Exercice 1 Natures des séries de terme général u_n ...

$$1. \quad u_n = \frac{n!}{n^n} \quad (n \geqslant 0)$$

3.
$$u_n = \frac{1}{(\ln n)^{\ln n}} \quad (n \geqslant 0)$$

3.
$$u_n = \frac{1}{(\ln n)^{\ln n}} \quad (n \ge 0)$$
 4. $u_n = \left(\sum_{k=1}^n k\right)^{-1} \quad (n \ge 1)$

$$\mathbf{5.} \quad u_n = \sin \frac{\pi \times n^2}{n+1} \quad (n \geqslant 0)$$

5.
$$u_n = \sin \frac{\pi \times n^2}{n+1}$$
 $(n \ge 0)$ **6.** $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ $(n \ge 2)$

7.
$$u_n = \left(n\sin\frac{1}{n}\right)^{n^{\alpha}} \quad (n \geqslant 1, \alpha \in \mathbb{R}) \mid \mathbf{8}. \quad u_n = \frac{a^n}{1 + a^{2n}} \quad (n \geqslant 0, \ a \in \mathbb{R})$$

8.
$$u_n = \frac{a^n}{1 + a^{2n}}$$
 $(n \geqslant 0, a \in \mathbb{R})$

Solution (Ex.1 – Natures des séries de terme général u_n ...)

1.
$$\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^n = \left(1 - \frac{1}{n+1}\right)^n \xrightarrow[n \to +\infty]{} e^{-1} \operatorname{car} \ln(1+u) \underset{u \to 0}{\sim} u.$$

Par le critère de d'Alembert, $\sum u_n$ converge.

- **2.** $n \ln(1+\frac{1}{n}) = 1 \frac{1}{n} + O(1/n^2), \left(1 + \frac{1}{n}\right)^n = e \frac{1}{n} + O(1/n^2) \operatorname{donc} u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$: la série diverge.
- 3. $\ln n \xrightarrow[n \to +\infty]{} +\infty$, donc il existe n_0 tel que $n \geqslant n_0 \Rightarrow 0 \leqslant u_n \leqslant \frac{1}{n^2}$. $\sum u_n$ converge par équivalence.
- 4. $u_n = \frac{2}{n(n+1)} \sim \frac{2}{n^2}$: la série converge par comparaison à la série de Riemann de paramètre 2
- 5. $u_n = \sin\left(\pi \frac{(n+1)^2 2(n+1) + 1}{n+1}\right) = \sin\left(\pi (n-1) + \frac{\pi}{n+1}\right) =$ $(-1)^{n+1}\sin\frac{\pi}{n+1}$: on conclut à la convergence grâce au critère spécial des séries alternées.
- **6.** $u_n = \frac{(-1)^n}{\sqrt{n}} \left(\frac{1}{1 + (-1)^n / \sqrt{n}} \right) = \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)^{-1}$ $u_n = \frac{(-1)^n}{\sqrt{n}} \left(1 - \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n}\right) \right) = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + O\left(\frac{1}{n^{3/2}}\right)$

 $\sum \frac{(-1)^n}{\sqrt{n}}$ converge par le théorème spécial de séries alternées,

 $\sum_{n=1}^{\infty}$ est une série de Riemann divergente,

 $\sum O\left(\frac{1}{n^{3/2}}\right)$ est une série absolument convergente donc convergente, par com-

paraison à la série de Riemann convergente $\sum \frac{1}{m^{3/2}}$ donc $\sum u_n$ diverge

- 7. $\ln(u_n) = n^{\alpha} \ln\left(1 \frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right) = n^{\alpha} \left(1 \frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right)$ $\ln(u_n) = -\frac{1}{6}n^{\alpha - 2} + o\left(n^{\alpha - 3}\right)$
 - Si $\alpha < 2 : \ln(u_n) \xrightarrow[n \to +\infty]{} 0$, $u_n \xrightarrow[n \to +\infty]{} 1$, la série diverge grossièrement.
 - Si $\alpha = 2 : \ln(u_n) \xrightarrow[n \to +\infty]{} -1/6$, $u_n \xrightarrow[n \to +\infty]{} \exp(-1/6)$, la série diverge gros-
 - Si $\alpha > 2$: $n^2 u_n = \exp\left(2\ln(n) \frac{1}{6}n^{\alpha-2} + o\left(n^{\alpha-3}\right)\right) \xrightarrow[n \to +\infty]{} 0$ car $\ln(n) =$ $o(n^{\alpha-2})$, donc $u_n = o(\frac{1}{n^2})$ et la série converge par comparaison à la série de
- 8. Si |a| < 1 alors $|u_n| \sim |a|^n$, or $\sum |a|^n$ est une série géométrique convergente. Par équivalence de termes généraux positifs, $\sum u_n$ est absolument convergente, donc convergente.
 - Si a=1 alors $u_n \xrightarrow[n \to +\infty]{} 1/2$ et si $a=-1, u_{2n}=1/2$ et $u_{2n+1}=-1/2$: dans le deux cas, $\sum u_n$ diverge grossièrement.
 - Si |a| > 1, $|u_n| \underset{n \to +\infty}{\sim} \left| \frac{1}{a} \right|^n$, or $\sum \left| \frac{1}{a} \right|^n$ est une série géométrique convergente. Par équivalence de termes généraux positifs, $\sum u_n$ est absolument convergente, donc convergente.

Exercice 2 | Pairs et impairs

1. a) Justifier la convergence des séries

$$\sum_{n\geqslant 1} \frac{(-1)^n}{n^2}, \; \sum_{n\geqslant 0} \frac{1}{(2n+1)^2} \quad \text{ et } \quad \sum_{n\geqslant 1} \frac{1}{(2n)^2}.$$

- b) En admettant $\sum_{n=0}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, calculer les sommes des séries précédentes.
- 2. Montrer que :

$$\forall x \in \mathbb{R}, \qquad \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} > \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!}.$$

Solution (Ex.2 – Pairs et impairs)

1. a) $\sum_{n\geqslant 1} \frac{(-1)^n}{n^2}$ converge par application du théorème spécial des séries alternées.

 $\sum_{n\geqslant 0}\frac{1}{(2n)^2}$ converge par linéarité car la série de Riemann de paramètre $\alpha=2$ converge.

