Recommender Systems: Content-based Systems & Collaborative Filtering Mining of Massive Datasets http://www.mmds.org

Example: Recommender Systems

- Customer X
 - Buys Metallica CD
 - Buys Megadeth CD

- Customer Y
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Utility Matrix

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Alice 1 0.2 Bob 0.5 0.3 Carol 0.2 1 David 0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- Implicit
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?

Content-based Recommender Systems

(2) Extrapolating Utilities

- Key problem: Utility matrix *U* is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - **2)** Collaborative
 - 3) Latent factor based

Content-based Recommendations

• Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

...

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 f_{ii} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- Prediction heuristic:
 - Given user profile **x** and item profile **i**, estimate

$$u(x, i) = \cos(x, i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

16

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering Harnessing quality judgments of other users

Finding "Similar" Users $r_x = [*, _, *, *]$

- Let r_{ν} be the vector of user x's ratings
- Jaccard similarity measure
 - $r_x = \{1, 4, 5\}$ $r_y = \{1, 3, 4\}$ • Problem: Ignores the value of the rating
- Cosine similarity measure
 - $sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$
- r_x , r_y as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_y = \{1, 0, 2, 2, 0\}$

r, r, as sets:

- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xv} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \underset{\text{rating of } x, y}{\overline{r_x}, \overline{r_y} \dots \text{avg.}}$$

Similarity Metric

sim(x, y) =

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean HP1 HP2 HP3 TW SW1 SW2 SW3 5/3 - 7/31/3 1/3 -2/3-5/3 1/3 4/3

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim, is correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_{ν} be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 Shorthand:
$$s_{xy} = sim(x, y)$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

- Other options?
- Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

 s_{ij} ... similarity of items i and j r_{xj} ...rating of user u on item jN(i:x)... set items rated by x similar to

CF: Common	Practice $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$								
 Define similarity s_{ij} of items i and j Select k nearest neighbors N(i; x) Items most similar to i, that were rated by x Estimate rating r_{xi} as the weighted average: 									
$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$									
$b_{xi} = \mu + b_x + b_i$	 μ = overall mean movie rating b_x = rating deviation of user x = (avg. rating of user x) – μ 								
	 b_i = rating deviation of movie i 								

Item-Item vs. User-User									
	Avatar	LOTR	Matrix	Pirates					
Alice	1		0.8						
Bob		0.5		0.3					
Carol	0.9		1	0.8					
David			1	0.4					
 In practice, it has been observed that <u>item-item</u> often works better than user-user Why? Items are simpler, users have multiple tastes 									

Pros/Cons of Collaborative Filtering

- + Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Precision at top 10:
 - % of those in top 10
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · |X|)
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html