

DEM-DAI3793A/3794A EVM

User's Guide

2

Contents

Prefa	ce	9
1	Description 1.1 Introduction—PCM3793A/94A 1.1.1 Key Features 1.2 Pin Assignments and Terminal Functions.	12 12
	1.3 DEM-DAI3793A/3794A EVM Description	
2	Getting Started 2.1 Electrostatic Discharge Warning 2.2 Unpacking the EVM 2.3 Default Configuration	18 18
3	Set-Up Guide 3.1 Basic Operating Set-Up 3.2 Software Control and Operation 3.2.1 User Interface Panel 3.2.2 Power On/Off Sequence 3.2.3 Module Function Controls 3.2.4 LC89052T (DIR: Digital Audio I/F Receiver) Control Window 3.2.5 Register Setting History 3.2.6 Register Direct Access	22 22 23 23 23 39 40
4	Switches and Connectors 4.1 Overview 4.2 Motherboard 4.3 Daughter Card #1 (PCM3793A) 4.4 Daughter Card #2 (DIR: LC89052T and DIT: DIT4096)	44 44 46
5	Evaluation and Measurements 5.1 Slave Mode With Audio Precision SYS-2722 (Default Setting) 5.2 Master Mode with Audio Precision SYS-2722. 5.3 Combined Master and Slave Modes With PSIA-2722. 5.4 Measurements for Dynamic Characteristics 5.4.1 Digital-to-Analog (D/A) Performance 5.4.2 Analog-to-Digital (A/D) Performance 5.4.3 Speaker Output Power Performance 5.4.4 Amplitude Versus Frequency Performance 5.5.5 Connection Diagram for Practical Applications 5.5.1 Filter Consideration for Speaker Output.	50 52 54 55 56 57 57 59 61
6	Schematic, PCB Layout, and Bill of Materials 6.1 Schematics 6.2 Printed Circuit Board Layout 6.3 Component List	64 66
A	Reference .csv Files, Interfacing to DSPs, and Package Information A.1 Reference .csv Files	74

A.2	Interfacing to DSPs	98
	A.2.1 Register Control with DSP Interface	99
A.3	Package Information	99
Important N	lotices 1	00

List of Figures

1-1	PCM3793A Pin Assignments	
1-2	PCM3794A Pin Assignments	14
1-3	DEM-DAI3793A/3794A EVM System Diagram	15
2-1	EVM Configuration	19
2-2	EVM and External Equipment Connections	20
3-1	User Interface Window	22
3-2	Communication Error Message	23
3-3	Power On/Off Sequence Function Buttons	23
3-4	Internal Module Power Up/Down Function Menu Tab	24
3-5	Ramp Up Wave Form with Default Setting	26
3-6	Ramp Down Wave Form with Default Setting	26
3-7	Record Function Menu Tab	26
3-8	EVM Modules Corresponding to Record Function	27
3-9	Playback Function Menu Tab	28
3-10	Modules Corresponding to Playback Function	29
3-11	ALC Function Menu Tab	
3-12	ALC Compression and Expansion Characteristics	30
3-13	Signal Processing 1 Function Menu Tab	
3-14	Three-Band Tone Control (Bass, Mid, Treble)	
3-15	Notch Filter Characteristic Model	
3-16	Example of Measured Notch Filter Characteristic	33
3-17	Signal Processing 2 Function Menu Tab	
3-18	Analog Path Function Menu Tab	
3-19	Modules Corresponding to Analog Path Function	
3-20	Audio Interface Function Menu Tab	
3-21	Status Detect Function Menu Tab	38
3-22	Digital Amplifier Function Menu Tab	39
3-23	LC89052 Interface Format Selection Options	
3-24	Register Setting History Window	
3-25	Opening and Modifying a .csv File	41
3-26	Register Direct Access Dialog	
4-1	EVM Configuration	44
4-2	Analog Input Configuration (Daughter Card #1)	46
4-3	Analog Output Configuration (Daughter Card #1)	47
5-1	Slave Mode Configuration With SYS-2722	50
5-2	Jumper Configuration for Slave Mode (Default)	51
5-3	Master Mode Configuration With SYS-2722	52
5-4	Jumper Configuration for Master Mode	
5-5	Combined Master and Slave Mode Configuration with SYS-2722	54
5-6	Jumper Configuration for Combined Master and Slave Modes	
5-7	Speaker Output Filter Configuration	58
5-8	A/D Amplitude vs Frequency Result: BPZ (Zero Data) Input	59
5-9	A/D Amplitude vs Frequency Result: -60dB Input	59
5-10	A/D Amplitude vs Frequency Result: –1dB Input	59
5-11	D/A Amplitude vs Frequency Result: BPZ (Zero Data) Input	60
5-12	D/A Amplitude vs Frequency Result: -60dB Input	60
5-13	D/A Amplitude vs Frequency Result: 0dB Input	6 0
5-14	D/A Amplitude vs Frequency Result: Wide Range to 130kHz, BPZ (Zero Data) Input	6 0
5-15	Basic Connection Diagram	61
5-16	Recommended Ferrite Bead Filter for Speaker Output	62
5-17	Connection for Headphone Output and Insertion Detection	62
6-1	PCM3793A DEM-PCM3793RHB-A Connector (Daughter Card #1)	64

6-2	PCM3793A DEM-PCM3793RHB-A (Daughter Card #1)	65
6-3	PCM3793A DEM-PCM3793RHB-A Board Layout—Silkscreen Side	66
6-4	PCM3793A DEM-PCM3793RHB-A Board Layout—Component Side	67
6-5	PCM3793A DEM-PCM3793RHB-A Board Layout—Inner Layer 2	68
6-6	PCM3793A DEM-PCM3793RHB-A Board Layout—Inner Layer 3	69
6-7	PCM3793A DEM-PCM3793RHB-A Board Layout—Solder Side	7 0
A-1	Line Output and Headphone Output	75
A-2	Headphone Output with Sound Effect	76
A-3	Cap-Less Headphone Output	77
A-4	Headphone Output with Line Input (AIN2L/AIN2R)	78
A-5	Headphone Output with Mono Mic Input (AIN1L, +20dB)	7 9
A-6	Headphone Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	80
A-7	Stereo Speaker Output	81
A-8	Mono Speaker Output	82
A-9	Speaker Output with Line Input (AIN2L/AIN2R)	83
A-10	Speaker Output with Mono Mic Input (AIN1L, +20dB)	
A-11	Speaker Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	85
A-12	Line Input (AIN2L/AIN2R) to Headphone Output	86
A-13	Mono Line Input (AIN2L) to Headphone Output	87
A-14	Mono Mic Input (AIN1L, +20dB) to Headphone Output	88
A-15	Mono Diff Mic Input (AIN1L/AIN1R, +20dB) to Headphone Output	89
A-16	Mono Mic Input (AIN1L, +20dB) to Speaker Output	90
A-17	Line Input (AIN3L/AIN3R)	91
A-18	Mic Input (AIN1L/AIN1R, +20dB)	92
A-19	Mic Input (AIN1L/AIN1R, +20dB) with ALC	93
A-20	Mono Mic Input (AIN1L, +20dB)	94
A-21	Mono Mic Input (AIN1L, +20dB) with ALC	
A-22	Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	96
A-23	Mono Diff Mic Input (AIN1L/AIN1R, +20dB) with ALC	97
A-24	Slave Mode Operation	98
A-25	Master Mode Operation	98

List of Tables

1-1	PCM3793A/94A Terminal Functions	14
3-1	Register Mapping for Power Up/Down Module	24
3-2	PCM3793A/94A Resistor 125(7dh) RES[4:0]: Resistor Value Control	25
3-3	PCM3793A/94A Resistor 125(7dh) PMT[1:0]: Power Up/Down Time Control and Register Direct Access	25
4-1	Main Power Supply and Regulator	44
4-2	Power-Supply Terminals for PCM3793A Power-Supply Pins	44
4-3	Audio I/O	45
4-4	I/F Controller (<u>MSP430</u> , <u>TUSB3410</u>)	45
4-5	Analog Input and Output—Daughter Card #1	46
4-6	Analog Input and Output—Daughter Card #2	48
4-7	Audio Clock and Input Data Control Format—Daughter Card #2	48
5-1	D/A Line Output Parameters	56
5-2	16Ω Headphone Output Inserted in Headphone Jack J6	56
5-3	A/D Line Input Parameters	57
5-4	Stereo Speaker Output Parameters	57
5-5	Recommended External Parts for Basic Connection Diagram	61
6-1	Bill of Materials	71
A-1	.csv Files	74
A-2	Recommended Power-On Sequence for PCM3793A	99

SYS-2722, PSIA-2722 are registered trademarks of Audio Precision, Inc. SPI is a trademark of Motorola, Inc. I²S, I²C are trademarks of NXP Semiconductors. TOSLINK is a trademark of Toshiba Corporation. All other trademarks are the property of their respective owners.

Submit Documentation Feedback

Read This First

About This Manual

This document provides the information needed to set up and operate the DEM-DAI3793A/3794A EVM evaluation module, a test platform for the 16-bit, low-power PCM3793A/PCM3794A stereo audio codecs. For a more detailed description of the PCM3793A/94A products, please refer to the product data sheets available from the Texas Instruments web site at http://www.ti.com. Support documents are listed in the sections of this guide entitled Related Documentation from Texas Instruments and Additional Documentation.

