Immunological functions of the neuropilins and plexins as receptors for semaphorins

Atsushi Kumanogoh^{1,2,3} and Hitoshi Kikutani^{4,5}

Abstract | Semaphorins were originally identified as axon-guidance molecules that function during neuronal development. However, cumulative evidence indicates that semaphorins also participate in immune responses, both physiological and pathological, and they are now considered to be potential diagnostic and/or therapeutic targets for a range of diseases. The primary receptors for semaphorins are neuropilins and plexins, which have cell type-specific patterns of expression and are involved in multiple signalling responses. In this Review, we focus on the roles of neuropilin 1 (NRP1) and plexins in the regulation of the immune system, and we summarize recent advances in our understanding of their pathological implications.

Immunopathology, World Premier International Immunologu Frontier Research Center, Osaka ²Department of Respiratory Medicine, Allergy and Rheumatic Diseases. Graduate School of Medicine, Osaka Universitu. ³Japan Science and Technologu, Core Research for Evolutional Science and Technologu, Osaka University, 2-2 Ymada-oka, Suita, Osaka 565-0871,

¹Division of

Universitu.

Japan. ⁴Division of Molecular Immunology, World Premier International Immunology Frontier Research Center. Osaka University. ⁵Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka Universitu. 3-1 Ymada-oka, Suita, Osaka 565-0871, Japan. e-mails: kumanogo@imed3. med.osaka-u.ac.ip; kikutani@ragtime.biken. osaka-u.ac.ip doi:10.1038/nri3545 Published online

11 October 2013

Semaphorins were originally identified as axonal growth cone-collapsing proteins that are required to direct neuronal axons to their appropriate targets1. Since the 1990s, when their biological functions were first reported, more than 20 members of the semaphorin family have been found in vertebrates2. Two groups of proteins, the neuropilins (NRP1 and NRP2) and plexins (plexins A1, A2, A3, A4, B1, B2, B3, C1 and D1), have been identified as the main semaphorin receptors^{3–5}. Secreted semaphorins (known as class 3 semaphorins) generally require NRPs as obligate co-receptors to interact with plexins, whereas most membrane-associated semaphorins (known as classes 4, 5, 6 and 7 semaphorins) directly bind to plexins (BOX 1; FIG. 1).

Recent findings have elucidated distinctive mechanistic aspects of these semaphorin receptors; for example, NRP1 is a regulatory T (T_{Rep}) cell marker⁶⁻⁹, and there is crosstalk between plexin-mediated signalling and other signalling pathways, such as WNT- and insulin-like growth factor 1 (IGF1)-mediated signalling pathways^{10,11}. In addition, the accumulated evidence has established that semaphorins and their receptors are involved in many processes beyond axon guidance, including cardiovascular development and growth 12,13, tumour progression, metastasis and suppression^{14–16}, osteoclastogenesis^{10,11,17}, homeostasis of the retina¹⁸ and immune cell regulation 19-25. Semaphorins and their receptors have crucial roles in various phases of physiological and pathological immune responses; these proteins constitute a family of immunoregulatory molecules that we refer to as immune semaphorins26. From a clinical point of view,

semaphorins and their receptors have been implicated in various human diseases, including tumorigenesis5, tumour metastasis²⁷, neurodegenerative diseases²⁸ and immune disorders29.

In light of these recent advances, semaphorins, as well as their receptors and their related signalling molecules, are considered to be potential diagnostic and therapeutic targets for various human diseases, including autoimmunity and allergy. In addition, recent protein structural studies have clearly determined the molecular basis for their ligand-receptor interactions, which provides powerful information to use to develop semaphorin-targeted therapies. In this Review, we discuss our rapidly increasing knowledge of the roles of semaphorin receptors in mice and, where possible, in humans (TABLE 1) to better understand their physiological and pathological implications.

Neuropilin 1

NRP1 and NRP2 are highly conserved transmembrane proteins that were originally identified as neuronal adhesion molecules that function during neuronal development³⁰. NRPs were subsequently identified as neuronal receptors for secreted class 3 semaphorins such as semaphorin 3A (SEMA3A)31,32. As NRPs have short cytoplasmic domains (~40 amino acid residues in length) (FIG. 2), their signals are generally mediated through interacting co-receptors such as plexins^{33,34}; for example, after binding to class 3 semaphorins, NRPs then associate with class A plexins^{33,34}. NRPs also function as co-receptors for several other receptor systems that are involved in

Box 1 | Semaphorins and their receptors

The semaphorin family comprises a large number of phylogenetically conserved proteins that are structurally characterized by the Sema domain in their extracellular regions. The Sema domain has a seven-blade β -propeller structure containing sites for dimerization and binding to semaphorin receptors. On the basis of their carboxy-terminal structural features, semaphorins have been subdivided into eight classes. Members of class 3 are secreted, whereas the other vertebrate semaphorins are membrane associated (classes 4, 5 and 6 are transmembrane proteins, whereas class 7 proteins are membrane bound) and can be cleaved from the cell surface in certain conditions 3.5. Of note, classes 1 and 2 are encoded by invertebrates. Class 8 semaphorins are virally encoded.

Generally, membrane-bound semaphorins (class 4–7) directly bind to plexins. By contrast, secreted semaphorins (class 3) require neuropilins (NRP1 and NRP2) as direct binding co-receptors to enable binding to plexins. However, a growing body of evidence has shown that semaphorin—receptor interactions are more complex than this; for example, semaphorin 3E (SEMA3E) — a secreted semaphorin — directly binds to plexin D1, without NRPs. In both the nervous and immune systems, SEMA7A associates with integrins in addition to plexin C1. In the immune system specifically, SEMA4A and SEMA4D use T cell immunoglobulin and mucin domain-containing protein 2 (TIM2) and CD72, respectively, as a receptor in addition to members of the plexin B family.

