Universidad de Concepción

Facultad de Ciencias Físicas y Matemáticas

Departamento de Matemática

GAJ/EBC/CF/CMR/ARP

Cálculo III (521227) Práctica 10

Integrales de Linea.

- 1. Calcular la integrales de linea $\int_C \mathbf{F} \cdot d\mathbf{r}$ para los siguientes campos \mathbf{F} y curvas C.
 - (a) $\mathbf{F}(x,y) = (y,x)$, y C es la curva parametrizada por $\vec{r}: [0,1] \to \mathbb{R}^2, \vec{r}(t) = (t,t)$.
 - (b) $\mathbf{F}(x,y) = (y,x)$, y C es la curva parametrizada por $\vec{r}: [0,1] \to \mathbb{R}^2, \vec{r}(t) = (t,t^2)$.
 - (c) $\mathbf{F}(x,y) = (y,x)$, y C es la curva parametrizada por $\vec{r}: [0,\frac{\pi}{2}] \to \mathbb{R}^2, \vec{r}(t) = (\cos^2 t, 1 \sin^2 t)$.
 - (d) $\mathbf{F}(x,y)=(y,x)$, y C es la curva parametrizada por $\vec{r}:[0,\frac{\pi}{4}]\to\mathbb{R}^2,\vec{r}(t)=(\sin 2t,1-\cos 2t)$.
- 2. Calcular las siguientes integrales de linea
 - (a) $\int_C xy^3 dx$, donde C es el circulo unitario $x^2 + y^2 = 1$, orientado en sentido anti-horario.
 - (b) $\int_C z dx + x dy + y dz$, donde C es el segmento de linea, del punto (0,1,2) a (1,-1,3).
 - (c) $\int_C y dx$, donde C es la curva dada por la intersección de la esfera $x^2 + y^2 + z^2 = 1$ y el plano x + y + z = 0, orientado en sentido anti-horario visto desde arriba.
 - (d) $\int_C y dx + z dy + x dz$, donde C es la curva dada por la intersección de la semi esfera superior $x^2 + y^2 + z^2 = 4, z \ge 0$ y el cilindro $x^2 + y^2 = 2x$, orientado en sentido anti-horario visto desde arriba.

Campos conservativos.

- 3. Encontrar una función de potencial para los siguientes campos vectoriales:
 - (a) $\mathbf{F}(x, y, z) = (2x, 3y, 4z)$.
 - (b) $\mathbf{F}(x, y, z) = (e^{y+2z}, xe^{y+2z}, 2xe^{y+2z}).$
 - (c) $\mathbf{F}(x, y, z) = (y \sin z, x \sin z, xy \cos z)$.
 - (d) $\mathbf{F}(x, y, z) = (\ln x + \sec^2(x+y), \sec^2(x+y) + \frac{y}{y^2+z^2}, \frac{z}{y^2+z^2}).$