Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0113 - Redes de Computadores

Trabalho prático 3 - Projeto de Redes (Unidade III) (correções 2)

Entrega: 05/12/2017 23h59

Instruções:

- Trabalho em duplas;
- O trabalho consistirá na elaboração de um projeto de redes utilizando o simulador *Cisco Packet Tracer*;
- A submissão do trabalho deverá ocorrer via SIGAA até a data acima e deverá constar de:
 - Entrega deste documento relatando as atividades realizadas;
 - Entrega do arquivo do projeto simulado (.pkt).
- Não será necessária a elaboração de relatório, porém este documento deverá ser preenchido com as informações solicitadas (não precisa fazer capa, contracapa, basta editar o documento diretamente);
- A nota deste trabalho será 50% da avaliação da Unidade III, sendo composta por:
 - Avaliação da dupla (o projeto): se o trabalho for concluído com êxito, parte da nota será igual para a dupla;
 - Avaliação individual (perguntas): a nota individual será atribuída de acordo com as respostas às perguntas feitas pelo professor. O professor irá divulgar algumas perguntas como guia para estudo.
- O trabalho deverá ser apresentado pessoalmente ao professor em horário agendado;
- O projeto será avaliado com base nas atividades desenvolvidas, das explicações apresentadas, da resposta aos desafios propostos pelo professor, bem como por alguns testes práticos realizados no projeto simulado.

Ferramentas necessárias:

Cisco Packet Tracer 7.1
 Disponível em: https://goo.gl/3cHSbH

Importante: Existem versões disponíveis para os sistemas operacionais Windows (.exe) e GNU/Linux (.tar.gz). Porém, não existe uma versão para OS X. Neste caso, a solução será utilizar uma máquina virtual com o Windows ou o GNU/Linux instalado na mesma.

Componentes do gr	upo:			
Matrícula:	Nome:	 	 	
Matrícula:	Nome:			

Descrição do projeto:

Uma empresa contratou vocês, um renomado grupo de Engenheiros de Redes, para projetar a interligação da rede da matriz com a rede da filial. A matriz localiza-se em uma cidade distante 300 km da filial, e, portanto, essa interligação será por meio de um provedor de acesso. A figura 1 ilustra a topologia idealizada pela empresa.

Figura 1 – Topologia a ser implementada na rede da empresa.

Com base na topologia da figura 1, a infraestrutura central do provedor é composta por dois roteadores – roteador ISP (L) e roteador ISP (R) – e implementam o protocolo IPv4 na faixa 189.89.0/24. Esta infraestrutura interliga os roteadores da empresa – roteador filial e roteador matriz – por meio de modems a cabo, além de prover acesso ao servidor do Google (simulando, de maneira simplificada, um acesso à Internet).

A rede da matriz possui duas áreas distintas de trabalho: área de escritório (rede A), composta por roteador A + switch A; e área de fábrica (rede B), composta por roteador B + switch B. Cada uma destas sub-redes implementam IPv4 com NAT na faixa 192.168.1.0/24. A interconexão dos roteadores A, B e Matriz implementam uma rede IPv4 na faixa 172.86.43.32/28. Na filial da empresa, terá também a implementação de IPv4 com NAT na faixa 10.13.0.0/29.

Os roteadores matriz e ISP (L) estão interconectados por meio de uma rede IPv6 na faixa 2001:FACA:CAFE::/126, e os roteadores filial e ISP (R) por meio da rede IPv6 na faixa 2002:FACE:B00C::/126. Estas faixas de rede são consideradas como os IPs públicos para acesso à Internet, ou seja, serão os IPs externos para a saída de tráfego.

A empresa requisitou que fosse configurada toda a infraestrutura apresentada, incluindo as redes locais e a rede do provedor, conforme as especificações acima. Para tanto, seguem abaixo uma série de tarefas a serem cumpridas para o sucesso da implementação da rede. A implementação será feita utilizando o simulador *Cisco Packet Tracer*. Será fornecido um arquivo base com a infraestrutura previamente interligada, mas não configurada.

