

Angewandter Elektromagnetismus 5. Semester – Dr. Jasmin Smajic Autoren: Luca Loop

https://github.com/Luca-ET/ElMag

T 1	14	
Inha	ltsverz	eichnis

Elektrostatische Analyse	2	1.1 Integralgleichungen
--------------------------	---	-------------------------

1 Elektrostatische Analyse

1.1 Integralgleichungen

1.1.1 Gausssches Gesetz

Der Fluss des Vektors $\vec{D} = \varepsilon \cdot \vec{E}$ durch eine geschlossene orientierte Fläche (A) ist gleich der elektischen Ladung Q, die von der Fläche (A) umgeben ist:

$$\iint_{(A)} \vec{D} \cdot d\vec{A} = \iint_{(A)} \varepsilon \cdot \vec{E} \cdot d\vec{A} = Q$$

$$D = \text{elektrische Flussdichte} \left[\frac{C}{m^2} = \frac{A \cdot s}{m^2} \right]$$

$$E = \text{elektrische Feldstärke} \left[\frac{V}{m} \right]$$

$$D = \text{elektrische Flussdichte} \left[\frac{C}{m^2} = \frac{A \cdot s}{m^2} \right]$$

$$E = \text{elektrische Feldstärke} \left[\frac{V}{m} \right]$$

$$\varepsilon = \text{elektrische Permittivität} \left[\frac{C}{V \cdot m} = \frac{A \cdot s}{V \cdot m} \right]$$

$$Q = \text{elektrische Ladung} \left[C = A \cdot s \right]$$

$$\iint_{(A)} \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon}$$

1.1.2 Wirbelfreiheit des elektrostatsichen Feldes

Das Kurvenintegral des elektrostatischen Feldes \vec{E} über jede geschlossene orientierte Kurve (\mathcal{C}) ist gleich null. (das elektrostatische Feld ist konservativ)

$$\oint_{(A)} \vec{E} \cdot \vec{dl} = 0$$