Sunflower lemma

02 September 2020 A collection of K sets S, Sz, ..., Si is a sunflower with petals and a love Y if $\forall i,j \in [K], i \neq j, S_i \cap S_i = \forall$ Y -> Can be an empty let

w-uniform family of sets

hemma [Erdös, Rado, 1960s].

hek I be a w-uniform family

of sets. If III > (w! (k-1))

then I contains a sunflower

with k petals.

Proof: Induction on ω .

Bon Con: $\omega = 1$. 15-1 > k-1Induction Step: Assume stant is the for all $\omega \leq x$, where x > 1Let $\omega = x$. $F > x!(k-1)^x$

else het sistement bowe.

Subcollection of F which the pairwise disjoint.

Q< K

02 September 2020

02 September 2020 23:54

(Y-1)! (|x-1)!

(x-1)!

(x-1)!

(x-1)!

(x-1)

form evens

set in Ja

(Y-1)-uniform family

(contains a like supported to the supporte

 $\frac{(k-1)^{\omega}}{(k-1)^{\omega}} \leq \frac{(k-1)^{\omega}}{(k-1)^{\omega}} \leq \frac{(k-1)^{\omega}}{(k-$

Surface $f(k, \omega) \leq |\omega| (|x-i| + i)$ Surface $f(k, \omega) \leq |\omega| (|x-i| + i)$ Surface $f(k, \omega) \leq |\omega| (|x-i| + i)$ $f(k, \omega) \leq |\omega| (|x-i| + i)$ $f(k, \omega) \leq |\omega| (|x-i| + i)$ Any Nao $f(k, \omega) \leq |\omega| (|x-i| + i)$ $f(k, \omega) \leq |$