Tarefas a realizar:

- 1. Elabore o espaço de endereços da rede da empresa:
 - a. A rede 172.86.43.32/28 que interliga os roteadores A, B e Matriz deve ser dividida em três subredes de tamanho igual. Estas sub-redes são utilizadas única e exclusivamente para a comunicação entre os roteadores mencionados.

Conexão	Máscara de sub-rede (CIDR)	Endereço IP de rede	Endereço IP de broadcast	Faixa de endereços IP válidos
$A \leftrightarrow B$	/			até
B ↔ Matriz	/			até
Matriz ↔ A	/			até

b. Atribua um IP estático para cada interface de rede dos roteadores da rede, obedecendo as faixas previamente descritas. Complete as tabelas abaixo para facilitar a atribuição no projeto:

MATRIZ	Interface		
	GigabitEthernet0/0	GigabitEthernet0/1	GigabitEthernet0/2
Roteador	Matriz→B	Matriz→A	Matriz→ISP (L)
Matriz	/	/	
Roteador	Rede interna	A→B	A→Matriz
A	/	/	/
Roteador	Rede interna	B→Matriz	$B \rightarrow A$
В	/	/	/

PROVEDOR	Interface			
	GigabitEthernet0/0	GigabitEthernet0/1		
Roteador ISP (L)	ISP (L)→Matriz	$\overline{\text{ISP (L)}} \rightarrow \overline{\text{ISP (R)}}$		
		/		
Roteador ISP (R)	ISP (R)→Filial	$\overline{\text{ISP (R)}} \rightarrow \overline{\text{ISP (L)}}$		
		/		

PROVEDOR	Interface		
	GigabitEthernet0/2		
Roteador ISP (L)	ISP→Servidor Google		
	/		

FILIAL	Interface			
	GigabitEthernet0/0	GigabitEthernet0/1		
Roteador Filial	Rede interna	Filial→ISP (R)		
rillai	··/			

- 2. Atribua um IP fixo para o servidor do Google na faixa de IPv4 do provedor ISP: 189.89.89.0/24.
- 3. Adicione e configure um servidor DHCP para cada área da empresa. Sendo um servidor para a rede interna A (distribuindo a faixa 192.168.1.0/24), um para a rede interna B (distribuindo a faixa 192.168.1.0/24) e outro para a rede interna da filial (distribuindo a faixa 10.13.0.0/29), totalizando três servidores DHCP. Lembre-se que cada servidor DHCP terá um IP estático dentro de cada faixa de IPs.
- 4. Configure o serviço de NAT nos roteadores A, B, e filial e-matriz. Verifique o seu funcionamento observando os cabeçalhos das mensagens de entrada e saída da rede, além da tabela NAT em cada roteador.
- 5. Configure e atribua rotas estáticas para cada roteador da rede **matriz** de forma que o tráfego "circule" no sentido horário. Ou seja, um computador da sub-rede A ao tentar se comunicar com um computador na sub-rede B, deverá ter o seu tráfego "roteado" pelos roteadores A, matriz e B, nessa ordem. Da mesma forma, um computador em B ao tentar acessar a Internet, deverá ter o seu tráfego "roteado" pelos roteadores B, A e matriz, nessa ordem. E assim por diante.
- 6. Configure um serviço de túnel IPv6 para IPv4 nos roteadores do **provedor** de forma que seja possível a rede da matriz (IPv6) se comunicar com a filial (IPv6), por intermédio de uma rede IPv4.
- 7. Paralelamente à implementação do túnel, será necessário implementar o roteamento dinâmico entre os demais roteadores da rede por meio do algoritmo OSPF. Entretanto, os roteadores internos à matriz (A e B) não devem implementar OSPF. Para isso, poderá ser utilizado o esquema de "rota default" (estática).
- 8. Uma vez que todas as funcionalidades acima foram corretamente configuradas e implementadas, será possível, com a finalidade de teste, adicionar computadores nas sub-redes A, B ou filial e testar a conexão de uma ponta a outra, bem como o acesso à Internet acessando uma página web hospedada no servidor do Google.