Конспект лекций по математическому анализу

Шишминцев Дмитрий Владимирович

24 января 2023 г.

СОДЕРЖАНИЕ

			Стр.
1	Основы	анализа	2
	1.1	Множества	2
	1.2	Отображения (функция)	2
	1.3	Характеристики множеств	3
	1.4	Множества чисел	3
	1.5	Метод математической индукции	4
	1.6	Бином Ньютона	5
	1.7	Неравенство Бернулли	5
2	Пределы		6
	2.1	Числовая последовательность и ее свойства	6
	2.2	Предел числовой последовательности	7
	2.3	Свойства сходящихся последовательностей	
	2.4	Монотонная последовательность	8
3	Предел функции 1		11
	3.1	Эквивалентность	
	3.2	Непрерывность функции	13
4	Дифференциальное исчисление 10		
	4.1	Формула Тейлора	

1 Основы анализа

1.1 Множества

Определение 1. Множество - совокупность элементов одной природы и некоторым общим свойством позволяющим объеденить их в одно целое.

Обозначения:

- A, B, C множества, a, b, c элементы множества
- ∀ квантор общности (для каждого)
- 3 найдется
- $\mathbb{X}/\mathbb{E}/\mathbb{U}$ универсальные множества
- \emptyset пустое множество
- ! единственность
- \rightarrow следовательно

Операции над множествами:

- $A \cap B$ объединение множеств (коммутативно и ассоциативно)
- $A \cup B$ пересечение множеств (коммутативно и ассоциативно)
- $A \backslash B$ разность множеств
- \bar{A} отрицание
- $A\Delta B$ симметрическая разность $(A\cup B)\backslash (A\cap B)$
- $A \times B = \{(x,y) | x \in A, y \in B\}$ декартово произведение

1.2 Отображения (функция)

Определение 2. правило по которому $\forall x \in D \exists ! y \in V$

F:D (область определения) \to (правило перевода) V (область значений) ВАРИАТИВНОСТИ ФУНКЦИОНАЛЬНЫХ ОТОБРАЖЕНИЙ:

- Сюръекция ($\forall y \in V : \exists x \in D$) каждый элемент в области значений функции имеет прообраз в области определения
- Инъекция ($\forall y \in V : \exists ! x \in D$) каждый элемент в области определения функции имеет образ в области значений. Не каждый образ имеет прообраз.

- Биекция ($\forall F:A\to B\exists !F^{-1}:B\to A$) - функция яаляется и сюръекцией и биекцией.

1.3 Характеристики множеств

Определение 3. Мощность (кардинальное число) - количество различных элементов множества.

Определение 4. Эквивалентность множеств: множества эквивалентны $(A \sim B)$ если они равномощны. $\forall x \in X \exists ! y \in Y \text{ и } \forall y \in Y \exists ! x \in X$

Определение 5. Счетность множеств: множество счетно (исчислимо), если $A \sim \mathbb{N}$

Определение 6. Мощность континуума: множество эквивалентное множеству точек отрезка [0,1] имеет мощность континуума.

Теорема 1. Множество всех точек отрезка [0;1] - несчетно

Теорема 2 (Кантора-Бернштейна). Если $A \sim B'(B' \subset B)$ и $B \sim A'(A' \subset A) \Rightarrow A \sim B$

Если $A \subset B \subset C$, причем $A \sim C \Rightarrow A \sim B$

Определение 7 (Сравнение мощностей множеств). $\exists B' \in B: B' \sim A$ и $\nexists A' \in A: A' \sim B \Rightarrow |A| < |B|$

1.4 Множества чисел

- \mathbb{N} натуральные числа $\{1, 2, 3...\}$
- \mathbb{Z} целые числа $\{-1,0,1,2..\}$
- \mathbb{Q} рациональные числа $\{\frac{2}{3}, 0.(3)\}$
- \mathbb{R} вещественные (действительные числа) $\{\sqrt{2},\pi,e\}$
- \mathbb{C} комплексные

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Основные свойства вещественных чисел:

- Транзитивность $(a > b, b > c \rightarrow a > c)$
- Ассоциативность (a + (b + c) = (a + b) + c)
- Коммутативность a + b = b + a
- Дистрибутивность $(a+b) \cdot c = a \cdot c + b \cdot c$
- $\forall a, b \in \mathbb{R} \exists ! c \in \mathbb{R} : a + b = c$
- $\forall a \neq 0 \exists ! a^{-1} : a \cdot a^{-1} = 1$

ГРАНИ МНОЖЕСТВ:

- $\forall b \in \mathbb{R} : \forall a \in A \rightarrow a \leq b$ верхняя грань
- $\forall d \in \mathbb{R} : \forall a \in A \rightarrow d \leq a$ нижняя грань

Грани не единственны

Определение 8. Точная верхняя/нижняя грань - минимальный/максимальный элемент множества верхних/нижних граней множеств.

