Started on	Thursday, 22 April 2021, 11:39 AM					
State	Finished					
Completed on	Thursday, 22 April 2021, 11:46 AM					
Time taken	7 mins 19 secs					
Grade	25.00 out of 25.00 (100 %)					
Question 1 Correct Mark 1.00 out of 1.00	We would like to measure and store the length of strings in *meters* on our computer. Some of the string are very long (~100m) and some are very short (~0.1m). We only require measurements and consequently our numbers to be precise at the millimeter level whether the strings are long or short. Which one of the following representations is a better match for this problem? Select one: a. Integer representation b. Fixed-point representation c. Floating-point representation Your answer is correct. The correct answer is: Fixed-point representation					
Question 2 Correct Mark 1.00 out of 1.00	If we sequentially add new points, then it is easier to use Newton's divided differences than Lagrange's method for interpolation. Select one:					
Question 3 Correct Mark 1.00 out of 1.00	Match the properties to root-finding approaches. Convergence depends on the first derivative magnitude around the root. Requires computation of the derivative Newton-Raphson Method					
	It is possible to compute the required number of iterations based on the expected precision. Bisection Method					
	Your answer is correct.					

The correct answer is: Convergence depends on the first derivative magnitude around the root. \rightarrow Fixed point iterations, Requires computation of the derivative \rightarrow Newton-Raphson Method, It is

possible to compute the required number of iterations based on the expected precision. \rightarrow Bisection

	Method				
Question 4	If we would like to find a root of $f(x) = x^2 - 4x + 3$ in the interval [-1, 2] using bisection, what will be the				
Correct	search interval after the first iteration?				
Mark 1.00 out of 1.00					
	Select one:				
	a. [-1, 0.5]				
	b. [0, 2]				
	c. [1, 2]				
	d. [-1, 0]				
	• e. [0.5, 2]				
	✓				
	Your answer is correct.				
	The correct answer is: [0.5, 2]				
Question 5					
Correct	We can convert an ill-conditioned linear system to a well-conditioned one by pivoting.				
Mark 1.00 out of 1.00					
	Select one: True				
	● False ✔				
	The correct answer is 'False'.				
Question 6					
Correct	Which of the following requires an initial interval with suitable properties to start iterations for root				
	finding?				
Mark 1.00 out of 1.00	Colort one:				
	Select one:				

a. Fixed-point iterations

b. Lagrange interpolation

c. Bisection

d. Divided differences

e. Newton-Raphson

Your answer is correct.

The correct answer is: Bisection

Question 7	Which type of computations involve loss of significance due to roundoff error in the floating point number					
Correct	representation?					
Mark 1.00 out of 1.00						
	Select one:					
	a. When dividing by a very small number.					
	b. When subtracting two very large numbers.					
	c. When taking square roots.					
	d. When subtracting two numbers with very close values.					
	e. When subtracting two very small numbers.					
	Your answer is correct.					
	The correct answer is: When subtracting two numbers with very close values.					
Question 8 Correct	Which of the following is not a valid operation for the solution of a linear system of equations using Gaussian elimination?					
Mark 1.00 out of 1.00						
	Select one:					
	a. Subtracting a multiple of a row from other rows.					
	b. Exchanging the order of two rows.					
	c. Subtracting two rows from a third one at the same time.					
	d. Multiplying a row by a non-zero scalar.					
	e. Taking the square of the elements in one row.					
	Your answer is correct.					
	The correct answer is: Taking the square of the elements in one row.					
Question 9 Correct	What is the polynomial passing through (1, 2) and (2, 1) computed by Newton's divided differences?					
Mark 1.00 out of 1.00	Select one:					
	a. 2 - (x - 1)✓					
	b. 2 + (x - 1)					
	c. 1 - (x - 2)					
	d. 1 + (x - 2)					
	e. 2 - (x + 1)					
	f. 1 - (x + 2)					
	Your answer is correct.					
	The correct answers are: 2 - (x - 1), 1 - (x - 2)					

Question 10

Correct

Mark 1.00 out of 1.00

Which of the following corresponds to the Horner's method of evaluating $P(x) = 2*x^4 - x^3 + 3*x^2 - 2*x + 5$?

