Algoritmusok és adatszerkezetek II. Amotrizált költségelemzés, Fibonacci kupacok

Szegedi Tudományegyetem

Amortizált költségelemzés

- A legrosszabb költségelemzés túl pesszimista tud lenni
- Amortizált költségelemzésnél az adatszerkezetek 'életútját' vizsgáljuk
- Lehetnek költséges műveleteink, ha azok kellően ritkák
 - Pl. dinamikusan bővülő tömb

Amortizált költségelemzés

- A legrosszabb költségelemzés túl pesszimista tud lenni
- Amortizált költségelemzésnél az adatszerkezetek 'életútját' vizsgáljuk
- Lehetnek költséges műveleteink, ha azok kellően ritkák
 - Pl. dinamikusan bővülő tömb

Fontos

Ennél az elemzésnél a véletlennek nincs szerepe: az egyes műveletek átlagos költségére adunk felső korlátot a *legrosszabb esetben*.

Amortizált költségelemzés

- A legrosszabb költségelemzés túl pesszimista tud lenni
- Amortizált költségelemzésnél az adatszerkezetek 'életútját' vizsgáljuk
- Lehetnek költséges műveleteink, ha azok kellően ritkák
 - Pl. dinamikusan bővülő tömb

Fontos

Ennél az elemzésnél a véletlennek nincs szerepe: az egyes műveletek átlagos költségére adunk felső korlátot a *legrosszabb esetben*.

Fő megközelítések

- Összesítéses elemzés
- 4 Könyvelési módszer
- Openciálmódszer

Bináris számláló növelése

```
NÖVEL(A) {
   i=0
   while i < A.hossz és A[i] = 1 {
       A[i] = 0
       i = i+1
   }
   if i < A.hossz {
       A[i] = 1
   }
}</pre>
```


Bináris számláló növelése

```
\sumktg.
                                                  3
                                                      2
                                                              0
                                                          1
                                                      0
                                                  0
                                                          0
                                                              0
                                                  0
                                                      0
                                                          0
                                                              1
                                                  0
                                                      0
                                                          1
                                                              0
                                                  0
                                                      0
                                                          1
NÖVEL(A) {
                                                  0
                                                          0
                                                              0
   i=0
                                                  0
                                                          0
   while i < A.hossz és A[i] = 1 {
                                                  0
                                                      1
                                                          1
                                                                    10
                                                              0
       A[i] =
                                                  0
                                                      1
                                                          1
                                                                    11
         = i+1
                                                  1
                                                      0
                                                          0
                                                                    15
                                                              0
                                                      0
                                                          0
                                                                    16
       i < A.hossz {
                                                      0
                                                          1
                                                                    18
       A[i] = 1
                                                              0
                                                      0
                                                                    19
   }
                                                                    22
                                                          0
                                                              0
                                                                    23
                                                          0
                                                                    25
                                                              0
                                                                    26
```

Amortizált költségelemzés – összesítéses elemzés

Összesítéses elemzés

- n hosszú műveletsorra állítunk föl T(n) felső korlátot
- ightarrow a műveletek átlagos költsége T(n)/n

Példa

k bites számlálón NÖVEL művelet n-szeri végrehajtása: O(nk) Helyes, de nem éles korlát, mivel az i pozíciójú bit csak minden 2^i számú végrehajtás után változik.

Amortizált költségelemzés – összesítéses elemzés

Összesítéses elemzés

n hosszú műveletsorra állítunk föl T(n) felső korlátot

ightarrow a műveletek átlagos költsége T(n)/n

Példa

k bites számlálón NÖVEL művelet n-szeri végrehajtása: O(nk) Helyes, de nem éles korlát, mivel az i pozíciójú bit csak minden 2^i számú végrehajtás után változik.

Élesebb korlát

$$\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n = O(n)$$

Vagyis a NÖVEL művelet amortizált költsége O(n)/n = O(1)

Amortizált költségelemzés – könyvelési módszer

- Különböző műveletekre különböző költséget számolunk el
 - A i-edik műveletre elszámolt ĉ_i amortizációs költség tetszőlegesen eltérhet annak c_i tényleges költségétől

Amortizált költségelemzés – könyvelési módszer

- Különböző műveletekre különböző költséget számolunk el
 - A i-edik műveletre elszámolt ĉ_i amortizációs költség tetszőlegesen eltérhet annak c_i tényleges költségétől
 - Azonban minden n hosszú műveletsorra teljesüljön, hogy

$$\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i,$$

azaz a mindenkori hitelegyenleg $\left(\sum\limits_{i=1}^{n}\hat{c}_{i}-c_{i}\right)$ nemnegatív

Könyvelési módszer használata – példa

- A NÖVEL művelet működése során könyveljünk el 2 egységnyi költséget egy bit 1-re állításához
- A költség fele a majdani visszaállításra félretett "hitel"

Kérdés

A CSÖKKENT műveletet bevezetését követően is maradna az O(1) amortizált költség?

