

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления»

КАФЕДРА ИУ-7 «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

«Разработка статического сервера»

Студент	ИУ7-7Б	 	Ковель А.Д.
Руководите	ль курсовой работы	 	_

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

3.	АДАНИЕ	
на выполне	ние курсовой рабо	ты
по теме		
«Разработка	а статического сервера»	
Студент группы ИУ7-76Б		
Ковель А	лександр Денисович	
Направленность КР		
	учебная	
Источник тематики		
Курсов	ая работа кафедры	
График выполнения КР: 25% к 6 нед.,	, 50% к 9 нед., 75% к 12 н	иед., 100% к 15 нед.
Техническое задание		
Разработать статический веб-сервер	р для отдачи контен	та с диска. В качестве
мультиплексора использовать poll.	Сервер должен реали	изовывать многопоточную
обработку запросов с использованием пу.	ла потоков.	
Оформление научно-исследовательской	й работы:	
Расчетно-пояснительная записка на 12-20	0 листах формата А4.	
Дата выдачи задания «16» сентября 2023	Γ.	
Руководитель курсовой работы		
	(Подпись, дата)	(Фамилия И. О.)
Студент		Ковель А. Д.
	(Подпись, дата)	(Фамилия И. О.)

СОДЕРЖАНИЕ

BI	ведь	СНИЕ	4		
1	Аналитические раздел				
	1.1	Thread pool	5		
	1.2	Сокет poll	5		
2	Кол	нструкторская часть	8		
	2.1	Разработка алгоритмов	8		
3	Tex	инологическая часть	10		
	3.1	Требования к программе	10		
	3.2	Средства реализации	10		
	3.3	Реализация сокета poll	10		
	3.4	Реализация пуллинг потоков	12		
4	Ис	следовательская часть	13		
	4.1	Технические характеристики	13		
	4.2	Демонстрация работы программы	13		
	4.3	Результаты исследования	13		
	4.4	Вывод	14		
3 <i>A</i>	КЛН	ОЧЕНИЕ	15		
C	пис	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16		

ВВЕДЕНИЕ

Цель работы — разработка написать статический сервер для отдачи файлов с диска на основе пула потоков и сокета poll.

Для достижения поставленной цели, необходимо решить следующие задачи:

- 1) формализовать задачу;
- 2) определить структуры, связанные с поставленной задачей;
- 3) разработать алгоритм poll сокета;
- 4) реализовать программное обеспечение;
- 5) провести исследование скорости работы статического сервера.

1 Аналитические раздел

В данном разделе рассмотрены технологии thread poll и сокеты poll.

1.1 Thread pool

Параллельные вычисления — это тип вычислений, при котором одновременно выполняется множество операций или процессов. Пул потоков (Thread pool) [1] — это фиксированный набор потоков, одновременно выполняющих независимые друг от друга задача, помещенные в массив. Массив задач представляется в виде очереди. Ключевым аспектом логики пула потоков является факт того, что все потоки запускаются один раз.

Число операций, которые можно поставить в очередь в пуле потоков, ограничено только доступной памятью. Однако пул потоков имеет ограничение на число потоков, которые можно активировать в процессе одновременно. Если все потоки в пуле заняты, дополнительные рабочие элементы помещаются в очередь и ожидают их освобождения.

Рисунок 1 – Thread pool

1.2 Coket poll

Сокеты — название программного интерфейса для обеспечения обмена данными между процессами. Процессы при таком обмене могут исполняться как на одной ЭВМ, так и на различных, связанных между собой сетью. Сокет — это абстрактный объект, представляющий конечную точку соединения.

Каждый сокет имеет свой адрес. ОС семейства UNIX могут поддерживать много типов адресов, но обязательным являются INET-адрес и UNIX-адрес.

Poll — этом метод опроса сокетов, созданный после того как ресурсов select оказалось недостаточно. Преимуществами poll сокетов являются:

- 1) нет никакого лимита количества наблюдаемых дескрипторов;
- 2) не модифицируется структура pollfd, что дает возможно ее переиспользования между вызовами poll();
- 3) для идентификации отключения клиента, нет необходимости чтение данных из сокета.

