Семинар 2: Матрично-векторное дифференцирование

1 Матрично-векторное дифференцирование

1.1 Теория

Для вычисления большинства производных, которые возникают на практике, достаточно лишь небольшой таблицы стандартных производных и правил преобразования. Удобнее всего оказывается работать в терминах «дифференциала» — с ним можно не задумываться о промежуточных размерностях, а просто применять стандартные правила.

Замечание: В этом разделе описана сама техника матрично-векторного дифференцирования. Для более подробного описания математической теории, лежащей в основе этой техники, см. раздел А.

Правила преобразования

$$dA = 0$$

$$d(\alpha X) = \alpha(dX)$$

$$d(AXB) = A(dX)B$$

$$d(X + Y) = dX + dY$$

$$d(X^{T}) = (dX)^{T}$$

$$d(XY) = (dX)Y + X(dY)$$

$$d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$$

$$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^{2}}$$

Таблица стандартных производных

$$\begin{split} d\langle A, X \rangle &= \langle A, dX \rangle \\ d\langle Ax, x \rangle &= \langle (A + A^T)x, dx \rangle \\ d\langle Ax, x \rangle &= 2\langle Ax, dx \rangle \quad \text{(если } A = A^T) \\ d(\text{Det}(X)) &= \text{Det}(X)\langle X^{-T}, dX \rangle \\ d(X^{-1}) &= -X^{-1}(dX)X^{-1} \end{split}$$

Здесь A,B — фиксированные матрицы; α — фиксированный скаляр; X,Y — произвольные дифференцируемые матричные функции (согласованные по размерностям, чтобы все операции имели смысл); ϕ — произвольная дифференцируемая скалярная функция.

Одним из самых важных является правило **производной композиции**. Пусть g(Y) и f(X) — две дифференцирумые функции, и мы знаем выражения для их дифференциалов: dg(Y) и df(X). Чтобы посчитать производную *композиции* $\phi(X) := g(f(X))$, как и в скалярном случае, нужно:

- взять выражение посчитанного дифференциала dg(Y);
- подставить в него вместо Y значение f(X), а вместо dY значение df(X).

Пример

Рассмотрим функцию $\phi(x) := \ln \langle Ax, x \rangle$, где $A \in \mathbb{S}^n_{++}$. В данном случае

$$g(y) := \ln(y), \quad dg(y) = \frac{dy}{y}; \qquad f(x) := \langle Ax, x \rangle, \quad df(x) = 2\langle Ax, dx \rangle.$$

Подставляем формально в dg(y) вместо y выражение для $f(x)=\langle Ax,x\rangle,$ а вместо dy выражение для $df(x)=2\overline{\langle Ax,dx\rangle}$:

$$d\phi(x) = \frac{2\langle Ax, dx \rangle}{\langle Ax, x \rangle} \qquad \text{(B нотации с $\ast D$»-большим:} \quad D\phi(x)[h] = \frac{2\langle Ax, h \rangle}{\langle Ax, x \rangle}\text{)}.$$

Обычно, все возникающие на практике матрично-векторные функции составлены с помощью табличных функций и стандартных операций над ними. Благодаря универсальности приведённых правил,

дифференцировать сколь угодно сложные функции такого типа становится настолько же просто, как и дифференцировать одномерные функции.

Полученное в конце концов выражение нужно привести к одному из канонических видов:

Выход Вход	Скаляр	Вектор	Матрица
Скаляр	df(x) = f'(x)dx $(f'(x): скаляр; dx: скаляр)$	_	_
Вектор	$df(x) = \langle \nabla f(x), dx \rangle$ ($\nabla f(x)$: вектор; dx : вектор)	$df(x) = J_f(x)dx$ $(J_f(x)$: матрица; dx : вектор)	_
Матрица	$df(X) = \langle \nabla f(X), dX \rangle$ $(\nabla f(X)$: матрица; dX : матрица)	_	_

Случаи, отмеченные «—», нас интересовать не будут. Объект $\nabla f(x)$ (вектор для функции векторного аргумента и матрица для функции матричного аргумента) называется **градиентом**. Матрица $J_f(x)$ называется **матрицей Якоби**.

Найти вторую производную функции <math>f(X) можно по следующему «алгоритму»:

- \circ посчитать первую производную функции; зафиксировать в выражениии для df(X) приращение dX обозначить его как dX_1 ;
- \circ посчитать производную для функции g(X) = df(X), считая dX_1 фиксированным (константа). Новое приращение обозначать dX_2 .

Пример

Ввернёмся к функции $\phi(x) = \ln \langle Ax, x \rangle$, где $A \in \mathbb{S}^n_{++}$. Мы уже посчитали её первую производную: $d\phi(x) = \frac{2\langle Ax, dx \rangle}{\langle Ax, x \rangle}$. Обозначим dx за dx_1 и рассмотрим новую функцию:

$$g(x) = \frac{2\langle Ax, dx_1 \rangle}{\langle Ax, x \rangle}$$

Найдём производную g(x), считая, что dx_1 — константный вектор:

$$\begin{split} d^2\phi(x) &= d\left(\frac{2\langle Ax, dx_1\rangle}{\langle Ax, x\rangle}\right) = \frac{d(2\langle Ax, dx_1\rangle)\langle Ax, x\rangle - 2\langle Ax, dx_1\rangle d\langle Ax, x\rangle}{\langle Ax, x\rangle^2} \\ &= \frac{2\langle Adx_1, dx_2\rangle\langle Ax, x\rangle - 2\langle Ax, dx_1\rangle 2\langle Ax, dx_2\rangle}{\langle Ax, x\rangle^2} = \left\langle \left(\frac{2A}{\langle Ax, x\rangle} - \frac{4Axx^TA}{\langle Ax, x\rangle^2}\right)dx_1, dx_2\right\rangle. \end{split}$$

(В нотации с
$$D$$
-большим: $D^2\phi(x)[h_1,h_2]=\left\langle \left(\frac{2A}{\langle Ax,x\rangle}-\frac{4Axx^TA}{\langle Ax,x\rangle^2}\right)h_1,h_2\right\rangle$.)

Для второй производной каноническая форма для скалярной функции векторного аргумента

$$d^2 f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle.$$

Матрица $\nabla^2 f(x)$ называется **гессианом**. Для дважды непрерывно дифференцируемых функций гессиан является симметричной матрицей.

1.2 Задачи

Задача 1 (Квадратичная функция). Найти первую и вторую производные df(x) и $d^2f(x)$, а также градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$ функции

$$f(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle + c, \qquad x \in \mathbb{R}^n,$$

где $A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$.

Решение. Найдем первую производную:

$$\boxed{df(x)} = d\left(\frac{1}{2}\langle Ax, x\rangle - \langle b, x\rangle + c\right) = \frac{1}{2}d\langle Ax, x\rangle - d\langle b, x\rangle = \frac{1}{2}2\langle Ax, dx\rangle - \langle b, dx\rangle = \langle Ax - b, dx\rangle}$$

Заметим, что df(x) уже записан в канонической форме $df(x) = \langle \nabla f(x), dx \rangle$, поэтому

$$\nabla f(x) = Ax - b$$

Теперь найдём вторую производную:

$$\boxed{d^2f(x)} = d\langle Ax - b, dx_1 \rangle = \langle d(Ax - b), dx_1 \rangle = \langle d(Ax), dx_1 \rangle = \langle Adx_2, dx_1 \rangle}.$$

Чтобы найти гессиан, приведем $d^2f(x)$ к канонической форме $d^2f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle$:

$$d^2 f(x) = \langle A dx_1, dx_2 \rangle \quad \Rightarrow \quad \nabla^2 f(x) = A$$

Задача 2. Найти первую и вторую производные df(x) и $d^2f(x)$, а также градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$ функции

$$f(x) := \frac{1}{2} ||Ax - b||_2^2, \quad x \in \mathbb{R}^n,$$

где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$.

