Lec 4

C3A - Display Technology

Peter Raynes

Lecture 4

- Minimising the total energy
 - 1-D solutions
 - Critical voltage for Freedericksz transition
 - Useful analytical solutions for TN devices
- Introduction to Supertwisted Nematic LCDs (STN)

Continuum Theory - Energy Due to Distortions

Distortion energy density of director n (Frank 1958)

$$U_k = 1/2 \left\{ k_{11} \left(\operatorname{div} \underline{\mathbf{n}} \right)^2 + k_{22} \left(\underline{\mathbf{n}} \cdot \operatorname{curl} \underline{\mathbf{n}} \right)^2 + k_{33} \left(\underline{\mathbf{n}} \cdot \operatorname{x} \operatorname{curl} \underline{\mathbf{n}} \right)^2 \right\}$$

- Elastic constants
 - k_{11} splay, k_{22} twist and k_{33} bend
 - Magnitude $\approx 10^{-11}$ N
 - Units

Continuum Theory - Adding an Electric Field

- Dielectric energy density: $U_E = -1/2\underline{D}.\underline{E}$
- lacktriangle Total energy density: $U=U_k+U_E$

$$\Rightarrow U = 1/2 \begin{cases} k_{11} (\operatorname{div} \underline{\mathbf{n}})^2 + k_{22} (\underline{\mathbf{n}} \cdot \operatorname{curl} \underline{\mathbf{n}})^2 \\ + k_{33} (\underline{\mathbf{n}} \cdot \operatorname{x} \operatorname{curl} \underline{\mathbf{n}})^2 - \underline{D} \cdot \underline{E} \end{cases}$$

- Minus sign due to constant voltage on electrodes
- Want to find solutions for $\underline{n}(x, y, z)$
 - which minimise total energy $\int U dx dy dz$
 - with relevant boundary conditions imposed

Coordinates

• Cartesian:
$$\underline{n} = n_x$$
, n_y , n_z with $n_x^2 + n_y^2 + n_z^2 = 1$

Change to spherical polar:

$$\underline{n} = \cos\theta\cos\phi, \cos\theta\sin\phi, \sin\theta$$

- Angles easily understood
 - θ is tilt angle of director to plane of layer
 - \bullet ϕ is twist angle of director within layer

Some Simplifications

A 'large' pixel, so assume

$$\frac{\partial}{\partial x} = 0$$
 and $\frac{\partial}{\partial y} = 0$

and consider only $\frac{\partial}{\partial z}$

Consider a layer with no twist

$$\phi = 0 \implies \underline{n} = \cos \theta, 0, \sin \theta$$

Vector Differentials

$$\underline{n} = \cos \theta, \, 0, \, \sin \theta \qquad \text{and} \quad \frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0$$

$$div \underline{n} = \cos \theta \left(\frac{\partial \theta}{\partial z} \right)$$

$$\Rightarrow \left(\operatorname{div} \underline{n} \right)^2 = \cos^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2$$

•
$$curl \, \underline{n} = 0, \sin \theta \left(\frac{\partial \theta}{\partial z} \right), 0$$
 $\Rightarrow \quad \underline{n. curl \, \underline{n} = 0}$

and
$$\underline{n} x \operatorname{curl} \underline{n} = \sin^2 \theta \left(\frac{\partial \theta}{\partial z} \right), 0, \sin \theta \cos \theta \left(\frac{\partial \theta}{\partial z} \right)$$

$$\Rightarrow \left| (\underline{n} x curl \underline{n})^2 = \sin^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2 \right|$$

Energy Density

•
$$U = 1/2 \left\{ k_{11} \left(\operatorname{div} \underline{\mathbf{n}} \right)^2 + k_{22} \left(\underline{\mathbf{n}} \cdot \operatorname{curl} \underline{\mathbf{n}} \right)^2 + k_{33} \left(\underline{\mathbf{n}} \cdot \operatorname{x} \operatorname{curl} \underline{\mathbf{n}} \right)^2 - \underline{D} \cdot \underline{E} \right\}$$

Substituting

$$\Rightarrow U = 1/2 \left\{ k_{11} \cos^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2 + k_{33} \sin^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2 - \underline{D} \cdot \underline{E} \right\}$$

