Nome: Pedro Henrique Silva Domingues

R.A.: 22.218.019-2

Implementação: https://github.com/12pedro07/FEI-CS/tree/main/CC7261-

SistemasDistribuidos/dining philosophers

1) A relação de tempos foi implementada com sleeps do processador, definidas em ms. As condições iniciais do problema são: Todos os filósofos iniciam com fome, pois seguiu-se a lógica de que processos ao serem iniciados buscam recursos.

2) Adotando-se a medida de ciclos como o tempo para $t_{comendo}$ padronizado em 100ms.

$rac{t_{pensando}}{t_{comendo}}$	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Tempo (s)	0.1032	0.1723	0.226	0.511	0.668	0.758	1.282	1.883	4.134	∞

- 3) O deadlock é mais propicio quando o filósofo passa pouco tempo pensando em relação ao tempo que passa comendo, ou seja, quando o passa pouco tempo sem a necessidade de recurso e demora para desalocar recursos, o deadlock ocorre mais facilmente. Portanto para evitar o deadlock, deve-se balancear o tempo pensando (precisando de recursos) com o tempo comendo (liberando recursos)
- 4) O número de filósofos não impacta no tempo de deadlock, pois independentemente da quantidade de filósofos, cada um tem sempre dois garfos disponíveis.
- 5) A presença de um garfo comunitário no centro da mesa inibe a possibilidade de ocorrência de deadlock para qualquer relação de tempos, visto que existe 1 garfo a mais do que existem filósofos, portanto mesmo todos os filósofos ocupem 1 recurso cada, o garfo central continua disponível, permitindo que alguém o utilize.