

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

SMITHSONIAN

MISCELLANEOUS COLLECTIONS.

VOL. XXXII.

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO BY HIS OBSERVATIONS, MESTARCHES,

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

•	
·	
•	

ADVERTISEMENT.

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian Institution in octavo form; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series includes memoirs, embracing the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is designed to contain reports on the present state of our knowledge of particular branches of science; instructions for collecting and digesting facts and materials for research; lists and synopses of species of the organic and inorganic world; museum catalogues; reports of explorations; aids to bibliographical investigations, etc., generally prepared at the express request of the Institution, and at its expense.

In the Smithsonian Contributions to Knowledge, as well as in the present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title page, and not that of the volume in which it is placed. In many cases works have been published and largely distributed, years before their combination into volumes.

S. P. LANGLEY.

Secretary S. I.

CONTENTS OF VOL. XXXII

- ARTICLE I. (No. 659.) THE CONSTANTS OF NATURE. PART I. A
 TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.
 [New Edition: revised and enlarged.] By Frank Wigglesworth Clarke. 1888. Pp. 420.
- ARTICLE II. (No. 658.) INDEX TO THE LITERATURE OF THE SPECTROSCOPE. By ALFRED TUCKERMAN. 1888. Pp. 433.

			·	
	·			

----- 659 ------

THE CONSTANTS OF NATURE. PART I.

A TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.

[NEW EDITION. REVISED AND ENLARGED.]

BY

FRANK WIGGLESWORTH CLARKE,

Chief Chemist U.S. Geological Survey.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRISTED AND STREETYPED BY
JUDD & DETWELLER,
AT WASHINGTON, D. C.

TABLE OF CONTENTS.

NTRODUCTIO	MC	Page.
EXPLANATOR	NOTES.	ix
I.	Elements	1
II.	Inorganic fluorides	16
III.	Inorganic chlorides	19
	1st. Simple chlorides	19
	2d. Double chlorides	27
	3d. Oxy- and sulpho-chlorides	29
IV.	Inorganic bromides	
	1st. Simple bromides	81
	2d. Double, oxy-, and sulpho-bromides	88
₹.	Inorganic iodides	84
	1st. Simple iodides	84
	2d. Double and oxy-iodides	
VI.	Chlorobromides, chloriodides, and bromiodides	
VII.	Ammonio-chlorides, ammonio-bromides, and ammonio-iodides	88
VIII.	Inorganic oxides	89
	1st. Simple oxides	89
	2d. Double and triple oxides	55
IX.	Inorganic sulphides	56
	1st. Simple sulphides	
	2d. Sulpho-salts of arsenic, antimony, and bismuth	
	8d. Miscellaneous double and oxy-sulphides	64
X.	Selenides	65
XI.	Tellurides	6 6
XII.	Phosphides	66
XIII.	Arsenides	67
XIV.	Antimonides	68
XV.	Sulphides with arsenides or antimonides	69
XVI.	Hydrides, borides, carbides, silicides, and nitrides	69
XVII.	Hydroxides	70
XVIII.	Chlorates and perchlorates	72
XIX.	Bromates	78
XX.	Iodates and periodates	74
XXI.	Thiosulphates (hyposulphites), sulphites, and dithionates	
XXII.	Sulphates	75
	1st. Simple sulphates	75
	2d. Double and triple sulphates	88
******	3d. Basic and ammonio-sulphates	
XXIII.	Selenites and selenates	98 102
XXIV.	Tellurates	102

PRISTED AND STEREOTYPED BY
JUDD & DETWELLER,
AT WASHINGTON, D. C.

TABLE OF CONTENTS.

		Pe.
XXV.	Chromates	
XXVI.	Manganites, manganates, and permanganates	
XXVII.	Molybdates	
XXVIII.	Tungstates	
XXIX.	Borates	
XXX.	Nitrates	
	1st. Simple nitrates	
	2d. Basic and ammonio-nitrates	
XXXI.	Hypophosphites and phosphites	. 1
XXXII.	Hypophosphates	1
XXXIII.	Phosphates.	_ 1
	1st. Normal orthophosphates	. 1
	2d. Basic orthophosphates	
	8d. Meta- and pyro-phosphates	. 1
XXXIV.	Vanadates	. 1
XXXV.	Arsenites and arsenates	_ 1
	1st. Normal orthoarsenates	. 1
	2d. Basic orthoarsenates	
	8d. Pyroarsenates and arsenites	. 1
XXXVI.	Phosphates, vanadates, and arsenates, combined with haloids	
XXXVII.	Antimonites and antimonates	
XXXVIII.	Columbates and tantalates	
XXXIX.	Carbonates	
	1st. Simple carbonates	
	2d. Double carbonates	
	8d. Basic carbonates	
XL.	Silicates	
	1st. Silicates containing but one metal	
	2d. Silicates containing more than one metal	
	8d. Boro-, fluo-, and other mixed silicates	
XLI.	Titanates and stannates	
XLII.	Cyanogen compounds	
Auii.	1st. General division	
	2d. Cyanides, cyanates, and sulphocyanates	
XLIII.	Miscellaneous inorganic compounds	
XLIV.		
XLV.	Alloys	
ALV.	Hydrocarbons	
	1st. Paraffins	
	2d. Olefines	
	8d. Acetylene series	
	4th. Benzene series	
	5th. Miscellaneous aromatic hydrocarbons	
	6th. Terpenes	
	7th. Unclassified	- :
XLVI.	Compounds containing C, H, and O.	
	1st. Alcohols of the paraffin series	
	2d. Oxides of the paraffin series	-
	8d. The fatty acids	-
	4th. Anhydrides of the fatty acids	_ 9

	Page.
5th. Ethers of the series C _n H _{2n} O ₂	205
6th. Aldehydes of the acetic series	
7th. Ketones of the paraffin series	219
	222
	225
10th. Acids and ethers of the oxalic series	226
11th. Acids and ethers of the glycollic series	2 30
12th. Acids and ethers of the pyruvic series	282
13th. Acids and ethers of the acrylic series	234
14th. Derivatives of the acrylic series	235
	236
	287
	289
	240
	243
20th. Miscellaneous non-aromatic compounds	245
21st. Phenols	249
22d. Aromatic alcohols	251
28d. Aromatic oxides	252
24th. Aromatic acids and their paraffin ethers	256
25th. Ethers of aromatic radicles	260
26th Aromatic aldehydes	261
27th. Aromatic ketones	262
28th. Camphors, essential oils, etc	262
29th. Miscellaneous compounds	265
	268
	268
2d. Amines of the paraffin series	269
• 3d. The aniline series	271
	274
	278
	281
1st. Nitrites and nitrates of the paraffin series	281
2d. Nitro-derivatives of the paraffin series	282
3d. Aromatic nitro-compounds	283
4th. Miscellaneous nitrates, nitrites, and nitro-compounds	286
5th. Miscellaneous amido-compounds	287
•	289
	290
	291
	292
	293
	298
2d. Chlorides of the series C. H. Cl.	296
	_
	301
Compounds containing C, Cl, N, or C, H, Cl, N	314
Compounds containing C, Cl. N. O. or C. H. Cl. N. O.	815
	8th. Oxides, alcohols, and ethers of the olefines 9th. Ethers of carbonic acid 10th. Acids and ethers of the oxalic series 11th. Acids and ethers of the glycollic series 12th. Acids and ethers of the pyruvic series 13th. Acids and ethers of the acrylic series 14th. Derivatives of the acrylic series 15th. Acids and ethers, malic-tartaric group 16th. Acids and ethers, citric acid group 17th. Glycerin and its derivatives 18th. The allyl group 19th. Erythrite, mannite, and the carbohydrates 20th. Miscellaneous non-aromatic compounds 22tl. Phenols 22d. Aromatic acids and their paraffin ethers 25th. Ethers of aromatic radicles 26th. Aromatic acids and their paraffin ethers 25th. Ethers of aromatic radicles 27th. Aromatic ketones 28th. Camphors, essential oils, etc. 29th. Miscellaneous compounds Compounds containing C, H, and N 1st. Cyanides and carbamines of the paraffin series 2d. Amines of the paraffin series 3d. The aniline series 3d. The aniline series 3d. Miscellaneous compounds Compounds containing C, H, N, and O 1st. Nitrites and nitrates of the paraffin series 2d. Nitro-derivatives of the paraffin series 3d. Aromatic nitro-compounds 4th. Miscellaneous nitrates, nitrites, and nitro-compounds 6th. Miscellaneous compounds 6th. Miscellaneous nitrates, nitrites, and nitro-compounds 6th. Miscellaneous compounds 6th. Miscellaneous compounds 6th. Miscellaneous compounds 6th. Miscellaneous non-aromatic chlorides 9th. Compounds containing C, H, and Cl 1st. Chlorides of the series C, H, o, and Cl 1st. Chlorides of the series C, H, o, and Cl 1st. Chlorides of the series C, H, o, and Cl 1st. Chlorides of the series C, H, o, and Cl 1st. Chlorides of the series C, H, o, and Cl

corponates
tining but one metal
ining more than one met
other mixed silicates
ATTEL IDIXEC SUICAGE
~~== ·
alphocyanates

· • • • • • • • • • • • • • • • • • • •
-ons

INTRODUCTION.

the late Joseph Henry, a manuscript entitled "A Table of Specific writies, Boiling Points, and Melting Points for Solids and Liquids." It accepted for publication, and in February, 1874, the printed copies ready for distribution. For years previously Professor Henry had had nind the publication of a series of similar tables somewhat upon the planing before suggested by Babbage, and accordingly my modest work was rea the somewhat ambitious title of "The Constants of Nature" and the first part of the proposed undertaking. Subsequently Parts II, I, and V were furnished by myself and Part IV by Professor G. F.

The following tables form, in effect, a new edition of Part I, completely ised, rearranged, and brought down as nearly as possible to the date of inting. They are, however, modified by the omission of boiling and meltespoints, except when such data seemed essential to the proper identificain of a compound, on the ground that the magnificent tables of Professor camelley already supply that want. I have limited myself to specific mivity alone, following in the main the plan of arrangement adopted in w earlier work, with such changes as were made necessary by the later developments of chemical thought. Constitutional formulæ have been used, not according to any fixed rule, but according to convenience, and their adoption has been governed, to some extent, by the limitations of the octavo page. All other details have been subject to the same limitations, and it is hoped that their absence will be compensated for by the almost miformly full references to literature. Some data could not be traced back in their original sources, at least not without unwarrantable labor, and most of these formed part of an early table prepared nearly twenty years ago for my own private use. A few determinations are accredited to standard works of reference, such as Watts' Dictionary, Dana's Mineralogy, and the lke, and many have been drawn from the Jahresbericht. Absolute completeness cannot, of course, be claimed, and in some directions it has not

even been attempted. Among minerals, only those having approximately definite formulæ are given, and indefinite substances have been excluded altogether. The tables aim at reasonable completeness only as regards artificial substances of definite constitution, and all else is gratuitous. A good many determinations of specific gravity have been unearthed from doctoral dissertations, school programmes, and similar foes of the bibliographer, and doubtless other data so printed have escaped my notice altogether. There is a weakness of human nature which, masquerading as patriotism, sometimes leads men of science to bury valuable researches in obscure local publications, and a compiler may never flatter himself that no such paper has eluded his vigilance. I shall be glad to receive notice of all omissions, and will try to rectify such or other errors in future supplements or appendices.

A word in conclusion as to the extent of the table. They contain the specific gravities of 5,227 distinct substances and 14,465 separate determinations. The original edition gave only 2,263 substances, to which nearly 700 were added in the supplement. The increase is a noteworthy indication of existing chemical activity.

F. W. CLARKE.

WASHINGTON, June 20, 1888.

EXPLANATORY NOTES.

In references to literature the following abbreviations have been used. In each case, as far as practicable, series, volume, and page are indicated, the page reference signifying, according to circumstances, either the first page of the paper cited, or else the actual page upon which the determination is given. The former rule applies to pages containing many data; the latter to cases in which the specific gravity datum is merely incidental.

- A. C. J.—American Chemical Journal.
- A. C. P.—Annalen der Chemie und Pharmacie.
- A. J. S .- American Journal of Science.
- Am. Chem.—American Chemist.
- Am. J. P.-American Journal of Pharmacy.
- Am. Phil. Soc.—American Philosophical Society.
- Ann.—Annales de Chimie et de Physique.
- Ann. Phil.—Annals of Philosophy.
- Arch. Pharm.-Archiv für Pharmacie.
- B. D. Z.—Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen. Leipzig, 1860.
- Bei.-Beiblätter zu den Annalen der Physik und Chemie.
- Ber.-Berichte der Deutschen Chemischen Gesellschaft.
- B. H. Ztg.-Berg-und hüttenmännische Zeitung.
- B. J.-Berzelius' Jahresbericht.
- Böttger.—Tabellarische Uebersicht der specifischen Gewichte der Körper. Frankfort, 1837.
- B. S. C.—Bulletin de la Société Chimique.
- B. S. M.—Bulletin de la Société Française de Mineralogie.
- Bull. Acad. Belg.—Bulletins, Academie Royale de Belgique.
- Bull. Geol.—Bulletin de la Société Géologique.
- Bull. Heb.—Bulletin Hebdomadaire de l'Association Scientifique de France.
- Bull. U. S. G. S .- Bulletin of the U. S. Geological Survey.
- C. C.—Chemisches Centralblatt.
- C. G.-Chemical Gazette.
- C. N.—Chemical News.
- C. R.—Comptes Rendus.
- D. J.—Dingler's Polytechnisches Journal.
- Dm.—Schröder's "Dichtigkeitsmessungen." Heidelberg, 1878.
- Erd. J .- Erdmann's Journal.

F. W. C.—This abbreviation indicates the work of students under the direction of & F. W. Clarke.

è

- G. C. I.—Gazzetta Chimica Italiana.
- Geol. Mag.—Geological Magazine.
- G. F. F.—Geologiska Föreningar Förhandlingar.
- Gilb. Ann.—Gilbert's Annalen.

1

- Gm. H.—Gmelin's Handbook of Chemistry. Cavendish Society edition.
- In. Diss. or Inaug. Diss.—Inaugural or Doctoral Dissertation. Always prefixed by the name of the university from which the dissertation was published.
- J.-Jahresbericht über die Fortschritte der Chemie.
- J. A. C.—Journal of Analytical Chemistry.
- J. C. S .- Journal of the Chemical Society.
- J. P. C.-Journal für Praktische Chemie.
- J. Ph. Ch.-Journal de Pharmacie et de Chimie.
- J. R. C.-Jahresbericht über die Fortschritte * * der reinen Chemie.
- M. C.-Monatshefte für Chemie.
- M. C. S.-Memoirs of the Chemical Society.
- Mem. Acad. Belg.-Mémoires, Academie Royale de Belgique.
- Min. Mag.—Mineralogical Magazine.
- M. P. M.-Mineralogische Petrographische Mittheilungen.
- M. St. P. Sav. Et.-Mémoires de Savants Etrangers, St. Petersburg Academy.
- N. J.-Neues Jahrbuch für Mineralogie, etc.
- Nich. J.-Nicholson's Journal.
- Öf. Ak. St.-Öfversigt af K. Vet. Akad. Förhandlingar, Stockholm.
- P. A.—Poggendorff's Annalen. For convenience, the second series under Wiedemann is covered by the same abbreviation.
- P. des C.—Pesanteur Spécifique des Corps. Brisson, Paris, 1787. A German edition by Blumhof appeared at Leipzig in 1795.
- P. M.—Philosophical Magazine. London, Edinburgh, and Dublin.
- Proc. Amer. Acad.—Proceedings of the American Academy, Boston.
- Proc. Amer. Asso.—Proceedings of the American Association for the Advancement of Science.
- P. R. S.—Proceedings of the Royal Society. London.
- P. R. S. E .- Proceedings of the Royal Society. Edinburgh.
- P. R. S. G .- Proceedings of the Royal Society. Glasgow.
- P. T.—Philosophical Transactions.
- Q. J. S.—Quarterly Journal of Science.
- R. T. C .- Recueil des Travaux Chimiques.
- Schw. J.—Schweigger's Journal.

S. W. A .- Sitzungsberichte der K. K. Akademie der Wissenschaften. Wien.

Thurston's Report.—Report of the Board on Testing Iron, Steel, and other Metals.

Washington, 1881.

U. N. A.—Upsala, Nova Acta.

V. H. V.—Verhandlungen des naturhistorisches Vereines. Bonn.

Watts' Dict.-Watts' Dictionary of Chemistry.

- Z. A. C.—Zeitschrift für analytische Chemie.
- Z. C.—Zeitschrift für Chemie.
- Z. G. S.—Zeitschrift der Deutschen Geologischen Gesellschaft.
- Z. K. M.—Zeitschrift für Krystallographie und Mineralogie.

A TABLE OF SPECIFIC GRAVITIES

FOR

SOLIDS AND LIQUIDS.

I. THE ELEMENTS.

N.	AME.	Specific Gravity.	AUTHORITY.
Hýdrogen. "	Liquefled	.026 }	Cailletet and Hautefeuille. C. R. 92, 1086.
	(Occluded by palladium.)	.033 / — 25 —	Dewar. P. M. (4), 47, 884.
Lithium		.578 }	Bunsen. J. 8, 324.
Sodium		.9348 .97228, 15°	Davy. P. T. 1808, 21. Gay Lussac and Thénard. See Böttger.
		.985 .97	Schröder. J. 12, 12. Troost and Hautefeuille. C. R. 78, 970.
		.9743, 10° .9735, 13°.5	Baumhauer. Ber. 6, 655.
44		.972 .7414, at boiling point. .9725, 0°	Quincke. P. A. 135, 642. Ramsay. Ber. 13, 2145.
		.9686, 16°.9, m. of 3 .9287, 97°.6, fused	Hagen. P. A. (2), 19, 436.
Potassium .		.865, 15°	Gay Lussac and Thénard. Ann. 66, 205.
		.874 .8427, fused	Sementini. See Böttger. Playfair and Joule. M. C. S. 3, 76
	-	.8750, 13° .8766, 18°	Baumhauer. Ber. 6, 655.
• •	 	.8642, 0° .8298, 62°.1, fused }	Hagen. P. A. (2), 19, 436.
Cæsium		1.872	Bunsen. J. 16, 185.
**		1.884 } 15°	Setterberg. A. C. P. 211, 215.
44		2.1 1.64 (Cor. for impurities) 1.85, 20°	Debray. J. 7, 336. [384 Nilson and Petterson. Ber. 11 Humpidge. P. R. S. 39, 1.
		2.24, m. of 2	Playfair and Joule. M. C. S. 3, 73 Bunsen. J. 5, 363.
14		$\left\{ \begin{array}{c} 1.69 \\ 1.71 \end{array} \right\}$ 17°	Kopp.
44		1.75	Deville and Caron. J. 10, 148. H. Wurtz. Am. Chem., Mar. 1870

NAME.	Spreible Crawidy.	AIPTHOROUS.
Zinc	RUMB	Brisson. P. des C.
ii-		Berzelius. See Bittger.
14. September 2000	8.9154	Karwan. Schw. J. 65, 294.
	4.989. m_ of 3	Playfair and Joule. M. C.S. 3. 67.
(i)	7.08 to 7.20	Bolley. J. 8, 387.
«·	- 4'34H) Lac	Schiff A. C. P. 107, 50.
14"		
((7.9T	Daniell.
K:	- 化别位	Wertheim. Mallet. D. J. 85, 378. [817.
(K-	- a.	Mallet. D. J. 85, 378. [817. Roberts amb Wrightson. Bei. 5.
a Ordinary	:	, <u> </u>
" Crystalline	T.ESAE	Kalischer. Ber. 14, 2750.
(Financia	6:5E mp of 3:	Playfair and Joule. M. C.S. 3. 76.
u. u.	6.48 Two methods	Roberts and Wrightson, Ann. (5).
the the	Gas (Iw) member	30. 181
80 W		· ·
" Solid	7.119.00 }	Quincke. P. A. 135, 642.
" Not presed	7.142.16°)	•
« Once "	- T. 155, 160 }	Spring. Ber. 16, 2724.
" Twice "	7.150. 16"	li de la companya de
Cadmium Cast		Stromever. Schw. J. 22, 365.
Hammered .		•
		Children See Bittger.
#	8.530 8.5335	Herapath. P. M. 64 (1824), 321. Karsten. Schw. J. 63, 394.
" Wire	8.6689	Bandrimont. J. P. C. 7, 278.
a Pare	8.540)	!
w	8.555	
Ki pi	8.557	Schröder. P. A. 107, 113.
" Commercial		
<i>t</i> ¢	8.655, 11°	Matthiessen. J. 13, 112
ric	\ 8.627, 0°)	Quincke. P. A. 135, 642.
Fined	8.394	Quinck 1. A. 100, 012
" Not pressed		
to Once #	8.667, 169	Spring. Ber. 16, 2724.
T WICE	-	‡
***********		Viscosini and Omedei Bai 11
	7.989, 318°, molten	Vicentini and Omodei. Bei. 11,
Mercury, Solid		Schulze.
H H	14.333,40° \	
64 64	15.745	Hällström. Gilb. Ann. 20, 403.
. 4	14.485, -60°	Biddle. P. M. 30, 153.
44 44	14.0, about	Kupffer and Cavallo.
" "	15.19	Joule. J. 16, 283.
	14.1932	Mallet. J. C. S. 34, 275.
	13.5681	Brisson. P. des C.
" "	13.575	Fahrenheit. See Böttger.
" "	. 13.550	Muschenbroek. " "
# #	_ 13.568, 15°.5	Crichton. P. M. 16, 48.
	13.613, 10°	Biddle. P. M. 30, 152.
" "	12.6078, 0° }	Hällström. Gilb. Ann. 20, 897.
" "	12.510, boiling j	•
" "	13,586	Scholz. See Böttger.
"	. 13.567 . 13.5686, 4° \	Kummer. " "
11 11	13.5886, 4° }	Kupffer. Ann. (2), 40, 285.
	<i>-⊱10.000, 20</i> ° j (• • • • • • • • • • • • • • • • • • • •

1	NAME.	Specific Gravity.	AUTHORITY.
Mercury.	Liquid	18.588597	Biot and Arago. Biot's "Traité de Physique."
66	44	18.5592	Karsten. Schw. J. 65, 894.
44	• •		
44	"	18.570, 10°—15° }	Regnault. P. A. 62, 50.
66			
**		18.59599	7 1 4 (0) 14 000
6.6 6.6		18.59602 00	Regnault. Ann. (3), 14, 236.
44	66	18.59578) 18.595, 0°	Kopp. J. 1, 445.
46	66	18.573, 15°	Holzmann. J. 13, 112.
61	"	13.608, 12°	Schiff.
48	"	13.584, 16°.6	Stewart. P. T. 1863, 430.
	"	13.5958, 0°	Volkmann. Ber. 14, 1708.
		1.566)	
41		1.584 }	Matthiessen. J. 8, 324.
44		1.584)	[126. Liés-Bodart and Jobin. J. 11,
		1.55 1.6 to 1.8	Liés-Bodart and Jobin. J. 11, Caron. J. 13, 119.
	a		•
14		2.504 }	Matthiessen. J. 8, 324.
44		2.4	Franz. J. P. C. 107, 253.
Barium		4.00, about	Clarke. Gilb. Ann. 55, 28.
4.4		8.75	Kern. C. N. 31, 243. [52, 63.
Boron.*	Cryst.	2.68	Wöhler and Deville. Ann. (8),
44	Al B	2.5845, 17°.2, m. of 2 2.618, 13°	Hamps A C D 199 95 and 06
	C ₂ A) ₃ B ₄₈	2.611, 20°	Hampe. A. C. P. 183, 85 and 96.
Aluminu	ım. Cast	2.50	
44	Hammered	2.67	Wöhler. J. 7, 327.
66		2.583, 4°	Mallet. P. T. 1880, 1025.
44		2.688	Barlow. J. C. S. April, 1883.
	Com'l wire	2.8067	A. P. Corbit. Communicated
	1011	2.8075 5.935, 23°)	W. Bishop. \(\) by R. B. Warder.
Gallium		5.956, 24°.45	Boisbaudran. C. R. 83, 611.
Indium.	In grains		
114		7.110 7.147 20°.4}	Reich and Richter. J. 17, 241.
""	Laminæ	7.277)	•
		7.362, 15°	Winkler. J. 18, 233.
		7.421, 16°.8	" J. 20, 262.
Lanthar	num	$\left\{ egin{array}{c} 6.049 \ 6.163 \end{array} ight\}$ $\left\{ \left[\left[-1.049 \ 0.0000000000000000000000000000000000$	Hillebrand and Norton. P. A.
• •		6.628)	156, 473. Hillebrand and Norton. P. A.
	After fusion	6.728 }{	156, 471.
	um	6.544	Hillebrand and Norton. P. A.
			156, 474.
	m	11.862	Lamy. J. 15, 180.
44	Wire	11.808 } 110	De la Rive. J. 16, 248.
	Cast	11.858	
			Werther. J. 17, 247.
"	Cast	11.81)	•
"	Pressed	11.88 }	Crookes. J. C. S. 1864, 112.

^{*} According to Hampe, the so-called " crystallized boron" is never pure. Its composition is shown in the formulæ given above.

	NAME.		SPECIFIC GRAVITT.	AUTHORITY.
Carbon.	Diamond		3.550	Brisson. P. des C.
**	"		3.492	Grailich. Bull. Geel. (2), 13, 542
44	" -		3.520	Mohs. Min. 2, 306.
46			3.334	Shepard.
"			3.5 3.5	Berzelius. A. C. P. 49, 247.
44	" -		3.55	Pelouze. Watts' Dict.
44	-		3.5295	
"			3.51432, 18°.1	Schafarik. P. A. 139, 188. Schrötter. J. 24, 257.
"	46		2 5142	Schrouf I 94 957
44	"		3 599 159	Schrauf. J. 24, 257. Dufrenoy. J. 24, 258.
"	"		3 51835 m of 5	Reumbenez J C S 39 840
64	Granhite		2 144	Baumhauer. J. C. S. 32, 849. Breithaupt. See Böttger.
44	"		2.229	Breithaupt. See Bottger. Kenngott. S. W. A. 13, 469.
46	44		2.273	Regnault. Gm. H.
44	46		2.14	Fuchs. J. P. C. 7, 353.
44	"		2.5	Berzelius. A. C. P. 49, 247.
44	"		2.3285	Berzelius. A. C. P. 49, 247. Karsten. Schw. J. 65, 394.
44	"		2.3162	Poggendorff. P. A. Erganz. Bd.
				. 1848, 363,
44	"		2.25 Purified	D-3: T 10 00
64	"		2.26 } Purined	Brodie. J. 12, 68.
"	"		9 105)	T
**	46		2.585	Mené.* J. 20, 972.
14			1.802	Tama T 9 90**
11	"		1.802 20°, purified	10we. J. 6, 291.
44	Gas carbon.		2.35	Graham.
"	"		2.08	Baudrimont.
44	"		1.885	Mené. J. 20, 972.
"	"		1.723, 1.821, 1.982	From different parts of the retort Meyn. J. P. C. 26, 482.
"	_ " ,	!	2.056, 2556, 18° } \[\]	Meyn. J. P. C. 26, 482.
"	Sugar chare	OMI	1.81	Monier. Bull. Heb. 14, 18.
"	a, " ,		1.76	
	. Charconi		9.10 from alaskal	Colquhoun.
"			2.10 from alcohol	Griffith. " " [4, 241]
			1.84	Playfair. Proc. Roy. Soc. Edin
"	Lump black		1.78	Randeimont
44	Taring-place		1.723 from kerosene)	Daddiimont.
**	"		1.780 from coal-tar	
			naphtha }	Hallock. Bull. 42, U. S. G. S.
"	46		1.752 from natural gas	
**	.,		1.778 from dead oil	
Silicon.	Graphitoida		2.49, 10°	Wöhler. J. 9, 347.
"	***	1	2 402	Harmening. P. A. 97, 487.
"	"		2.004)	9 ,
**	"		2.004 2.194	Winkler. J. 17, 208, 209.
41	"		2.197	, ===, ===
. "	"		2.337	Miller. Proc. Roy. Soc. Edin.
"]	Adamantine .		2.48, m. of 6	4, 241. Playfair. Proc. Roy. Soc. Edin. 4, 241.
Germani	um		5.469, 20°.4	Winkler. J. P. C. (2), 84, 201
Zirconiu	m		4.15	Troost. J. 18, 183.
Tin			7.291	Brisson. P. des C.

The extremes of 29 determinations made on specimens from different localities.

Name.	Specific Gravity.	AUTHORITY.
Tin	7.2914	Guyton. Nich. J. (1), 1, 110.
4	7.278, 15°.5	Crichton. P. M. 16, 48.
44	7.2911, 170	Kupffer. Ann. (2), 40, 285.
u	7.285	(-),,
"	7.600 }	Herapath. P. M. 64, 321.
"	7.5565)	1_
"	7.2905	Karsten. Schw. J. 65, 394.
" Wire	7.8895	Baudrimont. J. P. C. 7, 278.
" Ceretallizad.	7.806, m. of 4	Playfair and Joule. M. C. S. 3, 68.
" Crystallized " Cast	7.178 7.293	W. H. Miller. P. M. (3), 22, 263.
"	7.8048	Kopp. A. C. P. 93, 129.
" Cooled slowly	7.378)	St. Claire Deville. P. M. (4), 11,
" " quickly	7.289 }	144.
"	7.294, 13°	Matthiessen. J. 13, 112.
"	7.291	Mallet. D. J. 85, 378.
" Reduced by H. from \	17.148 γ .	
Sn Cl ₂ .	7.166	Rammelsberg. Ber. 3, 725.
" Precipitated	7.195	
" Remelted	7.310 J	Baharta and Wrightson Bill.
"	7.5	Roberts and Wrightson. Bei. 5,
"	7.267, 0° 7.25	Quincke. P. A. 185, 642.
	5.809, 5.781, 19°;	E. Wiedemann. P. A. (2), 20, 232.
" Allotropic {	5.802, 19.5	
" Allotropic convert-	, 7.280, 15°	
ed by heating.	7.304, 19°	Mana lata Sahamtal I D C (0)
	6.020, 6.002, 19° 1	Two lots. Schertel. J. P. C. (2),
" Allotropic{	5.930, 12°.5	19, 822.
" Allotropic after re-)	7.24 —7.27	
conversion.))	
" Rhombic cryst	$\{6.52\}$	Trechmann. Z. K. M. 5, 625.
	6.56 \(\)	·
" Ordinary	6.175 }	Richards. Tr. Amer. Inst. Min. Eng. 11, 235.
" Not pressed	7.286, 10°	13 ng. 11, 255.
" Once "	7.292, 10°.25 }	Spring. Ber. 16, 2724.
" Twice "	7.296, 11°	
"	7.3006, 0°	•
"	7.1835, 226°, solid }	Vicentini and Omodei. Bei. 11,
"	6.988, 226°, molten	769.
" Fused	6.934, m. of 3	Playfair and Joule. M. C. S. 3, 75.
44 44	$\left\{ \begin{array}{c} 7.025 \\ 6.974 \end{array} \right\}$ Two methods $\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	Roberts and Wrightson. Ann.
ii ii	7.144	(5), 30, 181. Quineke P A 135 649
	11.445	Quincke. P. A. 135, 642. Muschenbroek. See Böttger.
Lead	11.352	Brisson. P. des C.
"	11.207	Böckmann. See Böttger.
"	11.1603	Guyton. Ann. 21, 3.
	11.3303 •	Kupffer. Ann. (2), 40, 292.
"	11.346, 15°.5	Crichton. P. M. 16, 48.
" Wire	11.3775	Baudrimont. J. P. C. 7, 278.
"	11.352	Herapath. P. M. 64, 321.
"	11.3888	Karsten. Schw. J. 65, 394.
"	11.231, m. of 4	Playfair and Joule. M. C. S. 3, 68.
"	11.370, 0°	Reich. J. P. C. 78, 328.
"	11.3525, 18° }	•
··	11.000, 1	Streng. J. 13, 187.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Lead	11.861, 70° 11.254]	Mallet. A. J. S. (3), 8, 212.
fusion. " Cooled quickly from fusion. " Electrolytic " Electrolytic fused.	11.368	St. Claire Deville. P. M. (4), 11, 144.
" Electrolytic, fused and cooled quickly.	11.876, 14° 11.844, 4° \ Kytromes	Holzmann. J. 13, 112. Schweitzer. Am. Chem. 7, 174.
" Not pressed	11.877, 4°) 11.835, 0° 11.4 11.850, 14°)	Quincke. P. A. 97, 396. [817. Roberts and Wrightson. Bei. 5,
" Once "	11.501, 14° }	Spring. Ber. 16, 2724. Vicentini and Omodei. Bei. 11,769.
" Molten	10.645, 825°, molten) 10.509, m. of 8 11.07	Playfair and Joule. M. C. S. 3, 74. Mailet. A. J. S. (3), 8, 212. Roberts and Wrightson. Ann.
" " Thorium*	10.87 Two methods { 10.952	(5), 30, 181. Quincke. P. A. 135, 642. Chydenius. J. 16, 194.
" Crystallized " Non-crystallized_ Nitrogen. Liquefled	11.230 10.968{ .41 to .44,—23° \	Nilson. Ber. 16, 160. Compare earlier paper, Ber. 15, 2544. Cailletet and Hautefeuille. C. R.
11 11	.37 to .38, 0° .4552, —146°.6 .5842, —153°.7 .88, —193°	92, 1086. Wroblevsky. C. R. 102, 1010.
11 11		Olszewski. P. A. (2), 81, 78.
Phosphorus. Common	.905	Berzelius. See Böttger. Böttger. Watts' Dict. Playfair and Joule. M. C. S. 8, 69.
" " " " " " "	1.826 1.840 } 10°	Schrötter. J. 1, 336. Kopp. A. C. P. 93, 129.
" " "	1.8265 { 10	Gladstone and Dale. J. 12, 78. Pisati and De Franchis. Ber. 8, 70
" Red	1.80681, 44° J 1.964, 10°	Schrötter. J. 1, 386. Schrötter. J. 8, 262.
" Cryst		Two preparations. Brodie. J. 5, Hittorf. J. 18, 130.

^{*} Nilson's determinations are the only ones having any present value. Chydenius' work has merely historical interest.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Phosphorus. Red. Cryst.	2.34, 0°	
"	2.148,0°, prep. at 265° 2.19, 0° " 860°	Troost and Hautefeuille. Ber. 7, 482.
" Molten	2.293, 0° " 500° J 1.744 1.88, 45°	Playfair and Joule. M. C. S. 3, 76.
" "	1.768 1.74924, 40°)	Schrötter. J. 1, 336. Gladstone and Dale. J. 12, 73.
11 46	1.6949, 100° 1.6027, 200°	Boils at 278°.3. Pisati and De Franchis. Ber. 8, 70.
46	1.52867, 280° J 1.4850, at boiling point_	Ramsay and Masson. Ber 13, 2147.
'anadium	1.888 5.5, 15° 5.866 \ 150	Quincke. P. A. 135, 642. Roscoe. P. T. 1869, 679.
"	5.875 }	Setterberg. Of. Ak. St. 1882, 10,18.
rsenic	5.768 5.766	Brisson. P. des C. Mohs. See Böttger.
"	5.7688 5.884 5.700)	Turner.
"	5.959 } 5.672	Guibourt. B. J. 7, 128. Herapath. P. M. 64, 321.
" Native	5.6281 5.736	Karsten. Schw. J. 65, 394. Breithaupt. J. P. C. 16, 475.
16 46	5.722 	Breithaupt. J. P. C. 11, 151.
"	5.230	Playfair and Joule. M. C.S. 3, 72. Ludwig. J. 12, 183.
"	5.726 \ 5.728 \} 14°	Bettendorff. J. 20, 253.
" After fusion	5.709, 19° 4.710 \ 14°	Mallet. B. S. C. 18, 438.
11 11	4.716 \ 14° 4.6 to 4.7	Bettendorff. J. 20, 253. Engel. C. R. 96, 498.
	4.91 3.7002 to 3.7100, 15°	Spring. Ber. 16, 326. Rückoldt. A. C. P. 240, 215.
Antimony	6.702 6.712	Brisson. P. des C. Hatchett. See Böttger.
11	6.733 6.852	Böckmann. " "
	6.860	Bergmann. " "
	6.646 6.6101	Mohs. " " Breithaupt. " "
	6.7006 6.715	Karsten. Schw. J. 65, 394. Marchand and Scheerer. J. P. C.
"	6.705, 3°.75, m. of 3	Dexter. P. A. 100, 567.
"	6.7102 } Extremes)	•
"	6.697	Matthiessen. J. 13, 112. Schröder. P. A. 107, 113.
	6.7022, m. of 6 6.6957) Francis	Cooke. Proc. Amer. Acad. 1877
"	6.7070 } Extremes)	
" Not pressed	6.620, 0° 6.675, 15°.5)	Quincke. P. A. 135, 642.
" Once "	6.733, 15° }	Spring. Ber. 16, 2724.

Name.	Specific Gravity.	Аптновиту.
Antimony. Amorphous	5.74 }	Gore. J. 13, 172.
" Molten	6.646 \	Playfair and Joule. M. C. S. 3, 77.
, " . "	6.529	
DiAb	6.528	Quincke. P. A. 135, 642.
Bismuth	9.67	Muschenbroek. See Böttger. Brisson. P. des C.
66	9.800	Brisson. P. des C. Leonhard. See Böttger.
"	9.8827	Thénard. " "
"	9.8827	Berzelius.
"	9.831	Herapath. P. M. 64, 321.
	9.6542	Karsten. Schw. J. 65, 394.
	9.799, 19°	Washandand St. T. D. C.
Ommercial	$\left\{ egin{array}{ll} 9.783 & \\ 9.556 & \\ \end{array} ight\}$	Marchand and Scheerer. J. P. C.
" Compressed " Crystallized	9.935)	27, 193.
" Quickly cooled	9.677 }	C. St. Claire Deville. J. 8, 15.
from fusion.		
"	9.823, 120	Holzmann. J. 13, 112.
	9.713, m. of 3	Schröder. P. A. 107, 113.
. "	9.82	Roberts and Wrightson. Bei. 5,
44	9.819, 0°	817.
" Not pressed	9.804, 13°.5)	Quincke. P. A. 135, 642.
" Once "	9.856, 15°	Spring. Ber. 16, 2724.
" Twice "	9.863, 15°	Spring. 2011 10, 2721.
"	9.787, 0°.	
"	9.673, 2 70°.9 s. }	Vicentini and Omodei. Bei. 11,
" Molton	10.004, 270°.9 l.)	769.
" Molten	9.798	Playfair and Joule. M. C. S. 3, 75.
"	10.089 }	Roberts and Wrightson. By two
" "	10.055 } {	methods. Nature, 22, 448.
" " " — " — — — — — — — — — — — — — — —	9.709	Quincke. P. A. 135, 642.
Columbium. (Niobium)		Marignac. J. 21, 214.
Tantalum	7.06, 15°.5 10.08 to 10.78	Roscoe. C. N. 37, 26. Rose. J. 9, 366.
Oxygen. Liquified	.9787	By two methods. Pictet. Ann.
Ozygon, zaqumet	.9883, m. of 4}	(5), 13, 193.
" "	.8402	Pictet, recalculated by Offret.
" "	.8655 }	Ann. (5), 19, 271.
" "	.58, .65, .70, 0° \	Cailletet and Hautefeuille. C. R.
<i>u u</i>	.84, .88, .89,—23° }	92, 1086.
" "	.895 .899 —13 € °, m. of 12	Wroblevsky. C. R. 97, 166. Wroblevsky. P. A. (2), 20, 867.
	.7555 —129°.57)	
	.806 —134°.43 }	Olszewski. Ber. 17, ref. 198.
" "	.877 —139°.3	
" "{	$\begin{pmatrix} 1.110 \\ to \\ 1.187 \end{pmatrix}$ -181°.4,boil- ing point.	Olszewski. P. A. (2), 31, 78.
" "	.6,—118° }	Wroblevsky. C. R. 102, 1010.
Sulphus Poll	1.24 —200° }	Brisson. P. des C.
Sulphur. Roll	1.0001	i Diason. F. des C.

[•] Probably the hydride, Cb H.

	NAME.	Specific Gravity.	AUTHORITY.
Sulphur.	Roll	1.868	Böckmann.
- 44	Flowers	2.086	Gehler.
"	Cryst.	1.898	Fontenelle. Quoted by
44	From solution	1.927	Dischoi. Marchand
"	Cryst.	1.989	Breithaupt. and Scheerer.
"	Roll	1.9777 }	Thomson. J. P. C. 24,
66		2.0000 }	190
44	Prismatic	2.072	prons.
44	Native	2.027	Dumas and Roget. .Osann.
61	Native	2.05001)	
66	From fusion	1.9889 }	Karsten. Schw. J. 65, 394.
41	Prismatic	1.982	
**	Native	2.066	M 1 1 101 TD 0
44	From solution	2.0518	Marchand and Scheerer. J. P. C.
"	Soft	1.957	24, 129.
44	Native		Kopp. A. C. P. 93, 129.
"	Soft	ֈ.919 ๅ	
64	"	1.928	
44	Prismatic	1.958 }	C. St. Claire Deville. J. 1, 365.
44	Native	2.070	,
**	From solution		
£1.	Crystallized	2.010	Dlanfringed Louis M C C 0 70
46	Flowers	1.913 }	Playfair and Joule. M. C. S. 3,79.
"	Waxy Native, cryst	1.921) 2.0757	
44	Soft	1.87 to 1.9319 }	Brame. C. R. 35, 748.
44	Amorphous.	1.87	
	Yellow.	1.01	35
46	Amorphous.	1.91 —1.93 🕆	Müller. J. 19, 118.
	Brown.	j	
66	Crystallized	2.0748, 0°	Pisati. Ber. 7, 361.
* *	Insoluble	1.9556, 0°)	i i
4.4	"	1.9496, 20°	
44	"	1.9041, 40°	Spring. Bei. 5, 853.
"		1.9438, 60°	Spring. Bon of coo.
4.6	"	1.9559, 80°	
**	" — " — " — " — " — " — " — " — " — " — " — "	1.9643, 100° J	
46	Cryst. from C S ₂ .	2.0477, 0°	
46		2.0370, 20°	
44	" "	2.0283, 40° 2.0182, 60°	
"		2.0014, 80°	
44		1.9756, 100°	
44	From Sicily	2.0788, 0° } }	Spring. Bei. 5, 854. From Bul-
	"	2.0688, 20°	letin de l'Acad. Roy. de Belg.
44	"	2.0583, 40°	(3), 2, 83–110, 1881.
44	"	2.0479, 60°	
64		2.0373, 80°	
64	"	2.0220, 100° j	•
4.6	Lamellæ		Maquenne. Ber. 17, ref. 199.
"	Sicilian	2.06665, 16°.75	Schrauf. Z. K. M. 12, 325.
4.6	Molten	1.801 \ Extremes of 5	Playfair and Joule. M. C. S. 3,76.
41	"	1.815 \ determinat'ns \	1 mg ton tille boule. Br. O. D. 0, 10.
66	"	1.4794, m. of 5	At the boiling point, 446°. Ram-
"	46	$\left\{\begin{array}{c} 1.4578 \\ 1.5130 \end{array}\right\}$ Extremes $\left\{\begin{array}{c} \left\{\begin{array}{c} 1.4578 \\ 1.5130 \end{array}\right\}\right\}$	say. J. C. S. 35, 471.
"	"	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l _ '
Selenium		4.3 to 4.32	Berzelius. See Böttger.

	Name.	Specific Gravity.	AUTHORITY.
Selenium		4.810	Boullay. See Böttger.
"		4.808, 15°	Hittorf. J. 4, 819.
"	Cryst. fr. fusion_	4.805	
"		4.796	Schaffgotsch. J. 6, 829.
"	Amorphous	4.276 } 200	gg
"	:	4.286 } 20	
"	Precip. Red	4.275	
**	Precip. after	4.250	Schaffgotsch. J. 6, 829.
	heat'g to 50°.	4.297	
"	Crystallized	4.460)	
"	"	4.509 }	
e.	"	4.700)	Mitscherlich. J. 8, 814.
"	" from so-	4.760	2. 0, 014.
	lution.	150	
"		4.788	Noumann B A 100 100
"	Crystallized	4.406, 21°	Neumann. P. A. 126, 138.
"	.Black	$\left\{ egin{array}{l} 4.80 \\ 4.81 \end{array} \right\}$,
66	Precip. Red	4.26)	Rathke. J. P. C. 108, 235.
**	"	4.28	
"	Gray	4.4951	
**	" Granular _	4.514	
**	Laminated,	4.77	
	from alkaline {	4.79	İ
	selenides. (4.86	
"	Cryst. from CS2.	4.418 [Rammelsberg. P. A. 152, 154
"	"" " " <u>-</u>	4.54	1. A. 102, 104
"	. " ," "	4.59	
	Amorphous		
44	Melted	4.84	
16		1777	
44	Compressed		
46	"		i
**		4.7699, 40°	
"		4.7526, 60°	
44	"	4.7351, 80°	į.
**	"	4.7167, 100° !	Spring Doi 5 054 From Do
"	Uncompressed _	4.7312, 0°) [Spring. Bei. 5, 854. From. Bu
"			de l'Acad. Roy. de Belg. (2, 88-110, 1881.
46		4.7010, 40°	2, 00-110, 1001.
"		4.6826, 60°	
"			
"	Fused		Ouimaka ID A 195 049
	mm		Quincke. P. A. 185, 642. Klaproth. Ann. 25, 278.
16		6.1379	Magnus. See Böttger.
"		6.2445, m. of 5	Berzelius. P. A. 28, 892.
46		6.180	Löwe. J. P. C. 60, 163.
"		6,848	Reichenstein. See Böttger.
11	Compressed	6.2549, 0°)	
**		6.2419, 20°	
"	"	. 6.2294, 40° {	Spring Roi 5 954 Faces D.
**	"	6.2170, 600	Spring. Bei. 5, 854. From Bu de l'Acad. Roy. de Belg. (
"		6.2080, 80°	2, 88–110, 1881.
"	"	_ 6.1891, 100°	-, 00-110, 1001.

	Name.	Specific Gravity.	AUTHORITY.	
Tallmain	m Uncompassed	6 9999 A9	•	
1enuriu	m. Uncompressed.	6.2822, 0° 6.2194, 20°		
44		6.2052, 40°		
16	"	6.1500, 60°	Spring. Bei. 5, 854. From Bull.	
44	"	6.1366, 80°	de l'Acad. Roy. de Belg. (3),	
64	"	6.1640, 100°	2, 88–110, 1881.	
44		6.204	Visional Mars (0) if (1)	
• 6		6.215 }	Klein and Morel. Ann. (6), 5, 61.	
Chromiu		7.8	Bunsen. Watts' Dict.	
44	Crystallized	6.81, 25°	Wöhler. J. 12, 169.	
	Red. by K Cy_	6.20	Loughlin. J. 21, 220.	
Molyboo	enum	8.490	Duck-1- Wish I 00 101	
		8.615 } 8.636 }	Bucholz. Nich. J. 20, 121.	
"		8.60	Debray. J. 11, 157.	
"	Red. by K Cy_	8.56	Loughlin. J. 21, 220.	
Tunester	n	17.60	D'Elhuyart. See Böttger.	
.,		17.22	Allan and Aiken. " "	
44		17.4	Bucholz. Schw. J. 8, 1.	
44		16.54)	,	
44		17.50 }	Uslar. J. 8, 372.	
"		18.26)		
"	Reduced by H	17.1 to 17.8	Bernoulli. J. 18, 152.	
"	. 0	17.9 to 18.12 }		
44		$\left\{ egin{array}{ll} 16.6 \\ 17.2 \end{array} ight\}$	Proposed by three motheds 7.44	
"		18.447, 170	Prepared by three methods. Zett- now. J. 20, 218.	
		19.261, 120	now. J. 20, 218. Roscoe. C. N. 25, 61.	
"		18.25)		
"		18.77 }	Waddell. A. C. J. 8, 287.	
Uranium	1	18.40	Peligot. J. 9, 380.	
44		18.33	Peligot. A. C. P. 149, 128.	
4.4		18.685, 4°, m. of 3	Zimmermann. Ber. 15, 851.	
Chlorine	. Liquefied	1.33, 15°.5	Faraday. P. T. 1823, 164.	
		2.966	Balard. Ann. (2), 32, 337.	
44		2.98 \ 15°	Löwig. See Böttger.	
		4.99		
		3.18718, 0° 3.18828, 0° \	Pierre. Ann. (3), 20, 5.	
"		2.98218, 59°.27 }	Thorpe. J. C. S. 37, 172.	
4.		2.9483, m. of 4		
44		2 0471	Taken at the boiling point. Ram-	
4.6		2.9503 \ Extremes)	say. Ber. 13, 2146.	
4.6		3.1875, 0°	Van der Plaats. J. C. S. 50,	
			849.	
Iodine		4.948	Gay Lussac. Ann. 91, 5.	
	olid	4.9178, 40°.8		
• • •		4.886, 60°		
"	"	4.857, 79°.6		
	"	4.841, 89°.8 4.825, 107°		
	olten	4.004, 107° } }	Billet. J. 8, 46.	
	"	3.988, 111°.7	2	
• • • • • • • • • • • • • • • • • • • •	"	3.944, 124°.3		
	"	3.918, 133°.5		
**	"	3.866, 151°		
4.6	"	3.796, 170°	[4, 241.	
	olid	5.030	Playfair. Proc. Roy. Soc. Édin.	

Name.	SPECIFIC GRAVITY.	AUTHORITY.
Manganese	6.861 շ	Bergmann.
ű	7.10 }	
"	8.03	Bachmann. See Böttger.
"	8.018	John. P. M. 2, 176.
"	7.138 7.206 \	Brunner. J. 10, 202.
Iron	7.788	Brisson. P. des C.
" Wrought	7.790	Karsten. Schw. J. 65, 394.
	7.6305]	•
" Wire in several dif-	7.6000	
ferent conditions.	7.7169 } 7.7812	Baudrimont. J. P. C. 7, 268.
" Hammered	7.7433	
" Bar	7.4839	Bröling. See Percy's Metallurgy.
"	7.8707)	Berzelius. " " "
"	7.865 }	Berzenus. " "
" Reduced by zinc {	7.50	Poumaréde. J. 2, 281.
vapor. (7.84 \}	
" Reduced by C" " Electrolytic	8.1393, 15°.5	Playfair and Joule. M. C. S. 3,72. Smith. See Percy's Metallurgy.
" Fused in H., not	7.880, 16°)	Smith. See I ercy's metallurgy.
forged.	, 20	
" Fused in H., forged.	7.868, 16°	Caron. C. R. 70, 1263.
" Fused in H., wire	7.847, 16°	Caron. C. R. 70, 1268.
" Fused in crucible	7.833, 16°	
" Good commercial " Reduced by H	7.852, 16° J	
" Reduced by II	7.998 8.007	Schiff.
"	6.08	Stahlschmidt. J. 18, 255.
" Molten	6.88	Roberts and Wrightson. Bei. 5,
		[6, 145.
" Molten steel	8.05	Petruschewsky and Alexejeff. Bei.
Nickel	7.807 8.279, cast)	Brisson. P. des C.
"	8.666, forged }	Richter. Ann. 53, 164.
" Cast	0 2003	// A 70 100
" Forged	8.820	Tupputi. Ann. 78, 138.
"	8.932, 12°.5	Tourte. Ann. 71, 108.
. "	8.477 8.713 }	Baumgartner. See Böttger.
46	8.637	Brunner. " "
"	9.000	Bergmann. " "
" Reduced by H	7.861	l "
" "	7.808 }	Playfair and Joule. M. C.S. 3, 71.
" Wire	8.88, 40	Arndtsen.
" Reduced by H	$\left\{ egin{array}{l} 8.975 \\ 9.261 \end{array} \right\}$	Rammelsberg. J. 2, 282.
"	8.900	Schröder. P. A. 107, 113.
Cobalt	8.710	Lampadius. Erd. J. (1), 5, 890.
"	8.485	Brunner. See Böttger.
"	9.152	Gehler. " "
"	8.500	Mitscherlich. " "
"	8.5131	
"	8.558	Hauy and Tassaert. See Böttger. T. H. Henry. M. C. S. 3, 59.
" Reduced by H		1
" "	8.260	Playfair and Joule. M. C. S. 3, 71.
"	8.957, m. of 5	Rammelsberg. J. 2, 282.

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Copp	er	8.895	Hatchett. P. T. 1803, 88.
	Rolled	8.878)	Brisson, P. des C.
44	Cast	8.788 }	Drisson. F. des C.
44	"	8.83	
	Drawn	8.9463 }	Berzelius. See Böttger.
16	Hammered	8.9587)	
44		8.78	Kupffer. Ann. (2), 25, 856.
46		8.900	Herapath. P. M. 64, 821.
**		8.721	Karsten. Schw. J. 65. 394.
4.	Wire in several	8.6225	
	different con-	8.3912	
	ditions.	8.7059	Baudrimont. J. P. C. 7, 287.
	. (8.8787	- Judanimonii 0, 1, 0, 1, 201.
44	Hammered	8.8893	
	Cast, slowly cooled		
46	Crystallized	8.940	
"	Cast	8.921	
44	·	8.939	
••	Various sorts of	8.949	[27, 19
	wire.	8.930 }	Marchand and Scheerer. J. P.
	ا ا	8.951	1
	Sheet	8.952	
	Pressed	I I	
"	Electrolytic		36-11-4 D T 07 070
"	Dinala dinidad	8.667	Mallet. D. J. 85, 378.
**	Finely divided	8.428 8.483	ĺ
46		8.360	
44	Electrolytic		Playfair and Joule. M. C. S. 3, 5
4.6	Fiedfolytic	8.941	,
: 6	"	8.934	
	Finely divided	8 207	
44	incry divided 111	8.41613 } 40	Playfair and Joule. J.C.S.1,12
	Hammered		
44	"		
44	Rolled		0.37 111 25 1
44	"		O'Neill. Memoirs Mancheste
	Annealed	8.884	Philosophical Society, (3),
4.4	"		243.
		8.902, 12°	Schiff.
	Native	8.838′	Whitney. J. 12, 769.
44		8.952 լ	_ '
44		8.958	Schröder. P. A. 107, 113.
4.6	Electrolytic, cast	8.916)	
44	"	8.958 [Dick. P. M. (4), 11, 409.
4.6	" wire_	8.853	Dick. 1. M. (4), 11, 400.
: 1		8.733]	
• 6	Plate	8.902, 0° 8.945, 0° (in vacuo) }	Quincke. P. A. 97, 396.
: 1		8.945, 0° (in vacuo) \	Hampe. C. C. 6, 379.
			[017
11		8.8	Roberts and Wrightson. Bei. 6
**	•	8.0 to 8.2	Schutzenberger. J. Ph. Ch. (4) 28, 366.
44		7.272	Playfair and Joule. M. C. S. 3,77
	"	8.217	Roberts and Wrightson. Bei. ö
	1		817.
lver		10.472	Brisson. P. des C.
46		10,362, 10°	Biddle. P. M. 30, 152.

-	Trans.	÷penipra: In layrei	<u> Wordshortyr</u>
alasta.	e determine	M48:	THORSON:
••		, um i pa	ALLESSEEL SOUND IN 1854
	Jane down o mount	M MINT	MINISTERIE MODIFIES AND THE ASSET.
· ·	Senter tune village.		
	fannumer.	\$K.14976	
	Beltiklat	HSMACH:	Bandermount I I I I T 251
•	Iranutuset	han22:	
••	Trye of aminus.	h and	
r	Vipp	(49年)	
^		0.144	Breetingman Z I. II. III.
	****		Turmeren A E L 42. III
•		17 - 12	Panyharramic Daniel. M. C.S.L. St.
	Limit	Al That	••
,	Pomert.	N int	
4	Pretty symmetry		
	is result browners, co	0.4184	G Boss P. A. T. I.
	الاسترمرميمردة الاستسامي	11. 3395 n. 19" 12	
		11. 2227 . TL . 17 6	
		11. 229%, n. n. 1	
		11, 14994 120	Hozman I B. II
		11.77	Christomanos A I. III
•	kaler tenality it	mae	James C. X. 57. B.
	VIPTM:		
•		11.4E #	Zmmerman. Ber. II. 1998.
•		10:07	Amberts. C. N. II. 1945.
•			duiness. I L Inc. 142.
	Litter	1.1111	Pinyhirani Josie, R. C.S. L. 78.
•	•	1, 241.	71
•		1.4912	Roberts C. N. D. Dall.
:	* ***********	Late Two neglines	Libers and Wrightson. Arm.
i i		J. M.	. Quineke. P. A. 185, 1962. . Brisson. P. 188 C
South		31: 154	Became Pine C
311112	forminated)	11: 705	Tilling Character These
	MINIMUTANA	21:Eac 21:4	Ellin. Quinai by Lines. Lewis.
. 2	Tesert	21: JEBN 27" J	7.
	han in conclus month .	71-2000 775 J	
	int unti presenti ,	28:2980. 27 Jun. 1277	4 G. Ross. P. A. 78, 1.
	desamplicatifier.	262886.375示) 五本	1 G. Ross. P. A. 75, 1.
	mily propared	H.RMM. IT D., weren	i
	"Thus uliable be suff."	11:4140	. G. Bons. P. A. 75, 408.
•		11: Mai. 18	Holomon. J. Jr. 172. Holomon. J. Jr. 172. Libers and Kigg. J. C. S. (2), 12. 208. Quinois. P. A. 185, 662.
• .	Settime willing.	21:2045	Liders and Rigg. J. C. S. (2),
•	men muerk	The Manager	12. 208.
. ` 1	Lutten	17.400	Quineka. P. A. IRA 642.
.inthe	num	11.01	Deville and Delmy. J. 12, 234.
,		25, 442, 45	Deville and Delout. C. R. 81,928.
		17.5	The tile and Indust. C. S. S. SC.
.5 310033	ш	11.9	. Writistem. P. T. 1984, 436. Climit. Schw. J. 48, \$16.
		11 4	_ Hire. A. J. S. (2), 2, 963.
		79 1	Deville and Debray. J. 12, 240.
م الم	ii km:		
		11.4.	Weilheiten. See Bictger.
		19 144	Lower
		11.662	Lampedius Watts Dict.

Name.	SPECIFIC GRAVITY.	AUTHORITY.		
Palladium	11.8	Vauquelin. Ann. 88, 167.		
"	11.041, 18°	Cloud. Schw. J. 1, 862.		
	_ 10.928	Breithaupt. See Böttger.		
"	_ 11.628	Benneke and Reinecker. See Böttger.		
"	_ 11.80 \	Cock. M. C. S. 1, 161.		
" Hammered	_ 11.80 }	'		
"	_ 11.752	Breithaupt. J. P. C. 11, 151.		
"	11.4, 22°.5 12.0	Deville and Debray. J. 12, 287.		
		Troost and Hautefeuille. C. R. 78, 970.		
"	_ 12.104	Lisenko. Ber. 5, 29.		
" Molten	- 10.8	Quincke. P. A. 135, 642.		
Osmium	_ 21.40	Deville and Debray. J. 12, 282.		
"	_ 22.477	Deville and Debray. C. R. 82, 1076.		
Iridium. Porous globule		Children. See Böttger.		
"	$-\frac{21.78}{21.00}$	Eckfeldt and Boyé, for Hare. A.		
	21.83	J. S. (2), 865.		
" Black	_ 18.6088	G. Rose. P. A. 75, 408.		
"	_ 21.15 _ 22.421, 17°.5	Deville and Debray. J. 12, 242.		
	•	Deville and Debray. P. M. (4), 50, 561.		
	_ 22.38	Matthey. C. N. 40, 240.		
Platinum	$\begin{bmatrix} 20.85 \\ 20.98 \end{bmatrix}$	D 1 0 4 1 1 25 4 1		
"		Borda. Quoted by Marchand.		
		J. P. C. 83, 885.		
" Cast	- 19.5 - 20.8 }	Brisson. P. des C.		
" Wire		Drisson. 1. des C.		
((((- 21.7 - 21.7	Klaproth. Quoted by Marchand.		
44	21.061	Sickingen. " " "		
"	21.45	Berzelius. " " "		
"	21 47)	Berthier. " " "		
"		1		
" Cast	_ 17.7	Prechtl. " " "		
"		Faraday. " " "		
" Hammered		E. D. Člarke. " " "		
" Spongy	21.47	I nomson.		
"		Scholz. See Böttger. Meissner. ""		
" Wire		HEGISSHOF.		
" WILE	1 P			
"	21.58	Wollaston. P. A. 16, 158.		
" Hammered	01.05	1		
" Spongy				
" " "	_ 15.780 }	Liebig. P. A. 17, 101.		
" "				
" Black	17.894	Scholz. See Böttger.		
"		Marchand. J. P. C. 83, 885.		
"	- 21.0002)	1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
" Hammered		II A I S (0) 0 007		
44 44		Hare. A. J. S. (2), 2, 865.		
· · · · · · · · · · · · · · · · · · ·				
" Spongy				
" Spongy	20.9815 20.7782	Rose. P. A. 75, 408.		

Name.	Specific Gravity.	Аптновіту.		
Platinum. Precip. black	22.0345 26.1418, 15°.7 ? } 17.766 21.169 21.243 } 21.15 21.15 21.504, 17°.6 18.915	Rose. P. A. 75, 403. Playfair and Joule. M. C. S. 3, 57. Deville and Caron. J. 10, 259. Deville and Debray. J. 12, 240. Deville and Debray. P. M. (4), 50, 560. Quincke. P. A. 135, 642.		

II. INORGANIC FLUORIDES.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.	
Hydrogen fluoride or hydrofluoric acid, liquid.	H F		Davy. P. T. 1813, 263.	
" " "	44 44	.9879, 12°.7 .9885, 13°.6 1.036, 15°.5	Gore. P. T. 1869, 173.	
Lithium fluoride	"	$\left\{ \begin{array}{c} 2.608 \\ 2.612 \end{array} \right\}$	Schröder. Dm. 1878.	
Sodium fluoride	Na F	2.713, m. of 7	13, 292.	
4 4	"	2.772 trempes	Schröder. Dm. 1873. Clarke. A. J. S. (3), 13, 292.	
Potassium fluoride	"	2.459)	Bödeker. B. D. Z.	
	"	2.507	Schröder. Dm. 1873. Clarke. A. J. S. (3),	
" " <u></u>	"	1	2018	
Rubidium fluoride Ammonium hydrogen flu-			1 13, 293,	
oride. Silver fluoride Magnesium fluoride " " Sellnite.	Ag F	5.852, 15°.5 2.472 2.856, 12° 2.972	Struver. Dana's	
Zinc fluoride	Zn F., 4 H. O	4.556, 17°	Min., 2d App. Clarke. A. J. S. (8), 13, 291.	

			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Cadmium fluoride	· -	of 7.	Kebler. A. C. J. 5, 241.
Calcium fluoride		8.188, m. of 60	Kenngott. J. 6, 853.
. " "	16	8.150 8.188	Smith. J. 8, 976. Schiff. A. C. P.
., ,,	۱ ,,	0.100	108, 21.
" Precip		3.162 3.086)	Luca. J. 13, 98.
" " Ignited	"	3.150 }	Schröder. Dm. 1878.
Strontium fluoride	Sr F ₂	$\left\{ egin{array}{ll} 4.202 \ 4.236 \end{array} ight\}$	"
" "	"	4.210	Schröder. P. A. 6
Barium fluoride	Ra F	4.58, 18°	Erganz. Bd. 622. Bödeker. B. D. Z.
16 66		4.824	Schröder. Dm. 1873.
" "	"	4.833 }	" " "
Lead fluoride Nickel fluoride	Pb F	8.241 2.855, 14° }	Clarke. A. J. S. (3),
"	Ni F 3 H. O	19011/100 (I	13, 291.
Aluminum fluoride	Al F ₈	$\begin{bmatrix} 3.065 \\ 3.18 \end{bmatrix}$ 12°	Bödeker. B. D. Z.
Arsenic trifluoride, l	As F ₈	2.78	Unverdorben. P.A.
" "	"	2.66	7, 316. MacIvor. C. N. 30, 169.
" "	"	2.6659, 0°)	Thorpe. J. C. S.
44 44	"	2.4497, 60°.4	87, 872. [874.
Bismuth fluoride		2.734 5.32, 20° }	Moissan. C. R. 99, Gott and Muir. J.
" oxyfluoride	Bi O F	7.5, 20° (C. S. 53, 137.
Cryolite. Greenland	Na ₃ Al F ₆	2.9—3.077 2.95	Dana's Mineralogy.
'' Siberia	"	2.972, 24°	Durnew. J. 4,820. Hillebrand and
		ŕ	Cross. A. J. S. (3), 26, 271.
Chiolite	Na ₅ Al ₈ F ₁₄	2.72	Hermann. J. P. C. 37, 188.
"	"	2.90	Kokscharow. J. 4, 820.
"		2.842—2.898	Rammelsberg. P. A. 74, 814.
Chodneffite	Na ₂ Al F ₅	3.003 \	Rammelsberg. P.A.
"	"	3.077 } { 2.62—2.77	74, 314. Wörth. Dana's
			Mineralogy.
Pachnolite.* Colorado		~f.4 \ \ \ \	Hillebrand and Cross. A. J. S.
_ "	"	0.000.000	(3), 26, 271.
Prosopite. Altenberg	Ca Al ₂ (F. O H) ₈	2.890	Scheerer. Dana's Mineralogy.
Prosopite. Altenberg " Colorado	"	2.880, 23°	Hillebrand and
			Cross. A. J. S. (8), 26, 271.
Ralstonite	Na Mg Al ₄ F ₁₅ . 3H ₂ O.	2.4	Brush. A. J. S. (3), 2, 30.
'	'	,	4, 00.

 $^{^{\}circ}$ According to Brandl, pachnolite and thomsenolite are distinct species, but Hillebrand and Cross show them to be identical.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ralstonite	Na Mg Al ₄ F ₁₅ . 3H ₂ O.	2.62	Nordenskiöld. Da-
<i>u</i>	(MgNa ₂)Al ₃ (F.OH) ₁₁ 2 H ₂ O.	2.560	per. A. J. S. (3),
Fluocerite	· ·		82, 881. Berzelius. Dana's Mineralogy.
Tysonite	4 Ce F ₃ . 3 La F ₃	6.13, in mean_	Allen and Comstock. A. J.S.(3), 19,391.
Yttrocerite			Berzelius. Dana's
Potassium borofluoride	K B F4	${2.5 \brace 2.6}$ }	Stolba. B. S. C. 18, 309.
Lithium silicofluoride	Li. Si F., 2 H. O	2.33	Stolba J 17, 213.
Sodium silicofluoride			Stolba. J. P. C. 97, 503.
46 46	" "	$2.680, m. of 4 \ 2.671 $ Ex. 2.691 tremes	Schröder. Dm.1873.
Potassium silicofluoride	K ₂ Si F ₆	2.6655 2.6649 17°.5	Stolba. J. P. C. 97, 503.
" " ———	"	$\left\{ egin{array}{ll} 2.655 \\ 2.698 \\ \end{array} ight\}$	Schröder. Dm. 1873.
Rubidium silicofluoride Cæsium silicofluoride Ammonium silicofluoride_	Rb, Si F	2.704) 3.3383, 20°	Stolba. J. 20, 186.
Ammonium silicofluoride	Am, Si F	1.970 2.056, m. of 5	Preis. J. 21, 195. Topsoë. C. C. 4, 76.
ec ec	"	2.035 Ex. 2.071 tremes	Schröder. Dm. 1873.
Calcium silicofluoride	Ca Si F ₆ . ?	$\left[\begin{array}{c} 2.649 \\ 2.675 \end{array} \right]$ 17°.5 _	Stolba. J. 33, 239.
Strontium silicofluoride	Ca Si F ₆ . 2 H ₂ O Sr Si F ₆ . 2 H ₂ O	2.254	Topsoë. C. C. 4, 76.
" "	" "	2.999 (Stolba. J. 34, 285.
Barium silicofluoride	"	4.2794, 21°	Stolba. J. 18, 170. Schweitzer. Univ. of Missouri, spec-
Magnesium silicofluoride	Mg Si F ₆ . 6 H ₂ O	1.761	ial pub. 1876. Topsoë. C. C. 4, 76.
Zinc silicofluoride	" "	2.121 2.1448 } 17°.5	Stolba. J. R. C. 5, 72.
Manganese silicofluoride Iron silicofluoride*	Mn Si F ₆ . 6 H ₂ O	1.858	Topsoë. C. C. 4, 76. Stolba. B. S. C. 26,
Nickel silicofluoride Cobalt silicofluoride *	Co Si F. 6 H. O	12.067 (155. Topsøë., C. C. 4, 76.
66 66 <u></u>	" "	$\left\{ \begin{array}{c} 2.1211 \\ 2.1135 \end{array} \right\}$ 19°	Stolba. B. S. C. 26, 155.
Copper silicofluoride *	Cu Si F ₆ . 4 H ₂ O Cu Si F ₆ . 6 H ₂ O	2.535 2.1576, 19°	Topsoe. C. C. 4, 76 Stolba. J. 20, 299.
" "	"""	2.207	Topsoë. C. C. 4, 76

^{*}According to Stolba, these salts contain 6½ molecules of water.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Potassium titanofluoride	K, Ti F ₆ . H, O Cu Ti F ₆ . 4 H, O K, Zr F ₆ Zn Zr F ₆ Ch Zr F ₆ Ni Zr F ₆ 6 H, O K, Sn F ₆ H, O Mn Sn F ₆ Mn Sn F ₆ Mn Sn F ₆ Co Sn F ₆ 6 H, O Co Sn F ₆ 6 H, O Co Sn F ₆ 4 H, O Cu Cb O F ₅ 4 H, O 5 K F 2 U O, F ₂ 3 K F 2 U O, F ₂ 2 H. O.	2.992 2.529 3.582 2.255 2.227 3.053 2.887 2.307 2.604 2.818 2.750 4.056 4.263, 20°	Topsoë. C. C. 4, 76.	

III. INORGANIC CHLORIDES.

1st. Simple Chlorides.

					
NAME. Hydrogen chloride or hydrochloricacid, liquef'd			Formula.	Sp. Gravity.	AUTHORITY.
			H Cl	.908, 0°)	
44	"		"	873, 7°.5	1
4.4	"		"	854, 11°.7	1
"	"		"	835, 15°.8 [Ansdell. C. N. 41,
4.6	"		"	808, 2 2°.7 {	76. Critical tem-
4.6	"		"	748, 33°	
66	"		"	678, 41°.6]	perature, 51°.25.
44	"		"		
Lithium	chloric	le	Li Cl		Kremers. J. 10, 67.
"	"		"	2.074	Schröder. P. A. 107, 113.
"	"	Fused	"	1.515	Quincke. P. A. 128, 141.
Sodium o	hloride)	Na Cl	2.2001	Hassenfratz. Ann. 28, 3.
4.6	**		"	2.15	Leslie. See Böttger.
**			"	2.26	Mohs.
"	"		"		Karsten. Schw. J. 65, 894.
66	"		"	2.030	Unger. See Böttger.
44	44		"		Kopp. A. C. P. 36, 1.
**	"		"	2.011, m. of 3	Playfair and Joule.
					M. C. S. 2, 401.
• •	"		"	2.24	Filhol. Ann. (3),
			I	1	21.415.

						
NAME. Sodium chloride		FORMULA.	Sp. Gravity.	· AUTHORITY.		
			Na Cl	2.155, 15°.5	Holker. P. M. (3), 27, 213.	
"	"	Cryst	"		2.195	Deville. J. 8, 15.
"	"	After fu- sion.			2.204 }	4
66	"		"		2.142	Grassi. J. 1, 39.
**	"		"		2.207 }	
"	"	Halite	"		2.135	Hunt. J. 8, 976.
"	"		"		2.148	Schiff. A. C. P. 108, 21.
46			"		2.153)	Schröder. P. A. 106,
44	44		44		2.161 }	226.
"	**		"		2.145	Buignet. J. 15, 14.
**	"		"		2.1629, 15°	Stolba. J. P. C. 97, 503.
"	"		"		2.1543	Hangen. P. A. 131, 117.
"	"		"		2.06—2.08	Page and Keightley. J. C. S. (2), 10,566.
44	"		"		2.145	Stas.
"	44	Natural	"		2.137	Rüdorff. Ber. 12, 251.
"	"		"		2.1641, 15°	Bedson and Williams. Ber. 14, 2552.
"	"	Cryst. at 20°.	44		2.16171	
"	"	Cryst. at 108°.	"		2.15494	Nicol. P. M. (5), 15, 94.
"	"		46		1.612, at the melting point.	Braun. J. C. S. (2), 13, 31.
44	"		"		2.23	Brügelmann. Ber.
"	"				2.1653, 10°	[17, 2359.
"	"		44		2.1615, 200	
"	4.		"		2.1594, 80°	Andreae. J. P. C.
"	44		"		2.15665, 40°	(2), 30, 315.
+6	"		6.		2.15435, 50°	, , ,
44	"		"		2.1881 1	Zehnder. P. A. (2),
"	66		"		2.1887}	29, 259.
44	"		"		2.092, 0° }	Quincke. P. A. 135,
"	66	Fused	"		2.04	642.
Potassium	n chlo		K	JI	1.9367	Hassenfratz. Ann.
"	4	·	"		1.836	28, 3. Kirwan. See Bött-
"	•	'	"		1.9153	ger. Karsten. Schw. J.
**		4	"		1.945	65, 394. Kopp. A. C. P. 36, 1.
44					1.900	
••						Playfair and Joule. M. C. S. 2, 401.
**			"		1.97756, 4°	Playfair and Joule J. C. S. 1, 137.
"	•		"		1.994	Filhol. Ann. (8), 21, 415.
"	•		"		1.995	Schiff. A. C. P. 108, 21.
"	•		"		1.918, 15°.5	Holker. P. M. (8), 27, 218.

							
	NA	ME			FORMULA.	Sp. Gravit	Y. AUTHORITY.
Potessium chloride				кс	1	1.995	Schröder. P. A. 106, 226.
44				"		1.986	Buignet. J. 14, 15.
"		**		"		1.94526, 15°	
66		66		"		. 1.90—1.91	
44		"		"		1.612, at the melting p	ne Braun. J. C. S. (2),
£1		"	Not pressed.	"		1.980, 228	10, 01.
"		"	Once pressed.	"		2.071, 20°	Spring. Ber. 16, 2724.
44			Twice pressed.	"		2.068, 21°	2121.
81		"	p	"		1.93	Brügelmann. Ber. 17, 2359.
44		"		"		1.932, 0°	Quincke. P. A. 185,
66		"	Fused	"		1.870	642.
Rubidi	um ch	lori	de	Rb (2.807	Setterberg. Of. Ak. St. 1882, 6, 23.
Cæsium				Cs C		3.992	
Ammor	nium (ehlo	ride	Am	Cl	1.450	Wattson. See Bött-
**		"		"		1.54425	ger. Hassenfratz. Ann. 28, 3.
46		44		"		1.528	Mohs. See Böttger.
"		"		"		1.578, m. of	8. Playfair and Joule. M. C. S. 2, 401.
"		"	•	"		1.5333, 4°	
"		"		"		1.52, 15°.5 _	
46		"		"		1.500	Kopp. A. C. P. 36, 1.
"		"		"		1.522	Schiff. A. C. P. 108, 21.
4.6		4.6		"		1.550	Buignet. J. 14, 15.
**		"		"		$\begin{vmatrix} 1.5033 \\ 1.5191 \end{vmatrix}$ 15°	
"		"				1.5209	
"		۲.		"		1.456	503. W. C. Smith. Am.
Silver	chlorid		nfused	Ag C	1	5.4548 5.501)	J. P. 53, 145. Proust.
			lack'd	"		5.5671	Karsten. Schw. J.
"	"	A	fter fu-	"		5.4582	65, 894.
"	"			41		5.129	Herapath. P. M. 64, 321.
"	**			"		5.548	Boullay. Ann. (2), 48, 266.
"	"			"		5.55	Gmelin.
44	**		ative	"		5.31	Domeyko. Dana's
"	4.6	•	·	"		5.43	Min.
4.	"			**		5.517	Schiff. A. C. P. 108, [226.
	"			"		5.5943	21. [226. Schröder. P. A. 106,

				T	1
	Name		Formula.	Sp. Gravity.	AUTHORITY.
Silver chi			Ag Cl	5.505, 0° \	Rodwell. P.T.1882,
	" 3	folten	"	4.919, 451° ₋ \$ 5.5	1125. Quincke. P. A. 185,
"	"	"	"	5.3	642. Quincke. P. A. 138,
Thallium	chlorie	de	T1 C1	7.00	Willm.
Thallium	" •miable		Tl, Cl,	7.02	Lamy. J. 15, 184.
Magnesiu			Mg Cl ₂	2.177, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
"	46		Mg Cl ₂ , 6 H ₂ O	1.562, m. of 4_ 1.558	Filhol. Ann. (3),
"	" F	Bischofite.	"	1.65	21, 415. Ochsenius. B. S. M.
	_			1	1, 128.
		3.			Bödeker. B. D. Z.
Cadmiun	i entori	de	Cd Cl2	3.6254, 12° 3.655, 16°.9	P. Knight. F.W.C.
44	"		Cd Cl ₂ . 2 H ₂ O	3,324, m. of 3_	W.Knight. F.W.C.
Mercurou	ıs chlor	ide	Hg Cl	7.1758	Hassenfratz. Ann. 28, 3.
"	"		"	7.14	Boullay. Ann. (2), 43, 266.
44	"		"	6.9925	Karsten. Schw. J. 65, 394.
u	"		"	6.7107	Herapath. P. M. 64, 321.
"	"	Native.	"	6.482	Haidinger. Dana's
"	"		"	7.178	Playfair and Joule. M. C. S. 2, 401.
"	"		"	6.56	Schiff. A. C. P. 108, 21.
Mercuric	chloric	le	Hg Cl ₂	5.1398	Hassenfratz. Ann. 28, 3.
"	• "		"	5.14	Gmelin. Boullay. Ann. (2),
"	"		"	5.4032	43, 266. Karsten. Schw. J.
44	"		"	6.223	65, 394. Playfair and Joule.
"	"		"	5.448, m. of 3_	M. C. S. 2, 401. Schröder. P. A. 107,
Calcium	chlorid	е	Ca Cl,	2.214 }	113. Boullay. Ann. (2),
"	"		"	_ 2.2 69	43, 266.
"	"		"	2.0401	Karsten. Schw. J. 65, 394.
"	4.4		"	2.480	Playfair and Joule. M. C. S. 2, 401.
"	**		"	2.240	Filhol. Ann. (3), 21, 415. [21.
"	"		"	2.205	Schiff. A. C. P. 108,
"	"		"	_ 2.160, 27°	Favre and Valson. C. R. 77, 579.
"	"	Fused	"	2.219, 0° } 2.15 }	Quincke. P. A. 135, 642.

	NAME	•	FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium (chlorid	e. Fused _	Ca Cl ₂	2.120	Quincke. P. A. 138
"	44		Ca Cl ₂ . 6 H ₂ O	1.680, m. of 2_	Playfair and Joule M. C. S. 2, 401.
46	"		"	1.635	Filhol. Ann. (8), 21
"	"			1.612, 10° 1.701, 17°.1	Kopp. J. 8, 44. Favre and Valson C. R. 77, 579.
46	44		"	1.654, m. of 4)	·
44	"			1.642 Ex- 1.671 tremes	Schröder. Dm. 1873
		ide	Sr Cl ₂	2.8033	Karsten. Schw. J
"	"		"	2.960	65, 394. Filhol. Ann. (3), 21 415.
**	"		"	3.035, 17°.2	Favre and Valson C. R. 77, 579.
	"		"	3.054	Schröder. A. C. P 174, 249.
**	"		"	2.770, at the melting point.	Braun. J. C. S. (2)
"	"	Fused	"	2.770	Quincke. P. A. 138 141.
**	"		Sr Cl ₂ . 6 H ₂ O	2.015, m. of 2_	Playfair and Joule M. C. S. 2, 401.
14	"		"	1.603	Filhol. Ann. (3), 21 415.
**	"		"	1.921 1.932, 17°.2	Buignet. J. 14, 15 Favre and Valson
					C. R. 77, 579.
"	"			1.954 1.964, 16°.7	Schröder. Dm. 1873
			Ba Cl ₂	3.860 }	Mühlberg. F.W.C Boullay. Ann. (2)
Darium ("		16	4.156	43, 266.
	46		"	3.8	Richter. Watts' Dic
**	"		"	3.7037	Karsten. Schw. J 65, 394.
"	"		"	3.750	Filhol. Ann. (3), 21 415.
"	"			3.820	Schiff. A. C. P. 108
44	"		"		Schröder. P. A. 107
"	"		"	1	113. Kremers. P. A. 85
"	"		"	3.844, 16°.8	42. Favre and Valsor
"	"		"	3.92	C. R. 77, 579. Brügelmann. Be
"	"	Molten _	"	3.700	17, 2359. Quincke. P. A. 138
"	"		Ba Cl ₂ . 2 H ₂ O	3.144, m. of 2	
"	"		"	2.664	
"	"		"	3,05435, 4°	415. Playfair and Joule J. C. S. 1, 137.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Barium chloride	Ba Cl. 2 H. O	8.052	Schiff. A. C. P. 108,
			21.
« « ————	"	8.081	
		8.054, 15°.5	C. R. 77, 579.
" "	Th. (1	3.045	
Lead chloride	Pb Cl,	5.29 5.238	Monro.
" " Native " Unfused	"	5.8022	Dana's Min. Karsten. Schw. J.
" " After fusion		5.6824}	65, 394.
" Cryst		5.802	Schabus. J. 3, 322.
" "		5.78	Schiff. J. 11, 11.
чи и	"	5.80534, 15°	Stolba. J. P. C. 97, 503.
" "	"	5.88	Brügelmann. Ber. 17, 2359.
Chromous chloride	Cr Cl ₂	2.751, 14°	Grabfield. F. W. C.
	•	3.08, 17°	Schafarik. J. P. C. 90, 12.
" "		2.757, 15°, m. of 13.	Grabfield. F. W. C.
Manganous chloride	1	i	Schröder. A. C. P. 174, 249.
" "	Mn Cl ₂ . 4 H ₂ O	1.898)	,
" "		1.913 }	Schröder. Dm. 1878.
"			D-11 D D Z
Ferrous chloride	Fe Cl ₂	2.01, 10° 2.528	Filhol. Ann. (3), 21,
		2.988, 17°.9	415. Grabfield. F. W. C.
41 11	Fe Cl ₂ . 4 H ₂ O	1.926	Filhol. Ann. (3), 21.
" "	66	1.987	Schabus. J. 3, 327.
Ferric chloride	Fe. Cl.	2.804. 10°.8	Grabfield. F. W. C.
Ferric chloride	Ni Cl.	2.56	Schiff. A. C. P. 108,
Cobalt chloride	i		21. Playfair and Joule.
	Co Cl ₂ . 6 H ₂ O	j	M. C. S. 2, 401. Bödeker and Ehlers.
Cuprous chloride			B. D. Z. Karsten. Schw. J.
" "	"	3.876	65, 894. Playfair and Joule.
" Nantoquite	ļ	3.930	M. C. S. 2, 401. Breithaupt. J. 25,
Cupric chloride	Cu Cl ₂	3.054	1145. Playfair and Joule.
	Cu Cl. 2 H. O	2.535, m. of 2_	M. C. S. 2, 401.
Boron trichloride, l	B Cl ₃	2.47, 18° 1.35	Bödeker. B. D. Z. Wöhler and Deville.
Gallium chloride. Molten.	Ga Cl	2.36, 80°	J. 10, 931. Boisbaudran, C. N.
Cerium chloride	Ce Cl ₃	3.88, 15°.5	
Didymium chloride	Di Cl ₂ 6 H ₂ O	$\left\{ \begin{array}{c} 2.286 \\ 2.287 \end{array} \right\}$ 15°.8 _	251. Cleve. U. N. A. 1885.

NAME.	FORMULA.	Sp. GRAVITY.	
Samarium chloride	Sm Cl ₃ . 6 H ₂ O	$\left\{\begin{array}{c} 2.375 \\ 2.892 \end{array}\right\}$ 15°	Cleve. U. N. A. 1885.
Carbon chloride.* Silicon tetrachloride	1 .	1	
"		1.5083, 5°-10°)
"	- "	1.4983, 10°-15°	Regnault. P. A
• • • • • • • • • • • • • • • • • • •	- "	1.4884, 15°-20° 1.4878, 20°	
		'	117.
"	- "	1.49276	Mendelejeff. C. R 51, 97.
ee 66 <u></u>		1.522, 0°	Friedel and Crafts. A. J. S. (2), 43, 162.
44 44		1.52408,00	
44 44		1.40294.57°.57	Thorpe. J. C. S. 37, 372.
Silicon hexchloride	Si ₂ Cl ₆	1.58, 0°	Troost and Haute- feuille. Z. C. 14 331.
Titanium tetrachloride.	1		Pierre. Ann. (8) 20, 21.
" "	- "	1.7487, 5°-10°)
		1.7403, 10°-15°	Regnault. P. A.
" "		1.7322, 15°-20° 1.76041, 0°	
"		1.52223,136°.41	
Germanium tetrachlorid	Ge Cl,	1.887, 18°	Winkler. Ber. 19 ref. 655.
Tin dichloride	Sn Cl ₂ . 2 H ₂ O	2.759	Playfair and Joule M. C. S. 2, 401.
"	"	2.71, 15°.5, s	Penny. J. C. S. 4
" "] "	2.5876, 37°.7, 1	f 239.
# # #	" "		
Tin tetrachloride		Í	Pierre. Ann. (8) 20, 19.
"		2.2618, 50-100)
11 41			Regnault. P. A.
" "		2.2368, 15°-20° 2.234, 15°) 62, 50.
"			Haagen. P. A. 181
u u			Thorpe. J. C. S.
" "		1.97813,113°.89	1 6 37, 372.
Nitrogen trichloride			Watts' Dictionary. Davy. Watts' Dict
Phosphorus trichloride			Pierre. Ann. (8)
" "	"		1)
" "	"		Regnault. P. A
# #	"		62, 50.
		of 2.	Buff. A. C. P. 4
u u	"	1.59708, 10°	Supp. Bd. 129 Boiling point, 76°
" "	"	. 1.47124, 76°	[] Donning points, 10

^{*}The chlorides, bromides, and iodides of carbon are assigned to a special division among organic compounds.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Barium chloride	Ba Cl ₂ . 2 H ₂ O		21.
11 11	"	3.081 3.054, 15°.5	Buignet. J. 14, 15. Favre and Valson. C. R. 77, 579.
" " Leud chloride	Ph Cl.	3.045 5.29	Schröder. Dm. 1873. Monro.
" " Native	"	5.238	Dana's Min.
" " Unfused " " After fusion		5.8022 }	Karsten. Schw. J. 65, 394.
" " Cryst	"	5.802	Schabus. J. 3. 322.
66 66	"	5.78 5.80534, 15°	Schiff. J. 11, 11. Stolba. J. P. C. 97, 503.
" "	"	5.88	Brügelmann. Ber. 17, 2359.
Chromous chlorideChromic chloride	Cr Cl, Cr, Cl,	2.751, 14° 3.08, 17°	Grabfield. F. W. C. Schafarik. J. P. C. 90, 12.
cc 66		2.757, 15°, m. of 13,	Grabfield. F. W. C.
Manganous chloride	-	2.478	Schröder. A. C. P. 174, 249.
" " ———	Mn Cl ₂ . 4 H ₂ O	1.898	Schröder. Dm. 1873.
" "	"	1.928) 2.01, 10°	Bödeker. B. D. Z.
Ferrous chloride	Fe Cl,	2.528	Filhol. Ann. (3), 21, 415.
tt tt	" Fe Cl ₂ . 4 H ₂ O	2.988, 17°.9 1.926	Grabfield. F. W. C. Filhol. Ann. (3), 21.
" "		1.937	415. Schabus. J. 3, 327.
Ferric chloride	1	l .	l 21.
Cobalt chloride		Į.	M. C. S. 2. 401
	Co Cl ₂ . 6 H ₂ O	1	B. D. Z.
Cuprous chloride			65 394
" "Nantoquite			M. C. S. 2, 401.
	ţ.	3.930	1145.
Cupric chloride	1 -		N C C O 401
" "	B Cl.	2.47, 18°	Bödeker. B. D. Z. Wöhler and Deville.
Gallium chloride. Molten.	1		1 10 031
Cerium chloride	Ce Cl.	8.88, 15°.5	44, 166. Robinson, C. N. 50.
Didymium chloride	Di Cl ₃ . 6 H ₂ O	$\left\{ \frac{2.286}{2.287} \right\}$ 15°.8	251. Cleve. U. N. A. 1885.

	· · · · · · · · · · · · · · · · · · ·				1	1
	Name.		-	FORMULA.	SP. GRAVITY.	AUTHORITY.
Samer	ium chlori	do	Sm C	1 6 H O	9.875)	
			Siii C	13. 0 11 ₂ O	2.892 } 15°	Cleve. U. N. A. 1885.
	n chloride. 1 tetra chlo		Si Cl		1.52371, 0°	Pierre. Ann. (8), 20, 26.
**	"		46		1.5083, 5°-10°)
"	46		66			
"	"				1.4884, 15°-20°	
					1	117.
"	4.		"		1.49276	Mendelejeff. C. R. 51, 97.
44	"		"		1.522, 0°	
44	66		"		1.52408,00	Thorpe. J. C. S.
64	" 	a	e: 0		- 1.40294, 57°.57	37, 372.
Silicon	hexchlori	ae	Si ₂ Ci	l ₆	_ 1.58, 0°	Troost and Haute- feuille. Z. C. 14, 331.
Titani	um tetrach	loride	Ti Cl	_	1.76088, 0°	Pierre. Ann. (8),
46	44		"		1.7487, 5°-10°	1
46	"				_ 1.7403, 10°-15°	Regnault. P. A.
"	"		"		1.7322, 15°-20° 1.76041, 0°	Thorpe. J. C. S.
44	"		"			
Germs	anium tetra	chloride.	Ge C	4	1.887, 18°	Winkler. Ber. 19, ref. 655.
Tin di	ichloride		Sn Cl	2. 2 H ₂ O	2.759	
			"	"	2.71, 15°.5, s	Penny. J. C. S. 4,
4.			"			
۱: ۳: ۱			(I		2.634, 24°	
Tin te	etrachloride			4	_ 2.26712, 0°	Pierre. Ann. (3), 20, 19.
	"		"		_ 2.2618, 5°-10°)
44	"		"			Regnault. P. A.
4:	44		") 62, 50. Gerlach. J. 18, 237.
"	"		"			Haagen. P. A. 131,
4.	44		"		2.27875, 0°	117. Thorpe. J. C. S.
44	14					37, 372.
	gen trichlor			. ?		Watts' Dictionary.
Phos	phorus trich	loride	P Cl ₃			Davy. Watts' Dict. Pierre. Ann. (3),
			٠.			20, 9.
40			"			
61			"			62, 50.
			**		_ 1.6119, 0°, m.	Buff. A. C. P. 4
					of 2. 1.59708, 10°	Supp. Bd. 129.
		"	"		_ 1.47124, 76°	Boiling point, 76°.
•			•		_,	17

 $^{^{\}circ}$ The chlorides, bromides, and iodides of carbon are assigned to a special division among organic compounds.

Name.				FORMULA.	Sp. Gravity.	AUTHORITY.
Phospho	rus tri	chloride	P C	l _s	1.5774, 20°	Haagen. P. A. 181,
4.6		"			1.61275, 0°	117. Thorpe. J. C. S.
66		"	"		1.46845, 75°.95	37, 872.
V anadiu	m dich	loride	V C	l ₂	8.23, 18°, s	Roscoe. P. T. 1869, 679.
Va nadiu	m tricl	hloride	v c	l ,	3.00, 18°, s	" "
Vanadiu	ın tetr	achloride	V C	l <u>.</u>	1.8584, 0° } 1.8363, 8° }	
44		"	"		1.8363, 8° }	" "
	trichle	 ride)1 ,	1.8159, 32° _) 2.20495, 0°	[15. Pierre. Ann. (3), 20,
Arsenic "	trichio.		A.,		2.1766	Penny and Wallace.
"	"		"		2.1668, 20°	J. 5, 382. Haagen. P. A. 131,
"	44		"		2.20500, 0°	117. Thorpe. J. C. S.
"	"				2.20500, 0° 1.91813,130°.21	∫ 37, 372.
Antimor	ıy trich	loride	SbC	l ₈	8.064, 26°, s	Cooke. Proc. Amer. Acad. 1877.
"	"		"		2.6766) liquid)
"	"		44		2.6758 at	Kopp. A. C. P. 95,
" Antimor	" v nent	achloride _		1,	2.6750) 73°.2 2.3461, 20°) 348. Haagen. P. A. 131.
				•	•	117.
		pride	Bi C	l ₈	4.56, 110	Bödeker. B. D. Z.
Sulphur	chlorid	le	S ₂ C	l ₃	1.687	Dumas. Ann. (2),
"	"		**		1.686	49, 204. Marchand. J. P. C. 22, 507.
"	"		"		1.6970, 5°-10° 1.6882, 10°-15°)
"	"		"		1.6882, 10°-15°	Regnault. P. A.
"	"				1.6793, 15°-20° 1.7055, 0°) 62, 50.
**	"		"		1.6802, 16°.7	Kopp. A. C. P. 95, 355.
**	"		"		1.6828, 20°	Haagen. P. A. 181,
"	46		"		1.4848, 138°	117. Ramsay. J. C. S. 35, 463.
**	"		44		1.70941, 0°	Thorpe. J. C. S.
66	"		"		1.49201,138°.12	37, 356.
Selenium	chlori	ide	Se ₂ C	N ₂	2.906, 17°.5	Divers and Shimose. Ber. 17, 866.
Iodine m	onochl	oride	I Cl		3.263, 0°)	Dei. 11, 000.
"	"		**		3.222, 16°.5_	
"	"		"		3.206, 18°.2.	
"	44		"		3.180, 30° 3.176, 32°	
"	"		"		8.132, 45°	
"	**		"		3.127, 48°	
**	"		"		3.084, 60° }	Hannay. J. C. S.(2),
"	"		"		3.032, 72°	11, 818. Melts at
"	46		"		3.036, 75° 2.988, 86°	24°.7. Boils at 100°.5 to 101°.5.
;,	"		"		2.984, 90°	100-10 to 101-19.
**	64		"		2.964, 95°	
"	44		**		2.958, 98°]	
16	44		44		3.18223, 0°	Thorpe. J. C. S.
"	"		"		2.88196, 101°.8	§ 87, 87 1 .

Name.	Formula.	Sp. Gravity.	AUTHORITY.
lodine trichloride Platinum dichloride Platinum tetrachloride	I Cl ₈ Pt Cl ₂	3.1107 5.8696, 11°	Christomanos. Ber. 10, 789. Bödeker. B. D. Z.
Platinum tetracbloride	Pt Cl ₄ . 8 H ₂ O	2.431, 15°	

2d. Double Chlorides.

N	VAME.	<u>.</u>	Formula.	Sp. GRAVITY.	Authority.
Ammoniur chloride.		gnesium	Am ₂ Mg Cl ₄ . 6 H ₂ O ₋	1.456, 10°	Bödeker. B. D. Z.
Potassium	zinc c		K ₂ Zn Cl ₄	į.	Schiff. A. C. P. 112, 88.
4.6	"	"	Am ₂ Zn Cl ₄	$\left \begin{array}{c} 1.879 \\ 1.72 \\ 1.77 \end{array} \right \left \begin{array}{c} 10^{\circ} \\ \end{array} \right \left \begin{array}{c} 1 \\ \end{array} \right $	" " " Bödeker and Ehlers.
"	"	"	11		B. D. Z. Romanis. C. N. 49,
Barium zin	c cblo	ride	Ba ₂ Zn Cl ₆ . 4 H ₂ O	2.845	273. Warner. C. N. 27, 271.
Potassium	cadmi	ım chlo-	K, Cd Cl	2.500	Schröder. Dm. 1873.
Strontium ride.	cadmi	am chlo-	Sr Cd ₂ Cl ₆ . 7 H ₂ O	of 3.	_
Barium cad	**	chloride	Ba Cd Cl ₄ . 4 H ₂ O	2.968 2.952, 24°.5 2.966, 25°.2	Topsöe. C. C. 4, 76. W. Knight. F. W.C.
Sodium me	rcury		Na Hg Cl ₃ . 2 H ₂ O	3.011	Playfair and Joule. M. C. S. 2, 401.
Potassium ride.	mercu	ry chlo-	K Hg Cl ₃ . H ₂ O	í	14. O. 5. 2, 401.
Ammonium chloride.		ercury		1	
Potassium Potassium	iron c	" hloride chloride	Am ₂ Hg Cl ₄ . H ₂ O K ₂ Fe Cl ₄ . 2 H ₂ O K ₂ Cu Cl ₄ . 2 H ₂ O	2.162	Schabus. J. 3, 327. Playfair and Joule.
16	u	··		2.400	M. C. S. 2, 401. Schiff. A. C. P. 112,
"	"	"		2.359 2.410	
16	"	"		2.358)	A. 45, 603.
"	"	"	"	2.425	Schröder. Dm. 1873.
			Rb ₂ Cu Cl ₄ . 2 H ₂ O Am ₂ Cu Cl ₄ . 2 H ₂ O ₋		M. 10, 127.
Ammonium ride.	copp "	er cn10-			M. C. S. 2, 401. Schiff. A. C. P. 112,
"	"	"	"		88. Kopp. J. 11, 10.
"	"	"	"	2.066	Tschermak. S. W. A. 45, 603.

			
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Phosphorus trichloride	1	1.5774, 20°	Haagen. P. A. 181,
" "	"	1.61275, 00	Thorpe. J. C. S.
Vanadium dichloride	v "cı,	1.46845, 75°.95 3.28, 18°, s	37, 872. Roscoe. P. T. 1869, 679.
Vanadium trichloride	V Cl.	8.00, 18°, s	" "
Vanadium tetrachloride	V Cl	1.8584, 0°) 1.8363, 8° }	" "
"	"	1.8159. 320 _	Γ15.
Arsenic trichloride	As Cl ₈	2.20495, 0°	Pierre. Ann. (8), 20,
" "	"	2.1766	Penny and Wallace. J. 5, 382.
" "	"	2.1668, 20°	Haagen. P. A. 131, 117.
" " <u></u>	"	2.20500, 0° 1.91813,130°.21	Thorpe. J. C. S. 37, 372.
Antimony trichloride	Sb Cla	8.064, 26°, s	Cooke. Proc. Amer.
" "			Acad. 1877.
	"	$\{2.6766\}$ liquid $\{2.6758\}$ at	Kopp. A. C. P. 95,
	"	2.6750 \ 73°.2	348.
Antimony pentachloride	Sb Cl ₅	2.3461, 20°	Hangen. P. A. 181.
Bismuth trichloride	Bi Cla	4.56, 11°	Bödeker. B. D. Z.
Sulphur chloride	S, Cl,	1.687	Dumas. Ann. (2),
	"	1.686	49, 204. Marchand. J. P. C. 22, 507.
"	"	1.6970, 5°-10° 1.6882, 10°-15°) .
11 11	"	1.6882, 100-150	Regnault. P. A.
" "	"	1.6793, 15°-20° 1.7055, 0°) 62, 50. Kopp A C P 05
11 11	"	1.6802, 160.7	Kopp. A. C. P. 95, 355.
" "	"	1.6828, 20°	Haagen. P. A. 181, 117.
" "	"	1.4848, 138°	Ramsay. J. C. S. 35, 463.
	"	1.70941, 0°	Thorpe. J. C. S.
0.3. (" g. ()	1.49201,138°.12	<i>§</i> 37, 356.
Selenium chloride	Se, Cl,	2.906, 17°.5	Divers and Shimose. Ber. 17, 866.
Iodine monochloride	I Cl	3.263, 00]	
" "	"	3.222, 16°.5_ 3.206, 18°.2_	
" "	"	3.180, 30°	
	"	3.176, 32°	
" "	"	3.132, 45°	
16 16	"	3.127, 48° 8.084, 60°	Hannay. J. C. S.(2),
	"	3.032, 72°	11, 818. Melts at
	"	3.036, 75°	24°.7. Boils at
ie ee	ш	2.988, 86°	100°.5 to 101°.5.
" "	"	2.984, 90°	
" "	"	2.964, 95°	
	"	2.958, 98° j 3.18223, 0°	Thorpe. J. C. S.
" "	"	2.88196, 101°.8	\$ 87, 871.

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Iodine trichloride	I Cl ₃	3.1107	Christomanos. Ber. 10, 789.	
Platinum dichloride Platinum tetrachloride	Pt Cl ₂	5.8696, 11° 2.431, 15°	Bödeker. B. D. Z.	

2d. Double Chlorides.

						
N	AME.		Formula		Sp. Gravity.	Authority.
Ammonium	n mag	nesium	1	_	1.456, 10°	
Potassium 2					2.297	Schiff. A. C. P. 112, 88.
Ammonium	zince	hloride_	Am, Zn Cl,		1.879	
44	**	"	- 44		$\left\{ \begin{array}{c} 1.72 \\ 1.77 \end{array} \right\} \ 10^{\circ} \left\{ \begin{array}{c} \end{array} \right.$	Bödeker and Ehlers.
6.6	"	"	66		1.77 } 10 }	B. D. Z.
44	"	"	**		1.77	Romanis. C. N. 49, 273.
Barium zin	e eblor	ide	Ba ₂ Zn Cl ₆ . 4 l	H ₂ O	2.845	Warner. C. N. 27, 271.
Potassium c	admiu	m chlo-	K, Cd Cl		2.500	Schröder. Dm. 1873.
Strontium C				-	2.708, 24°, m. of 3.	W. Knight. F.W.C.
Rarium cadi	mium e	chloride	Ba Cd Cl4. 4 I	I. O	2.968	Topsöe. C. C. 4, 76.
"	46	"				W. Knight. F.W.C.
4.6	"	"	"		2.966, 25°.2 	
	-		Na Hg Cl ₃ . 2 l	H ₂ O	3.011	Playfair and Joule. M. C. S. 2, 401.
Potassium r			K Hg Cl ₃ . H ₂	i	1	u ú
Ammonium chloride.	m e	rcury	Am ₂ Hg ₂ Cl ₆ .	H ₃₁ O	3.822	
entoriae.		"	Am, Hg Cl4. H	I. O	2.938	"
Potossium i	ron ch	loride	K., Fe Cl., 2 H	. O	2.162	Schabus. J. 3, 327.
Potassium c	opper	chloride	K, Cu Cl. 2 F	f, O	2.426	Playfair and Joule.
44	**	··	"			M. C. S. 2, 401. Schiff. A. C. P. 112,
			"		0.010	88.
4.6	"	"	"			Kopp. J. 11, 10.
"	**				2.410	Tschermak. S. W. A. 45, 603.
44	"		"			(1) ") 70 1070
"	"	"	"		2.392 }	Schröder. Dm. 1873.
44	"			m -5	2.425)	W D G
	_		Rb ₂ Cu Cl ₄ . 2		İ	Wyrouboff. B. S. M. 10, 127.
Ammonium	coppe	er chlo-	Am ₂ Cu Cl ₄ . 2	H ₂ O.	2.018	Playfair and Joule. M. C. S. 2, 401.
ride.	"	"	46	1	1.968	Schiff. A. C. P. 112,
	44		"			88.
44	"	"	"		1.977	
**	••				2.066	Tschermak. S. W. A. 45, 603.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Phosphorus oxychloride	P O Cl ₃	1.66	Wichelhaus. J. 20,
" "	66	1.71163, 0°	Thorpe. J. C. S.
" "	ιι	1.50967,107°.23	∫ 87, 387.
" Pyrophosphoricchloride	"	1.5142, 106°.7	
			Geuther and Michaelis. B. S. C. 16, 231.
Vanadyl dichloride Vanadyl trichloride	$\begin{array}{c} \nabla \text{ O Cl}_2 \\ \text{V O Cl}_3 \end{array}$	2.88, 13°, s 1.764, 20	Roscoe. P.T. 1868, 1. Schafarik. J. P. C.
"	"	1.841, 14°.5	76, 142.
(1 (1	"	1.836, 17°.5	Roscoe. P.T. 1868, 1.
" "	"	1 828 240	1101000, 1,1,1,1000, 1,
" "	"	1.86584, 0°	Thorpe. J. C. S.
" "	££	1.63073,127°.19	∫ 87, 348.
		1.854, 18°	1151.
Antimony oxychloride	504 O5 Cl2	3.014, 8	Cooke. Proc. Am. Acad. 1877.
Bismuth oxychloride	Bi O Cl	7.2, 20°, s	Muir, Hoffmeister, and Robbs. J. C.
Daubraita	Ri () Cl	6.46.5	S. 39, 37. [922. Domeyko. C. R. 82,
Sulphur oxychloride	S. O Cl.	1.656.09	Ogier. Ber. 15, 922
DaubreiteSulphur oxychloride Thionyl chloride	s o cl	1.656, 0° 1.675, 0°	Ogier. Ber. 15, 922. Wurtz. J. P. C. 99, 255.
" "	"	1.67678, 00	
"	"	1.52143, 78°.8	37, 354.
Gulahamalahlarila	"	1.6554, 10°.4	Nasini. Bei. 9, 324.
Sulphuryl chloride	S U ₂ Ul ₂	1.661, 219 1.70814, 0°	Behrends. J. 30, 210. Thorpe. J. C. S.
"	"	1.56025, 69°.95	37, 359.
Disulphuryl chloride	S ₂ O ₅ Cl ₂	1.818, 16°	37, 359. H. Rose. P. A. 44, 291. [121.
" "	"	1.762	Rosenstiehl. J. 14,
ιι ιι <u></u>	"	1.819, 18°	Michaelis.
		1.85846, 0° 1.60310,139°.59	Thorpe. J. C. S. 37, 360.
" Chlorosulphonic acid	S O. O H. Cl	1.78474, 00	Thorpe. J. C. S.
"		1.54874, 155°.3	∫ 87, 358.
" " <u></u>	" <u></u>	1.7633, 14°	Nasini. Bei. 9, 324.
Selenyl chloride	Se O Cl ₂	2.44 2.443, 13°	Weber. J. 12, 91. Michaelis. Z. C. 13, 460.
Chromyl dichloride	Cr O ₂ Cl ₂	1.9134, 10°	Thomson. P. T. 1827, 159.
" " ———	"	1.71, 21°	Walter. Ann. (2), 66, 387.
" "	"	1.92, 25°	Thorpe. J. 21, 226.
" "	"	1.7538, 117°	Ramsay. J. C. S. 35, 463.
" "	"	1.96101, 00	Thorpe. J. C. S.
The surbassian subbashlasida	"	1.75780, 115°.9	37, 372. [115. Baudrimont. J. 14,
Phosphorus sulphochloride	r S Ula	1.631, 22° 1.66820, 0°	Baudrimont. J. 14, Thorpe. J. C. S.
" "	"	1.45599,125°.12	87, 341.

IV. INORGANIC BROMIDES. 1st. Simple Bromides.

	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium	bromide	Li Br	3.102, 17°	Clarke. A. J. S. (8),
Sodium 1	bromide	Na Br	2.952	18, 293. Schiff. A. C. P. 108, 21.
66	66	"	8.079, 17°.5	
61	"	"	3.011	Tschermak. S. W. A. 45, 603.
61	"	"	3.198, 17°.3	Favre and Valson. C. R. 77, 579.
41	" Fused	"	2.448	Quincke. P. A. 138, 141.
"	"	Na Br. 4 H ₂ O	2.84	Playfair and Joule. M. C. S. 2, 401.
41	"	"	2.165, 16° 8	Favre and Valson. C. R. 77, 579.
Potassiu	m bromide	K Br	2.415	Karsten. Schw. J. 65, 894.
"	"	"	2.672	Playfair and Joule. M. C. S. 2, 401.
"	"	"	2.690, m. of 6_	Schröder. P. A. 106, 226.
64	"	"	2.712, 120.7	
"	" Fused	"	2.199	Quincke. P. A. 188, 141.
•6	" Not pressed			•
64	" Once "	"	2.704 } 18°	Spring. Ber. 16,2724.
Rubidiu	"Twice" m bromide	Rb Br		Setterberg. Of. Ak.
Cesium	bromide	Cs Br	4.463	St. 1882, 6, 23.
	um bromide		2.379	Schröder. P. A. 106, 226.
14	44		2.266, 100	Bödeker. B. D. Z.
"	" Cryst	. "		Eder. Ber. 14, 511.
"	" Sublimed			1
66	"			Stas. Mem. Acad. Belg. 48, 1.
		Ag Br	İ	Karsten. Schw. J. 65, 894.
44	"			226.
"	"	- '	1	Clarke. A. J. S. (8), 13, 294.
ш	" ======		6.245, 00 }	Rodwell. P. T. 1882,
66 ·	" Molten	44	5.595, 427° _ } 6.2	1125. Quincke. P. A. 138.
				141.
Thallius	n bromide. Precip	"		Keck. F. W. C.
7ina b.	fusion.	1	9 849 100	Dädeken D D 7
	mide m bromide	Zn Br,		Bödeker. B. D. Z. Bödeker and Gie-
1.8/170***				

		,	
NAME.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Ammonium copper chlo- ride.	Am, Cu Cl4. 2 H, O	1.984, 24°	Evans. F. W. C.
	- K ₂ Pd Cl ₆	2.806	Topsoë. C. C. 4, 76.
Ammonium palladiochlo- ride.	Am ₂ Pd Cl ₆	2.418	
Magnesium palladiochlo- ride.	Mg Pd Cl ₆ . 6 H ₂ O	2.124	" "
Zinc palladiochloride	Zn Pd Cl. 6 H, O	2.359 2.853	44 44
Nickel palladiochloride _		2.000	1
Potassium iridichloride _	K, Ir Cl	3.546, 15° 2.856, 15°	Bödeker. B. D. Z.
Ammonium iridichloride	Am, Ir Čl	2.856, 15	
Potassium platosochloride	K, Pt Cl.	3.3056, 20°.3	Clarke. A. J. S.
" " —	- '	3.2909, 21° }	(3), 16, 206.
Ammonium platosochlo- ride.	Am ₂ Pt Cl ₄	2.84	Romanis. C. N. 49, 278.
Sodium platinchloride	Na ₂ Pt Cl ₆ . 6 H ₂ O	2.500	Topsoë. C. C. 4,
Potassium platinchloride	K, Pt Cl,	3.586, 15° 3.694	Bödeker. B. D. Z. Tschermak, S. W.
		3.8, 17° }	A. 45, 603.
		0.0, 17	Pettersson. U. N.
		3.32, 17°.2 }	A. 1874.
		3.344	Schröder. Dm. 1873.
Rubidium platinchloride	Rb ₂ Pt Cl ₆	3.96, 17°.4 }	Pettersson. U. N.
" " "	. "	3.94. 17°.5 (A. 1874.
Ammonium platinchlo-	Am ₂ Pt Cl ₆	2.955	D-11 D D F
ride. "	16	3.009 } 15	Bödeker. B. D. Z.
" " ——	. "	2.960	Tschermak. S. W. A. 45, 608.
" "	. "	3.0, 17°.2	Pettersson. U. N. A. 1874.
46 66	"	2.936	Schröder. Dm. 1873.
	"	3.065	
			Topsoë. C. C. 4, 76.
Thallium platinchloride.		5.76, 17°	Pettersson. U. N. A. 1874.
Magnesium platinchlo- ride.		2.437	Topsoë. C. C. 4, 76.
	Mg Pt Cl. 12 H, O.	2.060	"
Cadmium platinchloride_	. Cd Pt Cl ₆ . 6 H, O	2.882	44
Barium platinchloride	. Ba Pt Cl. 4 H. O	2.868	** **
Lead platinchloride	Pb Pt Cl. 3 H, O Mn Pt Cl. 6 H, O	3.681	_ " "
Manganese platinchloride	Mn Pt Cl., 6 H. O.	2.692	"
" . "	Mn Pt Cl. 12 H, O.	2.112	" "
Iron platinchloride	Fe Pt Cl. 6 H, O	2.714	"
	C. P. Cl. e H	0.794	
Copper platinchloride		2.734	· · ·
Didymium platinchloride		2.688 2.696 21° 2	Cleve. U. N. A. 1885.
Samarium platinchloride		2.709 210.8 -	ee ee
Didymium aurichloride _ "	_ ", "	$\begin{bmatrix} 2.662 \\ 2.664 \end{bmatrix}$ 18°	"
Samarium aurichloride	Sm Au Cl ₆ . 10 H ₂ O		
Potassium stannochloride	K, Sn Cl. 3 H, O	2.514	Playfair and Joule. M. C. S. 2, 401.
Ammonium stannochlo- ride.	Am ₂ Sn Cl ₄ . 3 H ₂ O	2.104	11 11 11

NA	ME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium st	"	"	2.686 } 2.688 } 2.700 2.948	Schröder. Dm. 1878. Joergensen. Romanis. C. N. 49, 273.
Cesium stanı	nichloride	Cs ₂ Sn Cl ₆	3.3308, 20°.5	Stolba. D. J. 198 225.
Ammonium ride. "	stannichlo-	Am ₂ Sn Cl ₆	2.387, m. of 4 2.381 Ex- 2.396 tremes.	Schröder. Dm. 1878. Romanis. C. N. 49
Magnesium ride. Potassium an ride.	•	Mg Sn Cl ₆ . 6 H ₂ O K ₃ Sb Cl ₆ . 2 H ₂ O		273. Topsoë and Christiansen. Romanis. C. N. 49 273.

3d. Oxy- and Sulpho-Chlorides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Matlockite	Pb, O, Cl,	7.0-7.1	Dana's Mineralogy.
	"	3.757	Tschermak. J. 26, 1201.
"	"	3.7688	Zepharovich. J. 26, 1201.
Botallackite	Cu ₄ Cl ₂ (O H) ₆ . 3 H ₂ O		Church. J. C. S. 18,
Tallingite	Cu ₅ Cl ₂ (O H) ₈	3.5	Church. J. C. S. 18, 78.
Mercuric oxychloride			
Didymium oxychloride		5.702 916 5	Clevo. U. N. A. 1885.
Samarium oxychloride	Sm O Cl	[6.987] 6.9	
Nitroxyl chloride	N O, Cl	1.3677, 8°	Baudrimont. J. P. C. 31, 478.
	"	1.32, 14°	Müller. A. C ?. 122, 1.
Phosphorus oxychloride	P O Cl ₃	1.673, 14°	Cahours. J. P. C. 45, 129.
11 11	"		Wurtz. J. 1, 365.
" " …	"	1.662, 19°.5 1.69371, 10°	Mendelejeff. J. 13,7.
46 46	"	1.69106, 14°	
" "	"	1.68626, 15°	
46 46	"	1.64945, 51°	Supp. Bd., 129.
	"	1.509116, 110°	ן י

V	Forum	S- C	A
NAME.	FORMULA.	Sp. Gravitt.	AUTHORITY.
Phosphorus oxychloride			149.
	6. 	1.71163, 0°	Thorpe. J. C. S. 37, 337.
" "		1.50967.1079.23	37, 337.
" Pyrophosphoricchloride	P. O. Cl.	1.58.79	Genther and Mi-
			chaelis. B. S. C.
Vanadyl dichloride Vanadyl trichloride	V O Cl	2.88, 13°, s	Roscoe. P.T. 1868, 1.
tt tt	££	1.841, 14°.5	D
" " ———	"	1.828, 249	Roscoe. P.T. 1868, 1.
"	"	1.86534. 0°	Thorpe. J. C. S.
" "	"	1.63073,1279.19	37. 348.
" "	"		L'Hôte. C. R. 101, 1151.
Antimony oxychloride			Acad. 1877.
Bismuth oxychloride			and Robbs. J. C.
Daubreite	Bi ₅ O ₆ Cl ₃	6.4-6.5	Domeyko. C. R. 82,
DaubreiteSulphur oxychloride Thionyl chloride	S ₂ O Cl ₄	1.656, 0°	Ogier. Ber. 15, 922.
Thionyl chioride	S O Ci,	1.975, 0	99, 255.
" "	44	1.67673, 0°) Thorpe. J. C. S.
	"	1.52143, 78°.8_	37, 354. Nasini. Bei. 9, 324.
Sulphuryl chloride	80°C	1.6554, 10°.4	Nasını. Bei. 9, 324. Behrends. J. 30, 210.
" " "	"	1.70814, 0°	Thorpe. J. C. S.
Disulphuryl chloride	"	1.56025, 69°.95	37, 359.
Disulphuryl chloride	S ₂ O ₅ Cl ₂	1.818, 16°	291. [121.
u u	"	1.762	Rosenstiehl. J. 14,
<i>i</i> , <i>ii</i> ,		1.819, 18	Thorne J C S
" "	"	1.60310,139°.59	Michaelis. Thorpe. J. C. S. 37, 360. Thorpe. J. C. S.
Chlorosulphonic acid	S O ₂ . O H. Cl	1.78474, 0°	Thorpe. J. C. S. 37, 358.
		1.54874, 155°.3 1.7633, 14°	} 37, 358. Nasini Bai 0.994
Selenyl chloride	Se O Cl.	2.44	Nasini. Bei. 9, 324. Weber. J. 12, 91.
Selenyl chloride] '	Michaelis. Z.C.13,
Chromyl dichloride	Cr O ₂ Cl ₂	1.9134, 10°	1827, 159.
	"	1.71, 21°	Walter. Ann. (2), 66, 387.
" "	"	1.92, 25°	Thorpe. J. 21, 226.
		1.7538, 117°	Ramsay. J. C. S. 85, 463.
"	"	1.96101, 0°	
Phosphorus sulphochloride		1.75780, 115°.9	87, 872. 115. Baudrimont. J. 14,
T Hoshior as an thinocurous	1 0018	1.66820, 0°	Thorpe. J. C. S.
"	"	1.45599,125°.12	37, 341.

IV. INORGANIC BROMIDES.

1st. Simple Bromides.

NAME.]	FORMULA.	Sp. Gravity.	AUTHORITY.	
Lithium 1	bromide		Li B	·	3.102, 17°	Clarke. A. J. S. (3), 18, 293.	
Sodium b	romide_		Na B	r	2.952	Schiff. A. C. P. 108, 21.	
44	" _		"		3.079, 17°.5		
44	" -		"		3.011	Tschermak. S. W. A. 45, 603.	
44	" -		"		,	C. R. 77, 579.	
66		Jused	"		2.448	141.	
44	" _		Na B	r. 4 H ₂ O	Į.	Playfair and Joule. M. C. S. 2, 401.	
			77 D	"	1	Favre and Valson. C. R. 77, 579.	
		1e	K.Bi			Karsten. Schw. J. 65, 894.	
44	" _					Playfair and Joule. M. C. S. 2, 401.	
66	" -		"		,	226.	
44	44 775-		"			Beamer. F. W. C.	
46		sed			2.199	Quincke. P. A. 138, 141.	
44	" No	t pressed	"		2.505 2.704 } 18°	S B 10 9794	
		rice "	"		2.700	Spring. Ber. 16,2724.	
		le		3r	3.358	Setterberg. Of. Ak. St. 1882, 6, 23.	
Cæsium	bromide		Cs B	r	4.463	"	
		aide	Am]	Br	2.379	Schröder. P. A. 106, 226.	
**	"		"		2.266, 10°	Bödeker. B. D. Z.	
4.		Cryst	"		$\{2.327, \}$	Eder. Ber. 14, 511.	
"		Sublimed	"			1	
"						Stas. Mem. Acad. Belg. 43, 1.	
				3r		Karsten. Schw. J. 65, 394.	
"	"		"		6.425, m. of 7	226.	
44	"		"			Clarke. A. J. S. (3), 13, 294.	
**	" -		"			Rodwell. P. T. 1882,	
**		lolten	"			1125.	
"	**	"	"		6.2	Quincke. P. A. 138, 141.	
77L - 11:	. hamid	e. Precip.	TIB	r	7.540, 210.7		
inalliun "	i promia	After fusion.	","	r	1	Keck. F. W. C.	
Zinc bro	mide		Zn E	Br	3.643, 100	Bödeker. B. D. Z.	
		le		3r	4 710 \	Bödeker and Gie-	
11	11					secke. B. D. Z.	

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Cadmium bromide Mercurous bromide	Cd Br ₂ Hg Br	4.794, 19°.9 7.307	Knight. F. W. C. Karsten. Schw. J. 65, 394.
Mercuric bromide	Hg Br ₂	5.9202 5.7298, 16° _)	
" "		5.7298, 16° _ } 5.7461, 18° _ }	Beamer. F. W. C.
Calcium bromide	Ca Br ₂ Sr Br ₂	3.32, 11°	Bödeker. B. D. Z.
" "	"	3.985, 20°.5	Favre and Valson. C. R. 77, 579.
." . "	Sr Br ₂ . 6 H ₂ O	2.358, 18°	
Barium bromide	Ba Br ₂	3.690	Schiff. A. C. P. 108, 21.
" " Cryst	Ba Br ₂ . 2 H ₂ O	8.710)	
" " Pulv	"	3.588 }	Schröder. Dm. 1873.
	"	3.679, 24°.8	Harper. F. W. C.
Lead bromide	-		Karsten. Schw. J. 65, 894.
" " Ppt	"		Kremers. J. 5, 397. Keck. F. W. C.
Cuprous bromide		4.72, 120	Bödeker. B. D. Z.
Boron tribromide	Cu Br B Br ₃	1	Wöhler and Deville. J. 10, 94.
Aluminum bromide		1	Deville and Troost.
Didymium bromide	Di Br ₃ . 6 H ₂ O	$\left \begin{array}{c} 2.803 \\ 2.817 \end{array} \right \ \ 20^{\circ}.7 \ \ .$	Cleve. U. N. A. 1885.
Samarium bromide	Sn Br ₃ . 6 H ₂ O	$\left[\begin{array}{c} 2.969 \\ 2.973 \end{array} \right] \ 21^{\circ}.8 \ _{-}$	
Silicon tetrabromide	-		20.28
Titanium tetrabromide Tin dibromide	Ti Br ₄	2.6	Duppa. J. 9, 365.
		i	A. C. P. 223, 823,
Tin tetrabromide	Sn Br.	3.322, 39°, 1 3.349, 35°	Bödeker. B. D. Z. Raymann and Preis.
Phosphorus tribromide	1	1	A. C. P. 223, 328.
	ł	1	Pierre. Ann. (3), 20, 11.
	(¢	2.92311, 0°	Thorpe. J. C. S.
Arsenic tribromide Antimony tribromide	Sb Br ₃	3.66, 15° 3.641, 90°, 1	Bödeker. B. D. Z. Kopp. A. C. P. 95,
	"	3.473, 96°, 1	352. Mac Ivor. C. N. 29, 179.
	"	i	Cooke. Proc. Am.
Bismuth tribromide	Bi Brs	5.6041	Bödeker. B. D. Z.
" " <u></u>		5.4, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 87.
Sulphur bromide	S ₂ Br ₂	2.628, 4°	Hannay. J. C. S. 33, 288.
Selenium bromide	Se ₂ Br ₂	8.604, 15°	Schneider. P. A. 128, 327.
	1	1	•

2d. Double, Oxy-, and Sulpho-Bromides.

Name.	Formula.	Sp. Gravity.	Аптновіту.
Ammonium zinc bromide. Barium cadmium bromide " " Hydrogen mercury bromide. Potassium mercury bro-	Am, Zn Br, 4 H, O H Hg Br, 4 H, O K Hg Br,	2.625, 13° 3.687 3.665, 24° 8.17, fused 4.410, m. of 8_	
mide. " Potassium stannibromide. Ammonium stannibro-	K Hg Br ₃ . H ₁ O K ₂ Sn Br ₆ Am ₂ Sn Br ₆	8.865, 22° 8.788 8.505	" " " " " " Topsoë. C. C. 4, 76.
mide. Sodium platinbromide Potassium platinbromide	Na, Pt Br ₆ . 6 H ₂ O K ₂ Pt Br ₆ Am ₂ Pt Br ₆	4.68, 14° 4.541 4.200	· " "
Magnesium platinbromide Zinc platinbromide Strontium platinbromide_ Barium platinbromide	Mg Pt Br ₆ . 12 H ₂ O Zn Pt Br ₆ . 12 H ₂ O Sr Pt Br ₆ . 9 H ₂ O Ba Pt Br ₆ . 10 H ₂ O	2.877	
Lead platinbromide Manganese platinbromide Nickel platinbromide Cobalt platinbromide	Ni Pt Br 6. 6 H ₂ O Co Pt Br 6. 12 H ₂ O	2.759	" " " Two samples. Top- soë. C. C. 4, 76
Didymium auribromide Samarium auribromide "	"	3.311 (Cleve. U.N.A.1885.
Nitrosyl tribromide Phosphoryl tribromide Vanadyl tribromide " Bismuth oxybromide	V O Br ₃	2.822 2.9673, 0° } 2.9825, 14°.5 }	Landolt. J. 13, 104. Ritter. J. 8, 301. Roscoe. A. C. P. 8 Supp. Bd. 95.
Phosphorus sulphobro-mide.	P S Br ₃	2.85, 17°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 37. Michaelis. A. C. P. 164, 9.
" " ———	" P S Br ₃ . H ₂ O		Mac İvor. C. N. 29, 116. Michaelis. A. C. P. 164, 9.
" " Arsenic sulphobromide	P ₂ S ₃ Br ₄	2.2621, 17° 2.789	Hannay. J. C. S. 83, 291.

V. INORGANIC IODIDES.

1st. Simple Iodides.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium iodide	Li I	3.485, 23°	Clarke. A. J. S. (3) 13, 293.
Sodium iodide	Na I	3.450	Filhol. Ann. (3) 21, 415.
" "	"	3.654, 18°.2	Favre and Valson C. R. 77, 579.
" ". Potassium iodide		2.448, 20°.8 3.078 }	Boullay. Ann. (2)
u "	"	3.104 } 2.9084	43, 266. Karsten. Schw. J
" "	"	8.059	65, 894. Playfair and Joule
" "	"	3.056	M. C. S. 2, 401. Filhol. Ann. (3) 21, 415.
" "	"	2.850	Schiff. A. C. P. 108
« « <u></u>	"	2.970	Buignet. J. 14, 15. Schröder. P. A. 106
" "	"	3.077 } 2.497 at the	226. Braun. J. C. S. (2).
" Fused	"	melting p't. 2.497	13, 31. Quincke. P. A. 138. 141.
" "Not press'd	" "	3.012, 20° 3.110, 22° }	Spring. Ber. 16.
" "Twice" Potassium triiodide	" K I.	3.112, 20° 5 3.498	2724. Johnson. C. N. 84.
Rubidium iodide	Rb I	8.567	256. Setterberg. Of Ak
Casium iodide	Cs I	4.537	St. 1882, 6, 23.
Ammonium iodide	Am I	2.498, 11° 2.448	Bödeker. B. D. Z. Schröder. Dm. 1873.
Ammonium triiodide	Am I ₃	8.749	Johnson. C. N. 37, 246.
Iodammonium iodide	• •	2.46, 15°	Seamon. C. N. 44, 189.
Silver iodide	Ag I	5.614	Boullay. Ann. (2), 43, 266.
" "	"	5.0262	Karsten. Schw. J. 65, 394.
"	"	5.500	Filhol. Ann. (8), 21, 415.
ec ec	"	5.85	Schiff. A. C. P. 108, 21.
ee ee	"	5.650}	Schröder. P. A. 106, 226.
" " Cryst	"	5.669, 14°	Damour. Quoted, C. R. 64, 314.

,

Name.			Formula.		Sp. Gravity.	AUTHORITY.	
Silver iodide. Cryst.			TORMODA.	DI. GRAVIII.	AUTHORITI.		
			Ag	I	5.470 } 00	-	
				เเ		5.544	H.St. Claire Deville.
6.6	44	After	fusion	"		5.687	P. A. 132, 307. C.
44			pitated			5.807, 0°	R. 64, 825.
66			ompressed.	44			Fizeau.
46			rep. fusion.	44			11111111
66			one fusion.	"			
-4			Ag in H I.	"		5.812, 0°	
44				"		5.681, 0° }	Rodwell. P. T. 1882
44			fter fusion.	"		5.771, 163°	1125.
44	44		x. density.	"		5.678,	1120.
44			n. density. en	66		5.522, 527°	
44				"			Proithount Donale
••	•••	louy	rite	••		5.64—5.67	Breithaupt. Dana's Min.
44	44	61	٠	"		5.504	Domeyko. Dana's Min.
"		6	ا ،	"		5.707	Damour. J. 7, 870.
"	44			"		5.366	J.L.Smith. J.7,870.
"	66	4		4.6			
••	••			••		5.677, 14°	Damour. Quoted, C.
ML - 11:	_ :-	4:4.	Dragin	Tri T		7 079 150 5	R. 64, 314.
1 Daillu		aide.	Precip			7.072, 15°.5	Twitchell. F. W. C.
7: : -			Cast			7.0975, 14°.7	
Zinc 10	aiae			Zn i		4.696, 10°	Bödeker and Gie- secke. B. D. Z.
"				"		4.666, 14°.2	Kebler. F. W. C.
n		4:40	a variety.		[,	5.543, m. of 8)	Kebler. A. C. J. 5,
Cadmit	шю	aiue.		- Cu		5.622, m. of 8	
44		44		44		5.660, m. of 7	235. Six samples, prepared by differ-
"		66		"		5.729, m. of 6	ent methods. Tem
"		"	44	"		5.610, m, of 3	
"			.:	"		5.675, m. of 4	perutures of weigh- ing, 10°.5 to 20°.4.
"		"	"	"			Twitchell. A. C. J.
••						5.701, m. of 4_	
44		"	B	"		4 576 100	5, 235. Bödeker. B. D. Z.
••		••	β variety.	•		4.576, 10°	
"		"	"	4.4		4.612, m. of 7	Kebler. A. C. J.
4.6		4.6	"	"		4.596, m. of 7	$\left \left\{ \begin{array}{c} 5,235. \text{ Two lots,} \\ 142.4.159.4 \end{array} \right.$
				"			(14° to 15°.4.
"		"	••	•••		4.688, m. of 5_	Twitchell. A. C. J.
				**	+		5, 235.
Mercui	ous i	odide		нg	I	7.75	Boullay. Ann. (2)
							43, 266.
"		"		**		7.6445	Karsten. Schw. J.
					_		65, 394.
Mercur	ic iod	lide .		$_{ m Hg}$	I ₂	6.32	Boullay. Ann. (2),
							43, 266.
**		"		"		6.2009	Karsten. Schw. J.
							65, 394.
44		"		"		6.250	Filhol Ann. (3)
						į.	21, 415.
44		"		"		5.91	Schiff. A. C. P. 108
						1	21.
**		"		"		6.27	Tschermak. S. W.
							A. 45, 603.
"		"	Red	"		6.231, m. of 7_	Owens. F. W. C.
			"	"		R 90413	
44		46	"	"			
"		"	"	"			Rodwell and Elder.
				"			P. T. 1882, 1143.
"		٠.	Yellow	, "		⊢6.225, 126° J	1

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Mercuric iodide. Solid	Hg I ₂	6.179, 200° \	Rodwell and Elder.
" " Molten _ Strontium iodide	"	5.286, 200°)	P. T. 1882, 1143.
Barium iodide	Bo I	4.415, 10	Bödeker. B. D. Z. Filhol. Ann. (8),
Darium louide	Da 12	4.317	21, 415.
" "	Ba I,. 7 H, O	2.673, 20°.8	Leonard. F. W. C.
Lead iodide	Pb I	6.11	Boullay. Ann. (2),
16 (1	66	6.0212	43, 266.
		6.0212	Karsten. Schw. J. 65, 394.
	(6	6.384	Filhol. Ann. (8),
			21, 415.
" "	"	6.07	Schiff. A. C. P.
	"	6.207	108, 21. Schröder. P. A.
			107 118
" "	"	6.12}	Rodwell. P. T. 1882,
" " Molten	"	5.6247. 388° (1144.
Iron iodide Cuprous iodide	Fe I ₂ . 4 H ₂ O	2.878, 12°	Bödeker. B. D. Z.
Cuprous iodide	Cu I	4.410	Schiff. A. C. P. 108, 21.
		5.6986	Rodwell. P. T. 1882.
			1153.
Aluminum iodide	Al I ₃	2.63	Deville and Troost. J. 12, 26.
Tin tetriodide	Sn I,	4.696, 110	Bödeker. B. D. Z.
Tin tetriodide Arsenic triiodide	As I,	4.89, 180	"
" "	"	4.374	Schröder. Dm. 1873.
Arsenic pentiodide	As I ₅	8.93, approx	Sloan. C. N. 46,
Antimony triiodide	Sh T	5.01 100	
u	"	4.676	Schröder. Dm. 1878.
" Hexagonal	"	4.848, 24°, m.)
" Monoclinic		of 5.	Cooke. Proc. Am. Acad. 1877.
Bismuth triiodide	Ri T.	5 652 100	Bödeker. B. D. Z.
ii ii	"		Kebler. A. C. J. 5,
		·	235.
11 11	"	5.64 \ 200 }	Gott and Muir. J.
46 46	"	685 (= v)	C. S. 53, 137.

2d. Double and Oxy-Iodides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Potassium cadmium iodide Potassium mercury iodide "" "" Silver mercury iodide	K, Cd I, 2 H, O K, Hg, I, 8 H, O 2 Ag I. Hg I,	4 054 000	Leonard. F. W. C. Owens. F. W. C. Bellati and Romanese. Bei. 5, 179.
Copper mercury iodide	3 Ag I. Hg I. 2 Cu I. Hg I. 2 Cu I. 2 Hg I.	5.9802, 0° 6.0956, 0° 6.1507, 14°	Heighway. F. W. C.

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Silver copper iodide	2 Cu I. Ag I	5.7802	Rodwell. P. T. 1882, 1160.	
66 66 66	2 Cu I. 2 Ag I	5.7225	" "	
tt tt (1	2 Cu I. 8 Ag I	5.7160	44 44	
ee ee ee	2 Cu I. 4 Ag I	5.7064		
44 44 44	2 Cu I. 12 Ag I	5.6950	" "	
Silver lead iodide	Pb I ₂ . Ag I	5.923, 0°	" "	
Sodium platiniodide	Na, Pt I. 6 H, O	3.707	Topsoë. C. C. 4, 76.	
Potassium platiniodide	K, Pt I	$\begin{bmatrix} 5.154 \\ 5.198 \end{bmatrix}$ 12°	Bödeker. B. D. Z.	
"	"	5.081	Topsoë. C. C. 4, 76.	
Ammonium platiniodide	Am, Pt I	4.610	" " "	
Magnesium platiniodide	Mg Pt I. 9 H, O	3.458	44 44	
Zinc platiniodide	Zn Pt I. 9 H. O	3.689	"	
Manganese platiniodide	Mn Pt I. 9 H. O	3.604	11 A	
Iron platiniodide	Fe Pt I. 9 H. O	3.455	66 66	
Nickel platiniodide	Ni Pt I. 6 H. O	3.976	44 44	
	Ni Pt I. 9 H. O	3.549	46 66	
Cobalt platiniodide	Co Pt I. 9 H. O	3.618	££ ££	
"	Co Pt I. 12 H. O	3.048	66 66	
Schwartzembergite	Pb, I, O,	6.3	Liebe. J. 20, 1008.	
		5.7	Schwartzemberg. Dana's Min.	
Lead oxyiodide	Pb ₁₁ I ₄ O ₁₀	7.81	Cross and Sugiura. J. C. S. 33, 406.	

VI. CHLOROBROMIDES, CHLORIODIDES, AND BROMIODIDES.

Name.	FORMULA.	Sp. Gravity.	Authority.
Embolite	Ag (Cl Br)	5.31—5.43	Domeyko. Dana's Min.
"	"	5.806	Breithaupt. J. 2,
" (Cl ₃ Br ₂)		5.53	Yorke. J. C. S. 4, 150.
Lead chlorobromide Silicon chlorobromide		5.741 2.432	Iles. A. C. J. 3, 52,
Tin chlorobromide	Sn Cl Br _s	3.349, 35°	
Phosphorus oxychlorobro- mide.	_	· ·	Menschutkin. J. P. C. 98, 485.
" " "	"	2.12065, 0° 1.83844, 137°.6	Thorpe. J. C. S.
Silver chlorobromiodide*-	Ag I. 2Ag Br. 2Ag Cl	$\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rodwell. P. T. 1882.
" (Iodobromite)		5.718, 18°	Lasaulx. J. C. S. 36, 366.
" " <u></u>	Ag I. Ag Br. Ag Cl	6.1197, 0° }	Rodwell. P. T. 1882,

^{*} Rodwell's chlorobromiodides may be regarded as alloys. For each of these the higher temperature is the melting point.

Name.		Formula.	Sp. Gravity.	AUTHORITY.		
Silver c	hlorobron	niodide	2 Ag I. Ag Br. Ag (6.508, 0° } 5.6971, 826 - }	Rodwell.	P. T. 1882,
"	"		3 Ag I. Ag Br. Ag C	5.9717, 0° }	"	"
"	"		4 Ag I. Ag Br. Ag C	5.907, 0° }	،،	"

VII. AMMONIO-CHLORIDES, AMMONIO-BROMIDES, AMMONIO-IODIDES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Cadmammonium chloride	N, H, Cd. Cl,	2.682	Topsoë. C. C. 4, 76.	
Cadmammonium bromide Dimercurosammonium chloride.	N, H, Cd. Br, N H, Hg'2. Cl	8.866 6.858, m. of 2_	Playfair and Joule. M. C. S. 2, 401.	
Dimercurammonium chloride.	N ₂ H ₄ Hg" ₂ . Cl ₂	5.700		
Tetramercurammonium chloride.	N ₂ Hg'' ₄ Cl ₂ . 2 H ₂ O	7.176, m. of 2_	66 66	
Cuprammonium chloride_ Copper ammonio-chloride	N ₂ H ₆ Cu. Cl ₂ . Cu Cl ₂ . 4 N H ₃ . H ₂ O	2.194	66 66 60	
Nickel ammonio-bromide Nickel ammonio-iodide	Ni Br. 6 N H Ni I. 6 N H.	1.837	Topsoë. C. C. 4, 76.	
Purpureo-cobalt hexchlo- ride.	Co ₂ (N H ₃) ₁₀ . Cl ₆	1.802, 23°	Gibbs and Genth. A. J. S. (2), 23, 284.	
(t (t (t	دد	$1.802 \atop 1.808$ 15° {	Jörgensen. J. P. C. (2), 19, 49.	
Purpureo-cobalt hexbro-mide	Co ₂ (N H ₃) ₁₀ . Br ₆	2.483, 17°.8	(2), 20, 20, "	
Purpureo-cobalt chloro- bromide.	Co ₂ (N H ₈) ₁₀ . Cl ₄ Br ₂	2.095, 16°.8		
Purpureo-cobalt bromo- chloride. " "	1 (,3/10 2 4	$\left\{ \begin{array}{c} 2.161 \\ 2.165 \end{array} \right\} \ 17^{\circ}_{}$		
Luteo-cobalt hexchloride	Co ₂ (N H ₃) ₁₂ . Cl ₆	1.7016, 20°	Gibbs and Genth. A. J. S. (2), 23, 319.	
Purpureo-chromium hex- chloride.	Cr ₂ (N H ₃) ₁₀ . Cl ₆	1.687, 15°.5	Jörgensen. J. P. C. (2), 20, 105.	
Purpureo-chromium chlo- robromide.	Cr ₂ (N H ₃) ₁₀ . Cl ₂ Br ₄ -	2.075, 13°.8	(-), -0, -00.	
Purpureo-rhodium hex-	Rh ₂ (N H ₃) ₁₀ . Cl ₆	2.072, 18°.4	Jörgensen. J. P. C. (2), 27, 442.	
Purpureo-rhodium hex-	Rh ₂ (N H ₃) ₁₀ . Br ₆	$\begin{bmatrix} 2.648 \\ 2.650 \end{bmatrix}$ 17°.5_	Jörgensen. J. P.C. (2), 27, 464.	
Purpureo-rhodium hexio-dide. " "	Rh ₂ (N H ₃) ₁₀ . I ₆	8.110, 14°.8 8.120, 16°.2	Jörgensen. J. P. C. (2), 27, 471.	

VIII. INORGANIC OXIDES.

1st. Simple Oxides.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY. Standard of comparison.	
Water*	H, O	1.0000, 4°.07		
	"	.999889, 0°	H ₂ O at 3°.78=1.0.	
	"	.988433, 500	Muncke. Mém.	
**	"	.958737, 100° ₋	Acad. St. Peters- burg, 1831.	
44	"	.999887, 0°)	(Stumpfer. H. O at	
		.992247, 40°	{ 3°.75=1.0°. P.	
	"	.999862, 0°	A. 21, 75.	
		.999002, 0	Despretz. Ann. (2), 70, 5.	
"	"	.99988, 0°	ו (
44	'	.95903, 95°.8 _		
"	"	.93078, 130°.8		
··	"	.93123, 131°	Mendelejeff. A. C.	
"	"	.93035, 131°.1	P. 119, 1.	
	"	.90783 90811 } 156°.7] - 110, 11	
· · · · · · · · · · · · · · · · · · ·	"		iţ	
"	"	.90715, 157°	J	
		.95892, 100°	Buff. H ₂ O at 0°=1.0. A. C. P. 4th Supp. 129.	
	"	.999866, 0°) 120.	
	166	1.000000, 40.07	Rossetti. Ann. (4)	
.,		.99975, 10°	10, 471. Sp. Gr.	
	"	.99826. 20°	given for every	
		.99575, 30°	degree from 0	
"		.99238, 40°	to 50°.	
**	"	.98835, 500	l i	
"	"	.99831, 20°	Bedson and Williams. Ber. 14 2550.	
44	11	.9543, 100°.1	Schiff. Ber. 14, 2763.	
:6	"	L OEUE'S	1	
**	11	.9587 100°.3	Schiff. Ber. 14, 2766	
Ice		.91812, — 1°	Brunner. H, O a	
••		.91912, —10°	0°=1.0. P. A	
14		.92025, —20° -	64, 113.	
"		.9184, m. of 2	Playfair and Joule.	
"	. "	.9175	M. C. S. 2, 401. Dufour. P. M. (4) 5, 20.	
		.918 }	Duvernoy. P. A	
"		.922}	117, 454.	
4	"	.91674	Bunsen. Ann. (4) 23, 65.	

^{*} For water and ice the table makes no pretense at completeness. Only a few important values are given out of a vast number.

† See Playfair and Joule for older values.

-					<u> </u>	
Name.		FORMULA.		SP. GRAVITY.	Астновіту.	
Ice		H, O		.91686, 0°	Petterson. "Properties of water and ice."	
Hydroge	n diox	ide	Н, (),	1.452	Thénard. Watts'
Lithium	oxide		Li ₄ O		2.102, 15°	Brauner and Watts. P. M. (5), 11, 60.
			•	0		Karsten. Schw. J. 65, 394.
Potassius Silver m	m oxid onoxid	e e	K ₂ (Ag ₂	0	2.656 7.143, 16°.6	" Herapath. P. M. 64, 321.
"	46		"		7.250	Boullay. Ann. (2), 43, 266.
"	"		"		8.2558	Karsten. Schw. J. 65, 394.
"	66		46	*	7.147	Playfair and Joule. M. C. S. 8, 84,
"	"		66		7.521, m. of 2_	Schröder. Ber. 9, 1888.
Glucinu		e	Ag. Gi (0,	5.474(impure) 2.967	Mahla. J. 5, 424. Ekeberg. P. M. (1), 14, 846.
"	"		66		$\left\{ \begin{array}{l} 8.02 \\ 8.06 \end{array} \right\}$ cryst	Ebelmen. J. 4, 15.
"	44		"		3.083, powder	1
"	"				8.09 "	
"	"		"		3.096, 12°, ppt. 3.027, 10°, ig- nited.	H. Rose. P. A. 74, 433.
"			**		8.021,9°, cryst.	
46	"		"		3.016	Nilson and Petters- son. C. R. 91, 232.
"	"		"		3.18, 14°, cryst.	
Magnesi	um oxi	de	Mg	0	3.674, periclase 3.750 "	Damour. J. 2, 732. Scacchi. J. P. C.
44		1	"		3.642, 120 "	28, 486. Cossa. Ber. 10, 1747.
46	6	·	"		3.200	Karsten. Schw. J. 65, 894.
44	•		"		8.644 }	H. Rose. P. A. 74,
"	6		"		3.650 }	437.
"	6				8.686, cryst 8.42, amor-	Ebelmen. J. 4, 15, Brügelmann. Ber.
46			"		phous. 3.1982,0°, cal-	18, 1741.
44					cined at 350° 3.2014, 0°, cal-	
"			"		cined at 440° 3.2482, 0°, cal-	
					cined at low redness.	Ditte. J. C. S. (2), 9, 870.
46	•		"		3.5699,0°, cal. at bright redness.	
44			"		2.74)	From three different
"	6		"		. 8.056 }	sources. Beckurts.
	6	'	"		8.69)	Ber. 14, 2068.

								
	נ	MAK	E.		:	Formula.	SP. GRAVITY.	AUTHORITY.
Zine		e			Zn O		5.432	Mohs. See Böttger.
**	"				"		5.600	Boullay. Ann. (2), 43, 266.
44	"		, 		"		5.7344	Karsten. Schw. J. 65, 394.
"	"		- -		"		5.6067}	Brooks. P. A. 74,
"	"				"		5.6570 } 5.5298, cryst	439. W. and T. J. Hera-
							0.0200, 0.1, 0.1	path. J. C. S. 1,
"	""				"		5.612	Filhol. Ann. (3), 21, 415.
44	"				"		5.782,15°, cryst	(2), 4, 286.
44	"				"		5.47, amor- phous.	Brügelmann. Ber. 13, 1741.
"	"		ite _		61		5.684	Blake. J. 13, 752.
••	••	Aru	i. cr	yst			5.5—5.6	Gorgeu. B. S. C. 47, 146.
Cadn			e -				8.183, 16°.5	Herapath. P. M. 64, 821.
		"			"		6.9502	Karsten. Schw. J. 65, 394.
-		" :-		st	u u ()	8.1108 10.69, 16°.5	Werther. J. 5, 890.
merc	urou	SOXIU	16		1	/	10.09, 10 .5	Herapath. P. M. 64, 321.
		44			" ,		8.9503	Karsten. Schw. J. 65, 394.
	uric	oxide			Hg O)	11.074, 17°.5 }	Herapath. P. M. 64,
_	16	"			"		11.085, 185.8)	321. Boullay. Ann. (2),
	14	"			"		11.1909	43, 266. Karsten. Schw. J.
	: 4				"		11.29	65, 394. Leroyer and Dumas.
	16	"			41		11.344	See Böttger. Playfair and Joule.
4		• •			"		11.136	M. C. S. 3, 84. Playfair and Joule.
Calci	um o	xide.	Lim	e	Ca O		3.179	J. C. S. 1, 137. Boullay. Ann. (2),
4	•	"	"		"		3.16105	43, 266. Karsten. Schw. J. 65, 894.
4	•	"	"		"		3.180	Filhol. Ann. (3), 21, 415.
4.0	•	44	"		"		3.251, cryst	Brügelmann. P. A. (2), 4, 282.
	4	44	"		"	·	3.32 "	Levallois and Meu- nier. C. R. 90,
Stron	tium	oxid	e		Sr O		3.9321	1566. Karsten. Schw. J.
	t	"			"		4.611	65, 394. Filhol. Ann. (3), 21, 415.
"	•	"		 -	"		4.750, cryst	Brügelmann. P. A. (2), 4, 282.
"	•	44			"		4.51, amorphous.	Brügelmann. Ber. 13, 1741.

	Nam	E.		FORMULA.	Sp. Gravity.	AUTHOBITY.	
Barium	oxide .		Ba O		4.0	Fourcroy. See Bött-	
"	".		"		4.2583	ger. Tünnermann. See Böttger.	
"	" .		"		4.7322	Karsten. Schw. J. 65, 394.	
"	" .		"		4.829 }	Playfair and Joule. M. C. S. 3, 84.	
"	"		"		5.456	Filhol. Ann. (8), 21, 415.	
"	" .		"		5.722, cryst	Brügelmann. P. A. (2), 4, 282.	
"	"		"		5.32 "	Brügelmann. Ber. 13, 1741.	
Barium	dioxid	e	Ba O	2	4.958	Playfair and Joule. M. C. S. 3, 84.	
					1.803	Davy. See Böttger.	
"	"		"		1.83	Berzelius. "	
"	"				1.75 1.825, 21°.6	Breithaupt. " Favre and Valson.	
"	"		"			C. R. 77, 579.	
"	"		"		1.8766, 0° 1.8476, 12°	Ditte. C. N. 36, 287.	
"	"		"		1.6988, 80°	, ·	
64 64	"		"		1.848, 14°.4 1.853, 15°.8	Bedson and Williams. Ber. 14,	
"	46	Fused	"		1.75	Quincke. P. A. 185,	
Alumin	um tric	oxide	Al ₂ O	8	4.152, 4°	642. Royer and Dumas. Quoted by Rose, P. A. 47, 429.	
"	٠,,		"		3.944)	Mohs and Breit-	
"	"		44		4.004}	haupt. Quoted by Rose.	
"			16		4.154	Filhol. Ann. (8), 21, 415.	
"	"		"		3.928, cryst	Ebelmen. J. 414.	
"	44		**		3.870 Artifi- 3.899 cial.		
"	48		"		3.750 Heated		
"	"		"		9 795) III WIIIU	H. Rose. P. A.	
"	"		"		8.999, ignited in porcelain	74, 429.	
**	"		"		furnace. 4.0067, 14°, powdered.		
"	"			v	3.989 \ \(\frac{13^{\circ}.5}{0.5},	Schaffgotsch P. A.	
44	16		"		4.008 after ignit'n	74, 429.	
"	"	*	"		3.990	Nilson and Petters-	
44	"	Artificial cryst.	66		3.98, 14°	son. C. R. 91, 232. Grandeau. Ann. (6),	
"	**		Al, C),	3.5311	8, 193. Brisson. P. des C.	
44	"	"	i.		3.994, m. of 9_	Schaffgotsch. P. A. 74, 429.	

2	Name.		:	FORMULA.	Sp. Gravity.	AUTHORITY.
Aluminun	n trioxi	de. Ruby	Al, O	8	3.95, natural)	Williams. C. N. 28,
"	"	Sapphire	"		3.7, artificial } 3.562	101. Muschenbroek. See Böttger.
44	"	"	"		3.9998 }	Schaffgotsch. P. A.
44	"	"	"		4.0001 § 8.98	74, 429. Williams. C. N. 28,
66 .	"	"	"		8.990	Nilson and Petters-
44		orundum	"		8.899, 15°.5_)	son. C. R. 91, 282.
44 44	"	"	""		3.929 } 3.974 }	Schaffgotsch. P. A. 74, 429.
44	• 6	"	"		4.022)	
**	44	"	"		3.992, after } ignition.	Deville. J. 8, 15.
- 4 6 - 4 6	"	"	"		3.979 \ 150 5	Church. Geol. Mag. (2), 2, 820.
Scandium	trioxi	de	Sc. O		3.8	Cleve. C. R. 89, 420.
"	"		7.		3.864	Nilson. C. R. 91, 118.
Yttrium t	rioxide		Yt ₂ O	3	4.842	Ekeberg. P. M. 14, 346.
44	"		"		5.028, 22°	Cleveand Hoeglund. 1873.
66	"		"		5.046	Nilson and Pettersson. C. R. 91, 232.
Indium tri	ioxide .		In, O	8	7.179	11 11
Lanthanu	m trio	xide	La ₂ O	3	5.94 5.296, 16°	Nordenskiöld. J. 14,
"		"	"		6.53. 17°	197. Cleve. B. S. C. 21, 196.
"		"	"		6.480	Nilson and Petters- son. C. R. 91, 232.
Didymiun	n trioxi	ide	Di ₂ O	3	6.64 5.825, 14°	Hermann. J. 14, 195. Nordenskiöld. J. 14, 197.
"	"		"		6.852	Cleve. J. C. S. (2), 13, 340.
"	"	;	"		6.950	Nilson and Petters- son. C. R. 91, 232.
"	"		"		$\left\{ egin{array}{l} 7.177 \\ 7.182 \end{array} \right\} \ 13^{\circ}.5 \ .$	Cleve. U. N. A. 1885.
Didymium	n pento	xide	Di ₂ O	5		Brauner. Ber. 15, 113.
Samarium	trioxi	de	Sm ₂)3	8.311, 13° }	Cleve. U. N. A. 1885.
Erbium tr	ioxide		Er, O	3	8.8	Cleveand Hoeglund.
"	"		"		8.9}	B. S. C. 18, 195. Nilson and Petters- son. C. R. 91,
77.4 l. !		do	V).	``	0 175	232.
Carbon die	oxide.	L	C O.		.9. —20°	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
"	"	"	"") ₃	83, 00}	Thilorier. Ann. (2),
44	46	"	1 44		1.6, +30°)	60, 427.

	Name	•		FORMULA.	Sp. Gravity.	AUTHORITY.
Carbon	dioxide.	L	C 0,		.93, 0° .8825, 6°.4 .853, 10°.6}	Mitchell. B. J. 22,
et et et	66 66 66	46	11		.7385, 20°.3_ } .9952, —10° } .9710, —5° _ .9471, 0°	77.
66 66 66	66 66 66	##	46 46		.9222, +5° _ .8948, 10° .8635, 15° .8267, 20°	D'Andreéff. Ann. (8), 56, 317.
66 66 68	66 66 66 ·	"	46 46		.7831, 25°] 1.057, —34°] 1.016, —25°] .966, —11°.5	
66 66 66	44 44 44	"	46 46 46		.910, —1°.6. .907, +1°.8. .868, 6°.8 .840, 11°	Cailletet and Mathias. C. R. 102, 1202.
66 66	66 66 66	Solid	61 64 64		.788, 15°.9 .726, 22°.2 1.188 1.199	Landolt. Ber 17, 311.
"	" monoxid	"	si O		1.58—1.6 2.893, 4°	Dewar. Read at Am. Assoc. in 1884. Mabery. A. C. J. 9, 15.
		Artif		!	2.20, 12°.5, m. of 9.	Schaffgotsch. P. A. 68, 147. Ullik. Ber. 11,
"	"	Quartz	"		2.822 } 2.324 } 2.653, cryst	2125. From gelatinous silica, ignited.
11 11	66 66	" "	"		2.659, ameth'st 2.744	
66 66	66 66	"	"		2.658 " 2.651, rose 2.658 " 2.658 "	Breithaupt. Schw. J. 68, 411.
" "	66 66	" -	- "		2.618, milky 2.6354 } 2.6541 }	Beudant. P. A. 14, 474. Extremes of eleven experi-
"	"	" -	- "		2.61	Meumann. P. A. 23, 1. Schaffgotsch.* P. A.
"	"	" -	- "		2.653, 13°, m. of 5. 2.656, cryst 2.22, after fu-	68, 147. Beville. J. 8, 14.
"	u	" -	- "		sion. 2.65259, 18°	Miller. P. M. (4), 3, 194.

^{*}See the same paper for many determinations of the specific gravity of opaline minerals.

	Nam	E.	FORMULA.	Sp. Gravity.	AUTHORITY.
Silicon	dioxide '' '' '' '' '' '' ''	. Quartz	Si O ₂	2.6507, 0° 2.6502, 5° 2.6498, 10° 2.6498, 15° 2.6488, 20° 2.6484, 25° 2.6479, 30° 2.6460, 50° 2.6409, 100°	Dibbits. (Rock crystal.) Bei. 5, 81. Calculated from sp. g. determinations by Steinheil, datu for expansion of water by Regnault and Kopp, and the expansion of quartz as determined by
44 46 46	66 66	Tridymite	Si O ₂	2.295 2.326 } 15°-16° 2.282, 18°.5 2.311)	Pfaffand Fizeau. Vom Rath. J. 21, 1001.
46 46	"	" "	"	2.817 Artif. 2.878 2.30, 16°, "	G. Rose. Ber. 2, 888. Hautefeuille. P. M.
"	"'	 -Asmannite	"	2.247	(5), 6, 78. v. Rath. A. J. S. (3),
Titaniu	m dioxi	de	Ti O ₂	4.18 3.9311, artif	7, 149. Klaproth. Karsten. Schw. J. 65, 394.
££	"		"	4.253, powder 4.255, ignited	Rose.
16	"	Rutile	"	4.249 4.241—4.245	Mohs. See Böttger. Scheerer. P. A. 65, 296.
"	"	"	"	$\left\{ egin{array}{l} 4.250 \ 4.291 \ \end{array} ight\}$	Breithaupt.
66 66 66	44 44 44	" " "	ee	4.420, 0° 4.56 4.26, artificial. 4.283 " 4.3 "	Kopp. Müller. J. 5, 847. Ebelmen. J. 4, 15, and J. 12, 14. Hautefeuille. J. 16,
"	"	" Brookite_	"	4.173—4.278 4.128)	212. Lasaulx. J. 36, 1840.
44	"	" "	44 44	4.131 4.165	H. Rose.
"	"		"	4.166 3.952, orkan- site.	Breithaupt. J. 2,730.
44	"	"	<i>u</i>	$\left\{ egin{array}{lll} 3.892 & \ 3.949 & \end{array} ight\}$	Rammelsberg. J. 2, 730.
**	44	" "	"	4.03, arkansite	Damour. J. 2, 731.
66 66	44 44 44	" "	"	4.085	Whitney. J. 2, 731. Frödmann. J. 3, 704. Beck. J. 3, 704. Hautefeuille. J. 17,
46	"	Anatase_	li	3.857	214. Vauquelin.
"	"	"	"	3.826	Mohs. See Böttger. Breithaupt.

X.	TALK.	DESCRI	rei (èravite	LITHORITY.
Tiemus	Alle Character II	ņ.		Tripell.
			; J.890	I Ruse.
	-			
	**		4.0'	Zamour. J. 10, 661.
			U.T. artiness	Emperenille. J. 17.
-	-			
			4.700. 165	_ ₩ nkier. Ber. 19, 154.
Interior -	. UNE	• • • • • • • • • • • • • • • • • • • •	4.80	Engerth. See Bött- gir
				- Bileran J. A. 349.
			4.9	_ Benin. J. 4. 350.
	~ · · · · ·		5.4%	. Berneri J. 19, 191.
			5.74.	Normanici id. P. A.
			5.710 - 134.	
	~~~		5. <b>624</b>	The fift.
			5.42. ervsi	Eng. A. C. P. 159,
	- 15		5.52. noris	1.5
			5.850	Mil. Nilson and Peters-
II. monaz	<del>47</del>	· (	6.666. 16°.5	son. C. R. 91, 232. Herapath. P. M. 64,
				<b>22</b> 1.
•	'		4.9797.0°.oliv	
•		`	0.1088.0°.duri	Ditte. Ann. (5), 27,
			green.	169 All crystal-
			4.600.0°, blac	169. All crystal- line. Prepared by
		·	1254.0°.dur	different meth-
			violet.	- 1
		·	6.4465.0°. ditt	0
			heated to 300°	
Tir dioxide	·: :\$1	r. G	1.,91)	_ Mohs. See Büttger.
		· · · · · · · · · · · · · · · · · · ·		_ Herapath. P. M. 64, 321.
4.			6.90	Boullay. Ann. (2), 43. 266.
				Breithaupt.
			(.180)	•
			6.952	Neumann. P. A. 22, 1.
			6.831, 0°	. Kopp.
	Artif. cryst		6.72	Deubrée. J. 12, 11.
		.,	6.849	H. Rose.
			6.978	II. Mose.
			6.7120. 40	Playfair and Joule. J. C. S. 1, 137.
		.,	6.758	_ Mallet. J. 8, 705.
		.,	6.862	Bergemann. J. 10,
	:		l	661.
			6.8482 ( 15°.5	kin .
		··	6.8482   color	J i
		··	6.8489 Colo	' 1 1
	;	4.	6.704, 15°.5,	Cassiterite from
				Bolivia. Forbes.
			yellow. 6.7021. 15°.5, black.	P. M. (4), 80,139.
	Artif. cryst	ı.	6.019	Leeds

	NA	ME.		Formula.	Sp. Gravity.	Authority.	
Tin di	ioxide.	Artif. cryst	Sn O	2	6.70	Levy and Bourgeois. Bei. 6, 581.	
Lead hemioxide			Pb ₂ O		9.772	Playfair and Joule.	
Lead	monoxi	de	Pb C		9.277, 17°.5		
"	"		"		9.500	321. Boullay. See Bött-	
"	44		٠,		9.2092	ger. Kursten. Schw. J.	
"	"	, <b></b>	٠.		9.250	65, 394. Playfair and Joule.	
44	44		"		9.861	M. C. S. 8, 84. Filhol. Ann. (8), 21,	
"	44		"		9.3634, 4°	415. Playfair and Joule.	
"	**		"		8.02, cryst	J. C. S. 1, 137. Grailich. J. 11, 186.	
44	"		"		9.1699, green-	)	
44	44		"		ish yellow. 9.2089, yellow	Ditte. C. R. 94,	
	"		"		9.2089, yellow 9.8835, brown-	1810. Samples	
					ish yellow.	differently pre-	
44	44		"		9.5605, green-	pared by boiling	
44	"		"		ish gray. 9.4223, dark	Pb (O H), with K O H.	
44			"		green. 9.3757		
	44		"		9.29, 15°, yel-	K	
4.6			"		low cryst. 9.126,15°, red		
••	*-				cryst.		
**	"		"		9.125, 14°, red cryst.	Geuther. A. C. P.	
	44		"		9.09, 15°, red pulv.	219, 60–61.	
4.6	"		"		8.74, 14°, red, very pure.	[]	
Lead	dioxide		Pb (	),	8.902, 16°.5	Herapath. P. M. 64,	
4.	"		"		8.933	321. Karsten. Schw. J. 65, 894.	
"	"		"		8.756}	Playfair and Joule.	
	**		"			M. C. S. 8, 84.	
44	"				9.045	Wernicke. J. C. S. (2), 9, 806.	
Miniu	ım		Pb ₃	0,	8.94	Muschenbroek. Watts' Dict.	
41			44		9.096, 15°	Herapath. P. M. 64, 321.	
61			"		9.190	Boullay. Ann. (2), 43, 266.	
•			"		8.62	Karsten. Schw. J. 65, 894.	
Ceriu	m diox	ide		) ₂ <b>-</b>		" "	
4			"		6.00	Hermann. J. P. C. 92, 113.	
6			"		$\left\{ egin{array}{c} 6.93 \ 6.94 \ \end{array}  ight\}$ 15°.5 $\left\{ \right.$	Nordenskiöld. J. 14, 184.	

N	AME.			Formula.	Sp. GRAVITY.	AUTHORITY.
Cerium dio	xide		Ce O			Nordenskiöld. J. 14, 184.
**	"		"		cryst. } 6.739	Nilson and Peters- son. C. R. 91,
Thorium di	ioxide* .		Th O	1	9.402	232. Berzelius. P. A. 16,
"	" -		"		9.21	385. Nordenskiöld and Chydenius. J. 13, 184.
44	"		"			Chydenius. J. 16,
"			"		9.200 }	194.
	-					Nilson and Pettersson. C. R. 91, 232.
"			"		10.2199 } 170-	Nilson. Ber. 15,2586.
"			"		10.2206 } 10.2206   11 - 1   1   1   1   1   1   1   1	Troost and Ouvrard.
	-				10.0.0, 10	C. R. 102, 1422.
Nitrogen m	onoxide	. L	N, O			·
"	"		"		9370, 0°	
44	"				.9177, +5° _ .8964, 10° .8704, 15°	D'Andreéff. Ann.
"	"		"		.8704, 15°	(8), 56, 817.
**	**		"		1.8865. 209 1	•
"	"		"		.9004, 0° .9484	Will. C. N.28, 170. Wroblevsky. C. R. 97, 166.
"	**		"		1.002, -20°.6	7 77, 100.
44	46		"		.952. —11°.6	
44 .	"		46		.980. —5°.5	
"	"		"		.912, —2°.2 .849, +6°.6	Cailletet and Ma-
"	"		"		.849, +6°.6 .810, 11°.7	thias. C. R. 102,
44	**		**		.758, 19°.8	1202.
44	"		"		.698, 23°.7	li
Nitrogen te	troxide.	L	N, O		1.451	Dulong. Schw. J. 18, 177.
"	"		41		1.42	Mitscherlich. Schw. J. 68, 109.
"	"		"		1.4908, 00	Thorpe. J. C. S.
Phosphorus		do			1.43958, 21°.64 2.387	§ 87, 224.   Brisson. P. des C.
Vanadium			$V_2^2 O_3^5$		8.64, 200	Schafarik. J. P. C. 76, 142.
Vanadium	trioxide		V, O,		4.72, 16°, m. of 8.	Schafarik. J. P. C. 90, 12.
Vanadium	pentoxid	e	V, O,		8.472) (	Schafarik. J. P. C.
"	"		"		8.510 } 20° { 3.85	76, 142. J. J. Watts. Roscoe and Schorlem-
						mer's Treatise.
	xide		As, O	8	1	LeRoyerand Dumas. Gm. H. 1, 69.
44	"		"		8.690 )	Leonhard.
••			••		8.710 }	

[•] For this sub-tance Nilson's determination is the only one of value.

	NAM	E.	F	ORMULA.	Sp. Gravity.	AUTHORITY.
Arsenic t	trioxid	e	As ₂ O ₃		3.695, octahe- dral. 3.7385, amor-	Guibourt. B. J. 7,
44	"		"		phous. 3.729, 17°.2	Herapath. P.M.64,
44	"		"		8.7026 } 3.7202 }	821. Karsten. Schw. J. 65, 894.
44	4.6		"		8.798	Taylor. Gm. H.
44	"		"		3.884	Filhol. Ann. (3), 21, 415.
. ".	и		."		8.85, native	Claudet. J. 21, 230.
_			As ₂ O _t	,	8.7842	Karsten. Schw. J. 65, 894.
44	"				1 4 4 4 4 4	Playfair and Joule.
"	44		"		4.250	M. C. S. 3, 83. Filhol. Ann. (8), 21, 415.
Antimon	y triox	ide	Sb ₂ ,O ₃		5.566 5.778	Mohs. Sec Böttger. Boullay. Ann. (2),
"	"		"		6.6952	43, 266. Karsten. Schw. J.
"	"		**		5.251	65, 894. Playfair and Joule.
"	"		"		5.11, octahedral. 3.72, prismatic.	M. C. S. 3, 83. Terreil. J. P. C. 98, 154.
			"			Dana's Mineralogy.
Senarmon	tite				5.225.30	" "
Antimon	y tetro	xide				Playfair and Joule. M. C. S. 3, 83.
Cervantit Antimon	e y pent	oxide	Sb ₂ O ₅		4.084 6.525	Dana's Mineralogy. Boullay. Ann. (2), 43, 266.
	4.6		"		3.779	Playfair and Joule. M. C. S. 8, 83.
Bismuth	trioxid	le	Bi ₂ O ₃		8.211, 18°.3	Hernpath. P. M. 64, 321.
tt	"		"		8.449	Le Royer and Du- mas. See Böttger.
**	"		"			Karsten. Schw. J. 65, 394.
• •			"			
## ##	"		"		8.855 }	
Bismuth 1	tetroxi	de	Bi ₂ O ₄ .		8.868 } 5.6, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Bismu <b>t</b> h 1	pentox	ide	Bi2O5		$\begin{bmatrix} 5.917 \\ 5.919 \end{bmatrix}$ 15° {	Brauner and Watts. P. M. (5), 11, 60.
4.6	11		"		5.1, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Columbiu "	m pen	toxide	Cb ₂ O ₅		4.56 Extremes of several determinations.	H. Rose. J. 1, 405.
_	s G	1		ı	,	

NAME.			F	ORMULA.	SP. G	RAVITY.	Астновіту.
Columbiun	n pento:	cide	Сь <u>.</u> О	<b>,</b>	: ' 6.140 6.146		
44	"		"			K,5,0, ditto, ig-	
46	44		"		nit 5.83,	ed. more	
					stro	ongly ig- ed.	
44	44		"		5.90	) '	H. Rose. J. 12, 158
"	46		4.		-; 5.98	From	For full details a
"	"				5.706	Cb Cl3	to modes of prep-
44	"		44		; 6.239	J	aration, charac-
••	••		••			, ditto, ig-	ter of samples
"	4.		"		5.79,	more more ongly ig-	etc., see the original paper.
					nit		
46	4.6		"		¹ 5.51 .		
44	"		66		5.52		j .
44	44		44		. · 4.56 (	Extreme- of several	)
64	**		66		6.54	determi-	H. Rose. J. 13, 148
44	44		44		. 5.20	nations.	Nordenskiöld. J. 14
44	"		66			cryst.	209.
66	44				( 4.37		1
••	••		••		(   4. <del>4</del> 6	Prep. by two	Marignac. J. 18
"	"		"		$\left\{ egin{array}{l} 4.51 \ 4.53 \end{array}  ight\}$	methods	198.
"	"		46		. <b>5.00</b> (		Hermann. J. 18, 209
44	"		"		<b>4.3</b> 1 .	اـــــا ا	Knop. A. C. P. 159 36.
Cantalum p	pentoxid	le	Ta, O,		7.03 (	of several	)
"	"				8.26	determi- nations. From	H. Rose. J. 1, 404
66	"		"		7.055		
66	4.		"		7.065	,	
					, <b></b>	K,S,O,	i
"	66		"		7.986 nit	, ditto, ig- ed.	
**	44		**			} From	
"	**		44		<b>- 7.280</b>	Ta Cl	
"	"		64		7.284		H. Rose. J. 10, 178
"	" .		**		7.994		For full detail
44	"		"		7.652	ited. , ditto, re strong-	paper.
66	66		66		ly. 8.257 pore	, ditto, in celain fur-	
66	"		"		7.00		Hermann. J. 18, 203
46	"		4.6			from Ta	1
44	"		"		Cl	, ignited. from NH	Marignac. J. P. C

	NAME.			FORMULA.	SP. GRAVITY.	AUTHORITY.	
Tantalum pentoxide			Ta.	O ₅	7.60 \ From K	Marignac. J. P.C.	
4.6			44		7.64 salt.	99, 88.	
44	4.6	manual.	46		7.234 }	Oesten. P. A. 100,	
44	11		44		7.258	842.	
Sulphur	dioxide.	L	S O ₂		1.42	Faraday. P. T. 1823, 189.	
14	11		**		1.45	Bussy. P. A. 1, 287.	
44	4.4		44		1.4911, -20°.5	)	
44	4.0		- 64		1.4609, —9°.9 1.4384, —2°.08	li i	
44	66				1.4384, -2°.08		
44	**		64		1.4318, —0°.25		
44	44		44		$1.4252, +2^{\circ}.8$		
44	44		11		1.4205, 4°.51		
**	"		"		1.4102, 8°.27		
66	44		46		1.4017, 110.5	D'Andreeff. Ann.	
**	**		64		1.3887, 16°.43 1.3769, 20°.63	(3), 56, 317.	
44			**		1.3673, 23°.91		
66	44		44		1.3587, 26°.9		
6.6	14	00000	44		1.3513. 29°.57	1	
44		100000	"		1.8415, 82°.96		
4.6	**		- 64		1.3350, 35.029		
4.6	44		16	f	1.3258, 38°.65	1	
22	44			*************	1.4338, 0°	ĺ	
46	**		11	***************************************	1.3757, 21°.7	ĺ	
4.5	46		- 11		1.3374, 35°.2		
**	44		"	************	1.2872, 52°	11	
44	**		44		1.2523, 62°		
44	44		44		1.1845, 82°.4		
44	44	,	41		1.1041, 102°.4	0.00	
44	44		**	***********	1.0166, 1200.45	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
44	11		11		. 9560, 130°.3	thias. C. R. 104, 1563. 156° is the	
44	11		11	***************************************	.8690, 140°,8 .8065, 146°.6	critical tempera-	
14	24		11	********	.7817, 1510.75	ture.	
4.6	4.4	6000	44		.6706, 154°.3	Luic.	
44	44	00000	44		.6370, 155°.05		
4.4	4.4		- (1		.52, 156°		
Sulphur	trioxide.	S	SO3		1.9546, 13°	Morveau. Watts'	
24.	**	44	44	ALLESS TOTAL	1.975	Baumgartner.	
44	2.4	L	is.		1.97, 20°	Bussy. Ann. (2), 26, 411.	
11	44	S	44		1.92118)		
44	**	11	10		1.90915 250	1	
44	41	41	44.		1.90814)	Day ACDAS	
14	44	L	11	***********	1.81958)	Buff. A. C. P. 4th	
64	8.6	44	16		1.8105 } 470	Supp., 129.	
66	16		**		1.8101	Carlotte Liver to the	
11	11	8	44	**************	1.940, 16°	Weber. P. A. 159,	
66	16		11	The second	1.9365, 200	318. Nasini. Ber.15, 2885.	
Selenium	dioxide		13.77	),	3.9538	Clausnizer. A. C. P. 196, 265.	
Telluriun	n dioxid	le	Te (	0,	5.93, 200	Schafarik, J. P. C. 90, 12.	
44	11		- 14		5.7559, 12°.5 }	F. W. Clarke. A. J. S. (8), 14, 285.	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tellurium dioxide. Octa-	Te O	5.65	
hedral. " "	"	5.67 00	
" " "	"		!
" Ortho-		5.88	
rhombic.		} · · · · · · · · · · · · · · · · · · ·	Klein and Morel. C.
" " "		5.90 \ 0°	R. 100, 1140.
	"	5.91	
" Calcined	"	5.68. 00	
Tellurium trioxide	Te O	5 0704 149 5	
Tellariam frioxide	100	5.0794, 110	F. W. Clarke. A. J.
"	"	5.1118, 110	
	Cr ₂ O ₂	5.21, cryst	Wöhler. See Bött-
Chromic oxide	OF2 03	. 0.21, Cryst	
	"	4.909	ger.
" "		4.903	Playfair and Joule.
	i	0.0	M. C. S. 3, 82.
		- 0.2, cryst	Schiff. J. 11, 161.
" "	"	5.010	
_			226.
Chromic chromate	Cr ₅ O ₉	. 4.0, 10°	Geuther. J. 14, 242.
Chromium trioxide	Cr O ₃	-  2.676, m. of 2₋	Geuther. J. 14, 242. Playfair and Joule.
	1	1	W (1 Q -) 44Q
" " "	"	.   <b>2.</b> 737, 14°, cryst	Ehlers. B. D. Z.
		.  2.629, 14°, <b>a</b> fter	Elliers. D. D. Z.
		fusion.	
"	**	. 2.819, 200	Schafarik. J. P. C.
			90, 12.
	"	2.775) Ex- f	Zettnow. P. A. 143,
16 16		2.804 tremes	474.
Molybdenum dioxide	Mo O,	5.67	Bucholz. N. J. 20,
20.90202	,		121.
		6.44, 160	
		1 3122	anco. Ber. 15, 527.
Molybdenum trioxide	Mo O	. 3.460	Thomson. See Bött-
moly bearing the second	, 0,	-	ger.
44		3.49	Berzelius. " "
	1		(Weisbach. Dana's
"			Min.
"		- 4.39, 21°, cryst.	
		- 4.05, 21 ,Cryst.	
m	197.0	10 1100	90, 12.
Tungsten dioxide	W 02	- 12.1109	Karsten. Schw. J.
		0.10	65, 894.
Tungsten trioxide	. W.O	- 6.12	D'Elhuyart. Gm. H.
" " ————	. "	- 5.274, 16°.5	Hernpath. P.M.64,
	1		321.
" "	"	- 7.1396	Karsten. Schw. J.
	l		65, 894.
" " "		- 6.802 - 6.884 cryst.	Nordenskiöld. J.
"	- "	- 6.884 } Cryst.	14, 214.
16 16	. "	- 7.16, amor-)	
	1	phous. }	Zettnow. J. 20, 216.
"		. 7.232, 17°, )	1
	1	cryst.	
Uranous oxide	U 0,	10.15	Ebelmen. J. P. C.
=	1		27, 885.
Uranoso-uranic oxide	U. O.	7.1982	Karsten. Schw. J.
0.2000-018Bio 02.00	-1 -8 -8		65, 894.
., ., .,	1 44	7.81	Ebelmen. J. P. C.
		- 1.01	27, 885.

	Name.			FORMULA.	Sp. GRAVITY.	• Authority.
Uranic oz	ide		υο,		5.02   two { 5.26   lots. {	Brauner and Watts. P. M. (5), 11, 60.
Chlorine	trioxide.	L	C12, C	) ₃	1.8298 } 0° {	Brandau. Z. C. 13,
Iodine pe	ntoxide .		I, O,		4.250	Filhol. Ann. (3), 21,
"	" .		"		4.7987, 9°	415. Kammerer. P. A. 138, 401.
66 66	" -		"		4.487, 00	Ditte. Z. C. 13, 303.
"	" .		"		5.037, 0° }	Ditte. Ann. (4), 21, 10.
Mangano				J	4.7264, 17°	Hérapath. P. M. 64, 321.
**	" -		"		5.88	Playfair and Joule. M. C. S. 3, 80.
44	" .		"		5.091	Rammelsberg. J. 18, 878.
46	" <b>N</b>	Iangan- osite.	"		5.18	Blomstrand. J. 28, 1209.
44	" -		"		5.010, 4°	Veley. J.C.S.1882, 65.
Manganos	so-mange	nnic ox-	Mn ₃	04	4.746}	Playfair and Joule.
ide. "	"	"	"	·	4.658 }	M. C. S. 3, 80. Playfair and Joule.
"	"	"	"		4.718, artif. )	J. C. S. 1, 187. Rammelsberg. J. 18,
44	"	"	۱، ا		4.856, native	878.
"	"	"	"		4.80, artificial	Gorgeu. C. R. 96, 1146.
Manganio			Mn ₂	O ₃	4.82, braunite_	Haidinger. Gm. H.
44			4.		4.568 artif.	Playfair and Joule.
"					4.619)	M. C. S. 3, 80.
"	"		"		4.325, artif 4.752, braun-	Rammelsberg. J.   18, 878.
15			M- /		ite.	Turner. See Böttger.
Manganes	e dioxid		"		4.819,pyrolusite 5.026 "	Rammelsberg. J. 18, 878.
**	"		"		4.838 " )	Breithaupt. Dana's
44	"		"		4.880 " }	Min.
"	"		"		1.020	Pisani. Dana's Min. ) Dana and Penfield.
	"		"		4.965 poli- 5.040 anite.	A. J. S. (3), 35, 246.
Ferroso-fe		le	Fe ₃ (	),	5.094	Mohs. See Böttger.
	44 44 44 44				4.960	Gerolt. " "
•••			"		$\{4.900 \}$	Leonhard. See Bött- ger.
••			"		5.200 } 5.300, 16°.5	Herapath. P. M. 64, 321.
•••			"		5.400 }	Boullay. Ann. (2), 43, 266.
•••			"		5.168) cryst	Kenngott. Dana's
			"		5.168 cryst 5.180 mag-	Min.
"			"		netite. 5.453	Playfair and Joule. M. C. S. 3, 81.

NAME.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Ferroso-ferric oxide	Fe ₃ O ₄	5.12, 0°, mag-	Kopp.
" "	"	netite.	
	"	5.106 5.148 \ "	Rammelsberg.
	"	5.185	Kammeisberg.
	"	4.86 two al-	`
	"	5.00 lotropic	Moissan. Ann. (5),
	"	5.09 varieties	21, 223.
	"	5.21) artif. (	Gorgeu. C. R. 104,
	٠،	5.21 artif. { 5.25 cryst. {	1176.
Ferric oxide	Fe ₂ O ₃	5.251	Mohs. See Böttger.
"		5.261	Breithaupt.
" "	"	5.959, 16°.5, ppt.	Herapath. P. M. 64, 321.
" "	et	5.225	Boullay. Ann. (2), 43, 266.
"		5.079, native _	Neumann. P. A. 23, 1.
"	"	5.121, 120.5	Kopp.
" "		4.679 )	Playfair and Joule.
., ,,	44	5.135,ignit'd }	M. C. S. 3, 80.
"	"	$\left  egin{array}{c} 5.241 \ 5.283 \end{array}  ight\}$ native_	Rammelsberg.
" "	"		nammersberg.
" "	"	5.191)	
" "	"	5.214 \ "	G. Rose.
" "	"	5.230 )	l
" "		5.169, ppt	H. Rose. P. A. 74,
u u	"	5.037, ignited_   3.95, yellow	\ \ 440.   Tommasi. Les Mon-
Nickelous oxide	Ni 0	5.597	des, 1879. Playfair and Joule. M. C. S. 3, 81.
	"	5.745, furnace product.	Genth. J. 1, 444.
"		6.605, cryst	Gentin. 5. 1, 133.
"	"	6.398	Bergemann. J. 11, 683.
	"	6.661	Rammelsberg. J.2, 282.
		6.8, cryst	Ebelmen. J. 4, 16.
Nickelic oxide	Ni ₂ O ₃	4.846, 16°.5	Herapath. P. M. 64, 321.
" "	"	4.814	Playfair and Joule. M. C. S. 3, 81.
Cobaltous oxide	Co O	5.597	1 " "
	_ "	5.750, ignited_	1
Cobaltoso-cobaltic oxide	Co ₃ O ₄	5.833}	Rammelsberg. J.2,
	. "	6.296}	282.
Cobaltic oxide		5.322, 16°.5	Herapath. P. M. 64, 321.
		5.600	Boullay. Gm. H. 1,
" "	"	4.814	Playfair and Joule. M. C. S. 8, 81.
Cuprous oxide	4	$\left\{ egin{array}{c} 6.052 \\ 6.093 \end{array}  ight\}$ 16°.5 $\left\{ \right.$	Hernpath. P. M. 64, 321.
" "	"	5.751	Karsten. Schw. J.
	l	1	65, 894.

	NA	ME.		FORMULA.	Sp. Gravi	TY.	AUTHORITY.
Cuprous	s oxid	le	Cu ₂ (	)	5.75		Leroyer and Dumas. See Böttger.
"	**		"		5.746		Playfeir and Joule. M. C. S. 8, 82.
44	4.6		"		5.300	)	<b></b>
44	**				5.842		Persoz. J. P. C. 47,
44	46		"		5.875	)	84.
Cupric	oxide	·	Cu O		6.401, 16°.5	5	Herapath. P. M. 64, 321.
"	"		"		6.130		Boullay. Ann. (2), 43, 266.
"	.,		"		6.4304		Karsten. Schw. J 65, 394.
44	44		66		5.90	- n i	Playfair and Joule
14	**		"		6.414,ignit	₹a }	M. C. S. 3, 82.
"	"		"		6.322		Filhol. Ann. (3) 21, 415.
44	44		"		6.130	- \ \	21, 110.
44	44				6.225		Persoz. J. P. C. 47
4.6	46		"		6.400		84.
46	"		"		6.451, furn		Jenzsch. J. 12, 214
			ŀ		product.		,,,,,,,, .
"	"		"		6.400		Hampe. Z. C. 13
**	"	•	"		6.25, mela	co-	Whitney. J. 2, 728
"	"		"		5.952 "	۱ ا	Rammelsberg. P. A 80, 287.
Rutheni	um d	lioxide	Ru C	g	7.2		Deville and Debray J. 12, 236.

### 2d. Double and Triple Oxides.

Name.	Formula.	SP. GRAVITY.	Authority.
Sodium uranium oxide	Na ₂ U ₃ O ₁₀	6.912	Drenkmann. J.14, 257.
Delafossite	Cu' ₂ Fe''' ₂ O ₃	5.07, 25°	
Spinel	"	3.48, natural } 3.52 " } 3.523 " 3.631 } 15°.5, 3.715   nat.	Ebelmen. J. 4, 12.
Gahnite	Zn Al ₂ O ₄	4.580, artif 4.317 } 4.589 }	Ebelmen. J. 4, 13. G. Rose. Brush. A. J. S. (3),
"	"	4.89 (	Brush. A.J.S. (3)

Name.	Formula.	SP. GRAVITY.	Authority.
Gahnite	Zn Al ₂ O ₄	4.576	Genth and Keller.
" Furnace product.			J. 36, 1843. Schulze and Stelz- ner. Z. K. M. 7, 603.
Hercynite	Fe" Al ₂ O ₄	$\left. egin{array}{c} 3.91 \\ 8.95 \end{array} \right\}$	Zippe. Dana's Min.
Chrysoberyl	"	3.759, artif 3.597 3.689}	Ebelmen. J. 4, 18. Rose. Dana's Min. From three local-
"	"	8.784 ) 3.835 )	ities. Kokscharof. J. 14,
" Alexandrite	"	8.644 \( \) 8.734	976, and J. 15, 715. Nilson and Petters- son. C.R. 91, 232.
Calcium iron oxide	44	3.700 3.860 } 15°.5	Church. Geol. Mag. (2), 2, 320. Percy. P. M. (4),
	· ·		45, 455.
Magnesioferrite	Mg Fe''' ₂ O ₄	4.568 4.611 4.638	Rammelsberg. J. 12, 776.
Hetaerolite	Zn Mn ₂ O ₄		
Zine iron oxide	Zn Fe''', O,	5.132 cryst 5.38 "	Ebelmen. J. 4, 13. Gorgeu. B. S. C. 47, 372.
Zinc chromium oxide Manganese chromium oxide.	Zn Cr ₂ O ₄ Mn Cr ₂ O ₄	5.309 " 4.87 "	Ebelmen. J. 4, 13.
Chromite	Fe" Cr ₂ O ₄	4.821	Thomson. Dana's Min.
"	"	4.498 }	Dana's Mineralogy.
Jacobsite	Mg Fe''', O ₄ . 2 Mn Fe''', O ₄ .	4.75, 16°	Damour. C. R. 69, 168.
Chrompicotite	2 Fe'' Al, O ₄ . 3 Mg Cr, O ₄ .	4.115, 20°	Petersen. J. P. C. 106, 137.

# IX. INORGANIC SULPHIDES.

#### 1st. Simple Sulphides.

Name.	Formula.	Sp. Gravity.	Authority.
Hydrogen monosulphide	H ₂ S	a .9, l	Faraday. Gm. H. 2,
" "	"	.91, 18°.5	Bleekrode. P. R. S. 87, 355.
Hydrogen persulphide	H ₂ S ₂ or H ₂ S ₃ ?	1.7342	Ramsay. J. C. S. 27, 860.
Sodium sulphide	Na, S	2.471	Filhol. Ann. (3),
Potassium sulphide	K, S	2.180	21, 415.

	NA	MR.	Formula.	Sp. GRAVITY.	AUTHORITY.
Silver sulphide			Ag ₂ S	6.8501, artif	Karsten. Schw. J. 65, 894.
66	"	Argentite_	"	7.269 \	Dauber. J. 13, 748.
"	**	"	"		Dauber. 0. 10, 140.
44	"	Acanthite_		. 7.31 }	Kenngott. J. 8, 908.
44	"	"			,
44	"	"	11	7.164 ex- 7.326 tremes.	Dauber. J. 13, 748.
44	44	Daleminzite	"	7.02	Breithaupt. J. 15,
<b>m</b>			m o		709.
		ohide	Tl, S.	8.00	Lamy, J. 15, 185.
			Ca S. (Impure)		Maskelyne. P. <b>T</b> . 1870, 196.
Zinc su	lphide		Zn S	3.9235	Karsten. Schw. J. 65, 894.
"	41	Blende	"	4.060	Neumann. P. A. 23, 1.
**	"	"	"	4.068	Henry. J. 4, 756.
**	eı	"	"	4.07	Kuhlmann. J. 9,
"	"	"	"	4.05	832. Tschermak. S. W.
"	"	"	"	4.083	A. 45, 603. Genth. Am. Phil. Soc. 1882.
Cadmir	ım sul	nhide	Cd S	4.5, artificial	Schüler. J. 6, 367.
"			"	4.5 "	Sochting. Dana's
"	"	Greenockite	"	4.605	Min. Karsten. Schw. J. 65, 894.
44	"	"	"	4.908	Breithaupt. Watts' Dict.
"	"	"	"	4.80	Brooke. P. A. 51, 274.
Mercur	ic sulp	hide	Hg S	8.124	Boullay. Ann. (2), 43, 266.
44			"	8.0602	Karsten. Schw. J. 65, 394.
"	"		"	8.090, cinna- bar.	]
44	"		"		1 2 2 2 2
"	**		"	7.701 \ natural, 7.748 \} amor-	Moore. J. P. C. (2), 2, 319.
44	4.6		"	phous.	
"	"		"	7.552, artif. 7.81, metacin-	Penfield. A. J. S.
				nabar.	(3), 29, 453,
Carbon	mono	sulphide	C S	1.66, s	Sidot. C. R. 81, 33.
Carbon	disulp	hide	C S ₂	1.272	Berzelius and Mar- cet. Schw. J. 9, 284.
44	46		"	1.263	Cluzel. Gm. H.
6.6	"		"		Gav Lussac.
44	44		11	1.265	Couërbe. Ann. (2), 61, 232.
"			"	1.2823, 5°-10°	)
£ t			"	1.2750, 10°-15°	Regnault. P. A.
44	"		"	. 1.2676, 15° <b>-20</b> °	) 62, 50.
4.6			"	1.29312, 0°	Pierre. C. R. 27,

Name	it wanter.	SP. GRAVITY.	AUTHORITY.
Telmite	*. <u>*</u>	1.29858, 0°	1
and the second second	-	1.27904, 10° 1.26652, 17° 1.227431, 46° _	H. L. Buff. A. C. P. 4th Supp., 129.
		1.2661, 20°	Hangen. P. A. 131, 117.
li yer .		1.2665, 16°.06_	Winkelmann. P. A. 150, 592.
· · · · · · · · · · · · · · · · · · ·		1.2176, 43°	Ramsay. J. C. S. 35, 463.
·	· · · · · · · · · · · · · · · · · · ·	1.29215, 0° 1.22242, 46°.04	Thorpe. J. C. S. 37, 363.
.,		$1.2233 \atop 1.2234$ 47°	Schiff. Ber. 14, 2767.
		1.2634, 200	Nasini. Ber. 15, 2883.
		1.266, 15°.2	Friedburg. C. N. 47, 52.
		1.26569, 17°.86 1.26446, 18°.58	Also values for other tos. Dreck-
		1.25031. 28°.21	er. P. A. (2), 20,
		1.23863, 35°.96 1.2233, 46°.5	
A commence of the	Sn S	4.8523	Karsten. Schw. J. 65, 394.
	"	5.267	Boullay. Ann. (2), 43, 266.
		4.973	Schneider. J. 8, 396.
Commence of the	Sn S ₂	5.0802, 0° 4.415	Ditte. C. R. 96, 1791 Boullay. Ann. (2) 43, 266.
	. "	4.600	Karsten. Schw. J. 65, 394.
a plade	Pb S	7.5052, artif	Desirbanes I D C
· Galena	"	7.539 6.9238, 4°, pulv	Breithaupt. J. P. C.
" Galena		7.568	Playfair and Joule J. C. S. 1, 137. Neumann. P. A
ii ii	"	7.51	23, 1. Tschermak. S. W
, 44		6.77, artificial	A. 45, 603.
Lead sesquisulphide		·	(2), 2, 91. Playfair and Joule
Corium sulphide		5.1	M. C. S. 3, 89. Didier. C. R. 100
Thorium sulphide			1461.
Nitrogen sulphide	1	1	195. Berthelot and Vi
" " "			eille. Ber. 14,1558
l'hosphorus monosulphid		1	460. Dupré. J. P. C. 21
Phosphorus hexsulphide.	P S.	2.02	253.
Tetraphosphorus trisul- phide.	P ₄ S ₃		Isambert. C. R. 96 1501.

	1		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Vanadium disulphide '' " Vanadium trisulphide	V ₁ S ₁	4.2, scaly 4.4, powder 3.7, scaly	Kay. J. C. S. 37, 728.
Vanadium tetrasulphide	v ₂ s ₄	4.0, powder } 4.70, 21°	Schafarik. J. P. C.
Vanadium pentasulphide. Arsenic disulphide		3.0 3.5444	90, 12. Kay. J.C.S. 37,728. Karsten. Schw. J.
	"	3.240, realgar_	65, 394. Neumann. P. A. 23, 1.
Arsenic trisulphide	As ₂ S ₈	3.556 3.459	Mohs. See Böttger. Karsten. Schw. J. 65, 894.
	"	8.48	Haidinger. Dana's Min.
" "	"	3.448.45	Guibourt. See Bött- ger.
" " Dimorphite Antimony trisulphide		3.58 4.7520	Scacchi. J. 5, 842. Karsten. Schw. J. 65, 894.
	"	4.15, amor- phous.	Fuchs. Watts' Dict.
46 46	"	4.614, black 4.641, 16° "	1 1
11 11	11	4.280, red 4.421, ppt	H. Rose. J. 6, 361.
	"{	4.226,26°.7,red 4.223,23°, ppt. 4.228,28°,gray	Cooke. Proc. Am.
	"	4.289, 27 " 4.892 }	Acad. 1877.
" Stibnite.	"	5.012 }	Ditte. C. R. 102, 212.  Neumann. P. A.
	"	4.516 4.62	23, 1. Haüy. Dana's Min. Mohs. ""
Bismuth disulphide	Bi ₂ S ₂	7.29, m. of 5	Werther. J. P. C. 27, 65.
Bismuth trisulphide		7.591, 14°.5	Herapath. P. A. 64, 321.
" "	"	7.0001	Karsten. Schw. J. 65, 894.
" "	"	7.16, native	Forbes. P. M. (4), 29, 4.
Selenium sulphide	"	$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ditte. Z. C. 14, 386.
Molybdenite	Mo S ₂	4.591 4.444	Mohs. See Böttger. Seibert. " "
Tungsten disulphide	W, S,	6.26, 20°	Schafarik. J. P. C. 90, 12.
Chromic sulphide	Cr ₂ S ₃	4.092	Playfair and Joule. M. C. S. 3, 89.
u u	"	2.79,10° 3.77,19° two	Schafarik. J. P. C. 90, 12.
Manganese monosulphide. Alabandite.	Mn S	preparations. 3.95—4.01	Leonhard. See Bött- ger.

		<del></del>	
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Manganese monosulphi Alaband	ite.	.	Bergemann. N. J. 1857, 394.
Hauerite	Mn S ₂	3.463	Von Hauer. J. 1, 1157.
Iron hemisulphide	Fe ₂ S	5.80	Playfair and Joule. M. C. S. 3, 88.
Iron monosulphide. At	tif. Fe S	5.035, m. of 2	" "
	'		Rammelsberg. J.15, 263.
" " Troil	ite_ "	4.787	Rammelsberg. J. 1, 1306.
	"	4.817	Rammelsberg. J. 17, 904.
	"	4.75	Smith. J. 8, 1025.
Iron disulphide. Pyrit			Kenngott. J.6,780.
	"	5.028 }	•
			Zepharovich. S.W. A. 12, 289.
	"	5.042	Neumann. P. A. 23, 1.
" Marcasi	te_, "	4.882	
	"		Dana's Mineralogy.
" " "	"		1
Ferric sulphide	Fe ₂ S ₃	4.246	Playfair and Joule. M. C. S. 8, 88.
" "	"	4.41	Rammelsberg. J. 15, 262.
Complex sulphide of in	ron_ Fe ₈ S ₉	4.494	Rammelsberg. J. 15, 195.
Pyrrhotite	Fe ₇ S ₈	į.	Kenngott. S. W. A. 9, 575.
"	"	4.564)	,
"	14	<b></b>   <b>4.580</b> } <b></b>	Rammelsberg. Da-
		4.640)	na's Mineralogy.
Nickel hemisulphide.	Ni ₂ S	6.05	Playfair and Joule. M. C. S. 3, 88.
Millerite	Ni S	4.601	Kenngott. S. W. A. 9, 575.
"	"		Rammelsberg. Da- na's Mineralogy.
Polydymite	Ni ₄ S ₅	4.808 180.7	Laspeyres, J. P. C.
"""	44	4.816 } 185.7 {	(2), 14, 897.
Beyrichite	Ni ₅ S ₇	4.7	Liebe. N. J. 1871, 840.
Cobalt disulphide	_	1	Playfair and Joule. M. C. S. 3, 88.
Cobaitic sulphide		4.8	Hoffmann's Tables
Copper hemisulphide	Cu, S	5.792, 17.7	Herapath. P. M. 64, 321.
" "	"	5.9775	Karsten. Schw. J. 65, 894.
"		5.71	Kopp. J. 16, 5.
"	"	5.7022	Thomson. Dana's Min.
**	"	5.521—5.795	Scheerer. P. A. 65, 292.
" "Artif.c		5.79}	Doelter. Z. K. M. 11, 29.

Name.	Formula.	Sp. GRAVITY.	Authority.
Copper monosulphide	Ou S	4.1684	Karsten. Schw. J. 65, 394.
" Covellite_	"	4.636	Zepharovich. J. 7,
Palladium hemisulphide	Pd, S	7.303, 15°	810. Schneider. P. A. 141, 532.
Platinum monosulphide	Pt S	8.847, 16°.25	Böttger. J. P. C. 8, 267.
Platinum disulphide	Pt S ₂	7.224, 18°.75 5.27	Schneider. P. A.
Platinum sesquisulphide	Pt ₂ S ₃		138, 604.

### 2d. Sulpho-Salts of Arsenic, Antimony, and Bismuth.

Name.	Formula.	Sp. Gravity.	Authority.
Proustite	Ag ₃ As S ₃	5.524 5.53 —5.59	Mohs. Breithaupt. See Böttger.
Xanthoconite			G.Rose. P.A.15,472. Breithaupt. J. P. C. 20, 67.
Guitermannite	Pb ₃ As ₂ S ₆	5.94	Hillebrand. Bull. No. 20., U. S. G. S., 106.
Sartorite	"	5.393}	Waltershausen. J. 8, 914.
	"	5.549	14, 379.
Enargite		4.362	Kenngott. Dana's Min.
"	"	\[ \begin{pmatrix} 4.430 \\ 4.445 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	702. Kobell. J. 18, 872.
"Guayacanite "Clarite	"	4.34 4.43 4.39 4.46	Burton. J. 21, 998. Field. J. 12, 771.
" Luzonite		4.42	1875 382
Julianite			Websky. Z. G. S.
BinniteTennantite	Cu ₆ As ₄ S ₉ Cu' ₈ As ₂ S ₇	4.477 4.375	Dana's Mineralogy. Phillips. See Bött- ger.
			Scheerer. P. A. 65, 298.
"	41	4.622	Harrington. J. 37, 1911.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sodium sulphantimonate.	Na. Sb S., 9 H. O	1.804)	
		1.807	Schröder. Dm. 1873.
Pyrargyrite	Ag ₁ 30 3 ₁	5.73—5.84	Mohs. Breithaupt. See Böttger.
Miargyrite	Ag Sb S	1 5 9 (a)	Weisbach. J.18, 869.
:	: 4	5.0725) am (	Rumpf. Z. K. M.
" Artificial	٠ <i>ـ</i>	5.28	7, 513. Doelter. Z. K. M.
Stephanite	Ag ₅ Sb S ₄	6.269	11, 29. Mohs. P. A. 15, 474.
"	•		H. Rose.
Dalahada	Ag, Sb S ₆		Frenzel. J. 27, 1239.
Polybasite		6.214 6.009	Dana's Mineralogy. Genth. Am. Phil. Soc., 1885.
Polyargyrite	Ag ₂₄ Sb ₂ S ₁₅	$6.933 \atop 7.014$ 18°.2 -	Petersen. J. 22,1197.
Livingstonite	Hg Sb ₂ S ₄	4.81	Barcena. A. J. S. (3), 8, 146.
" Artificial Jamesonite	Pb, Sb, S,	4.928, 32° 5.616, 19°	Baker. C. N. 42, 196. Schaffgotsch. P. A.
44	"	5.601	<b>38, 403</b> .
" Massive	"	5.6788	Löwe. Dana's Min. Rammelsberg. P. A. 77, 240.
" Artificial	"	5.5	Doelter. Z. K. M. 11, 29.
Zinkenite	Pb Sb ₂ S ₄	5.303 \ 12°.5 _	G. Rose. P. A. 7, 91.
"	"	5.21, 18°	Hillebrand. Bull.
Boulangerite	Pb ₃ Sb ₂ S ₆	5.688—5.941	20, U. S. G. S. Hausmann. P. A. 46, 282.
" Massive Fibrous	"	5.809—5.877 5.69—6.086	Zepharovich. S. W. A. 56, (1), 30.
Meneghinite	Pb, Sb, S,	$\left. \begin{array}{c} 6.339 \\ 6.445 \end{array} \right\}$	v. Rath. J. 20, 974.
	"	6.33	Harrington. J. 37, 1911.
Geocronite	Pb ₅ Sb ₂ S ₈	6.407 6.43, 15°	Apjohn. Dana's Min. Sauvage. Ann. des
"	"	6.45—6.47, 15°	
Plagionite	Pb4 Sb6 S13	5.40	302. Rammelsberg. P. A. 47, 495.
Epiboulangerite	Pb. Sb. S15	6.309	Websky. J. 22, 1198. Sipocz. Ber. 19, 95.
Semseyite Freieslebenite	Pb, Sb, S, Pb, Ag, Sb, S,	5.9518 6.194	Hausmann. Dana's
"	"	6.230	Min.   v. Payr. J. 18, 746.
64	"	6.35	Vrba. S. W. A. 63,
" Diaphorite_	"	5.902	Zepharovich. S.W. A. 63, 143.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Brongniardite	Pb Ag ₂ Sb ₂ S ₅	5.950, 18°	Damour. Ann. d. Mines, (4), 16, 227.
Chalcostibite			H. Rose. Dana's
"	"	5.015	Breithaupt. Dana's
Famatinite	Cu ₃ Sb S ₄	4.57	Stelzner. M. P. M. 1873, 242.
Guejarite	Cu ₂ Sb ₄ S ₇	5.03	Cumenge. B. S. M. 2, 201.
Tetrahedrite	Cu ₈ Sb ₂ S ₇	4.780	Wittstein. J. 8, 912.
	· · · · · · · · · · · · · · · · · · ·	4.58	Sandmann. A. C. P. 89, 368.
	"	4.90	Kuhlemann. J. 9,
	"	4.885	Genth. Am. Phil. Soc. 1885.
Bournonite	Cu' Pb Sb S3	5.703—5.796	Zincken. J. 2, 724.
"	"	5.726-5.855	Bromeis. J. 2, 724.
"	."	5.726—5.863	Rammelsberg. J. 2, 724.
"	"	5.80	Field. J. 14, 874.
"	"	5.826	Wait. J. 26, 1147.
"	"	5.737—5.86	Hidegh. J. 37, 1911.
**	"	5.7659	Sipöcz. Ber. 19, 95.
" Artificial		5.719	Doelter. Z. K. M. 11, 29.
Berthierite	Fe Sb ₂ S ₄	4.043	Pettko. J. 1, 1159.
Silver bismuth glance*	Ag Bi S ₂	6.92	Rammelsberg. Z. K. M. 3, 101.
Galenobismutite	Pb Bi ₂ S ₄	6.88	Sjögren. G. F. F. 4, 109.
Cosalite	Pb ₂ Bi ₂ S ₅	6.22-6.33	Frenzel. J. 27, 1238.
Beegerite	Pb. Bi. S.	7.273	König. J. 34, 1355.
Rezbanyite	Pb ₆ Bi ₂ S ₉	$\left. egin{array}{c} 6.09 \\ 6.38 \end{array} \right\}$	Frenzel. J. 36, 1835.
Chiviatite	Pb ₂ Bi ₆ S ₁₁	6.920	Rammelsberg. P.A. 88, 320.
Emplectite	Cu Bi S ₂	5.18, 5°	Weisbach. J.19,916.
Wittichenite	Cu ₃ Bi S ₃	4.3	Hilger. J. 18, 870.
Klaprotholite	Cu ₅ Bi ₄ S ₉	4.6	Petersen. N.J. 1868, 415.
Aikinite	Cu' Pb Bi S ₈		Frick. P.A.31,530. Chapman. J. 1,1158.
Kobellite	Pb, Bi Sb S		Satterberg. P. A. 55,
"	"		635.
	"		Rammelsberg. J. P.

^{*} Alaskaite, a lead silver salt similar to this, has a sp. gr. 6.878. Koenig, Z. K. M. 6, 42.

3d. Miscellaneous Double and Oxy-Sulphides.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Thallium potassium sulphide.	K Tl S ₂	4.263	Schneider. P. A. 139, 661.
Iron potassium sulphide- Sodium platinum sulphide	K Fe''' S ₂	2.563 6.27, 15°	Preis. J. P.C.107,10. Schneider. P. A.
Potassium platinum sul- phide.	K Pt, S,		138, 604.
Stromeyerite	Ag Cu' S	6.26	Kopp. J. 16, 5. Stromeyer. Schw. J.
Jalpaite	Agg Cu' S4	6.877}	19, 325. Breithaupt. J. 11, 682.
Sternbergite Silver gold su!phide Argyrodite	Ag Fe ₂ S ₃	4.215	Dana's Mineralogy. Muir. B.S.C.18,222.
"	"	6.093 } 199 }	Winkler. Winkler. J. P. C.
Christophite	Zn ₂ Fe S ₃	3.911—3.931	Ztg. 22, 27.
Guadalcazarite Bornite	Zn Hg ₆ S ₇ Fe Cu ₃ S ₃	7.15 5.030	Petersen. J. 25,1098 Rammelsberg. Z. G.
"	" "	4.432	S. 18, 19. Forbes. J. 4, 758. Katzer. M. P. M.
Iron coppersulphide. Artif.	Fe ₄ Cu ₉ S ₁₀	4.85	9, 404. Doelter. Z. K. M. 11, 29.
Barnhardtite Chalcopyrite	Fe ₂ Cu ₄ S ₅ Fe Cu S ₄	4.185	Genth. J. 8, 910. Forbes. J. 4, 759.
" Artificial	"	4.1—4.3	
Iron coppersulphide. Artif. Furnace product. Cryst.	Fe ₄ Cu ₄ S ₇ Fe ₅ Cu ₄ S ₉	4.999 3.97	Brögger. Z. K. M.
Cubanite	Fe ₂ Cu S ₄	4.026 }	3, 495. Breithaupt. P. A. 59, 325.
Chalcopyrrhotite	Fe ₄ Cu S ₆	4.18	Smith. J. 7, 810. Blomstrand. Dana's Min., 2d Append.
Carrollite	Co Cu S,	4.58	Faber. J. 5, 840. Smith and Brush.
Pentlandite			816.
Horbachite		1	Knop. N. J. 1878, 523.
Daubreelite	Fe Cr, S,	9.15 8.5 <del>_</del> 3.8	Smith. J.C.S. 36, 33. Werther. J. 5, 389. Vogl. J. 6, 786.

Castillite, Grünauite, and Stannite are omitted as having too indefinite composition

### X. SELENIDES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Naumannite	Ag ₂ Se	8.0	G. Rose. P. A. 14
Zinc selenide	Zn Se	5.40, 15°	Margottet. J. C. S 32, 570.
Cadmium selenide	Cd Se	8.789 5.80	Little. J. 12, 94. Margottet. J. C. S
Mercurous selenide Tiemannite	Hg ₂ Se	8.877	82, 570. Little. J. 12, 95.
"	"	7.1—7.87	Dana's Mineralogy Kerl. J. 5, 837. Penfield. A. J. S
Lead selenide. Artificial	" Pb Se	8.188	(3), 29, 449. Little. J. 12, 95.
" Clausthalite	"	6.8	Zinken. P. A. 8 274.
Ferric selenide	Ni Se	8.462	Little. J. 12, 94.
Cobalt selenideBerzelianite		6.71	Nordenskiöld, J. 20 977.
Copper selenideArsenic triselenide	Cu Se	6.655 4.752	Little. J. 12 95.
Arsenic triselenide	"	7.406	Little. J. 12, 95.
" Frenzelite " Guanajua-		6.25, 21°	Frenzel. N. J. 1874 679. Fernandez. Dana'
tite. Tin monoselenide			Min., 3d App.
	"		98 236
Tin diselenide	Sn Se,	5.133	1792. Little. J. 12, 95.
" " Eucairite	Cu' Ag Se		Schneider. J. P. C 98, 236. Nordenskiöld, J. 20
			977.
Crookesite Lehrbachite Zorgite	(Pb Cu) Se	7.804—7.876 _— 6.38 ———— 6.26 ————	Dana's Mineralogy Pisani. J. 32, 1183

XI. TELLURIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hossite	Ag, Te	8.412 (	G. Rose. P. A. 18,64
"		<b>-</b>   8.565 ∫	G. 1608C. 1. A. 10,04.
"	"	- 8.178	Genth. J. 27, 1233.
"	"	- 8.318	
Zinc telluride	Zn Te	6.34, 15°	205. Margottet. J. C. S. 32, 570.
Cadmium telluride	Cd Te	_ 6.20, 15°	
Coloradoite	Hg Te	8.627	Genth. Z. K. M. 2.4
Tin telluride	Sn Te	_ 6.478, 0°	Ditte. C. R. 96, 1793
Altaite	Pb Te	_ 8.159	G. Rose. P.A.18,64
	''		
Antimony telluride	Sb ₂ Te ₃	- 6.47 \ _{13°} \	Bödeker and Gie- secke. B. D. Z.
_ " "		- 6.51	secke. B. D. Z.
Joseite			Dana's Mineralogy
Wehrlite	Bi ₃ Te ₂	- 8.44	Wehrle. Dana's
<b></b>	n. m	- 00-	Min.
Tetradymite	B12,Te3	- 1.237	Genth. J. 5, 833.
"	;;	- 1.808	Jackson. J. 12, 770
	"	7 649 100	Genth. J. 13, 744.
		- 1.042, 18	Balch. J. 16, 794.
CalaveriteSylvanite	Au 1e4	7 049	Conth. L. N. M. 2,0
Petzite	Au Ag To	0.010	Genth. J. 27, 1233
retzite	Au Ag, Te,	9.020 {	"
Tapalpite	Ag, Bi, S Te,	7.803	Rammelsberg. Z. G S. 21, 81.

# XII. PHOSPHIDES.

Name.	FORMULA.	Sp. Gravity.	Астновиту.
Silver phosphide	Ag, P,	4.63	Schrötter. S.W.A. 1849, 301.
Zinc phosphide	Zn, P,	4.76	" "
f		4.72	Hayer. J. C. S. 32,
Tin monophosphide	Sn P	6.56	Schrötter. S.W.A.
	•	1	1849, 301.
" "	"	6.793	Natanson and Vort- mann. Ber. 10 1460.
Tin diphosphide	Sn P ₂	4.91, 12°	Emmerling. Ber. 12, 155.
Chromium phosphide	Cr P	4.68	
Manganese phosphide	Mn, P,	5.951	Wöhler. J. 6, 359
й · "·	Mn _s P	4.94	Schrötter. S.W.A. 1849, 301.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Iron phosphide	Fe, P.	6.28 5.04	Hvoslef. J. 9, 285. Freese. J. 20, 284.
Nickel phosphide	Ni ₅ P	7.283	Jannetaz. J. C. S. 44, 651.
	Ni, P,		Schrötter. S.W.A. 1849, 301.
Cobalt phosphide Tricopper phosphide			
" " "	Cu P	6.59	Hvoslef. J. 9, 285.
Copper monophosphide	Cu P	6.350 5.14	
Molybdenum monophos- phide.	Мо Р	6.167	
Tungsten hemiphosphidc.	W, P	5.207	Wöhler. J. 4, 347.
Palladium diphosphide	_		1849, 301.
Platinum diphosphide	Pt P,	8.77	"
Iridium hemiphosphide *_	Ir ₂ P	13.768	Clarke. A. C. J. 5, 231.
Gold phosphide	Au, P,	6.67	

### XIII. ARSENIDES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Silver arsenide			Descamps. J. Ph. C. (4), 27, 424.
Trisilver diarsenide	Ag, As,	9.01	(1), -1,
Trisilver arsenide	Ag. As	9.51	
" Huntilite_	Ag ₃ As ₂	7.47	Wurtz. Dana's
			Min., 3d App.
Tricopper diarsenide	Cu _s As ₂	6.94	Descamps. J. Ph. C.
			(4), 27, 424.
Dicopper arsenide	Cu ₂ As	7.76	
Dicopper arsenide	Cu ₃ As	7.81	" "
" Domeykite		1.10	Gentii. J. 19, 708.
Algodonite	Cu ₆ As	7.603	
"		c 000	33, 192. Field. J. 10, 655.
	· · ·	0.302	Field. J. 10, 555.
Whitneyite	Cu _g As	0.400	Genth. J. 12, 111.
		0.240 210	Genth. J. 15, 708.
Tricadmium arsenide	Ca A	6.4(1)	Desumer I Dh ()
	, ,		Descamps. J. Ph. C. (4), 27, 424.
Tin hemiarsenide	Sn. As	7.001, 18°	Bodeker. B. D. Z.
Tin hemiarsenide Tin diarsenide	Sn As.	6.56	Descamps. J. Ph. C.
Lead arsenide	Pb As	9.55	`
Trilead tetrarsenide	Pb3 A84	9.65	

^{*} Commercial "cast iridium." Contains several per cent. of the phosphides of rhodium and ruthenium, with possibly a little phosphide of osmium.

Name.	FORMULA.	Sp. Gravity.	Астновіту.
Trilead diarsenide			Descamps. J. Ph. C. (4), 27, 424.
Kaneite	Mn As	5.55	Kane. Dana's Min.
Leucopyrite	Fe. As	6.659 )	Breithaupt, P. A. 9.
Lölingite		6.246, in mass.	Behncke. J. 9, 831.
44		7.400	Hillebrand. A. J. S.
Trinickel arsenide	Ni _s As	7.71	(3), 27, 353. Descamps. J. Ph. C.
Niccolite	Ni As	7.663	(4), 27, 424. Scheerer. P. A. 65, 292.
"	"	7. <b>3</b> 9, 16°	Ebelmen. Ann. d.
"		7.314	Mines (4), 11, 55. Genth. J. 36, 1829.
Rammelsbergite	_	i I	Min.
"	"	6.9	McCay. J. 37, 1905.
Smaltite	Co As,	6.84	Rose. J. 5, 836.
Skutterudite	Co As	6.78	Scheerer. P. A. 42, 553.
Antimony hemiarsenide	Sb, As	6.46	
Allemontite	Sb As,	6.13	Thomson. Dana's
"	"	6.203	Rammelsberg
Bismuth arsenide	Bi ₃ As ₄	8.45	Dana's Min. Descamps. J. Ph. C.
Gold arsenide	Au, As,	16.20	(4), 27, 424.
O'Rileyite	Cu, Fe, As,	7.343—7.428	Wuldie. J. 24, 1133

# XIV. ANTIMONIDES.*

NAME.	Formula.	Sp. Gravity.	Authority.
Dyscrasite. Stibiotriargentite. "  Dyscrasite. Stibiohexar-	"	9.611	Petersen. P. A. 137, 877.
gentite. Zinc antimonide " Trizinc diantimonide		6.383 } 6.384 } 6.327	ii ii
Breithauptite Tin antimonide *	Zn ₃ Sb ₂	7.541	Breithaupt. Dana's Min. Bödeker. B. D. Z.

^{*} Compare also the table of alloys.

XV. SULPHIDES WITH ARSENIDES OR ANTIMONIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Arsenopyrite	Fe S As	6.269	Kenngott. S. W. A. 9, 584.
"		6.21	Vogel. J. 8, 907.
"		6.095, in mass.	Potyka. J. 12, 772
"		6.004, pulv	· · · · · · · · · · · · · · · · · · ·
"	"		Forbes. J. 18, 871.
"	"		A. 56 (1), 42.
" ,	· "	6.05-6.07	McCay. J. 87, 1905.
Pacite	Fe ₅ S ₂ As ₈	$\left\{ egin{array}{ll} 6.297 \\ 6.308 \end{array} \right\} \; \left\{  ight.$	Breithaupt and Weisbach. B. H. Ztz. 25, 167.
Glaucopyrite	Fe ₁₃ S ₂ As ₂₄	7.181	Sandberger. J. P. C. (2), 1, 230.
Glaucodot	(Co Fe) S As	5.975—6.008	Breithaupt. P. A. 67, 127.
"	"	5.905-6.011	
Cobaltite	Co S As	6.0-6.3	Dana's Mineralogy.
Gersdorffite	Ni S As	5.49	Forbes. J. 21, 997.
"	"	6.1977	Sipöcz. Ber. 19, 95
Ullmannite	Ni S Sb	6.506, 20°	Rammelsberg. P. A. 64, 189.
"		6.803	Jannasch. J. 36
"	"	6.883 (	1832.
Corynite	Ni S (As Sb)	5.994	872.
Wolfachite		6.372	Sandberger. J. 22, 1193.
Alloclasite	Co ₃ S ₄ Bi ₄ As ₆	6.6	
"	"	6.23-6.5	Frenzel. J. 36, 1831

# XVI. HYDRIDES, BORIDES, CARBIDES, SILICIDES, NITRIDES, ETC.

· NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Sodium hydride	Nu ₂ H	0.959	Troost and Haute- feuille. C. R. 78,
Palladium hydride		10.8033	Dewar. P. M. (4),
u u	Pd ₂ H	11.06	47, 334. Troost and Haute- feuille. C. R. 78, 970.
Columbium hydride	Сь н	6.0 to 6.6 6.15 to 7.37	Marignac. J. 21, 214. Supposed to be metal.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Platinum boride Iron silico-carbide  Titanium carbide Iron silicide	Ti C, impure	5.10 6.611	933. Shimer. J. A. C. 1, 4. Hahn. J. 17, 264.
Platinum silicide	Pt, Si	18.97	724. Memminger. A.C. J. 7. 172.
Aluminum zirconide (?) Ammonia. Liquefied	Al ₃ Zr, or Al ₆ Zr ₂ Si	3.629	Melliss. Göttingen Doct. Diss., 1870.
" " " " " " " " "	" " " " " "	.6492, —10°   .6429, —5°   .6864, 0°   .6298, 5°   .6230, 10°	D'Andreéff. Ann. (3), 56, 317
Titanium nitride	Ti, N,	.6089, 20° J 5.28, 18°	Friedel and Guérin. C. R. 82, 974. Silvestri. Ber. 8, 1856.

# XVII. HYDROXIDES.

NAME.	FORMULA.	Sp. Gravity.	Аптновіту.
Sodium hydroxide	Na O H	2.130	Filhol. Ann. (3), 21, 415.
	"	1.723	
Potassium hydroxide	2 Na O H. 7 H, O	1.405 2.100	Hermes. J. 16, 178.
" " "	"		
" "	"	1.958	W. C. Smith, Am. J. P. 53, 145.
Brucite	Mg (O H) ₂	2.36	Hermann. J. 14, 979.
" Artif. cryst.	"	2.376 2.36, 15°	
Zinc hydroxide			72.
" "		8.058	Filhol. Ann. (8), 21,
Cadmium hydroxide. Cryst.	Cd (O H)2	4.79, 15°	Schulten. C. R. 101, 72.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium hydroxide	Ca (O H) ₂	2.078	Filhol. Ann. (3), 2 415.
Strontium hydroxide	Sr (O H) ₀ . 8 H ₀ O	1.396	11 11 11 11
" "		1.911, 10	Filhol. J. P. C. 37.
Barium hydroxide		4.495	Filhol. Ann. (3), 3 415.
11 11	Ba (O H) ₂ . 8 H ₂ O	1.656 2.188, 16°	Filhol. J. P. C.
Lead hydroxide	Pb (O H)2. 2 Pb O	7.592, 0°	37. Ditte. J. C. S. 4 928.
Lead oxyhydroxide	Pb (O H) ₂ O	6.267	Wernicke. J. P. (2), 2, 419.
Cryst.	Mn (O H) ₂	•	Schulten. C. R. 10 1266.
Manganese oxyhydroxide	` "	2.596 (	Wernicke. J. P. (2), 2, 419.
Manganite	Mn ₂ (O H) ₂ O ₃		Rammelsberg. J. 878.
Manganese hydroxide	"	4.800	Veley. J. C. S. 65.
" " Turgite		4.681 \ 4° \ 3.56—3.74	Hermann. Dan
"		4.681	Min. Bergemann. J.
"	"	4.14	771. Brush. A.J.S. (
Ferric oxyhydroxide	Fe ₂ (O ₁ H) ₂ O ₂	$\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	44, 219. Brunck and Grae Ber. 13, 725.
"Göthite	"	4.11}	Yorke. P. M. (
Limonite	Fe ₄ (O H) ₆ O ₃	4.24) 3.6—4.0	27, 265–267. Dana's Mineralos
"	"	3.908	Bergemann. Dan Min.
" " Limnite_	Fe ₂ (O H) ₆	2.69	Yorke. P. M. ( 27, 269. Church. J. 18, 8
Nickelic oxyhydroxide	Ni ₂ (O II) ₄ O	2.741	Wernicke. J. P. (2), 2, 419.
Cobaltic oxyhydroxide Heterogenite	Co ₂ (O H) ₄ O Co ₅ O ₇ . 6 H ₂ O	2.483 3.44	Frenzel. J. P.
Copper hydroxide	Cu (O H),		(2), 5, 404. Schröder. Dm. 18
Diaspore	Ai (O H) O	3.39	Jackson. A. J. (2), 42, 108.
Gibbsite			Shepard. A. J. (2), 50, 96. Hermann. J.
"	` /*	2.389	1164.
Stibiconite	Sb ₂ (O H) ₂ O ₃	5.28	1 389.

Name.	FORMULA.	Sp. Gravity.	Authority.
Antimonic hydroxide	Sb (O H)5	6.6	Boullay. Dana's
Bismuth oxyhydroxide	Bi (O H) ₂ O	5.571	Wernicke. J. P. C. (2), 2, 419.
		5.8, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Metabismuthic hydroxide	Bi (O H) O	5.75, 200	" "
Uranyl hydroxide	U (O H)2 O2	5.926, 15°	Malaguti. J. P. C. 29, 233.
Eliasite	U (O H), O	4.087—4.237	Zepharovich. Da- na's Min.
Gummite	U (O H) ₆	3.9—4.20	Breithaupt. Dana's Min.
Chalcophanite			Moore. J. C. S. 36,
Namaqualite	Cu, Al(OH), 2 H,O.	2.49	Church. J. C. S.23,1
Namaqualite	$Al Mg_3(OH)_9.3H_2O$	2.04	Hermann. J. 1,1168

### XVIII. CHLORATES AND PERCHLORATES.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Hydrogen chlorate, or chloric acid.			138, 390.
Sodium chlorate	Na Cl Og	2.467	Berthelot.
" "	"	2.289	Bödeker. B. D. Z.
Potassium chlorate	K Cl O ₃	2.82643, 4°	Playfair and Joule.
			l J. C. S. 1. 137.
" "	"	2.350, 17°.5	Kremers. J. 10, 67.
" "	"	2.325	Buignet, J. 14, 15.
"	"	2.323	Holker. P. M. (3),
			27, 213.
41 41	"	2.825, m. of 5	ŀ
46 66	"	2.246 Ex.	Schröder. Dm. 1873.
"	"	2.364 ∫ tremes J	
" "		l	W. C. Smith. Am. J. P. 53, 145.
Silver chlorate	Ag Cl O ₃	4.430	Schröder. J. 12, 12.
Silver chlorate	1		246.
Thallium chlorate	TI CI O	5.5047, 90	Muir. C. N. 33, 156
Thallium chlorate Strontium chlorate	Sr Cl. 06	8.150	Schröder. Dm. 1873
Barium chlorate	Ba Cl. O., H. O	2.988. 150	Bödeker B D Z
" "	"	8.214	Schröder. Dm. 1873.
	m a a a	8.188	
Lead chlorate	Pb Cl ₂ O ₆ . H ₂ O	4.018	<b>'</b> ' '.
"	1 "	4.063	i
		· =.000 J	•

^{*}Kammerer also gives figures for other hydrates of chloric acid.

Name.	Formula.	Sp. Gravity.	А итновіту.
Lead chlorate	Hg Cl O ₃	6.409	246. Schröder. Dm. 1873.
Hydrogen perchlorate, or perchloric acid.  """ Lithium perchlorate  Potassium perchlorate  """"  """"  Ammonium perchlorate  Thallium perchlorate	H Cl O ₄ H ₂ O Li Cl O ₄	1.811, 50°	" " Wyrouboff. B. S. M. 6, 53. Kopp. J. 16, 4. Schröder. Dm. 1873. Stephan. F. W. C.

# XIX. BROMATES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium bromatePotassium bromate		3.271, 17°.5	" Topsoë. B. S. C. 19,
Silver bromate	"	5.1983, 16° 5.2153, 18° }	246. Storer. F. W. C Topsoë. B. S. C. 19,
Zinc bromateCadmium bromate			246. Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Basic mercuric bromate	Ca Br ₂ O ₆ . H ₂ O Sr Br ₂ O ₆ . H ₂ O	3.329 3.778	Topsoë. C. C. 4, 76.
"	Ba Br ₂ O ₆ . H ₂ O	3.9918, 18° }	Storer. F. W. C. Topsoë. C. C. 4, 76.

XX.	TODA	TES	AND	PERIOD	ATES.
$\Delta \Delta$	IUDA		AMD	1 12111171	T I I'M

·		<del>,</del>	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen iodate,*or iodic acid. " " Sodium iodate	Mg I Q ₃	3.979, 17°.5 2.601 3.802, 18° 3.3372, 12°.5 3.3085, 21° 5 5.4023, 16°.5 5 5.6475, 14°.5 } 3.283, 13°.5 5.2299, 18° 6.209 } 6.248 } 6.257 6.155, 20° 3.6954, 22° 5.008, 18°	Ditte. Ann. (4), 21, 48. Clarke. Fullerton. F. W. C.  """ Bishop. F. W. C. Fullerton. F. W. C. Schröder. Dm. 1873. Fullerton. F. W. C.  """ """ Cleve. U. N. A. 1885.
Namerium Periodese	J. 1 05. 1 113 0		

# **XXI.** THIOSULPHATES,† SULPHITES, DITHIONATES.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sodium thiosulphate	"  K ₁ S ₁ O ₃ Mg S ₂ O ₃ . 6 H ₁ O Ca S ₂ O ₃ . 6 H ₁ O		Kopp. J. 8, 45. Schiff. J. 12, 41.
Hydrogen sulphite or sulphurous acid.	H, S O,. 6 H, O	1.147, 15°, cryst.	Geuther. A. C. P. 224, 218.

^{*} For various hydrates of iodic acid see Kaemmerer, P. A. 138, 390.

[†] Commonly called hyposulphites.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sodium sulphite	Na ₂ S O ₈ . 10 H ₂ O Cu ₂ S O ₈ . H ₂ O	1.561 4.46 3.83, 15°	Etard. Ber. 15, 2233.
Hydrogen dithionate, or dithionic acid. Lithium dithionate	H ₂ S ₂ O ₆ + aq Li ₂ S ₂ O ₆ . 2 H ₂ O Na ₂ S ₂ O ₆ . 2 H ₂ O	1.347 2.158 2.189	Gay Lussac. Gm. H. 2, 175. Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19,
Potassium dithionate	K ₂ S ₂ O ₆	2.175, 11° 2.277	246. Baker. C. N. 36, 203. Topsoë. B. S. C. 19, 246.
Ammonium dithionate Silver dithionate Magnesium dithionate	Ag ₂ S ₂ O ₆ . 2 H ₂ O Mg S ₂ O ₆ . 6 H ₂ O	1.704 3.605 1.666	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Zinc dithionate Cadmium dithionate Calcium dithionate	Zn S ₂ O ₆ . 6 H ₂ O Cd S ₂ O ₆ . 6 H ₂ O Ca S ₂ O ₆ . 4 H ₂ O	1.915 2.272 2.180	Topsoë. C. C. 4, 76.  Topsoë. B. S. C. 19, 246.
Strontium dithionate Barium dithionate	Sr S ₂ O ₆ . 4 H ₂ O Ba S ₂ O ₆ . 2 H ₂ O Ba S ₂ O ₆ . 4 H ₂ O	2.176, 11° 2.873 4.536, 13°.5 8.142	Baker. C. N. 86, 203. Topsoë. C. C. 4, 76. Baker. C. N. 86, 203. Topsoë. C. C. 4, 76.
Lead dithionate	Mn S ₂ O ₆ . 6 H ₂ O	8.055, 24°.5 3.245 8.259, 11° 1.757	Stephan. F. W. C. Topsoë. C. C. 4, 76. Baker. C. N. 36, 203. Topsoë. C. C. 4, 76.
Iron dithionate Nickel dithionate Cobalt dithionate	Fe S ₂ O ₆ . 7 H ₂ O Ni S ₂ O ₆ . 6 H ₂ O	1.875 1.908 1.815	16 16 16 16

### XXII. SULPHATES.

### 1st. Simple Sulphates.

1	Name.		FORMULA.	SP. GRAVITY.	Аптновиту.
Hydrogen sulphuric		or	H ₂ S O ₄	1.857	Bincau. Ann. (3), 24, 337.
	"		"	1.8485	Ure. Schw. J. 35, 444.
"	**		"	1.854, 0° )	
44	66		**		Marignac. J. 6, 325.
4.6	4.6		"	1.834, 24°	,
**	"		"	1.857, 0°	Kolb. Z. A. C. 12, 833.
"	"		"	1.85289, 0°	Marignac. Ann. (4), 22, 420.
	"		"	1.8354, 18°	Kohlrausch. P. A. 159, 243.
4.6	44			1.82780, 23°	Nasini. Ber. 15, 2885.

NAME.  Hydrogen sulphate, or sulphuric acid.			FORMULA.			Sp. Gravity.	AUTHORITY.
			H, S O	,		1.854, 0°	Schertel. Ber. 15, 2734.
"	44		"			1.8384, 15°	Lunge and Naef. Ber. 16, 953.
"	"		"			1.83295, 19°.0	Mendelejeff. Ber. 17, ref. 304.
"	"		"			1.8528, 0°	Mendelejeff. Ber. 19, 380.
"	"		"			1.83904, 15°	
"	"		"			1.83562, 20°	Perkin. J. C. S. 49,
"	"		_	. Н, О		1.83265, 25° ) 1.784, 8°	777. Wackenroder. J. 2, 249.
44	44		• 6			1.7948, 0°	
. "	"		"			1.77806, 159	1 '
"	"		"			1.77423, 200	Perkin. J. C. S. 49,
44	"		H SO	, 2 H	0	1.77071, 25° )	777. Watts' Dictionary.
: 6	"		11.9 0 0	4. 2 223		1.77071, 25° ) 1.62 1.6655, 0°	Mendelejeff. Ber. 19, 380.
"	"		"			1.65084, 15°	
"	"		"			1.64754, 20°	Perkin. J. C. S. 49,
"	"		H 80	2 11	Λ	1.64467, 25° ) 1.55064, 15°	777.
"	"		112 5 0	4. 0 113	0	1.54754, 20°	. u u
"	"		"			I 1 54400 950 I	
Hydrogen pyrosulphate Hydrogen tetrusulphate			H, S, C H, S O	), 4 + 8 S	O ₃	1.983	Watts' Dictionary. Weber. P. A. 159,
Lithium sulphate			Li, S 0	) ₄		2.210 2.21, 15°	825. Kremers. J. 10, 67. Brauner. P. M. (5),
							11, 67.
"	"		Li, SO	4. H ₂ C	)	2.02 2.052, 21° )	Troost. J. 10, 141.
"	"			4		2.052, 21° 2.056, 20°	Pettersson. U. N.
"				4		2.066, 20° )	A. 1874.
				·4		2.462	_ Mohs. Quoted by Schröder.
4			"			2.67	by Schröder.
"	"		"			2.73	Cordier. Quoted by Schröder.
"	"		"			2.640	Thomson. Ann.
"	"		"		· <b></b>	2.6313	Phil. (2), 10, 435. Karsten. Schw. J. 65, 394.
46	"		"			2.597	
**	"		46			2.629	Filhol. Ann. (8), 21, 415.
"	"		"			2.654	Kremers. J. 5, 15.
66 66	"		"			2.658	Crystallized at dif-
"	::					2.674 } 2.684 }	ferent tempera- tures.
44	"					2.693, m. of 3	

	====						
	Name		F	ormui	LA.	Sp. Gravity.	AUTHORITY.
Sodium s	ulphate	e	Na ₂ S	O ₄		2.681, 20°.7	Favre and Valson. C. R. 77, 579.
"	"		"			$\left\{egin{array}{c} 2.677 \ 2.687 \end{array} ight\}$ 17° $\left\{ \right.$	Pettersson. U. N.
46	"		4.6			2.687 \ '' \	A. 1874.
**	**		41			2.66180, cryst.	]
".	"		"			at 40°. 2.66372, cryst. at 110°	Nicol. P. M. (5), 15, 94.
"	"		"			2.104, at the melting p't.	Braun. J. C. S. (2), 13, 31.
44	44		Na ₂ S	O ₄ . 10	H ₂ O	1.4457	Hassenfratz. Ann. 28, 3.
**	"			"		1.350	Thomson. Ann. Phil. (2), 10, 435.
"	"			"		1.469, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"			"		1.520	Filhol. Ann. (3), 21, 415.
44	""			"		1.465	Schiff.
"	"			"		1.471	Buignet. J. 14, 15.
46	"					1.4608 }	Stolba. J. P. C. 97,
""	"			**		1.4595 }	_ 503.
"	"			"		1.455, 26°.5	Favre and Valson. C. R. 77, 579.
""	"			**		1.485, 19° }	Pettersson. U. N.
"	"		** **	"		1.492, 20° }	_A. 1874.
Potassium	sulph	ate	K, SC	/ ₄		2.636	Wattson.
"	**		••			2.4078	Hassenfratz. Ann. 28, 3.
**	"		"			2.880	Thomson. Ann. Phil. (2), 10, 435.
"	"		"			2.6232	Karsten. Schw. J. 65, 394.
**	"		"			2.400	Jacquelain. A. C. P. 32, 234.
44	"		"			2.662	Kopp. A. C. P. 36, 1.
**	"		"			2.640	Playfair and Joule. M. C. S. 2, 401.
"	"		"			2.65606, 4°	Playfair and Joule. J. C. S. 1, 132.
**	"		"			2.625	Filhol. Ann. (3), 21, 415.
		Cryst	"			2.644 \	Penny. J. 8, 333.
4.6	"	After fu-	"			2.657 }	2 0
66	"	sion.	"			2.676	Holker. P. M. (3),
46	"		"			2.653	27, 213. Schiff. A. C. P. 107,
46	"		"			2.658	64. Schröder. P. A. 106, 226.
44	"		· · ·			2.572	Buignet. J. 14, 15.
"	"		"			2.645	Stolba. J. P. C. 97, 503.
"	"		**		<b></b>	2.648	Topsoë and Christ- iansen.

	Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.
Potassium	sulphat	e	K.SO	4	2.660, 17°.1	
"	"		- "	•	2.667, 18°.2	Pettersson. U. N. A.
66	46		**		2.669, 18°.2	1874.
66	44		**		2.635, 18°.5	Richardson. F. W.C.
4.6	"		"		2.653. 14°	Wise. F. W. C.
66	44		"		2.715	W. C. Smith. Am.
"	"		"			J. P. 45, 148. Quincke. P. A. 138,
					2.1, fused	Quincke. P. A. 138, 141.
"	"		"		2.6651, 0° )	
"	66		"		2.6627, 10°	
44	44		"		2.6603, 20°	
44	66		44	•	2.6577, 30°	
"	61		44		2.6551, 40°	-
44	**		"		2.6522, 50°	Suring Don 15
. "	"		"			Spring. Ber. 15,
	"		"		2.6492, 60°	1940. Details in
					2.6456, 70°	Bull. Acad. Bel-
"	"		"		2.6420, 80°	gique IV., No. 8,
"	**		"		2.6366, 90°	1882.
"	"		44		2.6811, 100°	
46	Not	pressed_	"		2.653, 21° )	
**	Once				2.651, 220 }	Spring. Ber. 16,
"	Twic		**			
				·	2.656, 22° )	2724.
Potassiun	n pyrosu	ipnate	W 2 23 C	),	2.277	Jacquelain. A. C. P. 32, 234.
Rubidiun	n sulphat	ж	Rb. S	0,	3.639, 16°.8	Pettersson. U.N.A.
44	٠,,		-"			1874.
"	"		44		3.6438. 0° )	
44	46		44			i
44					3.6367, 20°	
44			"			
"	"		"			1
						1
4.6					3.6256, 50°. }	Spring. Ber. 15,
44	"		"			1940. Details in
"	"		"		3.6181, 70°	Bull. Acad. Bel-
**	**		"		3.6142, 80°	gique IV., No. 8,
"	44		**		1 1	1882.
44	"		"		3.6036, 100°	1002.
Cosium s	ulphate.		Cs, S	04	4.105, 19°.2	
Ammoni	um sulph	nate	Am, S	O ₄	1.7676	A. 1874. Hassenfratz. Ann. 28, 3.
"	"		"		. 1.76 )	1 '
"	u				1.78	Kopp. J. 11, 10.
"	. "		"		1.750	Playfair and Joule.
66	"		. "		1.76147, 4°	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138.
"	"		. "		1.628	Schiff. A. C. P. 107, 64.
"	"		. "	·	1.771, m. of 2	
66	"				_ 1.750	
44	"		" "		1.770, m. of 4	
"	"		1			
"	"		1		- 1.766 extreme - 1.775 17°.9-18°	Pettersson. U. N
"	"		- "			6) A. 1874.
••	**		' "		- 1.7	W. C. Smith. Am J. P. 53, 145.

			<del></del>		1	
	NAME.		Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Ammoni	um sulpl	nate	Am ₂ S	D,	1.765, <b>20°</b> .5 1.773	Wilson. F. W. C Schröder. Ber. 11, 2211.
"	"		"		1.7763, 0°	2211.
44	"		"		1.7748, 10°	
**	"		"			
44	"				1.7719, 80° 1.7703, 40°	
44	44		"		1.7685, 50°	Spring. Ber. 15,
e.	"		"		1.7667, 60°	1940. Details in
44	"		"		1.7641, 70°	Bull. Acad. Bel
"	"		"			gique. IV., No. 8,
"	"		"		1.7593, 90°   1.7567, 100°	1882.
"		pressed.	"		1.7307, 100	
41	Once		"		1.773, 20° }	Spring. Ber. 16,
46	Twic	ce "	"		1.760, 22° )	2724.
Mascagni	te		Am, S	) ₄ . H ₂ ()	1.72—1.78	Dana's Minimalogy.
Silver sul	phate		Ag ₂ S O		5.341	Karsten. Schw. J. 65, 394.
"	"		"		5.322	Playfair and Joule. M. C. S. 2, 401.
• •	"		"		5.410	Filhol. Ann. (3), 21, 415.
"	"		"		5.425	Schröder. P. A. 106, 226.
" .	"		44		5.49 110 {	Pettersson. U.N.A.
"			m, (1.0		0.04	1874.
Thallium	sulphate	•	11, S U		6.603	Lamy. J. 15, 186.
•						Lamy and Des Cloi- zeaux. Nature 1, 116.
e i	"		" -		6.79, 17°.8 6.81, 17°.2	
44	"		" -		6.81, 17°.2 }	Pettersson. U.N.A.
Glucinum	 sulphat	e	GIS O.		6.83, 17° }	1874. Nilson and Petters-
"	"				1.725	son. C. R. 91, 232. Topsoë. C. C. 4,
"	"		"		1.6743, 22°	76. H. Stallo. F.W.C.
"	"		"		1.713	Nilson and Petters-
Magnesiu	m sulph	ate	Mg S O	,	2.6066	son. C. R. 91, 232. Karsten. Schw. J. 65, 394.
"	"		"		2.706, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"		"		2.628	Filhol. Ann. (3), 21, 415.
"	"		44		2.675, 16°	Pape. P. A. 120, 367.
66	"		"		2.770, 13°.8	Pettersson. U.N.A.
"	"		"			1876.
£6	"		"			Schröder. J. P. C.
"	"		"		2.471 \ \ 2.829 \	(2), 19, 266. Two modifications.
"	"		"		2.709, 15°	Thorpe and Watts.
"	"		Mg S O	. н, о	2.517, native	J. C. S. 37, 102. Bischof. Dana's Min.

	Name		For	MULA.	Sp. Gravity.	AUTHORITY.
Magnesi	um sulp	hate	Mg S O ₄ .	Н, О	2.281, 16°	Pape. P. A. 120, 369.
"	"		"		2.339, 14°	Pettersson. U. N. A.
"	44		46		2.840, 16°.5	1876.
"	"		44		2.385	Schröder. J. P. C. (2), 19, 266.
**	"		"		2.478, m. of 2_	Playfair. J. C. S. 37, 102.
"	"		**		2.445, 15°	Thorpe and Watts. J. C. S. 37, 102.
"	44		Mg S 04.	2 H, O	2.279	Playfair. J. C. S.
"	44		**		2.373, 15°	37, 102. Thorpe and Watts. J. C. S. 37, 102.
"	"			3 H ₂ O	1.000, 10. 01 2.	87. 102.
"	44		Mg SO.	6 H, O	1.751 1.734, 16°	1i 11
" 🗸	• "		.,		1.734, 16°	Thorpe and Watts. J. C. S. 37, 102.
46	T	wo modi-	"		1.6151 }	Schulze PA (2)
44		fications.	"		1.8981 }	31, 229.
16	"		Mg S O4.	7 H ₂ O	1.8981}	Hassenfratz. Ann. 28, 3.
"	46		"		1.751	l Mohs. See Böttger.
"	"		**		1.674	Kopp. A. C. P.
44	"		"		1.660	M. C. S. 2, 401
44	"		"		1.6829, 4°	Playfair and Joule.
"	"		"			J. C. S. 1, 138. Filhol. Ann. (3), 21, 415.
4.6	"		"		1	Schiff. A. C. P. 107,
44	**		"		1.675	Buignet. J. 14, 15.
"	"		"		1.686, 15°.5	Buignet. J. 14, 15. Forbes. P. M. 32, 135.
"	"		"		1.665, 15°.5	Holker. P. M. (8), 27, 213.
"	"		"		1.701, 16°	Pape. P. A. 120, 378.
"	"		"		1.684, 15°.4 1.691, 15°.5	Pettersson. U. N. A.
**	"		"		1.691, 15°.5	1876.
44	"		"		1.680	Schröder. Dm. 1878.
"	"		"		1.675	Schröder. J. P. C(2), 19, 266.
44	"		"		1.632	W. C. Smith. Am. J. P. 53, 148.
44	"		"		1.678, 15°	Thorpe and Watts. J. C. S. 37, 102.
Zinc sul	phate		Zn 8 04-		3.681, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
"	" -		- "		8.400	Karsten. Schw. J. 65, 394.
14			- "		3.400	Filhol. Ann. (3), 21, 415.
"	" -		- "		8.485, 16°	Pape. P. A. 120, 367.

	N	AMR.	Formu	LA.	Sp. Gravity.	AUTHORITY.
Zinc :	sulpha'	te				0 1 2 2 2 2 2
**	"				8.552 }	Schröder. J. P. C.
"	"		"		3.580)	(2), 19, 266.
••	••				·	Thorpe and Watts, J. C. S. 37, 102.
	"		Zn S O ₄ . H ₂	0	3.215, 16°	Pape. P. A. 120, 369.
"	"		"		3.076	Schröder. J. P. C. (2), 19, 266.
"			46		8.259	Playfair. J. C. S. 37, 102.
**	"		44		3.2845, 15°	Thorpe and Watts. J. C. S. 37, 102.
**	**		Zn S O., 2 F	I. O	2.958, 15°	""
44	"		Zn S O., 5 E	I. O	2.206, 15°	46 66
"	"		Zn S O., 6 F	I. O	2.056	Playfair. J. C. S.
44	"			_	2.072, 15°	87, 102.
					,	J. C. S. 37, 102.
16	"				1.912	Hassenfratz. Ann. 28, 3.
"	"		"		2.036	Mohs. See Böttger.
	"		"		1.931, m. of 4_	Playfair and Joule. M. C. S. 2, 401.
44	"		"		2.036	Filhol. Ann. (3), 21, 415.
"	**		"		1.953	
"	"		"		1.957	
"	"		"		1.9534	Stolba. J. P. C. 97,
"	"		· ·		1.976, 15°.5	503. Holker. P. M. (3), 27, 213.
**	"		"		1.901, 16°	Pape. P. A. 120, 374.
"	"		"		2.015	Schröder. Dm. 1873.
4.6	44		"		1.953 \	Schröder. J. P. C.
4.6	44		44			(2), 19, 266.
"	4.4		"		1.961	W. C. Smith. Am.
"	"		"		1.974, 15°	J. P. 53, 148. Thorpe and Watts. J. C. S. 37, 102.
Cadm	ium su	lphate	Cd S O4		4.447	Schroder. J. P. C. (2), 19, 266.
44		46	Cd S O4. H2	0	2.939	Buignet. J. 14, 15.
		"	3 Cd S O. 8	H ()	3.05, 12°	
Mercu	irous s	ulphate	Hg ₂ S O ₄		7.560	Playfair and Joule.
M	. mio1	nhata	Ha S O		6.466	M. C. S. 2, 401.
Calciu	ım sulj	phate	Cn S O4		2.9271	Karsten. Schw. J.
"		"	"		2.955	65, 394. Neumann. P. A.
"			"		3.102	23, 1. Filhol. Ann. (3),
4.6		" Artificial	"		2.969	21, 415. Manross. J. 5, 9.
"		cryst. " Anhydrite	"		2.983	Schrauf. J. 15, 756.

:	Name		F	RMULA.		Sp. Gravity.	AUTHORITY.
Calcium s	ulphat	e. Anhy-	Ca S O	4		2.92, 15°	Fuchs. J. 15, 755.
"			"			2.736 )	
**	"		"			2.759 } }	Two lots. Schröder.
"	46		"			2.884)	Dm. 1873.
"	"	Artificial cryst.	"			2.98	Gorgeu. Ann. (6), 4, 515.
"	"		2 Ca S	O4. H2 O		2.757	Johnston. P. M. (2), 13, 325.
44	"		Ca S O	4. 2 H, O		2.322	Leroyer and Dumas.
44	**			· -		2.310	Mohs.
"	"					2.307	Breithaupt. Schw. J. 68, 291.
"	"			"		2.381	Filhol. Ann. (3), 21, 415.
44	"	Gypsum_				2.817, m. of 15.	Kenngatt. J. 6,844.
"	. 44	-J P				2.3057	Stolba. J. P. C. 97,
"	"	D		"	- 1	2.2745, 19°.4 )	503.
"		Powder		-		2.3228, 18°.2	
44		Splinters -				2.3086, 18°	Pettersson. U.N.A.
44	"	Sprinters -		<b>-</b>		2.3223, 18°	187 <b>4</b> .
Strontiun		ate. Celes-	Sr S O			8.978	Breithaupt. Dana's
tite.	**	44				3.9593	Min. Beudant. Dana's
			ĺ				Min.
"	**	"	"			8.96	Hunt. Dana's Min.
"	"	"	46			3.86	Mohs.
"	"	"	"			3.962, 15°	Kopp.
66	"	"	"			8.955	Neumann. P. A.
"	"	Artificial	"		- <b></b>	8.927	28, 1. Manross. J. 5, 9.
"	"	cryst.	"			8.949	Schröder. P. A. Er-
"	٠,61	Ppt	".			8.5883	ganz. Bd. 6, 622. Karsten. Schw. J. 65, 894.
"	"	"	. "			3.770	Filhol. Ann. (8), 21, 415.
"	"	"	. "			8.707	Schröder. P. A. 106, 226.
44	"	Ppt. ig- )	u			3.6679 } 18° ]	
"	66	nited.	"			8.6949 } 185	
"	"		. "		<b>-</b>	8.7388 j	Schweitzer. Proc.
"	"	"	- "			3.9502	Amer. Asso. 1877.
66	"	"	- "			8.9514	201.
"	"	"	_			3.9702 J	1
44	**	Artif. crys	t "			8.9	Gorgeu. Ann. (6) 4, 515.
Barium s	ulpha	te		0,		4.42	Breithnupt.
"	71		_ "	-		4.446	Mohs. See Böttger
"	46		-  "			4.2003	65, 894.
66	"		-  "			4.4695, 0°	- Kopp.
66	"	Barite	- "			4.429	- Neumann. P. A. 23, 1.
. "	"	66	66			4.4773 ) . ex-	C Rose D A 75
"	"	"	- "			4.4872 treme	18 } 400

			7		1	1
	NA	ME.	]	Formula.	Sp. Gravity.	AUTHORITY.
Barium	sulpl	nate. Barite	Ba S	0,	4.4794)	
"			46		4.4804 }	1100000000
**	"	Precip	. "		4.5271 )	G. Rose. P. A. 75,
4.6	"	"	. "		. 4.5253 }	) 409.
66	66	Artif. cryst.	. "		4.179	Manross. J. 5, 9.
41	"	•			4.022)	Precipitates in dif-
44	"	;	1 "		1	ferent conditions.
46	"		"		4.065 } {	Schröder. P. A.
••	•••		1		4.512)	106, 226.
"	"	Ppt. ignited.	. "		ן 4.2942	•
**	66	Ppt. dried	"		4.2688	Schweitzer. Univer-
		at 95°.	į.		\ \ \ \ \ \ \ \ \ \	sity of Missouri.
"	66	Ppt	. "		4.4591	Special pub.,1876.
**	"	٠ <u>٠</u>	. "		4.4881	-
61	"	"	. "		4.8958 140.9	1
"	64		. "		4.3969 } 145.9	E. Wiedemann. P.
"	"	"	"		4.3962 } 140.5	M (5) 15 971
44	"	"	. "		4.3967 } 145.5	) M. (5), 15, 871.
44	"	Artif. cryst.	44		4.44-4.50	Gorgeu. Ann. (6),
		-	İ		•	4, 515.
Lead su	lphat	e	Pb S	0,	6.298	Mohs.
44	- "		. "		6.1691	Karsten. Schw. J.
			1			65, 394.
4.6	"		"		6.80	Filhol. Ann. (3),
						21, 415.
"	4.6		"		6.35	Smith. J. 8, 969.
"	"		46		6.20	Field. J. 14, 1022.
**	"	Native	"		6.329 }	Schröder. P. A. Er-
"	"	Precip	"		6.212 }	ganz. Bd. 6, 622.
•6	"		"		5.96, 17°.1 \	Pettersson. U. N.
"	"		"		5.97, 16°.8  }	A. 1874.
4.6		Artıf. cryst.	"		6.16	Gorgeu. Ann. (6),
						4, 515.
Mangan	ese su	lphate	Mn S	O ₄	3.1, 14°	Bödeker. B. D. Z.
"			"		3.192, 16°	Pape. P. A. 120,
						368.
**			"		2.954	Schröder. Dm. 1873.
6.6		"	"		2.975	Schröder. J. P. C.
						(2), 19, 266.
**			"		3.235, 14°.6	Pettersson. U. N.
"			"		3.260, 14°	A. 1876.
"		"	"		3.386	Playfoir. J. C. S.
					0.000 150	37, 102.
"			"		3.282, 15°	Thorpe and Watts.
						J. C. S. 37, 102.
"			MnS	O4. H2O	2.870, 14°.2	T
"					2.903, 15°.4	Pettersson. U. N.
46				"	2.905, 14°.9	A. 1876.
"					3.210	Playfair. J. C. S.
					0045 5	37, 102.
"				"	2.845, 15°	Thorpe and Watts.
						J. C. S. 37, 102.
**		" Szmikite		"	3.15	Schröckinger. J. 30,
						1296.
"			Mn S	O ₄ . 2 H ₂ O	2.526, 15°	Thorpe and Watts.
						J. C. S. 37, 102.
"		"	Mn S	O ₄ . 3 H ₂ O	2.356, 15°	_ " _ "
44		•	Mn S	U ₄ . 4 H ₂ U	2.261	Topsoë. C. C. 4, 76

	Name.		FORMUL	۸.	Sp. Gravity.	AUTHORITY.
Mangane	se sulph	nate	Mn SO ₄ . 5 H	, 0	1.884	Gmelin.
"	"		"		2.087 }	Kopp. A. C. P.
"	"		"		2.095 }	36, 1.
					2.059, 16°	Pape. P. A. 120, 872.
"	"		"		2.099, 16°.2	Data TY NY A
"	"		"		2.103, 17°.6	Petterssen. U. N. A.
"	"		"		2.107, 15°.2	1876.
					2.103, 15°	Thorpe and Watts. J. C. S. 37, 102.
			Fe S O4			Filhol. Ann. (3), 21, 415.
"	"		"		3.138	Playfair and Joule. M. C. S. 2, 401.
"	"		"		3.48	Playfair. J. C. S. 37, 102.
"	"		"		8.846, 15°	Thorpe and Watts. J. C. S. 37, 102.
"	"		FeSO4. H, C	)	1	Playfair. J. C. S. 37, 102.
**	**		"		2.994, 15°	Thorpe and Watts. J. C. S. 37, 102.
**	"		Fe S O. 2 H.	0	2.773, 15°	"
"	"		Fe S O. 3 H.	0	2.778, 15° 2.268, 16°	Pape. P. A. 120, 371.
"	"		Fe S O ₄ . 4 H ₃	0	2.227, 15°	Thorpe and WattsJ. C. S. 37, 102.
	"		Fe S O4. 7 H2	0	1.8399	Hassenfratz. Ann. 28, 3.
"	"		. "		1.857, m. of 3_	
"	"		"		1.8889, 4°	Playfair and Joule. J. C. S. 1, 138.
**	"				1.904	Filhol. Ann. (8), 21, 415.
1.6	"		"		1.884	Schiff. A. C. P. 107, 64.
"	"		46		1 902	Ruignet I 14 15
"	"		"		1.851, 15°.5	Buignet. J. 14, 15. Holker. P. M. (3),
"	"		u		1.9854, 16°	27, 214. Pape. P. A. 120, 372.
u	44		"	_	1.881	Schröder. Dm. 1873
"	u		66		1.897	Schröder. J. P. C.
"	"		"		1.896	(2), 19, 266. W. C. Smith. Am.
Damia	Inhata		F. (S () )		9 007 199	J. P. 58, 145.
rerric su	ipnate		Fe ₂ (S O ₄ ) ₃		3 008 180 5	Pettersson. U. N.
"	"				3.103, 18°.2	A. 1874.
Coquimb	-		Fe. (8 O.) 9	н. о	2.0—2.1 2.092	Dana's Mineralogy.
Coquimo			3 (~ -4/8.	-,	2.092	Breithaupt. See Z.
Ihleite			Fe ₂ (S O ₄ ) ₃ . 12	H ₂ O	1.812	K. M. 3, 520. Schrauf. N. J. 1877, 252.
Nickel su	lphate		Ni 8 O		8.648, 16° 3.652	
"	"				8.696	Schröder. J. P. C.
••			•		· 0.080	l (2), 19, <b>2</b> 66.

	NA	ME.	For	MULA		Sp. Gra	VITY.	AUTHORITY.
						<del></del>		
Nickel 81	ulphs	ite	_		1	3.526		Playfair. J. C. 8 37, 102.
"	"					3.418, 1	5°	Thorpe and Watts J. C. S. 37, 102.
"	"		Ni S O.,,	6 H ₃	0	2.042 }		Topsoë. C. C. 4, 70
"	"		"			2.074 } 2.031, 1	5°	Thorpe and Watts J. C. S. 37, 102.
44	"		Ni S O4.	7 H ₂	o	2.037		Kopp. A.C. P. 36.
"	. "		"			1.931		Schiff. A. C. I 107, 64.
"	"	Morenosite_	"			2.004		Fulda. J. 17, 859. Pape. P. A. 120
"	"		"			1.877, 10		373.
"	"		"		1	1.955, 1		Pettersson. U.N.A.
					į	1.949, 1		Thorpe and Watt J. C. S. 37, 102.
	-	ite	-					Playfair and Joul. M. C. S. 2, 401.
66 66	"						5°.6 }	Pettersson. U.N.A 1876.
"	"		_			3.444		Playfair. J. C. 8 37, 102.
**	"		" -			8.472, 1	5°	Thorpe and Watt J. C. S. 37, 102.
**	"		Co S O4.	H, O		3.125, 1	5°	" "
44			Co S O4.	2 H ₂	0	2.712		Playfair. J. C. 1 37, 102.
46	"		4			<i>'</i>		J. C. S. 37, 102.
"	"		Co S O ₄ .	4 H ₂	0	2.327, 1	5°	
"	"		Co S O.	6 H ₂	0	2.019, 1	Vo	
"	"		Co S O.	7 H ₂	ŏ	1.924		Schiff. A. C. P. 10
"	"			t .		1.958, 1 1.964, 1	5°.6 }	Pettersson. U. 1
"	"		î			1.964, 1	5°.5	A. 1876.
"	"							Schröder. J. P. (2), 19, 266.
						1.918, 1		J. C. S. 37, 102
	sulpi	nate				1		Playfair and Jou M. C. S. 2, 401.
"						3.572		Karsten. Schw. 65, 394.
"	"							415.
	"					3.527, 1		368.
"	"					3.707,		C. R. 77, 579.
"	"		"			3.82, 17	(0.1 }	Pettersson. U.
"	"		"		<b>-</b>	3.83, 18 3.651,		A. 1874. Hampe. Z. C.
44	66					3,83		867. Schröder. J. P.

	NAM	ĸ.	Formul	<b>.</b> ▲.	Sp. Gravity.	AUTHORITY.
Copper	sulphat	e	Cu-S O4		3.606, 15°	Thorpe and Watts. J. C. S. 37, 102.
44	"		Cu S O ₄ . H ₂	0	3.125, 16°	Pape. P. A. 120, 370.
44	"		44		3.235, 17°.2	0.0.
**	"		"		8.239, 18°.1	Pettersson. U. N.
44	"		"		3.246, 18°	A. 1874.
"	"		**		8.038	Schröder. J. P. C.
"	**		"		<b>3.20</b> 6	(2), 19, 266. Playfair. J. C. S.
"	**		44		8.289, 15°	37, 102. Thorpe and Watts.
44	"		Cu S O4. 2 H2	0	2.808, 16°	J. C. S. 87, 102. Pape. P. A. 120,
"	"		44		2.878 }	871. Playfair. J. C. S.
"	66		"		2.891	37, 102.
**	"		"		2.953, 15°	Thorpe and Watts. J. C. S. 87, 102.
"	"		Cu S O 3 H	. 0	2.663, 15°	"
**	"		2 Cu S O 7	й. О	2.648, 15°	44 44
"	"		2 Cu S O ₄ . 7 I Cu S O ₄ . 5 H	,0	2.1943	Hassenfratz. Ann. 28, 3.
44	"		"		2.2	Gmelin.
"	"	Native	"		2.297	Breithaupt. J. P. C. 11, 151.
**	"		"		2,274	Kopp. A. C. P. 86, 1.
"	"				2.254	Playfair and Joule. M. C. S. 2, 401.
"	"		"		2.286	Filhol. Ann. (3), 21, 415.
"	**		"		2.2422	Dlonfoin and Jamie
"	"		"		2.2781 } 4° }	Playfair and Joule.
"	"		"		2.2901)	J. C. S. 1, 138.
**	"		"		2.302	Buignet. J. 14, 15.
"	",		"		2.2778	Stolba. J. P. C. 97, 503.
44	"		"		2.268, 16°	Pape. P. A. 120, 371.
"	"		"			Favre and Valson. C. R. 77, 579.
"	"		"		2.286, 19°.4	Pettersson. U. N.
"	"		"		2.292, 20°	A. 1874.
"	"		"		2.277	Schröder. Dm. 1878.
**	"		"		2.263	Schröder. J. P. C.
"	"		"		2.296}	(2), 19, 266.
"	"		"		2.330	Rüdorff. Ber. 12, 251.
"	"		"		2.212	W. C. Smith. Am. J. P. 53, 145.
"	"		"		2.284, 15°	
		ate	Cr ₂ (S O ₄ ) ₃		2.743, 17°.2	Favre and Valson. C. R. 77, 579.
"	"				8.012	Nilson and Petters- son. C. R. 91, 232
"	"		Cr ₂ (S O ₄ ) ₃ . 1	5 H ₂ O ₋	1.696, 22°	Schrötter. P. A. 53 513.

	Name.		Formu	LA.	Sp. Gravity.	AUTHORITY.
Chromic s	sulphate	·	Cr ₂ (S O ₄ ) ₃ .	15 H ₂ O -	1.867, 17°.2	Favre and Valson. C. R. 77, 579.
Aluminu	m sulph	ate	Al ₂ (S O ₄ ) ₈ -		2.7400	Karsten. Schw. J. 65, 894.
44	"		" -		2.171	Playfair and Joule.
**	"		" -		2.672, 22°.5	M. C. S. 2, 401. Favre and Valson. C. R. 77, 579.
46	"				2.710 } 170 {	Pettersson. U.N.A.
"	"			10.17.0	4.710	1874.
"	"		$\mathbf{Al}_{2} (\mathbf{S}  \mathbf{O}_{4})_{3}.$	18 H ₂ O ₋	1.671, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"		"		1.569	Filhol. Ann. (3), 21, 415.
"	u		4.		1.767, 220.1	Favre and Valson. C. R. 77, 579.
	-		In ₂ (S O ₄ ) ₈		3.438	Nilson and Petters- son. C. R. 91, 282.
Scandium	sulpha	te	Se, (S O4)3		2.579 2.606, 19°.4 )	u ú
Yttrium s	sulphate	3	$Y_2 (S O_4)_{3} - $		2.606, 19°.4	
"	"					Pettersson. U. N. A.
"	"		"		2.626, 19°.3 ) 2.612	1876.   Nilson and Petters-
"	"		Y ₂ (S O ₄ ) ₃ .	8 H ₂ O	2.52	son. C. R. 91, 232. Cleveand Hoeglund.
"	".		**		2.53	B. S. C. 18, 200. Topsoë. Quoted by Pettersson.
44	"		44		2.531, 19°.6	1 CLUCISSON.
44	"		**		2.537, 19°.4	Pettersson. U. N. A.
"	"		46		2.552, 15°	1876.
: 6	""		"		2.540	Nilson and Pettersson. C. R. 91,232.
Erbium s			$Er_2 (SO_4)_{3-}$		3.518, 14°.5 3.524, 14°.2	Pettersson. U. N.
"	"				3.524, 14°.2	A. 1876.
					3.678	Nilson and Petters- son. C. R. 91, 232.
"	"				3.17	Cleveand Hoeglund. B. S. C. 18, 200.
"	"				3.230, 16°.4	
"	"		"		3.242, 160.6	Pettersson. U. N.
"	"			 	3.248, 17°.1   )   3.180	A. 1876. Nilson and Petters-
						son. C. R. 91, 232.
Ytterbiur	m sulph	ate	$Yb_2 (SO_4)_3$	O.TT. ()	3.793	. "
- 11 	1		$Y b_2 (S O_4)_3$	8 H ₂ O	3.286	Detterment II N
Lanthant	ım suıp	hate	La ₂ (S O ₄ ) ₈		$\left\{ \begin{array}{l} 3.53,13^{\circ}.6_{} \\ 3.67,15^{\circ}.4_{} \end{array} \right\}$	Pettersson. U. N. A. 1876.
"		"				Nilson and Petters-
"		"	"		3.544 ) 150 (	son. C. R. 91, 232. Brauner. S. W. A.
44		"	"	- <b></b>	$\begin{bmatrix} 3.544 \\ 3.545 \end{bmatrix}$ 15° $\{$	June, 1882.
"		"	La ₂ (S O ₄ ) ₈ .	9 H, O.	2.827	Topsoë. Quoted by Pettersson.
"			"		2.848, 17°.2	Pettersson. U. N.
44		"	"	<b></b> .	. 2.864, 17°.4	A. 1876.
4.6		"			2.853	Nilson and Petters-

N	AME.		Formi	JLA.	SP. GRA	VITY.	Auti	iorit	Y.	
Cerium sulp	hate_		Ce ₂ (S O ₄ ) ₃		3.916, 12	20.5	Pettersso A. 187		σ.	N.
"	" -		<b>(;</b>		3.912		Nilson a son. C	nd P		
"	" -		Ce, (S O,)3.	5 H ₂ O	8.214, 14	°.2 }	Pettersso			
"	" -		"		3.232, 14 3.220		1876. Nilson a			
Didymium s	ulphn	te	Di ₂ (S O ₄ ) ₃		3.722, 14	°.6 }	son. ( Pettersso			
"	"		"		3.756, 15   3.735	°.6 }	1876. Nilson at	nd P	ette	ers-
"	"		"		$\left\{ \begin{array}{c} 3.662 \\ 3.672 \end{array} \right\}$		son. C			
**	"		••		0.012	180.8	1885.			
"	"		$Di_2$ (S $O_4$ ) ₃ .	_			Cleveand B. S. C	l Hoeg L. 18.	glui 200	nd. ).
46	"		**		2.877, 16 2.886, 14 2.878	°.4 }	Pettersso			
"	"		"		2.886, 14	°.8	1876. Nilson ar	. A D	<b></b>	
						- 1	son. C.			
"	"		"		2.827, 14	$\stackrel{\circ.8}{\circ}$	Cleve. U.	N A	10	Q.F.
					2.828, 16 2.881, 16	· · · }	Cieve. U.	и.д	. 10	00.
Samarium s	ulpha	te	$\operatorname{Sm}_{2}(\operatorname{SO}_{4})_{3}$ $\operatorname{Sm}_{4}(\operatorname{SO}_{4})_{3}$		3.898, 18	°3	"		"	
"	""		$\operatorname{Sm}_{2}^{2} \left( \operatorname{S} \operatorname{O}_{4}^{1/3} \right)_{3}^{3}$		$\left\{ egin{array}{c} {f 2.928} \ {f 2.932} \end{array}  ight\}  {f 1}$	18°.3 _	"		"	
Thorium sul			Th (S O ₄ ) ₂				Clarke.	A. (	C.	J.
"	**		"		4.2252, 1	7°	2, 175. Krüss ar			on.
"	"		2 Th (S O4)	. 9 H ₂ O.	3.398, 24	°	Ber. 20 Clarke. 2, 175.			J
"	"		Th (S O ₄ ) ₂ .	9 H ₂ O	2.767				s.	C.
Uranyl sulp	hate		U O2. S O4.	3 H ₂ O	3.280, 16	°.5	H.Schmi	dt. F.	W.	.C.

# 2d. Double and Triple Sulphates.*

Name.			FORMULA.		Sp. Gravity.	Астновіту.
Sodium hy	drogen su	lphate	Na HS(	),	2.742	Playfair and Joule. M. C. S. 2, 401.
	hydroge	n sul-	кнзо	4	2.112	Thomson. Ann.
phate.	"	"	"			Phil. (2), 10, 435. Jacquelain. A. C.
"	"	"	"		2.475, m. of 2_	P. 32, 234. Playfair and Joule.
"	- 16	"	" .		2.47767, 4°	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138.

[•] Exclusive of basic or partly basic double sulphates.

<del></del>						
N.	AME.		FORMULA	۸.	Sp. Gravity.	AUTHORITY.
	nydroger "'		к н в о		2.305, cryst	1
phate.	"	"			2.354 cryst. 2.355 mass.	Schröder. Dm.
"	"	"	"		2.001, after fu-	1873.
					sion.	
"	"	"	"		2.245, cryst	Wyrouboff. B. S. M. 7, 7.
Ammonium phate.			Am HSO4			Playfair and Joule. M. C. S. 2, 401.
- "	"	"	"	<b>-</b>	1.787	Schiff. A. C. P. 107, 64.
Sodium po	tassium	sul-	Na ₂ S O _{4:} 3 K ₂	S O4	2.668 } 2.671 }	Two lots. Penny. J. 8, 333.
Lithium am	monium		Am Li S O4			Wyrouboff. B. S.
phate. Sodium am		sul-	Am Na S O4. 2	H ₂ O ₋	1.63	M. 5, 42. Schiff. A. C. P. 114, 68.
phate. Potassium an phate.	mmoniu	m sul-	•	i	2.280	Schiff. A. C. P. 107, 64.
Guanovulite			Am ₂ K ₇ H ₃ (S	O ₄ ) ₆ . }	${2.33 \atop 2.65}$	Wibel. Ber. 7, 393.
Glauberite			Na ₂ Ca (S O ₄ ) ₂	g ().	2.767	Breithaupt. Schw.
" Syngenite			K ₂ Ca (S O ₄ ) ₂ .	H, O.	2.64 2.603, 17°.5	J. 68, 291. Ulex. J. 2, 776. Zepharovich. J. 25,
"			"		2.252	1143. Rumpf. Dana's Min., 2d Supp.
Dreelite Polyhalite _			Ca S O ₄ . 3 Ba K ₂ Ca ₂ Mg (S	$S(O_A)_A$ .	3.2—3.4 2.7689	Dana's Mineralogy.
Krugite			K ₂ Ca ₄ Mg (S	H, Ö. S O ₄ ) ₆ . H ₂ O.	2.801	Precht. Ber. 14, 2138.
Simonyite _			$Na_2Mg(SO_4)_2$ .	4H ₂ O.	2.244	Tschermak. J. 22, 1241.
Loewite			Na ₄ Mg ₂ (SO ₄ ) ₄ .	5 <b>H₂</b> O.	2.376	Haidinger. J. 1, 1220.
Krönnkite _			Na ₂ Cu(SO ₄ ) ₂ .	2H ₂ O.	2.5	Domeyko. Dana's Min., 3d Supp.
	agnesiu	m sul-	K ₂ Mg (S O ₄ ) ₂		2.676	Playfair and Joule.
phate.	"	"	**		2.735}	M: C. S. 2, 401. Schröder. Ber. 7,
"	"	"	W Mar(SO)		2.790	1117.
	••	``	$K_2 Mg (SO_4)_2$ .	бӊ₂О.	2.076, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
44	"	"	46		2.05319, 4°	Playfair and Joule. J. C. S. 1, 138.
"	"	"	"		1.995	Schiff. A. C. P.
**	"	"	"		2.024	107, 64. Topsoë and Christ- ignsen.
"	"	"	"		2.034	Schröder. Dm. 1873.
**	"	"	"		2.036 }	Schröder. J. P. C.
"	**	. "		,	2.048 }	(2), 19, 266.
Ammonium sulphate.	magne	sium	Am ₂ Mg (S O ₄	)2	2.080	"

		-				
N.	AME.		FORMULA.		Sp. Gravity.	AUTHORITY.
Ammonium		sium	Am, Mg (S O4)2 -		2.095 }	Schröder. J. P. C.
sulphate.	- 11			1	2.141 }	(2), 19, 266.
"	"		$Am_2Mg(SO_4)_2.6E$	1,0	1.696	Gmelin.
-	••		••		1.721	Playfair and Joule. M. C. S. 2, 401.
"	44				1.71686, 4°	Playfair and Joule.  J. C. S. 1, 188.
"	"				1.680	Schiff. A. C. P. 107, 64.
"	"		"		1.762	Buignet. J. 14. 15.
"	"		6.6		1.720	Topsoë and Christ- iansen.
"	"		"		1.723 }	Schröder. J. P. C.
"	"		"		1.727 }	(2), 19, 266.
Potassium z	_		K ₂ Zn (S O ₄ ) ₂		2.816	Playfair and Joule. M. C. S. 2, 401.
		· <del>-</del>	"		2.946	Various lots, dif-
**					2.891	ferently treated.
**					8.027 }	Schröder. J. P. C.
			"		2.703     2.733	(2), 19, 266.
	11 11		K, Zn (SO4), 6 H	. 0	2.153	Kopp. A. C. P. 36, 1.
"			11,2211 (5 04)4. 0 12		2.245	Playfair and Joule. M. C. S. 2, 401.
"		٠	"		2.24034, 4°	Playfair and Joule. J. C. S. 1, 138.
46		٠	"		2.153	Schiff. A. C. P. 107, 64.
"		١	"		2.249	Schröder. Dm. 1878.
44		'	"		2.285)	Schröder. J. P. C.
"	"	٠	"		2.240}	(2), 19, 266.
Ammonium	zinc sul	-	$\operatorname{Am}_{2}\operatorname{Zn}\left(\operatorname{SO}_{4}\right)_{2}=1$		2.222	Playfair and Joule. M. C. S. 2, 401.
"	44	"	"		2.258}	Schröder. J. P. C.
"	"	"	Am, Zn (SO,), 61	H,O	2.288	(2), 19, 266. Playfair and Joule.
"	"	"·	"		1.910	M. C. S. 2, 401. Schiff. A. C. P. 107,
"	44	"	۱ ،،		1.919)	64.
	"	"	"		1.921	Schröder. J. P. C.
44		"	16		1.925	(2), 19, 266.
Potassium phate.	cadmiun	n sul-	K ₂ Cd (S O ₄ ) ₂ . 6 F	I, O	2.438	Schiff. A. C. P. 107, 64.
Ammonium phate.	cadmiu	m sul-	Am ₂ Cd (SO ₄ ) ₂ . 61	H,0	2.078	" "
Potassium 1 phate.	mangane	se sul	K ₂ Mn (S O ₄ );		3.008, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
phate.	**	"	. "		8.031	Schröder. Ber. 7, 1118.
"	. "	"	. "		2.954	
"	"	"	K, Mn (SO,),. 4H	.0,1	2.313	. (2), 10, 200.
Ammonium sulphate.		anese	Am, Mn (SO4)2. 6	Ĥ,C	1.930	Thomson. Gm. H.
	44	"_			1.823)	
"	**	"-	_  "		1.827}	(2), 19, 266.
Potassium :	iron sulp	hate_	. K₂ Fe (S O₄)₂		3.042	

N	TAME.		Formu	L <b>A.</b>	Sp. Gravity.	AUTHORITY.
Potassium	iron sulj	phate	K ₂ Fe (SO ₄ ) ₂ .	6H ₂ O.	2.202	Playfair and Joule.
"	"	"	"		2.189	M. C. S. 2, 401. Schiff. A. C. P. 107, 64.
Ammoniun	n iron su	lphate	Am ₂ Fe(SO ₄ )	₃ . 6 Н ₂ О	1.848, m. of 2	Playfair and Joule. M. C. S. 2, 401.
"	"	"	"		1.813	Schiff. A. C. P. 107,
"	"	"	"		1.886	
Potassium 1	nickel su	lphate	K, Ni (S O,)	·	2.897, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
"	"	"	.46		8.086	Schröder. Ber. 7, 1117.
"	"	"	**	. 6 H, O	2.111 }	Kopp. A. C. P. 36, 1.
44	"	"	66		1.921 }	Schröder. J. P. C. (2), 19, 266.
Ammonium phate.	"	"	Am ₂ Ni (SO ₄ )		1.915 }	Kopp. A. C. P. 86, 1.
Potassium c	obalt su	" lphate.	K, Co (S O ₄ ),		1.921 ) 3.105	Schröder. Ber. 7,
44	"	٠،	K ₂ Co (SO ₄ ) ₂ .	6H,O	2.154	1118. Schiff. A. C. P. 107, 64.
16 16	"	"	"		2.205, 16°.8 2.214, 16°.6 }	Pettersson. U. N. A. 1876.
Ammonium phate.			Am ₂ Co(SO ₄ )	. 6H ₂ O	1.878	Schiff. A. C. P. 107, 64.
* "	"	"	"		1.902, 18°	Pettersson. U. N.
£ £	"	"	"		1.907, 16°.6 5 1.893	A. 1876. Schröder. J. P. C. (2), 19, 266.
Thallium co	balt sul	phate_	$\mathrm{Tl_{2}Co}(\mathrm{S} \mathrm{O}_{\iota\iota})_{2}.$	6H ₂ O		Pettersson. U. N.
_ "	"	"		1	3.803, 16°.4	A. 1876.
		-	$\mathbf{K_2}$ Cu $(\mathbf{S} \ \mathbf{O_4})_2$	1	2.797, m. of 2_	Playfair and Joule.  M. C. S. 2, 401.
"	"	"			2.784, 20°.5	Favre and Valson. C. R. 77, 579.
11	"	"	"		2.754	Schröder. Dm. 1873.
"	"		"		2.789	Schroder. Din. 1676.
**	"	"	$K_2 Cu (S O_4)_2$ .	6 H ₂ O	2.244, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"		"	16		2.16376, 4°	Playfair and Joule. J. C. S. 1, 138.
"		"	"	. 1	2.137	Schiff. A.C. P. 107, 64.
"	"	"	"	İ		Favre and Valson. C. R. 77, 579.
"	"	"	"		2.224 2.221, 16°	Schröder. Dm. 1870. Pettersson. U. N. A.
Ammonium phate.	copper	sul-	Am ₂ Cu (S O ₄	)2	2.197, m. of 2_	1876. Playfair and Joule. M. C. S. 2, 401.
44	"	"	"		2.348	Schröder. J. P. C. (2), 19, 266.
		\				

Δ.	TAME.		FORMUL.	<b>a.</b>	Sp. Graviti	Астновит.
Ammoniur	n copper	sul-	Am ₂ Cu (\$O ₄ ) ₂	6H,0	1.756	) . <b>К</b> орр. А. С. Р.
phate.	"	"			1.757	36. 1. Playfair and Joule.
"	"		ļ			M. C. S. 2. 401.
		"				Playfair and Joule, J. C. S. 1, 138.
"	66	"	· · ·		1.931	Schiff. A. C. P. 107, 64.
"	"	"	••		1.925, 15°,2	Pettersion, U.N.A.
"	££	"			1.931, 152,5	1876.
		**		14 H.O	1.817	Evans. F.W.C. Schiff. A. C. P.
-						107. 64.
Magnesium phate.	a cadmiur	n sul-	Mg Cd(SO ₄ ) _T	14H,0	1.983	
	a iron sul	phate_	Mg Fe(SO ₄ ) _x	14 H,O	1.733	
Magnesium phate.	a copper	sul-	$\mathbf{MgFe(SO_4)_T}$ $\mathbf{MgCu(SO_4)_T}$	1 <b>4,</b> Ĥ0	1.813	
Fauserite _			MgMn ₂ (SO ₄ ) ₃	. 15 <b>H</b> ₂ O	1.88	- Breithaupt. J. 18,
Zine iron 1	manganes	e sul-	Zn Fe Mn. (	S O	2.1627	901. Iles. A. C. J. 3, 420.
phate.	Native.		28	H, O.		11.0.0.0, 100.
Menduzite			NaAl(SO ₄ ) _r	11 11 0	• 60	
			2.2221(2.24.32	1111,0	1.55	
			<b> </b>			Min.
Sodium alu	minum a	lum	Na Al (SO ₄ ) _T	12 H ₂ O	1.641 1.567	Min. Schiff. A.C. P.107.64
Sodium alu "	iminum a "	lum "	Na Al (SO, ),	12 H, O	1.641 1.567	Min. Schiff. A.C. P.107.64 Buignet. J. 14, 15
Sodium alu	ıminum a " "	lum	Na Al (SO,),	12 H, O	1.641 1.567 1.696, 18° 1.693, 18°	Min Schiff. A.C. P.107.64 - Buignet. J. 14, 15  Pettersson. U. N
Sodium alu  	aminum a " " " "	lum	Na Al (SO ₄ ) ₂	12 H, O	1.641 1.567 1.686, 18° 1.693, 18° 1.694, 18°.2 1.73	Min Schiff. A.C. P.107.64 Buignet. J. 14, 15 ) Pettersson. U. N. ) A. 1874 Sort. J. C. S. 50, 596
Sodium alu 	aminum a " " " "	lum	Na Al (SO ₄ ) ₂	12 H, O	1.641 1.567 1.686, 18° 1.693, 18° 1.694, 18°.2 1.73	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joula
Sodium alu Potassium alum.**	uminum a	lum	Na Al (SO ₄ ) ₂ . "" "" "" "" "" K Al (S O ₄ ) ₂	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2	Min
Sodium alu Potassium alum.*	aminum a	lum	Na Al (SO ₄ ) ₂	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 2.6895 i 15°	Min. Schiff. A.C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876
Sodium alu Potassium alum.*	aminum s	lum	NaAl (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H ₂ O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 2.6905 ) 1.7109	Min. Schiff. A. C. P. 107.64. Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H ₂ O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 1.7109	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenov.
Sodium alu Potassium alum.*	aminum s	lum	NaAl (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 1.7109 1.753 1.724	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joulet M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) _T	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 1.7109 1.753 1.724	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joulet M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ "  K Al (SO ₄ ) ₂ .	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 2.6905 ) 1.7109 1.753 1.724 1.726, m. of 4	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.694, 18°.2 1.73 2.228, m. of 2 2.6846 ) 15° 2.6905 ) 15° 1.7109 1.753 1.724 1.726, m. of 4	Min. Schiff. A.C. P.107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J.C.S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H, O	1.641	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138. Schröder. Dm. 1873.
Sodium alu Potassium alum.*	aminum s	lum " " " " " " "	NaAl (SO ₄ ) ₂ K Al (SO ₄ ) ₂ K Al (SO ₄ ) ₂ "  "  "  "  "  "  "  "  "	12 H, O	1.641	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138. Schröder. Dm. 1873.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .	12 H, O	1.641	Min. Schiff. A. C. P. 107.64. Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138. Schröder. Dm. 1873. Pettersson. U. N. A. 1874.
Sodium alu	aminum s	lum " " " " " " "	Na Al (SO ₄ ) ₂	12 H, O	1.641 1.567 1.696, 18° 1.693, 18° 1.693, 18° 1.694, 18°.2 2.228, m. of 2 2.6846 ) 15° 2.6905 ) 1.7109 1.753 1.726, m. of 4 1.75125, 4° 1.711 1.749, 21° 1.753, 21° 1.755, 20°.5 1.753	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule. M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138. Schröder. Dm. 1873. Pettersson. U. N. A. 1874. W. C. Smith. Am. J. P. 53, 145.
Sodium alu	aminum s	lum " " " " " " "	NaAl (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  K Al (SO ₄ ) ₂ .  ""  ""  ""  ""  ""  ""  ""  ""  ""	12 H, O	1.641	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule M. C. S. 2, 401. Playfair and Joule J. C. S. 1, 138. Schröder. Dm. 1873. Pettersson. U. N. A. 1874. W. C. Smith. Am. J. P. 53, 145. Schiff. A. C. P.
Sodium alu Potassium alum.*	aminum s	lum	Na Al (SO ₄ ) ₂	12 H, O	1.641	Min. Schiff. A. C. P. 107.64 Buignet. J. 14, 15. Pettersson. U. N. A. 1874. Soret. J. C. S. 50, 596. Playfair and Joule M. C. S. 2, 401. Pettersson. U. N. A. 1876. Hassenfratz. Ann. 28, 3. Dufrenoy. Kopp. A. C. P. 36, 1. Playfair and Joule. M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138. Schröder. Dm. 1873. Pettersson. U. N. A. 1874. W. C. Smith. Am. J. P. 53, 145.

[•] The dehydrated alums are included here for convenience.

NAME.		FORMULA.		Sp. Gravity.	· AUTHORITY.		
Potassium	alum	ini	n m	K Al (S O4), 12	н,о	1.7546, 0° )	
alum		64		44		1.7542, 10°	
44		*5		14		1,7588, 20°	15:1
44		44		-14	**	1.7532, 800	
44		44	-	44	***	1.7526, 40°	Spring. Ber. 15,
44		11	-	16		1.7521, 50°	
**		11	-	44		1.7501, 60°	1254, and Bei. 6 648. Also a series
- 14		11		44		1.7474, 70°	in Ber. 17, 408.
14		44				1.7252, 80°	in Ber. 11, 408.
2.0		14		11	-	1.7067, 90°	
11		16		- 41		1.758, 21°, not pressed.	1
e &		16		ı k	**	1.756, 16°.5,	Spring. Ber. 16,
			1			once pressed.	2724.
18		11	-	46		1.750, 16°.5,	+1-4.
						twice pressed	
44		11	-	11		1.735	Soret. C. R. 99, 867.
Rubidium	alumin	ım a	lum	Rb Al (S O4)2		2.7832, 14°.8 2.7910, 15°	Pettersson. U. N. A. 1876.
14	14			RbAl(SO ₄ ) ₂ . 12	$H_2O$	1.874	Redtenbacher, S. W. A. 51, 248.
14	44			46		1.890 } 200 {	Pettersson. U. N. A.
44	44			-44	-	1.891	1874.
2.2	64			14			
4.4	-6			44		1.8648, 10°	
6.6	6.6		11	44		1.8639, 200	
6.4	6.6	- 0	11	16		1 0005 000 1	
2.5	4.0			14		1.8631, 40°	
2.2	1.0		11	4.6		1,8624, 50° }	Spring. Ber. 15.
64	4.6		11	1.0		1.8619, 60°	1254, and Bei. 6.
4.4	44			11		1.8611, 70°	648. Also a series
4.6	44			11	-	1.8596, 80°	in Ber. 17, 408.
4.6	4.6			16	-	1.8578, 90°	
**	44.			11		1.8554, 100° J	200000000000000000000000000000000000000
44	44			n.	1.4-	1.883 20.06	Setterberg, Ber. 15
11	44		14	11	-		1740.
casium alı	uminum		m	Cs A1(SO ₄ ) ₂ , 121	I,Õ.	2.003	Soret. C. R. 99, 867. Redtenbacher, S. W.
44	44	- 61		16		1.994, 18°.1	A. 51, 248. Pettersson. U. N.
4.6	44	44	-	14 1		2.000, 20°	A. 1874.
15	44	44		16		O DOLL OF S	21. 1011.
2.4	44	11		- 66		0.0010 100	
66	4.6	44		u		0 0000 000	
64	44	66		14		0.0000 000 1	
44	14	* 64		4.6	12	0.0104 400	
45	1.6	44		44		2.0189, 500	Spring. Ber. 15.
43	44	44		46		2.0186, 60°	1254, and Bei. 6
44.	44	44		ir.		2.0173, 700	648. Also a series
+4	18	44	-	-16		2.0153, 80°	in Ber. 17, 408.
8.6	14	44		16		2.0107, 90°	
44	14	14		16	- 0	2.0061, 100°	
44	11			14		1.988, 18°, not pressed.	1
+4	**	44		11		2.000, 20°,	Spring. Ber. 16
44	41	tt				once pressed. 2.005, 20°, twice pressed	2724.

NAM	Œ.		FORMULA.		Sp. Gravity.	Authority.
Cæsium alumi Ammonium alum.	num alu alumir		Cs Al (SO ₄ ) ₂ . 12 H ₂ (Am Al (SO ₄ ) ₂	0.	1.911 2.039	Soret. C. R. 99, 867. Playfair and Joule. M. C. S. 2. 401.
"	"		Am Al (SO ₄ ) ₂ . 12 H ₂	o	1.602	Breithaupt. J. P. C. 11, 151.
"	"		"		1.625 )	Kopp. A. C. P. 36, 1.
"	"		"		1.626 }	·
	"				1.625	Playfair and Joule. M. C. S. 2, 401.
"	"		"		1.621	Schiff. A. C. P. 107, 64.
**	"		"		1.658	Buignet. J. 14, 15.
"	"		"		$1.642$ , m. of $4_{-}$	)
"	"				1.638 extremes	Pettersson. U. N.
"	**		u		1.647 \$ 180.2.190.5	) A. 1874.
"	"				1.661	W. C. Smith. Am. J. P. 53, 147.
"	"		et.		1.6357, 0°	·
"	"		. "		1.6851, 10°	
"	"		**	1	1.6346, 20°	1
64	"		4.4		1.6345, 30°	<u> </u>
"	"		"	1	1.6340, 40°	
"	"		66	1	1.6336, 50° }	Spring. Ber. 15,
"	"		et		1.6332, 60°	1254, and Bei. 6,
"	**		66		1.6328, 70°	648. Also a series
"	"		"		1.6323, 80°	in Ber. 17, 408.
"	"		"		1.6299, 90°	<b>'</b>
"	**		"		1.6275, 100° j	
	"		"		1.641, 18°, not pressed.	]
66	"		44 .		1.629, 16°.5,	Spring. Ber. 16,
44	"		"		once pressed. 1.634, 18°,	2724.
					twice pressed	1
	. ".		((		1.631	
Methylamine alum.	alumii	num	(NH ₂ CH ₃ )Al(SO ₄ ) 12 H ₂ (	). I	1.568	. "
Thallium alun	ninum a	lum	Tl Al (SO ₄ ) ₂ . 2H ₂	0_	8.645, 17°	Pettersson. U.N.A. 1874.
"	"	"	Tl Al (SO,)2. 12 H2	o	2.348, 15°.8	
"	"	"			2.366, 21°	
"	"	"	"		2.868, 20°.6	
"	"	"	"		2.884, 17°	
"	"	"	"	<u></u> -	2.320, 22°, not pressed.	
"	"	"	**		2.814, 16°.5, once pressed.	Spring. Ber. 16,
"	"	"	66		2.814, 18°,	2724.
**	66	"	"		twice pressed	· J
**	"	::	· "		2.3226, 0°	
"	"	";	" "		2.3213, 10°	
"	"	;;	" "			Spring. Ber. 17,
"	"	;;	" "		2.3189, 30°	408.
"	"	;;	"			
"	"	";			2.8181, 50° J	G C D 00 007
Detection -1			• [		2.257	Soret. C. R. 99, 867.
Potassium ch	rome al	um	K Cr (8 O ₄ ) ₂	<b>-</b>	2.1583, 14°.1 ) 2.1618, 14°.4	Pettersson. U.N.A. 1876.

					<del></del>	
	NAME.		Formu	LA.	Sp. Gravity.	AUTHORITY.
Potassiu	m chrome	e alum	K Cr (S O ₄ ) ₂ .	12 H ₂ O	1.848	
"	"	"	"		1.826	36, 1. Playfair and Joule.
**	"	"	"		1.85609, 4°	
"	"	"	"		1.845, 12°	J. C. S. 1, 188. Schiff. A. C. P. 107, 64.
**	"	"	"		1.839, 21° )	101, 01.
44	4.6	"	"		1.840, 21°	77
66	44	"			1.841, 20°.2	Pettersson. U. N. A.
"	44	. "	"		1 040 010 1	1874.
	46	64	"		1.007.	
44	66	16	"		1 000 }	Schröder. Dm. 1873.
44	44	44			1 00000 00 5	
"	46	"			1.8273, 10°	İ
44	64	"	"		1.8269, 20°	
44	**	"			1 00005 000	
44	66	"			1.8260, 40°	Spring. Ber. 15,
44	**	"	"		1 1 0000	1254, and Bei. 6,
"	44	"	"		1.8223, 60°	648. Also a series
44	66	"	44		1.8044, 70°	in Ber. 17, 408.
44	"	"	46			III Dell. 11, 100.
44	44	"			1.828, 20°, not	1
					pressed.	11
"	"	"	"		1.823, 16°.5, once pressed.	Spring. Ber. 16, 2724.
44	"	"	"		1.817	
Rubidium	chrome	alum	Rb Cr (SO4)2.	12H.O		Pettersson. U. N.
11	"	"	"		1.969 } 16°.8 {	A. 1874.
4.6	"	"	"		1.946	
Cæsium c	hromium	alum_	$\operatorname{Cs}\operatorname{Cr}(\operatorname{SO}_4)_2$ .	12 H. O	2.043	11 11 11
Ammoniu	ını chron	ne alum	Am Cr (S O	)2	1.9943, 14°.7	Pettersson. U. N. A. 1876.
"	"	"	$\operatorname{Am}\operatorname{Cr}(\operatorname{SO}_4)_{\mathfrak{S}}$	. 12 H ₂ O	1.738, 21°	
""	"	"	"		1.728, 20°	Pettersson. U. N. A. 1874.
"	٤.	"	"		1.719	Soret. C. R. 99, 867.
Thallium	chrome a	alum	$Tl Cr (SO_4)_2$ .	12 H,O	2.392, 15° }	Pettersson. U. N.
4.4	• 6	"	**		2.402, 180 }	A. 1874.
4.6	"	"	"		2.236	Soret. C. R. 99, 867.
Potassium	ı iron alu	ım	$K \operatorname{Fe}(SO_{4})_{2}$ .	12H,O.	1.831	Topsoë. C. C. 4, 76.
44	"		ıi''		1.819, 16°.8	ĺ -
"	"	١	"		1.822, 17°.5	Pettersson. U. N.
4.4	"		"		1.831, 17°	A. 1874.
"			"		1.806	Soret. C. R. 99, 867.
Rubidium	iron alu	m	Rb Fe $(SO_4)_2$ . Cs Fe $(SO_4)_2$ .	12H,O	1.916	
Cæsium ir	on alum		Cs Fe $(SO_4)_2$ .	12 H, O	2.061	
Ammoniu	m iron a	lum	Am Fe (S $O_4$ )	2	2.54, 16°.8	Pettersson. U. N. A. 1874.
"	"	"	$AmFe(SO_4)_2$ .	12H ₂ O	1.712	Kopp. A. C. P. 36, 1.
"	**	"	"		1.718	Playfair and Joule. M. C. S. 2, 401.
**	"	"	44		1.719	Topsoë. C. C. 4,
44	"	"	46		1.700	Schröder. Dm. 1873.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Ammonium iron alum	AmFe(SO ₄ ) ₂ , 12H ₂ O	1.720, 18°.2	
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	"	1.723, 180	Pettersson. U. N. A.
" " "		1.713	1874. Soret. C. R. 99, 867.
Thallium iron alum			Pettersson. U. N. A.
		9 225	1874.
Potassium gallium alum_	KGa(SO ₄ ) ₂ . 12H ₂ O ₋	1.895	Soret. C. R. 99, 867. Soret. C. R. 101, 156.
Ruhidium vallium alum	Rh Ga(SO.) 12 H.O	1.962	14 11
Ammonium gallium alum	AmGa(SO.) 12H.O	1.745	Soret. C. R. 99, 867.
Rubidium gallium alum Ammonium gallium alum "			156.
Rubidium indium alum	Rb In (SO.) 12H.O.	2.065	"
Cæsium indium alum	Cs In (SO ₄ ) ₂ , 12 H ₂ O ₋₁	2.241	
Rubidium indium alum Cæsium indium alum Ammonium indium alum	$AmIn(SO_4)_2 \cdot 12H_2O$	2.011	Soret. C. R. 99,867.
Sonomaite	Mg ₃ Al ₂ (SO ₄ ) ₆ , 33H ₂ O	1.604	Goldsmith. J. 30, 1297.
Roemerite. (Ferroso-fer- ric sulphate.)	Fe ₃ (SO ₄ ) ₄ - 12H ₂ O	2.15—2.18	
Uranyl potassiúm sulphate	UO,K,(SO ₄ ), 2H,0	3.363, 199.1	Schmidt. F. W. C.
Uranyl ammonium sul-	UO ₂ Am ₂ (SO ₄ ) ₂ . 2H ₂ O	3.0131, 21°.5	" "
phate.  Didymium ammonium sulphate. "	Am Di (S O ₄ ) ₂	3.075 } 15°	Cleve. U. N.A. 1885.
	Am Di (SO.) 4H.O.	2.575, 150	
Samarium ammonium sul-	Am Sm (S O ₄ ),	3.191, 18°	"
phate. " "	$\mathbf{AmSm}(\overset{\circ}{\mathbf{SO}}_{4})_{\mathbf{T}}^{\mathbf{T}}\mathbf{4H}_{\mathbf{T}}0$	2.674 \ 2.677 \ 18°.4 -	

#### 3d. Basic and Ammonio-Sulphates,

NAME.	FORMULA.	Sp. Gravitt.	AUTHORITY.
Tetrabasic zinc sulphate	Zn ₄ S O _r 4 H, O	3.122	Playfair and Joule. M. C. S. 2, 401.
Mercuric orthosulphate, or turpeth mineral.	Hg ₃ S O ₆	8.319	
Tetrabasic copper sulphate	Cu, S O., 4 H, O	3.082, m. of 2_ 3.48)	Maskelvne. J. 18.
Langite.	Cu ₅ S ₂ O ₁₁ . 7 H ₂ O	3.50}	901.
		ĺ	Winkler. Dana's Min., 3d App.
Brochantite#	Cu ₇ S ₂ O ₁₃ . 5 H ₂ O	3.78—3.87	Magnus. P. A. 14,
"	"	3.9069	
" Warringtonite_	"	3.39—3.47	Maskelyne. J. 18, 902.

^{*}Composition uncertain, because of variations in the analyses.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
LanarkiteLinarite	Pb ₂ S O ₅ Pb Cu S O ₅ . H ₂ O	6.3-6.4	Thomson. Brooke. Ann. Phil.
			(2), 4, 117.
Alumian	Al ₂ S ₂ O ₇	$\left\{ \begin{array}{cccc} 2.702 & \\ 2.781 & \end{array} \right\}$	Breithaupt. J. 11, 780.
Werthemanite	Ai ₂ S O ₆ . 3 H ₂ O	2.80	Raimondi. Dana's Min., 8d App.
Aluminite	Al ₂ S O ₆ . 9 H ₂ O	1.66	Dana's Mineralogy.
Alunite	$Al_4 S O_9$ . 10 $H_2 O_{}$ $K_2 Al_6 S_4 O_{22}$ . 6 $H_2 O_{-}$	2.481	Haidinger. J. 7, 863. Gautier-Lacroze. J.
LōwigiteZincaluminite	K ₂ Al ₆ S ₄ O ₂₂ . 9 H ₂ O	2.58	16, 833.   Römer. J. 9, 877.
Zincaluminite			Bertrand and Da- mour. Z. K. M. 6, 298.
Ettringite	$\operatorname{Ca_6Al_2S_3O_{18}}$ . 32 $\operatorname{H_2O}$	1.7504	Lehmann. N. J. 1874, 273.
Amarantite	Fe ₂ S ₂ O ₉ . 7 H ₂ O		Frenzel. M. P. M. 9, 398.
Raimondite	Fe ₄ S ₃ O ₁₅ . 7 H ₂ O  Fe ₄ S ₃ O ₁₅ . 13 H ₂ O	8.190}	Breithaupt. J. 19, 952.
Hohmannite	Fe ₄ S ₃ O ₁₅ . 13 H ₂ O	2.24	Frenzel. M. P. M. 9, 897.
Copiapite	Fe ₄ S ₅ O ₂₁ . 12 H ₂ O	2.14	Borcher. Dana's Min.
Fibroferrite	Fe ₄ S ₅ O ₂₁ . 27 H ₂ O		Smith. A. J. S. (2), 18, 375.
Carphosiderite	Fe ₆ S ₄ O ₂₁ . 10 H ₂ O	2.728 2.496—2.501	Pisani. Dana's Min. Breithaupt. Schw. J. 50, 814.
		3.09	Lacroix. C. R. 103, 1037.
Jarosite	K ₂ Fe ₈ S ₅ O ₂₈ . 9 H ₂ O	3.256	Breithaupt. J. 6, 845.
Urusite	Na, Fe ₂ S, O ₁₇ . 8 H, O	2.22	Frenzel J. 32, 1195.
Sideronatrite Silver ammonio-sulphate _	Na ₂ Fe ₂ S ₃ O ₁₃ . 6 H ₂ O Ag ₂ S O ₄ . 4 N H ₃	2.103 2.918, m. of 2	Dana's Min.,3d App. Playfair and Joule. M. C. S. 2, 401.
Zincammonium sulphate - Tetramercuram monium sulphate.	Zn N ₂ H ₆ . S O ₄ Hg ₄ N ₂ S O ₄ . 2 H ₂ O	2.479 7.319	11 11 11 11 11
Cuprummonium sulphate	Cu N ₂ H ₆ . S O ₄	2.476	 
Copper ammonio-sulphate		1.790 ) 1.809 }	
		2.133, 24°.3	Evans. F. W. C.
Roseocobalt iodosulphate	$\text{Co}_2 (\text{N H}_3)_{10} (\text{S O}_4)_2 \text{I}_2$	$2.139 \ 2.149$ 20°.5 -	Wilson. F. W. C.

Note.—Botryogen, clinophæite, johannite, lamprophanite, pissophanite, plagiocitrite, and wattevillite, being of uncertain composition, are omitted. See Dana's Mineralogy and appendixes.

XXIII. SELENITES AND SELENATES.

•			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Hydrogen selenite, or selenious acid.	H ₂ Se O ₃	3.123	Topsoē. C. C. 4, 76.
" " "	"	3.0066	Clausnizer. A. C. P. 196, 265.
Chalcomenite	Cu Se O ₃ . 2 H ₂ O	3.76	Des Cloizeaux and Damour. B.S. M.
Mercurous selenite	8 Hg ₂ O. 4 Se O ₂	7.35, 13°.5	4, 51. Köhler. P. A. 89, 149.
Hydrogen selenate, or selenic acid. " "	H ₂ Se O ₄	2.524 }	Mitscherlich. P. A. 9, 629.
" " "		2.627	Fabian. J. 14, 130.
Lithium selenate	Li, Se O4. H, O	2.439	Topsoe. C. C. 4, 76.
" "		2.564, 18°	Pettersson. U. N.A.
Lithium selenate	W 9-0	2.565, 19°.5	1874.
Sodium seienate	Na ₂ Se U ₄	8.098	Topsoë. B. S. C. 19, 246.
« «		3.209, 170.2	Pettersson. U. N. A.
" "	1 16	1 8.217. 17°.6	1874.
	Ne, Se O4. 10 H, O	1.584	Topsoë. C. C. 4, 76.
" "	- " =-	1.612, m. of 5_	Pettersson. U. N.
"	"	1.603 extremes 1.621 17°.9-19°	A. 1874.
Potassium selenate	K. Se O	3.050	Topsoë. C. C. 4, 76.
" "		<b>3.074, 18°</b> )	1
" " "	"	8.077, 19° }	Pettersson. U. N. A.
Sodium potassium selenate		8.077, 21° )   8.095	1874. Topsoë. C. C. 4, 76.
Rubidium selenate	Rb. Se O	8.923, m. of 5	
Rubidium selenate		3.896   extreme	
" "		3.896 extremes 3.943 18°-19°.8	
Cæsium selenate	(4	4.34, 15°,5 (	Pettersson. U. N. A. 1876.
Ammonium selenute	Am ₂ Se O ₄	2.162	Topsoë. B. S. C. 19
" "	"	2.197, 18°	Pettersson. U. N. A.
		2.198, 18°.8	1874.
Ammonium hydrogen se- lenate.	_		Topsoë. C. C. 4, 76
Silver selenate	Ag, Se O	5.92, 170.2 )	Pettersson. U. N. A
		. 5.93, 17° j	1874.
Silver ammonio-selenate	Ag ₂ Se O ₄ . 4 N H ₃	2.854	Topsoë. C. C. 4, 76
Thrilliam selective	119 00 04	7.067, 189.9	Pettersson. U.N.A. 1874.
Silver selenate  "" Silver ammonio-selenate Thallium selenate "" Glucinum selenate Magnesium selenate	Gl Se O. 4 H. O	2.029	Topsoë. C. C. 4, 76
Magnesium selenate	Mg Se O. 6 H, O	1.928	- ""
	- "	. 1.955, 15°.2	Pettersson. U. N. A
Zine colonate	7. 9. 0 8 17 0	1.960, 15°.8	1876.
Linc selenate	Zn Se O 6 H O	2 325	Topsoë. C. C. 4, 76
Cadmium selenate	Cd Se O. 2 H. O	8.632	
~~~ vvivilav			