In vertebrates, the plexin family consists of nine members, which are canonical semaphorin receptors involved in mediating cytoplasmic signals. In the nervous system, plexin-mediated signals regulate the activities of GTPases and of cytoplasmic or receptor-type protein kinases, as well as regulating integrin-mediated attachment. Plexins can associate with different co-receptors to confer pleiotropic functions on semaphorins; for example, in heart morphogenesis, plexin A1 forms heterodimers with the tyrosine kinase receptors off-track (OTK) and vascular endothelial growth factor receptor 2 (VEGFR2), whereas during osteoclastogenesis, plexin A1 forms receptor complexes with triggering receptor expressed on myeloid cells 2 (TREM2)– DNAX activation protein 12 (DAP12) and NRP1. Plexin B1 associates with the receptor tyrosine kinases MET and ERBB2 to induce the invasive growth of epithelial cells. Thus, semaphorins can trigger multiple signalling cascades to carry out their diverse biological activities.

development, immunity and cancer³⁵; for example, NRP1 is a receptor for vascular endothelial growth factor (VEGF) family members (including the splice variant VEGF₁₆₅), which are expressed by endothelial cells and tumour cells³⁶, as well as for transforming growth factor-β1 (TGFβ1)37. The extracellular domains of NRPs have been shown to have adhesive properties; therefore, careful and critical evaluation of the interactions between NRP1 and other receptors and ligands will be required to definitively determine the roles of NRP1. In addition, it has been reported that the short cytoplasmic domain of NRP1 has a role in integrin functions and VEGF signalling³⁸⁻⁴⁰. The immunological analysis of NRP2, which has a similar structure to NRP1, is still in its infancy. In this Review, we describe what is known about the role of NRP1 in the immune system.

Expression in the immune system. In recent years, it has become clear that NRP1 has a role in the immune response. During the search for human dendritic cell (DC) markers, NRP1 was identified as blood DC antigen 4 (BDCA4; also known as CLEC4C and CD304), which is expressed by plasmacytoid DCs (pDCs)⁴¹. pDCs express Toll-like receptors (TLRs) and thereby recognize viral nucleic acids, which results in the production of high levels of type I interferons (IFNs)⁴². Therefore, the functional role of NRP1 in pDCs has been investigated in the context of viral infection. Incubation of pDCs with an NRP1-specific antibody blocks the induction of IFNα production by viral infection or nucleic acids⁴³. However, the mechanisms that contribute to this phenotype remain unclear.

In the human thymus, NRP1 is expressed on the cell surface of developing T cells; thus, NRP1 expression can be detected in both the cortex and the medulla of the thymus⁴⁴. NRP1 expression has also been observed in

thymic epithelial cells (TECs) and DCs, which indicates that it might be involved in thymocyte development. In addition, *in vitro* co-culture experiments indicate that NRP1 forms homophilic interactions at the cell–cell contacts between T cells and DCs, which suggests that it contributes to the primary immune response in the lymph nodes⁴⁵. However, it remains unclear how and to what extent such homophilic interactions are physiologically relevant to immune responses.

Inhibitory functions: a regulatory T cell marker? The functions of NRP1 in the immune system have been linked to immune inhibition. NRP1 is a specific marker for mouse CD4 $^+$ CD25 $^+$ T $_{\rm Reg}$ cells, although it is poorly expressed by human T cells. Microarray profiling showed that Nrp1 is a forkhead box P3 (FOXP3)-inducible gene, as are CD25 (also known as IL2RA), glucocorticoidinduced TNF receptor-related protein (GITR; also known as TNFRSF18) and cytotoxic T lymphocyte antigen 4 (CTLA4)6,46. NRP1 expressed by T_{Reg} cells might help to increase the contact time between T_{Reg} cells and DCs through its homophilic interaction with DC-expressed NRP1, which might thereby stabilize the interaction between these cells and prevent naive T cells from interacting with DCs46. Therefore, NRP1 seems to contribute to the negative regulation of immune responses by increasing $T_{\text{\tiny Reg}}$ cell activities. A growing body of evidence supports the idea that NRP1 is functionally relevant in T_{Reg} cellmediated immune suppression. First, the lack of NRP1 on CD4+ T cells results in increased severity of experimental autoimmune encephalomyelitis (EAE). In addition, T cells from mice with a conditional knockout of Nrp1 show preferential commitment to the T helper 17 (T₁₁17) cell lineage and decreased T_{Reg} cell functions⁴⁷. Second, NRP1⁺ T_{Reg} cells accumulate in the draining lymph nodes of metastatic tumours, which suggests that NRP1 has a

Axonal growth-cone collapsing proteins

Molecules that induce the loss of motile activity and the cessation of advance of growth cones (the growing tips of axons). Such an axonal guidance process is important to establish connections between pathways in the developing nervous system.

VEGF₁₆

The most active and abundant splice variant of vascular endothelial growth factor (VEGF). It functions as a growth factor in angiogenesis, vasculogenesis and endothelial cell growth.

Experimental autoimmune encephalomyelitis

(EAE). A widely used animal model for studies of multiple sclerosis, which is an inflammatory demyelinating disease of the central nervous system (CNS). It is induced by stimulating an immune response directed against CNS antigens.

Figure 1 | The structure of and interactions between semaphorins and their receptors. Semaphorins are characterized by an extracellular amino-terminal Sema domain followed by one or more cysteine-rich PSI (plexin, semaphorin and integrin) domains. Plexins, which are the most common receptors of semaphorins, consist of an N-terminal Sema domain, followed by a combination of PSI domains and IPTs (immunoglobulin domains shared by plexins and transcription factors) in their extracellular regions. Crystallization studies have shown that semaphorins and plexins interact through their Sema domains. Secreted-type class 3 semaphorins typically require the co-receptor neuropilin 1 (NRP1) to interact with the class A plexin receptor complex. However, semaphorin 3E (SEMA3E) can bind to plexin D1 in a NRP-independent manner (not shown). Membrane-associated class 4 semaphorins bind to class B and class D plexin receptors. In lymphocytes, SEMA4A also binds T cell immunoglobulin and mucin domain-containing protein 2 (TIM2) and SEMA4D binds CD72. Class 6 semaphorins bind class A plexin receptors and do not require NRPs; for example, SEMA6A binds to plexin A4. SEMA6D carries out different biological activities through plexin A1 depending on its co-receptor (that is, off-track or vascular endothelial growth factor receptor 2 (VEGFR2)). SEMA7A signals are mediated through β 1 integrin receptors in both the nervous system and the immune system, and SEMA7A also binds to plexin C1. Plexin C1 is also known as the receptor of viral semaphorins, such as A39R (from poxvirus) and AHV-Sema (from alcelaphine herpesvirus type 1). GAP, GTPase-activating protein.

role in the suppression of antitumour immunity⁴⁸. Third, CD4+ T cell-specific ablation of NRP1 expression results in delayed tumorigenesis in mouse transplanted-tumour models; these tumours contain activated intratumoral CD8+ T cells⁷. Finally, it has recently been reported that NRP1 is important to potentiate $T_{\rm Reg}$ cell functions and survival⁴⁹. In addition, NRP1 has been shown to be crucial for the suppressive activities of $T_{\rm Reg}$ cells in experimental models of antitumour immunity and colitis. Collectively, these findings strongly indicate that NRP1 is involved in $T_{\rm Reg}$ cell-mediated immunosuppression in mice.

