Комбинаторика и алгоритмы
Первообразные корни и построение правильных многоугольников с помощью циркуля и линейки

Савватеев Алексей Владимирович

Комплексные числа

Напишем многочлен с корнями 1,2,-3 (нам понадобится многочлен с другими корнями). Он равен

$$P(x) = (x-1)(x-2)(x+3) = x^3 - 7x + 6.$$

Напишем для P(x) формулу Кардано:

$$x = \alpha + \beta$$

$$(\alpha + \beta)^{3} - 7(\alpha + \beta) + 6 = 0$$

$$\alpha^{3} + \beta^{3} + (\alpha + \beta)(3\alpha\beta - 7) + 6 = 0$$

$$\begin{cases} 3\alpha\beta = 7 \\ \alpha^{3} + \beta^{3} = -6 \end{cases}$$

$$(y - \alpha^{3})(y - \beta^{3}) = 0$$

$$y = -3 \pm \sqrt{9 - \frac{343}{27}}$$

$$x = \sqrt[3]{-3 - \frac{\sqrt{-100}}{27}} + \sqrt[3]{-3 + \frac{\sqrt{-100}}{27}}$$

$$x = \sqrt[3]{-3 - \frac{10i}{3\sqrt{3}}} + \sqrt[3]{-3 + \frac{10i}{3\sqrt{3}}}$$

и при правильном извлечении кубических корней получим те же самые три корня (для каждого α^3 будет однозначно определяться β^3).

Определение 1. Комплексные числа \mathbb{C} — расширение \mathbb{R} , получаемое из него добавлением формального символа i со свойством $i^2=-1$.

Свойства.

- \mathbb{C} поле ((x+iy)+(a+ib)=(x+a)+i(y+b) и т.п.)
- Если нарисовать \mathbb{C} на плоскости, ставя в соответствие точке (x, y) число x + iy, сумма комплексных чисел будет суммой векторов.
- Поставим каждому числу $z \in \mathbb{C}$ в соответствие $\arg z$ угол между Ox и лучом из (0,0) в z и |z| длину вектора от (0,0) в z. Тогда при умножении комплексных чисел аргументы чисел будут складываться, а модули умножаться. Т.е. при умножении всех точек плоскости на одно конкретное (ненулевое) число z происходит поворотная гомотетия с коэффициентом |z| и углом $\arg z$.
- Аналогично, при инверсии $(z\mapsto \frac{1}{z})$ будет так: $\arg\frac{1}{z}=-\arg z, |\frac{1}{z}|=\frac{1}{|z|}.$
- Поставим в соответствие числу z = x + iy число $\overline{z} = x iy$ сопряжённое число (геометрически это отражение относительно Ox). Тогда при арифметических операциях сопряжение сохраняется ($\overline{z} + \overline{t} = \overline{z+t}$ и т.п.) и $|z|^2 = z\overline{z}$.
- Корень n-й степени извлекается из любого ненулевого комплексного числа ровно n способами это вершины правильного n-угольника.

Построение фигур

Треугольник $72^{\circ}, 72^{\circ}, 36^{\circ}$

Заметим, что если у этого треугольника провести биссектрису большого угла, он разобьётся на 2 равнобедренных, поэтому если его малая сторона 1, а большая x, то $x-1=rac{1}{x},$ т.е. $x=rac{1+\sqrt{5}}{2}.$ Чтобы построить этот отрезок, построим прямоугольный треугольник со сторонами 1 и 2, тогда половина его гипотенузы будет $\frac{\sqrt{5}}{2}$.

Правильный пятиугольник

Построим треугольник с углами 72°, 72°, 36° и опишем вокруг него окружность, затем построим серединные перпендикуляры к его большим сторонам и пересечём с окружностью. Получатся 2 точки, которые вместе с треугольником образуют правильный пятиугольник.

Правильный пятиугольник II

Будем строить решения уравнения $z^5 = 1$ в комплексных числах. Пусть его решения — $1, \xi, \xi^2, \xi^{-2}, \xi^{-1}$. Заметим, что по теореме Виета (или из-за поворотов) сумма решений равна 0, т.е. $(\xi + \xi^{-1})(\xi^2 + \xi^{-2}) = -1$. Пусть левая скобка α , а правая — β , тогда по теореме Виета α и β — корни уравнения $x^2+x-1=0$. Найдём α (положительный корень, равный $\frac{\sqrt{5}-1}{2}$), построим его на вещественной оси (пусть это точка A), тогда пересечение серединного перпендикуляра к OA с единичной окружностью даст 2-ю и 3-ю вершины пятиугольника.

ПРАВИЛЬНЫЙ 17-УГОЛЬНИК Пусть $\xi=\cos\frac{2\pi}{17}+i\sin\frac{2\pi}{17}$ — «первый» корень 17-й степени из единицы. Будем строить ξ , или, что аналогично, $\xi+\xi^{-1}$. Аналогично предыдущему построению заметим, что $(\xi + \xi^{-1})(\sum_{j=1}^{8} \xi^{j}) = -1$. Разобьём степени ξ на две группы: в α степени $\pm 1, \pm 2, \pm 4, \pm 8,$ в β все остальные.

Пусть мы это доказали. Тогда α и β — корни уравнения $x^2+x-4=0$, т.е. $(\alpha,\beta)=rac{\pm\sqrt{17}-1}{2}.$ Тогда очевидно, что

$$\alpha = \frac{\sqrt{17} - 1}{2}, \ \beta = \frac{-\sqrt{17} - 1}{2}.$$

Теперь разобьём каждую из α и β на 2 группы: пусть в γ_1 степени $\pm 1, \pm 4$, в γ_2 — $\pm 2, \pm 8$, в $\gamma_3 - \pm 3, \pm 5$, в $\gamma_4 - \pm 6, \pm 7$. Тогда окажется, что $\gamma_1 \gamma_2 = \gamma_3 \gamma_4 = -1$ и по теореме Виета (и 4) все γ_i построимы (большие корни — соответственно, γ_1 и γ_3 . Наконец, разобьём γ_1 на две группы — в δ_1 степени ± 1 , а в δ_2 — ± 4 . Тогда $\delta_1 + \delta_2 = \gamma_1, \delta_1 \delta_2 = \gamma_3$. По теореме Виета строим δ_1 (больший корень уравнения $x^2 - \gamma_1 x + \gamma_3 = 0$), строим точку A с этой координатой на вещественной оси, тогда серединный перпендикуляр к отрезку OA даст две вершины 17-угольника.

В дальнейших леммах имеются в виду правильные многоугольники.

Лемма 1. Если m-угольник построим, то и 2m-угольник тоже.

Лемма 2. Если *mn*-угольник построим, то *m*- и *n*-угольники тоже. Обе леммы очевидны.

Лемма 3. Если (m, n) = 1, то существуют $k, l \in \mathbb{Z}$ такие, что km + ln = 1.

Доказательство. Пусть d>0 — минимальное представимое в виде km+ln=d. Заметим, что m:d. Действительно, следующее после d число, которое можно получить — это 2d, затем 3d и т.п., т.к. иначе можно было бы получить число, меньшее d. Аналогично n:d. Тогда $(m,n) \geq d$, значит, d=1.

Лемма 4. Если m- и n-угольники построимы и (m,n)=1, то mn-угольник тоже. **Доказательство.** По 3 существуют такие k и l, что km-ln=1. Значит, если построить эти многоугольники на одной окружности с общей вершиной, какие-то две вершины будут на расстоянии $\frac{1}{mn}$ от длины окружности.

Школьная теория полей

Определение 2. Абелева Группа — множество (G, \oplus, \ominus) с определёнными на нём операциями \oplus и \ominus со следующими свойствами:

- $\forall a, b \in G \ a \oplus b, \ominus a \in G$;
- $\forall a, b \in G \ a \oplus b = b \oplus a$ (коммутативность);
- $\forall a, b, c \in G \ a \oplus (b \oplus c) = (a \oplus b) \oplus c \ (accoциативность);$
- $\exists e \in G \forall a \in G \ a \oplus e = a;$
- $\forall a \in G \ a \oplus (\ominus a) = e$ (обратимость).

Определение 3. Поле — множество \mathbb{F} с определёнными на нём операциями $+,-,\cdot,/$ со следующими свойствами:

- $(\mathbb{F}, +, x \mapsto -x)$ абелева группа;
- $(\mathbb{F}/0,\cdot,x\mapsto 1/x)$ абелева группа;
- Выполняется дистрибутивность $(\forall a, b, c \in \mathbb{F} \ a \cdot (b+c) = a \cdot b + a \cdot c).$

ПЕРВООБРАЗНЫЕ

Определение 4. Первообразный корень по модулю p — такой остаток q, что все ненулевые остатки по модулю p являются степенями q в каком-то порядке.

Теорема 5. Первообразный корень существует для всех простых p.

Обозначим $aS = \{ab|b \in S\}$. **Лемма 6.** Если $S \subset \mathbb{F}_p$, то |aS| = |S|. В частности, $a\mathbb{F}_p^* = \mathbb{F}_p^*$.

Доказательство. Вытекает из 6.

Теорема 7 (малая теорема Ферма). Если $n \not/p$, то $n^{p-1} \equiv 1 \mod p$. Доказательство. Заметим, что $(p-1)! \equiv n \cdot (2n) \cdot \ldots \cdot (p-1)n = (p-1)! n^{p-1} \mod p$, откуда следует утверждение задачи.