	· 		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium selenate. Cryst	Ca Se O ₄	2.98	Michel. C. R. 106, 878.
Strontium selenate. Cryst.	Ca Se O ₄ . 2 H ₂ O Sr Se O ₄	2.676 4.23	Topsoë. C. C. 4, 76. Michel. C. R. 106, 878.
Barium selenate	Ba Se O ₄	4.67, 22°	Schafarik. J. P. C. 90, 12.
" Cryst	"	4.75	Michel. C. R. 106, 878.
Lead scienate	Pb Se O ₄	6.37, 22°	Schafarik. J. P. C. 90, 12.
" " Manganese selenate	" Mn Se O ₄ . 2 H ₂ O	6.22, 18° } 6.28, 18°.2 } 2.949	Pettersson. U. N. A. 1874. Topsoë. B. S. C. 19,
"		3.001, 15°.8	246. Pettersson. U. N. A. 1876.
66 66		$\frac{2.386}{2.389}$ 16° {	Topsoë. B. S. C. 19, 246. Pettersson. U. N. A. 1876.
•			Topsoë. B. S. C. 19, 246.
Nickel selenate	Ni Se U ₄ . 6 H ₂ U	2.332, 14°.1 2.335, 13°.8	Pettersson. U.N.A.
Cobalt selenate	Co Se O.	2.335, 13°.8 2.339, 13°.8 4.037, 14°.2	1876.
" " Cobalt selenate	Co Se O ₄ . 5 H ₂ O Co Se O ₄ . 6 H ₂ O	2.512	Topsoë. C. C. 4, 76.
44 44	"	2.258. 159.8	Pettersson. U. N. A. 1876.
Copper selenate	Co Se O_4 . $7 H_2 O_{}$ Cu Se O_4 . $5 H_2 O_{}$	2.185 2.559	Topsoë. C. C. 4, 76.
Yttrium selenate		2.562, 17°.8	1874. Cleveand Hoeglund.
		2.780	
<i>u u</i>	"	2.661, 12°.8	Pettersson. Pettersson. U. N. A. 1876.
Erbium selenate			Topsoë. Quoted by Pettersson.
" "	"		Pettersson. U. N. A.
" " …	Er ₂ (Se O ₄) ₃ . 9 H ₂ O ₋	3.529, 13°.4	1876. Topsoë. Quoted by
Lanthanum selenate	•		Pettersson. Pettersson. U.N.A. 1876.
Didymium selenate	Di ₂ (Se O ₄) ₃	$\left\{ \begin{array}{c} 4.416 \\ 4.430 \end{array} \right\}$ 12°.5)
66 66	"	$\left\{ \begin{array}{c} 4.460 \\ 4.461 \end{array} \right\} \ 18^{\circ}_{}$) 1885.
t	Di ₂ (Se O ₄) ₃ . 5 H ₂ O	3.710, 13°.8 3.722, 13°.3	Pettersson. U.N.A. 1876.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Didymium selenate	Di ₂ (Se O ₄) ₃ . 5 H ₂ O ₋	8.677, 15° }	Cleve. U. N. A.1885.
Samarium selenate	Sm ₂ (Se O ₄) ₃	3.685, 18°.3 } 4.077, 10°	
"	Sm ₂ (Se O ₄) ₃ . 8 H ₂ O ₋	3.326) _{13°}	
" "		8.829)	
" "	$Sm_2 (Se O_4)_3$. 12 $H_2 O$	3.009 } 100	u u
Thorium selenate	Th (Se O ₄) ₂ . 9 H ₂ O .	3.010 } 10	Topsoë. B. S. C. 21, 121.
Magnesium potassium se-	Mg K ₂ (SeO ₄) ₂ . 6H ₂ O ₋	2.886	Topsoë. C. C. 4, 76.
lenate.			•
Magnesium ammonium selenate.	$MgAm_2(SeO_4)_2$. $6H_2O$	2.085	Topsoë. B. S. C. 19, 246.
Zinc potassium selenate	$Zn K_2(Se O_4)_2$. $2 H_2O$	8.210	Topsoë. C. C. 4, 76.
" " " " " " " " " " " " " " " " " " "	Zn K ₂ (SeO ₂) ₂ . 6H ₂ O ₂	2.538	11 11
Zinc ammonium selenate_ Cadmium potassium sele-	Zn Am ₂ (SeO ₄) ₂ . 6H ₂ O Cd K ₁ (SeO ₄) ₂ . 2H ₂ O ₋	3.376	" "
nate.			
Cadmium ammonium selenate.	CdAm ₂ (SeO ₄) ₂ . 2H ₂ O		
Manganese potassium se-	$CdAm_{2}(SeO_{4})_{2}$. $6H_{2}O$ $MnK_{2}(SeO_{4})_{2}$. $2H_{2}O$	3.070	" " " Topsoë. B. S. C. 19,
lenate.	Mil K2(5eO4)2. 2 H2O	3.070	Topsoë. B. S. C. 19, 246.
Manganese ammonium selenate.	$MnAm_2(SeO_4)_2.6H_2O$		Topsoë. C. C. 4, 76.
Iron ammonium selenate-	FeAm, (SeO,), 6H,O	2.160	" "
Nickel potassium selenate	Ni K ₂ (SeO ₄) ₂ . 6H ₂ O	2.539 2.580, m. of 5.	
		2.573) extremes	Pettersson. U.,N.
	"	2.587 160.4-170.3	
Nickel ammonium sele- nate.	NiAm ₂ (SeO ₄) ₂ . 6H ₂ O		Topsoë. C. C. 4, 76.
" " "	"	2.274, 15°.8	Pettersson. U. N. A.
Nickel thallium selenate	NiTl, (SeO,)2. 6H,O	2.279, 16° 5 4.066, 13°.8	1876.
Cobalt potassium selenate	Co K, (Se O,), 6H, C	2.514	Topsoë. C. C. 4, 76.
		2.581, 18°.8 \	Pettersson. U. N. A.
Calabana salamata	C- Ph (90 () 6H ()	2.548, 17°.4	1876.
Cobalt rubidium selenate.	$Co Rb_2 (Se O_4)_2. 6H_2 O$	2.837, 18°.3 2.838, 15°.6	
	' "	2.844, 18°.6	
Cobalt cæsium selenate	Co Cs ₂ (Se O ₄) ₂ . 6 H ₂ C	8.050, 18°.5	
" " " <u></u> -		3.061, 16°.7 }	" "
Cobalt ammonium selenate	CoAm (SoO) BH (3.073, 18°.8) 2.212	Toros C C 4 70
Cookic annicontain selectate	$CoAm_2(SeO_4)_2.6H_2O$	2.225, 18°.8	Topsoë. C. C. 4, 76.
		. 2.229, 170	Pettersson. U. N. A.
		2.248, 15°.8	1876.
Cobalt thallium selenate	$Co Tl_2 (Se O_4)_2. 6 H_2 O_4$	4.047, 13°.5 4.059, 16°.5	" "
Copper potassium selenat	Cu K. (Se O.) 6 H. (Topsoë. C. C. 4, 76
" " "		2.556, 170	Pettersson. U. N. A
_ " " _ " _	- "	2.557, 16°.4	1876.
Copperammonium selenat	$e CuAm_2(SeO_4)_2. 6H_2($	2.221	Topsoë. C. C. 4, 76
" • " -	- " -	_ 2.284, 17°.2	Pettersson. U. N. A. 1876.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Sodium aluminum alum	NaAl(SeO ₄) ₂ . 12H ₂ O	2.061, 21°)	
" "	"	2.069, 20°.8	Pettersson. U. N. A.
_ " . "		2.071, 20°.8	1874.
Potassium aluminum alum	K Al (SeO ₄) ₂ . 12 H ₂ O	1.971	Weber. J. 12, 91.
" "	;;	1.998, 21°	Pettersson. U.N.A.
	Am Al (Se O ₄) ₂		1874. Pettersson. U.N.A.
Ammonium aluminum alum.	Am Ai (56 04)2	2.3010, 204	1876.
	AmAl(SeO ₄) ₂ . 12H ₂ O	1 892 m of 4	1070.
	11111(5004)2. 121120	1.889) extremes	Pettersson. U. N.
		1.895 170-200.5	A. 1874.
Rubidium aluminum alum	RhAl(SeO.)., 12H.O	2.182.179.2	7 12. 10/1.
((((((2.184, 21°	
<i>a</i>	"	2.185, 17°.2	
Cæsium aluminum alum		2.223, 18°.8	
	. "	2.225, 20° (" "
Thallium aluminum alum	Tl Al (SeO ₄) ₂ . 12H ₂ O	2.492, 17°.5	
		2.514. 179	
Potassium chromium alum	K Cr (Se O ₄) ₂	2.5190, 20°.3	Pettersson. U.N.A. 1876.
· · · · · · · · · · · · · · · · · · ·	K Cr (SeO ₄) ₂ . 12H ₂ O	2.076, 17°.6	·
16 11 11	l "	2.077, 17° }	Pettersson. U. N. A.
· · · · · · · · · · · · · · · · · · ·	"	2.081, 17°.2	1874.
Ammonium chromium alum.	Am Cr (Se O ₄) ₂	2.3585, 15°.5	Pettersson. U.N.A. 1876.
	AmCr(SeO ₄) ₂ . 12H ₂ O	1.980) 200 (Pettersson. U.N.A.
"	. "	1.984 } 205 {	1874.
Rubidium chromium alum	$RbCr(SeO_4)_2$. $12H_2O$	2.214, 18°.8	
" "		2.223, 17° (
Thallium chromium alum	$Tl Cr(Se O_4)_2$. $12 H_2O$	2.630, 20	" "
Didymium potassium se-	Di K (Se O ₄) ₂	3.839, 13°	Cleve. U. N. A.1885.
lenate.	Div (Son SHO	9 174)	
11 11 11	$Di K (Se O_4)_2. 5 H_2 O$	$\left \begin{array}{c} 3.174 \\ 3.178 \end{array} \right \left \begin{array}{c} 13^{\circ} \end{array} \right $	
Didymium ammonium	DiAm(SeO ₄) ₂ . 5H ₂ O	9 057 1	
selenate. "	((2.961 150	"
Samarium potassium sele-	Sm K (Se O ₄) ₂	4.000 5	
nate.	44	4.098 4.129 \ 10°	"
<i>"</i> " " " " " " " " " " " " " " " " " "	Sm K (Se O ₄) ₂ . 3 H ₂ O ₋		
	**	3.540, 18° }	"
Samarium ammonium selenate.	Sm Am (Se O ₄) ₂	3.805, 14°	"
11 14 11	SmAm. SeO4)2. 3H2O	3.277, 14°	
£1	"	3.263, 15°	"
<i>tt</i>	"	3.260, 180,6	•
Potassium selenate with nickel sulphate.	K_2SeO_4 . $NiSO_4$. $6H_2O$	2.34	Gerichten. B. S. C 20, 80.

Note.—For the sp. gr. of some mixtures of sulphates and selenates see Pettersson, Ber. 9, 1676.

XXIV. TELLURATES.

N	AME.		Formula.	Sp. Gravity.	AUTHORITY.
Hydrogen ("	H ₂ Te O ₄ " H ₂ Te O ₄ . 2 H ₃ O	8.425, 18°.8 3.440, 19°.2 8.458, 19°.1 2.840	Clarke. A. J. 8 (3), 16, 206. Oppenheim. J. 16
Ammonius	" n tellura "	" ite	Am ₂ Te O ₄	_ 3.012, 25° }	213. Clarke. A. J. 8 (3), 16, 206.
Thallium t			Tl, Te O4. H, O	6.760, 170.5	
Barium tel			Ba Te O4	4.5805, 10° 4.5486, 10°.5	Clarke. A. J. 3 (3), 14, 286.

XXV. CHROMATES.

Name.		Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Sodium chi	"	 Na, Cr	O ₄ . 10 H, O	2.7104, 16°.5 } 2.7358, 12° } 1.4828, 20° 2.5246, 13°	Abbot. F. W. C. " Stanley. C. N. 54,
				2.612 2.6402	195. Thomson. Karsten. Schw. J.
"	"	 "		2.705 2.682, m. of 10	65, 894. Kopp. A. C. P. 36, 1. Playfair and Joule.
66 66	"	 "		2.711 2.72309, 4° }	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 137.
"	"	 "		2.678, 15°.5 2.691	Holker. P. M. (3), 27, 213. Schiff. A. C. P. 107, 64.
"	"	 "	•••••	2.7848	Stolba. J. P. C. 97, 503.
66 66	44 44	 دد دد		2.722 } 2.7403, 0° 2.7374, 10°	Schröder. Dm. 1878.
16 16	"	 66 66		2.7345, 20° 2.7317, 80° 2.7288, 40°	Spring. Ber. 15, 1940.

N.	Name.			ORMULA.	Sp. GRAVITY.	AUTHORITY.
Potassium c	hromate		K. Cr C	0,	2.7258, 50°	·
"	"		"		2.7227, 60°	
".	"		"		2.7169. 70°	S D- 15
**	**		"		2.7110, 80°	Spring. Ber. 15,
	"		"		2.7102, 90°	1940.
_ "				<u></u>	2.7095, 100°	
Potassium d	ichromat	.e	K ₂ Cr ₂	0,	2.6027	Karsten. Schw. J. 65, 394.
44	"		"		2.624	Playfair and Joule. M. C. S. 2, 401.
"	"		"		2.692, 4°	Playfair and Joule. J. C. S. 1, 137.
66	"		"		2.689	Schabus. J. 3, 312.
**	44		"		2.721	Schiff. A. C. P. 107,
"	"		"		2.6616 } 150 {	. 64. Stolba. J. P. C. 97,
66	"		"		2.6806	503.
**	" P	ulv	"			
4.6	" Afi	er }			2.677 \ }	Schröder. Ber. 11,
"		on. ∫	"		2.751 \ \	2019.
	44		"		2.694	W. C. Smith. Am. J. P. 53, 145.
Potassium tr	richroma	te	K ₂ Cr ₈	O ₁₀	2.655, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
**	"		16		3.618	Bothe. J. 2, 272.
44	**		"		2.676)	Schröder. A. C. P.
Potassium ch	" romium	chro-	K ₂ Cr ₅ (O ₁₈ . H ₂ O	2.702 } 2.28, 14°	174, 249. Tommasi. B. S. C.
mata					t	(2), 17, 396.
Ammonium	chromat	e	Am, Cr	04	1.9138 1.9203 1.860	Abbot. F. W. C.
"	"		"		1.8200)	
44	"		44		1.871	Schröder. Dm. 1873.
$\mathbf{A}\mathbf{m}\mathbf{m}\mathbf{o}\mathbf{n}\mathbf{i}\mathbf{u}\mathbf{m}$	dichrom	ate	Am ₂ Cr	, O ₇	2.367	
"	"		"		9 159)	64.
44	"					Schröder. Dm. 1873.
"	"		"		2.1223, 16°	
"	"	1	4.6		2.1805, 17°	Abbot. F. W. C.
Silver chrom	ate		Ag, Cr	0,	5.770	Playfair and Joule.
		ŧ		• •		M. C. S. 2, 401.
46 44			"		5.536	Rettig. A. C. P. 173, 72.
11 11			"		5.583 \	Schröder. Dm. 1873.
Silver dichro	mate		$\mathbf{Ag_{2}}_{\iota\iota}\mathbf{Cr_{2}}$	O,	4.662	
Silver ammor	nio-chror	nate	Ag ₂ Cr	O ₄ . 4 N H ₃	4.676 \ 3.063, m. of 3.	Playfair and Joule.
"	**				2.717	M. C. S. 2, 401. Topsoë. C. C. 4, 76.
Magnesium c	hromate		Mg Cr (),. H, O	9 9801)	
"	"		Ma Cr C	711	2.2886 } 17° 1.66, 15°	Abbot. F. W. C.
••	••			i	1.00, 15	Kopp. A. C. P. 42, 97.
44	"			"	1.75, 12°	Rödeker R D 7
	. "				1.7613, 16°	Abbot. F. W. C.
Trimercuric of Strontium chi	chromate romate)	Hg, Cr (Sr Cr O ₄)6	7.171, 18°.6 3.353	Abbot, F. W. C. H. Stallo. F.W. C. Schröder. Dm. 1873.
			-			

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Barium chromate	Ba Cr O ₄	3.90, 11°	Bödeker and Gie- secke. B. D. Z.
" "	"	4.49, 23°	Schafarik. J. P. C. 90, 12.
			Schweitzer. University of Missouri. Special pub., 1876.
11 11	"	4.296	Schröder. Dm. 1873.
		1.00	
Olyst		4.60	20 142
Lead chromate	Pb Cr O,	6.004	Mohs. See Böttger.
££	"	5.951	Breithaupt. "
" "		[i	M. C. S. 2, 401.
" Artif. cryst	"	6.118	Manross. J. 5, 12.
	"	6.29	Bourgeois. B.S.C.
" Native		5.965, m. of 3_	47, 884. Schröder. Ber. 11, 2019.
Diplumbic chromate			Playfair and Joule.
Phonicochroite	Pb. Cr. O.	5.75	Dana's Mineralogy.
Phonicochroite Potassium ammonium chromate. "	K Am Cr O,	2.278 }	Schröder. Dm. 1873.
Potassium calcium chromate.		2.499 \ 2.505 \	
	K ₂ Ca ₄ (CrO ₄) ₅ . 2H ₂ O	2.772 \ 2.802 \	
Magnesium potassium	K, Mg(CrO4)2. H,O.	2.592)	
chromata "	""	2 608 (
Magnesium ammonium chromate.	"	2.5804 \ 19°.5	Abbot. F. W. C.
	A M -(C-O \ CIT ()	2.5966	120000. 2. 11. 0.
Magnesium ammonium	Am ₂ mg(CrO ₄) ₂ .6H ₂ O	1.8278, 10	" "
chromate.	"	1.6295, 17	•••
Vanquelinite	Ph. Cu Cr. O.	5.5—5.78	Dana's Mineralogy.
VauquelinitePotassium chlorochromate	K Cr O. Cl	2.466	Playfair and Joule.
			I M. C. S. 2. 401.
" "	•		Playfair and Joule. J. C.S. 1, 137.
Sodium chromiodate	Na Cr I O6. H2 O	3.21	Berg. C. R. 104,
Potassium chromiodate	K Cr I O	3.66	"
		8.50	" "

XXVI. MANGANITES, MANGANATES, AND PERMANGANATES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Barium manganite	-	5.85 4.85, 23°	Rousseau and Sag- lier. C. R. 98, 141. Schafarik. J. P. C.
Potassium permanganate		i	90, 12. Kopp. J. 16, 4.

XXVII. MOLYBDATES.

NAME.	FORMULA.	Sp. Gravity.	VITY. AUTHORITY.	
Strontium molybdate Barium molybdate "" Lead molybdate	" " " " " " " " " " " " " " " " " " "	2.261 2.270 2.286 2.295 2.975 4.1348, 21° 4.1554, 20°.5 } 4.6483, 19°.5 } 4.6589, 17°.5 } 8.11, artificial	50, 17. F. O. Marsh. F. W. C. " Manross. J. 5, 11.	
" " Wulfenite. " " " Wulfenite. " " " " " " " " " " " " " " " " " " "	Ce ₂ (Mo O ₄) ₃	6.76 6.95 4.56, cryst. } 4.82, ppt. } 4.75, cryst 5.95	324. Haidinger. Smith. J. 8, 963. Cossa. G. C. I. 16, 824. " Cleve. B. S. C. 43, 162.	

XXVIII. TUNGSTATES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium tungstate	64	14 1923 1995 (J. L. Davis. F.W.C.
"	Na, W O4. 2 H, O	3.2088, 17.5 1	44 66
Sodium metatungstate	Na ₂ W ₄ O ₁₃ . 10 H ₂ O ₋	3.8467, 13°	Scheibler. J. 14, 219.
Sodium polytungstate			Scheibler. J. 14, 216.
Sodium tungstoso-tung-	Na, W, O ₂₄ . 16 H, O ₁ Na, W, O ₂ *	3.987, 14°	W-i-l- T 4 040
state.		l	
	Na ₂ W ₄ O ₁₁	ł	് ഒരെ '
Potassium tungstoso-tung- state. " " " " " " " " "	K, W, O12*	7.085	Two preparations.
state. " "	"	7.095 } }	Knorre. J. P. C.
	W W O	7.185	(2), 27, 62.
" " " "	K W Olz	0.0 0.50	Zettnow. J. 20, 224.
			(2), 21, 92.
Sodium potassium tung- stoso-tungstate. " Calcium tungstate	5 K, W, O12. 2 Na, }	7.112 }	Knorre. J. P. C.
stoso-tungstate. "	$W_5 O_{15}$	7.121 }	(2), 27, 62.
Calcium tungstate	Ca W O4	6.076, artif	
" Scheelite_		6.04	Karsten. Schw. J. 65, 394.
""."	"	6.08	Rammelsberg. J. 3, 752.
	"	6.02	Bernoulli. J. 13, 783.
Barium tungstate	Ba W O4	5.0035, 13°.5) 5.0422, 15°	J. L. Davis. F. W. C.
Barium metatungstate	Ba W. O. 9 H. O.	4.298, 140	Scheibler. J. 14, 220.
Lead tungstate	Pb W O,	8.232, artif.	Manross. J. 5, 11.
		8.1082	Kerndt. J. P. C.
"	"	8.1275 }	42, 113.
Manganese tungstate	Mn W O4	6.7, artif	Geuther and Forsberg. J. 14, 224.
" Hübner- ite.		7.14	Breithaupt. Dana's
" "	"	7.177, 24°	Hillebrand. A. J. S. (3), 27, 357.
Iron tungstate	Fe W O4	7.1, artif	Geuther and Forsberg. J. 14, 224.
" " Ferberite -		7.169	Rammelsberg. J. 17, 855.
	"	6.801	Breithaupt. Dana's Min.
" " Reinite		6.640	Lüdecke. J. 32,1196.
Iron manganese tungstate.		7.0. artif	Geuther and Fors-
		,	berg. J. 14, 224.

^{*}Philipp (Ber. 15, 506) finds the specific gravity of all the "tungsten bronzes" to vary between 7.2 and 7.3, at $10^\circ-18^\circ$.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Wolfram* "Fe3: Mn Nickel tungstate "Cerium tungstate Didymium tungstate Samarium tungstate ""	(Mn Fe) W O ₄	7.155	Mohs. See Böttger. Gehlen. " " Sipöcz. Ber. 19, 95. J. L. Davis. F. W. C. Cossa and Zechini. Ber. 13, 1861. Cossa. Ber. 14, 107. { Cleve. U. N. A. 1885.

XXIX. BORATES.

	NAM	E.	Form	ULA.	Sp. Gravity.	AUTHORITY.
Hydroge acid.	n bora	te, or boric	Н ₈ В О ₃		1.479	Kirwan.
44	44	и	"		1.4347, 15°	Stolba. J. 16, 667.
"	66	"	"		1.493, 20°.5	Favre and Valson. C. R. 77, 579.
"	46	"	"		1.5468, 0°)	
66	44	"			1.5172, 120	D:4 D . 0 am
66	66	. "	"			Ditte. Bei. 2, 67.
44	**	"	"		1,3828, 80°	
Sodium o	diborat	е	Na ₂ B ₄ O ₇ -		2.867	Filhol. Ann. (8), 21, 415.
"	44		" -		2.371, 20°	Favre and Valson. C. R. 77, 579.
**	46		"		2.368, 169	Bedson and Wil-
44			**		2.368, 16° 2.370, 14°.2 }	liams. Ber. 14,
"	**				2.373, 18°.5	2553.
"	44				2.5, fused	Quincke. P. A. 135, 642.
"	"		Na ₂ B ₄ O ₇ .	5 H ₂ O	1.815	
44	"		Na. B. O., 1	10 H. O.	1.757	Wattson.
"	"				1.723	Hassenfratz. Ann. 28, 3.
44	44		".		1.716	Mohs. See Böttger.
66	"		**		1.74	Payen. Q. J. S. 1828 (1), 483.
"	"				1.780, m. of 2_	
"	"		"		1.692	Filhol. Ann. (3), 21, 415.
"	"		46		1.692	Buignet. J. 14, 15.
"	44		. "		1.7156	Stolba. J. P. C. 97, 503.
44	"		"		1.711, 200	Favre and Valson. C. R. 77, 579.
"	44		"		1.736	W. C. Smith. Am. J. P. 53, 148.

^{*}See Dana's Mineralogy for many other determinations.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassium borate	K, B, O,	1.740	Buignet. J. 14, 15.
Pinnoite	Mg B, O, 3 H, O	2.27	Staute. Ber. 17, 1584.
Magnesium borate	Mg, B, O	2.987	Ebelmen. J. 4, 13.
Szaibelyite	Mg, B, O, 3 H, O	3.0	Peters. J. 16, 836.
Colemanite	Ca. B. O. 5 H. O	2.428	Evans. J. 37, 1927.
Priceite	Ca ₃ B ₈ O ₁₅ . 6 H ₂ O	2.262	Silliman. A. J. S.
11	46	2.298	(3), 6, 128.
" Pandermite	44	2.48	v. Rath. Dana's
			Min., 3d App.
Lead borate	Pb B, O,	5.598	Herapath. J. 2, 227.
Lead hydrogen borate	Pb H B, O,	5.285	11 11
Jeremerewite	Al B O ₃	The second second	Damour. J. C. S. 44, 719.
Didymium orthoborate	Di B O ₈	5.680 15°	Cleve. U. N. A.1885.
Didymium borate	Di ₄ B ₂ O ₉	5.825, 14	Nordenskiöld. J. 14, 197.
Samarium orthoborate		$6.045 \atop 6.052$ 16°.4.	Cleve. U. N. A. 1885.
Ulexite	Na Ca B ₅ O ₉ . 6 H ₂ O	1.65	How. A. J. S. (2), 24, 234.
Franklandite	Na ₄ Ca ₂ B ₁₂ O ₂₂ . 15 H ₂ O.	1.65	Reynolds. J. 30, 1288.
Hydroboracite	Mg ₃ Ca ₃ B ₁₆ O ₃₀ 18 H ₄ O.	1.9	Hess. P. A. 31, 49.
Sussexite	Mg Mn B ₂ O ₅ . H ₂ O	3.42	Brush, A. J. S. (2), 46, 240.
Magnesium chromium borate.	Mg6 Cr6 B4 O21	3.82	Ebelmen. J. 4, 13.
Magnesium iron borate	Mg. Fe. B. O.	8.85	11
Ludwigite	$Mg_6 Fe_6 B_4 O_{21}$ $Mg_6 Fe'''_4 Fe''_2 H_3$ $B_3 O_{20}$.	3.907 } 4.016 }	
Rhodizite	Al, K B, O,	3.38	
Boracite	Mg, B16 O30 Cl2	2.9134	
16	21 -16 -302	2,974	

XXX. NITRATES.

1st. Simple Nitrates.

Name.			FORMULA.	Sp. Gravity.	AUTHORITY.	
Hydrogen acid.	nitrate,	ornitric	H N O3	1.5543, 15°.5	Kirwan. Gilb. Ann. 9, 266.	
"	"	"	"	1.522, 12°.5	Mitscherlich. P. A. 18, 152.	
66	6:	"	"	1.503	A. Smith. J. 1, 886.	
66	"	"	"	1.552, 15°	Millon. J. P. C. 29, 837.	
**	"	"	H N O. H. O	1.486	A. Smith. J. 1, 886.	
46	46	"	H N O ₃ . H, O H N O ₃ . 8 H ₂ O	1.424	u ü	
Nitric sub	hydrate		2 H N O ₃ . N ₂ O ₅	1.642, 18°	Weber. J. P. C. (2), 6, 857.	

					1	T
Name. Lithium nitrate			FORMULA.		2.884	Kremers. J. 10, 67.
"	"		"		2.096	Klaproth.
"	**				2.1880	Marx. See Böttger.
"	"				2.2256	Karsten. Schw. J. 65, 894.
".	"				2.200	Kopp. A.C.P. 36, 1.
					2.182, m. of 4	M. C. S. 2, 401.
44	"		"		2.2606, 4°	Playfair and Joule.
"	"		'"		2.26	J. C. S. 1, 137. Filhol. Ann. (3), 21, 415.
"	"		"		2.256	Schröder. P. A. 106, 226.
44	"		"		2.265	Buignet. J. 14, 15.
44	"		"		2.236	Kopp. J. 16, 4.
"	"		-		2.246, 15°.5	Holker. P. M. (8), 27, 213.
"	"		"		2.24}	Page and Keightley.
	"				2.25}	J. C. S. (2), 10, 566.
••	••		-		2.148	W. C. Smith. Am. J. P. 53, 148.
+6	"	Native	"		2.18, 15°.5	Forbes. P. M. (4), 82, 135.
**	"	**	"		2.290	Hayes.
46	"			************	1.878, at the	Melts 314°. Braun.
"	"		11		melting p't. 2.24	P. A. 154, 190. Brügelmann. Ber.
"	"		Na N	O ₈ . 7 H ₂ O	1.357, 0°, l	17, 2859. Ditte. B. S. C. 24,
Potassiu	Potassium nitrate		KNO	3	1.9369	366. Hassenfratz. Ann.
"	61		44		1.933	28, 3. Wattson.
"	44		44		2.1006	Karsten. Schw. J. 65, 394.
"	"		"		2.058	Kopp. A. C. P. 36, 1.
"	"		"		2.070, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
"	"		**		2.1078)	· ·
"	44		"		2.10657 40 {	Playfair and Joule.
**	"		"		2.09584)	J. C. S. 1, 137.
44	"	Daige	"		2.109)	
"	"	Sillati	"		2.143}	Grassi. J. 1, 39.
"	"	221001	"		2.132	
"	"	fusion.	"		2.100	Schiff. A. C. P. 112,
"			"		2.086	88. Schröder. P. A. 106,
"	"	l	"		2.126	226. Buignet. J. 14, 15.
"	46		"		2.105	Kopp. J. 16, 4.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassium nitrate	K N O3	2.074, 15°.5	Holker. P. M. (8), 27, 213.
"	"	2.0845 }	Stolba. J. P. C. 97,
" " ————	"	2.0904 } 2.059, 0°	503. Quincke. P. A. 185,
" "	"	2.06	642. Page and Keightley. J. C. S. (2), 10, 566.
"	"	2.10355, cryst.)
" "	"	at 20°. 2.09916, cryst. at 110°.	Nicol. P. M. (5), 15, 94.
" "	"	1.702, at the melting p't.	Braun. (Melts at 342°.) P. A. 154, 190.
Ammonium nitrate		1.579	Hassenfratz. Ann. 28, 8.
" "	"	1.707 1.685, m. of 3_	Kopp. A.C. P. 86, 1. Playfair and Joule. M. C. S. 2, 401.
" "	"	1.737, m. of 2_	Schröder. P. A. 106, 226.
" "	"	1.709	Schiff. A. C. P. 112, 88.
tt tt	"	1.723 1.6915	Buignet. J. 14, 15. Stolba. J. P. C. 97, 508.
Silver nitrate	Ag N O ₃	4.3554	Karsten. Schw. J. 65, 894.
" "	"	4.336	Playfair and Joule. M. C. S. 2, 401.
11 11	"	4.238	
" "	"	4.253	Schröder. P. A. 107,
	"	4.328	113.
Thallium nitrate	Ti N O3		Lamy. J. 15, 186. Lamy and Des Cloi- zeaux. Nature 1,
Magnesium nitrate	Mg (N O ₃) ₂ . 6 H ₂ O ₋		116. Playfair and Joule. M. C. S. 2, 401.
Zinc nitrate	Zn (N O ₃) ₂ . 6 H ₂ O	2.063, 13° }	Laws. F. W. C.
Cadmium nitrate	Cd (N O ₃) ₂ . 4 H, O	Z.400, ZU	" "
Mercurous nitrate	Hg N O ₃ . H ₂ O	4.785, m. of 3.	Playfair and Joule. M. C. S. 2, 401.
Calcium nitrate	Ca (N O ₃) ₂	2.240	Filhol. Ann. (3), 21, 415.
" " <u> </u>	"	2.472 2.504, 17°.9	Kremers. J. 10, 67. Favre and Valson.
" "	Ca (N O ₃) ₂ . 4 H ₂ O	1.78	C. R. 77, 579. Filhol. Ann. (3), 21, 415.
" "	"	1.90, 15°.5,s. }	Ordway. J. 12, 115.
" "	"	1.79, 15°.5, 1.	
"	· · · · · ·	1.878, 18°	Favre and Valson. C. R. 77, 579.

					1	
	N	AME.]	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Stront	ium n	itrate	Sr (N	O ₃) ₂	3.0061	Hassenfratz. Ann. 28, 3.
66		"	"		2.8901	Karsten. Schw. J. 65, 394.
"		"	"		2.704	Playfair and Joule. M. C. S. 2, 401.
"		<i>"</i>	"		2.857	Filhol. Ann. (3), 21, 415.
**		"	"		2.962, m. of 4_	
"		"	"		2.805	Buignet. J. 14, 15.
"		"	"	*******	2.980, 16°.8	Favre and Valson. C. R. 77, 579.
46		"	Sr (N	O ₃) ₂ . 4 H ₂ O	2.113	Filhol. Ann. (3), 21, 415.
"		"			2.249, 15°.5	Favre and Valson. C. R. 77, 579.
Bariun	n nitr	ate	Ba (N	O ₃) ₂	2.9149	Hassenfratz. Ann.
"	44		"		3.1848	Karsten. Schw. J. 65, 894.
"	44		"		3.284, m. of 5.	Playfair and Joule. M. C. S. 2, 401.
**	••		"		3.16052, 4°	Playfair and Joule. J. C. S. 1, 137.
"	66		"		3.200	Filhol. Ann. (3), 21, 415.
4.6	66		"		3.222))	
**			"		3.228 } {	Crystallized at different temperatures.
"	60		"			Kremers. J. 5, 15.
"					3.242	l
"					$\left\{ \begin{array}{l} 5.208 \\ 3.241 \end{array} \right\}$	Schröder. P. A. 106, 226.
"					3.404	Buignet. J. 14, 15.
"			"		3.22	Brügelmann. Ber.
Lead n	itrate	·	Pb (N	O ₃) ₂	4.068	17, 2359. Hassenfratz. Ann.
"	"		"		4.769	28, 3. Breithaupt. Schw. J.
"	"		"		4.3993	68, 291. Karsten. Schw. J. 65, 394.
"	**		"		4.340	Kopp.
"	"		"		4.316, m. of 3_	Playfair and Joule.
"	"		"		4.472, 4°	
"	"		"		4.581	J. C. S. 1, 137. Filhol. Ann. (3).
"	"		"		4.41, 15°.5	21, 415. Holker. P. M. (3),
**	46		"		4.423)	27, 214.
44	"				4.429	Schröder. P. A. 106,
"	44				4.509	226.
44	"		**		4.235	Buignet. J. 14, 15.
"	"		"		4.3, 0°	Ditte. Ber. 15, 1438.
Manga	nese r	itrate	Mn (1	(O ₃) ₂ . 6 H ₂ O ₋	1.8199, 21°, s.	Ordway. J. 12,
ű		"			1.8104, 21°, 1.	113.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Name. Nickel nitrate	Ni (N O ₃) ₂ . 6 H ₂ O Co (N O ₂) ₂ . 6 H ₂ O Cu (N O ₃) ₃ . 8 H ₂ O Di (N O ₃) ₃ . 6 H ₂ O Sm (N O ₃) ₃ . 6 H ₂ O Fe ₂ (N O ₃) ₄ . 18 H ₂ O Bi (N O ₃) ₃ . 5 H ₂ O U O ₂ (N O ₃) ₂ . 6 H ₂ O Au H (N O ₃) ₄ . 3 H ₂ O	2.037, 22° } 2.065, 14° }	Laws. F. W. C. Bödeker. B. D. Z. Hassenfratz. Ann. 28, 3. Playfair and Joule. M. C. S. 2, 401. Cleve. U. N. A.1885. " (Ordway. J. 12, 114. Playfair and Joule. M. C. S. 2, 401. Laws. F. W. C. Bödeker. B. D. Z. (Gumpach. See	

2d. Basic and Ammonio-Nitrates.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dimercuric nitrate	Hg, N, O, 2 H, O	4.242	Playfair and Joule. M. C. S. 2, 401.
Mercurous subnitrate	Hg4 (N O3)4 O. 3 H2O	5.967	"
Lead hydroxynitrate	Pb N O, O H	5.93, 0°	Ditte. Ber. 15, 1438.
Diplumbic nitrate	Pb, N, O,	5.645	Playfair and Joule. M. C. S. 2, 401.
Tricupric nitrate	Cu, N, O, H, O	2.765, m. of 3	"
Tetracupric nitrate	Cu, N, O, 3 H, O	3.378)	
" "	* * * * *	3.371 }	Wells and Penfield.
Gerhardtite	"	3.426)	A. J. S. (3), 30, 50.
Bismuth subnitrate	Bi, N, O, H, O	4.551	Playfair and Joule.
			M. C. S. 2, 401.
Bismuth hydroxynitrate	Bi (O H) ₂ N O ₃	5.260, m. of 2.	"
Mercury ammonionitrate_	$ H_{g_2} N_2 O_{g_1} 2 N H_{g_2} $	5.970	**
Copper ammonionitrate	Cu (N O ₃) ₂ . 4 N H ₃ -	1.874, m. of 3_	46 46
	"	1.905, 21°.5	Evans. F. W. C.
Purpureocobalt chloroni- trate.	$\operatorname{Co_2(NH_3)_{10}Cl_2(NO_3)_4}$	1.667, 16°	Jörgensen. J. P. C. (2), 20, 105.
Purpureocobalt bromonitrate.	$\mathrm{Co_2(NH_3)_{10}Br_2(NO_3)_4}$	1.956, 17°.1	Jörgensen. J. P. C. (2), 19, 49.
Purpureochromium chloronitrate.	Cr ₂ (NH ₃) ₁₀ Cl ₂ (NO ₃) ₄	1.569, 17°.2	Jörgensen. J. P. C. (2), 20, 105.

XXXI. HYPOPHOSPHITES AND PHOSPHITES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen hypophosphite. or hypophosphorous acid Barium hypophosphite """""""""""""""""""""""""""""""""	Ba H ₄ P ₂ O ₄ . H ₂ O " " " " " " " " " " " Mg H ₄ P ₂ O ₄ . 6 H ₂ O " " Ni H ₄ P ₂ O ₄ . 6 H ₂ O " " Co H ₄ P ₂ O ₄ . 6 H ₂ O " " " " " " " " " " " " " " " " " " "	2.8718, 10° 2.8971, 17° 2.893	Thomsen. J. P. C. (2), 2, 160. Mohr. F. W. C. Schröder. Ber. 11, 2130. Nye. F. W. C. Mohr. F. W. C. """ "" Thomsen. J. P. C. (2), 2, 160.

XXXII. HYPOPHOSPHATES.

Name.		Formula.	Sp. Gravity.	AUTHORITY.
Tetrasodium phate.	hypophos-	Na ₄ P ₂ O ₆ . 10 H ₂ O	1.832	Dufet. C. R. 102, 1328. Dufet. B. S. M. 10,
Trisodium hypophosphate Disodium hypophosphate "		Na ₃ H P ₂ O ₆ . 9 H ₂ O ₋ Na ₂ H ₂ P ₂ O ₆ . 6 H ₂ O ₋	1.7427 1.8491 1.840	77. " " " " " " " Dufet. C. R. 102, 1828.

XXXIII. PHOSPHATES.

1st. Normal Orthophosphates.

N.	AME.		FORMULA.		Sp. Gravity.	AUTHORITY.
Hydrogen p	hospha	ste, or	H ₈ P O ₄			Schiff. J. 12, 41.
"	"		"		1.884, 18°.2	Thomsen. J. P. C. (2), 2, 160.
Trisodium p	hospha	te	Na, P O4		2.5111, 12° 2.5362, 17°.5 }	C. A. Mohr. F. W.
"	"		Na, PO4. 12 H	0	1.622	C. Playfuir and Joule.
	"		44		1.618	M. C. S. 2, 401. Schiff. A. C. P. 112,
"	"		44		1.6645	88. Dufet. B. S. M. 10, 77.
	ydroge	n phos-	Na ₂ H P O ₄ . 8 I	H, O	1.848	
phate.	"	"	Na ₂ H P O ₄ . 7 I	H2 O	1.6789	
"	**	"	Na ₂ H P O ₄ . 12	H, O	1.5189	Tünnermann. See Böttger.
66	"	"	"		1.525, m. of 8_	
46	44	"	44		1.586, 80	Kopp. J. 8, 45.
66	66	"	"		1.525	Kopp. J. 8, 45. Schiff. A. C. P. 112, 88.
"	"	"	"		1.550	Buignet. J. 14. 15.
44	"	"	. "		1.5235, 15°	Stolba. J. P. C. 97, 503.
"	"	"	44		1.535	W. C. Smith. Am. J. P. 53, 148.
"	"	"	"		1.5313	
Sodium dih	ydroge	n phos-	Na H, PO, H	, O	2.040	Schiff. A. C. P. 112, 88.
marc.	"	"	"		2.0547	Dufet. B. S. M. 10,
**	"	"	Na H, PO4. 2	H, O	1.915	Joly and Dufet. C. R. 102, 1893.
"	"	"	44		1.9096	Dufet. B. S. M. 10,
Potassiun phosphate	n dihy	drogen	K H, P O,		2.298	Schiff. A. C. P. 112, 88.
""	"	"	"		2.403	Buignet. J. 14, 15.
"	"	"	"		8.321	
"	"	"			2.323	Schröder. Dm. 1873.
"	"				2.880	
	ım hy		Am, H P O		1.619	Schiff. A. C. P. 112, 88.
Prospirate (("	"	"		1.678	Buignet, J. 14, 15,
Ammonium phosphate	a dihy e.	drogen	Am H ₂ P O ₄		1.758	Schiff. A. C. P. 112, 88.
"	"	"	l " <u></u> -		. 1.700	Schröder. Dm. 1878.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ammonium dihydrogen	Am H, P O,	1.779	
phosphate. Sodium potassium hydrogen phosphate.	NaKHPO4.7H2O	1.671	677. Schiff. A. C. P. 112, 88.
Sodium ammonium hydrogen phosphate.	Na Am HPO4. 4H2O	1.554	" "
Trisilver phosphate	Ag ₃ P O ₄	7.821	Stromeyer. See Böttger.
Thallium dihydrogen phosphate.	Tì H, P O,	4.723	Lamy and Des Cloizesux. Nature 1, 116.
Trithallium phosphate Bobierrite	Tl ₃ P O ₄ Mg ₈ (P O ₄) ₂ . 8 H ₂ O ₋	6.89, 10° 2.41	Lamy. J. 18, 247. Lacroix. C. R. 106, 632.
Magnesium hydrogen phosphate.	Mg H P O ₄ . H ₂ O	2.826, 15°	Schulten. C. R. 100, 874.
Struvite	Am Mg PO ₄ . 6 H ₂ O	1.65	M. (3), 28, 548,
Hannayite	Am ₃ Mg ₃ H ₃ (P O ₄) ₄ .	1.898	v. Rath. B. S. M. 2, 80.
Hopeite Brushite	8 H, O. Zn ₃ (P O ₄) ₂ . 4 H ₂ O ₋ Ca H P O ₄ . 2 H ₂ O ₋	2.76—2.85——	Dana's Mineralogy. Moore. A. J. S. (2),
Metabrushite	2 Ca H P O ₄ . 8 H ₂ O	$ \left\{ \begin{array}{c} 2.288 \\ 2.356 \\ 2.362 \end{array} \right\} 15^{\circ}.5 \left\{ \end{array} $	39, 43. Julien. A. J. S. (2), 40, 371.
Martinite	Ca ₁₀ H ₄ (P O ₄) ₈ . H ₂ O	2.892—2.896	Kloos. J. C. S. 54, 283.
Reddingite	Mn ₃ (P O ₄) ₂ . 8 H ₂ O ₋	3.102	Brush and Dana. A. J. S. (8), 16, 120.
Vivianite	Fe ₃ (P O ₄) ₂ . 8 H ₂ O		Rammelsberg. P. A. 64, 411.
"	"	2.680	Rammelsberg. J. P. C. 86, 344.
Lithiophilite	Mn Li P O ₄		Brush and Dana. A J. S. (3), 18, 45.
Triphylite	Fe Li P O4	3.6 3.534—3.589	Fuchs. B.J. 15, 211. Penfield. A. J. S. (3), 17, 226.
Hureaulite	$ Mn_{10} \text{ Fe}_{2} H_{3} (P O_{4})_{5}. $ $ 5 H_{2} O. $	3.185—3.198	Des Cloizeaux. Ann. (3), 53, 300.
Fairfieldite	MnCa ₂ (PO ₄) ₂ . 2H ₂ O	3.15	Brush and Dana. A. J. S. (3), 17, 359.
Dickinsonite	$ \mathbf{Na} \mathbf{Ca} \mathbf{Fe} \mathbf{Mn}_{2} (\mathbf{PO}_{4})_{3}. \\ \mathbf{H}_{2} \mathbf{O}. $	3.338}	Brush and Dana. A. J. S. (3), 16, 114.
Fillowite	$Na_2CaFeMn_6(PO_4)_6$. $H_aO.$	3.43	Brush and Dana. A. J. S. (3), 17, 363.
Strengite	Fe''' P O ₄ . 2 H ₂ O	2.87 2.74	Nies. Z. K. M. 1,94. Schulten. Z. K. M. 12, 640.
Koninckite	Fe''' P O ₄ . 8 H ₂ O	2.8	Cesaro. A. J. S. (3), 29, 342.
Aluminum phosphate. Cryst.	Al P O4	2.59	Schulten. C. R. 98, 1584.
Berlinite		2.64	Blomstrand. Dana's Min.
Callainite. (Variscite?)	2 Al P O4. 5 H2 O	2.50} 2.52}	Damour. C. R. 59, 986.

Variscite	
Zepharovichite	ľ¥.
Xenotime	 Г.1871,
""""""""""""""""""""""""""""""""""""	
Cerium phosphate	857.
Cerium phosphate	966.
Cerium phosphate Ce P O4 5.22, 14° Grandeau. An 8, 193. Cryptolite " 4.6 Wöhler. P. 424. Rhabdophane (Scovillite) " 4.78 Watts. J. 2, Brush and Pe A.J. S. (3); Genth. Dana's S. 174 Monazite " 5.203 Genth. Dana's Rammelsberg 1298. " 5.174 Rammelsberg G. S. 29, 75 Grandeau. An 8, 193. Genth. Dana's Rammelsberg G. S. 29, 75 Grandeau. An 8, 193. Genth. Dana's Miner " 5.174 Rammelsberg G. S. 29, 75 Grandeau. An 8, 193. Genth. Dana's Miner Samarium phosphate Di P O4 5.84, 15° Grandeau. An 8, 193. Cleve. U. 1885. Grandeau. An 8, 193. Cleve. U. 1885. Cleve. U. 1885. Autunite Ca (U O2)2 (P O4)2. 8 H. O. 8 S. 4—3.6 Weisbach. 1808. Torbernite Ba (U O2)2 (P O4)2. 8 H. O. 8 Weisbach. 1808. Troost and Ou C. R. 105, 8 Weisbach. 1808. Na Zr2 (P O4)3. 8.10, 12° Troost and Ou C. R. 102, 1 Watts. J. 2 Weisbach. 1808. Troost and Ou C. R. 102, 1 Weisbach. 1808. Weisbach. 1808. Weisbach. 1808. <	
Cryptolite " 4.6 Wöhler. P. 424. " 2 (La Di Y Er) P O. H. O. H. O. H. O. H. O. H. O. D. O. H. O. D. O. H. O. D. O. H. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. O. D. D. D. O. D. D. D. O. D. D. D. D. D. D. D. D. D. D. D. D. D.	ın. (6),
Rhabdophane (Scovillite) 2 (La Di Y Er) P O. H. 0. H. 0. H. 0. H. 0. S.203	A. 67,
Rhabdophane (Scovillite) 2 (La Di Y Er) P O. H. 0. H. 0. H. 0. H. 0. S.203	773.
## 1.5.174	enfield. 25.459.
"	
""""""""""""""""""""""""""""""""""""	•
"	J. 15,
Didymium phosphate Di P O ₄	. Z.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nn. (6),
Autunite Ca (U O ₂) ₂ (P O ₄) ₃ 8 H ₂ O. Cu (U O ₂) ₂ (P O ₄) ₃ 8 H ₂ O. Uranocircite Ba (U O ₂) ₂ (P O ₄) ₄ 8 H ₂ O. Sodium zirconium phosphate. """	N. A.
Torbernite	alogy.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"
Sodium zirconium phosphate. Na ₈ Zr (P O ₄) ₄	J. 80,
phosphate. (C. R. 102, 1	
phosphate. (C. R. 102, 1	"
phosphate. (C. R. 102, 1	"
" K Zr ₂ (P O ₄) ₃ 3.18, 12° "	
	"
Sodium thorium phos- phate. No. Th. (PO) 5.62.160 Troost and Ou C. R. 105, 8	vrard.
Potassium thorium phosphate. K ₁₅ Th ₅ (P O ₄) ₈ 8.95, 12° Troost and Outphate. Troost and Outphate. C. R. 102, 1	vrard.
" " K. Th (PO.) 4.688.7° "	. 4 22.
" " " K ₂ Th (P O ₄) ₂ 4.688, 7° " " " K Th ₂ (P O ₄) ₂ 5.75, 12° "	"

2d. Basic Orthophosphates.

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isoclasite	Ca ₂ (OH)PO ₄ . 2H ₂ O ₋	2.92	Sandberger. J. P. C. (2), 2, 125.
Libethenite	Cu ₂ (O H) P O ₄	3.63.8	Hermann. J. P. C. 87, 175.
Tagilite	Cu ₂ (O H) P O ₄ . H ₂ O ₋	8.50	Hermann. J. P. C.
66	"	4.076	
Veszelyite	Cu ₂ (OH)PO ₄ . 2H ₂ O ₋	3.531	Ztg. 24, 809. Schrauf. Z. K. M. 4, 31.
Pseudomalachite	Cu ₈ (O H) ₈ P O ₄	4.175	Schrauf. Z. K. M. 4, 14.
Ehlite	Cu ₅ (OH) ₄ (PO ₄) ₂ . H ₂ O	4.102	Schrauf. Z. K. M. 4,·13.
Dihydrite	Cu ₅ (O H) ₄ (P O ₄) ₂	4.309	Schrauf. Z. K. M. 4, 12.
Triploidite	(Mn Fe) ₂ (O H) P O ₄ -	3.697	Brush and Dana. A. J. S. (3), 16, 42.
Ludlamite	Fe ₇ (O H) ₂ (P O ₄) ₄ . 8 H ₂ O.	3.12	Maskelyne and Field. J. 30, 1800.
Picite	Fe ₁₄ (O H) ₁₈ (P O ₄) ₈ . 27 H ₂ O.	2.83	Streng. J. 34, 1877.
Dufrenite	Fe''', (O H), P O,	3.227	Dufrenoy. Dana's Min.
"	"	8.382	Campbell. A. J. S. (8), 22, 65.
		3.454 3.293	Massie. J. 33, 1433
Cacoxenite	Fe''' ₄ (O H) ₆ (P O ₄) ₃ . 9 H ₂ O.	3.38	Boricky. S. W. A. 56 (1), 7. Dana's Mineralogy.
Calcioferrite	Fe''', Ca, (O H), (P O ₄), 8 H ₂ O.	$\left. \begin{array}{c} 2.523 \\ 2.529 \end{array} \right\}$	Reissig. Dana's Min.
Borickite	Fe''', Ca (O H) (P	2.696—2.707	Boricky. J. 20, 1002.
Chalcosiderite	O ₄) ₂ . 3 H ₂ O. Fe''' ₆ Cu (O H) ₈ (P O ₄) ₄ . 4 H ₂ O.	3.108	Maskelyne. J.C.S. 28, 586.
Andrewsite	Fe''' Cu Fe'' (PO.)	3.475	
Evansite	$Al_3(OH)_6PO_4$. $6H_2O$	1.939	Forbes. P. M. (4), 28, 341.
Trolleite	Al ₄ (O H) ₃ (P O ₄) ₈	3.10	
Augelite	Al ₄ (O H) ₆ (P O ₄) ₂	2.77	"
Turquois	Al ₄ (O H) ₆ (P O ₄) ₂ . H ₂ O.	2.621	Hermann. J. P. C. 33, 282.
Peganite		2.426—2.651 2.492—2.496	Blake. J. 11, 722. Breithaupt. Schw.
Fischerite	Al ₄ (O H) ₆ $(P O_4)_2$.	2.46	J. 60, 308. Hermann. J. P. C.
Cæruleolæctite	5 H ₂ O. Al ₆ (O H) ₆ (P O ₄) ₄ . 7 H ₂ O.	2.552, 19° }	83, 286. Petersen. N. J. 1871, 858.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Wavellite	Al ₆ (O H) ₆ (P O ₄) ₄ . 9 H ₂ O.	2.337	Haidinger. Dana's
"		2.316	Richardson. Dana's Min.
Planerite	Al ₆ (O H) ₆ (P O ₄) ₄ . 12 H ₂ O.		
Sphærite	Al ₁₀ (O H) ₁₈ (P O ₄) ₄ . 7 H ₂ O.	2.536	Zepharovich. S. W. A. 56, 24.
Lazulite	$\operatorname{Al}_{2}\operatorname{Mg}\left(\operatorname{OH}\right)_{2}\left(\operatorname{PO}_{4}\right)_{2}$	3.122	Smith and Brush. J. 6, 840.
46		3.106—3.123	
"		3.108	
Cirrolite	Al ₂ Ca ₃ (OH) ₃ (PO ₄) ₃	3.08	Blomstrand. Dana's Min.
Plumbogummite	Al ₄ Pb (O H) ₈ (PO ₄) ₇ . 5 H ₂ O.	4.88, 15°.6	Dufrenoy. Ann. (2), 59, 440.
" Hitchcockite.	"	4.014, 20°	Genth. A.J.S.(2), 23, 424.
Eosphorite	Al Mn (O H), P O ₄ . H ₂ O. }	3.124 }	Brush and Dana.
Childrenite	Al Fe (O H), P O.	3.145)	A. J. S. (3), 16, 35. Church. J. C. S. 26,
Barrandite	Al Fe''' (P O_4) ₂ .	2.576	104. Zepharovich. J. 20,
~~···	4 H, Ö.	2.010	1000.

3d. Meta- and Pyrophosphates.

Name.	Formula.	Sp. Gravity. Authority.	
Sodium metaphosphate	Na P O ₃	2.4756, 19°.5 } 2.4769, 18° } 2.503, 20°	Mohr. F.W.C. Bedson and Williams. Ber. 14, 2555.
Potassium metaphosphate Didymium metaphosphate Samarium metaphosphate Thorium metaphosphate	Di P ₅ O ₁₄	2.2639 \	Mohr. F.W.C. Cleve. U.N.A.1885.
Sodium pyrophosphate	Na ₄ P ₂ O ₇ . 10 H _e O	2.3613 } 17° 2.8851 } 17° 1.836	Mohr. F.W.C.

		,	
Name.	Formula.	Sp. Gravity.	AUTHOBITY.
Sodium pyrophosphate	Na ₄ P ₂ O ₇ . 10 H ₂ O	1.824	Dufet. C. R. 102, 1328.
" "	"	1.8151	Dufet. B. S. M. 10,
Sodium hydrogen pyro- phosphate.	Na ₂ H ₂ P ₂ O ₇ . 6 H ₂ O	1.8616	11.
Potassium pyrophosphate	K ₄ P ₂ O ₇	2.33	Brügelmann. Ber. 17, 2859.
Silver pyrophosphate	Ag ₄ P ₂ O ₇	5.306	Stromeyer. See Bött- ger.
	"	5.2596	Tünnermann. See Böttger.
Thallium pyrophosphate	Tl ₄ P ₂ O ₇	6.786	Lamy and Des Cloizeaux. Nature 1,
Magnesium pyrophosphate	Mg ₂ P ₂ O ₇	2.220	Schröder. Dm. 1878.
" "	"	2.559, 18° }	Lewis. F.W.C.
Zinc pyrophosphate	Zn ₂ P ₂ O ₇	3.7538 3.7574 28°	
Manganese pyrophosphate	Mn ₂ , P ₂ O ₇	8.5742,26°) 8.5847 20° }	u u
Nickel pyrophosphate	Ni ₂ P ₂ O ₇	8.9064,27° {	
Cobalt pyrophosphate	Co ₂ P ₂ O ₇	3.710, 25° (
Barium pyrophosphate	Ba ₂ P ₂ O ₇ . H ₂ O	8.574 8.582 8.590	Schröder. Dm. 1878.
Silicon pyrophosphate	Si P ₂ O ₇	3.1, 14°	Hautefeuille and Margottet. C. R. 96, 1058.
Zirconium pyrophosphate " Tin pyrophosphate	Zr P ₂ O ₇	3.12}	Knop. A. C. P. 159, 48.
Tin pyrophosphate	Sn P ₂ O ₇	8.61	Knop. A.C.P.159,
Basic tin pyrophosphate	Sn ₂ (P ₂ O ₇) O ₂	3.87 }	ii ii
Basic titanium pyrophos- phate.		0.00	Knop. A.C.P.157, 365.

XXXIV. VANADATES.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium octovanadate	Na ₁₂ V ₈ O ₂₆ . 4 H ₂ O -	2.85, 18°	Carnelley. J. C. S. (2), 11, 323.
Silver octovanadate Thallium metavanadate	Ag ₁₂ V ₈ O ₂₆ Tl V O ₃	5.67, 18° 6.019, 11°	" "
Thallium metavanadate Thallium pyrovanadate	Tl ₄ V ₂ Ö ₇	8.21, 18°.5,	
	"	8.812, 18°.5, fused.	
Thallium orthovanadate	Tl ₃ V O ₄	8.6. 17°	
Thallium octovanadate	$Tl_{12}^{1} \nabla_{8} \mathring{O}_{26}$	8.59, 17°.5	46 46
Thallium decavanadate	Tl ₁₂ V ₁₀ O ₃₁	7.86, 17°	
Magnesium vanadate. Brown.	Mg ₃ V ₁₀ O ₂₈ . 28 H ₂ O -	2.199	Sugiura and Baker.
" " Red	Bi V O4	2 167	J C S 25 716
Pucherite	Bi V O.	5.91	J. C. S. 35, 716. Frenzel. J. P. C.
		1	1 141, 7. 441.
Dechenite			758.
		5.83	1021.
" Eusynchite	"	5.596	Rammelsberg.
" Eusynchite Descloizite	Pb Zn (O H) V O4	5.839	Damour. J. 7, 855.
"		5.915 [(From two samples.
"	"	6.080 }	Rammelsberg. J. 33, 1428.
"			Penfield.* A. J. S.
" Light		6.205 {	(3), 26, 361.
		6.105—6.108	Genth. Am. Phil. Soc. 1885.
Mottramitet	Pb Cu (O H) V O	5.894	Roscoe. J. 29, 1259.
" Dark Mottramite† Volborthite;	$R_3(OH)_3VO_4$. $6H_2O$	3.55	Credner. Dana's
Didymium vanadate	Di V O4	4.959 4.963 21°.2_	Cleve. U. N. A.1885.
Didymium metavanadate_	Di V ₅ O ₁₄ . 14 H ₂ O	$\{2.492\}$ 18°.5	
Samarium metavanadate	Sm V ₅ O ₁₄ . 12 H ₂ O	2.628, 17°.5	
" "		2.620, 17°.8	
"	Sm V ₅ O ₁₄ . 14 H ₂ O	2.52°, 17°.5	"
Sodium vanadium vana-	2Na,O. 2V,O,. V,O,.	2.526, 17°.8 } 1.389, 15°	Brierly. J. C. S.
date.	6 H, O. 2Na,O. 2V,O,. V,O,.	1.327, 15°	49, 30.
Potassium vanadium va-	5K,O. 2V,O ₄ . 4V,O ₅ .	1.213, 15°	** **
nadate. Ammonium vanadium vanadate.	H, O. 8Am, O.2V, O, 4V, O ₅ . 6 H, O.	1.335, 15°	

^{*}Penfield's mineral contained some copper and arsenic. Frenzel's tritochorite (G. 6.25) is similar. † Formula somewhat doubtful. ‡ R in this formula $=\frac{1}{4}$ Cu and $\frac{1}{4}$ Ca + Ba.

XXXV. ARSENITES AND ARSENATES.

1st. Normal Orthoarsenates.

NAME.		Form	ULA.	Sp. Gravity.	AUTHORITY.	
Sodium dihy	droge	n arse-	Na H, As	O ₄ . H ₂ O	2.535	Schiff. A. C. P.
"	"	"	. "		2.6700	Dufet. B. S. M. 10,
44	"	"	Na H, As (O ₄ . 2 H ₂ O ₋	2.320	Joly and Dufet. C. R. 102, 1393.
41	"	"	"		2.3093	Dufet. B. S. M. 10,
Disodium hy	droge	n arse-	Na ₂ H As (O ₄ . 7 H ₂ O ₋	1.871	Schiff. A. C. P. 112, 88.
"	"	"	"		1.8825	Dufet. B. S. M. 10,
. "	"	"	Na ₂ H As O	4. 12 H ₂ O ₋	1.759	Thomson. See Bött- ger.
"	"	"	"		1.736	
"	"	"	"		1.670	Schiff. A. C. P. 112, 88.
"	"	"	"		1.6675	Dufet. B. S. M. 10,
Trisodium ar	senate		Na ₃ As O ₄		$\left\{ \begin{array}{c} 2.8128 \\ 2.8577 \end{array} \right\}$ 21°	Stallo. F. W. C.
"	"		No ₃ As O ₄ .	12 H ₂ O _	1.804	Playfair and Joule. M. C. S. 2, 401.
"	"		"		1.762	Schiff. A. C. P. 112,
"	"		"		1.7593	Dufet. B. S. M. 10,
Potassium dil	nydrog	gen ar-	K H ₂ As O	4	2.638	Thomson. See Bött- ger.
"	**	* ("		2.832	Schiff. A. C. P. 112, 88.
"	"	"	"			Schröder. Dm. 1873.
"	"	"	"			Topsoë. B. S. C. 19,
Ammonium	dihva	lrogen	Am H. As			246. Schiff. A. C. P. 112,
arsenate.	-	,	"	•	2.299)	88.
"		·	"		2.309 2.312	Schröder. Dm. 1873.
4.6	4	'	"		2.308	Topsoë. C. C. 4, 76.
Diammonium arsenate.	hyd	lrogen	Am ₂ H As	0,	1.989	Schiff. A. C. P. 112, 88.
Potassium sod gen arsenat		ydro-	K Na H As (1	1.884	Schiff. A. C. P. 112, 88.
Ammonium a	sodiun	n hy-	Am Na H	4 H, O.	1.838	"
Hoernesite			Mg ₃ (As O ₄)	2. 8 H ₂ O	2.474	Haidinger. J. 18, 784.

Name.	Formula.	Sp. Gravity.	Authority.
Magnesium hydrogen ar- senate.		8.155, 15°	877
Köttigite Native nickel arsenate	$ \text{Zn}_{8} \text{ (As O}_{4})_{2}. 8 \text{ H}_{2} \text{ O} \\ \text{Ni}_{3} \text{ (As O}_{4})_{2} $	3.1 4.982	Köttig. J. 2, 771. Bergemann. J. 11, 728.
ErythriteCabrerite	$(NiCoMg)_3(AsO_4)_2$.	2.948 2.96	Dana's Mineralogy. Ferber. B. H. Ztg.
Roselite	$(\operatorname{Ca}\operatorname{Co}\operatorname{Mg})_{3}(\operatorname{AsO}_{4})_{2}.$ 2 H. O.	3.5-3.6	870.
"	"	3.46, 3°	Weisbach. N. J. 1874, 871.
Caryinite		4.25	Lundström. Dana's
BerzeliiteHaidingerite	Mg, Ca, (As O ₄), H Ca As O ₄ . H ₂ O	2.52	Dana's Mineralogy. Turner. Dana's Min.
Berzeliite Haidingerite Pharmacolite Wapplerite	H (Ca Mg) As O ₄ .	2.64—2.73	Dana's Mineralogy. Frenzel. Dana's
Forbesite	7 H. O.	8.086	Min., 2d App Forbes. P. M. (4), 25, 103.
Scorodite	Fe''' As O ₄ . 2 H ₂ O	8.11}	Damour. Ann. (3), 10, 406.
" Artificial	"	8.28	
Carminite Trögerite	$ \begin{array}{c c} {\rm Pb_3 \; Fe^{\prime\prime\prime}_{10} \; (As \; O_4)_{12}} \\ {\rm (U O_2)_3 (As O_4)_2.} \\ {\rm 12 \; H_2 \; O.} \end{array} $	4.105 3.28	Dana's Mineralogy.
Uranospinite	$(U O_2)_2 Ca (As O_4)_2.$ 8 H ₂ O.	8.45	" " "
Zeunerite	(U O ₂) ₂ Cu (As O ₄) ₂ . 8 H ₂ O.	8.58	
	_		

2d. Basic Orthoarsenates.

Name.	FORMULA.	Sp. GRAVITY.	Authority.
Adamite	Zn ₂ (O H) As O ₄	4.388, 18°	Friedel. C. R. 62, 692.
Native nickel arsenate	Ni ₅ O ₂ (As O ₄) ₂	ì	Bergemann. J. 11, 728.
Olivenite	Cu ₂ (O H) As O ₄		Damour. Ann. (3), 13, 404.
"	"	1	Hermann. J. P. C.
Clinoclasite	Cu. (O H). As O	4.19-4.86	Dana's Mineralogy.
. "	Cu ₃ (O H) ₃ As O ₄	4.312	Damour. Ann. (3), 13, 404.
"	1	4.28, 19°	Hillebrand. Private communication.
Euchroite	Cu ₃ (OH), AsO, 6H, O	3.389	Dana's Mineralogy.
Erinite	Cu. (O H), (As O ₄),-	i 4.04 3	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cornwallite	Cu ₅ (O H) ₄ (As O ₄) ₂ .	4.160	Dana's Mineralogy.
Tyrolite	$\begin{array}{c c} & H_2 \text{ \dot{U}.} \\ \text{Cu}_5 \text{ $(O \ H)_4$} & (\text{As O_4})_2. \\ & 7 \text{ H_2} \text{ O.} \end{array}$	3.02-3.098	
	" "	8.162	Church. J.C.S.26,
44	"	8.27, 20°.5	Hillebrand. Private communication.
Chalcophyllite	$Cu_8 (O H)_{10} (As O_4)_2$.	2.659	Damour. Ann. (8), 13, 404.
	"	2.435	Hermann. J. P. C. 88, 294.
ConichalciteBayldonite	Cu _s Pb(OH),(AsO ₄).	4.128 5.35	Fritzsche. J. 2,772.
Liroconite	Cu ₂ Al (O H), As O ₄ . 4 H ₂ O.	2.926	Haidinger. Dana's Min.
"	"	2.964	Damour. Ann. (8), 13, 404.
"		2.985	Hermann. J. P. C. 33, 296.
Chenevixite	Cu_{5} Fe''' ₂ $(O H)_{6}$ $(As O_{4})_{2}$.	8.93	Pisani. C. R. 62, 690.
Pharmacosiderite	$\mathbf{Fe}^{\prime\prime\prime}_{\bullet}(\mathbf{OH})_{\bullet}(\mathbf{AsO}_{\bullet})_{\bullet}$	2.9—8.Q 3.520	Dana's Mineralogy. Dufrency.
"	" `	3.88	Rammelsberg.
"	"	8.86	Church. J. C. S. 26, 102.
Allaktite			Sjögren. A. J. S. (8), 27, 494.
Rhagite	i		Weisbach. N. J. 1874, 302.
Mixite	BiCu ₁₀ (OH) ₈ (AsO ₄) ₅ . 7 H ₂ O.	2.66	Schrauf. Z. K. M. 4, 277.
"	"	3.79, 23°.5	communication.
Walpurgite	(U O ₂) ₃ Bi ₁₀ (As O ₄) ₄ (O H) ₂₄ .	5.64	Weisbach. N. J. 1873, 316.

3d. Pyroarsenates and Arsenites.

Name.	Formula.	SPI GRAVITY.	Authority.
Magnesium pyroarsenate """ Zinc pyroarsenate """ Manganese pyroarsenate """ Lead arsenite	Zn ₂ As ₂ O ₇	3.7305, 15° 3.7649, 18° 4.6989 4.7034 21° 3.6925, 25° 3.6832 3.6927 5.85, 23°	Stallo. F. W. C. " " " " Schafarik. J. P. C. 90, 12.

XXXVI. PHOSPHATES, VANADATES, AND ARSENATES, COMBINED WITH HALOIDS.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium fluo-phosphate* Sodium fluo-arsenate* Wagnerite	Na ₄ (PO ₄) F. 12H ₂ O- Na ₄ (AsO ₄) F. 12H ₂ O Mg ₂ (PO ₄) F	2.2165 2.849 2.985 } 15° { 3.068 }	Briegleb. J. 8, 338. Briegleb. J. 8, 339. Rammelsberg. P. A. 64, 251. Pisani. Z. K. M.
Artificial vanadium wag- nerite. Herderite	Ca ₂ (V O ₄) Cl	4.01	8, 645. Hautefeuille. J. C. S. (2), 12, 131. Hidden and Mack-
" " Triplite	(Fe Mn) ₂ (PO ₄) F	3.006 } 3.012 } 3.617	intosh. A. J. S. (3), 27, 135. Penfield and Harper. A. J. S. (3), 32, 107. Bergemann. J. P. C. 79, 414
Amblygonite			Siewert. J. 26, 1185. Breithaupt. J. P. C. 16, 476.
		3.046	(8), 18, 295,
Durangite	-	1	Brush. A. J. S. (8),
Fluorapatite	•	3.166—3.285	185.
"		3.25	768. Church. J. C. S.
Chlorapatite	ł	li .	Manross. J. 5, 10. Daubreé. "Études
Pyromorphite	i	i	Manross. J. 5, 10. G. Rose. P. A. 9 209.
Vanadinite		6.707,12°,artii.	Fuchs. J. 20, 1001 Roscoe. Z. C. 13
"	•	6.886	872.
Mimetite			1 956
" Artificial	"	7.32	Smith. J. 8, 965. Michel. B. S. M 10, 185.
Ekdemite		1	Nordenskiöld. Z. K M. 2, 806.
Endlichite	Pb ₅ (As O ₄), Cl, + Pb ₅ (VO ₄), Cl.	6.864	Genth. Am. Phil Soc., 1885.

^{*}Baker (J. C. S., May, 1885) assigns more complex formulæ to these salts.

XXXVII. ANTIMONITES AND ANTIMONATES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium antimonite	Na Sb O ₂ . 3 H ₂ O	2.864	Terreil. Ann. (4), 7, 850.
Sodium hydrogen anti- monite.	Na H ₂ (Sb O ₂) ₃	i	""
Romeite	Ca (Sb O ₂) (Sb O ₃) ?-		Damour. J. 6, 837.
Atopite	Ca ₂ Sb ₂ O ₇	5.03	Nordenskiöld. Da- na's Min., 3d App.
Barcenite	1		Mallet. A. J. S. (3), 16, 306.
Monimolite	Pb ₄ (Sb O ₄) ₂ O		Igelström. Dana's Min.
Bindheimite	$Pb_3 (Sb O_4)_2$. $4H_2 O$		Hermann. J. P. C. 34, 179.
"	"	ĺ	Hillebrand. Bull. 20, U.S.G.S.
Nadorite Stibioferrite	Pb (Sb O ₂) Cl 4 Fe''' Sb O ₄ . 3 H ₂ O	7.02 3.598	Flajolot. J. 23, 1280. Goldsmith. Dana's
Thrombolite	Cu ₁₀ Sb ₆ O ₁₉ . 19 H ₂ O		Min., 2d App. Schrauf. Z. K. M. 4, 28.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Magnesium columbate Manganese columbate Columbite	Mg ₄ Cb ₂ O ₉	4.3	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's
Magnesium columbate Manganese columbate	Mg ₄ Cb ₂ O ₉ ? Fe Cb ₂ O ₆	4.3 4.94 5.469—5.495 5.447	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11,
Magnesium columbate Manganese columbate Columbite	Mg ₄ Cb ₂ O ₉ ? Fe Cb ₂ O ₆	4.3	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S.
Magnesium columbate Manganese columbate Columbite	Mg ₄ Cb ₂ O ₉	4.3	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskiöld. P. A.
Magnesium columbate Manganese columbate Columbite " " Manganese columbite	Mg ₄ Cb ₂ O ₉	4.3 4.94 5.469—5.495 5.447 5.432—5.452 5.40—5.43 6.59 7.264	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskield. P. A. 26, 488. Berzelius. Dana's
Magnesium columbate Manganese columbate Columbite " " Manganese columbite Tantalite	Mg ₄ Cb ₂ O ₉	4.3 4.94 5.469—5.495 5.447 5.432—5.452 5.40—5.43 6.59 7.264	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskiöld. P. A. 26, 488. Berzelius. Dana's Min. Jenzsch. Dana's
Magnesium columbate Manganese columbate Columbite	Mg ₄ Cb ₂ O ₉	4.3	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskiöld. P. A. 26, 488. Berzelius. Dana's Min. Jenzsch. Dana's Min. Rose. J. 11, 720. Smith. A. J. S. (3),
Magnesium columbate Manganese columbate Columbite " " Manganese columbite Tantalite " "	Mg ₄ Cb ₂ O ₉	4.3 4.94 5.469—5.495_ 5.447 5.432—5.452_ 5.40—5.43_ 6.59 7.264 7.708 7.277—7.414_ 7.2	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskiöld. P. A. 26, 488. Berzelius. Dana's Min. Jenzsch. Dana's Min. Jenzsch. Dana's Min. Rose. J. 11, 720. Smith. A. J. S. (3), 14, 323. Arzruni. J. C. S.
Magnesium columbate Manganese columbate Columbite Manganese columbite Tantalite	Mg ₄ Cb ₂ O ₉	4.3	Joly. C. R. 81, 268. Joly. B. S. C. 25, 67. Schlieper. Dana's Min. Oesten. Dana's Min. Breithaupt. J. 11, 720. Müller. J. 11, 721. Comstock. A. J. S. (3), 19, 131. Nordenskiöld. P. A. 26, 488. Berzelius. Dana's Min. Jenzsch. Dana's Min. Rose. J. 11, 720. Smith. A. J. S. (3), 14, 323. Arzruni. J. C. S. 54, 234.

^{*} For samarskite, microlite, forgusonite, and other natural columbotantalates see Dana's Mineralogy. The formulæ here assigned to columbite, tantalite, and sipylite are only approximative, representing the typical compounds.

XXXIX. CARBONATES.

1st. Simple Carbonates.

	Name.		For	MULA.	Sp. Gravity	AUTHORITY.
Lithium	carbona	te	Li, C O3-		2.111 1.787, fused	Kremers. J. 10, 67. Quincke. P. A. 138, 141.
Sodium c	arbonat	e	Na ₂ C O ₃		2.4659	Karsten. Schw. J. 65, 394.
"	"		"		2.430	Playfair and Joule. M. C. S. 2, 401.
"	"		**		2.509	Filhol. Ann. (3), 21, 415.
"	"		"		2.407, 20°.5	Favre and Valson. C. R. 77, 579.
"	"		"		2.490 }	Schröder. Dm. 1873.
"	"		**		2.510)	P T C S (0)
					2.041, 960°	Braun. J. C. S. (2), 13, 31.
**	**		"		2.45, fused	Quincke. P. A. 135, 642.
••	"		Na ₂ C O ₃	. 8 H ₂ O	1.51	Thomson. Ann. Phil. (2), 10, 442.
4.6	66		Na ₂ C O ₃ .	10H ₂ O	1.423	Haidinger. See Bött- ger.
**	"		"		1.454, m. of 4_	
	**				1.475	Schiff.
**	66				1.463	Buignet. J. 14, 15.
44	"		"			Holker. P. M. (3), 27, 214.
"	**				1.4402	
**	"		61	·	1.456, 19°	Favre and Valson.
m	-4		No CO	ĦΛ	1.5—1.6	C. R. 77, 579. Dana's Mineralogy.
					2.2648	Karsten. Schw. J.
"	"		- "		2.103	
"	"		" -		2.267	
"	"				2.105	
"	"				2.00, 1150°	
Silver ca	rbonate		Ag, CO,		6.0766	18, 31. Karsten. Schw. J.
"	"				6.0, 17°.5	
Thallium	carbo	nate	TI, CO,		7.06 7.164	
Magnesia	um carl	bonate	Mg C O	••••••	8.037	zeaux. Nature 1, 116. Neumann. P. A. 23, 1.

NAME.		F	ORMULA.	SP. GRAVITY.	AUTHORITY.		
Magnes	ium ca	rbona	te	MgC	O ₈	8.056	Mohs.
45		4.4		11		3.065	Scheerer.
46		1.6	1400	44		3.017	Breithaupt.
4.6		11	TALL.	6.6	2011014001	8.033	Hauer.
"		- 61	****	64		3.017	Marchand and Scheerer. J. 3 760.
66		44	2200	14		3.007)	
- 66		66		11		3.076 }	Jenzsch. J. 6, 848
- 11				**		3.083	Zepharovich. J. 8 975.
**		46			**********	3.015	Zepharovich, J. 18
**				Mg C	Og. 3 H ₂ O	1.875	Beckurts. J. C. S 42, 14.
Zine car	honet			Zn C	0,	4.339	Smithson.
ti ca	11			64	3	4.442	Mohs. See Böttger
11	44			44		4.3765	Karsten. Schw. J 65, 394.
46	44			44		4.45	Naumann.
61	22					4.42	Haidinger.
Cadmiu	m carb	onate.		Cd C	03	4.42, 17°	Herapath. P. M. 64
52				61		4.4938	321. Karsten. Schw. J 65, 394.
22				44		4.258	Schröder. Dm. 1878
Calcium	carbo	nate		CaC	0	2.7000)	Karsten. Schw. J
64	11			11	3	2.6946	65, 394.
4.4	**		onite_	66	200000000000000000000000000000000000000	2.931	Haidinger.
44		11		66		2.927	Biot.
11	44	13				2.945)	
44	**	44				2.947 }	Beudant.
44		46		64		2.931	Mohs.
66	44	**			-00000000000000000000000000000000000000	2.938)	E3070
44		46		46		2.995 }	Breithaupt.
4.6	**	**		46		2.926	Neumann. P. A 23, 1.
44	44	**				2.933, 00	Kopp.
44		11		14		2.93	Nendtwich.
16		**		- 66		2.92	Riegel. J. 4, 819.
**	**	**		14		2.93	Stieren. J. 9, 882.
44	61	64				2.932	Luca. J. 11, 732.
44		Calcit		44		2.7064)	Karsten. Schw. J
**	44	Calci				2.6987	65, 394.
**	**		~***	**		2.7213)	09, 094.
**	**			11		2.7234	Beudant.
**	**	**		4		2.750	Vannaga D A
				44	***********		Neumann. P. A 23, 1.
44	44	11		11		2.702	Hochstetter. J. 1 1222.
41	"	44		11		2.72	Kopp. J. 16, 5.
**	11			**	Artificial	2.71	Bourgeois. Ann (5), 29, 493.
14	6.6			Ca C	08. 5 H2 O	1.783	Pelouze.
2.5	ii					1.75	Salm-Horstmar. P A. 35, 515.

Same.	FORMULA.	SP. GRAVITT.	AUTHORITY.
Strontium carbonate	Sr C 03	3.6245	Karsten. Schw. J. 65, 394.
	"	3.613	v. der Marek. J. 3. 759.
" Precip	"	3.548} 3.620	Schröder. P. A. 106. 226.
Barium carbonate	Ba C O	4.24	Breithaupt.
u u	Da (03	4.301	
16 66		4.35	
"	"	4.3019	Karsten. Schw. J.
u u		4.565	Filhol. Ann. (3) 21, 415.
" " Precip.	"	4.216)	•
		4.235	Schröder. P. A. 106
	. "	4.372)	226.
" "Ppt. hot.	"	4.1721}	Schweitzer. Con-
" " _ " _	"	4.1975 {	trib. Lab. Univ. of
" " Ppt. cold.	"	4.1609	Missouri, 1876.
_ " "		4.2811	•
Lead carbonate	Pb C O ₃	6.465	Mohs. See Böttger.
" " "	"	6.5	John.
" "		6.47	Breithaupt.
	·	6.4277	Karsten. See Bott-
11 4	"	6.60	ger. Smith. J. 8, 972.
11 11	46	6.510)	Schröder. P. A.
11 11	"	6.517	Erganz. Bd. 6,622
Manganese carbonate	Иn C O	3.592	Mohs. See Böttger
" "	"	3.553	Kersten. J. P. C
	1		37, 163.
66 66	66	3 6608	Kranz.
" "	"	3.57	Gruner. J. 3, 767
" Ppt		3.122)	Schröder. P. A.
u u i	"	3.129	106, 226.
Iron carbonate	Fe C O ₃	3.829	Mohs. See Bottger
" "		3.815	Dufrenoy.
" "	"	3.872	Neumann. P. A. 23, 1.
" "	. "	8.698	Breithaupt. J. P. C 14, 445.
16 11		8.796, 00	Kopp.
Lanthanite	La, (CO3), 8H, O.		Genth. A. J. S. (2) 28, 425.
"		2.666	Blake. J. 6, 850.
Didymium carbonate	Di ₂ (C O ₂) ₃ . 8 H ₂ O	9 950) (Cleve. U. N. A
" " "	1 -4 (0 08/8 0 mg 0-	2.872, 15°	1885.
	·1	1 · , , (1 -500

2d. Double Carbonates.

Name.	Formula.	Sp. Gravity,	Authority.
Hydrogen sodium carbonate.	Na H C O ₃	2.192, m. of 2	Playfair and Joule. M. C. S. 2, 401.
	1	2.163 2.2208, 15°	Buignet. J. 14, 15. Stolba. J. P. C. 97, 503.
	- "	2.207 }	Schröder. Dm. 1873.
	"	2.159	W. C. Smith. Am.
Urao	Na ₃ H (CO ₃) ₂ . 2 H ₂ O	2.1478, 21°	J. P. 53, 148. Chatard. Private
Hydrogen potassium car- bonate.	K H C O ₈	2.012	communication. Gmelin.
			Playfair and Joule. M. C. S. 2, 401.
		2.180	Buignet. J. 14, 15.
" " " "	"	$\left\{ egin{array}{c} 2.140 \\ 2.167 \end{array} ight\}$	Schröder. Dm. 1873.
	"	2.078	W. C. Smith. Am. J. P. 53, 145.
Hydrogen ammonium car- bonate.		i	Playfair and Joule. M. C. S. 2, 401.
Sodium potassium carbonate. " "	K Na C O ₃	2.5289 }	Stolba. J. 18, 166.
	K Na CO ₃ . 12 H ₂ O.	1.6088	
Silver potassium carbon- ate.	Ag K C O ₃	3.769	Schulten. C. R. 105, 813.
Gaylussite	Na ₂ Ca (CO ₃) ₂ . 5 H ₂ O	1.928}	*Boussingault. Ann. (2), 31, 270.
Dolomite	., .	2.914}	Neumann. P. A. 23, 1.
	"	2.89 2.924	Ott. J. 1, 1223. Tschermak. J. 10,
"		2.85	695. Senft. J. 14, 1027.
Hydrodolomite			na's Min.
			Hermann. J. P. C. 47, 13.
Bromlite	Ca Ba (C O ₃) ₂	3.718 3.76, 15°.5	Thomson. Johnston. P. M. (3), 6, 1.
Barytocalcite	"	8.66	Children. Ann. Phil. (2), 8, 114.
Manganocalcite	Ca Mn ₂ (C O ₃) ₃	3.037	Breithaupt. P. A. 69, 429.
Pistomesite		3.412 }	Breithaupt. P. A. 70, 146.
Mesitite	$Mg_2 \text{ Fe } (C O_3)_3$	3.349 }	Breithaupt. P. A. 11, 170.

••

Formuta.	SP. GRAVITY.	AUTHORITY.		
Ca Mg Fe) (C O _{3/2} .	3.01	Luboldt. Dana's		
••	3.008	Ettling. Dana's Min.		
	1 .	Boricky, J. 22,		
$X^{*}_{i} \times \mathcal{C}_{i} \subset \mathcal{O}_{\mathbf{S}^{*}_{i}} (\mathbf{O} \mathbf{H})_{\mathbf{x}}.$	2.40	Harrington. Dana's Min., 2d App.		

3d. Basio Carbonates.

V v W to	FORMULA.	Sp. Gravity.	AUTHORITY.	
, , , ne	Mg ₄ (C O ₃) ₃ (O H) ₂ . 3 H ₂ O. Mg ₃ C O ₄ . 3 H ₂ O.	2.145	Smith and Brush. J. 6, 851.	
•	Zn ₃ (C O ₃) (O H) ₄		Petersen and Voit.	
	Ni ₃ (CO ₃) (OH) ₄ .4H ₂ O Cu ₂ (C O ₃) (O H) ₂	2.57)	B. Silliman, Jr. J.	
No. of No. West	Cu ₂ (C O ₃) (O H) ₂	3.715	Breithaupt. Schw. J. 68, 291.	
			Breithaupt. J. P. C.	
\iin	Cu ₂ (C O ₃) ₂ (O H) ₂ Bi ₂ C O ₅	4.06	Smith. J. 8, 975.	
	B: GO	3.5—3.831	Dana's Mineralogy.	
			MA 117	
14			Wells. A. J. S. (3), 34, 271.	
Mainutito	Bi ₂ H ₂ C O ₆	6.86	Louis. J. C. S. 54, 33.	

XL. SILICATES.*

1st. Silicates Containing But One Metal.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium metasilicate Phenakite		2.966	Kokscharow. J. 10, 664. Hillebrand. Bull.
"		2.95	20, U. S. G. S. Hatch. N. J. 1888, 171.
Bertrandite	Gl ₄ H ₂ Si ₂ O ₉	2.593	Bertrand. B. S. M. 8, 96.
"		2.586	Damour. B. S. M. 6, 252.
	"	2.55	Scharizer. Z. K. M. 14, 41.
Enstatite	Mg Si O ₃	8.19	Damour. Dana's
"	"	3.158	Kenngott. J. 8, 928. Bröggerand v. Rath.
" Artificial	"	8.11	Heutefeuille. J. 17, 212.
Forsterite	Mg ₂ Si O ₄	3.243	Rammelsberg. J. 18, 757.
Boltonite		3.008	Silliman, Jr. J. 2, 742.
" " <u>· · · · · · · · · · · · · · · · · ·</u>	"	$\left\{ egin{array}{ll} 3.208 \\ 3.328 \end{array} ight\}$	Smith. J. 7, 821.
" " Tale	Mg ₃ H ₂ Si ₄ O ₁₂	2.48—2.80 2.682	Scheerer. J. 4, 793. Senft. Z. G. S. 14, 167.
Serpentine	Mg ₃ H ₄ Si ₂ O ₉	2.557	Rammelsberg. J. 1, 1195.
"	"	2.57	Delesse. J. 1, 1195. Hermann. J. 2, 764.
11	"	2.564—2.593 2.597—2.622	Gilm. J. 10, 678. Hunt. J. 11, 715.

^{*} For sp. gr. of silicates before and after fusion see v. Kobell, Bei. 6, 314.

Note.—As regards the natural silicates this table is far from complete. Only those compounds are included which admit of fairly definite chemical formulation, and only a few typical determinations of specific gravity are given in each case. Furthermore, the arrangement is absolutely chemical, and is in no sense dependent upon mineralogical considerations. Thus, for example, all the magnesium silicates are brought together; and so also are the numerous double silicates of aluminum and calcium, quite regardless of their classification as mineral species. Many micas, chlorites, scapolites, etc., are omitted altogether; but the omissions are not serious, for all the important data have been many times collected in the larger treatises on mineralogy, and are, therefore, easily accessible.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Willemite	Zn, Si O,	4.18	Levy. B. J. 25, 351.
.,		4.02	Hermann. J. 2, 743.
		4.11	Mixter. J. 21, 1006.
" Artificial		4.16 /	Gorgeu. B. S. C. 47,
Calamine	Zn ₂ Si O ₄ . H ₂ O	3. 4 35	146. Hermann. J. P. C.
		1	33, 98.
		3.43-3.49	Monheim. J. 1, 1187.
.6	.,,	3.42	Schnabel. J. 11,710 Wieser. J. 24, 1156
44	"	3.338, 21°	McIrby. J. 26, 1175
Wollastonite	Ca Si O,		Seibert. See Bött-
		ĺ	ger.
			v. Rath. J. 24, 1145.
" Artificial	"	2.799	Piquet. J. 25, 1104,
Altineiai			Bourgeois. Ann. (5), 29, 441.
	"	2.88	Gorgeu. Ann. (6), 4, 515.
Xonaltite		1	Rammelsberg. J. 19, 982.
Okenite	Ca Si ₂ O ₅ . 2 H ₂ O	2.324	Schmidt. J. 18, 889
14		2.28	Kobell. Dana's Min
Rhodonite		2.362	
Knodonice	JEH OI O3==========	3.63	Hermann. J. 2, 738 Igelström. J. 4, 768
		3.65	Fino. J. 36, 1891.
" Artifleiel		3.68	Gorgeu. Ann. (6), 4
Hydrorhodonite	Mn Si O. H. O	2.70	Engström.
Penwithite	Mn Si O ₃ . H ₂ O Mn Si O ₃ . 2 H ₂ O	2.49	Collins. Z. K. M
Tephroite	Mn, Si O,	4.1	5, 623. Brush. J. 17, 837.
· "	1 7,	4.0	Mixter. S. 21, 1006
" Artificial	"	4.34	920.
" "	**	4.08	Gorgeu. Ann. (6) 4, 515.
Friedelite	Mn4 H4 Si3 O12	3.07	Bertrand. C. R. 82
Grunerite	Fe Si O ₃	3.713	1167. Gruner. C. R. 24
Favalite	Fe, Si O,	4.138	794. Gmelin. B.J.21,200
**		. 4.006	Delesse. J. 7, 821.
" Artificial	**	4.4	Gorgeu. Ann. (6) 4, 515.
Chrysocolla	Cu Si O, 2 H, O	2.0—2.238	Dana's Mineralogy
Dioptase	Cu H ₂ Si O ₄	. 3.814)	Kenngott. J. 3, 732
Kyanite	Al, 0, Si 0,	3.348 / 3.48	Igelström. J.7.819
Nyanite	11	3.661	Erdmann. B.J.24
"	"	3.678	311. Jacobson. P. A. 68 416.
Andalusite	Al. (Si O.). (Al O).	8.070	
11	Al ₂ (Si O ₄) ₃ (Al O) ₃	8.154	Erdmann. B. J. 24

			<u> </u>
Name.	Formula.	Sp. GRAVITY.	AUTHORITY.
Andalusite	Al ₃ (Si O ₄) ₃ (Al O) ₃ -	8.152	Kersten. J. P. C. 37, 163.
"	"	3.160	Damour. Ann. d. Mines (5), 4, 58.
	"	8.07—8.12	Schmid. P. A. 97,
Fibrolite	«	3.18—8.21 3.239	Damour. J. 18, 881.
"			Erdmann. B.J.24, 311.
"		3.238	Dana. Dana's Min. Brush. ""
Dumortierite	Al ₂ (Si O ₄) ₈ (Al O) ₆	3.36	Damour. Z. K. M. 6, 289.
Xenolite	Al ₄ (Si O ₄) ₃	3.58	Nordenskiöld. P. A. 56, 648.
Kaolinite	Al, O H (Si O4), H,	2.6 2.4—2.63	Clark. J. 4, 786.
"	"	2.611	Hillebrand. Bull. 20,
Pyrophyllite	Al H (Si O ₈) ₂	2.78-2.79	U. S. G. S. Sjögren. J. 2, 757. Brush. J. 11, 707.
"	"	2.81	Brush. J. 11, 707. Genth. Z. K. M. 4,
"	"	2.82	384. Tyson and Allen. J. 15, 745.
Allophane	Al ₂ Si O ₅ . 6 H ₂ O	2.812 2.02	Genth. J. 36, 1903.
"	11, 11, 10, 10 II.		Dana's Mineralogy.
SzaboiteNontronite. Chloropal	Fe'''_2 (Si O_3) ₃ . 5 H ₂ O	3.505 1.727—1.870	Koch. Z.K.M.3,308. Dana's Mineralogy.
		2.105	Thomson. Dana's Min.
Zircon	Zr Si O ₄	4.047	Damour. J. 1, 1171.
"	"	4.595 4.602 γ	Wetherill. J. 6,796.
44	"	4.625 }	Hunt. J. 4, 768.
"	"	4.395 before)
"	"	4.515 ∫ heating. 4.438) after	Church. J.17,834.
11	"	4.438 after 4.863 heating	
44	"	4.709, 21°	Cross and Hille- brand. J. 36,1839.
Cerium orthosilicate	Ce_4 (Si O_4) ₃	4.9	Didier. C. R.19, 882.
Thorium metasilicate		5.56, 25°	Troost and Ouvrard. C. R. 105, 255.
Thorium orthosilicate	Th Si O	6.82, 16°	# # # # # # # # # # # # # # # # # # #
Thorite. (Orangite)		5.897	Bergemann. P. A. 82, 562.
"		5.84	Krantz. P. A. 82, 586.
" " ′	"	5.19	Damour. Ann. d. Mines (5), 1, 587.
"	"	4.888—5.205	Chydenius. P. A. 119, 43.
" (Ordinary)		4.344-4.397	110, 101
Eulytite	Bi ₄ (Si O ₄) ₈	5.912—6.006	Dana's Mineralogy.
		6.106, 17°	v. Rath. J. 22, 1209.
		!	

2d. Silicates Containing More Than One Metal.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Pectolite	H Na Ca ₂ (Si O ₃) ₃	2.784 2.778—2.881	Scott. J. 5, 866. Heddle and Greg. J.
"	:	2.873	8, 952. Clarke. Bull. 9, U. S. G. S.
Malacolite	Ca Mg (Si O ₃) ₂	3.37	Bonsdorff. Dana's Min.
"	"	8.285	Haushofer. J. 20, 984.
"	"	3.192	
Tremolite		1	Hunt. Dana's Min. Rammelsberg. J. 11, 694.
"		2.99	Michaelson. Dana's Min.
"	"	2.996, 22°	König. Z. K. M. 1, 50.
Hedenbergite	Ca Fe (Si O ₃) ₂	3.467, 25°	Wolff. J. P. C. 84, 236.
"	٠		Doelter. Z. K. M. 4, 90.
Monticellite	_ ,		Rammelsberg. J. 13, 758.
Knebelite	Fe Mn Si O4	3.05 8.714, 18°.5	Freda. J. 36, 1876. Doebereiner. Schw. J. 21, 49.
"		4.122	Erdmann. Dana's
Kentrolite	Mn''' ₂ Pb ₂ Si ₂ O ₉	6.19	v. Rath. Z. K. M, 5, 35.
Melanotekite			Lindström. Z. K. M. 6, 515.
Hyalotekite Petalite	Ca Ba Ph Si ₆ O ₁₅ ? Al Li (Si ₂ O ₅) ₂	3.81 2.447—2.455	Nordenskiöld. Rammelsberg. J. 5, 858.
"		2.412—2.553	
" (Castorite)		2.382—2.401	Breithaupt. P. A. 69, 438.
Spodumene	Al Li (Si O ₈) ₂	3.170 3.1327—3.137_	Mohs. See Böttger. Rammelsberg. J. 5, 857.
и	"	3.16	Pisani. Z. K. M. 2, 109.
" Hiddenite	"	3.177	Genth. Z. K. M. 6, 522.
Eucryptite	11	2.667	Brush and Dana. A. J. S. (3), 20, 266.
Aluminum lithium silicate		2.40, 12°	Hautefeuille. C. R. 90, 541.
Albite	Al Li Si, O, Al Na Si, O,	2.41, 11° 2.612	Eggertz. Dana's Min.

Y	D	g_	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
A lbite	Al Na Si ₃ O ₈	2.609, 12°	Streng. J. 24, 1151.
"	"	2.59	Leeds. J. 26, 1166.
"		2.604	
			Baerwald. J. 86, 1897.
"		2.601	14, 112.
" Artificial		2.61	Hautefeuille. Z. K.
Jadeite	Al Na (Si O ₃) ₂	8.26-8.86	Damour. B. S. M. 4, 157.
"	"	8.83	Damour. Z. K. M. 6, 290.
"	"		Unpub-
	,	8.826—8.855	Dallock.
11	"	3.26—3.34 3.35	Hawes. 3 II C
		0.00	Taylor. National Museum.
Nephelite	Al ₈ Na ₈ Si ₉ O ₃₄	2.56—2.617	Scheerer. P. A. 49, 859.
"	"	2.629	Kimball. J. 18, 762.
"	"	2.600-2.6087	Rammelsberg. Z. G. S. 29, 78.
"	"	2.60—2.63	Lorenzen. J. 86, 1884.
Analcite	Al Na H, Si, O,	2.262-2.288	Waltershausen. J.
"	"	2.236	Waltershausen. J. 6, 820.
"	"	2.278	Thomson. Dana's
	"	2.222	
Endnophite	**	2.27	Weibye. J. 3, 735.
Endnophite	Al ₃ Na H ₂ (Si O ₄) ₃	2.779	Schafhäutl. Dana's
" Pregrattite		2.895	Oellacher. Dana's
" Cossaite		2.890—2.896	
Hydronephelite	Al ₃ Na ₂ H (Si O ₄) ₃ .	2.263	Min., 2d App. Diller. A. J. S. (3),
Natrolite	$Al_2 Na_2 H_4 (Si O_4)_{8}$	2.207, 110	31, 267. Gmelin. J. 3, 738.
"	"	2.254—2.258 2.249	Kenngott. J. 6, 820. Brush. A. J. S. (2),
Orthoclase	Al K Si ₃ O ₈	2.5702	
6	"	2.573	Böttger. Rammelsberg. J. 20,
"		2.576—2.586	988. v. Rath. J. 24, 1150.
"	"	2.572—2.595	Genth. J. 36, 1896. Hautefeuille. Z. K.
" Artificial		2.55, 16°	M. 2, 514.
Leucite	Al K (Si O ₈) ₂	2.519	Bischof. Dana's Min.
ł	1	· ·	

Name.	Formula.	Sp. Gravity.	AUTHOBITY.
Leucite			852.
"	"	2.479, 23° 2.47, 13°	v. Rath. J. 27, 1255.
" Artificial		2.47, 130	Hautefeuille. Z. K. M. 5, 411.
Muscovite	Al, K H, (Si O4),	2.817	Kussin. Dana's Min.
Muscovite		2.714—2.796	Grailich. Dana's Min.
"	"	2.830—2.831	
"	"	2.855	Scharizer. Z. K. M.
Pollucite	Al ₂ Cs ₂ H ₂ (Si O ₃) ₅	2.868—2.892	12, 15. Breithaupt. P. A. 69, 439.
"		2.901	Pisani. 3. 17, 850.
"		2.893	Rammelsberg. Z. K.
Grossularite	Al ₂ Ca ₃ (Si O ₄) ₃	8.522-8.536	Hunt. Dana's Min.
"	"	8.609 3.572	
			1880.
Anorthite	Al ₂ Ca (Si O ₄) ₂	2.763	Rose. See Böttger.
	"	2.73	
"		2.7325	Potyka. J. 12, 785. Silliman. Dana's
			Min.
"		2.686	v. Rath. J. 27, 1255
Idocrase	Al ₄ Ca ₈ (Si O ₄), ?	8.8128-8.8905	
"	"	8.384	ger. Rammelsberg. J. 2, 745.
"	"	3.44	Damour. J. 24, 1153.
44	"	3.2533	Korn. J. 36, 1874.
"	"	3.403-8.472	Jannasch. J. 36,
Melilite	Al, Ca, Si, O19	2.9-3.104	Dana's Mineralogy.
"		2.95	Damour. Ann. (3),
Meionite*	Al ₆ Ca ₄ Si ₆ O ₂₅	2.734—2.737	v. Rath. P. A. 90, 87.
"		2.716, 16°	Neminar. J. 28,
Gehlenite	Al ₂ Ca ₃ Si ₂ O ₁₀	2.9—3.067	Dana's Mineralogy. Janovsky. J. 26,
	1	ŀ	1170.
Prelinite	Al ₂ Ca ₂ H ₂ (Si O ₄) ₃	2.926	Mohs. See Bötiger.
	l	l	314.
Heulandite		3.042	Genth. J. 36,1185.
Heulandite	Al ₂ Ca H ₁₀ Si ₆ O ₂₁	2.195	Thomson. Lana's
"	٠٠	2.1963	Jeremejew. Z.K. M. 2, 503.
Stilbite	Al ₂ Ca H ₁₂ Si ₆ O ₂₂	2.203	Münster. P. A. 65, 297.
	1	1	201.

^{*}For other data relative to the scapolite group see Dana's Mineralogy and also Tschermak's memoir in M. C. 4, 884.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Stilbite	Al ₂ Ca H ₁₂ Si ₆ O ₂₂		na's Min.
_ "		2.16	Schmid. J. 24, 1158.
Laumontite	1		Breithaupt. See Böttger.
"			Mallet. Dana's Min.
((A) C: T C: O	2.280—2.310	Gericke. J. 9, 861.
Scolezite	4	!	Waltershausen. J. 6, 819.
"	ĵ	2.28	Collier. Dana's Min.
"		2.27	Lüdecke. Z. K. M. 6, 312.
Chabazite	Al ₂ Ca H ₁₂ Si ₄ O ₁₈	2.094	Breithaupt. See Böttger
"	. "	2.08-2.19	Dana's Mineralogy.
"	"	2.133)	Streng. Z. K. M.
"		2.115}	1, 519.
Zoisite			Rammelsberg. J. 9, 849.
"	"	3.226—3.381	Breithaupt. Dana's Min.
Margarite	Al ₄ Ca H ₂ Si ₂ O ₁₂	2.99	Hermann. J. P. C. 53, 16.
Oligoclase	Al ₅ Ca Na ₃ Si ₁₁ O ₃₂	2.66-2.68	Kerndt. J. 1. 1182.
"	" " " —	2.725	v. Rath. J. 11, 706. Petersen. J. 25.
"	"	2.643—2.689	Petersen. J. 25. 1112.
Andesite	Al ₃ Ca Na Si ₅ O ₁₆	2.651-2.736	Delesse. J. 1, 1183.
	"	2 667 2 674	Hunt. J. 14, 995.
Labradorite	Al ₇ Ca ₃ Na Si ₉ O ₃₂	2.719—2.883	Delesse. J. 1, 1183.
44		2.709 2.697	Damour. J. 3, 723. Hunt. J. 4, 782.
"	"	2.72-2.77,15°.5	Streng. J. 15, 736.
Faujasite	Al ₄ CaNa ₂ H ₄ (SiO ₃) ₁₀ .	1.923	Damour. Ann. d.
•	18 H ()		Mines (4), 1, 395.
Thomsonite	2 Al ₂ (Ca Na ₂) Si ₂ O ₈ . 5 H ₂ O.	2.35—2.38	Zippe. Dana's Min.
"	"	2.357	Rammelsberg. J. P. C. 59, 348.
" Lintonite		2.32—2.37	Peckham and Hall. A. J. S. (3), 19,122.
Gmelinite	Al ₂ (CaNa ₂)H ₁₂ Si ₄ O ₁₂	2.07	Damour. J. 12, 796.
"	**	2.099-2.169	Dana's Mineralogy.
"	"	2.100	Liversidge. J. 36, 1895.
Milarite	1	2.5529	Ludwig. Z. K. M. 2, 631.
Phillipsite	$\mathbf{Al_2}\left(\mathbf{Ca}\mathbf{K_2}\right)\mathbf{H_8}\mathbf{Si_4}\mathbf{O_{16}}$	2.201	Waltershausen. Da- na's Min.
"	"	2.213	Marignac. B. J. 26, 351.
"		2.150, 21° }	W. Fresenius. Z. K.
Strontium oligoclase	Al ₅ Sr Na ₃ Si ₁₁ O ₃₂	2.619	M. 8, 42. Fouqué and Lévy.
Strontium lubradorita	Al Sr No Si O	9 969	C. R. 90, 622.
Strontium labradorite	$Al_2 \operatorname{Sr} (\operatorname{Si} O_4)_2$	3.043	"

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Barium oligoclase	Al ₅ Ba Na ₃ Si ₁₁ O ₂₂	2.906	Fouqué and Lévy. C. R. 90, 622.
Barium labradorite	Al, Ba, Na Si, O,	8.833	" "
Barium anorthite	Al, Ba (Si O ₄),	3.578	" "
Harmotome	Al, Ba (Si O ₄), Al, Ba H ₁₀ Si ₅ O ₁₉	2.392	Mohs. See Böttger.
"		2.44—2.45	Dana's Mineralogy.
		2.447	Damour. Dana's Min.
"	"	2.402, 21°	W. Fresenius. Z. K. M. 3, 42.
Lead oligoclase	Al ₅ Pb Na ₈ Si ₁₁ O ₃₂	8.196	Fouqué and Lévy. C. R. 90, 622.
Lead labradorite	Al, Pb, Na Si, Ozz	3.609	" "
Lead anorthite	Al, Pb (Si O ₄),	4.093	"
Euclase	Al Gl H Si O ₅	3.036	Mallet. J. 6, 800.
"	"	3.097	Des Cloizeaux. Da-
и	"	3.096—3.103	
"	"	3.087	na's Min. Guyot. Z. K. M. 5, 250.
Beryl	Al GL (Si O), or	2.813	Mallet. J. 7, 828.
"	Al ₂ Gl ₃ (Si O ₃) ₆ , or Al ₄ Gl ₅ H ₂ Si ₁₁ O ₃₄	2.686	Haughton. J. 15, 720.
"		2.650	Petersen. J. 19, 925.
"	"	2.706	Penfield and Har-
			per. A. J. S. (3), 32, 111.
"	"	2.681—2.725	Kokscharow. Dana's Min.
" Emerald	"	2.614	Boussingault. J. 22, 1216.
	"	2.710—2.759	Kammerer. Dana's Min.
Iolite	i	ì	Kokscharow. J. 18, 767.
"	"	2.6699, 16°	Schachtel. Z. K. M. 7, 594.
"	"	2.6708, 18°	Jost. Z. K. M. 7, 594.
Ripidolite	$Al_2 Mg_5 Si_3 O_{14}. 4H_2 O$	2.774	Rose. Dana's Min.
		2.003	Hermann. Dana's Min.
"	"	2.678	
"	"	2.714	Blake. Dana's Min.
Arctolite	Al, Mg Ca H, (Si O.).	8.03	Blomstrand.
Manganese garnet. Artificial.			Gorgeu. C. R. 97, 1308.
Karpholite	Al, Mn H, Si, O,	2.935	Breithaupt. Dana's
	"	2.876	Min. Koninck. Z. K. M. 4, 222.
Almandite	Al ₂ Fe'' ₃ (Si O ₄) ₃	3.90—4.236	Wachtmeister. Da- na's Min.
"	"	4.196	Mallet. Dana's Min.
"		4.197	Websky. J. 21, 1013.
"	. "	4.127	Heddle. J. 36, 1881.

		, 	
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Partschinite	Al ₂ Fe" Mn ₂ (Si O ₄) ₈ Al ₂ Fe" H ₂ Si ₈ O ₁₁	4.006	Haidinger. J.7,826. Damour. Z. K. M.
Chloritoid	Al ₂ Fe" H ₂ Si O ₇	3.52	4, 413. Smith. J. 3, 741. Hunt. J. 14, 1011.
"	"	8.513	Hunt. J. 14, 1011. Tschermak and Sipöcz. Z. K. M. 3, 508.
Ouverovite	Cr ₂ Ca ₃ (Si O ₄) ₃	3.5145	Erdmann. B. J. 28, 291.
"		3.41-3.52	Dana's Mineralogy.
Acmite			Breithaupt. See Böttger.
"		3.530	Rammelsberg. J. 11, 695.
**			Doelter. Z. K.M. 4, 92.
Andradite	Fe''', Ca, (Si O ₄),	3.85 3.796— 8 .798	Damour. J. 9, 848. Kokscharow. J. 12, 782.
	"	3.797	Fellenberg. J. 20, 984.
	"	3.740	Dana. Z. K. M. 2, 311.
" Demantoid	"	3.828	Rammelsberg. Z. K. M. 3, 103.
		3.81, 15°	Cossa. Z. K. M. 5,
Crocidolite	Fe''' ₂ Fe'' ₈ Nn ₂ H ₄ (Si O ₈) ₉ .	3.200	Stromeyer and Hausmann. P. A. 23, 153.
		3.2	Chester. A. J. S.
Lievrite	Fe''' Fe''_2 Ca H Si_2 O_9 .	3.711	(3), 34, 108. Tobler. J. 9, 851.
"	"	4.023	
		4.05	Lorenzen. J. 36, 1879.
Thuringite. (Owenite)	Fe''' ₄ Fe'' ₄ Si ₃ O ₁₆ . 5 H ₂ O.	3.197, 20°	Genth. A. J. S. (2), 16, 167.
"	"	3.191	
"	"	3.177	Zepharovich. Z. K. M. 1, 371.
Sphene	Ca Ti Si O ₅	3.49—3.51 3.44	Hunt. J. 6, 837. Fuchs. Dana's Min.
		3.535	Rose. " "
" Greenovite	"	3.547	Hintze. Z. K. M.
" Artificial	"	3.45	2, 310. Hautefeuille. J. 17,
Guarinite		3.487	216. Guiscardi. J. 11, 718.
Zirconium potassium sili- cate.	·		Mellis. Göttingen Doct. Diss., 1870.
Zirconium sodium silicate	Zr ₈ Na ₂ Si O ₁₉ . 11 H ₂ O Ca Sn Si O ₅	3.53	" "
Calcium tin silicate	Ca Sn Si U ₅	4.84	Bourgeois. C. R. 104, 283.
'	:		

3d. Boro-, Fluo-, and Other Mixed Silicates.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Danburite	Ca B ₂ Si ₂ O ₈	2.986)	Brush and Dana. Z.
"	"	8.021 }	K. M. 5, 185.
"	"	2.986 }	Bodewig. Z. K. M.
	"	2.988	7, 297.
Datolite	Ca H B Si O ₅		Mohs. See Böttger.
"		2.9911	Breithaupt. See Böttger.
"	"	2.983 2.987—3.014	Whitney. J. 12,801. Tschermak. J. 13, 778.
	"	2.988	Smith. J. 27, 1270.
Homilite	Ca ₂ Fe B ₂ Si ₂ O ₁₀	3.28	Paikull. Z. K. M.
TI a milita	C. H. P. S. O.	9.50	1, 385.
Howlite	Cu ₂ H ₅ B ₆ St O ₁₄	2.09	Penfield and Sperry. A. J. S. (3), 34, 221.
Axinite	Al ₃ (Ca Fe Mn) ₄ H ₂ B Si ₅ O _m	3.271	Mohs. See Böttger.
Tourmaline. Colorless	Al B O ₂ (Si O ₄) ₂ R' ₆ -	3.078.085	Riggs. A. J. S. (3), 85, 85.
" Red		2.9983.082	Rammelsberg. J. 3, 744.
" " ————	. "	2.997—3.028	Riggs. A. J. S. (3), 35, 85.
" Green	"	8.069—3.112	Rammelsberg. J. 3,
" Brown	"	3.035-3.068	
" Black		3.205-3.243	
" "		3.08-3.20	Riggs. A. J. S. (3), 35, 35.
Apophyllite	Ca ₄ K H ₈ (Si O ₃) ₈ F. 4 H ₂ O	2.335	
"	"	2.305	Jackson. J. 8, 733.
"		2.37	Smith. J. 7, 838.
Leucophane	Gl ₄ Ca ₄ Na ₈ Si ₇ O ₂₂ F ₃	2.964	Rammelsberg. J. 9, 867.
	"	2.974	Erdmann. B. J. 21, 168.
Melinophane	Gla Caa Na, Si O, F,	3.00	Scheerer. J. 5, 883.
"		3.018	Rammelsberg. J. 9, 867.
Topaz	Al ₂ Si O ₄ F ₂	8.439—3.547	Breithnupt. See Böttger.
"	. "	8.52-3.56	
"		3.514—3.563	
a	. "	3.533—8.597	Church. Gool. Mag.
"		8.578, 220	(2), 2, 820. Hillebrand Buli,
Lepidolite	Al ₂ K Li Si ₂ O ₉ F ₂ -	2.834—2.8546	20, U. S. G. S. Berwerth. Z. K. M. 2, 523.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lepidolite			
Phlogopite	Al ₂ Mg ₅ HKSi ₅ O ₁₈ F ₂	2.78—2.85 2.81	Dana's Mineralogy. Kenngott. J. 15,
"	٤،	2.959, 16°	742. Berwerth. Z. K. M. 2, 521.
"		2.742—2.867	Tschermak. Z. K. M. 3, 127.
Calcium chlorosilicate			Le Chatelier. C. R. 97, 1510.
Sodulite	Al ₄ Na ₅ (Si O ₄) ₄ Cl	2.401 2.81	v.Rath. Dana's Min. Lorenzen. J. 36, 1884.
"		2.8405, 21°	Bamberger. Z. K. M. 5, 584.
" Marialite	11 Al ₃ Nu ₄ Si ₉ O ₂₄ Cl	2.294—2.314 2.626, 19°	Kimball, J. 18, 775.
Pyrosmalite	${ m Mn_5Fe''_5H_{14}(SiO_4)_8}\atop { m Cl_2}.$	3.168—3.174	
"	"	3.081	
Helvite	+		Lewis. Z. K. M. 7, 425.
"			Kokscharow. J. 22,
Dunalite		!	Cooke. A. J. S. (2), 42, 78.
Nosean	Al ₄ Na ₆ (Si O ₄) ₄ S O ₄ -	2.25—2.4 2.279—2.399	Dana's Mineralogy. v. Rath. Z. G. S. 16, 86.
Complex silicate and sulphide.			Rammelsberg, J. P. C. (2), 35, 98
Thaumasite	14 H., O.		Lindström. J. 33, 1484.
Calcium silicophosphate	Ca ₅ Si O ₄ (P O ₄) ₂	3.042	Carnot and Richard. B. S. M. 6, 241.

XLI. TITANATES AND STANNATES.

	Name.		Formula.	Sp. Gravity	Authority.
Calcium		Artifi-	Ca Ti O ₃	4.10	Ebelmen.
"	"	"	"	4.00	Hautefeuille. J. 17, 217.
"	"	Perof- skite.		4.017	Rose. B. J. 20, 210.
64	"	"	"	4.088	Damour. J. 8, 960.
"	"	"	"	3.974, 20°	Brun. Z. K. M. 7, 389.
Strontium	n titanate	9	Sr ₂ Ti ₃ O ₈	5.1	Bourgeois. C. R. 103, 141.

NAME.	Formula.	Sp. Gravity.	Authority.
Barium titanate			103, 141,
Magnesium titanate	Mg Ti O ₃	8.91	Hautefeuille. J. 17,
Mugnesium orthotitanate_ Ilmenite	Mg ₂ Ti O ₄ Fe Ti O ₃	3.52 4.727	217. " " " " Marignac. B. J. 26, 372.
Iron orthotitanate	Fe ₂ Ti O ₄	4.37	Hautefeuille. J. 17,
Zinc titanate	,		217. Levy. C. R. 105, 380.
Potassium stannate	K ₂ Sn O ₃ . 3 H ₂ O	3.197	Ordway. J. 18, 240.

XLII. CYANOGEN COMPOUNDS.*

1st. General Division.

Name.	Formula.	Sp. Gravity.	Authority.
Cyanogen. Liquefled Hydrocyanic acid	C ₂ N ₂	.866, 17°.2	Faraday. P.T. 1845, 155. Gay Lussac. Ann. 95, 136. Trautwein. Cooper. P. A. 47, 527. Troost and Hautefeuille. J. 21, 314. Troost and Hautefeuille. J. 22, 99. Schröder. Ber. 13, 1070. Troost and Hautefeuille. J. 22, 99. Clasen. Porrett. P.T. 1814, 548. Meitzendorff. P. A. 56, 63. Serullas. Ann. (2),
Cyanogen iodide	C N I	1.85	88, 370. Weltzien's "Zu- sammenstellung."

^{*}Exclusive of organic cyanides, or compounds containing organic radicles.

2d. Cyanides, Cyanates, and Sulphocyanides.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium cyanide Silver cyanide Mercury cyanide	K C NAg C N	1.52, 12° 3.943, 11° 3.77, 13°	Bödeker. B. D. Z. Giesecke. " Bödeker. "
" " "	"	4.0036, 14°.2	Clarke. A. J. S. (3), 16, 201.
" " ————	"		Creighton. F. W. C. Wittmann. "
66 66	"	3.990 } 4.011 }	Schröder. Ber. 18, 1070.
Mercury oxycyanide	Hg O. Hg (C N) ₂	$\left\{ \begin{array}{c} 4.419 \\ 4.428 \\ \end{array} \right\}$ 23°.2 $\left. \begin{array}{c} 23^{\circ}.2 \\ \end{array} \right\}$	Clarke. A. J. S. (3), 16, 201.
Mercury chlorocyanide		4.514, 26°	Creighton. F. W. C. Wittmann. "
Mercury potassium cya- nide. """"	K, Hg (C N),	2.4470, 21°.2 2.4551, 24°	Creighton. "
Potassium chromocyanide			Moissan. Ann. (6),
Potassium manganicya- nide.	K ₈ Mn (C N) ₆	1.821	4, 138. Topsoë. B. S. C. 19, 246.
Sodium ferrocyanide Potassium ferrocyanide	K. Fe (C N) 3 H. O	[1.83	Bunsen. Watts' Dictionary.
" " Thallium ferrocyanide	",	2.052 4.641	Schiff. J. 12, 41. Buignet. J. 14, 15. Lamy and Des Cloizeaux. Nature 1, 142.
Ammonium ferrocyanide with ammonium chloride.	$\begin{array}{cccc} \mathbf{Am_4} & \mathbf{Fe} & (\mathbf{C} & \mathbf{N})_{6}, \\ 2 & \mathbf{Am} & \mathbf{Cl.} & 3 & \mathbf{H_2} & \mathbf{O}. \end{array}$	1.490	Topsoë. C. C. 4, 76.
Potassium ferricyanide " " " " " " "	K ₃ Fe Cy ₆	1.845 1.849	Wallace. J. 7, 378. Schiff. J. 12, 41.
· · · ·	"	1.817 1.849, 15°.3 1.854, 15°.3	Buignet. J. 14, 15.
" "	"	1.855, 15° 1.861, 15°	Schröder. Dm. 1873.
Silver ammonio-ferricy- anide. "	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{ \begin{array}{c} 2.42 \\ 2.47 \\ 1.710 \end{array} \right\} \ 14^{\circ}.2$	Gintl. J. 22, 321.
anide. " Sodium nitroprusside	(NO) ₂ . 4 H ₂ O.	1.716 } 1.6869, 25°	Schröder. Dm. 1873. Dudley. F. W. C.
" "	در	$\begin{bmatrix} 1.713 \\ 1.731 \end{bmatrix}$	Schröder. Ber. 13, 1070.
Potassium nickel cyanide	• • • • • • • • • • • • • • • • • • • •	1.875, 11	Dudley. F. W. C.
Potassium cobalticyanide			Bödeker. B. D. Z. Topsoë. C. C. 4, 76.
Potassium platinocyanide Barium platinocyanide	BaPt (C N) ₄	2.5241, 13° } 3.054	Dudley. F. W. C. Schabus. J. 3, 360.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Samarium platinocyanide Thorium platinocyanide	Sm ₂ Pt ₃ (CN) ₁₂ , 18H ₂ O ThPt ₂ (CN) ₈ , 16H ₂ O	2.743 } 20°.8 _ 2.745 } 2.460	Cleve. U. N. A. 1885. Topsoë. B. S. C. 21, 118.
Potassium cyanate " " Silver cyanate " "	٠٠.	2.056, 4°	Schröder. Ber. 12,
Potassium sulphocyanide- "" "- Ammonium sulphocya- nide. " " Lead sulphocyanide Phosphorus sulphocyanide Potassium chromium sulphocyanide. " " Potassium platinsulphocyanide. " Potassium platinsulphocyanide. " Samarium nitrocyanide " " Samarium sulphocyanide with mercuric cyanide.	" Am C N S " " Pb (C N S)2 P (C N S)3 K ₆ Cr(CNS)12- 8H ₂ O K ₂ Pt (C N S)6 K ₂ Pt (C N Se)6 Ti (C N)2- 3 Ti ₃ N ₂	1.891	Schröder. 2215. Dudley. F. W. C. Schröder. Ber. 11, 2215. Schubus. J. 3, 362.

XLIII. MISCELLANEOUS INORGANIC COMPOUNDS.

Name.	FORMULA.	Sp. GRAVITY.	Authority.
Nitrogen chlorophosphide	P ₃ N ₃ Cl ₃	1.98	Gladstone and Holmes. J. 17, 148.
Mercury sulphide with copper chloride.			Raschig. A. C. P. 228, 27.
Mercury chloride with am- monium dichromate.	Hg Cl ₂ . Am ₂ Cr ₂ O ₇₋	3.1850, 18° 8.2336, 21°	Heighway. F. W. C.
		8.0824, 14°	Langenbeck. F. W.
Mercury cyanide with po- tassium chromate.	2 Hg Cy ₂ . K ₂ Cr O ₄ -	8.564, 21°.8	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium nitrato-sul- phate.		1	Jacquelain. A. C. P. 32, 284.
Potassium phosphato-sul- phate.	K ₂ S O ₄ . H ₃ P O ₄	2.296	"
Hanksite			Hidden. A. J. S. (8), 30, 135.
Phoegenite		1	Rammelsberg. P.
Leadhillite	Pb ₄ S O ₄ (C O ₃) ₃	6.550 6.526	Gadolin. J. 6, 846. Kokscharow. J. 6, 846.
Bastnäsite (Hamartite)	(Ce La Di) (CO ₃) F	4.98	Nordenskiöld. J. 22, 1246.
"		5.18—5.20	Allen and Comstock. A. J. S. (3), 19, 890.
Parisite	(Ce La Di) ₂ (C O ₃) ₄ . Ca F ₂ .	4.35	Bunsen. Dana's Min.
"	"	4.817	Dufrenoy. Dana's Min.

XLIV. ALLOYS.*

ALLOY.	Specific Gravity.	AUTHORITY.
SODIUM AND POTASSIUM.		
Na K	.8993 } 0°, solid }8905, 4°.5, fluid }	Hagen. P. A. (2), 19, 436.
ZINC AND CALCIUM.†		•
Zn ₁₂ Cu	6.369 6.3726 }	v. Rath. Z. C. 12, 665.
ALLOYS OF MERCURY. AMALGAMS.		
Hg Zn Hg ₅ Cd ₂	11.304 12.615 11.93 12.284, 15°.7	Calvert and Johnson. J. 12, 120. Croockewitt. J. 1, 393. Matthiessen. P. T. 1860, 177.
Hg Pb, Hg ₃ Pb, Hg ₂ Pb	11.979, 15°.9 12.49, 17° 12.815, 15°.5 11.3816 11.456, 11°.3	Bauer. J. 24, 317. Matthiessen. P. T. 1660, 177. Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.

^{*}This table contains only a moderate number of the many determinations which have been made relative to the specific gravity of alloys. Only those alloys have been admitted which allow of relatively simple chemical formulæ. Some of them are doubtless true chemical compounds, but in most cases the formulæ merely represent proportionate composition.

† See also Norton and Twitchell, A. C. J. 10, 70.

¹⁰ s G

ALLOY.	Specific Gravity.	AUTHORITY.
ALLOYS OF MERCURY. AMALGAMS—continued.		
Hg Sn	10.3447	Kupffer. Ann. (2), 40, 285.
11	10.869, 14°.2	Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.
"	10.255	Calvert and Johnson. J. 12, 120
Hg Sn ₂	9.3185	Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.
"	9.362, 9°.9	Holzmann. P. T. 1860, 177.
	9.314	Calvert and Johnson. J. 12, 120
Hg Sn ₃	8.8218	Kupffer. Ann. (2), 40, 285.
Wa Sn	8.510	Calvert and Johnson. J. 12, 120
Hg Sn ₄ Hg Sn ₅	8.312	44 44
Hg Sn ₆	8.151	
Hg Bi	11.208	" "
Hg Bi,	10.693	" "
		Croockewitt. J. 1, 898.
Hg Bi ₃	10.474	Calvert and Johnson. J. 12, 120
Hg Bi ₄	10.850	"
Hg Bi ₆	10.240	
Hg ₅ Ag ₁₂ . Native	12.703, 17°	Weiss. J. 36, 1819.
Hg ₂ Au	15.412	Croockewitt. J. 1, 398.
ALLOYS OF ALUMINUM.		
Al Zn	4.532	Hirzel. J. 11, 188.
Ala Sn	3.583	" "
Al ₅ Sn	3.791	" "
Al4 Sn	4.025	
Al ₃ Sn	4.276	11 66
Al ₂ Sn		
Al Sn		" "
Al Sn ₂	6.264	1
Al Sn ₃	4.45—4.52	·1
Al ₃ Cb	7.02	
A1 ('*	4.9	
Al. W	5.58	
Als Mn	3.402	Michel. J. 13, 181.
Al Ni	. 3.647	Michel. J. 18, 182.
Al4 Cu		
Al ₆ Cu	. 3.206	. "
Als Cu	8.316	. it ii •
All Cu ₈	. 3.579 8.724	1 "
Al ₇ Cu ₂		
Al ₉ Cu ₄	4.148	
Al ₂ Cu	4.855	
Al Cu	5.731	44 44
Al Cu,		
Al Cu ₃	7.204	.] " "
Al Cu4	7.534	. "
Al Cu ₅	. 7.727	
Al Cu ₆	. 7.751	
Al, Cu ₁₈	7.884	
Al Ag	0.788	Hirzel. J. 11, 187.
	1.75. (444	

Arrow	Sprayer Chierry	T	Α	
ALLOY.	SPECIFIC GRAVITY	٠.	AU	THORITY.
TIN AND ZINC.				
Sn ₂ Zn			Croockewitt. J. 1, 394.	
Sn Zn	7.274			ohnson. J. 12, 120.
ti			Croockewitt. Calvert and J	J. 1, 594. Johnson. J. 12, 120
Sn Zn	7.096		Croockewitt.	
"	7.188			Johnson. J. 12, 120
Sn Zn _s	7.180		"	" 🛦
Sn Zn	7.155		"	" -
Sn Zn ₅			"	u
Sn Zn ₁₀	7.135		"	61
TIN AND CADMIUM.		i		
Sn ₆ Cd	7.434, 12°.7	1	Matthiesson.	P. T. 1860, 177.
Sn ₄ Cd	7.489, 15°		"	44
Sn. Cd	7.690, 12°.9		"	"
Sn Cd	7.904, 13°.2		66 66	66 66
Sn Cd ₂	8.139, 110.1		"	"
Sn Cd ₄	8.336, 14°.5 8.432, 15°		"	"
Sir Cu ₈	0.492, 10		-	••
TIN AND LEAD.				
Sn ₁₂ Pb	7.628, 19°.4)			
"	7.4849, 181°, s 7.8518, 212°, l			
"	7.8518, 212°, 1			
66	7.3209, 218°.7	_		
	7.3041, 249°.4 } 7.2726, 275°.3	۱	Vicentini and	
"	7.2490, 304°.2	1	178. Meiti	ng point, 181°.
"	7.2294, 329°			,
"	7.2088, 354°.8	ļ		
Sn ₆ Pb	7.9210	F	Kupffer. An	n. (2), 40, 285.
· · · · · · · · · · · · · · · · · · ·	7.927, 15°.2	I	Long. P. T.	1860, 177.
Sn ₅ Pb	8.0279			n. (2), 40, 285.
"	8.093		Calvert and J	ohnson. J. 12, 120.
, "	8.046		Riche. J. 15	
Sn ₄ Pb	8.1730	· K	Aupner. An	n. (2), 40, 285.
"	7.850 8.188, 16°	7	Thomson. J. Long. P. T.	1, 1040.
16	8.196	6	Column and L	ohnson. J. 12, 120.
"	8.2347	F	Pillichody.	T. 14. 279
"	8.195		Riche. J. 15.	. 111.
"	8.177, 16°.7)			
44	8.0735, 183°.8, s.			
	7.8393, 209°, 1			
44	7.8090, 240°.4 [T V	icentini and	Omodei. Bei. 12,
"	7.7917, 260°.4	'		ng point, 183°.3.
	7.7586, 295°.5	Ì		
"	7.7328, 824°.7			
	7.7032, 357°.6 J 8.291	10	Riche. J. 15,	111
Sn, Pb, Sn, Pb	8.3914			n (9) 40 985
"	8.549	A	homson I	n. (2), 40, 285. 1, 1040.
46	9.025		roockewitt.	J. 1. 394.
"	8.418			ohnson. J. 12, 120.

Alloy.	Specific Gravity.	AUTHORITY.
TIN AND LEAD—contin'd.		
Sn ₈ Pb	8.4087	Pillichody. J. 14, 279. Riche. J. 15, 111.
11	8.414	Riche. J. 15, 111.
"	8.400, 17° 8.2949, 182°.9, s.	
"	8.0821, 182°.9, 1.	
"	8.0755, 189°.7	
¥	8.0431, 222°.9 {	Vicentini and Omedei Pei 10
7	8.0150, 250° [Vicentini and Omodei. Bei. 12, 178. Melting point, 182°.9.
11	7.9896, 275°.9	110. Melang point, 102 .#.
	7.9695, 296°.8	
"	7.9446, 323°.9 7.9212, 349°.5	
Sn ₅ Pb ₂	8.565	Riche. J. 15, 111.
Sn ₂ Pb	8.7454	Kupffer. Ann. (2), 40, 285.
ñ	8.777, 13°.3	Regnault. P. A. 53, 67.
"	8.688	Regnault. P. A. 53, 67. Thomson. J. 1, 1040.
"		Long. P. T. 1860, 177.
16	8.774 8.7257	Calvert and Johnson. J. 12, 120.
"	8.766	Pillichody. J. 14, 279. Riche. J. 15, 111.
44		Miche. 9. 10, 111.
"		
"	8.4509, 182°.8, 1.	
**	8.4881, 189°	
"	8.4038, 207°	Vicentini and Omodei. Bei. 12,
"	8.3532, 242°.5 { } 8.3204, 272°.9 }	178. Melting point, 182°.8.
"		. ,
44	8.2688, 825°.5	
"	8.2448, 351°.5]	
Sn ₃ Pb ₂	9.0877	Pillichody. J. 14, 279.
_ '	9.046	Kiche. J. 15, 111,
Sn ₇ Pb ₆	9.2778, 15° 9.4268	Pohl. J. 8, 824.
Sn Pb	9.887, 13°.8	
"	9.288	Regnault. P. A. 53, 67. Thomson. J. 1, 1040.
46	9.394	Croockewitt. J. 1, 394.
"	9.460, 15°.5	Long. P. T. 1860, 177.
"	9.458	Calvert and Johnson. J. 12, 120.
"	9.4330	Pillichody. J. 14, 279.
"	9.451 9.422, 20°	Riche. J. 15, 111.
"	9.2809, 181°.8, s	
"	9.180, 181°.8, 1	
"	9.1848, 201°.6	
"	9.0953, 216°.7	
	9.0488, 288° \	Vicentini and Omodei. Bei. 12,
"	8.9864, 248°.8 }	178. Melting point, 181°.8.
"	8.9648, 262°.8 8.9276, 298°	, , , , , , , , , , , , , , , , , , , ,
"	8.8989, 817°	
"	8.8771, 887°	
"	8.8590, 856° J	
Sn ₃ Pb ₄	9.6899, 150	Pohl. J. 8, 828.
Sn ₂ Pb ₃	9.7971	Pillichody. J. 14, 279.
Sn Pb.	10.0782	Kupffer, Ann. (2), 40, 285.

;

ALLOY.	Specific Gravity.	AUTHORITY.
TIN AND LEAD—contin'd.		
Sn Pb,	9.966	Croockewitt. J. 1, 894.
"	10.080, 14°.8	Long. P. T. 1860, 177.
"	10.105	Calvert and Johnson. J. 12, 120
"	10.0520	Pillichody. J. 14, 279.
"	10.110	Riche. J. 15, 111.
Sn Pb	10.8868	Kupffer. Ann. (2), 40, 285.
"	10.421	Calvert and Johnson. J. 12, 120
"	10.3311	Pillichody. J. 14, 279.
"	10.419	Riche. J. 15, 111.
Sn Pb,	10.5551	Kunffer Ann (2) 40 285
"	10.590, 14°.3	Kupffer. Ann. (2), 40 285. Long. P. T. 1860, 177.
"	10.587	Culvert and Johnson I 19 190
	10.5957	,
		Pillichody. J. 14, 279.
n Pb ₅	10.751	Calvert and Johnson. J. 12, 120
Sn Pb	10.815, 15°.6	Long. P. T. 1860, 177.
LEAD AND CADMIUM.		
Cd Pb	9.160, 13°.7 9.353, 12°	Holzmann. P. T. 1860, 177.
Cd, Pb	9.353, 120	" "
d, Pb	9.755, 14°.7	
d Pb	10.246, 11°.7	
2d Pb ₂	10.656, 13°.4	61 61
74 1 D2	10.950, 9°.2	
Cd Pb ₄ Cd Pb ₆	11.044, 14°.8	" "
Ja PD ₆	11.044, 14 .0	
ANTIMONY AND TIN.		
Sb ₁₂ Sn	6.739, 16°.2	Long. P. T. 1860, 177.
1L " - U		20ng. 1. 1. 1000, 111.
OD ₈ OH	6.747, 13.°4	"————
8b, Sn	6.747, 13.°4 6.781, 13°.5	
8b, Sn	6.747, 13.°4 6.781, 13°.5	16 16 16 16 16
Sb ₄ Sn Sb ₂ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8	
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8	11 11 11 11 11 11 11 11 11 11 11 11 11
Sb ₄ Sn Bb ₂ Sn Bb Sn Bb Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8	
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6	11
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19°	11
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5	11
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4	11
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 10° 7.208, 18°.5 7.276, 19°.4 7.279, 20°	11
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4	11
	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.1023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 10° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₄ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn ₄ Sb Sn ₅ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₁₀ Sb Sn ₁₀ Sb Sn ₁₀₀ Sb Sn ₁₀₀ Sb Sn ₁₀₀ ANTIMONY AND LEAD. Sb ₆ Pb	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₂ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	"" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" Riche. J. 15, 111. "" "" Calvert and Johnson. J. 12, 120
Sb ₄ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₂₀	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2	"" "" "" "" "" "" "" "" "" "" "" "" "" "" Riche. J. 15, 111. "" Calvert and Johnson. J. 12, 120
Sb ₄ Sn Sb ₂ Sn Sb ₂ Sn Sb Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₅ Sb Sn ₅ Sb Sn ₂₀ Sb S	6.747, 13.°4 6.781, 13°,5 6.844, 13°,8 6.929, 15°,8 7.023, 15°,8 7.100, 10°,6 7.140, 10° 7.208, 18°,5 7.276, 19°,4 7.279, 20° 7.284, 20°,2 7.214 7.361 7.432 7.525 7.622 7.830	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₄ Sn	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.214 7.361 7.432 7.525 7.622 7.830 8.330	"" "" "" "" "" "" "" "" "" "" "" "" "" "" Riche. J. 15, 111. "" Calvert and Johnson. J. 12, 120
Sb ₄ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₂₀	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.214 7.361 7.432 7.525 7.622 7.830 8.330	"" Riche. J. 15, 111. Calvert and Johnson. J. 12, 120
Sb ₄ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₂₀	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.214 7.361 7.432 7.525 7.622 7.830 8.330	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₄ Sn Sb ₂ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₂₀ Sb S	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.432 7.432 7.525 7.622 7.830 8.330 8.201, 13°.7 8.233	"" Riche. J. 15, 111. Calvert and Johnson. J. 12, 120 "" Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.
Sb ₄ Sn Sb ₂ Sn Sb ₂ Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₁₀ Sb Sn ₂₀	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.1023, 15°.8 7.100, 10°.6 7.140, 19° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.361 7.432 7.525 7.622 7.830 8.30 8.201, 13°.7 8.233 8.953	"" "" "" "" "" "" "" "" "" "" "" "" ""
Sb ₄ Sn Sb ₂ Sn Sb ₃ Sn Sb Sn Sb Sn Sb Sn ₃ Sb Sn ₃ Sb Sn ₅ Sb Sn ₁₀ Sb Sn ₂₀	6.747, 13.°4 6.781, 13°.5 6.844, 13°.8 6.929, 15°.8 7.100, 10°.6 7.140, 10° 7.208, 18°.5 7.276, 19°.4 7.279, 20° 7.284, 20°.2 7.361 7.432 7.525 7.622 7.830 8.330 8.201, 13°.7 8.233 8.989, 11°.7	"" Riche. J. 15, 111. Calvert and Johnson. J. 12, 120 "" "" Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.

ALLOY.	Specific Gravity.	AUTHORITY.	
ANTIMONY AND LEAD—continued.			
Sb Pb,	9.723	Calvert and Johnson. J. 12, 120.	
"	9.811, 14°.3	Matthiessen. P. T. 1860, 177.	
Sb ₂ Pb ₅	9.817 10.040	Riche. J. 15, 111.	
Sb Pb ₃	10.136	Calvert and Johnson. J. 12, 120	
"	10.144, 15°.4	Matthiessen. P. T. 1860, 177.	
"	10.211	Riche. J. 15, 111.	
Sb, Pb,	10.344		
Sb Pb,	10.387	Calvert and Johnson. J. 12, 120	
	10.455	Riche. J. 15, 111.	
Sb ₂ Pb ₉	10.556	Calvert and Johnson. J. 12, 120	
"	10.586, 19°.3	Matthiessen. P. T. 1860, 177.	
"	10.615	Riche. J. 15, 111.	
Sb ₂ Pb ₁₁	10.673	14 14	
Sb Ph	10.722		
Sb ₂ Pb ₁₃	10.764	44 44	
Sb Pb,	10.802 10.930, 19°.9	**	
Sb Pb ₁₀	11.194, 20°.5	Matthiessen. P. T. 1860, 177.	
50 1 025	11.101, 20 .0		
BISMUTH AND ZINC.			
Bi Zn	9.046	Calvert and Johnson. J. 12, 120	
BISMUTH AND CADMIUM.			
Bi ₁₂ Cd	9.766, 15°.4	Matthiessen. P. T. 1860, 177.	
Bi ₈ Cd	9.737, 14°.7		
Bi ₄ Cd	9.669, 149.8	1 16 66	
Bi, CdBi Cd	9.554, 13°.4 9.388, 15°	44 44	
Bi Cd,	9.195, 15°.5	"	
Bi Cd	9.079, 13°.1	16 66	
BISMUTH AND TIN.	,		
	0.015.100.1	C D T 1000 107	
Bi ₄₀₀ Sn	9.815, 18°.1 9.814, 19°.5	Carty. P. T. 1860, 177.	
Bi ₁₂₀ Sn	9.811, 19°		
Bi-Sn	9.803, 22°.8		
Bian Sn	9.774, 23°	"	
Bi. Sn	9.737, 19°.8		
Ri Sn	9.675, 15°.2	44 44	
Bi ₈ Sn	9.614, 120.7	1 11 11	
Bi ₄ Sn	9.435, 15°	Riche. J. 15, 112.	
Bi ₂ Sn	9.178, 15°.9	Carty. P. T. 1860, 177.	
"	9.145	Riche. J. 15, 111.	
Bi Sn	8.759	Regnault. P. A. 53, 67.	
"	8.772, 12°.6	Carty. P. T. 1860, 177.	
	8.754	Riche. J. 15, 112.	
Bi, Sn ₈	8.506	Regnault. P. A. 53, 67.	

BISMUTH AND TIN—continued.			
Bi Sn.	ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
Bi, Sn ₅			
Bi Sn ₃			
S. S. S. S. S. S. S. S.	Bi Sn ₈	8.112, 14°.2	
Bi Sn.	''	8.097	Riche. J. 15, 112.
Bi Sn ₂₂	Bi ₂ Sn ₇	8.017	•1
BISMUTH AND LEAD. Big Pb		7.948, 20	Carty. P. T. 1860, 177.
Bi	Di Sil ₂₂	1.400, 19 .5	
Bis Pb 9.846, 21°.6 " " " " " " " " " " " " " " " " " Bis Pb 9.887, 20°.6 " " " " " " " " " " " " " " Bis Pb 9.934, 21°.1 " <td< td=""><td>BISMUTH AND LEAD.</td><td></td><td></td></td<>	BISMUTH AND LEAD.		
Big Pb	Bis Pb	9.844, 21°.7	
Bin Pb 9.887, 20°.6 " " " Bin Pb 9.893, 19°.5 " " " Bin Pb 9.934, 21°.1 " " " Bin Pb 9.973, 15° " " " Bin Pb 10.048, 10°.7 " " " " " " " " " 8.6 E. Wiedemann. P. A. (2), 20, 240. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 239. Bin Pb 10.588, 14° Carty. P. T. 1860, 177. Riche. J. 15, 111. " " " 10.986 E. Wiedemann. P. A. (2), 20, 239. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 239. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 238. Riche. J. 15,	Bi Pb	9.845, 21°.6	
Bita Pb	Bi Pb		, "
Bita Pb	B1 ₂₄ P0	0.887, 200.6	**
Bi _B Pb 9.973, 15° " " " 8.6 E. Wiedemann. P. A. (2), 20, 240. Bi _k Pb 10.232 Riche. J. 15, 111. " 9.73 E. Wiedemann. P. A. (2), 20, 239. Bi _k Pb 10.588, 14° Carty. P. T. 1860, 177. " 10.519 Riche. J. 15, 111. " 10.96 E. Wiedemann. P. A. (2), 20, 239. Bi Pb 10.956, 14°.9 Carty. P. T. 1860, 177. " 10.931 Riche. J. 15, 111. " 11.03 E. Wiedemann. P. A. (2), 20, 239. Carty. P. T. 1860, 177. Carty. P. T. 1860, 177. " 11.03 Riche. J. 15, 111. " 11.03 Riche. J. 15, 111. " 11.103 Riche. J. 15, 111. " 11.108 " Bi Pb ₅ 11.108 " Bi Pb ₂ 11.141, 12°.7 Carty. P. T. 1860, 177. " 11.299 Riche. J. 15, 111. " 11.225 Riche. J. 15, 111. Bi Pb ₃ 11.161, 14°.8 Carty. P. T. 1860, 177. Bi Pb ₄ 11.280, 20°.2 " <td>Ri Ph</td> <td>9.090, 19.0</td> <td>1</td>	Ri Ph	9.090, 19.0	1
Big Pb 10.048, 10°.7 " " " " " " " " " " " " " " " " " " "	Ri Ph		
Bi ₄ Pb 10.235, 12°.5 E. Wiedemann. P. A. (2), 20, 240. Carty. P. T. 1860, 177. Carty. P. T. 1860, 177. Carty. P. T. 1860, 177. Bi ₂ Pb 10.538, 14° Carty. P. T. 1860, 177. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 239. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. E. Wiedemann. P. A. (2), 20, 237. Rieb. J. 15, 111. " " " Bi Pb ₂ 11.141, 12°.7 Carty. P. T. 1860, 177. Rieb. J. 15, 111. " " " Bi Pb ₃ 11.161, 14°.8 Carty. P. T. 1860, 177. Bi Pb ₄ 11.235 " " " <tr< td=""><td>Bi. Pb.</td><td></td><td></td></tr<>	Bi. Pb.		
Bi ₄ Pb 10.235, 12°.5. Carty. P. T. 1860, 177. " 10.232 Riche. J. 15, 111. " 10.538, 14° Carty. P. T. 1860, 177. " 10.519 Riche. J. 15, 111. " 10.96 E. Wiedemann. P. A. (2), 20, 239. Bi Pb 10.956, 14°.9 Carty. P. T. 1860, 177. " 10.931 Riche. J. 15, 111. " 11.03 E. Wiedemann. P. A. (2), 20, 237. Bi ₄ Pb ₅ 11.038 Riche. J. 15, 111. Bi ₄ Pb ₅ 11.108 """"""""""""""""""""""""""""""""""""	••		E. Wiedemann. P. A. (2), 20, 240.
Bi ₂ Pb 10.538, 14° E. Wiedemann. P. A. (2), 20,239. " 10.519 Riche. J. 15, 111. " 10.96 E. Wiedemann. P. A. (2), 20, 289. Bi Pb 10.956, 14°.9 Carty. P. T. 1860, 177. " 10.931 Riche. J. 15, 111. " 11.03 E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 289. Carty. P. T. 1860, 177. Riche. J. 15, 111. " Bi ₂ Pb ₃ 11.108 " Bi ₄ Pb ₇ 11.166 " " 11.194 Riche. J. 15, 111. " 11.297 Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. " " " 11.297 Carty. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. <td>Bi₄ Pb</td> <td>10.235, 12°.5</td> <td> Carty. P. T. 1860, 177.</td>	Bi ₄ Pb	10.235, 12°.5	Carty. P. T. 1860, 177.
Bi, Pb 10.538, 14° Carty. P. T. 1860, 177. """ 10.96 Riche. J. 15, 111. Bi Pb 10.966, 14°.9 Carty. P. T. 1860, 177. """ 10.931 Riche. J. 15, 111. """ 11.038 Riche. J. 15, 111. Bi, Pb, 11.038 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ """ Bi, Pb, 11.166 """ """ Bi Pb, 11.44 E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ """ 11.144 E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. """ 11.290 Riche. J. 15, 111. Riche. J. 15, 111. """ 11.299 Riche. J. 15, 111. Riche. J. 15, 111. """ 11.255 Riche. J. 15, 111. Riche. J. 15, 111. """ 11.285 """ Riche. J. 15, 111. Carty. P. T. 1860, 177. Riche. J. 15, 111. """ Riche. J. 15, 111. Carty. P. T. 1860, 177. Riche. J. 15, 111. <t< td=""><td>ii</td><td></td><td></td></t<>	ii		
10.96	n: n:		E. Wiedemann. P. A. (2), 20,239.
10.96	B1, P0		Carty. P. T. 1860, 177.
Bi Pb			
""" 11.03 E. Wiedemann. P. A. (2), 20, 237. Bi ₂ Pb ₃ 11.108 """ Bi ₄ Pb ₇ 11.166 """ Bi Pb ₂ 11.141, 12°.7 Carty. P. T. 1860, 177. """ 11.44 E. Wiedemann. P. A. (2), 20, 236. Bi ₂ Pb ₃ 11.194 Riche. J. 15, 111. """ 11.209 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ 11.295 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ 11.225 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Carty. P. T. 1860, 177. E. Wiedemann. P. T. 1860, 177. """			Carty. P. T. 1860, 177.
""" 11.03 E. Wiedemann. P. A. (2), 20, 237. Bi ₂ Pb ₃ 11.108 """ Bi ₄ Pb ₇ 11.166 """ Bi Pb ₂ 11.141, 12°.7 Carty. P. T. 1860, 177. """ 11.44 E. Wiedemann. P. A. (2), 20, 236. Bi ₂ Pb ₃ 11.194 Riche. J. 15, 111. """ 11.209 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 236. Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ 11.295 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. """ 11.225 Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 237. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Riche. J. 15, 111. E. Wiedemann. P. T. 1860, 177. Carty. P. T. 1860, 177. E. Wiedemann. P. T. 1860, 177. """		10.931	Riche. J. 15, 111.
Bi ₄ Pb ₅ 11.038 Riche. J. 15, 111. Bi ₂ Pb ₃ 11.108 " " " Bi ₄ Pb ₇ 11.166 " " " Bi Pb ₂ 11.141, 12°.7 Carty. P. T. 1860, 177. " " 11.194 Riche. J. 15, 111. " " 11.209 Riche. J. 15, 111. Bi ₂ Pb ₅ 11.209 Riche. J. 15, 111. Bi Pb ₃ 11.161, 14°.8 Carty. P. T. 1860, 177. Bi ₂ Pb ₇ 11.235 " " " Bi Pb ₅ 11.196, 20°.2 " " " Bi Pb ₅ 11.280, 22°.5 " " " Bi Pb ₁₂ 11.280, 22°.5 " " " Bi Pb ₅₀ 11.331, 23° " " " Bis Sb 9.435, 9°.4 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " " Bi ₄ Sb 9.276 " " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " " " " " Bi Sb 8.864 Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Calvert and	"		
Bi ₂ Pb ₃ 11.108 " " " " " " " " " " " " " " " " " " "	Bi ₄ Pb ₅		Riche. J. 15, 111.
Bi Pb2 11.141, 12°.7 Carty. P. T. 1860, 177. " 11.194 Riche. J. 15, 111. Bi2 Pb5 11.209 Riche. J. 15, 111. Bi Pb5 11.161, 14°.8 Riche. J. 15, 111. " 11.225 Riche. J. 15, 111. Bi Pb4 11.188, 20°.8 Carty. P. T. 1860, 177. Bi Pb5 11.196, 20°.2 " Bi Pb5 11.280, 22°.5 " Bi Pb50 11.331, 23° " BISMUTH AND ANTIMONY. Holzmann. P. T. 1860, 177. Bi4 Sb 9.369 Calvert and Johnson. J. 12, 120. " 9.276 Holzmann. P. T. 1860, 177. " 9.277, 12°.1 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " Bi Sb 8.859 " " 8.864 Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " 8.392, 11° Holzmann. P. T. 1860, 177.	Bi, Pb,		I
" 11.4 E. Wiedemann. P. A. (2), 20, 236. Bi ₂ Pb ₅ 11.209 Riche. J. 15, 111. " 11.225 Riche. J. 15, 111. Bi ₂ Pb ₇ 11.235 Riche. J. 15, 111. Bi ₂ Pb ₇ 11.235 Riche. J. 15, 111. " " " " " " " " " " " " " " " " " " "	Bi ₄ Pb ₇	11.166	
" 11.4 E. Wiedemann. P. A. (2), 20, 236. Bi ₂ Pb ₅ 11.209 Riche. J. 15, 111. " 11.225 Riche. J. 15, 111. Bi ₂ Pb ₇ 11.235 Riche. J. 15, 111. Bi ₂ Pb ₇ 11.235 Riche. J. 15, 111. " " " " " " " " " " " " " " " " " " "		11.141, 120.7	
Bi ₂ Pb ₅ 11.209 Riche. J. 15, 111. Bi Pb ₅ 11.161, 14°.8 Carty. P. T. 1860, 177. Bi ₂ Pb ₇ 11.235 Carty. P. T. 1860, 177. Bi Pb ₅ 11.188, 20°.8 Carty. P. T. 1860, 177. Bi Pb ₅ 11.196, 20°.2 " Bi Pb ₁₂ 11.280, 22°.5 " Bi Pb ₅₀ 11.331, 23° " BISMUTH AND ANTIMONY. Holzmann. P. T. 1860, 177. Bi ₄ Sb 9.369 Calvert and Johnson. J. 12, 120. " 9.276 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " Bi ₂ Sb 8.859 " " 8.866, 14° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " 8.392, 11° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177.		11.194	
Bi Pb ₃			
Riche J. 15, 111 11, 225 Riche J. 15, 111 11, 235 11, 235 11, 235 11, 235 11, 235 11, 235 11, 236 11, 236 11, 236 20°.2 11, 280, 22°.5 11, 280, 22°.5 11, 280, 22°.5 11, 331, 23° " " " " " " " " " " " " " " " " " "	Bi Pb.	11.161. 14°.8	Carty. P. T. 1860, 177.
Bi ₂ Pb ₇ 11.235 " "Carty. P. T. 1860, 177. Bi Pb ₅ 11.196, 20°.2 " " " " " " " " " " " " " " " " " " "	"		
Bi Pb5 11,196, 20°.2 " " " Bi Pb12 11,280, 22°.5 " " " Bis Pb50 11.331, 23° " " " BISMUTH AND ANTIMONY. 9.435, 9°.4 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " " 9.276 " " " 9.277, 12°.1 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " " Bi ₂ Sb 8.859 " " " Bi Sb 8.364 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177.	Bi ₂ Pb ₇		
Bi Pb ₁₂ 11.280, 22°.5 " " Bis Pb ₅₀ 11.331, 23° " " BISMUTH AND ANTIMONY. Bi ₄ Sb 9.435, 9°.4 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " Bi ₂ Sb 8.859 " " Bi Sb 8.364 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177.	Bi Pb		Carty. P. T. 1860, 177.
Bi Pb ₅₀ 11.331, 23° " " " BISMUTH AND ANTIMONY. Bi ₆ Sb 9.435, 9°.4 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Bi ₂ Sb 9.095 Calvert and Johnson. J. 12, 120. Bi ₂ Sb 8.859 " Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " 8.886, 14° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177.	Bi Pb ₅		
BISMUTH AND ANTIMONY. Bi ₆ Sb	B1 Pb ₁₂		
Bi ₆ Sb 9.435, 9°.4 Holzmann. P. T. 1860, 177. Bi ₅ Sb 9.369 Calvert and Johnson. J. 12, 120. " 9.276 Holzmann. P. T. 1860, 177. Bi ₅ Sb 9.095 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " 8.859 " " 8.864 Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. T. 1860, 177. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177.	D1 F 050	11.001, 20	
Bi ₅ Sb 9.369 Calvert and Johnson. J. 12, 120. Bi ₄ Sb 9.276 " Holzmann. P. T. 1860, 177. Bi ₅ Sb 9.095 Calvert and Johnson. J. 12, 120. Bi ₅ Sb 8.859 " Holzmann. P. T. 1860, 177. Bi Sb 8.866, 14° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177.	BISMUTH AND ANTIMONY.		
Bi, Sb 9.276 " " 9.277, 12°.1 Holzmann. P. T. 1860, 177. Bi, Sb 8.859 " " Bi Sb 8.866, 14° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. " " Bi Sb 8.364 Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177.	Bi 6 Sb		
""" 9.277, 12°.1 Holzmann. P. T. 1860, 177. Bi _s Sb 9.095 Calvert and Johnson. J. 12, 120. Bi _s Sb 8.859 " Bi Sb 8.866, 14° Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177.	Bi. Sb		
Bi ₃ Sb 9.095 Calvert and Johnson. J. 12, 120. Bi ₂ Sb 8.859 " " 8.886, 14° Holzmann. P. T. 1860, 177. Bi Sb 8.364 Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177. Holzmann. P. T. 1860, 177.	Bi ₄ Sb		
Bi ₂ Sb 8.859 " " " 8.886, 14° Holzmann. P. T. 1860, 177. Bi Sb 8.364 Calvert and Johnson. J. 12, 120. " 8.392, 11° Holzmann. P. T. 1860, 177.	D: Ch	9.211, 125.1	
8.886, 14° Holzmann. P. T. 1860, 177. 8.364 Calvert and Johnson. J. 12, 120. 8.392, 11° Holzmann. P. T. 1860, 177.	D: CL		
8.392, 11° Holzmann. P. T. 1860, 177.		8.886.140	
" 8.392, 11° Holzmann. P. T. 1860, 177.	Bi Sh	8.364	Calvert and Johnson, J. 12, 120.
Bi Sb 7.829 Calvert and Johnson. J. 12. 120.	"	8.392, 11°	
	Bi Sb,	7.829	Calvert and Johnson. J. 12, 120.

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
BISMUTH AND ANTIMONY —continued.		
Bi Sb ₂ Bi Sb ₃ Bi Sb ₄	7.864, 9°.4 7.561 7.870	Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120.
Bi Sb ₅	7.271	66 66
IRON AND TIN.	7 504	D11
Fe Sn ₅ . Cryst. furnace product.		Rammelsberg.
Fe Sn ₂ Fe ₃ Sn	7.446 8.788	Noellner. J. 13, 188. Lassaigne.
IRON AND NICKEL.		
Awaruite. Ni, Fe	8.1	Ulrich. N. J. 1888, 209.
COPPER AND ZINC.*		
Cu ₁₀ Zn	8.605	Mallet. D. J. 85, 878.
Cu ₃ Zn	0.007	1 "
Cu ₈ Z ₁₁	0.000	1 "
Cu, Zn	0.007	", ",
Cu ₆ Zn	8.591	•
Cu ₅ Zn	8.415	"
"	8.678	Calvert and Johnson. J. 12, 120.
Cu ₄ Zn	8.448 8.650	Mallet. D. J. 85, 878. Calvert and Johnson. J. 12, 120.
Cu ₃ Zn	8.897	Mallet. D. J. 85, 378.
"	8.576	Calvert and Johnson. J. 12, 120.
Cu, Zn		
·	8.392	Croockewitt. J. 1, 894.
"	8.488	Calvert and Johnson, J. 12, 120.
Cu ₃ Zn ₂	8.224	Croockewitt. J. 1, 394.
Cu Zn	8.230	Mallet. D. J. 85, 378.
"	7.808	Calvert and Johnson. J. 12, 120.
Cu ₈ Zn ₅	7.989	Croockewitt. J. 1, 394.
Cu Zn ₂		
"	7.859	Calvert and Johnson. J. 12, 120.
Cu ₈ Zn ₁₇	7.721	Mallet. D. J. 85, 878.
Cu ₈ Zn ₁₈	7.886	. "
Cu ₈ Zn ₁₉	8.019	
Cu ₈ Zn ₂₀	7.603	. "
Cu ₈ Zn ₂₁	8.008	
Cu ₈ Zn ₂₂	1.002	. " "
Cu ₈ Zn ₂₃	7.445	. " "
Cu Zn	7.449	
	7.786	
Cu Zn ₄	7.871	
	7 445	
Cu Zn ₅	7.440	Mallet. D. J. 85, 878.
"	1.44Z	Calvert and Johnson. J. 12, 120.

^{*}See also the Report of the (U.S.) Board on Testing Iron, Steel, and other Metals. Washington, Government Printing Office, 1881.

ALLOY.	Specific Gravity.	AUTHORITY.
COPPER AND TIN.		
Cu ₂₆ Sn	8.564	Thurston's Report, 295.
Cu ₄₈ Sn	8.649	
Cu., Sn	8.820	Calvert and Johnson. J. 12, 120.
Cu ₂₄ Sn	8.694	Thurston's Report, 295.
Cu ₂₀ Sn	8.793 8.825	Calvert and Johnson. J. 12, 120.
Cu ₁₅ Sn	8.84	Riche. J. 21, 270.
44	8.80	Riche. J. 23, 1100.
Cu ₁₉ Sn	8.681	Thurston's Report, 295.
Cu ₁₀ Sn	8.561	Mallet. D. J. 85, 378.
"	8.832	Calvert and Johnson. J. 12, 120.
"	8.87	Riche. J. 21, 270
"	8.83	Riche. J. 23, 1100.
Cu ₉ Sn	8.462	Mallet. D. J. 85, 378.
Cu ₈ Sn	8.459 8.84	1
	8.86	Riche. J. 21, 270. Riche. J. 23, 1100.
Cu, Sn	8.728	Mallet. D. J. 85, 878.
66	8.72	Riche. J. 21, 270.
"	8.90	Riche. J. 23, 1100.
Cu _s Sn	8.750	Mallet. D. J. 85, 378.
"	8.65	Riche. J. 21, 270.
"	8.91	Riche. J. 23, 1100.
"	8.565	Thurston's Report, 295.
Cu ₆ Sn	8.575	Mallet. D. J. 85, 878.
"	8.965	Calvert and Johnson. J. 12, 120.
	8.62	Riche. J. 21, 270.
()	8.400	Riche. J. 23, 1100. Mallet. D. J. 85, 378.
Cu ₄ Sn	8.948	Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120.
"	8.77	Riche. J. 21, 270.
"	8.80	Riche. J. 23, 1100.
"	8.938	Thurston's Report, 295.
Cu ₃ Sn	8.539	Mallet. D. J. 85, 378.
"	8.954	Calvert and Johnson. J. 12, 120.
"	8.91	Riche. J. 21, 270.
"	8.96	Riche. J. 23, 1100.
"	8.970 8.682	Thurston's Report, 295.
Cu ₁₂ Sn ₅	8.416	Mallet. D. J. 85, 378.
"	8.512	Croockewitt. J. 1, 394.
"	8.533	Calvert and Johnson. J. 12, 120.
"	8.15	Riche. J. 21, 270.
"	8.57	Riche. J. 23, 1100.
"	8.560	Thurston's Report, 295.
Cu ₁₂ Sn ₇	8.442	7 " "
Cu. Sn	8.06	Riche. J. 21, 270.
"	8.30	Riche. J. 23, 1100.
() . C-	8.312 8.302	Thurston's Report, 295.
Cu ₄ Sn ₅	8 182	" " "
Cu ₆ Sn ₅ Cu Sn	8.056	Mailet. D. J. 85, 378.
44	8.072	Croockewitt. J. 1, 394.
"	7.992	Calvert and Johnson. J. 12, 120.
"	7.90	Riche. J. 21, 270.
"	8.12	Riche. J. 23, 1100

· Allor.	Specific Gravity.	AUTHORITY.
COPPER AND TIN-continued.		
Cu Sn	8.013	Thurston's Report, 295.
Cu _s Sn ₄	7.948	
Cu ₃ Sn ₅	7.835	
Cu Sn.	7.387	Mallet. D. J. 85, 378.
" Cryst	7.53	Miller. P. A. 120, 55.
"	7.738	Calvert and Johnson. J. 12, 120.
"	7.83	Riche. J. 21, 270.
"	7.74	Riche. J. 28, 1100.
"	7.770	Thurston's Report, 295.
Cu, Sn, Furnace product.	6.994	Rammelsberg. P. A. 120, 54.
Cu ₃ Su ₇ . Furnace product.	7.652	Canalamita I 1 204
Cu ₂ Sn ₅		Croockewitt. J. 1,394.
Cu Sn ₃	7.447	Mallet. D. J. 85, 378.
	7.606	Calvert and Johnson. J. 12, 120.
"	7.44	Riche. J. 21, 270.
"	7.53	Riche. J. 23, 1100.
46	7.657	Thurston's Report, 295.
Cu Sn ₄	7.472	Mallet. D. J. 85, 378.
"	7.558	Calvert and Johnson. J. 12, 120.
"	7.31	Riche. J. 21, 270.
"	7.50	Riche. J. 23, 1100.
	7.552	Thurston's Report, 295.
Cu Sn.	7.442	Mallet D 1 05 250
"	7.517	Mallet. D. J. 85, 378.
		Calvert and Johnson. J. 12, 120.
	7.28	Riche. J. 21, 270.
	7.52	Riche. J. 23, 1100.
"	7.487	Thurston's Report, 295.
Cu Sn ₁₂	7.360	
Cu Sn.	7.305	
Cu Sn	7.299	
COPPER AND LEAD.		
Cu Pb	10.753	Croockewitt. J. 1, 894.
COPPER AND ANTIMONY.		
Cu., Sb.	8.829)	
Cu ₁₁ Sb ₂ Horsfordite	8.829 8.812 }	Laist and Norton. A. C. J. 10, 60.
Co Sh	8.871	Kumanski # D M (5) 1= 0=4
Cu ₄ Sb	0 990	Kamenski.* P. M. (5), 17, 274.
Oug 50	- 000	Colored and Johnson J. 10, 100
Cu Sb	7.990	Calvert and Johnson. J. 12, 120.
copper and bismuth.		
Cu Bi	9.634	Calvert and Johnson. J. 12, 120.
SILVER AND TIN.		
Ag Sn	9 953 140 8	Holzmann. P. T. 1860, 177.
Ag Sn	0 507 199 0	1 11 10 10 11 11 11 11 11 11 11 11 11 11
August	0 000 100 0	<u> </u>
Ag Cu	0.020, 10 .7	
Ag Sn ₂	1 0.420, 105	ı

^{*} Kamenski gives data for seventeen other Cu Sb alloys.

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.		
SILVER AND TIN—continued.				
Ag Sn ₃	7.936, 19°.3	Holzmann.	P. T. 1860, 177.	
Ag Sn ₅	_ 7.551, 18°.8		"	
Ag Sn ₆	7.666, 18°.4	"	"	
Ag 5n ₁₈	7.421, 18°.6	1	••	
SILVER AND LEAD.		·		
Ag, Pb	10.800, 13°.5	Matthiessen.	P. T. 1860, 177.	
Ag, Pb	_ 10.925, 13°.8	"	"	
Ag Pb	_ 10.054, 12°.5	"	46	
Ag Pb.	11.144, 18°.2	"	"	
Ag Pb4	11.196, 21°	"	44	
AK I V10	_ 11.400, 44 .4	l ;; .	66	
Ag Pb ₂₅	_ 11.334, 20°.6	" '	••	
SILVER AND COPPER.*				
Ag, Cu,	9.9045	Levol. J. 5	. 768.	
" Solid	_ 9.9045)	Roberts. C.		
" Molten	9.0554	200001401 01	211 112, 220.	
GOLD AND TIN.				
Au, Sn	_ 16.367, 15°.4			
Au, Sn	14.244, 143.2	"	"	
Au Sn	11.833, 14°.6	"		
lu ₂ Sn ₃	10.794, 23°.6	""	"	
Au Sn ₂	10.168, 23°.7		"	
Au ₂ Sn ₅ Au Sn ₃	9.715, 22°.4 9.405, 23°.7	"	"	
1u 5n ₃	8.931, 25°.6	"	"	
Au Sn ₄		16	"	
Au Sn ₀	8.118, 22°.4	"	"	
Au Sn ₁₅	7.801, 22°.8	"	"	
Au Sn ₅₀	7.441, 22°.9	44	44	
GOLD AND LEAD.				
Au, Pb	17.013, 14°.3	Matthiessen.	P. T. 1860, 177.	
Au ₂ Pb	15.608, 14°.5	"	"	
Au Pb	14.466, 14°.3	44	44	
Au Pb ₂	13.306, 22°.1	"	"	
Au Pbs	12.737, 21°.3	"	44	
Au Pb4	12.445, 21°.6	46	"	
u Pb5	12.274, 19°.4	44	"	
Au Pb ₁₀	11.841, 23°.3	"	"	
GOLD AND BISMUTII.				
Au ₂ Bi	14.844, 16°	Holzmann.	P. T. 1860, 177.	
Au Bi	13.403, 16°.5	"	"	
Lu Bi ₂	12.067, 16 11.025, 25°	"	"	

^{*} See Karmarsch, Beiblätter 2, 194, for sixteen Ag Cu alloys.

١,

ALLOY.	Specific Gravity.	AUTHORITY.
GOLD AND BISMUTH— continued.		
Au Bi ₈	10.452, 21°.4	Holzmann. P. T. 1860, 177.
Au Bi	10.076, 18°.7	44 44
Au Bi	9.942, 21°.2	"
Au Bi	9.872, 21°	"
GOLD AND COPPER.		
Aus Cu	17.9340	Roberts. Bei. 2, 327.
Au. Cu	17.1653	tt t t
Au, Cu	16.4832	£¢ £¢
GOLD AND SILVER.		
Au, Ag	18.041, 13°.1	Matthiessen. P. T. 1860, 177.
Au, Ag.	17.540, 12°.8	" "
Au, Ag		"
Au Ag	14.870, 13°	"
Au Ag	18.482, 14°.3	66
Au Ag	12.257, 14°.7	دد دد
Au Ag.	11.760, 13°.1_•	دد دد
PALLADIUM AND LEAD.		
Pd ₃ Pb	11.225	Bauer. J. 24, 817.
PLATINUM AND LEAD.		
Pt Pb	15.77	Bauer. Z. C. 14, 48.
IRIDIUM AND OSMIUM.		
Ir Os. Newjanskite Ir Os. Sisserskite	19.386—19.471 21.118	Berzelius. Dana's Min.
TRIPLE ALLOYS.*		
Cd Pb ₃ Bi ₄	10.563	v. Hauer. J. 18, 236.
Cd, Pb, Bi,	9.194, 11° 9.253, 20°	Regnault. P. A. 53, 67.
Pb Sn ₂ Bi ₂ Pb ₄ Sn ₆ Bi ₂ Rose's alloy. Pb ₈ Sn ₁₀ Bi ₁₃ . Darcet's alloy. Sn ₂ Sb Bi	9.253, 20° 9.5125, 4° 9.6401, 4°	Spring. Ann. (5), 7, 196.
Sn, Sb Bi	7.883, 20°	Regnault. P. A. 53, 67.
Cu, Ni Sb, Furnace product.	8.004	Sandberger. J. 11, 202.
QUADRUPLE ALLOYS.		
Cd Sn Pb Bi,	9.765	v. Hauer. J. 18, 236.
Cd Sn, Pb, Bi	9.784	"
Cd ₂ Sn ₂ Pb Bi ₄ . Wood's alloy.	9.1106, 4°	Spring. Ann. (5), 7, 196.
Cd, Sn, Pb, Bi	9.725	v. Hauer. J. 18, 236.
Cd ₄ Sn ₅ Pb ₅ Bi ₁₀ Cd ₄ Sn ₅ Pb ₆ Bi ₁₁ . Lipo-	9.685 9.7244, 4°	Spring. Ann. (5), 7, 196.
witz' alloy.		

^{*} For the triple alloys of Cu Sn Zn see Thurston's Report. For many amalgams see Joule, J. C. S., vol. 16, 1863. For alloys of platinum and gold see Prinsep, P. T. 1828.

XLV. HYDROCARBONS.

1st. Paraffins. $C_n H_{2n} + 2$.