Решение. Найдем первую производную:

$$\boxed{df(x)} = d\left(\frac{1}{2}\|Ax - b\|_2^2\right) = \{d(\|x\|_2^2) = d\langle x, x\rangle = 2\langle x, dx\rangle\} = \frac{1}{2}\mathbb{Z}\langle Ax - b, d(Ax - b)\rangle = \langle Ax - b, Adx\rangle}.$$

Чтобы найти градиент, приведем df(x) к канонической форме $df(x) = \langle \nabla f(x), dx \rangle$:

$$df(x) = \langle A^T(Ax - b), dx \rangle \quad \Rightarrow \quad \nabla f(x) = A^T(Ax - b)$$

Теперь найдём вторую производную:

$$\boxed{d^2 f(x)} = d\langle Ax - b, Adx_1 \rangle = \langle d(Ax - b), Adx_1 \rangle = \langle Adx_2, Adx_1 \rangle = \langle dx_2, A^T Adx_1 \rangle}$$

Чтобы найти гессиан, приведем $d^2f(x)$ к канонической форме $d^2f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle$:

$$d^2 f(x) = \langle A^T A dx_1, dx_2 \rangle \quad \Rightarrow \quad \nabla^2 f(x) = A^T A$$

Задача 3 (Куб евклидовой нормы). Найти первую и вторую производные df(x) и $d^2f(x)$, а также градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$ функции

$$f(x) := \frac{1}{3} ||x||_2^3, \quad x \in \mathbb{R}^n.$$

Решение. Найдем первую производную:

$$\boxed{df(x)} = d\left(\frac{1}{3}\|x\|_2^3\right) = \frac{1}{3}d\langle x, x\rangle^{3/2} = \frac{1}{\cancel{\beta}}\frac{\cancel{\beta}}{2}\langle x, x\rangle^{1/2}d\langle x, x\rangle = \frac{1}{\cancel{2}}\|x\|_2(\cancel{2}\langle x, dx\rangle)\boxed{=\|x\|_2\langle x, dx\rangle}}$$

Чтобы найти градиент, приведем df(x) к канонической форме $df(x) = \langle \nabla f(x), dx \rangle$:

$$df(x) = \langle ||x||_2 x, dx \rangle \quad \Rightarrow \quad \nabla f(x) = ||x||_2 x$$

Теперь найдем вторую производную:

$$\boxed{d^2 f(x)} = d(\|x\|_2 \langle x, dx_1 \rangle) = \underbrace{d(\|x\|_2)}_{=d(\langle x, x \rangle^{1/2})} \langle x, dx_1 \rangle + \|x\|_2 d\langle x, dx_1 \rangle
= \left(\frac{1}{2} \langle x, x \rangle^{-1/2} (2\langle x, dx_2 \rangle) \langle x, dx_1 \rangle + \|x\|_2 \langle dx_2, dx_1 \rangle
= \|x\|_2^{-1} \langle x, dx_2 \rangle \langle x, dx_1 \rangle + \|x\|_2 \langle dx_2, dx_1 \rangle \right).$$

Чтобы найти гессиан, приведем $d^2f(x)$ к канонической форме $d^2f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle$:

$$d^{2}f(x) = ||x||_{2}^{-1} \langle dx_{1}, x \rangle \langle x, dx_{2} \rangle + ||x||_{2} \langle dx_{1}, dx_{2} \rangle$$

$$= \langle (||x||_{2}^{-1} x x^{T} + ||x||_{2} I_{n}) dx_{1}, dx_{2} \rangle \Rightarrow \nabla^{2}f(x) = ||x||_{2}^{-1} x x^{T} + ||x||_{2} I_{n}.$$

Отметим, что полученная формула для гессиана (и второй производной) верна только при $x \neq 0$, поскольку значение $\|x\|_2^{-1}$ не определено для x=0. Такое ограничение возникло из-за того, что в самом начале мы воспользовались правилом произведения, и у нас возникла производная $d(\|x\|_2)$, которая не существует в точке x=0. Тем не менее, можно показать, что рассматриваемая функция f является всюду дважды непрерывно дифференцируемой, и ее вторая производная в точке x=0 равна нулю. Таким образом, можно сказать, что полученная формула, на самом деле, верна для любых значений x, с оговоркой, что в точке x=0 значение $\|x\|_2^{-1}xx^T$ надо понимать как 0 (предел при $x\to 0$).

Задача 4 (Евклидова норма). Найти первую и вторую производные df(x) и $d^2f(x)$, а также градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$ функции

$$f(x) := ||x||_2, \quad x \in \mathbb{R}^n \setminus \{0\}.$$

Решение. Найдем первую производную:

$$\boxed{df(x)} = d(\|x\|_2) = d(\langle x, x \rangle^{1/2}) = \frac{1}{2} \langle x, x \rangle^{-1/2} d\langle x, x \rangle = \frac{1}{2} \|x\|_2^{-1} 2\langle x, dx \rangle = \|x\|_2^{-1} \langle x, dx \rangle}$$

Чтобы найти градиент, приведем df(x) к канонической форме $df(x) = \langle \nabla f(x), dx \rangle$:

$$df(x) = \langle ||x||_2^{-1} x, dx \rangle \quad \Rightarrow \quad \boxed{\nabla f(x) = ||x||_2^{-1} x}$$

Теперь найдем вторую производную:

$$\begin{bmatrix}
d^{2}f(x)
\end{bmatrix} = d(\|x\|_{2}^{-1}\langle x, dx_{1}\rangle) = d(\|x\|_{2}^{-1})\langle x, dx_{1}\rangle + \|x\|_{2}^{-1}d\langle x, dx_{1}\rangle
= -\|x\|_{2}^{-2}d(\|x\|_{2})\langle x, dx_{1}\rangle + \|x\|_{2}^{-1}\langle dx_{2}, dx_{1}\rangle
= -\|x\|_{2}^{-2}(\|x\|_{2}^{-1}\langle x, dx_{2}\rangle)\langle x, dx_{1}\rangle + \|x\|_{2}^{-1}\langle dx_{2}, dx_{1}\rangle
= \|x\|_{2}^{-1}\langle dx_{2}, dx_{1}\rangle - \|x\|_{2}^{-3}\langle x, dx_{2}\rangle\langle x, dx_{1}\rangle.$$

Чтобы найти гессиан, приведем $d^2 f(x)$ к канонической форме $d^2 f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle$:

$$d^{2}f(x) = ||x||_{2}^{-1}(\langle dx_{1}, dx_{2} \rangle - ||x||_{2}^{-2}\langle dx_{1}, x \rangle \langle x, dx_{2} \rangle)$$

$$= \langle ||x||_{2}^{-1}(I_{n} - ||x||_{2}^{-2}xx^{T})dx_{1}, dx_{2} \rangle \Rightarrow \boxed{\nabla^{2}f(x) = ||x||_{2}^{-1}(I_{n} - ||x||_{2}^{-2}xx^{T})}.$$

Задача 5 (Логистическая функция). Найти первую и вторую производные df(x) и $d^2f(x)$, а также градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$ функции

$$f(x) := \ln(1 + \exp(\langle a, x \rangle)), \quad x \in \mathbb{R}^n,$$

где $a \in \mathbb{R}^n$.

