Pumas NCA Tutorial - Multiple dose IV administration

Beatriz Guglieri lopez

April 12, 2019

using Pumas, PumasTutorials, CSV

1 Introduction

In this tutorial, we will cover the fundamentals of performing an NCA analysis with Pumas of an example dataset in which multiple intravenous (IV) bolus doses were administered.

2 The dataset

- Four IV bolus doses of 2000 mg were administered every 24 hours to 24 different subjects.
- Samples were collected every 30 minutes.

Let's start reading the dataset. By using the missingstring option we are specifying how the missing values are labeled in our dataset.

```
data = PumasTutorials.tutorial_data("data/nca","multiple_dose_IVbolus_7BLQ_test")
data = CSV.read(data,missingstring="NA")
first(data,10)
```

	ID	$_{ m time}$	DV	BLQ	DOSE	Formulation	OCC
	Int64	Float64	Float64	Int64	Int64	String	Int64
1	1	0.0	0.0	0	2000	iv	1
2	1	0.5	35.2364	0	0	iv	1
3	1	1.0	33.008	0	0	iv	1
4	1	1.5	27.6	0	0	iv	1
5	1	2.0	25.4196	0	0	iv	1
6	1	2.5	22.0718	0	0	iv	1
7	1	3.0	20.4286	0	0	iv	1
8	1	3.5	18.2746	0	0	iv	1
9	1	4.0	16.4594	0	0	iv	1
10	1	4.5	13.4711	0	0	iv	1

This will be an abbreviated tutorial as the main difference is in the specification of the read_nca function. For a complete listing of all NCA options, please check the first tutorial on single oral dose administration

3 Defining the units

```
timeu = u"hr"
concu = u"mg/L"
amtu = u"mg"
```

4 Defining the population object

The standard requirements of read_nca as specified in other tutorials exist. In this mulitple dose example, since subjects visit in more than once occasion, we need to use an occasion=variable to speify the multiple dose nature.

```
pop = read_nca(data, id=:ID, time=:time, conc=:DV, amt=:DOSE, ii=24timeu,
    route=:Formulation, occasion=:OCC,timeu=timeu, concu=concu, amtu=amtu,llq=0.4concu)

NCAPopulation (24 subjects):
    ID: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2

0, 21, 22, 23, 24]
    concentration: mg L^-1
    time: hr
    auc: mg hr L^-1
    aumc: mg hr^2 L^-1
    λz: hr^-1
    dose: mg
```

Key features of the syntax above:

- route= is mapped to the Formulation column that should specify ev
- LLOQ was set to 0.4 by llq=0.4concu
- occasion=: OCC provides a way to specify multiple dosing

To check how occasion works, lets calculate the AUC

```
NCA.auc(pop,auctype=:last,method=:linear)
```

