DescTools

A Hardworking Assistant for Descriptive Statistics

oreliminary blueprint version>

by Andri Signorell

Helsana Versicherungen AG, Health Sciences, Zurich HWZ University of Applied Sciences in Business Administration, Zurich andri@signorell.net

June, 15th, 2016

R sometimes makes ordinary tasks difficult. Virtually every data analysis project starts with describing data. The first thing to do will often be calculating summary statistics for all variables while listing the occurrence of nonresponse and missing data and producing some kind of graphics. This is a three-click process in SPSS, but regardless of the normality of this task, base R does not contain higher level functions for quickly describing huge datasets (meant regarding the number of variables, not records) adequately in a more or less automated way. Sure, there are facilities like summary (base), describe (Hmisc), stat.desc (library pastecs), but all of them are lacking some functionality or flexibility we would have expected. What we in particular missed ever since is a combination of numerical and graphical description of data.

Another point is, that there are quite a few commonly used functions, which curiously are not present in the stats package, think e.g. of skewness, kurtosis but also the Gini-coefficent, Cohen's Kappa or Somers' delta. This led to a rank growth of libraries implementing just one specific missing thing. There are plenty of "misc"-libraries out there, containing such functions and tests. We would normally end up using a dozen libraries, each time using just one single function out of it and suffering huge variety concerning NA-handling, recycling rules and so on.

R has been developed in a university environment. This will be clear at the latest then when you find yourself working in an office of an insurance and you realize that only MS-Office (and no LATEX) is installed on your system (and the IT guys won't give you admin rights). We were forced in this situation to write code for doing our reporting in MS-Word. (This works quite well for Windows, but not for Mac unfortunately.)

The first version of "DescTools" arose after completion of a project, where we had to describe a dataset under deadline pressure, and we started to gather our newly created functions and put them together.

This collection has meanwhile grown to a considerably versatile toolset for descriptive statistics, providing rich univariate and bivariate descriptions of data without expecting the user to say much.

There are numerous basic statistic functions and tests, possibly flexible and enriched with different approaches (if existing). Confidence intervals are extensively provided.

Recognizing that most problems can be satisfactorily visualized with bar-, scatter- and dotplots, still some more specific plot types are used in special cases and thus included in the library. Some of them are rather new, and some of them are based on types found scattered in the myriads of R packages found out there (partly rewritten to meet the design goals of the package).

The aim of this document is to show how data description can be accomplished with relative ease compared to the standard R interface.

	Intr	oduction	4					
2	Cate	Categorical Variables5						
3	Nun	nerical Variables	6					
3	3.1	Numeric	6					
3	3.2	Numeric data with few unique values						
3	3.3	Count data (discrete)						
4	Logi	cal values	10					
5	Tim	e variables	11					
Ţ	5.1	Dates	11					
Į	5.2	Timeseries PlotACF						
6	data	ı.frames	12					
7	Pair	wise Numeric ~ Categorical	12					
	7.1	Boxplot and Designplot						
	7.2	Comparing distributions						
7	7.3	Trellis						
8	Dair	wise Categorical ~ Numeric	17					
		-						
9		wise Categorical ~ Categorical						
10		wise Numeric ~ Numeric						
	10.1	Boxplot and Designplot						
-	10.2	Boxplot on 2 dimensions: PlotBag	18					
11	Tab	e One	19					
12	Mul	tiple pairwises	20					
13	Plot	missing data	20					
14	Con	centration	21					
15		tivariate graphical description Correlation plot	22					
	15.1 15.2	Correlation plot	วา					
	15.2 15.3	•						
	15.5	PlotPolar (Radarplot)	22					
•	154	PlotPolar (Radarplot)	22 24					
	15.4	PlotPolar (Radarplot)	22 24 24					
16	Sup	PlotPolar (Radarplot)	22 24 24					
16	Sup 16.1	PlotPolar (Radarplot) PlotFaces PlotTreemap plements to base R plots Lineplots	222425					
16	Sup 16.1 16.2	PlotPolar (Radarplot)	24242525					
16	Sup 16.1 16.2 16.3	PlotPolar (Radarplot)	24252525					
16	Sup 16.1 16.2 16.3 16.4	PlotPolar (Radarplot)						
16	Sup 16.1 16.2 16.3 16.4 16.5	PlotPolar (Radarplot)						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6	PlotPolar (Radarplot)						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6	PlotPolar (Radarplot) PlotFaces PlotTreemap Dlements to base R plots Lineplots. "Bumpchart" Barplot horizontal Barplot vertical Barplot (specials) PlotPyramid PlotHorizBar	2224252527282930					
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7	PlotPolar (Radarplot) PlotFaces PlotTreemap Dlements to base R plots Lineplots "Bumpchart" Barplot horizontal Barplot vertical Barplot (specials) PlotPyramid PlotHorizBar PlotCandlestick						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9	PlotPolar (Radarplot)	222425252828303131					
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10	PlotPolar (Radarplot) PlotFaces PlotTreemap Dlements to base R plots Lineplots "Bumpchart" Barplot horizontal Barplot vertical Barplot (specials) PlotPyramid PlotHorizBar PlotCandlestick Combination of barplot and lineplot PlotDot						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10	PlotPolar (Radarplot) PlotFaces PlotTreemap Dlements to base R plots Lineplots "Bumpchart" Barplot horizontal Barplot vertical Barplot (specials) PlotPyramid PlotHorizBar PlotCandlestick Combination of barplot and lineplot PlotDot PlotBubble						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11	PlotPolar (Radarplot)						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12	PlotPolar (Radarplot) PlotFaces PlotTreemap plements to base R plots Lineplots "Bumpchart" Barplot horizontal Barplot vertical Barplot (specials) PlotPyramid PlotHorizBar PlotCandlestick Combination of barplot and lineplot PlotBubble Venn plots Areaplot						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12 16.13 16.14	PlotPolar (Radarplot) PlotFaces						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12 16.13 16.14	PlotPolar (Radarplot) PlotFaces						
16	Sup 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12 16.13 16.14	PlotPolar (Radarplot) PlotFaces						

17	For	mat, Strings and Date functions	41
1	7.1	Formatting numbers and dates	41
		Date functions	
1	7.3	Strings	43
18	lmp	port – Export	44
1	8.1 ·	Import data via Excel	44
1	8.2	Import SAS datalines	44
19	Des	scToolsOptions	45
20	Ref	ferences	47

Users, even expert statisticians, do not always screen the data.

B. D. Ripley, Robust statistics (2004)

1 Introduction

The analyst's sacred duty before beginning any sort of statistical analysis is to take a preliminary look at the data with three main goals in mind: first, to check for errors and anomalies; second, to understand the distribution of each of the variables on its own; and third, to begin to understand the nature and strength of relationships among variables.

Errors should, of course, be corrected, since even a small percentage of erroneous data values can drastically influence the results and might completely invalidate the analysis. Understanding the distribution of the variables, especially the outcomes, is crucial to choosing the appropriate multipredictor regression method. Finally, understanding the nature and strength of relationships is the first step in building a more formal statistical model from which to draw conclusions.

To prevent the analyst to bypass these steps the describing process must be quick and simple. So the principal goal of DescTools is to make data description easier, less costly, less time consuming and less error-prone. One outstanding feature of the package is the combination of numerical results and graphical representation which can mostly be automated and reported to the console, but as well quite easily be exported to a Word Document.

The proper description of data depends on the nature of the measurement. The key distinction for statistical analysis is between numerical and categorical variables. The temperature of the pizza is a numerical variable, while the driver delivering it is categorical. The delivery time is numerical, whereas the area of the customer is categorical. A secondary but sometimes important distinction within numerical variables is whether the variable can take on a whole continuum or just a discrete set of values. So the temperature would be continuous, while number of pizzas ordered (count) would be discrete.

A numerical variable taking on a continuum of values is called continuous and one that only takes on a discrete set of values is called discrete. A secondary distinction sometimes made with regard to categorical variables is whether the categories are ordered or unordered. So, for example, categories of quality (low, medium, high) would be ordered, while the operator would be unordered.

A categorical variable is ordinal if the categories can be logically ordered from smallest to largest in a sense meaningful for the question at hand (we need to rule out silly orders like alphabetical); otherwise it is unordered or nominal. Some overlap between types is possible. For example, we may break a numerical variable (such as exact total amount) into ranges or categories. Conversely, we may treat a categorical variable as a numerical score, for example, by assigning values one to three to the ordinal responses Low, Medium, High. Most of the basic analysis methods for numerical scores (e.g., linear regression or t-tests) have interpretations based on average scores. So assigning scores to a categorical variable is effective if average scores are readily interpretable. [3]

The function Desc is designed to describe variables depending on their type with some reasonable statistic measures and an adequate graphic representation. It includes code for describing logical variables, factors (ordered and unordered), integer variables (typically counts), numeric variables, dates and tables and matrices.

Data frames will be split into their variables and the single variable will be described. A formula interface is implemented to easily describe variables in dependence of others.

The output can either be sent to the R-console or as well directly redirected to a MS-Word document.

The latter works only in Windows with MS-Office installed, but Mac users can leave the wrd argument away and add a plotit = TRUE argument to have the full results in the console.

Note: For all the examples in this document, library(DescTools) must be declared.

2 Categorical Variables

The first variable is an unordered factor. Factors are typically best described by a frequency table of their levels. The default order of the output table is following a pareto rule, the most frequent levels first.

Ordered factors would be sorted after their natural order by default. The default order can be changed by setting the ord argument to either "desc", "asc", "name" or "level".

The frequency table is by default truncated in the case that there are more than a dozen values (this can be avoided by setting the argument maxrows=NA, see: PDesc.factor for more details).

Desc(d.pizza\$driver, plotit=TRUE)

Desc

Figure 10.2 Frequency plot of a categorical variable

The graphical representation consists of two horizontal barplots. The left one is displaying the absolute frequencies with truncated x-axis. The left plot will always display the percentages with fixed x-axis limits set to 0 and 1. The cumulative frequencies can be displayed or be left away.

Synopsis

length	total number of elements in the vector, NAs are included here
n	number of valid cases, NAs, NaNs, Inf etc. are not counted here
NAs	number of missing values
levels	number of levels
unique	number of unique values.
	Note: This is not necessarily the same value as levels, as there might be
	empty levels. Thus the number of levels might be higher than the
	number of unique values (but not the other way round).
dupes	y(es) or n(o), reporting if there are any duplicate values in the vector. If
	"n" (for no) then there are only unique values in the variable.
freq	the count (absolute frequency) of the specific level. The order of a
	factors frequency table is by default chosen as "absolute frequency-
	decreasing".
perc	the relative frequency of the specific level
cumfreq	the cumulative frequencies of the levels
cumperc	the same for the percentage values

total according of all according the according NA according to all and be according to

3 Numerical Variables

3.1 Numeric

The next variable, the temperature of the delivered pizza, is numeric. Numeric variables are described by the most usual statistical measures for location, variation and shape.

Several features of the output are worth consideration. The largest and smallest values should be scanned for outlying or incorrect values, and the mean (or median) and standard deviation (or interquartile range IQR, resp. the median absolute deviation mad) should be assessed as general measures of the location and spread of the data.

The quantiles deliver a good overall impression of the distribution. We note that 90% of the data lie between 26 and 60 degrees and the inner 50% between 42 and 55.

The skewness and kurtosis are usually more easily assessed by the graphical means, though their numerical values are included in the output. A large difference between the mean and median is another cue for the skewness. In right-skewed data, the mean is larger than the median, while in left-skewed data, the mean is smaller than the median.

Desc(d.pizza\$temperature, main="", plotit=TRUE)

lowest: 19.3, 19.4, 20, 20.2 (2), 20.35 highest: 63.8, 64.1, 64.6, 64.7, 64.8

Figure 3.1 Distribution of a numeric variable.

The plot 3.1 as produced by the function PlotFdist combines a histogram with a density plot, a boxplot and the plot of the empirical distribution function ECDF. The scale for the x-axis is synchronized over all plots. The median can thus be found on the boxplot as also in the ecdfplot. The maximum and the minimum value are tagged with a tiny vertical dash upon the ecdfline. The mean is shown in the boxplot as grey diamond, the grey bar is its confidence interval.

Let's enumerate the features in detail. The first measures length, n, NAs, unique have again the same meaning as above. NAs are silently removed from all subsequently calculations.

total number of zero values. mean the arithmetic mean of the vector. meanSE standard error of the mean, sd(x) / sqrt(n). This can be used to construct the confidence intervals for the mean, defined as qt(p = 0.025, df = n-1) * sd(x) / sqrt(n). (See also: function MeanCI(...)) quantiles of x, starting with 5%, 10%, 1. quartile, median etc. .05, .., .95 rng range of x, max(x) - min(x)sd standard deviation vcoef variation coefficient, defined as sd(x) / mean(x)mad median absolute deviation IQR inter quartiles range skewness of x skew kurt kurtosis of x lowest the smallest 5 values. If there are bindings, the frequency of each value will be reported in brackets. highest same as lowest, but on the other end

Transformations can be entered in place.

```
Desc(1/d.pizza$temperature, digits=3, main="")
title(expression(frac(1,x)))
```

```
length
            n
                  NAs unique
                                   95
                                        mean meanSE
1'209
        1'170
                   39
                          375
                                      0.022
                                              9 999
   .05
          .10
                  .25 median
                                 .75
                                         .90
                                                 .95
        0.017
                       0.020
                                              0.037
 0.017
                0.018
                               0.024
                                       0.030
 range
           sd
                vcoef
                          mad
                                 IQR
                                        skew
                                               kurt
 0.036
        0.006
                0.289
                       0.004
                               0.006
                                      2.027
                                              4 244
```

lowest: 0.015, 0.015, 0.015, 0.016, 0.016 highest: 0.049, 0.050 (2), 0.050, 0.052, 0.052

Figure 3.2 Distribution of a numeric variable.

There are several approaches commonly used for graphical comparing the variable's distribution to a reference distribution. The two most seen are firstly superposing the reference density curve over the variable's histogram and second using a Q-Q-plot. A QQ plot is used to compare the shapes of distributions, providing a graphical view of how properties such as location, scale, and skewness are similar or different in the two distributions

We get

Figure 3.3 Overlay of fitted χ^2 -function.

This makes it clear, that this is not the best way to decide, whether the red curve follows our hypothesized distribution or not. Where does random start?

The better approach is to use a QQ-plot, which by the way solves the x-axis scaling problem we had in the overlay solution. The function PlotQQ is a wrapper for plotting QQ-plots with other than normal distributions.

A qqline is inserted on which the points are likely to lie (approximately) if the two distributions being compared are similar.

It sometimes might be hard to judge, if the points are (too) far away from the qqline or not. An idea to check the general variability is to use simulated sets with the desired distribution. If our points exceed the confidence intervals, something is likely to be wrong. In our example everything's fine, of course, as we sampled from the tested distribution.

