Hook-In Privacy Capabilities for gRPC

Jiaao Li, Riccardo Marin, Timo Ramsdorf

Privacy Engineering, TU Berlin

31st May 2022

Overview

Background

State of the art

The component(s)

Implementation

Application

Background

gRPC: connecting microservices with a high performance Remote Call Procedure framework

Any privacy tools for data subjects and data controllers?

State of the art

Related work (not necessarily gRPC-based)

- "Towards Application-Layer Purpose-Based Access Control"¹
 - PBAC at application level (ORM)
 - Developer-friendly purposes configuration (YAML)
 - Acceptable performance overhead
- "Per-Query Data Minimization for Privacy-Compliant Web APIs" ²
 - Attribute based access control for GraphQL API
 - Information reduction techniques
 - Reasonable performance results

 $^{^{1}}$ 2020, F. Pallas, M. Ulbricht, S. Tai, T. Peikert, M. Reppenhagen, D. Wenzel, P. Wille, K. Wolf

²2022, F. Pallas, D. Hartmann, P. Heinrich, J. Kipke, E. Grünewald € > € ∞ < ℃

State of the art

Related work (gRPC-based)

- "Implementing Data Flow Assertions in gRPC and Protobufs – Final Report" 3
 - Library in Go with encryption and policy checks
 - Significant impact on performance
- "Framework for Data Tracking across Data Controllers and Processors" 4
 - Graphs for tracking data flow
 - Missing performance evaluation

³2020, A. Mahajan, Y. Xue, J. Weisskoff

⁴2020, Z. Lai, Y. Xin, A. Yu

State of the art

▶ more...

We couldn't find a comprehensive, re-usable gRPC framework offering privacy capabilities, such as data minimization and access control

The component(s)

We are going to implement and benchmark 3 different technical solutions:

- 1. Interceptors
- 2. Classical proxy
- 3. Binary stream proxy

The component(s)

Preliminary results

```
Run: Server × Proxy × Server with Interceptors × In
```

Implementation

We expect to implement the following **data minimization** techniques:

- ► Erasure of data field
- Generalization
- Noising
- Hashing

Implementation

In addition, an **access control scheme** will be supported: Purpose-based Access Control (PBAC)

The proof of concept will be tested in a **food delivery app** context

Model of the communication between services

Data accessed by parties and related data minimization measures

Service	Personal data	Privacy tools	
Order	Name		
service	Surname		
	Favorite addresses		
	Current position		
	Orders history		
Driver	Meal	Data erasure (he doesn't know about the meal)	
service	Customer data	Data erasure (no info about customer except for address)	
	(except delivery address)		
	Delivery address		
Restaurant service	Customer data	Data erasure (no info about customer except for address)	
	(except delivery address)	Data erasure (no into about customer except for address)	
	Delivery address	Generalization (convert to distance)	
	Meal		
	Driver identity (name,)	Hashing (restaurant can see only a pseudonymized ID)	
Routing service	Driver position	Noising (return an approximate position)	

Purposes and related data and services

```
\begin{aligned} & \text{Order service} \rightarrow \{\textit{Meal purchase}\} \\ & \text{Driver service} \rightarrow \{\textit{Meal delivery}\} \\ & \text{Restaurant service} \rightarrow \{\textit{Meal cooking}, \textit{Meal collection}\} \\ & \text{Routing service} \rightarrow \{\textit{Route computation}\} \end{aligned}
```

Purpose	Personal data
Meal	Name
purchase	Surname
	Delivery address
Meal	Delivery
delivery	address
Meal	Meal
cooking	Distance
Meal collection	Driver id
Route computation	Driver position

Q&A Time