Решение. Найдем первую производную:

$$\frac{df(x)}{df(x)} = d(\ln(1 + \exp(\langle a, x \rangle))) = \left\{ d(\ln(x)) = \frac{dx}{x} \right\} = \frac{d(1 + \exp(\langle a, x \rangle))}{1 + \exp(\langle a, x \rangle)} = \frac{d(\exp(\langle a, x \rangle))}{1 + \exp(\langle a, x \rangle)}$$

$$= \left\{ d(\exp(x)) = \exp(x) dx \right\} = \frac{\exp(\langle a, x \rangle) d\langle a, x \rangle}{1 + \exp(\langle a, x \rangle)} = \frac{\exp(\langle a, x \rangle) \langle a, dx \rangle}{1 + \exp(\langle a, x \rangle)} = \frac{\langle a, dx \rangle}{1 + \exp(\langle a, x \rangle)}$$

$$= \sigma(\langle a, x \rangle) \langle a, dx \rangle.$$

Здесь введено обозначение $\sigma:\mathbb{R}\to\mathbb{R}$ для $\mathit{curmoudhoй}$ $\mathit{функции}$:

$$\sigma(x) := \frac{1}{1 + \exp(-x)} \, .$$

Чтобы найти градиент, приведем df(x) к канонической форме $df(x) = \langle \nabla f(x), dx \rangle$:

$$df(x) = \langle \sigma(\langle a, x \rangle) a, dx \rangle \quad \Rightarrow \quad \nabla f(x) = \sigma(\langle a, x \rangle) a$$

Таким образом, градиент $\nabla f(x)$ — это вектор, коллинеарный вектору a с коэффициентом $\sigma(\langle a, x \rangle) \in (0, 1)$. В зависимости от точки x меняется лишь длина вектора $\nabla f(x)$, но не его направление.

Теперь найдем вторую производную:

$$\boxed{d^2 f(x)} = d(\sigma(\langle a, x \rangle) \langle a, dx_1 \rangle) = d(\sigma(\langle a, x \rangle)) \langle a, dx_1 \rangle = \{d(\sigma(x)) = \sigma'(x) dx\} = (\sigma'(\langle a, x \rangle) d\langle a, x \rangle) \langle a, dx_1 \rangle \\
= \sigma'(\langle a, x \rangle) \langle a, dx_2 \rangle \langle a, dx_1 \rangle = \{\sigma'(x) = \sigma(x)(1 - \sigma(x))\} \\
= \sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle)) \langle a, dx_2 \rangle \langle a, dx_1 \rangle .$$

Чтобы найти гессиан, приведем $d^2f(x)$ к канонической форме $d^2f(x) = \langle \nabla^2 f(x) dx_1, dx_2 \rangle$:

$$d^{2}f(x) = \sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle))\langle dx_{1}, a \rangle \langle a, dx_{2} \rangle$$

$$= \langle (\sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle))aa^{T})dx_{1}, dx_{2} \rangle \quad \Rightarrow \quad \boxed{\nabla^{2}f(x) = \sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle))aa^{T}}$$

Заметим, что гессиан $\nabla^2 f(x)$ — это одноранговая матрица, пропорциональная матрице aa^T с коэффициентом $\sigma(\langle a,x\rangle)(1-\sigma(\langle a,x\rangle))\in(0,0.25)$. Точка x влияет лишь на коэффициент пропорциональности.

Задача 6 (Логарифм определителя). Найти первую и вторую производные df(X) и $d^2f(X)$, а также градиент $\nabla f(X)$ функции

$$f(X) := \ln(\operatorname{Det}(X)),$$

заданной на множестве \mathbb{S}^n_{++} в пространстве \mathbb{S}^n .

Решение. Найдём первую производную:

$$\boxed{df(X)} = d(\ln \operatorname{Det}(X)) = \left\{ d(\ln(x)) = \frac{dx}{x} \right\} = \frac{d(\operatorname{Det}(X))}{\operatorname{Det}(X)} = \frac{\operatorname{Det}(X)\langle X^{-1}, dX \rangle}{\operatorname{Det}(X)} \boxed{=\langle X^{-1}, dX \rangle}$$

Заметим, что df(X) уже и так записан в канонической форме $df(X) = \langle \nabla f(X), dX \rangle$. Поэтому,

$$\nabla f(X) = X^{-1}$$

Теперь найдем вторую производную:

$$\boxed{d^2 f(X) = d\langle X^{-1}, dX_1 \rangle = \langle d(X^{-1}), dX_1 \rangle = \langle -X^{-1}(dX_2)X^{-1}, dX_1 \rangle = -\langle X^{-1}(dX_2)X^{-1}, dX_1 \rangle}$$

В итоге получилась билинейная форма от приращений dX_1 и dX_2 в пространстве матриц. Рассмотрим

$$D^2 f(X)[H, H] = -\langle X^{-1}HX^{-1}, H \rangle.$$

Покажем, что $D^2f(X)[H,H]$ имеет отрицательный знак для всех $X\in\mathbb{S}^n_{++}$ и $H\in\mathbb{S}^n$, т. е. что функция f является вогнутой функцией. Действительно, раскладывая $X^{-1}=X^{-1/2}X^{-1/2}$, перепишем $D^2f(X)[H,H]$ в следующем виде:

$$D^2f(X)[H,H] = -\langle X^{-1/2}HX^{-1/2}, X^{-1/2}HX^{-1/2}\rangle = -\|X^{-1/2}HX^{-1/2}\|_F^2.$$

Отсюда видно, что $D^2 f(X)[H,H]$, действительно, имеет отрицательный знак.

Задача 7. Найти производную df(X) и градиент $\nabla f(X)$ функции

$$f(X) := ||AX - B||_F, \quad X \in \mathbb{R}^{k \times n},$$

где $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{m \times n}$.

Решение. Вычислим отдельно $d(\|X\|_F)$:

$$\begin{split} d(\|X\|_F) &= d(\langle X, X \rangle^{1/2}) = \left\{ d(x^{1/2}) = \frac{1}{2} x^{-1/2} dx \right\} = \frac{1}{2} \langle X, X \rangle^{-1/2} d\langle X, X \rangle \\ &= \frac{1}{2} \|X\|_F^{-1} 2\langle X, dX \rangle = \|X\|_F^{-1} \langle X, dX \rangle. \end{split}$$

Теперь используем полученную формулу, чтобы найти df(X):

$$\boxed{df(X)} = d(\|AX - B\|_F) = \|AX - B\|_F^{-1} \langle AX - B, d(AX - B) \rangle$$
$$= \|AX - B\|_F^{-1} \langle AX - B, AdX \rangle.$$

Чтобы найти градиент, приведем df(X) к канонической форме $df(X) = \langle \nabla f(X), dX \rangle$:

$$df(X) = \langle \|AX - B\|_F^{-1} A^T (AX - B), dX \rangle \quad \Rightarrow \quad \nabla f(X) = \|AX - B\|_F^{-1} A^T (AX - B)$$

 $^{^{1}}$ В этом примере мы работаем в пространстве симметричных матриц \mathbb{S}^{n} , поэтому знак транспонирования можно опустить.

Задача 8. Найти производную df(X) и градиент $\nabla f(X)$ функции

$$f(X) := \text{Tr}(AXBX^{-1}), \quad X \in \mathbb{R}^{n \times n}, \text{ Det}(X) \neq 0,$$

где $A, B \in \mathbb{R}^{n \times n}$.

Решение. Для удобства перепишем след через скалярное произведение:

$$f(X) = \langle I_n, AXBX^{-1} \rangle.$$

Найдем первую производную:

$$\boxed{df(X)} = d\langle I_n, AXBX^{-1} \rangle = \langle I_n, d(AXBX^{-1}) \rangle = \langle I_n, (d(AXB))X^{-1} + (AXB)d(X^{-1}) \rangle$$
$$= \langle I_n, (A(dX)B)X^{-1} + (AXB)(-X^{-1}(dX)X^{-1}) \rangle = \langle I_n, A(dX)BX^{-1} - AXBX^{-1}(dX)X^{-1} \rangle$$

Чтобы найти градиент, приведем df(X) к канонической форме $df(X) = \langle \nabla f(X), dX \rangle$:

$$df(X) = \langle I_n, A(dX)BX^{-1} \rangle - \langle I_n, AXBX^{-1}(dX)X^{-1} \rangle =$$

$$= \langle A^T X^{-T} B^T, dX \rangle - \langle X^{-T} B^T X^T A^T X^{-T}, dX \rangle$$

$$= \langle A^T X^{-T} B^T - X^{-T} B^T X^T A^T X^{-T}, dX \rangle$$

$$\Rightarrow \boxed{\nabla f(X) = A^T X^{-T} B^T - X^{-T} B^T X^T A^T X^{-T}}$$

Задача 9. Рассмотрим функцию скалярного аргумента

$$\phi(\alpha) := f(x + \alpha p), \quad \alpha \in \mathbb{R},$$

где $x, p \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}$ — дважды непрерывно дифференцируемая функция. Найдите первую и вторую производные $\phi'(\alpha)$ и $\phi''(\alpha)$ и выразите их через градиент $\nabla f(\cdot)$ и гессиан $\nabla^2 f(\cdot)$.

