# 2020 D&A

## MachineLearning SESSION

Ensemble(Boosting)



#### Boosting

- 1. Bagging: 일반적인 모형을 만드는데 초점, 분산을 줄여 과대적합(Overfitting)을 막아줌
- 2. Boosting: 맞추기 어려운 문제를 맞추는 데 초점, 틀린 문제에 가중치 부과





#### Boosting

Boosting 이란?

- 개별 모델들의 앙상블 기법 중 하나
- <u>약한 분류기 (weak classifier)</u>를 결합하여 <u>강한 분류기를</u> 만드는 방법
- 재표본 과정에서 분류에 오류가 있는 경우, **오류에 가중치를** 주어 표본 추출





## Bagging vs Boosting

| 비교      | Bagging                                       | Boosting                                   |
|---------|-----------------------------------------------|--------------------------------------------|
| 특징      | <b>병렬 앙상블 모델</b><br>(각 모델은 서로 독<br>립적)        | <b>연속 앙상블</b><br>(이전 모델의 오류를<br>고려)        |
| 목적      | Variance 감소                                   | Bias 감소                                    |
| 적합한 상황  | <b>복잡한 모델</b><br>(High Variance, Low<br>bias) | Low variance, High<br>bias 모델              |
| 대표 알고리즘 | Random Forest                                 | AdaBoost, Gradient<br>Boosting             |
| 표본추출    | Random Sampling                               | Random Sampling<br>with weight on<br>Error |







## Adaptive Boosting

- First classifier 에서 잘못 예측한 데이터에 가중치를 부여
- Second classifier는 잘못 예측한 데이터를 분류하는데 더 집 중
- Third classifier는 First, Second 가 잘못 예측한 데이터를 분 류하는데 집중

• Cost Function : 가중치를 반영 하여 계산

$$J(\theta) = \sum_{i} w_{i} J_{i}(\theta, x^{(i)})$$

• 3개의 모델별로 계산된 가중치를 합 산하여 최종 모델 생성



$$\mathbf{x}_t = \mathbf{x}_{t-1} - \boldsymbol{\eta} \nabla f(\mathbf{x}_{t-1})$$



- Gradient Descent 와 Boosting의 합성어, Boosting에 Gradient Descent를 접목시킨 머신러닝 알고리즘
- 약한 분류기들을 단계적으로 부스팅하는 과정에서 이전 모델의 오류를 손실함수로 나타내고 이 손실함수를 최소 화하는 방법으로 Gradient Descent를 사용하는 알고리 즘
- 즉 y값을 예측하는 약한 분류기 모델과 실제 값의 잔차 를 통해 예측 성능을 올리고자 함

#### Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize  $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$ .
- 2. For m=1 to M:
  - (a) For  $i = 1, 2, \ldots, N$  compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets  $r_{im}$  giving terminal regions  $R_{jm}, j = 1, 2, ..., J_m$ .
- (c) For  $j = 1, 2, \ldots, J_m$  compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update  $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$ .
- 3. Output  $\hat{f}(x) = f_M(x)$ .



Loss Function  $:\frac{1}{2}(Observed - Predicted)^2$ 

1. Initialize 
$$f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$$
.

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |
| 1.6           | Green             | Female | 76             |
| 1.5           | Blue              | Female | 56             |

• 최소화 하는  $\gamma$  값을 찾기 위하여 미분을 이용!

$$\frac{\partial}{\partial Predicted} \frac{1}{2} (Observed - Predicted)^2$$

$$= -(Observed - Predicted)$$

즉, 밑의 식을 만족하는 
$$Predicted$$
 값이  $f_o(x)$ ! -(88 -  $Predicted$ ) + -(76 -  $Predicted$ ) + -(56 - $Predicted$ ) = 0

$$f_o(x)$$
 = 73.3

#### 2. For m = 1 to M:

(a) For 
$$i=1,2,\ldots,N$$
 compute 
$$r_{im} = -\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f=f_{\eta-1}}.$$

Loss Function  $:\frac{1}{2}(Observed - Predicted)^2$ 

$$r_{im} = -\left[\frac{\partial L(y_{i}, f(x_{i}))}{\partial f(x_{i})}\right]_{f=f_{m-1}} f_{m-1} = f_{0} = 73.3$$

