Analysis Report

This report is structured as follows.

Contents

Jampie Charactenshes	2
Descriptive Statistics	Error! Bookmark not defined
Reliability Tests	Error! Bookmark not defined.
Descriptive Statistics – Total Scales	Error! Bookmark not defined
Independent-Samples T-test	Error! Bookmark not defined
Comparison of Regions	Error! Bookmark not defined
Comparison of Adoption Level	Error! Bookmark not defined
Comparison of Age Groups	Error! Bookmark not defined
SAMPILL REPORT	

Sample Characteristics

The purpose of this analysis was to examine the impact of economic and environmental factors on renewable energy consumption (RE) in selected Latin American countries. Data was sourced from the World Development Indicators for Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Mexico, Panama, Peru, and Uruguay, covering the years 2000 to 2022. The dependent variable was renewable energy consumption as a percentage of total energy consumption, with independent variables including foreign direct investment (FDI) as a percentage of GDP, CO2 emissions per capita, urban population growth (UP) as an annual percentage, trade openness (TO), and GDP growth. Due to the longitudinal nature of the data, mixed-effects modeling was implemented to account for country-specific effects and temporal correlations. The results of standard regression analyses were also examined to support the assumption testing process and model selection.

Data Collection and Preparation

The dataset was obtained using the WDI package in R, and indicators were specified using World Bank codes for each variable of interest. Each variable was inspected for completeness, and missing values were addressed appropriately. The variables were sorted by country and year, and lagged variables were created for FDI to capture potential delayed effects on renewable energy consumption.

Preliminary diagnostics revealed non-normality in residuals, as evidenced by the table below (p < 0.001) and the QQ-plot of residuals.

Tests of Normality

-	Kolmogor	ov-Smirno	ov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic		
Residuals	.120	200	.000	.905	200	.000
Residuals	.120	200	.000	.904	200	.000
Residuals	.121	200	.000	.908	200	.000

a. Lilliefors Significance Correction

Log-transformations were used on CO2, FDI, UP, TO, GDP, and RE, with constants added to ensure positive values for transformation. This transformation enhanced normality (p > 0.01 in the Kolmogorov-Smirnov test) and stabilized variance, satisfying model assumptions (table and QQ plot below).

Tests of Normality

Tools of Wormanly									
	Kolmogo	rov-Smi	rnov ^a	Shapiro-Wilk					
	Statistic df Sig.				df	Sig.			
Residuals	.064	199	.047	.978	199	.003			
Residuals	.066	199	.036	.976	199	.002			
Residuals	.063	199	.056	.978	199	.003			

a. Lilliefors Significance Correction

Mixed-Effects Model Specification

The analysis involved fitting a series of mixed-effects models with various structures, accounting for both fixed and random effects. The primary model and several alternative specifications were assessed for model fit, and the impact of each predictor on renewable energy consumption was evaluated.

Collinearity and Autocorrelation Diagnostics: Initially, standard linear regression was used to examine collinearity and identify any potential autocorrelation in residuals. Variance Inflation Factor (VIF) results indicated that collinearity was not a concern among the predictors, with all VIF values remaining below the conventional threshold of 10. The Durbin-Watson statistic was notably low at 0.367, indicating strong positive autocorrelation in residuals. These findings justified the use of a mixed-effects model with autoregressive structures to account for the temporal dependencies in the data.

Coefficients^a

		Collinearity Statistics					
Model		Tolerance	VIF				
1	CO2	.916	1.091				
	FDI	.609	1.642				
	UP	.747	1.338				
	TO	.533	1.878				
	GDP	.843	1.186				

Mixed Model with Year and Country Random Effects: Initially, random intercepts for both year and country were specified to control for unobserved heterogeneity and autocorrelation. However, the model's fit statistics revealed that the variance associated with year was close to zero, suggesting that treating year as a random effect did not add significant value to the model. This finding led to the exclusion of year as a random effect, resulting in a model with only random intercepts for country.

Mixed Model with Country Random Effects: A model with random intercepts for country alone was subsequently tested to capture between-country variability. This model yielded a poorer fit than a fixed-effects approach using dummy variables for each country, as indicated by higher -2 log-likelihood (1112.36 versus 1040.46) and Akaike Information Criterion (AIC) values. Consequently, a fixed-effects model with country-specific dummies was favored due to its superior model fit. Log-transformation has further improved model fit (-2LL = -623.47, AIC = -621.47, BIC = -618.26).

