Раздел 6. Частотные свойства линейных цепей

План

- 6.1. Основные понятия и соотношения (передаточная функция, амплитудная и фазовая частотные характеристики, логарифмические частотные характеристики).
- 6.2. Определение частотных характеристик RL и RC- цепей первого порядка.
- 6.3. Резонансные явления в электрических цепях. Простейшие резонансные контуры. Условия резонанса. Резонансные характеристики. Добротность контура. Частотные характеристики. Полоса пропускания контура.

6.1. Основные понятия и соотношения

В электрических и электронных устройствах, как правило, действуют сигналы произвольной и довольно сложной формы. Практически невозможно с помощью регулярных методов рассчитать поведение системы при работе с реальными сигналами.

Для линейных устройств в соответствии с принципом наложения можно сложный сигнал представить в виде совокупности более простых, определить реакцию на каждый и затем просуммировать результаты. При проектировании устройства регламентированы виды испытательных сигналов и рассчитаны реакции устройства при их воздействии. В нормативных документах на электротехнические изделия указывают типовые воздействия (синусоидальное, скачкообразное, линейно нарастающее) и базовые параметры реакции (скорость нарастания, установившееся значение, превышение установившегося значения).

Рассмотрим способы представления электрических сигналов произвольной формы. Применяют два основных вида описания: 1) в форме спектрального состава (в частотной области; 2)) в форме известной функции времени (во временной области.

<u>В частотной области</u> большинство функций, описывающих физические сигналы, можно представить в виде преобразований Фурье. Воздействия (напряжения и токи), представляющие собой сигналы сложной формы делят на апериодические V(t) (импульсные) и периодические $V_T(t)$.

Периодическую функцию времени $V_T(t) = V(t-nT), \ n=1, 2, 3, ...$ (рис.9.2,*a*) записывают в форме ряда Фурье: $V_T(t) = V_0 + \sum_{k=1}^\infty V_{mk} \sin\left(k\omega_1 t + \psi_k\right)$, т.е. совокупности постоянной составляющей и гармоник - синусоид с частотами, кратными угловой частоте периодической функции $\omega_1 = 2\pi/T$, амплитудами V_{mk} и начальными фазами Ψ_K (рис.9.2,6).

Рис.2 Периодическая функция (a), ее амплитудный и фазовый спектры (δ)

Таким образом, периодическая функция может полностью характеризоваться амплитудами и начальными фазами синусоидальных составляющих, т.е. наборами чисел V_0 , V_{m1} , V_{m2} , . . . V_{mk} и Ψ_1 , Ψ_2 ... Ψ_{κ} , графическое представление которых называется амплитудным и фазовым спектрами, которые являются линейчатыми и представляют собой отрезки прямых, соответствующие в масштабе амплитудам и начальным фазам гармоник.

<u>Апериодическую функцию</u> времени V(t) (рис. 3,a) представляют интегралом Фурье $V(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(j\omega) e^{-j\omega - t} d\omega$.

Импульсную функцию V(t) рассматривают как периодическую $V_T(t)$ с периодом $T \to \infty$ и сплошной спектр апериодической функции трактуют как совокупность вплотную стоящих гармоник. Амплитудный и фазовый спектры апериодической функции являются непрерывными.

б

Рис.3 Импульс и его спектр.

<u>Энергия и мощность</u> электрических сигналов (напряжений, токов) может быть определена непосредственно в частотной области с использованием спектральных характеристик.

В устройствах с периодическими токами важную роль играет <u>активная мощность</u> сигнала, которую можно рассчитать в частотной области $P=P_0+P+\ldots+P_k+\ldots$ через мощности P_k гармонических составляющих.

Во временной области непрерывный сигнал V(t) (рис.1,a) аппроксимируют, совокупностью единичных ступенчатых функций I(t) (рис.1, δ), действующих через равные интервалы времени Δt (рис. 1a)

$$V(t) \cong V_0 \cdot 1(t) + \sum_k \Delta V_k \cdot 1(t - k\Delta t),$$

где $\Delta V_k = V(k\Delta t) - V[(k-1)\Delta t]$ - приращение функции.

