		Estimate	Median	95% CI
del parar	neters			
$\exp(\theta_1)$	First order absorption rate constant	1.56	1.57	1.39, 1.78
$\exp(\theta_2)$	Apparent central volume	61.5	61.5	58.3, 65.1
$\exp(\theta_3)$	Apparent clearance	3.23	3.23	3.07, 3.42
$\exp(\theta_4)$	Apparent peripheral volume	67.3	67.3	65.0, 69.8
$\exp(\theta_5)$	Apparent intercompartmental clearance	3.61	3.61	3.37, 3.86
ct param	eters			
$ heta_6$	eGFR effect on CL/F	0.485	0.484	0.408, 0.558
$ heta_7$	Age effect on CL/F	-0.0378	-0.0386	-0.167, 0.0876
$ heta_8$	Serum albumin effect on CL/F	0.419	0.420	0.294, 0.587
nterval wa tes.	as determined from the 2.5th and 97.5th	•	of the non-p	arametric boots
<u> </u>	$\exp(\theta_1)$ $\exp(\theta_2)$ $\exp(\theta_3)$ $\exp(\theta_4)$ $\exp(\theta_5)$ ext parame θ_6 θ_7 θ_8 nated in the interval waters.	$\exp(\theta_2)$ Apparent central volume $\exp(\theta_3)$ Apparent clearance $\exp(\theta_4)$ Apparent peripheral volume $\exp(\theta_5)$ Apparent intercompartmental clearance $\exp(\theta_5)$ Apparent of CL/F $ext{Mathematical equation}$ Age effect on CL/F $ext{Mathematical equation}$ Age effect on CL/F $ext{Mathematical equation}$ Serum albumin effect on CL/F $ext{Mathematical equation}$ and $ext{Mathematical equation}$ and $ext{Mathematical equation}$ and $ext{Mathematical equation}$ Apparent peripheral volume	exp (θ_1) First order absorption rate constant 1.56 exp (θ_2) Apparent central volume 61.5 exp (θ_3) Apparent clearance 3.23 exp (θ_4) Apparent peripheral volume 67.3 exp (θ_5) Apparent intercompartmental 3.61 clearance 62. Ext parameters θ_6 eGFR effect on CL/F 0.485 θ_7 Age effect on CL/F -0.0378 θ_8 Serum albumin effect on CL/F 0.419 enated in the log-domain were back transformed for clarity enterval was determined from the 2.5th and 97.5th percentiles of the series.	exp(θ_1) First order absorption rate constant 1.56 1.57 exp(θ_2) Apparent central volume 61.5 61.5 exp(θ_3) Apparent clearance 3.23 3.23 exp(θ_4) Apparent peripheral volume 67.3 67.3 exp(θ_5) Apparent intercompartmental 3.61 3.61 clearance cet parameters ext parameters θ_6 eGFR effect on CL/F 0.485 0.484 θ_7 Age effect on CL/F -0.0378 -0.0386 θ_8 Serum albumin effect on CL/F 0.419 0.420 enacted in the log-domain were back transformed for clarity enterval was determined from the 2.5th and 97.5th percentiles of the non-parentes.

Source code: pk-final-model-table-boot.R Source file: pk-param-boot-fixed.tex Final model Non-parametric bootstrap

			Estimate	Shrinkage (%)	Median	95% CI
Inter	individual v	aria	nce parameters			
IIV-K	A Ω_0	(1,1)	0.219 [CV%=49.4]	14.1	0.218	0.130, 0.331
IIV-V2	$2/F$ Ω_0	(2,2)	0.0824 [CV%=29.3]	5.22	0.0821	0.0643, 0.101
IIV-C	L/F Ω_0	(3,3)	0.114 [CV%=34.8]	0.942	0.112	0.0896, 0.140
Inter	individual c	covai	riance parameters			
V2/F-	-KA Ω_0	(2,1)	0.0668 [Corr=0.498]	-	0.0656	0.0328, 0.108
CL/F-	-KA Ω ₍	(3,1)	0.121 [Corr=0.767]	-	0.121	0.0805, 0.173
CL/F-	-V2/F Ω ₍	(3,2)	0.0704 [Corr=0.725]	-	0.0696	0.0525, 0.0882
Resid	lual varianc	e				
Propo	ortional Σ_0	(1,1)	0.0399 [CV%=20.0]	5.02	0.0400	0.0376, 0.0424
confidence in	nterval was o	detei	rmined from the 2.5th	and 97.5th perc	entiles of t	 he non-parametric
000) estimate				i unu o i ioun pere		no non parametri
eviations: CI	= confiden	ce in	nterval; Corr = correla	tion coefficient;	CV = coeffi	cient of variation
of log-norm	al omegas =	sqrt	$t(exp(estimate) - 1) \cdot 1$	00		
of sigma $=$ s	qrt(estimate	e) · 10	00			
ırce code: pk-f	final-model-	-tabl	e-boot.R			

Source file: pk-param-boot-random.tex

Final model

Non-parametric bootstrap