Dr Timothy Kimber Assignment Project Exam Help

https://eduassistpro.github.

Dynamic Data Structures

Assignmentur Projectus Salamh Help The problems seen so far involved fixed length lists

- In m
- *https://eduassistpro.github.

- Other problems require dynamic data structures suc

 Lists Account Wees Chat edu_assist_problems

 Lists Account Wees Chat edu_assist_problems

 Lists Account Wees Chat edu_assist_problems
 - Sets and Dictionaries

These are designed to hold variable, essentially unlimited amounts of data.

Ordered Data Structures

A *list* is an ordered collection of {nodes, items, elements}.

Assignment Project Pexam Help A list might support operations such as

https://eduassistpro.github.

unshift adds an element to the front of the list insert adds an element at a given position

Adden Wie Gelehalt Golusiassist_pi iterate returns the items in order

- Plus sorting, searching, copying, joining, splitting ...
- The most appropriate implementation depends on which operations are needed.

Stacks

A stack is a last-in first-out (LIFO) list.

Assignment Project Exam Help pop for removing elements

https://eduassistpro.github.i

Add WeChat edu_assist_pr

• Stacks support recursive algorithms including fundamental operations such as calling subprocedures and evaluating arithmetic expressions

Stacks

Assignment Project Exam Help

```
Question
```

How wouhttps://eduassistpro.github.

- Must be able to add "unlimited" objects
- Push And Pod myst implement LIFO behaviour assist_pr

Stack Implementation

Sould use array or linked-list as storage model Exam Help

- Arr
- * https://eduassistpro.github.

Add WeChat edu_assist_pre • Can make array dynamic (variable size)

- Integer sp points to the top of the stack
- Update sp within Push and Pop

Dynamic Array-Based Stack

```
Assignment Project Exam Help

if s.sp == k  // array is full

s fhttps://eduassistpro.github.

s = s'
s[s.sp] dd +WeChat edu_assist_pro.github.

s = s'
s[s.sp] dd +WeChat edu_assist_pro.github.
```

push increases the capacity of the stack if it is full

Dynamic Array-Based Stack

```
Assignment Project Exam Help

if s.sp < k/2 // array is less than half full

s

thttps://eduassistpro.github.

s.sp = s.sp - 1

return days We Chat edu_assist_pro.github.
```

- pop decreases the capacity if it is too big
- a full implementation should have a minimum size

Performance of Push

Question

Aigraisochemient of public the fork asmine Help complexity of push?

- Ass
- Ass https://eduassistpro.github.

The time taken for pushing objects is:

- * ° Add WeChat edu_assist_pr
 - Worst time to push a single object is Nc
 - So T(N) = O(N)
 - Want to reflect fact that most pushes are not O(N)

Performance of Push

Assignment Project Exam Help Given an empty stack, what is the worst case time to push N objects?

- Ass
- Ass https://eduassistpro.github.

The time taken for the each push is still:

- c, c, Acdcd 4We Chat edu_assist_preserved the worst single push is
- $T(N) = O(N^2)$

However, this is a big overestimate

Performance of Push

Abstright Project Exam Help T(N) = Nc + (4c + 8c + (N/2)c + Nc)

https://eduassistpro.github.

• the rest is for copying to new arrays

The time A carding We (4cheartotedu_assist_pr

- $T(N) \le 3Nc 4c$
- \bullet T(N) = O(N)

Amortisation

Abstriegrandering Project Exam Help A single push is effectively a constant time operation

- Mo
- No https://eduassistpro.github.

Amortis

- Related to accountancy method used to defer lar
- Amorthed days Woreders hauten & Columbia assist_pr
- Cost of individual ops is "amortised" across the sequence
- Unlike accountancy, must never be in debt

Amortised Analysis

Assignment Project Exam Help

- Pick a representative subsequence
- Sub
- https://eduassistpro.github.
- Show that paying amortised cost covers all costs (never in debt)

Exercise Add WeChat edu_assist_Find a representative cycle (subsequence) of pushes I

show that the amortised cost of 3c covers all costs.

Amortised Analysis

• Start after any expensive push

Assignment Project Exam Help

https://eduassistpro.github.

- Cheap pushes each put 2c in the bank
- Have enough to cover extra costs when next expensive push occurs
- (If you started with a copy you are immediately over budget)

Amortised Analysis

Argument only works because array is initially empty and size is doubled

Assignment copy we always push of more Exam Help

Thi

https://eduassistpro.github.

Add WeChat edu_assist_pr

Multiplying by any factor will do - will affect amortisation constant

Queues

Assignment Project Exam Help

- The earliest one added (FIFO Queue)
- https://eduassistpro.github.
 - How could you implement a priority queue (PQ)
 - Given Profillowing round design that conding assist p would be the worst case time to add a new object? (E a key attribute that determines its priority.)

Algorithms (580)

Priority Queue Design

If we maintain a total ordering of the queue:

Assignment the Carbon Exam Help • Can search a sorted array quickly but have to shift existing objects

Fin

Do not actually need total ordering.

- Queue does not support indexed access
- Just want to find object with highest priority

Priority Queue Design

Solution is to divide and conquer the data

Assignment Project Exam Help

https://eduassistpro.github.

- Key Property: Maintain order within each branch
- Highest (or lowest) key will be at the root
- Behaves like lots of mini queues

Priority Queue Design

Solution is to divide and conquer the data

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Question

A new object could go in any branch. (Do you agree?) So, where should it go? Why?

Heap: a Tree in an Array

We want to know where the "end" of the tree is:

Assignment Project Exam Help

https://eduassistpro.github.

- Tra
- Navigate by indices
- Leaving a loll blank men s: hat edu_assist_pr
 - children of a[n] are a[2*n] and a[2*n+1]

Exercise

How should a new object be added to a max binary heap? (i.e. the greatest key should be at the root).

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Heap: a Tree in an Array

Assignment Project Exam Help

- Tra https://eduassistpro.github.
- Leaving a[0] blank means:
 - parentiof a ladysta [n/2] hata edu_assist_pr

Exercise

How should the object with the greatest key be removed from a max binary heap?

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Assignment Project Exam Help

https://eduassistpro.github.

- Restore the "shape"
- Then restore the order

Binary Heap Performance

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Question

Given a heap containing N objects, what is the time complexity for adding or removing one object?

Binary Heap Performance

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Both operations are $O(\log_2 N)$

- Height of the heap is $\Theta(\log_2 N)$
- Each operation confined to one branch

Heapsort

Heaps also provide us with the Heapsort algorithm (JWJ Williams, 1964)

Assignment Project Exam Help

Heapson given a list p

- Cre
- : Re https://eduassistpro.github.
- HALT
- What edu_assist_pr
- Performance is again $\Theta(Nlog_2N)$
- Can also be implemented in place by setting up list and heap partitions within a single array