

LECTURE 8:

ATTENTION AND TRANSFORMER

University of Washington, Seattle

Fall 2024

Previously in EEP 596...

OUTLINE

Part 1: Transformer motivation

- Limitation of RNNs with sequence data
- Seq2seq and attention
- Attention is all you need

Part 2: Self-attention layer

- Overview
- Key, Query and Value retrieval process
- Multi-headed attention

Part 3: Transformer architecture

- Encoder
- Decoder
- Transformer vs RNN

Part 4: Transformer applications

- NLP
- Computer vision
- Multi-modal
- Signal processing

Transformer Motivation

Limitations of RNNs with sequence data

Seq2Seq and attention

Attention is all you need

Limitations of RNNs

Vanishing and Exploding Gradients

→ Forward Backward output hidden h_0 x_0 input χ_2

Longer input sequence → higher risk of Vanishing/Exploding Gradients!

Each input (token) is fed sequentially → No parallelization

Difficult to store long-term context when sequence is long

If using time-synced many-to-many \rightarrow len(input seq) == len(output seq)

Seq2Seq

(+) Can be trained to translate input sequence to output sequence with two different lengths

Seq2Seq

(-) Suffers from identical limitations as RNNs → Can't process long context, Hard to parallelize

(+) Addresses long context issue

(+) Addresses long context issue

(-) Difficult to parallelize

Attention is all you need (2017)

Attention is all you need (2017)

Attention is all you need (2017)

Attention without RNN is sufficient Can utilize parallelization with GPUs

Self-attention layer

Overview

Key, Query, Value retrieval process

Multi-headed attention

Overview of self-attention layer

Overview of self-attention layer

Key

Query \approx is prior word a subject?

 \approx yes, I am the subject

Multi-headed attention

Transformer Architecture

Encoder

Decoder

Transformer vs RNN

Transformer Architecture

Transformer Architecture

Encoder layer with

- Input embedding with positional encoding
- multi-headed self attention
- Residual connections, Layer norm & dropout

Positional Encoding

Encoder

Decoder layer with

- Masked multi-headed self attention
- Multiheaded cross attention
 - Inputs → Key, Query
 - Outputs → Value

Transformer vs RNN

	Transformers	RNNs
Sequential	No	No
Parallel computation	Yes	No
Long-term dependencies	Yes	Kind of
Scalability	Yes	Problematic
Fine tuning	Yes	Difficult

Transformer Applications

NLP

Computer Vision

Multi-modal

Audio and Speech

Signal processing

NLP

Computer Vision

Alexnet 1st conv filters

ViT 1st linear embedding filters

Multi-modal

Figure 1. Overview of the VATT architecture and the self-supervised, multimodal learning strategy. VATT linearly projects each modality into a feature vector and feeds it into a Transformer encoder. We define a semantically hierarchical common space to account for the granularity of different modalities and employ the noise contrastive estimation to train the model.

Signal processing

Next episode in EEP 596...