Roteiro de Aula de Laboratório 7:

Amplificadores operacionais – Imperfeições DC

Parte I - Questões teóricas (acompanhadas de análise detalhada)

- 1. Os circuitos da Figura 1 podem ser usados na estimação da tensão de deslocamento (V_{OS}) , da corrente de polarização da entrada inversora (I_{B1}) e da corrente de polarização da entrada não-inversora (I_{B2}) . Considerando essas imperfeições, explique como estes circuitos funcionam e como estimar as imperfeições DC a partir de medições V_{S1} , V_{S2} e V_{S3} .
- 2. O circuito da Figura 2 é um integrador de Miller, com entrada conectada a 0 Volts. A primeira vista, a tensão de saída v_S deve permanecer em 0 Volts. No entanto, devido a v_{OS} , v_{B1} e v_{B2} isso não ocorre. Pede-se explicar as razões que levam v_S não deve permanecer em 0 Volts. Qual seria então a fórmula esperada para a tensão na saída do circuito?
- 3. O circuito da Figura 3 é um seguidor de tensão, no qual espera-se $v_S(t) = v_E(t)$. No entanto, essa relação não é válida em circuitos com corrente alternada devido ao modelo de primeira ordem A(s) do amplificador operacional e à taxa máxima de variação de saída (SR). Sendo $v_E(t)$ uma onda quadrada de valores mínimo e máximo -a e a, respectivamente, (a) determine a forma esperada para $v_S(t)$ em um período de $v_E(t)$ considerando apenas a ação do SR. (b) Sendo a = 1V, determine o tempo necessário para $v_S(t)$ seguir $v_E(t)$ após cada transição de $v_E(t)$ considerando um amplificador operacional LM741 e um dos amplificadores operacionais do TL074 (vide os manuais que acompanham este documento). Suponha que o meio período do sinal $v_E(t)$ seja suficientemente grande de forma a se ter $v_S(t) = v_E(t)$ ainda dentro do meio período.

Figura 1. Circuitos de caracterização de imperfeições DC de amplificadores operacionais.

Figura 2. Integrador de Miller com entrada zero.

Figura 3. Circuito seguidor de tensão.

Parte II - Roteiro de experiências

Material necessário:

- 1 Amplificador operacional LM741.
- 1 Amplificador operacional quádruplo TL074.
- 1 Resistor 1 k Ω / 0,25W
- 1 Resistor 1 M Ω / 0,25W
- 1 Resistor 10 M Ω / 0,25W
- 1 Capacitor 1nF

Equipamento: osciloscópio de dois canais, fonte de alimentação, gerador de sinais.

Experiência 1. Usando os circuitos da Figura 1 com R_1 = 1 $k\Omega$, R_2 = 1 $M\Omega$ e R_3 = 10 $M\Omega$, bem como as relações do quesito 1 da parte teórica, estime V_{OS} , I_{B1} e I_{B2} para o amplificador operacional LM741. Faça o mesmo com um amplificador operacional do TL074. Comente os resultados e as dificuldades encontradas. Qual amplificador possui menores imperfeições DC?

Experiência 2. Monte o circuito da Figura 2 com R = $10 \text{ M}\Omega$ e C = 1 nF. O que acontece com a tensão de saída quando é usado o LM741 como amplificador operacional? E com o TL074? Por quê?

Experiência 3. Para o circuito da Figura 3, sendo $v_E(t)$ uma onda quadrada de valores mínimo e máximo -1V e 1V, respectivamente, trace a forma da tensão de saída $v_S(t)$ para o amplificador LM741. Estime o SR e compare com os valores especificados pelo fabricante. Explique os fenômenos adversos observados.

Observação 1: A organização e clareza na elaboração do relatório são pontos relevantes na avaliação.

Observação 2: Ao final da realização dos experimentos, os componentes devem ser devidamente guardados, as bancadas devem ser deixadas organizadas e os equipamentos desligados. É proibido escrever nas bancadas. O grupo que não respeitar essa diretiva terá **dois pontos** retirados da nota do relatório.

Anexo I - Encapsulamentos

LM741 (amplificador operacional)

TL074 (quádruplo amplificador operacional)