# Hadronic Vacuum Polarization and Two-Photon Excitations in Highly Charged Ions

Eugen Dizer

Heidelberg University

December 6, 2022

1 One-Loop QED Corrections

- One-Loop QED Corrections
- Padronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction

- One-Loop QED Corrections
- Hadronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section

- One-Loop QED Corrections
- 2 Hadronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section
- Outlook

- One-Loop QED Corrections
- 2 Hadronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section
- 4 Outlook

# Quantum Electrodynamics (QED)



Figure: Scheme of the QED contributions to the electronic structure of highly charged ions.<sup>1</sup>

$$\mathcal{L}_{\mathrm{QED}} = \bar{\psi} \left[ \gamma^{\mu} \left( i\hbar c \partial_{\mu} - e A_{\mu} \right) - m_{\mathrm{e}} c^{2} \right] \psi - \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} \,.$$
 (1)

Eugen Dizer Group Seminar Talk

 $<sup>^{1}</sup>_{\rm https://www.mpi-hd.mpg.de/mpi/fileadmin/bilder/Progress\_Reports/2017-19/2QuantumDynamics.pdf}$ 

## **Energy Level Corrections**

Vacuum Polarization:



Self-Energy Correction:



## **Energy Level Corrections**

Vacuum Polarization:

Modification of the Photon Propagator<sup>1</sup>:

$$iD'_{\mu\nu}(k) = \longrightarrow + \longrightarrow \longrightarrow$$

$$= iD_{\mu\nu}(k) + iD_{\mu\lambda}(k)\frac{i\Pi^{\lambda\sigma}(k)}{4\pi}iD_{\sigma\nu}(k)$$

<sup>&</sup>lt;sup>1</sup>Inspired by W. Greiner and J. Reinhardt, Quantum Electrodynamics (2009).

## g Factor Corrections

Describes the coupling of the electron's magnetic moment  $\mu$  to its total angular momentum  ${\pmb J}$ .

Interaction with an external homogeneous magnetic field **B**:



First-order Zeeman splitting:

$$\Delta E = -\langle \boldsymbol{\mu} \cdot \boldsymbol{B} \rangle = g \mu_{\rm B} \langle \boldsymbol{J} \cdot \boldsymbol{B} \rangle, \qquad (2)$$

where  $\mu_{\rm B}=\sqrt{\pi\alpha}/m_{\rm e}$  is the Bohr magneton of the electron.

## g Factor Corrections



Figure: Feynman diagrams representing the first-order radiative corrections to the *g* factor of the bound electron.

- One-Loop QED Corrections
- Padronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section
- 4 Outlook

#### Hadronic Vacuum Polarization

#### Hadronic Polarization Function through measured cross section

 $\sigma_{e^+e^ightarrow}$  hadrons



Figure: Feynman diagram representing the annihilation of  $e^+e^-$  into hadrons<sup>1</sup>.

Eugen Dizer Group Seminar Talk 10

 $<sup>^{1}</sup>_{\rm https://www.pngitem.com/middle/ihmixmR\_electron-positron-to-quark-antiquark-hd-png-download/}$ 

#### Hadronic Vacuum Polarization

Real Part of the Hadronic Polarization Function<sup>1</sup>:

Re 
$$\left[\Pi_{had}(q^2)\right] = A_i + B_i \ln(1 + C_i q^2),$$
 (3)

The parameters are given by

| i | Region                          | Range [GeV]                       | Ai        | B <sub>i</sub> | $C_i$ [GeV <sup>-2</sup> ] |
|---|---------------------------------|-----------------------------------|-----------|----------------|----------------------------|
| 1 | 0 - <i>k</i> <sub>1</sub>       | 0.0 - 0.7                         | 0.0       | 0.0023092      | 3.9925370                  |
| 2 | $k_1$ - $k_2$                   | 0.7 - 2.0                         | 0.0       | 0.0022333      | 4.2191779                  |
| 3 | $k_2 - k_3$                     | 2.0 - 4.0                         | 0.0       | 0.0024402      | 3.2496684                  |
| 4 | $k_3 - k_4$                     | 4.0 - 10.0                        | 0.0       | 0.0027340      | 2.0995092                  |
| 5 | $k_4 - k_5$                     | $10.0 - m_Z$                      | 0.0010485 | 0.0029431      | 1.0                        |
| 6 | $k_5 - k_6$                     | $m_{Z}$ - $10^{4}$                | 0.0012234 | 0.0029237      | 1.0                        |
| 7 | k <sub>5</sub> - k <sub>6</sub> | 10 <sup>4</sup> - 10 <sup>5</sup> | 0.0016894 | 0.0028984      | 1.0                        |

Eugen Dizer

<sup>&</sup>lt;sup>1</sup>H. Burkhardt and B. Pietrzyk, Physics Letters B 513, 46–52 (2001).

## Hadronic Uehling Potential

Numerical Hadronic Uehling Potential for a point-like Nucleus:

$$\delta V_{\text{numerical}}^{\text{had. VP}}(r) = -\frac{2Z\alpha}{\pi} \sum_{k=1}^{7} \int_{k_{i-1}}^{k_i} dq \, \frac{\sin(qr)}{qr} \left[ A_i + B_i \ln(1 + C_i q^2) \right]. \quad (4)$$

Analytical Hadronic Uehling Potential for a point-like Nucleus<sup>1</sup>:

$$\delta V_{\text{analytical}}^{\text{had. VP}}(r) = -\frac{2Z\alpha}{\pi} \int_0^\infty dq \, \frac{\sin(qr)}{qr} \left[ A_1 + B_1 \ln(1 + C_1 q^2) \right]$$
$$= -\frac{2Z\alpha}{r} B_1 \, \mathsf{E}_1 \left( \frac{r}{\sqrt{C_1}} \right). \tag{5}$$

<sup>&</sup>lt;sup>1</sup>S. Breidenbach et al., Physical Review A 106, 042805 (2022).

## Hadronic Uehling Potential



Figure: Comparison of muonic and hadronic Uehling potential<sup>1</sup>.

 $<sup>^{1}</sup>$ S. Breidenbach et al., Physical Review A 106, 042805 (2022).

# Hadronic Energy Shift

Relativistic Energy Shift of the 1s State for a point-like Nucleus:

$$\Delta E_{1s}^{\text{had. VP}} = \left\langle \delta V^{\text{had. VP}} \right\rangle_{1s}$$

$$= -\frac{Z\alpha\lambda(2\lambda\sqrt{C_1})^{2\gamma}B_1}{\gamma^2} {}_{2}F_{1}\left(2\gamma, 2\gamma; 1 + 2\gamma; -2\lambda\sqrt{C_1}\right), \quad (6)$$

with  $\lambda = Z\alpha m_e$  and  $\gamma = \sqrt{1 - (Z\alpha)^2}$ .

 $Z\alpha$  Expansion:

$$\Delta E_{1s}^{\text{had. VP}} \approx -4B_1 C_1 m_e^3 (Z\alpha)^4 + \frac{32B_1 C_1^{3/2} m_e^4 (Z\alpha)^5}{3} -4B_1 C_1 m_e^3 (Z\alpha)^6 \left[ 1 + 6C_1 m_e^2 - \ln(2Z\alpha\sqrt{C_1} m_e) \right].$$
 (7)

# Hadronic Energy Shift

For comparison: Leptonic VP  $\Delta E_{e^+e^-}^{\text{point}}(Z=1) = -8.975 \cdot 10^{-7} \text{ eV}.$ 

| Z  | $\Delta E_{ m analytical}^{ m point}$ [eV] | $\Delta E_{ m numerical}^{ m point}$ [eV] | $\Delta E_{ m exact}^{ m finite\ size}$ [eV] |
|----|--------------------------------------------|-------------------------------------------|----------------------------------------------|
| 1  | $-1.3963 \cdot 10^{-11}$                   | $-1.39(33) \cdot 10^{-11}$                | $-1.391(4)\cdot 10^{-11}$                    |
| 14 | $-5.9178 \cdot 10^{-7}$                    | $-5.90(18)\cdot 10^{-7}$                  | $-5.756(1)\cdot 10^{-7}$                     |
| 20 | $-2.7133 \cdot 10^{-6}$                    | $-2.71(5)\cdot 10^{-6}$                   | $-2.5596(3) \cdot 10^{-6}$                   |
| 70 | $-3.1090 \cdot 10^{-3}$                    | $-3.109(4)\cdot 10^{-3}$                  | $-1.248(1)\cdot 10^{-3}$                     |
| 82 | $-1.4128 \cdot 10^{-2}$                    | $-1.413(1)\cdot 10^{-2}$                  | $-3.693(4)\cdot 10^{-3}$                     |

