

Proyecto de Programación de Microcontroladores: Reloj Digital.

Josue Fernando Castro Ramos 22082 cas22082@uvq.edu.qt

OBJETIVOS

- Comprender cómo utilizar las interrupciones y subrutinas en microchip estudio para realizar distintas acciones
- Comprender el funcionamiento de los timers que nos permite utilizar el microcontrolador, así como las subrutinas que implica.
- Evaluar el comportamiento del reloj a lo largo del tiempo para verificar que este funcionando correctamente.

PRÁCTICA Y RESULTADOS DE LABORATORIO

ESQUEMÁTICO

CÁLCULOS

Se utilizó el Timer 0 y Timer 2 en modo normal, por lo que se realizaron dos cálculos para cada uno, el Timer 0 configurado a 10ms y el Timer 2 configurado a 1.

Timer 0:

Prescaler	FOSC	T		
1024	250000	0.01		

_	٠				_
- 1	ı	m	e	r	2

Prescaler	FOSC	T
1024	250000	1

T MAX	TCNT0
1.048	253.55

T MAX	TCNT0
1.048	11.86

RESULTADO

Código: https://github.com/JosueCas22082/Proyecto_1_Progrademicros-

Link del Video: https://youtu.be/5hft6G2ukxY

CONCLUSIONES

- Se comprendió más a detalle como funciona el código de assembler, así como las interrupciones y subrutinas que se pueden realizar.
- Al realizar un reloj me ayudo a entender mejor como funciona el un timer, lo que implica programar uno y todas las utilidades que este me brinda.
- Tras observar por un tiempo el reloj se puede observar que se comporta sin ninguna novedad, siguiendo un tiempo fijo y nunca variando.

REFERENCIAS

 Atmel Corporation. (s.f.). ATmega328P 8-bit AVR Microcontroller [Ficha técnica]. Recuperado de

https://www.microchip.com/wwwproducts/en/ATmega328P