HW1

Justin Nguyen

September 9, 2024

1. $A = A \cap S, S = B \cup B^c$

(a) **Proof:** $A = (A \cap B) \cup (A \cap B^c)$ $(A \cap B) \cup (A \cap B^c)$ $= A \cap (B \cup B^c)$ (Distributive Law) $= A \cap S$ (Definition of a complement) = A

(b) **Proof:** $B \subseteq A \implies A = B \cup (A \cap B^c)$ $B \cup (A \cap B^c)$ $= (B \cup A) \cap (B \cup B^c)$ (Distributive) $= (B \cup A) \cap S$ (Definition of a complement) $= A \cap S$

- 2. (a) **Proof:** $P(A) = P(A \cap B) + P(A \cap B^c)$ We know $A = A \cap (B \cup B^c) = A \cap S = A \implies P(A) = P(A \cap (B \cup B^c))$. (Axiom) Thus $P(A) = P((A \cap B) \cup (A \cap B^c))$. (distributive) B, B^c are disjoint $\implies A \cap B, A \cap B^c$ are also disjoint. $\therefore P(A) = P(A \cap B) + P(A \cap B^c)$.
 - (b) **Proof:** $P(A \cap B) = P(B) P(A^c \cap B)$ $P(B) = P(A \cap B) + P(A^c \cap B)$ (From 2a) $P(A \cap B) = P(A \cap B) + P(A^c \cap B) - P(A^c \cap B) \iff P(A \cap B) = P(A \cap B)$
 - (c) If $B \subseteq A \implies P(A) = P(B) + P(A \cap B^c)$ Counterexample: Let $S = \{1, 2 \cdots 10\}, A = \{1, 2, 3\}, B = \{1\}$ $P(B) + P(A \cap B^c) = \frac{3}{10} + \frac{2}{10} \neq P(A) = \frac{3}{10}$

3. (a) $A \cap B$

- (b) $A \cup B$
- (c) $(A \cap B)^c$
- (d) $(A \cap B^c) \cup (A^c \cap B)$
- 4. (a) $\sum_{i=1}^{5} E_i = 1 \implies P(E_4) = 0.3, P(E_5) = 0.15$
 - (b) $P(E_1) = 0.3 \implies P(E_2) = 0.1 \implies P(E_{3...5}) = 0.2$

- 5. $P(s) = 8\%, P(b) = 6\%, P(s \cap b) = 2\%$
 - (a) P(b) = 6%
 - (b) $P(b \cup s) = P(b) + P(s) P(s \cap b) = 12\%$
 - (c) $P(b \cap s^c) + P(s \cap b^c)$ = $[P(b) - P(b^c \cap s^c)] + [P(s) - P(s^c \cap b^c)]$ (from 2a) = $P(b) + P(s) - 2P(s^c \cap b^c)$ = $P(b) + P(s) - 2P(s \cup b) = 10\%$
- 6. $P(H) = 70\%, P(D) = 30\%, P(H D) = P(H \cap D^c) = 60\%$ $P(D - H) = P(D \cap H^c)$ $= P(D) + P(H^c) - P(D \cup H^c)$ $= 60\% - (100\% - P(H \cap D^c)) = 20\%$
- 7. (a) $S = \{HH, HT, TH, TT\}$
 - (b) Yes, all points are equally likely. Each one has a 25% probability.
 - (c) $A = \{HT, TH\}, B = \{HH, HT, TH\}$
 - (d) i. $P(A) = \frac{2}{4}$ ii. $P(B) = \frac{3}{4}$ iii. $P(A \cap B) = \frac{2}{4}$ iv. $P(A \cup B) = \frac{3}{4}$ v. $P(A^c \cup B) = \frac{1}{4}$
- $\begin{array}{ll} 8. & \text{(a)} & S = \{\\ & (V_1,V_1), (V_1,V_2), (V_1,V_3),\\ & (V_2,V_1), (V_2,V_2), (V_2,V_3),\\ & (V_3,V_1), (V_3,V_2), (V_3,V_3)\\ & \} \end{array}$
 - (b) All points are equally likely. Thus each is $\frac{1}{9}$.
 - (c) $A = \{(V_1, V_1), (V_2, V_2), (V_3, V_3)\}, B = \{(V_1, V_2), (V_2, V_1), (V_2, V_2), (V_2, V_3), (V_3, V_2)\}$ i. $P(A) = \frac{3}{9}$ ii. $P(B) = \frac{5}{9}$ iii. $P(A \cup B) = \frac{7}{9}$ iv. $P(A \cap B) = \frac{1}{9}$
- 9. (a) Let a be the member of the minority group. $S = \{\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\}\}$
 - (b) All points are equally likely, thus each event has probability $\frac{1}{6}$.
 - (c) $P(a) = \frac{3}{6}$
- 10. **Proof:** A_1, A_2, \ldots is a partition of S, and $B \subseteq S \Longrightarrow P(B) = \sum_{i=1}^{\infty} P(B \cap A_i)$ $(\forall i, j) A_i, A_j$ are disjoint $\Longrightarrow B \cap A_i, B \cap A_j$ are disjoint and thus have no overlap. If A_i, A_j were not disjoint, then it would not form a partition of S, which would contradict the given information. $\therefore P(B) = \sum_{i=1}^{\infty} P(B \cap A_i)$.