Programme de colles n°1

1 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

- Espace vectoriels, familles libres, génératrices bases, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- Formes linéaires, hyperplans.
- Matrices:
 - matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme. Matrices équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang ;
 - opérations sur les lignes et colonnes; pivot de Gauss, point de vue matricielle, application au calcul du rang, à la détermination d'une base de l'image et du noyau.
- Semaine prochaine diagonalisation, trigonalisation, (point de vue géométrique et pratique) et révisions de probabilités de sup.

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Jeanne Nouaille-Degorge, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno

2 Questions de cours

- 1. Théorème du rang : l'image d'une application linéaire est isomorphe à un supplémentaire du noyau, application si **F** et **F**' sont des supplémentaires d'un même sous-espace vectoriel alors ils sont isomorphes (p. 40). (preuve algébrique cette semaine).
- 2. Polynômes d'interpolation : existence unicité puis expression (page 42).

3 Récitation d'exercices

- 1. Soit ℓ une forme linéaire sur $\mathcal{M}_n(\mathbf{R})$ montrer l'équivalence des deux propositions
 - (a) Pour tout A et tout B éléments de $\mathcal{M}_n(\mathbf{R})$, $\ell(AB) = \ell(BA)$;
 - (b) Il existe $k \in \mathbf{R}$ tel que $\ell = k \text{tr.}$
- 2. Montrer que des éléments de $\mathcal{M}_n(\mathbf{R})$, semblables comme éléments de $\mathcal{M}_n(\mathbf{C})$ sont semblables comme éléments de $\mathcal{M}_n(\mathbf{R})$.
- 3. \star Même question pour équivalents. On donnera une preuve par densité algébrique et une utilisant le déterminant.
- 4. Théorème d'Hadamard —

Soit $A = (a_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$ un élément de $\mathcal{M}_n(\mathbf{R})$, tel que pour $i=1,2,\ldots,n$

$$|a_{i,i}| > \sum_{\substack{j=1,\dots,n,\\j\neq i,}} |a_{i,j}|.$$

Montrer que A est inversible.

- 5. Soit u un endomorphisme d'un espace vectoriel \mathbf{E} tel que pour tout élément \vec{x} de \mathbf{E} , $(\vec{x}, u(\vec{x})$ soit lié. Montrer que u est une homothétie. En déduire le centre de $\mathrm{GL}(\mathbf{E})$.
- 6. Les éléments de $\mathcal{M}_3(\mathbf{R})$ suivants sont-ils semblables?

$$E := \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}, \quad F := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- 7. Soient n un élément de \mathbb{N}^* et M un élément de $\mathcal{M}_n(\mathbb{R})$ nilpotent d'ordre n.
 - (a) Montrer que M est semblable à la matrice

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}.$$

- (b) \star Montrer que le commutant de M est $\mathbf{R}([M])$, ensemble des polynômes en M.
- 8. Soit $M \in \mathcal{M}_n(\mathbf{R})$. Étudier le rang de com(M) en fonction de celui de M. Déterminer det(com(M)) et com(com(M)).
 - \star Retrouver ces résultats par densité algébrique sans discuter sur le rang de M.
- 9. Soit n un entier naturel non nul et A un élément de $\mathcal{M}_n(\mathbf{R})$. Montrer que l'ensemble E, défini par

$$E = \{ M \in \mathcal{M}_n(\mathbf{R}), AMA = 0_n \},\$$

est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$ dont on précisera la dimension en fonction du rang de A.

10. \star Pour tout couple (A, B) d'éléments de $\mathcal{M}_n(\mathbf{R})$ on note

$$P_{A,B}: \mathbf{R} \to \mathbf{R}; \ \lambda \mapsto \det(B + \lambda A).$$

- (a) Montrer que pour tout couple (A, B) d'éléments de $\mathcal{M}_n(\mathbf{R})$, $P_{A,B}$ est une application polynomiale.
- (b) Soit $A \in \mathcal{M}_n(\mathbf{R})$. Montrer que $\operatorname{rg}(A) = \max\{\deg P_{A,B} | B \in \mathcal{M}_n(\mathbf{R})\}$.
- (c) Montrer qu'un endomorphisme de $\mathcal{M}_n(\mathbf{R})$ qui conserve le déterminant conserve le rang.

Programme de colles n°2

4 Révivions de probabilités de sup.

- Probabilités sur un ensemble fini.
- Variables aléatoires.

5 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

Par ${\bf K}$ on désigne ${\bf R}$ ou ${\bf C}$

- Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications polynômiales à p variables, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- Formes linéaires, hyperplans.
- Matrices:
 - Matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme. Matrices équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang.
 - Matrices de transvexions, de permutations, de dilatation; opérations sur les lignes et colonnes; pivot de Gauss, application au calcul du rang, à la détermination d'une base de l'image et du noyau.
- Diagonalisation. (il s'agit d'une première approche géométrique axée sur la pratique, les applications le polynôme caractéristique. Un prochain chapitre traitera des polynômes d'endomorphismes et des questions subtiles de réduction)

On désigne u un endomorphisme d'un \mathbf{K} espace vectoriel \mathbf{E} de dimension finie non nulle. On note $\lambda_1, \lambda_2, \ldots, \lambda_k$ les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifs m_1, m_2, \ldots, m_k .

- Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes.
 Espaces propres de deux endomorphismes qui commutent.
- Polynôme caractéristique (définitions, coefficients remarquables), polynôme caractéristique d'un endomorphisme induit.
- Diagonalisation des matrices et des endomorphismes. Définition. l'endomorphisme u diagonalisable si et seulement si $\bigoplus_{i=1}^k \mathbf{E}_k = \mathbf{E}$. La dimension d'un espace propre est inférieur à l'ordre de multiplicité de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χ_u est scindé et $m_i = \dim(\mathbf{E}_i)$, pour $i = 1 \dots k$.
- A venir : révisions sur les déterminants, trigonalisation, ...

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Jeanne Nouaille-Degorge, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno.

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert.

