3 - Automate fini minimal

Minimisation

Théorème : un langage rationnel est reconnu par un unique automate fini déterministe minimal*.

deux problèmes de minimisation :

Donnée : un automate fini déterministe A

• Problème : construire l'automate minimal A_{\min} qui reconnaît le langage L(A) reconnu par A

• Idée : les états équivalents ...

• Donnée : une expression régulière E

• Problème: construire l'automate minimal ${m A}_{\min}$ qui reconnaît le langage L(E) décrit par E

• Idée : les résiduels ...

* la minimalité porte sur le nombre d'états d'un automate fini ... COMPLET.

Un méta-automate ...

2

Langage associé à un état

RAPPEL !!!

Soit $\mathbf{A} = (\Sigma, Q, \delta, q_o, F)$ un A.F.D.

• langage associé à l'état q :

$$L_a(A) = \{ w \in \Sigma^*, \delta^*(q, w) \in F \}$$

- Lq(\boldsymbol{A}) : langage reconnu par l'automate \boldsymbol{A}_q = (Σ ,Q, δ ,q,F) :
 - c'est presque le même automate que **A**
 - excepté que q devient état initial à la place de q_o
- en particulier : $L(A) = Lq_0(A)$
- un état q est accessible s'il existe un chemin de q_o à q dans \boldsymbol{A} .

3

Minimisation (1er problème)

- Donnée : **A** un A.F.D. complet dont chaque état est accessible depuis l'état initial
- Problème : construire l'automate \min qui reconnaît le même langage que $oldsymbol{A}$
- Idée : faire en sorte que les *états équivalents* soient fusionnés

En pratique,

l'algo. est fondé sur le principe de « séparation des états » :

- on commence par séparer les états finals des états non finals
- dans chaque classe, on sépare les états non équivalents
- on renouvelle cette opération jusqu'à la stabilisation ...
- * On rappelle que « minimal » sous-entend à la fois « déterministe » ET « complet ».

5

Exemple

 $0 \approx 4$? NON : car $0 \notin F$ et $4 \in F$

 $3~\approx~6~?~$ OUI : car d'une part $3~\in~F$ et $6~\in~F$

et d'autre part :

 $\forall w \in \Sigma^*, \ \delta^*(3,aw) \in F \text{ et } \delta^*(6,aw) \in F$

et \forall w \in Σ^* , $\delta^*(3,bw) \in$ F et $\delta^*(6,bw) \in$ F

Etats équivalents

• étant donné **A** un A.F.D, deux états p et q sont <u>équivalents</u> si leurs langages associés respectifs sont identiques :

$$p \approx q \text{ ssi } L_p(A) = L_a(A)$$

autrement dit :

- La relation ≈ est une relation d'équivalence.
- Si q est un état, on note [q] l'ensemble des états qui lui sont équivalents.

6

Automate minimal

 Soit A un A.F.D. complet* dont chaque état est accessible depuis l'état initial :

$$A = (\Sigma, Q, \delta, q_0, F)$$

• l'automate minimal associé à **A** est :

$$A_{\min} = (\Sigma, Q', \delta', [q_0], F')$$

- $Q' = \{ [q], q \in Q \}$
- $-\quad \delta'\text{= }\left\{\text{ ([p],σ,[q])/$}\,\text{$\neq$}\,\text{$p'$}\,\text{\in [p],$}\,\text{\exists}\,\text{q'}\,\text{\in [q]}\,\,(p',\!\sigma,\,q')\,\text{\in}\,\,\delta\,\,\right\}$
- $F' = \{ [f], f \in F \}$

^{*} En pratique, le « complet » n'est pas nécessaire à la mise en œuvre de l'algorithme, mais l'automate obtenu doit alors être <u>complété</u> a posteriori afin d'obtenir l'automate minimal canonique.

Propriétés

- $A_{\min} = (\Sigma, Q', \delta', [q_0], F')$:
 - est bien défini
 - ne peut avoir deux états distincts équivalents
 - reconnaît le même langage que 🗛
- pour tout A.F.D. complet B tel que L(B) = L(A), le nombre d'états de B est supérieur ou égal à celui de A_{\min}
- tous les automates minimaux C tels que L(C) = L(A) sont identiques à un renommage de leurs états près
 - → on peut parler d'unicité de l'automate minimal.

9

Un premier exemple

≈₀ : {0, 2, 5} {1, 3, 4, 6}

 \approx_1 : {0, 2, 5} {1, 3, 4, 6}

≈₀ = ≈₁ donc arrêt de l'algorithme

Algorithme de minimisation (1er problème)

Algorithme par « raffinements successifs »

On définit inductivement une suite d'équivalences sur Q :

- $p \approx_0 q \iff ((p \in F \text{ et } q \in F) \text{ ou } (p \notin F \text{ et } q \notin F))$
- i > 0 : $p \approx_i q \iff \begin{cases} p \approx_{i-1} q \\ et \end{cases}$ $\forall \sigma \in \Sigma : \delta(p,\sigma) \approx_{i-1} \delta(q,\sigma)$
- cas d'arrêt : ≈_i est identique à ≈_{i-1}

10

Un autre exemple

Automate minimal

13

Minimisation (2e problème)

Soit L un langage rationnel :

Théorème : (admis)

L'ensemble des résiduels à gauche de L noté R(L) est \underline{fini} .

Proposition : (admis)

Soit $A = (\Sigma, Q, \delta, q_0, F)$ un A.F.D. <u>complet</u> dont tous les états sont accessibles, on a :

$$R(L) = \{ L_q(A), q \in Q \}$$

Conséquence immédiate :

A partir d'une expression régulière pour L, on peut construire l'automate minimal qui reconnaît L et dont chaque état correspond justement à un élément de R(L).

Résiduels

• L'ensemble des résiduels à gauche de L, noté R(L), est la réunion pour tous les mots σ de Σ^* des ensembles $\{\sigma\}^{-1}$ L :

$$\{\sigma\}^{-1} L = \{ W \in \Sigma^* \text{ tels que } \sigma W \in L \}$$

Les résiduels à gauche ce sont tous les w qui restent ... à droite

• Propriétés :

$$\begin{array}{l} \{\epsilon\}^{-1}L \ = \ L \\ \varnothing^{-1}L \ = \ \varnothing \\ (\{\sigma\,\tau\,\})^{-1} \ L \ = \ \{\tau\}^{-1} \ (\{\,\sigma\}^{-1} \ L) \end{array}$$

14

Calcul de l'automate minimal

Soit L un langage rationnel sur Σ donné sous forme d'une expression régulière, on construit l'automate minimal $M = (\Sigma, Q, \delta, q_0, F)$ le reconnaissant :

- q_0 correspond au langage $L_{q_0} = L$
- $Q = \{q_0\}$
- i = 1
- pour tout état q de langage associé L_q non encore traité faire pour toute lettre σ de Σ faire on calcule $\{\sigma\}^{-1}L_q$ si aucun état ne correspond à $\{\sigma\}^{-1}L_q$ alors $q_i \text{ nouvel état pour } \{\sigma\}^{-1}L_q$ $Q = Q \cup \{q_i\}$
 - $\delta = \delta \cup \{(q, \sigma, q_i)\}$ i = i + 1
- F contient tous les états q tel que $\varepsilon \in L_a$

Exemple

L: 1* 0 (0 + 1)

	δ	0	1	
	L	0+1	L	0
	0+1	3	3	
←	3	Ø	Ø	
	Ø	Ø	Ø	

à chaque quotient apparaît un état ...

$$0^{-1} L = 0 + 1$$

 $1^{-1} L = L$

$$0^{-1} (0+1) = \varepsilon$$

$$1^{-1} (0+1) = \varepsilon$$

17

Un dernier exemple

0* (1 0* 1 0*)*

$$0^{-1} L = L$$

 $1^{-1} L = 0^*10^* (10^*10^*)^*$

$$0^{-1} (1^{-1}L) = 1^{-1}L$$

 $1^{-1} (1^{-1}L) = 0^*(10^*10^*)^*$
 $= L$

δ	0	1
	L 1-1L	1-1L L

19

Un autre exemple

(0+1)* 0 1 (0+1)*

δ	0	1
→ L 0-1L	0-1L 0-1L	L_{Σ^*}
Σ^*	Σ^*	Σ^*

$$0^{-1} L = L + 1 (0+1)^*$$

$$1^{-1} L = L$$

$$0^{-1}$$
 (0⁻¹L) = 0⁻¹L
1⁻¹ (0⁻¹L) = Σ^*

$$0^{-1} (\Sigma^*) = \Sigma^*$$

 $1^{-1} (\Sigma^*) = \Sigma^*$

18