Übungsblatt 2 - Lösung

Aufgabe 1

- (a) Sei $f: V \to V$ eine lineare Abbildung des endlichdimensionalen Vektorraums V und $v \in V$ so, dass für eine natürliche Zahl n gilt: $f^n(v) \neq 0$ und $f^{n+1}(v) = 0$. Beweisen Sie, dass dann $v, f(v), \ldots, f^n(v)$ lineare unabhängig sind.
- (b) Es sei V ein endl. dimensionaler Vektorraum und $f:V\to V$ eine lineare Abbildung. Sei nun $f^n=0$ für irgendein $n\in\mathbb{N}$. Zeigen Sie, dass dann gilt:

$$f^{\dim(V)} = 0$$

Lösung:

(a) Da $f^n(v) \neq 0$, gilt dies auch fuer $0 \leq k \leq n$: $f^k(v) \neq 0$ und es taucht kein 0 Vektor in der Linearkombination auf. Sei also $\lambda_0 v + \lambda_1 f(v) + ... + \lambda_n f^n(v) = 0$. Wende f^n auf beiden Seiten an, und da $f^{n+1}(v) = 0$, ist auch $f^k(v) = 0$ für alle k > n:

$$f^{n}(\lambda_{0}v + \lambda_{1}f(v) + \dots + \lambda_{n}f^{n}(v)) = \lambda_{0}f^{n}(v) + \lambda_{1}f^{n+1}(v) + \dots + \lambda_{n}f^{2n} = \lambda_{0}f^{n}(v) = 0$$

Nach Voraussetzung ist $f^n(v) \neq 0$, daher muss $\lambda_0 = 0$ sein. Wende iterativ f^{n-1}, f^{n-2}, \ldots , id an, da nach derselben Prozedur $\lambda_1, \lambda_2, \ldots, \lambda_n$ alle zu 0 bestimmt werden.

(b) Wenn $\dim(V) \geq n$ dann ist die Aussage klar. Sei also $\dim(V) < n$. Da $f^n = 0$, existiert ein $1 \leq k \leq n$ mit $f^k = 0$ und $f^{k-1} \neq 0$. Allgemein gilt $\operatorname{im}(f^{i+1}) \subset \operatorname{im}(f^i)$, d.h. wenn $\dim(\operatorname{im}(f^{i+1})) = \dim(\operatorname{im}(f^i))$ gilt Gleichheit zwischen den Unterräumen: $\operatorname{im}(f^{i+1}) = f^{i+1}(V) = f(f^i(V)) = f^i(V) = \operatorname{im}(f^i)$. Daraus folgt, dass für $j \leq k-1$, $\dim(\operatorname{im}(f^j))$ strikt monoton abfällt, da sonst nach der "Fixpunktgleichung" das Bild von f^j, f^{j+1}, \ldots konstant ungleich dem Nullraum bleibt, und damit nicht mehr $f^n = \{0\}$ gelten kann. Das heißt pro Potenz von f verschwindet mindestens eine Dimension des Bildraums, und da wir wissen, dass $\dim(\operatorname{im}(f)) \leq \dim(V)$, ist gewiss, dass nach $\dim(V)$ Potenzen $f^{\dim(V)}$ einen trivialen Bildraum hat.

Aufgabe 2

- (a) Es sei $n \in \mathbb{N}$ und V ein n dimensionaler Vektorraum. Zeigen Sie, dass es genau dann einen Homomorphismus $\phi: V \to V$ mit $\operatorname{im}(\phi) = \ker(\phi)$ gibt, wenn n gerade ist.
- (b) Zeigen Sie: ist $\phi: V \to V$ ein Homomorphismus eines Vektorraums V mit $\phi^2 = \phi$, so ist im (ϕ) + ker (ϕ) = V

Lösung:

- (a) " \Rightarrow ": Aus dem Dimensionssatz für lineare Abbildungen folgt $\dim(V) = \dim(\operatorname{im}(\phi)) + \dim(\ker(\phi)) = 2 \cdot \dim(\operatorname{im}(\phi))$ Also ist $\dim(V)$ gerade.
 - " \Leftarrow ": Sei n gerade. Wähle eine Basis $B = \{e_1, ... e_{n/2}, e_{n/2+1} ... e_n\}$ in V. Nach dem Prinzip der linearen Fortsetzung wird eine lineare Abbildung eindeutig durch die Bilder der Basisvektoren bestimmt. Definiere also ϕ wie folgt:

$$\phi(e_i) = e_{i+n/2} \ \phi(e_{i+n/2}) = 0 \ 1 \le i \le n/2$$

Man sieht, $\operatorname{im}(\phi) = \operatorname{span}(e_{n/2+1}, \dots, e_n) = \ker(\phi)$

