<u>Ion:</u> atom or group of atoms (*polyatomic*) that has a net positive or negative charge

Cations: positively charged ions Ex. Ba²⁺, NH₄⁺ **Anions:** negatively charged ions Ex. Cl⁻, CO₃²⁻

Noble gases (group 8A): Inert and stable

Atoms of main group elements tend to achieve noble gas

electron configuration by gain/loss of electrons OR by

sharing electrons

Hydrogen is unique: H⁺ (common) or H⁻ (hydride ion)

Alkali metals: lose 1e to form 1+ ions

Group 2A: lose 2e to form 2+ ions

Aluminum: lose 3e to form Al³⁺ ion

Group 7A: gains 1e to form 1- ions

Group 6A: gains 2e to form 2- ions

N and P: gain 3e to form N³⁻ and P³⁻ ions

Nomenclature of monoatomic ions:

Cations: Metals

Type I metals:

- one kind of charge (Ex. Ca²⁺)
- alkali metals, alkaline earth metals, aluminum, silver, zinc and cadmium
- naming: name of the element + word "ion"

Type II metals:

- more than one kind of charged ion (Ex. Fe²⁺ and Fe³⁺)
- naming: name of the element (charge indicated by Roman numeral) + word "ion"

<u>mono-atomic anions:</u> suffix "ide" is substituted for the ending of the name of the element, followed by the word "ion". *Ex. chloride ion*

Naming binary ionic compounds:

cation (metal) always comes first in name / formula

Type I: Ex. Sodium chloride, NaCl Magnesium oxide, MgO Aluminum oxide, Al₂O₃

Type II: Ex. Iron (II) chloride. FeCl₂ Iron (III) chloride, FeCl₃

For Type II metal: determine charge on the metal by balancing the positive and negative charges in the compound

Elements that form only one type of cation do not need to be identified by a Roman numeral. Metals that DO NOT require a Roman numeral are: alkali metals, alkaline earth metals, aluminum, silver (Ag⁺), cadmium(Cd²⁺) and zinc (Zn²⁺).

Naming / formulas of Binary covalent compounds

- between two nonmetals
- element farther left of the periodic table is written first. Ex. SF_6
- if two elements in the same group, element that is lower in its group is written first Ex. IF₃
- Name of first element remains unchanged
- Suffix "ide" replaces the ending of name of second element
- Use prefixes to indicate number of each kind <u>Mono</u> omitted for first element, but not for the second, Ex. Carbon monoxide Drop "o" or "a" of a prefix if element name begins with a vowel

Ex. Carbon monoxide and not carbon monooxide Nitrogen tetroxide and not nitrogen tetraoxide

Polyatomic ions: ions containing more than one atom

Naming compounds with polyatomic ions:

- ionic; follow same rules as with binary ionic compounds
- metal/cation written first
- if Type II metal (forms more than one kind of cation), show charge in parantheses as Roman numeral
- polyatomic ion is then named or written

Flowchart for Naming acids

Anion		Acid
ide chloride, Cl cyanide, CN	\rightarrow	hydro ic acid hydrochloric acid, HCl(aq) hydrocyanic acid, HCN(aq)
ate chlorate, ClO ₃ - Perchlorate, ClO ₄ - Sulfate, SO ₄ ² -	\rightarrow	ic acid chloric acid, HClO ₃ (aq) perchloric acid, HClO ₄ (aq) sulfuric acid, H ₂ SO ₄ (aq)
ite chlorite, ClO ₂ Hypochlorite, ClO Sulfite, SO ₃ 2-	\rightarrow	ous acid chlorous acid, HClO ₂ (aq) hypochlorous acid, HClO(aq) sulfurous acid, H ₂ SO ₃ (aq)

Hydrated ionic compounds

- ➤ Ionic compounds with a specific number of water molecules associated with each formula unit
- > number is shown after a centered dot
- indicated in the systematic name by a Greek prefix before the word hydrate
- Ex. MgSO₄ · 7H₂O magnesium sulfate heptahydrate
- > water molecules, referred to as "waters of hydration"
- ► Ex. when heated strongly, blue copper (II) sulfate pentahydrate (CuSO₄ · 5H₂O) is converted to white copper (II) sulfate (CuSO₄)

Molecular compounds of hydrogen are special cases

H₂O water NH₃ ammonia CH₄ methane

When dissolved in water: free H⁺ ions; binary acids

HCl (aq) hydrochloric acid HBr(aq) hydrobromic acid H₂S(aq) hydrosulfuric acid

Oxyacids: H⁺ with oxyanions

 SO_4^{2-} H_2SO_4 (aq)

 PO_4^{3-} H_3PO_4 (aq)

 ClO_4 $HClO_4$ (aq)

 NO_3 HNO₃ (aq)