| SRN |     | -     |  |  |  |  |  |
|-----|-----|-------|--|--|--|--|--|
|     | 200 | 00000 |  |  |  |  |  |



## PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE17CS201

## END SEMESTER ASSESSMENT (ESA) B.TECH. 3<sup>rd</sup> SEMESTER- Dec 2019

## UE17CS201-Digital Design and Computer Organization (Backlog)

| Ti 2         | (Backlog)                                                                                                                                                                                                                                                                                                         | - |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|
| Time: 3      | ×                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |  |  |
| 1. a)        | Simplify the following minterms into simplified SOP expression using K-Map $f(A,B,C,D) = \Sigma m(3,7,11,13,14,15)$ .                                                                                                                                                                                             |   |  |  |  |  |  |  |
| b)           | Simplify the following maxterms into simplified POS expression using K-Map $f(A,B,C,D) = \Pi M(0,1,2,3.4,5,6,8,10,14)$ .                                                                                                                                                                                          | ( |  |  |  |  |  |  |
| c)           | Design an excess-3-to-binary decoder, using the unused combinations of the code as don't-care conditions.                                                                                                                                                                                                         | 8 |  |  |  |  |  |  |
| 2. a)        | Explain 4 bit Ripple carry adder with neat diagram.                                                                                                                                                                                                                                                               | 6 |  |  |  |  |  |  |
| b)           | Compute the delay of a 32 bit prefix adder. Assume that each two input gate delay is 100ps                                                                                                                                                                                                                        | 6 |  |  |  |  |  |  |
| c)           | Explain Magnitude comparator.                                                                                                                                                                                                                                                                                     | 4 |  |  |  |  |  |  |
| d)           | Explain Logical left shift and logical right shift with 4 bit example.                                                                                                                                                                                                                                            | 4 |  |  |  |  |  |  |
| 3. a)        | List 4 design principles of MIPS architecture.                                                                                                                                                                                                                                                                    | L |  |  |  |  |  |  |
| b)           | Explain little endian and big endian memory. Show how the word 0x12345678 is stored in little endian and big endian memory.                                                                                                                                                                                       | 8 |  |  |  |  |  |  |
| c)           | Explain conditional statements in MIPS,                                                                                                                                                                                                                                                                           | 8 |  |  |  |  |  |  |
|              | Table below. Help him compute the execution time for a program with 100 billion instructions.  Element Parameter Delay (ps)  register clk-to-Q t pcq 30  register setup t setup 20  multiplexer t mux 25  ALU t ALU 200  memory read t mem 250  register file read t RFread 150  register file setup t RFsetup 20 |   |  |  |  |  |  |  |
| b)           | Define Data Hazard in pipelined processor.                                                                                                                                                                                                                                                                        | 4 |  |  |  |  |  |  |
| c)           | 3) The SPECINT2000 benchmark consists of approximately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R-type instructions. Determine the average CPI for this benchmark.                                                                                                                                  | 8 |  |  |  |  |  |  |
| -   \        |                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |
| 5. <u>a)</u> | Explain Miss rate, Hit rate and Average memory access time.  Explain memory interface used in multi cycle MIPS processor.                                                                                                                                                                                         | 6 |  |  |  |  |  |  |
| b)           | •                                                                                                                                                                                                                                                                                                                 | 8 |  |  |  |  |  |  |
| c)           | Suppose a computer system has a memory organization with only two levels of hierarchy, a cache and main memory. What is the average memory access time given the access times and miss rates in Table below:                                                                                                      |   |  |  |  |  |  |  |
|              | Memory Level Access Time(Cycles) Miss Rate                                                                                                                                                                                                                                                                        |   |  |  |  |  |  |  |
|              | Cache 1 10%                                                                                                                                                                                                                                                                                                       |   |  |  |  |  |  |  |
|              | Main Memory 100 0%                                                                                                                                                                                                                                                                                                |   |  |  |  |  |  |  |