Сокеты poll использует блокировку ввода-вывода с мультипликсированием, алгоритм работы представлен на рисунке 2.

Рисунок 2 – Ввод-вывод с мультипликсированием

Основной функцией сокетов является:

Листинг 1 – Функция poll

```
#include <poll.h>
int poll (struct pollfd *fdarray, unsigned long nfds, int timeout);
/* Returns: count of ready descriptors, 0 on timeout, -1 on error */
```

Первым аргументом этой функции является структура pollfd:

Листинг 2 – Структура pollfd

```
struct pollfd {
   int   fd;    /* descriptor to check */
   short events;   /* events of interest on fd */
   short revents;   /* events that occurred on fd */
};
```

Проверяемые условия задаются членом events, а функция возвращает статус дескритора в соответствующими члене revents. Такая структура данных (с двумя переменными на дескритор, одна из которых является значением, а другая результатом) позволяет избежать аргументов «значение-результат». Каждые из этих двух членов состоит из одного или нескольких битов, которые задают определенное условие.

Вывод

В данном разделе дано определение пула потоков и сокета poll. Также был представлен алгоритм их работы.

2 Конструкторская часть

В данном разделе представлены схемы алгоритмов сокетов poll и thread poll.

2.1 Разработка алгоритмов

На рисунке представлена схемка алгоритма сокетов poll 3.

Рисунок 3 – Сокет poll

На рисунке 4 представлена схема алгоритма thread poll.

Рисунок 4 – Пул потоков

Вывод

В данном разделе разработаны и представлены схемы алгоритмов сокетов poll и пул потоков.

3 Технологическая часть

Введение

В данном разделе представлены требования к программе и реализованы спроектированные методы.

3.1 Требования к программе

Для того чтобы программное обеспечение удовлетворяло требованиям, необходимо определить их заранее и придерживаться их в процессе разработки. Программное обеспечение должно удовлетворять требованиям, которые необходимы для работы спроектированной системы:

- 1) поддержка запросов GET и HEAD;
- 2) корректная передача файлов размером в 100мб;
- 3) поддержка многопоточности.

3.2 Средства реализации

Для реализации ПО был выбран язык С [2]. В данном языке есть все требующиеся инструменты для данной курсовой работы. В качестве среды разработки была выбрана среда Clion [3].

3.3 Реализация сокета poll

Листинг 3 – Coкета poll

```
while (1)
{
   numfds = poll(server->clients, maxcl + 1, -1);
   if (numfds < 0)
   {
      LOG_ERROR("poll error");
      continue;
   }
   if (server->clients[0].revents & POLLIN)
   {
      int client_sock = accept(server->listen_sock, NULL, 0);
      if (client_sock < 0) continue;
      long i = 0;
      for (i = 1; i < server->cl_num; ++i)
```

```
if (server->clients[i].fd < 0)</pre>
        server->clients[i].fd = client_sock;
        server->clients[i].events = POLLIN | POLLPRI;
        break;
      }
    }
    if (i == server->cl_num) {
      LOG_ERROR("too many connections");
      continue;
    }
    if (i > maxcl)
      maxcl = i;
     LOG_INFO("Max clients: %d", maxcl);
    if (--numfds <= 0)
      continue;
   }
 for (int i = 1; i <= maxcl; ++i)</pre>
    if (server->clients[i].fd >= 0 && server->clients[i].revents & (POLLIN |
       POLLERR))
      worker_sock_t worker_sock;
      worker_sock.clientfd = &server->clients[i].fd;
      worker_sock.wd = server->wd;
      tpool_add_work(server->pool, worker, &worker_sock);
      if (--numfds < 0)
      {
        break;
      }
    }
 tpool_wait(server->pool);
}
```

