Cursus ingénieur CentraleSupélec

CIPEDP - 1ère année

Examen partiel no. 2

Vendredi 11 janvier 2019 Epreuve 1h30 sans document (2 pages)

Consignes

- Les documents ne sont pas autorisés.
- L'usage de tout ordinateur, calculatrice ou téléphone est interdit.
- Ne pas utiliser de correcteur fluide.
- Ecrire avec un stylo à encre noire ou bleu foncé (éviter le stylo plume à encre claire).
- Bien remplir le cartouche de chaque copie en majuscule.
- Bien numéroter les copies.
- Rendre les copies à plat toutes dans le même sens (coin coupé en haut à droite).
- L'épreuve ne durant que 1h30, les sorties ne sont pas autorisées.
- Chacune des affirmations doit être justifiée par une démonstration.
- Les 2 exercices sont indépendants.

Exercice 1

Soit une masse m de 500g pendue à un fil de longueur ℓ égale à 10cm, inélastique et de masse supposée négligeable. On suppose qu'il n'y a pas de frottement. On arrondit la constante de gravité terrestre à $10m.s^{-2}$. On appelle θ l'angle que fait le fil avec l'axe vertical dirigé vers le bas, mesuré dans le sens trigonométrique. On fixe un temps d'observation T.

- Q.1.1 Montrez que l'équation adimensionnée qui régit le mouvement angulaire du centre de gravité de la masse est $\theta'' + 100 T^2 \sin(\theta) = 0$. Faire un dessin est fortement recommandé.
- Q.1.2 Rappelez la définition d'un problème de Cauchy.
- Q. 1.3 On suppose que l'angle θ^0 de départ vaut 0,01rad et que la vitesse initiale est nulle. Ecrivez le problème de Cauchy (sans dimension) satisfait par le vecteur $\Theta = (\theta, \theta')^T$. On notera f le champ de vecteurs associé : $\Theta' = f(\Theta)$.
- **Q.1.4** Montrez que f est une fonction globalement Lipschitzienne sur $\mathbb{R} \times \mathbb{R}$.
- Q.1.5 Rappelez la définition d'une solution globale.
- Q. 1.6 Le problème de la question Q.1.3 admet-il une solution globale? Que dire de l'unicité? Justifiez précisément votre réponse grâce aux résultats du cours.

L'angle θ^0 étant faible, on linéarise le problème de la question Q.1.3.

Q.1.7 Donnez explicitement la solution de ce problème linéarisé.

Exercice 2

Soit $\Omega =]0, 1[$. On s'intéresse au problème

$$\begin{cases} -\nu(x)u''(x) + q(x)u(x) = f(x), & x \in]0, 1[, \\ u'(0) = u'(1) = 0, \end{cases}$$
 (1)

avec $\nu, q \in C^0([0,1], \mathbb{R}^{+*}), f \in C^0([0,1]).$

- Q.2.1 Quel est le type de ce problème? Quel est le nom des conditions aux limites?
- Q.2.2 Montrez que la formulation variationnelle
 - « Trouver $u \in H^1(0,1)$ solution de

$$\forall v \in H^1(0,1), \qquad \int_{]0,1[} u'v' + \int_{]0,1[} \tilde{q}uv = \int_{]0,1[} \tilde{f}v$$

}}

peut être associée au problème (1) pour des fonctions \tilde{q} et \tilde{f} à préciser.

- Q. 2.3 Montrez qu'il existe une et une seule solution de la formulation variationnelle précédente dans $H^1(0,1)$.
- **Q.2.4** Montrez que le problème (1) est bien posé au sens de Hadamard dans $H^2(0,1)$.
- Q.2.5 Montrez que la solution de (1) est classique.
- Q.2.6 Décrivez la méthode des éléments finis \mathbb{P}_1 sur un maillage uniforme de [0,1] comportant J points uniformément répartis pour $J \geq 3$. Vous devrez fournir les expressions explicites
 - le pas h,
 - du sous-espace $H_h \subset H^1(0,1)$ d'approximation et sa dimension,
 - de la base de H_h choisie,
 - de la matrice de rigidité A_h du système linéaire et le second membre b_h .

Vous donnerez explicitement la matrice A_h pour J=4 et $q=\nu$.

- Q.2.7 Que dire de la matrice A_h si q est la fonction nulle? Si q est simplement supposée positive et non strictement positive? Le raisonnement fait précédemment est-il mis en défaut et si oui, à quel étape?
- Q.2.8 Proposez un phénomène physique qui peut être modélisé par le problème (1).

