МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»

Кафедра инфокоммуникаций

Отч	іѐт по практич	ескому занят	ъ́ию №3.5
«Визуализа	ция данных	с помощью	matplotlib»

по дисциплине «Теории распознавания образов»

Выполнил студент группы	ИВТ-б-	o-21-	1
Эсеналиев Арсен « »	20	_Γ.	
Подпись студента			
Работа защищена « »		_20_	_Γ.
Проверил Воронкин Р.А.			
	(полимсь)		

- 1. Создать общедоступный репозиторий на GitHub, в котором будет использована лицензия МІТ и выбранный Вами язык программирования (выбор языка программирования будет доступен после установки флажка Add .gitignore).
 - 2. Проработать примеры лабораторной работы.

Создать ноутбук, в котором выполнить решение трех вычислительных задач (например, задачи из области физики, экономики, математики, статистики и т. д.) требующих построения графика (линейного, кругового, столбчатой), условия которых предварительно необходимо согласовать с преподавателем.

Рассчитываем ускорения по осям x и y, новые значения скоростей и координат, добавим их в соответствующие массивы.

```
i = 0.01
while y[-1] >= 0:
    ax = -k*vx[-1]**2/m  # ускорение по оси х (сила сопротивления воздух
    ay = -g - k*vy[-1]**2/m  # ускорение по оси у (сила сопротивления воз
    vx_new = vx[-1] + ax*i
    vy_new = vy[-1] + ay*i
    x_new = x[-1] + vx_new*i
    y_new = y[-1] + vy_new*i
    x.append(x_new)
    y.append(y_new)
    vx.append(vx_new)
    vy.append(vy_new)
```

построим график движения частицы

```
# построение графика
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Движение частицы в воздухе')
plt.grid()
plt.show()
```



```
Ввод [28]: outerwear_sales = [120, 90, 80, 100] # Продажи берхней одежды за последний месяц footwear_sales = [80, 100, 110, 90] # Продажи обуби за последний месяц accessories_sales = [60, 70, 80, 75] # Продажи аксессуаров за последний месяц
```

Вычисление среднего количества проданных единиц каждой категории товаров

```
BBOQ [29]: outerwear_avg_sales = np.mean(outerwear_sales) footwear_avg_sales = np.mean(footwear_sales) accessories_avg_sales = np.mean(accessories_sales)
```

Построение столбчатой диаграммы для сравнения продаж

```
Ввод [30]: labels = ['Неделя 1', 'Неделя 2', 'Неделя 3', 'Неделя 4'] x = np.arange(len(labels)) width = 0.25
```

```
Ввод [31]: fig, ax = plt.subplots()
rects1 = ax.bar(x - width, outerwear_sales, width, label='Верхняя одежда')
rects2 = ax.bar(x, footwear_sales, width, label='Обувь')
rects3 = ax.bar(x + width, accessories_sales, width, label='Аксессуары')
```



```
Ввод [32]: print("Среднее количество проданных единиц верхней одежды:", outerwear_avg_sales) print("Среднее количество проданных единиц обуви:", footwear_avg_sales) print("Среднее количество проданных единиц аксессуаров:", accessories_avg_sales)
```

Среднее количество проданных единиц верхней одежды: 97.5 Среднее количество проданных единиц обуви: 95.0 Среднее количество проданных единиц аксессуаров: 71.25

Самостоятельное задание

Создать ноутбук, в котором выполнить решение вычислительной задачи (например, задачи из области физики, экономики, математики, статистики и т. д.) требующей построения круговой диаграммы, условие которой предварительно необходимо согласовать с преподавателем.

a

И

В супермаркете проводится анализ по продажам различных категорий товаров: продукты питания, бытовая химия, электроника. Имеются данные о выручке от продаж каждой категории товаров за последний месяц. Необходимо сравнить их выручку и определить, какая категория товаров приносит большую выручку.

```
й
Ввод [8]: import matplotlib.pyplot as plt
            import numpy as np
                                                                                                                                                               \mathbf{T}
            categories = ['Продукты питания', 'Бытовая химия', 'Электроника'] revenue = [50000, 35000, 60000]
Ввод [10]: # Строим круговую диаграмму для визуализации доли каждой категории в общей выручке
            fig2, ax2 = plt.subplots()
ax2.pie(revenue, labels=categories, autopct='%1.1f%%', shadow=True)
            ax2.set_title('Доля выручки по категориям товаров')
                                                                                                                                                               К
            plt.show()
            max_revenue_category = categories[revenue.index(max(revenue))]
                                                                                                                                                               a
            print("Категория товаров с максимальной выручкой:", max_revenue_category)
                     Доля выручки по категориям товаров
                                                                                                                                                               К
                                             Продукты питания
                                                                                                                                                               Л
            Категория товаров с максимальной выручкой: Электроника
```

бо изображение в сети Интернет. Создать ноутбук, в котором будет отображено выбранное изображение средствами библиотеки matplotlib по URL из сети Интернет.

