$. Its minimal polynomial over K, say $m_{\alpha}(x)$, is separable (no repeated roots). The minimal polynomial of α over L divides $m_{\alpha}(x)$ in L[x]. A factor of a separable polynomial is still separable, so the minimal polynomial of α over L is separable.

M/L is normal: Recall that for finite extensions, normal means that the minimal polynomial of any element in the extension splits completely in the extension. Take any $\alpha \in M$. Its minimal polynomial over K, say $m_{\alpha}(x)$, splits completely in M since M/K is normal. The

minimal polynomial of α over L divides $m_{\alpha}(x)$ in L[x]. Since $m_{\alpha}(x)$ splits completely in M, so does its factor, the minimal polynomial of α over L. Hence M/L is normal.

So M/L is both separable and normal \Rightarrow Galois. Thus $H = \operatorname{Gal}(M/L)$ is indeed the full automorphism group of M over L.

Neukirch Ch. I.9, Exercise 3 Continue the general setup from Problem 2. Assume the following:

(i) L/K is solvable, meaning that Gal(M/K) is a solvable group. (We are not assuming M = L.) Recall that a group G is solvable if there is a chain of subgroups

$$\{1\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$$

such that each G_i is normal in G_{i+1} and the quotient G_{i+1}/G_i is abelian.

(ii) p = [L : K] is a prime number.

Now let \mathfrak{p} be a prime of K unramified in L. If there are two primes \mathfrak{q} and \mathfrak{q}' of L above \mathfrak{p} such that the inertial degrees $f_{\mathfrak{q}}$ and $f_{\mathfrak{q}'}$ are equal to 1, then show that \mathfrak{p} splits completely in L/K.

Caveat: The extension degree p has nothing to do with the prime ideal \mathfrak{p} in the problem.

Hint: Let S_p denote the symmetric group in p letters acting on $\{1, 2, ..., p\}$. If G is a solvable subgroup of S_p acting transitively on $\{1, 2, ..., p\}$ then every nontrivial element of G fixes at most one element in $\{1, 2, ..., p\}$. (A reference for this fact is given in Neukirch.)

Solution: Let $G = \operatorname{Gal}(M/K)$, $H = \operatorname{Gal}(M/L)$. Then [L:K] = [G:H] = p is prime. Let \mathfrak{p} be a prime of K unramified in L. Fix $\mathfrak{t} \mid \mathfrak{p}$ in M. Let $D = D_{\mathfrak{t}}(M/K)$, $I = I_{\mathfrak{t}}(M/K)$.

Let $X = H \setminus G$. The set X has size p and there is a transitive action of G on X by right multiplication. Right multiplication gives a homomorphism $\pi : G \hookrightarrow S_X \cong S_p$, whose image $G^* := \pi(G)$ is transitive and solvable.

Recall by the previous problem that $X/D_{\mathfrak{t}}$ is in bijection with the primes of L above \mathfrak{p} . For the base point $\bar{e} \in X$, $\operatorname{Stab}_{D}(\bar{e}) = \{d \in D : Hd = H\} = D \cap H$. Hence $|\operatorname{orbit} \operatorname{of} \bar{e}| = [D : D \cap H]$. Moreover, we have that

$$D/I \cong \operatorname{Gal}(\kappa(\mathfrak{t})/\kappa(\mathfrak{p}))$$

SO

$$|D/I| = f_{\mathfrak{t}/\mathfrak{p}}$$
$$(D \cap H)/(I \cap H) \cong \operatorname{Gal}(\kappa(\mathfrak{t})/\kappa(\mathfrak{q}))$$

so $|(D \cap H)/(I \cap H)| = f_{\mathfrak{t}/\mathfrak{q}}$.

Therefore

$$[D:\ D\cap H] = \frac{|D|}{|D\cap H|} = \frac{|D/I|}{|(D\cap H)/(I\cap H)|} = \frac{f_{\mathfrak{t}/\mathfrak{p}}}{f_{\mathfrak{t}/\mathfrak{q}}} = f_{\mathfrak{q}/\mathfrak{p}}$$

Thus we see that the D-orbit size on X for \mathfrak{q} equals $f_{\mathfrak{q}/\mathfrak{p}}$.

Restriction and reduction give a surjection $D \xrightarrow{\text{res}} D_{\mathfrak{q}}(L/K) \twoheadrightarrow \text{Gal}(\kappa(\mathfrak{q})/\kappa(\mathfrak{p}))$ and since \mathfrak{p} is unramified in L, the kernel of $D \to \text{Gal}(\kappa(\mathfrak{q})/\kappa(\mathfrak{p}))$ is precisely $D \cap H$. In particular the size of the orbit through \bar{e} is $f_{\mathfrak{q}/\mathfrak{p}} = \text{ord Frob}_{\mathfrak{p}}$, where Frob_{\mathfrak{p}} is the Frobenius element in $\text{Gal}(\kappa(\mathfrak{q})/\kappa(\mathfrak{p}))$.

In particular, f=1 if and only if the corresponding point of X is fixed by $\operatorname{Frob}_{\mathfrak{p}}$. We know there exist two primes $\mathfrak{q}, \mathfrak{q}'$ of L above \mathfrak{p} with $f_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}'/\mathfrak{p}} = 1$. Equivalently, the permutation $\operatorname{Frob}_{\mathfrak{p}} \in G^* \leq S_p$ fixes two distinct points of X. Therefore, the hint implies that $\operatorname{Frob}_{\mathfrak{p}}$ must be the identity permutation.

If the Frobenius permutation is the identity, all its cycles have length 1; hence $f_{\mathfrak{q}/\mathfrak{p}}=1$ for every prime \mathfrak{q} of L over \mathfrak{p} . Since \mathfrak{p} is unramified in L, also $e_{\mathfrak{q}/\mathfrak{p}}=1$ for all \mathfrak{q} . Now we use the identity

$$[L:K] = \sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}/\mathfrak{p}} f_{\mathfrak{q}/\mathfrak{p}} = \#\{\mathfrak{q} \mid \mathfrak{p}\}$$

Because [L:K] = p, there are p distinct primes above \mathfrak{p} , as desired.