или последовательностью прямоугольных импульсов e(t) единичной площади (рис.1,e)

$$V(t) \cong \sum_{n} e(t - n\Delta t) \cdot V(n\Delta t) \cdot \Delta t$$
;

6.2. Частотные характеристики устройства

При заданном спектре воздействия $V(j\omega)$ для определения спектра реакции (выходного сигнала) $U(j\omega)$ используют комплексную передаточную функцию цепи (устройства).

В цепи выделяют пару входных и пару выходных зажимов (рис.7.5), приводя цепь к пассивному (без внутренних источников) четырехполюснику.

Рис. Схема определения передаточных функций устройства

При наличии индуктивных и емкостных элементов, комплексные сопротивления которых зависят от частоты, параметры четырехполюсника также зависят от частоты сигнала.

<u>Комплексной передаточной функцией</u> называют отношение комплексного выходного напряжения или тока (при заданной нагрузке) к комплексному входному напряжению или току.

$$H(j\omega) = \frac{U(j\omega)}{V(j\omega)} = H(\omega)e^{j\theta(\omega)}. \tag{7.9}$$

При изменении частоты на комплексной плоскости получим кривую, которая является <u>годографом</u>, т.е. геометрическим местом точек концов векторов $H(j\omega)$.

В зависимости от вида воздействия и реакции различают комплексные коэффициенты передачи напряжения $K_u(j\omega)=U(j\omega)/V(j\omega)$ и тока $K_I(j\omega)=I(j\omega)/J(j\omega)$; передаточные сопротивление $Z(j\omega)=U(j\omega)/J(j\omega)$ и проводимость $Y(j\omega)=I(j\omega)/V(j\omega)$.

Амплитудной частотной характеристикой четырехполюсника (**АЧХ**) называют зависимость от частоты модуля комплексного коэффициента передачи $H(\omega)$, который показывает как изменяются амплитуды (или действующие) значения составляющих спектра сигнала при передаче с входа на выход четырехполюсника $H(\omega) = U(\omega)/V(\omega)$.

<u>Фазовой частотной характеристикой</u> четырехполюсника (**ФЧХ**) называют зависимость от частоты аргумента комплексной передаточной функции $\theta(\omega)$, который показывает изменение начальные фазы синусоидальных составляющих спектра сигналов $\theta(\omega) = (\phi_2 - \phi_1)$.

АЧХ и ФЧХ, т.е. зависимости $K(\omega)$ и θ (ω), являются вещественными функциями частоты и изображаются в виде графиков на плоскости.

Для электрических цепей АЧХ исследуют в широком диапазоне частот и ее график удобно строить в логарифмическом масштабе и называть логарифмическими амплитудными частотными характеристиками (ЛАЧХ) $L(\omega) = 20 \lg H(\omega)$.

Величина $L(\omega)$ не имеет размерности, но в силу широкого распространения ей дали наименование БЕЛ, т.е. соотношением: $L_{\rm B}=\lg(P_2/P_1)$ трактуют как коэффициент передачи мощности цепи в Белах. Очевидно, что значению передачи в 1Б соответствует отношение мощностей $P_2/P_1=10$. Если рассматривать отношение напряжений при равенстве $R_{\rm Gblx}=R_{\rm H}$, то получим $L_{\rm B}(\omega)=\lg\left(U_2/U_1\right)^2=2\lg H(\omega)$. На практике используют более мелкую единицу, равную десятой части Бела 1дБ = 0.1Б, приходят к представленной форме ЛАЧХ в децибелах $L_{\rm дБ}=20\lg H(\omega)$ (табл7.1).

Таблица 7.1

Соотношение значений АЧХ и ЛАЧХ

$H=U_2/U_1$	0.01	0.1	1	1.12	1.41	2	10	100	1000
L,дб	- 40	- 20	0	1	3	6	20	40	60

При построении графиков по оси абсцисс указывают значения частоты в логарифмическом масштабе. Для этого выбирают некоторое значение начальной частоты исследуемой полосы частот $\omega_{\rm H}$. Вычисляют текущие значения логарифма относительной частоты $\lg(\omega/\omega_{\rm H})$, откладывают эти значения на оси абсцисс и записывают числа, выражающие абсолютные значения частоты ω .

