# More relevant examples

Excellent and very perceptive question.

Indeed, while the **logistic map** is a textbook starting point for chaos and entropy, it is *too simple* to show the full richness of **topological pressure phenomena** — especially things like **phase transitions**, **multifractal measures**, and **nontrivial equilibrium states**.

Let's look at systems that are more *interesting* and *informative* for exploring **topological pressure** and the **thermodynamic formalism**.

### 1. The Full Shift on k Symbols

**Why:** It's the simplest chaotic system where topological pressure can be computed *exactly* and used to build intuition.

Dynamics:

Sequences of symbols 
$$(s_0,s_1,s_2,\dots)$$
 with  $s_i\in\{1,2,\dots,k\}$ . The map is the **shift**:  $\sigma(s_0,s_1,s_2,\dots)=(s_1,s_2,\dots)$ .

Pressure:

$$P(\phi) = \ln \lambda_{\text{max}}$$

where  $\lambda_{\max}$  is the maximal eigenvalue of the **Ruelle transfer operator**  $\mathcal{L}_{\phi}$ . For constant  $\phi=0$ ,  $P(0)=\ln k$ .

• Why interesting: You can choose  $\phi(s_0,s_1)$  to depend on transitions (e.g. "energies" of symbol pairs), producing exactly solvable analogues of spin models (Ising-like).

Phase transitions appear naturally when potentials become long-range or non-Hölder.

## 2. The Smale Horseshoe Map

**Why:** It exhibits *hyperbolic chaos* with a fractal invariant set — the canonical example of a **uniformly hyperbolic system**.

 The topological entropy can be computed from the stretching rate and symbolic dynamics of the horseshoe.

- ullet For potentials like  $\phi(x)=-t\ln|Df(x)|$  , the pressure function P(t) gives access to:
  - Hausdorff dimension of the invariant Cantor set (where P(t)=0)
  - Multifractal spectra of unstable Lyapunov exponents.

Why interesting: You can explicitly compute or approximate P(t) and see how geometry, expansion rate, and entropy interplay.

#### 3. The Hénon Map

$$x_{n+1} = 1 - ax_n^2 + y_n, \quad y_{n+1} = bx_n$$

Why: A 2D, dissipative, non-uniformly hyperbolic system with a rich attractor.

- Unlike the logistic map, the Hénon attractor has both stable and unstable manifolds, and nonuniform hyperbolicity.
- The topological pressure  $P(\phi_t)$  with  $\phi_t = -t \ln |Df_u(x)|$  (unstable Jacobian) can reveal:
  - Dimension spectrum of invariant measure.
  - Phase transitions in P(t).
  - Relation between entropy and Lyapunov spectrum.

Why interesting: This is a realistic example where the thermodynamic formalism meets nonuniform hyperbolicity, and analytical computation is nontrivial but insightful numerically.

#### 4. The Baker's Map

$$(x,y) \mapsto egin{cases} (2x,y/2), & x < 1/2, \ (2x-1,(y+1)/2), & x \geq 1/2. \end{cases}$$

Why: It's a piecewise-linear, area-preserving, exactly solvable chaotic map with uniform hyperbolicity.

- · Easy to compute Lyapunov exponents, entropy, and fractal dimensions.
- Good testbed for verifying  $P(\phi_t)$  numerically.
- · Natural link between symbolic coding and geometric structure.

.

## 5. Geodesic Flow on a Negatively Curved Surface

Why: This is the continuous-time prototype of Anosov flows, with rich thermodynamic formalism.

- For potential  $\phi = -t \log J^u(x)$  (Jacobian along unstable direction),  $P(\phi)$  governs the **dimension spectrum** and **decay of correlations**.
- The equilibrium state is the Bowen-Margulis measure, the natural invariant measure for chaotic geodesic flow.

Why interesting: It's the archetypal example connecting dynamical pressure to geometry and ergodic theory.

### 6. Intermittent (Nonuniformly Hyperbolic) Maps

Examples:

- Pomeau–Manneville map  $f(x) = x + x^{1+lpha} \mod 1$
- · Logistic map at tangency parameter.

**Why:** These systems exhibit **phase transitions** in the pressure function P(t) — that is, P(t) becomes non-analytic at a critical  $t_c$ .

This mimics thermodynamic critical points.

- Below  $t_c$ : system dominated by expanding orbits.
- Above t<sub>c</sub>: dominated by slow (intermittent) orbits.

Why interesting: These are perfect for understanding how topological pressure encodes dynamical phase transitions.

# 7. Repellers in Chaotic Scattering

For instance, the open baker's map or 3-disk scattering system.

- · The invariant set (repeller) is fractal.
- The pressure function P(t) yields:
  - Hausdorff dimension (from P(t) = 0)
  - Escape rate (from P(1))



Dynamical zeta functions (via Ruelle formalism).

Why interesting: Connects chaos, fractals, and physical observables like transport or escape.

# Summary Table

| System                | Dimension  | Туре                       | Why good for topological pressure |
|-----------------------|------------|----------------------------|-----------------------------------|
| Full shift            | symbolic   | hyperbolic                 | exact computations, pedagogical   |
| Smale horseshoe       | 2D         | hyperbolic                 | geometric fractal structure       |
| Baker's map           | 2D         | hyperbolic                 | simple analytic form              |
| Hénon map             | 2D         | nonuniform hyperbolic      | realistic chaos, multifractal     |
| Geodesic flow         | continuous | Anosov flow                | links geometry ↔ dynamics         |
| Pomeau–Manneville     | 1D         | intermittent               | phase transitions in $P(t)$       |
| Open baker / repeller | 2D         | fractal chaotic scattering | escape rate ↔ pressure            |

#### In short:

If you want to **understand topological pressure as a true thermodynamic potential**, start from the **shift map** (exact solvability), move to the **horseshoe or baker's map** (geometry + symbolic dynamics),

and finally explore intermittent or Hénon-like systems to see phase transitions and multifractality.