(b) Da $\phi: V \to V$ ist, auf jeden Fall $\operatorname{im}(\phi) + \ker(\phi) \subset V$. Es bleibt zu zeigen, dass jedes $v \in V$ als Linearkombination von Vektoren aus $\operatorname{im}(\phi)$ und $\ker(\phi)$ dargestellt werden kann. Sei also $v \in V$ beliebig. Dann ist nach Voraussetung $\phi^2(v) = \phi(\phi(v)) = \phi(v)$. Da ϕ eine lineare Abbildung ist:

$$\phi(\phi(v) - v) = 0 \quad \Rightarrow \phi(v) - v \in \ker(\phi)$$

Da $\ker(\phi)$ ein Unterraum ist, gibt es dafür Basis $\{a_1, \dots a_m\}$. Also gilt

$$\phi(v) - v = \sum_{i=1}^{m} \lambda_i a_i$$

Umgestellt ist aber

$$v + \sum_{i=1}^{m} \lambda_i a_i = \phi(v) \in \operatorname{im}(\phi)$$

Und da es auch für $\operatorname{im}(\phi)$ eine Basis $\{b_1 \cdots b_n\}$ gibt gilt

$$v + \sum_{i=1}^{m} \lambda_i a_i = \sum_{j=1}^{n} \mu_j b_j$$

Umgestellt

$$v = \sum_{j=1}^{n} \mu_j b_j - \sum_{i=1}^{m} \lambda_i a_i \in \operatorname{im}(\phi) + \ker(\phi)$$

Daher ist $V \subset \operatorname{im}(\phi) + \ker(\phi)$ und die Behauptung ist bewiesen.

Aufgabe 3

Beweisen Sie die Äquivalenz folgender Aussagen, wenn V Vektorraum und $\phi: V \to V$ eine lineare Abbildung ist.

- (a) $\ker(\phi) \cap \operatorname{im}(\phi) = \{0\}$
- (b) $\ker(\phi^2) = \ker(\phi)$

Lösung

- $(a) \Rightarrow (b)$: Dass $\ker(\phi) \subset \ker(\phi^2)$ ist folgt daraus, dass für $v \in \ker(\phi)$ gilt, dass $\phi^2(v) = \phi(\phi(v)) = \phi(0) = 0$, also $v \in \ker(\phi^2)$. Sei also $w \in \ker(\phi^2)$, also $\phi(\phi(w)) = 0$. Damit ist aber gerade $\phi(w) \in \ker(\phi)$ und $\phi(w) \in \operatorname{im}(\phi)$ sowieso. Da nach Voraussetzung $\ker(\phi) \cap \operatorname{im}(\phi) = \{0\}$, ist $\phi(w) = 0$, also $w \in \ker(\phi)$.
- $(a) \Leftarrow (b)$: Sei $v \in \ker(\phi) \cap \operatorname{im}(\phi)$ beliebig. Also $\exists w \in V : \phi(w) = v$ und $\phi(v) = 0$. Damit ist aber $\phi^2(w) = \phi(\phi(w)) = \phi(v) = 0$. Also $w \in \ker(\phi^2) = \ker(\phi)$ nach Voraussetzung. Dann ist aber $v = \phi(w) = 0$. Das heißt für jedes v, das sowohl in $\ker(\phi)$ als auch $\operatorname{im}(\phi)$ ist, folgt notwendigerweise, dass v = 0. Damit ist $\ker(\phi) \cap \operatorname{im}(\phi) = \{0\}$.

Aufgabe 4

Sei $f:V\to W$ eine lineare Abbildung. Beweisen Sie

- (a) Für jeden Unterraum $U \subset V$ gilt $f^{-1}f(U) = U + \ker(f)$.
- (b) Für jeden Unterraum $U' \subset W$ gilt $f(f^{-1}(U')) = U' \cap \operatorname{im}(f)$.

Lösung:

- (a) "C": Sei $x \in f^{-1}f(U)$ und wahle $y \in (f^{-1}f(x)) \cap U$. Dann ist f(x-y) = f(x) f(y) = 0, also $x-y \in \ker(f)$. Insgesamt gilt also x = y + (x-y), also $x \in U + \ker(f)$.