How to Use This Manual

Throughout this document, the abbreviation *EVM* and the term *evaluation module* are synonymous with the DEM-DAI3793A/3794A EVM. The abbreviation *PCM3793A/94A* refers to the PCM3793A/94A family of devices. Unless specifically noted, the information presented in this manual applies to both the PCM3793A and the PCM3794A.

Chapter 1 gives an overview of the PCM3793A/94A family of stereo audio coder/decoder devices (codecs). The PCM3793A/94A block diagram and primary features are also discussed.

Chapter 2 provides general information regarding EVM handling and unpacking, absolute operating conditions, and the default switch and jumper configuration. This chapter also discusses the EVM controller software

Chapter 3 is the hardware setup guide for the EVM, providing all of the necessary information needed to configure the EVM switches and jumpers for product evaluation.

Chapter 4 reviews the DEM-DAI3793A/3794A EVM switch and jumper configuration.

Chapter 5 discusses how to set up jumpers on the DEM-DAI3793A/3794A EVM motherboard for performance evaluation using an audio analyzer. It also presents the process for measuring dynamic characteristics and provides example characteristic data.

Chapter 6 includes the EVM electrical schematics, printed circuit board (PCB) layout, and the bill of materials.

Information About Cautions and Warnings

This document contains caution statements.

CAUTION

This is an example of a caution statement. A caution statement describes a situation that could potentially damage your software or equipment.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

Related Documentation From Texas Instruments

The following documents provide information regarding Texas Instruments integrated circuits used in the assembly of the DEM-DAI3793A/3794A EVM. These documents are available from the TI web site. The last character of the literature number corresponds to the document revision that is current at the time of the writing of this User's Guide. Newer revisions may be available from the TI web site at http://www.ti.com/ or call the Texas Instruments Literature Response Center at (800) 477–8924 or the Product Information Center at (972) 644–5580. When ordering, identify the document(s) by both title and literature number.

Data Sheet	Literature Number
PCM3793A/PCM3794A Product data sheet	SLAS529A
DIT4096 Product data sheet	SBOS225B

Additional Documentation

The following document provides information regarding selected non-TI components that are used in the assembly of the DEM-DAI3793A/3794A EVM. This document is available from the corresponding manufacturer.

Device/Document	Manufacturer
LC89052	Sanyo Corporation

If You Need Assistance

If you have questions regarding either the use of this evaluation module or the information contained in the accompanying documentation, please contact the Texas Instruments Product Information Center at (972) 644–5580 or visit the TI web site at www.ti.com.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense is required to take whatever measures may be required to correct this interference.

Trademarks

All trademarks are the property of their respective owners.

Description

The DEM-DAI3793A/3794A EVM is a complete evaluation platform for the PCM3794A 16-bit, low-power stereo audio codec with microphone bias, headphone, and digital speaker. All necessary connectors and circuitry are provided for interfacing to audio test systems and commercial audio equipment.

Topi	С		Page
1.	.1	Introduction—PCM3793A/94A	12
1.	.2	Pin Assignments and Terminal Functions	14
1.	.3	DEM-DAI3793A/3794A EVM Description	15

1.1 Introduction—PCM3793A/94A

The PCM3793A/94A is a low-power stereo codec designed for portable digital audio applications. The device integrates a stereo digital speaker amplifier, headphone amplifier, line amplifier, line input, boost amplifier, microphone bias, programmable gain control, analog mixing, sound effects, and automatic level control (ALC) features. (The PCM3794A has no speaker amplifiers.)

It is available in a 5×5 QFN package to reduce the overall device footprint. The PCM3793A/94A accepts Right-Justified, Left-Justified, I^2S^{TM} , and digital signal processing (DSP) formats, providing an easy interface to audio DSPs, as well as decoders and encoder chips. Sampling rates up to 50kHz are supported. The user-programmable functions are accessible through a two- or three-wire serial control port.

1.1.1 Key Features

Major features of the PCM3793A/94A include:

- Analog Front End:
 - Stereo single-ended input with multiplexer (mux)
 - Mono differential input
 - Stereo programmable gain amplifier (PGA)
 - Microphone amplifier (20dB) and bias
- Analog Back End:
 - Stereo/Mono line output with volume
 - Stereo/Mono headphone amplifier with volume and capless mode
 - Stereo/Mono digital speaker amplifier (BTL) with volume
- Analog Performance:
 - Dynamic range: 93dB (digital-to-audio converter [DAC])
 - Dynamic range: 90dB (analog-to-digital converter [ADC])
 - 40mW + 40mW headphone output at R_L = 16 Ω
 - 700mW + 700mW speaker output at $R_1 = 8\Omega$
- Power Supply Voltage
 - 1.71V to 3.6V for digital I/O section
 - 1.71V to 3.6V for digital core section
 - 2.4V to 3.6V for analog section
 - 2.4V to 3.6V for power amplifier section
- · Low Power Dissipation:
 - 7mW in playback, 1.8V/2.4V, 48kHz
 - 13mW in record, 1.8V/2.4V, 48kHz
 - 3.3µW in power-down
- Sampling Frequency: 5kHz to 50kHz
- Automatic Level Control for Recording
- Operation From a Single Clock Input without PLL
- System Clock:
 - Common-audio clock (256f_S/384f_S), 12MHz/24MHz, 13MHz/26MHz, 13.5MHz/27MHz, 19.2MHz/38.4MHz, 19.68MHz/39.36MHz
- Headphone Plug Insert Detection
- I²C[™] or SPI[™] Serial Control

- Programmable Function by Register Control:
 - Digital attenuation of DAC: 0dB to -62dB
 - Digital gain of DAC: 0dB, 6dB, 12dB, 18dB
 - Power up/down control for each module
 - 6dB to -70dB gain for analog outputs
 - 30dB to -12dB gain for analog inputs
 - 0dB/20dB selectable for microphone input
 - OdB to –21dB gain for analog mixing
 - Parameter settings for ALC
 - Three-band tone control and 3D sound
 - High-pass filter: 4Hz, 120Hz, 240Hz
 - Two-stage programmable notch filter
 - Analog mixing control
- Pop-Noise Reduction Circuit
- Short and Thermal Protection Circuit
- Package: 5mm × 5mm QFN Package
- Operating Temperature Range: –40°C to +85°C

1.2 Pin Assignments and Terminal Functions

Figure 1-1 and Figure 1-2 show the pin assignments for the PCM3793A/94A. Table 1-1 lists the terminal functions.

Figure 1-1. PCM3793A Pin Assignments

Figure 1-2. PCM3794A Pin Assignments

Table 1-1. PCM3793A/94A Terminal Functions

TERMINAL				
NAME	PCM3793ARHB	PCM3794ARHB	I/O	DESCRIPTION
AGND	19	19	_	Ground for analog
AIN1L	27	27	I	Analog input 1 for L-channel
AIN1R	26	26	I	Analog input 1 for R-channel
AIN2L	25	25	I	Analog input 2 for L-channel
AIN2R	24	24	I	Analog input 2 for R-channel
AIN3L	23	23	I	Analog input 3 for L-channel
AIN3R	22	22	I	Analog input 3 for R-channel
BCK	1	1	I/O	Serial bit clock
DGND	6	6	_	Digital ground
DIN	2	2	I	Serial audio data input
DOUT	3	3	0	Serial audio data output
HDTI	8	8	I	Headphone plug insertion detection
HPCOM/MONO	9	9	0	Headphone common/mono line output
HPOL/LOL	17	17	0	Headphone/lineout for R-channel
HPOR/LOR	16	16	0	Headphone/lineout for L-channel
LRCK	32	32	I/O	Left and right channel clock
MC/SCL	31	31	I	Mode control clock for three-wire/two-wire interface
MD/SDA	30	30	I/O	Mode control data for three-wire/two-wire interface
MICB	21	21	0	Microphone bias source output
MODE	28	28	I	Two- or three-wire interface selection (low: SPI; high: I ² C)
MS/ADR	29	29	I	Mode control select for three-wire/two-wire interface
PGND	13	13	_	Ground for speaker power amplifier

	TERMINAL			
NAME	PCM3793ARHB	PCM3794ARHB	1/0	DESCRIPTION
SCKI	7	7	I	System clock
SPOLN	14	_	0	Speaker output L-channel for negative (PCM3793A only)
SPOLP	15	_	0	Speaker output L-channel for positive (PCM3793A only)
SPORN	10	_	0	Speaker output R-channel for negative (PCM3793A only)
SPORP	11	_	0	Speaker output R-channel for positive (PCM3793A only)
V _{CC}	20	20	_	Analog power supply
V _{COM}	18	18	_	Analog common voltage
V _{DD}	5	5	_	Power supply for digital core
V _{IO}	4	4	_	Power supply for digital I/O
V _{PA}	12	12	_	Power supply for power amplifier

Table 1-1. PCM3793A/94A Terminal Functions (continued)

1.3 DEM-DAI3793A/3794A EVM Description

The DEM-DAI3793A/3794A evaluation module permits user control of the entire PCM3793A/94A system. The EVM allows users to test playback with and without digital input; recording through digital input/output with an optical cable or RCA jacks; a line input/output; stereo speaker output (PCM3793A only); stereo/mono headphone output; and stereo/mono microphone input, as shown in Figure 1-3.

Figure 1-3. DEM-DAI3793A/3794A EVM System Diagram

Getting Started

This chapter provides information regarding DEM-DAI3793A/3794A EVM handling and unpacking, absolute operating conditions, and a description of the factory default switch and jumper configuration.

