

The Pilot Of HBase

2017.5 XenRon

L CONTENTS

NoSQL

01

05

Use Case

HBase Architecture

02

06

Quick Start

Hbase Basic

03

HBase Environment

04

Figure 1: A DataNode presented itself as a single logical storage

Figure 3-2. A client reading data from HDFS

Figure 3-4. A client writing data to HDFS

Map Reduce

Hadoop 1.x

Hadoop 2.x

Map Reduce Model #1 Iterator Map-Reduce

0.17 0.24 0.88 0.03 0.03 0.17

Map Reduce Model #2 Job Control

Naïve Bayes in MapReduce

- Map
 - Input data $\{x, y\}$ from a subgroup of data
 - Output: 3 types of keys

$$key = (x_j = a_{pj}^j, y = c_k), value = \sum_{subgroup} 1(x_j = a_{pj}^j \mid y = c_k)$$

$$key = (y = c_k), value = \sum_{subgroup} 1(y = c_k)$$

$$key = "samples", value = \sum_{subgroup} 1$$

- Reduce
 - Sum all the values of each key
 - Compute the conditional and marginal probabilities

Support Vector Machine in MapReduce

- Map
 - Input: $\{(x,y)\}$
 - Output:

$$key = GGW$$
, $value = 2w + 2C \sum_{subgroup} (w.x_i - y_i)x_i$

- Reduce
 - Aggregate the values of gradient from all mappers
 - Update

$$w = w - \eta * \nabla G_w$$

 Driver program that sets up the iterations and checks for convergence

Map Reduce Model #3 Chain-Mapper Chain-Reduce

Chaining in Hadoop

- Map+ Reduce Map*
 - 1 or more Mappers
 - Can use IdentityMapper
 - 1 reducer
 - No reducers: conf.setNumReduceTasks(0)?
 - 0 or more Mappers
- Usual combiners and partitioners
- By default, data passed between Mappers by usual writing of intermediate data to disk
 - Can always use side-effects...
 - There is a better, built-in way to bypass this and pass (Key,Value) pairs by reference instead
 - Requires different Mapper semantics!

NoSQL

DB-Engines Ranking

				318 systems in	ranking, F	ebruar	y 2017
	Rank				s	core	
Feb 2017	Jan 2017	Feb 2016	DBMS	Database Model	Feb 2017	Jan 2017	Feb 2016
1.	1.	1.	Oracle 🚹	Relational DBMS	1403.83	-12.89	-72.31
2.	2.	2.	MySQL 🔠	Relational DBMS	1380.30	+14.02	+59.18
3.	3.	3.	Microsoft SQL Server 😷	Relational DBMS	1203.45	-17.50	+53.23
4.	↑ 5.	↑ 5.	PostgreSQL 🔠	Relational DBMS	353.68	+23.31	+65.02
5.	4 .	4 .	MongoDB 🚹	Document store	335.50	+3.60	+29.90
6.	6.	6.	DB2 😷	Relational DBMS	187.90	+5.41	-6.58
7.	7.	↑ 8.	Cassandra 🚦	Wide column store	134.38	-2.06	+2.62
8.	8.	4 7.	Microsoft Access	Relational DBMS	133.39	+5.94	+0.31
9.	1 0.	9.	SQLite	Relational DBMS	115.31	+2.93	+8.53
10.	4 9.	10.	Redis 🕕	Key-value store	114.03	-4.66	+11.96
11.	11.	1 2.	Elasticsearch 🛅	Search engine	108.31	+2.14	+30.47
12.	12.	↑ 13.	Teradata	Relational DBMS	75.60	+1.43	+2.22
13.	13.	4 11.	SAP Adaptive Server	Relational DBMS	71.74	+2.63	-8.30
14.	14.	14.	Solr	Search engine	67.69	-0.39	-4.59
15.	15.	1 6.	HBase	Wide column store	59.24	+0.10	+7.22
16.	16.	1 8.	Splunk	Search engine	56.03		+13.20
17.	17.	17.	FileMaker	Relational DBMS	55.19	+1.71	+8.16
18.	18.	1 9.	SAP HANA	Relational DBMS	52.45	+0.52	+14.37
19.	19.	4 15.	Hive 1	Relational DBMS	47.95	-3.19	-4.83
20.	20.	↑ 23.	MariaDB 🔠	Relational DBMS	45.35	+0.31	+16.57
21.	21.	21.	Neo4j 🚹	Graph DBMS	36.27	+0.00	+3.98
22.	22.	1 26.	Amazon DynamoDB 🖽	Document store	32.19	+1.16	+10.39
23.	23.	↑ 24.	Couchbase 🖽	Document store	31.18	+0.96	+5.79
24.	24.	4 22.	Memcached	Key-value store	30.53	+2.09	+1.60
25.	25.	4 20.	Informix	Relational DBMS	27.25	+0.82	-5.76