Correction

Pour vous aider à comprendre certaines erreurs fréquemment commises, nous avons ajouté à la fin de la correction de certaines questions un paragraphe commençant par la mention "Erreurs trouvées fréquemment dans les copies".

Solution Q.1.1 Vu en cours : $\theta'' + (T^2g/l)\sin(\theta) = 0$. Ici, g/l = 100.

Solution Q.1.2 Voir cours.

Solution Q.1.3 Le problème de Cauchy est

$$\begin{cases} \Theta' = \begin{bmatrix} \theta \\ \theta' \end{bmatrix}' = \begin{bmatrix} \theta' \\ -100 \, T^2 \, \sin(\theta) \end{bmatrix} = f(\Theta) \\ \Theta(0) = \begin{bmatrix} 0,01 \\ 0 \end{bmatrix}$$

Solution Q.1.4 Soient $X = (x_1, x_2)^T$ et $Y = (y_1, y_2)^T$. Alors, en norme infinie sur \mathbb{R}^2 par exemple,

 $||f(Y)-f(X)||_{\infty} = \max(|y_2-x_2|, 100|\sin(y_1)-\sin(x_1)|) \le 100 T^2 \max(|y_2-x_2|, |y_1-x_1|) = 100 T^2 ||Y-X||_{\infty}$ car sin est globalement Lipschitzienne de constante 1 (accroissements finis, formules directes, etc).

Solution Q.1.5 C'est une solution définie sur tout l'intervalle de temps considéré dans le problème de Cauchy. Ici, une solution globale est définie sur \mathbb{R} .

Solution Q.1.6 La solution est ici globale (car f est globalement Lipschitzienne) et unique, par le théorème de Cauchy-Lipschitz global.

Solution Q.1.7 Le problème linéarisé est

$$\begin{bmatrix} \theta \\ \theta' \end{bmatrix} = \begin{bmatrix} \theta' \\ -100 \, T^2 \, \theta \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -20 & 0 \end{bmatrix}$$

3

ou encore $\theta'' + 100 T^2 \theta = 0$, $\theta(0) = 0.01$ et $\theta'(0) = 0$. La solution est donc $\theta : t \mapsto 0.01 \cos(10 T t)$.

Solution Q.2.1 Il s'agit d'un problème elliptique avec conditions aux limites de Neumann.

Solution Q.2.2 Pour passer de (1) à la formulation variationnelle, on divise l'équation par la fonction ν , qui ne s'annule pas. On définit donc $\tilde{q} := q/\nu$ et $\tilde{f} := f/\nu$, qui vérifient les mêmes hypothèses que q et f.

Supposons $u \in C^2([0,1])$. Soit $\phi \in \mathcal{D}([0,1])$. Alors, après intégration et intégration par parties, on a

$$\int_{[0,1[} u'\phi' - (u'(1)\phi(1) - u'(0)\phi(0)) + \int_{[0,1[} \tilde{q}u\phi = \int_{[0,1[} \tilde{f}\phi.$$

Comme u'(1) = u'(0) = 0, on a

$$\int_{]0,1[} u'\phi' + \int_{]0,1[} \tilde{q}u\phi = \int_{]0,1[} \tilde{f}\phi.$$

La formulation variationnelle en découle.

Solution Q.2.3 On cherche à appliquer le théorème de Lax-Milgram : l'espace de Hilbert considéré est $H^1(0,1)$, que l'on munit du produit scalaire usuel $(u,v)\mapsto \int_{]0,1[}(u'v'+uv)$. Les formes linéaire et bilinéaire sont

$$a:(u,v)\mapsto \int_{]0,1[} u'v' + \int_{]0,1[} \tilde{q}uv \quad et \quad \ell:v\mapsto \int_{]0,1[} \tilde{f}v.$$

Elles sont bien définies sur $H^1(0,1)$ et $H^1(0,1) \times H^1(0,1)$ (on pourra utiliser l'inégalité de Cauchy-Schwarz). Il reste à montrer la continuité de a et de ℓ et la coercivité de a: en utilisant le fait que $\tilde{q}=q/\nu$ est une fonction continue sur [0,1] et qu'elle est donc bornée, on a

$$\forall u, v \in H^{1}(0,1), \quad |a(u,v)| \leq \|u'\|_{L^{2}} \|v'\|_{L^{2}} + \|\tilde{q}\|_{\infty} \|u\|_{L^{2}} \|v\|_{L^{2}} \leq \max(1, \|q\|_{\infty}) \|u\|_{H^{1}} \|v\|_{H^{1}}$$

$$|\ell(v)| \leq \|f\|_{L^{2}} \|v\|_{L^{2}} \leq \|f\|_{L^{2}} \|v\|_{H^{1}},$$

$$a(u,u) \geq \|u'\|_{L^{2}}^{2} + \min_{\substack{[0,1] \\ \text{sur un compact}}} (q) \quad \|u\|_{L^{2}}^{2} \geq \min(1, \min_{[0,1]}(q)) \|u\|_{H^{1}}^{2}.$$

