Nonwindowed Scattering Transforms and Invariant Representations

Albert Chua, Department of Mathematics

Joint work with: Matthew Hirn (Citadel LLC), Anna Little (University of Utah)

October 14, 2023

Convolutional Neural Networks

- Neural network using series of convolutions to learn features from data
- Steps of network:
 - Initialize random weights for filters
 - Put in input image f
 - Apply a series of convolutions/pointwise nonlinearities using filters
 - Max pool (subsample)
 - Repeat process for some number of layers
 - · Apply backpropogation and update weights on filters

Architecture for LeNet, taken from "Object Recognition with Gradient-Based Learning."

October 14, 2023

Invariance/Equivariance in Machine Learning

Task: try to determine if each face is smiling or not.

• One wants a representation that is translation invariant.

Task: try to determine where the eyes are in each image.

• One wants a representation that commutes with translation.

Invariance in Machine Learning

Task: try to determine if each face is smiling or not.

- One needs a representation that is invariant.
- Let $\mathcal{H}_1,\mathcal{H}_2$ be Hilbert Spaces and $\Phi:\mathcal{H}_1\to\mathcal{H}_2.$
- Let $T: \mathcal{H}_1 \to \mathcal{H}_1$ be an operator.
- ullet We say that Φ is invariant to T if

 $\Phi Tf = \Phi f, \quad \forall f \in \mathcal{H}_1.$

Stability in Machine Learning

- Let $L_{\gamma}f(x) = f(\gamma^{-1}(x))$, where $\gamma(x) := x \tau(x)$ for $\tau \in C^2(\mathbb{R}^n)$.
- We would like a representation such that

$$\|\Phi f - \Phi L_{\tau} f\|_{\mathcal{H}_2} \leq K(\tau) \|f\|_{\mathcal{H}_1},$$

and $K(\tau) \to 0$ with some dependence on τ (e.g. $\|\tau\|_{\infty} \to 0$)

 Intuition: small deformations of the signal won't change the representation too much.

Balance Between Representation Power and Stability

- Let $L_c f(x) = f((1-c)x)$.
- Notice that for the operator $\Phi f = f * \phi_J$,

$$||f * \phi_J - (L_c f) * \phi_J||_2^2 \le 2^{-J} |c|^2 ||f||_2^2$$

for small enough |c|.

• Too simple since $f * \phi = f$ for bandlimited f and suitable $\hat{\phi}$.

Wavelet Scattering Transform Basics

- Choose a wavelet: $\psi \in L^1 \cap L^2$ with $\int_{\mathbb{R}^b} \psi dx = 0$.
- ullet Choose a low pass filter ϕ such that $\hat{\phi}(0)=1$ and define

$$\phi_J(u) = 2^{-nJ}\phi(2^{-J}u).$$

Let

$$\Lambda_J = \{\lambda = 2^j r : r \in G^+, j < J\},\,$$

with
$$G^+ = G/\{-1,1\}$$
.

Suppose that

$$|\hat{\phi}_J(\omega)|^2 + \sum_{\lambda \in \Lambda_J} |\hat{\psi}_\lambda(\omega)|^2 = 1$$

for a.e. $\omega \in \mathbb{R}^n$

 Choose specific filters for a convolutional neural network using filters that satisfy the conditions above

Wavelet Scattering Transform Basics Pt 2

• Define for $f \in L^2(\mathbb{R}^n)$

$$U[\lambda]f = |f * \psi_{\lambda}|$$

This is like a convolution layer with a nonlinearity.

- An ordered sequence $p = (\lambda_1, \dots \lambda_m)$ with $\lambda_k \in \Lambda_\infty$ is a path.
- The scattering propagator is

$$U[p]f = U[\lambda_m] \dots U[\lambda_2]U[\lambda_1]f$$

= $|||f * \psi_{\lambda_1}| * \psi_{\lambda_2}| \dots | * \psi_{\lambda_m}|$

- Going down a path is like applying multiple layers in a convolutional neural network
- Let P_{∞} be the set of all finite paths and P_J be the set of finite paths $p = (\lambda_1, \dots, \lambda_m)$ with $\lambda_k \in \Lambda_J$
- If $p \in P_J$, the windowed scattering operator is

$$S_J[p]f(u) = U[p]f * \phi_J(u).$$

Getting High frequency Information

Figure: Left: Polar Bear. Middle: Low Pass filtering. Right: High Pass filtering.

