22. Pohjoismainen matematiikkakilpailu

31. maaliskuuta 2008

Työaikaa 4 tuntia. Jokaisen tehtävän maksimipistemäärä on 5. Vain kirjoitus- ja piirustusvälineiden käyttö on sallittu.

1. tehtävä

Määritä kaikki sellaiset reaaliluvut A, B ja C, joille on olemassa jokin reaalilukuarvoinen funktio f, joka toteuttaa kaikilla reaaliluvuilla x ja y yhtälön

$$f(x + f(y)) = Ax + By + C.$$

2. tehtävä

Pyöreän pöydän ympärillä istuu $n \geq 3$ erinimistä ihmistä. Sanomme, että mitkä tahansa kaksi näistä, M ja N, muodostavat $dominoivan \ parin$, jos

- (1) M ja N eivät istu vierekkäin, ja
- (2) ainakin toisella M:n ja N:n välisellä pöydänympäryksen osalla istuu vain ihmisiä, joiden nimet ovat aakkosjärjestyksessä M:n ja N:n nimien jäljessä.

Määritä dominoivien parien pienin mahdollinen lukumäärä.

3. tehtävä

Olkoon ABC kolmio ja olkoon D sivun BC ja E sivun CA piste niin, että AD ja BE ovat kolmion ABC kulmanpuolittajia. Olkoot F ja G sellaisia kolmion ABC ympäri piirretyn ympyrän pisteitä, että AF ja DE ovat yhdensuuntaisia ja FG ja BC ovat yhdensuuntaisia. Osoita, että

$$\frac{AG}{BG} = \frac{AB + AC}{AB + BC}.$$

4. tehtävä

Kahden peräkkäisen positiivisen kokonaisluvun kuution erotus on neliöluku n^2 , missä n on positiivinen kokonaisluku. Osoita, että n on kahden neliöluvun summa.