6 Questions de cours

- 1. Des vecteurs propres associés à des valeurs propres deux à deux distinctes sont indépendants.
- 2. Polynôme caractéristique : polynomialité et coefficients remarquables.
- 3. Tout hyperplan est le noyau d'une forme linéaire non nulle, unique à multiplication près par un scalaire non nul. (I.5.10),

7 Exercices

1. Soit f un edomorphisme d'un **R**-espace vectoriel **E** de dimension n non nulle. Pour tout entier $n \ge 1$ on pose $N_n = \operatorname{Ker}(f^n)$ et $I_n = \operatorname{Im} f^n$. Montrer qu'il existe un entier $n_0 \ge 1$ tel que :

$$N_1 \subsetneq N_2 \subsetneq \dots \subsetneq N_{n_0} = N_{n_0+1} = \dots = N_n = \dots$$

$$I_1 \supseteq I_2 \supseteq \dots \supseteq I_{n_0} = I_{n_0+1} = \dots = I_n = \dots$$

Soit $n \in \mathbb{N}^*$. Montrer que $I_n = I_{n+1}$ si et seulement si $I_n + N_n = I_n \oplus N_n$, (cf. TD 1).

- 2. Soient A et B des éléments de $\mathcal{M}_n(\mathbf{K})$. Montrer $\chi_{AB} = \chi_{BA}$, 1. par densité algébrique, 2. en utilsant l'équivalence de A à $J_{rg(A)}$.
- 3. Montrer que tout hyperplan de $\mathcal{M}_n(\mathbf{R})$ rencontre $\mathrm{GL}_n(\mathbf{R})$.
- 4. Soit V une variable aléatoire définie sur un univers (fini) Ω , à valeurs dans $\{0,...,n\}$. Montrer que l'espérance de X est donnée par la formule

$$E(V) = \sum_{i=1}^{n} \mathbf{P}(V \ge i).$$

Soient X et Y des variables alatoires définies sur Ω , indépendantes et qui suivent la loi uniforme sur $\{0,...,n\}$. Calculer $\mathrm{E}(\min(X,Y))$.

- 5. Soient (Ω, \mathbf{P}) un espace probabilisé fini et A et B des événements. Déterminer le produit $\mathbf{1}_A \mathbf{1}_B$, puis en utilisant l'inégalité de Cauchy & Schwarz, montrer que $|P(A \cap B) P(A)P(B)| \leq \frac{1}{4}$.
- 6. Soient $X_1, X_2,...,X_n$ des variables aléatoires mutuellement indépendantes de même loi, définies sur un même univers fini Ω , et T une variable aléatoire définie sur Ω et à valeurs dans $\{1,...,n\}$ telles que $X_1,...,X_n,T$ soient mutuellement indépendante.

On définit alors la variable aléatoire $S = X_1 + X_2 + ... + X_T$.

- (a) Montrer que $E(S) = E(T)E(X_1)$.
- (b) \star Donner une formule analogue pour V(S). à suivre...
- 7. Soit \mathbf{E} un espace vectoriel de dimension finie et G un sous-groupe fini de GL (\mathbf{E}). Montrer que

$$\dim \left(\bigcap_{g \in G} \operatorname{Ker}(g - \operatorname{id}_{\mathbf{E}}) \right) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(g).$$

- 8. \star Déterminer les formes linéaires ℓ sur $\mathcal{M}_n(\mathbf{R})$ constantes sur les classes de similitude.
- 9. * Soir une suite de variables aléatoires de Rademacher $(X_n)_{n \in \mathbb{N}^*}$ mutuellement indépendantes et toute définies sur un même espace probabilisé. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n X_k$ et l'on désigne par S_0 une variable aléatoire qui prend la valeur 0 avec la probabilité 1.
 - (a) Montrer que la série $\sum \mathbf{P}(S_{2p} = 0)$ diverge.
 - (b) Soit la variable aléatoire R à valeurs dans $\mathbf{R} \cup \{+\infty\}$, définie par :

$$R = \sum_{n=1}^{+\infty} \mathbf{1}_{S_n = 0},$$

- (c) Montrer que $\mathbf{P}(R = +\infty) = 1$. Interpréter.
- 10. \star Soit n un entier supérieur ou égal à 2. On munit S_n de la probabilité uniforme. Notons pour tout $k \in \mathbb{N}^*$, d_k le nombre de dérangements d'un ensemble à k éléments. Exprimer au moyen de divers nombres de dérangements, la loi de la variable F_n définie sur S_n qui associe à un élément de S_n le nombre de ses points fixes.

Montrer que pour tout $k \in \mathbb{N}$, $\mathbf{P}(F_m = k) \xrightarrow[m \to +\infty]{} \frac{e^{-1}}{k!}$, (loi de Poisson de paramètre 1).

11. ★ Forme de Jordan

Notons pour tout entier $k \geq 2$, J_k l'élément de $\mathcal{M}_k(\mathbf{C})$ qui n'a que des 1 sur la sous-diagonale et des zéros partout ailleurs. et convenons que $J_1 = O_1$.

Soit M un élément de $\mathcal{M}_n(\mathbf{C})$, nilpotent d'ordre p.

- (a) On suppose que p=2. Montrer que M est semblable à diag $(\underbrace{J_2,J_2,....J_2}_{r \text{ termes}},0_{n-2r})$, où $r=\operatorname{rg}(M)$
- (b) ** Montrer dans le cas général que $\operatorname{Im}(u)$ est stable par u. En déduire qu'il existe un entier naturel $k \geq 1$, un élément $(\alpha_1, \alpha_2, ..., \alpha_k)$ de $(\mathbf{N}^*)^k$ vérifiant : $\alpha_1 \leq \alpha_2 \leq ... \leq \alpha_k$, et $\alpha_1 + \alpha_2 + ... + \alpha_k = n$, tel que M soit semblable à la matrice $\operatorname{diag}(J_{\alpha_1}, J_{\alpha_2}, ..., J_{\alpha_k})$.

Programme de colles n°3,

8 Révivions de sup.

— Déterminants, applications et calculs

9 Algèbre linéaire : révisions de MPSI, utilisation pratique de la diagonalisation et trigonalisation

Par ${\bf K}$ on désigne ${\bf R}$ ou ${\bf C}$

- Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications polynômiales à p variables, somme directes, sous-espaces supplémentaires.
- Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
- Formes linéaires, hyperplans.
- Matrices : Voir programme précédent.
- Diagonalisation. On désigne u un endomorphisme d'un \mathbf{K} espace vectoriel \mathbf{E} de dimension finie non nulle. On note $\lambda_1, \lambda_2, \ldots, \lambda_k$ les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifs m_1, m_2, \ldots, m_k .
 - Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes. Espaces propres de deux endomorphismes qui commutent.
 - Polynôme caractéristique (définitions, coefficients remarquables), polynôme caractéristique d'un endomorphisme induit.
 - Diagonalisation des matrices et des endomorphismes. Définition. l'endomorphisme u diagonalisable si et seulement si $\bigoplus_{i=1}^k \mathbf{E}_k = \mathbf{E}$. La dimension d'un espace propre est inférieur à l'ordre de multiplicité de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χ_u est scindé et $m_i = \dim(\mathbf{E}_i)$, pour $i = 1 \dots k$.
 - Trigonalisation, un endomorphisme ou une matrice est trigonalisable si et seulement si leur polynôme caractéristique est scindé. Application à la résolution de systèmes différentiels et de systèmes de relations de récurrences linéaires.
 - Matrices nilpotentes, définition, une matrice est nilpotente si et seulement si elle est trigonalisable à valeurs propres nulles.
 - A venir : espace vectoriels normés...

