- przewodniki materiały o bardzo małej rezystywności $r = 10^{-8} 10^{-7}$ W m
- izolatory materiały o bardzo dużej rezystywności r = 10⁸ 10¹⁸ W m
- półprzewodniki materiały o rezystywności $r = 10^{-7} 10^{-3} W m$.

1. Narysować charakterystyki wyjściowe tranzystora unipolarnego złączowego z kanałem typu n w układzie ze wspólnym źródłem Zaznaczyć obszary pracy i omówić je

Rys. 6.28. Charakterystyki statyczne tranzystora unipolarnego: a) przejściowe, b) wyjściowe Wielkościami charakterystycznymi krzywych są: napięcie odcięcia bramka-źródło - U_{GSoff} , tj. taka wartość napięcia, którą należy doprowadzić do bramki, aby przy ustalonym U_{DS} nie płynął prąd drenu

prąd nasycenia I_{Dss} tj. prąd drenu płynący przy napięciu U_{GS} = 0 i określonym napięciu U_{DS}

Charakterystyką wyjściową (drenową) nazywamy zależność prądu drenu od napięcia dren-źródło *ID= f (UDS)*, przy ustalonej wartości napięcia bramka-źródło *UGS*.(rys. 6.28b). Wyróżnia się trzy zasadnicze zakresy tych charakterystyk

- 1.zakres liniowy lub triodowy
- 2.zakres nasycenia, lub pentodowy
- 3.Zakres powielania lawinowego

3. Podac i omówić sposób zasilania z jednego źródła polaryzacji tranzystora bipolarnego pracującego we wzmacniaczu ze wspólnym emiterem WE przy stałym prądzie bazy IB

Definicja 6.11. Charakterystykami wejściowymi tranzystora bipolarnego nazywamy związki $I_B = f(U_{BE})$, przy różnych wartościach prądu bazy U_{CE} (parametr rodziny krzywych). Ponieważ złącze baza-emiter jest diodą , więc charakterystyka wejściowa tranzystora jest praktycznie identyczna z charakterystyką diody w kierunku przewodzenia. Charakterystyki

wejściowe tranzystora w układzie WE pokazano na rys. 6.22.

Rys. 6.22. Charakterystyki wejściowe tranzystora w układzie WE

Wpływ napięcia U_{CE} jest niewielki. Na charakterystykach wejściowych wyróżnia się napięcie progowe (włączenia) poniżej którego prąd bazy I_B jest bardzo mały. Wartość napięcia progowego dla tranzystorów krzemowych wynosi $U_{T0} = 0.5 \div 0.8$ V. Dla określenia stopnia obciążenia źródła sygnału przez tranzystor wprowadza się pojęcie rezystancji wejściowej

$$r_{be} = \frac{\Delta U_{BE}}{\Delta I_{B}} \Big|_{U_{CE} = const}$$

Wynosi ona od kilkuset omów do kilkuset kiloomów.

Charakterystyki prądowe $I_C = f(I_B)$ i charakterystyki sprzężenia zwrotnego $U_{BE} = f(U_{CE})$, pokazane na rys. 6.23., są wykorzystywane znacznie rzadziej niż omówione wyżej charakterystyki wyjściowe i wejściowe.

Rys. 6.23. Charakterystyki tranzystora w układzie WE: a) prądowe: b) sprzężenia zwrotnego

2. Co to są półprzewodniki samoistne i niesamoistne scharakteryzować półprzewodniki typu n i typu p oraz podać ich pasmowe modele energetyczne

Półprzewodnik typu n uzyskuje się przez dodanie w procesie wzrostu kryształu krzemu domieszki pierwiastka pięciowartościowego (np. antymonu, arsenu, fosforu). Niektóre atomy krzemu zostaną zastąpione w sieci krystalicznej atomami domieszki, zwanymi donorami (rys. 6.3). Piąte elektrony walencyjne tych atomów nie biorą udziału w wiązaniach i są słabo związane z jądrem. Dlatego potrzeba niewielkiej energii do zerwania tego wiązania.

Rys. 6.3. Model sieci krystalicznej krzemu z domieszką atomów fosforu

Rys. 6.4. Model pasmowy

półprzewodnika krzemowego z
domieszkami donorowymi

pasmo przewodnictwa
poziom donorowy
pasmo podstawowe

W pasmowym modelu energetycznym odpowiada to powstaniu nowego poziomu energetycznegopoziomu donorowego (rys. 6.4). Wskutek małej różnicy energii poziomu donorowego względem
pasma przewodnictwa (około 0,05 eV dla Si) elektrony z tego poziomu będą przechodziły do
pasma przewodnictwa. Już w temperaturze pokojowej prawie wszystkie atomy domieszkowe
zostaną zjonizowane. Oznacza to , że na poziomach donorowych nie ma elektronów. Wszystkie one
przeszły do pasma przewodnictwa. Liczba elektronów w paśmie przewodnictwa jest znacznie
większa niż dziur w paśmie podstawowym. Dlatego pierwsze noszą nazwę nośników
większościowych, a drugie mniejszościowych.

