In [4]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as py
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression

In [5]: df=pd.read_csv(r"D:\New folder\madrid_2018.csv")
 df

Out[5]:

	date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	T
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	_
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	١
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	١
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	١
•••														
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	١
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	١
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	١
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	١
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	١

69096 rows × 16 columns

4

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217872 entries, 0 to 217871
Data columns (total 16 columns):
```

Duca	COTAIIII	(COCAT TO COTAMILE	<i>,</i> •
#	Column	Non-Null Count	Dtype
0	date	217872 non-null	object
1	BEN	70389 non-null	float64
2	CO	216341 non-null	float64
3	EBE	57752 non-null	float64
4	MXY	42753 non-null	float64
5	NMHC	85719 non-null	float64
6	NO_2	216331 non-null	float64
7	NOx	216318 non-null	float64
8	OXY	42856 non-null	float64
9	0_3	216514 non-null	float64
10	PM10	207776 non-null	float64
11	PXY	42845 non-null	float64
12	S0_2	216403 non-null	float64
13	TCH	85797 non-null	float64
14	TOL	70196 non-null	float64
15	station	217872 non-null	int64
dtyne	s. float	64(14) int64(1)	object(1)

dtypes: float64(14), int64(1), object(1)

memory usage: 26.6+ MB

In [4]: df1=df.fillna(value=0)
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	
0	2001- 08-01 01:00:00	0.00	0.37	0.00	0.00	0.00	58.400002	87.150002	0.00	34.529999	105.0
1	2001- 08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.5
2	2001- 08-01 01:00:00	0.00	0.28	0.00	0.00	0.00	50.660000	61.380001	0.00	46.310001	100.0
3	2001- 08-01 01:00:00	0.00	0.47	0.00	0.00	0.00	69.790001	73.449997	0.00	40.650002	69.7
4	2001- 08-01 01:00:00	0.00	0.39	0.00	0.00	0.00	22.830000	24.799999	0.00	66.309998	75.1
										•••	
217867	2001- 04-01 00:00:00	10.45	1.81	0.00	0.00	0.00	73.000000	264.399994	0.00	5.200000	47.8
217868	2001- 04-01 00:00:00	5.20	0.69	4.56	0.00	0.13	71.080002	129.300003	0.00	13.460000	26.8
217869	2001- 04-01 00:00:00	0.49	1.09	0.00	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.7
217870	2001- 04-01 00:00:00	5.62	1.01	5.04	11.38	0.00	80.019997	197.000000	2.58	5.840000	37.8
217871	2001- 04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.3

217872 rows × 16 columns

localhost:8888/notebooks/project(13).ipynb#

```
In [5]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 217872 entries, 0 to 217871
        Data columns (total 16 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
             date
                      217872 non-null
                                       object
         1
             BEN
                      217872 non-null float64
         2
             CO
                      217872 non-null float64
         3
             EBE
                      217872 non-null
                                      float64
         4
             MXY
                      217872 non-null float64
         5
             NMHC
                      217872 non-null
                                       float64
         6
                      217872 non-null float64
             NO_2
         7
             NOx
                      217872 non-null float64
         8
                      217872 non-null float64
             OXY
         9
             0_3
                      217872 non-null float64
         10 PM10
                      217872 non-null float64
         11 PXY
                      217872 non-null float64
         12
            SO 2
                      217872 non-null float64
         13 TCH
                      217872 non-null float64
         14 TOL
                      217872 non-null float64
         15 station 217872 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 26.6+ MB
In [6]: df1.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
```

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
0	0.00	0.37	0.00	0.00	0.00	58.400002	87.150002	0.00	34.529999	105.000000
1	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.599998
2	0.00	0.28	0.00	0.00	0.00	50.660000	61.380001	0.00	46.310001	100.099998
3	0.00	0.47	0.00	0.00	0.00	69.790001	73.449997	0.00	40.650002	69.779999
4	0.00	0.39	0.00	0.00	0.00	22.830000	24.799999	0.00	66.309998	75.180000
217867	10.45	1.81	0.00	0.00	0.00	73.000000	264.399994	0.00	5.200000	47.880001
217868	5.20	0.69	4.56	0.00	0.13	71.080002	129.300003	0.00	13.460000	26.809999
217869	0.49	1.09	0.00	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.770000
217870	5.62	1.01	5.04	11.38	0.00	80.019997	197.000000	2.58	5.840000	37.889999
217871	8 Ua	1 62	6 66	13 04	በ 18	76 800008	208 300003	5 20	ጸ 34በበበበ	25 260000 •

```
In [ ]: sns.pairplot(df2)
```

Out[8]: <seaborn.axisgrid.PairGrid at 0x2e2bb15a040>

```
In [ ]: sns.distplot(df2['station'])
```

```
In [ ]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

linear

```
In [ ]: from sklearn.linear_model import LinearRegression
In [ ]: lr=LinearRegression()
    lr.fit(x_train,y_train)
In [ ]: coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
    coeff
In [ ]: print(lr.intercept_)
```

```
In [ ]: prediction =lr.predict(x_test)
    py.scatter(y_test,prediction)

In [ ]: print(lr.score(x_test,y_test))

In [ ]: print(lr.score(x_train,y_train))
```

Ridge

```
In [ ]: from sklearn.linear_model import Ridge,Lasso
In [ ]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
In [ ]: rr.score(x_test,y_test)
```

Lasso

```
In [ ]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
In [ ]: la.score(x_test,y_test)
```

elasticnet

logistic

```
In [ ]: |feature_matrix=df2.iloc[:,0:14]
        target_vector=df2.iloc[:,-1]
In [ ]: feature_matrix=df2[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'O_3', 'PI
        y=df2['station']
In [ ]: feature_matrix.shape
In [ ]: |target_vector.shape
In [ ]: from sklearn.preprocessing import StandardScaler
In [ ]: | fs=StandardScaler().fit_transform(feature_matrix)
In [ ]: logr =LogisticRegression()
        logr.fit(fs,target vector)
In [ ]: observation=[[1.4,2.3,5.0,11,12,13,14,15,4,5,7,6,7,13]]
In [ ]:
        prediction=logr.predict(observation)
        print(prediction)
In [ ]: logr.classes_
In [ ]: logr.score(fs, target vector)
In [ ]: logr.predict_proba(observation)[0][0]
In [ ]: logr.predict proba(observation)[0][1]
        random forest
```

```
In [ ]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.tree import plot_tree

In [ ]: x=df2.drop('station',axis=1)
    y=df2['station']

In [ ]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
```

conclusion

The bestfit model is Logistic Regression with score of 0.9102362855254461

```
In [ ]:
```