

Clasificación de estado de presión de llantas de vehículos a partir de imágenes

Juan Nicolás Soto Rios Frank M. Córdoba O. Katherine Xiomar González Santacruz

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

1. Contextualización

- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

• De acuerdo a la ANSV en Colombia las fallas de las llantas son la segunda causa que más provoca accidentes viales [1].

 Según el Registro único Nacional de Tránsito, en 2021 se registraron más de 1970 accidentes asociados a fallas en las llantas, en los cuales 640 personas resultaron heridas, 64 fallecieron y 1271 sufrieron daños materiales [2].

• El Ministerio de transporte sugiere que es importante realizar una revisión continua del estado de inflado de las llantas de los vehículos, para mejorar la seguridad a la hora de conducir, la economía del cobustible y la vida útil de las llantas [2].

- Si las llantas se encuentran un 20% desinfladas [3]:
 - Se disminuye su vida útil en un 30%
 - Aumenta el consumo de combustible en un 3%
 - Riesgo de accidentes

• Normalmente no se presta atención a la condición de las llantas [3][4].

Se implementa un mecanismo de clasificación utilizando redes neuronales para determinar el estado – inflado o desinflado – de una llanta, a partir de imágenes, con el fin de aumentar la seguridad de la conducción, reducir el consumo de combustible, y mejorar la vida útil de las llantas.

Fuente [5]

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Estado del arte [6]

Indirect Tire Monitoring System - Machine Learning Approach

O Svensson¹, S Thelin², S Byttner and Y Fan

Department of Intelligent Systems and Digital Design, Halmstad University, Box 823, S301 18 Halmstad, Sweden

E-mail: ¹oskarsvensson.94@gmail.com, ²simon.thelin90@gmail.com

{stefan.byttner, yuantao.fan}@hh.se

Estado del arte [6]

Puntos Clave

- o Clasificación de buen o mal estado de un vehículo.
- O Datos obtenidos de los mismos vehículos a clasificar.
- o Random Forest con validación cruzada en Python.
- o Precisión del 90,54%.

Applying Neural Networks for Tire Pressure Monitoring Systems

<u>Alex Kost</u>, California Polytechnic State University, San Luis Obispo

DOI: https://doi.org/10.15368/theses.2018.5

Available at: https://digitalcommons.calpoly.edu/theses/1827

Estado del arte [7]

Name	RNN-LSTM	CNN
dropout_rate	0.672	0.309
learning_rate	0.00001	0.033
beta1	0.9	0.684
beta2	0.999	0.845
epsilon	1e-08	0.282
num_filt_1	-	16
kernel_size	-	4
num_fc_1	31	6
n_{-} layers	4	-
n_hidden	22	-

Puntos Clave

- TPMS indirecto para clasificar entre presión baja, normal y alta.
- o Redes neuronales recurrentes (RNN-LSTM) y una red neuronal convolucional (CNN) desarrollada en Python.
- Optimización bayesiana y grid search para optimizar el entrenamiento y los parámetros del modelo.
- Los modelos CNN y RNN lograron una precisión superior al 90% en el conjunto de datos de validación y prueba.

Estado del arte [8]

Automotive Diagnostics as a Service: An Artificially Intelligent Mobile Application for Tire Condition Assessment

June 2018

DOI:<u>10.1007/978-3-319-94361-9_13</u>

In book: Artificial Intelligence and Mobile Services - AIMS 2018 (pp.172-

184)

Project: Cell phone data based vehicle diagnostics

Authors:

Josh Siegel
Michigan State University

Yongbin Sun mit

Sanjay E. Sarma

Massachusetts Institute of Technology

Estado del arte [8]

Puntos Clave

- Clasificación entre neumáticos agrietados y en buen estado a partir de imágenes de teléfonos.
- Red neuronal convolucional (CNN), VGG-16 y DenseNets desarrolladas en Python.
- o Imágenes recortadas a 224x224px de ruedas de motores de búsqueda con diversas condiciones.
- Precisión del 78,5% en imágenes de muestra recortadas, superando el rendimiento del 55% de los humanos inexpertos.

Estado del arte [9]

© 2020

Smart Computing Paradigms: New Progresses and Challenges

Proceedings of ICACNI 2018, Volume 1

Atilla Elçi, Pankaj Kumar Sa, Chirag N. Modi, Gustavo Olague, Manmath N. Sahoo, Sambit Bakshi

Estado del arte [9]

Table 2	Comparing results	hatriaan diffarant	t alassifians and	l number of folds
Table 2	Comparing results	. nerween ainteren	i ciassiners and	i niimner of tolas

Folds (k)	Random forest	AdaBoost	Neural networks
2	62.22	58.88	63.33
3	58.88	56.66	67.77
4	53.31	58.84	65.41
5	52.22	56.66	67.77
6	53.33	55.55	65.55
7	52.19	53.29	61.17
8	58.90	56.43	64.10
9	53.33	54.44	64.44
10	58.88	54.44	65.55
11	53.03	55.42	65.15
12	50.14	55.05	65.92
13	44.13	50.01	59.34
14	49.31	51.36	58.84
15	43.33	45.55	58.88

Puntos Clave

- Clasificación entre presión normal y baja de neumáticos a partir de imágenes de la rueda.
- Random Forest, AdaBoost y Redes Neuronales con 4 neuronas en la capa de entrada, 2 capas ocultas con 10 y 4 neuronas y una neurona en la capa de salida con una función de activación ReLU.
- Imágenes recortadas a 640x480px de ruedas de automóviles.
- Las redes neuronales obtuvieron consistentemente mejores resultados (de alrededor del 68%) que los otros dos clasificadores.

