PCT/EP2005/002101

Sequences, Sequence-Listing

	No.	Sequences	Length	No. int.
TGF-beta 1	1	CGATAGTCTTGCAG	14	1
	2	GTCGATAGTCTTGC	14	2
	3	CTTGGACAGGATCT	14	3
	4	CCAGGAATTGTTGC	14	4
	5	CCTCAATTTCCCCT	14	5
	6	GATGTCCACTTGCA	14	6
	7 -	CTCCAAATGTAGGG	14	7
	8	ACCTTGCTGTACTG	14	8
	9	GTAGTACACGATGG	14	9
	10	CACGTAGTACACGA	14	10
	11	CATGTTGGACAGCT	14	11
	12	GCACGATCATGTTG	14	12
	13	TGTACTCTGCTTGAAC	16	13
	14	CTGATGTGTTGAAGAACA	18	14
	15	CTCTGATGTGTTGAAG	16	15
	16	GGAAGTCAATGTACAG	16	16
	17	CATGTCGATAGTCTTGCA	18	17
	18	AGCTGAAGCAATAGTTGG	18	18
	19	GTCATAGATTTCGTTGTG	18	19
	20	CTCCACTTTTAACTTGAG	18	20
	21	TGCTGTATTTCTGGTACA	18	21
TGF-beta 2	22	CACACAGTAGTGCA	14	1
	23	GCACACAGTAGTGC	14	2
	24	GCTTGCTCAGGATCTGC	17	3
	25	TACTCTTCGTCGCT	14	4
	26	CTTGGCGTAGTACT	14	5
	27	GTAAACCTCCTTGG	14	6
	28	GTCTATTTTGTAAACCTCC	19	7
	29	GCATGTCTATTTTGTAAACC	20	8
	30	CGGCATGTCTATTTTGTA	18	9
	31	GGCATCAAGGTACC	14	10
	32	CTGTAGAAAGTGGG	14	11
	33	ACAATTCTGAAGTAGGGT	18	12
	34	TCACCAAATTGGAAGCAT	18	13
	35	GCTTTCACCAAATTGGAAGC	20	14
	36	CTGGCTTTTGGGTT	14	15
	37	TCTGATATAGCTCAATCC	18	16
	38	TCCTAGTGGACTTTATAG	18	17
	39	TTTTTCCTAGTGGACT	16	18
	40	CAATTATCCTGCACATTTC	19	19
	41	GCAATTATCCTGCACA	16	20
	42	GCAGCAATTATCCTGC	16	21
	43	TGGCATTGTACCCT	14	22
	44	TGTGCTGAGTGTCT	14	23
	45	CCTGCTGTGCTGAGTG	16	24

WO 2005/084712		PCT/EP2005/002101
	2/3	

		2/3		
	46	CTTGGGTGTTTTGC	14	25
	47	TTTAGCTGCATTTGCAAG	18	26
	48	GCCACTTTTCCAAG	14	27
IL-10	49	CTTCTTTTGCAAGTCTGT	18	
	50	TGAGCTGTGCATGCCTTC	18	
	51	AGTCAGGAGGACCAG	15	
	52	TGGGTGCCCTGGCCT	15	
	53	CATGTTAGGCAGGTT	15	
	54	AGGCATCTCGGAGATCT	17	
	55	AAAGTCTTCACTCTGC	16	
	56	AACAAGTTGTCCAGCTG	17	
	57	GTAAAACTGGATCATCTC	18	
	58		15	
	59	CATCACCTCCTCCAG		
		GGGTCTTCAGGTTCTCCC	18	
	60	CACGGCCTTGCTCTTGTT	18	
	61	TTATTAAAGGCATTCTTC	18	
	62	AAGATGTCAAACTCACTC	18	
	63	GTAGTTGATGAAGATGTC	18	
	64	GATTTTGGAGACCTCT	16	
	65	TCAGCTATCCCAGAGC	16	
	66	GGCTGGGTCAGCTAT	15	
·	67	AAATCGTTCACAGAGAAG	18	
	68	TCTTTCTAAATCGTTCAC	18	
TGF-beta3	69	TCGAGCTTCCCCGA		lmmun 107
	70	CCCGGAGCCGAAGG		lmmun 108
	71	CCCGAGGAGCGGG		lmmun 109
	72	ACGCAGCAAGGCGA		lmmun 110
	73	CGGGTTGTCGAGCCG		immun 111
	74	CGGCAGTGCCCCG		immun 112
	75 70	CGGAATTCTGCTCG		lmmun 113
	76 77	TTCGTTGTGCTCCG		Immun 114
	77	ATTCCGACTCGGTG		Immun 115
	78 70	ACGTGGGTCATCACCGT		lmmun 116
	79	CGAAGAAGCG		lmmun 117
	80	CCTAATGGCTTCCA		Immun 118
	81 82	TCAGCAGGCCAGG		Immun 187
	83	GCAAAGTTCAGCAGGC		Immun 188
	84	GGCAAAGTTCAGCAGG GTGGCAAAGTTCAGCAGG		Immun 189
	85	GTGGCAAAGTTCAGCAGG		lmmun 190 Immun 191
	86	GACCGTGGCAAAGTTCAG		lmmun 192
	87	AGAGAGGCTGACCGT		Immun 194
	88	GACAGAGAGAGGCTGAC		Immun 194
	89	ACAGAGAGAGGCTGA		Immun 195
	90	GTGGACAGAGAGAG		lmmun 196
	91	CAAGTGGACAGAGAGAGG		Immun 197
	92	TCTTCTTGATGTGGCC		Immun 198
	93	CCCTCTTCTTCTTGATG		lmmun 199
	94	CACCCTCTTCTTCT		lmmun 200
	95	ATGGATTTCTTTGGCAT		lmmun 201

WO 2005/084712 PCT/EP2005/002101

3/3	
GGATTTCTTTGGC	96
AAGTTGGACTCTCTCTC	97
TAAGTTGGACTCTCTTCT	98
GACCTAAGTTGGACTC	99
TTTCTAGACCTAAGTTGG	100
CTGATTTCTAGACCTAAG	101
GAAGCAGTAATTGGTGT	102
GGAATCATCATGAGG	103
GGGAATCATCATGAG	104
GGTTGTCGAGCCGGT	105
GTCCTCCCAACATAGTA	106
GGGTCCTCCCAACA	107
	GGATTTCTTTGGC AAGTTGGACTCTCTCT TAAGTTGGACTCTCTTCT GACCTAAGTTGGACTC TTTCTAGACCTAAGTTGG CTGATTTCTAGACCTAAG GAAGCAGTAATTGGTGT GGAATCATCATGAGG GGGAATCATCATGAG GGTTGTCGAGCCGGT GTCCTCCCAACATAGTA