						
	NAME		FORMULA.		Sp. GRAVITY.	AUTHORITY.
Methane.	Lique	efied	С Н,-		.37	Wroblevsky. C. R. 99, 186.
44 44		·	" -		1	Olszewski. P. A. (2), 31, 78.
Propane_			C, H			Lefebvre. J.21,829. Pelouze and Ca-
"			"		.600, 0° .624, —1°	hours. J. 16, 524. Ronalds. J. 18, 507. Lefebvre. J. 21, 829.
Normal pe		(B. 39°).	C ₅ H ₁₂		.686, 17°	Schorlemmer. J. 15, 386.
44	"		"		.6263, 17°	527.
44	**		"		.626, 14°	cav. C. R. 80.1569.
44	"		"		.6267, 14°	Lachowicz. A.C.P. 220, 191.
"	"		"		.624, 11°.5	Gladstone. Bei. 9, 249.
16	"		"		.6823, 17°	Norton and Andrews. A. C. J. 8, 7.
Isopentan	e. (B.	30°)	"		.6418, 110.2	Frankland. J. 8,
- 44			"		.6385, 14°.2	481.
44			••		.628, 18°	Pelouze and Ca-
"			4.6		.6375, 13°	hours. J. 16, 527. Just. A. C. P. 220, 153.
"			"		.6282, 13°.7	Schiff. G. C. I, 13,
"			"		.6132, 30°.5	177.
"			"		.6402, 0° }	Bartolli and Strac-
Normal h	 ovene	(R 60°)			.6111, 30° } .6745, 18°	ciati. Bei. 9, 697. Williams. J. 10, 418.
16	"		6 4114		.669, 16°	Pelouze and Ca- hours. J. 15, 410.
**	**		"		.678, 15°.5	
"	**		"		.6617, 17°.5	Dale. J. 17, 381.
46	"		**		.6645, 16°.5	Wanklyn and Er- lenmeyer. J. 16, 521.
46	"		"		.6680, 17°	Schorlemmer. A.C. P. 161, 263.
44	"		44		.689, 0°	Warren. J. 21, 830.
66	"		"			Thorpe and Young.
"	"		"		.6620, 19°.5	A. C. P. 165, 1.
"	"		"		.667, 18°	Cahours and Demar- cay. C. R. 80, 1570.
**	"		"		.6199, 60°.8	Rameay. J. C. S. 35, 463.

				,	
	NAME.		FORMULA.	SP. GRAVITY.	AUTHORITY.
Normal h	exane	C. H		.6753, 0°]	Zander. A. C. P.
"	"	""	14	1.6129.69° (214, 181.
44	"	"		.6985, 14°	Lachowicz. A. C.
"	"				P. 220, 192.
"					Sobier C () T 10
"	"	"		$\left \begin{array}{c} .6142 \\ .6143 \end{array} \right\}$ 68°.6 $\left. \begin{array}{c} \end{array} \right\}$	Schiff. G. C. I. 13, 177.
"	"	"		.6603, 20°	Brühl. A. C. P. 200, 183.
"	"			.6950, 0°)	Bartoli and Strac-
**	"	"		.6343, 68° }	ciati. Bei. 9, 697.
"	"	"		.6745, 18°	Norton and Andrews. A. C. J. 8, 7.
Isohexan	e. (B. 62°)	"		.7011. 00	Wurtz. J. 8, 576.
"		"		.7011, 0° .676, 0°	Warren. J. 21, 330.
Hexane.	B. 48°—62°	"		.6317, 25°.5	Gladstone. Bei. 9. 249.
	B. 53°60°	"		.6413, 25°	
•	iethyl-methane. (B. 64°.)	"		.6765, 20° .5	Wislicenus. A. C. P. 219, 315.
Tetramet	hyl-ethane, or	"		.6769, 10°	
diisopro	opyl. (B. 58°.)	16		.6701, 17°.5	Schorlemmer. J. 20,
"	"			.6569, 29°) .668, 0 °	566. Riche. Ann. (3), 59,
			•	,	426.
"	"	"			Zander. A. C. P.
	rom suberic acid.	"		.6286, 58° }	214, 181. Riche. Ann. (3), 59,
Normal h	B. 78°. eptane. (B.98°.4)	C, H,	6	.709, 17°.5	426. Schorlemmer. J.15,
"	From coal oil. " petroleum_	"		.7122, 16°	386. Schorlemmer. J.16, 532.
44	" "azelaicacid	"		.6851, 17°.5	Dale. J. 17, 381.
46		"		.6840, 20°.5	Schorlemmer and
				·	Dale. A. C. P. 136, 266.
"	"	"			Warren and Storer. J. 21, 331.
"	"	"			Cahours and Demar- cay. C. R. 80, 1570.
"	" From petro- leum.	. "		.6967, 19°	Beilstein and Kurbatow. Ber. 13, 2028.
"	"	"		.6915, 180)	Thorpe and Young.
**	"	"		.6910, 19° }	A. C. P. 165, 1.
"	" (Abietone)	"		.694	Wenzell. C. N. 39, 182.
"	" "	"		.70048,00	Thorpe. J. C. S.
"		"		.61386, 98°.43_	37, 371.
**	"	"		.7176, 20°	Lachowicz. A. C. P. 220, 193.
"		"		.7291, 20°	Lachowicz. A. C. P. 220, 203.
"	"	"		.7023, 14°	Lachowicz. A. C. P. 220, 204.
	1	[,

						
NAME.			Formula.		Sp. Gravity.	AUTHORITY.
	methy	ethyl-nmyl, l-butyl-me- 90°.8.	C, H	16	.7069, 0°	Wurtz. J. 8, 576.
	"		"		.6819, 170.5	Schorlemmer. A. C.
	"		"			P. 186, 259.
	"		"		.6789, 19°	Schorlemmer. A. C. P. 136, 264.
	"		"			Schorlemmer. A. C.
	"		"		.7148, 15° .6999, 82°	P. 186, 269. From
	"		"		.6867, 48°]	petroleum.
	"	· · ·	"		.6833, 18°.4	Grimshaw. A. C. P. 166, 168.
	"		"		.69692, 00	Thorpe. J. C. S.
	"		"		.61606, 90°.3	87, 871.
	"		"		•6060, 91°	Ramsay. J. C. S. 35, 463.
thane.	(B.		. "		.6895, 20°	Just. A. C. P. 220,
Triethyl	-nieth	ane. (B.96°)	"		.689, 27°	Ladenburg. B. S. C. 18, 548.
		iethyl-me- }	"		.7111, 0° .6958, 20°.5 }	Friedel and Laden- burg. J. P. C.
"	•	petroleum_	**		.709, 16°	101, 815. Schorlemmer. A. C.
Mantana	£	motroloum			.7328, 00	P. 166, 172.
Hepume		_ petroleum _ - 92°—94°)	66		.6473, 92°-94°	
"	(1)	. 02 — 01) -	66		.7303, 00	Bartoli and Strac-
"		"	"		.6462, 920-940	ciati. Bei. 9, 697.
Normalo		e. (B. 125°.5)		18	.6945, 18°	Williams. J. 10, 418.
"	"		"	<u>:</u>	.7083, 12°.5	Schorlemmer.
"			"		.7032, 17°	Schorlemmer. A. C. P. 161, 263.
"	"		"		$\left\{ \begin{array}{c} .723,0^{\circ} \\ .721,10^{\circ} \end{array} \right\} $	Riche. J. 13, 248.
"	"		"		.721, 10° j .719, 17°.5	Schorlemmer. J. 15,
	"		"		,	386.
"			"		.726, 15°	Pelouze and Ca- hours. J. 16, 524.
"	"				.728, 0°	Wurtz. J. 16, 509.
"	"		"		.7207, 15°.5	Thorpeand Young. Two lots. A. C.
"	"		"		.7165, 15°.6	P. 165, 1.
"	"		"		.728, 13°	Cahours and Demar- çay. C. R. 80, 1571.
64	"		"		.71883, 0°	Thorpe. J. C. S.
"	"		* 6		.61077, 125°.46	37, 871.
"	66	From co- nicein.	"		.712, 110	Hofmann. Ber. 18, 13.
Tetramet			"		.6940, 180	Kolbe. J. 1, 559.
diisobu	tyl. (B. 108°.53.)				
	"		"		.7057, 0°	Wurtz. J. 8, 576.
	"		"		.7135, 0°	Kopp. A. C. P. 95,
	•••				.7001, 16°.4	807.

^{*} For a mixture of heptane and isoheptane from petroleum, B. 92°-94°, Pelouze and Cahours give a sp. g. of .699, 16° .

35, 125. 35, 125. 35, 125. 35, 125. 35, 125. 35, 125. 36, 100°	J. C. S.
""	I. C. S.
"	ī. C. S.
	I. C. S.
1	
"	
"	
1	1 90
" " " " " " " " " " " " " " " " " " "	,
"	. C. S.
(a	
Cotane from petroleum. (B. 121°.) (B. 121°.) (B. 116°— (B. 118°) (B. 118°) (B. 149°) (C. H ₂₀ (B. 121°.) (B. 118°) (B. 149°) (B. 149°) (C. H ₂₀ (B. 149°) (C. H ₂₁ (C. H ₂₁ (B. 140°) (C. H ₂₁ (C. H ₂₁ (B. 140°) (C. H ₂₁ (C. H ₂₁ (B. 140°) (C. H ₂₁ (C. H ₂₁ (B. 140°) (C. H ₂₁ (C. H ₂₁ (C. H ₂₁ (B. 140°) (C. H ₂₁	
Octane from petroleum. (B. 121°.) (B. 121°.) (C. H ₂₀ (C. H ₂ (C. H ₂₀	J. I. 18,
(B. 121°.) (B. 121°.) (B. 121°.) (B. 121°.) (B. 116°— (B. 118°) (C. H ₂₀ (C	•
" " (B. 116°— "	B. S. C.
" " " " " " " " " " " " " " " " " " "	
Normal nonane. (B. 149°) C ₉ H ₃₀	Strac-
" " " " " " Tachours and cay.* C. 1571.	. 9, 697.
" "	ıd Ca-
" " " " " " " " " " " " " " " " " " "	
" " " " " " " " " " " " " " " " " " "	
" "	R. 80,
" " " " " " " " " " " " " " " " " " "	
" "	
" "	65, 1.
" " (B. 130°) "	
" " (B. 136°) "	. 100
" " (B. 186°) "	5, 1687.
" " (B. 186°) "	
" (B. 136°) "	A C
" (B. 186°) "	A. C.
" (B. 130°) "	
" (B. 180°) "	J. IS. U
" " " - "	
" " "	
" " <u>" </u>	"
" (B. 186° ", 7623, 0°) Bartoli and	Strac-
" -138°.)	
Tetramethyl pentane, or "	
butyl-amyl. (B. 182.)	•
Normal decane. (B. 167°) - C ₁₀ H ₂₂	Young.
A. C. P. 10	65, 1.
	A. C. P.
" "	
" (B. 173°)- "	
"	
" "	.5, 1687.
" "	
" "	
" "	A.C.P
Discount (R 1550) " 7704 110 Frankland J	
Diisoamyl. (B. 155°) "	

[•] Preparations from petroleum, boiling at 130° to 140°, and doubtless containing admixed isomers

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Diisoamyl. (B. 158°)	C ₁₀ H ₂₂	.7418, 00	Wurtz. J. 8, 573.
" (B. 159°)		.7282, 20°	Williams. J.10, 418.
" (B. 156°)	"	.753, 0°	Wurtz. J. 16, 510.
" (B. 159°.4)	"	.7358, 9°.8	Schiff. G. C. I. 13,
"	"	.6126, 159°.4	177.
" (B. 160°)	"	.7468, 220	Just. A. C. P. 220,
" (B. 157°.1)	"	.72156, 22°	Lachowicz. A.C.P. 220, 172.
Decane. (B. 160°)	"	.757, 16°	Pelouze and Ca- hours.* J. 16, 524.
" (B. 159°)	"	.758, 14°	Cahours and Demar-
" (B. 155°—160°) -	"	.760	cay.*C. R. 80,1571. Cloez.† C. R. 85, 1003.
" (B. 162°—163°) -	"	.7324, 20° \	Lachowicz. ‡ A. C.
" (B. 152°—158°) -		.7187, 21° }	P. 220, 195.
"	"	.764, 0°)	
(6	"	.753, 15°.6 .751, 17°	Lemoine.* B. S. C.
"	46	.789, 88°.5	41, 161.
"	"	.7711, 00) Bartoli and Strac-
"	"	.6475, 158-162°	ciati.* Bei.9,697.
Undecane. (B. 181°)	C ₁₁ H ₂₄	.766	Pelouze and Ca-
" (B. 177°)	"	.770, 14°	hours.* J. 16, 524. Cahours and Demar-
" (B. 179°)	"	.769	çay.* C. R. 80,1571. Cloez.† C. R. 85, 1003.
" (B. 180°–182°)_	"	.7816, 00) Bartoli and Strac-
" " —	"	.6448,180-1820	ciati.* Bei.9,697.
Normal undecane. (B. 194°.5.)	"	.7560, 0° }	,
" " (5. 101 .5.)	"	.7557, 00	** ** ** ***
" "	"	.7448, 15° {	Krafft. Ber. 15, 1687.
" "	"	.7411, 200	Melts at -26°.5.
" "	"	.6816, 990]	
Dodecane. (B. 202°)	C ₁₂ H ₂₆	.7574, 0°	Wurtz. J. 8, 576.
"	"	.7568, 18°	Williams. J. 10, 418.
" (B. 198°)	"	.778, 20°	Pelouze and Ca- hours.* J. 16, 524.
" (B. 200°)	"	.784, 14°	Cahours and Demar- cay. * C. R. 80,1571.
" (B. 196°.5)	"	.782	Cloez.† C. R. 85, 1003.
" (B. 201°)	"	.7788, 17°	Schorlemmer. A. C. P. 161, 263.
" (B. 198°–200°)	"	.7915, 0°	Bartoli and Strac-
" "		.6442,198-200°	ciati.* Bei.9,697.
Normal dodecane.	"	.7655, 0°]	•
" (B. 214°.5)	"	.7548, 15° [Krafft. Ber. 15, 1687.
"		.7511, 20° [
"	"	.6930, 99°.1	

^{*} From petroleum. Doubtless a mixture of i-omers.

[†] From hydrogen evolved from cast iron. Constitution undetermined. ‡ Two isomers from Galician petroleum. Constitution undetermined.

¹¹ s G

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tridecane. (B. 219°)	C ₁₃ H ₂₅	.796, 17°	Pelouze and Ca- hours.* J.16,524.
" (B. 217°.5)	"	.798	Cloez.† C. R. 85, 1008.
" (B. 218°-220°)	"	.8016, 0° .6469, 218-220°	Bartoli and Strac- ciati.* Bei.9,697.
Normal tridecane. (B.234°)	66	.7716, 0° .7718, 0°	
11 11	"	·7608, 15° }	Krafft. Ber. 15, 1687.
" Tetradecane. (B. 238°)	" C ₁₄ H ₂₀	.7008, 99°] .809, 20°	Pelouze and Ca-
" (B. 236°)	··	.812	hours.* J. 16, 524. Cloez.† C. R. 85,
" (B. 286°-240°)	"	.8129, 0°	1003. Bartoli and Strac-
Normal tetradecane.	"	.6412,286-240°	ciati.* Bei.9,697.
" (B. 252°.5)		.7750, 5° .7715, 10°	
" "	44 44	.7681, 15° .7645, 20°	Krafft. Ber. 15, 1687. Melts at 4°.5.
" "	44	.7087, 99°.2 .7738, 5°.4	Krafft. Ber. 19, 2218.
Pentadecane. (B. 260°)		.825, 19°	Pelouze and Ca-
" (B. 258°)	"	.830	hours.* J. 16, 524. Cloez.† C. R. 85, 1008.
(B. 258°–262°)		.8224, 0° .6385, 258–262°	Bartoli and Strac- ciati.* Bei.9,697.
Normal pentadecane.	"	.7757, 10°]	,
" (B. 270°.5)	"	.7759, 10°	
" "	"	.7724, 15° }	Krafft. Ber. 15, 1687.
" " · · · · · · · · · · · · · · · · · ·	"	.7689, 20°	Melts at 10°.
			Clarat C B of
Hexdecane, dioctyl, or di- isoctyl. (B. 278.)	1	.850	Cloez.† C. R. 85, 1003.
	"	.7438, 15°	Eichler. Ber. 12, 1882.
" (B. 268•.5)	"	.8022, 0°	Alechin. Ber. 16, 1225.
" (B. 264°)	"	.80011, 18°	Lachowicz. A. C. P. 220, 187.
" (B. 278°—282°)	"	.8287, 0° .6396, 278–282°	Bartoli and Strac- ciati.* Bei. 9, 697.
Normal hexdecane.	"	.7754, 18°]	
" (B. 287°.5).	"	.7742, 200	Krafft. Ber. 15, 1687.
u u	"	.7707, 25°	Melts at 18°.
" "	6.	.7754, 14°.2	Krafft. Ber. 19, 2218.
Heptadecane. (B. 808°)	C ₁₇ H ₃₆		
"		.7767, 22°.5 .7749, 25° }	Krafft.† Ber. 15.
	"	.7714, 30° [1687. Melts at
"	"		22°.5.
		,	

^{*} From petroleum. Probably a mixture of isomers.
† From hydrogen evolved from cast iron. Constitution undetermined.
‡ All of Krafft's paraffins are said to belong to the normal series.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Octadecane. (B. 317°)	C ₁₈ H ₃₈	.7768, 28°)	
		.7754, 80°	
"		7719, 85° }	Krafft. Ber. 15, 1687
"		.7685, 40°	Melts at 28°.
	"	.7288, 99° .7766, 28°	Knoff Ron 10 9916
Nondecane. (B. 330°)	C ₁₉ H ₄₀	.7774, 32°]	Krafft. Ber. 19, 2218
" (D. 550)::::	19 140	.7754, 85°	77 MD D 17 100
	11	.7720, 400 }	Krafft. Ber. 15, 168'
61		.7323, 99°.3	Melts at 32°.
Eicosane. (M. 36°.7)	C ₂₀ H ₄₂	.7779, 36°.7	
	"	.7487, 80°.2	Krafft. Ber. 15, 171
		.7363, 99°.2	17 M. D. 10 0011
		.7776, 86°.7	Krafft. Ber. 19, 221
Hencicosane. (M. 40°.4)	C ₂₁ , H ₄₄	.7783, 40°.4 .7557, 7 4° .7	Krafft. Ber. 15, 171
"	44	.7400, 98°.9	Kiant. Der. 10, 171.
Docosane. (M. 44°.4)	C ₂₂ H ₄₆	.7782, 44°.4	
"	122 - 46	.7549, 79°.6	" "
"	"	.7422, 99°.2	
Fricosane. (M. 47°.7)	C ₂₃ H ₄₈	.7785, 4 7°.7 🦒	
"	**	.7570, 80°.8	(((6
_ "		.7456, 98°.8	
Tetracosane. (M. 51°.1)	C ₂₄ H ₅₀	.7786, 51°.1	
	"	.7628, 76° }	66 66
		.7481, 98°.9	
Heptacosane. (M. 59°.5)	C ₂₇ , H ₅₆	.7796, 59°.5 .7659, 80°.8	u u
"		.7545, 99° }	
Hentriacontane. (M.68°.1)	C ₃₁ H ₆₄	.7808, 68°.1	
"	**	.7730, 80°.8	u u
	"	.7619, 98°.8	
Dotriacontane. (M. 70°)	C22 H66	.7810, 70°	Krafft. Ber. 19, 2218
Pentatriacontane.	C ₃₅ H ₇₂	.7816, 74°.7	TT 00 00 40
" (M. 74°.7)	"	.7775, 80°.8	Krafft. Ber. 15, 1711
		.7664, 99°.2	
Paraffin.* M. 56°	On 112n+2	.913	
" M. 67°		.927	
" M. 72°	"	.934	From ozokerite
" M. 76°	"	.940	Sauerlandt. J
" M. 82°		.943	1879, 1147.
" M. 38°	"	.872, 17°))
"	44	.879, 55° }	İ
" M. 43°	(1	.883, 17°]	
"		.788, 55°	
(1 11	"	.889, 170 [
" M. 46°	"	.785, 55° j	
M. 40°		.887, 173 }	Albrecht. D. J
" M. 47°		.900, 17° }	218, 280.
"	"	.775, G0°-65°	
" M. 51°		.908, 17° }	
66 66		.775, 60°-65° }.	İ
" M. 56°	"	.912, 170 {	1
44 44		.777, 60°-65°	İ

[•] No attempt has been made to secure completeness concerning the specific gravity of common paraffin. The data given are included only to facilitate comparison.

· NAME.		FORMULA.	Sp. Gravity.	AUTHORITY.
Paraffin. " " " " " "	M. 38°	C _a H _{2a} + ₂	.874, 21°, s .783, 38° .779, 43°.4 .775, 49° .771, 54°.5 .767, 60°	From shale oil. Beilby. J. C. S., Sept., 1883, 388. Data given for sp. g. of paraffin in solution.

2d. Olefines. C_n H_{2n}.

Name.	Formula.	Sp. Gravity	AUTHORITY.
Ethylene. Liquefled	C ₅ H ₁₀	.414, —21° .342, —7°.3 .853, —3°.7 .832, +4°.3 .806, +6°.2 .739, 0° .635, —13°.5 .6637, 16°.5 .6633, 0° .66277, 0° .64450, 17° .62384, 38° .625812, 33°.5 .62684, 85°.5 .679, 0° .6319, 35° .6617, 9°.9 .	Cailletet and Mathies. C. R. 102, 1202. Chapmen. J. 20,581. Puchot. Ann. (5), 28, 207 Mendelejeff. J. 13,7. Bauer. J. 14, 660. Buff. A. C. P., 4 Supp. Bd., 129. Buff. J. 21, 334. Ramsay. J. C. S. 35, 463.
"	44	.6840, 85°.6 .6356, 36°.8 .6508, 21°	Schiff. G. C. I. 13, 187. Gladstone. Bei. 9,
Trimethyl ethylene β. Ethyl methyl ethylene.	"	.6783, 0°	249. Le Bel. B. S. C. 25, 547. Le Bel. B. S. C. 25,
Isopropyl ethylene	" C ₄ H ₁₂	.648, 0°	546. Flawitzky. Ber. 11, 992. Pelouze and Ca-
"	"	.6987 } 0° { .6986 } .702, 0°	hours. J. 16, 526. Wurtz. J. 17, 512. Geibel and Buff. J.
Tetramethyl ethylene	#	.6996 .6997 } 0° { .712	21, 886. Hecht. A. C. P. 165, 146. Pawlow. A. C. P. 196, 122.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
a. Ethyl dimethyl ethy-	C ₆ H ₁₂	.712, 0° }	Jawein. Ber. 11,
lene. " "		.698, 190 }	1258.
β. Ethyl dimethyl ethy-	************	.702, 0°	tt tt
rene.	C, H,	.687, 190 }	Williams T 11 400
Heptylene		.7060, 12°.5	Williams. J. 11,438. Schorlemmer. A. C. P. 136, 257.
**		.7026, 19°.5	Address of the second s
"		.7060, 16°	Grimshaw. A. C. P. 166, 163.
		.742, 20°	Renard. Ber. 15, 2368.
"		.71812, 20°	Sokolow. Ber. 21, ref. 56.
Dimethyl isopropyl ethy- lene.		.6985, 14°	Markownikow. Z. C. 14, 268.
" " "		.7144, 00	Pawlow. A. C. P. 173, 194.
Octylene	C ₈ H ₁₆	.708, 16°	Cahours. C. R. 31, 143.
46	4	.723, 170	Bouis. J. 7, 582.
"	11	.737, 20°	Fittig. J. 13, 320.
11	10	.7396, 0°	Warren and Storer. J. 21, 331.
		.7217, 17°	Möslinger. Ber. 9, 1000.
44		.7294, 90.9 1	Schiff. G. C. I. 13.
		.6306, 1230.4	177.
	4	.7222, 220	Lachowicz. A. C. P. 220, 185.
	41	.7197, 20°	Brühl. A. C. P.
	11	.73645, 20°	Sokolow. Ber. 21, ref. 56.
Diisopropyl ethylene		.7526, 16°	Williams. Ber. 10, 908.
Methyl ethyl propyl eth- ylene.	11	.73138, 20°	Sokolow. Ber. 21, ref. 56,
Diisobutylene		.734, 0°	Butlerow. J. C. S. 34, 122.
		.787, 0°	Lermontoff. A. C. P. 196, 116.
Nonylene. B. 145°	C, H,	.757, 200,5	Fittig. J. 13, 321.
B. 153°	"	.7618, 0°	Warren and Storer. J. 21, 331.
в, 184°		.858, 18°.4	Lemoine. B. S. C. 41, 161.
	<i>a</i>	.74333, 20°	Sokolow. Ber. 21, ref. 56.
Diamylene. B. 165°	C ₁₀ H ₂₀	.7777, 00	Bauer. J. 14, 660.
" B. 151°	***	.8416, 00)	Schneider. A. C. P.
44		.8248, 200 }	157, 208.
B. 174°.6		.7912, 00	Warren and Storer. J. 21, 332.
в. 175°,8		.823, 0°	Warren and Storer. J. 21, 331.
	"	.7789, 100	Schiff. G. C. I. 13, 177.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dipropargyl	C ₆ H ₆	.81, 18°	L. Henry. J. C. S (2), 11, 1215.
	"	.82	Berthelot and Ogier J. C. S. 40, 719.
Ethyl propyl acetylene		.790, 0°	Béhal. Ber. 20, ref. 809.
Tetramethyl allylene		.9518, 9°	L. Henry. Ber. 8
Methyl propyl allylene		•	Renard. C. R. 91, 419.
Heptidene			Brühl. A. C. P 235, 1.
Conylene	C ₈ H ₁₄	.76076, 15°	Wertheim. A.C. P. 123, 157.
From allyl diethyl carbinol. "	"	.75856, 15°.4	Reformatsky. J. P.
From allyl dipropyl carbi-	C ₁₀ H ₁₈	.75622, 18°)	C. (2), 80, 217.
nol. "	"	.7830 .7825 0°	
" "	"	.7855 J .7726)	
" "	"{	.7705 } 15° .7738 }	Reformatsky. J. P.
" "	" "	.7740, 16° .7705	C. (2), 27, 889.
" "	"{	.7681 .7665	
	"	.7708 J .7728, 20°.6	
From allyl dimethyl carbinol.		.8530, 0° } .8885, 20° }	Nikolsky and Saytz eff. J. P. C. (2) 27, 383.
" " …	"	.8512, 0° }	Albitsky. J. P. C.
Dodecylidene	C ₁₂ H ₂₂	.8349, 21°.4) .8080, 0°)	(2), 30, 213.
"	"	.7917, 15° } .7788, 32°.5	Krafft. Ber. 17, 1371
Tetradecylidene	C ₁₄ H ₂₈	.8064, 6°.5 .8000, 15°.2	
Benylene	C ₁₅ H ₂₈	.7892, 30°) .9114, 0°	Wertheim. A. C. P
Trivalerylene	C ₁₅ H ₂₄	.862, 15°	128, 157. Reboul. J. 20, 585.
Hexadecylidene	C ₁₆ H ₃₀	.8039, 20° } .7969, 30° }	Krafft. Ber. 17, 1371
OctadecylideneEikosylene		.8016, 30° .8181. 24°	Lippmann and Haw liczek. Ber. 12, 72
			,

4th. Benzene Series.

	Name.		FORMULA.	SP. GRAVITY.	Authority.	
	θ	C ₆ H ₆		.85, 15°.5 }	Faraday. P. T. 1825	
"		"		.956, —18°,s.	440.	
••				.85	Mitscherlich. A. C P. 9, 43.	
"		"		.85	Mansfield. J. 1,711	
"		"		.89911, 00)	•	
"		• 6		.88372, 15°.2 }	Kopp. P.A. 72, 243	
"		"		.88354, 15°.8)	'	
"		"		.8931, 5°—10°	Regnault. P. A	
46		"		.8827, 10°—15°	62, 50.	
"		"		8838, 15°—20°	· ·	
"		"		.8841, 15°	Mendelejeff. J. 13, 7	
"		"		.8667	Church. J. 17, 531.	
"		"		.8957, 0° }	Warren. J. 18, 515.	
		"		.8820, 15°.5		
44				.895, 3° }	Jungfleisch. C. R	
		46		.8995, 0°)	64, 911.	
66				.8890, 10°	Louguinine. Ann.	
"		"		.8784, 20° [(4), 11, 453. Other	
"		44		.8568, 400 }		
66		"		.8349, 60°	values given for intermediate tos.	
44		"		.8126, 80°		
"		44		.90023, 00 1		
66		44		.89502, 50		
"		4.6		.88982, 100		
"		"		.88462, 150		
"		"		.87940, 200		
44		"		.87417, 25° j		
"		"		.86891, 30°		
44		"		.86362, 35°		
**		"		.85829, 40° }	Adrieenz. Ber. 6,	
"		"		.85291, 45°	442 .	
41		"		.84748, 50°		
"		"		.84198, 55°		
"		4.		.83642, 60°		
"				.83078, 65° .82505, 70°		
"				.81923, 75°		
41		"		.81331, 80°		
		"		.899487, 0° 1		
"		"		.883573, 15°		
**		66		.872627, 25°	Pisati and Paterno.	
61		"		.846170, 50°	J. C. S. (2), 12,	
44		"		.818721, 75°	686.	
"		**		.88029	Landolt. Ber. 9, 907.	
**		"		.8773, 20°	Naumann. Ber. 10, 1422.	
44		"		.8142, 80°	Ramsay. J. C. S. 35, 463.	
"		"		.8858, 15°	Thorpe and Watts. J. C. S. 37, 102.	
46		"		.8111, 80°	C 1 1 M TO 4 1 0 - 10	

NAME.		NAME. FORMULA.		SP. GRAVITY.	AUTHORITY.
Benzen	e	C ₆ H		.9000, 0° 1	Dieff. J. P. C. (2)
- 11		11		.8818, 200 }	27, 868.
44		11		.8839, 140.2	Schiff. G. C. I. 13
4.6		4.6		.8111, 800.1	177.
46		44	26.020.02.020.000	.8799, 200	Brühl. Bei. 4, 780.
4.4		66		.87901, 20°	Flink. Bei. 8, 262
**		11		.8719, 25°.7)	
46		**		.8845, 13°.8	Schall. Ber. 17, 2555.
44		44		.8881, 705)	
44		**		8901)	Gladstone. Bei. 9.
44				.8903 \ 10°	249.
**		64		.8801, 200	Knops. V. H. V.
**		**		.85716, 40°.1	1887, 17.
**		44	************	.85493, 41°.3	Taken at different
10		14		.84324, 53°.2	pressures, each
44		11		.84006, 54°.7	to, being the boil-
66		24		.83101, 64°.1	ing point at the
44		1.6		.83081, 64°.2	pressure ob-
44		-64		.82099, 72°.9	served. Neu-
44		14		.82079, 78°.4	beck. Z. P. C.
64		14		.81387 } 790.2	1, 654.
44		44		.81892)	1, 004.
1.5		11		.81297, 79°.9	
**		11		.87907, 20°	Weegmann, Z.P.C.
Toluene		C, H		.86	2, 218. Pelletier and Wal- ter. Gm. H.
11		14		.821	Couerbe. Gm. H.
44		44		.864, 280	Glénard and Bou-
14	- 11 January 2017	14	120000000000000000000000000000000000000	.87, 180	dault. Gm. H. Deville. Gm. H.
44		16	C25-77	.8650	Church. J. 17, 531.
16		16		.8824, 0°)	
14				.8720, 150	Warren. J. 18, 515.
-		14		.881, 50	Tollens and Fittig.
		16		.8841, 00)	A. C. P. 131, 303.
66		11		.8657, 200 4	Louguinine. Ann.
14		14		.8375, 500 }	(4), 11, 453. Other
14		1.6		.8086, 800	values given for
44		1.6		.7889, 100°	intermediate tos.
11		14		.866, 200	Post and Mehrtens.
**		24		.8657, 20°	Ber. 8, 1551. Naumann. Ber. 10, 1425.
16		44		.7650, 1110	Ramsay. J. C. S. 35, 468.
44				.8822, 00	1
11	*************	64	***************************************	.8797, 20.77	
11		41	***************************************	.8722, 10°.89	
4.6		n.		.8692, 14°.13	
88		4.		.8653, 18°.43	1
11		64		.8556, 28°.74	Naccari and Pag-
44		11		.8430, 420.24	liani. Bei. 6, 88.
3.6		44		.8258, 60°.04	Several other in-
44		4.4		.8186, 72°.46	termediate val-
		1 44			Service 101
44		11		.7874, 99°.01_±	ues are given.

		i				
	NAME.	Form	ULA.	Sp. Gravity.	AUTHORITY.	
Toluen	A	C, H8		.8708, 13°.1)	
1014611	·	07 g		.7780	11	
4.6		"		.77807 } 109°.2	Schiff. G. C. I	
4.4		"		.7781	18, 177.	
"		"		.8656, 200	Brühl. Bei. 4, 780.	
4.6		"		.7801, 109°	Schall. Ber. 17, 2204.	
**		"		.8617, 26°)	Schall. Ber. 17	
46		"		.85098, 34°.5	2555.	
"		"		.8704, 7°.5	Gladstone. Bei. 9, 249.	
"		"		.8643) 140 (Gladstone and Tribe.	
44		11		.8691 } 14° }	J. C. S. 47, 448.	
**		"		.82664, 610.2.	1	
"		"		.82441, 62°.3	l i	
46		"		.82435, 63°.5	11	
"		"		.80656, 81°.2	li	
"		"	- -	.80637, 81°.5	 [
44		"		.79470 } 98°.4		
				.19494)	Taken at different	
"		"		.78576, 102°.6	pressures, each to.	
"		"		.78515, 108°	being the boiling	
"		"		·77816 } 110°.1	point at the press-	
**		"		.11188)	ure observed.	
46		"		.77741, 110°.7	Neubeck. Z. P.	
"		"	-	.77694, 110°.8	J C. 1, 656.	
Xylene	*	C ₆ H ₄ (C I	13)2	.8809, 15°	Mendelejeff. J. 13, 7.	
**		••		.8668, 21°	Beilstein. A. C. P.	
44		44		.8770, 0°]	183, 37.	
"		4.6		.8600, 20°	Louguinine. Ann.	
"		4.6		.8340, 50° }	(4), 11, 453. Val-	
"				.8073, 80° [ues given for other	
44		44		.7892, 100°	intermediate tos.	
44		46		.8616, 200	Naumann. Ber. 10,	
		•		,	1426.	
"		44		.7335, 132-134°	Ramsay. J. C. S.	
				,	35, 463.	
"		. "		.8619, 20°	Brühl. A. C. P. 235, 1.	
Orthoxy	rlene	"	1.2	.7559, 141°.1	Schiff. Ber. 15, 2974.	
Orthon,		"		.8632, 18°	Gladstone. Bei. 9,	
				•	249.	
"		"		.876, 24°.5	Colson. Ann. (6), 6, 86.	
**		"		.81449, 90°.4) 0, 00.	
"		46		.81422, 90°.6	 	
46		44		.79497, 112°.7	Taken at different	
44		44		.79435, 112°.9	pressures, each to.	
		4.6		.78204) 1000 0	being the boiling	
		"		$egin{array}{c} .78204 \\ .78188 \end{array} \}$ 123°.8	point at the press-	
**		44		77308)	ure observed.	
**		"		.77413 \ 183°.9	Neubeck. Z. P.	
"		4.6		.76684 1410 1	C. 1, 656.	
**		1.6		.76661 } 141°.1		
44		"		.76569, 142°.5	j	
44		"		.8932, 0° }	Pinette. A. C. P.	
46		"		.7684, 1410.9	243, 50.	
	·					

^{*}Exact character not specified. For sp. gr. of several mixed xylenes see Lewinstein, Ber. 17, 446.

NAME. Metaxylene		Form	MULA.	Sp. Gravity.	AUTHORITY.
		C ₆ H ₄ (C H ₃) ₂ . 1.3		.878, 0°)	_>
11			3/2	.866, 150	Warren. J. 18, 515
1.5		64	22.22	.8715, 120,3	1
4.6		64		.7567, 1390	Market and the second
44		64		75711	Schiff. G. C. I
11		er.	200000	.7572 139°.2	13, 177.
46		п	*****	.8726, 15°.5	Gladstone. Bei. 9
**		u	*****	.861, 24°.5	249. Colson. Ann. (6)
46		**		.8655, 20°	6, 86. Brūhl. A. C. P
**		44	2.55	.80588, 88°.8	285, 1.
44		44		.80522, 89°.3	
46		16		.78722, 108°.3	1000
44	***********	44		.78667, 108°.7	Taken at different
44	**********	**		.77483, 120°.5	pressures, each to
46		**		.77427, 121°.8	being the boiling
		16		.76639) 1900 0	point at the press
a		14		.76647 129°.2	ure observed
**		ii.		75799	Neubeck. Z. P
44	**********	44		.75795 138°.1	C. 1, 656.
44				75659	1 ST CA 2 ST C
11	***********	44		.75658 .75685 139°.1	
66		14			D
46	****	44		.8812, 00 }	Pinette. A. C. P
Paraxyle	ne	**	1.4	.7567, 138°.9 \\ .8621, 10°.5	243, 50. Glinzer and Fittig
		"		*****	A. C. P. 136, 303
**		11		.7543 136°.5	Schiff. Ber. 14, 2769
**		44	******	.7545 100 .0	Gladstone. Bei. 9
		**		.854, 24°.5	249. Colson, Ann. (6)
41					6, 86.
и	***********			-80215 86°.9	1
46	**	66		.80189 (00 .0	Taken at differen
44	***********	10	******	.78341, 106°.9	pressures, eacl
46			******	.78310, 107°.1	to, being the
11		**	******	.77292, 119°.2	boiling point a
46		44	******	-75968 } 129°.6	the pressure ob
11.		11	******	.70988]	served. Neu
44	**********	44	******	-75429) 187°.1	beek. Z. P. C
11		11		.10421)	1, 656.
46		11	*****	.75306 138°.4	11 0001
44		11		.19308)	
- 66		"	******	.8801, 00)	Pinette. A. C. P
4 10 11 11	nzene	C. H. C.	Π _δ	.7558, 138° J .8664, 22°.5	243, 50. Fittig and König
44	Lawrence of	60	7000	8760 00 n	A. C. P. 144, 277
44		44		.8760, 9°.9	Schiff. G. C. I
11		**	*******	.7611 1350.8	18, 177.
44	*********	16	*******	.7612 100 .0	1
11		11	*******	.88316, 00)	Weger. A. C. P
44	,	"	*******	.7612, 136°.5 .8673, 20°	221, 61. Brühl. A. C. P
Trimethy	vlbenzene. Me- sitylene.	Ca Ha (C F	I ₃) ₃ . 1.3.5.	.863, 13°	235, 1. Schwanert.

				1	
NA	ME.	For	MULA.	Sp. GRAVITY.	Authority.
Trimethylben	zene. Me- sitylene.		H ₈) ₈	.8530, 15° (Warren. J. 18, 515.
4.6		"		1.0034, 0.0 (Schiff. G. C. I. 13,
"		44			177.
66 66		"		.8558, 20°	Brühl. Bei. 4, 781.
				.8682, 19°	Gladstone. Bei. 9, 249.
" Ps	s eudoc umene	"	1.8.4	.8901, 0°	Konowalow. Ber. 20, ref. 570.
Orthomethyle	thylbenzene	C ₆ H ₄ . CH ₅	. C ₂ H ₅ . 1.2-	.8731, 16°	Claus and Mann. Ber. 18, 1122.
Metamethylet	thylbenzene_	"	1.8_	.869, 20°	Wroblevsky. A. C. P. 192, 198.
Paramethylet	hylbenzene -	14		.8694, 11°.3	,,
""		"		$\begin{bmatrix} .7398 \\ .7394 \end{bmatrix}$ 162°	Schiff. G. C. I. 18,
44		ш		.7394 (102)	177.
**				.864, 200	Anschütz. A. C. P. 285, 314.
Propylbenzen	ie	C ₆ H ₅ . C ₃	H ₇	.881, 0°	Paterno and Spica. Ber. 10, 294.
"		44		.88009, 0°	Spica. J.C.S. 36,631.
46		44		.8692, 17°	Wispek and Zuber. A. C. P. 218, \$80.
44		"		.8702, 9°.8 }	Schiff. G. C. I. 18,
44		"		.7899, 158°.5	177.
Isopropylbena	zene. Cu-	"		.87	Pelletier and Wal-
	mene.	1			ter. Ann. (2), 67,
					269.
"	"	"		.8792, 0°	Warren. J. 18, 515.
"	"	"		.8675, 15° }	
"		"		.87976, 00]	
"		"		.85870, 25° .83756, 50°	Pisati and Paterno.
"	"	"		.81585, 75°	J. C. S. (2), 12, 686.
66		46		.79324, 100°	0.0.5.(2),12,000.
"	"	"		.86576, 17°.5	Liebmann. Ber. 18,
44	"	"		.8776, 00))
£ (44	"		.8577, 25° (Two preparations.
44	44	"		.87798, 0° {	Silva. B. S. C.
"	"	"		.85766, 25° }	43, 317.
**	"	"		.8432, 12°	Gladstone. Bei. 9, 249.
Tetramethylbe	enzene	C ₆ H ₂ (C I	I ₃) ₄	.8816, 9°	Knublauch. Tübin- gen Inaug. Diss., 1872.
Dimethylethy	lbenzene	C ₆ H ₃ (C I	H ₃) ₂ C ₂ H ₅ .	.8783, 20°	
·u				.8644, 20°	Jacobsen. B. S. C.
"		"	"	.861, 20°	24, 73. Wroblevsky. A.C.
"		"	1.3.4 _	.8686, 20°	P. 192, 217. Anschütz. A.C. P.
Diethylbenzer	1e	C ₆ H ₄ (C ₂	H ₅) ₂ . 1.4	.8707, 15°.5	
Matamathula	-onviber	сн сп	CH 19	848 140	A. C. P. 144, 285. Claus and Stuesser.
zene.	opyrben-	∪ ₆ 114. O113.	. 03117. 1.7-	.000, 10	Ber. 13, 899.

NAME. Metamethylpropylben- zene.		FORMULA. C ₆ H ₄ , CH ₃ , C ₅ H ₇ , 1.3.		SP. GRAVITY.	AUTHORITY.
				.8728, 0°	Spica. Rer. 16, 702
zene.		41	22	.864.90.8)	Schiff. G. C. I. 18
44		64	44	.7248, 1750,4	177.
Paramethylprop zene. Cymene.	ylben-	44	1.4_	.860, 14°	Gerhardt and Ca hours. A. C. P. 38 345.
14		44	tt	.857, 160	Nond. A. C. P. 63 281.
8.6		23	44	.8778, 00]	Kopp. A. C. P. 94
**		***	44	.8678, 129.6	257.
44		44	44	.8660, 15°	Mendelejeff. J. 13,7
		а	İL	.8664, 200	Williams. J. C. S 15, 120.
46	7.000	44	44	.8697, 00)	From cummin oil
46		44	44	.8724, 00	Warren. Mem
11			44	.8592, 14°)	Amer. Acad. 9
44		16	11	.8705, 00]	From cummin oil
***		44	4.6	.8544, 200	Louguinine. Ann
44		46	44	.8302, 500 [{ (4), 11, 4.53. Othe
**	****	11	44	.7893, 1000	values given for intermediate tos.
44		61	46	.8732, 00]	From camphor
44		24	46	.8574, 200	Louguinine. Ann
		84	44	.8338, 500	(4), 11, 453. Othe
**		a	16	.7919, 100°	values given for intermediate tos.
44		64	41	.8708, 00	From two sources
44		44	3.6	.8572, 20°.2	Beilstein an
44		**	44	.8732, 00 }	S. (2), 12, 152.
46	****		26	.8707, 0°	Beilstein and Kup ffer. A. C. P. 170 295.
46		44	**	.86	Gladstone. J. C. S (2), 11, 699. Ext. of 8, from dis
44	Levy L	**	44	.8424)	ferent sources
fe		**	4.6	.8438}	Gladstone. J. C S. (2), 11, 970.
- (-		"	44	.859, 16°	Orlowsky, B. S. C 21, 321.
. 44		**	- 11	.87446, 00]	
41		n	41	.85457, 25°	From cummin oi
16	****	44	44	.82352, 500	Pisati and Pater
44	Legal	44	46	.81409.750	no. J. C. S. (2
44		-10	44	.79307, 100° j	12, 686.
		44	**	.87227, 00]	Fromeymylalcoho
44	****	**	4	.85258, 25°	Pisati and Pater
44		44	11	.82352, 50° }	no. J. C. S. (2
R		44	11	.81200, 75°	12, 686.
14		11	43	.79129, 100° J	10,000.
		16	16	.97224, 00]	From camphor. P
**		44	10	.85237, 25°	sati and Paterne
			44	.83251, 50°	J. C. S. (2), 1:
E6		11	- (1	.81230, 75°	686.
84		. 44	66	.79122, 100°	000.

				1	
NAN	ME.	Formula.		Sp. Gravity.	Authority.
Paramethylp: zene. Cyme	ropylben- ene.	C ₆ H ₄ . CH ₃ . C ₃ H	7. 1. 4	.86542, 0° }	From thyme oil. Pisati and Paterno. J. C. S. (2), 12, 686.
46		"	**	.8598, 15°)	From two sources.
"		46	"	.8598, 15° }	Kraut. A. C. P.
"		"	"	.8595, 15°]	192, 224.
u		46	"	.8718, 0° }	Jacobsen. Ber. 11,
"		"	"	.86035, 10°	1060.
66		44	"	.873, 00	Febve. Ber. 14, 1720.
				.8720, 20°	Kanonnikoff. Bei. 7, 542.
"		"	٠,,,	.7248, 176°.2	Schiff. Ber. 15, 2974.
66 66		"	"	.8569	Brühl. A.C.P. 235,1.
			••	.8551, 21°	Gladstone. J. C. S. 49, 623.
Methylisoprop	oylbenzene _	"		.86948, 0° }	Silva. B. S. C. 43,
41		l ";		.86211, 25°	817.
				.8702, 0°	Jacobsen. Ber. 12, 431.
		C ₆ H ₅ . C ₄ H ₉			Radziszewski. Ber. 9, 260.
"		"		.875, 0° }	
"		"		.864, 15° }	Balbiano. Ber. 10,
		"		.794, 99°.3 <i>)</i>	296.
Isobutylbenze	ne	"		.8577, 16°	Riess. Z. C. 14, 3.
	a	"		.89, 15° }	Radziszewski. Ber.
Methyldiethyl	β lbenzene	C. H., C H. (C.	H ₅),.	.8726, 16° } .8790, 20°	9, 260. Jacobsen. B. S. C.
Dimethylprop	ylbenzene Laurene.	C ₆ H ₃ (C H ₃) ₂ C ₅	1.3.5. H ₇	.887, 10°	24, 74. Fittig, Köbrich, and Jilke. J. 20, 701.
Metaethylprop	pylbenzene _	C_6H_4 . C_2H_5 . C_3H_7	. 1.3_	.8588, 19°	Renard. Ann. (6), 1, 223.
•		C ₆ H ₅ . C H (C ₂			Lippmann and Lou-
"		"		.8731, 21°	Dafert. M. C. 4, 617.
"		(C ₆ H ₅ , C(CH ₃) ₂ , C C ₆ H ₆ (C H ₃), (C	C,H,_	.8728, 0°	Essner. Ber.14, 2582.
		-6 -5 (- 2/4 (-	/3	,	Schramm. A. C. P. 218, 389.
Isoamylbenzer	ne	C ₆ H ₅ . CH ₂ . CII ₂	. CH H.)	.859, 12°	Tollens and Fittig.
Orthoisoamyluzene.	nethylben-	$C_6H_4.CH_3.C_5H_{11}$	$[.\ \overset{-3}{1},\overset{-3}{2}_{-}]$.8945	Pabst. B. S. C. 25, 337.
Paraisoamylm zene.	ethylben-		1.4_	.8643, 9°	Bigot and Fittig. J. 20, 667.
Parapropyliso zene.	propylben-	$C_6 H_4 (C_8 H_7)_2$.	1.4	.8713, 0°	Paterno and Spica. Ber. 10, 1746.
Isohexylbenze	i		- 1		Schramm. A. C. P. 218, 391.
Amyldimethy	lbenzene	$C_6 H_3 (C H_3)_2$. C	, Н ₁₁ -	.8951, 9°	Bigot and Fittig. J. 20, 667.
Normal octylb	enzene	C ₆ H ₅ . C ₈ H ₁₇		.849, 15°	Schweinitz. Ber. 19, 642.
44 4		"		.852, 14°	Ahrens. Ber. 19, 2718.
Diisonmylbenz	zene	C ₆ H ₄ (C ₅ H ₁₁) ₂ -		.8868, 0°	A. Austin. B. S. C. 82, 13.
				<u></u>	·

Name.		FORMULA.		Sp. Gravity.	AUTHORITY.	
Metamethy lpropy	C ₆ H ₄ , CH ₂ , C ₂ H ₇ , 1.8.		.8728, 00	Spica. Ber. 16, 792.		
Zehe,		41	**	.864.9°.8}	Schiff, G. C. I. 13,	
••		**	**	.7248, 1750.4	177.	
Paramethylpropy	lben-	44	1.4.		Gerhardt and Ca-	
zone. Cymene.					hours. A. C. P. 38,	
44		44	"	.857, 16°	345. Noad. A. C. P. 63,	
					Noad. A. C. P. 63, 281.	
44		44	"	.8778, 0° }	Kopp. A. C. P. 94,	
44			"	.8678, 120.6	257.	
44		44	"	.8660, 15°	Mendelejeff. J. 13,7.	
"		**	"	.8664, 20°	Williams. J. C. S. 15, 120.	
44		44	"	.8697, 0°)	From cummin oil.	
**		44	"	.8724, 00	Warren. Mem.	
44		44	44	.8592, 140	Amer. Acad. 9, 154.	
44		44	44	.8705, 00)	From cummin oil.	
••		**	"	.8544, 200	Louguinine. Ann.	
44		44	•	.8302 No	(4), 11, 453. Other	
**		**	"	.7893, 100° J	values given for intermediate tes.	
*1		44	**	.8732.00)	From camphor.	
**		(1	44	.85.4. 200	Louguinine. Ann.	
**			"	.8333, Mr _ 1	(4), 11, 453. Other	
**			"	.7919, 1009	i values given for intermediate t ^o s.	
**		. 46	44	.8706, 0°	From two sources.	
**		"	"	.8572, 210.2	Beilstein and	
••		•	••	.87.32.00	Kupffer. J. C.	
44		a	"	.6707.00	8. (2), 12, 132. Beilstoin and Kups	
					ffor. A. C. P. 170, 293,	
**		α	"	.85	Gladstone. J. C. S.	
					(2), 11, 600.	
44		"	••		Ext. of S, from diff	
•				.5424	Street, sources,	
,,		,	••	.\$438	Gledston, J. C. S. (2), 11, 170	
•			**	338 189	Orlinest v. B. S. C.	
` **		**	**	57446, OF		
**		**	**	55477 25°	Protection of Pater	
**		**	••	网络外皮 增性		
**		••	••	4 part 75%	70 % (2)	
**		**	• ·	AND THEFE	10	
**		! W	••	1 - 22 W	Fr	
**		**	•	errore and	1	
**		**	••	WESTER ARP	To:	
44			••	41. W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	12	
**		• •	•	71(34, 300		
**			••	San Aller	Fra	
44			••	> 221 ° . 250	THE REAL PROPERTY.	
u. u.				STATE THE	11 11.	
ű.				NAME OF THE PARTY		
•		• "	••	.74022.000°	II. Design	

NAME		F-RMTL		Sr. Gravity.	ATTHORITY.
					Fr m thyme n
Zammeinyi proj Zne. Cymene.		i _g iig, CH, Cyi		.78429. 100°	Pisau Ind Pisau ind Pisau Ind Pisau
		••	.4	.5598. 159 _ 1	Erom two source
•		-4		.3702)=	
		••		3575, 152	Kraut. A. C. 1
.4		••	••	.ST.S. 19	Jacobsen. Ber. 1
		• •	••	.≈√35. 10°	.લક્તો.
:6		-4	•		Febre, Ber. 14. 172
.4		••	••		Sanonmkoff Be
••		- 6	-4	.7248, 1762.3	Seiniff, Ber. 15, 297
•		••	••	.5569	. Brahi. A.C.P 225.
••		••	••		Giadstone. J. C.,
L ethyiisop ro pyil	enzene _	••			Silva. B. S. C. 4
•		••		. <u>~21.</u> 25°	UT. Jacobsen, Ber. I
••		••			4GT.
lutyibenzene	······································	: I. C, II,			Radinszewski. Be
- 6		•		STT. 19	
••				394. III	Baibiano, Ber. 1
		•		.774. % 3	
sobutvibenzene				200 L. 100 LLL	Riess. Z. C. 14.
	:				Radziszewski. Be
lethyidiethyibe		, H., C H. ()	. I		ancopsen. B. S. (
lethyidiethyibe Emethyipropytl	czene	, H., C H. ()	. I	2.149 mg	Jacobsen. B. S. 6 24, 74. Fittig, Kol rich, ar
lethyidieth yibe F methyipro pytl	enzene	; H. . (* H. . (*) ; H. . (* H. . (*)	.H	22. '03 '''''	Jacobsen. B. S. 6 24, 74. Fittig, Kolmon, ar Jilke. J. 20, 70 Jenora. Ann. J
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene Laurei benzene	1 H., (1 H., (1 1 H., (1 H., (1 1 H., (1 H., (1 H., (1	. I	57740, <u>13</u> 03 557, 103 5586, 109	Jacobsen, B. S. 6 24, 74. Fitter, Kolmon, ar Jike, J. 20, 70 Jenara, Ann. 6 1, 220. Lappmann et al. (20)
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene Laurei benzene	1 H., (1 H., (1 1 H., (1 H., (1 1 H., (1 H., (1 H., (1	. I	5774, 20° 5755, 10° 5771, 1°	24, 74, 27 me, 3
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene Laurei benzene .	THEOTE C THEOTE THE THEOT THEOTE C THEOTE C	H	5770, 203 557, 103 5751, 109 5751, 125	Jacobsen. B. S. 6 24, 74, Frug. Kolmen, ar Jilke. J. 20, 70 Jenara. Ann. 6 1, 223, Lappmannen. Le- guinne. J. 20, 66 Oafert. M. C. 60,
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene Laurei benzene .		H. H. H. H. H. H. H. H. H. H. H. H. H. H	5770, 203 577, 103 5785, 109 5771, 125 5701, 225	Jacobsen. B. S. 6 24, 74. Fring, Kolmeh, and Jilke. J. 20, 70 Jenara. Aun. J. 20, 80 J. 200. Lapimannien. Longuinne. J. 20, 66 Daftert. M. C. 5, 61 Jesner, Ben. 14, 278 Sentimuta. L. 28
lethyidiethyibe Immeth yipr opyil Ist aat hyipropyi	enzene enzene Laurei benzene .			570, 20°	Jacobsen. B. S. 6 24, 74, 24, 74, 24, 74, 25, 75, 75, 75, 75, 75, 75, 75, 75, 75, 7
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene enzene Laurei benzene .			570, 20°	Jacobsen. B. S. 6, 24, 74, 74, 74, 74, 74, 75, 76, 76, 76, 77, 77, 77, 77, 77, 77, 77
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene enzene Laurei benzene .	H. CH. C H. CH. M. LACH L. CH. C H. CH. H. CH. H. CH.	E. C. L. C.	5770, 203 5771, 63 5771, 63 5771, 63 5771, 63 578, 63 560, 203 545	Jacobsen. B. S. 6 24, 74. Fitter, Kolmon, and Jilko, J. 20, 70. Jenara, Ann. 6 1, 220. Lapanannona, Lag. 56. Dafter, M. 1, 56. Lasner, Berl 4, 258. Sentratura, A. 1, 58. Tollons, and Pitti A. C. P. St. 30. Pitst. B. S. 51.2 187.
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	enzene	H. CH. C H. CH. C H. CH. C H. CH. C H. CH. C H. CH. C H. CH. C	E. S. S. S. S. S. S. S. S. S. S. S. S. S.	5770, 203 5771, 63 5771, 63 5771, 63 5771, 63 5781,	Jacobsen. B. S. 6, 24, 74, 74, 74, 74, 74, 74, 74, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	CELZENE	Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry Harry	Line	5776, 203 5777, 03 5788, 109 5771, 03 5771, 03 5708, 03 560, 29 542 543, 09	Jacobsen. B. S. 6 24, 74. Fitter, Kolmen, and Jilke. J. 20, 70 Jenara. Ann. J. 220. Lapananneau, Longuagne. J. 200. Dathert. M. J. 501 Jesner, Ber. 14, 238 Sonramia. L. 138 Sonramia. L. 138 Jellens and Pitti. J. 138 Jest. J. S. 51, 20 Jest. J. S. 51, 20 Jest. J. S. 51, 20 Jest. J. S. 51, 20 Jest. J. S. 51, 20 Jest. J. 51, 50 Jest.
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	cezene	Harten Ha	E. T. C. L.	5770, 203 5771, 63 5771, 63 5771, 63 5771, 63 578, 63 568, 60 578, 60	Jacobsen. B. S. 6, 24, 74, 74, 74, 74, 74, 74, 74, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	czene	Hart Hart Hart Hart Hart Hart Hart Hart	H. C. H. C.	5770, 203 5751, 43 5751, 43 5751, 43 5751, 43 5751, 43 5750, 20 545 545 5713, 40 5713, 40 5713, 40	Jacobsen. B. S. 6 24, 74, Fitter, Kolmen, and Jilke. J. 20, 70 Jenara. Ann. J. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. Ben. J. 20, Jacobsen. B. S. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6, Jacobsen. B. C. 6,
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	czene	H. C. H. H _a C. H. H _b C. H. H _b C. H. H _b C. H. H _b C. H. H _b C. H. H _b C. H.	H. C. H. C.	5770, 203 5751, 43 5751, 43 5751, 43 5751, 43 5751, 43 5750, 20 545 545 5713, 40 5713, 40 5713, 40	Jacobsen. B. S. 6 24, 74, Fitter, Koltrich, and Jilke. J. 20, 70 Jenard. Ann. J. Lappmannen, Lec- gunne, J. 20, 36 Dairer, M. J. 54 Lesner, Ber. 14, 258 Seneration. 218, 89, Tollens and Fitting A. C. 2, 91, 30, Paterno and Spice Jer. O. 746, Seneramm. A. C. 1 218, 391, Bigot and Fitting 20, 367, Senweinitz, Ber. 1, 42, Ahrens, Ber. 1, 34, 74, Ahrens, Ber. 1, 35, 75, Senweinitz, Ber. 1, 42, Ahrens, Ber. 1, 18, 191, Ber. 1, 18, 191, 191, 196, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 196, 197, Senweinitz, Ber. 1, 197, 197, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1, Senweinitz, Ber. 1
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	czene	H. C. H. H. C.	H. C. H. C.	576, 20° 5771, 0° 5771, 0° 5771, 0° 5771, 0° 578, 0° 568, 0°	Jacobsen. B. S. 6 24, 74, Fitter, Koltrein, an Jilke. J. 20, 70 Jenara. Ann. J. Lappmannena, Lectronica. Lectroni
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	czene	H. C. H. H. C.	H. C. H. C.	5770, 203 5771, 423 5771, 423 5771, 424 5771, 425 5771, 425 5771, 426 5771, 427	Jacobsen. B. S. 624, 74, 74, 74, 74, 74, 74, 74, 74, 74, 7
Lethyidiethyibe Dmethyipropyil Letasthyipropyi	czene	H. C. H. H. C.	H. C. H. C.	5770, 203 5771, 423 5771, 423 5771, 424 5771, 425 5771, 425 5771, 426 5771, 427	Jacobsen. B. S. 624, 74, 74, 74, 74, 74, 74, 74, 74, 74, 7

5th. Miscellaneous Aromatic Hydrocarbons.

Name.		Fors	IULA.	Sp. Gravity.	Authority.
Allylbenzene		C ₆ H ₅ . C ₃	Н ₅	.9180, 15°	Perkin C. N. 36, 211.
Isopropylvin Isopropylally Isopropylbut	ylbenzene lbenzene enylbenzene	C ₆ H ₄ . C ₃ C ₆ H ₄ . C ₃ C ₅ H ₄ . C ₅	П ₇ . С ₂ Н ₈ ¬ Н ₇ . С ₃ Н ₅ − Н ₇ . С. Н ₇ .	.8902, 15° .890, 15° .8875, 15° .94658, 0°	11 12 11 12
Phenylacetyl	ene	C, H. C,	H ₅	.94658, 0° .80832, 141°.6. .9295, 20°	Weger. A. C. P. 221, 61. Brühl. A. C. P.
Ethylphenyl	acetylene	С2. С2 Н5.		.923, 21°	235, 1.
Cinnamene.	(Styrolene)			.928, 15°	E. Kopp. J. P. C. 37, 283.
"	. 16	"		.924	Blythand Hofmann. A. C. P. 53, 294.
"	"	"		.876 } 16° { .912, 15°	Scharling. A. C. P. 97, 186. Perkin. J. C. S. 82,
"	"	"		.911)	660.
44 44	" "	"		.915 } 0° }	From different sources. Krakau. Ber. 11, 1260.
44	"	"			Schiff. G. C. I. 13,
"		"		.9251, 0°) .7914, 146°.2 }	177. Weger. A. C. P. 221, 61.
"	u,	"			Nasini and Bern- heimer. G. C. I.
16 14		"			15, 50. Gladstone. J. C. S. 45, 241.
 Matariana	"	(C.B.)		.9074, 20°	Brühl. A. C. P. 235, 1.
		ł		1.054, 18° }	Scharling. A. C. P. 97, 186. Erdmann. A. C. P.
				1.016, 15° } .9015, 15°.5	216, 189. Aronheim. B. S. C.
Phenylpenty Phenylisope	vlene ntylene	C ₅ H ₉ . C ₆	H ₅	.8864, 12°.1 .8458, 28° .878, 16°	19, 258. Nasini. Bei. 9, 831. Dafert. M. C. 4, 625. Schramm. A. C. P.
		1		1.179 }	218, 394.
Phenyltolyle	ethane	C ₃ H ₄ . C ₆	Н ₅ . С, Н,	.98	Bandrowski. B. S. C. 23, 79.
-				.974, 20°	Anschütz. A. C. P. 235, 315.
Dixylyletha	ne	C, H, (C	H ₉) ₂	.966, 20°	Anschütz. A. C. P. 285, 826.

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Diphenylpropane	C ₃ H ₆ (C ₆ H ₅) ₂ C ₇ H ₁₂	.9956,0° }	Silva. Ber. 12, 2270.
Tetrahydrotoluene	C, H ₁₂	.797, 18°	Renard. Ann. (6), 1, 223.
Tetrahydroxylene	C ₈ H ₁₄	.814, 0°	Wreden. A. C. P. 163, 387.
"	"	.8158	Renard. Ann. (6), 1, 223.
Hexhydrobenzene	C ₆ H ₁₂	.76, 0°	Wreden. J. R. C. 5, 350.
Hexhydrotoluene	C, H,	.772, 0° }	Wreden. Ber. 10,
	"	.742, 200	Renard. Ann. (6), 1, 223.
"	"	.7741, 0° }	Lossen and Zander.
	"	.6896, 960.5	A. C. P. 225, 109.
Hexhydroxylene. (B. 137°.6.)	C ₈ H ₁₆	.7956, 46	Schiff. Ber. 13, 1407.
" (B. 121°.5)_	"	.764, 19°	Renard. Ann. (6), 1, 228.
Hexhydroisoxylene. (B. 118°)_	"	.781, 0° }	Wreden. Ber. 10,
"	"	.777, 0°	Wreden. J. C. S. (2), 12, 258.
	"	.7814, 0°)	(2), 12, 200.
"	"	.7665, 19°.3	Lossen and Zander.
"	"	.6781, 118°)	A. C. P. 225, 109.
Hexhydrocumene	C ₉ H ₁₈	.787, 20°	Renard. Ann. (6), 1, 223.
Hexhydropseudocumene	11	.7812, 0° }	Konowaloff. Ber. 20, ref. 571.
Hexhydrocymene	C ₁₀ H ₂₀	.8116, 17°	Renard. Ann. (6), 1, 223.
β. Benzylene	C ₇ H ₆	1.106, 35°	Gladstone and Tribe. J. C. S. 47, 448.
Diphenyl	C ₁₂ H ₁₀	1.160 }	Schröder. Ber. 14, 2516.
"	"	.9961, 70°.5	Schiff. A. C. P. 228, 247.
Triphenylbenzene	C ₆ H ₃ (C ₆ H ₅) ₃	1.205 }	Schröder. Ber. 14, 2516.
Phenyltoluene	C ₆ H ₄ . CH ₃ . C ₆ H ₅ . 1.4	1.015, 27°	Carnelley. J. C. S. (2), 14, 18.
Benzylethylbenzene Metabenzyltoluene	C ₆ H ₄ . C ₂ H ₅ . C ₇ H ₇ . 1.4 C ₆ H ₄ . CH ₃ . C ₇ H ₇ . 1.3	.985, 18°.9 .997,.17°.5	Walker. Ber. 5, 686. Senff. A. C. P. 220, 223.
Parabenzyltoluene	" 1.4	.995, 17°.5	Zincke. A. C. P. 161, 93.
Dibenzyltoluene	C ₆ H ₃ . C H ₃ (C ₇ H ₇) ₂ -	1.049	Weber and Zincke. J. C. S. (2), 13, 155.
Phenylxylene	C ₆ H ₃ (C H ₃) ₂ C ₆ H ₅ -	1.01, 0°	Barbier. J. C. S. (2), 13, 133.
Benzylcymene	C ₁₀ H ₁₃ . C ₇ H ₇	.987, 0°	Mazzara. Ber. 12, 384.
Dipentenylbenzene Benzylidenetolylene?	C ₂₂ H ₂₈	.9601, 23° 1.0032, 18°	Dafert. M. C. 4, 625. Lippmann. Ber. 19, ref. 744.
10		•	

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ditolyl	C ₁₄ H ₁₄	.9172, 121°	Schiff. A. C. P. 223, 247.
Dibenzyl	"	1.002, 14°	Limpricht. J. 19, 593.
"	"	.9945, 10°.5	Fittig. A. C. P. 139, 178.
"	"	1.0423, 52°.3	Schiff. A. C. P. 223, 247.
Dixylylene	C ₁₆ H ₁₆	.9984, 22°	Lippmann. Ber. 19, ref. 744.
Naphthalene. l	C ₁₀ H ₈	.9774, 79°.2	Kopp. A. C. P. 95, 307.
11 11	"	.9628, 99°.2 1.15173, 19°	Alluard. J. 12, 472. Vohl.
	"	1.153, 18°	Watts' Dictionary.
"	"	1 049	Ure. Gm. H.
" "	"	1.321 1.341 4°{	Schröder. Ber. 12,
" "	"	1.841 } 4 {	1611. ´
" 1	"	.8779, 218°	Ramsay. J. C. S. 39, 65.
" "	"	.9777, 79°.2	Schiff. A. C. P. 223, 247.
" "	"	.982, 79° }	Lossen and Zander.
" "	"	.8674, 217°.1	A. C. P. 225, 109.
" " <u></u>	"	.96208, 98°.4	Nasini and Bern- heimer. G. C. I. 15, 50.
Methylnaphthalene	C ₁₀ H ₇ . C H ₃		Fittig and Remsen. A. C. P. 155, 114.
"	"	1.0042, 22°	Reingruber. A. C. P. 206, 876.
Dimethylnaphthalene			42, 853.
"	· · · · · · · · · · · · · · · · · · ·		Cannizzaro and Carnelutti. J.C.
"	"	1.10199, 12°	S. 44, 80.
"		1 01803 169 4) Nasini and Bern-
"	"	1.01803, 16°.4_ 1.01058, 27°.7_	beimer. G. C. I.
"	"		15, 50.
Ethylnaphthalene	C ₁₀ H ₇ . C ₂ H ₅	1.0184, 10°	Fittig and Remsen. A. C. P. 155, 118.
"	"	1.0204, 0° }	Carnelutti. Ber. 13,
"	"	1.0123, 110.9	1672.
Isopropylnaphthalene	l	.990, 0°	Roux. Ann. (6), 12,
Amylnaphthalene		ł	Roux. Ann. (6), 12, 821.
Naphthalene tetrahydride		1	Graebe. B. S. C. 18, 205.
" "	"	i	Wreden and Znato- wicz. Ber. 9, 1607.
Naphthalene hexhydride	C. H. H.	.952. 00	11 11
"	010 == 8.	.9419, 0° }	Lossen and Zander.
" "	66	.7809, 2000	A. C. P. 225, 109.
	44	.94887, 16°.4)	Nasini and Bern- heimer. Two
	"	.95807, 18°.4	samples. G.C.I
••	,	1.555, 20 .2)	15, 50.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Naphthalene octohydride.	C ₁₀ H ₈ . H ₈	.910, 0°	Wreden and Znato- wicz. Ber. 9, 1607.
Naphthalene decahydride Naphthalene dodecahy- dride.	C ₁₀ H ₈ . H ₁₀	.857, 0° .802, 0°	" " "
Dimethylnaphthalene hexhydride.	C ₁₂ H ₁₂ . H ₆	.92194, 19°.8	Nasini and Bern- heimer. G. C. I. 15, 50,
a. Benzylnaphthalene	C ₁₀ H ₇ , C ₇ H ₇	1.166 1.165, 0°	Miquel. Ber. 9, 1034. Vincent and Roux. B. S. C. 40, 163.
β. Benzylnaphthalene Acenaphtene	C ₁₀ H ₆ . C ₂ H ₄	1.176, 0° 1.0300, 103°	" "
Anthracene	C ₁₄ H ₁₀	1.147	Reichenbach. Watts' Dict.
Phenanthrene	"	1.0630, 100°.5	Schiff. A. C. P. 223, 247.
Phenanthrene tetrahy- dride.	C ₁₄ H ₁₀ . H ₄	1.067, 10°.2	Graebe. J. C. S. (2), 14, 70.
Stilbene	C ₁₄ H ₁₂	.9707, 119°.2	Schiff. A. C. P. 228, 247.
Retene. Solid	4	1.132 \ 16°	Ekstrand. A. C. P. 185, 78.

6th. Terpenes.

Name.		Formula.		SP. GRAVITY		AUTHORITY.		
Oil of	turpenti	ne	C ₁₀ H	16	.8902,	0°	Frankenl 68.	neim. J.1,
"			"		.8555		Four diff	erent sam-
"	"		"			200		Gladstone.
	"		"			1 1	J. C. S.	
	"		"				0.0.0	,
"	"	B. 168°.2	"		.7283,	168°.2	Schiff. I	Bei. 9, 559.
From liæ.	A bies Reg	inæ-Ama-	"		.868 _		Buchner J. 17, 5	and Theil.
From .	Pinus abi	es	"		.856, 2	200	Wöhler.	Gm. H.
	" "		"			5°	Blanchet Gm. H.	and Sell.
From :	Pinus ma	ritima	**		.864, 1	60	Berthelot	J. 6, 519.
		B. 179°.3	"			00)	Flawitzk	y. Ber. 12,
"			"			200 }	2357.	,,
From :	Pinus pic	ea	"					J. 8,643.

		SP. GRAVITY.	AUTHORITY. Buchner. J. 13, 479	
From Pinus pumilio	C ₁₀ H ₁₆	.875, 17°		
From Pinus sylvestris. B. 171°.	10 1116	.86529, 15°	Tilden. J. C. S. 33 80.	
" B. 156°.	41	.8746, 00)	77	
11 11 11 11	11	.8621. 16° }	Flawitzky. Ber. 11	
11 11 11 11	0	.8547, 24°.5	1846.	
11 11 11	47	.8764, 0°)	Flawitzky, Ber. 20	
11 11 11	16	.8600, 20° }	1956.	
Terpene ?	44	.7421 1560.1	(Schiff. G. C. I. 13	
"	44	.7422 1001	177.	
" ?	"	.8587, 20°	Kanonnikoff. Bei 7, 592.	
"	* :::::::::::::::::::::::::::::::::::::	.8711, 10°.2	Gladstone. J. C. S 49, 623.	
Isoterpene	16	.8443, 20°	Kanonnikoff. Bei 7, 592.	
16	44	. 8627, 00 }	Flawitzky. Ber. 20	
	4	.8480, 20° }	1961.	
Thuja terpene. B. 160°	11	.852, 150	Jahns. Ber. 16, 2930	
From Sequoia. B. 155°	"	.8522, 15°	Lunge and Stein kauler. Ber. 14 2204.	
m 121 D 1040	11	.843	Watts' Dictionary.	
Ferebilene. B. 134° Australene. B. 157°	"	,8631, 16°	Atterberg. Ber. 10	
Terebenthene. B. 157°	"	871, 17°.5	1203. Atterberg. Ber. 14 2531.	
	44	.8767, 00)	2000	
11		.8601, 200		
	"	.8436, 400	Piles P.C.O.	
**	4	.8270, 600 [Riban. B. S. C. 21	
	11	.8105, 80°	110.	
14	11	7939, 100°		
11	**	.8812, 00)		
	**	.8815, 0° }	Barbier. C. R. 96	
	**	.8724, 120	1066.	
" From camphor oil_	"	.8641, 15°	Yoshida. J. C. S 47, 779.	
Terebene	11	.8718	Pierre. J. 4, 52.	
(1	44	.8645, 50-100)	
a	41	.8605, 10°-15°.	Regnault. P. A	
	64	.8564, 15°-20°-	62, 50.	
и В. 160°	"	.8583, 20°	Gladstone. J. C. S 17, 1.	
		.8767, 00)	211.51	
	44	.8600, 20°		
"	**	.8433, 400	Diben D C C at	
	11	.8267, 600 [Riban. B. S. C. 21	
11	"	.8100, 80°	173.	
16	"	. 7938, 100°	The state of the same	
" B. 156°	"	.8264, 15°	Orlowsky. B. S. C 21, 821.	
Isoterebenthene. B. 175°-		.8482, 220	Berthelot. J. 6, 528	
	11	.8586, 00]	777 7 7 7 7 7	
**	"	.8427, 20°.28	Diben C P to ota	
"	4	.8273, 40°.19	Riban. C. R. 79, 314	
10	"	.8131, 58°.32 .7964, 79°.24		

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Isoterebenthene Terpilene. Laevorotatory_	C _{10,} H ₁₆	.7798, 100° .8672, 0°	Riban. C. R.79, 314. Bouchardat and La-	
Terpinylene. B. 177° Terpinene. B. 178	"	.8526, 15° .93, 0°	font. C. R. 102, 50. Tilden. C. N. 37, 166. Walitzky. Ber. 15, 1086.	
"	"	.855	Wallach. A. C. P. 280, 260.	
Sylvestrene. B. 175°		.8612, 16°	Atterberg. Ber. 10, 1206.	
	"	.8598, 17°.5	Atterberg. Ber. 14, 2531.	
"	"	.8658, 14°	Gladstone. Bei. 9, 249.	
Austrapyrolene. B. 177° From oil of neroli. B. 173°_	"	.847 .8466, 20°	Watts' Dictionary. Gladstone. J. C. S. 17, 1.	
From oil of orange	"	.835	Soubeiran and Capi- taine.	
" " B.174°	"	.8460 } 20° {	Gladstone. J. C. S. 17, 1.	
From oil of petit grain From Citrus lumia	"	.8470, 20° .858, 18°	Luca. J. 13, 479.	
From Citrus bigaradia		.8520, 10° {	Luca. C. R. 45, 904.	
" " "	66	.8517, 12° }	· ·	
From Citrus medica	"	.8514, 15° .8466, 20°	Berthelot. J. 6, 521. Gladstone. J. C. S. 17, 1.	
Oil of citron	"	.8597, 5°—10°) '	
" "	"	.8558, 10°—15° .8518, 15°—20°	Regnault. P. A. 62, 50.	
Citron terpene	44	9509)	02, 00.	
44 44 .	"	.8595 }		
" "	"	.7279	Schiff. Ber. 19, 560.	
11 11	"	.7285 \ 168° \ 7286		
From oil of lemon	**	.84)	77.11 . 377.44 1 757.4	
e: e: ::	"	8g }	Zeller. Watts' Dict.	
<i>u u u</i>	"	.8380 .8661 0° {	Frankenheim. Two	
" " B.173°		.8661 } { .8468, 20°	samples. J. 1, 68. Gladstone. J. C. S.	
Citrene. B. 165°	"	.8569	17, 1. Blanchet and Sell. Gm. H.	
From oil of bergamot	"	.856	Ohme. A. C. P. 31, 316.	
"""	"	.8464 } 20° {	Gladstone. J. C. S.	
## ## ##	"	.0200)	17, 1.	
Hesperidene	"	.8483	Gludstone. Bei. 9, 249.	
From oil of angelica	"	.8487	Müller. Ber. 14, 2483.	
" " B. 175°	"	.833, 0°	Naudin. Ber. 15, 254.	
" " B. 158°	"	.8609)	Beilstein and Wie-	
" " B. 173°	"	.8504 \ 16°.5 \	gand. Ber. 15,	
4 " B. 176°	"	.8481) (1741.	
ı	'	i		

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
β Terebangeline. B. 166	C ₁₀ H ₁₆	.870, 0°	Naudin. C. R. 96, 1153.
From oil of anise	"	.8580, 20°	Gladstone. J. C. S. 17, 1.
From oil of bay	и	.908, 15° .8508, 20°	Blas. J. 18, 569. Gladstone. J. C. S. 17, 1.
From oil of birch tar	"	.870, 20°	Sobrero. Watts' Dict.
From oil of calamus	"	.8793, 0°	Kurbatow. A. C. P. 173, 1.
From oil of camphor		.8733, 200	Yoshida. J. C. S. 47, 779.
From oil of caraway	"	.8466, 200	Gladstone. J. C. S. 17, 1.
Carvene	££	.861, 15°	Võlckel. J. 6, 512. Gladstone. J. C. S.
.,	44	.8530 } 20° {	17, 1.
11	· ·	.8530, 9°.8	1
44	44	.7127)	Sales C C T 16
"	"	.7132 \ 186°.5	Schiff. G. C. I. 18,
44	**	.7133)] 177.
	"	.8529, 20°	Kanonnikoff. Bei. 7, 592.
"	"	.849, 15°	Flückiger. Ber. 17, ref. 358.
From oil of cascarilla		.8467, 20°	Gladstone. J. C. S. 17, 1.
From oil of copal	"		Schibler. J. 12, 516.
From oil of cummin	"	.8772. 0°)	Warren. J. 18, 515.
	"		
From oil of dill		,	Gladstone. J. C. S. 17, 1.
From oil of elder	"	.8468, 20°	T
From elemi			Deville. J. 2, 448.
	"	.852, 24°	Stenhouse. A. C. P. 35, 304.
From oil of erechthidis		.8380, 18°.5	Beilstein and Wiegand. Ber. 15, 2854.
From oil of Erigeron canadense.	"	.8464, 18°	" "
From Eucalyptus amyg- dalina.	66	.8642, 20°	Gladstone. J. C. S. 17, 1.
From oil galbanum	"	.8842, 90	Mössmer. J. 14, 687.
From Illicium religiosum.	46	.855	Eykmann. Ber. 14, 1721.
From kauri gum	"	.863, 18°	
From laurel turpentine	"	.8618, 20°	
From oil of marjoram		. <mark>84</mark> 63, 18°.5	
From oil of mint	. "	.8600, 20°	
16 16 <u></u>	"	.8646, 17°.3	Gladstone. J. C. S. 49, 623.

		T T	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
From oil of peppermint	C ₁₀ H ₁₆	.8602, 20°	Gladstone. J. C. S. 17, 1.
From menthol. B. 168.°6.	"	.8254, 0°]	,
	"	.8178, 10°	Adhinan and W
" "	"	.8111, 20°	Atkinson and Yo- shida. J. C. S. 41,
"	"	.7924, 600	49.
From oil of myrtle	"	.8690, 200	Gladstone. J. C. S. 17, 1.
From oil of nutmeg	"	.8518) 200	41 11
" " <u>B.167</u> °_	"	1.8527	1
" " B.164°_	"	.8454, 25° }	Gladstone. Bei. 9,
D.110 _		.8480, 27° }	249.
From oil of parsley		,	Gladstone. J. C. S.
From oil of parsnip		.865, 120	Gerichten. Ber. 9, 259.
From Ptychotis ajowan From oil of rosemary	"	.854, 12° .8805, 20°	Stenhouse. J. 9,624. Gladstone. J. C. S.
From oil of sage. B. 155°-	44	.8635*) (17, 1. Three isomers. Sigi-
" " B. 167°.	"	.8866 } 15° }	ura and Muir. J.
" " B. 165°	"	.8653	C. S. 88, 292.
" " B. 170°_	"	.8658 } 150 }	Muir. J. C. S. 37,
	"	(1000.	682.
" " "	"	.8682, 24°.5	Gladstone. J. C. S.
From Satureja hortensis From oil of thyme		.855, 15° .8685, 20°	49, 623. Jahns. Ber. 15, 819. Gladstone. J. C. S.
Thymene	"	.868, 20°	17, 1. Lallemand. J. 9, 616.
"	"	.8685, 20°	Kanonnikoff. Bei. 7, 592.
From oil of wormwood	"	.8565, 20°	Gladstone. J. C. S. 17, 1.
Cajeputene. B. 165°	"	.850, 15°	Schmidl. J. 13, 481.
Isocajeputene. B. 177°	"	.850, 15° .857, 16°	Schmidl. J. 13, 482.
Camphene	"	.8 4 81, 4 7°.7	•
··		.8387, 58°.9	Riban. B. S. C.
66	"	.8211, 79°.7	24, 9.
"	"	.8062, 97°.7 .8345, 99°.84	Spitzer. Ber. 11,
Camphilene	16	.87	1815. Watts' Dictionary.
Cantchin	11	.855, 0°)	Bouchardat. B. S.
"	"	.842. 200	C. 24, 109.
"	"	.842, 200	Williams. J. 13, 495.
Cicutene	44	.87038, 18°	Van Ankum. J. 21, 794.
Cinaëbene	"	.878	
Cynene. B. 174°.5	"	.825, 16°	Hirzel. J. 7, 592. Völckel. A. C. P. 89, 358.
"	"	.8500, 15°)	,
"	"		Hell and Stürcke.
, "	(.7851, 100°)	Ber. 17, 1972.

^{*} Misprinted 0.8435. Corrected in later paper.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Cynene. B. 182°	C ₁₀ H ₁₆	.85384, 16°	Wallach and Brass. A. C. P. 225, 291.
From cyneol. B. 179°	"	.85652)	44 44
Fellandrene	"	.85959 } .8558, 10°	Pesci. G. C. I. 16, 225.
Gaultherilene	"	.8510, 20°	Gladstone. J. C. S. 17, 1.
Geraniene	"	.842 .843 20• {	Jacobsen. Z. C. 14, 171.
Licarene	٠٠	.835, 18°	Morin. J. C. S. 42,
MaceneOlibene	"	.8529, 17°.5 .863, 12°	787. Schacht. J. 15, 461. Kurbatow. Z. C. 14,
Safrene	"	.8345, 0°	201. Grimaux and Ru- otte. J. 22, 783.
Tolene Polymer of isoprene		.858, 10° }	E. Kopp. J. 1, 737. Bouchardat. Ber. 8,
" "	"	.854, 21° } .886, 15°	904.
From oil of calamus	C ₁₅ , H ₂₄	.9180 } 20° {	Gladstone. J. C. S. 17, 1.
	44,	.942, 0°	Kurbatow. A. C. P.
From oil of cascarilla	"	.9212, 20°	173, 1. Gladstone. J. C. S.
From oil of cedar	"	.9231, 18°	17, 1. Gladstone. Bei. 9, 249.
From oil of cloves	"	.918, 18°	Ettling. Watts' Dict.
" " "	"	.9016, 14° .9041, 20°	Williams. J. 11, 442.
	"	.9041, 20	Gladstone. J. C. S.
From oil of copaiva	"	.91	Church. J. C. S. (2), 13, 115. Posselt. J. 2, 455.
« « î.	"	.881 }	Soubeirun and Cap-
	ιι 	.885 { .8978, 24°	itaine. Gm. H.
From oil of cubebs	"	.915)	Levy. Ber. 18, 8206.
	"	.930 }	Schmidt.
11 11 11	"	.938) .9062, 20°	Gladstone. J. C. S.
	"	.9289, 0°	17, 1. Oglialore. Ber. 8,
Cedrene	"	.984, 14°.5	1857. Walter. Ann. (3), 1,501.
"	"	.915, 15° .9281, 18°	Muir. J. C. S. 37, 13. Gladstone. J. C. S.
From Drybalanops cam-	"	.900) 000 ((2), 10, 1. Lallemand. J. 12,
phora. "		$\begin{bmatrix} .900 \\ .921 \end{bmatrix}$ 20° $\{$	503.
From gurgun balsam From oil of hemp	44	.9044, 15° .9292, 0°	Werner. J. 15, 461. Valente. J. C. S. 40,
From Laurus nobilis	"	.925, 15°	284. Blos. J. 18, 569.

NAME.	Formula.	Sp. Gravity.	Authority.
From Ledum palustre """ From maracaibo balsam Metatemplene From Myrtus pimenta From oil of patchouli """ """ """ """ """ """ ""	C ₁₅ H ₂₄	.9349, 0°} .9287, 19°} .921, 10° 1.087, 4°98, 8°9211 .9255 } 20° { .9278 .946, 0°}	Rizza. Ber. 20, ref. 562. Strauss. J. 21, 795. Flückiger. J. 8, 646. Oeser. J. 17, 534. Gladstone. J. C. S. 17, 1. Montgolfier. Ber.
From oil of rosewood	66	.937, 18°.5 } .9042, 20°	10, 234. Gladstone. J. C. S.
From oil of sage "" "" "" From oil of sandal wood . Sesquiterpene From oil of vitivert From copaiva oil	" " " " C ₂₀ H ₃₂	.9072, 24° .8970, 41° .9190 .921, 16°	(2) 10 1
From minjak-lagam oil From oil of poplar		.9002	1387.
From tar-cumene		.8850, 22°	6, 4. Jacobsen. A. C. P.
Diterebene Metaterebenthene Colophene	"	.9391, 20°	Gladstone. J. C. S. 17, 1. Deville. P. A. 51,
Difellandrene	"	.9523, 10°	439. Pesci. G. C. I. 16,
Heveéne	"	.921, 21°	225. Bouchardat. A. C. P. 37, 30.
Tetraterebenthene	C ₄₀ H ₆₄ ?	.977, 0°	Riban. C. R. 79, 391.

7th. Unclassified Hydrocarbons.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Heptanaphtene*	C ₇ H ₁₄	.7778, 0° }	Milkowsky. Ber. 18, ref. 186.
Octonaphtene	C ₈ H ₁₆	.7649, 0° } .7503, 18° }	Markownikoff. Ber. 18, ref. 186.
Isooctonaphtene	"	.7765 0° }	Putochin. Ber. 18,
Nononaphtene	"	.7687, 17°.5) .7808, 0°	ref. 186. Markownikoff and
-			Ogloblin. Ber. 16, 1877.
"	"	.7808, 0° }	Konowaloff. Ber. 18, ref. 186.
Dekanaphtene	C ₁₀ H ₂₀	.795, 0°	Markownikoff and Ogloblin. Ber. 16, 1877.
Endekanaphtene	C ₁₁ H ₂₂	.8119, 00	46 46
Dodekanaphtene Tetradekanaphtene	C ₁₂ H ₂₄	.8055, 14°	"
Tetradekanaphtene	C ₁₄ H ₂₈	.8890, 0°	
Pentadekanaphtene Nononaphtylene	C ₁₅ H ₃₀	.8068, 0°	Konowaloff. Ber.
Menthene	C ₁₀ H ₁₈	.851, 21°	18, ref. 186. Walter. A. C. P. 32, 288.
	"	.814, 15°	
4	"	.8226, 0°) .8145, 10°)	,
	"	.8073, 20° }	Atkinson and Yo-
"	"	.7909, 40°]	shida. J. C. S.
16	"	.7761, 60°]	41, 49.
From oil of calamus	Ì	.8798, 0°	Kurbatow. J. C. S. (2), 12, 259.
From turpentine chlorhy-drate.		•	Montgolfler. Ber. 12, 876.
Cymhydrene		1	Gladstone. J. C. S. 49, 616.
Terpilene hydride	44	.8060. 17°.5	Montgolfler. C. R. 89, 103.
Ethyl camphene			Spitzer. Ber. 11, 1817.
Isobutyl camphene	1	l .	Spitzer. Ber. 11, 1818.
Camphin			Claus. J. P. C. 25, 269.
Diterebenthyl		1	Renard. C. R. 105, 866.
Diterebenthylene		l .	1 856.
Dicamphene hydride	C ₂₀ H ₃₄	.9574, 19°	Montgolfler. C. R. 87, 840.

^{*}According to Konowaloff, the "naphtenes" are identical with the hexhydrides of the benzene series.

Name.	Formula.	Sp. Gravity.	Authority.
Didecene	C ₂₀ H ₃₆	.9862, 12°	Renard. C. R. 106, 1086.
Caoutchene	C ₄ H ₈	.65, —2°	Bouchardat. A. C. P. 87, 80.
Tropilidene	C, H8	.9129, 0°	Ladenburg. A. C, P. 217, 188.
From copper camphorate_	C ₈ H ₁₄	.798	Moitessier. J. 19, 410.
From decomposition of phenol.	C ₁₀ H ₁₂	1.012, 17°.5, s.	
Eucalyptene	C ₁₂ H ₁₈	.836, 12° .942, 15°	Cloëz. J. 23, 588. Naudin. B. S. C. 41,
PuraniceneLekene	C ₁₀ H ₁₂ ?	1.24 .98917	gand. Ber. 16,
Könlite	(C ₆ H ₆) _n	.88	1548. Trommsdorf. A. C.
Hartite	(C ₃ H ₅) _n	1.046	P. 21, 126. Haidinger. P. A.
From petroleum	(C, H ₄) _n	1.096, 15°	
Carbopetrocene	$\left(\left(\mathrm{C_{10}H_2} \right)_{\mathrm{n}} \mathrm{or} \left(\mathrm{C_{12}H_2} \right)_{\mathrm{n}^-} \right)$	1.285, 10°	17, 5.

XLVI. COMPOUNDS CONTAINING C, H, AND O.

1st. Alcohols of the Paraffin Series.

					 		
	NAM	ſE.		FORMULA.	Sp. GRAVITY.	Authority.	
Methyl alcohol			С Н4 О		.798, 20°	Dumas and Peligot.	
"	"		"		.807, 9°	Ann. (2), 58, 5. Deville.	
**	"				.813		
"	"		"		.82704, 0°	Pierre. Ann. (8), 15, 325.	
"	"		"		.7938, 25°	Kopp. A. C. P. 55, 166.	
"	44		"		.81796, 0°)		
66	"		"		.80307, 16°.9	Kopp. P. A. 72, 53.	
44	"		"		.8065, 15°	Mendelejeff. J. 13,7.	
44	"		"				
44	"		"			Kopp. A. C. P. 94,	
44	"		"		.7997, 16°.4	257.	
46	"		"		.7978, 150		
44	"		"		.7995, 15°	Duclaux. Ann. (5), 18, 86.	
"	"		"		.8574, 21°	Linnemann. J. 21, 681.	
"	"		"	•	.81571, 10°	Dupré. P. A. 148, 286.	
"	"		"		.7964, 200		

NAME.			FORMULA.	SP. GRAVITY.	AUTHORITY.		
Methyl alcohol			С Н, О		.7997, 15°	Grodzki and Krā- mer. Z. A. C. 14	
44	44		61	***********	.7984, 15°	103. Krämer and Grod- zki. Ber. 9, 1929.	
**	**		84		.8098, 0°	Vincentand Delach- anal. J. 1880, 896.	
44	25		14		.8014, 140	De Heen. Bei. 5, 105.	
44	44		11		.7475 610.8	(Schiff. G. U. I. 13,	
44	64	-	61		.7477 610.8-	1 177.	
14	44		61		.7953, 200	Brühl. Bei. 4, 781.	
14	64			********	.8111, 00)	Zander. A. C. P.	
44	44		2.6		.7483, 66°.2	224, 88.	
**	**		н		.810, 15°	Regnault and Ville- jean. C. R. 99, 82.	
u	**	***********	11	**********	.7961, 18°	Gladstone. Bei. 9, 249.	
44	**				.7923, 20°	Winkelmann, P. A. (2), 26, 105.	
**	44		44		.7931, 200	Traube. Ber. 19, 879.	
44	**		84		.8612, 0°	Pagliani and Bat- telli. Bei. 10, 222.	
44	44		2.2	- source of the section	.78909, 22°.94	Values given for	
44	64		4.0		.7185, 100°	every 10° from 80°	
44	64		66		.6494, 150°	to 238°.5. Ramsay	
44	4.6		44		.5525, 200°		
44	44	********	66		.3642, 238°.5	and Young. P.T.	
Ethyl a		4	C. H.		.7924, 17°.9	J 178, 313.	
Azemyr a	i conor		2116	V		Gay Lussac.	
	**			************	.7915, 18°	P. A. 12, 93.	
44	44		44		.8095, 0°	Darling.	
		*********			.7996, 15°	Kopp. A. C. P. 55, 166.	
14	44	********	11		.8150, 5°-10°)	
**	**	********	44	***************************************	.8113, 10°—15°	Regnault. P. A.	
44	**	*********	61	**********	.8072, 15°-20°) 62, 50.	
44	44	******	44	*********	.81087 00]		
44	**	********	86		.8095	V D . 20 co	
6.6	41		61		.79821, 140	Kopp. P. A. 72, 62,	
- 64	64		66		.7990, 14°.8		
44	**	*********	**	***************************************	.8151, 0°	Pierre. Ann. (3), 15, 325.	
44	46		24		.7938, 15°.5	Fownes, P. T. 1847, 249,	
44	**	200000000000000000000000000000000000000	- 44	TELESCOCIA SOUR	.7897) 210 (Wackenroder. J. 1,	
44	44		14		.7905 21°	682.	
44	44		**		.79381, 15°.6	Drinkwater. J. 1,	
	**		11	12222222		682.	
44	**		44		.809, 50	Delffs. J. 7, 26.	
		******	36	**********	.8194, 19°	Wetherill. J. P. C. 60, 202.	
44	44		46		.7947, 150	Pouillet. J. 12, 439.	
44	16		44		.7958, 15°	Mendelejeff. J. 13, 7.	
*+	66		44		.8083, 00)	Mendelejeff. J. 14,	
4.6	4.6		11	***********	.7157, 990.9	20.	

[•] For this compound there are so many determinations of specific gravity that absolute completeness with regard to them has not been attempted by the compiler.

Name.				Formula.	Sp. GRAVITY.	Authority.
F 'hyl	alcohol	l	C, H	,00	.6796, 130°.9	Mendelejeff. J. 14,
14	"		"		.7946 } 150 {	Baumhauer. J. 13,
14	44		"		(1461)	898.
14	"				.80625, 0°)	
14	"				.80207, 5°	1
14	"		"		79788, 100	M 3 -1 -1 - 6
14			"		.79367, 15° .78945, 20°	Mendelejeff. J. 18, 469.
• 6			٠.		.78522, 25°	409.
"	44		"		.78096, 30°	1
44	"		4.6		.8086, 19°	Linnemann. J. 21,
"	"		"			418.
					.8090, 17°	Linnemann. A.C.P. 160, 195.
"	"				.822, 20°	Pierre and Puchot. Ann. (4), 22, 260.
"	"		"		.79481, 11°	Erlenmeyer. A.C.P. 162, 874.
4.6	"				.815, 0° 5° }	Pierre. C. N. 27, 98.
44	"		"		.80214,1 }	l ·
4.	"		"		.7946, 16°.03	Winkelmann. P. A. 150, 592.
"	"		"		.7339, 78°	Ramsey. J. C. S. 35,
**	"		• •		.8120, 0°	Vincent and Dela- chanal. J. 1880, 396.
"	"		"		.7995, 14°	De Heen. Bei. 5, 105.
44	44		"		.8019, 20° }	Bedson and Wil-
"	**		"		.7976, 25° }	liams. Ber. 14, 2550.
"	"		"		.7381) 500 0	2000.
44	44		"		.7382 78°.2.	Davim a a z sa
"	"		4.4		7409 1	Schiff. G. C. I. 13,
"	44		+ 4		.7402 \ .78°.3.) 177.
"	"		. "		.7968, 20°	Nasini. G. C. I. 13, 135.
**	"		**		.8000, 20°	Brühl. Bei. 4, 781.
4.6	**		4.		.79603,17°.86	Also intermediate values. Drecker.
**	"		4.6		.77616,40°.90	P. A. (2), 20, 870.
4.6	44		4.6		.7882, 25°.3	
"	4.6		44		.7899, 23°.4	Schall. Ber. 17, 2555.
"	"		"		.79326, 150	Squibb. C. N. 51, 33.
"	"		"		.7906, 20°	Winkelmann. P. A. (2), 26, 105.
"	"		"		.79175, 0°	Pagliani and Bat- telli. Bei. 10, 222.
44	"		"		.70606, 110°)	Intermediate val-
44	"		**		.5570, 2000	ues given. Ram-
"	"		44		.3109, 242°.9	say and Young.
n . '	-1- 1	,	() II -		,	P.T. 1886, 129.
Propyl	alcoho)'	C3 H8	·	.8198, 0° }	
45	**		"		.7797, 50°.1	Pierre and Puchot.
	4.		44		.7494, 84°]	Ann. (4), 22, 276.

	N T	_	10.		S- C	
	NAM		F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Propyl	alcohol	l - <i></i>	C ₃ H ₈ O		.813, 13°	Chancel. A. C. P. 151, 302.
"	"		"		.812, 16°	Chapman and Smith. J. C. S.
"	"		"		.823, 0°	22, 194. Saytzeff. Z. C. 13, 107.
"	"		"		.8205, 0°	Rossi. A. C. P. 159,
**	"		"		.8066, 15°	Linnemann. A. C. P. 161, 26.
"	"		"		.8198, 0° }	Pierre. C. N. 27, 93.
**	44		44		.80825, 15° }	· ·
"	"		"		.8044, 20°	Brühl. Ber. 13, 1529.
46	"		"		.8091, 14°	De Heen. Bei. 5, 105.
"	"				.8203, 0°]	
"	"				.8127, 9°.71	Naccari and Pag-
"	"				.8001, 25°.46	liani. Bei. 6, 88.
"	"				.7898, 38°.18 .7773, 53°.10	Values given at
"	"				.7646, 67°.46	several interme-
	66		"		.7550, 77°.69	diate tos.
4.6	"				.7385, 94°.40	
"	"		**		.8177, 0°)	Zander. A. C. P.
"	"				.7369, 97°.4	214, 181.
**	44		"		.8190, 200	Pagliani. Bei. 7, 450.
	44		"		.7365)	l7
"	44		"		.7366 } 97°.1 {	Schiff. G. C. I. 13,
"	"		"		(.7367)	177.
"	"		"		.8049, 20°	Winkelmann. P. A.
"	"		"		.8051, 20°	(2), 26, 105. Traube. Ber. 19,
Isoprop	yl alco	hol	"		.791, 15°	881. Linnemann. J. 18, 488.
. "	•	٠	"		.7915, 16°.5	Siersch. A. C. P. 144, 141.
"	•		. "		.7876, 16°	Linnemann. A. C. P. 161, 18.
"	. •		. "		.7887, 20°	Brühl. A. C. P. 203, 1.
"	•		. "		. 797, 15°	Duclaux. Ann. (5) 13, 89.
"			"		.7996, 0° }	Zander. A. C. P.
**			. "			214, 181.
"			. "		$\left\{\begin{array}{c} .7413\\ .7414 \end{array}\right\}$ 81°.3 $\left\{\begin{array}{c} \end{array}\right.$	Schiff. G. C. I. 13
"					. 7414 50 }	177.
**			(C H	O. H.O.	8076, 20°	Traube. Ber. 19, 882
Hydrat hol.	te of iso	propyl alco-	' ' '	O) ₃ . H ₂ O	1	Linnemann. A. C. P. 136, 40.
	ulcohol	" B. 117°.5	C, H	O) ₃ . 2 H ₂ O	.832, 15° .826, 0°	Saytzeff. Z. C. 18
"	**		. "		8239, 0° 1	
"	"		"		.8105, 20°	
44	"		. "			Lieben and Rossi
•••			1			
"	66		- "		. 7738, 98°.7	A. C. P. 158, 187

NAME. Butyl alcohol			Fe	ORMULA.	SP. GRAVITY.	AUTHORITY.
			C 11	0	.8112, 15°)	(Two samples, Lin-
Butyi	tt		4 11:0		.8135, 220 }	1 nemann. Ann. (4), 27, 268.
4.6	11		183		.8152, 140	De Heen. Bei. 5, 105.
44	44		66		.806. 15°	Pierre. C. N. 27, 93.
14	11		"		.8099, 200 }	Two lots. Brühl.
44	44		c.	********	.8096, 200 {	A. C. P. 203, 1.
11	44		**		.8233, 00 }	Zander. A.C. P. 224
66	11		46		.7247, 117°.5	88.
44	6.6		44		.7269 116°.7	Schiff. G. C. I. 13
Isobut	yl alcoho	ol. B. 108°	66		.7270 } 115 .8032, 18°.5	Wurtz. A. C. P. 93
44			***		.817, 0°)	107.
44			**		.809, 110	Draw alterior
44	44		44		.774, 550	Pierre and Puchot.
44	**		**		.782, 100°	J. 21, 434.
**	44				.8055, 16°.8	Chapman and Smith
**	**		**		.8003, 18°	J. C. S. 22, 161. Linnemann. A.C.P. 160, 195.
44	**	****			.8025, 19°	Linnemann. Ann. (4), 27, 268.
44	44		44		.8167) 00 (Menschutkin. A. C.
66		111111111	44		.8168 00	P. 195, 851.
44	44		44		8090	
44	44		11		.8062 200	Brühl, Ber. 13, 1520
44			14		.8162, 00	1
44	**		16		.8052, 14°.50	Naccari and Pagli-
44	44		- 66		.7927, 30°.71	ani. Bei. 6, 89
4.6	16		44		.7800, 46°.56	Yalues given for
44			4.6.		.7608, 68°.97	several interme
44	11		- 11		.7497, 80°.86	diate tos.
44	**		- 44		.7295, 101°.97	J .
**	**		**	******	.8064, 15°	Duclaux, Ann. (5), 13, 90.
4.6	"		- 11	**********	.7265, 106°.6	Schiff. G. C. I. 13, 177.
	44		16		.8062, 200	Landolt. Bei. 7, 846.
66	**		11		.79888, 26°, 15	Schall. Ber. 17.
44	44		11		.77844, 520.2	2555.
44	**		11	**********	.8024, 20°.5	Gladstone. Bei. 9, 249.
-	**		- 66	*******	.8031, 20°	Winkelmann, P. A. (2), 26, 105.
44	44		ii	122222200000	.8029, 200	Traube. Ber. 19,883.
Methy	lethylcar	binol. B. 99°.	- 66		.85, 0°	De Luynes. Ann. (4), 2, 424.
	64		**	Dominal system	.827, 00)	Lieben. A. C. P.
	44		44		.810, 220	150, 114.
Trime	thylcarbi	nol.	1 -			.00,
	11	B. 82°.5_	44.		.8075, 00 1	Butlerow. Z. C. 14
	4.6	*******	44	**********	.7788, 300]	273,
	11	******	44		.7792, 87°	Linnemann. Ann. (4), 27, 268.
	44		11.		.7864, 20°)	1-11-11-11
	44		- 66		.7823, 240 }	Brühl. A. C. P.
	44		44		.7813, 250)	203, 1.

Name.			C, H ₁₀ O		Sp. Gravity.	203. 1.	
Trime hylearbinol. B. 82°.5							
Hydyste r	oftrim	ethylcarb -	C* H ¹⁰ O	. H. O	.5276. 0°	Butlerow. Z. C. 14, 273.	
Normal	amvl a	leoh /l.	C, II., O		.82%.00	219.	
••	••	· B. 137.	•••		.8164.200	Lieben and Rossi.	
••	••	•			Ser;5, 40° (A. C. P. 159, 70.	
••					.7835, 99°.15 j .8282, 0°		
	••		••		.7117, 1379.85	224. 88.	
			••			Gartenmeister. A.	
				1	1	C. P. 233, 249,	
Amyla	lcohol.	B. 131°.5.	••		·	. Cahours. A. C. P. 30, 288.	
••	••		••		.8137, 15°	Kopp. A. C. P. 55,	
••	••		••		.8271.0°		
••	••		••			Rieckher. J. 1, 698.	
	••		••		.8253, 6°) .8144, 15°.9		
	• •		••		.8144, 15 ⁷ .9 .8127 16°.4	Корр. Р. А. 72	
	••		••		.8145 ; 165.4 j	227.	
: 6	••		••		.818. 14°	Delffs. J. 7, 26.	
••	• 6		••		.8249. 00!		
					.8113. 189.7		
• •	"				.819. 18° .8142. 15°		
	• •		• 6		8148	Schorlemmer, J.	
••						19, 527.	
••	**		• •		:	Pierre and Puchot Ann. (4), 22, 836	
• 6	44		••		.8204, 15°	. Graham.	
**	44		i.		.8148, 15°	Duclaux. Ann. (5)	
44					0107 000	13, 91.	
46	"				.8135, 20°	`)	
**			••		.8144. 15°	Two products. Er	
**			• •		.8102, 219.5	Hell A C D	
44	4.6		٠,		.8263. 0°	Hell. A. C. P	
u						.]	
	••		::		.8253, 0° î	Pierre. C. N. 27	
44	**		: :		- 8255 (19° 1	93. Pierre and Puchot	
			1			B. S. C. 20, 370.	
44	44	Ordinary	**		.917		
	4.6	Less active.	i ••		.816. 15°	Ley. Ber. 6, 1362.	
46		More "	::		.808. 15°)	Don't Distance	
"	**		l ".		.6125, 20° 8055-149	Brùhl Bei. 4, 781 - De Heen. Bei. 5, 105	
• • • • • • • • • • • • • • • • • • • •	"				.8238, 0°	- De Heen, Bet. 9, 109 - Balbiano, Ber. 9	
.,					1	1437.	
	"				1.8104, 20°) 8103_20°	Two lots. Bruhl	
**	"				.8256. 00	A. C. P. 203, 1. Flawitzky. Ber. 15	
			44		1.8085, 230		

^{*}Ordinary, inactive, and unspecified.

NAME. Amyl alcohol			Fo	RMULA.	Sp. Gravity.	AUTHORITY.	
			C ₅ H ₁₂ O		.7221 } 128°.2	S-1:0 D 14 0700	
"	"		"		.7228 } 125 .2 .7154, 180°.5	Schiff. Ber. 14, 2768 Schiff. G. C. I. 13	
"	"		"		2062 260 1	177.	
"	"		"		.8068, 26°.1 .7729, 66° }	Schall. Ber. 1: 2555.	
"	44		"		.8114, 200	Winkelmann P. A	
"	"		"		.8121, 20°	(2), 26, 105. Traube. Ber. 19	
46			"		.8252, 0°	888. Pagliani and Ba	
Methv	lpropy	learbinol.	"		.8249) 00 (telli. Bei. 10, 22: Wurtz. Z. C. 1	
	**	B. 119°-	"		.8249 \ 0° \	490.	
	"		"		.833, 0°	Le Bel. Z. C. 14	
	"		"		8980 00 1	471.	
	"		"	************	.8239, 0° } .8102, 20° }	Bielohoubek. Be 9, 925. Wagnerand Sayt:	
	"		"		.827, 0° }	eff. A. C. P. 179	
Methy	lisopro	pylcarbinol.	"		.8308, 0° }	Winogradow. A. (
	"	B. 112°_	44		.8219, 19° }	P. 191, 125.	
	"				.833, 0° } .819, 19° }	Wischnegradsky. A C. P. 190, 340.	
D: -41	1	nol D 1169 5	"		.882, 0°)	(Wagnerand Sayta	
Dietny	(t	nol. B.116°.5	"		.819, 16° }	eff. A.C.P.176	
	"		"		.831, 0° } .816, 18° }	$ \begin{cases} \mathbf{Wagner and Saytz} \\ \mathbf{eff.} \mathbf{A. C. P. 17} \\ 320. \end{cases} $	
Dimetl	yleth	ylcarbinol. B. 102°.5.	"		.829, 0°	Wurtz. A. C. I 125, 114.	
	44		"		.828, 0°	Ermolaien. Z. (14, 275.	
	"		44		.8258, 0° } .810, 19° } .827, 0° }	Flawitzky. A. (
	"		"		.810, 190 }	P. 179, 849.	
	**		"		.812. 19° (Wischnegradsky. A C. P. 190, 334.	
	44		"		.827, 17°	Münde. Ber. 7, 1870	
	"				.7241, 101°.6	Schiff. G. C. I. 18 177.	
	•	l alcohol. B.157°.			.820, 17°	Pelouze and Ca hours. J. 16, 52	
"	"	,,	"		.813, 0°	Buff. J. 21, 336.	
••	••				.819	Franchimont an Zincke. C. N. 24 263.	
"	"	"	"		.8333, 0°)		
44	"	"	"		.8204, 20° }	Lieben and Janecek	
44	"	"	"		.8107, 40°) .813, 17°	J. R. C. 5, 156.	
"		"	"		0010	Frentzel. Ber. 16 745.	
"	"	"	44		.8312 \ 0°), , , , , , , , , , , , , , , , , , ,	
44	"	"	44		20 = 0 \(\)	Zander. A. C. I	
"	"	"	"		.6958 157°	224, 88.	
	13 9						

			_				
	NAME.			For	MULL	Sp. Gravery.	ACTHORITY.
Normal h	exyl ak	ohol_		C, H, ()		.\$940, 0 ^a	Gartenmeister. A.C. P. 283, 249.
Methyldi	ethylene	binol					I. 200. 230.
	••			·•			Beformutsky. J. P.
	••						C. (2), 36, 340.
M ethylpr	nne land	halana				.9104. 350	1
	B. 147.		- ;			3941 930 -	Two lots. Lieben
0.2.7.			,			.8375. 0°)	and Zeisel. M. C.
						.8257, 179.6	4. 32
Methylbu	itykarbi	nol. o	ri	••		.8327, 00)	•
secondo	ury hexy	laken		••		.9209. I6a	Wankiyn and Erlen-
hol. B.	1385.		J	٠.		.7482, 99°)	meyer. J. 16, 521.
				"			Two samples. Heeht.
				"		.8307. 189	A. C. P. 165, 146, Wislicenus, A.C.P.
						.00071. 1.3	219, 310.
Methyliso	hutylca	rbinol	ــ ا	6-		.8271.00 }	Kuwseniman Ran
	**	_		"		.9183, 179	20, ref. 629.
Ethylprop	pylcarbi					.8335, ()°)	Völker, Ber. 8, 1019.
	•	B. 13		•			
							a comment of the
Isohexyl	OF CRIDE	ماه احد	~	- 6-		.91820.20°). .833.0°)	ninck, C. R. 82, 93,
hol. B	3. 150°.	·,		4-		.833, 0°) .754, 100°)	Faget. J. 5, 504.
	4.6	٠.		• •• !			Kobig. A. C. P. 195.
Dimethyl nol. B	isopeopy 3. 117°.	leart) i -	64			102. Prianichnikow, Z. C. 14, 275.
	4.			- 44		.8387.00)	Partie I C D
				44		8232 199	104 1-9-7
Methyleti hol.						l	Romburgh, J. C. S. 52, 228.
	l, or p	inaco		64		.8347. 0°	Friedel and Silva. J.C.S. (2.11.488.
	. B. 12			C 17 A	1		
Normal h		. 175°		C ₇ H ₁₆ O		.792, 169.5	Wills. J. 5, 508.
**	66	4.		44		.819. 230	Städeler. J. 10, 361.
44	6: 66	44		46		.838.00)	_
44	"	41		66		.830. 16°	Cross. J. C. S. 32.
"	**	"				.824, 27°) .8342, 0°)	123.
44	"	66		46		.6876, 175°.8	Zander. A. C. P. 224, 88.
"	44	46		44		.8856.00	Gartenmeister. A.
Loheptyl	alcohol	. ?		66		.8291, 13°,5	C P 283, 249.
"	" B.16		8°-	e.		.795, 15°	Fou products from different sources
**	"			46			Schorlemmer A.
. "	"			66		.8286, 199.5	C. P. 136, 257.
Dipropyle	carbinol.	. B. 15	0 °.	**		.814, 25°	Kurtz. A. C. P. 161, 205.
44	•			44		.81882, 20°)	Ustinoff and Saytz-
61				"		.81064, 30°	eff. J. P. C. (2),
~						.80677, 35°)	34, 470.
Diiso pro p	ylcarbit	10l.	00	44		.8323, 17°	M unde. Ber.7, 1370.
	B. 131	18	٠.				

					
NAM	E.	For	RMULA.	Sp. Gravity.	AUTHORITY.
Ethylisobutyle	arbinol. B. 147°.5.	C, H ₁₆ O		.827, 0°	E. Wagner. B. S. C. 42, 330.
Methylamylcan		66		.8185, 17•.5	Rohn. A. C. P. 190, 810.
Triethylcarbine	ol. B. 141°-	44		.8598, 0°	
er ee		"		.83892, 20° .82992, 30° }	Barataeff and Saytzeff. J. P. C. (2), 34, 465.
Methylethylpronol.	opylcar b i -	"		.8233, 20°	Sokolow. Ber. 21, ref. 56.
Normal octyl a	lcohol. B. 196°.5.	C ₈ H ₁₈ O		.830, 16°	Zincke. Z. C. 12, 55.
" "	"	"		.8375, 0° }	Zander. A. C. P.
" "	"			.6807, 195°.5 } .8869, 0°	224, 88. Gartenmeister. A.C.
_					P. 233, 249.
Methylhexylca capryl alcoho	rbinol, or ol.	"	*	.823, 17°	Bouis. J. 7, 581.
		"		.826, 16°	Pelouze and Ca- hours. J. 16, 529.
"		и		.823, 16°	
"		"		.6589, 181°	Ramsay. J. C. S. 85, 463.
"		"		.8193, 20°	Brühl. A. C. P. 203, 1.
"		"		.6781 } 179°	Schiff. G. C. I. 13,
"		"		1	177.
		"		.817	Duclaux. Ann. (5), 18, 92.
"Octylene hyd	rate"	"		.811, 0° }	Clermont. A. C. P.
Primary isoöct	yl alcohol.	"		.841, 0°	149, 38.
	B. 179°.5_	"		.833, 12°	
"	"	"		.828, 20°	Williams T.O.S.
"		"		.821, 30° } .814, 40° }	Williams. J. C. S. 35, 125.
	"	"		.807, 50°	00, 120.
	"	"		.867, 100°]	
Secondary isooo	ctylalcohol.	"		.820, 15° j	
"	B. 161°.5_	"		.811, 30°	
" "	"	"		.801, 40° [
		"		.793, 100°]	C 4 - 1 - 60 3 C 4 -
Methyldipropy	leardinoi	"		.82357, 20° .81506, 30°	Gortaloff and Saytzeeff. J. P. C. (2),
"		"		.81080, 35°	33, 202.
Diethylpropylc	arbinol	"		.83794, 20°	Sokolow. Ber. 21,
Isodibutol. B.	147°	"		.8417, 0°	ref. 56. Butlerow. J. C. S. 34, 122.
Nonyl alcohol.	B. 187°	C ₉ H ₂₀ O		.835, 18°.5	Lemoine. B. S. C.
Normal nonyl		"		.8415, 0°)	41, 161.
	"	"		.8346, 10° }	Krafft. Ber. 19, 2221.
"	"	"		.8279, 20°)	
Ethyldipropyle	arbinol	"		.83368, 20°	Tschebotareff and
44		"		.82583, 30° }	Saytzeff. J. P. C.
••		••		.82190, 85°)	(2), 33, 193.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethylhexylcarbinol. "B. 196° Normal decyl alcohol	C ₁₀ H ₂₀ O	.825, 20° }	Wagner. Ber. 17, ref. 316. Krafft. Ber. 16, 1714.
Decyl alcohol. B. 200°	"	.858, 18°.5	Lemoine. B. S. C. 41, 161.
Isodecyl alcohol. B. 203° Propylhexylcarbinol. B. 210°.	"	.889, 0°	Borodin. J. 17, 838. E. Wagner. B. S. C. 42, 330.
Methylnonylcarbinol. B. 228°. Normal dodecyl alcohol	C ₁₁ H ₂₄ O	j i	Giesecke. Z. C. 13, 481.
	"	.8201, 40°	Krafft, Ber. 16, 1714.
Normal tetradecyl alco- hol. " "		.8286, 88° } .8153, 50° } .7818, 98°.9	
Isomer of myristic alco- hol. B. 270°—275°.		.8368, 15°) .8301, 30° }	Perkin, Jr. J. C. S. 43, 77.
Normal hexdecyl alcohol	C ₁₆ H ₃₄ O	.8176, 49°.5 .8105, 60°	•
" " Cetyl alcohol		.8185, 49°.5	Krafft. Ber. 16, 1714.
Normal octodecyl alcohol.	C ₁₈ H ₈₈ O	.8048, 70° }	

2d. Oxides of the Paraffin Series.*

NAME.				For	SP. GRAVITY.		AUTHORITY.
"	l ethyl	"				.7252, 0° .7127, 10°.8	Dobriner. A. C. P. 243. 1.
Ethyl	oxide, o	r etner	·	(C2 H5)2	0	.7119, 24°.8	Gay Lussac.
"	"	"		46		.718, 20° .788, 12°.5	Dumas and Boullay. Ann. (2), 36, 294. Muncke. M. St. P. Sav. Et. 1, 1831, 249.
"	46	"		"		.73568, 0°)	Kopp. P. A. 72,
"	66	"		"		.72895, 6°.9	281.
	"	"		"		.7297, 5°—10°	1)
	66	44		"			Regnault. P. A.
16	46	"		"		.7185, 15°—20°	62, 50 .
"	"	"		"		.78574, 0°	Pierre. C. R. 27, 213.
"	"	"		"		.728, 7°	Delffs. J. 7, 26.

^{*}All of Dobriner's ethers represent normal paraffins.

						1	
	Nas	CE.		For	RMULA.	Sp. Gravity.	AUTHORITY.
Ethyl	l oxide, o	r ether	·	(C, H ₅) ₂	0	.73644, 0°	Intermediate val-
						1.00001, 10 .0	ues given. Men-
"	**	"		"		. 60896, 99°.9	delejeff. A. C.
"	"	"		"		.55958, 181°.6	P. 119, 1.
**	"	"		"		.51735, 157°	ال. ال
££	"	"				7271, 100.2	Matthiessen and
"	"	"				.7204, 150.8	Hockin.
••	••	••				.6956, 84°.5	Ramsay. J. C. S. 35, 468.
44	66	66		"		.7157, 200	Brühl. Ber. 13, 1530.
66	"	"		"		.7197, 150	Buchan. C. N. 51,
				{		1	94.
66	66	"		"		.78128. 40)	Squibb. C. N. 51,
66	44	44		"		.78128, 4° }	67 and 76.
**	"	"		"		.78590, 00)	
"	"	44		"		.7804, 50	i
44	"	66		"		.7248, 10°	
"	44	4.6		"		.7192, 15°	Oudamana Bar 10
"	46	"		"		.7135, 200 [Oudemans. Ber. 19, ref. 2.
"	"	"		"		.7077, 25°	161. 2.
44	44	"		"		.7019, 30°	
44	44	"		"		.6960, 85°]	
66	44	**		"		.6704, 50°)	Also values for every
"	"	"		66		.6105, 100°	5° from 0° to 193°.
"	44	"		"		.5179, 1500	Ramsay and Young.
44	"	"		"		.3030, 193°	P. T. 178, 85.
••	••	••		••		.2468, at crit-	Ramsay and Young.
36-41-	.1	a=:da		CH C	Ψ О	ical to.	P. M. 1887, 458.
mein	r propyr	UXIUE		C 113. ('s	п 7. О	.7471, 0° } .70415, 88°.9 }	Dobriner. A. C. P. 248, 1.
T+herl	nanvl o	-ida		CHC	н О	.70415, 88°.9 } .7386, 20°7545, 0°6871, 63°.6 } .7447, 0°	
Ethyl	propyro	11		02 225.08		.7545.00	Brühl. Bei. 4, 779. Dobriner. A. C. P.
44	**	"		44		.6871, 630.6	243, 1.
Ethvl	isopropy	l oxid	e	"		.7447, 00	Markownikoff. A.
						[C. P. 138, 374.
Methy	l butyl o	oxide	[CH ₃ . C ₄	Hg. O	.7635, 0° }	Dobriner. A. C. P.
**	••	•••		""		.6901, 70°.3	243, 1.
Propy	l oxide			$(C_3 H_7)_2$	01	.6901, 70°.3 } .7633, 0° } .6743, 90°.7 }	Zander. A. C. P.
"	"			"		.6743, 90°.7	214, 181.
Isopro	pyl oxid	e		16		.1400,0 [44 44
"				() II ()	H ₉ . O	.6715, 69° }	
	butyl ox	:ide		C ₂ H ₅ , O	Hg. U	.7694, 00)	71.1
"		"		"		.7522, 20° }	Lieben and Rossi.
44				"		.7367, 40°)	A. C. P. 158, 137.
44		"		"		.761, 0°	Saytzeff.
"		"		46		.7680, 0° }	Dobriner. A. C. P.
F.h	inchneel	oride		"		7507.00	243, 1. Wurtz. J. 7, 574.
Ethyl Mothe	lomylo	value.		CH.C	н о	.7507, 0° .6871, 91° .8036, 14°.7 .764, 18°	Schiff. Bei. 9, 559.
meiny Ethel	isonmyl	oxide		C. H., C.	H., 0	.8036, 140.7	Mendelejeff. J. 13, 7.
",	11	11		- 1 - 5. (· · · · · · · · · · · · · · · · · · ·	_11. 0	.764, 180	Rebouland Truchot.
		-					J. 20, 582.
Tertini	ry ethyl a	myl oz	cide_	"		.759, 210	" "
- ""	"	"	"-	"		.7785, 00)	Kondakoff. Ber. 20,
"	66	"	"	"	1	.751.18° (1	ref. 549.
Propyl	butyl o	xide		C, H, C,	H ₉ . O	.7773, 0° }	Dobriner. A. C. P.
a.	"	"				.6638, 117°.1	243, 1.
			1		ı	1	

NAME.	France	Sp. Galvida	Accesser.
Bury, value	C, E, 0	754 5c	
• • • • • • • • • • • • • • • • • • • •			Lieben mi Rossi.
		- This. 4.	A. C. P. 145, 109.
		-7 History	Dodriner, A. C. P.
		MITTER THE PARTY	241. L
Incomp. Calle		TANT NE	
		THE MES	
		THE WE	_
		724 67 73	Prince Ann 1.
* * ***********************************		- 13. Var	25. 521-525.
	•••	THE PAGE	Four samples.
		THE PARTY OF	
beandury may, reade		.736. ±12	Kessber, A. C. P.
Eng. 2027. (2026	C. H. C. H., O	7734 142 3	- · · · · · · · · · · · · · · · · · · ·
			Schreiemmer. J. C.
	-	.7344. 성*	S. IR Jot.
		.774.14"	Belowi and Trucket. J. 20, 582.
Dieta juga y. 12/6-		.7965. PE	
	-	.7712 375	Lieben. A. C. P.
		.7574. 495	17%, 14,
Matay, heptyl oxide	CH, C. H, O	.7963. 95	Didenzen, A. C. P.
		-566 L435	143. I.
Rang, nepcyl azide	L ₁ H ₂ L ₂ H ₃ U	7949.0	
		.55065, 1367.5	c
Metayl orayl ozole		.791 i 16°	Crass. J. C. S. 31.
Material comit	CHCHO	-1-71-1 	Didritter. A. C. P.
# 10 10 10 10 10 10 10 10 10 10 10 10 10	o may be a min o	ASSESS TORS	243. L
Metayl capeyl skile		.Si). 15°.5	Wills. J. 5, 510.
Am.7 1.4e	С. Н., О.,,,,,,,,		Rieckhen, J. L. 198.
		.7994. 01	Wartz. J. 9. 554.
Propyi heptyi oziste	C, H, C, H, O	.7967.0°	Dobeiner. A. C. P.
	· · · · · · · · · · · · · · · · · · ·	.6420), 1575.6	243. I.
Propy: hepty: ozide	C ₂ H ₅ . C ₅ H ₂₇ 0	.794. 179	Moslinger, Ber. 9.
		.9008. 0°	100.63.
			Dobringer, A. C. P. 243, I.
Ethyl capryl oxide		791 169	Wills, J. 5, 510.
Butri hentri uzide	C. H., C. H., O	8023 02	Debriner A. C. P.
	o, o, o	.6327. 2052.7	243. 1.
Propyl octyl oxide	C. H., C. H., O	.8039. 0=	3331 33
			••
Batyl octyl oxide	C. H., C. H., O	.8069. 09	••
Amyl captyl oxide Normal heptyl oxide Heptyl octyl oxide	C, H, C, H, O	.606. 209	Wills. J. 6, 510.
Normal heptyl oxide	с. н _и , 0	.8152.00	Dobriner. A. C. P.
Wasani and anida	C H C H C	.9000, 2511.9 . 	243, 1.
Hebtal octal oxide	C. Bu. C. Bu. O	.5038, 2789.8	
Normal octyl oxide	(C. H., O		
Normal octyl oxide	(of milia A	8050, 179	Möslinger, Ber. 9. 1001.
		.8050, 17° .82035, 0°	Dobriner. A. C. P.
		.5:83, 291°.7	243. 1.

3d. The Fatty Acids.

				1		
	Name.	F	ORMULA.	Sp. Gravity.	AUTHORITY.	
	c acid	С н,	0,	1.2353	Liebig. Gm. H.	
"	11	- "		1.2227, 0° }	Kopp. P. A. 72, 248.	
"	"	- ::		1.2067, 13°.7 \\ 1.2211, 20°	,	
		1		1.2211, 20	Landolt. P. A. 117, 853.	
"	"	. "		1.2211	Semenoff. Ann. (4),	
"	"	- "		(1.2100)	6, 115.	
••	"	1 "		1.24482, 0°	Petterson. U. N. A. 1879.	
	"	. "		1.2188, 200	Brühl. Bei. 4, 781.	
"	"	. "		1.2415, 0°	Zander. A. C. P.	
"	"	. "		1.1175, 100°.8	∫ 224 , 88.	
"	"	. "		1.2191, 200	Winkelmann. P. A.	
"	"	. "		1.2182, 22°	(2), 26, 105. Lüdeking. P. A. (2), 27, 72.	
"	u 1	1 "		1.1170, 100°.8	Schiff. Ber. 19, 560.	
"	"	"		1.2190, 20°	Traube. Ber. 19, 884.	
"	"	"		1.22734, 15°	Perkin. J. C. S. 49,	
Acetic	acid	C, H, C)2	1.0630, 16°	777. Mollerat. Ann. (1), 68, 88.	
"	"	. "		1.0622	Sebille-Auger. Watts' Dict.	
"	"	"		1.0635, 15°	Mohr. A. C. P. 31, 277.	
46	"	"		1.100, 8°.5, s.	Persoz. Watts'	
"	"			1.0650, 13°, 1.	Dict.	
44	"	"		1.0647, 5°-10°	ĺ	
"	"	"		1.0591, 10°-15°	Regnault. P. A.	
"	"	"		1.0535, 15°-20°) 62, 50.	
"	11.	"		1.08005, 0° }	Kopp. P. A. 72, 253.	
"	"	"		1.06195, 17°	• • •	
"	"	"		1.0635, 10°	Delffs. A. C. P. 92, 277.	
16	"	"		1.0607, 15°	Mendelejeff. J. 13, 7.	
"	"	"		1.0563 } 150.5	§ Roscoe. J. C. S. 15,	
"	"	"		1.0060)	270.	
"	"	"		1.0514, 20°	Landolt. P. A. 117, 353.	
"	"	"		1.05533, 15°	Oudemans. Z. C. 1866, 750.	
"	"	"		1.0626, 20°	Linnemann. A. C. P. 160, 216.	
"	"	"		1.0502	Landolt. Ber. 9, 907.	
"	"	"		1.0490, 18°	Kohlrausch. P. A.	
"		"		.9325, 113°	159, 240. Ramsay. J. C. S. 35, 463.	
"	"	"		1.0685, 15°	Duclaux. Ann. (5), 13, 95.	
46	"	"		1.1149, 0°, s)	
"	"	"		1.0576, 12°.79	Dottomor II M A	
16	"	"		1.0543, 15°.97	Petterson. U.N.A.	
66	"	"		1.0503, 19°.03	1879.	
				,	•	

NAME.		FORMULA		Sr. G	RAVITY.	AUTHOBITY.	
Acetic	acid		C, H, (),	1.0559	, 200	Bedson and Wil-
-1	14		14				liams. Ber. 14, 2550
14			14		1.0495		Bruhl. Bei. 4, 781
44			64		1.0701		Zander. A. C. P. 224
**			4.			1180.1	88.
					1.0532	, 200	Winkelmann. P. A. (2), 26, 105.
44			++		1.0465	, 220	Lildeking. P. A. (2) 27, 72.
2.9	11	*****	14	****	1.0570	4, 150	Perkin. J. C. S. 49
Propior	nic acid		C, H,),	1.0161	, 0° 1	Kopp. A. C. P. 95
24	14		14		.3911,	250.2	307.
		*******			.9963,		Landolt. P. A. 117 353.
44.	4.6	**********	я	**********	.902, 1	80	Linnemann. J. 21 433.
14	44	*****	44		.9961,	190	Linnemann. A.C.P 160, 195.
44	14	Total State	64		1.0143	,00)	230) 2000
14	64		84			49°.6	Pierre and Puchot
44	44.		14		.9062,	990 8	B. S. C. 18, 453.
44	13		14		.9946.		Bruhl. Ber. 13, 1530
411	14		84		1.0199		Zander, A. C. P. 214
8.6	14	and the base of the last	14	*********		1400.7	181.
.64	14		64		1.0133)
**	66		44		.8589		Zander. A. C. P
**	"		44		.8599) i) 224.88.
66	"		66		.9939,	20°	Winkelmann. P. A. (2), 26, 105.
"	"		"		.9902,	25°	
66	44		46		.9956.	200	Traube. Ber. 19, 885
"	44		"		1.0069		Renard. C. R. 103
44	**		44		.9904	180)	158.
"	"		66		.99833	, 15°	Perkin. J. C. S. 49
Dutania	hina	R 1620	CHO),	06=5	25°	Chammal
Dutyin	ii.	D. 100	0, 119	/1			Chevreul. Pelouze and Gélis.
"	44		44			'	P. A. 59, 625.
"	44		**		.98165	, 00	Pierre. C. R. 27, 213
**	46		44		.9673,	1.00	Mendelejeff. J. 13, 7.
					l		Landolt. P. A. 117 353.
"	66		"		.9850,	13°.5	Bulk. A. C. P. 139 62.
66	44		"		.9580,	14°	Linnemann. A. C. P. 160, 195.
44	66		44		.9601,	140	Linnemann. Ann.
44	**		"		.974, 1	3°	(4), 27, 268. Graham. A. C. P.
"	44		"	•••••	.9587,	20°	
"	66		66		.9594.	20°	203, 1. Landolt. Bei.7.845.
**	66		44		.8141.	161°.5	Schiff. G. C. I. 13.
							177.

	Name.	FORMULA.	Sp. Gravity	AUTHORITY.
		G T 0	0740	
Butyric	acid	C ₄ H ₈ O ₂	·9746 } 0°	1)
"			9781 { 0	Zander. A. C. P.
	"	-!	.8099 } 162°.5	224, 88.
44	"			[· ·
"	"	. "	.9608, 20°	Winkelmann. P. A.
"	"	. "	9549, 25°	(2), 26, 105. Lüdeking. P. A.(2), 27, 72.
"	66	- "	9809 , 0° _	Gartenmeister. A.C. P. 288, 249.
44	"		9624, 20°	Traube. Ber. 19, 885.
Isobuty	ric acid. B. 154°-		98862, 0°)	
	"	**	9739, 15° }	Kopp. P. A.72, 258.
**	"	"	.978, 7°	Delffs. A. C. P. 92, 277.
"	(1		9598, 0°)	1
**	"	"	9208, 50° }	Markownikoff. A.C.
46	"	66	8965, 100°	P. 138, 368.
44	"	. "	.9503, 20°	Linnemann. Ann. (4), 27, 268.
46	66	"	.9697, 0°]	` '/' '/
66	"		.9160, 52°.6	
46	"	"		Pierre and Puchot.
"	"	46	.8220, 139°.8	B. S. C. 19, 72.
44	"		.9490, 200	Brühl. Ber. 18, 1529.
66	"	"	.9515, 20°	Brühl. A. C. P. 200,
"	"		8087, 153°	180. Schiff. G. C. I. 18,
				177.
"	"	. "	9651, 0°)	Zander. A. C. P.
"	"		.8054. 154° (224, 88.
4.6	"		.9519, 20°	Traube. Ber. 19, 886.
Normal	valeric acid.	C ₅ H ₁₀ O ₂	9577, 0°	
"	" " B. 185	0 - 10 - 2	.9415, 20°	
	" "	"	.9284, 40°	Lieben and Rossi.
		"	.9034, 99°.3	A. C. P. 159, 58.
	"			Cahours and Demar-
"	"	"		çey. C. R. 89, 331. Ramsay. J. C. S. 35,
"	""	"		463. Kehrer and Tollens.
**	"	"	9448, 20°	A. C. P. 206, 239.
66	"	"	.9562, 0° }	Zander. A. C. P. 224,
"	11 11		.7828, 185°.4	'88.
"				Gartenmeister. A.C.
••				P. 233, 249.
Isovaler	ic acid.* B. 175°		.941, 14°)	ļ ,
110	"	"		Chevreul.
"	"	"		Trommsdorf. A. C. P. 6, 176.
66	"			Trautwein. Gm. H.
"	"		.937, 16°.5	Dumas and Stas. J. P. C. 21, 267.
"	"	**	.9403, 15°	Personne. J. 7, 653.
"	"	"		Kopp. A. C. P. 95,
"		"		
••			; .0010, 180	307.

[•] Including ordinary and unspecified valerianic acid.

Name. Isovaleric acid			Fo	RMULA.	SP. GRAVITY.	AUTHORITY.	
			C ₅ H ₁₀ O ₂		.985, 15°		
44	64	W. C. L.		11	man and a second	.9558, 150	277. Mendelejeff. J. 13, 7.
46	65			11		.9313, 200	Landolt. P. A. 117
						.0010, 20	358.
41	"			41		.95857, 0°	Frankland and Dup- pa. J. 20, 396.
44	14			11	and the state	.9470, 00]	pa. 0. 20, 000.
44	44			11		.8972, 54°.65	21 10 10 21 21 21
**	44			44		.8542, 99°.9	Pierre and Puchot
4.6	14.			46		.8095, 147°.5	B. S. C. 19, 72.
46	44			44		.9465, 00)	1
44	6.6			11		.9285, 20°.2	From different
94.	64			44		.9468, 00 }	sources. Erlen-
44	44	564690	5.5	44		.9295, 190.7	meyer and Hell
11	66	222200	31	11		.9462, 00)	A. C. P. 160, 257
6.6	- 64			44		.9299, 18°.8	A. C. 1.100, 201
64	44			46		.917, 150	Ley. Ber. 6, 1362
66	66			41		.93087, 17°.4	Ley. Ber. 6, 1362 Schmidt and Sacht
4	14					2.00	leben.
**				"	***************************************	.9845, 15°	Poetsch. A. C. P. 218, 56.
						.9297, 20°	Winkelmann, P. A (2), 26, 105.
"	**			14		.941, 16°	Renord. Ann. (6) 1, 223.
14	1.5			44		.9318, 200	Traube. Ber. 19, 886
Ethylme	thylad	cetic aci	d,)	1 11	Children Control of the		(Erlenmeyer and
		eric acid	1.	1 "	*******	.9505, 00 }	Hell. A. C. P
B. 172)	(.9331, 19°.5	160, 257.
44		4 44		ш		.938, 24°	Saur. A. C. P. 188 275.
16	4	1 44		14		.917, 150	Ley. Ber. 6, 1362
46	4			44		.941, 210	Pagenstecher. A. C P. 195, 118.
16				**		.948, 14°.5	Lescoeur. J. C. S 31, 589.
"				**		.9405, 17°	Schmidt. Ber. 12 257.
Trimethy	l ace	tic acid		"		.944, 0° }	Butlerow, Ber. 7
Normal o	caproi	c acid.	100	C6 H12 O		.922, 26°	Chevreul.
**	***	B. 2	05°_	6-11		.981, 15°	Fehling. A. C. P. 53, 406.
44		4.6		- 66		.9449, 00]	301 2500
46	16	44		- 66		.9294, 200	determination of the second
- 44	- 66	8.6		11		.9172, 400	Lieben and Rossi
**	**	44		46		.8947, 99°.1	A. C. P. 159, 70.
44	66	4.6		44		.9438, 00)	
44	46	**		**		.928, 20° }	Lieben. A. C. P. 170
44		44		16		.9164, 400]	89.
44	**	41	-	44		.988, 280	Cahours and Demar
44	46	11		44		.9446, 00)	çay. C. R. 89, 331
**	**	64		**		.7589, 205°	Zander. A.C. P. 224
	***	**		44		0440 1	88.
**	16	14		44			Gartenmeister, A.C
2.27						.9453	P. 233, 249.

NAME.			Fo	DRMULA.	SP. GRAVITY.	AUTHORITY.
Isocaproic acid. B. 199°			C ₆ H ₁₂ O	2	.9252, 20°	Landolt. P. A. 117, 353.
44	44		44		.9237, 200	Brühl. Bei. 4, 781.
	antia	cid. B. 190°	61		.925, 27°	Sticht. J. 21, 522.
Diethym	ceric s	11 D. 190	- 11		.945	Schnapp. Ber. 10
			100		.040	1954.
66			11		.9355, 00 }	Saytzeff. Ber. 11
11			44		.9196, 18	512.
	t.		44		.9414, 0° 1	
Methylp	ropyn	B. 193°	**		.9279, 180	44 44
		D. 195	**		.9281, 25°	Tishaanaa
				********	.9201, 20	Scheibler, Ber. 16 1823.
		"	11		.9286, 15°	Liebermann and Kleemann. Ber 17, 918.
Methylis	oprop	ylaceticacid	44		.928, 15°	Romburgh. J. C. S 52, 232.
Methylet	hylpi	ropionic acid	11		.930, 15°	Romburgh, J. C. S 52, 228,
Denanthi	c acid	l. B. 223°	C, H, O	2	.9167, 240	Städeler. J. 10, 360 Landolt. P. A. 117
44					.9179, 18°)	Landolt. P. A. 117
44	44		44		.9175, 200 }	853.
44	41	*********	44		.9212, 24°	Franchimont. A. C P. 165, 237.
25	16		11		.9345, 00]	
44			64		.9278, 80.5	Grimshaw and
64	44		46		.9208, 160 [Schorlemmer. A
44	44		**		.9110, 280	C. P. 170, 187.
**			4.6		.9359, 0°)	
44	16		44		.9348, 90	11- 11
44	44				.9235, 28°)	Carlot Carlot
**	11		u		.916, 21°	Mehlis. A.C. P. 185 362.
44	14	- Davis - All	10	we day a search of	.935, 00)	502.
44	46				.9198, 200 }	Lieben and Janecek
66			11		.9084, 40°	J. R. C. 5, 156.
44	16		16		.924, 210	Cahours and Demar
"			16		.9160, 20°	çay. C. R. 89, 331 Brühl. Bei. 4, 781
44	64		-11		.9313, 0°)	Zander. A.C. P. 224
44	16		11		.7429, 223°.2	88.
**	11		16		.9333, 0°	Gartenmeister. A.C P. 233, 249.
Laborto	lia es	id. B. 211°.5	44		.9305, 00)	1. 200, 210,
Isonepty	ne ac	id. D. 211 .0	16		.9138, 210 }	Hecht. A. C. P. 209
11			44		.8496, 100°	315.
					.9260, 15°	Poetsch. A. C. P
Isoamyia	cetic	acid. B. 217°	100		.0200, 10	
Caprylic acid. B. 236°.5			C ₈ H ₁₆ O	2	.911, 200	218, 56. Fehling. A. C. P. 53 401.
	"				.905, 210	Perrot. J. 10, 353.
	44		"		.901, 18°	Fischer. A. C. P 118, 307.
44	16		**		.923, 17°	Cahours and Demar cay. C. R. 89, 331
44			16	100000000000000000000000000000000000000	.9270, 0° } .7264, 236°.5 }	Zander. A.C. P. 224

Name.	FORMULA.	Sp. Gravity.	Gartenmeister. A.C.
Caprylic acid	C ₈ H ₁₆ O ₂	.9288, 0°	
Isoöctylic acid. B. 219°	"" "" "" "" "" "" "" "" "" "" "" "" ""	.926, 0°	P. 233, 249. Williams. J. C. S. 35, 125. Burton. A. C. J. 3, 389. Perrot. J. 10, 353. Franchimont and Zincke. C. N. 25, 57. From six different sources. Bergmann. Arch. Pharm. 22, 331. Krafft. Ber. 15, 1687. Gartenmeister. A. C. P. 233, 249. Kullhem. A. C. P. 173, 319. Fischer. A. C. P. 118, 307.
Stearic acid	C ₁₈ H ₃₆ O ₂	1.01, 0°, s } .854, l } a1.00, 9°	66, 306. Saussure. Watts'

4th. Anhydrides of the Fatty Acids.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acetic unhydride	"	1.073, 20°.5 1.0969, 0° 1.0799, 15°.2 1.075, 15° 1.0793, 15° 1.0787, 20°	Gerhardt. J. 5, 451. Kopp. A. C. P. 94, 257. Schlagdenhauffen. Mendelejeff. J. 13,7. Nasini. Ber. 14,
Propionic anhydride	C ₆ H ₁₀ O ₃		1513. Brühl. Bei. 4, 782. Linnemann. J. 21, 483. Perkin. J. C. S. (2), 18, 11.
Butyric anhydride	C ₈ H ₁₆ O ₃	.978, 12°.5	Gerhardt. J. 5, 452.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Isobutyric anhydride Valeric anhydride Oenanthic anhydride ""	C ₈ H ₁₄ O ₈	.984, 15°	Toennies and Staub. Ber. 17, 851. Watts' Dictionary. Malerba. J. 7, 444. Mehlis. A. C. P. 185, 371.	

5th. Ethers of the Series C_n H_{2n} O_2 .

	NA	ME.	Form	ULA.	SP. GRAVITY.	AUTHORITY.
		ite	С Н ₈ . С Н	0,	.9984, 0°)	
"	"		"		.9776, 15°.8	Kopp. P. A. 72, 261.
"	"		"			
4.6	"					176, 135.
"	"		"		.9797, 15°	Kraemer and Grodz- ki. Ber. 9, 1928.
"	"		"		.9482, 88°	
"	46		"	****	.9767, 140	De Heen. Bei. 5, 105.
"	"		"		.9566, 82°.8	Schiff. G. C. I. 13,
44	44		"		.99839, 00 }	
46	44		"		.95196, 82°.8	
Ethvl	format	e	C, H, C H		.9157, 18°	Gehler. See Böttger.
	**		- ",,		.912	Liebig. Quoted by Kopp.
44	"		"		.94474, 00)	1 **
"	"		44		.92546, 150,7	Kopp. P. A. 72, 266.
16	"		44		.9394, 0°)	
**	**		"		.9188, 170 }	
4.6	"		"		.93565, 00	Pierre. C. R. 27, 213.
4.6	"		. "		.917	Löwig. J. 14, 599.
"	**		"		.8649, 55°	Ramsay. J. C. S. 35,
**	"		"		.9064, 200	Brühl. Ber. 18, 1530.
46	"		46		.9214, 140	De Heen. Bei. 5, 105.
"	"		"		.9367, 00)	1
"	"		"		.9238, 10°.84	Several intermediate
"	"		44		.9122, 20°.03	
"	"		"		.8959, 82°.79	values given. Nac- cari and Pagliani.
"	"		44		.8865, 40°.02	Bei. 6, 89.
"	"		"		.8740, 49°.76	Dei. 0, 65.
"	"		"		.8707, 51°.94 J	
"	"		"		.8730 } 53°.4 _	Schiff. G. C. I. 13,
"	"		"		.8/81)	177.
"	"		44		.93757, 0° }	Elsässer. A. C. P.
"	"		"		.86667, 54°.4	218, 302.
"	"		"		.9194 } 20° {	Winkelmann. P.A.
46	"		"		.9102) ((2), 26, 105.
"	**		**		.9445, 0°	Gartenmeister. A.C. P. 283, 249.

						
	NA	MZ.	Form	ULA.	Sp. Gravity.	AUTHORITY.
Propel	forms	te	C, H, C E	[0	.9197, 0°)	
I lopy.	16		0, -7, 0		.877, 38°.5 }	Pierre and Puchot.
"	"		44		.836, 72°.5	Z. C. 12, 660.
"	"		44		.9188,00)	
**	"		66		.8761, 38°.5	Pierre and Puchot.
"	"		"		.835, 720.5	Ann. (4), 22, 288.
"	"		"		.9026, 14°	De Heen. Bei. 5,
64	46		"		.91838, 0°)	Elsässer. A. C. P.
**	66		44		82146.819	218, 302.
66	66				00000 (Winkelmann. P. A.
**	"		"		.9025 20°	(2), 26, 105.
"	44		44		.9250, 0° }	Gartenmeister. A.C.
44	46		66		.8270, 81° }	P. 233, 249.
Butyl f	formete		C ₄ H ₂ . C H	0.	.9108, 00 }	
Duty!!	ii.	·	0, 11,01	. 0,	.7972, 106°.9	16 66
Isobuty	l form	ato	46		.8845, 0°]	
1500uty	1 101111	avc			.850, 34°	
"	"		"		.8224, 59°.8	Pierre and Puchot.
	"		1 16			Ann. (4), 22, 319.
"	"		"		.7962, 83°.4 J	
••	••		•		.0000, 14	De Heen. Bei. 5,
"	"		"		.7784, 98°	105. Schiff. G. C. I. 13, 177.
"	66		"		.88543, 00 }	Elsāsser. A. C. P.
"	"		"		.78287, 97°.9	
		formate	CH CH		.9018, 0° }	218, 802.
Norma	i auiyi	iormate	C ₅ H ₁₁ , C H	· 02		Gartenmeister. A.C.
_			"		.7692, 130°.4 §	P. 233, 249.
Isoamy	i iorm	ate	"		.884, 150	Delffs. J. 7, 26.
"	"				.8945, 0° }	Kopp. A. C. P. 96.
"	"				.8748, 21° 5	
"	"				.8809, 15°	Mendelejeff. J. 13, 7.
"	"		"		.8816, 14°	De Heen. Bei. 5, 105.
**	**		••		.7554, 128°.5	Schiff. G. C. I. 13,
			46	ļ	0000 000	177.
"	"		"		.8802, 20°	Bruhl. Bei. 4, 782.
"	44		Į.		.894378, 0°	Elsässer. A. C. P.
"			- "-		.77027, 123°.3_	1 218, 302.
	•		C ₆ H ₁₃ . C H	0,	.8495, 17°	Frentzel. Ber. 16, 745.
"	**	"	44		.8977, 0° }	Gartenmeister. A.C.
	**	"	"		.7484, 153°.6	P. 233, 249.
Normal	hepty	l formate	C, H ₁₅ , C H	0,	.8987, 00 }	"
**	ũ, °	"	•••		.7308, 176°.7	••
Normal	octyl	formate	Ca H ₁₇ , C H	0,	.8929, 00 }	44 44
44	ıĭ	"			.7156, 198°.1	66 66
Methyl	acetat	θ	C H _s . C _s H _s	, O ₂	.919, 22°	Dumas and Peligot. P. A. 36, 117.
**	66		"		.9328, 0° }	
**	44		"		.9085, 21° (Kopp. A. C. P. 96.
44	"		44		.9562, 0°)	W
"	"		44		.98785, 15°.6	Kopp. P. A. 72, 271.
"	4.6		"		.86684, 0°	Pierre. C. R. 27, 213.
"	"		- 44		.940	Grodzki and Krae-
						mer. Z. A. C. 14, 103.
"	"		66		.9039, 20°	Brühl. Ber. 13, 1530.
46	**		"		.9819, 140	De Heen. Bei. 5, 105.

		<u></u>	l _			
	N.	AME.	Говм 1	TLA.	SP. GRAVITY.	AUTHORITY.
Methy	l acet	ate	C H ₈ . C, H ₈	O ₂	.8825 } 55° {	Schiff. G. C. I. 13,
44			::		.0020) (177.
"			;;		.95774, 00 }	Elsässer. A. C. P.
46	"		"		.88086, 57°.5 }	218, 302.
••	••				.9424, 0°	Winkelmann. P.A. (2), 26, 105.
"	"		"		.9238, 19°.2	Henry. C. R. 101, 250.
66	"		"		.9643, 0° } .8873, 57°.3 } .866, 7°	Gartenmeister. Bei.
				<u> </u>	.8873, 57°.3	9, 766.
Ethyl a		Ю	C, H, C, H,	02	.866, 76	Thénard. Gm. H.
ü	"		"		.89, 15°	Liebig.
46					.9051, 0°	Frankenheim. P. A. 72, 427.
"	"		"		.91046, 0°)	
66	"		"		.89277, 15°.7	Kopp. P. A. 72, 276.
"	"		"	<u></u>	1.0020, 100	
4.	44		"	9.	.90691,00	Pierre. C. R. 27, 213.
66	"		• • • •		.906, 17°.5	Marsson. J. 4, 514.
66	"		"		.903, 17°	Becker. J. 5, 568.
"	"		"		.932, 20°	Goessmann. J. 5, 568.
"	"		"		.9055, 17°.5	Marsson. J. 6, 501.
66	"		"		.8922, 15°	Marsson. J. 6, 501. Delffs. J. 7, 26.
66	"		16		.8981, 15°	Mendelejeff. J. 13, 7.
"	"		"		.908, 00	Pierre and Puchot.
"	"		"		.868, 24°	
"	"		"		.9068, 15°	10, 198. Linnemann. A. C.
"	"		"		0007 000	P. 160, 195.
"	"				.9007, 20° .9026, 14°	Brühl. Ber. 13, 1530.
"	44				.8220, 74°.3	De Heen. Bei. 5, 105. Schiff. Ber. 14, 2766.
	"				.9227, 0°]	Benin. Bei. 14, 2100.
	"				.9076, 12°.80	
	66		"		.8914, 26°.24	Several intermedi-
66	46		"		.8730, 41°.18	ate values given.
"	**		"		.8594, 51°.75	Naccari and Pag-
"	44		"		.8466, 61°.87	liani. Bei. 6, 89.
"	"		"		.8309, 73°.74	
44	"		"		.9004)	W. I. Clark. Ber.
"	"		"		0019	16, 1227.
66	46		"		.8306 .8294 } 75°.5 {	Schiff. G. C. I. 13,
	"		46		.8294 \ 750.5 \	177.
**	**		**		.92388, 0° }	Elsässer. A. C. P.
66	"		"		.82673, 77°.1	218, 302.
"	44		11		9007) (Winkelmann. P. A.
46	"		"		.9047 20°	(2), 26, 105.
"	"		44		.9253, 0°	Gartenmeister. Bei. 9, 766.
Propul	acets	ite	C. H., C. H.	0	ا ۱ ۱	3,
	"		-2-1-1-3-8	,	.8635, 42°.5	Pierre and Puchot.
**	"		"		.8137, 84°.6	Z. C. 12, 660.
66	"		"		.910, 0°)	
"	46		"		.8627, 42°.5	Pierre and Puehot.
"	"		66		.8128, 84°.6	Ann. (4), 22, 289.

Propyl acetate						
## ## ## ## ## ## ## ## ## ## ## ## ##	NAX	ER.	Pormer	.a.	SP. GRAVITY.	AUTHORITT.
## ## ## ## ## ## ## ## ## ## ## ## ##	Propyl acetate		C, H, C, H,	0,	.913, 0°	Bossi. A. C. P. 159,
## ## ## ## ## ## ## ## ## ## ## ## ##	11 14		4		.8992, 15°	Linnemann. A. C.
	** **		"		.8856, 200	
17. 17. 17. 18. 10. 15. 17.						De Heen. Bei. 5, 105.
Butyl acetate						
## ## ## ## ## ## ## ## ## ## ## ## ##			\ .			7 2000
Butyl acetate						910 too
Butyl acetate						
Butyl acetate			ł		.3035, 0	
	Butyl acetate.		C. H. C. H.	0	.9000, 0°)	
	- "		**		.8817, 20° }	
	-		i			
1			"		.8768, 23"	
			44	•	9016.09	
18-butyl acetate	-		1			
## ## ## ## ## ## ## ## ## ## ## ## ##			44			
" " " " " " " " " " " " " " " " " " "			"			
" " " " " " " " " " " " " " " " " " "					.89096, 60)	•
## ## ## ## ## ## ## ## ## ## ## ## ##	**		,			
## ## ## ## ## ## ## ## ## ## ## ## ##						J. C. S. 22, 160.
## ## ## ## ## ## ## ## ## ## ## ## ##			1			
" " " " " " " " " " " " " " " " " " "	••					Diame and Ducket
" " " " " " " " " " " " " " " " " " "						
" " " " " " " " " " " " " " " " " " "	16 11		44			Ann. (4), 22, 022.
" " " " " " " " " " " " " " " " " " "			"			Schiff. G. C. I. 18.
" " " " " " " " " " " " " " " " " " "			į		•	177.
Normal amyl acetate					.892100, 0°	Elsässer. A. C. P.
" " " " " " " " " " " " " " " " " " "					.77080, 116°.3_	§ 218, 302.
""""""""""""""""""""""""""""""""""""	Normal amyl	acetate	C ₅ H _n . C ₂ H	2 U2	9709 900	Ticken and Passi
""""""""""""""""""""""""""""""""""""						A C P 150 70
""""""""""""""""""""""""""""""""""""					.8948. 0°	Gartenmeister, A.C.
Methylpropylcarbyl acetate. " .9222, 0°		"	**		.7461, 147°.6	
Diethylcarbyl acetate	Methylpropyl	carbyl ace-	"		.9222, 00	
Maryl acetate	tate.		İ			
** ** ** ** ** ** ** ** ** ** ** ** **	Diethylcarbyl	acetate	44		.909.00	
Amyl acetate	"	"	"			
" "	Amyl acetate		"		8579 919	
" "			"			
" "			"			
" "	••				.8692, 15°.1	
" "	-		1		.863, 10°	
" " Inactive "8838, 0° Balbiano. Ber. 9,			l .		8769 15 0	
" " Inactive "8838, 0° Balbiano. Ber. 9,			1		1.8783 } 15° {	
Inactive Datolano. Der. 9,			3		1.0102)	
]	V	ł		.0000, 0	Daibiano. Der. 9,
" "8561, 14° De Heen. Bei. 5, 105	16 16				.8561, 140	
" " Brūhl. Bei. 4, 782,			- "		.8561, 200	Brühl. Bei. 4, 782.
" " (Schiff. G. C. I. 13,	-		i .		.7429) 1990 5	(Schiff. G. C. I. 13,
" "	"".		"			
1 1			1		1	l

	NAM	E	Formu	LA.	SP. GRAVITY.	AUTHORITY.
			C ₅ H ₁₁ . C ₂ H C ₆ H ₁₃ . C ₃ H		.8909, 0° } .8738, 19° } .8890, 17°	Flawitzky. A. C. P. 179, 349. Franchimont and
						Zincke. C. N. 24 263.
14	u	"	"		.8902, 0° } .7267, 169°.2 }	Gartenmeister. A. C. P. 233, 249.
Secondar	y hexy	l acetate	44		.8778, 0° }	Wanklyn and Er- lenmeyer. J. 16
		arbyl ace-	"		.8824, 20°)	(522.
tate.		44	**		.8772, 25° .8735, 80°	Reformatsky. J. P.
		16	14		.8679, 85°	C. (2), 36, 340.
Ethylpro	pylear	byl ace-	**			Buff. J. 21, 336.
	obutyl	carbylace-	16		.8805, 0°	Kuwschinow. Ber. 20, ref. 629.
	ropylet	thol ace-	u		.8717, 25°	Lieben and Zeisel. M. C. 4, 33.
Normal h	neptyl	acetate	C7 H15. C2 H	, O ₂	.874, 16°	Cross. J. C. S. 32, 123.
44	14		-11	14644	.8891, 00)	Gartenmeister. A.
44	10	"	- 66	-	.7134, 191.°3	C. P. 233, 249.
Isoheptyl	aceta	te	- (1		.8605, 16°)	Three products.
44	14		11		.8707, 16°.5 .8868, 19° }	Schorlemmer. A. C. P. 136, 271.
Dinsanul	meherl	acetate	11		.8742, 00)	(Ustinoff and Saytz-
Dipropy	carbyi	11	44		.8587, 200 }	eff. J. P. C. (2) 34, 470.
Methylise tate.	oamyle	earbylace-	11		.8595, 23°	Rohn. A. C. P. 190 312.
Normal o	ctyl a	cetate	C. H. C. H		.8717, 16°	Zincke. J. 22, 370
44	14	16	11		.6981, 210°	Gartenmeister. A C. P. 283, 249.
Wathieldi.	monet	carbylace-	**	2012	.8738, 00)	(Gortaloff and
tate.	propy.	ti oyrace	11		.8554, 20° }	Saytzeff. J. P. C. (2), 33, 702.
"Octylen	e acets	ite "	11		.822, 0° .803, 26° }	Clermont. J. 17, 517.
Ethyldipi	ropyle	arbyl ace-	C9 H19. C2 H	3 O ₂	.8795, 0° }	Tschebotareff and Saytzeff. J. P. C. (2), 33, 193.
Isomerof		tic acetate.	C ₁₆ H ₃₂ O ₂ -		.8559, 15° }	
44	11	44	**		.8476, 300 }	Perkin, Jr. J. C. S.
	***	**	C TI C T	1.0	.8448, 35°)	43, 77.
Methyl p	ropion	ate	C ₁₆ H ₃₃ . C ₂ H C H ₃ . C ₃ H ₅	Ö ₂	.858, 20° .9578, 4°	Dollfus. J. 17, 518. Kahlbaum. Ber. 12, 844.
14	16		11		.8954, 140	
44	4.6		46		.8422 .8423 78°.5 _	Schiff. G. C. I. 13.
44	44		44		.8423 } 780.5 -	177.
64	66		- 11		.98725, 0°	Elsässer. A. C. P.
14	4.6		11		.836798, 79°.9_	218, 302.
11			- 11		.922, 15°	Israel. A. C. P. 231, 197.
14	44	3445	66		.9403, 0°	
						9, 766.

	NAME.	!	Formula	, Sp. Galevery.	Auth) elet.
E rhy!	pragianuce		€, E, €, E, 0,	921 L. ()#]	Kapp. & C. P. 96.
					307.
					Pierre and Prefet.
	in				Ann. 4 . 22 351.
	••			T DAT SAIL	Linnemann A.C.P.
-4	.4	!	4	. 1945. IT	140, 136,
	مد خد		и <u></u>		De Heen. Bei. 5, 106.
	*				Schiff G.C.L.13.
	-		-		e Livi.
	••		<u></u>	-1048, L+a 30	
-	4			3404 440 21	Several intermediate
	~			467. 41°.54 [values given. Nac-
~	-				eari and Pagliani.
~			<u> </u>	. 网络小蜂	Bei. d. 89.
~	**		<u>.</u>	- 19247, 742-46 - 1924), 924-96	
				. Hills, 9° _ 1	
**	←			TW408, WE 3	213, 402
	-			31224.0	
	**			. 386 152)	Three samples. Is-
~	**				mel A. C. P. 231,
	4	:		4900. I3a)	137.
Peopy	i propionat	ė	C3 H7 C3 H3 O3	(()()()()()()()()()()()()()()()()()(.]
	6- 6-		<u> </u>	5435. 517.27	- Pierre and Puchot.
••				7944. 100°.6 7839. 106°.34	
	64			.5885. I 3°	
					P. 161, 32
-	44			5821. 149	De Heen. Bei. 5, 105.
:-	64			7680 1212	Schiff. G. C. I. 13.
••	••		· · · · ·		
11				90192.00	Elsasser. A. C. P.
••					Gartenmeister. A
				1	C. P. 233, 249.
Batyl	propionate		C4 H2 C3 H3 O2	9828. 153	Linnemann. Ann
**			u	:	(4), 27, 268.
**	:.			1450 1450 4	Gartenmeister. A. C. P. 233, 249.
	yl propion:	nte	"	5026. 0)
33777426	y i propusa		"	. \$437, 499.2	
	**		46	.7896, 100°,15	. Freme and Puchot
	44		"		
••	**				Elsasser. A. C. P
	44		"	.74424. 1369.8	218. 302.
Amyl	propionate		C, H, C, H, O,	7905 1809	De Heen. Bei. 5, 105
••	••			230, 190	Schiff. G. C. I. 13
**	44		46	.887672, 0°	Elsässer. A. C. P
4.6	44		"	73646, 160°,2	1 218, 302,
Norma	al heptyl Di	ropionate	C. H., C. H. O	_! .8846, 0°)	Gartenmeister. A
				6946, 208	C. P. 233, 249.
Norm	al octyl pro	pionate_	C _a H ₁₇ C _a H ₅ O ₂	8833.0° i	4. (,
16	i	44	1 44	ACMAIN PAGE 1	
	l butyrate.		С Н, С, Н, О,	0.000.00.00	

-					T	
	NA	ME.	Form	ULA.	Sp. Gravity.	AUTHORITY.
Methy	l butyr	ate	C H ₃ . C ₄ H	, O ₂	1.02928, 0°	Pierre. C. R. 27, 213.
46	"		"		.9091, 00 }	Kopp. A. C. P. 95
•6	**		. "		.8798, 30°.3	307.
66	46		. "		.9475, 40	Kahlbaum. Ber. 12
4.6	"				.8962, 20°	344. Brühl. Ber. 13. 1530
"	"		"		.91939, 0°	Elsässer. A. C. P.
44	"				.80261, 1020.3	218, 302.
			"		.9194, 0°	Gartenmeister. A. C. P. 233, 249.
Methy	l isobu	tyrate	"		.9056, 0°)	0.2.2.3
"	"				.8625, 38°.65	Pierre and Puchot
"	"		"		.815, 78°.6	B. S. C. 19, 72.
"	"				.911181, 0°	Elsässer. A. C. P.
Ethyll			C, H, C, H	0	.80397, 92°.3	218, 302. Linnemann. A. C.
2501.51	"		03 118.04 11	7 03	.8990. 170 (P. 160, 195.
44	"		44		.8892, 20°	Brühl. Ber. 14, 2800.
"	"		"		.7703 \ 1100 8	Schiff. G. C. I. 18
"	"		"		()	177.
"	"		"		.90198, 0°	Pierre. C. R. 27, 218. Mendelejeff. J. 18, 7.
"	"		"		.8894, 15° .8942, 0°	Frankland and Dup-
					,	pa. J. 18, 306.
4.	"		"		.89957, 0°	Elsässer. A. C. P.
"	**		"		.76940, 119°.9	218, 302.
"	"		"		.9004, 0°	Gartenmeister. A. C. P. 233, 249.
Ethyl i		rate	"		.90412, 0° }	Корр. Р. А. 72, 287.
"	"		"		.89065, 13°	110pp. 1 . 12. 12, 201.
"	"		"		.890, 0°) .871, 18°.8	
"	"		, ,,		.831, 55°.6 }	Pierre and Puchot.
44	"		44		.7794, 100°.1	B. S. C. 19, 72.
"	"		"		.7681, 110°.1	Schiff. G. C. I. 18, 177.
	"		"		.890367, 00) Elsässer. A. C. P.
66	"		"		.77725, 110°.1	218, 302.
Propyl	butyr	ate	C ₃ H ₇ . C ₄ H	, O ₂	.8789, 15°	Linnemann. A.C.P. 161, 33.
"	**		"		.89299, 0°	Elsässer. A. C. P.
"	"		44		.745694, 142°.7	∫ 218, 302.
Propyl		yrate	"		.8872, 0°)
"			"		.8402, 47°.24	Pierre and Puchot.
	"				.7842, 100°.25_ .7525, 128°.75_	Ann. (4), 22, 295.
••	4.		"		.884317, 0°	Elsässer. A.C. P.
• 6	"		"		.74647, 133°.9_	218, 302.
Isoprop	yl but	yrate	"		.8787, 0° \	Silva. Z. C. 12, 508.
		"	сп сп	.,	.8652, 13° 5	2 2
Butyl b	utvrat	e	C4 H9. C4 H	· U2	.8885, 0° }	Lieben and Rossi.
••			"		.8717, 20° } .8579, 40° }	A. C. P. 158, 137.
			44		.8760, 120	Linnemann. Ann.
						(4), 27, 268.
-4	"		"		.8878, 0° }	Gartenmeister. A.C.
٠,	"		"		.7264, 165°.7	P. 233, 249.

NAME.	FORWITA.	Sp. Gravity.	Authority.
schure! interate	. С. И ₄ . С. И-О	881778.00	Elsasser. A. C. P.
			1 213, 80 2.
			Granzweig. B.S.C.
-			
atgratuda,i jamaa,		57I9. 0° !	
			Pierre and Puchot.
•	. :	139. 129-31	Ann. (4), 22, 328.
			Ekaser. A.C.P.
·		3281160.6	, 2 18, 3 02.
		57519.00	Grunzweig, B.S.C.
		51192.089.4)	18, 125,
Semul amel haterate	C. il., C. H. O.	5892_U	Gartenmoister: A.U.
Assembly differ the Committee of			P. 238, 249.
Amel Littlete	., 		Mendelejett. J. 13.7. Deith. J. 7. 26.
	., .,		Elsamer. A. C. P.
		.573, 109	De Hoen. Bei. 10,313.
amer inhattrate		5769. U ^e	
·		5264, 550.4	Pierre and Puchot.
• • •	,	7 446 , 1 39 9;5 j =	Ann. (4), 22, 348.
			Elsaser. A. C. P.
**	·	TO669 1889 4	218, 302
T mul havel buterate.	$\langle C_{ij} H_{ij} C_{ij} H_{ij} \rangle$	5825. 0°	Gartenmeister, A.C.
**			r. 200, 228.
Themal hentyl intyrate.	, la Maga (a Mericana		
Wennel netel intyrate	C. H., C. H. O	3774. 110	
Cotel antypate	. C., H., C. H. O	366, 130	Commercial Domes
Market information	in the 1840 and year and		ay. C. R. 59, 381.
			Gartenmeister. Bei.
••			1, 766.
Worley Isovalorate		3960, 0° 3806, 16°	Корр. А. С. Р. 96.
•		01525, 0°	
			Корр. Р. А. 72, 291.
		3 8 66 <u>2.</u> 15° 3	• •
٠	., .,		
.:		8681, 41°.5 8848, 64°.3	Pierre and Puchot.
* **			Ann. (4). 22, 349.
.,		3908. 16°	Renard. Ann6),
			1, 223.
^{(†}	. "	385465, 17°	Seinmidt and Sacht- leben. J. C. S. 36, 139.
1.5		3795, 20°	Brilli. Bei. 4, 782.
,,		00065. 0°	Blanseer. A. C. P.
			218, 302,
Ethyl valorate	C, H, C, H, O,		T: 1 1 P :
• • • • • •		20°	Lieben and Rossi. A. C. P. 165, 109.
		, .co.tu. TU)	C. E. 109, 109.

	NAM	E.	FORM	ULA.	SP. GRAVITY.	AUTHORITY.
Ethyl v	alerate.		C2 H5. C5 H	I ₀ O ₂	.878, 18°.5	Cahours and Demar- cay. C. R. 89, 331.
44	11		**		.8939, 00)	Gartenmeister. Bei.
			11		.7443, 1440.7	9, 766.
Ethyl is	ovaler	te	**		.894, 180	Otto. A. C. P. 25, 62.
**	46				.869, 140	Berthelot. J.7,441.
46	14		**		.8829, 0°)	
24	4.6		44		.8659, 18° }	Kopp. A. C. P. 96.
66	4.6		46		.886, 00]	
44	4.6		11		.832, 55°.7	Pierre and Puchot
44	**		44		.7843, 99°.63	Ann. (4), 22, 358.
2.6	44		44		.7582, 122°.5]	
"	44	*****	"		.8661, 20°	Brühl. Bei. 4, 782
44	**		11		.88514, 00	Elsässer. A. C. P.
**	46	*******	44		.74764, 134°.3_ .8743, 16°	218, 302.
	**				.0140, 10	Renard. Ann. (6), 1, 223.
4.1	4.6	******	44		.8882, 00)	Franklandand Dup-
44	14		44		.87166, 180	pa. J. 20, 396.
Ethyl to		ylacetate	44		.8773, 00 }	Friedeland Silva. J.
**			-11		.8535, 25° }	C. S. (2), 11, 1127
**	*		п		.875, 0°	Butlerow. B. S. C. 28, 27.
Ethyl n	ethyle	thylacetate	46		.877, 15°	Israel. A. C.P. 231, 197.
Propyl	valerat	e	C3 H7. C5 H	0 وآ	.8888, 0° }	Gartenmeister. Bei.
14	44	********	48		.7264, 167.05	9, 766.
Propyl i	isovale	rate	11		.8862, 00	
11	44		11	*****	.8387, 50°.8	Pierre and Puchot
44	**		44		.7906, 100°.15_	Ann. (4), 22, 297
44	14	*****	**		.7755, 113°.7	
**			44		.880915, 0° .727405, 155°.9	Elsässer. A.C. P. 218, 302.
		lorato	44		.8702, 0°)	
Isoprop	1 1501	(.	- 11		.8538, 170	Silva. Z. C. 12, 508
Butyl v	alerate.		C, H, C, H	O4	.8847, 0° } .7095, 185°.8 }	Gartenmeister. Bei 9, 766.
Technity		erate	44		.8884, 00]	0, 100.
11	11		44		.8438, 49°.7	n
14	11		41		.7966, 100°	Pierre and Puchot
E4.	8.6		44	*****	.7428, 155°.8	Ann. (4), 22, 330
44	65.	******	41		.873599, 00	Elsässer. A. C. P.
44	44		44	-	.70549, 168°.7	3 218, 302.
Normal	amyl v	valerate	C5 H11. C5 H	9 O ₂	.8812, 0° } .6982, 203°.7	Gartenmeister. Bei
A constitu			-	******	.8793, 0° }	9, 766. Kopp. A. C. P. 94
Amyl is	OVAIER	116	- 44		.8645, 17°.7	257.
44	46		44		.8596, 15°	Mendelejeff. J. 13, 7
44	**	223327	11		.874, 0°	
44	6.6		44		.832, 50°.67	Diame and Duri 4
44	4.6		41		.787, 1000	Pierre and Puchot
6.6	44		"		.740, 149°.5	Ann. (4), 22, 346
- 44	44	Inactive_	11		.8700, 0°	Balbiano. Ber. 9 1437.
**	44		**		.8633, 16°	Renard. Ann. (6), 1, 223.
- 11	44		44		.869, 15°	Ley. Ber. 6, 1362.

Name.	Fountly	PP GRAVITI.	AUTHORY
Alay Lanvangut	 : 0,4:, . 0 ,4: ,0		l Bride SHeis J. 78:
	حديث بالل يث و بالمان) 	86-, 141'	I Do Hisser. B. 1.
Normal hear examina-	سسيان وفائق ويقلون والم		Gartenmeiett: be.
Normal megity's vinegrate	(Cally Cally Comme	876 v. ft }	9 . 76 0.
Same and a firm and a	- (Califortally Corre	0795. 2483.4 }	
Dist 1 sous worth		661~_2692.2 {	EZinek J. 27.
Losis Lacostemitei	Challe Callete		Dolling J. 17, 51; February L. C. 1
Mના જ કુ જ્યાના અલ્લો			£ 89.
•	• • • • • • • • • • • • • • • • • • • •	15th	Cahomand Remo-
•			Grovenmoleter In
Ethyr enjaonie	(Cathe Cathe Oa	68215	. Linder -1. (. 1. 4.
		38762. 17%5	
			Zinek: 👊 ()] 180. 19.
	- ·· ·-		Lieba: an Ress.
* * * * * * * * * * * * * * * * * * * *	-		1. (. 1 16, 11;
**	-		
	•	,522; .20° _ }	. Lieber uk. (. 1 <u>*</u> - 170∵8.
			(Cabourano 1 Dome-
		888c. A	es: U.L.2, 31; Hartonnesse, 31;
	٠	220 16°	76.
ktuj i znemproni:	•	897, n	Liebe nu Best
king, in the metaki		892 ⁰	rankiautau . lare n 1: 00:
		8830	martenii de. 1
		:868(19 '	321
prolument the obtains		:8310	
		:877(_19 :841, #	Lieber an Zeist
			'M' 1 4.3.
trong congration .	or Horaldy to		desterrensee: Ise
Lati ungwana	. C. H. C. H. C.	'8ñt' u	
		675	
lkaz (. usprusk	LoC _{in} E _p (C _i ,E _p) \(\begin{align*} \text{U}_i & \text{E}_p \\ \end{align*}		Zinan I. W.B.
Helic jaelicy correspy — And Lie i selic jestrosposiana.		377 IS	Romanner II I 4
Normal benefician mappings.	, (C., \mathbf{H}_{p} , C., \mathbf{H}_{1} , \mathbf{G}_{p}	<i>ЯТН</i> , Р	ibartenmesser: Ibi
hereat only aspease .	U.E., C.E., L.		* 760.
lieles ornantare		300. 378 2	Discurrate Prinsp

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Methyl oenanthate Methyl isoöenanthæte	C H ₃ . C, H ₁₈ O ₂	.8981, 0° }	Gartenmeister. Bei.
Methyl isoöenanthate	"	.8840, 15°	9, 766. Poetsch. A. C. P.
	"	.8790, 15°	218, 56. Hecht. A. C. P. 209, 324.
Ethyl oenanthate	C ₂ H ₅ . C ₇ H ₁₈ O ₂	.874, 24°	Franchimont. A.C. P. 165, 237.
	"	.8735, 16°	Grimshaw and Schorlemmer. A.
	"	.871, 21°	C. P. 170, 137. Mehlis. A. C. P. 185, 866.
" "		.877, 16°.5	Cahours and Demar- çay. C. R. 89, 331.
11 11	46	.8879, 0° }	Lieben and Janecek.
"	"	.8589, 40° } .87168 } .87199 }	J. R. C. 5, 156.
" "	"	.87168 \ 150	1
11 11	"	87199 }	Perkin. J. P. C.
		.86477 } 25°	(2), 82, 528.
		.8861, 0° }	Gartenmeister. Bei.
	16	.7105, 187°.1	9, 766.
Ethyl isoöenanthate	"	.8720, 15°	Poetsch. A. C. P. 218, 56.
" "	"	.8685, 15° }	Hecht. A. C. P. 209,
Propul concenthate	C H C H O	1.8570, 270 }	324. Gartenmeister. Bei.
" " "	03 117. 07 1118 02	6965 2060 4	9, 766.
Propyl oenanthate	"	.8635, 19°	Hecht. A. C. P. 209, 324.
Isopropyl isoöenanthate	"	.859, 19°	Hecht. A. C. P. 209, 325.
Butyl oenanthate	C ₄ H ₉ . C ₇ H ₁₈ O ₂	.8807, 0° }	Gartenmeister. Bei. 9, 766.
Normal heptyl oenanthate	C, H ₁₅ . C, H ₁₃ O ₂	.870, 16°	Cross. J. C. S. 82, 123.
:		.86522, 15° .85933, 25° }	Perkin. J. P. C. (2), 32, 523.
" " "	"	.85933, 25° §	(2), 82, 523.
11 11 11	" "	.8807, 00 }	Gartenmeister. Bei.
Normal octyl oenanthate	C ₈ H ₁₇ . C ₇ H ₁₃ O ₂	.8757, 0° }	9, 766. " "
Methyl caprylate	C H ₃ . C ₈ H ₁₅ O ₂	.882	Fehling. A. C. P.
	"	.887, 18°	58, 899. Cahours and Demar-
" "		.8942, 00 }	çay. C.R. 89, 381. Gartenmeister. Bei.
Ethyl caprylate	C ₂ H ₅ . C ₈ H ₁₅ O ₂	.8738, 15°	9, 776. Febling. A. C. P. 58, 899.
" "	"	.8728, 16°	Zincke. J. 22, 878.
	"	.8728, 16° .878, 17°	Cahours and Demar- çay. C. R. 89, 381.
	"	.8842, 00 }	Gartenmeister. Bei.
" "	"	.6980, 205°.8	9, 766.
		1	1

	चे । स¥ः		Formula	581 - GAATITI.	AUEHORITI
ing! car	- ···		il. C.L. C.		Gmanneister. Re
y .				6677.224 77	Gmanmeister. Re 40.766.
un; crui	A) this		All Vally Vill		•
	winj i d	npelint it	. I i,		•••
	ang a gra	jejini (L	أأبل بالني لبناء	883 is	Zineke J. 22. 47 Bartanmester Re
			•	!	Harranmeister Bee
				6316. 805	VII66. Zinekeanil Franch
re.eni e b	e in gri	ina,	المراجعة الم	774 Op. 1 . (24)	montand B' 16
ناخ ، زيد	minjoha.	بالأربيان الم	سرفا وللأربا ولأرا	:8:	Delle J. 3.
•			4.	\$72 15	Deffi. J. T. 3.
	• -	*****	<u>.</u>	:8050. T?	Zoneke and France
					mon: H.J.H'.164 883
	••		4.	7668	
•	• •	55555	4	8031	With seal from 32
•	• •		4	66663	sources. Borg
••	••				migini. Arist
•	• •			:86776	Phara. 22. 331.
•	••		4·		The second of
•	4.			STOR: IS	Perkin, J. P. (
		br	-		2), 22, 32; Killnen, A.C. I
•	•		-		1110
day ru	.Vette		H, t., T., t	***	Rowney 3 4 44 Horger 1 1 56 Joelffs 3 7 26
Stiev ares	Hitle		حيانة يو نك يونك يطاقب		tronger of T 1919
					.102.1125
***	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- na a na a	A2.5:	Danishin M / 7 1
iliy ny		· · · · · · · · · · · · · · · · ·	The Case Case	isit	Payan A.J. :
iticy: ne	dediction of the state of the s	esti.	The Case Hay the	to following	Payan A.A.I E
ikler: ne	*ferlith ************************************	stin.	H ₃ C ₄ H ₂ C ₄ . Residual constant	to following	Payan A.A.I E
ities: me	*ferlith ************************************	stin.	H ₃ C ₄ H ₂ C ₄ . Residual constant	to following	Payan A.A.I R
itier: ne Lante ali	S sape	多粒、	Funatum	**************************************	Private A.A.I E TAN A. I.
Cootic di	S sapa;	Oth A	Financia	**************************************	Private A.A. I II A PRIVATE A PRIVATE A. A. II II Linky A. A. II II Eng. P. A. II Eng. P. A. II
itier: ne Lante ali	S sape	多粒、	Financia	**************************************	Private A.A.I E TAN A. I.
Cootic di	S sapa;	母肚 A	Funatum	**************************************	Armourn Linky & C. F. S. Supp. P. A. C. Plants C. E. T. 201.
itige ng	Source:	母肚 A	Fundation	**************************************	Provint A C. J. E. T. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. J. E. C. E. C. J. E. J. E. C. J. E. J. E. C. J. E. C. J. E. J. E. C. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E. J. E.
Cootic di	Sound,	母肚 A	Fundament	**************************************	Provint A.C. I II IAI A PRODUCTS Linking A. C. F. II Burn. P. A. III Eng. P. A. III Str. C. E. II Str. C. E. II Str. C. C. E. II Str. C. C. E. III Str. C. C. E. III Str. C. C. E. IIII Str. C. C. E. IIII Str. C. C. E. IIII Str. C. C. E. IIIII Str. C. C. E. IIII Str. C. E. IIII
Lastic ali	North Andrews of the second of	Ban A	Funantial	**************************************	Province A. C. J. S. Barrer C. B. S. St. St. St.
Acore di	Sound,	Bah. A	Fundament	**************************************	Private A.C. J. E. B. B. B. B. B. B. B. B. B. B. B. B. B.
Lastic dis	None data	Ban A	Financia.	**************************************	ATTROUGHTS Lining & C. J. D. Lining & C. J. D. Lining & C. J. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D. D. Edge C. D.
Lootic di	None,	Bah. A	Fundament of the	**************************************	Armounts Armounts Lichy & C. T. 5 Bull Son, P. A. 5 201. Fieres C. E. 2 201. Guekalberger 5 525. - Engrant P. 9 62. 56 Earnsay J. C. 5 45. 450 Where
Acotic die	None data	Ban A	Funatura	**************************************	Armonius Armonius Liebig & C. F. 5 Bain P & C. E. 2 Edin P & C. E. 2 201. General berger Ses. - Leginar P : 42. 56 Earness J C : 45. 465 White

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acetic aldehyde	C, H, O	.79509, 10°)	
44 44			Perkin. J. P. C.
"	"	78761, 16°	(2), 32, 523.
"	"	.81312,5° j	` " '
"	"	.81812, —5°) .80561, 0°]	
"	"	.80058, 4° }	Perkin. J. C. S. 51,
44 ti	"	.79520, 8°	808.
"	"	.78826, 13° J	
Paraldehyde. B. 124°	(C ₂ H ₄ O) ₃	.998, 15°	Kekulé and Zincke. Z. C. 13, 560.
"	"	.9948 } 20° {	Two lots. Brühl.
"	"	.9971 } 20 {	A. C. P. 203, 1.
"	"	.8737 } 1240.8	Schiff. G. U. I. 18,
"	"	1.0109)	177.
"		.9909, 19°	Gladstone. Bei. 9, 249.
"		.9982	Louguinine. Ber. 19, ref. 2.
"	"	.99925, 15° }	Perkin. J. P. C.
"	"	.99003, 25°	(2), 82, 528.
Isomerofaldehyde. B. 110°		1.038, 0°	Bauer. J. 13, 486.
Propionic aldehyde.	(C ₂ H ₄ O) _n	.790, 15°	Guckelberger. J. 1,
B. 49°.5.	-•		848.
46 46	"	.8284, 0°	
" "	"	.804, 17°	Rossi. A. C. P. 159, 79.
44 44	"	.832, 00)	100, 10.
66 66	"	.8192, 90.7 }	Pierre and Puchot.
"	"	.7898, 82°.6	Ann. (4), 22, 298.
"	"	.8074, 21°	Linnemann. A.C.P.
"	"	.8066, 200	161, 23. Brühl. Ber. 13, 1527.
"	"	.80648, 15°)	Perkin. J. P. C.
	"	.79664, 25°	(2), 32, 523.
Butyric aldehyde. B. 75°-	C4 H8 O	.821, 220	Chancel. C. R. 19, 1440.
" "	"	.8341, 0°	Michaelson. J. 17, 336.
" "		.8170, 20°	Brühl. A. C. P. 203, 1.
" "	"	.80, 15°	Guckelberger. J. 1, 849.
Isobutyricaldehyde. B.63°	"	.8226, 00 1	
" "	"	.8226, 0° }	Pierre and Puchot.
" "	"	.7638, 50°.4)	Z. C. 13, 255.
"	66	.7950, 20°	Urech. Ber. 12, 1744.
"	"	.803, 20°	Linnemann. Ann. (4), 27, 268.
"	"	.7938, 20°	Brühl. A.C.P. 203,1.
"	"	.8057, 0°)	· ·
"	"	.7898, 200	Fossek. M. C. 4, 662.
	"	.79722, 15°)	Perkin. J. P. C.
"	"	.78787, 26°	(2), 32, 523.
Polymer of isobutyric aldehyde.	(C ₄ H ₈ O) _n	.969, 24°	Urech. Ber. 12, 1744.
Isovaleric aldehyde. B. 92°.5.	C ₅ H ₁₀ O	.818	Trautwein.

Isovaleric a		Name.			Sp. Gravity.	Authority.	
Isovaleric aldehyde			C ₅ H ₁₀ O		.820, 22°	Chancel. J. P. C. 36, 447.	
"	"		"		.8009, 20°	Personne. J. 7, 654.	
"	"		"		.8224, 00)	Kopp. A. C. P. 94,	
"	"		"		.8057, 17°.4	257.	
**	"		44		.8209, 0°)		
46	"		"		.778, 43°.4 }	Pierre and Puchot.	
"	**		**		.7485, 71°.9	Ann. (4), 22, 340.	
	"		"		.768, 12°.5	A. Schröder. Z. C. 14, 510.	
"	"		"		.7984, 200	Brühl. Bei. 4, 782.	
44	"		"		.8061, 25°	Gladstone. Bei. 9, 249.	
41	"		"		.7998, 20°		
"	"		"		.80405, 15°)	Perkin. J. P. C.	
"	"		"		.79607, 25°	(2), 82, 523.	
Polymer of	valeral.	B. 215°	(C, H, 0	0),	.90	Wanklyn. J. 22, 530.	
Isomer of c	apraldel B. 180°-				.90 .842, 15°		
Oenanthic oenantho	aldehy	de, or	C, H, O		.8271, 7°	Bussy. J. P. C. 37, 92.	
"	"		"		.827, 17°	Williamson. J. 1, 565.	
**	"		"		.828, 16°	Cross. J. C. S. 82, 128.	
41	"		"		.8495, 20°		
44	"		• 6		.8231, 15°)	•	
4.6	"		"		.8128, 30° }	Perkin, Jr.: Ber. 15,	
:6	"		"		.8099, 85°)	2802.	
**	"		"		.82264, 15°	Perkin. J. P. C.	
_ "	"		44		.81578, 25° }	(2), 82, 523.	
Isomer of o	enantho B. 161°-		"	·	.885, 14°	,	
Caprylic ald			C ₈ H ₁₆ O		.818, 19° .820	miniprione. A.C.I.	
		D 016	a		0405 150	93, 242.	
Enogh gid	enyae.	B. 218_	C11 H22	!	.8497, 15°	Williams. J. 11, 443.	
Isomer of	myristic	alde-	C14 11 28 C	J	.8274, 30° } .8258, 35° }	Perkin, Jr. J.C.S.	
hyde. Derivative		Eurogeo	C H C	`	.8268, 35°)	43, 71.	
ing comp		orego-	C21 H40 C	/	.8665, 80° }	Perkin, Jr. J.C.S.	
ing comp	44		44		.8637, 35° }	48, 72.	
						20, 12.	

7th. Ketones of the Paraffin Series.

				,		 	
	Name	•		Form	ULA.	Sp. GRAVITY.	AUTHORITY.
	yl keton B. 56°.5		r ace-	C H ₃ . C O.	C H3	.7921, 18°	Liebig. Gm. H.
"	"	•	"			.8144, 00 }	Kopp. P. A. 72,
**	"		"	"		.79945, 13°.9	239.
"	"		"	"		.790, 15°	Linnemann. A. C. P. 143, 349.
ct.	"		"	"		.8008, 15°	Mendelejeff. J. 18,7.
"	66		"	"		.7938, 18°)	Linnemann. A. C.
".	"		"	"		.7975, 15° }	P. 161, 18.
44	"		"	"		.7998, 15°	Grodzki and Krā- mer. Z. A. C. 14, 103.
	**		"			.81858, 0°	Thorpe. J. C. S.
"	44		"	"		.75369, 56°.58	37, 371.
"	**		"	"		.7920, 200	Brühl. Ber. 13, 1527.
"	"		"	` "		.8125, 00)	Zander. A. C. P.
"	"		"	"		.7489, 56°.8	214, 181.
"	"		"	"		.7506, 56°	Schiff. G. C. I. 18, 177.
66	"		"	"		.79652, 15°)	Perkin. J. P. C.
66	"		"	"		.78669, 25°	(2), 82, 523.
Methyl	ethyl k			C H ₃ . C O.	C ₂ H ₅	.838, 19°	Fittig. J. 12, 341.
inetity	i aceton	· · ·		"		.8125, 18°	Frankland and Dup-
"	"	"		٤.		.824, 0°	pa. J. 18, 309.
"	"	"		"		.8063, 15°.3	Popoff. J. 20, 899. Grimm. Z. C. 14,
"	"	"		"		.8045, 19°.8	174. Schramm. Ber. 16, 1581.
Diethyl pione.	ketone, B. 104°	'.	pro-	C ₂ H ₅ . C O.	C ₂ H ₅	.811, 11°.5	Genther. J. 20, 455.
- 11	**	"		"		.8145, 0° }	Chapman and Smith.
"	"	"		"		.8015, 15° }	J. 20, 453.
"	"	"		"		.813, 20°	Smith. B. S. C. 18, 321.
"	"	"		"		.829, 0° }	(Wagner and Saytz-
"	66	"		"		.811, 190 }	$\left \left\{ \right. \right.$ eff. A. C. P.
· ·	"	"		"		.8335, 0°	(179, 323. Chancel. C. R. 99,
Methyl 1	propyl k	eton	e.	CH, CO.	С. Н	.8078, 18°.5	1055. Grimm. Z. C. 14,
		В.	103°.		• •		174.
"	"	44		"		.827, 0°	Friedel. J. 11, 295.
"	**	"		"		.842, 19°	Fittig. J. 12, 341.
44	"	"		**		.8132, 13° }	Frankland and Dup-
"	"	"		44		.8040, 22° }	pa. J. 18, 307.
**	**	"		46		.815, 17°.5	Popoff. A. C. P. 161, 285.
"	"	"	1		l	000 00	(Wagnerand Saytz-
46	"	"		"		.828, 0° }	eff. A. C. P. 179, 323.
46	"	"		"		.8264, 0°	Chancel. C. R. 99,
							1055.

YAKE.	FORETLA.	SP. GRATITI.	ATTERUTY.	
Letiy, propyl kenne	CH. CO.C.H.	(#BET)		
	·	1-1-1-1 d	B-3: 7 B 6	
			Perkin. J. P. C.	
			2. 22 526	
erâyî heyeriyyî kerine. B. Hîf.	-		Frankland and Dup	
D. Ny .	-	514.1F	pa. J. 15. 209. Münch. A. C. P. 190. \$57.	
			Wischnegradsky. A	
~ ~ ~ ~		9(4_ 19" ;	C. P. 190, 541.	
			Windersdow. A.C.	
, ~ , ~ . ~ . ~ . ~		9051.15* ;	P. 191, 125.	
enne from ampleme tro- mide. B. 195—415.			14. 2251.	
kkyl pengyl katana. B. 120°.			Pepcell. A. C. P. 161. 285.	
L L	•	SDR. 21*.5	Oechsner de Co- ninck C.R. 82.85	
Lenkyl burtyl kesome.	CH CO CH	2405 (F)	Washing and Friend	
- " B.125".	· · · · · · · · · · · · · · · · ·	. 7540. 50°	THE STATE OF STREET	
	<u> </u>	S22 (F	meyer. J. 16,522 Priedel. J. 11, 295	
Lenkyl isobutyl kesone.		\$1997 IF	Frankland and	
B. 114°.	***		Duppa. J. 20, 595	
lethyl secondary butyl-	٠	\$11.0°	G. Wagner. Ber. 18	
kevne. B. 116°.		\$1\$1, 14°.5	ref. 180. Wislicenus. A.C.P	
	0.000		219. 20%.	
tone, or pinacolin. B. 1063.			•	
	•	550, 0°)	Two preparations	
f: .: :: :.	*		Butlerow. A.C	
44 4.	**	523. 0°)	P. 174, 127.	
	••	787. 505)	2	
4		7217, 105°	Schiff. Bei. 9, 559	
tone from hexylene. B. 125°.	С ₆ Н ₁₁ О	8343. 11°	L. Henry, C. R. 97 260.	
propyl ketone, or bu- tyrone. B. 144°.	$C_3 H_7 C O. C_3 H_7 \dots$			
, , , , , , , , , , , , , , , , , , ,	••	819, 20°	E. Schmidt. Ber. 5	
			Kurtz. A. C. P. 161	
	66	83048, 4°)	201.	
	"	82165, 15° ·	Perkin. J. C. S. 49	
		81452, 25°	323.	
iisopropyl ketone.			Munch. A.C.P. 180	
B. 125°. lethyl amyl ketone.	C H ₂ . C O. C ₁ H ₁₁	813, 20°	831. E. Schmidt. Ber. 5	
B. 155°—156°.		1	597.	
" " B. 182°.5			Geuther. J.P.C. (2) 6, 160.	
ethyl isoamyl ketone.	"			
" " B.144_	"		Popoff. J. 18, 814	
" "			Grimshaw. A. C. P	
	66		166, 163. . Rohn. A. C. P. 190	

Name.	Formula.	Sp. Gravity.	Authority.
Methylisopropyl acetone -	CH ₃ . CO. C ₅ H ₁₁	.815, 20°	Romburgh. J. C. S. 52, 232.
Methyldiethylcarbyl ke- tone, or diethyl acetone. B. 138°.	"	.8171, 22°	Frankland and Duppa. J. 18, 306.
Methyl amyl pinacolin. B. 1820-	"	.842, 0° } .825, 21° }	Wischnegradsky. A. C. P. 178, 108.
Ethyl butyl pinacolin. "B. 126°-	с н. со ссен	881 (OO)	" "
Methyl hexyl ketone. "B. 171°-	C H ₃ . C O. C ₆ H ₁₃	.817, 23° .8185, 20°	Städeler. J. 10, 361. Brühl. A. C. P. 203, 1.
66 66 66	"	.6848 } 172°.8	Schiff. G. C. 1. 18,
" " B. 209°_	"	.8430, 15°	Poetsch. A.C.P.218, 56.
		.8351, 0°	Béhal. B. S. C. 47, 84.
Methyl butyrone. B. 180°-	C ₈ H ₁₆ O	.827, 16°	Limpricht. J. 11, 296.
Isopropyl isobutyl ketone. B. 160°.	C ₃ H ₇ . C O. C ₄ H ₉	.865, 14°	Williams. C. N. 89,
Ethyl amyl pinacolin. "B. 151°-	C ₂ H ₅ . C ₀ O. C ₅ H ₁₁	.845, 0° }	Wischnegradsky. A. C. P. 178, 108.
Diisobutyl ketone, or valerone. B. 181°.	C ₄ H ₉ . C O. C ₄ H ₉	.833, 20°	E. Schmidt. Ber. 5, 597.
Methyl octyl ketone. B. 211°.	C H ₈ . C O. C ₈ H ₁₇		Jourdan. Ber. 13,
11 11 11	"	.8379, 3°.5 }	Krafft. Ber.15, 1687.
" " " " " Diamyl ketone, or caprone. B. 220°.	$C_5 H_{11}$. C O. $C_5 H_{11}$.822, 20°	E. Schmidt. Ber. 5,
u u u		.828, 20°	
Methyl nonyl ketone, or methyl caprinol. B. 224°.	{ C H ₃ . C O. C ₉ H ₁₉	.8295, 17°.5 .8281, 18°.7	296. Gorup-Besanez and Grimm. Z.
	"	.8268, 20°.5	Giesecke. Z. C. 13, 428.
Dihexyl ketone, or oenan-	C ₆ H ₁₃ . C O. C ₆ H ₁₃	.825, 30°	v. Uslar and See-
thone. B. 264°.		.8870, 15°	kamp. J. 11, 299. Poetsch. A. C. P. 218, 56.
Methyl diheptylcarbyl ketone. B. 302°.			Jourdan. Ber. 13,
Laurone. M. 69°	C ₁₁ H ₂₃ . C O. C ₁₁ H ₂₃ -	.8036, 69° }	Krafft. Ber. 15, 1711.
Myristone. M. 76°.3	C ₁₃ H ₂₇ . C O. C ₁₃ H ₂₇ -	.8013, 76°.3	
" " " " " " " " " " " " " " " " " " "	"	.7986, 80°.8 .7922, 90°.9	
Palmitone. M. 82°.8	C ₁₅ H ₃₁ . C O. C ₁₅ H ₃₁ -	.7997, 82°.8 .7947, 90°.9	
Palmitone. M. 82°.8 Stearone. M. 88°.4	C ₁₇ H ₃₅ . C O. C ₁₇ H ₃₅ -	.7979, 88°.4 .7932, 95° }	
	<u> </u>		<u> </u>

1

Sth. Oxides, Alcohols, and Ethers of the Olefines.

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Pthylana avida	CHO	8045 09	Wurtz I 18 498
Propulana orida	CHO	850 00	Ouer I 13 A18
Ethylene oxide	C H O	8344 00	Eltekow J C S
B. 56°.5.	O4 118 O	.C., 121	AL SER
Isobutylene oxide.		.8311, 0°	908
Amylene oxide. B. 95° Trimethylethylene oxide.	CHO	691 Uc	Rayer T 19 451
Trimachulachulana arida	C3 1110. O	8903 00	Flaker Per 12
B. 75°.5.			397.
Methylpropylethyleneox- ide. B. 110°.			29. 553.
 Hexylene oxide. B. 103°—104°. 		.8739, 0 °	Lipp. Ber. 18, 3284.
Octylene oxide. B. 145°	1	ı	13. 411.
Diamylene oxide. B. 185°.	C ₁₀ H ₂₀ . O	.9402.00	Schneider. A. C. P. 157, 221.
Diethylene dioxide. B. 102°.	C, H, O,	1.0482. 00	Wurtz. J. 15, 423.
Ethylene ethylidene di- oxide. B. 82°.5.		1.0002, 0°	Wurtz. J. 14, 656.
		·	
Ethylene glycol. B. 197°			55 410
" "	"	.9444, 195°	Ramsay. J. C. S. 35, 463.
ii ii	".	1.11678, 159	Perkin I P C
		1.11200, 20	(2), 32, 523. Brühl. Bei. 4, 782.
Trimethylene alved	C ₃ H ₆ . (O H) ₂	1.053, 19°	Reboul. C. R. 79,
B. 216°.	66	1.0536, 18°	169. Freund. J. C. S. 42,
			156.
"	"	1.0625, 0°)	
	"	.9028, 214° j	214, 181.
Propylene glycol. B. 188°		1.051.00	Wurtz. J.10, 464.
"			
" "		1.054, 0°	12, 1873.
" "	1	,	Loebisch and Looss. J. C. S. 42, 377.
11 11	44	1.0527.0°) .8899, 188°.5)	Zander, A. C. P.
Butylene glycol. B.183°.5	С. н. (О н).	1 048 09	Wurtz J 19 400
Dimethylethyleneglycol.	O4 118 (O 11/3:	1.010, 0	. wurte. J. 12, 479.
B. 207°.6.	"	1.0259, 0°	Wurtz. C. R. 97,
	1		473.
Ethylethylene glycol.	"	1.0189, 00)	Grabowsky and
"" " B. 191°.5.	. "	1.0059, 17°.5	Saytzeff. A. C. P. 179, 333.
Tanhutulana eleval B 1770		1 0120 00 1	Narola C D co
Isobutylene glycol. B.177		1 0008 200	Nevolé. C. R. 83, 67.
	· · · · · · · · · · · · · · · · · · ·	.,, 20)	1 01.

	Name.		Form	ULA.	Sp. Gravity	Апт	TORITY.
Amylene	glycol. B.	1770_	C ₅ H ₁₀ . (O	H)2	.987, 0°		J. 11, 424.
	hylethyl B. 187°.5.		"		.9945, 0° } .9800, 19° }		r and Sayt- A. C. P. 179,
col. B.	ethylene ;	("		.9987, 0° }		y. A.C.P.
Methylpr	opylethy B. 207°.	lené	İ	H) ₂	.9669, 0°		J. 17, 516.
Dimethyl	butylenegl "B.	`220°_	**		.9759, 0° } .9604, 24° }	Sorokin. 81, 72.	
"	xylene gly		**		.9638, 0°	Wurtz.	J. 17, 518.
6. Hexyle Pinakone	ne glycol . B. 177°	- -	""		.9809, 0° .96, 15°	Lipp. B Linnema 815.	er. 18, 8283. ınn. J. 18,
"		•	16		.96718, 15° .96087, 25°		J. P. C.
Octylene	glycol. " B. 235°.	-240°_	C ₈ H ₁₆ , (O	H)2	.982, 0° } .920, 29° } .87, 20°		nont. J. 17,
•	pinakone .		l .			Kurtz. 161. 20	A. C. P.
Diethylen Triethyle	e alcohol ne alcohol.		C ₆ H ₁₆ O ₃		1.182, 0° 1.138	Wurtz.	J. 16, 489.
Methylen or meth		ether,	C H ₂ . (O C	H ₃) ₂	.8551	Malagut 70, 394	i. Ann. (2),
or meen	.,, 141.	"	44		.8604, 20°		A. C. P.
"	"	"	"		.854, 20°		. A. C. P.
Methylen	e diethyl e	ther	C H ₂ . (O C		.851, 0°	Greene. S. 1, 5	J. Am. C.
44	"	"	"		.8275, 16°.5	L. Henri 101, 59	y. C. R.
"	"	"	**		.834, 20°	Arnhold 240, 19	. A. C. P.
	e dipropyl en e diisop	ether_ ropyl	C H ₂ (O C ₃	H ₇) ₂	.8345, 20° .831, 20°	"	"
ether.		•			.825, 20°		44
Methylen Methylen	ediisoamyl e dicetyl et	ether ther	C H ₂ (O C ₂	H ₁₁) ₂	.835, 20°	66 61	"
Ethylene Ethylene	monethyl e diethyl eth	ether_	C ₂ H ₄ . O H	. () C ₂ H ₅	.835, 20° .846, 20° .926, 13° .7993, 0°	Demole. Wurtz.	Ber. 9, 746. J. 11, 423.
				3/2			
or dime	thyl acetal				.8555, 0°		
46	""	. "	f t		.8674, 1°	Alsberg.	J. 17, 485.
4.6 4.6	"	"	66		.8590, 14° .8503, 22° }	Dancer.	J. 17, 484.
66 66	"	"	£ £		.8497, 23° .8476, 25°		.,
"	"	"	"		.8554, 15°		and Grodz- er. 9, 1980.

3	NAME			Fo	rmtia.		SP. GRAVITY.	AUT	IORITY.
			e:.	C, H,	0 C E ₃ .		.8555. 22°	Bachmar 216. 46	
or dime			·		••		.8010. 62°.7	Schiff.	G. C. I. 18.
	4.	•	·		••		.60789. 18* .64764. 25*		J. P. C.
Etindener er.orme				C ₂ H ₄ . O	CH _a l/O	(H _s)	.8585. (F		J. 9, 597.
4.					••		.MDS. 🎞	Bachman 215, 49	
••	4.5	••			••		.965i. 99c		n. A. C. P.
Ethidene	dietby!	ether	. OF	C, H,	0 C, H,	3	.640 mr	Döberein	er.
	••	••			••		.625. 20°	Liebic, 4	.C.P.5.25
	••	•• _			••		.gr .ac.4	Star I	1. 697
4:	44	٠.	_		.		.8E54. 20F	Brühl. 208, 1.	▲. C. P.
4	M	u	-		AL		.826. le	_ Engel at	พา เดง
46	4	££			44			Schiff.	C C T 18
44	44	44			M		.7865 10ge	177	U. C. 1. 10
u	Ħ	u	\exists		4	_	.926. 14"	Lestech.	
u	•	æ	-		ĸ		Ball see		n. A.C.P.
-6	u	å.			<u></u>		.98157. 17F .85534. 27F		J. P. C.
Ethidene	dinem	rri eti		C. H., (OC.H.		Self min 2	Girand R	. 020. ar 18 9259
or propi Ethidene (rl nocta Liisobu	l B. 1 tyleth	er.				-814. 20 0		
or isobu	11.696	ا. تا باداد معالمه	roa.	C 11	0 C H	3	2047 752	43-2	T 1= 465
diamyl	200	emer	. or	C ₂ H ₆ .		5	.8347. 15° .9012. 550	Bachman 218, 49	L. A.C.P.
Propideze	diproj	pyl etl	ber_	C, H,	O C, H,	<u>'</u>	.54%% (P	Schodel 1282	J. C. S. 45
Butidene or isobu	diadh	rl ett	er,	C, H,	O C, H,		.9957. 12°.4	- 0ecraim - 14, 130	ides. Ber.
Limathyl	Y . OF	 		C. H.	OCH.		859 109	4 '4' '4'	T 17 486
Deruy v	a eral			C. H.	OC. H	. L	.SS. 12°		•••
Diam'ri v	Leral	- <i></i> -		Ć. H	OC. A	37	.849. 7	Alsher	J. 17, 485
							.552, 10° .563, 12° .549, 7° .553, 12°,5	716 13	A. C. P.
Ethidene	oxyeth	Tiete		C. H. O	'0 C. I	I.\	.891, 14*		••
Ethidene	OXYDE	OTlate	_.	C. H. O	(0 Č. E	1	.935, 14°	<u>.</u>	••
Ethidene	UXTIED	butrle	te_	C. H. O	(O Č. I	L	.579, 112		••
Ethidene	oxyiso	myle	le :	C, H, O	O C, I	In's -	.891, 14° .895, 14° .879, 11° .874, 11°	- 4	• •
Ethylene	discots	te.		C. H	C. H. O	·	1.128.00	· Wurtz	J. 12, 485
	"			-3 -6, /			1.1561, 20°	Bruhl	Bei. 4. 782
• •	44				44		1.128.0° 1.1561.20° 1.11076.15°	Perkin	J. P. C
**	4.6				**		1 1111143 750		2003
Ethylene	diprop	ionate		C2 H4 (C, H, O	2)2	1.05440, 15° 1.04566, 25° 1.024, 0° 1.109, 0°		••
			!	CH	CHA	`	1 024 02	W.,	T 10 463
Ethylene.	dibute	raio							

Name.	FORMULA.	SP. GRAVITY.	Authority.
Propylene diacetate	C ₃ H ₆ . (C ₂ H ₈ O ₂) ₂	1.070, 19°	Reboul. C. R. 79,
Propylene divalerate	C ₃ H ₆ . (C ₅ H ₉ O ₂) ₂	.98, 12°	Reboul. J. C. S. 36, 127.
β. Butylene monacetate	C_4H_8 . OH. $(C_2H_8O_2)$	1.055, 0°	Wurtz. C. R. 97, 473.
Hexylene diacetate Pseudohexylene diacetate Ethidene diacetate ""	C ₂ H ₄ . (C ₂ H ₃ O ₂) ₂	1.060, 12°	Wurtz. J. 17, 516. Wurtz. J. 17, 513. Schiff. Ber. 9, 306.
" "		1.073, 15° 1.078, 15°	Franchimont. J. C. S. 44, 452. Rübencamp. A. C. P. 225, 267.
" "		1.07, 10°	Geuther. J. 17, 829.
Ethidene acetote propionate. "	$ \begin{array}{cccc} C_2 & H_4 & (C_2 & H_3 & O_2) \\ & (C_3 & H_5 & O_2) \end{array} $	$1.046 \atop 1.042$ 15°	Two preparations. Rübencamp. A. C. P. 225, 267.
Ethidene dipropionate	C ₂ H ₄ . (C ₈ H ₅ O ₂) ₂	1.020, 15°	Rübencamp. A. C. P. 225, 267.
Ethidene acetate butyrate		1.016, 15° } 1.018, 15° }	Two preparations. Rübencamp. A. C. P. 225, 267.
Ethidene dibutyrate	$C_2 H_4. (C_4 H_7 O_2)_2$.9855, 15°	Rübencamp. A.C. P. 225, 267.
Ethidene acetate valerate.		.991, 15°	"
Ethidene divalerate Ethidene oxyformate	C. H. (C. H. O.)	.947, 15° 1.134, 21°	" " " Geuther. A. C. P. 226, 223.
Ethidene oxya etate Ethidene oxypropionate Ethidene oxybutyrate	C ₁₀ H ₁₉ O ₅	1.027, 26°	11 11 11 11 11 11 11 11 11 11 11 11 11

9th. Ethers of Carbonic Acid.

	NA	ME.	Form	ULA.	SP. GRAVITY.	Аптно	RITY.
Methyl	carbo	nate	(C H ₃) ₂ . C	O ₃	1.069, 22°	Councler.	Ber. 13,
"	"		**		1.065, 17°	B. Röse. 2418.	Ber. 13,
"	"		"		1.060	Schreiner.	Ber. 13,
Methyl	ethyl	carbonate. B. 104°.	C H ₃ . C ₂ H	5. C O ₃	1.0372	2080.	"
	"		"		1.0016 .975, 19°	"	
Ethyl c	arbona	ite	$(C_2 H_5)_2$. C			19, 17,	
"	"		44		.9998, 0° }	Kopp. A	. C. P. 95.
"	44		"		.9780, 20° }	307.	
"	"		"		.9762, 20°	Brühl.	A. C. P.
"	"		"		.9735		Ber. 13,
	15 0			ı		2080.	

15 s G

NAME.	FORMULA.	Sp. Gravitt.	AUTHORITY.
Ethyl propyl carbonate	C, H, C, H, C O,	.9516, 20°	Pawlewski. Ber. 17, 1607.
Propyl carbonate	(C ₃ H ₇) ₇ C O ₃	.968, 22°	Cahours. C. R. 77,
Butvl carbonate	(C ₄ H ₂) ₂ C O ₃	.949, 179	Röse. Ber. 13, 2418.
££ ££	- "	.9244, 20° }	Lieben and Rossi. A. C. P. 165, 109.
Isobutyl carbonate	(C ₅ H _n) _r C O ₅	.919, 150	Röse. Ber. 13, 2418. Medlock. J. 2, 430.
:: :: ::		.9065, 15°.5 .912, 15°	Bruce. J. 5, 605. Röse. Ber. 13, 2418.
Ethyl orthocarbonate		.925	Bassett. J. 17, 477.
Propyl orthocarbonate Isobutyl orthocarbonate			Röse. Ber. 13, 2419.

10th. Acids and Ethers of the Oxalic Series.

Name.	FORMULA.	Sp. Gravitt.	AUTHORITY.	
Oxalic acid	С, Н, О,	2.00, 9°	Husemann. B. D. Z.	
" "	C, H, O, 2 H, O	1.507	Richter.	
" "	"	1.622	Playfair and Joule. M. C. S. 2, 401.	
<i>(</i> ((44	1.629	Buignet. J. 14, 15.	
66 66	"	1.63, 9°	Husemann. B. D. Z.	
" "	"	1.680	Schröder. Ber. 10, 851.	
		1	Rüdorff. Ber. 12, 251.	
" "	"	1.57	W. C. Smith. Am. J. P. 58, 145.	
" "		1.658, 18°.5		
Succinic acid	C, H, O,	1.55	Richter.	
" "		1.529, 9°, sub-)	
	1	limed.	Husemann. B. D.	
" "	"	1.552, 9°, cryst.) Z .	
" " …	"	1.567	Schröder. Ber. 10.	
Ethyl oxalic acid	1	1.2175, 20°	2412.	
Pyrotartaric acid	C. H. O	1.408)	Schröder. Ber. 13,	
" "		1.413	1 1070.	
Methylisopropylmalonic acid.			S. 52, 232.	
Sebacic acid	C ₁₀ H ₁₈ O ₄	1.1317, fused _	Carlet. J. 6, 429.	
Methyl oxalate		1	Kopp. A. C. P. 95,	
66 66		1.1479, 54° 1.0039, 163°.3	Weger. A. C. P.	

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Methyl ethyl oxalate	C ₅ H ₈ O ₄	1.27, 12° 1.15565, 0° .94693, 178°.7}	Chancel. J. 3, 470. (Wiens. Königsberg Inaug. Diss.
Ethyl oxalate	C ₆ H ₁₀ O ₄	1.0929, 7°.5	(1887. Dumas and Boullay.
## ##	11	1.086, 12° 1.1010, 5°10° 1.0958, 10°5° 1.0898, 15° _20° 1.1016, 0° 1.0815, 18°.2 1.0824, 15° 1.0798, 20°	P. A. 12, 480. Delffs. J. 7, 26. Regnault. P. A.62, 50. Kopp. A. C. P. 94, 257. Mendelejeff. J. 18, 7. Brühl. A. C. P.
" "	"	1.1028 1.1029 1.1030 1.08568, 15° 1.07609, 25° 1.018, 22°	208, 1. Weger. A. C. P. 221, 61. Perkin. J. P. C. (2), 82, 528. Cahours. Les Mondes 22, 280
" "Butyl oxalate	" C ₁₀ H ₁₈ O ₄	1.0884, 0° } .80601, 218°.5} 1.002, 14°	des, 82, 280. { Wiens. Königsberg Inaug. Diss. 1887. Cahours. C. C. 5, 20.
44 44	"	1.0099, 0° }	Wiens. Königs- berg Inaug. Diss. 1887.
Ethyl heptyl oxalate	C ₁₁ H ₂₀ O ₄	.99542, 0° .75493, 268°.71	} " "
Propyl heptyl oxalate	C ₁₂ H ₂₂ O ₄	.968, 11° .981435, 0° .72669, 284°.4}	Delffs. J. 7, 26. Wiens. Königsberg Inaug. Diss. 1887.
Propyl octyl oxalate Methyl malonate		.97245, 0° .71512, 291°.1_ 1.135, 22°) " " Osterland. J. C. S.
tt tt		1.16028, 15° 1.15110, 25°	(2), 18, 142. Perkin. J. P. C. (2), 32, 523. (Wiens. Königs-
« «	"	1.1758, 0° } .95686, 180°.7 }	berg Inaug. Diss. 1887.
Ethyl malonate		1.068, 18°	Conrad and Bischoff. A. C. P. 204, 127.
" " "	44	1.06104, 15° 1.05248, 25° } 1.07607, 0° } .86227, 198°.4 }	Perkin. J. P. C. (2), 32, 523. (Wiens. Königsberg Inaug. Diss. 1887.
Ethyl propyl malonate	C ₈ H ₁₄ O ₄	1.04977, 0° .83542, 211°	" "
Propyl malonate	C ₉ H ₁₆ O ₄	1.02705, 0° .79966, 228°.8_	} "
Butyl malonate	C ₁₁ H ₂₀ O ₄	1.0049, 0° .800073, 261°.5	}

Name.	FORMULA.	Sp. Gravity.	AUTHORITY
Methyl succinate	C ₆ H ₁₀ O ₄	1.1179, 20°	Fehling. A.C. P. 49, 195.
	"	1.1162, 189	Weger. A. C. P.
11 11	"	.91200, 195°.2_ 1.12611, 15° }	9 221, 61. Perkin. J. P. C.
ii ii	G 77 0	1.11718, 25° j	(2), 32, 523.
Methyl ethyl succinate	C, H, O,	1.0925, 0° .86482, 208°.2.	Weger. A. C. P. 221, 61.
Ethyl succinate	C ₈ H ₁₄ O ₄	1.036	D'Arcet. Ann. (2),
"	"	1.0718, 0° }	58, 291. Kopp. A. C. P. 95,
16 1; 16 11		1 0475 95° 5 (307.
"	"	1.0592) 0°	Weger. A. C. P.
66 66	"	.82726, 215°.4) 221, 61.
11 11	"	1.04645, 15°) 1.03832, 25°)	Perkin. J. P. C. (2), 32, 523.
Ethyl propyl succinate	С. Н., О.	1.03866, 0°)	(Wiens. Königs-
«	""	.81476,231°.1	berg Inaug. Diss. 1887.
Propyl succinate	C ₁₀ H ₁₈ O ₄	1.0189, 0°	} " "
Isopropyl succinate	"	.78183, 247°.1 1.009, 0°)) 677
"	"	.997, 18°.5 }	Silva. C. R. 69, 416.
Ethyl butyl succinate	"	1.02178, 0° } .78572, 247° }	Wiens. Königs- berg Inaug. Diss. 1887.
Propyl butyl succinate	C ₁₁ H ₂₀ O ₄	1.0106, 0° .77587, 258°.7	} "
Isobutyl succinate	C ₁₂ H ₂₂ O ₄	.97374, 15°)	Perkin. J. P. C.
		.96670, 25° }	(2), 32, 523. (Wiens. Königs-
Ethyl heptyl succinate	C ₁₃ H ₂₄ O ₄	.98503, 0° } .73134,291°.4}	derg Inaug. Diss.
	C ₁₄ H ₂₆ O ₄	.9612, 130	(1887. Guareschi and Del
Isominy i succinate 222222	014 225 04		Zanna. Ber. 12, 1699.
Heptyl succinate	C ₁₉ H ₃₄ O ₄	.951846,-00}	Wiens. Königs- berg Inoug. Diss.
		.68174, 350°.1}	(1887.
Ethyl methylmalonate	U ₈ H ₁₄ U ₄	1.021, 22	Conrad and Bischoff. A. C. P. 204, 202.
" "		1.02132, 15°	Perkin. J. P. C.
Methyl dimethylsuccinate		1.01295, 25° j 1.0568, 16°	(2), 32, 523. Barnstein. A. C. P.
•		,	242, 126.
Methyl ethylsuccinate		1.051, 34°	Polko. A. C. P. 242, 113.
Ethyl pyrotartrate	C, H ₁₆ O ₄	1.025, 21°	Reboul. Ber. 9. 1129.
" "	"	1.01885, 15°) 1.01126. 25° }	Perkin. J. P. C. (2), 32, 523.
Ethyl ethylmalonate		1.008, 18°	Conrad and Bischoff.
	"	1.01235, 15°)	A. C. P. 204, 135. Perkin. J. P. C.
74"	"	1.00441, 25°	(2), 32, 523.
Ethyl dimethylmalonate _		.9965, 15°	Thorne. Ber. 14, 1644.

		·	
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ethyl dimethylmalonate	C ₉ H ₁₆ O ₄	1.00153, 15° } .99356, 25° } 1.001, 20°.5	Perkin. J. P. C. (2), 32, 523. Malaguti. A. C. P.
Ethyl methylethylmalo-		.994, 15°	56, 306. Conrad and Bischoff.
nate. Ethyl propylmalonate	"	.99809, 15° }	Ber. 18, 595. Perkin. J. P. C.
Ethyl isopropylmalonate	"	.98541, 25° .997, 20°	(2), 82, 523. Conrud and Bischoff. Ber. 13, 595.
	"	.99271, 15° .98521, 25°	Perkin. J. P. C. (2), 82, 523.
Ethyl dimethylsuccinate	"	.9976, 17°	Levy and Engländer. A. C. P. 242, 201.
		1.0184, 17°	Barnstein. A. C. P. 242, 126.
Ethyl ethylsuccinate	"	1.080, 21°	Polko. A. C. P. 242, 113.
Ethyl diethylmalonate		.990, 16°	Conrad and Bischoff. A. C. P. 204, 189.
11 11	"	1.0041, 0° }	Shukowski. Ber. 21, ref. 57.
	"	.99167, 150	Perkin. J. P. C.
" " ——	"	.98441, 25° S	(2), 32, 523.
Ethyl isobutylmalonate	"	.983, 15°	Conrad and Bischoff.
Ethyl secondary-butyl- mulonate.	"	.988, 15°	Ber. 13, 595. Romburgh. Ber. 20, ref. 376
Ethyl methylisopropyl- malonate.	"	.990, 15°	Romburgh. Ber. 20, ref. 469.
Methyl subcrate		1.014, 18°	Laurent. Ann. (2), 66, 162.
Ethyl suberate		1.003, 18°	Laurent. Ann. (2), 166, 160.
44 44	"	.991, 15° .98519, 15° }	Hell. B.S. C. 19, 365. Perkin. J. P. C.
Ethyl tetramethylsucci-	"	.97826, 25° { 1.012, 0° }	(2), 82, 523. Hell and Wittekind.
nate. "	"	1.0015, 18°.5	Ber. 7, 319.
Methyl sebate		.985, 60°, 1	Neison. J. C. S. (3), 1, 316.
Ethyl sebate			Neison. J. C. S. (8), 1, 318.
" "	"	.96824, 15° .96049, 25°	Perkin. J. P. C. (2), 32, 523.
Butyl sebate	C ₁₈ H ₃₄ O ₄	.9417, 0° }	Gehring. C. R. 104, 1289.
Amyl sebate	C ₂₀ H ₃₈ O ₄	.9329, 15° } .951, 18°	Neison. C. N. 32, 298.
Ethyl dioctylmelonate			Conrad and Bischoff. Ber. 13, 595.
Ethyl acetomalonate			73.
Ethyl acetosuccinate			73.
	"	1.08809, 15° 1.08049, 25°	Perkin. J. P. C. (2), 32, 523.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl acetoglutarate Ca	Н ₁₂ О ₅	., 1.0505, 147.1;	Wislicenus and Lim- pach. A.C. P. 192, 130.
24.0			Hardtmuth. A.C. P. 192, 142.
E. (in the first content of t	H ₉ , O ₅	., 1.043, 20	Wislicenus and Limpach. A. C. P. 192, 193,
			Hardtmuth. A.C. P. 192, 142.
Ethyl 3 ethylacetosucci-3		., 1.064, 16°	Thorne. J. C. S. 89,
Ethyl betosucemate Cr	H ₁₆ O ₆	., 1.119, 06	Wurtz and Friedel. J. 14, 378.
Ethyl susemosueeinate (\hat{C}_1	. II., O ₆	., 1.4057, 18°	Hermenn. J. C. S. 42, 712.
Ethyl ethidenemalomate (i C_{y}	11, 0,	, 1.0 435, 1 5°	

11th. Acids and Ethem of the Glycolic Series.

		. — — — — — — — — — — — — — — — — — — —			
NAME	Cokmuta.	SP. ORACLES AUTHORITY			
Citysoffie neid Lactic neid	$\begin{array}{l} (\mathcal{O}_{1}\Pi_{p}\mathcal{O}_{p}) \\ (\mathcal{O}_{1}\Pi_{p}\mathcal{O}_{p}) \end{array}$	1.1167, C = 1. 1.27 3, T = 1.	Clear, J. S. 447. Fay L base and Pe- tze. P. A. 23.		
Methyl elycollic neld Ethyl oxybohityric ii id	re n _{ov.}	180, 1 1 2 1906, 201 1, 80 2 1, 80 1 1, 80 0 1, 1 1	Monuerojeff, J. 117, Brusi. Den. 4, 752, Henric. J. 12, 159, Heitana Walabaner. Der. 11, 450.		
Amyl etweellie will	$\mathcal{O}_{\mathcal{C}}(H_{\mathfrak{m}},\mathcal{O}_{\mathfrak{m}})$. • W.	-ditain 1 + . 2 31.		
Marhylichvoollate	$\mathcal{O}_{n}\mathbf{H}_{n}\mathbf{O}_{n}$	1502	Sartiates Bei		
Frhet etwoollate	, C ₁ 1(_x Ω _y) ,	i di . Lino	Tunteng, J. P. G.		
Projekt erwoollate	$(\mathcal{O}, \Pi_{\mathfrak{pr}} \mathcal{O}_{\mathfrak{p}})$. 1504	Samuel Br.		
Mothed mothe laty collectivity of the	$e^{\epsilon} \Pi_{\mu} \phi_{\mu} $	Nec.			
recipit mothetaly collate Matheterite hely collate pole for he talve all tre	$egin{array}{ccc} C_{n} \Pi_{\Omega} \mathcal{O}_{n} & . & . & . \\ C_{n} \Pi_{\Omega} \mathcal{O}_{n} & . & . & . \\ C_{n} \Pi_{\Omega} \mathcal{O}_{n} & . & . & . \end{array}$	996 990 7 -	Samuel III (18)		
•		' 100	o. Salabana en en . O.		
Postel thelelyadlate	е. и., о	386	••		

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Methyl propylglycollate	C ₆ H ₁₂ O ₃	.9845	Schreiner. Bei.
Ethyl propylglycollate	C ₇ H ₁₄ O ₃ C ₈ H ₁₆ O ₃ C ₄ H ₈ O ₃	.9758	16 16
Propyl propylglycollate	C. H. O.	.9678	11 11
Methyl lactate	C H O	1.1176	
	04 H8 03		· P
Ethyl lactate	C ₅ H ₁₀ O ₈	1.0542, 0° }	Wurtz and Fried
		- 1.042, 10)	J. 14, 878.
	"	. 1.0540	Schreiner. Bei. 850.
Ethyl methyllactate	C. H. O.	1.0030	46 66
Ethyl methyllactate Ethyl ethyllactate	C. H. O.	.9203, 0°	Wurtz. J. 12, 2
"	04 -17 08	.9540	Schreiner. Bei.
7.1	G T O		850.
Ethyl oxyisobutyrate		.9981, 18°	Frankland and Du pa. P.T. 1866, 30
" "	"	1.0750	Schreiner. Bei. 850.
Ethyl methyloxybutyrate	C ₇ H ₁₄ O ₈	.9768, 18°	Frankland and Dupa. J. 18, 881.
" "	"	1.0100	Schreiner. Bei. 850.
Ethyl ethyloxybutyrate	C ₈ H ₁₆ O ₃	.930, 19°	Duvillier. Ann. (
" "	"	.9540	17, 538. Schreiner. Bei.
Methyl diethyloxyacetate_	C ₇ H ₁₄ O ₃	.9896, 16°.5	850. Frankland and Du
n., , , , , , , , , , , , , , , , , , ,	0.17.0	0010 100 5	pa. P.T. 1866, 80
Ethyl diethyloxyacetate	C ₈ H ₁₆ O ₃	.9618, 18°.7 .98	L. Henry. B. S.
Amyl diethyloxyacetate	C ₁₁ H ₂₂ O ₃	.98227, 18°	19, 212. Frankland and Du
Ethyl amylhydroxalate	C ₉ H ₁₈ O ₃	.9449, 13°	pa. P.T. 1866, 30 Frankland and Du
Ethyl ethylamylhydroxa-	C ₁₁ H ₂₂ O ₃	.9399, 13°	pa. J. 18, 382. Frankland and Du
late. Ethyl diamyloxalate	C ₁₄ H ₂₈ O ₃	.9137, 18°	pa. P.T. 1866, 86 Frankland and Du
	~ .		pa. J. 18, 383.
Ethyl acetoglycollate	CHO	1.0098, 17°	Heintz. J. 15, 29
Ethyl acetolactate	C ₆ H ₁₀ O ₄	1.0458, 17°	Wislicenus. J. 1
Ethyl propionoglycollate	(I	1.0052, 22°	Senf. Ber. 14, 241
Ethyl butyroglycollate	C ₈ H ₁₄ O ₄	1.0288, 22°	••
Ethyl isobutyroglycollate		1.0240, 22°.5	
Ethyl butyrolactate	C ₉ H ₁₆ O ₄	1.024, 0°	Wurtz. J. 12, 29
" "	C ₉ H ₁₆ O ₄	1.028, 00	Wurtz. J. 18, 27
Lactyl ethyl lactate	C ₈ H ₁₄ O ₅	1.184, 0°	Wurtz and Fried J. 14, 877.
Ethyl diethylglyoxylate	C ₈ H ₁₆ O ₄	.994, 18°	Schreiber. Z. C. 1 168.
Oxybutyric lactone		1.1441, 0° }	Saytzeff Ber. 1
" " ———	"	1.1286, 16° } 1.1802, 20°	2688. Frühling. Ber. 1
			2622.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Ethylbutyric lactone	C7 H12 O2	.9818, 4°	Chanlaroff. A. C. P. 226, 339. Amthor. Ber. 14, 1718. Young. A. C. P. 216, 41.

12th. Acids and Ethers of the Pyruvic Series.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Pyruvic, pyroracemic, or acetyl-formic acid.	C ₃ H ₄ O ₃		
11 11	"	1.2792	Berzelius. Claisen and Shad- well. Ber. 11, 1567.
	" <u></u>	1.2415	Claisen and Shad- well. Ber. 11, 621.
Propionyl-formic acid	C ₄ H ₆ O ₈		Claisen and Moritz. Ber. 13, 2122.
β. Acetyl-propionic, or laevulinic acid.	C ₅ H ₈ O ₈	1.135, 15°	Conrad. Ber. 11, 2178.
Methyl pyruvate			10 954
Methyl acetacetate Ethyl acetacetate	C ₅ H ₈ O ₃	1.037, 9°	Brandes. J. 19, 306. Geuther. J. 18, 303.
" "	"	1.0256, 20	Brühl. A. C. P. 203, 1. Elion. Ber. 17, ref.
::	"	1.0465, 0°]	568.
" " —————	"	.9880, 55°.8 .9644, 79°.2 .9029, 135°.5	Schiff. Ber. 19, 560.
11 11	"	.8458, 180° 1.03174, 15° 1.02353, 25°	Perkin. J. P. C. (2), 32, 523.
Isobutyl acetacetate	C ₈ H ₁₄ O ₃ .	.979, 0° } .932, 23° }	Emmerling and Oppenheim. Ber. 9, 1097.
Amyl acetacetate	C ₉ H ₁₆ O ₃	.954, 10°	Conrad. A.C. P. 186, 231.
Methyl methylacetacetate Ethyl methylacetacetate	C ₆ H ₁₀ O ₃ C ₇ H ₁₀ O ₃	1.020, 9° .995, 14°	Brandes. J. 19, 306.
Methyl laevulinate	C ₆ H ₁₀ O ₃	1.001.9, 20	Grote, Kehrer, and Tollens. A. C. P. 206, 221.
Ethyl laevulinate	C ₇ H ₁₂ O ₃	1.0325, 0° }	" "
Propyl leevulinate	C ₈ H ₁₄ O ₈		66

			
Name.	FORMULA.	SP. GRAVITY.	Authority.
Methyl ethylacetacetate Ethyl ethylacetacetate	C ₇ H ₁₂ O ₈ C ₈ H ₁₄ O ₈	1.009, 6° .998, 12°	Geuther. J. 18, 303.
" "	"	.981, 16°	James. A.C.P. 226, 202.
" "	"	.9834, 16°	Frankland and Duppa.
Propyl ethylacetacetate	C ₉ H ₁₆ O ₃	.981, 0°	Burton. A. C. J. 3, 385.
Amyl ethylacetacetate	C ₁₁ H ₂₀ O ₃	.937, 26°	
Ethyl dimethylacetacetate	C ₈ H ₁₄ O ₃	.9918, 16°	
Ethyl propionyl propionate		.9948, 0° }	Hellon and Op- penheim. Ber.
" "		.9870, 15°	(10, 701 and 861. Israel. A. C. P. 231,
Ethyl methylethylacetace-	C ₉ H ₁₆ O ₈	.974, 22°	197. Saur. A. C. P. 188,
tate. Ethyl isopropylacetacetate	."	98046, 00	275. Frankland and
Ethyl methylpropylacet- acetate.	C ₁₀ H ₁₈ O ₃	.9575, 17°	Duppa. J. 20, 895. Jones. A. C. P. 226, 288.
Ethyl isobutylacetacetate_	"	.951, 17°.5	Rohn. A. C. P. 190, 307.
Ethyl ethylpropionylpro- pionate.	"	.966, 15°	Israel. A. C. P. 231, 197.
Ethyl dipropylacetacetate	C ₁₂ H ₂₂ O ₃	.9585, 0°	Burton. A. C. J. 3, 386.
Ethyl heptylacetacetate	C ₁₅ H ₂₄ O ₃	.9324	Jourdan. Ber. 18, 434.
Ethyl octylacetacetate	C ₁₄ H ₂₆ O ₃	.9354, 18°.5	
Ethyl diisobutylacetace-	"	.947, 10°	Mixter. Ber. 7, 501.
Ethyl diheptylacetacetate	C ₂₀ H ₃₈ O ₃	.8907, 17°.5	Jourdan. J. C. S. 38, 314.
Ethyl acetopyruvate	C ₇ H ₁₀ O ₄	1.124, 21°	Claisen and Stylos. Ber. 20, 2189.
Ethyl diacetylacetate	C ₈ H ₁₂ O ₄	1.044, 15°	Elion. Ber. 16, 1369. Elion. Ber. 16, 2762.
" "	"	1.064, 15°	James. A. C. P. 226, 202.
Ethyl carbacetacetate	C ₈ H ₁₀ O ₈	1.136, 27°	Duisberg. Ber. 15, 1387.
Ethyl ethylideneacetace-tate.	C ₈ H ₁₂ O ₃	1.0225, 15°	Claisen and Mat- thews. A. C. P. 218, 173.
Ethyl amylideneacetace-	C ₁₁ H ₁₈ O ₈	.9612, 15°	Matthews. Ber. 16, 1372.
Ethyl ethoxylmethylacet- ncetate.	C ₉ H ₁₆ O ₄	.976, 220	Isbert. A. C. P. 234, 195.
Ethyl ethoxylethylacet- acetote.	C ₁₀ H ₁₈ O ₄	.957, 22°	Isbert. A. C. P. 234, 194.

13th. Acids and Bthers of the Acrylic Series.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methylacrylic acid	· ·	. 1.018, 25	Brühl. Ber. 14, 2800. Geuther. J.P.C. (2), 3, 442.
Pyroterebic acid	C ₆ H ₂₀ O ₂	. 1.01	Rabourdin. A. C. P. 52, 395.
" "	"	1.006, 26°	Mielck. A.C.P. 190, 52.
Methylethylacrylic acid	"	.9812, 25°	Lieben and Zeisel. M. C. 4, 71.
Hydrosorbic acid	"	.969, 19°	Barringer and Fit- tig. Z. C. 13, 425.
Amyldecatoic acid Moringic acid	C ₁₆ H ₁₆ O ₂	.9096, 0° .908, 12°.5	Borodin. ? Walter. C. R. 22,
Oleic acid	:	1	1143. Chevreul.
Methyl acrylate. B. 80°.3.	C4 H6 O3	.977.00}	Kahlbaum. Ber. 13,
4. 46		_, .97388.0° {	2349. Weger. A.C.P. 221,
Liquid polymer of methyl	(C ₄ H ₆ O ₂) _a	.: .87194. 80°.3 { .: 1.140, 0° }	Kahlbaum. Ber. 13,
Liquid polymer of methyl acrylate. " " Solid polymer of methyl	"	1.125, 18° (1.2223, 15°.6)	2349.
acrylate. " " Ethyl acrylate. B. 98°.5	C, H, O,	1.2222, 18°.2 j 9252, 0° }	Caspary and Tollens.
	"	9136, 15°) 93928, 0° }	B. S. C. 20, 368. Weger. A. C. P. 221,
Propyl acrylate. B. 122°.9.	C. H. O.	81970, 98°.5 { 91996, 0° }	61.
Methyl crotonate	C ₅ H ₆ O ₂	_' .7847, 122°.9 ∫ _' .9806, 4°	Kahlbaum. Ber. 12,
Ethyl crotonate	C. H., O.	9188.)	844.
66 86	"	9199 20° 9237 92680, 15°	Brühl. A.C.P. 235,1.
16 66		91846. 25° }	Perkin. J. P. C. (2), 32, 523.
Ethyl 3 crotonate	i	•	Geuther. J. P. C. (2), 3, 444.
Ethyl angelate	C, H, O,	9347, 0°	Beilstein and Wie- gand. Ber. 17, 2261
Ethyl tiglate	46	.' .926. 21°	Geuther and Froh-
44 46	46	9425, 0°	lich. Z.C. 18, 549. Beilstein and Wic-
Ethyl ethylcrotonate	CHO	0204 199	gand. Ber. 17, 2261. Franklandand Dup-
	ł.	1	rea. J. 18, 384
Methyl oleste	i .	1	Laurent. Ann. (2), 65, 294.
Ethyl oleste	.i C ₂₉ H ₂₆ U ₂	18°	4 " "

Name.	Formula.	Sp. Gravity.	Authority.
Ethyl oleate """ """ Methyl elaidate Ethyl elaidate	C ₂₀ H ₃₈ O ₂	.87589 15° .87525 15° .87041 25° .86991 .872, 18°	Perkin. J. P. C. (2), 82, 523. Laurent. Ann. (2), 65, 294.