Topi	С		Page
2.	1	Electrostatic Discharge Warning	18
2.	2	Unpacking the EVM	18
2.	3	Default Configuration	19

2.1 Electrostatic Discharge Warning

Many of the components on the DEM-DAI3793A/3794A EVM are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap at an approved ESD workstation.

CAUTION

Failure to observe ESD handling procedures may result in damage to EVM components.

2.2 Unpacking the EVM

Upon opening the DEM-DAI3793A/3794A EVM package, please check to make sure that the following items are included:

- One DEM-DAI/LPC-USB (Motherboard)
- One DEM-PCM3793RHB-A (Daughter Card #1)
- One DEM-TRCV/LPC (Daughter Card #2)

If any of these items are missing, please contact the Texas Instruments Product Information Center nearest you to inquire about a replacement.

2.3 Default Configuration

Figure 2-1 and Figure 2-2 illustrate the default EVM configuration and the default external equipment connection configuration, respectively.

Figure 2-1. EVM Configuration

Figure 2-2. EVM and External Equipment Connections

The factory default configuration for the DEM-DAI3793A/3794A EVM is listed below.

Motherboard:

- CN101, CN102: Connect dc power supply positive lead (+) to CN101 and negative lead (-) to CN102
- SW301: Set Opt or Coax output for the proper cable connection

Daughter Card #1 (DEM-PCM3793RHB-A):

- JP14, JP15, JP16, JP17, and JP19: these jumper pins should not be used
- For other jumper settings, please refer to the chapter, Switches and Connectors.

Daughter Card #2 (DEM-TRVC/LPC):

- SW001: Set Opt or Coax for S/PDIF input to DIR:LC89052T
- SW002: Set to silkscreen SW002 RESET side (releasing reset)
- SW003: Set X'tal to use onboard crystal oscillator

There is no need to change the setting of the shorting plugs for basic operation. Jumper settings strongly depend on the audio interface.

Set-Up Guide

This chapter discusses how to set up the DEM-DAI3793A/3794A EVM and describes the EVM software.

Topic		Page
3.1	Basic Operating Set-Up	22
3.2	Software Control and Operation	22

3.1 Basic Operating Set-Up

Follow these steps to set up the DEM-DAI3793A/3794A EVM for operation.

- Step 1. When using the kit for the first time, install the <u>TUSB3410 VCP</u> (Virtual COM Port) driver to the host PC. To install the driver, refer to the *Virtual COM Port Driver Installation Instructions.pdf* located in the DEM-DAI3793 folder of the software CD or available <u>through</u> the TI web site.
- Step 2. Connect the audio signal sources and/or receiver, using one of these connections:
- S/PDIF cable (optical or coaxial)
- Analog input/output (RCA)
- Step 3. Connect microphone, speakers, headphone, an audio amplifier, or measurement equipment, if necessary.
- Step 4. Confirm that jumpers CN103-CN107 are shorted.
- Step 5. Connect the USB cable between the host PC and the motherboard (CN201).
- Step 6. Apply +6V to +10V to the motherboard (CN101, CN102 for power supply).
- Step 7. Execute EVM3793A.exe.

When the installation is complete, the EVM software is ready to use.

3.2 Software Control and Operation

This section of the user's guide reviews the operation and configuration of the EVM controller software.

3.2.1 User Interface Panel

After finishing the installation process (as explained in Section 3.1), the user interface panel shown in Figure 3-1 appears.

CHECK THE STATUS INDICATOR

Figure 3-1. User Interface Window

Check to see that a *Ready* notation appears in the lower left-hand corner after successful I²C communication is established. Otherwise, you will see an error box showing a communication error (as shown in Figure 3-2).

Figure 3-2. Communication Error Message

If you received this message, confirm the set-up procedures and restart the software. Shut it down and then execute *EVM3793A.exe*.

There are four primary sections of the user interface panel (see Figure 3-1):

- Module controller, for functions such as playback, signal processing, audio format, and so forth;
- Power on/off sequence controller
- Register setting history controller
- · Register direct access controller

3.2.2 Power On/Off Sequence

By default, each module is set without any of the checkboxes toggled in the Power Up/Down menu. All modules are set to a power-down condition.

Click All Power On (the red box, as shown in Figure 3-3) to easily start EVM operation, instead of powering up the module manually.

Figure 3-3. Power On/Off Sequence Function Buttons

Note

If pressing the Power On/Off sequence button has no effect, check to see that the two files *power_on.csv* and *power_off.csv* are located in the same folder on the PC as the EVM software (EVM3793A.exe).

3.2.3 Module Function Controls

The DEM-DAI3793A/3794A EVM controller software contains 10 tabs:

- Power Up/Down: to power up and power down each module
- Record: executes gain control for ADC input
- Playback: executes headphone/speaker gain control and digital ATT
- ALC: tunes the Automatic Level Control function
- Signal Processing 1: adjusts the tone control and notch filter coefficient
- Signal Processing 2: controls DAC oversampling, de-emphasis, and high-pass filtering
- Analog Path: selects analog input, differential input, and analog mixer
- Audio Interface: selects the audio interface for ADC and DAC
- Status Detect: controls headphone short detection and speaker thermal protection
- Digital Amp: tune switching frequency for digital amplifier

This section discusses each of these tab operations and controls.

3.2.3.1 Power Up/Down

This menu (shown in Figure 3-4) allows users to manually power up or power down each module. Click the appropriate checkboxes to power up or power down a specific module. Table 3-1 shows the register mapping for each module setting.

Abbreviations such as *DAL/DAR*, *MXL/MXR*, and *ADL/ADR* stand for corresponding modules that are described in the block diagram of the PCM3793A (see Figure 3-8).

Figure 3-4. Internal Module Power Up/Down Function Menu Tab

Table 3-1. Regis	ter mapping for Power	Up/Down Module

Check Box	Internal Module	Register	
Analog Bias	Analog bias	Reg#73 bit7 [PBIS]	
Vcom	Analog common voltage	Reg#74 bit0 [PCOM]	
HP COM/MONO (HPC)	Headphone common/mono-out buffer	Reg#73 bit4 [PHPC]	
Mixer L-ch (XML)	Analog mixer L-ch	Reg#72 bit0 [PMXL]	
Mixer R-ch (XMR)	Analog mixer R-ch	Reg#72 bit1 [PMXR]	
HP/Line out L-ch (HPL)	Headphone / Line out amp L-ch	Reg#73 bit2 [PHPL]	
HP/Line out R-ch (HPR)	Headphone / Line out amp R-ch	Reg#73 bit3 [PHPR]	
DAC L-ch (DAL)	DAC and interpolation filter L-ch	Reg#73 bit5 [PDAL]	
DAC R-ch (DAR)	DAC and interpolation filter R-ch	Reg#73 bit6 [PDAR]	
Speaker out L-ch (SPL)	Speaker amp L-ch	Reg#73 bit0 [PSPL]	
Speaker out R-ch (SPR)	Speaker amp R-ch	Reg#73 bit1 [PSPR]	
ADC L-ch (ADL)	ADC and decimation filter L-ch	Reg#82 bit0 [PADL]	
ADC R-ch (ADR)	ADC and decimation filter R-ch	Reg#82 bit1 [PADR]	
Gain AMP L-ch (PG1, PG5)	Gain amp L-ch (PG1 and PG5)	Reg#82 bit4 [PAIL]	
Gain AMP R-ch (PG2, PG6)	Gain amp R-ch (PG2 and PG6)	Reg#82 bit5 [PAIR]	
Diff amp (D2S)	D2S for AIN1	Reg#82 bit3 [PADS]	
Mic Bias (MCB)	Mic bias amp	Reg#82 bit2 [PMCB]	

Power Up/Down Time (ms) Options

It is possible to select the V_{COM} ramp up/down time from GND level to a common voltage level or vice-versa by choosing a V_{COM} capacitor value and time by choosing one of the available checkboxes. A 4.7 μ F V_{COM} capacitor is chosen as the default setting (this capacitor is also mounted on the EVM).

The $4.7\mu F\ V_{COM}$ capacitor is the recommended value for operating the EVM. This configuration is the recommended power-on sequence discussed in the product data sheet.

To select a different V_{COM} value, choose the appropriate value from the V_{COM} capacitor drop-down menu. Be sure to change the capacitor on the EVM to the same value (1.0 μ F, 2.2 μ F or 10 μ F).

The combination of PTM[1:0] and RES[4:0] determines the V_{COM} ramp up/down time, as described in Table 3-2 and Table 3-3.

To set the ramp up or down time without directly accessing the registers, users can select a V_{COM} capacitor value and time in the group box. The ramp up waveform with the default setting is shown in Figure 3-5, and the ramp down waveform in Figure 3-6, as references.

Table 3-2. PCM3793A/94A Resistor 125(7dh) RES[4:0]: Resistor Value Control

RES [4:0]	V _{COM} Resistor Value		
10000	60 kΩ		
11000	24 kΩ		
11100	12 kΩ		
11110	6 kΩ		
Others	Reserved		

Table 3-3. PCM3793A/94A Resistor 125(7dh) PMT[1:0]: Power Up/Down Time Control and Register Direct Access

V _{COM} Capacitor [μF]	RES[4:0]	PTM[1:0]	Power-Up Time [ms]	Power-Down Time [ms]	Register Direct Access
10	11110	00	450	750	0x7D1E
	11100	11	900	1500	0x7D7C
	11000	Do not set	_	_	_
	10000	Do not set	_	_	_
4.7	11110	01	250	400	0x7D3E
	11100	00	450	750	0x7D1C (default)
	11000	11	900	1500	0x7D78
	10000	Do not set	_	_	_
2.2	11110	10	100	300	0x7D5E
	11100	01	250	400	0x7D3C
	11000	00	450	750	0x7D18
	10000	11	900	1500	0x7D70
1.0	11110	Do not set	_	_	_
	11100	10	100	300	0x7D5C
	11000	01	250	400	0x7D38
	10000	00	450	750	0x7D10

Figure 3-5. Ramp Up Wave Form with Default Setting

Figure 3-6. Ramp Down Wave Form with Default Setting

3.2.3.2 Record

Figure 3-7 shows the Record function tab options.

