4. Search 1 - Dynamic Programming, Uniform Cost Search

State-based models and Search

Intro

Open question Dynamic Programming Try all the possibilities

Course plan Search problems Markov decision processes Adversarial games Reflex States Variables Logic "Low-level intelligence" Machine learning

What are search problems?

Application: route finding

Objective: shortest? fastest? most scenic?

Actions: go straight, turn left, turn right

Application: robot motion planning

Objective: fastest? most energy efficient? safest? most expressive?

Actions: translate and rotate joints

Application: solving puzzles

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Objective: reach a certain configuration

Actions: move pieces (e.g., Move12Down)

Application: machine translation

la maison bleue

the blue house

Objective: fluent English and preserves meaning

Actions: append single words (e.g., the)

What's different from reflex-based models?

Beyond reflex

Classifier (reflex-based models):

$$x \longrightarrow \boxed{f} \longrightarrow \text{single action } y \in \{-1, +1\}$$

Search problem (state-based models):

$$x \longrightarrow f \longrightarrow \text{action sequence } (a_1, a_2, a_3, a_4, \ldots)$$

Key: need to consider future consequences of an action!

For state based models, You need to think about future Cuz for each step, it's gonna change ur state

Road map

We are going to talk about three different algo for doing inference, for searching problems

Tree Search

Enumerate all the actions we can take

Walk or tram

Transportation example

Example: transportation-

Street with blocks numbered 1 to n. Walking from s to s+1 takes 1 minute. Taking a magic tram from s to 2s takes 2 minutes. How to travel from 1 to n in the least time?

Defining the search problem model

```
tram.py (~/Desktop/CS221-S...018/semilive/search1) - VIM
                                                                                                               st login: Sun Apr 15 19:44:46 on ttys003
    class TransportationProblem(object):
                                                                                                              oring2018/semilive/search1 master 🗸
                                                                                                                                                                             7h52m
          def startstate(set).
    return 1

def isEnd(self, state):
    return state == self.N

def succAndCost(self, state):
    # return list of (action, newState, cost) triples
    result = []
    if state(1=self, N);
                                                                                                              oring2018/semilive/search1 master 🗸
                                                                                                                                                                             7h53m
                                                                                                              ptyhon tram.py
sh: command not found: ptyhon
                                                                                                              pring2018/semilive/search1 master ×7h55m 👄
                                                                                                               python tram.py
'walk', 4, 1), ('tram', 6, 2)]
                 if state+1<=self.N:
    result.append(('walk', state+1, 1))
if state*2<=self.N:</pre>
                 result.append(('tram', state*2, 2))
return result
                                                                                                              pring2018/semilive/search1 master 🗴 7h55m 👄
                                                                                                              pytȟon tram.py
('walk', 4, 1), ('tram', 6, 2)]
('walk', 10, 1)]
18 problem = TransportationProblem(N=10)
19 print(problem.succAndCost(3))
20 print(problem.succAndCost($\bar{p}$))
                                                                                                             pring2018/semilive/search1 master 🗴 7h55m 👄
```

Algo	Cost	Time	Space
Backtracking Search	Any	O(b^D)	O(D)
DFS	0	Worst case O(b^D)	O(D)
BFS	cost >= 0 (assuming all the cost are the same)	Worst Case O(b^D)	Worst case O(b^D) ???
DFS - ID	cost >= 0 (assuming all the cost are the same)	Worst case O(b^D)	O(D)

Backtracking Search

b: branching factor (How many branches it gonna hava from one node) D: Depth of the tree

The time complexity is quite bad though lol

DFS

When you don't care the cost of going back and forth

Depth-first search

🚜 Assumption: zero action costs—

Assume action costs Cost(s, a) = 0.

Idea: Backtracking search + stop when find the first end state.

If b actions per state, maximum depth is D actions:

- Space: still O(D)
- Time: still $O(b^D)$ worst case, but could be much better if solutions are easy to find

BFS

This is useful when the costs are similar

DFS - Itrative deepening

A combination of BFS and DFS

DFS with iterative deepening

🗛 Assumption: constant action costs-

Assume action costs $\operatorname{Cost}(s,a) = c$ for some $c \geq 0$.

Idea:

- Modify DFS to stop at a maximum depth.
- ullet Call DFS for maximum depths $1,2,\ldots$

DFS on d asks: is there a solution with d actions?

Legend: b actions per state, solution size d

- Space: O(d) (saved!)
- Time: $O(b^d)$ (same as BFS)

Stanford

SO in the worst case, when u have to search through the whole tree, the actual time complexity is O(b^d * b^d => $o((b^d)^2)$ => b^d However, in time complexity O(), there's no big difference between b^d and b^d, cuz we care about the 数量级 only

Tree search algorithms

Legend: b actions/state, solution depth d, maximum depth D

Algorithm	Action costs	Space	Time
Backtracking	any	O(D)	$O(b^D)$
DFS	zero	O(D)	$O(b^D)$
BFS	$constant \geq 0$	$O(b^d)$	$O(b^d)$
DFS-ID	constant ≥ 0	O(d)	$O(b^d)$

- · Always exponential time
- · Avoid exponential space with DFS-ID

The exponential time is not good, that's when dynamic programming comes to paly

Dynamic Programming

Dynamic programming

Minimum cost path from state s to a end state:

$$ext{FutureCost}(s) = egin{cases} 0 & ext{if IsEnd}(s) \ \min_{a \in ext{Actions}(s)} \left[ext{Cost}(s,a) + ext{FutureCost}(ext{Succ}(s,a))
ight] & ext{otherwise} \end{cases}$$

Reduce the recomputation

State: a summary of all past actions

Dynamic programming

🤘 Key idea: state—

A state is a summary of all the past actions sufficient to choose future actions optimally.