 $\sum_{n\geqslant 0} \frac{1}{(2n+1)^2}$ converge par le critère des équivalents de t.g. positifs : $\frac{1}{(2n+1)^2} \mathop{\sim}_{n\to +\infty} \frac{1}{4n^2}$ et convergence de la série de Riemann de paramètre $\alpha=2$.

b) $\sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi}{24},$ $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n \text{ pair}} \frac{1}{n^2} + \sum_{n \text{ impair}} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2},$ $\text{d'où } \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = \sum_{n \text{ pair }} \frac{1}{n^2} - \sum_{n \text{ impair }} \frac{1}{n^2} = \frac{\pi^2}{24} - \frac{\pi^2}{8} = -\frac{\pi^2}{12}.$$

Remarque : la somme de cette dernière série alternée est bien du signe de son premier terme.

2. Soit $x \in \mathbb{R}$.

 $\forall k \in \mathbb{R}, 0 \leqslant \frac{x^{2k}}{(2k)!} \leqslant \frac{(x^2)^k}{k!} \text{ assure la convergence de } \sum_{k \geqslant 0} \frac{x^{2k}}{(2k)!} \text{ par comparaison à }$

la série exponentielle de paramètre x^2 .

Une comparaison analogue justifie la convergence de $\sum_{k\geqslant 0} \frac{x^{2k}}{(2k+1)!}$, donc de

$$\sum_{k\geqslant 0}\frac{x^{2k+1}}{(2k+1)!} \text{ par linéarité}.$$

Attention si on utilise un autre critère : x^{2k+1} est de signe alternant pour x < 0.

Enfin
$$\sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} - \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{+\infty} \frac{(-x)^k}{k!} = \exp(-x) > 0.$$

Exercice 3 Constante γ d'Euler

On pose pour tout n de \mathbb{N}^* :

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
 et $v_n = u_{n+1} - u_n$.

- 1. Quelle est la nature de la série $\sum_{n\geq 1} v_n$?
- **2.** En déduire l'existence $\gamma \in \mathbb{R}$ telle que $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \underset{n \to +\infty}{o} (1).$

Solution (Ex.3 – Constante γ d'Euler)

1. $v_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right)$ $v_n = \frac{1}{n+1} - \frac{1}{n} + O\left(\frac{1}{n^2}\right) = \frac{-1}{n(n+1)} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$

Comme $\sum_{n\geq 1} \frac{1}{n^2}$ converge, par domination $\sum_{n\geq 1} v_n$ converge.

2. Comme $\sum_{n\geq 1} (u_{n+1}-u_n)$ converge, la suite (u_n) converge. En notant γ sa limite,

$$\lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln(n) - \gamma \right) = 0 = o(1), \text{ donc :}$$

$$\sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + \underset{n \to +\infty}{o}(1).$$

Exercice 4 Autour du logarithme

- 1. Existence et valeur de $\sum_{n=2}^{+\infty} \ln\left(1 \frac{1}{n^2}\right)$.
- **2. a)** Nature de $\sum_{n\geqslant 1} \ln\left(1-\frac{1}{n+1}\right)$.

b) Proposer un équivalent lorsque n tend vers $+\infty$ de la somme partielle de la série précédente.

Solution (Ex.4 – Autour du logarithme)

1. L'existence peut être obtenue via l'équivalence $\ln(1-1/n^2) \underset{n\to+\infty}{\sim} 1/n^2$ et la convergence de la série de Riemann de paramètre 2. Mais on peut faire d'une pierre deux coups en cherchant la somme.

$$\begin{split} \sum_{n=2}^{\mathcal{N}} \ln \left(1 - \frac{1}{n^2} \right) &= \sum_{n=2}^{\mathcal{N}} \ln \left(\frac{(n-1)(n+1)}{n^2} \right) = \\ \sum_{n=2}^{\mathcal{N}} \left[\ln(n-1) + \ln(n+1) - 2\ln(n) \right] &= \sum_{n=1}^{\mathcal{N}-1} \ln(n) + \sum_{n=3}^{\mathcal{N}+1} \ln(n) - 2\sum_{n=2}^{\mathcal{N}} \ln(n) = \\ \ln(1) + \ln(2) + \ln(\mathcal{N}) + \ln(\mathcal{N}+1) - 2\ln(2) - 2\ln(\mathcal{N}) = \ln \frac{\mathcal{N}+1}{2\mathcal{N}} \end{split}$$

Donc la série converge et $\sum_{n=2}^{+\infty} \ln \left(1 - \frac{1}{n^2}\right) = -\ln 2$.

Remarque: termes strictement négatifs... somme strictement négative...

2. $\sum_{n=1}^{N} \ln\left(1 - \frac{1}{n+1}\right) = \sum_{n=1}^{N} \ln\left(\frac{n}{n+1}\right) = \sum_{n=1}^{N} \left[\ln(n) - \ln(n+1)\right] = \sum_{n=1}^{N} \ln(n) - \sum_{n=2}^{N+1} \ln(n) = \ln(1) - \ln(N+1) = -\ln(N+1)$

Donc la série diverge et $\sum_{n=1}^{N} \ln \left(1 - \frac{1}{n^2}\right) \underset{N \to +\infty}{\sim} - \ln(N)$.

Exercice 5 Produit infini

Montrer la convergence de la suite de terme général

$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2} \right).$$

Solution (Ex.5 – Produit infini)

Manifestement : $\forall n \in \mathbb{N}^*$, $u_n > 0$. Posons $\forall n \in \mathbb{N}^*$, $v_n \stackrel{\text{def.}}{=} \ln(u_n)$

$$\forall n \in \mathbb{N}^*, \quad v_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{k^2}\right), \text{ or } \ln\left(1 + \frac{1}{k^2}\right) \underset{k \to +\infty}{\sim} \frac{1}{k^2} \text{ et la série de Riemann}$$

$$\sum_{k\geqslant 1} \frac{1}{k^2} \text{ converge.}$$

Le critère des équivalents pour ces séries à termes positifs permet d'affirmer que la suite $(v_n)_n$ converge. Par composition par la fonction exponentielle (continue!), la suite $(u_n)_n$ converge.

Exercice 6 Somme d'une série de type exponentielle

1. Justifier la convergence de la série

$$\sum_{n\geqslant 0}\frac{n^3}{n!}.$$

2. a) Déterminer trois réels α , et γ tels que :

$$\forall n \in \mathbb{N}, \quad n^3 = \alpha n(n-1)(n-2) + \beta n(n-1) + \gamma n.$$

b) En déduire la somme de la série précédente.

