Optimizing ROC Curves with a Sort-Based Surrogate Loss for Binary Classification and Changepoint Detection

Toby Dylan Hocking — toby.hocking@nau.edu joint work with my student Jonathan Hillman Machine Learning Research Lab — http://ml.nau.edu

Come to SICCS! Graduate Research Assistantships available!

Problem Setting and Related Work

Results

Problem Setting and Related Work

Results

Real data example with non-monotonic label error

Looping ROC curve, simple synthetic example

 $FPT_{\hat{y}}(c)$

 $\text{FNT}_{\hat{\mathbf{y}}}(c)$ $M_{\hat{y}}(c)$

Real data example with AUC greater than one

Train set ROC curves for a real changepoint problem

Learning algorithm results in better test AUC/AUM for changepoint problems

Standard logistic loss fails for highly imbalanced labels

Comparing logistic regression models (control experiment)

Error rate loss is not as useful as error count loss

Test AUC, median and quartiles over 10 random train sets

Learning algorithm competitive for unbalanced binary classification

(b) AUM compared to baselines

Test AUC, median and quartiles over 10 random train sets

Comparable computation time to other loss functions