The History of SQL

CAP Theorem

Cassandra Write Data Flows

Single Region, Multiple Availability Zone

- Client Writes to any
 Cassandra Node
- Coordinator Node replicates to nodes and Zones
- Nodes return ack to coordinator
- 4. Coordinator returns ack to client
- Data written to internal commit log disk

If a node goes offline, hinted handoff completes the write when the node comes back up.

Requests can choose to wait for one node, a quorum, or all nodes to ack the write

SSTable disk writes and compactions occur asynchronously

NETFLIX

mongoDB Official Website : https://www.mongodb.org/ The latest stable Release : v3.0.4

```
field: value
  name: "sue",
                                             — field: value
  age: 26,
                                              — field: value
  status: "A",
  groups: [ "news", "sports" ] ← field: value
    Collection
                                  Query Criteria
                                                                Modifier
db.users.find( { age: { $gt: 18 } } ).sort( {age: 1 } )
  { age: 18, ...}
                                                               { age: 21, ...}
  { age: 28, ...}
                                { age: 28, ...}
  { age: 21, ...}
                                 { age: 21, ...}
                                                               { age: 28, ...}
  { age: 38, ...)
                                 age: 38, ...}
                                                               { age: 31, ...}
                 Query Criteria
                                                 Modifier
  { age: 18, ...]
                                 { age: 38, ...}
                                                               { age: 38, ...}
  { age: 38, ...}
                                 { age: 31, ...}
                                                               { age: 38, ...}
  { age: 31, ...}
                                                                  Results
     users
```

```
db.users.insert ( ← collection
   name: "sue", ← field: value
                              document
   age: 26,
                   - field: value
    status: "A"
               field: value
db.users.update(
                              collection
  { age: { $gt: 18 } },
                         update criteria
  { multi: true }
                              update option
                       collection
db.users.remove(
  { status: "D" }
                    remove criteria
```

MongoDB

MongoDB Map/Reduce

10gen

mongoDB

mySQL MongoDB

```
SELECT
                                                                mapreduce: "DenormAggCollection",
    Dim1. Dim2.
    SUM(Measure1) AS MSum,
                                                                 query: {
                                                                     filter1: { '$in': [ 'A', 'B' ] },
    COUNT(*) AS RecordCount,
    AVG(Measure2) AS MAvg,
                                                                     filter2: 'C',
    MIN(Measure1) AS MMin
                                                                     filter3: { '$gt': 123 }
    MAX(CASE
      WHEN Measure2 < 100
                                                                map: function() { emit(
      THEN Measure2
                                                                     { d1: this.Dim1, d2: this.Dim2 },
    END) AS MMax
                                                                     { msum: this.measure1, recs: 1, mmin: this.measure1,
FROM DenormAggTable
                                                                       mmax: this.measure2 < 100 ? this.measure2 : 0 }
WHERE (Filter1 IN ('A', 'B'))
                                                                  );},`----'
    AND (Filter2 = 'C')
                                                                 reduce: function(key, vals) {
    AND (Filter3 > 123)
                                                                     var ret = { msum: 0, recs: 0, mmin: 0, mmax: 0 };
GROUP BY Dim1, Dim2
                                                                     for(var i = 0; i < vals.length; i++) {</pre>
HAVING (MMin > 0)
                                                                       ret.msum += vals[i].msum;
ORDER BY RecordCount DESC
                                                                       ret.recs += vals[i].recs;
LIMIT 4, 8
                                                                       if(vals[i].mmin < ret.mmin) ret.mmin = vals[i].mmin;</pre>
                                                                       if((vals[i].mmax < 100) && (vals[i].mmax > ret.mmax))
                                                                         ret.mmax = vals[i].mmax:
                                                                     return ret:
(1) Grouped dimension columns are pulled
   out as keys in the map function,
   reducing the size of the working set.
                                                                 finalize: function(key, val) {
                                        6
                                                                     val.mavg = val.msum / val.recs;
(2) Measures must be manually aggregated.
                                                                     return val;

    Aggregates depending on record counts

                                                                  }.
   must wait until finalization.
                                                                 out: 'result1',
(4) Measures can use procedural logic.
                                                                 verbose: true
(5) Filters have an ORM/ActiveRecord-
   looking style.
                                                                 db.result1.----'
(6) Aggregate filtering must be applied to
                                                                   find({ mmin: { '$gt': ∅ } }).
   the result set, not in the map/reduce.
                                                                   sort({ recs: -1 }).
(7) Ascending 1; Descending:-1
                                                                   skip(4).
                                                                   limit(8);
```



```
1 // Iowa art museums with income ranges greater than $10,000
2 MATCH (inc rng) <-[:IN RANGE]-(lam:Museum {state: "IA"})-[:IS TYPE]->
  (disc:Discipline {code: "ART"})
3 WHERE toInt(inc_rng.code) > 1
4 RETURN lam, inc rng, disc
CYPHER MATCH (inc rng) <-[:IN RANGE] - (lam: Museum (state: "IA")) - [:IS TYPE] -> (disc:Discipline (code: "ART")) WHERE
      Discipline
      Museum
      Income_range
                                        IS_TYPE

    Displaying 15 nodes, 20 relationships

                                                                                                   у ==
```