Figure 3-7. Record Function Menu Tab

PCM3794A has no Speaker Output (3) Module of Possible Power Up/Down MD/ MC/ MS/ SCKI DOUT BCK LRCK DIN SDA SCL ADR MODE Power On Power SPL Clock Reset Up/Down Audio Interface Serial Interface (SPI/I²C) Manager SPOLP. Manager DGC SPOLN ATR (0dB/+6dB/+12dB/+18dB) +6dB to -70dB (Mute) 🔻 PG5 SPR ATP (0dB to -62dB, Mute) AIN3L [**SPORP** MUX1 AIN2L C IAnalog Input L-Channel **SPORN** AIN1L 0dB 0dB to -6dB to -70dB -21dB ① HPL: SW2 HPOL/ +30dB to Digital Digital LOI Filter -12dB Filter -70dB DAR SW6 MONO(+ ADR HPR +30dB to Digital Digital ΔΣ -12dB 2 HPOR/ PG2 AIN1RI +6dB to 1 AIN2R [AIN3R 0dB to HPCOM/ 0dB/ MCB MONO +20dB MONO MICBI COM **HPOL** Silent Pop Noise СОМ ⊐HDTI V_{COM} V_{COM} Controller DGND V_{PA} PGND V_{CC} AGND

Figure 3-8 shows the EVM modules that correspond to the record function.

Figure 3-8. EVM Modules Corresponding to Record Function

Gain Control for ADC Input Options

Move the L-ch (PG3) and R-ch (PG4) sliders to adjust the gain of the incoming analog signal inputs to the ADC.

- The L-ch slider manipulates the programmable gain amp (PG3) placed in front of the ADC.
- The R-ch slider controls the programmable gain amp (PG4) placed in front of the ADC.

Digital Mute (ATR) Options

Click the respective Digital mute (ATR) checkboxes if a mute function is needed for the ADC digital output.

The mute checkbox enables a digital soft mute on the ADC for each channel.

 V_{DD}

Mute waiting control enables a mute control.

Digital Out Mute Control Options

Select the Digital out mute control drop-down menu to enable the mute time control.

Apply wait or no wait for the ADC mute.

3.2.3.3 Playback

The Playback function is shown in Figure 3-9.

Figure 3-9. Playback Function Menu Tab

Figure 3-10 shows the corresponding modules for the playback function.

Figure 3-10. Modules Corresponding to Playback Function

Headphone Gain Control Options

Move the L-ch (HPL) and R-ch (HPR) sliders to adjust the gain of the analog output from the headphone amplifier.

Select the Output configuration drop-down menu to select either stereo or mono output.

- The L-ch slider controls the Headphone/Line amp gain
- · The R-ch slider controls the Headphone/Line amp gain
- Select the output channel to be stereo, mono (single-ended), or mono (differential)
- The *HP com* drop-down list determines the HPCOM/MONO pin function.

Speaker Gain Control Options

Move the L-ch (SPL) and R-ch (SPR) sliders to adjust the gain of the analog output from the speaker amplifier.

Select the Output configuration drop-down menu to select either stereo or mono output.

- The L-ch slider controls the speaker amp gain
- The R-ch slider controls the speaker amp gain
- Select the output channel to be either stereo or mono

Digital Attenuation (ATP) Options

Move the L-ch and R-ch sliders to adjust the gain of the incoming digital signals prior to conversion by the DAC.

- The L-ch slider adjusts the DAC digital attenuator level
- The R-ch slider controls the DAC digital attenuator level
- Select the output channel to be either stereo or mono
- The digital boost option enables a gain control of 0dB, +6dB, +12dB, or +18dB for the DAC digital input

3.2.3.4 ALC (Automatic Level Control)

Figure 3-11 shows the Automatic Level Control (ALC) function menu tab.

Figure 3-11. ALC Function Menu Tab

Auto Level Control (Record) Options

Select *Recovery time* and *Attack time* using the respective drop-down menu and corresponding gain control for each option to use the automatic level control function.

ALC compression and expansion characteristics are shown in Figure 3-12.

Compression is defined as avoiding degradation of sound quality by saturation when there are strong or excessively large sound data input.

Expansion means to boost weak or low input data in order to adjust the moderate amplitude level for recording.

Figure 3-12. ALC Compression and Expansion Characteristics

3.2.3.5 Signal Processing I

Figure 3-13 illustrates the Signal Processing 1 function menu tab.

Figure 3-13. Signal Processing 1 Function Menu Tab

Source Options

Select the *Source* input to choose either the audio processing unit digital input (DAC) or digital output (ADC). Internal audio processing can be applied to either the DAC or the ADC. This option also allows users to choose an audio source.

Output Options

Select the Source drop-down menu to choose between a stereo or mono configuration.

• The output configuration can be selected by choosing stereo or mono.

Tone Control Options

Move the Bass, Mid, and Treble sliders to adjust the tone control gain. The tones are controlled by the respective tone sliders. A three-band tone control characteristic plot is shown in Figure 3-14.

Figure 3-14. Three-Band Tone Control (Bass, Mid, Treble)

3D Effect Options

By implementing a 3D effect in this option box, the PCM3793A is enabled to provide 3D sound to the headphone and speaker outputs with low power consumption during either ADC or DAC operation. Check the 3D effect, then select an Effect type and an Efficiency drop-down menu to obtain the desired 3D enhancement.

Effect type means the selection of a band-pass filter (BPF); the BPF filters the sound, and enables a high percentage of heavy 3D enhancements to be applied to the signal.

Effect type and efficiency are controlled through the use of checkboxes.

Notch Filter 1 Coefficient, Notch Filter 2 Coefficient Options

In some applications, incoming noise such as motor control noise, CCD noise and other mechanical noise may not be negligible. The PCM3793A provides a very useful function to reduce such interference with the notch filter function.

When the checkbox of Notch Filter 1 Coefficient or Notch Filter 2 Coefficient is checked, coefficient a₁ and a₂ of the notch filter can be programmed at each edit box.

Load the values of f_c, f_b and f_S into the Filter Calculator group box.

Click Apply to Filter 1 or Apply to Filter 2. The calculated coefficient will then appear in the a_1 and a_2 edit box.

Finally, click the *Update* button for each Notch filter coefficient. To complete the notch filter operation, the *Update* button must be clicked.

Note that Update step is required each time new or different parameters are loaded to the dialog box.

Follow these steps to update the notch filter coefficient:

- Step 1. Click the checkbox of Notch Filter 1 Coefficient or Notch Filter 2 Coefficient.
- Step 2. Input the parameter values f_c , f_b and f_S .
- Step 3. Click Apply to Filter 1 or Apply to Filter 2.
- Step 4. Update for each notch filter coefficient.

Each coefficient is calculated using the following equations.

```
a_1 = -(1 + a_2)\cos(\omega_o)

a_2 = [1 - \tan(\omega_b/2)] / [1 + \tan(\omega_b/2)]
```

where:

- f_S = sampling frequency
- f_c = center frequency
- $f_b = bandwidth$
- $\omega_o = 2\pi f_c/f_S$ represents the angular center frequency
- $\omega_b = 2\pi f_b/f_S$ is the parameter to adjust bandwidth

Here are several example coefficient calculations using Equation 3-1 and Equation 3-2. These measurements are also shown in Figure 3-16.

```
Given: f_S = 16kHz, f_c = 0.5kHz, f_b = 0.2kHz a_2 = 0.924390492 (converted decimal to hex: 3B29h) a_1 = -1.887413868 (converted decimal to hex: 8735h) a_2: F[215:208] = 3Bh, F[207:200] = 29h a_1: F[115:108] = 87h, F[107:100] = 35h
```


Figure 3-15 illustrates the notch filter characteristic. All users can select any frequencies that can be used by the application system based on the notch filter coefficient theory discussed here.

Figure 3-15. Notch Filter Characteristic Model

Figure 3-16. Example of Measured Notch Filter Characteristic

3.2.3.6 Signal Processing 2

The Signal Processing 2 Function menu tab is shown in Figure 3-17.

Figure 3-17. Signal Processing 2 Function Menu Tab

DAC Oversampling Control Options

Select the *DAC* oversampling control menu to determine the DAC oversampling rate. The oversampling control can be set to either 128f_S or a range of 192f_S, 256f_S, and 384f_S.

The DAC oversampling rate range (for 192f_S, 256f_S, and 384f_S) will be selected when the sampling frequency of input data is lower than 24kHz. This oversampling rate moves the out-of-band noise caused by the delta-sigma modulator to a higher frequency domain.

Zero Cross Control Options

Select the *Zero cross control* to enable the zero crossing function. When zero crossing is enabled, digital attenuation and the analog volume level change at the zero crossing point to avoid an audible zipper noise.

