

Emmaüsinstituut Sint-Gerolflaan 20 9880 Aalter

	Dhr. Van Avermaet J.
Leerkrachten:	

Titel:

Verslag: Nullastproef, Kortsluitproef en Belastingsproef	

Vak:	REMP Elektriciteit							
Klas:	6EM6							
	Iskhak Chuitiev							
Namen	2							
& Klasnummers:	Anthony Tacquet							
	9							
Schooljaar:	2020-2021							
Begin- en einddatum:	3/10/20 - 20/10/20							

De vaardigheden: /10pt

Het verslag: /10pt

Het totaal: /20pt

	Leerling	Leerkracht
Bestekmapje en voorblad		
Controle van het schema of opstellingstekening		
Metingen of waarnemingen		
Grafieken		
Besluiten		
Beoordeling van je eigen werk en het groepswerk op 10pt.		

Het schema van de twee wattmeter schakeling

Transformator = Cetel R607 330/110

Ampèremeter = Volt Tech (In serie met één lijndraad)
Voltmeter = Volt Tech (Parallel met twee lijndraden)

Wattmeter = Volt Tech (Twee Wattmeter die parallel over twee lijndraden staan)

Aansluiten van meettoestellen

Nullastproef

-Doel van de proef

Het doel van de nullastproef is het opmeten van het door de onbelaste transformator gebruikte vermogen, de nullastverliezen. Tevens is het mogelijk om de hoofd reactantie Xh' te bepalen.

-Uitvoering van de proef

Voor de eerste meting moet men de nominale spanning nemen.

▶ Het schema van de proef

[#] gegevens Schakeling tussen lijn 1 en 2 = 1 (Max 5)

[#] gegevens Schakeling tussen lijn 3 en 2 = 1 (Max 5)

Kostprijs Meetinstrumenten: 1 500 €

Driefasige Transformatoren

V-, A- en W-meters

-Resultaten van de proef

U ₁₂ [Volt]	U ₃₂ [Volt]	U _{0 lijn} [Volt]	I ₁ (Afge- lezen waarde)	K-fac voor		I ₁]	(Afg leze waar	n	K-facto		I _{O lijn} [A]		
0110 V	0110 V	110	0,384 A	1	1		,384		0,384		A 1		,384	,384
P ₁ (Afgelezer waarde)	K-factor voor P ₁	P ₁ [w]	(Afge	3 lezen irde)		actor or P ₃		P ₃ WJ		1 ^{+P} 3 [W]	P _{0 lijn} [W]	cos φ ₀		
033,5W	1	33,5	- 05,6	0W	1		-5,6		27,9)	27,9	,3813		

-Resultaten van de proef

Om het equivalent schema te tekenen moet men werken met fasegrootheden.

Omdat men de 2-Wattmeter schakeling heeft gebruikt heeft men lijngrootheden gemeten.

Deze lijngrootheden moet men nu omrekenen naar equivalente fasegrootheden.

-Bepalen van de parallel elementen van het equivalent schema

Als men U1,eq en U2,eq kent (U1=0V en U2=0V). En men kent I1,eq, P1,eq en I2,eq, P2,eq dan kun je makkelijk Rf, Rf', Xh en Xh' bepalen.

Het equivalent schema, gezien van de hoogspanningszijde

(Nauwkeurigheid: 0 getallen na de komma)

Kortsluitproef

-Doel van de proef

De kortsluitproef wordt uitgevoerd ter bepaling van de kortsluitimpedantie en het verliesvermogen dat in deze impedantie wordt gedissipeerd. Deze kortsluitimpedantie is niets anders dan de som van de serie-elementen uit het equivalent schema van de transformator.

-Het schema van de proef

-Resultaten van de proef

I ₁ (Afge- lezen waarde)	K-factor voor I ₁	[A]	I ₃ (Afge- lezen waarde)	K-factor voor I ₃	I ₃ [A]		k lijn [A]	U ₁ [Vo		U ₃₂ [Volt]		U _{k lijn} [Volt]
03,12 A	5	15,6	03,12 A	5	15,6	15	,6	01,3	0 V	01,30	٧	1,3
P ₁ (Afgelezen waarde)	K-factor voor P ₁		P ₃ (Afgeleze waarde)				P ₁ +F			k lijn [W]		cos φ _k
02,45W	5	12,25	- 01,57W	5	-7,85		4,4		4,4		,12	53

Uit de gegevens van de vorige pagina kan men de procentuele kortsluitspanning van deze transformator bepalen. Dit is de relatieve kortsluitspanning, uitgedrukt in procent.

-Bepalen van de kortsluitspanning, kortsluitstroom en kortsluitvermogen Om het equivalent schema te kunnen berekenen moet men werken met fasegrootheden. Omdat men de 2-wattmeter schakeling heeft gebruikt heeft men lijngrootheden gemeten. Deze lijngrootheden moet men nu omrekenen naar equivalent fasegrootheden.

-Bepalen kortsluitimpedantie

(Rond af tot op 3 getallen na de komma)

-Bepalen van elementen uit het equivalent schema

(Rond af tot op 3 getallen na de komma)

Belastingsproef

-Doel van de proef

Tot slot moet de transformator nog getest worden op zijn nominale werking. We belasten hem hiertoe achtereenvolgens met een resistieve, een inductieve en capacitieve last. Zo kunnen twee zaken opgemeten worden:

- 1. verloop van het rendement in functie van de waarden van de laststroom;
- 2. spanningsveranderingen ten gevolge van de belasting.

-Schema: belasting == weerstand

-De resultaten: belasting == weerstand

R	IHS	U _{HS}	P ₁	P ₃	PHS	l _{LS}	ULS	P ₁	P ₃	PLS	η
[Ω]	[A]	[V]	[W]	[W]	[W]	[A]	[V]	[W]	[W]	[W]	[%]
10	2,17	330	637,5	595	1232,5	6,33	109	602,5	600	1202,5	97,57
70	,37	330	119,75	80,75	200,5	,91	109	86,25	86,25	172,5	86,03
130	,24	330	80	40,75	120,75	,49	109	46,5	46,5	93	77,02
190	,2	330	65,25	26	91,25	,33	109	31,75	31,75	63,5	69,59
250	,18	330	57,5	18,58	76,08	,25	109	24,18	24,18	48,36	63,56
310	,17	330	53	13,9	66,9	,2	109	19,5	19,5	39	58,3
370	,16	330	49,75	10,73	60,48	,17	109	16,33	16,33	32,66	54
430	,15	330	47,5	8,45	55,95	,15	109	14,05	14,05	28,1	50,22
490	,15	330	45,75	6,73	52,48	,13	109	12,33	12,33	24,66	46,99
550	,14	330	44,5	5,38	49,88	,12	109	10,98	10,98	21,96	44,03
610	,14	330	43,25	4,3	47,55	,1	109	9,9	9,9	19,8	41,64
670	,14	330	42,5	3,4	45,9	,09	109	9,03	9,03	18,06	39,35
730	,14	330	41,75	2,68	44,43	,09	109	8,28	8,28	16,56	37,27
790	,14	330	41	2,05	43,05	,08	109	7,65	7,65	15,3	35,54
850	,14	330	40,5	1,51	42,01	,07	109	7,1	7,1	14,2	33,8
910	,14	330	40	1,04	41,04	,07	109	6,63	6,63	13,26	32,31
970	,14	330	39,5	,63	40,13	,07	109	6,23	6,23	12,46	31,05
1000	,14	330	39,5	,44	39,94	,06	109	6,03	6,03	12,06	30,2