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ |
|---------------|-------------------|--------|----------------|-----------|
| 1.6           | Blue              | Male   | 88             | 14.7      |
| 1.6           | Green             | Female | 76             | 2.7       |
| 1.5           | Blue              | Female | 56             | -17.3     |

$$r_{1,1} = -\left[\frac{\partial \frac{1}{2} (88 - f(x_i))^2}{df(x_i)}\right]_{f = f_{m-1}}$$

$$r_{1,1} = (88 - f(x_i))$$
  
= 14.7

$$r_{2,1} = 2.7$$

$$r_{3,1} = -17.3$$



(b) Fit a regression tree to the targets  $r_{im}$  giving terminal regions  $R_{jm}$ ,  $j = 1, 2, ..., J_m$ .

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ |
|---------------|-------------------|--------|----------------|-----------|
| 1.6           | Blue              | Male   | 88             | 14.7      |
| 1.6           | Green             | Female | 76             | 2.7       |
| 1.5           | Blue              | Female | 56             | -17.3     |





(b) Fit a regression tree to the targets  $r_{im}$  giving terminal regions  $R_{jm}, j = 1, 2, ..., J_m$ .

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ |
|---------------|-------------------|--------|----------------|-----------|
| 1.6           | Blue              | Male   | 88             | 14.7      |
| 1.6           | Green             | Female | 76             | 2.7       |
| 1.5           | Blue              | Female | 56             | -17.3     |





- Step 1 과 동일하게 Loss Function을 최소화 하는  $\gamma$  값을 찾아야 하지만 다른점은 이전 Prediction을 고려한다는 것이다.
- 또한  $x_i \in \mathit{R}_{\mathit{IM}}$  를 통해 포함되는 샘플들만 고려하여 Summation 진행

(c) For 
$$j=1,2,\ldots,J_m$$
 compute 
$$\gamma_{jm}=\arg\min_{\gamma}\sum_{x_i\in R_{jm}}L\left(y_i\;f_{m-1}(x_i)+\gamma\right).$$

#### Step 1:

$$f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma).$$



$$\gamma_{1,1} = \underset{\gamma}{argmin} \frac{1}{2} (y_3 - (F_{m-1}(x_3) + \gamma))^2$$

$$\gamma_{2,1} = \underset{\gamma}{argmin} \frac{1}{2} \{ (y_1 - (F_{m-1}(x_1) + \gamma))^2 + (y_2 - (F_{m-1}(x_2) + \gamma))^2 \}$$



| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ |
|---------------|-------------------|--------|----------------|-----------|
| 1.6           | Blue              | Male   | 88             | 14.7      |
| 1.6           | Green             | Female | 76             | 2.7       |
| 1.5           | Blue              | Female | 56             | -17.3     |

$$\gamma_{1,1} = \underset{\gamma}{argmin} \frac{1}{2} (y_3 - (F_{m-1}(x_3) + \gamma))^2 \qquad f_o(x) = 73.3$$

$$= \underset{\gamma}{argmin} \frac{1}{2} (56 - (73.3 + \gamma))^2$$

$$= \underset{\gamma}{argmin} \frac{1}{2} (-17.3 - \gamma)^2$$

$$\frac{d}{d\gamma} \frac{1}{2} (-17.3 - \gamma)^2 \rightarrow 17.3 + \gamma = 0$$

$$\gamma_{1,1} = -17.3$$





| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ |
|---------------|-------------------|--------|----------------|-----------|
| 1.6           | Blue              | Male   | 88             | 14.7      |
| 1.6           | Green             | Female | 76             | 2.7       |
| 1.5           | Blue              | Female | 56             | -17.3     |

$$f_o(x) = 73.3$$

$$\gamma_{2,1} = \underset{\gamma}{argmin} \frac{1}{2} \{ (y_1 - (F_{m-1}(x_1) + \gamma))^2 + (y_2 - (F_{m-1}(x_2) + \gamma))^2 \}$$

$$= \underset{\gamma}{argmin} \frac{1}{2} \{ (88 - (73.3 + \gamma))^2 + (76 - (73.3 + \gamma))^2 \}$$