Решение. В этой задаче нужно постоянно помнить, что дифференцирование выполняется по α , а x — постоянный вектор.

Найдем первую производную:

$$d\phi(\alpha) = d_{\alpha}(f(x + \alpha p)) = \{df(x) = \langle \nabla f(x), dx \rangle\} = \langle \nabla f(x + \alpha p), d_{\alpha}(x + \alpha p) \rangle$$
$$= \langle \nabla f(x + \alpha p), (d\alpha)p \rangle = \langle \nabla f(x + \alpha p), p \rangle d\alpha.$$

Здесь последнее равенство следует из того, что $d\alpha$ — это скаляр. Заметим, что мы представили $d\phi(\alpha)$ в канонической форме $d\phi(\alpha) = \phi'(\alpha)d\alpha$. Значит,

$$\phi'(\alpha) = \langle \nabla f(x + \alpha p), p \rangle$$

Теперь найдем вторую производную:

$$d^{2}\phi(\alpha) = d_{\alpha}(\langle \nabla f(x+\alpha p), p \rangle d\alpha_{1}) = \langle d_{\alpha} \nabla f(x+\alpha p), p \rangle d\alpha_{1} = \{d\nabla f(x) = \nabla^{2} f(x) dx\}$$
$$= \langle \nabla^{2} f(x+\alpha p) d_{\alpha}(x+\alpha p), p \rangle d\alpha_{1} = \langle \nabla^{2} f(x+\alpha p) (d\alpha_{2}) p, p \rangle d\alpha_{1}$$
$$= \langle \nabla^{2} f(x+\alpha p) p, p \rangle d\alpha_{1} d\alpha_{2}.$$

Таким образом, из канонической формы $d^2\phi(\alpha) = \phi''(\alpha)\alpha_1\alpha_2$, получаем

$$\phi''(\alpha) = \langle \nabla^2 f(x + \alpha p)p, p \rangle$$

Задача 10. Рассмотрим функцию скалярного аргумента

$$\phi(\alpha) := ||r(x + \alpha p)||_2, \quad \alpha \in \mathbb{R}_+, \ r(x + \alpha p) \neq 0,$$

где $x, p \in \mathbb{R}^n, r : \mathbb{R}^n \to \mathbb{R}^m$ — дифференцируемое отображение. Найдите производную $\phi'(\alpha)$ и выразите ее через матрицу Якоби $J_r(\cdot)$.

Решение. В этой задаче, как и в предыдущей, нужно постоянно помнить, что дифференцирование выполняется по α , а x — постоянный вектор.

Найдем первую производную:

$$\begin{split} d\phi(\alpha) &= d_{\alpha}(\|r(x+\alpha p)\|_{2}) = \left\{d\|x\|_{2} = \frac{\langle x, dx \rangle}{\|x\|_{2}}\right\} = \frac{\langle r(x+\alpha p), d_{\alpha}r(x+\alpha p) \rangle}{\|r(x+\alpha p)\|_{2}} = \left\{dr(x) = J_{r}(x)dx\right\} \\ &= \frac{\langle r(x+\alpha p), J_{r}(x+\alpha p)d_{\alpha}(x+\alpha p) \rangle}{\|r(x+\alpha p)\|_{2}} = \frac{\langle r(x+\alpha p), J_{r}(x+\alpha p)(d\alpha)p \rangle}{\|r(x+\alpha p)\|_{2}} \\ &= \frac{\langle r(x+\alpha p), J_{r}(x+\alpha p)p \rangle}{\|r(x+\alpha p)\|_{2}} d\alpha. \end{split}$$

Отсюда

$$\phi'(\alpha) = \frac{\langle r(x+\alpha p), J_r(x+\alpha p)p \rangle}{\|r(x+\alpha p)\|_2}.$$

2 Условия оптимальности

2.1 Теория

Рассмотрим функцию $f: X \to \mathbb{R}$, где $X \subseteq U$ — подмножество нормированного линейного пространства, например, $U = \mathbb{R}^n$ — векторы или $U = \mathbb{R}^{n \times m}$ — матрицы.

Определение 2.1 (Локальные экстремумы). Точка $x \in X$ называется точкой локального минимума функции f, если существует шар некоторого радиуса r > 0, с центром в этой точке: $W = \{z \in U : ||z - x|| < r\}$, и выполнено:

$$f(x) < f(z)$$
 для любого $z \in W \cap X$.

Если для всех $z \in W$ кроме z = x в определении выполняется строгое неравенство, то локальный минимум называется *строгим локальным минимумом*.

Если неравенство выполнено в другую сторону, то точка x называется локальным максимумом. Локальные минимумы и максимумы вместе называются локальными экстремумами.

Если функция является дифференцируемой, то отыскать её локальные экстремумы иногда удаётся с помощью следующих утверждений.

Утверждение 2.2 (условие оптимальности первого порядка). Пусть для функции $f: X \to \mathbb{R}$ точка x является точкой локального экстремума.

Тогда если функция непрерывно-дифференцируема в окрестности этой точки, то её производная в этой точке равна нулю:

$$df(x) = 0.$$

Замечание 2.3. Равенство df(x) = 0 означает, что Df(x)[h] = 0 для любого $h \in U$.

Замечание 2.4. Напомним, что для функции векторного аргумента $f: \mathbb{R}^n \to \mathbb{R}$ ее производную всегда можно представить с помощью градиента: $Df(x)[h] = \langle \nabla f(x), h \rangle$. В этом случае равенство производной нулю эквивалентно равенству нулю градиента:

$$df(x) = 0$$
 \Leftrightarrow $\langle \nabla f(x), h \rangle = 0$ для любого $h \in \mathbb{R}^n$ \Leftrightarrow $\nabla f(x) = 0$.

Рис. 1: Пример экстремумов из Википедии.

Рис. 2: Примеры седловых точек (слева — красная точка, справа — белая) из Википедии.

Замечание 2.5. Важно понимать, что утверждение 2.2 является лишь необходимым условием локального минимума. Например, для функции $f(x) = x^2$ производная равна нулю в единственной точке x = 0, и эта точка действительно является локальным минимумом функции (в данном случае и глобальным). Но для $f(x) = x^3$, в той же точке x = 0 — производная равна нулю, но сама точка не является ни локальным минимумом, ни локальным максимумом.

Определение 2.6. Точка x называется cmauuonaphoù moчкоù, если производная в ней обращается в ноль: df(x) = 0. Стационарная точка, которая не является ни локальным минимумом, ни локальным максимумом, называется cednosoù moчкoù.

В случае функции двух переменных «седловая точка» действительно напоминает седло. Но мы используем это понятие для произвольных функций, в значении, указанном выше.

Для классификации стационарных точек удобным оказывается следующее утверждение.

