8286/8287

Octal Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- Data bus buffer/driver for 8086, 8088, 8080A, 8085A, and 8048 processors
- Fully parallel 8-bit transceivers: 8286 is noninverting 8287 is inverting
- 3-state inputs/outputs for interfacing with bus-oriented systems
- Available in 20-pin, 0.3" center molded DIP or ceramic package
- Advanced bipolar Schottky processing
- Bus port stays in hi-impedance state during power up/ down transition

GENERAL DESCRIPTION

The 8286 and 8287 are 8-bit 3-state bipolar Schottky transceivers. They provide bidirectional drive for busoriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 32mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3-state condition. Chip Disable is functionally the same as an active LOW chip select.

*8287 has inverting transceivers

RELATED PRODUCTS

PART NO	DESCRIPTION				
2946/47	Octal Bus Transceivers				
2948/49	Octal Bus Transceivers				
8086	16-Bit Microprocessor				

05699A

11-92

Refer to Page 13-1 for Essential Information on Military Devices

CONNECTION DIAGRAM Top View

V_{CC} B₀ B₁ B₂ B₃ B₄ B₅ B₆ B₇ T/R

LOGIC SYMBOL

Note: Pin 1 is marked for orientation

8286

CD001500

A₂

METALLIZATION AND PAD LAYOUT

VCC 20
A0 1 19 B0

A1 2
A2 3 16 B3
A4 5 15 B4
A5 6 A6 7 13 B6
A7 8
CD 9 12 B7

GNO 10 11 17/8

DIE SIZE .069" x .089"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations				
MD D P XM, XC	8286			
MD D P	8286B			
P XC	8287			
Р	8287B			

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

05699A

11-93

Refer to Page 13-1 for Essential Information on Military Devices

PIN DESCRIPTION 1/0 Description Pin No. Name A port inputs/outputs are receiver output drivers when T/\overline{R} is Low and are transmit inputs when T/\overline{R} A₀ - A₇ 1/0 is HIGH. B port inputs/outputs are transmit output drivers when T/\overline{R} is HIGH and receiver inputs when T/\overline{R} is $B_0 - B_7$ 1/0 LÓW. Chip Disable forces all output drivers into 3-state when HIGH (same function as active LOW chip CD 1 9 select, CS). Transmit/Receiver direction control determines whether A port or B port drivers are in 3-state. With 11 T/R ı T/R HIGH, A port is the input and B port is the output. With T/R LOW, A port is the output and B port

Inputs	C	ondition	18
Chip Disable	0	0	1
Transmit/Receive	0	1	X
A Port	Out	In	HI-Z
B Port	In	Out	HI-Z

is the input.

1 1

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +	150°C
Supply Voltage	+ 7.0V
Input Voltage	
Output Voltage	
Lead Temperature (Soldering, 10 seconds)	300°C

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	+4.75V to +5.25V
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to +5.5V
Operating ranges define those limits ov	er which the function-
ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters V _C	Description		Test Conditions	Min	Max	Units
	Input Clamp Voltage		I _C = -5mA		-1	Volts
	,	8287			130	
loc	Power Supply Current	8286			160	mA.
lF	Forward Input Current		V _F = 0.45V		-0.2	mA
I _B	Reverse Input Current		V _R = 5.25V		50	μΑ
V _{OL} (COM'L)	Output Low Voltage	B Outputs	I _{OL} = 32mA		.45	Volts
		A Outputs	I _{OL} = 16mA		.45	
V _{OL} (MIL)	Output Low Voltage	B Outputs	I _{OL} = 20mA		.45	Volts
		A Outputs	I _{OL} = 10mA		.45	
		B Outputs	I _{OH} = -5mA	2.4		
VOH	Output High Voltage	A Outputs	I _{OH} = -1mA	2.4		Volts
			V _{OFF} = 0.45V		lF	
OFF	Output Off Current		V _{OFF} = 5.25V		I _B	
		A Port	V _{CC} = 5.0V (See note 1)		0.8	Volts
V _{IL}	Input Low Voltage	B Port	V _{CC} = 5.0V (See note 1)		0.9	
V _{IH}	Input High Voltage		V _{CC} = 5.0V (See note 1)	2.0		Volts
CiN	Input Capacitance		F = 1MHz V _{BIAS} = 2.5V, V _{CC} = 5V T _A = 25°C		12	pF

OPERATING CHARACTERISTICS

Output Delay versus Capacitance

05699A

Refer to Page 13-1 for Essential Information on Military Devices

SWITCHING TEST CIRCUITS

B OUTPUT

A OUTPUT

B OUTPUT

B OUTPUT

A OUTPUT

A OUTPUT

Values in parenthesis reflect MIL temp. conditions.

SWITCHING CHARACTERISTICS (See Note 2)

Parameters	Description		Test Conditions (See Notes)	Min (COM'L)	Min (MIL)	Max	Units
TIVOV	Input to Output Delay	Inverting		5 5		22 30	ns
		Non-inverting					
TEHTV	Transmit/Receive Hold Time			5	TENHOZ		ns
TTVEL	Transmit/Receive Setup			10	30		ns
TEHOZ	Output Disable Time			3		18	ns
TELOV	Output Enable Time			10	10	30	ns
TILIH, TOLOH	Input, Output Rise Time		From 0.8 to 2.0V	ļ		20	ns
TIHIL, TOHOL	Input, Output Fall Time		From 2.0 to 0.8V			12	ns

1. COM'L temperature loading conditions

MIL temperature loading conditions

B outputs: $|_{OL}$ = 32mA, $|_{OH}$ = -5mA, $|_{CL}$ = 300pF A outputs: $|_{OL}$ = 16mA, $|_{OH}$ = -1mA, $|_{CL}$ = 300pF A outputs: $|_{CL}$ = 20mA, $|_{OH}$ = -5mA, $|_{CL}$ = 300pF A outputs: $|_{OL}$ = 10mA, $|_{OH}$ = -1mA, $|_{CL}$ = 100pF

2. Refer to waveforms and SWITCHING TEST CIRCUITS on

following pages.

05699A Refer to Page 13-1 for Essential Information on Military Devices

11-96

AC testing inputs are driven at 2.4V for a logic "1" and 0.45V for a logic "0" timing measurements are made at 1.5V for both a logic "1" and "0."

05699A