

	Model Test
	The coefficient of mutual inductance of two coils is 0.5 H. If current increases from 2A to 3A in 0.01s in the primary coil, the induced emf in secondary coil is (2 marks)
	○ 25 V
	○ 50 V
	○ 75 V
	○ 100 V
72.	In series circuit of $R=300\Omega$, L = 0.9H and $C=2\mu F$ & W = 1000 rad/s the impedance of circuit will be (2 marks)
	\bigcirc 1300 Ω
	\bigcirc 900 Ω
	\bigcirc 500 Ω
	\bigcirc 400 Ω
73.	The wavelength of photon is λ when electron jump from 2E to E. The wavelength of photon when electron jump from $\frac{4E}{3}$ to E is (2 marks)
	$\bigcirc \frac{\lambda}{3}$
	$\bigcirc \frac{3\lambda}{4}$
	$\bigcirc \frac{4\lambda}{3}$
	\bigcirc 3 λ
74.	The percentage of radioactive nucleus that remain undecayed after 5 half lives is (2 marks)
	○ 3%
	5%

[
	20%
	atio by volume of Cl_2 gas evolved at NTP by passing 96.5 amp current for 1000 seconds during the ocysis of molten NaCl, $CaCl_2$ and $AlCl_3$ respectively is
	1:2:3
	6:3:2
	3:2:1
0	1:1:1
	excess of NH_4Cl is treated with 10 ml of dil. $Ca(OH)_2$ solution, 112 ml of NH_3 gas is evolved at NTP, find formality of $Ca(OH)_2$
	0.1 N
	0.2 N
	0.4 N
0	0.4 N 0.5 N
The so	0.5 N olubility product of CaF_2 is $4 imes 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution.
(2 mark	0.5 N Dlubility product of CaF_2 is $4 imes 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution.
(2 mark	0.5 N olubility product of CaF_2 is $4 imes 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution.
(2 mark	0.5 N colubility product of CaF_2 is $4 imes 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution. (s) $4 imes 10^{-12} mole/L$
(2 mark	Olubility product of CaF_2 is $4 imes 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution. (as) $4 imes 10^{-12} mole/L$ $1 imes 10^{-4} mole/L$
(2 mark	O.5 N Solubility product of CaF_2 is $4\times 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solubility of CaF_2 in 0.1 M NaF solution. In the solution of CaF_2 in 0.1 M NaF solution of CaF_2 in 0.1 M NaF solution. In the solution of CaF_2 in 0.1 M NaF solution of CaF_2 i
(2 mark	O.5 N Solubility product of CaF_2 is $4\times 10^{-12} mole/L$ find the solubility of CaF_2 in 0.1 M NaF solution. (as) $4\times 10^{-12} mole/L$ $1\times 10^{-4} mole/L$ $4\times 10^{-13} mole/L$ $4\times 10^{-14} mole/L$ $23\times 10^{22} \ \text{atoms of carbon is obtained in the form of } CO_2 \ \text{by heating } CaCO_3 \ \text{then find the no. of atoms of each in the } CaCO_3.$

22, 11:29 AN	Test Series EngineeringDote
	$\bigcirc 6.023 imes 10^{24}$ atoms of Ca
	$\bigcirc 6.023 imes 10^{21}$ atoms of Ca
е	An alkene X is treated with HBr to give Haloalane Y. The compound Y is treated with Na metal in presence of dry ether 2, 3-dimethyl butane is formed find x & y 2 marks)
	$\bigcirc X \Rightarrow CH_2 = CH_2 \ \& \ Y = CH_3CH_2Br$
	$\bigcirc X \Rightarrow CH_3 – CH = CH_2 \ \& \ Y = CH_3 CH_2 CH_2 Br$
	$\bigcirc X \Rightarrow CH_3 - CH = CH_2 \ \& \ Y = CH_3 - CH - CH_3$ Br
	$\bigcirc X \Rightarrow CH_3 – CH = CH_2 \ \& \ Y = CH_3 – CH_2 – Br$
	Which is called Rinmann's green? 2 marks)
	O Ferrous ferrocyamide
	Complex of ZnO & CoO
	Ferric ferrocyamide
	Ferric ferrocyamide
\	

2022 © **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal