Modèles proposés pour répondre à la FNC.

Enzo Poggio

1^{er} mai 2018

1 Analyse des résultats des participants et création d'hypothèses.

Dans cette troisième partie nous tentons de faire une analyse d'erreurs comparative des participants de la FNC. Nous avons reproduit les résultats de tous les participants ¹.

1.1 Un aperçu de l'ensemble de test.

Stance	unrelated	agree	disagree	discuss	Somme
Nombre	18349	1903	697	4464	25413
Pourcentage	72.20%	7.48%	2.74%	17.56%	100%
Score FNC	4587.25	1903	697	4464	11651.25

Table 1 – Répartiotion des données dans l'ensembe de test.

Il y a 7064 points à marquer avec les *Related* et seulement 4587.25 points avec les *Unrelated*. Ainsi comme nous l'avions vu précédement trouvé un *Related* rapporte 4 fois plus de points que trouvé un *Unrelated*.

Afin de produire des hypothèses non-biaisées ², nous allons faire des observations des résultats des différents modèles sur 80% des entrées de l'ensemble de test.

^{1.} À l'exeption de Talos in the Swen qui ont laissé une copie de leur CSV de leurs résultats, pour leurs deux modèles sur leur répertoire Github.

^{2.} Du moins des hypothèses qui ne soient pas ajustées totalement à l'ensemble de test final.

Stance	unrelated	agree	disagree	discuss	Somme
Nombre	14662	1568	550	3550	20330
Pourcentage	72.12%	7.71%	2.70%	17.46%	100%
Score FNC	3665.5	1568	550	3550	9333.5

Table 2 – Répartition des données dans l'ensembe de test à 80%.

Le corpus de test étant partiellement ordonné nous avons retiré les 20% de manière ordonnée 3 aussi.

2 Les résultats et les scores des participants.

Ici nous présentons les différents résultats des modèles de chaque participant sur notre ensemble de test à 80%. Notez que les tables de confusions ont horizontalement les labels de vérité et verticalement les prédictions. Nous présentons les participants du premiers au derniers selon le score FNC.

2.1 Talos in the Swen.

Talos Complet

	Tares compres						
	agree	disagree	discuss	unrelated	Somme		
agree	927	11	478	152	1568		
disagree	217	8	235	90	550		
discuss	661	5	2700	184	3550		
unrelated	26	0	172	14464	14662		
Somme	1831	24	3585	14890	20330		

Table 3 – Table de confusion du modèle : Talos Complet

On remarque que la classe **disagree** est largement sous-représentée. Cette classe est aussi sous-représentée dans l'ensemble d'entrainement. Ce qui explique potentiellement pourquoi nous ne détectons pas ces traits distinctifs.

^{3.} En effet, nous avons retiré toutes les entrées dont l'indice été divisible par 5 ou 10

Talos Complet					
Mesure	agree	disagree	discuss	unrelated	
Précision	0.59	0.01	0.76	0.99	
Rappel	0.51	0.33	0.75	0.97	
F1score	0.55	0.03	0.76	0.98	
Exactitude	89.03				
Score FNC	7652.75				
Pourcentage FNC		81.99			

Table 4 – Mesures pour le modèle : Talos Complet

Bien que Talos in the Swen ait remporté la 1er place de la FNC, l'exactitudes et les scores ci-dessus ne sont pas les maximaux.

2.1.1 Les sous-modèles de Talos in the Swen.

2.1.1.1 Sous-modèle arborescent de Talos in the Swen

Les sous-modèles de Talos n'ont pas eu de soumission à la FNC mais ils sont quand même intéressants à étudier car ils expliquent les résultats et les biais du modèles.

Talos Arborescent						
	agree	disagree	discuss	unrelated	Somme	
agree	807	0	690	71	1568	
disagree	147	1	334	68	550	
discuss	500	1	2902	147	3550	
unrelated	16	0	160	14486	14662	
Somme	1470	2	4086	14772	20330	

Table 5 – Table de confusion du modèle : Talos Arborescent

On voit d'où le modèle principal tient son aversion du label disagree.

T_{2}	امو	Arborescer	ı+
1 21	()5	ALDOLESCEL	11.

Mesure	agree	disagree	discuss	unrelated
Précision	0.51	0.0	0.82	0.99
Rappel	0.55	0.5	0.71	0.98
F1score	0.53	0.0	0.76	0.98
Exactitude	89.5			
Score FNC	7749.5			
Pourcentage FNC	83.03			

Table 6 – Mesures pour le modèle : Talos Arborescent

Ce sous-modèles ne tient pas vraiment compte de la classe **disagree** mais il a paradoxalement tout de même les plus hauts scores du challenge. En effet si Talos avait proposé uniquement ce modèle il aurait pris encore plus d'avance par rapport aux autres participants.

2.1.1.2 Sous-modèle de Deep Learning de Talos in the Swen

Talos DeepLearning

Talos DeepLearning					
	agree	disagree	discuss	unrelated	Somme
agree	911	115	143	399	1568
disagree	271	62	41	176	550
discuss	1396	137	1397	620	3550
unrelated	2321	449	766	11126	14662
Somme	4899	763	2347	12321	20330

TABLE 7 – Table de confusion du modèle : Talos DeepLearning

Nous voyons clairement que ce sous-modèle vient équilibrer le sous-modèle arborescent. Sa table de confusion montre une tentative d'uniformisation de la classe **disagree**.

\mathbf{m}	1	1	
1.9	O.C.	door	n
Ta.	LOS.	dee	v

Mesure	agree	disagree	$\operatorname{discuss}$	unrelated
Précision	0.58	0.11	0.39	0.76
Rappel	0.19	0.08	0.6	0.9
F1score	0.28	0.09	0.47	0.82
Exactitude		6	66.38	
Score FNC	5677.25			
Pourcentage FNC	60.83			

Table 8 – Mesures pour le modèle : Talos DeepLearning

Cette uniformisation a pour conséquence que ce sous-modèle est le pire de tous les modèles. Combiné avec le sous-modèle arborescent, il permet d'avoir une augmentation minime de la classe **disagree** au détriment des autres classes.

2.2 Le système Athene

Athene						
	agree	disagree	discuss	unrelated	Somme	
agree	709	57	669	133	1568	
disagree	193	56	193	108	550	
discuss	388	30	2853	279	3550	
unrelated	16	3	86	14557	14662	
Somme	1306	146	3801	15077	20330	

Table 9 – Table de confusion du modèle : Athene

La table de confusion d'Athene ressembe beaucoup à celle de Talos. Ce modèle tente beaucoup plus de labéliser des titres d'articles comme **diagree**. Mais il a beaucoup plus de mal à distinguer la classe **discuss** de la classe **agree**.

Athene					
Mesure	agree	disagree	discuss	unrelated	
Précision	0.45	0.1	0.8	0.99	
Rappel	0.54	0.38	0.75	0.97	
F1score	0.49	0.16	0.78	0.98	
Exactitude	89.4				
Score FNC	7639.75				
Pourcentage FNC	81.85				

Table 10 – Mesures pour le modèle : Athene

Athene a la meilleure exactitude de toute la FNC car elle classe très bien les **unrelated** (qui ne valent pas beaucoup de points dans le score FNC).

2.3 UCL Machine Reader

Uclmr						
	agree	disagree	discuss	unrelated	Somme	
agree	697	7	770	94	1568	
disagree	144	37	277	92	550	
discuss	424	35	2882	209	3550	
unrelated	44	2	261	14355	14662	
Somme	1300	81	/100	1/750	20330	

Table 11 – Table de confusion du modèle : Uclmr

Nous observons une tentative d'uniformisation proportionnelle de la table de confusion. UCLMR sait très bien classé les **unrelated**. Néanmoins, il manque apparemment de traits pour distinguer les **agree** des **discuss**.

Uclmr						
Mesure	agree	disagree	discuss	unrelated		
Précision	0.44	0.07	0.81	0.98		
Rappel	0.53	0.46	0.69	0.97		
F1score	0.48	0.12	0.74	0.98		
Exactitude	88.4					
Score FNC	7619.0					
Pourcentage FNC	81.63					

Table 12 – Mesures pour le modèle : Uclmr

2.4 Analyses et Hypothèses

Voici un liste d'hypothéses basée sur nos constatations que nous testerons de vérifier par la suite avec les différents modèles. Nous voyons clairement une confusion entre la **agree** et la classe **discuss**. Mieux distinguer ces deux classe rapporterait gros Et pourrait faire un différence significative. La classe **disagree** est sous-représentée donc quantitativement elle ne rapporte que peu de points. Le modèls de Talos semble plus robuste que les autres en utilisant l'apprentissage par ensemble (*ensemble learning*). Utiliser ce type d'apprentissage entre les modèles des participants augmenterait certainement les performances.

3 Apprentissage par ensemble : Le vote de majorité

3.1 Explication du modèle.

Comme nous l'avons vu précédement les combinaisons entre les modèles déjà présentés à la FNC peuvent atteindre de hauts résultats. Notre premier modèle sera un jet naif de combinaisons de deux modèles. Le vote de majorité se base sur les classes prédites par les modèles des participants pour l'ensemble de test complet. Ce vote de majorité marche avec un modèle dominant départageant en cas de conflict entre les deux autres modèles assujettis. La classe la plus voté sera la classe prédite. Si jamais les trois classes sont toutes différentes alors est choisie la classe donné par le modèle dominant.