Table: Energy shifts due to hadronic VP<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>E. Dizer, Bachelor Thesis, Heidelberg University (2020).

Relativistic g Factor Shift of the 1s State for a point-like Nucleus<sup>1</sup>:

$$\Delta g_{1s}^{\text{had. VP}} = -\frac{4}{3m_e} \left\langle r \frac{\partial \delta V^{\text{had. VP}}}{\partial r} \right\rangle_{1s}$$

$$= -\frac{8B_1 (Z\alpha)^2 (2\lambda \sqrt{C_1})^{2\gamma}}{3\gamma (1 + 2\lambda \sqrt{C_1})^{2\gamma}} + \frac{4}{3m_e} \Delta E_{1s}^{\text{had. VP}}. \tag{8}$$

 $Z\alpha$  Expansion:

$$\Delta g_{1s}^{\text{had. VP}} \approx -16B_1 C_1 m_e^2 (Z\alpha)^4 + \frac{512B_1 C_1^{3/2} m_e^3 (Z\alpha)^5}{9} - \frac{16B_1 C_1 m_e^2 (Z\alpha)^6}{3} \left[ 2 + 30C_1 m_e^2 - 3\ln(2m_e Z\alpha\sqrt{C_1}) \right]. \tag{9}$$

Eugen Dizer

<sup>&</sup>lt;sup>1</sup>S. G. Karshenboim et al., Physical Review A 72, 042101 (2005).

Approximate formula in terms of Energy Shift:

$$\Delta g_{1s, \text{ approx}}^{\text{had. VP}} \approx \frac{4(1+2\gamma)}{3m_e} \Delta E_{1s}^{\text{had. VP}}.$$
 (10)

Isotopic shift<sup>1</sup>:

$$^{20}$$
Ne<sup>9+</sup>:  $R_{rms} = 3.0055(21)$  fm  $^{22}$ Ne<sup>9+</sup>:  $R_{rms} = 2.9525(40)$  fm

$$\Delta g_{\text{rel., fns}}^{\text{had. VP}} \left( 1s, {}^{20}\text{Ne}^{9+} \right) = -1.133(14) \times 10^{-12} \,, \tag{11}$$

$$\Delta g_{\text{rel., fns}}^{\text{had. VP}} \left(1s, {}^{22}\text{Ne}^{9+}\right) = -1.133(15) \times 10^{-12} \,.$$
 (12)

<sup>&</sup>lt;sup>1</sup>T. Sailer et al., Nature 606, 479–483 (2022).

For comparison: Leptonic VP  $\Delta g_{e^+e^-}^{point}(Z=1) = -7.035 \cdot 10^{-12}$ .

| Z  | $\Delta g_{analytical}^{point}$ | $\Delta g_{	ext{numerical}}^{	ext{point}}$ | $\Delta g_{ m approx}^{ m finite\ size}$ |
|----|---------------------------------|--------------------------------------------|------------------------------------------|
| 1  | $-1.0929 \cdot 10^{-16}$        | $-1.09(9)\cdot 10^{-16}$                   | $-1.09(2)\cdot 10^{-16}$                 |
| 14 | $-4.6157 \cdot 10^{-12}$        | $-4.61(5)\cdot 10^{-12}$                   | $-4.49(1)\cdot 10^{-12}$                 |
| 20 | $-2.1085 \cdot 10^{-11}$        | $-2.11(2)\cdot 10^{-11}$                   | $-1.99(1)\cdot 10^{-11}$                 |
| 70 | $-2.2051 \cdot 10^{-8}$         | $-2.205(1)\cdot 10^{-8}$                   | $-8.86(1)\cdot 10^{-9}$                  |
| 82 | $-9.5886 \cdot 10^{-8}$         | $-9.589(3) \cdot 10^{-8}$                  | $-2.51(1)\cdot 10^{-8}$                  |

Table: g factor shifts due to hadronic  $VP^1$ .

ullet ALPHATRAP Accuracy  $\sim 10^{-11}$   $\longrightarrow$  observable effect

<sup>&</sup>lt;sup>1</sup>E. Dizer, Bachelor Thesis, Heidelberg University (2020).