Построим частотные характеристики преобразователя (рис.7.6,a) при номиналах элементов R_I =500 Ом,

$$C_1 = 10^{-5} \, \Phi.$$

Рис. Преобразователь (a) и его ЛАЧХ (δ)

Запишем комплексный коэффициент передачи напряжения в виде $K(j\omega) = 1/(1+j\omega\ R_1C_1)$.

Обозначив $\omega_C = 1/R_1C_1 = 200$ рад./с, получим формулы модуля $K(\omega) = 1/\sqrt{1 + (\omega/\omega_C)^2}$ и аргумента $\theta(\omega) = -arctg(\omega/\omega_C)$. Вычислим ряд их значений для диапазона частот от 0 до 10 $\omega_C = 2000$ рад./с (табл.7.2)

Таблица 7.2 Значения модуля и аргумента передаточной функции.

		1 2	1		1 2		
ω ,рад/сек	0	$0.2\omega_c$	$0.5\omega_c$	ω_c	$2\omega_c$	$5\omega_c$	$10\omega_c$
K	1.0	0.980	0.890	0.707	0.447	0.196	0.099
θ .град	-5.7	-11.3	-26.6	-45.0	-63.4	-83.3	84.2

С использованием вычисленных значений можно построить частотный годограф на комплексной плоскости, амплитудную и фазовую частотные характеристики.

Построим ЛАЧХ в полосе ω_H =10 рад./с до ω_B =1000 рад./с по точкам, отложив по оси абсцисс относительные значения $\lg(\omega/\omega_H) = 0$; 1; 2, и проставив номинальные значения частоты $\omega = 10$; 100; 1000 рад./с (рис.7.6, δ).

На практике часто используют кусочно- линейную аппроксимацию ЛАЧХ (замену реальной кривой отрезками прямых линий). Для достаточно простых преобразователей такую аппроксимацию можно выполнить на этапе построения ЛАЧХ.

Для рассматриваемой RC цепи в частотной полосе от 0 до ω_c имеем (ω/ω_c) > 1 и с небольшой погрешностью можно принять $1+(\omega/\omega_c)^2 \cong 1$. В указанной полосе частот модуль коэффициента передачи $K(\omega) \cong 1$ и ЛАЧХ представляет собой отрезок прямой $L(\omega) = 0$, совпадающей с осью абсцисс.

В полосе частот $\omega > \omega_c$ выполняется условие $(\omega/\omega_c) > 1$ и можно принять $1 + (\omega/\omega_c)^2 \cong (\omega/\omega_c)^2$. Тогда для модуля коэффициента передачи справедливо соотношение $K(\omega) \cong (\omega_c/\omega)$ и ЛАЧХ, описываемая выражением $L(\omega) = -20$ $\lg(\omega/\omega_c)$, представляет собой отрезок прямой с постоянным наклоном. Если на прямой выбрать две точки с частотами ω_l и ω_2 , отличающимися в 10 раз (говорят на декаду), т.е. $(\omega_2/\omega_l) = 10$, то приращение значения ЛАЧХ будет Δ $L(\omega) = -20 \lg(\omega_2/\omega_l) = -20 \lg(\omega_2/\omega_l) = -20 g(\omega_2/\omega_l) = -20 g(\omega_2/\omega_l)$

частоты на декаду приводит к уменьшению значения ЛАЧХ на 20 дБ или снижению модуля коэффициента передачи в 10 раз.

Расчет линейных электрических цепей в частотной области

Расчет линейных электрических цепей в частотной области содержит:

- разложение воздействий на гармонические составляющие;
- расчет цепи для каждой составляющей методом комплексных амплитуд;
- суммирование реакций по принципу наложения.

Расчет цепи выполняется многократно для каждой частотной составляющей. Указанную процедуру можно упростить, если использовать комплексную передаточную функцию.

5.3. Резонансные явления в электрических цепях

Вид частотных характеристик зависит от структуры цепи, типа элементов и значений их параметров. Очевидно, что увеличение числа накопителей энергии (индуктивностей и емкостей) приводит к усложнению выражения АФЧХ. В технике широко используются цепи, частотные характеристики которых имеют резонансные свойства.