Vote de majorité entre 3 modèles

	~		
Modèle Dominant	Modèle assujetti 1	Modèle assujetti 2	Classe prédite
agree	agree	unrelated	agree
$\operatorname{disagree}$	discuss	discuss	discuss
$\operatorname{discuss}$	disagree	agree	discuss

Table 13 – Exemple du vote de majorité

Ainsi chaque modèle à tour de rôle peut devenir le modèle dominant. Ce qui donne les résultats dans la sous-sections suivantes.

3.2 Les résultats des votes de majorité

3.2.1 Dominant: Talos in the swen

Vote de majorité avec dominant : Talos

Mesure	agree	$\operatorname{disagree}$	discuss	unrelated	
Précision	0.49	0.03	0.84	0.99	
Rappel	0.56	0.54	0.74	0.97	
F1score	0.52	0.05	0.79	0.98	
Exactitude	89.89				
Score FNC	9681.25				
Pourcentage FNC	83.09				

Table 14 – Mesures pour le modèle : Vote de majorité Talos

3.2.2 Dominant: Athene

Vote de majorité avec dominant : Athene

Mesure	agree	disagree	discuss	unrelated
Précision	0.48	0.07	0.84	0.99
Rappel	0.57	0.41	0.75	0.97
F1score	0.52	0.11	0.79	0.98
Exactitude	90.03			
Score FNC	9702.75			
Pourcentage FNC	83.28			

Table 15 – Mesures pour le modèle : Vote de majorité Athene

Dominant: UCL Machine Reader 3.2.3

Vote de majorité avec dominant : Uclmr						
Mesure	agree	disagree	discuss	unrelated		
Précision	0.48	0.05	0.84	0.99		
Rappel	0.57	0.47	0.74	0.97		
F1score	0.52	0.09	0.78	0.98		
Exactitude	89.93					
Score FNC	9698.75					
Pourcentage FNC	83.24					

Table 16 – Mesures pour le modèle : Vote de majorité Uclmr

3.2.4 Commentaires sur les résultats du vote de majorité

Bien que ce modèle d'apprentissage par ensemble semble être le plus naïf; ces résultats sont les plus haut que l'on obtiendra. On remarque que Athene est le meilleur des modèles dominants. C'est le modèle qui se trompe le moins en cas de conflit.

4 Apprentissage par ensemble : Par moyenne

4.1 Modèles utiliseant 50/50 weighted average

Pour ce modèle, deux sous-modèles génèreront des probalités de label pour chaque entrée. Nous nous s'inspirerons de la méthode d'unification de Talos. Nous utiliserons donc aussi un 50/50 weighted average pour combiner les résultats. Ainsi chaque sous-modèles produira un vecteurs de dimension 4 pour chaque labels. Chaque couple de même dimensions passera par un 50/50 weighted average. Le maximum des 4 résultats des moyennes indiquera la classe prédite pour l'entrée.

Notre première architecture utilisera le sous-modèle arborescent de Talos et le modèle de UCL Machine Reader. Nous appelerons ce modèles « mixte UCLMR/Talos TF-Idf ».

Notre deuxième architecture utilisera aussi le sous-modèle arborescent de Talos et le modèle de UCL Machine Reader mais dans cette version le sous modèle arborescent de Talos n'utiliseras pas son de TF-Idf. La raison est que le système de UCL utilise déjà et uniquement ces traits-là. Ainsi pour augmenter la différence entre les résultats des deux sous-modèles, nous décidons de retirer ce module. De plus il sera entrainé seleument sur les données d'entraînement pour créer son espace sémantique ⁴. Nous appelerons ce modèles « mixte UCLMR/Talos sans TF-Idf ».

^{4.} En effet dans la version originale du modèle lors de la création de l'espace sémantique les données de test viennent augmentées les données d'entrainement. Cela a pour conséquence que le modèle ait déjà vu les données de test lors de son entrainement. Mais ne nous méprenons pas cela est autorisé dans le réglement de la FNC même si cela est assez questionnable.

4.2 Résultats

4.2.1 Modèles mixte UCLMR/Talos TF-Idf

Mixte UCLMR/Talos TF-Idf

			/		
	agree	disagree	discuss	unrelated	Somme
agree	963	0	819	121	1903
disagree	198	1	377	121	697
discuss	606	3	3612	243	4464
unrelated	21	0	166	18162	18349
Somme	1788	4	4974	18647	25413

TABLE 17 – Table de confusion du modèle : Mixte UCLMR/Talos TF-Idf

Cette table de confusion ressemble beaucoup à celle de Talos dans l'analyse sur 80% du corpus. Sans surprise, la classe disagree n'est pas améliorée. Par contre, les classes agree, discuss et unrelated sont légèrement augmentées.