Final Model with Fixed Effects for Country: The final model specification included log-transformed predictors and dummy variables for each country to control for country-specific differences. An autoregressive (AR1) covariance structure was specified for year within each country to address the observed autocorrelation in residuals. The syntax implemented in SPSS was as follows:

```
plaintext
Copy code
MIXED LOG_RE WITH LOG_CO2 LOG_FDI LOG_UP LOG_TO LOG_GDP countryArgentina
countryBrazil countryChile countryColombia countryCostaRica countryEcuador
countryMexico countryPanama countryPeru countryUruguay
    /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1)
SINGULAR(0.000000000001)
    /FIXED= LOG_CO2 LOG_FDI LOG_UP LOG_TO LOG_GDP countryArgentina
countryBrazil countryChile countryColombia countryCostaRica countryEcuador
countryMexico countryPanama countryPeru countryUruguay | SSTYPE(3)
    /METHOD=REML
    /PRINT=SOLUTION TESTCOV
    /RANDOM INTERCEPT | SUBJECT(country) COVTYPE(VC)
    /REPEATED=year | SUBJECT(country) COVTYPE(AR1).
```

Models with Lagged FDI Variables: Additional models were estimated with 1-year and 2-year lagged FDI terms, replacing the current-year FDI, to evaluate potential delayed effects. The structure remained consistent, with country-level fixed effects and an AR1 structure for temporal correlation.

Model Results

These mixed-effects models incorporated fixed effects for each country, with CO2 emissions, foreign direct investment (FDI), urban population growth (UP), trade openness (TO), and GDP growth (GDP) as predictors, along with country-specific dummy variables. Three models were evaluated: the main log-transformed model, a model with a one-year lag for FDI, and a model with a two-year lag for FDI.

Across all models, CO2 was consistently a significant predictor of renewable energy consumption. In the main log-transformed model, the coefficient for CO2 was negative, $\mathbf{b} = -0.50$, $\mathbf{SE} = 0.06$, $\mathbf{t}(185) = -8.64$, $\mathbf{p} < .001$, indicating that higher CO2 emissions were associated with lower renewable energy consumption. Urban population growth (UP) also significantly predicted renewable energy consumption, $\mathbf{b} = -0.13$, $\mathbf{SE} = 0.03$, $\mathbf{t}(185) = -4.24$, $\mathbf{p} < .001$, suggesting that as urban populations increase, renewable energy consumption tends to decrease.

Trade openness (TO) was another significant predictor, $\mathbf{b} = -0.15$, $\mathbf{SE} = 0.05$, $\mathbf{t}(185) = -3.06$, $\mathbf{p} = .003$, indicating that higher trade openness correlates with lower renewable energy consumption. However, GDP growth and FDI were not significant predictors. For instance, in the log-transformed model, FDI had a non-significant effect, $\mathbf{b} = 0.02$, $\mathbf{SE} = 0.03$, $\mathbf{t}(185) = 0.73$, $\mathbf{p} = .466$, implying that FDI does not play a substantial role in explaining renewable energy consumption in this context.

Models incorporating lagged FDI terms showed similar results, with FDI remaining non-significant. For the one-year lag model, FDI lagged by one year did not predict renewable energy consumption, b = 0.01, SE = 0.02, t(184) = 0.87, p = .388, and similarly, in the two-year lag model, FDI lagged by two years was not significant, b = 0.01, SE = 0.02, t(185) = 0.62, p = .534. This suggests no delayed or lagged effect of FDI on renewable energy consumption.

Country dummy variables were significant across all models, reflecting the different levels of renewable energy consumption between countries. Argentina, for example, had a substantial negative coefficient in the main model, $\mathbf{b} = -0.54$, $\mathbf{SE} = 0.03$, $\mathbf{t}(185) = -19.36$, $\mathbf{p} < .001$, indicating lower renewable energy consumption compared to other countries. Colombia and Ecuador also had significant negative estimates, $\mathbf{b} = -0.20$, $\mathbf{SE} = 0.02$, $\mathbf{t}(185) = -8.10$, $\mathbf{p} < .001$, and $\mathbf{b} = -0.39$, $\mathbf{SE} = 0.03$, $\mathbf{t}(185) = -14.93$, $\mathbf{p} < .001$, respectively, highlighting country-level differences. The tables below show the model coefficients.