A recent report showed that NRP1 expression distinguishes thymus-derived $T_{\rm Reg}$ cells from peripherally derived $T_{\rm Reg}$ cells. By comparing gene expression levels between thymus-derived and peripherally derived $T_{\rm Reg}$ cells using microarrays, NRP1 was found to be expressed at high levels by most thymus-derived $T_{\rm Reg}$ cells but not by mucosa-generated peripherally derived $T_{\rm Reg}$ cells. This indicates that distinct types of infiltrating $T_{\rm Reg}$ cells are involved in different inflammatory conditions 8 . In addition, using T cell receptor-transgenic mice that have defined self antigen specificity,

Table $1 $ The roles of semaphorins and their receptors in the immune system					
Semaphorins and their receptors	Expression in immune cells	Binding partners	Activities	Related diseases	
NRP1	 T cells T_{Reg} cells Tumour cells Endothelial cells 	 Class 3 semaphorins VEGF Co-receptor for TGFβ, HGF, PDGF and their receptors Heparin, integrins, fibronectin and SEMA4A 	Inhibitory: T cell activation* and tumour angiogenesis* [‡]	• Cancer ⁷ • SLE ¹¹⁷	
Plexin A1	DCsPlasmacytoid DCsOsteoclasts	Class 6 semaphorins	Stimulatory: DC activation*, production of type I interferons*† and differentiation of osteoclasts*	• EAE ¹⁷ • Osteopetrosis ¹⁷	
Plexin A4	T cellsDCsMacrophages	Class 6 semaphorins	Inhibitory: T cell activation*	• EAE ⁶⁹ • Sepsis ⁷⁰	
Plexin B1	Microglia Oligodendrocytes	Class 7 semaphorins	 Stimulatory: microglial activation* and injury of oligodendrocytes* Inhibitory: differentiation of osteoblasts* 	 EAE⁷⁹ HAM⁷⁸ Osteoporosis¹⁰ 	
Plexin D1	CD4 ⁺ CD8 ⁺ thymocytes	SEMA3E	Stimulatory: migration of thymocytes into the medulla ^{91*}	NA	
TIM2	Activated T cellsT_H2 cells	SEMA4A	Stimulatory: T cell activation*	EAE ²²	
CD72	B cellsDCs	SEMA4D	Stimulatory: B cell activation** and DC activation*	SLE ¹¹⁸	
α1β1 integrin	MonocytesMacrophages	SEMA7A	Stimulatory: monocyte and macrophage activation*	 EAE²⁴ Pulmonary fibrosis⁸⁸ 	
SEMA3A	T cellsTumour cellsEndothelial cells	Class A plexins	Stimulatory: differentiation of osteoblasts* Inhibitory: monocyte migration**, T cell activation**, tumour angiogenesis** and osteoclast differentiation*	 Atopic dermatitis¹⁰² Allergic rhinitis¹⁰⁴ Osteoporosis¹¹ Rheumatoid arthritis¹¹⁹ Multiple sclerosis¹²⁰ SLE^{100,101} Cardiac dysrhythmia¹²¹ Cancer¹²² 	
SEMA3E	Thymus (especially in the medulla)	Plexin D1	Stimulatory: migration of thymocytes into the medulla ^{91*}	NA	
SEMA4A	DCsActivated T cellsT_H1 cells	Class B plexins Plexin D1 TIM2	Stimulatory: T cell activation* and $\rm T_{\rm H}1$ cell differentiation*	 EAE or multiple sclerosis^{22,96} Atopic dermatitis¹⁰⁵ Pigmentary retinopathy¹⁸ 	
SEMA4B	• T cells • B cells	Not known	Inhibitory: basophil-mediated T_H^2 cell skewing 123*	NA	
SEMA4D	 T cells Activated B cells DCs	Plexin B1 CD72	Stimulatory: B cell activation*†, DC activation*†, microglial activation* and injury of oligodendrocytes*	 EAE⁷⁹ HAM⁷⁸ Immunodeficiency syndrome²¹ Osteopetrosis¹⁰ 	
SEMA6A	• DCs • Langerhans cells	Not known	Stimulatory: granuloma formation [‡]	 LC histiocytosis and dermatopathic lymphadenitis¹²⁴ GPA¹²⁵ 	
SEMA6D	T cellsB cellsNK cells	Plexin A1	Stimulatory: DC activation*	Osteopetrosis ¹⁷	
SEMA7A	Activated T cells	Plexin C1α1β1 integrin	Stimulatory: monocyte and macrophage activation*‡	 Contact hypersensitivity²⁴ EAE²⁴ Pulmonary fibrosis⁸⁸ 	

DC, dendritic cell; EAE, experimental autoimmune encephalomyelitis; GPA, granulomatosis with polyangiitis; HAM, HTLV1-associated myelopathy; HGF, hepatocyte growth factor; LC, Langerhans cell; NA, not applicable; NK, natural killer; NRP1, neuropilin 1; PDGF, platelet-derived growth factor; SEMA, semaphorin; SLE, systemic lupus erythematosus; TIM2, T cell immunoglobulin and mucin domain-containing protein 2; TGF β , transforming growth factor- β ; T_{μ} , T helper; T_{Reg} , regulatory T; VEGF, vascular endothelial growth factor. *The activity has been shown in mouse systems. *The activity has been shown in human systems.