Mixte UCLMR/Talos TF-Idf

Mesure	agree	disagree	discuss	unrelated
Précision	0.51	0.0	0.81	0.99
Rappel	0.54	0.25	0.73	0.97
F1score	0.52	0.0	0.77	0.98
Exactitude	89.47			
Score FNC	9617.25			
Pourcentage FNC	82.54			

Table 18 – Mesures pour le modèle : Mixte UCLMR/Talos TF-Idf

Nous constatons un gain de 0.52% par rapport au meilleur des systèmes de la FNC. Ceci est peu mais montre une amélioration minime de la précision de la classe agree et de la classe discuss. La classe disagree est encore négligée par le modèle arborescent de Talos. En conséquence, le modèle UCLMR biaisé par Talos ne permet pas d'améliorer la précision de la classe disagree.

4.2.2 Modéles mixte UCLMR/Talos sans TF-Idf

ixte UCLMR/Talos sans TF-Idf

		/			
	agree	disagree	discuss	unrelated	Somme
agree	1002	0	776	125	1903
disagree	216	1	357	123	697
discuss	602	2	3596	264	4464
unrelated	16	0	149	18184	18349
Somme	1836	3	4878	18696	25413

TABLE 19 – Table de confusion du modèle : mixte UCLMR/Talos sans TF-Idf

Par rapport au modèle mixte UCLMR/Talos TF-Idf, ce modèle améliore la classe des **agree** d'une quarantaine d'entrée. C'est certes un avantage minime, qui n'en reste pas moins surprenant. En effet le modèle avec TF-Idf a un espace sémantique plus exhaustif et plus proche de l'ensemble de test.

Mixte UCLMR/Talos sans TF-Idf

Mesure	agree	disagree	discuss	unrelated
Précision	0.53	0.0	0.81	0.99
Rappel	0.55	0.33	0.74	0.97
F1score	0.54	0.0	0.77	0.98
Exactitude	89.65			
Score FNC	9633.25			
Pourcentage FNC	82.68			

Table 20 – Mesures pour le modèle : mixte UCLMR/Talos sans TF-Idf

Certes l'avantagesur le modèle précédent n'est que de 0.16% pour les pourcentage FNC. Peut-être montrons-nous qu'un espace sémantique simplement formé avec l'ensemble d'entrainement est suffisant.

5 Apprentissage par ensemble : Avec Single Layer Learner

5.1 Explication du modèle

Une des meilleurs manière *a priori* de déterminer une classe à partir d'une liste de probabilité est certainement d'utiliser un couche neuronale. Ainsi

nous avons créer avec le framework Keras un Single Layer Learner. Celui-ci dispose d'un couche d'entrée de la longueur de nos vecteurs d'entrainement, d'un couche de 32 unités d'apprentissage et d'une couche de sortie de 4 unités, une par label. Afin de produire les vecteurs d'entrainement nous avons utiliser l'intégralité du corpus d'entrainement. Chaque dixième des vecteurs on était produits par les 90% restant du corpus. Les données qui ont servi à produire les vecteurs d'entraînement sont les vecteurs concaténé du modèle Mixte UCLMR/Talos sans TF-Idf. Nous nommerons ce modèle Mixte UCLMR/Talos sans TF-Idf SLL.

5.1.1 Code du modèle

```
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
import tensorflow as tf
def create trained nn (vecs train, labels train, epochs=50):
    """Create a trained neural network model."""
    input dim = vecs train.shape[1]
    model = Sequential()
    model.add(Dense(units=32, input dim=input dim))
    model.add(Activation('relu'))
    model.add(Dense(units=4))
    model.add(Activation('softmax'))
    model.compile(loss='sparse categorical crossentropy',
                  optimizer='sgd',
                  metrics=['accuracy'])
    model. fit (vecs train, labels train, epochs=epochs,
              batch size=32)
```

return model

5.2 Résultats

Mixte UCLMR/Talos sans TF-Idf SLL

		/			
	agree	disagree	discuss	unrelated	Somme
agree	1059	3	729	112	1903
$\operatorname{disagree}$	253	14	323	107	697
discuss	684	7	3530	243	4464
unrelated	45	0	288	18016	18349
Somme	2041	24	4870	18478	25413

TABLE 21 – Table de confusion du modèle : Mixte UCLMR/Talos sans TF-Idf SLL

Mixte UCLMR/Talos sans TF-Idf SLL

Mesure	agree	disagree	discuss	unrelated
Précision	0.56	0.02	0.79	0.98
Rappel	0.52	0.58	0.72	0.97
F1score	0.54	0.04	0.76	0.98
Exactitude	89.01			
Score FNC	9606.75			
Pourcentage FNC	82.45			

TABLE 22 – Mesures pour le modèle : Mixte UCLMR/Talos sans TF-Idf SLL

Etonnamment ce modèle a de moins bons résultats que le modèle précédent. Même en changeant les paramètres d'apprentissage (nombre d'unités d'apprentissage ou nombre de récusrion) le modèle n'excéde pas le précédents.