

Biostatistics for Med Students

Lecture 1

John J. Chen, Ph.D.
Professor & Director of Biostatistics Core
UH JABSOM

JABSOM MD7

February 15, 2017

Lecture Objectives

- To understand basic research design principles and data presentation approaches
- To build a foundation which will facilitate the active participation in clinical research
- To fully grasp descriptive statistics
- To introduce key concepts of inferential statistics
- To survey some commonly used statistical approaches
- To be prepared for the USMLE Step 1 biostat/epi questions

Outline

Lecture 1 (02/15/2017)

- The goal of statistics
- Introduction to descriptive biostatistics
- Basic research design principles and data presentation approaches

Lecture 2 (02/22/2017)

- Introduction to inferential statistics
- Commonly used statistical approaches

Lies, Damned Lies, And Statistics

Definition of Statistics

The theory and methodology for research (study) design, and for describing, analyzing, and interpreting information (data) generated from such studies, in which the data is subject to chance variation.

Population & Sample

- <u>Population</u>: the set of all subjects of interest having a common observable characteristic. For example, all newborns in US.
- <u>Sample:</u> a subset of a population, e.g., all newborns at KMC in 2016.
- <u>Parameter.</u> a summary measure of the population, e.g., the average birth weight of the above population.
- <u>Statistic:</u> a summary measure of the sample, e.g., the average birth weight of the above sample.

Sampling, Inference, & Probability

The probability question during sampling:

Given that the population parameters are known, what's the probability of getting a particular sample?

Sampling, Inference, & Probability

The probability question during inference:

Given a particular sample at hand, what's the most likely value of the population parameter to have generated the sample?

Properties of A "Good" Sample

- Adequate sample size (statistical power)
- Random selection (representative)

Commonly used sampling techniques

- 1. Simple random sample
- 2. Stratified sample
- 3. Systematic sample
- 4. Cluster sample
- 5. Convenience sample

Data And Variables

- *Variable*: a characteristic that may differ from one subject to another. For example, age, birth weight, etc.
- **Data (information)**: the values of the observations recorded for the variables. For example,

Pt. ID	Mother's Smoking Status	Baby's Birth Weight (grams)
<i>101</i>	None	3175
<i>102</i>	None	3232
<i>103</i>	1 pack/day	2750
•	•	•
•	•	•
•	•	•
1001	1+ pack/day	2466

Types of Data & Scales of Measurement

1. Qualitative variables - categorical

- Nominal: Categories, names (e.g., gender, eye color)
- Ordinal: Ordered data, intervals are not equal (e.g., satisfaction scores, grades of tumor)

2. Quantitative variables - numerical

- Discrete no intermediate values (e.g., number of children per family)
- Continuous intermediate values (e.g., temperature, birth weight)

Types of Variables

Notes:

Dependent (response) versus Independent (explanatory) variables

In linear regression analysis:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Sources of Data (Types of Studies)

Two major types of investigations: Surveys versus experiments

<u>Major difference:</u> whether the investigator has control over which subjects enter each study group.

Some examples of survey researches
Prospective (cohort) studies
Retrospective (case-control) studies
Cross-sectional studies

Some examples of experimental studies:

Lab experiments

Clinical trials

Descriptive Statistics

Qualitative data:

- Frequencies
- Percentages

Quantitative data:

- Measures of central tendency
 Mean, Median, Mode
- Measures of variability (dispersion)
 Standard deviation, Variance, Range, Interquartile range

Measures of Central Tendency

Mean - The average

$$\overline{X} = \begin{array}{c} \frac{\sum_{i=1}^{n} X_{i}}{n} \\ \text{(sample mean)} \end{array} \qquad \mu = \begin{array}{c} \frac{\sum_{i=1}^{N} X_{i}}{N} \\ \text{(population mean)} \end{array}$$

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

(population mean)

Median - 50th percentile point (the middle value)

- If values are in ascending order, the median is the (n+1)/2 term (if n is an odd number) or the average of (n/2) and (n/2+1) (if n is an even number)
- The median is not affected by outliers

Mode - The value that occurs most frequently

Measures of Variability

1. Variance:

Sample variance =
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

2. Standard deviation (SD):

Sample SD =
$$s = \sqrt{s^2}$$

3. Range:

Range =
$$\max$$
 - \min

Data Dictionary An example: Description/Label **Education Level** Data Type Num - Categorical variable Length 8 Allowable Values 1=none 2=primary 3=intermediate 4=senior high 5=technical school 6=university or above Notes Required field. No missing allowed.

Ways of Presenting Data (cont.)

