HEFT reweighting uncertainties

Zhiyuan Jordan Li

University of Liverpool

February 28, 2022

Outline

- SM: Parton level truth sample with 100k events produced by Stefano
- ullet HEFT samples: 100k events with $c_{gghh}=1,\,\pm$ 0.5 and $c_{tthh}=1,\,\pm$ 0.5
- Added the Pythia8 shower and produced TRUTH3 derivations
- HEFT weights apply on the SM using klambdareweightool with option B) (Consistent with Laura)

Outline

- Try to implement some preselection: (GeV)
 - Common in SLT and LTT:
 - ★ $m_{bb} < 150$
 - \star $m_{\tau\tau} > 60$
 - **★** Tau |*eta*| < 2.3
 - * 2 truth b quarks, leading b $p_{\rm T}>45$, subleading >20 (and require parents of both to be Higgs)
 - * One electron/muon, electron |eta| < 2.47 and not 1.37 < |eta| < 1.52, mu |eta| < 2.7
 - ★ Minimum lepton cut: e/mu $p_T > 7$ GeV in order to be considered in the selection
 - ▶ SLT: e/mu $p_{\rm T} > 27$, $au p_{\rm T} > 20$, veto additional lepton with $p_{\rm T} < 27$
 - LTT: e/mu $p_{\rm T}>18/15$, and $p_{\rm T}<$ SLT cut, $au p_{\rm T}>30$, veto additional lepton with $p_{\rm T}<18/15$

SLT BMs m_{HH} shape: weighted SM vs generated BM

SLT c_{ggHH} scan m_{HH} shape: weighted SM vs generated BM

SLT c_{ttHH} scan m_{HH} shape: weighted SM vs generated BM

$$c_{ttHH} = 1.0$$

LTT BMs m_{HH} shape: weighted SM vs generated BM

LTT c_{ggHH} scan m_{HH} shape: weighted SM vs generated BM

 $c_{ggHH} = 0.5$

 $c_{ggHH} = 1.0$

LTT c_{ttHH} scan m_{HH} shape: weighted SM vs generated BM

BM points (parameter values)	SLT	LTT
gghh:-0.5	0.92 ± 0.03	1.11 ± 0.04
gghh:1.0	0.9 ± 0.04	1.09 ± 0.06
gghh:0.5	0.9 ± 0.04	1.04 ± 0.06
tthh:0.5	0.96 ± 0.03	1.06 ± 0.06
tthh:-0.5	0.96 ± 0.02	1.07 ± 0.04
tthh:1.0	0.98 ± 0.03	1.1 ± 0.05
BM1	0.85 ± 0.06	1.08 ± 0.13
BM2	0.87 ± 0.04	1.06 ± 0.09
BM3	0.9 ± 0.04	1.14 ± 0.09
BM4	0.98 ± 0.03	1.08 ± 0.04
BM5	0.92 ± 0.03	1.17 ± 0.05
BM6	0.97 ± 0.03	1.14 ± 0.05
BM7	0.99 ± 0.03	1.12 ± 0.05

Table: yield ratios: weighted SM divided by generated BMs

Conclusion

- No significant shape dependence
- ullet assigning the difference from 1 of the yields ratios as the uncertainty

Bkp: SLT BMs $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

Bkp: SLT c_{ggHH} scan $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

 $c_{ggHH} = 1.0$

Bkp: SLT c_{ttHH} scan $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

$$c_{ttHH} = 0.5$$

 $c_{ttHH} = 1.0$

Bkp: LTT BMs $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

Bkp: LTT c_{ggHH} scan $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

$$c_{ggHH} = 0.5$$

 $c_{ggHH} = 1.0$

Bkp: LTT c_{ttHH} scan $\Delta R_{\tau\tau}$ shape: weighted SM vs generated BM

Bkp: SLT BMs ΔR_{bb} shape: weighted SM vs generated BM

Bkp: SLT c_{ggHH} scan ΔR_{bb} shape: weighted SM vs generated BM

 $c_{ggHH} = 0.5$

 $c_{ggHH} = 1.0$

Bkp: SLT c_{ttHH} scan ΔR_{bb} shape: weighted SM vs generated BM

$$c_{ttHH}=0.5$$

$$c_{ttHH} = 1.0$$

Bkp: LTT BMs ΔR_{bb} shape: weighted SM vs generated BM

Bkp: LTT c_{ggHH} scan ΔR_{bb} shape: weighted SM vs generated BM

Bkp: LTT c_{ttHH} scan ΔR_{bb} shape: weighted SM vs generated BM

 $c_{ttHH} = 1.0$

Bkp: SLT BMs m_{bb} shape: weighted SM vs generated BM

Bkp: SLT c_{ggHH} scan m_{bb} shape: weighted SM vs generated BM

Bkp: SLT c_{ttHH} scan m_{bb} shape: weighted SM vs generated BM

Bkp: LTT BMs m_{bb} shape: weighted SM vs generated BM

Bkp: LTT c_{ggHH} scan m_{bb} shape: weighted SM vs generated BM

$$c_{ggHH} = 0.5$$

 $c_{ggHH} = 1.0$

Bkp: LTT c_{ttHH} scan m_{bb} shape: weighted SM vs generated BM