 "C": Seien $y \in U$ und $z \in \ker(f)$. Dann ist $f(y+z) = f(y) + f(z) = f(y) \in f(U)$, also $y+z \in f^{-1}f(U)$.
- (b) " \subset ": Sei $x \in f(f^{-1}(U'))$. Dann existiert $y \in f^{-1}(U')$ mit $x = f(y) \in U' \cap \text{im}(f)$.
 " \supset ": Sei $x \in U' \cap \text{im}(f)$. Dann existiert $y \in V$ mit f(y) = x. Da $x \in U'$, gilt $y \in f^{-1}(U')$, also $x = f(y) \in f(f^{-1}(U'))$.

Aufgabe 5

Sei für eine lineare Abbildung $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ ihre Darstellungsmatrix bzgl. der Standardbasis wie folgt gegeben

$$D_E(f) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

- (a) Bestimmen Sie ker(f), im(f).
- (b) Sei nun $b_1 = e_1 + 2e_2 + 3e_3 \in \mathbb{R}^3$, $b_2 = 4e_1 + 5e_2 + 6e_3 \in \mathbb{R}^3$ gegeben. Ergaenzen Sie diese zu einer Basis des \mathbb{R}^3 und ermitteln Sie Basiswechselmatrizen $S_{B,E}, S_{E,B}$.
- (c) Bestimmen Sie die Darstellungsmatrix von f, $D_B(f)$ bezüglich ihrer gewählten Basis B.

Lösung:

(a) Bestimme zunächst ker(f).

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 6 & 6 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Also $\ker(f) = \operatorname{span}((1, -2, 1)^T)$. Transponiere die Darstellungsmatrix, um das Bild zu bestimmen

$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Also $im(f) = span((1, 4, 7)^T, (0, 1, 2)^T)$

(b) Wähle z.B. $b_3 := e_3$ und zeige, dass b_1, b_2, b_3 linear unabhängig:

$$\begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 \\ 0 & -3 & 0 \\ 0 & -6 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Da $\dim(V) = 3$ und wir 3 linear unabhängige Vektoren gefunden haben, stellt $\{b_1, b_2, b_3\}$ tatsächlich eine Basis dar.

$$S_{E,B} = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{pmatrix} \quad S_{B,E} = S_{E,B}^{-1} = \begin{pmatrix} -5/3 & 4/3 & 0 \\ 2/3 & -1/3 & 0 \\ 1 & -2 & 1 \end{pmatrix}$$

(c) Es gilt

$$D_B(f) = S_{B,E}D_E(f)S_{E,B} = \frac{1}{3} \begin{pmatrix} 58 & 148 & 9\\ -4 & -13 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Aufgabe 6

Es seien Kein Körper und $A \in K^n.$ Zeigen Sie:

- (a) Fas $A^2 = A$ ist und A invertierbar, so ist $A = I_n$.
- (b) Falls $A^2 = 0$, so ist $A + I_n$ invertierbar.
- (c) Falls $A^2 2A + I_n = 0$, so ist A invertierbar.

Lösung:

- (a) Wende A^{-1} auf beiden Seiten an.
- (b) Berechne $(I_n + A) \cdot (I_n A) = I_n^2 I_n A + A I_n A^2 = I_n^2 = I$, also wurde eine Inverse zu $A + I_n$ gefunden. Damit ist $A + I_n$ invertierbar.
- (c) Berechne $0 = A^2 2A + I_n = (A I_n)^2$. Nach (b) ist damit $(A I_n) + I_n = A$ invertierbar.

Aufgabe 7

Es seien $u, v \in \mathbb{R}^n$ und $A = I_n + uv^T$. Finden Sie im invertierbaren Fall für A ihre Inverse, A^{-1} (Überlegen Sie sich hierfür, worauf ein Vektor x abgebildet wird!). (Zusatz: Wie lautet dann det(A)?)

Lösung: Es gilt $x\mapsto x+uv^Tx$. Die Eingabe x wird also abgebildet auf x+ eine Störung in Richtung von u (Nach Assoziativgesetz von Matrixmultiplikation ist $(uv^T)x=u(v^Tx)$). Es ist also naheliegend, den Teil parallel zu u wieder abzuziehen, wenn man die Inverse finden will. Setze also für die Inverse an $y\mapsto y-u\lambda$, mit $\lambda\in\mathbb{R}$ noch unbestimmt. Jetzt muss aber gerade gelten $v^T(y-u\lambda)=\lambda$, denn der gefundene Vektor muss ja beim Skalarprodukt mit v ja genau λ ergeben. Umstellen ergibt $\lambda=\frac{v^Ty}{1+v^Tu}$. Invertierbar ist also genau dann, wenn $v^Tu\neq -1$ ist. Daraus laesst sich die Inverse ablesen als $A^{-1}=I_n-\frac{1}{1+v^Tu}uv^T$. Es gilt

$$\begin{pmatrix} I & 0 \\ v^T & 1 \end{pmatrix} \begin{pmatrix} I + uv^T & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I & 0 \\ -v^T & 1 \end{pmatrix} = \begin{pmatrix} I & u \\ 0 & 1 + v^T u \end{pmatrix}$$

