

Project Management for Managers

Lec – 12 Methods of Project Selection (MCDM – III)

Dr. M.K. Barua

Department of Management Indian Institute of Technology Roorkee

Solve by TOPSIS

Fighter Aircraft Selection

	Speed	Range	Payload	Cost	Reliability	Maneuverability
	X1	X2	X3	X4	X5	X6
A 1	2	1500	20000	5.5	5	9
A2	2.5	2700	18000	6.5	3	5
A3	1.8	2000	21000	4.5	7	7
A4	2.2	1800	20000	5.5	5	5

Data available

	Speed	Range	Pay load	Cost	Reliability	Maneuverability
	X1	X2	Х3	X4	Х5	Х6
A1	2	1500	20,000	5.5	5	9
A2	2.5	2700	18,000	6.5	3	5
А3	1.8	2000	21,000	4.5	7	7
Α4	2.2	1800	20,000	5	5	5

m = 4 alternatives (Aircraft models)

n = 6 attributes/criteria

Step 1: Obtain the decision matrix

• In-order to make calculations easier, replace the higher values with its equivalent power

	Speed	Range(x10^3)	Pay load (x10^4)	Cost	Reliability	Maneuverability
	X1	X2	Х3	Х4	Х5	Х6
A1	2.0	1.5	2.0	5.5	5	9
A2	2.5	2.7	1.8	6.5	3	5
А3	1.8	2.0	2.1	4.5	7	7
A4	2.2	1.8	2.0	5.0	5	5

$$\mathbf{r}_{ij} = \frac{\mathbf{X}_{ij}}{\sqrt{\sum_{i=1}^{m} \mathbf{X}_{ij}^{2}}}$$

			9			
Step 1(a): calculate $(\Sigma x_{ij}^2)^{1/2}$ for each column						
	X1	X2	Х3	X4	X5	Х6
A1	4.0	2.25	4.0	30.25	25	81
A2	6.25	7.29	3.2	42.25	9	25
А3	3.24	4.0	4.4	20.25	49	49
A4	4.84	3.24	4.0	25.0	25	25
Σx_{ii}^2	18.33	16.78	15.65	117.75	108.00	180.00
$\frac{\Sigma x_{ij}^2}{(\Sigma x^2)^{1/2}}$	4.28	4.096	3.956	10.851	10.392	13.416

Step 1 (b): divide each column by $(\Sigma x_{ij}^2)^{1/2}$ to get $\mathbf{R_{ij}}$

	X1	X2	Х3	X4	X5	Х6
A1	0.4672	0.3662	0.5056	0.5063	0.4811	0.6708
A2	0.5839	0.6591	0.4550	0.5983	0.2887	0.3727
А3	0.4204	0.4882	0.5308	0.4143	0.6736	0.5217
A4	0.5139	0.4392	0.5056	0.4603	0.4811	0.3727

Step 2 : Obtain the weighted decision matrix V_{ij} by multiplying each column of R_{ij} by the corresponding weight

$$V_{ij} = W_{ij} \times R_{ij}$$

Weight	0.2	0.1	0.1	0.1	0.2	0.3
	X1	X2	Х3	X4	X5	Х6
A1	0.0934	0.0366	0.0506	0.0506	0.0962	0.2012
A2	0.1168	0.0659	0.0455	0.0598	0.0577	0.1118
А3	0.0841	0.0488	0.0531	0.0414	0.1347	0.1565
Α4	0.1028	0.0439	0.0506	0.046	0.0962	0.1118

Ideal and Negative Ideal solution

• Step 3: Obtain the ideal (A*) and the negative ideal (A-) solutions from the weighted decision matrix V.

	X1	X2	Х3	X4	X5	Х6
A1	0.0934	0.0366	0.0506	0.0506	0.0962	0.2012
A2	0.1168	0.0659	0.0455	0.0598	0.0577	0.1118
А3	0.0841	0.0488	0.0531	0.0414	0.1347	0.1565
A4	0.1028	0.0439	0.0506	0.046	0.0962	0.1118

- $A^* = (0.1168, 0.0659, 0.0531, 0.0414, 0.1347, 0.2012)$
- A = (0.0841, 0.0366, 0.0455, 0.0598, 0.0577, 0.1118)

Step 4 : Separation Measures

Determine **separation** from ideal solution $A^* = (0.1168, 0.0659, 0.0531, 0.0414, 0.1347, 0.2012)$ $S_i^* = \left[\sum (v_i^* - v_{ii})^2 \right]^{\frac{1}{2}}$ for each row