Figure 2 | The structure and binding sites of neuropilins. Neuropilins (NRPs) have two complement-binding homology domains (a1 and a2), two coagulation factor V and VII homology domains (b1 and b2) and a meprin domain (c) in their extracellular regions. Cumulative findings indicate that a and b domains are crucial for ligand binding, including binding to semaphorin 3A (SEMA3A) and vascular endothelial growth factor splice variant VEGF $_{\rm 165}$. Of note, several studies have shown that the b1 domain mediates the high-affinity binding of NRPs to the basic domain of class 3 semaphorins and to VEGFA $_{\rm 108-111}$, such that VEGFA and class 3 semaphorins can compete for their binding to the b1 domain of NRPs $_{\rm 111-114}$. In addition, it has been suggested that the b1 domain of NRP1 binds with high affinity to the basic domain of SEMA3A, whereas the a1 domain of NRP1 helps the Sema domain of SEMA3A to coordinate with the Sema domain of class A plexins and probably to activate the signalling of class A plexins $_{\rm 114-116}$. SEA represent the last amino acid residues (Ser, Glu and Ala) of the cytoplasmic domain, which provide binding to the PDZ (PSD95, DLGA and ZO1 homology) domain-containing protein GIPC1 (also known as synectin).

another study also showed that NRP1 is expressed at high levels in thymus-derived $T_{\rm Reg}$ cells and that it can be used to distinguish between thymus-derived $T_{\rm Reg}$ cells. This indicates that there are functional differences between these cells. Collectively, these data indicate that NRP1 is a marker that distinguishes thymus-derived from peripherally derived $T_{\rm Reg}$ cells, at least in mice. However, further careful investigation will be required to determine whether NRP1 is a stable marker for thymus-derived $T_{\rm Reg}$ cells, as well as whether these findings are applicable to human $T_{\rm Reg}$ cells. In addition, it still remains unclear what the binding partner for NRP1 on $T_{\rm Reg}$ cells might be.

As noted above, NRP1 functions as a co-receptor for multiple ligands in addition to semaphorins, such as VEGF and TGFβ1, which indicates that semaphorins might interact with or compete with other ligands, thereby altering the signalling outcome; for example, VEGF₁₆₅ promotes microvessel outgrowth, whereas SEMA3A suppresses this effect⁵⁰. As a result of the adhesive properties of the NRP extracellular domains, a considerable number of molecules have been reported to be NRP1 ligands. Although NRP1 is thought to function as a 'hub' receptor for different ligands, such adhesive-binding characteristics can produce controversial and confusing results that require further investigation. Of note, it has recently been reported that SEMA4A binds to NRP1 and is relevant to NRP1-mediated T_{Reg} cell functions and stability⁴⁹. However, there are no apparent defects in the development and functions of FOXP3 $^{\scriptscriptstyle +}$ $T_{_{Reg}}$ cells in SEMA4A-deficient mice in physiological conditions⁵¹. Therefore, regarding the ligands for NRP1 and the

mechanisms of NRP1-mediated functions, definitive comprehensive studies using gene-targeted mice and biochemical ligand-binding analysis will be necessary to determine the precise biological roles of NRP1 in $T_{\rm Reg}$ cell-mediated immune functions³⁵.

Plexins

As NRPs have short cytoplasmic tails and are generally unable to generate signals by themselves, cytoplasmic signalling that is mediated by plexins is considered to be crucial to generate semaphorin-mediated biological functions. Plexins are divided into four classes in vertebrates: class A (plexins A1, A2, A3 and A4), class B (plexins B1, B2 and B3), class C (plexin C1) and class D (plexin D1)3,5. The members of the plexin family have highly conserved cytoplasmic domains that encode a GTPase-activating protein (GAP) for RASrelated protein (R-RAS), as well as a GTPase-binding domain and split GAP domains3,52,53. In addition, the cytoplasmic domains of plexins associate with other signalling molecules, such as RHO family GTPases, p21-activated kinase (PAK), p190 RHO GAP (also known as RHO GTPase-activating protein 35)54, PDZ (PSD95, DLGA and ZO1 homology)-RHOGEFs (RHO guanine nucleotide exchange factors)55,56, flavoprotein monooxygenases (also known as MICALs)57, the FERM domain-containing GEFs known as FARPs58,59, RASrelated protein M-RAS60 and RAP1 (REF. 61). Plexins are crucial for actomyosin contraction and microtubule destabilization, and plexin-mediated signalling has been implicated in the inhibition of integrin-mediated cellular adhesion and cytoskeletal remodelling^{4,50,58} (FIG. 3). Furthermore, plexins use tissue- and cell lineage-specific co-receptors, including cytoplasmic and receptor-type protein kinases, which thereby enables semaphorins to carry out diverse functions^{17,62,63} (BOX 1). In this section, we focus on several members of the plexin family for which immunological functions have been identified.

Plexin A1 in DC-mediated immune responses. Plexin A1 is a receptor for both class 3 (secreted) and class 6 (transmembrane) semaphorins. SEMA3A binds a receptor complex formed by class A plexins and NRP1 (REF. 33), whereas the class 6 semaphorins SEMA6C and SEMA6D directly bind to class A plexins^{25,63}. In the immune system, it has been shown that plexin A1 expression is induced by the MHC class II transactivator (CIITA)⁶⁴. Indeed, plexin A1 is expressed at high levels in mature DCs, but at low or undetectable levels in other immune cells such as macrophages, B cells and T cells. Studies using RNA interference and plexin A1-deficient mice have determined the functional importance of plexin A1 in DC-mediated immune responses. Using short hairpin RNA to target plexin A1 expression, it was shown that plexin A1 is involved in the activation of T cells by DCs⁶⁴. Consistent with those findings, we showed that plexin A1-deficient mice have impaired generation of antigen-specific T cells17,25. These studies strongly indicate that plexin A1 is required for DC-mediated T cell responses.

