

Computação Gráfica

Sistemas de Cores

Professor: Luciano Ferreira Silva, Dr.

Computação Gráfica

Foco Principal: Imagens!

Imagem

 De um modo intuitivo uma imagem fica determinada pela variação da cor nos diversos pontos de sua superfície;

 A cor é produzida por uma radiação eletromagnética cujo comprimento de onda está na faixa visível no espectro (entre 380 e 780 nanômetros)

Física da cor

Natureza dual da luz

Matureza uuar ua ruz

ONDA

$$c = \lambda f$$

 $c = \text{Velocidade da Luz} \cong 3.0 \text{x} 10^8 \text{ m/s}$

Física da cor

 Do ponto de vista perceptual, os diferentes comprimentos de onda estão associados a diferentes cores.

✓ Violeta: 380 – 440 nm

✓ Azul: 440 – 490 nm

✓ Verde: 490 – 565 nm

✓ Amarelo: 565 -590 nm

✓ Laranja: 590 – 630 nm

✓ Vermelho: 630 – 780 nm

Modelo de representação da cor

 O modelo espacial do sinal de cor associa cada comprimento de onda a uma medida de energia radiante: distribuição espectral.

Fontes de luz

Luz branca

Luz colorida

Fontes de luz

Formação da cor

 As cores que percebemos surgem da iteração entre fontes de luz e diversos tipos de materiais encontrados no mundo físico.

Tipos de processos de formação:

- ✓ Aditivo.
- ✓ Subtrativo.
- ✓ Por pigmentação.

Processo aditivo

Ex.: RGB

Processo aditivo

O olho não vê

componentes!

Processo subtrativo

 A luz que recebemos é processada por um filtro, material sólido transparente, ou através de um corante, que absorve determinados comprimentos de onda e transmite outros. (Ex.: CMY)

Processo subtrativo

corantes

Por pigmentação

Quando raio luminoso um atinge partículas chamadas pigmentos, há um efeito de espalhamento com fenômenos sucessivos e simultâneos de reflexão, transmissão e absorção entre 05 diversos pigmentos.

Por pigmentação

tons

A sucessão de reflexão e refração determinam a natureza da luz refletida

tons mais claros tinta colorida (saturada)

tons mais

escuros

(shade)

tinta branca

PALHETA DO **PINTOR**

Cinzas (greys)

tinta preta

Percepção da Cor

- Modelo Tricromático de Young Helmholtz – RGB (Século XIX);
- Cones RGB fornecem a Crominância;
- Bastonetes a Luminância;

Cores Metaméricas

O olho humano trabalha com amostragem;

- ✓ Podem existir cores com distribuições espectrais distintas que são identificadas perceptualmente como iguais;
- ✓ Estas cores são chamadas de cores *metaméricas*.

Sistemas físicos receptores

- São aqueles que fazem uma amostragem em RGB da função de distribuição espectral para identificação metamérica da cor.
- Exemplos deste sistema:
 - ✓olho humano;
 - ✓ scanners;
 - ✓ câmeras de vídeo.

Sistemas físicos emissores

- São aqueles que emitem luz de cor c,
 permitindo que um sistema receptor realize a
 amostragem e identificação metamérica c.
- Exemplo aparelho de televisão:
 - ✓em cada ponto da tela temos um sistema emissivo que reconstrói a informação de cor da imagem naquele ponto a partir de informações recebidas pelo sinal de vídeo.

Sistema CIE-RGB

- CIE ComissãoInternacional de Iluminação
- Usou como base o modelo tricromático de Young-Helmholtz
- Vermelho (R): 700 nm;
- Verde (G): 546 nm;
- Azul (B): 436 nm;
- $C(\lambda) = r(\lambda) R + g(\lambda) G + b(\lambda) B$

Diagrama de cor CIE-RGB

Quantidades RGB necessárias para reproduzir todas as cores do espectro visível, com a existência de quantidades negativas.

Sistema CIE-XYZ

- É uma aplicação de uma transformação de mudança de bases do CIE-RGB;
- X, Y, Z, são cores primárias que não correspondem a cores visíveis;

 mas suas componentes de cor são positivas, sendo possível então reproduzir no monitor todos os comprimentos de ondas de luz visível;

Diagrama de cor CIE-XYZ

Funções CMF x, y z.

