Chapter 8

Redox Reactions and Volumetric Analysis

1.	The mass of potassium dichromate crystals
	required to oxidise 750 cm ³ of 0.6 M Mohr's salt
	solution is: (Given molar mass: potassium
	dichromate = 294, Mohr's salt = 392)

[AIEEE-2011]

(1) 2.2 g

(2) 0.49 g

(3) 0.45 g

(4) 22.05 g

2. Consider the following reaction:

$$xMnO_4^- + yC_2O_4^{2-} + zH^+ \longrightarrow$$

$$xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

The values of x, y and z in the reaction are, respectively [JEE (Main)-2013]

(1) 5, 2 and 16

(2) 2, 5 and 8

(3) 2, 5 and 16

(4) 5, 2 and 8

3. The chemical nature of hydrogen peroxide is

[JEE (Main)-2019]

- Oxidising and reducing agent in both acidic and basic medium
- (2) Oxidising and reducing agent in acidic medium, but not in basic medium
- (3) Reducing agent in basic medium, but not in acidic medium
- (4) Oxidising agent in acidic medium, but not in basic medium
- 4. Consider the following reduction processes:

$$Zn^{2+} + 2e^{-} \rightarrow Zn(s)$$
; $E^{0} = -0.76 \text{ V}$

$$Ca^{2+} + 2e^{-} \rightarrow Ca(s)$$
; $E^{0} = -2.87 \text{ V}$

$$Mg^{2+} + 2e^{-} \rightarrow Mg(s)$$
; $E^{0} = -2.36 \text{ V}$

$$Ni^{2+} + 2e^{-} \rightarrow Ni(s)$$
; $E^{0} = -0.25 \text{ V}$

The reducing power of the metals increases in the order : [JEE (Main)-2019]

 In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO₂ is

[JEE (Main)-2019]

(1) 1

(2) 10

(3) 2

(4) 5

6. A 10 mg effervescent tablet containing sodium bicarbonate and oxalic acid releases 0.25 ml of CO₂ at T = 298.15 K and p = 1 bar. If molar volume of CO₂ is 25.0 L under such condition, what is the percentage of sodium bicarbonate in each tablet?

[Molar mass of NaHCO $_3$ = 84 g mol $^{-1}$]

[JEE (Main)-2019]

(1) 33.6

(2) 8.4

(3) 0.84

(4) 16.8

 25 ml of the given HCl solution requires 30 mL of 0.1 M sodium carbonate solution. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOH solution

[JEE (Main)-2019]

(1) 25 mL

(2) 12.5 mL

(3) 50 mL

(4) 75 mL

50 mL of 0.5 M oxalic acid is needed to neutralize
 25 mL of sodium hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is
 [JEE (Main)-2019]

(1) 10 g

(2) 4 g

(3) 20 g

(4) 80 g

9. In order to oxidise a mixture of one mole of each of FeC_2O_4 , $Fe_2(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic medium, the number of moles of KMnO₄ required is [JEE (Main)-2019]

(1) 1.5

(2) 2

(3) 3

(4) 1

CHEMISTRY ARCHIVE - JEE (Main)

10. An example of a disproportionation reaction is:

[JEE (Main)-2019]

- (1) $2MnO_4^- + 10l^- + 16H^+ \rightarrow 2Mn^{2+} + 5l_2^- + 8H_2O$
- (2) $2CuBr \rightarrow CuBr_2 + Cu$
- (3) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$
- (4) $2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$
- 11. Oxidation number of potassium in K_2O , K_2O_2 and KO_2 , respectively, is **[JEE (Main)-2020]**
 - (1) +1, +2 and +4
 - (2) +2, +1 and + $\frac{1}{2}$
 - (3) +1, +4 and +2
 - (4) +1, +1 and +1
- 12. The redox reaction among the following is

[JEE (Main)-2020]

- (1) Reaction of [Co(H₂O)₆]Cl₃ with AgNO₃
- (2) Formation of ozone from atmospheric oxygen in the presence of sunlight.
- (3) Combination of dinitrogen with dioxygen at 2000 K
- (4) Reaction of H₂SO₄ with NaOH
- 13. While titrating dilute HCl solution with aqueous NaOH, which of the following will not be required?

