n	θ/°	ln (θ/°)
10	124	4.82
20	82	4.41
30	55	4.01
40	37	3.61
50	25	3.22
60	16	2.77

Question Number	Answer		Mark
4(a)(i)	Any PAIR from:		
	Repeat at different orientations and calculate a mean	(1)	
	To reduce (the effect of) random error	(1)	
	Or		
	Check and correct for zero error Accept suitable method	(1)	
	To eliminate <u>systematic error</u>	(1)	2
	MP2 dependent MP1		
4(a)(ii)	Mean $d = 8.54$ (mm)	(1)	
	Calculation using half range shown		
	Or Calculation of furthest from mean	(1)	
	Uncertainty in $d = 0.02$ (mm) d.p. consistent with mean	(1)	3
		()	
	Example of calculation		
	Mean $d = (8.53 + 8.56 + 8.55 + 8.53) / 4 = 34.17 / 4 = 8.54 \text{ (mm)}$		
	Uncertainty = $(8.56 - 8.53) / 2 = 0.03 / 2 = 0.015 = 0.02$ (mm)		
4(b)(i)	Use of $2 \times \%$ U in d shown		
	Or Use of $2 \times \frac{\Delta d}{d}$ shown	(1)	
	u	(1)	
	Calculation of U in d ² shown	(1)	
	U in $d^2=1.3 \text{ (mm}^2\text{)}$ Accept 3 sig figs	()	
	Example of calculation		
	%U in $d^2 = 2 \times \frac{0.06}{10.70} \times 100 = 1.1 \%$		
	U in d^2 = $(10.70)^2$ mm ² × 1.1 % = 1.26 (mm ²)		
	Or		
	Uses uncertainty in d to calculate minimum or maximum d^2		
	Calculation of U in d ² using half range shown	(1)	
	U in d^2 = 1.3 (mm ²) Accept 3 sig figs	(1)	
		(1)	3
	Example of calculation	()	
	Maximum $d^2 = (10.70 + 0.06)^2 = 10.76^2 = 115.8 \text{ (mm}^2)$		
	Minimum $d^2 = (10.70 - 0.06)^2 = 10.64^2 = 113.2 \text{ (mm}^2\text{)}$		
	U in $d^2 = \frac{115.8 - 113.2}{2} = \frac{2.6}{2} = 1.3 \text{ (mm}^2\text{)}$		

4(b)(ii)	Use of $A = \frac{\pi}{4}(s^2 - d^2)$		(1)	
	1	6.4(1)(1)	(1)	
	Addition of uncertainties in s^2 and d^2	e.c.f. 4(b)(i)	(1)	
	Calculation of U in A using factor of $\frac{\pi}{4}$ shown		(1)	
	%U in A = 0.43 %	Accept 3 sig figs		
	Accept use of U in d^2 of 1mm ² to give 0.39%			
	Example of calculation			
	$A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}(881 - 114) = \frac{\pi}{4} \times 766 = 602$	mm^2		
	U in $A = \frac{\pi}{4}(2 + 1.3) = \frac{\pi}{4} \times 3.3 = 2.6 \text{ mm}^2$			
	%U in $A = \frac{2.6}{602} \times 100 = 0.43 \%$			
	Or			
	Use of $A = \frac{\pi}{4}(s^2 - d^2)$		(1)	
	Correct use of uncertainties to calculate maximum or	minimum A e.c.f.	(1)	
	4(b)(i)		(1)	
	Calculation of U in A from half range shown %U in $A = 0.42$ %	Accept 3 sig figs	(1)	4
	700 III A 0.42 70	Accept 5 sig figs		
	Example of calculation			
	$A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}(881 - 114) = \frac{\pi}{4} \times 767 = 602$	mm^2		
	Max $A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}((881 + 2) - (114 - 1))$	$=\frac{\pi}{4} \times 770 = 605 \text{ mm}^2$		
	$\operatorname{Min} A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}((881 - 2) - (114 + 1)) =$	$=\frac{\pi}{4} \times 763 = 600 \text{ mm}^2$		
	U in $A = \frac{605 - 600}{2} = 2.5 \text{ mm}^2$			
	%U in $A = \frac{2.5}{602} \times 100 = 0.42 \%$			
4(c)	Both readings would have the same uncertainty		(1)	
	(So) the percentage uncertainty (in the mass) is reduc	ed		
	Or %U for mass of 10 rings = 0.8% and %U for mass of	one ring = 8%	(1)	2
4(4)(2)	, m		(1)	
4(d)(i)	Use of $\rho = \frac{m}{xA}$		(1)	2
	$\rho = 7.46 (\text{g cm}^{-3})$		(1)	4
	Example of calculation			
	$\rho = \frac{63}{1.403 \times 6.02} = 7.46 \text{ (g cm}^{-3}\text{)}$			

4(d)(ii)	%U in $\rho = 1.5$ % Accept 1, 2 or 3 sig figs	(1)			
(u)(II)	%U in $\rho = 1.5$ % Accept 1, 2 or 3 sig figs Correct calculation of relevant limit using %U shown e.c.f. (d)(i)	(1)			
	Conclusion based on comparison of limit and range	(1)			
	MP3 dependent MP2	(1)			
	Mar of dependent Mr 2				
	Example of calculation				
	%U in $\rho = \frac{0.5}{63} \times 100 + \frac{0.04}{14.03} \times 100 + 0.4 = 0.8 \% + 0.3 \% + 0.4 \% = 1.5 \%$				
	Upper limit of $\rho = 7.46 \times (1 + 0.015) = 7.57 \text{ (g cm}^{-3})$				
	As the upper limit is higher than 7.48 g cm ⁻³ then the ring could be made from stainless steel.				
	Or				
	%U in $\rho = 1.5$ % Accept 1, 2 or 3 sig figs	(1)			
	Correct calculation of relevant %D shown e.c.f. (d)(i)	(1)			
	Conclusion based on comparison of %D and %U	(1)			
	MP3 dependent MP2				
	Example of calculation				
	%U in $\rho = \frac{0.5}{63} \times 100 + \frac{0.04}{14.03} \times 100 + 0.4 = 0.8 \% + 0.3 \% + 0.4 \% = 1.5 \%$				
	$\%D = \frac{7.48 - 7.46}{7.48} \times 100 = 0.3 \%$				
	As % D for the lower value is less than the %U then the ring could be made from stainless steel.				
	Or				
	Use of $\rho = \frac{m}{xA}$ and uncertainties to calculate maximum or minimum ρ	(1)			
	Correct calculation of relevant limit shown e.c.f. (d)(i)	(1)			
	Conclusion based on comparison of relevant limit and range	(1)	3		
	MP3 dependent MP2				
	Example of calculation				
	Maximum $\rho = \frac{63+0.5}{(1.403-0.004)\times(6.02-0.4\%)} = \frac{63.5}{1.399\times6.00} = \frac{63.5}{8.39} = 7.56 \text{ (g cm}^{-3})$				
	As the maximum ρ is higher than 7.48 g cm ⁻³ then the ring could be made from stainless steel.				
	Note minimum $\rho = 7.35$ (g cm ⁻³)				
	Total for question 4		19		