Hbase Architecture

Bigtable Architecture

Major Release	GA Date	End of Public Updates Notification	End of Public Updates
		- C	- C-V
5.0	May 2004	Apr 2008	Oct 2009
6	Dec 2006	Feb 2011	Feb 2013
	Jul 2011	Mar 2014	Apr 2015
3	Mar 2014	TBD	Sep 2017*

http://www.oracle.com/technetwork/java/eol-135779.html

HBase Versions

Hadoop version support matrix

- "S" = supported
- "X" = not supported
- "NT" = Not tested

	HBase- 0.94.x	HBase-0.98.x (Support for Hadoop 1.1+ is deprecated.)	HBase-1.0.x (Hadoop 1.x is NOT supported)	HBase-1.1.x	HBase-1.2. x	HBase-1.3. x	HBase-2.0.x
Hadoop-1. 0. x	Х	X	X	X	X	х	Х
Hadoop-1. 1. x	S	NT	Х	X	Х	Х	X
Hadoop- 0. 23. x	S	X	Х	X	X	X	Х
Hadoop- 2. 0. x-alpha	NT	Х	Х	Х	Х	Х	X
Hadoop- 2. 1. 0-beta	NT	X	х	х	x	Х	X
Hadoop-2. 2. 0	NT	S	NT	NT	Х	Х	Х
Hadoop-2. 3. x	NT	S	NT	NT	Х	X	X
Hadoop-2. 4. x	NT	S	S	S	S	S	X
Hadoop-2. 5. x	NT	S	S	S	S	S	Х
Hadoop-2. 6. 0	х	х	Х	х	х	Х	Х
Hadoop- 2. 6. 1+	NT	NT	NT	NT	S	S	S
Hadoop-2.7.0	X	X	Х	Х	Х	X	X
Hadoop- 2. 7. 1+	NI	NI	MT	NT	S	S	S

HBase Versions

§ 4. Basic Prerequisites

This section lists required services and some required system configuration.

Table 2. Java

able 2. Java					
HBase Version	ЈДК 6	JDK 7	JDK 8		
2. 0	Not Supported	Not Supported	yes		
1.3	Not Supported	yes	yes		
1. 2	Not Supported	yes	yes		
1. 1	Not Supported	yes	Running with JDK 8 will work but is not well tested.		
1.0	Not Supported	yes	Running with JDK 8 will work but is not well tested.		
0. 98	yes	yes	Running with JDK 8 works but is not well tested. Building with JDK 8 would require removal of the deprecated remove() method of the PoolMap class and is under consideration. See		

In HBase 0.98.5 and newer, you must set JAVA_HOME on each node of your cluster. hbase-env.sh provides a handy mechanism to do this.

HBase Basic

Column Family

Column Family

Column Family

Column families

Column names

Rows

	Contactinfo		Prifileinfo
Rowkey	Fname	Lname	Image
jdupont	Jean	Dupont	
jsmith	John	Smith	<smith.jpg></smith.jpg>
mrossi	Mario	Rossi	<mario.jpg></mario.jpg>

File

	Contactinfo		
Rowkey	Fname	Lname	
jdupont	Jean	Dupont	
jsmith	John	Smith	
mrossi	Mario	Rossi	

	Prifileinfo
Rowkey	Image
jdupont	
jsmith	<smith.jpg></smith.jpg>
mrossi	<mario.jpg></mario.jpg>