Könyvelési módszer használata – példa

- A NÖVEL művelet működése során könyveljünk el 2 egységnyi költséget egy bit 1-re állításához
- A költség fele a majdani visszaállításra félretett "hitel"
- A NÖVEL minden hívása során 1 bitet állítunk 1-re
 - n végrehajtás $\Rightarrow 2n$ összköltség $\Rightarrow O(1)$ költség/végrehajtás

Kérdés

A CSÖKKENT műveletet bevezetését követően is maradna az O(1) amortizált költség? Nem, O(k) lenne.

Könyvelési módszer használata – dinamikusan bővülő tömb

- Dinamikusan bővülő tömb betelésekor megduplázza méretét, és a benne aktuálisan szereplő értékeket a megnövelt méretű tömbbe másolja
- Egy elem beszúrásához rendeljünk 3 kreditet
 - Az első egység elhasználódik a kulcs beszúrása kapcsán
 - A második egységet saját maga majdani (első alkalommal történő) átmásolására tartsa fenn
 - A harmadik egységből minden csúcs adományoz egy már 0 egyenlegű kulcsnak a másolására (tudja, hogy vissza fogja kapni)

Könyvelési módszer használata – dinamikusan bővülő tömb

- Dinamikusan bővülő tömb betelésekor megduplázza méretét, és a benne aktuálisan szereplő értékeket a megnövelt méretű tömbbe másolja
- Egy elem beszúrásához rendeljünk 3 kreditet
 - Az első egység elhasználódik a kulcs beszúrása kapcsán
 - A második egységet saját maga majdani (első alkalommal történő) átmásolására tartsa fenn
 - A harmadik egységből minden csúcs adományoz egy már 0 egyenlegű kulcsnak a másolására (tudja, hogy vissza fogja kapni)

Észrevétel

Amikor bővítünk, ugyanannyi kulcsnak lesz 0 az egyenlege, mint ahánynak 2.

- ullet Az adatszerkezet i pillanatbeli állapotát jelöljük D_i -vel
- Vezessük be a $\Phi : \mathbb{N} \to \mathbb{R}$ ponteciálfüggvényt, ami az adatszerkezet egy D_i állapotához rendel egy potenciált
- Az amortizációs költség legyen $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

- ullet Az adatszerkezet i pillanatbeli állapotát jelöljük D_i -vel
- Vezessük be a $\Phi : \mathbb{N} \to \mathbb{R}$ ponteciálfüggvényt, ami az adatszerkezet egy D_i állapotához rendel egy potenciált
- Az amortizációs költség legyen $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

n hosszú műveletsorra a teljes teleszkopikus összeg

$$\sum_{i=1}^{n} \hat{c}_{i} = \Phi(D_{n}) - \Phi(D_{0}) + \sum_{i=1}^{n} c_{i}$$

- ullet Az adatszerkezet i pillanatbeli állapotát jelöljük D_i -vel
- Vezessük be a $\Phi : \mathbb{N} \to \mathbb{R}$ ponteciálfüggvényt, ami az adatszerkezet egy D_i állapotához rendel egy potenciált
- ullet Az amortizációs költség legyen $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

n hosszú műveletsorra a teljes *teleszkopikus összeg*

$$\sum_{i=1}^{n} \hat{c}_{i} = \Phi(D_{n}) - \Phi(D_{0}) + \sum_{i=1}^{n} c_{i}$$

• Olyan potenciálfüggvényt keresünk, melyre $\Phi(D_n) \geq \Phi(D_0)$, mivel ekkor nyilvánvalóan $\sum\limits_{i=1}^n \hat{c}_i \geq \sum\limits_{i=1}^n c_i$ is teljesül

- ullet Az adatszerkezet i pillanatbeli állapotát jelöljük D_i -vel
- Vezessük be a $\Phi : \mathbb{N} \to \mathbb{R}$ ponteciálfüggvényt, ami az adatszerkezet egy D_i állapotához rendel egy potenciált
- Az amortizációs költség legyen $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

n hosszú műveletsorra a teljes teleszkopikus összeg

$$\sum_{i=1}^{n} \hat{c}_{i} = \Phi(D_{n}) - \Phi(D_{0}) + \sum_{i=1}^{n} c_{i}$$

• Olyan potenciálfüggvényt keresünk, melyre $\Phi(D_n) \geq \Phi(D_0)$, mivel ekkor nyilvánvalóan $\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$ is teljesül

