

平成24年度 院試

- 1 アルゴリズムとアログラミング
 - (1-1)19行目の判定式より、昇順。
 - (1-2) 11"7"IVY-F
 - (1-3) 16行目のfor文は n回、 $(8行目のfor文は 平均 <math>\frac{n-1}{2}$ 回 実行される。 よ、7、 $(9行目の比較判定回数は <math>\frac{n(n-1)}{2}$ 回
 - (1-4) 安定である。 理由:19行目の比較判定式にかいて、値が同じである時は要素の交換を 行わないため、元のデータの順番は保たれる。
 - (1-5) key[] = $\{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6\}$ $[abel[] = \{1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2\}$
 - (2) (1-1)と同様の理由で、昇順。

(3)

(3-1) 4

- (3-2) 7°ログラムして"は10回、7°ログラム3では7回行われるので"、 削減回数は <u>3回</u>
- (3-3) 昇順の場合: (6行目のループは(回しか実行されない。よってと比較回数は N-1回降順の場合: 7°ログラムしと同様の動作となるため、(1-3)よりと比較回数は n(n-1)回

国 計算機システムとシステムプログラム

(1)

(1-1)

$$(1-1-1)$$
 $(243)_{10}$

$$(1-1-1)$$
 $(243)_{10}$ $(1-1-2)$ $(154)_{10}$ $(1-1-3)$ $(F09A)_{16}$

$$(1-2)$$
 $(91)_{10} = (010(1011)_{20}$ $(-85)_{10} = (10(01011)_{20}$

最上位は"ットの桁上げ"を無視すると、計質結果は(00000110)2c=(6)10 となり、91-85の結果と等しくなっている。

- (1-3) (a) \uparrow (b) \bot (c) \uparrow (d) \uparrow (e) \uparrow (f) \uparrow

- (1) to (h) 1 (i) 1 (i) to (k) 7 (l) 1

(2)

- (a) 7 (b) 1 (c) h (d) +

①
$$2^{28}$$
 [byte] = 256 [Mbyte] ② 2^{28} ÷ 2^{12} = 2^{16} (1) = 64×2^{10} (1)

(2-2)

(2-2-1) FIFO

LRU

(a)(1)(2)(3)(4)(5)(a) 4 (2)(3)(5)(1)(a) 0123450423510 012345042351 0 1 2 3 4 5 0 4 2 3 5 0123350423

(2-2-2) LRUでは、参照したのが最も古いかーニを置き換える。ペーニを照列QはPにヒビベ 時間的局所性があり、LRUの理想の状態に近い。よって、ヘローニアオールトの回数が 一成少した。

③ 離散構造

- (1) (a) false true true (b) false true false

 - (c) true true true (d) true false false

(2)

(2-1)
$$\neg F = A \wedge B \wedge \forall x C(x) \wedge \forall x D(x) \wedge \forall x \neg E(x)$$

$$= \forall x \left(p(g(f(a))) \wedge p(f(g(b))) \wedge \left(\neg p(g(x)) \vee p(x) \right) \wedge \left(\neg p(x) \vee p(f(x)) \right) \wedge \neg p(f(f(x))) \right)$$

$$\neg F = A \wedge B \wedge \forall x C(x) \wedge \forall x D(x) \wedge \forall x \neg E(x)$$

$$= \forall x \left(p(g(f(a))) \wedge p(f(g(b))) \wedge \left(\neg p(g(x)) \vee p(x) \right) \wedge \left(\neg p(x) \vee p(f(x)) \right) \wedge \neg p(f(f(x))) \right)$$

$$\neg F = A \wedge B \wedge \forall x C(x) \wedge \forall x D(x) \wedge \forall x \neg E(x)$$

$$= \forall x \left(p(g(f(a))) \wedge p(f(g(b))) \wedge \left(\neg p(g(x)) \vee p(x) \right) \wedge \left(\neg p(x) \vee p(f(x)) \right) \wedge \neg p(f(f(x))) \right)$$

$$\neg F = A \wedge B \wedge \forall x C(x) \wedge \forall x D(x) \wedge \forall x \neg E(x)$$

$$= \forall x \left(p(g(f(a))) \wedge p(f(g(b))) \wedge \left(\neg p(g(x)) \vee p(x) \right) \wedge \left(\neg p(x) \vee p(f(x)) \right) \wedge \neg p(f(f(x))) \wedge \neg p(f(x)) \wedge \neg p(f($$

(3)

(3-1) 反射性: 定義 + り (V,V) ER1 である。 反対称性:(v,v') ∈ R, かっ(v',v) ∈ R, であるのは(v,,v,),(v,,v,),(v,,v,),(v,,v,),(v,,v,) (いち、ひち)のみである。よって反対称的である。

(4)

(4-1) (fng)(x)=true となる スの集合は f(x)=true となるえの集合に含まれている。 to7 ((fng) C (f) 12 n7" fng 2 f

图 計算理論

(1) S→ E (1-1) すべての生成規則が A→BC または A→ x となる をなし文法のこと。

(A,B,cは非終端記号、xは終端記号)

(1-2) (7) a (1) e (7) g (I) h (7) C

(2)

(3-2) 昔月分集合構成法(非決定性動作→決定性動作)

	0	1
{ z }	12.4}	125
12.41	{x, y }	{x, 4, 8 }
{x,y,z}	1 2.41	{ x, 4, 2 }

- (3) (3-1) (7) a (1) c (7) &
- (3-2) 右上の表より、(エ) e は) e (カ) f (キ) e (ク) f
- (3-3) [[000, [[]]000000