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.
- 3. Entrenamiento de los modelos.
- 4. Protocolo experimental.

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.

- Imágenes de llantas a blanco y negro de 240x240x3.
- (2) categorías, inflado (1) y desinflado (0).
- 300 imágenes por categoría.

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.
- 3. Entrenamiento de los modelos.
- 4. Protocolo experimental.

- 1. Selección de la base
- 2. Preprocesamiento c
- 3. Entrenamiento de la
- 4. Protocolo experime

N_parámetros: 14,875,457

- 1. Selección de la base de datos.
- 2. Preprocesamiento de las imágenes.
- 3. Entrenamiento de los modelos.
- 4. Protocolo experimental.

	precision	recall	f1-score	support
0.0 1.0	1.00	1.00 1.00	1.00 1.00	31 23
accuracy			1.00	54
macro avg	1.00	1.00	1.00	54
weighted avg	1.00	1.00	1.00	54

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Resultados

	Precision Cat 0	Precision Cat 1	Accuracy	Tiempo entrenamiento (min)
Modelo RN 1	0,96	0,81	0,89	0,03
Modelo RN 2	0,97	0,96	0,96	0,05
Modelo CN 1	0,91	1,0	0,94	6,03
Modelo CN 2	1,0	1,0	1,0	6,66

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Conclusiones

- La reducción de dimensionalidad demuestra ser una herramienta útil en aplicaciones donde se requiere disminuir la complejidad de los datos.
- Las redes neuronales convencionales demuestran una alta capacidad de clasificación de imágenes a un costo computacional hasta 130 veces menor que las redes convolucionales.

Conclusiones

- En ambos enfoques se demuestra que el aumento de capas y neuronas mejora la captura de características de los datos de entrada, aunque, se debe ser cuidadoso de no sobreentrenar el modelo.
- Las redes neuronales convolucionales demuestran ser muy eficientes para la clasificación de imágenes, aunque a un costo computacional superior.
- El aumento de capas de las redes convolucionales aumenta su capacidad de encontrar características que favorezcan la clasificación.

- 1. Contextualización
- 2. Estado del arte
- 3. Metodología
- 4. Resultados
- 5. Conclusiones
- 6. Repositorio Github

Repositorio de Github

URL Respositorio de Proyecto Clasificación de llantas a partir de imágenes:

https://github.com/katherinegonzalez/ClasificacionLlantas

Referencias

- [1] «Agencia Nacional de Seguridad Vial. ANSV». [En línea]. Disponible en: www.ansv.gov.co
- [2] «Fallas en las llantas, la segunda causa más frecuente de accidentes de tránsito en el país», *Revista Semana*, mar. 2022, [En línea]. Disponible en: https://www.semana.com/finanzas/consumo-inteligente/articulo/fallas-en-las-llantas-la-segunda-causa-mas-frecuente-de-accidentes-de-transito-en-el-pais/202243/
- [3] «Accident Prevention by Monitoring and Control of Vehicle Tyre Pressure using Wear & Tear and Pressure Sensor», *Int. J. Recent Technol. Eng.*, vol. 8, n.° 2, pp. 5281-5284, jul. 2019, doi: 10.35940/ijrte.B1061.078219.
- [4] O. A. Egaji, S. Chakhar, y D. Brown, «An innovative decision rule approach to tyre pressure monitoring», *Expert Syst. Appl.*, vol. 124, pp. 252-270, jun. 2019, doi: 10.1016/j.eswa.2019.01.051. [5] «Full vs Flat Tire Images». https://kaggle.com/datasets/rhammell/full-vs-flat-tire-images (accedido 21 de marzo de 2022).
- [6] O. Svensson, S. Thelin, S. Byttner, y Y. Fan, «Indirect Tire Monitoring System Machine Learning Approach», *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 252, p. 012018, oct. 2017, doi: 10.1088/1757-899X/252/1/012018.

Referencias

[7] A. Kost, «Applying Neural Networks for Tire Pressure Monitoring Systems», *Masters Theses*, mar. 2018, doi: 10.15368/theses.2018.5.

[8] J. E. Siegel, Y. Sun, y S. Sarma, «Automotive Diagnostics as a Service: An Artificially Intelligent Mobile Application for Tire Condition Assessment», en *Artificial Intelligence and Mobile Services – AIMS 2018*, Cham, 2018, pp. 172-184. doi: 10.1007/978-3-319-94361-9_13.

[9] A. Elçi, P. K. Sa, C. N. Modi, G. Olague, M. N. Sahoo, y S. Bakshi, *Smart Computing Paradigms: New Progresses and Challenges: Proceedings of ICACNI 2018, Volume 1*. Springer Nature, 2019.

Gracias