Estimates of Fixed Effects^a

						95% Confidence Interv	
	Estimate	Std. Error	df	t	Sig.	Lower	Upper
Parameter						Bound	Bound
Intercept	2.084	.080	185.000	25.991	1.165E-63	1.926	2.242

LOG_CO2	495	.057	185.000	-8.639	2.625E-15	608	382
LOG_FDI	.021	.029	185.000	.730	.466	036	.078
LOG_UP	135	.032	185.000	-4.240	3.533E-5	197	072
LOG_TO	146	.048	185.000	-3.060	.003	240	052
LOG_GDP	033	.028	185.000	-1.196	.233	088	.022
countryArgentina	537	.028	185.000	-19.356	2.420E-46	592	483
countryBrazil	.006	.024	185.000	.242	.809	041	.053
countryChile	006	.030	185.000	212	.832	064	.052
countryColombia	199	.025	185.000	-8.095	7.455E-14	248	151
countryCostaRica	048	.029	185.000	-1.647	.101	106	.010
countryEcuador	392	.026	185.000	-14.926	1.403E-33	443	340
countryMexico	457	.031	185.000	-14.762	4.280E-33	518	396
countryPanama	153	.033	185.000	-4.570	8.910E-6	218	087
countryPeru	186	.022	185.000	-8.427	9.781E-15	230	142
countryUruguay	$0_{\rm p}$	0		•	•	,(3)	

a. Dependent Variable: LOG_RE.

Estimates of Fixed Effects^a

				~0		95% Confide	ence Interval
	Estimate	Std. Error	df	t	Sig.	Lower	Upper
Parameter			0			Bound	Bound
Intercept	2.051	.080	184.000	25.717	7.875E-63	1.894	2.209
LOG_CO2	499	.058	184.000	-8.644	2.602E-15	613	385
LOG_FDI_lag1	.014	.016	184.000	.865	.388	018	.047
LOG_UP	132	.032	184.000	-4.156	4.953E-5	195	069
LOG_TO	125	.049	184.000	-2.581	.011	221	030
LOG_GDP	025	.020	184.000	-1.278	.203	064	.014
countryArgentina	534	.028	184.000	-19.037	2.344E-45	589	478
countryBrazil	.010	.024	184.000	.402	.688	037	.056
countryChile	010	.029	184.000	332	.740	068	.048
countryColombia	200	.025	184.000	-8.143	5.680E-14	248	151
countryCostaRica	055	.029	184.000	-1.874	.063	113	.003
countryEcuador	394	.026	184.000	-14.869	2.331E-33	446	341
countryMexico	459	.031	184.000	-14.716	6.596E-33	521	398
countryPanama	168	.034	184.000	-4.918	1.932E-6	236	101
countryPeru	188	.022	184.000	-8.567	4.198E-15	232	145
countryUruguay	O_p	0	•	•	•	•	

a. Dependent Variable: LOG_RE.

Estimates of Fixed Effects^a

Parameter	Estimate Std. Error	df	t	Sig.	95% Confidence Interval

b. This parameter is set to zero because it is redundant.

b. This parameter is set to zero because it is redundant.

					Lower Bound	Upper Bound
Intercept	2.075	.079	185.000 26	5.303 2.044E-64	1.919	2.230
LOG_CO2	499	.058	185.000 -8	.542 4.799E-15	615	384
LOG_FDI_lag2	.010	.017	185.000 .6	.534	023	.043
LOG_UP	136	.032	185.000 -4	.274 3.066E-5	199	073
LOG_TO	144	.047	185.000 -3	.033 .003	237	050
LOG_GDP	018	.019	185.000	936 .351	057	.020
countryArgentina	536	.028	185.000 -18	3.980 2.722E-45	591	480
countryBrazil	.006	.024	185.000 .2	256 .798	041	.053
countryChile	005	.030	185.000	181 .857	064	.053
countryColombia	200	.025	185.000 -8	.090 7.690E-14	249	151
countryCostaRica	049	.030	185.000 -1	.664 .098	107	.009
countryEcuador	392	.027	185.000 -14	4.748 4.687E-33	444	339
countryMexico	456	.031	185.000 -14	4.547 1.847E-32	517	394
countryPanama	154	.033	185.000 -4	.612 7.424E-6	220	088
countryPeru	187	.022	185.000 -8	.447 8.643E-15	231	143
countryUruguay	0_{p}	C		•		

a. Dependent Variable: LOG_RE.

SAMPLEREROY

In summary, the log-transformed models provided better fit and addressed some of the issues identified in the untransformed models. CO2, urban population growth, and trade openness were significant predictors of renewable energy consumption, while GDP and FDI were not. The lagged FDI models also revealed no significant delayed effect of FDI on renewable energy consumption. Country-level effects remained strong, emphasizing the importance of regional differences in renewable energy consumption patterns.

b. This parameter is set to zero because it is redundant.