> past actions (all cities) 1 3 4 6 1346 state (current city)

Limitation

It does not run well with grapth with cycles

Define the state

What if we have a rule saying u cannot go 3 odd cities in a row We have to have a context of our past actions

State [prev city, cur city] state space: n^2 The state space is too big, thus the program will be complax =>

State [bool(if prev was odd), cur city] state space: 2*n

$$S = (\# \text{ of odd}, \text{ current city})$$
 $|S| = N_2^2$
 $S = (\min (\# \text{ of odd}, 3), \text{ current city})$
 $|S| = 3N$

For example #means number This can bring the complexity of state space from $n^2 => 3n$, which is linear

Summary

- State: summary of past actions sufficient to choose future actions optimally
- Dynamic programming: backtracking search with memoization — potentially exponential savings

Dynamic programming only works for acyclic graphs...what if there are cycles?

Bring the time O() from expential => polinomial

Uniform Cost Search

Uniform cost search (UCS)

Key idea: state ordering-

UCS enumerates states in order of increasing past cost.

📥 Assumption: non-negativity-

All action costs are non-negative: $Cost(s, a) \ge 0$.

High-level strategy

- Explored: states we've found the optimal path to
- Frontier: states we've seen, still figuring out how to get there cheaply
- · Unexplored: states we haven't seen

Forntier: Explored by not sure about the optimal path to get there YET

In runtime, pop out the best one from forntier

What is the difference from A*??

Code

```
from enum import Enum
import sys
from queue import PriorityQueue
sys.setrecursionlimit(100000)
Destination = 10
### Model (Search Problem)
class TransportationProblem(object):
    WALK_COST = 1
    TRAM COST = 2
    WALK = "walk"
    TRAM = "tram"
    def __init__(self, destination):
        # N number of blocks
        self.destination = destination
    def startState(self) -> int:
        return 1
    def isEnd(self, state):
        return state == self.destination
    def succAndCost(self, state : int):
```

```
Return a list of (action, newState, cost) triples
        Meaning return the a list of: actions we can take, what new state we gonna
endup at, and what the cost gonna be
        result = []
        if(state + 1 <= self.destination):</pre>
            result.append((self.WALK, state + 1, self.WALK_COST))
        if(state * 2 <= self.destination):</pre>
            result.append((self.TRAM, state * 2, self.TRAM_COST))
        return result
### Algorithms
def backtrackingSearch(self, problem):
    best = {
        "totalCost" : sys.maxsize,
        "history": None
    }
    memo = \{\}
    def recurse(currentState, history, totalCost):
        if(currentState in memo):
            for totalCost, history in memo[currentState]:
                best["totalCost"] = totalCost
                best["history"] = history
            return
        if(problem.isEnd(currentState)):
            #Update the best cost if we find a better solution
            if(totalCost < best["totalCost"]):</pre>
                best["totalCost"] = totalCost
                best["history"] = history
                memo[currentState] = (totalCost, history)
        for action, newState, cost in problem.succAndCost(currentState):
            recurse(newState, history + [(action, newState, cost)], totalCost +
cost)
    recurse(problem.startState(), history=[], totalCost=0)
    return best
def printSolution(solution):
    totalCost = solution["totalCost"]
    history = solution["history"]
    print("minimum cost is {}".format(totalCost))
    for h in history:
        print(h)
```

```
# You just need to know the current state
def dynamicProgramming(problem):
    memo = {} # state -> futureCost(state) action, newState, cost
    def futureCost(state):
        if problem.isEnd(state):
            return 0
        if state in memo:
            return memo[state][0]
        minFutureCostWithAction = min(
            (curCost + futureCost(newState), action, newState, curCost)
            for action, newState, curCost in problem.succAndCost(state)
        )
        memo[state] = minFutureCostWithAction
        minFutureCost = minFutureCostWithAction[0]
        return minFutureCost
    state = problem.startState()
   minCost = futureCost(state)
    # Recover History
    history = []
    while not problem.isEnd(state):
        _, action, newState, cost= memo[state]
        history.append((action, newState, cost))
        state = newState
    return {
        "totalCost" : minCost,
        "history": history
    }
# searching method in a graph that visits nodes in order of their path cost from
the start node.
# It delves into the graph, visiting the node with the smallest cumulative path
cost first.
def UniformCostSearch(problem):
   frontier = PriorityQueue()
    frontier.put((∅, problem.startState()))
   while(True):
        # Move minumun cost from frontier to explored
        pastCost, state = frontier.get()
```

```
# If the end state popped up, meaning we have already have the minumum
cost to the end state
        # Everything else left in the queue would have a larger past cost.
        # If it's not (The end state may or may not in the queue yet), meaning
there's other possible path
        # That may have a lower cost
        if(problem.isEnd(state)):
            return {
                "totalCost" : pastCost,
                "history": []
            }
        # Add all the successors of current state to frontier
        for action, newState, cost in problem.succAndCost(state):
            frontier.put((pastCost + cost, newState))
### Inference
problem = TransportationProblem(destination=Destination)
# solution = problem.backtrackingSearch(problem)
solution = dynamicProgramming(problem)
printSolution(solution)
# solution = UniformCostSearch(problem)
# problem.printSolution(solution)
# print(problem.succAndCost(9))
```