Solution (Ex.6 – Somme d'une série de type exponentielle)

- 1. $\frac{n^3}{n!} \underset{n \to +\infty}{\sim} \frac{1}{(n-3)!}$ permet de justifier la convergence, ou encore D'Alembert : $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\sim} \frac{1}{n} \xrightarrow[n \to +\infty]{} 0...$
- 2. Pour pouvoir simplifier les factorielles, on écrit : $n^3 = n(n-1)(n-2) 3n^2 + 2n = n(n-1)(n-2) 3n(n-1) + 5n.$ $\sum_{n=0}^{N} \frac{n^3}{n!} = \sum_{n=0}^{N} \frac{n(n-1)(n-2)}{n!} 3\sum_{n=0}^{N} \frac{n(n-1)}{n!} + 5\sum_{n=0}^{N} \frac{n}{n!}$ $= \sum_{n=3}^{N} \frac{1}{(n-3)!} 3\sum_{n=2}^{N} \frac{1}{(n-2)!} + 5\sum_{n=1}^{N} \frac{1}{(n-1)!} \xrightarrow{N \to +\infty} e 3e + 5e = 3e.$

Exercice 7 Fonction ζ de Riemann en 1 Pour tout $\alpha > 1$ on pose

$$\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}.$$

- 1. À l'aide d'une comparaison série-intégrale, déterminer $\lim_{\alpha \to 1^+} \zeta(\alpha)$.
- 2. Donner un équivalent de ζ en 1.

Solution (Ex.7 – Fonction ζ de Riemann en 1)

1. Par décroissance de $x \mapsto \frac{1}{x^{\alpha}}$, $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \leqslant 1 + \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$.

Donc: $\frac{1}{\alpha - 1} \leqslant \zeta(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$.

Par comparaison, $\lim_{\alpha \to 1^+} \zeta(\alpha) = +\infty$.

La majoration n'était pas nécessaire mais sera utile pour la suite.

2. Et: $\forall \alpha > 1, 1 \leqslant \frac{\zeta(\alpha)}{1/(\alpha - 1)} \leqslant (\alpha - 1) + 1$, donc par encadrement: $\frac{\zeta(\alpha)}{1/(\alpha - 1)} \xrightarrow[\alpha \to 1]{}$ 1, et

$$\zeta(\alpha) \underset{\alpha \to 1}{\sim} \frac{1}{\alpha - 1}.$$

Exercice 8 Avec ou sans la formule de Stirling

Pour tout $n \in \mathbb{N}$, soit

$$u_n = \frac{(2n)!}{(2^n n!)^2}$$

- 1. Dans cette première question, on s'interdit d'utiliser la formule de Stirling.
 - a) Déterminer un équivalent de $\ln u_{n+1} \ln u_n$.
 - **b)** En déduire que $u_n \xrightarrow[n \to +\infty]{} 0$.
 - c) En s'intéressant à la série de terme général $\ln ((n+1)u_{n+1}) \ln (n)u_n$, montrer que $nu_n \xrightarrow[n \to +\infty]{} +\infty$.

En déduire la nature de la série $\sum_{n\geqslant 0}u_n$.

d) Soit $v_n = \sqrt{n}u_n$.

En s'intéressant à la série de terme général $\ln v_{n+1} - \ln v_n$, montrer que la suite $(\sqrt{n}u_n)$ converge vers une limite strictement positive.

2. Retrouver les résultats précédents à l'aide de la formule de Stirling.

Solution (Ex.8 – Avec ou sans la formule de Stirling)

1. Dans cette première question, on s'interdit d'utiliser la formule de Stirling.

a)
$$\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{(2n+1)(2n+2)}{2^2(n+1)^2} = \ln \frac{2n+1}{2n+2} = \ln \left(1 - \frac{1}{2n+2}\right)$$

 $\ln u_{n+1} - \ln u_n \underset{n \to +\infty}{\sim} -\frac{1}{2n}.$

- **b)** La série $\sum_{n\geqslant 0} (\ln u_{n+1} \ln u_n)$ tend vers $-\infty$, donc $\ln u_n \xrightarrow[n\to+\infty]{} -\infty$, donc $u_n = e^{\ln u_n} \xrightarrow[n\to+\infty]{} 0$.
- c) $\ln ((n+1)u_{n+1}) \ln ((n)u_n) = \ln \frac{2n+1}{2n} \underset{n \to +\infty}{\sim} \frac{1}{2n}$ donc la série $\sum_{n \geqslant 0} \ln ((n+1)u_{n+1}) \ln ((n)u_n)$ diverge vers $+\infty$, donc $\ln(nu_n) \xrightarrow[n \to +\infty]{} +\infty$ donc $nu_n = e^{\ln(nu_n)} \xrightarrow[n \to +\infty]{} +\infty$.

Comme $nu_n \xrightarrow[n \to +\infty]{} +\infty$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, nu_n \geqslant 1$ i.e. $u_n \geqslant \frac{1}{n}$: $\sum_{n \geqslant 0} u_n$ diverge par comparaison de termes généraux positifs.

d) $\ln v_{n+1} - \ln v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) + \ln u_{n+1} - \ln u_n$, or $\frac{1}{2} \ln \left(1 + \frac{1}{n} \right) = \frac{1}{2n} + O\left(\frac{1}{n^2} \right)$ et $\ln u_{n+1} - \ln u_n = -\frac{1}{2n} + O\left(\frac{1}{n^2} \right)$, donc $\ln v_{n+1} - \ln v_n = O\left(\frac{1}{n^2} \right)$ et la série de terme général $\ln v_{n+1} - \ln v_n$ converge.

On en déduit que $(\ln v_n)$ converge, vers une limite $c \in \mathbb{R}$. Donc $v_n = e^{\ln v_n} \xrightarrow[n \to +\infty]{} \ell = e^c > 0$. Cela signifie au passage que $u_n \underset{n \to +\infty}{\sim} \frac{\ell}{\sqrt{n}}$.

2. $u_n = \frac{(2n)!}{(2^n n!)^2} \mathop{\sim}_{n \to +\infty} \frac{\sqrt{4\pi n} (2n)^{2n} e^{2n}}{e^{2n} 2^{2n} (2\pi n) n^{2n}} \mathop{\sim}_{n \to +\infty} \frac{1}{\sqrt{\pi n}}$ ce qui permet de retrouver tous les résultats précédents... et même plus : $\ell = 1/\sqrt{\pi}$.

Exercice 9 Exemples de Séries de Bertrand Soit $\alpha \in]0; +\infty[$.

- 1. Étudier la nature de la série de terme général $u_n = \frac{1}{n \ln^{\alpha} n}$.
- 2. Étudier la nature de la série de terme général $u_n = \frac{1}{n^{\alpha} \ln n}$.