Dielectric Term

Assume no free charge, Maxwell's equations:

$$div \underline{D} = 0$$
 and $curl \underline{E} = 0$

'Large' pixel:

$$\frac{\partial}{\partial x} = 0$$
, $\frac{\partial}{\partial y} = 0$ and $E_x = E_y = 0$

Dielectric energy:

$$U_E = -\frac{1}{2}\underline{D}.\underline{E} = -\frac{1}{2}D_z E_z = -\frac{1}{2}\varepsilon_0 \varepsilon_{zz} E_z^2$$

$$\varepsilon_{zz} = \varepsilon_{\perp} + \Delta \varepsilon \sin^2 \theta$$

$$\Rightarrow \qquad U_E = -\frac{1}{2} \, E_z^2 \, \varepsilon_0 \, \Delta \varepsilon \sin^2 \! \theta \, \qquad \text{ignoring constant } \varepsilon_\perp \, \text{term}$$

Total Energy Density

$$U = 1/2 \left\{ k_{11} \cos^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2 + k_{33} \sin^2 \theta \left(\frac{\partial \theta}{\partial z} \right)^2 - E_z^2 \varepsilon_0 \Delta \varepsilon \sin^2 \theta \right\}$$

• How to find (θ, ϕ) corresponding to minimum energy?

Euler-Lagrange Equation

- Calculus of variations
- Stephenson pp 454-455
- For LC energy:

$$I(\theta) = \int f(z, \theta, \theta') dz$$

where: $\theta' = \left(\frac{\partial \theta}{\partial Z}\right)$

• Euler-Lagrange gives:

$$\left| \frac{\partial f}{\partial \theta} - \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial \theta'} \right) \right| = 0$$

Calculus of Variations [25.2]

function y such that the integral

$$I[y] = \int_{x_1}^{x_2} f(x, y, y') \, dx \tag{2}$$

is stationary, where y' = dy/dx. It is assumed here that the function f is a given differentiable function of the three variables x, y and y', and that $y = y_1$ at $x = x_1$, $y = y_2$ at $x = x_2$, where x_1 , x_2 are given (constant) limits of integration. Suppose y(x) is any curve passing through the two points (x_1, y_1) , (x_2, y_2) (see Fig. 25.1). Consider

J x1 (0) (0) / /

Since $\eta(x)$ is an arbitrary function, (10) can only be satisfied if

$$\frac{\partial f}{\partial v} - \frac{d}{dx} \left(\frac{\partial f}{\partial v'} \right) = 0. \tag{11}$$

This is Euler's equation for the function y which must be satisfied if (2) is to have a stationary value. There are several cases in which Euler's equation may be simplified, as we shall now see.

Applying Euler-Lagrange

$$\left\{ k_{11} \cos^2 \theta + k_{33} \sin^2 \theta \right\} \left(\frac{\partial^2 \theta}{\partial z^2} \right) + \left\{ \left(k_{33} - k_{11} \right) \left(\frac{\partial \theta}{\partial z} \right)^2 + E_z^2 \varepsilon_0 \Delta \varepsilon \right\} \sin \theta \cos \theta = 0$$

■ Just above threshold, both θ and $\left(\frac{\partial \theta}{\partial z}\right)$ are small

$$\Rightarrow k_{11} \left(\frac{\partial^2 \theta}{\partial z^2} \right) + E_z^2 \varepsilon_0 \Delta \varepsilon \sin \theta \cos \theta = 0$$

• Guess a solution of form: $\theta = \theta_m \sin\left(\frac{\pi z}{d}\right)$ with θ_m small

$$\Rightarrow \theta_m \left\{ \varepsilon_0 \Delta \varepsilon E_z^2 - k_{11} \left(\frac{\pi}{d}\right)^2 \right\} \sin \left(\frac{\pi z}{d}\right) = 0 \quad \text{which has two solutions:}$$

- ullet $\theta_m=0$ ie below threshold and no distortion
- $\theta_m \neq 0 \text{ and } \varepsilon_0 \Delta \varepsilon E_z^2 = k_{11} \left(\frac{\pi}{d}\right)^2 \implies V_c^2 = \frac{k_{11} \pi^2}{\varepsilon_0 \Delta \varepsilon}$

Threshold Condition

- Threshold voltage
- Typical value:

$$k_{11} \approx 10 \ pN, \ \Delta \varepsilon \approx 10 \implies V_c \approx 1 \ Volt$$