Summary table: one categorical variable

Statistics

Educ	Educational Level		
Ν	Valid	100	
	Missing	0	

Educational Level

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	none	25	25.0	25.0	25.0
	primary	32	32.0	32.0	57.0
	intermediate	24	24.0	24.0	81.0
	senior high	9	9.0	9.0	90.0
	technical school	10	10.0	10.0	100.0
	Total	100	100.0	100.0	

Ways of Presenting Data (cont.)

Cross-tabulation: two categorical variables

Physical Activity at Home * Smoking Status Crosstabulation

			Smoking Status		
			no	yes	Total
Physical Activity at Home	mostly sitting	Count	31	18	49
		% within Physical Activity at Home	63.3%	36.7%	100.0%
		% within Smoking Status	49.2%	48.6%	49.0%
	moderate	noderate Count		19	51
		% within Physical Activity at Home	62.7%	37.3%	100.0%
		% within Smoking Status	50.8%	51.4%	51.0%
Total		Count	63	37	100
		% within Physical Activity at Home	63.0%	37.0%	100.0%
		% within Smoking Status	100.0%	100.0%	100.0%

Data Analysis: Analytic Approaches

Variable Type:

Numerical data

- count: # of circulating cancer cells
- continuous: 6MWT

Categorical data

- dichotomous: Type II diabetes status (yes/no)
- multilevel: BMI (under-weight, normal, over-weight, obese)

Survival data: time to readmission (with censoring)

Notes: Univariate vs. multivariable analysis

Parametric vs. non-parametric approaches Transformation or not: log-transformed Derived variable: percentage changes

Biomedical Research Process

Identifying a research question and a hypothesis

Designing study and developing research protocol

Gathering preliminary data and revising the protocol

Conducting the study

Analyzing data and interpreting results

Drawing conclusions and disseminating the results

The Importance of Research Design

"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of."

Sir R.A. Fisher, Presidential Address to the First Indian Statistical Congress (1938)

Basic Principles of Experimental Design

- Replications
- Randomization
- Blocking (stratification)
- Blinding
- · Factorial experiments

Handling A Confounding Variable (Z)

- If you can, fix a variable.
- If you can't, stratify it.
- If can't fix or stratify a variable, randomize it.

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$$

Technical vs Biological Replicates

Warning Signs

Data consumption

Data Management: Importance of Data Prep & Cleaning A Clinical Study Example:

	Α	В	С	D	E	
1	ID	Center	Birthday	Weight	Male (Yes/No)	
2	101	1	5/4/1967	1180	Yes	
3	102	1	7/4/1965	175	yes	
4	103	1	1/1/1847	165	Yes	
5	201	2	12/31/1958	155	MALE	
6	202	2	11/25/1945	745	Male	
7	203	2	Apr-78	156	male	
8	301	3	3/2/1989	176		1
9	302	3	6/4/1995	188	1 (empty in questionnair, but "male" from pt chart).	
10	303	3	8/3/2978	145		1

Collaboration with A Biostatistician

- 1. Early and often
- 2. Start the discussion when you have the initial idea
- 3. It is an iterative process
- 4. A collaborative effort: equal and fair
- 5. Ask questions so you can discuss about the general statistical approach without the statistician
- 6. Education and training in research design and biostatistics

http://biostat.jabsom.hawaii.edu

NIH P20GM103466

Sample USMLE Step 1 Questions:

Question 1. Which of the following is **CORRECT**?

- a. Randomization is not necessary if the sample size is sufficiently large.
- b. A large sample size always ensures that our sample is representative of the population.
- c. If all other things are equal, we need a larger sample size for a larger population.
- d. In a properly chosen sample, an estimate will be less variable with a large sample size and hence more precise.
- e. In random samples, the randomization ensures that we get precise and accurate estimates.

Sample USMLE Step 1 Questions:

Question 2. Those methods involving the presentation and characterization of a set of data in order to properly describe the various features of that set of data are called:

- a. Inferential statistics
- b. Total quality management
- c. Sampling
- d. Descriptive statistics
- e. Randomization

Sample USMLE Step 1 Questions:

Question 3. A new headache remedy was given to a group of 25 subjects who had headaches. Four hours after taking the new remedy, 20 of the subjects reported that their headaches had disappeared. From this information you conclude:

- a. That the remedy is effective for the treatment of headaches.
- b. Nothing, because the sample size is too small.
- c. Nothing, because there is no control group for comparison.
- d. That the new treatment is better than aspirin.
- e. That the remedy is not effective for the treatment of headaches.

Outline

Lecture 1 (02/15/2017)

- The goal of statistics
- Introduction to descriptive biostatistics
- Basic research design principles and data presentation approaches

Lecture 2 (02/22/2017)

- Introduction to inferential statistics
- Commonly used statistical approaches

