AC209N 硬件设计说明书 V1.8

严禁事项

- 1、LDO5V 严禁使用超过 5.5V 以上的电压。
- 2、DACVSS 严禁在芯片处直接连数字 GND。
- 3、P23 口(64PIN 封装为 PIN6,48PIN 封装为 PIN4)严禁接红外接收头和做普通 IO 口使用,只能接红外接收管。
- 4、OSC32KO(64PIN 封裝为 PIN56,48PIN 封裝为 PIN40)严禁引出时钟到 FM 芯片或其他类芯片,32.768K 晶振脚摆放位置不能超过主控晶振引脚 1CM, OSC32KO 上拉 2M 电阻到 RTCVDD。晶振走线切勿和其他信号线平行走线,并需用地线或电源线包裹。
- 5、32.768K 晶振必须预留 15P 电容位置。

1.版本信息

日期	版本号	描述						
2010.12.23	V1.0	原始版本						
2010.12.27	V1.1	调整点烟器和 Boombox IO 口分配,增加 RTC 功能说明,修改背光输出驱动IO						
2011.01.07	V1.2	修改红外接收管和红外接收头 IO 接口,见第6页第⑥点和第7页第⑧点						
2011.01.27	V1.3	增加 RTC 闹钟唤醒,按键开机电源控制电路,见第 6 小节						
2011.03.01	V1.4	增加 USB 和 DAC 共音频座电路, 见第 9 页 5.6 小节说明; 增加省掉外部 E2prom 方案, 见第 10 页第 6 章节第⑥点说明						
2011.03.16	V1.5	OSC32KO 增加 2M 上拉电阻到 RTCVDD,修改耳机输出电路,修改 LINEIN 输入电路参数,增加 FM 设计注意事项						
2011.07.19	V1.6	1、增加 AC209N_28PIN 引脚封装图; 2、更新 Boombox 最小系统图,固定 LINEIN 和 FMIN IO,增加设计说明 3、增加晶振设计要求,见附录 1 4、增加 FM 收音设计参考,见附录 2						
2011.08.10	V1.7	1、SD 卡增加检测脚 SD_DECT,以提高 FM 收音质量,见附录 3 2、增加 PCB 板设计注意事项,见附录 4 3、增加 AC209N SOP28 封装尺寸图						
2011.08.25	V1.8	1、增加特别说明"32.768K 晶振必须预留 15P 电容位置" 2、修改最小系统图, 预留晶振 15P 电容位置						

2.引脚定义

2.1 引脚分配

图 1 AC209N LQFP64

图 2 AC209N _LQFP48

图 3 AC209N_SSOP28/SOP28

2.2 引脚描述

2 7几种1田之									
PIN#		Name	I/O Type	Drive (mA)	Function	Other Function			
LQFP64	LQFP48		Туре	(IIIA)					
1		NC	/	/					
2	1	VDDIO	P	/	IO Power 3.3V				
3	2	LDO5V	P	/	LDO Power 5V				
4	3	VSSIO	P	/	IO Ground				
5		NC	/	/					
6	4	P23	I	/		T2CAP: Timer2 Capture Pin WKUP3:Port Interrupt/Wakeup			
7	5	P24	I/O	8	GPIO	UARTTX1: UART Data Out(B) AUXL0: Analog MUX left channel input 0			
8	6	P25	I/O	8	GPIO	UARTRX1: UART Data In(B) AUXR0: Analog MUX right channel input 0			
9	7	P26	I/O	8	GPIO	IICK1: IIC Clock(B) AUXL1: Analog MUX left channel input 1			
10	8	P27	I/O	8	GPIO	IICDA1: IIC Data(B) AUXR1: Analog MUX right channel input 1			
11		P35	I/O	24	GPIO	ISD Clock Output			
12	9	P33	I/O	24	GPIO	EMI_WR_: EMI Port Write enable UARTRX2: UART Data In(C) IICDA2: IIC Data(C)			
13	10	P32	I/O	24	GPIO	LVD: Low voltage detect input SPIDIB: SPI Data In(B) UARTTX2: UART Data Out(C) IICK2: IIC Clock(C)			
14	11	P31	I/O	24	GPIO	SPIDOB: SPI Data Out(B)			
15		P43	I/O	24	GPIO	ISD Data			
16	12	P30	I/O	24	GPIO	SPICLKB: SPI Clock(B)			
17	17 13 VPP P /		OTP Program Power	Additional Input Only Pin					

18	14	P17	I/O	8	GPIO	EMID7: EMI Data 7 SPIDOA: SPI Data Out(A)
19	15	P16	I/O	8	GPIO	EMID6: EMI Data 6 SPICLKA: SPI Clock(A)
20	16	P15	I/O	8	GPIO	EMID5: EMI Data 5 SPIDIA: SPI Data In(A)
21	17	P14	I/O	8	GPIO	EMID4: EMI Data 4
22		P42	I/O	24	GPIO	ISD Data
23	18	P13	I/O	8	GPIO	EMID3: EMI Data 3 T2CKIN: Timer2 Clock In
24	19	P12	I/O	8	GPIO	EMID2: EMI Data 2
25	20	P11	I/O	8	GPIO	EMID1: EMI Data 1
26	21	P10	I/O	8	GPIO	EMID0: EMI Data 0
27	22	P01	I/O	8	GPIO	High Frequency Oscillator Out ISP Data In
28	23	P00	I/O	8	GPIO	High Frequency Oscillator In ISP Clock In
29		MCLR	I	/	Master Clear, Low Active	
30	24	VDDIO	P	/	IO Power 3.3V	
31		NC	/	/		
32		NC	/	/		
33		NC	/	/		
34		NC	/	/		
35	25	VSSIO	P	/	IO Ground	
36	26	P07	I/O	8	GPIO	ADC7: ADC Channel 7 Input UARTRX0: UART Data In(A) WKUP2:Port Interrupt/Wakeup
37		P41	I/O	24	GPIO	ISD Data
38	27	P06	I/O	8	GPIO	ADC6: ADC Channel 6 Input UARTTX0: UART Data Out(A)
39		P40	I/O	24	GPIO	ISD Data
40	28	P05	I/O	8	GPIO	ADC5: ADC Channel 5 Input T1CKIN: Timer1 Clock In WKUP1:Port Interrupt/Wakeup T2PWM: Timer2 PWM Output CLKOUT: Internal Clock Output
41	29	DVDD	P	/	Core Power 1.8V	
42	30	P04	I/O	8	GPIO	ADC4: ADC Channel 4 Input T1CAP: Timer1 Capture Pin
43	31	P03	I/O	8	GPIO	ADC3: ADC Channel 3 Input TOCKIN: Timer0 Clock In T1PWM: Timer1 PWM Output
44	32	P02	I/O	8	GPIO	ADC2: ADC Channel 2 Input T0CAP: Timer0 Capture Pin WKUP0:Port Interrupt/Wakeup ISP Data Out
45	33	P34	I/O	24	GPIO	T3PWM: Timer3 PWM Output OSC_In: External Oscillator Clock In
46	34	P20	I/O	8	GPIO	SDCLK: SD Clock
47	35	P21	I/O	8	GPIO	SDCMD: SD Command
48	36	P22	I/O	8	GPIO	SDDAT: SD Data
49		P47	I/O	24	GPIO	ISD Data
50		P46	I/O	24	GPIO	ISD Data

51	37	USBDM	I/O	/	USB Negative Data	UARTRX3: UART Data In(D) IICDA3: IIC Data(D)
52	38	USBDP	I/O	/	USB Positive Data	UARTTX3: UART Data Out(D) IICK3: IIC Clock(D)
53		P45	I/O	24	GPIO	SPI1CLK: SPI1 Clock
54		P44	I/O	24	GPIO	SPI0DOB: SPI0 Data Out(B)
55	39	WKUP	О	/	RTC WakeUp Output	
56	40	OSC32KO	О	/	RTC32K oscillator output	
57	41	OSC32KI	I	/	RTC32K oscillator input	
58	42	RTCVDD	P	/	RTC Power 1.8V	
59	43	DACVDD	P	/	DAC Power 3.0V	
60	44	VCOM	P	/	DAC Reference	
61	45	DACVSS	P	/	DAC Ground	
62	46	DACL	О	/	DAC Left Channel	
63	47	DACR	0	/	DAC Right Channel	
64	48	HPVDD	P	/	Headphone Power 3.3V	