Figure: Comparison of numerical and analytical results.

Eugen Dizer Group Seminar Talk 19

- One-Loop QED Corrections
- 2 Hadronic Vacuum Polarization
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section
- 4 Outlook

## Strong Laser Fields



Figure: Ionization processes of atoms in strong laser fields.<sup>1</sup>

- Atoms get ionized in strong laser fields
- HCIs can be stable in stronger laser fields

<sup>1</sup> https://www.researchgate.net/figure/Basic-ionization-processes-in-atoms-a-\ In-single-photon-ionization-the-atom-is-ionized\_fig7.321838945

# Highly-Charged Ions



Figure: Level structure of neutral atoms compared to HCI.

- Energy levels of neutral atoms are very close to each other
- HCIs are better as approximate 2-level systems

#### Two-Photon Excitations



Figure: Schematic diagram of the two-photon absorption process.<sup>1</sup>

- Study Optical Response of effective Two-Level Systems
- Highly Charged Ions, Semiconductors, ...
- Deep Tissue Microscopy
- Second harmonic generation, parametric down conversion

<sup>1</sup> https://www.researchgate.net/figure/Schematic-diagram-of-the-two-photon-absorption-process-\exemplified-for-green-532-nm\_fig1\_228880601

#### Two-Photon Fluorescence



Figure: Comparison of one-photon and two-photon fluorescence.<sup>1</sup>

 $<sup>\</sup>mathbf{1}_{\texttt{https://manu56.magtech.com.cn/progchem/EN/abstract/abstract11942.shtml}$ 

## Time-dependent Perturbation Theory

Time-dependent perturbation

$$i\hbar \frac{\partial}{\partial t} \psi(t, \mathbf{r}) = (H_0 + V(t))\psi(t, \mathbf{r}).$$
 (13)

Time-dependent coefficients  $\psi(t, \mathbf{r}) = \sum_n a_n(t)\phi_n$ 

$$i\hbar \dot{a}_m(t) = \varepsilon_m a_m(t) + \sum_n \langle m|V|n\rangle a_n(t).$$
 (14)

Introduce  $a_m(t) = c_m(t)e^{-i\varepsilon_m t/\hbar}$ ,  $E_{nm} = \varepsilon_n - \varepsilon_m = \hbar\omega_{mn}$ 

$$i\hbar \begin{pmatrix} \dot{c}_{1} \\ \dot{c}_{2} \\ \vdots \\ \dot{c}_{n} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12}e^{iE_{12}t/\hbar} & \cdots & V_{1n}e^{iE_{1n}t/\hbar} \\ V_{21}e^{iE_{21}t/\hbar} & V_{22} & \cdots & V_{2n}e^{iE_{2n}t/\hbar} \\ \vdots & \vdots & \ddots & \vdots \\ V_{n1}e^{iE_{n1}t/\hbar} & V_{n2}e^{iE_{n2}t/\hbar} & \cdots & V_{nn} \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix}$$
(15)

## Time-dependent Perturbation Theory

Light-atom interaction

$$V'_{nm} = V_{nm}^{(-)} e^{-i(\omega - \omega_{nm})t} + V_{nm}^{(+)} e^{i(\omega + \omega_{nm})t}.$$
 (16)

Equations of motion for  $c_1(t)$  and  $c_2(t)$ 

$$i\hbar\dot{c}_1(t) = V'_{11}c_1(t) + V'_{12}c_2(t) + \sum_{j\geq 3} V'_{1j}c_j(t),$$
 (17)

$$i\hbar\dot{c}_2(t) = V'_{21}c_1(t) + V'_{22}c_2(t) + \sum_{j\geq 3} V'_{2j}c_j(t).$$
 (18)

