

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 ПО ДИСЦИПЛИНЕ: ОСНОВЫ ЭЛЕКТРОНИКИ "ПОЛЕВОЙ ТРАНЗИСТОР"

Студент: Зернов Георгий Павлович		
Группа: ИУ7-34Б		
Вариант: 86		
Название предприятия: НУК ИУ МГТУ	им. Н. Э. Баумана	
Студент		Зернов Г.П.
Преподаватель		Оглоблин Д.И.

Оглавление

ЦЕЛЬ ПРАКТИКУМА	3
ХОД РАБОТЫ	4
Эксперимент 7	
Эксперимент 8	
-	
Эксперимент 9	
ЗАКЛЮЧЕНИЕ	

ЦЕЛЬ ПРАКТИКУМА

Получить навыки в использовании базовых возможностей программы Місгосар и знания при исследовании и настройке усилительных, ключевых и логических устройств на биполярных и полевых транзисторах.

ХОД РАБОТЫ

Эксперимент 7

В работе используется рЈГЕТ-транзистор J177:

Соберём схему:

С помощью режима DC Analysis получим переходную характеристику транзистора:

Из графика найдём напряжение отсечки и крутизну:

Uote := 4.5
$$U := \begin{pmatrix} 2 \\ 5 \\ 10 \end{pmatrix} \qquad I := \begin{pmatrix} 5.96 \cdot 10^{-3} \\ 11.62 \cdot 10^{-3} \\ 15.46 \cdot 10^{-3} \end{pmatrix}$$

$$\underset{\text{MM}}{S} := 2 \cdot \frac{I}{\text{Uote}} \qquad S = \begin{pmatrix} 2.649 \times 10^{-3} \\ 5.164 \times 10^{-3} \\ 6.871 \times 10^{-3} \end{pmatrix}$$

Выведем выходные характеристики с помощью Vds vs. Id:

Построим нагрузочную прямую:

На середине нагрузочной прямой возьмём рабочую точку и из закона Кирхгофа найдём сопротивление строка для данной рабочей точки:

Соберём усилитель на JFET-транзисторе для данной рабочей точки:

С помощью режима Transient Analysis получим графики усиления сигнала:

Коэффициент усиления: K = 0.35 / 0.2 = 1.75

В работе используется nMOS IRF630:

Соберём схему для получения переходной характеристики мосфета:

С помощью режима DC Analysis получим переходную характеристику мосфета:

Заметим, что мосфет открывается примерно при 4.3(В).

Выведем выходные характеристики с помощью Vds vs. Id и построим нагрузочную прямую:

Для неё рассчитаем сопротивление стока:

$$I:=18$$

$$Ek:=20 \qquad Rd:=\frac{Ek}{I} \qquad Rd=1.111$$

Для полученного сопротивления стока соберём схему ключа на этом транзисторе:

С помощью режима Transient Analysis продемонстрируем характеристики данного ключа:

Эксперимент 8

В работе используются nMOS IRF630 и pMOS IRF9630:

Соберём схему КМОП цифрового ключа:

С помощью режима Transient Analysis продемонстрируем характеристики данного ключа:

Рассчитаем задержку по уровню 0.5:

Из этого:

- Задержка перехода 0-1: 0.154(мкс)
- Задержка перехода 1-0: 0.060(мкс)

Тогда задержка Т=0.107(мкс)

Заменим в схеме ключа источник питания на 10(B) для получения передаточной характреистики:

С помощью режима DC Analysis получим передаточную характеристику:

Максимальный ток достигается при U=10(B) и равен 3.2(A). Соберём схему, выполняющую логическую функцию 2И-НЕ:

С помощью режима Transient Analysis проверим её работу:

Схема работает неудовлетворительно, что связано с преобразованием цифрового сигнала в аналоговый, для исправления добавим ЦАП в схему:

Проверим работу модифицированной схемы:

Графики сигналов совпадают с таблицей истинности 2И-HE, что подтверждает правильность работы схемы.

X	Υ	2И-НЕ
0	0	1
0	1	1
1	0	1
1	1	0

Эксперимент 9

Соберём базовый триггер на NMOS:

С помощью режима Transient Analysis проверим его работу:

Триггер работает правильно.

ЗАКЛЮЧЕНИЕ

Были выполнены все задачи, описанные выше, таким образом были получены и проанализированы характеристики JFET и MOS транзисторов.