[JEE (Main)-2020]

- (1) Pipette and distilled water
- (2) Clamp and phenolphthalein
- (3) Burette and porcelain tile
- (4) Bunsen burner and measuring cylinder
- 14. The oxidation states of transition metal atoms in K₂Cr₂O₇, KMnO₄ and K₂FeO₄, respectively, are x, y and z. The sum of x, y and z is _____.

[JEE (Main)-2020]

15. A 20.0 mL solution containing 0.2 g impure H_2O_2 reacts completely with 0.316 g of KMnO₄ in acid solution. The purity of H_2O_2 (in %) is _____ (mol. wt. of $H_2O_2 = 34$; mol. wt. of KMnO₄ = 158)

[JEE (Main)-2020]

16. Consider the following equations:

$$2Fe^{2+} + H_2O_2 \rightarrow xA + yB$$

(in basic medium)

$$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow x'C + y'D + z'E$$

(in acidic medium)

The sum of the stoichiometric coefficients

x,y,, x', y' and z' for products A, B, C, D and E, respectively, is _____. [JEE (Main)-2020]

- The volume (in mL) of 0.1 N NaOH required to neutralise 10 mL of 0.1 N phosphinic acid is _____.
 [JEE (Main)-2020]
- A 100 mL solution was made by adding 1.43 g of Na₂CO₃·xH₂O. The normality of the solution is 0.1 N. The value of x is _____. [JEE (Main)-2020]
 (The atomic mass of Na is 23 g/mol)
- 19. The volume, in mL, of 0.02 M $\rm K_2Cr_2O_7$ solution required to react with 0.288 g of ferrous oxalate in acidic medium is _____.

(Molar mass of Fe = 56 g mol^{-1})

[JEE (Main)-2020]

 The ammonia (NH₃) released on quantitative reaction of 0.6 g urea (NH₂CONH₂) with sodium hydroxide (NaOH) can be neutralized by

[JEE (Main)-2020]

- (1) 200 ml of 0.4 N HCl
- (2) 100 ml of 0.1 N HCl
- (3) 200 ml of 0.2 N HCl
- (4) 100 ml of 0.2 N HCl
- The reaction of sulphur in alkaline medium is given below:

$$S_{8(s)} + a OH^{-}_{(aq)} \longrightarrow b S^{2-}_{(aq)} + c S_2O_{3(aq)}^{2-} + d H_2O_{(I)}$$

The value of 'a' is _____. (Integer answer)

[JEE (Main)-2021]

impurities was first titrated with $\frac{N}{10}$ HCl using phenolphthalein as an indicator, 17.5 mL of HCl was required at the end point. After this methyl orange was added and titrated. 1.5 mL of same HCl was required for the next end point. The weight percentage of Na₂CO₃ in the mixture is ______. (Rounded-off to the nearest integer)

[JEE (Main)-2021]

23. In basic medium CrO_4^{2-} oxidises $S_2O_3^{2-}$ to form SO_4^{2-} and itself changes into $Cr(OH)_4^{-}$. The volume of 0.154 M CrO_4^{2-} required to react with 40 mL of 0.25 M $S_2O_3^{2-}$ is _____ mL. (Rounded-off to the nearest integer)

[JEE (Main)-2021]

ARCHIVE - JEE (Main	OH)	EMISTRY

- Consider titration of NaOH solution versus 1.25 M oxalic acid solution. At the end point following burette readings were obtained. [JEE (Main)-2021]
 - (i) 4.5 mL
- (ii) 4.5 mL
- (iii) 4.4 mL
- (iv) 4.4 mL
- (v) 4.4 mL

If the volume of oxalic acid taken was 10.0 mL then the molarity of the NaOH solution is _____ M. (Rounded-off to the nearest integer)

25. $2MnO_4^- + bC_2O_4^{2-} + cH^+ \rightarrow x Mn^{2+} + yCO_2 + z H_2O$

If the above equation is balanced with integer coefficients, the value of c is ____.

[JEE (Main)-2021]

 The exact volumes of 1 M NaOH solution required to neutralise 50 mL of 1 M H₃PO₃ solution and 100 mL of 2 M H₃PO₂ solution, respectively, are:

[JEE (Main)-2021]

- (1) 100 mL and 100 mL
- (2) 50 mL and 50 mL
- (3) 100 mL and 200 mL
- (4) 100 mL and 50 mL
- 27. 15 mL of aqueous solution of Fe^{2+} in acidic medium completely reacted with 20 mL of 0.03 M aqueous $Cr_2O_7^{2-}$. The molarity of the Fe^{2+} solution is _____ × 10^{-2} M.