Свойство точной верхней грани:

Если $b = \sup A$, то $\forall \epsilon > 0 \exists a \in A : a > b - \epsilon$

 \blacktriangleright Допустим обратное. Тогда $a \leq b - \epsilon$ А это невозможно т.к b является наименьшей верхней гранью. \blacktriangleleft

Свойство нижней верхней грани:

Если $d = \inf A$, то $\forall \epsilon > 0 \exists a \in A : a < d + \epsilon$

▶ Док-во аналогично свойству точной верхней грани. ◀

Теорема 3 (Принцип вложенных отрезков). Пусть $\{[a_n,b_n]\}_{n=1}^{\infty}: \forall n \in \mathbb{N} \to [a_{n+1},b_{n+1}\subset [a_n,b_n]]$ тогда $\exists!c\in\mathbb{R}: \forall n\in\mathbb{N}\to c\in [a_n,b_n]$

▶ Пусть длина отрезка - $d(n) = b_n - a_n$. $\forall k \in \mathbb{N} \to d(1) > d(k)$. Пусть $c := \sup a_n \Rightarrow \forall n \to a_n \le c \le b_n$. $\forall n \to c \le b_n \Rightarrow c \in [a_n, b_n]$. Единственность точки следует из стремления длин отрезков к нулю. \blacktriangleleft

1.5 Метод математической индукции

Для обоснования ММИ используем свойство натуральных чисел: $\forall A \subset \mathbb{N}: A \neq \emptyset \exists a' \in A: \forall a \in A \to a' \leq a.$ Метод математической индукции для док-ва утверждения на множестве A состоит из шагов:

- База индукции - проверяем справедливость на a^\prime

- Индукционное предположение проверяем для произвольного элемента $a_k \in A$
- Индукционный шаг доказываем справедливость для $a_{k+1} \in A$

1.6 Бином Ньютона

$$(1+x)^n = \sum_{k=0}^n C_n^k x^k \tag{1.1}$$

 $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ - биноминальный коэффициент $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

 \blacktriangleright По методу математической индукции. При $n=1.1+x=C_1^0+C_1^1x=1+x$ При n=t формула так же верна.

При n=t+1

$$\begin{array}{lll} (1+x)^{t+1} &=& (1+x)^t (1+x) &=& \binom{t}{0} x^0 + \ldots + \binom{t}{t} x^t + \binom{t}{0} x + \ldots + \binom{t}{t} x^{t+1} &=& \binom{t+1}{0} + \binom{t+1}{1} x + \ldots + \binom{t+1}{t+1} x^{t+1} \end{array} \blacktriangleleft$$

1.7 Неравенство Бернулли

$$(1+x)^n > 1 + xn (1.2)$$

При $x>-1, x\neq 0, n\geq 2$ Док-во по ММИ.

2 Пределы

2.1 Числовая последовательность и ее свойства

Определение 9 (Числовая последовательность).

$$\beth x_n = f(n), f: \mathbb{N} \to \mathbb{R}$$

Операции с числовыми последовательностями выполняются почленно.

