

### Mahindra University Hyderabad École Centrale School of Engineering, Minor-2 Examination

Program: B.Tech Branch: Computation & Mathematics Year: III

Semester: II

Subject: Mathematical Foundations for Machine Learning (MA3219)

Date: 16/04/2024 Start Time: 10.00 AM

Time Duration: 1.5 Hours Max. Marks: 20

#### Instructions:

1. All questions are compulsory.

### Q 1: 5 marks

Compute the matrices  $S_b$  and  $S_w$  in Linear Discriminant Analysis (LDA) method for the following two dimensional dataset.

Samples for class  $\omega_1: X1 = (x1, x2) = (4, 2), (2, 4), (2, 3), (3, 6), (4, 4)$ Samples for class  $\omega_2: X2 = (x1, x2) = (9, 10), (6, 8), (9, 5), (8, 7), (10, 8)$ 

# Q 2:

a) Consider a regression problem in which we want to predict variable y from a single feature x. We have  $n \geq 3$  data points,  $(y_i, x_i)_{i=1}^n$ . Consider two possible models to be estimated by ordinary linear regression,

$$y_i = w_0 + w_1 x_i + \epsilon_i \tag{1}$$

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + \epsilon_i \tag{2}$$

where, the error terms  $\epsilon_i$  are independent and identically distributed from a normal distribution with zero mean. Derive a formula for estimating  $w_2$  in Model 2. Assume  $w_0$  and  $w_1$  are known.

b) Will one model fit the training data better than the other, will they fit equally well, or is it impossible to say? Explain your reasoning. [2]

# Q 3:

## 5 marks

Find the loss function in Logistic regression to fit the following two-dimensional binary classification data:

$$X1 = (x1, x2) = (4, 1), (2, 4), (2, 3), (3, 6), (4, 4),$$

$$X2 = (x1, x2) = (9, 10), (6, 8), (9, 5), (8, 7), (10, 8).$$

# Q 4:

# 5 marks

Prove that the following functions are convex on the given domain.

(i) 
$$f(x) = -\ln(\frac{e^x}{1+e^x}), x \in \mathbb{R}.$$
 [2]

(ii) 
$$f(x) = x^p$$
,  $x \in [0, \infty)$  and  $p \ge 1$  is a constant. [1]

(iii) 
$$f(x) = e^{bx}$$
,  $x \in \mathbb{R}$ , where b is a constant. [1]

(iv) 
$$f(x) = -\ln(1-x), x \in (-\infty, 1).$$
 [1]