The Impact of International Shipping on Product Ratings: A Bayesian Analysis

Group No. 14

Sourav Poddar - 236625

Dia Tasneem Naser - 236904

Contents

- Dataset Description
- Data Preprocessing
- Model
- Priors
- Model Comparison
- Limitations and Improvements

Dataset Description

Source: Global Retail Sales Data: Orders, Reviews & Trends (Kaggle)

```
merch_data <- read.csv("merch_sales.csv")
#install.packages("data.table")
head(merch_data)</pre>
```

Total Observation:7394

C-1--

	Order ID	Order Date	Product ID	Product Category	Buyer Gender	Buyer Age	Order Location	International Shipping	Sales Price	Shipping Charges	Sales per Unit	Quantity	Total Sales	Rating	Review
0	189440	7/21/2024	BF1543	Clothing	Male	30	New Jersey	No	100	0	100	1	100	4	The delivery team handled the product with care.
1	187385	7/20/2024	BF1543	Clothing	Male	32	Las Vegas	No	100	0	100	1	100	3	Had slight delays but the product was in good
2	181844	7/21/2024	BF1544	Other	Female	26	Cardiff	Yes	9	40	49	1	49	2	Waste of Money.
3	197934	8/19/2024	BF1544	Other	Male	28	Pittsburgh	No	9	0	9	2	18	3	Had slight delays but the product was in good
4	122470	1/6/2024	BF1545	Other	Female	19	Miami	No	10	0	10	3	30	5	Lack of delivery delays is greatly appreciated.

Dataset Description

Features:

Order ID (Unique identifier)

Order Date

Product ID (Unique identifier for products)

Product Category Categorical (nominal)

Buyer Gender Categorical (nominal)

Buyer Age Numerical

Order Location Categorical (nominal)

International Shipping Categorical (binary)

Sales Price (continuous)

Shipping Charges (continuous)

Sales per Unit (continuous)

Quantity (discrete)

Total Sales (continuous)

Rating (Ordinal)

Review (Text)

Data Preprocessing

No Missing Value

```
# Check for missing values in columns
colSums(is.na(merch_data))
[1] FALSE
               Order, ID
                                     Order. Date
                                                             Product.ID
                                                                               Product.Category
                                                                                                            Buyer. Gender
                                 Order.Location International. Shipping
                                                                                     Sales, Price
                                                                                                        Shipping, Charges
              Buyer. Age
                                                            Total. Sales
         Sales.per.Unit
                                       Quantity
                                                                                          Rating
                                                                                                                  Review
```

Selection of Relevant Column

```
[1] "Product.ID" "Product.Category" "Buyer.Gender" "Buyer.Age" [5] "International.Shipping" "Sales.Price" "Shipping.Charges" "Sales.per.Unit" [9] "Quantity" "Total.Sales" "Rating"
```

• Factored Categorical Columns:

Converted categorical columns (Buyer.Gender, International.Shipping, Product.Category) to factors to properly handle model fitting.

Fig 01:Frequency Distribution of Product Ratings

Fig 02:Comparison of Product Ratings: Domestic vs. International Shipping

Ordinal Logistic Regression

Handles Ordered Response:

Ideal for analyzing the ordinal target variable .For this dataset, the target variable "Rating" is an ordered categorical variable (1 to 5)

• Supports Hierarchical Structure:

Captures variability across levels such as random effects for Product.Category.

• Interpretability:

Results can be presented in terms of **log-odds** or **probabilities**, making them intuitive for conclusions.

Prior

- A prior represents the beliefs about a parameter's possible values before observing the data. Priors influence the posterior distribution.
- Normal priors (normal(0, 5)): (Weakly informative) 0 is the mean, suggesting no prior bias toward a specific direction (positive or negative) in the regression coefficients or thresholds. 5 is the standard deviation, indicating a broad prior with high uncertainty.
- Student-t Prior (student_t(3, 0, 2)): (Weakly informative) student_t(3, 0, 2) for group-level standard deviations (robust to outliers compared to normal distribution, heavy-tailed)

Why Used These Priors:

Normal prior for coefficients and intercepts prevents extreme estimates, ensuring meaningful results.