Under perturbation, for  $j \geq 3$ 

$$i\hbar c_j(t) = c_1(t) \int_0^t V'_{j1} dt' + c_2(t) \int_0^t V'_{j2} dt' + \dots$$
 (19)

## Rabi Frequency

Effective Schrödinger equation for 2-photon transition ( $\delta=2\omega-\omega_{21}$ )

$$i\hbar \begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \end{pmatrix} = \begin{pmatrix} \tilde{V}_{11} & \Omega e^{i\delta t} \\ \Omega^* e^{-i\delta t} & \tilde{V}_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}. \tag{20}$$

2-photon Rabi frequency

$$\Omega = \sum_{j\geq 3} \frac{V_{1j}^{(+)} V_{j2}^{(+)}}{-\hbar^2 (\omega + \omega_{j2})} = \sum_{j\geq 3} \frac{\left\langle 1 | \alpha \cdot \hat{\epsilon}^* e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} | j \right\rangle \left\langle j | \alpha \cdot \hat{\epsilon}^* e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} | 2 \right\rangle}{-2\hbar^2 (\omega + \omega_{j2})} \frac{I e^2 c}{\varepsilon_0 \omega^2}.$$
(21)

- Physical constants  $\varepsilon_0, e, c, ...$
- Laser intensity I and frequency  $\omega = \omega_{21}/2$
- Level difference  $\omega_{ij} = \omega_i \omega_j$

#### Rabi Oscillations

 $^{40}{\rm Ar^{13+}}$ :  $I=5\times 10^4~{\rm W/cm^2}$  and  $\hbar\omega=1.4$  eV. Lifetime of the excited state:  $\tau=9.6~{\rm ms}.$ 



Figure: Rabi oscillations under 1-photon excitations in <sup>40</sup>Ar<sup>13+</sup>. <sup>1</sup>

<sup>&</sup>lt;sup>1</sup> P. Micke et al., Nature 578, 60–65 (2020).

#### Resonance Cross Section

#### 2-photon excitation (TPE) cross section

$$\sigma = \left(\sum_{j\geq 3} \frac{\left\langle 1|\alpha \cdot \hat{\epsilon}^* e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}|j\rangle \left\langle j|\alpha \cdot \hat{\epsilon}^* e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}|2\right\rangle}{(\omega + \omega_{j2})}\right)^2 \frac{e^4 c^2}{4\varepsilon_0^2 \Gamma}.$$
 (22)



Eugen Dizer

#### Resonance Cross Section

For comparison: Cross sections for two-photon microscopy:

$$\sigma=1\sim 300 imes 10^{-50}~{
m cm}^4{
m s}.$$



Figure: Laser frequency and TPE resonance cross section for different ions.

- Laser frequencies are in the optical to X-ray region
- XFEL photon flux  $> 10^{24}$  ph/cm<sup>2</sup>/s  $\longrightarrow$  observable effect in HCls

Eugen Dizer

- One-Loop QED Corrections
- 2 Hadronic Vacuum Polarizatior
  - Hadronic Uehling Potential
  - Energy Level Correction
  - g Factor Correction
- Two-Photon Excitations
  - Rabi Frequency
  - Cross Section
- Outlook

#### Outlook

#### Hadronic Vacuum Polarization:

- Hadronic Uehling potential can be applied to other systems
- Hadronic effects will be observable in future experiments

#### Two-Photon Excitations:

- Generalize to many-photon excitations
- Treatment beyond perturbation theory
- Calculate two-photon decay rate
- Experimental realization

#### **Publications**

#### Published:

• Hadronic Energy Shift (with S. Breidenbach et al.)<sup>1</sup>

#### In progress:

- Hadronic g Factor Shift (with Z. Harman)
- Two-Photon Excitations (with C. Lyu)

<sup>&</sup>lt;sup>1</sup>S. Breidenbach et al., Physical Review A 106, 042805 (2022).

## Thank you and stay healthy!

