$\begin{array}{c} \text{MATHEMATICS 121, FALL 2013} \\ \text{LINEAR ALGEBRA WITH APPLICATIONS} \end{array}$

September 16, 2013 Luis Perez

Module #4, Proof:

Let R be a 3 × 3 orthogonal matrix, for which $R^T R = I$. Prove that $R(\vec{u} \times \vec{v}) = \det(R)(R\vec{u} \times R\vec{v})$

Construct the matrix $B = [R\vec{\boldsymbol{u}} \mid R\vec{\boldsymbol{v}} \mid \vec{\boldsymbol{w}}]$. Then:

$$R^{T} [R\vec{\boldsymbol{u}} \mid R\vec{\boldsymbol{v}} \mid \vec{\boldsymbol{w}}] = [R^{T}R\vec{\boldsymbol{u}} \mid R^{T}R\vec{\boldsymbol{v}} \mid R^{T}\vec{\boldsymbol{w}}]$$
$$= [\vec{\boldsymbol{u}} \mid \vec{\boldsymbol{v}} \mid R^{T}\vec{\boldsymbol{w}}]$$

Taking the determinant of both sides, we have:

$$(\det R^{T})(\det [R\vec{\boldsymbol{u}} \mid R\vec{\boldsymbol{v}} \mid \vec{\boldsymbol{w}}]) = \det [\vec{\boldsymbol{u}} \mid \vec{\boldsymbol{v}} \mid R^{T}\vec{\boldsymbol{w}}]$$
$$\det(R)(R\vec{\boldsymbol{u}} \times R\vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{w}}) = \vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} \cdot R^{T}\vec{\boldsymbol{w}}$$

But we know that $\vec{a} \cdot A\vec{b} = A^T \vec{a} \cdot \vec{b}$, so taking $\vec{a} = \vec{u} \times \vec{v}$ and $\vec{b} = \vec{w}$, we arrive

$$\det(R)(R\vec{\boldsymbol{u}}\times R\vec{\boldsymbol{v}}\cdot\vec{\boldsymbol{w}}) = R(\vec{\boldsymbol{u}}\times\vec{\boldsymbol{v}})\cdot\vec{\boldsymbol{w}}$$

We know this must hold true $\forall \vec{w}$, in particular $\vec{e_1}$, $\vec{e_2}$, and $\vec{e_3}$. Therefore: $\det(R)(R\vec{u} \times R\vec{v}) = R(\vec{u} \times \vec{v})$

Q.E.D.