(Round off to the Nearest Integer).

[JEE (Main)-2021]

- 28. The oxidation states of nitrogen in NO, NO_2 , N_2O and NO_3^- are in the order of : [JEE (Main)-2021]
 - (1) $NO_2 > NO_3^- > NO > N_2O$
 - (2) $NO_3^- > NO_2 > NO > N_2O$
 - (3) $N_2O > NO_2 > NO > NO_3^-$
 - (4) $NO > NO_2 > N_2O > NO_3^-$
- 10.0 mL of Na₂CO₃ solution is titrated against 0.2 M HCl solution. The following titre values were obtained in 5 readings: [JEE (Main)-2021]

4.8 mL, 4.9 mL, 5.0 mL, 5.0 mL and 5.0 mL

Based on these readings and convention of titrimetric estimation the concentration of Na₂CO₃ solution is ____mM

(Round off the Nearest integer).

- The species given below that does NOT show disproportionation reaction is [JEE (Main)-2021]
 - (1) BrO_3^-
- (2) BrO-
- (3) BrO_2^-
- (4) BrO_4^-
- 31. 4 g equimolar mixture of NaOH and Na₂CO₃ contains x g of NaOH and y g of Na₂CO₃. The value of x is _____g. [JEE (Main)-2021]

(Nearest integer)

- 32. When 10 mL of an aqueous solution of Fe^{2+} ions was titrated in the presence of dil H_2SO_4 using diphenylamine indicator, 15 mL of 0.02 M solution of $K_2Cr_2O_7$ was required to get the end point. The molarity of the solution containing Fe^{2+} ions is $x \times 10^{-2}$ M. The value of x is _____. (Nearest integer) [JEE (Main)-2021]
- Identify the process in which change in the oxidation state is five : [JEE (Main)-2021]
 - (1) $C_2O_4^{2-} \rightarrow 2CO_2$
 - (2) $MnO_4^- \rightarrow Mn^{2+}$
 - (3) $Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$
 - (4) $CrO_4^{2-} \rightarrow Cr^{3+}$
- 34. The oxidation states of 'P' in $H_4P_2O_7$, $H_4P_2O_5$ and $H_4P_2O_6$, respectively are **[JEE (Main)-2021]**
 - (1) 5, 4 and 3
- (2) 7, 5 and 6
- (3) 6, 4 and 5
- (4) 5, 3 and 4
- 10.0 mL of 0.05 M KMnO₄ solution was consumed in a titration with 10.0 mL of given oxalic acid dihydrate solution. The strength of given oxalic acid solution is _____ ×10⁻² g/L.

(Round off to the Nearest Integer).

[JEE (Main)-2021]

36. When 10 mL of an aqueous solution of KMnO₄ was titrated in acidic medium, equal volume of 0.1 M of an aqueous solution of ferrous sulphate was required for complete discharge of colour. The strength of KMnO₄ in grams per litre is _____× 10⁻². (Nearest integer)

[Atomic mass of K = 39, Mn = 55, O = 16]

[JEE (Main)-2021]

CHEMISTRY ARCHIVE - JEE (Main)

37. In which one of the following sets all species show disproportionation reaction?

[JEE (Main)-2021]

- (1) CIO_4^- , MnO_4^- , CIO_2^- and F_2
- (2) CIO_2^-, F_2, MnO_4^- and $Cr_2O_7^{2-}$
- (3) MnO_4^- , CIO_2^- , CI_2 and Mn^{3+}
- (4) $Cr_2O_7^{2-}$, MnO_4^- , CIO_2^- and Cl_2
- 38. 1 L aqueous solution of H_2SO_4 contains 0.02 m mol H_2SO_4 . 50% of this solution is diluted with deionized water to give 1 L solution (A). In solution (A), 0.01 m mol of H_2SO_4 are added. Total m mols of H_2SO_4 in the final solution is _____ × 10³ m mols.