(★说明: 1、P----Power Supply 2、I----Input 3、O----Output 4、I/O----Bi-direction)

3.电气特性

3.1 LDO 电压、电流特性

符号	参数	最小	典型	最大	单位	测试条件
	11 7 9 30		八王		1 12	11 20 20 10
LDO5V	Voltage Input	3.4	4.6	5.5	V	_
$V_{3.3}$	Voltage output	ı	3.3	1	V	LDO5V = 5V, 100mA loading
$V_{1.8}$	voltage output	ı	1.8	ı	V	LDO5V = 5V, 50mA loading
V_{DAC}	DAC voltage	-	3.1	1	V	LDO5V = 5V, 20mA loading
	Headphone	_	3.3	_	V	
V_{HPVDD}	Amplifier Voltage					LDO5V = 5V, 80mA loading
V_{RTC}	RTC voltage	1.2	1.6	2	V	-
$I_{L1.8}$		-	-	60	mA	LDO5V = 5V
$I_{L3.3}$	Loading current	_	_	150	mA	LDO5V = 5V
I_{DAC}		_	_	80	mA	LDO5V = 5V
I _{IRTC}		3	6	10	uA	_

3.2 I/O 输入、输出高低逻辑特性

IO 输入	IO 输入特性								
符号	参数	最小	典型	最大	单位	测试条件			
V _{IL}	Low-Level Input Voltaget	-0.3	_	0.3* VDDIO	V	VDDIO = 3.3V			
V_{IH}	High-Level Input Voltage	0.7* VDDIO	ı	VDDIO+0.3	V	VDDIO = 3.3V			
8mA IO 输出特性									
V_{OL}	Low-Level Output Voltaget	1	ı	0.33	V	VDDIO = 3.3V Isink = 8mA			
V_{OH}	High-Level Output Voltaget	2.7	ı	-	V	VDDIO = 3.3V Isource = 8mA			

24mA IO 输出特性							
V_{OL}	Low-Level Output Voltaget	-	-	0.33	V	VDDIO = 3.3V Isink = 24mA	
V_{OH}	High-Level Output Voltaget	2.7	-	-	V	VDDIO = 3.3V Isource = 24mA	

3.3 I/O 输出能力、上下拉电阻特性

Port □	输出能力	上拉电阻	下拉	备注	
P00P07	8mA	10K	10K		_
P10P17	8mA	10K	500R	1K	支持两种下拉
P20P27	8mA	10K	-		不支持下拉
P30P35	8/24mA	10K	10	输出能力可选	

3.4 MCLR 电气特性

符号	参数	最小	典型	最大	单位	测试条件
$V_{ m MIL}$	MCLR Low-Level Input	_	-	0.2*VDDIO	V	VDDIO = 3.3V
V_{MIH}	MCLR High-Level Input	0.8*VDDIO	-	_	V	VDDIO = 3.3V
T_{MCLR}	MCLR Low-Level Input width	1	-	_	ms	VDDIO = 3.3V

3.5 DAC 特性

符号	参数	文件格式	最小	典型	最大	单位	测试条件
SNR	Signal to Noise Ratio	MP3		86		dB	1KHz,SR=44.1K, 静音文件, CR=192Kbps
THD+N	HD+N Total Harmoni Distortion+Noise		0	-76		dB	(-1.5db) 1KHz, SR=44.1K, CR=192Kbps

4.硬件最小系统原理图

4.1 点烟器最小系统图

图 3 AC209N 48PIN 点烟器最小系统图

★说明:

