

Description and analysis of novelties introduced in DCASE Task 4 2022 on the baseline system

Francesca Ronchini¹, Samuele Cornell², Romain Serizel¹, <u>Nicolas Turpault¹,</u> Eduardo Fonseca³, Daniel P.W. Ellis³

¹Université de Lorraine, CNRS, Inria, Loria ²Università Politecnica delle Marche ³Google, Inc.

Why?

- Necessity of real-world strongly annotated data?
- Impact of external data and pre-trained models?
- Environmental impact of our training models?

Audioset strong!

- 3470 clips matching our labels
- These annotations are really expensive to get:
 - > Are they really helping?
 - > Can't we get the same performance with synthetic data?

Embeddings from pre-trained models

- Using PANNs and AST:
 - >Global or frame embeddings?
- Integrating embeddings is not trivial:
 - > Global fusion
 - > Frame-wise fusion
 - > Same problem with sound separation

Energy-based metric?

$$EW - PSDS = PSDS * \frac{kWh_{baseline}}{kWh_{submission}}$$

PSDS: polyphonic sound detection scores kWh_{baseline}: baseline energy consumption kWh_{submission}: system energy consumption

- How does this impact our models?
- Are the systems using pre-trained models more efficient?

This is a simple suggestion, it should be improved → come & discuss!

Thank you

nicolas.turpault@sonaide.fr