The Student-t prior allows for robust modeling of group-level effects (Hierarchical Model) to avoid over- or underestimating group-level variability.

Model 1:

• Intercepts:

Define thresholds for the cumulative probabilities of different ratings. 95% credibility intervals (CI) indicate well-defined thresholds as all intercepts are narrow and exclude 0.

• Product.Category:

Product.Category2 (-0.12): 95% CI = (-0.29, 0.05) as the CI includes 0, indicating no significance.

Product.Category3 (0.03): 95% CI = (-0.18, 0.24) indicates that no significant effect on Rating.

- International.ShippingNo (0.02): 95% CI = (-0.09, 0.13) as the CI includes 0, indicating no significance.
- Buyer.Age, Sales.Price, Quantity, Total.Sales don't affect the product ratings.

Family: cumulative
Links: mu = logit; disc = identity

Formula: Rating ~ Product.Category + Buyer.Age + International.Shipping + Sales.Price + Quantity + Total.Sales

Data: merch_data_updated (Number of observations: 7394)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

negression everification								
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS	
Intercept[1]	-1.73	0.17	-2.06	-1.41	1.00	2969	2847	
<pre>Intercept[2]</pre>	-1.07	0.16	-1.39	-0.76	1.00	2893	2918	
<pre>Intercept[3]</pre>	-0.37	0.16	-0.70	-0.05	1.00	2783	2927	
<pre>Intercept[4]</pre>	0.90	0.16	0.56	1.22	1.00	2855	2874	
Product.Category2	-0.12	0.09	-0.29	0.05	1.00	1935	2630	
Product.Category3	0.03	0.11	-0.18	0.24	1.00	1996	2482	
Buyer.Age	0.00	0.00	-0.00	0.01	1.00	5015	2705	
International. ShippingNo	0.02	0.05	-0.09	0.13	1.00	3081	3116	
Sales.Price	-0.00	0.00	-0.00	0.00	1.00	2006	2432	
Quantity	0.01	0.03	-0.06	0.07	1.00	3143	2631	
Total.Sales	0.00	0.00	-0.00	0.00	1.00	2917	3017	

Fig 03: Model Summary

Model 1: Posterior Predictive Check

- The model's predicted ratings (y_rep) closely align with the observed ratings (y), indicating that the model effectively captures the overall distribution of the data
- The slight spread of the lighter lines (y_rep) around the dark line (y) reflects the model's ability to incorporate uncertainty, ensuring robust and realistic predictions

Fig 04: Posterior Predictive Check

Model 2:

- **International.ShippingNo:** Positive coefficient (0.10), with credible intervals (-0.02, 0.23), suggests no strong evidence of significance.
- Interaction Effects:
 International.ShippingNo:Product.Category
 3 (-0.26): The effect of domestic shipping on ratings decreases even more for products in Category 3. The CI (-0.50, -0.02) does not include 0, indicating a statistically significant interaction.

Family: cumulative
Links: mu = logit; disc = identity

Formula: Rating ~ International.Shipping * Product.Category
Data: merch_data_updated (Number of observations: 7394)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept[1]	-1.73	0.04	-1.81	-1.64	1.00	3301	3217
<pre>Intercept[2]</pre>	-1.07	0.04	-1.15	-0.99	1.00	3932	3561
<pre>Intercept[3]</pre>	-0.37	0.04	-0.44	-0.29	1.00	4073	3378
Intercept[4]	0.90	0.04	0.82	0.97	1.00	3763	3493
International.ShippingNo	0.10	0.06	-0.02	0.23	1.00	2801	3067
Product.Category2	-0.03	0.06	-0.14	0.08	1.00	3425	3053
Product.Category3	0.18	0.07	0.05	0.31	1.00	3551	2940
International.ShippingNo:Product.Category2	-0.08	0.10	-0.28	0.12	1.00	2776	2600
International.ShippingNo:Product.Category3	-0.26	0.12	-0.50	-0.02	1.00	3148	3234

