本次课程提纲:欧拉图

- 欧拉图
- Fleury 算法
- Hierholzer 算法
- 中国邮路问题

欧拉图

• 从某点出发,能否经过图的每条边一次且仅一次,回到出发点?

• 一笔画: 笔不离纸, 一笔画成

欧拉图

- 从某点出发,能否经过图的每条边一次且仅一次,回到出发点?
- 一笔画: 笔不离纸, 一笔画成
- 对于连通图 G, 如果 G 中存在经过每条边的闭迹,则称 G 为欧拉图
- 欧拉闭迹又称为欧拉环游,或欧拉回路

欧拉图

定理

下列陈述对于非平凡连通图 G 是等价的

- G是欧拉图
- G的顶点度数为偶数
- G 的边集合能划分为圈

证明

(1)->(2)

- 设C是欧拉图G的任一欧拉环游,v是G中任意顶点
- v 在环游中每出现一次,意味在 G 中有两条不同边与 v 关联
- 所以,在G中与v关联的边数为偶数,即v的度数为偶数

证明

(2)->(3)

- G 的顶点度数为偶数,故 G 中至少存在圈 C_1 ,从 G 中去掉 C_1 中边,得到的生成子图 G_1 ,若 G_1 没有边,则 **(3)** 成立
- 否则, G_1 的每个分支是度数为偶数的连通图,于是又可以抽取一个圈
- 反复这样抽取,E(G) 最终划分为若干圈

(3)->(1)

- 设 C_1 是G的边划分中的一个圈。若G仅由此圈组成,显然是欧拉图
- 否则,由于G连通,所以,必然存在圈 C_2 和 C_1 有公共顶点
- $C_1 \cup C_2$ 是一条含有 C_1 与 C_2 的边的欧拉闭迹
- 如此拼接下去,得到包含 G 的所有边的一条欧拉闭迹

推论

连通图是欧拉图当且仅当顶点度数为偶

推论

连通非欧拉图存在欧拉迹当且仅当只有两个顶点度数为奇数

 G_1 是欧拉图; G_2 是非欧拉图, 但存在欧拉迹; G_3 不存在欧拉迹

习题

若G和H是欧拉图,则 $G \times H$ 是欧拉图

证明

首先证明对任意 $u \in V(G), v \in V(H)$: d(u) + d(v) = d(u, v)

- 设z 是u 的任意邻点,一定有(u,v) 的一个邻点(z,v),反之亦然
- 同理,对于v的任意邻点w,一定有(u,v)的一个邻点(u,w),反之亦然
- 即: (u,v) 在积图中邻点个数等于 u 在 G 中邻点个数与 v 在 H 中邻点个数之和
- G, H 是欧拉图,故 $G \times H$ 顶点度数为偶数

证明

其次证明: $G \times H$ 是连通的

- 对任意 $(u_1, v_1), (u_2, v_2) \in V(G \times H)$
- 由于 G,H 都是欧拉图,所以都连通
- 设最短的 $u_1 u_2$, $v_1 v_2$ 路分别为: $u_1x_1 \cdots x_ku_2$, $v_1y_1 \cdots y_mv_2$
- 由积图的定义: 在积图中有路

$$(u_1,v_1)(x_1,v_1)\cdots(x_k,v_1)(u_2,v_1)(u_2,y_1)\cdots(u_2,y_m)(u_2,v_2)$$

图的积运算

- $\ \ \mathcal{G}_1 = (V_1, E_1) \ \ \mathcal{G}_2 = (V_2, E_2) \ \ \mathcal{E}$ 两个图
- 对点集 $V = V_1 \times V_2$ 中任意两点 $u = (u_1, u_2)$ 与 $v = (v_1, v_2)$
- 当 $(u_1 = v_1 且 u_2 与 v_2 相邻)$ 或 $(u_2 = v_2 且 u_1 和 v_1 相邻)$ 时, 把 u 与 v 相连
- 如此得到的图称为 G_1 与 G_2 的积图, 记为: $G_1 \times G_2$

Fleury 算法

- 在欧拉图中求出一条具体欧拉环游
- 任意选择一个顶点 v_0 ,置 $w_0 = v_0$
- 假设迹 $w_i = v_0 e_1 v_1 \cdots e_i v_i$ 已经选定,按下述方法从 $E \{e_1, e_2, \cdots, e_i\}$ 中选取边 e_{i+1}
 - e_{i+1} 与 v_i 相关联
 - 除非没有别的边可选择,否则 e_{i+1} 不能是 $G_i = G \{e_1, e_2, \dots, e_i\}$ 的割边
- 当以上操作不能执行时,算法停止
- 复杂度 $O(m^2)$