- ① 原理图中 Y1, Y2, R1, C1, C2, C3, C4, C5 的值为优化值, 若减小其值大小,可能影响系统稳定性,切勿任意修改。主控可支持 32.768K 和其他高速晶振,高速晶振接 P00 和 P01 口。不做晶振脚使用时, P00 和 P01 可做普通 IO 用。② OSC32KO 上拉 2M 电阻到 RTCVDD, OSC32KO 切勿引出时钟到 FM 发射芯片,晶振脚摆放位置不能超过主控引脚 1CM。晶振处必须预留 15P 电容位置。③ P05 为时钟输出脚,输出时钟给 FM 发射芯片; P30 为强输出 IO,可直接驱动背光。
- ④ IO 口分配可支持到点烟器系列常用开发, SD 卡, USB, DAC 为固定连接, COM 口也为特殊连接。
- ⑤ P16, P17, P30, P31, P32, P33 为段码屏和点阵屏共用 IO, 因两款屏不会同时使用, IO 口选择使用。
- ⑥ PIN4 为红外接收管专属 IO,不能当做普通 IO 口使用; VPP 为红外接收头接收口。(红外接收管为两脚封装,价格便宜;红外接收头为三脚封装,价格稍贵)。
- ⑦ 连接 RTCVDD 到+1.8V,增强 32.768K 晶振的稳定性。
 - (★若普通 IO 需要变动,请依据 IO 口功能列表修改)

4.2 Boombox 最小系统图

图 4 AC209N 48PIN Boombox 最小系统图

★说明:

- ① 原理图中 R1, C1, C2, C3, C4, C5, C6, C7, C8 的值为优化值, 若减小其值大小,可能影响系统稳定性。主控可支持 32.768K 和其他高速晶振, 高速晶振接 P00 和 P01 口, P00 和 P01 可做普通 IO 用。
- ② OSC32KO 上拉 2M 电阻到 RTCVDD, OSC32KO 切勿引出时钟到 FM 发射芯片, 晶振脚摆放位置不能超过主控引脚 1CM。晶振处必须预留 15P 电容位置。
- ③ P05 为时钟输出脚,输出时钟给 FM 收音芯片; P30 为强输出 IO,可直接驱动背光。
- ④ AX209N 中 SD 卡, USB, DAC, AMUX, COM 口, Segment 口为特殊连接, 不应更换。
- ⑤ AMUX 通道分配: P24 和 P25 固定给 LINEIN, P26 和 P27 分配给 FMIN (按此分配可减小 LINEIN 噪声干扰)。若只使用一路 AMUX 输入,另一通道不能分配给高低电平频繁操作的 IO(例如: IIC 控制口, 屏控制口 LCD_CS, LCD_A0, SPI 控制口等,因会影响到内部 ADC 模块)。
- ⑥ PIN4 为红外接收管专属 IO,不能当做普通 IO 口使用; VPP 为红外接收头接收口。(红外接收管为两脚封装,价格便宜;红外接收头为三脚封装,价格稍贵)
- ⑦ 有独立 RTC 功能和使用内部 E2prom 时,RTCVDD 使用电阻分压接电池,C8 为 105; 无独立 RTC 功能时,RTCVDD 短接到+1.8V,C8 为 NC。
 - (★若普通 IO 需要变动,请依据 IO 口功能列表修改),

- 5.设计特殊说明(★此章节为重点章节,须识记)
- 5.1 启动选择

P00 为启动 IO, 做普通 IO 使用时,上电时状态需为高阻或 1。

- 5.2 音频电路设计
- ① DAC 可直接驱动耳塞;驱动部分头戴式耳机时,需在 DAC 外围增加 RC 补偿电路。R3 和 R4 电阻为低频补偿电阻,此时电容可取 10uF,加重低音,若低音要求不高,R3 和 R4 可直接短路。补偿电路如下图所示:

(根据耳机阻抗选择 $f_{-3db} = \frac{1}{2\pi R_1 C}$)