Les questions de cours ou exercices avec un astérisque ⋆ pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno, Thomas d'hervé-Guichaoua, Etienne Lebfèvre.

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert.

10 Questions de cours

- 1. Un élément de $\mathcal{M}_n(\mathbf{K})$ d'un espace vectoriel de dimension fini est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbf{K} . Au choix du colleur, l'hérédité se fera par les endomorphismes ou par les matrices en blocs.
- 2. Déterminants en blocs.
- 3. Expression du déterminant de vandermonde. On établira la formule par la méthode des combinaisons virtuelles.

11 Exercices

1. Soit A un élément diagonalisable de $\mathcal{M}_n(\mathbf{R})$. Soit B l'élément de $\mathcal{M}_{2n}(\mathbf{R})$: $B = \begin{pmatrix} A & 3A \\ 3A & A \end{pmatrix}$. (5/2) Montrer la réciproque.

- 2. Soit A un élément de $\mathcal{M}_n(\mathbf{K})$. Motrer que $\mathbf{C}(M)$, commutant de M, est un espace vectoriel. On suppose dans la suite que M a n valeurs propres deux à deux distinctes.
 - (a) Montrer que $M \in \mathcal{M}_n(\mathbf{K})$ et A commutent si et seulement si M est un polynôme en A.
 - (b) Quelle est la dimension de C(A)?
 - (c) \star Pour A diagonalisable à valeurs propres non toutes distinctes donner la dimension de C(A) en fonction des multiplicités des valeurs propres.
- 3. Polynôme caractéristique d'une matrice compagnon. Dans le cas où son polynôme caractéristique est scindé, montrer qu'elle est diagonalisable si et seulement si ses valeurs propres sont simples.
- 4. \star Déterminer le commutant d'une matrice compagnon C (raisonner avec une sous-diagonale de 1).
- 5. ** Soient C_1 et C_2 des matrices compagnons et $M = \text{diag}(C_1, C_2)$ comparer le commutatnt de M est l'ensemble des polynômes en M.
- 6. On note les éléments de \mathbf{R}^3 en colonne. Déterminer les éléments $\begin{pmatrix} \phi \\ \chi \\ \psi \end{pmatrix}$ de $\mathcal{C}^1(\mathbf{R}, \mathbf{R}^3)$ tels que

$$\begin{cases} 2\phi' = \phi + \chi + 2\psi, \\ 2\chi' = \phi + \chi - 2\psi, \\ 2\psi' = -\phi + \chi + 4\psi, \end{cases}$$

7. Déterminer les valeurs propres de la matrice L suivante. Est-elle diagonalisable?

$$L = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

Même question pour l'élément A de $\mathcal{M}_n(\mathbf{C})$, dont tous les coefficients diagonaux valent a et tous les autres b.

- 8. Soient n un entier strictement positif et M un élément de $\mathcal{M}_n(\mathbf{C})$. Pour n=2, montrer que pour tout réel strictement positif ε , il existe une matrice triangulaire supérieure $(t_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$, semblable à M, telle que pour tout couple (i,j) d'éléments distincts de $\{1,\ldots,n\},\ |t_{i,j}|\leq \varepsilon$.
 - \star Montrer le résultat pour n quel conque.
- 9. Soit A un élément de $\mathcal{M}_n(\mathbf{C})$. On suppose que pour tout entier $k \geq 1$, $\operatorname{Tr} A^k = 0$. Montrer que A est nilpotente.
- 10. \star Soient $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que $a_{i,i} = 0$ pour i = 1, 2, ...n et $a_{i,j} \in \{-1, 1\}$ pour tout couple (i, j) d'éléments distincts de $\{1, ...n\}$. Montrer que si n est pair, alors A est inversible. On dispose de 2n + 1 cailloux. On supose que chaque sous-ensemble de 2n cailloux peut se partager en deux paquets de même masse de n cailloux. Montrer que tous les cailloux on la même masse.
- 11. ** Soit un entier $n \ge 1$ Déterminer k maximal tel qu'il existe $E_1, E_2, ..., E_k$ parties de $\{1, ..., n\}$ vérifiant i. le cardinal de E_i est impair pour i = 1, ...n;
 - ii. le cardinal de $E_i \cap E_j$ est pair pour tout couple d'éléments distincts de $\{1, ..., n\}$.
- 12. ⋆
 - (a) Soient $z_1, z_2,...,z_n$ des nombres complexes, et P le polynôme

$$P = (X - z_1)(X - z_2) \dots (X - z_n)$$

On suppose que P est à coefficients entier. Soit un entier $q \geq 2$. Montrer que

$$Q = (X - z_1^q)(X - z_2^q) \dots (X - z_n^q)$$

est à coefficients entiers.

- (b) ** THÉORÈME DE KRONECKER Montrer que si P est un polynôme unitaire de $\mathbf{Z}[X]$ dont les racines complexes sont toutes de module inférieur ou égal à 1 tel que $P(0) \neq 0$, alors toutes les racines de P sont des racines de l'unité.
- 13. ** Soit **E** un **K**-espace vectoriel de domension n et $k \in \{1, ..., n\}$. Que peut on dire d'un endomorphisme u qui laisse stable tous les sous-espaces vectoriels de dimension k?

 MP^* 2022-23

Programme de colles nº4

12 Algèbre linéaire : révision de MPSI, utilisation pratique de la diagonalisation et trigonalisation

— Programme de la semaine précédente.

13 Espaces vectoriels normés

Il s'agit d'un premier contact...

- Définition de norme, espace vectoriel normé, distance à une partie non vide.
- Ouverts, fermés, intérieur, adhérence. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé, convergence d'une suite à valeurs dans un produit d'espaces vectoriels normés. Caractérisation de l'adhérence par les suites, caractérisation des fermés et des fermés relatifs par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- A venir : limite des applications...

Cette année la compacité et la connexité par arcs seront traités plus tard.

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno, Thomas d'hervé-Guichaoua, Etienne Lebfèvre, Antonino Gillard, Colin Drouineau.

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert.

14 Questions de cours

- 1. Soit $(\mathbf{E}, \|\cdot\|)$ un e.v.n., X un ensemble non vide. Montrer que $N_{\infty}: \mathcal{B}(X, \mathbf{E}) \to \mathbf{R}; f \mapsto \sup_{x \in X} \|f(x)\|$ est une norme.
- 2. Une réunion quelconque d'ouverts est un ouvert. Une intersection finie d'ouverts est un ouvert.
- 3. Caractérisation de l'adhérence par les suites. Caractérisation d'un fermé par les suites.

15 Récitation d'exercices

1. Soient f et g des endomorphisme d'un espace vectoriel ${\bf E}$ de dimension fini sur ${\bf R}$ ou ${\bf C}$, tels que :

$$f \circ g - g \circ f = f$$
.

Montrer que f est nilpotent.

2. Soient (a_1, \ldots, a_n) et (b_1, \ldots, b_n) des *n*-uplet de réels positifs. Soient p et q des réels tels que $\frac{1}{p} + \frac{1}{q} = 1$. On admet que pour tout a et tout b réels positifs,

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$
 (inégalité de Young).

(a) Montrer que:

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}.$$

Que dire du cas p = q = 2?

(b) Montrer que, n_p est une norme sur \mathbf{K}^n .

3. On note **E** l'espace vectoriel $\mathcal{C}([a,b],\mathbf{R})$. Soit un réel p>1. On admet que n_p est une norme sur \mathbf{R}^n . Montrer que

$$N_p : \mathbf{E} \to \mathbf{R}_+; f \mapsto \left(\int_a^b |f(t)|^p \right)^{\frac{1}{p}}$$

est une norme sur E.

4. Montrer que pour tout élément f de $\mathcal{C}^0([a,b],\mathbf{R}), N_p(f) \underset{n \to +\infty}{\to} N_{\infty}(f)$.

Ou version *

Soient ϕ et f des applications de [a, b] dans \mathbf{R} continues. On supose ϕ à valeurs dans \mathbf{R}_+^* et f à valeurs dans \mathbf{R}_+ . On pose pour tout entier $n \geq 0$, $I_n = \int_{[a,b]} \phi f^n$.

- (a) Montrer que le suite $(\sqrt[n]{I_n})_{n\in\mathbb{N}}$ converge de limite à déterminer.
- (b) Montrer que le suite $\left(\frac{I_{n+1}}{I_n}\right)_{n\in\mathbf{N}}$ converge de limite à déterminer.
- 5. On munit $\mathcal{M}_n(\mathbf{R})$ de la norme $\|\cdot\|_{\infty}$, norme qui à une matrice associe la somme des valeurs absolues de ses coefficients. Montrer que $\mathrm{GL}_n(\mathbf{R})$ est un ouvert dense.
- 6. On munit $\mathcal{M}_n(\mathbf{C})$ de la norme $\|\cdot\|_{\infty}$. Montrer que l'ensemble D_n des éléments de $\mathcal{M}_n(\mathbf{C})$ diagonalisables est dense. Est il-ouvert ? fermé ?
- 7. Soit G un sous-groupe de \mathbf{R} non trivial. Montrer que, soit il est de la forme $k\mathbf{Z}$, avec k élément de \mathbf{R}_+^* , soit il est dense dans $(\mathbf{R}, |\cdot|)$ (on discutera sur la valeur de $\inf(G \cap \mathbf{R}_+^*)$).
- 8. \star Soit **E** l'ensemble des applications de [0,1] dans **R** continues, muni de la norme N_1 (resp. N_{∞}). Soit F l'ensemble des éléments de **E** qui prennent en 0 la valeur 1. Quelle est l'intérieur de F? Quelle est l'adhérence de F? L'étudiant fera de jolies figures claires et en couleur.
- 9. Soit $(\mathbf{E}, \|\cdot\|)$ un espace vectoriel normé. Montrer que tout sous-espace vectoriel propre de \mathbf{E} est d'intérieur vide. Montrer que l'adhérence d'un sous espace vectoriel est un sous espace vectoriel.
- 10. \star On munit ℓ^{∞} ensemble des suites réelles bornées de la norme N_{∞} . On note \mathcal{P} l'ensemble des suites réelles ultimement nulles (polynômes). Déterminer l'adhérence de \mathcal{P} .
- 11. \star Soit A une matrice stochastique d'ordre n, c'est-à-dire un élément de $\mathcal{M}_n(\mathbf{R})$ à coefficient strictements positifs et tel que la somme des coefficients de n'importe quelle colonne fasse 1 :
 - (a) Montrer que $1 \in \operatorname{sp}(A)$ et $\operatorname{sp}(A)$ est inclus dans le disque fermé unité de \mathbb{C} .
 - (b) Soit λ une valeur propre complexe de A. Montrer que $|\lambda| \leq 1$.
 - (c) Montrer qu'il existe un élément U de $E_1(A)$ dont toutes les composantes sont strictement positives. On pourra, pour pour ${}^{t}(x_1,...,x_n)$ vecteur propre associé à une valeur propre de module 1, considérer ${}^{t}(|x_1|,|x_2|,...,|x_n|)$.
 - (d) Montrer que tout élément V de $E_1(A)$ dont toutes les composantes sont strictement positives est colinéaire à U.

Indication: choisir λ tel que $U - \lambda V$ ait tous ses coefficients positifs et un au moins nul.

12. ** Soit **E** un espace vectoriel de dimension finie; on désignera par $\|\cdot\|$ une norme sur **E**. Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses de **E**. Montrer que $\bigcap_{n\in\mathbb{N}} U_n$ est dense. Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fermés de **E**

telle que $\bigcup_{n \in \mathbb{N}} F_n = \mathbf{E}$. Montrer que $\bigcup_{n \in \mathbb{N}} \overset{\circ}{F_n}$ est un ouvert dense.