Утверждение 2.7 (условия оптимальности второго порядка). Пусть функции $f: X \to \mathbb{R}$ дважды непрерывно дифференцируема в окрестности стационарной точки $x \in X$. Тогда:

- ullet если $D^2f(x)[h,h]>0$ для всех $h\in U,\,h\neq 0,\,$ то x- строгий локальный минимум;
- если $D^2f(x)[h,h]<0$ для всех $h\in U,\,h\neq 0,\,mo\,x\,-$ строгий локальный максимум;
- если существует $h, h' \in U$ такие, что: $D^2 f(x)[h, h] > 0$ и $D^2 f(x)[h', h'] < 0$, то x седловая точка.

Также, справедливы и необходимые условия оптимальности второго порядка:

- если x локальный минимум, то $D^2 f(x)[h,h] \ge 0$ для всех $h \in U$;
- \bullet если x локальный максимум, то $D^2 f(x)[h,h] \leq 0$ для всех $h \in U$.

Замечание 2.8. Напомним, что для функции векторного аргумета $f: \mathbb{R}^n \to \mathbb{R}$ её вторую производную всегда можно представить с помощью матрицы — гессиана:

$$D^2 f(x)[h,h] = \langle \nabla^2 f(x)h, h \rangle.$$

В этом случае утверждение 2.7 можно переписать в терминах знакоопределённости гессиана:

- ullet если $abla^2 f(x) \succ 0$, то x строгий локальный минимум;
- если $\nabla^2 f(x) \prec 0$, то x строгий локальный максимум;
- если $\nabla^2 f(x)$ неопределённая матрица (т.е. не выполнено ни $\nabla^2 f(x) \succeq 0$ ни $\nabla^2 f(x) \preceq 0$), то x седловая точка.
- если x локальный минимум, то $\nabla^2 f(x) \succeq 0$;
- если x локальный максимум, то $\nabla^2 f(x) \leq 0$.

Итак, в общем случае условие оптимальности первого порядка (Df(x)=0) является только neo6-xodumыm условием глобального минимума — точка x может быть не глобальным, а лишь локальным минимумом, или вообще локальным максимумом или седловой точкой. Тем не менее, для определенного класса функций — $\kappa nacca$ выпуклых функций — условие оптимальности первого порядка является не просто необходимым, но также и docmamountum условием racca минимума.

Утверждение 2.9 (Условие оптимальности первого порядка для выпуклой функции). Пусть X является открытым множеством, и пусть $f: X \to \mathbb{R}$ — выпуклая дифференцируемая функция. Точка $x^* \in X$ является <u>глобальным</u> минимумом функции f тогда и только тогда, когда $\nabla f(x^*) = 0$. Другими словами, любая стационарная точка выпуклой функции автоматически является глобальным минимумом.

2.2 Задачи

Задача 11. Рассмотрим фунцию $f(x_1, x_2) = x_1^2 - x_2^2 + 2x_1$. Найти все ее стационарные точки.

Решение. Найдем градиент и гессиан:

$$\nabla f(x_1,x_2)=\begin{bmatrix}2x_1+2\\-2x_2\end{bmatrix}$$

$$\nabla^2 f(x_1,x_2)=\begin{bmatrix}2&0\\0&-2\end{bmatrix}\qquad -\qquad \text{всюду постоянная матрица}.$$

Градиент обращается в ноль в единственной точке: (-1,0).

 Γ ессиан — неопределённая матрица, значит стационарная точка (-1,0) — седловая.

Локальных экстремумов нет, функция неограниченная:

$$\inf_{x \in \mathbb{R}^2} f(x) = -\infty, \quad \sup_{x \in \mathbb{R}^2} f(x) = +\infty.$$

Задача 12 (Регрессия наименьших квадратов). Рассмотрим следующую задачу оптимизации:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2,$$

где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\mathrm{Rank}(A) = n$. Найдите множество ее решений и оптимальное значение целевой функции.

Решение. Прежде всего, перейдем от исходной негладкой задачи к эквивалентной ей гладкой:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2. \tag{2.1}$$

Заметим, что при таком переходе меняется лишь оптимальное значение целевой функции, а множество оптимальных решений остается неизменным.

Чтобы найти решения (2.1), воспользуемся условием оптимальности первого порядка:

$$\nabla(\|Ax - b\|_2^2) = 2A^T(Ax - b) = 0.$$

Заметим, что целевая функция в задаче (2.1) является выпуклой (как композиция выпуклой функции $x \mapsto \|x\|_2$ и аффинного преобразования $x \mapsto Ax - b$). Поэтому условие оптимальности первого порядка является не только необходимым, но также и достаточным условием того, что точка x является глобальным решением задачи (2.1). Итак, все решения задачи (2.1) — это решения следующей системы линейных уравнений, и только они:

$$A^T A x = A^T b. (2.2)$$

Уравнения (2.2) называются *нормальными уравнениями*. Заметим, что матрица A^TA является обратимой, поскольку она имеет полный ранг: согласно условию, Rank(A) = n, и из линейной алгебры известно, что $Rank(A^TA) = Rank(A)$. Отсюда заключаем, что нормальные уравнения (2.2) имеют единственное решение

$$x^* = (A^T A)^{-1} A^T b.$$

Таким образом, найденная точка x^* является единственным решением исходной задачи. Оптимальное значение целевой функции при этом равно

$$\boxed{\text{Opt}} := \|Ax^* - b\|_2 = \|A(A^T A)^{-1} A^T b - b\|_2}$$

Матрица $(A^TA)^{-1}A^T$ называется nceedoofpamhoй (по Муру-Пенроузу) и обозначается A^+ . Это прямое обобщение понятия обратной матрицы для неквадратных матриц. Если A квадратная и обратимая, то псевдообратная матрица A^+ совпадает с обратной матрицей A^{-1} .

Матрица $\Pi := A \left(A^T A\right)^{-1} A^T$ называется *проекционной матрицей* и проектирует заданный вектор b на линейную оболочку, натянутую на столбцы матрицы A.

Отметим, что задача (2.1) имеет решения всегда, даже если $\operatorname{Rank}(A) < n$. Действительно, как было показано выше, задача (2.1) разрешима тогда и только тогда, когда разрешимы нормальные уравнения (2.2). Нормальные уравнения (2.2) разрешимы тогда и только тогда, когда $A^Tb \in \operatorname{Im}(A^TA)$, где $\operatorname{Im}(A^TA)$ — образ матрицы A^TA . Из линейной алгебры известно, что $\operatorname{Im}(A^TA) = \operatorname{Im}(A^T)$. Значит, условие $A^Tb \in \operatorname{Im}(A^TA)$ всегда выполняется. Итак, задача (2.1) всегда разрешима, и в случае $\operatorname{Rank}(A) < n$ имеет бесконечное множество решений. (Одно из возможных решений записывается через псевдообратную матрицу.)

Задача 13. Для следующей задачи оптимизации найдите ее множество решений и оптимальное значение целевой функции:

$$\min_{X \in \mathbb{S}^n_{++}} \{ \langle S, X \rangle - \ln \mathrm{Det}(X) \},$$

где $S \in \mathbb{S}^n_{++}$.

Решение. Введем обозначение $f(X) := \langle S, X \rangle - \ln \mathrm{Det}(X)$. Запишем условие оптимальности первого порядка:

$$\nabla f(X) = S - X^{-1} = 0.$$

Заметим, что в нашем случае целевая функция f является выпуклой на рассматриваемом множестве \mathbb{S}^n_{++} как сумма двух выпуклых функций: $X \mapsto \langle S, X \rangle$ и $X \mapsto -\ln \mathrm{Det}(X)$. Поэтому условие оптимальности первого порядка является не только необходимым, но также и достаточным условием глобального минимума.

Из уравнения оптимальности находим $X = S^{-1}$. Итак, оптимальное решение единственное — это

$$X^* = S^{-1}.$$

Соответствующее оптимальное значение целевой функции равно

$$\boxed{\mathrm{Opt}} := f(X^*) = \langle S, S^{-1} \rangle - \ln \mathrm{Det}(S^{-1}) = \boxed{n + \ln \mathrm{Det}(S)}.$$

А Производные: теория

А.1 Определение

Начнём с напоминания понятия производной.

Для функции одной переменной $f: \mathbb{R} \to \mathbb{R}$ её производная в точке x обозначается f'(x) и определяется из равенства:

$$f(x+h) = f(x) + f'(x)h + o(h)$$
 для всех достаточно малых h .

Другими словами, зафиксировав некоторую точку x, мы хотим приблизить изменение функции f(x+h)-f(x) в окрестности этой точки с помощью линейной функции по h, и f'(x)h — наилучший способ это следать.

Рассмотрим теперь более общую ситуацию.

Пусть U и V суть конечномерные линейные пространства с нормами. Основными примерами таких пространств для нас будут служить числа: \mathbb{R} , векторы: \mathbb{R}^n и матрицы: $\mathbb{R}^{n \times m}$, а также их комбинации (декартовы произведения).

Рассмотрим функцию $f: X \to V$, где $X \subseteq U$.

Определение А.1 (Дифференцируемость). Пусть $x \in X$ — внутренняя точка множества X, и пусть $L: U \to V$ — линейный оператор. Будем говорить, что функция f дифференцируема g точке g с производной g, если для всех достаточно малых g с праведливо следующее разложение:

$$f(x+h) = f(x) + L[h] + o(||h||). \tag{A.1}$$

Если для любого линейного оператора $L:U\to V$ функция f не является дифференцируемой в точке x с производной L, то будем говорить, что f не является дифференцируемой в точке x. Если точка x не является внутренней точкой множества X, то оставим понятие дифференцируемости функции f в точке x неопределенным.

Замечание А.2. Выражение $o(\|h\|)$ имеет стандартное значение:

$$f(x+h) - f(x) - L[h] = o(||h||) \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \lim_{h \to 0} \frac{||f(x+h) - f(x) - L[h]||}{||h||} = 0.$$

Замечание А.3. Поскольку рассматриваемые пространства U и V являются конечномерными (а в конечномерном пространстве все нормы топологически эквивалентны), то не имеет значения, какие конкретно нормы используются в данном выше определении: если функция f является дифференцируемой в точке x с производной L для одного выбора норм, то f также будет дифференцируемой в точке x с производной L для любого другого выбора норм.

Утверждение А.4. Предположим, что функция f дифференцируема в точке x c производной L_1 u также дифференцируема в точке x c производной L_2 . Тогда $L_1 = L_2$.

Таким образом, если функция f является дифференцируемой в точке x, то ее производная L определяется единственным образом. Будем обозначать ее символом df(x).

Замечание А.5. Объект df зависит от двух параметров: точка $x \in X$, в которой мы аппроксимируем функцию, и приращение $h \in U$, которое откладывается от зафиксированной точки:

$$df: X \times U \to V$$
, линейный по второму аргументу — по «h».

Замечание A.6. Встречаются разные обозначения производной фунции f в точке x:

$$Df(x)[h] \equiv df(x)[h] \equiv Df(x)[\Delta x] \equiv df(x)[\Delta x].$$

Все они обозначают одно и то же. При работе с определением производной, удобно явным образом указывать приращение (h или $\Delta x)$ в квадратных скобках. При вычислении производных на практике, пользуясь уже известными посчитанными производными и свойствами пересчёта, приращение в квадратных скобках обычно не пишут: df(x) или даже просто df, когда понятно, о чём идёт речь.

Итак, производная функции в точке x — это линейный оператор df(x) который лучше всего аппроксимирует приращение функции:

$$f(x+h) - f(x) \approx Df(x)[h].$$

Ещё одним известным и важным понятием является производная функции по направлению. Оказывается, зная производную функции f мы можем легко посчитать её производную вдоль любого направления h.

Утверждение А.7. Пусть f дифференцируема в точке x. Выберем произвольное направление h. Тогда:

$$Df(x)[h] = \frac{\partial f(x)}{\partial h} := \lim_{t \to +0} \frac{f(x+th) - f(x)}{t}$$

То есть, чтобы посчитать $\frac{\partial f(x)}{\partial h}$ — производную функции f вдоль направления h, достаточно применить $df(x)[\cdot]$ к этому направлению.

Набор векторов

$$e_i = (0, \dots, 0, \frac{1}{i}, 0, \dots, 0) \in \mathbb{R}^n, \quad i = 1, \dots, n$$

называется cmandapmным базиcom в \mathbb{R}^n .

Если для некоторого i у функции существует (двусторонняя) производная вдоль направления e_i , то её называют *частной производной по i-ой координате*:

$$\frac{\partial f(x)}{\partial x_i} := \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} = Df(x)[e_i].$$

Обратите внимание, что функция может быть недифференцируемой, даже если у неё существуют производные по всем направлениям.

Пример А.8. Рассмотрим функцию $f(x) = ||x||_2$. Найдём её производную по направлению h в точке x = 0:

$$\frac{\partial \|x\|_2}{\partial h}\Big|_{x=0} = \lim_{t \to +0} \frac{\|0+th\|_2 - \|0\|_2}{t} = \lim_{t \to +0} \frac{t\|h\|_2}{t} = \|h\|_2.$$

Если бы функция $f(x) = ||x||_2$ была дифференцируема в нуле, то по утверждению 2:

$$Df(0)[h] = \frac{\partial f(0)}{\partial h} = ||h||_2,$$

но функция $\|h\|_2$ не является линейной, что противоречит тому, что производная — линейный оператор. Значит $\|x\|_2$ не дифференцируема в нуле, хотя и имеет производные вдоль всех направлений.

Градиент функции, матрица Якоби.

• В случае $U = \mathbb{R}^n$, $V = \mathbb{R}$ линейную функцию Df(x)[h] всегда можно представить с помощью скалярного произведения с некоторым вектором:

$$Df(x)[h] = \langle a_x, h \rangle$$
 где $a_x \in \mathbb{R}^n$ — разный для каждого x .

Вектор a_x называется градиентом функции f в точке x и обозначается $\nabla f(x)$.

В стандартном базисе градиент функции представляется в виде вектора из частных производных:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right) \in \mathbb{R}^n.$$

Как и все векторы у нас, этот вектор — вектор-столбец.

• В случае $U = \mathbb{R}^{n \times m}$, $V = \mathbb{R}$ линейную функцию df(x)[H] всегда можно представить с помощью скалярного произведения с некоторой матрицей:

$$df(x)[H] = \langle A_x, H \rangle, \quad A_x, H \in \mathbb{R}^{n \times m}.$$

Эта матрица также называется градиентом функции в точке x: $\nabla f(x) = A_x$ и в стандартном базисе (из матриц, у которых все нули, кроме одной единички) записывается в виде матрицы частных производных:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_{ij}}(x)\right)_{i=1,j=1}^{n,m}$$

• В случае $U = \mathbb{R}^m$, $V = \mathbb{R}^n$, линейный оператор $df(x)[\cdot]$, зафиксировав базисы, всегда можно представить матрицей:

$$Df(x)[h] = J_x h, \quad J_x \in \mathbb{R}^{n \times m}.$$

Матрица J_x называется *матрицей Якоби* функции f. В стандартном базисе она состоит из частных производных:

$$J_x = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{i=1,j=1}^{n,m}.$$

Утверждение А.9 (Дифференциальное исчисление). Пусть U и V — векторные пространства, X — подмножество U, $x \in X$ — внутренняя точка X. Справедливы следующие свойства:

- (а) (Производная константы) Пусть $f: X \to V$ постоянная функция, т. е. найдется $v \in V$, что f(x') = v для всех $x' \in X$. Тогда f дифференцируема в точке x, u df(x) = 0.
- (b) (Производная тождественной функции) Пусть $f: X \to V$ тождественная функция, т. е. f(x') = x' для всех $x' \in X$. Тогда f дифференцируема в точке x, u ее производная такжее тождественная функция: Df(x)[h] = h для всех $h \in U$.
- (c) (Линейность) Пусть $f: X \to V \ u \ g: X \to V функции.$ Если $f \ u \ g$ дифференцируемы в точке $x, \ a \ c_1, c_2 \in \mathbb{R} -$ числа, то функция $(c_1 f + c_2 g)$ также дифференцируема в точке $x, \ u$

$$d(c_1 f + c_2 q)(x) = c_1 df(x) + c_2 dq(x).$$

(d) (Правило произведения) Пусть $\alpha: X \to \mathbb{R} \ u \ f: X \to V \ -$ функции. Если $\alpha \ u \ f$ дифференцируемы в точке $x, \ mo$ функция αf также дифференцируема в точке $x, \ u$

$$D(\alpha f)(x)[h] = (D\alpha(x)[h])f(x) + \alpha(x)(Df(x)[h])$$

для всех $h \in U$.

(e) (Правило композиции) Пусть Y — подмножество V, $f: X \to Y$ — функция. Также пусть W — векторное пространство, $g: Y \to W$ — функция. Если f дифференцируема в точке x, u g дифференцируема в точке f(x), то ux композиция $(g \circ f): X \to W$ (определенная как $(g \circ f)(x) = g(f(x))$) также будет дифференцируема в точке x, u

$$D(g\circ f)(x) = Dg(f(x)) \Big[\, d\!f(x) \, \Big] \qquad \text{ или, более подробно, } \qquad D(g\circ f)(x)[h] = Dg(f(x)) \Big[\, Df(x)[h] \, \Big].$$

(f) (Правило частного) Пусть $\alpha: X \to \mathbb{R}$ и $f: X \to V$ — функции. Если α и f дифференцируемы g точке g, и если g не обращается g ноль на g, то функция g также дифференцируема g точке g, и

$$D\left(\frac{1}{\alpha}f\right)(x)[h] = \frac{\alpha(x)(Df(x)[h]) - (D\alpha(x)[h])f(x)}{\alpha(x)^2}.$$

для всех $h \in U$.

Доказательство. Первые четыре свойства доказываются по определению, а последнее выводится из правил произведения и композиции.

Заметим, что правило произведения в утверждении А.9 установлено только в случае, когда одна из функций является скалярной. Это понятно, поскольку в векторных пространствах определено лишь умножение на скаляр, а не на произвольный элемент векторного пространства. Тем не менее, в некоторых частных случаях правило произведения остается верным даже если обе функции являются не скалярными. Например, справедливо следующее утверждение.

Утверждение А.10. Пусть U — векторное пространство, X — подмножество U, $x \in X$ — внутренняя точка X. Пусть $f: X \to \mathbb{R}^{m \times n}$ и $g: X \to \mathbb{R}^{n \times k}$ — матрично-значные функции. Предположим, что f и g дифференцируемы в точке x. Тогда функция fg также дифференцируема в точке x, u

$$D(fg)(x)[h] = (Df(x)[h])g(x) + f(x)(Dg(x)[h]).$$

для всех $h \in U$. (Здесь под операцией умножения подразумевается матричное умножение, поэтому порядок множителей имеет значение.)

А.2 Вторая производная

Пусть функция $f:X \to V$ дифференцируема в каждой точке $x \in X \subseteq U$.

Рассмотрим производную функции f при фиксированном приращении $h_1 \in U$ как функцию от x:

$$g(x) = Df(x)[h_1].$$

Определение А.11. Если для функции g в некоторой точке x существует производная, то она называется *второй производной* функции f в точке x:

$$D^2 f(x)[h_1, h_2] := Dg(x)[h_2].$$

Можно показать, что $D^2 f(x)[h1, h2]$ является билинейной функцией по h_1 и h_2 .

По аналогии определяются третья: $D^3 f(x)[h_1,h_2,h_3]$, четвёртая и производные более высоких порядков.

Если производная df(x) является непрерывной функцией по x, то говорят, что f — непрерывно дифференцируема. Если вторая производная $D^2f(x)$ непрерывна по x, то тогда f — дважды непрерывно дифференцируема.

Для функций $f: \mathbb{R}^n \to \mathbb{R}$ вторую производную, как и любую билинейную форму, можно представить с помощью матрицы:

$$D^2 f(x)[h_1, h_2] = \langle H_x h_1, h_2 \rangle, \quad H_x \in \mathbb{R}^{n \times n}.$$

Матрица H_x называется *гессианом* функции f в точке x и обозначается обычно $\nabla^2 f(x)$. В стандартном базисе эта матрица состоит из вторых частных производных:

$$\nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i=1,j=1}^{n,n}$$

Для дважды непрерывно дифференцируемой функции её гессиан — симметричная матрица:

$$\nabla^2 f(x) \in \mathbb{S}^n$$
.

А.3 Формула Тейлора

Для дважды непрерывно-дифференцируемой функции справедлива формула Тейлора:

$$f(x+h) = f(x) + Df(x)[h] + \frac{1}{2}D^2f(x)[h,h] + o(\|h\|^2).$$

Для функции $f: \mathbb{R}^n \to \mathbb{R}$ её можно записать, используя градиент и гессиан:

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle \nabla^2 f(x)h, h \rangle + o(\|h\|^2).$$

Если функция имеет непрерывные производные до порядка k включительно, то формулу Тейлора можно записать до k-ой производной:

$$f(x+h) = f(x) + Df(x)[h] + \frac{1}{2!}D^2f(x)[h,h] + \frac{1}{3!}D^3f(x)[h,h,h] + \dots + \frac{1}{k!}D^kf(x)[h,\dots,h] + o(\|h\|^k).$$

А.4 Подсчет табличных производных

Замечание: всюду в дальнейшем $\|\cdot\|$ обозначает (для краткости) евклидову норму для векторов и спектральную (операторную) норму для матриц.

Пример А.12 (Линейная функция). Пусть $c \in \mathbb{R}^n$, и пусть $f : \mathbb{R}^n \to \mathbb{R}$ — функция $f(x) := \langle c, x \rangle$. Покажем, что f является дифференцируемой в произвольной точке $x \in \mathbb{R}^n$ и найдем ее производную $df(x) : \mathbb{R}^n \to \mathbb{R}$. Для этого зафиксируем произвольное приращение аргумента $h \in \mathbb{R}^n$ и вычислим соответствующее приращение функции:

$$f(x+h) - f(x) = \langle c, x+h \rangle - \langle c, x \rangle = \langle c, h \rangle.$$

Заметим, что отображение $h \mapsto \langle c, h \rangle$ является линейным. Значит, для функции f справедливо разложение (A.1) с $Df(x)[h] := \langle c, h \rangle$. Таким образом, функция f является дифференцируемой в произвольной точке $x \in \mathbb{R}^n$ с производной $Df(x)[h] = \langle c, h \rangle$.

Пример А.13 (Квадратичная форма). Пусть $A \in \mathbb{R}^{n \times n}$, и пусть $f : \mathbb{R}^n \to \mathbb{R}$ — функция $f(x) := \langle Ax, x \rangle$. Зафиксируем произвольную точку $x \in \mathbb{R}^n$ и произвольное приращение аргумента $h \in \mathbb{R}^n$ и вычислим соответствующее приращение функции:

$$f(x+h) - f(x) = \langle A(x+h), x+h \rangle - \langle Ax, x \rangle = \langle (A+A^T)x, h \rangle + \langle Ah, h \rangle.$$

Заметим, что отображение $h \mapsto \langle (A+A^T)x, h \rangle$ является линейным, а $\langle Ah, h \rangle = o(\|h\|)$, поскольку для всех $h \in \mathbb{R}^n$ справедлива следующая цепочка неравентв:

$$|\langle Ah, h \rangle| \le ||h|| ||Ah|| \le ||A|| ||h||^2.$$

Здесь первое неравенство следует из неравенства Коши-Буняковского; второе неравенство следует из согласованности матричной и векторной норм. Таким образом, функция f дифференцируема в произвольной точке $x \in \mathbb{R}^n$ с производной $Df(x)[h] = \langle (A+A^T)x,h \rangle$.

Пример А.14 (Обратная матрица). Пусть $S:=\{X\in\mathbb{R}^{n\times n}: \mathrm{Det}(X)\neq 0\}$ — множество всех квадратных невырожденных матриц размера n. Рассмотрим функцию $f:S\to S$, которая для каждой матрицы $X\in S$ возвращает ее обратную: $f(X):=X^{-1}$. Покажем, что f является дифференцируемой в любой точке $X\in S$. Для этого зафиксируем произвольное достаточно малое приращение аргумента $H\in\mathbb{R}^{n\times n}$ (удовлетворяющее $X+H\in S$ и $\|H\|<1/\|X^{-1}\|$) и рассмотрим соответствующее приращение функции:

$$f(X+H) - f(X) = (X+H)^{-1} - X^{-1} = (X(I_n + X^{-1}H))^{-1} - X^{-1} = ((I_n + X^{-1}H)^{-1} - I_n)X^{-1}.$$

Оценим отдельно $(I_n + X^{-1}H)^{-1}$. Для этого разложим эту матрицу в ряд Неймана:²

$$(I_n + X^{-1}H)^{-1} = I_n - X^{-1}H + \sum_{k=2}^{\infty} (-X^{-1}H)^k.$$

Заметим, что ряд, стоящий в правой части последнего равенства, является абсолютно сходящимся, поскольку $||X^{-1}H|| < 1$ в силу достаточной малости H. Покажем, что сумма этого ряда есть o(||H||):

$$\left\| \sum_{k=2}^{\infty} (-X^{-1}H)^k \right\| \leq \sum_{k=2}^{\infty} \|(-X^{-1}H)^k\| \leq \sum_{k=2}^{\infty} \|X^{-1}\|^k \|H\|^k = \frac{\|X^{-1}\|^2 \|H\|^2}{1 - \|X^{-1}\| \cdot \|H\|}.$$

Здесь первое неравенство следует из неравенства треугольника для нормы; второе неравенство следует из субмультипликативности нормы; далее вычисляется сумма геометрического ряда. Таким образом,

$$(I_n + X^{-1}H)^{-1} = I_n - X^{-1}H + o(||H||).$$

Подставляя это выражение в полученную выше формулу для приращения функции, получаем

$$f(X+H) - f(X) = -X^{-1}HX^{-1} + o(||H||).$$

Таким образом, функция f дифференцируема в произвольной точке $X \in S$ с производной $df(X)[H] = -X^{-1}HX^{-1}$.

Замечание А.15. Выведенную формулу для производной функции X^{-1} можно очень просто получить с помощью следующего трюка. Рассмотрим дифференциал единичной матрицы $d(I_n)$. С одной стороны, поскольку матрица постоянная, $d(I_n)=0$. С другой стороны, по правилу произведения, $dI_n=d\left(XX^{-1}\right)=(dX)X^{-1}+Xd(X^{-1})$. Приравняв выражения, получим $d(X^{-1})=-X^{-1}(dX)X^{-1}$, или, в другой форме, $d(X^{-1})[H]=-X^{-1}HX^{-1}$. Заметим, однако, что приведённое рассуждение не является полным доказательством тождества, так как предполагает, но не доказывает существование дифференциала $d(X^{-1})$.

Пример А.16 (Определитель матрицы). Пусть $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ — функция $f(X) := \mathrm{Det}(X)$. Рассмотрим произвольную точку $X \in \mathbb{R}^{n \times n}$ и произвольное приращение аргумента $H \in \mathbb{R}^{n \times n}$. Будем предполагать, что матрица X обратима. Выпишем соответветствующее приращение функции:

$$f(X+H)-f(X) = \text{Det}(X+H)-\text{Det}(X) = \text{Det}(X(I_n+X^{-1}H))-\text{Det}(X) = \text{Det}(X)(\text{Det}(I_n+X^{-1}H)-1).$$

Оценим отдельно $\mathrm{Det}(I_n+X^{-1}H)$. Для этого воспользуемся тем, что определитель матрицы равен произведению ее собственных значений. Пусть $\lambda_1(X^{-1}H),\ldots,\lambda_n(X^{-1}H)$ — собственные значения матрицы $X^{-1}H$ (пронумерованные в произвольном порядке и, возможно, комплексные). Заметим, что собственными значениями матрицы $I_n+X^{-1}H$ будут $1+\lambda_1(X^{-1}H),\ldots,1+\lambda_n(X^{-1}H)$. Поэтому

$$Det(I_n + X^{-1}H) = \prod_{i=1}^n [1 + \lambda_i(X^{-1}H)] = 1 + \sum_{i=1}^n \lambda_i(X^{-1}H) + \left(\sum_{1 \le i \le j \le n} \lambda_i(X^{-1}H)\lambda_j(X^{-1}H) + \dots\right),$$

где многоточие скрывает сумму всевозможных троек $\lambda_i(X^{-1}H)\lambda_j(X^{-1}H)\lambda_k(X^{-1}H)$, всевозможных четверок и т. д. Заметим, что выражение, стоящее скобках, представляет из себя величину $o(\|H\|)$. Это следует из неравенства треугольника и того факта, что для произвольной матрицы $A \in \mathbb{R}^{n \times n}$ все

Эта формула является обобщением известной формулы для суммы геометрического ряда: $(1-q)^{-1} = \sum_{k=0}^{\infty} q^k$ для любого |q| < 1.

 $^{^2}$ Имеется в виду разложение $(I_n-A)^{-1}=\sum\limits_{k=0}^{\infty}A^k$, справедливое для любой матрицы $A\in\mathbb{R}^{n\times n}$, такой, что $\|A\|<1$.

ее собственные значения не превосходят по модулю ее нормы ||A||. (Действительно, пусть $\lambda \in \mathbb{C}$ — собственное значение матрицы A, и пусть $x \in \mathbb{C}^n \setminus \{0\}$ — соответствующий собственный вектор: $Ax = \lambda x$. Тогда $|\lambda| ||x|| = ||Ax|| \le ||A|| ||x||$.) Таким образом,

$$Det(I_n - X^{-1}H) = 1 + \sum_{i=1}^n \lambda_i(X^{-1}H) + o(\|H\|) = 1 + Tr(X^{-1}H) + o(\|H\|).$$

Подставляя полученное выражение в полученную выше формулу для приращения функции, получаем

$$f(X + H) - f(X) = \text{Det}(X) \operatorname{Tr}(X^{-1}H) + o(\|H\|).$$

Таким образом, для любой обратимой матрицы $X \in \mathbb{R}^{n \times n}$ функция f дифференцируема в точке X с производной $df(x)[H] = \mathrm{Det}(X) \, \mathrm{Tr}(X^{-1}H) = \mathrm{Det}(X) \langle X^{-T}, H \rangle.$

Замечание А.17. Можно показать, что рассматриваемая функция $f(X) = \operatorname{Det}(X)$ будет дифференцируемой всюду на $\mathbb{R}^{n \times n}$, а не только на подмножестве обратимых матриц. Общая формула для производной в этом случае называется формулой Якоби и выглядит следующим образом: $df(X)[H] = \operatorname{Tr}(\operatorname{Adj}(X)H)$, где $\operatorname{Adj}(X) - \operatorname{присоединенная}$ матрица к X. Заметим, что если X — невырожденная матрица, тогда $\operatorname{Adj}(X) = \operatorname{Det}(X)X^{-1}$ и формула Якоби переходит в доказанную формулу $df(X)[H] = \operatorname{Det}(X)\operatorname{Tr}(X^{-1}H)$.