3.4 Реализация пуллинг потоков

Листинг 4 – Сокета poll

```
static void* tpool_worker(void* arg)
{
    tpool_t* tm = arg;
    tpool_work_t* work;
    while (1)
    {
        pthread_mutex_lock(&(tm->work_mutex));
        while (tm->work_first == NULL && !tm->stop)
            pthread_cond_wait(&(tm->work_cond), &(tm->work_mutex));
        if (tm->stop)
            break;
        work = tpool_work_get(tm);
        tm->working_cnt++;
        pthread_mutex_unlock(&(tm->work_mutex));
        if (work != NULL)
        ₹
            work->func(work->arg);
            tpool_work_destroy(work);
        pthread_mutex_lock(&(tm->work_mutex));
        tm->working_cnt--;
        if (!tm->stop && tm->working_cnt == 0 && tm->work_first == NULL)
            pthread_cond_signal(&(tm->working_cond));
        pthread_mutex_unlock(&(tm->work_mutex));
    }
    tm->thread_cnt--;
    pthread_cond_signal(&(tm->working_cond));
    pthread_mutex_unlock(&(tm->work_mutex));
    return NULL;
}
```

Вывод

В данном разделе представлены требования к программе и реализованы спроектированные методы.

4 Исследовательская часть

4.1 Технические характеристики

Тестирование выполнялось на устройстве со следующими техническими характеристиками:

- 1) Операционная система Mac Os[4];
- 2) Оперативная память 16 Гбайт;
- 3) Процессор Mac M1 Pro [5].

Устройство было подключено к сети во времени исследования времени работы программы.

4.2 Демонстрация работы программы

На рисунке 5 представлен пример работы программы. Программа выводит тело запрашиваемой страницы. Страница была получена с диска.

```
ics7-cn-cw/src on ¼ main [!+?] via 🐳 desktop-linux via C v15.0.0-clang via △ v3.27.6
) curl -X GET http://0.0.0.0:9990/Users/akovel/Documents/bmstu/ics7-cn-cw/src/input/doc.html
meta charset="utf-8">
<h1>Лабораторная работа 1</h1>
<h2>Название<√h2>
<р>Псих-Админ</р>
<h2>Цель</h2>
<р>Данная система администрирования предназначена для работы с пациентами.
Проект создан для персонала психбольниц.
Данная система будет содержать информацию о пациетах, заболеваниях и плана лечения.
<h2>Use-Case</h2>
<img alt="usecase" src="assets/use-case.drawio.png"/>
<h2>ER</h2>
<img alt="er" src="assets/ER.drawio.png"/>
<h2>BD</h2>
<img alt="bd" src="assets/bd-scheme.png"/>
<h2>Пользовательские сценарии<√h2>
 р>Пользователь открывает клиент и может:
```

Рисунок 5 – Демонстрация работы программы

4.3 Результаты исследования

На рисунке 6 представлен график сравнения времени запросов.

Рисунок 6 – Результаты времени запроса к серверу

Из графика можно сделать вывод, что nginx работает 2 раза медленнее на 5 клиентах.

4.4 Вывод

В данном разделе был приведен анализ работы статического сервера.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной работы были выполнены следующие задачи:

- 1) формализована задачу;
- 2) определены структуры, связанные с поставленной задачей;
- 3) разработан алгоритм poll сокета;
- 4) реализовано программное обеспечение;
- проведено исследование скорости работы статического сервера.
 Поставленная цель достигнута.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Thread Pools [Электронный ресурс]. Режим доступа: https://www.iitk.ac.in/esc101/05Aug/tutorial/essential/threads/pool.html#:~: text=A%20thread%20pool%20is%20a, executing%20a%20collection% 20of%20tasks (дата обращения: 03.12.2023).
- 2. Язык программирования С [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/c-language/?view=msvc-170. дата обращения: 03.12.2023.
- 3. Vscode [Электронный ресурс]. https://code.visualstudio.com/. дата обращения: 03.12.2023.
- 4. Linux Документация [Электронный ресурс]. Режим доступа: https://docs.kernel.org (дата обращения: 03.12.2023).
- 5. Процессор AMD® Ryzen 7 2700 eight-core processor × 16 [Электронный ресурс]. Режим доступа: https://www.amd.com/en/products/cpu/amd-ryzen-7-2700 (дата обращения: 03.12.2023).