On peut donc appliquer le théorème de Lax-Milgram, qui donne l'existence et l'unicité de la solution u_f .

Solution Q.2.4 Notons u_f la solution de la formulation variationnelle. Il y a deux étapes :

- montrer que u_f est bien une solution au sens des distributions,
- montrer que u'(0) = u'(1) = 0.

Première étape :

Pour tout $\phi \in \mathcal{D}(]0,1[)$,

$$-\int_{]0,1[} u_f' \phi' = \int_{]0,1[} \tilde{q} u_f \phi - \int_{]0,1[} \tilde{f} \phi,$$

donc

$$-\left\langle \mathcal{T}_{u_f'}, \phi' \right\rangle = \left\langle \mathcal{T}_{\tilde{q}u_f - \tilde{f}}, \phi \right\rangle$$

Ainsi

$$\left\langle \mathcal{T}'_{u'_f}, \phi \right\rangle = \left\langle \mathcal{T}_{\tilde{q}u_f - \tilde{f}}, \phi \right\rangle$$

Cela permet donc d'affirmer que la dérivée au sens des distributions de u' est une distribution régulière : $u'' = \tilde{q}u_f - \tilde{f}$. De plus u'' appartient à $L^2(0,1)$, donc $u \in H^2(0,1)$. Deuxième étape :

Pour tout $\phi \in \mathcal{D}([0,1])$, on peut faire l'intégration par parties, car grâce au théorème de Rellich, $u_f \in C^1([0,1])$ et $u_f'(0)$ et $u_f'(1)$ sont bien définis :

$$0 = -\int_{]0,1[} u'_f \phi' - \int_{]0,1[} \tilde{q} u_f \phi + \int_{]0,1[} \tilde{f} \phi$$

$$= -[u'_f(1)\phi(1) - u'_f(0)\phi(0)] + \int_{]0,1[} (u''_f - \tilde{q} u_f + \tilde{f})\phi$$

$$= u'_f(0)\phi(0) - u'_f(1)\phi(1)$$

En prenant $\phi: x \mapsto x$, on obtient $u'_f(1) = 0$. En prenant $\phi: x \mapsto 1-x$, on obtient $u'_f(0) = 0$. La solution variationnelle u_f est donc bien solution dans $H^2(0,1)$ du problème (1).

Solution Q.2.5 Comme $u''_f = \tilde{q}u - \tilde{f}$, q, ν , f sont continues et u_f appartient à $H^2(0,1)$ donc est continue, u''_f est continue sur [0,1]. Donc $u_f \in C^2([0,1])$ est solution classique.

Solution Q.2.6 Le pas est h = 1/(J-1). Pour $j \in \{0, ..., J-1\}$, on note $x_j = jh$. Le sous-espace d'approximation, de dimension J, est

$$H_h := \{ v \in C^0([0,1]) \mid \forall j \in \{0,\ldots,J-2\}, v|_{[x_i,x_{i+1}]} \in \mathbb{P}_1 \}.$$

La base est la base des « fonctions-chapeaux » : pour tout $j \in \{0, ..., J-1\}$, $\phi_j \in H_h$ et pour tout $k \in \{0, ..., J-1\}$, $\phi_j(x_k) = \delta_{jk}$. Chercher $u_h \in H_h$ solution de

$$\forall v_h \in H_h, \qquad \int_{]0,1[} u'_h v'_h + \int_{]0,1[} \tilde{q} u_h v_h = \int_{]0,1[} \tilde{f} v_h,$$

est équivalent à chercher (u_0, \ldots, u_{J-1}) solution du système linéaire

$$\forall i \in \{0, \dots, J-1\}, \qquad \sum_{j=0}^{J-1} u_j \left(\int_{]0,1[} \phi'_j \phi'_i + \int_{]0,1[} \tilde{q} \phi_j \phi_i \right) = \int_{]0,1[} \tilde{f} \phi_i.$$

La matrice de rigidité de taille J a donc pour coefficients

$$\forall i, j \in \{0, \dots, J-1\}, \qquad [A_h]_{ij} = \int_{]0,1[} \phi'_j \phi'_i + \int_{]0,1[} \tilde{q} \phi_j \phi_i$$

et le second membre est

$$\forall i \in \{0, \dots, J-1\}, \qquad [b_h]_i = \int_{]0,1[} \tilde{f}\phi_i.$$

Pour J = 4, la matrice A_h est

$$A_h = \frac{1}{h} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} + \begin{bmatrix} \int_{]x_0,x_1[}\tilde{q}(x)\phi_0(x)^2\mathrm{d}x & \int_{]x_0,x_1[}\tilde{q}(x)\phi_0(x)\phi_1(x)\mathrm{d}x & 0 & 0 \\ \int_{]x_0,x_2[}\tilde{q}(x)\phi_1(x)^2\mathrm{d}x & \int_{]x_1,x_2[}\tilde{q}(x)\phi_1(x)\phi_2(x)\mathrm{d}x & 0 \\ 0 & \int_{]x_1,x_2[}\tilde{q}(x)\phi_1(x)\phi_2(x)\mathrm{d}x & \int_{]x_1,x_2[}\tilde{q}(x)\phi_1(x)\phi_2(x)\mathrm{d}x & 0 \\ 0 & \int_{]x_1,x_2[}\tilde{q}(x)\phi_1(x)\phi_2(x)\mathrm{d}x & \int_{]x_1,x_2[}\tilde{q}(x)\phi_2(x)\phi_3(x)\mathrm{d}x \\ 0 & 0 & \int_{]x_2,x_3[}\tilde{q}(x)\phi_2(x)\phi_3(x)\mathrm{d}x & \int_{]x_2,x_3[}\tilde{q}(x)\phi_2(x)\phi_3(x)\mathrm{d}x \end{bmatrix}$$

Solution Q.2.7 La matrice A_h n'est plus inversible. Son noyau contient le vecteur $(1, \ldots, 1)^T$.

Solution Q.2.7 La matrice A_h peut ne pas être inversible, pour au moins un certain h. La méthode ne peut plus converger.

Solution Q.2.7 Il y a un problème dans la démonstration de la coercivité. Le théorème de Lax-Milgram n'est plus applicatble.

Solution Q.2.8 Thermique adiabatique, diffusion particulaire en milieu isolé (pas de flux au bord), diffusion de populations sur une île, etc.

Erreurs trouvées fréquemment dans les copies

- Exercice 1:
 - Q 1.1 : Omission de la tension du fil dans le bilan des forces ; adimensionnement incorrect (raisonnement sur g/l et non sur $t = Tt^*$); oubli de la masse devant l'accélération

- Q 1.2 : Oubli de l'intervalle de définition dans le problème de Cauchy ; définition peu précise ; confusion avec le théorème de Cauchy-Lipschitz, non demandé à ce moment-là
- Q 1.3 : Ecriture linéaire fausse d'un problème non linéaire
- Q 1.4 : Définition de globalement lipschitzienne mal connue
- Q 1.5 : Confusion avec le théorème de Cauchy-Lipschitz global
- Q 1.6 : Erreurs de calcul

— Exercice 2:

- Q 2.2 : Espace de fonctions tests mal choisi ; u non supposée assez régulière pour faire l'IPP ou pas d'hypothèse sur u
- -- Q 2.3:
 - Pas de vérification de la bonne définition de a et de l
 - Inégalité de Poincaré fausse sur H^1
 - Oubli de la valeur absolue autour de a(u,v)
 - Ajout de la valeur absolue autour de a(u,u)!!!
- Q 2.4:
 - Argument $D(\Omega) \subset H^1(0,1)$ oublié
 - Conditions aux limites non vérifiées
 - Arguments non pertinents qui montrent que le raisonnement est faux
- Q 2.6:
 - Valeur de h incorrecte!!!
 - Espace d'approximation incorrect.
 - La méthode d'approximation utilisée était les élements finis et non les différences finies; la matrice demandée ne tenait pas compte des conditions aux bords
- Q 2.7 : Affirmation fausse que la matrice A_h est inversible alors que si $q \ge 0$ la coercivité n'est pas assurée : problème de logique.
- Q 2.8 : Réponses non valables fréquemment relevées
 - Pendule, corde non élastique, ressort : ce sont des problèmes instationnaires.
 - Poutre : l'équation n'est pas la bonne, ni les conditions aux bords.