Определение 10 (Ограниченность последовательности).

$$\exists A \in \mathbb{R} : \forall n \in \mathbb{N} \to |x_n| \le A$$

Определение 11 (Бесконечно большая последовательность). Последовательность называется бесконечно большой, если множество членов удовлетворяющих условию $|x_n| \leq c$ конечно.

$$\forall c > 0 \exists n(c) \in \mathbb{N} : \forall n > n(c) \to |x_n| > c$$

Определение 12 (Бесконечно малая последовательность). Последовательность называется бесконечно малой, если множество членов удовлетворяющих условию $|x_n| \ge c$ конечно.

$$\forall c > 0 \exists n(c) \in \mathbb{N} : \forall n > n(c) \to |x_n| < c$$

Теорема 4 (Ограниченность бесконечно малой последовательности). Если x_n - б.м.п $\Rightarrow \forall n \in \mathbb{N} \to |x_n| < C, C \in \mathbb{R}_+$

▶ По определению бесконечно малой последовательности, кол-во элементов $|x_n| \geq C$ конечно. Возьмем $C = max(|x_1|, |x_2|, ..., |x_n|)$. Получим $\forall n \in \mathbb{N} \to |x_n| < C$ ◀

Теорема 5 (Арифметика бесконечно малых последовательностей).

- Если $\{x_n\}$ б.м.п, то и $\{|x_n|\}$ б.м.п
- Сумма/разность конечного кол-ва б.м.п б.м.п
- Произведение б.м.п на ограниченную последовательность б.м.п $\blacktriangleright \{x_n\}$ б.м.п; $\{y_n\}$ ограниченная последовательность, C грань $\{y_n\}$ $\forall \epsilon > 0: \exists N: \forall n \in \mathbb{N} => |x_n| < \frac{\epsilon}{M} \Rightarrow |x_n \cdot y_n| = |x_n| \cdot |y_n| < \frac{\epsilon}{M} \cdot M = \epsilon$

2.2 Предел числовой последовательности

Определение 13 (Сходщаяся последовательность). Последовательность $\{x_n\}$ называется сходящейся (имеющей предел), если $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n - a| < \epsilon$ или же $x_n \in U_{\epsilon}(a)$

Теорема 6 (О единственности предела последовательности). Если последовательность сходится, то она имеет единственный предел.

▶ Предположим обратное

$$\lim_{n\to\infty} x_n = a$$

$$\lim_{n\to\infty} x_n = b$$

где
$$a>b,\epsilon=\frac{a-b}{2}>0,$$
 тогда $\forall n>n(\epsilon)\to a-\epsilon< x_n< b+\epsilon$ Получается, что $a-\epsilon=b+\epsilon=\frac{a+b}{2}$

2.3 Свойства сходящихся последовательностей

- Предел б.м.п = 0
- Сходящаяся последовательность ограничена
- Не всякая сходящаяся последовательность является ограниченной
- $\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n$
- $\lim_{n\to\infty} (x_n \cdot y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n$
- $\forall n \in \mathbb{N} : y_n \neq 0, \lim_{n \to \infty} y_n \neq 0 \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$

Теорема 7. Если $\lim_{n\to\infty}x_n=a\neq 0\Rightarrow \exists n'\in\mathbb{N}: \forall n>n'\to |x_n|>\frac{1}{2}|a|$ при a>0, и $x_n<\frac{1}{2}|a|$ при a<0

▶
$$|x_n - a| < \frac{1}{2}|a| \Leftrightarrow a - \frac{1}{2}|a| < x_n < a + \frac{1}{2}|a|$$
 ◀

Теорема 8 (О сравнении пределов). $\forall n \in \mathbb{N} \to x_n \leq y_n \Rightarrow \lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$

▶ $a \le b$ Предположим обратное, a > b. Пусть $\epsilon = \frac{a-b}{2}$ Получаем $x_n > a-\epsilon \to x_n > \frac{a+b}{2}, y_n < b+\epsilon \to y_n < \frac{a+b}{2}$ ◀

Теорема 9 (о двух миллиционерах). Пусть $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$, тогда $\forall n\in\mathbb{N}\to x_n\leq y_n\Rightarrow \forall \{z_n\}: \forall n\to x_n\leq z_n\leq y_n$ справедливо, что $\lim_{n\to\infty} z_n=a$

$$ightharpoonup a - \epsilon < x_n \le z_n \le y_n < a + \epsilon \to z_n \in (a - \epsilon, a + \epsilon) \blacktriangleleft$$

2.4 Монотонная последовательность

Определение 14 (Монотонная последовательность). Последовательность называется возрастающей ($\{x_n\} \uparrow$), если $\forall n \in \mathbb{N} \to x_{n+1} \geq x_n$, убывающей, если $x_{n+1} \leq x_n$. В случае выполнения строгого неравенства, называется строго возрастающей/убывающей.