$$= \underset{\gamma}{argmin} \frac{1}{2} \{ (14.7 - \gamma)^2 + (2.7 - \gamma)^2 \}$$

$$\frac{d}{d\gamma} \frac{1}{2} \{ (14.7 - \gamma)^2 + (2.7 - \gamma) \}^2 \to -14.7 + \gamma + -2.7 + \gamma = 0$$

$$\gamma_{2,1} = \frac{14.7 + 2.7}{2} = 8.7$$



(d) Update 
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

$$f_0(x)$$
  
 $f_1(x) = 73.3 + \eta x$   
 $\eta$  = Learning rate  
= 0.1



$$f_1(x_1)$$
 = 73.3 + 0.1 x 8.7 = 74.2



| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |
| 1.6           | Green             | Female | 76             |
| 1.5           | Blue              | Female | 56             |

$$f_o(x) = 73.3$$

| Weight<br>(kg) | $r_{i,1}$ | $r_{i,2}$ |
|----------------|-----------|-----------|
| 88             | 14.7      | 13.8      |
| 76             | 2.7       |           |
| 56             | -17.3     |           |

(d) Update 
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

$$f_0(x)$$
  
 $f_1(x) = 73.3 + \eta \times \eta$   
 $\eta = \text{Learning rate}$   
 $= 0.1$ 



$$f_1(x_2)$$
 = 73.3 + 0.1 x 8.7 = 74.2



| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |
| 1.6           | Green             | Female | 76             |
| 1.5           | Blue              | Female | 56             |
|               |                   |        |                |

 $f_{o}(x) = 73.3$ 

| Weight<br>(kg) | $r_{i,1}$ | $r_{i,2}$ |
|----------------|-----------|-----------|
| 88             | 14.7      | 13.8      |
| 76             | 2.7       | 1.8       |
| 56             | -17.3     |           |

(d) Update 
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

$$f_1(x) = 73.3 + \eta x$$
  
 $\eta = \text{Learning rate}$   
 $= 0.1$ 

 $f_0(x)$ 



$$f_1(x_3)$$
 = 73.3 + 0.1 x -17.3 = 74.2

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |
| 1.6           | Green             | Female | 76             |
| 1.5           | Blue              | Female | 56             |

$$f_o(x) = 73.3$$

| Weight<br>(kg) | $r_{i,1}$ | $r_{i,2}$ |  |  |
|----------------|-----------|-----------|--|--|
| 88             | 14.7      | 13.8      |  |  |
| 76             | 2.7       | 1.8       |  |  |
| 56             | -17.3     | -15.6     |  |  |



• Gradient Boosting  $f_1(x)$ 



| Height<br>(m) | Favorit<br>e<br>Color | Gender | Weight<br>(kg) | $r_{i,1}$ | $r_{i,2}$ | $r_{i,3}$ |
|---------------|-----------------------|--------|----------------|-----------|-----------|-----------|
| 1.6           | Blue                  | Male   | 88             | 14.7      | 13.8      | 12.8      |
| 1.6           | Green                 | Female | 76             | 2.7       | 1.8       | 0.8       |
| 1.5           | Blue                  | Female | 56             | -17.3     | -15.6     | 14        |



 $+ \eta X$ 

 $R_{1,2}$   $R_{2,2}$  $\gamma_{1,2} = -15.6$   $\gamma_{2,2} = 7.8$ 



#### eXtreme Gradient Boosting (XGB)

- Gradient Boosting 의 단점 :
- 1. 수행시간이 오래걸리고, 하이퍼 파라미터 튜닝 노력이 필요
- 2. weak classifier의 순차적인 예측 오류(잔차) 보정을 통해 학습을 진행하기 대문에 멀티 CPU 코어 시스템을 사용하더라도 병렬 처리가 지원되지 않아서 대용량 데이터의 경우 학습에 매우 많은 시간이 필요

- XGB의 특징:
- 1. 병렬/분산처리 가능하기 때문에 대용량 데이터의 경우 Gradient Boosting에 비해 학습이 빠르 다
- 2. SPLIT 지점을 일부만 보고 결정 가능
- 3. 모델의 성능과 복잡성을 동시에 고려 (복잡성 ↑ Variance ↑ Overfitting 가능성 증가)