PlotQQ

LinScale

Figure 3.4 QQ plot for a χ^2 -distributed variable.

A model distribution curve can as well be superposed to the cumulative distribution function.

Airquality - Ozone 0.025 0.020 0.015 0.000 | gamma: $\Gamma\left(k = \frac{\vec{x}^2}{s^2}, \theta = \frac{s^2}{\vec{x}}\right)$ | kernel density

100

Figure 3.5 Compare empirical distribution with a gamma distribution.

3.2 Numeric data with few unique values

50

If there's a numeric variable with only one or two handfuls of unique values then a description by means of a histogram and a density curve is not really adequate. The density curve will start oscillating and the bins in the histograms would lose their continuous nature. Therefore we change the graphic representation from a histogram to a histogram like h-type plot without density curve.

150

200

In the numerical results the extreme values will be replaced by a frequency representation with absolute values and percentages.

Desc(d.pizza\$weekday, plotit=TRUE)

le	ngth	1	n	NAs	unique	0s	mean	meanSE
1	'209	1'17	7	32	7	0	4.44	0.06
	.05	.10	0	.25	median	.75	.90	.95
	1.00	1.0	0	3.00	5.00	6.00	7.00	7.00
r	ange	S	d '	vcoef	mad	IQR	skew	kurt
	6.00	2.0	2	0.45	2.97	3.00	-0.34	-1.17
	leve	l fr	eq	perc	cumfreq	cump	erc	
1		1 1	44	12.2%	144	12	. 2%	
2		2 1	17	9.9%	261	22	. 2%	
3		3 1	34	11.4%	395	33	.6%	
4		4 1	47	12.5%	542	46	.0%	
5		5 1	71	14.5%	713	60	.6%	
6		6 2	44	20.7%	957	81	.3%	

1'177

100.0%

Figure 3.6 Distribution of a numeric variable.

3.3 Count data (discrete)

220

18.7%

The next variable is a count variable, whose nature is somewhat between numeric and factors as far as descriptive measures are concerned. In fact, if there are only just a few unique values, then the factor representation (frequencies) might be more appropriate than the numeric description (with densities etc.). We draw the line between factor and numeric representation at a dozen of unique values in x. Beyond that number, the numeric description will be reported and for fewer

values the factor representation will be used.

Desc(d.pizza\$count, plotit=TRUE)

length	n	NAs	unique	0s	mean	meanSE
1'209	1'197	12	8	0	3.444	0.045
.05	.10	.25	median		.90	.95
1	2	2	3	4	6	6
rng	sd	vcoef	mad	IQR	skew	kurt
7	1.556	0.452	1.483	2	0.454	-0.363

	level	freq	perc	cumfreq	cumperc
1	1	108	.090	108	.090
2	2	259	.216	367	.307
3	3	300	.251	667	.557
4	4	240	.201	907	.758
5	5	152	.127	1059	.885
6	6	97	.081	1156	.966
7	7	34	.028	1190	.994
8	8	7	.006	1197	1.000

Figure 3.7 Distribution of a count variable.

The plot is produced as a (horizontal) dotchart. More than 12 unique values are truncated (a warning is placed in the plot area). The maxrows argument can be used to override this default (NA for all).

Two dotcharts are created, the left one shows the absolute frequencies, the right one the percentages. On the left plot the x-axis might be adapted to the data (as R does by default). The percentages will always be displayed on a 0:1-range.

The plot width is adapted to the length of the labels. If the labels get too long, they will be truncated and displayed with ellipsis (...).

4 Logical values

Dichotomous variables do not have real dense (univariate) information. The variable $wine_ordered$ for example contains only two values, 0 and 1. Still it is usually interesting to know, how many NAs there are, besides the frequencies of course. The individual frequencies are reported together with a confidence interval, calculated by BinomCI using the option "Wilson".

Desc(d.pizza\$wine_ordered, plotit=TRUE)

```
length n NAs unique
1'209 1'197 12 2
freq perc lci.95 uci.95¹
0 1010 .844 .822 .863
1 187 .156 .137 .178
```


Figure 4.1 Distribution of a numeric variable.

This is basically a univariate horizontal stacked barplot, with confidence intervals on the confidence levels of 0.90, 0.95 and 0.99. The vertical line denominates the point estimator.

5 Time variables

5.1 Dates

A date variable is harder to describe as single variable. What characteristics would one want to know from a date? We would normally choose a description similar to numeric values, supplemented by an analysis of the weekday and month for grasping anomalies concerning extreme, invalid or missing values.

```
Desc(d.pizza$date, plotit=TRUE)
  length
                    NAs unique
   1'209
          1'177
                     32
lowest : 2014-03-01 (42), 2014-03-02 (46), 2014-03-03 (26), 2014-03-04 (19)
highest: 2014-03-28 (46), 2014-03-29 (53), 2014-03-30 (43), 2014-03-31 (34)
Weekdays:
       level freq
                    perc cumfreq cumperc
                                             exp res
1
      Montag
               144
                     .122
                              144
                                      .122 168.1 -1.9
                                                                 Montag
                     .099
                                      .222 168.1 -3.9
    Dienstag
               117
                              261
                                                                Dienstag
                              395
    Mittwoch
                     .114
                                      .336 168.1 -2.6
               134
                                                                Mittwoch
4 Donnerstag
               147
                     .125
                              542
                                      .460 168.1 -1.6
                                                              Donnerstag
     Freitag
               171
                     .145
                              713
                                      .606 168.1
                                                                 Freitag
6
     Samstag
                     .207
                              957
                                      .813 168.1
               244
                                                  5.9
                                                                Samstag
                                                                                     0
     Sonntag
               220
                     .187
                             1177
                                     1.000 168.1
                                                  4.0
                                                                Sonntag
                                                                                     0
        Chi-squared test for given probabilities
                                                                                  150
                                                                                          200
                                                                                                   250
data: table(xd)
X-squared = 78.8785, df = 6, p-value = 6.09e-15
Months:
       level freq perc cumfreq cumperc
                                          exp prs.res
                                        0 99.7
      Januar
                 0
                       0
                               0
                                                  -10.0
                                        0 93.3
                               0
                                                   -9.7
2
     Februar
                 0
                       0
                                                                 Januar
3
        März 1177
                       1
                            1177
                                        1 99.7
                                                  107.9
                                                                Februar
4
       April
                 0
                       0
                            1177
                                        1 96.5
                                                   -9.8
                                                                  März
                                        1 99.7
5
         Mai
                 a
                       a
                                                  -10.0
                            1177
                                                                   April
6
         Juni
                 0
                       0
                            1177
                                        1 96.5
                                                   -9.8
                                                                   Mai
                                        1 99.7
7
        Juli
                 0
                       0
                            1177
                                                  -10.0
                                                                   Juni
                                        1 99.7
                                                  -10.0
8
      August
                 0
                       0
                            1177
                                                                   Juli
9
   September
                 0
                       0
                            1177
                                        1 96.5
                                                   -9.8
                                                                 August
                                                                         . 0
10
     Oktober
                       0
                            1177
                                        1 99.7
                                                  -10.0
                                                              September
11 November
                       a
                                        1 96.5
                 a
                            1177
                                                   -9.8
                                                                Oktober
12
    Dezember
                            1177
                                        1 99.7
                                                  -10.0
                                                               November
                                                                         . 0
                                                               Dezember
                                                                           0
        Chi-squared test for given probabilities
                                                                             200
                                                                                  400
                                                                                           800
                                                                                                1000
data: tab
X-squared = 12719.19, df = 11, p-value < 2.2e-16
```

5.2 Timeseries PlotACF

This produces a combined plot of a time series and its autocorrelation and partial autocorrelation, which is used in every introductory course for time-series.

```
PlotACF(AirPassengers)
```


6 data.frames

After that, every single variable will be described according to the type of its class.