Теорема 10 (Вейерштрасса). Если неубывающая/невозрастающая последовательность ограничена сверху/снизу, то она сходится к $supx_n$

▶ Пусть C - верхняя граница последовательности. Тогда $\exists x_k > C - \epsilon$. Так как последовательность является монотонной, то все члены последовательности начиная с x_k удовлетворяет неравенству $C - \epsilon < x_k \le C \Rightarrow \lim_{n \to \infty} x_n = C$

Определение 15 (Эйлерова константа).

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \tag{2.1}$$

Теорема 11 (Теорема Штольца). $\{y_n\}$ - неограниченная неубывающая последовательность. Если существует предел $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=l$, то тогда существует $\lim_{n\to\infty}\frac{x_n}{y_n}=l$

▶ $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = l \Rightarrow \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = l + a_n$, где a_n - б.м. $\Rightarrow \forall \epsilon > 0 \exists n(\epsilon)$: $\forall n \geq n(\epsilon) \to |a_n| < \frac{\epsilon}{2}$. Домножим на $(y_{n+1}-y_n)$.

$$x_{n+1} - ly_{n+1} = x_n - ly_n + a_n(y_{n+1} - y_n)$$

Сложим все равенства от $n(\epsilon)+1$ до n+1

$$x_{n+1} - ly_{n+1} = x_{n(\epsilon)} - ly_{n(\epsilon)} + \sum_{i=n(\epsilon)}^{n} a_i(y_{i+1} - y_i)$$
 Получается, что: $|x_{n+1} - ly_{n+1}| \le |x_{n(\epsilon)} - ly_{n(\epsilon)}| + |a_{n(\epsilon)} \cdot |y_{n(\epsilon)} - y_{n(\epsilon)}| \dots |a_n| \cdot |y_{n+1} - y_n|$

Так как $|a_n| < \frac{\epsilon}{2}$, получается:

$$|x_{n+1} - ly_{n+1}| \le |x_{n(\epsilon)} - ly_{n(\epsilon)}| + \frac{\epsilon}{2} |y_{n(\epsilon)} - y_{n(\epsilon)}| \dots \frac{\epsilon}{2} |y_{n+1} - y_n| \qquad |: (y_{n+1})$$

$$|\frac{x_{n+1}}{y_{n+1}} - l| < \frac{|x_{n(\epsilon)} - ly_{n(\epsilon)}|}{y_{n+1}} + \frac{\epsilon}{2} \frac{y_{n+1} - y_{n(\epsilon)}}{y_{n+1}}.$$

Так как y_n стремится к $+\infty \Rightarrow \exists n_1(\epsilon): \forall n>n_1 \to \frac{|x_{n(\epsilon)-ly_{n(\epsilon)}}|}{y_{n+1}} < \frac{\epsilon}{2}$ Полагая $n_0=maxn_1, n(\epsilon)$ получаем, что $\forall n>n_0 \to |\frac{x_{n+1}}{y_{n+1}}-l|<\epsilon$, следовательно $\frac{x_n}{y_n} \to l$ при $n\to\infty$

4

Определение 16. Подпоследовательность - последовательность вида $y_n = x_{k_n}$, где $\{x_n\}$ - некая последовательность, а $\{k_n\}$ - некая строго возрастающая последовательность натуральных чисел.

Свойства подпоследовательностей:

- Если последовательность сходится к a, то все ее подпоследовательности тоже сходятся к a
- Все подпоследовательности, как и сама последовательность, если они сходятся, то сходятся к одному и тому же пределу.

Определение 17. Точка $a \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ называется предельной точкой последовательности, если $\forall \epsilon > 0 U(a,\epsilon)$ содержится бесконечно много элементов этой последовательности.

Определение 18. Точка $a \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ называется предельной точкой последовательности, если из этой последовательности можно выделить подпоследовательность сходящуюся к a.

Определение 19. Наибольшая предельная точка последовательности называется верхним пределом, а наименьшая - нижний

Теорема 12. У всякой ограниченной последовательности существуют верхний и нижний пределы и хотя бы одна предельная точка.