#### eXtreme Gradient Boosting (XGB)

- 1. 병렬/분산처리 가능
- 각자 할당받은 변수들로 tree들을 생성
- 그 후 모든 tree들을 통해 Ensemble하여 예측함



$$\widehat{y_i} = \sum_{k=1}^K f_k(x_i), f_k \in \mathcal{F}$$

K = the number of trees

f = function in the function space  $\mathcal{F}$ 





## • eXtreme Gradient Boosting (XGB)

#### 2. SPLIT 지점을 일부만 보고 결정 가능

| Height (m) | Favorite<br>Color | Gender |
|------------|-------------------|--------|
| 1.6        | Blue              | Male   |
| 1.6        | Green             | Female |
| 1.5        | Blue              | Female |
| 1.7        | Red               | Male   |
| 1.6        | Green             | Female |
| 1.4        | Red               | Female |



GBM보다 더 적은 비용으로, 더 Bias가 낮은 결과를 얻을 수 있다.



## • eXtreme Gradient Boosting (XGB)

- 2. SPLIT 지점을 일부만 보고 결정 가능
- Sparsity Awareness 가능 : '0' 인 데이터를 건너 뛰면서 학습이 가능하다!

| ID  | 거주지역 |               | ID | 서을 | 대전  | 대구 | 부산 | 제주도 |
|-----|------|---------------|----|----|-----|----|----|-----|
| 1   | 서울   |               | 1  | 1  | 0   | 0  | 0  | 0   |
| 2   | 대전   | $\rightarrow$ | 2  | 0  | 1   | 0  | 0  | 0   |
| 3   | 대구   |               | 3  | 0  | 0   | 1  | 0  | 0   |
| 4   | 부산   |               | 4  | 0  | 0   | 0  | 1  | 0   |
| 5   | 제주도  |               | 5  | 0  | 0   | 0  | 0  | 1   |
| <원[ | 데이터> |               | 3  | 3  | <더미 |    |    | ,   |

#### eXtreme Gradient Boosting (XGB)

3. 모델의 성능과 복잡성을 동시에 고려하는 Loss Function을 사용

$$Obj = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$$
 Training loss Complexity of the Trees

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2$$
Number of leaves
L2 norm of leaf scores

- 기존의 Loss Function에 모델의 복잡성을 고려하여
  Tree들 간의 Variance를 L2 norm을 이용하여 규제함
  → Overfitting 방지
- tree모델은 계수가 없기 때문에 w는 마지막 노드의 예 측값
  - → 개별모델의 예측값을 규제함

### Light Gradient Boosting (LGBM)

#### 1. 기존 Boosting 알고리즘과 차이점

Level – wise tree



Level – wise tree

사용 모델: RF, GB

성장 방법 : Root에서의 거리를 기준으로 수평성장 Leaf – wise tree



Leaf – wise tree

사용 모델: LGBM, XGB

성장 방법 : 가장 Loss의 변화가 큰 노드에서 수직성장



#### Light Gradient Boosting (LGBM)

#### 1. 기존 Boosting 알고리즘과 차이점

Leaf – wise tree



#### 특징

- 속도가 빠르고, 성능이 좋다.
- 저장 공간을 덜 차지한다.
- 병렬적인 학습(동시적)이 가능하다.
- Overfitting에 민감하다.

대용량 data에 적합 (적어도 10,000건 이상)



## • BOOSTING 기반 알고리즘

| 알고리즘                                  | 특징                                                 | 한계점               |  |
|---------------------------------------|----------------------------------------------------|-------------------|--|
| Gradient boosting (GBM)               | Loss Function의 Gradient를<br>통해 오답에 가중치 부여          | 시간소요가 길다.         |  |
| eXtreme Gradient<br>Boosting<br>(XGB) | <b>GBM 대비 성능 향상</b><br>Kaggle을 통한 성능 검증            | 시간소요가 길다.         |  |
| Light GBM<br>(LGBM)                   | XGB 대비 자원소모 최소화<br>(시간소요가 가장 짧음)<br>=> 대용량 데이터에 적합 | Overfitting 가능성 ↑ |  |