Kényelmes megoldás

 $\Phi(D_0) = 0$, és lássuk be, hogy $\Phi(D_i) \geq 0$ minden *i*-re

Amortizált költségelemzés – Példa

- Legyen $\Phi(D_i) = b_i$ a NÖVEL művelet *i*-szeri alkalmazására a számlálóban szereplő 1 értékű bitek száma
- Jelölje t_i a NÖVEL művelet i-edik végrehajtásakor 1-ről 0-ra változó bitek számát (vagyis $c_i \leq t_i + 1$)
 - Vegyük észre 1 , hogy $\Phi(D_i)=b_i\leq b_{i-1}-t_i+1$
 - Vagyis a potenciálváltozás $\Phi(D_i) \Phi(D_{i-1}) \leq 1 t_i$
 - Így az amortizációs költség $\hat{c_i} \leq c_i + 1 t_i = t_i + 1 + 1 t_i = 2$

Észrevétel

Mivel $\Phi(D_0)=0$ és minden $\Phi(D_i)\geq 0$, így az n művelet amortizált költségének összege felső korlátja a tényleges összköltségnek (O(n))

 $^{^{1}}b_{i}=0$ eset miatt egyenlőtlenség

Fibonacci kupacok

- Binomiális kupachoz hasonló (annál kötetlenebbül strukturált), amortizált értelemben jobban viselkedő adatszerkezet
 - A kupacot alkotó fák nem rendezettek
 - A csúcsok gyerekei kétirányú ciklikus listával összekapcsoltak
 - min[H] pointer a gyökérlista minimális kulcsú csúcsára mutat
 - A fák sorrendje a gyökérlistában tetszőleges
 - A kupacban találhatók megjelölt csúcsok

Megjelölt csúcsok

- Egy csúcs megjelölt, ha már vesztett el gyereket azóta, hogy egy másik csúcs gyerekévé vált
 - Létrehozásukkor jelöletlenek a csúcsok

Megjelölt csúcsok

- Egy csúcs megjelölt, ha már vesztett el gyereket azóta, hogy egy másik csúcs gyerekévé vált
 - Létrehozásukkor jelöletlenek a csúcsok

A potenciálfüggvény

$$\Phi(H) = t(H) + 2m(H)$$

- t(H) a kupac gyökérlistájában található fák száma
- \bullet m(H) a kupacban található megjelölt csúcsok száma

Megjelölt csúcsok

- Egy csúcs megjelölt, ha már vesztett el gyereket azóta, hogy egy másik csúcs gyerekévé vált
 - Létrehozásukkor jelöletlenek a csúcsok

A potenciálfüggvény

$$\Phi(H) = t(H) + 2m(H)$$

- \bullet t(H) a kupac gyökérlistájában található fák száma
- ullet m(H) a kupacban található megjelölt csúcsok száma

Észrevétel

A potenciál végig nemnegatív, így a teljes amortizált költség felső korlátja a műveletsorozat teljes aktuális költségének felső korlátja is

Fibonacci kupacok implementációja

```
class Node {
   Object kulcs;
   Node *apa;
   int fokszam;
   boolean megjelolt;
   Node *gyerek;
   Node *bal;
   Node *jobb;
}
```


Fibonacci kupacok implementációja

```
class Node {
   Object kulcs;
   Node *apa;
   int fokszam;
   boolean megjelolt;
   Node *gyerek;
   Node *bal;
   Node *jobb;
}
```

Emlékeztető

A megjelöltség azt jelöli, hogy a csúcs vesztette-e el gyerekét mióta egy másik csúcs gyerekévé vált

Fibonacci kupacok szerveződése

¹Forrás: CLRS: Új algoritmusok 20.1 ábrája

Bináris vs. binomiális vs. Fibonacci kupac

Kupacműveletek legrosszabb esetbeli viselkedése

Művelet	Bináris	Binomiális	Fibonacci ²
Min-keres	O(1)	$O(\log n)$	O(1)
SORBOL-MIN	$O(\log n)$	$O(\log n)$	$O(\log n)$
Beszúr	$O(\log n)$	$O(\log n)^{3}$	O(1)
KulcsotCsökkent	$O(\log n)$	$O(\log n)$	O(1)
Egyesít	O(n)	$O(\log n)$	O(1)
Töröl	$O(\log n)$	$O(\log n)$	$O(\log n)$

²amortizált költségek

³amortizált költségben O(1)

A Fibonacci kupacok viselkedése

- Remek választás, ha tudjuk, hogy a SORBOL-MIN és TÖRÖL műveleteket keveset használjuk
 - Bizonyos gráfalgoritmusok (pl. Dijkstra) esetében a KULCSOTCSÖKKENT metódus alkalmazása dominál

