

## Chapter 9: Subnetting IP Networks



#### **Introduction to Networks**

Cisco Networking Academy® Mind Wide Open™



- 9.0 Introduction
- 9.1 Subnetting an IPv4 Network
- 9.2 Addressing Schemes
- 9.3 Design Considerations for IPv6
- 9.4 Summary

### **Chapter 9: Objectives**

Upon completion of this chapter, you will be able to:

- Explain why routing is necessary for hosts on different networks to communicate.
- Describe IP as a communication protocol used to identify a single device on a network.
- Given a network and a subnet mask, calculate the number of host addresses available.
- Calculate the necessary subnet mask in order to accommodate the requirements of a network.
- Describe the benefits of variable length subnet masking (VLSM).
- Explain how IPv6 address assignments are implemented in a business network.

Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential



## 9.1 Subnetting an IPv4 Network



Cisco Networking Academy® Mind Wide Open®

#### **Network Segmentation**

### **Reasons for Subnetting**

**Subnetting** is the process of segmenting a network into multiple smaller network spaces called subnetworks or subnets.

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
  - Control traffic by containing broadcast traffic within each subnetwork.
  - Reduce overall network traffic and improve network performance.

#### **Communication Between Subnets**

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.



#### **Planning the Network**









Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.



#### **Subnetting an IPv4 Network**

### **Basic Subnetting**

- Borrowing Bits to Create Subnets
- Borrowing 1 bit  $2^1 = 2$  subnets



## Subnetting an IPv4 Network Subnets in Use

#### Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25



192.168.1.128/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

#### **Subnetting an IPv4 Network**

### **Subnetting Formulas**



#### **Subnetting an IPv4 Network**

### **Creating 4 Subnets**

Borrowing 2 bits to create 4 subnets.  $2^2 = 4$  subnets



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential



### **Creating Eight Subnets**

### Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

|       | Network      | 192. | 168. | 1. | 000 | 0 0000 | 192.168.1.1    |
|-------|--------------|------|------|----|-----|--------|----------------|
| Net 0 | Fist         | 192. | 168. | 1. | 000 | 0 0001 | 192.168.1.1    |
|       | Last         | 192. | 168. | 1. | 000 | 1 1110 | 192.168.1.30   |
|       | Broadcast    | 192. | 168. | 1. | 000 | 1 1111 | 192.168.1.31   |
|       | Network      | 192. | 168. | 1. | 001 | 0 0000 | 192.168.1.32   |
| Net 1 | Fist         | 192. | 168. | 1. | 001 | 0 0001 | 192.168.1.33   |
|       | Last         | 192. | 168. | 1. | 001 | 1 1110 | 192.168.1.62   |
|       | Broadcast    | 192. | 168. | 1. | 001 | 1 1111 | 192.168.1.63   |
|       | Network      | 192. | 168. | 1. | 010 | 0 0000 | 192.168.1.64   |
| Net 2 | Fist         | 192. | 168. | 1. | 010 | 0 0001 | 192.168.1.65   |
|       | Last         | 192. | 168. | 1. | 010 | 1 1110 | 192.168.1.94   |
|       | Broadcast    | 192. | 168. | 1. | 010 | 1 1111 | 192.168.1.95   |
|       | Network      | 192. | 168. | 1. | 010 | 0 0000 | 192.168.1.96   |
|       |              |      |      | -  | 010 | 0 0001 | 192.168.1.97   |
| Net 3 | Fist         | 192. | 168. | 1. | 010 | 0 0001 | 132. 100. 1.37 |
| Net 3 | Fist<br>Last | 192. | 168. | 1. | 010 | 1 1110 | 192.168.1.126  |
| Net 3 |              |      |      |    |     |        |                |



### **Creating Eight Subnets (Cont.)**

| Net 4  Net work  Fist  192. 168. 1. 100 0 0000 192.168.1.1  Last  192. 168. 1. 100 1 1110 192.168.1.1  Broadcast  192. 168. 1. 100 1 1111 192.168.1.1  Network  192. 168. 1. 101 0 0000 192.168.1.1  Net 5  Fist  192. 168. 1. 101 0 0001 192.168.1.1  Last  192. 168. 1. 101 0 0001 192.168.1.1                                                                                                                                                                                                                                                       | 129<br>158<br>159 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Net 4       Fist       192.       168.       1.       100       0 0001       192.168.1.1         Last       192.       168.       1.       100       1 1110       192.168.1.1         Broadcast       192.       168.       1.       100       1 1111       192.168.1.1         Network       192.       168.       1.       101       0 0000       192.168.1.1         Net 5       Fist       192.       168.       1.       101       0 00001       192.168.1.1         Last       192.       168.       1.       101       1 1110       192.168.1.1 | 129<br>158<br>159 |
| Net 4         Last       192.       168.       1.       100       1       1110       192.168.1.1         Broadcast       192.       168.       1.       100       1       1111       192.168.1.1         Network       192.       168.       1.       101       0       0000       192.168.1.1         Net 5       Fist       192.       168.       1.       101       0       0001       192.168.1.1         Last       192.       168.       1.       101       1       1110       192.168.1.1                                                       | 158<br>159        |
| Broadcast       192.       168.       1.       100       1 1111       192.168.1.1         Network       192.       168.       1.       101       0 0000       192.168.1.1         Net 5       Fist       192.       168.       1.       101       0 0001       192.168.1.1         Last       192.       168.       1.       101       1 1110       192.168.1.1                                                                                                                                                                                        | 159               |
| Network 192. 168. 1. 101 0 0000 192.168.1.1  Net 5  Fist 192. 168. 1. 101 0 0001 192.168.1.1  Last 192. 168. 1. 101 1 1110 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| Net 5 Fist 192. 168. 1. 101 0 0001 192.168.1.1 Last 192. 168. 1. 101 1 1110 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160               |
| Last 192. 168. 1. 101 1 1110 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| Last 192. 168. 1. 101 1 1110 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161               |
| D I 1 100 150 1 101 1 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190               |
| Broadcast 192. 168. 1. 101 1 1111 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 191               |
| Network 192. 168. 1. 110 0 0000 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 192               |
| Net 6 Fist 192. 168. 1. 110 0 0001 192.168.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 193               |
| Last 192. 168. 1. 110 1 1110 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 222               |
| Broadcast 192. 168. 1. 110 1 1111 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 223               |
| Network 192. 168. 1. 111 0 0000 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224               |
| Net 7 Fist 192. 168. 1. 111 0 0001 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225               |
| Last 192. 168. 1. 111 1 1110 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254               |
| Broadcast 192. 168. 1. 111 1 1111 192.168.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 255               |

