Algèbre 2 *Extensions*

kummériennes

Question 1/5

Propriété de \mathbb{L}/\mathbb{K} galoisienne avec $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/n\mathbb{Z}$ $\mu_n \subset \mathbb{K}$

Réponse 1/5

Il existe $\alpha \in \mathbb{L}$ tel que $\mathbb{L} = \mathbb{K}(\alpha)$ et $\alpha^n \in \mathbb{K}$ On a donc \mathbb{L}/\mathbb{K} kummérienne

Question 2/5

Propriété de L/K abélienne en lien avec les extensions kummériennes

Réponse 2/5

Il existe B un sous-groupe de \mathbb{K}^{\times} contenant $(\mathbb{K}^{\times})^n$ tel que $\mathbb{L} = \mathbb{K}_B = \mathcal{D}_{\mathbb{K}}(\{X^n - b, b \in B\})$

Question 3/5

Indépendance linéaire des caractères

Réponse 3/5

Si $(\sigma_1, \dots, \sigma_n)$ sont des morphismes de corps de \mathbb{F} deux à deux distincts, alors c'est une famille libre des \mathbb{Z} -endomorphismes de \mathbb{F}

Question 4/5

Propriétés de $\mathbb{K}_B = D_{\mathbb{K}}(\{X^n - b, b \in B\})$ $\overline{B} \subset \mathbb{K}^{\times}/(\mathbb{K}^{\times})^n$, B le relevé de \overline{B} dans \mathbb{K}

Réponse 4/5

 \mathbb{K}_B/\mathbb{K} est abélienne L'exposant de G^1 divise nL'extension est finie si et seulement si \overline{B} est fini et dans ce cas, $[\mathbb{K}_B:\mathbb{K}] = |\overline{B}|$ et $\overline{B} \cong G^*$ (le dual de G dans $(\mathbb{K}^{alg})^{\times}$)

Question 5/5

Propriétés de $Gal(\mathbb{K}_b/\mathbb{K})$

Réponse 5/5

$$\langle \bullet, b \rangle : \operatorname{Gal}(\mathbb{K}_b/\mathbb{K}) \longrightarrow \mu_n$$

$$\sigma \longmapsto \frac{\sigma(\alpha)}{\alpha}$$

$$\alpha \text{ racine de } X^n - b$$

C'est un morphisme injectif indépendant de la racine de b

$$\operatorname{Gal}(\mathbb{K}_b/\mathbb{K})$$
 est cyclique d'ordre $s \mid n$ et $s = \min(\{k \geq 1, b^k \in (\mathbb{K}^{\times})^n\})$