Резонансные цепи — это реальные, физически существующие цепи, в которых могут возникать явления резонанса напряжений или токов.

Характерными особенностями режимов резонанса в пассивной цепи, содержащей индуктивности и емкости являются равенства нулю реактивной составляющей $X_{\rm BX}$ входного комплексного сопротивления $Z_{\rm BX}(j\omega)=R_{\rm BX}\pm jX_{\rm BX}$ или реактивной составляющей $b_{\rm BX}$ входной комплексной проводимости $Y_{\rm BX}(j\omega)=g_{\rm BX}\pm jb_{\rm BX}$, а также реактивной мощности Q на выводах цепи.

Частоты, при которых происходит резонанс в цепи, называются резонансными.

Резонансные частоты обозначаются как $\,\omega_0\,$ или $\,f_0\,$.

С практической точки зрения имеет смысл рассматривать только диссипативные цепи, модели которых в обязательном порядке содержат кроме элементов L и C резистивные элементы R (или G).

Простейшими моделями резонансных цепей являются последовательный и параллельный колебательные контуры. Схемы для комплексных амплитуд этих контуров приведены на рис.6.4.

Рис.6.4. Схемы простейших резонансных контуров: a – последовательный; δ – параллельный контур

Целесообразно анализировать резонансные явления при синусоидальных сигналах. В этом случае легко перейти к анализу резонансных явлений в этих же цепях при любом виде сигнала, используя принцип суперпозиции.

В последовательном контуре (рис.6.4,a) при определенных условиях наблюдается резонанс напряжений. Явление резонанса напряжений состоит в совпадении начальных фаз синусоидального сигнала V(t) и тока контура i(t). При этом входное комплексное сопротивление контура имеет резистивный характер $Z_{\rm BX}(j\omega) = R + j(\omega L - 1/\omega C) = R$ при частоте $\omega = \omega_0 = 1/\sqrt{LC}$. При резонансе напряжения выполняются условия $X_{\rm BX} = \omega L - 1/\omega C = 0$ и Q = 0, т.к. $\omega_0 L = 1/\omega_0 C$, $(X_L = X_C)$.

Резонансную частоту ω_0 (или f_0) называют собственной частотой контура, т.к. она определяется значениями реактивных элементов контура L и C.

Очевидно, что обеспечить наступление резонансного режима можно изменением частоты сигнала источника ω до совпадения ее значения с резонансной (собственной) частотой контура ω_0 . Наступления резонанса можно достичь и изменением значений параметров L и C, т.е. "настроить контур" в резонанс с входным сигналом, изменяя его собственную частоту ω_0 .

Уравнение цепи рис. 6.4, а для комплексных амплитуд имеет вид:

$$\dot{V}_{m} = \dot{U}_{mL} + \dot{U}_{mR} + \dot{U}_{mC} = jX_{L}\dot{I}_{m} + R\dot{I}_{m} - jX_{C}\dot{I}_{m}. \tag{6.18}$$

При $\omega = \omega_0$: $\dot{U}_{mL} = -\dot{U}_{mC}$, т.е. $\left|\dot{U}_{mL}\right| = \left|\dot{U}_{mC}\right|$ а фазовый сдвиг между этим комплексными векторами равен π . Напряжения \dot{U}_{mL} и \dot{U}_{mC} компенсируют друг друга, а результирующий комплексный вектор \dot{V}_m совпадает с вектором \dot{U}_{mR} (см. рис.6.5,a). При этом модуль входного комплексного сопротивления минимален $\left|Z_{\rm Bx}(j\omega)\right| = R$, а модуль тока контура $\left|\dot{I}_m\right|$ имеет максимальное значение, которое ограничивается величиной активного сопротивления контура R.

Рис.6.5. Резонансный режим в последовательном контуре: a — векторная диаграмма для комплексных амплитуд; δ — резонансные характеристики

Максимальное (резонансное) значение тока контура определяется как $I_{m0} = V_m/R$, A.

На рис.6.5, δ приведены резонансные зависимости модуля тока контура $|\dot{I}_m(\omega)|$ в относительных единицах (базисным значением является I_{m0}) при одинаковых значениях активного сопротивления R контуров с различными добротностями Θ_1 и Θ_2 .