#### **Subnetting an IPv4 Network**

### **Creating Eight Subnets (Cont.)**





### Subnetting Based on Host Requirements

#### Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

#### Formula to determine number of usable hosts: 2^n-2

- 2<sup>n</sup> (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork ID and broadcast address cannot be used on each subnet.)

resentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

## Subnetting Network-Based Requirements

### Calculate the number of subnets:

- 2<sup>n</sup> (where n is the number of bits borrowed)
- Subnet needed for each department.



#### **Determining the Subnet Mask**

### Subnetting To Meet Network Requirements

- Balance the required number of subnets and hosts for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- Allow for growth in each subnet.



#### **Determining the Subnet Mask**

### **Subnetting To Meet Network Requirements**

#### Subnets and Addresses

```
10101100.00010000.000000 00.0000000 172.16.0.0/22

0 10101100.00010000.000000 00.0000000 172.16.0.0/26
1 10101100.00010000.000000 00.10000000 172.16.0.64/26
2 10101100.00010000.000000 00.110000000 172.16.0.128/26
3 10101100.00010000.000000 01.10000000 172.16.0.192/26
4 10101100.00010000.000000 01.00000000 172.16.1.0/26
5 10101100.00010000.000000 01.01000000 172.16.1.64/26
6 10101100.00010000.000000 01.10000000 172.16.1.128/26

Nets 7 - 14 not shown

15 10101100.00010000.000000 11.10000000 172.16.3.128/26
16 10101100.00010000.000000 11.110000000 172.16.3.128/26
```



#### **Benefits of Variable Length Subnet Masking**

### **Traditional Subnetting Wastes Addresses**

- Traditional subnetting Uses the same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses; for example, WAN links only need two addresses.





### Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are resubnetted.



## Benefits of Variable Length Subnet Masking Basic VLSM



## Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.





#### VLSM Subnetting of 192.168.20.0 /24

|        | /27<br>Network | Hosts   |
|--------|----------------|---------|
| Blda A | .0             | .130    |
| Bldg B | .32            | .3362   |
| Bldg C | .64            | .6594   |
| Bldg D | .96            | .97126  |
| Unused | .128           | .129158 |
| Unused | .160           | .161190 |
| Unused | .192           | .193222 |
|        | .224           | .225254 |

|           | /30<br>Network | Hosts   |
|-----------|----------------|---------|
| WAN R1-R2 | .224           | .225226 |
| WAN R2-R3 | .228           | .229230 |
| WAN R3-R4 | .232           | .233234 |
| Unused    | .236           | .237238 |
| Unused    | .240           | .241242 |
| Unused    | .244           | .245246 |
| Unused    | .248           | .249250 |
| Unused    | .252           | .253254 |



### 9.2 Addressing Schemes



Cisco Networking Academy® Mind Wide Open®

#### **Structured Design**

### Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Client addresses – Usually dynamically assigned using the Dynamic Host Configuration Protocol (DHCP).

Sample Network Addressing Plan

| Network: 192.168.1.0/24        |       |      |  |  |
|--------------------------------|-------|------|--|--|
| Use                            | First | Last |  |  |
| Host Devices                   | .1    | .229 |  |  |
| Servers                        | .230  | .239 |  |  |
| Printers                       | .240  | .249 |  |  |
| Intermediary Devices           | .250  | .253 |  |  |
| Gateway (router LAN interface) | .254  |      |  |  |
|                                |       |      |  |  |



## 9.3 Design Considerations for IPv6



Cisco Networking Academy® Mind Wide Open®

#### **Subnetting an IPv6 Network**

### Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network







#### **Subnetting an IPv6 Network**

### Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets.





9.3 Summary



Cisco Networking Academy® Mind Wide Open®

### **Chapter 9: Summary**

In this chapter, you learned that:

- Subnetting is the process of segmenting a network, by dividing it into multiple smaller network spaces.
- Subnetting a subnet, or using VLSM, was designed to avoid wasting addresses.
- IPv6 address space is subnetted to support the hierarchical, logical design of the network.
- Size, location, use, and access requirements are all considerations in the address planning process.
- IP networks must be tested to verify connectivity and operational performance.

resentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

# Cisco | Networking Academy® | Mind Wide Open™