Shiv Nadar University

Department of Electrical Engineering-(SoE)

EED305: Digital Signal Processing **Lab-6** Instructor: Prof. Vijay Kumar Chakka

Lab Instructors: Prof. Vijay Kumar Chakka & Dr. Ravi Kant Saini

Topic: Discrete Fourier Transform

- 1. Construct a Fourier transformation matrix D of size $N \times N$ in MATLAB, by using the sequence $s_k[n] = e^{\frac{j2\pi}{N}kn}$, $0 \le n \le N-1$, $0 \le k \le N-1$. Where first column of the matrix is $s_0[n]$, $0 \le n \le N-1$, second column is $s_1[n]$, $0 \le n \le N-1$, similarly N^{th} column is $s_{N-1}[n]$, $0 \le n \le N-1$.
- 2. For a given length N=4, verify that these sequences $s_0[n], s_1[n], s_2[n], s_3[n]$ are orthogonal to each other. I.e.,

$$\sum_{n=0}^{N-1} s_i^*[n] s_j[n] = \begin{cases} 0 & \text{for } i \neq j \\ N & \text{for } i = j \end{cases}$$

- 3. Verify the condition that $DD^H = NI$, where I is an Identity matrix. By using the condition $D^{-1} = D^H$.
- 4. Consider a N=4 length input sequence. Compute the (DFT) transformation coefficients X[K] using $X[K] = D^H x[n]$. Compute the inverse transformation (IDFT), using $x[n] = \frac{1}{N} DX[K]$.
- 5. Consider the input sequence of system $x(n) = \{1,2,3,4\}$ having an impulse response $h(n) = \{0,1,0,0\}$. Perform the following analysis:
 - a. Compute the output response of the system y(n).
 - b. Compute its respective 4-DFT's (X[K] and H[K]) and calculate the 4-IDFT y(n) of the sequence Y[K] = X[K]H[K].
 - c. Write your observation about the sequence y(n) obtained in (a) and (b).
- 6. Compute the 50 point (DFT) transformation coefficients X[K] for a given input data sequence x[n] ('inputData.mat') and impulse responses ('h1.mat', 'h2.mat'). Then from obtained coefficients compute $Y_1[K] = X[k]H_1[k]$ and $Y_2[K] = X[K]H_2[K]$. Find the 50-point inverse transformation $y_1(n)$ and $y_2(n)$. Plot the signal x(n), $y_1(n)$, $y_2(n)$. write your observations