Solution (Ex.9 – Exemples de Séries de Bertrand)

1. $f_{\alpha}: t \mapsto \frac{1}{t \ln^{\alpha} t}$ est continue positive et décroissante sur $[2; +\infty [$ donc $\sum_{n\geqslant 2} u_n$ est de même nature que $\int_{2}^{+\infty} f_{\alpha}(t) dt$.

- Si $\alpha = 1$, $\int_2^x f_1(t) dt = \left[\ln |\ln(t)| \right]_2^x = \ln(\ln(x)) \ln(\ln 2) \xrightarrow[x \to +\infty]{} + \infty \dots \sum_{n \geqslant 2} u_n$ diverge.
- $\bullet \operatorname{Si} \alpha \neq 1,$ $\int_{2}^{x} f_{\alpha}(t) dt = \left[\frac{1}{(1-\alpha) \ln^{\alpha-1}(t)} \right]_{2}^{x}$ $= \frac{1}{(1-\alpha) \ln^{\alpha-1}(x)} - \frac{1}{(1-\alpha) \ln^{\alpha-1}(2)} \xrightarrow[x \to +\infty]{} \begin{cases} \frac{1}{(\alpha-1) \ln^{\alpha-1}(2)} & \operatorname{si} \alpha > 1 \\ +\infty & \operatorname{si} \alpha < 1 \end{cases}.$

Donc $\sum_{n\geq 2} u_n$ converge si, et seulement si, $\alpha > 1$.

- Bilan : $\sum_{n\geqslant 2} u_n$ converge si, et seulement si, $\alpha>1$.
- 2. $f_{\alpha}: t \mapsto \frac{1}{t^{\alpha} \ln t}$ est continue positive et décroissante sur $[2; +\infty [$ donc $\sum_{n \geqslant 2} u_n$ est de même nature que $\int_{2}^{+\infty} f_{\alpha}(t) dt$.
 - si $\alpha > 1$, $f_{\alpha}(t) = o(1/t^{\alpha})$ et $t \mapsto 1/t^{\alpha}$ est intégrable ... $\sum_{n \ge 2} u_n$ converge.
 - si $\alpha = 1$, $\int_2^x f_1(t) dt = [\ln|\ln(t)|]_2^x = \ln(\ln(x)) \ln(\ln 2) \xrightarrow[x \to +\infty]{} +\infty \dots \sum_{n\geqslant 2} u_n$ diverge
 - si $\alpha < 1$, $f_{\alpha}(t) \geqslant f_{1}(t) \geqslant 0$ car $t^{\alpha} \leqslant t$, or $\int_{2}^{+\infty} f_{1}(t) dt$ diverge d'après le point précédent donc $\int_{2}^{+\infty} f_{\alpha}(t) dt$ diverge ... $\sum_{n \geqslant 2} u_{n}$ diverge.

Exercice 10 Une série semi-convergente très classique $(-1)^{n+1}$

Soit, pour tout n de \mathbb{N}^* , $u_n = \frac{(-1)^{n+1}}{n}$.

- 1. a) Justifier la convergence de la série $\sum_{n\geqslant 1}u_n$, et déterminer le signe de sa somme.
 - b) Cette série est-elle absolument convergente?
- **2.** En écrivant u_n à l'aide d'une intégrale, montrer que : $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln(2).$

Solution (Ex.10 – Une série semi-convergente très classique) Soit, pour tout n de \mathbb{N}^* , $u_n = \frac{(-1)^{n+1}}{n}$.

- 1. a) Le théorème spécial pour les séries alternées permet de justifier la convergence de la série $\sum_{n\geqslant 1}u_n$. De plus, le signe de sa somme est celui de son premier terme, donc positif.
 - b) La série harmonique étant divergente, cette série n'est pas absolument convergente.
- **2.** On a: $\forall n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{n} \frac{0}{n} = \left[\frac{(-t)^n}{n}\right]_0^1 = \int_0^1 -(-t)^{n-1} dt$.

Alors: $\sum_{n=1}^{N} u_n = -\sum_{n=1}^{N} \int_0^1 (-t)^{n-1} dt \stackrel{\text{lin.}}{=} -\int_0^1 \sum_{n=1}^{N} (-t)^{n-1} dt$ $\sum_{n=1}^{N} u_n = \int_0^1 \frac{1 - (-t)^N}{1 + t} dt = \int_0^1 \frac{1}{1 + t} dt - I_N \text{ où } I_N = \int_0^1 \frac{(-t)^N}{1 + t} dt.$

 $|I_N| \leqslant \int_0^1 \frac{t^N}{1+t} dt \leqslant \int_0^1 t^N dt \leqslant \frac{1}{N+1}.$

Ainsi $\sum_{n=1}^{N} u_n = \ln(2) - I_N$ avec $I_N \xrightarrow[N \to +\infty]{} 0$, d'où :

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln(2).$$

Exercice 11 | Somme et reste de la série exponentielle

On ne suppose pas connues les propriétés de la série exponentielle. Soit $x \in \mathbb{R}$ fixé.

On pose $\forall n \in \mathbb{N}$, $u_n = \frac{x^n}{n!}$, et $\forall N \in \mathbb{N}$, $S_N = \sum_{n=0}^N u_n$.

- **1.** Dans cette question, x = 1, et on pose : $\forall N \in \mathbb{N}^*$, $T_N = S_N + \frac{1}{N \times (N!)}$.
 - a) Montrer que les suites S et T sont convergentes, de même limite.
 - **b)** On pose de plus : $\forall N \in \mathbb{N}$, $R_N = \sum_{n=N+1}^{+\infty} u_n$.

Justifier que : $\forall N \in \mathbb{N}^*, |R_N| \leqslant \frac{1}{N.N!}$

2. a) On revient au cas général. À l'aide de la formule de Taylor avec reste intégral, montrer que $\sum_{n\geq 0} u_n$ converge en précisant sa somme.

Proposer une majoration du reste R_N de cette série.

b) Dans le cas x = 1, comparer cette majoration à celle obtenue précédemment.

