AE 737: Mechanics of Damage Tolerance

Lecture 22 - Inspection

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

April 28, 2020

1

schedule

- 28 Apr Damage Tolerance
- 30 Apr Finite Elements
- 5 May Special Topics
- 7 May Special Topics
- 14 May Final Projects Due

outline

- special topics
- damage tolerance
- inspection cycle

3

special topics

special topics

- NDE/NDT
- FEM
- Damage Mechanics
- Repair of damaged structures
- My Research
- Other?

,

damage tolerance

definitions

Safe Life

- Assume cracks are present
- Cracks are not inspectable
- Use crack growth or fatigue analysis to establish safe life, in which part will not fail

5

definitions

Damage tolerant

- Assume cracks are present
- When cracks grow to a sufficient size, they are inspectable
- Inspection cycles are set such that we can be sure crack will not become critical during regular operation

definitions

- Fail safe multiple load paths, redundancy
- Limit load maximum anticipated load
- Design load limit load multiplied by some factor of safety (static design)
- Operating load stress spectrum (used for crack propagation/fatigue)

7

structural categories

- Single load path safe life
- Single load path damage tolerant
- Multiple load path externally inspectable
- Multiple load path inspectable prior to failure

single load path - safe life

- In many structures, multiple load paths are not practical
- It is also possible for the critical crack length to be much smaller than is easily detectable
- In these cases, safe life design is used to identify a certain number of cycles a part can sustain before it needs to be replaced
- This often requires replacing parts prematurely

(

single load path - damage tolerant

- Redundant load paths are not necessary when a part is easily inspectable
- When detectable crack is much less than critical crack, we can safely inspect a part so that it is only replaced when damaged
- Many times this damage can be repaired to avoid replacing the part entirely
- Ideal for large, expensive parts that are easy to access (inspection and repair)

multiple load path - externally inspectable

- This is a very common scenario in aircraft (skin/stringer)
- In this case, the primary structure is not inspectable
- A secondary structure is inspectable
- The secondary structure can support a certain number of cycles after failure of the primary structure
- Secondary structure can be inspected to observe damage in primary structure

11

multiple load path - inspectable prior to failure

- In this case the primary structure is inspectable
- Otherwise same as externally inspectable structure

inspection cycle

inspection cycle

- In many industries, an inspection cycle is predetermined by some governing agency
- We have developed all the equations necessary to determine our own
 - 1. Determine loading cycle (or equivalent load cycle using Boeing method)
 - 2. Determine maximum crack length
 - 3. Determine initial assumed crack length (minimum detectable crack)
 - 4. Calculate number of cycles/flights until crack grows to maximum allowable size

load cycle

- Be sure to use a consistent cycle-counting method (rainflow or range-pair)
- Recall the Boeing method for variable amplitude loads

$$\sum_{i} (z\sigma_{max})_{i}^{p} N_{i} = S^{p}$$

14

crack length

- We can use the residual strength curve to set a maximum crack length
- We also want to ensure that the crack propagation is still in Region II at this point
- Crack growth becomes unstable in Region III

initial crack length

- What is the smallest crack we can detect?
 - Liquid penetrant (any material)
 - Magnetic particle (ferromagnetic materials)
 - Ultrasonic (any material)
 - Eddy Current (only for conductive materials)
 - Radiographic (X-Ray, nearly any material)

16

calculate cycles

- We can integrate (analytically or numerically) to find the number of cycles it will take for a crack to grow to critical length
- Note that numerical integration is non-conservative, in general
- ΔN should be small enough to give converged solution

example