Matrizes de transformação

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.49000 & 0.17697 & 0.0 \\ 0.31000 & 0.81240 & 0.01000 \\ 0.20000 & 0.01063 & 0.99000 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 2.3647 & -0.51515 & 0.0520 \\ -0.89665 & 0.14264 & -0.01441 \\ -0.46808 & 0.08874 & 1.00921 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Geometria dos espaços de cor tricromáticos

■Cada reta passando pela origem(menos a própria origem) define uma informação de cromaticidade (*croma*)

Triângulo de Maxwell

Coordenadas de cromaticidade

$$c_i^* = \frac{c_i}{c_1 + c_2 + c_3}$$

Sólidos de cor e diagramas de cromaticidade

É um cone.

É convexo.

Cores espectrais (puras) estão na fronteira.

 Diagrama de cromaticidade (projeção do sólido de cor sobre o Triângulo de Maxwell

Plano X+Y+Z=1

Sistema CIE-XYZ

Sistema CIE-XYZ

Sistemas de Cores

- Em geral podemos classificar os sistemas de cor de acordo com a sua funcionalidade, como por exemplo:
 - ✓ Sistemas Padrão;
 - ✓ Sistemas dos Dispositivos;
 - ✓ Sistemas subtrativos ou complementares
 - ✓ Sistemas de Interface;
 - ✓ Sistemas Computacionais;
 - ✓ Sistemas de Vídeo;
 - ✓ Etc.

Sistemas dos monitores - mRGB

- Para dispositivos o fabricante deve especificar o valor das componentes primarias (normalmente em CIE-XYZ);
- Considerando, por exemplo, fósforo ou filtro.

Processo Aditivo

Sistemas dos monitores - mRGB

Para dispositivos o fabricante deve especificar o valor das componentes primarias (normalmente em CIE-XYZ);

Normalmente temos 1 *byte* para cada componente mapeando[0, 255] em [0,1]

Sistemas as impressoras -CMY(K)

processo subtrativo

Sistemas de interface

Permitem uma especificação intuitiva de cores.

 São baseados em uma decomposição crominância-luminância.

- Utilizam o seguinte esquema:
 - 1. Escolha da crominância.
 - 2. Escolha da luminância(brilho).

Sistemas de interface

Escolha da crominância:

- ✓ Escolha de um ponto no espaço de croma (bidimensional).
 - Primeiro o usuário escolhe a matiz (a cor pura).
 - Depois o usuário escolhe a saturação (nível de mistura da cor pura com o branco).

Modelo HSL

Sistemas de vídeo componente

- O olho tem menor sensibilidade para detectar cores do que variações de intensidade
 - ✓ Utiliza-se uma banda maior para a luminância: Y = 0.299R + 0.587G + 0.116B;
 - ✓Os componentes de crominância são representados como: R-Y e B-Y;
- Sistemas baseados em Y, R-Y, B-Y são chamados de vídeo componente.

Sistemas de vídeo digital

O padrão internacional para vídeo digital Y, Cr,
 Cb é dado pela seguinte transformação de Y,
 R-Y, B-Y:

$$\checkmark$$
 Y = 16 + 234Y

$$\checkmark$$
 Cr = 128 + 112 (0,5/(1-0,114) * (B-Y))

$$\checkmark$$
 Cb = 128 + 112 (0,5/(1-0,299) * (R-Y))

Usado nos padrões JPEG e MPEG.

Sistemas de vídeo composto

- São sistemas de cor para transmissão de vídeo (NTSC, PAL, etc.).
- Os componentes são combinados em um único sinal:
 - ✓ O sinal de luminância pode ser utilizado em aparelhos preto e branco
 - ✓ As crominâncias podem ser codificada em apenas 5% da banda de passagem sem degradar o sinal de luminância.
- Sistema YUV

$$\checkmark$$
 U = 0,493 (B-Y)

$$\checkmark$$
 V = 0,877 (R-Y)

Sistemas de vídeo composto

Sistema YIQ:

- ✓IQ pode ser obtido a partir de uma rotação das coordenadas UV;
- ✓ Ocupa uma banda menor;
- ✓NSTC:

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & -0.311 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$