Let's start with a quick description of some variables out of the integrated data.frame d.pizza.

```
library(DescTools)

# the results (and the plots) will either be displayed in the console
Desc(d.pizza[,c("driver","temperature","count","weekday","wine_ordered","date")],
plotit=TRUE)

# ... or we can start a new word instance and send the results directly to a word document
wrd <- GetNewWrd()
Desc(d.pizza[,c("driver","temperature","count","weekday","wine_ordered","date")], wrd=wrd)</pre>
```

```
'data.frame': 1209 obs. of 4 variables:

1 $ driver : Factor w/ 7 levels "Butcher", "Carpenter",..: 7 1 1 7 3 7 7 7 3 ...

2 $ temperature : num 53 56.4 36.5 NA 50 27 33.9 54.8 48 54.4 ...

3 $ count : int 5 2 3 2 5 1 4 NA 3 6 ...

4 $ weekday : num 6 6 6 6 6 6 6 6 6 6 ...

5 $ wine_ordered: int 0 0 0 0 0 1 NA 0 1 ...

6 $ date : Date, format: "2014-03-01" "2014-03-01" "2014-03-01" "2014-03-01" ...
```

First a simple Str() of the data.frame is performed. The result is no more than that of a str() command, extended with an enumeration of the variables.

Str

7 Pairwise Numeric ~ Categorical

7.1 Boxplot and Designplot

Desc implements a formula interface allowing to define bivariate descriptions straight forward.

A numeric variable vs. a categorical is best described by group wise measures. Here the valid pairs are reported first. Missing values in the single groups are documented in the results table and missing values on the grouping factor are mentioned with a warning at the end of the table, if existing at all.

Desc(temperature ~ driver, d.pizza, digits=1, plotit=TRUE)

n pairs: 1'209, valid: 1'166 (96%), missings: 43 (4%), groups: 7

	Butcher	Carpenter	Carter	Farmer	Hunter	Miller	Taylor
mean	49.6	43.5 ¹	50.4	50.9	52.1 ²	47.5	45.1
median	51.4	44.81	51.8	54.1	55.1 ²	49.6	48.5
sd	8.8	9.4	8.5	9.0	8.9	8.9	11.4
IQR	12.0	12.5	11.3	11.2	11.6	8.8	18.4
n	96	253	226	117	156	121	197
np	0.082	0.217	0.194	0.100	0.134	0.104	0.169
NAs	0	19	8	0	0	4	7
0s	0	0	0	0	0	0	0

¹ min, ² max

Kruskal-Wallis rank sum test:

Kruskal-Wallis chi-squared = 141.9349, df = 6, p-value < 2.2e-16 Warning:

Grouping variable contains 5 NAs (0.414%).

a boxplot combined with a means-plot as used in anova

7.2 **Comparing distributions**

How should we compare distributions graphically, moving beyond a simple boxplot? PlotViolin serves the same utility as a side-by-side boxplot, but provides more detail about the single distribution. We started with John Verzani's Violinplot and rewrote it so that it takes exactly the same parameters as the boxplot-function.

Another idea is to plot several densities within the same plot. PlotMultiDens does this while setting the xlim- and ylim-values to an appropriate value, ensuring all density lines are fully visible. For a smaller number of variables, say up to two handfuls, this will be the most direct way to compare their distributions. (Note: For violins this limit lies much higher as they do not overlap and so mutually hide.)

```
PlotViolin(temperature ~ driver, data=d.pizza, col = SetAlpha(hblue,0.5),
           main="Temperature ~ Driver")
PlotMultiDens(temperature ~ driver, data=d.pizza, xlab="temperature",
              main="Temperature ~ Driver", panel.first=grid(),
```


For small datasets a stripchart might be the best way to plot the data. The conditional density-plot at the right allows to grasp the proportions within the total density.

7.3 Trellis

The classic way is to spend a full plot for every single variable. There's an interesting link, demonstrating this technique: http://www.statmethods.net/advgraphs/trellis.html

Again here a scatterplot is highly informative.

Another nice combination of several elements like rug, grid and lmline:

```
library(lattice)
displacement <- equal.count(mtcars$disp, number=3, overlap=0)</pre>
mypanel \leftarrow function(x, y) {
  panel.xyplot(x, y, pch=19)
  panel.rug(x, y)
  panel.grid(h=-1, v=-1)
  panel.lmline(x, y, col="red", lwd=1, lty=2)
xyplot(mpg \sim wt \mid displacement, data=mtcars,
       layout = c(3, 1),
aspect = 1.5,
             = "Miles per Gallon vs. Weight by Engine Displacement",
       main
             = "Weight",
       xlab
       ylab
               = "Miles per Gallon",
       panel = mypanel)
```

Miles per Gallon vs. Weight by Engine Displacement

8 Pairwise Categorical ~ Numeric

No, it's not the same as numeric \sim categorical. The design is such, that the response variable is categorical and the predictor numeric. With a model one would set up a multinomial regression (or logistic in the case of 2 categories).

Desc(area ~ temperature, data=d.pizza, digits=1, wrd=wrd)

Summary:

n pairs: 1'209, valid: 1'161 (96%), missings: 48 (4%), groups: 3

	Brent	Camden	Westminster
mean	51.1 ²	47.4	44.3 ¹
median	53.4 ²	50.3	45.9 ¹
sd	8.7	10.1	9.8
IQR	10.5	12.2	13.2
n	467	335	359
np	0.402	0.289	0.309
NAs	7	9	22
0s	0	0	0

¹ min, ² max

Kruskal-Wallis rank sum test:

Kruskal-Wallis chi-squared = 115.83, df = 2, p-value < 2.2e-16
Wanning:</pre>

Grouping variable contains 10 NAs (0.827%).

Proportions of area in the quantiles of temperature:

 Q1
 Q2
 Q3
 Q4

 Brent
 0.244
 0.345
 0.405
 0.618

 Camden
 0.289
 0.266
 0.363
 0.236

 Westminster
 0.467
 0.389
 0.232
 0.146

9 Pairwise Categorical ~ Categorical

Two categorical variables are described by a contingency table, as shown in the vignette Tables.

10 Pairwise Numeric ~ Numeric

10.1 Boxplot and Designplot

Two numerical variables have no obvious standard description as their relationship can have manifold forms. Thus we're going to report only the simple correlation coefficients (Pearson, Spearman and Kendall) and a hopefully helpful scatterplot.

The variables are plotted as xy-scatterplots with interchanging mutual dependency, supplemented with either a LOESS or a spline smoother.

```
Desc(temperature ~ delivery_min, d.pizza, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'170 (97%), missings: 39 (3%)

Pearson corr.: -0.575

Spearman corr.: -0.573

Kendall corr.: -0.422
```

Scatterplots for two numeric variables:

Figure 10.2 Mosaicplot of Eye colour ~ Hair colour.

10.2 Boxplot on 2 dimensions: PlotBag

This function transposes the boxplot idea in the 2-dimensional space. The points are outliers, the lightblue area is the area within the fences in a normal boxplot and the darkblue area is the inner quartile range.

The median is plotted as orange point in the middle.

This code is taken verbatim from Peter Wolf's aplpack package.