Figure 3 | Effects of semaphorins on integrin function. a | Suppression of integrin functions by semaphorin 3A (SEMA3A) is shown. SEMA3A binding to the neuropilin 1 (NRP1)-plexin A1 receptor complex triggers the dissociation of FERM domaincontaining GEF 2 (FARP2) from NRP1, which has two major roles. First, the RAC guanine nucleotide exchange factor (GEF) activity of FARP2 is activated, which is essential for subsequent recruitment of RND1 to plexin A1 and for the activation of the RAS-related protein (R-RAS) GTPase-activating protein (GAP) activity of plexin A1, which leads to the downregulation of R-RAS activity. Second, released FARP2 binds to PIPKly661 (phosphatidylinositol phosphate kinase type ly 661) and inhibits its PIPKly kinase activity, which leads to the inhibition of integrin functions and focal adhesion. **b** | SEMA7A positively and negatively regulates immune responses through different integrin receptors. SEMA7A that is expressed on activated T cells stimulates peripheral macrophages through $\alpha 1\beta 1$ integrin, which leads to the production of pro-inflammatory cytokines such as interleukin-6 (IL-6), tumour necrosis factor (TNF) and IL-1β. In addition, SEMA7A that is expressed on intestinal epithelial cells induces IL-10 production by intestinal macrophages through ανβ1 integrin. CX₂CR1, CX₂C-chemokine receptor 1; TCR, T cell receptor.

Osteopetrosis

A rare inherited disorder characterized by abnormally dense and brittle bones. It is caused by the failure of osteoclasts to resorb bone.

Regarding the mechanisms of plexin A1 function, our imaging study showed that plexin A1 is involved in sensing SEMA3A during DC migration, particularly for the steps that are involved in transmigration across the lymphatics. During DC migration, plexin A1 is localized at the rear of migrating DCs; in this region, SEMA3A produced by lymphatic endothelial cells induces myosin light-chain phosphorylation to squeeze

the cell body, which enables cells to pass through narrow gaps. In addition, adoptive-transfer experiments showed that SEMA3A that is secreted by lymphatic endothelial cells is involved in the regulation of DC trafficking from peripheral tissues to draining lymph nodes. It is plausible that semaphorins (probably class 3 secreted semaphorins) that are produced by vascular endothelial cells⁶⁵ are also involved in enabling other immune cells to pass through blood vessel walls by regulating their adhesion activities and contractility in a plexin-dependent manner.

Plexin A1 in osteoimmunology. Osteoimmunology is an interdisciplinary research field, in which the interplay between the skeletal and immune systems is studied at the molecular level. A breakthrough in our understanding of plexin A1-mediated signalling was recently made in the field of osteoimmunology (FIG. 4). Disruption of the gene encoding plexin A1 results in abnormalities in both immune responses and bone homeostasis. Regarding the bone phenotype, plexin A1-deficient mice develop osteopetrosis because of decreased bone resorption that is caused by defective development of osteoclasts; SEMA6D is suggested to function as a ligand for plexin A1 in osteoclast differentiation^{17,59}. Indeed, both SEMA6D and plexin A1 are expressed by osteoclasts and recombinant SEMA6D can enhance in vitro osteoclastogenesis. Plexin A1 forms a functional receptor complex with triggering receptor expressed on myeloid cells 2 (TREM2) and the adaptor molecule DNAX-activation protein 12 (DAP12; also known as TYROBP) on osteoclasts17. However, as both SEMA3A and SEMA6D can use plexin A1 as a receptor component, how do their different modes of action regulate bone homeostasis?

Nrp1-knock-in mice in which the activities of SEMA3A are impaired — through the mutation of the NRP1 a1 domain that is responsible for mediating the interaction between the Sema domains of SEMA3A and class A plexins (FIG. 2) — had osteoporosis that was identical to that of SEMA3A-deficient mice11. This study showed that, in the absence of receptor activator of NF-κB ligand (RANKL; also known as TNFSF11), SEMA3A that is produced by osteoblasts binds to NRP1plexin A1 on osteoclast precursor cells and hinders the interaction between plexin A1 and the TREM2-DAP12 complex, thereby suppressing SEMA6D-induced osteoclastogenesis11. By contrast, in the presence of RANKL, the expression of NRP1 is downregulated and SEMA6D binds to the plexin A1-TREM2-DAP12 receptor complex to enhance osteoclastogenesis. The authors also found that SEMA3A repels osteoclast precursor cells to prevent excessive bone disruption, which suggests that the end result of SEMA3A function is decreased osteoclast differentiation and decreased osteopetrosis. In addition to the osteoclast phenotype, deficiency of either SEMA3A or NRP1 results in a decreased number of osteoblasts, decreased expression of osteoblast genes including Runx2 and alkaline phosphatase liver/bone/ kidney isozyme (Alpl) and decreased bone formation, which indicates that SEMA3A positively regulates osteoblast differentiation. SEMA3A promotes the activation

Figure 4 | Plexin A1- and plexin B1-mediated signalling in bone homeostasis. a | Semaphorin 6D (SEMA6D)plexin A1-mediated intracellular signalling in osteoclasts during receptor activator of NF-кВ ligand (RANKL) stimulation is shown. In the presence of SEMA6D expressed by osteoclasts, plexin A1 forms a receptor complex with triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activation protein 12 (DAP12), which mediates osteoclast differentiation through calcium signalling downstream of phospholipase Cy (PLCy) activation. In the presence of RANKL, neuropilin 1 (NRP1) is downregulated in osteoclasts, so SEMA3A does not have an effect on plexin A1 signalling. b | The function of the SEMA3Aplexin A1-NRP1 complex in osteoblast differentiation is shown. Soluble SEMA3A, which is released from osteoblasts, binds to plexin A1 and NRP1 on osteoblasts. This complex signals through FERM domain-containing GEF 2 (FARP2) to activate the small G protein RAC1, which subsequently promotes WNT3A-induced accumulation of β -catenin in the nucleus. Thus, this signalling pathway induces the differentiation of osteoblasts. c | The crosstalk between plexin B1 and insulin-like growth factor 1 (IGF1) signalling is shown. The binding of SEMA4D to plexin B1 contributes to RHOA activation by RHO quanine nucleotide exchange factors (GEFs) in the intracellular region of plexin B1. RHOA activates the downstream kinase RHO-associated protein kinase 1 (ROCK1), which leads to the suppression of IGF1-mediated signalling through phosphorylation of insulin receptor substrate 1 (IRS1); this therefore leads to the inhibition of osteoblast differentiation. APC, adenomatous polyposis coli; AXIN1, axis inhibitor 1; Dvl, Disheveled; GSK3β, glycogen synthase kinase 3β; IGF1R, IGF1 receptor; LRP, low-density lipoprotein receptor-related protein; TCF, T cell-specific transcription factor.