Добротность Θ резонансного контура определяется отношением значения энергии, запасенной в контуре при резонансе, к потерям за период.

Значение добротности можно определить по резонансной характеристике, например по зависимости $|\dot{I}_m(\omega)|$. От резонансного значения характеристики берется уровень $I_{m0}/\sqrt{2}\approx 0{,}707\cdot I_{m0}$ и определяется полоса частот $\Delta\omega$, соответствующая этому уровню. Величина добротности контура рассчитывается по выражению

$$\Theta = \omega_0 / \Delta \omega . \tag{6.19}$$

Для контура с добротностью Θ_1 (рис.6.5,б) имеем $\Theta_1=\omega_0/\Delta\omega_1$, где $\Delta\omega_1=\omega_2-\omega_1$.

Из характеристик рис.6.5, δ очевидно, что $\Theta_1 < \Theta_2$. Чем выше добротность, тем острее резонансные характеристики.

Величину добротности можно также рассчитать, используя значения параметров контура:

$$\Theta = \omega_0 L / R = \left(\sqrt{L/C}\right) / R = \rho / R, \qquad (6.20)$$

где $\rho = \sqrt{L/C}$ - волновое сопротивление контура.

Замечание. В идеальном резонансном контуре отсутствуют потери энергии, т.е. $R \to 0, \ P \to 0, \ \Theta \to \infty$, колебания в идеальном контуре незатухающие.

Частотная передаточная функция последовательного резонансного контура, относительно $U_{\scriptscriptstyle \mathrm{BЫX}} = U_{\scriptscriptstyle mR}$ и $U_{\scriptscriptstyle \mathrm{BX}} = V_{\scriptscriptstyle m}$, представляется выражением:

$$W_u(j\omega) = \dot{U}_{mR}/\dot{V}_m = R\dot{I}_m/\left[j\omega L - j(1/\omega C) + R\right]\dot{I}_m. \tag{6.21}$$

После ряда преобразований (6.21) выражение АФЧХ имеет вид:

$$W_{u}(j\omega) = (\omega\omega_{0}/\Theta)^{2} / \left[(\omega\omega_{0}/\Theta)^{2} + (\omega_{0}^{2} - \omega^{2})^{2} \right] +$$

$$+ j(\omega\omega_{0}/\Theta)(\omega_{0}^{2} - \omega^{2}) / \left[(\omega\omega_{0}/\Theta)^{2} + (\omega_{0}^{2} - \omega^{2})^{2} \right].$$

$$(6.22)$$

Из (6.22) получаются зависимости АЧХ и ФЧХ:

$$|W_u(j\omega)| = (\omega\omega_0/\Theta) / \sqrt{(\omega\omega_0/\Theta)^2 + (\omega_0^2 - \omega^2)^2} ; \qquad (6.23)$$

$$\varphi(\omega) = \pi/2 - \arctan\left[\left(\omega\omega_0/\Theta\right)/\left(\omega_0^2 - \omega^2\right)\right]. \tag{6.24}$$

Общий вид AЧX последовательного резонансного контура представлен на рис.6.6.

Рис.6.6. Амплитудно-частотная характеристика последовательного резонансного контура

АЧХ контура имеет вид резонансной кривой, характер которой зависит от добротности Θ . Величину добротности можно определить из условия $1/\Theta = (\omega_2 - \omega_1)/\omega_0$, где частоты ω_1 и ω_2 определяются соотношением $|W_u(j\omega)| / |W_u(j\omega_0)| \le 1/\sqrt{2} \approx 0,707$ (см.6.19). Диапазон частот $\omega_1 \le \omega \le \omega_2$, в котором наблюдается ослабление сигнала не более 3 дБ, называют п о л о с о й п р о п у с к а н и я контура.

В параллельном контуре (рис.6.4,б) при определенных условиях наблюдается резонанс токов. Явление резонанса токов состоит в совпадении начальных фаз синусоидального сигнала J(t) и напряжения u(t) на входе контура. При этом входная комплексная проводимость контура имеет резистивный характер $Y_{\rm BX}(j\omega) = 1/R - j1/\omega L + j\omega C = G - jb_L + jb_C = G = g_{\rm BX}$ при частоте $\omega = \omega_0 = 1/\sqrt{LC}$. При резонансе токов выполняются условия $b_{\rm BX} = -b_L + b_C = 0$ и Q = 0, т.к. $1/\omega_0 L = \omega_0 C$ т.е. $b_L = b_C$.