Two-dimensional Boxplot

11 Table One

Create a table summarizing continuous, categorical and dichotomous variables, optionally stratified by one or more variables, while performing adequate statistical tests.

will produce the following table:

var	total	low	medium	high	
n	1'008	156 (15.5%)	356 (35.3%)	496 (49.2%)	
temperature	47.9 (9.9)	32.9 (7.8)	45.6 (7.4)	53.6 (6.5)	*** 1
delivery_min	25.7 (10.8)	33.9 (11.7)	26.5 (10.1)	22.6 (9.5)	*** 1
driver					*** 3
Butcher	79 (8.0%)	10 (6.5%)	36 (10.1%)	33 (6.7%)	
Carpenter	225 (22.6%)	59 (38.1%)	90 (25.4%)	76 (15.4%)	
Carter	196 (19.4%)	11 (7.1%)	72 (20.3%)	113 (22.9%)	
Farmer	94 (9.7%)	10 (6.5%)	26 (7.3%)	58 (11.7%)	
Hunter	130 (13.0%)	8 (5.2%)	43 (12.1%)	79 (16.0%)	
Miller	109 (10.4%)	16 (10.3%)	35 (9.9%)	58 (11.7%)	
Taylor	171 (16.9%)	41 (26.5%)	53 (14.9%)	77 (15.6%)	
wine_ordered (= 1)	161 (16.1%)	32 (20.8%)	63 (17.9%)	66 (13.4%)	. 3

 $^{^{\}rm 1}\!)$ Kruskal-Wallis test, $^{\rm 2}\!)$ Fisher exact test, $^{\rm 3}\!)$ Chi-Square test

12 Multiple pairwises

The formula supports the dot symbol, meaning every variable in the data besides the ones already present in the formula. The following code produces a plot for driver, operator and area versus the response variable temperature:

This can as well be reversed in the sense that the dot is defined as response variable and so all the variables will be plotted against one predictor variable.

13 Plot missing data

An interesting idea for creating a visual representation of missing data was brought to my attention by Henk Harmsen. The following plot symbolizes each missing value with a vertical line. The x-axis represents the index of the record. On the right side are the numbers of missings noted.

Missing pizza data

The missing values can be clustered such as to display several areas of missing values. This can be helpful for detecting dependencies or patterns within the missings.

PlotMiss(d.pizza, main="Missing pizza data", clust = TRUE)

Missing pizza data

Andri/2016-06-15

14 Concentration

Lorenz-curves can be found in other libraries. This implementation starts with that from the library ineq, adding some value by calculating confidence intervals for the Gini coefficient.

```
x <- c(10, 10, 20, 20, 500, 560)

lc <- Lc(x)
plot(lc)
points(lc$p, lc$L, cex=1.5, pch=21, bg="white", col="black", xpd=TRUE)

Gini(x)
Gini(x, unbiased = FALSE)

Gini(x, conf.level = 0.95)</pre>
```



```
> Gini(x)
[1] 0.7535714
```

> Gini(x, unbiased = FALSE)

```
[1] 0.6279762
> Gini(x, conf.level=0.95)
    gini    lwr.ci    upr.ci
0.7535714 0.2000000 0.8967742
```

15 Multivariate graphical description

15.1 Correlation plot

These functions produce a graphical display of a correlation matrix. In the classic matrix representation the cells of the matrix can be shaded or coloured to show the correlation value. In the right circular representation the correlations are coded in the line width of the connecting lines. Red means a negative correlation, blue a positive one.

15.2 PlotPolar (Radarplot)

This function produces a polar plot but can also be used to draw radarplots or spiderplots.

```
d.car <- scale(mtcars[1:6,1:7], center=FALSE)

# let's have a palette with thransparent colors
cols <- SetAlpha(colorRampPalette(c("red","yellow","blue"), space = "rgb")(6), 0.25)

PlotPolar(d.car, type="l", fill=cols, main="Cars in radar")
PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")
legend(x=2, y=2, legend=rownames(d.car), fill=SetAlpha(cols, NA))</pre>
```


A barplot in polar coordinates can be produced by means of the function DrawAnnulusSector.

Andri/2016-06-01

15.3 PlotFaces

A nice idea for the concrete representation of your customer's profile is to produce a Chernoff faces plot. The rows of a data matrix represent cases and the columns the variables.

15.4 PlotTreemap

This function produces a treemap.

Gross national income (per capita) in \$ per country in 2010

16 Supplements to base R plots

16.1 Lineplots

There are many flavours of line plots. Most (all?) of them can be handled by the function matplot.

We generally desist from defining own functions, that only set suitable arguments for another already existing function, as we fear we would run into a forest of new functions, loosing overview.

Yet the parametrization of matplot can be a haunting experience and so we integrate some common examples here in the sense of a "How-To" tutorial.

Let's for example have a horizontal profile of the driver's characteristics.

```
(ms <- data.frame(lapply(m, scale)))</pre>
                                                  # lets scale that
                               price delivery_min wine_ordered
                                                                      weekday
           temperature
Butcher
             0.3605689 -0.69917381 -0.98046684
                                                      -1.0738446 1.9826284
Carpenter
            -1.5481318 1.74805901
                                        1.54851320
                                                       1.5445402 0.1389367
             0.6105633 -0.82596309
                                                       -1.0840337 -0.8062020
Carter
                                        0.02841316
                                       -0.74842415
                                                       0.6105001 -0.7800183
             0.7718643 0.36562860
Farmer
Hunter
             1.1473246 -1.16829499
                                       -1.04738479
                                                       -0.7792855 -0.7038441
Miller
            -0.2918676 0.52072004
                                        0.23662429
                                                       0.3794541 0.4596817
            -1.0503216 0.05902424
                                        0.96272512
                                                       0.4026695 -0.2911825
Taylor
x <- 1:ncol(ms)
y \leftarrow t(ms)
windows(8.8,5)
par(mar=c(5,4,4,10)+.1)
matplot(x, y, type="l", col=rainbow(nrow(ms)), xaxt="n", las=1, lwd=2, frame.plot=FALSE,
ylim=c(-2,2),
         xlab="", main="Horizontal profile")
abline(h=0, v=1:5, lty="dotted", col="grey")
par(xpd=TRUE)
legend(x=5.5, y=2, legend=rownames(ms), fill=rainbow(nrow(ms)))
axis(side=1, at=1:5, labels=colnames(ms), las=1, col="white")
```

Horizontal profile

The same, but with less code and a nifty and better readable legend at the right side.

PlotLinesA(t(ms), col=PalTibco(), lwd=2)

Andri/2016-04-27

16.2 "Bumpchart"

Plot B is sometimes called bumpchart (Jim Lemon).

16.3 Barplot horizontal

A simple barplot, once with absolute values, once with percentages.

16.4 Barplot vertical

This same as above but with vertical bars.