图 5 DAC 外部补偿电路

- ★说明: 礼品小音箱和普通小音箱设计时,可直接选择 DAC 驱动耳机,省掉 R1 和 C3, R2 和 C4 补偿网络。
- ② 芯片支持两路 AMUX 音频输入,第一路为 P24(AMUXL0)和 P25(AMUXR0),第二路为 P26(AMUXL1)和 P27(AMUXR1)。AMUX 电路如下图所示:

图 6 AMUX 输入电路

- ★说明: R1 和 R2 为限幅电阻,防止外部音源幅度过大(V_{P-P} 最大值为 3.0V),影响系统稳定性; C1 和 C2 为隔直电容,防止外部音源的直流电平影响到芯片内部偏置。
- 5.3 SD 卡电源设计
- ① SD 卡电源输入端需串入 4.7R 电阻, 防止插入耗电量大的 SD 卡时, 3.3V 被拉低, 影响系统正常工作。
- ② 点烟器设计时,SD 卡处滤波电容可省掉;Boombox 设计时,为防止某些卡带来读卡声,需保留 10uF 电容。
- 5.4 LCD/LED 特殊控制
- ① 段码屏时, P30--P33 为 COM 口, P30--P33 口需同时开上下拉。
- ★说明:此设置可省掉外部 COM 口分压电阻
- ② 4个8 LED 灯时, P30--P34 为 COM 口, P10--P16 为 Sect, 此时 P30--P34 设置为强输出 (24mA), P10--P16 设置为输入, 并打开下拉 500R 电阻
- ★说明:此设置只针对共阳极 4 个 8 LED 灯

- ③ 3 位半 LED 灯时, P30--P33 为 COM 口, P10--P17 为 Sect, 此时 P30--P34 设置为输出, P10--P16 设置为输入, 同时开下拉 1K 电阻。
- ④ P30 口为 PWM 强输出 IO,可直接驱动 LCD 屏背光。

5.5 GND 和 AGND

地线处理需严格按照芯片的数字地和模拟地分开,为减小 GND 和 AGND 的 共地线干扰,两地的连接处最好在电源入口处。

(★注:以上各设计要点应特别注意,在设计时应优先考虑)

5.6 DAC 和 USB 共座电路

DAC 和 USB 可使用一个音频座或 USB 座实现 DAC 和 USB 共座,可任意连接耳机或 PC,电路如下:

图 7 DAC 和 USB 共座电路

6.RTC 闹钟唤醒, 按键开机电源控制电路

图 8 电源控制电路

★说明:

- ① VBAT 为电池电压, VMCU 为主控输入电压, V_PA 为功放电压, RTCVDD 为独立 RTC 电压。
- ② Key_PowerUP 为上电检测 IO, PowerCTL 为上电保持 IO, WKUP 为 RTC 闹钟唤醒输出 IO (输出电平值为 1.2V~1.8V)。
- ③ 电路中参数值为优化值,请勿随意修改其大小值; R4 为按键开机三极管导通保护电路,防止芯片未上电时,内部嵌位二极管把电压拉低,R4 的取值要保证 Key_Power I/O 口开内部下拉时,逻辑值为1。
- ④ Q1 和 Q2 为电源控制 P-MOS 管,MOS 管的选型需考虑: V_T 应尽量小, $R_{DS(ON)}$ 也应尽量小, I_D 需满足工作电流大小。
- ⑤ RTCVDD 分压电阻 R8 和 R9 阻值大小需满足电池电压在 3.4~4.2V 变化时,

RTCVDD 值在正常电压范围内,同时需满足 I_{IRTC} 电流大小值,C1 电容不能省。 当支持 RTC 和闹钟功能时,R8 为 120K,R9 为 100K;当只使用内部 E2prom 时,R8 为 360K,R9 为 300K。

⑥ 当产品设计不是使用便携式手机电池时,在保证 RTCVDD 不断电的前提下,可直接利用内部 E2prom,从而省掉外部 E2prom,节约成本。RTCVDD 供电由 BAT 分压提供,见图 8 中电路。