- 13. $\star\star$ Soit $(F, \|\cdot\|_F)$ un e.v.n., $\mathcal{L}_c(\mathbf{E}, \mathbf{F})$ sera muni de $\|\cdot\|$ norme subordonnée à $\|\cdot\|$ et $\|\cdot\|_{\mathbf{F}}$. Soit A une partie de $\mathcal{L}_c(\mathbf{E}, \mathbf{F})$, non vide. On veut montrer que :
 - Ou bien il existe un réel M tel que pour tout $\vec{\ell} \in A$, $||\ell|| \leq M$;
 - Ou bien il existe une intersection dénombrable d'ouverts dense(s) de \mathbf{E} , tel que pour tout élément \vec{x} de cette intersection d'ouverts, $\sup_{\vec{x}=4} \|\vec{\ell}(\vec{x})\|_{\mathbf{F}} = +\infty$.
 - (a) Montrer que pour tout élément k de \mathbf{N} , l'ensemble $\Omega_k = \{\vec{x} \in \mathbf{E}, \sup_{\vec{\ell} \in A} \|\vec{\ell}(\vec{x})\|_{\mathbf{F}} > k\}$ est un ouvert.
 - (b) Montrer que si, pour tout élément k de \mathbf{N} , Ω_k est dense, alors, pour tout élément \vec{x} de $\bigcap_{k \in \mathbf{N}} \Omega_k$, $\sup_{\vec{\ell} \in A} \|\vec{\ell}(\vec{x})\|_{\mathbf{F}} = +\infty$.
 - (c) Montrer que s'il existe $k_0 \in \mathbf{N}$, tel que Ω_{k_0} ne soit pas dense, alors il existe un réel M. tel que pour tout $\vec{\ell} \in A$, $||\ell|| \leq M$.
 - (d) Conclure.

Programme de colles nº4

Correction de la question 10

Notons ℓ_0^{∞} l'ensemble des éléments de ℓ^{∞} admettant comme limite 0 (c'est un sous-espace vectoriel, trivialement et aussi grâce à cette question et à la seconde partie de la précédente).

On a:

$$\bar{\mathcal{P}} = \ell_0^{\infty}$$

Preuve

Notations : Une suite u sera notée $(u(n))_{n\in\mathbb{N}}$ ainsi $(u_k)_{k\in\mathbb{N}}$ pourra désigner une suite d'éléments de ℓ^{∞} , pour tout $k\in\mathbb{N}$,

$$u_k = (u_k(0), u_k(1), \dots, u_k(n), \dots).$$

 $\bullet \ \bar{\mathcal{P}} \subset \ell_0^\infty.$

Soit u élément de $\bar{\mathcal{P}}$.

Soit $\varepsilon \in \mathbf{R}_{+}^{*}$.

La boule fermée de centre u et de rayon ε rencontre $\mathcal P$ Donc on dispose d'un élément p_0 de $\mathcal P$ tel que :

$$N_{\infty}(u-p_0) \le \varepsilon.$$

Soit N une entier tel que $p_0(n)$ soit nulle pour tout entier n > N (par exemple le degré de p dans le cas où ce dernier n'est pas nul).

Alors pour tout entier n, si n > N:

$$|u(n)| = |u(n) - p_0(n)| \le N_\infty(u - p_0) \le \varepsilon.$$

Donc (u_n) tend vers 0, autrement dit : $u \in \ell_0^{\infty}$.

 $\begin{array}{l}
\bullet \ \ell_0^\infty \subset \bar{\mathcal{P}}.\\
\text{Soit } v \in \ell_0^\infty.
\end{array}$

Soit $\varepsilon \in \mathbf{R}_+^*$. Pour tout $k \in \mathbf{N}$, notons v_k la suite obtenue à partir de v par troncature à l'ordre k, $(v_k(n) = v(n), \text{ pour } n \in \llbracket 0, k \rrbracket \text{ et } v_k(n) = 0, \text{ pour } n \in \llbracket k+1, +\infty \llbracket)$. La convergence vers 0 de $(v(n))_{n \in \mathbf{N}}$ fournit $n_1 \in \mathbf{N}$ tel que pour tout $n \in \llbracket n_1 + 1, +\infty \llbracket$,

$$|v(n)| \le \varepsilon$$
.

Soit alors un entier $k \geq n_1$. Soit $n \in \mathbb{N}$; deux cas :

— on a $n \leq k$, alors $|v_k(n) - v(n)| = 0 \leq \varepsilon$;

— on a $n \geq k$, alors $|v_k(n) - v(n)| = |v(n)| \leq \varepsilon$, puisque $n \geq k \geq n_1$.

Donc la borne supérieure étant le plus petit des majorants,

$$N_{\infty}(v_k - v) \le \varepsilon.$$

Donc $(v_p)_{p \in \mathbb{N}}$ converge vers v (dans $(\ell^{\infty}, N_{\infty})$), et donc $v \in \overline{\mathcal{P}}$.

Deux ces deux points vient : $\bar{\mathcal{P}} \subset \ell_0^{\infty}$.

Programme de colles n°5

16 Espaces vectoriels normés

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Caractérisation séquentielle de la limite.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- A venir : Révisions sur les fonctions d'une variable réelle...

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno, Thomas d'hervé-Guichaoua, Etienne Lebfèvre, Antonino Gillard, Colin Drouineau , Loic Vignaud.

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert.

17 Questions de cours

- Caractérisation séquentielle de la limite.
- Lipschitzité de la fonction distance à une partie non vide.

18 Récitation d'exercices

- 1. On munit $\mathcal{M}_n(\mathbf{R})$ de la norme $\|\cdot\|_{\infty}$, norme qui à une matrice associe la somme des valeurs absolues de ses coefficients. Montrer que $\mathrm{GL}_n(\mathbf{R})$ est un ouvert dense.
- 2. ** Montrer que deux matrices éléments de $\mathcal{M}_n(\mathbf{Q})$ semblables dans $\mathcal{M}_n(\mathbf{R})$ sont semblables dans $\mathcal{M}_n(\mathbf{Q})$.
- 3. \star Soit un entier $n \geq 2$. On dit qu'un élément M de $\mathcal{M}_n(\mathbf{C})$ est cyclique si il existe un élément X de $\mathcal{M}_{n,1}(\mathbf{C})$ tel que $(X, MX, ..., M^{n-1}X)$ soit libre.
 - (a) Montrer que l'ensemble des matrices de $\mathcal{M}_n(\mathbf{C})$ cycliques est ouvert.
 - (b) Soit M un élément de $\mathcal{M}_n(\mathbf{C})$ diagonalisable et $\lambda_1, \lambda_2, ..., \lambda_n$ ses valeurs propres. Montrer que si les $\lambda_i, i = 1, 2, ..n$, sont deux à deux distincts alors M est cyclique. Étudier la réciproque.
 - (c) Montrer que l'ensemble des matrices cycliques de $\mathcal{M}_n(\mathbf{C})$ est dense.
- 4. \star On munit $\mathcal{M}_n(\mathbf{C})$ de la norme $\|\cdot\|_{\infty}$. Soit $M \in \mathcal{M}_n(\mathbf{C})$. Montrer que O_n est dans l'adhérence de la classe de similitude de M si et seulement si M est nilpotente.
- 5. On pose $A = \{ \exp(in), n \in \mathbf{Z} \}$. Montrer que $\bar{A} = \mathbf{U}$.
- 6. Soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans un e.v.n. $(\mathbf{R},|\cdot|)$ qui converge vers un élément ℓ de \mathbf{E} . Soient $\Sigma \alpha_n$ une série à termes strictement positifs divergente, on note $(S_n)_{n\in\mathbb{N}}$ la suite de ses sommes partielles. Soit la suite $(z_n)_{n\in\mathbb{N}}$ définie par,

$$z_n = \frac{1}{S_n} \sum_{k=0}^n \alpha_k x_k,$$

pour tout entier naturel n.

