Math 317 Assignment 4

Due in class: November 29th, 2016

Instructions: Submit a hard copy of your solution with <u>your name and student number</u>. (**No name = zero grade!**) You must include all relevant program code, electronic output and explanations of your results. Write your own codes and comment them. Late assignment will not be graded and will receive a grade of zero.

1. Consider the boundary value problem,

$$\begin{cases}
-u''(x) + 3u'(x) - 2u(x) = f(x) & \text{on } [0, 1], \\
u(0) = \alpha, \\
u(1) = \beta.
\end{cases}$$
(1)

- (a) (10 marks) Design a finite difference method to solve the B.V.P. with the local truncation error of $\mathcal{O}(h^2)$. State the entries of your resulting linear system in the form $A_h \vec{u}_h = \vec{f}_h$.
- (b) (5 marks) Find the exact solution to (1) for $\alpha = 1, \beta = 1 + e$ and f(x) = 3 2x.
- (c) (20 marks) For the B.V.P. from part (b), perform a convergence analysis of your method (measure the error in the l_2 norm) and deduce the convergence rate. In order to do so write a program to approximate the solution of (1) using the finite difference method define in (a) for $h = 2^{-1}, \dots 2^{-8}$, plot $\log(\text{error})$ versus $\log(h)$ and deduce the convergence rate by estimating the slope in the loglog plot.
- 2. (35 marks) Consider the prescribed curvature problem which arises in modelling beam deflection:

$$\begin{cases}
-\frac{u''(x)}{(1+u'(x)^2)^{\frac{3}{2}}} = 2x(1-x) & \text{on } [0,1], \\
u(0) = 0, \\
u(1) = 0.
\end{cases}$$

Solve the nonlinear B.V.P. using the shooting method with the Newton's method. Choose initial slope of $s_0 = 0$ and use a stopping tolerance of $\epsilon = 10^{-10}$. Use the forward Euler method to solve the associated I.V.P. with N = 100. Plot the successive solutions of different slopes. How many iterations of the Newton method is needed to reach the tolerance?

3. Consider the linear system,

$$3x_1 - x_2 = 2$$

 $-x_1 + 3x_2 - x_3 = 2$ with $\mathbf{x}_0 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$.
 $-x_2 + 3x_3 = -1$

- (a) (5 marks) Find the exact solution by Gaussian elimination.
- (b) (5 marks) Compute by hand the first iteration of the Jacobi method and the Gauss-Seidel method.
- (c) (20 marks) Compare the number of iterations required to reach a successive relative error of 10^{-10} in the l_2 norm for the method of Richardson ($\omega = 0.2$), Jacobi, Gauss-Seidel and SOR ($\theta = 1.1$).