7.引脚封装

7.1 AC209N_64PIN 封装图

图 9 AC209N LQFP64-10*10mm

7.2 AC209N_48PIN 封装图

图 15 AC209N _LQFP48-7*7mm

7.3 AC209N_28PIN(SSOP28) 封装图

图 16 AC209N _SSOP28

7.4 AC209N_28PIN(SOP28) 封装图

图 17 AC209N_SOP28

附录 1:

晶振布局走线要求

- ① 晶振摆放应尽量靠近主控引脚,摆放距离不应超过 1CM。
- ② 晶振走线附近不能有数字信号走线,特别是 SD 卡信号线,USB 信号线,IIC 信号线,红外接收信号,及其他 CLK 信号,并切勿平行走线,晶振走线正反两面均需用电源或地包裹。示意图如下:

附图 1 晶振布局和走线示意图(本例为电源包裹)

附录 2:

FM 收音设计参考

1、FM 电源处理

FM 电源需串入 4.7R 电阻, 有 475 滤波电容, 如图:

附图 1 FM 电源电路

2、FM 时钟处理

因不同的 FM 收音芯片对时钟的要求和抗干扰性不一致,因此 FM 的输入时钟 XI 需不同处理,以下为各 FM 收音芯片时钟电路。

① RDA5807

附图 2 RDA5807 时钟电路

② BK1080

附图 3 BK1080 时钟电路

③ CL6017G

附图 4 CL6017G 时钟电路

3、IIC 信号线处理

为了减小 IIC 的频繁操作对 FM 的干扰影响, IIC_CLK, IIC_DAT 上需串入 1K 电阻, 如图:

附图 5 IIC 信号线电路

- 4、FM 走线和铺地处理
- ① FM 芯片尽量远离主控和其他 IC。
- ② FM 芯片外围的元器件必须靠近 FM 芯片放置。
- ③ FM 的天线在 PCB 板上的走线尽量短、宽度需一致,天线附近和天线正反面都不应铺地。天线附近不应有 USB 信号线,SD 信号线,IIC 信号线,屏控制信号线,及其他数字类信号线。
- ④ FM 芯片的 GND 需单点接地,接地点最好是电源入口处。
- ⑤ FM 芯片需大面积铺地,信号线需从 FM 芯片引脚两边走线,尽量不要走于 FM 正反面。
- ⑥ FM 走线示意图

附图 6 FM 收音布局和走线示意图

附录 3:

为提高 FM 收音质量, SD 卡的检测方式由软件检测需修改为 SD 卡检测脚检测, 硬件设计上可选择以下两种方式:

1、主控发命令查询法

附图 7 命令查询法连接图

2、IO 口直接检测法,SD_DECT 直接连主控 IO

附图 8 IO 直接检测法连接图

3、SD_CLK 检测法, SD_DECT 串联 3.3K 电阻连接到 SD_CLK

附图 9 SD_CLK 检测法连接图

附录 4:

PCB 板设计注意事项

为提高生产效率和改善产品的质量,减小因 PCB 设计对系统的稳定性的影响,减小 FM 收音的干扰, PCB 板设计时需注意以下各方面:

- 1、减少插件料,能使用贴片的尽量使用贴片料,减少人工成本。
- 2、布局上,FM应远离主控IC,功放芯片,发热器件。
- 3、减少元件的种类和数量,在保证性能的前提下电路要做到最优,减少冗余的 元件。
- 4、元件封装要正确,同一元件封装要一致。
- 5、贴片料需摆放在 PCB 板同一面,减少贴片工艺流程。
- 6、元件布局时需保证足够的安全间距,摆放位置尽量在同一方向,同一水平线上,减少非规则摆放,提高贴片生产速度。
- 7、元件与螺丝孔,定位孔,边缘要保证合适的安全间距,勿造成装机时卡壳, 顶螺丝。
- 8、测试点的位置勿靠近元件放置,防止测试针碰到元器件。