Rowkey + column + timestamp -> value

Table

Rowkey + column + timestamp -> value

Rowkey	Column	Timestamp	Cell value
jdupont	Contactinfo:fname	1273746289103	Jean
jdupont	Contactinfo:Iname	1273878447049	Dupont
jsmith	Contactinfo:fname	1273516197868	John
jsmith	Contactinfo:Iname	1273871824184	Smith
mrossi	Contactinfo:fname	1273616297446	Mario
mrossi	Contactinfo:Iname	1273971921442	Rossi

RDBMS VS HBase

	RDBMS	HBase	
Data layout	Row- or column-oriented	Column family-oriented	
Transactions	Yes	Single row only	
Query language	SQL	get/put/scan	
Security	Authentication/ Authorization	Access control at per-cell level, also at cluster, table, or row level	
Indexes	Yes	Row key only	
Max data size	TBs	PB+	
Read/write throughput limits	1000s queries/second	Millions of queries/second	

HBase

General HBase shell commands

status

Show cluster status. Can be 'summary', 'simple', or 'detailed'. The default is 'summary'.

hbase> status

hbase> status 'simple'

hbase> status 'summary'

hbase> status 'detailed'

version

Output this HBase versionUsage:

hbase> version

whoami

Show the current hbase user. Usage:

hbase> whoami

RDBMS VS NoSQL

		Rela	Non-Relational	
Analytics	Proprietary Storage	Amazon Redshift EMC Greenplum HP Vertica	IBM Netezza Oracle Teradata MPP	
Ana	Hadoop Storage	Cloudera Impala Presto	Hive SQL-on-Hadoop	MapReduce
Operational	Proprietary Storage	Traditional SQL	NewSQL	NoSQL
		Oracle DB2 SQL Server MySQL	User-Sharded MySQL NuoDB Clustrix On-Disk MemSQL VoltDB In-Memory	Key Value: Aerospike, Riak Column Family: Cassandra Document: MongoDB Graph: Neo4j, InfiniteGraph
	Hadoop Storage		Splice Machine On-Hadoop	Column Family: HBase

Disparate Data Sources

Write Heavy VS Read Heavy

*YCSBワークロードの種類

以下4種類を測定

	Workload	Application Example	Operation Ratio	Record Selection
Write	Write-Only	Log	Read: 0% Write: 100%	Zipfian(%)
Heavy	Write-Heavy	Session Store	Read: 50% Write: 50%	
Read Heavy	Read-Heavy	Photo tagging	Read: 95% Write: 5%	
7	Read-Only	Cache	Read: 100% Write: 0%	