Теорема 13 (теорема Больцано-Вейерштрасса). Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Теорема 14 (критерий Коши). Для сходимости последовательности необходимо и достаточно, что бы она была фундаментальной (выполнялось условие

Коши)

УСЛОВИЕ КОШИ: $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n, p \in \mathbb{N} : n, m > n(\epsilon) \to |x_n - x_m| < \epsilon$

▶ НЕОБХОДИМОСТЬ: $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n - a| < \frac{\epsilon}{2}$, теперь если $m, m > n(\epsilon)$, то $|x_n - x_m| = |x_n - a| = (x_m - a) \le |x_n - a| + |x_m - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$

ДОСТАТОЧНОСТЬ: $|x_n-x_{n(\epsilon)}|<\epsilon\Rightarrow |x_n|\leq |x_{n(\epsilon)}+\epsilon|$. Из этого следует что последовательность ограничена. По Т. Больцано-Вейерштрасса из нее можно выделить сходящуюся подпоследовательность. $|x_n-x_{k_n}|<\frac{\epsilon}{2}$, где x_{k_n} - элемент сходящейся подпоследовательности. Переходя к пределу при $k\to\infty$ получаем $|x_n-a|<\frac{\epsilon}{2}$

3 Предел функции

Определение 20 (предел функции в точке по Гейне).

$$\forall \{x_n\}_{n=1}^{\infty} : (x_n \xrightarrow{n \to \infty} a \bowtie \forall n \in \mathbb{N} \to x_n \neq a) \to f(x_n) \xrightarrow{n \to \infty} b$$

Определение 21 (предел функции в точке по Коши).

$$\forall \epsilon > 0 \exists \delta(\epsilon) > 0 : \forall x : 0 < |x - a| < \delta \to |f(x) - b| < \epsilon$$

Теорема 15. Определения по Коши и Гейне являются эквивалентными.

▶ понять и написать док-во◀

Свойства пределов:

- $\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$
- $\lim_{x\to a} (f(x) \cdot g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
- $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$

Определение 22 (односторонний предел по Гейне).

$$\forall \{x_n\}_{n=1}^{\infty} : (x_n \xrightarrow{n \to \infty} a \bowtie \forall n \in \mathbb{N} \to x_n > a) \to f(x_n) \xrightarrow{n \to \infty} b$$

 $x_n > a$ для правостороннего и $x_n < a$ для левостороннего

Определение 23 (односторонний предел по Коши).

$$\forall \epsilon > 0 \exists \delta(\epsilon) > 0 : \forall x \in (a, a + \delta) : \delta \to |f(x) - b| < \epsilon$$

 $\forall x \in (a,a+\delta)$ для правостороннего предела и $\forall x \in (a-\delta,a)$ для левостороннего предела

Теорема 16. Если у функции f(x) правосторонний и левосторонний предел в точке a, то она имеет предел в точке a

Теорема 17 (критерий Коши). Для существования конечного предела функции в точке a необходимо и достаточно что бы выполнялось условие Коши: $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 : \forall x', x'' \in U(a, \delta) \to |f(x') - f(x'')| < \epsilon$

▶ НЕОБХОДИМОСТЬ: Пусть b - предел функции f(x), тогда: $|f(x')-b|<\frac{\epsilon}{2}$ и $f(x'')-b|<\frac{\epsilon}{2} \Rightarrow |f(x')-f(x'')|=|f(x')-b-f(x'')+b|\leq |f(x')-b|+|f(x'')-b|<\frac{\epsilon}{2}+\frac{\epsilon}{2}$

ДОСТАТОЧНОСТЬ: Согласно определению по Гейне, возьмем $x_n \in U(a)$: $x_n \xrightarrow{n \to \infty} a$. Из условия Коши для последовательностей: $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N}$: $\forall n \geq n(\epsilon) \to x_n \in U(a,\delta) \Rightarrow |f(x_n) - f(x_m)| < \epsilon, \forall n,m \geq n(\epsilon)$. Тогда

последовательность $\{f(x_n)\}$ сходится в силу критерия Коши для последовательностей. \blacktriangleleft

Модификация условия Коши:

- Для левостороннего предела: $a \delta < x', x'' < a$
- Для правостороннего предела: $a < x', x'' < a + \delta$
- Для $x \to \infty : |x'|, |x''| > \delta$
- Для $x \to -\infty : x', x'' < -\delta$
- Для $x \to +\infty : x', x'' > \delta$

Определение 24. Функция называется бесконечно малой, если ее предел равен нулю

Определение 25. Функция называется бесконечно большой в точке a слева/справа, если ее односторонний предел равен $\pm \infty$

