Variable Resolution

June 29, 2025

1 Functionalities

The VariableResolutionGrid class provides the following functionalities:

- **Grid Initialization**: Creates a 2D grid of size $N \times N$ with spatially variable resolution, adjusting Δx and Δy based on a coastal factor to refine resolution near coasts.
- **Spatial Step Retrieval**: Provides access to the spatial step arrays $(\Delta x, \Delta y)$ for use in numerical computations in Model.py.
- Coastal Refinement: Simulates coastal regions by reducing spatial steps in a designated coastal zone, enhancing resolution where ocean-atmosphere interactions are more complex.
- **Logging and Error Handling**: Logs initialization and retrieval operations using the logging module, with exception handling to catch and log errors.

2 Simulation Logic

The simulation logic in VariableResolution.py centers around the VariableResolution class, which sets up and manages a variable resolution grid for the simulator.

2.1 Initialization

- **Purpose**: Initializes a 2D grid with spatially variable resolution, refining spatial steps near coastal regions.
- Process:
 - Initializes parameters: grid_size (N) and coast_factor, which determines the degree of refinement near coasts.
 - Creates 2D arrays Δx and Δy , initially set to 1.0 across the $N \times N$ grid.

- Defines a coastal region as the first N/4 grid points in both x and y directions.
- Reduces Δx and Δy by dividing by coast_factor in the coastal region to achieve finer resolution.
- Logs initialization details and handles exceptions.

2.2 Spatial Step Retrieval

- **Purpose**: Provides access to the spatial step arrays $(\Delta x, \Delta y)$ for use in numerical computations.
- Process:
 - Returns the Δx and Δy arrays as a tuple.
 - Logs the retrieval operation and handles exceptions.

3 Algorithms

3.1 Initialization Algorithm

- **Input**: grid_size (N), coast_factor.
- Steps:
 - 1. Log initialization parameters: grid_size, coast_factor.
 - 2. Store grid_size and coast_factor as instance variables.
 - 3. Initialize Δx and Δy as $N \times N$ arrays filled with 1.0.
 - 4. Compute coastal width: coast_width = $\lfloor N/4 \rfloor$.
 - 5. For each grid point (i, j):
 - If $i < \text{coast_width}$ or $j < \text{coast_width}$:
 - * Set $\Delta x_{i,j} = \Delta x_{i,j} / \text{coast_factor.}$
 - * Set $\Delta y_{i,j} = \Delta y_{i,j} / \text{coast_factor.}$
 - 6. Log completion of initialization.
 - 7. Handle exceptions and log errors if initialization fails.

3.2 Spatial Step Retrieval Algorithm (get_spatial_steps)

• Input: None.

- Steps:
 - 1. Log start of spatial step retrieval.
 - 2. Return the tuple $(\Delta x, \Delta y)$.
 - 3. Log errors if retrieval fails.