Półprzewodniki,niemającedodatkowychpoziomówenergetycznychwpaśmiezabronionymnosząnazwępółprzewodnikówsamoistnych. Półprzewodniki niesamoistne inaczej domieszkowane, są to takie półprzewodniki, w których w paśmie zabronionym występują dodatkowo poziomy energetyczne.

Półprzewodnik typu p uzyskuje się przez dodanie w procesie wzrostu kryształu krzemu domieszki pierwiastka trójwartościowego (np. glinu, indu, galu). Niektóre atomy krzemu zostaną zastąpione w sieci krystalicznej atomami domieszki, zwanymi akceptorami (rys. 6.5). Obecność tylko trzech elektronów walencyjnych w tych atomach powoduje zdekompletowanie jednego z wiązań w sieci krystalicznej.

Rys. 6.5. Model sieci krystalicznej krzemu z domieszką atomów indu domieszką atomów indu społycznej krzemu z domieszką atomów indu społycznej krystalicznej krzemow z domieszką atomów indu społycznej krystalicznej kryst

Brak elektronu zostaje uzupełniony przez pobranie elektronu z jednego z sąsiednich wiązań, w którym powstaje dziura. Atom domieszki staje się jonem ujemnym.

W modelu energetycznym (rys. 6.6) puste miejsca w sieci krystalicznej nie zapełnione przez elektrony, odpowiadają nie obsadzonym dodatkowym poziomom dozwolonym, leżącym blisko pasma podstawowego zwanych poziomami akceptorowymi. Już w temperaturze pokojowej wszystkie poziomy akceptorowe są zapełnione elektronami, które przeszty tu z pasma podstawowego. Na skutek tego liczba dziur w paśmie podstawowym jest większa od liczby elektronów w paśmie przewodnictwa. W półprzewodniku typu p nośnikami większościowymi są dziury, a mniejszościowymi elektrony.

W każdym półprzewodniku w stanie równowagi termicznej jest spełniony warunek neutralności Ustalenie się koncentracji nośników na odpowiednim poziomie zachodzi w wyniku procesu rekombinacji, który równoważy też generacje termiczną nośników.

5. Przedstawić omówić charakterystyki oraz właściwości diody prostowniczej i diody stabilizacyjnej podać zastosowania

Diody prostownicze stosuje się głownie w układach prostowniczych urządzeń zasilających, przekształcających prąd zmienny w jednokierunkowy prąd pulsujący. Dioda spełnia zatem funkcję zaworu jednokierunkowego. Wykorzystuje się właściwość polegającą na dużej różnicy zdolności przewodzenia w kierunku wstecznym i kierunku przewodzenia. Najczęściej są to diody warstwowe krzemowe.

Rys. 6.14. Charakterystyka diody prostowniczej i jej aproksymacja

Właściwości diody najlepiej obrazuje charakterystyka prądowonapięciowa rys. 6.14a, będąca charakterystyką złącza p-n. W rozważaniach przybliżonych można ją aproksymować odcinkami prostych jak na rys. 6.14b.: I = 0 dla $U < U_{70}$

$$I_F = \frac{U_F}{R_F} \qquad \text{dla } U > U_{70}$$

gdzie: R_E jest rezystancją diody w kierunku przewodzenia (nachylenie charakterystyki).

Stąd otrzymuje się równanie diody w kierunku przewodzenia o postaci: $U_F = U_{T0} + I_F R_F$ dla $U > U_{T0}$ Napięcie progowe U_{T0} , poniżej którego prąd ma bardzo małą wartość wynosi: $(0,6 \div 0,8)$ V dla diod krzemowych i $(0,2 \div 0,3)$ V dla diod germanowych. Oprócz napięcia progowego do punktów charakterystycznych krzywej należy napięcie przebicia U_{BR} . Maksymalne napięcie wsteczne określa się jako: $U_{BRmax} = 0,8 \ U_{BR}$

Ze względu na praktyczne zastosowania diod prostowniczych , ważną rolę odgrywają wartości graniczne prądów i napięć.

6. Przedstawić schemat wzmacniacza różnicowego stosowanego w elementach dyskretnych tranzystorów i oporów podziel praktyczne sposoby poprawy właściwości i parametrów tych wzmacniaczy oraz je omów. Narysować schemat wzmacniacza uwzględniając przedstawione sposoby poprawy tych parametrów

Pomiar metodą różnicową (rys. 5.7.) polega na podaniu na komparator (wzmacniacz różnicowy) dwóch sygnałów: sygnał pomiarowego x na wejście "+" i sygnału odniesienia x_R na wejście "-". Na wyjściu wzmacniacz powstaje sygnał różnicowy ($x - x_R$). Na podstawie tego sygnału z urządzenia odczytowego przyrządu pomiarowego wnioskujemy o $X_M = \alpha (x - x_R)$.