Определение 26. Функция f(x) является в точке a бесконечно малой более высокого порядка, чем g(x), если $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$. В таком случае это обозначается f(x) = o(g(x)) при $x \to a$.

$$\exists U(a): f(x) = g(x)c(x)$$
 при $x \to a$, где $c(x) \to 0$

Определение 27. Симовлом О обозначают любую функцию f(x) = O(g(x)) ограниченную относительно g(x)

$$|f(x)| \le c|g(x)|$$

Свойства для о/О:

- $o(c \cdot f(x)) = o(f(x)), c \neq 0$
- $o(f(x)) \pm o(g(x)) = o(f(x))$
- $o(f(x)) \cdot o(g(x)) = o(f(x)g(x))$

Свойства для О:

- O(o(f(x))) = o(f(x))
- O(O(f(x))) = O(f(x))
- o(O(f(x))) = o(f(x))

3.1 Эквивалентность

Определение 28. $f(x) \sim g(x)$, если $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$

Эквивалентность при $x \to 0$: (при равенстве +o(x))

- $-\sin x \sim x$
- $-1 \cos x \sim \frac{x^2}{2}$
- $tg x \sim x$
- $\arcsin x \sim x$
- $arctg x \sim x$
- $-a^{b(x)}-1 \sim b(x) \ln(a)$
- $-\ln(1+x) \sim x$
- $-(1+x)^a-1\sim ax$

Определение 29 (Первый замечательный предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

▶ разобрать и написать док-во ◀

3.2 Непрерывность функции

Определение 30 (непрерывность по Гейне).

$$\forall \{x_n\} : x_n \xrightarrow{n \to \infty} a, \{f(x_n)\} \xrightarrow{n \to \infty} f(a)$$

Определение 31 (непрерывность по Коши).

$$\forall \epsilon > 0 \exists \delta(\epsilon) > 0 : \forall x \in D(f) : |x - a| < \delta \rightarrow |f(x) - f(a)| < \epsilon$$

Определение 32 (формальное определение односторонней непрерывности). Функция непрерывна справа/слева если правый/левый предел равен f(a)

Теорема 18 (непрерывноть функций над арифметическими операциями). f(x), g(x) - непрерывны в точке a. Тогда $f(x) \pm g(x), f(x) \cdot g(x), \frac{f(x)}{g(x)}$ непрерывны в точке a.

▶ Так как функции в точке a имеют пределы, соответственно равныы f(a), g(a) то существуют пределы $f(a) \pm g(a)$ и тд. Т.к предел равен значению, то значит по определению эти функции непрерывны в точке a ◀

Теорема 19 (о непрерывности сложной функции). $x=\phi(t)$ непрерывна в точке a, а функция y=f(x) непрерывна в точке $b=\phi(a)\Rightarrow y=f(\phi(t))$ непрерывна в точке a

▶ Пусть $\{t_n\}$ - последовательность значений сложной функции сходящейся к a. Так как $x = \phi(t)$ непрерывна и сходится к $a \Rightarrow$ последовательность аргументов сходится к $b = \phi(t)$ по определению по Гейне. Так как y = f(x) непрерывна в точке $b = \phi(\epsilon)$ и $\{x_n\}$ сходится к $b = \phi(a)$ и является последовательностью значений аргументов, то соотсветствующая последовательность функции $f = [\phi(t)]$ сходится к $f(b) = f[\phi(a)]$ ◀

Теорема 20 (существование односторонних пределов монотонной на отрезке функции). Если функция f(x) монотонна на отрезке [a,b], то у нее существует правый и левый предел в любой внутренней точке отрезка, так же существует правый предел в точке a и левый предел в точке b.

▶ Т.к функция монотонна, то $\forall x \in [a; x_n] \to f(x) \le f(x_0)$. Т.к множество значений функции ограниченой сверху, то по теоереме о точной верхней грани существует $\sup((f(x)) = M \le f(x_0)) \Rightarrow \forall \epsilon > 0 \exists \delta = x_0 - x_\epsilon > 0 : \forall x \in (x_0 - \delta; x_0) \to |M - f(x_0)| < \epsilon$

Теорема 21 (непрерывность монотонной функции). Для того что бы монотонная функция являлась непрерывной на отрезеке [a,b], необходимо и достаточно что бы лбое число c:f(a)< c< f(b) было значением этой функции

Теорема 22 (монотонность и непрерывность обратной функции). Если функция монотонна на отрезке [a,b] и непрерывна на нем, то на этом отрезке определена обратная функция которая так же непрерывно возрастает/убывает на данном отрезке.