Fleury 算法

习题

请找出从e进入,经过每条边恰好一次,最后从g处离开的路线

解答

- 图中只有两个奇度顶点 e,g,因此存在 e 到 f 的欧拉迹。
- e,g 间添加一条平行边 m
- 用 Fleury 算法求出欧拉环游为: emgcfabchbdhgdjiejge
- 解为: egjeijdghdbhcbafcg

Fleury 算法正确性证明

记C为算法的输出

- C 是边不重的圈,起点和终点都是 v_0
- 假设 C 不是 Euler 环游,记 $F \triangleq E(G) E(C)$,考察 G(F)
- $v_0 \notin G(F)$, 否则算法不会终止

Fleury 算法正确性证明

- 设 v_i 是C 中最后一个在G(F) 中的顶点
- v_i 必然和 G(F) 中的一条边相邻,记为 f,否则 $v_i \notin G(F)$
- 由于 $v_{i+1}, \dots, v_n \notin G(F), v_i v_{i+1}$ 在算法执行时为割边
- $f \in G(F)$ 的割边,但是 G(F) 是 Euler 图(节点度数为偶数),矛盾

连通度的性质

习题

证明: 若 G 有 2k 个奇数顶点,则存在 k 条边不重的迹 Q_1,Q_2,\cdots,Q_k ,使得 $E(G)=E(Q_1)\cup\cdots\cup E(Q_k)$

证明

- 考察 G = (n, m) 是连通图的情况。令 $v_l, v_2, \cdots, v_k, v_{k+1}, \cdots, v_{2k}$ 是的所有 奇度点
- 在 v_i 与 v_{i+k} 间连新边 e_i 得图 G^* , $1 \le i \le k$, G^* 是欧拉图
- 由 Fleury 算法得欧拉环游 C,在 C 中删去 e_i ,得 k 条边不重的迹 Q_i : $E(G) = E(Q_1) \cup \cdots \cup E(Q_k)$

Hierholzer 算法

- 深度优先搜索,不断找圈,最后合并成 Euler 环游
- 数据结构: cpath, 记录当前圈, epath, 记录总体路径
- while cpath is not empty
 - u = cpath.TOP
 - If all edges of u are visited
 - pop u from cpath
 - push it to epath
 - Else
 - select any random edge (u, x)
 - push x to cpath and delete (u, x)
- 复杂度 O(m)

Hierholzer 算法

- 邮递员从邮局出发,每条街道至少行走一次,再回邮局。如何行走,其环游路程最短?
- 1962 年,中国数学家管梅谷提出
- 如果邮路图本身是欧拉图,用 Fleury 算法
- 如果是非欧拉图,如何重复行走街道才能使行走总路程最短?

定理

若 W 是包含图 G 每条边至少一次的闭途径, W 具有最小权值当且仅当:

- G的每条边在W中最多重复一次
- 对 G 的每个圈, 在 W 中重复的边的总权值不超过非重复边总权值

必要性证明

- 若 e = uv 经过 $m \ge 3$ 次,删去 **2** 次,不改变 d(u), d(v) 在 G(W) 中奇偶性
- *G*(*W*) 仍是 Euler 图,但是 Euler 回路变短了,性质 **1** 成立
- 设 *C* 是 *G* 中任意一个圈,如果 *C* 中重复边的总权值超过非重复边总权值,把平行边改为非平行边,而把非平行边改为平行边
- 得到的图仍然是包含 G 的欧拉图,但对应的欧拉环游长度减小了
- 对每个圈都作以上修改,得到的图仍然为包含 G 的欧拉图,满足条件 2

习题

图 G 只有两个奇度顶点 u,v,设计一个求其最优邮递员路径的算法

算法

- 在 u,v 间求出一条最短路 P*
- 在 P^* 上,给每条边添加一条平行边得G的欧拉母图 G^*
- 在 *G** 中运行 Fleury 算法

最优性定理

用上面方法求出的是最优最优邮递员路径

证明

- 对任意邮递员路径 E^* ,考虑 $G(E^*-E)$, 显然它只有两个奇数顶点 u,v
- 它们在 $G(E^* E)$ 的同一个连通分支中, 因此, 存在 (u,v) 路 P
- 所以, $\sum_{e \in E^* E} w(e) \ge w(P) \ge w(P^*)$, $\widehat{A} \sum_{e \in E^*} w(e) \ge \sum_{e \in E} w(e) + w(P^*)$
- 故求出的欧拉环游是最优欧拉迹

课后练习与思考题

• 证明 Hierholzer 算法的正确性