A Fibonacci kupacok viselkedése

- Remek választás, ha tudjuk, hogy a SORBOL-MIN és TÖRÖL műveleteket keveset használjuk
 - Bizonyos gráfalgoritmusok (pl. Dijkstra) esetében a KULCSOTCSÖKKENT metódus alkalmazása dominál

Ha nem hajtunk végre KULCSOTCSÖKKENT és TÖRÖL műveletet

Egy (fokszám alapján) rendezetlen "binomiális kupacot" kapunk \rightarrow log n a kupacbeli csúcsok maximális fokszámának felső korlátja

A Fibonacci kupacok viselkedése

- Remek választás, ha tudjuk, hogy a SORBOL-MIN és TÖRÖL műveleteket keveset használjuk
 - Bizonyos gráfalgoritmusok (pl. Dijkstra) esetében a KULCSOTCSÖKKENT metódus alkalmazása dominál

Ha nem hajtunk végre KULCSOTCSÖKKENT és TÖRÖL műveletet

Egy (fokszám alapján) rendezetlen "binomiális kupacot" kapunk $\rightarrow \log n$ a kupacbeli csúcsok maximális fokszámának felső korlátja

KulcsotCsökkent és Töröl műveletek végrehajtása esetén

 $\log_\phi n = O(\log n)$ a kupacbeli csúcsok maximális fokszámának felső korlátja \to innen jön a Fibonacci-kupac elnevezés is (mivel az i-edik Fibonacci szám fölírható $\frac{\phi^i-\psi^i}{\sqrt{5}}$ alakban, ahol $\phi = \frac{1+\sqrt{5}}{2})$

O(1) idejű műveletek

Egyesít és Beszúr

 H_1 és H_2 Fibonacci kupacok egyesítésekor a kupacok gyökérlistáit összefűzzük, (min[H] aktualizálásán túl) más teendőnk nincs

MIN-KERES

min[H] explicit tárolásából adódóan O(1)

Minimális kulcs kivágása

- Ez az a pont, amikor próbáljuk a binomiális kupachoz hasonlóvá tenni a Fibonacci kupacunkat
 - min[H] által meghatározott csúcsot eltávolítjuk a gyökérlistából
 - min[H] gyerekeit a gyökérlistába delegáljuk
 - Összevonjuk a gyökérlistában szereplő azonos fokszámú fákat (segédtömb használatával)

Kulcs értékének csökkentése

- Ha a kulcs csökkentett értéke túl kicsi, akkor a csúcsot kivágjuk és a gyökérlistába helyezzük
- A kivágott csúcs szülejét (ha az nem gyökérlistabeli) megjelöltté tesszük
- Amennyiben egy már megjelölt csúcs vesztené el egy újabb gyerekét, úgy azt is rekurzívan a gyökérlistába visszük (megjelöltségét eltávolítjuk)

Önszervező keresőfák (Splay tree)

- Olyan keresőfa, ami bármely művelet végrehajtása után (még egy sikertelen keresés után is), az utoljára érintett csúcsot forgatások segítségével a gyökérbe viszi
- Legrosszabb esetben O(n) magasságú, de amortizált tekintetben a műveletei $O(\log n)$ -beliek
- Működése mögötti intuíció: lehetnek sűrűbben érintett elemei a fának ⇒ ne hagyjuk őket "lesüllyedni"

Önszervező keresőfák (Splay tree)

- Olyan keresőfa, ami bármely művelet végrehajtása után (még egy sikertelen keresés után is), az utoljára érintett csúcsot forgatások segítségével a gyökérbe viszi
- Legrosszabb esetben O(n) magasságú, de amortizált tekintetben a műveletei $O(\log n)$ -beliek
- Működése mögötti intuíció: lehetnek sűrűbben érintett elemei a fának ⇒ ne hagyjuk őket "lesüllyedni"

Lehetséges hátránya

Mivel még egy (sikertelen) $\rm KERES$ művelet is változtat a fa struktúráján, így többszálú használata problémás.

Splay tree – gyökérig való forgatások

- Ha a gyökérbe juttatni kívánt x csúcs már a jelenlegi y gyökérelem bal (jobb) fia, akkor egyszerűen forgassunk y körül jobbra (balra)
- Egyébként 2 lehetőség van (és ezek szimmetrikusai) x gyökérbe juttatására

- 1 z csúcs körül jobbra majd
- 2 y csúcs körül jobbra forgatunk

- y csúcs körül balra majd
- z csúcs körül jobbra forgatunk

Splay tree – példák

Összegzés

- Amortizált költségelemzéssel az adatszerkezetek hosszú távú legrosszabb esetbeli viselkedését modellezhetjük
- Amortizált költségelemzés szempontjából a Fibonacci-kupac a megismert leghatékonyabb kupac
- Egyes gráfalgoritmusok implementálásához kifejezetten hasznos választás lehet