▶ Так как функция монотонна и непрерына на отрезке \Rightarrow по теореме непрерывности монотонной функции множеством значений функции является отрезок $[f(a), f(b)] \Rightarrow$ существует обратная функция в силу биективности правила f. \blacktriangleleft

Определение 33 (устранимый разрыв). $\exists \lim_{x\to a} f(x)$, но $a \notin D(f)$ или $f(a) \neq \lim_{x\to a} f(x)$. В случае устранимого разрыва функцию можно доопределить не меняя значений функции в других точках

Определение 34 (разрыв первоо рода).

$$\lim_{x \to a-} f(x) \neq \lim_{x \to a+} f(x)$$

Определение 35 (разрыв второго рода). Хотя бы один из односторонних пределов не существует или бесконечен.

Определение 36 (кусочно-непрерывная функция на отрезке). Функция определена всюду на отрезке и непрерывна во всех внутренних точках, кроме ограниченного числа точек в которых имет разрывы первого рода.

Определение 37 (Ограниченность функции). $\exists M, m \in \mathbb{R} : \forall x \in X \to m \le f(x) \le M$

4 Дифференциальное исчисление

Пусть y=f(x) задана на (a,b), рассмотрим $x_0\in(a,b)$ и приращение аргумента $\triangle x$ - произвольное число $x_0+\triangle x\in(a,b)$

Определение 38 (приращение функции).

$$\triangle y = \triangle f = f(x_0 + \triangle x) - f(x_0)$$

Определение 39 (производная). Функция имеет производну в точке, если существует предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

Теорема 23 (о непрерывности функции имеющей производную). Если функция имеет производную в некоторой точке, то функция непрерывна в этой точке.

▶По определению производной существует предел. Из его существования следует, что в достаточно малой окрестности справедливо равененство $\frac{\triangle y}{\triangle x} = f'(x_0) + a(\triangle x)$, где $a(\triangle x)$ - б.м.ф. при $\triangle x \to 0$. Получаем $\triangle y = f'(x_0)\triangle x + a(\triangle x)\triangle x \Rightarrow \triangle y \xrightarrow{\triangle x \to 0} 0$, следовательно y = f(x) непрерывна в точке. \blacktriangleleft

Определение 40 (односторонние производные). Если существует односторонний предел: $\lim_{\Delta x \to 0+/-} \frac{\Delta y}{\Delta x}$, то этот предел называют односторонней производной и обозначают $f'_{+/-}(x)$

Теорема 24 (Основные правила дифференцирования).

- $(u \pm v)' = u' \pm v'$
- $(u \cdot v)' = u' \cdot v + u \cdot v'$
- $\left(\frac{u}{v}\right)' = \frac{u' \cdot v u \cdot v}{v^2}$
- ▶ понять и написать док-во ◀

Определение 41. Если функция определена в окрестности точки x, то ее приращение можно представить в виде $\triangle y = \triangle f = f(x + \triangle x) - f(x) = A\triangle x + o(\triangle x), \triangle x \to 0$

Теорема 25. Функция дифференцируема в точке только тогда, когда функция имеет в этой точке производную. Если функция дифференцируема, то $\Delta y = f'(x_0) + o(\Delta x), \Delta x \to 0$

Определение 42 (о непрерывном дифференцировании). Функцию, производая которой непрерывна в точке или на промежутке, называют непрерывно дифференцируемой

Определение 43 (Дифференциал). Если функция дифференцируема в точке, то линейную часть ее приращения называют дифференциалом

$$df = f'(x) \triangle x, \triangle x = dx \Rightarrow dy = f'(x) dx \Rightarrow f'(x) = \frac{dy}{dx}$$

Определение 44 (Геометрический смысл производной). Производная - тангенс касательной к графику функции в точке

Теорема 26. Если функция в некоторой окрестности точки непрерывна и строго монотонна и имеет производную в точке отличную от нуля, то обратная функция имеет в этой точке производную и справедливо: $g'(x) = \frac{1}{f'(x)}$

