MSA 2025 Phase 2 - Part 1

1 MSA 2025 Phase 2 - Part 1

```
[214]: import os
import sklearn
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

1.1 1. Find all variables and understand them

```
[229]: # Get the folder path containing the datasets
       folder_path = 'datasets/W store sales'
       # Loop through every file in the folder
       for file in os.listdir(folder_path):
           file_path = os.path.join(folder_path, file)
           # Load dataset into a dataframe
           df = pd.read_csv(file_path)
           # First 10 instances of the dataset
           print(f"First 10 instances from the dataset: {file}")
           display(df.head(10))
           # Select numeric columns for statistical measures
           print(f"Mean and Standard Deviation from the dataset: {file}")
           numeric_df = df.select_dtypes(include = 'number')
           display(numeric_df.agg(['mean', 'std']))
           # Plot histograms and bar plots depending on column type
           print(f"Distributions for numerical and categorical columns: {file}")
           # Identify column types
           numeric_cols = df.select_dtypes(include='number').columns
           categorical_cols = [
```

```
col for col in df.columns
   if (
        df[col].dtype == 'object'
        or isinstance(df[col].dtype, pd.CategoricalDtype)
   and not col.lower().startswith('date')
]
    # Combine both sets of columns for plotting
   plot_cols = list(numeric_cols) + categorical_cols
   n cols = 3
   n_rows = (len(plot_cols) + n_cols - 1) // n_cols
   # Subplot grid for our graphs
   fig, axes = plt.subplots(n_rows, n_cols, figsize = (20, 10 * n_rows))
   axes = axes.flatten()
    # Loop through columns and choose appropriate plot
   for i, col in enumerate(plot_cols):
       ax = axes[i]
       if col in numeric_cols: # Plot numerical columns as histograms
            sns.histplot(df[col], bins=20, ax=ax)
            ax.set_title(f'Histogram of {col}')
        else:
            counts = df[col].value_counts()
            sns.barplot(x=counts.index, y=counts.values, ax=ax) # Plot_
 ⇔categorical columns as bar plots
            ax.set_title(f'Bar Plot of {col}')
            ax.set_xlabel(col)
            ax.set_ylabel('Count')
            ax.tick_params(axis='x', rotation=45)
   # Delete unused subplots
   for j in range(i + 1, len(axes)):
       fig.delaxes(axes[j])
    # Show plots
   plt.tight_layout()
   plt.show()
    # Transform the df dataframe fully numeri
   df_numeric = df.copy()
    # Find categorical columns again, including 'store'
    categorical_cols = [
       col for col in df_numeric.columns
        if (
            df_numeric[col].dtype == 'object'
```

First 10 instances from the dataset: features.csv

	Store		Date	Temperature	Fuel_Price	MarkDown1	MarkDown2	\
0	1	201	0-02-05	42.31	2.572	NaN	NaN	
1	1	2010-02-12		38.51	2.548	NaN	NaN	
2	1	201	0-02-19	39.93	2.514	NaN	NaN	
3	1	201	0-02-26	46.63	2.561	NaN	NaN	
4	1	201	0-03-05	46.50	2.625	NaN	NaN	
5	1	201	0-03-12	57.79	2.667	NaN	NaN	
6	1	201	0-03-19	54.58	2.720	NaN	NaN	
7	1	201	0-03-26	51.45	2.732	NaN	NaN	
8	1	201	0-04-02	62.27	2.719	NaN	NaN	
9	1	201	0-04-09	65.86	2.770	NaN	NaN	
	MarkDo	wn3	MarkDown	4 MarkDown5	CPI	Unemploym	ent IsHoli	iday
0		NaN	Na	N NaN	211.096358	8.	106 Fa	alse
1		NaN	Na	N NaN	211.242170	8.	106	True
2		NaN	Na	N NaN	211.289143	8.	106 Fa	alse
3		NaN	Na	N NaN	211.319643	8.	106 Fa	alse
4	NaN NaN		N NaN	211.350143	8.	106 Fa	alse	
5	NaN NaN		N NaN	211.380643	8.	106 Fa	alse	
6	NaN NaN		N NaN	211.215635	8.	106 Fa	alse	
7	NaN NaN		N NaN	211.018042	8.	106 Fa	alse	
8		NaN	Na	N NaN	210.820450	7.	808 Fa	alse
9		NaN	Na	N NaN	210.622857	7.	808 Fa	alse

Mean and Standard Deviation from the dataset: features.csv

```
Store Temperature Fuel_Price MarkDown1 MarkDown2 \
mean 23.000000 59.356198 3.405992 7032.371786 3384.176594
std 12.987966 18.678607 0.431337 9262.747448 8793.583016
```

 MarkDown3
 MarkDown4
 MarkDown5
 CPI
 Unemployment

 mean
 1760.100180
 3292.935886
 4132.216422
 172.460809
 7.826821

 std
 11276.462208
 6792.329861
 13086.690278
 39.738346
 1.877259

Distributions for numerical and categorical columns: features.csv

First 10 instances from the dataset: stores.csv

	Store	Туре	Size
0	1	Α	151315
1	2	Α	202307
2	3	В	37392
3	4	Α	205863
4	5	В	34875
5	6	Α	202505
6	7	В	70713
7	8	Α	155078
8	9	В	125833
9	10	В	126512

Mean and Standard Deviation from the dataset: stores.csv

Store Size
mean 23.000000 130287.600000
std 13.133926 63825.271991

Distributions for numerical and categorical columns: stores.csv

First 10 instances from the dataset: sales.csv

	Store	Dept	Date	Weekly_Sales	IsHoliday
0	1	1	2010-02-05	24924.50	False
1	1	1	2010-02-12	46039.49	True
2	1	1	2010-02-19	41595.55	False
3	1	1	2010-02-26	19403.54	False

4	1	1	2010-03-05	21827.90	False
5	1	1	2010-03-12	21043.39	False
6	1	1	2010-03-19	22136.64	False
7	1	1	2010-03-26	26229.21	False
8	1	1	2010-04-02	57258.43	False
9	1	1	2010-04-09	42960.91	False

Mean and Standard Deviation from the dataset: sales.csv

	Store	Dept	Weekly_Sales
mean	22.200546	44.260317	15981.258123
std	12.785297	30.492054	22711.183519

Distributions for numerical and categorical columns: sales.csv

1.2 2. Visualize Data

[]: #

1.3 3. Clean Data

[231]: #

1.4 4. Identify correlated variables

[232]: #

1.5 5. Summary