Algebra 1R

by a moron :3 21.03.2137

1 Teoria grup

1.1 Grupy, pierscienie, ciala

Dzialanie na zbiorze X:

$$\Phi: X \times X \to X$$
,

zwykle zapisywane jako xy, $x \cdot y$, x + y.

Element neutralny - takie e, ze dla kazdego $x \in X$ ex = xe = x. Dzialanie ma co najwyzej jeden element neutralny.

Element odwrotny do x to takie y, ze xy = yx = e. Jesli dzialanie jest laczne, to ma co najwyzej jeden element odwrotny do danego x.

Homomorfizm algebry $\mathscr{X} = (X, \{\cdot\})$ na algebre $\mathscr{Y} = (Y, \{\circ\})$ nazywamy przeksztalcenie $f : X \to Y$ spelniajace dla kazdego a, b $\in X$

$$f(a \cdot b) = f(a) \circ f(b).$$

- monomorfizm f jest 1-1
- epimorfizm f jest "na"
- izomorfizm f jest 1-1 i "na"
- endomorfizm kiedy $\mathscr{Y} = \mathscr{X}$
- automorfizm enodmorfizm bedacy izomor-

Polgrupa to niepusty zbior z dzialaniem lacznym.

GRUPA to niepusty zbior z lacznym dzialaniem i elementem neutralnym (zwanym jednos-cia grupy) oraz elementami odwrotnymi dla kazdego elementu.

 \hookrightarrow grupa abelowa (przemienna) – grupa z dzialaniem przemiennym

Zbior G z dzialaniem · jest grupa, jesli:

- 1. $(\forall a, b, c \in G)$ (ab)c = a(bc)
- 2. $(\exists e \in G)(\forall a \in G) ea = ae = e$
- 3. $(\forall a \in G)(\exists b \in G) ab = ba = e$
- *4. $(\forall a, b \in G)$ ab = ba w grupie abelowej

PIERSCIEN to niepusty zbior X z dwoma dzialaniami (\cdot , +, mnozenie i dodawanie) taki, ze:

- 1. zbior X z + jest grupa abelowa
- 2. · jest laczne
- 3. $(\forall x, y, z \in X) x \cdot (y+z) = x \cdot y + x \cdot z \land (x+y) \cdot z = x \cdot z + y \cdot z$

Kolejne dzikie nazwy *:

- ★ pierscien przemienny jesli mnozenia jest przemienne
- \star pierscien z jednoscia dla mnozenia istnieje element neutralny

CIALO to pierscien przemienny, ktory dla kazdego elementu ≠0 ma element odwrotny

1.2 Wlasnosci

Niech G bedzie grupa, a e jej elementem neutralnym. Wowczas:

- \hookrightarrow a, b \in G \Longrightarrow (ab)⁻¹ = b⁻¹a⁻¹
- \hookrightarrow a \in G i n = 1, ..., n a⁻ⁿ = (aⁿ)⁻¹ = * (a⁻¹)ⁿ
- \hookrightarrow dla m, n $\in \mathbb{Z}$ i a \in G mamy $a^{mn} = (a^m)^n$
- \hookrightarrow dla G grupy abelowej i n $\in~\mathbb{Z}$ (ab)^n =* a^nb^n
- st ${\sf trzeba}$ udowodnic, ale mi sie nie chce
- H \subseteq G jest podgrupa G, jesli jest grupa ze wzgledu na te same dzialania, czyli wystar-czy, ze

$$(\forall a, b \in H) ab^{-1} \in H.$$

Jelsi $a \in G$ i istnieja $n \in \mathbb{N}$, $n \ge 1$, takie, ze $a^n = e$, to mowimy ze n jest rzedem elementu a (n = o(a)). Jesli takie n nie istnieja, to a ma rzad nieskonczony $(o(a) = \infty)$.

- \hookrightarrow grupa torsyjna wszystkie elementy maja rzad skonczony

Jesli $o(a) = n \ oraz \ a^N = e \ to \ n|N, \ fajny dowodzik, ale leniem jestem$

Grupa cykliczna to grupa zlozona z wszystkich poteg danego elementu a, natomiast a jest nazywane generatorem tej grupy

1.3 Permutacje :>

n-ta grupa symetryczna $[S_n]$ - grupa wszystkich permutacji zbioru $X_n = \{1, \ldots, n\}$. $|S_n| = n!$

Jesli P \in S_n i dla i = 1, ..., n P(i) = a_i, to piszemy

$$\begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Mnozenie permutacji:

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix} =$$

$$= \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

Zbior elementow niezmienniczych (fixpunktow) permutacji P to zbior $F(P) = \{k \in X_n : P(k) = k\}$. Jego dopelnienie oznaczamy $M(P) = S_n \setminus F(P)$.

.....

Cykl k-elementowy C to permutacja taka, ze $C(a_1) = a_2$, $C(a_2) = a_3$, ..., $C(a_n) = a_1$. Cykl 2-elementowy to transpozycja. Cykle zapisujemy

$$(a_1, a_2, \ldots, a_n)$$

Kazda permutacja jest iloczynem transpozycji.

.....

Permutacje parzyste - iloczyn

$$\prod_{i < j} (a_j - a_i)$$

jest dodatni (gorny row to kolejne liczby naturalne, dolny to wyrazy). Pozostale permutacje sa nieparzyste.

Znak permutacji jest +1 gdzy permutacja jest parzysta i -1 wpp. Alternatywnie mozna zapisac (gorny row to b_k , a dolny to c_k)

$$\text{sgn P} = \prod_{i < j} \frac{b_j - b_i}{c_j - c_i}$$

Dla dwoch dowolnych permutacji P_1 , P_2 mamy

$$\operatorname{sgn} P_1 P_2 = \operatorname{sgn} P_1 \cdot \operatorname{sgn} P_2$$

$$sgn P_1^{-1} = sng P_1.$$

n-ta grupa alternujaca $[A_n]$ - podgrupa S_n zlozona ze wszystkich parzystych permutacji.

1.4 Grupy ilorazowe B)

Prawostronna warstwa grupy G wzgledem jej podgrupy H wyznaczona przez $g \in G$ to zbior

$$gH = \{gh : h \in H\},$$

natomiast lewostronna warstwa to zbior

$$Hg = \{hg : h \in H\}.$$

Dla grup abelowych sa one rowne.

Dwa elementy $g_1,g_2\in G$ wyznaczaja te sama warstwe prawostronna wzgledem H, gdy $g_1^{-1}g_2\in H$, a te sama warstwe lewostronna, gdy $g_1g_2^{-1}\in H$.

Rzad grupy skonczonej G to ilosc jej elementow.

Indeks [G:H] podgrupy H w grupie G to ilosc
warstw w grupie G wzgledem H. Dla skonczonych grup mamy:

$$\hookrightarrow$$
 g \in G o(g)||G|,

 \hookrightarrow rzad i indeks kazdej podgrupy sa dziel-nikami rzedu grupy,

 \hookrightarrow jesli rzad jest liczba pierwsza, to grupa jest cykliczna

Twierdzenie Lagrange'a – dla skonczonych $G \rightarrow u$.

$$|G| = [G : H] \cdot |H|$$
.

Podgrupa H jest dzielnikiem normalnym grupy G $[H \triangleleft G]$ jesli $(\forall g \in G)$ gH = Hg. Wystarczy, ze $(\forall g \in G)(\forall h \in H)$ ghg⁻¹ \in H.

Niech $f: G_1 \rightarrow G_2$ bedzie homomorfizmem, a e_1 , e_2 beda elementami neutralnymi grup odpowiednio G_1 , G_2 . Wtedy $f(e_1) = e_2$ oraz $f(g)^{-1} = f(g^{-1})$.

Obraz homomorfizmu $f:G_1\to G_2$ jest podgrupa grupy G_2 [Im $f < G_2$], natomiast jadro f jest dzielnikiem normalnym G_1 [Ker $f \triangleleft G_1$].

Grupa ilorazowa to zbior wszyystkich warstw H/G, gdzie $H \triangleleft G$, z dzialaniem

$$(g_1H)(g_2H) = (g_1g_2)H.$$

Odwzorowanie

$$\phi: \mathsf{G} \to \mathsf{H}$$

$$\phi(g) = gH$$

jest epimorfizmem (czesto nazywane kanonicznym homeomorfizmem G na H). [!!!]Zasadnicze twierdzenie o homeomorfiz-mach dla grup - jesli f : G \rightarrow G₁ jest epimorfizmem oraz Ker f = H, natomiast ϕ : G \rightarrow G/H jest dzialaniem jak wyzej, to istnieje tylko jeden izomorfizm ψ : G/H \rightarrow G₁ taki, ze f = $\psi \circ \phi$

Jezeli $\emptyset \neq A \subseteq G$ oraz G(A) < G to przekroj wszystkich podgrup G zawierajacych A, a $A \subseteq G_1 < G$, to $G(A) < G_1$.

Jezeli K \triangleleft G i H \triangleleft G, to najmniejsza podgrupa G zawierajaca H i K pokrywa sie ze zbiorem

$$KH := \{kh : k \in K, h \in H\}$$

Pierwsze twierdzenie o izomorfizmach – jezeli $K \triangleleft G$ i $H \triangleleft G$, to

- \hookrightarrow K < KH = HK < G
- $\hookrightarrow H \cap K \triangleleft H \text{ i } K \triangleleft KH$
- $\hookrightarrow \phi: \mathsf{hK} \xrightarrow{} \mathsf{h(K \cap H)}$ indukuje izomorfizm

$$HK/K \sim H/(H \cap K)$$

Drugie twierdzenie o izomorfizmach – jezeli $K \triangleleft G$ i $K \triangleleft H \triangleleft G$ i oznaczymy $\overline{H} = H/K$ oraz $\overline{G} = G/K$, to wtedy:

- $\hookrightarrow \overline{H} < \overline{G}$
- $\hookrightarrow \; \overline{H} \triangleleft \overline{G} \; \Longleftrightarrow \; H \triangleleft G$

Automorfizm wewnetrzny grupy G wyznaczony przez g: $\phi_{q}(x) = g^{-1}xg$.

Jesli G to grupa abelowa, to dla kazdego g $\phi_{\rm g}({\bf x})={\bf x}$, a wiec ma ona jedynie identy-cznosc.

Zbior wszystkich automorfizmow wewnetrznych grupy G oznaczamy $\mathbf{I}(\mathbf{G})$ i tworzy on grupe ze skladaniem

Centrum grupy G [Z(G)] to zbior $x \in G$ takich, ze dla dowolnego $y \in G$ xy = yx. Dla kazdego G $Z(G) \triangleleft G$

Grupa I(G) jest izomorficzna z G/Z(G).

Jesli M to dowolny podzbior grupy G, to dla kazdego g takiego, ze $\phi_{\rm g}$ \in I(G) zbiorem sprzezony do M nazywamy zbior

$$\mathsf{M}^{\mathsf{g}} = \{ \phi_{\mathsf{g}}(\mathbf{x}) : \mathbf{x} \in \mathsf{M} \}$$

Jesli M = $\{x\}$, to M^g zawiera elementy sprzezone z x.

Normalizator zbioru M:

$$N_G(M) = \{g \in G : M^g = M\}$$

Centralizator zbioru M:

$$C_G(M) = \{g \in G : mg = gm, m \in M\}$$

Twierdzonka:

$$\hookrightarrow (\forall \ M \subseteq G) \ C_G(M) \ \langle \ N_G(M) \ (|M| = 1 \implies C_G(M) = N_G(M))$$

$$\hookrightarrow$$
 Z(G) = C_G(G)

 \hookrightarrow dla M \subseteq G ilosc zbiorow Mg jest rowna [G : $N_G(M)\,]$.

Aby klasa elementow sprzezonych z $x \in G$ byla jednoelementowa wystarczy, zeby $x \in Z(G)$

Jesli G jest skonczona, to ilosc elementow sprzezonych z zadanym x jest dzielnikiem |G|.

p-grupa to grupa, w ktorej wszystkie elementy maja rzad p, gdzie p jest liczba pierwsza. Jesli $|G| = p^n$ to G jest p-grupa.

Skonczone p=grupy maja nietrywialne centrum. Jesli $|G| = p^2$, to G jest grupa abelowa.

1.5 Produkty grup

W zbiorze $A \times B = \{(a,b) : a \in A, b \in B\}$, gdzie A, B sa grupami, okreslmy

$$(a,b)\cdot(c,d)=(ac,bd)$$