VE475 Homework 6

Liu Yihao 515370910207

Ex. 1 — Application of the DLP

1. (a) For Alice, she knows that

$$\gamma \equiv \alpha^r \mod p$$

If Bob replies

$$b \equiv r \mod p - 1$$
 or $b \equiv x + r \mod p - 1$

She can get

$$\alpha^{p-1} \equiv 1 \bmod p$$

$$\alpha^r \equiv \alpha^b \equiv \gamma \mod p \text{ or } \alpha^r \equiv \alpha^{b-x} \equiv \gamma \mod p$$

So after calculating $\alpha^b \mod p$ or $\alpha^{b-x} \mod p$ and compare it with γ , she can prove Bob's identity if he replies the correct b.

- (b) For Bob, he doesn't know r, but he can compute $b = \log_{\alpha} \gamma$ or $b = \log_{\alpha} \gamma + x$ so that $b \equiv r \mod p 1$. If he can't do so, it becomes a DLP problem which is very difficult to solve, so he can prove his identity.
- 2. (a)
 - (b)
- 3. It is Digital Signature Protocol.

Ex. 2 — Pohlig-Hellman

First, let g be a generator of the group, let $x = \log_g h$, let n be the order of the group, obtain a prime factorization so that

$$n = \prod_{i=1}^{r} p_i^{e_i}$$

Then, for each $i \in \{1, ..., r\}$, compute $g_i = g^{n/p_i^{e_i}}$, which has order $p_i^{e_i}$, and compute $h_i = h^{n/p_i^{e_i}}$. Then we can use the Pohlig-Hellman algorithm for prime-power order to compute $x_i \in \{0, ..., p_i^{e_i} - 1\}$, which is described as follow:

- 1. Let $x = \log_g h$ ($x = x_i$, $g = g_i$, $h = h_i$ from previous part), where $g = p^e$, and first initialize $x_0 = 0$.
- 2. Set $\gamma = g^{p^{e-1}}$.
- 3. For each $k \in \{0, \dots, e-1\}$, compute $h_k = (g^{-x_k}h)^{p^{e-1-k}}$, By construction, the order of this element must divide p, hence $h_k \in \langle \gamma \rangle$. Then compute d_k such that $\gamma^{d_k} = h_k$ and set $x_{k+1} = x_k + p^k d_k$.

4. Obtain $x = x_e$.

After get all x_i , solve the simultaneous congruence

$$x \equiv x_i \mod p_i^{e_i}, i \in \{1, \dots, r\}$$

according to Chinese reminder theorem to get $x = \log_a h$.

As an example, we try to find $\log_3 3344$ in G = U(Z/24389Z). Note that $24389 = 29^3$, so the order $n = 28^3 = 2^6 \cdot 7^3$.

$$\varphi(85) = 2^6$$
$$\varphi() = 7^3$$

And 3 is a generator of G, so we can get

$$g_1 \equiv 3^{7^3} \equiv 62 \mod 85$$

 $h_1 \equiv 3344^{7^3} \equiv 24 \mod 85$
 $g_2 \equiv 3^{2^6} \equiv 225 \mod 342$
 $h_2 \equiv 3344^{2^6} \equiv 76 \mod 342$

First, for p=2, e=6, g=62 and h=24, we should determine $x=\log_g h$ in G=U(Z/85Z). We can get

$$\gamma \equiv 62^{2^5} \equiv 1 \bmod 85$$

$$h_0 \equiv (62^0 \cdot 24)^{2^5} \equiv 1 \mod 85, \quad d_0 = 1, \quad x_1 \equiv 1 \mod 85$$

Ex. 3 — Elgamal

(a) If the polynomial $X^3 + 2X^2 + 1$ is reducible in $F_3[x]$, it can be factored as

$$X^{3} + 2X^{2} + 1 = (X + A)(X^{2} + BX + C) = X^{3} + A(B + 1)X^{2} + (B + C)X + AC$$

There are two possible pairs of (A, C), which are (1, 1) and (2, 2) so that AC = 1.

First, if A = C = 1, then B = 2, but $A(B + 1) = 0 \neq 2$, so it is wrong.

Second, if A = C = 2, then B = 1, but $A(B + 1) = 1 \neq 2$, so it is also wrong.

Then we can conclude that $X^3 + 2X^2 + 1$ is irreducible in $F_3[x]$.

According to Theorem 2.38, $X^3 + 2X^2 + 1$ is an irreducible polynomial of degree 3 in $F_3[x]$, let F_{3^3} be the set of all the polynomial of degree less than 3 in $F_3[x]$, then F_{3^3} is a finite field with $3^3 = 27$ elements.

(b) We can use 26 lower-case letters and define a map $\xi \leftrightarrow f(\xi)$, where ξ is one of 26 letters. That is, $a \leftrightarrow 1, b \leftrightarrow 2, \ldots, z \leftrightarrow 26$. Then we can define three variables α, β, γ so that

$$\alpha = f(\xi) \text{ div } 9$$

$$\beta = (f(\xi) \text{ mod } 9) \text{ div } 3$$

$$\gamma = f(\xi) \text{ mod } 3$$

And now we can define the map as

$$\xi \to g(\xi) : g(\xi) = \alpha X^2 + \beta X + \gamma$$

(c) Let $P(x) = X^3 + 2X^2 + 1$,

So the order of the subgroup generated by X is 26, and X is a generator of F_{3^3} .

(d) Use X as the generator and 11 as the secret key,

$$X^{11} \equiv x - 1 \equiv x + 2 \bmod P(x)$$

So x + 2 is the public key.

(e) Choose k = 18, we can get

$$r \equiv X^{18} \equiv x + 1 \mod P(x)$$