Exercices de Khôlle - Terminale S

Lycée Julie-Victoire Daubié

Exercice 1 (Bordeaux 1980)

Pour tout réel a, on définit sur $\mathbb R$ la fonction numérique f_a par

$$f_a(x) = e^{-x} + ax.$$

Soit \mathscr{C}_a sa représentation graphique dans le plan équipé d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

- 1. Étudier les variations de f_a . Pour quelles valeurs de a la fonction f_a admet-elle un extremum? On appelle A l'ensemble de ces valeurs.
- 2. Pour tout tel réel $a\in A,$ on appelle M_a le point de \mathscr{C}_a correspondant à l'extremum. Déterminer ses coordonnées.
- 3. Montrer que l'ensemble E des points M_a , lorsque a décrit A, est la courbe représentative d'une fonction g. Étudier les variations de g, et dessiner E.

Exercice 2 (Paris 1980)

Soit la famille d'équations

$$z^2 \sin^2 \theta - 4z \sin \theta + 4 + \cos^2 \theta = 0 \tag{E_{\theta}}$$

où $\theta \in]0,\pi[$.

- 1. Soit $0<\theta<\pi.$ Résoudre l'équation (E_θ) dans le corps $\mathbb C$ des nombres complexes. On note z_1 et z_2 les racines.
- 2. On note M_1 et M_2 dont les nombres complexes z_1 et z_2 sont les affixes dans un repère orthonormé (O, \vec{u}, \vec{v}) .

Dessiner l'ensemble des points M_1 et M_2 lorsque $]0, \pi[$.

Exercice 3 (Pondichéry 1996)

Un fabricant de berlingots possède trois machines A, B et C qui fournissent respectivement 10 %, 40 % et 50 % de la production totale de son usine. Une étude a montré que le pourcentage de berlingots défectueux est de 3,5 % pour la machine A, de 1,5 % pour la machine B et de 2,2 % pour la machine C. Après fabrication, les berlingots sont versés dans un bac commun aux trois machines. On choisit au hasard un berlingot dans le bac.

- 1. Montrer que la probabilité que ce berlingot provienne de la machine C et soit défectueux est 0.011.
- 2. Calculer la probabilité que ce berlingot soit défectueux.
- Calculer la probabilité que ce berlingot provienne de la machine C sachant qu'il est défectueux.
- 4. On prélève successivement dans le bac 10 berlingots en remettant à chaque fois le berlingot tiré dans le bac. Calculer la probabilité d'obtenir au moins un berlingot défectueux parmi ces 10 prélèvements.

Exercice 4 (Amérique du Nord 1996)

On désigne par n un entier naturel ≥ 2 . On se donne n sacs de jetons S_1, \ldots, S_n . Au départ, le sac S_1 contient 2 jetons noirs et 1 jeton blanc, et chacun des autres sacs contient 1 jeton noir et 1 jeton blanc.

On se propose d'étudier l'évolution des tirages successifs d'un jeton de ces sacs, effectuées de la façon suivante :

- Première étape on tire au hasard un jeton de S_1 ,
- Deuxième étape on place ce jeton de S_2 et on tire, au hasard, un jeton de S_2 ,
- Troisième étape après avoir placé dans S_3 le jeton sorti de S_2 on tire, au hasard, un jeton de S_3 et ainsi de suite.

Pour tout $k\in\mathbb{N}$ tel que $1\leq k\leq n,$ on note E_k l'événement « le jeton sorti de S_k est blanc » ; on notera classiquement $\overline{E_k}$ son évènement contraire.

1. (a) Déterminer la probabilité de E_1 et les probabilités conditionnelles $\mathbb{P}(E_2|E_1)$ et $\mathbb{P}(E_2|\overline{E_1})$.

En déduire la probabilité de E_2 .

(b) Pour tout entier $1 \le k \le n$, on note la probabilité $\mathbb{P}(E_k) = p_k$. Démontrer le relation de récurrence

$$p_{k+1} = \frac{1}{3}p_k + \frac{1}{3}.$$

2. On définit $(u_k)_{k\geq 1}$ une suite réelle telle que $u_1=\frac{1}{3}$, telle que

$$u_{k+1} = \frac{1}{3}u_k + \frac{1}{3}.$$

On pose alors $v_k := u_k - \frac{1}{2}$.

- (a) Montrer que la suite (v_k) est géométrique.
- (b) En déduire l'expression de u_k . Étudier la convergence de la suite (u_k) .
- 3. On suppose que n=10. Déterminer pour quelles valeurs de k on a

$$0.4999 \le p \le 0.5$$
.

Exercice 5 (Amiens 1990 (1))

Soit $f: \mathbb{C} \to \mathbb{C}$ l'application définie par

$$f(z) = z^4 - \sqrt{2}z^3 - 4\sqrt{2}z - 16.$$

- 1. Calculer f(2i) et f(-2i).
- 2. D'après un théorème que l'on admettra, il existe un trinôme du second degré à coefficients réels $q(z)=z^2+az+b$ tel que

$$f(z) = (z^2 + 4)q(z).$$

Trouver a et b.