Определение 5. Порядок a по модулю p (обозначается $ord_p(a)$) — минимальное такое натуральное k, что $a^k \equiv 1 \mod p$.

Лемма 8. $ord_p(a)|p-1$.

Доказательство. Заметим, что все числа разбиваются на множества вида a_1^n, a_2^n, \ldots Пусть $ord_p(a_1) = l$. Тогда до тех пор, пока есть не рассмотренные числа, будем брать одно из них (b) и добавлять к рассмотренным числа вида $b \cdot a^n$. Тогда на каждом шаге все рассматриваемые числа различные и добавляется l чисел за шаг, откуда всё следует.

Теорема 9 (Безу). Пусть P(x) — многочлен с коэффициентами из кольца. Тогда если α — корень P, то P: $(x - \alpha)$. (упражнение на 1 балл)

Лемма 10. Пусть P(x) — многочлен с коэффициентами из поля. Тогда если $\alpha_1, \ldots, \alpha_n$ — корни P, то $P:(x-\alpha_1)\ldots(x-\alpha_n)$. (упражнение на 1 балл)

Лемма 11. У многочлена степени n с коэффициентами из поля не более n корней. (упражнение на 1 балл)

Лемма 12 (Гаусс). Пусть S — множество остатков от 1 до $\frac{p-1}{2}$. Тогда $|\{n,-n\}\cap aS|=1$ для всех n и $a\not\equiv 0$ и, кроме того, $a^{\frac{p-1}{2}}=(-1)^m$, где m — количество таких $n\leq \frac{p-1}{2}$, что в aS есть -n.

Доказательство. Первая часть очевидна из принципа Дирихле. Вторая часть следует из того, что $(\frac{p-1}{2})! \equiv (-1)^m \cdot a(2a) \dots (\frac{p-1}{2}a)$.

Определение 6. Функция Эйлера $\varphi(d)$ — количество натуральных чисел, меньших s и взаимно простых c ним

Лемма 13. $d = \sum_{l|d} \varphi(l)$ для всех d.

Доказательство. Напишем дроби $\frac{1}{d}, \frac{2}{d}, \dots, \frac{n}{d}$ и сократим их. Заметим, что дробей с знаменателем l ровно $\varphi(l)$, откуда всё следует.

Доказательство теоремы 5. Пусть d|n. Тогда $x^n-1=(x^d-1)\Psi(x)$, где у Ψ степень n-d. Значит, по 11 есть ровно d решений уравнения $x^d-1=0$, т.е. существует ровно d чисел с порядком, делящим d. Обозначим $\psi(d)=|\{a|ord_p(a)=d\}|$. Тогда по 13 $d=\sum_{l|d}\psi(l)\;\forall d|n$. Значит, $\psi\equiv\varphi$, в частности, $\psi(p-1)=\varphi(p-1)>0$.

Финал

Лемма 14. Если $2^k+1\in\mathbb{P},$ то $k=2^l$ для натурального n. (такие числа называются числами Ферма)

Лемма 15. Если для p такого вида a — не первообразный, то $a^{\frac{p-1}{2}} \equiv 1 \mod p$. **Доказательство.** По 7 это либо 1, либо -1, и -1 не подходит.

Утверждение. Число построимо тогда и только тогда, когда существует список квадратных уравнений, последнее из которых имеет это число решением.

Теорема 16. Если $p>3\in\mathbb{P}$ таково, что правильный p-угольник построим, то 3 — первообразный корень по модулю p.

Лемма 17. Простые числа Ферма, большие 3, сравнимы с 5 по модулю 12.

Доказательство теоремы 16 #1. Докажем по индукции, что для чисел, сравнимых с 5 по модулю 12, 12 даёт нечётное количество минусов. База для 17 очевидна, шаг очевиден.

Доказательство теоремы 16 #2. Заметим, что такие p имеют вид $2^{2^n}+1$. Применим закон квадратичной взаимности Гаусса: $\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}=1$. Заметим, что $\left(\frac{p}{3}\right)=\left(\frac{-1}{p}\right)=-1$, значит, и $\left(\frac{3}{p}\right)=-1$. С другой стороны, ord $n \mod p=2^k$, а значит, и $\frac{p-1}{\operatorname{ord} n \mod p}=2^k$, но мы доказали, что это нечётное число, значит, это 1.

Идея построения. Вначале разбиваем сумму всех ξ на слагаемые вида $\xi^{3^{2^k(m+1)}}$ и на $\xi^{3^{2^{k+1}}}$, где k — номер шага (например, вначале разбиваем на чётные и нечётные степени тройки). Тогда после каждого шага каждая сумма строится.