Rys. 5.7 Schemat ilustrujący metodę różnicową pomiaru

Wpływ ujemnego sprzężenia zwrotnego na parametry wzmacniacza

Parametr	Sprzężenie napięciowe- szeregowe	Sprzężenie prądowe- równoległe	Sprzężenie napięciowe- równoległe	Sprzężenie prądowe- szeregowe
Wzmocnienie napięciowe	maleje	bez zmian	bez zmian	maleje
Wzmocnienie prądowe	bez zmian	maleje	maleje	bez zmian
Impedancja wejściowa	wzrasta	maleje	maleje	wzrasta
Impedancja wyjściowa	maleje	wzrasta	maleje	wzrasta

7. Co to jest złącze p-n, narysować dla nie go charakterystykę prądowo - napięciową i omówić zjawisko przebicia tunelowego

Złączem nazywa się atomowo powiązany styk dwóch kryształów ciała stałego o odległości miedzy stykającymi się obszarami porównywalnej z odległością miedzy atomami w kryształach. Złączem *p-n* nazywamy warstwę przejściową miedzy obszarem półprzewodnika typu *p*i półprzewodnika typu *n*.

W silnie domieszkowanym złączu p-n szerokość obszaru ładunku przestrzennego jest niewielka. Jeśli napięcie polaryzacji wstecznej takiego złącza będzie większe od napięcia Zenera, to górna krawędź pasma walencyjnego obszaru typu P znajdzie się wyżej niż dolna krawędź pasma przewodzenia obszaru typu N. Dlatego jeśli elektron znajdujący się w paśmie walencyjnym w obszarze typu P przejdzie przez obszar ładunku przestrzennego do obszaru typu N, to bez zmiany energii stanie się tam swobodnym nośnikiem – elektronem znajdującym się w paśmie przewodzenia półprzewodnika typu N. Takie przejście nazywane jest przejściem tunelowym.

8. Na charakterystyce wyjściowej tranzystora npn wybrać punkt pracy, dlaczego taki?

Punkty A i B połączone ze sobą dają prostą obciążenia. Prosta ta przecina się z charakterystykami wyjściowymi tranzystora (w tym przypadku tranzystor pracuje w układzie współnego emitera WE), a punkt przecięcia P wyznacza punkt pracy tranzystora czyli prąd kolektora I_C oraz napięcie U_{CE} dla określonego prądu bazy I_B. W związku z tym, że tranzystor jest elementem sterowanym prądem bazy, to jak widać na rysunku 4.1.13 punkt pracy P może poruszać się po prostej obciążenia od punktu A' do B' w zależności od wartości prądu bazy I_B. Punkty A i B nie są osiągalne, gdyż rozpatrując punkt A - dla I_B=0 płynie jednak bardzo mały prąd (zerowy) kolektora I_{CEO} i napięcie U_{CE} różni się od U_{CC} o bardzo małą wartość I_{CEO}· R_C (tranzystor nie stanowi idealnej przerwy), z kolei dla punktu B czyli dla dużych prądów bazy tranzystor jest w stanie nasycenia ale nie stanowi idealnego zwarcia i pozostaje tzw. napięcie nasycenia U_{CES}.

Przy projektowaniu układów tranzystorowych należy tak dobierać stałoprądowy punkt pracy P tranzystora aby zmiany wynikające ze zmian sygnału sterującego I_B nie powodowały zniekształceń sygnału wyjściowego (napięcie na kolektorze). Jeżeli punkt pracy będzie zbyt blisko punktu B to przy np. sygnale sinusoidalnym mogą być obcinane górne połówki sinusoidy, z kolei jeśli punkt P przesunąć w stronę A to dla tego samego sygnału mogą być obcinane dolne (ujemne) połówki sinusoidy. Przy rozwiązywaniu zadań projektowych dotyczących doboru punktu pracy tranzystora proponuję abyś próbował przedstawić sobie ten punkt w postaci graficznej przy pomocy prostej obciążenia i wyjściowych charakterystyk tranzystora.

9. Narysować ze sprzężeniem zwrotnym na wzmacniaczu operacyjnym, podać wzmocnienie, RWE, Rwy. Co to jest masa pozorna?

Współczynnik sprzężenia zwrotnego Beta=Xs/Xwy Wzmocnienie wzmacniacza bez sprzężenia K= Xwy/Xr Wzmocnienie układu ze sprzężeniem zwrotnym Kf = Xwy/Xwe gdzie:

Xr - sygnał sterujący

Xs - sygnał sprzężenia zwrotnego

Założenie: Xr, Xs są wielkościami rzeczywistymi.

Masa pozorna

to jest taki punkt w obwodzie wzmacniacza operacyjnego pracującego z ujemnym sprzężeniem zwrotnym, którego potencjał jest równy (przyjęty za zerowy) i utrzymywany jest poprzez owe sprzężenie zwrotne, potencjałowi odniesienia (masy), czyli punktowi środkowemu symetrycznego zasilacza tego wzmacniacza operacyjnego, mimo, iż nie istnieje połączenie galwaniczne (omowe) z owym punktem. Pojęcie w teorii wzmacniaczy operacyjnych ważne, ponieważ pozwala skorzystać w analizie tychże wzmacniaczy z twierdzenia z Teorii Obwodów Elektrycznych o punktach ekwipotencjalnych (o jednakowym potencjale).