HYPERBOLA

1.	If e, e' are the eccentricities of hyperbolas	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$, then
	(A) e = e'	(B) e = -e'
	(C) e e' = 1	(D) $\frac{1}{e^2} + \frac{1}{e'^2} = 1$
2.	Centre of the hyperbola $x^2 + 4y^2 + 6xy + 8z$ (A) (1, 1) (C) (2, 0)	x- 2y + 7 = 0 is , (B) (0, 2) (D) none of these .
3.	The eccentricity of the hyperbola $2x^2 - y^2 = 6$ (A) $\sqrt{2}$ (C) 3	6 is (B) 2 (D) $\sqrt{3}$
4.	The radius of the director circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is	
	(A) a -b	(B) $\sqrt{a-b}$
	$(C)\sqrt{a^2-b^2}$	(D) $\sqrt{a^2 + b^2}$
5.	The tangent to the curve $x = a(\theta - \sin \theta)$; $y = 1$, $x \in Z$ are parallel to (A) $y = x$ (C) $y = 0$	= $a(1 + \cos \theta)$ at the points $\theta = (2k + \theta)$ (B) $y = -x$ (D) $x = 0$
6.	The legth of latus rectum for hyperbola $\frac{x^2}{16}$	$-\frac{y^2}{9} = 1 is$
	$(A)\frac{32}{3}$	(B) $\frac{9}{2}$
	$(C)\frac{8}{3}$	(D) none of these
7.	The straight line $y = 3x + c$ will be tangent to hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ if c^2 is	
	equal to (A) 119	(B) 225
	(C) 209	(D) 144
8.	Co-ordinates of the foci of the hyperbola ()	$(x-1)^2 - \frac{(y-2)^2}{16} = 1$ are
	(A) (1, 7) and (1, -3)	(B) (6, 2) and (-4, 2)
	(C) (1, 3) and (1, -7)	(D) None of these

Co-ordinates of the foci of the hyperbola: $\frac{(x-1)^2}{16} - \frac{(y-1)^2}{9} = 1$

Eccentricity of the hyperbola: $4 x^2 - 8 x - 5 y^2 + 10 y = 21$ is

(B) (1, 3) and (1, -7) (D) (-4, 2) and (6, 2)

(B) $\frac{4}{3}$

The eccentricity of the hyperbola passing through (3, 0) and ($3\sqrt{2}$, 2) and having

9.

15.

16.

(A) (1, 7) and (1, -3)

(C) (-6, 2) and (4, 2)

 $(A)\frac{\sqrt{5}}{2}$

(C)
$$\frac{3}{\sqrt{5}}$$

(D)
$$\frac{3}{4}$$

Length of latus rectum of the hyperbola: $4 x^2 - 8 x - 5 y^2 + 10 y = 21$ is 17.

$$(A)\frac{\sqrt{5}}{8}$$

(B) $\frac{1}{2}$

(D) $\frac{8}{\sqrt{5}}$

Eccentricity of the hyperbola $\frac{(x-1)^2}{9} - \frac{(y-1)^2}{16} = 1$; is 18.

(A)
$$\frac{5}{4}$$

(C)
$$\frac{4}{3}$$

(D) $\frac{3}{2}$

Length of latus rectum of the hyperbola; $\frac{(x-1)^2}{9} - \frac{(y-2)^2}{16} = 1$; is 19.

(A)
$$\frac{9}{2}$$

$$(C)\frac{7}{4}$$

(B) $\frac{9}{4}$ (D) $\frac{32}{2}$

Centre of the hyperbola $\frac{(x-y)^2}{4} - \frac{(x+y)^2}{9} = 1$; is 20.

ANSWERS

 1.
 D
 2.
 D
 3
 D
 4.
 C

 5.
 C
 6.
 B
 7.
 C
 8.
 B

 9.
 C
 10.
 B
 11.
 D
 12.
 B

 13.
 B
 14.
 C
 15.
 D
 16.
 C

 17.
 D
 18.
 B
 19.
 D
 20.
 A