	id	occasion	auc
	Int64	Int64	Unitful
1	1	1	163.68 mg hr L-1
2	1	2	$160.974 \text{ mg hr L} \hat{1}$
3	1	3	$164.558 \text{ mg hr L} \hat{1}$
4	1	4	164.068 mg hr L
5	2	1	166.032 mg hr L-1
6	2	2	$164.343 \text{ mg hr L} \hat{-}1$
7	2	3	$161.089 \text{ mg hr L} \hat{1}$
8	2	4	161.579 mg hr L -1
9	3	1	$160.923 \text{ mg hr L} \hat{1}$
10	3	2	162.922 mg hr L-1
11	3	3	$164.856 \text{ mg hr L} \hat{1}$
12	3	4	$161.433 \text{ mg hr L} \hat{1}$
13	4	1	$164.836 \text{ mg hr L} \hat{-}1$
14	4	2	162.72 mg hr L-1
15	4	3	$162.746 \text{ mg hr L} \hat{1}$
16	4	4	$162.166~\mathrm{mg}~\mathrm{hr}~\mathrm{L^21}$
17	5	1	163.018 mg hr L
18	5	2	163.12 mg hr L-1
19	5	3	$165.067~\mathrm{mg}~\mathrm{hr}~\mathrm{L^21}$
20	5	4	161.667 mg hr L-1
21	6	1	$161.696 \text{ mg hr L} \hat{1}$
22	6	2	$159.946~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
23	6	3	$163.047~\mathrm{mg}~\mathrm{hr}~\mathrm{L^21}$
24	6	4	$162.84~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
25	7	1	164.272 mg hr L-1
26	7	2	163.815 mg hr L-1
27	7	3	165.911 mg hr L-1
28	7	4	165.304 mg hr L-1
29	8	1	165.518 mg hr L-1
30	8	2	162.504 mg hr L-1
31	8	3	166.277 mg hr L-1
32	8	4	162.89 mg hr L - 1
33	9	1	161.58 mg hr L-1
34	9	2	162.975 mg hr L-1
35	9	3	160.198 mg hr L-1
36	9	4	161.877 mg hr L-1
37	10	1	157.204 mg hr L-1
38	10	2	163.842 mg hr L-1
39	10	3	160.282 mg hr L-1
40	10	4	162.828 mg hr L-1
41	11	1	158.61 mg hr L-1
42	11	2	165.16 mg hr L-1
43	11	3	161.69 mg hr L-1
44	11	4	165.415 mg hr L-1
45	12	1	162.856 mg hr L-1
46	12	2	165.709 mg hr L-1
47	12	3	164.991 mg hr L-1
48	12	4	162.054 mg hr L-1
49	13	1	162.286 mg hr L-1
50	13	2	163.225 mg hr L-1
51	13	3	161.898 mg hr L-1
52	13	4	163.755 mg hr L-1

All other NCA function work on this grouped variable. Let's directly print the NCA report.

```
report = NCAReport(pop)
report = NCA.to_dataframe(report)
```

