Machine Learning Course basic track

Lecture 7: Gradient boosting

Harbour.Space March 2021

Radoslav Neychev

Outline

- 1. Boosting intuitions
- 2. Gradient boosting
- 3.

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB =
$$\sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Random Forest Classifier

3-Nearest Neighbors

Bias-variance tradeoff

Random Forest

Is Random Forest decreasing bias or variance by building the trees ensemble?

Stacking

How to build an ensemble from different models?

Gradient boosting

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Binary classification problem. Models - decision stumps.

Binary classification problem. Models - decision stumps.

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg\,min}} L(y, f(x)) = \underset{f(x)}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x))]$$

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg \, min}} \ L(y, f(x)) = \underset{f(x)}{\operatorname{arg \, min}} \ \mathbb{E}_{x,y}[L(y, f(x))]$$

Let it be from parametric family: $\hat{f}(x) = f(x, \hat{\theta}),$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x, \theta))]$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\arg\min} \ \mathbb{E}_{x,y} [L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

What if we could use gradient descent in space of our models?

What if we could use gradient descent in space of our models?

$$\hat{f}(x) = \sum_{i=1}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

Gradient boosting: beautiful demo

Great demo:

http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

What we need:

- Data.
- Loss function and its gradient.
- Family of algorithms (with constraints on hyperparameters if necessary).
- Number of iterations M.
- Initial value (GBM by Friedman): constant.

Gradient boosting: example

What we need:

- Data: toy dataset $y = cos(x) + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{5}), x \in [-5, 5]$
- Loss function: MSE
- Family of algorithms: decision trees with depth 2
- Number of iterations M = 3
- Initial value: just mean value

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Spam Data

California Housing Data

Boosting with linear classification methods

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

 Random Forest: parallel on the forest level (all trees are independent)

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

- Random Forest: parallel on the forest level (all trees are independent)
- Gradient boosting: parallel on one tree level

Recap: ensembling methods

- 1. Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Gradient boosting.
- 5. Stacking.
- 6. Blending.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Offtop: words representations

How to represent text in a computer?

Use a taxonomy like WordNet that has hypernyms (is-a) relationships and synonym sets

How to represent text in a computer: WordNet

Discrete representations: problems

- Missing new words
- Subjective
- Requires human labor to create and adapt
- Hard to compute accurate word similarity

Discrete representations: one-hot encoding

TF-IDF

TF - term frequency

IDF - Inversed Document Frequency

TF-IDF: make it simple

$$ext{tf("this",}\ d_1)=rac{1}{5}=0.2$$
 $ext{tf("this",}\ d_2)=rac{1}{7}pprox 0.14$ $ext{idf("this",}\ D)=\log\Bigl(rac{2}{2}\Bigr)=0$

$\mathrm{tfidf}("this", d_1, D) = 0.2 imes 0 = 0$
$\operatorname{tfidf}("this", d_2, D) = 0.14 imes 0 = 0$

Document 1

Term	Term Count				
this	1				
is	1				
a	2				
sample	1				

Document 2

Term	Term Count				
this	1				
is	1				
another	2				
example	3				

Word 'this' is not very informative

Words cooccurrences

One of the most successful ideas of statistical NLP:

"You shall know a word by the company it keeps"

(J. R. Firth 1957: 11)

Words cooccurrences

Word-document cooccurrence matrix

Window around each word

Word-document cooccurrence matrix

		I	like	enjoy	deep	learning	NLP	flying	•
X =	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	٠	0	0	0	0	1	1	1	0

Words cooccurrences: sliding window

Words cooccurrences: n-grams

Cooccurrence vectors: problems

- Increase in size with vocabulary
- Very high dimensional: require a lot of storage
- Subsequent classification models have sparsity issues

Models are less robust

More interesting approaches coming in next classes. Stay tuned!