▶ Если функция строко возрастает, то ее приращения $\triangle y$, $\triangle x$ имеют одинаковые знаки. Переходя к пределу, видим что: $\lim_{\triangle y \to 0} \frac{\triangle x}{\triangle y} = \lim_{\triangle x \to 0} \frac{1}{\frac{\triangle y}{\triangle x}} = +\infty$. Для убывающей функции предел равен $-\infty$. ◀

Теорема 27. Пусть функция y = f(x) имеет производную в точке $x_0, f(x_0) = y_0$ и функция $z = \phi(y)$ имеет производную в точке y_0 . Тогда сложная функция $z = \phi(f(x))$ имеет производную в точке x_0 и справедливо равенство: $z(x_0)' = \phi'(y_0)f'(x_0)$

▶понять и доказать ◀

Теорема 28 (формула Лейбница). Если у функций u(x), v(x) существует в точке x_0 производные порядка n=1,2..., то в этой точке существует производная порядка n произведения:

$$(u(x_0) \cdot v(x_0))^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)}(x_0) \cdot v^{(n-k)}(x_0)$$

ightharpoonupДок-во по ММИ. При $n=1 \to (u\cdot v)'=u'\cdot vu\cdot v'$

Пусть формула справедлива для n=m, тогда для n=m+1 получаем $(uv)^{(m+1)}=\sum_{k=0}^m C_{k=0}^k (u^{(k)}v^{(m-k)})'=\sum_{k=0}^m C_m^k (u^{(k+1)}v^{(m-k)}+u^{(k)}v^{(m-k+1)})=\sum_{i=1}^m (C_m^{i-1}+C_m^i)u^{(i)}v^{(m-i+1)}+C_m^mu^{(m+1)}v^{(0)}+C_m^0u^{(0)}v^{(m+1)}=\sum_{i=0}^{m+1} C_{i=0}^iu^{(i)}\cdot v^{m+1-i}$

Теорема 29. Если $f'(x_0) > 0$, то функция строго возрастает, а если $f'(x_0) < 0$, то функция убывает.

▶ Пусть f'(x) > 0. Так как $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$, то при достаточно малых x имеем $\frac{\Delta y}{\Delta x} > 0 \Rightarrow \Delta y, \Delta x$ одного знака. ◀

Теорема 30 (теорема Ферма). Если функция имеет производную в точке, то эта точка может быть точкой локального экстремума функции только если $f'(x_0) = 0$

▶Очевидно◀

Теорема 31 (теорема Дарбу о промежуточных значениях). f(x) дифференцируема на $[x_1; x_2] \Rightarrow \forall D \in [f'(x_1); f'(x_2)] \exists d \in [x_1; x_2] : D = f'(d)$

Теорема 32 (теорема Ролля). Если f(a) = f(b), то существует точка $\xi \in (a,b): f'(\xi) = 0$

▶Очевидно◀

Теорема 33 (теорема Лагранжа о среднем). Для функции существует $\xi \in (a,b): f(b)-f(a)=f'(\xi)(b-a)$

▶ Подберем число λ , такое что бы $\phi(x) = f(x) - \lambda$, $\phi(a) = \phi(b) \Rightarrow f(a) - \lambda a = f(b) - \lambda b \Rightarrow \lambda = \frac{f(b) - f(a)}{b - a}$. По Т. Ролля существует точка ξ , $\phi'(\xi) = 0$ ◀

Теорема 34 (теорема Коши о среднем). Пусть функции $g(a) \neq g(b)$, их производные не равны нулю одновременно, тогда $\exists \xi \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(x)} = \frac{f'(\xi)}{g'(\xi)}$

Теорема 35 (следствие из теоремы лагранжа). Если производная функции во всех точках интервала равна нулю, то она постоянна на отрезке

Теорема 36 (правило Лопиталя).

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)'}{g(x)'}$$

4.1 Формула Тейлора

Теорема 37 (формула Тейлора с остаточным членом в форме Пеано).

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

Теорема 38 (формула Тейлора с остаточным членом в форме Лагранжа).

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Определение 45 (формула Маклорена). При $x_0 = 0$ формула Тейлора принимает следующую запись:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x)^{k} + o(x^{n})$$