Déterminer la limite de cette dernière suite.

- 7. \star Même question que la précédente lorsque $(x_n)_{n \in \mathbb{N}}$ tend vers $-\infty$.
- 8. Montrer que la relation

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \ln(1 + u_n), \end{cases}$$

définit une suite $(u_n)_{n \in \mathbb{N}}$. Donner la limite de cette suite puis un équivalent simple de son terme général ¹.

^{1.} Dans cet exercice et le suivant, les élèves doivent connaître la méthode sans pour le moment, en comprendre l'origine.

- 9. ** Reprendre la question précédente et donner le terme suivant dans le développemement asymptotique.
- 10. Montrer que la relation

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \frac{1}{2} \ln(1 + u_n), \end{cases}$$

définit une suite $(u_n)_{n \in \mathbb{N}}$. Donner la limite de cette suite, puis montrer que la suite $(\sqrt[n]{u_n})_{n \in \mathbb{N}}$ admet une limite à déterminer.

- 11. ** Reprendre la question précédente et donner un équivalent de u_n lorsque n tend vers $+\infty$.
- 12. Soit S des applications f de $\mathbf R$ dans $\mathbf R$ continues telles que pour tout x et tout y réels,

$$f(x+y) = f(x) + f(y).$$

Déterminer S par deux méthodes :

- en utilisant la densité de \mathbf{Q} ;
- en régularisant par intégration.
- 13. \star Soit S des applications f de ${\bf R}$ dans ${\bf R}$ continues telles que pour tout x et tout y réels,

$$f(x + y) + f(x - y) = 2f(x)f(y).$$

- (a) Soit f un élément de S non nul. Montrer que f(0)=1 et que f est paire.
- (b) Soit f un élément de S non nul est indéfiniment dérivable. Montrer que pour tout $(x,y) \in \mathbf{R}^2$,

$$f''(x)f(y) = f(x)f''(y).$$

(c) Montrer que tout élément de S est indéfiniment dérivable. Déterminer S.

 MP^* 2022-2023

Programme de colle n°6,

19 Révision du cours sur les fonctions d'une variable réelle de MPSI

- Théorème de la limite monotone.
- Théorème des valeurs intermédiaires. Théorème de l'homéomorphisme croissant.
- Lemme de Rolle, inégalité des accroissements finis, théorème du prolongement \mathcal{C}^n .
- etc.

20 Fonction convexe

- Définition, interprétation géométrique en terme de corde, formule de Jansen.
- Lemme des trois pentes, caractérisation de la convexité par la croissance des pentes.
- Caractérisation des fonctions convexes dérivables et deux fois dérivables. Une fonction dérivable convexe est au dessus de ses tangentes, position par rapport à une sécante.
- Inégalité de convexité $e^x \ge 1 + x$, $\ln(1+x) \le x$, inégalité de Young, Inégalité de Hölder.
- A venir. Espace vectoriels normmés, deuxième partie.

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno, Thomas d'hervé-Guichaoua, Etienne Lefèbvre, Antonino Gillard, Colin Drouineau, Loic Vignaud, Le Pouezard.

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert.

21 Questions de cours

- 1. Lemme des trois pentes.
- 2. Caractérisation de la convexité par la croissance des pentes.

22 Exercices

- 1. Enoncer le théorème de DARBOUX et donner en une preuve utilisant le théorème de la borne atteinte.
- 2. Soit f une application de \mathbf{R} dans \mathbf{R} dérivable qui admet 0 comme limite en $+\infty$ et $-\infty$. Montrer que f' s'annule, par l'une des deux méthodes suivantes laissées au choix du coleurs :
 - en utilisant le théorème de la borne atteinte ;
 - en effectuant un changement de variable.
- 3. Inégalité de Kolmogorov
 - (a) Soit f une application de $\mathbf R$ dans $\mathbf C$ de classe $\mathcal C^2$. On suppose que f et f'' sont bornée. On note $M_0 := \sup_{x \in \mathbf R} |f(x)|$ et $M_2 := \sup_{x \in \mathbf R} |f''(x)|$.

Montrer que pour tout réel x,

$$|f'(x)| \le \sqrt{2M_0 M_2}.$$

On pourra appliquer l'inégalité de Taylor lagrange entre x et x+h et entre x et x-h, pour tout réel h>0.

(b) ** Soient un entier naturel $n \geq 2$ et f une application de $\mathbf R$ dans $\mathbf C$ de classe $\mathcal C^n$. On suppose que f et $f^{(n)}$ sont bornée. Pour $k = 0, 1, \ldots, n$ on note $M_k := \sup_{x \in \mathbf R} |f^{(k)}(x)|$, sous réserve que l'application

 $f^{(k)}$ soit bornée.

Montrer que pour tout élément k de $\{0, \ldots, n\}$,

$$M_k \leq 2^{\frac{k(n-k)}{2}} M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}, \ (\text{inégalité de Kolmogorov}).$$

4. Soit f une application de \mathbf{R} dans \mathbf{R} convexe et non constante. Montrer que f tend vers $+\infty$ en $+\infty$ ou en $-\infty$.

- 5. Soit f une application de \mathbf{R} dans \mathbf{R} strictement convexe continue². On suppose que f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$ et $-\infty$. Montrer que f atteint sa borne supérieure en un et un seul point a de \mathbf{R} . Montrer que si f est de plus dérivable, alors a est **caractérisé** par f'(a) = 0.
- 6. $\star\star$ Soit f une application de ${\bf R}$ dans ${\bf R}$ dérivable et strictement convexe. On suppose de plus que

$$\lim_{x \to \pm \infty} \frac{f(x)}{|x|} = +\infty. \tag{1}$$

Montrer que f' est un homéomorphisme de \mathbf{R} sur \mathbf{R} .