-Resultaten: belasting == capaciteit

С	IHS	U _{HS}	P ₁	P ₃	PHS	I _{LS}	ULS	P ₁	P ₃	PLS	η
[µF]	[A]	[V]	[W]	[W]	[W]	[A]	[V]	[W]	[W]	[W]	[%]
10	2,17	330	627,5	607,5	1235	6,35	109	592,5	610	1202,5	97,37
20	2,17	330	617,5	617,5	1235	6,35	109	582,5	622,5	1205	97,57
30	2,17	330	605	630	1235	6,38	109	570	632,5	1202,5	97,37
40	2,17	330	595	640	1235	6,38	109	560	645	1205	97,57
50	2,17	330	585	652,5	1237,5	6,43	109	550	655	1205	97,37
60	2,18	330	572,5	662,5	1235	6,45	110	537,5	667,5	1205	97,57
70	2,19	330	562,5	675	1237,5	6,5	110	527,5	680	1207,5	97,58
80	2,21	330	552,5	685	1237,5	6,55	110	517,5	690	1207,5	97,58
90	2,22	330	542,5	697,5	1240	6,6	110	505	702,5	1207,5	97,38
100	2,24	330	530	707,5	1237,5	6,65	110	495	712,5	1207,5	97,58
110	2,25	330	520	717,5	1237,5	6,73	110	485	725	1210	97,78
120	2,27	330	510	730	1240	6,78	110	472,5	735	1207,5	97,38
130	2,29	330	497,5	740	1237,5	6,85	110	462,5	747,5	1210	97,78
140	2,32	330	487,5	752,5	1240	6,93	110	452,5	757,5	1210	97,58
150	2,34	330	477,5	762,5	1240	7,03	110	440	770	1210	97,58

-Het schema: belasting == inductantie

-De resultaten: belasting == inductantie

L	IHS	U _{HS}	P ₁	P ₃	PHS	ILS	ULS	P ₁	P ₃	PLS	η
[mH]	[A]	[V]	[W]	[W]	[W]	[A]	[V]	[W]	[W]	[W]	[%]
50	2,6	330	855	370	1225	7,5	109	820	372,5	1192,5	97,35
110	2,28	330	737,5	492,5	1230	6,58	109	702,5	495	1197,5	97,36
170	2,22	330	702,5	530	1232,5	6,45	109	667,5	532,5	1200	97,36
230	2,2	330	685	547,5	1232,5	6,4	109	650	550	1200	97,36
290	2,19	330	675	557,5	1232,5	6,38	109	640	560	1200	97,36
350	2,19	330	670	562,5	1232,5	6,35	109	635	567,5	1202,5	97,57
410	2,18	330	665	567,5	1232,5	6,35	109	630	572,5	1202,5	97,57
470	2,18	330	662,5	572,5	1235	6,35	109	625	575	1200	97,17
530	2,18	330	660	575	1235	6,35	109	622,5	577,5	1200	97,17
590	2,17	330	657,5	577,5	1235	6,35	109	622,5	580	1202,5	97,37
650	2,17	330	655	577,5	1232,5	6,35	109	620	582,5	1202,5	97,57
710	2,17	330	655	580	1235	6,35	109	617,5	582,5	1200	97,17
770	2,17	330	652,5	580	1232,5	6,35	109	617,5	585	1202,5	97,57
830	2,17	330	652,5	582,5	1235	6,33	109	615	585	1200	97,17
890	2,17	330	650	582,5	1232,5	6,33	109	615	587,5	1202,5	97,57
950	2,17	330	650	585	1235	6,33	109	615	587,5	1202,5	97,37
1000	2,17	330	650	585	1235	6,33	109	615	587,5	1202,5	97,37

-Besluiten

- Bij de kortsluitproef zijn de transformatieverhoudingen ook constant. Als we deze meetresultaten vergelijken met de nullastproef, dan kunnen we besluiten dat de koperverliezen veel groter zijn dan de ijzerverliezen.
- Het hoogst geleverde rendement verkrijg je bij een ohmse belasting, wanneer de laststroom wordt vergroot zal het rendement ook stijgen. Bij een inductieve belasting daalt het rendement, maar bij een capacitieve belasting verkrijg je een schommelend rendement.
- De spanningsverandering bij een capacitieve belasting is niet constant in tegenstelling tot de ohmse en inductieve belasting.

-Bronnen Ku Leuven Wikipedia Maxwell