1. Как выполнить построение линейного графика

спомощью matplotlib?

Для построения линейного графика используется функция plot(), со следующей сигнатурой:

```
plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
```

2. Как выполнить заливку области между графиком и осью? Между двумя графиками?

```
plt.plot(x, y, c = "r")
plt.fill_between(x, y)

100
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00
```

3. Как выполнить выборочную заливку, котораяудовлетворяет некоторому условию?

4. Как выполнить двухцветную заливку?

```
In [14]: plt.plot(x, y, c="r")
  plt.grid()

plt.fill_between(x, y, where=y>=0, color="g", alpha=0.3)
  plt.fill_between(x, y, where=y<=0, color="r", alpha=0.3)</pre>
```

Out[14]: <matplotlib.collections.PolyCollection at 0x1b7583e04f0>

5. Как выполнить маркировку графиков?

```
x = [1, 2, 3, 4, 5, 6, 7]
y = [7, 6, 5, 4, 5, 6, 7]
plt.plot(x, y, marker="o", c="g")
```


6. Как выполнить обрезку графиков?

```
x = mp.arange(0.0, 5, 0.01)
y = np.cos(x * np.pt)
y_masked = np.ma.masked_where(y < -0.5, y)
plt.ylim(-1, 1)
plt.plot(x, y_masked, linewidth=3)</pre>
```


7. Как построить ступенчатый график? В чемособенность ступенчатого графика?

8. Как построить стековый график? В чем особенность стекового графика?

Для построения стекового графика используется функция stackplot(). Суть его в том, что графики отображаются друг над другом, и каждый следующий является суммой предыдущего и заданного набора данных.

9. Как построить stem-график? В чем особенность stem-графика? Визуально этот график выглядит как набор линий от точки с

координатами (х, у) до базовой линии, в верхней точке ставится маркер.

10. Как построить точечный график? В чем особенность точечного графика?

Для отображения точечного графика предназначена функция scatter(). В простейшем виде точечный график можно получить передав функции scatter() наборы точек для x, y координат.

11. Как осуществляется построение столбчатых диаграмм с помощью matplotlib?

12. Что такое групповая столбчатая диаграмма? Что такоестолбчатая диаграмма с errorbar элементом?

```
cat_par = [f"P[i]" for i in range(5)]

g1 = [10, 21, 34, 12, 27]
g2 = [17, 15, 25, 21, 26]

width = 0.3

x = np.arange(len(cat_par))

fig. ax = plt.subplots()
rects1 = ax.bar(x - width/2, g1, width, label='g1')
rects2 = ax.bar(x + width/2, g2, width, label='g2')

ax.set_title('npwwep rpynnomo@ gwarpawww')
ax.set_xticks(x)
ax.set_xticklabels(cat_par)

ax.legend()
```


Errorbar элемент позволяет задать величину ошибки для каждого элемента графика. Для этого используются параметры хегг, yerr и ecolor (для задания цвета).

13. Как выполнить построение круговой диаграммысредствами matplotlib?

14. Что такое цветовая карта? Как осуществляется работа сцветовыми картами в matplotlib?

Цветовая карта представляет собой подготовленный набор цветов, который хорошо подходит для визуализации того или иного набора данных.

15. Как отобразить изображение средствами matplotlib?

Рассмотрим две функции для построения цветовой сетки: imshow() и pcolormesh().

```
from PIL import Image
import requests
from io import BytesIO

response = requests.get('https://matplotlib.org/_static/logo2.png')
img = Image.open(BytesIO(response.content))
plt.ieshow(img)
```

В результате получим изображение nororuna Motplotlib.


```
np.random.seed(123)

data = np.random.rand(5, 7)
plt.pcolormesh(data, cmap='plasma', edgecolors="k", shading='flat')
```


16. Как отобразить тепловую карту средствами matplotlib?

```
np.random.seed(123)

data = np.random.rand(5, 7)
plt.pcolormesh(data, cmap='plasma', edgecolors="k", shading='flat')
```