- Different geometries have similar results
 - Different k_{ii} or combinations
 - Fields within layer produce threshold field

Extending the Analysis

Expand to 1st order terms

$$\left\{k_{11}\cos^2\theta + k_{33}\sin^2\theta\right\} \left(\frac{\partial^2\theta}{\partial z^2}\right) + \left\{\left(k_{33} - k_{11}\right)\left(\frac{\partial\theta}{\partial z}\right)^2 + E_z^2 \varepsilon_0 \Delta\varepsilon\right\} \sin\theta\cos\theta = 0$$

- ⇒ Initial slope
- Twisted layers (eg TN)
 - lacktriangle Euler-Lagrange equations for both $\, heta\,$ and $\,\phi\,$
 - Initial slope of twisted cells
- Finite pitch (P) in a chiral nematic

$$k_{22}(\underline{n}.curl\,\underline{n})^2 \Rightarrow k_{22}(\underline{n}.curl\,\underline{n} - \frac{2\pi}{P})^2$$

Numerical solutions

Calculating the Electric Field

- Electric field problem
 - Not simply given by $E = -\frac{V}{d}$
- Maxwell's equation and no free charge

$$div \underline{D} = 0 \implies D_z = cons \tan t$$

$$\Rightarrow -V = \frac{D_z}{\varepsilon_0} \int_0^d \frac{dz}{\varepsilon_{zz}} \Rightarrow E_z = \frac{-V}{\varepsilon_{zz} \int_0^d \frac{dz}{\varepsilon_{zz}}}$$

$$E_{z} = \frac{-V}{\varepsilon_{zz} \int_{0}^{d} \frac{dz}{\varepsilon_{zz}}}$$

Results for Untwisted Planar Layers

Threshold

$$V_c^2 = \frac{k_{11}\pi^2}{\varepsilon_0 \,\Delta\varepsilon}$$

Initial slope

$$\theta_m^2 = \frac{4(V - V_c)/V_c}{k_{33}/k_{11} + \Delta\varepsilon/\varepsilon_{\perp}}$$

⇒ material design for multiplexing

$$\Rightarrow$$
 small $\left(\frac{k_{33}}{k_{11}} + \frac{\Delta \varepsilon}{\varepsilon_{\perp}}\right)$

Results for Twisted Nematic Devices

Threshold

$$V_c^2 = \frac{k_{11}\pi^2 + (\pi^2/4)\{k_{33} - 2k_{22}(1 - 4\pi d/P)\}}{\varepsilon_0 \Delta \varepsilon}$$

• Initial slope, more complicated, but still approximates to:

$$\theta_m^2 \approx \frac{4(V - V_c)/V_c}{k_{33}/k_{11} + \Delta \varepsilon/\varepsilon_{\perp}}$$

- \Rightarrow still want small $\left(\frac{k_{33}}{k_{11}} + \frac{\Delta \varepsilon}{\varepsilon_{\perp}}\right)$ for multiplexing
- \Rightarrow used in design of materials for TN displays

Some Numerical Results

- Untwisted planar layer
- Voltage dependence of permittivity
- Agreement between
 - Modelling data (curve)
 - Experimental data (points)
- Used in reverse to measure k_{11} and k_{33}

Some Numerical Results for TN

- Tilt (θ) and twist (ϕ)
 - Through layer
 - Voltages normalised to Vc
- Nothing for V < Vc
- For large V
 - Tilt approaches $\pi/2$ in centre
 - Twist concentrates in centre

Reminder of TN Multiplexing

$$\frac{V_{ON}}{V_{OFF}} = \sqrt{\frac{\sqrt{N} + 1}{\sqrt{N} - 1}}$$

Typical TN performance: $\sim x 2$

Supertwisted Nematic (STN)

- Waters and Raynes 1982
- Increased twist angle (ϕ)

 - Surface alignment + pitch

$$\frac{\phi}{2\pi} - 0.25 \le \left(\frac{d}{P}\right) \le \frac{\phi}{2\pi} + 0.25$$

- Near infinite slope possible
 - Depends on
 - φ, d/P
 - LC material

Next Lecture

- Supertwisted nematic LCDs
 - Basic device performance
 - Director modeling
 - Material optimisation
- TFT displays
 - Device construction
 - Addressing