16.5 Barplot (specials)

Some specials like overlapping bars, connecting lines or error bars in combination with a barplot.


```
windows(height=3,11)
par(mfrow=c(1,3))
# A) Overlapping bars -----
blue <- rbind(c(5, 3, 4, 3),
               c(3, 2, 5, 1))
dimnames(blue) <- list(c("A","B"),c("t1","t2","t3","t4"))
red <- rbind(c(1.7,3.5,1.6,1.1),</pre>
c(2.1,1.0,1.7,0.5))
dimnames(red) <- list(c("A","B"),c("t1","t2","t3","t4"))
# Set parameters
osp <- 0.5
                           # overlapping part in %
sp <- 1
                           # spacing between the bars
nbars <- dim(blue)[2]</pre>
                        # how many bars do we have?
# Create first barplot
, xlim=c(0, nbars*2-osp )
                                               # enlarge x-Axis
               , space=c(0, rep(sp, nbars-1) ) # set spacing=1, starting with 0 \,
# Draw the red series
barplot( red, col= c(PalHelsana()[5], hred), beside=FALSE
         , space=c(1-osp, rep(1, nbars-1)) # shift to right by 1-osp
         , axisnames=FALSE, add=TRUE)
# Create axis separately, such that labels can be shifted to the left
axis(1, labels=colnames(red), at=b+(1-osp)/2, tick=FALSE, las=1)
# B) Connecting lines -----
barplot(blue, col= SetAlpha(hblue, c(0.5,1)), space=1.2, main="B)" )
ConnLines(blue, lwd=2, lty="dashed", space=1.2)
# C) Add error bars -----
cred <- apply(red, 2, sum)
b <- barplot(cred, col=horange, space=1.2, ylim=c(0,5), main="C)" )
ErrBars(from=cred * .90, to=cred * 1.1, pos=b)</pre>
```

16.6 PlotPyramid

A special kind of horizontal barplot is a "pyramid plot", where the bars are plotted back to back. This is sometimes needed, when your boss has specific and strict ideas how his presentation should look like.

Density of general practitioners and drugstores

16.7 PlotHorizBar

This is a simple function for plotting flowing horizontal or vertical bars.

```
PlotHorizBar(from=c(1,2,3), to=c(2,5,4), grp=c(1,2,3), col=PalHelsana()[1:3])
```


16.8 PlotCandlestick

This plot is used primarily to describe price movements of a security, derivative or currency over time. Candlestick charts are a visual aid for decision making in stock, foreign exchange, commodity, and option trading.

```
example(PlotCandlestick)
PlotCandlestick(x=as.Date(rownames(nov)), y=nov, border=NA, las=1, ylab="")
```


16.9 Combination of barplot and lineplot

It's normally not recommended to use two axes, resp. combine two plots into one. However for displaying clima diagrams, consisting of a rain barplot and a temperature lineplot, this type is quite popular and often seen.

The used plot has a few special format features, that cost me much of time to find a solution. This includes the rug with positive and negative parts, the outside legend, the two axes with a suitable dimensions and the colouring of the background.

```
# get some data
d.temp <- data.frame(</pre>
  month=c("Jan","Feb", "Mrz", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez")
,nieder_96=c(9, 50, 41, 49, 141, 99, 161, 119, 52, 115, 123, 70)
,nieder_mittel=c(67, 65, 67, 85, 103, 135, 136, 130, 101, 81, 74, 76)
  temp_96=c(-1.9, -2.1, 3.8, 9.3, 11.8, 17.1, 17.3, 16.8, 10.2, 9.8, 5.4, 0.5)
  ,temp_mittel=c(-1, 0, 4.5, 7.3, 11.9, 15, 16.5, 15.5, 13.9, 8.1, 3.7, 0.2)
# define a few colors
hellblau <- rgb(red=204,green=255,blue=255, max=255)
dunkelblau <- rgb(red=51,green=204,blue=204, max=255)</pre>
dunkelgrau <- rgb(red=128,green=128,blue=128, max=255)</pre>
mittelgrau <- rgb(red=192,green=192,blue=192, max=255)
hellgrau <- rgb(red=227,green=227,blue=227, max=255)
# set the parameters
windows(width=7.2, height=5.5)
par(mar=c(5.1,4.1,7.1,16.1)) # set margins, default: c( 5.1, 4.1, 4.1, 2.1 )
par(bg=mittelgrau) # background color
# start plotting, we use barplot as basis
b <- barplot( t(d.temp[,c("nieder_mittel","nieder_96")])</pre>
                , col=c(dunkelgrau, hellblau)
                , beside=TRUE , xlab="Monate", cex.lab=0.8, mgp=c(2.2,0.7,0)
                , space=rep( c(0.3,-0.5), 12) # bars should overlap 50%, ylim=c(0,500), yaxt="n"
                , panel.first = {
                  par(xpd=FALSE) # barplot paints over the whole figure region by default
                  usr <- par("usr") # set background color lightgrey</pre>
                  rect(xleft=usr[1], ybottom=usr[3], xright=usr[2], ytop=usr[4], col=hellgrau)
```

```
grid(nx=NA, ny=10, col="white", lty="solid") # horiz grid only
                    box()
                  }
)
# find the centers of the bars and the gaps
barx <- apply(b, 2, FUN=mean)
run.mean <- filter( barx, filter=c(0.5,0.5))[-length(barx)]</pre>
gapx <- c(run.mean[1]-diff(barx)[1], run.mean, run.mean+diff(barx) )</pre>
# draw the vertikal gridlines
abline(v=gapx, col="white" )
box()
# design x-axis
axis(side=1, at=apply(b,2,FUN=mean), labels=d.temp$month, cex.axis=0.7
       , las=2, tck=-0.025 # no tickmarks for the x-axis , mgp=c(2.2,0.7,0) ) # decrease distance label to axis
# left y-axis
axis(side=2, at=seq(0,500,50), las=2, cex.axis=0.7)
rug( seq(0,500,10), side=2, ticksize=-0.01)
rug( seq(0,500,50), side=2, ticksize= 0.01)
# plot lines
par(new=TRUE)
matplot( x=barx, y=d.temp[,c("temp_96","temp_mittel")], col=c(dunkelblau,"grey60")
    , lwd=2, lty="solid", type="l", xaxt="n", yaxt="n", xlab="", ylab=""
    , xlim=par("usr")[1:2] # use the current xlim
            , ylim=c(-25, 25), xaxs="i", yaxs="i")
# design right axis
axis(side=4, labels=seq(-25,25,5), at=seq(-25,25,5), las=2, cex.axis=0.7)
rug( seq(-25,25,1), side=4, ticksize=-0.01)
rug( seq(-25,25,5), side=4, ticksize=0.01)
# write titles
mtext(text=c("Lufttemperatur [°C]","Niederschlag [mm]"), side=3, at=c(25,-3.2), adj=c(1,0)
         , las=1, line=1, cex=0.8 )
mtext(text="Klimadiagramm Zürich-SMA\n556 m. ü. M.", cex=1.2, font=2, side=3, line=3)
# plot legend
legend( x=30, y=27, xpd=TRUE
    , legend=c("Niederschlag 1996", "Niederschlag:\nlangjähriges Mittel", "Temperatur
1996", "Temperatur:\nlangjähriges Mittel" )
          , cex=0.7, bty="n", col=c(hellblau, dunkelgrau, dunkelblau, "black")
, y.intersp=2.5, pt.cex=1.2, pch=c(15,15,45,45))
mtext("@ Statistisches Amt des Kantons Zürich", side=1, line=3.5, at=-4, cex=0.7, las=1,
adi=0)
mtext("Quelle: Schweizerische Meteorologische Anstalt (SMA)", side=1, line=3.5, at=41,
cex=0.7, las=1, adj=1)
```


16.10 PlotDot

The base function dotchart has been improved but still has some potential for extensions. Especially an add argument is sometimes useful and returning the y-coordinates for the points would allow to add elements.

PlotDot implements these extensions and allows adding error bars. This is interesting, as the calculation of the x-limits should be done with respect to the bars and not only to the points.

16.11 PlotBubble

Bubbles can actually easily be produced with the standard plot function. This function here helps you defining appropriate axis limits.

