1

 \mathbf{a}

Пусть $f(p) = N \cdot p \cdot (1-p)^{N-1}$. Это многочлен от p, поэтому, чтобы найти экстремум на отрезке [0,1], нужно посмотреть на значения функции в концах отрезка и там, где производная равна 0. $f'(p) = N \cdot ((1-p)^{N-1} - p \cdot (N-1) \cdot (1-p)^{N-2}) = 0 \Rightarrow 1-p = p \cdot (N-1) \Rightarrow p = \frac{1}{N}$. Таким образом, значение функции в концах отрезка равно 0, а значение функции там, где производная равна 0, равно $N \cdot \frac{1}{N} \cdot \left(1-\frac{1}{N}\right)^{N-1} > 0$. Т. е. максимум достигается при $p = \frac{1}{N}$.

б

 $N \cdot p \cdot (1-p)^{N-1} = N \cdot \frac{1}{N} \cdot \left(1-\frac{1}{N}\right)^{N-1} = \left(1-\frac{1}{N}\right)^{N-1}$ Т. е. нужно посчитать $\lim \left(1-\frac{1}{N}\right)^{N-1} = \lim \left(1+\frac{-1}{N}\right)^{N-1} = \lim \frac{\left(1+\frac{-1}{N}\right)^{N}}{\left(1-\frac{1}{N}\right)} = \frac{\lim \left(1+\frac{-1}{N}\right)^{N}}{\lim \left(1-\frac{1}{N}\right)} = \frac{e^{-1}}{1} = e^{-1}$ согласно второму замечательному пределу.