Partie cours

- 1. Donner la définition de valeur absolue.
- 2. Montrer que: pour tout réel x, on a $\sqrt{x^2} = |x|$.

Partie exercices

- 1. Montrer que: $A \Rightarrow B$ si et seulement si $non(B) \Rightarrow non(A)$.
- 2. Résolvez les équations suivantes (sans utiliser le Δ). Soit x un nombre réel.
 - (a) $x^2 3x + 2 = 0$
 - (b) $x^3 + 2x^2 + x = 0$
 - (c) $x^4 16 = 0$
 - (d) |x 8| = 5
 - (e) $\sqrt{x+2} = 3x+1$
- 3. Dire si les assertions suivantes sont vraies ou fausses et donner leur négation:
 - (a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$
 - (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y > 0$
 - (c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$
 - (d) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x$
- 4. Montrer par contraposition les assertions suivantes:
 - (a) $\forall A, B \in \mathcal{P}(E) \ (A \cap B = A \cup B) \Rightarrow A = B$
 - (b) $\forall A, B, C \in \mathcal{P}(E) \ (A \cap B = A \cap C \ et \ A \cup B = A \cup C) \Rightarrow B = C$

Partie cours

- 1. Donner la définition d'une fonction majorée.
- 2. Montrer pour tout (x; y) appartenant au cercle unité de \mathbb{R}^2 , on $\{x; y\} \subset [-1; 1]$

Partie exercices

- 1. Écrire la négation des assertions suivantes où P, Q, R, S sont des propositions:
 - (a) $P \Rightarrow Q$
 - (b) P ET NON Q
 - (c) P ET (Q ET R)
 - (d) P OU (Q ET R)
 - (e) (P ET Q) \Rightarrow ($R \Rightarrow S$)
- 2. Résolvez les équations et inéquations suivantes (sans utiliser le Δ). Soit x un nombre réel.
 - (a) $x^2 + x + 1 = 0$
 - (b) $x^3 + x^2 + x = 0$
 - (c) |x-3| < 5
 - (d) $\sqrt{3x-5} = x+1$
 - (e) $|x-1| < \alpha$ où α est un paramètre réel strictement positif.
- 3. Déterminer m pour que l'équation suivante ait deux racines réelles positives: $m^2x^2+(m-3)x+4=0$
- 4. Montrer que $A \cap B = A \cap C \Leftrightarrow A \cap \complement B = A \cap \complement C$

 \mathcal{MR}

Partie cours

- 1. Ennoncer rigoureusement les deux façons pour décrire un ensemble .
- 2. Démontrer que $\sqrt{2}$ est irrationnel.

Partie exercices

- 1. Soit m et p deux paramètres réels fixés. Résolvez les équations et innéquations suivantes en x (réel). Pensez à bien déterminer l'ensemble solution:
 - (a) (x+m)(x-p) > 0
 - (b) (mx-1)(4x-p)=0
 - (c) $(x+m)^2 = x+p$
 - (d) $x + m = \sqrt{x+p}$
 - (e) |x 12| < m
- 2. La proposition $(P \wedge Q) \Rightarrow (\neg P) \vee Q)$ est-elle vraie?
- 3. Montrer que $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ tel que } (n \geq N \Rightarrow 2 \epsilon < \frac{2n+1}{n+2} < 2 + \epsilon)$
- 4. Écrire la négation des phrases suivantes:
 - (a) $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} \mid x < n$
 - (b) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ xy = yx$

MR