Osteoclasts

Multinucleated cells of haematopoietic origin that degrade the bone matrix. They have a crucial role in both physiological and pathological bone resorption.

Osteoporosis

A common disease that is characterized by low bone mass, microarchitectural disruption and skeletal fragility, which results in an increased risk of fracture. An oversupply of osteoclasts relative to the need for remodelling or an undersupply of osteoblasts relative to the need for cavity repair are important pathophysiological changes in osteoporosis.

of the small G protein RAC1 through FARP2, which enhances WNT3A-induced nuclear accumulation of β -catenin. β -catenin signalling pathways are essential for the differentiation of mesenchymal precursor cells into osteoblasts or adipocytes in bone homeostasis ¹¹ (FIG. 4b). Therefore, these findings indicate not only that there is crosstalk between semaphorin signalling and WNT signalling but also that targeting semaphorins might be a novel molecular basis for the development of anti-osteoclastogenic agents.

Plexin A4: negative and positive roles in the immune system. In the nervous system, plexin A4 functions as a receptor for SEMA3A and SEMA6A⁶⁶. Plexin A4 has a major role in transducing SEMA3A signalling not only in neurons but also in endothelial cells⁶⁷. However, the roles of plexin A4 in the immune system seem to differ from those of plexin A1. Plexin A4 is expressed by T cells, DCs and macrophages⁶⁸, and it has negative

regulatory roles in various immune responses⁶⁹. We previously reported that plexin A4-deficient mice have enhanced T cell priming and exacerbated disease in a mouse model of EAE69. By contrast, plexin A4 seems to have a positive function in TLR-mediated signalling, as plexin A4 defects in innate immune cells result in decreased inflammatory cytokine production in response to TLR stimuli70. It has been suggested that plexin A4 is required for activation of the small GTPase RAC1 and that it thereby modulates JUN N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) activation in macrophages in response to TLR stimuli. Accordingly, plexin A4-deficient mice have attenuated TLR-mediated inflammation, including septic shock⁷⁰. In this situation, SEMA3A — which is upregulated in lymphoid lineage cells such as B cells, T cells, DCs and NK cells following TLR stimulation — functions as a ligand. These findings suggest plexin A4 as a potential therapeutic target for the treatment of sepsis and the related cytokine storm.

Plexin B1 and B2 as receptors for class 4 semaphorins.

Class B plexins are most similar to the scatter-factor receptors, which are a family of transmembrane receptors that lead to invasive growth and that are implicated in cancer⁷¹. Among the class B plexins, the functions of plexin B1 and plexin B2 have been delineated in the context of the class 4 semaphorin SEMA4D^{34,72,73}. Plexin B1 has high affinity for SEMA4D³⁴, which also uses CD72 as an additional receptor in lymphocytes^{20,21}.

In the immune system, plexin B1 is expressed by activated T cells and immature bone marrow-derived DCs (but not by mature DCs or monocytes)⁷⁴, as well as by bone marrow stromal cells, follicular DCs75, microglia and lung DCs^{68,76}. On the basis of its expression pattern, several studies have indicated that through its interactions with SEMA4D, plexin B1 has the following functional roles in the immune system: soluble SEMA4D inhibits the migration of immature DCs and this inhibition can be blocked by plexin B1-specific antibodies74; ligation of plexin B1 on B cells by SEMA4D induces increased B cell proliferation and lifespan⁷⁵; plexin B1 expression on renal glomeruli facilitates the recruitment of SEMA4D-expressing macrophages77; and SEMA4D activates microglia through plexin B1 and transfer of myelin oligodendrocyte glycoprotein (MOG)-specific T cells into plexin B1-deficient mice results in attenuated development of EAE^{78,79}.

The signalling pathways downstream of plexin B1 that are triggered by SEMA4D have been delineated in terms of axonal growth-cone collapse — a process in which small GTPases have been implicated as mediators of the biological functions of semaphorins^{56,80,81}; for example, plexin B1 activates RHOA through the interaction of the carboxy-terminal PDZ-binding domains of plexin B1 with PDZ-RHOGEF and leukaemia-associated RHOGEF (LARG; also known as RHOGEF12). In addition, SEMA4D induces the recruitment of active RACto the cytoplasmic region of plexin B1, which leads to the inhibition of PAK, which is a downstream effector of RAC⁸²

The signalling mechanisms of plexin B1 have also been identified in the field of osteoimmunology (FIG. 4c). Osteoclasts and osteoblasts express SEMA4D and plexin B1, respectively; these interactions inhibit bone formation10. During a search for axon-guidance molecules that function in bone remodelling, it was found that the expression of SEMA4D in osteoclasts is upregulated during RANKL-induced osteoclastogenesis, and that deficiency of either SEMA4D or plexin B1 results in high bone mass phenotypes. The PDZ domain of plexin B1 contributes to RHOA activation through RHOGEFs in osteoblasts10, and dominant-negative RHOA-expressing mice have a high bone mass phenotype similar to that of SEMA4D-deficient and plexin B1-deficient mice. The RHOA-ROCK1 (RHO-associated protein kinase 1) pathway inhibits the phosphorylation of insulin receptor substrate 1 (IRS1), which is involved in IGF1-induced signalling. IGF1 is an important factor for osteoblastogenesis, so its suppression by plexin B1-mediated signals (through the RHOA-ROCK1 pathway) decreases bone formation by osteoblasts. Indeed, SEMA4D suppresses phosphorylation of IRS1 at a tyrosine residue that is essential for AKT and mitogen-activated protein kinase (MAPK) activation, which shows that there is crosstalk between plexin and IGF1 signalling (FIG. 4c).