Damit $\det(I+uv^T)=1+v^Tu$, da allgemein gilt $\det(AB)=\det(A)\det(B)$

Aufgabe 8

Bestimmen sie bezüglich einer reellen Matrix $A \in \mathbb{R}^{n \times n}$:

- (a) Eine Matrix $D_{i,\lambda}$, sodass $D_{i,\lambda}A$ gleich der Matrix A ist, dessen i-te Zeile um den Faktor λ multipliziert wurde.
- (b) Eine Matrix $E_{i,j}$, sodass $E_{i,j}A$ gleich der Matrix A ist, dessen i—te Zeile zur j—ten Zeile aufaddiert wurde.
- (c) Ein Matrix $F_{i,j}$, sodass $F_{i,j}A$ gleich der Matrix A ist, dessen i—te und j—te Zeile vertauscht wurden.

Lösung:

(a) I_n bis auf den i, i-ten Eintrag, der λ ist, also:

$$(D_{i,\lambda})_{i,k} = \delta_{i,k}(1 - \delta_{i,i}(1 - \lambda))$$

(b) Da auf die *i*-te Zeile die *j*-te Zeile aufaddiert werden soll, muss in der *i*- ten Zeile, in der *j*--ten Spalte von $E_{i,j}$ eine zusätzliche 1 stehen. Also ist $E_{i,j}$:

$$(E_{i,j})_{k,l} = \delta_{k,l} + \delta_{k,i}\delta_{l,j}$$

(c) Entweder als Kombination von Zeilenstufenumformungen, also Kombination aus den in (a) und (b) bestimmten Matrizen, oder direkt:

$$(F_{i,j})_{k,l} = \delta_{k,l}(1 - \delta_{i,k} - \delta_{i,l}) + \delta_{k,i}\delta_{l,j} + \delta_{k,j}\delta_{l,i}$$

Das heißt in der i-ten Zeile muss in der j-ten Spalte eine 1 stehen, und in der j-ten Zeile muss in der i-ten Spalte eine 1 Stehen. Ansonsten I_n .

Aufgabe 9

Sei $v \in \mathbb{R}^3 \setminus \{0\}$. Finden Sie bzgl. der Standardbasis die allgemeine Form der Darstellungsmatrix einer lin. Abbildung f_v , welche folgende Eigenschaft erfüllt:

$$\forall w \in \mathbb{R}^3 : w^T f_v(w) = v^T f_v(w) = 0$$

Lösung Die Motivation solch ein f_v zu finden ist, um das Kreuzprodukt als Matrix-Vektor-Produkt darzustellen. $f_v(w)$ soll daher ein Vektor sein, der sowohl zu v als auch zu w senkrecht steht. Schreibe außerdem $v = (v_1, v_2, v_3)^T$. Betrachte zunächst für die Standardbasisvektoren e_1, e_2, e_3 :

$$e_1^T f_v(e_1) = e_2^T f_v(e_2) = e_3^T f_v(e_3) = 0$$

 $D_E(f_v)$ ist also von der Form

$$D_E(f_v) = \begin{pmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{pmatrix}$$

Aus $v^T f_v(e_1) = 0$ und der Tatsache, dass der erste Eintrag von $f_v(e_1)$ gleich 0 ist, bietet es sich z.B. an,

$$f_v(e_1) = \begin{pmatrix} 0 \\ -v_3 \\ v_2 \end{pmatrix}$$

zu wählen. Analog kann man das für $f_v(e_2)$ und $f_v(e_3)$ konstruieren, dass eine mögliche Form der Darstellungsmatrix wie folgt ist :

$$D_E(f_v) = \begin{pmatrix} 0 & v_3 & -v_2 \\ -v_3 & 0 & v_1 \\ v_2 & -v_1 & 0 \end{pmatrix}$$

Spaltenweise kann aber mit einem Faktor α_i multipliziert werden, Eindeutigkeit ist nicht gegeben.