I	id	occasion	doseamt	lambda_z	half_life	tmax	cmax	c0
	Int64	Int64	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful
1	111104	1111.04	2000 mg	0.236704 hr÷1	2.92833 hr	0.5 hr	35.2364 mg L-1	0.0 mg L-1
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	1	$\frac{1}{2}$	2000 mg	-1.17489 hr-1	-0.589967 hr	0.5 hr $0.5 hr$	33.306 mg L-1	0.0 mg L=1
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	1	3	2000 mg	0.06432 hr-1	-0.389907 m 10.7766 hr	0.5 hr $0.5 hr$	34.5143 mg L-1	0.0 mg L-1
$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	1	$\frac{3}{4}$	2000 mg	0.409752 hr-1	1.69163 hr	0.5 hr	34.8824 mg L-1	0.0 mg L-1
$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$	2	1	2000 mg	-2.99033 hr ² 1	-0.231796 hr	0.5 hr $0.5 hr$	34.627 mg L-1	0.0 mg L-1
$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	$\frac{2}{2}$	$\frac{1}{2}$	2000 mg	-2.99035 Hr-1 0.240855 hr-1	2.87786 hr	0.5 hr $0.5 hr$	38.2251 mg L-1	0.0 mg L-1
$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$	$\frac{2}{2}$	3	2000 mg	-1.33799 hr ² 1	-0.518051 hr	0.5 hr	34.988 mg L-1	0.0 mg L-1
8	$\frac{2}{2}$	$\frac{3}{4}$	2000 mg	-1.50247 hr-1	-0.461338 hr	1.0 hr	33.6303 mg L-1	0.0 mg L-1
$\begin{vmatrix} 3 \\ 9 \end{vmatrix}$	3	1	2000 mg	0.302713 hr-1	2.28978 hr	0.5 hr	36.3163 mg L-1	0.0 mg L-1
10	3	2	2000 mg	0.255137 hr-1	2.71676 hr	0.5 hr $0.5 hr$	36.3201 mg L-1	0.0 mg L-1
11	3	3	2000 mg	0.2357 hr-1	2.71070 m 2.9408 hr	0.5 hr	39.4983 mg L-1	0.0 mg L-1
$\begin{vmatrix} 11\\12 \end{vmatrix}$	3	$\frac{3}{4}$	2000 mg	0.272468 hr-1	2.54396 hr	0.5 hr	36.1206 mg L-1	0.0 mg L-1
13	4	1	2000 mg	0.403583 hr ² 1	1.71748 hr	0.5 hr	35.1015 mg L ¹	0.0 mg L 1
$\begin{vmatrix} 13 \\ 14 \end{vmatrix}$	4	2	2000 mg	0.141683 hr-1	4.89225 hr	0.5 hr	32.9845 mg L-1	0.0 mg L-1
15	4	3	2000 mg	0.338564 hr ² 1	2.04732 hr	0.5 hr	35.6927 mg L-1	0.0 mg L 1
16	4	$\frac{3}{4}$	2000 mg	3.28624 hr ² 1	0.210924 hr	0.5 hr	34.9361 mg L ¹	0.0 mg L-1
17	5	1	2000 mg	0.206833 hr ² 1	3.35124 hr	0.5 hr	33.4501 mg L ¹	0.0 mg L-1
18	5	2	2000 mg	0.347514 hr ² 1	1.99459 hr	0.5 hr	36.1562 mg L ¹	0.0 mg L 1
19	5	3	2000 mg	0.290097 hr ² 1	2.38936 hr	0.5 hr	38.2094 mg L-1	0.0 mg L 1
20	5	4	2000 mg	0.328371 hr-1	2.11087 hr	1.0 hr	33.0145 mg L-1	0.0 mg L-1
$\begin{vmatrix} 20 \\ 21 \end{vmatrix}$	6	1	2000 mg	0.222834 hr ² 1	3.11059 hr	0.5 hr	34.9312 mg L-1	0.0 mg L-1
$\frac{21}{22}$	6	$\frac{1}{2}$	2000 mg	0.150069 hr ² 1	4.61885 hr	0.5 hr	34.6846 mg L-1	0.0 mg L-1
$\frac{22}{23}$	6	3	2000 mg	-0.589922 hr ² 1	-1.17498 hr	0.5 hr	37.5062 mg L-1	0.0 mg L-1
$\begin{vmatrix} 23 \\ 24 \end{vmatrix}$	6	4	2000 mg	2.1836 hr ² 1	0.317433 hr	0.5 hr	36.161 mg L-1	0.0 mg L-1
$\frac{21}{25}$	7	1	2000 mg	-0.956457 hr-1	-0.724703 hr	0.5 hr	34.5898 mg L-1	0.0 mg L-1