The functional importance of SEMA4D–plexin B2 interactions has also recently been determined 83,84 . Plexin B2 is involved in the epithelial repair process through its interaction with SEMA4D 84 . THY1+ dendritic epidermal T cells (DETCs) — a type of $\gamma\delta$ T cell — express SEMA4D whereas plexin B2 is expressed in keratinocytes; plexin B2 has effects on DETCs and SEMA4D-mediated $\gamma\delta$ T cell morphology, which indicates that cytoplasmic signals through SEMA4D can be triggered by plexin B2 as a ligand. SEMA4D-deficient mice have defective DETC responses to keratinocyte damage, which results in delayed healing of cutaneous wounds. In addition, negative regulatory roles of plexin B2 in IL-12 or IL-23 p40 subunit production by DCs have been identified 83 .

Plexin C1 and integrins. Both plexin C1 and β1 integrins are receptors for the membrane-associated glycosylphosphatidylinositol (GPI)-anchored semaphorin SEMA7A^{24,34,85,86}. Plexin C1 was initially identified as a receptor for SEMA7A and virally encoded semaphorins34,87. The viral semaphorins A39R (from poxvirus) and AHV-Sema (from alcelaphine herpesvirus type 1) bind to virus-encoded semaphorin protein receptor (VESPR) (also known as plexin C1 and CD232) and induce the production of pro-inflammatory cytokines, thereby modulating the pathogenesis of these viral infections; these effects can be abrogated with a plexin C1-blocking antibody⁸⁷. Similarly, we have shown that recombinant soluble SEMA7A protein has effects on macrophages that include the upregulation of expression of intercellular adhesion molecule 1 (ICAM1) and the induction of expression of pro-inflammatory cytokines such as tumour necrosis factor (TNF) and IL-6 (REF. 24); this finding substantiates the role of SEMA7A in inflammatory responses.

However, although plexin C1 was initially identified as a receptor for SEMA7A, the biological activities of SEMA7A have been delineated in the context of its interactions with integrins. SEMA7A contains an Arg-Gly-Asp sequence, which is a well-conserved integrinbinding motif. In the immune system, we have shown that SEMA7A that is expressed on activated T cells is involved in inducing the production of pro-inflammatory cytokines by macrophages through α1β1 integrin (also known as VLA1)24. Consistent with these findings, SEMA7A-deficient mice are defective in cell-mediated immune responses, including hapten-induced contact hypersensitivity²⁴ and TGFβ1-induced lung fibrosis⁸⁸, in which $\beta 1$ integrin functions as a receptor component. These findings indicate the importance of the interactions between SEMA7A and α1β1 integrin in T cell-mediated macrophage activation. Moreover, we recently showed that SEMA7A that is expressed on intestinal epithelial cells negatively regulates activation of intestinal macrophages through αvβ1 integrin and that this has an important role in intestinal homeostasis86. Thus, SEMA7A has both positive and negative regulatory functions by associating with different types of $\beta 1$ integrin (FIG. 3).

Scatter-factor receptors
A family of transmembrane receptors, of which MET and RON tyrosine kinases are members. MET is the receptor for hepatocyte growth factor and RON is the receptor for macrophage-stimulating protein.

Plexin D1 in SEMA3E-mediated cellular navigation. Plexin D1 was initially identified because of its key role in development of the vasculature^{13,89}; plexin D1 deficiency results in congenital heart defects as a result of improper vessel patterning⁸⁹. SEMA3E and SEMA4A were identified as ligands for plexin D1 (REFS 89,90).

In the immune system, the SEMA3E-plexin D1 axis has a role in thymocyte development 91. The expression of plexin D1 on thymocytes decreases during development of CD4+CD8+ double-positive thymocytes to CD4+ or CD8+ single-positive thymocytes, and SEMA3E is preferentially expressed in the medulla of the thymus. Chemotaxis assays carried out in vitro have shown that SEMA3E binds to CD4+CD8+CD69+ cells and inhibits their CC-chemokine receptor 9 (CCR9)-mediated migration. Consistent with this finding, the thymus in plexin D1-deficient embryos is disorganized compared with the thymus from wild-type control embryos. In addition, when fetal liver cells derived from plexin D1-deficient embryos were transferred to SEMA3E-deficient mice, the boundary between double-positive and singlepositive thymocytes at the corticomedullary junction was disrupted91. These findings indicate that plexin D1 is involved in the development of thymocytes and of thymic architecture.

Several additional roles for plexin D1 in the immune system have been determined. Plexin D1-mediated signals are relevant to germinal centre formation and long-term B cell immune responses⁹². Plexin D1 is expressed by DCs and its absence results in increased production of the IL-12 and IL-23 p40 subunit⁸³. Plexin D1 and its ligand SEMA4A are expressed on macrophages, and macrophage migration towards SEMA4A is abrogated in the presence of plexin D1-blocking antibodies⁹³. However, the plexin D1-mediated signalling mechanisms that control these immune responses remain unclear and require further study.

As described here, cumulative findings indicate that semaphorin receptors have diverse roles in several phases of immune responses, from the initiation of a response to the terminal inflammatory immune reactions. Of note, immune cells circulate and interact with other systems such as the nervous, vascular, epithelial and skeletal systems. Therefore, semaphorin receptormediated biological activities could enhance our understanding of the 'bigger picture' of physiological and pathological immune responses *in vivo*.

Use as diagnostic and therapeutic targets

In the past few years, it has become clear that semaphorins and their receptors are crucially involved in the pathogenesis of various human diseases and that they are therefore potential diagnostic or therapeutic targets^{92,94} (TABLE 1). In the context of the involvement of these proteins in the pathogenesis of immunological disorders, many studies have investigated the relationship between semaphorins and multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus (SLE), allergic diseases and graft-versus-host disease (GVHD). In this section, we focus on the roles of semaphorins in these diseases.

Multiple sclerosis. Multiple sclerosis is a demyelinating autoimmune disease of the central nervous system and a leading cause of lasting neurological disabilities in young adults; EAE is commonly used as an animal model of this disease and has provided evidence of a pathological role for various semaphorins. SEMA3A that is produced in the lymphatics functions as a ligand for the plexin A1-NRP1 receptor complex expressed by DCs, which regulates DC migration from the peripheral tissues to the lymph nodes for antigen presentation to T cells. The lack of SEMA3A-NRP1-plexin A1 interactions results in attenuated development of EAE because of impaired T cell responses²⁵. Recent evidence has highlighted the pathological importance of immune cell migration as a therapeutic target in multiple sclerosis; for example, fingolimod (also known as FTY720) and an α4β1 integrinspecific antibody suppress the relapsing forms of multiple sclerosis by inhibiting cellular migration. Therefore, SEMA3A-NRP1-plexin A1 interactions are potential therapeutic targets for multiple sclerosis.