• Suppose $f \in L^2(\mathbb{R}^n)$. Then

$$(\widehat{f*\psi_j})(0) = \hat{f}(0)\hat{\psi_j}(0) = 0.$$

ullet Assume $f*\psi_j
eq 0$ on a set of positive measure. Then

$$|\widehat{f*\psi_j}|(0)=\int_{\mathbb{R}^n}|f*\psi_j|(x)\,dx>0.$$

- For smooth enough ψ , since $|f * \psi_j|$ is continuous, we can find a neighborhood around the origin where $|(\widehat{f} * \psi_j)(x)|$ is nonzero.
- In other words, high frequency information is pushed down to lower frequency bins,

Wavelet Scattering Transform Norm

ullet For any path set, Ω , we use the notation

$$S_J[\Omega] = \{S_J[p]\}_{p \in \Omega}$$
 and $U[\Omega] = \{U[p]\}_{p \in \Omega}$

- The windowed scattering transform is $S_J[P_J]f$ (all possible layers of a network)
- Define the following norms:

$$||S_J[\Omega]f||^2 = \sum_{p \in \Omega} ||S_J[p]f||^2$$
 and $||U[\Omega]f||^2 = \sum_{p \in \Omega} ||U[p]f||^2$

Windowded Scattering Transform: Properties

(Energy Preservation) Under very restrictive conditions (admissible wavelets),

$$||S_J[P_J]f||^2 = ||f||_2^2$$

for all $f \in L^2(\mathbb{R}^n)$.

• (Nonexpansive) For all $f, h \in L^2(\mathbb{R}^n)$,

$$||S_J[P_J]f - S_J[P_J]h|| \le ||f - h||_2.$$

• (Almost Translation Invariance) Define $L_c f(u) = f(u - c)$. For admissible wavelets,

$$\lim_{J\to\infty} \|S_J[P_J]f - S_J[P_J]L_cf\| = 0.$$

for all $c \in \mathbb{R}^n$ and for all $f \in L^2(\mathbb{R}^n)$

• (Deformation Stability) Let $\tau \in C^2(\mathbb{R}^n)$ and $L_{\tau}f = f(u - \tau(u))$. For $f \in L^2(\mathbb{R}^n)$ and $\|D\tau\|_{\infty} < \frac{1}{2n}$,

$$||S_J[P_J]L_{\tau}f - S_J[P_J]f|| \leq C_fK(\tau)$$

with $K(\tau) \to 0$ as $\|\tau\|_{\infty} + \|D\tau\|_{\infty} + \|D^2\tau\|_{\infty} \to 0$.

Nonwindowed Scattering Transforms

- Windowed Scattering Transforms are useful when the representation doesn't need to be rigid.
- Since the set of functions $\{\phi_J\}$ forms an approximate identity,

$$\lim_{J\to\infty} S[p]f = \lim_{J\to\infty} 2^{nJ} \int_{\mathbb{R}^n} U[p](f*\phi_J)(x) dx \phi(0) ||U[p]f||_1.$$

- Here, the norm acts as the global pooling layer instead of a local pooling layer with the low pass filter.
- Mallat wasn't able to prove stability properties for this operator with the norm he chose.

Motivation for *q* **Norms**

- Define $\psi_{j,\theta} = 2^{-3j} \psi(2^{-j} R_{\theta}^{-1} x)$ and where R_{θ} is a rotation matrix.
- Consider

$$\|f*\psi_{j,\cdot}\|_q^q = \int_{\mathbb{R}^3 \times [0,2\pi]^2} |f*\psi_{j,\theta}(u)|^q du d\theta$$

and second order scattering operator

$$\||f*\psi_{j_1,.}|*\psi_{j_2,\theta'}\|_q^q = \int_{\mathbb{R}^3 \times [0,2\pi]^2} ||f*\psi_{j_1,\theta}|*\psi_{j_2,\theta'+\theta}(u)|^q du d\theta$$

 Hirn et. al. (Wavelet Scattering Regression of Quantum Chemical Energies) consider the dictionary

$$\begin{split} \Phi f &= \big\{ \|f * \psi_{j,\cdot}\|_1, \||f * \psi_{j_1,\cdot}| * \psi_{j_2,\theta'}\|_1, \\ &\|f * \psi_{j,\cdot}\|_2^2, \||f * \psi_{j_1,\cdot}| * \psi_{j_2,\theta'}\|_2^2 \big\}_{2\log_2(\epsilon) \le j_1 < j_2 < J, \theta \in [0,2\pi]^2}. \end{split}$$

for some ϵ small enough and J large enough as features for a quantum energy regression task and got state-of-the-art results.

Generalizing the Nonwindowed Scattering Transform

Notation:

$$\psi_{\lambda}f(x) = \lambda^{-n/2}\psi(\lambda^{-1}x).$$

• Let $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}_+^m$. Then consider the operator

$$S_q^m f = \| \| f * \psi_{\lambda_1} | * \psi_{\lambda_2} | * \cdots | * \psi_{\lambda_m} \|_q$$

with $q \in [1, 2]$.

