proba8_PruebaHipotesisFer

Fernanda Pérez

2024-08-23

Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1: Hipótesis

```
H_0: \mu = 11.7 H_1: \mu \neq 11.7
```

¿Cómo se distribuye \bar{x}

x se distribuye como una normal n < 30 *mo conocemos sigma

Entonces: la distribución muestral es una t de student

Paso 2: Regla de descisión

Nivel de confianza es de 0.98 Nivel de significancia es de 0.02

Necesito encontrar a cúantas desviaciones estandar está lejos el valor frontera.

```
n= 21

alfa = 0.02
t_f = qt(alfa/2, n-1)
cat("t_f =" , abs(t_f))
## t_f = 2.527977
```

t_f es valor absoluto porque es la 'distancia' hacia donde voy a rechazar.

Regla de decisión

Rechazo H_0 si: $|t_e| > 2.53$ valorp < 0.02

Paso 3: Análisis de resultados

 t_e : Número de desviaciones estandar al que \bar{x} se encuentra lejos de $\mu=11.7$ valor p: Probabilidad de obtener lo que obtuve en la muestra o un valor más extremo

Estadistico de prueba

```
x= c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4,
11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)

xb = mean(x)

s =sd(x)

miu= 11.7

te= (xb-miu)/(s/sqrt(n))

cat("te=", te)

## te= -2.068884

valorp= 2*pt(te,n-1)
cat("Vlor p=", valorp)

## Vlor p= 0.0517299
```

Más facil: Para hacer el análisis de resultado:

```
t.test(x, mu=11.7, alternative=("two.sided"),conf.level=0.95)

##

## One Sample t-test

##

## data: x

## t = -2.0689, df = 20, p-value = 0.05173

## alternative hypothesis: true mean is not equal to 11.7

## 95 percent confidence interval:

## 11.26966 11.70177

## sample estimates:

## mean of x

## 11.48571
```

Paso 4: Conclusión

Comparar: Regla de decisión vs Análisis de resultado $|t_e|=2.07<2.53$ -> No Rechacho H0 valorp = 0.05 > 0.02 -> No Rechazo H0

```
sigma= sqrt((n-1)/(n-3))
x=seq(-4*sigma,4*sigma,0.01)
y=dt(x,n-1)
```

```
plot(x,y,type="l",col="blue",xlab="",ylab="",ylim=c(-
0.1,0.4),frame.plot=FALSE,xaxt="n",yaxt="n",main="Región de rechazo
(distribución t de Student, gl=20)")

abline(v=t_f,col="red",lty=5)
abline(v=-1*t_f,col="red",lty=5)
abline(h=0)

abline(v=0, col="blue", pch=19)

points(te, 0, pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl=2

Por los resultados obtenidos en nuestro análisis la conclusión es que no se va a rechazar la hipótesis nula, ya que no hay suficiente evidencia para afirmar que el peso promedio de las latas es diferente de 11.7 con un nivel de confianza del 98%. O sea que los datos no nos proporcionan una razón suficiente para creer que el peso promedio de las latas de duraznos empacados difiere significativamente del peso especificado de 11.7.

##La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el

tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

```
Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23
```

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Paso 1: Hipótesis

Hipotesis nula: *H_0 : $\mu=15 minutos$ El tiempo promedio de las llamadas es de 15 minutos

Hipotesis alternativa: *H_1 : $\mu > 15 minutos$ El tiempo promedio de las llamadas es mayor a 15 minutos

se hace con z

Paso 2: Regla de descisión

El nivel de significancia de alpha va a ser 0.07, dado que tenemos la desviación estandar = 4, usaremos la prueba z.

```
z_alpha = qnorm(1 - 0.07)
cat("z_alpha =", z_alpha)
## z_alpha = 1.475791
```

Paso 3: Análisis de resultados

```
usando la prueba z: z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}
```

```
tiempos = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12,
12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22,
18, 23)

n =35

media_muestral = mean(tiempos)
cat("Media muestral =", media_muestral, "\n")

## Media muestral = 17

z = (media_muestral - 15) / (4 / sqrt(n))
cat("z =", z)

## z = 2.95804
```

Paso 4: Conclusión if(z > z_alpha) { cat("Se rechaza la hipótesis nula y si se justifica el cobro adicional.") } else { cat("No se rechaza la hipótesis nula y no se justifica el cobro adicional.") } ## Se rechaza la hipótesis nula y si se justifica el cobro adicional.

Como z es 2.958 y z_alpha es 1.475791, dado que z> z_alpha podemos rechazar la hipotesis nula H0, lo cual nos dice que el tiempo promedio de las encuestas telefónicas es mayor a 15, por lo cual si se justifica la tarifa adicional.

Grafico de decisión para la prueba de hipótesis