- 3. En déduire les solutions de l'équation f(z) = 0 sur \mathbb{C} .
- 4. Placer dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) les points A, B, C, D qui ont pour affixes les solutions de la question précédente.
- 5. Montrer que A,B,C,D appartiennent à un même cercle (\mathscr{C}) dont on précisera le centre et le rayon.

Exercice 6 (Amiens 1990 (2))

Pour tout k>0, on considère la fonction f_k définie sur $]0,+\infty[$ par

$$f_k(x) = k^2 x^2 - \frac{1}{4} - \frac{1}{2} \ln x.$$

On note \mathscr{C}_k sa courbe représentative dans le plan muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

- 1. Étudier les variations de f_k , dresser son tableau. On précisera les limites de f_k .
- 2. Soit M_k le point \mathscr{C}_k correspondant au minimum de f_k . Déterminer dans le repère $(O, \vec{\imath}, \vec{\jmath})$ une équation cartésienne de l'ensemble \mathscr{A} décrit par M_k lorsque k décrit $]0, +\infty[$.
- 3. Préciser la position relative de \mathscr{C}_k et \mathscr{A} ; les tracer.

Exercice 7 (Amérique du Nord 1986)

Soit, pour tout $z \in \mathbb{C}$ le polynôme

$$P_{\lambda}(z) = z^2 - 4z + \lambda$$

où $\lambda \in \mathbb{R}$.

- 1. Montrer que si $P_{\lambda}(z)=0$ admet une racine z_{λ} alors $\overline{z_{\lambda}}$ est aussi solution.
- 2. Montrer que l'équation $P_{\lambda}(z) = 0$ admet au moins une solution réelle.
- 3. Déterminer λ pour que l'équation $P_{\lambda}(z)=0$ admette au moins une racine réelle de module égal à 2. Résoudre l'équation pour cette valeur de λ .
- 4. Déterminer λ pour que $P_{\lambda}(z)=0$ admette une racine **complexe** de module égal à 2. Résoudre l'équation pour les valeurs de λ trouvées, préciser le module et l'argument de chaque solution.

Exercice 8 (Amérique du Sud 1986)

Soit P le plan complexe muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . Au points M(x, y) on associe, classiquement, son affixe z = x + iy.

Soient A et B les points d'affixes respectives 1 + i et -3.

À un point M, distinct de A ou B et d'affixe z, on associe le(s) point(s) M', s'ils existent, d'affixes z' telles que

$$\begin{cases} \frac{z'+3}{z+3} & \text{imaginaire pur} \\ \frac{z'-1-i}{z-1-i} & \text{réel.} \end{cases}$$

- 1. Donner un sens géométrique à arg $\left(\frac{z'+3}{z+3}\right)$ et arg $\left(\frac{z'-1-i}{z-1-i}\right)$.
- 2. Démontrer géométriquement qu'il existe un cercle $\mathscr C$ du plan tel que si $M\in P\mathscr C$, alors M' existe et est unique. Construire alors M'.

Exercice 9 (Bordeaux 1984)

Soit $\theta \in [0, 2\pi]$.

1. Résoudre dans C l'équation

$$z^2 - (2^{\theta+1}\cos\theta)z + 2^{2\theta} = 0,$$

et donner chaque solution sous forme trigonométrique.

2. Le plan étant rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) , on considère les points A et B dont les affixes sont les solutions de l'équation précédente. Déterminer θ de manière à ce que le triangle OAB soit équilatéral.

Exercice 10 (Montpellier 1984)

On ramène la plan à un repère orthonormé $(O, \vec{\imath}, \vec{\jmath}).$ Soit f l'application définie sur $\mathbb R$ par

$$\begin{cases} f(x) = x \ln \left(1 + \frac{1}{x}\right) & \forall x > 0 \\ f(0) = 0. \end{cases}$$

- 1. Étudier la continuité et la dérivabilité de f en 0.
- 2. On considère la fonction g définie sur $[1, +\infty[$ par

$$g(x) = x \ln x$$

et on appelle Γ sa courbe représentative. Étudier g et tracer Γ .

3. Étudier la limite f en $+\infty$. Montrer que les courbes Γ et $\mathscr C$ sont asymptotes l'une de l'autre et préciser leur positions relatives.

Rappel Dire que les deux courbes sont asymptotes revient à dire que

$$\lim_{x\to +\infty}\left(f(x)-g(x)\right)=0.$$

- 4. Montrer que f est deux fois dérivable, calculer sa dérivée f' et sa dérivée seconde f'' (la dérivée de sa dérivée). Étudier les variations de f' et montrer qu'elle est positive.
- 5. Achever l'étude de la fonction f. Tracer la courbe $\mathscr C$ sur la même figure que Γ .

Exercice 11 (Dijon 1982)

nétant un entier naturel fixé, on considère l'équation dans \mathbb{Z}^2

$$165x - 132y = n \tag{E_n}$$

Résoudre cette équation pour :

- 1. n = 0.
- $2. \ n = 33.$
- 3. n = 66.
- 4. n = 42.

Dans chaque cas, on déterminera non seulement le couple de solutions (x,y) mais aussi leur PGCD.