Solution (Ex.11 – Somme et reste de la série exponentielle)

$$\forall n \in \mathbb{N}, \quad u_n = \frac{x^n}{n!}, \text{ et } \forall \mathbb{N} \in \mathbb{N}, \quad S_{\mathbb{N}} = \sum_{n=0}^{\mathbb{N}} u_n.$$

$$\begin{split} \textbf{1. a)} \ S_{N+1} - S_N &= \frac{1}{(N+1)!} > 0, \\ T_{N+1} - T_N &= \frac{1}{(N+1)!} + \frac{1}{(N+1)(N+1)!} - \frac{1}{N.N!} = \frac{N(N+1) + N - (N+1)^2}{N(N+1)(N+1)!} \\ T_{N+1} - T_N &= \frac{-1}{N(N+1)(N+1)!} < 0, \\ T_N - S_N &= \frac{1}{N.N!} \xrightarrow[N \to +\infty]{} 0, \end{split}$$

donc S et T sont adjacentes, donc convergentes, vers une même limite.

b) Notons ℓ la limite commune de S et T (en fait, la suite de l'exercice montrera que $\ell=e$). Comme S et T sont deux suites respectivement croissante et décroissante de limite ℓ ,

$$\begin{split} \forall N \in \mathbb{N}^*, \quad S_N \leqslant \ell \leqslant T_N, \ donc \ \forall N \in \mathbb{N}^*, \quad 0 \leqslant \ell - S_N \leqslant \frac{1}{N.N!}, \\ \text{et comme} \ R_N = S_N - \ell, \ on \ a \ bien: } \forall N \in \mathbb{N}^*, \quad |R_N| \leqslant \frac{1}{N.N!}. \end{split}$$

- **2. a)** On revient au cas général. À l'aide de la formule de Taylor avec reste intégral, montrer que $\sum_{n \geq 0} u_n$ converge en précisant sa somme.
 - Supposons $x \in \mathbb{R}^+$. En appliquant la formule de Taylor avec reste intégral à exp qui est \mathbb{C}^{∞} donc \mathbb{C}^{N+1} sur [0; x],

$$\exp(x) = S_{N} + \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt$$

$$\left| \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt \right| \leqslant \frac{e^{x}}{N!} \int_{0}^{x} (x - t)^{N} dt \leqslant \frac{e^{x}}{N!} \times \frac{x^{N+1}}{N+1} \leqslant \frac{e^{x} x^{N+1}}{(N+1)!}$$
Or $x^{N} = o(N!)$, donc par domination $\int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt \xrightarrow[N \to +\infty]{} 0$.

Par conséquent, $S_N \xrightarrow[N \to +\infty]{} exp(x)$: la série converge, sa somme est e^x .

• Supposons $x \in]-\infty; 0[$. L'application de la formule de Taylor sur [x; 0] donne encore :

$$\exp(x) = S_{N} + \int_{0}^{x} \frac{e^{t}}{N!} (x - t)^{N} dt,$$

mais la majoration du reste intégral change:

$$\left| \int_0^x \frac{\mathrm{e}^t}{\mathrm{N!}} (x-t)^{\mathrm{N}} \mathrm{d}t \right| \leqslant \frac{1}{\mathrm{N!}} \int_x^0 \left| \mathrm{e}^t (x-t)^{\mathrm{N}} \right| \mathrm{d}t \leqslant \frac{1}{\mathrm{N!}} \int_x^0 (t-x)^{\mathrm{N}} \mathrm{d}t$$
$$\left| \int_0^x \frac{\mathrm{e}^t}{\mathrm{N!}} (x-t)^{\mathrm{N}} \mathrm{d}t \right| \leqslant \frac{(-x)^{\mathrm{N}+1}}{(\mathrm{N}+1)!}$$

On conclut comme pour $x \geqslant 0$.

• Pour majorer le reste, on peur écrire en toute généralité :

$$R_{N} \leqslant \frac{e^{\max(0,x)} |x|^{N+1}}{(N+1)!}.$$

b) Dans le cas x = 1, cette dernière majoration donne $|R_N| \leq \frac{e}{(N+1)!}$.

Ce majorant n'est pas meilleur que celui de la première question :

$$\forall \mathbb{N} \in \mathbb{N}^*, \quad \frac{e}{N+1} - \frac{1}{N} = \frac{eN - N - 1}{N(N+1)} = \frac{(e-1)N - 1}{N(N+1)} > 0,$$

$$\text{donc}: \quad \frac{1}{N.N!} \leqslant \frac{e}{(N+1)!}.$$

Exercice 12 Une condition nécessaire pour les t.g. décroissants

1. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite décroissante telle que la serie $\sum_{n\geqslant 1}u_n$ converge.

On pose: $\forall n \in \mathbb{N}^*, \quad S_n = \sum_{k=1}^n u_k.$

- a) Que vaut $\lim_{n\to+\infty} S_{2n} S_n$? En déduire $\lim_{n\to+\infty} 2nu_{2n}$.
- **b)** Montrer que : $u_n = o\left(\frac{1}{n}\right)$
- **2.** Soit, pour tout n de \mathbb{N}^* , $u_n = \begin{cases} \frac{1}{n} & \text{si } \exists k \in \mathbb{N}^*, n = k^2, \\ 0 & \text{si } n \text{ n'est pas un carré.} \end{cases}$

Montrer que $\sum_{n\geq 1} u_n$ converge.

A-t-on
$$u_n = o\left(\frac{1}{n}\right)$$
?

Solution (Ex.12 – Une condition nécessaire pour les t.g. décroissants)

1. a) Comme la série $\sum_{n\geqslant 1}u_n$ converge, la suite (S_n) converge, vers une limite S. Alors :

$$S_{2n} - S_n \xrightarrow[n \to +\infty]{} S - S = 0.$$

Or: $\forall n \ge 1$, $S_{2n} - S_n = \sum_{k=n+1}^{2n} u_n \ge nu_{2n}$ car u décroît.

Et comme la serie $\sum_{n\geq 1} u_n$ converge, u tend vers 0. Étant de plus décroissante, u

est une suite positive. Ainsi : $\forall n \ge 1$, $0 \le nu_{2n} \le S_{2n} - S_n$.

Par encadrement, $nu_{2n} \xrightarrow[n \to +\infty]{} 0$, donc $2nu_{2n} \xrightarrow[n \to +\infty]{} 0$.

b) $\forall n \geqslant 1, 0 \leqslant u_{2n+1} \leqslant u_{2n} \text{ donc } 0 \leqslant 2nu_{2n+1} \leqslant 2nu_{2n}, \text{ et par encadrement,} 2nu_{2n+1} \xrightarrow[n \to +\infty]{} 0.$

Comme de plus $u_{2n+1} \xrightarrow[n \to +\infty]{} 0$, $(2n+1)u_{2n+1} \xrightarrow[n \to +\infty]{} 0$.

Ainsi, $nu_n \xrightarrow[n \to +\infty]{} 0$, autrement dit : $u_n o\left(\frac{1}{n}\right)$.

