Battle stats formula

Kivou [2000607]

April 27, 2020

Starting from a formula that gives the battle stats gains for a certain amount of energy, we derive here a formula that gives the battle stats as a function of energy and, in turns, the energy needed to reach a certain battle stats level from a given one.

1 Gym gain formula

Vladar [1996140] gives a formula defining the battle stats gains as a function of the current stat, the energy spent on train and other parameters.

In this formula and for the rest we will need:

- 2 variables and their increments
 - Energy E and dE
 - Battle stats S and dS
- 6 known coefficients
 - -a = 0.0000003480061091
 - -b = 250
 - -c = 0.000003091619094
 - -d = 0.0000682775184551527
 - -e = -0.0301431777
 - $-S_c = 50000000$ (known as the battle stats cap)
- 3 states variables
 - Happy level \mathcal{H}
 - Gym coefficient \mathcal{G}
 - Gym gain bonus \mathcal{B}

The Valdar formula eq.(1) gives the stats gains dS as a function of the current stats S and the energy spent dE. It is usually written:

$$dS = \left[(a\ln(\mathcal{H} + b) + c)\bar{S} + d(\mathcal{H} + b) + e \right] (1 + \mathcal{B})\mathcal{G}dE \tag{1}$$

with $\bar{S} = \min(S_{\rm c}, S)$

By introducing 2 new parameters α and β that depend only on the 5 coefficients a, b, c, d, e and the state variables $\mathcal{H}, \mathcal{B}, \mathcal{G}$, eq.(1) can be written as follow:

$$\frac{dS}{dE} = \alpha \bar{S} + \beta \quad \Leftrightarrow \quad \frac{dS}{dE} - \alpha \bar{S} = \beta \tag{2}$$

with

$$\begin{cases} \alpha = (a \ln(\mathcal{H} + b) + c)(1 + \mathcal{B})\mathcal{G} \\ \beta = (d(\mathcal{H} + b) + e)(1 + \mathcal{B})\mathcal{G} \end{cases}$$
(3)

From now on we assume that $\alpha > 0$ and $\beta > 0$.

2 Battle stats formula: S(E)

Assumption: \mathcal{H} , \mathcal{G} and \mathcal{B} remain constant (which is not realistic for a long term prediction at early stages).

From eq.(2) it can clearly be seen that S(E) is driven by a simple ODE. Because of the piece wise definition of the equation the two cases $S < S_c$ (before cap) and $S > S_c$ (after cap) have to be treated separatly.

2.1 Before cap

With $S < S_c$ eq.(2) can be written:

$$\frac{dS}{dE} - \alpha S = \beta \tag{4}$$

Which leads to the solution:

$$\forall k \in \mathbb{R}, \quad S(E) = ke^{\alpha E} - \frac{\beta}{\alpha} \tag{5}$$

With the initial condition S(0) = 0 we have

$$S(E) = \frac{\beta}{\alpha} \left(e^{\alpha E} - 1 \right) \tag{6}$$

It can be interesting to compute $E = E_c$ such that $S(E_c) = S_c$ which can be done by inverting eq.(6). It gives:

$$E_{\rm c} = \frac{1}{\alpha} \ln \left(\frac{\alpha S_{\rm c}}{\beta} + 1 \right) \tag{7}$$

2.2 After cap

With $S < S_{\rm c}$ eq.(2) can be written:

$$\frac{dS}{dE} = \alpha S_{\rm c} + \beta \tag{8}$$

which directly yields

$$\forall k \in \mathbb{R}, \quad S(E) = (\alpha S_{c} + \beta)E + k \tag{9}$$

With the condition $S(E_c) = S_c$ we have:

$$S = (\alpha S_{c} + \beta)E + S_{c} - (\alpha S_{c} + \beta)E_{c}$$

= $(\alpha S_{c} + \beta)(E - E_{c}) + S_{c}$ (10)

Figure 1: Battle stats as a function of energy for $\mathcal{H}=5000,\,\mathcal{G}=7.3$ and $\mathcal{B}=15\%$

3 Prediction

In this section we are now interested at making a prediction of the energy needed ΔE to reach $S_{\rm f}$ from $S_{\rm i}$. For this we need to analyse the 3 cases:

- $S_{\rm i} < S_{\rm c}$ and $S_{\rm f} < S_{\rm c}$
- $S_{\rm i} < S_{\rm c}$ and $S_{\rm f} > S_{\rm c}$
- $S_{\rm i} > S_{\rm c}$ and $S_{\rm f} > S_{\rm c}$

3.1 Before cap: $S_i < S_c$ and $S_f < S_c$

From eq.(6) we can determine k with the condition $S(0) = S_i$ which gives:

$$k = S_{\rm i} + \frac{\beta}{\alpha} \tag{11}$$

leading to

$$S(E) = \left(S_{i} + \frac{\beta}{\alpha}\right)e^{\alpha E} - \frac{\beta}{\alpha} \tag{12}$$

In our context we can rewrite this equation with $S_{\rm f}$ and ΔE as:

$$S_{\rm f} = \left(S_{\rm i} + \frac{\beta}{\alpha}\right) e^{\alpha \Delta E} - \frac{\beta}{\alpha} \tag{13}$$

which can be inverted giving:

$$\Delta E = \frac{1}{\alpha} \ln \left(\frac{S_{\rm f} + \frac{\beta}{\alpha}}{S_{\rm i} + \frac{\beta}{\alpha}} \right) \tag{14}$$

 ΔE being the energy needed to reach $S_{\rm f}$ stats from $S_{\rm i}$.

3.2 After cap: $S_i > S_c$ and $S_f > S_c$

With the linear relationship between S and E after cap we directly have

$$S_{\rm f} - S_{\rm i} = (\alpha S_{\rm c} + \beta) \Delta E \tag{15}$$

which gives:

$$\Delta E = \frac{S_{\rm f} - S_{\rm i}}{\alpha S_{\rm c} + \beta} \tag{16}$$

3.3 Passing cap: $S_i < S_c$ and $S_f > S_c$

In this last case both exponential and linear regime have to be taken into account. We can decompose ΔE in two, the part needed to reach cap $\Delta E_{\rm bc}$ (before cap) and the part in the linear regime $\Delta E_{\rm ac}$ (after cap). $S_{\rm c}$ behing the frontiere between both, it plays the role of $S_{\rm f}$ for the exponential part and $S_{\rm i}$ in the linear one. It reads:

$$\Delta E = \Delta E_{\rm bc} + \Delta E_{\rm ac} = \frac{1}{\alpha} \ln \left(\frac{S_{\rm c} + \frac{\beta}{\alpha}}{S_{\rm i} + \frac{\beta}{\alpha}} \right) + \frac{S_{\rm f} - S_{\rm c}}{\alpha S_{\rm c} + \beta}$$
(17)

3.4 Generalized formula

We can account for the three cases above in a single generalized equation:

$$\Delta E = \underbrace{\frac{1}{\alpha} \ln \left(\frac{\min(S_{c}, S_{f}) + \frac{\beta}{\alpha}}{\min(S_{c}, S_{i}) + \frac{\beta}{\alpha}} \right)}_{\text{Before cap}} + \underbrace{\frac{\max(S_{c}, S_{f}) - \max(S_{c}, S_{i})}{\alpha S_{c} + \beta}}_{\text{After cap}}$$
(18)

where ΔE is the energy needed to reach $S_{\rm f}$ battle stats from $S_{\rm i}$.

4 Impact of the parameters

With eq. is now possible to quantify the impact of each state variables: \mathcal{H} , \mathcal{G} , \mathcal{B} and the energy needed to acheive a battle stats goal.

4.1 Effectiveness function

We define a effectiveness function $\eta(\mathcal{H}, \mathcal{G}, \mathcal{B})$ that will return a number between 0 and 1 quantifying the efficiency of the state variables to reach a battle stats goal. It as computed with respect to the energy needed to reach this goal (ΔE) compared to the minimum possible ΔE^* (*i.e.* corresponding to $\mathcal{H}_{\text{max}}, \mathcal{G}_{\text{max}}, \mathcal{B}_{\text{max}}$).

$$\eta(\mathcal{H}, \mathcal{G}, \mathcal{B}) = \frac{\Delta E}{\Delta E^*} \tag{19}$$

4.2 Reaching stats cap

In this case we set the goal to be reaching stats cap from 0 ($S_f = S_c$ and $S_i = 0$). Thus we have:

$$\eta(\mathcal{H}, \mathcal{G}, \mathcal{B}) = \frac{\ln\left(\frac{\alpha}{\beta}S_{c} + 1\right)}{\ln\left(\frac{\alpha_{\max}}{\beta_{\max}}S_{c} + 1\right)}$$
(20)

where α and β depend on $\mathcal{H}, \mathcal{G}, \mathcal{B}$.

TODO: parametrical analysis... Pretty straitforward at this stage...