

Advanced Topic in Research Data-centric Deep Learning

Lec 14: Introduction to Deep Reinforcement Learning

Background material

Background material

- ✓ Reinforcement Learning: An Introduction, Sutton & Barto 2018
 - http://incompleteideas.net/bo ok/the-book-2nd.html
- ✓ Reinforcement Learning Lecture Series 2021
 - https://www.deepmind.com/learningresources/reinforcementlearning-lecture-series-2021
- √ https://huggingface.co/blog/de ep-rl-intro

What is reinforcement learning?

State Values and Policy Evaluation

Introduction

- Reinforcement Learning can be thought of as learning from trial and error
 - ✓ An agent, that interacts with its environment, receives rewards that reflect its ability to accomplish some predefined goal.
- Reinforcement Learning can progressively move towards an agent that gives the maximum amount of reward and that solves the task at hand.
- RL consist of two distinct parts:
 - ✓ The *Prediction Problem*, in which the performance of the agent is evaluated.
 - ✓ The Control Problem, where the policy, used by the agent to select its actions, is modified to improve performance

The Terminology of Reinforcement Learning (RL)

- Once upon a time there was a Baby Robot who got lost in the mall
 - ✓ reward: a single numerical value that is used to measure how well the task at hand has been performed
 - ✓ state: each of these squares environment that we're working in.
 - When a state is independent of the prior states it is said to satisfy the *Markov Property*.

The Terminology of Reinforcement Learning (RL)

- Value: how good it is to be in a particular state
- Return: The expected total amount of reward
- Policy: The strategy used to select the next action
 - ✓ optimal: move in the direction of increasing value we are actually following best policy

Epsilon Greedy Strategy

- The ε-greedy policy
 - √ with probability 1 ε
 - we do exploitation: our agent selects the action with the highest state-action pair value
 - ✓ With probability ε:
 - we do exploration: trying random action and then gradually reduce it

Basic Mathematics

- * r = reward
- * a = action
- * s = state, s' = next state
- The rewards, states and actions are actually random variables:
 - ✓ there's a probability of getting a certain reward, taking a specific action/state
 - these probabilities are referred to using capital letters.
- the expected reward for a state-action pair:

$$r(s,a) = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a]$$

Basic Mathematics: Return G

- Return 'G_t': the total amount of reward accumulated over an episode, starting at time 't'.
 - an episode refers to all the time steps that occur between entering and exiting a level.
 - ✓ the return is just the sum of the future rewards

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Basic Mathematics: Policy π

- * Policy: software agent uses to determine its actions which is commonly denoted by the symbol π
 - ✓ So the value for state s under policy π is simply the expected return:

$$v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t = s]$$

$$v_\pi(s) = r + v_\pi(s')$$

Reinforcement Learning examples:

- (a) robotics,
- (b) Ms. Pac-Man,
- (c) Go player,
- (d) thermostat,
- (e) automatic trader

AlaphGo Zero

- DeepMind's AlphaGo Zero is really a scientific breakthrough
 - ✓ Role of Deep Reinforcement Learning in achieving Strong AI
 - Mastering the game of Go without human knowledge, David Silver, et al. Nature(2017)

Figure 3 | Empirical evaluation of AlphaGo Zero. a

Reinforcement Learning examples: robotics

The agent:

✓ the program controlling a robot.

The environment:

✓ the real world

Observation: information from the env.

✓ partial description of the state of the world

State:

✓ complete description of the state of the world

Action:

✓ consist of sending signals to activate motors.

Reward: positive/negative

- ✓ it approaches the target destination,
- ✓ it wastes time or goes in the wrong direction

Q-Learning

Policy Search

Policy

- ✓ The algorithm a software agent uses to determine its actions.
- ✓ A neural network taking observations as inputs and outputting the action to take

Policy Search : Policy Gradient (PG)

✓ One approach is to use optimization technologies, by evaluating the gradients of the rewards with respect to policy paramenters

Neural Network Policies

- Two possible actions
 - the probability p of action 0 (left) and the probability of action 1 (right) will be 1-p

Exploring and Exploitation

Exploring and Exploitation

- ✓ picking a random actions
- ✓ Exploitation
 - the process of taking benefits from things which we know about
- ✓ Exploration
 - to get knowledge about things which we didn't know