2. $\forall N \geqslant 1, \sum_{n=1}^{N} u_n = \sum_{k=1}^{\left\lfloor \sqrt{N} \right\rfloor} \frac{1}{k^2}$. Comme la série $\sum_{k\geqslant 1} \frac{1}{k^2}$ converge, $\sum_{n\geqslant 1} u_n$ converge.

 $\forall k \in \mathbb{N}^*, (k^2)u_{k^2} = 1$, ce qui exclut que $nu_n \xrightarrow[n \to +\infty]{} 0$.

On n'a pas : $u_n = o\left(\frac{1}{n}\right)$.

Exercice 13 Cyclicité d'ordre 3

Soit: $n \in \mathbb{N}^*$, $u_n = \begin{cases} \frac{1}{n} & \text{si } n = 3p+1 \text{ ou } n = 3p+2 \text{, avec } p \in \mathbb{N}, \\ -\frac{2}{n} & \text{si } n = 3p \text{, avec } p \in \mathbb{N}^* \end{cases}$.

- 1. Montrer que : $\forall p \in \mathbb{N}^*$, $\sum_{n=1}^{3p} u_n = \sum_{i=1}^{2p} \frac{1}{p+i}$.
- **2.** À l'aide d'une somme Riemann (et non une série), montrer que $\lim_{p\to+\infty}\sum_{n=1}^{3p}u_n$ existe et déterminer cette limite.
- 3. En déduire la convergence et la somme de la série $\sum_{n\geqslant 1}u_n.$

Solution (Ex.13 – Cyclicité d'ordre 3)

1. En calculant la somme de tous les 1/n et en retranchant ceux tels que n soit multiple de 3 :

$$\sum_{n=1}^{3p} u_n = \sum_{k=1}^{3p} \frac{1}{k} - 3 \sum_{k=1}^{p} \frac{1}{k} = \sum_{k=n+1}^{3p} \frac{1}{k} = \sum_{i=1}^{2p} \frac{1}{p+i}.$$

2. $\sum_{i=1}^{2p} \frac{1}{p+i} = \frac{1}{2p} \sum_{i=1}^{2p} \frac{2p}{p+i} = \frac{1}{2p} \sum_{i=1}^{2p} \frac{2}{1+2(i/2p)} = \frac{1}{2p} \sum_{i=1}^{2p} f(i/p),$

où $f:[0;1]\to\mathbb{R}, x\mapsto \frac{2}{1+2x}$ est continue. Le théorème sur les sommes de

Riemann assure que : $\frac{1}{2p} \sum_{i=1}^{2p} f(i/p) \xrightarrow[p \to +\infty]{} \int_0^1 f(x) dx = \ln(3)$

Ainsi : $\lim_{p \to +\infty} \sum_{n=1}^{3p} u_n$ existe et vaut $\ln(3)$.

3. Du coup, on a aussi:

 $\sum_{n=1}^{3p+1} u_n = \sum_{n=1}^{3p} u_n + \frac{1}{3p+1} \xrightarrow[p \to +\infty]{} \ln(3),$

 $\sum_{n=1}^{3p+2} u_n = \sum_{n=1}^{3p} u_n + \frac{1}{3p+1} + \frac{1}{3p+2} \xrightarrow[p \to +\infty]{} \ln(3).$

Donc $\sum_{n\geqslant 1} u_n$ converge, et sa somme est $\ln(3)$.

Exercice 14 Terme général défini par récurrence

On considère la suite de $\mathbb{R}^{\mathbb{N}}$ définie par :

$$u_0 \in]0$$
; $+\infty[$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n^2 - u_n + 1$.

- 1. Dans cette question, on suppose $u_0 > 1$.
 - **a)** Vérifier que : $\forall n \in \mathbb{N}, u_n > 1$, et en déduire : $u_n \xrightarrow[n \to +\infty]{} +\infty$.
 - **b)** À l'aide de la suite $\left(\frac{1}{u_n-1}\right)_{n\in\mathbb{N}}$, montrer que la série $\sum_{n\geqslant 0}\frac{1}{u_n}$ converge et déterminer sa somme.
- **2.** Étudier le comportement de la série $\sum_{n\geqslant 0} \frac{1}{u_n}$ lorsque $u_0\in]0;1].$

Solution (Ex.14 – Terme général défini par récurrence)

- 1. Dans cette question, on suppose $u_0 > 1$.
 - a) Se démontre par récurrence, l'hérédité étant assurait par :

 $\forall n \in \mathbb{N}, \quad u_{n+1} - 1 = u_n(u_n - 1).$

b) On a : $\forall n \in \mathbb{N}$, $u_{n+1} - u_n = u_n^2 - 2u_n + 1 = (u_n - 1)^2 \ge 0$.

Donc u est croissante : soit elle converge vers une limite ℓ , soit elle diverge vers $+\infty$.

Supposons que u converge vers ℓ . Alors $\ell = \ell^2 - \ell + 1$, donc $(\ell - 1)^2 = 0$, donc $\ell = 1$, ce qui est absurde car :

$$(\forall n \in \mathbb{N}, \quad u_n \geqslant u_0 > 1) \Rightarrow (\ell \geqslant u_0 > 1).$$

Donc u diverge et: $u_n \xrightarrow[n \to +\infty]{} +\infty$.

c) Posons: $\forall n \in \mathbb{N}, \quad v_n = \frac{1}{u_n - 1}$ (au fait, $u_n \neq 1$!).

$$\forall n \in \mathbb{N}, \quad v_{n+1} = \frac{1}{u_n(u_n - 1)} = -\frac{1}{u_n} + \frac{1}{u_n - 1} = -\frac{1}{u_n} + v_n, \text{ doù}:$$

$$\forall N \in \mathbb{N}, \quad \sum_{n=0}^{N} \frac{1}{u_n} = \sum_{n=0}^{N} (v_n - v_{n+1}) = v_0 - v_{N+1} = \frac{1}{u_0 - 1} - \frac{1}{u_{N+1} - 1}$$

Comme $u_{N+1} \xrightarrow[N \to +\infty]{} +\infty$, la série converge, et sa somme est :

$$\sum_{n=0}^{+\infty} \frac{1}{u_n} = \frac{1}{u_0 - 1}.$$

2. On a, comme en 1.b), u croissante, donc $\forall n \in \mathbb{N}, u_n \geqslant u_0 > 0$.

On montre, par réccurence comme en 1.a), que : $\forall n \in \mathbb{N}, u_n \leq 1$.

Par conséquent : $\forall n \in \mathbb{N}, \quad 0 > u_n \leqslant 1$, et $\frac{1}{u_n} \geqslant 1$. Ainsi $\frac{1}{u_n}$ ne tend pas vers

0, la série $\sum_{n\geq 0} \frac{1}{u_n}$ diverge grossièrement lorsque $u_0\in]0;1]$.

Exercice 15 | Exponentielle et sinus

Pour tout n de \mathbb{N} , on note $S_n = \sum_{k=0}^n \frac{1}{k!}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$.

- 1. Justifier l'existence de R_n , et rappeler les limites des suites (S_n) et (R_n) .
- **2. a)** Montrer que, pour tout n de \mathbb{N} , $(n+1)!\mathbb{R}_n \leq 1 + \frac{1}{n+1}$.
 - b) En déduire un équivalent de R_n lorsque n tend vers $+\infty$.
- 3. Quelle est la nature de la série de terme général $\sin (2\pi e(n!))$.

Solution (Ex.15 - Exponentielle et sinus)

1. R_n étant le reste d'ordre n de la série exponentielle (donc convergente!) de paramètre 1, R_n existe et

$$\lim_{n \to +\infty} S_n = e \text{ tandis que } \lim_{n \to +\infty} R_n = 0.$$

2. a)
$$(n+1)!R_n = 1 + \sum_{k=2}^{+\infty} \frac{(n+1)!}{(n+k)!}$$
, or $\forall k \geqslant 2$, $\frac{(n+1)!}{(n+k)!} \leqslant \frac{1}{(n+2)^{k-1}}$
donc $\sum_{k=2}^{+\infty} \frac{(n+1)!}{(n+k)!} \leqslant \sum_{k=2}^{+\infty} \frac{1}{(n+2)^{k-1}} \leqslant \frac{1}{n+2} \sum_{k=0}^{+\infty} \left(\frac{1}{n+2}\right)^k \leqslant \frac{1}{n+1}$
d'où $1 \leqslant (n+1)!R_n \leqslant 1 + \frac{1}{n+1}$.

- b) Par encadrement, $(n+1)!R_n \xrightarrow[n \to +\infty]{} 1$ donc $R_n \sim \frac{1}{n \to +\infty}$
- 3. Partons de : $\forall n \in \mathbb{N}$, $S_n + R_n = e$. $\sin\left(2\pi e(n!)\right) = \sin(2\pi n! S_n + 2\pi n! R_n) = \sin(2\pi n! R_n) \operatorname{car} n! S_n$ est un entier naturel. Or $n! R_n \underset{n \to +\infty}{\sim} \frac{1}{n+1}$ donc $\sin(2\pi e(n!)) \underset{n \to +\infty}{\sim} \frac{2\pi}{n+1} \underset{n \to +\infty}{\sim} 2\pi \times \frac{1}{n}$. Par équivalence de termes positifs à partir d'un certain rang, puisque la série harmonique diverge, $\sum_{n \to +\infty} + \sin\left(2\pi e(n!)\right)$ diverge.

Exercice 16 Développement asymptotique du reste des séries de Riemann.

Soit α un réel de $]1; +\infty[$. On définit g sur $[1; +\infty[$ par

$$\forall x \geqslant 1, \qquad g(x) = \frac{1}{x^{\alpha}}.$$

On pose, pour tout n de \mathbb{N}^* ,

$$S_n(\alpha) \stackrel{\text{def.}}{=} \sum_{k=1}^n \frac{1}{k^{\alpha}}, \quad S(\alpha) \stackrel{\text{def.}}{=} \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \quad \text{et} \quad R_n(\alpha) \stackrel{\text{def.}}{=} \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}.$$

Contrairement à l'usage courant, la somme $R_n(\alpha)$ commence à n et non n+1.

1. a) Montrer que, pour tout entier $k \ge 2$,

$$\int_{k}^{k+1} g(x) dx \leqslant g(k) \leqslant \int_{k-1}^{k} g(x) dx.$$

b) En déduire, pour $n \ge 1$, l'encadrement

$$\frac{1}{\alpha - 1} \left(1 - \frac{1}{(n+1)^{\alpha - 1}} \right) \leqslant S_n(\alpha) \leqslant \frac{1}{\alpha - 1} \left(1 - \frac{1}{n^{\alpha - 1}} \right) + 1.$$

- c) En déduire un encadrement de $S(\alpha)$.
- **2. a)** Montrer pour $n \ge 1$, l'encadrement

$$\frac{1}{\alpha - 1} \times \frac{1}{n^{\alpha - 1}} \leqslant R_n(\alpha) \leqslant \frac{1}{\alpha - 1} \times \frac{1}{(n - 1)^{\alpha - 1}}.$$

- **b)** En déduire : $R_n(\alpha) = \frac{1}{\alpha 1} \times \frac{1}{n^{\alpha 1}} + \underset{n \to +\infty}{o} \left(\frac{1}{n^{\alpha 1}}\right)$.
- **3.** Soit f la fonction définie sur $[0; +\infty[$ par : $\forall x \ge 1, \quad f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$.

- a) Par la formule de Taylor avec reste intégral, montrer que, pour tout $k \ge 1$, $f(k+1) = f(k) + \frac{1}{k^{\alpha}} \frac{\alpha}{2} \times \frac{1}{k^{\alpha+1}} + I_k$, avec $0 \le I_k \le \frac{\alpha(\alpha+1)}{2 \times k^{\alpha+2}}$.
- b) En isolant $\frac{1}{k^{\alpha}}$ dans l'expression précédente, montrer finalement que

$$R_n(\alpha) = \frac{1}{\alpha - 1} \times \frac{1}{n^{\alpha - 1}} + \frac{1}{2n^{\alpha}} + \underset{n \to +\infty}{o} \left(\frac{1}{n^{\alpha}}\right).$$

Solution (Ex.16 – Développement asymptotique du reste des séries de Riemann.)