Select one:

- a. f(x) = (2 * (x * x * x 1) + (-x + 3) * x) * x + 5
- b. f(x) = (((2 * x 1) * x + 3) * x 2) * x + 5

~

- c. f(x) = ((2*x 1) * x*x + (3*x 2)) * x + 5
- d. p(x) = x*x; q(x) = x*p(x); r(x) = x*q(x); f(x) = 2*r(x) q(x) + 3*p(x) 2*x + 5
- e. f(x) = 2*x*x*x*x x*x*x + 3*x*x 2*x + 5

Your answer is correct.

The correct answer is: f(x) = (((2 * x - 1) * x + 3) * x - 2) * x + 5

Question 11

Correct

Mark 1.00 out of 1.00

We want to ensure our diet contains exactly 500mg of Vitamin C at a cost of 20 TL. Carrots contain 60 mg/kg, white cabbage contains 300 mg/kg of Vitamin C. Carrots cost 3 TL/kg and white cabbage costs 10 TL/kg. Writing the required weight of carrots a C and the required weight of white cabbage as W, which of the following systems do we need to solve?

Select one:

- a. 60 C + 500 W = 300; 3 C + 30 W = 10
- b. 60 C + 300 W = 20; 3 C + 10 W = 500
- c. 60 C + 10 W = 500; 300 C + 10 W = 20
- d. 300 C + 60 W = 500; 10 C + 3 W = 20
- e. 60 C + 300 W = 500; 3 C + 10 W = 20

J

Your answer is correct.

The correct answer is: 60 C + 300 W = 500; 3 C + 10 W = 20

Question 12

Correct

Mark 1.00 out of 1.00

If we want to find where the function f(x) achieves its minimum value close to a starting point x0, we can solve this problem by

Select one:

- a. using Horner's method
- b. finding the root of its first derivative f'(x)

. .

- c. interpolating it around x0
- d. using bisection of f(x) in an interval around x0
- e. writing and solving the corresponding linear system of equations

Your answer is correct.

The correct answer is: finding the root of its first derivative f'(x)

Bisection method's convergence rate is faster than Newton's method since we divide the interval in h	
Correct every iteration.	
Mark 1.00 out of 1.00	
Select one:	
True	
False False	
The correct answer is 'False'.	
Question 14 Using a floating-point representation similar to IEEE754, if we have two bits for the significand (manti	eea)
and a possible set of exponent parts as 2^-1, 2^0, and 2^1, which of the following numbers we can no	
Mark 1.00 out of 1.00 represent as a normalized number?	
Select one:	
a. 1.25	
b. 0.75	
O c. 2	
o d. 2.25	
e. 1.5	
Your answer is correct.	
The correct answer is: 2.25	
Question 15	
If we have a nonlinear system of 5 equations in 4 unknowns, what are the dimensions of the Jacobia Correct this system?	n for
Mark 1.00 out of 1.00	
Select one:	
a. 5-by-4	
b. 5-by-1	
c. 4-by-1	
d. 4-by-5	
e. 1-by-1 (scalar)	
Your answer is correct.	
The correct answer is: 5-by-4	

Question 16	Which of the following is false for approximating a function using a finite set of its values and				
Correct	interpolation?				
Mark 1.00 out of 1.00					
	Select one:				
	a. We can use Lagrange's or Newton's methods for interpolation to get the same results.				
	b. Approximation quality is independent of the number of interpolation points.				
	• If the formation has a small and interesting the collection of t				
	c. If the function has smaller high order derivatives, it will be easier to approximate.				
	d. We can approximate non-linear functions.				
	e. The approximation error is smaller close to the interpolation points.				
	Your answer is correct.				
	The correct answer is: Approximation quality is independent of the number of interpolation points.				
Question 17					
Correct	What is the Jacobian of the following nonlinear system of equations? f1(x,y) = 2*x + 3*y^2; f2(x,y) = 2*x^2 + 6 (Note that the answers are written in row-major order (row-by-row)).				
Mark 1.00 out of 1.00	o (Note that the anovere are written in row major erder (10 w by row)).				
	Select one:				
	a. [[2, 6*y], [4*x, 0]]				
	✓				
	b. [[2, 0], [4*x, 6*y]]				
	c. [[2*x, 3*y^2], [2*x^2, 6]]				
	d. [[4*x, 6*y], [2, 0]]				
	e. [[2, 4*x], [6*y, 0]]				
	Your answer is correct.				
	The correct answer is: [[2, 6*y], [4*x, 0]]				
Question 18					
Correct	The smallest floating number that we can represent and is greater than 1 is (1 + machine epsilon).				
Mark 1.00 out of 1.00	Select one:				
	o True ✓				
	False				
	The correct answer is 'True'.				
Question 19					
Correct	For Gaussian elimination, backward substitution is the most costly step.				
Mark 1.00 out of 1.00	Salact and:				
	Select one: True				
	● False ✔				
The correct answer is 'False'.					

Question 20

Correct

What is the Lagrange polynomial passing through points (1, 2), (2, 1)?

Mark 1.00 out of 1.00

Select one:

- a. 2 * (x 2) / (1 2) + 1 * (x 1) / (2 1)
- **~**
- b. 2 * (x 1) / (1 2) + 1 * (x 2) / (2 1)
- c. 2 * (x 2) / (2 1) + 1 * (x 1) / (1 2)
- d. 1 * (x 2) / (1 2) + 2 * (x 1) / (2 1)

Your answer is correct.

The correct answer is: 2 * (x - 2) / (1 - 2) + 1 * (x - 1) / (2 - 1)

Question 21

Correct

Which one of the following is not a property of the Newton's method for root finding?

Mark 1.00 out of 1.00

Select one:

a. It can not converge if the derivative magnitude is around one.

~

- b. It requires computation of the first derivative.
- c. It requires evaluation of the function itself.
- d. Its convergence rate is linear near a repeated root.
- e. Its convergence rate can be quadratic.

Your answer is correct.

The correct answer is: It can not converge if the derivative magnitude is around one.

Question 22

Correct

Which one of the following is the update rule for Newton's method if we try to find the roots of $f(x) = x^2 - 4x + 3$?

Mark 1.00 out of 1.00

Select one:

- a. $(x^2 4^*x + 3) / (2^*x 4)$
 - b. (3 * x^2 8*x + 3) / (2*x 4)
- o. (x^2 3) / (2*x 4)

~

- d. $(3 * x^2 8 * x + 3) / (x 4)$
- e. (x^2 3) / (x 4)

Your answer is correct.

The correct answer is: $(x^2 - 3) / (2*x - 4)$

Question 23	What is the purpose of using the LU decomposition instead of the Gaussian elimination?					
Correct	what is the purpose of using the LO decomposition instead of the Gaussian elimination?					
Mark 1.00 out of 1.00	Select one:					
	a. To improve precision of computations					
	b. To be able to solve problems with zero pivots.					
	c. Reduce number of computations when the right side of the linear equation changes for the same					
	matrix on the left side.					
	✓					
	d. To turn ill-conditioned problems to well conditioned ones.					
	e. To decrease forward error compared to Gaussian elimination.					
	Your answer is correct.					
	The correct answer is: Reduce number of computations when the right side of the linear equation changes for the same matrix on the left side.					
Question 24						
Correct	Fixed point iterations will converge to a fixed point r if the derivative of the function is negative at the root.					
Mark 1.00 out of 1.00	Select one:					
Wark 1.00 out of 1.00	True					
	• False •					
	The correct answer is 'False'.					
Question 25						
Correct	Which of the following is true for the error analysis of root finding?					
Mark 1.00 out of 1.00	Select one:					
	a. The relation between forward and backward errors does not depend on the condition number.					
	b. For a well-conditioned problem, a large backward error results in a small forward error.					
	c. For an ill-conditioned problem, a small backward error results in a small forward error.					
	d. For a well-conditioned problem, backward and forward errors are unrelated.					
	e. For a well-conditioned problem, a small backward error results in a small forward error.					
	Tota well conditioned problem, a small backward error results in a small forward error.					
	Your answer is correct.					
	The correct answer is: For a well-conditioned problem, a small backward error results in a small forward error.					
Question 26						
Complete	Please type your student id.					
Not graded	Answer: 234567890					
	The correct answer is: 1234567890					

Previous Activity

Jump to...