16.12 Venn plots

Now and then one might want to plot a Venn diagram. This function does this for up to 5 datasets using the simple proposed geometric representations.

(For more than 5 datasets the Venn representation loses its simplicity and other plot types become more adequate.)

```
example(PlotVenn)
PlotVenn(x=x[1:3], col=SetAlpha(c(PalHelsana()[c(1,3,6)]), 0.4))
PlotVenn(x=x[1:4], col=SetAlpha(c(PalHelsana()[c(1,3,6,4)]), 0.4))
PlotVenn(x=x[1:5], col=SetAlpha(c(PalHelsana()[c(1,3,6,4,7)]), 0.4))
```


16.13 Areaplot

Areaplots have a high "ink factor"¹, say they use much ink to display the information and are therefore rarely the best way of representing data. But again, when your boss wants it this way, here's a function to produce it easily.

tab (absolute values)

> t(t.oil)

ExxonMobil 13.3 11.4 9.7 10.6 12.7 11.0 10.6 13.5 BP 5.3 3.6 5.8 8.4 9.1 14.8 10.6 9.6 Shell 4.9 3.1 3.0 6.0 12.2 7.1 7.3 10.0 Eni 2.1 2.6 2.7 3.5 4.7 5.0 4.4 4.3

ptab (relative values)

1998 1999 2000 2001 2002 2003 2004 2005 ExxonMobil 0.520 0.551 0.458 0.372 0.328 0.290 0.322 0.361 BP 0.207 0.174 0.274 0.295 0.235 0.391 0.322 0.257 Shell 0.191 0.150 0.142 0.211 0.315 0.187 0.222 0.267 Eni 0.082 0.126 0.127 0.123 0.121 0.132 0.134 0.115

¹ Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.), Cheshire, CT: Graphics Press, ISBN 0-9613921-4-2.

16.14 PlotTernary

This produces a ternary or triangular plot.

16.15 PlotMarDens

This plot shows a scatterplot of two numerical variables temperature and delivery_time, by area. On the margins the density curves of the specific variable are plotted, also stratified by area.

temperature ~ delivery_min | area

16.16 Polar plots

16.17 Plot Functions

Functions can be plotted a bit more comfortable by means of the function PlotFun. The idea behind it is to make use of the formula interface, for example $x^2 \sim x$, and let the function choose appropriate defaults for the rest. (This would be the best case scenario...;-).

There can as well be further parameters defined for plotting more than one function at once. Arguments as type="n" or add=TRUE are supported.

The function returns the calculated xy-coordinates as list. This can be used to modify the coordinates afterwards, e.g. rotate or translate them.

16.18 Legends and colour strips

The details of a legend can be challenging to define, respectively to find how to control. Think as well of the locator(), when a position should be placed by pointing and clicking.

Here are some examples of maybe nontrivial legends.

```
par(mar=c(5.1,4.1,4.1,11.1))
plot( x=1:5, y=1:5, type="n", xlab="x", ylab="y" )

# A) Combine lines and point characters ********
legend( x="bottomleft", inset=0.02, legend=c("A","B","C","D")
   , lty=c("dashed","dotted",NA,"solid"), lwd=2, cex=0.8
   , pch=c(NA,NA,21,15)
   , col=c("red","blue","black","grey"), bg="white" )

# B) Combine colours and lines *********
```

```
legend( x=2, y=2, xjust=0.5, yjust=0
  title=" My title:", title.col="grey40", title.adj=0
, legend=c("A","B","C","D","E")
, pch=c(22,22,22,45,45), pt.cex=c(1.2,1.2,1.2,2,2)
, col=c(rep("black",3),"orange","red")
, pt.bg=c("blue","green","yellow")
   , bg="grey95", cex=0.8
   , box.col="darkgrey", box.lwd=3, box.lty="dotted" )
# C) 2 columns *
legend("topright", inset=0.05, cex=0.8, bg="white"
  , legend=c("A-1","A-2","B-1", "B-2")
  , col=c("lightblue","blue","salmon","red"), pch=15, pt.cex=1.5
   , y.intersp=1.5, x.intersp=1.5 , ncol=2 )
# D) formula **
"kernel density")
   , fill=c(hecru, getOption("col1", hred)), text.width = 1.5)
# E) outside the plot area ****
legend( x=2, y=6, legend=c("A","B","C")
, fill=c("red","blue","green")
, density=30, bty="n", horiz=TRUE
   , xpd=TRUE )
# F) change fonts ******
windowsFonts("sans2"="Arial Black")
usr <- par(font=4, family="sans2" )</pre>
legend( x=5.5, y=3, legend=c("Label A","Label B","Label C")
, fill=c("red","orange","yellow")
   , border="brown"
   , y.intersp=2, text.width=strwidth("Make larger")
, text.col=c("red","orange","yellow")
   , xpd=TRUE )
par(usr)
```


The function ColorLegend produces colour strips, which often are needed for colour coded maps.

Colorstrips

17 Format, Strings and Date functions

17.1 Formatting numbers and dates

Number formatting can sometimes be a nightmare in base R. The function Format tries to concentrate as much as possible form the functionality of formatC, format, symbol, pval etc. into one simple interface.

The following example will use a space as big mark, align the numbers on the position of the "e", flip to scientific notation for numbers $< 10^{-2}$ and for such $> 10^{4}$ and use 3 fixed digits for all numbers.

```
x \leftarrow pi * 10^{(-5:7)}
cbind(Format(x, big.mark=" ", align="e", sci=c(5,2), digits=3))
    [1,]
                 3.142e-05"
##
    [2,]
                 3.142e-04"
##
##
    [3,]
                 3.142e-03"
    [4,] "
##
                 0.031
##
    [5,]
                 0.314
##
                3.142
    [6,]
##
   [7,]
               31.416
    [8,] " 314.159
[9,] " 3 141.593
##
##
## [10,] "31 415.927
## [11,] "
## [12,] "
                3.142e+05"
                 3.142e+06"
## [13,] "
                3.142e+07"
```

Engineering format, set with fmt = "eng", will snap to powers of multiples of 3 when using scientific notation.

```
Format(x, fmt="eng", leading="00", digits=2)

## [1] "31.42e-06" "314.16e-06" "03.14e-03" "31.42e-03" "314.16e-03" "03.14e+00"

## [7] "31.42e+00" "314.16e+00" "03.14e+03" "31.42e+03" "314.16e+03" "03.14e+06"

## [13] "31.42e+06"
```

Formatting dates use format codes "d" for days, "m" for months etc.

```
Format(as.Date(c("2014-11-28", "2014-1-2")), fmt="ddd, d mmmm yyyy")
## [1] "Fri, 28 November 2014" "Thu, 2 January 2014"

Format(Today(), fmt="dddd, dd.mm.yyyy")
## [1] "Thursday, 26.05.2016"

Format(Today(), fmt="dddd, yy/mm/dd")
## [1] "Thursday, 16/05/26"

Format(Today(), fmt="dddd, yy/mm/dd", lang="loc") # with local language
## [1] "Donnerstag, 16/05/26"
```

The format code "p" will produce formatted p-values and is a simple wrapper for format.pval.

```
Format(c(0.442, 0.02125, 4e-21), fmt="p")
## [1] "0.44200" "0.02125" "< 2.2e-16"
```

Significance stars mimics the function symnum.

```
Format(c(0.4, 0.02, 0.0004), fmt="*")
## [1] " " "* " "***"
```

When formatting percentages the function Format will multiply the numbers with 100, round them to the given number of fixed digits and append a "%" sign.

