

WANs: PDH y SDH

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Redes de Banda Ancha 5º Ingeniería de Telecomunicación

Temario

- 1. Introducción a las Redes de Banda Ancha
- 2. Redes de área local (Ethernet, WiFi)
- 3. Redes de área metropolitana, tecnologías de acceso y el problema de la primera milla (ADSL, HFC, Gigabit Ethernet, etc.)
- 4. Redes de área extensa (SDH, ATM, MPLS)
- 5. Técnicas para el diseño de redes

Redes de Área Local

Hemos visto:

- Conceptos básicos
- Ethernet
- Wi-Fi

Tienen limitaciones:

- Distancia
- Número de hosts
- Capacidad
- QoS
- Supervivencia

Grandes redes locales

- Pueden unirse varias LANs con routers IP
- Siguen limitados por las características de las tecnologías LAN (distancia, supervivencia, QoS...)

Redes de Área Extensa

 Enlaces a través de un país o continente

Emplean una WAN

REDES DE BANDA ANCHA Área de Ingeniería Telemática

Redes de Área Extensa

 Enlaces a través de un país o continente

Emplean una WAN

Origen de las WAN...

- PSTN = Public Switched Telephone Network
- Conmutación de Circuitos (...)

Conmutación de circuitos

- Camino dedicado entre dos terminales
- Tres fases:
 - Establecimiento
 - Transferencia
 - Desconexión
- Ventajas
 - Una vez conectado, la transferencia es transparente
 - La capacidad del canal está asignada a la conexión durante toda su duración
 - Calidad de servicio conocida (más fácil que en conmutación de paquetes)
- Desventajas
 - Capacidad del canal asignada a la conexión durante toda su duración
 - Si no se envían datos: capacidad desperdiciada
 - Establecimiento añade retardo

Señal de voz → flujo binario
 E0 (DS0) : 64Kbps

...100010001010101010110100110100100110

- Red de conmutación de circuitos
- Multiplexación de múltiples llamadas en las líneas troncales entre centrales (conmutadores telefónicos)

• TDM = Time Division Multiplexing

REDES DE BANDA ANCHA Área de Ingeniería Telemática

PDH

upna PDH (Plesiochronous Digital Hierarchy)

Multiplexación TDM

- E1 (2048Kbps) = 32xE0
- E2 = 4xE1, E3 = 4xE2, E4 = 4xE3
- T1 (DS1,1.54Mbps) = 24xDS0
- T2 = 4xT1, T3 = 7xT2
- G.701-703

PDH (Plesiochronous Digital Hierarchy)

- Señales plesiócronas:
 - Las velocidades pueden sufrir desplazamientos de fase, jitter y wander pero con unos límites
 - Cada uno su propio reloj
 - Esto limita las velocidades
- E1 (2048Kbps) = 32xE0
- En trama superior a E1 no se puede identificar un E0 concreto
- Demultiplexar para extraer canales menores en la jerarquía

Datos

- CSU/DSU = Channel Service Unit / Digital Service Unit
- Asignan los datos a un canal PDH

Datos

- CSU/DSU = Channel Service Unit / Digital Service Unit
- Asignan los datos a un canal PDH
- Puede ser un E0, un E1, un E3 o por ejemplo parte de un E1 (E1 fraccional)

Limitaciones de PDH

- Falta de estandarización:
 - 3 jerarquías diferentes (Europa, EE.UU., Japón)
 - Problemas de interoperatividad
 - Diferentes formatos de señales y codificaciones
- Complicado extraer una señal de menor capacidad
- Gestión y mantenimiento manual

SONET/SDH

SONET/SDH

- Especificaciones de *Network Node Interface* (NNI)
- Tecnología de transporte. Originalmente para transportar señales PDH
- Permite velocidades elevadas
- Las velocidades están sincronizadas en toda la red
- La sincronización reduce la necesidad de buffering
- Simplifica la inserción y extracción de señales de más baja velocidad sin demultiplexar
- Fácilmente extendible a mayores velocidades
- Compatible entre fabricantes
- Funcionalidades de recuperación ante fallos en los enlaces/nodos
- Funcionalidades de gestión
- Hay tres redes: Transmisión,
 Sincronización y Gestión