- 7. Soient n un entier naturel supérieur ou égal à 1 et f une application d'un intervalle I dans \mathbf{R} de classe \mathcal{C}^n . On suppose que f admet n+1 zéros comptés avec leurs ordres. Montrer que $f^{(n)}$ s'annule.
- 8. Soit n un entier naturel, et soit f une application d'un segment [a,b] (a < b) à valeurs réelles, de classe \mathcal{C}^{n+1} , soient enfin (x_0, x_1, \dots, x_n) , n+1 points deux à deux distincts de [a,b].
 - (a) Montrer qu'il existe un unique polynôme à coefficients réels de degré inférieur ou égal à n, que nous noterons P, qui coïncide avec f en chacun des points x_i
 - (b) Montrer que pour tout élément x de [a,b] il existe un élément y de [a,b] tel que :

$$(f-P)(x) = f^{(n+1)}(y) \cdot \frac{\prod_{i=0}^{n} (x-x_i)}{(n+1)!},$$

9. \star — ÉGALITÉ DE TAYLOR LAGRANGE — Soit n un entier naturel, et soit f une application d'un segment [a,b] (a < b) à valeurs réelles, n+1 fois dérivable, soit enfin x_0 un point de [a,b]. Montrer que pour tout élément x de [a,b], il existe un élément y de $]x_0,x[$, tel que :

$$f(x) = \sum_{i=0}^{n} (x - x_0)^i \frac{f^{(i)}(x_0)}{i!} + (x - x_0)^{n+1} \frac{f^{(n+1)}(y)}{(n+1)!}.$$

Dans le cas où f est de classe C^{n+1} retrouver ce résultat par la formule de Taylor avec reste intégrale.

- 10. Soit f une application de \mathbf{R} dans \mathbf{R} dérivable qui admet 0 comme limite en $+\infty$ et $-\infty$. Montrer que f' s'annule, par l'une des deux méthodes suivantes laissées au choix du coleurs :
 - en utilisant le théorème de la borne atteinte ;
 - en effectuant un changement de variable.
- 11. Énoncer et prouver les inégalités de Young et Hölder.
- 12. * Inégalité de Jansen —

Soit f une application d'un segment [a,b], non réduit à un point, à valeurs réelles, continue et *convexe*. Soient x une application de [0,1] à valeurs dans [a,b]continue et α une application de [0,1] à valeurs dans \mathbf{R}_+ continue telle que :

$$\int_0^1 \alpha(t) dt = 1.$$

- (a) Montrer que : $\int_0^1 \alpha(t)x(t)dt \in [a, b]$.
- (b) Montrer que $f\left(\int_0^1 \alpha(t)x(t)dt\right) \leq \int_0^1 \alpha(t)f(x(t))dt$.
- 13. \star —Inégalité de Höfding—Soit $(X_i)_{1 \leq i \leq n}$ une suite de variables aléatoires mutuellement indépendantes centrées, et $(c_i)_{1 \leq i \leq 1}$ une suite de réels telles que pour i=1,2,...,n on ait presque sûrement $|X_i| \leq |c_i|$. On note $S_n = X_1 + X_2 + ... X_n$ et $C_n = c_1^2 + c_2^2 + ... c_n^2$.
 - (a) Montrer que pour tout $x \in [-1, 1]$ et tout réel t, $\exp(tx) \le \frac{1-x}{2} \exp(-t) + \frac{1+x}{2} \exp(t)$.
 - (b) Soit X une variable aléatoire centrée tel que $|X| \le 1$, p.s. Montrer que $E(\exp(tX) \le \exp\left(\frac{t^2}{2}\right)$.
 - (c) En déduire que $\mathbb{E}\left(\exp(tS_n)\right) \leq \exp\left(\frac{t^2}{2}C_n\right)$.
 - (d) Montrer que $\mathbf{P}(|S_n| > \varepsilon) \le 2 \exp\left(\frac{-\varepsilon^2}{2C_n}\right)$.
- 14. \star Soit f une application continue de \mathbf{R} dans \mathbf{R} , telle que pour tout $(x,y) \in \mathbf{R}^2$, $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$. Montrer que f est convexe.
 - $\star\star$ Le résulat demeure-t-il pour f non continue³?
- 2. la continuité des applications convexes sur l'intérieur de leur intervalle de définition n'est pas au programme
- 3. On admettra au besoin l'existence de bases du Q-espace vectoriel R.

Programme de colles n°7 Numéro double spécial vacances

23 Espaces vectoriels normés

- Normes, espaces vectoriels normés, distance à une partie non vide.
- Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
- Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
- Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs d'adhérence par les suites extraites.
- Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
- Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
- Continuité uniforme, applications lipschitziennes.
- Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de $(\mathbf{R}|\cdot|)$. Les compacts de $(\mathbf{K}^n, n_{\infty})$ sont les parties fermées bornées $(\mathbf{K} = \mathbf{R} \text{ ou } \mathbf{C})$. Image d'un compact par une application continue, théorème de Heine.
- Connexité par arcs : convexes (caractérisation par le barycentre de *n* points), parties étoilées, composantes connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur intermédiaire).
- A venir Intégrales convergentes. Chapitre III sur les e.v.n.

Les questions de cours ou exercices avec un astérisque * pour : Ewen Breton, Néo Schobert, Thibault Fougeray, Adèle Menesguen, Quentin Robidou, Nathan Robino, Malo Jehanno, Thomas d'hervé-Guichaoua, Etienne Lefèbvre, Antonino Gillard, Colin Drouineau , Loic Vignaud, Le Pouezard, Jeanne Nouaille-Degorce, Matthieu Blais, Bruno Huntzinger,

Les questions de cours ou exercices avec deux astérisques ** pour : Ewen Breton, Néo Schobert, Colin Drouineau, Etienne Lefèbvre, Thibault Fougeray, Quentin Robidou.

24 Questions de cours

- 1. Compacité d'un segment de $(\mathbf{R}, |\cdot|)$. Par dichotomie ou par le lemme du soleil levant au choix du coleur.
- 2. Une suite d'un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ à valeurs dans un compact K converge si et seulement si elle admet une et une seule valeur d'adhérence.

25 Récitation d'exercices

1. Montrer que toute application continue de \mathbf{R} dans \mathbf{R} qui admet une limite finie en $+\infty$ et $-\infty$ est uniformément continue.