A sometimes suitable alternative format could be to drop the leading zeros.

```
Format(c(0.24534, 0.4512345, 1.347), fmt="%", digits=2)
## [1] "24.53%" "45.12%" "134.70%"

Format(c(0.24534, 0.4512345, 1.347), leading="drop", digits=2)
## [1] ".25" ".45" "1.35"
```

NAs and zeros must sometimes be formatted specially. Think eg. of sparse matrices, where one would like the 0s being displayed as "." or maybe even not at all "".

```
Format(c(3.45, 451.2345, 0, NA), digits=2, na.form="<NULL>", zero.form="-")
## [1] "3.45" "451.23" "-" "<NULL>"
```

Alignment can be done directly within the function. There are 3 special codes supported, left alignment with "\\r". centered with "\\r".

17.2 Date functions

Many date functions are presumably thought to be reached via format and some subsequent cast in base R. However in the analyst's daily life it's often convenient to be able to directly extract parts of a date. So DescTools contains the following ones:

day.name, day.abb Defined names of the days

AddMonths, AddMonthsYM Add a number of months to a given date

IsDate Check whether x is a date object
IsWeekend Check whether x falls on a weekend
IsLeapYear Check whether x is a leap year

LastDayOfMonth Return the last day of the month of the date x

DiffDays360 Calculate the difference of two dates using the 360-days system

Date Create a date from numeric representation of year, month, day

Day, Month, Year Extract part of a date Hour, Minute, Second Extract part of time

Week, Weekday Returns ISO week and weekday of a date

Quarter Of a date

YearDay, YearMonth The day in the year of a date
Now, Today Get current date or date-time

HmsToSec, SecToHms Convert h:m:s times to seconds and vice versa

Zodiac The zodiac sign of a date :-)

17.3 Strings

String functions are scattered in base R and the solution for some daily tasks are sometimes hard to find. Experts will solve most of their daily life string manipulation with regular expressions. But beginners and a big part of advanced users are supposed to profit by a set of basic string functions.

nchar	the length of a string, say the number of characters	Base
tolower	convert to lower case	base
toupper	convert to upper case	base
StrCap	capitalize the first letter of a string	DescTools
StrAbbr	abbreviates a string	DescTools
abbreviate	abbreviation	base
StrTrunc	truncate string on a given length and add ellipses if it really was truncated	DescTools
StrTrim	delete white spaces from a string	DescTools
StrPad	fill a string with defined characters to fit a given length	DescTools
StrRev	reverse a string	DescTools
paste	concatenate strings	base
strrep	repeat the elements of a character vector	base
strwrap	wrap character strings to format paragraphs	base
chartr	character translation	base
substr	extract or replace substrings in a character vector.	base
(substring)	(substring is compatible with S Plus)	
StrChop	split a string by a fixed number of characters.	DescTools
strsplit	splitting regex matches split vector according to matches	base
StrCountW	count the words in a string	DescTools
StrVal	extract numeric values from a string	DescTools
StrPos	find position of first occurrence of a string in another one	DescTools
StrIsNumeri	c check whether a string does only contain numeric data	DescTools
FixToTab	create table out of a running text, by using columns of spaces as delimiter	DescTools
StrDist	compute Levenshtein or Hamming distance between strings	DescTools
grep	regex matches which elements are matched and returns the index or value (argument value=TRUE)	base
grepl	same, but returns logical vector (TRUE & FALSE)	base
regexpr	regex matches positions of the first match	base
gregexpr	same for all matches	base
(regexec)	(regex matches hybrid of regexpr and gregexpr)	base
sub	replacing regex matches only first match is replaced	base
gsub	same, but all matches are replaced	base
strwidth	compute the width of the given string on the current plotting device	graphics
strheight	same with height	graphics

18 Import – Export

18.1 Import data via Excel

The function XLGetRange allows a quick import of data from an Excel-Sheet. The user can either specify a number of cell-references (including a path- and filename) or just select the regions which are to be imported.

The following command will return a list with the contents of the selected cell ranges.

XLView(d.frm) can be used to view a data.frame d.frm in Excel.

18.2 Import SAS datalines

The function ParseSASDatalines can be used to import the SAS data like the following:

```
sas <- "
  data FatComp;
  input Exposure Response Count;
  label Response='Heart Disease';
  datalines;
    0 0 6
    0 1 2
    104
      1 11
(FatComp <- ParseSASDatalines(sas))</pre>
  Exposure Response Count
1
         0
                   0
                         6
         0
2
                   1
                         2
3
         1
                   0
                         4
4
         1
                   1
                        11
```

19 DescToolsOptions

There are a few options for the graphical or textual output that can be set. DescToolsOptions displays the currently defined options.

```
DescToolsOptions()
## Currently defined DescTools options:
##
     footnote1
                   = 2
##
     footnote2
##
     plotit
                   = TRUE
##
                   = hblue (default)
     col1
##
     col2
                   = hred (default)
##
     col3
                  = horange (default)
##
     fixedfont
                  = Consolas (default)
##
    fixedfontsize = 7 (default)
##
     digfix
                  = 3
                  = NULL (default)
##
     fmt.abs
##
     fmt.per
                   = NULL (default)
##
     fmt.num
                  = NULL (default)
##
     lang
                   = engl
                   = gettextf("%s/%s", Sys.getenv("USERNAME"),
##
     stamp
##
                              Format(Today(), fmt = "yyyy-mm-dd"))
```

1) Footnotes

In some tables there are footnote signs used. They're named footnote1, footnote2 and can be changed with e.g. options("footnote1"="*"). Any character can be defined here.

2) plotit

The option plotit can be used to make the Desc-procedures produce plots by default. Valid values are TRUE and FALSE.

```
options(plotit=TRUE)
```

3) Colors

Three colors, that are used in many places can be set as options too. The options are col1, col2 and col3. By default they're set to hred, hblue and horange. Change the values by defining. Any color definition can be used here.

```
options(col1="pink", col2="blue", col2="yellow")
```

4) Format

Three format definitions are currently used in the Desc routines. For integer values there's a format named "fmt.abs", for percentages one named "fmt.perc" and for numerical values it's called "fmt.num". The format definitions must be of class "fmt" and may contain any argument used in the function Format.

```
options(fmt.num=structure(list(digits=3, big.mark="'"), class="fmt"))
```

will display numerical values as

45'123.256

5) Language

The language for names of weekdays and months can be set via option(lang="local") to either "local" or "engl". This is for example used by the function Weekday() or Month().

6) Stamp

The option(lang="stamp") can be set if plots should be stamped by default in the right bottom corner with some author or date information.

Any text can be set as option. But also dynamic expressions can be used. If the user and date should be included by default, the following option using an expression will help:

20 References

http://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf

http://www.stattutorials.com/SAS/TUTORIAL-PROC-FREQ-1.htm

Vittinghoff, E., Glidden, D. V., Shiboski, S. C., and Mcculloch, C. E. (2005) Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. Springer, New York

http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf

http://www.stat.ufl.edu/~presnell/Courses/sta4504-2011sp/Notes/icda-notes-3x2.pdf

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons.

Dalgaard, P. (2008) Introductory Statistics with R (2. Aufl.), London, UK: Springer.

Rajul Parikh et. al. Understanding and using sensitivity, specificity and predictive values, 2008 Indian J Ophthalmol. Jan-Feb; 56(1): 45–50.

Wollschläger, D. (2010, 2012) Grundlagen der Datenanalyse mit R, Springer, Berlin.

Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.), Cheshire, CT: Graphics Press