Few-shot learning

Мотивация

Постановка

Few-shot learning (FSL) - такой тип постановки задачи в машинном обучении, при котором доступно малое количество данных.

Типичные сценарии:

- Тестирование разумного обучения
- Уменьшение стоимости обучения
- Обучение в редких областях, где сложно достать данные

T	E		D
	supervised information	prior knowledge	P
character generation [66]	a few examples of new character	pre-learned knowledge of parts and relations	pass rate of visual Turing test
image classification [61] supervised few labeled images for each class of the target T		raw images of other classes, or pre-trained models.	classification accuracy
drug toxicity discovery [3]	new molecule's limited assay	similar molecules' assays	classification accuracy

Проблема

$$oldsymbol{ o}$$
 Если знаем истинное распределение: $R(o) = \int \ell(o(x),y) \; dp(x,y) = \mathbb{E}[\ell(o(x),y)]$

$$ightharpoonup$$
 В настоящей жизни: $R_I(h) = rac{1}{n} \sum_{i=1}^I \ell(h(x^{(i)}), y^{(i)})$

$$o$$
 Проблема: $\mathcal{E}_{\mathrm{est}}\left(\mathcal{H},\infty
ight)=\lim_{I o\infty}\mathbb{E}[R(h_I)-R(h^*)]=0$

Нотация:

- $\hat{h} = \arg\min_{f} R(h)$
- $h^* = \arg\min_{h \in \mathcal{H}} R(h)$
- $h_I = \arg\min_{h \in \mathcal{H}} R_I(h)$

(a) Large I.

Таксономия

Работа с данными

Цель: восполнить нехватку

prior	transformation		
knowledge	input	transformer	output
handcrafted rule	original (x, y)	handcrafted rule on x	(transformed x, y)
learned transformation	original (x, y)	learned transformation on x	(transformed x, y)
weakly labeled or	weakly labeled or	predictor h trained by D^{train}	(x, output predicted
unlabeled data set	unlabeled x	predictor <i>n</i> trained by <i>D</i>	by <i>h</i>)
similar data set	sample from similar	aggregate new x and y by weighted	aggregated sample
	data set	average of samples of similar data set	

Multitask learning

- Есть целевая задача (target task)
- Есть задачи с большими ресурсами из схожей области (source task)

Hard parameter sharing

- Первые слои общие для всех Затем у каждой свой
- Строится общий классификатор
- Target task может обновлять только свои параметры
 Source может обновлять все
 Так мы уменьшаем шанс на переобучение

Soft parameter sharing

• Все задачи самостоятельные

- Регуляризация для схожести (например по попарной разнице)
- Можно также учитывать в потерях (при оптимизации будут знать про каждого)

Embedding learning

- Ограничение за счет сжатого пространства
- ullet $f(\cdot)$ эмбеддинг для тестовых
- ullet $g(\cdot)$ эмбеддинг для всех экземпляров
- $s(\cdot, \cdot)$ метрика сходства

Convolutional siamese net

- CNN как функции $f(\cdot)$ и $g(\cdot)$
- Weighted ℓ_1 distance $s(\cdot, \cdot)$
- Тип invariant

Пример сиамской сети

Лучшая архитектура на данный момент

Generative modeling

- Есть априорная модель
- Можем использовать другой больший датасет, а затем наш скромный
- На основе нового распределения строим классификацию

Neural statistician

• Используется VAE в базовой модели

• Для каждого датасета своя порождающая сеть

Statistic network дает нам контекст

Algorithm 4 K-way few-shot classification $D_0, \ldots, D_K \leftarrow$ sets of labelled examples for each class $x \leftarrow$ datapoint to be classified $N_x \leftarrow q(c|x;\phi)$ {approximate posterior over c given query point} for i=1 to K do

 $N_i \leftarrow q(c|D_i;\phi)$ end for $\hat{y} \leftarrow argmin_i D_{KL}(N_i||N_x)$

Контекст С один для одного датасета и разный для разных

Вопросы

- 1. Опишите soft и hard sharing
- 2. Почему сиамские сверточные сети отлично имплементируются в embedding learning
- 3. Опишите проблему Few-shot learning и пути решения