De-Emphasis Filter Options

Select the *De-emphasis filter* option menu to enable the de-emphasis filter. De-emphasis can be disabled or enabled for an appropriate sampling frequency.

High-Pass Filter Options

Choose the *High Pass Filter* menu to determine the center frequency (f_c) of the incoming analog signal inputs to the ADC.

The cutoff frequency of the ADC high-pass filter is provided as a sampling frequency of 48kHz in this drop down menu, so that the cutoff will be scaled down to the corresponding value when sampling frequencies other than 48kHz (such as 16kHz or 22.05kHz) are used.

The ADC high-pass filter cutoff frequency can be set from this option.

3.2.3.7 Analog Path

Figure 3-18 shows the Analog Path Function menu.

Figure 3-18. Analog Path Function Menu Tab

Figure 3-19 illustrates the modules that correspond to the analog path function.

Figure 3-19. Modules Corresponding to Analog Path Function

Analog Input Options

This option selects the appropriate MUX for the respective left or right channel.

- MUX1 selects the L-channel source (AIN1/AIN2/AIN3).
- MUX2 selects the R-channel source (AIN1/AIN2/AIN3).

D2S Select Options

The analog input can be configured as single-end or differential. Select the *D2S* drop-down menu to choose between differential or single-ended inputs. If differential is selected, AIN1L and AIN1R are used as differential inputs.

Analog Mixer Options

The analog input, DAC output, and other channels of the analog input can be combined as an analog mixer source. To combine the sources, select the *Analog Mixer* menu to combine the DAC output and incoming stereo or mono analog signal input through PG1/PG5 or PG2/PG6.

Mic Boost Options

This checkbox sets (or resets) the +20dB microphone pre-amp PG1 (L-ch) or PG2 (R-ch).

PG5 Gain and PG6 Gain Options

PG5 gain (for the left channel) or PG6 (for the right channel) can be adjusted from the available drop-down menu.

3.2.3.8 Audio Interface

Figure 3-20 shows the Audio Interface Function menu.

Figure 3-20. Audio Interface Function Menu Tab

Audio Interface Setting 1 Options

Use this section of the menu to set the audio data format for the DAC input and ADC output, and set the mode as Master or Slave. Bit length is fixed at 16 bits.

Audio Interface Setting 2 Options

Use this section of the menu when working in Master mode.

- MSR: sets system clock rate
- NPR: sets system clock divider rate
- BCK: chooses between normal and burst BCK output

Burst operation of BCK in master mode will contribute to greater overall reduction in power consumption. See the PCM3793A data sheet for the possible combinations of these register settings.

3.2.3.9 Status Detect

The Status Detect function is shown in Figure 3-21.

Figure 3-21. Status Detect Function Menu Tab

HP Detection Options

Use this section of the menu to enable or disable the HP insertion detection process. You can also the HDTI pin logical polarity using the drop-down list box.

HP COM Short Detection Options

This section of the menu allows you to enable or disable HP COM port short detection. When short detection recovery is set to *Release*, the status bit will automatically reset to '0'.

HP Short Detection, L-Ch; HP Detection, R-Ch

These sections of the menu enable or disable HP short detection for the left channel and right channel, respectively. When short detection recovery is set to *Release*, the status bit will automatically reset to '0'.

Speaker Short Detection, L-Ch; Speaker Short Detection, R-Ch

These menu sections enable or disable speaker short detection for the left channel and right channel, respectively. When short detection recovery is set to *Release*, the status bit will automatically reset to '0'.

3.2.3.10 Digital Amplifier

Figure 3-22 shows the Digital Amplifier function.

Figure 3-22. Digital Amplifier Function Menu Tab

Setting the operating speed of the Class-D speaker amplifier depends on the performance requirements; click the checkbox to enable this function. Spectrum Spreading control (with Low, Mid, or High options) and the Switching frequency (1.5MHz to 3MHz) can be selected here. Using this feature will help reduce EMI noise. As the spectrum spreading control moves to *high*, the effect will be remarkable. Note, however, that the signal-to-noise ratio (SNR) performance of the speaker output is affected by this function.

3.2.4 LC89052T (DIR: Digital Audio I/F Receiver) Control Window

Figure 3-23 illustrates the LC89052 Interface format choices.

Figure 3-23. LC89052 Interface Format Selection Options

3.2.4.1 Audio Clock/Data Control Options

There are several options available for the audio clock and data control features in the DEM-DAI3793A/3794A EVM software.

For the system audio clock control, users can select any of these options:

- PLL SCK: Selects the system clock rate for the PCM3793A.
- XIN SCK or E-SCK: Selects the crystal oscillator frequency on Daughter Card #2
- CKOUT Div: Selects the dividing rate for CKOUT

The serial audio data format is controlled by the other part of the drop-down menu; see Figure 3-23. Select the data format for the DAC interface of the PCM3793A (it should match with the DAC setting on the Audio Interface tab).

3.2.5 Register Setting History

When any checkboxes are selected on any tab of the software GUI (including power up/down operation, corresponding resistor address, and so forth), the register value is automatically written into the register setting history panel. These parameters can then be saved, allowing users to identify a particular sequence setting that was sent to the device under test.

Any operating sequence settings can be saved as a comma-separated value (*.csv) file, with an identifiable name. This archive feature is useful when the same sequence settings are required for continued testing. The list of available *.csv files refreshes and displays when the *Clear* button is clicked.

Figure 3-24 shows the Register Setting History display window.

Figure 3-24. Register Setting History Window

3.2.5.1 Modifying a .csv File

The .csv file stores a sequence of register settings for the PCM3793A. To load a given register setting, it should be written in hex code, as shown in Figure 3-25; use the left row for resistor addresses and the right row for resistor values.

Figure 3-25. Opening and Modifying a .csv File

A *sleep* line can be inserted for implementing an interval (or wait) time until executing the next line of the file. If the cell is blank, no wait time will be executed. Files can be imported and exported using the *Open script* and *Save register snapshot* options.

3.2.6 Register Direct Access

Figure 3-26 illustrates the register direct access dialog.

Read function:

The *Read* function is only available in I²C mode. The register value can be read in I²C mode. To read the value, enter the Address number (in hex code format) in the left box and click the *Read* button. Data corresponding to the address appears.

Write function:

This window also enables the user to write the register value directly. Enter the Address number and data (both in hex code format) in the respective fields and click the *Write* button.

Figure 3-26. Register Direct Access Dialog

Switches and Connectors

This chapter reviews the DEM-DAI3793A/3794A EVM switch and jumper configuration.

	Page
Overview	44
Motherboard	44
Daughter Card #1 (PCM3793A)	46
Daughter Card #2 (DIR: LC89052T and DIT: DIT4096)	48
	Overview

4.1 Overview

Figure 4-1 shows the location of the switches and connectors on the EVM board.

Note: Silkscreen symbol CN320 is not printed on the motherboard, but it is located in the position described.

Figure 4-1. EVM Configuration

4.2 Motherboard

Table 4-1 through Table 4-4 list the connector references for the DEM-DAI3793A/3794A EVM motherboard.

Table 4-1. Main Power Supply and Regulator

Connectors Main Power Supply and Regula	
CN101	+6V to 10V Main Power Supply
CN102	GND

Table 4-2. Power-Supply Terminals for PCM3793A Power-Supply Pins

Connectors PCM3793A Power-Supply Pins	
CN103	V _{PA}
CN104	Not used. Do not care about short or open.
CN105	V _{CC}
CN106	V_{DD}
CN107	V _{IO}

Table 4-3. Audio I/O

Connectors	Audio I/O Pins
CN108	Analog audio input for AIN3L
CN109	Analog audio input for AIN3R
CN110	Analog audio output for HPOL/LOL
CN111	Analog audio output for HPOR/LOR
CN112	Analog audio output for HPCOM/MONO
CN113	Not used
CN114	Analog audio input for AIN1L/AIN2L (Selected by JP12:1-2 for AIN1L, 2-3 for AIN2L on Daughter Card #1)
CN115	Analog audio input for AIN1R/AIN2R (Selected by JP13:1-2 for AIN1R, 2-3 for AIN2R on Daughter Card #1)
CN116	Not used
CN117	Not used
U301	TOSLINK™. S/PDIF Optical output
CN301	S/PDIF coaxial output
SW301	Toggle switch. Opt/Coax selector for S/PDIF output
U302	TOSLINK. S/PDIF Optical output
CN302	S/PDIF coaxial input
CN305	2x9 header pins to connect digital audio I/F for ADC/DAC. If using external signal source, all shorting plugs should be removed.
CN306	BNC connector to provide external clock for LC89052T (DIR: S/PDIF receiver) on Daughter Card or PCM3793 directly as E-SCK.
CN307	2x5 header pins. System clock and bit clock selection to provide DIT4096 (DIT: S/PDIF transmitter). SCK and BCK should be provided from LC89052T as initial setting.
CN308, CN309-CN316	2x9 header pins and SMA connecters (x8) for connecting digital audio I/F with external devices or equipment. If using this feature, all shorting plugs on CN305 should be removed.
CN317	3x10 header pins. Path of I ² C/SPI-interface selection (via USB or parallel port). Selected USB port for initial configuration. (Parallel port is not available.)
CN320	2x3 header pins. Word (L/R) clock selection (Master or Slave mode). Selected Slave mode as initial.