Ideal solution	Ideal solution
S1* = 0.0545	S1 - = 0.0983
S2* = 0.1197	S2-=0.0439
S3* = 0.0580	S3 - = 0.0920
S4* = 0.1009	S4-=0.0458

Step 5: Relative closeness to the Ideal Solution

For each alternative, calculate the relative closeness to the ideal solution

$$C_{i}^{*} = S'_{i} / (S_{i}^{*} + S'_{i})$$

$S'_i/(S_i^*+S'_i)$	C_i^*	
0.0983/(0.0545+0.0983)	0.6433	← BEST
0.0439/(0.1197+0.0439)	0.2683	
0.092/(0.058+0.092)	0.6133	
0.0458/(0.1009+0.0458)	0.3122	

Ranking/Preference Order

NOTE: The closeness rating is a number between 0 and 1, with 0 being the worst possible and 1 the best possible solution)

Thus the ranks for the alternatives in the fighter aircraft selection problem using TOPSIS as

A1, A3, A4, A2

Market and Demand Analysis

Key Steps in Market and Demand Analysis and their Inter-relationships

Situational Analysis

In order to get a "feel" of the <u>relationship</u> between the <u>product and its market</u>, the <u>project analyst may informally talk to customers, competitors, middlemen, and others in the industry.</u>

Wherever possible, he may look at the experience of the company to learn about the <u>preferences</u> and <u>purchasing</u> power of <u>customers</u>, actions and strategies of <u>competitors</u>, and <u>practices</u> of the <u>middlemen</u>.

Collection of Secondary Information

- Secondary information is information that has been gathered in some other <u>context</u> and is <u>readily</u> available.
- •Secondary information provides the <u>base and the starting</u> <u>point for the market and demand analysis</u>. It indicates what is <u>known</u> and often provides <u>leads</u> and <u>cues</u> for gathering primary information required for further analysis.

Sources of secondary data?????????

Evaluation of Secondary Information

Criteria	Issues	Remarks
Specifications & Methodology	Data collection method, response rate, quality & analysis of data, sampling technique & size, questionnaire design, fieldwork.	Data should be reliable, valid, & generalizable to the problem.
Error & Accuracy	Examine errors in approach, research design, sampling, data collection & analysis, & reporting.	Assess accuracy by comparing data from different sources.
Currency	Time lag between collection & publication, frequency of updates.	Census data are updated by syndicated firms.
Objective	Why were the data collected?	The objective determines the relevance of data.
Nature	Definition of key variables, units of measurement, categories used, relationships examine	Reconfigure the data to increase their usefulness.
Dependability	Expertise, credibility, reputation, & trustworthiness the source.	Data should be obtained from an original source.

Evaluation of Secondary Information

While secondary information is available economically and readily (provided the market analyst is able to locate it), its reliability, accuracy, and relevance for the purpose under consideration must be carefully examined.

Market Survey

- Secondary information, though useful, often <u>does not</u> provide <u>a comprehensive</u> basis for market and demand analysis.
- It needs to be <u>supplemented</u> with <u>primary</u> information gathered through a market survey.
- The market survey may be a <u>census</u> survey or a <u>sample</u> survey; typically it is the latter.

What Information is Sought in a Market Survey????

<u>Information Sought in a Market Survey</u>

The information sought in a market survey may relate to one or more of the following:

- <u>Total demand</u> and rate of growth of demand
- Demand in different <u>segments</u> of the market
- Income and price <u>elasticities</u> of demand
- Motives for buying
- Purchasing plans and intentions

- Satisfaction with existing products
- Unsatisfied needs
- Attitudes toward various products
- Distributive trade practices and preferences
- •Socio-economic characteristics of buyers

Steps in a Sample Survey

Typically, a sample survey involves the following steps:

- 1. Define the <u>target</u> population (elements, sampling unit, extent, time: Men's DO).
- 2. Select the sampling scheme and sample size.
- 3. Develop the questionnaire.
- 4. Recruit and train the <u>field</u> investigators.
- 5. Obtain <u>information</u> as per the questionnaire from the sample of respondents.
- 6. <u>Scrutinize</u> the information gathered.
- 7. Analyze and interpret the information.

Characterization of the Market

Based on the information gathered from <u>secondary</u> sources and through the <u>market</u> survey, the market for the product/service may be described in terms of the following:

- Effective demand in the past and present
- Breakdown of demand
- Price
- Methods of distribution and sales promotion
- Consumers
- Supply and competition
- Government policy

