Lecture 5

Integrating Electrical Signals

Neurotransmission

Chemical vs Electrical Synapses

Varieties of Synapses

- Synapses vary widely, each type is specialized in
 - Location
 - Structure
 - Function

- Target
- Through connections to the dendrites, cell body, or axon of a neuron, transmitters can control the actions of the neuron in different ways
 - 1. **Dendrodendritic**: Dendrites to dendrites
 - 2. Axodendritic: Axon terminal to dendrites
 - 3. Axoextracellular: Axon terminal to extracellular fluid
 - 4. **Axosomatic**: Axon terminal to cell body
 - 5. Axosynaptic: Axon terminal to another terminal
 - 6. Axoaxonic: Axon terminal to another axon
 - 7. **Axosecretory**: Axon terminal to capillaries (directly into blood)

Structure of Chemical Synapses

- Chemical Synapse
 - Junction where messenger molecules (neurotransmitters) are
 released from one neuron to excite/inhibit the next neuron
 - Majority of synapses in the mammalian nervous system are chemical
- Neurotransmitter
 - Chemical released by a neuron onto a target with an excitatory or inhibitory effect
 - Outside the CNS, many of these chemicals circulate in the blood stream as hormones (distant targets, slower action than neurotransmitters)
- Experiment: Otto Loewi (1921)
 - Frog heart experiement

- Role of the vagus nerve and the neurotransmitter acetylcholine
 (ACh) in slowing heart rate
- Acetylcholine
 - First neurotransmitter discovered in the PNS and CNS
 - Activates skeletal muscles in the somatic nervous system
 - May excite/inhibit internal organs in the autonomic nervous system

Structure of Electrical Synapses

- Gap junction
 - Fused presynaptic and postsynaptic membrane
 - Allows ions (electrical messages) to pass directly from one neuron to the next
- Electrical Synapses are fast
- These types of synapses are less common

Steps in Synaptic Transmission

1. Synthesis

- Some neurotransmitters are transported from the cell nucleus to the terminal button
- Others, made from building clocks imported into the terminal, are packaged into vesicles there

2. Release

 In response to an action potential, the transmitter is released across the membrane by exocytosis

3. Receptor action

o Transmitter cross the synaptic cleft and binds to receptor

4. Inactivation

 Transmitter is either taken back into the terminal or inactivated in the synaptic cleft

Excess Neurotransmitter

- Accomplished in at least four ways
 - o Diffusion away from synaptic cleft
 - o Degradation by enzymes in synaptic cleft
 - Reabsorption into presynaptic neuron for subsequent reuse
 - Taken up by neighboring glial cells