Table 4-4. I/F Controller (MSP430, TUSB3410)

Connectors I/F Controller(MSP430, TUSB34	
CN201	USB connector type-B
CN202	JTAG port
SW201	Push switch. RESET for MSP430/TUSB3410

4.3 Daughter Card #1 (PCM3793A)

Table 4-5 lists the connector references for the first DEM-DAI3793A/3794A EVM daughter card.

Table 4-5. Analog Input and Output—Daughter Card #1

Connectors	Analog Input and Output of Daughter Card #1		
J1	Stereo microphone input		
J2	Monaural microphone input		
J3	Speaker output terminal for L-ch		
J4	Speaker output terminal for R-ch		
J5	Headphone output (Cap-less)		
J6	Headphone output		
JP5	System clock select. 1-2: External clock; 3-4: SPDIF		
JP8	1-2: AIN1L / 2-3: JP10		
JP9	1-2: AIN1R / 2-3: JP11		
JP10	1-2: JP8 / 2-3: J2		
JP11	1-2: J1 / 2-3: J2		
JP12	Analog input select L-channel 1-2: AIN1L / 2-3: AIN2L		
JP13	Analog input select R-channel 1-2: AIN1R / 2-3: AIN2R		
JP18	Headphone detection select. 1-2: J5 or J6 / 2-3: Motherboard		

Simplified descriptions of the analog input and output configuration for Daughter Card #1 are shown in Figure 4-2 and Figure 4-3.

Figure 4-2. Analog Input Configuration (Daughter Card #1)

Figure 4-3. Analog Output Configuration (Daughter Card #1)

CAUTION

Do not insert a headphone to J5 and J6 at the same time. Doing so connects resistors in parallel.

4.4 Daughter Card #2 (DIR: LC89052T and DIT: DIT4096)

Table 4-6 lists the connector references for the second DEM-DAI3793A/3794A EVM daughter card.

Table 4-6. Analog Input and Output—Daughter Card #2

Connectors	Analog Input and Output of Daughter Card #2	
SW001	Toggle switch. Opt/Coax selector for S/PDIF input	
SW002	Toggle switch. Reset/Power-down LC89052T and DIT4096	
SW003	Clock source selection for LC89052T (Onboard crystal oscillator or external source from CN306 of motherboard)	
SW004	DIP switch. Sets channel-status data of the DIT4096 ⁽¹⁾ . Note that the OFF state of this switch sets a HIGH level. Channel-status data can be set up if needed. It is also possible to connect a microcontroller.	
SW005	DIP switch. Sets the DIT4096 system clock and data format. Note that the OFF state of this switch sets a HIGH level.	

⁽¹⁾ See the <u>DIT4096 product data sheet</u> (TI literature number <u>SBOS225</u>, available for download from the <u>TI web site</u>) for further information.

Table 4-7 describes the audio clock and data control format options for Daughter Card #2.

Table 4-7. Audio Clock and Input Data Control Format—Daughter Card #2

CLK0	CLK1	System Clock	
L	L	Not used	
L	Н	256f _S (initial setting)	
Н	L	384f _S	
Н	Н	512f _S	
FMT0	FMT1	Input Data Format	
FMT0	FMT1	Input Data Format 24-bit, left-justified, MSB-first	
FMT0 L L	FMT1 L H		
FMT0 L L H	L	24-bit, left-justified, MSB-first	

Evaluation and Measurements

This chapter discusses how to set up jumpers on the DEM-DAI3793A/3794A EVM motherboard for performance evaluation using the Audio Precision SYS-2722® or PSIA-2722® audio analyzers. The process of measuring dynamic characteristics is then presented, along with example characteristic data.

Topic		Page
5.1	Slave Mode With Audio Precision SYS-2722 (Default Setting)	50
5.2	Master Mode with Audio Precision SYS-2722	52
5.3	Combined Master and Slave Modes With PSIA-2722	54
5.4	Measurements for Dynamic Characteristics	55
5.5	Connection Diagram for Practical Applications	61

5.1 Slave Mode With Audio Precision SYS-2722 (Default Setting)

These jumper configurations for the DEM-DAI3793A/3794A EVM motherboard are the default device settings. Simple evaluation using the Audio Precision SYS-2722 (as shown in Figure 5-1) is easily managed.

Figure 5-1. Slave Mode Configuration With SYS-2722

To put the DEM-DAI3793A/3794A EVM motherboard into the default slave mode configuration, connect the S/PDIF input and output to optical jumper U302 (or coaxial jumper CN302) and jumper U301 (or jumper CN301). Then select SW301 and SW001, respectively. Refer to the jumper combination shown in Figure 5-2.

Figure 5-2. Jumper Configuration for Slave Mode (Default)

5.2 Master Mode with Audio Precision SYS-2722

To enable the DEM-DAI3793A/3794A EVM motherboard for use in Master mode, the path of the S/PDIF input to the PCM3793A through DIR is not available for use. LRCK and BCK change the respective output states at the PCM3793A side in master mode; the respective jumpers of R-BCK, R-LRCK, and RX-DATA should be removed from CN305 to avoid conflict between the input and output of these clocks.

Furthermore, in this situation, DIN to the PCM3793A is also invalid because DIR LC89052T does not receive clocks (LC89052T cannot work in slave mode). Therefore, any analog output from the DAC is invalid because there is no data input.

However, in this configuration, users *can* confirm master mode operation of both LRCK and BCK from PCM3793A with a digital oscilloscope. Users can easily identify master mode without the use of other external equipment such as the PSIA-2722 analyzer.

The PCM3793A has no integrated internal PLL. However, the clock manager function can provide LRCK (f_s) and BCK in master mode, as described in Figure 5-3.

Figure 5-3. Master Mode Configuration With SYS-2722

Refer to the jumper combination shown in Figure 5-4 to put the DEM-DAI3793A/3794A EVM motherboard into master mode configuration.

Figure 5-4. Jumper Configuration for Master Mode

5.3 Combined Master and Slave Modes With PSIA-2722

As shown in Figure 5-5, the DEM-DAI3793A/3794A EVM can provide evaluation for both slave and master modes of the PCM3793A at the same time without setup jumpers on the motherboard if the user has access to the PSIA-2722 analyzer.

Figure 5-5. Combined Master and Slave Mode Configuration with SYS-2722

Refer to the jumper combination shown in Figure 5-6 to set up the combined master and slave modes configuration.

Figure 5-6. Jumper Configuration for Combined Master and Slave Modes

5.4 Measurements for Dynamic Characteristics

Typical dynamic performance graphs for digital-to-analog converters (DACs) generally represent four performance characteristics (in addition to other specifications): total harmonic distortion and noise (THD+N); signal-to-noise ratio (SNR); dynamic range (DR); and channel separation. These graphs also specify the test environment and measurement conditions required in order to meet typical performance values defined in the product data sheet.

For the DEM-DAI3793A/3794A EVM, the evaluation environment specifications are:

- Equipment used: Audio Precision, System Two Cascade Plus
- Audio Data format: 16-bit Left-Justified
- SCKI / BCK / LRCK (f_S): 256f_S / 64f_S / 48 kHz
- Power supply: $V_{DD} = V_{IO} = V_{CC} = V_{PA} = 3.3V$ (Regulated down from 10V applied to the motherboard)
- Temperature: Room/ambient

Once the lab or test environment is configured according to these parameters, start the EVM software (as discussed in Section 3.2). Click All Power On in the startup window or execute power_on.csv, and then execute the .csv file that corresponds to the appropriate measurement path discussed in the subsequent sections of this chapter.

5.4.1 Digital-to-Analog (D/A) Performance

Measurement path: 01.Line Output and Headphone Output csv file: 01_DAC_Line_Output_and_Headphone_Output.csv

Table 5-1. D/A Line Output Parameters

Power Supply	Parameter	Filter Setting	R_L (k Ω)	LOL	LOR
3.3V	THD+N (0dBFS at 1kHz)	400Hz—20kHz AES-17	10	0.007%	0.008%
	SNR (BPZ input)	22Hz—20kHz SPCL + A-weighting	10	93.1dB	93.0dB
	DR (-60dBFS input)	22Hz—20kHz SPCL + A-weighting	10	93.1dB	92.9dB
	Channel Separation (BPZ input for target channel)	22Hz—20kHz AES-17	10	90.5dB	90.4dB

Table 5-2. 16 Ω Headphone Output Inserted in Headphone Jack J6

Power Supply	Parameter	Filter Setting	R _L (Ω)	HPOL	HPOR
3.3V	THD+N (40mW, HP volume = $-1dB$)	400Hz—20kHz AES-17	16	0.028%	0.027%
	SNR (BPZ input)	22Hz—20kHz SPCL + A-weighting	16	93.1dB	93.0dB
	DR (-60dBFS input)	22Hz—20kHz SPCL + A-weighting	16	93.4dB	93.1dB

To obtain the performance results shown in Table 5-1 and Table 5-2, the speaker module should be powered down, and other functions should be set with these parameters:

- Speaker Amp: Disabled
- ADC L-channel and ADC R-channel: Disabled
- ALC: OffVolume: 0dB
- · Analog mixing: Disabled
- $R_1 = 10k\Omega$ for the line output
- $R_L = 16\Omega$ inserted in the J6 headphone jack for the headphone output

The bundled .csv file automatically sets the device to these conditions.

Note: The headphone volume should be changed from 0dB to -1dB and the signal input level of the Audio Precision analyzer should be changed to 40mW output power when THD+N is measured at 16Ω .

See Appendix A: Line Output and Headphone Output for a signal flow block diagram.

