Résumé 03 : Rappels sur les o,O,\sim

\triangleright **DEFINITIONS** de o, O, \sim :

Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ deux suites complexes. On dit que

- 1. $\boxed{u_n = O(v_n)}$ lorsque la suite $\left(\left|\frac{u_n}{v_n}\right|\right)n \in \mathbb{N}$ est majorée. C'est équivalent à l'existence d'une suite (b_n) bornée telle que $\forall n, u_n = b_n v_n$.
- 2. $u_n = o(v_n)$ lorsque la suite $\left(\frac{u_n}{v_n}\right) n \in \mathbb{N}$ tend vers 0.

C'est équivalent à l'existence d'une suite (a_n) de limite nulle telle que $\forall n, u_n = a_n v_n$.

3. $u_n \sim v_n$ lorsque la suite $\left(\frac{u_n}{v_n}\right) n \in \mathbb{N}$ tend vers 1, ou bien lorsque $u_n - v_n = o(v_n)$.

C'est équivalent à l'existence d'une suite (b_n) de limite 1 telle que $\forall n, u_n = c_n v_n$.

- $u_n = o(1) \iff$ la suite (u_n) tend vers 0.
- $u_n = O(1) \iff$ la suite (u_n) est bornée.
- Pour tout $c \in \mathbb{C}$ <u>non nul</u>, $u_n \sim c \iff 0$ la suite (u_n) tend vers c. Aucune suite autre que les suites nulles APCR n'est équivalente à 0. Si vous tombez $u_n \sim 0$, c'est probablement que vous aurez sommé deux équivalents.

ightharpoonup Propriétés de calcul des \sim :

- ullet \sim est réflexive, symétrique, transitive
 - 1. $u_n \sim u_n$.
 - 2. Si $u_n \sim v_n$ alors $v_n \sim u_n$.
 - 3. Si $u_n \sim v_n$ et $v_n \sim w_n$ alors $u_n \sim w_n$.
- ullet \sim et opérations
 - 1. Si $u_n \sim v_n$ et $a_n \sim b_n$, alors $u_n a_n \sim v_n b_n$.
 - 2. Si $u_n \sim v_n$ et $a_n \sim b_n$, alors $\frac{u_n}{a_n} = \frac{v_n}{b_n}$.
 - 3. Si $u_n \sim v_n$, alors $u_n^{\alpha} \sim v_n^{\alpha}$ si α est un réel indépendant de n.

Les équivalents peuvent donc être multipliés, divisés, élevés à une puissance constante. Attention, c'est faux pour un exposant qui dépend de n. En effet, $1+1/n \sim 1$, mais leurs puisances n—ièmes ne sont pas équivalentes.

• Equivalents et signes :

 $u_n \sim v_n \Rightarrow u_n$ et v_n sont de même signe APCR.

• Equivalents et limites :

$$\begin{cases} u_n \sim v_n \\ \lim_{n \to \infty} u_n = \ell \end{cases} \implies \lim_{n \to \infty} v_n = \ell$$

• 11ème commandement : Les équivalents, tu ne sommeras point.

Par exemple $u_n=n^2+n\sim n^2$ et $v_n=-n^2+n\sim -n^2$ mais....

Si l'on est tentés par cette somme, on transforme $u_n \sim a_n$ et $v_n \sim b_n$ en $u_n = a_n + o(a_n)$ et $v_n = b_n + o(b_n)$. On pourra alors sommer ces égalités pour obtenir $u_n + v_n = a_n + b_n + o(a_n) + o(b_n)$; Il suffira alors de simplifer cette somme de o à l'aide des propriétés ci-dessous.

Exemple : Trouver un équivalent de $\sin(1/n) + \tan(\sqrt{2}/n)$.

Autre erreur à ne pas commettre :

$$u_n \sim v_n$$
 n'implique pas $f(u_n) \sim f(v_n)$.

\triangleright Propriétés de calcul des o, O:

Résumé \mathcal{N} °3 : o, O et \sim

• Combinaisons linéaires :

$$\begin{cases} u_n = o(a_n) \\ v_n = o(a_n) \end{cases} \implies \forall a, b \in \mathbb{R}, au_n + bv_n = o(a_n).$$

• Produits d'un o par une suite :

$$a_n o(b_n) = o(a_n b_n)$$

• Produits de deux o :

$$o(a_n)o(b_n) = o(a_nb_n)$$

• Simplification par une contante :

$$\forall c \neq 0, o(ca_n) = o(a_n) \text{ et } co(a_n) = o(a_n)$$
.

 \bullet Transitivités : Si $b_n = o(a_n)$ et $c_n = o(b_n)$, alors $c_n = o(a_n)$, i.e

$$o(o(a_n)) = o(a_n), o(O(a_n)) = o(a_n), O(o(a_n)) = o(a_n)$$

• Simplification de la fonction de référence :

$$a_n \sim b_n \Rightarrow o(a_n) = o(b_n) \text{ et } O(a_n) = O(b_n)$$

Exemple : $o(n + \ln n) = o(n)$.

ullet Sommes de o:

$$o(a_n) + o(b_n) = o(a_n) \text{ si } b_n = O(a_n)$$

Exemples: $o(n^2) + o(n) = o(n^2), o(n) + o(n) = o(n), o(n) + o(n+1) = o(n).$

> Equivalents notoires :

Il faut connaître les équivalents suivants. Si vous les oubliez, sachez qu'ils proviennent tous du résultat suivant, valable pour toute suite tendant vers 0, et toute fonction f dérivable en 0:

$$\lim_{n \to \infty} \frac{f(u_n) - f(0)}{u_n} = f'(0).$$

On transforme alors cette limite en équivalent, si $f'(0) \neq 0$, que l'on multiplie par u_n . Par exemple, pour toute suite $(u_n)_n$ convergeant vers 0,

$$\ln(1+u_n) \sim u_n,$$

$$\sin u_n \sim u_n,$$

$$1-\cos u_n \sim \frac{u_n^2}{2},$$

$$e^{u_n}-1 \sim u_n,$$

$$(1+u_n)^a-1 \sim au_n, \text{ pour tout } a \in \mathbb{R}^*$$

$$\sum_{k=1}^n \frac{1}{k} \sim \ln n.$$

Résumé \mathcal{N} °3 : o, O et \sim