Au choix du colleur utiliser l'une des deux méthodes suivantes :

- recours au théorème de Heine;
- raisonnement par l'absurde utilisant le critère séquentiel de non continuité uniforme.
- 2. Soit F une partie fermée d'un espace vectoriel normé $(\mathbf{E}, \|\cdot\|)$ de dimension finie. Soient k un élément de [0,1[, et \vec{f} une application de F dans F k-contractante.

- (a) Montrer qu'elle admet un et un seul point fixe. En utilisant ou sans utiliser les séries au choix du colleur
- (b) \star Montrer que le résultat demeure si l'on suppose qu'il existe un entier $N \geq 1$ tel que \vec{f}^N soit k-contractante.
- (c) \star Dans le cas ou \mathbf{K} est étoilé, montrer que le résultat demeure en ne supposant plus que f est k-contractante mais seulement 1-lipschitzienne.
- 3. Soit F un fermé d'un espace vectorel de dimension finie. Montrer que pour tout élément \vec{a} de \mathbf{E} , il existe un élément \vec{f} de \mathbf{F} tel que $d(\vec{a}, F) = ||\vec{f} \vec{a}||$.
- 4. Théorème de Riestz. ★ Montrer que la boule unité d'un espace vectoriel de dimension infinie n'est pas compact.
- 5. Soit f une application de **R** dans **R** à valeurs positives ou nulles de classe \mathcal{C}^2 . Soit x_0 un zéro de f.
 - (a) Montrer que $f'(x_0) = 0$.
 - (b) Montrer que \sqrt{f} est dérivable en x_0 si et seulement si $f''(x_0) = 0$.
- 6. ** Théorème de Glaeser (1963) —

Soit f une application de \mathbf{R} dans \mathbf{R} à valeurs positives ou nulles de classe \mathcal{C}^2 . Soit x_0 un zéro de f. On suppose que f(0) = f'(0) = f''(0). Soient α un élément de \mathbf{R}_+^* et $M(\alpha) = \sup_{t \in [-2\alpha, 2\alpha]} (|f''|)$.

(a) Soit $x \in [-\alpha, \alpha]$. Montrer que pour tout $h \in [-\alpha, \alpha]$,

$$M(\alpha)\frac{h^2}{2} + hf'(x) + f(x) \ge 0.$$

- (b) Montrer que $\frac{-f'(x)}{M(\alpha)}$ est élément de $[-\alpha, \alpha]$.
- (c) En étudiant sur $[-\alpha, \alpha]$ le signe du trinôme P, où

$$P = M(\alpha)\frac{X^2}{2} + Xf'(x) + f(x) \ge 0,$$

Montrer que $f'^2(x) \leq 2f(x)M(\alpha)$.

- (d) Montrer que \sqrt{f} est de classe \mathcal{C}^1 si et seulement si pour tout zéro z de f, f''(z) = 0.
- 7. DARBOUX.* Soit f une application d'un intervalle I de \mathbf{R} dans \mathbf{R} , dérivable.

On note $T = \{(x, y) \in I^2, y < x\}$ et on considère

$$\psi : T \to \mathbf{R}; (x,y) \mapsto \frac{f(y) - f(x)}{y - x}.$$

Montrer que $\psi(T) \subset f'(I) \subset \overline{\psi(T)}$, en déduire que f'(I) est un intervalle.

- 8. Montrer que $GL_n(\mathbf{R})$ n'est pas connexe par arcs mais que $GL_n(\mathbf{C})$ l'est.
- 9. Montrer que $O_n(\mathbf{R})$ n'est pas connexe par arcs mais que $SO_2(\mathbf{R})$ l'est. Montrer que $O_n(\mathbf{R})$ est compact.

10. ★

- (a) Soit A un connexe par arcs d'une e.v.n. $(\mathbf{E}, \|\cdot\|)$. Montrer que toute partie de A relativement ouverte et fermée est soit A soit vide.
- (b) Montrer qu'une application f d'un connexe par arcs D d'une e.v.n. $(\mathbf{E}, \|\cdot\|)$ dans e.v.n. $(\mathbf{F}, \|\cdot\|_{\mathbf{F}})$ telle que pour tout $x \in D$, il existe un voisinage de x relatif à D sur lequel elle est constante, est constante.
- 11. Soit K un compact d'une e.v.n. $(\mathbf{E}, \|\cdot\|)$.
 - (a) \star Soit ε un réel strictement positif. Montrer que K est inclus dans la la réunion d'un nombre fini de boules centrées en des points de K et de rayon ε .
 - (b) $\star\star$ Montrer que K possède une partie dense dénombrable.
- 12. ** Déterminer les composantes connexes par arcs de $GL_n(\mathbf{R})$.
- 13. ** Soit A un élément de $\mathcal{M}_n(\mathbf{R})$ non inversible. Montrer que $\mathrm{GL}_n(\mathbf{R}) \cup \{A\}$ est connexe par arcs.
- 14. (Révision) Montrer que tout hyperplan de $\mathcal{M}_n(\mathbf{R})$ rencontre $\mathrm{GL}_n(\mathbf{R})$.
- 15. (Révision) Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ ayant n valeurs propres deux à deux distinctes.
 - (a) Montrer qu'un élément M de $\mathcal{M}_n(\mathbf{K})$ et A commutent si et seulement si M est un polynôme en A.

- (b) Montrer que l'ensemble des matrices éléments de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A est un espace vectoriel dont on précisera la dimension. Ce résultat serait-il vrai si A était diagonalisable à valeurs propres non toutes distinctes ?
- 16. (Révision) Soit f un endomorphisme d'un \mathbf{R} -espace vectoriel de dimension n, nilpotent d'ordre n. Déterminer le commutant de f ainsi que sa dimension.
- 17. (Révision) Soit M un élément de $\mathcal{M}_n(\mathbf{C})$. Montrer que pour tout réel strictement positif ε , il existe une matrice triangulaire supérieure $(t_{i,j})_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$, semblable à M, telle que pour tout couple (i,j) d'éléments distincts de $\{1,\ldots,n\},\ |t_{i,j}|\leq \varepsilon$.
 - \star Montrer que 0_n est adhérent à la classe de similitude de M si et seulement si M est nilpotente.
- 18. * Soit P un polynôme unitaire de $\mathbf{R}[X]$ de degré d. Montrer qu'il est scindé sur $\mathbf{R}[X]$ si et seulement si pour tout complexe z, $|P(z)| \geq |\mathrm{Im}(z)|^d$. En déduire que l'adhérence dans $\mathcal{M}_n(\mathbf{R})$ des matrices diagonalisables est l'ensemble des matrices dont le polynôme caractéristique est scindé.