- The operator above is translation invariant and pooling is global.
- If q = 2, the norm is

$$||S_2^m f||_{\mathsf{L}^2(\mathbb{R}^m_+)}^2 := \int_0^\infty \cdots \int_0^\infty |S_2^m f(\lambda_1, \ldots, \lambda_m)|^2 \frac{d\lambda_1}{\lambda_1^{n+1}} \cdots \frac{d\lambda_m}{\lambda_m^{n+1}}$$

ullet If $q\in [1,2)$, the norm is $\|S_q^m f\|_{\mathbf{L}^2(\mathbb{R}^m_+)}^q$ given by

$$\left(\int_0^\infty \cdots \int_0^\infty |\mathcal{S}_q^m f(\lambda_1, \ldots, \lambda_m)|^2 \frac{d\lambda_1}{\lambda_1^{n+1}} \cdots \frac{d\lambda_m}{\lambda_m^{n+1}}\right)^{q/2}$$

Well-Defined Nonwindowed Scattering Norms When $q \in (1,2]$

ullet Assume that ψ has the following properties:

$$|\psi(x)| \le A(1+|x|)^{-n-\varepsilon} \tag{1}$$

$$\int_{\mathbb{R}^n} |\psi(x-y) - \psi(x)| \, dx \le A|y|^{\varepsilon'}, \tag{2}$$

for some constants $A, \varepsilon', \varepsilon > 0$ and for all $h \neq 0$.

Theorem (Chua, Hirn, Little (ACHA 2024))

Let $1 < q \le 2$. Also, let ψ be a wavelet that satisfies properties (1) and (2). Then there exists a universal constant $C_{m,q} > 0$ such that

$$||S_q^m f||_{L^2(\mathbb{R}_+^m)}^q \le C_m ||f||_q^q$$

for all $f \in L^q(\mathbb{R}^n)$.

Deformation Stability When $1 < q \le 2$

- Assume $\tau \in C^2(\mathbb{R}^n)$ with $||D\tau|| \leq \frac{1}{2n}$.
- Define the operator. $L_{\tau}f(x) = f(x \tau(x))$.
- The bound below is quantitative. Exact constants left out for brevity.

Theorem (Chua, Hirn, Little (ACHA 2024))

Assume $1 < q \le 2$. Then for any ψ with ψ and all its first and second partial derivatives having $O((1+|u|)^{-n-3})$ decay, we have

$$\|\mathcal{S}_{q}^{m}f - \mathcal{S}_{q}^{m}L_{\tau}f\|_{\mathbf{L}^{2}(\mathbb{R}^{m}_{+})}^{q} \leq B_{\tau}\|f\|_{q}^{q}$$

such that B_{τ} is proportional to K_{τ} .

Rotation Invariant Representations I

• Let $\psi: \mathbb{R}^n \to \mathbb{R}$ be a wavelet. Define

$$\psi_{\lambda,R}(x) = \lambda^{-n/2} \psi(\lambda^{-1} R^{-1} x),$$

where $R \in SO(n)$ is a $n \times n$ rotation matrix.

• The continuous wavelet transform of f is given by

$$W_{\mathsf{Rot}}f := \{f * \psi_{\lambda,R}(x) : x \in \mathbb{R}^n, \lambda \in (0,\infty), R \in \mathsf{SO}(n)\}.$$

• Define $\mathscr{S}_q^m f(\lambda_1,\ldots,\lambda_m,R_2,\ldots,R_m)$ as

$$\int_{SO(n)} \||f * \psi_{\lambda_1,R_2R_1}| * \cdots * |\psi_{\lambda_m,R_mR_1}||_q^2 d\mu(R_1).$$

• This operator is invariant to the relative angle from R_1 .

Rotation Invariant Representations II

Similar to

$$\|f*\psi_{j,\cdot}\|_q^q = \int_{\mathbb{R}^3 \times [0,2\pi]^2} |f*\psi_{j, heta}(u)|^q du d\theta$$

and

$$\||f*\psi_{j_1,\cdot}|*\psi_{j_2,\theta'}\|_q^q = \int_{\mathbb{R}^3\times[0,2\pi]^2} ||f*\psi_{j_1,\theta}|*\psi_{j_2,\theta'+\theta}(u)|^q \, du \, d\theta.$$

- Dictionary from Hirn et. al. worked, but without rigorous justification (not well defined or stable to deformations)
- Numerical implementation probably worked because norms are equivalent in finite dimension.
- ullet Operator is well defined in a similar manner to above, and stable to diffeomorphisms when $1 < q \leq 2$.

Comparison of Results

- Group Invariant Scattering (Mallat):
 - Requires a window via low pass filter for pooling.
 - Not fully translation invariant.
 - Works for infinite number of layers.
 - Condition on wavelet is very restrictive.
- This Paper:
 - No windowing function. Global pooling via a norm.
 - Fully translation invariant.
 - Only works for a finite number of layers when 1 < q < 2.
 - Works with a wide class of wavelets (i.e. let g be a radial function with sufficient decay and define

$$\psi(x) = g(|x|)Y_{\ell,m}(\frac{x}{|x|})$$

for any hyperspherical harmonic $Y_{\ell,m}$ with $\ell,m
eq 0)$

