Interrogation de cours nº 1

Lundi 8 septembre 2025

Version de l'année dernière, des questions sont susceptibles de changer! E et F sont des \mathbb{K} -espace vectoriels, avec \mathbb{K} un sous-corps de \mathbb{R} . Durée: 30 min.

Définitions

- **1.** Comment définit-on le noyau et l'image d'une application linéaire $f: E \to F$?
- **2.** Donner la définition de la somme $E_1 + \ldots + E_q$ de q sous-espaces vectoriel de E. Quand dit-on que cette somme est directe?
- **3.** Que veut dire qu'un sous-espace vectoriel G de E est stable par un endomorphisme $u \in \mathcal{L}(E)$?
- **4.** Quand dit-on que $x \in E$ est vecteur propre de u?
- **5.** Qu'est-ce que le spectre de u si E est de dimension finie?

Résultats et propriétés

- a) Démontrer qu'une application linéaire $f \in \mathcal{L}(E, F)$ est injective si, et seulement si, son noyau est réduit à $\{0\}$.
- b) Soient deux endomorphismes u et v de E qui commutent. Montrer que tout sous-espace propre de u est stable par v.
- c) Soient E_1, E_2, E_3 trois sous-espaces vectoriels de E. Montrer que la somme $E_1 + E_2 + E_3$ est directe si et seulement si $E_1 \cap E_2 = \{0\}$ et $(E_1 + E_2) \cap E_3 = \{0\}$.