2005 العادية	دورة سنة	امتحانات الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
	الاسم: الرقم:	مسابقة في الفيزياء المدة: ساعة واحدة	

Cette épreuve, constituée de trois exercices obligatoires, est formée de deux pages.

L'usage des calculatrices non programmables est autorisé.

Premier exercice: Image donnée par une lentille convergente (7 pts)

Le but de cet exercice est d'étudier, par construction géométrique, la variation de la distance lentilleimage en fonction de la distance lentille – objet (l'objet est entre l'infini et le foyer objet).

Le document ci-dessous représente une lentille convergente (L), son axe optique, son foyer objet F et un objet lumineux (AB).

I – L'objet (AB) est à 6 cm de (L).

- 1) Reproduire, à l'échelle réelle, le document ci-dessus sur le papier millimétré.
- 2) Placer, en le justifiant, le fover image F' de (L).
- 3) Trouver la distance focale de (L).
- 4) a Construire, en donnant les explications nécessaires, l'image (A₁B₁) de (AB), donnée par (L).
 - b Préciser, en le justifiant, la nature de (A₁B₁).
 - c Trouver la distance (d_1) entre (L) et (A_1B_1) .

II - L'objet (AB) est à 4 cm de (L).

- 1) Construire, sur une nouvelle figure et sans explication, l'image (A₂B₂) de (AB) donnée par (L).
- 2) Trouver la distance (d_2) entre (L) et (A_2B_2) .

III - Conclusion.

Déduire alors comment varie la distance lentille – image quand l'objet s'approche de F.

<u>Deuxième exercice</u> Tension aux bornes d'une pile (6,5 pts)

Dans le but de déterminer la tension aux bornes d'une pile G, on réalise le montage de la figure ci-contre.

Ce montage comporte:

- la pile G;
- une lampe (L) portant les indications (3 V; 1,5 W);
- un conducteur ohmique (D);

- un ampèremètre (A) de résistance négligeable ;
- un interrupteur (k).
- 1) a Donner la signification de chacune des indications portées par (L).
 - b Démontrer, en utilisant ces indications, que lorsque la lampe fonctionne normalement l'intensité du courant vaut 0,5 A.
- 2) On ferme (K). (D) est choisi de façon que l'ampèremètre (A) affiche 0,5 A.
 - a- (D) et (L) sont alors traversés par un même courant d'intensité I. Pourquoi ? Préciser la valeur de I.
 - b- La caractéristique du conducteur (D) étant donnée par la courbe ci-contre, déterminer graphiquement la valeur de la tension U_D aux bornes de (D).
 - c- En appliquant la loi d'additivité des tensions, déterminer la valeur de la tension U_G aux bornes de la pile (G).
- 3) Nommer un appareil permettant de mesurer directement la valeur de U_G. Comment faut-il le brancher dans ce circuit ?

<u>Troisième exercice</u>: Tension d'un ressort (6,5 pts)

On dispose d'un ressort (R) de longueur à vide $L_0 = 0.2$ m et de constante de raideur K = 100 N/m.

- On fixe l'extrémité O de (R) à un support et on accroche à son extrémité libre A une boule de masse m=0.6 kg et de centre de gravité G (Voir la figure).
 - 1- Les deux forces qui s'exercent sur la boule sont : son poids \vec{P} et la tension \vec{T} du ressort.
 - a- Préciser pour chacune de ces deux forces s'il s'agit d'une force de contact ou d'une force à distance.
 - b- Calculer la valeur de \vec{P} . Prendre g = 10 N/kg
 - c- Donner les autres caractéristiques de \vec{P} .
 - 2- Pour une longueur L = 0.25 m du ressort (R),
 - a- Calculer, en appliquant la loi de Hooke, la valeur de la tension \vec{T} ;
 - b- donner les autres caractéristiques de \vec{T} ;
 - c- représenter \vec{P} et \vec{T} à l'échelle 2 N pour 1 cm ;
 - d- la boule n'est pas en équilibre. Pourquoi?
 - 3- La boule, toujours attachée à l'extrémité A du ressort, est maintenant en équilibre. Donner dans ce cas, en le justifiant, la valeur de \vec{T} .

