Ejercicios propuestos: Temas 1 y 2 (Parte II)

David Cabezas Berrido

Ejercicio 2

Sea (X,Y) un vector continuo con la función de densidad conjunta que se muestra a continuación

$$f(x,y) = \frac{1}{64}$$
, $-2 < x < 6$, $-2 - x < y < x + 2$

Obtener la función de densidad de y condicionada a un valor x_0 , así como la función de densidad de x condicionada a un valor y_0 . A través de estas funciones de densidad condicionadas, calcular P(Y > 1.34 | X = 1.97) y P(X < 1.97 | Y = 1.34).

Marginales:

$$f_1(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \int_{-x-2}^{x+2} \frac{1}{64}dy = \frac{1}{64}(x+2-(-x-2)) = \frac{1}{64}(2x+4) \quad x \in]-2,6[$$

$$f_2(y) = \int_{-\infty}^{+\infty} f(x,y)dx = \begin{cases} \int_{-y-2}^{6} \frac{1}{64}dx = \frac{1}{64}(6-(-y-2)) = \frac{1}{64}(y+8) & y \in]-8,0[\\ \int_{-y-2}^{6} \frac{1}{64}dx = \frac{1}{64}(6-(y-2)) = \frac{1}{64}(-y+8) & y \in]0,8[\end{cases}$$

Condicionadas:

$$x_0 \in]-2,6[$$

$$f(y/x=x_0) = \frac{f(x_0,y)}{f_1(x_0)} = \frac{\frac{1}{64}}{\frac{1}{64}(2x_0+4)} = \frac{1}{2x_0+4} \qquad y \in]-2-x_0,x_0+2[$$

$$y_0 \in]-8,8[$$

$$f(x/y = y_0) = \frac{f(x, y_0)}{f_2(y_0)} = \begin{cases} \frac{\frac{1}{64}}{\frac{1}{64}(y_0 + 8)} = \frac{1}{y_0 + 8} & y_0 \in]-8, 0[, x \in]-y_0 - 2, 6[\\ \frac{\frac{1}{64}}{\frac{1}{64}(-y + 8)} = \frac{1}{-y_0 + 8} & y_0 \in]0, 8[, x \in]y_0 - 2, 6[\end{cases}$$