Mathe Lernzettel fürs ABI

Contents

1	Analysis													2				
	1.1	Integrale															-	2
2 Vektoren														3				
	2.1	Vektormultiplil	cation										 					3
		2.1.1 Skalarp	rodukt										 					3
		2.1.2 Kreuzp	rodukt										 					3
	2.2	Ebenen im Rai	ım										 					4
		2.2.1 Darstel	lungsarten v	on Ebene	n im I	Raum							 					4
		2.2.2 Spurpu	nkte										 					4
		2.2.3 Betrag	eines Vektor	r berechn	en .								 					4
	2.3	Ebenen Forme	n (Beschreib	ungsarter	von	Eben	en)						 					4
		2.3.1 Koordi	natenform ei	ner Eben	e								 					4
		2.3.2 Norma	enform einei	r Ebene									 					4
		2.3.3 Parame	eterform eine	r Ebene									 					5
	2.4	Gegenseitige L	age von Gera	aden und	Ebene	en .							 					5
			arallel															
		2.4.2 Identise	ch										 					5
		2.4.3 Schnitt	punkt										 					5
		2.4.4 Windso	chief															6
3	Stoc	hastik																7
1	Was	fohlt noch?																Ω

Kapitel 1: Analysis

1.1 Integrale

Kapitel 2: Vektoren

2.1 Vektormultiplikation

Das Vektormulitplikationsverfahren kann nicht wie bei der addition verlaufen. Dafür gibt es spezielle Methoden um eigenschaften der Vektoren zu bestimmen.

2.1.1 Skalarprodukt

Das Skalarprodukt ist eine Art einen Vektor mit einem anderen zu Multiplizieren. Dabei werden die einzelnen Achsen der Vektoren multipliziert und anschließend summiert. Wenn das Skalarprodukt 0 ergibt bedeutet es, dass die Vektoren Orthogonal zueinander stehen (90°).

Formel:

$$\vec{a} \bullet \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(\alpha)$$

Beispiel:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 * 4 + 2 * 5 + 3 * 6 = 32$$

Schattenwurf

2.1.2 Kreuzprodukt

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Formel:

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$$

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot sin(\alpha)$$

2.2 Ebenen im Raum

2.2.1 Darstellungsarten von Ebenen im Raum

$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} + s * \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} + t * \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix}$$

Dabei ist a der Stützvektor und b mit c die Richtungsvektoren. Wenn b und c gleich sind ist es eine lineare Gleichung und somit keine Ebene mehr. (Es ist eine Gerade im Raum).

4

2.2.2 Spurpunkte

2.2.3 Betrag eines Vektor berechnen

Gegeben ist der Vektor a.

$$a = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Betrag (länge) des Vektor berechen:

$$|\sigma| = \sqrt{a^2 + b^2 + c^2}$$

2.3 Ebenen Formen (Beschreibungsarten von Ebenen)

Eine Ebene im dreidimensionalen Raum kann beschrieben werden durch die:

- Parameterform einer Ebene
- Normalenform einer Ebene
- Koordinatenform einer Ebene

2.3.1 Koordinatenform einer Ebene

Formel:

 $E: ax_1 + bx_2 + cx_3 = d$

Von Normalenform abgeleitet:

$$\vec{x} \bullet \vec{n} = \vec{p} \bullet \vec{n}$$

Dabei gilt:

- \vec{X} : Beliebiger Punkt
- \vec{n} (a, b, c): Normalen Vektor \vec{x} \vec{n}
- d: Skalarprodukt von $\vec{p} \bullet \vec{n}$

2.3.2 Normalenform einer Ebene

Formel:

$$\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \right) \bullet \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

Dabei gilt:

ullet \vec{P} : Stützvektor

• \vec{N} : Normalenvektor

• \vec{X} : Beliebiger Vektor (vorgegeben)

Das ergebnis ist eine Skalar. Darübr kann man informationen über den eingegebenen Vektor erfahren. Beispiel: Wenn das Ergebnis = 0 ist, liegt der gegebene Vektor auf der Ebene.

2.3.3 Parameterform einer Ebene

Die Koordinatenform ist eine die Gleichung für eine Ebene im Raum.

$$E: \vec{x} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + s * \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + t * \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

2.4 Gegenseitige Lage von Geraden und Ebenen

2.4.1 Echt Parallel

Normalenvektor \vec{n} muss für beide Ebenen identisch sein.

→ richtungs Vektoren sind somit gleich.

Stützvektor darf nicht identisch sein oder auf der jeweils anderen Ebene liegen.

2.4.2 Identisch

Normalenvektor \vec{n} muss für beide Ebenen identisch sein. \rightarrow richtungs Vektoren sind somit gleich. Sützvektor muss Vektor muss entweder identisch sein oder auf der jeweils anderen Ebene liegen.

2.4.3 Schnittpunkt

Normalenvektor \vec{n} darf nicht identisch sein.

Beispiel

Gegeben:

$$g: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$E: 2x_1 - 1x_2 + 3x_3 = 0$$

Berechnen:

Berechne t für Schnittpunkt mithilfe von einsetzen.

$$2(1+1t) - 1(-1+2t) + 3(2+3t) = 0$$

$$2 + 2t + 1 - 2t + 6 + 9t = 0$$

$$9 + 9t = 0$$

$$9t = -9$$

$$t = -1$$

Einsetzen in g:

$$\vec{x}: \begin{pmatrix} 1\\-1\\2\\ \end{pmatrix} + (-1) \cdot \begin{pmatrix} 1\\2\\3\\ \end{pmatrix} = \begin{pmatrix} 0\\-3\\-1\\ \end{pmatrix}$$

g schneidet E im Punkt S(0|-3|-1) (Durchstoßpunkt)

2.4.4 Windschief

2 Ebenen können NICHT zueinander Windschief sein. Entweder Parallel (Identisch) oder haben einen Schnittpunkt.

Kapitel 3: Stochastik

Kapitel 4: Was fehlt noch?

- Alles zu Stochastik
- Alles zu Analysis
- schattenwurf