					1	
USN	1 1		1 . 1	100	1 1	
UDIT	1 1	- 1	1 1			1
	1		1 1			

MCE201I

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU, Belagavi)

I Semester Master of Technology (Computer Science and Engineering)
ADVANCED DATA STRUCTURES AND ALGORITHM

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 16 marks each.
- 2. Answer FIVE full questions selecting one from each unit (1 to 5).
- 3. Question 11 is mandatory and carries 20 marks.

UNIT-1

1	а	Solve the following recurrence using the Master Theorem, also state	
		which case is applicable. $T(n) = 5T(n/3) + n \log n$.	04
	b	Describe each of the basic Abstract Data Types (ADTs) in brief along	
		with its operations.	06
	С	Consider an array of floating-point numbers between 0 and 1:	
		[0.42, 0.32, 0.33, 0.52, 0.37, 0.47, 0.51]. Sort this array using Bucket Sort	
		algorithm.	06
		OR	
		흥행들은 경우 하기 시간 보다는 것이 되는 그들은 사람이 하고 하면 사용하는 것으로 하는 것을 다니다.	10
2	a	Using recursion tree method, solve the recurrence $T(n) = 4T(n/2) + n^2$.	
		Also determine the cost of the entire tree.	06
	b	What is the main difference between a stack and a queue? Given an	
		example of a situation where a stack would be useful.	04
	С	Write an algorithm that uses Radix sort with the LSD technique to sort	
		the provided array [170, 45, 75, 90, 802, 24, 2, 66].	06

UNIT-2

UNIT-3

5	a	Demonstrate with algorithm and suitable example, insert and union operation in Fibonacci heap.	08
	b	Discuss $MILLER - RABIN$ randomized primarily test with the help of pseudocode and illustrate the operation of $MILLER - RABIN$ for	
		n = 561.	08
		OR	
6	а	With suitable DECREASE KEY pseudocode, explain how to reduce a node with key 35 to 5 in fig 6a. H.min 24 17 23 21 39 41	
		35	
		Fig. 6.a	08
	b	Differentiate between Las Vegas algorithm and a Monte Carlo algorithm using suitable examples.	08

UNIT-4

7	a b	Suppose, we have a hash table with a size of 10 slots. Insert the following keys into the table: 12,25,35,44,55,68,79,90, and 102 using double hashing. Insert the following keys into a trie: "cat", "cart", "care", and "cab".	
		OR	
8	а	With psuedocode/algorithm, discuss in detail the Trie operations with suitable examples.	08

b	Briefly discuss the following:	
	i) Linear Probing,	
	ii) Quadratic Probing,	
	iii) Double Hashing, and	00
	iv) Perfect Hashing	08

UNIT-5

9	a b	Discuss String matching with finite automata and construct the string matching automation for the pattern $p = ababaca$ and illustrate its operation on the text string: $T = abababacaba$. Illustrate the Levenshtein distance algorithm to find the Levenshtein distance between the strings "kitten" and "sitting"	08
		OR	
10	a b	Discuss Knuth Morris Pratt (KMP) string matching algorithm to find the pattern $p = 001002$ in the text $T = 00100100200100201001002$. Also give the complexity of KMP algorithm. Demonstrate the implementation of Levelshtein Edit distance algorithm using an example.	10
		LAB COMPONENT	
11	a	Write a C/C + + program to find the shortest path using Bellman Ford	10
	b	algorithm. Write a C/C + + program to implement Maximum flow in the network using Ford Fulkerson algorithm.	10