14th. Derivatives of the Acrylic Series.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Acrolein, or acrylaldehyde MetacroleinAcropinacone	(Č ₃ H ₄ O) _n	.8410, 20° 1.08, 8° .99, 17°	Brühl. Bei. 4, 780. Geuther. J. 17, 884. Linnemann. J. 18, 817.
Acrolein ethylate	C ₅ H ₁₀ O ₂	.986, 4°	Taubert. J. C. S. 31, 296.
Acrolein diacetate			
Crotonaldehyde	C ₄ H ₆ O	1.083, 0°	Roscoe and Schor- lemmer's Treatise.
Diacetate from crotonalde- hyde.	C ₈ H ₁₂ O ₄	1.05, 14°	Lagermark and El- tekoff. Ber. 12.
Tiglic aldehyde, or guajol β . Angelicalactone	C ₅ H ₈ O ₂	.871, 15° 1.1084, 0°	Völckel. J. 7, 611. Wolff. A. C. P. 229 257.
Methylethylacrolein	C ₆ H ₁₀ O	.8577, 20°	Lieben and Zeisel M. C. 4, 18,
Amyldecaldehyde	C ₁₀ H ₁₈ O	.862, 0° .848, 20° }	Borodin. Ber. 5, 480
" " Hexylpentylacrylic alde-	"	.861, 0° } .851, 14° }	Gäss and Hell. Ber 8, 872.
hyde. "	"	.8416, 30° .8392, 35°	Perkin, Jr. Ber. 15 2804.
"	"	.8504, 15°	Perkin, Jr. J. C. S. 44, 81.
Hexylpentylacrylic alco-	"	.8418, 85°	Perkin, Jr. Ber. 15 2810.
Hexylpentylacrylic acetate. " " "		.8597, 30° }	Perkin, Jr. Ber. 15 2809.

15th. Acids and Ethers, Malie-Tartaric Group.

Malic acid C, H, O, 1.559, 4° Schröder. Ber. 12. 1611. Tartaric acid C, H, O, 1.75 Richter. """"""""""""""""""""""""""""""""""""		NAX	. !	For	MTLA.	SP. GRAVI		A 1-711	
Tartaric acid C ₄ H ₆ O ₆ 1.75 Bichter. " " 1.764 Schiff. J. 12. 41. " " 1.759 Buignet. J. 14. 15. " " 1.754 Schröder. Ber. 10. 851. W C. Smith. Am. J. P. 53, 145. Wiedemann and Lüdeking. P. A. (2), 25, 151. Weighting. P. A. (2), 25, 151. Perkin. J. C. S. 51. 366. Racemic acid C ₄ H ₆ O ₆ H ₁ O. 1.75 Pasteur. J. 2, 309. " " " 1.6873, 7° Pasteur. J. 2, 309. " " 1.6873, 7° Pasteur. J. 1. 14. 15. " " 1.6873, 7° Pasteur. J. C. S. 51. 366. Pasteur. Ann. (3) 2283. Methyl maleate C ₄ H ₆ O ₄ 1.1529. 14° Anschütz. Ber. 12 2283. Ethyl maleate C ₆ H ₁₀ 0. 1.0299. 20° Knops. V. H. V. Ethyl maleate C ₆ H ₁₀ 0. 1.0291. 20° Menry. A. C. P. 156 Ethyl fumarate C ₁₀ H ₁₀ 0. 1.0299. 20° Menry. A. C. P. 156 " " " 1.0529, 17°.5 Anschütz. Ber. 12 2282. Propyl fumarate C ₁₀ H ₁₀ 0. 1.02732. 14°.3. " " 1.02447. 17°.4 " " 1.0322. 20°.1. " " 1.01332. 20°.1. " " 1.01332. 20°.1. Methyl tartrate C ₄ H ₁₀ 0. 1.1089. Methyl tartrate C ₄ H ₁₀ 0. 1.1089. Methyl tartrate C ₄ H ₁₀ 0. 1.1089. " " 1.01332. 20°.1. Landolt. Ber. 9, 916 Anschütz and Pic tet. Ber. 13, 117° Ethyl tartrate C ₄ H ₁₀ 0. 1.1989 Anschütz and Pic tet. Ber. 13, 117° Ethyl tartrate C ₄ H ₁₀ 0. 1.1989 Anschütz and Pic tet. Ber. 13, 117° " " " 1.2097, 15° Prekin. J. C. S. 51 Anschütz and Pic tet. Ber. 13, 117° Prekin. J. C. S. 51 Anschütz and Pic tet. Ber. 13, 117° " " " 1.2097, 15° Prekin. J. C. S. 51 Anschütz and Pic tet. Ber. 13, 117° Prekin. J. C. S. 51 Anschütz and Pic tet. Ber. 13, 117° " " " " " " " " " " " " " " " " " " "				ACLA.	GF. GEAT		Atie		
" " 1.764 Schiff J. 12. 41 " " " 1.754 Schröder Ber. 10, 851 " " 1.754 Schröder Ber. 10, 851 " " 1.754 Schröder Ber. 10, 851 " " 1.754 Schröder Ber. 10, 851 " " 1.757 W. C. Smith. Am. J. P. 53, 145 " " 1.6321 Schröder Ber. 10, 851 " " 1.6321 Schröder Ber. 10, 851 " " 1.7594, 7° Perkin. J. C. S. 51 " " 1.7594, 7° Perkin. J. C. S. 51 " " 1.7594, 7° Perkin. J. C. S. 51 " " 1.8573, 7° Perkin. J. C. S. 51 " " 1.8673, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86873, 7° Perkin. J. C. S. 51 " " 1.86973, 3° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13, 117 " " 1.86971, 14° Anschütz and Pic tet. Ber. 13			C4 H6 O5		, 1.559, 4° _	;	Schröder. Ber. 12.		
" " 1.739 Buignet J. 14, 15, 28, 1754 Schröder. Ber. 10, 831. " " Amorphous " 1.6321)	Tartario	acid_		C, H, O,					
" " 1.754 Schröder. Ber. 10, 851. " " 1.77 W. C. Smith. Am. J. P. 53, 145. W. C. Smith. Am. J. P. 53, 145. Wiedenina and Lüdeking. P. A. (2), 25, 151. We can be supported in the support of the	66	" -							
## ## ## ## ## ## ## ## ## ## ## ## ##				••					
## ## ## ## ## ## ## ## ## ## ## ## ##		-		••				851.	
## Amorphous ## 1.6321 Lüdeking, P. A. (2), 25, 151. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.7594, 7° Perkin. J. C. S. 51. ## ## 1.6873, 7° Perkin. J. C. S. 51. ## ## ## 1.6873, 7° Perkin. J. C. S. 51. ## ## ## 1.6873, 7° Perkin. J. C. S. 51. ## ## ## 1.6873, 7° Perkin. J. C. S. 51. ## ## ## ## 1.6873, 7° Perkin. J. C. S. 51. ## ## ## ## ## ## ## ## ## ## ## ## ##	"	" -	!	44		1.77		J. P. 5	B, 145.
" " Amorphous " 1.6321) (2), 25, 151. Racemic acid C ₄ H ₆ O ₆ 1.7594, 7° Perkin. J. C. S. 51. Racemic acid C ₄ H ₆ O ₆ H ₁ O 1.75 Pasteur. J. 2, 309. " " 1.69 Buignet. J. 14, 15 " 1.6873, 7° Perkin. J. C. S. 51. 366. " 1.7496 Buignet. J. 14, 15 " 1.6873, 7° Perkin. J. C. S. 51. 366. " 1.7496 Pasteur. J. 2, 309. Buignet. J. 14, 15 Perkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Perkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Perkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Perkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Perkin. J. C. S. 51. 366. " " 2886. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51. 366. " " 1.69 Buignet. J. 14, 15 Berkin. J. C. S. 51 Berkin	"		į	6.		1 7617	1		
" " 1.7594, 7° Perkin. J. C. S. 51. 366. " " " 366. " " " 366. " " " 366. " " " 366. " " " 366. " " " 366. " " " 366. " " " 366. " " 366. " " 366. " " 366. " " 366. " " 366. " " 366. " " 366. " " 366. " " 366. " 366	44	Ā	morphous _	44					
Racemic acid C, H ₆ O ₆ H ₁ O 1.782, 7° " " " " " 1.69 Buignet. J. 14. 15 Perkin. J. C. S. 51 366. " " " 1.6873, 7° " Buignet. J. 14. 15 Perkin. J. C. S. 51 366. " " 1.7496 Perkin. J. C. S. 51 366. Perkin. J. C. S. 51							•	(2), 2	i, 151.
" " C ₄ H ₆ O ₅ H ₁ O 1.75 Pasteur. J. 2, 309 Buignet. J. 14. 15 1.6873, 7° Perkin. J. C. S. 51 366. Pasteur. Ann. (3) 28, 72 Methyl maleate C ₄ H ₆ O ₄ 1.1529, 14° Anschütz. Ber. 12 2283. Anschütz. Ber. 13 173. Anschütz. Ber. 14 1.02203. 20° Anschütz. Ber. 12 2283. Anschütz. Ber. 13 173. Anschüt	-	•• -					1	3 66.	J. C. S. 51,
Methyl maleate				C'H'O	н о	. 1.782, 7	'		T 0 000
Methyl maleate				C' H'C	n, 0	· 1.10		Pasteur.	J. Z, 309.
Methyl maleate						. 1.00		Darking	9. II. IV.
Methyl maleate	_					1	i i	366.	
" " 1.16029, 11°.8 " " 1.15532, 16°.6 " " 1.15172, 20° " " 1.15060, 21° " " 1.14211, 29°.4 " " 1.14212, 29°. " " 1.14212, 29°. " " 1.14211, 29°.4 " " 1.06917, 20° " " " " " " " " " " " " " " " " " " "	Laevota	ırtarıc	acid	••		1.7496		Pasteur. 28, 72	Ann. (3),
" " 1.15532, 16°.6. " " 1.15172, 20° Knops. V. H. V " 1.14562, 26° 1.14211, 29°.4. " " 1.13827, 33° Ethyl maleate.	Methyl	males	te	C. H. O.	,	1.1529. 14	•	Anschütz 2283.	Ber. 12
" " 1.15532, 16°.6 Knops. V. H. V	46	"		"		1.16029, 1	10.9	1	
" " 1.15060. 21° Knops. V. H. V " " 1.14562. 26° " " 1.14211. 29° 4 " " 1.1327. 33° " " 1.05917. 20° " " " 1.0522, 17° 5 " " " 1.05199. 20° " " " 1.05199. 20° " " " 1.05199. 20° " " " 1.02447. 17° 4 " " 1.02203. 20° " " " 1.02203. 20° " " " 1.0352. 29° 1 " " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " 1.00978. 33° " " " 1.00978. 33° " " " 1.00978. 33° " " " " 1.00978. 33° " " " " 1.00978. 33° " " " " 1.00978. 33° " " " " 1.00978. 33° " " " " " 1.00978. 33° " " " " " 1.00978. 33° " " " " " 1.00978. 33° " " " " " 1.00978. 33° " " " " " " 1.00978. 33° " " " " " " 1.00978. 33° " " " " " " 1.00978. 33° " " " " " " 1.00978. 33° " " " " " " " " " " " " " " " " " " "	44	66		•				ì	
" " 1.14562. 26° 1887, 17. " " 1.14211, 29°, 4 " 1.13827, 33° 1887, 17. Ethyl maleate	•••							. 1	
" " " " " " " " " " " " " " " " " " "									
## ## ## ## ## ## ## ## ## ## ## ## ##								1887,	17.
Ethyl maleate								. !	
Propyl maleate		neloet				- 1.10027, 0 1.08917 9	-3°	۱, ا	44
" " 1.0522, 17°.5 Anschütz. Ber. 12 2282. " " 1.05199, 20°				C. H.	3	1 0-2899 9	an		
" " 1.0522, 17°.5 Anschütz. Ber. 12 2282. " " 1.05199, 20°				C. H.	4	1.106, 11		Henry. A	A. C. P. 156
" " 1.05199, 20° Knops. V. H. V 1887, 17. Propyl fumarate C ₁₉ H ₁₆ O ₆ 1.02732, 14°.3 1.02447, 17°.4 " 1.02203, 20° " 1.02203, 20° " 1.02127, 20°.8 " 1.01691, 25°.5 1.01352, 29°.1 1.00978, 33°	**	"		"		1.0522, 17	°.5	Anschütz	. Ber. 12
Propyl fumarate	66	"		"		1.05199, 2	:0°	Knops.	
" " 1.02447, 17°, 4 " " 1.02203, 20° " " 1.02217, 20°, 8 " " 1.01691, 25°, 5 " " 1.01352, 29°, 1 " " 1.00978, 33° Methyl tartrate	Propvl	fumar	ate	C. H.	0,	. 1.02732. 1	4°.3), 1	• •
" " 1.02203, 20° " " 1.02127, 20° 8. " " " 1.01691, 25° 5. " " " 1.01691, 25° 5. " " " 1.01352, 20° 1. " " 1.00978, 33° \] Methyl tartrate	ii."	**		- "-				li	
" " 1.01691, 25°.5 " " 1.01691, 25°.5 " " 1.01692, 29°.1 " " 1.00978, 33° Methyl tartrate						1.02203, 2	:0°		
" " 1.01352_290.1 1.00378.33°				-1				} "	46
Methyl tartrate C ₆ H ₁₆ O ₆ 1.3403, 15° Anschütz and Pic tet. Ber. 13, 1177				-1		1.01691,	5°.5.		
Ethyl tartrate C ₅ H ₁₄ O ₆ 1.1989 Landolt. Ber. 9, 916				- [- 1.01352.	%°.1.	!!	
Ethyl tartrate C ₅ H ₁₄ O ₆ 1.1989 Landolt. Ber. 9, 916				10 H C		1.00978.	550	J	1 5.
Ethyl tartrate C ₅ H ₁₄ O ₆ 1,1989 Landolt. Ber. 9,910 Anschutz and Pictet. Ber. 13, 1177 Perkin. J. C. S. 51	•			i		i)	Anschut:	z and Pic er. 13, 1177
" " " 1.2097, 15°) Perkin. J. C. S. 51	Ethyl t	artrate		C ₅ H ₁₄ C) ₆	1.1989 1.2097, 14	 1°	Landolt. Anschüt:	Ber. 9, 910 and Pic
	44	**		"		1 2007 1	50)		
	44	"		·		1 2010 9			U. C. S. SI

Name.	Formula.	Sp. Gravity	Authority.
Propyl tartrate		1.2019, 25° } 1.1392, 17°	Perkin. J. C. S. 51, 863. Anschütz and Pic- tet. Ber. 13, 1177. Pictet. Ber. 15, 2242.

16th. Acids and Ethers, Citric Acid Group.

Name.	Formula.	SP. GRAVITY.	Authority.
Citric acid	C. H. O.	1.617	Richter
"	118 07	1.542	Schiff. J. 12, 41.
"	"	1.558	Buignet. J. 14, 15.
		1.557	W. C. Smith. Am. J. P. 53, 145.
Itaconic acid	C ₅ H ₆ O ₄	1.578 }	Schröder. Ber. 18, 1070.
Citraconic acid		1.616)	" "
"	"	1.618 }	
Citraconic anhydride	C, H, O,	1.247	Watts' Dictionary.
" "		1.25360, 12°.4	ו
" "		1.24894, 16°.6	•
" . "		1.24518, 20°	
ii ii			
"	"	1.23920, 25°.4	1887, 17.
		1.23501, 29°.2	
" "	"	1.23073, 33°	J
Triethyl citrate	C ₁₂ H ₂₀ O ₇	1.142, 21°	Malaguti. A. C. P. 21, 267.
44 44	"	1 1369 200	Copen Ber 12 1658
Tetrethyl citrate	СНО	1 1022 200	" Dei: 12,1000.
Ethyl aconitate	C., H., O.	1.074. 140	Watts' Dictionary.
" "	12 18 06	1.1064	Conen. Ber. 12, 1653.
Tetrethyl citrate Ethyl aconitate "" Ethyl isaconitate	"	1.0505, 15°	zeit. A. U. F. 222,
Methyl itaconate	C ₇ H ₁₀ O ₄	1.1899, 14°.7	255. Anschütz. Ber. 14, 2787.
<i>u u</i>	"	1.13195, 12°	1
" "	ì	1.12410, 18°	1
" "	"	1.12182, 20°	V V II V
" " ————	"	1.11882, 22°.5	Knops. V. H. V. 1887, 17.
"	"	1.11421, 27°.1	1007, 17.
_ " "	"	1.10847, 32°.4	J
Polymer of methyl itaco- nate.		1.3126, 200	
Ethyl itaconate	i		2787.
	16	1.04613, 20°	Knops. V. H. V. 1887, 17.
${\bf Polymerofethylitaconate}$	(C ₉ H ₁₄ O ₄) _n	1.2549, 20°	"

DE MAINE.		₽o	BMITA.	SE: GRANCE	AUTHORITE.	
ethyi o	yi tra con	ate	C. E.		E.1168, L5º	Parkin. Ber. I
	"	~~~~	- 1 , 100		L.1050: 10°	2541
"	4		"		L III72, LIP.8	
"	14		"		L. E164, 15º.5	2785. Cladstone. Bai.
						240:
"	u		1 44.		E.ED0431, 20F	Knops. V. H. V
lthyl ci		18	C, H,) _*	E_0050; L5º	Perkin. Ber. I.
• •	"				L.1998, 30°	
"	14		u		C.(140), CSF_3	
44	"		ca.		LO47, LSP	
"	14.		4		L.048, 16°.5_	Gladstone. Bei. 9
"	u.	~	u		L.06241. 20°	Knops. V. H. V
			l	_		1867, 17.
		ıate	C, Hu) ,	L 1254, 15°	Perkin. Ber. I.
44	"		44		I.1138, 30°	2543.
н	и		u		_ I_1294, II°.8	O. Strecker. Ber. I. 2786.
u	u		w		I_1296, I6ª _	_ Gladistane. Bei. 9
66	4		- 12		LESSE FIG.	
64	4		1 aL	-	1.12462, 169	
64	и		4		1.12097, 200	* } }
44	64				1.12011, 200.	Knops. V. H. V
44	**		1 4		L11643 24°	
	4		1 4		I. III 130, 280	
60	**				1.10702.13	² }
	esacrysa	**		`	1.043. 20	Pebal. J. 404.
any i m	64	•	C, H, C	·	1.061.152	
44	46		- 4			
44			44		1.089.30° 1.043.20°	, , , , , , , , , , , , , , , , , , , ,
46	4		- 4		1.050.150	Petri. Ber. 14, 278
••	••		"		1.090.10	Gladstone. Bei. 249.
44	"		"		1.04574, 20°	
Letbyl .	crotaco:	naie	C, H,) _•	1.14, 15°	
ithvl =	etocitr	ite	C., H_	0	1.1459.15	78. Ruhemann. Ber. 3
•				•		802
ithyl te	rebate.		C, Hu) ₄	1.111, 16°	Roser. A. C. P. 22

17th. Glycerin and its Derivatives.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Glycerin, or glycerol	C ₃ H ₅ (O H) ₃	1.27, 10° 1.28, 15°	Chevreul. Pelouze. Ann. (2), 63, 19.
" " ——	"	1.260, 15°.5 1.115, 12°.5	Watts' Dictionary. Sokoloff. A. C. P. 106, 95.
44	#	1.2636, 15° 1.26949, 6°.7 1.26244, 16°.6_ 1.2609	Mendelejeff. J. 18,7. Mendelejeff. A.C.
41 41 Cryst	44	1.261, 15°.5 1.2688, 0° 1.2590, 20°	6, 34. Roos. C. N. 83, 39. Emo. Bei. 6, 663. Brühl. Bei. 4, 782.
u u	"	1.262, 17°.5 1.2658, 15°	Strohmer. Ber. 17, ref. 206.
" "	C ₆ H ₁₁ (O H) ₃	1.26241, 15°) 1.25881, 25° } 1.0936, 0°	522. Perkin. J. P. C. (2), 32, 523. Orloff, A. C. P. 233,
Hexyl glycerin Triethyl diglycerin			859.
Glycerin ether			Gegerfeldt. J. 24, 401.
" "	. "	1.1458, 0°	87. Silva. J. C. S. 40,
Glycide	i l		17, 62.
Ethyl glycide		,	232.
Amyl glycide	C ₅ H ₁₆ O ₂	.90, 20° 1.081, 0°	Reboul. J. 13, 468. Harnitzky and Men- schutkin. J. 18, 506.
Vulero-glyceral Trimethylin Diethylin Triethylin Triglycerin tetrethylin	C ₆ H ₁₄ O ₃	1.027, 0°	Alsberg. J. 17, 495. Berthelot. J. 7, 450. Alsberg. J. 17, 495.
Ethylamylin Monamylin Diamylin Monoallylin	~ .	.92 .98, 20° .907, 9°	co. J. 14, 675. Reboul. J. 13, 465. Reboul. J. 18, 464. Reboul. J. 13, 465. Tollens. A. C. P.
Diformin	(1.1160, 0° } 1.1013, 25° } 1.304, 15°	156, 149. Van Romburgh. Ber. 14, 2827.
Monacetin	C ₅ H ₁₀ O ₄	1.20	Berthelot. J. 6, 455.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Diacetin	C ₉ H ₁₄ O ₆	1.148, 23° 1.174 1.129, 20° 1.204, 20° 1.088 1.081 } 1.084 } 1.056 1.100	Laufer. J. 1876, 243 Berthelot. J. 7, 449. Breslauer. J. P. C. (2), 20, 188. " Berthelot. J. 6, 455. " Berthelot. J. 7, 449. Berthelot. J. 6, 454. "
CocininTristearin	C ₄₂ H ₈₀ O ₆	.92, 85, 8	Kopp. A.C. P. 93,
" " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	.9877 15° .9867 .9867 .9867 .9600, 51°.5 .1.0101, 15° .1.0178 1.0179 1.009, 51°.5 .9931, 65°.5 .9746, 68°.2 .9245, 65°.5	Berthelot. J. 6, 454. "Henry. Ber. 4, 701. Berthelot. J. 6, 455. Göttig. Ber. 10, 1818. Kahibaum. Ber. 16, 1491.

18th. The Allyl Group.

Name.		Formula.		Sp. GRAVITY.	AUTHORITY.	
Allyl	alcoho	ol	C ₈ H ₅ . O	н	.8581, 0° .8478, 27° } .8709, 0° .81832, 62° .7846, 97° } .8569, 15°.5	Tollens and Henninger. A.C.P. 156, 134. Additional values aregiven. Tollens. A.C. P. 158, 104. Dittmar and Steuart.
66 66 66	66 66 66		 		.86990, 0° .77998, 96°.6 .8724, 0° .7830, 96°.5 .7809, 94°.4	P. R. S. G. 10, 64. Thorpe. J. C. S. 37, 371. Zander. A. C. P. 214, 181. Schiff. G. C. I. 13, 177.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Allyl alcohol	С ₃ Н ₅ . О Н	.8540, 20°	Brühl. A. C. P. 200, 139.
	· 44	.8563, 28°	Gladstone. Bei. 9, 249.
ee ee	"	.85778, 15° .85067, 25°	Perkin. J. P. C. (2), 82, 528.
Ethylvinyl alcohol	С ₄ H ₇ . О Н	.834, 0°	Nevolé. J.C.S.82, 868.
" "	"	.827, 0° }	Lieben. J. C. S. 32, 868.
Ethylvinylcarbinol		.856, 0°	E. Wagner. B.S.C. 42, 830.
Methyl isocrotyl alcohol " " "	C ₆ H ₁₂ O	.8625 \ 0° \ .842, 16°.2	Wurtz. J. 17, 515. Crow. C. N. 36, 264.
7_	66	.891, 10°	Destrem. Ann. (5), 27, 50.
Allyldimethylcarbinol	"	.8438, 0° } .8307, 18° }	Saytzeff. A. C. P. 185, 151.
Diallyl monohydrate		.8867, 0°)	Wurtz. J. 17, 515. (Schirokoff and
Allyldiethylcarbinol		.8711, 20° }	Saytzeff. A. C. P. 196, 114.
Allylmethylpropylcar bi- nol. "Isopropylallyldimethyl	"	.8486, 0° } .8445, 20° } .829, 17°.8	Semljanizin. Ber. 12, 2875. Dieff. J. P. C. (2),
carbinol.			27, 869. P. and A. Saytzeff.
Allyldipropylcarbinol Allyldiisopropylcarbinol _	11 11 11 11 11 11 11 11 11 11 11 11 11	.8427, 24° } .8671, 0°	Ber. 11, 1939. Lebedinsky. J. P. C. (2), 23, 23.
Propargyl alcohol	C ₈ H ₄ O	.9628, 21°	C. (2), 23, 23. Henry. B. S. C. 18, 236.
Diallylearbinol	C, H ₁₂ O	.9715, 20°)	Brühl. Bei. 4, 780.
Diallylcarbinol	"	.8644, 12° }	M. Saytzeff. A. C. P. 185, 129.
Diallylethylcarbinol	C ₈ H ₁₄ O	.8638, 0° } .8523, 13° }	Sorokin. A. C. P. 185, 169.
Diallylethylcarbinol	C H O	.8637, 17° { .8707, 0° }	Smirensky. Ber. 14, 2688. P. and A. Saytzeff.
Diallylpropylcarbinol Diallylisopropylcarbinol	"	.8564, 20° } .8647, 0° }	Ber. 11, 1259. Rjabinin and Saytz-
		.8512, 20° }	eff. Ber. 12, 689.
Vinyl ethyl oxide	C ₂ H ₃ . C ₂ H ₅ . O	.7625, 17°.5	Wislicenus. A.C.P. 192, 109.
Methyl allyl oxide			Henry. B. S. C. 18, 282.
Ethyl allyl oxideAllyl oxide	$(C_3 H_5, C_3 H_5, O_{})$ $(C_3 H_5)_2, O_{}$.7651, 20° .8223, 0° }	Brühl. Bei. 4, 780. Zander. A.C.P. 214,
Methyl propargyl oxide	C H ₃ . C ₃ H ₃ . O	.83, 12°.5	181. Henry. B. S. C. 18, 232.
Ethyl propargyl oxide	C ₂ H ₅ . C ₈ H ₃ . O	.8326, 20°	

NAME.	FORMULA.	Sp. Gravity.	Authority.
Amyl propargyl oxide	C ₅ H ₁₁ . C ₈ H ₈ . O	.84, 12°	Henry. B. S. C. 18,
Diallylcarbyl methyl ox-	C, H11. C H2. O	.8258, 0° }	Rjabinin. Ber. 12,
ide. " " " Diallylcarbyl ethyl oxide_	C, H11. C, H5. O	.8096, 20° } .8218, 0° }	2374.
Isopropylallyldimethyl- carbyl methyl oxide.	C ₉ H ₁₇ . C H ₂ . O	.0023, 20	Kononowitsch. Ber. 18, ref. 105.
Allyl formate	C ₄ H ₆ O ₂	.9322, 17°.5	Tollens, Weber, and Kempf. J. 21, 450.
Allyl acetate	C ₅ H ₈ O ₂	.8220, 103°	Schiff. G. C. I. 18, 177.
u u	"	.9276, 20° .9258, 24°.5	Brühl. Bei. 4, 780. Gladstone. Bei. 9, 249.
Ethylvinyl acetate	C ₆ H ₁₀ O ₂	.896, 0°	Nevolé. J. C. S. 82, 868.
" " …	"	.892, 0°	Lieben. J. C. S. 32, 868.
Methylisocrotyl acetate Allyldimethylcarbyl acetate. "	C ₈ H ₁₄ O ₂	.912 .9007, 0° } .8832, 18°.5 }	Wurtz. J. 17, 514. M. and A. Saytzeff. A. C. P. 185, 151.
Allyldipropylcarbyl acetate. "	C ₁₃ H ₂₃ O ₃	.8903, 0° } .8733, 21° }	Saytzeff. Ber. 11, 1939.
Propargyl acetate	C ₅ H ₆ O ₂	1.0031, 12°	Henry. J. C. S. (2), 11, 1123.
Diallylcarbyl acetate	C ₉ H ₁₄ O ₂	1.0052, 20° .9167, 0° } .8997, 17°.5	Brühl. Bei. 4, 780. M. Saytzeff. A. C. P. 185, 129.
Diallylmethylcarbyl acetate. "	C ₁₀ H ₁₆ O ₂	.8997, 0° } .8783, 21° }	Sorokin. A. C. P. 185, 169.
Allylacetic acid	C ₅ H ₈ O ₂	.98656, 12° .98416, 15° .97670, 25°	Perkin. J. C. S. 49, 205.
Ethyl allylacetateAllyloctylic acid	C ₁ H ₁₂ O ₂	.9222, 0° .91020, 25° }	Wurtz. J. 21, 446. Perkin. J. C. S. 49,
Ethyl allyloctylate	C ₁₃ H ₂₄ O ₂	.89930, 45° .88271, 15°	205.
Diallylacetic acid	C ₈ H ₁₉ O ₃	.87658, 25° } .9495, 25°	Wolff. Ber. 10, 1957.
" " " " " " " " " " " " " " " " " " " "		.9578, 18°	Reboul. J. C. S. 82, 594.
" "	"	.95756, 12° .95547, 15° }	Perkin. J. C. S. 49,
Ethyl methoxyldiallylace-	C ₁₁ H ₁₈ O ₂	.94913, 25°) .96066, 20°	205. Barataeff. J. P. C.
tate. Allyl acetacetate		.99272, 15° }	(2), 85, 2. Perkin. J. P. C.
Ethyl allylacetacetate	C ₉ H ₁₄ O ₈	.98542, 25° .9938, 18°.5	(2), 32, 528. Gladstone. Bei. 9,
" "	"	.982, 20°	249. Zeidler. B. S. C. 23, 73.
Ethyl diallylacetacetate Ethyl diallyloxyacetate	C ₁₃ H ₁₈ O ₃	.948, 25° .9878, 0°)	Wolff. Ber. 10, 1956.
" " —	- 10 11	9718, 180	Saytzeff. Ber. 9, 77.

Name.	Formula.	Sp. Gravity.	Authority.
Allyl oxalate	C ₈ H ₁₀ O ₄	1.055, 15°.5	Hofmann and Ca- hours. J. 9, 585.
Ethyl allylmalonate	C ₁₀ H ₁₆ O ₄	1.018, 16°	Conrad and Bischoff. Ber. 13, 595.
" "	"	1.01475, 14°	
" "		1.01397, 15° }	Perkin. J. P. C. (2), 32, 523.
Ethyl diallylmalonate	C ₁₃ H ₂₀ O ₄		Conrad and Bischoff. Ber. 13, 595.
" "	"	.99828, 20°	Matwejeff. Ber. 21, 181.
" "	"	1.00620, 6°.5)	-51
" "	66	.99940, 15° .99252, 25°	Perkin. J. C. S. 49, 205.
Butallylmethylcarbin oxide.	C ₆ H ₁₂ O ₂	1.0099, 21°	Kablukow. Ber. 21, ref. 54.
Butallylmethyl pinakone.	C ₁₂ H ₂₂ O ₂	.9632, 0° }	Kablukow. Ber. 21, ref. 55.
Derivative of tetrabrom- diallylcarbin acetate.	С ₁₈ Н ₂₀ О ₇	1.18018, 0°	Dieff. J. P. C. (2), 35, 20.

19th. Erythrite, Mannite, and the Carbohydrates.

" " " " " " " " " " " " " " " " " " "	Name.			For	MULA.	Sp. Gravity.	AUTHORITY.
Cane sugar, or saccharose C12 H22 O11 1.606 1.	Anhydric Mannite "" Dulcite of	de of erythic or mannite "" "" or dulcitol_	rol	C ₄ H ₆ O ₂ C ₆ H ₈ (O	H) ₆	1.449	Schröder. Ber. 12, 1561. Przybytek. Ber. 17, 1091. Prunier. Ann. (5), 15, 22. Schröder. Ber. 12, 1561. Eichler. J. 9, 665.
" " " 1.690 Schübler and Ren " " 1.593 Filhol " " 1.596 Playfair and Joul M. C. S. 2, 401. " " 1.5578 Brix. J. 7, 618. Dubrunfaut. " " 1.5951, 15° Maumené. B. S. 22, 33. " " " 22, 33. " " Schröder. Ber. 1	Pinite Quercite			,		1.0040	i Prunier. Bei. 2, 68.
M. C. S. 2, 401. M. C. S. 2, 401. I.5578	11 T		 	"		1.600	Schübler and Renz. Filhol.
" " " 1.5951, 15° Maumené. B. S. 22, 33. " " " Schröder. Ber. 1				"		1.5578	M. C. S. 2, 401. Brix. J. 7, 618.
" " 1.588, 4° Schröder. Ber. 1		-				1.68	Dubrunfaut. Maumené. B.S.C.
" " W. C. Smith. Ar							Schröder. Ber. 12, 561.

NAME.		For	MULA.	SP. GRAVITY.	AUTHORITY.	
Cane	sugar, or s	accharose_ " Fused, vitreous.	C13 H25 O1	1	1.58046, 17°.5 ₋ 1.996, 14°.5	Gerlach. Morin. J. Ph. C. (4),
46	"	" Molten	"		1.6	28, 84. Quincke. P. A. 138, 141.
"	"	" Barley sugar.	66 . 66		1.5984 }	Wiedemann and Lüdeking. P.A. (2), 25, 151.
"	"	"	"		1.5928	Zehnder. P. A. (2), 29, 260.
Milk	sugar, or	lactose	66 66		1.534 1.58398, 4°	Filhol. Playfair and Joule.
"	"	"	44		1.525, 4°	J. C. S. 1, 138. Schröder. Ber. 12, 561.
"	"	"	"		1.588	W. C. Smith. Am. J. P. 53, 148.
Melez	itose				1.540, 17°.5	Alekhine. J.C.S. 50, 684.
Gluco "	86		C ₆ H ₁₂ O ₆	. н, о	1.091	Payen and Persoz.
"			"		$\left\{ \begin{array}{c} 1.54 \\ 1.57 \end{array} \right\}$ 11°	Bödeker. B. D. Z.
"	Fused _		"		1.8	Quincke. P. A. 138, 141.
Inosit	te. Anhyd	lrous	1		1	Tanret and Villiers
"			C. H ₁₂ O.	. 2 H, O	1.1154, 5° 1.585, 8° }	Vohl. J. 11, 489. Tanret and Villiers
Berge			C ₈ H ₁₀ O ₅	Н, О	1.524, 15° } 1.5445	C. R. 86, 486. Morelli. Ber. 14 2694.
Starcl	h		(C ₆ H ₁₀ C) ₅) _n	1.505	Payen. Dietrich. Z. A. C. 5
66			"		i .	51. Kopp. A. C. P. 35
"	A Proserro	ot			1.5045, air dried	88.
"			"			Flückiger. Z. C
"			"		1.6380, dried at 100°.	10, 445.
			"	7500-00	1.08843	O'Sullivan. J. 27 880.
	n		"		1.470	748.
"			"		1.462	Dubrunfaut.
~ ··	·				1.3491	Kiliani. A. C. F 205, 151.
	lose		"		1.525	menstellung."
Gum			. "		1.487, air dried 1.525, dried at 100°.	
66	Gum-aral	bic	. "		1.355	
"		acanth	. "		. 1.384	Guárin Vorm B
"		,	. "		1.436	Guérin-Varry. P.A
**	Bussora_		_ "		_	29, 50.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Graminin Phlein Octaceto-diglucose Octaceto-saccharose	6 C ₆ H ₁₀ O ₅ . H ₂ O C ₁₂ H ₁₄ (C ₂ H ₃ O ₂) ₈ O ₁₁ -	1.522, 12° } 1.480 } 1.27, 16°	Ekstrand and Johanson. Ber. 21, 594. Demole. Ber. 12, 1986.

20th. Miscellaneous Non-Aromatic Compounds.

Name.	Formula.	Sp. Gravity.	Authority.
Acetopropyl alcohol		1.00514, 15° 1.00197, 20° }	Perkin, Jr. J. C. S.
Acetobutyl alcohol		.99896, 25°) 1.0143, 0°	51, 830. Lipp. Ber. 18, 8281.
" " <u> </u>	"	.99771, 4° .98947, 15° .98270, 25° .	Perkin, Jr. J. C. S.
Methyl orthoformate		.974, 23°	51, 719. Deutsch. Ber. 12, 115.
Ethyl orthoformate Propyl orthoformate	C ₁₀ H ₁₆ O ₃	.8964 .879, 23°	Williamson
Isobutyl orthoformate Isoamyl orthoformate	C ₁₅ H ₂₈ O ₃ C ₁₆ H ₃₄ O ₃	.861	
Isoamyl orthoformate Diethoxyl ether Derivative of isobutylal- dehyde.	ľ	t I	Lieben. J. 20, 546. Oeconomides. Ber. 14, 2581.
Derivative of valeral	C ₁₀ H ₂₀ O ₂	.9027. 17°	"Borodin. J. 17, 889.
Derivative of oenanthol	C ₂₀ H ₃₈ O ₃	.895) .900 } .8831, 15°)	Borodin. Ber. 5,480.
	"	.8723, 35° }	Perkin. Ber. 15, 2805.
"Acetyl valeryl"			4 63.
Diacetone alcohol			178, 349,
acetone. Dimethoxyl diethyl ace-	C ₉ H ₁₈ O ₃	1	50.
tone. From diethylacetone			Geuther. J.P.C. (2),
Ethyl diacetone carbonate	C ₁₀ H ₁₈ O ₃	.9738, 20°	6, 160. Frankland and Dup-
Mesityl oxide	C ₆ H ₁₀ O	.848, 28° .8528, 19°	pa. J. 18, 306. Fittig. J. 12, 344. Gladstone. Bei. 9,
" "		i	249. Brühl. A. C. P.
Homologue of mesityl oxide.	C ₈ H ₁₄ O	.8547, 15°.4	235, 1. Schramm. Ber. 16, 1581.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Phorone	C ₉ H ₁₄ O	.982 } 120	Fittig. J. 12, 844.
"		.989 } 12	Schwanert. J.15,464.
	"	.9645, 15°	Schulze. Ber. 15, 64.
"	"	.885, 20°]	2017 10,021
"	"	.8793, 27°	Brühl. A. C. P.
"	"	.8785, 28° [235, 1.
Aldol	C, H, O,	.8776, 29° 1.1208, 0°)	,
"	04 118 02	1.1094, 16°	Wurtz. B. S. C. 18,
"	"	1.0819, 49°.6)	486.
Derivative of aldol	C ₈ H ₁₆ O ₄	1.0941)	Wurtz. C. R. 97,
" "	"	1.0951 \ 0° \	1526.
Diacetate from the above	C ₁₂ H ₂₀ O ₆	1.0958) (1.095, 0°	
compound. Derivative of laevulinic	C ₁₄ H ₂₂ O ₇	1.097, 15°	Conrad and Guth-
ether.	'	,	zeit. Ber. 17, 2286.
Diethyl glycollic ether	C ₂₀ H ₈₆ O ₁₀	1.01, 19°	Geuther. J. 20, 455.
Propidene acetic acid	C ₅ H ₈ O ₂	.9922, 15°	Komnenos. A.C.P.
Acetyl trimethylene	C ₅ H ₈ O	.90471, 15°)	218, 167.
" " "	O5 118 0	.90083, 20° }	Perkin, Jr. J. C. S.
" "	"	.89706, 25°	51, 832.
Ethyl acetyltrimethylene-	C ₈ H ₁₂ O ₈	1.08486, 4°	
carboxylate. "		1.08256, 6°.5	Perkin, Jr. J. C. S.
	"	1.02549, 15° { 1.01884, 25° }	47, 801.
	"	1.0425, 25°.2	Gladstone. Ber. 19,
"	"	1.05174 } 150 }	2568.
" "	"	1.05152 } 150	
" "	"	1.04810, 20°	Two preparations.
" "	"	11 04300 959 1	Perkin, Jr. J. C.
	((1.04703 } 150 }	S. 51, 826.
·· ·· ··	"	1.04753 } 10 } 1.08930, 25° }] }
Ethyl trimethylenedicar-	C. H., O.	1.0708, 7°	Gladstone. J. C. S.
boxylate.		1	51, 852.
	"	1.06455, 15°	Perkin. J. C. S. 51,
" "	"	1.05657, 25°	852.
	"	1.06468, 15° }	Perkin, Jr. J. C. S. 47, 801.
Ethyl trimethylenetricar- boxylate.	C ₁₃ H ₁₈ O ₆	1.127, 15°	Conrad and Guth- zeit. Ber. 17, 1186.
Tetramethylenemonocar-	C ₅ H ₈ O ₂	1.05480, 15°)	2010. Del. 11,1100.
boxylic acid. "	"	1.05116, 200	Perkin. J.C.S. 51, 1.
		1.04761, 25°)	
Ethyl tetramethylenedi- carboxylate.	C ₁₀ H ₁₆ O ₄	1.0484, 14°	Gladstone. Bei. 9, 249.
" "	"	1.05828, 9°	D. N. TOO
" "		1.04817, 15° }	Perkin. J.C.S. 51, 1.
Ethyl acetyltetramethy-	C ₉ H ₁₄ O ₈	1.04051, 25°) 1.0668, 18°	Gladstone. Bei. 9,
lenecarboxylate.	1	·	249.
Methylpentamethylene-	C, H, O,	1.02054, 15°	Two lots. Perkin.
monocarboxylic acid.	"	1.01739, 20°	J. C. S 58, 195
··	· · · · · · · · · · · · · · · · · · ·	1.01438, 25°)	and 199.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Methylpentamethylene- }	C, H, O,	1.0256, 4°]	
monocarboxylic acid.	"	1.0208, 10°	Two lots Doubin
	"	1.0172, 15° } 1.0189, 20°	Two lots. Perkin. J. C. S. 53, 195
"	"	1.0109, 25°	and 199.
Methylpentamethylene \	C ₈ H ₁₄ O	.9222, 4° j	
methyl ketone.	"	.9174, 10°	
		.9136, 15° }	Perkin. J. C. S. 58,
	"	.9100, 20° .9070, 25°	200.
Methylhexamethylene-)	C ₈ H ₁₄ O ₂	1.0079, 4° 1	4
monocarboxylic acid.	···	1.0038, 10°	
"	"	.99982, 150	Perkin. J. C. S. 58,
"	"	.9966, 20°	209.
"	о п	.9940, 25°]	
Methyldehydrohexone	C ₆ H ₁₀ O	01978 150	Doubin T (1 Q 51
	"	.90502, 25°	Perkin. J. C. S. 51, 719.
Ethyl methyldehydro-)		1.06457, 15°	1
hexonecarboxylate.	' "	.1.05840, 25°	<u> </u>
" " —	· "	1.06840, 15°)	
		1.06470, 20° }	
		1.06187, 25°	Three lots. Perkin.
	"	1.0744, 9°]	J. C. S. 51, 711 and 718.
" "	"	1.0660, 200	and 710.
" "	"		ij
Ethyl methenyltricarbox- ylate.	C ₁₀ H ₁₆ O ₆	1.10, 19°	Conrad. Ber. 12, 1286.
Ethyl ethenyltricarboxy- late.	C ₁₁ H ₁₈ O ₆	1.089, 17°	Bischoff. A. C. P. 214, 89.
Methyl diethyl- β -methyl- ethenyltricarboxylate.	"		Bischoff. A. C. P. 214, 56.
Ethyl β -methylethenyl-tricarboxylate.	C ₁₂ H ₂₀ O ₆	l	Bischoff. Ber. 18, 2165.
Ethyl a β -dimethylethenyltricarboxylate.	C ₁₃ H ₂₂ O ₆		A. C. P. 234, 54.
Ethyl butenyltricarboxy- late.	i	1.065, 17°	Polko. A. C. P. 242, 118.
Ethyl isobutenyltricar- boxylate.	1	1.064, 17°	242, 126.
" "		1.0805, 18°	Levy and Engländer. A. C. P. 242, 210.
Ethyl propylethenyltri- carboxylate.	C ₁₄ H ₂₄ O ₆	l	Waltz. A.C. P. 214, 58.
Ethyl dicarboxylgluta- conate.	C ₁₅ H ₂₂ O ₈		zeit. Ber. 15, 2842.
Ethyl isoallylenetetra- carboxylate.	C ₁₅ H ₂₄ O ₈	1	1 2164
Ethyl dimethylacetylene-	1	1	1 A C 12 924 54
Methylisopropenylcarbi- nol. "-Pyruvic acetate	C ₅ H ₁₀ O	.8571, 0°	Kondakoff. Ber. 18, ref. 660.
Ethyl pyruvyl ether	C ₅ H ₁₀ O ₂	.92, 18°	Henry. Ber. 14, 2272.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Parusorbic acid	C ₆ H ₈ O ₃	1.068, 15°	Hofmann. J. C. S. 12. 322.
Derivative of mannite	• •	.9396, 0°	Fauconnier. J.C.S. 48, 743.
Methyl mucate " Ethyl mucate	C ₈ H ₁₄ O ₈	1.48 1.50 20° {	Malaguti. Ann. (2), 63, 86.
Ethyl mucate	C ₁₀ H ₁₈ O ₈	1.17	
Valerylene diacetate	C ₉ H ₁₆ O ₄	.963	Guthrie and Kolbe.
Conylene diacetate	C ₁₂ H ₂₀ O ₄	.988, 18°.2	J. 12, 365. Wertheim. J. 16, 438.
Amenyl valerone		.836, 7°	Geuther, Fröhlich, and Loos. Ber. 13, 1356.
Linoleic acid Ricinoleic acid	C ₁₈ H ₃₂ O ₂	.9206, 14° .940, 15°	Schüler. J. 10, 359. Saalmüller. J. 1, 562.
		.9502, 15°	
Distillate from linoleic acid.	C ₂₀ H ₂₆ O ₂	.9108, 15°	61. 11
Distillate from ricinoleic acid.	"	.912	46 66
Furfurane	C, H, O	.9644, 0° }	Henninger. Ann. (6), 7, 209.
Dihydrofurfurane	C ₄ H ₆ O	\begin{align*} .9663 \ .9684 \} 0° \}	
Erythrol. (Crotonylene	C, H, O,	1.06165, 0° \	" "
" glycol). Furfurol	C ₅ H ₄ O ₂	1.04653, 20° } 1.1648, 15°.6 1.1636, 13°.5	Stenhouse. J.1,732. Stenhouse. J.3,513.
"	"	1.168, 15°.5	253.
"	44	1.150 }	Völckel. J. 5, 652. Stenhouse. P. M.
"	"	.9310, 162°	(3), 18, 124. Ramsay. J. C. S.
"		1.0025 } 160°.5	
"	"	1.0026 bp. 1.1344, 19°	13, 177. Gladstone. Bei. 9,
"		1.1594, 20°	
Ethylfurfurcarbinol	C ₇ H ₁₀ O ₂	1.066, 0° }	235, 1. Pawlinoff and Wag-
Furfurbutylene		. 1.053, 15°.5	
FucusolEthyl pyromucate	C ₅ H ₄ O ₂		
Triethylpropylphycite			
		1	1

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Acid from petroleum "" Ethyl ether of the above "" acid. From epichlorhydrin and chlorocarbonic ether.	C ₁₈ H ₂₄ O ₂	.982, 0° } .969, 28° } .939, 0° }919, 27° }9981, 21°.5	Hell and Medinger. Ber. 7, 1218. "Kelly. Ber. 11, 2226.	

21st. Phenols.

NAME. Phenol		FORMULA. C ₆ H ₅ . O H		Sp. Gravity.	Y. AUTHORITY.
				1.062, 20°	Runge. P.A.32, 808.
"		~ · · · · ·		1.065, 18°	Laurent. Ann. (8)
					8, 195.
"		"		1.0627	Scrugham. J. C. S. 7, 287.
"		"		1.0808, 0°, 1.	
"		"		1.0597, 820.9	
"		66		1.0554	Duclos. A.C.P. 109,
**		"		1.068	
"		44		1.0667, 88° _	76. Graebe.
44		"		1.0709, 88° -	Zotta. A. C. P. 174
				1.0100,00	87.
"		".		1.066, cryst.	Hamberg. Ber. 4,
"		"	•	1.05433, 40°	1
"		"		1.04663, 50°	
46		"		1.03804, 60°	
"		"		1.02890, 70°	} Adrieenz. Ber. 6,
"		"		1.01950, 80°.	443.
44		"		1.01015, 90°	11
"		"		1.00116, 100°	', ון
46		"		1.0558, 46°	111
"		"		1.0463, 56°	///
66		"		1.0567, 46°	From four differ-
"		"		1.0470, 56°	ent sources. La-
44		"		1.0560, 46°	denburg. Ber. 7,
"		".		1.0467, 56°	{ 1687.
"		"		1.0559, 46°	}
		"		1.0476, 56°	D. T. C. S. O.
••		••		.8789, 186°	Ramsay. J. C. S. 85,
46		"		1 0501 400	Bedson and Wil-
"		"		1.0591, 40°	liams. Ber. 14,
				1.0545, 45°	⁾ (2551.
"		"		1.0722, 20°	Landolt. P. A. 122, 558.
44		"		1.0702, 20°	Brühl. Bei. 4, 782.
"		44		1.05810, 4°	Flink. Bei. 8, 262.
"		44		1.0598, 21°	Gladstone. Bei. 9,
				1.0000, 21	249.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
PhenoI	C, H, O H	1.0906, 0°, L)	Bi A C B	
ii	14	1.0887, 15°.5 .9217, 182°.9	Pinette. A. C. P 243, 32.	
Diphenol Pyrocatechin	C ₆ H ₄ (O H) ₂ . 1.2	L340 4ª	Schröder. Ber. 12 561.	
Resorcin	1.3	1.2728, 0°	Calderon. J. R. C. 5	
14 14	11	1.276 \ 49	Schröder. Ber. 12	
	14	1.289) 1 (1.1795, 100°.2	561. Schiff. A. C. P. 223	
" Hydroquinone.	u 1.4	1.324 } 4°{	247. Schröder. Ber. 12	
Triphenol. Pyrogallol	C, H, (O H),	I.443	56I.	
Orthokresol	C, H, CH, OH	L463 5 L089, 28ª	Gladstone. Bei. 9	
4	14	1.0578, 0°, L 1	249.	
14	1.1	1.0063, 650.6	Pinette. A. C. P.	
Metakresoi	"	.8867, 190°.8) 1.0830, 19°	Gladstone. Bei. 9	
14	11	1.0498, 0° 1	249. Pinette. A. C. P	
14	44	.8744, 202°.8	243, 32.	
Parakresol. 7	4	1.083, 23° 1.0622, 0°, L)	v. Rad. J. 22, 448	
44	4	.9962, 65°.6	Pinette. A. C. P	
ii	4	.8728, 2019.8	243, 32.	
Ethylphenol	C, H, C, H, OH	1.049, 140	Auer. Ber. 17, 669	
Orthopropylphenol	CaH. CaH. OH.	1.015, 0° }	Spica. Ber. 12, 295	
Parapropylphenol	16	1.0091, 00]	11 11	
	44	.9324, 100°		
Orthoisopropylphenol	14	1.01243, 0° } .92765, 100° }	Fileti. G. C. I. 16 113.	
Xylenol. 1.3.4	CaH CH CH OH	1.086, 0° 1	Wurtz. J. 21, 460	
14 44	46	1.0862, 00	Jacobsen. Ber. 11	
" ?		1.0283, 23°	24. Wroblevsky. J. 21 459.	
4 7		.9709, 810	Wurtz. J. 21, 460	
1.3. ?	4	1.0366, 0°]	The state of the s	
14	44	1.0242, 150.5		
11		1.0129, 30°	Lako. J. 1876, 454	
14	14	.9908, 59		
14	44	.9673, 100°		
Phloretol	Ca H10 O	1.0374, 120	Hlasiwetz, J.10, 329	
Isopropylkresol	C'H' C'H' CH' OH	1.00122,0° .91971,100°	Spica. J. C. S. 44 460.	
Propylkresol. Carvaerol .		.98558, 159	Jacobsen. Ber. 11 1060.	
16 it		.981, 150	Jahns. Ber. 15, 817	
" Thymol	11	1.0285, 8	Stenhouse. J. 9, 624	
44	11	1.01068, 0°) Two preparations	
		1,009136,00	Pisati and Pater	
44 44	14	1,92424,100° (no. Ber. 8, 71	

Name.	Formula.	Sp. Gravity	Authority.
## ## ## ## ## ## ## ## ## ## ## ## ##	" "	1.0101, 4°	Haines. J. 9, 628. Febve. Ber. 14, 1720. Schröder. Ber. 14, 2516. Nasini and Bernheimer. G.C.I. 15, 50. Schiff. A. C. P. 228, 247. Pinette. A. C. P. 243, 82. Perkin. C. N. 39, 39. Hlasiwetz. A. C. P. 106, 866. Sobrero. Völckel. J. 7, 610. Gorup-Besanez.

22d. Aromatic Alcohols.

NAME. Benzyl alcohol			Formu	FORMULA.		AUTHORITY.	
			C ₆ H ₅ . C H ₂ O H		1.059	Cannizzar	o. J. 7,
u	"		"		1.0628, 0° }		. C. P. 94,
4.6			"		1.0507, 15°.4	257.	•
"	"		14		1.0465, 19°	Kraut. 152, 134	
"	"		"		1.0429, 200	Brühl. B	
44	"		"		1.0412, 22°		
			1		1.0112, 22	249.	D 01. 0
Benzyle	earbin	ol	C ₆ H ₅ . CH ₂ . C	H ₂ O H	1.0337, 21°	Radziszew 9, 373.	ski. Ber
Phenyl	propy!		C	. СН ₂ . Н ₂ ОН	1.008, 18°		
6	•	"	"	_,	1.0079, 200	Brühl. B	
Orthoxy	vlvl al	cohol	C.H., CH., C	н.он	1.08, 8 }	Colson.	
"	, -,	"			1.023, 40°, 1.		(-)
Metaxy	lvl ale	cohol	"		.9157, 170	Radziszew	ski and
,	.,				,	Wispek. 1747.	Ber. 15
"			" "		1.036, 0°		Ann. (6)
Ethyln	henvla	earbinol	с.н., снов	L CH.	1.016, 0° }	Wagner.	Ber. 17
			624	CH_{3}	.994, 23° }	ref. 817.	
Cymyl	alcoho	ol. 1.4	C.H., C.H.,	сй.он	.9775, 15°		A. C. P.
~J!			-0-48-27.			192, 224	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Saligenin	С, Н, ОН. СН, ОН	1.1613, 25°	Beilstein and Seel- heim. J. 14, 765.	
Methylsaligenin. 1.2	C ₆ H ₄ . OCH ₃ . CH ₂ OH	1.1200, 23° 1.0532, 100°	Cannizzaro and Koerner. B. S. C. 18, 132.	
Anisic alcohol. 1.4	"	1.1093, 26° } 1.0507, 100° }	,	
Acetophenone alcohol	C ₈ H ₈ O ₂	1.013	Emmerling and Engler. Ber. 6, 1006.	
Cinnamic alcohol	C, H, O	1.0402, 24°.8	Nasini. Bei. 9, 331.) Nasini and Bern-	
46 46	4:	1.03024, 36°.1.	heimer. G.C.I.	
" "	"	1.0027, 77°.3 1.0318, 18°) 15, 50. Gladstone. Bei. 9, 249.	
« «		1.0440, 20°	225.	
" "	"	1.0346, 320	Brühl. A. C. P. 235, 1.	
Ethylphenylacetylene al- cohol.			Morgan. J. C. S. (3), 1, 168.	
Orthoxylene glycol	C ₆ H ₄ (C H ₂ O H) ₂	1.188, 75°	Colson. Ann. (6), 6, 86.	
Metaxylene glycol	"	1.161, 18°, sur- fused.		
" "		1.185, 58°]}	
Paraxylene glycol		1.094, 135°	, 4 "	
Mesitylene glycol	C ₆ H ₃ .CH ₃ .(CH ₂ OH),	1.28, 15°	Robinet and Colson C. R. 96, 1868.	

23d. Aromatic Oxides.

Name.			Formula.		Sp. Gravity.	AUTHORITY.	
Pheny	ether			C ₆ H ₅ . O. C ₆	H ₅	1.0904	Gladstone and Tribe. J. C. S. 41, 6.
"	"			"		1.0744, 24° }	Gladstone. Bei. 9, 249.
		yloxide	. Ani-	C ₆ H ₅ . O. C I			Cabours. J. 2, 403.
"	u		"	"		.8607 \ 1559	Schiff. G. C. I. 18,
"	"	"	"	££		.8608	1 (111.
						·	heimer. G. C. I. 15, 50.
"	"	"	66 66	"		1.0110, 0° :- }	Pinette. A.C.P. 243,
Phenyl	"lethyl	oxide. I		C, H, O. C,	H ₅	.8604, 154°.3	Schiff. G. C. I. 13,
"	"	"	"	46		.978, 15°	Remsen and Orn-
				!			dorff. A. C. J. 9, 898.

NAME.	FORM	ULA.	SP. GRAVITY.	AUTE	IORITY.
Phenylethyloxide. Phene-	C ₆ H ₅ . O. C	C ₂ H ₅	.9822, 0° }	Pinette.	A.C.P. 248,
Phenyl propyl oxide	C6 H5. O. C	H,	.968, 200		Les Mon- , 280.
" " "	- 64		.9639, 0° }	Pinette.	A.C.P. 248,
Phenyl isopropyl oxide	11		070 00 1		C. 18, 250.
Phenyl isopropyl oxide	C. H. O. C	H9	.9500, 00 }	Pinette.	A.C.P. 248,
Phenyl isobutyl oxide	**		.7664, 210°.8 J .9388, 16°	Riess. J	C. S. 24,
Phenyl n. heptyl oxide	C, H, O. C	, H ₁₅	.9819, 00 }	Pinette. 32.	A.C.P. 243,
Phenyl n. octyl oxide	C. H. O. C	8 H ₁₇	.9221, 0° } .6941, 282°.8	и	**
Benzyl ether				Lowe. 701.	J. C. S. 51,
Kresyl ether	"		1.0352, 16°		e. Bei. 9,
Orthokresyl methyl oxide.	C, H, O. C	H ₃	.9957, 0° }		A. C. P.
Metakresyl methyl oxide	44		.9891, 0° .8255, 177°.2	**	11
Parakresyl methyl oxide.	46		.8236, 175°.5 .9868, 0° }	Schiff. Pinette.	Bei. 9, 559. A. C. P.
11 11 11			.8241, 175°	248, 82	
Orthokresyl ethyl oxide	C, H, O. C	2 H ₅	.9679, 0° } .7941, 184°.8 }	et	11
Metakresyl ethyl oxide	11		.97123, 5°)	Staedel. 1 Pinette.	Ber. 14, 898. A. C. P.
	- 11		.7888, 1920	243, 32	2.
Parakresyl ethyl oxide	11		.9662, 0° }	Pinette.	J. 22, 457. A. C. P.
Orthokresyl propyloxide		, H,	.7884, 189°.9 [.9517, 0°]	243, 32	
Metakresyl propyl oxide			.7675, 204°.1 { .9484, 0° }	40	
Parakresyl propyl oxide	11		.7628, 210°.6 { .9497, 0° }		16
Orthokresyl butyl oxide	44	. н.	.7635, 210°.4 5	11	u
Metakresyl butyl oxide	44		.7493, 228° .9407, 0°		
Parakresyl butyl oxide	44		.7422, 229°.2 } .9419, 0° }	- 11	a
11 11 11	и		.7410, 229°.5	11	16
Orthokresyln. heptyloxide	44		.9243, 0° } .7016, 277°.5 }	**	16
Metakresyln, heptyloxide	44		.9202, 0° } .6927, 283°.2 }	-11	1.6
Parakresyl n. heptyl oxide	11		.9228, 0° }	**	44
Orthokresyl n. octyl oxide	C, H, O. C	8 H ₁₇	.9231, 0° }	· · ·	16
Metakresyl n. octyl oxide	- 11		.9194, 0° \\ .6818, 298°.9	it	- 66

Name.	FORMULA.	SP. GRAVITY.	Authority.
Parakresyl n. octyl oxide	C ₇ H ₇ . O. C ₈ H ₁₇	.9199, 0° }	Pinette. A. C. P. 243, 82.
Ethyl phenetolPhloryl ethyl oxide	C ₆ H ₄ . C ₂ H ₅ . O. C ₂ H ₅ C ₈ H ₉ . O. C ₂ H ₅	.986, 14° .9828, 18°	Auer. Ber. 17, 669. Sigel. A. C. P. 170, 845.
Styrolyl ethyl oxide Orthopropylphenyl me- }	C ₆ H ₄ . C ₈ H ₇ . O. CH ₈ .	.981, 21°.9 .9694, 0° }	Thorpe. J. 22, 412. Spica. Ber. 12, 295.
thyl oxide. Parapropylphenyl methyl oxide. "		.9168, 100° { .9686, 0° } .9125, 100° }	
Isopropylphenyl methyl oxide. Isopropylphenyl ethyl ox-		.962, 0°	Paterno and Spica. Ber. 10, 84. Spica. J. C. S. 38,
ide. " " " Orthoisopropylphenyl eth-	"	.86369, 100° { .94438, 0° }	167. Fileti. G. C. I. 16,
yl oxide. " " Butyl anisol	C ₆ H ₄ . C ₄ H ₉ . O. CH ₈ .		118. Studer. Ber. 14, 2187.
Methyl thymol		.953898,0° }	schinoff. J. 22, 466.
(1 (1	"	.869281,100° { .954314,0° }	Two samples. Pi- sati and Paterno. Ber. 8, 71.
Ethyl thymol	"	.870459, 100° } .9531, 0° } .7635, 216°.2 }	Pinette. A. C. P. 248, 82.
11 11		0994 00	Spica. J. C. S. 44, 460. Pinette. A. C. P.
Propyl thymol	C ₁₀ H ₁₃ C ₃ H ₇	.7400, 226°.9 } .9276, 0° }	248, 82.
Butyl thymol	C ₁₀ H ₁₃ . O. C ₄ H ₉	.9230, 0° } .7108, 258°.8 }	66 66
Normal neptyl thymol			66 66
Metaxylyl ethyl oxide			Radziszewski and Wispek. Ber. 15,
Paraxylyl ethyl oxide	"	.9304, 17°	1746. Radziszewski and Wispek. Ber. 15, 1745.
Diphenylcarbyl ethyl oxide.			Linnemann.
Benzyl anisol	• • • • • • • • • • • • • • • • • • • •	1.073, 0° } .993, 100° } .9812, 0°	Paterno. B. S. C. 18, 77. Erlenmeyer. Ber.
		1	14, 1868. Perkin. J. C. S. 33,
Orthovinylanisöil	" "	1.000, 30° } 1.002, 15° } 1.9956, 80° }	211.
Orthoallylanisõil	C ₆ H ₄ , C ₃ H ₅ , O, C H ₃	.9972, 15°) .9884, 80° }	
********		1.5.05, 10)	1

Name		Formula	•	SP. GI	RAVITY.	Aute	ORITY.
Anethol. 1.4		C ₆ H ₄ . C ₈ H ₅ . O.	CH ₃ -	.984, 2	0°	Landolpi 227.	n. C. R. 82
	al	66		.9858,			
	ial	"		.9852,		Perkin.	
		"		.9761, .9887,		Schiff. A	. C. P. 228
"		"		.99182	. 1 4 º.9 ገ	-	
		"		.98556			nd Bern. G.C.I.15
		"		.97595	34°.4	50.	. G.O.1. 10
"		"		.94041	77°.8		T C C 40
	ial	"		.9869, .9870,		628.	e. J.C.S. 49
Orthobutenylan	iečil		ਾਜ	9817	150		J. C. S. 88
				.9740.	80° \ I	211.). O. D. 00
Parabutenylanis Phenyl allyl oxi Krosyl allyl oxi	öil	4.6		.9733,	300	"	"
Phenyl allyl oxi	de	C, H, O. C, H,	·	.9825,	17°.6	Nasini.	Bei. 9, 881
Triceli utili ovi	uo. 1. x	Cy 117. O. Cg 11	5	.0000,		_ " _	"
Phenyl proparg	yl oxide	C ₆ H ₅ . O. C ₃ H	3	1.246,	0°	Henry. B	er. 16, 1878
Veratrol. 1.2		C. H. (O C H.)		1.086.	15°	Merck.	J. 11, 256
Dimethylresorci	n. 1.8			1.075,	0°	Coninck. 1992.	
"		"		1.0803	٥٠ ١	1002.	
44		"		1.0317	55°.8		
и'		44		1.0104	, 79°.2 }	Schiff. B	er. 19, 560 .
"		"		.9566,	185°.5	•	
((M-41-11-1-13/11-1-1				.8752,	2150	W A	(5) 90
Methylene diphe	ļ					269.	nn. (5), 3 0
66 61		ć i		1.092,	20°	Arnhold. 240, 19	A. C. P 2.
Methylene dior late.	thokresy-	C H ₂ (O C ₇ H ₇)	2	1.019,	50°, 1	"	"
Methylene dim late.	etakresy-	"		1.052,	50°, l	"	"
Methylene dipar	akresylate			1.034,	50°, 1	"	"
Methylene diber	zvlate	"		1.053,	20°	"	"
Methylene dithy	mylate	C H, (O C, H,	•)•	.979, 5	0°, 1	_ " _	"
		C, H, (O C, H,	τ -	1 4 44 6		TT TO	10 1050

24th. Aromatic Acids and their Paraffin Ethers.

					1	T T
NAME.		F	ORMULA.	Sp. Gravity.	AUTHORITY.	
Benzoic	acid_		Ca Ha.	СООН	1.29, cryst	Kopp.
* 6				"	1.201, 21°, s) ··
"				"	1.206, 25°.8, 1	Mendelejeff. J. 11,
**				"	1.227, 27°, 1) 27 4 .
"	" -				1.0838, 121°.4_	Kopp. J. 8, 85.
"					1.337, sublimed	Rüdorff. Ber.12, 251.
"	" -				1.288	Schröder. Ber. 12,
"	" -				1.291 \ 4°	561.
"					1.297	
					1.0800, 121°.4_	Schiff. A. C. P. 223, 247.
-	benzo	ate		0,	1.10, 17°	Dumes and Peligot. Ann. (2), 58, 50.
"	"		"		1.1026, 0°)	Kopp. A. C. P. 94,
"	"		"		1.1026, 0° } 1.0876, 16°.8 }	257.
44	"		"		. 1.0921, 12°.3	Mendelejeff. J. 18, 7.
"	"		- "		1.0862, 20°	Brühl. Bei. 4, 782.
"	"		"		1.100, 100	De Heen. Bei. 10, 318.
"	"		"		1.108, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 86, 1.
Ethyl b	enzoat	e	C ₉ H ₁₀	0,	1.0589, 10°.5	Dumas and Boullay. P. A. 12, 430.
"	"		66			Deville. Ann. (3), 3, 188.
"	**		"		1.049, 14°	Delffs. J. 7, 26.
44	**		"		1.0657, 0°	Kopp. A. C. P. 94,
"	"		"		1.0556, 10°.5	257.
"	**		"			Mendelejeff. J. 18, 7.
"	"		"		1.048, 20°	Naumann. Ber. 10, 2016.
"	"		"		1.0478, 200	
"	"		"		1.0502, 16°	Linnemann. A. C. P. 160, 195.
"	"		"	*********	1.160, 10°	De Heen. Bei. 10, 818.
"	"		"		1.050, 15°	and Herzberg. J.
Propyl	benzoa	te	C ₁₀ H ₁₁	O ₃	1.0816, 16°	P. C. (2), 36, 1. Linnemann. A. C. P. 161, 29.
"	"		"		1.0248, 15°	
Isoprop		zoate	44		1.054, 0° }	Silva. Z. C. 12, 687.
Dudail L	-			^	1.018, 250 }	
•	enzoat	e		O,		Linnemann. Ann. (4) , 27, 268.
"	"		"		1.002, 10°	De Heen. Bei. 10, 818.
Isobuty	l benze	oate	66		1.0018, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 86, 1.
			•		•	

NAME. FORMULA. Amyl benzoate C ₁₂ H ₁₆ O ₃ " " " " " " " " "	Sp. Gravity. 1.0039, 0° .9925, 14°.4 1.002, 10°9916, 15°	Kopp. A. C. P. 94, 257. De Heen. Bei. 10,
" " " " " " " " "	9925, 14°.4 } 1.002, 10°	257. De Heen. Bei. 10,
" " " " " " " " " " " " " " " " " " " "	9925, 14°.4 } 1.002, 10°	257. De Heen. Bei. 10,
	1.002, 10°	
" "	.9916, 15°	
		313. Stohmann, Rodatz,
	1	and Herzberg. J.
Hexyl benzoate C ₁₈ H ₁₈ O ₂	.99846, 17°	P. C. (2), 36, 1. Frentzel. Ber. 16, 745.
2 H	1 440	D. 1
Salicylic acid	1.448	Rüdorff. Ber. 12, 251.
<i>u u</i>	1.482 1.485 } 4° {	Schröder. Ber. 12, 1611.
	1.473, 4°	1011.
Paraoxybenzoic acid "1.		
" "	4 4 4 4 7	"
Methyl salicylate, oil of C ₈ H ₈ O ₃	1.180, 15°	Pettigrew. Am. J.
Betula lenta. Propyl salicylate C ₁₀ H ₁₂ O ₃	1.021, 21°	P. 55, 385. Cahours. Les Mon- des, 32, 280.
Methylsalicylic acid. 1.2 C ₆ H ₄ . OCH ₃ . COOl		Cahours. Ann. (3), 10, 327.
" "	1.1845, 15°	Mendelejeff. J. 13, 7.
" "	1.1969, 0° }	Kopp. A. C. P. 94,
11 11 11 11 -	1.1819, 160	257.
	1.1801, 20°	Landolt. Bei. 7,847
Anisic acid. 1.4 "	1.364 1.376 1.376 1.395	Schröder. Ber. 12,
	1.385	1611.
Ethylsalicylic acid. 1.2 - C ₆ H ₄ . OC ₂ H ₅ . COOl	1.097	Baly. J. C. S. 2, 28.
"	. 1.1843, 10	Delffs. J. 7, 26. Göttig. Ber. 9, 1473.
Eaberl aberlmotoowsbon 11	11 0975 00 1	Uninta A /1 D 159
ZOUTO II	1 1 0725 209 (332.
Methyl isopropylsalicylate "	1.062, 20°	Kraut. J. 22, 566.
Protocatechuic acid C. H. (OH). COO	1.541 } 40 }	Schröder. Ber. 12,
Gullie neid ('6 H ₂ (O H) ₃ . COO	1.542 { * * * * }	1611.
Gallic acid C ₆ H ₂ (OH) ₃ . COO	1.703 40	" "
Phenylacetic, or alpha- C ₆ H ₅ . C H ₂ . C O O H	_ 1.3, sond)	
toluic acid. " "	. 1.0778, 83° }	Möller and Strecker.
44 44	1 1 6334, 1359 1	J. 12, 299.
· · · · · · · · · · · · · · · · · · ·	1.220 40 {	Schröder. Ber. 12,
1	1.236 } 4 { 1.0847, 76°.4	1611. Schiff. A.C.P. 223,
Methyl phenylacetate C9 H10 O2		247. Radziszewski. Z. C.
Ethyl phonylacetate C H O	1 031	12, 358.
Ethyl phenylacetate \dots C_{10} H_{12} O_2 \dots C_{11} H_{14} O_2 \dots	1.0142, 18°	Hodgkinson, J. C. S. 37, 483.
Phenylpropionic, or hy- C ₆ H ₅ . C ₂ H ₄ . COOH	1.07115, 48°.7.	Weger A. C. P.
drocinnamic acid. " -	8780, 279°.8	
Methy: pheny propionate C10 1112 O2	1.018, 49°	366.
	1.0473, 0°	Weger. A. C. P.
Methyl phenylpropionate ""	.83824, 236°.6.	221, 61.
17 s g		

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl phenylpropionate_	C, H, O,	1.0343, 00 1	Erlenmeyer. J. 19
	***************************************		367.
16 66	- 11	1.0147, 20	Brühl. Bei. 4, 781.
14	- 14	_ I.0348, 0°	Weger. A. C. P.
	14	. 1.0348, 0° . 80182, 248°.1_	221, 61.
Propyl phenylpropionate	C ₁₂ H ₁₆ O ₂	_ 1.0152, 0°	1 4 4
Amyl phenylpropionate.	C14 Hon O.	.77886, 262°.1 .9807, 0°)	Erlenmeyer. J. 19.
Methyl oxyphenylacetate	C # 15	9590 400	367.
Metnyl oxypnenylacetate	Cg H ₁₀ U ₃	1.15, 17°.5	Fritzsche, Ber. 12, 2178.
Ethyl oxyphenylacetate	C10 H12 O3	1.104, 170.5	11 11
Ethyl oxyphenylpropio-	C ₁₀ H ₁₂ O ₃	1.360, 17°.5	Saarbach. J. P. C.
Phthalic acid	C. H. (COOH)2 -	1.585	(2), 21, 156. Schröder. Ber. 13,
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ 1.593 (1070.
Methyl phthalate	C ₁₀ H ₁₀ O ₄	. 1.2001)	
11 11		1.2022 13°.5.	Three prepara-
16 16		1.2101)	tions. Schmal-
11 11		1.1958)	zigaug. Inaug.
11 11		1.1974 - 160	Diss. Erlangen.
11 11	16	1.2058	1883. See also
14 46	36	1.1953)	Graebe, Ber. 16.
14 14	44		861.
11 4	46		, , , , , , , , , , , , , , , , , , , ,
Ethyl phthalate	C12 H14 O4	1 1910)	Two preparations.
- K - n	" "	1.1321 120.5	Schmalzigaug.
11 11	(t	1 1-20.4	Inaug. Diss. Er-
		1.1295 150.5	langen, 1883.
Orthophenyleneglyoxylic acid.		1,404	Colson and Gautier
Cinnamic, or phenylae- rylic acid.	C ₆ H ₃ .CH.CH.COOH	1.245	C. R. 102, 689. E. Kopp. J. P. C 37, 280.
ii ii	- 44	1.195	Schabus. J. 3, 392.
11 -11 -	46	1.246) 40 (Schröder. Ber. 12
10 11	44	1.249	1611.
14 44	44	_ 1.0565, 133°	Weger. A. C. P.
		90974, 300°	221. 61.
Methyl cinnamate	C ₁₀ H ₁₀ O ₂	1.106	E. Kopp. C. R. 21.
14 II	16	1.0415, 360	Weger. A. C. P.
	44	85888, 259°.6.	1 221.61.
Ethyl cinnamate	C11 H12 O1	- 1.126, 0°	E. Kopp. C. R. 21.
u u		1.13	Marchand. A. C. P. 32, 269.
n n		- 1.0656, 0° 1	H. Kopp. A. C. P.
16 16	41	1.0498, 20°, 2 i	95, 307.
11 11	44		
14 14		1.0658 .0°	
16 66			Weger, A.C.P. 221.
11 11		. 82143, 2710	61.
		. 1.0490, 20°	Bruhl. A.C.P. 235.1
Propyl cinnamate	C ₁₂ H ₁₄ O ₂	1.0465	Kahlbaum, Ber. 16, 1491.
16 16		1.0435, 00)	Weger, A.C.P. 221
14 14	44	7917, 2850.1)	61.

Name.	FORMULA.	Sp. Gravity.	Ацтновиту.
Methyl a methylorthox- }	C ₁₁ H ₁₁ O ₃	1.1404, 15°	Perkin. J. C. S. 89,
yphenylacrylate. 5	"	1.1277, 20° 5 1.1465, 8°.5	409. Gladstone. Bei. 9,
Methyl β methylorthox-	"	1.1486, 15°	249. Perkin. J. C. S. 89,
yphenylacrylate. 5		1.1362, 30° ∫ 1.1556, 9°.5	409. Gladstone. Bei. 9,
Ethyl a ethylorthoxy-	C ₁₃ H ₁₆ O ₃	1.084, 15° }	249. Perkin. J. C. S. 89,
phenylacrylate. β Ethyl β ethylorthoxy-	"	1.074, 30° } 1.090, 15°	409.
phenylacrylate.		1.090, 10°	Gladstone. Bei. 9, 249.
Methyl a methylorthox-	C ₁₂ H ₁₄ O ₃	1.1112, 15° } 1.1061, 80°	Perkin. J. C. S. 89, 409.
Methyl β methylorthox- yphenylcrotonate.	"	1.1279, 15° 1.1136, 30°	66 66
Methyl a methylorthox-	C ₁₃ H ₁₆ O ₃	1.1044, 15° 1.0882, 30°	
yphenylangelate. Methyl β methylorthox-	"	1.1100, 15° (66 66
yphenylangelate. Mandelic acid	C ₆ H ₅ . CHOH. COOH	$1.1008, 30^{\circ}$ } 1.355 } 4° {	Schröder. Ber. 12,
Cuminic acid	C_6H_4 . C_3H_7 . $COOH$	1.367 } 40	1611.
Quinic acid	C, H, O,	1.169 } 4 1.637, 8°.5	Watts' Dictionary.
Ethyl verutrate	C ₁₁ H ₁₄ O ₄	1.141, 18°	Will. A. C. P. 37, 198.
Ethyl phenylglyoxylate	$C_{10} \stackrel{H}{}_{10} \stackrel{O_3}{}_{03} - \cdots - C_{12} \stackrel{H}{}_{14} \stackrel{O_3}{}_{03} - \cdots - C_{12} \stackrel{O_3}{}_{14} \stackrel{O_3}{}_{03} - \cdots - C_{12} \stackrel{O_3}{}_{14} \stackrel{O_3}{}_{14} - \cdots - C_{12} \stackrel{O_3}{}_{14} - \cdots - C_{12} \stackrel{O_3}{}_{14} - \cdots - C_{12} \stackrel{O_3}{}_{14} - \cdots - C_{12} $	1.121, 17°.5	Claisen. Ber. 12, 629.
Ethyl phenylacetacetate			37. 481.
Ethyl benzylacetacetate	C ₁₃ II ₁₆ O ₃		Conrad. Ber. 11, 1056.
Ethyl methylbenzylacet-	C ₁₄ H ₁₈ O ₃	1.046, 23°	£\$ \$\$
Ethyl benzylmulonate	C ₁₄ H ₁₈ O ₄	1.077, 15°	Conrad and Bischoff. A. C. P. 204, 203.
Ethyl benzylmethylmalo- nate.	C ₁₅ H ₂₀ O ₄	1.064, 19°	Conrad and Bischoff. Ber. 13, 595.
Ethyl benzylidenemalo-	C ₁₄ H ₁₆ O ₄	1.1105, 15°	Claisen and Crismer. A. C. P. 218, 132.
Ethyl benzylacetosucci-	C ₁₇ H ₂₂ O ₅	1.088, 15°	Conrad. Ber. 11, 1058.
mate. Monomethyl_propylpy- }	C ₁₀ H ₁₄ O ₃	1.10	Reichenbach.
rogallate. Picamar.	"	1.10288, 15°	Pastrovich. M. C. 4, 183.

25th. Ethers of Aromatic Radicles.

			· · · · · · · · · · · · · · · · · · ·
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Phenyl acetate	C ₈ H ₈ O ₂	1.074	Boughton, J. 18,
Kresyl acetate	C ₉ H ₁₀ O ₂	1.0499, 23°	Gladstone. Bei. 9, 249.
Benzyl acetate	"	1.057, 16°.5	Conrad and Hodg- kinson. A. C. P.
		1.0400, 21° 1.03814, 22°.5_	193, 312. Gladstone. Bei. 9, 249.
Paraxylyl acetate	C ₁₀ H ₁₂ O ₂	1.0264, 15°	Jacobsen. Ber. 11, 28.
Ethylphenyl acetate	"	1.0286	Radziszewski. Ber. 9, 873.
" "	"	1.0507, 22°.5	Gladstone. Bei. 9, 249.
Methylphenylcarbyl ace- twte.		1.05, 17°	Radziszewski. C.C. 5, 261.
Parapropylphenyl acetate_	C ₁₁ H ₁₄ O ₂	1.029, 0° }	Spica. Ber. 12, 295.
Orthoisopropylphenyl ace-		1.02714, 0° .93818, 100°	Fileti. G. C. I. 16,
Paraisopropylphenyl ace-	"	1.026, 0°	Paterno and Spica.
tate. Mesityl acetate		1.0903, 16°.5	Ber. 10, 84. Wispek. Ber. 16, 1577.
Thymyl acetate	C ₁₂ H ₁₆ O ₂	1.009, 0° _ } }	Two preparations. Paterno. J. C. S.
	"	1 010 00	(2), 13, 638.
Butylphenyl acetate		1.010, 0° }	Studer. Ber. 14,
Diphenylcarbyl acetate	C ₁₅ H ₁₄ O ₂	1.49, 22° ?	Linnemann. A. C.
Benzyl propionate	C ₁₀ H ₁₂ O ₂	1.036, 16°.5	P. 133, 20. Conrad and Hodg- kinson. A. C. P.
Benzyl butyrateBenzyl isobutyrate	С., П., О.	1.016, 16°	193, 312.
Benzyl isobutyrate		1.016, 18°	Hodgkinson. A. C. P. 193, 320.
" "	"	1.0058, 23°	Gladstone. Bei. 9, 249.
Isomer of benzyl isobuty-	44	1.0228, 22°	"
Benzyl phenylacetate	C ₁₅ H ₁₄ O ₂	1.101	Slawik. J. C. S. (2), 13, 59.
Benzyl benzylucetate	C ₁₆ H ₁₆ O ₂	1.074, 21°	Conrad and Hodg- kinson. A. C. P. 193, 312.
Benzyl benzylpropionate	C ₁₇ H ₁₈ O ₂ C ₁₈ H ₂₀ O ₂	1.046, 16°.5	110, 012.
Benzyl benzylbutyrate	U ₁₈ H ₂₀ U ₂	1.027, 175.5	(
Benzyl benzylisobutyrate.		1.028, 180	
Benzyl dimethylbenzyl- acetate.	"	1.0285, 18°	83, 495.
Benzyl benzoate		l l	159.
" "	l "	1.1224, 19°, l. ـ	Claisen. Ber. 20, 646.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
	C ₁₆ H ₁₆ O ₂	1.098, 14° 1.1145, 16° .9416, 22°	Scharling. J. 9, 630. Busse. Ber. 9, 831. Gladstone. Bei. 9,
Mesitylene diacetate	C ₁₈ H ₁₆ O ₄	1.12, 20°	249. Robinet and Colson.
Ethyl phenyl carbonate	C ₉ H ₁₀ O ₈	1.117, 0° 1.1184, 0°	C. R. 96, 1863. Fatianoff. J. 17, 477. Pawlewski. Ber. 17, 1205.

26th. Aromatic Aldehydes.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Benzaldehyde. Almond	C ₆ H ₅ . C O H	1.075	Chardin-Hardan- court.
"	٠,,,	1.038, 15°	
		1.043	Wöhler and Liebig.
"	- "	1.0636, 0° }	Kopp. A. C. P.
"		1.0499, 14°.6 } 1.0504	94, 257.
"		1.067	
			Hawliczek. Ber. 9, 1461.
	- "	$\left[\begin{array}{c} 1.0471 \\ 1.0474 \end{array} \right] \ \ 20^{\circ}_{}$	Landolt.
"		1.0474	Duckl Dat 4 Foo
Toluic aldehyde	CHCH COH	1.0455, 20°	Brühl. Bei. 4, 782. Gundelach. B. S. C.
toluic aidenyde	- C ₆ H ₄ C H ₅ . C O H	1.037,0	26, 45.
Phenylacetic aldehyde			
Cuminic aldehyde. Cuminol.			Kopp. A. C. P. 94, 257.
"	- "	.9751, 150	Mendelejeff. J. 13,7.
	- "	.9775, 20°	Gladstone. Bei. 9, 249.
Paratolylpropyl aldehyde	C ₆ H ₄ . CH ₃ . CH ₂ . CH ₂ . C O H	.9941, 18°	v. Richter and Schüchner. Ber. 17, 1931.
Salicylic aldehyde, or sali- cylol.		1.1731, 13°.3	Piria. A. C. P. 29, 300.
	46	1.1671, 20°	Landolt. Bei. 7, 847.
Anisic aldehyde	1		l 14. 484.
" "	- "	1.1228, 18°	Rossel. Z. C. 12, 561.
Cinnamic aldehyde	C ₉ H ₈ O	1.0497, 20°	Brühl. A. C. P. 235, 1.
			200, 2.

27th. Aromatic Ketones.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Methyl phenyl ketone Methyl benzyl ketone	C ₆ H ₅ . C O. C H ₂ C ₇ H ₇ . C O. C H ₃		Friedel. J. 10, 270. Radziszewski. Ber. 3, 199.
Methyl tolyl ketone	"	.9891, 220	Essner and Gossin.
Propyl phenyl ketone	C ₆ H ₅ . C O. C ₈ H ₇	.990, 15°	Ber. 17, ref. 429. Schmidt and Fie- berg. J. C. S. (2), 12, 75.
" " "	"	.992, 15° .9949, 15°	Popoff. Ber. 6, 560.
Isopropyl phenyl ketone -	"	.994, 12° .972, 30° .934, 60°	" "
Methyl xylyl ketone	C ₈ H ₉ . C O. C H ₃	.9962, 19°	Claus and Wollner. Ber. 18, 1856.
Isobutyl phenyl ketone	C ₆ H ₅ . C O. C ₄ H ₉	.993, 17°.5	Popoff. A.C.P. 162, 151.
Tolyl phenyl ketone	C ₆ H ₅ . C O. C ₇ H ₇	1.088, 17°.5	Senff. A. C. P. 220, 252.
Acetocinnamone	C ₈ H ₇ . C O. U H ₃	1.008	Engler and Leist. B. S. C. 20, 204.
Propionylacetophenone Butyrylacetophenone	C ₁₁ H ₁₂ O ₂	1.081, 15° 1.061, 15°	

28th. Camphors, Essential Oils, Etc.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Laurel camphor	C ₁₀ H ₁₆ O	.986 }	Watts' Dictionary.
Myristicol	"	.9466, 20°	Gladstone. J. C. S. (2), 10, 1.
Absinthol	"	.973, 24°	Leblanc. A. C. P. 56, 357.
" -1	"	.9267, 20°	Gladstone. J. C. S (2), 10, 1.
"		.9128, 22°	Gladstone. Bei. 9 249.
Citronellol	tt		Two samples Gladstone. J. C
From oil of coriander	"	.8970	(S. (2), 10, 1. Grosser. Ber. 14 2505.
Ericinol	"	.874, 20°	Frohde. J. P. C. 82 186.
Oil of Mentha pulegium	tt	.9271 } .9890 }	Watts' Dictionary.

Name.	FORMULA.	Sp.GRAVITY.	AUTHORITY.
Oil of Pulegium micran-	C ₁₀ H ₁₆ O		
From oil of tansy	"	.918, 4°	Bruylants. Ber. 11,
Thujol Cajeputol	C ₁₀ H ₁₈ O	.924, 15° .9160, 20°	Jahns. Ber. 16, 2930. Gladstone. J. C. S. (2), 10, 1.
Cajeputene hydrate	66	.8900, 21°.5 .903, 17° .9160, 20°	Schmidl. J. 18, 480. Kanonnikoff. Bei. 7,
Oil of coriander		.871, 140	592. Kawalier. J. 5, 624. Grosser. Ber. 14.
Cyneol		.92067, 16°	2486.
"	"	.9267, 20°	Wallach. A. C. P. 245, 195.
Oil of eucalyptus oleosa	"	.9075, 20°	Gladstone. J. C. S. (2), 10, 1.
Geraniol	"	.8851, 15° }	Jacobsen. Z. C. 14, 171.
Oil of Melaleuca ericifolia	"	.868, 15°	Morin. J. C. S. 40, 738. Gladstone. J. C. S.
Oil of Melaleuca linarifolia From menthol	"	.8985, 20° .9032	(2), 10, 1. "" Moriya. C. N. 42,
Menthone	"	.9126, 0°] .9048, 10°]	268.
	"	.8972, 20° .8819, 40° }	Atkinson and Yoshi-
it	"	.8665, 60° .8511. 80°	da. J. C. S. 41,295.
Ngoi camphor	"	.8355, 100° J 1.02	Plowman. J. C. S.
From Osmitopsis asteris-	"	.921	(2), 12, 582. Gorup-Besanez. J. 7, 596.
Salviol	· "	.934, 15°	Sigiura and Muir. J. C. S. 83, 295.
Terpane	"	.938, 15° .935, 0°	Muir. J. C. S. 37, 13. Bouchardat and Voiry. C. R. 106,
Terpilenol	"	.961, 0° }	664. Bouchardat and Lafont. B.S. C.
"		.9533, 0°	45, 295. Lafont. B. S. C. 49,
Terpinol*	"	· ·	323. Bouchardat and Voiry. B.S.C. 47,
"		.9296, 10°	870.

^{*}List's terpinol (J. 1, 726) is now known to be a mixture.

Name.	FORMULA.	Sp. Gravity.	Authority.
Terpinol	C ₁₀ H ₁₈ O	.9357, 20°	Wallach. A. C. P. 245, 196.
Turpentine hydrate	"	.9274, 16°	Tilden. C. N. 37, 166.
" "	"	.9339, 0° }	Flawitzky. Ber. 12,
11 11	"	.9201, 18° }	2855.
" "		.9511, 10°	Renard. Ber. 13, 932.
		.9188	Kanonnikoff. Bei.
	ee	.9335, 0° }	Flawitzky. Ber. 20,
From wormseed oil	"	.9189, 19°.5 9275 16°	1959.
" " " "	"	.9275, 16°) .8981, 50° }	Hell and Stürcke.
	"	.8553, 1000]	Ber. 17, 1970.
	a w o		(Twosamples. Glad-
Menthol	C ₁₀ H ₂₀ O	.9394 .9515 } 20°	stone. J. C. S. (2), 10, 1.
	"	.89, 15°	Moriva. C. N. 42,
		.8786, 20°	268. Kanonnikoff. Bei. 7, 592.
Ethyl camphor	C ₁₂ H ₂₀ O	.946, 220	Baubigny, J. 19,624.
Eucalyptol	"	.905, 8°	l Cloëz. Z. C. 12. 411.
"		.9173, 15°	Poehl. J. R. C. 5, 588.
From wormseed oil	"	.919, 20°	Völckel. J. 6, 513.
Amyl camphor	C ₁₅ H ₂₆ O	.919, 15°	Baubigny.
Acetyl camphor	C ₁₂ H ₁₈ O ₂	.986, 20° .933, 15°	Baubigny. J. 19,624.
Methyl borneol	C ₁₁ H ₂₀ O	.933, 15°	Baubigny.
Ethyl borneol From Achillea ageratum _	C ₁₂ H ₁₈ O ₂ C ₁₁ H ₂₀ O ₂ C ₁₂ H ₂₂ O ₂	.916, 23° .849, 20°	De Luca. J. C. S.
From Angostura bark	C ₁₈ H ₂₄ O	.934	31, 326. Herzog. J. 11, 444.
Patchouli camphor	C., H., O.	1.051, 4°,5	Gal. Z. C. 12, 220.
Oil of ginger	$C_{80}^{10} H_{138}^{10} O_{5}. (?)$.893	Papousek. J. 5, 624.
Camphorogenol	C ₁₀ H ₁₈ O ₅ . (?)	l .	Yoshida: J. C. S. 47, 779.
Terpilene formate	C ₁₁ H ₁₈ O ₂	.9986, 0° }	Two samples. Lafont. B. S. C. 49, 323.
Terpilene acetate	C ₁₂ H ₂₀ O ₂	.9827, 0º	Bouchardat and Lafont. C.R. 102, 318.
Terebenthene acetate	"	.9820, 0°	11 11 11
Terebene acetate		.977, 0°	Bouchardat and La- font. C.R. 102,171.
Camphene acetate	- "	1.002, 0°	Lafont. C. R. 104, 1718.
Camphoric acid	C ₁₀ H ₁₆ O ₄	1.191}	Schröder. Ber. 13, 1070.
Ethylcamphoric acid	C ₁₆ H ₂₀ O ₄	1.095, 20°.5	Malaguti. Ann. (2),
Ethyl camphorate		1.029, 16°	64, 164. Malaguti. A. C. P. 22, 48.
		1.072, 22° }	Dehmel. J. R. C. 4,
_ "		.1 1.070, 25° (321.
Propyl camphorateEthyl paracamphorate	C ₁₆ H ₂₈ O ₄	1.058, 24°	
Ethyl paracamphorate	C ₁₄ H ₂₄ O ₄	1.03, 15°	Chautard. J. 16, 395.
Camphoric anhydride	. U ₁₀ H ₁₄ U ₃	. 1.194, 20°.5	. Malaguti. Ann. (2), 64, 160.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ethyl camphocarbonate	C ₈ H ₁₂ O	1.052, 15°	Roser. Ber. 18, 3112.
Camphrene		.974, 6°	Chautard. J. 10, 483.
Diethylcamphresic acid		1.128, 13°	Schwanert. J. 16,
Ethyl camphresate		1.0775, 13°	397.

29th. Miscellaneous Compounds.

		1	
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Quinone	C ₆ H ₄ O ₂	1.307 }	Schröder. Ber. 13,
Phlorol	C ₈ H ₁₀ O	1.015, 12°	Sigel. A. C. P. 170, 845.
Carvol	C ₁₀ H ₁₄ O	.953, 15°	Völckel.
"		. 9580, 20°	Gladstone. J. C. S. (2), 10, 1.
"	1		(1)
"		959 9598 } 20	Beyer. Ber. 16, 1387.
"		1	Deyer. Der. 10, 1307.
"		1	Flückiger.
"	"		
"	!	'	Gladstone. J. C. S. 49, 628.
Eugenol	C ₁₀ H ₁₂ O ₂	1.076	Stenhouse. A. C. P. 95, 106.
		1.0684, 14°	
"	"	1.066, 15°	
"		1.0778, 0° }	Wassermann. J. C.
"		1.063, 18°.5	S. (2), 1, 706.
		1.0703, 14°	Tiemann and Kraaz. Ber. 15, 2066.
"	"	1.066, 17°.5	Gladstone. Bei. 9, 249.
Isoeugenol		1.080, 16°	Tiemann and Krauz. Ber. 15, 2066.
Methyl eugenol?	C ₁₁ H ₁₄ O ₂	1.046, 15°	Church. J. C. S. (2), 13, 115.
" "		1.055, 15°	Petersen. Ber. 21, 1060.
Ethyl eugenol	C ₁₂ H ₁₆ O ₂	1.026, 0° }	Wassermann. A. C. P. 179, 376.
Propyl eugenol	C ₁₃ H ₁₈ O ₂	1.0024, 16°	Wassermann. Ber.
Isobutyl eugenol	C., H., O.	.985, 15°	10, 237.
Amyl eugenol	$\begin{array}{c c} C_{14} & H_{20} & O_2 & \dots \\ C_{15} & H_{22} & O_2 & \dots \end{array}$.976, 16°	Wassermann. Ber. 10, 238.
Allyl eugenel	C ₁₃ H ₁₆ O ₂	1.018, 15°	" "
Coumarin	$\begin{array}{c} C_{13} H_{16} O_2 \\ C_9 H_6 O_2 \end{array}$.9207	Gladstone. Bei. 9, 249.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Safrol	C ₁₀ H ₁₀ O ₂	1.1141, 0°	Grimaux and Ruotte. Z. C. 12, 411.
"	44	1.0956, 18°	J. Schiff. Ber. 17, 1985.
Coerulignol	C ₁₀ H ₁₄ O ₂	1.05645, 15°	Pastrovich. M. C. 4, 189.
Phthalic anhydride	C ₈ H ₄ O ₃	1.527 1.530 } 4° {	Schröder. Ber. 12, 1611.
Benzoic anhydride	C ₁₄ H ₁₀ O ₃	1.231 1.234 } 4°	**
Benzo-oenanthic anhy-	"	1.247) 1.048	Walasha I 7 444
dride.	C ₁₄ H ₁₈ O ₃		Malerba. J. 7, 444.
Benzo-cinnamic anhy- dride.	C ₁₆ H ₁₂ O ₃		·
Benzo-cuminic anhydride Pyruvyl benzoute	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.115, 28° 1.148, 25°, s	Gerhardt. J. 5, 448. Romburgh. J. C. S. 44, 68.
Tannic acid	C ₁₄ H ₁₀ O ₉	1.097	W. C. Smith. Am.
Benzoyl glycollic ether Propylene ethylphenylke- tate.	$ \begin{matrix} C_{11} & H_{12} & O_4 & \cdots \\ C_{12} & H_{16} & O_2 & \cdots \end{matrix} $	1.1509, 20°.4 .988, 22°	J. P. 58, 145. Andrieff. J. 18, 344. Morley and Green.
Isomer of benzilSaliretin	C ₁₄ H ₁₀ O ₂	1.104, 10° 1.1161, 25°	Ber. 17, 3016. Alexeyeff. J. 17, 385. Beilstein and Seel-
Isobenzpinacone	C ₂₆ H ₂₂ O ₂	1.10, 19°	heim. J. 14, 765. Linnemann. J. 18,
Derivative of propyl phe-	C ₂₄ H ₂₀ O ₃	1.039, 17°	7 556. Hodgkinson. J. C.
nylacetate. Derivative of ethyl phenylacetacetate.	C ₁₈ H ₂₀ O ₂	1.0628, 20°	S. 87, 4 82.
a Naphtol	C ₁₀ H ₈ O	1.224, 4°	Schröder. Ber. 12, 1611.
"	"	1.09589, 98°.7	Nasini and Bern- heimer. G.C.I. 15,
β Naphtol	"	1.217, 4°	50. Schröder. Ber. 12,
"	"	1.23	1611. Brügelmann. Ber.
Naphtol	"	.9048, at boil-	17, 2859. Ramsay. J. C. S. 89,
Methyl a naphtol	C ₁₁ H ₁₀ O	ing point. 1.09686, 18°.9	65. Nasini and Bern-
ii ii	"	1.07931, 34°.5 1.04661, 77°.7	heimer. G. C. I. 15, 50.
Propyl a nephtol	C ₁₃ H ₁₄ O	1.04471, 18°.4	" " "
Methyl a naphtyl oxide Methyl naphtyl ketone	$C_{10}^{13} H_{7}^{14} O. C H_{3}$ $C_{10} H_{7}^{14} C O. C H_{3}$	1.0974, 15° 1.124, 0°	Staedel. Ber. 14,898. Roux. Ann. (6), 12, 336.
Anthraquinone	C ₁₄ H ₈ O ₂	1.438	300.
"	"	1.426	Schröder. Ber. 13,
"	"	1.419	1070.
Phenanthrenequinone		1.404	"
	"	1.400	i

Name.	Formula.	Sp. Gravity.	Authority.
Asarone " Salicin. Natural " Artificial	C ₁₂ H ₁₆ O ₃	1.165, 18° 1.0743, 60° 1.0655, 95° 1.438, 26° 1.4257 }	Butlerow and Rizza. B. S. C. 43, 114. Piria. Ann. (3), 44, 368.
Santonin	C ₁₅ H ₁₈ O ₃	1.247, 20°.5	Trommsdorf. A. C. P. 11, 190.
	"	1.1866	Carnelutti and Nasini. Ber. 13, 2210.
Metasantonin. M. 136° " 160°.5_	"	1.1649 1.1975	
Santonid Metasantonid Parasantonid	"	1.1967 1.046	46 46 46 46
Santonic acid	C ₁₅ H ₂₀ O ₄	1.1957 1.2015, 20° 1.251	Nasini. Ber. 14,1518. Carnelutti and Na-
Parasantonic acid Methyl santonate	" C., H., O. ——	1.2684 1.1667	sini. Ber. 18, 2210.
Methyl parasantonate Ethyl santonate	C ₁₆ H ₂₂ O ₄	1 1777	" "
Ethyl parasantonate Propyl santonate	C ₁₇ H ₂₄ O ₄	1.153 1.1185 1.125, 20°	" " " Nasini. G. C. I. 18,
Propyl parasantonate		1.153	165. Carnelutti and Na-
Isobutyl santonateAllyl santonate	C ₁₉ H ₂₈ O ₄ C ₁₈ H ₂₄ O ₄ C ₁₈ H ₁₆ O ₂	1.1181 1.1434	sini. Ber. 13, 2210.
Styracin	C ₁₈ H ₁₆ O ₂	1.154 }	Schröder. Ber. 13, 1070.
Pimaric acid	C ₂₀ H ₃₀ O ₂	1.047, 18° 1.1611, 18° 1.01, 0°	Siewert. J. 12, 510. "" Ladenburg. Ber. 14,
"	"	1.0091, 0°	2130. Ladenburg. A. C. P. 217, 139.
Cinacrol	C ₁₀ H ₁₈ O ₂	1.05}	Hirzel. Watts' Dic- tionary.
ColophononeApiol	C ₁₁ H ₁₈ O	1.015	Schiel. J. 13, 489. Lindenborn. Ber. 9, 1478.
Calophyllum resinAntiar resin	C ₁₄ H ₁₆ O ₄	1.12, cryst 1.032	
Tannin from Persea lingue From Sequoia gigantea			Arata. Ber. 14, 2251. Lunge and Stein- kauler. Ber. 14, 2205.
Turmerol	1	1	Jackson and Menke. A. C. J. 4, 871.
Guyaquillite Hartin	$egin{array}{cccc} C_{20} & H_{26} & O_3 & & & & \\ C_{20} & H_{34} & O_2 & & & & \\ \end{array}$	1.092 1.115, 19°	Dana's Mineralogy. Schrötter. P. A. 59, 45.
Resin from rosewood	l .	1	Terreil and Wolff. J. C. S. 88, 559.
Cardol	C ₂₁ H ₃₁ O ₂	.978, 23°	Städeler. J. 1, 577.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ivaol	C ₂₆ H ₄₀ O	.9346, 15°	Planta-Reichenau. Z. C. 13, 618.
Cholesterin	C ₂₆ H ₄₄ O	1.03, melted	Hlasiwetz. A.C.P. 106, 354.
"	"	1.046 1.047 20°	Mehu. J. C. S. (2), 13, 247.
	C ₃₆ H ₄₈ O ₂₀ . 5 H ₂ O	1.46	Tanret. J. Ph. C. (5), 3, 61.
Cochlearin	1		Maurach. Watts'
Aloïsol			Robiquet. Watts' Dictionary.
Xanthil Picrolichenin Phycic acid	?	1.176	Couërbe. Alms. A.C.P.1,61.

XLVII. COMPOUNDS CONTAINING C, H, AND N.

1st. Cyanides and Carbamines of the Paraffin Series.

Name.	FORMULA	•	SP. GRAVITY.	AUTHORITY.
Methyl cyanide, or acetonitril. " "	"		.8191, 16° }	367.
" "	**		.8052, 0°	Vincent and Dela- chanal. C. R. 90, 747.
Methyl carbamine	"		.7155, 81°.2 .7557, 14°	Schiff. Bei. 9, 559. Gautier. Roscoeand Schorlemmer's
Ethyl cyanide, or propio- nitril.				463.
				Thorpe. J. C. S.
	"		1	Gladstone. Bei. 9,
	"		.7015, 97°	Schiff. Bei. 9, 559.
Ethyl carbamine	"		.787, 15°	Pelouze. Watts' Dictionary.
<i>u</i> · <i>u</i>	i		i i	Frankland and Kolbe. J. 1, 552.
Propyl cyanide, or buty- ronitril.	C ₃ H ₇ . C N		.795, 12°.5	Dumas. J. 1, 594.
Isopropyl carbamine	"	·	.7596, 0°	Gautier. B.S.C.11, 224.
Butyl cyanide, or valero- nitril.	C4 H9. C N		.8164, 0°	
1sobutyl cyanide, or iso- valeronitril.	"	· -	.810	
ti ii ii	"		.818, 15°	Guckelberger. J. 1, 852.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Isobutyl cyanide, or isovaleronitril.	"	.8226, 0° .8146, 10° .8060, 20° .6921, 129°.3 .8010, 18°	Erlenmeyer and Hell. A. C. P. 160, 257. Schiff. Bei. 9, 559. Gladstone. Bei. 9,
Isobutyl carbamine		.7873, 4°	249. Gautier. Z. C. 12, 415.
Isosmyl cyanide, or capro- nitril.	C ₅ H ₁₁ . C N	.8061, 20°	Frankland and Kolbe. J. 1, 559.
" "		1	Gladstone. Bei. 9,
" " Oenanthonitril	C ₆ H ₁₃ . C N	.6861, 154° .895, 22°	Schiff. Bei. 9, 559. Mehlis. A.C.P. 185, 368.
Heptyl cyanide Octyl cyanide	i e	N .	Felletár. J. 21, 684. Eichler. Ber. 12, 1888.
Isooctyl cyanide	C ₁₁ H ₂₈ . C N	.8187, 14° .8350, 0°)	Felletár. J. 21, 684.
"		.8273, 15° }	Krafft and Stauffer.
Myristonitril	C., H., C N	.7075, 385.9	Ber. 15, 1728.
"	(,	.8241, 25° }	
Palmitonitril	O H ON	.7724, 99° 8224 81°	
"	46	1.8186, 40° }	
Stearonitril	C ₁₇ H ₈₅ . C N	.8178, 41°)	
"		.8149. 40° }	" "

2d. Amines of the Paraffin Series.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Trimethylamine	N. (C H ₃) ₃	.673, 0°	Blennard. Roscoe and Schorlem- mer's Treatise.
Ethylamine Diethylamine " " " " " " " " " "	"	.7159, 10° .7055, 20° .6949, 30° } .6844, 40° .6735, 50°	Wurtz. J. 3, 446. Oudemans. Bei. 6, 353. Values given for every 5°.
"	"	.6680, 55° J .7092, 19°	249.
Triethylamine	N. (C, H,)	.6686 } ⁵⁶⁵	,

Name.	FORMULA.	Sp. Gravity.	Authority.
Triethylamine	N. (C ₂ H ₅) ₃	.6621, 89°	Schiff. Ber. 19, 560.
Propylamine	N H ₂ . C ₈ H ₇	.7283, 0° .7124, 21°}	Silva. Z. C. 12, 638.
	"	.7186, 20°	Linnemann. A. C.
"	"	.6883, 4 9°.5	P. 161, 18. Schiff. Ber. 19, 560.
Isopropylamine Dipropylamine	"	.690, 18° .756, 0°	Siersch. J. 21, 682. Vincent. Ber. 19,
Diisopropylamine	N H. (C. H.).	.722, 220	ref. 680. Siersch. J. 21, 682.
Tripropylamine	N. (C. H.)	.7699, 0°	Zander. A. C. P.
"		.6426, 156°.5 } .771, 0°	Vincent. Ber. 19,
		,	ref. 680.
Butylamine	N H ₂ . C ₄ H ₉	.7553, 0°	Lieben and Rossi.
"	"	.7401, 20°	A. C. P. 93, 124. Linnemann and
`	-	,	Zotta. Ann. (4), 27, 275.
Isobutylamine	"	.7857, 15°	Linnemann. Ann. (4), 27, 268.
"		.6865, 67°.7	Schiff. Ber. 19, 560.
Trimethylcarbinolamine _	"	.6987, 15°	Linnemann. Ann. (4), 27, 268.
	"	.7137, 0° } .7054, 8° }	_
"	11	.7054, 8° }	Rudneff. Ber. 12, 1023.
"	"	.6931, 15°) .7155, 0°)	1025.
	"	.7078, 7°.8 }	Brauner. A. C. P.
Tributylamine	N (C H)	.7004, 15°) .791, 0°)	192, 72.
11		.7782, 20° }	Lieben and Rossi.
(f)		.7677, 40°)	A. C. P. 165, 109.
Triisobutylamine	"	.785, 21°	Sachtleben. Ber. 11, 734.
Amylamine	N H ₂ . C ₅ H ₁₁	.7503, 18°	Wurtz. J. 3, 451.
"	"		Wurtz. J. 19, 425. Plimpton. J. C. S.
•		1	39, 33.
" Active " Inactive	"	.7725 } 6° {	Plimpton. J. C. S.
" Inactive		.6848, 94°.8	39, 331. Schiff. Bei. 9, 559.
Dimethylethylearbinol- amine.	"	.755, 0°	Wurtz. J. 19, 425.
"		.7611, 00 }	Rudneff. J. C. S. 38
Diamylamine	N H. (C. H)	.7825. 00	545. Silva. Z. C. 10, 157.
" Active	(6	.7878, 0° }	Plimpton, J. C. S.
" Inactive Triamylamine. Active	N (C H)	7776, 14° {	39, 331.
" Inactive_			
Hexylamine		.768, 17°	
Secondary hexylamine	. "	. 7638	hours. J. 16, 527. Uppenkamp. Ber. 8, 57.
Octylamine	N H ₂ . C ₈ H ₁₇	.786	Squire. J. 7, 485.

3d. The Aniline Series.

NA	AME. FORMULA.		Sp. GRAVITY.	AUTHORITY.	
Amidobenzer	ne, or aniline	C ₆ H ₅ . H ₂	N	1.020, 16°	
44	"	- "		1.028	47, 50. Fritzche. J. P. C. 20, 453.
44	"			1.0361, 0° }	Kopp. A. C. P. 98,
44	" _	- "		1.0251, 13°.7	867.
"	"	- "		1.018, 15°.5	Städeler and Arndt. J. 17, 425.
4.6	"	- "		1.024, 17°.5	Lucius.
44	"	- "		1.026, 150	Kern. Ber. 10, 199.
"	"	- "		.8527, 188°	Ramsay. J. C. S. 85, 468.
66	"	. "		1.0379, 0°	Thorpe. J. C. S.
44	"	_		.87274, 183°.7_	} 87, 871.
"	"	- "		1.02478, 16°.3_	Johst. P. A. (2), 20, 56.
"	"	- "		1.0216, 20°	Brühl.
"	"			1.0131, 25°.7	Schall. Ber. 17, 2555.
"	"			.9484, 1002.9	·
"	"	- "		1.016, 13° }	Gladstone. Bei. 9,
"	"	- ":		1.0322, 7°.5	249.
"		- "		.8751, 183°.1	Schiff. Bei. 9, 559.
"		- "		.92256, 130°.9	
"		- "		.91858, 135°.1_ .90708, 147°.2_	Taken at different
44		1 ,,		.90632, 148°	pressures, each
"	"	1 44		.89272, 162°	to being the boil-
"	"	1 4		.89233, 162°.6.	ing point at the
**	"	1			pressure ob-
"	. "				served. Neu-
**	"	. "		.87443, 181°.6_	beck. Z. P. C. 1,
"	"	. "		.87424, 181°.8	655.
"		. "			
"	"	. "		.81330)	J
"		. "		1.0216, 20°	Knops. V. H. V. 1887, 17.
"	"	. "		1.02204, 20°	Weegmann. Z. P. C. 2, 218.
Methylaniline	0	C ₆ H ₅ . C H	. H N	.976, 15°	Hofmann. Ber. 7, 526.
Benzylamine		C ₆ H ₅ . C H	, H, N	.990, 14°	Limpricht. J. 20, 510.
Orthotoluidin	e	C ₆ H ₄ . C H ₅	. H ₂ N	1.0002, 16°.3	Rosenstiehl. J. 21, 745.
"				1.003, 20°.2	Three prepara-
"		"		1.003, 20 .2	tions. Beilstein
"				.998, 25°.5	and Kuhlberg.
"			1		Z. C. 12, 523.
"		"			Rüdorff. Ber. 12, 251.
••				.8302, 197°	Ramsay. J. C. S. 35, 463.
16		"		.9986, 20°	Brühl. Bei. 4, 780.
"				1.0038, 15°	Hirsch. Ber. 18,
				,	1511.

AUTHORITY.	SP. GRAVITY.	Α.	FORMU	E.	NAM
	00007 1400 7	u v	C II O II		0.1.1.1.141-
1	.89397, 1420.7_	H2 N	C6 H4. C H3	*******	Orthotoluidin
Taken at differen	.89292, 148°.2		14		"
pressures, eac	.87527, 163°.2.		11		
to. being the boi	.87456, 168°.9_		44		**
ing point at th	.86064 178°.4		16		**
pressure o	.86078		46		44
pressure of served. Ner	.85214 \ 1860.9		**		
beck, Z. P. C.	.85185		44		**
657.	.84453, 198°		44		17
1000	84848 1990		44		4
T 0 N 0	.04020	9.0	**		The second second
Lorenz. C. N. 3 166.	.998, 25°			***	Metatoluidine
1	.88528 1490		11		11
m 1	,88901)		14		
Taken at differen	.86525, 169°	**			
pressures, enc	.86283, 171°		a		
to. being the boi	.85231, 184°		a		,
ing point at th	.85121, 185°	***			**
pressure of	.84369, 1910	+-	14		4.5
served. Ner	.84293, 193°				**
beck. Z. P. C.	.83523 201°.		11	********	11
658.	.80007)		11	******	11
	.83385) 2080				11
Į	.83301)				
	.88313, 143°		"		Paratoluidine
Taken at differen	.88269, 148°.2_				11
pressures, eac	.86131 1680		"		
to, being the boi	.86130		16		16
ing point at th	.85025, 178°.4_		11		**
pressure of	.84858, 181°		a		
served. Ne	.83814 1920.6		**	*******	
beck. Z.P.C.	.83850		14		
658.	.83171 2000		16		44
	.83178		16		n
Hofmann. C. 1	.82995, 201°.5. .9558	2. N	C6 H5. (C H	ne	Dimethylanili
27, 1.			"		
Kern. Ber. 10, 19	.9645, 150	100	11		
Ramsay. J. C. 35, 463.	.7941, 190°				
Brühl. A. C. 1	.9575, 200		44	*******	14
285, 1.	054 180	HN	CHCH		Vibrianilina
Hofmann. J. 2, 39	.983, 220	HN	C ₆ H ₅ . C ₂ H C ₆ H ₄ . C ₂ H	naona 19	Ethylaniline
Beilstein and Kuh berg. A.C.P. 15	1000, 22	H ₂ IV -	C6 H4. C2 H	izene. 1.2	Ethylamidobe
206.	.975, 220		- 44	1.4	
Monnet, Reverdi	.973, 150	HHN	CHCH		Methyltoluidi
and Nölting. Be	10,0,10	2322	0624.023.		mem jironuna.
11, 2278. Wroblevsky. Be	.9942, 200	H, N	C, H, (C H,	4	Xylidine. 1.2
12, 1227.				W-001	11 11
Jacobsen. Ber. 1 160.	1.0755, 17°,5	177		********	
Nölting and Ford Ber. 18, 2671.	.991, 15°		14	*******	11

Name.	Formula.	Sp. Gravity .	AUTHORITY.
Xylidine. 1.3.4	C ₆ H ₃ (C H ₃) ₂ H ₂ N -	.985, 18°.5	Tawildarow. Z. C. 13, 418.
"	"	.9184, 25°	
11 11	"	.86651 .86687 } 159°.5	
"		.84874, 182°	pressures, each
"	"	.88478, 197°	to. being the
"		.82374. 205°	boiling point at
" "		.81688 } 215°.5	the pressure ob-
			Berveu.Iveubeck.
11 11		.81454 .81436 218°	Z. P. C. 1, 662.
" 1.3.5	"	.9935, 0°	Wroblevsky. Ber. 10, 1249.
		.972, 15°	Nölting and Forel. Ber. 18, 2678.
1.4.2	. "	.980, 15°	Nölting and Forel. Ber. 18, 2680.
"		.9867, 19°	Gladstone. Bei. 9, 249.
Dimethyltoluidine. 1.2	1		Hofmann. C. N. 27, 1.
" 1.3		.9868	" "
Propylaniline	C ₆ H ₅ . C ₃ H ₇ H N	.988 .949, 18°	Pictet and Crépieux.
Ethyltoluidine. 1.3	C ₆ H ₄ . C H ₃ . C ₂ H ₅ H N	.869, 20°	Ber. 21, 1106. Wroblevsky. J. C. S. (2), 18, 455.
" " 1.4		.9391, 15°.5	Morley and Abel. J. 4, 497.
CumidinePseudocumidine. 1.3.5.6	C ₆ H ₄ . C ₃ H ₇ . H ₅ N C ₆ H ₂ (C H ₃) ₃ H ₂ N ₋	.8526 .9633	Nicholson. J.1,664. Hofmann. C. N. 27, 1.
Diethylaniline Isobutylaniline	C ₆ H ₅ (C ₂ H ₅) ₂ N C ₆ H ₅ . C ₄ H ₉ . H N	.939, 18° .9262, 15°	Hofmann. J.2,399. Giannetti. Ber. 14, 1759.
		.940, 18°	
Dimethylxylidine	$C_6H_3(CH_3)_2(CH_3)_2N$.9293	Hofmann. C. N. 27, 1.
Tetramethylaniline			Hofmann. Ber. 17,
Isoamylaniline			Ber. 21, 1106.
Diethyltoluidine. 1.4			J. 7, 498.
Dimethylmesidine. 1.3.5.6			Hofmann. C. N. 27, 1.
Methylamylaniline		1	berg. Ber. 14, 622.
Dipropylaniline '' Diisopropylaniline	C ₆ H ₅ (C ₃ H ₇) ₂ N	.9240, 0° } .7267, 245°.4 }	Zander. A. C. P. 214, 181.
Disopropylaniline	C (CH.) (CH.) H.N	.7504, 221°	Ruttan. Ber. 19,
			2384.
Allylaniline	C ₆ H ₅ . C ₈ H ₅ H N	.982, 25°	Schiff. J. 17, 415.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Diallylaniline	C ₆ H ₅ (C ₃ H ₅) ₂ N N H. (C ₅ H ₅)	.9680, 0° } .7667, 244° }	Zander. A.C.P. 214, 181. Schröder. Ber. 12,
"		.8298, 810°	561. Ramsny. J. C. S. 35, 463.
Methyldiphenylamine			Brühl. A. C. P. 285, 1.
Dibenzylamine	N H. (C ₇ H ₇) ₂	1.033, 14°	Limpricht. J. 20, 510.
Amidobenzylamine			Amsel and Hof- mann. Ber. 19, 1288.
Metamidodimethylaniline	C ₈ H ₁₃ N ₂	.995, 25°	Groll. Ber. 19, 200.

4th. The Pyridine Series.

	,		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Pyridine	C ₅ H ₅ N	.9858, 0°	Anderson. J. 10, 397.
"	"	.924, 22° .8617, 117°	
44	"	.9802, 0°	463. Richard. Ber. 13, 198.
"	"	.8823 .8826 115°	Schiff. Ber. 19, 560.
" a Picoline	"	1.0033, 0°	Ladenburg. Ber. 21, 289. Anderson, A. C. P.
a reome-	(.9613, 0°	60, 93. Anderson. J. 10, 397.
"	"	.933, 220	Thenius. J. 14, 502.
	"	.8197, 184	Ramsay. J. C. S. 35, 463.
"	"	.9560, 0°	Richard. Ber. 13, 198.
11	"	.96161, 0° .83258, 123°.5	Thorpe. J. C. S. 37, 371.
	"	.94093, 23°.5	Gladstone. Bei. 9,
"	"	.96559, 0°	Lange. Ber. 18, . 3436.
"	"	.96477, 4°	Dürkopf and Schlaugk. Ber. 20, 1660.
"	"	.9656, 0°	Ladenburg. C. R. 103, 692.
β Picoline		.97712, 0° }	Hesekiel. Ber. 18,
"	"	.94965, 30°	3091.
"	"	.9771, 0°	Ladenburg. C. R. 103, 692.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
γ Picoline	C ₆ H ₇ N	.9708, 0° .9708, 0°	Lange. Ber. 18, 3486. Ladenburg. C. R.
"	"	1	108, 692. Ladenburg. Ber. 21,
a Lutidine	C, H, N	.928	287. Williams. J. 7, 494.
*	"	.9467, 0°	Anderson. J. 10, 397.
"		.945, 220	Thenius. J. 14, 502.
"		.9467,00	Williams. J. 17, 437.
"	"	.7916, 154°	Ramsay. J. C. S. 35, 468.
"	"	.9377, 0°	198.
"	"	.9545, 0°	Ladenburg and Roth. Ber. 18, 52.
<i>α</i> —γ	"	.9503, 0°	Ladenburg and Roth. Ber. 18, 913.
" a—a	"	.9424, 0°	Ladenburg. C. R. 103, 692.
β Lutidine	"	.9555, 00	Williams. J. 17, 437.
"	"	.9593, 0°	Coninck. C. R. 91, 296.
a Ethylpyridine	"	.9495 .9498 } 0° {	Ladenburg. Ber. 20, 1653.
v Vahadamaidina	"	.9522, 0° {	
γ Ethylpyridine	"	.9358, 20° }	Ladenburg. Ber. 18, 2963.
a Collidine	C ₈ H ₁₁ N	.921	Anderson. J. 7, 490.
a Comune	08 H ₁₁ N	.9439, 0°	
"	::	058 999	Anderson. J. 10, 397. Thenius. J. 14, 502.
	"	.958, 22° .948	Wurtz. Ber. 12, 1710.
"	"	.7839, 173°	Ramsay. J. C. S. 35,
		.9291, 0°	463. Richard. Ber. 13, 198.
"	"	.917, 15°	Hantzsch. Ber. 15, 2914.
"	"	.9286, 16°.8	Weidel and Pick. S.W. A. 90, 972.
"	"	.9224, 15°	
β Collidine	"	.9656, 0°	
Aldehyde collidine	"	.9389, 4°	
a Isopropylpyridine	"	.9342, 0°	Ladenburg. C. R. 103, 692.
Y Isopropylpyridine	(1	.9408, 0°	Ladenburg and Schrader. Ber. 17, 1121.
	"	.9439, 0°	Ladenburg. C. R. 103, 692.
γ Propylpyridine	"	.9393, 0°)	,
a Propylpyridine	"	.9411,00	Two lots. Laden-
	"	.9306, 10°	burg. Ber. 17,772.
Parvoline	C ₉ H ₁₈ N	.966, 220	Thenius. J. 14, 502.
"	""	.916, 14°	Engelmann. J.C.S.
		,	50, 259.

Name.	FORMULA.	Sp. Gravitt.	AUTHORITY.
Parvoline		1.92694, 10	Dürkopf and Schlaugk. Ber. 21,882.
Coridine	C ₁₀ H ₁₅ N	.974, 220	Thenius. J. 14, 502.
Viridine	C ₁₁ H ₁₁ N	1.017, 22	" "
Coridine Rubidine Viridine Allyl pyridine	C ₈ H ₉ N	.9595, 0°	Ladenburg. Ber. 19, 2578.
Piperidine. From piperine "Synthetic	C ₅ H ₁₁ N	.8810, 0° }	Ladenburg and Roth. Ber. 17, 518.
"	"	.7791)	Schiff. Ber. 19, 560.
	11	.7801 } 105°	Schiff. Ber. 19, 560.
a Methylpiperidine	C. H., N	.8601.09	Ladenburgand
"	İ	.860, 0°	Roth. Ber. 18, 47. Ladenburg. C. R.
β Methylpiperidine	•4	.8686, 4°	103, 747. Hesekiel. Ber. 18, 910.
		1	Ladenburg, C. R.
a-a Dimethylpiperidine			Ladenburg and Roth, Ber. 18, 54.
a—γ Dimethylpiperidine	!		Ladenburg. C. R. 103, 747.
a Ethylpiperidine γ Ethylpiperidine	ł	1	Ladenburg. Ber. 18, 2968. Ladenburg. Ber. 18,
	1	1	2964.
Methyl-a-ethylpiperidine	,		103, 747.
a Propylpiperidine. Coniin		.89 .878	Geiger. Blyth. J. 2, 388.
	"	.846, 12°.5	Petit. B. S. C. 27, 887.
"	ĺ	.886	Schorm. Ber. 14, 1767.
"	"	.913, 0° } .899, 15°	
"		.842, 90°	Two preparations.
"	"	.886, 0°) [Schiff. A. C. P.
"	11	.873, 15° }	166, 88.
" " <u> </u>	"	1	Ladankung Dag 17
			Ladenburg. Ber. 17, 774.
" "		.875, 0°	772.
		.8626, 0°	2580.
γ Propylpiperidine a Isopropylpiperidine		.8660, 0°	772.
a isopropyipiperidine		.8676, 0°	1676. Ladenburg. C. R.
			103, 747.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl - a γ - isopropylpi- peridine.	1	1	Ladenburg. C. R. 108, 747.
Copellidine	C ₈ H ₁₇ N	.8653, 0° }	Dünkone Dan 10
Methylcopellidine	C ₉ H ₁₉ N	.8519,0° }	11 11
Dimethylcopellidinea Pipecoleine	C ₉ H ₁₉ N	7816, 25°	
a Pipecoleine	C ₆ H ₁₁ N	.8801, 0°	Ladenburg. Ber. 20 1646.
γ Pipecoline	C ₆ H ₁₃ N	.8674, 0°	Ladenburg. Ber. 21, 288.
a Isopropylpiperideine	C ₈ H ₁₅ N	.8956, 0°	Ladenburg. Ber. 20, 1647.
Hydrolutidine. a-7			Ladenburg and
Hydrotropidine " a Coniceine	C ₈ H ₁₅ N	.9366, 0° }	Roth. Ber. 18, 919. Ladenburg. Ber. 16
a Coniceine	"	.893, 15°	1409. Hofmann. Ber. 18,
Parodiconiine	C ₁₆ H ₂₇ N	.915, 15°	10. Schiff. A. C. P. 166, 88.
Quinoline or chinoline	C ₉ H ₇ N	1.081, 10°	Hofmann. A. C. P. 47, 79.
" " ———	"	1.1081, 0°)	·
		1.0947, 20°	Skraup. Ber. 14, 1002.
" "		1.0699, 50°) 1.1055, 0°)	Coninck. J. C. S. 44,
"	"	1.0965, 11°.5	89.
44 44	"		Gladstone. Bei. 9,
"	"	1.096	249.
"	"	.9211, 234°	Schiff. Ber. 19, 560.
Lepidine	C ₁₀ H ₉ N	1.072, 15°	Williams. J. 9, 536.
Orthomethylquinoline	"	1.0852, 0°)	
		1.0734, 20°	Skraup. Ber. 14,
Motomothylauinalina	"	1.0586, 50°) 1.0839, 0°)	1002.
Metamethylquinoline	"	1.0722, 200	Skraup. Ber. 15,
4.	"	1.0576, 50°	2255.
Paramethylquinoline	"	1.0815, 0°)	
· · · · · · · · · · · · · · · · · · ·	**	1.0671, 200	Skraup. Ber. 14,
	٠٠	1.0560, 50°)	1002.
Dimethylquinoline		1.0752, 4°	Berend. Ber. 18, 3165.
" a—γ		,	Beyer. J. P. C. (2), 33, 402.
Metadipyridyl	C ₁₀ H ₈ N ₂	1.1757, 0° }	Skraup and Vort- mann. M. C. 4,
"	"	1.1493, 500	593.
Isodipyridine	C ₁₀ H ₁₀ N ₂	1.08	Ramsay. P. M. (5), 6, 29.
"	"	1.1245, 18°	Cahours and Etard.
Dipicoline	C ₁₂ H ₁₄ N ₂	1.12	Ber. 13, 777. Ramsay. P. M. (5), 6, 31.
"	"	1.077	Anderson.

Name.	FORMULA.	Sp. Gravity.	AUTHORITT.	
Nicotine	!	_[1.027, 15° [Barral. J. 1, 614.	
"	46	. 1.01837, 10°.2́_ . 1.01101, 20° . 1.00373, 30°	Landolt. A.C.P.	
Hydronicotine	C ₁₀ H ₁₆ N ₂	.993, 17°	Etard. C. R. 97,	
Dipiperidyl	C ₁₀ H ₂₀ N ₂	.9561, 4°	Liebrecht. Ber. 19, 2591.	
a Stilbazoline	C ₁₃ H ₁₉ S	.9874, 0°	Baurath. Ber. 21, 818.	
Dihydro-a-stilbazol	C _B H _B N	1.0465, 0°		

5th. Miscellaneous Compounds.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dimethyl hydrazin			Renouf. Ber. 13, 2171.
Ethylene diamine	C ₂ H ₄ (N H ₂) ₂	.902	Rhoussopolos and Meyer. J. C. S. 42, 940.
Propylene diamine	C ₃ H ₆ (N H ₂) ₂	.878, 15°	
Pentamethylene diamine	C ₅ H ₁₀ (N H ₂) ₂	.9174, 0°	Ladenburg. Ber. 18, 2957.
3 Methyltetramethylene diamine.	:6	.8836, 20°	Oldsch. Ber. 20, 1655.
Ethylene cyanide	C ₂ H ₄ (C N) ₂	1.023, 45° .9961, 11°	Simpson. J. 14, 654. Henry. Ber. 18, ref. 330.
Crotonitril		.8389, 12° .8491, 0°) .8351, 15°)	Will and Körner. Rinne and Tollens.
Allyl carbamine	C ₃ H ₅ . C N	.812, 0° }	A. C. P. 159, 105. Lieke. A. C. P. 112, 319.
Allylamine		.7754, 10°.5	Oeser. J. 18, 506.
	44	.7775, 11° .7693, 17°.5 .7684, 19°	Foursamples. Glad- stone. Bei. 9, 249.
Triallylamine	(C ₃ H ₅) ₃ N	.7261, 56°	Schiff. Bei. 9, 559. Zander. A. C. P.
Propylally lamine		.6826, 155°.5 j .7708, 18°	214, 181. Liebermann and Paal. Ber. 16, 523.
Isoamylally lamine	C, H, C, H, H N	.7777, 180	"

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Pyrrol	C ₄ H ₅ N	1.077	Anderson. J. 10, 899.
"	"	.7276, 133°	Ramsay. J. C. S. 85, 463.
41	"	.9752, 12°.5	Weidel and Ciami- cian. Ber. 18, 71.
	"	.9606	Gladstone. Bei. 9, 249.
Methylpyrrol Ethylpyrrol	C ₆ H ₇ N	.9203, 10° .8881, 16° .9042, 10°	Bell. Ber. 10, 1866. Bell. Ber. 9, 936. Bell. Ber. 10, 1862.
Amylpyrrol Pyrrolidin	C ₉ H ₁₅ N	.8786, 10°)	Bell. Ber. 10, 866. Petersen. Ber. 21,
Methylpyrrolidin	C ₅ H ₁₁ N	.871, 10° } .8654, 0°	290. Oldach. Ber. 20, 1155.
Methylphenylpyrazol	C ₁₀ H ₁₀ N ₂	1.085 1.081 } 15° {	Claisen and Stylos. Ber. 21, 1143 and 1147.
Ethylphenylpyrazol	C ₁₁ H ₁₂ N ₂	1.064, 15°	Claisen and Stylos. Ber. 21, 1148.
Propylphenylpyrazol a Glucosine	C ₁₂ H ₁₄ N ₂ C ₆ H ₈ N ₂	1.0485, 15° 1.088, 0°	" Tanret. B. S. C. 44,
β Glucosine			104. " " " Morin. Ber. 21, ref.
Methylglyoxalin	C ₄ H ₆ N ₂	1.0363	188. Wallach and Schulze. Ber. 14,
		1.0359, 23°	424. Goldschmidt. Ber. 14, 1846.
Ethylglyoxalin			Wallach. Ber. 16, 535.
Oxalmethylethylin		1.0051, 11°	Radziszewski. Ber. 16. 487.
Propylglyoxalin			Wallach. Ber. 15, 650.
Oxalethylethylin			Wallach and Strick- er. Ber. 18, 512.
"		.980	Radziszewski. Ber. 16, 487.
OxalethylpropylinOxalpropylethylinOxalpropylpropylin	C ₇ H ₁₂ N ₂	.9813	.i .:
Oxaipropyipropylin	U ₈ H ₁₄ N ₂	.9520	Wallach and Schulze. Ber. 14, 424.
		.951	Radziszewski. Ber. 16, 487.
Amylglyoxalin		.940, 18°	Wullach. Ber. 15,
Oxalethylisoamylin	C ₉ H ₁₆ N ₂	.9291, 199.6	Radziszewski and Szul. Ber. 17, 1291.
Oxalpropylisoamylin	C ₁₀ H ₁₈ N ₂	.9149, 189	11 11 11 11
Oxalpropylisoamylin Oxalisobutylisoamylin Oxalisoamylisoamylin	C ₁₂ H ₂₀ N ₂	.9029, 19°	"
			,

Name.	FORMULA.	Se. Geavery.	AUTHORITY	
Ozaimethyloenanthylin			474	
Oxalethyloenenthylin	Cu.H. Ny	.0210. 167.5	£. £	
Oxaiothyloenanthylin Oxaipropyloenanthylin	CE HC N,	.9162.176	4.	
Benzonitei.	C ₆ .H ₅ . C.N	1.9072.139		
•	A.	1 0096 00	型:: 31. Komp. A.C.P. 96.	
**		1.0064.16	367.	
**			Bameav. J. C. S 55	
		•	468. Ginistone. Bel. H.	
• • • • • • • • • • • • • • • • • • • •			24 0.	
Benzyl evanide, or catoli-	Cq.Hq. C X	1.0155.#	Hadziezewski. Ber 5. 198.	
6 6	1.	1.01±6.18°	Hofmann. Bler. 7	
Phonyipropionitel:	C. H., C N	1.0014.34		
Orthoxylyl cyunide	••	1.0156.22	Ballziezewski ar d Wiepsk. Ber. 1:	
	4.	1 DOMEST ANDRE	127H.	
Meteoryist cynnide		1.00220.000 .00220.000	4. 4	
Paraylyi cyunide	CH CK	715. 145		
Accimiente	C. H. K	1.180	2 0 m	
*	A STATE OF THE STA	1.196	Seimiden. Ben 21.	
**	i.	1.296	BLL.	
**				
*			Ramagy, J C. 5 15.	
Phony, hydrazia	C. H. N	1.091.27	Fischer. A C P	
e. 60	41	1.007. 500.7	Finder A C I'	
Chimaldia .	A 14 90	1 Mish: Wife	286, 296. Xima' Rev 26 2001.	
Chimidit. Pipery' bydruziu	THE W	PERE THE A.	Kultur A.C.P 4411	
			35871	
Dietiry inniline explin			d'insener det al.	
Methyl indich.	C. H. S	1.0707. (#	Lipp. Ber 27.2507	
Mothyl indul			Hr Ton	
Promine	C, H _E ¥	_HKi. PF	Guines, C. 3: 20%.	
"Assertiumne "	C. H. Y. !	.V.1.10°	Nicholson, J. F. M.T.	

XLVIII. COMPOUNDS CONTAINING C, H, N, AND O.

1st. Nitrites and Nitrates of the Paraffin Series.

Name.	Formula.	Sp. GRAVITY.	AUTHORITY.
Methyl nitriteEthyl nitrite	C H ₅ . N O ₂ C ₂ H ₅ . N O ₂	.991 .886, 4°	Strecker. J. 7, 521. Dumas and Boullay. Ann. (2), 87, 19.
	"	.947, 15°	Liebig. A.C. P. 80,
" "	C ₃ H ₇ . N O ₂	.935, 21°	Mohr. J. 7, 561. Brown. J. 9, 575. Cahours. Les Mon- des, 32, 280.
Isopropyl nitrite	44	.856, 0° .844, 24°}	Silva. Z. C. 12, 687.
Isobutyl nitrite	C ₄ H ₉ . N O ₂	.89445, 0° } .8771, 16° } .82568, 50°	Chapman and Smith. J. C. S. 22, 158. Bortoni. Ber. 19, ref.
Amyl nitrite	C ₅ H ₁₁ . N O ₂		98. Rieckher. J. 1, 699. Hilger. Am. Ch. 5, 281. Gladstone. Bei. 9,
Dimethylethylcarbyl ni- trite.	"	.9038, 0°	249. Bertoni. G. C. I. 16, 512.
Octyl nitrite	C ₈ H ₁₇ . N O ₂	.862, 17°	
Methylhexylcarbyl nitrite	6	.881, 0°	
Methyl nitrate			Ann. (2), 58, 39.
Ethyl nitrate			236.
"	"	1.1322, 0° } 1.1123, 15°.5 }	Kopp. A. C. P. 98, 867.
" "	"	1.0948, 17° .9991, 87°	Wittstein. J.18, 470. Ramsay. J. C. S. 35,
" "		1.1067, 25°	463. Gladstone. Bei. 9, 249.
Isopropyl nitrate	C ₃ H ₇ . N O ₃	1.054, 0° 1.036, 19° }	Silva. Z. C. 12, 637.
Isobutyl nitrate	C ₄ H ₁ , N O ₃ C ₄ H ₂ , N O ₃ C ₅ H ₁₁ . N O ₃	1.0384, 0° }	Chapman and Smith. J. C. S. 22, 153.
Amyl nitrate	C ₅ H ₁₁ . N O ₃	.902, 22°	Rieckher. J. 1, 699.
" " ————	"	.994, 10° 1.000, 7°—8° _	Hofmann. J. 1, 699. Chapman and Smith.
"Cetyl nitrate	C ₁₆ H ₃₃ . N O ₃	.8698, 147° .91	J. 20, 550. Schiff. Bei. 9, 559. Champion. C. R. 73, 571.

2d. Nitro-Derivatives of the Paraffin Series.

Name.	Formula.	Sp. Gravity.	Authority.
Nitromethane	C H, N O, C, H, N O,	1.0286, 101°.5_ 1.0582, 18°	Schiff. Bei. 9, 559. Meyer and Stuber. Ann. (4), 28, 138.
"	"	.9829, 114°.5 1.0550, 18°	Schiff. Bei. 9, 559. Gladstone. Bei. 9,
Nitroheptane	C ₇ H ₁₅ N O ₃	.9869, 19°	249. Beilstein and Kur- batow. Ber. 13. 2029.
Dinitroethane Dinitropropane Dinitrobutane	C ₃ H ₄ (N O ₂) ₂ C ₃ H ₆ (N O ₂) ₂ C ₄ H ₈ (N O ₂) ₂	1.8508, 28°.5 1.258, 22°.5 1.205, 15°	Meer. Ber. 8, 1080. Meer. Ber. 8, 1087. Chancel. Ber. 16, 1495.
Dinitrohexane	" " " "	1.1338, 5° 1.1284, 10° 1.1235, 15° 1.1185, 20° 1.1135, 25° 1.1084, 80° 1.1034, 85°	Chancel. C. R. 100, 601.
Nitrocaprylic acid	1	ŀ	975. Wirz. A. C. P. 104,
Ethyl nitrocaprylate			
Nitrosodiethyline Nitrosodipropylamine	C ₆ H ₁₆ N ₂ O	.951, 17°.5 .924, 14° .981, 0°	Geuther. J. 16, 409. Siersch. J. 20, 537. Vincent. Ber. 19, ref. 680.
Derivative of nitroethane.			Götting. A. C. P.
	C ₆ H ₉ N O	.9750, 15° 1.0	Ssokolow. Ber. 19, ref. 540.

3d. Aromatic Nitro-Compounds.

NAME.		FORM	JLA.	SP. GRAVITY.	AUTHORITY.
		C ₆ H ₅ , N O ₂		1.209, 15°	Mitscherlich, P.A.
14	**********	31.		1.2002, 00)	Kopp. A. C. P. 98,
14		н		1.1866, 140.4	367.
64		11		1.2159, 50-100)
**		**		1.2107, 100-150	Regnault. P. A.
44		44		1,2504, 150-200	62, 50.
4.6		11		1.206, 20°	Naumann. Ber. 10, 2015.
**		н		1.0210, 220°	Ramsay. J. C. S. 35, 463.
6.6	- to a contract	11		1.2039, 200	Brühl. Bei. 4, 780.
44		11		1.1740, 25°.5	Schall. Ber. 17.
44		66		1.0851, 116°.2	2555.
4.4		4.6		1.2121, 7°.5	Gladstone. Bei. 9
				1.2.121, 1 .0	249.
44		11		1.07134, 150°.7	
46		10		1.07033, 153°.3	
64	Laurenaue	14		1.06276, 158°.4	Taken at different
44	************	11		1.04807, 173°.2	pressures, each
44		11		1.04477, 186°.6	to. being the
il		14		1.03246, 189°.4	i boiling point at
**		14		1.03059, 189°.4	the pressure ob-
11		11		1.01794, 200°.1	served. Neu-
44		16		1.00846, 207°.8	beck. Z. P. C.
46		4.6		1.00722, 208°.2	
- 11		- 11		1.00713, 208°.2	
Dinitrober	zene	C. H. (N O	2)2	1.3690, 98°.1	Schiff. A. C. P. 223
Nitrotolue	ne	C6 H4. C H3.	NO2	1.18, 16°.5	247. Deville. Ann. (3)
14		44		1.1281, 54°	3, 175. Schiff. A. C. P. 223
46		11			247. Gladstone, Bei. 9
				1,1045, 15 .5	249.
Orthonitre	toluene	44		1.162, 280)	(Beilstein and
14	Moracio appeara	4.6		1.163, 23°.5	Kuhlberg, A.C
		11			P. 155, 17.
				1.159	Leeds. Ber. 14, 483
34		16	****	1.02509 1600	1
14		11		1.02483	Company of the Control of the Contro
44		44	****	.99814, 186°.1	Taken at differen
16		11		.99679, 187°.1	pressures, each
4.4		14	****	.98403 197°.7	to. being the
4.6	1-4-1-4	**	****	.98388)	boiling point a
44	- Designation	11		.97149, 208°.7	the pressure ob-
44				.97087, 209°.2	served. Neu-
44		14		.96192 2180	beck. Z. P. C. 1
11		44	****	.96177 210	655.
44		44		.96063 2190.8	
11		16		.96032	
Metanitro	toluene	- 14		1.168, 220	Beilstein and Kuhl- berg. J. 22, 403.

١

NAME.			FORMULA.			LATITT.	AUTHORITY.	
Metanitrotoluene		. С.Н.	CH ₂ . N	0,	1.0115	3 : 171°	<u> </u>	
4.		` `			1.0112	8 , ***	1	
44			••		.98775	' 194°.1	Taken at different	
"		-	••		.99737	•	preseures, each	
44		;	٠.		.97227		to. being the	
			••		.97189 .95027	1	boiling point at	
46		;			.96008		the pressure ob-	
44					.95099	,	served. Neu-	
46		!			.95084		beck. Z. P. C. 1.	
44			••		अक्स	9970 5	655.	
44		i	4.		.94933	228°.5		
66			6.		.71711	? t	j	
Paranitrotoluene			••		1.0056	8, 1779.5	Taken at different	
44			••			7, 178°.5	pressures, each	
46 46		¦	٠. د.		.(48378	. 7111	to. being the	
46		!	66		.98364		boiling point a	
"		:	66			2130	the presents oh	
"		¦	4.		04591	, 225°	served. Neu-	
"		:	44		.94513	2370.5	beck. Z, P. C. 1	
**		;	44		.94342	2390	655.	
Dinitrotoluene		C, H,	. C H ₂ (2	N O ₂) ₂ .	1.3208	, 70°.5	Schiff. A.C. P. 223	
Nitroörthoxylene		C, H,	(C H ₃) ₂	N 0,	1.139,	20°	247. Jacobsen. Ber. 17	
44			"		1.147,	15°	160. Noelting and Forel	
Nitrometaxylene	. 1,3.2		44				Ber. 18, 2671. Tewildarow. Z. C	
	44		44		1.126.	240 5	13. 418 Beilstein and Kuhl	
						92	berg.	
"	"		44		1.112.	15°	Grevingk. Ber. 17 2430.	
"	1.3.4		"		1.124,	25°	Beilstein and Kuhl berg.	
46	"		**		1.135,	150	Grevingk. Ber. 17 2429.	
46	44		44		9866	, 176°		
	46		64			, 179°.5	` !	
66	44		44		.9805	1820	Taken at differer	
44	66		46		.97.53.	, 186°	pressures. eac	
66	44	l	44		.95631		to. being th	
44	**	;			.9564:	200	boiling point a	
"	44		4.	-	.94078	3. 2180	the pressure of	
46	"	!	44		92964	233°	served. Neu	
44	£ 6	i	**					
"	**	'	44		91794	243°	655.	
• •	44	1	44			, ,	!	
			"		91634 . 1.132,		Noelting and Fore	
Nitrocymene		C ₁₀ E	I _B . N 0,	ı -	1.038	5, 18°	Ber. 18, 2680. Landolph. C. C.	
Dinitrocymene							596	
		1	44		1 201	910	i	
"		·'			1.202	, ,	Schröder. Ber. 1	

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Nitronaphtholene	C ₁₀ H ₇ . N O ₂	1.2226, 61°.5	Schiff. A. C. P. 223, 247.
Orthonitrophenol	"	1.448 } 4° { 1.451 } 4° { 1.2945, 45°.2	Schröder. Ber. 12, 561. Schiff. A. C. P. 223,
Paranitrophenol	и и и	1.467 1.469 1.2809, 114°	247. Schröder. Ber. 12, 561. Schiff. A. C. P. 228,
Trinitrophenol, or picric acid.	, , ,	1.818	247. Rüdorff. Ber. 12, 251. Schröder. Ber. 12,
Methyl orthonitrophenate	C ₆ H ₄ . O C H ₃ . N O ₂ -	1.777 } * \ 1.268, 20°	561. Post and Mehrtens. Ber. 8, 1552.
Methyl paranitrophenate _ Methyl a dinitrophenate _ Methyl ß dinitrophenate _ Methyl trinitrophenate _ Orthonitrobenzoic acid	C_6H_3 . OCH_3 . $(NO_2)_2$ C_6H_3 . OCH_3 . $(NO_3)_3$	1.233, 20° 1.341, 20° 1.819, 20° 1.408, 20° 1.5588	Post and Frerichs.
" " " " Metanitrobenzoic acid		1.574 } 4° { 1.576 } 1.4721	Ber. 8, 1549. Schröder. Ber. 12, 1611. Post and Frerichs. Ber. 8, 1549.
" " Paranitrobenzoic acid	" "	1.492 1.496 1.5804	Schröder. Ber. 12, 1611. Post and Frerichs. Ber. 8, 1549.
NitroanisolOrthonitroisobutylanisol _ Paranitroisobutylanisol _ Metanitraniline	" "	1.249, 26° 1.1046, 20° 1.1361, 20° 1.430, 4°	Brunck. J. 20, 619. Riess. Z. C. 14, 89. Schröder. Ber. 12,
Paranitraniline		1.415 1.433 } 4°	561.

4th. Miscellaneous Mitrates, Mitrites, and Mitro-Compounds.

NAME.	FORMULA.	SP. GRAVITT.	ACTHORITY.
Aliyl nitrite	C' H' Z O'	\$4\$.0°	Bertoni. G. C. I. 15
Allyl nitrate	C' H' Z O'	. 1.09. 10°	
Ethylene nitrosonitrate Ethylene mozonitrate	C, H, NO, NO, C, C, H, O H, NO,	. 1.472 . 1.31, 11°	Kekulé. Ber. 2, 329 Henry. Ann. 4, 27
Ethylene dinitrete	C, H ₄ (N O ₁₂	1.4837, 85	243.
·		. 1.48	Champion. Z. C. 14 470.
Propriese distinie	C ₃ H ₆ 'N O ₂ ' ₂	. 1.144.0°	Bertoni. G. C. I. 16 512.
Propriese dizitate	C ₂ H ₆ 'N O _{3 2}	_ 1. 33 5. 5°	
Returbes appropriesase	C.H., C.H.O., NO.	1.29, 189	•• ••
Ethylese acesonitrate Riyeeryl trinitrite	С, Н, ХО,	1.291. 159.5	Masson. Ber. 16 1699.
Nitrolaetic acid	C2 H2 Z O2	1.35, 12°.8	Henry. Ann. (4), 28
Ethyl nitroglycollate	C. H. N O.	1.2112 150.2	
Chr. situalectate	C. H. N O.	1.1534.139	••
Ethri nitronactate Linyi nitromalonate	C, H ₁₁ N O ₅	1.149, 15°	Conrad and Bischoff Ber. 13, 599.
Ethyl nitrotartronate	C' H" Z O'	1.2778, 16°	Henry. Ann. (428
Ethyl nitromalate	С. Н., У О.	1.2094, 16°	
Nitroglycerine	C, H, N, O,		
		. 1.600 · ^{15*}	De Vrij. J. 8, 626
"	·	1.5958	Liebe. J. 13, 453.
"	••	. 1.60	Sobrero, J. 13, 453
"		1.60	Champion. Z. C. 14 350.
		. 1.6. 15°	Kern. C. N. 31, 153
"		1.735, s	Beckerhinns. J. R
"		. 1.599, 1	C. 4. 148.
"			Hay and Masson J. C. S. 48, 742.
Nitromannite	C. H. N. O.	. 1.604.0°, cryst.	()
44		. 1.446)	1 1
44	••	1.503 · fused	Sokoloff. Ber. 12
	i	1.537	1 000.
Trinitrolactose	C ₁₂ H ₁₉ N ₃ O ₁₇	. 1.479.0°	Gé. Ber. 15, 2239.
Pentanitrolactose	C _n H _n N _s O _n	. 1.684.09	••
Pentanitrolactose	C" H" Z,O"	1.3487, 18°	Colley. B. S. C. 19 406.
Acetoethyl nitrate	C. H., N. O.	. 1.0451. 19°	Nadler. J. 13, 403
			Moriya. J. C. S. 39

5th. Miscellaneous Amido-Compounds.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Ethylhydroxylamine Lethylenediemine hydrate	N H. O H. C ₂ H ₅ (N H ₂) ₂ C ₂ H ₄ . H ₂ O	.8827, 7°.5 .970, 15°	Gürke. Ber. 14, 25%. Rhoussopolos and Meyer. J. C. S. 42, 940.
Oxypropylpropylamine	NH.C ₃ H ₇ .C ₃ H ₆ OH	.9018, 18°	
Oxyisoamylamine	N H ₂ . C ₅ H ₁₁ O	.9265, 14°	
Dioxyisoamylamine Trioxyamylamine	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.9500, 14° .879, 22°	J. Erdmann. J. 17,
Formamide	N H ₂ . C O H	1.1462, 19°	
Methylformamide	· -	l	Linnemann. J. 22, 601.
Ethylformamide			602.
Diethylformamide Acetamide	N (C ₂ H ₅) ₂ . C O H N H ₅ . C ₅ H ₅ O	.908, 19°	" "
" "	"	1.13 } 140	Mendius. B. D. Z. Schröder. Ber. 12, 561.
EthylacetamideEthyldiacetamide	$\begin{array}{c} \mathbf{N} \ \mathbf{H}. \ \mathbf{C_2} \ \mathbf{H_5}. \ \mathbf{C_2} \ \mathbf{H_3} \ \mathbf{O}_{-} \\ \mathbf{N}. \ \mathbf{C_2} \ \mathbf{H_5}. \ (\mathbf{C_2} \ \mathbf{H_3} \ \mathbf{O})_{2^{-}} \end{array}$.942, 4°.5 1.0092, 20°	Wurtz. J. 7, 566. Wurtz. Ann. (2), 42, 55.
Dimethylacetamide	N (C H ₃) ₂ . C ₂ H ₃ O -	.9405, 20°	Franchimont. R. T. C. 2, 329.
Diethylacetamide	,		Wallach and Ka- mensky. A. C. P. 214, 235.
Propionamide	N H ₂ . C ₃ H ₅ O	1.030 } 4° {	Schröder. Ber. 12, 561.
Amidoacetic acid, or gly- cocoll.	C ₂ H ₅ N O ₂	1.1607	Curtius. B. S. C. 39, 169.
Ethyl diethylglycocollate_			Kraut. J. R. C. 4, 198.
Amidocaproic acid, or leu- cine.	C ₆ H ₁₃ N O ₂	1.293, 18°	Engel and Vilmain. B. S. C. 24, 279.
	"	1.282	Lippmann. Ber. 17, 2837.
"	C ₂ H ₄ N ₂ O ₄	1.667)	Schröder. Ber. 12, 561.
Dimethyloxamide	C ₄ H ₈ N ₂ O ₂	$\left\{ egin{array}{ll} 1.281 \ 1.307 \end{array} ight\} m{4^{\circ}}_{} \left\{ ight.$	Schröder. Ber. 12, 1611.
Diethyloxamide	C ₆ H ₁₂ N ₂ O ₂	1.164 } 4°	
Asparagine	"	1.519, 14° 1.552	Watts' Dictionary. Rüdorff. Ber. 12, 252.
Amidosuccinic, or aspartic neid. "	C ₄ H ₇ N O ₄	1.6613, active- 1.6632, inactive	Pasteur. J. 4,889.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
Allylsuccinimide	C ₇ H ₉ N O ₂	1.1543, 0° 1.1432, 12° 1.1112, 50° 1.0677, 100° 1.014, 30°	Moiné. J. C. S. 52, 489. Duisberg. Ber. 15,
Ethylamidopropiopropionate. Mucamide	C ₈ H ₁₅ N O ₂	.9774, 15°	1386. Israel. A. C. P. 231, 197. Malaguti. C. R. 22,
Benzamide	N H ₂ . C ₇ H ₅ O N H ₂ . C ₇ H ₅ O ₂	1.338 } 4° { 1.506 } 40	854. Schröder. Ber. 12, 1611.
Amidomethylphenol Dimethylanisidine	C ₇ H ₉ N O	1.515 } 4 1.108, 26° 1.016, 23°	" " Brunck. J. 20, 620. Mühlhäuser. A. C. P. 207, 249.
Ethyl orthoamidophenetol Methylformanilide	C ₈ H ₉ N O	1.097, 18°	Förster. J. P. C. (2), 21, 847. Pictetend Crépieux. Ber. 21, 1106.
Ethylformanilide Propylformanilide Samylformanilide Acetanilide Acetanilide	C ₉ H ₁₁ N O	1.063, 16° 1.044, 16° 1.004, 16° 1.099, 10°.5 1.205 }	Williams. J. 17, 424. Schröder. Ber. 12,
Benzanilide	C ₁₃ H ₁₁ N O	1.205 4° { 1.216 4° { 1.306 4° 1.321 4° 1.11,0°	1611. " " Demole. J. C. S. (2),
a Ethylbenzhydroxamic acid. β Ethylbenzhydroxamic	C ₉ H ₁₁ N O ₂	1.209	12, 77. Gürke. Ber. 14, 258. Gürke. Ber. 14, 259.
acid. Ethyl ethylbenzhydroxamate. Ethyl a dibenzhydroxamate.	C ₁₁ H ₁₅ N O ₂	1.0258, 17°	Gürke. Ber. 14, 257. Gürke. Ber. 14, 258.
mate. Ethyl β dibenzhydroxamute. Tyrosine	C, H ₁₁ NO,	1.2395, 18°.4	" " Siber. Ber. 17, 2837.
Cerbamide, or urea	CH, N, O	1.85 1.30, 12° 1.35 1.323 1.333 } 4° {	Proust. Bödeker. B. D. Z. Schabus. Schröder. Ber. 12, 561.
Ethyl carbamide	C ₅ H ₈ N ₂ O	1.209 } 1.213, 18° } 1.040 } 1.043 }	Two samples. Leuckart. J. P. C. (2), 21, 11. Schröder. Ber. 13, 1070.
Benzyl phenyl cerbamide. Ethyl carbamate, or ure-thane.	C ₁₄ H ₁₆ N ₂ O	.9168, 18°	Gladstone. Bei. 9, 249. Wurtz. J. 7, 565.

6th. Miscellaneous Cyanogen Compounds.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ethyl cyanate Tertiary butyl cyanate	C ₂ H ₅ . C N O C ₄ H ₉ . C N O	1.1271, 15° .8676, 0°	Cloëz. J. 10, 886. Brauner. Ber. 12, 1875.
Cyanaldehyde	C ₂ H ₃ O C N	.881, 15°	
Ethyl cyanformate	C ₄ H ₅ N O ₂	1.0189, 18°.5	Henry. C. R. 102, 768.
Ethyl cyanacetate Diisobutyryl dicyanide	C ₅ H ₇ N O ₂ C ₁₀ H ₁₄ N ₂ O ₂	1.0664, 18°.5 .96	" Moritz. J. C. S. 40,
Ethylene cyanhydrin			13. Erlenmeyer. A. C. P. 191, 276.
Ethyl acetylcyanacetate	C ₇ H ₉ N O ₈	1.102, 19°	Haller and Held. Ber. 15, 2368.
Ethyl methylacetylcyan- acetate.	C ₈ H ₁₁ N O ₃	.996, 2 0°	Held. B. S. C. 41, 880.
Ethyl ethylacetylcyanac- etate.	C ₉ H ₁₃ N O ₃	.976, 20°	" "
Ethoxyacetonitril	C ₄ H ₇ N O	.918, 6°	Henry. B. S. C. 20,
"	"	.9098, 20°	Norton and Tscher- niak.
Phenoxyacetonitril	C ₈ H ₇ N O	1.09, 17°.5	Fritzsche. Ber. 12, 2178.
Mandelic nitril	"	1.124	Völckel. P. A. 62, 444.
Hydroxisovaleronitril	C ₅ H ₉ N O	.95612, 0°	Lipp. A. C. P. 205,
Hydroxycaprylonitril	C ₈ H ₁₅ N O	.9048, 17°	Erlenmeyer and Sigel. A. C. P. 177, 107.
Triethoxyacetonitril	C ₈ H ₁₅ N O ₃	1.0030, 15°.5	Bauer. A. C. P. 229, 163.
Valeracetonitril	C ₁₃ H ₂₄ N ₂ O ₃	.79	
Acetoxyacetonitril	C ₄ H ₅ N O ₂	1.1003, 13°.5	Henry. C. R. 102,
Acetoxypropionitril Cyanöil	C ₅ H ₇ N O ₂ C ₆ H ₁₁ N O	1.077, 13°.5 1.009	"

7th. Miscellaneous Compounds.

NAME.	Formula.	Sp. GRAVITY.	AUTHORITY.
Ethyl carbimide	C ₃ H ₅ N O C ₇ H ₅ N O	.8981 1.092, 50°	Wurtz. J. 7, 564. Hofmann. P. R. S. 19, 108.
Ethylmethyl acetoxim Trimethylene diethylalkin Tetrethylallylalkin Methylphenylethylalkin _ Piperpropylalkin Hydroxypicoline	C ₄ H ₉ N O	.9195, 24° .9199, 4° .9002, 4° 1.08065, 0° .9456, 0° 1.008, 13°	Janny. Ber. 15, 2779. Berend. Ber. 17, 510. "Laun. Ber. 17, 676. Laun. Ber. 17, 680. Etard. J. C. S. 40,
Collidine monocarbonic ether.	C ₁₁ H ₁₅ N O ₂	1.0315, 15°	1046. R. Michael. A. C. P. 225, 121.
Collidine dicarbonic ether	C ₁₄ H ₁₉ N O ₄	1.087, 15°	Hantzsch. Ber. 15, 2913.
Nitroxylpiperidine	C ₅ H ₁₀ N ₂ O	1.0659, 15°.5	Wertheim. J. 16, 440.
Acetpiperidid	C ₇ H ₁₈ N O	1.01106, 9°	Wallach and Ka- mensky. A. C. P. 214, 238.
Acetylcopellidine	C H N O	.9787, 0° } .9660, 21° }	Dürkopf. Ber. 18, 924.
Parachinanisol	C ₁₀ H ₉ N O	1.1665, 0° }	Skraup. Ber. 18,
Base from ethylamine camphorate.	C ₁₄ H ₂₄ N ₂ O	1.1402, 50°) 1.0177, 15°	ref. 631. Wallach and Kamensky. A. C. P.
Uric acid	C ₅ H ₄ N ₄ O ₈	1.855 }	214, 245. Schröder. Ber. 13, 1070.
Hippuric acidEthyl hippurate	C ₄₁ H ₁₃ N O ₃	1.893 \	Schabus. J. 3, 410. Stenhouse. A. C. P. 81, 148.
Ethyl glycocholete	C ₂₈ H ₄₇ N O ₆	.901	Springer. A. C. J. 1, 181.
Indigotine	C ₁₆ H ₁₀ N ₂ O ₂	1.85	Weltzien's "Zu- sammenstellung."
Creatine hydrate	C ₄ H ₉ N ₃ O ₂ . H ₂ O	1.34 }	Watts' Dictionary.
CaffeinePiperine	C ₈ H ₁₀ N ₄ O ₂ . H ₂ O C ₁₇ H ₁₉ N O ₃	1.23, 19° 1.1931, 18°	Pfaff. Watts' Dict. Wackenroder. Watts' Dict.
Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	1.359, 18° 1.13	F. W. Clarke. Blunt. J. C. S. 50, 1047.
Morphine	C ₁₇ H ₁₉ N O ₃ . H ₂ O	1 326	Schröder. Ber. 13, 1070.
Morphine butyrate	C ₂₁ H ₂₇ N O ₅	1.215, 13°	Decharme. J. 16, 445.
Morphine oxalate Morphine lactate Codeine		1.286, 15° 1.3574 1.300 1.311 1.828	" " " " " " " " " " " " " " " " " " "

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Thebaine	C ₁₉ H ₂₁ N O ₃	1.282	Schröder. Ber. 18, 1070.
Laudanine	C ₂₀ H ₂₅ N O ₄	1.255) 1.256 } 1.808)	
Cryptopine	C ₂₁ H ₂₃ N O ₅	1.317 } 1.387 } 1.351 1.374)	
Narcotine	C ₂₂ H ₂₃ N O ₇	1.891 }	" "
Pelletierine Paraffinic acid	C ₁₃ H ₂₆ N O ₅	.988, 0° 1.14, 15°	Tanret. Ber. 18, 1081. Champion and Pel-
	15 26 -5		let. B.S.C. 18, 247.

XLIX. CHLORIDES, BROMIDES, AND IODIDES OF CARBON.

N.	AME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Carbon tetra	chloride	C Cl4	1.599	Regnault. Ann. (2), 71, 383.
44	"	"	1.56	Kolbe. A. C. P. 54, 146.
"	"	"	1.62983, 0°	Pierre. Ann. (8), 33, 210.
"	"	"	1.567, 12° 1.5947, 20°	Riche. Haagen, P.A. 131,
66	"	"		117. Ramsay. J. C. S. 35,
"	"		boiling p't.	468. Thorpe. J. C. S.
66 66	"	"		Schiff. G. C. I. 18,
	"	"		177. Perkin. J. P. C. (2),
Tetrachloret		C ₂ Cl ₄	1.58873, 25° ∫ 1.619, 20°	32, 528. Regnault. Ann. (2), 71, 353.
66		44	1.6490, 0°	Pierre. Ann. (3), 33, 230.
"			1.612, 10°	Geuther. A. C. P. 107, 212.
"		"	1.6595, 0°	Bourgoin. Ber. 8, 548.
"		"	1.6190, 20° 1.6312, 9°.4	Brühl. Bei. 4, 780.
"		"	$\left[\begin{array}{c} 1.4434 \\ 1.4489 \end{array} \right] \ 120^{\circ}$	Schiff. G. C. I. 13, 177.
Hexchloreth	ane	C ₂ Cl ₆	1.619	Regnault. Ann. (2), 71, 874.
"		"	2.011	Schröder. Ber. 13, 1070.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Осюльногргорине	C. Cl	1.860	Cahours. J. 3, 496.
Hear motobenzene	C.C.		Jungfleisch. J. 20,
		1.437, 817	36.
			M. 226°. B. 326°.
			Jungfleisch. J. 21,
		1 4894 3060 1	354.
Thomas bonyl chloride	.080	1.46	Kolbe. A. C. P. 45.
International control of the control		1.37	41
	••	1.5498.0°)	•••
			Claesson. Lund
			Arsskrift 1884-'5.
			Billeter and Strohl.
		1.00000.19	Ber. 21, 102.
Carton tetrabromide	C Re	9.40 140	Roles and Groves
Carion tenantomide		U.X 17	J. C. S. 24, 780.
Carton sulphobromide	C & R.	9 96 155	Holl and Hansh
Carion surphotromide	C & D:4	00. 10.	Ber. 16, 1148.
Decree to all management	O (2) R-	o nee ne	Der. 10, 1146.
Bromo-trichlormethane	C Cig Direction	2.036.0° 111 / 2.017. 19°.5	Potente I D C (9)
			Paterno. J.P.C. (2), 5. 99.
-		1.842.100° 1	
		2.05496.0°	Thorpe. J. C. S. 37.
• •		1.82446.1049.07	
Dibrom-tetrachlorethane.	Cy Cly Dry	2.0, 21	Malaguti. Ann. (3),
Table Control on the	43 43 Da	1.074	16, 24.
Dibrom-hexchlorpropane.	CaCla Dr.	1.9/4	Cahours.
Carlon tetrodide	· C 4	4.52. 24 ¹⁰ .2	Gustavson. C.R. 78,

L. COMPOUNDS CONTAINING C. CL. AND O.

NAME.	FORMULA.	St. Gravity.	AUTHORITY.
Carbonyl chloride	C O C)	1.4:2.00	Emmerling and
Trichloracetyl chloride	C ₂ Cl ₄ O	1.600, 180	(13, 189. Malaguti. Ann. (3), 16, 9.
		1.44517, 1189	Thorpe. J. C. S.
Trichloracetic anhydride - Tetrachlormethyl formate	_		Ch. (b), 8, 417
Hexchlorethyl formate			(2), 36, 99,
Hexchlormethyl acetate			299. Cloez. Ann. (3), 17.
Perchlorethyl acetate	C4 Ol8 O2	1.79, 25°	312. Léblanc. Ann. (3)
	11	1.78, 220	Léblanc. Ann. (8).

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Hexchlormethyl oxide	C ₂ Cl ₆ O	1.594	Regnault. Ann. (2), 71, 408.	
Perchlorethyl oxide	C ₄ Cl ₁₀ O	1.9, 14°.5	Malaguti. Ann. (8), 16, 14.	
Hexchloracetone	C ₃ Cl ₆ O	1.75, 10° 1.744, 12°	Plantamour. Cloëz. Ann. (6), 9,	
Chloroxethose	C ₄ Cl ₆ O	1.654, 21°	145. Malaguti. Ann. (8),	
Derivative of sodium cit-	C ₅ Cl ₁₀ O ₂	1.66	16, 20. Watts' Dictionary.	
rate. By action of P Cl ₅ on succinyl chloride.	C ₄ Cl ₆ O	1.684	Kauder. J. P. C. (2), 28, 191.	

LI. COMPOUNDS CONTAINING C, H, AND CL.

1st. Chlorides of the Paraffin Series.

	NAME.	Formula.	Sp. Gravity.	li ·	
Methyl	chloride	C H ₃ Cl	.95231, 0°		
66 66	"	"		chanal. Bei. 3, 382.	
Ethyl cl	hloride	C ₂ H ₅ Cl	.92138, 0°	Thénard. Pierre. C. R. 27,213. Darling. J. 21, 328.	
"	"	"	.8510, 12°	160, 195. Ramsay. J. C. S. 35, 463.	
"	chløride	C ₃ H ₇ Cl	91708, 25° } 9156, 0° }	Perkin. J. P. C. (2), 31, 481. Pierre and Puchot.	
 	"	"	1	Ann. (4), 22, 281. Linnemann. A.C.P. 161, 38 and 39.	
"	"	"	.8877. 14° .9123, 0° }	De Heen. Bei. 5, 105. Zander. A.C.P. 214, 181.	
"	"	"	.8561, 46°	Schiff. G. C. I. 13, 177. Brühl. Bei. 4, 778.	
" Isoprop	"yl chloride	(t	89296, 15° } 88125, 25° } 874, 10°	Perkin. J. P. C. (2), 81, 481. Linnemann.	
"	"	"	.8722, 14°	Linnemann. A. C. P. 161, 18.	

NAME.		Fe	RMULA.	Sp. Gravity.	AUTHORITY.	
Laopropy		ride	C, H, (21	.8825, 0° }	Zander. A.C.P. 214,
		· ·			.8326, 36°.5	181.
			"		.86884, 15° .85750, 25°	Perkin. J. P. C. (2), 31, 481.
Butyl c	.	e	C, H, (21	.880	Gerhard. J. 15, 409.
	: 4		"		.9074, 00)	Lieben and Rossi.
"	**		44		.8874, 20° }	A. C. P. 158, 137.
**	"		**		.8972, 14°	Linnemann. Ann.
44	"		"		.8094, bp	(4), 27, 268. Ramsay. J. C. S.
44	"	•			.8794, 140	35, 463. De Heen. Bei. 5, 105.
		ide	66		.8953, 0°)	Defices. Del. 5, 105.
16	"		66		.8651, 27°.8	Pierre and Puchot.
+6	**				.8281, 59°)	Ann. (4), 22, 310.
"	"		"		·8798, 15°	Linnemann. A. C. P. 162, 1.
"	**		**		.8626, 19°	Gladstone. Bei. 9, 249.
"	44		"		·8073, 68°	Schiff. Bei. 9, 559.
"	"				.88356, 15°	Perkin. J. P. C.
		yl chloride.	"		87393, 25°) .8658, 0°	(2), 31, 481. Puchot. Ann. (5), 28, 549.
					.84712, 150	Perkin. J. P. C.
	44				.83683, 25°	(2), 31, 481.
Normal	penty	l chloride	C, H,	C1	.9013, 0°	(-),,
4.6	•	••	1 66		.8834, 20°	Lieben and Rossi.
"	"	"	"		8680, 40°)	A. C. P. 159, 70.
		"			.8732, 20°	Lachowicz. A. C. P. 220, 191.
Amylc	hioma	e			.8859, 0° .8625, 25°.1	Kopp. A. C. P. 95, 807.
"	"				.89584, 0°	
			1		1	(Two products.
44	"		"		-\ .8750 \ 20°	- Schorlemmer. J.
••	••		• ••		8777 } 20	19, 527.
44	"		"		.7801, bp	35, 463.
4.6	"		. "		8716, 14°	De Heen. Bei. 5, 105.
"	"				.8703, 20°	220, 190.
, "	"		- "		7903, 99°.5	
"	"		- ""		88006, 15° 87164, 25°	Perkin. J. P. C.
"	"	Active	"		886) (2), 31, 481. Le Bel. B. S. C. 25,
"	"	Inactive	"		.8928, 0°	54 6.
			1			1437.
Methel	lpropy	lcarbyl chlo-			.912, 0°	Wagnerand Saytz-
ride.	·P. opj	"	"		.891, 21°	eff. A. C. P. 179
		l ablavide			1	' (321.
Dietny		l chloride	- "		.916, 0° .895, 21° }	" "
Dimeth	hvleth	ylcarbyl chlo	- "		883, 0°	Wurtz. J. 16, 516.
ride.		"،			1	(Wischnegrads ky
	"	"	"		.889, 0° .870, 19°	A.C.P. 190, 884-

	<u> </u>	1	
NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Dimethylethylcarbyl chlo-	C ₅ H ₁₁ Cl	.87086, 15° }	Perkin. J. P. C. (2),
ride. " " Hexyl chloride	C ₆ H ₁₈ Cl	.86219, 25°) .892, 16°	31,481. Pelouze and Ca-
	1	.892, 28°	
		.895, 13°	21, 336. Cahours and Demar-
Secondary hexyl chloride.	"	.871, 24°	çay. C. R. 80, 1570. Domac. Ber. 14, 1712.
Chloride from tetrame-	"	.8943, 14°)	
thylethane. "	"	.8874, 220 }	Schorlemmer. J. 20,
		.8759, 84°) .8966, 0° }	567.
Dimethylisopropylcarby l	"	.8966, 0	Pawlow. A. C. P.
chloride. "		.8784, 19° }	196, 122.
Pinacolyl chloride	"	.8991, 0°	Friedel and Silva. J. C. S. (2), 11, 488.
Hantul ablavida	C H Cl	0092 159	
Heptyl chloride	C ₇ H ₁₅ C1	.890, 20°	Petersen. J. 14, 618. Pelouze and Ca- hours. J. 15, 886.
	"	.8737, 18°.5	Two preparations.
"	"	.8725, 20° }	Schorlemmer. A.
	"	.8965, 19°	C. P. 186, 257.
	"	.891, 19°	Schorlemmer.
"	"		Cross. J. C. S. 82,
Isoheptyl chloride	"	.8814, 16°.5	120.
"	"		Schorlemmer. A.C.
"	"	.8757, 22°)	P. 136, 257.
Octyl chloride	C ₈ H ₁₇ Cl	.892, 18°	Schorlemmer. J.15, 386.
" "	"	.895, 16°	Pelouze and Ca- hours. J. 16, 528.
"	" *	.8802, 16°	
"	"	.850	Cahours and Demar- cay. C. R. 80, 1571.
" "	"	.87857, 15°)	Perkin. J. P. C.
"	"	.87192, 25°	(2), 31, 481.
Isooctyl chloride	"	.8834, 10°.5	Schorlemmer. J. 20,
" " ————	"	.8617, 86° }	567.
Methylhexylcarbyl chlo-	"	.87075, 15°	Perkin. J. P. C.
ride. '' ''	"	.86388, 25°	(2), 81, 481.
Nonyl chloride. B. 196°	C ₉ H ₁₉ Cl	.899, 16°	Pelouze and Ca- hours. J. 16, 529.
" "	44	.896 2 , 14°	Thorpe and Young. A. C. P. 165, 1.
" B. 182°	"	.911, 28° }	Lemoine. B. S. C. 41, 161.
Decatyl chloride	C ₁₀ H ₂ , Cl	.908, 19°	ui u
Decatyl chloride	C ₁₂ H ₂₅ Cl	.933, 22°	Pelouze and Ca-
Cetyl chloride		.8412, 12°	hours. J.16,530. Tüttscheff. J. 18, 406.

2d. Chlorides of the Series C, H, Cl,

2	SAME		P	ORMULA.	SP. GRAVITT.	Аттновит.
lethylene	chlorid	 Je	С Н, С	ī,	L344. 15°	Regnault Ann. 2
••	4.					Butlerow. J. 22. 34
			44		1.577765.00 _	Thorpe. J. C.
			1.			37. 371.
			**		1.23771.152	Perkin J P C
	خد		1.		. 1.52197. 2 5° j	. 32. 32 3 .
lthylene e	chloride		C, H, (Zi ₂	. 1.256, 125	. Regnault. Ann. 2
44	44		4.		1 947 169	58, 307. Liebig. A.C.P. 214
4.	4.		**			- Liebig. A.C.P. 214
4.	11		44			
••					•	Haagen. P. A. 101 117.
**	"		4.		_ 1.26, 149	. Maumené. J. 22, 34
6.	"		. 41		. 1.272, 14°	Gladstoneand Trice
u	u		• ••		•	C. N. 29, 212 Ramsay, J. C. S. 3
	_				•	453.
64	66		**		_ 1.28082.0°	- Thorpe. J. C.S. 3:
44	64		- 44		1.15635, 83°.5	37 i.
66	44		1 44		1.2521, 20°	- Brühl. A.C.I
44	"		. 4:		. 1.1576, 8 3°.2 .	203, 1. - Schiff, Ber. 15, 297;
44	46		11		_ 1.2656, 9°.8	Schiff. G. C. I. 1:
64	44				_ 1.1576. 83°.3	177.
"	**		4.			177. - Gladstone. Bei. : 249.
44	66				_ 1.25991, 15°	Perkin. J. P. C. (2
4.	44		64		1.24800, 25°	3-2 5-23
44	44		. 44		_ 1.25014, 20° _	32, 523. Weegmann. Z. P. 0
?eh-lidan	a ahla ri	de	:		•	2, 218. - Begnault, Ann. (2
-		UC	i		1	71, 357.
44	**				1.24074, 0°	- Pierre. C. R. 27, 21
**	**		. 44		1.189, 4°.3	- Genther. J. 11. 28
44	**		. 4-		1.198, 6°.5	Darling. J. 21. 32
"	"		. 44		1.201, 13°	- Gladstone and Trib
"	44		44		1 1743 200	C. N. 29, 212. Brūhl. A. C. 1
					1	203. 1.
44	**		**		1.1070, 56°	Ramsay, J. C. S. 3
46	**				1.20394, 0°	- Two sample
41	"		"		1.10923, 59°.9	Thorpe. J.C.
44	66		4:		1.2049, 00	
44	46		4.		1.1895, 9°.8	-!)
46	64		111		_ 1.11425, 56°.7	Schiff. G. C. I. 1
"	66		61		1.11555, 56°.5	177.
"	**		٠.		1.18450, 15°	
66			"		1.17120, 25°	
46	41		"		1.17503, 20°	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Propylene chloride	C ₃ H ₆ Cl ₂	1.1656, 14°	Linnemann. A. C. P. 161, 18.
66 66 66 66 66 66	(4 	1.155, 25° } 1.182, 0° } 1.158, 25° }	Friedel and Silva. Z. C. 14, 489.
Trimethylene chloride	"	1.0470, 97°.5 1.201, 15°	Schiff. Bei. 9, 559. Reboul. J. C. S. 86, 127.
" "	"	1.1896, 17°.6	
Dimethylmethylene chlo- ride. Methylchloracetol.	"	1.117, 0°	Friedel.
"	"	1.06, 16°	Linnemann. A. C. P. 138, 125.
" "	"	1.0827, 16°	
" "		1.1058, 0° } 1.0744, 25° }]
" " <u></u>	"	1.0744, 25° 1.1125, 0° }	Friedel and Silva. Z. C. 14, 489.
" "		1.09620 \ 150	
" " <u> </u>	"	1.08430 } 25°	Perkin. J. P. C. (2), 82, 528.
Propylidene chloride	i	1.143, 100	Reboul. C. R. 82, 878.
Isobutylene chloride		1.112, 18° 1.0953, 0° } 1.0751, 20°.7 }	Kolbe. J. 2, 338. Kopp. A. C. P. 95, 807.
Isobutylidene chloride	"	1.0111, 12°	Oeconomides. Ber.
Amylene chloride	C ₅ H ₁₀ Cl ₂	1.058, 9°	Guthrie. J. 14, 665. Bauer. J. 19, 531.
Isoamylidene chloride	"	1.05, 24°	Ebersbach. J. 11, 297.
Chloramyl chloride Hexylene chloride. B. 180°	C ₆ H ₁₂ Cl ₂	†	Buff. J. 21, 833. Pelouze and Ca- hours. J. 16, 525.
Heptylene chloride	C ₇ H ₁₄ Cl ₂	1.0527, 11° 1.0295, 10°	Henry. C. R. 97, 260. Husemann. B. D. Z.

3d. Miscellaneous Non-Aromatic Chlorides.

Name.		Fo	RMULA.		Sp. Gravity.		AUTHORITY.	
Chloroform		C H Cl	3		1.48, 18°		Liebig. A. C. P. 1, 199.	
"		"			1.491, 17°	·	Regnault. Ann. (2), 71, 881.	
"		"			1.493 }		Quean T 1 CO1	
"		**			1.497 } -		Swan. J. 1, 681.	
"		"			1.413	}	Soubeiran and	
**		"			1.496, 129		Mialhe. J. 2, 408.	
**		**			1.500, 159		Gregory. J. 3, 454.	
"		"			1.52523, 0		Pierre. C. R. 27, 213.	
"		"			1.512, 129	·	Schiff. A. C. P. 107, 63.	
44		**			1.49		Flückiger.	
**		"			1.472, 169	.5	Geuther.	
4.6		"			1.507, 179	·	Flückiger. Z. A. C.	
"		"			1.502		5, 802. Rump. C. C. (3), 6,	
		"			1.500, 159	,	34. Remys. J. C. S. (2),	
"		"			1.8954, 6	3°	18, 439. Ramsay. J. C. S. 35,	
44		"			1.52657,	مو	463. Thorpe. J.C.S.37,	
"					1.40877,		371.	
"		"			1.4018	- 1	Schiff. Ber. 14,	
44		"			1.40814	63°-	2763-2766.	
4.6					1.4081, 6	0.6	Schiff. Ber. 15, 2972.	
"		. "			1.49089,		Nasini. G. C. I. 13, 135.	
46		"			1.5039, 1	10.8)	Schiff. G. C. I. 13,	
**		. "			1.4081, 6		177.	
4.6					1.48978,	18°.58	(With intermediate	
"		. "			1.45695,		values. Drecker. P.A. (2), 20, 870.	
44		. "			1.50027	15°)	
44		. "			1.50085		Perkin. J. P. C.	
4.6		. "			1.48432	25°	$\int_{0}^{2} (2), 32, 523.$	
Trichloreth	nane	C H ₃ .	C Cl,		1.48492 <i>(</i> 1.372, 16		Regnault. Ann. (2)	
			-	- 1			71, 364.	
"		- "			1.34651,	0°	Pierre. C. R. 27, 213.	
"		- "			1.32466,		Perkin. J. P. C. (2)	
"		- ''			1.31144,		_ 32, 523.	
Chlorethyl	ene dichloride	C H, C	ci. C H Cl,		1.422, 17	°	Regnault. Ann. (2) 69, 153.	
**	" -	-1	**		1.42234,	0°	Pierre. C. R. 27, 213	
4.6	" _	1			1.4577, 9	°.4	1)	
**	" -	.	44		1.4577, 9 1.2948) 1.2946 }		Sobier C. C. T. 12	
44	" -	_	"			113°.5	Schiff. G. C. I. 13	
"	" -	-	"		1.2947		177.	
"	" -	-	"		1.391		Delacre. Bull. Acad Belg. (3), 13, 250	
"	" _	_	"		1.45527,	15°)	Perkin. J. P. C	
"	" _	_	66		1.44303,		(2), 32, 523.	

NAME.	Formula.	Sp. Gravity.	Антновиту.
Tetrachlorethane. B. 102°	C H ₂ Cl. C Cl ₃	1.530, 17°	Regnault. Ann. (2), 71, 866.
" B. 185°	"	1.576, 19°	Regnault. Ann. (2), 68, 162.
	. "	1.61158, 0°	Pierre. C. R. 27, 213.
Acetylene tetrachloride	C H Cl ₂ . C H Cl ₂	1.614, 0° }	Paterno and Pisati.
			Z. C. 14, 885.
Pentachlorethane	C H Cl ₂ . C Cl ₃	1.644	Regnault. Ann. (2), 71, 368.
"		1.66267, 0°	Pierre. C. R. 27, 218.
"	. "	1.71, 0° }	Paterno. Z. C. 12,
ii		1.69, 18° }	245.
" ··-	"		Thorpe. J. C. S. 87, 871.
Dichlorethylene		1.250, 15°	Regnault. Ann (2), 69, 155.
Trichlorpropane	C. H. Cl.	1.347	Cahours. J. 8, 496.
Trichlorhydrin	CH,CI. CHCI. CH,CI	1.41, 00)	Three separate prod-
		1.40, 8° }	ucts. Linnemann.
"		1.417, 150)	A. C. P. 186, 51.
	· "·	1.41, 0°	Oppenheim. J. 19, 521.
"		1.39805 } 150-	`
"		1.39836 } 135-	Perkin. J. P. C.
"		1.88758 } 250-	$\int_{0}^{1} (2), 82, 528.$
Isotrichlorhydrin		1.887881	Romburgh. Ber. 14,
Allylene tetrachloride	C ₃ H ₄ Cl ₄	1.47, 13°	1400. Borsche and Fittig. J. 18, 313.
" "		1.482	Ganswindt. Jena
		1.485 (Inaug. Diss. 1873.
Tetrachlorglycide		1.496, 17°	Pfeffer and Fittig. J. 18, 504.
Allylidene tetrachloride		1.503, 17°.5	Hartenstein. J. P. C. (2), 7, 295.
" "	"	1.522, 15°	Romburgh. Ber. 14, 1400.
Tetrachlorpropane	11	1.548	Cahours. J. 3, 496.
Havachlannyanana	C H Cl	1.55, 8	Berthelot. Cahours. J. 8, 496.
Hentachlorpropane	C. H. Cl.	1.731	(i ii
Hexachlorpropane Heptachlorpropane Chloropropylene	C ₃ H ₅ Cl	.918, 9°	Linnemann. J. 19, 308.
		.9307, 0°	
		.931, 0°	Oppenheim. J. 21, 339.
Allyl chloride		.934, 0°	
		.9547, 0°	
11 11		.9610, 0° }	Zander. A. C. P. 214, 181.
		.0002, 20)	212, 101.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Allyl chloride		.9055 } 44°.8 _	Schiff. G. C. I. 13,	
" "	** 	.9379, 20° .94366, 15°)	Brühl. Bei. 4, 780. Perkin. J. P. C.	
"		.93228, 25°	(2), 32, 523.	
Allylidene dichloride	C ₃ H ₄ Cl ₂	1.170, 24°.5	Hübner and Geu- ther. J. 13, 305.	
a Dichlorpropylene. Epi- dichlorhydrin.		1.21	Claus. A. C. P. 170, 125.	
0 D: 11		1.22, 8°	Henry. Ber. 5, 965.	
β Dichlorpropylene. Epi- dichlorhydrin.	l		Reboul. J. 13, 460.	
	1	1.233, 17°.5	Hartenstein. J. P. C. (2), 7, 295.	
"	"	1.226, 15°	Romburgh. Ber. 15, 245.	
" " <u> </u>	. "	1.25, 15° }	Friedel and Silva. Quoted by Rom-	
	1	1.218, 25° }	burgh.	
a Trichlorpropylene	C ₃ H ₃ Cl ₃	1.387, 14°	Borsche and Fittig. J. 18, 313.	
β Trichlorpropylene	. "	1.414, 20°	Pfeffer and Fittig. J. 18, 504.	
Propargyl chloride	C ₃ H ₃ Cl	1.0454, 5°	Henry. Ber. 8, 398.	
Crotonylene dichloride		1.131	Kekulé. J. 22, 507.	
Chlorisobutylene	1 .	.9785, 12°	14, 1201.	
Trichlorpentane	C ₅ H ₉ Cl ₃	1.33, 13°	Buff. J. 21, 334.	
Tetrachlorpentane		2. 42 92 .9992, 0°	Bauer. J. 19, 531.	
Chloramylene	C5 H9 C1	.872, 5°.1	Bruylants. Ber. 8,	
***********		'	411.	
Isoprene hydrochlorate		.868, 16°	Bouchardat. J. C. S. 38, 323.	
Isoprene dichloride	C ₅ H ₈ Cl ₂	1.065, 16°		
Trichlorhexanc		1.193, 21°	Pelouze and Ca- hours. J. 16, 525.	
Hexachlorhexane		1.598, 20°		
Chlorhexylene		.9636, 11°	Henry. C. R. 97, 260.	
Chlordiallyl			Henry. J.C.S. 86, 34.	
Chlordiamylene chloride .	C ₁₀ H ₁₉ Cl ₃	1.1638, 0°	Bauer. J. 20, 583.	
Eikosylene chloride	C ₂₉ H ₃₈ Cl ₂	1.013, 24°	Lippmann and Hawliczek. Ber. 12, 78.	
Isovinyl chloride	(C ₂ H ₃ Cl) _n	1.406	Baumenn. A.C. P.	
Chloronicene	C ₅ H ₅ Cl	1.141, 10°	163, 308. St. Evre. J. 1, 530.	
	1			

4th. Aromatic Compounds.

					1
NAME.		FORMULA.		SP. GRAVITY.	AUTHORITY.
Monochlorbenz	ene	C. H.	U1	1.1499, 0°]	
"				1.1847, 10°	77
**		**		1.1258, 20°	From benzene. So-
"		"			koloff. J. 18, 517.
44		"		1.1199, 0° 5	}
44				1.1085, 10°	i
44		"		1.099, 200 }	From phenol. So-
11		"		1.092, 30°	koloff. J. 18, 517.
"		"		1.118	Jungfleisch. J. 19,
44		"		1.77, —40° }	551. Jungfleisch. J. 20,
"		4.4		.980. 1330	86.
44		"		1.1293, 0°	Jungfleisch. J. 21,
"		"		1.12855, 0°	348.
"				1.11807, 9°.79_	From benzene.
"		"		1.10467, 220.48	Adrieenz. Ber.
44				1.04428, 77°.27	6, 443.
44		"		1.12818, 00	K
"		"		1.11421, 9°.79_	From phenol.
"		"		1.10577, 220.43	
44		"		1.04299, 77°.27	6, 448.
"		"		0817)	Schiff. G. C. I. 18,
66		"		.9817 .9818 } 182° {	177.
"				1.1066, 20°	Brühl. Bei. 4, 780.
4.6		"		1.1046, 25°.2)	Schall. Ber. 17,
44				1.0703, 52°.3	2564.
44		"		1.106, 15°	Wallach and Heus-
				1.100, 10	ler. A. C. P. 243, 226.
Orthodichlorber	nzene	C ₆ H ₄ C		1.3278, 0°	Beilstein and Kurbatow. A. C. P.
		""		1.3254, 0°	176, 41. Friedel and Crafts. •Ann. (6), 10, 416.
Metadichlorben	zene	"		1.3148	Beilstein and Kurbatow. B. S. C.
"		"		1.307, 0°	23, 179. Beilstein and Kur- batow. J. C. S.
Paradichlorben	zene	"		1.459, s	(2), 13, 450. Jungfleisch. J. 19, 551.
"		"		1.250, 530 }	Jungfleisch. J. 20,
"		44		1.123, 1710	86.
"		"		1.4581, 20°.5	JU.
"		"			
"		"		1.241, 63°	Jungfleisch. J. 21,
"				1.2062, 93°	347.
"		"		1.1366, 166°	
"		**		1.467, 4°	Schröder. Ber. 12, 561.
"		"		1.2499, 55°.1	Schiff. A. C. P. 223, 247.

NAME.			For	RMULA.	SP. GRAVITY.	AUTHORITY. Mitscherlich. P. A.	
Trichlorbenzene		C, H, C	3	1.457, 70			
	ii.	1.3.4	11		1.575	35, 372. Jungfleisch. J. 19	
	11	44	16		1.457, 17°, s.)	Jungfleisch. J. 20	
	44	4	16		1.227, 206°	Jungfleisch, J. 20	
	44		46		1.574, 10°, s.)	50.	
	14	44	64		1.4658, 10°, l.		
	11	11	16		1.4460, 260	Jungfleisch. J. 21	
	24	44	14	*********	1.4111, 560	350.	
	6.6	46	64		1.2427, 196°]		
	44		14		1.4654, 12°, 1	Beilstein and Kur batow. A. C. P 192, 230.	
[etrach]	orbena		C H2 C		1.748	Jungfleisch. J. 19 551.	
	16	11	14		1.448, 1390	Jungfleisch. J. 20	
	6.6	16	44		1.315, 240°	36.	
	44	44	3.6		1.7844, 10°, s	1	
	64	4.1	46		1.4339, 1490	Jungfleisch. J. 21	
	44	41	4.0		1.3958, 179°	352.	
	44	44	14	*******	1.3281, 230°)	
		zene		,	1.625, 74°)	Jungfleisch. J. 20	
	44		**		1.370, 270°	36.	
	**		4.6		1.8422, 10°		
	**	reserves	- 66		1.8342, 16°.5	and the same	
	44		11		1.6001, 84°	Jungfleisch. J. 21	
	14	*****	11		1.5732, 1140	353.	
Monochl		ene		H, Cl	1.3824, 261° J 1.080, 14°	Limpricht, J. 19	
						591.	
		1.4			1.0735, 27°.2	Aronheim and Diet rich. Ber. 8, 1402	
	44		44	*****	.9351, 159°.8	Schiff, G. C. I. 13 177.	
	11	*****	11		1.072, 24°.44		
	46	****	0.00	*****	1.061, 35°.48		
	**	*****	54		1.049, 48°.71	Cattaneo. Bei.7, 584	
	44	******			1.029, 67°.80	2,000,000	
	14		11	7777	1.013, 83°.86		
	11			****	?.796, 99°.81		
			11	*****	1.0761, 19°	Gladstone, Bei. 9	
Benzyl c	hlorid	e	C H 5. C	H ₂ Cl	1.1131 }	Cannizzaro. J. 8	
	**				1.1179	621.	
				*****	1.107, 14°	Limpricht. J. 19 592.	
3.0	44		41		.9452 1750	Schiff. G. C. I. 18	
44	66	*******	44		.04001	177.	
41	11	*****	46		1.100, 30°.01		
47	44	*******			1.082, 44°.37		
11	44	********	44		1.066, 590	Cattaneo. Bei.	
11	44	*****	- 44		1.047, 75°	584.	
	-		11		1.016, 100°.08	COL 1	
11	44				1.099, 7°	249.	
1.6	44	,			.9453, 178°	Schiff. G. C. I. 1:	

				· · · · · · · · · · · · · · · · · · ·	,
NA	ME.	FORMULA.		Sp. Gravity.	AUTHORITY.
Dichlortoluer	ne. 1.2.4	C ₆ H ₃ . C H ₃ . Cl ₃ .		1.24597, 20°	Lellmann and Klotz. A. C. P. 231, 308.
"	1.2.5	"		1.2585, 200	" "
"	1.8.4	"		1.2518, 16°)	Aronheim and Die-
44	"	"		1.2596, 18°.4	trich. Ber. 8, 1403.
"	"			1.2512, 20°	Lellmann and Klotz. A. C. P. 281, 808.
"	B. 202°	"		1.256, 18°	Beilstein. J. 18, 412.
"	В. 207°	"		1.2557, 14°	Limpricht. J. 19, 598.
Benzylidene	dichloride "	C ₆ H ₅ , C H Cl ₂		1.245, 16° 1.295, 16°	Cahours. J. 1, 711. Hübner and Bente. Ber. 6, 804.
"	"	"		1.2699, 0°	1
"	"	"		1.2122, 56°.8	
"	"	"		1.1877, 79°.2	Schiff. Ber. 19, 568.
"	"	"		1.1257, 185°.5	
	"	"		1.0407, 208°.5	<u> </u>
Trichlortolue	ne	C ₆ H ₂ . C H ₃ . Cl ₃		1.418, 90	Henry. J. 22, 508. Aronheim and Die- trich. Ber. 8, 1405.
Dichlorbenzy Benzyl trichl	l chloride loride	$C_6 H_3 Cl_2 C H_2 C_6 H_5 C Cl_3 \dots$	Cl	1.44, 0° 1.61, 18°	Naquet. J. 15, 419. Limpricht. J. 18, 538.
tt ("		1.380, 14°	
Tetrachlortol	uene	C ₆ H Cl ₄ . C H ₈		1.495, 14°	Limpricht. J. 19,
Trichlorbenz	yl chloride	C ₆ H ₂ Cl ₃ . C H ₂	C1	1.547, 23°	595. Beilstein and Kuhl- berg. J. 21, 361.
Orthodichlori chloride.	enzylene di-	C ₆ H ₃ Cl ₂ . C H C)l,	1.518, 22°	" " " " " " " " " " " " " " " " " " "
Chlorbenzo-t	richloride.1.3	C ₆ H ₄ Cl. C Cl ₃		$\begin{bmatrix} 1.74 \\ 1.76 \end{bmatrix}$ 13° $\Big\{$	Limpricht. A. C. P. 134, 58.
"	" 1.2	"		1.51	Kolbe and Laute- mann. A. C. P. 115, 196.
Dichlorbenzo	-trichloride _	C ₆ H ₃ Cl ₂ . C Cl ₃		1.587, 21°	Beilstein and Kuhl- berg. Z. C. 21, 363.
"	"	44		1.5829, 16°	
Trichlorbenzy	ylene dichlo-	C ₆ H ₂ Cl ₃ . C H C	Cl ₂	1.607, 22°	Beilstein and Kuhl- berg. Z. C. 21, 362.
Tetrachlorber Tetrachlorber chloride.	nzyl chloride nzylene di-	$C_6 \stackrel{\mathbf{H}}{\mathbf{H}} \stackrel{\mathbf{Cl}_4}{\mathbf{Cl}_4}$. $\stackrel{\mathbf{C}}{\mathbf{H}} \stackrel{\mathbf{H}_2}{\mathbf{Cl}} \stackrel{\mathbf{C}}{\mathbf{H}} \stackrel{\mathbf{C}}{\mathbf{Cl}}$	l ₂	1.634, 25° 1.704, 25°	Beilstein and Kuhl- berg. Z. C. 21, 864.
Chlororthoxy	lene	C ₆ H ₃ . C H ₃ . C H	. Cl	1.0863, 196	Claus and Kautz. Ber. 18, 1867.
"	1.2.4	"		1.0692, 15°	
Chlormetaxyl	ene. 1.3.4	"		1.0598, 20°	
		C ₆ H ₄ . C ₄ , C H			Gundelach. B. S. C. 25, 385.
Chlorethylber	zene	C ₆ H ₄ . C ₂ H ₅ . Cl		1.075, 0°	Istrati. B. S. C. 42, 115.

	1		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Chlorethylbenzene	C ₆ H ₄ . C ₂ H ₅ . Cl	i	Istruti. Ber. 18, ref. 704.
Dichlororthoxylene	C ₆ H ₂ . CH ₃ . CH ₃ . Cl ₂	1.333, s 1.150, 70°, l.	Colson. Ann. (6), 6,
"	"	1.250, 20°, 1.) 1.0980	86. Kautz. Freiburg In. Diss. 1885.
Dichlormetaxylene	"	1.202, 40°, l. }	Colson. Ann. (6), 6, 86.
DichlorparaxyleneOrthoxylene dichloride		1.348, s	Colson. C. R. 104, 429.
Metaxylene dichloride Paraxylene dichloride	"	1.870 1.417	" "
Orthoxylene tetrachloride_ Metaxylene tetrachloride_	C ₆ H ₄ (C H Cl ₂) ₂	1.601 1.536	Colson and Gautier. C. R. 102, 689.
Paraxylene tetrachloride _ Chlorcymene. 1.4.6	C ₆ H ₃ . C H ₃ . C ₃ H ₇ . Cl.	1.606 1.014, 14°	Gerichten. Ber. 10,
Diethylmonochlorbenzene	C ₆ H ₃ . Cl. (C ₂ H ₅) ₂	1.086	1249. Istrati. Ber. 18, ref. 704.
Triethylmonochlorben- zene.	C ₆ H ₂ . Cl. (C ₂ H ₅) ₃	1.028	" "
Tetrethylmonochlor ben- zene.	C ₆ H. Cl. (C ₂ H ₅) ₄	1.022	
Pentethylmonochlorben- zene.	C ₆ Cl (C ₂ H ₅) ₅		
β Chlorstyrolene	C ₈ H ₇ Cl		Glaser. A. C. P. 154, 166.
β Benzene hexchloride	C ₆ H ₆ Cl ₆		10, 223,
By action of ethylene on monochlorbenzene.	C, H, Cl	1.179	Istrati. Ber. 18, ref. 704.
a Chlornaphthalene	C ₁₀ H ₇ Cl	1.2052, 6°.2	Laurent. Quoted by Carius.
	"	1.2028, 6°.4	Carius. A. C. P. 114, 146.
44	"	1.2025, 15°	Koninck and Marquart. C. N. 25, 57.
β Chlornaphthalene		1.2656, 16°	Rimarenko. Ber. 9, 664.
Naphthalene dichloride	C ₁₀ H ₈ Cl ₂	1.287, 12°.5 1.2648, 18° 1.48, 17°	Gladstone. Bei. 9, 249.
Trichloracenaphtene			Kebler and Norton. A. C. J. 10, 218.
Camphryl chloride	-		465.
Geraniol hydrochlorate	C ₁₀ H ₁₇ Cl	1.020, 20°	Jacobsen. A. C. P. 157, 236.
Caoutchin hydrochlorate _ From terpene of Pinus pu- milio.	"	.982, 17°	Watts' Dictionary. Buchner. J. 18, 479.
Terebenthene hydrochlo- rate. "		1.016 1.017 } 0° {	Two isomers. Barbier. C. R. 96, 1066.
			.

Name.	Formula.	Sp. Gravity.	Authority.
Isoterebenthene hydro- chlorate. From terpene of Muscat nut oil.			Riban. C. R. 79, 225. Cloëz. J. 17, 586.

LII. COMPOUNDS CONTAINING C, H, O, AND CL.

Name.	Formula.	Sp. GRAVITY.	Authority.
Dichlorethyl alcohol	C ₂ H ₄ Cl ₂ O	1.145, 15°	
Trichlorethyl alcohol	C ₂ H ₃ Cl ₃ O	1.55, 23°.8	lackh. Ber. 14,
Dichlorhexyl alcohol	C ₆ H ₁₂ Cl ₂ O	1.4, 12°	2826. Destrem. Ann. (5), 27, 50.
Dichlormethyl oxide	C ₂ H ₄ Cl ₂ O	1.315, 20°	Regnault. Ann. (2), 71, 898.
Tetrachlormethyl oxide	C, H, Cl, O	1.606, 20°	Regnault. Ann. (2), 71, 401.
Tetrachlormethylethyl oxide.			Magnanini. G. C. I. 16. 880.
Chlorethyl oxide	, ,		Henry. C. R. 100,
Dichlorethyl oxide Tetrachlorethyl oxide	C ₄ H ₈ Cl ₂ O	1.174, 23° 1.5008	Lieben. J. 12, 446. Malaguti. Ann. (2), 70, 341.
	"	1.4379, 6° } 1.4182, 15°.2 }	Paterno and Pisati.
	"	1.3055, 99°.9) 1.4211, 15°	Ber. 5, 1054. Roscoe and Schor-
Pentachlorethyl oxide	C ₄ H ₅ Cl ₅ O	1.645	lemmer's Treatise. Jacobsen. Z. C. 14, 444.
Chloracetic acid	C ₂ H ₃ Cl O ₂	1.577, 8° 1.366, 73°	Henry. Ber. 7, 763. R. Hofmunn. J. 10, 348.
Dichloracetic acid	C ₂ H ₂ Cl ₂ O ₂	1.5216, 15°	
Trichloracetic acid	C ₂ H Cl ₃ O ₂	1.617, 46°	
Chlorpropionic acid			Clermont. Z. C. 14, 349.
Chlorbutyric acid			Balbiano. Ber. 10, 1749.
	"		1158.
" ?			Haubst. J. C. S. (2), 1, 698.
Chlorisobutyric acid			Balbiano. Ber. 11, 1698.
Methyl chlorocarbonate 20 s G	C ₂ H ₃ Cl O ₂	1.236, 15°	Röse. Ber. 13, 2417.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl chlorocarbonate			Dumas. Ann. (2), 54, 230.
Propyl chlorocarbonate Isopropyl chlorocarbonate	C ₄ H ₇ Cl O ₂	1.094, 15° 1.144, 4°	Röse. Ber. 13, 2417. Spica. J. C. S. 52, 1028.
Isobutyl chlorocarbonate_ Isoamyl chlorocarbonate_ Dichlorethyl formate	C ₅ H ₉ Cl O ₂ C ₆ H ₁₁ Cl O ₂ C ₃ H ₄ Cl ₂ O ₂	1.058, 15° 1.082, 15°	Röse. Ber. 13, 2417 Malaguti. Ann. (2),
Pentachloramyl formate		j	70, 370,
Methyl monochloracetate		1	293. Henry. B. S. C. 20,
	"	1.2352, 19°.2	448. Henry. C. R. 101, 250.
Methyl dichloracetate Dichlormethyl acetate	C ₃ H ₄ Cl ₂ O ₂	1.3808, 19°.2 1.25	Malaguti. Ann. (2),
Methyl trichloracetate		1	70, 381. Bauer. A.C. P. 229,
" "		1.4892, 19°.2	163. Henry. C. B. 101, 250.
Ethyl monochloracetate		1	Brühl. A. C. P. 208. 1.
" " <u>-</u>	1	.9925, 144°.5	Schiff. G. C. I. 13, 177.
" Ethyl dichloracetate		1.1722, 8°	1280.
" "	1	1.29	70, 368.
" " <u></u>			ther. J. 17, 316. Brühl. A. C. P.
			203, 1. Schiff. G. C. I. 13, 177.
Dichlorethyl acetate	. "	1.3217, 10°.6	Henry. C. R. 97, 1308.
"		1.104, 15°	Belg. (3), 13, 255.
Ethyl trichloracetate	. C ₄ H ₅ Cl ₅ O ₅	i	203, 1.
Monochlorethyl dichlor-		$\left\{ \begin{array}{c} 1.1650 \\ 1.1651 \\ 1.200, 15^{\circ} \end{array} \right\}$	
acetate. Dichlorethyl monochlor-		1.216, 15°	183.
ncetate. Trichlorethyl acetate		1.367	
<i>u u</i>		1.35, 20°	10, 207. Malaguti. Ann. (3), 16, 62.
" "	- "	_ 1.3907, 23°.8_	Garzarolli-Thurn- lackh. Ber. 14, 2826.
" "	. "	1.187, 15°	Delacre. Ber. 21, ref. 183.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Tetrachlorethyl acetate	C ₄ H ₄ Cl ₄ O ₂	1.485, 25°	Léblanc. Ann. (3).
Monochlorethyl trichlor-	"	1.251, 15°	Delacre. Ber. 21, ref. 183.
ncetate. Dichlorethyl dichlorace-		1.25, 15°	." "
tate. Trichlorethyl monochlor- acetate.	"	1.25	ii ii
Trichlorethyl dichlorace- tate.	C ₄ H ₃ Cl ₅ O ₂	1.267	
Hexchlorethyl acetate	C ₄ H ₂ Cl ₆ O ₂	1.698, 23°.5	Léblanc. Ann. (3), 10, 215.
Heptachlorethyl acetate	C ₄ H Cl ₇ O ₂	1.692, 24°.5	
Propyl monochloracetate_	C ₅ H ₉ Cl O ₂	1.1096, 8°	Henry. C. R. 100,
Butyl monochloracetate	C ₆ H ₁₁ Cl O ₂	1.013, 0° }	Gehring, C. R. 102.
Trichlorbutyl acetate	C ₆ H ₉ Cl ₃ O ₂	1.3440, 8°.5	Garzarolli-Thurn- lackh. Ber. 15, 2619.
Amyl monochloracetate	C ₇ H ₁₃ Cl O ₂	1.063, 0°	Hougounenq. B.S. C. 45, 328.
Methyl a chlorpropionate	C ₄ H ₇ Cl O ₃	1.075, 4°	Kahlbaum. Ber. 12, 844.
Ethyl a chloropropionate.	C ₅ H ₉ Cl O ₂	1.0869, 20°	Brühl. A. C. P. 203, 1.
Ethyl β chloropropionate	"	1.1160, 8°	Henry. C. R. 100,
Ethyl dichlorpropionate	C ₅ H ₈ Cl ₂ O ₂	1.2461, 20°	
	"	1.2493, 0°	
Dichlorethyl propionate	"	1.282, 8°	Henry. C. R. 100,
Methyl chlorbutyrate	C ₅ H ₉ Cl O ₂	1.1894, 10°	Henry. C. R. 101,
Methyl a β dichlorbuty- rate. "	C ₅ H ₈ Cl ₂ O ₂	1.2809, 0° }	Zeisel. Ber. 19, ref.
Ethyl chlorbutyrate	C. H., Cl O.	1.2355, 41°.1	
· · · · · · · · · · · · · · · · · · ·		1.1221, 10°	203, 1.
	44	·	1158. Markownikoff. A.C.
Methyl trichlorpropylcar- bylacetate.	C, H, Cl, O,		P. 153, 243. Garzarolli-Thurn- lackh. A. C. P.
Chloroenanthic ether	C ₉ H ₁₇ Cl O ₂ . ?	1.2912, 16°.5	223, 149. Malaguti. Ann. (2),
Derivative of chlorinated	C ₄ H ₅ Cl ₃ O ₄	1.4786, 14°	70, 863. Guthzeit. Quoted by
methyl formate.	"	1.4741, 27°	
" " Derivative of chlorinated ether.	C ₅ H ₁₁ Cl O	1.5191 .9482, 0°	(2), 86, 99 Lieben and Bauer. J. 15, 494.

Nane.	Formivla.	Sp. Gravey.	ATTHORITY.
Derivative of enlocimated	C, E, O: O	.1712 (#	Lieber, and Batter. J 15, 898.
Cinomostic embydride	C. H. O. O	1.40, 22	Anthoine. J. Pt Un. D. t. 177.
Tendinomostic antiputeine . Terendinomosta – i i i pe	C. H. O. O.	1.530. 40° 1.574. 24°	t. t.
Avery, emerite	C. E. O C:	1.125.17	Gerbardt. J. L. 484
• • • • • • • • • • • • • • • • • • • •		1.7(72.7(**	Kopp. A.C. P. 16,
	**	1.18778. (F 1.05096. 5(F.73	BT. 871.
Onlandari aklanina			20E. 1.
Calomonyi didorite Proponyi didorite	C, H, 6. 01	1.1441.21	Bribl. A. C. P. 208. 1.
eOuloropropionyl cidoriae	•		Henry, C. R. 100,
&Caloropropionyl caloride Bulyryl adoride	C. E. G. C.	1.0277.20	Briild. A. C. P.
Isobatyryl oktoride Chiorobatyryl oktoriae			-W(1): "1
danorobulyry: umoride			C. P. 152, 241. Henry. C. R. 101.
Ymeryd chloride			ကရင်းမ
			20E. 1.
Chimiostopie	· · · · · · · · · · · · · · · · · · ·	1.14. 14"	Riche. J. 15, 809.
	••		Larnemann. J. 15.
			Linnemary, J. 19, 406. Henry, B.S. C. 19,
		1.156.185	. #19 <u>.</u>
Diehlomomas	С. Н. С. Ф	1.881	145. Kare
		1.236.21° 1.236.4°	Findg. J. 12, 545. Theeganten. C. C.
		1.284. 15°	4, 580. Closz. Ann. 5 . 9.
Tetrachloracetone	C, H, C, O	1.482.175	145. !
		1.7	Städeler. J. 6.398. (Two isomers.
	. 4	1.617.69) 1.676.149)	Cloez. B. S. C.
Chloraidehyde Parud, chloraidehyde Chlorai	С, Н , С1 О	1.62	Riche. J. 12, 435. Jacobsen. Ber. 8, 88.
Chloral		•	1 49.
		1.5153, 9°	Корр. А. С. Р. 95, 207.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Chloral	C, H Cl, O	1.5448, 0° }	Thorpe. J. C. S. 37,
"	"	1.8821, 97°.2 } 1.5121, 20°	871. Brühl. A. C. P. 208, 1.
"	".	1.54179 } 4°	Passavant. C. N.
"	"	1.8692, 97°.78 1.5292, 9°)	1) 42, 288.
Parachloralide	" "	1.5197, 15° }	Perkin. J. C. S. 51, 808. Clöez. J. 12, 434.
Chloral hydrate	$(C_1 \text{ II } Cl_3 O)_n$	1.5765, 14° 1.901 1.818. 4°. puly.	Rüdorff. Ber. 12, 252.) Schröder. Ber. 12,
et tt	"	1.818, 4°, pulv. 1.848, 4°, cryst. 1.6415, 49°.9)	5 561.
et et	"	1.6274, 58°.4 1.6136, 66°.9	Perkin. J. C. S. 51, 808.
11 11	"	1.5704 1.5719 66°, l.	Jungfleisch, Le- baigne, and Rou- cher. J. Ph. C.
" " Chloral ethylate	C, H, Cl, O,	1.5771) 1.148, 40°, l	(4), 11, 208. Martins and Men-
46 46	41	1 9996)	delssohn-Bar- tholdy. Z. C. 13, 650. Jungfleisch, Le-
" "		$\left\{ \begin{array}{c} 1.3286 \\ 1.3439 \end{array} \right\} \ 66^{\circ}, l.$	[[(4), 11, 208.
Chloral amylate	C ₇ H ₁₁ Cl ₃ O ₂	1.234, 25°	Martins and Mendelssohn-Bartholdy. Z. C. 13, 650.
Chloracetyl chloral			Meyer and Dulk. A. C. P. 171, 65.
Diacetylchloral hydrate Acetylchloral ethylate Derivative of chloral	C _g H ₀ Cl ₂ O ₃	1.422, 11° 1.327, 11° 1.73, 17°	Henry. Ber. 7, 764.
Butyl chloral	$\begin{bmatrix} C_7^6 & II_{10}^6 & Cl_4 & O_3 & \dots \\ C_4 & H_5 & Cl_3 & O & \dots \end{bmatrix}$	1.42, 11° 1.3956, 20°	Brühl. A. C. P.
" "	"	1.4111, 7°	203, 1. Gladstone. Bei. 9, 249.
Butyl chloral hydrate			Schröder. Ber. 12, 561.
Derivative of chloralide	C ₅ H Cl ₇ O ₃	1.7426, 20°`.	Anschutz and Has- lam. A. C. P. 239, 300.
Chlorovaleral	1 * *		A. Schröder. Z. C.
Derivative of valeral Dichlorvinyl methyl oxide	C ₁₀ H ₁₀ Cl ₄ O C ₁₀ H ₁₂ Cl ₆ O	1.272, 14°	" "
Dichlorvinyl methyloxide	C H Cl O	1.2934, 0° } 1.1574, 100° }	Denaro. G. C. I. 14, 117.
Monochlorvinyl ethyl oxide. Trichlorvinyl ethyl oxide	ļ - ·		Godefroy. C. R. 102, 869. Paterno and Pisati.
Trichlorvinyl ethyl oxide	1 24 215 (1)	1.2854, 990.9	J. C. S. (2), 11, 158.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY
Trichlorvinyl ethyl oxide.	C' H² Cl² O	1.3 322, 19°	Godefroy. C. B. 102, 869.
Methylene aceto-chloride_	C2 H2 C1 O2	1.1953, 14°.2	Henry. B. S. C. 20,
Ethylene aceto-chloride		1.1783, 0° 1.114, 15°	Simpson. J. 12, 487. Franchimont. J. C. S. 44, 452.
Ethylene butyre-chloride Ethylidene oxychloride	C ₆ H ₁₁ Cl O ₂ C ₄ H ₈ Cl ₂ O	1.0854, 0° 1.1376, 12° 1.136, 14°.5	Simpson. J. 12, 489. Lieben. J. 11, 291. Laatsch. A. C. P. 218, 13.
Ethylidene aceto-chloride.	C, H, Cl O,	1.114, 15°	Rübencamp. A. C. P. 225, 267.
Ethylidene propio-chlo-ride.	C2 H2 C1 O2	1.071, 15°	"
Ethylidene butyro-chlo-		1	
Ethylidene valero-chloride Aldehydemethyl chloride Trichlordimethyl acetal	C ₇ H ₁₃ Cl O ₂	.997, 150	"
Aldehydemethyl chloride.	C ₃ H ₇ Cl O	.996, 170	
		ı	Magnanini. G. C. I. 16, 330.
Trichlormethylethyl acetal.		1	
Chloracetal	C ₆ H ₁₅ Cl O ₂	1.0195	Lieben. J. 10, 437.
"	1	1 1 (34.18.09)	Paterno and Mazza-
:(1.0416, 26°.3 .9815, 99°.9	ra. J. C. S. (2). 11,
		1.026, 15°	1217. Klien. J. C. S. 31,
.	0.70	1 1000 140	291.
Dichloracetal	C H12 C12 O2	1.1000, 14	Lieben. J. 10, 436.
Trichloracetal	C6 H11 C13 O2	1.2655, 220.2	Paterno and Pisati.
		1.1617, 99°.96_	J. C. S. (2), 11, 258.
"	· · · ·	1.288	Byasson. C. N. 38,
Trimethylene chlorhydrin	C ₃ H ₇ Cl O	1.132, 17°	Reboul. C. R. 79, 169.
Propylene chlorhydrin		1.1302, 0°	Oeser. J. 13, 448.
		1.247	Oppenheim. J. 21, 340.
Chlorbutylenechlorhydrin	1	i	Oeconomides. Ber. 14, 1568.
Hexylene chlorhydrin			Henry. C. R. 97, 260.
Hexylene aceto-chloride	Ca Hia Cl O.	1.04, 60	
Hexylene aceto-chloride Heptylene chlorhydrin	C, H Cl O	1.014, 00 }	Clermont. Z.C.13,
"" ""		. 1.001, 14° 5	411.
Octylene chlorhydrin	C ₈ H ₁₇ Cl O	. 1.003, 0° . .987, 31°	
Octylene aceto-chloride	C ₁₆ H ₁₉ Cl O ₂	1.026, 0°	, ,,
Dichlorethoxyethylene		1.08, 10°	Geuther and Brock- hoff. J. P. C. (2), 7, 114.
Pentachlorpropylene oxide.		1	Cloez. Ann. (6), 9,
Ethyl-glycollic chloride. Chlorolactic ether	C, H, Cl O,	1.145, 1° 1.097, 0°	Henry. J. 22, 531. Wurtz. J. 11, 254.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl chloromalonate	C ₇ H ₁₁ Cl O ₄	1.185, 20°	Conrad and Bischoff. A. C. P. 209, 221.
Ethyl ethylchloromalo- nate.	C ₉ H ₁₅ Cl O ₄	1.110, 17°	Guthzeit. A. C. P. 209, 233.
Ethyl chlorisobutylmalo- nate.	C ₁₁ H ₁₉ Cl O ₄	1.094, 15°	Conrad and Bisch- off. Ber 13, 600.
" "	"	1.091, 15°	
Succinyl chloride	C ₄ H ₄ Cl ₂ O ₂	1.89	Gerhardt and Chiozza. C. R. 36, 1052.
Chloromaleic ether	C ₈ H ₁₁ Cl O ₄	1.15, 11°	Henry. A.C.P. 156, 179.
	"	1.178, 20°	Frank. Ber. 10, 928.
Ethyl chloracetacetate	C ₆ H ₉ Cl O ₃	1.19, 14° 1.298, 16°	Allihn. Ber. 11, 569.
Ethyl dichloracetacetate			186, 234.
Ethyl chloracetopropio- nate.	C ₇ H ₁₁ Cl O ₃	1.196, 21°	Conrad and Guth- zeit. Ber. 17, 2287.
Ethyl monochlormethyl- acetacetate.	C ₇ H ₁₁ Cl O ₃	1.093, 15°	Isbert. A. C. P. 284, 160.
Ethyl dichlormethylacet- acetate.	C ₇ H ₁₀ Cl ₂ O ₃	1.2250, 17°	Isbert. Jena Inaug. Diss. 1866.
Ethyl monochlorethyl- acetacetate.	C ₈ H ₁₃ Cl O ₃	1.0523, 15°	
Ethyl dichlorethylacetace- tate.	C ₈ H ₁₂ Cl ₂ O ₃	1.188, 15°	" "
Ethyldiethylchloracetace- tate.	C ₁₀ H ₁₇ Cl O ₃	1.068, 15°	James. J. C. S. 49, 50.
Ethyl diethyldichloracet- acetate.	C ₁₀ H ₁₆ Cl ₂ O ₃	1.155, 15°	"
Acetotrichlorethylidene acetic ether.	C ₈ H ₉ Cl ₃ O ₃	1.342, 15°	Matthews. J. C. S.
Monochlorhydrin	C ₃ H ₇ Cl O ₂	1.31 1.4, 18°	43, 203. Berthelot. J. 6, 456. Henry. J. C. S. (2), 13, 346.
" β Dichlorhydrin	C ₃ H ₆ Cl ₂ O	1.328, 0° 1.37	Hanrict. Ber. 10,727.
"	0 ₃ 11 ₆ 01 ₂ 0	1.3699, 9°	Berthelot. J. 7, 449. Henry. A. C. P. 155, 324.
"	"	1.355, 17°.5	
	"	1.383, 0° }	Markownikoff. J. C.
	"	1.367, 19° } 1.8799, 0° }	S. (2), 12, 241.
"	"	1.8799, 0° }	Tollens. A.C.P. 156,
	C ₈ H ₅ Cl O	1.3681, 11°.5 \ 1.204, 0°	164. Darmstaedter. J. 21,
	. "	1.194, 11°	454. Reboul. J. 18, 456.
"	. "	1.20318, 0°	Thorpe. J. C. S. 37,
"	"	1.05667,116°.55	371.
	"	1.0588 1150 8	Schiff. Ber. 14,
"	"	1.0598	2768. Clöez. Ann. (6), 9,
		1.194, 11°	145.
Ethyl monochlorhydrin	C ₅ H ₁₁ Cl O ₂	1.117, 11°	Henry. J. C. S. (2), 13, 846.

 		1	
NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Diethyl monochlorhydrin	C ₇ H ₁₅ Cl O ₂	1.03, 10°.5 1.005, 17°	Alsberg. J. 17, 496. Reboul and Louren- co. J. 14, 674.
Amyl monochlorhydrinAceto-chlorhydrin		1	Reboul. J. 13, 464. Henry. J. C. S. (2), 13, 346
Aceto-dichlorhydrin	C ₅ H ₈ Cl ₂ O ₂	1.283. 11° 1.274, 8°	Truchot. J. 18, 503.
Diaceto-chlorhydrin Butyro-dichlorhydrin Valero-dichlorhydrin Butenyl monochlorhydrin	$C_7 H_{11} Cl O_4$ $C_7 H_{12} Cl_2 O_2$	1.243, 4°	Truchot. J. 18, 503.
Butenyl monochlorhydrin	C_4 H_9 Cl O_2	1.2324, 17°	Zikes. Ber. 18, ref. 433.
Butenyl dichlorhydrin Butenyl epichlorhydrin Diallyl dichlorhydrin	C, H ₃ Cl ₂ O C, H ₇ Cl O C, H ₁₀ Cl ₂ O	1.274, 16° 1.098, 15° 1.4, 7°	Henry. Ber. 7, 416.
Diallyl dichlorhydrin a Chlorallyl alcohol	C ₃ H ₅ Cl O	1.164, 19°	Henry. Ber. 15, 3085.
3 Chlorallyl alcohol	46	1.162, 15°	Romburgh. Ber. 15, 245.
Methylchlorallylcarbinol.	C ₅ H ₉ Cl O	1.08821, 14°.1_	
Chlorerotyl alcohol			Garzarolli-Thurn- lackh. Ber. 15,
Methyl chlorerotonate			Fröhlich. J. 22, 547. Kahlbaum. Ber. 12,
Ethyl chlorerotonate			Fröhlich, J. 22, 547, Claus, A. C. P. 191, 64,
Chlorethylacetylene tetra- carbonic ether. Citraconyl chloride			Ber. 17, 2786.
	"		za. J. 6, 394.
Propylphycite trichlor- hydrin.	C ² H ² Cl ² O	. 1.4324, 14°	Wolff. Z. C. 12, 465.
Dichloroleic acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1.082, 7°.9 967, 15°	Lefort. J. 6, 451. Boquillon. J. C. S. 48.
Derivative of isohexic acid	C_4 H_4 Cl_2 O	1.471, 10°	
Chlorphenol	C ₆ II ₅ Cl O	1.306, 20°.5	
Chlormethylphenol	C ₇ H ₇ Cl O	1.182, 9°	Henry. Z. C. 13, 247.
Chlorparakresol		in the second se	Schall and Dralle.
Chlormethylparakresol Chlorethylphenol	C, H, Cl O	. 1.1498, 25° 1.106, 9°	Henry. Z. C. 13,
Methylchlorphenetol. α_{-} β_{-}	C, H, Cl O	1.127, 19°.5 1.131, 18° }	247. Wroblevsky. Z. C. 13, 164.

## ## ## ## ## ## ## ## ## ## ## ## ##				
## ## ## ## ## ## ## ## ## ## ## ## ##	Name.	FORMULA.	Sp. Gravety.	AUTHORITY.
""" 1.191, 20° Landolph. C. R. 82, 227. Metachlorbenzoic acid Ethyl metachlorberzoate. Ethyl metachlorbenzoate. Chlorisopropyl benzoate atc. """ 1.29, 8° Henry. J. 22, 509. Ethyl orthodichlorbenzoate atc. Chlorisopropyl benzoate """ 1.3278, 0° Belistein. Ber. 8, 435. Morley and Green. J. 441, 45° J. C. 8. 47, 135. Morley and Green. J. C. 8. 47, 135. Benzyl dichloracetate. Cp. Hp. Clop. 1.3366, 10°.8. J. 223, 4° Seubert. Ber. 21, 229. Benzyl trichloracetate. Cp. Hp. Clop. 1.3887, 4° """ """" Benzyl chloride Cr. Hp. Clop. 1.3887, 4° """" """" """"""""""""""""""""""""""""""""""""	Chloranethol	C ₁₀ H ₁₁ Cl O	1.1154, 0°	
Metachlorsalicylol C ₇ H ₈ Cl O ₂ 1.29 St. Evre. J. 22, 509. Ethyl metachlorbenzoate Ethyl orthodichlorbenzoate ate. C ₉ H ₈ Cl ₂ O ₂ 1.3278, 0° Belstein. Ber. 8, 435. Chlorisopropyl benzoate ate. C ₁₀ H ₁₁ Cl O ₂ 1.172, 19° J. C. 8. 47, 135. Derivative of benzoic ether C ₁₈ H ₁₆ Cl ₆ O ₃ 1.346, 10° 8. Malsuti. Ann. (2), 70, 375. Benzyl monochloracetate C ₉ H ₉ Cl O ₂ 1.3330, 4° Seubert. Ber. 21, 281. Benzyl trichloracetate C ₉ H ₇ Cl ₃ O ₂ 1.3887, 4° Seubert. Ber. 21, 281. Benzyl trichloracetate C ₉ H ₇ Cl ₃ O ₂ 1.3887, 4° Wöhler and Liebig. A. C. P. 3, 282. """"""""""""""""""""""""""""""""""""	"	"	1.191, 20°	Landolph. C. R. 82,
Atto: Chlorisopropyl benzoate Chlorisopropyl benzoate Chlorisopropyl benzoate Chlorisopropyl benzoate Chlorisopropyl benzoate Chloride Chl	Metachlorbenzoic acid Ethyl metachlorbenzoate_	C ₇ H ₅ Cl O ₂	1.29, 8° 1.29 .981, 10° 1.3278, 0°	Henry. J. 22, 509. St. Evre. J. 1, 529.
Derivative of benzoice ther C16 H16 C16 O3		C ₁₀ H ₁₁ Cl O ₂	1.172, 19°)	Morley and Green.
Benzyl dichloracetate C ₉ H ₉ Cl O ₂ 1.2223, 4° 281.	Derivative of benzoic ether	C ₁₈ H ₁₆ Cl ₆ O ₃		Malaguti. Ann. (2),
Benzyl trichloracetate	Benzyl monochloracetate	C ₉ H ₉ Cl O ₂	1.2223, 4°	Seubert. Ber. 21,
" " " 1.250, 15° Cahours. J. 1, 532, Kopp. A. C. P. 95, 307. " " 9857, 198° 307. Ramsay. J. C. S. 35, 463. Brühl. A. C. P. 285, 1. Emmerling. Ber. 8, 881. Clahours. J. 11, 265. Anschützand Berns. Ber. 20, 1390. Cumyl chloride	Benzyl trichloracetate	C, H, Cl, O, C, H, Cl, O, C, H, Cl O	1.3130, 4° 1.3887, 4° 1.196	" " Wöhler and Liebig.
" " "	"	"	1.2324, 0° } 1.2142, 19°	Cahours. J. 1, 532. Kopp. A. C. P. 95,
Chlorodracylic chloride		"	.9857, 198°	35, 4 63.
Toluyl chloride C ₈ H ₇ Cl O 1.175 1.6817, 20° Rer. 20, 1390. Cumyl chloride C ₈ H ₇ Cl O 1.07, 15° Cahours. J. 1, 534. Anisyl chloride C ₈ H ₇ Cl O 1.207, 16° Cahours. J. 1, 538. Cinnamyl chloride C ₈ H ₇ Cl O 1.207, 16° Cahours. J. 1, 538. Chaours. J. 1, 538. Cahours. J. 1, 534. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 534. Cahours. J. 1, 534. Cahours. J. 1, 534. Cahours. J. 1, 534. Cahours. J. 1, 534. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538. Cahours. J. 1, 538.				285, 1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•			881
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.		,	Ber. 20, 1390.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Anisyl chloride Cinnamyl chloride	C ₈ H ₇ Cl O ₂ C ₉ H ₇ Cl O	1.261, 15° 1.207, 16°	Cahours. J. 1, 538. Cahours. J. 1, 535. Brühl. A. C. P.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dichloracetophenone	C ₈ H ₆ Cl ₂ O	1.338, 15°	Gautier. Ber. 20,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorobenzylethylate Ethyl benzylehlormalo-	C ₈ H ₅ Cl ₅ O C ₉ H ₁₁ Cl O C ₁₄ H ₁₇ Cl O ₄	1.121, 140	" " Naquet. J. 15, 420. Conrad. Ber. 13,
Derivative of bergamot oil 6 (C ₁₀ H ₁₆). 2 H Cl896 Ohme. A. C. P. 31,	Benzodichlorhydrin Trichlorphenomalic acid Tetrachlorethyl camphor- ate.	C ₇ H ₇ Cl ₃ O ₅	1.386, 14°	Truchot. J. 18, 503. Carius. J. 1866, 561. Malaguti. Ann. (2), 70, 360.
	· ·		'	ni Ber. 13, 2210.
111 ₃ O 310.	Derivative of bergamot oil	6 (C ₁₀ H ₁₆). 2 H Cl. H ₂ O	.896	Ohme. A. C. P. 81, 318.

THE SUPPLEMENTAL WINE COLUMN OR CHILLS.

·			
- 141	··teph()	. SO GRAFITT.	Alterent
4 41 7% a	1 ₁ , 4	.994 775 9	Hisschopinsk, L.S.
	•	101, 974	Engler, Ber 5, 1000.
Programme Communication	1 1 N	. E'4 30' 4	Bisschopensk, B.S. C. 20, 440.
The service of the		; word ; 48161, 72 ^{rg} W.	Dumas. Bisschopinek L.S.
			C, 20, 450
e in the part of details		1 41 1 177	Otto. J. IL 400
gar in local transfer a	1. 36 6 V	. 1620 70°	Henry, C. E. 101.
$F_{ij} = \{ (i,j) \mid i \in \mathcal{F}_{ij} \mid i \in \mathcal{F}_{ij} \}$	and the same of the	: DRIC 74 1	Tscherniak Ber
	_	CERNOL TEF	147.
	e i this et 🔪	1 90% 165	Wallack har see 14.
	C. 14, C. X	1 0 450, 057	Wallach, Ber. 7, 325
		745	Wallach and Street er. Ber. 18, 512
a service	O, H, C X,	10900	Wallach sail Schulze. Ber. 14
•	(v_{g},H_{g},v_{g},X)	2888, 0°	Beilstein and Karra
.		1 21 AV NO.	tow. Ber. 7. 48
•		3452 OF	Beilstein and Kurle- tow. A. C. P. 174
	1		45.
aski (P. erelei	P. H. CLN	1.151,200	Wroblevsky. Z. C. 12, 322-544.
p and		1, 1877, 506 777	Wroblevsky. Z. C. 12, 684.
10		1 203, 195	11
le degr		1 175, 196	Henry and Radze- zewski. Z. C. 12. 542.
	Cally CLN	1,146, 206	Ost. J. P. C. 2 27. 278.
	Call CLN	1 2752, 169,2)	Bodewig. Tübingen
	1 " " " "	1 2754, 16%6	In. Diss. 1885.
1	1	1.8768, 149.6	
		1.3766, 150	"
Clarifornia (b. 100)	C. H. S. C.	1.6273, 21°.8	Behrend. A. C. P. 229, 26.

LIV. COMPOUNDS CONTAINING C, CL, N, O, OR C, H, CL, N, O.

Name.	Formula.	Sp. Gravity.	Authority.
Chloronitromethane	C H ₂ Cl N O ₂	1.466, 15°	Tscherniak. Ber. 8, 609.
Dichlordinitromethane	C Cl ₂ N ₂ O ₄	1.685, 15°	Marignac. Watts'
Chlorpierin	C Cl ₃ N O ₂	1.6657 1.69225, 0°	Stenhouse. J. 1, 540. Thorpe. J. C.S. 87,
Dichloramyl nitrite Trichloracetyl cyanide	C ₅ H ₉ Cl ₂ N O ₂ C ₃ Cl ₃ N O	1.48444, 111°.9 1.288, 12° 1.559, 15°	Guthrie. J. 11, 404. Hofferichter. J. P.
Trichloracetic dimethylamide.	C, H, Cl, N O	1.441, 15°	C. (2), 20, 195. Franchimont and Klobbie. Ber. 20, ref. 690.
Ethylene chloronitrin	C2 H4 C1 N O3	1.378, 21°	Henry. Ann. (4), 27, 243.
Propylene chloronitrin Dichlormethoxylacetoni- tril.	C ₃ H ₆ Cl N O ₃ C ₃ H ₈ Cl ₂ N O	1.28, 12° 1.3885	Bauer. A. C. P. 229, 163.
Dichlorethoxylacetonitril_ Dichlorpropoxylacetoni-	C ₄ H ₅ Cl ₂ N O C ₅ H ₇ Cl ₂ N O	1.3394, 15°.5 1.2882, 15°.5	100. 11 11
tril. Dichlorisobutoxylecetoni- tril.	C ₆ H ₉ Cl ₂ N O	1.1226, 15°.5	££ ££
Monochlordinitrin	C ₃ H ₅ Cl N ₂ O ₆		Henry. A. C. P. 155, 168.
DichlormononitrinChlorazol	$\begin{bmatrix} C_3 & H_5 & Cl_2 & N & O_3 & \dots \\ C_4 & H_3 & Cl_3 & N_2 & O_4 & \dots \end{bmatrix}$	1.465, 10° 1.555	Mühlhaüser. J. 7,
Dichlornitrophenol	C ₆ H ₃ Cl ₂ N O ₃	1.59	671. Fischer. A. C. P., 7th Supp., 185.
Chlornitrobenzene	C ₆ H ₄ Cl N O ₂	1.377, 0°	Sokoloff. J. 19, 552.
"	"	1.368, 22°	Jungfleisch. J. 21, 345.
" Meta		1.584	Schröder. Ber. 13, 1070.
" Para	"	1.380, 22°	
Chlordinitrobenzene	C ₆ H ₃ Cl ₂ N ₂ O ₄	1.697, 22°	Jungfleisch. J. 21, 345.
"		1.6867, 16°.5	Jungfleisch. J. 21, 346.
		1.72, 18°	Engelhardt and Latschinoff. Z. C. 13, 232.
Dichlornitrobenzene	C ₆ H ₃ Cl ₂ N O ₂	1.669, 22°	Jungfleisch. J. 21, 348.
Trichlornitrobenzene	1	ŀ	Jungfleisch. J. 21, 351.
Dichlordinitrobenzene	C ₆ H ₂ Cl ₂ N ₂ O ₄	1.7103, 16°	Jungfleisch. J. 21, 348.
Trichlordinitrobenzene	C ₆ H Cl ₃ N ₂ O ₄	1.850, 25°	Jungfleisch. J. 21, 352.

Name.	FORMULA.	Sp. Gravity.	Authority.
Tetrachlornitrobenzene	C ₈ H Cl ₄ N O ₂	1.744, 25°	Jungfleisch. J. 21, 353.
Pentachlornitrobenzene	C ₆ Cl ₅ N O ₂	1.718, 25°	Jungfleisch. J. 21, 354.
Chlornitrotoluene	C ₇ H ₆ Cl N O ₂	1.307, 18°	
"		1.3259, 18° 1.300, 20°	
Parachlormetanitrotolu- ene.	·	1.297, 22°	Gattermann and Kaiser. Ber. 18, 2600.
Dichlornitrotoluene	C, H ₅ Cl ₂ N O ₂	1.455, 17°	Wroblevsky and Pirogoff. Ber 3, 203.
Derivative of acetanilide. Derivative of protein	C ₈ H ₉ Cl ₃ N O ₂ C ₁₂ H ₁₂ Cl ₃ N O ₂	1.3893, 20° 1.628	
	C ₁₂ H ₁₂ Cl ₃ N O ₄	1.360	" "

LV. COMPOUNDS CONTAINING C, H, AND BR.

1st. Bromides of the Paraffin Series.

Name.			F	ORMULA.		Sp. Gravity.	AUTHORITY.
"	"		C H ₃ E				Pierre. C. R. 27, 213 Two lots. Merrill. J
"	"		"			1.73306, 15° 1.72345, 25°	P. C. (2), 18, 293 Perkin. J. P.C. (2) 31, 481.
66 66	"		46 46			1.46576, 15° 1.45967, 18° 1.45554, 20°	Weegmann. Z. P. C
"	"		"			1.45349, 21° 1.44733, 24° 1.44122, 27°	2, 218.
Ethyl bro	omide		C ₂ H ₅ F	3r	- 1	1.40 1.47329, 0°	Löwig. A. C. P. 8
"	"		"			1.4600, 20°	
"	"		**			1.4621, 9°	Dehn. A. C. P., 4t Supp., 85.
"	"		"			1.4685, 13°.5	P. 160, 195.
"	"		"				
"	"		"			1.4679, 100-18	So Regnault. P. A
"	"		"			1.4582, 15°-20 1.47, 15°	

			<u> </u>			1
	NAM	IE.	F	ORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl	bromide)	C ₂ H ₅ 1	Br	1.4069, 20°	Naumann. Ber. 10 2016.
**	"		"	******	1.4579, 14°	De Heen. Bei. 5, 105
4.6	"		"		1.4134, 38°.4	Schiff. Ber. 19, 560
4.6	"		"		1.44988, 15°)	Perkin. J. P. C. (2)
44	"		"		1.48250, 25°	81, 481.
Propyl	bromid	le	C ₃ H ₇ I	Br	1.353, 16°	Chapman and Smith J. 22, 360.
"	"		"		1.388, 0°	Rossi. A. C. P. 159
"	**		"		1.3497, 00)	
"	**		"		1.301, 30°.15	Pierre and Puchot
"	"		"		1.2589, 54°.2)	Ann. (4), 22, 284
"	"		"		1.3577, 16°	Linnemann. A. C. P. 161, 40.
**	"		"		1.3520 } 20° {	Brühl. A. C. P.
"	"		"		1.0020	203, 1.
"	"		"		1.3617, 140	De Heen. Bei. 5, 115.
"	"		"		1.3835, 0° }	Zander. A. C. P. 214,
"	"		"		1.2639, 71°	181.
46	**		:4		1.36110, 15° \	Perkin. J. P. C. (2),
46	16		"		1.34739, 25° }	31, 481.
Isoprop	pyl bror	nide	"		1.320, 18°	Linnemann. J. 18, 489.
"		٠	"		1.33, 210	Linnemann.
"	6	·	"		1.248, 20°	Linnemann. A. C. P. 161, 18.
"	6		"		1.2997	· · ·
"	4		"		1.8097 } 20° {	Three lots. Brühl.
"	6		"		1.3117	A. C. P. 203, 1.
46	4		"		1.3397, 0° }	Zander. A. C. P.
"	4		"		1.2368, 600	214, 181.
**	6		"		1.31978, 15° 1	Perkin. J. P. C. (2),
46	6		"		1.30522, 25°	31, 481.
Butyl h	bromide		C4H9H	3r	1.305, 0°)	
ü	"		٤.		1.2792, 20° }	Lieben and Rossi.
"	**		44		[1.2571, 40°)	A. C. P. 158, 137.
"	"		"		1.2990, 20°	Linnemann. Ann. (4), 27, 268.
"	44		"		1.2605, 14°	De Heen. Bei. 5, 105.
Isobuty	l brom	ide	"		1.274, 16°	Wurtz. J. 7, 572.
"	"		"		1.2702, 16°	Chapman and Smith. J. C. S. 22, 153.
**	"		"		1.249, 0°)	
**	"		"		1.191, 40°.2	Pierre and Puchot.
44	"		4.4		1.1408, 73°.5	Ann. (4), 22, 314.
"	"		"		1.2038, 16°	Linnemann. A. C. P. 162, 1.
46	"		**		1.1456, 90°.5	Schiff. Bei. 9, 559.
44	. "		"		1.27221, 15°)	Perkin. J. P. C. (2),
**	"		44		1.25984, 25°	31, 481.
Trimet	hylcarb	yl bromide.	"		1.215, 20°	Roozeboom. Ber. 14, 2396.
"		"	"		1.20200, 15°)	Perkin. J. P. C. (2),
"		"	"		1.18922, 25°	31, 481.
Normal	l pentv	bromide	C. H	Br	1.246, 0°)	J., 201.
(1	- Polity	"	-6 - 111		1.2234, 20° }	Lieben and Rossi.
"	"	"	"		1.2044, 40°	A. C. P. 159, 70.

Name.	Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Amyl bromide	C ₅ H ₁₁ H	3r	1.16576, 0° 1.217, 16°	Pierre. C. R. 27, 213. Chapman and
"			1.2045, 20°	Smith. J. 22, 367. Haagen. P. A. 131, 117.
" "	"		1.2059, 15°.7 1.0502, 120°	Mendelejeff. J. 13,7. Ramsay. J. C. S.
	"		1.2002, 14°	85, 468. De Heen. Bei. 5, 105.
" " ———			$\left\{ \begin{array}{c} 1.0126 \\ 1.0127 \\ 1.2058, 22^{\circ} \end{array} \right\}$	Schiff. Ber. 14, 2766. Lachowicz. A. C. P.
" " <u></u>			1.0881, 118°.5_ 1.225, 15°	220, 171. Schiff. Ber. 19, 560. Le Bel. B. S. C. 25,
" " Inact			1.2358, 0°	546. Balbiano. Ber. 9,
tt tt			1.21927, 15° } 1.20834, 25° }	1437. Perkin. J. P. C. (2), 31, 481.
Normal hexyl bromi		3r	1.1935, 0° (1.1725, 20° }	Lieben and Janecek.
Normal heptyl brom	ide C, H ₁₅ H	3r	1.1561, 40°) 1.133, 16°	J. R. C. 5, 156. Cross. J. C. S. 32, 123.
Secondary heptyl bro			1.422, 17°.5	Venable. Ber. 13, 1650.
Normal octyl bromic	le C ₈ H ₁₇ H		1.116, 16° 1.11798, 15° } 1.10993, 25° }	Zincke. J. 22, 371. Perkin. J. P. C. (2), 31, 481.
Secondary octyl bron	" ebin		1.0989, 22°	Lachowicz. A. C. P. 220, 185.

2d. Bromides of the Series C_n H_{2n} Br_2 .

NAME.			Formula.		Sp. Gravity.	Authority.
Methylene	" " "		C H ₂ Br ₂		2.49850 2.499922 2.47849 2.47745 25°	Steiner. Ber. 7, 507. Henry. Ann. (5), 30, 266. Perkin. J. P. C. (2), 32, 523.
miny tene	Didilide	/	O II, Br. O II,	Dr +-	2.104, 21	Regnault. Ann. (2), 59, 358.
"	"		"		2.128, 18°	D'Arcet. J. P. C. 5, 28.
"	**		46		2.16292, 200.1	
66			"		2.179	
66	66	•	"		2.1827, 20°	Haagen. P. A. 181, 117.

1

Name.			Formu	L A .	Sp. Gravity.	Authority.
Ethylene	bromide		C H ₂ Br. C	H, Br	2.198, 10°	Reboul. Z. C. 18, 200.
**	"		"		2.21324, 00	Thorpe. J. C. S.
44	44				1 00104 1010 4	
"	44		"		0 1 20 2 1100 1	Anschütz. A. C. P.
46	4.6		"			221, 133,
44	44		44		1.9246, 130°.3	Schiff. Ber. 19, 560.
"	"		"		2.18895, 15°)
44	"		"		2.17271	Perkin. J. P. C.
44	"		46		2.17197	(2), 32, 523.
	"		"		2.17681, 20°	Weegmann. Z. P. C. 2, 218.
Ethyliden	e bromid	le	С Н ₈ . С Н В	r	2.135, 00	Caventou. J. 14, 608.
	"		3. "		9 190)	Reboul. Z. C. 13,
"	46		"		2.125 10° }	200.
"	"		"		2.0822, 21°.5	Anschütz. A. C. P. 221, 138.
44	46		"		2.10006, 17°.5	(Angelbis Frei-
"	"		"		2.08905, 20°.5	burg Inaug. Diss. 1884.
46	64		"		2.10297, 15°)	Perkin. J. P. C.
16	66		"		2.08540, 25°	(2), 32, 523.
"	"		"		2.05545, 20°	Weegmann. Z. P. C. 2, 218.
Trimethyl	ene bron	nide	CH ₂ Br.CH ₂	CH ₂ Br	2.0177, 0°	Geromont. A. C. P. 158, 870.
"	61		"		1.98 8 9, 13°.5	Reboul, J. C. S. 36, 127.
"	•	·	"		1.9228	Freund. Ber. 14, 2270.
44			"		2.0060, 0°)	Zander. A.C.P. 214,
"	61		44		1.7101, 165°	181.
"	. 6		4.6		1.98236, 15° {	Perkin. J. P. C. (2),
"	6.6		"		1.96836, 25°	82, 523.
Propylene	bromide	e	CH ₃ . CH Br.	CH,Br	1.7	Reynolds. J. 3, 495.
-4.6	44		"		1.974	Cahours. J. 3, 496.
"	"		66		1.955, 9°	Reboul. Z. C. 13, 200.
"	"		"		1.954, 15° }	Linnemann. A.C.
"	"		"		1.950, 16°	P. 136, 53.
"	"		"		1.943, 17°	Linnemann. A. C. P. 138, 123.
"	**		66		1.972, 0° }	Erlenmeyer. A. C.
"	44		"		1.946, 17° }	P. 139, 226.
"	44		"		1.9586, 0° {	Two products.
"	"		66		1.9256, 20°	Friedel and La-
"	"		"		1.9710, 00 1	denburg. B. S.
"	"		""		1.9383, 20°	C. 8, 146.
**	"		"		1.9463, 17°	Linnemann. A. C.
"	"		66	1	1.9465, 15° j	P. 161, 42.
44	"		**	1	1.9617, 0°	Zander. A. C. P.
"	"		"		1.6944, 141°.7 ₋	214 , 181.
"	"		"		1.8893, 18° \	Gladstone. Bei. 9,
"	"		"		1.910, 21° }	249.
"	"		"		1.94426 } 150-)
"	"		"		1.944/4)	Perkin. J. P. C.
"	"		"		1.93004 } 25°-	$\int_{0}^{1} \frac{618111}{(2)}, 82, 523.$
44	44		66	1	1.98080 } 20 -	, (=/, ==, ===.

			
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dimethylmethylene bromide. Methyl- bromacetol.	} {	1.8149, 0° } 1.7825, 20° } 1.895, 9°	Friedel and Laden- burg. B. S. C. 8, 150. Reboul. Z. C. 13,
		1	200.
	"	1.875, 10° 1.84761, 15° } 1.83140, 25° }	Reboul. Perkin. J. P. C. (2), 32, 523. Wurtz. J. 22, 365.
		1.8503, 0° }	Grabowsky and Saytzeff. A. C.
" " "		1.8204, 20°	P. 179, 832.
β Butylene bromide		1.8119	Wurtz. J. 20, 573.
" "		1.8053, 0° L 1.7215, 50°.3 1.6378, 100°	Puchot. Ann. (5), 28, 543.
" "	"	1.74343 } 15°- 1.75586 } 15°- 1.73083 } 259	Perkin. J. P. C.
" "	"	1.74294 } 25-	(2), 32, 523. Two samples. Lin-
Isobutylene bromide		1 - 1 - 1 - 1	nemann. A. C. P. 162, 1.
" "	"	1.808, 24°	
	0- C ₂ H ₅ . (CH Br) ₂ . CH ₃		
Isoamylene bromide	C ₅ H ₁₀ Br ₂	1.3443, 0°	Helbing. A. C. P. 172, 281.
"	"	1.656, 21°	Gladstone. Bei. 9,
" " ——		1)
"		1.62595 (950	Perkin. J. P. C. (2), 32, 523.
Hexylene bromide	C ₆ H ₁₂ Br ₂	1.62921 \(\) 1.582, 19° \(\)	, ,,,
			hours. J. 16, 526.
" " ———	"	1.5975, 18° 1.5967, 20°	Thorpe and Young. A. C. P. 165, 1.
	"	1.6058, 0° }	Hecht and Strauss.
"	.,	1.5809, 19° (A. C. P. 172, 62.
	"	1.6497, 0°	Helbing. A. C. P.
Heptylene bromide	C ₇ H ₁₄ Br ₂	1.5146, 18°.5	172, 281. Thorpe and Young A. C. P. 165, 1.
	·	1	1

3d. Miscellaneous Non-Aromatic Bromides.

Nam	E.	FORMU	L▲.	Sp. Gravity.	AUTHORITY.
Bromoform		C H Br3		2.18	Löwig. A. C. P. 8, 296.
		"		2.9, 12° 2.775, 14°.5	Cahours. J. 1, 501.
"				2.81185, 8°.56 2.48611, 151°.) Thorpe. J. C. S. 87,
"				2.90246 } 15° . 2.88258 } 25° .	Perkin. J. P. C.
Bromethylene	dibromide	C H, Br. C H	H Br ₂	2.88421	Wurtz. J. 10, 461.
16 66	"	"		2.659, 0° 2.624, 16°	Caventou. J. 14,608. Tawildarow. A. C.
6 E 6 E	" "	"		2.65, 0° 2.6189, 17°.5 }	Anschütz. A. C. P.
"	"	"		2.6107, 21°.5 } 2.57896, 20° _	Weegmann. Z. P. C. 2, 218.
Tetrabrometha	ne	CH ₂ Br. C1	Br ₈	2.88, 22° 2.98	Reboul. Z.C. 13, 200. Bourgoin. J. C. S. 32, 443.
66 46 46		. "			Anschütz. A. C. P. 221, 183.
44 44		"		2.87687, 19°.1. 2.87482, 20°	
"		"		2.85836, 27°.3.	
Acetylene tetra			I Br ₂	2.85189, 80°.2. 2.848, 21°.5	Sabanejeff. A. C. P. 178, 114.
" "	"	"		2.9517 }	2010.
"	"	 		2.9712 $17^{\circ}.5$ 2.9629 , $21^{\circ}.5$ 2.92011 , $17^{\circ}.5$	221, 133.
"	"	"		2.96725, 20°	Inaug. Diss. 1884.
Bromethylene, bromide.				1.52	Watts Dictionary.
44 44	" "			1.5286, 11° 1.5167, 14° 1.52504, 9°.6	Anschütz. A. C. P. 221, 133. Perkin. J. P. C. (2),
Dibromethylen	9	"		8.038, 10° } 3.053, 14°.5	82, 523. Sawitsch. J. 18, 431.
"				2.1780, 20°.6	Anschütz. A. C. P. 221, 188.

21 s G

Nane		Francista.		See Garage	DY. ASTUHORIUS.		
donytime differentific.			c, a,	Big	2.090, 274	E. 170.225	
	1	+	-	40		2.2025, 225	
	41	.41		-		22% F_	Plimpton. Ber. Ds
	41	181		Sec		P.D.L.	- Schangieff. Ber. M
	81	-61	-	- 46	-	2.50E. TP	
		-81				2:2714.17	2001 THE
	4.6	40	-	-,41		T. POBE. DE	Wegen A C. I
	41	-81		-,67		2.0852, IIII	P.5. 200. 40.
			-			2:22881,20	2. Inc.
Leitera			-	0、国 1	4	2,68702.20	
Leliero	mbaol	mne	-	CH, C	Br. CE, Br	2.336	Caironna J. E. 496
	45	- monin			41	2.39E, 28°	Wines I DB SE
		-				2.38, 100_	Linnemann. J. D.
		-		de.	ate .	2.82, 120	Behoul J.C.S.B
	.ki	-	-	CH, C	HBc. CHBc	_ 1.856, 18°	Behond C E 7
Fieldero	mbysi	600		CH.Br	CHIB-CH,	E 2.486, 23°	Warte J. 10. 961
	At .		-	2.5	AL	2:166, 0°_	Permut_ J. II. Bis
	All					_ 2.497, 10°	Emry. A. C. P 154, 170.
	50	aire			W.	1 41 B44 17	
	61	-			.0	_ 生物的企 如	
		opane. udeom		CH, C	Be, CH Be	2.90	Oppenheim J. 1.
							450.
		yeide "	-	CHURC	CHB+CH,	2.64	Behoul. J. 11, 40.
		пораже	***	C.H.	90,	2/00/1	Cabours. J. 3. 49
		Jene	*****	C ₁ B ₂	DF annie	1,864, 194	317.
	.00		** ***	-		1.39, 32	Behoul. J. C. S. 3: 127.
	M	-	*****	163	*******	1.42077.13	
	44		*****	M	********	1,40527. 23	
8 Bron	aprop	ylene	***	44	*********	_ 1_400, 13°	Linnemann. A. C
	10	-		64		1.410.140	P. 136. 55.
	14	-	*****	1	********	_ 1.408. 19°	Linnemann. J. I. 308.
	84			14	**********	1.4110, 154	P. 161, 18.
	sa.	**	****	14		1.428, 19°.	5 Reboul. C. R. 7: 817.
Allyl	bromi	le		60	********	1,472	Cahours. J. 3, 49
16	94		*****	14	********	_ 1.451.0° _	-)
54	.54	*****		84		1.4385, 159	
**	14	-		44	*******	_ 1,3609, 629	
44.	44	****	*****	- 44	******	1.4507, 0°	ger. Z. C. 12, 8
46	**			as.		. 1.461, 0° _	-1 Tollens. A. C. I
44	66			4		_ 1.486, 15°	} 156, 158.
H	64	*****		66		1.4593, 0°	
44	44			66		1,3333, 709	2.5 [214, 181.

			
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Allyl bromide		1.396, 20°.5 1.3867, 24°.5	Gladstone. Bei. 9,
"	"	1.3980, 20°	Brühl. A. C. P. 285, 1.
11 11	"	1.42532, 15°) 1.41057, 25°	Perkin. J. P. C. (2), 82, 528.
" Epidibromhydrin Allylene bromide	C ₃ H ₄ Br ₃	2.06, 11°	Reboul. J. 18, 461. Cahours. J. 8, 496.
u u		2.05, 0°	Oppenheim. J. 17, 498.
66 66	"	2.00, 15°	Borsche and Fittig. J. 18, 814.
ee ee	"	1.98, 15°	Linnemann. J. 18, 490.
Propargyl tribromide Propargyl bromide	C ₅ H ₅ Br ₅	2.58, 10° 1.52, 20°	Henry. Ber. 7, 761. Henry. B. S. C. 20,
u u ·	"	1.59, 110	452. Henry, Ber. 7, 761.
Propargyl pentabromide _ Tribromisobutane	C ₃ H ₃ Br ₄ C ₄ H ₇ Br ₃	8.01, 10° 2.187, 17°	Norton and Wil-
_			liams. A. C. J. 9, 88.
Bromamylene		l	l 11. 58.
Isoprene bromide			88, 828.
Isoprene dibromide Bromhexylene. B. 99°-100°.	C ₅ H ₈ Br ₂ C ₆ H ₁₁ Br	1.601, 15° 1.85, 12°	Destrem. Ann. (5), 27, 50.
и В. 188°		1.17, 15°	Reboul and Truchot. J. 20, 587.
" В. 140°	"	1.2205, 0° } 1.2025, 15°	Hecht and Strauss. A. C. P. 172, 62.
Hexine dibromide	C ₆ H ₁₀ Br ₂	1.6977, 0° } 1.5548, 100° }	Hecht. Ber. 11, 1054.
Hexine tetrabromide Dibromdiallyl	$C_6 \stackrel{\text{H}_{10}}{\text{H}_8} \stackrel{\text{Br}_4}{\text{Br}_2}$	2.1625, 0° 1.656	Henry. J. C. S. (2),
Dipropargyl tetrabromide Conylene bromide	C ₆ H ₆ Br ₄	2.464, 19° 1.5679, 16°.25.	11, 1215. Henry. Ber. 7, 761. Wertheim. J. 15,
Bromdecylene		l	867. Rebouland Truchot.
Isovinyl bromide		l .	J. 28, 588. Baumann. A. C. P. 168, 808.
Erythrene hexbromide	C ₄ H ₄ Br ₆	2.9, 15°, 1 8.4, solid}	Colson. B. S. C. 48, 52. Two modifications.

4th. Aromatic Compounds.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Brombenzene	C.H.Br	1.519) 00 (Ladenburg. Ber. 7,
**		1.519 1.522 0° {	1685.
"	"	1.51768, 0°	1
	**	1.50236, 11°.46	Adriagna Ban 6
	"	1.48977, 20°.96	Adrieenz. Ber. 6,
"	"	1.41163, 77°.76	1 3
"	"	1.4914, 20°	Brühl. Bei. 4, 780.
46	"	1.5203, 0°	Weger. A. C. P.
	"	1.3080, 155°.6_	∫ 221, 61.
"		1.4958, 16°)	Gladstone. Bei. 9,
"	"	1.49225, 28° }	249.
	"	1.3080, 155°	Schiff. Bei. 9, 559.
		1.3090, 156°	Schiff. Ber. 19, 560.
Orthodibrombenzene	C ₆ H ₄ Br ₂	2.003, 0° }	Körner. J. C. S. (8),
Water dibasambangana	"	1.955, 18°.6	1, 214.
Metadibrombenzene Paradibrombenzene	"	2.218	Sahrādar Bar 19
raradioromoenzene	"	2.222 4°	Schröder. Ber. 12, 561.
"		1.8406, 89°.8	Schiff. A. C. P. 223,
		1.0200, 00 .022	247.
Renzul bromide	C. H., C.H. Br	1.438. 229	Kekulé. J. 20, 662.
Benzyl bromide Orthobromtoluene	C. H., C.H., Br	1.4092, 210.5	Glinzer and Fittig.
0.1120010111011011011011011111111111111	of =1, o =1,		J. 18, 538.
"	**	1.4109, 220	Kekulé. J. 20, 663.
"	44	1.401, 18°	Wroblevsky. A. C.
			P. 168, 147.
"		1.2031, 182°.5_	Schiff. Ber. 19, 560.
Metabromtoluene	**	1.4009, 210	Wroblevsky. Z. C.
		1	13, 239.
Parabromtoluene	"	1.3999, 30°	Hübner and Terry.
	1	1	Z. C. 14, 232.
Dibromtoluene. B. 236°	Ca H3. C H3. Br2	1.8127, 19°	Wroblevsky. Z. C.
			13, 239.
" B. 238°-239° -		1.812, 19° 1.812, 22°	_ " "
" B. 246°	"	1.812, 22°	
			14, 272.
Ethylbrombenzene. 1.4	C ₆ H ₄ . C ₂ H ₅ . Br	1.34, 130.5	
- ,	0 W 0 W 0 W D	1 005 010	J. 20, 609.
Bromxylene	C ₆ H ₈ . C H ₈ . C H ₈ . Br	1.335, 21	Beilstein. J. 17, 530.
" 1.2.4	· · · · · · · · · · · · · · · · · · ·	1.3693, 15	Jacobsen. Ber. 17,
" 1.3.5		1 000 000	2373.
1.8.5	·	1.862, 20°	
Watermalal baseside	CH CH CH P.	1 9711 990	P. 192, 215.
Metaxylyl bromide	C ₆ H ₄ . C H ₃ . C H ₂ Bi	1.0/11, 20	
		1	Wispek. Ber. 15,
Orthoxylyl bromide		1.3811, 23°	1745.
Orthoxylyl bromide	·	1.9011, 20	
	1	1	Wispek. Ber. 15, 1747.
Dibromorthoxylene	C. H., (C. H.), Br	1.7842 150	Jacobsen. Ber. 17,
Diolomoi mon y lond annual		1.1012, 10	2377.
Orthoxylylene bromide	C. H. (C H. Br).	1.934, 00 8 1	Colson. Ann. (6), 6,
Orthoxylylene bromide	-8 -4 (0 -3 -1/3	1.680, 950, 1	86.
	-,	,, •• , ••)	

1

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Orthoxylylene bromide	C ₆ H ₄ (C H ₂ Br) ₂	1.988	Colson. C. R. 104,
Metaxylylene bromide	" "	1.784, 0°, s. 1.615, 80°, l. 1.959	Colson. Ann. (6), 6, 86.
			Colson. C. R. 104, 429.
Paraxylylene bromide	"	2.010, s }	Colson. Ann. (6), 6, 86.
" "	"	2.012	Colson. C. R. 104, 429.
Brommesitylene. 1.8.5.6	C ₆ H ₂ (C H ₃) ₃ . Br	1.8191, 10°	Fittig and J. Storer, J. 20, 704.
Isopropylbrombenzene. 1.4.	C ₆ H ₄ . C ₈ H ₇ . Br	1.3223, 18°	Meusel. J. 20, 698.
" "	"	1.8014, 15°	Jacobsen. Ber. 12,
Dibromcymene	C ₁₀ H ₁₂ Br ₃	1.596	
β Bromamylbenzene Benzene hexbromide			Dafert. M. C. 4, 621. Meunier. Ann. (6),
Bromnaphthalene	C ₁₄ H ₁₈ Br	1.818, 9° 1.555 1.508, 12°	Stelling and Fittig. Glaser. J. 18, 562. Wahlforss. J. 18, 564.
	"	1.48875, 16°.5- 1.47496, 28°.1- 1.42572, 77°.6- 1.5678, 16°.5)	Nasini and Bern- heimer. G. C. I.
"	"	1.5403.17° >	Gladstone. Bei. 9, 249.
β	"	1.5403, 18°) 1.605, 0°	Roux. B. S. C. 45,
a Tetrabrom hydrocam- phene. B Tetrabromhydrocam-		2.2042 1.93711	ref. 438.
phene.		1.00/11	••

LVI. COMPOUNDS CONTAINING C, H, O, AND BR.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
aβ Dibrompropyl alcohol.	C ₃ H ₆ Br ₂ O	2.1682, 0° } 1.7535, 219° }	Weger. A. C. P. 221, 61.
Monobromtrimethy lcar- binol.	C ₄ H ₉ Br O	1.429, 0°	Guareschi and Garzino. J. C. S. 54, 487.
Dibromhexyl alcohol	C ₆ H ₁₂ Br ₂ O	1.99, 15°	Destrem. Ann. (5), 27, 50.
Bromethyl oxide	C ₄ H ₉ Br O	1.3704, 0°	Henry. C. R. 100, 1007.
Bromacetyl bromide	C ₂ H ₂ Br ₂ O	2.817, 21°.5	
Propionyl bromide	C. H. O. Br	1.465, 140	Sestini. J. 22, 528.

Xan	E. ;	FORMILLA.	die Gierren.	MOTHORYS.
Mironaeesica	لاأذ	_ H, B, U,	25	Beliin and Dump
Bromobutychica	eith	H. Br V2	1.54.05	Л. 111. 2265. Sidimediber. Л. 1124.
Branifoliuyetic	4.	4.	77 2000, 12 1200000	Histiani Weldinger: Ber. U. 1446.
Mheumalinişisi	andid	He Bry Vy	1.97	Schneider. J. 114
Bronomentic se	ا سست الله	HE BY W	1.0652.20°	Ouilemans. J. P. C. B. UT.
Kaligel incomment	##	. H. Br (1)2	1.7230.050	Gladstone. Bei. 2
Differentially law	ا اسدر علیله	La Blag Blag Danner	1.142.17	Kessil. Ber. III
E odysi darangang	iivante (E B, Br Wg	1.89G, IIP	Hanry A. C. P.
अक्रमंतुर्व वीतिक जनसङ्ख्या	ungangiis- (E. Br. Br. Og	1.10042,(D=)	Philippi. Göttingen Enaug. Diss. 1872
igt ionseturi i sec	11 B.	,41	1. W7777, (IP	Winger. A. C. P.
Echyl dibrampr	grisnaus. a (H, Br, O,	1.7728,0°	Philippi. Gitt. In-
181 .81	Bin	;¢;	1.796, 12° ()	
'êt 'êt 'êt 'êt	B.	.61	1.777, 15° _ jj	A. C. P. D
'41 '41 '41 '41	المدمد الماء المديد الماء	igi	1.4554.2549.6	Weger. A. C. P. 221, 41.
Propy! tilbroup	enginande. (Bry Da	LANEZ, IP	Philippi. Gir. In-
.46 ,46 .46 ,46	48	.61	1.7004.0° _ 1	Weger. A. C. P. 221, Gl.
Burg Lilliannya	ightennoon of t	Ha Br. O.	1.499k, 00 _ /	Philippi. Gim. In- ang. Diss. DKT.
Matthyri Harvanihut	lgrandes Y	", H, Br (),	1.450, 5	Benry. C. R. 202
Echyl brushluts	ystaide: (E Hay Br Og	1_22, 15°	Schneider J. 14. 438 Ochours, J. 15, 208
14, 14,	7	w	LBCK, D°	Henry C. R. 162
Edby'l demoised	- 1	55	1.898.00	Hell and Wimekind Ber. 7, 205.
Rabyl boundale Rabyl boundab	miles of half	C, H, Br O,	1.226, 199	Justin Ber 17, 2504 Bocking A. C. P
anniale. c. Browni	,	C, H Br, O	1	204, 24. Lowig. A. C. P. 3
Parabromalide	1	<i>u</i>		305
Brownertone		C, H, Br O	2.107 1.99	Closz. J. 12, 433. Sokolowsky. B.S. C
Dibronweetone		C, H, Br, O	2.5 2.68, 0°	27, 371.
vae.	i		i	Demole. Ber. 11 1712.
-	_	C, H,. Br. O H	•	Henry. Ann. (4), 27 243.
Bromethylene b Bromethylene b	romacetin (C, H, Br. Br. O H C, H, Br. Br. C, H,	0, 1.98, 0°	Demole. Ber. 9, 50 Demole. Ber. 9, 51
Ethylidene bro	methylate.	C, H, Br. O C, H	O, 1.98, 0° 1.0632, 12°	Henry. C. R. 100 1007.

		···	
Name.	Formula.	Sp. GRAVITY.	AUTHORITY.
Trimethylene bromhydrin	C ₃ H ₆ . Br. O H	1.5874, 20°	Frühling. Ber. 15, 2622.
Ethoxybromamylene Hexylene bromhydrin Ethyl bromacetacetate	C ₅ H ₈ Br. O C ₂ H ₅ C ₆ H ₁₂ . Br. O H C ₆ H ₉ Br O ₃	1.28, 19° 1.2959, 11° 1.511, 22°	Reboul. J. 17, 507. Henry. C. R. 97, 260. Duisberg. Ber. 15,
Ethyl dibromacetacetate Ethyl tribromacetacetate_	C ₆ H ₈ Br ₂ O ₃ C ₆ H ₇ Br ₃ O ₃	1.884, 25° 2.144, 22°	1878.
Ethyl tetrabromacetace- tate.	C ₆ H ₆ Br ₄ O ₈	2.401, 17°	
Dibromide of dibromacet- acetic ether.	C ₆ H ₈ Br ₄ O ₃ . ?	2.820, 21°	Conrad. A. C. P. 186, 288. Compare Ber. 15, 2183.
Ethyl bromethylacetace- tate.	C ₈ H ₁₅ Br O ₅	1.854	Wedel. A. C. P. 219, 102.
Ethyl dibromethylacet- acetate.	C ₈ H ₁₂ Br ₂ O ₈	1.860	Wedel. A. C. P. 219, 108.
Ethyl tribromethylacet- acetate. Ethyl β bromacetopro-	C ₇ H ₁₁ Br O ₈	1.489, 15°	
pionate. Ethyl brompropiopro-	C ₈ H ₁₃ Br O ₃	1.887, 15°	zeit. Ber. 17,2286. Israel. A. C. P. 281,
pionate. Ethyl dibrompropiopropionate.	C ₈ H ₁₂ Br ₂ O ₃	1.611, 15°	197.
Bromallyl alcohol	C ₃ H ₅ Br O	1.6, 15°	Henry. B. S. C. 18, 282.
Bromallyl acetateAllyl dibrom propionate. β _	C ₅ H ₇ Br O ₂ C ₆ H ₈ Br ₂ O ₂	1.57, 12°	" " " Münderand Tollens.
Dibromallyl oxide	C ₆ H ₈ Br ₂ O	1.818, 20° } 1.7, 17°	A. C. P. 167, 222. Henry. B. S. C. 20, 452.
Brommethylallyl oxide	C ₄ H ₇ Br O	1.85, 10°	Henry. B. S. C. 18, 232.
Bromethylullyl oxide Monobromhydrin Dibromhydrin	C ₅ H ₉ Br O C ₈ H ₅ . Br (O H) ₂ C ₈ H ₅ . Br ₂ O H	1.27, 12° 1.717, 4° 2.11, 10°	Henry. Ber. 5, 186. Veley. C. N. 47, 39. Berthelot and De
"	"	2.11, 18°	Luca. J. 8, 627. Berthelot and De Luca. J. 9, 601.
"	"	2.02, 18°.5	Zotta. A. C. P. 174, 87.
Epibromhydlin	-	1.615, 14°	Luca. J. 9, 600.
Bromdiethylin Diethyl brommaleate	C ₈ H ₅ . Br (O C ₂ H ₅) ₂ . C ₈ H ₁₁ Br O ₄	1.258, 8° 1.4095, 17°.5	Henry. Ber. 4, 701. Anschütz and Aschman. Ber. 12, 2284.
Dibromoleic acid Bromcitropyrotartaric an- hydride.	C ₁₈ H ₃₂ Br ₂ O ₂ C ₅ H ₃ Br O ₃	1.272, 7°.5 1.985, 28°	Lefort. J. 6, 451. Bourgoin. J. Ph. C. 26, 284.
Ethyl d brompyromucate.	C, H, Br O,	1.528, 0°	Hill and Sanger. A. C. P. 282, 52.
Orthomonobromphenol Paramonobromphenol	C ₆ H ₅ Br O	1.6606, 80° 1.840, 15°	Körner. J. 19, 574. Hand. A. C. P. 284, 188.

Name.	FGRMULA.	SP. GRAVITY.	Authority.
Brommethylphenol	C ₇ H ₇ Be O	I.494, 9°	Henry. Z. C. 13,
Bromparakresol	и <u></u>	1.5488, 249.5_	Schall and Dralle. Ber. 17, 2531.
Brommeth viparakresol	C. H. Br O	1.4182, 24°.5	4 4
Bromisopropylphenol	Ca HI Br O	1.967, 12°.5	Silva. R.S.C., Jan., 1870.
Bromallylphenol ether		1.4028, 11°	
Brommethyleugenol	C _{II} H _{IB} Br O ₂	1.3960, 0°	Wassermann. C. R. 86, 1207.
Benzoyl bromide	C ₇ H ₅ O. Br	1.5700, 15"	Claisen. Ber. 14, 2473.
Monobromeamphor	C ₁₆ H ₁₅ Br O	I.437 }	Schröder. Ber. 13, 1070.
Santonyl bromide		1.4646	Carnelutti and Na- sini. Ber. 13, 2210.

LVII. BROMINE COMPOUNDS CONTAINING NITROGEN.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Brompierin	C Br, N O	2.811, 12°.5	Bolas and Groves. Z. C. 13, 414.
		2.816, 13°	Gladstone. Bei. 9, 249.
Tetranitroethylene bro- mide.		1	Villiers. J. C. S. 42, 815.
Bromonitric glycol	C ₂ H ₄ Br N O ₃	1.735, 8°	Henry. Ann. (4), 27, 243.
Bromallyl nitrate	C ₃ H ₄ Br N O ₃	1.5, 13°	Henry. B. S. C. 18,
Nitrobromtoluene. B. 2899	C, H, Br N O2	1.612, 20°	
" B. 256°		1.631, 18°	Wroblevsky. Z. C. 13, 166.
Bromtoluidine. B. 240°	C ₇ H ₈ Br N	1.510, 20°	Wroblevsky. A. C. P. 168, 147.
" B. 255°-280°	£,	1.1442, 19°	Wroblevsky. A. C. P. 192, 203.
Brompyridine	C ₅ H ₄ Br N	1.645, 0°	Ciamician and Dennstedt. Ber. 15, 1174.
"			Danesi. Ber. 15, 1177. Hofmann. Ber. 16. 589.

LVIII. COMPOUNDS CONTAINING C, H, AND I.

1st. Iodides of the Paraffin Series.

	N.	AME.	נ	FORMULA.	Sp. Gravity.	AUTHORITY.
Methy	l iodio	de	CH ₃	I	2.227, 22°	Dumas and Peligot. Ann. (2), 58, 30.
66 66	"		66		2.19922, 0° 2.2636, 20°	Pierre. C. R. 27, 218. Haagen. P. A. 181, 117.
"	"		"		2.269, 25°	Linnemann. Z. C. 11, 285.
46	"		"	~	2.2905, 16°	Sigel. A. C. P. 170, 845.
"	"		"		2.1905, 42°	Ramsay. J. C. S. 35, 468.
46 61	et 61		"		2.28517, 15° } 2.25288, 25° }	Perkin. J. P. C. (2),
"	66		1 "			81, 481.
"	"		;;		2.8346, 00 }	Dobriner. A. C. P.
			ı	T	2.2146, 42°.8	248, 28.
Ethyl i				I	1.9206, 28°.8	Gay Lussac. Ann. (1), 91, 91.
**	"		"		1.92, 16°	Marchand. J. P. C. 83, 188.
"	66		"		1.97546, 0°	Pierre. C. R. 27, 218.
44	"		"		1.9567, 50-100	· ·
"	**		"		1.9457, 100-150	Regnault. P. A.
"	44		44		1.9848, 150-200	62, 50.
66	**		"		1.9464, 16°	Frankland. J. 2, 412.
"	"		"		1.9809, 15°	Mendelejeff. J. 18, 7.
"	"		"		1.98, 4°	Berthelot. A. C. P. 115, 114.
**	"		"		1.927, 20°	Linnemann. A. C. P. 144, 138.
"	"		"		1.9265, 19°	Linnemann. A. C. P. 148, 251.
"	"		"		1.935 } 20° {	Haagen. P. A. 181,
"	"		"		1.938	117.
"	61		"		1.979, 00 }	Pierre and Puchot.
44	"		66		1.907, 30°.4	Ann. (4), 22, 261.
"			"		1.9444, 14°.5	Linnemann. A. C. P. 160, 195.
44	66		"		1.944, 15°	Crismer. Ber. 17,652.
"	44		**		1.9818, 14°	Gladstone. Bei. 9, 249.
"	"		"		1.8111, 720.2	Schiff. Ber. 19, 560.
"	"		"		1.96527, 4°	Schin. Der. 18, 500.
"	"		"		1.94332, 15°	Perkin. J. P. C. (2),
"	"		"	'	1.92431, 25°	81, 481.
44	"		"		1.9795, 0°)	
"	"		"		1.8156, 72°.5	Dobriner. A. C. P.
		e	С, Н,		1.789, 16°	243, 23. Berthelot and De
"	"		и,		1.7012, 21°	Luca. J. 7, 452. Linnemann. J. 21, 433.

	dide	C ₃ H ₇ I		I.7343, I6°	Chapman and Smith. J. C. S. 22, 196. Rossi. A. C. P. 159, 79. Linnemann. A. C. P. 160, 196. Linnemann. A. C. P. 161, 25.
	" " " " " " " " " " " " " " " " " " "	.c. .c. .c.		1.7472, 16 ²	Rossi. A. C. P. 159, 79. Linnemann. A. C. P. 160, 196. Linnemann. A. C. P. 161, 25.
	"	 		1.7377, 23°	Linnemann. A. C. P. 160, 195. Linnemann. A. C. P. 161, 25.
	"	 		,	Linnemann. A. C. P. 161, 25.
	44	: c		1.7610, 16°	
	44	14		1	Linnemann. A. C. P. 161, 34.
	"			1.78635. 0°	1
	"	1		1.75085, 192.27	B 1 0 0 00
	"	u		1.74772, 200.79	Brown. J. C. S. 32, 837.
16 16 16 16 16 16 16 16 16 16 16 16 16 1				1.74628, 200.91	C91.
16 16 16 16	"	"		1.7427, 20°	Brūhl. A. C. P. 208, L
16 16 16 16 16		u		1.7483, 140	De Heen. Bei. 5, 106.
16 16 16	"	"		1.5867, 102°.5_	Zander. A. C. P. 214, 181.
66 66		"		1.7838, 0°	Chancel. B. S. C. 39,
1: 11	"	"		1.7508, 16°	Giadstone. Bei. 9,
**	"	66		1.7842, 00]	
**	"	- 4		1.7674, 99.1	
	"	- 44		1.6843, 520.6	Pierre and Puchot.
	"	"		1.6373, 759.3	Ann. (4), 22, 286.
**	"			1.76732, 100	Perkin. J. P. C. (2),
+6	"	66		1.75853, 150	31, 481.
••	"	"		1.7829, 0° 1	Dobriner. A. C. P.
	"	"		1.585, 102°.5 ∫	243 , 23.
Leopropyl	l iodide	"		1.70, 15°	Linnemann. J. 18, 489.
"	"	•		1.714, 16°	Erlenmeyer. A. C. P. 126, 309.
"	"	"		1.73, 0°	Simpson. A. C. P. 129, 128.
••	"	. "		1.725, 0°	Wurtz. See A. C. P. 136, 43.
**	"	. "		1.69, 15°	Linnemann. A. C. P., 3d Supp., 265.
**	"	. "		1.71, 15°	Linnemann. A. C. P., 3d Supp., 267.
**	"	"		1.735, 0°)	Erlenmeyer. A. C.
**	"	. "		1.711, 17° }	P. 139, 229.
**	"	. "		1.71732, 170	H.L.Buff. A.C.P.,
**	··	"		1.562442, 93°	3 4th Supp., 129.
**	"	. "		1.70, 18°	Linnemann. A. C. P. 140, 178.
**	"	- "		1.715, 15°.5	Siersch. A. C. P. 140, 142.
**	"	- "		1.7109, 15°	Linnemann. A. C. P. 161, 18.
46	"	. "	*******	1.744, 00	h
**		"			11
**	"			1.70526, 19°.8	P T 0 0 00
16	11	. "		1.70526, 19°.8 1.70506, 20°.14	Brown. J. C. S. 32, 837.

***************************************	,		
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Isopropyl iodide	C, H, I	1.7088, 20°	Brühl. A. C. P. 203, 1.
" "	"	1.5650, 89°	Zander. A. C. P. 214, 181.
	"	1.7157, 14°	Gladstone. Bei. 9, 249.
11 11	"	1.71680, 15°	Perkin. J. P. C. (2),
		1.70049, 25° 5	81, 4 81.
Butyl iodide	C, H, I	1.648, 00)	Links and Passi
"	"	1.6186, 20°	Lieben and Rossi.
	"	1.5894, 40°) 1.5804, 18°	A. C. P. 158, 187. Linnemann. Ann.
	"		(4), 27, 268.
***************************************		1.6166, 20°	Brühl. A. C. P. 208, 1.
" "	"	1.6172, 14°	De Heen. Bei. 5, 105.
" "	"	1.6476, 0°	Dobriner. A. C. P.
""	"	1.4308, 129°.9	∫ 248, 28.
Secondary butyl iodide	"	1.682, 0°)	
" "	"	1.600, 20° }	De Luynes. J. 17,
" "	"	1.584, 80°)	499.
" "		1.6268, 0°)	
		1.6111, 10°	Lieben. J. 21, 489.
		1.5952, 20°	
	"	1.5787, 80° J	
		1.684, 0°	Wurtz. A.C.P. 152,
Y1		1 604 100	28.
Laobutyl iodide	"	1.604, 19° 1.648, 0°	Wurtz. J. 7, 578.
"			Wurtz. J. 20, 578.
44 44	"	1.6801, 0° }	Chapman and Smith. J. C. S.
"	(1	1.54816, 50°	22, 156.
"	"	1.6345, 0°)	22, 100.
46 46	"	1.6214, 8°.8	
"	11	1.6387, 560.4	Pierre and Puchot.
"		1.464, 98°.8	Ann. (4), 22, 817.
"		1.6081, 19°.5	Linnemann. A. C.
	,,	1	P. 160, 195.
" "	"	1.592, 22°	Linnemann. Ann. (4), 27, 268.
```	. "	1.6433, 0° )	Erlenmeyer and
"		1.6278, 10°	Hell. A. C. P.
" "	. "	1.6114, 20°	160, 257.
"		1.6401, 0° }	Brauner. A. C. P.
" "		1.6050, 20°	192, 69.
" "	. "	1.6056, 20°	Brühl. A. C. P. 208, 1.
" "	"	1.5982	Gladstone. Bei. 9, 249.
"	"	1.4885, 1140.5_	Schiff. Ber. 19, 560.
"		1.61885, 15°	Perkin. J. P. C.
"	"	1.60066, 25°	(2), 81, 481.
Trimethylcarbyl iodide. ?.	"	1.587, 00	l) \ ⁻ /, σ=, σ=.
ii ii _	"	1.501,500.1	m
" "	"	1.571,00 {	Two lots. Puchot.
	"	1.479, 58° }	Ann. (5), 28, 546.
Normal pentyl iodide	C ₅ H ₁₁ I	1.5485, 0° }	Lieben and Rossi.
	.] " "'	1.5174, 20° }	A. C. P. 159, 70.

	7		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Normal pentyl iodide	C ₅ H ₁₁ I	1.4961, <b>40°</b>	Lieben and Rossi. A. C. P. 159, 70.
	"	1.5444, 00	Dobriner. A. C.
		_ 1.3128, 151°.7_	P. 243, 20.
Amyl iodide	"	_ 1.51113, 11°.5_	Frankland. J.8, 478.
" "	- "		Frankland.
"	- "	1.4986, 20°	Grimm. J. 7, 543.
	-   ;;	_ 1.4676, 0° } _ 1.4387, 22°.3	Kopp. A. C. P. 95, 307.
16 66	- 44	1.5087, 15°.8	Mendelejeff. J. 13, 7.
"	64	1.4734, 200	Haagen. P. A. 131,
(6 (6	"	1.5005, 14°	117. De Heen. Bei. 5,
		'	105.
" "		_ 1.5418, 0° }	Flawitzky. Ber. 15,
"	- "	_ 1.5084, 23° }	11.
" "		1.5048, 140	Gladstone. Bei. 9, 249.
"	- "	_ 1.3098, 148° _ 1.5100, 15° )	Schiff. Ber. 19, 560.
11 11	- "	1.49811, 25°	Perkin. J. P. C. (2), 81, 481.
" Active	"	1.54, 15°	Le Bel. B. S. C. 25,
		1.5425, 16°	545. Just. A. C. P. 220,
	۱۵ "	1.505.00	150.
Methylpropylcarbyliodie		1.587, 0° }	Wurtz. J. 21, 446.
		1. <b>5219, 11°</b> }	(Wagnerand Saytz-
"	"	1.539, 0° }	eff. A. C. P. 179,
66 46	"	1.510, 20° }	318.
		1.499, 15°	Romburgh. Ber. 16, 392.
Diethylcarbyl iodide	u	1.528, 0° }	(Wagner and Saytz-
" " "		1.505, 16° }	eff. A. C. P. 175,
" "	"	1.4792	( 865. Gladstone. Bei. 9, 249.
££ <b>££</b>	"	1 500 00	(Wagnerand Saytz-
	"	1.528, 0° }	eff. A. C. P. 179,
		1.501, 20° }	( 318.
Dimethylethylcarbyl ic		1.5207, 0° }	Flawitzky. A.C. P.
dide. "'		1.4954, 19° {	179, 348.
" "		1.524, 0° }	Wischnegradsky. A.
" "		1.497, 19° }   1.522, 0° }	C. P. 190, 334. Winogradow. A. C.
"		1.498, 18° }	P. 191, 125.
Hexyl iodide	C ₆ H ₁₃ I	1.431, 190	
•	1		hours. J. 16, 526.
44 48	"	1.4115	Franchimont and Zincke. C. N. 24, 263.
" "		1.4607, 0° )	
11 11	"	1.4363, 20°	Lieben and Janecek.
" "	"	1.4178, 40° )	J. R. C. 5, 156.
" "	'"	1.4661, 0°	Dobriner. A.C. P.
" "	"	1.2165, 177°.1	_  \ 243, 23.
Secondary hexyl iodide.	"	1.489	Wanklyn and Erlen-
	•	•	meyer. J. 14, 732

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Secondary hexyl iodide	C ₆ H ₁₃ I	1.4447, 0° }	Wanklyn and Erlen-
	"	1.8812, 50° }	meyer. J. 16, 518.
	"	1.4526, 0°	Hecht. A. C. P. 165, 146.
" " "	"	1.4589, 0° )	1
	"	1.8988, 50°	11
	"	1.4477, 0° {	
41 11 11	"	1.8808, 50°	Krusemann. Ber
	"	1.4487, 00 }	9, 1468.
	"		l <b>i</b>
	"	1.4198	Gladstone. Bei. 9, 249.
46 46 146	"	1.42694.159	Perkin. J. P. C. (2),
11 11 11	"		81, 481.
Dimethylisopropylcarbyl			Pawlow. A. C. P.
iodide. "-	"		196, 122.
Pinacolic iodide	"	1.4789, 00	Friedel and Silva.
• • • • • • • • • • • • • • • • • • • •		,	J. C. S. (2), 11, 488.
Normal heptyl iodide	C, H ₁₅ I	1.846, 16°	J. C. S. (2), 11, 488. Cross. J. C. S. 32, 123.
16 16 16	"	1.4008, 0°	) Dobriner. A.C.P.
	"		243, 28.
Dipropylcarbyl iodide	"		Kurtz. A. C. P.
_ · • • • • • • • • • • • • • • • • • •			161, 205.
Normal octyl iodide	C. H., I	1.338, 160	Zincke. J. 22, 871.
	""		•
	"	1.837, 160	Krafft. Ber. 19, 2218.
	"	1.84069, 156	Perkin. J. P. C. (2),
	"		81, 481.
	"	1.8538, 00 }	Dobriner. A. C. P.
	"	1.075, 225°.5	243, 23.
Methylhexylcarbyl iodide	"	1.310, 16°	Bouis. J. 8, 526.
" "	"	1.830, 0° )	De Clermont. J. 21,
" "	"	1.314, 210 }	449.
Normal nonyl iodide	C ₉ H ₁₉ I	1.3052, 00 }	17-off Don 10 0010
"	"	1.2874, 16°	Krafft. Ber. 19, 2218.
Normal decyl iodide	C, H, I	1.2768, 00 \	" "
u u u	· · · · ·	1.2599, 16°	••

2d. Miscellaneous Compounds.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methylene iodide	O H, I,	8.842, 5° 3.8188, 19° )	Butlerow. J. 11, 420.
cc	"	3.826, 15°.5 3.828, 15° } 3.2348, 16° )	Gladstone. Bei. 9, 249.
66 66	"	3.289, 38° } 3.189, 74° }	Brauns. Bei. 11, 698.
thylene iodide	" C, H, I,	8.28528, 15°   8.26565, 25°   2.07	Perkin. J. P. C. (2), 81, 481. E. Kopp. J. P. C.
Ethylidene iodide		2.84, 0°	33, 183. Gustavson, B.S.C.
Propylene iodide	C ₃ H ₆ I ₂	2.490, 18°.5	22, 18.  Berthelot and De Luca. J. 7, 453.
16 16	"	2.5631, 19°	Freund. J. C. S. 42, 156.
Trimethylene iodide	"	2.59617, 4° 2.57612, 15° 2.56144, 25°	Perkin. Ber. 18, 221.
Allylene dihydriodate	"	2.15, 0°	Oppenheim. J. 18, 498.
$\beta$ Butylene iodide		2.291, 0°	Semenoff. J. 18, 494. Wurtz. C. R. 97, 478.
Diallyl dihydriodate Iodoform	C ₆ H ₁ , I ₂	2.024, 0°	Wurtz. J. 17, 511. Weltzien's Zusam- menstellung.
"		4.09	Brügelmann. Ber. 17, 2359.
Acetylene iodide	C, H, I,	3.808, 21°, s. } 2.942, 21°, l. }	Sabanejeff. A. C. P. 178, 119–121.
"	C ₂ H ₃ I	2.09, 0°	Regnault. Gustavson. Ber. 7, 781.
Allyl iodide		ļ	Berthelot and De Luca.
" "	"	1.746, 0°	Woieikoff. J. 16, 495.
	"	1.848, 12°	Linnemann. A. C. P., 8d Supp., 267. Linnemann. A. C.
"	44	1.8696, 0°	P., 3d Supp., 264.  ) Zander. A. C. P.
" "	44	1.6601, 102°.6 1.846, 15°	} 214, 181.   Romburgh. Ber. 16,   892.
11 11	"	1.82403, 15° }	Perkin. J. P. C. (2), 81, 481.
Allylene hydriodate	"	1.8346, 0° }	Semenoff. J. 18, 494.
Allylene iodide	C ₃ H ₄ I ₂	2.62, 0°	Oppenheim. J. 18, 498.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Iodallylene	C ₃ H ₃ I	1.7	Liebermann. J. 18,
Propargyl iodide Diallyl hydriodate Iodhexylene	C ₆ H ₁₁ I	1.497, 0°	Henry. Ber. 17, 1182. Wurtz. J. 17, 514.
Iodobenzene	C ₆ H ₅ I	1.69	27, 50. Schutzenberger. J. 14, 848.
66	"		Kekulé. J. 19, 554. Ladenburg. A. C. P. 159, 251.
66	66 66	1.8403, 11° 1.7782, 56°.8 1.7874, 79°.2	Schiff. Ber. 19, 560.
44	"	1.6486, 185°.5 1.8578, 0° 1.5612, 187°.5	
Orthoiodtoluene	C, H, I	1.698, 20°	Beilstein and Kuhl- berg. A.C.P. 158, 849.
MetaiodtolueneBenzyl iodide		1.697, 20° 1.7885, 25°	berg. Z. C. 18, 108.

## LIX. COMPOUNDS CONTAINING C, H, I, O, OR C, H, I, N.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetraiodmethyl oxide Moniodethyl oxide	C, H, I, O	8.845 1.6924, 0°	Brüning. J. 10, 482. Henry. C. R. 100, 1007.
Acetyl iodidePropyl iodacetate	C ₃ H ₃ O. I C ₅ H ₉ I O ₂	1.98, 17° 1.6794, 7°	Guthrie. J. 10, 844.
Methyl $\beta$ iodpropionate Ethyl $\beta$ iodpropionate	C ₅ H ₉ I O ₂	1.8408, 7° 1.707, 8° 1.6789, 15°	" "
Methyl γ iodbutyrate			Henry. C. R. 102,
Iodaldehyde	C, H, I O	2.14, 20°	Chautard. C. R. 102, 118.
Iodacetone	C ₈ H ₅ I O	2.17, 15°	Clermont and Chau- tard. C.R. 100,745.
Iodhydrodiglycide	C ₆ H ₁₁ I O ₃	1.783	Berthelot and De Luca.
Diiodhydrin	C ₈ H ₆ I ₂ O	2.4	Nahmacher. Ber. 5,
EpiiodhydrinSantonyl iodide	C ₈ H ₆ I O	2.03, 18° 1.8282	
Iodchinolin	C, H, I N	1.9828 }	La Coste. Ber. 18, 780.

# THE COMPTENDED CONTACTOR OF THE ORDER OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTRO

Te asp.	'Annt h	SPE - HEARPHY M	ARTHUMENY
Intermeteral records of despite	्तिसंदितमञ्जूतः । •-		THE.
Las wood Karari Winski	Cities in	1.112366 35	Jaconsernach i Nhise - mesteur Bineri 5.
	r	.1.48	National And PI Administration And PI 2404 (1986)
& lower principal distributes	·· (包括作用)。	, 214 <b>445</b> ; 13%	Sections rand Miss- musican Biografia
	• • • • • • • • • • • • • • • • • • • •	224497.2004	Disson: JUCSSEL
Actual main harmanismismismismismismismismismismismismismi	•		History AACCITTIGG
		1,70001194	Micas golffee mad Giradi. (C.R. 88) 1644
ARWINIMAN HAMMAN COMMINICATION			Eliconia AA (X Pi 13552235.
and the second second second second			Henne. Be: 11.
финастранский вереня в подаваний верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой верой ве	。在第二次的基础。 (在14)在14年的。	779: 89°	Ileauxee. über 1.
··	化相类点理事件	e. Briefe	LASCOGUE AL LANGE
<i>?</i>	i. Dostopostajan	6660. L9 632039	Brekist 20 13 11 22 2
gas an instant attachidata			. 1 (5):
Maria and this county and a	,水果和水果物。 。水果物,水果物。		1740
Arvenvannamhhhin.	- 化准件 謝。	2/31% PF	122.
	். கேச்சை கேசும்	7 726 DF 1	Hateno. I I (. 2), V &
	in the proof of the proof		. Decime. Ben I.
પ્રાપ્તાના ત્રામાન સામાના માના માના વિષ્યા ભાષા ભાષા માના માના માના માના માના માના માના મ	ातः वर्षात्रः वर्षाः विकासः वर्षाः वर्षाः	1.400.00	Plinmon. 7.4. 4.
* **		1.7787 IF	Simment Ber H.
- Булдання аргионовини за		Litely de	
	THE PROPERTY OF THE	86 (LIGHT 18 	Francisma Sim. I.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Propylene chlorobromide.	CH ₃ . CH ₄ . CH Cl Br CH ₃ . CH Br. CH ₄ Cl CH ₄ Br. CH ₄ . CH ₄ Cl	1.60, 20° 1.474, 21° 1.68, 8°	66 66 66
Dibromchlorpropylene Chlorodibromhydrin	ĊH ₂ . CCl Br. ĊH ₂ Br C ₂ . H ₅ Cl Br ₂	2.064, 0° 2.085, 9° 2.088	Friedel. J. 12, 887. Reboul. J. 18, 461. Oppenheim. J. 21, 841.
	"	2.004, 15°	
Chlorobromhydroglycide - Derivative of chlorobrom- hydroglycide.	C ₈ H ₄ Cl Br C ₈ H ₄ Cl Br ₈	1.69, 14° 2.89, 14°	Reboul. J. 18, 461. Reboul. J. 18, 462.
Derivative of epidichlor- hydrin.	C ₃ H ₄ Cl ₂ Br ₂		
Bromallyl chloride			Henry. B. S. C. 18, 282.
Chloracetyl bromide Bromacetyl chloride Trichloracetyl bromide	C ₂ H ₂ Cl O. Br C ₂ H ₃ Br O. Cl C ₂ Cl ₃ O. Br	1.918, 9° 1.908, 9° 1.900, 15°	Wilde. J. 17, 820. Wilde. J. 17, 819. Hofferichter. J. P.
Hexchlortetrabromethyl	C4 Cl6 Br4 O		C. (2), 20, 195. Malaguti. Ann. (8),
oxide. Chlorobromethyl acetate_	C ₄ H ₆ Cl Br O ₂	1.6499, 11°.4	16, 25. Henry. C. R. 97, 1308.
Dichlordibromethyl acetacetate.		1.956, 19°	Conrad and Guth- zeit. Ber. 16, 1551.
Tribromchloracetone		2.270	Cloëz. Ann. (6), 9, 145.
Bromochloral	C, H Cl, Br O		meister. Ber. 15,
Chlorobromal Chlorobromhydrin	C ₂ H Br, Cl O C ₃ H ₆ Cl Br O	2.2793, 15° 1.740, 12° 1.7641, 9°	" Reboul. J. 13, 458. Henry. Z. C. 13, 604.
Phycite bromodichlorhy- drin. "	C _s H ₅ Cl ₂ Br O	2.1719, 0° 2.1426, 17°.5 }	Wolff. A. C. P. 150, 82.
Chlorodibromnitrome- thane.	C Cl Br ₂ N O ₂	2.421, 15°	Tscherniak. Ber. 8,
Chlorobromnitrin	C ₃ H ₅ Cl Br N O ₃	1.7904, 9°	Henry. Ber. 4,701.
Chloriodomethane	C H ₂ Cl I	· ·	Sakurai. J. C. S. 41, 362.
"	"	2.447, 11° }	Sakurai. J. C. S. 47, 198.
Chloriodoform	•	1.96	Bouchardat. A. C. P. 22, 230.
"	"	2.403, 21°.5	Borodine. J. 15, 891.
Ethylene chloriodide	C, H, Cl I	2.151, 0° 2.89, 20°	Simpson. J. 16, 485. Maumené. J. 22, 845.
· · · · · · · · · · · · · · · · · · ·	"	2.16439, 0° 1.87915, 140°.1	) Thorne, J. C. S.

		<del></del>	
Yame.	FORMULA.	Sp. Gravity.	AUTHORITY.
ChloriodethyleneAcetylene chloriodide	C, H, Cl I	2.1481, 0° 2.2298	Henry. C. R. 98,742. Plimpton. J. C. S. 41, 391.
14 16	"	2.154, 0° } 2.1175, 19°	Sabaneieff, Ber. 16.
Propylene chloriodide	C _s H _e Cl I	1.982, 0° 1.824	Simpson. J. 16, 494.
β Chlorallyl iodide α Chlorallyl iodide	C ₃ H ₄ Cl I	1.977, 15° } 1.880 } 15° }	Bomburgh. Ber. 16, 398.
a Chlorallyl iodide " Dichloriodhydrin Orthochloriodobenzene	C, H, Cl, I C, H, Cl I	2.0476, 9° 1.928, 24°.5	Henry. Ber. 4, 701. Beilstein and Kur-
Chloriodotoluene		1.702, 19°	berg. A. C. P.
"			156, 82. Wroblevsky. Z. C. 13, 164.
Chloriodethyl acetate	C. H. CI I O.	1.770, 19°.5 1.9540, 18°	" " " " Henry. C. R. 97,
Iodochlorhydrin		1	1308.
Bromiodomethane	C H, Br I	2.9262, 16°.8	Henry. C. R. 101, 599.
Ethylene bromiodide	C H, Br. C H, I	2.7, 1°	Reboul. A. C. P.
" "	"	2.516, 29°	155, 214. Simpson. C. N. 29, 58.
"	"	2.514, 30°	Friedel. C. R. 79, 164.
11 11	·	2.705, 18°, s	Lagermarck. Ber. 7, 907.
Ethylidene bromiodide	C H ₃ . C H Br I	2.5, 1°	Reboul. A. C. P. 155, 213.
" "	"	2.452, 16°	Lagermarck. Ber. 7, 907.
Dibromiodethane	1	ł	Simpson. C. N. 29,
Bromiodethylene		i	Henry. C. R. 98,
Acetylene bromiodide Propylene bromiodide	ee	2.750, 0°, s. }	Plimpton. J. C. S. 41, 391.
Propylene bromiodide	C ₃ H ₆ Br I	2.2, 110	Reboul. A. C. P. 155, 214.
Paraiodorthobromtoluene	Cy He Br I	2.044, 20°.7	Wroblevsky. Z. C. 13, 165.
Metaiodorthobromtoluene	"	2.139, 18°	Wroblevsky. Z. C. 14, 210.
Chlorobromiodethane	C, H, Cl Br I	2.53, 0°	Henry. C. R. 98, 680.
Chlorobromiodhydrin	C ₂ H ₅ Cl Br I	2.325, 9°	Henry. Ber. 4,701.

LXI. ORGANIC COMPOUNDS OF FLUORINE.*

Name.	Formula.	Sp. Gravity.	Authority.
Fluobenzene		•	<b>285, 2</b> 55.
	"	1.0286, 20°	Wallach and Heus- ler. A. C. P. 243, 221.
Paradifluobenzene	C ₆ H ₄ F ₂	1.11	Wallach and Heusler. A. C. P. 248, 219.
Parafluotoluene	C, H, F	.992, 25°	
Parafluochlorobenzene		•	Wallach and Heus- ler. A. C. P. 248, 219.
Parafluobrombenzene Parafluoanilin	C ₆ H ₄ Br F C ₆ H ₆ N F	1.593, 15° 1.153, 25°	Wallach. A. C. P.
Parafluonitrobenzene	C ₆ H ₄ N O ₂ F	1.826, 1	285, 255.

# LXII. ORGANIC COMPOUNDS OF SULPHUR.

#### 1st. Compounds Containing C, H, and S.

Name.	FORMULA.	Sp. Gravity.	Authority.
Methyl sulphide	(C H ₃ ) ₂ S	.845, 21°	Regnault. Ann. (2), 71, 891.
Ethyl sulphide	(C ₂ H ₅ ) ₂ S	.825, 20°	Regnault. Ann. (2), 71, 888.
	"	.83672, 0° .83676, 20	Pierre. C. R. 27, 213. Nasini. Ber. 15,
Propyl sulphide	(C ₃ H ₇ ) ₂ S	.814, 17°	
Ethyl amyl sulphide Butyl sulphide	$(C_2 H_5) (C_5 H_{11}) S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = (C_4 H_9)_2 S = ($	.849, 0°	Saytzeff. J. 19, 528.
		.8386, 16°	Saytzeff. A. C. P.
	"	.8317, 23°	175, 851. Reymann. J. C. S. (2), 13, 141.
Isobutyl sulphide	"	.8868, 10°	Beckman. J. P. C. (2), 17, 446.
Isoamyl sulphide	(C ₅ H ₁₁ ) ₂ S	.84814, 20°	Nasini. Ber. 15, 2883.
Octyl sulphide	(C ₈ H ₁₇ ) ₂ S	.8419, 17°	Möslinger. Ber. 9, 1004.

^{*} See also under organic compounds of boron.

Amy	NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl discriptide C, H, S, About 1.00 Morin, P. A. 48, 48  About 1.00 Morin, P. A. 48, 48  About 1.00 Morin, P. A. 48, 48  About 1.00 Morin, P. A. 48, 48  Nasini, Ber. 15  282  O. Henry, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, J. 1, 700  Hanny, Morin, P. A. 48, 48  Nasini, Ber. 16  282  O. Henry, J. 1, 700  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 20  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 20  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Hann, Ber. 16  Sand, 100  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Hann, Ber. 16  Han	[ethyl disulphide	C, H ₆ S,	1.045, 18°	Cahours. Ann. (8),
Ethyl disulphide			1.06358, 0°	Pierre, C. R. 27, 213.
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	hhvi disu'rhide	. C. H., S	About 1.00	Morin. P. A. 48, 484.
Amy disniphide C, H ₂ S ₂ 918, 18° 0. Henry, J. 1, 700 Methyl trisniphide C, H ₂ S ₃ 1.2162, 0° 1.2059, 10° 3415.  Ethyl mercaptan C ₂ H ₃ S H 842, 15° Zeise, P. A. 31, 386  Ethyl mercaptan C ₄ H ₅ S H 845, 5° 10° 3415.  Ethyl mercaptan C ₅ H ₄ S H 845, 5° 10° 15° 8406, 10° 15° 8406, 10° 15° 60.  Runyl mercaptan C ₄ H ₅ S H 884, 15° P. A. 31, 386  SSS01, 3° 20° Nasini, Ber. 16  SSS01, 3° 20° Nasini, Ber. 16  SSS02, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 16  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 18  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 17  SSS03, 20° Nasini, Ber. 18  SSS03, 20° Nasini, Ber. 18  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19  SSS03, 20° Nasini, Ber. 19			99267, 20°	Nasini. Ber. 15,
Lips. 17°   3415.	myl lisulphide	. C. H. S	918, 16°	O. Henry. J. 1, 700.
Lips. 17°   3415.	terny arism pande acces	. ( ) 119 ( )	1.2059. 109	Klason, Ber. 20.
S456.58   108   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158			1.199, 17° )	3415.
S456.58   108   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158			<del>-</del>	i
S456.58   108   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158   158	liby i mercapian	. C, H, S H	842, 15°	Zeise. P. A. 81, 889.
	"	. "		Liebig. A. C. P. 11,
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect				
SSOT, 20°   Nasini, Ber. 16   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September		. "		* Regnault. P. A. 53,
Ruty  mercaptan   C. H. S.H   SSS 09   Grabowsky an Seventh A. C. P. 175, S51.	** ** *****	"	8836.15°—20°	60).
S48, 165 P. 175, \$51.  Isobutyl mercaptan S48, 115, S Humann, J. S. 618  S299, 175 Reymann, J. C. o. 2, 18, 141.  Amyl mercaptan C, H. SH S85, 275 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Krussch, J. P. 6  \$1, 2 Kru				
S48, 16   P. 17.5, S51.	lore' manantan	C H. S H	556 DP .	Grabowsky and
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	" " " " " " " " " " " " " " " " " " "			
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	ashurul memantan	••	S48 138 5	
Amyl merupast   C, H, SH   SSX 215   Krussch   J. P. C				
Amyl merupian C, H, SH SSA 215 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C S1 2 Kruisch J. P. C J. P. C S1 2 Kruisch J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J. P. C J.	5555			2 . 18, 141.
Amyl mercaptar C, H., SH. SSS 215 Kruisch. J. P. C. Sl. 2  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A. C. P. 9  Sept. A		- "	42 27:22	. Nasiri. Ber. 15.
See See See See See See See See See See	lmki mesaken	C, H., SH	12 328	Kreisch. J. P. C.
SAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber. 1  SSAN 1878 Nasiri Ber.		·	8348.05	
Herry recomposit C, H, SH SSS Warklynand Erler meyer. J. 17, 50  Content retrained points. C S C, H, S S S S S S S S S S S S S S S S S S				<b>80.</b> .
Henry recompany C. H., S.H. S.M. Wanklynand Erler meyer. J. 17, 50  Content retrained points. C. S.C. H., S.H. S.M. Cheesen. J. 187  S.M. Weiter in the contract of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the second of the contract of the contract of the contract of the second of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of			864.8.20%	
Fire the negrotation of E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C E S C	Hexyl merespesz	. C, H, SH		
Fire the manuscriptor C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.	Terben tememenapolite	csc, H _{2.} ,	. 13	
First one Ethosety and C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S	Entries Williams	C. B. & B.	2 29th 200 c	Names I IS AND
Filt one Ethiosity and C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S.C. E. S	Menyers annenyar	LOE SOLE		Chargeon. J. P. C
The mer we of dictions you. C. H. S	England Ethiophymic	C ₁ E ₄ S C ₁ E ₄ 4		T Warmer Rev 19
There we we of dichard you. C. H. S. L. L. Warsellin. Ber. 1  And were subplied. C. H. S. Guth: See A. C.  Alty, subplied. (C. H. S. Bei. 112 G. Bei. 10, 888.	Figure alloyayied,	- C,E, SC,E, SC,	e, : 1000. 150.5	
Ant one sulphide	11.74			pri i i i
Antwere sulphide C, H, S Guih: 14. 66  Vary sulphide (C, H, S A. C A. C A. C A. C A. C A. C A. C A. C A. C A. C A. C A. C A. C	·			·y· ~
Ally, sulphide (C_ H_0) 5 2244_ 115 6 Bei.	Amsteric sulphide	C _k E _{jk} S	'SE' 39°	. Guide - 3 14. 665
	Varga saliphade	سند کو الله کی در ا	root 11. ···	. Ser A. C. P
: O. <b>£96</b> .	Ally, sulphide	: (C _a E _a ,		. i Bei. S
: O. <b>1996</b> .	4	_	43	\ ad Smh
Ally, trisulphide C. H. S. 1.312, 18 1.318, 28			1	
Fuev, sulphide C. H. B	Alivi trisulphide	C. H.	1.012, 18°	J. 18, 301 rie. J. 12, 481

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Trisulphhydrin	C ₃ H ₈ S ₃	1.891, 14°.4	Carius. J. 15, 455.
Methyl trisulphocarbonate	C ₈ H ₆ S ₈	1.159, 18°	Cahours. Ann. (8), 19, 162.
Ethyl trisulphocarbonate_	C ₅ H ₁₀ S ₈	1.152	Salomon. J. P. C.
Amyl trisulphocarbonate.	C ₁₁ H ₂₂ S ₃	.877	(2), 6, 488. Hüsemann. J. 15,
Ethylene trisulphocarbon-	C ₃ H ₄ S ₃	1.4768	
ate. Propylene trisulphocar-	C ₄ H ₆ S ₃	1.81, 20°	128, 87 Hüsemuan. J. 15,
bonate. Butylene trisulphocarbon-	C ₅ H ₈ S ₈	1.26, 20°	484.
ate. Amylene trisulphocarbon-	C ₆ H ₁₀ S ₃	1.078	44 44
ate. Allyl trisulphocarbonate	C ₇ H ₁₀ S ₃	.948	Hüsemann. J. 15, 410.
Phenyl sulphide			582.
Phenyl tetrasulphide	(C ₆ H ₅ ) ₂ S ₄	1.297, 14°.5	Otto. J. P. C. (2), 87, 209.
Phenyl ethyl sulphide	(C ₆ H ₅ ) (C ₂ H ₅ ) S	1.0315, 10°	Beckmann. J. C. S. 86, 87.
Ethyl paratolyl sulphide _	(C, H,) (C, H,) S	1.0016, 17°.5	
Phenyl mercaptan Benzyl mercaptan	C ₆ H ₅ . S H	1.078, 14° 1.058, 20°	Vogt. J. 14, 630. Märcker. J. 18, 548.
Xylyl mercaptan	C ₈ H ₉ . S H	1.036, 18°	Schepper. J. 18, 558.
Mesitylene mercaptan			Holtmeyer. J. 20, 708.
Cymyl mercaptan	C ₁₀ H ₁₃ . S H	.9975, 17°.5 .989	Flesch. C. C. 4,519. Fittica. A. C. P. 172, 826.
	"	.995	Bechler. Leipzig In- aug. Diss. 1878.
Methylcymyl mercaptan _ Naphtyl mercaptan	C ₁₀ H ₁₆ . S H	.986 1.146, 28°	1 11
Thiophene	C, H, S	1.062, 28°	V. Meyer. Ber. 16,
"	"	1.08844, 0° )	1471.
"	"	1.0769, 10° 1.0651, 20°	
"	"	1.0538, 80°	
"	"	1.0418, 40°	Schiff. Ber. 18, 1605.
"	"	1.0291, 50°	Conta. Der. 10, 1000.
"	"	1.0169, 60° 1.0045, 70°	
"	"	.9920, 80°	
"	"	.98 <b>741, 84°</b> ]	
"	"	1.05928, 4°	Nasini and Scala. Bei. 10, 696.

"	Name.	Formula.	Sp. Gravity.	AUTHORITY.
Thiotolene	å u u u	" " " " " " " " " " " " " " " " " " "	1.06835, 16°.5_ 1.06466, 19°.7_ 1.06432, 20° 1.06045, 23°.4_ 1.05662, 26°.6_	Knops. V. H. V.
""""""""""""""""""""""""""""""""""""	Thiotolene	C ₅ H ₆ S	1.0534, 32° 1.0194, 18°	Ber. 17, 788.
Metathioxene       "				1858. Grünewald. Ber. 20,
##			<u> </u>	Messinger. Ber. 18, 1637. Zelinsky. Ber. 20,
Schleicher. Ber. 19, 678.   Schleicher. Ber. 19, 678.	•		1	Meyer and Kreis.
Diethylthiophene	Isopropylthiophene	"	.9695, 16°	
Octylthiophene	•	° "	<b>!</b>	Ber. 17, 1558. Muhlert. Ber. 19,
8271.			1	Schweinitz. Ber. 19, 644. Krekeler. Ber. 19,

#### 2d. Compounds Containing C, H, S, and O.

	NAM	E.	Form	ULA.	Sp. Gravity.	AUTHOBITY.
		te	(C H ₃ ) ₂ S (C (C H ₃ ))	O ₃ H ₅ ) S O ₃ -	1.0456, 16°.2 1.0675, 18°	Carius. J. 12, 86. Carius. A. C. P. 111, 103.
Ethyl	sulphite	·	(C ₂ H ₅ ) ₂ S	O ₃	1.085, 16°	Ebelmen and Bouquet. Ann. (3), 17, 67.
"	"		"		1.10634, 0°	Pierre. C. R. 27, 213.
44	"		"			Carius. J. P. C. (2),
"	"		"			2, 285.
**	4.6		"		1.0982, 110	Nasini. Bei. 9, 324.
Methy	l sulphs	te	(C H ₃ ) ₂ S	0,	1.824, 22°	Dumas and Peligot. Ann. (2), 58, 33.
46	"		"		1.885, 180	Bödeker. B. D. Z.
**	"		"		1.827, 18°	Claesson. J. P. C. (2), 19, 244.
	"		"		1.88844, 15°	1 (-7, -3, -2.
"	"		"		1.82757, 200	Perkin. J. C. S. 49,
"	66		"		1.82386, 25°	777.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl sulphate	(C ₂ H ₅ ) ₂ S O ₄	1.120 1.1887, 19°	Wetherill. J. 1, 692. Claesson. J. P. C. (2), 19, 258.
"	"	1.167	Stempnevsky. Ber. 15, 947.
Ethyl sulphurous acid	f	1	Kopp. A. C. P. 85, 848.
Ethyl sulphuric acid		1	Vogel. Gmelin's Handbuch.
" " "	"	1.815 16° {	Marchand. Gme- lin's Handbuch.
	"	1.215	Duflos. Gmelin's Handbuch.
Ethyl ethylsulphonate	C ₄ H ₁₀ S O ₈	1.1000, 204	Carius. J. P. C. (2), 2, 269.
		1.14517, 22°	Nasini. Ber. 15, 2884.
Isoamyl ethyl sulphone		1	Beckmann. J. C. S. 86, 88.
Dissolutyl sulphone Methyl methylxanthate	CH, Ö. CS. CH, S	1.148, 15°	Cahours. Ann. (3),
		1.176, 18°	19, 160. Salomon. J. P. C.
Ethyl methylxanthate	C H ₃ O. C S. C ₃ H ₅ S.	1.12, 18° 1.123, 11°	(2), 8, 114. " Chancel. J. 8, 470.
Methyl ethylxanthate	$C_2 H_5 O. CS. CH_3 \overline{S}$	1.129, 18°	Salomon. J. P. C. (2), 8, 114.
" "	"	1.11892, 4°	Nusini and Scala. Bei. 10, 696.
Ethyl ethylxanthate	$C_2 H_5 O. CS. C_2 H_5 S$	1.0708, 18°	Zeise. A. C. P. 55, 310.
" "	"	1.07	Debus. A. C. P. 75, 125.
" "	"	1.085, 19°	(2), 6, 433.
Methyl propylxanthate	• •	1.08409, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl propylxanthate Ethyl butylxanthate	$C_3H_7O. CS. C_2H_5S$ $C_4H_9O. CS. C_2H_5S$	1.05054, 4° 1.003, 17°	Mylius. B. S. C. 19,
Butyl butylxanthate	C,H,O. CS. C,H,S.	1.009, 12°	221.
Ethyl dithioxycarbonate	$C_2^{\dagger}H_5^{\dagger}S$ . C O. $C_2^{\dagger}H_5^{\dagger}S$ .	1.084, 20°	Schmidt and Glutz. J. 21, 575.
	CHOCOCH a	1.085, 19°	Salomon. J. P. C. (2), 6, 488.
Ethyl dioxythiocarbonate  " "	C ₂ H ₅ O. CO. C ₂ H ₅ S. C ₂ H ₅ O. CS. C ₂ H ₅ O.	1.0285, 18° 1.032, 1° 1.031, 19°	Debus. J. 8, 465. Salomon. J. P. C.
Ethyl butyl thioxycarbon- ate.	C ₂ H ₅ S. CO. C ₄ H ₉ O ₋	.9939, 10°	(2), 6, 483. Mylius. Ber. 6, 312.
Ethyldioxysulphocarbon-	C ₂ H ₅ O. CO. C ₄ H ₉ S ₋ C ₆ H ₁₀ S ₄ O ₂	.9988, 10° 1.26043, 4°	Nasini and Scala. Bei. 10, 696.
Propyl dioxysulphocar- bonste. ?	C ₈ H ₁₄ S ₄ O ₂	1.19661, <b>4°</b>	" "
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1	

	, I nasou	France	ST. HRAVIII.	ATEMATY.
 Fanthusis	N'	CESOL.	nr	
Y Sacrtic White office	not	C.E, 8-0	U71_TEA	9. 277 Tirrin. 3 12, 35 Lineson: H. ± (1 12, 45)
		C.L.S.C.		Enessen: IL + I
liller o	un calmatiyole	$U_{j}(T_{j},S)(U_{j+1},\ldots,U_{j+1})$	83	Caceson   T. &   I
liarde Sar	na čania jestija	1. L.S. 1	. 134. 89	Huthre, L. 2 188
li	Marianta Marianta			**
عادة المعادلة مواداة	-mile plination	एँ.धी = ए <u>क</u> न		Weidentusen. 51
ولايا وتابعة الملا	. Antrophilip ar	(L. H., 8-1)		Teniff J. 12. 24.
Simearth	Marietis	L. I. + L	203. 46	Lurius. J. L. 163
Baryleitetic	יי יייי וווזוץ	C 11 1 1	42. 40	Larius. J. E. 164
blief hi	1301410	سنست	1.1 <b>:46</b> P	biniff J. 2. 24. Lirius. J. L. 163 Lirius. J. L. 164 Morrey and ham
		4, I, +4,		Armaneira. 3ee.
				149.
are libratio	a trattantent	4, II, +1		Hintinger: M. L.
		4, II, +1		733 - da
				111 1112
				. 4
مزال نعون	riorie	优雅 中语	1.107. 149	Bleen: Ber 17:1944
instablie instablic	dilienone	に に に 日 ・ 士 ・ ・		Ber Ber 17, 244 fediteicher: Ber 11
			1.107. 149 1.1049. 120*	· HARIL
		是 生性		· HERI.
			1.091U, 1 ^{TO}	Missinger. Jer. 1:
iory!ttii	SE Salph	и: Сонциппий: (	Contamns Nic	Missinger. Ber. E. 2302.  A.THRORITE  Cainours. Enn. 3
iory Hii	SE Salph	Financia.	Contamne Site	Missinger. Ber. 1: 2202.  A. Perronier.  Cainours. Enn. 3 M. 261.
iory Hii	SE Salph	Finantia.	Contaming With	Missinger. Ber. E. 2002.  A. Turkonizer  Cainours. Enn. 9 N. 261. Ferra. C. 3. 27 III. Nesini uni Suni
Acestrol	SE South	Finantia.	Contaming Min	Cainours Am. 3 38. 261. Seminaria C. S. 27 ft. Nesim unit Seni 36a. M. 396. Cainours Am. 3
Acestrol	SE South	Furnitie.  ***********************************	Contaming Min	Missinger. Ber. E. 2202.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnourer.  A. Turnour
Acestrol	St. Salph	Figure 1.	Containing Sin	Missinger. Ber. E. 2202.  A. PERIORITY  Cainours. E.m. 9 B. 261. Ferre. C. S. 27 .11 Nesmi und Senio Ba. D. 388. Cainours. Enn. 9 B. 265.
Karaya a	SE Salph	Funntia.	1.000   10   1.000   10   10   10   10	Missinger Jer. F. 2002.  Cainours Em. 3 B. 261. Ferre, C. 3, 27 II. Nesim uni Seni Jainours, Em. 3 B. 265. Enwice F E 6 DIC
iconyttii	SE Sulph	Funntia.	1.000   10   1.000   10   10   10   10	Missinger Jer. F. 2002.  Cainours Em. 3 B. 261. Ferre, C. 3, 27 II. Nesim uni Seni Jainours, Em. 3 B. 265. Enwice F E 6 DIC
Karaya a	SE Sulph	Funntia.	1911, 170	Missinger. Ber. B. 2002.  A. Perroniere  Cainours. Em. C. S. 27 M. 261.  Perro, C. S. 27 M. Mesmi und Senications. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. F. E. C. 2003.  - Barff. Ber. L. 2003.
Karaya a	SE Sulph	Figure 2.	Continuing Sin	Missinger. Ber. B. 2002.  A. Perroniere  Cainours. Em. C. S. 27 M. 261.  Perro, C. S. 27 M. Mesmi und Senications. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. Em. C. M. 2003.  Editours. F. E. C. 2003.  - Barff. Ber. L. 2003.

France's Southern Validantement under E 'and he by these of many' morrowithms, ' and southern the Southern ' is a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Isopropyl thiocyanate	N C. S C ₃ H ₇	.989, 0° .974, 15° } .968, 20°	Gerlich. Ber. 8, 651. L. Henry. J. 22, 861.
Amyl thiocyanate	1	ł	O. Henry. J. 1, 700. Pelouze and Ca- hours. J. 16, 526.
Allyl thiocyanate	"	1.071, 0° } 1.056, 15° } 1.06912, <b>4</b> °	Gerlich. Ber. 8, 658. Nasini and Scala.
Ethyl thiocarbimide	C S. N C, H,	1.01925, 0°	Bei. 10, 696.
" "	"	.997525, 21°.4_   .997285, 22°   .87909   .878518	Buff. Ber. 1, 206.
" "	"	1.0080, 18°	Gladstone. Bei. 9, 249.
"	"	.99525, 4°	Nasini and Scala. Bei. 10, 696.
Tertiary butyl thiocarbimide. " "  Amyl thiocarbimide	1 66	.9187, 15°	Rudneff. Ber. 12, 1028.
"	"	.94189, 17° .78749, 182°	Buff. Ber. 1, 206.
Hexyl thiocarbimide		1.015, 20°	Uppenkamp. Ber. 8, 56. Dumas and Pelouze.
	"	1.009 1.010 } 15°	Ann. (2), 58, 182. Will. A. C. P. 52, 4.
16 16	"		Kopp. A. C. P. 98, 867.
" "	"	.8739 .8741 } 150°.1	Schiff. Ber. 14, 2767.
	"	.8740, 151°.8 1.00572, 4°	Schiff. Ber. 19, 560. Nasini and Scala. Bei. 10, 696.
Phenyl thiocarbimide	C S. N C ₆ H ₅		Hofmann. J. 11, 849.
" "	"	1.155, 17°.5 .9898, 219°.8	Billeter. C. C. (8), 6, 101. Schiff. Bei. 9, 559.
	"	1.12891, 4°	Nasini and Scala. Bei. 10, 696.
Sulpho-urea		1.406. 4°	Madan. C. N. 56, 257. Schröder. Ber. 12,
"		·	561. Schröder. Ber. 13,
Thialdin	C ₆ H ₁₃ N S ₂		A. C. P. 61. 4.
OenanthothialdinDiamylene dithiocyanate Diamylene tetrathiocyanate.	$\begin{array}{c} C_{21} \ H_{43} \ N \ S_2 \\ C_{10} \ H_{20} \ (C \ N)_2 \ S_2 \\ C_{10} \ H_{20} \ (C \ N)_2 \ S_4 \end{array}$	.896, 24° 1.07, 18° 1.16, 18°	Schiff. J. 21, 724. Guthrie. J. 14, 665.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sulphocarbanilide	C ₁₃ H ₁₂ N ₂ S	1.811 } 40 {	Schröder. Ber. 12, 1611.
Thiocyanacetone	C ₄ H ₅ S N O	1.209, 0° } 1.195, 20° }	Tcherniak and Hellon. Ber. 16, 850.
Acetyl thiocyanate		1.151, 16°	Miquel. C. R. 81, 1209.
Benzoyl thiocyanate	N C. S C, H, O	1.197, 16°	Miquel. C. R. 81, 1210.
Ethyl thiocyanacetate	C ₅ H ₇ N S O ₅	1.174 1.174	Heintz. J. 18, 847, Claesson. Ber. 10, 1849.
Cystic oxide	C ₃ H ₇ N S O ₂	1.7148	Venables. Watts' Dict.

4th. Sulphur Compounds Containing Halogens.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetrachlor-methyl mer- captan.	C S Cl ₄	1.712, 12°.8	Rathke. A. C. P. 167, 198.
• "	"	1.722, 0° )	
46 46	"	1.7049, 11° }	Klason. Ber. 20,
# # # # # # # # # # # # # # # # # # #		1.6953, 17°.5	2878.
Dichlorethyl sulphide	(C, H, Cl ₂ ), S	1.547, 120	Riche. J. 7, 556.
Tetrachlorethyl sulphide	(C, H Cl ₄ ), S	1.678, 24°	Regnault. Ann. (2), 71, 406.
Ethyl chlorperthiocarbon ate.	C, H, S, Cl,	1.1408, 16°	Klason. Ber. 20, 2885.
Ethylene thiodichloride	C, H, S Cl,	1.408, 18°	Guthrie. J. 12, 482.
Ethylene dithiodichloride	C, H, S Cl, (C, H ₄ ), S, Cl,	1.346, 190	Guthrie. J. 13, 435.
Chlorethylene dithiodi- chloride.	$\left  \left( \mathbf{C_{3}^{2}  H_{3}^{2}  Cl} \right)_{2}  \mathbf{S_{3}^{2}  Cl}_{3}  \ldots \right $	1.599, 11°	Guthrie. J. 13, 433.
Dichlorethylene thiodi- chloride. "	` """	1.219 ( 10 .0 2	Guthrie. J. 13, 434.
Amylene thiodichloride	- C ₅ H ₁₀ S Cl ₂	1.138, 140	Guthrie. J. 12, 481.
Amylene dithiodichloride	$(C_5 H_{10})_2 S_2 Cl_2$	1.149, 12°	Guthrie. J. 12, 480.
Trichloramylene thiodi- chloride.	1	i	Guthrie. J. C. S. 13, 44.
Methylsulphonic chloride	C H, Cl S O,	1.51	McGowan. J. P. C.
		l	(2), 80, 280.
Dichlormethylsulphonic chloride.			McGowan. Leipzig In. Diss. 1884.
Ethylsulphonic chloride.	- C ₂ H ₅ Cl S O ₂	1.857, 22°.5	Gerhardt and Chan- cel. J. 5, 435.
Phenylsulphonic chloride	$C_6$ $H_5$ $Cl S O_2$	1.378, 23°	Gerhardt and Chan- cel. J. 5, 434.
Trichlormethyl amyl sul phite.	C Cl ₃ . C ₅ H ₁₁ . S O ₅	1.104	Carius. A. C. P. 113, 86.
Ethyl chlorosulphonate.	C ₂ H ₅ O. S O ₂ . Cl		,
"		$  1.3556, 27^{\circ} $ $  1.324, 61^{\circ} $	Purgold. J. 21, 416.

NAME.	FORMULA.	Sp. Gravity.	Аитновіту.
Ethyl chlorosulphonate	" C ₂ H ₅ S. C O. Cl C ₅ H ₁₁ S. C O. Cl C S. N C ₃ H ₄ Cl C ₂ H ₄ . Cl. S C N	1.3866, 0° } 1.3539, 27° } 1.3874, 0° } 1.3541, 27° } 1.184, 16° 1.078, 17°.5 1.27, 12° 1.28, 15° 1.7774, 16°	Two preparations. Claesson. J. P. C. (2), 21, 377. Salomon. J. P. C. (2), 7, 254. Schöne. J. P. C. (2), 32, 241. L. Henry. Ber. 5, 186. James. J. C. S. 48, 88. Annaheim. Ber. 9,
zid. Tetrabromoxysulphoben-	C ₁₂ H ₆ Br ₄ S O ₄	2.8775, 17°	1150.
zid. Tetriodoxysulphobenzid	C ₁₂ H ₆ I ₄ S O ₄	2.7966, 19°	ee <b>66</b>
Monobromthiophene	C ₄ H ₃ Br S	1.652, 28°	V. Meyer. Ber. 16, 1470.
DibromthiopheneOctyliodthiophene	C ₄ H ₂ Br ₂ S	2.147, 28° 1.2614, 20°	Schweinitz. Ber. 19, 644.

### LXIII. ORGANIC COMPOUNDS OF BORON.

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Boron triethyl	B (C ₂ H ₅ ) ₈	.6961, 23°	Frankland and Dup- pa. J. 13, 386.
Trimethyl borate	(C H ₈ ) ₈ B O ₈	.9551, 0°	Ebelmen and Bouquet. J. P. C. 38, 218.
" " Triethyl borate	(C ₂ H ₅ ) ₈ B O ₃	.940, 0° } .915, 20° } .8849	Schiff. A. C. P., 5th Supp., 184. Ebelmen and Bouquet. J. P. C. 38,
" "		.871	<b>2</b> 15.
44 44	46	.887, 0° }	Schiff. A. C. P.,
Methyl diethyl borate Tripropyl borate	C H ₃ (C ₂ H ₅ ) ₂ B O ₈	.904, 0° }	Schiff. A. C. P., 5th Supp., 197.
Tripropyl borate Triamyl borate	$\begin{bmatrix} (C_3 H_7)_3 B O_3 - \dots \\ (C_5 H_{11})_8 B O_3 - \dots \end{bmatrix}$	.867, 16° .870	Cahours. C.C. 4, 482. Ebelmen and Bou- quet. J. P. C., 38, 219.
" "	- "	.872, 0°	)
" "		.852, 24° .840 } 28°	Schiff. A. C. P.,
16 16	-	.855 } 28° .853, 29, an-	լլ օւո Եսբը., 100
		other lot.	,

Finne.	Funntial.	Section of the second	Actioners.
Edity: diancy: bonus	型 匪 但 車 12 图 图	- 87L P	Schiff. A. C. P.
Mintiggi anogli horane	<b>近期。在王田</b>		.tt.
Ang mountainme	E B 2 2		Smil. A. C. P.
Consequency: Install			idi Supp., 1992. Schill and Madi
			J. De. 400.
4 4 A	.4.	1.1111.71	Sainiff. A. C. P., fall Supp., 200.
Eddy'ina fluvingus	C, B, B F Q	LINE	Landidut. Ber 12
LXIV. ORGA	NIC COMPOUN	DE OF PHOE	ATTHURUS.
Eximply Lynnaghim:	P C, E,		Befram and Co
Kanang gilangilin	PH CHA	3000 TO	Mislinger Res
			Markey
dunglightneghtides	PH, C, H,	L991, 13°	Kilderand Michael
Jighen Fringhin	P H (C, H, 2	LAT W	is. Ber. 14, 1994. Dirken. Ber. 2
Isigikan yiqilmagikin	P (Cg Hg)	1.194	Michaelis and Seden. A.C. P. 22
"		1.196	Seden. Tibinge
Dinocthylyhenylyhenphin	P/CH . CH	4584 112	In. Diss. 1985.
			456
laighne y imadhydghanghin	P C H, (C, H,	LOTAL IF	Michaelis and Lini
Dindhyiphnayiphnaphia	P (C. H.; C. H.	6571 122	A. C. P. 207, 20
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 104 mily of mi	!	494.
Ribyl phraphita	(C, H, P O,	1.075	Williamson. J.
Mathyl hypophosphate		1	929 1
Ethyl hypophosphate	(C, H,), P, O,	1.1170, 15°	
Propyl hyprophosphate	(C, H,), P, O,	1.134, 15°	
Ethyl hyprophosphate Propyl hyprophosphate Larbeityl hyprophosphate Methyl orthophosphate	(CH ₂ ), P ₂ U ₆	1.125, 15° 1.2378, 0°	Weger. A. C.
	· · · · · · · · · · · · · · · · · · ·	{ 1.0019, 197~.4.	221, 61.
Dimethyl ethyl orthophos-	· (C H _s ), C, H _s . P (	D. 1.1752, 0°	
TRUSTA.			Limpricht. J. 1
Ethyl orthophosphate	. I Va Mich I Vi		
		1	471.
Ethyl orthophosphate Ethyl pyrophosphate Amyl amylphosphite	(C. H.), P. O.	, 1.172, 17°	471. Clermont. J. 7, 56 Wurtz. A. C. P. 5

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dinmylphosphoric acid Triphenyl phosphite	(C ₅ H ₁₁ ) ₂ H P O ₄ (C ₆ H ₅ ) ₃ P O ₈	1.025, 20° 1.184, 18°	Fehling. Noack. A. C. P. 218,
Phosphenyl ether	C ₆ H ₅ P O ₂ (C ₂ H ₅ ) ₂	1.082, 16°	99. Köhlerand Michael-
Phenylphosphinic acid	C ₆ H ₅ . H ₂ P O ₃	1.475, 4°	is. Ber. 10, 817. Schröder. Ber. 12,
Diphenylphosphinic acid_	(C ₆ H ₅ ) ₂ H P O ₃	1.881 1.847 } 4°	561.
Phenoxyldiphenylphos- phin.	C ₆ H ₅ O (C ₆ H ₈ ) ₂ P	1.140, 24°	Coste. Ber. 18,
Triphenylphosphin oxide	(C ₆ H ₅ ) ₈ PO	1.2124, 22°.6	2111. Michaelis and La Coste. Ber. 18,
Naphtylphosphinic acid	C ₁₀ H _{7.} H ₂ P O ₃	1.485 } 40 {	2120. Schröder. Ber. 12, 561.
Naphtylphosphorous acid	C ₁₀ H ₇ , H ₂ P O ₂	1.877, 4° 1.441, 4°, after	} " "
Complex ether?		i iusion.	Geuther. A. C. P. 224, 278.
Amylnitrophosphorous acid.	(C ₅ H ₁₁ ) ₂ H P N O ₄ -	1.02, 20° }	Guthrie. J. 11, 404.
Ethylphosphorouschloride	C ₂ H ₅ P O Cl ₂	1.816, 0°	Menschutkin. A. C. P. 139, 844.
" " " Butylphosphorous chlo-	"	1.305265, 0° 1.13989, 117°.5	Thorpe. J. C. S.
ride. Amylphosphorous chlo-			487.
ride.	C ₆ H ₁₀ P O ₂ Cl		
chloride. Phenylphosphorous chlo-			900. Hölzer. Quoted by
ride. "	"	1.348, 18°	Noack. Noack. A. C. P.
" "	"	1.8543, 20°	218, 91. Anschütz and Emery. A.C.P.289,
Diphenylphosphorous chloride.	(C ₆ H ₅ ) ₂ P O ₂ Cl	1.2494	810.
"	" •	1.221, 18°	Noack. A. C. P. 218, 92.
Phosphenyl chloride	C ₆ H ₅ P Cl ₂	1.819, 20°	Michaelis. C. C. 4, 548.
" " Phosphenyl oxychloride_	" "	1.3428, 0° 1.10415, 224°.6	Thorpe. J. C. S. 37, 372. Michaelis. C. C. 4,
Diphenyl phosphochloride	ı	Į.	548. Michaelis and Link. A. C. P. 207, 209.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Metachlorocarbonylphe- nylorthophosphoric chloride.	C, H, PO, Cl,	1.54844, 20°	Anschütz and Moore. A. C. P. 239, 335.
Parachlorocarbony lphe- nylorthophosphoric chloride.	"	1.54219, 20°	Anschütz and Moore. A. C. P. 239, 344.
By action of P Cl _s on salicylic acid.	C ₇ H ₄ P O ₂ Cl ₅	1.62019, 20°	Anschütz and Moore. A. C. P. 239, \$20.
Paraxylylphosphochlo- ride.	C ₈ H ₉ P Cl ₂	1.25, 18°	Weller. Ber. 21, 1494.
Paraxylylphosphoroxy- chloride.	C ₈ H ₉ P O Cl ₂	1.31, 18°	" "
Sulphophosphorous ether	(C ₂ H ₅ ) ₃ P S ₃	1.24, 12°	Michaelis. C. N. 25,
Ethyl pyrosulphophos- phate.	(C ₂ H ₅ ) ₄ P ₂ S ₃ O ₄	1.1892, 17°	Michaelis. A. C. P. 164, 9.
Amyl sulphophosphate Ethylsulphophosphorous chloride.	(C ₅ H ₁₁ ) ₃ P S O ₃ C ₂ H ₅ P S Cl ₂	.849, 12° 1.30, 12°	Chevrier. J. 22, 344. Michaelis. C. N. 25, 57.
Triethoxylpyrophosphor- sulphobromide.	(C ₂ H ₅ ) ₃ Br P ₂ S ₃ O ₃ .	1.3567, 19°	Michaelis. A. C. P. 164, 9.
Phosphenyl sulphochlo- ride.	C ₆ H ₅ P Cl ₂ S	1.376, 13°	Köhler and Michael- is. Ber. 9, 1053.
Triphenyltrisulphophos- phamide.	(C ₆ H ₅ ) ₃ H ₈ N ₃ P S	1.34	Chevrier. J. 21, 734.

LXV. ORGANIC COMPOUNDS OF VANADIUM, ARSENIC, ANTIMONY, AND BISMUTH.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl orthovanadate	(C ₂ H ₅ ) ₃ V O ₄	1.167, 17°.5	Hall. J. C. S. 51,
Dimethylarsine oxide	(As C ₂ H ₆ ) ₂ O	1.462, 15°	Bunsen. P. A. 40, 224.
Triethylarsine	As (C, H,), (C H,), As O,	1.151, 16°.7 1.428, 9°.6	Landolt. J. 6, 492. Crafts. Z. C. 14,
Ethyl arsenite	(C ₂ H ₅ ) ₃ As O ₃ (C ₅ H ₁₁ ) ₃ As O ₃	1.224, 0° 1.0525, 0°	324. Crafts. J. 20, 552. Crafts.
Ethyl arsenate		1.3264, 0° }	Crafts. Z. C. 14, 324. Crafts. J. 20, 551.
Phenylarsenic acid	C ₆ H ₇ A ₈ O ₃	1.760	Schröder. Ber. 12, 561.
Diphenylarsenic acid	C ₁₂ H ₁₁ As O ₂		" "

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Diphenylarsine chloride	As (C ₆ H ₅ ) ₂ Cl	1.42281, 15°	La Coste and Mi- chaelis. Ber. 11, 1885.
Phenylarsine bromide	As (C ₆ H ₅ ) Br ₂	2.0988, 15°	
Ethyl thioarsenite	As (S C ₂ H ₅ ) ₃	1.8141, 16°	Claesson. Lund Ars- skrift, 1884–'5.
Trimethylstibine	Sb (C H ₃ ) ₃	1.528, 15° 1.8244, 16°	Landolt. J. 14, 569. Löwig and Schweit- zer. J. 3, 471.
Triamylstibine	Sb (C ₅ H ₁₁ ) ₈	1.1888, 17°	Berlé. J. 8, 586.
Triethylstibine chloride		1.0001	Cramer. J. 8, 590. Löwig and Schweit- zer. J. 8, 476.
Triethylstibine bromide Triphenylstibine		1.958, 17° 1.4998, 12°	" " " Michaelis and Reese.
Metatritolylstibine	Sb (C, H,)3	1.8957, 15°.7	ken. A.C. P. 242,
Paratritolylstibine	· · ·	1.85448, 15°.6_	185. Michaelis and Genz- ken. A. C. P. 242, 169.
Bismuth trimethyl	Bi (€ H ₃ ) ₃	2.30, 18°	Marquandt. Ber. 20,
Bismuth triethyl	Bi (C ₂ H ₅ ) ₃ Bi (C ₆ H ₅ ) ₃	1.82	1517. Breed. J. 5, 602. Michaelis and Polis. Ber. 20, 55.

## LXVI. ORGANIC COMPOUNDS OF SILICON.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Silicon tetrethyl	Si (C ₂ H ₅ ) ₄	.7657, 22°.7	Friedel and Crafts. A. J. S. (2), 49,
	"	.8341, 0°	811. Ladenburg. B. S. C. 18, 240.
Silicon hexethyl	Si ₂ (C ₂ H ₅ ) ₆	.8510, 0° .8403, 20° } {	Friedel and Laden- burg. A. C. P. 208, 251.
Silicon tetrapropyl	Si (C ₃ H ₇ ) ₄	.7979, 0° }	Pape. Ber. 14, 1872.
Silicoheptane	Si C ₆ H ₁₆	.7510, 00	Ladenburg. A. C. P. 164, 300.
Silicodecane	Si C ₉ H ₂₂	.7723, 0° .7621, 15° }	Pape. Ber. 14, 1872.
Silicon triethyl phenyl	Si (C ₂ H ₅ ) ₈ C ₆ H ₅	.9042, 0°	Ladenburg. C. C. 5,

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Silicon tetraphenyl Peru-silicon tetratolyl Meta-silicon tetratolyl	Si (C, H,),	1.078, 20° 1.0793, 20° 1.1188, 20°	Polis. Ber. 19, 1012.
Silicon tetrabenzyl	"	1.0776, 20°	
Ethyl metasilicate	(C ₂ H ₅ ) ₂ Si O ₃	1.079, 24°	Ebelmen. A. C. P. 57, 839.
Methyl orthosilicate	(C H ₈ ) ₄ Si O ₄	1.0589, 0°	Friedel and Crafts. J. 18, 465.
Trimethyl ethyl orthosilicate.	(C H ₃ ) ₂ C ₂ H ₅ Si O ₄	1.023	Friedel and Crafts. J. 19, 491.
Dimethyl diethyl ortho- silicate.	$(C H_3)_{\varrho} (C_2 H_5)_2 Si O_4$	1.004, 0°	
Methyl triethyl orthosili- cate.	C H ₃ (C ₂ H ₅ ) ₃ Si O ₄ -	.989, 0°	46 46
Ethyl orthosilicate	(C ₂ H ₅ ) ₄ Si O ₄	.932	Ebelmen. A. C. P. 52, 824.
" "	. "	.988, 20°	Ebelmen. A. C. P. 57, 884.
	"	.9676, 0°	Friedel and Crafts.
## ## ###	(C H) 8:0	.9380, 22°.5	
Propyl orthosilicate	\(\frac{1}{100}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}\) \(\frac{1}{10}\) \(\frac{1}{10}\) \(\frac{1}\ta\) \(\frac{1}	.915, 18° .953, 15°	Cahours. C.C. 4, 482.
Butyl orthosilicate Triethyl amyl orthosilicate	$(C_4 H_6)_3 C_5 H_{11} \operatorname{Si} O_4 -$	.926, 0°	Cahours. C. C. 5, 20. Friedel and Crafts. A. J. S. (2), 43, 163.
Diethyl diamyl orthosili- cate.	$(C_2H_5)_2(C_5H_{11})_2SiO_4$	.915, 0°	Friedel and Crafts. J. 19, 489.
Ethyl triamyl orthosilicate Amyl orthosilicate	$\begin{array}{c} C_2 H_5 (C_5 H_{11})_3 Si O_4 \\ (C_5 H_{11})_4 Si O_4 \end{array}$	.913, 0° .868, 20°	Ebelmen. A. C. P. 57, 844.
Hexmethyl disilicate	(C H ₈ ) ₆ Si ₂ O ₇	1.1441, 0°	Friedel and Crafts. J. 18, 465.
Hexethyl disilicate		1.0019, 190.2	Friedel and Crafts. J. 19, 489.
Octethyl tetrasilicate	1	, ,	Troost and Haute- feuille. B. S. C. 19, 255.
Ethyl silicoacetate	C, H ₁₈ Si O ₈	.9283, 0°	Ladenburg. J. C. S.
Methyl silicopropionate	C ₅ H ₁₄ Si O ₈	.9747, 0°	(2), 12, 40. Ladenburg. A. C. P. 173, 143.
Ethyl silicopropionate			Friedel and Laden burg. A. C. P 159, 259.
Ethyl silicobenzoate	C ₁₂ H ₂₀ Si O ₈	1.0183, 0° }	Ladenburg. J. C. S. (2), 11, 1026.
Silicon diethyl diethylate.	C ₈ H ₂₀ Si O ₂	.8752, 0°	Ladenburg. A. C. P 164, 300.
TriethylsilicolSilicoheptyl oxide	Si C ₆ H ₁₅ . O H (Si C ₆ H ₁₅ ) ₂ O	.8709, 0° .8881, 0°	Ladenburg. Ber. 4
"		.8590, 0°	780. Ladenburg. A. C. P.
Silicoheptyl acetate Silicoheptyl ethylate	Si C ₆ H ₁₅ . C ₂ H ₃ O ₂ Si C ₆ H ₁₅ . C ₃ H ₅ O  .	.9039, 0° .8403, 0°	164, 800.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Silicoheptyl chloride	Si C ₆ H ₁₅ Cl	.9249, 0°	Ladenburg. A. C. P. 164, 300.
Methylsilicic monochlor- hydrin.	Si C ₃ H ₉ Cl O ₃	1.1954, 0°	Friedel and Crafts. J. 19, 490.
Methylsilicic dichlorhy- drin.	Si C ₂ H ₆ Cl ₂ O ₂	1.2595	
Ethylsilicie monochlorhy- drin.	Si C ₆ H ₁₅ Cl O ₃	1.0488, 0°	Friedel and Crafts. A. J. S. (2), 48, 160.
Ethylsilicicdichlorhydrin	Si C ₄ H ₁₀ Cl ₂ O ₃	1.144, 0°	
Ethylsilicic trichlorhydrin	Si C ₂ H ₅ Cl ₈ O	1.241, 0°	
Propylsilicic monochlor- hydrin.	Si C ₉ H ₂₁ Cl O ₃	.980	Cahours. C. C. 4,
Propylsilicic dichlorhy-	Si C ₆ H ₁₄ Cl ₂ O ₂	1.028	66 66
Derivative of silicon tri- ethylphenyl.	Si C ₁₂ H ₁₉ Cl	1.1085, 0°	Ladenburg. A. C. P. 178, 148.
Silicon iodoform	Si <b>H</b> I,	3.362, 0° } 3.314, 20° }	Friedel. A. C. P.

#### LXVII. ORGANIC COMPOUNDS OF TIN.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Stanntetramethyl	Sn (C H ₃ ) ₄	1.3138, 0°	Ladenburg. Z. C. 13, 605.
Stanndiethyl	Sn ₂ (C ₂ H ₅ ) ₄	1.558, 15°	Löwig. J. 5, 584.
"Ethylene stannethyl" Stanntriethyl	Sn ₂ (C ₂ H ₅ ) ₆		Löwig. J. 5, 585.
Stanntetrethyl		1	18, 604.
Stannethyltrimethyl Stanndiethyldimethyl	Sn C ₂ H ₅ (C H ₃ ) ₃ Sn (C ₂ H ₅ ) ₂ (C H ₃ ) ₂ -	1.248 1.2819, 19°	Cahours. J. 14, 551.
"	"	1.2509, 0° } 1.2603, 0° }	Two lots. Morgu- noff. Z. C. 10, 870.
Stanntetrapropyl	Sn (C ₃ H ₇ ) ₄	1.179, 14°	Cahours. B. S. C. 20, 190.
Stanntriethylphenyl	Sn (C ₂ H ₅ ) ₃ C ₆ H ₅	1.2639, 0°	Ladenburg. A. C. P. 159, 251.
Stanntriethyl ethylate	Sn $(C_2 H_5)_8 C_2 H_5 O$ .	1.2634, 0°	
Stanntrimethyl iodide Stanntrimethyl iodide			Cahours. J. 12, 427.
ii ii	Sp (C H ₈ ) ₃ I " Sp (C H ) I	2.1432, 0° }	Ladenburg. Z. C.
Stanndiethyl iodide	Sn (C ₃ H ₅ ) ₂ I ₃	2.1096, 18° } 1.8 2.0329, 15°	Cahours. J. 12, 424.
23 s c			*10.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stanntriethyl chloride  Stanntriethyl bromide Stanntriethyl iodide Stanntripropyl iodide Stanntributyl iodide  Ethstannethyl chloride'' Ethstannethyl bromide'' Ethstannethyl iodide''	Sn (C ₂ H ₅ ) ₃ Cl	1.428, 8°	Cahours. J. 12, 425. Lōwig. J. 5, 588. "Cahours. J. 12, 424. Cahours. B.S.C. 19, 801. Cahours. C. C. 5, 20. Lōwig. J. 5, 588.

### LXVIII. ORGANIC COMPOUNDS OF ALUMINUM.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Aluminum ethylate	A1 (C ₂ H ₅ O) ₃	1.147, 4°	Gladstone and Tribe. C. N. 42, 3.
Aluminum propylate	A1 (C. H. O).	1.026.40	
Aluminum butylate	Al (C. H. O)	.9825, 40	11 11
Aluminum amylate	Al (C. H., O).	.9804. 40	- ct - 44
Aluminum phenylate	Al (C, H, O),	1.25, 40	44
Aluminum cresvlate	A1 (C. H. O).	1.166. 40	11 11
Aluminum thymolate	Al (C, H, O),	1.04, 40	11 11
Aluminum chloride and benzene. " "	Al Cl3. 3 C6 H6	1.14, 0° }	Gustavson. Ber. 11, 2152.
Aluminum chloride and toluene. " "	11	1.06, 220	
Aluminum chloride and cymene. "	2 Al Cla. 3 C10 H14	1.189, 0° }	Gustavson. Ber. 12, 694.
Aluminum bromide and	Al Br. 3 C. H.	1.49, 00 1	Gustavson. Ber. 11, 1845.
toluene.	Al Br ₅ . 3 C ₇ H ₈	11.85, 200 1	Gustavson. Ber. 11, 1843.
Aluminum bromide and cymene. "	2 Al Brg. 3 C10 H14	1.493, 00 }	Gustavson. Ber. 12 694.

LXIX. ORGANIC COMPOUNDS OF ZINC, MERCURY, THALLIUM, AND LEAD.

FORMULA.	l	
TORMULA.	SP. GRAVITY.	AUTHORITY.
Zn (C H ₃ ) ₂	1.886, 10°.5	Frankland and Duppa. J. 16, 478.
Zn (C ₂ H ₅ ) ₂ Zn (C ₈ H ₇ ) ₂	1.182, 18° 1.098, 15°	Frankland. J. 8, 577. Gladstone and Tribe. J. S. C. (2),
Zn (C ₅ H ₁₁ ) ₂	1.022, 0°	11, 968. Frankland and Duppa. J. 16,478.
Hg (C H ₃ ) ₂ Hg (C ₂ H ₅ ) ₂ Hg (C ₃ H ₇ ) ₂	3.069 2.444 2.124, 16°	Buckton. J. 11, 388. Buckton. J. 11, 390. Cahours. B. S. C. 19, 301.
Hg (C ₄ H ₉ ) ₂	1.7469, 0° } 1.7192, 16°	Chapman and Smith. J. C. S. 22, 164.
Hg (C ₅ H ₁₁ ) ₂	1.835, 15° 1.6668, 0°	Cahours. C. C. 5, 20. Frankland and Duppa.
	1	Eichler. Ber. 12, 1880.
Hg (C ₆ H ₅ ) ₂	$\left\{ egin{array}{c} 2.290 \\ 2.324 \\ 2.840 \end{array} \right\} \ 4^{\circ} \left\{ \left[ \begin{array}{c} 1 \\ 1 \end{array} \right] \right\}$	Schröder. Ber. 12, 561.
Hg (C ₁₀ H ₇ ) ₂	1.918	
Hg C H, Cl Hg C, H, Cl	1.944 ) 4.063, 4° 3.461 }	ec ec
Hg (C ₆ H ₁₃ S) ₂	3.503 \ \frac{1}{1.6502}, 0° \ \frac{1}{1.6502}	Wanklyn and Erlenmeyer. J. 17, 510.
Tl C, H, O	3.480 } 3.685 }	Lamy. Ann. (4), 3, 378.
Tl C ₅ H ₁₁ O	2.465 2.518 }	Lamy. J. 17, 466
Pb (C H ₅ ) ₄	2.034, 0° 1.55 1.62 1.471, 10° 1.5298, 20°	Butlerow. J. 16, 476. Buckton. J. 11, 391. Buckton. J. 12, 409. Klippel. J. 13, 381. Polis. Ber. 20, 716.
	Zn (C ₂ H ₅ ) ₂	Zn (C ₂ H ₅ ) ₂

LXX. METALLIC SALTS OF ORGANIC ACIDS.

Name.	FORMULA.	Sp. Gravity.	Authority.
*Lithium formate	Li C H O ₂ . H ₂ O	1.435 }	Schröder. Ber. 14, 21.
Sodium formate	Na C H O,	1.907	## ## ##
Potassium formate	ксно	1.896)	
Ammonium formate	Am C H O	1.264 )	
Zinc formate	Zn C ₂ H ₂ O ₄	2.368	Schröder. Ber. 14, 28.
" "	Zn C ₂ H ₂ O ₄ . 2 H ₂ O ₋	2.339	
" "	"	2.205	Schröder. Ber. 14, 28.
Cadmium formate	" Cd C. H. O. 2 H. O.	2.1575, 21°.8	Breen. F. W. C.
" " Calcium formate	"	2.427 } 2.477 }	Schröder. Ber. 14, 22.
Calcium formate	Ca C ₂ H ₂ O ₄	2.021	Schröder. Ber. 8,
11 11	"	2.009 }	Schröder. Ber. 14, 22.
Strontium formate	Sr C, H, O,	2.667	
" "	Sr C, H, O, 2 H, O	2.252, cryst.	Schröder. Ber. 8,
" " ————	" ==	2.266, pulv. } 2.244, m. of 3_	199. Schröder. Ber. 14,
Barium formate	Ba C, H, O,	3.193, cryst. }	Schröder. Ber. 8,
"	"	3.203	199. Two lots. Schröder.
Lead formate		3.233 } 4.56, 11°	Ber. 11, 2129. Bödeker and Giesecke. B. D. Z.
"	11	4.507 }	Schröder. Dm. 1873.
11 11	"		Schröder. Ber. 8, · 199.
Manganese formate	Mn C, H, O,	2.205	
	Mn C ₂ H ₂ O ₄ . 2 H ₂ O	1.704 }	
Nickel formate	Ni C. H. O. 2 H. O	1.959 ) 2.1547 20° 2	H. Stallo. F.W.C.
Nickel formate	Co C, H, O. 2 H, O.	2.1080, 20°.2 } 2.1286, 22°	" "
Copper formate			Gehlen. Ann. 83, 213.
66 66		1.811, pulv. } 1.795, cryst. }	Schröder. Ber. 8, 199.
" "	"	1.881 "	Schröder. Ber. 14, 23.
Strontium copper formate	Sr ₂ Cu (C H O ₂ ) ₆	2.612	Schröder. Ber. 14, 24.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Strontium copper formate	"	2.188 (	Schröder. Ber. 14, 24.
Didymium formate	Ba ₂ Cu(CHO ₂ ) ₆ . 4H ₂ O Di (C H O ₂ ) ₃	2.747   8.427   20° {	Cleve. U. N. A. 1885.
Samarium formate	Sm (C H O ₂ ) ₃	3.780 3.782 20°	" "
		8.787 )	
Sodium acetate	Na C ₂ H ₃ O ₂	1.421, 14° 1.524)	Bodeker. B. D. Z. Schröder. Ber. 14,
(	"	1.529}	1608. Brügelmann. Ber.
	No C H O SH O		<b>_ 17, 2859</b> .
"	Na C ₂ H ₃ O ₂ . 8 H ₂ O ₋	1.40, 120	Bödeker. B. D. Z.
" "	"	1.450	Schröder. Ber. 14, 1608.
Sodium triacetate	Na C ₆ H ₁₁ O ₆	1.47	Lescoeur. C. R. 78, 1046.
Potassium triacetate Silver acetate	K C ₆ H ₁₁ O ₆	1.84 8.1281, 15°	Liebig and Redten-
	g - , - , - ,	,	bacher. P. M. (8), 19, 227.
" " <u></u>	"	8.222}	Schröder. Ber. 9,
Magnesium acetate	Mg (C ₂ H ₃ O ₂ ) ₂	8.259 { 1.419 }	1888. Schröder. Ber. 14,
"	Mg (C, H, O,), 4H, O	1.422 \ 1.453 \	1610.
" "	"	1.455 \	Kubel. Ber. 19, ref.
Zinc acetate	Zn (C ₂ H ₈ O ₂ ) ₂	1.810 }	283. Schröder. Ber. 14, 1610.
(1 (1	Zn (C, H, O,), 2 H, O Zn (C, H, O,), 8 H, O	1.869 \ 1.785	
Cadmium acetate	$\begin{bmatrix} \operatorname{Zn} \left( \operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} & \operatorname{3} \operatorname{H}_{2} \operatorname{O} \\ \operatorname{Cd} \left( \operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} & & \end{bmatrix}$	2.829 [ ]	Bödeker. B. D. Z. Schröder. Ber. 14,
<i>u u</i>	Cd (C, H, O,), 2H, O	2.852 }	1611.
Mercuric acetate	Hg (C ₂ , H ₃ O ₂ ) ₂	2.021 } 8.2544, 22° }	
Strontium acetate	Sr (C ₂ H ₃ O ₂ ) ₂	3.2861, 28° } 2.099	Hagemann. F.W.C. Schröder. Ber. 14,
" "	2 Sr (C ₂ H ₃ O ₂ ) ₂ . 3 H ₂ O		1608.
" "	• • • • • • • • • • • • • • • • • • • •	2.018	() () () () () () () () () () () () () (
Barium acetate	Ba (C ₂ H ₃ O ₂ ) ₂	2.440 }	Schröder. Ber. 11, 2129.
" " ————	"	2.816 }	Two lots. Schröder. Ber. 12, 561.
" "	"	2.480	Schröder. Ber. 14, 1608.
11 11	$\begin{array}{c} \text{Ba } (\text{C}_2 \text{ H}_3 \text{ O}_2)_2 \text{. H}_2 \text{ O} \\ \text{Ba } (\text{C}_2 \text{H}_3 \text{ O}_2)_2 \text{. 8 H}_2 \text{ O} \end{array}$	2.19, 18°	Bödeker. B. D. Z.
"	··I	2.026 ]	Schröder. Ber. 14, 1608.
Lead acetate	Pb (C ₂ H ₂ O ₂ ) ₂	3.288 }   8.264	Schröder. Ber. 14, 1609.

Name.	FURNIULA.	. Sp. Graviti.	ATTHORNY.
Lend assente	Pi C, H, O,,, 8H, O	2.496	Buignet. J. 14, 15.
		. 2-002.10 9.546	Schröder. Ber. 14.
4. 4.		2.560	1609.
4.	! "	2.460	W. C. Smith. Am.
	~		J. P. 32, 145.
Mangarese success.	Mn (C, H, O,),	1.758	Schröder. Ber. 14., 1670.
h.	Mn C, H, O, J, 4H, 0	1.585 i	
A. A:		1.500	
Nickel somme	Ni (C, H, O,),	1.797	
* *	;	1.799	
	Ni (C, H, O,), 4 H, O	1.7386, 17°.21	H. Smiln. F. W.C.
a. M		1.784	Schröder. Ber. 14.
u ii		1.758	1636
Cubalt avetate	Co C, H, O, ), 4H, O	1.7021 150.7	H. Stalle, F. W. C.
_ **		1.7948. 14P.T	
Copper weeters	Cu (C, H, O,)	1.939	Schröder. Ber. 14.,
ii ii	Cu (C, H, O,), H, O		Gehlen. Ann. (1),
	on had made a star and o		82.212
ند م <b>د</b>		1.996, m. of 4.	
		Larine	Schröder. Dm.
بن کا ما نن		1.86; 11°.	1) Attenta
	į <del></del>	1.875   1.899	Schröder. Ber. 14., 1909.
Didymoun sectate	Di (C, H, O,)	2124 15 5	Cheve. U. N. A.
se	· -	2.1ML 107.5	1965.
	Di (C, H, O,), H, O.	2.280 SOP	44 44
AS AS	ECHAL IN	2.244	<u>.</u>
	Di C, H, O, , 4 H, O	1854 137.5	
Samarium acetate	Sen (C. H. O.),	2.505, 195.3	_ # #
	Sen (C, H, O, , 4 H, O	1.942 145.5	<u>, , , , , , , , , , , , , , , , , , , </u>
- M		1494 1505	i
Caleform orpper acetate	Late C H	9 96W 172	Schabus. J. 3, 250. Wyrouboff, B. S. M.
Latadion disapi medane	2 H. O		8.115.
Sedium uranyi seetate	No U O. C. H. O.	255 12	Bodeker and Gie-
	i		secke. B. D. Z.
Sodium uranyi monochke- monate.	Ze CO. (C.H.ClO.)	2.745, 149	Charke A. C. J. 2.
accepte.	2 H, O	•	† <b>23</b> 1.
9°1	A-C T 0		C 1 - 1 D 10
Silver propionate	Ag C, H, O,	'Z-14	Schröder. Ber. 10,
Barium propionate	Ba (C, H, O,)	2.057. 220.3	Stern. F. W. C.
и и		1.970	Schröder. Ber. 11,
			2129.
Didymium propionate	Di (C, H, O,),	[ 1. <del>9</del> 61, 1 <b>2°</b> .5	Cleve. U. N. A.
44	DICHOL PHO	1 741 190 5 3	1885.
44 44	Di (C, H, O,), 3 H, O	1.742, 139	"
Samarium propionate	Sen (C, H, O, \	. 1.894, 147	u u.
			I
" " "	Son (C, H,O,), 3 H,O	11.784)	i
" " " " "	Sm (C ₃ H ₅ O ₅ ) ₃ . 3 H ₂ O	1.786 1.786 1.788	

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Silver butyrate	Ag C, H, O,	2.853, 4°	Schröder. Ber. 10,
Barium butyrate	Ba (C ₄ H ₇ O ₂ ) ₂	1.768, 22° 1.779} 1.800}	Stern. F. W. C. Schröder. Ber. 11, 2130.
Silver isovalerate. Ppt "Cryst	Ag C ₅ H ₉ O ₂	2.110 2.118 4° {	Schröder. Ber. 10, 848.
Silver caproate	Ag C ₆ H ₁₁ O ₂	2.029, ppt. 2.052, cryst.	From two caproic acids, probably
16	"	2.058, " ) 1.866, " ) 1.877, " }	h not identical. Schröder. Ber. 10, 1872.
Silver caprylate	Ag C ₈ H ₁₆ O ₂	1.740, ppt. 1.771, cryst.	Schröder. Ber. 10, 1878.
Potassium methylsulphate	K C H ₃ S O ₄	2.057	Schröder. Ber. 11, 2020.
Barium methylsulphate	Ba (CH ₃ SO ₄ ) ₂ . 2H ₂ O	2.258 }	Geppert. F. W. C. Schröder. Ber. 11,
Potassium ethylsulphate	K C ₂ H ₅ S O ₄	2.275 { 1.792 } 1.809	2130. Schröder. Ber. 11, 2020.
Barium ethylsulphate	Bu (C2H5SO4)2. 2H2O	2.0714, 22°.6 } 2.080, 21°.7 }	Geppert. F. W. C.
# #	"	2.055	Schröder. Ber. 11, 2180.
Didymium ethylsulphate Samarium ethylsulphate		1.860, 17°.8 } 1.867, 18° }	Cleve. U. N. A. 1885.
Potassium propylsulphate	K C, H, S O,	1.885 } )	Schröder. Ber. 11,
Barium propylsulphate	Ba (C ₃ H ₇ SO ₄ ) ₂ . 2H ₂ O	1.831 }	2020. Geppert. F. W. C.
" "	"	1.844	Schröder. Ber. 11, 2130.
Potassium isobutylsul- phate. "	''	1.486	Schröder. Ber. 11, 2020.
Barium isobutylsulphate	Ba (C ₄ H ₉ S O ₄ ) ₂ . 2H ₂ O ''	1.714, 22° 1.748, 24°.8 1.778, 21°.2	Whetstone. F.W.C. Schuermann. F.W. C.
	"	1.727 }	Schröder. Ber. 11, 2130.
Potassium amylsulphate	K C ₅ H ₁₁ S O ₄	1.418	Schröder. Ber. 11, 2020.
Barium amylsulphate	Ba(C ₅ H ₁₁ SO ₄ ) ₂ . 2H ₂ O	1.623, 21°.2 1.632, 22° }	Whetstone. F.W.C. Schröder. Ber. 11,
Potassium methylxanthate	KCHCOS	1.641}	2130. Bishop. F.W.C.
Potassium ethylxanthate	K C ₂ H ₅ C O S ₂	1.7002 }	Geppert. F. W. C.
Potassium isobutylxan-	''	1.5576. 215.5	H. Stallo. F. W. C.
thate. "		1.8882, 14°.5	"

	<del></del>		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium oxalate	Li. C. O.	2.1213, 17°.5	Stolba. J. 1880, 283.
Sodium hydrogen ovalate	N. H.C. O. H. O.	2.315	Buignet. J. 14, 15.
Potassium oxalate	K, C, O, H, O	2.104, m. of 2_	Playfair and Joule.
			M. C. S. 2, 401.
		2.08	Schiff. J. 12. 16.
Potassium hydrogen oxa-	K H C. O.	1.965, m. of 2.	Schiff. J. 12, 16. Playfair and Joule.
late.	•	,	M. C. S. 2, 401.
" "	"	2.030	Schiff. J. 12, 16.
	"	2.088	Buignet. J. 14, 15.
Potassium quadroxalate	$K H_s (C_2 O_4)_T 2 H_2 O$	1.817	Playfair and Joule.
			M. C. S. 2, 401.
" "	"	1.765	Schiff. J. 12, 16.
" "	"	1.836	Buignet. J. 14, 15.
Rubidium quadroxalateAmmonium oxalate	Rb H ₃ (C,O,), 2H,O.	2.1246, 18°	Stolba. J. 1877, 243.
Ammonium oxalate	Am, C, O, H, O	1.461, m. of 2_	Playfair and Joule.
			M. C. S. 2, 401.
" "	"	1.475	Schiff. J. 12, 16.
u u	"	1.470	Buignet. J. 14, 15.
" "		1.501 }	Schröder. Dm. 1873.
Ammonium hydrogen ox-	A - T O O T O	1.502)	70 6: 3 7 1
Ammonium nydrogen ox-	Am H C, U4. H, U	1.503, m. or 8.	Playrair and Joule.
alate.		1 550	M. C. S. 2, 401.
Ammonium quadroxalate	Am H (C O) H O	1.556	Schiff. J. 12, 16. Playfair and Joule.
		I	M C Q 9 401
44 44	"	1 607	Schiff. J. 12, 16.
Silver ovalate	Ag. C. O.	4 96 109	Husemann. B. D. Z.
" "	1161 01 01	5.005. 4° ppt.	) Schröder. Ber. 10,
"		5.029, 4° cryst.	849.
Thallium oxalate	Tl. C. O.	6.31	Lamy and Des Cloi-
	., ., .,		zeaux. Nature, 1,
			442.
Thallium hydrogen ox-	TI H C, O, H, O	3.971	
alate.	1		[
Zinc oxalate	Zn C, O,	2.547, 18°.3	[
" "	Zn C ₂ U ₄	2.562, 24°.5	Wilson. F. W. C.
			i
Cadmium oxalate	Cd C, O,	3.310, 17° }	Freeman. F. W. C.
Calcium oxalate		3.320, 180	l .
Calcium oxalate	Ca C ₂ O ₄	2.106	Schröder. Dm. 1873.
11 11	"	2.101	Schröder. Ber. 12,
11 11	"	2.182 } 4 {	561.
Barium oxalate		2.200)	Schweitzer. Univer-
Darium Oxalate	Da 0, 04	2.0010	sity of Missouri,
	1	İ	special pub., 1876.
Lead avalate	Ph.C. O.	5.018.)	1 -
11 11	" " "	5.035 }	Schröder. Dm. 1873.
Manganese oxalate	Mn C. O.	2.422, 219.8	1
Manganese oxalate	"	2.453, 200.7	Freeman. F. W. C.
Humboldtine	"	2.457, 21°.8	
Humboldtine	2 Fe C. O., 3 H. O.	2.13	D
"		2.489	Dana's Mineralogy.
Nickel oxalate	Ni C, O,	. 2.218, 19° _ 1	
"		2.2285, 19°.5	Freeman. F.W. C.
"		. 2.235, 18°.5	
Nickel oxalate	Co C, O,	. 2.296, 20°.5 )	
" "	.  "	.  2.325, 19° }	"

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stannous oxalate	Sn C ₂ O ₄	8.558, 18 8.576, 22°.5 3.584, 28°.5	Wilson. F.W.C.
Thorium oxalate	Th (C ₂ O ₄ ) ₂	4.687, 16°	Clarke. A. C. J. 2, 175.
Uranyl oxalate	U O2. C2 O4. 8 H2 O	2.98	Ebelmen. J. P. C. 27, 391.
Potassium copper oxalate.	K ₂ Cu (C ₂ O ₄ ) ₂ . 2H ₂ O	2.288, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
Ammonium copper oxa- late.	$Am_2Cu(C_2O_4)_2$ . $2H_2O$	1.928	
Potassium chromoxalate	K ₃ (Cr J ₆ O ₁₂ ). 8H ₂ O	2.1039, 23° 2.1464, 24°	Bishop. F.W. C.
Strontium chromoxalate Strontium potassium chro- moxalate.	Sr ₅ (CrC ₆ O ₁₂ ) ₂ . 10 H ₂ O Sr K(CrC ₆ O ₁₂ ). 6 H ₂ O	2.148, 8°.8 2.155, 12°.8	Kebler. F.W.C.
Barium chromoxalate	$Ba_{3} (Cr C_{6} O_{12})_{2}$ $Ba_{3} (Cr C_{6} O_{12})_{2} \cdot 6 H_{2} O$	2.570, 6°.8	"
" "	$Ba_{3}(CrC_{6}O_{12})_{2}.6H_{2}O$	2.445, 18°.9 2.872, 27°	<i>u u</i>
Sodium ferroxalate		1.9731, 17°.5	Eder and Valenta. Ber. 14, 1106.
Ammonium ferroxalate	Am ₈ (FeU ₆ U ₁₉ ).8H ₉ U	1.7785, 170.5	
Platosoxalic acid	Pt H, (C, O,), H, O.	2.94, 14°	Söderbaum. Upsala Diss. 1888.
Sodium platosoxalate	Na ₂ Pt(C ₂ O ₄ ) ₂ . 4 H ₂ O Na ₂ Pt(C ₂ O ₄ ) ₂ . 5 H ₂ O K ₂ Pt (C ₂ O ₄ ) ₂ . 2 H ₂ O	2.89, 17°.2 2.92, 17°.2	66 66
Potassium platosoxalate.	K, Pt (C, O, )2. 2 H, O	3.087, 11°.6	
" Light. " Dark.		8.036, 12° } 8.012, 12°	
Ammonium platosoxalate. Light.	Am ₂ Pt(C ₂ O ₄ ) ₂ . 2H ₂ O	2.614, 11°.7	
" Dark.	"	2.58, 11°.5	" "
Platodiamine platosoxa- late. Light.	Pt(N H ₃ ) ₄ Pt(C ₂ O ₄ ) ₂	3.51, 13°.5	66 66
" Dark. Didymium nitratoöxalate.	Di H ₂ (N O ₃ ) ₂ (C ₂ O ₄ ) ₃ . 11 H ₂ O	$\left\{\begin{array}{c} 3.48, 18^{\circ}.5\\ 2.424\\ 2.425 \end{array}\right\} \left\{\begin{array}{c} 18^{\circ}.2. \end{array}\right.$	(Cleve. U. N. A.
	"11H, 0	2.425 } 180.2	1885.
Ammonium succinate Silver succinate	Am, C, H, O,	1.367, 10° 3.518, 10°	Zachariae. B. D. Z.
Silver succinate	Ag ₂ C ₄ H ₄ O ₄	3.518, 10° 3.807 } 4° {	Husemann. B. D. Z. Schröder. Ber. 10,
		0.000	849.
Barium succinate	Ba C ₄ H ₄ O ₄	2.696 { 2.699 }	Schröder. Ber. 11, 2129.
Lead succinate	Pb C ₄ H ₄ O ₄	3.800, 10°	Husemann. B.D.Z.
Ammonium malate	Am ₂ C ₄ H ₄ O ₅	1.509	Wyrouboff. Bei. 8,
Ammonium hydrogen ma- late.	Am C ₄ H ₅ O ₅	1.55	Pasteur. J. 4, 392.
Silver malate	Ag ₅ C ₄ H ₄ O ₅	4.0016	Liebig and Redten- bacher. A. C. P. 88, 189.

Ammonium hydrogen tartrate.  Sodium potassium tartrate  """""""""""""""""""""""""""""""""""	<del></del>	AUTHORITY.	Sp. Gravity.	Formula.	E.	Name.	
### ### ##############################	4, 15.	Buignet. J. 14.	1.794	Na ₂ C ₄ H ₄ O ₆ . 4 H ₂ O			
Trate.	10. 4 15	Ruignet J 14	1.960	K. C. H. O. H. O.	(	um tartrai	Potassiu:
## Ammonium tartrate					•		
Ammonium tartrate	16.	Schiff. J. 12, 1		"	-	•••	
## ## ## ## ## ## ## ## ## ## ## ## ##	4, 15.	Schiff I 19 1	1.956	Am C H O			
""""       1.601       Wyrouboff. B         24.       24.       24.         Schiff. J. 12,       Schiff. J. 12,         Schiff. J. 12,       Mitscherlich.         """"""""""""""""""""""""""""""""""""	4. 15.	Buignet, J. 14.	1.528			110111 00101	44
trate.       Sodium potassium tartrate       Na K C ₄ H ₄ O ₆ · 4 H ₂ O       1.74       Mitscherlich. Schiff. J. 12, 1.790       Buignet. J. 12, 1.790       Buignet. J. 12, 1.790       Buignet. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. Schiff. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       Wyrouboff. Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mitscherlich. J. 12, 1.790       J. P. 53, 145. Mits	lei. 8,	Wyrouboff. Be 24.	1.601	. "			
" " " " " " " " " " " " " " " " " " "	16.	Schiff. J. 12, 1			_		trate.
" " " " " " " " " " " " " " " " " " "	10	Mitscherlich.	1.74	Na K C ₄ H ₄ O ₆ . 4H ₂ O	um tartrate	ı potassiun	Sodium 1
""""       """"       1.77       W. C. Smith. J. P. 53, 145         Sodium ammonium tartrate.       """"       1.58       Mitscherlich.         """"       """"       1.576       Pasteur. J. 2, Schiff. J. 12, ""         Potassium ammonium tartrate.       KAm C4H4Oe 4H2O       1.700       Wyrouboff. J. 12, ""         Rubidium tartrate.       Rb, C4H4Oe H2O       2.584       Wyrouboff. B         Rubidium hydrogen tartrate.       Rb HC4H4Oe 1H2O       2.399       Wyrouboff. M. 6, 311.         Rubidium sodium tartrate.       Rb Na C4H4Oe 21H2O       2.220       Wyrouboff. M. 6, 58.         Rubidium sodium tartrate.       Ag2 C4 H4 Oe       3.4321       Liebig and Rebacher. A. 6, 31.         M. 6, 311.       M. 6, 311.       M. 6, 311.       Lamy and Deszeaux. Nat 1, 142.         """       """       4.740       Wyrouboff. M. 9, 102.       Lamy and Deszeaux. Nat 142.	10. 4 15	Ruignet J 14	1.790	66			
Sodium ammonium tar-   trate.	Am.	W. C. Smith.	1.77	"	"	"	"
## 1.576   Pasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J. 12, Fasteur. J. 2, Schiff. J.	١.	J. P. 53, 145,			nium tar-		
"""       """       """       Schiff. J. 12, """         Rubidium tartrate       Rb, C, H, O, H, O       2.692       Wyrouboff. B         Rubidium hydrogen tartrate.       Rb, C, H, O, H, O       2.584       Wyrouboff. B         Rubidium hydrogen tartrate.       Rb H C, H, O, H, O       2.399       Wyrouboff. B         Rubidium lithium tartrate.       Rb Li C, H, O, H, O       2.281       Wyrouboff. B         Rubidium sodium tartrate.       Rb Na C, H, O, H, O       2.281       Wyrouboff. B         Silver tartrate.       Ag, C, H, O, H, O       3.4321       Liebig and Rebacher. A. (6), 9, 221.         Silver tartrate.       Tl, C, H, O, H, O       4.658       Wyrouboff. M. 6, 311.         """       H. G, 311.       Lamy and Deszeaux. Natult42.         """       4.740       Lamy and Deszeaux. Natult42.	200	Pastour I 9	1 57B	"			
Potassium ammonium tartrate.       KAM C4H4O54H2O       1.700       """"""""""""""""""""""""""""""""""""	, 308. 16.	Schiff. J. 12. 1	1.587				
""""       Rb, C, H, O, H, O       2.584       Wyrouboff. M. 6, 311.         Rubidium hydrogen tartrate.       Rb H C, H, O, H, O       2.399       Wyrouboff. M. 6, 311.         Rubidium lithium tartrate.       Rb Li C, H, O, H, O       2.281       Wyrouboff. M. 6, 58.         Rubidium sodium tartrate.       Ag, C, H, O, H, O       3.4321       Liebig and Rebacher. A. 6, 311.         Silver tartrate.       Tl, C, H, O, H, O, H, O       4.658       Wyrouboff. M. 6, 311.         """       Ja, 142.       Wyrouboff. M. 9, 102.         Lamy and Deszeaux. Natult42.       Lamy and Deszeaux. Natult42.		" "	1.700				trate.
" " " Rb, C, H, O, H, O 2.584	Bei. 8,	Wyrouboff. Be	2.692	Rb ₂ C ₄ H ₄ O ₆	ate	um tartrat	Rubidiu
Rubidium hydrogen tartrate.       Rb H C ₄ H ₄ O ₆ . H ₂ O       2.399       "       "         Rubidium lithium tartrate       Rb Li C ₄ H ₄ O ₆ . H ₂ O       2.281       Wyrouboff. M. 6, 53.         Rubidium sodium tartrate       Ag ₂ C ₄ H ₄ O ₆ . 2½H ₂ O       3.4321       Liebig and Rebacher. A. 6         Silver tartrate       Tl ₂ C ₄ H ₄ O ₆ . H ₂ O       5.110       Wyrouboff. M. 6, 311.         "       Tl ₂ C ₄ H ₄ O ₆ . H ₂ O       4.658       Wyrouboff. M. 6, 311.         Lamy and Des zeaux. Na 1, 142.       Wyrouboff. M. 9, 102.       Lamy and Des zeaux. Natu 142.	B. S.	Wyrouboff. B.	2.584	Rb ₂ C ₄ H ₄ O ₆ . H ₂ O _		"	"
Rubidium lithium tartrate       Rb Li C, H, O, H, O       2.281       Wyrouboff. Imm. 6, 53.         Rubidium sodium tartrate       Rb Na C, H, O, 2½H, O       2.200       Wyrouboff. Imm. 6, 53.         Silver tartrate       Ag, C, H, O, O       3.4321       Liebig and Rebacher. A. 38, 139.         Thallium tartrate       Tl, C, H, O, ½H, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O. JH, O	14	M. 6, 811.	2.899	Rb H C4 H4 O4 2 H2 O	rogen tar-	um hydro	Rubidiu
Rubidium sodium tartrate       Rb Na C ₄ H ₄ O ₆ -2½H ₂ O       2.200       Wyrouboff. A       (6), 9, 221.         Silver tartrate       Ag ₂ C ₄ H ₄ O ₆ 3.4321       Liebig and Rebacher. A. (6), 9, 221.         Thallium tartrate       Tl ₂ C ₄ H ₄ O ₆ 5.110       Wyrouboff. Imm. 6, 311.         """       4.658       Lamy and Des zeaux. Na 1, 142.         """       4.740       Wyrouboff. Imm. 9, 102.         Thallium hydrogen tartrate.       Tl H C ₄ H ₄ O ₆ 3.496       Lamy and Des zeaux. Natu 142.	B. S.	M. 6. 58.	2.281	Rb Li C, H, O, H, O	um tartrate	um lithiur	Rubidiu
Thallium tartrate Tl ₂ C ₄ H ₄ O ₆ 5.110 83, 139. Wyrouboff. 1 M. 6, 311. Lamy and Deszeaux. Na 1, 142. Wyrouboff. M. 9, 102. Lamy and Deszeaux. Na 1, 142. Wyrouboff. M. 9, 102. Lamy and Deszeaux. Na 1, 142.	Ann.	Wyrouboff. A. (6), 9, 221.			um <b>tart</b> rate	um sodiun	Rubidiu
Thallium tartrate Tl ₂ C ₄ H ₄ O ₆ 5.110 Wyrouboff. M. 6, 311.  Tl ₂ C ₄ H ₄ O ₆ ½ H ₂ O 4.658 Wyrouboff. M. 6, 311.  Lamy and Des zeaux. Na l, 142.  Wyrouboff. M. 9, 102.  Lamy and Des zeaux. Natu 142.	dten- C. P.	bacher. A. C				tartrate	Silver ta
" " 4.740 Zeaux. Na 1, 142. Wyrouboff. M. 9, 102. Lamy and Des trate. TI H C ₄ H ₄ O ₆ 8.496 Lamy and Des zeaux. Natu 142.	B. S.	Wyrouboff. B. M. 6, 311.					
" 4.740	Cloi- ature,	zeaux. Nat	4.658	Tl, C, H, O, H H, O.		"	"
Thallium hydrogen tar- trate.  Tl H C ₄ H ₄ O ₆ 3.496 Lamy and Des zeaux. Natu 142.	B. S.	Wyrouboff. I	4.740	"		"	"
	Cloi- re, 1,	Lamy and Des ( zeaux. Natur	8.496	TI H C, H, O,	rogen tar-		
" " $\text{TIH C}_4 H_4 O_6 \cdot \frac{1}{2} H_2 O \mid 3.399 \dots \mid \text{Wyrouboff. B.} \mid 6, 811.$	S. <b>M</b> .	Wyrouboff. B. S	3.399	T1 H C4 H4 O4. 1 H2 O		"	"
	S. M.	Wyrouboff. B.S.	3.356	Ti Li C, H, O, H, O	ım tartrate	um lithium	Thalliun
Thallium sodium tartrate TlNa C ₄ H ₄ O ₆ .2½ H ₂ O 3.120	Ann.	Wyrouboff. A	l .		ım tartrate	um sodium	Thalliun
Strontium tartrate Sr C ₄ H ₄ O ₅ 2.575, 17°.8	<b>▼.</b> C.	• • •	2.575, 17°.8 2.579, 17°.1	Sr C ₄ H ₄ O ₆		"	46
4 4 4 9-C H O AH O 1 081 109	14		1.961, 19° }	Sr C, H, O, 4 H, O		"	"

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Strontium tartrate Barium tartrate	Sr C ₄ H ₄ O ₅ 4 H ₂ O - Ba C ₄ H ₄ O ₆	2.874, 215.8	Joslin. F.W.C.
Lead tartrate	Pb C ₄ H ₄ O ₆	2.980, 20°.8 8.998, 16°.5 4.001, 17°.5 4.087, 17°.7	
Potassium tartrantimo- nite, or tartar-emetic	2 K C ₄ H ₄ Sb O ₇ . H ₂ O	2.5569	Pasteur. Ann. (8), 28, 86. Schiff. J. 12, 16.
66 66	"	2.588	Buignet. J. 14, 15. Topsoë and Christiansen.
Ammonium tartrantimonite.		2.324	Topsoë. C. C. 4, 76.
Silver tartrantimonite Thallium tartrantimonite_	$\begin{array}{c} \text{Ag C}_4 \text{ H}_4 \text{ Sb O}_7 \\ 2\text{Tl C}_4 \text{ H}_4 \text{ Sb O}_7 \\ \end{array}$	3.4805, 18°.2 8.99	Evans. F. W. C. Lamy and Des Cloi- zeaux. Nature, 1, 142.
Barium tartrantimonite	Ba (C ₄ H ₄ Sb O ₇ ) ₂ . 2 H ₂ O	8.112, 19°	Joslin. F. W. C.
Potassium borotartrate	K C4 H4 B O7	1.882	Buignet. J. 14, 15.
Potassium racemate Potassium hydrogen racemate.	K, C, H, O, 2 H, O K H C, H, O,	1.58 1.954	Mitscherlich. Wyrouboff. B.S.M. 6, 311.
Potassium lithium race- mate.	K Li C ₄ H ₄ O ₆		
Potassium sodium race- mate.	K Na C ₄ H ₄ O ₆ . 3 H ₂ O		Wyrouboff. B. S. C. 45, 52.
Rubidium racemate	Rb ₂ C ₄ H ₄ O ₆		Wyrouboff. Bei. 8, 24. Wyrouboff. B. S. M.
Rubidium hydrogen race- mate. Rubidium lithium race-	Rb H C ₄ H ₄ O ₆ Rb Li C ₄ H ₄ O ₆		6, 311. Wyrouboff. Bei. 8,
mate. Ammonium racemate	Am ₂ C ₄ H ₄ O ₆		24. Wyrouboff. B. S. M.
Ammonium hydrogen	Am H C ₄ H ₄ O ₆		9, 102. Wyrouboff. B.S. M.
racemate.  Ammonium sodium racemate.	Am Na C ₄ H ₄ O ₆ . H ₂ O	1.740	6, 811. Wyrouboff. Ann. (6), 9, 221.
Silver racemate	Ag, C, H, O,	3.7752	Liebig and Redten- bacher. A. C. P. 88, 189.
Thellium racemate	Tl ₂ C ₄ H ₄ O ₆	4.788 4.808 } 15°	Two varieties. Wy-rouboff. B.S.M. 9, 102.
u u	2 Tl, C, H, O, H, O.	4.659	Lamy and Des Cloizeaux. Nature, 1, 142.
Thallium hydrogen race- mate.	Tl H C4 H4 O6	3.494	Wyrouboff. B.S. M. 6, 811.
Thellium lithium race- mate.	Tl LiC, H, O, 2H, O		Wyrouboff. Ann. (6), 9, 221.
Thallium sodium racemate	TI Na C ₄ H ₄ O ₆ , 2H ₂ O	8.289	`á' ' "

Newton	Firesetti.A.	SP. GRAVITY.	AUTHORITY.
Parassium racemantimo-	2R'C, H', 3b O ₂ , H', (1	24788	Pasteur: Ann. (8), 28, 36.
Pornasium sitrator	R, C, H, O., R, O	1.98	
Triendinm strate	2Nn ₇ C ₈ H ₂ O ₇ , 11 H ₂ O	1.357, 220,5	E P. 53, 146. Basemore, F. W.C.
Diemmonium citrate.	Aw, Ca Ha O.	1.45D, 220	it it
Uranyl oleate	U O2 (C18, E18, O2)2	1.18	Gibbons. Ber. 18.
Calcium hipparate	If Chill a On He O.	1.692, 20*	964; Schabus: J. 3, 411. Post and Mehrtens: Ber: 8, 1552.
Silver orthonitrophenate Barlum orthonitrophenate Lead orthonitrophenate	Ag Cy II, Y Oz	2.691. 20*	.6
Bartim orthonitrophenate	He Con Ha N Only	2.3901, 204	16 16
Potessium metanitrophe- nate.	RC, R, XO, 2E,O.	Last, 20°	44 .4.
Barium metanitrophenate	BACCIE NO. 2HEA	2.348.20	16 16
Lead metanitronhenata	Photograph B. N. Oct.	2.894 20°	48 48
Lead metanitrophenata Potassium paranitrophe- nate.	RC, H, NO, 2H,O.	L.152, 20*	66- c8
Silver nammittenshenate	AgC.H.NO. 2H.O.	2.152, 20	16. 16
Barium narmithmhanata.	Biology, R. N. St. J., R. C.	2.322 10	"
Lead paranitrophenate	Phone E No. 128 6	2192 20	i <b>4</b> i4
Potessium adinitrophenates	KC, R.N.O. H.O.	In 18, 20°	16, 16
Silver a dinitrophenate	AgC, H. N.O. H.O.	2.755, 20	16 16.
Rarium a dinitrophenate Lead a dinitrophenate	Profice H. N. O. J. SHLO	2.489, 20*	16 16 16 16
Priming Ministerational	REPRO	۱۰۰۰۰ منت ۱	46. 46
Potamium 3 dinitrophenate Silver 3 dinitrophenate Bartum 3 dinitrophenate	+00 B V O	9 733 966	.4
Rartum ? dinumnhanara .	Barc B. V.O. BLO	2.409.200	, (6 .6
Lend 3 dinitrophenate	Ph O (C. H. X. O.)	2.807. 20*	.6 .6
Lend 3 dimerophenate	Li C. H. N. O.	I.TIH. 130	
ار در منصف در در ۱۹ ا ۱۶	"	1.724, 20	Beamer. F. W. C.
herenes in the	و معادد د	1.740, 20°	
Potamium piorate	K C4 H2 X3 O	. 1.852, 20°	Post and Mehrtens. Ber. 8, Linz.
Silver piorate	Ag C. H. N. O	2.816. 20°	
Thallium pirmen	TI C. H. N. O.	3.080	Lamy and Des Cloi-
ŀ			zesux. Vature. L.
Rarium piornes	Ba(CaH2N3O7)2 SH2O	2.513, 20*	Post and Mehrtens.
fand sissengs	PLE STALL STA	A GOT AND	Ber. 9, 1552.
Land piorata	Sm(C ₆ H ₂ N ₄ O ₇ ) _m SH ₂ O	1.354 13.5	Cleve. U. N. A. L <del>39</del> 5.
Ammonium henzones	Am C ₇ H ₅ O ₂	[.280 ) 4° — {	Schröder. Ber. 12, 1611.

[&]quot;Swith gives this sait under the name " potesti citras," and assigns no formula.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Calcium benzoate  Barium benzoate	Ca (C ₇ H ₅ O ₂ ) ₃ . 8H ₂ O ₋ Ba (C ₇ H ₅ O ₃ ) ₃ . 8H ₂ O	1.457   1.792   40   1.900   40   1.900   40   1.900   40   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.	Schröder. Ber. 9, 1889. Schröder. Ber. 12, 1611. Schröder. Ber. 12, 561.

LXXI. SALTS OF ORGANIC BASES WITH INORGANIC ACIDS.*

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetramethylam monium iodide. " " " Tetrethylammonium io-	:: ::	1.881, 19°.5 } 1.888 } 1.844 } 4° {	Owens. F. W. C. Schröder. Ber. 12, 561.
dide. " "	"	1.559 } <b>4°</b> 1.561 }	"
Tetramethylam monium mercury iodide.	" "	8.971, 24° [ 8.976, 28°.5 4.008, 28°.2	Owens. F. W. C.
Ethylamine platinchloride " Ethylamine aurochloride.		1 4.400 1	Clarke. A. C. J. 2, 175. Topsoë. S. W. A.
Diethylamine aurochlo-	-	i	78, 97.
ride. Triethylamine aurochlo- ride.	NC ₆ H ₁₅ . HCl. AuCl ₃	2.197	£
Guanidine carbonate	**	1.201 1	Schröder. Ber. 18, 1070.
Aniline chlorhydrate	C ₆ H ₇ N. H Cl	$egin{array}{l} 1.201 \\ 1.216 \\ 1.227 \\ \end{pmatrix} \ 4^{\circ} \Big\{ \Big $	Schröder. Ber. 12, 1611.
Aniline iodateAniline nitrate	C ₆ H ₇ N. H I O ₃ C ₆ H ₇ N. H N O ₃	1.480, 15°	Beamer. F. W. C. Schröder. Ber. 12, 1611.
Aniline sulphate	$(C_6 \ H_7 \ N)_2. \ H_2 \ S \ O_4 = C_6 \ H_7 \ N. \ C_4 \ H_5 \ Sb \ O_7 = C_{20} \ H_{19} \ N_3. \ H \ Cl$	1.877, 4° 1.890, 18° 1.220	Evans. F. W. C. Rüdorff. Ber. 12, 252.
Diazobenzene nitrate	C ₆ H ₄ N ₂ . H N O ₃	1.87	
Berberine chlorhydrate			Clarke. A. C. J. 2, 174.
Berberine platinchloride	$(C_{20} H_{17} N O_4. H Cl)_2$ Pt $Cl_4$	1.758, 19°	44

^{*}Aniline tartransimonite is included in this table for reasons of convenience.

KANEE.	FORBULA.	SE GANITE	<b>Житновите</b> .
Skydmine glatindilorida	(C., IE., N.O., IECI) Pt Cl.	R. M.S., IRP. J.	Clarke. A.C. E.L.
Cinchanine dilariyahas _	CLUBBL W. OD BEICH	1.254	Been. E. II. 371.
Picalinic soid glittinchia-	C. H. NO. HCD. Pr. C. 2 H. O		Weidel Ber 12.
Finatinic said glatinable- cids:	Pt: (CL. 2) BEL (O)	1	.66
Tristhy!gliosghin glass- socilorids	Pt Cl. (C. H. P)	11.54.00	Z. C. U. 487.

# LYXIIL MISCRILLANEOUS ORGANIC COMPOUNDS.

Nastr.	Formers.	SHE. GRAWIET.	Armonore.
Dairyl selenits			Midhadis. A.C.P.
Climan with sadium alili-			Bistister: B. D. Z.
Came sugar with sadium indide.			. GHL. J. C. S. 24.
Fermus supremientate			Tannet. J. C. S. 41;
Sait from lead sectors and notes in triodide.			Jihnson, C. N. II.,
Chilicanous esties.	Ar CIP (OC. H.)	1925	Limint. C. R. Diff.

# APPENDIX.

#### NOTE ON THE SPECIFIC GRAVITY OF WOOD.

Although wood is a substance which does not come within the scope of these tables, the following references to literature are given as a matter of convenience.

ASCHAUER.—Dove's Repertorium, 1, 142.

Brisson.—Pesanteur Spécifique des Corps.

ESTRADA.—Cuban woods. Van Nostrand's Magazine, 29, 417. 1883.

Hoн.—Beiblätter (Wiedemann's), 2, 584.

1HLSENG.—Amer. Journ. Sci. (3), 17, 125.

KARMARSCH .- Dove's Repertorium, 1, 141.

KOPP.—Dove's Repertorium, 7, 171; also Ann. Chim. Phys. (8), 6, 880.

MENDENHALL.—Ohio Agricultural and Mechanical College, Report for 1878.

OSBORNE.—"Report on Class III," Melbourne Exhibition of 1861. Many data for Australian woods and essential oils.

SHARPLES.—Vol. IX, Reports of Tenth U. S. Census. Complete as to woods of the United States.

SMITH.—Journ. Chem. Soc., June, 1880, p. 417.

WILEY.—Purdue University (Indiana) Report, No. 2, 1876.

Many figures are also given in Böttger's "Tabellarische Uebersicht."

(367)

•			
	•		
	•		

<b>A.</b>	PAGE.
PAGE.	Acid, Alphatoluic 257
Abies Reginae-Amaliae, oil from 179	" Amidoacetic 287
Abietene 158	" Amidobenzoic 288
Absinthol 262	" Amidocaproic 287
Acanthite 57	" Amidosuccinic 287
Acenaphtene 179	" Amyldecatoic 234
Acetal 224	" Amylglycollic 230
Acetamide 287	4 Amilia 949
Acetanilide	Auisic 201
Delivative of 310	Arsenic 49
Acetic aldehyde216	* Arsenious 45
Acetic anhydride 204	" Aspartic 287
Acetobutyl alcohol 245	Denaore
Acetochlorhydrin	DOFIC 10/
Acetocinnamone	DIVINIBUULÇIIC 320
Acetodichlorhydrin 312	DIVIDUOUS IIC
Aceto-ethyl nitrate 286	DIVINUSVEBITO 020
Acetoethylthienone	Dutyric 200
Acetoglyceral	Campuorie 204
Acetone	Caproid 202
Acetonitril	Capryne 203
Acetonitrose	CHIOTHGEOLG 300
Acetophenone alcohol	Chioric
Acetopropyl alcohol 245	Chiorisopatyris 300
Acetothienone	Catorobutyrie
Acetotrichlorethylidene acetic ether 311	Cinoropropionic
Acetoxyacetonitril	Chiorosurphonic
Acetoxypropionitril	- Chromic 02
Acetpiperidid	" Cinnamic
Acetyl, Chloride	O1018COITC
" Iodide	CITIC 231
• • • • • • • • • • • • • • • • • • • •	" Crotonic
Acetylamine 280	" Cuminic
Acetyl camphor	" Cyanic 142
Acetylchloral ethylate	" Cyanuric
Acetylene	" Diallylacetic
" Bromiodide	" Diamylphosphoric
" Chloriodide	" Dibromacetic
" Chlorobromide	" Dibromoleic
" Dibromide	" Dichloracetic
" Iodide 334	" Dichloroleic
" Tetrabromide	" Diethylacetic
" Tetrachloride	" Diethylcamphresic
Acetylthioxene	" Diphenylarsenic
Acetyltrimethylene	" Diphenylphosphinic
Acetyl valeryl	" Dipropylacetic
Achillea ageratum, oil of	" Dithionic
Acid, Acetic	" Ethylbenzhydroxamic 288
" Acetylformic 232	" Ethylcamphoric
" Acetylpropionic 232	" Ethylmothylacetic 202
" Allylacetic	" Ethyloxalic
" Allyloctylic	" Ethyloxyisobutyric
24 s G	(869)
21 D G	( )

	P	LUL.		5	PAGE.
ecid.	Ethylaslicylic	257	Acid.	Perchlorie	
*	Zthyleulphuric		, <b></b> .	Phenylacetic	
•	Ethylaniphurms		-	Phenylacrytic	. 258
•	Pormie		-	Phenylarsinic	
•	Gallie		-	Phenylphosphinie	
•	Glycollic		-	Phenytpropionic	
-	Bipourie			Phosphoric	
•	Hydrochioric			Phosphorous	
•	Hydrocinnanic		-	Phthalic	
-	Hydrosyanie		-	Payeie	268
	Hydroduoric		-	Picolinic, chloroplatinate of	366
-	Hydroearbic		-	Pierie	
-	Hydrosulphocysnic		-	Pimaric	
•	Hypophosphorous		-	Pletoeoxalic.	
	Iodic		-	Propionic	
•	Isoamylacetic	400	_	Propiony/formic	
	Isobatyrie		_	Protoestachnic	
•	Farancia	201	۱ ـ	Pyromeonic	
_	Isoteptylic	305		Pyrosulphuric	
_	Technological and and and and and and and and and and	335	_		
_	Isohexic, derivative of		_	Pyrotactoric	
_	Isononylic			Pyroterebic	
_	Isodetylie		! -	Pyruvie	
_	Isovaleric		1 -	Quartenylie	
_	Itaeonie		] -	Quinie	
-	Lactic		-	Pacemie	
-	Leevotartarie		-	Bicinoleic	
-	Laevulinie		-	Butylie	
-	Learie		-	Salicylic	
-	Linolete		-	Santonic	
~	Malic		-	Sebecic	
~	Nandelie		•	Selenic	
~	Metachlorbenzoic		=	Selenings	
-	Methylacrylic		-	Stearic	. 974
-	Methylethylecrylic		-	Succinic	. 226
~	Methyl thyl propionic		-	Salphhydrie	
-	Methylglycollie	230	-	Saipharie	
-	Methylhexamethylenemonocarboxy-		-	Salpharous 5	FL, 74
	lie	247	-	Sylvic	
~	Methylisopropylacetie	263	-	Tannic	. 266
~	Methylisopropylmalonie	225	-	Tantalie	. 50
-	Methylpentamethylenemonocarboxy-		-	Tartarie	. 236
	ie	246	-	Tellurie	. 102
•	Methylpropylacetic	203	-	Tetramethylenemonocarboxylic	
•	Methylealicylic		-	Thiseetic	
•	Molyhdie		-	Trichloracetic	
-	Moringie		-	Trichlorphenomalis:	
-	Naphtylphosphinic		-	Trimethylacetic	
•	Naphtylphoephorous		-	Tungstic	
	Nicotinic, chloroplatinate of	366	-	Urie	
*	Nitrie		-	Valeric	
•	Nitrobenzoie		Acmi	te	
~	Nitrocaprylie			ein	
•	Nitrolactic	994		Diacetate	
	Oenanthic	903		Ethviate	
	Oleie	974	A	pinacone	
*	Orthophenyleneglyoxylic			aldehyde	
**	Ozalic			iite	
	Oxybenzoic			ite	
*	Paratinic			ndite	
~	Parasantonie			aite	
	Parasorbie	248		)	916

PA	GE.	PAGE
Aldehyde with suiphaidehyde	344	Aluminum, Ammonium sulphate 9
Aldehyde collidine		4 Amylate 35
Aldehyde methyl chloride	310	" Barium silicate 13
Aldol	246	" Borate 100
Alexandrite	56	4 Bromide 3
Algodonite		" with aromatic hydrocar-
Allaktite		bons 35
Allemontite	68	4 Butylate 35
Alloclasite	69	Cæsium selenate 10
Allophane		" silicate 13
Allyl, Acetacetate		" sulphate 9
" Acetate	242	Calcium phosphate 11
" Alcohol	240	" silicates 136, 13
" Bromide		" sulphate 9
" Carbamine	278	" Chloride, with aromatic hydro-
" Chloride	299	carbons 35
" Dibrompropionate	327	" Copper arsenate 12
" Formate	242	" Cresolate 35
" lodide	334	64 Ethylate 35
" Nitrate		* Fluorides 1
" Nitrite	286	* Fluosilicate 14
" Oxalate		" Glucinum silicate 13
" Oxide	241	" Hydroxides 7
« Santonate	267	" Iodide 3
" Sulphides	340	" Iron silicates 138, 13
" Thiocarbimide	345	" Lead phosphate 11
" Thiocyanate	345	" " silicate 13
" Trisulphocarbonate	841	" Lithium fluophosphate 12
Allylamine	278	" silicates 13
Allylaniline		" Magnesium phosphate, 11
Allylanisöil	254	" silicate 13
Allylhenzene	176	" sulphate 9
Allyldiethylcarbinol	241	Manganese phosphate 11
" Derivative of	168	" silicate 13
Allyldiisopropylcarbinol	241	Mellitate 36
Allyldimethylcarbinol	241	" Methylamine sulphate 9
" Acetate	242	" Oxide 4
" Derivative of	168	" Phenolate 35
Allyldipropylcarbinol	241	" Phosphates 115, 116, 117, 11
" Acetate		" Potassium borate 10
" Derivative of	168	" selenate 10
Allylene, Bromide	323	" silicates 135, 13
" Dihydriodate	334	" sulphates 92, 9
" Hydriodate	334	" Propylate 35
" Iodide		" Rubidium selenate 10
" Tetrabromide	322	" sulphate 9
" Tetrachloride	299	" Silicates 132, 13
Allyleugenol	265	Sodium carbonate 13
Allylidene, Chlorides 299,	300	" fluoarsenate 12
Allylmethylpropylcarbinol	241	" selenate
Allylpyridine	274	" silicates 134, 13
Allylsuccinimide		" sulphate 9
Almandite		" Strontium silicate 13
Almond oil		* Sulphates 87, 9
Alōisol		Thallium selenate 10
Altaite		sulphate
Alumian		" Thymolate 35
Alumina		" Titanide 7
Aluminite		" Zinc sulphate 9
Aluminum		" Zirconide 7
" Alloys of	146	Alums 92, 93, 94, 95, 96, 10
" Ammonium selenate		Alunite

		AGE.	1	1	7442.
Amelgams		145	Ammonium.	Molybdates	. 105
			-	Nickel selenste	. 100
				" sulphate	. 91
Amenyl vale	role	248	-	Nitrate	
	ne		•	Oxalate	. 360
	lamine			Pailadiochioride	28
	hylaniline			Perchiorate	
	riphenol			Phosphates	
	, i priemot		١ .	Platinbromide	
	Aluminum seienste		_	Platinchloride	
Ammonum.			_		
-				Platiniodide	
**	Arsenates		-	Platosochioride	. 28
•	Benzoate		-	Platoxalate	. 361
••	Bromide		•	Potassium chromate	
~	Cadmium selenate		•	" sulphates	
•	" sulphate	90	-	" tartrate	. 362
•	Chloride	21	-	Quadroxalate	. 360
~	Chromate	103	•	Recemste	. 363
98	Chromiodate	104	-	Samarium sulphate	96
•	Chromium seienate			Selenate	98
	" sulphate			Silicofluoride	
	Citrate		_	Sodium arsenate	
•			_		
_	Cobalt selenate		_	huoshare	
-	" sulphate		_	Lacalnana	
•	Copper chloride		•	" sulphate	
-	" Ozalate		•	* tartrate	
**	" selenate		•	Stannibromide	
**	salphate		-	Stannichloride	
**	Dichromete	108	-	Stannifluoride	. 19
44	<ul> <li>with mercuric chlo-</li> </ul>		<b>*</b>	Stannochioride	. 28
	· ride	144	-	Succinate	
64	Didymium sulphate		-	Sulphate	78
	Dithionate			Sulphocyanide	
-	Ferrocyanide with ammonium		_	Tartrantimonite	
	chloride		_	Tartrate	
	Perroxalate			Tellurate	
• .	Formate		<b>"</b>	Uranoxyfluoride	
-	Gallium sulphate		•	Uranyi sulphate	. 96
•	Hydrogen carbonate	129	"	Vanadium vanadate	
64	" fluoride		•	Zinc bromide	. 33
**	→ malate	361	•	a chloride	. 27
**	" oxalate	360	•	" selenate	. 100
44	" racemate	363	-	" sulphate	. 90
44	" selenate		Amvi. Acets	cetate	
	" sulphate			e 208	
	" tartrate			ols	
	Indium sulphate			phosphito	
-	Iodate		•	ite	
	Iodides		. Deffin	ele	
44	Iridichloride			B	
•	Iron selenate			ide	
•	" sulphates 91			ste	
44	Lithium sulphate	89	" Capry	l oxide	. 198
*	Magnesium chloride	27		ide	
44	" chromate			yloxyacetate	
**	" phosphate			hide	
**	" selenate			scetacetate	
	" sulphate			Le	
	Malate			)	
-	Manage and and a	300	1 Journa		
	Manganese scienate		180041	yrate	
	" sulphate		180181	erate	
**	Mercury chloride	27	" Merca	ptan	. 340

PAGE.	PAGE.
Amyl, Monochloracetate 307	Antimony Bismuth alloys 151
" Nitrate 281	" Bromide 32
4 Nitrite 281	" Chlorides 28
" Gxalate	" Copper alloys 154
• Oxide 198	" Hydroxide 71, 72
4 Phenylpropionate 258	" Iodide 36
" Propargyl oxide 242	" Lead alloys 149, 150
Propionate	" Organic compounds 351
" Sebate 229	" Oxides 49
44 Silicate	" Oxychloride
* Sulphophosphate	" Oxysulphide
* Thiocarbimide	" Potassium chloride
Thiocyanate	
1 1110Cy M11800 030	
. I tisuiphocaroonare	" Tartrates 363, 365
A 91G19AG 710	Tellurius
Amylamine 270	1111 Bill by 8 129
Amylbensene 175	Apatite 124
Amyl camphor 264	Apiol 267
Amyldecaldehyde 235	Apophyllite 140
Amyldimethylbenzene 175	Aragonite 127
Amylene 164	Arctolite 138
" Chloride	Argentite 57
■ Dithiodichloride 346	Argyrodite 64
" Glycol 223	Arkansite 45
" Oxide 222	Arsenic 7
" Sulphide 340	" Bromide 32
" Thiodichloride 346	" Chloride 26
' " Trisulphocarbonate 341	* Fluoride
Amyl eugenol 265	" Iodides 36
Amyl glycide	" Organic compounds 850, 351
Amyl glyoxalin	* Oxides
Amyl monochlorhydrin 312	" Selenide 659
Amyi monochiornyurin 312	Selenide 00
American the lane	4 0.1.1.1.
Amylnapthalene 179	" Sulphides 59
Amylpyrrol 279	Sulphobromide
Amylphrol	* Sulphobromide
Amylpyrrol	* Sulphobromide
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45	** Sulphobromide
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132	"Sulphobromide
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Asarone       267         Asmannite       45         Asparagine       287
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andradite       139	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assrone       267         Asmannite       45         Asparagine       287         Atacamite       29
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Asarone       267         Asmannite       45         Asparagine       287
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Asarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Asarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assore       267         Asmanite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Aurichlorides       33         Aurichlorides       28, 365
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Angelica lactone       235         Angelica, oil of       181	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assore       267         Asmanite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Aurichlorides       33         Aurichlorides       28, 365
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       225         Angelica, oil of       181         Anglesite       83	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assrone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Auribromides       33         Aurichlorides       28, 365         Australene       180
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andradite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Anglesite       181         Anglesite       83         Angostura, oil of       264	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assrone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Auribromides       33         Aurichlorides       28, 365         Australene       180         Austrapyrolene       181
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angostura, oil of       281         Anhydrite       81	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Asarone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Auribromides         33           Aurichlorides         28, 365           Australene         180           Austrapyrolene         181           Autunite         116
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Angelica lactone       255         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       84         Anline       271	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Aurichlorides       28, 365         Australene       180         Austrapyrolene       181         Autunite       116         Awaruite       152
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Angelica lactone       235         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assarone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Aurichlorides         33           Aurichlorides         28, 365           Austrapyrolene         181           Autunite         116           Awaruite         152           Axinite         140
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       225         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhine       271         " Salts of       365         Anise, oil of       182	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assrone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Auribromides         33           Aurichlorides         28, 365           Australene         180           Austrapyrolene         181           Auunite         116           Awaruite         152           Axinite         140           Azobenzene         280
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Saits of       365         Anise, oil of       182         Anisic alcohol       252	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assarone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Aurichlorides         33           Aurichlorides         28, 365           Austrapyrolene         181           Autunite         116           Awaruite         152           Axinite         140
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Angelica lactone       235         Angelica, oil of       181         Angesite       83         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       252         " aldehyde       261	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assrone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Auribromides         33           Aurichlorides         28, 365           Australene         180           Austrapyrolene         181           Auunite         116           Awaruite         152           Axinite         140           Azobenzene         280
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       182         Anisic alcohol       252         " aldehyde       261         Anisol       252	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assarone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         112           Augelite         117           Aurichlorides         28, 365           Austrapprolene         181           Autunite         116           Awaruite         152           Axinite         140           Azobenzene         280           Azurite         130
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       45         Andalusite       132         Andesite       137         Andrewite       117         Anethol       225         Angelica lactone       235         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       81         aniline       271         " Salts of       365         Anise, oil of       182         Anisic alcohol       252         " aldehyde       261         Anisol       262         Anisyl chloride       313	"Sulphobromide"         33           Arseniosiderite         123           Arsenopyrite         69           Assrone         267           Asmannite         45           Asparagine         287           Atacamite         29           Atopite         125           Augelite         117           Auribromides         33           Aurichlorides         28, 365           Australene         180           Austrapyrolene         181           Auunite         116           Awaruite         152           Axinite         140           Azobenzene         280
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       119         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angostura, oil of       264         Anhydrite       81         Anliine       271         "Salts of       356         Anise, oil of       182         Anisic alcohol       252         "aldehyde       261         Anisol       252         Anisol chloride       313         Ankerite       130	"Sulphobromide       33         Arseniosiderite       123         Arsenopyrite       69         Assrone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Auribromides       33         Aurichlorides       28, 365         Austrapyrolene       181         Auunite       116         Awaruite       152         Axinite       140         Azobenzene       280         Azurite       130
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andalusite       132         Andesite       137         Andrawite       119         Andrewsite       111         Angelica lactone       235         Angelica, oil of       181         Angesite       83         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       252         Anisica glochol       252         Anisol       261         Anisol       262         Anisol choride       313         Ankerite       130         Anorthite       136	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Auribnomides       33         Aurichlorides       28, 365         Australene       180         Austrapyrolene       181         Autunite       116         Awaruite       152         Azinite       140         Azobenzene       280         Azurite       130
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       215         Angelica lactone       235         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       182         Anisic alcohol       252         " aldehyde       261         Anisol       262         Anisyl chloride       313         Ancrite       130         Anorthite       136         Anthemene       177	"Sulphobromide       33         Arseniosiderite       123         Arsenopyrite       69         Assarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       112         Augelite       117         Aurithorides       28, 365         Austraphrolene       180         Austraphrolene       181         Autunite       116         Awaruite       152         Axinite       140         Azobenzene       280         Azurite       130         B.         Barceniie       125         Barite       82
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Andase       45         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Anglesite       83         Angostura, oil of       264         Anhydrite       81         Anliline       271         "Salts of       365         Anise, oil of       182         Anisic alcohol       252         "aldehyde       261         Anisol       252         Anisyl chloride       313         Ancerthe       130         Anorthite       130         Anthermen       177         Anthrescene       179	"Sulphobromide"       33         Arseniosiderite       123         Arsenopyrite       69         Assarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       125         Augelite       117         Aurithoromides       28, 365         Australene       180         Austrapyrolene       181         Autunite       116         Awaruite       152         Axinite       140         Azobenzene       280         Azurite       130         Barite       82         Barite       82         Barium       3
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angestura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       182         Anisic alcohol       252         " aldehyde       261         Anisol       262         Anisyl chloride       313         Ankerite       130         Anorthite       136         Anthracene       177         Anthraquinone       206	** Sulphobromide
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angostura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       182         Anise alcohol       252         " aldehyde       261         Anisol       202         Anisol chloride       313         Ankerite       130         Anorthite       136         Anthracene       177         Anthracene       177         Anthravquinone       266         Antiar resin       267	"Sulphobromide       33         Arsenosiderite       123         Arsenopyrite       69         Asarone       267         Asmannite       45         Asparagine       287         Atacamite       29         Atopite       117         Auribromides       33         Aurichlorides       28, 365         Australene       180         Austrapyrolene       181         Auunite       116         Awaruite       152         Azinite       140         Azobenzene       280         Azurite       130         Barceniie       125         Barite       82         Barium       3         " Acetate       367         " Aluminum silicates       138
Amylpyrrol       279         Amylphosphorous chloride       349         Analcite       135         Anatase       46         Andalusite       132         Andesite       137         Andradite       139         Andrewsite       117         Anethol       255         Angelica lactone       235         Angelica, oil of       181         Angestura, oil of       264         Anhydrite       81         Aniline       271         " Salts of       365         Anise, oil of       182         Anisic alcohol       252         " aldehyde       261         Anisol       262         Anisyl chloride       313         Ankerite       130         Anorthite       136         Anthracene       177         Anthraquinone       206	** Sulphobromide

	_		_	
		AGE.		'AGE
Barium	Bromate		Benzanilide	
•	Bromide		Benzene	
*	Butyrate	359	" Hexbromide	325
•	Cadmium bromide	33	Hexchloride	304
**	" chloride		Bensil, isomer of	
-	Calcium carbonate		Bensocinnamic anhydride	
_			Bensocuminic anhydride	
	* sulphate			
•	Carbonate		Benzodichlorhydrin	
4	Chiorate		Benzočenanthic anhydride	266
-	Chioride	. 23	Benzoic anhydride	266
**	Chromase	104	Bensoicin	240
	Chromoxalate		Bengonitril	
	Copper formate		Benzoyl. Bromide	
_				
_	Dinitrophenate		* Chloride	
•	Dithionate		* Thiocyanate	
	Ethylaulphate	359	Bensoyigiyeoilic ether	266
	Feldspars	139	Bensyl. Acetate	260
	Fluoride		" Alcohol	
	Formate.		" Benzoate	
_				
-	Hydroxide		" Benzylacetate	
-	Hypophoephite		" Benzylbutyrate	
•	Iodate	74	* Bensylisobutyrate	260
•	Iodide	36	" Benzylpropionate	260
•	Isobutyisulphate		* Bromide	324
-	Isobutyrate		Butyrate	
_				
_	Manganate		* Chloride 302,	
_	Manganite		* Cinnamate	
-	Methylaulphate		" Cyanide	
•	Molybdate	105	Dichloracetate	313
-	Nitrate	111	" Dimethylbenzylacetate	260
•	Nitrophenates		- Iodide	
•	Oxalate		" Isobutyrate	
-	Oxides		Mercaptan	
-	Picrate		" Monochloracetate	
•	Platinbromide	33	· Oxide	253
•	Platinchloride	28	" Phenylacetate	260
-	Platinocyanide	143	Propionate	260
	Propionate		" Trichloracetate	
			Bensylamine	
-	Propyisulphate			
-	Pyrophosphate		Benzylanisol	
-	Selenate		Benzylcarbinol	
•	Silicofluoride	18	Benzylcymene	177
•	Succinate	361	Bensylene	177
-	Sulphate		Benzylethylbenzene	
	Tartrantimonite		Benzylidene dichloride	
	Tartrate		Benzylidene tolylene	
-	Tellurate		Benzylnaphthalene	
•	Thiosulphate	74	Bensyl phenyl carbamide	
•	Titanate	142	Benzyltoluene	177
-	Tungstates	106	Berberine. Chlorhydrate	365
94	Uranyl phosphate		" Platinchloride	365
	Zinc chloride		Bergamot, oil of	211
	rdtite		Bergenite	
	lite		Berlinite	
	alcite		Berthierite	
Bestnás	ite	145	Bertrandite	131
	of		Beryl	
	nite		Beryllium, see glucinum.	
	ito		Berzelianite	_
_				
•	ne		Berzeliite	
	lehyde		Betula lenta, oil of	
Benzan	ide	288	Bevrichite	. 60

	PAGE.	]	PAGI
Bindheimite	. 125	Bromallyl. Chloride	. 33
Binnite		" Nitrate	. 32
Birch tar, oil of	. 182	Bromallylphenol ether	. 32
Bischofite	. 22	Bromamylbenzene	
Bismuth		Bromamylene	. 32
" Amalgams		Brombenzene	
" Antimony alloys		Bromeamphor	
" Arsenate		Bromeitropyrotartaric anhydride	
* Arsenide		Bromdecylene	
" Bromide		Bromdibenzyl	
4 Cadmium alloys		Bromdlethylin	
" Carbonates		Bromethyl oxide	
Chioriae		Bromethyl allyl oxide	
Cobbet stagnage		Bromethylene	
Fluoride		Bromaceun	
* Gold alloys	72	" Bromhydrin " Dibromide	
a lodide		Bromhexylene	
4 Lead alloys		Bromine	
" Nickel sulphide		Bromiodethylene	
* Nitrates		Bromiodomethane	
" Oxides		Bromisopropylphenol	
" Oxybromide		Bromkresol	
" Oxychloride		Bromlite	
" Oxyfluoride		Brommesitylene	
" Selenide	. 65	Brommethyl allyl oxide	82
" Silicate	. 133	Brommethylchloroform	830
* Sulphides	. 59	Brommethyleugenol	328
" Tellurides	. 66	Brommethylkresol	32
4 Tin alloys 150		Brommethylphenoi	
" Uranyl arsenate		Bromnaphthalene	
A WITHOURCE		Bromochloral	
Zine alloys		Bromochloroform	
Bismuth triethyl		Bromonitric glycol	
Bismuth triphenyl		Bromotrichlormethane	
Bismutite		Bromphenol	
Bismutosphærite		Brompierin	
Blende		Brompropylene	
Bobierrite		Brompyridine	
Bo tonite	131	Bromtoluene	824
Boracite		Bromtoluidine	
Borickite		Bromtrimethylcarbinol	
Bornite		Bromxylene	
Borofluorides		Brongniardite	
Boron		Brookite	
Chloride		Brushite	
4 Oxide		Butallylmethylcarbin oxide	
Boron triethyl		Butallylmethyl pinakone	
Bo:allackite		Butane	
Boilangerite	62	Butenylanisoli	
Bournonite	63	Butenyl chlorhydrins	319
Braunite		Butenylphenol	
Breithauptite		Butidene diethyl ether	
Brochantite		Butyl. Acetate	
Bromacetone		" Alcohol	
Bromacetyl. Bromide		- Denzoave	
" Chloride		" Bromide" " Butylxanthate	
Bromallyl. Acetate		* Butyrate	
" Alcohol		" Caproate	

#### INDEED.

	P.A	LAB:		Plat	
Bhwt	Charte Bullian	218	<b>Theintinn</b>	I. Azsentde	σŢ
	Resident	28	. 45	Bheium bromide	33
	:hlorsto			chlorido	
	Vanta			Blamuth allows	
	2			•	
	· 'Vanfilm'			Beomata	. •
				Bromide	
	Physician	<b>:00</b>	: •	Aurbonnts1	27
	Paniel oxide	199		(Juloride:	22
	Indfile		15.	Dithionase	73
	Fringh			FTuoride:	
			1#		
	\Ferentan			Formate 3	
	FinnaghlorAechies			Hydroxidet	
**	Jetyl o'clifer	199.	18.	[òdáde	
	lenanthate	.73		Lord alloys. 1	10
• • •	Italate:	27		Magnesium sutphase.	
	Ithia.			Nursee 1	
.4"	- Antoniale			DERICES.	
.e					
	Sehate			Ozide:	
10	Hieste	352		Pasiachloride	
"	michide	38		Proceeding chloride	7
·c	Thiorarbinde	344	4.6	iodide.	::8-
	Valerate.			setemase	
		,	<b>(8</b> .		
	MAN			1000 historia	
	₩¥T			Sofetnaso	-
HOUVER	nient.	:354:		Setembe	65
<b>HintyTh</b>	MANTA	178	46	Stromium chievide	4
Hattic	hlored	300	46.	Sulpines.	33.
			46.	Stat phridde	
T-	Te			Telluride	
Tatachie			48.		
	Browlde			Tin :dloys1	
"	(Hyeo)	.722	Carrium.		Ľ
	Indide	34-		Humimum stemate I	D1
	Vinnaretsky	225	.6.	· dilcase	ΣS
. e	1314#		.6	· sulpinase	32
	Ti-laminhinearbonate			• .	n.
-4					
	henyl seetide		,	Micride	
Butyl	mbharide diladide	140		Thromium -ulphate:	4
Butytt	himphenie	HE.	.4.	Ional: mienate	30
Bough	hymal	250		Indium suphase	18
	e statista		.6.	Tortline	4
4	anhydride:			From sulphists	
				,	
	ખ્લીનોલનોકુલેના			ini errate.	
	ऽत्रव			Hileoficorros	
Bestyers	nie bluekone:	223	i	Hannehloride	
	milital			hitpinste	78
	Managadiana				
	d dilodds			na	
arret (KII)	p) - 111-71 1-89	, prof.	eretechtere	Ewiraca	
		į			
				i	
	€-		Calamin.	¥	32
			Calmmin	oil of the life.	36
Cahran	1ia	1112		2	-
	ANIFA				
·	mmanam hamida				_
	CHOPPE CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL				.1:
	WP	. 1		Kitminum phosphass	18
et	Adatasa	365	.4.	4 silicans III.	37
H	American		uL	4 suiphan	
*	Ammondalionde			Facimenses	
*					
	Amministrative			I CWELOUIS	-
	Additional adaption			Sarum esconice	
*	Mystere	193	4	+Linituos	8

		AGE.		AGE.
Jalcium.	Benzoate,	365	Camphor, oil from 180,	182
**	Borates	108	Camphoric anhydride	264
44	Borosilicates	140	Camphorogenol Camphrene Camphryl chloride	264
66 66	Bromate	73	Camphrene	265
"	Bromide	32 127	Camphryl chloride	304
"	Carbonate			
"	Chloride	23	with sodium iodide	
	Chlorophosphate	124	Caoutchene	187
"	Chlorosilicate.	141	Caoutchin	183
44	Chlorovanadate.		Hydrochlorate	304
"	Chromium silicate		Capraldehyde	218
"	Copper acetate	358	Caprone	221
	arsenate		Capronitril	269
66 44	Dithionate		Caproyl alcohol	194
44	Fluophosphate		Capryl alcohol	195
	Fluoride	17	Caraway, oil of	189
**	Formate	356	Carbamide	288
44	Glucinum fluophosphate		Carbon	4
44	Hippurate	364	Bromide	299
	Hydroxide	71	, Chloride	291
44	Iron arsenate	123	4 Dioxide	48
44	4 oxide		44 Iodide	299
**	4 phosphate		Oxychlorides	299
"	silicates 134,		Sulphides	57
44	Magnesium borate.	108	Sulphobromide	202
44	carbonate	129	Tetramercaptide	340
44	silicates	134	Carbonyl. Chloride	292
44	Manganese carbonate	129	" Thioamyl chloride	347
44	" phosphate	115	" Thioethyl chloride	
46	silicate	134	Carbopetrocene	
44	Mercury antimonate	125	Cardol	
44	Nitrate	110	Carminite	122
44	Oxalate	360	Carphosiderite.	97
44	Oxide	41	Carrollite	64
44			Carvacrol	
"	Potassium chromate		Carvene	
44	" sulphate	89	Carvol	265
44	Selenate	99	Caryinite	129
44	Silicates		Cascarilla, oil of	
44	Silicofluoride	18	Cassiterite	46
44		141	Castorite	134
46	Sodium borate		Cedar, oil of	184
66	" carbonate	129	Cedrene	184
44	silicate	134	Celestite	89
"	sulphate	89	Cellulose	244
"	Sulphate	81	Cerargyrite	
**	Sulphide	57	Cerium	
**	Thiosulphate	74	" Chloride	24
44	Tin silicate.	139	Dioxide	47
66	Titanate	141	Fluocarbonates	145
44	Titanio-silicate	139	" Molybdate	105
44	Tung tate	108	" Phosphate	116
44	Uranyl arsenate		44 Silicate	133
. "	" phosphate		Sulphate	88
**	Zine alloy	145	Sulphide	58
allainite		115	Tungstate	
	um resin	267	Cerotene	
ampher		183	Cervantite	40
Manupher 4	Acetate	264	Cetene	
amphile		183	Cetyl. Acetate	
amphin			" Alcohol	144
	269	100	" Rutyrete	919

C	Chineide	MEET.	_	T.
CECYL.		290 254		33
4	Nitrate	細	Chloriodotoluene	32
erro di u	wite			
	omenita		Chlorisopropyi benzoste.	
	ophanise	73	Chloritoid	12
	ophyllise		Chloric sent	
	opyrise		Chiarmethylphenol	
	ngyrrhouse	64	Chierosphthalene	30
	ombileribe	117	Chlorattrobengene	
	secibige	62	Chloroftromethane	31
Challe		1237	Chloroftrotoluene	31
	evixite		Chimbensylethylate	
	region		Chineobromal	
	Min		Chlorobromethyl acetate	
Chino		277	Chiarabremhydrin	
	D		Ching obcoming iron valde	32
Chiyti		62	Chlorobromfodethane	33
Chlor	stefal	3700	Chlarocromiadhydria	33
	scetic anhydride.		Chlorobrommethane	33
		308	Chlorobeomnitein	33
Chlor	scetonitrill	314	Chlorobromoform	33
Chlori	cetyl bromide	327	Chlorocarbonylphenylorthophosphoric chlo-	
	• chioride	396	ride	35
Chior	cetyl chioral	306	Chlorodibromethane	33
Chion	al .	300	Chlorodibramethylene	
*	Derivatives of	386	Chlorodibrombydriu	3
Chion	údebyda	300	Chlorodibromailromethane	
		300	Chlorodracylle chloride	
	dlyl Alcohol	312	Chloroeganthic ether	3
	anners are	322	Chinesform	
4	A MATERIAL PROPERTY.	347		30
Chlon	myi chloride	297	Chisropai	Ľ
		390	Chioropropiosyl chioride	3
Chlor	snetbal	313	Chlorotetrabromethane	3
Chlor	woll iners	314	Chlorofolnidines.	
	spatite.		Chlorotribromethane	
	varotriethy/phosphorous ether	366	Chierovaleral	3
Chlor	100	31.5	Chlorozalethylin	31
Cunat		36E		
Chioc		308	ChloroxalpropylinChloroxethose	3
	butylene chlorhydrin	310	Chlorphepal	
Chica	butyrouitrilbutyryl chloride	314	Chlorpicoline	
	chinolines		Chlorpierin	3
	crotyl sloobol		Chlorgeopylene	3
			Chlorsalicytol	37
Chlon	rymene	300	Chloretyrolene	
	ilamylene chloride		Chlortoinene	3
	finitrobenzene	315	Chlorxylene.	
	thy locity lenetetra arbonic other.		Chodnedite	3
Chlor		308	Cholesterine	2
	thylene dichloride		Christophite	-
	dithiodicaloride	346	Chrome slume	10
Chlor		306	Chromite	
	rthylphenol	312	Chromium	1
	hexylene	300	Aluminum alloy	14
	50	11	Ammonioehloride	
	Trioxide	11	Ammoniochlorobromide	:
Chlor	lod ethyl acetate	274	I .	u
	odethylene		eulphate.	•
	lodobenzene		4 Cesium sulphate.	

PA	GE.	P	AGE
Chromium. Calcium silicate	139	Cobalt. Oxides	. 5
" Chlorides	24	"Oxyhydroxide	7
" Chromate	52	44 Phosphide	. 6
" Magnesium borate		4 Platinbromide	
" Manganese oxide		" Platiniodide	
" Oxalates		4 Potassium selenate	
" Oxides		46 46 sulphate	
· VAIG08		surpnave	
Oxychioride		ryropuospnave	
" Filospinde		Kubidium seienate	
Potassium chromate		DOIGHTON	
selenare		pelenide	
sulphate	94	4 Silicofluoride	. 18
" sulphocyanide 1	144	44 Stannifluoride	19
"Rubidium selenate	101	44 Sulphate	. 88
" sulphate	95	46 Sulphides	- 60
" Sulphate	86	" Thallium selenate	100
4 Sulphide		" " sulphate	
" Thallium selenate		" Thiosulphate	
44 sulphate		Cobaltite	
46 Zinc oxide		Cochlearin	
Chrompicotite		Cocinin	
Chromyl dichloride		Codeine	
Chrysoberyl		Coeruleolactite	
Chrysocolla		Coerulignol	26€
Cicutene		Colemanite	
Cinacrol	267	Collidine	278
Cinaëbene 1	183	" Carbonic ethers	290
Cinchonine chlorhydrate 3	366	Colophene	188
Cinnabar	57	Colophonone	267
Cinnamene	176	Coloradoite	
Cinnamic acetate		Columbite	
44 alcohol		Columbium	
" sldehyde 2		44 Aluminum alloy	
Cinnamyl chloride 3	- 1	"Hydride	
Cirrolite			
		0xide	
Citraconic anhydride 2		Columboxyfluorides	
Citraconyl chloride		Coniceine	
Citrene		Conichalcite	
Citron, oil of		Conline	
Citronellol 2		Conylene	
Citron terpene 1		" Bromide	323
Citrus, oils from 1	181	" Diacetate	248
Clarite	61	Copaiva, oil of 184,	185
Clausthalite	65	Copal, oil of	182
Clinoclasite 1	122	Copellidine	
Cloves, oil of		Copiapite	
Cobalt		Copper	
"Acetate		" Acetate	
" Ammoniochlorides		44 Aluminum alloys	
Ammoniochioi ides		46 46 arsenate	
VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		at collavo	
VIIIIIIIIIII SCIAUSAC		VIII III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O III O I	
44 sulphate		VIIIIOUIOUIMEG	
" Arsenates 1		44 Ammoniosulphate	
" Arsenides	68	" Ammonium chloride	
" Cæsium selenate 1	100	" · oxalate	361
	24	selenate	100
" Chloride			
OHIO1146		suipnate	AT.
" Dithionate	75	earbusto	
" Dithionate	75 356	44 Antimonate	125
" Dithionate	75 356 113	4 Antimonate Antimony alloys	125 154
# Dithionate	75 356 113 74	" Antimonate	125 154 123
" Dithionate	75 356 113 74	" Antimonate	125 154 123 67

ممعمدا <i>ا</i>	Biomenti allogue	184	- Awetlisa:	
Ontaport.	- Province	123	Trensine ingirate.	
	Promote		(Irnetdetite:	
	Retunias		- Greenita	
	TARISHIN SPORTER		Grownents.	
	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		Tricomatdetricte	
	Consuplements, High members (from		-Treconiteti	
	Cart member		Umturyjene detiloride	
	Ciloridae		gyrot	
	difference with moreover mirelar		Ormite	
4.	Columbiosofinaciae		(Irygenetia-	
	Indition and in the second	7.0	Tryphophie.	
	And Alaga		Substitute.	
4.	•		Cultiens of of	
	indiae		Camerie	
			Camidine	
40.	Terre arterials		Guninia aldehyde	
40.	it phrankinis	145		
••	· · · · · · · · · · · · · · · · · · ·	1929-	(Semino)	
	Lend slegge		General of	
40.	· · · · arteriale		Gamonitel	
40.	d directions		Gamyi chleride	
4.	41 411 (Hallis,		. Capramenatium chloride	
401	· · · · · · · · · · · · · · · · · · ·			
40.	Magnestum enlphass		Caprile	
44.	Manning indida		Genetide	
41	XIII TO THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE COLUMN THE	m	. Cymakichtydr	
d	0566 <del>66</del>	<b>4. M</b>	Commentation	
d.	Committee	- 35	Grandages	DAG
at.	Phraghatian	UF	4. Chioride	Dec
4	Pitranskiden		Lutite	742
æ	Pintinchilespen		Cerenti	-23
đ	Parameters attending		Cemena	LA
a	4. 0%H##		Cymhydrae	
a	A selections		Comy stantal	
d				
•	Robidium chierida		- Сриеве	
A	Rates gita		Caneni	
a	Relented		Contin Izida	
4	Wayita		3, 447 12222	
ά	291/19/49			
	Stindingle		₽.	
	Silver More		<b>₩.</b>	
			Saleminaite	_
~	" jarffefa			
*	Estim enightes		Densities	
~	жүрэнейн <b>и</b> би <b>мас</b> а		Description	
	Antiphase		Duenes + sinsy	
~	Ant physical accommendation with		Datalite	
*	Strophy		Deshreetta	
*	Tot stroye and the strong		Destroits	
*	Tirenesterrible		Lieuwini ita	
*	Franklin mental manus mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental mental m		Decade	
*	* phrosphase		, Deckaries	
*	TARK CONSTRUCTION AND ASSESSMENT		Deept. Altereation	
	We the conservation and a second		~ Chawite	
	MY, M M 2002,		* latist	
	Nie was seeman seeman was war was and an arrange and a		Imicanglione	: #K
677 WWW	FPMA: 1. 101. 101. 101. 101. 101. 101. 101.	122	Intaliante	5-5
	Marion de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		Immas//d	Lib
	8:::::::::::::::::::::::::::::::::::::		Inecosite	
			· Imatria	244
	Commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a superior commission and a s		Diacetis	240
	14		: Discatechiorhydria	

	PAGE.	2	100
Discetone alcohol	345	Dichlorhromethylene	. 20
Discotonephosphorose-chloride		Dichlordibromethane	
Diacetylchloral hydrate	. 309	Dichlordibron-ethyl accesse	25
Diallyl	. 167	Dichlordinitrobensene	80
4 Dichlorbydrin	. 812	Dichlordinitromethane	80
" Dihydriodate	. 334	Dichlorethoxyethylene	80
" Evdriodate		Dichlorethoxylecetonitril	
" Monohydrase		Dichlorethyl. Accuse	
Dialtylaniline		4 Alcohol	200
Diallylearbinol	947	4 Dichloracetate.	
Dialtylogrbyl. Acetste		" Formste	
" Ethyl oxide		" Monochiomoniste	
4 Methyl oxide			
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(ALUM)	
Disliylene	. 10/		
Diallylethylearbinol		Dulpinge	
Diallylisopropylearbinol		Dichlorethylamine	
Diallylmethylcarbinol		Dichlorethylene	
Diallylmethylogrbyl acetate		" Thiodichloride	
Diallytpropylearninol		Dichlorhexyl alcohol	
Diamyl acetal	. 294	Dichlorhydrin	
Dismylamine	. 270	Dichloriodhydrin	326
Dismylene 165	166	Dichlorisobutoxylacetonitril	M)
" Oxide	2.0	Dichlormethoxylacetonitril	833
" Thiocyanatos	345	Dichlormsthyl acciste.	380
Dismylin		" oxide	200
Diamyl ketone		Dichlormethylaulphuric chloride	
Diamyl valeral		Dichlormononitrin	RIE
Diaphorite		Dichlornitrobenseue	
Dinspore		Dichlornitrophenol	
Dissobensene nitrate.		Dichlornitrosoluene	
Dibensyl			
Dibensylamine	0-4	Dichlorpropionital	
		Dichlorpropoxylacetonitril	
Libenzyltoinene		Dichlorpropylene	
Dibromacetone		Dichlorsoluene	300
Dibromallyl oxide		Dichlor-vinyi methyl oxide	
Dibrombensene	. 529	Dichlorxylenes	304
Dibronchiorpropylene	337	Dicinnamene	
Dibromcymene		Dickinsonite	
Dibrondiallyl		Didecene	
Dibrom-ethyl acetate		Didymium	
Dibromethylene			258
Dibromhexoniorpropane	245	4 Ammonium selenate	100
Dibrombexy! alcohol	325	4 sulphate	96
Dibrombyaria	327	4 Rorates	108
Dipromodethane		" Bromide	
Dibrompropy: accohol	325	4 Carbonste	198
Dibromtetrachiorethane		" ('hloride	
Dibromthiophene		4 Ethylsulphate	
Dibromtoluene		" Formate	
Dibromxviene		" Gold bromide	
Dibutyrit		" " chloride	
Dicamphene hydride		" Metaphosphate	
Dichtoraceta:		mombine	
		TO OIL DESIGNATION	
Inchloracetone		1/14/BPC	
Dienioracetonitrii		NIGUARIST	
Dichloracetophenone		4 Oxider	
Dichloramy! nitrite		" ('xychloride	
Dictiorbenzenes		4 Periodate	
Dichiorbenza-trichloride		" Phosphares	
Dichiorbenzyl emoride		4 Platinghloride	
Dichlorbenzylene dichloride	308	" Potas-ium selenate	101
Inchlorpromethane		" Pronionate	858

. DETL

	•	in-
		Albai 7 - Ar
, - ••		Junta Banka
- #-pe		. HR# A**1223
***		AND CAMBRIDES CO
• •	••	9 1 A 942 9 02 Ph
		CONTRACTOR TOWNS AND AND ADDRESS OF THE CONTRACTOR
		142 Companyment
		TEL TO BOTH AND COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE COMMON TO THE
		Fra :
		Little Law Horstelling and London Little
		akment feets taking
		Committee the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee
		Termina aparta contraction we may be a
		Tamandan sistem stress a minimum of g
· · · · •		liitte
		**************************************
· and · · ·		. unities of the selement
		amaterialese et al
•		Path Carrier and and a committee of the
* 1	•	ENGINEER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO
• • • • •		PRINCIPLE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP
A Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Comm		.144/===== .
		THE R. P. DESTRUCTION PROPERTY.
	-	Control of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio
		The first page and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
	_ :	a distribution of the area. If
		PI=
		Commitment and Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Unchild of the American Section 1
	:	
- * · · · · · · · · · · · · · · · · · ·	•	
the second of the second of		Contribute the contribution of the second
**		Lineto di nationale al Time T
•	:	AMERICAN PROCESS
•	•	Continue Salaria (Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Continue Con
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
•	•	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
	•	**********
	1	To the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the
	;	* * 25
•		→ 15 (15 m) + (15 m)
	•	2 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Control Proprieta Control Control
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
		* *4
	•	
		1 (a) 10 (10°) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
•		• • • • • • • • • • • • • • • • • • • •
	·	The stronger of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
	•	The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co
•	. •	when the transfer and the second second
· · · - ·	••	
•		· · · · · · · · · · · · · · · · · · ·
	•	or servicing committee
		a covery lawrence to later
. •	•1	Comment contributes are accommunity in
		Kittle (1977) (1999)
•		A BURST SWITTINGS TO LEAD 1
	• 7	- 1 1 Mill M
		or Francia di Gradi Victio III III III III III
		- Part Latiorus () 10
	•-	
*	-	A Parti propage

P.	AGE.	P	AG
Dipicoline	277	Eosphorite	11
Dipiperidyl	278	Episcetin	
Dipropargyl	168	Epiboulangerite	. 6
66 Bromide	323	Epibromhydrin	32
Dipropylamine	270	Epichlorhydrin	
Dipropylaniline		Epidibromhydrin	
Dipropylcarbinol	194	Epidichlorhydrin	
Dipropylcarbyl acetate	209	Derivative of	88
44 iodide	333	Epiiodhydrin	33
Dipropyl ketone	220	Erbium, Columbate	
Dipyridyl		" Oxide	
Disulphamylene hydrate		" Selenate	
" oxide		" Sulphate	
Disulphhydrin		Erechthidis, oil of	
Disulphuryl chloride		Ericinol	
Diterebene		Erigeron, oil of	
Diterebenthyl		Erinite	
Diterebenthylene		Erythrene hexbromide	
Dithioglycol, derivative of		Erythrite 122,	
Ditolyl		Erythrol	
Ditolylethane		Ether	
Divalerin		Etherol	
Dixylylene		Ethidene ethers	
Dixylylethane		Ethoxyacetonitril	
Docosane		Ethoxybromamylene	
Dodecane		Ethstannethyl compounds	
Dodecyl sicohol		Ethyl. Acetacetate	
CINOI (400		Acetave	
Dodecylene		ACOUCINATE	
Dodecylidene		voctoRitters	
Dodekanaphtene		" Acetoglycollate	
Dolomite		4 Acetolactate	
Domeykite		" Acetomalonate	
Dotriacontane	163	" Acetopyruvate	23
Dreelite		" Acetosuccinate	
Drybalanops camphora, oil of		" Acetylcyanacetate	28
Dufrenite	117	" Acetyltetramethylenecarboxylate	24
Dufrenoysite	61	" Acetyltrimethylenecarboxylate	24
Dulcite	243	" Aconitate	23
Dumortierite	133	" Acrylate	23
Durangite	124	" Adipate	22
Dyscrasite	68	" Alcohol	18
•		" Allylacetacetate	
		" Allylacetate	24
E.		· " Allylmalonate	
		" Allyloctylate	
Ehlite	117	" Allyl oxide	
Eicosane		" Amidoacetacetate	
Eikosylene		" Amidopropiopropionate	28
" Chloride		44 Amylhydroxalate	
Ekdemite		" Amylideneacetacetate	
Elder, oil of		" Amyl oxide	
Elemi, oil of		" sulphide	
Elinsite.		" Amylthioglycollate	
Embolite		" Angelate	
Emerald		44 Arsenate	
Emplectite		44 Arsenite	
Enargite		* Benzoate	
		Denzoare	
Endekananhtana		Dellamine of	
Endekanaphtene		Delizy iscensee usite	
Endlichite		Denzy acerosuccinate	
Enstatite	131	61 Benzylchlormalonate	313

	2	MIE.			MER.
<b>Mal</b> byll.	Beneglishmentellenste	200		Dismylosulate	
	Bieney implomate	200		Dibensythyshromanous	23
**	Benegtiment by time to make	234	*	Difference concentrate	327
464	Burste	347	484	Difference(by) incertace taste:	
4	Erymanetusetste	H	-	Difference	326
*	Eromacetate	HM.	***	Different propringer upit mode:	BE
-84	Ecomocetopropionate	H.7	***	Dinartsayighmenmete	
-44	Brombuymae	BMG	4	Dichtenseroneruse	<b>301</b>
*	Biromethy incernmentals	Bur	-44	Dichlaracettete	336
*	Etrumethy imethy incense	<b>B9</b> C	***	Dichlerienseste	383
*	Brunite	:BOH	·es	Dich desemby desertes contain.	111
4	Boundaring was	HSE	***	Dirichilarementhy/lacettacettate.	300
4	house	BM	484	Diribitorprogrammete	317
*	Boungospispospisuste	1127	44	Discologia contacte	204
#	Вотогругительные	B27	104	Dischyletilen or a constant	301
~	Broncesternie	200	-44	Diethyldichimerenesse	301
~	Buterythricartesylate	347	*	Diethylglycsesiliste	307
~	Bury imal made	220	*	Dischipfigfproxytism:	100
•	Buryl exide		*	Distriby implants.	2
-	Bury inductions:	233	-	Distilythexpercents	
-	Hury laking prositions are	DEB	*	Dilbegaydurenments.	333
4	Bury branchese.		4	Directory lacentare tage	333
*	Buyrate	201	*	Dimensity incrementation	20
4	Butyrug position.		-	Directly increasure	<b>20</b>
~	Burgminense		-	Dimening hereny tementation can be my late.	367
~	Completentense	305	•	Directly letterny laricae bugy lane	30
~	Compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibility of the compatibi	364	-	Dimethylmalunate	23
•	Сатоздитення		-	Dimethy lauceinate	
-	Caprage	20.5	-	Discoglacemente.	
-	Capry late		-	Discovingal anate	
-	Caury! exide		-	Párgyaniah reseivemente.	363
-	Cartimortanemate	ZEE	4	Distribute or benede.	
-	Cartamete		-	<b>Біргеру івсеньсення</b>	
-	Carbinnates		-	Disniphäde	
•	Chilsmacetanordade		-	<b>Видинтурновие</b>	
•	Chicagorose	ME	4	Eisodade	
•	Съдежения	<b>EE</b> 1	4	Enthemy invience to a years	
-4	Chilerbunyrane	HC.	-	Emisidemental tracte	
-	Chicrerstenate		44	Entre wylech winesensorme	733
•	Chieride.		-	Ethory insent viscenseesse	
-	Chiscinshinty intellements		-	Bibylarecurecase.	
-	Chiarvene braune		-	Enhymetesimperinase	234
-	Chleromandhata	315	-	Entry incery legislancerate	
-	Chilerchertese		-	Estylemythydroxalese	
-	Chkeranieste		-	Ethy Renal vdrazamuse	
-	Chierumaismete		-	Drive lethiersonalemene	
-	Chiorograpismese		_	Ethylerospase	
-	Chlorosulahouste		-	Enhylglypollace	
-	Chlorpershiocarbonate.		-	Ennyinderneuerneetste.	
<u> </u>	Септеме		-		
-	Cirrocoste		-	Emplemente	***
-	Citrates		-	Ethylmethylmeense	
-	Crotomate		-	Employtemente	
-	Cysnactiste		-	Ent ploaphanyrate	
_	Cyanase		_	Enhylprogétgergétmase	
-	Cynnice		•	Enly isoberiase	
-	Cynnide		-	Entylepocume	
-	Discerylacetate		_	Ethylsulphomate.	
_	Disliplectacetate		-	Ethyshing/peciese	
_	Dially includes		_		
_	Viallylexyacetate		-	Ethylasathste Premate	
_	Inamed boosts	200	_		. 355 206

		AGE.	ì		AGE.
Ethyl.	Glycerate	240	Ethyl.	Myristate	. 216
**	Glycocholate	290	"	Nitrate	. 281
44	Glycollate	230	44	Nitrite	281
44	Heptylacetacetate	233	"	Nitroacetate	282
"	Heptyl oxalate	227	44	Nitrocaprylate	282
44	" oxide	198	**	Nitroglycollate	286
**	Heptylsuccinate	228	"	Nitrolactate	
66	Hexyl oxide		44	Nitromalate	
66	Hippurate		14	Nitromalonate	
46	Hypophosphate		"	Nitrotartronate	
44	Iodide		44	Octylacetacetate	
44	Iodpropionate		**	Octyl oxide	
44	Isaconitate			Oenanthate	
66	Isoallylenetetracarboxylate		46	Oleate	
44	Isoamyl oxide			Orthocarbonate	
44				Orthoformate	
"	Isobutenyltricarboxylate		- 44		
"	Isobutylacetacetate			Oxidate	
"	Isobutylmalonate		"	Oxide	
"	Isobutyl oxide			Oxyisobutyrate	
	Isobutyrate			Oxyphenylacetate	
44	Isobutyroglycollate		1	Oxyphenylacrylate	
46	Isocaproate		"	Oxyphenylpropionate	
**	Isononylate	216	- "	Paracamphorate	264
**	Isoōenanthate	215	"	Parasantonate	
**	Isopropylacetacetate	233	**	Pelargonate	216
**	Isopropylmalonate	220	"	Phenylacetacetate	
**	Isopropyl oxide	197	**	" Derivative of	266
44	Isovalerate	213	66	Phenylacetate	257
**	Itaconate	237	**	Phenyl carbonate	
44	Lactate	231	"	Phenylglyoxylate	259
44	Lactosuccinate	230	"	Phenylpropionate	
44	Laevulinate	232	"	Phenylthiogiycollate	
44	Laurate	216	44	Phosphate	
48	Maleate		"	Phosphite	
**	Malonate		"	Phthalate	
44	Mercaptan		44	Propargyl oxide	
44	Mesaconate		"	Propionate	
**	Metachlorbenzoate		**	Propionylglycollate	
44	Meta-ilicate		"	Propionylpropionate	
**	Methenyltricarboxylate		"	Propyl carbonate	
44	Methoxyldia \ lacetate		"	" malonate	
44	Methylacetacetate		"	" oxide	
66	Methylacetoglutarate		"	" succinate	
44			"	Propylethenyltricarboxylate	
**	Methylacetosuccinate		44		
"	Methylacetyleyanacetate		"	Propylglycollate	
	Methyldehydacharanaeath aulata		"	Propylmalonate	
"	Methyldehydrohexonecarboxylate		"	Propylxanthate	
	Methylethenyltricarboxylate			Pyromucate	
	Methylethylacetacetate			Pyrophosphate	
"	Methylethylmalonate			Pyrosulphophosphate	
	Methylglycollate		44	Pyrotartrate	
	Methylisopropylmalonate		44	Racemate	
	Methyllactate		"	Rutylate	
	Methylmalonate			Santonate	
	Methyloxybutyrate			Sebate	
	Methylpropylacetacetate:	233		Selenite	
	Methylpropylacetate			Silicate	
	Methylxanthate	343	"	Silicoacetate	352
	Monochloracetate	306	"	Silicobenzoate	352
	Monochlorethylacetacetate:	311	44	Silicopropionate	352
	Monochlormethylacetacetate:			Suberate	
"	Mucate	248	44	Succinate	228

	7	AGE.	1	P	AGE.
Ethyl.	Succinosuccinate		Ethylene.	Chloride	296
44	Sulphate		44	Chloriodide	337
**	Sulphide	339	"	Chlorobromide	336
66	Sulphite	342	"	Chloronitrin	815
66	Sulphophosphite	350	44	Chlorothiocyanate	347
44	Tartrate	236	44	Cyanhydrin	289
44	Terebate		"	Cyanide	
44	Tetrabromacetacetate		44	Diamine	
44	Tetramethylenedicarboxylate	246	44	" Hydrate	
66	Tetramethylsuccinate		44	Diethyl ether	
66	Thioarsenite		66	Dinitrate	
66	Thiocarbimide		44	Diphenate	
66	Thiocyanacetate		44	Dithiodichloride	
64	Thiocyanate		64	Dithioethylate.	
66	Thioxalate		"	Ethylidene dioxide	
44	Thioxycarbonate		66	Fluoborate	
66	Tiglate		44	Glycol	
66	Triamyl silicate			Iodide	
44	Tribromacetacetate		44	Mercaptan	
44	Tribromethylacetacetate		44	Monethyl ether	
44	Trichloracetate			Mononitrate	
46	Trimethylacetate		44	Nitrosonitrate	
64	Trimethylenedicarboxylate			Oxide	
**	Trimethylenetricarboxylate		44	Propionate	
44			44		
44	Trisulphocarbonate		44	Thiodichloride	
44	Valerate			Thiovinylethylate	
"	Vanadate			Trisulphocarbonate	
	Verstrate			stannethyl	
	acetamide			rlene glycol	
	amidobenzene		Ethyleuge	enol	. 265
	amine			namide	
	Autochioriue			nanilide	
	Camphorace, base from			urcarbinol	
	r iatinomoriue			cide	
•	amyl			ollie chloride	
	amylin			xalin	
	amyl pinacolin			ylcarbinol	
	niline			roxylamine	
	enzene		Ethyliaen	e. Acetochloride	
	borneol			Bromide	
	prombenzene		" "	Bromethylate	
	butyl pinacolin		"	Bromiodide	
	butyrle lactone		"	Butyrochloride	
	amphene		"	Chloride	
-	eamphor			Chlorobromide	
	carbamide		1	Iodide	
	carbamine		"	Oxychloride	
	carbimide		".	Propiochioride	
	diacetamide			Valerochic ride	
	diacetone carbonate			utylcarbinol	
	dimethylethylene			hylacetoxim	
	dipropylearbinol		Ethylmet	hylethylene	
	dipropylcarbyl acetate		1	Browlide	
	ene			" Glycol	
**	Acetate			nochlorhydrin	
**	Acetochloride			thalene	
• •	Acetonitrate			oamidophenetol	
**	Bromhydrin		Ethyl par	atolyl sulphide	. 34
44	Bromide		Ethylphe	netol	. 25
**	Bromiodide		Ethylpher	nol	. 25
44	Butyrate	224	Ethylphe	nyl acetate	. 26
44	Butwrochloride	910	Wthwinha	nulacetulana	17

PAGE.	P	AGE.
Ethylphenylacetylene alcohol 252	Forbesite	122
Ethylphenylcarbinol 251	Formamide	287
Ethylphenylpyrazol 279	Forsterite	131
Ethylphosphorous chloride 349	Franklandite	108
Ethylpiperidine 276	Freieslebenite	62
Ethylpropylacetylene 168	Frenzelite	65
Ethylpropylbenzene 175	Friedelite	
Ethylpropylcarbinol 194	Fuchsine	
Ethylpropylcarbyl acetate	Fucusol	
Ethyl propyl ketone 220	Furfurane	
Ethylpyridine	Furfurbutylene	
Ethyl pyruvyl ether	Furfurol	
Ethyl pyrrol	Fusyl sulphide	
Ethylsilicic chlorhydrins	r. ash parhuras	310
Ethylsulphonic chloride	G.	
Ethylsulphophosphorous chloride 350		
Ethylthiophene 342	Gahnite	
Ethylthymol 254	Galbanum, oil of	182
Ethyltoluidine 273	Galena	
Ethylvinyl acetate 242	Galenobismutite	63
81COHOI 291	Gallium	3
Ethylvinylcarbinol 241	" Alums	96
Ettringite 97	" Chloride	24
Eucairite 65	Gaultherilene	184
Eucalyptene 187	Gaylussite	129
Eucalyptol 264	Gehlenite	
Eucalyptus amygdalina, oil of 182	Geocronite	
" oleosa, " 263	Geraniene	
Euchroite 122	Geraniol	
Euclase 138	44 Hydrochlorate	
Eucryptite 134	Gerhardtite	
Eudnophite 135	Germanium	
Eugenol	" Chloride	_
Eulytite 133	" Oxide	
Euodyl aldehyde 218	Gersdorffite	
Eusynchite	Gibbsite	
Evansite		
	Ginger, oil of	
	· Glauberite	
F.	Glaucodot	
	Glaucopyrite	
Fairfieldite 115	Glucinum	
Famatinite 63	Aluminum silicates	
Faujasite 137	" Calcium fluophosphate	
Fauserite 92	"Oxide	
Fayalite 132	" Selenate	
Fellandrene 184	" Silicates	
Felsobanyite 97	" Sulphate	
Ferberite 106	Glucose	
Fibroferrite 97	" With sodium chloride	
Fibrolite 133	Glucosine	279
Fillowite 115	Glycerin	239
Fischerite 117	" Cinnamate	240
Fluoaniline 339	" Selicylate	240
Fluobenzene 339	Glycerin ether	239
Fluobrombenzene	Glyceryi trinitrite	286
Fluocerite 18	Glycide	
Fluochlorbenzene	Glycocoli	
Fluonitrobenzene	Gmelinite	
Fluorapatite 124	Gold	
Fluorite	44 Amalgam	
Fluor spar	"Arsenide	
Fluotoluene	" Bismuth alloys 155,	

P	AGE.	1	79.	AGE
Gold. Copper alloys	156	Heptola	etone	23
" Didymium bromide	33	Heptyl.	Acetate .	206
ehloride	28	44	Alcohols 194,	
" Diethylamine "	365	44		
" Ethylamine "	365	"	Ruturato	212
" Hydrogen nitrate	112	- "	Caproate	214
" Lend alloys	155	*	Caprylate	210
" Phosphide	67	44	Chloride	
" Samarium bromide	33	"	Cyanide	
" " chloride	28	"		206
" Silver alloys	156	"	Iodide	
" sulphide	64	"	Octyl oxide	196
" Telluride	66	"		21/
Tin alloys	155	"		198
Triethylamine chloride	365	• •	Propionate	210
Göthite	71	"	Succinate	225
Graminin	245	"		214
Grape sugar	244	Heptyle	one	
Greenockite	57	66	Bromide	290
Greenovite	139	"	Chloride	310
Grossularite	136	44	Chloride	907
Grunerite	132	Heptylt	hymol	954
Guadalcazarite		Hercyn	ite	56
Guriagol	251	Herderi	ite	104
Guajol	235	Herreng	grundite	04
Guanejuatite		Hesperi	dene	101
Guanidine carbonate	365	Hessite	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	201
Guanovulite	89	Hetaero	olite	56
Guarinite	139			71
Guayacanite	61		***	136
Guejarite	63	Heveén		185
Guitermannite Gum,	61		TATOMACT O	168
Gum,	244		156,	180
Gummite	72	Hexbro	m-ethyl methyl ketone	100
Gurgun balsam	184	Hexchle		293
Guyaquillite	267	Hexchle	orbenzene	
Gypeum	82	Hexchle	orethane	901
		Hexchle	or-ethyl acetate	201
н.		Hexchle	or-ethyl formate	90.
<b>F1.</b>		Hexchle	orhexane	201
Haidingerite	122	Hexchle		292
Halito		Hexchle	or-methyl oxide	
Halito Hamartite		Hexchle	orpropane	
	145			337
Hanksite Hannayite	115	Hexdee	ane	337
Harmotome		Hexdec	cyl alcohols 193	103
Hartin	267		yl alcohols 193, yl silicate	194
Hartite			irobenzene.	302
Hauerite	60	Hexhyd	Irocumene	1//
Hauerite	134	Hexhyd	irocymene	177
Helvite	141	Herby	irotoluene	177
Hematite		Hexhyd	Iroxylenes	177
Hemp, oil of.		Herina	bromides	177
Heneicosane	163	Herme	thyl silicate	32
Hentriacontane	163	Haroul	ene	
	307	Hervi	ene,	167
Heptachlorpropane	299	"	Acetates	209
Heptocosane	163	- 44	Benzoate	194
Heptadecane				257
Heptane 138,	150		ButyrateButyrate	318
Heptanaphtene			Caproate	212
Heptidene		1	Chloride	214

	GE.	PA	LGE.
Hexyl. Formate	206	Indium. Ammonium sulphate	96
" Iodide	332	" Cæsium "	Q.A
Mercaptan		" Oxide	
"Thiocarbimide			
1 1110CM D1111140		Kubiaiam suiphate	
I HIOCY HISAO		" Sulphate	
Valerate		Inosite	
Hexylamine	270	Inulia	244
Hexylene	164	Iodacetone	335
" Acetochloride	310	Iodaldehyde	335
44 Bromhydrin	327	Iodallylene	
44 Bromide		Iodammonium iodide	
Oniornyariu		Iodbenzene	
OHIO 146		Iodbromtoluene	
⁴⁴ Diacetate		Iodchinoline	
Glycol	223	Iodehlorhydrin	338
" Oxide	222	Iodethylene	334
Hexyl glycerin	239	Iodethyl oxide	
Hexylpentylacrylic compounds		Iodhexylene	
Hiddenite		Iodhydrodiglycide	
Hitcheockite		Iodine	
Hoernesite		Univitues	
Hohmannite	97	" Pentoxide	53
Homilite	140	Iodobromite	87
Hopeite	115	Iodoform	334
Horba chite		Iodtoluene	
Horsfordite		Iolite	
Howlite		Iridichlorides	
Hübnerite		Iridium	
Hnntilite		" Phosphide	
Hureaulite	115	Iridosmium	
Hyalotekite	134	Iron	12
Hydroboracite	108	" Aluminum phosphate	118
Hydrodolomite		" " silicates 138,	
Hydrogen	1	" Ammonium oxalate	
" Chloride	19	" selenate	
	16		
riuotiue		8u.pna.c	
O21408		***************************************	
" Sulphides		" Arsenates 122,	
Hydrogiobertite	130	" Arsenides	68
Hydrolutidine	277	" Cæsium sulphate	95
Hydromagnesite	130	" Calcium arsenate	123
Hydronephelite		" borosilicate	
Hydronicotine		" " oxide	
Hydroquinone		" phosphate	
		pitospiiato	
Hydrorhodonite		8111CAVCS 107,	
Hydrotalcite		" Carbonate	
Hydrotropidine 2		" Chlorides	
Hydroxycaprylonitril 2	289	" Columbate	125
Hydroxyisovaleronitril 2	289	"Copper arsenate	123
Hydroxypicoline 2		" phosphate	
Hydrozincite 1		" sulphides	
		" Dithionate	
	- 1		
I.	1	Hydroxides	
_		100106	
Ice	39	" Lead silicate	
Idocrase 1	136	" Lithium phosphate 1	
Ihleite	84	" Magnesium borates	108
Ilesite	92	" carbonate	
Illicium religiosum, oil of		" sulphate	
Ilmenite 1	- 1	" Manganese phosphates 115, 1	
		manganese prospilates xtoj	
Indigotine	æ∪	"	
		** ** IIInderala IIK. I	1156

	PAGE.		AGE
Iron.	. Nickel alloy 152	Isobutyl. Nitrate	28
**	Nitrate 112	" Nitrite	28
44	Nitride 70	" Orthocarbonate	220
**	Oxides 53, 54	" Orthoformate	24
44	Phosphates 115, 116	" Oxide	19
66	Phosphides 67	" Propionate	
44	Platinchloride	Santonate	
44	Platiniodide	4 Succinate	
44	Potassium chloride	" Sulphide	
44		outputde	
44	surpitate	Isobutyl acetal	
	anibuide	Isobutyl aldehyde, derivative of	
"	Rubidium sulphate 95	Isobutylamine	
**	Selenate 99	Isobutylaniline	
"	Selenide 65	Isobutylbenzene	
"	Silicates 132, 133, 139	Isobutylcamphene	186
44	Silicide 70	Isobutyl carbamine	269
44	Silico-carbide 70	Isobutylene. Bromide	
**	Silicofluoride 18	" Chloride	297
44	Sodium oxalate 361	" Glycol	
	" silicates 139	" Oxide	
44	44 sulphates 97	Isobutyleugenol	
"	Sucrocarbonate		
"	Sulphates 84, 96, 97	Isobutylidene chloride	
"		Isobutyl phenyl ketone	
	Sulphides 60	Isobutyric aldehyde	
**	Tantalate 125	" anhydride	
46	Tin alloy 152	Isobutyryl chloride	
"	Titanates 142	Isocajeputene	
66	Tungstate 106	Isoclasite	117
66	Zinc oxide 56	Isodecyl alcohol	196
Isoa	myl. Acetate 208	Isodibutol	198
4		Isodipyridine	
		Isoeugenol	
		Isoheptane	
		Isoheptyl. Acetate	
	101111111111111111111111111111111111111	44 Alcohol	
	· Ortholorinate 215	4 Chloride.	
	- DUCCIDAG 220	Chioride	
-	. parhmas	Isohexane	
	mylallylamine 278	Isohexyl alcohol	
Ison	mylaniline 273	Isohexylbenzene	
	mylbenzene 175	Isooctonaphtene	
Isos	mylene bromide 320	Isooctyl. Alcohol	198
Isosi	myl ethyl sulphone 343	" Chloride	295
	mylformanilide 288	" Cyanide	269
	mylidene chloride 297	Isoprene	
Isob	enzpinskone 266	" Bromides	
	utyl. Acetacetate 232	" Dichloride	
1000		" Hydrochlorate	
		" Polymer of	
		Isopropyl. Alcohol	
-	Densoave 200	# Benzoate	
4	Divinide orr	Diomide	
•	Dutylave 212	"Butyrate	
	Carbonate 226	" Chloride	
4	6 Chloride 294	" Chlorocarbonate	
•	Chlorocarbonate 306	" Iodide	
4	Cyanide 268	"Isoöenanthate	218
	* Formate 206	" Isovalerate	
	4 Hypophosphate	" Nitrate	
	I lodide	" Nitrite	
	100107 001	" Oxide	
	1800uty1200	VAIGO	
-	1904MEIBIG 710	Suecibate	
•	4 Mercaptan	"Tartrate	23

P	LGE.	PAG	E.
Isopropyl. Thiocyanate		Kresol 24	50
Isopropylacetylene	167	Kresyl. Acetate 20	60
Isopropylallylbenzene	176	" Allyl oxide 24	55
Isopropylallyldimethylcarbinol 241,	242	" Butyl " 24	63
Isopropylamine	270	" Ethyl " 24	53.
Isopropylbenzene.	173	" Heptyl " 22	53
Isopropylbrombenzene	325	" Methyl " 2	53
Isopropylbutenylbenzene		" Octyl " 25%, 20	54
Isopropy carbamine	268	" Oxide 24	
Isopropylethylene	164	" Propyl oxide 22	53
" Glycol	223	Krönnkite	
Isopropyl isobutyl ketone	221	Krugite	89
Isopropylkresol	250	Kyanite1	32
Isopropylnaphthalene	178	•	
Isopropylphenol		I.	
Isopropylphenyl, Acetate	260		
44 Ethyl oxide	254	Labradorite 187, 13	38
" Methyl "	254		44
Isopropyl phenyl ketone		Lactyl ethyl lactate 2	31
Isopropylpiperideine	277	Lanarkite	
Isopropylpiperidine.	276		96
Isopropylpyridine	275	10.000	28
Isopropylthiophene	342	Lanthanum	3
	176		28
Isoterebenthene	180		43
Hydrochlorate	305		99
Isoterpene	180		87
Isotolyl chloride.	303	5 17 5 C	91
Isotrichlorhydrin			37
Isovaleric aldehyde	217	the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	62
Isovaleronitril	988	4 turpentine	89
Isovinyl bromide	323	Laurene 1	75
4 chloride		Laurone	
Ivaol		Lauronitril	
		Laurus nobilis, oil of	
		Lazulite	
J.		Lead	5
		4 Acetate	-
Jacobsite	56	" Aluminum phosphate 1	
Jadeite	135	" " silicates 1	
Jalpaite	64	" Amalgam 1	
Jamesonite	62	"Antimonates	
Jarosite	97	" Antimony alloys 149, 10	
Jeremejewite		4 Arsenides	RR
Joseite	66	44 Arsenite	99
Julianite	61	" Bismuth alloys	
		4 Borates 10	
к.		"Bromate	
<b>22.</b>		44 Bromide	
Kaneite	68	4 Cadmium alloys	
Kaolinite		4 Carbonate	28 28
Karpholite		" Chlorate	
Kauri gum, oil from		"Chloride	
Kentrolite		" Chloroarsenate	
Kermesite		"Chlorobromide	
Klaprotholite		Chioropromide	45
Knebelite		" Chlorophosphate 15	
Kobellite		" Chlorovanadate 15	
Koninckite		" Chromates	
Könlite		" Copper alloys 10	
Köttigite		44 44 arsenate 15	
Kreosol		" arsenate	
**************************************	LUL	CHIOMBAG	-

	PA	GE.	PAG	E.
Lead.	Copper sulphate	97	Limonite	71
**	" vanadate	120	Linarite	
66	Dinitrophenates	364	Lintonite 13	37
**	Dithionate	75	Lipowitz' alloy 18	56
**	Feldspars	138	Liroconite 19	23
**	Fluoride	17	Litharge 4	47
**	Formate	356	Lithiophilite 11	15
46	Gold alloys	155	Lithium	1
46	Hydroxides	71	" Aluminum fluophosphate 12	24
**	Iodate	74	" silicates 13	34
44	Iodide	36	" Ammonium sulphate	89
**	Iron arsenate	122	" Bromide	31
66	" silicate	134	" Carbonate 12	26
**	Manganese silicate	134	" Chloride 1	19
44	Molybdate	105	" Dithionate	75
64	Nitrates 111,	112	" Fluoride	16
46	Nitrophenates	364	" Formate 35	56
44	Oxalate	360	" Iodide	34
46	Oxides	47	" Iron phosphate 11	15
44	Oxychloride	29	" Manganese phosphate 11	15
44	Oxyiodide		" Nitrate 10	09
44	Palladium alloy	156	" Oxalate 30	60
46	Picrate		" Oxide	40
66	Platinbromide	33	" Perchlorate	73
44	Platinchloride	28	" Picrate 30	
"	Platinum alloy	156	" Potassium racemate 3	63
66	Selenate	99	" Rubidium " 30	
44	Scienide	65	" tartrate 30	62
44	Silver alloys	155	" Selenate	98
44	" iodide	37	" Silicofluoride	18
66	Succinate	361.	" Sulphate	76
66	Sulphates 83	97	" Thallium racemate 3	163
**	Sulphatocarbonate	145	" tartrate 3	62
61	Sulphides	58	" Uranyl acetate 3	158
66	Sulphocyanide	144	Livingstonite	62
44	Tartrate	363	Loewite	89
**	Telluride	66	Lölingite	68
"	Tin alloys 147, 148,	149	Lowigite	
66	Tungstate	106	Ludlamite 1	17
44	Zinc vanadates	120	Ludwigite	
	diethyl		Luteocobalt chloride	
	nillite		Lutidine 2	
	tetramethyl		Luzonite	61
	tetraphenyl			
	tetratolyl		M.	
	triethyl			
Ledu	m palustre, oil of	185	Macene 1	
	achite		Magnesioferrite	56
	ne		Magnesium	1
	n, oil of		" Acetate 3	
Lepid	line	277	" Aluminum phosphates 1	118
	lolite		" silicates 1	138
	ine ,		" sulphate	
	ite		" Ammonium chloride	
	phane		" chromate 1	
	pyrite		" phosphates 1	115
	henite		selenate 1	100
Licar	ene	184	" sulphate	
Licar	i kanali, oil of	263	" Arsenates 121, 1	
Lievr	ite	139	" Borates 1	08
			Bromate	73
	ite		" Cadmium sulphate	92

	PAGE.	† DA	GE.
Magnesius	n. Calcium arsenate 122	Manganese. Dithionate	
"	" borate 108	" Garnet	
44	" carbonate 129	". Hydroxides	
**	" silicate 134	" Iron fluophosphate	
44	Carbonate	" phosphates 115,	
44	Chloride	phosphases	
44	Chromate 103	" silicate	
**	Chromium borate 108	1446	
"	Columbate	Long silicate	
"		Lithium phosphate	
"	Copper sulphate 92	magnesium corate	
"	Dithionate 75	suiphate	
"	Fluophosphate 124	111111111111111111111111111111111111111	
"	Fluoride 16	UXRIBRE	
"	Hydroxide70	Uxides	
44	Hypophosphite113	Luoshurde	
	Iodate 74	Flatitiotomide	
44	Iron borate 108	Flatinemoride	
••	" carbonate 129	Platiniodide	
44	" sulphate 92	" Potassium selenate	
"	Manganese borate 108	" sulphate	90
44	" sulphate 92	" Pyroarsenate	123
44	Nitrate 110	" Pyrophosphate	
44	Oxide 40	" Selenate	99
"	Palladichloride 28	" Silicates	152
**	Phosphates 115	" Silicofluoride	18
44	Platinbromide 33	" Stannifluoride	19
44	Platinchloride 28	" Sulphate	83
44	Platiniodide 37	" Sulphides 59,	60
66	Potassium chromate 104	" Tantalate	125
44	" selenate 100	" Tungstate	
44	" sulphate 89	Manganite	
44	Pyroarsenate 123	Manganocalcite	
44	Pyrophosphate 119	Mangantantalite	
44	Selenate	Mannite	
44	Silicates	" Derivative of	
44	Silicofluoride 18	Maracaibo balsam	185
44	Sodium sulphate 89	Marcasite	
44	Stannichloride	Margarite	
44	Sulphate 79	Marialite 1	
64	Thiosulphate	Marjoram, oil of	
**	Titanates	Martinite 1	
44	Vanadates 120	Mascagnite	
44	Zinc sulphate 92	Matlockite	
Magnetite	53	Meionite	
		Melaconite	
		Melaleuca, oil of	
	itril	Melanotekite	
	ımbite 125	Melene	
-		Melezitose	
16	Acetate	Melilite	
66	Aluminum alloy	Melinophane	
"	" phosphate	Mellite 3	
44	silicate 138	Mendipite	
44	Ammonium selenate	Meneghinite	
"	44 sulphate 90	Mentha pulegium, oil of 2	
	Arsenate 123	Menthene	9.0
	Arsenide	Menthol	
		" Derivatives of	
	Calcium phosphate 115		
	Carbonate 128	Menthone	
	Chloride	Mercaptan 34	
	Chromium oxide 56	Mercury	2
	Columbates 125	" Acetate 3	01

	_	1	1
		LGE.	PAGE
	Copper sulphate		Limonite 7
"	" vanadate	120	Linarite 9
44	Dinitrophenates	364	Lintonite 13
66	Dithionate		Lipowitz' alloy 15
"			
	Feldspars		Liroconite 12
44	Fluoride	17	Litharge 4'
46	Formate	356	Lithiophilite 11
66	Gold alloys		Lithium
44	Hydroxides		" Aluminum fluophosphate 12
			Araminam naopnospiiste 12
44	Iodate		8111Cates 13
44	Iodide	36	" Ammonium sulphate 8
44	Iron arsenate	122	" Bromide 3
44	" silicate		" Carbonate
44			
	Manganese silicate		Chioride
44	Molybdate	105	" Dithionate 7
46	Nitrates 111,	112	" Fluoride 10
46	Nitrophenates	364	" Formate 35
44	Oxalate		" Iodide
**	Oxides		Trou phosphace 11
66	Oxychloride	29	" Manganese phosphate 11
**	Oxylodide		" Nitrate 10
44	Palladium alloy		" Oxalate
44			
	Picrate		Oxide 4
66	Platinbromide	33	" Perchlorate 7:
46	Platinchloride	28	" Picrate 36
44	Platinum alloy	158	" Potassium racemate 36
46			
	Selenate		" Rubiqium "
**	Scienide	65	URITING 36
66	Silver alloys	155	" Selenate 9
44	" iodide		" Silicofluoride 1
**	Succinate		⁴⁴ Sulphate 7
44	Sulphates 83		I mainum racemate 36
44	Sulphatocarbonate	145	" tartrate 36
64	Sulphides	58	" Uranyl acetate 35
44	Sulphocyanide		Livingstonite 6
46	Tartrate		Loewite 8
**	Telluride		Lölingite 6
44	Tin alloys 147, 148,	149	Lowigite 9
66	Tungstate	106	Ludiamite 11
44	Zinc vanadates		Ludwigite 10
Lead	diethyl	500	Luteocobalt chloride 3
Lead	hillite	145	Lutidine 27
Lead	tetramethyl	355	Lusonite
Lead I	tetraphenyl	355	
	tetratolyl		1
			M.
Lead	triethyl	300	1
Ledu	m palustre, oil of	185	Macene 18
Lehr	bachite	65	Magnesioferrite 5
Laka	pe	187	Magnesium
	n, oll of		ACGUAGO 30
	line		Atuminum phosphaces 11
Lepic	lolite	140	" silicates 13
	ine		" sulphate 9
	ite		44 Ammonium chloride
			Ammonium chioride
	ophane		CHIOMISMS 10
Leuc	op <b>yrite</b>	68	" phosphates 11
	henite		" selenate 10
	ene		" sulphate 8
	themelt off of		
	i kanali, oil of		Alecticos
	i kanali, oil oftie		" Borates 10
Lievi		139	" Borates
Lievi	Ite	139 41	" Borates 10

		P	AGE.	i PA	GE
	Methyl.	Naphtyl oxide	266	Methyldiethylbenzene	-
	"	Nitrate		Methyldiethylcarbinol	
	44	Nitrite		Methyldiethylcarbyl acetate	
	44	Nitrophenate	285	Methyldiethylcarbyl ketone	22
	46	Oenanthate	214		15
	**	Oleate	234	Methyldiheptylcarbyl ketone	22
	44	Orthoformate	245	Methyldipropylcarbinol	19
	44	Oxalate	226	Methyldipropylcarbyl acetate	
	44	Oxyphenylacetate	258		274
	46	Parasantonate			310
	44	Pelargonate		Bromide	
	"	Phenylacetate		" Chloride	20
	"	Phenylpropionate		Dithioethylate	34
	44	Phosphate		" Ethers of 223,	25
	44	Phthalate		100100	33
	44	Propargyl oxide			22
	"	Propionate		Methylethylbenzene	17
	. "	Propylglycollate	231	Methylethylcarbinol Methyl ethyl ketone	19
	"	Propyl oxide	197	Mark Land at Land at Land Atlanta	_
	"	Pyruvate	000	Methylethylpiperidine	270
	"	. 7		Methylethylpropyl alcohol Methylethylpropylbenzene. Methylethylpropylcarbinol	17
	"	SalicylateSantonate		Methylethylpropyleenzene.	170
	"	Sebate		Methylethylpropylethylene	16
_	"	Silicate			154
_	66	Silicopropionate		Methylethylpropyl methylethylpropionate	
2	**	Suberate			26
Ξ	44	Succinate			28
3	**	Sulphate			28
_	66	Sulphides 339,			27
	44	Sulphite		Methylhexylcarbinol	19
	44	Tartrate		Methylhexylcarbyl chloride	29
	44	Thiocarbimide		4 iodide	33
	44	Thiocyanate	344	" nitrite	28
	"	Trichloracetate,	306	Methyl hexyl ketone	22
	46	Trichlorpropylcarbylacetate		Methylindol	28
	44	Triethyl silicate	352		17
	44	Trinitrophenate		Methylisoamylcarbylacetate	
	44	Trisulphocarbonate		Methyl isoamyl ketone	22
	"	Valerate		Methylisobutylcarbinol	19
		cetone		Methylisobutylcarbyl acetate	20
	Methyla			Methyl isobutyl ketone	
		mine alum		Methylisocrotyl acetate	
	Methyla	mylaniline	273	alconol	241
	Methyla	mylcarbinolamyl ketone	195	Methylisopropenylcarbinol	
				and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	221 17
		amyl pinacolin niline			193
		benzyl ketone		proving the property of	190 <b>22</b> 0
	Mothelb	orneol	202	man a straight and a fine of the transfer of the	277
		romacetol			178
		utylcarbinol		Methyl naphtol	
		butyl ketone		Methyl naphtyl ketone	266
				and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	200 196
	Methyle	arbamine. caprinol hloracetol	268		22
	Methyl	eaprinol	221		221
	Methyle	hloracetol	297	Methylpentamethylene methyl ketone	
	Methyle	hlorallylearbinol	312	Methylpenthiophene	342
		hlorphenetol			260
	Methyle	opellidine	277	Methylphenylethylalkin	290
	Methylc	ymyl mercaptan	341	Methyl phenyl ketone.	262
		ehydrohexone		Methylphenylpyrazol	279

394

	PA	GB. 1		Pi	GE.
Maraner	Ammoniochlorides		Methyl.	Bromide	316
Melculy.	Ammonionitrate	112	"	Butyloxide	
46	Ammoniosulphate	97	**	Butyrate	
46	Ammonium chloride	27	**	Caprocte	
"	Bromate	73	"	Caprylate	
"	Bromides	32	44	Capryl oxide	
"	Calcium antimonite	125	44	Carbonate	
"	Chlorates	73	44	Chlorbutyrate	
"	Chlorides	22	44	Chlorerotonate	
44	Chloride with ammonium dichro-		**	Chloride	
••	mate	144	44	Chlorocarbonate	
44	Chlorocyanide	149	. "	Chlorpropionate	
	Chromate	109	**	Cinnamate'	
**	Cyanide 143,	144	44	Citraconate	
"	Paryl mercaptide	222	44	Crotsconate	
"	Hydrogen bromide	33	66	Crotonate	
44	Hydron bromide	95	66	Cyanide,	
66·	Iodides	110	44	Dibrom propionate	396
44	Nitrates 110,	112	44	Dichloracetate	
"	Organic compounds		- 11	Dichlorbutyrate	
"	Oxides			Diethyl borate	
	Oxychloride		4	Diethylmethylethenyltricarb o x y-	
44	Oxycyanide			late	947
"	Potassium bromide		-	Diethyloxyacetate	
	CHIOLIGA		"	Dimethylsuccinate	
46	" cyanide		"		
44	" iodide		"	Dinitrophenate	005
44	Selenide			Ethylacetacetate	999
	Selenate		4	Ethyl carbon ie	995
66	Silver iodide			Ethyl carbon de	000
"	Sodium chloride		ü	EthylglycollateEthyl oxalate	997
46 66	Sulphates 81		"	Ethyl oxide	100
"	Sulphide		" "	" encoinete	996
44	with copper cinoriae				999
	Telluride		"	Ethylsuccinate	349
	h 4 - 4 -		٠	Ethyl sulphiteEthylxanthate	949
	Acetate		,	Ethylianthate	205
	Oxide			Formate	230
Mesityle	ne			Transmit and a	198
"	Acetate			Henry oxide	348
"	Glycol				
	Mercaptan			Iodide	329
	shite			7-1	93/
	ein			Iodpropionate	211
	tonid				
	konine			Isodenanthate	25
	plene		"	Tamalanah	1219
	•			The company	103
	benthene			Taconate	T
•	ene		"	Lactate	-
	landhal abal aadaa			Laevulinate	Lo
	Imethyl ethyl acetone		"	Maleate	5
Metilyi.	Acetate			Managements	123
44	Acrylate		"	Mesaconate	7
44	Alcohol			Methylglycollate	200
66	Allyl oxide		1	Mothylawshansiassias	250
"	Amyl "		"	Methyloxyphenylacrylate	. 150
44	Arsenate		"	Methyloxyphenylangelate Methyloxyphenylcrotonate	ماد
44	Arsenite		"	Mothulanopulanta	0.39
"	Benzoate		"	Methylpropylpyrogaliate Methylxanthate	2.43
"	Borate			Monochloracetate	,.De
44	Brombutyrate		"	Mucate	245
		040		ME IN COLUMN *** *** *** *** *** *** *** *** *** *	

	P	AGE.	P/	AGE.
Methyl.	Naphtyl oxide	266	Methyldiethylbenzene	175
"	Nitrate	281	Methyldiethylcarbinol	194
44	Nitrite	281	Methyldiethylcarbyl acetate	209
44	Nitrophenate		Methyldiethylcarbylketone	
**	Oenanthate		Methyldiethylmethane	
44	Oleate		Methyldiheptylcarbyl ketone	
44	Orthoformate		Methyldipropylcarbinol	
44	Oxalate		Methyldipropylcarbyl acetate	
44				
"	Oxyphenylacetate		Methyldiphenylamine	
"	Parasantonate		Methylene. Acetochloride	
	Pelargonate		" Bromide	
44	Phenylacetate		Chioride	
"	Phenylpropionate	257	" Dithioethylate	
44	Phosphate	348	" Ethers of 223,	
"	Phthalate	258	" Iodide	334
"	Propargyl oxide	241	Methylethyl acetal	224
44	Propionate	209	Methylethylbenzene	173
44	Propylglycollate	231	Methylethylcarbinol	191
46	Propyl oxide		Methyl ethyl ketone	
44	Propylxanthate		Methylethylpiperidine	
44	Pyruvate		Methylethylpropyl alcohol	
44	Salicylate		Methylethylpropylbenzene	
**	Santonate		Methylethylpropylcarbinol	
44	Sebate			
44			Methylethylpropylethylene	
"	Silicate		Methylethylpropylmethane	
"	Silicopropionate		Methylethylpropyl methylethylpropionate	
"	Suberate		Methyleugenol	
	Succinate		Methylformamide	
44	Sulphate		Methylformanilide	
44	Sulphides 339,		Methylglyoxalin	
44	Sulphite	342	Methylhexylcarbinol	195
44	Tartrate	236	Methylhexylcarbyl chloride	
44	Thiocarbimide	345	" iodide	333
44	Thiocyanate	344	" nitrite	281
44	Trichloracetate	306	Methyl hexyl ketone	221
66	Trichlorpropylcarbylacetate		Methylindol	280
66	Triethyl silicate		Methylisoamylbenzene	
46	Trinitrophenate		Methylisoamylcarbyl acetate	
66	Trisulphocarbonate		Methyl isoamyl ketone	
44	Valerate		Methylisobutylcarbinol	
Mathyla	cetone		Methylisobutylcarbyl acetate	
-				
	l		Methyl isobutyl ketone	
	mine alum		Methylisocrotyl acetate	
	mylaniline		" alcohol	
	mylcarbinol		Methylisopropenylcarbinol	
	amyl ketone		Methylisopropylacetone	
	myl pinacolin		Methylisopropylbenzene	
	niline		Methylisopropylcarbinol	
	benzyl ketone		Methyl isopropyl ketone	
	orneol		Methylisopropylpiperidine	
Methylb	romacetol	320	Methylnaphthalene	
Methylb	utylcarbinol	194	Methyl naphtol	266
Methyl b	outyl ketone	220	Methyl naphtyl ketone	
Methyl b	outyrone	221	Methylnonylcarbinol	
-	arbamine		Methyl nonyl ketone	
	caprinol		Methyl octyl ketone	
	hloracetol		Methylpentamethylene methyl ketone	
	hlorallylcarbinol		Methylpenthiophene	
	hiorphenetol		Methylphenylcarbyl acetate	
	opellidine		Methylphenylethylalkin	
	ymyl mercaptan		Methyl phenyl ketone	
	ehydrohezone		Methylphenylpyrasol	
	U14 T U14 U14 E A U14 U15	491	ITA TILLI VIII II II II VIII VIII VIII VIII	417

	1	PAGE.	ı		P	AGE
Methylpiperi	idine	276	Morph	ine. Salts of		300
Methylpropy	lallylene	168	Mottre	mite	•• ••••••••••	120
Methylpropy	lbenzene 173,	174	Mucar	nide	******	288
	lcarbinol				tive of	
	lcarbyl acetate				••••••	
atomy propy	chloride		Myria	io acetate taom	er of	700
44			66 66	alcohol.	44	200
	iodide		46	•		
	lcarbylcarbinol			aldehyde,	"	
Methylpropy	lethylene glycol					
"	oxide	222				
	lethol acetate					
Methyl propy	yl ketone	219	Myrtle	, oil of	A	183
	1		Myrtu	s pimenta, oil o	ſ	185
Methylpyrro	lidine	279				
	line				N.	
	nin				м.	
	chlorhydrins		Nador	Ita		198
	onic chloride				····· •···· ···· ···· ················	
	nethylene diamine				•••••	
	ol		мари			
	ine				θ	
	ketone			21 3 41 14 05	178,	
	, chloride from				••••••	
Methyl xylyl	ketone	262	Napht	yl mercaptan		341
Miargyrite		62	Narco	ine	***************************************	291
Mica		136	Natrol	ite		135
Milarite		137	Naum	annite	*****	68
	••••••				***************************************	
					•••••	
					······	
					········	
					·····	
	n oil					
	••••••		Nicke		······································	
	•••••		1			
			44		у	
	l		44		nide	
44	Oxides		**		ride	
44	Phosphide	67	44	Ammonium se	lenate	100
66	Sulphide	59	44	" su	lphate	91
Monacetin	-	239	44	Arsenates	•	122
Monallylin	***************************************	239	"	Arsenides		68
	•••••••••••		**			
			**		ide	
			"			
			"			
	mphor		"			
	drin					
	iophene				·····	
	·		"		ie	
Monochlorbe	nzene		".		ə	
"	Derivative of	304	44	Iodate		74
Monochlordi	nitrin	315	"	Iron alloy		15
Monochloret	hyl dichloracetate	306	44	Nitrate	***************************************	112
46	trichloracetate		"	Oxalate	•••••	360
Monochlorhy	drin		"		•••••	
	luene		66		·····	
	inyl ethyl oxide		"		le	
	•		"			
	ydrin		"		••••••••••••	
	••••••••••••					
	• • • • • • • • • • • • • • • • • • • •		**		nate	
Morenosite	•••••••••••	85	"	" sulp	hate	9
Morphine	***************************************	290	**	Pyrophosphate	· · · · · · · · · · · · · · · · · · ·	119

		AGE.	D4	GE.
Wishel	. Selenate		Octyl. Alcohols	
MICKOL				
	Selenide		" Bromide	
•••	Silicofluoride		- Dutyrate	
44	Sulphate		" Caproate	
"	" with potassium selenate		" Caprylate	
"	Sulphide	60	" Chloride	295
44	Thallium selenate	100	" Cyanide	269
"	Tungstate		" Formate	
44	Zircofluoride		" Iodide	
Nigotin	18		" Isovalerate	
	m, see columbium		" Nitrite	
	lines		Ochsu(liste	
	nisol		VAIGO	
	enzene		1 tohtonere	
	omtoluene		Guipinue	
	mene		" Valerate	214
Nitroet	hane	282	Octylamine	270
Nitroge	an	6	Octylene	165
"	Chloride	25	" Acetate	209
44	Chlorophosphide	144	" Acetochloride	
**	Oxides		" Chlorhydrin	
**	Oxybromide		" Glycol	
44	Oxychloride		" Hydrate	
46				
	Sulphide		UAIGE	
	ycerin		Octylphosphin	
	eptane		Octylthiophene	
	obutylanisol		Octylthymol	
	annite		Oenanthic aldehyde	
	ethane		" anhydride	
	aphthalene		Oenanthol	
Nitrop	henols	285	" Derivative of	245
Nitrosc	diethylin	282	Oenanthone	
3784	dipropylamine	000		
Liftlose	Milpropyismine	202	Oenanthonitril	
Nitros	yl bromide	33*	Oenanthothialdin	345
Nitros		33*	Oenanthothialdin	345 132
Nitros: Nitroto	yl bromide	33° 284	Oenanthothialdin	345 132
Nitros Nitrote Nitrou	yl bromide oluenes 283,	33° 284 48	Oenanthothialdin	345 132 57
Nitrosy Nitroto Nitrou Nitrox	yl bromide	33° 284 48 29	Oenanthothialdin Okenite Oldhamite	345 132 57 184
Nitrosy Nitroto Nitrou Nitrox Nitrox	vi bromide	33° , 284 , 48 , 29 , 284	Oenanthothlaidin Okenite Oldhamite Olibene	345 132 57 184 138
Nitrosy Nitroto Nitrou Nitrox Nitrox Nitrox	yl bromide	33° 284 48 29 284 290	Oenanthothialdin Okenite Oldhamite Olibene Oligocla*e	345 132 57 184 138 122
Nitrosy Nitrote Nitrox Nitrox Nitrox Nonan	vl bromide	33° , 284 , 48 , 29 , 284 , 290 , 160	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181
Nitrosy Nitroto Nitrox Nitrox Nitrox Nonan Nonde	vl bromide	33° , 284 , 48 , 29 , 284 , 290 , 160 , 163	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave Olivenite Orange, oil of Orangite	345 132 57 184 138 122 181 133
Nitrosy Nitrota Nitrox Nitrox Nitrox Nonan Nonde Nonon	vi bromide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s oxide 283, s	33° 284 48 29 284 290 160 163	Oenanthothialdin Okenite Oldhamite Olibene Oligocla*e	345 132 57 184 138 122 181 133 251
Nitrosy Nitrota Nitrox Nitrox Nitrox Nonan Nonde Nonon	vi bromide	33° , 284 , 48 , 29 , 284 , 290 , 160 , 163 , 186 , 186	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68
Nitros Nitrot Nitrox Nitrox Nitrox Nitrox Nonan Nonde Nonon Nonon	vi bromide	33° 284 48 29 284 290 160 163 186 186	Oenanthothialdin Okenite	345 132 57 184 138 122 181 133 251 68 59
Nitros Nitrot Nitrox Nitrox Nitrox Nitrox Nonan Nonde Nonon Nonon	vi bromide	33° 284 48 29 284 290 160 163 186 186 133	Oenanthothialdin           Okenite           Oldhamite           Olibene           Oligoclave         137,           Olivenite           Orange, oil of           Orangite           Orcin           O'Rileyite           Orpiment           Orthoclase	345 132 57 184 138 122 181 133 251 68 59 135
Nitros Nitrote Nitrox Nitrox Nitrox Nonan Nondon Nonon Nontro Nonyl.	vi bromide oluenes	33°, 284 48 29 284 290 160 163 186 186 133 196 295	Oenanthothialdin Okenite	345 132 57 184 138 122 181 133 251 68 59 135
Nitros Nitroto Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nontro	vi bromide	33°, 284 48 29 284 290 160 163 186 133 196 295	Oenanthothialdin Okenite Oldhamite Olibene Oligocla-e	345 132 57 184 138 122 181 133 251 68 59 135 156 263
Nitros Nitrot Nitrou Nitrox Nitrox Nonan Nonde Nonon Nonon Nonor Nonyl.		33° , 284 , 48 , 29 , 284 , 290 , 160 , 163 , 186 , 133 , 196 , 295 , 333 , 165	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15
Nitros Nitrot Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nonyl.		33° 284 48 29 284 290 160 163 186 186 133 196 295 333 165	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15
Nitros Nitrot Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nonyl.		33° 284 48 29 284 290 160 163 186 186 133 196 295 333 165	Oenanthothialdin Okenite	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 139
Nitros Nitrot Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nonyl.	yl bromide oluenes	33° 284 48 29 284 290 160 163 186 186 133 196 295 333 165	Oenanthothialdin Okenite Oldhamite Olibene Oligocla*e	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279
Nitros Nitrot Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nonyl.		33° 284 48 29 284 290 160 163 186 186 133 196 295 333 165	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 156 263 150 139 279
Nitros Nitrot Nitrot Nitrox Nitrox Nonan Nonde Nonon Nonon Nontro Nonyl.	yl bromide oluenes	33°, 284 48 29 284 290 160 163 186 133 196 295 333 316 141 183	Oenanthothialdin Okenite Oldhamite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279 279 280
Nitros Nitrot Nitrot Nitrox Nitrox Nitrox Nonan Nonon Nonon Nonon Nonon Nonon Nontro Nonyle Noseat Nutme	vi bromide oluenes	33°, 284 48, 29 284 290 160 163 186 133 196 295 333 165 141 183	Oenanthothialdin Okenite Oldhamite Oldhamite Olibone Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 263 150 263 139 279 279 280 279
Nitros Nitrot Nitrot Nitrox Nitrox Nitrox Nonan Nonon Nonon Nonon Nonon Nontro Nonyle Noseat Nutme	yl bromide oluenes	33°, 284 48, 299 284 290 160 163 186 133 196 295 333 165 141 183	Oenanthothialdin Okenite Oldhamite Olibene Oligocla*e	345 132 57 184 138 122 181 133 251 68 59 135 150 263 150 279 279 279 279
Nitros Nitrot Nitrot Nitrox Nitrox Nonan Nonde Nonon Nonon Nonon Nonyl. "" Noseat Nutme	yl bromide oluenes	33°, 284 48, 29 284 290 160 163 186 186 183 196 295 333 165 141 183	Oenanthothialdin           Okenite           Oldhamite           Olibene           Oligocla*e         137,           Olivenite         137,           Orange, oil of         0           Orein         0           O'Rileyite         0           Orpiment         0           Osmiridium         0           Osmitopsis, oil of         0           Osmium         0           Owenite         0           Oxalethylethylin         0           Oxalethyleonanthylin         0           Oxalethylpropylin         0           Oxalisoamylisoamylin         0           Oxalisobutylisoamylin         0	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279 279 280 279 279 279
Nitros Nitrot Nitrot Nitrox Nitrox Nonan Nonde Nonon Nonon Nonon Nonyl. "" Nonyle Noseat Nutme	yl bromide oluenes	33°, 284 48, 29 284 290 160 163 186 186 183 196 295 333 165 141 183	Oenanthothialdin Okenite Oldhamite Olibene Oligoclave	345 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279 279 279 279 279 279
Nitros Nitrot Nitrot Nitrox Nitrox Nonan Nonde Nonon Nonon Nonon Nonon Nonyl. "" Nonyle Noseat Nutme	yl bromide sluenes	33° 2844 488 299 2844 2900 160 163 186 186 295 333 165 141 183 245 245 163 160 292 292	Oenanthothialdin Okenite Oldhamite Oldhamite Olibone Oligocla-e	\$45 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279 280 279 279 279 279 279 280
Nitrosy Nitrote Nitrote Nitrox Nitrox Nitrox Nonan Nonde Nonon Nontro Nonon Nontro Nonyle Noseat Nutme	yl bromide oluenes	33° 284 48 29 284 290 160 163 186 186 295 333 165 141 183	Oenanthothialdin           Okenite           Oldhamite           Olibene           Oligoclave         137,           Olivenite         137,           Orange, oil of         0           Orangite         0           Orin         0           Orkileyite         0           Orpiment         0           Osmitolium         0           Osmitidium         0           Osmitolium         0           Owenite         0           Owenite         0           Oxalethylethylin         0           Oxalethyloenanthylin         0           Oxalisoamylinomylin         0           Oxalmethylethylin         0           Oxalmethyloenanthylin         0           Oxalmethyloenanthylin         0           Oxalmethyloenanthylin         0           Oxalpropylethylin         0	\$45 132 57 184 138 122 181 133 251 68 59 135 156 263 15 139 279 280 279 279 279 279 279 279 279 279
Nitros Nitrot Nitrot Nitrox Nitrox Nitrox Nonan Nondo Nonon Nontro Nonyl. "" Nonyle Noseat Nutme	yl bromide oluenes	33°, 2244 488 299 294 290 160 163 186 186 133 196 295 333 1165 141 183 245 163 160 292 2 245 163 160 160 292 2 245 163 160	Oenanthothialdin           Okenite           Oldhamite           Olibene           Oligocla~e         137,           Olivenite         137,           Orange, oil of         0           Orangite         0           Orin         0           O'Rileyite         0           Orpiment         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osmitidium         0           Osalethylethylin         0           Oxalethylethylin         0 <td>\$45 132 57 184 138 122 181 133 251 68 59 136 156 263 150 279 279 280 279 279 279 279 279 279 279</td>	\$45 132 57 184 138 122 181 133 251 68 59 136 156 263 150 279 279 280 279 279 279 279 279 279 279
Nitros Nitrot Nitrot Nitrox Nitrox Nitrox Nonan Nondo Nonon Nontro Nonyl. "" Nonyle Noseat Nutme	yl bromide oluenes	33°, 2244 488 299 294 290 160 163 186 186 133 196 295 333 1165 141 183 245 163 160 292 2 245 163 160 160 292 2 245 163 160	Oenanthothialdin           Okenite           Oldhamite           Olibene           Oligoclave         137,           Olivenite         137,           Orange, oil of         0           Orangite         0           Orin         0           Orkileyite         0           Orpiment         0           Osmitolium         0           Osmitidium         0           Osmitolium         0           Owenite         0           Owenite         0           Oxalethylethylin         0           Oxalethyloenanthylin         0           Oxalisoamylinomylin         0           Oxalmethylethylin         0           Oxalmethyloenanthylin         0           Oxalmethyloenanthylin         0           Oxalmethyloenanthylin         0           Oxalpropylethylin         0	345 132 57 184 138 122 181 133 251 68 59 136 156 263 150 279 279 280 279 279 280 279 280 279 280

Er:	-	F.	-
Oxacride	287	Peppermint, oil of	LSS
Oxethenaniline	288	Perchlor-ethyl acetate	2012
Oxybutyric lactone	231	Perchlor-ethyl oxide	203
Oxygen		Periclase	
Oxyisosmylamine		Persea lingue, tannin from	
Oxyphenyl mercaptan		Petalite	
Oxypropylpropylamine		Petit grain, oil of	
Oxysulphobenzid	344	Petxite	
	1	Pharmacolite	
P.		Pharmacoulderite	
		Phenakite	
Pachnolite		Phenanthrene	
Pacite		ayarme	
Palladiochlorides		Phenanthrene quinone	
Palladium		Phenetoi	
4 Lead alloy		Phenol	
Endeputus		Phenoxyacetonitril	
anthura		Phenoxyldiphenylphosphin	
Palmitone		Phenyl Acetate	
		Any: 04:46	
Pandermite		" Borste	
Parabromalide	30E	" Carbimide	
Parachinanisol		4 Ethyl oxide	
Parachloralide		" " sulphide	
Paradichloraldehyde		" Heptyl oxide	
Paradiconiine		" Isobutyi "	
Paradin		" Isopropyi "	
Paragonite		" Mercaptan	
Paraldehyde		" Methyl oxide	
Paranicene		" Octyl "	
Parasantonid		4 Oxide	
Parisite		" Phosphite	
Parsiey, oil of		Propargyl oxide	
Parsnip, oil of		" Propyl "	
Partschinite	LW	" Sulphides	
Parvoline	275	" Thiocarbimide	
Pstchouli camphor	264	Phenylacetic aldehyde	
Patchouli, oil of		" chloride	
Pectolite	134	Phenylacetylene	. 176
Pegnnite	117	Phenylarsine bromide	. 351
Pelletierine	291	Phenylbutylene	176
Pentabrompropane	320	Phenylcymene	. 177
Pentachioracetone		Phenyl hydrazin	
Pentachlor-amyl formate		Phenylpentylenes	176
Pentachlorbenzene		Phenylphosphin	
Pentachlorethane		Phenylphosphorous chloride	
Pentachlor-ethyl oxide		Phenylpropionitril	
Pentachiornitrobenzene		Phenylpropyl alcohol	
Pentachior-propylene oxide		Phenylsulphonic chloride	
Pentadecane		Phenyltoluene	
Pentadekanaphtene		Phenyltolylethane	
Pentamethylene diamine		Phenylvinyl ethyl oxide	
Pentane		Phillipsite	
Pentanitrolactose.		Phlein	
Pentatriacontane		Phlogopite	
Pentethylmonochlorbenzene		Phloretol	
Pentlandite		Phlorol	
Pentyl. Bromide		Phioryl ethyl oxide	
CIIIOI 1774		Phoenicochroite	
IOMING		Phorone Phoegenite	
Penwithite	. ພະ	Luckenine	IH

I	AGE.	PAGE
Phosphenyl chloride		Potassium
" ether	. 349	44 Aluminum borate 10
" oxychloride	. 349	" selenate 10
" sulphochloride	. 350	" silicates 135, 136, 13
Phosphorus	. 6	" sulphates 92, 9
" Bromide	. 32	" Ammonium chromate 10
" Chlorides	. 25	" sulphate 8
"Oxybromide	. 33	46 46 tartrate 36
" Oxychloride 2	9, 30	44 Amylsulphate 35
"Oxychlorobromide	. 37	44 Antimony chloride 2
46 Pentoxide	. 48	44 Arsenate 12
" Sulphides	. 58	66 Borate 10
44 Sulphobromide	. 33	Borofluoride 1
" Sulphochloride	30	Borotartrate 36
" Sulphocyanide	. 144	66 Bromate 7
Phthalic anhydride	. 266	" Bromide 3
Phthalyl chloride	. 313	" Cadmium chloride 2
Phycite bromodichlorhydrin	. 337	" iodide 3
Picamar	. 259	" selenate 10
Picite	. 117	" sulphate 9
Picoline 274	275	" Calcium chromate 10
Picrolichenin		" sulphate 8
Pinacolic chloride	. 295	" Carbonates 126, 12
" iodide	. 333	" Chlorate 7
Pinacoline		" Chloride 2
Pinacolyl alcohol		" Chlorochromate 10
Pinakone		" Chromates 102, 10
Pinite		" Chromate with mercuric cyanide. 14
Pinnoite		" Chromiodate 10
Pinus, oils from 179, 180,		" Chromium selenate 10
Pipecoleine		" sulphate 9
Pipecoline		" sulphocyanide 14
Piperidine		" Chromocyanide 14
Piperine		" Chromoxalate 36
Piperpropylalkin		" Citrate 36
Piperyl hydrazin		" Cobalt selenate 10
Pistomesite		44 44 sulphate 93
Plagionite		" Cobalticyanide 14
Planerite		Columboxynuoride
Platinbronides		" Copper chloride 2
Platinchlorides 28, 365		" oxalate 36
Platiniodides		" selenate 100
Platinum		" " sulphate 9
"Boride		Cyanate 14
" Chloride		" Cyanide 14
" Hydride		" Dinitrophenates 364
Dead Miley		Dittilonate
44 Phosphide		" Ethylsulphate 356
Potassium sulphide		Ethylxanthate
omena		" Ferricyanide 14
" Sodium sulphide		" Ferrocyanide 143
" Sulphides		" Fluoride 16
Platodiamine platosoxalates		Гогимо 300
Platosochlorides		"Gallium sulphate
Plumbogummite		Trydrogen oxanave
Polianite		18Comste 300
Pollucite		Burbuave 80
Polyargyrite		Cartrate 302
Polybasite		1
Polydymite		10480
Polyhalite		1001008 31
Poplar, oil of	190	44 Iridichloride 28

### TADEX.

	.7 <b>1</b> 2	WE.	?MG	-
Zomenum.	Tron. controls	2.	Petersium. Beamiffuerine	3
.4	-4- suppostes	. T	4. Emmocntoritis	2
4.	4 milmine		4. Hronium curomoraise 3	<b>131</b>
4.	Industry is unuse:	38t-	4. fatiminate	<del>-</del>
.4-	manning man times	356	4. Sulphus	
٨.	Littlium meetings		4. Intinitory an int.	
.4.	Americanin Circunsta		" Immetofluoria	
	** ***********************************		4 Introduction	
4.	4. dilinists.		4 Intrate	
.4.	AULDING			
.4.	Zhuqunese solemete		TIME AND AND AND AND AND AND AND AND AND AND	
	entiblings.		- THOME THE	
	Element CARTIERS		THORMU brospines	
.4-	Bereitz bromuk		T CHARLOUTUR	
.4.	4 cmorak		4 Ттистие	
.4.	4. GARDION.		4. Impenses. I	
.4.	.4turkitük:		4. Dramozyliuorus	
-4-	Biemprospints	114	Tranyi sutphas	Æ
4.	Zietnyienipine:	351	Withardum warming	120
4.	Methylmentime:	384	- Zine cirtoriale	5
.4.	Recirc remine	M:	4. 4. seienste	16
4.	** 400 (07040)	10	4 Autpinte	-
4.	4. antinitisate	Ø	* Zireofinoride	
.4.	Ninse		Zireonium phoenisties.	
4.	Nitran-aubrian		silicate	
.4.	Nitropiamates		Progration	
-4-	(Straints:		Prainia.	
4.				
4.	Coxide		Princip	
-	Palminetiterite		3 rogate	
.4.	Perchiana:		Bropangy, Asstate	
4.	Fernanganase		44 Alzoho:	
.4.	Pitospiace		4 Bromides	
.4.	Prospirate-sulpirate		4. Cnioriue	
4.	Pictare		4 lodiat	
4.	Pintinieromitie	3	<b>Руориена возти всии</b>	345
.44	Pinninentornie	25	Propidene diprony, ether	-
4-	Pastmivdide	<b></b>	Propionamus	26.
4-	Partmorymice	14:	Propione	311
.4.	Platmun wieniocyanide	144	Propionic algebyde	ar.
.4.	4 authinise	( <u>ii</u>	4 uniyaride	214
4.	. summovenide		Frommitrii	
4.	Philosophiloride		Propionvincetophenone	
4.	Pistozniste		Propiony bronude	
.44	Proposatiplante		4 cintoriale	
.4.	Percupiominae		Fronyl Assure	
4.	Pyrosilpinate		" Acrylan	
4			4 Aisohol	
4	Quatroniste		Lensonte.	
۸.			Dollause	
4.	Recement monite		DOLMET.	
	belenste		11/WIIIUC	
4-	Blicofinoriae		BUTY! UAIGH	
	Bliver periodett		4 4Heemste	
a.	Sodium alloy		4 Buryrau	
.4.	4 garizonste		44 Camphorate	
.44	* phoephate		4. Capront	
44	40 enste		" Capryinte	
44	sulpinate	番	44 Corbonste	=
*	4 lettete	361	4 Chloride	-
*	4 tungetste		4 Chlorecarbonase	319
	4 Variadate		4 Cinnamete	
44	Prennete		4 Cynnide	
نم	Hannitromide		4 Dibrompropionate	
-	Strangish and Sa	_	4 Theremen behaves have the	

	P	AGE.	l p	AGE.
Propyl.	Ethylacetacetate	233	Propylglyoxalin	279
"	Ethylglycollate	230	Propylhexylcarbinol	196
44	Formate		Propylidene chloride	
**	Fumarate		Propylisopropylbenzene	
	Glycollate		Propylkresol	
"	Heptyl oxalate		Propylnaphtol	
	" oxide		Propylphenol	
44	Hypophosphate		Propylphenyl acetate	
44	Iodacetate		Propyl phenyl ketone	
44	IodideIsobutyrate		Propylphenyl methyl oxide	
	Isočenanthate		Propylphenylpyrasol Propylphycite trichlorhydrin	
44	I ovalerate		Propylpiperidine	
"	Laevulinate		Propylpyridine	
	Maleate		Propylsilicie chlorhydrins	
	Malonate		Propylthiophene	
66	Methylglycollate		Propylthymol	
66	Monochloracetate	307	Prosopite	
44	Nitrite	281	Proteine, derivatives of	
	Octyl okalate	227	Proustite	
44	" oxide	198	Pseudocumene	173
	Oenanthate		Pseudohexylene acetate	225
	Orthocarbonate		" glycol	
	Orthoformate		Pseudomalachite	-
	Oxalate		Ptomaine	
•••	Oxide		Ptychotis ajowan, oil of	183
••	Parasantonate		Pucherite	
"	Phenylacetate		Pulegium micranthum, oil of	
	Derivative of		Purpureochromium. Chlorida	
	PhenylpropionatePropionate		" Chlorobromide	
	Propylglycollate		Purpureocobalt. Bromide	
	Salicylate		44 Bromonitrate	
	Santonate		" Chloride	
	Silicate		" Chlorobromide	38
	Succinate		" Chloronitrate	
	Sulphide		Purpureorhodium. Bromide	38
44	Tartrate	237	" Chloride	38
44	Valerate	213	" Iodide	38
Propyla	cetal	224	Pyrargyrite	62
	lylamine		Pyridine	274
	mine		Pyrite	
	niline		Pyrocatechin	
	enzene		Pyrogallol	
Propyle	ne. Acetate		Pyrolusite	
"	Bromide		Pyromorphite	
"	Bromiodide		Pyrophosphoric chloride	
44	ChlorhydrinChloride		Pyrosmalite	
"	Chloriodide		Pyrrhotite	
"	Chlorobromide		Pyrrol	
**	Diamine		Pyrrolidine	
44	Dinitrate		Pyrotartronitril	
44	Dinitrite	1	Pyruvic acetate	
**	Ethylphenylketate			
46	Glycol		` <b>Q</b> .	
**	Iodide			
44	Oxide	222	Quartz	44
"	Trisulphocarbonate	341	Quercite	243
í,	Valorate		Quinoline	
Propyleu	genol	265	Quinone	266

	P	ME.		4	
	te	97		26	
	<b></b>			184	
	bergita			35	
Bealgar		3	Sage, oil of 182, 1		
Reddingi	e	115	Saliein	357	
Reinite		LOS	Saligenin		
Beserein.		250	Saticytoi		
Retene	***************************************	LTB	Sailretin	356	
Herbanyit	·	43	Selt	19	
Rhabdoph	me	116	Salviol	313	
			Samarium. Acetata	359	
Bhodium.		14	4 Ammonium selenate		
	Ammoniobromide		" sulphate		
٠.٤	Ammoniochloride	. 39	4 Borate.		
-	Ammonioiodide		4 Bromide		
			" Chloride	35	
	)		« Ethylsuiphata.		
	·		u Formate.		
	3		" Gold bromide	32	
			" chioride	-29	
	e chlorhydrate		" Yetaphosphate		
			Metavanadace		
			" Molybdate	123	
	, oil of				
	ut iodosulphate		311 MG		
	o <u>y</u>		1.7.Z.ille	_	
Hosewood	, oil of		17A) -::::10H4B	3	
	resin from		remousse	74	
			ritospitate		
			FICTAGE		
-4	Aiuminum velenate		Patinehioride		
.4	· suipinate		4 Platinocyanida	L44	
••	Bromide	Tr.	4 Potassium selenate	wı	
• 6	Chioride	-11	Propionate	358	
•4	Chromium seienate	ш	delenate	EDO.	
.4	" surphate	1.5	4 Sodium melybdate	105	
	Cobalt selenate	Ш	d dulphate	36	
.4	Copper chloride	-	" Sulphocyanate with mercuric		
-4	Fluoride	16	eyanide	144	
•4	Failium suiphate		Tungstate		
••	Hydrogen racemate		Sandai wood, oil of		
-4	" Cartrate		Santoniu		
•4	Indium suiphate		Santonine		
•4	īoiide		Santonyi, Bromide		
.4	Iron suipnate		" Chloride		
-4	Lithium racemate		4 Iodide		
-4	-6 tartrate		Sapphire		
-4	Placinehioride		Sartorite		
	·lusiroxaiste				
	Recembte		Satureja, oil of		
	Selenate			13	
				-57	
	Hilcoftuor:de		Scheelite		
	iodium tartrate			2.	
	Suiphate		Scolezite		
	Tartrate		Seoroulte		
			Scovillite	116	
	m		Selenium	,	
•4	Dioxide		· Bromide	.72	
Butile	***************************************	. 45	" Chiornie	25	
			a Oxycinoride	30	
			d Dioxide	71	
			4 Suipmde	72	

PA	IGE.	PAGI
Sellaite		Silver. Phosphide
Semseyite	62	" Picrate 36
Senarmontite	49	" Potassium carbonate 19
Sequoia, oil of	267	" Propionate
Serpentine		" Pyrophosphate 11
Sesquiterpene		" Racemate
Sideronatrite		" Selenate
Silica		" Selenide
Silicofluorides		" Succinate
		Succinate 30
Silicoheptyl compounds 351,		Surpuste
Silicon		Bulphide
" Bromide	-	1 artrantimonite 36
" Chlorides		" Tartrate 36
" Chlorobromide		" Telluride 6
" Organic compounds of 351, 352,	353	" Tin alloys 154, 15
" Oxides	44	" Vanadate 19
" Pyrophosphate	119	Simonyite 8
Silver	13	Sipylite12
" Acetate		Sisserskite 15
" Aluminum alloys		Skutterudite
" Amalgam		Smaltite
44 Ammonio-chromate		Sodalite
Ammonio-curomase		Sodium
Ammonio-lei licy aniue		•
Attition10-selengte		Acetate
44 Ammonio-sulphate		Aldining Caroonate
" Antimonides	68	" selenate 10
" Arsenides	67	" silicates 134, 135, 13
" Benzoate	365	" " sulphate
" Bismuth glance	63	44 Ammonium arsenate 19
" Bromate		" phosphate 11
4 Bromide		" racemate
"Butyrate		" sulphate
" Caproate		" tartrate
" Caprylate		" Antimonites
Capi yiato		" Arsenates
Car counter		Arsenaves
O11101 & 00		DOTBUER 10
" Chloride		Diomave
" Chlorobromide		" Bromide
" Chlorobromiodide 37	, 38	" Calcium borates 10
" Chromates	103	" carbonate 12
" Cinnamate	365	" silicate 13
" Copper alloys	155	" sulphate
" iodide		" Carbonates 126, 12
" Cyanate		" Chlorate
" Cyanide		" Chloride
C <b>y 22.</b> 2.0		" Chromates 10
Dinim ohiienga		" Chromiodate
Ditilionate		Circuitouste
" Fluoride		C101600 0
"Gold alloys		" Derivative of 23
" " sulphide	64	" Copper sulphate
" Iodate	74	" Dithionate
" Iodide	34	" Ferrocyanide 1
" Iron ammonio-cyanide	143	" Ferroxalate 30
" Isovalerate		44 Fluoarsenate 12
" Lead iodide		"Fluophosphate
" Malate		" Fluoride
" Mercury iodide		" Formate
		romaco
7.101 BAC		Hydride
" Nitrophenates		Tydrogen ozasace
" Oxalate		aulphave
" Oxides		" Hydroxide
" Phosphate	115	"Hypophosphates 1

	PA	GE.	PAG	JE.
Sodium.	Iodate	74	Stearonitril 2	269
44	Iodide	34	Stephanite	
44	Iron sulphates	97	Sternbergite	
44	Magnesium sulphates		Stibiconite	71
**	Manganese phosphate		Stibioferrite 1	
44	Mercury chloride		Stibiohexargentite	
44	Metaphosphate		Stibiotriargentite	
	Metasilicate		Stibulte	
"			Stilbasoline	
**	Nitrate			
	Nitroprusside		Stilbene 1	
64	Oxide		Stilbite 1	
44	Phosphates	114	Stolsite 1	.06
44	Platinbromide	33	Strengite 1	15
**	Platinchloride	28	Stromeyerite	64
66	Platiniodide	37	Strontianite 1	27
44	Platinum sulphide		Strontium	3
44	Platoxalate		" Acetate 3	-
88	Potassium alloy	•	44 Aluminum silicates 1	
84	44 arsenate		Bromate	
14	carbonate		" Bromide	
**	Car overage		Dromide	
	huoshame		Cadmium chloride	
••	- racemate		Caroonste	
44	selenate		" Chlorate	
64	sulphate	89	" Chloride	23
66	" tartrate	362	" Chromate 1	103
44	" tungstate	106	44 Chromoxalate 3	361
44	Pyrophesphates 118,	119	" Copper formate 3	356
86	Rubidium tartrate		44 Dithionate	
44	Samarium molybdate		44 Feldspers 1	
44	Selenate		⁴⁴ Fluoride	
44				
**	Silicofluoride		FULLBACE	
	Sulphantimonate		Hydroxide	
44	Sulphate 76,		10010e	
44	Sulphite		Molybdate 1	
44	Sulphide	56	" Nitrate 1	111
44	Tartrate		« Oxide	41
84	Thallium racemate	363	44 Platinbromide	33
66	" tarirate	362	" Potassium chromoxalate	
44	Thiosulphate	74	44 Selenate	99
64	Thorium phosphates		" Silicofluoride	
66	Triacetate		suphate	
44	Tungstates			
66			18/U8/	
64	Uranium oxide		1 troograme	
	Uranyl acetate		- 11080800	
44	" monochloracetate		Struvite	
64	Vanadates	190	Strychnine	290
84	Zirconium phosphates		Styracin	267
64	" silicate	139	Styrolene	176
Sonoma	ite	96	Styrolyl ethyl oxide	
			Succinyl chloride	
	e		" Derivative of	3~
	• • • • • • • • • • • • • • • • • • • •		Sulphocarbanilide	
			Sulpho-ures	34.
	lege		Sulphur	
	romides		4 Bromide	
	blorid <del>es</del>		a Chloride	
Stannif	uorides	19	a Oxides	5
Stannoc	hlorid <b>es</b>	28	« Oxychloride	3
	ganic compounds 353.		Sulphuryl chioride	
			Sussexite	
	**************************************		Sylvanite.	
Ctoon III			Sylvactors	

PA	GE.	P	AGE.
Syngenite	89	Tetrachlorpropane	
Szaboite		Tetrachlortoluene	
Szaibelyite		Tetracosane	
Szmikite		Tetradecane	
	0.7	Tetradecyl alcohol	
T.		Tetradecylene	
		Tetradecylidene	
Tagilite		Tetradymite	
Tale		Tetrahydrotoluene	
Tallingite		Tetrahydroxylene	
Tannin	267	Tetraiod-methyl oxide	335
Tansy, oil of	263	Tetraiodoxysulphobenzid	347
Tantalite	125	Tetramercurammonium chloride	38
Tantalofluorides	19	" sulphate	97
Tantalum	8	Tetramethylallylene	168
" Aluminum alloy	146	Tetramethylammonium iodide	
" Pentoxide		" mercury iodide	
Tapalpite		Tetramethylaniline	
Tellurium		Tetramethylbenzene	
" Oxides 51,		Tetramethylbutane 159,	
Tennantite		Tetramethylethane	
Tephroite		Tetramethylethylene	
Terebangeline		Tetramethylpentane	
Terebene		Tetramylene	
" Acetate	264	Tetranitroethylene bromide	328
Terebenthene	180	Tetraphenylethane	176
" A cetate	264	Tetraterebenthene	185
" Hydrochlorate	304	Tetrethylallylalkin	290
Terpane		Tetrethylammonium iodide	
Terpene 180,		Tetrethyl citrate	
Terpilene		Tetrethylmonochlorbenzene	
6 Acetate		Thallium	
FUI IIIACO		" Aluminum selenate	
" Hydride		sulphate	
Terpilenol		" Amylate	
Terpinene		" Bromides	
Terpinol	263	" Carbonate	126
Terpinylene	181	" Chlorate	72
Tetrabromethane	321	" Chlorides	22
Tetrabromglycide	322	" Chromium selenate	101
Tetrabromhydrocamphene		" sulphate	
Tetrabromoxysulphobenzid		" Cobalt selenate	
Tetrabrompropane		" sulphate	
Tetrachloracetone		" Ethylate	
Tetrachloracetic anhydride		Ellylavo	
- · · · · · · · · · · · · · · · · · · ·		remocyanius	
Tetrachlorbenzene		nyurogen oxasave	
Tetrachlorbenzyl chloride		Hydrogen racemate	
Tetrachlorbenzylene dichloride		" tartrate	
Tetrachlorethane		" Iodide	35
Tetrachlor-ethyl acetate	307	" Iron sulphate	96
Tetrachlor-ethyl camphorate	313	" Lithium racemate	363
Tetrachlorethylene	291	" tartrate	362
Tetrachlor-ethyl oxide		" Nickel selenate	
Tetrachlor-ethyl sulphide		" Nitrate	
Tetrachlorglycide		" Oxalate	
Tetrachlor-methyl ethyl oxide		" Perchlorate	
Tetrachlor-methyl formate		r nospusves	
Tetrachlor-methyl mercaptan		r ici ave	
Tetrachlor-methyl oxide		ristinchioride	
Tetrachlornitrobenzene		" Potassium sulphide	
Tetrachloroxysulphobenzid		" Pyrophosphate	
Matarak lamantana		" Racemate	000
Tetrachlorpentane	300	Racemate	303

PAGE.	PAGE
Thailium. Selenate 98	Tin. Oxalate 361
" Sodium racemate 363	" Oxides 46
" tartrate 362	66 Phosphides 66
" Sulphate 79	" Potassium chlorides 28, 29
" Sulphide 57	" Pyrophosphate 119
" Tartrantimonite 363	" Selenides 65
" Tartrate	" Silver alloys 154
" Tellurate 102	44 Sulphides 58
" Vanadates	" Telluride
Thaumasite	" Zinc alloys
Thebaine 291	Titanofluorides
Thermonatrite	Titanium. Bromide
-	
Thialdin 345	" Carbide
Thiocarbonyl chloride	Cardide 70
Thiocyanacetone 346	Oniopide
Thionyl chloride	DIOXIGE 20
Thiophene341	
" Aldehyde 344	" Nitrocyanide 144
Thiotolene 342	" Pyrophosphate 119
Thioxene 342	Tolene 184
Thomsonite 187	Toluene 170
Thorite 133	Toluic aldehyde 261
Thorium 6	" nitril 280
" Metaphosphate 118	Toluidines 271, 272
" Oxalate 361	Toluyl chloride
" Oxide 48	Tolyl phenyl ketone 262
" Platinocyanide 144	Tolylpropyl aidehyde 261
" Potassium phosphates 116	Topas
" Selenate 100	Torbernite
V Silicates 133	Tourmaline
" Sodium phosphates 116	Tremolite
" Sulphate 88	Triacetin
" Sulphide 58	Triallylamine
Thrombolite	Triamylamine
	Triamylene
Thujs terpene	
Thujol	Triamylstibine
Thuringite 139	Tribromchloracetone
Thymene	Tribromethylene
Thyme, oil of 183	Tribromhydrin
Thymol 250	Tribromisobutane
Thymyl acetate 260	Tribrompropane
Tiemannite 65	Tributylamine 270
Tiglic aldehyde 235	Tributyrin 240
Tin 4	Trichloracenaphtene
" Aluminum alloys 146	Trichloracetal
" Amalgams 145, 146	Trichloracetic anhydride 292
" Ammonium chlorides 28, 29	Trichlor-acetic anhydride 308
" Antimonides 68, 149	Trichloracetic dimethylamide 315
" Arsenides 67	Trichloracetonitril
" Bismuth alloys 150	Trichloracetophenone 313
" Bromide 32	Trichloracetyl bromide 337
" Cadmium alloys 147	" chloride 292
" Calcium silicate	" cyanide 315
" Chlorides	Trichloramylene thiodichloride
" Chlorobromide	Trichlorbenzene
" Copper alloys 153, 154	Trichlorbensyl chloride
" Fluorides	Trichlorbenzylene dichloride 303
" Gold alloys	Trichlorbutyl acetate
" Iodide	Trichlordibromethane
" Iron alloys 152	Trichlordimethyl acetal
" Lead " 147, 148, 149	Trichlordinitrobenzene
" Description of 353 354	Trichlorethane 218

PAGE	· •	AGE.
Trichlor-ethyl acetate 30		
Trichlor-ethyl alcohol 30	Trinitrophenol	285
Trichlorethyl chloracetates 30	Triphenols	250
Trichlorhexane 30	Triphenylbenzene	
Trichlorhydrin 29	Triphenylphosphin	348
Trichlor-methyl amyl sulphite 34	oxide	349
Trichlormethylethyl acetal 31	Triphenyltrisulphophosphamide	350
Trichlornitrobenzene	Triphenylstibine	351
Trichlorpentane	Trinbullto	115
Trichlorpropane. 29	Triplite	
Trichlorpropylene 30	Triploidite	117
Trichlortoluene30	Triploidite	270
Trichlorvinyl ethyl oxide 30	Tristearin	240
Tricosane 16	Trisulphhydrin.	341
Tridecane 16	Trisulphhydrin	351
Tridecylene 16	Trivalerylene	168
Tridecylene 16 Tridymite 4		
Triethoxyacetonitril 28		60
Triethoxylpyrophosphorsulphobromide 35		
Triethylamine. 26	Tronilene	987
" Aurochloride	Tropilene	197
Triethyl amyl orthosilicate 35	2 Tungsten	101
Triethylarsine 35	" Aluminum alloy	
Triethylcarbinol 19	Oxides	
	O'Aldes	02
Triethyl diglycerin		
		09
Triethylin 23	m	
Triethylin 23 Triethylmethane 15	Turmerol	
Triethylmethane 15		
Triethylmonochlorbenzene30	" Hydrate	264
Triethylphosphin		96
	Turquoise	117
Triethylpropylphycite	Tyronte	123
Triethylsilicol 35		
Triethylstibine	Tysonite	18
Bromide 35		
" Chloride 35 Triglycerin tetrethylin 23: Triisobutylamine 27:		
Triglycerin tetrethylin 23	<b>v.</b>	
Triisobutylamine 27	Ulexite	***
Triisobutylene 166 Trimethylamiue 26	Ullmannite	
Trimethylamine 26	Climannite	
Trimethylbenzene 17	Undecane	161
Trimethylcarbinol 19	Uranium	11
Trimethylcarbinolamine 27	Arsenate	122
Trimethylcarbinol 19 Trimethylcarbinol 27 Trimethylcarbinolamine 27 Trimethylcarbyl. Bromide 31 " Chloride 29 " Lodide 33	Barium phosphate	110
" Chloride 29	Bismuth arsenate	
Touride		
" Nitrite 28		
Trimethylcarbylmethylcarbinol 19-	" Copper arsenate	122
Trimethyldiethylaniline 27	" phosphate	116
Trimethylene. Bromhydrin 32	Hydroxides	72
" Bromide 31	ithium acetate	358
" Chlorhydrin 310	" Nitrate	112
" Chloride 29	Oleate	364
" Glycol 22	"Oxalate	361
" Iodide 33-		52
Trimethylenediethylalkin 29	" Sodium acetate	358
Trimethylethylene 16		
" Oxide 22	: '	
Trimethyl ethyl orthosilicate 352	" Sulphate	
Trimethylin 239	Uranocircite	
Trimethylstibine 351		122

÷ · · :

Ware and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

.... . <u>-.</u>

	F2		
Zinc.	. Copper alloys	152	
**	Dithionate	75	
46	Fluoride	16	
"	Formate	356	
"	Hydroxide	70	
"	Hypophosphite	113	
**	Iodide	35	
"	Iron oxide	56	
66	Lead vanadates	120	
**	Magnesium sulphate	92	
66	Nitrate	110	
+4	Oxalate	360	
"	Oxide	41	
**	Oxysulphide	64	
"	Palladiochloride	28	
**	Phosphate	115	
**	Pho-phide	66	
**	Platinbromide	33	
**	Platiniodide	37	
44	Potassium chloride	27	
66	" selenate	100	
**	" sulphate	90	
"	Pyroarsenate	123	
**	Pyrophosphate	119	
**	Selenate	98	
44	Selenide	65	
44	Silicates	132	

PAGE
nc.Silicofluoride 18
" Sulphate 80, 96
" Sulphide 57
" Telluride 66
" Tin alloy 147
" Titanate 142
" Zircofluoride 19
ncaluminite97
nc amyl 355
nc ethyl 355
ncite41
nc methyl 355
ne propyl 855
nkenite 62
rcofluorides 19
reon
reonium4
" Oxide 46
" Potassium phosphates 116
" " silicate 139
" Pyrophosphate 119
" Silicate
" Sodium phosphates 116
" " silicate 139
isite 187

.

		·		
	•			
			•	
	•		<u>.</u>	
			•	
	•			

	·			
-	•	:		
	·			
	·	·		
			,	

## SMITHSONIAN MISCELLANEOUS COLLECTIONS.

----- 658 -----

# INDEX

TO THE

# LITERATURE

OF THE

# SPECTROSCOPE.

ALFRED TUCKERMAN, Ph. D.



WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND STEREOTYPED BY JUDD & DETWEILER

AT WASHINGTON, D. C.

### ADVERTISEMENT.

With the rapid accumulation of scientific memoirs and discussions, published from year to year in numerous journals and society proceedings, a constantly larger expenditure of time and labor is required by both the investigator and the student, to learn the sources of information and the condition of discovery in any given field. Hence is felt the growing need of classified indexes to the work done in the various fields of research, and hence the corresponding tendency of the age to supply such demand.

The present work aims at a general survey of Spectroscopic Literature, with references to authorities in its more special subdivisions, and it has been prepared for the Institution by Mr. Tuckerman, without other remuneration than the expectation of serving the interests of scientific inquirers.

It has been brought down to the middle of the year 1887.

S. P. LANGLEY, Secretary Smithsonian Institution.

WASHINGTON, February, 1888.

	-		
		-	

### PREFACE.

This work is intended to be a list of all the books and smaller treatises, especially contributions to scientific periodicals, on the spectroscope and spectrum analysis from the beginning of our knowledge upon the subject until July, 1887; an Index or Bibliography of the Spectroscope and Spectrum Analysis.

It was begun at the suggestion of Dr. Wolcott Gibbs, whose work in connection with the subject is well known.

The object is to enable a chemist to find out at a glance all that has been published in any branch of his subject where the spectroscope is used, and what every writer has published.

The method pursued has been as follows: 1, to examine the bibliographies, booksellers' catalogues, and books on spectrum analysis for books; 2, to examine the scientific periodicals for the shorter treatises, the first and original contributions to the subject, and this was done volume by volume wherever there was no index to a series of years—as in the Comptes Rendus and the later volumes of the Annales de Chemie et de Physique and of (Poggendorff's, now Wiedemann's) Annalen der Physik und Chemie, as well as others. Use was made of the bibliography at the end of Roscoe's Spectrum Analysis, and in the reports of the British Association for 1881 and 1884, for such books and articles as the author could not find elsewhere. Credit is also due to the Astor Library and its managers for the means it afforded the author of making this Index.

After the greater part of the material was collected it was divided into such subjects as the titles indicated, in alphabetical order, easy finding being constantly kept in view. Titles have often been repeated more than once so as to make sure of their being found. Finally, at the suggestion of the Smithsonian Institution, the List of Authors was added.

The author hopes that his two objects, fullness and ready access of all the titles, will prove to have been gained.

New York, 1887.

··		

# TABLE OF CONTENTS.

	Pages.	1	Pages.
History	1-8	Astronomical—Continued.	••
Books	8-10	Heat in the solar spectrum.	112-118
Apparatus	11-89	Hydrogen in the solar spec-	
Analysis in general	40-49	trum	118
Qualitative Analysis	49	Intensity of the solar spec-	
Quantitative Analysis	49-51	trum	118
Absorption Spectra	<b>52–60</b>	Iron lines in the solar spec-	
Alkalies and Alkaloids	61	trum	114
Aluminium	62-63	Magnesium in the solar spec-	
Antimony	64	trum	114
Arsenic	65	Maps of the solar spectrum_	114-115
Astronomical, in general	66-70	Oscillation-frequencies	115
Comets in general.	70-71	Oxygen in the solar spec-	
Comets in particular	71-79	trum	115
Displacement of stellar spec-		Photography of	115-117
tra	79-80	Pressure	117-118
Fixed Stars	80-82	Protuberances	
Measurements	82	Radiation	122-123
Meteors	83	Red end	128-124
Nebulæ	84-85	Rotation	124
Photography	85-86	Storms and cyclones on the	
Pianets	86-88	Sun	124
Solar spectrum in general	88-99	Sun-spots	125-129
Solar absorption	99-100	Telluric Rays	129
Solar atmosphere	100-101	Ultra-Violet	129-130
B lines in the solar spec-		Water in the solar spectrum_	131
trum	101	Wave-lengths	131-132
Bright lines in the solar		White lines	132
spectrum	101-102	Twinkling of stars	132
Chemical effects of solar		Atmospheric and Telluric Spec-	
spectrum	102	tra	133-135
Chromosphere and corona	102-105	Aurora and the Zodiacal Light.	136-142
D lines in the solar spec-		Austrium	143
trum	105	Barium	143-144
Dark lines in the solar spec-		Beryllium or Glucinum	144
trum	105-106	Bismuth	145
Displacement of the solar	1	Blue Grotto	145
spectrum	106	Borax	145-146
Eclipses of the Sun	106-111	Bromine	147-148
Elements in the Sun	111	Cadmium	149
Solar eruptions	111-112	Cæsium	150
Gas spectra in the Sun	112	Calcium	151-152
-	•	(vii)	

### TABLE OF CONTENTS.

	Pages.		Pages.
	153-154	Carbon Compounds—Continued.	
Carbon Compounds, general	154-160	Special:	
Special:		Curcumin	169
Acede Acid	160	Cyanogen	169-170
Acetylene	160-161	Cymene	170
Acid Brown	161	Decay	170
Agarythrine	161	Diamond	170
Albumen	161	Diazo	170
Alcohol	161	Diphenyl	170
Alizarine	161-162	Dipyridene	170
Alkanna	162	Drossera Whittakeri	170
Allyldipropylcarbinol	162	Ebonite	171
Alum	162	Eosin	171
Amido-azo-a-naphthalene	162	Ether Vapour	
Amido-azo-3-naphthalene	162	Excrements	
Aniline	162-163	Fast Red	171
Anthracen	163	Fish	171
Anthrapurpurin	163	Flour and Grain	172
Anthrarufin	163	Flowers	
Aphides	163	Fuchsin	172
Aurin.	164	Fungi	172
An Australian Lake	164	Gall	173
Azo-Colors	164	Gelatine	
Beets	164	Gun-Cotton	173
Benzene	164	H S O, etc	173
Biebrich Scarlet	164	Helianthin	173
Bile	16 <b>4</b> –165		173-174
Birds	165	Hemoglobine	
Bismarck Brown	165	Hoffmann's Violet	174
Blood	165-167	Hydrocarbons	174-175
Bonellia Viridis.	167	Hydrobilirubin	175
Brucine	167	Hydrochinon	175
Butter	167	Hydroxyanthraquinone	175
Carbohydrates	167	Indigo	176
Carmine	167	Iodine Green	
Caryophyllaceæ	167	Lamp Black	176
Chinizarin	168	Leaves	176
Chinolin	168	Luteïne	
Chinon	168	Mesacon	
Chotelin	168	Metaxylene	177
Chromogene	168	Methylene Blue	177
Chrysoidine	168	Methacryl	177
Citracon	168	Methāmoglobin	177
Coal	168	Morindon	177
Coleïn	168	Morphine	177
Croceine Scarlet	169	Naphthalene	177-178
Croton Acid	169	Oils	178
Crystalloids	169	Ortho-Toluidine	179
Cumena	160	Ortho- Vylene	1-0

### TABLE OF CONTENTS.

	Pages.	1	Pages.
Carbon Compounds—Continued.		Didymium	209-210
Special:		Diffraction	211
Carbonic Acid	179-180	Discontinuous Spectra	212
Paratoluidine	181	Dispersion Spectra	212-216
Paraxyline	181	Dissociation	216
Pentacrinus	181	Distribution	217
Phenols	181	Double Spectra	217
Picolene	181	Dysprosium	218
Piperidine	181	Electric Spectra	218-220
Plants	181	Emission Spectra	226
Purpurin	181-182	Energy in the Spectrum	227
Pyridine	182	Erbium	228-229
Quinoline	182	Exchanges	230
Raspberry	182	Explosions	280
Rosaniline	182	Flame and Gas Spectra	281-240
Ruberine	182	Fluorescence	241-245
Safranin	183	Fluorine	246
Carbonate of Soda	183	Gadolinite	247
Spongilla Fluviatilis	183	Gallium	248
Sulphide of Carbon	183	Germanium	248
Terebinthine	· 183	Glass	249
Terpenes	184	Gold	250
Tetrahydroquinoline	184	Heat Spectra	251-254
Tourmeline	184	Helium	255
Triphenylmenthane	184	High Altitudes	255
Tropæolin	184	Holmium	256
Tropæolin 0 0 0	184	Homologous Spectra	256
Turpentine	184	Hydrogen	257-260
Ultramarine	184	Indigo	261
Urine	185	Indium	261
Wine	185	Interference	262
Wood	185	Inversion	263-264
Xantophyll	186	Iodine	265-267
Cerium	186	Iridium	267
Chlorine	187	Iron	268-269
Chlorine Compounds	187-191	Jargonium	270
Chlorophyll	192-194	Lanthanum	270
Chromium	195	Lead	271
Cobalt	196	Light	272-278
Colour	197-199	Lightning. (See Electricity.)	
Cone Spectrum	199	Limits of the Spectrum	278
Constants	200	Lines of the Spectrum	274-275
Copper	201-202	Liquids	276-278
Crystals	203	Lithium	279-280
D Line	204	Longitudinal Rays	281
Dark Lines	205-206	Luminous Spectra	281
Davyum	206	Magnesium	282-284
Decipium	207	Manganese	285-286
Density	207-208	Maps	287-288

Means of the control of the state of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o		Pages.		Pages
Merecorological Spectra Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemium Selemi	Mirroury	::19	Samuratite	:223
Eneral Waters 237 Silicium 324 Selium 327 Silicium 324 Selium 327 Silicium 324 Selium 327 Silicium 327 Silicium 327 Silicium 327 Selium 327 Selium 327 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 328 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Selium 338 Sel				331
Entered Waters 257 Silicium 257 Silicium 257 Silicium 257 Silicium 257 Silicium 257 Sodium 257 Sodium 257 Sodium 257 Sodium 258 Strontium 258 Strontium 258 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 259 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250 Strontium 250	Meteorological	35	Secondary Spectrum	231
Moististenum  Moittipie Spectra  Mosandrum  Muttipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipie Spectra  Moittipi		256	: Jedemium	3.7
Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosandirum  Mosand	Mineral Waters	257	Silicium	353
Messandirum Multipia Spectra Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi Matesi M	Enium	:297	Silver	374 37
Mattiple Spectra 299 February 341 Activities Spectra 345 February 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 346 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities 347 Activities	Moigistemum	299	Sodium	37-57
Notion 295 Tellurium 246 Notion 295 Terbium 246 Notion 295 Terbium 246 Notion 295 Terbium 246 Notion 295 Terbium 246 Notion 296 Tin 346 Notion 297 Tin 346 Notion 297 Tin 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 346 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 347 Notion 297 Tellurium 3	Townsia	298	Strontiun	340
Notion 295 Terbium 245 Nomenciature 305 304 Thailium 344 Nomenciature 305 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 307 Thuilium 344 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Optics 347 Opt	Multiple Ipecura	. W. W.	Sulphur	241-242
Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomenciature Nomen	Minted	·MIR	Teilurium	348
Nomenciature  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries  Supries	Kottium	295	Tarbium	349
Optics 366 Ein 346 Optics 367 Eitenium 346 Optics 367 Eitenium 346 Optics 367 Eitenium 346 Optics 366 III Venedium 346 Optics 366 III Venedium 347 Optics 366 III Venedium 347 Optics 367 III Venedium 348 Optics 368 III Venedium 348 Optics 358 III Venedium 351 III Venedium 351 III Venedium 351 III Venedium 351 III Venedium 352 III Venedium 356 III Venedium 357 III Venedium 357 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III Venedium 358 III III III III III III III III III I	Kungar	NO MA	Thailium	341
Osmium 367 Eitanium 344 Osayen 268-210 Uranium 344 Paladium 311 Vansdium 345 Paladium 311 Vansdium 345 Paragenic Spectra 311 Violet and Ultra-Violet 346-25 Philippium 311 Voletmose 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phosphoras 351-36 Phos	Tomendature	到后。	Thuium	345
Demium 34 Design M6-111 Uranium 34 Paladium 311 Vanadium 34 Paragenic Spectra 311 Violet and Ultra-Violet 348-35 Philippium 311 Volcanoes 35 Phosphoresence 311-314 Water Spectra 351-35 Phosphorus 311-314 Wave-Length 352-35 Phianium 317-314 Wave-Length 352-35 Phianium 317-314 Wave-Length 352-35 Phianium 317-321 Virgin 35 Phianized Light 318 Phianized Light 318 Phianized Light 319 Phianized Light 319 Phianized Light 319 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianized Light 319 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phianium 35 Phia	Optics	300	Tin	345
Paladium 311 Vanadium 345 Paragenic Spectra 311 Violet and Citra-Violet 346-25 Philippium 311 Violet and Citra-Violet 346-25 Phosphorasence 311-314 Water Spectra 351-36 Phosphoras 311-314 Water Spectra 351-36 Phosphoras 311-314 Water Spectra 351-36 Phiarized Light 318 Yuterhum 36 Phiarized Light 318 Yuterhum 36 Phiarized Light 319 Yuterhum 36 Phiarized Light 319 Yuterhum 36 Phiarized Light 319 Yuterhum 36 Phiarized Light 319 Yuterhum 36 Phiarized Light 319 Yuterhum 36 Rediation 321 Zirramium 36 Rediation 322 Zirramium 36 Refraction 323-326 Lost of Authors 36 Rhaddum 325 Rahidium 327 Rahidium 327 Rathenium 328 Sumber of titles 1-329 Salt (Common 328 Sumber of titles 1-329		307	Etanium	346
Paragenic Specia. 311 Wider and Citra-Wioles. 348-35 Philippium. 311 Wolcanoes. 35 Phosphorescence 321-314 Water Specia. 351-35 Phosphorus 311-314 Wave-Lengths. 352-35 Phianium 317-314 Wave-Lengths. 352-35 Phianium 317-314 Wave-Lengths. 352-35 Phianium 317-324 Yurium 35 Phiasium 319-324 Yurium 35 Phiasium 327-325 Phiasium 327-326 Radiation 327-326 Radiation 328 Radiation 328 Rahadaphane 328 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Rahadaphane 329 Raha	Davigen	MA-IM	Cranium	343
Philippium 3II Volcanos 35 Phosphorascence 122-114 Water Spectra 351-36 Phosphoras 131-114 Water Spectra 351-36 Phosphoras 131-114 Water Spectra 352-35 Phitinum 3II Yellow Bodies 35 Phitipium 36 Phitipium 36 Phitipium 36 Phitipium 36 Reditation 121 Zirromium 36 Red End of the Spectrum 122 Refraction 123-126 Lost of Authors 136 Rhaddophane 125 Rhaddom 126 Rhaddom 127 Rahidium 128 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 129 Rathenium 12	Paladium	MI	Vanadium	:145
Finispium 311 Voicences 351 Finespiorus 311-314 Water Spectra 351-352 Finispiorus 311-314 Water Spectra 351-352 Finispiorus 311-314 Water Spectra 351-352 Finispiorus 311-314 Water Spectra 351-352 Finispiorus 311-314 Water Spectra 351-352 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315 Finispiorus 315	Pangenic Spectra	H	Winfer and Ultra-Vinier	345-35
Phosphoresence Phosphorus Phosphorus Phosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosphorus Phiosp		311	Wairannes	350
Finespinorus 31.1—31d Wayes—Lengths 352–35 Fintinum 31.7—31d Wayes—Lengths 352–35 Fintinum 31.7—31d Wayes—Lengths 352–35 Fintinum 31.7—31d Wayes—Lengths 352–35 Fintinum 31.7—31d Viterinum 35 Fintinum 32.7—32.7 Fintinum 32.7—32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32.7 Fintinum 32	Phosphorescence	122-114	Water Specim	351-36
Fintinum  Fintinum  Fintinum  Substitut  Fintinum  Substitut  Fintinum  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Substitut  Subst				
Pressure 320 Zine 36 Rediction 321 Zimemium 36 Red End of the Spectrum 322 Refraction 323 Lost of Authors 36 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 Rhabbophane 323 R	=			
Freesare 320 Zine 36 Radiation 121 Zirronium 36 Rad End of the Spectrum 122 Refraction 123-126 Lost of Authors 16 Rhaddophane 125 Rhadium 125 Rahidium 127 Rahidium 127 Rathenium 128 Salt (Common 128 Sumber of titles 1.529	Principal Light	318	Tuerium	35
Rediction 121 Zirronium 36  Red End of the Spectrum 122  Refraction 123-126 Lost of Authors 16  Rhadium 125 on which the actes of their works or given. 125  Rathenium 125  Sait (Common 128 Number of titles 1.529	Pomeino	219-220	Turium	359
Red End of the Spectrum.  Refraction 223-128 Lost of Authors 36 Rhaddophane 328 With the pages of the preceding Index Rhaddom 328 on which the niles of their works or Rahddom 327 Rathenium 327 Sait (Common 328 Number of titles 1.329	Presenter	320	Zinc	360
Refraction 223–228 Lose of Authors 36  Rhaddophane 325 With the pages of the preceding Index Rhaddom 225 on which the titles of their works or Rathenium 227  Sait (Common 328 Number of titles 1.529	Redintim	121	Zimonium	367
Refraction 223-126 Lost of Authors 36  Rhaddophane 328 With the pages of the preceding Index  Rhaddom 329 on which the noise of their works or  Rahidium 327  Rathenium 328  Suit (Common 328  Sumber of titles 1.329	Red End of the Spectrum.	1414)		
Rhabdopinne 128 With the pages of the preceding Index Rhodium 128 on which the titles of their works or Rabidium 227 given.  Rathenium 328 Number of titles 1.329	Refraction	:23-126	LOST ОВ АПТИОВЯ	367
Rhodium 125 on which the tides of their works or Rabidium 227 given.  Rathenium 327 Suit (Common 125)  Suit (Common 125)	Rhabdopinne	326	With the pages of the precedi-	ng Lades
Buthenium 327 Number of titles 1.229	Rhodium	. <u>125</u> 4		•
Ruthenium 325 Number 17 zies 1.229	Bahidium	127	given.	
Lifeto ( Cristiania de Company)	Ruthenium	327	, <del>T</del>	
' - 1 - · · · · · · · · · · · · · · · · ·	Salt (Common	128	Number of sides	1.323
	•	329	Number of numbers	739

### LITERATURE OF THE SPECTROSCOPE.

### HISTORY.

Arago (Domenique François Jean), 1786-1853. Œuvres complètes. avec Tables, publiées d'après son ordre sous la direction de J. A. Barral. Paris et Leipzig, 1854-'62, 17 vols., ill., 8°. (Interesting here only in connection with polarized light.) Barlocci. (Wrote on the influence of white light.) Beccaria, 1716-81. (Wrote on the refraction of rock crystal, about 1750; see Ency. Brit., eighth edition I, 758.) Becker (G. F.). Contribution to the History of Spectrum Analysis. Amer. Jour. Sci., (3) 16, 892. Bérard. Mem. de la Soc. d'Arcueil, 3 (1817); and Biot's Traité de Physique, 4, 600-18, 673-4. (A full account of Bérard's experiments on the calorific rays of the spectrum.) Berthold (G.). Zur Geschichte der Fluorescenz. Ann. Phys., u. Chem., 158, 623. Biot (J. B.). Traité de Physique expérimentale et mathématique. Paris, 1816, 4 vols., 8°. - - Mémoire sur les Lois générales de la double Réfraction et de la Polarization dans les Corps cristallisés. Paris, 1819, 4°. — — . Mémoire sur la Polarization circulaire. Paris, 1832, 4° - - Mémoire sur la Polarization lamellaire. Paris, 1842, 4°. Blair (Dr. Robert), 1787-1829. Edinburgh Transactions, III, 3. (He discovered the uses of muriatic acid mixed with antimony in cor-

recting secondary spectra in telescopes.)

(1 T)

Boscovich (Roger Joseph). Opuscula. Bassano, 1784, 5 vols., 4°. Opera pertinentia ad Opticam et Astronomiam (Astor Library).

Ency. Brit., eighth edition, I, 721-2, 758.

(He made a delicate micrometer with double refraction, about 1777, and observed the so-called Secondary Spectrum, consisting of purple and green light.)

Bouguer (Pierre), 1698-1758. Essai d'Optique, sur la Gradation de la Lumière. Paris, 1729, 8°; ed. La Caille, Paris, 1760, 4°.

Ency. Brit., eighth edition, I, 753-4. (He published a number of treatises on the gradation of light.)

Brewster (Sir David), 1781-1868. Treatise on Optics. Edinburgh, 1831.

New Analysis of Solar Light, indicating three primary colours, forming coincident spectra of equal length. Edinburgh, 1834.

(See Life of B. by Mrs. Gordon.)

Buffon.

In his "Epoques de la Nature" he describes light and heat as known in his times.)

Delaunay. Notice sur la Constitution de l'Universe. Première Partie: Analyse Spectrale, Annuaire du Bureau des Longitudes, 1869, Paris, 8°.

(A masterly treatise on the subject at that time.)

- Desains (P.), Recherches expérimentales sur les anneaux colorés de Newton. Comptes Rendus, 78, 219-21; Phil. Mag. (4) 47, 236-7.
- Dolland (John), 1706-61. See Proc. Royal Soc., 50 (1757) 733, and Ency. Brit., eighth edition, I, 749-51.

(He discovered that dispersion depends not on the mean refraction but on the constitution of the disphanous medium.)

- Draper (Henry). Obituary by G. F. Barker in Amer. Jour. Sci. (3) 25, 89.
- Draper (J. W.). Early Contributions to Spectrum Photography. Nature, 10, 243-4.
- Dutirou (l'abbé). Memoire sur la détermination des indices de réfraction des sept raies de Fraunhofer dans une série nombreuse de verres.

Annales de Chimie et de Physique, (3) 28 (1850) 176.

Exner (K.). Die Fraunhofer 'schen Ringe, die Quetelet 'schen Streifen und verwandte Erscheinungen.

Sitzungsber. de. Wiener Akad. 76, II, 522.



Gerding (Th.). Geschichte der Chemie. Leipzig, 1867, 8°.

Herschel (A. S.). Progress of Spectrum Analysis. Chem. News, 19, 157; Jour. Franklin Inst., 88, 49, 136.

_ — —. Progress of Meteor Spectroscopy. Nature, 24, 507-8.

Herschel (Sir John Frederick William), 1792-1871. On the Absorption of Light by coloured Media, and on the Colours of the prismatic Spectrum exhibited by certain Flames; with an Account of a ready Mode of determining the absolute dispersive Power of any Medium, by direct experiment. Edinburgh Trans., 9 (1823), 445.

- Herschel (Sir John Frederick William). Homogeneous yellow and orange Spaces in the Spectrum. Phil. Trans., **90** (1800), 255.

- Hoppe-Seyler (F.). Die Spectralanalyse. Ein Vortrag. Berlin, 1869, 8°.
- Hunt (T. Sterry). Chemistry of the heavenly Bodies since the Time of Newton. Proc. Cambridge Philosoph. Soc., 4, 129-139; Amer. Jour. Sci., (3) 23, 123-138; Ann. Chim. et Phys., (5) 28, 105.
- Huyghens (Christian), 1629-95. Opera Varia, Leyden, 1724, 2 vols., 4°. Opera reliqua, Amsterdam, 1728, 2 vols., 4°.
- Jahresbericht der Chemie (Liebig's), Jahre 1863, 113; 1866, 78.
- Johnson (A.). On Newton, Wollaston, and Fraunhofer's Lines. Nature, 26, 572; Beiblätter, 7, 65 (Abs.).
- Kirchhoff (G.). Geschichtliches über Spectralanalyse. Ann. Physik u. Chemie, 118, 94, 102; Phil. Mag., (4) 25, 250.
- Kopp (H.). Entwickelung der Chemie in der neueren Zeit. München, 1871-3, 8°.
- Ladd (William). On the Results of Spectrum Analysis as applied to the heavenly bodies. A Lecture delivered before the British Association at the Nottingham Meeting, August 24, 1866. London, 1866, 8°, with photographs of the stellar spectra.

  Chem. News, 14, 173, 199, 209, 235.
- Lamansky (S.). Geschichtliches über das Wärmespectrum der Sonne. Ann. Phys. u. Chem., 146, 200, 207, 209.

- Lambert (Johann Heinrich), 1728-77. Photometria. Augsburg, 1760, 8°.
- Liveing (G. D.) and Dewar (J.). Note on the History of the Carbon Spectrum. Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 338.
- Lloyd (Prof.). Report on Physical Optics. Fourth Rept. British Assoc., 1834, pp. 295-414.
- Malus (E. L.), Paris, 1775–1812. Théorie de la double Réfraction de la Lumière dans les Substances cristallisés, Paris, 1810, 4°. (See Ency. Brit., 8th ed., I, 754, for an account of him.)
- Marie (L'abbé). Nouvelle découverte sur la lumière, pour en mesurer et compter les degrés. Paris, 1700, 8°.

  (Gave the first ideas about photometry.)
- Maskelyne. Account of a new Instrument for measuring small Angles, called the Prismatic Micrometer. Phil. Trans., 47 (1777), 799.
- Mayer (A. M.). The History of Young's Discovery of his Theory of Colour. Phil. Mag., (5) 1, 111-127.
- Meldola (R.). Contributions to the chemical History of the aromatic Derivatives of Methane. Jour. Chem. Soc., 41, 187-201.
- Melloni (Macédoine). See Annales de Chimie et de Physique, **53** (1833), 5-72; do., **48**, 198, Recherches sur plusieurs phénomènes entreprises au moyen du thermomultiplicateur; do., **48**, 385; do., **55**, 337; do., **60**, 402, 410-18; do., **61**, 411; do., **65**, 5; do., **68**, 107; do., **70**, 435; do., **72**, 40, 334; do., **74**, 18, 331; do., **75**, 337.

(Melloni was famous chiefly for his thermomultiplier.)

- Miller (William Allen). Recent Spectrum Discoveries, 1863. Jour. Franklin Inst., 76, 29; Chem. News, 1863.
- Morichini (Domenico Pino), 1773-1830. Sopra la forza magnetizzatrice del lembo estremo del colore violetto. Milano, 1802.

  (A collection of his works was published by Pirotta of Milan in 1836.)
- Mousson (A.). Resumé de nos connaissances actuelles sur le spectre. Archives de Genève (1861).
- Newton (Sir Isaac). Collected Works. Optics, Chap. II, sections 1-3; vol. 3 of Latin edition, London, 1779-85, 5 vols., 4°.
- Nobili, worked with Melloni, above.

- Poggendorff (J.C.). Handwirterbuch der exacten Wintenschaften. Leipzig, 1858-63, 2 w.ls., lex. 82.
- Powell (Rev. Boden). Report on Radiant Heat. Beitish Association Repts., 1, 2%.
- Researches towards establishing a Theory of the Dispersion of Light. (1835) 549, (1837, 288, 1839) 1.
- Priestley (Dr. Joseph . An Account of all the prismatic Collines, made by electrical Explosions on the Surface of Pieces of Metal. Phil. Trans., 58 (1762), 62.
- Ritter.
- In 1997 he exposed murious of silver in various parts of the spectrum and found that the action was least of all in the red, greater in the yellow, and greatest beyond the visible visite rays. Furbes, in Ency-Brin, 9 ed., 16, 504.
- Robison (John). A System of mechanical Philosophy, with motes by David Brewster. London, 1822, 4 vols., 8°. See chapter on the telescope, III, 493–522.
- Rood O. N.). Newton's Use of the Term Indigo with Reference to a Color of the Spectrum. Amer. Jour. Sci., 3: 19, 135-7; Beiblister, 4, 460 Aba.
- Rowland H. A., On recent Progress in photographing the solar Spectrum. Rept. British Assoc. 1884, 685.
- Radberg Fr.: Dispersion de la lumière. Ann. de Chimie et de Physique, 36, 439.
- Sur la réfraction des rayons différentment colorés dans des cristaux à un ou deux axes optiques. Ann. de Chimie et de Paysique, 48, 225.
- Ruprecht (Rudolph). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Rutherfurd (L. M.). Construction of the Spectroscope. Amer. Jour. Sci., (3) 39, (1869), 129. Note by Disscheiner in Strungsber. d. Wiener Akad., 52 II, 542, 563-8.
- Schwerd F. M.). Die Beugungserscheinungen aus dem Fundamentalgesetz der Undulationstheorie analytisch entwickelt und in Bildern dargestellt. Mannheim, 1835, 8°.
- Secchi (A.). Le Soleil. Exporé des principales Découvertes modernes sur la Structure de cet Astre. Paris, Gauthier-Villars, 1870. See Nature, 13, 188.)

- Seebeck (T. J.). Berlin, 1770-1831.
  - Abhandlungen der Berliner Akad., 1818–19, 306; Edinburgh Jour. Sci., 1 (1824), 358.
- Stewart (B.). Some Points in the History of Spectrum Analysis. Nature, 21, 35.
- Stieren (E.). Die ersten Beobachtungen über Spectralanalyse veröffentlichte Alter, Ann. Phys. u. Chem., 132, 469.
- Stokes (G. G.). Early History of Spectrum Analysis. Nature, 13, 188-9.

- Swan (W.). On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen. Edinburgh Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.
- Tarry (H.). Report on the Researches and Experiments made by the Spectroscopic Association of Italy. (From Les Mondes of March 21, 1872.) Chem. News, 25 (1872), 179.
- Thalén (Robert). Om Spektralanalys, med en Spektralkarte. Upsala Universitets Aarpkrift. Upsala, 1866, 8°.
- Wollaston (Dr.), 1766-1828. A Method of examining refractive and dispersive powers by prismatic Reflection. Phil. Trans. (1802), 365-380.
  - (His own account of his discovery of five fixed lines of the solar spectrum, which he said he could not explain.)
- Wünsch (Christian Ernst), 1730-1810. Untersuchungen über die verschiedenen Farben des Lichtes. Leipzig, 1792, 8°, with plates.
- Wurtz (A.). Histoire des Doctrines chimiques depuis Lavoisier jusqu'à nos jours. Paris, 1869, 8°.

Young (Dr. Thomas). Elements of Natural Philosophy, Vol. 1, 786, plate 29.

(Gives a small colored drawing of the spectrum as seen by Dr. Wollaston and himself, with the yellow line.)

Life by Dr. G. Peacock, London, 1855, 8°.

Zantedeschi. Ricerche sulla Luce, Venezia, 1846, 8°; Chap. III. (See Edinburgh Jour. Sci., n. s., 5 (1830), 76, repeating experiments of Barlocci and similar to those of Morichini.)

### BOOKS.

- Agnello (A.). Eclisse totale del 22 dic. 1870. Palermo, 1870.
- Angström (A. J.). Recherches sur le Spectre normal du Soleil. Upsala, W. Schultz, 1868. Avec Atlas et 6 planches.
- Becquerel (Edm.). La Lumière, ses Causes et ses Effets. 2 vols., 8°, Paris, 1867–1868, 16 fr.
- Blaserna (P.). Sulla polarizzazione della Corona solare. Palermo, 1871, 8°.
- Capron (J. R.). Photographed Spectra. 136 photographs of spectra. London, Spon, 1877, 8°.

  (See review of, in Chem. News, 37 (1878), 118.)
- Champion (P.), Pellet (H.), et Grenier. De la Spectrométrie, Spectromètre. Paris, 1873, 8°.
- Draper (Henry). On diffraction Spectrum Photography. New Haven, 1873, 8°.
- Grandeau (L. N.). Instruction pratique sur l'analyse spectrale. Paris, 1863, 8°, 3 fr.
- Hirn (G. A.). Flamme en combustion et Température du Soleil. Paris, 1873, 8°.
- Hoppe-Seyler (F.). Handbuch der physiologisch-chemischen Analyse. 3. Auflage, Berlin, 1870, 8°.

- Hough (G. W.). The total Solar Eclipse of Aug. 7, 1869. Albany, N. Y., J. Munsell, 1870, 8°.
- Kirchhoff (G.). The Solar Spectrum and Spectra of the Chemical Elements. London, Macmillan, 1861-2, with plates.
  - (Translations of the original communications to the Academy of Sciences of Berlin.)
- Lecoq de Boisbaudran (F.). Spectres Lumineux. Paris, 1874, 8°, avec
- Lielegg (A.). Die Spectralanalyse. Weimar, Voigt, 1867.
- Lockyer (J. N.). The Spectroscope and its Applications. London, Macmillan, 1873, 8°.
- Lommel (E.). The Nature of Light. New York, Appleton, 1876, 8°.
- Lorscheid (J.). Die Spectralanalyse. Münster, 1870, 8°.
- Mac Munn (C. A.). The Spectroscope. London, Churchill, 1880.
- Proctor (R. A.). The Spectroscope. London, 1877, 8°.
- Radau (R.). Le Spectre solaire. Paris, 1862, 18°.
- Respighi (L.). Osservazioni spettroscopiche del Bordo e della Protuberanze Solari. Roma, 1871, 8° (with a plate).
- Rood (O. N.). Modern Chromatics, with 130 illustrations. New York, Appleton, 1879.
- Roscoe (H. E.). Spectrum Analysis. London, Macmillan, Fourth Edition, 1886, 8°.
  - (With a short bibliography of the principal works relating to the spectroscope. One of the best text-books, if not the best, on the subject.)
- Ruprecht (R.). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Sands (B. F.) and others. United States Naval Observatory Reports on the total Eclipse of the Sun, Aug. 7, 1869. Government Printing Office, Washington, D. C., 1869.
- Schellen (H.). Die Spectralanalyse. 2 Auflage, Braunschweig, 1871, 8°. (Translated by J. and C. Lassell, London, 1872; reviewed by Roscoe in Nature, 1, 503, and by others in Chem. News, 22, 284; 25, 80.)

- Soon ic., tille utime somethe spettresonicine mi Sie: Hamm. Type istle Istle arri. 1969:
- eur a trineture ie et latre. Fixis Gauthier Villars. 1870, 4º.

  Lo. innelister into German, Benanniouser, Vessermenn, 1872, 4º.
- Simuler A. Ca., Bettrige are homission kindyse invein spectralinetectuages. Thus ISL E.
- Smorts C. Francis, Marieira Spectroscopies, Edinoureira, V. 1996. K. Spectroscopies inservations under un Marieira.
- from Mr., In Licht im Diennie feir vinneneinntlieben Frankrung. Leggig MT. 20.
- tistion 1919. Multi-matteri and physical Papers, regimed from the seignest coursels and Transactions, with miditional Notes by the Author. Combridge University Press, 1860–1863, I miss. 19
- Tiston R., On beinvelstalien enjosé med en institutione. Upasia. Universitese Ambrit. 1888, F.
- Vstentin G. Der Gebrunch im Agestrafings zu inverlossischen und wertieben Zwesten. Leigzig und Meidelberg Winner wire Auchnandlung INA F.
- Terreit X. Lawendung for Special apparatus. Tilangen, 1971. 3°.
- Viget H. W. Practicle Spectru-Louises influier Smile Juniingen 200 22.
- Warre W. M. . Index of Inserted Landon, Gillman, 1972 37
- Westerley Last. Applications of insection Louisms. Laminus, 1865, 24.
- Tinng C. A., The Sim. New Tick Little Pt.

### APPARATUS.

### ABSORPTION SPECTROSCOPE.

Sur un nouveau spectroscope d'absorption.

Thierry (Maurice de). Comptes Rendus, 101 (1885), 811-818; Jour. Chem. Soc., 50 (1886), 118 (Abs.).

#### ACTINIC BALANCE.

(See Spectro-bolometer.)

### ALKALOID REACTIONS.

Alcaloïdreactionen im Spectralapparate.

Hock (K.). Arch. f. Pharm., 19, 358; Ber. chem. Ges., 14, 2844 (Abs.).

### ASTRONOMICAL SPECTROSCOPES.

(See Spectro-telescopes.)

### AUTOMATIC SPECTROSCOPES.

A new automatic motion for the spectroscope.

Baily (W.). Phil. Mag., (5) 4, 100-104.

An automatic spectroscope.

Browning (J.). Chem. News, 20 (1870), 222; 21 (1870), 201.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 47-48.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 205-208.

Automatic spectroscope for Dr. Huggins's sun observations.

Grubb (H.). Monthly Notices Astron. Soc., 31 (1871), 86.

Automatic spectroscope.

Reynolds (J. E.). Chem. News, 23 (1871), 118.

Universal automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 32 (1872), 218.

Large automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 33 (1878), 410.

Ueber Spectralapparat mit automatischer Einstellung.

Krüss (H.). Z. Instrumentenkunde, 5 (1885), 181–191, 232–244; Beiblätter, 9 (1885), 628 (Abs.).

#### BESSEMER-FLAME SPECTROSCOPES.

Examination of the Bessemer flame with the spectroscope.

Silliman (J. M.). Amer. Jour. Sci. (2), **50**, 297-307; Phil. Mag., **41**, 1-12; Jour. Chem. Soc. (2), **9**, 97-98 (Abs.).

Examination of the Bessemer flame with coloured glasses and with the spectroscope.

Parker (J. S.). Chem. News, 23 (1871), 25-26; Jour. Chem. Soc. (2), 9, 98 (Abs.).

Spectroscope pour les hauts-fourneaux et pour le procédé Bessemer.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1005; Jour. Chem. Soc., 50 (1886), 190 (Abs.).

### USE OF THE BLOWPIPE.

Emploi du chalumeau à chlorhydrogène pour l'étude des spectres. Diacon. Comptes Rendus, 56, 653.

### BOLOMETER.

(See Spectro-bolometer.)

### BÖRSCH-APPARATUS.

Der Spectralapparat von Börsch zugleich Reflexions-Goniometer. Börsch. Ann. Phys. u. Chem., 129, 384.

### COLLIMATORS.

Sur un nouveau collimateur.

Thollon (L.). Comptes Rendus, 96, 642-643; Nature, 27, 476 (Abs.);
z. Instrumentenkunde, 3, 180-181 (Abs.); Beiblätter, 7, 285 (Abs.).

An easy method of adjusting the collimator of a spectroscope.

Schuster (A.). Proc. Physical Soc., 3, 14-17; Phil. Mag., (5) 7, 95-98; Beiblätter, 854 (Abs.).

Use of a collimating eye-piece in spectroscopy.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 4, 336; Beiblätter, 7, 892 (Abs.).

### COMPENSATING EYE-PIECE.

Construction of a compensating eye-piece.

Proc. Royal Soc., 21, 426-442.

## CYLINDRICAL LENSES.

Zweckmässigkeit cylindrischer Linsen bei Spectralapparaten.

Schönn (L.). Ann. Phys. u. Chem., 144, 884.

### DENSIMETER.

Optical densimeter for ocean water.

Hilgard (J. E.). United States Coast Survey Rep't (1877), 108-113; Z. Instrumentenkunde, 1, 206-207 (Abs.); Beiblätter, 5, 658 (Abs.).

## DEVIATION IN SPECTROSCOPES.

Spectroskop mit constanter Ablenkung.

Goltzsch (H.). Carl's Repert., 18, 188-190; z. analyt. Chem., 21, 556 (Abs.).

Ueber ein einfaches Mittel die Ablenkung oder Zerstreuung eines Lichtstrahles zu vergrössern.

Kohlrausch (F.). Ann. Phys. u. Chem., 143, 147-149.

Die kleinste Ablenkung im Prisma.

Lommel (E.). Ann. Phys. u. Chem., 159, 329.

Die kleinste Ablenkung im Prisma.

Berg (F. W.). Ann. Phys. u. Chem., 158, 651.

Démonstration élémentaire des conditions du minimum de déviation d'un rayon par le prisme.

Hesehus (N.). Jour. soc. phys. chim. russe, 12, 226-231; Jour. de Phys., 10, 419-420 (Abs.); Beiblätter, 6, 227 (Abs.).

Nouvelles démonstrations des conditions du minimum de déviation d'un rayon dans le prisme.

Kraiewitch (K.). Jour. soc. phys. chim. russe, 16, 8-13. Notes sur cet article, par Wolkoff, 16, 174.

Ueber die Schwankungen in der chemischen Wirkung des Sonnenspectrums und über einen Apparat zur Messung derselben.

Vogel (H.). Ber. chem. Ges., 7, 88-92; Jour. Chem. Soc., (2) 12, 424 (Abs.); Amer. Jour. Sci., (3) 7, 414-415.

Das Minimum der Ablenkung eines Lichtstrahls durch ein Prisma.

Kessler (F.). Ann. Phys. u. Chem., n. F. 15, 333-334.

### DIFFRACTION SPECTROSCOPES.

(See "Gratings.")

### DIRECT-VISION SPECTROSCOPES.

Nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 36, 329-331; Beiblätter, 2, 253-254 (Abs.).

Théorie du nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 86, 595; Beiblätter, 2, 253.

Nouveau prisme composé, pour spectroscope à vision directe, de très grande pouvoir dispersif.

Thollon (L.). Comptes Rendus, 88, 80-82; Beiblätter. 3, 355.

Sur l'emploi de prismes à liquide dans le spectroscope à vision directe.

Zenger (C. V.). Comptes Rendus, 92. 1508-1504.

Le spectroscope à vision directe appliqué à l'astronomie physique.

Zenger (C. V.). Comptes Rendus. 93. 429-452; Beiblätter, 5, 793 (Abs.).

Le spectroscope à vision directe, à spath calcaire.

Zenger (C. V.). Comptes Rendus, 93, 730-722; Beiblätter, 6, 21 (Abs.); Z. Instrumentenkunde, 1, 263-266.

Les observations spectroscopiques à la lumière monochromatique.

Zenger (C. V.). Comptes Bendus 94, 155-156; Chem. News, 45, 96-87 (Abs.); Jour. Chem. Soc., 42, 677 (Abs.); Amer. Jour. Sci., (3) 23, 322-323 (Abs.); Beiblätter, 6, 378; Z. Instrumentenkunde, 2, 114 (Abs.).

Spectroscope à vision directe très puissant.

Zenger (C. V.). Comptes Bendus. 96, 1089-1041; Nature. 27, 596
 (Abs.); Chem. News. 47, 218 (Abs.); Beiblätter. 7, 458-457 (Abs.);
 Amer. Jour. Sci., (8) 25, 469; Z. analyt. Chem., 22, 540-541 (Abs.).

Spectroscope à vision directe pour observation des rayons ultra-violettes.

Zenger (C. V.). Comptes Rendus. 98, 494.

Neues geradsichtiges Taschenspectroskop.

Hilger (A.). Beiblätter. 1. 124-125.

Spectroscopes à vision directe et à grande dispersion.

Thollon (L.). Jour. de Physique. 8. 78-77.

Note on a direct-vision spectroscope on Thollon's plan, adapted to laboratory use and capable of giving exact measurements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 482-488; Beiblätter, 3, 709 (Abs.).

Ein Spectroskop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 686.

A direct-vision compound prism by Merz; with dispersion almost double that of flint glass.

Gassiot. Proc. Royal Soc., 24, 33.

Combinazioni spettroscopiche a visione diretta.

Riccó (A.). Mem. Spettr. ital., 8, 21-34.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Note on a new form of direct-vision spectroscope.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 41 (1886), 449-452.

## DISPERSION APPARATUS.

Das Dispersionsparallelopiped und seine Anwendung in der Astrophysik.

Zenger (K. W.). Sitzungsber d. Böhm. Ges. (1881), 416-429; Beiblätter, 6, 286 (Abs.).

Sur un spectroskope à grande dispersion.

Cornu (A.). Jour. de Phys., 12 (1883), 53-57; Amer. Jour. Sci., (3) 25, 469.

Sur un spectroscope à grande dispersion.

Cornu (A.). Séances de la Soc. franç. de Phys., 1882, 165-170; Beiblätter, 7, 285 (Abs.); 8, 33 (Abs.).

Bemerkungen über die Einrichtung eines Dispersiometers.

Mousson (A.). Ann. Phys. u. Chem., 151, 187-145.

ECLIPSE APPARATUS.

(See "Solar and Stellar App.")

## EFFICIENCY OF SPECTROSCOPES.

Efficiency of different forms of the spectroscope.

Pickering (E. C.). Amer. Jour. Sci., 95, 301, and (3) 22, 897.

### ELECTRIC APPARATUS.

Tube spectro-électrique destiné à l'observation des spectres des solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; 81, 726.

An arrangement of the electric arc for the study of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119-122; Nature, 26, 213-214 (Abs.); Beiblätter, 6, 934-936 (Abs.); Jour. Chem. Soc., 44, 262-263 (Abs.).

On the use of most electrodes.

Hartley (W. N.). Chem. News, 49, 149; Beiblätter, 8, 581.

Apparat zur leichten Darstellung des langen electrischen Spectrums. Müller (J.). Ann. Phys. u. Chem., 130, 137.

### ERYTHROSCOP.

Erythroscop und Melanoskop.

Lommel (E.). Ann. Phys. u. Chem., 143, 483-490.

## EUTHYOPTIC.

Das einfache euthyoptische Spectroskop.

Kessler (F.). Ann. Phys. u. Chem., 151, 507.

# FINDER.

A reliable finder for a spectro-telescope.

Winlock (Prof.). Jour. Franklin Inst., (3) 60, 295.

### FIXATOR.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Carl's Repert., 17, 645-651; Jour. de Phys., (2) 1, 198-199 (Abs.).

## FLAME APPARATUS.

Spectralapparat un den wärmeren oder kälteren Theile der Flammen beobachten zu können. (For Bessemer flame apparatus look above under Bessemer.)

Salet (G.). Ber. chem. Ges., 3 (1870), 246.

#### FLUORESCENT EYE-PIECES.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Jour. de Phys., 3 (1874), 258.

Une spectroscope pour étudier les phénomènes de la fluorescence. Lamansky (S.). Jour. de Phys., 8 (1879), 411.

Some modifications of Soret's fluorescent eye-piece.

Liveing and Dewar. Proc. Cambridge Phil. Soc., 4, 842-343.

Spectroscope à oculaire fluorescent.

Manet. Ann. Chim. et Phys., (5) 11, 72.

Spectralapparat mit fluorescirendem Okular für den ultravioletten Theil des Spectrums J.

Reye (Th.). Ann. Phys. u. Chem., 149, 407.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Archives de Genève, (2) 49, 338-343; Ann. Phys. u. Chem., 152, 167-171; Jubelband, 407-411; Amer. Jour. Sci., (8) 8, 64-65.

Spectroscope à oculaire fluorescent; seconde note.

Soret (J. L.). Arch. de Genève, (2) 57, 319-333; Ann. Chim. et Phys., (5) 11, 72-86; Amer. Jour. Sci., (3) 14, 415-416 (Abs.); Beiblätter, 1, 190-192 (Abs.).

## FULGATOR MODIFIÉ.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, 81, 726.

## GELATINE LEAVES.

Gefärbte Gelatinblättchen als Objecte für das Spectroscop. Lommel (E.). Ann. Phys. u. Chem., 143, 656.

# GRATINGS.

Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes.

Rowland (H. A.). Johns Hopkins Univ. Circular (1882), 248-249; Phil. Mag., (5) 13, 469-474; Nature, 26, 211-218; Amer. Jour. Sci., (3) 24, 63 (Abs.); Observatory (1882), 224-228; Z. Instrumentenkunde, 2, 804 (Abs.).

On concave gratings for optical purposes.

Rowland (H. A.). Amer. Jour. Sci., (3) 26, 87-98; Phil. Mag., (5)
16, 197-210; Beiblätter, 7, 862-863 (Abs.); Z. Instrumentenkunde,
135-136 (Abs.); Jour. de Phys., (2) 3, 184 (Abs.).

# Curved diffraction gratings.

Glazebrook (R. T.). Proc. Physical Soc., 5, 243-253; Phil. Mag., (5)
 15, 414-423; Amer. Jour. Sci., (3) 26, 67 (Abs.); Beiblätter, 8, 34 (Abs.); Jour. de Phys., (2) 3, 152-154 (Abs.).

Hemarks on the above by Rowland (H. A.). Amer. Jour. Sci., (3) 26, 214; Phil. Mag., (15) 16, 210; Beiblätter, S, 34 (Abs.); Jour. de Phys., (2) 3, 184–185 (Abs.).

Concave gratings for giving a diffraction spectrum.

Rowland (H. A.). Nature, 27, 95.

The spectra formed by curved diffraction gratings.

Baily (W.). Proc. Physical Soc., 5, 191–185; Phil. Mag., (5) 15, 183–187; Beiblätter, 7, 465–566 (Abs.); Jour. de Phys., (2) 3, 152–154; Chem. News, 47 (1883), 54.

Notes on diffraction gratings.

Blake (J. M.). Amer. Jour. Sci., (3) 8, 33-39.

Optische Experimentaluntersuchungen über Beugungsgitter.

Quincks (G.). Ann. Phys. v. Chem., 146, I-45.

Note on the use of a diffraction grating as a substitute for the train of prisms in a solar spectroscope.

Young (C. A.). Amer. Jour. Sci., (3) 5, 472-473; Phil. Mag., (4) 46, 87-86; Ann. Phys. u. Chem., 152, 368 (Abs.).

Preliminary note on the reproduction of diffraction gratings by means of photography.

Strutt (J. W.). Proc. Royal Soc., 20, 414-417; Phil. Mag., (4) 44, 292-394; Amer. Jour. Sci., (3) 5, 216 (Abs.); Ann. Phys. u. Chem., 152, 175-176 (Abs.).

On the manufacture and theory of diffraction gratings.

Rayleigh (Lord). Phil. Mag., (4) 47, SI-93, 193-206.

On copying diffraction gratings.

Rayleigh (Lord). Phil. Mag., (5) 11, 196-206.

On the determination of the coefficient of expansion of a diffraction grating by means of the spectrum.

Medenhall (T. C.). Amer. Jour. Sci. (3) 21, 230-232.

Use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-108.

Sur les réseaux métalliques de M. Rowland.

Mascart. Soc. franç. de Phys. (1882), 232-238; Jour. de Phys., (2) 2, 5-11; Beiblätter, 7, 466-468 (Abs.).

Sur la théorie des réseaux courbes.

Sokoloff (A.). Jour. soc. phys. chim. russe, 15, 298-805.

On a theorem relating to curved diffraction gratings.

Baily (W.). Phil. Mag., (5) 22 (1886), 47-49.

### HAND-SPECTROSCOPE.

Handspectroskop.

Simmler. Jour. prackt. chem., 90, 299; Ann. Phys. u. Chem., 120, 628.

#### HELPS.

Ein neuer Hülfsapparat zur Spectralanalyse.

Schultz (H.). Pfluger's Arch. f. Physiol., 28, 197-199; Ber. chem. Ges., 15, 2754 b (Abs.); Beiblätter, 6, 674 (Abs.).

Ueber einige physikalische Versuche und Hülfseinrichtungen.

Z. Instrumentenkunde, 3, 888-392; Beiblätter, 8, 220 (Abs.).

## INDEX.

Selbstleuchtender Index im Spectroskop.

Sundell (A. F.). Astronom. Nachr., 102, 90; Beiblätter, 6, 876-877 (Abs.); Z. Instrumenten., 2, 422 (Abs.).

## INTERFERENCE APPARATUS.

Sur les phénomènes d'interférence produits par les réseaux parallèles, interférence-spectromètre.

Crova (A.). Comptes Rendus, 72, 855-858, 74, 982-986; Ann. Chim. et Phys., (5) 1, 407-482.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1 (1872), 177.

### KOLORIMETER.

Dr. von Konkoly's Spectralapparat in Verbindung mit einem Kolorimeter.

Gothard (E. von). Centralzeitung für Optik und Mechanik, 4, 241-242.

#### LAMPS

Ueber Lampen für monochromatisches Licht.

Laspeyres (H.). Z. Instrumenten., 2, 96-99; Beiblätter, 6, 480.

Un illuminateur spectral.

Le Roux (F. P.). Comptes Rendus, 76, 960, 998-1000; Chem. News, 27 (1872), 233.

Illumination des corps opaques.

Lallemand (A.). Comptes Rendus, 69, 192; 78, 1272.

Spectralilluminator.

Jahresber. d. Chem. (1873), 147.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

End-on in place of transverse illumination in private spectroscopy.

Smyth (Piazzi). Chem. News, 39 (1879), 145, 166, 188; Nature, 19, 400 (Abs.).

Des minima produits, dans une spectre calorifique, par l'appareil réfringent et la lampe qui servent à la formation de ce spectre.

Aymonnet et Maquenne. Comptes Rendus, 87, 494.

Spectre calorifique du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

On an improvement of the Bunsen burner for spectrum analysis.

Kingdon (F.). Chem. News, 30, 259.

Sur l'emploi de la lumière Drummond.

Debray (H.). Ann. Chim. et Phys., (8) 65, 831.

Note on the Littrow form of spectroscope.

Brackett (C. F.). Amer. Jour. Sci., (8) 24, 60-61; Beiblätter, 6, 875-876 (Abs.).

The monochromatic lamp.

Brewster (Sir D.). Trans. Edinburgh Royal Soc., 1822.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-98.

Relation between radiant energy and radiation in the spectrum of incandescence lamps.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 37 (1884), 157-173.

Ein einfacher Brenner für monochromatisches Licht.

Noack. Z. zur Förderung des physischen Unterrichts, 2, 67-69; Beiblätter, 9 (1885), 739 (Abs.).

Natriumlampe für Polarizationsapparate.

Landolt (H.). Z. Instrumentenkunde, 4 (1884), 390; Beiblätter, 8, 339 (Abs.).

FOR MAGNETIC SPECTRA.

Fixing and exhibiting magnetic spectra.

Mayer (A. M.). Jour. Franklin Inst., 91, 355.

### MEASURING APPARATUS.

Eine vergleichbare Spectralscale.

Weinhold (A.). Ann. Phys. u. Chem., 138, 417, 434; Jahresber. d. Chemie (1869), 175.

Glass reading-scale for direct-vision spectroscopes.

Proctor (H. R.). Chem. News, 27 (1873), 149; Nature, 6, 473.

Measurement of faint spectra.

Proctor (H. R.). Nature, 6, 534.

Spectroscopic scale.

Capron's Photographed Spectra. London, 1877, p. 17.

Measuring scales for pocket spectroscopes.

Herschel (A. S.). Nature, 18, 300-301; Beiblätter, 2, 560-561 (Abs.).

New form of measuring apparatus for a laboratory spectroscope.

Reynolds (J. E.). Scientific Proc. Dublin Soc., new ser., 1, 5-9; Phil. Mag., (5) 5, 106-110; Chem. News, 37 (1878), 115-116.

Messung des Brechungesexponenten während des Unterrichtes.

Kurz (A.). Carl's Repert., 18, 190-192.

Mesure des indices de réfraction des liquides à l'aide des lentilles formées des mêmes.

Piltchikoff. Jour. soc. phys. chim. russe, 13, 390-410; Beiblätter, 7, 189-190 (Abs.); Jour. de Phys. (2) 1, 578-579 (Abs.).

Rise Interferent bails The mas Insection.

Miller J. . Benere James 2009 (18-14)

Combination des Interference-bodds mit des minorogrammentes Innecende-

Miller J. . Impresett Jones. IDE 186-127.

# THE METHODIA SHEWITH

Appana: zur Diecetvianstellung fer Mendlemetren.

Bisternam Tr., Ann. Payer & Cheen. 1999 119-122; Cheen. Commidest: 1972, 1981; Four: Cheen. Soc., 22 III, 481; Albert.

#### WHEN SOUTH COMMENTAL ...

Americani insignirosana.

Jamely Col. I. F., Nature 26 50: Bellikter 7 25 (Mis.) : Iour de Phys. I 3 46. Line.. Bus Isin-Hand, Insetmacone. Selow.

# THE SOURCE-MILLIANT PROMITERS.

Minimization of spectroscope micronecers.

Louiside N. von. Monthly Nation Astronom. Soc. 48, 231.

A convenient eve-piece minometer for the measurement

Rivel O. N., Liner. Jour. Sci., 20 & 145-15; Phil. Whyp. 45 486 1771.

Direct risken minumeter for profess spectrosemes.

Program H. R., Chem. News. 27 1879, 191

A new from of minormeter the use in spectroscopia sustants.

Watte W. M., Proc. Physical Soc. I. BNI-BH: Phil. Mag., 4: 50, 41-55; Lan. Phys. a. Chem., 155, 333-318; Chem. News. 32 1877, 14

MICHO-SPECTROMOPES. SPECTROM-MICHOROPES.

Some technical applications of the spectrum-microscope.

Strefty II. Co., Quar. Jour. Marrisony, Inc., 9 (1949), 158-188 : Ding-less Living, 188, 248-254, 334-148.

A new and improved microscope spectrum apparatus.

Brefry (E. C.). Marchly Minroscop. Jour. 12 198-208.

A new micro-spectroscope, and on a new method of printing a description of the spectra seen with the spectrum microscope.

Stefry (B. C.). Chem. News. 15, 290.

Use of the micro-spectroscope in the discovery of blood-stains.

Herepath (W. Bird). Chem. News, 17, 118, 128.

Spectrum analysis as applied to microscopic observation. Suffolk (W. T.). Chem. News, 29 (1874), 195.

Binoculares Spectrum-Mikroscop.

Jahresber. d. Chemie, (1869), 175.

New arrangement of a binocular spectrum-microscope.

Crookes (W.). Proc. Royal Soc., 17, 443.

Ueber ein Polari-Spectrum-Mikroscrop, mit Bemerkungen über das Spectrumocular.

Rollett (A.). Z. Instrumentenkunde, 1, 366-872; Beiblätter, 6, 229-280 (Abs.); Z. analyt. Chemie, 21, 554-555 (Abs.).

Mikrochemische Reactionsmethoden im Dienste der technischen Microscopic.

Tschirch (A.). Generalversammlung d. deutsch. Apotheker Ver. 1883; Archiv f. Pharm., (8) 20, 801-812; Jour. Chem. Soc., 44, 876-378 (Abs.).

### MINERALOGICAL SPECTROSCOPE.

The spectroscope applied to mint-assaying.

Outerbridge (A. E.). Jour. Franklin Inst., 98, 276; Jahresber. d. Chemie, (1868), 130.

### MIRRORS.

Sur la transparence actinique de quelques milieux et en particulier sur la transparence actinique des miroirs de Foucault et leur application en photographie.

Chardonnet (de). Jour. de Phys., (2) 1, 305-312; Comptes Rendus, 94, 1171.

Miroir tremblant pour la recomposition des couleurs du spectre. Luvini (J.). Les Mondes, 43, 427-429; Beiblätter, 1, 556 (Abs.).

Miroir tournant pour la recomposition de la lumière spectrale. Lestrade (Lavaut de). Les Mondes, 44, 416-417.

Neues Spiegelprisma mit konstanten Ablenkungswinkeln. Absteck ganzer und halber rechter Winkel mit den Wollaston'schen Spiegelprisma

Bauernfeind (C. M.). Ann. Phys. u. Chem., 134, 169-172.

### KEW SPECTROSCOPE.

Un nouveau spectroscope.

Govi (S. G.). Chem. News, 32 (1885), 201 (Abs.); Computes Rendus, 201 (1885).

Ueber ein neues Spectroskop.

Gothard (E. von). Ber. aus. Ungarn. 2 (1884), 253-265; Beiblätter, 11 (1887), 27 (Abs.).

## OPTOMETER.

Sur un optomètre apectroscopique.

Zenger (C. V.). Compuss Bendus, 201 (1885), 1903; Amer. Jour. Sci., (8) 21. 60.

### OVERLAPPING SPECTROSCOPE.

An overlapping spectroscope.

Love (J.). British Assoc. Rept. (1881), 564 : Buiblätter, S.

## OXYHYDROGEN APPARATUS.

Production of spectra by the oxyhydrogen flame.

Marvin (T. H.). Phil. Mag., (5) 1, 67-68; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

## PHOSPHORESCENT EYE-PIECE.

Spectroscop mit phosphorescirendem Ocular.

Lommel (E.). Ann. Phys. n. Chem., n. F. 20, 547.

# PHOSPHOROGRAPHIES.

Sur les phosphorographies du spectre solaire.

Becquerel (E.). Jour. de Phys., 11 1882), 139.

Phosphorographies du spectre solaire infra-rouge.

Becquerel (H.). Comptes Bendus. 36 1888 : Amer. Jour. Sci.. (E) 25, 280

Phosphorograph of the spectrum.

Druper. Amer. Jour. Sci., (B. 21, 171.

Phosphorographie, angewandt auf die Photographie des Unsichtbaren.

Zenger (K. V.). Comtes Bendus. 103 [1896], 454-456; Beiblätter, 11 (1887), 94 (Abs.).

### PHOTOGRAPHIC SPECTROSCOPY.

Notice imprimée sur les effects chimiques des radiations et sur l'emploi qu'en a fait M. Daguerre pour fixer les images de la chambre noire.

Biot. Comptes Rendus, 9, 200.

Application aux opérations photographiques des propriétés reconnus par M. Ed. Becquerel dans ce qu'il nomme les rayons continuateurs.

Gaudin. Comptes Rendus, 12, 862.

Action des rayons rouges sur les placques daguerriennes.

Foucault et Fizeau. Comptes Rendus, 23, 679.

Observations sur les expériences de M. M. Foucault et Fizeau.

Becquerel (Ed.). Comptes Rendus, 23, 800. Remarques. Foucault (L.). Do., 856.

Des actions que les diverses radiations solaires exercent sur les couches d'iodure, de chlorure ou de bromure d'argent.

Claudet. Comptes Rendus, 25, 554.

Note sur ce Mémoire. Becquerel (Ed.). Do., 594.

Note sur les transformations successives de l'image photographique par la prolongation de l'action lumineuse.

Janssen (J.). Comptes Rendus, 91, 199.

Beschreibung eines höchst einfachen Apparatus um das Spectrum zu photographiren.

Vogel (H. W.). Ann. Phys. u. Chem., 154, 306.

Ueber die Hülfsmittel, photographische Schichten für grüne, gelbe und rothe Strahlen empfindlich zu machen.

Vogel (H. W.). Ber. chem. Ges., 17, 1196-1203; Jour. Chem. Soc., 46, 1081 (Abs.); Beiblätter, 8, 583-585 (Abs.).

Early contributions to spectrum-photography and photo-chemistry.

Draper (J. W.). Nature, 10, 243-244.

Spectrum photography.

Lockyer (J. N.). Nature, 10, 109, 254.

Photographie du spectre chimique.

Prazmowski. Comptes Rendus, 79, 108.

Theory of absorption-bands in the spectrum, and its bearing in photography.

Amory (Dr. Rob't). Proc. Amer. Acad., 13, 216.

Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Physics in photography.

Abney (W. de W.). Nature, 18, 489-491, 528-531, 548-546.

Method of fixing, photographing, and exhibiting the magnetic spectra.

Mayer (A. M.). Chem. News, 23 (1871), 286.

Reversal of the metallic lines as seen in over-exposed photographs of spectra.

Hartley (W. N.). Proc. Royal Sec., 36, 84.

Reversal of the developed photographic image.

Abney (W. de W.). Phil. Mag., (5) 10, 200-208.

Photographische Spectral-Beobachtungen im rothen und indischen Meere. Vogel (H. W.). Ann. Phys. u. Chem., 156, 319-325.

Delicacy of spectrum photography.

Hartley (W. N.). Proc. Royal Soc., **36** (1885), 421–422; Jour. Chem. Soc., **46** (1885), 466 (Abs.).

Ueber neue Fortschritte in dem farbenempfindlichen photographischen Verfahren.

Vogel (H. W.). Sitzungsber. preuss. Akad.. 51 (1886), 1205–1208; Photogr. Mitt., 22, 295; Beiblätter, 11 (1887), 255.

Ueber einige geeignete praktische Methoden zur Photographie des Spectrums in seinen verschiedenen Bezirken mit sensibilisirten Bromsilberplatten.

Eder (J. M.). Monatschr. f. Chemie, 7 (1886), 429-454; Beiblätter, 11 (1887), 39 (Abs.); Jour. Chem. Soc., 52 (1887), 93 (Abs.).

## PHOTOMETERS.

Ein neues Photometer.

Glan (P.). Ann. Phys. u. Chem., n. F. 1, 351.

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 337-378; Amer. Jour. Sci., (3) 23. 486-487 (Abs.).

Études photométriques.

Cornu (A.). Jour. de Phys., 10, 189-198; Beiblätter, 6, 229 (Abs.).

Ein Photometer zu schulhygienischen Zwecken.

Petruschewski (Th.). Jour. soc. phys. chim. russe, 16, (2) 295-808, 1884; Beiblätter, 9 (1885), 248 (Abs.).

## POLARIZATION SPECTROSCOPES.

A rotary polarization spectroscope of great dispersion.

Tait (P. G.). Nature, 22, 860-361; Beiblätter, 4, 725 (Abs.).

Ein Polarizationsapparat aus Magnesiumplatincyanur.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 847.

## PRISMS.

Absorption of light by prisms.

Robinson (T. R.). Observatory (1882), 58-54; Beiblätter, 6, 589 (Abs.).

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., (2) 1, 84-86.

Étude des aberrations des prismes et de leur influence sur les observations spectroscopiques.

Crova (A.). Ann. Chim. et Phys., (5) 22, 518-543.

Bemerkungen über Prismen.

Radau (R.). Ann. Phys. u. Chem., 118, 452.

Déplacement des raies du spectre sous l'action de la température du prisme.

Blaserna (P.). Arch. de Genève, (2) **41**, 429-430; Ann. Phys. u. Chem., **143**, 655-656; Jour. Chem. Soc., (2) **10**, 118 (Abs.); Phil. Mag., (4) **43**, 239-240.

A direct-vision compound prism by Merz, with dispersion almost double that of ordinary flint glass.

Mr. Gassiot. Proc. Royal Soc., 24, 33.

Note on the use of compound prisms.

Browning (J.). Monthly Notices Astronom. Soc., 31, 208-205.

Auflösung scheinbar einfacher Linien durch Vermehrung der Prismen. Merz (Sigismund). Ann. Phys. u. Chem., 117, 655. The best form of compound prints for the spectrum microscope.

Sorby (H. C.). Nature 4, 511-512.

Ueber ein verbewertes Primma à vision directe.

Braun (C.). Ber. aus Ungarn. 1. 197-200.

Ein Spectroscop à vision directe mit nur einem Prisma.

Emamann (H.) Ann. Phys. u. Chem. 1500, 686.

Geradsichtiges Prisms.

Fuchs (F.,. Z. Instrumentenkunde, 11, 349-353; Z. anatyt. Chemie., 21, 555.

Nouveau modèle de prisme pour spectroscope à vision directe.

Holimani (J. G.). Comptes Bendus. 79. 581.

Geradsichtige Prismen.

Biocó (A.). Z. Instrumentenkunde, 2. 105; Z. analyt. Chem. 21, 555 (Abs.); Beldätter. 6, 744 (Abs.).

Minimum du pouvoir de resolution d'un prime.

Thollon (L.). Compus Bendus, 32, 126-130.

The magnifying power of the half-prism as a means of obtaining great dispersion, and on the general theory of the half-prism spectre-scope.

Christie (W.,H. M.). Proc. Royal Soc., 235, 6-40; Beiblätter, 1, 556-561 (Abs.).

New form of spectroscope with half-prisms.

Chem. News. 25 (1875), 101.

Use of prisms of flint glass.

Bood (O. N.). Amer. Jour. Sci., 25, 356.

Ueber die anomale Dispersion spitzer Prismen.

Long (V. von). Ann. Phys. u. Chem., 143, 266.

Nicht alle Quarzprismen verlängern das Spectrum am ultra-violetten Ende.

Salm-Bosst (Der First). Ann. Phys. u. Chem., 109, 156.

Use of carbon hisulphide in prisms.

Draper (H.). Amer. Jour. Sci., 8 29, 208-277, 1885; Jour. Chem. Soc., 48, 858 (Abc.), 1885; Jour. de Phys., 2, 5, 122 (Abc.), 1886.

Ueber die Anwendung von Schwefelkohlenstoffprismen zu spectroscopischen Beobachtungen von hoher Präcision.

Hasselberg (B.). Ann. Phys. u. Chem., (2) 27 (1886), 415-486.

Neues Flüssigkeitsprisma für Spectralapparate.

Wernicke (W.). Z. Instrumentenkunde, 1, 353-857; Beiblätter, 6, 94-95 (Abs.); Z. analyt. Chemie, 21, 555.

## PROJECTION OF THE SPECTRUM.

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., 11 (1882), 84.

Projection of the Fraunhofer lines of diffraction and prismatic spectra on a screen.

Draper (J. C.). Amer. Jour. Sci., (3) 9, 22-24; Phil. Mag., (4) 49, 142-4.

Nouvelle méthode pour projecter les spectres.

Moigno. Les Mondes, 43, 554-5; Beiblätter, 1, 555.

## PROTUBERANCE SPECTROSCOPE.

Protuberanz Spectroscop mit excentrischer bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumentenkunde, 1, 281-282; Beiblätter, 6, 280 (Abs.).

## QUANTITATIVE APPARATUS.

Quantitative Analyse durch Spectralbeobachtung, Apparat.

Hennig (R.). Ann. Phys. u. Chem., 149, 850.

Zur quantitativen Spectralanalyse.

Krüss (H.). Carl's Repert., 2, 17-22.

## RAIN-BAND SPECTROSCOPE.

Rain-band Spectroscope.

Bell (L.). Amer. Jour. Sci., (8) 30, 847.

# REFLECTOR.

Anwendung eines Reflectors bei Spectraluntersuchungen.

Fleck. Jour. prackt. Chemic, n. F. 3 (1870), 852; Jour. Chem. Soc., (2) 9, 857 (Abs.).

### REFRACTOMETERS.

Sur un réfractomètre destiné à la mesure des indices et de la dispersion des corps solides.

Soret (C.). Comptes Rendus, \$55, 517-520; Beiblätter, 6, 870-872
 (Abs.); Z. Instrumenten., 2, 414-415 (Abs.).

Sur l'emploi d'un verre biréfringent dans certaines observations d'analyse spectrale.

Cruls. Comptes Rendus, 96, 1298-1294; Nature, 28, 48 (Abs.); Beiblätter, 7, 529 (Abs.).

Interference phenomena in a new form of refractometer.

Michelson (A. A.). Amer. Jour. Sci., (3) 23, 395-400; Phil. Mag., (5) 13, 236-242; Beiblätter, 7, 534-585 (Abs.).

Appareils refringents en sel gemme.

Desains (P.). Comptes Rendus, 97, 689, 732; Beiblätter, 7, 858 (Abs.).

A new refractioneter for measuring the mean refractive index of plates of glass and lenses by the employment of Newton's rings.

Royston-Pigott (G. W.). Proc. Royal Soc., 24, 398-399.

#### REGISTERING SPECTROSCOPE.

A registering spectroscope.

Huggings (W.). Proc. Royal Soc., 19, 317-318; Phil. Mag., (4) 41, 544-546; Ann. Chim. et Phys., (4) 26, 275-276; Chem. News, 23 (1871), 98.

### REVERSION SPECTROSCOPES.

Ein neues Reversionsspectroscop.

Zöllner (F.). Ber. d. Sächs. Ges. d. Wiss., 23, 300-306; Ann. Phys. u. Chem., 144, 449-456; Phil. Mag., (4) 43, 47-52; Jahresber. d. Chemie (1869), 175.

Ein neuer Reversionsspectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 122-124;
Beiblätter, 7, 595; Ber. aus Ungarn, 1, 128-133.

Reversion spectroscope.

Langley (S. P.). Comptes Rendus (1884), 1145-1147.

On a method of estimating the thickness of Young's Reversing Layer. Pulsifer (W. H.). Amer. Jour. Sci., (3) 17, 303.

A new form of reversible spectroscope.

Stevens (W. L.). Amer. Jour. Sci., (3) 23, 226-229.

### RIGID SPECTROSCOPES.

Description of a rigid spectroscope; constructed to ascertain whether the position of the known and well-defined lines of a spectrum is constant while the coefficient of terrestrial gravity under which the observations are taken is made to vary.

Gassiot (J. P.). Proc. Royal Soc., 14, 320.

On the observations made with a rigid spectroscope by Captain Mayne and Mr. Connor.

Gassiot (J. P.). Proc. Royal Soc., 16, 6.

### ROTARY SPECTROSCOPE.

Ueber einen rotirenden Spectralapparat.

Lohse (O.). Z. Instrumentenkunde, 1, 22-25; Beiblätter, 5, 278.

## SCALES.

(See "Measuring Apparatus.")

### SCREENS.

Die Beugungserscheinungen geradlinig begrenzter Schirme.

Lommel (E.). Abhandl. d. bayr. Akad., (2) 15, 529-664, 1886; Bei-blätter, 11 (1887), 42-46 (Abs.).

## APPARATUS FOR SECONDARY SPECTRA.

On a secondary spectrum of very large size, with a construction for secondary spectra.

Rood (O. N.). Amer. Jour. Sci., (3) 6, 172-180.

Du spectre secondaire et de son influence sur la vision dans les instruments d'optique.

Foucault (Léon). Ann. Chim. et Phys., (5) 15, 288.

## SELENACTINOMETER.

Un Selénactinomètre.

Morize (H.). Comptes Rendus, 100, 271-272; Beiblätter, 9, 256.

### SLITS FOR SPECTROSCOPES.

Sur un spectroscope à fente inclinée.

Garbe (G.). Comptes Rendus, 96, 886; Jour. de Phys., 12 (1883), 318.

Die Anwendung des Vierordt'schen Doppelspaltes in der Spectralanalyse.

Dietrich (W.). Beiblätter, 5, 488-441.

Protuberanzspectroscop mit excentrischer, bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumenten., 1, 281; Beiblätter, 6, 230.

Spectralspalt mit symmetrischer Bewegung der Schneiden.

Krüss (H.). Carl's Repert., 18, 217-228;
Z. analyt. Chemie, 21, 182-191;
Beiblätter, 6, 286 (Abs.);
Jour. Chem. Soc., 42, 1229 (Abs.);
Z. Instrumenten., 3, 62-63.

Spectroscope with slide, approved by Tyndall and others.

Hofmann. Chem. News, 26 (1872), 180.

Slit for the spectroscope.

Tucker (Alex. E.). Chem. News, 41 (1880), 79.

### SPECTRO-BOLOMETER.

Use of the spectro-bolometer.

Langley (S. P.). Amer. Jour. Sci., (3) 21, 187; 24, 395; 25, 170; 27, 169; 30, 477.

### SPECTROGRAPH.

Beschreibung eines Spectrographen mit Flüssigkeitsprisma.

Lohse (O.). Z. Instrumenten., 5 (1884), 11-13; Beiblätter, 9 (1885), 167 (Abs.).

### SPECTROMETERS.

Description d'un spectromètre.

Zantedeschi. Comptes Rendus, 54, 208.

Description d'un nouveau spectromètre à vision directe rendu plus simple et moins dispendieux.

Valz. Comptes Rendus, 57, 69, 141, 298.

On a spectrometer and universal goniometer, adapted to the ordinary wants of a laboratory.

Liveing (G. D.). Proc. Cambridge Phil. Soc., 4, 343.

On a new form of spectrometer.

Draper (J. W.). Amer. Jour. Sci., (3) 18, 30-34; Phil. Mag., (5) 7, 313-316; Beiblätter, 3, 621.

Interferenzspectrometer.

Fuchs (F.). Z. Instrumenten., 1, 326-329; Beiblätter, 6, 228.

Das Lang'sche Spectrometer.

Miller (F.). Carl's Repert., 16, 250-251.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Ketteler (E.). Carl's Repert., 17, 645-651.

A Spectrometer.

Browning (J.). Monthly Notices Astronom. Soc., 33, 411.

De la spectrométrie, spectromètre.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, 76, 707-711; Jour. Chem. Soc., (2) 11, 984 (Abs.).

## SPECTROPHOTOMETERS.

Ueber ein Spectrophotometer.

Zahn (von). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

Ein Spectrophotometer.

Fuchs (F.). Z. Instrumenten., 1, 349-353; Beiblätter, 6, 228.

Ein neues Spectrophotometer.

Hüfner (G.). J. prackt. Chemie, n. F. 16 (1877), 290; Chem. News, 37 (1878), 31; Carl's Repert., 15, 116-118.

On a spectrophotometer.

Glazebrook (R. T.). Proc. Cambridge Phil. Soc., 4, 304-308; Beiblätter, 8, 211-212 (Abs.).

Étude sur les spectrophotomètres.

Crova (A.). Comptes Rendus, 92, 36-37; Phil. Mag., (5) 11, 155-156.

Description d'un spectrophotomètre.

Crova (A.). Ann. Chim. et Phys., (5) 29, 556-573.

Das neue Spectrophotometer von Crova, verglichen mit dem von Glan, nebst einem Vorschlag zur weiteren Verbesserung beider Apparate. Zenker (W.). Z. Instrumenten., 4, 83-87; Beiblätter, 8, 499.

Ueber die Unwandlung meines Photometers in ein Spectrophotometer.

Wild (H.). Ann. Phys. u. Chem., n. F. 20, 452-468; Nature, 29, 253 (Abs.); Jour. de Phys., (2) 3, 142-148 (Abs.).

Ein Spectrophotometer.

Wild (H.). Dingler's Jour., 252, 462-465.

### SPECTROPOLARISCOPE.

A spectropolariscope for sugar analysis.

Levison (W. G.). Amer. Jour. Sci., 124, 469.

3 т

# SPECTEORCOPES (MINCHILANDOIS).

Construction of the spectroscope.

Rutherfurd L. M., Amer. Jour. Sci., T. 39 1869; 129. Note by Disscheiner in Statungsber. Wiener Akad., 52 II., 542, 565–565.

Construction of the spectruscope.

Cooke [J. P., Jr. i. Amer. June. Sci., 30, 30a.

Description of a large spectroscope.

Gilds (Walcott . Amer. Jour. Sci., (2) 25, 114.

Spectral-Apparat.

Kirchhoff G.) und Bursen R., Ann. Phys. n. Chem., 110, 162; Jour. prakt. Chem., 25, 65, 74.

Spectral-Appearet.

Mousson A. Ann. Phys. t. Chem., 112, 425.

Ursache der mangelnden Proportionalität in den Abständen bestimmter Streiden bei verschiedenen Apparaten.

Generalis (F.) Ann. Phys. n. Chem. 121 44-96.

Notiz zur Theorie der Spectralapparate.

Discheiner L. Ann. Phys. z. Chem. 129, 1981

Convenient form of spectroscope for use in a laboratory.

Browning J. L. Chem. News. 22 1970 and

Improvement of the spectroscope.

Grubb T. : Chem. News. 29 (1874), 200

On a quartz and Iceland spar spectroscope corrected for chromatic aberration.

Scope W. H. Chem. News. 41. 51.

Note accompagnant le présentation de trois nouveaux spectroscopes.

Janussen (J. .: Comptes Rendus, 55, 37%

Un appareil destiné à réproduire les expériences d'optique, relative les réfraction, à la réflexion de la lumière polarisée, à la mesure des indices et à la spectroscopie.

Luiz. Comptes Bendus, 84. 301.

Eine Verbemerung an Spectralapparaten.

Miller (F.). Z. Instrumenten., 2, 29-19; Beiblitter, 6, 231.

Ein sehr einfacher und wirksamer Spectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 76-77; Beiblätter, 7, 456 (Abs.); Z. Instrumenten., 3, 324 (Abs.); Ber. aus Ungarn, 1, 134.

Vorschlag zur Construction eines neuen Spectralapparates.

Lippich (F.). Z. Instrumenten., 4, 1-8; Beiblätter, 8, 300-302 (Abs.).

Neuere Apparate für die Wollaston'sche Methode zur Bestimmung von Lichtbrechungsverhältnissen.

Liebich (T.). Z. Instrumentenkunde, 4, 185-189.

Nouveau spectroscope.

Thollon (L.). Jour. de Phys., 7, 141-148.

Spectroscop-Apparate.

Jahresber. d. Chemie, (1861) 41, (1862) 27, (1863) 114, (1864) 115, (1865) 94, (1866) 78, (1867) 105, (1868) 130, 132, (1869) 175, (1870) 1062, (1872) 948, (1873) 146, 147, (1874) 152, (1876) 142.

Spectralapparat.

Mitscherlich. Jour. prakt. Chem., 86, 18.

Arcobaleno in mare e modificazione allo spettroscopio descritto nel Vol. V. Riccò (A.). Mem. spettr. ital., 8, 87.

Nouveau spectroscope.

Stoney. Moniteur scientifique (3) 6, 657.

Apparate zur Untersuchung der Farbenempfindungen.

Glan (P.). Archiv. f. Physiol., 24, 307-308; Beiblätter, 5, 445 (Abs.).

A new spectroscope.

Zenger (C. V.). Phil. Mag., (4) 46, 439-445.

An improvement in the construction of the spectroscope.

Madan (H. G.). Phil. Mag., (4) 48, 118.

A home-made spectroscope.

Furniss (J. J.). Pop. Sci. Monthly, 15, 808.

Description of a large spectroscope.

Gassiot (J. P.). Proc. Royal Soc., 12 (1863), 536.

The improvement of the spectroscope.

Grubb (T.). Proc. Royal Soc., 22, 308-309; Phil. Mag., (4) 48, 532-534; Chem. News, 29, 222-223; note by G. G. Stokes, Proc. Royal Soc., 22, 309-310, and Phil. Mag., (4) 48, 534.

# Neue Einrichtung des Spectroscops.

Littrow (Otto von). Sitzungsber. Wiener Akad.. 46 II, 521; 48 II, 28-32; note by Prof. C. F. Brackett in Amer. Jour. Sci., 126, 60.

## SPECTRO-TELESCOPES.

Ein Spectrotelescop.

Gian (P.). Ann. Phys. u. Chem., n. F. 9, 492.

Description of a hand spectrum-telescope.

Huggings (W.). Proc. Royal Soc., 16, 241; Ann. Phys. u. Chem., 136, 167.

Spectrum-telescop.

Jahresber. d. Chemie (1868), 133.

A reliable finder for a spectro-telescope.

Winlock (J.). Jour. Franklin Inst., (3) 60, 295.

Ueber das spectroscopische Reversionsfernrohr.

Zöllner (F.). Ber. Sächs. Acad. Wiss., 26, 129-134; Phil. Mag., (4) 43, 47; 44, 417-421; Ann. Phys. u. Chem., 147, 617-623; Comptes Rendus, 69, 421.

A tele-spectroscope for solar observations.

Browning (J.). Monthly Notices Astronom. Soc., 32, 214-215.

Appareil destiné à observer les raies noires du spectre solaire.

Dujardin (F.). Comptes Rendus, 8, 253.

Improvements in a solar spectroscope made by Mr. Grubb for Prof. Young.

Erck (W.). Monthly Notices Astronom. Soc., 38, 331-332.

Spectroscopes furnished by the Royal Society to Mr. Hennessey for observing the solar eclipse of 1868 at Mussoorie, in India.

Proc. Royal Soc., 16, 169.

· An eclipse spectroscope.

Lockyer / J. N.). Nature, 18, 224.

Neue Methode die Sonne spectroscopisch zu beobachten.

Secchi (A.). Ann. Phys u. Chem., 143, 154; Amer. Jour. Sci., (3) 1, 463-464.

Sur un nouveau moyen d'observer les éclipses et les passages de Vénus.

Secchi (A.). Comptes Rendus, 73, 984-985; Monthly Notices Astronom. Soc., 31, 202.

Sur l'emploi de la lunette horizontale pour les observations de la spectroscopie solaire.

Thollon (L.). Comptes Rendus, 96, 1200-1202; Nature, 28, 24; Beiblätter, 7, 456 (Abs.).

Apparatus for recording the position of lines in the spectrum, especially adapted to solar eclipses.

Winlock (J.). Proc. Amer. Acad., 8, 299.

Ein Spectroscop für Cometen-und Fixstern-Beobachtungen.

Gothardt (E. von). Centralzeitung für Optik u. Mechanik, 4, 121; Beiblätter, 7, 595 (Abs.).

A star spectroscope.

Gould (B. A.). Proc. Amer. Acad., 8, 499.

A small universal stellar spectroscope.

Merz (S.). Phil. Mag., (4) 41, 129-182.

The spectroscope and the transit of Venus.

Nature, 11, 171.

Spectroscopie stellaire.

Secchi (A.). Comptes Rendus, 65, 889.

Secchi met sous les yeux de l'Académie l'appareil dont il s'est servi pour ses recherches.

Comptes Rendus, 64, 738.

Un nouveau spectroscope stellaire.

Thollon (L.). Comptes Rendus, 89, 749-752; Beiblätter, 4, 360-361 (Abs.).

Ueber ein neues Spectroscop, nebst Beiträgen zur Spectralanalyse der Gestirne.

Zöllner (F.). Ann. Phys. u. Chem., 138, 32, 35; Phil. Mag., (4) 38, 360; Amer. Jour. Sci., 99, 58.

Nouveau spectroscope et recherches spectroscopiques de M. Zöllner; rapport verbal sur ces publications.

Faye. Comptes Rendus, 69, 689.

Ein einfaches Ocularspectroscop für Sterne.

Zöllner (F.). Ann. Phys. u. Chem., 152, 503; Phil. Mag., (4) 48, 156-157.

Nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

### TUBBE.

Sur les tubes lumineux à électrodes extérieures.

Aivergniat. Compte-Bendus. 78, 561; Jour. Chem. Soc., 22 9, 1141; Abs.,

Tube spectro-électrique destiné à l'observation des spectres de solutions métalliques.

Deinchana! (B., et Mermet (A.). Comptes Rendus, 79, 800; Ann. Chim. et Phys., (5, 3, 485.

Nouveau tube spectro-électrique (fulgator modifié,.

Deischanal et Mermet. Comptes Bendus. 21. 720: Bull. Sec. chim., (2: 25, 194-197; Jour. Chem. Soc., 2 '1870', 35 'Abs.,.

Ein einfaches Stativ für Geissler'sche Spectralröhren.

Gothardt (E. von.). Z. Instrumenten., 3. 220-221: Centralzeitung f. Optik u. Mechanik, 4, 146-147; Beiblätter, 3, 216.

End-on gas vacuum-tubes in spectroscopy.

Smyth (C. Piazzi). Kature, 29, 458; Beiblätter. 2. 604 (Abs.).

End-on tubes brought to bear upon the carbon and carbo-hydrogen question.

Smyth (C. Piazzi). Nature. 20. 75-76.

Tube for observing the spectra of solutions.

Nature. 13, 75.

Spectralröhren mit longitudinaler Durchsicht.

Zahn (W. von). Ann. Phys. u. Chem., n. F. S. 675.

## ULTRA-VIOLET APPARATUS.

Spectroscope pour la partie ultra-violette du spectre.

Cornu (A.). Les Mondes, 49, 16-17; Belblätter, 3, 501.

Spectroscope destiné à l'observation des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 3, 185-193; Beiblätter, 4, 84 (Abs.).

### UNIVERSAL-SPECTROSCOPES.

Ein neues Universalstativ für die Benützung des Taschenspectroskopes. Lepel (F. von). Ber. chem. Ges., 12, 268-266.

Ein Universalstativ für die Benützung des Taschenspectrockopes.

Vogel (H. W.). Ber. chem. Ges., 10. 1428-1422; Jour. Chem. Soc., 2 (1877), 915 (Abs.). Neues Universalspectroskop für quantitative und qualitative chemische Analyse.

Krüss (G.). Ber. chem. Ges., 19 (1885), 2789-2745; Jour. Chem. Soc., 52, 179 (Abs.), 1887; Amer. Jour. Sci., (8) 33 (1887).

## WIDTH IN APPARATUS.

Bei der kleinsten Breite des Spectrums haben die Linien die geringste Krummung in dem Spectralapparat.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 887.

## ADDENDA.

On liquids of high dispersive powers for prisms.

Gibbs (Wolcott). Amer. Jour. Sci., vol. 4, 1870.

Appareil destiné à l'étude des intensités lumineuses et chromatiques des couleurs spectrales et de leurs mélanges.

Parinaud et Duboscq. Jour. de Phys., (2) 4 (1885), 271-3.

Sur un nouvel appareil dit "hema-spectroscope."

Thierry (M. de). Comptes Rendus, 100 (1885), 1244.

Sur un nouveau spectroscope d'absorption.

Thierry (M. de). Comptes Rendus, 101, (1885), 811.

Vermischte Mittheilungen, betreffend Spectralapparate.

Vogel (H. C.). Z. Instrumentenkunde, 1, 19-22; Beiblätter, 5, 279 (Abs.).

Sur un nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

Sur un optomètre spectroscopique.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1003.

Spectroscope pour les hautes fourneaux et le procédé Bessemer. Zenger (Ch. V.). Comptes Rendus, **101** (1885), 1005.

## SPECTRUM ANALYSIS.

### a, GENERAL.

On the production of coloured spectra by light.

Abney (W. de W.). Proc. Royal Soc., 29 (1879), 190; Chem. News, 39 (1879), 282.

The production of monochromatic light, or a mixture of colours on a screen.

Abney (W. de W.). Phil. Mag., (5) 20 (1885), 172-174.

Mathematische Theorie der Spectralerscheinungen.

Akin (C. H.). Sitzungsber. Wiener Akad., 53 I, 892; 53 II, 574.

Welchen Stoffen die Fraunhofer'schen Linien angehören.

Angström (A. J.). Ann. Phys. u. Chem., 117, 296-302; Prec. Royal Soc., 19, 120.

Spectra of non-metallic bodies.

Angström and Thalèn. Chem. News, 36 (1877), 111.

Spectres de quelques corps composés dans les mélanges gazeux en équilibre.

Berthelot et Richard. Ann. Chim. et Phys., (4) 18, 191; Bull. Soc. chim. Paris, 13, 109.

Nouvelles remarques sur la nature des éléments chimiques.

Berthelot. Comptes Rendus, 77, 1347-52, 1357, 1399-1403.

Certain spectral images produced by a rotating vacuum-tube.

Bidwell (Shelford). Nature, 32 (1885), 80.

Photochemical researches.

Bunsen (R.) and Roscoe (H. E.). Rept. British Assoc. (1856), I, 62.

Spectralanalytische Untersuchungen.

Bunsen (R.). Ann. Phys. u. Chem., 155, 230-252, 866-384; Phil. Mag., (4) 50, 417-480, 527-539.

Spectrum Analysis.

Carpenter (J.). Once a Week, 8, 708.

Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., (2) 24 (1885), 439-446.

Spectren der chemischen Elemente und ihrer Verhindungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 76 II, 499; Ber. chem. Ges., 14, 1101a.

Spectroskopische Untersuchungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 79 II, 8; Amer. Jour. Sci., 1, 301; Chem. News, 40, 285; 43, 211, 270.

The spectroscope and evolution.

Clarke (F. W.). Pop. Sci. Monthly, 2, 820.

Lecture experiments in chemical analysis.

Clemenshaw (E.). Nature, **31** (1885), 329; Phil. Mag., (5) **19** (1885), 365-368; Jour. Chem. Soc., **48**, 1035 (Abs.); note on the above, Chem. News, **51**, 57, 139.

Sur les raies spectrales spontanément renversables et l'analogie de leurs lois de répartition et d'intensité avec celles des raies de l'hydrogène.

Cornu (A.). Jour. de Phys., (2) 5 (1886), 98-100.

Distinction between spectral lines of solar and terrestrial origin.

Cornu (A.). Phil. Mag., (5) 22 (1887), 458-463; Jour. Chem. Soc., 52, 313 (Abs.).

Radiant matter spectroscopy and residual glow.

Crookes (W.). Chem. News, **53** (1885), **75**, **188**; **54** (1886), **28**, **40**, **54**, **68**, **75**; **55** (1887), 107, 119, 131; Ber. chem. Ges., **16**, R. 1689a; note par Damien (B. C.), Jour. de Phys., (2) **4** (1885), 333.

Genesis of the elements.

Crookes (W.). Chem. News, 55 (1887), 83, 99.

Production normale des trois systèmes de franges des rayons rectilignes.

Croullebois. Comptes Rendus, 92, 1009.

Notice sur la constitution de l'univers. Première Partie, Analyse spectrale.

Delaunay. Ann. des Longitudes, 1869.

Sur quelques procédés de spectroscopie pratique.

Demarcay (Eug.). Comptes Rendus, 99 (1885), 1022, 1069-71.

Loi de répartition des raies et des bandes; analogie avec la loi de succession de sons d'un corps solide.

Deslandres. Comptes Rendus, 103 (1887), 972-976; Chem. News, 55 (1887), 204 (Abs.).

De spectral analyse. Academisch Proefschrift.

Dibbits (H. C.), Rotterdam, 1863, with plates.

Over spectroscopische vergelikingen, betrekking hebbende tot de samenstelling van verschillende lichtbronnen en hoofdzalijk tot den licht en kleurenzin.

> Donders. Proc. Verh. Akad. Wetensch., Amsterdam. 1882-E. No. 10, 4-6.

The spectroscope and its revelations.

Draper H., Galaxy, 1, 212.

Essai d'analyse spectrale.

Dubrunfaut. Bull. Soc. chim. Paris, n. s. 13, 412; Comptes Bendus, 70, 446.

Chemical Changes produced by Sunlight.

Duclaux (E.). Comptes Rendus, 103 (1887). 881-2.

Comparative Actions of Hest and Solar Radiation.

Duclaux (E.). Comptes Bendus, 104 (1987). 254-7.

Recherches spectrographiques de la scource normale de lumière et de son emploi à la mesure photochimique de la sensibilité lumineuse.

Eder (J. M.). Wiener, Anzeigen (1985), 92: note par Gripon (E.), Jour. de Phys., (2) 5 (1886), 241, and note by Almey (W. de W.), Chem. News, 49, 57. [Chiefly interesting to photographers.]

Position du foyer des rayons de lumière monochromatique qui, issus d'un même point, ont traversé un prisme à vision directe.

Exper (K.). Wiener Anzeigen (1885); Jour. de Phys., (2: 5 (1896), 227.

Les vibrations de la matière et les ondes de l'éther dans les combinaisons photochimiques.

Favé. Comptes Bendus, 86. 560-565.

Influence du magnétisme sur les caractères des lignes spectrales.

Pievez (Ch.). Mém. Acad. Bruxelles, 9 :1885 . No. 3: Chem. News, 52 (1885), 302.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkicht, d. k. Akad. d. Wiss., München, V. (1814–15), 192–226, mit drey Kupfertafein. München, 1817, 4°.

Mischung von Spectralfarben.

Prey M. von) und Kries (J. von). Archiv f. Physiol. (1881), 336–353; Jour. de Phys., (2) 1, 513–514 (Abs.).

Spectrum analysis.

Gassiot (J. P.). Proc. Boyal Soc., 12, 536.

Spectre rotatoire.

Govi (G.). Comptes Rendus, 91, 517.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 88-43; 105, 38; Les Mondes, 45, 517-522; Beiblätter, 2, 561.

On the methods and recent progress of spectrum analysis.

Herschel (A. S.). Chem. News, 19, 157.

Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne.

Heusser (J. C.). Ann. Phys. u. Chem., 91, 819.

Der Gang der Lichtstrahlen durch ein Spectroskop.

Hoorweg (J. L.). Ann. Phys. u. Chem., 154, 423.

On the spectra of some of the chemical elements, with maps.

Huggins (W.). Phil. Trans. (1884), 139; Proc. Royal Soc., 13, 43.

Le prix Lalande decerné à M. Huggins.

Comptes Rendus, 75, 1305.

On some recent spectroscopic researches.

Huggins (W.). Quar. Jour. Sci., April, 1869.

Chemische Wirkung der verschiedenen Theile des Spectrums.

Jahresber. d. Chemie. 1, 197, 221; 2, 156; 3, 154; 4, 152, 201; 4, 152, 201; 5, 124, 125, 126, 131, 211; 6, 167; 7, 137; 8, 123; 12, 643; 13, 598; 14, 27; (1870), 930; (1872), 146; (1873), 152; (1874), 152, 958.

Lecons sur l'analyse spectrale.

Jamin. Jour. de Pharm., (3) 42, 9.

Chemische Analyse durch Spectralbeobachtungen.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 161-187; 113, 337-379; Phil. Mag., (4) 20, 89.

Spectroscopic method for determining chemical action in solutions containing two or more colored salts.

Krüss (G.). Nature, 26, 568.

Analyse spectrale simplifiée.

Laborde (l'abbé). Comptes Rendus, 60, 53.

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Nouvelle méthode spectroscopique.

Langley (S. P.). Comptes Rendus, 86, 1145-47; Beiblätter, 1, 471-2.

Recomposition de la lumière spectrale.

Lavaut de Lastrade. Les Mondes, 45, 828-830.

Spectroscopic Notes.

Leach (J. H.). Nature, 6, 125; J. Franklin Inst., 98, 418.

Remarques sur quelques particularités observées dans des recherches d'analyse spectrale.

Lecoq de Boisbaudran (F.). Comptes Rendus, 63, 1189; 76, 1263-1265; Jour. Chem. Soc., (2) LL, 1257-1258 (Abs.).

Théorie des spectres.

Lecoq de Boisbaudran (F.). Comptes Bendus, 82, 1284-1266; Jour. Chem. Soc., 2 (1876), 470 (Abs.).

Note on "Spectroscopic Papers."

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 25, 166-168; Beiblätter, 4, 38 (Abs.).

On the identity of the spectral lines of different elements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 32, 225; Beiblätter, 5, 741.

Studies in Spectrum Analysis.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 3, 208–209; Nature, 19, 168-164.

Preliminary note on the compound nature of the line spectra of elementary bodies.

Lockyer (J. N.). Proc. Royal Soc., 24, 352-354; Phil. Mag., (5) 2, 229-231; Ann. Chim. et Phys., (5) 25, 190; Jahresber. d. Chemie, 14, 45.

The spectroscope and its applications.

Lockyer (J. N.). Nature, 7, 125-466; 8, 10, 89, 104.

Some recent methods in spectroscopy.

Lockyer (J. N.). Chem. News, 33, 29.

On a new method of spectrum observation.

Lockyer (J. N.). Proc. Royal Soc., 30, 22-31; Chem. News, 41, 84-87; Amer. Jour. Sci., (3) 19, 308-311; Beiblätter, 4, 361 (Abs.);
Ber. chem. Ges., 13, 988-9 (Abs.).

On the necessity for a new departure in spectrum analysis.

Lockyer (J. N.). Nature, 21, 5-8; Beiblätter, 4, 363 (Abs.).

Recomposition of the component colours of white light.

Loudon (J.). Phil. Mag., (5) 1, 170-171.

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665.

Recomposition de la lumière spectrale.

Luvini (J.). Les Mondes, 44, 97-99.

Recherches sur la comparaison photométrique des scources diversement colorées, et en particulier sur la comparaison des divers parties d'une même spectre.

Macé de Lépinay (J.) et Nicati (W.). Bull. soc. franç. de Phys. (1883), 11-23; Jour. de Phys., (2) 2, 64-76; Ann. Phys. u. Chem., n. F. 22 (1884), 567.

Applications des spectres cannelées de Fizeau et Foucault.

Macé de Lépinay (J.). Jour. de Phys., (2) 4 (1885), 261-271.

The logical spectrum.

Macfarlane (A.). Phil. Mag. (5) 19, 286.

Spectre chimique rendu visible avec ses raies cannelées.

Matthiesen. Comptes Rendus, 16, 1281.

Lectures on spectrum analysis, 1862.

Miller (W. A.). Pharmaceutical Jour., (2) 3, 399; Chem. News, 5, 201.

Recent spectrum discoveries, 1863.

Miller (W. A.). Jour. Franklin Inst., 76, 29.

Exeter Lecture, 1869.

Miller (W. A.). Popular Sci. Rev., Oct., 1869.

Beitrag zur Spectralanalyse.

Mitscherlich (Alex.). Ann. Phys. u. Chem., 116, 499-504; Ann. Chim. et Phys., (3) 69, 169; Phil. Mag., (4) 28, 169.

Sur l'analyse spectrale.

Moigno (Fr.). Cosmos, 22, 23, 52, 75.

Spectrum Analysis.

Morton (H.). Jour. Franklin Inst., (3) 58, 56, 136.

Die Spectren der chemischen Verbindungen.

Moser (J.). Ann. Phys. u. Chem., 160, 177-199; Phil. Mag., (5) 4, 444-449 (Abs.); Nature, 16, 198-194 (Abs.).

Résumé de nos connaissances actuelles sur le spectre.

Mousson (A.). Archives de Genève (1861).

Sur le mélange des couleurs.

Moutier (J.). Bull. Soc. Philom., (7) 7, 19-21; Carl's Repert., 19, 672-674.

On certain spectral images produced by a rotating vacuum-tube.

Muirhead (Dr. Henry). Nature, 32 (1885), 55.

Present state of spectrum analysis.

Nature, 22, 523.

Upon an optical method for the measurement of high temperatures.

Nichols (E. L.). Amer. Jour. Sci., (3) 19, 42-49.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblätter, 4, 278 (Abs.)

Die Spectren der chemischen Verbindungen.

Plücker. Ann. Phys. u. Chem., 105, 78.

Spectrum Analysis.

Pritchard (C.). Contemporary Review, 11, 481

Lettre relative à l'analyse spectrale.

Regimbeau. Comptes Rendus, 54, 921.

Die Méthode des Spectrophors.

Reinke (J.). Ann. Phys. u. Chem., (2) 27 (1886), 444-448.

Preliminary Report of the Committee appointed to construct and print Catalogues of Spectral Rays arranged upon a Scale of Wave-

Rept. British Assoc., 1872; later Reports of same Committee, Repts. British Assoc., 1873 and 1874.

Report of the Committee consisting of Professor Dewar, Dr. Williamson, Dr. Marshall Watts, Captain Abney, Mr. Stoney, Prof. W. N. Hartley, Prof. McLeod, Prof. Carey Foster, Prof. A. K. Huntington, Prof. Emerson Reynolds, Prof. Reinold, Prof. Liveing, Lord Rayleigh, Dr. Arthur Schuster, and Mr. W. Chandler Roberts (Secretary), appointed for the purpose of reporting upon the Present State of our Knowledge of Spectrum Analysis.

Reports of the British Association (1881), 317-422; (1884), 295-350.

Report of the Committee consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (Secretary), appointed for the purpose of preparing a new series of Wave-length Tables of the Spectra of the Elements. (Gives the wave-lengths of the elements and of certain compounds, "so far as they are known to the committee or have proved accessible.")

Report of the British Association, (1884) 351-446, (1885) 288-322, (1886) 167-204.

Sur quelques phénomènes spectroscopiques singuliers.

Riccò (A.). Comptes Rendus, 102 (1886), 851-853.

Secondary Spectra.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Spectrum Analysis.

Roscoe (H. E.). Cornhill Mag., 6, 109.

Lectures on Spectrum Analysis, delivered at the Royal Institution of Great Britain, 1861, 1862.

Roscoe (H. E.). Chem. News, 4, 118; 5, 218, 261, 287.

Six Lectures on Spectrnm Analysis, delivered in 1868, before the Society of Apothecaries of London.

Roscoe (H. E.). London, 1869 (published in book form by Macmillan).

Address to the Chemical Section of the British Association; Remarks on the Spectroscope and Spectrum Analysis.

Roscoe (Prof. Sir H. E.). Rept. British Assoc. (1884), 664.

Principles of spectrum analysis.

Rowney (T.). Jour. Franklin Inst., 75, 81.

Recherches spectroscopiques.

Salet (G.). Bull. Soc. chim. Paris, n. s. 16, 195.

Teachings of modern spectroscopy.

Schuster (A.). Popular Science Monthly, 19, 468.

Résumé des résultats de l'analyse spectrale.

Secchi (A.). N. Arch. Phil. Nat., 23, 145.

Beitrag zur chemischen Analyse durch Spectralbeobachtungen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 242, 425.

Madeira spectroscopic.

Smyth (C. Piazzi), Edinburgh, 1881-1882 (book).

Vorschläge zur Herstellung übereinstimmender Augsben.

Steinheil. Ann. Phys. u. Chem., 122, 167.

The Janseen-Lockyer Method of Spectrum Analysis.

Stewart (B.). Nature, 7, 301-302, 381-382.

Spectrum Analysis.

Stewart (B.). Nature, 21, 35.

On a simple mode of eliminating errors of adjustment in delicate observations of compared spectra.

Stokes (G. G.). Proc. Royal Soc., 33., 470-473; Beiblätter, 5, 380-381. (Abs.).

On a remarkable phenomenon of crystalline reflection.

Stokes (G. G.). Nature, 32 (1885), 565-568.

On a method of destroying the effects of slight errors of adjustment in experiments of change of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 381.

Sur la récomposition de la lumière blanche avec l'aide des couleurs du spectre.

Stroumbo. Comptes Rendus. 103:1886), 737-3.

Prismatic Spectra.

Talbot (H. Fox). Phil. Mag., 9 (1886), 3.

Notices spectroscopiques.

Thenard (P.). Comptes Rendus. 91, 387: Beiblätter. 5, 44 (Abs.).

Eine neue Methode für spectralanalytische Untersuchungen.

Timiriasef. Soc. phys. chim. russe. Mar. 27, 1872; Ber. chem. Ges., 5, 328-329 (Abs.); Jour. Chem. Soc., 22 10, 1113 (Abs.).

Eine Lichteinheit.

Trowbridge (J.). Proc. Amer. Acad. (1885), 494–499; Beiblätter. 9 (1885), 739 (Abs.).

Effect of resistance in modifying spectra.

Tyndall (J.). Mature, 7, 384.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel (H. V.). Monatsher. Berliner Akad. (1875), 90-83; Pharmaceutical Jour. Trans., (3) 6, 464-465; Scientific American, 1876.

Ueber einige Farbenwahrnehmungen und über Photographie in natürlichen Färben.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 28 (1886), 130-135; Jour. Chem. Soc., 50 (1886), 749 (Abs.).

General methods of observing and mapping spectra.

Watts (W. Marshall). Rept. British Ass. (1881), 817.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Phil. Mag., (5) 10, 123-125; Proc. Phys. Soc., 4, 31-34.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

Spectroscopic Notes.

Young (C. A.). Nature, 2, 338; 3, 110; 5, 85-88; Phil. Mag., (5) 16, 460-463; Beiblätter, 8, 221 (Abs.); Amer. Jour. Sci., (3) 26, 333-336; Jour. Franklin Inst., 60, 331-340; 88, 416; 90, 64, 831; 92, 348; 94, 349; Chem. News, 22, 218.

Ueber eine neue spectrometrische Methode.

Zenger (K. W.). Sitzungsber. Prager Ges. (1877), 20-40; Beiblätter, 3, 187-188 (Abs.).

# b, qualitative analysis.

On the use of the prism in qualitative analysis.

Gladstone (J. H.). Jour. Chem. Soc., 10 (1858), 79.

On a definite method of qualitative analysis of animal and vegetable colouring-matters by means of the spectrum microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 483.

#### c, QUANTITATIVE ANALYSIS.

Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

Ballmann (H.). Z. analyt. Chem., 14, 297-301; Jour. Chem. Soc., 2 (1876), 550 (Abs.).

De la spectrométrie.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, 76, 707-711; Jour. Chem. Soc., (2) 11, 934 (Abs.).

Note par M. J. Janssen. Comptes Rendus, 76, 711-713; Jour. Chem.

Soc., (2) 11, 1258 (Abs.).

Use of the spectroscope in quantitative analysis.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401, 417.

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1048-1049, 1100-1108; Phil. Mag., (5) 5, 78-90; Jour. Chem. Soc., 34, 190-191 (Abs.); Beiblätter, 2, 342-348 (Abs.).

Researches on spectrum photography in relation to new methods of quantitative chemical analysis.

Hartley (W. N.). Proc. Royal Soc., 38: 81-84; Ber. chem. Ges., 15, 2924-5 (Abs.); Jour. Chem. Soc., 44; 263-4 (Abs.); Heiblätter, 7, 109-110 (Abs.); Z. analyt. Chem., 22, 539-549 (Abs.); Phil. Trans., 175 (1884), 49-62.

The same, continued. Proc. Reyal Soc., 35, 421-2; Chem. News, 43, 128 (Abs.); Beiblätter, 8, 705 (Abs.).

Ueber quantitative Analyse durch Spectralbeobachtung.

Hennig (R.). Ann. Phys. u. Chem., 169, 349-353; Jour. Chem. Soc., (2) 12, 495 (Abs.).

Ueber quantitative Spectralbeobachtung:

Hufner (G:). Jour. prakt. Chem., (2) 15, 290.

Quantitative Spectral analyse.

Jahresber, d. Chemie, (1872) 878, (1878) 147, 178, (1875) 991.

Analyse spectrale quantitative.

Janssen (J.). Comptes Rendus, 71, 626.

Zur quantitativen Spectralanalyse.

Krüss (H.). Cari's Repert. analyt. Chem., Z. 17-22.

Quantitative Spectralanalyse.

Krüss (H.). Ber. chem. Ges., 125, 988-6; Jour. Chem. Soc., 425 (1885), 835 (Abs.).

Quantitative spectroscopic experiments.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 482-489; Beiblätter, 4, 387 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. M.). Proc. Royal Soc., 21, 507-8; Phil. Trans., 164 (1874), 495-499; Phil. Mag., (4) 47, 311-312 (Abs.); Ber. chem. Ges., 6, 1428 (Abs.); Jour. Chem. Soc., (2) 12, 495 (Abs.).

Quantitative Spectralanalyse, insbesondere zu derjenigen des Blutes.

Woorden (C. v.). Ber. chem. Ges., 13 (1980), 439; Z. physiolog. Chem., 4, 9-85.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Preyer (W.). Ber. chem. Ges., 4, 404.

- Analyse quantitative de la lumière blanche.
  - Rood (O. N.). Les Mondes, 48, 610-611.
- Emploi du spectroscope pour la détermination quantitative des matières, colorantes.

Schiff (H.). Bull. Soc. chim. Paris, n. s. 16, 97.

- Beiträge zur quantitativen Spectralanalyse.
  - Settegast (H.). Ann. Phys. u. Chem., n. F. 7, 242-271; Jour. Chem. Soc., 36, 828-9 (Abs.).
- Quantitative Bestimmung von Farbstoffen durch den Spectralapparat. Vierordt (K.). Ber. chem. Ges., 4, 827, 457, 519.
- Zur quantitativen Spectralanalyse.

Vierordt (K.). Ber. chem. Ges., 5, 34-38; Ann. Phys. u. Chem., n. F. 3, 357.

Die Anwendung des Spectralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse.

Vierordt (Dr. Karl). Tübingen, 1878, 8°.

Die Anwendung der quantitativen Spectralanalyse bei den Titrirmethoden.

Vierordt (K.). Ann. Phys. u. Chem., 177, 81-45; Amer. Jour. Sci., (3) 10, 216-7 (Abs.).

- Beschreibung einiger quantitativen Spectralanalyse.
  - Wolff (C. H.). Ber. chem. Ges., 12, 128; Z. analyt. Chem., 18, 88-49.
- Anwendung eines Spectrophotometers zur quantitativen Spectralanalyse. (Von Lahn). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

#### ABSORPTION SPECTRA.

On the photographic method of registering absorption spectra, and its application to solar physics.

Abney (W. de W.). Proc. Phys. Soc., 3, 48-46; Phil. Mag., (5) 7, 318-616; Beiblätter. 3, 621.

Photographic records of absorption spectra.

Abney (W. de W.). Chem. News, 35 (1879), 182.

Absorption spectra of organic bodies.

Abney (Capt.) and Festing (Col.). Chem. News, 45 (1881), 128.

Absorption-spectra thermograms.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 325, 77-98; Jour. Chem. Soc., 435 (1885), 1175 (Aba.).

Transverse absorption of light.

Ackroyd (W.). Chem. News, 35, 159-161.

Selective absorption of light.

Ackroyd (W.). Proc. Physical Soc., 2, 110-118; Phil. Mag., (5) 2, 423-480; Beiblätter, I, 350-2 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, II, 637; Beiblätter, 7, 372 (Abc.).

Theory of absorption bands in the spectrum, and its bearing in photography and chemistry.

Amory (Dr. Robert). Proc. Amer. Acad., 13, 216.

- Ponvoirs absorbants des corps pour la chaleur; analyse spectroscopique.

  Aymonnet. Comptes Rendus, \$3, 971.
- Sur les variations des spectres d'absorption, et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102 (1886), 106-110.

Sur les lois de l'absorption de la lumière dans les cristaux et sur une méthode nouvelle permettant de distinguer dans un cristal certaines bands d'absorption appartenant à des corps différents.

Becquerel (H.). Comptes Rendus, 103 (1987), 165-169.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-34; Jour. Chem. Soc., 48 (1885), 949 (Abs.).

A new form of absorption cell.

Bostwick. Amer. Jour. Sci., (8) 30, 452.

Ueber das Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8 (1877), 189-143; Jour. Chem. Soc., 34, 242-243 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prakt. Chem., (2) 12, 209-215; Amer. Jour. Sci., (3) 11, 142 (Abs.).

Sur les spectres d'absorption de l'ozone et de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-948; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 483 (Abs.); Amer. Jour. Sci., (3) 24, 58-59 (Abs.).

Ueber die Veränderlichkeit der Lage der Absorptionsstreifen.

Claes (F.). Ann. Phys. u. Chem., n. F. 3, 389-414.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère; les radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'évaleur les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Soc. franç. de Phys. (1882), 241-247; Jour. de Phys., (2)
2, 58-63; Z. Instrumenten., 3, 290 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-1207.

Effect of various dyes on the behavior of silver bromide towards the solar spectrum; connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatsschr. f. Chemie, 6, 927-953; Jour. Chem. Soc., 50, 405 (Abs.).

Connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatschr. f. Chemie, 7, 331-350; Jour. Chem. Soc., 50 (1886), 958 (Abs.).

Salpetersaure Nickellösung als Absorptionspäparat.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband 6 (1874), 334-5; Phil. Mag., (4) 46, 329-330; Jour. Chem. Soc., (2) 12, 118.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques, hypochloriques et chloreux.

Gernez (D.). Comptes Rendus, 74, 465-468; Jour. Chem. Soc., (2)10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Note sur le prétendu spectre d'absorption special de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de bromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-1192; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 478-475; Amer. Jour. Sci., (3)
4, 59-60.

Sur les spectres d'absorption de quelques matières colorantes.

Girard (Ch.) et Pabst. Comptes Rendus, 101 (1885), 157-160; Jour. Chem. Soc., 48, 1098 (Abs.).

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1038-4; Beiblätter, 4, 869-870 (Abs.).

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-373 (Abs.); Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-245.

On the absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 57 60; Ber. chem. Ges., 14, 672 (Abs.); Beiblätter, 5, 505-506 (Abs.).

On the absorption of solar rays by atmospheric ozone. Part I.

Hartley (W. H.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1390 (Abs.).

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. chem. Soc., 39, 158-168; 41, 45-49; 47, 685-767; 51, 152 202. Beiblätter, 6. 275. Abs.); Nature, 32 (1885), 98-4.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (G. F.). Archiv. f. Physiol., 4, 497-547; Jour. Chem. Soc., (2) 10, 307-308 (Abs.).

Absorptionsspectra.

Jahresber. d. Chemie (1875), 124.

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-272; Ber. chem. Ges., 15, 952 (Abs.).

On the absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (3) 28, 190-198; Nature, 31, 46.

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 478.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 840-351.

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

Kirchhoff (G.). Monatsber. d. Berliner Akad., 27 Oct., 1859; Phil. Mag., (4) 19, 163.

(This contains the statement of the Law of Exchanges, and the first announcement of the discovery of the cause of Fraunhofer's lines.—

Roscoe.)

Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 299; Phil. Mag., (4) 20, 1.

(This paper contains a discussion of the Mathematical Theory of the Law of Exchanges, and is followed by a postscript on the history of the subject.—Roscoe.)

Beziehungen zwischen der Zusammensetzung und den Absorptionsspectren organischer Verbindungen.

Krüss (J.) und Oecomenides (S.). Ber. chem. Ges., 16, 2051-56; 18, 1426-33; Jour. Chem. Soc., 44, 1041-2 (Abs.); 48, 949; Beiblätter, 7, 897-9 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-159; Jour. Chem. Soc., (2) 9, 185 (Abs.); Z. analyt. Chem., (2) 7, 64 (Abs.). Ueber einige Bezeihungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-624.

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirenden Medien.

Kundt (A.). Sitzungsber. d. Münchener Akad. 1877, 234–262; Ann. Phys. u. Chem., n. F. 4, 34–54.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff, Flintglass und Steinsalz entsprechend.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213-215.

Zur Kenntniss der Absorptionsspectra.

Landauer (J.). Ber. chem. Ges., 11, 1772-1775; 14, 391-394; Jour.
Chem. Soc., 36, 101 (Abs.); 40, 591 (Abs.); Beiblätter, 3, 195-6 (Abs.); 5, 441 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-196; Ann. Phys u. Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5) 15, 153-183;
Ann. Chim. et Phys., (5) 29, 497-542; Z. Instrumentenkunde, 4, 27-82 (Abs.); Jour. de Phys., (2) 2, 371-374 (Abs.); Jour. Franklin Inst., 38, 157-8 (Abs.).

Note on the above by Koyl (C. H.). Johns Hopkins Univ. Cir., 2, 145-6; Phil. Mag., (5) 16, 817-318; Beiblätter, 7, 899.

On the amount of atmospheric absorption.

Langley (S. P.). Amer. Jour. Sci., (3) 28 (1885), 163, 242; Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 28 (1885), 319 (Abs.).

Absorption dunkler Wärmestrahlen durch Gasen und Dämpfen.

Lecher und Pernter. Sitzungsber. d. Wiener Akad., 82 II, 265; Phil. Mag., Jan., 1881; Amer. Jour. Sci., (8) 21, 236.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungber. d. Wiener Akad., 82 II, 851-863.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-490; Ann. Phys. u. Chem., n. F. 17, 477-518 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

Lepel (F. von). Ber. chem. Ges., 11, 1140-1151; Jour. Chem. Soc., 34 925 (Abs.); Beiblätter, 3, 360.

On the absorption of great thicknesses of metallic and metalloidal vapours.

Note 1, of Spectroscopic Notes.

Lockyer (J. N.). Proc. Royal Soc., 22, 871.

On a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 878.

On the absorption spectra of metals volatilized by the oxyhydrogen flame. Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-349; Phil. Mag., (5) 1, 234-239; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

Emploi de la gélatine pour montrer l'absorption dans le spectre. Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-283.

Sur la théorie de l'absorption atmosphérique de la radiation solaire.

Maurer (J.). Archives de Genève, (3) 9, 874-891.

Absorption des Lichtes durch gefärbten Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Absorption spectra of brucine, morphine, strychnine, veratrine and santonine in concentrated acids.

Meyer (A.). Archives Pharmaceutical Soc., (8) 13, 413-416; Jour. Chem. Soc., 36, 269.

Absorption spectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 488.

New way of observing absorption spectra.

Phipson (T. L.). Chem. News, 31 (1875), 255.

M. Chautard's classification of the absorption band of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-63.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-659.

Photometrische Untersuchungen über die Absorption des Lichtes in isotropen und anisotropen Medien.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285-286.

On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 39 (1881), 168–173; Nature, 22, 368–70; Beiblätter, 5, 44–45; Amer. Jour. Sci., (8)
21, 500–501 (Abs.).

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-866; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Ueber die Absorptionsstreifen des Blattgrüns.

Schönn (L.). Ann. Phys. u. Chem., 145, 166-167; Arch. de Genève, (2) 43, 282-283.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-270.

Ueber die Absorption des Lichtes durch Wasser, Steinöl, Ammoniak, Alcohol und Glycerin.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband 8 (1878), 670-5; Jour. Chem. Soc., 34, 698.

Ueber die Lichtempfindlichkeit der Silberhaloidsalze und den Zusammenhang von optischer und chemischer Lichtabsorption.

Schulz-Sellack (C.). Ann. Phys. u. Chem., 143, 161-171; Ber. chem.
Ges., 4, 210-211 (Abs.); Jour. Chem. Soc., (2) 9, 302-803 (Abs.);
Phil. Mag., (4) 41, 549-550 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblätter, 2, 30-31 (Abs.), 410-411 (Abs.).

Recherches sur l'absorption des mayons ultra-violets par diverses substances; spectres d'absorption des terres de la gadolinite et du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-1064; Beiblätter, 3, 196-197 (Abs.).

Sur les spectres d'absorption du didyme et de quelques autres substances extraits de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-424.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreaux.

Soret (J. L.). Arch. de Genève, (3) 4, 261-292; Beiblätter, 5, 124-125 (Abs.).

Absorption des rayons ultra-violets.

Soret (J. L.). Arch. de Genève, (3) 4, 377-380; remarques par M. A. Rilliet, do., 380-1.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J. L.). Arch. de Genève, (3) 10, 429-494.

Spectre d'absorption du sang dans la partie violette et ultra-violette.

Soret (J. L.). Comptes Bendus, 97, 1269-70; Jour. Chem. Soc., 46, 281

Absorption der unsichtbaren Strahlen durch Alkalien, Glukoside, u. s. w. Stokes (G. G. . Ann. Phys. u. Chem., 123, 43.

Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gefärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165-6; Beiblätter, 7, 895-4; Chem. News, 49, 201.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374.

Die graphische Darstellung der Absorptionsspectren.

Vierordt (K.). Ann. Phys. u. Chem., 151, 119-124.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. d. Sächs. Ges. d. Wiss., 24, 135-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350; Jour. Chem. Soc., (2) 11, 712 (Abs.).
Note on this by A. Schuster in Phil. Mag., (4) 45, 350.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspektrums, der Absorption und anomalen Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-979; Jour. Chem. Soc., (2) 12, 1121-1122.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus, Vogel (H.). Monatsber. d. Berliner Akad. (1875), 82-88.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Absorptionsspectrum des Granats und Rubins.

Vogel (H. W.). Ber. chem. Ges., 10 (1877), 878.

Untersuchungen über Absorptionsspectra.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1878), 409-431.

Ueber Verschiedenheit der Absorptionsspectra eines und desselben Stoffs.

Vogel (H. W.). Ber. chem. Ges., 11, 913-920, 1363-71; Jour. Chem. Soc., 36, 189 (Abs.); Beiblätter, 2, 699-702 (Abs.); note on the above by J. Moser. Ber. chem. Ges., 11, 1416 and 1562; Bull. Soc. chim. Paris, n. ser., 32 (1879), 52.

Ueber den Zusammenhang zwischen dem Absorptionsspectrum und der sensibilisirenden Wirkung von Farbstoffen.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 26, 527-80.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-787; Ann. Phys. u. Chem., 155, 87-95.

Untersuchungen über die bei der Beugung des Lichtes auftretenden Absorptionserscheinungen.

Wien (Willy). Ann. Phys. u. Chem., (2) 28 (1886), 117-180.

Einige neuen Absorptionsspectren.

Wolff (C. H.). Carl's Repert., 2, 55-56; Z. analyt. Chem., 22, 96-7; Chem. News, 47, 178 (Abs.).

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wünder (J.). Ber. chem. Ges., 9, 295-299; Jour. Chem. Soc., 1 (1876), 864-5.

Bemerkungen, von R. Hoffmann. Ber. chem. Ges., 9, 494-5.

(For the absorption spectra of particular substances look under those substances.)

# ALCALIES AND ALCALOIDS.

Nachweis der Spectralanalyse der Alcalien.

Belohoubek. Jour. prackt. Chem., 99, 285.

Absorption spectra of the alcaloids.

Hartley (W. N.). Chem. News, 51 (1885), 135; Phil. Trans. (1885),
Part II, 9; Proc. Royal Soc., 38, 1-4 and 191-193; Jour. Chem.
Soc., 48 (1885), 1174 (Abs.).

Spectralreactionen der Alcaloïde.

Hock (C.). Ber. chem. Ges., 14 (1881), 2844b (Abs.); Arch. f. Pharm.,
19, 358-9; Comptes Rendus, 93, 849-51; Jour. Chem. Soc., 42, 849 (Abs.); Beiblätter, 6, 282 (Abs.).

Spectra der Alkalien.

Kirchhoff und Bunsen. Jour. prakt. Chem., 80, 449.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-1988.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11 (1887), 228.

Absorption der unsichtbaren Strahlen durch Alkaloïde, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 43.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze unter alkalischer Entwickelung.

Vogel (H.). Ber. chem. Ges., 6, 88-92.

Spectra der Alkalien.

Wolf und Diacon. Jour. prakt. Chem., 88, 67.

#### ALUMINIUM.

Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, 103 (1886), 1224; 104 (1887), 334-5; Amer. Jour. Sci., (3) 33, 303 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55 (1887), 99.

Aluminium spark spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 19, 40, 47.

Renversement des raies spectrales de l'aluminium.

Cornu (A.). Comptes Rendus, 73, 882.

Détermination des longueurs d'onde des radiations très-réfrangibles de l'aluminium, etc.

Cornu (A.). Jour. de Phys., 10, 425-431; Arch. de Genève, (3) 2, 119-126; Beiblätter, 4, 34-35 (Abs.).

Crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42 (1887), 25-80; Nature, 35 (1887), 810; Amer. Jour. Sci., (3) 33, 804 (Abs.); Chem. News, 55 (1887), 25.

Action des fluorures sur l'alumine.

Frémy et Verneuil. Comptes Rendus, 103 (1887), 788-40.

Specific refraction and dispersion of the alums.

Gladstone (J. H.). Phil. Mag., (5) 20, 162-168; Jour. Chem. Soc., 50 (1886), 298 (Abs.).

Spectre continu de l'alumine.

Gouy. Comptes Rendus, 86, 878.

Distribution of heat in the spectra of various scources of radiation; white oxide of aluminium, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 142.

Spectrum von Aluminium.

Jahresber. d. Chemie (1872), 145.

Aluminium métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 102, planche XV.

Sur la fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, **103**, 478-482, 554-556, 1107; **104**, 330-334; Jour. Chem. Soc., **52** (1887), 191, 409 (Abs.). Remarques par M. Edm. Becquerel. Comptes Rendus, **104**, 334-36 et 824-26.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 1224-1227; Jour. Chem. Soc., 52 (1887), 191 (Abs.).

Indice du quartz pour les raies de l'alumine.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

Spectre de l'aluminium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

Indices de réfraction des aluns.

Soret (C.). Comptes Rendus, 101, 156-157; Jour. Chem. Soc., 48 (1885), 1097 (Abs.).

Réaction très-sensible de l'alumine.

Vogel (H. W.). Bull. Soc. chim. Paris, n. sér. 28, 475-8.

# ANTIMONY.

Antimony Spark Spectrum.

Capron's Photographed Spectra, London, 1877, p. 19, 34.

L'antimoine n'a donné aucune apparence de renversement. Cornu (A.). Comptes Rendus, 73, 832.

Protochlorure d'antimoine, en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 150, planche 23.

Spectrum of antimony at elevated temperatures.

Lockyer (J. N.). Chemical News, 30, 98.

# ARSENIC.

Arsenic spark spectrum, photographed.

Capron's Photographed Spectra, London, 1877, p. 18.

Spectrum of arsenic.

Huntington (O. W.). Proc. Amer. Akad., (2) 9, 35-38; Amer. Jour. Sci., (3) 22, 214-217; Beiblätter, 5, 868 (Abs.).

The spectrum of arsenic at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques Schlagdenhauffen. Jour. de Pharm.. (5) 6, 457-468; Jour. Chem. Soc., 44, 302 (Abs.).

#### ASTRONOMICAL.

a, GENERAL.

Spectroscopic Researches.

D'Arrest. Nature, 17, 311.

Notes on some recent astronomical experiments at high elevations on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220-221 (Abs.).

Spectroscopic observations made at the Earl of Crawford's observatory, Dun Echt.

Copeland (R.). Monthly Notices Astronom. Soc., 45, 90.

Recherches spectroscopiques sur quelques étoiles non encore étudieés. Cruls (L.). Comptes Rendus, 91, 486-7; Beiblätter, 5, 130-1.

Intorno alle strie degli stellari.

Donati. Il nuovo Cimento, 15, 292.

Rapport sur un mémoire et plusieurs notes de M. Janssen concernant l'analyse prismatique de la lumière solaire et de celle de quelques étoiles.

Fizeau. Comptes Rendus, 58, 795.

Recherches sur les spectres des gaz dans leur rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Astrophysical observations made during the year 1882 at the Herény Observatory, Hungary.

Gothard (E. von). Monthly Notices Astronomical Soc., 43, 420-424; Math.-naturwiss. Ber. aus Ungarn, 1, 207-9.

Spectroscopic observations at the Royal Observatory, Greenwich.

Christie (W. H. M.). Nature, 28, 186-9; 30, 147-8.

Ditto.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 27-37; 37, 22-36; Beiblätter, 11, 95 (Abs.).

Beiträge zur Untersuchung der Sternbewegungen und der Lichtbewegung durch Spectral-Messungen.

Homann (Hans). Inaugural.-Diss., Berlin, 1885; Beiblätter, 11 (1887), 146.

Spectrum analysis applied to the heavenly bodies.

Huggins (W.). Rept. British Assoc., 1866; do., 1868; Chem. News, 19, 187.

Spectra of some of the fixed stars. [The first complete and accurate investigation of the stellar spectra.—Roscoe.]

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil. Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Further observations of the Sun and of some of the stars and nebulæ; with an attempt to discover therefrom whether these bodies are moving towards or from the earth.

Huggins (W.). Proc. Royal Soc., 16, 882.

Note on the heat of the stars.

Huggins (W.). Proc. Royal Soc., 17, 309.

Spectren von Gestirne.

Jahresber. d. Chemie, (1856) 140, (1862) 26 u. 27, (1863) 107, 108 u. 110, (1864) 115, (1865) 92, (1866) 78, (1867) 107, (1870) 176.

Remarques sur la note du père Secchi relative aux spectres prismatiques des corps célestes.

Janssen. Comptes Rendus, 57, 215.

Nouvelle lettre annoncante la présence de la vapeur d'eau dans les planètes et les étoiles.

Janssen. Comptes Rendus, 68, 376.

Sur quelques spectres stellaires remarquables par les caractères optiques de la vapeur d'eau.

Janssen. Comptes Rendus, 68, 1545.

Les méthodes en astronomie physique.

Janssen. Ann. du Bureau des Longitudes (1883), 779-812; Beiblätter, 7, 323-4 (Abs.).

Note sur divers points de physique céleste.

Janssen. Comptes Rendus, 96, 527-529; Nature, 475 (Abs.).

Testimony of the spectroscope to the nebular hypothesis.

Kirkwood (D.). Amer. Jour. Sci., (8) 2, 155; Phil. Mag., (4) 42, 899.

Astrophysiche Beobachtungen.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 126-127.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrb. d. Sternwarte bei München (1868), 90.

The Mt. Whitney Expedition.

Langley (S. P.). Nature, 26, 314-317.

Note on the bright lines in the spectra of stars.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

A course of four lectures on spectrum analysis, with its applications to astronomy; delivered at the Royal Institution of Great Britain in May and June, 1867.

Miller (W. A.). Chem. News, 15, 259, 276; 16, 8, 20, 47, 71.

Spectrum analysis of the Sun and other heavenly bodies.

Miller (W. A.). Pop. Sci. Monthly, 8, 335.

Stars with peculiar spectra, discovered at the astronomical observatory of Harvard College.

Pickering (E. C.). Astronom. Nachr., 101, 78-74; Beiblätter, 6, 106 (Abs.).

The spectroscope in astronomical observation.

Proctor (R. A.). Pop. Sci. Rev., 8, 141.

The measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., (3) 35, 71.

Sur les spectres prismatiques des corps célestes.

Secchi (A.). Comptes Rendus, 57, 71. Remarques par M. Janssen, do., 215.

Analyse spectrale de la lumière de quelques étoiles.

Secchi (A.). Comptes Rendus, 63, 824, 864.

Nouvelles recherches sur l'analyse de la lumière spectrale des étoiles.

Secchi (A.). Comptes Rendus, 63, 621.

Sur les spectres de quelques étoiles.

Secchi (A.). Comptes Rendus, 64, 845.

Nouvelle note sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 64, 774.

Note accompagnant la présentation d'un exemplaire de son mémoire "Sur les Spectres stellaires" imprimé dans les publications de la Societé des Quarante de Modène.

Secchi (A.). Comptes Rendus, 65, 562.

Note sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 67, 378.

Étude spectrale des divers rayons du Soleil et rapprochements entre les spectres obtenus et ceux de certaines étoiles.

Secchi (A.). Comptes Rendus, 68, 959.

Note sur l'intervention probable des gaz composés dans les caractères spectroscopiques de la lumière de certaines étoiles ou de diverses régions du Soleil.

Secchi (A.). Comptes Rendus, 68, 1086.

Nouvelles remarques sur les spectres fournis par divers types d'étoiles.

Secchi (A.). Comptes Rendus, 71, 252; Ann. Phys. u. Chem., 131, 156.

Les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655.

Spettri prismatici delle Stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

Stellar Spectrometry.

Secchi (A.). Chemical News, 18, 168.

Bright lines in stellar spectra.

Sherman. Amer. Jour. Sci., (3) 30, 378, 475; note by Maunder (E. W.), Monthly Notices, 46 (1885), 282-4; reply to note, do., 47 (1886), 14.

Colour in practical astronomy, spectroscopically examined.

Smyth (Piazzi). Trans. Royal Soc. Edinburgh, 28, 779-843; Beiblätter, 4, 548.

Physical constitution of the Sun and stars.

Stoney (G. J.). Proc. Royal Soc., 16, 25; 17, 1.

Spectroscopic observations with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Spectroscopic observations of various stars.

Sueur (A. Le. Proc. Royal Soc., 19, 18.

Ueber die Spectra der weissen Fixsterne.

Vogel (H. V.). Monatsber. Berliner Akad. (1880), 192–198; Beiblätter, 4, 786 (Abs.); Photographic News, Feb. 20, 1880; Nature, 21, 410.

Einige spectralanalytische Untersuchungen an Sternen, ausgeführt mit dem grossen Refractor der Wiener Sternwarte.

Vogel (H. W.). Sitzungsber. d. Wiener Akad., 88 II, 791-815; Beiblätter, 8, 508-511 (Abs.).

Spectroscopie stellaire.

Wolf et Rayet. Comptes Rendus, 65, 292.

Analyse spectrale de la lumière de quelques étoiles.

Wolf. Comptes Rendus, 68, 1470.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 878.

# b, comets.

# 1, Spectra of Comets in general.

La matière radiante et les comètes.

Begouen. Revue scientifique, 30, 297.

Remarques sur la lumière propre des comètes.

Berthelot. Ann. Chim. et Phys., (5) 27, 282-3; Jour. Chem. Soc., 44, 261 (Abs.).

Comets; their composition, purpose and effect upon the earth.

Boss (L.). Observatory (1882), 215-221.

Sur l'analyse spectrale appliquée aux comètes.

Faye. Comptes Rendus, 93, 861.

Sur les queues des comètes.

Flammarion. Comptes Rendus, 93, 186.

On Comets.

Huggins (W.). Proc. Royal Institution, 10, 1-11; Ann. Chim. et Phys., (5) 27, 408-425.

Ueber die chemische Constitution der Cometen, verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-139.

Observations sur la réfraction cométaire.

Sur la polarization de la lumière des comètes.

Prazmowski. Comptes Rendus, 93, 262.

Sur la lumière des comètes.

Respighi. Comptes Rendus, 93, 439-440; Phil. Mag., (5) 12, 300-307; Beiblätter, 5, 745 (Abs.).

Observations sur le spectre des comètes.

Secchi (A.). Comptes Rendus, 78, 1467.

Cometary Theory.

Tyndall (J.). Phil. Mag., (4) 37, 241.

Ueber die Spectra der Cometen.

Vogel (H.). Astronom. Nachr., 80, 183-188; Ann. Phys. u. Chem., 149, 400-408; Nature, 9, 193.

# 2, Particular Comets.

(In the order of their last known dates.)

Comet c, 1859 (Donati's).

c, 1859, Donati's Comet. Comparaison du spectre produit par la lumière de la comète de Donati et par celle d'Arcturus.

Porro. Comptes Rendus, 47, 873.

Comet a, 1866.

Spectrum of Comet a, 1866.

Huggins (W.). Proc. Royal Soc., 15, 5.

Comet b, 1867.

Spectrum of Comet b, 1867.

Huggins (W.). Monthly Notices Astronom. Soc., 17, 288.

Comet b, 1868.

Spectrum of Comet b, 1868.

Huggins (W.). Proc. Royal Soc., 16, 481.

Comet a, 1871.

Spectrum of Comet a, 1871.

Huggins (W.). Chem. News, 23, 265.

Comet c, 1873.

Spectre de la comète e, 1873.

Wolf (C.) et Rayet (G.). Comptes Rendus, 77, 529.

Comet d, 1873.

Spectre de la comète d, 1873.

Rayet (G.) et André. Comptes Rendus, 77, 564.

Comet c, 1874 (Coggia's).

Observations spectroscopiques de la queue de la comète de Coggia.

Barthélemy (A.). Comptes Rendus, 79, 818, 578.

Spectrum of Coggia's Comet.

Huggins (W.). Proc. Royal Soc., 23, 154-159.

Coggia's Comet, its physical condition and structure. Physical theory of comets.

Norton (W. A.). Amer. Jour. Sci., (8) 15, 161-77.

Note sur le spectre de la comète de Coggia (c, 1874).

Rayet (G.). Comptes Rendus, 78, 1650-2; Amer. Jour. Sci., (3) 8, 156 (Abs.).

Spectre de la comète de Coggia.

Secchi (A.). Comptes Rendus, 79, 20, 284.

Observations spectroscopiques sur la comète de Coggia.

Wolf et Rayet. Comptes Rendus, 79, 370-1.

Comet b, 1877 (Winnecke's).

On the spectrum of Comet b, 1877 (Winnecke's).

Airy (G. B.). Monthly Notices Astronom. Soc., 37, 469, 470.

The spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 480.

Spectre de la comète de Winnecke.

Secchi (A.). Comptes Rendus, 66, 1299, 1336.

Lumière de la comète de Winnecke.

Wolf et Rayet. Comptes Rendus, 71, 49.

Comet c, 1877 (Swift-Borelly).

On the spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 430.

Observations du spectre de la comète Borelly.

Secchi (A.). Comptes Rendus, 84, 427, 1289.

Ueber das Spectrum des von Borelly am 20; August entdeckten Cometen, sowie über das des hellen von Henry am 23 August aufgefundenen Cometen.

Vogel (H.). Astronom. Nachr. 82, 217-20; Amer. Jour. Sci., (3) 6, 393 (Abs.).

Observations des comètes b (Winnecke) et c (Swift-Borelly), 1877. Wolf. Comptes Rendus, 84, 929-31, 1289-92.

Comet a, 1878 (Brorsen's).

Spectrum of Brorsen's Comet, observed at Greenwich.

Airy (G. B.). Monthly Notices Astronomical Soc., 39, 428-30.

Spectrum of Brorsen's Comet.

Backhouse (T. W.). Nature, 20, 28.

Spectrum des Brorsen'schen Cometen.

Brédischin (T.). Astronom. Nachr., 95, 15-16.

Spectrum of Brorsen's Comet.

Christie (W. H. M.). Nature, 20, 5, 75; Amer. Jour. Sci., (3) 17 496-7.

Spectrum of Brorsen's Comet.

Huggins (W.). Proc. Royal Soc., 16, 886; Nature, 19, 579.

Vorläufige Anzeige über das Spectrum des Brorsen'schen Cometen.

Konkoly (N. von). Astronom. Nachr., 94, 335-6; 95, 193-6.

Observations of Brorsen's Comet.

Lindsay (Lord). Monthly Notices Astronom. Soc., 39, 430.

Spectre de la comète de Brorsen.

Secchi (A.). Comptes Rendus, 66, 881.

Spectrum of Brorsen's Comet.

Watts (W. M.). Nature, 20, 27-8, 94.

Spectrum of Brorsen's Comet.

Young (C. A.). Amer. Jour. Sci., (3) 17, 373-5; Nature, 19, 559; Phil. Mag., (5) 8, 178-9.

Comet d, 1879 (Palisa's).

Spectroscopische Beobachtung des Cometen Palisa.

Konkoly (N. von). Astronom. Nachr., 96, 39-42.

Observations of the spectrum of comet d, 1879.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 28-5.

Comet d, 1880 (Hartwig's). Spectrum of.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 41, 52-3;

Nature, 22, 557; Beiblätter, 5, 129.

#### Comet b, 1881.

Observations of comet b, 1881.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 413-21.

Spectra of comets b and c, 1881.

Capron (J. R.). Nature, 24, 480-1.

Spectra of comets b and c, 1881.

Greenwich Observatory Reports, Monthly Notices Astronom. Soc., 42, 14-19.

Note on the observations of comet b, 1881, made at the United States Naval Observatory.

Harkness (W.). Amer. Jour. Sci., (8) 22, 137-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Preliminary notes on the photographic spectrum of comet b, 1881.

Huggins (W.). Proc. Royal Soc., 33, 1; Chem. News, 44, 183; Rept. British Assoc. (1881), 320; Comptes Rendus, 92, 1483; 93, 26.

Note sur la photographie de la comète b, 1881, obtenu à l'observatoire de Meudon.

Janssen (J.). Jour. de Phys., (2) 1, 441-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt in O'Gyalla, Ungarn.

Konkoly (N. von). Naturforscher, 14, 321, 328, 381.

Physical observations of comet b, 1881, made at Forrest Lodge, Maresfield.

Noble (W.). Monthly Notices Astronom. Soc., 42, 47-49.

Spectrum of comet b, 1881.

Seabroke (G. M.). Nature, 24, 201, 481.

Observations spectroscopiques and a symmetre b, 1881

Thollon (L.). Compter a3, 87, 259 and a symmetre, 24, 224.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronom. Nach., 100, 301-4; Beiblätter, 5, 867 (Abs.).

Observations de la comète b, 1881.

Wolf (C.). Comptes Rendus, 93, 36.

Spectroscopic observations upon the comet b, 1881.

Young (C. A.). Amer. J. Sci., (3) 22, 135-7; Beiblätter, 5, 663-4 (Abs.).

### Comet c, 1881.

Note on the spectrum of comet c, 1881, as seen with a Browning's miniature spectroscope on the 4½ telescope.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 43.

Note on photographs of the spectrum of the comet of June, 1881.

Draper (H.). Amer. Jour. Sci., (3) 22, 134-5; Chem. News, 44, 75-6;
 Mem. Spettr. ital., 10, 150-1; Jour. de Phys., (2) 1, 153 (Abs.).

Spectra of comets b and c, 1881.

Greenwich Observatory, Monthly Notices Astronom. Soc., 42, 14-19.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 14, 321, 823, 831.

Études spectroscopiques sur les comètes b et c, 1881.

Thollon (L.). Comptes Rendus, 93, 383.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronomische Nachr., 100, 301-4; Beiblätter, 5, 867.

Spectrum of Schaeberle's Comet.

Capron (J. R.). Nature, 24, 430-1. (See also Tacchini, in Comptes Rendus, 93, 261.)

Telbutt's Comet, origination of its proper light.

Smyth (C. Piazzi). Nature, 24, 430.

Comet a, 1882 (Wells's).

Spectrum of comet a, 1882 (Wells's).

Backhouse (T. W.). Nature, 26, 56; Beiblätter, 6, 678.

Les vapeurs du sodium dans la comète de Wells.

Bredichin (T.). Astronom. Nachr., 102, 207; Beiblätter, 6, 678 (Abs.).

Ueber das Spectrum des Cometen Wells.

Dunér (N. C.). Astronom. Nachr., 102, 159, 169; Monthly Notices Astronom. Soc., 42, 412-13; Beiblätter, 6, 678 (Abs.).

Spectroscopic observations of comet a, 1882 (Wells).

Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 42, 251, 410-12.

Ueber das Spectrum des Cometen a, 1882 (Wells).

Hasselberg (B.). Astronom. Nachr., 102, 259-64; Beiblätter, 6, 744 (Abs.); Nature, 26, 344 (Abs.).

On the photographic spectrum of comet a, 1882 (Wells).

Huggins (W.). Proc. Royal Soc., 34, 148-150; Nature, 26, 179 (Abs.); Beiblätter, 6, 679 (Abs.); Amer. Jour. Sci., (3) 24, 402-3; Comptes Rendus, 94, 1689-91.

Spectroscopische Beobachtungen des Cometen Wells, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 15, 245; Beiblätter, 6, 678 (Abs.).

On the spectrum of comet a, 1882 (Wells), observed at the Royal Observatory of Greenwich.

Maunder. Monthly Notices Astronom. Soc., 42, 251, 410-12; Mem. Spettr. ital., 11, 79.

Spettro della Cometa Wells osservato à Palermo.

Riccò (A.). Mem. Spettr. ital., 11, 76.

Cometa Wells, Spettro osservato all'Equatore Merz del R. Osservatorio del Collegio romano.

Tacchini (R.). Mem. Spettr. ital., 11, 77-8; Comptes Rendus, 94, 1081-8.

Ueber das Spectrum des Cometen Wells.

Vogel (H. C.). Astronom. Nachr., 102, 159, 199-202; Beiblätter, 6, 678 (Abs.).

Su di una particolaritá luminosa rimarcata a Palermo nella coda della cometa (Wells).

Zona (T.). Mem. Spettr. ital., 11, 76-7; Beiblätter, 6, 679 (Abs.).

Comet b, 1882 (Cruls).

Analyse spectrale de la grande comète australe.

Cruls. Comptes Rendus, 95, 825.

Bescheichnungen des grossen September Cometen. 1882, am astrophysicalischen Observatorium zu Henfor, Ungarta.

Caffeen (A. 1984). Astronom Nuche., 102, 377-487, Bridlings. V. 116.

- Spectroscopische Beobachtungen des grossen September Cometen, 1892 II.

  Gedinal: E. von: Astronom, Nachn., 105, 311-14.
- Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Gony et TheBea. Comptes Rendus. 96, 371-2; Nature. 27, 380 (Abs.); Amer. Jour. Sci., (3), 25, 309; Beddinner, 7, 288 (Abs.).

Zur Spectroscopie des grossen September Cometen, 1882.

Hasselberg (B.). Astronom. Nachr., 106, 13-16; Beibliaver, 7, 293

Beobachtung des grossen September Cometen auf der Sternwarte in O'Gvalia Ungarn'.

Konkoly (N. ron). Astronom. Nachr., 104, 43-8; Monthly Notices. Astronom. Soc., 43, 56-7; Beiblätter, 7, 283.

Osservazioni astrofisiche della grande cometa di settembre, 1882.

Riccò (A.). Astronom. Nachr., 103, 281-4; Beiblätter, 7, 28 (Abs.).

Osservazioni spettroscopiche della cometa Cruls fatte collo spettroscopio di Clean applicato al refrattore di Om. 25 nell'Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 11, Sept. 15-17.

- Observations of the great comet b, 1882, made at Sydney Observatory, Russell (H. C.). Monthly Notices Astronom. Soc., 43, 81.
- Sur une comète observée à Nice.

Thollon et Gouy. Comptes Rendus, 95, 333-7; Beiblätter, 7, 116 (Als.).

Observations spectroscopiques sur la grande comète (Cruls).

Thollon et Gouy. Comptes Rendus, 95, 712-14; Nature, 27, 24 (Abs.); Beiblätter, 7, 28-9 (Abs.).

Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 871.

Beobachtungen des grossen September Cometen, 1882.

Vogel (H. C.). Astronom. Nuchr., 103, 279-282; Beiblätter, 7, 28 (Abs.).

(See also Tacchini, in Comptes Rendus, 93, 261.)

- Comet a, 1883 (Brooks-Swift). Beobachtung des Cometen a, 1883 (Brooks-Swift).
  - Gothard (E. von). Astronom. Nachr., 105, 135-6.
- Spectroscopic Observations of Comet a, 1883 (Brooks-Swift).

  Konkoly (N. von). Monthly Notices Astronom. Soc., 43, 328-9.
- Finlay's Comet. Sulla spettro della cometa Finlay, Settembre, 1883.

  Hasselberg (B.). Mem. Spettr. ital., 11, no. 11, 1-3; Beiblätter, 7, 293 (Abs.).

# Comet a, 1884 (Pons-Brooks).

- Aspect de la comète Pons-Brooks, le 13 Janvier, 1884. Cruls (L.). Comptes Rendus, 98, 898.
- Spectroscopische Beobachtungen des Cometen a, 1884 (Pons-Brooks). Gothard (E. von). Astronom. Nachr., 109, 99-106.
- Spectrum of Comet b, 1883 (Pons-Brooks).

  Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 44, 62-3.
- Spectroscopische Beobachtungen des Cometen Pons-Brooks. Hasselberg (B.). Astronom. Nachr., 108, 55-56.
- Vorläufige spectroscopische Beobachtung des Cometen Pons-Brooks.

  Konkoly (N. von). Astronom. Nachr., 107, 41-2; Observatory, 6, 333-4; Amer. Jour. Sci., (8) 27, 76-7: Beiblätter, 8, 33 (Abs.); Monthly Notices Astronom. Soc., 44, 251-3.
- Spectroscopische Beobachtungen des Cometen Pons-Brooks. Kövesligethy (R. v.). Astronom. Nachr., 108, 169-174.
- Observations spectroscopiques sur la comète Pons-Brooks, Perrotin. Comptes Rendus, 98, 844.
- Spectre de la comète Pons-Brooks, à l'observatoire de Bordeaux.

  Rayet (G.). Comptes Rendus, 97, 1352; 98, 348.
- Sullo spettro della cometa Pons-Brooks.

  Riccò (A.). Mem. Spettr. ital., 13, 39-40.
- Observations spectroscopiques faites à Nice sur la comète Pons-Brooks.

  Thollon (L.). Comptes Rendus, 98, 38; Beiblätter, 8, 221.
- Étude spectroscopique de la comète Pons-Brooks, faite au réflecteur de Om. 50 de l'Observatoire d'Alger.
  - Trépied (C.). Comptes Rendus, 97, 1540-1; Nature, 19, 255 (Abs.).

Sur le spectre de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 32-3.

Variation singulière de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 614.

Einige Beobschtungen über den Cometen. Pons-Brooks, insbesondere über das Spectrum desselben.

Vogel (H. C.). Astronom. Nachr., 108, 21-6.

Observations of Comet Pons-Brooks.

Young (C. A.). Astronom. Nachr., 108, 205-8.

#### Encke's Comet.

Note on the spectrum of Encke's Comet.

Huggins (W.). Proc. Royal Soc., 20, 45; Comptes Rendus, 73, 1297-1801.

Sur le spectre de la comète Encke.

Tacchini (P.). Comptes Rendus, 93, 949; Beiblätter, 6, 106.

Spectre de la comète de Tempel.

Secchi (A.). Comptes Rendus, 62, 210.

Spectrum of comet c, 1886.

Sherman. Amer. Jour. Sci., (3) 32, 1

c, DISPLACEMENT OF STELLAR SPECTRA.

Effect of a star's rotation on its spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 37, 278.

Spectroscopic results for the motions of stars in the line of sight, obtained at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 218; 38, 493; 41, 109; 42, 230; 43, 80; 44, 89; 45, 830; 46, 126; 47, 101.

Note on the displacement of lines in the spectra of stars.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 36, 313-317.

Remarques sur le déplacement des raies du spectre par le mouvement du corps lumineux ou de l'observateur.

Fizeau. Comptes Rendus, 69, 743; 70, 1062.

Sur un travail de M. l'abbé Spée concernant le déplacement des raies des spectres d'étoiles.

Houzeau et Montigny. Bull. de l'Acad. de Belgique, 47, 318-324.

Sur le déplacement des raies dans les spectres des étoiles produits par leur mouvement dans l'épace.

Huggins (W.). Comptes Rendus, \$2, 1291-1293; Phil. Mag., (5) 2, 72-74.

On a method of finding the parallax of double stars, and on the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 339-347.

Spectroscopic observations of the motions of stars in the line of sight, made at the Temple Observatory, Rugby.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 39, 450-453; 47 (1887), 93.

Sur le déplacement des raies dans les spectres des étoiles produit par leurs mouvements dans l'épace.

Secchi (A.). Comptes Rendus, 82, 761, 812.

Nouvelles remarques sur question du déplacement des raies spectrales, dû au mouvement propre des astres.

Secchi (A.). Comptes Rendus, 83, 117.

#### d, FIXED STARS.

# 1, In general.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Spectra of some of the fixed stars.

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil.Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrbuch d. Sternwarte bei München (1868), 90.

Spectrum der Fixsterne.

Merz (8.). Ann. Phys. u. Chem., 117, 654.

Spettri prismatici delle stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

2, Particular fixed stars.

Spectrum of Novæ Andromedæ.

Sherman. Amer. Jour. Sci., (8) 30, 378.

Observations of the spectrum of a new star in Andromeda at Greenwich^a
Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885), 19-21.

Outburst in Andromeda.

Perry (S. J.). Monthly Notices Astronom. Soc., 46 (1885-6), 22.

Note sur le spectre d'Antarès.

Secchi (A.). Comptes Rendus, 69, 163.

Spectrum of  $\eta$  Argo with bright lines.

Sueur (A. Le). Nature, 1, 517.

Spectroscopische Beobachtung von y Cassiopeiæ.

Konkoly (N. von). Astronom. Nachr., 107, 61-2; Beiblätter, 8, 221.

Beobachtungen der hellen Linien in dem Spectrum von 7 Cassiopeiæ.

Gothard (E. von). Astronom. Nachr., **106**, 293; **108**, 233; Beiblätter, **7**, 862 (Abs.).

Spectrum of a new star in Corona Borealis.

Huggins (W.) and Miller (W. A.). Proc. Royal Soc., 15, 146.

On the spectrum of the new star in Cygnus.

Backhouse (J. W.). Monthly Notices Astronom. Soc., 39, 84-37; Nature, 15, 295-6.

The new star in Cygnus.

Becquerel (E.). Monthly Notices Astronom. Soc., 37, 200-202; Amer. Jour. Sci., (3) 13, 395-97.

The new star in Cygnus.

Copeland (R.). Astronom. Nachr., 89, 37-40, 63; 90, 351-2; Nature, 15, 315-16; Amer. Jour. Sci., (3) 15, 76-77.

Sur le spectre de l'étoile nouvelle de la constellation du Cygne.

Cornu (A.). Comptes Rendus, 83, 1172-1174; Nature, 15, 158.

Spectrum of Nova Cygni.

Nature, 16, 400-403.

Étude spectroscopique de la nouvelle étoile signalée par M. Schmidt.

Secchi (A.). Comptes Rendus, 84, 107, 290.

Der neue Stern in Cygnus.

Vogel (H.). Astronom. Nachr., 89, 37-40, 63; 90, 351; Nature, 15, 315; Amer. Jour. Sci., (3) 15, 76.

Spectrum of the star Ll 13412.

Pickering (E. C.). Nature, 23, 604; Beiblätter, 5, 511 (Abs.). 6 T

Photographs of the spectra of a Lyra and of Venus.

Draper (H.). Amer. Jour. Sci., (3) 13, 95; Nature, 15, 218; Phil. Mag., (5) 3, 238.

Beobachtungen der hallen Linien in dem Spectrum von  $\beta$  Lyræ.

Gothard (E. von). Astronom. Nachr., 108, 233.

Lettre accompagnant l'envoi d'une figure du spectre d'a d'Orion.

Secchi (A.). Comptes Rendus, 62, 591; Monthly Notices Astronom. Soc., 26, 214.

Spectrum of the variable star a Orionis.

Huggins (W.) and Miller (W. A.). Monthly Notices Astronom. Soc., 26, 215.

Sur le spectre de l'étoile a d'Orion.

Janssen (J.). Comptes Rendus, 57, 1008.

Spectrum of a new star in Orion.

Copeland (R.). Monthly Notices, 46, 109-114. Note by Maunder, do., 284-6.

Observations on the spectrum of Nova Orionis at Greenwich.

Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885-6), 114-115.

Disappearance of & Piscium at its occultation of Jan. 4, 1865, with conclusions as to the non-existence of a lunar atmosphere.

Huggins (W.). Monthly Notices, 25, 60; Chem. News, 11, 175.

Sur le spectre de Sirius.

Janssen (J.). Comptes Rendus, 57, 1008.

Note sur les spectres des trois étoiles de Wolf.

Secchi (A.). Comptes Rendus, 69, 39, 163, 1053.

Sur trois petites étoiles.

Wolf et Rayet. Comptes Rendus, August, 1867.

e, measurements of stellar spectra.

Measurements of stellar lines.

Airy (G. B.). Monthly Notices Astronom. Soc., 23, 190.

Stellar spectrometry.

Report of the British Assoc., 1868.

Measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., 35, 71.

Measurement of a few stellar lines.

Secchi (A.). Astronom. Nachr., 8. März, 1868.

f, SPECTRA OF METEORS.

Spectra of the meteors of November 13-14, 1866.

Browning (J.). Phil. Mag., (4) 33, 234.

Presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

Meteoric Arc Spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 82, 88.

Spectra of shooting stars.

Herschel (A. S.). Nature, 9, 142-3.

Progress of meteor spectroscopy.

Herschel (A. S.). Nature, 24, 507-8; Beiblätter, 5, 871.

Spectroscopische Beobachtungen der Meteorite.

Konkoly (N. von). Astronom. Nachr., 95, 283-6; Monthly Notices Astronom. Soc., 33, 575-6; Nature, 20, 521-2 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-9.

A catalogue of observations of luminous meteors,

by Baden Powell from 1848 till 1859, by Glaisher till 1867, and by others till 1882; all in the Reports of the British Assoc. for those years.

Note sur les spectres stellaires, et sur les étoiles filantes.

Secchi (A.). Comptes Rendus, 65, 979; 75, 606-613.

Sur les diverses circonstances de l'apparition d'un bolide aux environs de Rome et sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655-9.

L'existence d'essaines d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 558-7, 638-642.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (8) 9, 294-302; Jour. Chem. Soc. (1876), 1, 27-8 (Abs.).

Preliminary note on an examination of gases of the meteorite of Feb. 12, 1875.

Wright (A. W.). Amer. Jour. Sci., (8) 9, 459-60; Jour. Chem. Soc. (1876), 1, 352 (Abs.).

#### 4. NEBULAL

### I, In general

Recherches sur l'intensité relative des raies spectrales des nébuleures.

Piévez (C.). Bull. de l'Acad. de Belgique, (2) 43, 107-113; Phil. Mag., (5) 5, 309-312; Beiblätter, 4, 481-2.

Recherches sur les spectres des gaz dans leurs rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Spectra of the nebulæ.

Huggins (W.). Phil. Trans. (1864), 427.

Further observations on the spectra of some of the nebulæ.

Huggins (W.). Phil. Trans. (1866), 381-387; Proc. Royal Soc., 15, 17.

On the motions of some of the nebulæ towards or from the Earth.

Huggins (W.). Proc. Royal Soc., 22, 251-4; Amer. Jour. Sci., (3) 8, 75-77; Phil. Mag., (4) 48, 471-4.

Note on the bright lines in the spectra of stars and nebulæ.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 303-305; Beiblätter, 5, 120 (Abs.).

Spettro di alcune nebulose.

Secchi (A.). Naturforscher (Berliner), 1, 279; 2, 279, 356; Mem. Spettr. ital., 1, 33.

2, Spectra of particular nebulæ.

Nebula of Argo.

Le Sueur. Proc. Royal Soc., 18, 245.

The nebula in Cygnus.

Winnecke. Monthly Notices Astronom. Soc., 40, 92.

On the inferences to be drawn from the appearance of bright lines in the spectra of irresolvable nebulæ.

Huggins (W.). Proc. Royal Soc., 26, 179-181.

On a cause for the appearance of bright lines in the spectra of irresolvable star-clusters.

Stone (E. J.). Proc. Royal Soc., 26, 156-7, 517-19; Monthly Notices Astronom. Soc., 38, 106-8.

On photographs of the nebula in Orion and of its spectrum.

Draper (H.). Amer. Jour. Sci., (3) 23, 339; Monthly Notices Astronom. Soc., 42, 367-8; Nature, 26, 33; Comptes Rendus, 94, 1243.

Spectrum of the Great Nebula in the Sword-Handle of Orion.

Huggins (W.). Proc. Royal Soc., 14, 39.

On the spectrum of the Great Nebula in Orion, and on the motions of some stars towards or from the earth.

Huggins (W.). Proc. Royal Soc., 20, 379-394; Phil. Mag., (4) 45, 133-147; Nature, 6, 231-235; Amer. Jour. Sci., (3) 5, 75-78; Monthly Notices Astronom. Soc., 32, 359-362; Comptes Rendus, 94, 685.

Photographic spectrum of the Great Nebula in Orion.

Huggins (W.). Nature, 25, 489; Ann. Chim. et Phys., (5) 28, 282;Proc. Royal Soc., 33, 425; Amer. Jour. Sci., (3) 23, 335-6.

Lumière spectrale de la nébuleuse d'Orion.

Secchi (A.). Comptes Rendus, 60, 548.

Observations of the Nebula of Orion, made with the great Melbourne Telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 303-5; Beiblätter, 5, 130 (Abs.).

Neue Linien im Spectrum planetischer Nebel.

Zöllner (F.). Ann. Phys. u. Chem., 144, 451.

Spectra of southern nebulæ.

Herschel (Lieut. John). Proc. Royal Soc., 16, 416, 417, 451; 17, 58 61, 303.

Note on the Rev. T. W. Webb's new nebula.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 91; Beiblätter, 4, 614 (Abs.).

Ueber das Spectrum des von Webb entdeckten Nebels im Schwan.

Vogel (H. C.). Astronom. Nachr., 96, 287; Beiblätter, 4, 468 (Abs.); Monthly Notices Astronom. Soc., 40, 294.

h, photography of stellar spectra.

Researches upon the photography of stellar and planetary spectra.

Draper (H.). Proc. Amer. Acad., n. s. 11, 231-261; Amer. Jour. Sci., (3) 18, 419-425; Nature, 21, 83-85; Beiblätter, 4, 374.

Note on the photographic spectra of stars.

Brogins (W.), Proc. Boyal Soc., 25, 445; 20, 38; Names 21, 225-226; Pail Trans, 171, 925-256; Beildinger, 457-456; Link

Nue préliminaire sur les phenographies des spectres sullaires.

Huggins W., Compter Render. 82. 1222.

Sur les spectres phrangraphiques des étales.

Huggins (W.). Comptes Bendus, 90, 73-73; Amer. Jour. Sci., (3) 19, 317.

Investigations in stellar phraography.

Pickering (R. C.). Memoire Amer. Acad., 11 (1995), 173-225; Beibister, 11 (1997), 115 (Aba.).

Report on the present state of celestial photography in England.

Rue (Warren de la). Rep'ts British Amee. See 1950 and 1961.

Études astrophotographiques.

Zenger (C. V.). Comptes Bendus, 97, 552-555; Beiblitzer, 7. 800-862 (Abs.).

i, SPECTRA OF PLANETS.

## 1, In general

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 279-385; Jour. Chem. Soc., 34, 189 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math-naturwiss. Ber. aus Ungarn, 1, 135-139.

On the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 339-347.

Bur les raies atmosphériques des planètes.

Secchi (A.). Comptes Rendus, 59, 182.

Untersuchungen über die Spectra der Planeten.

Vogel (H. C.). Ann. Phys. u. Chem., 158, 461-472.

2, Spectra of particular planets.

On a photograph of Jupiter's spectrum showing evidence of intrinsic light from that planet.

Draper (H.). Monthly Notices Astronom. Soc., 40, 433-435; Amer. Jour. Sci., (3) 20, 118-120.

Note on the spectrum of the red spot on Jupiter.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 87-88; Beiblätter, 4, 614 (Abs.).

Observation du spectre de Jupiter.

Secchi (A.). Comptes Rendus, 59, 309.

Spectroscopic observations of Jupiter, made with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Physical observations of Mars.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 34-38.

Spectrum of Mars.

Huggins (W.). Monthly Notices Astronom. Soc., 27, 178; Jour. Franklin Inst., 84, 261.

Note on the spectrum of the eclipsed Moon.

Noble (W.). Monthly Notices Astronom. Soc., 38, 84.

Sur l'application de l'analyse spectrale à la question de l'atmosphère lunaire.

Janssen (J.). Comptes Rendus, 56, 962.

Lettre sur le spectre de la planète Neptune et sur quelques faits d'analyse spectrale.

Secchi (A.). Comptes Rendus, 69, 1050.

Raies du spectre du planète Saturne.

Secchi (A.). Comptes Rendus, 60, 1167; Phil. Mag., (4) 30, 73.

Spectrum of Uranus.

Huggins (W.). Chem. News, 23, 265; Proc. Royal Soc.. 19, 488–491; Phil. Mag., (4) 42, 223–226; Nature, 4, 88; Amer. Jour. Sci., (3) 2, 138.

Résultats fournis par l'analyse spectrale de la lumière d'Uranus.

Secchi (A.). Comptes Rendus, 68, 761.

The Transit of Venus.

Cacciatore. Nature, 27, 180.

Osservazioni del passagio di Venere sul disco solare fatte in Italia nel 6 Dicembre 1882.

> Crova (A.). Mem. Spettr. ital., 11, Dic. 1-23; Beiblätter, 7, 875 (Abs.).

Photographs of the spectrum of Venus, Dec., 1876.

Draper (H.). Nature, 15, 218; Amer. Jour. Sci., (3) 13, 95; Phil. Mag., (5) 3, 238.

Observations of the transit of Venus, Dec. 6, 1882, made at Mells, ten miles south of Bath.

Horner (Maurer). Mon. Not. Astronom. Soc., 43, 276.

Note sur l'observation du passage de la planète Vénus sur le Soleil. Janssen (J.). Comptes Rendus, 96, 288-92; Beiblätter, 7, 375.

Observation of the transit of Venus, Dec. 6, 1882, made at the Allegheny Observatory.

Langley (S. P.). Mon. Not. Astronom. Soc., 41, 71.

The spectroscope and the transit of Venus.

Nature, 11, 171; 27, 156-157.

Nouveau moyen d'observer les éclipses et les passages de Vénus. Secchi (A.). Comptes Rendus, 73, 984.

Essai pendant une éclipse solaire, de la nouvelle méthode spectroscopique proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327.

Observations du passage de Vénus à l'Observatoire royal du Collège romain.

Tacchini (P.). Comptes Rendus, 95, 1209-1211.

Observation du passage de Vénus, à Avila, Espagne.

Thollon (L.). Comptes Rendus, 95, 1340-42.

Observations of the transit of Venus, Dec. 6, 1882, made at Princeton,. N. J., and South Hadley, Mass.

Young (C. A.). Amer. Jour. Sci., (3) 25, 321-29.

#### j, solar spectrum.

# 1, Solar spectrum in general.

Influence of water in the atmosphere on the solar spectrum.

Abney and Festing. Proc. Royal Soc., 35, 328-341; Beiblätter, 8, 507 (Abs.).

Lecture on solar physics.

Abney (W. de W.). Nature, 25, 162-166, 187-191, 252-257.

Sunlight and skylight at high altitudes.

Abney (W. de W.). Nature, 26, 586; Beiblätter, 7, 28 (Abs.); Jour. de Phys., (2) 3, 47-48 (Abs.).

The solar spectrum, from  $\lambda$  7150 to  $\lambda$  10000.

Abney (W. de W.). Phil. Trans. (1886), Part II, XIII.

Remarques sur quelques raies du spectre solaire.

Angström (A. J.) Comptes Rendus, 63, 647; Phil. Mag., (4) 23, 76; 24, 1.

Remarques de M. Janssen. Comptes Rendus, 63, 728.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum.

Angström (A. J.). Ann. Phys. u. Chem., 117, 290.

Mémoire sur la constitution du spectre solaire.

Becquerel (E.). Comptes Rendus, 14, 901-3.

Des effets produits sur les corps par les rayons solaires.

Becquerel (E.). Comptes Rendus, 17, 882.

Constitution physique du Soleil.

Boillot (A.). Comptes Rendus, 72, 728.

Mémoire sur le spectre solaire.

Brenta. Comptes Rendus, 11, 766.

On the lines of the solar spectrum, and on those produced by the Earth's atmosphere, and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) 8, 884; Proc. Royal Soc., 10, 339 (Abs.); Comptes Rendus, 30, 578.

On the lines of the solar spectrum, with a map of the solar spectrum, giving the absorption lines of the Earth's atmosphere.

Brewster and Gladstone. Phil. Trans. (1860), 149.

Catalogue of the oscillation-frequencies of solar rays.

British Association Rep't for 1878.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum, wie sie sich dem unbewaffneten Auge zeigen.

Broch (O. J.). Ann. Phys. u. Chem., Ergänzungsband, 3, 311.

Constitution physique du Soleil.

Chacornac. Comptes Rendus, 60, 170.

Sur la distribution de l'intensité lumineuse et de l'intensité visuelle dans le spectre solaire.

Charpentier (Aug.). Comptes Rendus, 101 (1885), 182-183.

Spectral estimates of the Sun's distance.

Chase (P. E.). Proc. Amer. Philosoph. Soc., 18, 227.

Sur le spectre normal du Soleil.

Cornu (A.). Ann. de l'Ecole normale, (2) 3, 421-434; Arch. de Genève, (2) 52, 62-3 (Abs.).

Constitution du Soleil; reponse à M. Janssen.

Cornu (A.). Comptes Rendus, 73, 545.

Sur quelques conséquences de la constitution du spectre solaire.

Cornu (A.). Comptes Rendus, 86, 530.

Considération sur les couleurs du spectre solaire.

Dalet. Comptes Rendus, 28, 273.

Action du spectre solaire sur les sels haloïdes d'argent, accroissement de leur sensibilité dans certaines parties du spectre par l'adjonction de matières colorantes et autres.

Eder (J. M.). Jour. de Phys., (2) 4 (1885), 185.

Constitution physique du Soleil.

Faye. Comptes Rendus, 60, 89, 138, 168.

Résultats concernant la constitution physique du Soleil, obtenus soit par l'analyse spectrale, soit par l'étude mécanique de la rotation.

Faye. Comptes Rendus. 68, 1139.

Analyse spectrale du Soleil.

Faye. Comptes Rendus, 74, 921.

Sur la théorie physique du Soleil proposée par M. Vicaire.

Faye. Comptes Rendus, 77, 293-301.

Sur la constitution physique et mécanique du Soleil.

Faye. Comptes Rendus, 96, 355-361.

Sur une objection de M. Tacchini relative à la théorie du Soleil dans les "Memorie dei Spettroscopisti italiana."

Faye. Comptes Rendus, 96, 811-816.

Réponse à une note de M. Thollon sur l'interprétation d'une phénomène de spectroscopie solaire.

Faye. Comptes Rendus, 97, 779-782.

Studien über den Ursprung der Fraunhofer'schen Linien in ihrer Beziehung zur Constitution der Sonne.

Fievez (Ch.). Bull. de l'Acad. de Belgique, (3) 12 (1886), 25-32; Beiblätter, 11 (1887), 94 (Abs.).

Rapport sur un Mémoire et plusieurs Notes de M. Janssen concernant l'analyse prismatique de la lumière solaire.

Fizeau. Comptes Rendus, 58, 795.

Spectroscopische Beobachtungen der Sonne.

Franckland u. Lockyer. Ber. chem. Ges., 2, 742.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 379-385; Jour. Chem. Soc., 34, 189 (Abs.).

Solar Chemistry.

H. (G.). Nature, 24, 581-2.

Spectrum of the Sun; spectra of the limb and centre of the Sun.

Hastings (C. S.). Amer. Jour. Sci., 105, 369; Nature, 8, 77.

A theory of the constitution of the sun, founded upon spectroscopic obvations, original and other.

Hastings (C. S.). Amer. Jour. Sci., (3) 21, 33-44; Phil. Mag., (5) 11, 91-103; Beiblätter, 5, 588-592 (Abs.).

The Solar Spectrum.

Herschel (J.). Nature, 6, 454-455.

Action comparative des rayons solaires sous différentes latitudes.

Herschel (J.). Comptes Rendus, 3, 506.

Observations on the spectra of the Sun.

Huggins (W.). Phil. Trans. (1868), 529.

Ueber die Längstreifen im Sonnenspectrum.

Jahresber. d. Chemie, 1, 198; 4, 151; 5, 125; 6, 167.

Spectrum der Sonne.

Jahresber. d. Chemie, 14, 41, 43.

Fraunhofer Linien bei tiefem Stand der Sonne.

Jahresber. d. Chemie, 15, 26.

Constitution der Sonne.

Jahresber. d. Chemie, 17, 84.

Zusammenhang der Distanz der Spectrallinien mit den Dimensionem der Atome.

Jahresber. d. Chemie, 19, 78.

Sonnenspectrum.

Jahresber. d. Chemie, 25, 147.

Origetive Derriellung des vonnenmertrame.

Juhrusker it. Chemie. 28: 130.

Interes M. Dumas are les Associates les deservations apocrescopiques conservant la constitution du Soleil.

Janosen J. Comptes Bendus, 68 372.

Constitution on Holes.

gangen Fr. Compter Bendus. 73: 432-6.

Sur ce qu'est jusqu'is ce jour d'incomplet les rémitats fournis par l'annivaspectale pour nous faire connaître la constitution in Soleil.

Frances I. Comptes Rending. 73. Tis.

Réponse à la note de M. Taechini inserée au dernier "Comptes Randus." séance du 14 Mai 1877.

Januarn J.: Comptes Rendus. 85, 1182.

Notice sur les progrès récents de la physique solaire.

Janssen J., Ann. du Buresu des Longitudes 1879), 922-985: Beiblätter, 4, 277 (Abs.).

Die Chemie des Himmels.

Janmen J., Archiv. f. Pharmacie (1875), 51.

Reply to Angetröm's observations on the solar lines.

Janssen J., Phil. Mag., (4; 23, 73.

Objective Darstellung des Sonnenspectrums.

Ressler (F.). Ber. chem. Ges., 9, 577.

Sur la loi de Stokes.

Lamansky (S.). Compter Rendus, 88, 1192.

In fenchter Last sind die Streisen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. n. Chem., 146, 208-221.

The solar atmosphere, an introduction to an account of researches made at the Alleghany Observatory.

Imngley (S. P.). Amer. Jour. Sci., (3) 10, 459-497.

A proposed new method in solar spectrum analysis.

Imagley (S. F.). Amer. Jour. Sci., (8) 14, 140-146; Beiblatter, 1, 621 (Alm.).

Solar spectrum at high altitudes.

Lingley (S. P.). Amer. Jour. Sel., (8) 24, 898.

Observations du spectre solaire.

Langley (S. P.). Comptes Rendus, 95, 482-487; Jour. Chem. Soc., 44, 137 (Abs.).

Procédé pour obtenir la récomposition de la lumière du spectre solaire. Lavaud de Lestrade. Comptes Rendus, 86, 61.

On recent discoveries in solar physics made by means of the spectroscope. Lockyer (J. N.). Phil. Mag., (4) 38, 142.

Spectroscopic Observations of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 15, 256; 17, 91, 128, 131, 350, 415, 506; 18, 74; Ber. chem. Ges., 2, 742; 3, 578; Nature, 3, 34.

Researches in spectrum analysis in connection with the spectrum of the sun, No. I.

Lockyer (J. N.). Proc. Royal Soc., 21, 83; Phil. Trans., 163, 258-275; Amer. Jour. Sci., (3) 5, 236-7 (Abs.).

Ditto, No. II.

Lockyer (J. N.). Proc. Royal Soc., 21, 285; Phil. Trans., 163, 639-658; Jour. Chem. Soc., (2) 11, 994-995 (Abs.); Phil. Mag., (4) 46, 407-410 (Abs.); Ber. chem. Ges., 6, 978 (Abs.).

Ditto, No. III.

Lockyer (J. N.). Proc. Royal Soc., 21, 508-514 (Abs.); Phil. Trans.,164, 479-494; Phil. Mag., (4) 47, 384-390.

Ditto, No. IV.

Lockyer (J. N.). Proc. Royal Soc., 22, 391; Phil. Trans., 164, 805-813; Phil. Mag., (4) 49, 326.

Ditto, No. V.

Lockyer (J. N.). Proc. Royal Soc., 25, 546.

Ditto, No. VI.

Lockyer (J. N.). Proc. Royal Soc., 27, 49, 279, 409.

Ditto, No. VII.

Lockyer (J. N.). Proc. Royal Soc., 28, 157-180; Amer. Jour. Sci.,
(3) 17, 93-116; Beiblätter, 3, 88-113; Nature, 19, 197-201, 225-230;
Ann. Chim. et Phys., (5) 16, 107-144; Chem. News, 39, 1-5, 11-16.

Note on a recent communication of Messrs. Liveing and Dewar.

Lockyer (J. N.). Proc. Royal Soc., 29, 45-7; Beiblätter, 3, 710-711 (Abs.).

Recent researches in solar chemistry.

Lockyer (J. N.). Proc. Physical Soc., 2, 308-325; Phil. Mag., (5) 6, 161-176; Beiblätter, 3, 353-354 (Abs.).

Spectroscopic observations of the Sun.

Lockyer (J. N.) and Seabroke (G. M.). Phil. Trans., 165, 577-586.

Lectures on solar physics; the chemistry of the Sun.

Lockyer (J. N.). Nature, 24, 267-274, 296-301, 315-324, 365-370, 391-399.

Constitution physique du Soleil.

Lockyer (J. N.). Comptes Rendus, 69, 121.

Réponse au Père Secchi.

Lockyer (J. N.). Comptes Rendus, 69, 452.

Observations spectroscopiques du Soleil.

Lockyer (J. N.). Comptes Rendus, 70, 1268.

Recherches expérimentales sur le spectre solaire.

Lockyer (J. N.). Comptes Rendus, 75, 1816-19.

Recherches d'analyse spectrale au sujet du spectre solaire.

Lockyer (J. N.). Comptes Rendus, 76, 1899.

Recherches sur les rapports d'analyse spectrale avec le spectre du Soleil.

Lockyer (J. N.). Comptes Rendus, 88, 148-154; Jour. Chem. Soc., 36, 575-6 (Abs.).

Recherches sur l'analyse spectrale dans ses rapports avec le spectre solaire.

Lockyer (J. N.). Ann. Chim. et Phys., (4) 29, 430.

On a new method of spectrum observation.

Lockyer (J. N.). Amer. Jour. Sci., (3) 19, 303-311.

Solar spectroscopic observations.

Maclear (J. P.). Nature, 6, 514.

Considérations sur le spectre solaire.

Matthiessen. Comptes Rendus, 16, 917.

Spectrum of the Sun.

Mellone (M.). Amer. Jour. Sci., 55, 1.

Spectrum analysis of the Sun.

Miller (W. A.). Pop. Sci. Monthly, 8, 885.

Spectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165.

On the physical constitution of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 895-407; Phil. Mag., (4) 42, 55-67.

Spectrum of the Sun.

Olmstead (D.). Amer. Jour. Sci., (2) 48, 137.

Les raies du spectre solaire.

Peslin. Comptes Rendus, 74, 325.

Researches in circular solar spectra.

Pigott (G. West Royston). Proc. Royal Soc., 21, 426.

Spectroscopic discoveries concerning the Sun.

Proctor (R. A.). Temple Bar, 25, 281.

Réponse à une Note précédente du P. Secchi sur quelques particularités de la constitution du Soleil.

Respighi (L.). Comptes Rendus, 74, 1387-90.

Réponse aux critiques présentées par le Père Secchi, à propos des observations faites sur quelques particularités de la constitution du Soleil. Respighi (L.). Comptes Rendus, 75, 134-138.

Sur la grandeur et les variations du diamètre solaire.

Respighi (L.). Comptes Rendus, 77, 715-720, 774-778.

Sulla constituzione fisica del Sole.

Respighi (L.). R. Accad. dei Lincei, 10 April, 1871.

Osservazioni solari dirette et spettroscopiche esequite nel R. osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 25-36, 61-90, 161-189; 10, 146-147.

Recherches sur les raies du spectre solaire et des différents spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Solar spectrum in a hailstorm.

Romanes (C. H.). Nature, 25, 507.

Italian spectroscopy.

Secchi (A.). Nature, 6, 465-6.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums.

Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Certain spectroscopic observations.

Secchi (A.). Chem. News, 27, 244.

Notes sur les spectres solaires.

Secchi (A.). Comptes Rendus, 66, 124, 398.

Existence d'une couche donnant un spectre continu entre la couche rose et le bord solaire.

Secchi (A.,. Compres Rendus, 68, 580.

Étude spectrale des taches solaires; documents que peut fournir cette étude sur la constitution du Soleil.

Secchi (A.). Comptes Rendus, 68, 1082.

Remarques sur la lettre de M. Lockyer, du 2 Août.

Secchi (A.). Comptes Rendus, 69, 315.

Replique à la Note de M. Lockyer, du 16 Août.

Secchi (A.). Comptes Rendus, 69, 549.

Résultats de quelques observations spectrales du Soleil.

Secchi (A.). Comptes Rendus, 70, 903.

Note contenant une rectification numérique à sa dernière communication. Secchi (A.). Comptes Rendus, 70, 1062.

Déplacement des raies observées dans le spectre solaire.

Secchi (A.). Comptes Rendus, 70, 1213.

Nouveaux observations concernant la constitution physique du Soleil.

Secchi (A.). Comptes Rendus, 72, 362.

"Quelques nouveaux résultats d'analyse spectrale.

Secchi (A.). Comptes Rendus, 74, 593.

Sur quelques particularités de la constitution du Soleil.

Secchi (A.). Comptes Rendus, 74, 1087-91.

Réponse aux observations presentées par M. Respighi sur quelques particularités de la constitution du Soleil.

Seechi (A.). Comptes Rendus, 74, 1501-7.

Observations des variations des diamètres solaires.

Secchi (A.). Comptes Rendus, 75, 606-613.

Recherches spectroscopiques solaires.

Secchi (A.). Comptes Rendus, 75, 749.

Sur quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052-56.

Nouvelles recherches sur la diamètre solaire.

Secchi (A.). Comptes Rendus, 77, 253-260.

Réponse à M. Respighi.

Secchi (A.). Comptes Rendus, 77, 904.

Note on a possible ultra-solar spectroscopic phenomenon.

Smyth (C. Piazzi). Proc. Royal Soc., 20, 186.

The visual, grating and glass-lens, solar spectrum, in 1884.

Smyth (C. Piazzi). Trans. Roy. Soc. of Edinburgh, 32, part III, 519–544, with plates; Monthly Notices Astronom. Soc., 47 (1887), 191-2.

On the Sun as a variable star.

Stewart (B.). Lecture at the Royal Institution, April 12, 1867.

On the sange of refrangibility of light; with a drawing of the fixed lines in the solar spectrum in the extreme violet, and in the invisible region beyond.

Stokes (G. G.). Phil. Trans., 1852 II, 463.

Lecture on solar physics.

Stokes (G. G.). Nature, 24, 595-8, 613-18.

On the bearing of recent observations upon solar physics.

Stoney. Phil. Mag., (4) 36, 441.

Osservazioni solari dirette e spettroscopiche fatte a Palermo nel 1 trimestre del 1879, nel secondo trimestre del 1879, nel terzo e quarto trimestre del 1879, nel 1 trimestre del 1880, nel secondo trimestre del 1880, nel 3 trimestre del 1880, nel 4 trimestre del 1880, riassunto delle osservazioni, 1880,

Tacchini (P.). Mem. Spettr. ital., 8, 37-40, 52-54, 98-97, 102-104; 9, 49-58, 105-110, 194-203; 10, 5-11, 12; Comptes Rendus, 88, 1131; 89, 519.

Sull'andamento dell'attivitá solare del 1871 al 1878.

Tacchini (P.). Mem. Spettr. ital., 8, 65-72.

Nouvelles observations spectrales.

Tacchini (P.). Comptes Rendus, 77, 195-198.

Sur le magnésium dans le spectre solaire.

Tacchini (P.). Comptes Rendus, 84, 1450.

Résultats des observations solaires pendant le deuxième trimestre de 1878, et des observations pendant le troisième trimestre de 1878.

Tacchini (P.). Comptes Rendus, 87, 259, 1031.

Sur la cause des spectres fugitifs observés par M. Trouvelot sur la limbe solaire.

Tacchini (P.). Comptes Rendus, 91, 156-8.

7 т

Observations solaires faites à l'observatoire royal du Collège romain pendant le troisième, 1880.

Tacchini (P.). Comptes Rendus, 91, 1053-4.

Observations solaires faites à l'Observatoire royal du Collège romain pendant le premier, le deuxième et le troisième trimestres de 1881.

Tacchini (P.). Comptes Rendus, 93, 380; 94, 830.

Comparaison entre le spectre normal du Soleil et celui de réfraction suivant l'échelle de Kirchhoff.

Thalen (R.). Ann. Chim. et Phys., (4) 18, 211.

Déplacement des raies spectrales, dû au mouvement de rotation du Soleil.

Thollon (L.). Comptes Rendus, 88, 169-171; Beiblätter, 3, 355-6
(Abs.); Jour. Chem. Soc., 36, 574.

Observation faite sur un groupe de raies dans le spectre solaire.

Thollon (L.). Comptes Rendus, 91, 368-70; Beiblätter, 4, 790 (Abs.); Amer. Jour. Sci., (3) 20, 430; Jour. Chem. Soc., 40, 333.

Quelques phénomènes solaires observés à Nice.

Thollon (L.). Comptes Rendus, 91, 487-92.

Études spectroscopiques faites sur le Soleil à l'Observatoire de Paris.

Thollon (L.). Comptes Rendus, 91, 656-60.

Sur l'interprétation de quelques phénomènes de spectroscopie solaire.

Thollon (L.). Comptes Rendus, 97, 747.

Études faites au sommet du Pic du Midi, en vue de l'établissement d'une station astronomique permanente.

Thollon et Trépied. Comptes Rendus, 97, 834-836; Nature, 29, 7-8; Beiblätter, 8, 824 (Abs.).

Observations relatives à la réponse de M. Faye concernant divers phénomènes de spectroscopie solaire.

Thollon (L.). Comptes Rendus, 97, 900.

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes des végétaux.

Timiriasef (C.). Ann. Chim. et Phys., (5) 12, 355.

Spectres fugatifs observés près du limbe solaire.

Trouvelot (L.). Ann. Chim. et Phys., (5) 19, 433-449; Beiblätter, 4, 727 (Abs.).

Note par M. Tacchini. Comptes Rendus, 91, 156-8.

Sur la constitution physique du Soleil; réponse aux critiques de M. Faye. Vicaire (E.). Comptes Rendus, 75, 527-31; 77, 1491-95. Vermehrung und Verdickung der Fraunhofer'schen Linien bei Sonnenuntergang.

Weiss (A.). Ann. Phys. u. Chem., 116, 191; Phil. Mag., (4) 24, 407.

Remarks on spectroscopic observations of the Sun, made at the Temple Observatory, Rugby School, in 1871-2-3.

Wilson (J. M.) and Seabroke (G. M.). Monthly Notices Astronom. Soc., 34, 26-29.

Application of the spectroscope to observations of the Sun.

Winlock (J.). Proc. Amer. Acad., 8, 330.

Note on the duplicity of the "1474" line in the solar spectrum. Young (C. A.). Amer. Jour. Sci., (3) 11, 429-481.

Spectroscopic observations of the Sun.

Young (C. A.). Nature, 3, 34.

Spectroscopic Notes.

Young (C. A.). Amer. Jour. Sci., (3) 20, 353-8; (3) 26, 333; Nature, 23, 281; Chem. News, 20, 271; Beiblätter, 5, 287.

Anologia delle vibrazioni luminose e delle spettro solare, con 1 tav. Zantedeschi (F.). Sitzungsber. Wiener Akad., 25, 145-165.

De mutationibus quae contingunt in spectro solari fixo elucabratio. Zantedeschi (F.). Münchener Abhandlungen, 8, 99.

Ueber die Temperatur und die physische Beschaffenheit der Sonne.

Zöllner (F.). Der Naturforscher, 3, 93, 189, 233, 311; Ber. Sächs. Ges.

Wiss., 25, 158-194; Phil. Mag., (4) 46, 290-304, 343-56.

# 2, Solar Absorption.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727-8 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1033-4; Beiblätter, 4, 369 (Abs.).

Absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1390 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-196; Ann. Phys. u.
Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5) 15, 153-183;
Ann. Chim. et Phys., (5) 29, 497-542.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374-379.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. Sächs. Ges. Wiss., 24, 135-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350.
Note by Schuster (A.). Phil. Mag., (4) 45, 350.

#### 3, Solar Atmosphere.

On hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc. (1881), 524.

Mémoire sur l'atmosphère solaire.

Angelot. Comptes Rendus, 68, 245.

Atmospheric lines of the solar spectrum, with a map.

Hennessey (J. B. N.). Phil. Trans., 165, 157-160; Amer. Jour. Sci., (3) 9, 307.

Ursache der Spectreu und Folgerungen über die Zustände der Sonnenatmosphäre.

Jahresber. d. Chemie, 15, 82.

Sur une atmosphère incandescente qui entoure la photosphère solaire.

Janssen (J.). Comptes Rendus, 68, 181.

Remarques à propos des résultats obtenus par M. Janssen et des connaissances précédemment acquises au sujet de l'atmosphère solaire. Leverrier. Comptes Rendus, 68, 314.

Atmosphère du Soleil.

Littrow. Comptes Rendus, 68, 485.

Réfrangibilité de la raie jaune brilliante de l'atmosphère solaire. Rayet. Comptes Rendus, 68, 820; Chem News, 19, 158.

Spectre de l'atmosphère solaire.

Rayet. Comptes Rendus, 68, 1821; 71, 301; 77, 529; Ann. Chim. et
Phys., (4) 24, 5-80; Archiv. f. Pharmacie, 4, 325-7.

Nouvelles observations sur l'atmosphère et les protubérances solaires. Secchi (A.). Comptes Rendus, 68, 1243.

Sur l'état actuel de l'atmosphère solaire.

Secchi (A.). Comptes Rendus, 84, 1480-34.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums. Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Résultats des opérations faites en 1877 au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Observation of absorbing vapours on the Sun.

Trouvelot. Monthly Notices Astronom. Soc., 39, 374.

Spectral-photometrische Untersuchungen, insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

# 4, B lines in the solar spectrum.

Measures of the Great B line in the spectrum of a high sun.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 39, 38-43.

Note on the Little b group of lines in the solar spectrum.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 32, 37-44; Nature, 28, 287 (Abs.); Amer. Jour. Sci., (3) 21, 323.

Résultats des opérations faites en 1877, au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Constitution et origine du groupe B du spectre solaire.

Thollon (L.). Jour. de Phys., 13, 421; Nature, 30, 520.

Mémoire sur la constitution et l'origine du groupe B du spectre solaire.

Thollon (L.). Bull. astronomique, 1883-4.

Note by Smyth (C. Piazzi). Nature, 30, 585.

## 5, Bright lines in the solar spectrum.

On the existence of bright lines in the solar spectrum.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 38, 473-4.

On the coincidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Amer. Jour. Sci., (3) 18, 262-76; Monthly Notices Astronom. Soc., 39, 440-47; Beiblätter, 4, 275 (Abs.).

Report to the Committee on Solar Physics on the basic lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-65; Beiblätter, 4, 45 (Abs.).

On a cause for the appearance of bright lines in the solar spectrum.

Meldola (R.). Phil. Mag., (5) 6, 50-61; Jour. Chem. Soc., 36, 574; Amer. Jour. Sci., (3) 16, 290-300; Beiblätter, 2, 561-2 (Abs.).

Letter to the Superintendent of the U.S. Coast Survey, containing a catalogue of bright lines in the spectrum of the solar atmosphere.

Young (C. A.). Amer. Jour. Sci., (3) 4, 356-62; Nature, 7, 17-20.

6, Chemical effects of the solar spectrum.

Sur l'action chimique des différents rayons du spectre solaire. Claudet. Comptes Rendus, 25, 938.

On the chemical efficiency of sunlight.

Dewar (J.). Phil. Mag., 44, 307-311.

Wirkung der chemischen Strahlen verscniedener Theile der Sonnenscheibe.

Jahresber. d. Chemie, 16, 101.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1238.

Expériences sur la transmission des rayons chimiques du spectre solaire à travers différents milieux.

Somerville (Mrs.). Comptes Rendus, 3, 473.

Beziehungen zwischen der chemischen Wirkung des Sonnenspectrums, der Absorption und anomalen Dispersion des Sonnenspectrums.

Vogel (H.). Ber. chem. Ges., 7, 976.

7, Chromosphere and Corona.

Spectre de la couronne.

Blaserna (P.). Comptes Rendus, 74, 879.

The comparative aggregate strength of the light from the red hydrogen stratum, and of that of the rest of the chromosphere.

Hammond (B. E.). Nature, 3, 487.

On the solar corona.

Harkness (W.). Bull. Philosoph. Soc. Washington, 3, 116-119; Be-blätter, 5, 128.

Photographing the spectrum of the corona.

Huggins (W.). Nature, 27, 199.

The coronal atmosphere of the Sun.

Janssen (J.). Nature, 8, 127-9, 149-50.

Sur la photographie de la chromosphère.

Janssen (J.). Comptes Rendus, 91, 12; Beiblätter, 4, 615.

Lanalyse spectrale de la lumière zodiacale et sur la couronne des éclipses.

Liais (E.). Comptes Rendus, 74, 262-4; Amer. Jour. Sci., (3) 3, 390-91.

Nete on the unknown chromospheric substance of Young.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 475-7; Beiblätter, 3, 709 (Abs.).

A new method of viewing the chromosphere.

Lockyer (J. N.) and Seabroke (G. M.). Proc. Royal Soc., 21, 105-107;
Amer. Jour. Sci., (3) 5, 319 (Abs.); Comptes Rendus, 76, 363-5;
Phil. Mag., (4) 45, 222-4.

Note on the existence of carbon in the coronal atmosphere of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 27, 308; Jour. Chem. Soc., 38, 429 (Abs.).

Preliminary note on the substances which produce the chromospheric

Lockyer (J. N.). Proc. Royal Soc., 28, 283-4; Nature, 19, 202; Amer. Jour. Sci., (3) 17, 250; (3) 18, 158; Beiblätter, 3, 420-422.

Discussion of "Young's List of Chromospheric Lines."

Lockyer (J. N.). Proc. Royal Soc., 28, 432-444; Beiblätter, 3, 420 (Abs.).

Photographie der Corona.

Lohse (O.). Astronom. Nachr., 104, 209-212; Beiblätter, 7, 291 (Abs.).

On the corona seen in total eclipses of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 5-15; Phil. Mag., (4) 41, 225-236.

Note on the chromosphere.

Perry (S. J.). Monthly Notices Astronom. Soc., 43, 426-7; Nature, 3, 67.

Osservazioni spettroscopiche del Bordo e delle Protuberanze Solari.

Respighi (L.). Roma, 1871.

La corona solare l'eclisse, 22 Dic. 1870.

Ricca (V. S.). Palermo, 1871.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Professor Young and the presence of ruthenium in the chromosphere.
Roscoe (H. E.). Nature, 9, 5.

On the spectrum of the corona.

Sampson (W. T.). Amer. Jour. Sci., (3) 16, 343-5; Beiblätter, 3, 27' (Abs.).

Résultats de quelques observations spectroscopiques des bords du Solei. Secchi (A.). Comptes Rendus, 67, 1018.

Note sur les spectres des trois étoiles de Wolf et sur l'analyse comparative de la lumière du bord solaire et des taches.

Secchi (A.). Comptes Rendus, 69, 89.

Note sur la constitution de l'auréole solaire et sur quelques particularités du tube de Geissler.

Secchi (A.). Comptes Rendus, 70, 27, 82.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-832; 73, 242-246, 593-599.

Hydrogène et la raie D, dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, 73, 1300.

Spectre de la chromosphère.

Secchi (A.). Comptes Rendus, 74, 305.

Observations de la chromosphère.

Secchi (A.). Comptes Rendus, 75, 606-613.

Magnésium dans la chromosphère du Soleil.

Tacchini. Comptes Rendus, 75, 23, 430; Phil. Mag., (4) 44, 159-160, 479-80.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini. Comptes Rendus, 76, 1577; 77, 606-9; 82, 1385-7.

Observations on the Corona seen during the eclipse of Dec. 11 and 12, 1871.

Winter (G. K.). Phil. Mag., (4) 43, 191-4.

On the solar corona.

Young (C. A.). Amer. Jour. Sci., (8) 1, 311-378.

Note on the spectrum of the corona.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53-55; Chem. News, 24, 198-9.

Preliminary catalogue of the bright lines in the spectrum of the chromosphere.

Young (C. A.). Amer. Jour. Sci., 8 2, 332-335; Phil. Mag., (4) 42, 877-380; Nature, 5, 312-313.

Spectrum of the corona of the Sun.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53; Chem. News, 24, 198.

Note on the chromosphere lines.

Young (C. A.). Nature, 3, 266-7.

Spectrum of the chromosphere.

Young (C. A.). Nature, 5, 312.

The corona line.

Young (C. A.). Nature, 7, 28.

Beobachtungen der Corona.

Zöllner (F.). Der Naturforscher (Berlin), 2, 167, 253, 379, 395; 3, 91, 392; Les Mondes (Paris), 21, 345, 602; 22, 142; Nature, 1, 15, 139, 146, 533, 543; 2, 114, 164, 277; 3, 163, 175, 262, 263, 278; Phil. Mag., (4) 38, 281; 39, 17; Monthly Notices Astronom Soc., 30, 193.

8, The D group of lines in the solar spectrum.

Monographie du groupe D dans le spectre solaire.

Thollon. Jour. de Phys., (2) 3, 5-11; Beiblätter, 8, 647.

9, Dark lines in the solar spectrum.

Sur les raies sombres du spectre solaire et la constitution du Soleil.

Cornu (A.). Comptes Rendus, 86, 315,

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 438.

On the presence of dark lines in the solar spectrum which correspond closely to the lines of the spectrum of oxygen.

Draper (J. C.). Amer. Jour. Sci., (3) 16, 256-65; Nature, 18, 654-7;
 Beiblätter, 3, 188 (Abs.); Jour. Chem. Soc., 36, 997.

Mesure de l'intensité de quelques raies obscures du spectre solaire.

Gouy. Comptes Rendus, 91, 383; Jour. Chem. Soc., 40, 333 (Abs.); Beiblätter, 5, 46 (Abs.).

Dunkle Linien des Sonnenspectrums.

Jahresber. d. Chemie, 16, 107, 110.

A method of examining refractive and dispersive powers by prismatic reflection.

Wollaston (W. H.). Phil. Trans. (1802), 365.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 373.

10, Displacement of the solar spectrum.

Note on the displacement of the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 219.

Observations on the displacement of lines in the solar spectrum caused by the Sun's rotation.

Young (C. A.). Amer. Jour. Sci., (3) 12, 321-8.

# 11, Eclipse Spectra.

On the solar eclipse of Dec. 22, 1870, observed at Xeres, in Spain.

Abbay (R.). Monthly Notices Astronom. Soc., 31, 60-62.

Observations on the total eclipse of the Sun of 1869.

Abbe (C.). Amer. Jour. Sci., (8) 3, 264-267.

On the total solar eclipse of May 17, 1882.

Abney (W. de W.) and Shuster (A.). Phil. Trans., 175, 258-271; Proc. Royal Soc., 35, 151 (Abs.); Beiblätter, 7, 896 (Abs.); Nature, 26, 465.

Eclisse totale del 22 Dic. 1870.

Agnello (A.). Palermo, 1870.

On the results of the spectroscopic observations of the solar eclipse of July 29, 1878.

Barker (G. F.). Amer. Jour. Sci., (8) 17, 121-5.

Observations sur un artifice semblable auquel ont songé en même temps M. Janssen dans l'Inde et M. Zantedeschi en Italie.

Beaumont (Élie de). Comptes Rendus, 68, 314

The solar eclipse of July 29, 1878.

Draper (H.). Amer. Jour. Sci., (3) 16, 227-30; Phil. Mag., (5) 6, 318-320.

The Eclipse.

Draper (H.). Nature, 18, 462-4.

Account of the expedition of the Jesuits from Manilla, eclipse of Aug. 18, 1868.

Faura (F.). Bull. meteorol. dell. Osservatorio del Collegio Romano, 7, no. 12.

Suggestion relative à l'observation de l'éclipse de Soleil du 31 décembre 1861.

Faye. Comptes Rendus, 53, 679.

Observations relatives à la coïncidence des méthodes employées séparément par M. Lockyer et par M. Janssen.

Faye. Comptes Rendus, 67, 840.

Note sur une télégramme et sur une lettre de M. Janssen.

Faye. Comptes Rendus, 68, 112.

Rapport au Bureau des Longitudes sur la prochaine éclipse du 6 mai 1883.

Fizeau, Cloué, Lewy et Janssen. Comptes Rendus, 95, 881-885; Ann. du Bureau des Longitudes (1883), 813-820; Nature, 27, 110-112.

Account of spectroscopic observations of the eclipse of the Sun, Aug. 18, 1868.

Haig (C. T.). Proc. Royal Soc., 17, 74.

On the total eclipse of the Sun of Aug. 18, 1868.

Herschel (Alex.). Proc. Royal Institution, 1868-9.

The total eclipse of Aug. 7, 1869.

Hough (G. W.). Albany (J. Munsell), 1870.

Indication de quelques-uns des résultats obtenus à Cocanada pendant l'éclipse du mois d'août dernier, et à la suite de cette éclipse.

Janssen (J.). Comptes Rendus, 67, 838.

Lettre sur l'éclipse du 18 août.

Janssen (J.). Comptes Rendus, 67, 839.

Resumé des notions acquises sur la constitution du Soleil.

Janssen (J.). Comptes Rendus, 68, 312.

Observations spectrales prises pendant l'éclipse du 18 août 1868.

Janssen (J.). Comptes Rendus, 68, 367.

Sur l'éclipse totale du 22 décembre prochain, 1870.

Janssen (J.). Comptes Rendus, 71, 531.

Lettre sur les résultats du voyage pour observer en Algérie l'éclipse du Soleil du 22 Déc. 1870.

Janssen (J.). Comptes Rendus, 72, 220.

Remarques sur une dernière note de M. Cornu.

Janssen (J.). Comptes Rendus, 73, 798-794.

Télégrammes addressés à l'Académie sur les observations faites pendant l'éclipse du Soleil du 11 Déc. 1871, sur la côte de Malabar.

Janssen (J.). Comptes Rendus, 73, 1487.

Lettre sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 111.

Les conséquences principales qu'il peut tirer de ses observations sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 175, 514, 725; Monthly Notices
Astronom. Soc., 32, 69-70; Proc. Royal Soc., 20, 138-9; Amer.
Jour. Sci., (3) 3, 226; Jour. Chem. Soc., (2) 10, 590 (Abs.).

Sur l'éclipse solaire.

Janssen (J.). Comptes Rendus, 96, 1745; Nature, 28, 216.

Rapport à l'Académie sur la mission en Océanie pour l'observation de l'éclipse totale de Soleil du 6 mai 1883.

Janssen (J.). Comptes Rendus, 97, 586-602; Mem. Spettr. ital., 12, 201-216.

Rapport à l'Académie relatif à l'observation de l'éclipse du 12 Déc. 1871, observée à Schoolor (Indoustan).

Janssen (J.). Ann. Chim. et Phys., (4) 28, 474-99.

Applications utiles de la méthode graphique à la prédiction des éclipses de Soleil.

Laussedat. Comptes Rendus, 70, 240.

Report of observations, etc., of the total eclipse of the Sun taken at "Le Maria Louisa" Vineyard, Cadiz, Dec. 21-22, 1870.

Lindsay (Lord). Monthly Notices Astronom. Soc., 31, 49-60.

Remarks on the recent eclipse of the Sun as observed in the United States.

Lockyer (J. N.). Proc. Royal Soc., 18, 179; Comptes Rendus, 70, 1890; Nature, 1, 14.

Note on the recent and coming total solar eclipses.

Lockyer (J. N.). Proc. Boyal Soc., 34, 291-300; Nature, 27, 185-9; Beiblätter, 7, 193 (Abs.).

The Mediterranean eclipse, 1870.

Lockyer (J. N.). Nature, 3, 221-24, 321-2; Amer. Jour. Sci., (3) 3, 226-30.

The solar eclipse.

Lockyer (J. N.). Nature, 5, 217-19; Amer. Jour. Sci., (3) 3, 226-80.

The Eclipse.

Lockyer (J. N.). Nature, 18, 457-62.

Eclipse notes on the solar spectrum.

Lockyer (J. N.). Nature, 25, 573-8; 26, 100-101.

Spectrum of solar eclipses.

Lockyer (J. N.). Nature, 27, 185.

Report on the total solar eclipse of April 6, 1875.

Lockyer (J. N.). Phil. Trans., 169, 139-154.

The solar eclipse.

Lockyer (J. N.)., Maclear (J. P.). Nature, 5, 219-21; Amer. Jour. Sci., (3) 3, 310-12.

The total eclipse of the Sun of Aug. 7, 1869.

Morton (Henry). Jour. Franklin Inst., (3) 58, 149, 150, 200.

The solar eclipse of Dec. 22, 1870, observed at San Antonio, near Puerto de Sta. Maria.

Perry (S. J.). Monthly Notices Astronom. Soc., 31, 62-3, 149, 151.

Sur l'éclipse du 17 mai 1882.

Puiseux (A.). Comptes Rendus, 94, 1643.

Analyse spectrale des protubérances observées à la presqu'île de Malacca pendant l'éclipse totale du Soleil du 18 août.

Rayet. Comptes Rendus, 67, 757; Rept. Astronom. Soc., 1868-9, p. 152.

The solar eclipse.

Respighi (L.). Nature, 5, 237-8; Amer. Jour. Sci., (3) 3, 312-14.

Spectralbeobachtungen während der totalen Sonnenfinsterniss des Jahres 1868 zu Aden.

Riha (J.). Sitzungsber. d. Wiener Akad., 58, II, 655, 721-4.

Some remarks on the total solar eclipse of July 29, 1878.

Schuster (A.). Monthly Notices Astronom. Soc., 39, 44-7.

Essai, pendant une éclipse solaire, de la nouvelle méthode spectroscopique proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327-31; Chem. News, 27, 320.

- Observations de l'éclipse solaire du 10 octobre 1874, avec le spectroscope. Secchi (A.). Comptes Rendus, 79, 885.
- L'observation des protubérances solaires faites hors du moment d'une éclipse par M. Janssen et par M. Lockyer.

Stewart (B.). Comptes Rendus, 67, 904.

- Sull'eclisse totale di sole del 17 maggio 1882, osservato à Sohage in Egitto.

  Tacchini (P.). Mem. Spettr. ital., 11, Sept. 1-14; Comptes Rendus,
  95, 896.
- The total solar eclipse of Dec. 12, 1871.

Tennant (J. F.). Monthly Notices Astronom. Soc., 32, 70-2; Nature, 6, 492.

Report of the Indian Eclipse, Aug. 18, 1868.

Tennant (J. F.). Royal Astronom. Soc. Memoirs, Vol. 7; Nature, 1, 536; Naturforscher (Berlin), 1, 311, 319, 327, 351, 369, 393; 2, 59; Les Mondes, 18, 130, 168, 272, 296, 362, 413.

Eclipse totale de Soleil, observée à Souhage (haute Égypte) le 17 mai (temps civil) 1882.

Thollon (L.). Comptes Rendus, 94, 1630-35; Beiblätter, 6, 878-80.

Observation de l'éclipse totale du 17 mai 1882.

Trépied. Comptes Rendus, 94, 1638.

Reports on the total eclipse of the Sun, Aug. 7, 1869.

United States Naval Observatory (Commodore B. F. Sands and others), Washington, 1869.

On the results of the eclipse observations, Aug. 7, 1869.

Young (C. A.). Amer. Jour. Sci., (3) 3, 314; Nature, 1, 14, 170, 203, 336, 552; Les Mondes, 21, 238, 600; Naturforscher, 2, 258, 379, 533; 3, 16, 53, 142, 163, 175.

Spectroscopic observations of the American eclipse party in Spain. Young (C. A.). Nature, 3, 261. The Sherman astronomical expedition.

Young (C. A.). Nature, 7, 107-109.

Observations upon the solar eclipse of July 29, 1878, by the Princeton Eclipse Expedition.

Young (C. A.). Amer. Jour. Sci., (3) 16, 279-90.

Total solar eclipse of August 28-29, 1886.

By various persons. Abstract in Monthly Notices Astronom. Soc., 47 (1887), 175.

12, Spectra of the elements in the Sun.

On sun-spots and terrestrial elements in the Sun.

Liveing and Dewar. Phil. Mag., (5) 16, 401-408; Beiblätter, 8, 304-5 (Abs.); Jour. de Phys., 13, 418.

Note préliminaire sur les éléments existant dans le Soleil.

Lockyer (J. N.). Comptes Rendus, 77, 1347-52; Ber. d. chem. Ges., 6, 1554-5 (Abs.).

Les éléments présents dans la couche du Soleil qui produit le renversement des raies spectrales.

Lockyer (J. N.) Comptes Rendus, 86, 317.

Sur la composition élémentaire du spectre solaire.

Matthiessen. Comptes Rendus, 19, 112.

13, Spectra of solar eruptions.

Eruzione solare metallica dal 31 luglio, 1880, osservata a Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 96-100.

Sur l'éruption solaire observée le 7 juilliet.

Secchi (A.). Comptes Rendus, 75, 314-322.

Sur les éruptions métalliques solaires observées à Palermo depuis 1871 jusqu'en avril 1877.

Tacchini (P.). Comptes Rendus, 84, 1448-50.

Disegni delle eruzioni etc. del Sole fatti à Roma dal giugno a dicembre 1879.

Tacchini (P.). Mem. Spettr. ital., 4, 5-7.

Sulle eruzioni solari metalliche osservate a Roma nel 1881.

Tacchini (P.). Mem. Spettr. ital., 11, 53-8; Comptes Rendus, 94, 1031-3; 95, 373-8; Beiblätter, 6, 486 (Abs.).

An explosion on the Sun (Sept. 13, 1871).

Young (C. A.) Boston Jour. Chemistry, 1871; Amer. Jour. Sci., (3) 2, 468-70; Nature, 4, 488-9; Phil. Mag., (4) 43, 76-79.

## 14, Gas spectra in the Sun.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun.

Franckland and Lockyer. Proc. Royal Soc., 17, 288; Comptes Rendus, 68, 420; 69, 264.

#### 15, Heat in the solar spectrum.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 488.

Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 198.

Geschichtliches über das Wärmespectrum der Sonne.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200, 207, 209.

Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Allegheny Observatory, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1-12; 32 (1886), 83-106; Phil. Mag., (5) 21 (1886), 894-409; 22 (1886), 149-173; Ann. Chim. et Phys., (6) 9 (1886), 433-506; Jour. de Phys., (2) 5, 377-380 (Abs.); Beiblätter, 11 (1877), 245 (Abs.).

Influence des différentes heures de la journée sur la position du maximum de température dans la partie obscure du spectre solaire.

Melloni. Comptes Rendus, 11, 141.

Spectre calorifique normal du Soleil.

Mouton. Comptes Rendus, 89, 295. Remarques par M. Thénard. Comptes Rendus, 89, 298.

Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Müller (J.). Ann. Phys. u. Chem., 105, 337.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 105, 543; Berichtigung dazu, do., 116, 644.

Sur les propriétés échauffantes des rayons solaires par de grandes et de faibles latitudes.

Pentland. Comptes Rendus, 8, 810.

The solar spectrum in 1877-8, with some practical idea of its probable temperature of origination.

Smyth (C. Piazzi). Trans. Royal Soc. Edinburgh, 29, 285-342; Beiblätter, 4, 276 (Abs.).

Sur la température du Soleil.

Soret (J. L.). Archives de Genève, (2) 52, 89-95; Phil. Mag., (4) 50, 155-8.

16, Hydrogen in the solar spectrum.

La circulation de l'hydrogène solaire.

Faye. Comptes Rendus, 76, 597-601.

The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Dépèche télégraphique addressé de Simla au sujet des lignes de l'hydrogène dans le spectre des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 245.

## 17, Intensity of light in the solar spectrum.

- On the variation in the intensity of the fixed lines of the solar spectrum.

  Draper (W.). Phil. Mag., (4) 25, 342.
- The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Distribution de l'énergie dans le spectre solaire normal.

Langley (S. P.). Comptes Rendus, 92, 701.

Confronto fra la radiazione e l'intensità chimica della luce del sole.

Macagno (J.). Mem. Spettr. ital., 8, App. 13-18.

Étude de la distribution de la lumière dans le spectre solaire.

Macé (J.) et Nicati (W.). Comptes Rendus, 91, 623, 1073; Beiblätter, 5, 301 (Abs.).

Ueber die Vertheilung der chemischen Lichtintensität im Sonnenspectrum.

Monckhoven. Photographische Mittheilungen, 16, 145-6; Beiblätter,
4, 49 (Abs.).

Untersuchungen über die Helligkeitsänderungen in verschiedenen Theilen des Sonnenspectrums bei abnehmender Höhe der Sonne über dem Horizont.

Müller (G.). Astronom. Nachr., 103, 241-252; Beiblätter, 7, 111 (Abs.).

#### 18, Iron lines in the solar spectrum.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 348-9; Beiblätter, 5, 288 (Abs.); Comptes Rendus, 92, 904-910; Jour. Chem. Soc., 40, 669 (Abs.).

### 19, Magnesium in the solar spectrum.

Spectre du magnésium en rapport avec la constitution du Soleil.

Fievez (Ch.). Ann. Chim. et Phys., (5) 23, 366.

## 20, Maps of the solar spectrum.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., 171, 637-667; Comptes Rendus, 90, 182-3; Beiblätter, 4, 875 (Abs.).

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieur, (2) 9, (1880). Avec deux planches. (Maps drawn by wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome IV. Avec une planche. (Wave-lengths, lines 6399 to 4522.)

Étude de la région rouge (A-C) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoireroyal de Bruxelles, n. sér., tome V. Avec deux planches. (Wave-lengths, lines 7500 to 6500.)

Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Berlin, Dümmber, 1866-1875, 2 Theile, 4°. Mit vier Tafeln. Besondere Abdrück aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. (He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, tome I (1864). Paris, Gauthier-Villars, 1864, 4°. Avec un planche.

[A photographic map of the solar spectrum is being made by Prof. Rowland, and some thirty parts of it have been distributed privately. At the end of the year 1887 it extended from wave-length 0.0003675 to wave-length 0.0005796.]

Large Maps of the Solar Spectrum,

[by Thollon, in the Annals of the Academy of Nice, Tome I. Not yet published, but about to be so; and Tome II. is to contain another, smaller, map.]

21, Oscillation-frequencies.

Catalogue of the oscillation-frequencies of solar rays.

Rept. British Assoc. for 1878.

22, Oxygen in the solar spectrum.

Discovery of oxygen in the Sun by photography, and a new theory of the solar spectrum.

Draper (H.). Amer. Jour. Sci., (3) 14, 89-96; Nature, 16, 364; 17, 339; Comptes Rendus, 85, 613; Beiblätter, 2, 86-90.

On a photograph of the solar spectrum showing the dark lines of oxygen.

Draper (J. C.). Monthly Notices Astronom. Soc., 40, 14-17; Amer. Jour. Sci., (3) 17, 448-452; Jour. Chem. Soc., 38, 201 (Abs.); Beiblätter, 3, 872.

Telluric oxygen lines in the solar spectrum.

Egoroff. Amer. Jour. Sci., 126, 477; Comptes Rendus, Aug. 27, 1883.

On the presence of oxygen in the Sun.

Schuster (A.). Nature, 17, 148-9; Beiblätter, 2, 90-91.

23, Photography of the solar spectrum.

Preliminary note on photographing the least refracted portion of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 36, 276-7; Phil. Mag., (5) 1, 414-415.

Photography at the least refrangible end of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 38, 348-51; Phil. Mag., (5) 6, 154-7.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., 171, 653-67; Proc. Royal Soc., 30, 67 (Abs.); Beiblätter, 4, 375 (Abs.); 5, 507-9; Comptes Rendus, 90, 182-3; Jour. Chem. Soc., 38, 429.

Use of the spectroscopic camera during the total solar eclipse of May 17, 1882.

Abney and Schuster. Proc. Royal Soc., 35, 152.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Photographs of the solar spectrum.

Amory (R.). Proc. Amer. Acad., 11, 70, 279, with plates.

Image photographique colorée du spectre solaire.

Becquerel (Éd.). Comptes Rendus, 26, 181.

De l'image photochromatique du spectre solaire, et des images obtenus dans la chambre obscure.

Becquerel (Éd.). Comptes Rendus, 27, 483. Rapport sur ce mémoire, par M. Regnault, do., 28, 200.

Sur les phosphorographies du spectre solaire.

Becquerel (Éd.). Jour. de Phys., (2) 1, 189.

Observations sur un mémoire de M. E. Marchand relatif à la mesure de la force chimique contenu dans la lumière du Soleil.

Becquerel (Éd.). Ann. Chim. et Phys., (4) 30, 572-3; Jour. Chem. Soc., (2) 12, 942 (Abs.).

Janssen's new method of solar photography.

Blanford (H. F.). Nature, 18, 648-645.

Ueber directe Photographirung der Sonnenprotuberanzen.

Braun (C.). Astronom. Nachr., 80, 34-42; Ann. Phys. u. Chem., 148, 475-488.

The solar spectrum.

Capron (J. R.). Nature, 6, 492.

Sur la photographie du spectre solaire.

Conche (E.). Comptes Rendus, 90, 689-90.

On the phosphorograph of a solar spectrum, and on the lines of its infra-red region.

Draper (J. W.). Amer. Jour. Sci., (3) 21, 171-182; Phil. Mag., (5) 11, 157-169; Beiblätter, 5, 509-510.

On a method of photographing the solar corona without an eclipse.

Huggins (W.). Proc. Royal Soc., 34, 409-414; Nature, 27, 199-201;
Amer. Jour. Sci., (8) 25, 126-180; 27, 27-32; Ann. Chim. et Phy...
(6) 3, 540-550; Beiblätter, 7, 194 (Abs.); Astronom. Nachr.. 104.
113-118; Jour. de Phys., (2) 2, 173 (Abs.); Comptes Rendus, 96.
51-53.

Photographische Darstellung des Sonnenspectrums.

Jahresber. d. Chemie, 16, 101; 17, 116.

Objective Darstellung des Sonnenspectrums; Vorlesungsversuch.

Kessler (F.). Ber. chem. Ges., 9, 577-8; Jour. Chem. Soc., 2, 266.

On the use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-8.

Rutherfurd's Photographie des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 126, 485.

Photographie de l'image du spectre solaire.

Niepce de Saint Victor. Comptes Rendus, 45, 814; 46, 451, 490.

Photography of the infra-red region of the solar spectrum.

Pickering (H. W.). Proc. Amer. Acad., 20, 473.

On recent progress in photographing the solar spectrum. Rowland (H. A.). Rept. British Assoc. (1884), 635.

On photographs of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 31, 319.

Étude photographique du Soleil à l'observatoire impérial de Paris. Sourel. Comptes Rendus, 71, 225.

Le fotografie del Sole fatte all'osservatorio di Meudon dal Professor Janssen.

Tacchini (P.). Mem. Spettr. ital., 9, 1-5.

Photographie der weniger brechbaren Theile des Sonnenspectrums.

Vogel (H. C.) und Lohse (O.). Ann. Phys. u. Chem., 159, 297; 160, 292.

On reversed photographs of the solar spectrum beyond the red, obtained on a collodion plate.

Waterhouse (Capt. J.). Proc. Royal Soc., 24, 186-9.

Ueber den Einfluss des Eosins auf die photographische Wirkung des Sonnenspectrums auf das Silberbromid und Silberbromjodid.

Waterhouse (Capt. J.). Ann. Phys. u. Chem., 159, 616-622; Proc. Royal Soc. Bengal for 1876.

Photographie directe des protubérances solaires sans l'emploi du spectroscope.

Zenger (C. W.). Comptes Rendus, 88, 874.

#### 24, Pressure on the Sun.

On a method of determining the pressure on the solar surface.

Wiedemann (E.). Monthly Notices Astronom. Soc., 40, 627-8.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Proc. Physical Soc., 4, 31-34; Phil. Mag., (5) 10, 123-5; Beiblätter, 4, 613 (Abs.).

25, Spectra of solar protuberances.

Quadri statistici delle protuberanze e macchie solari osservati all' Collegio Romano nel 1 semestre, 1879.

Barbieri (E.). Mem. Spettr. ital., 8, 75-80.

Constitution des protubérances solaires.

Bianchi. Comptes Rendus, 68, 276.

La découverte du moyen qui permet d'observer en tout temps les protubérances solaires.

Delaunay. Comptes Rendus, 67, 867.

Travaux de M. Respighi pour l'observatiou spectrale des protubérances solaires.

Faye. Comptes Rendus, 70, 886.

Sur les taches et protubérances solaires observées à l'équatorial du Collège romain.

Ferrari. Comptes Rendus, 87, 971-3.

Spectroscopic observations of the solar prominences.

Herschel (Capt.). Proc. Royal Soc., 18, 62, 119, 355.

Note on a method of viewing the solar prominences without an eclipse. Huggins (W.). Proc. Royal Soc., 17, 302.

Note on the wide-slit method of viewing the solar prominences.

Huggins (W.). Proc. Royal Soc., 21, 127.

Étude spectrale des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 98.

Méthode qui permet de constater la matière protubérantielle sur tout le contour du disque solaire.

Janssen (J.). Comptes Rendus, 68, 718.

On the solar protuberances.

Janssen (J.). Proc. Royal Soc., 17, 276.

Notice of an observation of the spectrum of a solar prominence. Lockyer (J. N.). Proc. Royal Soc., 17, 91, 104, 128. Observations des protubérances solaires, pendant le premier semestre de l'année 1877.

Secchi (A.). Comptes Rendus, 86, 98.

Ueber eine ausgezeichnete Protuberanz.

Spörer. Ann. Phys. u. Chem., 148, 171-2.

L'observation des protubérances solaires faites du moment une éclipse par M. Janssen et M. Lockyer.

Stewart (Balfour). Comptes Rendus, 67, 904.

Observations des taches et des protubérances solaires, pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et protubérances solaires pendant les troisième et quatrième trimestres de 1879.

Tacchini (P.). Comptes Rendus, 90, 358-60.

Observations des protubérances, des facules et des taches solaires pendant le premier semestre de l'année 1880.

Tacchini (P.). Comptes Rendus, 91, 466-7.

Observations des taches, des facules et des protubérances solaires, faites à l'observatoire du Collège romain pendant le dernier trimestre, 1880.

Tacchini (P.). Comptes Rendus, 92, 502-4.

- Protuberanze solari osservate a Palermo nel quarto trimestre del 1878.

  Tacchini (P.). Mem. Spettr. ital., 8, 10-11.
- Riassunto delle protuberanze e delle macchie solari osservate alla specola del Collegio Romano nel mese di Settembre, Ottobre e Dicembre.

  Tacchini (P.). Mem. Spettr. ital., 8, 18-16.
- Sulla distribuzione delle macchie, facole e protuberanze solari sulla superficie del Sole, durante l'anno 1880.

Tacchini (P.). Mem. Spettr. ital., 10, 122-3.

Observations des protubérances, des facules et des taches solaires faites à l'observatoire royal du Collège romain pendant le premier semestre 1882.

Tacchini (P.). Comptes Rendus, 95, 276-8.

Observations des protubérances, facules et taches solaires faites à l'Observatoire royal du Collège romain pendant le troisième et le quatrième trimestre de 1882.

Tacchini (P.). Comptes Rendus, 96, 1290-1; Nature, 28, 48 (Abs.).

Sur un nouveau moyen de mesurer les hauteurs des protubérances solaires. Secchi (A.). Comptes Rendus, 74, 218-224.

Spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 74, 218-24.

Resumé des observations des protubérances solaires du 1 janvier au 29 avril.

Secchi (A.). Comptes Rendus, 74, 1315-20; Monthly Notices Astronom. Soc., 32, 318-20 (Abs.).

Sur les protubérances et les taches solaires.

Secchi (A.). Comptes Rendus, 76, 251.

Quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052.

Nouvelle série d'observations sur les protubérances solaires; spectre du sodium, de l'hydrogène, du fer, du magnésium, peutêtre des oxydes.

Secchi (A.). Comptes Rendus, 76, 1522-26.

Protubérances solaires.

Secchi (A.). Comptes Rendus, 77, 977.

Observations spectrales des protubérances solaires pendant le dernier trimestre de l'année 1873.

Secchi (A.). Comptes Rendus, 78, 606.

Tableaux des observations des protubérances solaires, du 26 décembre 1873 au 2 août 1874.

Secchi (A.). Comptes Rendus, 79, 885-9.

Études des taches et des protubérances solaires de 1871 à 1875.

Secchi (A.). Comptes Rendus, 80, 1273-8.

Résultats des observations des protubérances et des taches solaires du 23 avril au 28 juin 1875.

Secchi (A.). Comptes Rendus, 81, 563, 605.

Suite des observations spectroscopiques des protubérances solaires, 1875. Secchi (A.). Comptes Rendus, 82, 717.

Nouvelle série d'observations sur les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 83, 26-7.

Observations des protubérances solaires pendant le second trimestre de 1876.

Secchi (A.). Comptes Rendus, 84, 423.

Observations des protubérances solaires, pendant le premier semestre de l'année 1877.

Secchi (A.). Comptes Rendus, 86, 98.

Ueber eine ausgezeichnete Protuberanz.

Spörer. Ann. Phys. u. Chem., 148, 171-2.

L'observation des protubérances solaires faites du moment une éclipse par M. Janssen et M. Lockyer.

Stewart (Balfour). Comptes Rendus, 67, 904.

Observations des taches et des protubérances solaires, pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et protubérances solaires pendant les troisième et quatrième trimestres de 1879.

Tacchini (P.). Comptes Rendus, 90, 358-60.

Observations des protubérances, des facules et des taches solaires pendant le premier semestre de l'année 1880.

Tacchini (P.). Comptes Rendus, 91, 466-7.

Observations des taches, des facules et des protubérances solaires, faites à l'observatoire du Collège romain pendant le dernier trimestre, 1880.

Tacchini (P.). Comptes Rendus, 92, 502-4.

- Protuberanze solari osservate a Palermo nel quarto trimestre del 1878.

  Tacchini (P.). Mem. Spettr. ital., 8, 10-11.
- Riassunto delle protuberanze e delle macchie solari osservate alla specola del Collegio Romano nel mese di Settembre, Ottobre e Dicembre.

  Tacchini (P.). Mem. Spettr. ital., 8, 18-16.
- Sulla distribuzione delle macchie, facole e protuberanze solari sulla superficie del Sole, durante l'anno 1880.

Tacchini (P.). Mem. Spettr. ital., 10, 122-3.

Observations des protubérances, des facules et des taches solaires faites à l'observatoire royal du Collège romain pendant le premier semestre 1882.

Tacchini (P.). Comptes Rendus, 95, 276-8.

Observations des protubérances, facules et taches solaires faites à l'Observatoire royal du Collège romain pendant le troisième et le quatrième trimestre de 1882.

Tacchini (P.). Comptes Rendus, 96, 1290-1; Nature, 28, 48 (Abs.).

Forms of solar protuberances.

Tacchini (P.). Nature, 6, 233.

Taches et protubérances solaires observées avec un spectroscope à grande dispersion.

Thollon (L.). Comptes Rendus, 89, 855.

Observation spectroscopique d'une protubérance solaire le 30 août 1880. Thollon (L.). Comptes Rendus, 91, 432.

Perturbations solaires nouvellement observées.

Thollon (L.). Comptes Rendus, 97, 144.

Taches et protubérances solaires observées avec un spectroscope à très grande dispersion.

Thollon (L.). Jour. de Phys., 9, 118.

Sudden extinction of the light of a solar protuberance.

Trouvelot (E.). Amer. Jour. Sci., (3) 15, 85-8.

· Observations of the solar prominences.

Tupman (Capt.). Monthly Notices Astronom. Soc., 33, 105-115;
Amer. Jour. Sci., (3) 5, 319.

Sur une méthode employée par M. Lockyer pour observer en temps ordinaire les spectres des protubérances signalées dans les éclipses de Soleil.

Warren de la Rue. Comptes Rendus, 67, 836.

Beobachtung der Sonnenprotuberanzen in monochromatischem Lichte. Zenker (W.). Ann. Phys. u. Chem., 142, 172-176.

Einrichtung des Spectroskops zur Wahrnehmung der Protuberanzen. Zöllner (F.). Ann. Phys. u. Chem., 138, 42.

Beobachtungen von Protuberanzen der Sonne.

Zöllner (F.). Der Naturforscher, 1, 417; 2, 9, 33, 51, 74, 91, 116, 133, 213, 245, 338; 3, 39, 175, 189, 205, 262, 263, 278; Les Mondes, 18, 362, 413; 19, 213, 215, 232, 498; Nature, 1, 172, 195, 607; 2, 131.

26, Radiation and the solar spectrum.

Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques.

Becquerel (Éd.). Comptes Rendus, 9, 145. Remarques sur cette note, par M. Biot, do., 169. Réponse, do., 172-8. Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Sur la répartition de la radiation solaire à Montpellier pendant l'année 1875.

Crova (A.). Comptes Rendus, 82, 875-7.

On the present state of our knowledge of solar radiations.

Hunt (R.). Rep'ts British Assoc. for 1850, 1852, 1858.

Étude des radiations superficielles du Soleil.

Langley (S. P.). Comptes Rendus, 81, 436-9.

27, Red end of the solar spectrum.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15-18; Jour. de Phys., (2) 3, 48; Beiblätter, 7, 695 (Abs.).

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45; Proc. Royal Soc., 35, 80.

On the fixed lines in the ultra-red region of the spectrum.

Abney (W. de W.). Phil. Mag., (5) 3, 222; Beiblätter, 1, 239.

On lines in the infra-red region of the solar spectrum.

Abney (W. de W.). Phil. Mag., (5) 11, 800; Beiblätter, 5, 509.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de phosphorescence.

Becquerel (Éd.). Comptes Rendus, 83, 249-255; Archives de Genève, (2) 57, 306-318; Amer. Jour Sci., (3) 13, 379-80 (Abs.); Ann. Chim. et Phys., (5) 10, 5-13.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (Édm.). Comptes Rendus, 77, 302; Amer. Jour. Sci., (3) 28, 391, 459.

On the fixed lines in the ultra-red invisible region of the spectrum.

Draper (J. W.). Phil. Mag., (5) 3, 86-89; Beiblätter, 1, 239-40 (Abs.).

Optical spectroscopy of the red end of the solar spectrum.

Hennessey (J B. N). Nature, 17, 28.

Der infra-rothe Theile des Sonnenspectrums.

Lang (V. von). Carl's Repert, 19, 107-9; Beiblätter, 7, 274 (Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92-105; Beiblätter, 4, 208.

Photography of the infra-red region of the solar spectrum.

Pickering (W. H.). Proc. Amer. Acad., 20, 473.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Amer. Jour. Sci., (3) 25, 230.

Optical spectroscopy of the red end of the solar spectrum.

Smyth (C. Piazzi). Nature, 16, 264.

28, Spectroscopic effect of rotation.

Sur la loi de rotation du Soleil; réponse à une réclamation du P. Secchi et à un mémoire du Dr. Zöllner.

Faye. Comptes Rendus, 73, 1122-31.

Ueber die spectroscopische Beobachtung der Rotation der Sonne, und ein neues Reversionspectroscop.

Zöllner (F.). Ann. Phys. u. Chem., 144, 449.

29, Storms and cyclones on the Sun.

Sur la nouvelle hypothèse du P. Secchi.

Faye. Comptes Rendus, 76, 593-7.

Note sur quelques points de la théorie des cyclones solaires, en réponse à une critique par M. Vicaire.

Faye. Comptes Rendus, 76, 733-41.

Réponse au P. Secchi et à M. Vicaire.

Faye. Comptes Rendus, 76, 919-923, 977-982.

Note sur les cyclones solaires, avec une réponse de M. Respighi à M. M Vicaire et Secchi.

Faye. Comptes Rendus, 76, 1229-32.

Sur les cyclones du Soleil comparés à ceux de notre atmosphère.

Tarry (H.). Comptes Rendus, 77, 44-8.

Spectre d'une cyclone solaire.

Thollon (L.). Comptes Rendus, 90, 87-9.

Observations sur la théorie des cyclones solaires.

Vicaire (E.). Comptes Rendus, 76, 703-6, 948-52.

## 30, Sun-spots.

On the spectrum of a solar spot observed at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 82-8.

On the spectrum of a sun-spot observed at the Royal Observatory, Greenwich, 1880.

Airy (G. B.). Monthly Notices Astronom. Soc., 41, 68-4.

Dessin des taches solaires observées le 23 mai à 7 heures du soir. Baudin. Comptes Rendus, 70, 1193.

On a periodicity of cyclones and rainfalls in connection with sun-spot periodicity.

British Assoc. Rep'ts for 1873-8.

Bands observed in the spectra of sun-spots at Stonyhurst Observatory.

Cortie (A.). Monthly Notices Astronom. Soc., 47 (1886), 19.

Complément de la théorie physique du Soleil; explication des taches.

Faye. Comptes Rendus, 75, 1664-72, 1793-6; 76, 301-10, 389-97 (réponse aux critiques de M. M. Secchi et Tacchini).

Réponse à de nouvelle objections de M. Tacchini. Faye. Comptes Rendus, 77, 381-8, 621-7.

Théorie des scories solaires selon M. Zöllner.

Faye. Comptes Rendus, 77, 501-9.

Sur l'explication des taches solaires proposée par M. le Dr. Raye. Faye. Comptes Rendus, 77, 855-61.

Réponse aux remarques de M. Tarry sur la théorie des taches solaires. Faye. Comptes Rendus, 77, 1122-30.

Théories solaires; réponse à quelques critiques récentes. Faye. Comptes Rendus, 78, 1663-70.

Observations au sujet de la dernière note M. Tacchini, et du récent mémoire de M. Langley.

Faye. Comptes Rendus, 79, 74-82.

Double série de dessins répresentant les trombes terrestres et les taches solaires executée par M. Faye.

Fave. Comptes Rendus, 79, 265-73.

Sur le dernier numéro des "Memorie dei Spettroscopisti italiani."
Faye. Comptes Rendus, 80, 935-6.

Spectrum of the great sun-spot of 1882, Nov. 12-25.

Greenwich Observatory, Monthly Notices Astronom. Soc., 43, 77.

On sun-spots and terrestrial elements in the Sun.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 16, 401-8; Beiblätter, 8, 304 (Abs.); Jour. de Phys., 13, 418.

Temperature of sun-spots.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 17, 302-4; Beiblätter, 8, 768 (Abs.).

On a sun-spot observed Aug. 31, 1880.

Lockyer (J. N.). Proc. Royal Soc., 31, 72; Beiblätter, 5, 129 (Abs.).

Note on the reduction of the observations of the Spectra of 100 sun-spots observed at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 32, 203-6.

Preliminary Report to the Solar Physics Committee on the Sun-spot Observations made at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 33, 154; Chem. News, 44, 297-8; Beiblätter, 6, 281-2 (Abs.).

On the most widened lines in sun-spot spectra; first and second series, from November 12, 1879, to October 15, 1881.

Lockyer (J. N.). Proc. Royal Soc., 36, 443-6; 42 (1887), 37-46.

Observations of sun-spot spectra in 1883.

Perry (S. J.). Monthly Notices Astronom. Soc., 44, 244-8.

On the sun-spot spectrum from D to B.

Perry (S. J.). Rept. British Assoc. (1884), 635.

Analyse spectrale d'une tache solaire.

Rayet. Comptes Rendus, 70, 846.

Réponse à M. Faye concernant les taches solaires.

Reye (T.). Comptes Rendus, 77, 1178-81.

Les minima des taches du Soleil en 1881.

Riccò (A.). Comptes Rendus, 94, 1169-71.

Sulla diversa attività dei due emisferi solari nel 1881.

Riccò (A.). Astronom. Nachr., 103, 155-6.

Remarques sur la relation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 237.

Présence de la vapeur d'eau dans le voisinage des taches solaires.

Secchi (A.). Comptes Rendus, 68, 858.

L'analyse comparative de la lumière du bord solaire et des taches. Secchi (A.). Comptes Rendus, 69, 39.

Note sur les taches solaires.

Secchi (A.). Comptes Rendus, 69, 163, 589, 652.

Sur les taches et le diamètre solaires.

Secchi (A.). Comptes Rendus, 75, 1581-4.

Taches solaires.

Secchi (A.). Comptes Rendus, 76, 519-27.

La théorie des taches solaires, réponse à M. Faye.

Secchi (A.). Comptes Rendus, 76, 911-19.

Études des taches et des protubérances solaires.

Secchi (A.). Comptes Rendus, 80, 1273-78; 83, 26-7.

Note sur les taches du Soleil.

Sonrel. Comptes Rendus, 70, 1033.

Report to the Solar Physics Committee on a Comparison between apparent Inequalities of Short-period in Sun-spot Areas, and in Diurnal Temperature-ranges at Toronto and at Keno.

Stewart (B.) and Carpenter (W. L.). Proc. Royal Soc., 37, 22, 290.

Macchie solari e facole osservate a Palermo nei mesi di gennaio, febbraio, e marzo 1879 (e durante l'anni 1879 e 1880).

Tacchini (P.). Mem. Spettr. ital., 8, 35-6, 50-1, 55-6, 90-2, 97-101; 9, 45-8, 91-2, 190-2; 10, 1-4, 122-128.

Sur la théorie des tachez solaires; réponse à deux notes précédentes de M. Fave.

Tacchini (P.). Comptes Rendus, 76, 638-5.

Sur la théorie émise par M. Faye des taches solaires.

Tacchini (P.). Comptes Rendus, 76, 826-80.

Nouvelles observations spectrales, en désaccord avec quelques-unes des théories émises sur le taches solaires.

Tacchini (P.). Comptes Rendus, 77, 195-8.

Observations spectroscopiques sur les taches solaires; réponse à M. Faye.

Tacchini (P.). Comptes Rendus, 79, 39.

Sur les taches solaires.

Tacchini (P.). Comptes Rendus, 84, 1079-81.

Spectre d'une tache solaire observée pendant le mois de juin 1877.

Tacchini (P.). Comptes Rendus, 84, 1500.

Observations des taches et des protubérances solaires pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et des protubérances solaires (pendant les années 1879, 1880, 1881, et 1882).

Tacchini (P.). Comptes Rendus, 90, 358-60; 91, 316-7, 466-7; 93, 382; 95, 276-8; 96, 1290.

Sur la grande tache solaire de novembre 1882, et sur les perturbations magnétiques qui en ont accompagné l'apparition.

Tacchini (P.). Comptes Rendus, 95, 1212-14.

Macchie solari e facole osservate in Roma all'equatoriale di Cauchoix nel terzo trimestre, e nel ultimo trimestre 1879.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 8, 73-4, 88-9.

- Macchie solari e facole osservate a Roma nel mese di gennaio, 1880.

  Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 9, 8.
- Observations des taches du Soleil, faites à l'Observatoire de Toulouse en 1874 et 1875.

Tisserand (F.). Comptes Rendus, 82, 765-7.

Sur deux taches solaires actuellement visibles à l'œil nu.

Tremeschini. Comptes Rendus, 70, 840.

On the veiled solar spots.

Trouvelot (L.). Proc. Amer. Acad., 11, 62-69; Amer. Jour. Sci., (3) 11, 169-176.

Sur la théorie des taches et sur le noyau obscur du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1896-9.

Sur la constitution du Soleil, et la théorie des taches.

Vicaire (E.). Comptes Rendus, 76, 1540-4; 77, 40-4.

Note on the temperature of sun-spots.

Wiedemann (E.). Phil. Mag., (5) 17, 247-8; Beiblätter, 8, 768 (Abs.).

Études sur la fréquence des taches du Soleil et sa relation avec la variation de la déclinaison magnétique.

Wolf. Comptes Rendus, 70, 741.

Spectroscopic Notes; Spot-spectra.

Young (C. A.). Jour. Franklin Inst., 60, 331-40; Nature, 3, 110-113.

Ueber die Periodicität und heliographische Verbreitung der Sonnenflecken.

Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 338-350; Ann. Phys. u. Chem., 142, 524-539.

Ueber den Aggregatzustand der Sonnenflecken.

Zöllner (F.). Ann. Phys. u. Chem., 152, 291-310.

31, Telluric (terrestrial) rays of the solar spectrum.

Étude spectrale du groupe de raies telluriques nommé a (Alpha) par Angström.

Cornu (A.). Comptes Rendus, 95, 801; 98, 169-76; Nature, 29, 351; Beiblätter, 8, 305-7 (Abs.); Jour. de Phys., (2) 3, 109-117.

Les bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 885, 788; Chem. News, 44, 256 (Abs.); Beiblätter, 5, 871-2 (Abs.); 6, 100-101 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555-7; Beiblätter, 7, 859-60 (Abs.); Amer. Jour. Sci., (3) 26, 477 (Abs.).

Tellurische Linien der Sonne und der Gestirne.

Jahresber. d. Chemie, 18, 92; 19, 77.

Sur les raies telluriques du spectre solaire.

Janssen (J.). Comptes Rendus, 54, 1280; 56, 189, 538; 57, 1008;
60, 213; 95, 885; Ann. Chim. et Phys., (4) 23, 274-299; Ann. Phys. u. Chem., 126, 480; Phil. Mag., (4) 30, 78.

In feuchter Luft sind die Würmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Étude sur les raies telluriques du spectre solaire.

Thollon (L.). Comptes Rendus, 91, 520-522; Beiblätter, 4, 891 (Abs.).

32, Ultra-violet part of the solar spectrum.

Étude du spectre solaire ultra-violet.

Cornu (A.). Comptes Rendus, 86, 101; Jour. de Phys., 7, 285.

Deux planches relatives au spectre solaire.

Cornu (A.). Comptes Rendus, 86, 988.

9 т

Sur l'absorption atmosphériques des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5.

Sur la limite ultra-violette du spectre solaire.

Cornu (A.). Comptes Rendus, 38. 1101-8; Proc. Royal Soc., 28. 47-55; Jour. Chem. Soc., 36. 861 (Abs.); Beiblätter, 4, 38-49 (Abs.).

Observation de la limite ultra-violette du spectre solaire à diverses altitudes.

Cornu (A.). Comptes Rendus, 89, 908-914; Jour. Chem. Soc., 38, 201 (Abs.,; Amer. Jour. Sci., (3) 19, 406.

Loi de repartition, suivant l'altitude, de la substance absorbant dans l'atmosphère des radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940.

Sur le spectre normal du Soleil; partie ultra-violette.

Cornu (A.). Ann. de l'École Normale, (2) 9, 21-106; Beiblätter, 4, 371-4 (Abs.).

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

Influence des rayons ultra-violets du spectre solaire sur la matière verte des végétaux et sur la flexion des tiges.

Guillemin. Comptes Rendus, 45, 62, 548.

Ultra-violette Strahlen des Sonnenspectrums.

Jahresber. d. Chemie (1872), 134.

Sur les raies du spectre solaire ultra-violet.

Mascart. Comptes Rendus, 57, 789; Phil. Mag., (4) 27, 159.

Sur l'absorption du nouveau violet extrême par diverses matières.

Matthiessen. Comptes Rendus, 19, 112.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1238.

Nouvelles expériences tendant à démontrer qu'il existe une force magnétisante dans l'extrémité violette du spectre solaire.

Ridolf (C.). Ann. Chim. et Phys., (5) 3, 323-4.

## 33, Water in the solar spectrum.

The influence of water in the atmosphere on the solar spectrum and solar temperature.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 35, 328-41; Jour. Chem. Soc., 46, 241; Beiblätter, 3, 507 (Abs.).

Aqueous lines in the spectrum of the Sun.

Cooke (J. P., Jr.). Amer. Jour. Sci., 91, 178; Phil. Mag., (4) 31, 887.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

34, Wave-lengths of the solar spectrum.

Wave-lengths of A, a, and of prominent lines in the infra-red of the solar spectrum.

Abney (W. de W.). Proc. Royal Soc., 36, 137.

Détermination des longueurs d'onde des raies et bandes principales du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 99, 417; Amer. Jour. Sci., 128, 891, 459.

Détermination des longueurs d'onde des raies du spectre solaire au moyen des bandes d'interférence.

Bernard (F.). Comptes Rendus, 58, 1153; 59, 32.

Sur la photométrie solaire.

Crova (A.). Comptes Rendus, 94, 1271; 95, 1271-3; 96, 126; Beiblätter, 7, 113 (Abs.).

Bestimmung der Wellenlängen der Fraunhofer'schen Linien des Sonnenspectrums, mit 2 Tafeln.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 50 II, 286, 296-341.

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

On the normal solar spectrum (giving wave-lengths of the principal lines of the solar spectrum).

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

Mesures spectrophotométriques en divers points du disque solaire.

Gouy et Thollon. Comptes Rendus, 95, 834-6; Beiblätter, 7, 118-114 (Abs.).

Weilenlänge und Brechungsexponent der äussersten dunklen Wärinestrahlen des Sounenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543. Berichtigung dazu, 116, 644.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, \$2; Nature, 26, 72.

Relative wave-length of the lines of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 38 (1887), 182-190; Phil. Mag., (5) 23 (1887), 257-65.

Note on Sir David Brewster's Line Y in the infra-red of the solar spectrum.

Smyth (C. Piazzi). Edinburgh Transactions, 32 II, 223-238.

Spectralphotometrische Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad., (1877) 104-142.

35, White lines in the solar spectrum.

White lines in the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 221; Phil. Mag., (4) 48, 202-6; 53, 259 (appendix to the preceding note).

## k, TWINKLING OF STARS.

Ueber das Funkeln der Sterne und die Scintillation überhaupt.

Exner (K.). Sitzungsber. d. Wiener Akad., 84 II, 1038-81; Ann. Phys. u. Chem., n. F. 17, 305-22; Jour. de Phys., (2) 1, 373 (Abs.).

Analyse prismatique de la lumière des étoiles scintillantes.

Montigny (Ch.). Bull. de l'Acad. de Belgique, (2) 37, 165-90; Comptes Rendus, 66, 910; Ann. Phys. u. Chem., 153, 277-98.

Nouvelles recherches sur la fréquence de la scintillation des étoiles dans ses rapports avec la constitution de leur lumière d'après l'analyse spectrale.

Montigny (Ch.). Bull. de l'Acad. roy. de Belgique, (2) 38, 300-320;
Ann. Phys. u. Chem., Ergänzungsband, 7, 605-624.

#### ATMOSPHERIC SPECTRA.

Atmospheric transmission of visual and photographically active light.

Abney (W. de W.). Monthly Notices Astronom. Soc., 47 (1887), 260-5.

Spectre de l'air atmosphérique.

Becquerel (H.). Comptes Rendus, 90, 1407.

La radiation atmosphérique comme agent chimique.

Biot. Comptes Rendus, 8, 598.

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere.

Brewster (Sir D.). Phil. Mag., (8) 8, 384.

On the aqueous lines of the solar spectrum.

Cooke (J. P.). Amer. Jour. Sci., (2) 41, 178; Phil. Mag., (4) 31, 387.

Sur l'absorption par l'atmosphère des radiations ultra-violettes.

Cornu (A.). Comptes Rendus, 88, 1285; Jour. de Phys., 10, 5.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'observer les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Comptes Rendus, 95, 801-6; Jour. de Phys., (2) 2, 58;
Beiblätter, 7, 110 (Abs.); Amer. Jour. Sci., (3) 25, 78; Bull. Soc. franç. de Phys. (1882), 241-7.

Étude spectrale du groupe de raies telluriques nommé a (alpha) par Angström.

Cornu (A.). Comptes Rendus, 98, 169; Ann. Chim. et Phys., (6) 7 (1886), 5-102; Phil. Mag., (5) 22 (1886), 458-63; Amer. Jour. Sci., (3) 33 (1887), 70 (Abs.); Beiblätter, 11 (1887), 37 (Abs.).

s bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Recherches sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 885, 788.

Recherches sur le spectre d'absorption de l'atmosphère terrestre.

Egoroff (N.). Comptes Rendus, 95, 447; Beiblätter, 6, 937; Jour. Chem. Soc., 44, 187.

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire, par une couche d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555.

Note on the atmospheric lines of the solar spectrum and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Bandenspectrum der Luft.

Goldstein. Sitzungsber. d. Wiener Akad., 84 II, 693; Ann. Phys. u. Chem., n. F. 15, 280.

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1390 (Abs.).

Atmospheric lines of the solar spectrum.

Hennessey (J. H.). Proc. Royal Soc., 19, 1; 23, 201.

Zustand der Atmosphäre.

Jahresber. d. Chemie, 13, 607; 14, 45; 16, 103; 19, 77.

Spectres telluriques.

Janssen (J.). Comptes Bendus, 101 (1885), 111.

Analyse spectrale des éléments de l'atmosphère terrestre.

Janssen (J.). Comptes Rendus, 101 (1885), 649.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 448-65; Sitzungsber. Wiener Akad., 69 II, 451-68.

Amount of atmospheric absorption.

Langley (S. P.). Phil. Mag., (5) 18, 289-307; Jour. Chem. S.c., 23, 319; Amer. Jour. Sci., (3) 28 (1885), 163, 242.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungsber. Wiener Akad., 82 II, 851-868.

On the spectrum of the atmosphere.

Maclear (J. P.). Nature, 5, 341.

Sur la théorie de l'absorption atmosphérique.

Maurer (J.). Archives de Genève, (3) 9, 874-91.

Opalescence of the atmosphere for the chemically active rays.

Roscoe (H. E.). Chem. News, 14, 28.

On the atmospheric lines between the D lines.

Russell (H. C.). Monthly Notices Astronom. Soc., 38, 30-32.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft.
Schimkow (A.). Ann. Phys. u. Chem., 129, 518.

Sur l'influence de l'atmosphère sur les raies du spectre. Secchi (A.). Comptes Rendus, **60**, 879.

Spectrum von atmosphärischer Luft.
Vogel (H. C.). Ann. Phys. u. Chem., **146**, 580.

## AUKUKA AND ZODIACAL LIGHT.

The nurery mini the speciment.

Abmentation (de Nature, 27, 178; Beiblitter, 7, 188.

Alaguele: universament, normanismo south-corrects.

. aunius IW. Ir. Naime, 25, 66-71.

Specifully of marges suggested.

Languaren, (A. J. Namure, M. 210; Ann. Phys. n. Chem., Jubilmant., 133-7. Aron. de Conève, (2) 20, 204 (Abs.); Jour. de Phys., 3, 234

Unervalues of the audinos light at Cadiz.

Arranas A. T. Monthly Notices Astronom. Soc. 35. 45-51.

Sportfull of the Auron.

Biackinume T. W. Nature, 4, 66; 7, 182, 463; 28, 20.

A line in the green between b and F; a line in the yellow-green hetween D and E (principal surveyal line); a line in the green-blue at or near F, assumed to be 455 of Alvan Ciarke, Jr.; a line in the red between C and D, a line in the green at or near b, at 517.

Butter (G. F., Nature, 7, 192

Specimen of the Autom.

Linnser (G. F., Amer Jour. Sci., (3. 2, 465-6; S. Si-64; Jour. Ulean, Nov., (2. 20, 119, Alex.), Chem. Nows, 26, 270

Or his specime of the aurors boresis.

Becoming (1) Monthly Notices Astronom. Soc. 31 7 Pail Mar. (4) 41 7c Amer. Four. Sci. (3) 2 215

Comparant of some time and other spectra with the spectrum of the

Capror , E. Pai. Mag. 4 49 26-60

Speciente de aumera

Caperer , R. Nature 2 25 Phil Mag. 4 49 401

The number immedia of Fore & 2002

Capete (* E. Name & 286-1 . See below inner Tormi. E. -Macete, Murphy Prov. Pramowski, Lospins, Seem, Snyth Steel, Incohn, Iwing and Wate. Spectrum of the aurora and of the zodiacal light (with a list of authorities on the subject, included here).

Capron (J. R.). Nature, 7, 182-186.

The aurora spectrum.

Capron (J. R.). Nature, 7, 201.

The aurora and its spectrum.

Capron (J. R.). Nature, 25, 58; Jour. de Phys., (2) 2, 97 (Abs.).

The aurora.

Capron (J. R.). Nature, 27, 88-4, 189, 198.

Magnetic storm, aurora and sun-spot.

Christie (W. H. M.). Nature, 27, 83.

Spectrum of the Aurora.

Church (A. H.). Chem. News, 22, 225.

A line in the green-blue at or near F; at 485; assumed to be 486 F hydrogen.

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the green near E (corona line?); at 532; assumed to be 531.6 (corona line).

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the yellow-green between D and E (principal auroral line).

Clark (Alvan, Jr.). Nature, 7, 182.

Line in the indigo at or near G; at 435; supposed to be G hydrogen.

Clark (Alvan, Jr.). Nature, 7, 183.

Observations of the aurora on Aug. 12 and 13, 1880 Copeland (R.). Nature, 22, 510.

Spectre de l'aurore boréale du 4 février.

Cornu (A.). Comptes Rendus, 74, 890.

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

The aurora.

Eiger (T. G.). Nature, 3, 6-7; 7, 182; 27, 85-6.

Spectrum of the aurora.

Ellery (R. J.). Nature, 4, 280.

Spectrum of the aurora.

F. (T.). Nature, 3, 6.

Sur les aurores boréales.

Faye. Comptes Rendus, 77, 546.

The continuous spectrum; faint green reaching from the aurora line to F. Flögel. Nature, 7, 183.

Spectroscopic examination of the aurora, April 10, 1872.

Frazer (P.). Proc. Amer. Philosoph. Soc., 12, 579.

On the spectrum of the aurora.

Herschel (A. S.). Phil. Mag., (4) 49, 65-71; Nature, 3, 486.

Line in the yellow-green between D and E (principal auroral line).

Herschel (A. S.). Nature, 7, 182.

Spectrum of the aurora.

Holden (E. S.). Amer. Jour. Sci., (3) 4, 423; Phil. Mag., (4) 44, 478.

Spectrum of the aurora.

Hyatt. Nature, 3, 10%.

Das Nordlichtspectrum.

Jahresber. d. Chemie, (1868) 128, (1869) 180, (1872) 148, (1873) 151, (1875) 123.

Spectrum des Zodiscal-Lichtes.

Jahresber. d. Chemie, (1872) 148.

The aurora borealis of Feb. 4, 1872.

Key (H. Cooper). Nature, 5, 302.

Spectrum of the aurora.

Kirk (E. B.). Observatory, (1882) 271, (1886) 811.

Spectrum of the aurora.

Kirkwood (D.). Nature, 3, 126.

Sur la décharge électrique dans l'aurore boréale, et le spectre du même phénomène.

Lemström (S.). Archives de Genève, (2) 50, 225-42, 355-86; Nature,
28, 60-3, 107-9, 128-30; Jour. de Phys., (2) 2, 315-17 (Abs.).
(See Tresca in Comptes Rendus, 96, 1835.)

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses. Liais (É.). Comptes Rendus, 74, 262. Spectrum of the aurora.

Lindsay (Lord). Nature, 4, 347, 366; 7, 182.

The aurora borealis of Feb. 4, 1872.

Maclear (J. P.). Nature, 5, 283.

Spectrum of aurora.

Maclear (J. P.). Nature, 6, 329

Spectrum of aurora australis.

Maclear (J. P.). Nature, 17, 11.

Swan lamp spectrum and the aurora.

Munro (J.). Nature, 27, 178; Beiblätter, 7, 198.

The aurora borealis of Feb. 4, 1872.

Murphy (J. J.). Nature, 5, 288.

Spectrum of the aurora.

Newlands (J. A. R.). Chem. News, 23, 213.

Das Nordlichtspectrum.

Oettigen (A. J.). Ann. Phys. u. Chem., 146, 284-7; Ann. Chim. et Phys., (4) 26, 269-73.

The aurora borealis of Feb. 4, 1872.

Perry (S. J.). Nature, 5, 808.

Spectrum of the aurora.

Pickering (E. C.). Nature, 3, 104.

Étude spectrale de la lumière de l'aurore boréale du 4 février.

Prazmowski. Comptes Rendus, 74, 891.

Spectrum of the aurora.

Pringle (G. H.). Nature, 6, 260.

Spectra of the aurora and corona.

Proctor (H. R.). Nature, 3, 6, 68, 346, 869, 468; 6, 161, 220; 7, 242.

Spectrum of the aurora.

Proctor (H. R.). Nature, 7, 102.

Sur le spectre de l'aurore boréale.

Rayet (G.). Jour. de Phys., 1, 863.

L'analyse spectrale de la lumière zodiacale.

Respighi (L.). Comptes Rendus, 74, 514.

Le spectre de la lumière zodiacale et le spectre de l'aurore boréale sont identicales.

Respighi (L.). Comptes Rendus, 74, 748.

Observations of the aurora borealis of Feb. 4 and 5, 1872.

Respighi (L.). Nature, 5, 511; Gazz. Ufficiale d. Regno d'Italia, Feb. 5, 1872.

The aurora.

Robinson (H.). Nature, 27, 85.

The aurora.

Romanes (C. H.). Nature, 27, 86.

On the auroral spectrum.

Rowland (H. A.). Amer. Jour. Sci., 5, 820.

Spectre de l'aurore boréale.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222.

Spectrum of the aurora.

Schmidt. Nature, 7, 182-3.

The aurora borealis of Feb. 4, 1872.

Seabroke (G. M.). Nature, 5, 288.

Sur l'aurore boréale du 4 février observée à Rome, et sur quelques nouveaux résultats d'analyse spectrale.

Secchi (A.). Comptes Rendus, 74, 583-8.

Aurore boréale observée à Rome le 10 août à 10 heures du matin.

Secchi (A.). Comptes Bendus, 75, 606-613.

La luce zodiacale confronto tra le osservazioni del P. Dechevrens e quelle di G. Jones.

Serpieri (A.). Mem. Spettr. ital., 9, 133-42.

Mémoire sur des faits dont on peut déduire: 1. une théorie des aurores boréales et australes, fondée sur l'existence de marées atmosphériques; 2. l'indication, à l'aide des aurores, de l'existence d'essaims d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 553-7, 638-42.

Spectra of aurora, corona and zodiacal light.

Smyth (C. Piazzi). Nature, 3, 509-10.

Spectroscopic observations of the zodiacal light in April, 1872, at the Royal Observatory, Palermo.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 32, 277-288;
Amer. Jour. Sci., (3) 4, 245 (Abs.).

The aurora borealis of Feb. 4, 1872.

Smyth (C. Piazzi). Nature, 5, 282-8.

Spectrum of the aurora.

Smyth (C. Piazzi). Nature, 7, 182.

The aurora of Feb. 4, 1872.

Stone (E. J.). Nature, 5, 443; Amer. Jour. Sci., (8) 3, 891-2.

Beobachtung eines Nordlichtspectrum (Aurora Borealis).

Struve (Otto von). Bull. de l'Acad. de St. Pétersbourg, 3, 49.

Observations of the aurora.

Sueur (A. Le). Proc. Royal Soc., 19, 19.

Spectrum of the aurora.

T. (F.). Nature, 7, 182-8.

Sur l'aurore boréale du 4 février 1872.

Tacchini (P.). Comptes Rendus, 74, 540-2.

Sur l'origine des aurores polaires.

Tarry (H.). Comptes Rendus, 74, 549-53.

Sur les observations de M. Lemström en Laponie.

Tresca. Comptes Rendus, 96, 1835-6.

The aurora of Feb. 4, 1872.

Twining (A. C.). Amer. Jour. Sci., (3) 3, 273-81.

Untersuchungen über das Spectrum des Nordlichtes.

Vogel (H. C.). Ber. Sächs. Ges. d. Wiss., 23, 285-99; Ann. Phys. u.
Chem., 146, 569-85; Jour. Chem. Soc., (2) 10, 1061 (Abs.); Amer.
Jour. Sci., (3) 4, 487 (Abs.).

Spectrum des Nordlichtes.

Vogel (H. C.). Astronom. Nachr., 78, 247-8.

Spectrum of the aurora.

Watts (W. M.). Phil. Mag., (4) 49, 410-11.

The aurora borealis of Feb. 4, 1872.

Watts (W. M.). Nature, 5, 303.

Observations sur le spectre de l'aurore boréale.

Wijkander (A.). Arch. de Genève, (2) 51, 25-80.

Line in the green near E (corona line).

Winlock. Nature, 7, 182.

# On the spectrum of the zodiacal light.

Wright (A. W.). Amer. Jour. Sci., (3) 8, 39-46; Ann. Phys. u. Chem., 154, 619-29.

# Ueber das Spectrum des Nordlichtes.

Zóllner (F.). Ber. Sāchs. Ges. Wiss., 22, 254-260; Ann. Phys. u. Chem., 141, 574-581; Phil. Mag., (4) 41, 122-127; Amer. Jour. Sci., (3) 1, 372-8 (Abs.).

# Spectrum of the aurora.

Zöllner (F.). Nature, 7, 182-8.

#### AUSTRIUM.

# Spectrum of austrium.

Linnemann (E.). Monatschr., 7, 121-3; Jour. Chem. Soc., 50 (1886), 778 (Abs.).

# BARIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineralog., 1, 165-192; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Barium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 21.

Spectre de chlorure de baryum.

Gouy. Comptes Rendus, 84, 231.

Sur les caractères des flammes chargées du chlorure de baryum.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du baryum.

Gouy. Comptes Rendus, 86, 878.

Spectrum von Baryum.

Jahresber. d. Chemie (1870), 174.

Chemische Analyse durch Spectralbeobachtungen, Baryum. Kirchhoff und Bunsen. Ann. Phys. u. Chem., 110, 182 Chlorure de Baryum (ou Ba O) dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57. 62, planche VII.

Bromure de baryum dans le gaz chargé de brome; iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 63. 65, planche VIII.

## BERYLLIUM OR GLUCINUM.

Beryllium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

Spectrum of beryllium.

Hartley (W. N.). Chem. News, 47, 201; Jour. Chem. Soc, 43, 316-19; Ber. chem. Ges., 16, 1959 (Abs.); Amer. Jour. Sci., (3) 26, 316-17.

Remarks on the atomic weight of beryllium.

Hartley (W. N.). Proc. Royal Soc., 36, 462-4; Chem. News, 49, 171-2; Beiblätter, 8, 820 (Abs.).

Spectrum of beryllium.

Nature, 29, 90.

Propriétés principales du glucinum.

Nilson (L. F.) et Petterson (O.). Comptes Rendus, 91, 169.

Note on the atomic weight of beryllium.

Reynolds (J. E.). Proc. Royal Soc., 35, 248-50; Beiblätter, 8, 3-4 (Abs.).

Reply by Humpidge (T. S.). Proc. Royal Soc., 35, 358-9.

# BISMUTH.

Le bismuth n'a donné aucune apparence de renversement. Cornu (A.). Comptes Rendus, 73, 882.

Fluorescence des composés de bismuth.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 629-81, 1064-8; Jour. Chem. Soc., 52, 4 (Abs.), 189 (Abs.).

## BLUE GROTTO.

Spectroscopische Untersuchung der blauen Grotte auf Capri. Vogel (H. W.). Ann. Phys. u. Chem., 156, 825.

## BORAX.

Boron arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

L'acide borique.

Dieulafait (L.). Ann. Chim. et Phys., (5) 12, 318-54; Jour. Chem. Soc., 34, 11 (Abs.).

10 т

Existence de l'acide borique dans les eaux de la Mer Morte.

Dieulafait (L.). Comptes Rendus, 94, 1352-4; Jour. Chem. Soc., 42, 1037 (Abs.); Ann. Chim. et Phys., (5) 25, 145-167.

L'acide borique dans les eaux minérales de Contrexeville et Schinzmach (Suisse).

Dieulafait (L.). Comptes Rendus, 95, 999-1001; Jour. Chem. Sec., 44, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue de l'acide borique.

Dieulafait (L.). Comptes Rendus, 98, 1545-8; Chem. News. 50, 45 (Abs.).

On line spectra of boron.

Hartley (W. N.). Proc. Boyal Soc., 35, 301-4; Chem. News. 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120 (Abs.).

Spectra of boric acid and blowpipe beads.

Horner (Charles). Chem. News. 29, 66.

Spectre de l'acide borique dans le gaz.

Lecoq de Boisbaudran (P.). Spectres Lumineux, Paris, 1874, p. 191-planche XXVIII.

Spectre de l'acide borique.

Lecoq de Boisbaudran (P.). Comptes Rendus. 76, 833.

Spectrum von Fluorborgas.

Plücker. Ann. Phys. u. Chem., 104, 125.

Propriétés optiques de borax.

Senarmont (H. de'. Ann. Chim. et Phys., (3) 41, 336.

Spectra der verschiedenen grünen Flammen, Borax.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Spectre du bore.

Troost et Hautefeuille. Comptes Bendus. 63, 620: Bull. Soc. chim. Paris, n. s. 16, 229.

## BROMINE.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Spectre du brome dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 88, 379-81; Jour. Chem. Soc., 36, 504-5.

Spectre de bromure de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectre d'absorption de protobromure de tellure et de protobromure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Spectre du brome.

Gouy. Comptes Rendus, 85, 70.

- Absorptionsspectrum des Bromtellurs, des Bromselens, und des Bromjods.

  Jahresber. d. Chemie (1872), 140.
- On the action of the less refrangible rays of light on silver iodide and bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1 (1876), 28 (Abs.).

Notes on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

Réaction spectrale du Brome.

Locoq de Boisbaudran (F.). Comptes Rendus, 91, 902-3; Phil. Mag., (5) 11, 77-8; Beiblätter, 5, 118 (Abs.).

Bromure de baryum dans le gaz chargé de brome.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 63, 65, planche VIII.

Verbindungsspectrum zur Entdeckung von Brom.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Entdeckung sehr geringer Mengen von Brom in Verbindungen.

Mitscherlich. Ann. Phys. u. Chem., 125, 629.

Absorption spectra of bromine.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Ceber die Lichtempfindlichkeit des Bromsilbers.

Vogel (H.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. u. Chem., 150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (3, 7, 140-1; Phil. Mag., (4) 47, 273-7.

Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.

Vogel (H. W.). Ber. chem. Ges., 8, 1625-6; Jour. Chem. Soc., 1 (1876), 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).

Neue Betrachtungen über die Lichtempfindlichkeit des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 2 (1876), 265 (Abs.).

Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.

Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Beiblätter, 5, 521 (Abs.); Jour. Chem. Soc., 40, 773 (Abs.).

Ueber die verschiedenen Modificationen des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-79; Beiblätter, 7. 533 (Abs.).

Sur la sensibilité du bromure d'argent à l'égard des radiations considérées comme chimiquement inactives.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 21, 233.

Ueber die Brechung und Dispersion des Lichtes im Bromsilber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287.

Uebereinstimmung des Absorptionsspectrums von Brom mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 150.

## CADMIUM.

Ultra-violet spectrum of cadmium.

Bell (L.). Amer. Jour. Sci., 31 (1886), 426-31; Jour. Chem. Soc., 50, 957 (Abs.).

Cadmium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectrum of chloride of cadmium.

Chem. News, 35, 107.

Déterminations des longueurs d'onde des radiations très réfrangibles du cadmium.

Cornu (A.). Arch. de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du cadmium.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre de chlorure de cadmium.

Gouy. Comptes Rendus, 84, 281.

Spectrum von Cadmium.

Jahresber. d. Chemie (1872), 145.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, 189.

Spectrum of cadmium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Indice du quartz pour les raies du cadmium.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

## CHESTRUME

## Cheervations on casium.

Allen (O. D.). Phill Mag., 25, Bis: Amer. Jour. Sei., (2) 35 (1862),

On the equivalent and spectrum of casium.

Allen (O. D.) and Johnson (S. W.). Phil. Mag., 25, 196; Amer. Jour. Sci., (2), 25 (1962), 94.

#### On casinm.

Bunsen (R.). Phil. Mag., 25, 24L.

Les sulpétres naturels du Chilé et du Pérou su print de vue du cessium.

Distriction. Compress Bondius, 33, Bidti-&; Chem. News, 33, 45 (Alis.).

Recherches sur la présence du casium dans les eaux naturalles.

Goandsau (I.). Ann. Chim. et Phys., (3) 67, Lui.

## Spectrum win Casium.

Kirchhaff (K.) und Bunsen (R.). Ann. Phys. u. Chem., 112 337, 379; Phil. Mag. (4) 22 498.

#### Chlorure de casium.

Lecoq de Baishaufran (F.). Spectres Lumineux, Paris, 1974. p. 44, planche III.

## On pollux, a silicate of exsism.

Pissai. Comptes Rendus, 58, 714.

#### CALCIUM.

Sur la phosphorescence du sulfure de calcium.

Becquerel (Edm.). Comptes Rendus, 103 (1887), 551-3; Chem. News, 55 (1887), 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (Edm.). Comptes Rendus, 103 (1886), 1098-1101.

Ueber das Calciumspectrum.

Blochmann (R.). Jour. prackt. Chem., (2) 4, 282-6; Jour. Chem. Soc., (2) 9, 1149-1150 (Abs.).

Calcium (Zinc) spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 28.

Spectre de chlorure de calcium.

Gouy. Comptes Rendus, 84, 281.

Recherches photométriques, spectre du calcium.

Gouy. Comptes Rendus, 85, 70.

Sur les flammes chargées du chlorure de calcium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du calcium.

Gouy. Comptes Rendus, 85, 878, 1078.

Spectrum von Kalk.

Jahresber. d. Chemie (1870), 174.

Linien von Calcium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 177.

Das Wärmespectrum des Kalklichtes.

Lamansky (S.). Monatsber. d. Berliner Akad. (1871), 682-41; Phil. Mag., (4) 43, 282-9; Ann. Phys. u. Chem., 146, 200-32.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Lang (V. von). Sitzungsber. d. Wiener Akad., 83 II, 671-6.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 96-8; Beiblätter, 4, 611-12 (Abs.).

Sur de nouvelles raies de calcium.

Lockyer (J. N.). Comptes Rendus, 82, 690-2; Ann. Chim. et Phys., (5) 7, 569-72; Chem. News, 32, 166-7; Jour. Chem. Soc., 2 (1875). 36 (Abs.); Ber. chem. Ges., 9, 505 (Abs.); Ann. Phys. u. Chem. 156, 227-9 (Abs.); Bull. Soc. chim. Paris, n. s. 26, 257.

Remarques à propos de la dernière communication de M. Lockyer sur de nouvelles raies de calcium, par M. C. Sainte-Claire Deville. Comptes Rendus, 82, 709-10.

Calcium comme corps composé d'après le spectroscope.

Lockyer (J. N.). Comptes Rendus, 87, 673.

Fluorescenz von Kalkspar.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422-7; Jour. Chem. Soc., 46, 649 (Abs.).

Sur l'origine de l'arsénic et de la lithine dans eaux sulfatées calciques.

Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-68; Jour. Chem. Soc., 44, 302 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium.

Verneuil (A.). Comptes Rendus, 103 (1887), 601-4; Beiblätter. 11 (1887), 253; Jour. Chem. Soc., 52, 2.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 38. 597 (Abs.); Beiblätter, 4, 274, 786; Monatsber. d. Berliner Akad. (1880), 192-8; Nature, 21, 410.

Expériences sur divers échantillons de chaux.

Volpicelli (M.). Comptes Rendus, 56, 493; 57, 571.

Coıncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Mattieu). Nature, 8, 46.

#### CARBON.

## 1, CARBON IN GENERAL.

Note on the spectrum of carbon.

Attfield (J.). Phil. Mag., (4) 49, 106-8; Phil. Trans. (1862), 221.

Carbon points ruled out.

Capron (J. R.). Photographed Spectra, London, 1877, 28.

Spectroscopic researches in carbon and cyanogen.

Ciamician (G. L.). Chem. News, 44, 216.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333
 (Abs.); Beiblätter, 5, 43 (Abs.); Proc. Royal Soc., 31, 827-30; Ber. chem. Ges., 14, 1553 (Abs.).

Carbon and carbon compounds.

Herschel (A. S.). Nature, 22, 820; Beiblätter, 5, 118-122.

Spectrum von Kohlenstoff.

Jahresber. d. Chemie, (1862) 33, (1863) 113, (1864) 109, (1865) 89, (1869) 176, 178, (1875) 122.

Refractionsäquivalente der Elemente C, etc.

Landolt (R.). Versammlung deutscher Aertzte und Naturforscher,
Aug. 12-18, 1872; Ber. chem. Ges., 5, 808; Chem. Centralblatt, (3)
3, 705; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Note on the history of the carbon spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 338.

Spectrum of Carbon.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 403-410;
Chem. News, 45, 155 (Abs.); Nature, 25, 545; Jour. Chem. Soc.,
44, 1-2 (Abs.); Beiblatter, 6, 675 (Abs.).

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30.

Spectrum of carbon at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

# Note on the spectrum of carbon.

Lockyer (J. N.). Proc. Royal Soc., 30, 335-42, 461-3; Beiblätter, S. 118-22 (Abs.).

Sulla questione dei doppi legami tra carbonio e carbonio dal punto di vista della chimica ottica.

Yasini (R.). Gazz. chim. ital., 14. 150-3; Ber. chem. Ges., 17. Referate, 559-31 (Abs.; Atti R. Ac. dei Lincei, 8, 169-73; Beiblätter, 8, 577.

# On the spectrum of carbon.

Roscoe (H. K.). Nature, 23, 313-14.

## Spectre du carbone.

Salet (G.). Bull. Soc. chim. Paris. I Mars 1872; Ber. chem. Ges., 5, 222 (Abs.).

# Ceber das Dispersionsaquivalent von Desmant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 46, 14 (Abs.).

Note on the identity of the spectra obtained from the different allotropic forms of carbon.

Schuster (A.) and Roscoe (H. E.). Proc. Manchester Philosoph. Soc., 19, 46-40; Beiblätter, 4, 200 (Abs.).

## Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4, 49, 24-33.

Carbon and carbo-hydrogen, spectroscoped and spectrometed.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-19; Beiblätter, 4, 36, Abs.).

#### Spectre du carbone.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

#### Spectra of carbon.

Watts (W. M.). Phil. Mag., (4) 28, 249; 41, 12; 48, 369, 456; 49, 104; Nature, 23, 197, 266; Beiblätter, 5, 118; Chem. News, 22, 172; Jour. prackt. Chemie, 104, 422.

## 2, CARBON COMPOUNDS.

## a, In general.

Influence of the molecular grouping in organic bodies on their absorption in the infra-red region of the spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Proc. Royal Soc., 31, 416; Chem. News, 43, 92, 126; Beiblätter, 5, 506.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Sulla relazioni esistenti tra il potere rifrangente e la constituzione chimic i della combinazioni organiche.

Bernheimer e Nasini. Atti della R. Accad. dei Lincei, Transunti, (3) 7, 227-30; Gazz. chim. ital., 13, 317-20; Beiblätter, 7, 528 (Abs.).

Influence des diverses couleurs sur la végétation.

Bert (P.). Comptes Rendus, 73, 1444.

Sur la région du spectre solaire indispensable à la vie végétale.

Bert (P.). Comptes Rendus, 87, 695-7; Jour. Chem. Soc., 36, 336 (Abs.).

Vergleichung von Pigmentfarben mit Spectralfarben.

Bezold (W. von). Ann. Phys. u. Chem., 158, 165, 606.

On the action of various colored bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Die Beziehungen zwischen den physikalischen Eigenshaften organischer Körper und ihrer chemischen Constitution.

Brühl (J. W.). Ber. chem. Ges., 12, 2135-48; 13, 1119-30, 1520-35; 14, 2533-39; Jour. Chem. Soc., 38, 293-5 (Abs.); Beiblätter, 4, 776-86; Amer. Jour. Sci., (3) 23, 284-5 (Abs.).

Die chemische Constitution organischer Körper in Beziehung zu deren Dichte und ihren Vermögen das Licht fortzupflanzen. Drei Theile und Nachtrag.

Brühl (J. W.). Ann. Chem. u. Pharm., 200, 139-231; 203, 1-33, 255-285, 863-368; Jour. Chem. Soc., 38, 295-7 (Abs.); 38, 781-3 (Abs.); Beiblätter, 4, 776-86.

Ueber den Zusammenhang zwischen den optischen und den thermischen Eigenschaften flüssiger organischer Körper.

Brühl (J. W.). Sitzungsber. d. Wiener Akad., 84 II, 817-75;
Monatschr. f. Chemie, 2, 716-74;
Ann. Phys. u. Chein., 211, 121-178;
Jour. Chem. Soc., 42, 263 (Abs.);
Beiblätter, 6, 377 (Abs.).
Berichtigung, Ann. Phys. u. Chem., 211, 871-2.

Untersuchungen über die Molecularrefraction organischer flüssiger Körper von grossen Farbenzerstreuungsvirmögen.

Bruhl (J. W.). Ber. chem. Ges., 19 (1886), 2746.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 388, 379-81, Jour. Chem. Soc., 36, 504 (Abs.).

Relation between the chemical constitution of certain organic compounds and their action upon the ultra-violet rays.

Dunstan (W. R.). Pharmaceutical Trans., (3) 11, 54-6.

Note concernant le mémoire de M. Kanonikoff sur le pouvoir réfringent des substances organiques.

Flavitsky (F.). Jour. Soc. phys. chim. russe, 16, 260-7.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333

(Abs.); Beiblätter, 5, 43 (Abs.).

Refraction equivalents of organic compounds.

Gladstone (J. H.). Jour. Chem. Soc., 45, 241-59; Chem. News, 49, 233 (Abs.); Nature, 30, 119 (Abs.); Ber. chem. Ges., 17, Referate, 556 (Abs.).

Spectres des carbonates.

Gouy. Comptes Rendus, 85, 70.

Influence of certain rays of the spectrum on plants growing in an iron manure.

Griffiths (A. B.). Jour. Chem. Soc., 45, 74.

Ueber das Verhalten einiger Farbstoffe im Sonnenspectrum.

Haerlin (J.). Ann. Phys. u. Chem., 118, 70.

Researches on the absorption of the ultra-violet rays of the spectrum by organic substances.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 28, 233;
31, 1; Chem. News, 40, 269; Phil. Trans., 170, 257-74; Beiblätter,
4, 370.

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. Chem. Soc., 39, 153-68; 41, 45-49; Beiblätter, 6, 375 (Abs.); Amer. Chem. Jour., 3, 373.

Das Auge empfindet alle Strahlen die brechbarer sind als die rothen.

Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

Absorptionsstreifen färbiger Lösungen.

Jahresber. d. Chemie, (1864) 108, (1865) 85, (1867) 825, (1868) 129, (1873) 147.

On the chemical circulation in the body.

Jones (H. Bence). Proc. Royal Institution, May 26, 1865.

Zur Frage über den Einfluss der Structur auf das Lichtbrechungsvermögen organischer Verbindungen.

Kanonnikoff (J.). Jour. russ. phys. chem. Ges. (1881), 268; Ber. chem. Ges., 14, 1697-1700.

Sur le pouvoir réfringent des substances organiques dans les dissolutions.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 112-13; Ber. chem. Ges., 16, 950 (Abs.); Jour. prackt. Chemie, n. F. 27, 362-4;
Beiblätter, 7, 593 (Abs.); Jour. Chem. Soc., 44, 1041 (Abs.).

Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 434-79; Ber. chem. Ges., 16, 3047-3051 (Abs.); Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 375 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-131; Ber. chem. Ges., 17, Referate, 157 (Abs.); Nature, 30, 84 (Abs.); Bull. Soc. chim. Paris, 12, 549.

Réponse à la note de M. Flavitsky.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 448-50; Jour. prackt. Chemie, (2) 31, 321-3 (Abs.).

Spectrum of colour-blind.

König (Dr.). Nature, 29, 168.

Beziehungen zwischen der Zusammensetzung und den Absorptionsspektren organischer Verbindungen.

Krüss (G.) und Occonomides (S.). Ber. chem. Ges., 16, 2051-6; Jour. Chem. Soc., 44, 1041-2 (Abs.); Beiblätter, 7, 897 (Abs.).

Ueber die Gränzen der Empfindlichkeit des Auges für Spectralfarben. Lamansky (S.). Ann. Phys. u. Chem., 143, 638-43.

Zur Kenntniss der Absorptionsspectra von Verbindungen.

Landauer (J.). Ber. chem. Ges., 14, 391-4; Jour. chem. Soc., 40, 591 (Abs.); Beiblätter, 5, 441.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Berliner Akad. (1882), 64-91; Ann. Phys. u. Chem., 213, 75-112; Jour. Chem. Soc., 42, 909 (Abs.).

On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblätter, 1, 502 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farhstoffe in verschiedenen Lüsungsmitteln.

Lepel (F. von., Ber. chem. Ges., 11, 1146-51; Jour. Chem. Sw., 34, 925 (Abs.).

Planzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel 'F. von). Ber. chem. Ges., 13, 786-8; Jour. Chem. Soc., 42, 63 (Abs.).

Contributions to our knowledge of the spectra of the flames of gases containing carbon.

Lielegg (A.). Phil. Mag., (4) 37, 208.

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30; Jour. Chem. Soc., 44, 261 (Abs.).

New organic spectra.

MacMunn (Dr. C. A.). Proc. Boy. Physiolog. Soc. (1984), No. 4: Nature, 31 (1985), 826-7.

De la fiamme de quelques gaz carburés (avec une planche du spectre du carbone).

Morren A. i. Ann. Chim. et Phys., (4) 4, 305.

Sur les effets de coloration.

Nickles. Comptes Bendus, 62, 93.

Les rapports entre les propriétés spectrales des corps simples avec leurs propriétés physiologiques.

Papillon. Comptes Bendus, 73, 791.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Preyer (W.). Der. chem. Ges., 4, 404.

Du spectre musculaire.

Ranvier (L.). Comptes Rendus, 78, 1572-5.

Absorptionsspectron verschiedener Farbenlösungen.

Brynnlås. Jour. prackt. Chemie, 105, 358.

Vermede über Farbenmischung.

Scholeke (R.). Ann. Phys. n. Chem., n. F. 16, 849-58.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Schiff (H.). Ber. chem. Ges., 4, 474; Bull. Soc. chim. Paris, n. s.

On a definite method of qualitative analysis of animal and vegetable colouring matters by means of the spectrum-microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442.

On the colouring matters derived from the decomposition of some minute organisms.

Sorby (H. C.). Monthly Microscop. Jour., 3, 229-31.

On the examination of mixed colouring matters with the spectrummicroscope.

Sorby (H. C.). Monthly Microscop. Jour., 6, 124-84.

Zur Spectralanalyse gefärbter Flüssigkeiten und Gläser.

Stein. Jour. prackt. Chemie, n. F. 9, 383; 10, 368; Jour. Chemical Soc., (2) 13, 412-14 (Abs.).

On the discrimination of organic bodies by their optical properties.

Stokes (G. G.). Phil. Mag., (4) 27, 388.

Prismatic spectra of the flames of compounds of carbon and hydrogen. Swan (W.). Edinburgh Philosoph. Trans., 21, 411; Ann. Phys. u. . Chem., 100, 306.

Longueur d'ondes des bandes spectrales données par les composés du carbone.

> Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5) **25**, 287–8.

Absorptionsspectren verschiedener Farbenlösungen.

Thudichum. Jour. prackt. Chemie, 106, 414-15.

Der Gebrauch des Spectroscops zu physiologischen und ärtztlichen Zwecken.

Valentin (G.). Leipzig, Winter'sche Buchhandlung, 1863.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Vierordt (K.). Ber. chem. Ges., 4, 827, 457, 519; Phil. Mag., (4) 41, 482-4; Amer. Jour. Sci., (3) 2, 138 (Abs.); Bull. Soc. chim. Paris, n. s. 16, 96.

Ueber die abnorme Wirkung mancher Farbstoffe auf die Lichtempfindlichkeit photographischer Platten.

Vogel (H. W.). Ber. chem. Ges., 8, 95-6.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 604 (Abs.).

Ueber die Absorptionsspectren verschiedener Farbenstoffe und ihre Anwendung zur Entdeckung von Verfälschungen.

Vogel (H. W.). Ber. chem. Ges., 8, 1246-54; Dingler's Journal, 219, 78-81; Bull. Soc. chim. Paris, n. s. 26, 475.

Ueber die Wandlung der Spectren verschiedener Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 622-4; Jour. Chem. Soc., 34, 545 (Abs.).

Ueber den Zusammenhang zwischen Absorption der Farbstoffen und deren sensibilisirender Wirkung auf Bromsilber.

Vogel (H. V.). Ann. Phys. u. Chem., (2) 26 (1885), 527-30.

Untersuchungen über die Spectra der Kohlenverbindungen.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 17, 427-67; Jour. Chem. Soc., 44, 761 (Abs.); Monatsber. d. Berliner Akad. (1880), 791-4.

Bemerkungen, Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 363.

# b, Carbon compounds in particular.

# ACETIC ACID.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 323-5; Beiblätter, 5, 41-42 (Abs.).

### ACETYLENE.

Bemerkung zu Herrn Wüllner's Aufsatz; Ueber die Spectra des Wasserstoffs und des Acetylens.

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-49.

Spectrum des Acetylens.

Jahresber, d. Chemie (1869), 182.

De la flamme de quelques gaz carburés, et en particulier de celle de l'acetylène.

Morren (A.). Ann. Chim. et Phys., :4\ 4, 305; Jour. prackt. Chem., 87, 50

Spectrum des Acetylens.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 855. Bemerkung, Hasselberg (B.), do., 15, 45-9.

ACID BROWN.

Spectrum of acid brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 198.

### AGARYTHRINE.

Spectrum of agarythrine, an alcaloid contained in agaricus ruber.

Phipson (T. L.). Chem. News, 46, 199-200; Ber. chem. Ges., 16, 244 (Abs.).

#### ALBUMEN.

Farbenreactionen des Albumin.

Adamkiewicz (A.). Pfluger's Arch. f. Physiol., 9, 156-162; Jour. Chem. Soc., (2) 13, 172 (Abs.).

Spectroscopic notes on the carbohydrates and albumenoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

### ALCOHOL.

Misura dell'indice di rifrazione dell'alcool anisico e dell'alcool metilsalicilico.

Blaserna (P.). Gazz. chim. ital., 2, 69-75.

Brechungscoefficienten einiger Gemische von Anilin und Alkohol.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Spectre de l'alcohol.

Masson (A.). Comptes Rendus, 32, 129

Ueber die Absorption des Lichtes durch Alcohol, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8, 670-675; Jour. Chem. Soc., 34, 693 (Abs.).

### ALIZARINE.

Notiz über künstliches Alizarin.

Boettger (R.) und Petersen (T.). Ber. chem. Ges., 4, 778-9.

Spectre d'absorption d'alizarine.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Alizarins.

Jahresber. d. Chemie (1872), 140.

11 т

On artificial alizariue.

Perkin (W. H., Jour. Chem. Soc., (2) S. 132-43; Ann. Chem. E. Pharm., 188, 315-19 (Abs.,; Ann. Chim. et Phys., (4) 25, 185 (Abs.).

Absorptionsspectrum des Alizarins.

Reynolds. Jour. prackt. Chem., 105, 356.

L'alizarine nitrée.

Bosenstiehl (A.). Ann. Chim. et Phys., (5) 12, 519-529; Jour. Chem. Soc., 24, 231-2.

Sur les spectres d'alizarine et de quelques matières colorantes qui en derivent.

Bosenstiehl (A.,. Comptes Bendus, 38, 1194-6; Jour. Chen., 50., 36, 807 (Abs.); Beiblätter, 3, 793.

Zur Kenntniss der Alizarin-Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 21, 1371-4; Jour. Chem. Soc.. 25. 88-5 (Abs.).

ALKANKA. .

Der Alkannafarbetoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 768-6.

ALLYLDIPBOPYLCARBINGL.

Untersuchungen über einen aus Allyldipropylcarbinol erhaltenen Kohlenwamerstoff.

Beformatsky (S.). Jour. prackt. Chemie, n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

ALUM.

Sur les aluns crystallisés.

Soret (C.). Arch. d. Genève, (2) 10, 800; Beiblätter, 8, 874.

AMIDO-AZO-O-NAPHTHALEKE.

Spectrum of amido-azo-a-naphthalene,  $C_{10}$   $H_{\gamma} \cdot N : N \cdot C_{10}$   $H_{\bullet} \cdot N H_{\bullet}$ .

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

amido-azo- $\beta$ -naphthalene.

Spectrum of amido-azo-β-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

ANILINE.

Die Brechungscoefficienten einiger Gemische von Anilin.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-52.

Lo Spettroscopio applicato alla ricerca dei colori di anilina introdati nei vini rossi per sofisticazione.

Macagno (J.). Mem. Spettr. ital. (1881), 35-40; Ber. chem. Ges., 14, 1584 (Abs.).

Aniline colours in the spectroscope.

Reimann (M.). Chem. News, 33, 260.

Absorptionslinien der Anilinfarbstoffe im Spectralapparat.

Schiff. Jour. prackt. Chemie, 89, 229.

Application of the spectroscope in the manufacture of aniline colours.

Schoop (P.). Chemische Industrie, 9 (1886), No. 3; Chem. News, 53 (1886), 287 (Abs.).

Zur Kenntniss der grünen Anilinfarben.

Vogel (H. W.). Ber. chem. Ges., 11, 1371-4; Jour. Chem. Soc., 36, 83-5 (Abs.).

### ANTHRACEN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Antrarufin.

Liebermann (C.) und Boeck (K.). Ber. chem. Ges., 11, 1613-18;
Jour. Chem. Soc., 36, 257-0.

Ueber die der Chrysazinreihe augehörigen Anthracenverbindungen.

Liebermann (C.). Ber. chem. Ges., 12, 182-8.

Use of the spectroscope in discriminating anthracens.

Nickels (B.). Chem. News, 41, 52, 95, 117; Jour. Chem. Soc., 38, 757 (Abs.); Ber. chem. Ges., 13, 829 (Abs.).

# ANTHRAPURPURIN.

Absorptionsspectrum des Anthrapurpurins.

Jahresber. d. Chemie (1873), 451.

Absorptionspectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 433.

# ANTHRARUFIN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Anthrarufin,

Liebermann (C.) und Boeck (K.). Ber. chem. Ges., 11, 1618-18;
Jour. Chem. Soc., 36, 257-9 (Abs.).

# APHIDES.

On the colouring matter of some aphides.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 352-61.

AURIE.

Spectrum of surin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 167-8.

AY AUSTRALIAN LAKE.

Spectrum of a poisonous Australian lake.

Francis (G.). Pharmaceutical Trans., (3) 8, 1047-8; Jour. Cher... Soc., 34, 907 (Abs.).

AZO-COLORS.

Spectrum of azobenzene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 176-8.

Spectrum of amido-azo-a-naphthalene, and of amido-azo-a-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190-1.

On the spectra of the azo-colours.

Stebbins (J. H.). Jour. Amer. Chem. Soc., 6 (1884), 117-20, 149-10.

BEETS.

Spectralanalytische Notiz; rothe Rüben in Weinverfälschungen.

Lepel (F. von). Ber. chem. Ges., 10, 1875-7; Jour. Chem. Soc., 34, 168 (Abs.); Bull. Soc. chim. Paris, n. s. 30, 573.

# BENZENE.

Description and measurements of the spectrum of benzene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 694-6.

Spectrum of benzene-azo-3-naphtholsulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

Misura dell'indice di rifrazione del cimene, della benzina e di alcuni derivati del timol naturale e del timol sintetico.

Pisati (G.) e Paterno (E.). Gazz. chim. ital., 4, 557-64; Ber. chem. Ges., 8, 71 (Abs.).

BIEBRICH SCARLET.

Spectrum of biebrich scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 194.

BILE.

Le reazioni dei pigmenti biliari.

Capranica (S.). Gazz. chim. ital., 11, 430-1; Ber. chem. Ges., 15, 262-3 (Abs.); Jour. Chem. Soc., 42, 232.

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hæmatin.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-37; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

Observations on the so-called bile of invertebrates.

MacMunn (C. A.). Proc. Royal Soc., 35, 370-403.

Künstliche Umwandlung von Bilirubin in Harnfarbstoff.

Maly (R.). Ann. Chem. u. Pharm., 161, 368-70; 163, 77-95; Jour. Chem. Soc., (2) 10, 514 (Abs.), 835 (Abs.).

A reducible by-product of the oxidation of bile-pigment.

Stockvis (B. J.). Neues Repertorium f. Pharm., 21, 123, 732-7; Jour.
Chem. Soc., (2) 10, 308 (Abs.); 11, 288; Bull. Soc. chim. Paris, n. s. 18, 265.

Researches on bilirubin and its compounds.

Thudichum (J. L. W.). Jour. Chem. Soc., (2) 13, 389-403.

BIRDS.

Spectres observés au travers d'une plume.

Hugo (L.). Comptes Rendus, 83, 602.

Ueber die Färbungen der Vogeleierschalen.

Liebermann (C.). Ber. chem. Ges., 11, 606-610; Amer. Jour. Sci., (3) 16, 66 (Abs.).

BISMARCK BROWN.

Spectrum of bismarck brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 180-1.

BLOOD.

Ueber das Verhalten von Blut und Ozon zu einander.

Binz (C.). Medicinalisches Centralblatt, 20, 721-5; Chemisches Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486 (Abs.).

Dosage de l'hemoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-73; Jour. Chem. Soc., 44, 394 (Abs.); Z. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2) 2, 430 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chem., 104, 845.

On the action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Ber. chem. Ges., 3, 332; Jour. prackt. Obemie, 305, 287.

Absorptionalinien in Elutepectrum.

Hoppe-Seyler (F.). Jahrb. d. gesammt. Medicin, Els., S.

Ueber das Verhalten des Blutfarbestoffs in Spectrum des Sommenlichtes.

Hoppe-Seyler (F.). Virchow's Annalen, 22, 446; 29, 238; Chem.
Centralblatt, 1862, 170.

Untersuchungen zur physicalischen Chemie des Blutes.

Hufner (G.). Jour. prackt. Chemie, (2) 22, 862-88; Jour. Chem. Soc., 49, 111-18 (Abs.).

Untersuchungen über den Blutfarbestoff und seine Derivate.

Jäderholm (A.). Zeitschr. f. Biologie, 12, 198-255; Jour. Chem. Soc., 24, 286-7 (Abs.).

Spectren des Blutfarhetoffs.

Jahrenber. d. Chamie, 15, 585 (Abs. See Hoppe-Seyler, above.)

Photometrie des Absorptionsspectrums der Blutkürperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-72; Ber. chem. Ges., 15, 952 (Abs.).

Spectrum der Sanguinarlösung.

Maschold. Jour. prackt. Chemie, 106, 407.

Beträge zur Kentniss der Blutfarbstoffe.

Otto (J. G.). Pflüger's Archiv. f. Physiol., 21, 240-44; Ber. chem. Ges., 16, 2688-9.

On some improvements in the spectrum method of detecting blood.

Sorby (H. C.). Monthly Microscop. Jour., 6, 9-17.

On some compounds derived from the colouring matter of blood.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 10, 400-2.

Application of spectrum analysis to microscopical investigations, and

• especially to the detection of blood stains.

Sorby (H. C.). Chem. News, 11, 186, 194, 222, 256.

On the blood spectrum.

Sorby (H. C.). Nature, 4, 505; 5, 7.

Spectre d'absorption du sang dans la partie violette et ultra-violette. Boret (J. L.). Comptes Rendus, 97, 1269. Reduction and oxidation of the colouring matter of the blood.

Stokes (G. G.). Proc. Royal Soc., 13, 353.

Ueber das Vorkommen eines neuen, das Absorptionsspectrum des Blutes zeigenden, Körper's im thierischen Organismus.

Struve (H.). Ber. chem. Ges., 9, 623; Bull. Soc. chim. Paris, n. . . 18, 471.

Ueber die spectralanalytische Reaction auf Blut.

Vogel (H. W.). Ber. chem. Ges., 9, 587, 1472; Bull. Soc. chim. Paris, n. s. 27, 83.

### BONELLIA VIRIDIS.

Der grüne Farbstoff von Bonellia Viridis.

Schenck (L. S.). Sitzungsber. Wiener Akad., 72 II, 581-5.

On the colouring matter of bonellia viridis.

Sorby (H. C.). Quar. Jor. Microscop. Soc., 15, 166.

### BRUCINE.

Absorption spectrum of brucine, etc.

Moyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 418-16; Jour. Chem. Soc., 36, 269.

### BUTTER.

Ueber einige Methylester aus der Propionsäure-und Buttersäuregruppe. Kahlbaum (G. W. A.). Ber. chem. Ges., 12, 343-4; Jour. Chem. Soc., 36, 521 (Abs.).

# CARBOHYDRATES.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. chem. Soc., 51 (1887), 58-61.

## CARMINE.

Spectrum von ammoniakalischer Carminlösung und von Blut. Campani. Ber. chem. Ges., 5, 287.

Spectre du carmin d'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 88

# CARYOPHYLLACEA.

Colouring matter of the caryophyllacese.

Hilger (A.) and Bischoff (H.). Landwirthschaftl. Versuch-Statistik, 23, 456-61; Jour. Chem. Soc., 36, 780 (Abs.).

### CHINIZARIN.

Ueber Chinizarin.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

Absorptionsspectrum des Chinizarins.

Jahresber. d. Chemie (1873), 455 (Abs.). See Grimm.

CHINOLIN.

Ueber einige im Pyridinkern substituirte Chinolinderivate.

Friedlander (P.) und Weinberg (A.). Ber. chem. Ges., 15, 2679-2685.

CHINON.

Ueber den im Ag. atrotomentosus vorkommenden chinonartigen Körper. Thörner (W.). Ber. chem. Ges., 12, 1630-5.

CHOTELIN.

Ueber Chotelin.

Liebermann (L.). Pflüger's Archiv. f. Physiol., 11, 181-90; Jour. Chem. Soc. (1876), 1, 407-8 (Abs.).

### CHROMOGENE.

Ueber einige Chromogene des Harns und deren Derivate.

Ploss (P.). Zeitschr. f. physiolog. Chemie, 2, 85-94; Ber. chem. Ges., 16, 2983 (Abs.).

CHRYSOIDINE.

Das Chrysoidin, eine antiphotogenische Farbe.

Rardy (C.). Chemisches Centralblatt. (8), 9, 109; Jour. Chem. Soc., 96, 618 (Abs.).

Spectrum of chrysoidine.

Hartley (W. N.). Jour. Chem. Soc., \$1 (1887), 178.

CITRACON.

Unber die Molecularrefraction der Citracon und Messeusäurenther

Rrühl (J. W.). Ber, chem. Ges., 14, 2735-44; Jean Chem. S. 229-20; Beiblätter, 6, 876.

COAL

Soda flames in coal fires.

Herschol (J.). Nature, 27, 78, 188.

MILETE.

Spectrum of coloin.

Church (J. H.). Jam. Chan. Soc., 1877. 3.

#### CROCEINE SCARLET.

Spectrum of croceine scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 195.

### CROTON ACID.

Ueber die Molecularrefraction der Crotonsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

# CRYSTALLOIDS.

On the rate of passage of crystalloids in and out of the body.

Jones (H. Bence). Proc. Royal Soc., 14, 400.

### CUMENE.

Spectrum of cumene-azo-β-naphtholdisulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 187.

CURCUMIN.

Ueber Curcumin, den Farbstoff der Curcumawurzel.

Daube (F. U.). Neues Repert. d. Pharm., 20, 36; Ber. chem. Ges., 2, 609-13; Jour Chem. Soc., (2) 9, 152 (Abs.).

# CYANOGEN.

Photographed spectrum of cyanogen.

Capron (J. R.). Photographed Spectra, London, 1877, 71.

Spectroscopic researches in carbon and cyanogen.

Ciamician. Chem. News, 44, 216.

Spectrum von Cyanogen.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 507.

Constitution of cyanuric acid.

Hartley (W. N.). Jour. Chem. Soc., 41, 45-9; Beiblätter, 6, 375 (Abs.).

Note on the reversal of the spectrum of cyanogen.

Liveing (G. D.) and Dewar (J.). Chem. News, 44, 253; Proc. Royal Soc., 33, 8; Ann. Chim. et Phys., (5) 23, 571.

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

De la flamme du cyanogen.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 805.

Bestimmung der Brechungsquotienten einer Cyaninlösung.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 16, 885.

Cyanogen in small induction sparks in free air.

Smyth (C. Piazzi). Nature, 28, 340.

CYMENE.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

(Look above under Cumene.)

DECAY.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-88.

DIAMOND.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333

(Abs.); Beiblätter, 5, 43 (Abs.).

DIAZO.

Spectrum of diazo.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

DIPHENYL.

Ueber Diphenyldüsoindolazofarbstoffe.

Möhlau (R.). Ber. chem. Ges., 15, 2490-7; Jour. Chem. Soc., 44, 342 (Abs.).

DIPYRIDENE.

Description and measurement of the spectrum of dipyridene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 717.

DROSSERA WHITTAKERI.

Absorption spectra of the colouring matter of Drossera Whittakeri. Rennie (E. H.). Jour. Chem. Soc., 51 (1887), 377.

#### EBONITE.

On the transmission of radiation of low refrangibility through ebonite.

Abney (W. de W.) and Festing (R.). Proc. Physical Soc., 4, 256-9; Phil. Mag., (5) 11, 466-9; Chem. News, 43, 175 (Abs.); Beiblätter, 5, 506 (Abs.).

Note on the index of refraction of ebonite.

Ayrton (W. E.) and Perry (J.). Proc. Physical Soc., 4, 845-8; Phil. Mag., (5) 12, 196-9; Nature, 23, 519; Beiblätter, 5, 741 (Abs.).

#### EOSIN.

Photographic action of eosin.

Waterhouse (J.). Photographic Journal, 16, 135-6; Jour. Chem. Soc., 1876, 2, 282 (Abs.).

### ETHER VAPOUR.

Spectrum or ether vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

### EXCREMENTS.

Swei pathologische Harnfarbstoffe.

Baumstark (F.). Pflüger's Arch. f. Physiol., 9, 568-84; Jour. Chem. Soc., (2) 13, 480 (Abs.).

Ueber das Urorosein, einen neuen Harnfarstoff.

Nencki (M.) und Sieber (N). Jour. prackt. Chemie, 26, 888-6; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087.

Ueber einen neuen krystallinischen farbigen Harnbestantheil.

Plósz (P.). Zeitschr. physiol. Chemie, 6, 504-7; Ber. chem. Ges., 15, 2626-7 (Abs.).

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. physiol. Chemie, **3**, 85-94; Ber. chem. Ges., **16**, 2983-4 (Abs.).

# FAST REI

Spectrum of fast red.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 197.

FISH.

Spectrum of fish pigment.

Francis (G.). Nature, 13, 167.

#### FLOUR AND GRAIN.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

Matière colorante se forment dans la colle de farine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 94, 562-3; Jour. Chem. Soc., 42, 789 (Abs.).

Ueber den Nachweis von Mutterkorn im Mehle auf spectroscopischem Wege.

Petri (J.). Zeitschr. analyt. Chemie, 18 211-20; Jour. Chem. Soc., 36, 977-9 (Abs.).

### FLOWERS.

Ueber Blumenblau.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 827-8.

The colouring matter of the petals of Rosa Gallica.

Senier (H.). Pharmaceutical Trans., (3), 7, 650-652; Jour. Chem. Soc., 1877, 2, 502 (Abs.).

#### FUCHSIN.

Ueber die Brechungsverhältnisse des Fuchsins.

Christiansen (C.). Oversight k. Danske Vidensk. Selskabs, 1871, 5-17;
Ann. Phys. u. Chem., 143, 250-9; Ann. Chim. et Phys., (4) 25, 400 (Abs.).

Zur Farbenzerstreuung des Fuchsins.

Christiansen (C.). Ann. Phys. u. Chem., 146, 154-155; Jour. Chem. Soc., (2) 11, 286.

Nachweis von Fuchsin im Weine.

Liebermann (L.). Ber. chem. Ges., 10, 866; Jour. Chem. Soc., 1877, 2, 989 (Abs.).

Ueber die optischen Eigenschaften des festen Fuchsins.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

Ueber den Nachweis von Fuchsin in damit gefärbten Weinen durch Stearin.

Wolff (C. H.). Repert. analyt. Chem., 2, 193-4; Chemisches Central-blatt, (3) 13, 670, (Abs.); Jour. Chem. Soc., 44, 384 (Abs.).

### FUNGI.

Fluorescence of the pigments of fungi.

Weiss (A.). Chem. Centralblatt, 1886, 670-1; Jour. Chem. Soc., 44, 384-5 (Abs.).

### GALL.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (J. F. F.). Pflüger's Archiv. f. Physiol.,

4, 497-547; Jour. Chem. Soc., (2) 10, 807-8 (Abs.).

Absorptionsspectren der Gallenfarbstoffe.

Jaffe. Jour. prackt. Chemie, 104, 401.

Untersuchungen über die Gallenfarbstoffe.

Maly (R.). Wiener Anzeigen, 9, 39-41; Chem. Centralblatt, (3) 3, 180-1; Jour. Chem. Soc., (2) 10, 638 (Abs.); Jour. prackt. Chem., 103, 255; 104, 38.

Untersuchungen über die Gallenfarbstoffe und ihre Erkennung mittelst des Spectroscops.

Stockvis (B. J.). Ber. chem. Ges., 5, 588-5; Jour. Chem. Soc., (2) 11, 78 (Abs.).

### GELATINE.

Emploi de la gélatine pour montrer l'absorption dans le spectre. Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

### GUN-COTTON.

Spectrum explodirender Schiessbaumwolle.

Jahresber. d. Chemie (1873), 151.

Spectrum des Lichtes explodirender Schiessbaumwolle. Lohse (O.). Ann. Phys. u. Chem., 150, 641.

Spectrum des Lichtes explodirender Schiessbaumwolle.
Vogel (H. W.). Ann. Phys., u. Chem., n. F. 3, 615.

Spectrum of  $H S O_3 \cdot C_8 H_8 \cdot N : N \cdot C_{10} H_4 (H S O_2)_2 \cdot O H \beta$  (Na Salt). Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 188-9.

## HELIANTHIN.

Spectrum of helianthin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 192-&

# HEMATINE.

Action de l'hydrosulfite de soude sur l'hématine du sang (hématine reduite).

Cazeneuve (P.). Bull. Soc. chim. Paris, (2) 27, 258-60; Jour. Chem. Soc., 1877, 2, 346 (Abs.).

Ueber Assimilation von Hamatocoecus.

Englemann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7. 200-8; Proc. Verb. K. Akad. Wetenschappen, Amsterdam, March 25, 1882, 3-5 (Abs.); Beiblätter, 7, 277-8 (Abs.).

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hematine.

MacMunn (C. A.). Proc. Royal Soc., 21, 206-337; Jour. Chem. Soc.. 40, 1056-8 (Abs.); Beiblätter, 5, 281.

On hemine, hematine and a phosphorized substance contained in blood corpuscules.

Thudichum (J. L. W.) and Kingzett (C. T.). Jour. Chem. Soc., 1875, 2, 255-64.

### HEMOGLOBIN.

Dosage de l'hémoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-273; Jour. Chem. Soc., 44, 394 (Abs.); Zeitschr. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2), 2, 430 (Abs.).

Ueber die Bestimmung des Hæmoglobin-und Sauerstoff-gehaltnes im Blute. Hüfner (G.). Zeitschr. physiol. Chem., 3, 1-18; Ber. chem. Ges., 12. 702 (Abs.); Jour. Chem. Soc., 36, 835.

On the evolution of hemoglobine.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 16, 76-85.

Spectralanalytische Bestimmung des Hæmoglobingehaltes des menschlichen Blutes.

Wiskemann (M.). Zeitschr. f. Biologie, 12, 434-47; Jour. Chem. Soc., 1877, 2, 808-9.

### HOPPMANN'S VIOLET.

Spectrum of Hoffmann's violet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 171-4.

# HYDROCARBONS.

Hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc., 1881, 524.

Sur le pouvoir réfringent de l'hydrocarbure C₁₂ H₂₂.

Albitsky (A.). Jour. Soc. phys. chim. russe, 15, 524-6.

Spectrum von Kohlenwasserstoff.

Angstreen (A. J.). Ann. Phys. u. Chem., 94, 157.

On the spectra of the compounds of carbon with hydrogen and nitrogen.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 404-509;

Nature, 22, 620-3.

On the origin of the hydrocarbon flame spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 418-29; Nature, 27, 257-9; Chem. News, 46, 298-7; Beiblätter, 7, 288-9 (Abs.).

Nuovo metodo spettroscopico per discoprire nei miscugli gassosi e nelle acque le puì piccole quantità d'un idrocarburo gassoso od almeno molto volatile.

Negri (A. e G. de). Gazz. chim. ital., 5, 438; Jour. Chem. Soc., 1876, 2, 659 (Abs.); Chem. News, 33, 76.

Untersuchungen über einen aus Allildipropylcarbinol erhaltenen Kohlenwasserstoff, C₁₀ H₁₈.

Reformatsky (S.). Jour. prackt. Chem., n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-33.

Carbon and carbohydrogen, spectroscoped and spectrometed in 1879.

Smyth (C. Piazzi). Phil. Mag., (5) **8**, 107-119; Beiblätter, **4**, 36 (Abs.).

Hydrocarbons of the formula (C, H₈)_n.

Tilden (W. A.). Chem. News, 46, 120-1; Jour. Chem. Soc., 44, 75-6 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Watts (W. M.). Phil. Mag., (4) 49, 104-6.

HYDROBILIRUBIN.

Ueber Choletelin und Hydrobilirubin.

Liebermann (L.). Pflüger's Arch. Physiol., 11, 181-90; Jour. Chem. Soc., 1876, 1, 407-8 (Abs.).

HYDROCHINON.

Ueber das Phthaleïn des Hydrochinons.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

# HYDROXYANTHRAQUINONE.

Spectra of the methyl derivatives of hydroxyanthraquinone.

Liebermann (C.) und Kostanecki (S. von). Ber. chem. Ges., 19, 2327-32; Jour. Chem. Soc., 52 (1887), 1 (Abs.). INDIGO.

Spectre de l'indigo.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion de l'indigo, etc.

Lallamand (A.). Comptes Rendus, 79, 693.

Spectre du carmin de l'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 83.

Spectralanalytische Werthbestimmung verschiedener reiner Indigosorten.

Wolff (C. H.). Zeitschr. analyt. Chem., 23, 29-32.

IODINE GREEN.

Spectrum of iodine green.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 174-6.

LAMP-BLACK.

Spectre du noir de fumée.

Lallemand (A.). Comptes Rendus, 78, 1272.

LEAVES.

Das Grün der Blätter.

Müller (J.). Ann. Phys. u. Chem., 142, 615-16; Jour. Chem. Soc., (2) 9, 654.

Ueber Blattgrün.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 327-8; Ann. Phys. u. Chem., 145, 166-7; Arch. de Genève, (2) 43, 282-3.

On the various tints of autumnal foliage.

Sorby (H. C.). Chem. News, 23, 137-9, 148-50; Jour. Chem. Soc., (2) 9, 184 (Abs.).

On the colour of leaves at different seasons of the year.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 215-234.

Ueber die Lichtwirkung verschieden gefärbter Blätter.

Vogel (H. W.). Sitzungsber. d. Münchener Akad., 1872, 133-7.

### LUTEINE.

Results of researches on luteïne and the spectra of yellow organic substances contained in animals and plants. Researches conducted for the medical department of the Privy Council.

Thudichum (J. L. W.). Proc. Royal Soc., 17, 253; Jour. prackt. Chem., 106, 414.

#### MESACON.

Ueber die Molecularrefraction der Citracon-und Mesacon-säureather.

Brühl (J. W.). Ber. chem. Ges., 14, 2786-44; Jour. chem. Soc., 42, 829-30; Beibätter, 6, 376.

#### METAXYLENE.

Description and measurement of the spectrum of metaxylene (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 700-7.

#### METHYLENE BLUE.

On the spectroscopic examination of methylene blue and of South's violet

Stebbins (J. H., Jr.). Jour. Amer. Chem. Soc., 6 (1884), 804-5.

#### METHACRYL.

Ueber die Molecularrefraction der Methacrylsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

# METHAMOGLOBIN.

Studien über das Methämoglobin.

Otto (J. G.). Pflüger's Arch. f. Physiol., 31, 245-67; Ber. chem. Ges., 16, 2689 (Abs.).

Jeber das Methämoglobin.

Saarbach (H.). Pflüger's Arch. f. Physiol., 28, 382-8; Ber. chem. Ges., 15, 2752 (Abs.).

# MORINDON.

Spectrum der Morindonlösungen.

Stein. Jour. prackt. Chemie, 97, 241.

Spectrum der Morindonlösungen.

Stenhouse. Jour. prackt. Chemie, 98, 127.

### MORPHINE.

Absorption spectrum of morphine.

Meyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 413-16; Jour. Chem. Soc., 36, 269.

# NAPHTHALENE.

Description and measurement of the spectrum of naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 691-701. 12 T Spectrum of amido-azo-a-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

Spectrum of amido-azo-β-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

Absorptionsspectrum von Naphthalin.

Jahresber. d. Chemie (1878), 157.

Spectre de naphthaline pure.

Lallemand (A.). Comptes Rendus, 77, 1218.

Ueber die Fluorescenz des Naphthalinrothes.

Wesendonck (K.). Ann. Phys. u. Chem., (2) 26 (1885), 521-7; Jour. Chem. Soc., 50 (1886), 585; Jour. de Phys., (2) 5 (1886), 517 (Abs.).

OILS

Olefiant spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 73.

Spectrum analysis of oils.

Doumer and Thibaut. Chem. News, 51 (1885), 229.

The spectroscope applied to the detection of adulterations of fixed oils.

Gilmour (W.). Pharmaceutical Jour. Trans., (3) 6, 981-2; 7, 22-3.

On essential oils.

Gladstone (J. H.). Jour. Chem. Soc., (2) 10, 1-12; Ber. chem. Gez., 5, 60 (Abs.).

Examination of essential oils.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 29, 290.

Ueber gefärbte ætherische Oele.

Hock (K.). Archiv. f. Pharm., (3) 21, 17-18, 437-8; Zeitschr. analyt. Chemie, 23, 241 (Abs.).

Spectrum fetter Oele.

Jahresber. d. Chemie (1870), 175.

Objective Darstellung des Spectrums der Oele.

Jahresber. d. Chemie (1876), 963.

Reports of the committee for investigating the constitution and optical properties of essential oils.

Reports of the British Assoc., 1872, 1873, and 1874.

#### ORTHO-TOLUIDINE.

Description and measurement of the spectrum of ortho-toluidine.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 789.

Ueber einige Derivate der Orthotoluysäure.

Jacobsen (O.) und Weiss (F.). Ber. chem. Ges., 16, 1956-62; Jour. Chem. Soc., 44, 1121 (Abs.).

# ORTHO-XYLENE.

Description and measurement of the spectrum of ortho-xylene (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 702-4.

CARBONIC ACID (CARBON AND OXYGEN).

Spectrum von Kohlensäure.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Spectre de l'acide carbonique.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectrum of carbonic acid.

Capron (J. R.). I'hotographed Spectra, London, 1877, p. 68.

Action of the spectral rays on the decomposition of carbonic acid in plants.

Crookes (W.). Chem. News, 27, 133.

Spectrum der Flamme von Kohlenoxyd.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 503.

Combustion of carbonic oxide under pressure.

Franckland (E.). Proc. Royal Soc., 16, 419, 421; Jour. prackt. Chemie, 105, 190.

Erkennung der Vergiftung mit Kohlenoxyd.

Hoppe-Seyler (F.). Zeitschr. f. analyt. Chem., 3, 439; Phil. Mag., (4) 30, 456.

Funkenspectrum von kohlensäurem Lithium.

Jahresber. d. Chemie (1873), 152.

Absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (3) 28, 190-198; Nature, 31, 46 (Abs.).

Die Wirkung der Spectralfarben auf die Kohlensäurezersetzung in Pflanzen.

Pfeffer (W.). Versuchs-Stationen Organ, 15, 856-67; Jour. Chem. Soc., (2) 10, 1107 (Abs.); 11, 400 (Abs.); Ann. Phys. u. Chem., 148, 86-99; Chem. News, 27, 183-4.

Spectrum von Kohlensäure.

Plücker. Ann. Phys. u. Chem., 105, 76.

Ueber die Dauer der spectralanalytische Reaction von Kohlenoxyd.

Salfeld (E.). Repert. analyt. Chem. (1888), 35-7; Archiv. d. Pharm., (3) 21, 289 (Abs.); Jour. Chem. Soc., 46, 343 (Abs.).

Propriétés optiques d'acide oxalique.

Sénarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Die Zerstreuung der CO, durch die Pflanzen im directen Sonnenspectrum.

Timiriaseff (K.). Mém. Acad. St. Pétersbourg, Sept., 1873; Ber. chem. Ges., 6, 1212 (Abs.); Jour. Chem. Soc., (2) 12, 285 (Abs.).

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes de végétaux (extrait d'un ouvrage "Sur l'assimilation de la lumière par les végétaux," St. Pétersbourg, 1875.)

Timiriaseff (C.). Ann. Chim. et Phys., (5) 12, 355-96; Comptes Rendus, 84, 1236-9; Jour. Chem. Soc. (1877), 2, 635 (Abs.).

Ueber die Nachweisung von Kohlenoxydgas.

Vogel (H. W.). Ber. chem. Ges., 10, 792-5.

Note on the spectrum of carbonic acid.

Wesendonck (C.). Proc. Royal Soc., 32, 380-2; Chem. News, 44, 42-3; Jour. Chem. Soc., 40, 861 (Abs.).

Ueber die Molecularrefraction der geschwefelten Kohlensäureäther, nebst einigen Bemerkungen über Molecularrefraction im Allgemeinen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 17, 577-80; Jour. Chem. Soc., 44, 762 (Abs.); Jour. de Phys., (2) 2, 139 (Abs.).

Ueber die Brechungsexponenten der gesehwefelten Substitutionsproducte des Kohlensäureäthers.

Wiedemann (E.). Jour. prackt. Chem., (2) 6, 453-5.

Spectrum von Kohlensäure.

Wüllner (A.). Ann. Phys. u. Chem., 144, 485, 500, 507, 516, 517.

#### PARATOLUIDINE.

Description and measurement of the spectrum of paratoluidine. Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 706.

### PARAXYLINE.

Description and measurement of the spectrum of Paraxyline (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 707-10.

#### PENTACRINUS.

Colouring matter of pentacrinus.

Nature, 21, 573.

PHENOLS.

On a new class of colouring matters from the phenols.

Meldola (R.). Jour. Chem. Soc., 39, 37-40

### PICOLENE.

Description and measurement of the spectrum of picolene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 719-21.

# PIPERIDINE.

Description and measurement of the spectrum of piperidine (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731.

# PLANTS.

Zur Theorie des Assimilations-processes in der Pflanzenwelt.

Benkovich (E. von). Ann. Phys. u. Chem., 154, 468-73.

Zur Frage über die Wirkung des farbigen Lichtes auf die Assimilationsthätigheit der Pflanzen.

Lommel (E.). Ann. Phys. u. Chem., 145, 442-55; Jour. Chem. Soc., (2) 11, 292 (Abs.).

Ueber den Einfluss des farbigen Lichtes auf die Assimilation und die damit zusammenhängende Vermehrung der Aschenbestandtheile in Erbsenkeimlingen.

Weber (R.). Landwirthschaftl.-Versuchs-Statistik, 18, 18-48; Jour. Chem. Soc., (2) 13, 1211-15 (Abs.).

# PURPURIN.

Displacement of the absorption bands of purpurin in solutions of alum.

Morton (II.). Chem. News, 42, 207; Jour. Chem. Soc., 40, 488.

Note on the purple of the ancients.

Schunk (E.). Jour. Chem. Soc., 37, 612-17.

Die Purpurin-Thonerde-Magnesiareaction

Vogel (H. W.). Ber. chem. Ges., 10, 157, 370; Bull. Soc. chim. Paris, n. s. 28, 475, 478.

Ueber die Lichtempfindlichkeit des Purpurins.

Vogel (H. W.). Ber. chem. Ges., 10, 692.

### PYRIDINE.

Description and measurement of the spectrum of pyridine (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 711-16.

### QUINOLINE.

Description and measurement of the spectrum of quinoline, specimens I and II.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 721-7, 728-30.

(Look below for Tetrahydroquinoline.)

Spectrum of quinoline-red.

Hoffmann (A. W.). Ber. chem. Ges., 20, 4-20; Jour. Chem. Soc., 52 (1887), 380 (Abs.).

# RASPBERRY.

Ueber die Untersuchungen von Hinbeersaft.

Vogel (H. W.). Ber. chem. Ges., 10, 1428-32; Jour. Chem. Soc., 1877, 915 (Abs.).

# ROSANILINE.

Ueber Rosolsäure.

Gräbe (C.) und Caro (H.). Ann. Phys. u. Chem., 179, 184-203; Jour. Chem. Soc., 1876, 1, 588-91.

Spectrum of rosaniline base.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 164-6.

Spectrum of rosaniline hydrochloride.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 169-171.

# RUBERINE.

On the colouring matter (ruberine), etc., contained in agaricus ruber.

Phipson (T. L.). Chem. News, 46, 199-200; Jour. Chem. Soc., 44, 100 (Abs.); Ber. chem. Ges., 16, 244 (Abs.).

### SAFRANIN.

Absorptionsspectrum von safranin.

Landauer (J.). Ber. chem. Ges., 11, 1772-5; Jour. Chem. Soc., 36, 101 (Abs.); Beiblätter, 3, 195-6.

SODA (CARBONATE).

Propriétés optiques de sous-carbonate de soda.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

SPONGILLA FLUVIATILIS.

Chromatological relations of spongilla fluviatilis.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 15, 47-52.

#### CARBON AND SULPHUR.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney (W. de W.) and Festing (Lieut. Col.). Proc. Royal Soc., 34,

Spectre du sulphure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectrum von Schwefelkohlenstoff.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 531.

Schwefelkohlenspectrum.

Jahresber. d. Chemie (1875), 122, 125, 126 (Abs.). See Vogel (H. W.), Deutsch. chem. Ges., 1875, 96; Watts (W. M.), Phil. Mag., (4) 48, 369; and Morton (H.), Ann. Phys. u. Chem., 155, 551.

Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Per. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 673 (Abs.).

# TEREBINTHENE.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre de l'essence de térébinthène.

Masson (A.). Comptes Rendus, 32, 129.

### TERPENES.

Das moleculare Brechungsvermögen der Terpene.

Plawitsky (P.). Ber. chem. Ges., 15, 15-16.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

# TETRAHYDBOQUIYOLIYR.

Description and measurement of the spectrum of tetrahydroquinoline.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731-4.

Description and measurement of the spectrum of tetrahydroquinoline hydrochloride (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 735-8.

### TOURMELINE.

On the nature of the light emitted by heated tourmeline.

Stewart (Balfour). Phil. Mag., (4) 21, 391.

# TRIPHENYLMENTHANE.

Spectrum of tripnenylmenthane.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 162-4.

# TROP MOLIN.

Spectrum of tropæolin  $\theta$ .

Hartley (W. N.). Jour. Chem. Soc., 51, 182-3.

Spectrum of tropæolin  $\theta$   $\theta$   $\theta$ .

Hartley (W. N.). Jour. Chem. Soc., 51, 184-7.

# TURPENTINE.

Spectrum of turpentine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

# ULTRAMARINE.

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-9; Jour. Chem. Soc. (1876). 1, 864.

Bemerkungen dazu, Hoffmann (R.). Ber. chem. Ges., 9, 494.

#### URINE.

Researches into the colouring matters of human urine, with an account of the separation of urobilin.

MacMunn (C. A.). Proc. Royal Soc., 30, 250-2; 31, 26-36; Ber. chem. Ges., 14, 1212-14 (Abs.).

Observations on the colouring matter of the so-called bile of invertebrates, and on some unusual urine pigments, etc.

MacMunn (C. A.). Proc. Royal Soc., 35, 370-403; Jour. Chem. Soc., 46, 194-8 (Abs.).

Ueber das Urorosein, einen neuen Harnfarbstoff.

Nencki (M.) und Sieber (N.). Jour. prackt. Chemie, 26, 333-36; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 8087 (Abs.).

Substances colorantes de l'urine.

Neusser (E.). Les Mondes, (3) 2, 468-9; Jour. Chem. Soc., 46, 93 (Abs.).

WINE.

Recherche et détermination des principales matières colorantes employées pour falsifier les vins.

Chancel (G.). Comptes Rendus, 84, 348-51; Jour. Chem. Soc. (1877), 2, 371 (Abs.); Ber. chem. Ges., 10, 494.

The detection of foreign colouring matters in wine.

Dupré (A.). Jour. Chem. Soc., 37, 572-5; Ber. chem. Ges., 13, 2004-5 (Abs.).

The detection of the colouring matters of logwood, Brazil-wood, and cochineal in wine.

Dupré (A.). Analyst, 1, 26; Jour. Chem. Soc. (1877), 1, 284 (Abs.).

Zur Weinverfälschung.

Lepel (F. von). Ber. chem. Ges., 9, 1906-11; 11, 1552-6.

WOOD.

Preliminary notes on a blue colouring matter found in certain wood undergoing decomposition in the forest.

Girdwood (G. P.) and Bemrose (J.). Rept. British Assoc. (1884), 690.

Absorptionsspectrum von Brazilienholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 858.

Absorptionsspectrum von Campecheholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 859.

### KANTOPHYLL.

Notiz über die Strahlen des Lichtes welche das Xantophyll der Pflanzen zerlegen.

Wiesner (J.). Ann. Phys. u. Chem., 153, 622-3.

# CERIUM.

Contribution to the chemistry of the cerite metals.

Brauner (B.). Jour. Chem. Soc., 43, 278-89; Chem. News, 47, 175 (Abs.).

. Sulla diffusione del Cerio, etc.

Cossa (A.). R. Accad. dei Lincei, (3) 3, 17-34; Beiblätter, 4, 43-44 (Abs.).

Le didyme de la cérite est probablement un mélange de plusieurs corps.

Delafontaine. Comptes Rendus, 87, 634-5; Jour. Chem. Soc., 36, 119 (Abs.); Beiblätter, 3, 197-8 (Abs.).

Sur les terres de la cérite.

Demarçay (Eug.). Comptes Rendus, 103 (1887), 580.

Contribution to the chemistry of cerium compounds.

Hartley (W. N.). Jour. Chem. Soc., 41, 202-9; Chem. News, 45, 40 (Abs.).

Le didyme de la samarskite diffère-t-il de celui de la cérite?

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 822; Beiblätter, 3. 358 (Abs.).

# CHLORINE.

# 1, CHLORINE ALONE.

Spectre du chlore dans les tubes de Geissler.
Chautard (J.). Comptes Rendus, 82, 273.

Spectres appartenant à la famille du chlore.

Ditte (A.). Comptes Rendus, 73, 738.

Des spectres d'absorption du chlore.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges.,5, 219; Comptes Rendus, 74, 465, 660.

Absorptionsspectrum des Chlors.

Jahresber. d. Chemie (1869), 182 (Abs. See Morren, below).

Réaction spectrale du chlore.

Lecoq de Boisbaudran (F.). Comptes Rendus, 91, 902-3; Phil. Mag., (5) 11, 77-8; Beiblätter, 5, 118 (Abs.).

Verbindungsspectrum zur Entdeckung von Chlor.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Absorptionsspectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165; Comptes Rendus, 68, 876.

# 2, CHLORINE COMPOUNDS.

Effect of the spectrum of silver chloride.

Abney (W. de W.). Rept. British Assoc. (1881), 594.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre du bichlorure de titane.

Becquerel (H.). Comptes Rendus, 85, 1227.

Tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseux (Des). Bull. Soc. mineral. de France, 5, 143; Beiblätter, 7, 25 (Abs.).

Spectrum von Kupferchlorid, mit einer Karte.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectres des métalloïdes de la famille du chlore.

Ditte (A.). Bull. Soc. chim. Paris, n. s. 16, 229; Comptes Rendus, 73, 788.

Ueber Chlorsäure, ein neues Reagens auf Alkaloïde.

Fraude (G.). Ber. chem. Ges., 12, 1558-60.

Spectrum von Chloroxyd und Unterchlorinsäure.

Gernez (D.). Ber. chem. Ges., 5, 218.

Sur les raies d'absorption produites dans le spectre par les solutions des acides chloreux, etc.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660; Bull. Soc. chim. Paris, n. s. 17, 258.

Spectre d'absorption du vapeur de l'acide hypochloreux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 257; Ber. chem. Ges., 5, 219.

Spectre d'absorption du vapeur de protochlorure de tellure.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

On the violet flame of many chlorides.

Gladstone (J. H.). Phil. Mag., (4) 24, 417.

Spectres de chlorure de baryum, de chlorure de cadmium, de chlorure de calcium, de chlorure de cobalt, de chlorure de cuivre, de chlorure de fer, de chlorure de magnésium, de chlorure de platine, de chlorure de strontium.

Gouy. Comptes Rendus, 84, 231; 85, 439; Chem. News, 35, 107.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber. d. Chemie (1869), 184 (Abs. See Luck, below).

Spectra der Chlormetalle.

Jahresber. d. Chemie (1863), 111 (Abs. See Diacon, above).

Absorptionsspectrum des Chlors und der unterchlorigen Säure.

Jahresber. d. Chemie (1872), 138, 139 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlorjods.

Jahresber. d. Chemie (1872), 139 (Abs. See Gernez, above).

Absorptionsspectrum des Chlorselens.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlortellurs.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Spectrum des Phosphorenzlichts von Chlorophan.

Kindt. Ann. Phys. u. Chem., 131, 160.

Spectralanalyse des Chlorberylliums.

Klatzo. Jour. prackt. Chemie, 106, 230.

Protochlorure d'antimoine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 150, planche XXIII.

Chlorure de baryum dans le gaz et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII; p. 66, planche IX.

Chlorure de bismuth en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 145, planche XXII.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, p. 139, planche XX.

Chlorure de calcium dans le gaz chargé de H Cl; et en solution, étincelle. Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 79,

planche XI; p. 81, planche XII.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

Chlorure de cuivre en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 152, planche XXIV; p. 156, planche XXIV.

Chlorure de didyme en solution concentrée, absorption; et en solution étendue, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 87, planche XIII; p. 90, planche XIII. Chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 100, planche XV.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour.
Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.);
Bull. Soc. chim. Paris, n. s. 21, 125.

Chlorure d'or en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, planche XXVI; p. 176, planche XXVI.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Chlorure de magnésium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Chlorure de manganèse en solution, dans le gaz, étincelle courte, étincelle moyenne.

Leccq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XXV.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 133, planche XIX.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Chlorure de potassium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 47, planche IV.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

Chlorure de strontium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbandran. Spectres Lumineux, Paris, 1874, p. 72, 73, planche X; p. 69, planche IX.

Bichlorure de l'étain en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 143, planche XXII.

Chlorure de zinc en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 188, planche XX.

Absorptionsspectrum des Mangansuperchlorids.

Luck (E.). Zeitschr. analyt. Chemie, 8, 405.

Verbindungspectrum zur Entdeckung von Chlor.

Mitscherlich (A.). Jour. prackt. Chemie, 27, 218.

Entdeckung sehr geringer Mengen von Chlor in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectroscopic anomalies, especially in chlorides.

Palmieri (L.). Chem. News, 47, 247.

Absorption spectra of bromine and of iodine monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). • Chem. News, 51, 250.

Spectren organischer Chlorverbindungen.

Salet (G.). Ber. chem. Ges., 5, 222; Bull. Soc. chim. Paris, 1 mars 1872.

Recent discoveries with the spectroscope, especially in the absorption spectrum of chromochloric anhydride.

Stoney (Johnstone). Chem. News, 23, 104.

Ueber die verschiedenen Modificationen des Chlorsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-9.

Ueber die Brechung und Dispersion des Lichtes in Chlorsilber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

# CHLOROPHYLL.

Propriétés optiques de la chlorophylle.

Ann. Chim. et Phys., (4) 26, 277-9.

Recherches sur les raies de la chlorophylle.

Chautard (J.). Comptes Rendus, 75, 1836.

Examen spectroscopique de la chlorophylle dans les résidus de la digestion.

Chautard (J.). Comptes Rendus, 76, 103-5; Jour. Chem. Soc., (2) 11, 521.

Observations par M. Millardet. Comptes Rendus, 76, 105-7.

Modifications du spectre de la chlorophylle sous l'influence des alcalis.

Chautard (J.). Comptes Rendus, 76, 570; Bull. Soc. chim. Paris, 20, 89; Jour. Chem. Soc., (2) 11, 582 (Abs.).

Influence des rayons de diverses couleurs sur le spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, 76, 1031-3; Jour. Chem. Soc., (2) 11, 713 (Abs.).

Examen des différences presentées par le spectre de la chlorophylle, selon la nature du dissolvant.

Chautard (J.). Comptes Rendus, 76, 1066-9; Jour. Chem. Soc., (2) 11, 996-7.

Classification des bandes d'absorption de la chlorophylle; raies accidentales.

Chautard (J.). Comptes Rendus, 76, 1273.

(Look below under Pocklington.)

Spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, 77, 596.

Nouvelles bandes surnuméraires produites dans les solutions de chlorophylle sous l'influence des agents sulfurés.

Chautard (J.). Comptes Rendus, 78, 414-16; Jour. Chem. Soc., (2) 12, 643 (Abs.).

Recherches sur le spectre de la chlorophylle.

Chautard (J.). Ann. Chim. et Phys., (5) 3, 5-56.

Note sur la chlorophylle.

Filhol (E.). Comptes Rendus, 79, 612-14; Jour. Chem. Soc., (2) 13, 871-2 (Abs.).

Recherches sur la chlorophylle et quelques uns de ses dérivés.

Gerland (E.) et Rauwenhoff (W. H.). Arch. Neerlandaises, 6, 97-116, Ann. Phys. u. Chem., 163, 231-9; Jour. Chem. Soc., (2) 9, 1201-2 (Abs.).

Ueber die Einwirkung des Lichtes auf das Chlorophyll.

Gerland (J.). Ann. Phys. u. Chem., 163, 585-610; Jour. Chem. Soc., (2) 10, 160 (Abs.).

Ueber die Rolle des Chlorophylls bei der Assimilationsthätigkeit der Planzen und das Spectrum der Blätter.

Gerland (J.). Ann. Phys. u. Chem., 148, 99-115; Jour. Chem. Soc., (2) 11, 401 (Abs.).

Purpurophyll, ein neues (?) Derivat des Chlorophylls.

Hartsen (T. A.). Ann. Phys. u. Chem., 146, 158-60.

Absorptionsspectrum des Chlorophylls.

Jahresber. d. Chemie (1872), 186 (Abs. See Chautard, above).

Spectroscopische Untersuchungen des Chlorophylls.

Jahresber. d. Chemie (1878), 154-7 (Abs. See Chautard, above).

Zur Kenntniss der Chlorophyll-farbstoffe.

Krauss (G.). Archives de Genève, (2) 46, 359 (Abs.).

Untersuchungen über das Chlorophyll, den Blumenfarbstoff und deren Beziehungen zum Blutfarbstoffe.

> Liebermann (L.). Sitzungsber. d. Wiener Akad., 72 II, 599-618; Chem. Centralblatt, (3) 7, 615-16; Jour. Chem. Soc., 1877, 2, 208 (Abs.).

Ueber das Verhalten des Chlorophylls zum Licht.

Lommel (E.). Ann. Phys. u. Chem., 143, 568-85; Jour. Chem. Soc., (2) 10, 150-60 (Abs.).

Observations sur l'examen spectroscopique de la chlorophylle par M. Chautard.

Millardet (A.). Comptes Rendus, 76, 105-7; Jour. Chem. Soc., (2) 11, 996 (Abs.).

Spectroscopic study of chlorophyll.

Nature, 26, 636.

M. Chautard's classification of the absorption-bands of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (8) 4, 61-8.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-59.

Ueber natürliche Chlorophyllmodificationen und die Farbstoffe der Florideen.

Pringsheim. Monatsber. d. Berliner Akad. (1875), 745-59.

Spectroscopic study of chlorophyll.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., **41**, 834-41; Nature, **26**, 636-9; Ber. chem. Ges., **15**, 2746 (Abs.); Chem. News, **45**, 250.

Ueber die Bedeutung des Chlorophylls.

Sachsse (R.). Sitzungsber. d. Naturforsch. Ges. zu Leipzig, 2, 120-55; Chemisches Centralblatt, (3) 7, 550-2; Jour. Chem. Soc. (1877), 2, 208 (Abs.).

Ueber eine neue Reaction des Chlorophylls.

Sachsse (R.). Chemisches Centralblatt, (3) 9, 121-5; Jour. Chem. Soc., 34, 516 (Abs.).

Die Reindarstellung des Chlorophyllfarbstoffes.

Tschirch (A.). Ber. chem. Ges., 16, 2781-6; Jour. Chem. Soc., 45, 57-62.

Untersuchungen über das Chlorophyll und einige seiner Derivate.

Tschirch (A.). Ann. Phys. u. Chem., n. F. 21, 870-88.

Beziehungen des Lichtes zum Chlorophyll.

Wiesner (J.). Sitzungsber. d. Wiener Akad., 59 I, 327; Ann. Phys. u. Chem., 152, 497; Jour. Chem. Soc., (2) 12, 999 (Abs.).

# CHROMIUM.

On the colour properties and relations of chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

The chromium arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 26

On the optical properties of a new chromic oxalate.

Hartley (W. N.). Proc. Royal Soc., 21, 499-507; Ber. chem. Ges.. 6, 1425 (Abs.).

Distribution of heat in green oxide of chromium.

Jacques (W. W.). Proc. American Acad., 14, 142.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Absorptionsspectra der Alkalichromate und der Chromsäure. Sabatier (P.). Beiblätter, 11, 223.

#### COBALT.

On the colour, properties, and relations of cobalt, etc.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

Cobalt arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27.

Spectre de chlorure de cobalt.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Spectra of some cobalt compounds in blowpipe chemistry.

Horner (C.). Chem. News, 27, 241; Jour. Chem. Soc., (2) 11, 1161-2 (Abs.).

Spectrum von Kobalt.

Jahresber. d. Chemie (1872), 145. (See Lockyer, below.)

Spectrum von Kobaltverbindungen.

Jahresber. d. Chemie (1873), 150. (See Horner, above.)

Spectre des sels de cobalt.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

On the spectrum of cobalt.

Lockyer (J. N.). Proc. Royal Soc., 17, 289.

Absorption spectra of cobalt salts.

Russell (W. J.). Proc. Royal Soc., 31, 51; 32, 258; Chem. News, 43, 27.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2813-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Methods for the determination of cobalt by spectral analysis.

Wolff. Chem. News, 39, 124.

# COLOUR.

Metachromism, or colour-change.

Ackroyd (W.). Chem. News, 34, 75-7.

Ueber die Aenderung des Farbentones von Spectralfarben bei abnehmender Lichtstärke.

Albert (E.). Ann. Phys. u. Chem., n. F. 16, 129-60; Jour. Chem. Soc., 42, 1153 (Abs.).

Influence de la lumière sur les animaux.

Béclard. Comptes Rendus, 46, 441.

Influence des rayons colorés du spectre sur le développement des animaux.

Béclard. Comptes Rendus, 73, 1487.

Nouvelles recherches sur les impressions colorées produites lors de l'action chimique de la lumière.

Becquerel (Éd.). Comptes Rendus, 39, 65.

Ueber die Entstehung von farbigem Licht durch elective Reflection.
Behrens (H.). Ann. Phys. u. Chem., 150, 303-11.

Action of various coloured bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Étude expérimentale de la réflexion des rayons actiniques; influence du poli speculaire.

Chardonnet (E. de). Comptes Rendus, 96, 441; Jour. de Phys., 12, 219.

La perception des couleurs.

Charpentier (Aug.). Comptes Rendus, 96, 859.

Recherches expérimentales sur les anneaux colorés de Newton.

Desains (P.). Comptes Rendus, 78, 219-21; Phil. Mag., (4) 47, 236-7.

Farbe und Assimilation.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 209-33; Beiblätter, 7, 378-80 (Abs.); Centralblatt f. Agricultur-chemie (1883), 174-8 (Abs.); Jour. Chem. Soc., 44, 819 (Abs.).

Bacterium photometricum.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 252-90; Pflüger's Arch. f. physiol., 30, 95-124; Proc. Verb. K. Akad. v. Wetenschappen, Amsterdam, Mar. 25, 1882, 8-6 (Abs.); Beiblätter, 7, 381 (Abs.).

Das Verhalten verschiedener Wärmefarben bei der Reflexion polarisirten Strahlen von Metallen.

Knoblauch (H.). Ann. Phys. u. Chem., n. F. 10, 654.

Ueber den neutralen Punckt im Spectrum der Farbenblinden.

König (A.). Verhandl. d. physischen Ges. in Berlin (1883), 20-23.

Influence of colour upon reduction by light.

Lea (M. Carey). Amer. Jour. Sci., (3) 7, 200-207.

Influence of colour upon the refraction of Light.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 355-7.

Dr. Vogel's colour theory.

Lea (M. Carey). Amer. Jour. Sci., (3) 12, 48-50.

On the development of the colour sense.

Lubbock (Dr. Montague). Rept. British Assoc. (1881), 715.

On the relations of the colours of the spectrum.

Maxwell (J. Clerk). Proc. Royal Soc., 10, 484.

On the duration of colour impressions upon the retina.

Nichols (E. L.). Amer. Jour. Sci., (3) 28, 243-52.

Eine Beziehung zwischen der Farbe gewisser Flammen und den durch das Licht gefärbten heliographischen Bildern.

Niepce de Saint Victor. Ann. Phys. u. Chem., Ergänzungsband, 3 (1853), 442; Ann. Chim. et Phys., (3) 32, 373.

On the sensitiveness of the eye to slight differences of colour.

Peirce (B. O., Jr.). Amer. Jour. Sci., (3) 26, 299-302; Z. Instrumentenkunde, 4, 67-8 (Abs.); Beiblätter, 8, 120.

Sur l'achromatisme chimique.

Prazmowski. Comptes Rendus, 79, 107-110; Jour. Chem. Soc., (2) 12, 1125 (Abs.).

Experiments in colour.

Rayleigh (Lord). Nature, 25, 64-6.

Sur l'application de la succession anomale des couleurs dans le spectre de plusieurs substances.

Sellmeier. Jour. de Phys., 1, 104.

Bemerkungen hiezu, A. Levistal. Ann. Phys. u. Chem., 143, 272.

Colour in practical astronomy, spectroscopically examined.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 28, 779-843; Beiblätter, 4, 548 (Abs.). Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442-83; Jour. Chem. Soc., (2) 12, 279-85 (Abs.).

Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 88, 1012-15; Beiblätter, 3, 620 (Abs.).

On combinations of colour by means of polarized light.

Spottiswoode (W.). Proc. Royal Soc., 22, 354-8.

Farbenwahrnehmung.

Weinhold (A.). Ann. Phys. u. Chem., n. F. 2, 631.

De l'influence de différentes couleurs du spectre sur la dévellopement des animaux.

Yung (E.). Comptes Rendus, 87, 998-1000.

# CONE-SPECTRUM.

The blowpipe cone-spectrum and the distribution of the intensity of light in the prismatic and diffraction spectra.

Draper (J. W.). Nature, 20, 301.

# CONSTANTS.

Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Brühl (J. W.). Ber. chem. Ges., 15, 467.

Spectroscopische Untersuchung der Constanten von Lösungen.

Bürger (H.). Ber. chem. Ges., 11, 1876.

On a new optical constant.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401-16; Ann. Phys. u. Chem., 156, 120-44.

Optische Constanten.

Janowsky (J. V.). Ber. chem. Ges., 13, 2272-77.

Ueber die Refractionsconstante.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 11, 70-103.

Experimentelle Untersuchungen über die Refractionsconstante.

Prytz (K.). K. Dān. Ges. d. Wiss. 1880, 6, 3-22; Ann. Phys. u. Chem., n. F. 11, 104-20.

Ueber einige von den Herrn J. W. Brühl und V. Zenger aufgestellte Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Wiedemann. Ber. chem. Ges., 15, 464-70; Beiblätter, 6, 370 (Abs.), 377 (Abs.).

#### COPPER.

On the colour, properties, and relations of the metals copper, nickel, cobalt, iron, manganese, and chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

On the colour relations of copper and its salts.

Bayley (T.). Phil. Mag., (5) 5, 222-4.

On the analysis of alloys containing copper.

Bayley (T.). Phil. Mag., (5) 6, 14-19.

On the colour properties and colour relations of the metals of the iron-copper group.

Bayley (T.). Jour. Chem. Soc., 39, 362-70.

Copper spark spectrum; copper arc spectrum; copper and silver arc spectrum; copper, gold, and silver (alloy) arc spectrum; copper and iron spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27, 31, 43.

Spectrum of nitrate of copper.

Chem News, 35, 107.

Renversement des raies spectrales de cuivre.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre du cuivre.

Debray. Comptes Rendus, 54, 169.

Spectre du bromure de cuivre, et du chlorure de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1

Spectre de l'azotate de cuivre.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Caractères des flammes chargées de l'oxyde de cuivre et de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Black oxide of copper.

Vacques (W. W.). Proc. Royal Soc., 14, 159.

Spectrum des Kupfers.

Jahresber. d. Chemie, 15, 30. (See Debray, above.)

Spectre de l'oxyde de cuivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure et du phosphure de cuivre obtenus sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Chlorure de cuivre en solution, étincelle; chlorure de cuivre dans le gaz.

Lecoq de Boisbaudran, Paris, 1874, p. 152, 156, planche XXIV.

Erkennung von Chlor, Brom und Iod durch das Spektrum der Kupferverbindung.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectrum von Kupfer.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Methods for the determination of copper by spectral analysis.

Wolff. Chem. News, 39, 124.

#### CRYSTALS.

- Sur le pouvoir rotatoire du quartz dans le spectre ultra-violet.
  Croullebois. Comptes Rendus, 81, 666.
- Action rotatoire du quartz sur le plan de polarization des rayons calorifiques obscurs d'un spectre.

Desains (P.). Comptes Rendus, 84, 1056.

- Anwendung des Spectroskops zur optischen Untersuchung der Krystalle.

  Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 58 II, 4, 15-29.
- Indices de réfraction ordinaire et extraordinaire du quartz, pour les rayons de différentes longueurs d'onde jusqu'à l'extrême ultraviolet.
  - Sarasin (E.). Arch. de Genève, (2) 61, 109-19; Comptes Rendus, 85, 1230-2 (Abs.); Beiblätter, 2, 77 (Abs.).
- Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrême ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde, jusqu'à l'extrême ultra-violet.

Sarasin (E.). Comptes Rendus, 97, 850.

Propriétés optiques de quelques cristaux; acide oxalique, hyposulûte de soude, sous-carbonate de soude, borax.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 281-6 (Abs.).

Sur la polarization rotatoire du quartz.

Soret (J. L.) et Sarasin (E.). Comptes Rendus, 83, 818; 95, 635.

# D LINE.

- Dark double line D in the spectrum from the electric arc.

  Foucault. L'Institut (1848), 45.
- Darstellung der dunklen Fraunhofer'schen Linie D. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 148.
- Die Ursache der dunklen Linie D nicht in dem Atmosphäre. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.
- Détermination de la valeur absolue de la longueur d'onde de la raie D. Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10 (1887), 170-199.
- Détermination de la longueur d'onde de la raie D₂.

  Macé de Lépinay (J.). Jour. de Phys., (2) 5, 411-16.
- Indice du quartz pour la raie D.
  Sarasin (Ed.). Comptes Rendus, 85, 1230.
- D line spectra.

Stokes (G. G.). Nature, 13, 247.

Monographie du groupe D du spectre solaire. Thollon (L.). Jour. de Phys., 13, 5.

#### DARK LINES.

Étude des bandes froides des spectres obscurs.

Dessains (P.) et Aymonnet. Comptes Rendus, 81, 428.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum, und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 858.

Dark double line D in the spectrum from the electric arc.

Foucault. L'Institut (1849), 45.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uran und Mangansäure.

Jahresber. d. Chemie, 5, 125. (See Stokes in L'Institut, 1852, p. 892.)

Umwandlung heller Linien in Dunkle.

Jahresber. d. Chemie, 14, 44. (See Kirchhoff, below.)

Dunkle Spectrallinien der Elemente.

Jahresber. d. Chemie, 17, 108. (See Hinrichs (G.) in Amer. Jour. Sci., [2] 38, 81.)

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in Dunkle.

> Jahresber. d. Chemie, 18, 90. (See Madan (H. G.) in Phil. Mag., [4] 29, 388.)

Die Ursache der dunklen Linie D nicht in dem Atmosphäre.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.

Umkehrung der hellen und dunklen Linien.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 187.

Spectrum des Phosphorescenzlichtes von Chlorophan, etc., mit dunklen Linien.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Absorptionsspectren dunkler Wärmestrahlen in Gasen und Dämpfen. Lecher und Pernter. Sitzungsber. d. Wiener Akad., 82 II, 265.

Dunkle Linien in den Spectren einiger Fixsterne.

Merz (L.). Ann. Phys. u. Chem., 117, 654.

Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmcstrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 116, 543; Berichtigung dazu, 116, 644.

- A method of examining refractive and dispersive powers by prismatic reflection. (Contains the first discovery of the dark solar lines.)
  Wollaston (W. H.). Phil. Trans. (1802), 365.
- Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 373.

# DAVYUM.

Spectre du davyum.

Kern (S.). Comptes Rendus, 85, 667; Nature, 17, 245; Chem. News, 36, 114, 155, 164; Beiblätter, 1, 619.

# DECIPIUM.

Sur le décipium, métal nouveau de la samarskite.

Delafontaine. Comptes Rendus, 87, 632-4; Jour. Chem. Soc., 36, 117-8; Amer. Jour. Sci., (3) 17, 61-2 (Abs.); Beiblätter, 3, 197-8 (Abs.).

Remarques sur le décipium et ses principaux composés.

Delafontaine. Comptes Rendus. 90, 221-3; Arch. de Genève. (3) 3. 250-0: Beiblätter, 4. 549 (Abs.).

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

# DENSITY.

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Wiener Anzeigen (1878), 158-60; Chemisches Centralblatt (1878), 689-90; Jour. Chem. Soc., 36, 101 (Abs.).

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen, 1879.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 78 II, 867-90; Chemisches Centralblatt (1879), 507-9, 537-42, 555-7; Nature, 20, 90 (Abs.); Beiblätter, 3, 609-11.

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

De l'intensité lumineuse des couleurs spectrales.

Parinaud (H.). Comptes Rendus, 99, 987.

- De l'influence qu'exerce l'intensité de la lumière colorée, etc. Prillieux. Comptes Rendus, 69, 294, 408, 412.
- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von der Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., 23, 312.
- Note sur un procédé destiné à mesurer l'intensité relative des éléments constitutifs des différentes scources lumineuses.

Trannin (H.). Comptes Rendus, 77, 1495.

Aenderung der Lage und Breite der Linien in Salpetergas und anderen Substanzen mit der Dicke und Schicht.

Weiss (A.). Ann. Phys. u. Chem., 112, 153.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

#### DIDYMITIM.

Sur les variations des spectres d'absorption du didyme.

Becquerel (H.). Comptes Rendus, 103 (1887), 777-80; Chem. News, 55, 148 (Abs.).

Sur le didyme.

Brauner (B.). Comptes Rendus, 94, 1718-19; Chem. News, 46, 16-17; Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 2231 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prackt. Chemie, (2) 12, 209-15; Amer. Jour. Sci., (3) 11, 142 (Abs.).

Erscheinungen beim Absorptionsspectrum des Didyms; Aenderung bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

On the inversion of the bands in the didymium absorption spectra.

Bunsen (R.). Phil. Mag., (4) 28, 246; 32, 177. (See Roscoe's Spectrum Analysis, Lecture 4, Appendix F, Third Edition.)

Photograph of the didymium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 28.

Note préliminaire sur le didyme.

Clève (P. T.). Comptes Rendus, **94**, 1528-30; Chem. News, **45**, 273; Jour. Chem. Soc., **44**, 18 (Abs.); Ber. chem. Ges., **15**, 1750 (Abs.); Beiblätter, **6**, 771-2 (Abs.).

Quelques remarques sur le didyme.

Clève (P. T.). Comptes Rendus, 95, 33; Jour. Chem. Soc., 42, 1165 (Abs.); Beiblätter, 6, 772 (Abs.).

Note on the absorption spectrum of didymium.

Crookes (W.). Chem. News, 54 (1886), 27.

Vergleich der Absorptionsspectra von Didym, etc.

Delafontaine. Ann. Phys. u. Chem., 124, 635.

Sur les spectres du didyme et du samarium.

Demarçay (Eug.). Comptes Rendus, 102 (1886), 1551-2.

Absorptionslinien der Didymlösungen.

Erdmann. Jour. prackt. Chemie, 85, 394; 94, 303.

14 т

On an optical test for didymium.

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 219.

Absorptionsspectrum des Didymnitrats.

Jahresber. d. Chemie (1870), 821.

Chlorure de didyme en solution concentrée, absorption; do. en solution étendue, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 87, 90, XIII.

The didymium absorption spectrum.

Rood (O. N.). Amer. Jour. Sci., (2) 34, 129; Ann. Phys. u. Chem., 118, 350.

Sur le spectre du nitrate de didyme.

Smith (Lawrence) et Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1167.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectre du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 2, 410-11; 3, 196-7.

Recherches sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

Om de lysande spectra hos Didym och Samarium (Sur les spectres brilliants du didyme et du samarium).

Thalen (R.). Ofversigt K. Svensk. Vetensk. Akad. Forhandl., 40, No. 7, 8-16; Jour. de Phys., (2) 2, 446-49; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 893 (Abs.).

Om spectra tillhörande didym, yttrium, erbium och lanthan.

Thalen (R.). K. Svensk. Vetenskaps Akad. Förhandlingar, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.); Jour. de Phys., 4, 33, avec une planche.

Note on the spectrum of didymium.

Thompson (Claude M.). Chem. News, 55 (1887), 227.

#### DIFFRACTION.

Spectrum der brechbarston Strahlen.

Crookes. Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Krümmung der Spectrallinien.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 51 II, 341, 368-383.

On diffraction spectrum photography.

Draper (H.). Amer. Jour. Sci., 106, 401-9; Phil. Mag., (4) 46, 417-25; Nature, 9, 224-6; Ann. Phys. u. Chem., 151, 337-50.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Albertotypie eines photographirten Diffractionsspectrums.

Jahresber. d. Chemie (1878), 166. (See Draper, above.)

Diffraction bands in the spectrum.

Moreland. Amer. Jour. Sci., (8) 29, 5.

Wärmevertheilung im Diffractionsspectrum.

Müller (J.). Ann. Phys. u. Chem., 105, 355.

Comparison of prismatic and diffraction spectra.

Pickering (E. C.). Proc. Amer. Acad., 11, 273.

On diffraction spectra.

Quincke (G.). Phil. Mag., (4) 45, 865-71.

Beugungserscheinungen im Spectrum.

Rosiky. Sitzungsber. d. Wiener Akad., 71 I, 891.

Reduction for diffraction in spectrum observation.

Rosenberg (E.). Jour. Franklin Inst., 106, 95.

Sur les phénomènes de diffraction produits par les réseaux circulaires.

Soret (J. L.). Archives de Genève, (2) 52, 820-87; Ann. Phys. u. Chem., 156, 99-113; Ann. Chim. et Phys., (5) 7, 409-24.

Einige Bermerkungen über die Diffractionsspectra.

Spée (E.). Bull. de l'Acad. de Belgique, (3) 12, 32-4; Beiblätter, 11 (1887), 99 (Abs.).

Imitation des spectres de diffraction par dispersion.

Zenger (Ch. V.). Comptes Rendus, 96, 521.

# DISCONTINUOUS SPECTRA.

On discontinuous spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-13; Nature, 24, 89-91; Chem. News, 43, 237-9; Ber. chem. Ges., 14, 1696-7.

# DISPERSION SPECTRA.

Experimentelle Prüfung der aelteren und neueren Dispersionsformeln.

Brühl (J. W.). Ber. chem. Ges., 19 (1886), 2821-37; Beiblätter, 11, 244-8; Jour. Chem. Soc., 52, 195-8 (Abs.).

Note on the curvature of lines in the dispersion spectrum, and the method of correcting it.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 34, 263-5. Note on this by Simms, same vol., 363-4.

Specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. (1881), 591; Nature, 24, 468 (Abs.); Beiblätter, 6, 21 (Abs.).

Specific refraction and dispersion of isomeric bodies.

Gladstone (J. H.). Proc. Royal Soc., 4, 94-100; Phil. Mag., (5) 11, 54-60; Ber. chem. Ges., 14, 835 (Abs.); Jour. Chem. Soc., 40, 213 (Abs.); Beiblätter, 5, 276 (Abs.).

Zur Theorie der anomalen Dispersion.

Helmholtz (H.). Monatsber. d. Berliner Akad. (1874), 667-80; Ann. Phys. u. Chem., 154, 582-96.

Untersuchungen über das Dispersionsgesetz.

Hesse (O.). Ann. Phys. u. Chem., n. F. 11, 871-903.

Sur la dispersion anomale.

Hurion. Jour. de Phys., 7, 181; Ann. de l'École normale, (2) 6, 367-412; Beiblätter, 2, 79 (Abs.).

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 466-86.

Das specifische Gesetz der sogenannten anomalen Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., Jubelband, 166-82.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 840-51.

Einige Anwendungen des Dispersionsgesetzes auf durchsichtige, halbdurchsichtige und undurchsichtige Mittel.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 868.

Attempt at a theory of the (anomalous) dispersion of light in singly and doubly refracting media.

Ketteler (E.). Verhandl. d. naturhist. Vereinsd. preuss. Rheinlande und Westphalens, 33 (1876); Phil. Mag., (5) 2, 332-45, 414-22, 508-22.

Zur Handhabung der Dispersionsformel.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30, 299-31

Recherches sur la dispersion prismatique de la lumière.

Klercker (C. E. de). Bihang till k. Svensk. Vet. Akad. Handl., 7, 1-55; Comptes Rendus, 97, 707 (Abs.).

Ueber anomale Dispersion der Körper mit Oberflächenfarben.

Kundt (A.). Ann. Phys. u. Chem., 142, 163-171; 143, 149-52, 259-79; 144, 128-37; 145, 67-80; Nachtrag, 145, 164-66; Ann. Chim. et Phys., (4) 25, 404-10 (Abs.), 418-19 (Abs.), 419-21 (Abs.).

Ueber einige Beziehungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-24.

Ueber anomale Dispersion in glühendem Natriumdampf.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 321-5; Phil. Mag., '5 10, 53-57.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Zang (V. von). Sitzungsber. d. Wiener Akad.. 83 ff, 671-6; Wiener Anzeigen (1881), 84 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Theorie der normalen und anomalen Dispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 329-56.

Ueber einige zweiconstantige Dispersionsformel.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 628-684.

Ueber das Dispersionsgesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 353-60.

Das Gesetz der Rotationsdispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 578.

Theorie der Dispersion.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 10, 1-21.

Einige Versuche über totale Reflexion und anomale Dispersion.

Mach (E.) und Arbes (J.). Ann. Phys. u. Chem., (2) 27, 436-44.

Sur la dispersion des gaz.

Mascart. Comptes Rendus, 78, 679-82; Amer. Jour. Sci., (3) 7, 591-2 (Abs.).

Versuch einer Erklärung der anomalen Farbenzerstreuung.

Meyer (O. E.). Ann. Phys. u. Chem., 145, 80-86; Ann. Chim. et Phys., (4) 43, 821-38.

Quelques phénomènes de décomposition produits par la lumière.

Morren. Comptes Rendus, 69, 899.

Une méthode pour mesurer la dispersion dans les différentes parties du spectre fourni par un prisme ou un spectroscope quelconque.

Mousson. Arch. de Genève, (2) 45, 13; Ann. Phys. u. Chem., 148, 660.

(See Mach in Ann. Phys. u. Chem., 149, 270.)

Sur les lois de la dispersion.

Mouton. Comptes Bendus, 88, 1189-92; Beiblätter, 3, 616 (Abs.): Ann. Chim. et Phys., (5) 18, 145-89.

Dispersion de la lumière.

Ricour (Th.). Comptes Rendus, 69, 1231; 70, 115.

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, Lonem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-174; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

Recherches concernant la dispersion électromagnétique sur une spectre de grande étendue.

Schaik (W. C. L. von). Arch. Neerlandaises, 17, 373-90; Beiblätter, 7, 919 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die erstern, besonders zur Erklärung der Dispersion und ihrer Anomalien.

Sellmeier (W.). Ann. Phys. u. Chem., 145, 399-421, 520-49; 147, 386-403, 525-54.

Untersuchungen über die anomale Dispersion des Lichtes.

Sieben (G.). Ann. Phys. u. Chem., n. F. 8, 187-57.

Micrometrical measures of gaseous spectra under high dispersion.

Smyth (C. Piazzi). Trans. Royal. Soc. Edinburgh, 32 III, 415-60, 1884, with plates.

Sur la dispersion anormale de quelques substances.

Soret (J. L.). Arch. de Genève, (2) 40, 280-3; Ann. Phys. u. Chem.,
143, 325-7; Phil. Mag., (4) 44, 395-6; Ann. Chim. et Phys., (4)
25, 412 (Abs.).

Sur la réfraction et la dispersion des aluns crystallisés.

Soret (C.). Arch. de Genève, (3) 10, 800-2; Beiblätter, 8, 874 (Abs.).

On an easy and at the same time accurate method of determining the ratio of the dispersions of glasses intended for objectives.

Stokes (G. G.). Proc. Royal Soc., 27, 485-94; Beiblätter, 3, 185-7 (Abs.).

Minimum de dispersion des prismes; achromatisme de deux lentilles de mêmes substances.

Thollon (L.). Comptes Rendus, 89; 93-6; Beiblätter, 4, 32-4.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspectrums und anomaler Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-9; Jour. Chem. Soc., (2) 12, 1121-2.

Theorie der Dispersion.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

Zur Dispersion farblos durchsichtiger Medien.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 17, 580-7; Jour. de Phys., (2) 2, 231 (Abs.).

Ausdehnung der Dispersionstheorie auf die ultra-rothen Strahlen.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 23, 806; Jour. de Phys., (2) 4, 324 (Abs.).

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. mineral. de France, 5, 160-1.

# DISSOCIATION.

Dissociation of the elements.

Crookes (W.). Chem. News, 39, 65-6.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33, 597 (Abs.); Beiblätter, 4, 274.

Ueber Lockyer's Dissociationstheorie.

Vogel (H. W.). Sitzungsber. d. Berliner Akad. (1882), 905-7; Nature,
27, 233; Ann. Phys. u. Chem., n. F. 19, 284-287; Phil. Mag., (5)
15, 28-30; Jour. Chem. Soc., 44, 762 (Abs.); Chem. News, 49, 201 (Abs.).

# DISTRIBUTION IN THE SPECTRUM.

The distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Phys. Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

On the distribution of lines in spectra.

Hinrichs. Amer. Jour. Sci., July, 1864.

Vertheilung der chemischen Wirkung im Spectrum.

Jahresber. d. Chemie (1878), 160.

Distribution de l'energie dans le spectre normal.

Langley (S. P.). Ann. de Chim. et de Phys., (5) 25, 211.

Wärmevertheilung im Normalspectrum.

Lundquist (G.). Ann. Phys. u. Chem., 155, 146.

Sur la distribution des bandes dans les spectres primaires.

Salet (G.). Comptes Rendus, 79, 1229-30; Ber. chem. Ges., 7, 1788 (Abs.); Bull. Soc. chim. Paris, 22, 543.

# DOUBLE SPECTRA.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Sur les spectres doubles.

Salet (G.). Jour. de Phys., 4, 225.

On double spectra.

Watts (W. M.). Quar. Jour. Sci., Jan., 1871.

#### DYSPROSIUM.

Spectre du dysprosium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1005-6; Jour. Chem. Soc., 50, 667 (Abs.).

# ELECTRIC SPECTRA.

Relation between electric energy and radiation in the spectrum of incandescence lamps.

Abney and Festing. Proc. Royal Soc., 37, 157.

Continuirliches Spectrum des electrischen Funkens.

Abt (A.). Ann. Phys. u. Chem., n. F. 7, 159; K. Ungar. Acad. d.
Wiss. in Buda-Pest, Dec. 11, 1878; Jour. Chem. Soc., 36, 765;
Amer. Jour. Sci., (3) 18, 68-9.

Spectrum des electrischen Lichtes.

Angström (A. J.). Ann. Phys. u. Chem., 94, 145; Phil. Mag., (4) 9, 327.

Pouvoir phosphorescent de la lumière électrique.

Becquerel (E.). Comptes Rendus, 8, 217; 101, 205-10; Jour. Chem. Soc., 48, 1098 (Abs.).

Nouvelles expériences sur les effets électriques produits sous l'influence des rayons solaires.

Becquerel (E.). Comptes Rendus, 9, 561; remarques par M. Biot, 569

Nouvelles expériences sur le même sujet.

Becquerel (E.). Comptes Rendus, 9, 711; nouvelles remarques par M. Biot, 713, 719.

Sur le rayonnement chimique qui accompagne la lumière solaire et la lumière électrique.

Becquerel (E.). Comptes Rendus, 11, 702; rapport de M. Biot à propos de ce mémoire, 12, 101.

Effets électro-chimiques produits sous l'influence de la lumière.

Becquerel (E.). Comptes Rendus, 32, 85.

A new form of absorption-cell.

Bostwick (A. E.). Amer. Jour. Sci., Dec., 1885; Phil. Mag., (5) 21, 80 (Abs.).

- Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gasen. Cailletet. Ber. chem. Ges., 5, 482.
- Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle.

Cappel (E.). Ann. Phys. u. Chem., 139, 681-6.

Wolfram arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, 50.

Sur la photographie du spectre de l'étincelle électrique.

Cazin (A.). Bull. Soc. philom. de Paris, 1877, (7) 1, 6-7; Beiblätter, 1, 287-8 (Abs.).

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6;
Beiblätter, 1, 620 (Abs.); Jour. Chem. Soc., 34, 357 (Abs.); Jour. de Phys., 6, 271; Amer. Jour. Sci., (3) 15, 148 (Abs.).

Phénomènes observés dans les spectres produits par la lumière des courants d'induction traversant les gaz raréfiés.

Chautard (J.). Comptes Rendus, 59, 383.

Action exercée par un électro-aimant sur les spectres des gaz raréfiés, traversés par des décharges électriques.

Chautard (J.). Comptes Rendus, 79, 1123-4.

Action des aimants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 80, 1161-4.

Phénomènes magnéto-chimiques produits au sein des gaz raréfiés dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, **81**, 75-7; **82**, 272-274; Jour. Chem. Soc., 1876, **1**, 29 (Abs.).

Observations of the spectrum of lightning.

Clark (J. W.). Chem. News, 30, 28; 32, 65; 35, 2; Beiblätter, 1, 192.

Den Einfluss welchen die Natur der electrischen Stromquelle auf das Aussehen von Gasspectren ausübt.

Czechowicz. Versammlung russischer Naturforscher und Aertzte in Warschau, Sept., 1876; Ber. chem. Ges., 9, 1598 (Abs.).

Analyse spectrale de l'étincelle électrique produite dans les liquides et les gaz.

Daniel. Comptes Rendus, 57, 98.

Notice sur la constitution de l'univers. Première partie, analyse spectrale.

Delaunay. Ann. du Bureau des Longitudes, Paris, 1869.

Sur les spectres des étincelles des bobines à gros fil.

Demarçay (E.). Comptes Rendus, 103 (1887), 678.

Spectre du pôle négatif de l'azote.

Deslandes (H.). Comptes Rendus, 103 (1886), 375-9; Jour. Chem. Soc., 50, 957.

Recherches sur l'influence des éléments électro négatifs sur le spectre des métaux.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 5.

Ueber den Unterschied der prismatischen Spectra des am positiven und negativen Pol im luftverdünnten Raume hervortretenden electrischen Lichtes.

Dove (H. W.). Ann. Phys. u. Chem., 104, 184.

Over de zamenstellung von zonlicht, gaslicht en het von Edison's lamp, vergelijkend onderzocht met behulp der bacterien-methode.

Engelmann (T. W.). Proc. verb. k. Akad. v. Wetensch. te Amsterdam, Nov. 25, 1882, No. 5, 4-5; Beiblätter, 7, 380 (Abs.).

Sur les changements de réfrangibilité observés dans les spectres électriques de l'hydrogène et du magnésium.

Fiévez (C.). Bull. Acad. de Belgique, (3), 7, 245-7; Beiblätter, 8, 506 (Abs.).

Spectrum of lightning.

Gibbons (J.). Chem. News, 24, 96; 40, 65.

Spectrum of lightning.

Grandeau (L.). Chem. News, 9, 66.

Note of an experiment on the spectrum of the electric discharge.

Grove (Sir W. R.). Proc. Royal Soc., 28, 181-4; Beiblätter, 3, 360 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 369.

The investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195-6; Nature, 29, 89-90; Jour. Chem. Soc., 46, 137 (Abs.); Beiblätter, 8, 302 (Abs.).

Spectrum of lightning.

Herschel (Lieut. John). Proc. Royal Soc., 16, 418; 17, 61.

Spectra of lightning.

Hoh (Th.). Chem. News, 30, 253; Ann. Phys. u. Chem., 152, 173.

Spectrum of lightning.

Holden (E. S.). Amer. Jour. Sci., (8) 4, 474-5.

Spectrum of the electric light.

Hopkins-Walters (J.). Nature, 25, 103.

Electric spectra in various gases and with electrodes of various substances.

Huggins (W.). Phil. Trans., 1864; Ann. Phys. u. Chem., 124, 275-292, 621.

Photographische Wirkung electrischer Metallspectren.

Jahresber. d. Chemie, (1862) 33, (1863) 104, 106, 107, 113, (1864) 109, 110, 115, (1865) 90, 91, 92, (1868) 126-7, (1872) 148, (1873) 150-2, (1875) 123.

Spectrum des Blitzes.

Jahresber. d. Chemie, (1864) 109, (1868) 126, 127, (1872) 148.

Spectralanalyse mittelst des Inductionsstroms.

Jahresber. d. Chemie, (1865) 91, 92, (1873) 150, 151-2, (1864) 110.

Spectrum of lightning.

Joule (J. P.). Nature, 6, 161.

Spectra of two hundred and fourteen flashes of lightning observed at the astrophysical observatory in Herény, Hungary.

Konkoly (N. von). Observatory (1883), 267-8; Beiblätter, 7, 862 (Abs.).

Wärneverheilung im Spotzum des Kalklichtes bei Flintglas und Beinmksprimen.

Lamensky (S., Lin. Phys. u. Chem., 146, 221.

Sur la lui de Saukes.

Languairy (S.). Jour. de Prys., 2, 307; Ann. Prys. 1, Com., 1, F., 2, 694.

Observations sur quelques points d'analyse spectrale et sur la constitution. des étimosiles d'induction.

Leong de Boisbundran (T., Comques Bendus, 73, 142.

Specire de l'ammuniagne par renversament du commun induit.

Lecog de Bristiandrat. F., Comptes Lemins. 1911 1985, E.-T. Jour. Chem. Soc., 42, 1925 Lis.;

Sur un species dismique particulier aux terres rares du graupe terbique.

Lesve de Buishaudna... Comptes Benûns. 162 1866... 171-1.

Financiame des compasés de manganèse, soumis à l'affirm électrique dans le ride.

Leeng de Brüsinsuden. Compuse Bendus. 193 1990., 495-71. 129-71. 1964-7. 1997: Jour. Chem. Soc., 52 Als. :: Amer. Jour. Soi., 47 23 193-77. Als. :: Bellükser. 11. 37. 35 Als. ::

An arrangement of the electric are for the sandy, with the spectroscome, of the mediation of vapours, together with preliminary results.

Liveling G. D., and Dewis J., Proc. Royal Soc., 24, 125

Note in some phenomena attending the reversal of lines in the are produced by a Memons machine.

Linkyer J. N., Prin. Right Sign 28 495.

Ueber die Gilberscheinungen an Metalleenroden innerhalb einer Wasserstaffatmosphilire von verschiedenen Drucke.

Long O. Ann. Phys. z. Chem., z. F. 12, 146-114.

Das Steiker seine Gesetz.

Lemmel (E. ). Ann. Phys. z. Chem., z. F. 3, 244.

Die weitungedehnten uhtravisietzen Strahlen im Spectrum des einetrischen Funkens mit dem Ange wahrnehmbar.

Mascart Ann. Phys. z. Chem., 127, 141.

Spectre de la lumière des piles dans l'air.

Masses (A.). Comptes Remins. 32, 125; Ann. Chim. et Phys. .1 31, 266. On the photographic effects of metallic and other spectra obtained by means of the electric spark.

Miller (W. Allen). Proc. Royal Soc., 12, 159; Phil. Trans. (1862),

Spectre de la lumière électrique dans le vide.

Du Moncel. Comptes Rendus, 49, 40.

Spectre fluorescent de l'étincelle électrique.

Müller (J.). Ann. Chim. et Phys., (4) 13, 465.

Report on spark spectra, from the British Association Report on the Present State of our Knowledge of Spectrum Analysis.

Nature, 26, 459. (By A. Schuster.)

Ueber das Sauerstoffspectrum und über die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow. Monatsber. d. Berliner Akad. (1878), 705-9; Phil. Mag.,
(5) 7, 297-300; Ann. Phys. u. Chem., n. F. 7, 130-5; Jour. Chem. Soc., 36, 861.

Photographing spark spectra.

Parry (J.). Chem. News, 36, 140.

Experimentelle Untersuchung über das electrische Lichtspectrum in Beziehung auf die Farben der Doppelsterne.

Petzval (Jos.). Sitzungsber. d. Wiener Akad., 41, 561, 581-9.

Spectra der electrischen Lichtströmungen.

Plücker. Ann. Phys. u. Chem., **104**, 122; **105**, 67; **107**, 497, 505, 506, 518-642; **116**, 27.

Spectrum of lightning.

Proctor (H. R.). Nature, 6, 161, 220.

Spectra negativer Electroden und lange gebrauchter Geissler'schen Röhren.

Reitlinger (Edm.) und Kuhn (M.). Sitzungsber. d. Wiener Akad., **51** IP, 405, 408-16; Ann. Phys. u. Chem., **141**, 135-6.

Electric spectra.

Robinson (Dr.). Phil. Trans. (1863).

Recherches sur les raies du spectre solaire et des différentes spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft. Schimkow (A.). Ann. Phys. u. Chem., 129, 518. On the spectra of lightning.

Schuster (A.). Phil. Mag., (5) 7. 316-21; Berblötter, 2, 872 (Aba.).

Sur les spectres de l'étimeelle électrique dans les gaz companés et en partieulier dans le fluorure de silicium.

Seguin (J. M. .. Comptes Rendus, 54, 982.

Spectrum des Inductionsfunken.

Simular (R. Th.). Ann. Phys. u. Chem., 115, 262.

Beiträge zur Electrieitätsleitung der Gase.

Stenger (F.). Ann. Phys. u. Chem., (2) 25, 31-48; Jour. Chem. Soc., 48, 1029 (Abs.). (See Phil. Trans., 171, 65.)

On the long spectrum of the electric light.

Stokes (G. G.). Proc. Royal Soc.. 12, 166; Phil. Trans. (1862), 599;
Ann. Phys. u. Chem., 122, 30, 37, 472.

Effluviography.

Tomassi (D.). Bull. Soc. chim. Paris, 45, 873; Jour. Chem. Soc., 50, 259 (Abs.).

Ueber die Spectra der Blitze.

Vogel (H., Ann. Phys. u. Chem., 143, 653-4.

Chemische Intensität des magnesium und electrischen Lichtes.

Vogel 'H. W.,. Photographische Mittheilungen, 16, 187-8; Beiblätter, 4, 49 (Abs.).

Spectrum of the electric (Jablochkoff light.

Walker (E.). Nature, 18, 384; Beiblätter, 3, 505 (Abs.).

Spectra des electrischen Funkenstroms in verdünnten Gasen.

Waltenhofen (A. von). Dingler's Jour., 177, 38.

Spectrum of the electric light.

Walters (J. Hopkins). Nature, 25, 103.

The prismatic decomposition of the electric, voltaic, and electro-magnetic sparks.

Wheatstone (C.). Chem. News, 3, 198.

Das Leuchten der Gase durch electrische Entladungen:

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einflusse electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Das electrische Leuchten der Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Note au sujet d'un mémoire de M. Lagarde.

Wicdemann (E.). Ann. Chim. et Phys., (6) 7, 143; Amer. Jour. Sci., (3) 31, 218 (Abs.).

Das electrische Spectrum.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 615, 619, 621, 622, 624, 628; 107, 473.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, **85**, 280-1; Ann. Chim. et Phys., (5) **12**, 143-4; Beiblätter, **1**, 620.

Das Linienspectrum gehört dem Funken, das Bandenspectrum gehört der Lichthülle an.

Wüllner (A.). Ann. Phys. u. Chem., 147, 824-48.

# EMISSION SPECTRA.

Sur la variation des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Bendus, 102, 106-10.

Notes on photographs of the ultra-violet emission spectra of certain elements.

> Hartley (W. N.). Chem. News. 43, 289; Ber. chem. Ges., 15, 1432a, 2924b.

Das Verhältniss zwischen Emission und Abzorption ist bei allen Körpern dasselbe.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 299.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

Kirchhoff (G.). Monatsber. d. Berliner Akad., Oct. 27, 1869; Phil. Mag., (4) 19, 163.

# ENERGY IN THE SPECTRUM.

Étude expérimentale de la réflexion des rayons actiniques.

De Chardonnet. Jour. de Phys., 11, 549.

Distribution of chemical force in the spectrum.

Draper (J. W.). Amer. Jour. Sci., 105, 25, 91-8; Phil. Mag., (4) 44, 422-43; Jour. Chem. Soc., (2) 11, 282-5.

Actinometry.

Duclaux (E.). Comptes Rendus, 103, 1010-12; Jour. Chem. Soc., 52, 189 (Abs.).

Einführung des Princips der Erhaltung der Energie in die Theorie der Diffraction.

Fröhlich (J.) nn. Phys. u. Chem., n. F. 3, 876.

The Bolometer and radiant energy.

Langley (S. P.). Proc. Amer. Acad., 16, 342-58; Zeitschr. Instrumentenkunde, 4, 27-32 (Abs.).

Distribution de l'énergie dans le spectre normal.

Langley (S. P.). Comptes Rendus, 93, 140; Ann. Chim. et Phys., (5) 25, 211.

Distribution of energy in the spectrum.

Rayleigh (Lord). Nature, 27, 559.

La distribution de l'énergie dans le spectre solaire et la chlorophylle.

Timiriaseff. Comptes Rendus, 96, 875.

# ERBIUM.

Erbinerdelösungen coïncidirend mit den hellen Streifen leuchtender Erbinerde.

Bahr und Bunsen. Jour. prackt. Chemie, 97, 277; Ann. f. Chem. u. Pharm., 127, 1.

Aenderung des Absorptionsspectrums von Erbium bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

Erbium are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 29.

Sur deux nouveaux éléments dans l'erbine.

Clève (P. T.). Comptes Rendus, 89, 47 (3); Amer. Jour. Sci., (3) 18, 400-1; Beiblätter, 4, 43 (Abs.).

Spectre de l'erbine.

Clève (P. T.). Comptes Bendus, 89, 708; 91, 381.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 193-201; 289-97; Jour. Chem. Soc., (2) 11, 136.

Note on the spectra of erbia.

Crookes (W.). Chem. News, **53** (1886), 75, 154, 179; Proc. Royal Soc., **40**, 77-9, Jour. Chem. Soc., **50**, 749 (Abs.); Comptes Rendus, **102**, 506.

Absorptionsspectrum von Erbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 308.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 635; Chem. News, 11, 253;
Ann. Chim. et Phys., 135, 194.

Note on the spectra of erbia and of some other earths.

Huggins (W.). Chem. News, 22, 175.

Spectren der Erbinerde.

Jahresber. d. Chemie (1873), 150.

Phosphate de l'erbine, émission; erbine, émission; chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV; p. 100, planche XV.

Spectre d'émission de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 1080.

Spectre du nitrate de l'erbium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1167.

Examen spectral de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, **88**, 1342-44; Jour. Chem. Soc., **36**, 861 (Abs.); Amer. Jour. Sci., (3) **18**, 216-7; Beiblätter, **3**, 871 (Abs.).

Spectre de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 516; Beiblätter, 4, 43 (Abs.); Öhem. News, 40, 147.

Remarques à M. P. T. Clève "Sur deux nouveaux éléments dans l'erbine." Smith (L.). Comptes Rendus, 89, 480-1; Beiblätter, 4, 43 (Abs.).

Om spectra tillhörande yttrium, erbium, didym och lanthan.

Thalén (R.). K. Svensk. Vetenskaps. Akad. Forhandlinger, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.).

Spectrum of erbium.

Thalén (R.). Chem. News, 42, 184; Comptes Rendus, 91, 326; Jour. de Phys., (2) 4, 33.

Spektralundersökningar rörande skandium, ytterbium, erbium och thulium.

Thalén (R.). Ofversigt af Kongl. Vetensk. Acad. Förhandlingar, 38,
No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217
(Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

#### EXCHANGES.

On the Theory of Exchanges.

Stewart (Balfour). Trans. Royal Soc. Edinburgh (1858), Vol. 22. part I, 1; Rept. British Assoc. (1861), 97.

## EXPLOSIONS.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Chem. News, 49, 227-9; Nature, 29, 614-15; Beiblätter, 8, 644-5 (Abs.).

Spectral lines of the metals developed by exploding gases

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48 (1885), 317 (Abs.).

Spectroscopic studies of explosions.

Liveing (G. D.) and Dewar (J.). Rept. British Assoc. (1884), 672;
Jour. de Phys., (2) 4, 51 (Abs.).

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys. u. Chem., n. F. 3, 615.

#### FLAME AND GAS SPECTRA.

The dichroism of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 973 (Abs.).

Spectres des gaz simples.

Angström (A. J.). Comptes Rendus, 73, 869; Bull. Soc. chim. Paris, n. s. 16, 228.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 97, 71-4; Chem. News, 48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblätter, 7, 701-2 (Abs.); Amer. Jour. Sci., (3) 26, 321 (Abs.); Ber. chem. Ges., 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. analyt. Chem., 23, 49 (Abs.).

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 99, 374; Amer. Jour. Sci., (3) 28, *459; Phil. Mag., Oct., 1884.

Spectres de quelques corps composés dans les systèmes gazeux en équilibre.

Berthelot et Richard. Comptes Rendus, 68, 1546.

Experimentaluntersuchung zur Bestimmung der Brechungsexponenten verflüssigter Gase.

Bleekrode (L.). Ann. Phys. u. Chem., n. F. 8, 400

Experiments on Flame.

Burch (G. J.). Nature, 31, 272-5; Jour. Chem. Soc., 48, 466 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gazen. Cailletet. Ber. chem. Ges., 5, 482.

Spectrum of coal gas.

Capron (J. R.). Photographed Spectra, London, 1877, p. 24, 61, 62, 71, 72.

Relative intensity of the spectral lines of gases.

Capron (J. R.). Phil. Mag., (5) 9, 329-30; Jour. Chem. Soc., 38, 685 (Abs.); Beiblätter, 4, 613-14 (Abs.).

Spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6.

Action des ainmants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 59, 383; 79, 1123; 80, 1161; 81, 75; Phil. Mag., Nov., 1864.

Ueber den Einfluss des Drucks und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 77 II, 829-41; Jour. Chem. Soc., 36, 685 (Abs.); Nature, 23, 160; Beiblätter, 3, 193-4.

Viscosity of gases at high exhaustions.

Crookes (W.). Phil. Trans., 173, 387-434; Chem. News, 43, 85-9 (Abs.); Nature, 23, 421-3, 443-6 (Abs.); Beiblätter, 5, 836-46 (Abs.).

Position of the chemical rays in the spectra of sunlight and gaslight.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 619; Bull. London Photogr. Soc., 21 Jan., 1856.

Étude des radiations émises par les corps incandescents.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblätter, 5, 117 (Abs.).

. Spectre du pôle négatif de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Beiblätter, 11, 36.

Spectra zusammengesetzter Gase.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 538.

Essai d'analyse spectrale appliquée à l'examen de gaz simples et de leurs mélanges.

Dubrumfaut. Comptes Rendus, 69, 1245; Ber. chem. Ges., 2, 745.

Flame-spectra.

Fielding (G. F. M.). Chem. News, 54, 212.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun, fixed stars and nebulæ.

Franckland (E.) and Lockyer (J. N.). Proc. Royal Soc., 17, 236; 18, 79.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de protobromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., 4, 59-60.

Blue flame from common salt.

Gladstone (J. H.). Proc. Royal Soc., 19, 582.

Note on the atmospheric lines of the solar spectrum, and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Beobachtungen an Gasspektris.

Goldstein (E.). Monatsber. d. Berliner Akad. (1874), 593-610; Ann.
Phys. u. Chem., 154, 128-149; Jour. Chem. Soc., (2) 13, 527 (Abs.);
Phil. Mag., (4) 49, 333-45; Bemerkungen dazu, von A. Wüllner,
Monatsber. d. Berliner Akad. (1874), 755-61; Phil. Mag., (4) 49, 448-53.

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-72; Phil. Mag., (5) 2, 317-19.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques sur les flammes colorées; sodium, lithium, strontium, calcium, etc.

Gouy. Comptes Rendus, 85, 70.

Sur le caractères des flammes chargées de calcium, de poussières salines, de chlorure de cuivre, de l'azotate et du chlorure de calcium, du chlorure de strontium, du chlorure de baryum, de l'oxyde de cuivre, de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Sur la transparence des flammes colorées, spectres continus du potassium, du sodium, des sels de l'alumine et de magnésie, du strontium, du calcium et du baryum.

Gouy. Comptes Rendus, 86, 878.

Transparence des flammes colorées pour leurs propres radiations; la double raie du sodium, la double raie du potassium; lithium, strontium, rubidium, calcium.

Gouy. Comptes Rendus, 86, 1078.

Du pouvoir émissif des flammes colorées.

Gouy. Comptes Rendus, 88, 418.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (E.). Ann. Phys. u. Chem., n. F. 2, 477.

De la recherche des composés gazeux et de l'étude de quelques-unes de leur propriétés à l'aide du spectroscope.

Hautefeuille (P.) et Chappuis (J.). Comptes Rendus, 92, 80-2; Jour. Chem. Soc., 40, 221-222 (Abs.); Beiblätter, 5, 317 (Abs.).

Bemerkungen zu dem Aufsatze von W. Siemens: Über das Leuchten der Flamme.

Hittorf (W.). Ann. Phys. u. Chem., n. F. 19, 73-7; Jour. Chem. Soc., 44, 697 (Abs.).

Prismatische Zerlegung des Lichtes glühender oder brennender Körper.

Jahresber. d. Chemie, 1, 161; 3, 155.

Verschiedene Spectren desselben Gases.

Jahresber. d. Chemie (1868), 125.

Spectra der Flammen grünfärbender Substanzen.

Jahresber. d. Chemie, 14, 43.

Gas Spectra.

Jahresber. d. Chemie, (1864) 109, (1868) 125, (1869) 176–80, (1870) 176, (1872) 143, (1873) 148, (1875) 122.

Sur le spectre de la vapeur de l'eau.

Janssen (J.). Ann. Chim. et Phys., (4) 24, 215-7; Jour. Chem. Soc., (2) 10, 280 (Abs.).

Flamme bleue du gaz d'éclairage.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 41, planche III.

Spectra kohlenstoffhaltiger Gase.

Lielegg. Jour. prackt. Chemie, 103, 507; Phil. Mag., (4) 37, 208.

Untersuchungen über die Spectra gasförmiger Körper.

Lippich (F.). Sitzungsber. d. Wiener Akad., 82 II, 15-33; Ann. Phys. u. chem., n. F. 12, 380.

Erklärung der Verbreiterung der Spectrallinien in den Gazen.

Lippich (F.). Ann. Phys. u. Chem., 139, 465.

Origin of the spectrum of the hydrocarbon flame.

Liveing (G. D.) and Dewar (J.). Nature, 27, 257.

On the reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). No. I in Proc. Royal Soc., 27, 132-6;
No. II in do., 27, 350-4;
No. III in do., 27, 494-6;
No. IV in do., 28, 367-72;
No. VI in do., 28, 471-5;
No. VII in do., 29, 402-6;
Beiblätter, 2, 261-3 (Abs.), 490 (Abs.);
3, 502 (Abs.), 710 (Abs.);
4, 364 (Abs.).

Disappearance of some spectral lines and the variation of metallic spectra due to mixed vapours.

Liveing and Dewar. Proc. Royal Soc., 33, 428.

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing and Dewar. Proc. Royal Soc., 34, 119.

Spectral lines of metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 51.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Jour. Chem. Soc., 48, 465.

Spectroscopic Notes. Note I, on the absorption of great thicknesses of metallic and metalloidal vapours; Note II, on the evidence of variation in molecular structure; Note III, on the molecular structure of vapours in connection with their densities; Note IV, on a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 371-8.

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 29, 266-72; Beiblätter, 4, 36 (Abs.).

On the spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1876, 2, 156 (Abs.).

Sur les spectres des vapeurs, aux températures élévées; hydrogène, nitrogène, potassium, carbone, sodium, zinc, cadmium, antimoine, phosphore, soufre, arsénic, bismuth, iode, mercure, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 178.

On the indices of refraction of certain compound ethers.

Long (J. H.). Amer. Jour. Sci., (3) 21, 279-86.

Comparaison des spectres des flammes éclairantes et des flammes pâles.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 159.

Réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

Sur la comparaison des gaz et des vapeurs.

Mascart. Comptes Rendus, 86, 321-3; Jour. Chem. Soc., 34, 359 (Abs.).

Sur la réfraction des corps organiques considérées à l'état gazeux.

Mascart. Comptes Rendus, **86**, 321-3, 1182-5; Jour. Chem. Soc., **34**, 693 (Abs.); Ann. de l'École normale (2) **6**, 9-78; Beiblätter, **1**, 257-70.

Examination of coloured flames by the prism.

Melvill (T.). Edinburgh Physical and Literary Essays, 2, 12, 1752.

Experiments and observations on some cases of lines in the prismatic spectrum produced by the passage of light through coloured vapours and gases, and from certain coloured flames.

Miller (W. A.). Phil. Mag., (3) 27, 81.

Flame spectra.

Milne (G. A.). Chem. News, 54, 225.

Spectra von Flammen im Allgemeinen.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 487.

Ueber die Beziehung der chemischen Beschaffenheit zu der lichtbrechenden Kraft der Gaze.

Mohr (F.). Ber. chem. Ges., 4, 149-55; Jour. Chem. Soc., (2) 9, 188 (Abs.).

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. de l'Acad. de Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

De la flamme de quelques gaz carburés.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 305; Chem. News, 9, 135

Das Sauerstoffspectrum und die electrischen Erscheinungen verdünnter Gase in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 180.

The spectroscopic examination of the vapours evolved on heating iron, etc., at atmospheric pressure.

Parry (J.). Chem. News, **49**, 241-2; **50**, 303-4; Ber. chem. Ges., **17**, Referate, 337 (Abs.); Jour. Chem. Soc., **46**, 801 (Abs.); Beiblätter, **8**, 646 (Abs.).

Comparaison des indices de réfraction dans quelques éthers composés isomères.

Pierre (Is.) et Puchat (E.). Comptes Rendus, 76, 1566-8.

Spectrum von Fluorborgas.

Plücker (J.). Ann. Phys. u. Chem., 104, 125.

Spectra der verschiedenen Gase wenn durch dieselben bei starker Verdünnung die electrische Entladung hindurchgeht.

Plücker (J.). Ann. Phys. u. Chem., 105, 67.

- Constitution der electrischen Spectra der verschiedenen Gase und Dämpfe. Plücker (J.). Ann. Phys. u. Chem., 107, 497.
- Zusammengesetzte Gase haben wie die einfachen ihr eigenthümliches Spectrum.

Plücker (J.). Ann. Phys. u. Chem., 113, 276.

Recurrente Ströme und ihre Anwendung zur Darstellung von Gasspectren.

Plücker (J.). Ann. Phys. u. Chem., 116, 27.

On the spectra of ignited gases and vapours, with especial regard to the different spectra of the same elementary gaseous substance.

Plücker (J.) and Hittorf (S. W.). Proc. Royal Soc., 13, 153; Phil. Trans., 1865, p. 1.

De la flamme du soufre et des diverses lumières utilisables en photographie.

Riche (A.) et Bardy (C.). Comptes Rendus, 80, 238-41; Ber. chem. Ges., 8, 182-3.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Coloration of the hydrogen flame.

Santini (S.). Gazzetta, XIV, 274-6; Jour. Chem. Soc., 48, 465 (Abs.).

Veränderlichkeit der Spectra glühender Gase.

Schenck (O.). Zeitschr. analyt. Chem., 12, 386-90; Jour. Chem. Soc., (2) 12, 1122-3 (Abs.).

Notiz über das Flammenspectrum der Schiessbaumwolle.

Schöttner (F.). Carl's Repert., 14, 55-6; Beiblätter, 3, 279.

Harmonic ratios in the spectra of gases.

Schuster (A.). Nature, 20, 533; 31, 337-47; Beiblätter, 4, 37; 5, 435-8 (Abs.).

Spectrum des Bunsen'schen Gasslamme, oder Spectrum des inneren Flammenkegels.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 247.

Spectra der verschiedenen grünen Flammen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Gaseous spectra in vacuum tubes.

Smyth (C. Piazzi). Proc. Royal Soc. Edinburgh, 10, 711-12 (Abs.); Trans. Royal Soc. Edinburgh, 32, Part III, 415-60, with plates.

Observations sur la note de M. M. Stoney et Reynolds sur les spectres des gaz.

Soret (G. L.). Arch. de Genève, 42, 82-4; Phil. Mag., 42, 464-5; Ann. Chim. et Phys., (4) 26, 269.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

On the effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282-3; Jour.
Chem. Soc., (2) 11, 996 (Abs.); Ber. chem. Ges., 6, 973 (Abs.); Phil. Mag., (4) 46, 406-7.

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412-14 (Abs.).

On the cause of the interrupted spectra of gases.

Stoney (G. J.). Phil. Mag., (4) **41**, 291-6; **42**, 41-52; Ann. Chim. et Phys., (4) **26**, 265-6 (Abs.), 266-8 (Abs.). (Look under Soret, above.)

On the blue lines of the spectrum of the non-luminous gas-flame.

Swan (W.). Edinburgh Philosoph. Trans., 3, 376; 21, 353.

Prismatic spectra of the flames of carbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.

Some experiments on coloured flames.

Talbot (H. Fox). Brewster's Jour. Sci., 5, 1826.

Ueber die photographische Aufnahme von Spectren der in Geisslerrohren eingeschlossenen Gase.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 115-19; Beiblätter, 4, 125-80 (Abs.).

Spectroscopische Notizen. Die Wasserstoffflamme in der Spectralanalyse.

Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblätter, 4, 278

(Abs.); 5, 118 (Abs.).

Gasspectra in Geissler'schen Röhren; bei zunehmender Verdünnung der Gase verschwinden die minder brechbaren Streifen zuerst.

Waltenhofen (A. von). Ann. Phys. u. Chem., 126, 527-87.

On the spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 45, 81-90; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Untersuchungen über die Natur der Spectra: 1, Theorie; 2, Spectra gemischter Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 5, 500-24; Phil. Mag., (5) 7, 77-95; Amer. Jour. Sci., (3) 17, 250-1.

Das Leuchten der Gase durch electrische Entladungen; Nachtrag zu der Arbeit über die Natur der Spectra.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einfluss electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Ueber die Dissociationswärme des Wasserstoffmoleculs und das electrische Leuchten der Gasen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-802; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

Spectra der Gase unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., 137, 387-56; Phil. Mag., (4) 37, 405; 39, 865.

Ueber die Spectra einiger Gase in Geissler'schen Röhren.

Wüllner (A.). Ann. Phys. u. Chem., 144, 481-525; 147, 321-53; 149, 103-12; Ann. Chim. et Phys., (4) 26, 258-63 (Abs.); Bull. Soc. chim. Paris, n. s. 12, 445.

Ueber die Spectra der Gase.

Wüllner (A.). Verhandl. d. naturwiss. Ges. zu Aachen, Dec., 1874;
Ann. Phys. u. Chem., 154, 149-56; Jour. Chem. Soc., (2) 13, 527
(Abs.).

Reinheit der Spectren von Gasen.

Wüllner (A.). Ber. chem. Ges., 3, 100.

Spectres des Gaz simples.

Wüllner (A.). Comptes Rendus, 70, 125, 890.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, **85**, 280-1; Ann. Chim. et Phys., (5) **12**, 143-4; Beiblätter, **1**, 620 (Abs.).

Des transformations que subissent les spectres des gaz incandescents avec la pression et la température.

Wüllner (A.). Arch. de Genève, (2) 40, 305-10.

Bemerkungen zu Herrn Goldstein's Beobachtungen an Gasspectris.

Wüllner (A.). Monatsber. d. Berliner Akad., 1874, 755-61; Phil. Mag., (4) 49, 448-53.

Ueber den Einfluss der Dichtigkeit und Temperatur aus die Spectra glühender Gase.

Zöllner (F.). Ber. chem. d. k. Sächs. Ges. d. Wiss., 22, 232-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

## FLUORESCENCE.

Observations relatives à une note de M. Lamansky ayant pour titre "Sur la loi de Stokes."

Becquerel (E.). Comptes Rendus, 88, 1287-9; Beiblätter, 3, 619; Jour. Chem. Soc., 36, 862 (Abs.). (Look below, under Lamansky.)

Sur la phosphorescence du sulfure de calcium.

Becquerel (E.). Comptes Rendus, 103, 551-3; Chem. News, 55, 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (E.). Comptes Rendus, 103, 1098-1101.

Zur Geschichte der Fluorescenz.

Berthold (G.). Ann. Phys. u. Chem., 158, 628.

Ueber die Fluorescenz der lebenden Netzhaut.

Bezold (M. von) und Engelhardt (G.). Sitzungsber. d. Münchener Akad., 7, 226-33; Phil. Mag., (5) 4, 397-400.

On the crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42, 25-30; Chem. News, 55, 25;Nature, 35, 310; Amer. Jour. Sci., (3) 33, 804 (Abs.).

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Les vibrations de la matière et les ondes de l'éther dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Action des fluorures sur l'alumine.

Frémy et Varneuil. Comptes Rendus, 103 (1887), 788-40.

De la fluorescence.

Gripon (E.). Jour. de Phys., 2, 199, 246.

Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., 146, 65-89, 232-57, 375-405, 508-38;
Jour. Chem. Soc., (2) 10, 1058-61 (Abs.);
Phil. Mag., (4) 45, 57-64 (Abs.);
Chem. News, 26, 173 (Abs.).

Fernere Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., Jubelband, 308-18. 16 T

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Fluorescenz nach Stokes's Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 18, 45-56; Jour. Chem. Soc., 44, 537-8 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 869-400.

Note on the behavior of certain fluorescent bodies in castor oil. Horner (C.). Phil. Mag., (4) 48, 165-6.

Herstellung des Spectrums fluorescirender Substanzen.

Jahresber. d. Chemie (1867), 105.

Bemerkungen zu den Arbeiten der Herrn Lommel, Glazebrook und Matthieu.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 15, 613.

Ueber Fluorescenz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 11, 908-12; Jour. Chem. Soc., 40, 214 (Abs.).

Ueber das Stokes'sche Gesetz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 8, 624-8; Comptes Rendus, 88, 1192-4, 1851; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 619.

(Look above, under Becquerel, and below, under Lubarsch.)

Sur la fluorescence des terres rares.

Lecoq de Boisbaudran. Comptes Rendus, 101 (1885), 552, 588; Jour. Chem. Soc., 48, 1174 (Abs.).

Les fluorescences Z  $\alpha$  et Z  $\beta$  appartiennent-elles à des terres différentes? Lecoq de Boisbaudran. Comptes Rendus, **102**, 899-902; Jour. Chem. Soc., **50**, 666 (Abs.).

Identité d'origine de la fluorescence  $\mathbf{Z}$   $\beta$  par renversement et des bandes obtenus dans le vide par M. Crookes.

Lecoq de Boisbaudran. Comptes Rendus, 103, 113-17; Jour. Chem. Soc., 50, 958.

Fluorescence des composés du manganèse soumis à l'effluve électrique dans le vide.

Lecoq de Boisbaudran. Comptes Rendus, 103, 468-71, 629-31, 1064-7, 1107; Jour. Chem. Soc., 52, 189, 191; Amer. Jour. Sci., (3) 33, 149-51.

i

Fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 104, 830-4; Jour. Chem. Soc., 52, 409 (Abs.).

Ueber die Fluorescenz in der Anthracenreihe.

Liebermann (C.). Ber. chem. Ges., 13, 913-16.

Ueber Fluorescenz.

Lommel (E.). Sitzungsber. d. phys. med. Ges. Erlangen, 1871, 39-60;
Ann. Phys. u. Chem., 143, 26-51;
Ann. Chim. et Phys., (4) 26, 283 (Abs.).

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., 159, 514-36; Jour. Chem. Soc., 1877, 1, 676; Amer. Jour. Sci., (3) 13, 380 (Abs.).

Intensität des Fluorescenzlichtes.

Lommel (E.). Ann. Phys. u. Chem., 160, 75-96.

Fluorescenz.

Lommel (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2282 (Abs.); Ann. Phys. u. Chem., n. F. 3, 113-25; Jour. Chem. Soc., 34, 358 (Abs.).

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-83.

Zwei neue fluorescirende Substanzen, Anthracenblau und bisulfobichloranthracenige Säure.

Lommel (E.). Ann. Phys. u. Chem., n. F. 6, 115-118.

Ueber das Stokes'sche Gesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108.

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 10, 449-72, 681-54.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 856.

Die Fluorescenz des Kalkspathes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422; Jour. Chem. Soc., 46, 649 (Abs.).

Beobachtungen über Fluorescenz, Didymglas und Aescorcin.

Lommel (E.). Ann. Phys. u. Chem., (2) 24, 288-92.

Zur Theorie der Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 25, 643-55; Jour. de Phys., (2) 5, 516 (Abs.).

Ueber Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., 153, 420-40; n. F. 6, 248-67; Jour. Chem. Soc., (2) 13, 528 (Abs.).

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665-71.

Neue Experimentaluntersuchungen über Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 11, 46-69; Jour. Chem. Soc., 40, 70 (Abs.).

Bemerkungen zu den Arbeiten des Hernn Lamansky über Fluorescenz. Lubarsch (O.). Ann. Phys. u. Chem., n. F. 14, 575-80.

Observations on the colour of fluorescent solutions.

Morton (H.). Chem. News, 24, 77; Jour. Chem. Soc., (2) 9, 992-3
 (Abs.); (2) 10, 27; Amer. Jour. Sci., (8) 2, 198, 355.

Fluorescent relations of certain solid hydrocarbons found in coal-tar and petroleum distillates.

Morton (H.). Phil. Mag., (4) 44, 845-9; Ann. Phys. u. Chem., 148, 292-7; Chem. News, 26, 199-201, 272-4; Jour. Chem. Soc., (2) 11, 285 (Abs.).

Fluorescenzverhältnisse gewisser Kohlenwasserstoffverbindungen in den Steinkohlen-und Petroleum-Destillaten.

Morton (H.). Ann. Phys. u. Chem., 155, 551-79.

Fluorescence and the violet end of a projected spectrum.

Morton (H.). Chem. News, 27, 83.

Investigation of the fluorescent and absorption spectra of the uranium salts.

Morton (H.) and Bolton (H. C.). Chem. News, 28, 47-50, 113-16, 164-7, 233-4, 244-6, 257-9, 268-70; Jour. Chem. Soc., (2) 12, 12 (Abs.).

Fluorescent relations of the basic salts of uranic oxide.

Morton (H.). Chem. News, 29, 17-18; Jour. Chem. Soc., (2) 12, 642 (Abs.).

Fluorescent relations of chrysene and pyrene.

Morton (H.). Chem. News, 31, 35-6, 45-7.

On the connection between fluorescence and absorption.

Sorby (H. C.). Monthly Microscop. Jour., 13, 161-4.

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 620 (Abs.).

Zur Kenntniss der Fluorescenzerscheinungen.

Stenger (Fr.). Ann. Phys. u. Chem., (2) 28, 201-80; Berichtigung dazu, do., 368.

On the change of refrangibility of light.

Stokes (G. G.). Phil. Trans. (1852), 463-562. (His discovery of what has since been known as fluorescence.)

Sur la fluorescence de la matière colorante des champignons.

Weiss (A.). Acad. de Vienne, Wiener Anzeiger (1885), 111; Jour. de Phys., (2) 5, 240; Chem. Centralblatt (1886), 670-1; Jour. Chem. Soc., 52, 314.

Fluorescence des Naphthalinrothes.

Wesendonck (K.). Ann. Phys., (2) 26, 521-7; Jour. Chem. Soc., 50, 585; Jour. de Phys., (2) 5, 517.

Berichtigung zu einer Notiz des Herrn Lommel betreffend die Theorie der Fluorescenz.

Wüllner (A.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 474-8.

#### FLUORINE.

Silicic fluoride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Das Aufleuchten, die Phosphorescenz und die Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Spectrum des Fluors.

Jahresber. d. Chemie, 15 (1862), 88.

Spectrum des Phosphorescenzlichtes von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Cambridge Philosoph. Soc., 3, 96-8; Beiblätter, 4, 611 (Abs.).

Spectrum von Fluorborgas.

Plücker. Ann. Phys. u. Chem., 104, 125.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (8) 10, 803-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 998.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-87; Jour. Chem. Soc., 46, 649 (Abs.).

#### GADOLINITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 884.

Remarques sur la gadolinite.

Delafontaine. Comptes Rendus, 90, 221.

Gadolinium, le Ya de Marignac.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 902; Jour. Chem. Soc., 50, 667 (Abs.).

Sur les terres de la gadolinite.

Marignac (C.). Ann. Chim. et Phys., (5) 14, 247-258; Jour. Chem. Soc., 36, 118 (Abs.).

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (8)17, 62-8 (Abs.); Jour. Chem. Soc., 36, 118-19 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 189-48.

Recherches sur l'absorption des rayons ultra-violets par diverses substances. II, Sur les spectres d'absorption des terres de la gadolinite.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 3, 196 (Abs.); 2, 410-11; Jour. Chem. Soc., 2, 410 (Abs.).

Ueber die Erden des Gadolinits von Ytterby.

Welsbach (C. Auer von). Sitzungsber. d. Wiener Akad., 88 II, 882-44, 1237-51; Zeitschr. analyt. Chem., 23, 520 (Abs.); Chem. News 51, 25 (Abs.).

### GALLIUM.

Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénnées).

Lecoq de Boisbaudran (F.). Comptes Rendus, 81, 492-5; 82, 168, 1086, 1098; Bull. Soc. chim. Paris, n. s. 24, 870; Jour. Chem. Soc., 1876, 1, 190 (Abs.); Amer. Jour. Sci., (8) 11, 820 (Abs.); Ann. Chim. et Phys., (5) 10, 117; Ann. Phys. u. Chem., 159, 650; Chem. News, 32, 159, 294.

Remarques à propos de la découverte du gallium. Mendelejef (D.). Comptes Rendus, 81, 969.

#### GERMANIUM.

Ueber das Spectrum des Germaniums.

Kobb (G.). Ann. Phys. u. Chem., (2) 29 (1886), 670-2; Jour. Chem. Soc., 52, 818 (Abs.); Amer. Jour. Sci., (3) 33, 151 (Abs.).

Spectre du germanium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1291-5; Jour. Chem. Soc., 50, 768 (Abs.).

#### GLASS.

Prüfung des gelben Glases für Dunkelzimmer der Photographen.

Foster (Le Neve). Dingler's Journal, 207, 427; Jour. Chem. Soc., (2) 11, 948 (Abs.).

Phasenveränderung des Lichtes bei Reflexion an Glas.

Glan (P.). Ann. Phys. u. Chem., 155, 14.

On the influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (3) 15, 269-75; Beiblätter, 2, 388 (Abs.).

Refractive indices of glass.

Hopkinson (J.). Proc. Royal Soc., 26, 290-7; Beiblätter, 1, 680 (Abs.).

Vertheilung der Wärme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 207, 209.

The yellow glass of commerce lets through portions of nearly the whole spectrum.

Lea (M. Carey). Amer. Jour. Sci., (8) 33, 868.

On the refractive and dispersive powers of various samples of glass.

Lohse (J. G.). Monthly Notices Astronom. Soc., 40, 563-4; Beiblätter, 4, 891 (Abs.).

Spectra produced in glass by scratching.

Love (E. J. J.). Nature, 32, 270.

Spectrale Untersuchung eines longitudinaltönenden Glasstabes.

Mach (E.). Ann. Phys. u. Chem., 146, 316-17.

Ueber die Dispersionsverhältnisse optischer Gläser.

Merz (S.). Zeitschr. f. Instrumentenkunde, 2, 176-80; Beiblätter, 6, 673 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. pruckt. Chemie, 10, 868-84; Jour. Chem. Soc., (8) 13, 412 (Abs.).

Methoden zur Bestimmung der Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 875-86.

## GOLD.

Gold arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 80.

L'or n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 882.

Spectrum des Goldchlorids.

Jahresber. d. Chemie (1878), 152.

Chlorure d'or en solution, étincelle; chlorure d'or dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, 176, planche XXVI.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Bull. Soc. chim. Paris, n. s. 21, 125.

Sur quelques spectres métalliques, chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour. Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.).

### HEAT SPECTRA.

Measurement of the so-called thermospectrum.

Abney (W. de W.). Chem. News, 40, 21.

Sur un moyen d'isoler les radiations calorifiques des radiations lumineuses et chimiques.

Assche (F. von). Comptes Rendus, 97, 888.

Spectres calorifiques.

Aymonnet. Comptes Rendus, 82, 1153.

Pouvoirs absorbants des corps pour la chaleur.

Aymonnet. Comptes Rendus, 83, 971.

Nouvelle méthode pour étudier les spectres calorifiques.

Aymonnet. Comptes Rendus, 83, 1102.

Ein einfacher Versuch zur Versinnlichung des Zusammenhanges zwischen der Temperatur eines glühenden Drahtes und der Zusammensetzung des von ihm ausgehenden Lichtes.

Bezold (W. von). Ann. Phys. u. Chem., n. F. 21, 175-8.

Verschiebung der Spectrallinien unter Wirkung der Temperatur des Prismas.

Blaserna (P.). Ann. Phys. u. Chem., 143, 655.

- Einfluss der Temperatur auf die Empfindlichkeit der Spectralreaction. Cappel (E.). Ann. Phys. u. Chem., 139, 628.
- Einfluss des Druckes und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician. Sitzungsber. d. Wiener Akad., 77 II, 889; 78 II, 867.

Distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Royal Soc., 3, 106-12; Phil. Mag., (5) 8, 208-9; Beiblätter, 4, 44 (Abs.).

Étude des radiations émises par les corps incandescents. Mesure optique des hautes températures.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblätter, 5, 117-18 (Abs.).

Mesure spectrométrique des hautes températures.

Crova (A.). Comptes Rendus, 87, 979; 90, 252; Jour. de Phys., 8, 196-8.

Recherches sur les spectres calorifiques obscurs.

Desains (P.). Comptes Rendus, 67, 296-7, 1097; 70, 986; 84, 285; 88, 1047; 89, 189; 94, 1144; 95, 438; Jour. Chem. Soc., 36, 864 (Abs.); Beiblätter, 3, 869 (Abs.).

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desains (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Measurement of high temperatures.

Dewar (J.). Chem. News, 28, 174.

Distribution of heat in the spectrum.

Draper (J. W.). Amer. Jour. Sci., (3) 4, 161-75; Phil. Mag., (4) 44, 104-17; Jour. Chem. Soc., (2) 10, 968 (Abs.).

Absorption of light at different temperatures.

Feussner. Phil. Mag., (4) 29, 471; Monatsber. d. Berliner Akad., März, 1865.

De l'influence de la température sur les caractères des raies spectrales.

Fiévez (C.). Bull. de l'Acad. de Belgique, (3) 7, 348-55; Beiblätter, 8, 645 (Abs.); Les Mondes, (3) 8, 481-3; Chem. News, 50, 128 (Abs.).

Influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (3) 15, 269-75; Beiblätter, 2, 338 (Abs.).

Distribution of heat in the spectra of various sources of radiation.

Jacques (W. W.). Dissertations of the Johns Hopkins University, 1879; Proc. Amer. Acad., 14, 142-61; Beiblätter, 3, 865 (Abs.).

Einfluss der Temperatur der Flamme auf das Spectrum.

Jahresber. d. Chemie, **15** (1862), 29; **21** (1868), 80; **23** (1870), 148, 175; **26** (1878), 54.

Durchgang der strahlenden Wärme durch polittes und berüsstes Steinsalz; Diffusion der Wärmestrahlen; Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 177.

Einfluss der Temperatur auf spectroscopische Beobachtungen.

Krüss (G.). Ber. chem. Ges., 17, 2782b; Jour. Chem. Soc., 48, 209 (Abs.).

Geschichtliches über das Wärmespectrum der Sonne; Vertheilung der Warme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200-30.

- Abhängigkeit des Brechungsquotienten der Luft von der Temperatur. Lang (V. von). Ann. Phys. u. Chem., 153, 450.
- Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Alleghany Observatory, Alleghany, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1-12; 32, 83-106;
Phil. Mag., (5) 21, 394-409: 22, 149-178; Jour. de Phys., (2) 5, 377-80; Ann. Chim. et Phys., (6) 9, 438-506; Beiblätter, 11, 245.

Ueber die spectrale Vertheilung der strahlenden Wärme.

Lecher (E.). Wiener Anzeigen (1881), 198-4.

Spectra of vapours at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Nothwendigkeit bei spectroscopische Messungen die Temperatur zu berücksichtigen.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

Om Värmefördelningen i Normalspektrum (Ueber die Wärmevertheilung im Normalspectrum).

Lundquist (G.). Oefversigt af K. Vetensk. Acad. Hand., 1874, 31, X, 19-27; Ann. Phys. u. Chem., 155, 146-55.

Maximum de température.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 155.

Sur l'identité des diverses radiations lumineuses, calorifiques et chimiques.

Melloni. Comptes Rendus, 15, 454.

Température des différentes parties du spectre solaire.

Melloni. Comptes Rendus, 18, 39.

Recherches sur la réflexion métallique des rayons calorifiques obscurs et polarisés.

Mouton. Comptes Rendus, 84, 650.

Spectre calorifique normal du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

Wärmevertheilung im Spectrum eines Glas-und Steinsalzprismas.

Müller (J.). Ann. Phys. u. Chem., 105, 347.

Wärmevertheilung im Diffractionsspectrum.

Müller (J.). Ann. Phys. u. Chem., 105, 355.

- Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Müller (J.). Ann. Phys. u. Chem., 115, 337.
- Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung duzu, 116, 644.

Effect of increased temperature upon the nature of the light emitted by the vapour of certain metals or metallic compounds.

Roscoe and Clifton. Chem. News, 5, 233.

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (8) 6, 141 (Abs.).

Stickstoff gibt je nach der Temperatur drei Spectra.

Schimkow (A.). Ann. Phys. u. Chem., 129, 518.

- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., n. F. 23, 312.
- Einfluss der Temperatur auf das optische Drehvermögen des Quartzes und des chlorsauren Natrons.

Sohnke (L.). Ann. Phys. u. Chem., n. F. 3; 516.

Rapport sur un travail de M. Fiévez concernant l'influence de la température sur les caractères des raies spectrales.

Stas. Bull. de l'Acad. de Belgique, (3) 7, 290-4.

Ueber den Einfluss der Wärme auf die Brechung des Lichtes in festen Körpern.

Stefan (J.). Sitzungsber. d. Wiener Akad., 63 II, 223-45.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zöllner (F.). Ber. d. k. Sächs. Ges. d. Wiss., 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

#### HELIUM.

Sur la raie dite de l'hélium.

Spée (E.). Bull. de l'Acad. de Belgique, (8) 49, 879-96; Beiblätter, 4, 614 (Abs.).

#### SPECTRA AT HIGH ALTITUDES.

Notes on some recent astronomical experiments at high altitudes on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220 (Abs.).

Ascension scientifique à grande hauteur, exécutée le 22 mars 1874.

Crocé-Spinelli (J.) et Sivel. Comptes Renduş, **73**, 946-50; Amer Jour. Sci., (3) **8**, 36 (Abs.). (Look below under Janssen and Pecchi.)

- Note sur des observations spectroscopiques, faites dans l'ascension du 24 Spet. 1874, pour étudier les variations des couleurs du spectre.

  Fonvielle (W. de). Comptes Rendus, 89, 816-17.
- Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne. Heusser (J. C.). Ann. Phys. u. Chem., **90**, 319.
- Remarques sur le spectre d'eau à l'occasion du voyage aérostatique de M. M. Crocé-Spinelli et Sivel.

Janssen (J.). Comptes Rendus, 78, 995-8.

Sunlight and skylight at high altitudes.

Langley (S. P.). Nature, 26, 586-9; Amer. Jour. Sci., (3) 24, 393-8; Beiblätter, 7, 28 (Abs.); Jour. de Phys., (2) 3, 47 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080-81.

# HOLMIUM.

Spectre de holmium.

Clève (P. T.). Comptes Rendus, 89, 478.

Remarques sur le holmium ou philippine.

Delafontaine. Comptes Rendus, 90, 221.

Holmium, ou l'x de M. Soret.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1003-4; Jour. Chem. Soc., 50, 667 (Abs.).

# • HOMOLOGOUS SPECTRA.

# On homologous spectra.

Hartley (W. N.). Jour. Chem. Soc., 43, 390-400; Nature, 27, 522
(Abs.); Chem. News, 47, 138 (Abs.); Amer. Jour. Sci., (3) 26, 401
(Abs.); Ber. chem. Ges., 16, 2659 (Abs.); Beiblätter, 8, 217 (Abs.).

#### HYDROGEN.

Spectrum von Wasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

Wasserstoff hat nur ein Spectrum; die vielfachen Spectren rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 302, 804.

Spectres des gaz simples; l'hydrogène, etc.

Angström (A. J.). Comptes Rendus, 73, 869.

Notiz über die Spectrallinien des Wasserstoffs.

Balmer (J. J.). Ann. Phys. u. Chem., (2) 25, 80-7; Jour. Chem. Soc., 48, 1025 (Abs.); Jour. de Phys., (2) 5, 515 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chemie, 105, 345.

Hydrogen tube spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 61, 62, 68.

Sur le spectre ultra-violet de l'hydrogène.

Cornu (J.). Jour. de Phys., (2) 5, 341-54.

Continuous spectra of hydrogen observed by combustion of hydrogen in oxygen and chlorine.

Dibbits. Ann. Phys. u. Chem., 122, 497.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil.
Mag., (5) 9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys.,
(5) 20, 179-85; Jour. Chem. Soc., 40, 69 (Abs.).

Sur l'élargissement des raies de l'hydrogène.

Fiévez (C.). Comptes Rendus, 92, 521-2; Beiblätter, 5, 281 (Abs.); Jour. Chem. Soc., 40, 955 (Abs.).

Combustion of hydrogen and carbonic oxide under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

17 т

The refraction equivalents of carbon, hydrogen, nitrogen, and oxygen in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

Untersuchungen über das zweite Spectrum des Wasserstoffes.

Hasselberg (B.). Mem. Acad. imp. St. Pétersbourg, 30, No. 7, 24;
31, No. 14, 30; Beiblätter, 8, 381-4 (Abs.); Mem. Spettr. ital., 13, 97 (Abs.); Phil. Mag., (5) 17, 329-52; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 241 (Abs.).

Bemerkungen zu Hrn. Wüllner's Aufsatz; "Ueber die Spectra des Wasserstoffs und des Acetylens."

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-9.

Zusatz zu meinen Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). Mélanges phys. et chim. tirés du Bull. de l'Acad. de St. Pétersbourg, 12, 203-14; Beiblätter, 9, 519 (Abs.).

Die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks. Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-5.

On the spectrum of the flame of hydrogen.

Huggins (W.). Proc. Royal Soc., **80**, 576; Amer. Jour. Sci., (3) **20**, 121-3; Beiblätter, **4**, 658 (Abs.).

L'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Huggins (W.). Bull. de l'Acad. de Belgique, (2) 49, 266-7; Beiblätter, 4, 658 (Abs.).

Spectrum des Wasserstoffs.

Jahresber. d. Chemie, 16 (1868), 111.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber. d. Chemie, 25 (1872), 142.

Absorptionsspectra von Kohlenwasserstoffen.

Jahresber. d. Chemie, 28 (1875), 126.

Absorptionsspectrum des Wasserstoffs.

Jahresber. d. Chemie, 25 (1872), 141, 143-6.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, avec 1 planche; Jour. de Phys., (2) 5, 186 (Abs.); note par Wiedemann (E.), Ann. Chim. et Phys., (6) 7, 148-4. Spectre de l'hydrogène phosphoré.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 187, planche XXVII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 1, 510 (Abs.).

Spectra of compounds of carbon with hydrogen.

Liveing (G. D.) and Dewar (J.). Nature, 22, 620.

Note on the reversal of hydrogen lines, and on the outburst of hydrogen lines when water is dropped into the arc.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 74-6; Chem.
News, 47, 122; Nature, 28, 21 (Abs.); Beiblätter, 7, 371 (Abs.);
Jour. de Phys., (2) 4, 51.

Note on the spectrum of hydrogen.

Lockyer (J. N.). Proc. Royal Soc., 30, 81-2; Beiblätter, 4, 368 (Abs.).

Sur les spectres des vapeurs aux températures élévées; hydrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98. (Original in French.)

De l'élargissement des raies spectrales de l'hydrogène.

Monckhoven (D. von). Comptes Rendus, 95, 878.

Spectrum von Wasserstoff in der Geissler'schen Röhre.

Plücker. Ann. Phys. u. Chem., 104, 122; 105, 76.

Spectrum von Wasserstoff.

Plücker. Ann. Phys. u. Chem., 105, 81.

Spectra am negativen Pol in Stickstoff-und Wasserstoff-röhren; Modification beider Röhren nach langer Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135-6.

Coloration of the hydrogen flame.

Santini (S.). Gazzetta chim. ital., 14, 142-6; Jour. Chem. Soc., 48, 209 (Abs.); Beiblätter, 9, 32 (Abs.).

On the spectrum of hydrogen at low pressure.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 32, 68-4; Phil. Mag., (4) 43, 155-7; Chem. News, 25, 111; Ann. Chim, et Phys., (4) 26, 264 (Abs.).

Remarques sur la relation entre les protubérances et les taches solaires; intérêt qu'auraient les expériences sur la lumière spectrale de l'hydrogène brûlant sous une très forte pression.

Secchi (A.). Comptes Rendus, 68, 287-8.

Hydrogène et la raie D, dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, 73, 1300.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

Swan. Phil. Trans. Edinburgh, 21, 411; Ann. Phys. u. Chem., 100, 306.

Spectres de l'hydrogène, etc., sur la surface du Soleil. Vicaire (E.). Comptes Rendus, 76, 1540.

Spectrum von Wasserstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Ueber die Spectra des Wasserstoffs.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

Die Wasserstoffflamme in der Spectralanalyse.

Vogel (H. W.). Ber. chem. Ges., 12, 2313; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Ueber die neuen Wasserstofflinien.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 38, 597-8 (Abs.); Beiblätter, 4, 274 (Abs.).

Die Photographie des Wasserstoffspectrums.

Vogel (H. W.). Photographische Mittheilungen, 16, 276-8.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

Ueber die Dissociationswärme des Wasserstoffmoleculs.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Electrische Spectra in Wasserstoff.

Willigen (S. M. van der). Ann. Phys. u. Chem., 106, 622.

Drei Spectra bei Wasserstoff.

Wüllner (A.). Ann. Phys. u. Chem., 135, 499.

Spectra der Gase unter hohem Druck; Wasserstoff gibt dabei ein continuirliches Spectrum; vier Spectra beim Wasserstoff.

Wüllner (A.). Ann. Phys. u. Chem., 137, 337-47.

Spectra des Wasserstoffs.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 855. (Look above, under Hasselberg.)

## INDIGO (THE).

The indigo color in the spectrum.

Rood (O. N.). Amer. Jour. Sci., (3) 19, 135

### INDIUM.

Indium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30, 45.

Spectra of indium.

Clayden (A. W.) and Heycock (C. T.). Phil. Mag., (5) 2, 387-9;
Amer. Jour. Sci., (3) 13, 57 (Abs.); Beiblätter, 1, 90-2.

Sels d'indium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 142, planche XXI.

Vorläufige Notiz über ein neues Metall (Indium).

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 89, 441.

Ueber das Indium.

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 90, 172; Phil. Mag., (4) 26, 488.

Spectrum des Indiums.

Schrötter. Jour. prackt. Chemie, 95, 446.

Spectrum des Indiums.

Winkler. Jour. prackt. Chemie, 94, 1.

Zur spectralanalytische Ermittelung des Indiums.

Wleugel (S.). Correspondenzblatt d. Vereins analytischer Chemiker, 3, 39; Beiblätter, 5, 281 (Abs.); Zeitschr. analyt. Chemie, 20, 115 (Abs.).

#### INTERFERENCE.

Beobachtungen dunkler Interferenzstreifen im Spectrum des weissen Lichtes.

Abt (A.). Math. naturwiss. Ber. aus Ungarn, 1, 352-4.

Interferenzstreifen im Spectrum.

Arons (L.). Ann. Phys. u. Chem., (2) 24, 669-71.

Sur les phénomènes d'interférence produits par les réseaux parallèles. Crova (A.). Comptes Rendus, 72, 855-8; 74, 932-36,

Ueber Interferenzstreifen welche durch zwei getrübte Flächen erzeugt werden.

Exner (K.). Sitzungsber. d. Wiener Akad., 72 II, 675.

Sur les conditions d'achromatisme dans les phénomènes d'interférence. Hurion (A.). Comptes Rendus, 94, 1845; 95, 75.

Projection der Interferenz der Flüssigkeitswellen.

Lommel (L.). Ann. Phys. u. Chem., (2) 26, 156.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1, 17; 3, 310.

Bedeutung von Newton's Construction der Farbenordnungen dünner Blättchen für die Spectraluntersuchung der Interferenzfarben.
Rollett (Alex.). Sitzungsber. d. Wiener Akad., 75 III, 1%.

Graphische Darstellung der Spectren der Interferenzfarben för einen Gypskeil.

Rollett (Alex.). Sitzungsber. d. Wiener Akad., 77 III, 177.

Ueber die an bestaubten und unreinen Spiegeln sichtbare Interferenzerscheinung.

Sekulic. Ann. Phys. u. Chem., 154, 308.

Prismatisches und Beugungsspectrum, Interferenzerscheinungen in demselben.

> Stefan (J.). Sitzungsber. d. Wiener Akad., 50 II, 127, 138-42; Ann. Phys. u. Chem., 123, 509.

Interferenzstreifen im prismatischen und im Beugungsspectrum. Weinberg (M.). Carl's Repertorium, 18, 600-608.

#### INVERSION.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332.

Sur les raies spontanément renversables.

Cornu (A.). Comptes Rendus, 100, 1181-1188; Jour. Chem. Soc., 48, 853 (Abs.), 1885.

Sur le renversement des raies du spectre.

Duhem. Jour. de Phys., (2), 4, 221-4.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie (1865), 90.

Umkehrung der Spectra.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 295; 110, 187; Jour. prackt. Chemie, 80, 480-3.

Wandlung der Spectren.

Lepel (F. von). Ber. chem. Ges., 11, 1146.

Reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Nature, 24, 206; 26, 466.

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblätter, 3, 608 (Abs.).

Wandlung der Spectren.

Moser (J.). Ber. chem. Ges., 11, 1416.

Umkehrung der Spectra.

Tyndall. Jour. prackt. Chemie, 85, 261.

## IODINE.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney and Festing. Proc. Royal Soc., 34, 480.

The dichroïsm of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 998 (Abs.).

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 80 (Abs.).

Iodine vapour; spark in iodine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Spectre de l'iode dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Absorption spectra of iodine.

Conroy (Sir John). Proc. Royal Soc., 25, 46.

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660.

Spectre d'absorption des vapeurs de protobromure d'iode, etc.

Gernez (D.). Comptes Rendus, 74, 1190-92; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 478-5; Amer. Jour. Sci., (8) 4, 59-60.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219.

Iodure.

Gouy. Comptes Rendus, 85, 70.

Spectrum des Iods.

Jahresber. d. Chemie, 16, 109.

Absorptionsspectrum des Ioddampfer

Jahresber. d. Chemie, 23, 174.

Absorptionsspectrum des einfachen Chlorjods.

Jahresber. d. Chemie, 25, 139.

Absorptionsspectrum des Bromjods.

Jahresber. d. Chemie, 25, 140.

Absorptionsspectrum des Iods.

Jahresber. d. Chemie, 25, 141.

On the action of the less refrangible rays of light on silver iodide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc. 1876, 1, 28 (Abs.).

Iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 68, 65, planche VIII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 510 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Sur les spectres des vapeurs aux températures elévees; iode.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 856.

Verbindungsspectren zur Entdeckung von Iod.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor, Brown und Iod'in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Lo spettro di assorbimento del vapore di jodio.

Morghen (A.). Mem. Spettr. ital., 13, 127-31; Beiblätter, 8, 822 (Abs.); Atti R. Accad. Lincei, Transunti, (3) 8, 327-30.

Absorption-spectra of bromine and of iodine-monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Sur la lumière émise par la vapeur d'iode.

Salet (G.). Comptes Rendus, 74, 1249.

Le spectre primaire de l'iode.

Salet (G.). Comptes Rendus, 75, 76; Bull. Soc. chim. Paris, n. s. 18, 216.

Absorptionsspectrum des Ioddampfes.

Thalén (R.). Ann. Phys. u. Chem., 139, 508.

Ueber die Brechung und Dispersion des Lichtes in Iod-Silber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

Uebereinstimmung des Absorptionsspectrums und des ersten Iodspectrums mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159, 161.

# IRIDIUM.

Iridium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 80.

## IRON.

On the estimation of small quantities of phosphorus in iron and steel by spectrum analysis.

Alleyne (Sir J. G. N.). Jour. Iron and Steel Inst. (1875), 62-72.

Iron spark spectrum, and iron arc spectrum; iron meteoric spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 31-3.

Le fer n'à donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre du chlorure de fer.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 38-41; Jour. Chem. Soc., 1876, 1, 454 (Abs.).

Distribution of heat in the various scources of radiation; black oxide of iron, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 161.

Spectrum der Bessemerflamme.

Jahresber. d. Chemie, (1867) 105, (1873) 150.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Spectrum der Bessemerflamme.

Lielegg (A.). Sitzungsber. d. Wiener Akad., 55 II, 150, 153-81; 56 II. 3, 24-80; Jour. prackt. Chemie, 100, 383; Phil. Mag., (4) 34, 302.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 848.

On the examination of the Bessemer flame with colored glasses and with the spectroscope.

Parker (J. Spear). Chem. News, 23, 25.

The spectroscopic examination of the vapours evolved on heating iron at atmospheric pressure.

Parry (J.). Chem. Soc., 49, 241-2; 50, 803; Ber. chem. Ges., 17, Referate, 887 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 646 (Abs.).

The spectroscope applied to the Bessemer Process.

Roscoe (H. E.). Chem. News, 22, 44; 23, 174; Phil. Mag., (4) 25, 318.

Employment of spectrum analysis in the Bessemer Process.

Roscoe (H. E.). Jour. Iron and Steel Inst., 1871, 2, 88-62; Ber. chem. Ges., 4, 419-21 (Abs.).

Spectre du fer dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

Examination of the Bessemer Flame with colored glasses and with the spectroscope.

Silliman (J. M.). Chem. News, 22, 213; 23, 5.

Ueber das Eisenspectrum, erhalten mit dem Flammenbogen.

Thalén (Rob.). Nova Acta. Roy. Soc. Upsala, (3) 1884; Beiblätter, 9 (1885), 520 (Abs.).

Spectre du fer sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber die Absorptionsspectren einiger Salze der Eisengruppe.

Vogel (H. W.). Ber. chem. Ges., 8, 1533-40.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373; Jour. Chem. Soc., 1877, 2, 269 (Abs.).

Ueber die Erkennung des Kobalts, neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 34, 437; 45, 81; Chem. News, 23, 49; Jour. prackt. Chemie, 104, 420.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. M.). Nature, 8, 46.

Methods for the determination of metallic iron by spectral analysis.

Wolff. Chem. News, 39, 124.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

## JARGONIUM.

Jargonium, a new element accompanying zirconium.

Sorby (H. C.). Chem. News, 19, 121; Proc. Royal Soc., 17, 511.

# LANTHANUM.

Sur le poids atomique du lanthane.

Clève (P. T.). Bull. Soc. chim. Paris, 39, 151-5; Chem. News, 47, 154-5; Amer. Jour. Sci., (3) 25, 381 (Abs.).

Spectre du lanthane, avec une planche.

Thalén (Rob.). Jour. de Phys., 4, 33.

# LEAD.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. f. Krystallogr. u. Mineral., 1, 165-92; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Lead arc spectrum, lead and antimony spark spectrum, lead and magnesium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 84, 35.

Renversement des raies spectrales du plomb.

Cornu (A.). Comptes Rendus, 73, 882.

Spectre de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 707.

Spectren zwischen Bleielectroden.

Jahresber. d. Chemie (1878), 152.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Spectre du plomb.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Chem. News, 24, 10.

Plomb métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 147, planche XXIII.

#### LIGHT.

Vitesse de la lumière fait que les bords du spectre sont diffus.

Arago. Comptes Rendus, 36, 43.

Sur la rayonnement chimique qui accompagne la lumière, et sur les effets électriques en résultent.

Becquerel (Ed.). Comptes Rendus, 13, 198.

Note accompagnant la presentation du II. volume de son ouvrage intitulé "Lumière, ses Causes et ses Effets."

Becquerel (Ed.). Comptes Rendus, 67, 8.

Étude sur la part de la lumière dans les actions chimiques.

Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-223; Jour. Chem.
Soc., 1877, 2, 818 (Abs.); Beiblätter, 1, 515-20 (Abs.).
(Look below, under Vogel.)

Lage der chemischen Strahlen im Spectrum des Sonnen-und Gas-Lichts.

Crookes (W.). Ann. Phys. u. Chem., 97, 619; Cosmos, 8, 90; Bull. Lond. Photographical Soc., 21 Jan., 1856.

Sur l'emploi de la lumière monochromatique, produite par les sels de

Henry (L. d'). Comptes Rendus, **76**, 222-4 (Abs.); Ann. Chem. u. Pharm., **169**, 272; Dingler's Jour., **207**, 405-7.

Constanz der Lichtspectren.

Jahresber. d. Chemie (1869), 174.

Sur le spectre anormal de la lumière.

Klercker (de). Comptes Rendus, 89, 734; Phil. Mag., (5) 8, 571-2; Beiblätter, 4, 278-4.

Lichtspectren.

Lecoq de Boisbaudran (F.). Ber. chem. Ges., 3, 140, 503, 572.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427-41.

Emploi du spectroscope pour distinguer une lumière plus faible dans une plus forte.

Seguin. Comptes Rendus, 68, 1322.

Chastaing's neue Theorie der chemischen Wirkung des Lichtes.

Vogel (H. W.). Ber. chem. Ges., 10, 1638-44; Beiblätter, 1, 681 (Abs.).

Les observations spectroscopiques à la lumière monochromatique.

Zenger (Ch. V.). Comptes Rendus, 94, 155; Amer. Jour. Sci., (8)
23, 322.

# LIGHTNING.

(Look under Electricity.)

# LIMITS.

Limites des couleurs dans le spectre.

Listing. Ann. Chim. et Phys., (4) 13, 460.

Limites des couleurs dans le spectre.

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 218.

## LINES OF THE SPECTRUM.

Welchen Stoffen die Fraunhofer'schen Linien angehören.
Angström (A. J.). Ann. Phys. u. Chem., 117, 296-302.

Die Fraunhofer'schen Ringe, die Quetelet'schen Streifen und verwandte Erscheinungen.

Exner (K.). Sitzungsber. d. Wiener Akad., 76 II, 522.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss. zu München, Band ▼ (1814–15), 193–226, mit drey Kupfertafeln, München, 1817, 4°.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-22; Beiblätter, 2, 661.

Die Zusammensetzung des Spectrums.

Jahresber. d. Chemie, 1, 197; 5, 126, 131; 8, 123.

Ueber die Fraunhofer'schen Linien.

Jahresber. d. Chemie, 3, 154; 4, 152; 5, 124; 6, 167; 7, 137.

Anwendung der Fraunhofer'schen Linien als chemisches Reagens.

Jahresber. d. Chemie, 5, 125.

Künstliches Spectrum einer Fraunhofer'schen Linie. Jahresber. d. Chemie (1868), 124.

Newton, Wollaston, and Fraunhofer's lines.

Johnson (A.). Nature, 26, 572; Beiblätter, 7, 65-6 (Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Erklärung der Linien und Streifen in den Lichtspectren. Lecoq de Boisbaudran (F.). Ber. chem. Ges., 2, 614.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblätter, 4, 278 (Abs.).

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141-2.

The relation between spectral lines and atomic weights.

Vogel (E.). Pharmaceutical Jour. Trans., (8) 6, 464-5.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

# LIQUIDS.

- Pouvoirs absorbants des corps pour la chaleur; solutions dans l'eau, etc. Aymonnet. Comptes Bendus, 83, 971.
- Ueber eine einfache Methode zur approximativen Bestimmung der Brechungsexponenten flüssiger Körper.

Bodynski (J.). Carl's Repertorium, 18, 502-4; Beiblätter, 6, 932 (Abs.).

Molecular-Refraction flüssiger organischer Verbindungen von hohem Dispersifvermögen.

Brühl (J. W.). Ann. Phys. u. Chem., 235, 1-106; Ber. chem. Ges., 19, 2746 (Abs.); Jour. Chem. Soc., 52, 191 (Abs.).

Spectroscopische Untersuchung der Constanten von Lösungen.

Burger (H.). Ber. chem. Ges., 11, 1876.

Methoder til at maale Brydningsforholdet for farvede Vaedsker (Ueber die Messung des Brechungsverhältnisses gefärbter Flüssigkeiten).

Christiansen (C.). Oversigt kgl. Danske Vidensk. Selsk. Forh. (1882), 217-50; Ann. Phys. u. Chem., n. F. 19, 257-67; Nature, 28, 308 (Abs.).

- Nouvelle méthode de détermination des indices de réfraction des liquides. Croullebois (M.). Ann. Chim. et Phys., (4) 22, 139-50.
- Recherches sur le pouvoir réfringent des liquides.

Damien (B. C.). Ann. de l'École normale, (2) 10, 233-304; Beiblätter, 5, 579-84 (Abs.); Jour. de Phys., 10, 394-401, 431-34 (Abs.).

On the specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. (1881), 591; Nature, 24, 468 (Abs.); Beiblätter, 6, 21 (Abs.).

Ueber Regenbogen, gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., **86** II, 206-15; Beiblätter, **7**, 388-5 (Abs.).

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148.

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-3; Phil. Mag., (5) 1, 244-5; Ber. chem. Ges., 8, 765 (Abs.).

Application des franges de Talbot à la détermination des indices de réfraction des liquides.

Hurion. Comptes Rendus, 92, 452-8.

Spectren gefärbter Lösungen.

Jahresber. d. Chemie, 15, 84.

Ueber die Constitution von Lösungen.

Krüss (G.). Ber. ehem. Ges., 10, 1248-9; Jour. Chem. Soc., 42, 1018
(Abs.); Nature, 26, 568; Beiblätter, 6, 677 (Abs.); Amer. Jour. Sci.,
(3) 24, 141 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirender Mittel.

Kundt (A.). Sitzungsber. d. Münchener Akad. (1877), 234-62; Ann. Phys. u. Chem., n. F. 4, 34-54.

Recherches sur l'illumination des liquides, etc.

Lallemand. Comptes Rendus, 69, 182.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Wiener Akad. (1882), 62-91; Ann.
Phys. u. Chem., 213, 75-112; Beiblätter, 7, 843; Ber. chem. Ges.,
15, 1031-40; Jour. Chem. Soc., 42, 909 (Abs.).

Absorption des Lichtes durch gefärbte Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Observations on the colour of fluorescent solutions.

Morton (H.). Amer. Jour. Sci., (3) 2, 198-9, 355-7; Jour. Chem. Soc., (2) 9, 992 (Abs.); 10, 27 (Abs.); Chem. News, 24, 77.

Ueber die Aenderung des Volumens und des Brechungsexponenten von Flüssigkeiten durch hydrostatischen Druck.

Quincke (G.). Ann. Phys. u. Chem., n. F. 19, 401-35; Sitzungsber. d. Berliner Akad. (1883), 409 (Abs.); Nature, 28, 308 (Abs.). Ueber eine neue Flümigkeit von hohem specifischen Gewicht, haiten: Brechungsexponenten und gromer Dispersion.

Robrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-74; Amer. Jour. Sci., (2) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145; Abs...

On the absorption bands in the visible spectrum produced by certain colourless liquids.

> Russell (W. J.) and Lapraik (W. .. Jour. Chem. Soc., 29, 168-78; Amer. Jour. Sci., (2) 21, 500 (Abs.); Nature, 22, 368-70; Beiblätter. 5, 44-5.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-70.

Untersuchungen über die Abhängigkeit der Molecularrefraction früssiger Verbindungen von ihrer chemischen Constitution.

Schröder (H.). Ber. chem. Ges., 15, 994-8; Jour. Chem. Soc., 42, 910 (Abs.).

Fernere Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Zusammensetzung.

Schröder (H.). Sitzungsber. d. Münchener Akad. (1882), 57-104; Ann. Phys. u. Chem., n. F. 15, 636-75; 18, 148-75; Jour. Chem. Soc., 42, 1153 (Abs.); 44, 538 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblätter, 2, 30 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412 (Abs.).

Méthode nouvelle pour déterminer l'indice de réfraction des liquides.

Terquem et Trannin. Comptes Readus, 78, 1843-5; Dingler's Jour., 212, 552-4; Jour. de Phys., 4, 232-8; Ann. Phys. u. Chem., 157, 302-9.

Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gef ärhte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165 (Abs.); Beiblätter, 7, 895 (Abs.); Chem. News, 49, 201 (Abs.).

Absorption spectra of certain organic liquids.

Wolff (C. H.). Chem. News, 47, 178.

## LITHIUM.

- Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

  Ballmann (H.). Zeitschr. analyt. Chemie, 14, 297-301; Jour. Chem. Soc., 1876, 2, 550 (Abs.).
- On the presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

- Existence de la lithine et de l'acide borique dans les eaux de la mer Morte.

  Dieulafait. Comptes Rendus, 94, 1352-54; Jour. Chem. Soc., 42, 1087

  (Abs.); Ann. Chim. et Phys., (5) 25, 145-67.
- La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium, du cæsium, du lithium et de l'acide borique.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On the blue band in the lithium spectrum.

Franckland. Phil. Mag., (4) 22, 472.

Recherches photométriques sur le lithium.

Gouy. Comptes Rendus, 83, 269; 85, 70.

Transparence des flammes colorées pour leur propres radiations; lithium,

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Lithiums in der Wasserstofflamme.

Jahresber. d. Chemie, 15, 80.

Funkenspectrum von kohlensäuren Lithium.

Jahresber. d. Chemie (1873), 152.

Sels de lithine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 56. planche VI.

Spectre du lithium.

Leccq de Boisbaudran. Co nptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125.

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 93-9; Beiblätter, 4, 366 (Abs.).

Note on the order of reversibility of the lithium lines.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 76; Chem. News, 47, 133.

Sur les spectres des vapeurs aux températures élévées, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 467-63; Jour. Chem. Soc., 44, 802 (Abs.).

On the flame of lithia.

Talbot (H. Fox). Phil. Mag., (3) 4, 11.

De la présence de la lithine dans le sol de la Limagne et des eaux minérales de l'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4; Ber. chem. Ges., 7, 653 (Abs.).

The blue band in the lithium spectrum.

Tyndall and Franckland. Phil. Mag., (4) 22, 151, 472.

## LONGITUDINAL RAYS.

Note sur les raies longitudinales observées dans le spectre prismatique par M. Zantedeschi.

Babinet. Comptes Rendus, 35, 418. (Look below.)

Raies longitudinales du spectre.

Porro. Comptes Rendus, 35, 479.

Sur les lignes longitudinales du spectre.

Wartmann (E.). Arch. des Sciences phys. et nat., 7, 83; 10, 802; Phil. Mag., 32, 499.

Sur les causes des lignes longitudinales du spectre.

Zantedeschi (F.). Archives des Sciences phys. et nat., 12, 43; Corresp. scient. di Roma, No. 9, 69.

# LUMINOUS SPECTRA.

Observations sur le rayonnement des corps lumineux.

Baudrimont. Comptes Rendus, 33, 496.

Divers effets lumineux qui résultent de l'action de la lumière sur les corps.

Becquerel (E.). Comptes Rendus, 45, 817.

Constitution du spectre lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 69, 445, 606, 657, 694; 73, 658.

Recherches d'analyse spectrale.

Volpicelli. Comptes Rendus, 57, 571.

Sur les causes des effets lumineux, etc.

Volpicelli. Comptes Rendus, 69, 730.

## MAGNESIUM.

Lead and magnesium spark spectrum, magnesium spark spectrum, magnesium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 34, 35, 36.

Détermination des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du magnésium.

Cornu (A.). Comptes Rendus, 73, 332.

Recherches sur le spectre du magnésium en rapport avec la constitution du Soleil.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 50, 91-8; Beiblätter, 4, 789 (Abs.); Ann. Chim. et Phys., (5) 23, 366-72.

Spectre de chlorure de magnésium.

Gouy. Comptes Rendus, 84, 231.

Spectre continu des sels de magnésie.

Gouy. Comptes Rendus, 84, 878.

Spectrum des Magnesiumlichtes.

Jahresber. d. Chemie, 18, 96; 23, 174; 25, 145.

Chlorure de magnésium en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Permanganate de potasse en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde und Magnesia.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Ueber den Nachweis der Magnesia mit Hülfe des Spectroskops.

Lepel (F. von). Ber. chem. Ges., 9, 1845; 10, 159; Bull. Soc. chim. Paris, n. s. 28, 478; Jour. Chem. Soc., 1877, 1, 676; Beiblätter, 1, 240 (Abs.). Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 763-6.

Pflanzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges, 13, 766-8; Jour. Chem. Soc., 40, 63 (Abs.).

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 98-9; Beiblätter, 4, 366 (Abs.).

Investigations on the spectrum of magnesium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 32, 189-203; Nature, 24, 118.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108; 13, 247.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Spectre du magnésium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

Spectre du magnésium.

Secchi (An). Comptes Rendus, 82, 275.

Magnésium dans la chromosphère du Soleil.

Tacchini (P.). Comptes Rendus, 75, 23, 430; Phil. Mag., (4) 44, 159-60.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini (P.). Comptes Rendus, 76, 1577.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil, et réponse à quelques points de la théorie émise par M. Fave.

Tacchini (P.). Comptes Rendus, 77, 606-9.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil.

Tacchini (P.). Comptes Rendus, 82, 1385-7.

Spectre du magnésium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber eine empfindliche Spectralreaction auf Magnesium.

Vogel (H. W.). Ber. chem. Ges., 9, 1641; Jour. Chem. Soc., 1877, 1, 742 (Abs.); Beiblätter, 1, 240 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 475.

Die Purpurin-Thonerde-Magnesia-Reaction.

Vogel (H. W.). Ber. chem. Ges., 10, 157, 878.

#### MANGANESE.

Sur l'effet du manganèse sur la phosphorescence du calcium carbonate.

Becquerel (E.). Comptes Rendus, 103, 1098-1101; Jour. Chem. Soc., 52, 190 (Abs.).

Ueber das Absorptionsspectrum des übermangansauren Kalis, und seine Benutzung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8, 139-148; Jour. Chem. Soc., 34, 242 (Abs.).

Manganese arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 36.

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Royal Soc., 2, 340-4; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Spectre de l'azotate de manganèse.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Absorptionslinien der Manganlösungen.

Hoppe-Seyler. Jour. prackt. Chemie, 90, 303.

Spectra of manganese in blowpipe beads.

Horner (Charles). Chem. News, 25, 139.

Anwendung der dunklen Linien des Spectrums als Reagens auf Mangansäure.

Jahresber. d. Chemie, 5, 125.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber. d. Chemie (1869), 184.

Chlorure de manganèse en solution, étincelle courte; do., étincelle moyenne; do., dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Fluorescence des composés de manganèse dans la vide sous l'influence de l'arc voltaïque.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 468-471; Jour. Chem. Soc., 52, 3 (Abs.); Beiblätter, 11, 87.

Das Absorption der Mangansäure nicht die Umkehrung einer dürch Manganchlorür gefärbten Flamme.

Müller (J.). Ann. Phys. u. Chem., 128, 335.

Spectrum von Mangan.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 425.

Das von übermangansaurem Kali reflectirte Licht.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 625.

#### MAPS.

Recherches sur les spectres des métalloïdes.

Angström (A. J.) et Thalén (T. R.). Upsal., E. Berling, 1875, 4°. Extrait des Nova Acta Reg. Soc. Sc. Upsal., Ser. III, Vol. IX. Avec deux planches.

(Wave-lengths. Spectra of carburetted hydrogen; of carbonic oxide; bioxide of nitrogen; of light at the negative pole; of oxygen; of carbon; of hydrogen; some isolated rays of carburetted hydrogen, and of carbonic oxide.)

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieure, (2) 9 (1880). Avec deux planches. (Wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. (Wave-lengths. Lines 6399 to 4522.) Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. IV.

Étude de la région rouge (A-C.) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. V. Avec deux planches. (Wave-lengths. Lines 7500 tc 6500.)

Studien auf dem Gebiete der Absorptionsspectralanalyse.

Hasselberg (B.). St. Pétersbourg, et à Leipzig (L. Voss), 1878, 4°. Mit vier Karten. Mém. Acad. imp. des Sci. de St. Pétersbourg, (7) 26, No. 4.

(Wave-lengths. Absorptionspectra of hypernitric acid at different densities, and absorptionspectrum of bromine.)

Ueber die Spectra der Cometen, und ihre Beziehung zu denjenigen gewisser Kohlenverbindungen.

Hasselberg (B.). St. Pétersbourg, 1880, Leipzig (G. Haessel), 4°. Mit einem Tafel. Mém. de l'Acad. imp. St. Pétersbourg, (7) 28, No. 2.

Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). St. Pétersbourg, 1882, Leipzig (G. Haessel), 4°. Mém. de l'Acad. imp. St. Pétersbourg, (7) 30, No. 7. Mit einem Tafel. (Wave-lengths.)

Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Besondere Abdrücke aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. I. Theil, Dümmler, Berlin, 1864, 4°. II. Theil, Dümmler, Berlin, 1875, 4°. Mit vier Tafeln.

(He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, t. I (1864), Paris, Gauthier-Villars, 1864, 4°.

Recherches sur la détermination des longueurs d'onde.

Muscart (E.). Paris, Gauthier-Villars, 1866, 4°. Extrait des Annales de l'École normale supérieure, t. IV. Avec un planche.

[A photographic map of the solar spectrum is being prepared by Prof. Rowland, and some parts of it have been distributed, viz: wave-lengths, 0.0003675 to 0.0005796.]

Mémoire sur la détermination des longueurs d'onde des raies métalliques.

Thalén (Rob.). Upsal., W. Schultz, 1868, 4°. Mit zwei Tafeln. Extrait des Nova Acta Reg. Soc. Sci. Upsal., Ser. III, Vol. VI.

(Gives the wave-lengths of the bright rays of the metals.)

Le spectre d'absorption de la vapeur d'iode.

Thalén (Rob.). Upsal., Ed. Berling, 1869, 4°. Avec trois planches.

[Thollon's map of the solar spectrum is in Vol. I of the Annales de l'Observatoire de Nice, which is about to appear. Vol. II will contain a smaller map or sheets of the group B.]

## MERCURY.

Mercury spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

Spectre du cinabre, de l'oxide de mercure, de l'iodure de mercure. Lallemand (A.). Comptes Rendus, 78, 1272.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XIV.

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Spectrum of mercury at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98; Nature, 30, 78; Comptes Rendus, 78, 178.

Emissionsspectra der Haloïdverbindungen des Quecksilbers.

Peirce (B. O.). Ann. Phys. u. Chem., n. F. 6, 597.

Ueber die Spectren des Wasserstoffs, Quecksilbers, und Stickstoffs.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

## METALS.

Researches on the spectra of the metalloids.

Angström (A. J.) and Thalén (Rob.). Acta Soc. Upsala, (3) 9; Nature, 15, 401 (Abs.); Beiblätter, 1, 35-47; Bull. Soc. chim. Paris, n. s. 25, 183.

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 97, 71-4; 99, 374; Chem. News, 48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblätter, 7, 701 (Abs.); Amer. Jour. Sci., (3) 26, 321 (Abs.); 28, 459 (Abs.); Ber. chem. Ges., 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. f. analyt. Chemie, 23, 49 (Abs.); Phil. Mag., Oct., 1884.

Procédé pour obtenir en projection les raies des métaux et leur renversement.

Boudréaux. Jour. de Phys., 3, 306.

Ueber die electrische Spectra der Metallen.

Brassack. Zeitschr. f. d. Gesellsch. f. Naturwiss, 9, 185.

Dissociation of the metalloid elements.

Brodie (B. C.). Nature, 21, 491-2.

Discoveries of the new alcaline metals.

Bunsen (R.). Ber. d. Berliner Akad., 10 Mai, 1860; Chem. News, 3, 132.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle; do., im Bunsen'schen Gasflamme; Vergleich beider.

Cappel (E.). Ann. Phys. u. Chem., 139, 631.

Some experiments on metallic reflection with the spectroscope.

Conroy (Sir J.). Proc. Royal Soc., 28, 244.

On the projection of the spectra of the metals.

Cooke (J. P.). Amer. Jour. Sci., (2) 40, 243.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332; Bull. Soc. chim. Paris, n. s. 15, 5.

On the means of increasing the intensity of metallic spectra.

Crookes (W.). Chem. News, 5, 234.

Analyse des spectres colorés par les métaux.

Debray (M. H.). Comptes Rendus, 54, 169.

Sur l'emploi de la lumière Drummond et sur la projection des raies brilliants des flammes colorées par les métaux.

Debray (M. H.). Ann. Chim. et Phys., (3) 65, 331.

Remarques sur les métaux nouveaux de la gadolinite, et de la samarskite; holmium ou philippine, thulium, samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur l'influence des éléments électronégatifs sur le spectre des métaux, avec planches des spectres de chloride de cuivre et de bromide de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Sur les spectres des métaux alcalins.

Diacon et Wolf. Mém. de l'Acad. de Montpellier, 1863; Comptes Rendus, 55, 334.

Spectres des métalloïdes des familles du soufre, du chlore et de l'azote.

Ditte. Bull. Soc. chim. Paris, n. s. 16, 229.

On the use of the prism in qualitative analysis. (Gives the absorption spectra of many coloured metallic salts.)

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 79.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231-4; Phil. Mag., (5) 3, 238-40; Chem. News, 35, 107-8; Beiblätter, 1, 238 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 352.

Das electrische Verhalten der im Wasser oder in Salzlösungen getauchten Metalle bei Bestrahlung durch Sonnen-oder Lampen-Licht.

Hankel (W.). Ann. Phys. u. Chem., n. F. 1, 410.

Investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195.

Beiträge zur Spectroscopie der Metalloïde.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 27, 405-17.

Auflösung heller Streifen in Metallspectren.

Jahresber. d. Chemie., 15, 29.

Unterschiede in den Spectren bei Anwendung der Metalle oder der Chlormetalle.

Jahresber. d. Chemie, 15, 31, 32.

Constanz der Metallspectren.

Jahresber. d. Chemie, 15, 32.

Electrische Metallspectren.

Jahresber. d. Chemie, **15**, 83; **16**, 104, 106, 107, 118; **17**, 115; **18**, 90, 91.

Einfluss nichtmetallischer Elemente auf die Spectra der Metalle.

Jahresber. d. Chemie, 18, 87.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie, 18, 90.

Objectivdarstellung der Metallspectren.

Jahresber. d. Chemie, 26, 147.

Spectren der Metalloïden.

Jahresber. d. Chemie, 26, 149.

Metallspectra.

Jahresber. d. Chemie, 28, 122.

Absorptionspectra von Metalldämpfen.

Jahresber. d. Chemie, 28, 124, 125.

Quelques spectres métalliques; plomb, chlorure d'or, thallium, lithium. Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125-6.

Sur un nouveau ordre des spectres métalliques.

Lecoq de Boisbaudran (F.). Comptes Rendus, 100, 1437-40; Jour. Chem. Soc., 48, 949 (Abs.).

Spectra of metallic compounds.

Leeds (A. R.). Jour. Franklin Inst., 90, 194.

Reversal lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., (No. I) 27, 132-6;
(No. II) 27, 359-4; (No. III) 27, 494-6; (No. IV) 28, 352-8;
(No. V) 28, 367-72; (No. VI) 28, 471-5; (No. VII) 29, 402-6,
Beiblätter, 2, 261 (Abs.), 490 (Abs.); 3, 710 (Abs.); 4, 364 (Abs.).

On the disappearance of some spectral lines and the variations of metallic spectra due to mixed vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 428-84; Jour. Chem. Soc., 44, 2-3 (Abs.); Beiblätter, 6, 676 (Abs.).

Spectral lines of the metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73.

On the circumstances producing the reversal of the spectral lines of metals.

Liveing (G. D.) and Dewar (J.). Proc. Philosoph. Soc. Cambridge,

4, 256-65; Beiblätter, 7, 530 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 21, 507-8; Phil. Trans., 164, 495-9; Phil. Mag., (4) 47, 311 (Abs.); Jour. Chem. Soc., (2) 12, 495 (Abs.); Ber. chem. Ges., 6, 1426 (Abs.).

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9;Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1872, 2, 156 (Abs.).

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 22, 871-8; 29, 266-72; Beiblätter, 4, 36 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 139-43.

Spectra der Haloïdsalze.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 474.

De l'influence de la température sur les spectres des métalloïdes.

Monckhoven (D. von). Comptes Rendus, 95, 520.

Sur le spectre des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314; Phil.
Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863 (Abs.); Ann.
Phys. u. Chem., 158, 329-334.

Sur les spectres des métalloïdes.

Salet (G.). Ann. Chim. et Phys., (4) 28, 5-71; Chem. News, 27, 59, 178 (Abs.).

On the spectra of the metalloids.

Schuster (A.). Phil. Trans. (1879), 170, 37-54; Proc. Royal Soc.,
27, 383-8 (Abs.); Beiblätter, 1, 289; 2, 492 (Abs.); 3, 749 (Abs.);
Jour. Chem. Soc., 38, 430 (Abs.); Nature, 15, 447-8.

- Les spectres du fer et de quelques autres métaux dans l'arc voltaïque. Secchi (A.). Comptes Rendus, 77, 178; Chem. News, 28, 82.
- Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreux.

Soret (J. L.). Arch. de Genève, (8) 4, 261-92; Beiblätter, 5, 124 (Abs.).

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 620 (Abs.).

Mémoire sur la détermination des longueurs d'onde des raies métalliques; spectres des métaux dessinés d'après leurs longueurs d'onde.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 202.

Optische Eigenschaften dünner metallischen Schichten.

Voigt (W.). Ann. Phys. u. Chem., (2) 25, 95-114.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 821.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-37; Ann. Phys. u. Chem., 155, 87-95.

Electrische Spectra der Metalle.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 619.

# METEOROLOGICAL.

The spectroscope and weather forecasting.

Abercromby (R.). Nature, 26, 572-3.

Rain-band Spectroscopy.

Bell (L.). Amer. Jour. Sci., (3) 30, 347.

A plea for the rain-band.

Capron (J. R.). Observatory (1882), 42-7, 71-1; Beiblätter, 6, 485 (Abs.).

The spectroscope as an aid to forecasting the weather.

Cory (F. W.). Quar. Jour. Meteorolog. Soc., 9, 234-9.

Ueber Regenbogen gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., 86 II, 206-15; Beiblätter, 7, 383 (Abs.).

Spectroscopic observation of the red-coloured sky at sunset, 1884, Jan. 9, 5 h. 20 min.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250-1.

Observations, à propos d'une note récente de M. Reye sur les analogies qui existent entre les taches solaires et les tourbillons de notre atmosphère.

Marié-Davy. Comptes Rendus, 77, 1227-9.

The green Sun.

Manley (W. R.). Nature, 28, 611-12.

Observations on the rain-band from June, 1882, to Jan., 1883.

Mill (H. R.). Proc. Royal Soc. Edinburgh, 12, 47-56.

Note sur les cyclones terrestres et les cyclones solaires.

Parville (H. de). Comptes Rendus, 77, 1280-8.

The solar spectrum in a hail-storm.

Romanes (C. H.). Nature, 25, 507; Beiblätter, 6, 486 (Abs.).

The spectroscope and the weather.

Smith (C. Mitchie). Nature, 12, 866.

The green Sun.

Smith (C. Mitchie). Nature, 29, 28.

The remarkable sunsets.

Smith (C. Mitchie). Nature, 29, 381-2.

Spectroscopic prevision of rain with a high barometer.

Smith (C. Piazzi). Nature, 12, 281-2, 252-3; Ann. Phys. u. Chem., 157, 175 (Abs.).

The warm rain-band in the daylight spectrum.

Smyth (C. Piazzi). Nature, 14, 9.

Three years' experimenting in spectrum analysis.

Smith (C. Piazzi). Nature, 22, 198.

Spectroscopic weather discussions.

Smyth (C. Piazzi). Nature, 26, 551-4; Beiblätter, 6, 877 (Abs.).

Rain-band spectroscopy attacked again.

Smyth (C. Piazzi). Nature, 29, 525; Zeitschr. d. oesterreicher Ges. f. Meteorol., 14, 151-2.

Precédé pour déterminer la direction et la force du vent; suppression des girouettes; application aux cyclones.

Tarry (H.). Comptes Rendus, 77, 1117-20.

The use of the spectroscope in meteorological observations.

Upton (Winslow). U. S. Signal Service Notes (1882), No. 4; Mem. Spettr. ital., 13, 118-18.

## MICROSCOPIC SPECTRA

Prismatic examination of microscopic objects.

Huggins (William). Trans. Roy. Microscopical Soc. (1865): Quar. Jour. Microscopical Sci., July, 1865.

Anwendung der Spectralanalyse auf mikroscopische Untersuchungen. Jahresber. d. Chemie (1867), 105.

#### MINERAL WATERS.

La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Existence de l'acide borique en quantité notable dans les lacs salés de la période moderne et dans les eaux salines naturélles, qu'elles soient ou non en relation avec des produits éruptifs.

Dieulafait. Ann. Chim. et Phys., (5) 25, 145-67.

- Untersuchung einiger Mineralwässer und Soole mittelst Spectralanalyse.

  Redtenbacher (Jos.). Sitzungsber. d. Wiener Akad., 44 II, 187, 151, 153-4.
- Sur l'origine de la lithine et de l'arsénic dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-68; Jour. Chem. Soc., 44, 302 (Abs.).
- Spectral-reactionen bündnerischen Gesteine und Mineralwässer. Simmler (R. Th.). Ann. Phys. u. Chem., 115, 434-48.
- De la présence de la lithine dans le sol de la Limagne et dans les eaux minérales d'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4: Ber. chem. Ges., 7, 653.

### MINIUM.

Spectre du minium.

Lallemand (A.). Comptee Rendus, 78, 1272.

# MOLYBDENUM.

Molybdenum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

# MOSANDRUM.

Le mosandrum, un nouvel élément.

Smith (J. Lawrence). Comptes Rendus, 87, 148-51; note par M. Delafontaine, Comptes Rendus, 87, 600-2, and Jour. Chem. Soc., 36, 117 (Abs.).

# MULTIPLE SPECTRA.

# Multiple Spectra.

Lockyer (J. N.). Nature, 22, 4-7, 309-12, 562-5; Beiblätter, 5, 118-22 (Abs.).

#### NICKEL.

Nickel arc spectrum; nickel spark spectrum; bismuth and nickel spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 38.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 1874, 6, 384; Phil. Mag., (4) 46, 329; Jour. Chem. Soc., (2) 12, 113.

Spectrum von Nickel.

Jahresber. d. Chemie, (1872) 145, (1873) 154.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 183, planche XIX.

Ueber die Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2318-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

## NIOBIUM.

Niobium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 88.

#### NITROGEN.

Spectrum von Stickoxyd, und von Stickstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 156-7.

Spectre de l'acide azotique fumant.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectre de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectre du protoxyde de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 82-4; Jour. Chem. Soc., 48, 949 (Abs.).

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) 8, 884.

Carattere spettroscopico della soluzione ammoniacale di carminio, di cocciniglia e di altre sostanze.

Campani (G.). Gazz. chim. ital., 1, 471-2; Jour. Chem. Soc., (2) 9, 1096. (Abs.); Ber. chem. Ges., 5, 287.

Nitrogen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 55.

Sur le spectre d'absorption de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-8; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 483 (Abs.); Amer. Jour. Sci., (3) 24, 58 (Abs.); Jour. de Phys., (2) 3, 48.

Spectre des bandes de l'azote, son origine.

Deslandres (H.). Comptes Rendus, 101 (1885), 1256-60; Jour. Chem. Soc., 50, 189 (Abs.).

Spectre de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Jour. Chem. Soc., 50, 957 (Abs.); Beiblätter, 11, 36 (Abs.).

Spectrum von Ammoniak und von Schwefelammon.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 518, 534.

Les lacs salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectres appartenant aux familles de l'azote et du chlore.

Ditte (A.). Comptes Rendus, 73, 788; Bull. Soc. chim. Paris, n. s. 16, 229.

Salpetersaure Nickellösung.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1878), 334; Jahresber. d. Chemie (1878), 154.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. Acad. Belgique, (2) 49, 107-118; Phil. Mag., (5) 9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys., (5) 20, 179-85; Jour. Chem. Soc., 40, 69-70.

Action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Jour. prackt. Chemie, 105, 287; Ber. chem. Ges., 9, 833.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218; Bull. Soc. chim. Paris, n. s. 17, 257.

Note sur le prétendu spectre d'absorption spécial de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

The refraction equivalents of nitrogen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-830; Ber. chem. Ges., 14, 1553 (Abs.).

Spectres de l'azotate de cuivre, de l'azotate de manganèse, de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Spectre de l'azotate d'argent.

Gouy. Comptes Rendus, 84, 231.

Azotate.

Gouy. Comptes Rendus, 85, 70.

Zur Spectroscopie des Stickstoffs.

Hasselberg (B.). Mém. de l'Acad. de St. Pétersbourg, (7) 32, 50 pp. sep.; Beiblätter, 9, 578 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectrum des Stickstoffs.

Jahresber. d. Chemie, 16 (1868), 110; 25 (1872), 142, 144, 145.

Absorptionsspectrum des Dampfs der salpetrigen-und untersalpeter-Säure. Jahresber. d. Chemie, 22 (1869), 183.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172; 25 (1872), 137.

Absorptionsspectrum des Didymnitrats.

Jahresber. d. Chemie, 23 (1870), 321.

Absorptionsspectrum der Ammoniakflamme.

Jahresber. d. Chemie, 25 (1872), 142, 143.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 142, 157-9; Zeitschr. f. analyt.
Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Azotate d'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Constitution des spectres lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 70, 144, 974, 1090.

Spectre du nitrate de didyme.

Lecoq de Boisbaudran (F.) et Smith (Lawrence). Comptes Rendus, 88, 1167.

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre du nitrate de samarium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre de l'ammoniaque par renversement du courant induit.

Lecoq de Boisbaudran (F.). Comptes Rendus, 101, 42-5.

Spectres des vapeurs aux températures élévées, nitrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98.

Sur les spectres de l'acide azoteaux et du peroxyde d'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Absorption bands of nitrous acid gas.

Miller (W. Hallows). Phil. Mag., (3) 2, 381.

Benützung des Ammoniaks zur Spectralanalyse.

Mitscherlich. Jour. prackt. Chemie, 86, 14.

Die Spectren der salpetrigen und der untersalpetrigen Säure.

Moser (J.). Ann. Phys. u. Chem., n. F. 2, 139-40.

Spectrum von Stickgas, und von Stickoxydul.

Plücker. Ann. Phys. u. Chem., 105, 76, 81.

Spectra am negativen Pol im Stickstoff und Wasserstoffröhren; Modification beider Röhren nach langem Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135.

Spectrum einer Lösung von salpetersauren Didymoxyd.

Rood (O. N.). Ann. Phys. u. Chem., 117, 350.

Sur le spectre de l'azote et sur celui des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314;
Phil. Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 868-4 (Abs.);
Ann. Phys. u. Chem., 158, 329-34.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft; Stickstoff gibt je nach der Temperatur drei Spectra.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513-16.

Ueber die Absorption des Lichts durch Ammoniak, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8 (1878), 670-5; Jour. Chem. Soc., 34, 693 (Abs.).

On the spectrum of nitrogen.

Schuster (A.). Proc. Royal Soc., 20, 484-7; Phil. Mag., (4) 44, 537-41; Ann. Phys. u. Chem., 147, 106-12; Amer. Jour. Sci., (3) 5, 131 (Abs.); Jour. Chem. Soc., (2) 11, 340 (Abs.).

Bestimmung der Salpetersäure auf spectralanalytischem Wege.

- Settegast (H.). Zeitschr. f. analyt. Chemie, 20, 116-117.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

Spectrum of nitrogen.

Stearn (C. H.). Nature, 7, 468.

Spectrum von Stickstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 578.

Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum.

Vogel (H. C.). Sitzungsber. d. Münchener Akad. (1879), 171-207; Ann. Phys. u. Chem., n. F. 3, 590-628.

On the changes produced in the position of the fixed lines in the spectrum of hyponitric acid by changes in density.

Weiss (A.). Phil. Mag., (4) 22, 80.

Ueberinstimmung der Absorptionsspectra von Untersalpetersäure mit den Spectren dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159.

Die beiden Stickstoffspectra nicht durch Unterschiede der Temperatur, sondern der Entladungsart erklärbar.

Wüllner (A.). Ann. Phys. u. Chem., 135, 526.

Spectra des Stickstoffs unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., 137, 856.

Das Spectrum des Stickstoffs ist vielfach; Antwort auf Angström. Wüllner (A.). Ann. Phys. n. Chem., 144, 520.

# NOMENCLATURE.

Spectroscopic Nomenclature.

Herschel (J.). Nature, 5, 499-500; 6, 438-4.

Spectroscopic Nomenclature.

Young (C. A.). Nature, 6, 101.

### OPTICS.

(With special reference to the spectroscope.)

Optische Untersuchungen.

Angström (A. J.). Ann. Phys. u. Chem., 94, 141; Phil. Mag., (4) 9, 827.

Zwei optische Beobachtungsmethoden.

Christiansen (C.). Ann. Phys. u. Chem., 141, 470.

Optische Untersuchungen einiger Reihen isomorpher Substanzen.

Christiansen (C.) und Topsoë (Haldor). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 499.

Die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., n. F. 23, 298.

Ueber einen optischen Versuch.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 340.

Optical Notes.

Gibbs (Wolcott). Proc. Amer. Acad., vol. 10; Ann. Phys. u. Chem., 156, 120.

Optische Controversen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 18, 387-421, 631-63.

Elementare Behandlung einiger optischen Probleme.

Lommel (E.). Ann. Phys. u. Chem., 156, 578-90.

Die Newton'schen Staubringe.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 194.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427.

Optische Experimental-Untersuchungen. Ueber das Verhalten des polarisirten Lichtes bei der Beugung.

Quincke (G.). Ann. Phys. u. Chem., 149, 273-324.

Investigations in optics, with special reference to the spectroscope.

Rayleigh (Lord). Phil. Mag., (5) 8, 261-274, 403-11, 477-86; 9, 40-55; Beiblätter, 4, 360.

# OSMIUM.

On the spectrum of osmium.

Fraser (W.). Chem. News, 8, 34.

Spectrum des Osmiums.

Jahresber. d. Chemie, 16 (1863), 112.

### OXYGEN.

The acceleration of oxidation caused by the least refrangible end of the spectrum.

Abney (W. de W.). Proc. Royal Soc., 27, 291, 451.

Spectres des gaz simples; l'oxygène.

Angström (A. J.). Comptes Rendus, 73, 869.

Spectrum von Sauerstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Sauerstoff hat nur ein Spectrum; die vielfachen rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 802, 804.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz; oxygène.

Becquerel (H.). Comptes Rendus, 90, 1407.

Ueber das Verhalten von Blut und Ozon zu einander.

Rinz (C.). Medicinalisches Centralblatt, 20, 721-5; Chem. Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486-7 (Abs.).

Oxygen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 65-7.

Spectre d'absorption de l'ozone.

Chappuis (J.). Comptes Rendus, 91, 985; 94, 858-60; Chem. News, 45, 163 (Abs.); Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 482 (Abs.); Amer. Jour. Sci., (3) 24, 56 (Abs.).

Étude spectroscopique sur l'ozone.

Chappuis (J.). Ann. de l'École normale, (2) 11, 137-87; Beiblätter, 7, 458 (Abs.).

Étude sur la part de la lumière dans les actions chimiques et en particulier dans les oxydations.

Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-223; Jour. Chem. Soc., 1877, 2, 818 (Abs.); Beiblätter, 1, 517-20 (Abs.).

On the coïncidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Monthly Notices Astronom. Soc., 39, 440-7; Amer. Jour. Sci., (3) 18, 262-76; Beiblätter, 4, 275 (Abs.); Comptes Rendus, 88, 1332 (Abs.). Dark lines of oxygen in the spectrum of the Sun.

Draper (J. C.). Amer. Jour. Sci., (8) 16, 256; (8) 17, 448; Nature,
18, 654; note by Barker (G. F.), Amer. Jour. Sci., (3) 17, 162-6;
Nature, 19, 352-3; Beiblätter, 3, 188 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555; Amer. Jour. Sci., (8) 26, 477.

Spectre d'absorption de l'oxygène.

Egoroff (N.). Comptes Rendus, 101, 1148-45; Jour. Chem. Soc., 50, 189 (Abs.).

Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum.

Engelmann (T. W.). Pflüger's Archiv. f. Physiologie, 27, 485-90;
Chem. News, 47, 11 (Abs.); Beiblätter, 7, 377 (Abs.).

On the combustion of hydrogen and carbonic oxide in oxygen under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

The refraction equivalents of oxygen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

The absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 57-60; Ber. chem. Ges., 14, 672 (Abs.); Beiblätter, 5, 505 (Abs.).

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1340 (Abs.); Beiblätter, 5, 505 (Abs.).

Einfacher Versuch zur Demonstration der Sauerstoffausscheidung durch Pflanzen im Sonnenlichte.

Hoppe-Seyler (F.). Zeitschr. f. physiol. Chemie, 2, 425-6; Ber. chem. Ges., 12, 701 (Abs.); Jour. Chem. Soc., 36, 819 (Abs.).

Sur les spectres d'absorption de l'oxygène.

Janssen (J.). Comptes Rendus, 102, 1852-8; Jour. Chem. Soc., 50, 749 (Abs.); Beiblatter, 11, 98.

Spectre de l'oxyde de cuivre.

1

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur les spectres de l'acide azoteux et du peroxyde de l'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Oxygen in the Sun.

Meldola (R.). Nature, 17, 161-2; Beiblätter, 2, 91.

Das Sauerstoffspectrum und die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 180.

Ueber das Sauerstoffspectrum.

Paalzow (A.) und Vogel (H. W.). Ann. Phys. u. Chem., n. F. 13, 386-8.

Spectrum von Sauerstoff.

Plücker. Ann. Phys. u. Chem., 104, 126; 105, 78.

Spectrum of Oxygen.

Schuster (A.). Phil. Trans., 170 (1879), 37-54; Proc. Royal Soc., 27, 388-8 (Abs.); Beiblätter, 2, 492 (Abs.); 3, 749 (Abs.); Jour. Chem. Soc., 38, 480.

Spectre d'acide oxalique.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 386.

Constitution of the lines forming the low temperature spectrum of Oxygen.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 30, 419-25; Phil.

Mag., (5) 13, 830-37; Nature, 25, 403 (Abs.); Jour. de Phys., (2)
2, 239 (Abs.).

Spectrum von Sauerstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Photographische Beobachtungen des Sauerstoffspectrums.

Vogel (H. C.). Ber. chem. Ges., 12, 332; Amer. Chem. Jour., 1, 71.

Drei Spectra bei Sauerstoff.

Wüllner (A.). Ann. Phys. u. Chem., 135, 515.

Spectra des Wasserstoffs.

Wüllner (A.). Ann. Phys. u. Chem., 137, 850; n. F. 8, 258.

#### PALLADIUM.

Palladium arc spectrum; palladium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 39.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

# PARAGENIC SPECTRA.

Sur la paragénie.

Babinet. Cosmos, 25, 893.

On paragenic spectra.

Brewster (Sir D.). Phil. Mag., January, 1866.

### PHILIPPIUM.

On philippium.

Brown (W. G.). Chem. News, 38, 267-8; Jour. Chem. Soc., 36, 204 (Abs.).

Sur un nouveau métal, le philippium.

Delafontaine. Comptes Rendus, \$7,559-61; Amer. Jour. Sci., (3) 17,61 (Abs.); Jour. Chem. Soc., 36, 116-17 (Abs.); Beiblätter, 3, 197 (Abs.).

#### PHOSPHORESCENCE.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 35-8; Nature, 35, 355 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287-8.

Propriétés de la lumière des pyrophores, examen spectroscopique.

Aubert et Dubois. Comptes Reudus, 99, 477.

Pouvoir phosphorescent de la lumière électrique. Becquerel (E.). Comptes Rendus, 8, 217.

- Réfringibilité des rayons qui excitent la phosphorescence dans les corps.

  Becquerel (E.). Comptes Rendus, 69, 994.
- Analyse de la lumière émise par les composés d'uranium phosphorescents.

  Becquerel (E.). Ann. Chim. et Phys., (4) 27, 539-79; Comptes Rendus, 75, 296-303; Jour. Chem. Soc., (2) 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Sur l'observation de la partie infra-rouge du spectre solaire, au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 10, 5-13; Jour. de Phys., 6, 187.

Les spectres des corps phosphorescents.

Becquerel (E.). La Lumière, tome I, 207.

Étude spectrale des corps rendus phosphorescents par l'action de la lumière ou par les décharges électriques.

Becquerel (E.). Comptes Rendus, 101, 205-210.

- Effets du manganèse sur la phosphorescence du calcium carbonate.

  Becquerel (É.). Comptes Rendus, 103, 1098.
- Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, 103, 1224; Amer. Jour. Sci., (3) 33, 308 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55, 99 (Abs.).

Étude des radiations infra-rouges au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 30, 5-68; Beiblätter, 8, 120 (Abs.).

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Becquerel (H.). Comptes Rendus, 96, 1853.

Résultats de ses recherches sur les effets de phosphorescence.

Becquerel (H.). Bull. Soc. franç. de Physique (1883), 24-5.

Sur les variations des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Spectrum of the light emitted by the glow-worm.

Conroy (Sir J.). Nature, 26, 319; Beiblätter, 6, 880 (Abs.).

De la lumière verte et phosphorescente du choc moléculaire.

Crookes (W.). Comptes Rendus, 88, 283-4.

Discontinuous phosphorescent spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-18; Chem. News, 43, 237-9;
Nature, 24, 89; Comptes Rendus, 92, 1281-3; Beiblätter, 5, 511-13;
Ann. Chim. et Phys., (5) 23, 555.

Les vibrations de la matière et les ondes de l'ether dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Wirkung der verschiedenen Theile des Spectrums auf phosphorescirende Substanzen.

Jahresber. d. Chemie, 1 (1847), 164.

Spectren des Lichts phosphorescirender Thiere.

Jahresber. d. Chemie, 17 (1864), 115.

Spectrum des Phosphorenzlichts von Chlorophan, Phosphorit und Flusspath.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 1224-7; Jour. Chem. Soc., 52, 191 (Abs.).

Sichtbare Darstellung des Brennpuncktes der ultrarothen Strahlen durch Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 26, 157-9; Phil. Mag., (5) 20, 547.

Beobachtungen über Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 30, 478-87; Jour. Chem. Soc., 52, 410 (Abs.).

(Gives the phosphorescent spectra of 16 substances prepared by Dr. Schuchardt and with Balmain's paint.)

Lumière phosphorescent des cucuyos.

Pasteur. Comptes Rendus, 59, 509; Ann. Phys. u. Chem., 124, 192; Jour. prackt. Chemie, 93, 881.

Ueber die Phosphorescenz der organischen und organisirten Körper.

Radziszewski (B.). Ann. Chem. u. Pharm., 203, 305-36; Beiblätter, 4, 620 (Abs.).

Spectrum of the light of the glow-worm.

Spiller (J.). Nature, 26, 843; Beiblätter, 6, 880.

On the causes of a light border frequently noticed in photographs just outside the outline of a dark body seen against the sky; with some introductory remarks on phosphorescence.

Stokes (G. G.). Proc. Royal Soc., 34, 68-68; Nature, 26, 142-8; Beiblätter, 6, 682 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium. Verneuil (A.). Comptes Rendus, 103, 501-4; Beiblätter, 11, 253.

Un composé de calcium sulphide ayant une phosphorescence violette.

Verneuil (A.). Comptes Rendus, 103, 600-3; Jour. Chem. Soc., 52, 2 (Abs.).

### PHOSPHORUS.

Coloration de la flamme et de ses composés, spectre du phosphore.

Christofie (P.) et Beilstein (F.). Somptes Rendus, 56, 899; Ann. Chim. et Phys., (4) 3, 281.

Spectre du phosphate.

Gouy. Comptes Rendus, 85, 70.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 38-41; Jour. Chem. Soc., 1876, 1, 454-7 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectra of phosphoric acid blowpipe beads.

Horner (C.). Chem. News, 29, 66.

Spectrum des Phosphors.

Jahresber. d. Chemie, 16 (1863), 111; 17 (1864), 109; 23 (1870), 178.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber. d. Chemie, 25 (1872), 142.

Spectrum des Phosphorescenzlichts von Phosphorit.

Kindt. Ann. Phys. u. Chem., 131, 160.

Sur la diffusion lumineuse du phosphore de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 698.

Phosphate d'erbine, émission.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV.

Sur les spectrès des vapeurs aux températures élévées; phosphore.

Lockyer (J. N.). Comptes Rendus, 78, 178, 1790; Nature, 30, 98.

Expériences spectrales tendant à démontrer la nature composé du phosphore.

Lockyer (J. N.). Comptes Rendus, 89, 514-15; Beiblätter, 4, 182 (Abs.).

Spectrum des Phosphors, etc.

Mulder. Jour. prackt. Chemie, 91, 111.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Spectres du phosphore et des composés de silicium.

Salet (G.). Comptes Rendus, 73, 1056-59.

Sur les spectres du phosphore et du soufre.

Seguin (J. M.). Comptes Rendus, 53, 1272; Phil. Mag., (4) 23, 416.

### PLATINUM.

Platinum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 89.

Spectre de chlorure de platine.

Gouy (J. R.). Comptes Rendus, 84, 231; Chem. News, 35, 107.

Distribution of heat in the spectra of various scources of radiation; platinum.

Jacques (W. W.). Proc. Amer. Acad., 14, 156.

Die optische Eigenshaften der Platincyanüre.

König (W.). Ann. Phys. u. Chem., n. F. 19, 491.

Spectre du noir de platine.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Spectre du platine incandescent.

Masson (A.). Comptes Rendus, 32, 127.

On the character and intensity of the rays emitted by glowing platinum.

Nichols (E. L.). Amer. Jour. Sci., (3) 18, 446-68.

Radiation du platine incandescent, spectre du platine.

Violle (J.). Comptes Rendus, 88, 171.

Intensités lumineuses des radiations émises par le platine inçandescent.

Violle (J.). Comptes Rendus, 92, 866-8, 1204-6; Beiblätter, 5, 508 (Abs.).

# POLARIZED LIGHT.

Die Phasenveränderung des parallel zur Einfallsebene polarisirten Lichts durch Reflexion.

Glan (P.). Ann. Phys. u. Chem., 156, 248.

Polarizationswinkel des Fuchsins.

Glan (P.). Ann. Phys. u. Chem., n. F. 7, 821.

Absorption und Emission des polarisirten Lichtes.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 296.

Sur l'illumination des corps transparents par la lumière polarisée.

Lallemand (A.). Comptes Rendus, 69, 917.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (8) 8, 5-59, 97-182, 201-28; Jour. de Phys., (2) 2, 381-6 (Abs.).

Elliptische Polarization des Lichtes und ihre Beziehung zu den Oberflächenfarben der Körper.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 1.

Ueber die elliptische Polarization des von durchsichtigen Körpern reflectirten Lichtes.

Wernicke (W.). Ann. Phys. u. Chem., (2) 30 (1887), 452-69.

#### POTASSIUM.

Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch analytischen Arbeiten.

Brücke (E.). Sitzungsber. d. Wiener Akad., 74 III, 428; Chem. Centralblatt, (3) 9, 189-43; Jour. Chem. Soc., 34, 242 (Abs.).

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Physical Soc., 2, 340-44; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Transparence des flammes colorées pour leurs propres radiations; la double raie du potassium.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Kaliums.

Jahresber. d. Chemie, 16 (1868), 112.

Linien von Kalium.

Kirchhoff (G.). Ann. Phys. u. Chem., 110, 178.

Permanganate de Potasse en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Sulfate de potasse fondu, étincelle; chlorure de potassium dans le gas.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 48, planche V.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 898-402; Beiblätter, 4, 868 (Abs.).

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 862.

Modifications of the spectrum of potassium which are effected by the presence of phosphoric acid.

Thudichum (J. L. W.). Proc. Royal Soc., 30, 278-86.

Ueber das von übermangansaurem Kali reflectirten Licht.

Wiedemann (E.). Ber. d. k. sāchs. Ges. d. Wiss. zu Leipzig, 25, 367-70;
Ann. Phys. u. Chem., 151, 625-28;
Phil. Mag., (4) 48, 221-33;
Jour. Chem. Soc., (2) 12, 120 (Abs.).

# PRESSURE.

De l'influence de la pression sur les raies du spectre.

Cailletet (L.). Bull. Soc. chim. Paris, n. s. 18, 218; Ber. chem. Ges., 5, 482; Comptes Rendus, 74, 1282.

Gasspectren bei steigendem Druck.

Jahresber. d. Chemie, 22 (1869), 178.

Einfluss des Drucks auf das Spectrum.

Jahresber. d. Chemie, 25 (1872), 142.

Effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Roval Soc., 21, 282.

### RADIATION.

Réflexions à l'occasion d'une experience de M. Dumas relative à la formation d'un acide nouveau sous l'influence de la radiation solaire.

Biot. Comptes Rendus, 8, 622.

Sur les radiations chimiques de la lumière.

Biot. Comptes Rendus, 12, 170.

Radiant Matter Spectroscopy; the Bakerian lecture.

Crookes (W.). Proc. Royal Soc., 35, 262; Chem. News, 47, 261; 49, 159, 169, 181, 194, 205; 51, 301.

Détermination du pouvoir éclairant des radiations simples.

Crova (A.) et Lagarde. Comptes Rendus, 93, 959; Jour. de Phys., (2) 1, 162-9.

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1046-9, 1100-3; Phil. Mag., (5) 5, 78-80; Jour. Chem. Soc., 34, 190 (Abs.); Beiblätter, 2, 342 (Abs.).

On the relation between the radiating and absorbing powers of different bodies for light and heat.

Kirchhoff (G.). Phil. Mag., (4) 20, 1.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-90; Ann. Phys. u. Chem., n. F. 17, 477-518.

The dynamical theory of radiation.

Schuster (A.). Phil. Mag., (5) 12, 261-6; Beiblätter, 5, 793.

# RED END OF THE SPECTRUM.

Photography of the red end of the spectrum.

Abney (W. de W.). Nature, 13, 482; Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15.

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45.

Wave-lengths of A, a and other prominent lines in the red and infra red of the visible spectrum.

Abney (W. de W.). Chem. News, 48, 283.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de la phosphorescence.

Becquerel (E.). Comptes Rendus, 83, 249.

Étude de la région infra-rouge du spectre.

Becquerel (H.). Comptes Rendus, 96, 121.

Étude des radiations infra-rouges, au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Nature, 29, 227; Amer. Jour. Sci., (3) 26, 321; Ann. Chim. et Phys., (5) 30, 5.

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Becquerel (H.). Comptes Rendus, 96, 1853.

Sichtbare Darstellung der ultrarothen Strahlen.

Lommel (E.). Ann. Phys. u. Chem., (2) 26 (1885), 157.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32.

Visible representation of the ultra-red rays.

Tyndall. Phil. Mag., (5) 20 (1885), 547; Amer. Jour. Sci., (3) 31, 150.

# REFRACTION.

Ueber die Bestimmung des specifischen Brechungsvermögens fester Korper in ihren Lösungen.

Bedson (P. P.) and Williams (W. C.). Ber. chem. Ges., 14, 2549-56;
Jour. Chem. Soc., 42, 851 (Abs.); Beiblätter, 6, 91-3 (Abs.); Jour. de Phys., (2) 1, 377 (Abs.).

- Réfrangibilité des rayons qui excitent la phosphorescence dans les corps.

  Becquerel (Ed.). Comptes Rendus, 69, 994.
- Spectrum der Brechbaren Strahlen.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Sur la double réfraction circulaire et la production normale des trois systèmes de franges des rayons circulaires.

Croullebois. Comptes Rendus, 92, 520.

Sur la variation des indices de réfraction dans les mélanges de sels isomorphes.

Dufet (H). Comptes Rendus, 86, 881-4; Jour. Chem. Soc., 34, 631-2.

Variation des indices de réfraction du quartz sous l'influence de la température.

> Dufet (H.). Comptes Rendus, 98, 1265; Jour. de Phys., 10, 518-19; Bull. Soc. minéral., 4, 191-6; 6, 76-80, 287.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 358.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Ueber die Aenderung der Brechungsexponenten isomorpher Mischungen, mit deren chemischer Zusammensetzung.

Fock (A.). Zeitschr. Krystallogr. u. Mineralog., 4, 583-608; Beiblätter, 4, 662-4 (Abs.).

- Experimentaluntersuchungen über die Intensität des gebeugten Lichtes. Fröhlich (J.). Ann. Phys. u. Chem., n. F. 15, 575-613; Jour. de Phys., (2) 1, 559 (Abs.).
- Recherches sur le réfraction de la lumière.

Gouy. Ann. Chim. et Phys., (6) 8 (1886), 145-92; Beiblätter, 11 (1887), 95 (Abs.).

Das Auge empfindet alle Strahlen die brechbarer sind als die Rothen.

Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

The refractive index and specific inductive capacity of transparent insulating media.

Hopkinson (J.). Proc. Royal Soc., 5, 88-40.

- Aenderung des Moleculargewichtes und Molecularrefractionsvermögen.

  Janowsky (J. V.). Sitzungsber. d. Wiener Akad., 81 II, 589-53; 82
  II, 147-58.
- Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Ber. chem. Ges., 16, 8047-51 (Abs.); Jour. Soc. phys. chim. russe, 15, 434-79; Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 875 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques. Second mémoire.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-31; Ber. chem. Ges., 17, Referate, 157-9 (Abs.); Nature, 30, 84 (Abs.); Beiblätter, 8, 498-6 (Abs.); Bull. Soc. chim. Paris, 41, 549 (Abs.); Jour. Chem. Soc., 48, 1-2 (Abs.).

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Constanz des Refractionsvermögens.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30 (1887), 285-99.

Ueber Prismenbeobachtungen mit streifend einfallendem Licht, und über eine Abänderung der Wollaston'schen Bestimmungsmethode für Lichtbrechungsverhältnisse.

Kohlrausch (F.). Ann. Phys. u. Chem., n. F. 16, 603.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 450.

Theorie der Doppelbrechung.

Lommel (E.). Ann. Phys. u. Chem., n. F. 4, 55. (Look below, under Voigt.)

Sur la réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 548; Berichtigung dazu, 116, 644.

Bei zunehmender Verdünnung der Gaze erlöschen zuerst die minder brechbaren Strahlen.

Plücker. Ann. Phys. u. Chem., 116, 27.

Report of the committee, consisting of Dr. J. H. Gladstone, Dr. W. R. E. Hodgkinson, Mr. Carleton Williams, and Dr. P. P. Bedson (Secretary), appointed for the purpose of investigating the Method of Determining the Specific Refraction of Solids from their solutions.

Report of the British Association, 1881, 155.

Indices de réfraction ordinaire et extraordinaire du quartz pour les rayons de différentes longueurs d'onde jusqu'à l'extrème ultra-violet.

Sarasin (E.). Archives de Genève, (2) **61**, 109-19; Comptes Rendus, **85**, 1280-2 (Abs.); Beiblätter, **2**, 77-8 (Abs.).

Indices de réfraction de spath d'Islande.

Sarasin (E.). Arch. de Genève, (3) 8, 892-4; Jour. de Phys., (2) 2, 869-71.

Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrème ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde.

Sarasin (E.). Comptes Rendus, 97, 850.

Untersuchungen über die Abhängigkeit der Molecularrefraction von der chemischen Constitution der Verbindungen.

Schroder (H.). Ber. chem. Ges., 14, 2513-16; Jour. Chem. Soc., 42, 851 (Abs.).

Indices de réfraction des aluns cristallisés.

Soret (Ch.). Comptes Rendus, 99, 867.

On a method of destroying the effects of slight errors of adjustment in experiments of changes of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 881.

Indices de réfraction des liquides.

Terquem et Trannin. Jour. de Phys., 4, 222; Ann. Phys. u. Chem., 157, 302.

Brechungsvermögen und Verbrennungswärme.

Thomsen (J.). Ber. chem. Ges., 15, 66-69; Jour. Chem. Soc., 42, 567 (Abs.); Beiblätter, 6, 377 (Abs.).

Bemerkungen zu Hrn. Lommel's Theorie der Doppelbrechung.

Voigt (W.). Ann. Phys. u. Chem., n. F. 17, 468.

Methode zur Bestimmung des Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375.

# RHABDOPHANE.

Analysis of rhabdophane, a new British mineral.

Hartley (W. N.). Jour. Chem. Soc., 41, 210-20; Chem. News, 45, 40 (Abs.).

Analysis of rhabdophane, a new British mineral.

Liveing (G. D.) and Dewar (J.). Jour. Chem. Soc., 41, 210-220; Chem. News, 45, 40 (Abs.).

# RHODIUM.

Rhodium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

### RUBIDIUM.

Observations on cæsium and rubidium.

Allen (O. D.). Amer. Jour. Sci., Nov., 1862; Phil. Mag., (4) 25, 189.

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium. Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectre du rubidium.

Gouy. Comptes Rendus, 86, 1078.

Beschreibung der Metallen Cæsium und Rubidium.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 113, 337; Phil. Mag., (4) 22, 498; 24, 46.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

### RUTHENIUM.

Ruthenium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

Professor Young and the presence of ruthenium in the chromosphere. Roscoe (H. E.). Nature, 9, 5.

#### SALT.

Blue flame from common salt.

Gladstone (J. H.). Nature, 19, 582.

Sur les caractères des flammes chargées de poussières salines.

Gouy. Comptes Rendus, 85, 439.

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148.

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-3; Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-5.

Ausschluss des Kochsalzes.

Jahresber. d. Chemie, 16 (1863), 114.

Absorptionsspectren von Salzlösungen.

Jahresber. d. Chemie, 27 (1874), 96.

On the optical properties of rock salt.

Langley (S. P.). Amer. Jour. Sci., 26 (1885), 477; Jour. de Phys., (2) 5, 188 (Abs.).

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Propriétés modulaires des pouvoirs réfringents dans les solutions salines. Valson (C. A.). Comptes Rendus, 76, 224-6; Jour. Chem. Soc., (2) 11, 460 (Abs.).

#### SAMARIUM.

### Om Samarium.

Clève (P. T.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 17-26; Beiblätter, 8, 264 (Abs.); Jour. Chem. Soc., 43, 362-70;
Chem. News, 48, 74-6; Ber. chem. Ges., 16, 2493 (Abs.); Comptes Rendus, 97, 94.

Mutual extinction of the spectra of yttrium and samarium.

Crookes (W.). Comptes Rendus, 100, 1495-7; Jour. Chem. Soc., 48, 1025 (Abs.).

Remarques sur les métaux nouveaux de la gadolinite et de la samarskite; holmium ou philippium, thulium, Samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur le samarium, radical d'une terre nouvelle extraite de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 39, 212-14; Ber. chem. Ges., 12, 2160 (Abs.); Beiblätter, 3, 872 (Abs.).

Om de lysande spectra hos Didym och Samarium.

Thalén (R.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 3-16;
Jour. de Phys., (2) 2, 446-9; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 893-5 (Abs.).

### SAMARSKITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 884 (Abs.).

Remarques sur la samarskite.

Delafontaine. Comptes Rendus, 90, 221.

Nouvelles raies spectrales observées dans des substances extraites de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 822.

Sur les terres de la samarskite.

Marignac (C.). Comptes Rendus, 90, 899-903.

Sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

### SCANDIUM.

Scandium ne donne pas de spectre.

Clève (P. T.). Comptes Rendus, 89, 420.

Sur le scandium, élément nouveau.

Nilson (L. F.). Comptes Rendus, 88, 645-8; Amer. Jour. Sci., (3) 17, 478 (Abs.); Beiblätter, 3, 359 (Abs.).

On Scandium, en ny jordmetall. (Ueber Scandium, ein neues Erdmetall.)
Nilson (L. F.). Oefversigt af k. Vetensk. Akad. Förhand., 36 III,
45-51; Ber. chem. Ges., 12, 554-7; Jour. Chem. Soc., 36, 601 (Abs.);
Beiblätter, 4, 42 (Abs.).

Sur quelques sels caractéristiques du scandium, et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 118.

Raies brilliantes spectrales du métal scandium.

Thalén (R.). Comptes Rendus, 91, 45-8; Jour. Chem. Soc., 38, 685 (Abs.).

Spektralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Akad. Förhand., 38, No. 6, 18-21; Jour. de Phys., (2) 2, 85-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

Spectraluntersuchungen über Scandium.

Thalén (R.). Oefversigt k. Vetensk. Akad. Förhand. (Stockholm), 1881, No. 6; Beiblätter, 11, 249.

### SECONDARY SPECTRUM.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., (8) 6, 172.

#### SELENIUM.

Effect of light upon selenium.

Adams (W. G.). Proc. Royal Soc., 23, 535; Ann. Phys. u. Chem., 159, 625.

Nouvelle note sur la propriété spécifique du sélénium à l'égard des radiations thermiques.

Assche (F. van). Comptes Rendus, 97, 945.

Selenium and tellurium spark spectrum; selenium and iron spark spectrum; selenium and aluminium spark spectrum; iron meteoric arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 32, 33, 40.

Spectre du sélénium.

Ditte. Comptes Rendus, 73, 623.

Spectre d'absorption du vapeur de l'acide sélénieux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Bromselens und des Chlorselens.

Jahresber. d. Chemie, 17 (1864), 109; 25 (1872), 139, 140.

Spectrum des Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Spectrum von Selenwasserstoff.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectres du sélénium et du tellure.

Salet (G.). Comptes Rendus, 73, 742, 743.

Ueber die Refraction und Dispersion des Selens.

Sirks (J. L.). Ann. Phys. u. Chem., 143, 429-39; Ann. Chim. et Phys., (4) 26, 286 (Abs.).

#### SILICIUM.

Silicic fluoride spectrum; silicic quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Line spectra of boron and silicon.

Hartley (W. N.). Proc. Royal Soc., 35, 301-4; Chem. News, 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120.

Spectrum des Phosphorescenzlichts von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde. Lepel (F. von). Ber. chem. Ges., 9, 1641.

Spectres des composés de silicium.

Salet. Comptes Rendus, 73, 1056-9.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (3) 10, 303-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Spectre du silicium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectre du silicium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Absorptionsspectrum des Granats und Rubins; Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373-5; Jour. Chem. Soc., 1877, 2, 269 (Abs.); Beiblätter, 1, 242 (Abs.).

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

### SILVER.

Effect of the spectrum on silver chloride.

Abney (W. de W.). Rept. British Assoc., 1881, 594; Chem. News, 44 (1881), 184.

Effect of the spectrum on the haloid salts of silver and on mixtures of the same.

Abney (W. de W.). Proc. Royal Soc., 33, 164-86; Jour. Chem. Soc., 42, 565 (Abs.); Chem. News, 44 (1881), 297.

Comparative effect of different parts of the spectrum on silver salts.

Abney (W. de W.). Proc. Royal Soc., 40, 251-2; Jour. Chem. Soc., 50, 749 (Abs.); see preceding reference.

Action des rayons différemment réfrangibles sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Silver spark spectrum; silver arc spectrum; silver and copper (alloy) arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 42, 48.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseaux (Des). Bull. Soc. minéral. de France, 5, 25.

Renversement des raies spectrales de l'argent.

Cornu (A.). Comptes Rendus, 73, 332.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 38, 379-81; Jour. Chem. Soc., 36, 504 (Abs.).

Les salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Erganzungsband, 6 (1874), 884-5; Phil. Mag., (4) 46, 329-30; Jour. Chem. Soc., (2) 12, 118.

Spectre de l'azotate de l'argent.

Gouy. Comptes Rendus, 84, 231; Chem News, 35, 107.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-9; Zeitsch. analyt. Chemie, (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

On the action of the less refrangible rays of light on silver iodide and silver bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1876, 1, 28 (Abs.).

Note on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

On the sensitiveness to light of various salts of silver.

Lea (M. Carey). Amer. Jour. Sci., (3) 13, 369-71; Jour. Chem. Soc., 1877, 2, 690 (Abs.); Beiblätter, 1, 405 (Abs.).

On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (8) 14, 96-9; Beiblätter, 1, 563 (Abs.).

Azotate de l'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze und den Zusammenhang von optischer und chemischer Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 161-71; Ber. chem.
Ges., 4, 210 (Abs.); Jour. Chem. Soc., (2) 9, 302 (Abs.); Phil. Mag.,
(4) 41, 549 (Abs.); Ann. Chim. et Phys., (4) 26, 280 (Abs.).

Chemische und mechanische Veränderung der Silberhaloïdsalze durch das Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 439-49; Ber. chem. Ges., 4, 343-5; Phil. Mag., (4) 41, 550-2.

Bestimmung der Salpetersäure und Phosphorsäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. analyt. Chemie. 20, 116-17.

- Azione dei raggi solari sui composti aloidi d'argento.
  - Tommasi (D.). Rend. del R. Ist. Lomb., 11, 662-8; Beiblätter, 3 621-2 (Abs.).
- Sur la radiation de l'argent au moment de sa solidification.
  - Violle (J.). Comptes Rendus, 96, 1083-5; Chem. News, 47, 213 (Abs.); Beiblatter, 7, 457 (Abs.).
- Ueber die Lichtempfindlichkeit des Bromsilbers für die sogenannten chemisch unwirksamen Farben.
  - Vogel (H. W.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. u. Chem.
    150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (3) 7, 140-1; Phil. Mag., (4) 47, 273-77; Bull. Soc. chim. Paris, n s. 21, 233.
- Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.
  - Vogel (H. W.). Ber. chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1876,
    1, 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).
- Neue Beobachtungen über die Lichtempfindlichkeit des Bromsilbers.
  - Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 1876, 2, 265 (Abs.).
- Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.
  - Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Jour. Chem. Soc., 40, 773 (Abs.); Beiblätter, 5, 521 (Abs.).
- Ueber die verschiedenen Modificationen des Bromsilbers und Chlorsilbers. Vogel (H. W.). Ber. chem. Ges., 16, 1170-9; Beiblätter, 7, 536 (Abs.).
- Ueber die chemische Wirkung des Sonnenspectrums auf Silberhaloïdsalze. Vogel (H. W.). Ann. Phys. u. Chem., 153, 218-50; Jour. Chem. Soc., (2) 13, 326 (Abs.).
- Ueber die Brechung und Dispersion des Lichtes in Iod-, Brom-und Chlor-Silber.
  - Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653-4 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

### SODIUM.

Spectrum of sodium.

Abney (W. de W.). Chem. News, 44, 8.

Note on the spectrum of sodium.

Abney (W. de W.). Proc. Royal Soc., 32, 448.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Lumière jaune de la flamme de sodium.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectronatromètre.

Champion (P.), Pellet (H.) et Grenier (M.). Comptes Rendus, 76, 707-11; Jour. Chem. Soc., (2) 11, 984-5 (Abs.). (Look below, under Janssen.)

Spectre de la soude dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Renversement des raies spectrales du sodium.

Cornu (A.). Comptes Rendus, 73, 882; Jour. de Phys., 1, 206.

Ueber die Opacität der gelben Natronflamme für Licht von ihrer eignen Farbe.

Crookes (W.). Ann. Phys. u. Chem., 112, 844.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 828-5; Beiblätter, 5, 41.

Das Verhältniss der Intensitäten der beiden Natriumlinien.

Dietrich (W.). Ann. Phys. u. Chem., n. F. 12, 519.

Spectre de sodium.

Fizeau (H.). Comptes Rendus, 54, 498; Ann. Phys. u. Chem., 116, 492.

Recherches photométriques sur le sodium.

Gouy. Comptes Rendus, 83, 269; 85, 70; 86, 878, 1078.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv dazustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477. 22 T

dur l'emploi le la lomière monneuromatique produite par les seis de sonde pour apprécier les changements de conicer de la tointure de l'entreed, dans les seus sikulimétraues.

Henry L. C., Compton Bonding, 76, 122-4; Ann. Chang. J. Pharm., 1997, 270; Dington, Jour., 207, 465-7.

fode flames in most fires.

Berschot J., Nature, 27 P. 188.

Brestrim des Natrinme.

Johnscher, L. Chemie, 15 1882, 33, 35.

Umbehrung der hellen Spectrallinien der Metaile, insbosondere des Natriums in daubie.

Jahresher, d. Chemie. 18 1985), 18.

Note sur l'analyse spectrule quantitative, à propus de la communication précédente de M. M. Champion, Pellet et Granier.

Jansson J., Comptes Rendus, 78, 711-13; Jour. Chem. Soc. . 23 II. 1258 (Abs.).

Chemische Analyse durch Spectralhesbachtungen: Linien vom Natrium.

Rivelhoff (G., und Bunsen (R.). Ann. Phys. 2. Chem., 110, 161-77.

Ceher anomale Dispersion im glühenden Natriumdamp.

Konde (A.). Ann. Phys. v. Chem., n. F. 10, 321-5; Phil. Mag., 5; 10, 59-7.

Anifete de sonde fondu, étincelle; sels de soude dans le gaz; sais de soude et de lithine dans le gaz.

Lecon de Brisbandran (F.). Spectres Lumineux. Paris. ISTA p. 54.
56, planche V, VI.

Reversal of the lines of the metallic vapours, sodium.

Liveing and Dewar. Nature, 24, 205; 26, 465.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 236-422; Baiblatter, 4, 868 (Alm.).

Note on some phenomena attending the reversal of lines.

Lankyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblätter, 3, 506 (Alm.).

Note on the spectrum of sodium.

Lockyer (J. N.). Proc. Royal Soc., 29, 140; Chem. News, 39, 243.

Spectrum of sodium at elevated temperatures.

Lockyor (J. N.). Uhem. News, 30, 98.

Sur les raies de la vapeur de sodium.

Lockyer (J. N.). Comptes Rendus, 88, 1124.

Die Natriumline gehört dem Metall an.

Mitscherlich (A.). Ann. Phys. u. Chem., 116, 505.

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 862.

Indice du quartz pour les raies du sodium.

Sarasin (Éd.). Comptes Rendus, 85, 1230.

Et spectres du fer et quelques autres métaux dans l'arc voltaïque; sodium. Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.

Spectre du sodium.

Secchi (A.). Comptes Rendus, 82, 275.

Propriétés optiques de sous carbonate de soude et de hyposulfite de soude. Senarmont (H. de). Ann. Chim. et Phys., (8) 41, 336.

Sur le déplacement des raies du sodium, observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 871.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 821; Phil. Mag., (4) 41, 404.

(See Soret. Arch. de Genève, (2) 41, 64-5.)

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. minéral. de France, 5, 160-1.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 870.

### STRONTHEM

Ueber den Einflum der Temperatur auf die Brechungsexpannenten der naturlichen Sulfate des Baryum, Strontium und Blei.

Arzuni (A.). Zeitschr. Krystallogr. u. Mineral., I. 185-192; Jainris. f. Mineral., 1877, 528 (Abs.); Jour. Chem. Soc., 38, 189 (Abs.).

Strontium spark spectrum.

Capron (J. R.). Photographed Spectra, London. 1877. p. 44.

La strontiane dans les eaux minérales de Contrexeville et Schingmach (Suince).

Dieulafait. Comptes Readus, 95, 999-1691; Juur. Chem. Soc., 46, 301 (Abs.).

Recherches photométriques sur le stroutium.

Gouy. Comptex Rendue, 83, 269.

Spectre de chlorure de strontium.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques; spectre du strontium.

Gouy. Comptes Rendus, 85, 70.

Sur les caractères des flammes chargées du chlorure de strontium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du strontium.

Gouy. Comptes Rendus, 86, 878, 1078.

Spectrum von Strontium.

Jahresber. d. Chemie, 23 (1870), 174.

Chlorure de strontium en solution, étincelle; dans le gaz; dans le gaz chargé de H Cl.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 69, planche IX; p. 72 et 75, planche X.

Linien von Strontium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 174.

### SULPHUR.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 85-8; Nature, 35, 855 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 888 (Abs.); Jour. de Phys., (2) 2, 287 (Abs.).

Spectres des gaz simples; soufre.

Angström (A. J.). Comptes Rendus, 73, 869; Ann. Phys. u. Chem., 94, 159.

Spectre du sulfure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Sulphur spectrum, sulphuric acid spectrum, sulphur quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 68, 74, 75.

Spectrum von Schwefel.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 527-34.

Spectre du soufre.

Ditte (A.). Comptes Rendus, 73, 622-4; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectres d'absorption des vapeurs de soufre.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 259.

Spectre de sulfate de thallium,

Gouy. Comptes Rendus, 84, 881.

Sulfate acide.

Gouy. Comptes Rendus, 85, 70.

Spectrum of murexide.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 199-200.

Spectrum des Schwefels.

Jahresber. d. Chemie, 16 (1863), 110; 17 (1864), 109; 22 (1869), 181; 23 (1870), 178; 25 (1872), 189, 141; 28 (1875), 122.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 698.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 218, 215.

Sur les spectres des vapeurs aux températures élévées; spectre du soufre. Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chemical News, 30, 98.

Spectrum des Schwefels, Schwefelkohlenstoffs, Schwefelwasserstoffs und Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Sulla refrazione atomica dello zolfo.

Nasini (R.). Gazz. chim. ital., 13, 296-311; Jour. Chem. Soc., 46, 149-51 (Abs.); Ber. chem. Ges., 15, 2878-92; Beiblätter, 7, 281 (Abs.).

Dampf des wasserfreien Schwefelsäure.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectrum des Muroxids.

Reynolds. Jour. prackt. Chemie, 105, 859.

De la flamme du soufre, et des diverses lumières utilisables en photographie.

Riche (A.) et Brady (C.). Comptes Rendus, **80**, 238-41; Ber. chem. Ges., **8**, 182 (Abs.).

Recherche du soufre par le spectroscope.

Salet (G.). Comptes Rendus, 68, 404; Bull. Soc. chim. Paris, n. s. 11, 302; Ann. Phys. u. Chem., 137, 171.

Spectre du soufre.

Salet (G.). Comptes Rendus, 73, 559.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Sur la réaction spectroscopique du soufre et sur la flamme de l'hydrogène. Salet (G.). Bull. Soc. chim. Paris, n. s. 14, 182.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Sur les spectres du phosphore et du soufre.

Séguin (J. M.). Comptes Rendus, 53, 1272.

Propriétés optiques d'hyposulfite de soude.

Sénarmont (H. de). Ann. Phys. u. Chem., (3) 41, 836.

#### TELLURIUM.

Tellurium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 40, 45.

Spectre du tellure.

Ditte (A.). Comptes Rendus, 73, 622-24.

Sur les spectres d'absorption de tellure, de protochlorure et de protobromure de tellure.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., (8) 4,
59 (Abs.); Bull. Šoc. chim. Paris, n. s. 18, 172.

Spectrum des Tellurs.

Jahresber. d. Chemie, 25 (1872), 140.

Spectre du tellure.

Salet (G.). Comptes Rendus, 73, 744.

## TERBIUM.

Absorptionsspectrum von Terbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 808.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 635; Chem. News, 11, 253; Ann. Chim. et Phys., 135, 194.

Sur un spectre électrique particulier aux terres rares du groupe terbique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 158-55; Jour. Chem. Soc., 50, 298 (Abs.).

## THALLIUM.

Thallium and indium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 45, 47.

Renversement des raies spectrales du thallium.

Cornu (A.). Comptes Rendus, 73, 832.

Discovery of thallium.

Crookes (W.). Chem. News, 3, 198.

Thallium and its compounds.

Crookes (W.). Jour. Chem. Soc., 17, 112.

Recherches photométriques sur le thallium.

Gouy. Comptes Rendus, 83, 269.

Spectre de sulfate de thallium.

Gouy. Comptes Rendus, 84, 231.

Spectrum des Thalliums und der Thalliumsalzen.

Jahresber. d. Chemie, 16 (1863), 112; 26 (1878), 152, 158.

Sur le thallium, nouveau métal dont l'analyse spectrale a fait connaître l'existence.

Lamy (A.). Comptes Rendus, 54, 1255; Ann. Chim. et Phys., (3) 67 385; Ann. Phys. u. Chem., 116, 495.

Moyen de constater une empoisonnement par le thallium.

Lamy (A.). Comptes Rendus, 57, 442.

Sels de thallium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 141, planche XXI.

Spectre de thallium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Soc. chim. de Paris, n. s. 21, 125.

Note on the spectrum of thallium.

Miller (W. A.). Proc. Royal Soc., 12, 407.

Sur la raie spectrale du thallium.

Nicklés. Comptes Rendus, 58, 132; Ann. Phys. u. Chem., 121, 836.

Spectre du thallium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

## THULIUM.

Spectre de thulium.

Clève (P. T.). Comptes Rendus, 89, 478; 91, 828.

Remarques sur le thulium.

Delafontaine. Comptes Rendus, 90, 221.

Examen spectral du thulium.

Thalén (R.). Comptes Rendus, **91**, 876-8; Jour. Chem. Soc., **40**, 349-50 (Abs.); Beiblätter, **4**, 789 (Abs.).

Spectralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Acad. Förhand., 38, No. 6, 18-21; Jour. de Phys., (2) 2, 35-40; Ohem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

## TIN.

- Tin arc spectrum; tin and zinc spark spectrum; tin chloride spectrum.

  Capron (J. R.). Photographed Spectra, London, 1877, p. 49, 76.
- Bichlorure d'étain en solution, étincelle.

Lecoq de Boisbaudran (F.), Paris, 1874, p. 148, planche XXII.

Spectres d'étain et ses composés.

Salet (G.). Comptes Rendus, 73, 862-3; Jour. Chem. Soc., (2) 9, 1147-9 (Abs.).

## TITANIUM.

Spectre du bichlorure de titanium.

Becquerel (H.). Comptes Rendus, 85, 1227.

Titanium spark spectrum; titanium, aluminium, and palladium spark spectrum; titanium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 47.

Spectre du titanium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Coïncidence of the spectrum lines of iron, calcium, and titanium.
Williams (W. Matthieu). Nature, 8, 46.

## URANIUM.

Analyse de la lumière émise par les composés d'uranium phosphorescents.

Becquerel (E.). Comptes Rendus, 75, 296-308; Jour. Chem. Soc., (2)

11, 25 (Abs.); Amer. Jour. Sci., (8) 4, 486 (Abs.).

Relation entre l'absorption et la phosphorescence des composés d'uranium.

Becquerel (H.). Comptes Rendus, 101, 1252-6; Jour. Chem. Soc.,
50, 189 (Abs.).

Uranium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 50.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uransäure. Juhresber. d. Chemie, 5 (1862), 125.

Absorptionsspectren der Uransalzen.

Jahresber. d. Chemie, 26 (1878), 158.

Investigation of the fluorescent and absorption spectra of the uranium salts.

Morton (H.) and Bolton (H. C.). Chem. News, 28, 47-50, 118-16, 164-7, 233-4, 244-6, 257-9, 268-70; 29, 17-19; Jour. Chem. Soc., (2) 12, 12-18 (Abs.), 642 (Abs.).

On some remarkable spectra of compounds of zirconia and of the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectra der Uranlösungen.

Thudichum. Jour. prackt. Chemie, 106, 415.

Absorption spectrum of uranine.

Wiley (H. W.). Amer. Chem. Jour., 1, 211.

Untersuchungen über das Uran.

Zimmermann (C.). Ann. Phys. u. Chem., 213, 285-329; Chem. News, 46, 172 (Abs.); Zeitschr. analyt. Chemie, 23, 220 (Abs.).

## VANADIUM.

Vanadium arc spectrum.

Capron (J..). Photographed Spectra, London, 1877, p. 50.

# VIOLET AND ULTRA-VIOLET.

Sur l'absorption des rayons ultra-violets par quelques milieux.

Chardonnet (E. de). Comptes Rendus, 93, 406.

Vision des radiations ultra-violettes.

Chardonnet (E. de). Comptes Rendus, 96, 509-71; Jour. de Phys., 12, 219.

Sur l'absorption atmosphérique des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5-16.

Erklärung der ultra-violetten Strahlen des Spectrums.

Eisenlohr (W.). Ann. Phys. u. Chem., 93, 623.

Note upon certain photographs of the ultra-violet spectra of elementary bodies.

Hartley (W. N.). Jour. Chem. Soc., 41, 84-90; Chem. News, 43, 289 (Abs.); Beiblätter, 5, 659 (Abs.); 6, 789 (Abs.).

Investigation by means of photography of the ultra violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195; note on the above by Wiedemann (E.), Chem. News, 49, 117; Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 581 (Abs.).

Visibility of the ultra-violet rays of the spectrum.

Herschel (A. S.). Nature, 16, 22-3.

On the ultra-violet spectra of the elements.

Liveing (G. D.) and Dewar (J.). Phil. Trans., 174, 187-222; Proc.
Royal Soc., 34, 122 (Abs.); Beiblätter, 6, 934 (Abs.); 7, 598, 849-56
(Abs.); Jour. Chem. Soc., 44, 262 (Abs.); Proc. Royal Institution, 10, 245-52.

Notes on the absorption of ultra-violet rays by various substances.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 71.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111.

Visibilité des rayons ultra-violets.

Mascart. Comptes Rendus, 68, 402; Ann. Phys. u. Chem., 137, 163.

Spectres ultra-violets.

Mascart. Comptes Rendus, 69, 387.

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. Acad. Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

Fluorescence and the violet end of a projected spectrum.

Morton (Henry). Chem. News, 27, 83.

Photographie des durch ein Quarzprisma erhaltenen ultra-violetten Theils des Spectrums.

Müller (J.). Ann. Phys. u. Chem., 109, 151.

A comparison of the maps of the ultra-violet spectrum.

Pickering (E. C.). Amer. Jour. Sci., (3) 32, 223-6; Beiblätter, 11 (1887), 145 (Abs.).

On the lower limit of the prismatic spectrum, with especial reference to some observations of Sir J. Herschel.

Rayleigh (Lord). Phil. Mag., (5) 4, 848-58; Beiblätter, 1, 682 (Abs.).

Report on the ultra-violet spark spectra emitted by metallic elements.

Report of the British Association, 1882, p. 143, presented by Prof.
Hartley; Nature, 26, 458.

Nicht alle Quarzprismen verlängern das Spectrum am ultravioletten Ende.

Salm-Horst (Der Fürst zu). Ann. Phys. u. Chem., 109, 158.

Experimente über die Sichtbarkeit ultra-violetter Strahlen.

Sauer (L.). Ann. Phys. u. Chem., 155, 602.

Ueber ultra-violette Strahlen.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 9, 483-92; 10, 148-8.

Der ultra-violette Theil des Spectrums lässt sich unmittelbar sichtbar machen.

Seculic (M.). Ann. Phys. u. Chem., 146, 157.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J.). Comptes Rendus, 86, 708, 1062-4; Arch. de Genève, (2)
63, 89-112; (3) 4, 261-92, 377-81; 10, 429-94; Beiblätter, 2, 410 (Abs.); 3, 196 (Abs.); 5, 124 (Abs.); Jahresber. d. Chemie (1873), 154.

- Sur la transparence des milieux de l'œil pour les rayons ultra-violets. Soret (J. L.). Comptes Rendus, 88, 1012.
- Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

  Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.
- Sur la visibilité des rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 97, 314.

Sur l'absorption des rayons ultra-violets par les milieux de l'œil et par quelques autres substances.

Soret (J. L.). Comptes Rendus, 97, 572, 642.

The Change of Refrangibility of Light. (Gives a drawing of the fixed lines in the solar spectrum in the extreme violet and in the invisible region beyond.)

Stokes (G. G.). Phil. Trans. for 1852, part II, 463.

Visibilité des rayons ultra-violets, à l'aide du parallelipipède de dispersion.

Zenger (Ch. V.). Comptes Rendus, 98, 1017.

## VOLCANOES.

Observations on Mt. Etna.

Langley (S. P.). Amer. Jour. Sci., (3) 20, 88-4; Beiblätter, 4, 790 (Abs.).

Recherches spectroscopiques sur les fumerolles de l'éruption du Vesuve en avril 1872.

Palmieri (L.). Comptes Rendus, 76, 1427-8.

### WATER SPECTRA.

Colour of the Mediterranean and other waters.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 472-83; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 379 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Évaporation de l'eau sous l'influence de la radiation solaire ayant traversé des verres colorés.

Baudrimont (A.). Comptes Rendus, 89, 41-8.

Spectre de l'eau.

Becquerel (H.). Comptes Rendus, 85, 1227.

The spectroscope in water analysis.

Church (A. H.). Chem. News, 22, 322.

Indices de réfraction de l'eau en surfusion.

Damien (B. C.). Jour. de Phys., 10, 198-202.

Untersuchungen einiger Wässer.

Dibbits. Jour. prackt. Chemie, 92, 38, 50.

Spectre lumineux de l'eau.

Huggins (W.). Comptes Rendus, 90, 1455.

Spectres d'absorption de la vapeur d'eau.

Janssen (J.). Comptes Rendus, 56, 538; 60, 213; 63, 289; 78, 995;
95, 885; Phil. Mag., (4) 32, 315; Ann. Chim. et Phys., (4) 24, 215–17; Jour. Chem. Soc., (2) 10, 280 (Abs.); Jahresber. d. Chemie (1866), 76.

Spectre de la vapeur d'eau.

Lecoq de Boisbaudran (F.). Comptes Rendus, 74, 1050.

Spectrum of water.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 580; 33, 274-6; Jour. Chem. Soc., 44, 140 (Abs.); Beiblätter, 6, 481 (Abs.).

Sur la réfraction de l'eau comprimée.

Mascart. Comptes Rendus, 78, 801-5; Amer. Jour. Sci., (3) 7, 593;
Ann. Phys. u. Chem., 153, 154-8.

Studî spettrali sub colore delle acque, nota seconda.

Riccò (A.). Mem. Spettr. ital., 8, 1-10.

Ueber die Absorption des Lichts durch Wasser, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 670-5; Jour. Chem. Soc., 34, 698 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080.

Sur la couleur de l'eau.

Soret (J. L.). Arch. de Genève, (3) 11, 276-96; Beiblätter, 8, 508 (Abs.); Jour. de Phys., 13, 427.

Spectre d'absorption de l'eau.

Soret (J. L.) et Sarasin (Ed.). Comptes Rendus, 98, 624; Amer. Jour. Sci., (3) 27, 485.

Ueber die Absorption des Seewassers.

Vogel (H. W.). Beiblätter, 7, 582.

### WAVE-LENGTHS.

- Wave-lengths of A, a and lines in the infra-red of the visible spectrum.

  Abney (W. de W.). Nature, 29, 190; Chem. News, 48, 283; Comptes Rendus, 97, 1206.
- Corrections to the computed lengths of waves of light, published in the Philosophical Transactions of the year 1868.

Airy (G. B.). Phil. Trans., 1872, 142, 89-109; Proc. Royal Soc., 20, 21-2 (Abs.).

Wellenlänge Messungen.

Angström (A. J.). Ann. Phys. u. Chem., 123, 489; Jahresber. d. Chemie (1865), 85.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 77, 302; Jahresber. d. Chemie (1873), 160.

Phosphorographie de la région infra-rouge du spectre solaire; longueur d'onde des principales raies.

Becquerel (H.). Comptes Rendus, 96, 121.

On the absolute wave-length of light.

Bell (Louis). Phil. Mag., (5) 23 (1887), 265-82; Amer. Jour. Sci., (3) 33, 167-82.

Photometrische Untersuchungen.

Bohn (C.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 886.

Détermination des longueurs d'onde des radiations très réfrangibles. Cornu (A.). Jour. de Phys., 10, 425.

Étude spectrométrique de quelques scources lumineuses.

Crova (A.). Comptes Rendus, 87, 822.

Comparaison photométrique des scources lumineuses des teintes différentes.

Crova (A.). Comptes Rendus, 93, 512; Ann. Chim. et Phys., (6) 6, 528-45.

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desaines (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Wellenlänge der Fraunhofer Linien.

Ditscheiner (L.). Ber. d. Wiener Akad., Bd. II, Abth. 1, 296; Amer. Jour. Sci., (8) 3, 297-9.

Die brechbarston oder unsichtbaren Lichtstrahlen im Beugungspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353; 99, 159-62.

Eine Wellenmessung im Spectrum jenseits des Violetts.

Esselbach (E.). Ann. Phys. u. Chem., 98, 518.

Les vibrations de la matière et les ondes de l'éther dans les combinations photochimiques.

Favé. Comptes Rendus, 86, 560-5.

On the normal solar spectrum. (Gives the wave-lengths of the principal lines of the solar spectrum.)

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

On the measurement of wave-lengths by means of indices of refraction.

Gibbs (Wolcott). Amer. Jour. Sci., March, 1869; Phil. Mag., (4) 50, 177. [See also Rep'ts British Association for 1881 and 1884.]

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-272; 85, 70, 439; 86, 878, 1078;
Ann. Chim. et Phys., (5) 18, 5-101.

Measurements of the wave-lengths of lines of high refrangibility in the spectra of elementary substances.

Hartley (W. N.) and Adeney (W. E.). Phil. Trans., 175, 63-137;
Proc. Royal Soc., 35, 148 (Abs.); Chem. News, 47, 193 (Abs.); Beiblätter, 7, 599 (Abs.).

Zur Reduction der Kirchhoff'schen Spectralbeobachtungen auf Wellenlängen.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 25, 131-46; Beiblätter, 3, 79.

Note sur l'analyse spectrale.

Janssen (J.). Comptes Rendus, 76, 711-13; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 337–378; Amer. Jour. Sci., (3) 23, 486 (Abs.); Monatsber. d. Berliner Acad. (1864), 632.

Ueber die Empfindlichkeit des normalen Auges für Wellenlängenunterschiede des Lichtes.

König (A.) und Dieterici (C.). Ann. Phys. u. Chem, n. F. 22, 579-89; Jour. de Phys., (2) 4, 823 (Abs.).

Mesure de l'intensité photométrique des raies spectrales. Lagarde (H.). Comptes Rendus, 95, 1850.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-869, planche.

Wave-lengths in the invisible spectrum.

Langley (S. P.). Trans. National Acad. Sci. (1883); Amer. Jour. Sci.,
(3) 27, 169; (3) 30, 480; Ann. Chim. et Phys., (6) 2, 145; Ann. Phys. u. Chem., n. F. 22, 598.

On hitherto unrecognized wave-lengths.

Langley (S. P.). Amer. Jour. Sci., (3) 32, 83; Phil. Mag., (5) 22 (1886), 149.

Courbe représentant le rapport des longueurs d'ondes aux divisions de mon micrométre.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 194, planche XXIX.

Comparaison photométrique des diverses parties du même spectre.

Macé de Lépinay (J.). Ann. Chim. et Phys., (5) 24, 289; 30, 145; Jour. de Phys., 12, 64.

Sur une méthode pratique pour la comparaison spectroscopique des scources usuelles diversement colorées.

Macé de Lépinay (J.). Comptes Rendus, 97, 1428.

Méthode pour mesurer, en longueurs d'onde, de petites épaisseurs.

Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10, 68-84; Jour. de Phys., (2) 5, 405-11.

Détermination de la longueur d'onde de la raie A du spectre.

Mascart. Comptes Rendus, 56, 138.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111.

Longueurs d'onde de quelques métaux.

Mascart. Ann. de l'École normale, 4 (1866).

Spectralphotometrische Untersuchungen einiger photographischer Sensibilisatoren.

Messerschmidt (J. B.). Ann. Phys. u. Chem., (2) 25, 655-74; Jour. Chem. Soc., 48, 1097 (Abs.); Jour. de Phys., (2) 5, 518.

Sur la détermination des longueurs d'onde calorifiques.

Mouton. Comptes Rendus, 88, 1078-82; Beiblätter, 3, 616-18 (Abs.)

Wellenlänge und Breebungsexponent der äusserstern dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543, Berichtigung dazu, 116. 644; Phil. Mag., (4) 26, 259; 30, 76; Jahrenber. d. Chemie. 16 (1863), 191; 18 (1865), 229.

Note on the progress of experiments for comparing a wave-length with a metre.

Peires (C. S.). Amer. Jour. Sci., (3) 18, 51; Beiblätter, 2, 711 (Abs.).

The ghosts in Rutherford's diffraction spect um.

Peirce (C. S.). Amer. Jour. Mathematics, 2, 330-47; Nature, 20, 93 (Abs.); Beiblätter, 5, 48-50 (Abs.).

Photometric Researches.

Pickering (W. H.). Proc. Amer. Acad., 15, 236-50; Beiblätter, 4, 728 (Abs.).

Photometrische Untersuchungen.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 16, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285 (Abs.).

Tableau de conversion de l'échelle spectrale en longueurs d'onde.

Salet (G.). Bull. Soc. chim. Paris, n. s. 27, 482.

On the relative wave-lengths of the lines of the solar spectrum.

Rowland (Henry A.). Phil. Mag., (5) 23 (1887), 257.

Three years' experimenting in mensurational spectroscopy

Smyth (Piazzi). Nature, 22, 193-5, 222-5.

Mémoire sur la détermination des longueurs d'onde des raies métalliques, spectres des métaux dessinés d'après leurs longueurs d'onde. (With a plate giving the lines and wave-lengths of forty-five metals.)

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 202; Nova Acta Reg. Soc. Sci. Upsala, (3) 6.

Longueur d'onde des bandes spectrales donnees par les composé du carbone.

Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5) 25, 287.

Mesures photométriques dans les différentes régions du spectre.

Trannin (H.). Jour. de Phys., 5, 297, 349.

Photometrie der Fraunhofer Linien.

Vierordt (K.). Ann. Phys. v Chem., n. F. 13, 338-46.

Resultate spectralphotometrischer Untersuchungen.

Vogel (H. C.). Monatsber, d. Berliner Akad. (1880), 801-11; Beiblätter, 5, 286 (Abs.).

Messung der Wellenlängen des Lichtes mittels Interferenzstreifen im Beugungsstreifen.

Weinberg (M.). Carl's Repertorium, 19, 148-54; Beiblätter, 7, 299 (Abs.).

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 148-4.

## YELLOW BODIES.

Spectrum gelber Körper.

Thudichum. Ber. chem. Ges., 2, 63.

## YMMERBIUM

Examen spectrale de l'ytterbine.

Lesse de Boisbaudran (F.). Comptes Rendus, 38, 1342.

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3) 17, 63 (Abs.); Jour. Chem. Soc., 38, 118 (Abs.).

Sur l'ytterbine, terre nouvelle de M. Marignac.

Nilson (L. F.). Comptes Rendus, **88.** 642-5; Amer. Jour. Sci., (3) **17**, 478 (Abs.); Ber. chem. Ges., **12**, 550-3; Jour. Chem. Soc., **26**, 601 (Abs.).

Sur quelques caractéristiques de l'ytterbium et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 56.

Recherches spectrales de l'ytterbium.

Thalén (R.). Jour. de Phys., 12, 35.

Spectres de l'ytterbium et de l'erbium.

Thalén (R.). Comptes Rendus, 91, 326; Beiblätter, 5, 122; Chemical News, 42, 184.

## YTTRIUM.

Yttrium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 51.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 198-201, 289-97; Jour. Chem. Soc., (2) 11, 136-9.

Sur les poids atomiques de l'yttrium.

Clève (P. T.). Bull. Soc. chim. Paris, 39, 120-2; Amer. Jour. Sci., (3) 25, 381 (Abs.).

On radiant matter spectroscopy. The detection and wide distribution of yttrium.

Crookes (W.). Phil. Trans., 174, 891-918; Proc. Royal Soc., 35, 262 (Abs.); Chem. News, 47, 261 (Abs.); Ber. chem. Ges., 16, 1689 (Abs.); Jour. Franklin Inst., 36, 118-128; Beiblätter, 7, 599 (Abs.); Jour. Chem. Soc., 46, 241 (Abs.); Chem. News, 49, 159-60, 169-71, 181-2, 194-6, 205-8; Ann. Chim. et Phys., (6) 3, 145-87.

Spectre des terres faisant partie du groupe de l'yttria et de la cérite; holmium, philippium, samarium, décipium.

Soret (J. L.). Comptes Rendus, 89, 521-3; 91, 378; Ber. chem. Ges.,
 12, 2267-8; Jour. Chem. Soc., 38, 7 (Abs.); Chem. News, 40, 147.

Spectre de l'yttrium. Avec une planche.

Thalén (R.). Jour. de Phys., 4, 38.

### ZINC.

Ueber die optischen Eigenschaften der Zinchlende von Santander. (See under Voigt, below.)

Calderna (L.). Zeitschr. Krystallogr. u. Mineralog., 4, 504-17. Bei-Mätter, 5, 251 (Aba.).

## Zinc spectra

Capron (J. R.). Photographed Spectra, London, 1877, p. 23, 49, 51, 52.

Déterminations des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31; Comptes Rendus, 73, 332.

Spectre du chlorure de zinc.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Chlorure de zinc en solution.

Lecon de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Spectrum of zinc at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98; Proc. Royal Soc., 17, 289; 18, 79; 21, 83; Jahresber. d. Chemie (1872), 145.

Indice du quartz pour les raies du zinc.

Sarasin (E.). Comptes Rendus, 85, 1280.

Ueber den Einflüss einer Krümmung der Prismenflächen auf die Messungen von Brechungsindices, und über die Beobachtungen des Herrn Calderon an der Zincblende.

Voigt (W.). Zeitschr. f. Krystallogr. u. Mineral., 5, 118-130; Beiblätter, 5, 861-2 (Abs.).

## ZIRCONIUM.

Zirconium arc spectrum; zirconium and palladium spark spectrum; zirconium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 53.

On zirconia.

Hannay (J. B.). Jour. Chem. Soc., (2) 11, 703-10; Ber. chem. Ges., 6, 571 (Abs.).

Absorption spectra of zircons.

Linnemann (E.). Monatsber. f. Chemie, 6, 581-6; Jour. Chem. Soc., 48, 1178 (Abs.).

On some remarkable spectra of compounds of zirconia and the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectre du zirconium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim Paris, n. s. 16, 229.

•		
	•	

## INDEX OF AUTHORS.

(The names indicate the subjects, and the numbers indicate the pages on which the titles of the authors' works are given.)

ABBAY (R.). Eclipse Spectra, 106.

ABBÉ (C.). Eclipse Spectra, 106.

ABERCROMBIE (R.). Aurora, 136; Meteorological, 295.

ABNEY (W. de W.), alone. Analysis, 40, 47; Absorption, 52; Solar in general, 88; Solar Atmosphere, 100; Maps of Solar Sp., 114; Photographs of Solar Sp., 115; Red End, 123; Wave-Lengths of Solar Sp., 131; Atmospheric Sp., 133; Chlorine, 187; Heat, 251; Oxygen, 308; Phosphorescence, 312; Red End, 322; Silver, 334; Sodium, 337; Sulphur, 341; Wave-Lengths, 353.

ABNEY (W. de W.) and FESTING (R.). Apparatus, 21, 26; Absorption, 52; Displacement of Stellar Sp., 79; Solar in general, 88; Red End, 123; Water in the Solar Sp., 131; Carbon Compounds in general, 154; Ebonite, 171; Carbon Disulphide, 183; Electric, 218; Iodine, 265.

ABNEY (W. de W.) and Schuster (A.). Eclipse Sp., 106; Photographs of Solar Sp., 115.

ABT (A.). Electric, 218; Interference, 262.

Ackroyd (W.). Absorption, 52; Color, 197; Inversion, 263; Sodium, 337.

ADAMKIEWICZ (A.). Albumin, 161.

ADAMS (W. H.). Aurora, 136; Selenium, 332.

AGNELLO (A.). Book (Eclipse of 1870), 8.

AIRY (G. B.). Astronomical in general, 66; Comets, 72, 73; Displacement of Stellar Sp., 79; Measurement of Stellar Sp., 82; Sp. of Planets, 87; Sun-Spots, 125; Wave-Lengths, 353.

AITKEN (J.). Absorption, 52; Water, 351.

AKIN (C. H.). Analysis, 40.

ALBERT (E.). Color, 197.

ALBITZKY (A.). Hydrocarbon, 174.

ALLEN (O. D.). Cæsium, 150; Rubidium, 327.

(808)

ALLEYNE (Sir J. Y. N.). Iron, 268.

ALVERGNIAT. Apparatus, 38.

Amory (R.). Apparatus, 26; Absorption, 52; Photographs of Solar Sp., 116.

ANDRÉ. Comets, 72.

ANDREWS (T.). Flame, 231; Iodine, 265.

ANGELOT. Solar Atmosphere, 100.

Angetröm (A. J.), alone. Book, 8; Analysis in general, 40; Solar, 89; Aurora, 136; Hydrocarbon, 174; Carbonic Acid, 179; Electric, 218; Maps, 287; Metals, 290; Nitrogen, 300; Optical, 306; Oxygen, 308.

Angetröm (A. J.) and Thalén (R.). Maps, 287.

ARAGO. History, 1; Light, 272.

ARCIMIS (A. T.). Aurora, 136.

ABONS (L.). Interference, 262.

ARZRUNI (A.). Barium, 143; Lead, 271; Strontium, 340.

ASSCHE (F. van). Heat, 251; Selenium, 332.

ATTFIELD (J.). Carbon, 153.

AUBERT and DUBOIS. Phosphorescence, 312.

Aymonner, alone. Absorption, 52; Heat, 251; Liquids, 276.

AYMONNET et DESAINS. Dark Lines, 205.

AYMONNET et MAQUENNE. Apparatus, 20.

AYRTON (W. C.) and PERRY (J.). Ebonite, 171.

BABINET. Longitudinal, 281; Paragenic, 311.

BACKHOUSE (T. W.). Comets, 73, 74, 75; Fixed Stars, 81; Aurora, 136.

BAHR and Bunsen. Erbium, 228.

BAILY (W.). Apparatus, 11, 18, 19.

BALLMANN (H.). Quantitative Analysis, 49; Lithium, 279.

BALMER (J. J.). Hydrogen, 257.

BARBIER (P.). Terebinthene, 183; Chlorine, 187.

BARBIERI (E.). Protuberances, 118.

BARDY (C.). Chrysoïdine, 168; (RICHE et B.), Flame, 237.

BARKER (G. F.). Eclipses, 106; Aurora, 136.

BARLOCCI. History, 1.

BARTHÉLEMY (A.). Comets, 72.

BAUDIN. Sun-Spots, 125.

BAUDRIMONT. Luminous Sp., 281; Water, 351.

BAUERNFEIND (C. M.). Apparatus, 23.

BAYLEY (T.). Chromium, 195; Cobalt, 196.

BECCARIA. History, 1.

BECKER (G. F.). History, 1.

BÉCLARD. Color, 197.

BECQUEREL (Edm.). Book, 8; Apparatus, 24; Aluminium, 62; Fixed Stars, 81; Solar in general, 89; Photography of Solar Sp., 116; Radiation of Solar Sp., 122; Red End of Solar Sp., 123; Bromine, 147; Calcium, 151; Coloring Matters, 155; Color, 197; Electric, 218, 219; Fluorescent, 241; Iodine, 265; Light, 272; Luminous Sp., 281; Manganese, 285; Phosphorescent, 312, 313; Refraction, 323; Silver, 334; Uranium, 347; Wave-Lengths, 353.

BECQUEREL (H.). Apparatus, 24; Absorption, 52; Solar Wave-Lengths,
131; Atmospheric, 133; Carbonic Acid, 179; Sulphide of Carbon, 183; Chlorine, 187; Didymium, 209; Emission, 226; Flame,
231; Metals, 290; Nitrogen, 300; Oxygen, 308; Red End, 322;
Sodium, 337; Sulphur, 341; Titanium, 347; Water, 351; Wave-Lengths, 353.

Bedson (P. P.) and WILLIAMS (W. C.). Refraction, 323.

BEGOUEN. Comets, 70.

Behrens (H.). Color, 197.

Bell (L). Apparatus, 29; Absorption, 53; Cadmium, 149; Meteorological, 295; Nitrogen, 300; Wave-Lengths, 353.

Belohoubek. Alkalies, 61.

BENKOVICH (E. von). Plants, 181.

BÉRARD. History, 1.

BERG (F. W.). Apparatus, 13.

BERNARD (F.). Solar Wave-Lengths, 131.

BERNHEIMER e NASINI. Carbon Compounds in general, 155.

BERT (P.). Carbon Compounds in general, 155.

Berthelot, alone. Comets, 70.

BERTHELOT et RICHARD. Analysis, 40; Flame, 231.

BERTHOLD (G.). History, 1; Fluorescent, 241.

BEZOLD (W. von). Carbon Compounds in general, 155; Fluorescent, 241; Heat, 251.

BIANCHI. Astronomical, 118.

BIDWELL (Shellford). Analysis, 40.

BINZ (C.). Blood, 165; Oxygen, 308.

Brow J B). Aistrey. 1: Apparatus. 25: Soiar Radiation. 199 193: Trinkling of Stars. 132: Phomborovent. 313: Radiation. 327

Britis R . History. 1.

Bring A. M. Annemme 18.

Brivecen H. F. Folse Photography, 11th.

Branch P., Book, & Apparatus, 27: Chromosphere, 102: Alennol. 181 - Heat, 251.

BERREODE L. Plame 31.

BECCHYAN R. Calcium. 151.

Bermann I.; Liquida, 278.

BURER H.: Anthrasen, 163.

BARNER. Apparatus. 12.

BORTFORR R. Alizarine, 181.

PLATY C. Wave-Lengths, 353.

Boston. Holar in general, 89.

BOROSTICH (R. J. . History, 2.

Brea L. Cometa, 70.

Programmer. Absorption, 53; Electric, 219.

Protorgatix. Metals, 290.

Bougues (P.). History, 2.

BRACKETT C. F.). Apparatus, 20, 38.

BRANDY (E.). Blood, 165; Hemoglobine, 174.

BRASSACK. Metals, 290.

BRAUN (C.). Apparatus, 15, 28; Photography of Solar Sp., 116.

BRAUNER (B.). Cerium, 186; Didymium, 209.

Britmsonis (T.). Comets, 73, 76.

BRENCA. Solar in general, 89.

Hneweren (Sir D.), alone. History, 2; Apparatus, 20; Solar in general, 89; Atmospheric, 133; Carbon Compounds in general, 155; Nitrogen, 300; Paragenic Sp., 311.

HREWSTER (Sir D.) and CHAIRTONE (J. H.). Solar in general, 89.

BROUK (O. J.). Solar in general, 89.

Buttith (B. C.). Metals, 290.

BROWN (W. O.). Philippium, 811.

HROWNING (J.). Apparatus, 11, 27, 33, 34, 36; Meteors, 83; Aurora,

BRUCKE (E.). Absorption, 53; Manganese, 285; Potassium, 319.

BRÜHL (J. W.). Carbon Compounds in general, 155; Citracon, 168; Mesacon, 177; Methacryll, 177; Constants, 200; Dispersion, 212; Liquids, 276.

Brunn (J.). Apparatus, 29, 32.

Buchner. Blood, 165; Hydrogen, 257.

Buffon. History, 2.

BÜHRIG (H.). Absorption, 53; Didymium, 209.

Bunsen (R.). Analysis, 40; Meteors, 83; Cæsium, 150; Didymium, 209; Erbium, 228; Lithium, 279; Metals, 290.

Burch (G. J.). Flame, 231.

Burger (H.). Constants, 200; Liquids, 276.

CACCIATORE. Transit of Venus, 87.

CAILLETET. Electric, 219; Flame, 231; Pressure, 320.

CALDERON (L.). Zinc, 360.

CAMPANI (G.). Carmine, 167; Nitrogen, 300.

CAPPEL (E.). Electric, 219; Heat, 251; Metals, 290.

CAPRANICA (S.). Bile, 164.

CAPRON (J. R.). Book, 8; Apparatus, 21; Aluminium, 62; Antimony, 64; Arsenic, 65; Comets, 74, 75; Meteors, 83; Solar Photography, 116; Aurora, 137; Barium, 143; Beryllium, 144; Borax, 145; Cadmium, 149; Calcium, 151; Carbon in general, 153; Cyanogen, 169; Ether, 171; Oils, 178; Turpentine, 184; Chlorine, 187; Chromium, 195; Cobalt, 196; Copper, 201; Didymium, 209; Electric, 219; Flame, 231; Fluorine, 246; Gold, 250; Hydrogen, 257; Indium, 261; Iodine, 265; Iridium, 267; Iron, 268; Lead, 271; Magnesium, 282; Manganese, 285; Mercury, 289; Meteorological, 295; Molybdenum, 298; Niobium, 299; Nitrogen, 300; Oxygen, 308; Palladium, 311; Platinum, 317; Rhodium, 326; Ruthenium, 327; Selenium, 332; Silicium, 333; Silver, 334; Strontium, 340; Sulphur, 341; Tellurium, 343; Thallium, 344; Tin, 345; Titanium, 346; Uranium, 347; Vanadium, 347; Yttrium, 359; Zinc, 360; Zirconium, 361.

CARPENTER (J.). Analysis, 40.

CAZENEUVE (P.). Hematine, 173.

CAZIN (A.). Electric, 219; Flame, 232.

CHACORNAC. Solar in general, 89.

CHAMPION. Book, 8; Apparatus, 33; Quantitative Analysis, 49; Sodium, 337.

CHANCEL (G.). Wine, 185.

### TOTALE

The Views

and the second second second second

The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Annual Company of Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Com

respectively. The Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Commi

The second of all the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

agailyseany 😳 📑

The same of the same of the same of the same of the

to make the sense of morning the sense.

العاد المتمفوس دوامي الأراد الأوادان

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

ا وبرساوم، ا

Commence of the Commence of the

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

المناوينيون الرامات براح

19 to the second of Johnson 220 Hainnum, IS. 120-

1 . . go Broken and Juga Jo

Commence of the Commence of Bloom SA.

19 19 5 Butter top 19th

Property of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

1. 111 Mary Francisco M. Hoat 251 Jodine, 265 Mary

Country of Prince of Apparatus 11 - Varor in the Follow and 127 (14):

Contract May Astronomical in general 86; Fixed mass, 41, -1. Annual, 131, Migh Almondes, 27.

Unione IA ; Apprentue, Pt. II. 38; Analysis, 41; Absorption, J.

Aluminium, 62; Antimony, 64; Fixed Stars, 81; Solar in general, 90; Solar Absorption Sp., 99; Dark Lines in the Solar Sp., 105; Telluric Rays in the Solar Sp., 129; Ultra-Violet Rays of the Solar Sp., 129, 130; Atmospheric, 133; Aurora, 137; Bismuth, 145; Cadmium, 149; Copper, 201; Gold, 250; Hydrogen, 257; Inversion, 263; Iron, 268; Lead, 271; Magnesium, 282; Maps, 287; Metals, 290; Silver, 334; Sodium, 337; Thallium, 344; Ultra-Violet, 348; Wave-Lengths, 353; Zinc, 360.

CORTIE (A.). Sun-Spots, 125.

Cory (F. W.). Meteorological, 295.

Cossa (A.). Cerium, 186.

CROCÉ-SPINELLI (J.) et SIVEL. High Altitudes, 255.

CROOKES (W.). Apparatus, 23; Analysis, 41; Aluminium, 62; Carbonic Acid, 179; Didymium, 209; Diffraction, 211; Discontinuous, 212; Erbium, 228; Flame, 232; Fluorescent, 241; Gadolinite, 247; Light, 272; Metals, 290; Phosphorescent, 313; Radiation, 321; Refraction, 323; Samarium, 329; Samarskite, 330; Sodium, 337; Thallium, 344; Yttrium, 359.

CROS (Ch.). Carbon Compounds in general, 156; Silver, 334.

CROULLEBOIS. Analysis, 41; Crystals, 203; Liquids, 276; Refraction, 323.

CROVA (A.). Apparatus, 19, 27, 29, 33; Absorption Sp., 53; Solar Absorption, 99; Solar Radiation, 123; Telluric Rays of the Solar Sp., 129; Solar Wave-Lengths, 131; Atmospheric, 133; Aurora, 137; Flame, 232; Heat, 251; Radiation, 321; Wave-Lengths, 353.

CRULS (L.). Apparatus, 30; Astronomical in general, 66; Comets, 76, 77.

CZECHOWICZ. Electric, 220.

DALET. Solar in general, 90.

DANIEN. Acetic Acid, 160; Liquids, 276; Sodium, 337; Water, 351.

Daniel. Electric, 220.

DAUBE (F. U.). Curcumin, 169.

DAUMER et THIBAUT. Oils, 178.

DEBRAY (H.). Apparatus, 20; Metals, 291.

DELACHANAL (B.). Apparatus, 17, 18, 38.

Delafontaine. Cerium, 186; Decipium, 207; Didymium, 209; Erbium, 228; Gadolinite, 247; Holmium, 256; Metals, 291; Philippium, 311; Samarium, 329; Samarskite, 330; Terbium, 343; Thulium, 345.

24 т

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

For the second of Company Comment of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the sec

Trees to Boston B. Joseph M.

Carter 20 Frame 22 Frances St Through 19.

Property of the comments of Societies . 35

Transcription (1955) 48 Comm. 150 Linium 173: Innered Transcription (1955) 48 Community (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170 (1965) 170

Anis All Presented St. Priest It. Vare-moins

1800 / Salestine M. Assais 31 Nitrogen, 201 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Section 1801 . Secti

Darres (d. Hinney 2

Spirery ( /onets, 1)

Investment Analysis 12

Institute of F., Apparaton, 22.

Inde II Wy Blocken 200.

Innaren (II) History, 2; Pooks, 8; Apparatus, 24, 28; Analysis, 22; Comets, 75; Fixed Stars, 82; Nebulæ, 85; Photography of Stellar Sp., 45; Jupiter, 86; Venus, 88; Bright Lines in the Solar Sp., 107, Felipses, 107, Oxygen in the Solar Sp., 115; Ultra-Violes Solar Sp., 136; Solar Wave Lengths, 131; Diffraction, 211; Oxygen, 308

Itnamen (A.C.) Apparatus, 29; Dark Lines in the Solar Sp., 106; Solar Enlipses, 107, Oxygen in the Solar Sp., 115; Oxygen, 309.

110.4 ft. of W. Mistory, 2; Apparatus, 25, 32; Solar Photography. 110; Ited End of the Solar Sp., 123; Cone Sp., 199; Energy in the Sp., 937; Heat, 35%. DRAPER (W.). Intensity of the Solar Sp., 113.

DUBRUNFAUT. Analysis, 42; Flame, 232.

Duclaux (E.). Analysis, 42; Energy in the Sp., 227.

Dufet (H.). Refraction, 323.

DUHEM. Inversion, 263.

DUJARDIN (F.). Apparatus, 36.

Dunér (N. C.). Comets, 76.

Dunstan (W. R.). Carbon Compounds in general, 156.

Dupré (A.). Wine, 185.

Dutirou (L'Abbé). History, 2.

EDELMANN (Th.). Apparatus, 22.

EDER (J. M.). Apparatus, 26; Analysis, 42; Absorption, 53; Solar in general, 90.

EGOROFF (N.). Oxygen in the Solar Sp., 115; Telluric Rays in the Solar Sp., 129; Oxygen, 309.

EIGER (T. G.). Aurora, 137.

EISENLOHR (W.). Dark Lines, 205; Diffraction, 211; Fluorescent, 241; Iodine, 265; Refraction, 323; Silver, 334; Ultra-Violet, 348; Wave-Lengths, 354.

ELLERY (R. J.). Aurora, 137.

EMSMANN (H.). Apparatus, 15, 28; Absorption, 54; Nickel, 299; Nitrogen, 301; Silver, 334.

ENGELHART (G.) and BEZOLD. Fluorescent, 241.

ENGELMANN (T. W.). Hematine, 174; Color, 197; Electric, 220; Oxygen, 309.

ERCK (W.). Apparatus, 36; Didymium, 209.

ERDMANN. Didymium, 209.

ESSELBACH (E.). Wave-Lengths, 354.

Exner (K.). History, 2; Analysis, 42; Twinkling of Stars, 132; Interference, 262; Lines of the Sp., 274.

FAURA (F.). Eclipses, 107.

FAVÉ. Analysis, 42; Fluorescent, 241; Phosphorescent, 313; Wave-Lengths, 354.

FAYE. History, 3; Apparatus, 37; Comets, 70; Solar Sp. in general, 90; Solar Eclipses, 107; Hydrogen in the Sun, 113; Solar Protuberances, 118; Solar Rotation, 124; Solar Storms, 124; Sun-Spots, 125; Aurora, 138.

FERRARI. Solar Protuberances, 118.

FEUSSNER. Heat, 252.

FIELDING (G. F. M.). Flame, 232.

Fievez (Ch.). Analysis, 42; Nebulæ, 84; Solar in general, 90; Mag nesium in the Sun, 114; Electric, 220; Heat, 252; Hydrogen, 257; Magnesium, 282; Map, 114, 287; Nitrogen, 301.

FILHOL (E.). Chlorophyll, 192.

Fizeau. Astronomical in general, 66; Displacement of Stellar Sp., 79 Solar in general, 91; Solar Eclipses, 107; Sodium, 337.

FLAMMARION. Comets, 70.

FLAVITSKY (F.). Carbon Compounds in general, 156; Terpenes, 184.

FLECK. Apparatus, 29.

Flögel. Aurora, 138.

FOCK (A.). Refraction, 323.

FONVIELLE (W. de). High Altitudes, 255.

FORBES (J. D.). History, 3.

FOSTER (Le Neve). Glass, 249.

FOUCAULT (L.). Apparatus, 31; Dark Lines, 205.

FOUCAULT et FIZEAU. Apparatus, 25.

Francis (G.). Australian Lake, 164; Fish Pigment, 171.

FRANCKLAND (E.). Carbonic Acid, 179; Hydrogen, 257; Lithium 279; Oxygen, 309.

FRANCKLAND and LOCKYER. Astronomy in general, 66; Nebulæ, 84 Solar in general, 91; Gas in the Solar Sp., 112; Flame, 232.

FRASER (W.). Osmium, 307.

FRAUDE (G.). Chlorine, 188.

FRAUNHOFER (J. von). History, 3; Lines of the Sp., 274.

FRAZER (P.). Aurora, 138.

FRÉMY. Aluminium, 62.

FREY (M. von). Analysis, 42.

FRIEDLÄNDER (P.). Chinolin, 168.

FRÖHLICH (J.). Energy, 227; Refraction, 323.

Fuchs (F.). Apparatus, 28, 32, 33.

Furniss (J. J.). Apparatus, 35.

GAMGE (A.). Blood, 166; Nitrogen, 301.

GARBE (G.). Apparatus, 31.

GASSIOT. Apparatus, 15, 27, 31, 35: Analysis, 42.

GAUDIN. Apparatus, 25.

GERDING (Th.). History, 3.

GERLAND (E.). Chlorophyll, 193.

GERLAND (J.). Chlorophyll, 193.

GERNEZ (D.). Absorption, 54; Bromine, 147; Alizarine, 161; Chlorine, 188; Flame, 232; Iodine, 265; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

GIBBONS (J.). Electric, 220.

GIBBS (Wolcott). Apparatus, 34; Analysis, 47; Quantitative Analysis, 49; Solar Wave-Lengths, 131; Constants, 200; Optical, 306; Wave-Lengths, 354.

GILMOUR (W.). Oils, 178.

GIRARD (H.) et BABST. Absorption, 54.

GIRDWOOD (G. P.). Wood, 185.

GLADSTONE (J. H.). Qualitative Analysis, 49; Aluminium, 62; Planets, 86; Solar in general, 91; Atmospheric, 134; Carbon, 153; Carbon Compounds, 156; Diamond, 170; Oils, 178; Chlorine, 188; Didymium, 210; Dispersion, 213; Flame, 233; Hydrogen, 258; Liquids, 276; Metals, 291; Nitrogen, 301; Oxygen, 309; Salt, 328.

GLAN (P.). Apparatus, 26, 35, 36; Absorption, 54; Density, 207; Glass, 249; Polarized Light, 318.

GLAZEBROOK (R. T.). Apparatus, 18, 33.

GOLDSTEIN. Atmospheric, 134; Flame, 233.

GOLTZSCH (H.). Apparatus, 13.

GOTHARD (E. von). Apparatus, 20, 24, 38: Astronomical in general, 66; Comets, 77, 78; Fixed Stars, 81, 82.

GOTTSCHALK (F.). Apparatus, 34.

Gould (B. A.). Apparatus, 37.

Gouy. Absorption, 54; Aluminium, 62; Solar Absorption, 99; Dark Lines in the Solar Sp., 106; Barium, 143: Bromine, 147; Cadmium, 149; Calcium. 151; Carbonates, 156; Chlorine, 188; Cobalt, 196; Copper, 201; Flame, 233; Iodine, 265; Iron, 268; Lead, 271; Lithium, 279; Magnesium, 282; Manganese, 285; Metals, 291; Nitrogen, 301; Phosphorus, 315; Platinum, 317; Potassium, 319; Refraction, 323; Rubidium, 327; Salt, 328; Silver, 335; Sodium, 337; Strontium, 340; Sulphur, 341; Thallium, 344; Wave-Lengths, 354; Zinc, 360.

GOUY et THOLLON. Comets, 77; Solar Wave-Lengths, 131.

Govi (S. G.). Apparatus, 24; Analysis, 43; Quantitative Analysis, 50.

GOVI (S. G.) et LAGARDE. Radiation, 321.

GRÄBE (C.) und CARO (H.). Rosaniline, 182.

GRANDEAU (L. N.). Book. 8; Cæsium, 150; Electric, 220.

GREINER (A.). Iron, 268; Phosphorus, 315.

GRIFFITHS (A. B.). Plants, 181.

GRIMM (F.). Chinizarin, 168; Hydrochinon, 175.

GRIPON (E.). Fluorescent, 241.

GROVE (Sir W. R.). Electric, 221.

GRUBB (H.). Apparatus, 11.

GRUBB (T.). Apparatus, 34, 35.

GUILLEMIN. Ultra-Violet Solar, 130.

GÜNTHER (C.). Flame, 233; Inversion, 263; Sodium, 337.

HAGENBACH (E.). Electric, 221; Fluorescent, 242; Fluorine, 246; Silicium, 333.

HAIG (C. T.). Eclipses, 107.

HAMMERL (H.). Liquids, 276; Meteorological, 295.

HAMMOND (B. E.). Corona, 103; Hydrogen in the Solar Sp., 113; Intensity of the Solar Sp., 113.

HAERLIN (J.). Carbon Compounds in general, 156.

HANKEL (W.). Metals, 291.

HANNAY (J. B.). Zirconium, 361.

HARKNESS (W.). Comets, 74; Chromosphere, 103.

HARTLEY (W. N.). Apparatus, 16, 26; Analysis, 47; Quantitative Analysis, 50; Absorption, 54; Alkalies, 61; Solar Absorption, 99; Atmospheric, 134; Beryllium, 144; Borax, 146; Carbon Compounds, 156; Acid Brown, 161; Amido Azo, etc., 162; Aurin, 164; Benzene, 164; Azo, 164; Bismarck Brown, 165; Carbohydrates, 167; Chrysoïdine, 168; Croceïne Scarlet, 169: Cymene, 170; Dipyridene, 170; Fast Red, 171; Flour and Grain, 172; Helianthin, etc., 173; Iodine Green, 176; Metaxylene, 177; Naphthalene, 177, 178; Oils, 178; Orthotoluidine, 179; Paratoluidine, 181; Picolene, 181; Pyridine, 182; Rosaniline Base, 182; Terpenes, 184; Tetrahydroquinoline, etc., 184; Tropæolin, 184; Cerium, 186; Chromium, 195; Electric, 221; Emission, 226; Homologous Spectra, 256; Liquids, 276; Metals. 291; Oxygen. 309; Rhabdophane, 326; Salt, 328; Silicium 22. Sulphur, 341; Violet, 348; Wave-Tangtha 354.

HARTSEN (T. A.). Chlorophy

HARTSHORNE (H.). Analysic

of the Sp

HASSELBERG (B.). Apparatus, 29; Comets, 74, 78; Acetylene, 160; Hydrogen, 258; Maps, 287; Metals, 291; Nitrogen, 301; Wave-Lengths, 354.

HASTINGS (C. S.). Solar in general, 91; Glass, 249; Heat, 252.

HAUTEFEUILLE (P.) et CHAPPUIS (J.). Flame, 234.

HEINRICHS. Distribution, 217.

HELMHOLTZ (H.). Carbon Compounds, 156; Dispersion, 212; Refraction, 324.

Hennessey (J. B. N.). Solar Atmosphere, 100; Displacement in the Solar Sp., 106; Red End of the Solar Sp., 123; White Lines in the Solar Sp., 132; Atmospheric Sp., 134.

HENNIG (R.). Apparatus, 29; Quantitative Analysis, 50.

HENRY (L. d'). Light, 272; Sodium, 338.

HEREPATH (W. B.). Apparatus, 23.

HERSCHEL (A. S.). History, 3; Apparatus, 21; Analysis, 43; Meteors, 83; Eclipses, 107; Aurora, 138; Carbon, 153; Nomenclature, 305; Violet, 348.

HERSCHEL (Lieut. John). Nebulæ, 85; Solar Protuberances, 118; Electric, 221.

HERSCHEL (Sir John). History, 3, 4; Solar in general, 91; Coal, 168; Soda, 338.

HESEHUS (N.). Apparatus, 13.

HESSE (O.). Dispersion, 212.

HEUSSER (J. C.). Analysis, 43; High Altitudes, 255.

HEYNSIUS (A.) and CAMPBELL (J. F. F.). Absorption, 55; Gall, 173.

HILGARD (J. E.). Apparatus, 13.

HILGER (A.). Apparatus, 14; Caryophyllaceæ, 167.

HIRN (G. A.). Book, 8.

HITTORF (W.). Flame, 234, 237.

HOCK (K.). Apparatus, 11; Alkalies, 61; Oils, 178.

HOFFMANN (A. W.). Quinoline-Red, 182.

HOFMAN (J. G.). Apparatus, 28, 32; Hydrogen, 258; Nitrogen, 302; Phosphorus, 315.

Hoh (Th.). Electric, 221.

HOLDEN (E. S.). Aurora, 138; Electric, 221.

HOMANN (H.). Astronomical in general, 66.

Hoorweg (J. L.). Analysis, 43.

HOPKINSON (J.). Glass, 249; Refraction, 324.

HOPPE-SEYLER (F.). History, 4; Book, 8; Blood, 166; Carbonic Acid, 179; Manganese, 285; Oxygen, 309.

HORNER (M. C.). Venus, 88; Borax, 146; Cobalt, 196; Fluorescence, 242; Manganese, 285; Phosphorus, 315.

Носон (G. W.). Book, 9.

HOUZEAU et MONTIGNY. Displacement of Stellar Sp., 79.

HÜFNER (G.). Apparatus, 33; Quantitative Analysis, 50.

Huggins (W.). Apparatus, 30, 36; Analysis, 43; Astronomical in general, 67; Comets, 70, 79; Displacement of the Stellar Sp., 79; Fixed Stars, 80, 82; Nebulæ, 85; Photography of Stellar Sp., 86; Sp. of Planets, 86; Solar in general, 91; Chromosphere, 103; Photography of Solar Sp., 116; Solar Protuberances, 118; Electric, 221; Erbium, 228; Hydrogen, 258; Microscopic, 296; Water, 351.

HUGGINS (W.) and MILLER (W. A.). Fixed Stars, 80.

Hugo (L.). Birds, 165.

HUNT (T. Sterry). History, 4.

Huntington (O. W.). Arsenic, 65.

HURION. Dispersion, 213; Interference, 262; Liquids, 277.

HUYGHENS (C.). History, 4.

HYATT. Aurora, 138.

JACQUES (W. W.). Aluminium, 62; Chromium, 195; Copper, 201; Heat, 252; Iron, 268; Platinum, 317.

JAFFE. Gall, 173.

JAMIN. Analysis, 43.

JANOWSKI (J. V.). Refraction, 324.

Janssen (J.). Apparatus, 25, 34; Quantitative Analysis, 50; Astronomical in general, 67; Comet, 74; Fixed Stars, 82; the Moon. 87; Venus, 88; Solar in general, 89, 92; Solar Atmosphere, 100; Corona, 103; Eclipses, 107, 108; Hydrogen in the Solar Sp., 113; Solar Protuberances, 118; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Flame, 234; High Altitudes, 255; Sodium, 338; Water, 351.

JESSEN (E.). Absorption, 55.

JOBST (W.). Alcohol, 161; Aniline, 162.

JOHNSON (A.). History, 4: Tirm of the Sp., 274.

JONES (H. Bence). Carbo. ands, 157; Contalloids, 169.

Joule (J. P.). Electric, 5

KAHLBAUM (G. W. A.).

Kanonnikoff (J.). Carbon Compounds, 157; Refraction, 324.

Keeler (J. E.). Absorption, 55; Carbonic Acid, 180.

Kern (J.). Davyum, 206.

KESSLER (F.). Apparatus, 13, 16; Solar in general, 92; Solar Photography, 116.

Ketteler (E.). Apparatus, 26, 33; Absorption, 55; Dispersion, 213; Fluorescence, 242; Optics, 306; Refraction, 324.

KETTELER und PULFRICH. Wave-Lengths, 354.

KEY (H. Cooper). Aurora, 138.

KINDT. Chlorine, 189; Dark Lines, 205; Fluorine, 246; Phosphorescence, 313; Phosphorus, 315; Silicium, 333.

Kingdon (F.). Apparatus, 20.

Kirchhoff (G.). History, 4; Book, 9; Apparatus, 34; Analysis, 43; Absorption, 55; Barium, 143; Cæsium, 150; Calcium, 151; D Lines, 204; Dark Lines, 205; Emission Sp., 226; Inversion, 263; Maps, 288; Polarized Light, 318; Potassium, 319; Radiation, 321; Sodium, 338; Strontium, 340.

KIRCHHOFF und BUNSEN. Alkalies, 61; Rubidium, 327.

KIRK (E. B.). Aurora, 138.

KIRKWOOD (D.). Astronomical in general, 67; Aurora, 138.

KLATZO. Chlorine, 189.

KLERCKER (C. E. de). Dispersion, 213; Light, 272.

Knoblauch (H.). Heat in the Solar Sp., 112; Color, 198; Heat, 252.

KOBB (G.). Germanium, 248.

Kohlrauch (F.). Apparatus, 13; Refraction, 324.

König (A.). Color-blind, 157; Color, 198; Platinum, 317.

König und Dieterici. Wave-Lengths, 354.

Konkoly (N. von). Apparatus, 20, 22, 30, 35; Astronomical in general, 67; Comets, 70, 73, 78; Fixed Stars, 81; Meteors, 83; Planets, 86; Electric, 221; Meteorological, 295.

KOPP (H.). History, 4.

KÖVESLIGETHY. Comets, 78.

KRAIEWITSCH (K.). Apparatus, 13.

Krauss (G.). Chlorophyll, 193.

Krüss (G.). Apparatus, 39; Heat, 252; Liquids, 277.

Krüss und Oeconomides. Carbon Compounds, 157.

Krūss (H.). Apparatus, 12, 29, 32; Analysis, 43; Quantitative Analysis, 50.

KRESS (J.). Absorption, 55.

Kundt (A.). Absorption, 55; Dispersion, 213; Liquids, 277; Nitrogen, 302; Silver, 335; Sodium, 338.

Kurz (A.). Apparatus, 21.

LABORDE (L'Abbé). Analysis, 43.

LADD (W.). History, 4.

LAGARDE (H.). Hydrogen, 258; Wave-Lengths, 355.

LALLEMAND (A.). Apparatus, 20; Indigo, 176; Lamp-Black, 176; Naphthalene, 177; Cobalt, 196; Copper, 202; Lead, 271; Liquids, 277; Mercury, 289; Minium, 297; Oxygen, 309; Phosphorus, 315; Platinum, 317; Polarized Light, 318; Sulphur, 341.

LAMANSKY (S.). History, 4; Apparatus, 17; Absorption, 56; Solar in general, 92; Heat in the Solar Sp., 112; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Calcium, 151; Carbon Compounds, 157; Sulphide of Carbon, 183; Electric, 222; Fluorescence, 242; Glass, 249; Heat, 253; Sulphur, 342.

LAMONT. Astronomical in general, 68; Fixed Stars, 80.

LAMY (A.). Thallium, 344.

LANDAUER (J.). Absorption, 56; Carbon Compounds, 157; Safranin, 183.

LANDOLT (H.). Apparatus, 21; Carbon, 153; Carbon Compounds, 157; Liquids, 277.

LANG (V. von). Apparatus, 28; Red End of the Solar Sp., 124; Atmospheric Sp., 134; Calcium, 151; Dispersion, 213; Heat, 353; Refraction, 324.

Langley (S. P.). Apparatus, 30, 32; Analysis, 43, 44; Absorption, 56; Astronomical in general, 68; Venus, 88; Solar in general, 92, 93; Solar Absorption, 100; Solar Heat, 112; Intensity of the Solar Sp., 113; Radiation of the Solar Sp., 122; Red End of the Solar Sp., 124; Atmospheric, 134; Energy, 227; Heat, 253; High Altitudes, 255; Lines of the Sp., 274; Salt, 328; Volcanoes, 350; Wave-Lengths, 355.

LASPEYRES (H.). Apparatus, 20.

LAUSSEDAT. Eclipses, 108.

LAVAUD DE LASTRADE. Apparatus, 23; Solar in general, 93.

LEA (M. Carey). Bromine, 147; Carbon Compounds, 158; Color, 198; Glass, 249; Silver, 335.

LEACH (J. H.). Analysis, 44.

LECHER (E.). Absorption, 56; Atmospheric, 134; Hent, 253; Radiation, 321.

LECHER und PERNTER. Absorption, 56; Dark Lines, 205.

LECOQ DE BOISBAUDRAN (F.). Book, 9; Analysis, 44; Aluminium, 62, 63; Antimony, 64; Barium, 144; Bismuth, 145; Borax, 146: Bromine, 147; Cadmium, 149; Cæsium, 150; Flour and Grain, 172; Cerium, 186; Chlorine, 187, 189-191; Chromium, 195; Cobalt, 196; Copper, 202; Decipium, 207; Didymium, 210; Dysprosium, 218; Electric, 222; Erbium, 229; Flame, 234; Fluorescence, 242, 243; Gadolinite, 247; Gallium, 248; Germanium, 248; Gold, 250; Holmium, 256; Hydrogen, 259; Indium, 261; Iodine, 266; Iron, 268; Lead, 271; Light, 272; Lines of the Spectrum, 274; Lithium, 279; Luminous Sp., 281; Magnesium, 282; Manganese, 285; Mercury, 289; Metals, 292; Nickel, 299; Nitrogen, 302; Palladium, 311; Phosphorescence, 313; Phosphorus, 315; Platinum, 317; Potassium, 319; Rubidium, 327; Samarium, 329; Samarskite, 330; Silver, 335; Sodium, 338; Strontium, 340; Terbium, 343; Thallium, 344; Tin, 345; Water, 351; Wave-Lengths, 355; Ytterbium, 358; Zinc, 360.

LEEDS (A. R.). Metals, 292.

LEMOINE (G.). Hydrogen, 259; Iodine, 266.

LEMSTRÖM (S.). Aurora, 138.

LEPEL (F. von). Apparatus, 38; Absorption, 56; Carbon Compounds, 158; Alkanna, 162; Beets, 164; Wine, 185; Inversion, 263; Magnesium, 282; Silicium, 333.

LE ROUX (F. P.). Apparatus, 20.

LEVERRIER. Solar Atmosphere, 100.

LEVISON (W. G.). Apparatus, 32.

LEWY. Eclipses, 107.

LIAIS (E.). Corona, 103; Aurora, 138.

LIEBERMANN (C.). Anthracen, 163; Anthrarufin, 163; Egg-Shells, 165; Chotelin, 168; Hydroxyanthraquinone, 175.

LIEBERMANN (L.). Fuchsin, 172; Hydrobilirubin, 175; Chlorophyll, 193; Fluorescence, 243.

LIEBICH (T.). Apparatus, 35.

LIELEGG (A.). Book, 9; Carbon Compounds in general, 158; Flame, 234; Iron, 268.

LINDSAY (Lord). Comets, 72, 73; Nebulæ, 85; Jupiter, 87; Eclipses, 108; Aurora, 139.

LINNEMANN (E.). Austrium, 143; Zirconium, 361.

LIPPICH (F.). Apparatus, 35; Flame, 234.

LISTING. Limits of the Sp., 273.

LITTROW (Otto von). Apparatus, 36; Solar Atmosphere, 100.

LIVEING (G. D.). Apparatus, 17; Analysis, 46; Calcium, 151; Dispersion, 214; Fluorine, 246; Iodine, 266; Mercury, 289.

LIVEING (G. D.) and DEWAR (J.). History, 5; Apparatus, 12, 15, 16, 17; Analysis, 44; Quantitative Analysis, 50; Corona, 103; Elements in the Sun, 111; Sun-Spots, 126; Carbon, 153; Carbon Compounds, 158; Cyanogen, 169; Hydrocarbons, 175; Electric, 222; Explosions, 230; Flame, 234, 235; Hydrogen, 259; Inversion, 263; Lithium, 280; Magnesium, 283; Metals, 292, 293; Potassium, 319; Rhabdophane, 326; Sodium, 338; Violet, 348; Water, 351.

LLOYD. History, 5.

LOCKYER (J. N.). Book, 9; Apparatus, 19, 25, 36; Analysis, 44, 47; Quantitative Analysis, 50; Absorption, 57; Antimony, 64; Arsenic, 65; Astronomy in general, 66, 68; Nebulæ, 84; Solar in general, 93, 94; Bright Lines in the Solar Sp., 102; Chromosphere, 103; Carbon, 153, 154; Electric, 222; Flame, 235; Heat, 253; Hydrogen, 259; Inversion, 263; Iodine, 266; Iron, 268; Lithium, 280; Mercury, 289; Multiple Sp., 298; Nitrogen, 302; Phosphorus, 315; Sodium, 338; Sulphur, 342; Zinc, 360.

LOCKYER and SEABROKE. Corona, 103.

Lohse (O.). Apparatus, 31, 32; Corona, 103; Gun-Cotton, 173; Electric, 222; Glass, 249.

LOMMEL (E.). Book, 9; Apparatus, 13, 16, 17, 24, 27, 31; Absorption, 57; Chlorophyll, 193; Dispersion, 214; Electric, 222; Fluorescence, 243, 244; Heat, 253; Interference, 262; Iodine, 266; Light, 272; Optics, 306; Phosphorescence, 313, 314; Red End of the Sp., 322; Refraction, 324.

Long (J. H.). Flame, 235.

LORENZ (L.). Constants, 200; Dispersion, 214.

LORSCHEID (J.). Book, 9.

Loudon (J.). Analysis, 45.

LOVE (E. J.). Apparatus, 24; Glass, 249.

LUBARSCH (O.). Analysis, 45; Fluorescence, 244.

LUBBOCK (Dr. M.). Color, 198.

Luck (E.). Nitrogen, 302; Oxygen, 309.

LUNDQUIST. Distribution, 217; Heat, 253.

LUTZ. Apparatus, 34.

LUVINI. Apparatus, 23; Analysis, 45.

MACAGNO (J.). Intensity in the Solar Sp., 113; Aniline, 163.

MACÉ DE LÉPINAY (J.). Analysis, 45; D Lines, 204; Wave-Lengths, 355.

MACÉ (J.) et NICATI (W.). Intensity in the Solar Sp., 113.

MACFARLANE (A.). Analysis, 45.

MACH (E.). Dispersion, 214; Glass, 249.

MACLEAR. Solar in general, 94; Atmospheric Sp., 134; Aurora, 139.

MACMUNN (C. A.). Book, 9; Carbon Compounds, 158; Bile, 165; Hematine, 174; Urine, 185.

MADAN (H. G.). Apparatus, 35.

MAGNUS (G.). Flame, 235; Heat, 253.

Malus (E. L.). History, 5.

Maly (R.). Bile, 165; Gall, 173.

MANET. Apparatus, 17.

Manly (W. R.). Meteorological, 295.

MARIÉ-DAVY. Meteorological, 295.

MARIGNAC (C.). Gadolinite, 247; Samarskite, 330; Ytterbium, 358.

MARVIN (T. H.). Apparatus, 24.

MASCART. Apparatus, 19; Ultra-Violet Solar Sp., 130; Dispersion, 214; Electric, 222; Flame, 235; Interference, 262; Maps, 288; Refraction, 324; Ultra-Violet, 348; Water, 351; Wave-Lengths, 355.

MASKELEYNE. History, 5.

Masson (A.). Alcohol, 161; Terebinthene, 183; Electric, 222; Platinum, 317.

MATTHIESSEN. Analysis, 45; Solar in general, 94; Solar elements, 111; Ultra-Violet Solar Sp., 130.

MAUNDER (E. W.). Comets, 76; Fixed Stars, 81, 82.

MAURER (J.). Absorption, 57; Atmospheric, 134.

MAXWELL (J. C.). Color, 198.

MAYER (A. M.). History, 5; Apparatus, 21, 26.

Melde (F.). Absorption, 57; Liquids, 277.

Meldola (R.). History, 5; Bright Lines in the Solar Sp., 102; Phenols, 181; Oxygen, 310.

Melloni. History, 5; Solar in general, 94; Heat, 253.

MELVILL (T.). Flame, 236.

MENDELEJEFF (D.). Gadolinite, 247; Gallium, 248; Metals, 293.

MENDENHALL (T. C.). Apparatus, 18.

MERMET. Apparatus, 17.

Mura (S.). Apparatus, 27, 37; Astronomical in general, 68; Fixed Stars, 80; Dark Lines, 205; Glass, 249.

Messenschmitter (J. B.), Wave-Lengths, 355.

MEYER (A.). Absorption, 57: Morphine, 177.

MEYER (O. R.). Dispersion, 214.

MEYER (W.;. Cometa, 70; Brucine, 167.

MICHELSON (A.). Apparatue, 30.

MILL (H. R.). Meteorological, 295.

MILLARDET (A.). Chlorophyll, 193.

MILLER (P.). Apperatus, 33, 34.

MILLER (W. A.). Ristory, 5; Analysis, 45; Astronomical in general, 67, 68; Solar in general, 94; Electric, 223; Flame, 236; Thallium, 344.

MILLER (H. Hallows). Nitrogen, 303.

MILNE (G. A.). Flame, 236.

MITTHORIERIACH. Apparatus, 35; Analysis, 45; Bromine, 148; Chlorine, 191; Flame, 236; Iodine, 286; Metals, 293; Nitrogen, 303; Sodium, 339.

MCHILAU (R.). Diphenyl, 170.

MOHR (F.). Flame, 236.

MOTONO (F.). Apparatus, 29; Analysis, 45.

MOTERAN (H.). Cyanogen, 169; Potassium, 319.

Moncel (Du). Electric, 223.

MONOKHOVEN. Intensity of the Solar Sp., 106; Flame, 236; Hydrogen, 259; Metals, 293; Ultra-Violet, 349.

MONTIONY. Displacement of Stellar Sp., 79; Twinkling of Stars, 132.

Moretano. Diffraction, 211.

Moratten (A.). Iodine, 266.

Mortentint (D. P.). History, 5.

Morize (H.). Apparatus, 31.

MORREN (A.). Holar in general, 94; Carbon Compounds, 158; Acetylene, 160; Cyanogen, 170; Chlorine, 187; Dispersion, 214; Flame, 236.

Morron (11.). Analysis, 45; Eclipses, 109; Purpurin, 181; Fluorescent, 244; Liquids, 277; Uranium, 347; Ultra-Violet, 349.

Musik (J.). Analysis, 45; Inversion, 263; Nitrogen, 303.

Mousson (A.). History, 5; Apparatus, 15, 34; Analysis, 46; Dispersion, 214.

MOUTIER (J.). Analysis, 46.

Mouton. Apparatus, 20; Heat in the Solar Sp., 112; Dispersion, 214; Heat, 253; Wave-Lengths, 355.

MUIRHEAD (H.). Analysis, 46.

MULDER. Phosphorus, 316; Selenium, 332; Sulphur, 342.

MÜLLER (G.). Intensity of the Solar Sp., 113.

MÜLLER (J.). Apparatus, 16, 22, 26; Heat in the Solar Sp., 112; Photography of the Solar Sp., 117; Solar Wave-Lengths, 132; Dark Lines, 205; Diffraction, 211; Electric, 223; Heat, 253, 254; Manganese, 286; Refraction, 325; Ultra-Violet, 349; Wave-Lengths, 355.

Munro (J.). Aurora, 139.

MURPHY (J. J.). Aurora, 139.

NASCHOLD. Blood, 166.

NASINI (R.). Carbon, 154; Carbon Compounds, 155 (BERNHEIMER et N.).

NEGRI (A. e G. de). Hydrocarbon, 175.

NENCKI und LIEBER. Excrements, 171; Urine, 185.

NEUSSER (E.). Urine, 185.

NEWLANDS (J. A. R.). Aurora, 139.

NEWTON (Sir Isaac). History, 5.

NICATI (W.). Intensity of the Solar Sp., 113.

NICHOLS (E. L.). Analysis, 46; Color, 198, Platinum, 317.

NICKLES. Carbon Compounds, 158; Thallium, 344.

NIEPCE DE SAINT VICTOR. Photography of Solar Sp., 117; Color, 198.

NILSON (L. F.). Scandium, 331; Ytterbium, 358.

NILSON (L. F.) and Peterson (E.). Beryllium, 144.

NIVEN (C.). Displacement of Stellar Sp., 80; Planets, 86.

NOACK. Apparatus, 21.

Noble (W.). Comets, 74; Moon, 87.

NOORDEN (C. von). Quantitative Analysis, 50.

NORTON (W. A.). Comets, 72; Solar in general, 94; Corona, 103.

OETTIGEN (A. J.). Aurora, 139.

OLMSTEAD (D.). Solar in general, 94.

OTTO (J. G.). Blood, 166; Methamoglobin, 177.

OUTERBRIDGE (A.). Apparatus, 23.

PAALZOW. Electric, 223; Flame, 236; Oxygen, 310.

Palmieri (L.). Chlorine, 191; Volcanoes, 350.

Papillon. Carbon Compounds, 158.

PARINAUD et DUBOSCQ. Apparatus, 39; Density, 207.

PARKER (J. Spear). Apparatus, 12; Iron, 268.

PARRY (J.). Electric, 223; Flame, 236; Iron, 268.

PARVILLE (H. de). Meteorological, 295.

PASTEUR. Phosphorescence, 314.

Peirce (B. O. J.). Color, 198; Mercury, 289.

Peirce (C. S.). Analysis, 46; Lines of the Sp., 274; Wave-Lengths, 356.

PENTLAND. Heat of the Solar Sp., 112.

PERKIN (W. H.). Absorption, 57; Alizarine, 162; Anthrapurpurine, 163.

PERNTER, LECHER und. Absorption, 56.

PERROTIN. Comets, 78.

PERRY (S. J.). Fixed Stars, 81; Chromosphere, 104; Eclipses, 109; Sun-Spots, 126; Aurora, 139; Ebonite, 171.

PESLIN. Solar Sp. in general, 95.

Petri (J.). Flour and Grain, 172.

Petruschewski (Th.). Apparatus, 27.

Petzval (Jos.). Electric, 223

PFEFFER (W.). Carbonic Acid, 180.

Phipson (T. L.). Absorption, 57; Ruberine, 182.

Pickering (E.C.). Apparatus, 15; Astronomical in general, 68; Fixed Stars, 81; Nebulæ, 84, 85; Photography of Stellar Sp., 117; Red End of Solar Sp., 124; Aurora, 139; Diffraction, 211; Ultra-Violet, 349; Wave-Lengths, 356.

PIERRE (Is.) et PUCHAT (E.). Flame, 236.

PIGOTT (G. W. Royston). Apparatus, 30; Solar in general, 95.

Piltschikoff. Apparatus, 21.

PISANI. Cæsium, 150.

PISATI (G.) e PATERNO. Benzene, 164.

Plosz (P.). Chromogene, 168; Excrements, 171.

PLÜCKER. Analysis, 46; Borax, 146; Carbonic Acid, 180; Electric, 223; Flame, 236, 237; Fluorine, 246; Hydrogen, 259; Nitrogen, 303; Oxygen, 310; Refraction, 325; Selenium, 332; Sulphur, 342.

Pocklington (H.). Absorption, 57; Chlorophyll, 193.

POEHL (A.). Alkalies, 61.

POEY (A.). Chemical Effects of the Solar Sp., 102; Ultra-Violet Solar Sp., 130.

POGGENDORFF (J. C.). History, 6.

Porro. Comets, 71; Longitudinal Rays, 281.

POWELL (J. Baden). History, 6.

Prazmowski. Apparatus, 25; Comets, 71; Aurora, 139; Color, 198.

PREYER (W.). Quantitative Analysis, 50; Carbon Compounds, 158.

PRIESTLEY (Dr. J.). History, 6.

PRILLIEUX. Density, 208.

PRINGLE (G. H.). Aurora, 139.

PRINGSHEIM. Absorption, 57; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Chlorophyll, 193, 194; Red End of the Spectrum, 322.

PRITCHARD (C.). Analysis, 46.

PROCTOR (H. R.). Apparatus, 21, 22; Electric, 223.

PROCTOR (R. A.). Book, 9; Apparatus, 11; Astronomical in general, 68; Solar in general, 95; Aurora, 139.

PRYTZ (K.). Constants, 200.

Puiseux (A.). Eclipses, 109.

Pulfrich (C.). Absorption, 57; Wave-Lengths, 356.

Pulsifer (W. H.). Apparatus, 30.

QUINCKE (G.). Apparatus, 18; Diffraction, 211; Liquids, 277; Optics, 306.

RADAU (R.). Book, 9; Apparatus, 27.

RADZIZEWSKI (B.). Phosphorescent, 314.

RANVIER (L.). Carbon Compounds, 158.

RAYET (G.). Astronomical in general, 70; Comets, 72, 78; Solar Atmosphere, 100; Solar Eclipses, 109; Solar Protuberances, 119; Sun-Spots, 126; Aurora, 139.

RAYET et ANDRÉ. Comets, 72.

RAYLEIGH (Lord). Apparatus, 18; Analysis, 46; Color, 198; Energy, 227; Optics, 306; Ultra-Violet, 349.

REDTENBACHER (J.). Mineral Waters, 297.

REFORMATSKY (S.). Hydrocarbon, 175.

RÉGIMBEAU. Analysis, 46.

REICH (F.) und RICHTER (Th.). Indium, 261.

REIMANN (M.). Aniline, 163.

REINKE (J.). Analysis, 46.

25 т

REINOLD. Analysis, 46.

Reitlinger (Edm.). Electric, 223; Hydrogen, 259; Nitrogen, 303.

RENNIE (E. H.). Drossera Whittakeri, 170.

RESPIGHI (L.). Book, 9; Comets, 71; Solar Sp. in general, 95; Corona, 104; Eclipses, 109; Solar Protuberances, 119; Aurora, 140.

REYE (Th.). Apparatus, 17; Solar Protuberances, 119; Sun-Spots, 126.

REYNOLDS (J. E.). Apparatus, 11, 21; Analysis, 46; Beryllium, 144; Carbon Compounds, 158; Alizarine, 162; Brazil-wood, 185; Sulphur, 342.

RICCA (V. S.). Corona, 104.

Riccò (A.). Apparatus, 15, 28, 35; Analysis, 47; Comets, 76, 77, 78; Solar in general, 95; Corona, 104; Solar Eruptions, 111; Sun-Spots, 126; Magnesium, 283; Water, 352.

RICHARD et BERTHELOT. Analysis, 40; Flame, 231.

RICHE et BARDY. Flame, 237; Sulphur, 342.

RICOUR (Th.). Dispersion, 214.

RIDOLFI (C.). Water in the Solar Sp., 130.

Rîне (J.). Eclipse, 110.

RITTER. History, 6.

ROBERTS (W. C.). Analysis, 46.

Robiquet. Solar Sp. in general, 95; Electric, 223.

Robinson (H.). Aurora, 140.

Robinson (T. B.). Apparatus, 27.

ROBINSON (J.). History, 6.

ROHRBACH (C.). Dispersion, 214; Liquids, 278.

ROLLETT (A.). · Apparatus, 23; Interference, 262.

ROMANES (C. H.). Solar Sp. in general, 95; Aurora, 140; Meteorological, 295.

Rood (O. N.). History, 6; Books, 9; Apparatus, 22, 28, 31; Analysis, 47; Quantitative Analysis, 51; Didymium, 210; Double Spectra, 217; Indigo, 261; Nitrogen, 303; Secondary Spectra, 331.

Roscoe (H. E.). Books, 9; Analysis, 47; Corona, 104; Atmospheric, 134; Bromine, 148; Carbon, 154; Chlorine, 191; Heat, 254; Iodine, 266; Iron, 269; Potassium, 319; Ruthenium, 327; Sodium, 339.

ROSENBERG (E.). Diffraction, 211.

ROSENSTIEHL (A.). Alizarine, 162.

Rosiky. Diffraction, 211.

ROWLAND (H. A.). History, 6; Apparatus, 17, 18; Maps, 114; Solar Photography, 117; Solar Wave-Lengths, 132; Aurora, 140; Wave-Lengths, 356.

ROWNEY (T.). Analysis, 47.

RUDBERG (Fr.). History, 6.

Rue (Warren de la). Photography of Stellar Sp., 86; Solar Protuberances, 122.

RUPRECHT (R.). History, 6; Book, 9.

Russell (H. C.). Comet, 77; Atmospheric, 134.

Russell (W. J.). Absorption, 57; Chlorine, 191; Chlorophyll, 194; Cobalt, 196; Liquids, 278.

RUTHERFURD (L. M.). History, 6; Astronomical in general, 68; Measurement of Stellar Sp., 82.

SAARBACH (H.). Methamoglobin, 177.

SABATIER (P.). Alkalies, 61; Chromium, 195.

SACHSSE (R.). Chlorophyll, 194.

SAINTE-CLAIRE DEVILLE. Calcium, 152.

SALET (G.). Apparatus, 16; Analysis, 47; Absorption, 58; Aurora, 140; Carbon, 154; Chlorine, 191; Distribution, 217; Double Sp., 217; Flame, 237; Iodine, 266; Metals, 293, Nitrogen, 303; Phosphorus, 316; Selenium, 332; Silicium, 333; Sulphur, 342; Tellurium, 343; Tin, 345; Wave-Lengths, 356.

Salisbury (The Marquis of). Heat, 254; Lines of the Sp., 274.

Salm-Horst (Der Fürst zu). Apparatus, 28; Ultra-Violet, 349.

Sampson (W. T.). Corona, 104.

SANDS (B. F.). Book, 9; Eclipse, 110.

Santini (S.). Flame, 237; Hydrogen, 259.

SARASIN (Ed.). Aluminium, 63; Cadmium, 149; Crystals, 203; D Lines, 204; Fluorine, 246; Refraction, 325; Silicium, 333; Zinc, 360.

SAUER (L.). Ultra-Violet, 349.

SCHAICK (W. C. von). Dispersion, 215.

SCHELLEN (H.). Book, 9.

SCHELSKE (R.). Carbon Compounds, 158.

SCHENCK (L. S.). Bonellia Viridis, 167; Flame, 237.

Schimkow (A.). Atmospheric, 135; Electric, 223; Heat, 254; Nitrogen, 303.

Schiff (H.). Quantitative Analysis, 51; Carbon Compounds, 159; Aniline, 163.

BUHMALIN . AMERICA, 140.

Somers (1.). Apparatus, 15; Absorption, 36; Alonhol, 261; Flowers. 172; Laures, 176; Liquids, 276; Nibrogen, 303; These-Violes. 309; Water Sp., 352.

DOHOUP (P.). Aniline, 165.

Businesses (F). Flame, 251.

BUHRAUF (A.). Chebon, 154: Dingonium, 215.

Burnsonne (M.). Liquide, 278; Beforetion, 325.

Sansoryak. Ludium, 201.

**Б**ода (Д.). **Арумента**, 19.

Similar Singer (C.). Almorption, 58; Silver, 235.

Signerick (#).). Purple, 182.

Schuly 30 (A.). Apparatus, 12: Analysis, 47: Edipses. III (: Oxygen in the Solar Sp., 115; Carbon, 154; Electric. 223; Flame. 27: Matelle, 208; Nitrogen, 308; Oxygen, 310; Radiation, 221.

Brighwaiska (F. M.). Hintory, C.

SHAHMAR (G. M.). (Amust, 74; Displacement of Smiller Sp., 80; Soint in general, 39; Aurora, 140; Hydrogen, 259.

Novem (A.). Hintory, 6; Books, 10; Appearance, 36, 37; Analysis, 47; Aluminium, 68; Astronomical in general, 68, 69; Comets, 71, 72, 73, 74; Pimplacement of Stellar Sp., 80; Fixed Stare, 80, 81, 82; Management of Stellar Sp., 82; Meteors, 53; Nebulæ, 84; Pimplacement of Stellar Sp., 82; Meteors, 53; Nebulæ, 84; Pimplacement of Stellar Sp., 85; Solar Atmosphere, 110; Solar Corona, 104; Velipses, 119; Solar Eruptions, 111; Solar Protologianum, 119, 120, 121; Solar Storms, 124; Sun-Speas, 127; Atmospheria, 130; Aurora, 140; High Altitudes, 255; Hydrorez, 258, 280; Iron, 288; Magnesium, 283; Metals, 294; Sodium, 38; Thallium, 344; Water Sp., 352.

ЫБЫНЫН (Т. Л.). 11 Interry, 7.

Naturn (J. M.), Idaetrie, 224; Fluorine, 246; Light, 272; Phosphorus, 3116; Allielum, 333; Bulphur, 342.

Hantille Interference, 262; Ultra-Violet, 349.

Hall, Mailing (W.), Color, 198; Dispersion, 215.

Manahmone (11, de), Borax, 146; Carbonic Acid, 180; Carbonate of Mode, 186; Crystals, 208; Oxygen, 310; Sodium, 339; Sulphur, 1142.

Мынгын (П.), Flowers, 172.

**Вынгын** (А.). Ангом, 140.

Martiniant (11.). Quantitative Analysis, 51; Nitrogen, 303; Silver, 335.

SHERMAN. Astronomical, 69; Comets, 79; Fixed Stars, 80.

SIEBEN. Density, 208; Dispersion, 215; Heat, 254.

SILBERMANN (J.). Meteors, 83; Aurora, 140.

SILLIMAN (J. M.). Apparatus, 12; Iron, 269.

SIMMLER (R. Th.). Book, 10; Apparatus, 19; Analysis, 47; Borax, 146; Copper, 202; Electric, 224; Flame, 237; Mineral Waters, 297.

SIRKS (J. L.). Selenium, 332.

SMITH (A. P.). Flame, 238; Salt, 328.

Smith (Lawrence). Didymium, 210; Erbium, 229; Mosandrum, 298.

SMITH (C. Mitchie). Meteorological, 295, 296.

SMYTH (C. Piazzi). Book, 10; Apparatus, 20, 38; Analysis, 47; Astronomical in general, 69; Solar in general, 97; B Lines in the Solar Sp., 101; Heat in the Solar Sp., 113; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Aurora, 140; Carbon, 154; Cyanogen, 170; Hydrocarbon, 175; Color, 198; Dispersion, 215; Flame, 238; Meteorological, 296; Oxygen, 310; Wave-Lenghts, 356.

SOHNKE (L.). Heat, 254.

Sokoloff (A.). Apparatus, 19.

Somerville (Mrs.). Chemical Effects of the Solar Sp., 102.

Sonrel. Photography of the Solar Sp., 117; Sun-Spots, 127.

SORBY (H. C.). Apparatus, 22, 28; Qualitative Analysis, 49; Carbon Compounds, 159; Aphides, 163; Blood, 166; Bonellia Viridis, 167; Hemoglobin, 174; Leaves, 176; Spongilla Fluviatilis, 183; Color, 199; Fluorescence, 244; Jargonium, 270; Uranium, 347; Zirconium, 361.

Soret (C.). Apparatus, 30; Aluminium, 63; Alum, 162; Dispersion, 215; Fluorescence, 245.

SORET (J. L.). Apparatus, 17; Absorption, 58, 59; Heat in the Solar
Sp., 113; Blood, 166; Color, 199; Crystals, 203; Didymium, 210;
Diffraction, 211; Dispersion, 215; Flame, 238; Gadolinite, 247;
Liquids, 278; Metals, 296; Nitrogen, 303; Polarized Light, 318;
Samarskite, 330; Ultra-Violet, 349, 350; Water Sp., 352; Yttrium, 359.

SPÉE. Diffraction, 211; Helium, 255.

Spiller (J.). Phosphorescence, 314.

Spörer. Solar Protuberances, 121.

SPOTTISWOODE (W.). Color, 199.

STAS. Heat, 254.

STEARN (C. H.) and LEE G. H.). Flame, 238; Nitrogen, 303; Preseure, 320.

STERRIN J. H.). Azo Colore, 164; Lamp-Black, 176.

STEPEN (J.). Heat, 254; Interference. 262.

STEIN (W.). Carbon Compounds, 159; Morindon, 117; Flame, 238; Glass, 249; Liquids, 278.

STEINHEIL. Analysis, 48.

STENGER (F.). Electric, 224; Fluorescent, 245.

STENHOUSE. Morindon, 117.

STEVENS (W. L.). Apparatus, 30.

STEWART (B.). History, 7; Analysis, 48; Solar in general, 97; Eclipses, 110; Solar Protuberances, 121; Sun-Spots, 127; Tourmeline, 184; Exchanges, 230.

STEREN (E.). History, 7.

STOCKVIS (B. J.). Bile, 165; Gall, 173.

STOKES (G. G.). History, 7; Book, 10; Analysis, 48; Alcalies, 61; Solar in general, 97; Carbon Compounds, 159; Blood, 166; D Lines, 204; Dispersion, 215; Electric, 224; Phosphorescent, 314; Ultra-Violet, 350.

STONE (E.). Analysis, 48; Nebulæ, 84; Aurora, 141.

STONE (W. H.). Apparatus, 34.

Stoney (Johnstone). Apparatus, 35; Astronomical in general, 69; Solar in general, 97; Chlorine, 191; Flame, 238.

STROUMBO. Analysis, 48.

STRUTT (J. W.). Apparatus, 18.

STRUVE (O. von). Aurora, 141.

Sueur (A. Le). Astronomical in general, 69; Fixed Stars, 81; Nebulæ, 84, 85; Planets, 87; Aurora, 141.

Suffolk (W. T.). Apparatus, 23.

Sundell (A. F.). Apparatus, 19.

SWAN (W.). History, 7; Carbon Compounds, 159; Flame, 238; Hydrogen, 260.

TACCHIM (P.). Comets, 76, 79; Venus, 88; Solar in general, 97, 98; Solar Atmosphere, 101; B Lines in the Solar Sp., 101; Solar Chromosphere, 104; Eclipses, 110; Solar Eruptions, 111; Photography of Solar Sp., 117; Solar Protuberances, 121, 122; Sun-Spots, 127, 128; Aurora, 141; Magnesium, 283.

TAIT (P. G.). Apparatus, 27.

TALBOT (H. Fox). Analysis, 48; Flame, 238; Lithium, 280.

TARRY (H.). History, 7; Solar Storms, 124; Aurora, 141; Meteorological, 296.

TENNANT (J. F.). Eclipses, 110.

TERQUEM et TRANNIN. Liquids, 278; Refraction, 326.

THALÉN (Rob.). History, 7; Book, 10; Analysis, 84; Solar in general, 98; Didymium, 210; Erbium, 229; Iodine, 267; Iron, 269; Lanthanum, 270; Limits of the Sp., 273; Maps, 288; Metals, 294; Samarium, 329; Scandium, 331; Thulium, 345; Wave-Lengths, 356; Ytterbium, 358; Yttrium, 359.

THÉNARD (P.). Analysis, 48; Heat in the Solar Sp., 112.

THIERRY (M. de). Apparatus, 11, 39.

THOLLON (L.). Apparatus, 12, 14, 28, 35, 37; Comets, 74, 77, 78;
Venus, 88; Solar in general, 98; B Lines in the Solar Sp., 101;
D Lines in the Solar Sp., 105; Eclipses, 110; Solar Protuberances, 122; Solar Storms, 124; Telluric Solar Sp., 129; Carbon Compounds, 159; D Lines, 204; Dispersion, 215; Maps, 288; Sodium, 339; Wave-Lengths, 356.

Thompson (C. M.). Didymium, 210.

THÖRNER (W.). Chinon, 168.

THUDICHUM (J. L. W.). Bile, 165; Hematine, 174; Lutherine, 176; Potassium, 319; Uranium, 347.

TILDEN (W. A.). Hydrocarbon, 175.

TIMIRIASEF. Analysis, 48; Solar in general, 98; Carbonic Acid, 180; Energy in the Sp., 227.

Tisserand (F.). Sun-Spots, 128.

Tommasi (D.). Electric, 224; Silver, 336.

TRANNIN (H.). Density, 208; Wave-Lengths, 356.

TREMESCHINI. Sun-Spots, 128.

TRÉPIED (C.). Comets, 79; Eclipses, 110.

TRESCA. Aurora, 141.

TROOST and HAUTEFEUILLE. Borax, 146; Carbon, 154; Silicium, 333; Titanium, 346; Zirconium, 361.

TROUVELOT (E. L.). Absorption, 59; Solar in general, 98; Solar Absorption, 100; Solar Atmosphere, 101; Protuberances, 122; Sun-Spots, 128.

TROWBRIDGE (J.). Analysis, 48.

TRUCHOT (P.). Lithium, 280; Mineral Waters, 297.

TSCHIRCH (A.). Apparatus, 23; Chlorophyll, 194.

TUCKER (A. E.). Apparatus, 32.

Tumlirz (O.). Absorption, 59; Liquids, 278.

TUPMAN (Capt.). Protuberances, 122.

Twining (A. C.). Aurora, 141.

TYNDALL (J.). Analysis, 48; Comets, 71; Inversion, 263; Lithium, 280; Red End of the Sp., 322.

UPTON (Winslow). Meteorological, 296.

VALENTINE (G.). Book, 10; Carbon Compounds, 159.

VALSON (C. A.). Salt, 328.

VALZ. Apparatus, 32.

VERNEUIL (A.). Aluminium, 62; Calcium, 152; Phosphorescent, 314.

VICAIRE (E.). Solar in general, 98; Solar Storms, 124; Sun-Spots, 128; Hydrogen, 260; Iron, 269; Magnesium, 283; Silicium, 333.

VIERORDT (K.). Book, 10; Apparatus, 39; Quantitative Analysis, 51; Absorption, 59; Carbon Compounds, 159; Wave-Lengths, 356.

VIOLLE (J.). Platinum, 317; Silver, 336.

VOGEL (E.). Lines of the Sp., 275.

Vogel (H.). Absorption, 59; Comets, 70, 71, 75; Chemical Effect of the Solar Sp., 102; Bromine, 148; Dispersion, 215; Electric, 224.

Vogel (H. C.). Apparatus, 13, 21, 25, 26, 39; Absorption, 59; Comets, 75, 76, 77, 79; Fixed Stars, 81; Nebulæ, 85; Planets, 86; Solar Absorption, 100; Solar Atmosphere, 101; Photography of Solar Sp., 117; Solar Wave-Lengths, 132; Atmospheric, 135; Aurora, 141; Hydrogen, 260; Nitrogen, 303, 304; Oxygen, 310; Wave-Lengths, 357.

Vogel (H. V.). Analysis, 48; Astronomical in general, 70

Vogel (H. W.). History, 7; Analysis, 49; Absorption, 59, 60; Astronomical in general, 70; Dissociation, 216; Electric, 224; Flame, 238; Iron, 269; Light, 273; Magnesium, 284; Mercury, 289; Nickel, 299; Silicium, 333; Silver, 336; Water, 352.

Voigt (W.). Fuchsin, 172; Dispersion, 215; Metals, 294; Refraction, 326; Zinc, 360.

Volpicelli. Calcium, 152; Luminous Sp., 281.

WALKER (E.). Electric, 224.

Waltenhofen (A. von). Electric, 224; Flame, 239

WALTERS (J. Hopkins). Electric, 224.

WARREN DE LA RUE. [Above under Rue.]

WARTMANN (E.). Longitudinal Rays, 281.

WATERHOUSE (J.). Photography of the Solar Sp., 117; Eosin, 171.

Watts (W. M.). Books, 10; Apparatus, 22; Analysis, 47, 49; Comets, 73; Aurora, 141; Carbon, 154; Hydrocarbon, 175; Double Sp., 217; Flame, 239; Iron, 269.

WEBER (R.). Plants, 181.

Weinberg (M.). Interference, 262; Wave-Lengths, 357.

Weinhold (A.). Apparatus, 21; Color, 199; Inversion, 264; Metals, 294; Sodium, 339.

Weiss (A.). Solar in general, 99; Fungi, 172; Density, 208; Fluorescent, 245; Nitrogen, 304.

Welsbach (C. A.). Gadolinite, 247.

WERNICKE (W.). Apparatus, 29; Absorption, 60; Bromine, 148; Chlorine, 191; Iodine, 267; Metals, 294; Polarized Light, 318; Silver, 336.

Wesendonck (K.). Carbon Compounds, 160; Napthalin-Red, 178; Carbonic Acid, 180; Fluorescent, 245; Fluorine, 246; Hydrogen, 260; Silicium, 333.

WHEATSTONE (C.). Electric, 224.

WIEDEMANN (E.). Analysis, 49; Pressure on the Sun, 117; Sun-Spots, 128; Carbonic Acid, 180; Constants, 200; Electric, 224, 225; Flame, 239; Glass, 249; Hydrogen, 260; Manganese, 286; Polarized Light, 318; Potassium, 320; Refraction, 326; Wave-Lengths, 357.

WIEN (Wille). Absorption, 60.

WIESNER (J.). Xantophyll, 186; Chlorophyll, 194.

WIJKANDER. Aurora, 141.

WILD (H.). Apparatus, 33.

WILEY (H. W.). Uranium, 347.

WILLIAMS (W. M.). Calcium, 152; Iron, 269; Titanium, 346.

WILLIGEN (S. M. van der). Electric, 225; Hydrogen, 260; Metals, 294.

WILSON (J. M.) and SEABROKE. Solar in general, 99.

WINKLER. Indium, 261.

Winlock (Prof.). Apparatus, 16, 36, 37; Solar in general, 99; Aurora, 141.

WINNECKE. Nebulæ, 84.

WINTER (G. K.). Corona, 105.

WISKEMANN (M.). Hemoglobine, 174.

WLEUGEL (S.). Indium, 261.

WOLFF (C. H.). Quantitative Analysis, 51; Absorption, 60; Alkalies, 61; Astronomical in general, 70; Comets, 72, 73, 75; Fixed Stars, 82; Sun-Spots, 128; Fuchsin, 172; Indigo, 176; Cobalt, 196; Copper, 202; Iron, 269; Liquids, 278.

WOLLASTON (Dr.). History, 7; Dark Lines in the Solar Sp., 106; Dark Lines, 206.

WRIGHT (A. W.). Meteors, 83; Aurora, 142; Flame, 239; Iron, 269. WROTTESLEY (Lord). Books, 10.

WÜLLNER (A.). Analysis, 49; Bromine, 148; Acetylene, 161; Carbonic Acid, 180; Dispersion, 216; Electric, 225; Flame, 239, 240; Fluorescent, 245; Hydrogen, 260; Iodine, 267; Lines of the Spectrum, 275; Nitrogen, 304; Oxygen, 310.

Wunder (J.). Absorption Sp., 60; Ultra-Marine, 184.

Wünsch (C. E.). History, 7.

. Wurtz (A.). History, 7.

Wyrouboff (G.). Dispersion, 216; Sodium, 339.

Young (C. A.). Books, 10; Apparatus, 18; Analysis, 49; Comets, 73, 75, 79; Planets, 88; Solar in general, 99; Bright Lines in the Solar Sp., 102; Corona, 105; Displacement of Solar Sp., 106; Eclipses, 110, 111; Sun-Spots, 128; Inversion, 264; Nomenclature, 305; Sodium, 339.

Young (T.). History, 8.

Yung (E.). Color, 199.

ZAHN. Apparatus, 33, 38; Quantitative Analysis, 51.

Zantedeschi. History, 8; Apparatus, 32; Solar in general, 99; Longitudinal, 281.

ZENGER (C. V.). Apparatus, 12, 14, 15, 24, 35, 37, 39; Diffraction, 211; Light, 273; Ultra-Violet, 350.

ZENGER (K. W.). Analysis, 49; Photography of Solar Sp., 117.

ZENKER (W.). Apparatus, 33; Solar Protuberances, 122.

ZIMMERMANN (C.). Uranium, 347.

ZÖLLNER (F.). Apparatus, 30, 36, 37; Astronomical in general, 70;
Nebulæ, 85; Solar in general, 99; Corona, 105; Dark Lines in the Solar Sp., 106; Solar Protuberances, 122; Solar Rotation, 124; Sun-Spots, 129; Aurora, 142; Dark Lines, 206; Density, 208; Flame, 240; Heat, 254.

ZONA. Comet, 76.

## SUPPLEMENT.

As the omission of the authors' names in connection with references to the Juhresberichte der Chamie has been pointed out as a serious defect in the Index, these names are now supplied below.

```
Jahresber. d. Chemie (1847-'8), 161, analysis, by Draper.
 (1847-'8), 164, analysis, by Becquerel.
 "
 "
 (1847-'8), 197, analysis, by Brewster.
 (1847-'8), 197, analysis, by Airy.
 (1847-'8), 198, analysis, by Melloni.
 "
 (1847-'8), 198, analysis, by Brewster.
 (1847-'8), 221, chlorine and hydrogen, by Favre
 "
 and Silbermann.
 "
 "
 (1849), 164, photography of, by Becquerel.
 "
 (1850), 154, lines in the sp., by Brewster.
 "
 (1851), 151, longitudinal lines, by Ragona-Scina.
 "
 (1851), 134; (1852), 117, interference sp., both by
 Nobert.
 "
 (1851), 152, Fraunhofer lines, by Broch.
 (1851), 152, electric sp., by Masson.
 "
 (1852), 124, Fraunhofer lines, by Phillips and by
 Merz.
 "
 (1852), 125, analysis, by Stokes.
 (1852), 125, longitudinal lines, by Zantedeschi.
 (1852), 126, measurements of the sp., by Porro.
 "
 (1852), 126, 131, analysis, by Helmholtz.
 "
 (1853), 167, Fraunhofer lines, by Kuhn.
 "
 (1853), 167, Longitudinal lines, by Salm-Horstmar.
 (1853), 178, colors, by Grassmann.
 "
 (1854), 137, Fraunhofer lines, by Heusser.
 (1854), 197, solar sp. in general, by Becquerel.
 "
 (1855), 123, analysis, by Helmholtz.
 "
 (1855), 123, lines of the sp., by Grassmann.
```

Jahresber. d. Chemie	e (1859), 643, analysis, by Kirchhoff and Bunsen.
"	(1860), 598, analysis, by Kirchhoff and Bunsen.
66	(1860), 608, analysis, by Merz.
**	(1861), 41, analysis, by Kirchhoff and Bunsen.
"	(1861), 43, electric, by W. A. Miller.
	(1861), 44, phosphorus and sulphur, by Seguin.
"	(1861), 44, thallium, by Crookes.
"	(1861), 44, dark lines, by Kirchhoff.
46 44	(1861), 45, solar atmosphere, by Tyndall and Roscoe.
44 44	(1861), 45, analysis, by Kirchhoff and Bunsen.
66 56	(1862), 26, Fraunhofer lines at sunset, by A. Weiss.
"	(1862), 26, cause of the dark lines in the solar sp.,
	by Janssen.
" "	(1862), 26, dark lines in the sp. of stars, by Merz.
66 66	(1862), 27, coïncidence of the Fraunhofer lines with those of various metals, by Angström.
66 66	(1862), 27, general treatises on spectrum analysis, by Jamin, W. A. Miller, and Roscoe.
	(1862), 27, various forms of the spectroscope, by Janssen, Kirchhoff and Bunsen, A. Waugh, E. Hauer, and O. N. Rood.
46 46	(1862), 27, 28, methods for obtaining constant spectra, by Mitscherlich, Crookes, Diacon et Wolf, Debray, Roscoe and Clifton, and Plücker.
"	(1862), 29, spectrum of soda, by Fizeau.
" "	(1862), 29, division of bright rays into metallic spectra in good spectroscopes, by J. P. Cooke.
"	(1862), 29, influence of the temperature of a flame on the spectrum produced by it, by Kirchhoff
•	and Bunsen, Roscoe and Clifton, and Crookes.
"	(1862), 30, constancy of the spectra, both of metals and of their compounds, by Wolf et Diacon.
и "	(1862), 31, differences between the spectra of various metals and those of their chlorine compounds, especially the influence of salts. Mitacherlich.
44 61	this in to mospher

Jahresber. d. Ch	emie	(1862), 33, metallic spectra produced by electric sparks, by W. A. Miller, Stokes, and T. R. Robinson.
"	"	(1862), 33, spectra of carbon and of fluorine, by Sequin, Attfield, and Swan.
**	"	(1862), 34, violet coloring given to the flame by various chlorides, by Gladstone.
	"	(1862), 34, spectra of colored solutions, by Brewster, Gladstone, and by Rood.
"	"	(1862), 29, spectrum of sodium, by Wolf et Diacon.
"	"	(1862), 30, spectrum of lithium in the hydrogen flame, by Wolf et Diacon.
••	"	(1862), 30, spectra of copper and of lead, by Debray.
• 6	• •	(1862), 535, spectrum of blood, by F. Hoppe.
••	"	(1863), 101, photography of the solar spectrum, by Mascart.
44	"	(1863), 104, 106, 107, photographic effect of electric spectra of metals, by W. A. Miller.
**	.6	(1863), 107, 110, dark lines in the solar spectrum, by Kirchhoff.
•	"	(1863), 108, note, atmospheric or telluric lines of the solar spectrum, by Jasssen.
**	.6	(1863), 108, note, spectra of the stars, by Secchi.
••	• 6	(1863), 109, spectrum of iodine, by A. Wüllner.
	"	(1863), 110, accuracy and comparison of spectroscopes, by Bunsen and Kirchhoff, and by J. P. Cooke.
ci	"	(1863), 110, spectra of sulphur and of nitrogen, by Plücker and Hittorf.
	"	(1863), 111, spectra of the chlorine metals, by E. Diacon.
	"	(1863), 111, spectrum of hydrogen, by Leclance.
**	66	(1863), 111, spectra of phosphorus, by Christofle and Beilstein.
44	66	(1863), 112, use of spectrum analysis in the manufacture of steel, by Roscoe.
44	"	(1863), 112, spectra of sodium and potassium, by L. M. Rutherfurd.

Jahresher.	d. Chemie	(1863), 112, spectrum of thallium, by W. A. Miller and by J. P. Gassiot.
		1863), 112, spectrum of osmium, by W. Fraser.
•	••	1863), 113, history of spectrum analysis; by G. Kirchhoff and by H. C. Dibbits.
		1863), 113, spectra of various metals in electricity.
• (		1863), 118, spectrum of carbon, by Daniel.
		1863), 114, apparatus, by Wolcott Gibbs, Littrow, R. Th. Simmler, J. P. Gassies, H. Osans, B. Valz, and E. Mulder,
	••	(1864), 108; spectrum analysis of colored solutions, by C. Werner.
.,	• 4	(1864), 108; dark lines of the elements, by R. Bussen.
	• •	(1864), 109; spectrum of lightning, by L. Grandeau.
	••	1864), 169, spectrum of the non-luminous carbon flame; by A. Morren.
4;	4 -	(1864), 109, spectra of phosphorus, suiphur, and selenium, by E. Mulder.
•	• •	1864), 109, spectra of flames, by IL C. Dibbits.
•		1864), 110, spectra of glowing gases and vapours in electricity, by S. Plücker and S. W. Hittori.
"	• •	1884), 112, spectra of the elements and of their compounds, by A. Mitscherlich.
"	,	(1884), 115, electric spectra of metals, by W. Hing-
:t	41	(1884), 115, spectrum of the light from phosphores- cent animals, by Pusteur.
"	"	(1864), 115, note, spectra of the sun, fixed stars, planets, and nebulæ, by Janssen, W. A. Miller, and Huggins.
u	t.	(1864), 115, apparatus with 11 sulphide of carbon prisms, by J. P. Gassiot.
u	u	(1864), 115, harmonions results given by the spac- troscope, by F. Gottschalk.
u	ú	(1865), 85, absorption spectra of colored solutions. by F. Melde.



Jahresber. d.	Chemie	(1867), 107, spectra of the stars, by A. Secchi.
"	u	(1868), 130, spectroscope for testing minerals. by J. E. Reynolds.
"	4	(1868), 132, comparison of prisms for spectroscopes. by E. C. Pickering.
	-4	(1868), 80, spectrum of heat, by E. Desaines.
••	•6	(1868), 124, artificial spectrum of a Fraunheier line, by A. Wüllner.
••	••	(1868), 125, various spectra of the same gas, by A. Wüllner.
4	44	(1868), 126, 127, spectra of lightning, by A. Kundt.
4	•4	(1868), 128, spectrum of the aurora, by O. Struve.
46	•6	(1868), 128, flame spectra of gases containing carbon, by A. Lielegg.
•6	**	(1868), 129, spectrum of potassium and of barium, by J. H. Freeman.
44	66	(1868), 129, absorption spectra of liquids for dyeing, by Reynolds.
• 6	"	(1868), 130, application of the spectroscope to the examination of crystals, L. Ditscheiner.
"	"	(1868), 133, spectrum telescope, by W. Huggins.
46	**	(1869), 174, history of spectrum analysis, by A. S. Herschel.
"	"	(1869), 174, constitution of spectra of light, by Lecoq de Boisbaudran.
"	"	(1869), 175, spectrum scale, by A. Weinhold.
46	66	(1869), 175, reversion spectroscope, by F. Zöllner.
"	.4	(1869), 175, binocular spectrum microscope, by W. Crookes.
	44	(1869), 175, appearance of opal in the spectroscope, by W. Crookes.
"	16	(1869), 176, spectrum of carbon, by W. M. Watts.
46	"	(1869), 176, 180, spectra of gases, by E. Frankland and J. N. Lockyer.
46	<b>،</b>	(1869), 177, difference of the spectra under various ircumstances, by A Seach and Lecoq de Boistran.
"	. 44	** * spectr* noreasing press-

Jahresber, d.	Chemie	(1869), 180, spectrum of the aurora, by Angström.
**	66	(1869), 181, spectrum of sulphur, by G. Salet.
"	•6	(1869), 182, spectrum of acetylene, by Berthelot and F. Richard.
"	"	(1869), 182, absorption spectrum of chlorine, by Morren.
• •	<b>66</b>	(1869), 183, absorption spectra of steam and of saltpetre, by E. Luck.
"	"	(1869), 184, absorption spectrum of mangansuper- chloride, by E. Luck.
46	"	(1870), 148, spectrum of heat, by Becquerel.
44	"	(1870), 172, spectrum analysis, by A. Kundt.
"	66	(1870), 172, absorption spectra of liquid nitrates, by A. Kundt.
**	"	(1870), 173, spectroscopic examination of sulphur and phosphorus, by Salet.
"	66	(1870), 174, absorption spectrum of iodine vapour, by R. Thalén.
**	"	(1870), 174, spectra of chalk, magnesia, baryta, and strontium, by Huggins.
44	66	(1870), 175, spectrum of fat oils, by J. Müller.
**	"	(1870), 175, influence of temperature on the sensitiveness of spectrum reactions, by E. Cappel.
"	"	(1870), 177, spectra of gases, by A. Secchi.
**	"	(1870), 177, note, spectra of stars, by Leseueur, Hennessey, Secchi, Lockyer, and Young (C. A.).
"	"	(1870), 321, absorption spectrum of nitrates of didymium, by Erk.
66	"	(1870), 930, spectrum analysis in general, by H. C. Sorby.
	"	(1871), 120, heat spectra of sunlight and limelight, by S. Lamansky.
44	"	(1871), 144-149, spectra of colored bodies, by W. Stein.
**	"	(1871), 150, use of a reflector behind the spectrum apparatus, by H. Fleck.
44	"	(1871), 150, spectrum of calcium, by R. Blochmann.
66	"	(1871), 151, diffraction and dispersion of selenium, by J. L. Sirks.
26 т		

Jahresber. d.	Chemie	(1871), 151, diffraction and dispersion in iodide, bromide, and chloride of silver, by W. Wernicke.
46	"	(1871), 153, diffractive power of various liquids, by Croullebois.
u	"	(1871), 153, diffractive power of gases, by Fr. Mohr.
u	u	(1871), 154-160, anomalous dispersion of bodies colored on the surface, by A. Kundt.
• 6	44	(1871), 160, interference-scale for spectroscopic measurements, by J. Müller and by Sorby.
••	6.	(1871), 160, variable spectra, by A. J. Angström.
**	44	(1871), 160-165, spectra of gases, by Angström.
••	••	(1871), 165, spectrum analysis, by G. Salet.
••	66	(1871), 167, spectrum of lightning, by H. Vogel.
44	66	(1871), 168, solar spectrum, by J. Janssen.
66	<b>"</b>	(1871), 169, spectrum of the aurora, by Browning, Zöllner, R. J. Ellery, Lord Lindsay, G. F. Barker, and H. Vogel.
66	66	(1871), 169, comparative investigations of the spectrum, by L. Troost and P Hautefeuille.
6.	66	(1871), 172, absorption by iodine-vapour, by Andrews.
66	66	(1871), 173, inversion of the spectrum lines, by A. Weinhold.
66	66	(1871), 175, illumination, absorption, and fluorescence, by A. Lallemand.
66	"	(1871), 179-189, chemical effects of light, by H. E. Roscoe and T. E. Thorpe.
66	"	(1871), 189, quantitative analysis, by Vierordt.
44	••	(1871), 191, phosphorescence, by A. Forster.
66	"	(1872), 134, ultra-violet rays of the solar spectrum, by Sekulic.
	66	(1872), 136, absorption spectrum of chlorophyll, by Chautard.
66	"	(1872), 137, absorption spectrum of saltpetre, by D. Gernez.
44	"	(1872), 138, absorption spectrum of chlorine, by Gernez.
66	"	(1872), 139, 141, absorption spectrum of sulphur, by Gernez

Jahresber.	d. Chemie	(1872), 139, absorption spectra of the chloric acids and of selenium, by D. Gernez.
46	66	(1872), 140, absorption spectra of chloride of sele- nium, of bromide of selenium, of tellurium, of chloride of tellurium, and of bromide of tellu- rium, and of alizarine, by D. Gernez.
66	66	(1872), 141, spectrum of iodine and of sulphur, by G. Salet.
<b>«</b>	"	(1872), 141, 143, 144, 145, 146, spectrum of hydrogen, by G. M. Seabroke, Lecoq de Boisbaudran, A. Schuster, L. Cailletet, and E. Villari.
66	••	(1872), 142, spectrum of phosphoretted hydrogen, by K. B. Hofmann.
"	"	(1872), 142, 144, 145, spectrum of nitrogen, by Schuster.
**	46	(1872), 142, spectrum of the flame of ammonia, by K. B. Hofmann.
66	"	(1872), 143, spectrum of ammonia, by A. Schuster
66	66	(1872), 143, spectra of gases, by Schuster and by Angström.
"	(e	(1872), 145, spectra of aluminium, magnesium, zinc, cadmium, cobalt, and nickel, by Lockyer.
"	44	(1872), 145, influence of pressure on the spectrum of the induction spark, by L. Cailletet.
66	"	(1872), 146, spectrum analysis, by C. Horner.
"	"	(1872), 147, solar spectrum, by C. A. Young.
46	"	(1872), 148, spectrum of the aurora, by H. C. Vogel.
66	. "	(1872), 148, spectrum of the zodiacal light, by E. Liais.
"	46	(1872), 148, spectrum of lightning, by E. S. Holden.
66	46	(1872), 873, spectrum analysis, by Vierordt.
"	66	(1872), 948, micro-spectroscope, by Timiriasef.
66	•	(1873), 54, use of the spectrum in measuring high temperatures, by J. Dewar and by Gladstone.
44	"	(1873), 146, spectroscopes, by Hartley, Emsmann, Zenger, H. R. Proctor, O. N. Rood, C. A. Young, F. P. Le Roux, Th. Edelmann, R. Hennig and M. M. Champion, Pellet et Grenier.

othresher.	i. Chemie	11878), 148; spectra of quantity A. Wülfmann
	i	1878), 149; spectra of the metabloids, by G. Sales.
•	.4	18734, 150; spectrum of the Bessesser: rhame, by W. M. Watts:
	.4	(1873), 150), spectra of the orbitum carries by Leconic Boxbandran.
	.4	1873), 150, supposed spectrum-line of iron; by A. Secchi.
	.4	1873), 150, spectrum of the electrocerium light, by A. Secchi.
		1873), 150, spectra of cobalt compounds, by Ch.
· ¢		1873), 154, spectrum of exploding: gnn-coston, by O. Lohne:
.•		1873), 154, spectrum of the summer, by G. F. Barker:
	46	(1873), 151, spectra obtained by the induction spark, by Lecon de Boisbandran.
		(1873), 152, spectra between lemma electrodes, by Lecon de Beinhandran.
.6		1873), 152, spectrum of chlorida of gold, by Lecon ie Boishandran.
		1873), 152, flame-spectrum of the thallium saits.
• (	• •	1873), 152, electric spectrum of carnonate of lith- ium, by Lecco de Boishaudran.
. (	44	(1873), 152, dependence of the spectra of chemical compounds on their composition, by J. N. Louisver.
"	"	(1873), 153, quantitative spectrum anxivers of "Logirungen," by J. N. Lockwer and W. C. Roberts.
и	· ·	(1873), 154, ultra-violet spectra, by L. Soret,
£1	"	(1873), 154, nitrate of nickel used as for nusurption, by H. Emsmann.
u	u	(1873), 154-157, spectroscopic investigation of chlorophyll, by G. Krass, J. Chantard, and H. Pocklington.
u	u	(1873), 157, absorption spectrum of mapthaline, by A. Lallemand.



Jahresber.	d. Chemie	(1875), 126, fluorescence and absorption spectra of the carbonates, by H. Morton.
•6		(1875), 119, indices of refraction of the spectra of fuchsin and of silver, by W. Wernicke.
••	66	(1875), 120, 121, spectroscopes, by A. K. Eaton, W. M. Watts, J. C. Dalton, and by B. Delachanal and A. Mermet.
	••	(1875), 121, history, by H. Wartz, who claims for the American, D. Alter, priority over Kirch- hoff and Bunsen.
••	••	(1875), 121, relations between atomic weight and wave-lengths, by E. Vogel.
**	••	(1875), 121, relation between magnetism and spectroscopy, by J. Chautard.
**	••	(1875), 121, spectrum of sodium, by Wills.
**	••	(1875), 127, spectrum of chlorophyll, by Pringsheim.
•6	.6	(1875), 127, spectrum of bonellia viridis, by S. L. Schenk.
44	•6	(1875), 128, absorption-spectra of real red wine and of its adulterations, by H. W. Vogel.
"	**	(1875), 128, spectrum analysis, by R. Bunsen.
**	44	(1875), 129, spectrum analysis of the carbonates, by A. and G. de Negri.
.6	• 6	(1875), 901, quantitative spectrum analysis, by K. Vierordt.
**	**	(1876), 158, projection of the solar spectrum on a screen, by F. Kessler.
"	46	(1876), 936, spectrum of oils, by W. Gilmour.
•	46	(1876), 142, spectroscopes, by Terquem and Tran- nin, by Wiedemann, and by Stoney.
46	66	(1876), 142, the Talbot lines and interferent constants, by Wolcott Gibbs.
66		('376), 142, comparison of colors for dyeing with colors of the spectrum, by W. von Bezold.
**	46	(1876), 142, spectra of the metalloids by Thalen and Angström.
<b>c</b> ,	"	(1876), 145 meetrum of nitror Caxin, Anget Caxin, and Sec.

Jahresber.	d. Chemie	(1876), 143, spectrum of chlorine, by Czechowitz.
"	"	(1876), 143, spectrum of carbonic acid, by Czechowitz.
46	**	(1876), 143, spectrum of fluoride of silicon, by Czechowitz.
"	44	(1876), 144, spectra of gases, by E. Goldstein.
66	"	(1876), 144, spectrum of indium, by A. W. Claydon and C. T. Haycock.
"	46	(1876), 144, spectrum of gallium, by Lecoq de Boisbaudran.
66	**	(1876), 144, spectrum of calcium, by J. N. Lockyer.
"	u.	(1876), 145, the D lines of the solar spectrum, by W. A. Ross.
44	46	(1876), 145, the ultra-red spectrum, by E. Becquerel.
46	• 6	(1876), 145, constants of absorption of light in metallic silver, by W. Wernicke.
46	"	(1876), 145, absorption spectra of various kinds of ultra-marine, by J. Wunder.
46	"	(1876), 146, absorption spectra of iodine, by John Conroy and by Schultz-Sellack.
"	ૃ દદ	(1876), 147, absorption spectra of the vapours of bromine and of simple chloride of iodine, by H. E. Roscoe and T. E. Thorpe.
44	. "	(1876), 155, photographs of the ultra-red rays of the solar spectrum, by J. Waterhouse.
46	"	(1877), 1031, map of the solar spectrum, by J. N. Lockyer, the first part of his map.
66	"	(1877), 1245, photography of the less refractive part of the solar spectrum, by H. W. Vogel.
46	"	(1877), 1247, rice-grains in the solar spectrum, by Janssen.
46	"	(1877), 185, quantitative spectrum analysis, by G. Govi.
66	46	(1877), 181, spectroscopes, by W. H. M. Christie, H. W. Vogel, H. Schellen, and G. Hüfner.
66	44	(1877), 181, spectrum of the electric spark in compressed gases, by A. Cazin.
46	• ••	(1877), 1034, electric spectrum of indium, by W-Claydon and Ch. T. Heywon.



Jahresber. d. Chem	ie (1878), 169, book containing 136 autotype pictures of spectra, by J. Rand Capron.
ec 66	(1878), 170, spectrum of gun-cotton, by H. W. Vogel.
"	(1878), 170, spectra of oxygen, by A. Schuster.
"	(1878), 170, spectrum analysis of the elements, by J. N. Lockyer.
"	(1878), 172, nature of spectra, by E. Wiedemann.
<b>44</b> 44	(1878), 173, spectra of the elements and of their compounds, by G. Ciamician.
44 44	(1878), 174, influence of pressure and temperature on the spectra of gases and vapours, by G. Ciamician.
<b>u</b> "	(1878), 175, electric spectra in Geissler tubes, by W. R. Grove.
ec 44	(1878), 175, spectrum of oxygen, by Paalzow.
u «	(1878), 175, oxygen lines in the solar spectrum, by R. Meldola and H. Draper.
44 44	(1878), 176, quantitative spectrum analysis, by K. Vierordt.
66 66	(1878), 176, influence of the density of a body on its spectrum, by P. Glan.
ee ee	(1878), 177, influence of the dissolving medium on the spectrum of the substance dissolved, by Ar. Kundt.
	(1878), 177, variability of the position of the absorption lines of various substances in various solutions, by F. Claes.
66 66	(1878), 177, difference of the absorption spectra of bodies in solid and liquid states, by H. W. Vogel.
ta a	(1878), 1095, measuring-apparatus, by J. Emerson Reynolds.
46 46	(1878), 1097, spectrophotometer, by Von Zahn.
66 66	(1878), 158, spectrometric investigation of various scources of light, by A. Crova.
66 66	(1878), 180, change of the absorption spectra in various solutions, by F. von Lepel.
<b>66</b> 66	(1878), 180, changes of the absorption spectrum of safranin, by J. Landauer.

## SUPPLEMENT.

4.

لطنيرا ما ماءودوريان	tine (1570 , 180 <b>, specifesculae investigation di son</b>
	ing of a minimum?
	ince of politication by J. Cont.
•	(167), 18., amorphous of the mater-protect ray.
	(267); 1°1, untra-valued absorption assectes at ex- mands by d. La Sore:
•	(2018). Ash, anversion of the emergene times metable supports, or the D. Livering land Local.
at	(1878), 185, apostrosopie observations of their by J. N. Louiger.
	(1870), 185, oxygen in the suitr atmosphere, hi C. Dimper.
<b>\$</b> \$.	டுகிறு 160, மடி of the thira-violet mart of some specialis, in communical of amound மாழ்த்தில் பெரைய
	(1677), 167, pholography of the realistic insta- appearury by Auney
į.	(16) c., 10°, extention masses for the many retr.  11° cac c° the spectrum, cause of softering,  12° Appen and by Constant;
	(1810), 10°, finine for spectroscopy: observation by H. Gilli
	(1879, 10, apodroscopie investigation of the in-
	(1878) 100 mature of spectra of I Wie
14 14	(1879), 160, mand and lime spectrum, by Z. W
	(187): . 16: influence of temperature on the aner of gases and vapours, by G Ciamicia:
**	(1879) 160 fimile of the ultra-violet spectrum.
••	(1879 - 161, spectroscopic investigations, n ]. Luckyer.
"	(1879), 1022, quantitative spectrum annivers.  4. H. Wolf.



Jahresber.	l. Chemie	(1880), 207, spectra of the compounds of carbon with hydrogen and nitrogen, especially the sensitiveness of the spectroscopic reactions of carbo-nitrogen compounds, by G. D. Liveing and J. Dewar.
"	"	(1880), 208, the repeated inversion of the sodium lines, by C. A. Young.
"	• •	(1880), 208, method for a constant sodium flame, by Fleck.
"	"	(1880), 208, spectra of magnesium and lithium, by G. D. Liveing and J. Dewar.
44	66	(1880), 209, spectroscopic relations of copper, nickel, cobalt, iron, manganese, and chromium, by Th. Bayley.
.**	66	(1880), 209, absorption spectra of the yttrium group, by J. L. Soret.
"	• 66	(1880), 210, emission spectrum of erbium and ytter- bium, by R. Thalén.
66	"	(1880), 211, spectrum of thulium, by R. Thalén.
66	""	(1880), 212, spectrum of scandium, by R. Thalén.
"	44	(1880), 212, displacement of the absorption lines of purpurin in various solutions, by H. Morton.
•6	"	(1880), 212, ultra-violet rays, by J. Schönn.
"	"	(1880), 213, limits of the ultra-violet end of the spectrum, by A. Cornu.
"	"	(1880), 213, absorption of the ultra-violet rays by organic bodies, by W. R. Dunstan.
"	66	(1880), 214, the ultra-violet absorption spectra of ytterbium, erbium, holmium, philippium, terbium, samarium, decipium, didymium, and zirconium, by J. L. Soret.
"	"	(1880), 219, photography of the spectra of stars, by Huggins.
66	"	(1880), 219, photographs of the spectrum of bromide of silver, by Abney.
66	"	(1880), 219, photochemistry of silver, by J. M. von Eder.
44	"	(1881), 117, spectroscopic measurement of high temperatures, by A. Crova.

	Jahresber. d.	Chemie	(1881), 117, use of Vierordt's double slit in spectroscopic analysis, by W. Dietrich.
	46	66	(1881), 117, spectrophotometer, by A. Crova.
	"	44	(1881), 117, phosphorography of the solar spectrum and the ultra-red lines, by J. W. Draper.
	"	46	(1881), 118, inversion of spectrum lines, by G. D. Liveing and J. Dewar.
_	"	46	(1881), 118, disappearance of spectrum lines, by Ch. Fievez.
	4.6	"	(1881), 119, coıncidence of spectrum lines of various elements, by G. D. Liveing and J. Dewar.
	"	"	(1881), 119, spectrum of oxygen, by A. Paalzow and H. W. Vogel.
	"	"	(1881), 120, spectra of hydrogen and of sulphur, by B. Hasselberg.
	66	"	(1881), 120, spectrum of arsenic, by O. W. Huntington.
		"	(1881), 121, spectra of sodium and calcium, by Abney.
	"	"	(1881), 121, relative intensity of the sodium lines $D_a$ and $D_{\beta}$ , by W. Dietrich.
	"	44	(1881), 121, spectrum of magnesium, by G. D. Liveing and J. Dewar.
	66	"	(1881), 122, spectra of magnesium, sodium, copper, baryum, and iron in their harmonic relations, by A. Schuster.
	"	"	(1881), 122, spectrum of iron, by J. N. Lockyer.
	66	"	(1881), 122, 123, spectra of the carbon compounds, by E. Wesendonck; remarks by A. Wüllner, claiming priority.

- " (1881), 123, spectroscopic lines of the arc of Jamin's lamp, by Thollon.
- " (1881), 123, spectrum of carbonic acid, by C. Wesendonck.
- " (1881), 123, 124, spectrum of acetylene, by A. Wüllner.
- " (1881), 125, color of water, by F. Boas.
- " (1881), 125, absorption of the solar rays in the atmosphere, by E. Lecher.

Jahresber.	d. Chemie	(1881), 125, absorption of light in various media, by C. Pulfrich.
"	66	(1881), 126, molecular structure of carbon compounds and their absortion spectra, by W. N. Hartley.
66		(1881), 127, influence of the molecular arrangement of organic substances on their absorption in the ultra-red part of the spectrum, by Abney and Festing.
66	44	(1881), 127, the absorption spectrum of ozone, by W. N. Hartley.
66	"	(1881), 127, absorption spectra of cobalt salts, by W. J. Russell.
44	"	(1881), 128, absorption bands in the visible spectra of colorless liquids, by W. J. Russell and W. Lapraik.
66	"	(1881), 128, spectra of terpenes and volatile oils, by W. N. Hartley and A. K. Huntington.
66	"	(1881), 129, chrysoidine and the allied azo dyestuffs, by J. Landauer.
66	"	(1881), 129, alkaloid reactions in spectroscopic apparatus, by K. Hock.
66	"	(1881), 129, absorption of the ultra-violet rays, by De Chardonnet.
"	44	(1881), 129, passage of rays of small refraction through ebonite, by Abney and Festing.
46	"	(1881), 130, spectrum of cyanine, by V. von Lang.
66	"	(1881), 130, 131, 132, discontinuous spectra of phosphorescent bodies, by W. Crookes; E. Becquerel claims priority for a part.
"	"	(1881), 132, phosphorescence of Balmain's illuminating matter, by E. Dreher.
66	66	(1881), 133, the light of phosphorescent substances, by E. Obach.
46	"	(1881), 133, fluorescence, by O. Lubarsch.
66	"	(1881), 133, comparative effects of light and heat in chemical reactions, by G. Lemoine.
"	"	(1881), 135, sensitiveness of dry plates of bromide
		of silver to the solar spectrum, by H. W. Vogel.

Jahresber.	d. Chemie	(1881), 136, photography in colors, by Ch. Cros and J. Carpenter.
46	"	(1881), 136, effect of the spectrum in radiophony, by E. Mercadier.
"	"	(1881), 137, change from vibrations of light to vibrations of sound, by W. H. Preece.
"	"	(1881), 138, an aragonite prism, by V. von Lang.
44	**	(1881), 139, double refraction in agitated liquids, by A. Kundt and Maxwell.
"	44	(1882), 187, examination of powerful absorbants, by C. Pulfrich.
"	66	(1882), 190, the violet phosphorescence of calcium sulphide, by W. de W. Abney.
66	64	(1882), 285, spectra of the cerite metals, by B. Brauner.
66	66	(1882), 1349, 1350, apparatus, by H. Schulz, Fr. Fuchs, A. Ricco, W. Wernicke, H. Goltzsch, G. G. Stokes, and F. Miller.
66	64	(1882), 183, spectrum of sulphur, chlorine, and so- dium in spectroscopic tubes, by B. Hasselberg.
66	44	(1882), 183, spectrum produced in a Geissler tube changed by long use, by B. Hasselberg.
46	"	(1882), 184, comparison of the spectrum of positive light with that of "kathoden" light, by E. Goldstein.
66	"	(1882), 68, absorption spectra of solutions, by G. Krüss.
u	"	(1882), 177, study of the solar spectrum, by Ch. Fievez.
u	<b>66</b>	(1882), 177, distribution of energy in the solar spectrum, observed with his bolometer, by S. P. Langley.
"	66	(1882), 178, distribution of heat in the dark part of the solar spectrum, by P. Desains.
46	66	(1882), 178, spectrum of terbium, by H. E. Roscoe and A. Schuster.
"	66	(1882), 179, spectra of the metalloids, by D. von Monckhoven.
"	66	(1882), 179, ultra-violet spectra of the elements by G. D. Liveing and J. Dewar.

Jahresber.	d. Chemie	(1892), 180, photographs of the altra-violet spectra of the elements, by W. N. Hartley.
u	u	(1882), 181, inversion of the metallic lines in too long exposed photographs of spectra, by W. N. Hartley.
**	u	(1882), 181, map of the more refractive part of the spectrum of hydrogen, by G. D. Liveing and J. Dewar.
46	46	(1882), 181, apparatus for the study of glowing vapours, by G. D. Liveing and J. Dewar.
44	66	(1882), 181, displacement of the spectrum lines of hydrogen, by D. von Monekhoven.
44	44	(1882), 182, intensity of the spectrum lines of hydrogen, by H. Lagarde.
"	46	(1882), 183, spectrum of oxygen at low temperatures, by Piazzi Smyth.
66	46	(1882), 184, 185, spectra of carbon and of its compounds, by G. D. Liveing and J. Dewar.
44	"	(1882), 185, spectra of carbon compounds, by K. Wesendonck.
46	66	(1882), 186, disappearance of spectrum lines and their changes in mixed vapours, by G. D. Liveing and J. Dewar.
66	u	(1882), 186, remarks on Lockyer's theory of dissociation, especially in regard to iron lines in sun-spots, by H. W. Vogel.
"	. "	(1882), 187, remarks on Von Lang's examination of powerful absorbants, by C. Pulfrich.
	"	(1882), 187, absorption spectrum of hypernitric acids, by J. Chappuis.
44	"	(1882), 187, absorption spectrum of ozone, by J Chappuis.
44	"	(1882), 188, absorption spectrum of the atmosphere by N. Egoroff.
"	"	(1882), 188, relations of carbon compounds to their absorption spectra, by W. N. Hartley.
. 66	66	(1882), 189, wave-lengths of various carbon compounds, by Thollon.
"	44	(1882), 189, absorption spectrum of chlorophyll, by W. J. Russell and W. Lapraik.

- Jahresber. d. Chemie (1882), 190, absorption curves of liquids, by E.

  Ketteler and C. Pulfrich.
  - " (1882), 190, violet phosphorescence of calcium sulphide, by W. de W. Abney.
  - " (1882), 190, origin of phosphorescence, by E. Dreher.
  - " (1882), 199, sensitiveness of bromide and chloride of silver to the solar spectrum, by H. W. Vogel.
    - " (1882), 201, photography of spectra in connection with new methods of quantitative chemical analysis, by W. N. Hartley.
  - " (1883), 1554, duration of the spectroscopic reaction of carbonic acid in the blood, by E. Salfeld.
  - " (1883), 1655, apparatus, by H. Schulze, O. Tumlirz, F. Lippich, and W. Ramsay.
  - " (1883), 232, a spectrophotometer, by A. Crova.
  - " (1883), 240, direct-vision spectroscope, by Ch. V. Zenger.
  - " (1883), 1397, energy in the solar spectrum, by C.
    Timiriaseff.
    - " (1883), 240, spectroscopic studies in the ultra-red end, by E. Lommel.
  - " (1883), 241, wave-lengths of the extreme warm rays, by E. Pringsheim.
  - " (1883), 241, phosphorographic studies in the ultrared part of the solar spectrum, by H. Becquerel.
  - " (1883), 242, on the wave-lengths near the lines A and a in Fievez's map, by W. de W. Abney.
  - " (1883), 242, distribution of heat in the solar spectrum, by P. Desains.
  - " (1883), 242, selective absorption of the atmosphere and distribution of energy in the solar spectrum, by S. P. Langley.
  - " (1883), 243, spectra of sun-spots, by G. D. Liveing and J. Dewar.
  - " (1883), 243, spectroscopic observations of sun-spots, by C. A. Young.
  - " (1883), 243, emission spectra of metallic vapours, by H. Becquerel.

Jahresber. d.	Chemie	(1883), 244, ultra-red emission spectra of the metallic vapours, by H. Becquerel.
"	66	(1883), 244, spectra of didymium and samarium, by R. Thalén.
"	"	(1883), 244, emission spectra of scandium, ytter- bium, erbium, and thulium, by Th. Thalén.
"	"	(1883), 245, ultra-violet spectra of the elements, by W. N. Hartley.
"	"	(1883), 245, method of photographing diffraction spectra, by W. N. Hartley and W. E. Adeney.
"	66	(1883), 246, ultra-violet emission spectra of the elements and their compounds photographically examined, by W. N. Hartley.
"	"	(1883), 246, spectrum of beryllium, by W. N. Hartley.
"	"	(1883), 246, spectra of boron and silicon, by W. N. Hartley.
"	46	(1883), 246, 247, absorption spectra of various substances, by G. D. Liveing and J. Dewar.
"	"	(1883), 248, inversion of the spectral lines of the metals, by G. D. Liveing and J. Dewar.
"	"	(1883), 248, inversion of the hydrogen lines and of the lithium lines, by G. D. Liveing and J. Dewar.
"	"	(1883), 248, spectrum of phosphorescent light and of yttrium, by W. Crookes.
"	"	(1883), 248, spectrum of hydrogen and of acetylene, by B. Hasselberg.
"	66	(1883), 249, spectrum of hydrogen in the vacuum tube, by Piazzi Smyth.
"	"	(1883), 249, spectrum of the hydro-carbon flame, by G. D. Liveing and J. Dewar.
"	"	(1883), 249, absorption and fluorescent spectra of various bodies, by E. Linhardt.
"	"	(1883), 250, absorption spectrum of sea-water, by H. W. Vogel and J. Aitken.
	"	(1883), 250, absorption spectrum of the solution of iodine in sulphate of carbon, by Abney and Festing.

- Jahresber. d. Chemie (1883), 250, use of selenium in separating the heat rays from the light and the chemical rays, by F. van Assche.
  - " (1883), 251, absorption of the blood, by J. L. Soret.
    - " (1883), 251, sight of the ultra-violet rays by man and by vertebrates, by De Chardonnet; remarks by Mascart and by Soret.
  - " (1883), 252, absorption spectra of organic compounds, by G. Krüss and S. Oeconomides.

"

"

"

- " (1883), 253, dissociation of phosphorescence under the influence of the ultra-red rays, by H. Becquerel.
- " (1883), 253, phosphorescence of sulphur, by H.
- " (1883), 254, phosphorescence of organic bodies, by B. Radzizewski.
  - " (1883), 254, Stokes's Law of Phosphorescence, maintained by Hagenbach against Lommel and Lubarsch.
- " (1883), 254, optical characteristics of the cyanides of platinum, by W. König.
- " (1883), 258, sensitiveness of the salts of silver to light, by H. W. Vogel.
  - " (1883), 258, electro-chemical energy of light, by F. Griveaux.
- " (1884), 289, lines peculiar to solar light, by A. Cornu.
- " (1884), 294, displacement and inversion of the lines of the spectrum, by Ch. Fievez.
- " (1884), 295, cause of the displacement of the lines of the spectrum, by E. Wiedemann and W. N. Hartley.
- " (1884), 283, measurement of wave-lengths, by H. Merczyng.
- " (1884), 289, 290, wave-lengths and refraction in the invisible part of the spectrum, obtained with the bolometer of his own invention and with a very large Rowland convex grating, by S. P. Langley.

Jahresber. d.	Chemie	(1884), 291, bands in the ultra-red part of the solar spectrum and the ultra-red spectrum of glowing metallic vapours, by H. Becquerel.
66	"	(1884), 292, spectra of metals, by E. Demarçay.
"	"	(1884), 292, spectroscopic studies of exploding gases, by G. D. Liveing and J. Dewar.
66	"	(1884), 292, spectra of vapours, by J. Parry.
66	"	(1884), 293, phosphorescent spectra, by W. Crookes.
46	"	(1884), 293, spectrum of hydrogen, by B. Hasselberg.
66	"	(1884), 293, spectra of fluoride of silicon and of hydrate of silicon, by K. Wesendonck.
66	"	(1884), 293, influence of temperance on spectroscopic observations, by G. Krüss.
u	"	(1884), 293, changes in the refraction of the H and Mg lines, by Ch. Fievez.
ee	46	(1884), 294, displacement and inversion of the spectrum lines, by Ch. Fievez.
u	"	(1884), 295, displacement of the spectrum lines, by E. Wiedemann and W. N. Hartley.
66	"	(1884), 295, spectroscopic studies of dyes, by E. L. Nichols.
"	46	(1884), 296, color of water, by J. L. Soret.
66	"	(1884), 296, absorption spectrum of water, by J. L. Soret and E. Sarasin.
44	ú	(1884), 297, absorption spectrum of iodine vapour, by A. Morghen.
66	"	(1884), 297, absorption spectrum of chlorochromic acid, by G. J. Stoney and J. E. Emerson.
66	"	(1884), 297, absorption spectra of esculine solutions, by K. Wesendonck.
66	46	(1884), 298, absorption spectra of the aromatic series, by J. S. Konic.

W. N. Hartley.

" (1884), 298, formula for the dispersion of the ultrared rays, by A. Wüllner.

(1884), 298, absorption spectra of the alkaloids, by

"

" (1884), 1429, influence of the spectrum on the production of carbonic acid gas by plants by J. Reinke.





Jahresber. d.	Chcmie	(1885), 322, spectroscopic of chloride of cobalt, t
66	"	(1885), 323, absorption sp potassium, by C. A. Sc
••	66	(1885), 323, absorption sp by Abney and Festing
46	"	(1885), 323, 324, absorptistuffs, by Ch. Girard a
"		(1885), 324, absorption sp by L. Bell.
46	"	(1885), 324, absorption sp Egoroff.
**	"	(1885), 324, 325, absorption of hydrogen, by J. Jan
44	"	(1885), 325, absorption sp W. N. Hartley.
44	46	(1885), 326, absorption sp by J. S. Konic.
66	46	(1885), 327, connection spectra and the moleci compounds, by G. Kr
66	"	(1885), 328, connection b ure and the absorpti- Klobukow.
• "	"	(1885), 329, relations between and the absorption of W. N. Hartley.
46	"	(1885), 329, 330, relation power and the emissio by H. Becquerel.
"	**	(1885), 331, spectroscopy Crookes.
"	"	(1885), 332, spectra of sa by W. Crookes.
44	"	(1885), 332, a new kind spectra of metallic sol baudran.
"	4.	(1885), 333, theory of fluc
"	ee	(1885), 333, 334, fluorescium, by E. Lommel.

Jahresber. d. Chemie (1885), 335, fluorescence of naphthalin-red, by K. Wesendonck.

- Report of the committee, consisting of Professors Olding, Huntington, and Hartley, appointed to investigate by means of photography the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions; drawn up by Professor W. M. Hartley (secretary). Report of the British Association for 1885, pp. 276-284.
- Report of the committee, consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (secretary), appointed for the purpose of preparing a new series of wavelength tables of the spectra of the elements and compounds. Report of the British Association for 1885, pp. 288-322, and for 1886, pp. 167-204.
- On the spectrum of the Stella Nova visible in the great nebula in Andromeda, by William Huggins. Rept. Brit. Assoc. for 1885, p. 932.
- On the solar spectroscopy in the infra-red, by Daniel Draper. Rept. Brit. Assoc. for 1885, p. 935.
- On the formation of a pure spectrum by Newton, by G. Griffith. Rept. Brit. Assoc. for 1885, p. 940.
- On the absorption spectra of uranium salts, by W. J. Russell and W. Lapraik. Rept. Brit. Assoc. for 1886.
- Pritchard's Wedge Photometer, by S. P. Langley, C. A. Young, and E. C. Pickering.



	·	









