Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Storypoints)

Date	22 October 2022
Team ID	PNT2022TMID39608
Project Name	Efficient Water Quality Analysis and Prediction
	using Machine Learning
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team
	Requirement	Number				Members
	(Epic)					
Sprint-1	Data Collection	USN-1	Collect the appropriate dataset for predicting	10	High	Sudharsan S,
			the water quality.			Siddharth N.
Sprint-1		USN-2	Data Preprocessing – Used to transform the	7	Medium	Suhail F,
			data into useful format.			Vignesh M.
Sprint-1		USN-3	Calculate the Parameters from the basic	10	High	Sudharsan S,
			parameters to determine the Water Quality			Suhail F.
			Index (WQI).			
Sprint-2	Model Building	USN-4	Calculate the Water Quality Index (WQI)	10	High	Sudharsan S,
			using Regression algorithm of Machine			Suhail F.
			Learning.			

Sprint 2		USN-5	Performing Various Visualisation on the	7	Medium	Sudharsan S,
			Parameters that determines the Water			Siddharth N.
			Quality Index (WQI).			
Sprint-2		USN-6	Splitting the Model into Training and Testing	7	Medium	Siddharth N,
			from the overall dataset.			Vignesh M.
Sprint-3	Training and	USN-7	Train the Model using Regression algorithm	10	High	Sudharsan S,
	Testing		and Testing the Performance of the model.			Vignesh M.
Sprint-4	Implementation of	USN-8	Predict the Water Quality Index (WQI) and	10	High	Siddharth N,
	the Application		recommend the appropriate purification			Suhail F.
			technique.			
Sprint-4		USN-9	Build the HTML code for creating a web	10	High	Sudharsan S,
			application for the users to give their inputs			Siddharth N.
			and to calculate the WQI value.			
Sprint-4		USN-10	Build the Python code for integrating the	10	High	Suhail F,
			HTML files created and to run the			Vignesh M.
			application python code using Flask server.			
Sprint-4		USN-11	Deploy the Model on IBM Cloud.	7	Medium	Sudharsan S,
						Siddharth N.

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story	Duration	Sprint Start Date	Sprint Date	Story Points	Sprint Date
	Points			End	Completed (as on	Release
				(Planned)	Planned End	(Actual)
					Date)	
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	8	29 Oct 2022
Sprint-2	10	6 Days	31 Oct 2022	05 Nov 2022	7	05 Nov 2022
Sprint-3	10	6 Days	07 Nov 2022	12 Nov 2022	8	12 Nov 2022
Sprint-4	10	6 Days	14 Nov 2022	19 Nov 2022	7	19 Nov 2022

Velocity:

Imagine we have a 6 -day sprint duration, and the velocity of the team is 10 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day).

$$AV = \frac{\text{sprint duration}}{\text{velocity}} = 6/10=0.6$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