(※) Zipfian分布: アクセス頻度が,鮮度とは関係なく決まる 一部がヘッド / 大多数がテール


```
hbase(main):002:0> create
ERROR: wrong number of arguments (0 for 1)
Here is some help for this command:
Creates a table. Pass a table name, and a set of column family
specifications (at least one), and, optionally, table configuration.
Column specification can be a simple string (name), or a dictionary
(dictionaries are described below in main help output), necessarily
including NAME attribute.
Examples:
Create a table with namespace=ns1 and table qualifier=t1
  hbase> create 'ns1:t1'. {NAME => 'f1'. VERSIONS => 5}
 Freate a table with namespace=default and table qualifier=t1
  hbase> create 't1', \{NAME \Rightarrow 'f1'\}, \{NAME \Rightarrow 'f2'\}, \{NAME \Rightarrow 'f3'\}
   hbase> # The above in shorthand would be the following:
  hbase> create 't1', 'f1', 'f2', 'f3'
hbase> create 't1', {NAME => 'f1', VERSIONS => 1, TTL => 2592000, BLOCKCACHE => true}
hbase> create 't1', {NAME => 'f1', CONFIGURATION => {'hbase.hstore.blockingStoreFiles' => '10'}}
 able configuration options can be put at the end.
Examples:
  hbase> create 'ns1:t1', 'f1', SPLITS => ['10', '20', '30', '40'] hbase> create 't1', 'f1', SPLITS => ['10', '20', '30', '40'] hbase> create 't1', 'f1', SPLITS_FILE => 'splits.txt', OWNER => 'johndoe'
hbase> create 't1', {NAME => 'f1', VERSIONS => 5}, METADATA => { 'mykey' => 'myvalue' }
hbase> # Optionally pre-split the table into NUMREGIONS, using
hbase> # SPLITALGO ("HexStringSplit", "UniformSplit" or classname)
hbase> create 't1', 'f1', {NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
hbase> create 't1', 'f1', {NUMREGIONS => 15, SPLITALGO => 'HexStringSplit', CONFIGURATION => {'hbase.hregion.scan.loadColumnFamilie
sOnDemand' => 'true'}}
```

```
41
```

```
public class HBaseExample {
                                                                    //select 1 row
  public static void main(String[] args) throws Exception {
                                                                    SelectQuery select = dbo.createSelectQuery("user");
    AbstractHBaseDBO dbo = new HBaseDBOImpl():
                                                                    UserBean resultBean = (UserBean)select.select(bean.getRow().UserBean.class);
   //*drop if table is already exist.*
                                                                    // select column value.
   if(dbo.isTableExist("user")){
                                                                    String value = (String)select.selectColumn(bean.getRow(), "account", "id", String.class);
     dbo.deleteTable("user");
                                                                    // search with option (QSearch has EQUAL, NOT EQUAL, LIKE)
                                                                    // select id,password,name,email from account where id='ncanis' limit startRow,20
   //*create table*
                                                                    HBaseParam param = new HBaseParam();
   dbo.createTableIfNotExist("user", HBaseOrder.DESC, "account");
                                                                    param.setPage(bean.getRow(),20);
    //dbo.createTableIfNotExist("user".HBaseOrder.ASC."account");
                                                                    param.addColumn("id","password","name","email");
                                                                    param.addSearchOption("id", "ncanis", QSearch.EQUAL);
    //create index.
                                                                    select.search("account", param, UserBean.class);
   String[] cols={"id", "name"};
    dbo.addIndexExistingTable("user", "account", cols);
                                                                    // search column value is existing.
                                                                    boolean isExist = select.existColumnValue("account","id","ncanis".getBytes());
    //insert
    InsertQuery insert = dbo.createInsertQuery("user");
                                                                    // update password.
    UserBean bean = new UserBean();
                                                                    UpdateQuery update = dbo.createUpdateQuery("user");
    bean.setFamily("account");
                                                                    Hashtable<String, byte[]> colsTable = new Hashtable<String, byte[]>();
   bean.setAge(20);
                                                                    colsTable.put("password","2222".getBytes());
    bean.setEmail("ncanis@gmail.com");
                                                                    update.update(bean.getRow(), "account", colsTable);
   bean.setId("ncanis");
   bean.setName("ncanis");
                                                                    //delete
    bean.setPassword("1111");
                                                                    DeleteQuery delete = dbo.createDeleteQuery("user");
    insert.insert(bean);
                                                                    delete.deleteRow(resultBean.getRow());
```

https://hbase.apache.org/book.html#jdo https://hbase.apache.org/apidocs/index.html

Thrift / RESTful

Apache Hive + HBase Architecture

HBase Environment

Server Metrics

Base Stats	Memory	Requests	hlogs	Storefiles	Queues	Block Cache		
Requests Per Second				Num. Regio	ns	Block locality	Slow HLog Append Count	
5404				4		100	0	

Tasks

Show All Monitored Tasks Show non-RPC Tasks

Show All RPC Handler Tasks Show Active RPC Calls Show Client Operations View as JSON

No tasks currently running on this node.

Block Cache

Base Info Config	Stats	L1	L2	
Attribute		Va	lue	Description
Cache DATA on Read	i	tru	е	True if DATA blocks are cached on read (INDEX & BLOOM blocks are always cached)
Cache DATA on Write)	fals	se	True if DATA blocks are cached on write.
Cache INDEX on Writ	te	fals	se	True if INDEX blocks are cached on write
Cache BLOOM on W	rite	fals	se	True if BLOOM blocks are cached on write
Evict blocks on Close false		se	True if blocks are evicted from cache when an HFile reader is closed	
Compress blocks false		se	True if blocks are compressed in cache	
Prefetch on Open		fals	se	True if blocks are prefetched into cache on open

Regions

Use Case

Use Cases: Sieve @ Yahoo

Quick Start

Quick Start


```
hbase(main):001:0> help
HBase Shell, version 0.91.0-SNAPSHOT, r1130916, Sat Jul 23 12:44:34 CEST 2011
Type 'help "COMMAND"', (e.g. 'help "get"' -- the quotes are necessary) for
help on a specific command. Commands are grouped. Type 'help "COMMAND_GROUP"',
(e.g. 'help "general"') for help on a command group.
```

COMMAND GROUPS:

Group name: general

Commands: status, version

Group name: ddl

Commands: alter, create, describe, disable, drop, enable, exists,

is_disabled, is_enabled, list

Quick Start

hbase(main):0xx:0>status

hbase(main):0xx:0>version

hbase(main):0xx:0>create 'member', 'member_id', 'address', 'info'

hbase(main):0xx:0>list

hbase(main):0xx:0>describe 'member'

https://hbase.apache.org/book.html

Reference Books

