1- F(x) -k(x) CHENNAI MATHEMATICAL INSTITUTE

F(16)(b-2) + a

Probability Theory, B.Sc. I, 2025, Jan-April

 $7^{2}(1-F(\lambda)) + (2i^{4}k^{End-term} Examination.$

You can score a maximum of 100 marks, combined from both sections A and B.

100

In score a maximum $F(K) = F_K(F'(K))$ F(K) = Φ F(K) - α F

The problems in this section are either already discussed in the class or a slight variation of that. Give the required proof completely. You can score up to a maximum of 45 marks from this section.

1. Let X be a non-negative continuous random variable with distribution function F. Show that

 $E(X^r) = \int_0^\infty rx^{r-1}(1 - F(x))dx,$

for which the above expectation is finite. (You get half of the marks for proving the case r=1.) a ->0

Let $X \sim Unif[a, b]$ and F be a distribution function supported in [a, b]. Construct a random variable (with proof!) Y with distribution F.

2. Let $X \sim Unif[a, b]$ and F be a distribution function supported in [a, b]. Construct a random variable (with proof!) Y with distribution F.

3. Compute the characteristic function of the standard normal distribution N(0, 1).

4. Let X be a random variable with density function f and characteristic function ϕ . \checkmark Further assume that f is continuous and $\int_{-\infty}^{\infty} |\phi(t)| dt < \infty$. Show for all $x \in \mathbb{R}$ that

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt.$$

15

5. Let $\{X_n\}_{n=1}^{\infty}$, X be continuous random variables with characteristic functions $\{\phi_n\}_{n=1}^{\infty}$, ϕ respectively. Show, if $\phi_n(t) \mapsto \phi(t)$ for all $t \in \mathbb{R}$ then that $X_n \mapsto X$ in distribution. (Partial marks if you assume some of the lemmas without proof.) 30

Part B Y = FCX)

You may use any result proved in the class. You can score up to a maximum of 70 marks from this section.

1. Let X and Y have the bivariate normal distribution with means 0 and variances 1 and covariance ρ . Find the joint density function of X + Y and X - Y, and their marginal density functions.

=1 (n2 - 2 itn+ (it)2)

In (Neuto + to 6) 2. Let X and Y be independent (continuous) random variables with common distribufrom function F and density function f. Compute the densities of $\max\{X,Y\}$ and $\min\{X,Y\}$, assuming that f is continuous. 2 F(n) (1- F(n)) 15 3. Prove the answer in the last problem without assuming continuity. A. Let $\{X_n : n \in \mathbb{N}\}$ be independent and identically distributed family of random variables with with distribution function F satisfying F(y) < 1 for all $y \in \mathbb{R}$. For $x \in \mathbb{R}$, let $Y_x = \min\{k: X_k > x\}$. Compute the distribution of Y_x and its expectation. 5. Let X and Y have the joint density $f(x,y) = cx(y-x)e^{-y}$, for $0 \le x \le y < \infty$. Find (i) c (ii) E(X/Y) (iii) E(Y/X). 6. Let the continuous random variables X and Y have joint density function $f(x,y) = \frac{1}{x}, \quad 0 \le y \le x \le 1,$ = 0, otherwise, Find the probability of $\{X^2 + Y^2 \le 1\}$. $2 \ln(\sqrt{2} + 1)$ 7. Let X be a random variable with density function f and characteristic function ϕ . Show (subject to an appropriate condition on f) that $\int_{-\infty}^{\infty} |\phi(t)|^2 dt = \int_{-\infty}^{\infty} f(x)^2 dx$. (Hint: Notice that $|\phi|^2$ is a characteristic function of some random variable.) Let X has the $\Gamma(1,s)$ distribution. Let Y be such that the conditional distribution of $\angle Y$ given X = x follows Poisson with parameter x. Find the characteristic function of Y and show that $\frac{Y - E(Y)}{\sqrt{Var(Y)}} \mapsto N(0,1)$, in distribution as $s \mapsto \infty$. + E(Var(Y|X))(Use continuity theorem along the lines of the proof of CLT.) 30