Bootstrap again

packages

```
library(tidyverse)
library(bootstrap)
library(rsample)
library(conflicted)
conflict_prefer("filter", "dplyr")
```

Is my sampling distribution normal enough?

Recall the IRS data that we used as a motivation for the sign test:

We said that a t procedure for the mean would not be a good idea because the distribution is skewed.

What actually matters

- It's not the distribution of the *data* that has to be approx normal (for a *t* procedure).
- What matters is the sampling distribution of the sample mean.
- If the sample size is large enough, the sampling distribution will be normal enough even if the data distribution is not.
 - This is why we had to consider the sample size as well as the shape.
- But how do we know whether this is the case or not? We only have one sample.

The (nonparametric) bootstrap

- Typically, our sample will be reasonably representative of the population.
- ▶ Idea: pretend the sample is the population, and sample from it with replacement.
- Calculate test statistic, and repeat many times.
- This gives an idea of how our statistic might vary in repeated samples: that is, its sampling distribution.
- ▶ Called the **bootstrap distribution** of the test statistic.
- ▶ If the bootstrap distribution is approx normal, infer that the true sampling distribution also approx normal, therefore inference about the mean such as *t* is good enough.
- If not, we should be more careful.

Why it works

- We typically estimate population parameters by using the corresponding sample thing: eg. estimate population mean using sample mean.
- This called **plug-in principle**.
- The fraction of sample values less than a value x called the **empirical distribution function** (as a function of x).
- ▶ By plug-in principle, the empirical distribution function is an estimate of the population CDF.
- ▶ In this sense, the sample is an estimate of the population, and so sampling from it is an estimate of sampling from the population.

Bootstrapping the IRS data

Sampling with replacement is done like this (the default sample size is as long as the original data):

```
boot=sample(irs$Time, replace=T)
mean(boot)
```

- [1] 182.5667
 - That's one bootstrapped mean. We need a whole bunch.
 - Use the same idea as for simulating power:

```
rerun(1000, sample(irs$Time, replace=T)) %>%
  map_dbl(~mean(.)) -> means
```

Sampling distribution of sample mean

Comments

This is not so bad: a long right tail, maybe:

```
ggplot(tibble(means), aes(sample=means))+
stat_qq()+stat_qq_line()
```


or not so much.

Confidence interval from the bootstrap distribution

There are two ways (at least):

percentile bootstrap interval: take the 2.5 and 97.5 percentiles (to get the middle 95%). This is easy, but not always the best:

```
(b_p=quantile(means, c(0.025, 0.975)))
```

```
2.5% 97.5% 159.5292 244.1075
```

▶ bootstrap t: use the SD of the bootstrapped sampling distribution as the SE of the estimator of the mean and make a t interval:

```
n=length(irs$Time)
t_star=qt(0.975, n-1)
(b_t=mean(means)+c(-1, 1)*t_star*sd(means))
```

[1] 157.9020 245.4334

Comparing

ightharpoonup get ordinary t interval:

```
my_names=c("LCL", "UCL")
o_t=t.test(irs$Time)$conf.int
```

 \blacktriangleright Compare the 2 bootstrap intervals with the ordinary t-interval:

```
tibble(limit=my_names, o_t, b_t, b_p)
```

- \blacktriangleright The bootstrap t and the ordinary t are very close
- ► The percentile bootstrap interval is noticeably shorter (common) and higher (skewness).

Which to prefer?

- If the intervals agree, then they are all good.
- If they disagree, they are all bad!
- In that case, use BCA interval (over).

Bias correction and acceleration

- ▶ this from "An introduction to the bootstrap", by Brad Efron and Robert J. Tibshirani.
- there is way of correcting the CI for skewness in the bootstrap distribution, called the BCa method
- complicated (see the Efron and Tibshirani book), but implemented in bootstrap package.