Online Game: Minesweeper

- Exploring and Exploitation Strategy
 - √ https://zangsi.net/minesweeper/

Markov Decision Processes (MDP) and Bellman Equations

Markov Decision Processes (MDPs)

- Typically we can frame all RL tasks as MDPs
- The key in MDPs is the Markov Property
 - ✓ Essentially the future depends on the present and not the past
 - More specifically, the future is independent of the past given the present

Types of Markov Models

- ✓ Control over state transitions and completely observable states: MDPs
- ✓ Control over state transitions and partially observable states: Partially Observable MDPs
- ✓ No control over state transitions and completely observable states: Markov Chain
- ✓ No control over state transitions and partially observable states: Hidden Markov Model

Markov Decision Processes

- Markov chains: In the early 20th century, the Andrey Markov studied stochastic processes with no memory
 - ✓ The probability for it to evolve from a state s to a state s' is fixed, and it depends only on the pair (s, s'), not on past states (this is why we say that the system has no memory)
- An example of a Markov chain with four states

Markov Decision Processes

- Markov Decision Processes were first described in the 1950s by Richard Bellman.
 - ✓ They resemble Markov chains but with a twist:
 - At each step, an agent can choose one of several possible actions, and the transition probabilities depend on the chosen action.
 - Moreover, some state transitions return some reward (positive or negative),
 - and the agent's goal is to find a policy that will maximize reward over time.

State value function

Bellman found a way to estimate the optimal state value of any state s,

Ation value-based function

The action-value function

Example of MDP

For example:

- ✓ the MDP has three states (represented by circles) and up to three possible discrete actions at each step (represented by diamonds)
 - R(s,a,s') is the reward that the agent gets when it goes from state s to state s', given that the agent chose action a.

$$T(s_2, a_1, s_0) = 0.8.$$

$$R(s_2, a_1, s_0) = +40$$

The agent's decision-making process

The policy

- ✓ the agent's decision-making process
- \checkmark The Policy π is the **brain of our Agent**
 - An agent select the actions that maximize its expected cumulative reward

There are two main types of RL methods

Policy-Based methods: train the agent to learn which **action to take**, given a state.

Value-Based methods: train the agent to learn which state is more valuable and take the action that leads to it.

The link between Value and Policy:

- In policy-based: train directly the policy
 - ✓ Our policy is a Neural Network
 - ✓ No value function
- In value-based: don't train the policy
 - ✓ Our policy is a function defined by hand
 - ✓ Instead train a value-function that is a Neural Network
- Finding an optimal value fuction leads to having an optimal policy

$$\pi^*(s) = rg \max_a Q^*(s,a)$$

The Bellman Equation: simplify our value estimation

- The Bellman Equation is one central to Markov Decision Processes
 - ✓ The Bellman Equation
 - "what is the maximum reward an agent can receive if they make the optimal action now and for all future decisions?"

Bellman Optimality Equation

Bellman found a way to estimate the optimal state value of any state s

Equation 18-1. Bellman Optimality Equation

$$V^{*}\left(s
ight) = \max_{a} \sum_{s} T\left(s, a, s\prime
ight) \left[R\left(s, a, s\prime
ight) + \gamma \cdot V^{*}\left(s\prime
ight)
ight] \quad ext{for all } s$$

$$T(s_2, a_1, s_0) = 0.8$$
 $R(s_2, a_1, s_0) = +40$ γ is the discount factor.

$$V_{k+1}\left(s
ight) \leftarrow \max_{a} \sum_{s\prime} T\left(s,a,s\prime
ight) \left[R\left(s,a,s\prime
ight) + \gamma \cdot V_{k}\left(s\prime
ight)
ight] \quad ext{for all } s$$

Quality Values

- * Knowing the optimal state-values can be useful, in particular to evaluate a policy, but it does not give us the optimal policy for the agent.
- Q-Values (Quality Values):
 - ✓ Bellman found a very similar algorithm to estimate the optimal state-action values
 - ✓ Q*(s, a): the optimal Q-Value of the state-action pair (s, a):
 - ✓ Defining the optimal policy, noted $\pi^*(s)$:

$$Q_{k+1}\left(s,a
ight) \leftarrow \sum_{s\prime} T\left(s,a,s\prime
ight) \left[R\left(s,a,s\prime
ight) + \gamma\cdot\max_{a\prime}\;Q_{k}\left(s\prime,a\prime
ight)
ight] \quad ext{for all } \left(s\prime a
ight)$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \ Q^*(s, a)$$