В параллельном контуре, также как и в последовательном, резонанса можно достичь либо изменением частоты сигнала источника ω , либо изменением параметров L и C.

Уравнение цепи рис. 6.4, б для комплексных амплитуд имеет вид:

$$\dot{J}_{m} = \dot{I}_{mL} + \dot{I}_{mC} + \dot{I}_{mR} = -jb_{L}\dot{U}_{m} + jb_{C}\dot{U}_{m} + g_{BX}\dot{U}_{m} . \tag{6.25}$$

Для значения $\omega = \omega_0$: $\dot{I}_{mL} = -\dot{I}_{mC}$, т.е. $\left|\dot{I}_{mL}\right| = \left|\dot{I}_{mC}\right|$, а фазовый сдвиг между этими комплексными векторами равен π . Токи \dot{I}_{mL} и \dot{I}_{mC} компенсируют друг друга. Результирующий комплексный вектор \dot{J}_m совпадает с

вектором \dot{I}_{mR} (рис.6.7,a). При этом модуль входной комплексной проводимости минимален $\left|Y_{_{\mathrm{BX}}}(j\omega)\right|=g_{_{\mathrm{BX}}}=G$. Модуль напряжения на входе контура максимален $\left|\dot{U}_{m}\right|=\left|\dot{J}_{m}\right|\left/\left|Y_{_{\mathrm{BX}}}(j\omega)\right|=\left|\dot{J}_{m}\right|\left/G$.

Рис.6.7. Резонансный режим в параллельном контуре: a — векторная диаграмма комплексных амплитуд; δ — резонансная характеристика

Характер резонансной характеристики зависит от добротности контура Θ . Чем выше значение Θ , тем острее резонансная характеристика (рис.6.7, δ).

Характеристики параллельного контура подобны соответствующим характеристикам последовательного контура при замене тока на напряжение, а сопротивлений – на проводимости, говорят—характеристики дуальны.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. У каких элементов параметры зависят от частоты сигнала?
- 2. Какие цепи считаются частотно-зависимыми?
- 3. В чем основной смысл частотного анализа линейных цепей?
- 4. Что такое передаточная функция и что она определяет?
- 5. Что такое частотная передаточная функция?
- 6. Какие формы представления имеет частотная передаточная функция?
- 7. Что такое амплитудно-фазочастотная характеристика (АФЧХ)?
- 8. Что характеризуют АЧХ и ФЧХ?
- 9. Что такое логарифмические частотные характеристики (ЛАЧХ и $Л\Phi$ ЧХ)?
 - 10. В чем заключается практическое значение частотных характеристик?
- 11. Какую техническую информацию о свойствах линейной цепи (устройства) можно получить из частотных характеристик?
 - 12. Что такое частота сопряжения?
- 13. В каких цепях могут возникать явления электромагнитного резонанса?
- 14. Какие характерные особенности имеют частотные характеристики резонансных цепей (объектов)?
- 15. Какие характерные особенности присущи резонансным режимам в пассивных цепях?

- 16. Какие простейшие модели резонансных линейных цепей Вам известны?
- 17. Каким соотношением связаны резонансная (собственная) частота и параметры в простейших резонансных контурах?
- 18. Как технически можно обеспечить наступление резонансного режима в линейной резонансной цепи?
- 19. Что такое резонанс напряжений и резонанс токов и в каких цепях он возможен?
- 20. Какими особенностями характеризуются режимы резонанса напряжений и резонанса токов?
 - 21. Что такое добротность контура и что она характеризует?
- 22. Каким образом можно определить величину добротности контура экспериментальным и расчетным путем?
 - 23. Что такое полоса пропускания контура?
- 24. Какие варианты экспериментального определения частотных характеристик Вам известны?
- 25. Каким образом можно определить наступление резонансного или близкого к нему режима в последовательном и в параллельном резонансных контурах?
- 26. Какие технические примеры использования явления резонанса в электромагнитных устройствах Вам известны?