Run this on the IRS data:

```
bca=bcanon(irs$Time, 1000, mean)
bca$confpoints
```

```
alpha bca point
[1,] 0.025 162.8000
[2,] 0.050 166.8000
[3,] 0.100 174.4667
[4,] 0.160 179.5667
[5,] 0.840 224.6000
[6,] 0.900 234.3000
[7,] 0.950 247.4333
[8,] 0.975 256.3000
```

use 2.5% and 97.5% points for CI

```
bca$confpoints %>% as_tibble() %>%
  filter(alpha %in% c(0.025, 0.975)) %>%
  pull(`bca point`) -> b_bca
b_bca
```

[1] 162.8 256.3

Comparing

```
tibble(limit=my_names, o_t, b_t, b_p, b_bca)
```

```
# A tibble: 2 x 5
  limit o_t b_t b_p b_bca
  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 LCL 155. 158. 160. 163.
2 UCL 247. 245. 244. 256.
```

- The BCA interval says that the mean should be estimated even higher than the bootstrap percentile interval does.
- ▶ The BCA interval is the one to trust.

Bootstrapping the correlation

Recall the soap data:

```
url="http://ritsokiguess.site/datafiles/soap.txt"
soap=read_delim(url," ")
```

The data

```
ggplot(soap, aes(x=speed, y=scrap, colour=line))+
  geom_point()+geom_smooth(method="lm", se=F)
```


Comments

- Line B produces less scrap for any given speed.
- For line B, estimate the correlation between speed and scrap (with a confidence interval.)

Extract the line B data; standard correlation test

```
soap %>% filter(line=="b") -> line_b
with(line_b, cor.test(speed, scrap))
```

Pearson's product-moment correlation

0.9806224

```
data: speed and scrap
t = 15.829, df = 10, p-value = 2.083e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.9302445 0.9947166
sample estimates:
    cor
```

Bootstrapping a correlation

- Sample from data with replacement, but have to keep the speed-scrap pairs together
- Sample *rows* at random, then take the variable values that belong to those rows:

*** REDO THIS ***

```
rerun(1000, sample(1:nrow(line_b), replace=T)) %>%
  map(~slice(line_b, .)) %>%
  map_dbl(~with(.,cor(speed, scrap))) -> cors
```

A picture of this

Comments and next steps

- This is very left-skewed.
- Bootstrap percentile interval is:

```
(b_p=quantile(cors, c(0.025, 0.975)))
```

```
2.5% 97.5% 0.9443861 0.9960207
```

▶ We probably need the BCA interval instead.

Getting the BCA interval 1/2

➤ To use bcanon, write a function that takes a vector of row numbers and returns the correlation between speed and scrap for those rows:

```
theta=function(rows, d) {
  d %>% slice(rows) %>% with(., cor(speed, scrap))
}
theta(1:3, line_b)
```

```
line b %>% slice(1:3)
```

[1] 0.9928971

```
# A tibble: 3 x 4
   case scrap speed line
   <dbl> <dbl> <dbl> <chr>
1   16  140  105 b
2  17  277  215 b
3  18  384  270 b
```

Getting the BCA interval 2/2

- Inputs to bcanon are now:
 - row numbers (1 through 12 in our case: 12 rows in line_b)
 - number of bootstrap samples
 - the function we just wrote
 - the data frame:

```
points=bcanon(1:12, 1000, theta, line_b)$confpoints
points %>% as_tibble() %>%
  filter(alpha %in% c(0.025, 0.975)) %>%
  pull(`bca point`) -> b_bca
b_bca
```

[1] 0.9281762 0.9945016

Comparing the results

```
tibble(limit=my_names, o_c, b_p, b_bca)
```

```
# A tibble: 2 x 4
  limit o_c b_p b_bca
  <chr> <dbl> <dbl> <dbl> 1 LCL 0.930 0.944 0.928
2 UCL 0.995 0.996 0.995
```

- ▶ The bootstrap percentile interval doesn't go down far enough.
- ➤ The BCA interval seems to do a better job than the ordinary cor.test interval in capturing the skewness of the distribution.

A problem

6

8

Consider this example: samples of UK and Ontario (Canada) children, and their journey times to school, in minutes:

```
my_url="http://ritsokiguess.site/datafiles/to-school.csv"
to_school=read_csv(my_url)
to_school
```

8 Ontario 7 Ontario

15 Ontario 10 Ontario

A tibble: 80 x 2

Automating the bootstrap

Let's go back to our IRS data for a moment:

irs

```
# A tibble: 30 \times 1
    Time
   <dbl>
       91
       64
 3
     243
 4
     167
 5
     123
 6
       65
       71
 8
     204
 9
     110
10
     178
# i 20 more rows
```

What happens if we use rsample to resample from these? Let's