[JEE (Main)-2022]

39. The neutralization occurs when 10 mL of 0.1M acid 'A' is allowed to react with 30 mL of 0.05 M base M(OH)₂. The basicity of the acid 'A' is ______.
[M is a metal] [JEE (Main)-2022]

- 40. Which one of the following is an example of disproportionation reaction? [JEE (Main)-2022]
 - (1) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$
 - (2) $MnO_4^- + 4H^+ + 4e^- \rightarrow MnO_2 + 2H_2O$
 - (3) $10I^{-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5I_{2}$
 - (4) $8MnO_4^- + 3S_2O_3^{2-} + H_2O \rightarrow 8MnO_2$

 $+6SO_4^{2-} + 2OH^{-}$

41. A 2.0 g sample containing MnO_2 is treated with HCl liberating Cl_2 . The Cl_2 gas is passed into a solution of KI and 60.0 mL of 0.1 M $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ is required to titrate the liberated iodine. The percentage of MnO_2 in the sample is _____. (Nearest integer)

[Atomic masses (in u) Mn = 55; CI = 35.5; O = 16, I = 127, Na = 23, K = 39, S = 32]

[JEE (Main)-2022]

0.01 M KMnO₄ solution was added to 20.0 mL of 0.05 M Mohr's salt solution through a burette. The initial reading of 50 mL burette is zero. The volume of KMnO₄ solution left in burette after the end point is ____ml. [nearest integer] [JEE (Main)-2022]

SO₂Cl₂ on reaction with excess of water results into acidic mixture

$$SO_{2}CI_{2} + 2H_{2}O \rightarrow H_{2}SO_{4} + 2HCI$$

16 moles of NaOH is required for the complete neutralisation of the resultant acidic mixture. The number of moles of SO₂Cl₂ used is

[JEE (Main)-2022]

- (1) 16
- (2) 8

(3) 4

- (4) 2
- 44. Which of the given reactions is not an example of disproportionation reaction? [JEE (Main)-2022]
 - (1) $2H_2O_2 \rightarrow 2H_2O + O_2$
 - (2) $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$
 - (3) $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$
 - (4) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$
- 45. The dark purple colour of KMnO₄ disappears in the titration with oxalic acid in acidic medium. The overall change in the oxidation number of manganese in the reaction is: [JEE (Main)-2022]
 - (1) 5

(2) 1

(3) 7

- (4) 2
- 46. 20 mL of 0.02 M hypo solution is used for the titration of 10 mL of copper sulphate solution, in the presence of excess of KI using starch as an indicator. The molarity of Cu²⁺ is found to be

 _____ × 10⁻² M. [nearest integer]

Given : 2 Cu²⁺ + 4 $I^- \rightarrow$ Cu₂I₂ + I₂

 ${\rm I_2 + \ 2S_2O_3^{2-} \rightarrow 2I^- + \ S_4O_6^{2-}} \qquad \hbox{[JEE (Main)-2022]}$

47. 20 mL of 0.02 M $\rm K_2Cr_2O_7$ solution is used for the titration of 10 mL of Fe²⁺ solution in the acidic medium. The molarity of Fe²⁺ solution is _____×10⁻² M. (Nearest integer)

[JEE (Main)-2022]

ARCHIVE - JEE (Main) CHEMISTRY

48. Given below are two statements: One is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: Permanganate titrations are not performed in presence of hydrochloric acid.

Reason R: Chlorine is formed as a consequence of oxidation of hydrochloric acid.

In the light of the above statements, choose the **correct** answer from the options given below.

[JEE (Main)-2022]

- (1) Both **A** and **R** are true and **R** is the correct explanation of **A**
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

	will be [JEE (Main)-2022]
	overall change in oxidation state of manganese
	almost quantitatively, to sulphate. In this reaction
	a powerful oxidant can oxidize, thiosulphate
49.	In neutral or faintly alkaline medium, KMnO ₄ being

(1) 5

(2) 1

(3) 0

- (4) 3
- 50. The normality of H_2SO_4 in the solution obtained on mixing 100 mL of 0.1 M H_2SO_4 with 50 mL of 0.1 M NaOH is _____ × 10⁻¹ N. (Nearest Integer)

[JEE (Main)-2022]

51. In the titration of KMnO₄ and oxalic acid in acidic medium, the change in oxidation number of carbon at the end point is _____ [JEE (Main)-2022]