26	7	$\frac{1}{2}$	2000 mg	-0.419205 hr ² 1	-1.65348 hr	0.5 hr	35.7611 mg L-1	0.0 mg L-1
$\frac{27}{27}$	7	3	2000 mg	-0.616704 hr-1	-1.12395 hr	0.5 hr	36.129 mg L-1	0.0 mg L-1
28	7	$\stackrel{\circ}{4}$	2000 mg	-1.25204 hr-1	-0.553613 hr	0.5 hr	36.8566 mg L-1	0.0 mg L-1
29	8	1	2000 mg	-0.354887 hr-1	-1.95315 hr	0.5 hr	33.8534 mg L-1	0.0 mg L-1
30	8	2	2000 mg	-3.0391 hr≏1	-0.228076 hr	0.5 hr	35.8865 mg L-1	0.0 mg L-1
31	8	3	2000 mg	0.425534 hr ² 1	1.62889 hr	0.5 hr	35.5282 mg L-1	0.0 mg L-1
32	8	4	2000 mg	-1.4873 hr ² 1	-0.466045 hr	0.5 hr	36.5292 mg L-1	0.0 mg L-1
33	9	1	$2000 \mathrm{mg}$	0.207726 hr ² 1	3.33684 hr	0.5 hr	36.2625 mg L-1	0.0 mg L-1
34	9	2	$2000 \mathrm{mg}$	0.19937 hr	3.47669 hr	0.5 hr	37.0738 mg L-1	0.0 mg L-1
35	9	3	2000 mg	-1.12323 hr ² 1	-0.617102 hr	0.5 hr	33.2595 mg L-1	0.0 mg L-1
36	9	4	$2000 \mathrm{mg}$	-0.625497 hr-1	-1.10815 hr	$0.5 \ \mathrm{hr}$	34.9065 mg L-1	0.0 mg L=1
37	10	1	$2000 \mathrm{mg}$	0.461541 hr21	1.50181 hr	$0.5 \ \mathrm{hr}$	34.3046 mg L-1	0.0 mg L=1
38	10	2	2000 mg	$0.30748~\mathrm{hr}\hat{-}1$	2.25428 hr	$0.5 \ \mathrm{hr}$	$36.62~\mathrm{mg~L^21}$	0.0 mg L=1
39	10	3	2000 mg	0.173232 hr	$4.00127~\mathrm{hr}$	$1.0 \ \mathrm{hr}$	31.2395 mg L-1	0.0 mg L=1
40	10	4	2000 mg	-0.956167 hr-1	-0.724923 hr	$0.5 \ \mathrm{hr}$	34.3694 mg L-1	0.0 mg L=1
41	11	1	2000 mg	0.193065 hr21	3.59023 hr	$0.5 \ \mathrm{hr}$	33.9653 mg L-1	0.0 mg L=1
42	11	2	2000 mg	0.152989 hr21	$4.5307~\mathrm{hr}$	$0.5~\mathrm{hr}$	37.381 mg L-1	0.0 mg L=1
43	11	3	2000 mg	$0.420169~\mathrm{hr}\hat{-}1$	1.64969 hr	$0.5~\mathrm{hr}$	37.2582 mg L-1	0.0 mg L=1
44	11	4	2000 mg	-0.34515 hr^2	-2.00825 hr	$0.5 \ \mathrm{hr}$	35.2926 mg L-1	0.0 mg L=1
45	12	1	2000 mg	0.206919 hr21	3.34984 hr	$0.5~\mathrm{hr}$	36.2307 mg L-1	0.0 mg L=1
46	12	2	2000 mg	0.117211 hr	5.91367 hr	$0.5 \ \mathrm{hr}$	35.6457 mg L-1	0.0 mg L=1
47	12	3	2000 mg	$0.91501~\mathrm{hr}\mathring{-}1$	$0.75753~\mathrm{hr}$	$0.5~\mathrm{hr}$	36.2055 mg L-1	0.0 mg L=1
48	12	4	2000 mg	1.42541 h § ≏1	0.486279 hr	$0.5 \ \mathrm{hr}$	33.3409 mg L-1	0.0 mg L=1
49	13	1	$2000 \mathrm{mg}$	0.0776993 hr-1	8.92089 hr	$0.5 \ \mathrm{hr}$	35.9369 mg L-1	0.0 mg L=1
50	13	2	2000 mg	0.287828 hr21	2.4082 hr	$0.5 \ \mathrm{hr}$	37.0267 mg L-1	0.0 mg L=1

Below is a listing of all the NCA parameters in the report names(report)

```
49-element Array{Symbol,1}:
 :occasion
 :doseamt
 :lambda_z
 :half_life
 :tmax
 :cmax
 :c0
 :clast
 :clast_pred
 :rsq
 : {\tt rsq\_adjusted}
 :corr_xy
 :no_points_lambda_z
 :lambda_z_intercept
 :lambda_z_lower
 :lambda_z_upper
 :span
 :route
```

Finally, we can save this data frame as a csv file if desired.

```
CSV.write("./tutorials/nca/report_MD_IVbolus_7BLQ.csv", report)
```