5.4.2 Analog-to-Digital (A/D) Performance

Measurement path: 17.Line Input (AIN3L/AIN3R)

csv file: 17_ADC_Line_Input.csv

Table 5-3. A/D Line Input Parameters

Power Supply	Parameter	Filter Setting	Left Channel	Right Channel
3.3V	THD+N (-1dB at 1kHz)	400Hz—20kHz AES-17	0.009%	0.009%
	SNR (BPZ input)	22Hz—20kHz SPCL + A-weighting	90.4dB	90.5dB
	DR (-60dBFS input)	22Hz—20kHz AES-17 + A-weighting	90.6dB	90.3dB
	Channel Separation (BPZ input for target channel)	22Hz—20kHz AES-17	87.8dB	87.8dB

To obtain the performance results shown in Table 5-3, the speaker/headphone module should be powered down, and other functions should be set with these parameters:

Headphone and Speaker Amp: Disabled

DAC L-channel and DAC R-channel: Disabled

ALC: Off

Mic boost: 0dB

Analog mixing: Disabled

All PGA: 0dB

The bundled .csv file automatically sets the device to these conditions.

See Appendix A: Line Input (AIN3L/AIN3R) for a signal flow block diagram.

5.4.3 Speaker Output Power Performance

Measurement path: 07.Stereo Speaker Output

csv file: 07_DAC_Stereo_Speaker_Output_8ohms.csv

Table 5-4. Stereo Speaker Output Parameters

Power Supply	Parameter	Speaker Volume	$R_L\left(\Omega\right)$	SPOL	SPOR
3.3V	Output Power (THD+N = 10%)	+6dB	8	594.2mW	594.1mW

To obtain the performance results shown in Table 5-4, the headphone module should be powered down, and other functions should be set with these parameters:

· Headphone Amp: Disabled

ADC L-channel and ADC R-channel: Disabled

Speaker volume: +6dB

ALC: Off
 R_L: 8Ω

The bundled .csv file automatically sets the device to these conditions, except for the speaker volume; adjust the speaker volume to +6dB manually after the .csv file is loaded.

Note: Adjust the input signal level of the Audio Precision analyzer to meet the target THD+N = 10%.

See Appendix A: Stereo Speaker Output for a signal flow block diagram.

5.4.3.1 LC Low-Pass Filter

Daughter Card #2 provides an LC low-pass filter (LPF) to obtain a clean analog signal from the pulse-width modulated (PWM) output of the speaker output. This configuration is shown in Figure 5-7. Additionally, a snubber circuit is inserted into the signal line to achieve the best output power performance by suppressing ringing in the PWM pulse; however, a snubber circuit will have negligible effects in the end system.

Note (1): Same configuration at SPORN/SPORP

Figure 5-7. Speaker Output Filter Configuration

5.4.4 Amplitude Versus Frequency Performance

5.4.4.1 A/D Spectrum

Measurement path: 17.Line Input (AIN3L/AIN3R)

csv file: 17_ADC_Line_Input.csv

Note that an unweighted filter and an AES17 bandwidth of 22Hz to 20kHz should be set to obtain precise spectrum results.

Figure 5-8. A/D Amplitude vs Frequency Result: BPZ (Zero Data) Input

Figure 5-9. A/D Amplitude vs Frequency Result: -60dB Input

Figure 5-10. A/D Amplitude vs Frequency Result: -1dB Input

See Appendix A: Line Input (AIN3L/AIN3R) for a signal flow block diagram.

5.4.4.2 D/A Spectrum

Measurement path: 01.Line Output and Headphone Output csv file: 01_DAC_Line_Output_and_Headphone_Output.csv

Note that an unweighted filter and an AES17 bandwidth of 22Hz to 20kHz should be set to obtain precise spectrum results.

Figure 5-11. D/A Amplitude vs Frequency Result: BPZ (Zero Data) Input

Figure 5-13. D/A Amplitude vs Frequency Result: 0dB Input

Figure 5-12. D/A Amplitude vs Frequency Result: -60dB Input

Figure 5-14. D/A Amplitude vs Frequency Result: Wide Range to 130kHz, BPZ (Zero Data) Input

See Appendix A: Line Output and Headphone Output for a signal flow block diagram.

5.5 Connection Diagram for Practical Applications

The PCM3793A/94A Daughter Card has been configured to measure dynamic audio performance by common audio analyzer equipment.

In a practical application (such as portable audio player or cellular phone), simple components set up as shown in Figure 5-15 will be reasonable to save assembly and test spaces. Specific component values are listed in Table 5-5.

Figure 5-15. Basic Connection Diagram

Table 5-5. Recommended External Parts for Basic Connection Diagram

Component	Recommended Value	Component	Recommended Value
C1—C6	1μF	C12, C13	10μF–220μF
C7	1μF–10μF	C14	1μF–10μF
C8	0.1µF	R1, R2	2.2kΩ
C9, C10	1μF-4.7μF	R3	33kΩ
C11	4.7μF–10μF	R4	10kΩ

5.5.1 Filter Consideration for Speaker Output

For a practical application such as a portable audio player or cellular phone, a ferrite chip bead will be a suitable low-pass filter to the speaker output; see Figure 5-16. Figure 5-17 describes recommended connections for headphone output and insertion detection.

Refer to the product data sheet for further information on this application circuit. C_{15} and C_{16} = 1nF, B_1 and B_2 Ferrite Chip Bead: NEC/Tokin: N2012ZPS121.

Figure 5-16. Recommended Ferrite Bead Filter for Speaker Output

Figure 5-17. Connection for Headphone Output and Insertion Detection

Schematic, PCB Layout, and Bill of Materials

This chapter provides the electrical and physical layout information for the DEM-DAI3793A/3794A EVM. The bill of materials is included for component and manufacturer reference.

Topic		Page
6.1	Schematics	64
6.2	Printed Circuit Board Layout	66
6.3	Component List	71

6.1 Schematics

Figure 6-1 and Figure 6-2 illustrate the schematics for the DEM-DAI3793A/3794A EVM.

Figure 6-1. PCM3793A DEM-PCM3793RHB-A Connector (Daughter Card #1)

Figure 6-2. PCM3793A DEM-PCM3793RHB-A (Daughter Card #1)

6.2 Printed Circuit Board Layout

Figure 6-3 through Figure 6-7 illustrate the printed circuit board (PCB) layout for the DEM-DAI3793A/3794A EVM.

Note:

Board layouts are not to scale. These figures are intended to show how the board is laid out; they are not intended to be used for manufacturing DEM-DAI3793A/3794A EVM PCBs.

Figure 6-3. PCM3793A DEM-PCM3793RHB-A Board Layout—Silkscreen Side

Figure 6-4. PCM3793A DEM-PCM3793RHB-A Board Layout—Component Side

Figure 6-5. PCM3793A DEM-PCM3793RHB-A Board Layout—Inner Layer 2

Figure 6-6. PCM3793A DEM-PCM3793RHB-A Board Layout—Inner Layer 3

Figure 6-7. PCM3793A DEM-PCM3793RHB-A Board Layout—Solder Side

6.3 Component List

Table 6-1 lists the Bill of Materials for the DEM-DAI3793A/3794A EVM.

Table 6-1. Bill of Materials

RefDes	Count	Description	Part Number	MFR
R3, R5, R6, R7, R8	5	330Ω	CF1/4C-33ΩJ	KOA
CP1—CP4	4	0.1µF	GRM188F5E104ZA01D 1	Murata
C8, C9, C13, C14	4	0.82µF	ECQV1H824J	Nissei
R4	1	100kΩ,	CF1/4C-100kΩJ	KOA
R9, R10	2	10kΩ	CF1/4C-10kΩJ	KOA
C3, C4, C6, C10	4	10μF/16V	R3A-16V100M	Elna
C1, C2	2	1μF	ECEV1HA010NR	Panasonic
C5	1	1μF/50V	R3A-50V10M	Elna
R1, R2	2	2.2kΩ	CF1/4C-2.2kΩJ	KOA
C11, C12, C15, C16	4	2.2µF/50V	R3A-50V22M	Elna
C17, C18	2	220µF	R3A-4V2200M	Elna
L1—L4	4	22µН	22R223	Newport Components
JP5	1	2x2 Pin	A1-4PA-2.54DSA	Hirose
JP8—JP13, JP18	7	3-Pin	A2-3PA-2.54DSA	Hirose
C7	1	4.7μF/25V	R3A-25V47M	Elna
TP1—TP4	4	Test Pin	LC-2-G	MAC8
J1, J2	2		HSJ1493-01-040	Hosiden
J3, J4	2		MKDSN1.5/2-5.08	Phoenix Contact
J5, J6	2		HSJ1493-01-040	Hosiden
U1	1	16-bit Stereo Audio Codec, 5mm x 5mm QFN, 32-pin	PCM3793A/94A	Texas Instruments

Reference .csv Files, Interfacing to DSPs, and Package Information

1	Topic				
	Δ1	Reference .csv Files	74		
		Interfacing to DSPs			
		——————————————————————————————————————			
	A.3	Package Information	33		

A.1 Reference .csv Files

The .csv files are bundled with the DEM-DAI3793A/3794A EVM Controller. These files enable users to execute register settings corresponding to the specific operating modes discussed in the product data sheet by importing them into the software.

Note that each .csv file (listed in Table A-1) must be implemented *after* an *All Active* operation is performed with the *power_on.csv* command; otherwise, these files will not work properly.

An *All Active* operation is recommended to start up the device, and can be executed by just clicking the *All Power On* button, as discussed in Section 3.2.

Table A-1. .csv Files

Tuble A 11.00V Files								
	Operating Mode	.csv File Name						
All Power Do	wn	power_off.csv						
All Active		power_on.csv						
Playback with Digital Input								
01	Line Output and Headphone Output	01_DAC_Line_Output_and_Headphone_Output.csv						
02	Headphone Output with Sound Effect	02_DAC_Headphone_Output_with_Sound_Effect.csv						
03	Cap Less Headphone Output	03_DAC_Cap_Less_Headphone_Output.csv						
04	Headphone Output with Line Input (AIN2L/AIN2R)	04_DAC_Headphone_Output_with_Line_Input.csv						
05	Headphone Output with Mono Mic Input (AIN1L, +20dB)	05_DAC_Headphone_Output_with_Mono_Mic_Input.csv						
06	Headphone Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	06_DAC_Headphone_Output_with_Mono_Diff_Mic_Input.						
07	Stereo Speaker Output	07_DAC_Stereo_Speaker_Output.csv						
08	Mono Speaker Output	08_DAC_Mono_Speaker_Output.csv						
09	Speaker Output with Line Input (AIN2L/AIN2R)	09_DAC_Speaker_Output_with_Line_Input.csv						
10	Speaker Output with Mono Mic Input (AIN1L, +20dB)	10_DAC_Speaker_Output_with_Mono_Mic_Input.csv						
11	Speaker Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	11_DAC_Speaker_Output_with_Mono_Diff_Mic_Input.csv						
Playback wit	hout Digital Input							
12	Line Input (AIN2L/AIN2R) to Headphone Output	12_Line_Input_to_Headphone_Output.csv						
13	Mono Line Input (AIN2L) to Headphone Output	13_Mono_Line_Input_to_Headphone_Output.csv						
14	Mono Mic Input (AIN1L, +20dB) to Headphone Output	14_Mono_Mic_Input_to_Headphone_Output.csv						
15	Mono Diff Mic Input (AIN1L/AIN1R, +20dB) to Headphone Output	15_Mono_Diff_Mic_Input_to_Headphone_Output.csv						
16	Mono Mic Input (AIN1L, +20dB) to Speaker Output	16_Mono_Mic_Input_to_Speaker_Output.csv						
Recording								
17	Line Input (AIN3L/AIN3R)	17_ADC_Line_Input.csv						
18	Mic Input (AIN1L/AIN1R, +20dB)	18_ADC_Mic_Input.csv						
19	Mic Input (AIN1L/AIN1R, +20dB) with ALC	19_ADC_Mic_Input_with_ALC.csv						
20	Mono Mic Input (AIN1L, +20dB)	20_ADC_Mono_Mic_Input.csv						
21	Mono Mic Input (AIN1L, +20dB) with ALC	21_ADC_Mono_Mic_Input_with_ALC.csv						
22	Mono Diff Mic Input (AIN1L/AIN1R, +20dB)	22_ADC_Mono_Diff_Mic_Input.csv						
23	Mono Diff Mic Input (AIN1L/AIN1R, +20dB) with ALC	23_ADC_Mono_Diff_Mic_Input_with_ALC.csv						

A Related Signal Flow Diagrams

Figure A-1. Line Output and Headphone Output

Figure A-2. Headphone Output with Sound Effect

Figure A-3. Cap-Less Headphone Output

Figure A-4. Headphone Output with Line Input (AIN2L/AIN2R)

Figure A-5. Headphone Output with Mono Mic Input (AIN1L, +20dB)

Figure A-6. Headphone Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)

Figure A-7. Stereo Speaker Output

Figure A-8. Mono Speaker Output

Figure A-9. Speaker Output with Line Input (AIN2L/AIN2R)

Figure A-10. Speaker Output with Mono Mic Input (AIN1L, +20dB)

Figure A-11. Speaker Output with Mono Diff Mic Input (AIN1L/AIN1R, +20dB)

Figure A-12. Line Input (AIN2L/AIN2R) to Headphone Output

Figure A-13. Mono Line Input (AIN2L) to Headphone Output

Figure A-14. Mono Mic Input (AIN1L, +20dB) to Headphone Output

Figure A-15. Mono Diff Mic Input (AIN1L/AIN1R, +20dB) to Headphone Output

Figure A-16. Mono Mic Input (AIN1L, +20dB) to Speaker Output

Figure A-17. Line Input (AIN3L/AIN3R)

Figure A-18. Mic Input (AIN1L/AIN1R, +20dB)

Figure A-19. Mic Input (AIN1L/AIN1R, +20dB) with ALC

Figure A-20. Mono Mic Input (AIN1L, +20dB)

Figure A-21. Mono Mic Input (AIN1L, +20dB) with ALC

Figure A-22. Mono Diff Mic Input (AIN1L/AIN1R, +20dB)

Figure A-23. Mono Diff Mic Input (AIN1L/AIN1R, +20dB) with ALC

A.2 Interfacing to DSPs

Refer to the following examples for interfacing the PCM3793A to a digital signal processor (DSP) in either slave or master mode. To implement master mode, MSTR = 1 of register 84 (54h) enables master mode operation as discussed in the <u>product data sheet</u>. Insert 5440h to the recommended power-on sequence after DAC power-up (49h) of PCM3793A, as noted in <u>Table A-2</u>.

Example A-1. Slave Mode Operation

Example A-2. Master Mode Operation

Figure A-25. Master Mode Operation

Where:

- **SCKI:** Audio clock (256f_S / 384f_S)
- BCK: Clock for audio transfer (32f_S / 48f_S / 64f_S)
- LRCK: Sampling rate clock (f_S)
- DIN: Audio data input for DAC (I²S, Left-Justified, Right-Justified, DSP)
- DOUT: Audio data output from ADC (I²S, Left-Justified, Right-Justified, DSP)

A.2.1 Register Control with DSP Interface

Table A-2 summarizes the recommended power-on sequence for the PCM3793A. The shaded cells within the table indicate specific register settings that must be configured for the device to properly operate with a DSP interface.

Table A-2. Recommended Power-On Sequence for PCM3793A

STEP	REGISTER SETTINGS	NOTE			
1	_	Turn on all power supplies. (1)			
2	4027h	Headphone amplifier L-ch volume (-6dB) ⁽²⁾			
3	4127h	Headphone amplifier R-ch volume (–6dB) ⁽²⁾			
4	4227h	Speaker amplifier L-ch volume (–6dB) (2)			
5	4327h	Speaker amplifier R-ch volume (-6dB) ⁽²⁾			
6	4427h	Digital attenuator L-ch (–24dB) ⁽²⁾			
7	4527h	Digital attenuator R-ch (–24dB) ⁽²⁾			
8(3)	4620h	DAC audio interface format (left-justified) (4)			
9	4BC0h	Headphone detection enable and inverting polarity. Short and thermal detection enable.			
10 ⁽³⁾	5102h	ADC audio interface format (left-justified) (4)			
11	5A10h	V _{COM} ramp up/down time control. PG1, PG2 gain control (0dB)			
12 ⁽⁵⁾	49E0h	DAC (DAL, DAR) and analog bias power up			
13 ⁽⁵⁾	5601h	Zero-cross detection enable			
14	4803h	Analog mixer (MXL, MXR) power up			
15	5811h	Analog mixer input (SW2, SW5) select			
16	49FCh	Headphone amplifier (HPL, HPR, HPC) power up			
17	4C03h	Speaker amplifier shut down release			
18	4A01h	V _{COM} power up			
19	523Fh	Analog front end (ADL, ADR, D2S, MCB, PG1, 2, 5, 6) power up			
20	5711h	Analog input (MUX3, MUX4) select. Analog input (MUX1, MUX2) select			
21	4F0Ch	Analog input L-ch (PG3) volume (0dB) ⁽²⁾			
22	500Ch	Analog input R-ch (PG4) volume (0dB) ⁽²⁾			
23	-	Any settings for other devices or wait time, 450ms ⁽⁶⁾ (7)			
24	49FFh	Speaker amplifier (SPL, SPR) power up (5)			

⁽¹⁾ V_{DD} should be turn on prior to or simultaneously with the other power supplies. It is recommended to set register data with the system clock input after turning all power supplies on.

A.3 Package Information

Packaging information includes a thermal pad mechanical drawing and an example board layout. These examples are taken from the PCM3793A product data sheet (available for download at www.ti.com).

⁽²⁾ Any level is acceptable for volume or attenuation. Level should be resumed by register data recorded when system power off.

⁽³⁾ I²S: 4620h; Left-Justified: 4601h; Right-Justified: 4602h; DSP: 4603h.

⁽⁴⁾ Audio interface format should be set to match the DSP or decoder being used.

⁽⁵⁾ Between steps 12 and 13, add this value for slave configuration: 5400h. For master configuration, add: 5440h.

⁽⁶⁾ The PCM3793A requires time for V_{COM} to reach the common level from GND level. The delay depends on the capacitor value for V_{COM} and the setting of register 125 PTM[1:0], RES[4:0]. The default setting is 450ms at V_{COM} = 4.7μs.

⁽⁷⁾ The PCM3794A does not require this setting because it has no speaker output.

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of -2.0V to +4.0V and the output voltage range of -2.0V to +4.0V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than +60°C. The EVM is designed to operate properly with certain components above +60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti-rfid.com	Telephony	www.ti.com/telephony
www.ti.com/lpw	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti-com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated