Participez à la conception d'une voiture autonome

Sommaire

- 1. Enjeux & Objectifs
- 2. Jeu de données
- 3. Flux de données
- 4. Métriques & Loss functions
- 5. Baseline
- 6. Modélisations
- 7. Synthèse
- 8. Modèle final
- 9. Déploiement
- 10. Conclusions

Enjeux & Objectifs **Future Vision Transport** Acquisition des **Segmentation des** images en temps réel images

Traitement des

images

Système de décision

Objectifs

Modèle de segmentation sémantique

Transfer Learning:

Backbone

Poids par Imagenet

Jeu de données

01	Train set	2975 items x 2Images & Masks
02	Validation set	500 items x 2Images & Masks
03	Test set	1525 items x 2Images & Masks

CITYSCAPES:

- Caméras embarquées dans 50 villes allemandes
- Conditions météorologiques variées
- > 25 000 photos: routes, véhicules, objets routiers, etc.
- > 32 sous-catégories & 8 catégories principales

Flux de données

Augmentation de données

- Création de nouvelles images artificielles
- Éviter le risque de sur-apprentissage
- Pallier les défauts de prise d'image

Photo originale

Blur

Zoom

Brightness

Générateur de données

Input

Montée rapide du volume des données

Load

Eviter de charger toutes les données

Data Generator

- Classe de type Sequence :
 - Chargement de données
 - Attribution de classes-cibles
 - ☐ Distribution des images par batches
 - Augmentation de données

Métriques

IoU (Jaccard) vs Dice (F1)

Ratio entre intersection des masques réels et prédits et union des 2 masques.

Loss functions

Di	ice	Lo	SS

- > Weighted Dice
- ➤ Focal Loss
- BCE Jaccard
- Categorical Focal + Dice Loss

Model	IoU	Dice	training_time
Base-Categ-Focal-Dice	0.496615	0.601135	7261.540968
Base-Dice	0.513233	0.622157	7420.738188
Base-Weight-Dice	0.387483	0.507299	7506.385689
Base-Focal	0.423833	0.539918	7538.611242
Base-Jaccard	0.449309	0.561707	7876.37 <mark>4</mark> 853

Baseline

U-Net sans augmentation de données :

➤ IoU: 0.496

> F1 Score: 0.6

➤ Loss: 0.466 (Categorical Focal + Dice Loss)

Modélisations

U-Net + ResNet152

- avec augmentation
- > sans augmentation

Unet suncaterate downcarrole successive

FPN + ResNet152

- avec augmentation
- sans augmentation

FPN Gorcalerale

Linknet + Resnet152

- avec augmentation
- sans augmentation

Synthèse

Model	IoU	Dice	training_time
Base-Categ-Focal-Dice	0.496615	0.601135	7261.540968
Base-Dice	0.513233	0.622157	7420.738188
Base-Weight-Dice	0.387483	0.507299	7506.385689
Base-Focal	0.423833	0.539918	7538.611242
Base-Jaccard	0.449309	0.561707	7876.374853
Unet-Resnet-NOaugm	0.611504	0.719118	10515.987629
Unet-Resnet-augm	0.635118	0.742667	21435.816270
FPN-Resnet-NOaugm	0.607629	0.721474	10060.494859
FPN-Resnet-augi	0.645746	0.753668	21951.161641
Linknet-Resnet-NOaugm	0.608704	0.721641	9976.627367
Linknet-Resnet-augm	0.585186	0.702199	20616.900008
Best_with_Dice	0.653487	0.761291	21772.060686

Modèle final

Categorical Focal + Dice Loss vs Dice Loss

Déploiement

Déploiement

Docker image

Install Python / pip3

Copie code source

Install Modules

Expose Port

Container en mode exécutable

Docker Container http://172.17.0.2:5000/

Résultat de la prédiction :

Mask original versus mask prédit

http://sylviaban.pythonanywhere.com/

Conclusions

Les pistes d'amélioration

- 1. Échantillon plus volumineux
- 2. Utilisation d'autres architectures
- 3. Utilisation d'autres backbones
 - a. #BACKBONE = 'vgg16'
 b. #BACKBONE = 'vgg19'
 c. #BACKBONE = 'densenet201'
 d. #BACKBONE = 'densenet121'
 e. #BACKBONE = 'efficientnetb0'
 f. #BACKBONE = 'efficientnetb7'

#BACKBONE = 'inceptionv3'

- 4. Tester d'autres loss functions
- 5. Tester d'autres méthodes d'augmentation de données
- 6. **Taille** max des images

FIN

Avez-vous des questions?