- **1. a)** Soit $k \ge 2$. Par décroissance de g sur [k-1; k] et sur [k; k+1],
 - $\forall x \in [k-1; k], \quad g(x) \geqslant g(k) \text{ entraı̂ne } g(k) \leqslant \int_{k-1}^{k} g(x) dt.$
 - $\forall x \in [k; k+1], \quad g(x) \leqslant g(k) \text{ entraı̂ne } \int_{k}^{k+1} g(x) dx \leqslant g(k).$
 - b) Par la relation de Chasles appliquée aux encadrements précédents pour k allant de 1 à n sur la première inégalité, et pour k allant de 2 à n sur la seconde, on a :

$$\int_{1}^{n+1} g(t)dt \leqslant S(\alpha) \leqslant \int_{1}^{n} g(t)dt + g(1).$$

En calculant les deux intégrales de cet encadrement, on obtient, pour $n \ge 1$, l'encadrement

$$\frac{1}{\alpha - 1} \left(1 - \frac{1}{(n+1)^{\alpha - 1}} \right) \leqslant S_n(\alpha) \leqslant \frac{1}{\alpha - 1} \left(1 - \frac{1}{n^{\alpha - 1}} \right) + 1.$$

c) En passant à la limite lorsque n tend vers $+\infty$

$$\frac{1}{\alpha - 1} \leqslant S(\alpha) \leqslant \frac{1}{\alpha - 1} + 1.$$

2. a) En sommant à l'aide de la relation de Chasles, pour $n \ge 1$,

$$\int_{n}^{+\infty} g(t) dt \leqslant R_{n}(\alpha) \leqslant \int_{n-1}^{+\infty} g(t) dt.$$

Et en calculant ces deux intégrales, on obtient l'encadrement

$$\frac{1}{\alpha - 1} \times \frac{1}{n^{\alpha - 1}} \leqslant R_n(\alpha) \leqslant \frac{1}{\alpha - 1} \times \frac{1}{(n - 1)^{\alpha - 1}}.$$

b)
$$0 \leqslant R_n(\alpha) - \frac{1}{\alpha - 1} \times \frac{1}{n^{\alpha - 1}} \leqslant \frac{1}{\alpha - 1} \left(\frac{1}{(n - 1)^{\alpha - 1}} - \frac{1}{n^{\alpha - 1}} \right).$$

Or
$$\frac{\frac{1}{\alpha - 1} \left(\frac{1}{(n-1)^{\alpha - 1}} - \frac{1}{n^{\alpha - 1}} \right)}{\frac{1}{n^{\alpha - 1}}} = \frac{1}{\alpha - 1} \left(1 - \left(\frac{n-1}{n} \right)^{\alpha - 1} \right) \xrightarrow[n \to +\infty]{} 0, \text{ donc}$$

$$R_n(\alpha) = \frac{1}{\alpha - 1} \times \frac{1}{n^{\alpha - 1}} + \underset{n \to +\infty}{o} \left(\frac{1}{n^{\alpha - 1}}\right).$$

3. a) Soit $k \in \mathbb{N}^*$. f étant de classe \mathbb{C}^3 sur [k; k+1], la formule de Taylor avec reste intégral permet d'écrire :

$$f(k+1) = f(k) + f'(k)(k+1-k) + \frac{f''(k)}{2}(k+1-k)^2 + \int_k^{k+1} \frac{(t-k)^2}{2} f^{(3)}(t) dt.$$

Or
$$f'(k) = \frac{1}{k^{\alpha}}$$
, $f''(k) = \frac{-\alpha}{k^{\alpha+1}}$

$$\int_{k}^{k+1} \frac{(t-k)^{2}}{2} f^{(3)}(t) dt = \int_{k}^{k+1} \frac{(t-k)^{2}}{2} \frac{\alpha(\alpha+1)}{t^{\alpha+2}} dt,$$

et $\forall t \in [k; k+1], \quad 0 \leqslant \frac{(t-k)^2}{2} \frac{\alpha(\alpha+1)}{t^{\alpha+2}} \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}}$, ce qui donne par croissance de l'intégrale,

$$f(k+1) = f(k) + \frac{1}{k^{\alpha}} - \frac{\alpha}{2} \times \frac{1}{k^{\alpha+1}} + I_k, \text{ avec } 0 \leqslant I_k \leqslant \frac{\alpha(\alpha+1)}{2 \times k^{\alpha+2}}.$$

b) Soit $n \in \mathbb{N}^*$ et $\mathbb{N} \ge n$.

$$\sum_{k=n}^{N} \frac{1}{k^{\alpha}} = \sum_{k=n}^{N} \left(f(k+1) - f(k) + \frac{\alpha}{2} \times \frac{1}{k^{\alpha+1}} - I_k \right)$$

$$= f(N+1) - f(n) + \frac{\alpha}{2} \sum_{k=n}^{N} \frac{1}{k^{\alpha+1}} - \sum_{k=n}^{N} I_k$$
 (1).

Que peut-on dire de chaque terme lorsque N tend vers $+\infty$?

- $\lim_{N \to +\infty} f(N+1) = 0$, sans souci.
- $\lim_{N \to +\infty} -f(n) = -f(n) = \frac{1}{\alpha 1} \times \frac{1}{n^{\alpha 1}}$, no problem.

•
$$\lim_{N \to +\infty} \sum_{k=n}^{N} \frac{1}{k^{\alpha+1}} = \frac{\alpha}{2} R_n(\alpha+1) = \frac{1}{2n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right) \text{ par 4.b}.$$

• De $0 \leqslant I_k \leqslant \frac{\alpha(\alpha+1)}{2 \times k^{\alpha+2}}$, on tire, par comparaison avec la série de Riemann convergente $\sum_{k\geqslant 1} \frac{1}{k^{\alpha+2}}$ la convergence de $\sum_{k\geqslant 1} I_k$, et on a, en sommant pour $k\geqslant n$ l'encadrement.

$$0 \leqslant \sum_{k=n}^{+\infty} I_k \leqslant \frac{\alpha(\alpha+1)}{2} R_n(\alpha+2) \leqslant \frac{\alpha}{2} \times \frac{1}{(n-1)^{\alpha+1}},$$

la dernière majoration résultant de 4.a).

Alors $0 \leqslant n^{\alpha} \sum_{k=n}^{+\infty} I_k \leqslant \frac{\alpha}{2} \times \frac{n^{\alpha}}{(n-1)^{\alpha+1}} \xrightarrow[n \to +\infty]{} 0$ montre que par encadrement,

$$\sum_{k=n}^{+\infty} I_k = o\left(\frac{1}{n^{\alpha}}\right).$$

$$\sum_{k=n}^{+\infty} \mathbf{I}_k = o\left(\frac{1}{n^{\alpha}}\right).$$
 Conclusion : en passant à la limite lorsque N tend vers $+\infty$, il vient
$$\mathbf{R}_n(\alpha) = \frac{1}{\alpha-1} \times \frac{1}{n^{\alpha-1}} + \frac{1}{2n^{\alpha}} + \mathop{o}\limits_{n \to +\infty} \left(\frac{1}{n^{\alpha}}\right).$$