$\sigma_1^{\#1}{}_+ \alpha eta$	$\sigma_{1}^{\#2}{}_{\alpha\beta}\ \tau_{1}^{\#1}{}_{\alpha\beta}$	$\tau_1^{\#1}_{+}_{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}$	${\mathfrak l}_{1^{}}^{\#1}\alpha$	$\tau_{1}^{\#2}{}_{\alpha}$
0		0	0	0	0	0
0		0	0	0	0	0
0		0	0	0	0	0
0		0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
0		0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
0		0	0	0	0	0
0		0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}Ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^-\alpha}^{\#1}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_1^{\#2}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{#2} +^{\alpha}$

Lagrangian density $\frac{2}{3}t_3 \omega_{,\alpha'}^{\alpha\prime} \omega_{\kappa\alpha}^{\ \ \ \ \ } + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{\ \ -\frac{1}{2}} r_3 \partial_{\nu} \omega^{\kappa\lambda}^{\ \ \ \ } \partial_{\nu} \omega^{\alpha}^{\ \ \ \ } - r_5 \partial_{\alpha} \omega_{,\alpha}^{\ \ \ \ \ \ } \partial_{\kappa} \omega^{\beta\kappa\lambda}^{\ \ \ \ \ } - r_5 \partial_{\alpha} \omega_{,\alpha}^{\ \ \ \ \ \ \ \ } \partial_{\kappa} \omega^{\beta\kappa\lambda}^{\ \ \ \ \ \ \ } - r_5 \partial_{\alpha} \omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ } \partial_{\kappa} \omega^{\kappa\lambda\beta}^{\ \ \ \ \ \ \ \ \ \ } - r_5 \partial_{\alpha} \omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \partial_{\kappa} \omega^{\kappa\lambda\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ } - r_5 \partial_{\alpha} \omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{2}{3}t_3 \omega_{k\alpha}^{\alpha} \partial^k f'_{,-} \frac{2}{3}t_3 \omega_{k\lambda}^{\lambda} \partial^k f'_{,-} \frac{4}{3}t_3 \partial^{\alpha} f_{k\alpha} \partial^k f'_{,+} + \frac{2}{3}t_3 \partial_k f^{\lambda} \partial^k f'_{,+} +$ $\frac{2}{3}t_3 \omega_{,\alpha}^{\alpha} \partial^k f'_{,k} + \frac{2}{3}t_3 \omega_{,\lambda}^{\lambda} \partial^k f'_{,k} + \frac{2}{3}t_3 \partial^{\alpha} f^{\lambda}_{\lambda} \partial^k f_{\lambda k} - 4t_3 \partial^k \omega_{\lambda \alpha}^{\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\lambda} -$ $\frac{1}{2}t_3 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} + t_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} + \frac{1}{2}t_3 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} - t_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} + \frac{1}{2}t_3 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} - t_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} - t_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} + \frac{1}{2}t_3 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta k}_{,k} - t_5 \partial_{\theta} \omega^{\lambda}_{\lambda} \partial^{\lambda} \omega^{\theta k}_{,k$
---	---

Source constraints SO(3) irreps $\sigma_{0}^{\#1} == 0$

_	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	_	ω	#1 0 ⁺		$f_{0^{+}}^{#1}$		$f_{0}^{\#}$	2 +	ω_0^{\sharp}	±1		j	## 2
$o_0^{\#1}$: †	t	3	- <u>Ī</u> ^	$\sqrt{2} k$	t_3	0)	0			ω_{z}^{i}	#1 2 ⁻
$f_{0}^{\#_{1}^{2}}$	<u> </u>	ī√2	$\frac{1}{2}kt_3$	2	$k^2 t_3$		0)	0				
$f_{0}^{\#2}$	² †		0		0		0		0				
$\nu_0^{\#_2}$	^L †		0		0		0		0				
	#	П	1	1	Μ	C	r	۲	1	\sim)	2	

 $\tau_{1}^{\#2}\alpha + 2ik \sigma_{1}^{\#2}\alpha = 0$ $\tau_{1}^{\#1}\alpha = 0$ $\tau_{1}^{\#1}\alpha\beta = 0$

 $\sigma_{1}^{\#2}\alpha\beta == 0$ $\sigma_{2}^{\#1}\alpha\beta\chi == 0$ $\tau_{2}^{\#1}\alpha\beta == 0$ Total #:

 $_{0^{+}}^{\#1} - 2ik\sigma_{0^{+}}^{\#1} == 0$

 $r_0^{#2} == 0$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	0
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
,	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ +	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

?		
?	Quadratic pole	
$\xrightarrow{k^{\mu}}$	Pole residue:	$-\frac{1}{2} > 0$
		$r_3(2r_3+r_5)(r_3+2r_5)p^2$
?	Polarisations:	2
?		

Unitarity	conditions
-----------	------------

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)