Fig 05 : Model 2 Summary

Model 2: Posterior Predictive Check

- The close alignment of these lines (y) and (y_rep) across all rating categories indicates that the model is effectively capturing the observed data distribution
- The simulated data closely mirrors the observed data's Peaks, especially for higher rating categories (4 and 5).
- Lower ratings (1, 2, and 3) also exhibit a good match between observed and predicted values

Fig 06: Posterior Predictive Check

Model 3: Hierarchical model

• Intercepts:

The four intercepts define the thresholds for the ordinal logistic regression, ensuring stable threshold estimates.by CI

• Random Effect (Product.Category):

Standard deviation of the random intercept for Product. Category is 0.23 with a 95% CI of 0.02 to 1.07, indicating variability in ratings across product categories. Therefore, there is a small but meaningful variation in customer ratings between product categories.

• From the estimates and CI, fixed effects such as International.Shipping, Total.Sales and Shipping.Charges do not have a significant effect on product ratings

```
Formula: Rating ~ International.Shipping + Total.Sales + Shipping.Charges + (1 | Product.Category)
   Data: merch_data_updated (Number of observations: 7394)
 Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000
Multilevel Hyperparameters:
~Product.Category (Number of levels: 3)
              Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sd(Intercept)
                  0.23
                            0.28
                                     0.02
                                              1.07 1.00
                                                                      865
Regression Coefficients:
                         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept[1]
                            -1.73
                                               -2.05
                                                        -1.301.00
                                                                       1133
                                                                                 577
Intercept[2]
                                               -1.38
                                                        -0.651.00
                                                                                 574
Intercept[3]
                            -0.37
                                               -0.68
                                                                       1092
                                                                                 587
                                                         0.05 1.00
                                                         1.32 1.00
Intercept[4]
                                                0.58
International. ShippingNo
                            -0.05
                                                                                2712
                                               -0.25
                                                         0.15 1.00
                                                                       3468
Total. Sales
                             0.00
                                               -0.00
                                                         0.00 1.00
                                                                       4117
                                                                                 3389
Shipping. Charges
                                                                       3587
                                                                                 2671
                             0.00
                                       0.00
                                               -0.00
                                                         0.01 1.00
```

Links: mu = logit; disc = identity

Fig 07: Model 3 Summary

Model 3: Posterior Predictive Check

- The hierarchical model is accurately capturing the observed distribution of ratings.
- The slight differences in densities for lower-frequency categories (2 and 3) are minimal and within the model's uncertainty range.

Fig 08: Posterior Predictive Check

Model Comparison

```
# Compare the models
loo_comparison <- loo_compare(loo_ordinal_fit1, loo_ordinal_fit2,loo_hierarchical_model)
print(loo_comparison)# Print the comparison

elpd_diff se_diff
ordinal_model_fit2 0.0 0.0
hierarchical_model -1.8 2.4
ordinal_model_fit1 -3.1 2.7
```

Fig 09: Model Comparison

• Ordinal_model_fit2 has the highest predictive performance with elpd_diff = 0 compared to all other models.

Limitations

- Limited predictors and missing temporal or marketing-related features such as marketing impact, customer demographics, or product quality.
- The dataset does not capture time-related trends (e.g., seasonality or sales periods) that might affect ratings.
- It's time consuming to work with a CPU specially for hierarchical model

Improvements

- Enrich dataset with additional variables and temporal trends.
- Explore customer segmentation and external factors in future studies.

Summary

- From the overall analysis, International shipping doesn't influence the product rating.
- Ordinal Logistic Regression with all features, Ordinal Model with Interaction term and Bayesian Hierarchical Ordinal Model was fitted and compared.
- Bayesian hierarchical models are computationally intensive, especially with weakly informative priors, which can make convergence slower.
- Scopes for future studies and improvement.

Contact Details

Sourav Poddar

236625

sourav.poddar@tu-dortmund.de

+491782122383

Dia Tasneem Naser

236904

diatasneem.naser@tu-dortmund.de +4917658835431