SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS LESSON PLAN

COURSE NAME: DISCRETE MATHEMATICS

COURSE CODE: SMTA1302

Unit	Dates	Period	Topics to be Covered	
I			LOGIC	
		1	Statements, Truth tables	
		2	Connectives – AND, OR and NOT	
		3	Equivalent Propositions	
		4	Tutorials	
		5	Tautological Implications	
		6	Normal forms – Disjunctive and Conjunctive Normal Forms	
		7	Principal Disjunctive Normal forms, Principal Conjunctive Normal forms	
		8	Tutorials	
		9	Inference theory for Propositional Calculus, Consistency and Inconsistency of Premises	
		10	Predicate Calculus	
		11	Inference theory for Predicate Calculus	

Unit	Dates	Period	Topics to be Covered	
II			SET THEORY	
		1	Basic concepts of Set theory	
		2	Laws of Set theory – problems using laws	
		3	Partition of a set, Relations - Types of Relations - Reflexive, Irreflexive, Symmetric, Antisymmetric, Transitive	
		4	Tutorials	
		5	Equivalence relations and Partial ordering relations	
		6	Graphs of relations, Hasse Diagram for Partial ordering relations	
		7	Functions - Injective, Surjective and Bijective functions	
		8	Tutorials	
		9	Compositions of functions, Identity and Inverse functions	
		10	Theorems on Functions	
		11	Problems based on Functions	
		12	Tutorials	

Unit	Dates	Period	Topics to be Covered		
III			GROUP THEORY		
		1	Introduction to Group Theory		
		2	Properties of Groups		
		3	Semi Groups and Monoids (Definition and examples only)		
		4	Tutorials		
		5	Problems based on Groups, Semi group and Monoids		
		6	Subgroups, Cosets and problems based on it.		
		7	More Problems based on the above		
		8	Tutorials		
		9	Lagranges Theorem		

Unit	Dates	Period	Topics to be Covered
IV			COMBINATORICS
		1	Mathematical Induction – The Basis of Counting
		2	The Pigeon hole principle.
		3	Permutation and Combinations
		4	Tutorials
		5	Recurrence relations – Solving linear recurrence relations
		6	Generating functions.
		7	More problems based on Generating functions
		8	Tutorials
		9	Inclusion and exclusion principle

Unit	Dates	Period	Topics to be Covered
v			GRAPH THEORY
		1	Basic concepts of Graph theory
		2	Graph terminology & Representation of Graphs
		3	Types of Graphs
		4	Tutorials
		5	Graph isomorphism
		6	Connectivity of Graphs
		7	Euler & Hamiltonian paths
		8	Tutorials
		9	Trees and Binary Trees
		10	Theorems on Trees and Expression trees