SONET y SDH

SONET

- Synchronous Optical NETwork
- Estándar del ANSI
- STS (Synchronous Transport Signal), señal eléctrica
- STS-1 = 51.84Mbps
- OC-1 (Optical Carrier), señal óptica
- Terminología:
 - STS Section, STS Line, STS Path
 - Virtual Tributary

SDH

- Synchronous Digital Hierarchy
- Estándar del ITU (finales de los 80s, G.707)
- SONET caso particular
- En SDH la señal mínima es la de 155.52Mbps (STM-1)
- STM (Synchronous Transport Module), óptico o eléctrico
- Terminología:
 - Regenerator Section, Multiplex
 Section, Higher Order Path
 - Virtual Container

SONET/SDH

- SDH se diseñó para transportar señales de 1.5, 2, 6, 34, 45 y 140 Mbps
- Límite de velocidad impuesto por la tecnología, no por la falta de estándar

SDH	OC Level	Line Rate (Mbps)
	OC-1	51.84
STM-1	<i>OC</i> -3	155.52
STM-4	OC-12	622.08
STM-16	OC-48	2488.32
STM-64	OC-192	9953.28
STM-256	<i>OC-</i> 768	39813.12

Regeneradores

Terminal Multiplexers (TM)

 Multiplexan señales plesiócronas y síncronas en una única señal de nivel superior

Add-Drop Multiplexers (ADM)

- Insertan y extraen señales PDH y SDH
- Distancia entre ellos suele rondar las decenas de Km

Digital Cross-Connect (DXC)

 Conmutación, inserción y extracción de señales PDH y SDH

- PTE : Path Termination Element (Elemento de Terminación de Trayecto)
- Hay trayectos de orden inferior y superior (34Mbps+)
- Trayecto entre donde se ensambla y desensambla la trama SDH
- Incluye el Path OverHead (POH)

- **MSTE**: Multiplex Section-Terminating Element
- MS : Sección de Multiplexación
- Transporte de información entre dos elementos de red consecutivos
- Incluyen y extraen los bytes de Multiplex Section OverHead (MSOH)

- **RSTE**: Regenerator Section-Terminating Element
- **RS** : *Regenerator Section* (Sección de Regeneración)
- Emplea el Regenerator Section OverHead (RSOH)

PPP

PPP

- Point-to-Point Protocol (RFC 1661)
- Creado para la conexión usuario-a-red
- Empleado también en red-a-red
- Ofrece:
 - Framing
 - Protocolo de control del enlace (LCP) para establecer, configurar y comprobar el enlace de datos
 - Protocolos de control específicos para cada protocolo de red (NCP)
- Se emplea sobre enlaces full-duplex que mantienen el orden

Topologías

- Topologías formadas con enlaces punto a punto
- Los enlaces unen nodos de conmutación, normalmente de nivel de red

PPP: encapsulación

- Puede transportar múltiples protocolos simultáneamente
- Marca el comienzo y final de cada trama
- Por defecto encapsulación HDLC (RFC 1662)
 - Flag (0x7e)
 - Address (solo 0xff = All-Stations)
 - Control (solo 0x03 = Unnumbered Information con bit Poll/Final a cero)
 - FCS (calculado desde el campo Address)
- Byte Stuffing
 - Carácter de escape = 0x7d
 - En la secuencia entre los Flags se escapan todos los caracteres 0x7d y 0x7e

PPP over...

- Decíamos que:
- "Se emplea sobre enlaces full-duplex que mantienen el orden"
- (...)

Físico

PPP over...

- Decíamos que:
- "Se emplea sobre enlaces full-duplex que mantienen el orden"
- La unión serie entre los dos extremos puede ser
 - A través de moduladores/demoduladores (modems) que están ...
 - Usando la PSTN (Public Switched Telephone Network)

Resumen

- WANs comúnmente de conmutación de circuitos
- PSTN como primer WAN
- PDH para el transporte de voz digital multiplexada
- SDH para altas velocidades y transportar PDH
- Velocidades concretas, múltiplo unas de otras
- Encapsulado PPP para el transporte de datos sobre una línea punto a punto