Elektronische Eigenschaften von Festkörpern I

Das freie Elektronengas
Elektronenanteil der spezifischen Wärme
Elektrische und thermische Leitfähigkeit von
Metallen

Bandstruktur Kupfer

7. Elektronische Bänder in Festkörpern

Freies Elektronengas

Näherungen:

- Einelektronen-Zustände
- keine Wechselwirkung mit Ionenrümpfen (Quasikontinuum)
- Kastenpotential

Ergebnisse:

- spezifische Wärme
- elektrische Leitfähigkeit
- Wärmeleitfähigkeit
- Verhalten im Magnetfeld

Periodisches Hintergrundpotential im Kristall

Fermi-Kugel

Fermi-Kugel

Alkali-Metalle (einfach!)

Diskretisierung der Elektronen-Zustände im k Raum

Feste Randbedingungen

Nur Zustände im 1. Oktanden Zustandsvolumen $(\pi/L)^3$

Periodische Randbedingungen

Zustände in der vollen Kugel Zustandsvolumen $(2\pi/L)^3$

Metall	n (10 ²² cm ⁻³)	E _F (eV)	<i>T_F</i> (K)	k_F (10 ⁸ cm ⁻¹)	v_F (10 ⁸ cm/s)
Li	4.70	4.72	54 800	1.11	1.27
Rb	1.15	1.85	21 500	0.69	0.79
Cu	8.45	7.00	81 200	1.35	1.55
Au	5.90	5.51	63 900	1.20	1.38
Be	24.2	14.14	164 100	1.92	2.21
Zn	13.10	9.39	109 000	1.56	1.79
Al	18.06	11.63	134 900	1.74	2.00
Pb	13.20	9.37	108 700	1.57	1.81

Elektronische Zustandsdichte in 3D, 2D, 1D

Temperaturabhängigkeit des chemischen Potentials

Elektronischen Zustandsdichte mal Besetzungswahrscheinlichkeit

Spezifische Wärme bei tiefen Temperaturen

Kittel, 14. Aufl., S. 170

Metall	$\gamma_{\rm exp}$ (10 ⁻³ J / mol K)	γ_{theor} (10 ⁻³ J / mol K)	$\gamma_{ m exp}/\gamma_{ m theor}$
Li	1.63	0.749	2.18
Na	1.38	1.094	1.26
K	2.08	1.668	1.25
Rb	2.41	1.911	1.26
Cs	3.20	2.238	1.43
Fe	4.98	0.498	10
Co	4.98	0.483	10.3
Ni	7.02	0.458	15.3
Cu	0.695	0.505	1.38
Ag	0.646	0.645	1.00
Au	0.729	0.642	1.14
Sn	1.78	1.41	1.26
Pb	2.98	1.509	1.97

Zustandsdichte für lokalisierte und delokalisierte Elektronen

Fermi-Kugel bei konstanter Spannung

Verschiebung der Fermi-Kugel bei angelegter Spannung

Fermi-Kugel nach Abschalten der Spannung

Relaxation nach Abschaltung des Feldes: inelastische Stöße

Streuprozesse sind nur an der Oberfläche der Fermikugel erlaubt

Zahlenwerte für Kupfer

bei Zimmertemperatur $\sigma \cong 6.10^5 \, (\Omega \text{cm})^{-1}$

mit 1 Leitungselektron pro Cu-Atom:
$$n = \frac{N_A}{V_{mol}} = \frac{N_A}{m_{mol} / \rho} = 7.1 \, \text{cm}^{-3}$$

dann
$$\tau = \frac{m\sigma}{ne^2} = 2.5 \cdot 10^{-14} \text{ s}$$

extrem reines Cu $\frac{\sigma(4 \text{ K})}{\sigma(300 \text{ K})} \cong 10^5$

nur τ ist T-abhängig $\tau(4 \text{ K}) \cong 2.5 \cdot 10^{-9} \text{ s}$

mittlere freie Weglänge

$$l = v_F \tau = 1.6 \cdot 10^8 \frac{\text{cm}}{\text{s}} \tau = 40 \text{ nm} (300 \text{ K}) \text{ bzw. 4 mm} (4 \text{ K})$$

Driftgeschwindigkeit $j = 3.10^{3} \, \text{Acm}^{-2}$, $E = j / \sigma = 5.10^{-3} \, \text{Vcm}^{-1}$

$$\delta v = \frac{e}{m} E \tau = 2 \text{ mm/s} \approx 10^{-9} v_F$$

Temperaturabhängigkeit des elektrischen Widerstandes in Metallen

Spezifischer Restwiderstand

Restwiderstand von Na (normiert auf RT) für drei verschiedene Störstellenkonzentrationen

Ibach/Lüth, 6. Aufl., S. 249

Beispiele für Temperaturabhängigkeit des spezifischen Widerstands in Metallen

Wärmeleitfähigkeit und Lorenzzahl

Metall	κ (W/cm K)	$\frac{L}{(10^{-8}\mathrm{W}/\Omega\mathrm{K}^2)}$	Metall	κ (W/cm K)	$\frac{L}{(10^{-8}\mathrm{W}/\Omega\mathrm{K}^2)}$
Al	2.38	2.14	Na	1.38	2.12
Ag	4.18	2.31	Pb	0.38	2.47
Au	3.10	2.35	Pt		2.51
Cd	1.00	2.42	Sn	0.64	2.52
Cu	3.85	2.23	Nb	0.52	2.90
Fe	0.80	2.61	Sb	0.64	2.57
In	0.88	2.58	W	_	3.04
Мо	_	2.61	Zn	1.13	2.31

Wärmeleitung in Metallen