Monte Carlo vs Temporal Difference Learning

Monte Carlo Approach:

- ✓ Monte Carlo uses an entire episode of experience before learning
- ✓ waits until the end of episode, then calculates return(G_t) and use it as a target for its value of policy
- Temporal Difference (TD)
 - ✓ uses only a step to learn

Monte Carlo:
$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

TD Learning:
$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Temporal Difference (TD) Learning

Temporal Difference (TD) Learning

The TD Learning algorithm is very similar to the Value Iteration algorithm

- ✓ the TD Learning algorithm updates the estimates of the state values based on the transitions and rewards that are actually observed
- ✓ Goal:
 - learn $V_{\pi}(s)$ from episodes of experience under policy π

TD error

$$V_{k+1}(s) \leftarrow V_k(s) + \alpha (R + \gamma V_k(s') - V_k(s))$$

$$TD \ target$$

\alpha is the learning rate (e.g., 0.001)

$$Vig(sig) \leftarrow r + \gamma \cdot Vig(s\primeig)$$

Temporal Difference (TD) Learning

- Policy evaluation (the prediction prebole):
 - \checkmark for a given policy π , compute the state-value function $V_{\pi}(s)$
- The simplest Temporal-Difference method TD(0):

$$V_{k+1}(s) \leftarrow V_k(s) + \alpha(R + \gamma V_k(s') - V_k(s))$$

TD target: an estimate of the return

SARSA: On-policy

- SARSA is an on-policy algorithm
 - ✓ while learning the optimal policy it uses the current estimate of the optimal policy to generate the behavior
- * Estimate optimal policy q_{π} for the current policy π

$$R_{t+1}$$
 S_{t+1} S_{t+1} S_{t+1} S_{t+1} S_{t+1} S_{t+2} S_{t+2} S_{t+2} S_{t+3} S_{t+3} S_{t+3} S_{t+3} S_{t+3}

✓ After every transition from a nonterminal state, S_t, do this:

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t}) \right]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$

Q-Learning

What is Q-Learning?

Q-Learning is an off-policy value-based method

- ✓ that uses a Temporal Differnence(TD) approach to train its action-value function.
- ✓ Value-based method
 - finds the optimal policy indirectly by training a value or action-value function that will tell us the value of each state or each state-action pair.
- ✓ Uses a TD approach:
 - updates its action-value function at each step instead of at the end of the episode.
- ✓ Off-policy:
 - using a different policy for acting and updating using epsilon-greedy policy again

What is Q-Learning?

- Q-Learning is the algorithm to train an action-value function
 - ✓ that determines the value of being at a particular state and taking a specific action at that state.
 - Given a state and action, Q function outputs a state-action value (also called Q-value)

https://huggingface.co/blog/deep-rl-q-part2

Q-learning: Off-Policy TD Control

- In Q-learning the learned action-value function, Q, directly approximates the optimal action-value function, independent of the policy being followed.
 - the transition probabilities are unknown and the rewards are initially unknown
 - Q-Learning works by watching an agent play (e.g., randomly) and gradually improving its estimates of the Q-Values

$$Q(s_t, a_t) \leftarrow (s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \lambda \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Current Q-table value we are updating

Learning rate

Reward

Discount

Estimated reward from our next action

Q-Learning is called an Off-Policy

Off-policy: The Q-learning algorithm

- ✓ work by "looking over someone's shoulder."
- ✓ the algorithm attempts to learn about policy π from experience sampled from μ .
- ✓ the policy being executed is completely random, while the policy being trained will always choose the actions with the highest Q-Values.
 - Q-Learning is capable of learning the optimal policy by just watching an agent act randomly
 - learning to play golf when your teacher is a drunk monkey

On-policy: The Policy Gradients algorithm, and SARSA

- ✓ We can say that algorithms classified as on-policy are "learning on the job."
 - In other words, the algorithm attempts to learn about policy π from experience sampled from π .
 - it explores the world using the policy being trained.