

Image Denoising

- Removal (Reduction?) of noise from an image
- Used as a pre-process step or a post-process step
- Applicable to
 - Medical images
 - Astronomical images
 - Ray traced images
 - 0 ...

© Abdeldjalil Ouahabi

© John Jenkinson et al.

What is Ray Tracing?

- Ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images. (Taken from <u>Wikipedia</u>)
- Hollywood has been using Ray tracing for over 20 years now!
- Highly valuable in the industry

\$2.06 Billion © Lucasfilm Ltd.

\$2.84 Billion
© 20th Century Fox

\$2.79 Billion
© Marvel Studios

Ray Tracing in Action

Effect of Sample Size

1 SPP 2 seconds 16 SPP 30 seconds 256 SPP 8 minutes!

Solution: "Denoising"

8 SPP 16 seconds 8 SPP Denoised 20 seconds

512 SPP GroundTruth
16 minutes!

How to Denoise?

- What is Denoising?
- Why is Denoising important?
- How is Denoising done?
 - Spatial domain filtering methods (classic)
 - Mean filtering
 - Median filtering
 - **...**
 - Transform Domain filtering methods (classic)
 - Spatial Frequency Filtering
 - Wavelet domain filtering
 - Auto Encoders and CNNs

Auto Encoders

- Comprised of an Encoder and a Decoder part
- Minimizes the "reconstruction error"
- Used in a variety of other tasks
 - Image segmentation
 - Style transfer
 - o ...

Denoising Auto Encoders

- Injects noise to the latent representation
- Goals:
 - Encourage the model to find more robust features
 - Discourage **overfitting**
 - Prevent the model from becoming a simple identity function
- However, it gives a good idea of how to denoise images

What is special about Ray traced images?

- Easy access to auxiliary passes as additional input data
 - Similar to RGB-D cameras but way more powerful
- Easily accessible training data
 - Need more data? Just make them*!
- Customizable training data
 - Need more interior images? No problem*.
 - Need more night images? No problem*.

^{*}needless to say that you still need the computing power to generate these data but it's generally a lot easier than in other fields.

State of the art Methods

- Intel® Open Image Denoiser (OIDN)
- NVIDIA OPTIX[™] Denoiser
- Both of them are Autoencoder based
- Both of them use said Auxiliary input data

Intel® OIDN Example

8 SPP 16 seconds 8 SPP Denoised 20 seconds

512 SPP GroundTruth
16 minutes!

Effect of Auxiliary inputs

Zoomed in on the chalkboard

© "Classroom" scene by Christophe Seux, Renders and comparison by Gholamreza Dar

Albedo

Flat lighting and no shadows

 $\ensuremath{\mathbb{C}}$ "Classroom" scene by Christophe Seux, Renders and comparison by Gholamreza Dar

Conclusion

References

- Open Image Denoise documentation
- NVIDIA OptiX[™] Ray Tracing Engine
- Chakravarty et al. Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder, 2017 (Nvidia Research)
- Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." Proceedings of the 25th international conference on Machine learning, 2008.
- Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
- Alisha P B et al. Image Denoising Techniques-An Overview, 2016
- <u>Denoising autoencoders with Keras, TensorFlow, and Deep Learning PylmageSearch</u>
- Auto Encoders and Style Transfer

Conclusion