SEMA4D is highly expressed by T cells and is crucially involved in T cell activation, which requires DC maturation^{20,95}. Indeed, SEMA4D-deficient mice show attenuated EAE because of impaired T cell priming^{21,95}. It seems that SEMA4D is crucially involved in the pathogenesis of EAE, particularly in the initial phases of pathogenic T cell activation that are mediated by interactions between T cells and DCs.

In addition to its pathological roles in the periphery in terms of T cell activation, we have shown that SEMA4D also contributes to neuro-inflammation in the central nervous system, where SEMA4D that is expressed on the cell surface of T cells induces the activation of microglial cells through plexin B1 as well as inducing the death of immature neural cells. Consistent with these findings, SEMA4D-blocking antibodies inhibited neuro-inflammation, which thereby attenuated the development of EAE79. Collectively, these findings indicate that blocking SEMA4D not only inhibits the generation of encephalitogenic T cells but also suppresses the inflammatory neural damage that occurs after clinical onset of EAE. Clinical trials using SEMA4D-blocking antibodies to treat multiple sclerosis have been initiated in the United States (ClinicalTrials.gov, number: NCT01764737).

SEMA4A is highly expressed in DCs and has been shown to have a crucial role in $T_{\rm H}$ cell differentiation^{22,23}. SEMA4A is also involved in the pathogenesis of EAE and multiple sclerosis. Indeed, blocking antibodies that are specific for SEMA4A attenuate EAE, and SEMA4A-deficient mice are resistant to EAE^{22,23} as a result of their decreased generation of MOG peptide-specific CD4+ T cells.

We recently reported that the serum levels of soluble SEMA4A are increased in patients with multiple sclerosis%. Specifically, in these patients, SEMA4A expression is increased on the cell surface of DCs and SEMA4A is shed from these cells. Patients with high SEMA4A levels have $\rm T_H 17$ cell skewing as well as severe disabilities and unresponsiveness to IFN β therapy. Taken together, these results not only indicate that SEMA4A is involved

Fingolimod

An oral sphingosine-1-phosphate receptor modulator that sequesters lymphocytes in the lymph nodes, which prevents them from contributing to an immune reaction. It is approved for the treatment of multiple sclerosis, in which it decreases the rate of relapses in relapsing remitting multiple sclerosis.

Table 2 Immunale size where the	as of limestrate wise of somewharing and their					
Table 2 Immunological phenotypes of knockout mice of semaphorins and their receptors						
Semaphorins and their receptors	Phenotypes of knockout mice	Refs				
SEMA3A	Impaired T cell primingImpaired migration of DCs to the lymph nodes	25 25				
SEMA3E	Impaired antigen-specific activation of T cellsImpaired development of thymocytes in the thymus	92 91				
SEMA4A	• Impaired $T_{\rm H}1$ cell responses induced by <i>Propionibacterium acnes</i> • Enhanced $T_{\rm H}2$ cell responses induced by <i>Nippostrongylus brasiliensis</i> • Impaired antigen presentation by DCs	23 23 23				
SEMA4B	Enhanced basophil-mediated responses	123				
SEMA4D	 Impaired activation of DCs Impaired activation of B cells Impaired migration of monocytes induced by chemokines Impaired secretion of iNOS from microglial cells Impaired platelet responses to vascular injury 	95 20 126 79 127				
SEMA6D	No defects in T cell priming	25				
SEMA7A	 Impaired activation of macrophages Resistance to EAE Hypersensitivity to EAE Resistance to experimental contact dermatitis Enhanced responses to DSS-induced colitis Resistance to lung fibrosis 	24 24 128 24 86 88				
Plexin A1	Impaired migration of DCs to the lymph nodes	25				
Plexin A4	 Enhanced T cell proliferation after TCR stimulation Enhanced responses of EAE Resistance to septic shock 	69 69 70				
Plexin B1	Impaired SEMA4D-mediated microglial activation	79				
Plexin B2	Impaired SEMA4D-mediated microglial activation	79				
Plexin C1	Impaired SEMA7A-mediated monocyte activation	129				
Plexin D1	Impaired development of thymocytes in the thymus	91				

DC, dendritic cell; DSS, dextran sodium sulphate; EAE, experimental autoimmune encephalomyelitis; iNOS, inducible nitric oxide synthase; SEMA, semaphorin; $T_{\rm H}$, T helper; TCR, T cell receptor.

in the pathogenesis of multiple sclerosis by promoting $T_{\rm H}17$ cell skewing but also suggest that SEMA4A could be a diagnostic or a prognostic marker of multiple sclerosis.

SEMA7A is expressed by activated T cells and interacts with $\alpha 1\beta 1$ integrin that is expressed by macrophages to promote the production of pro-inflammatory cytokines. SEMA7A-deficient mice are resistant to EAE and SEMA7A has been pathologically implicated in the effector phase of EAE through its interaction with $\alpha 1\beta 1$ integrin²⁴.

Rheumatoid arthritis and SLE. Rheumatoid arthritis is a chronic inflammatory disorder that typically affects small- and medium-sized peripheral joints, in which the articular cartilage and the surrounding bones are destroyed by proliferative synovitis. The synovial lesion in rheumatoid arthritis is formed by inflammatory cell invasion, proliferation of the lining cells and increased angiogenesis, a process in which expression of the VEGF₁₆₅ splice variant and its receptor NRP1 have been implicated⁹⁷. Furthermore, a recent report showed that treatment with an anti-NRP1 peptide could suppress the development of experimental arthritis in mice⁹⁸, which indicates that similar peptides could be worth testing for the treatment of chronic arthritis.

CD4⁺ T cells that are derived from patients with rheumatoid arthritis have defective SEMA3A expression. SEMA3A enhances the suppressive ability of CD4⁺NRP1⁺ T cells, which leads to IL-10 production and regulatory activities⁹⁹. Furthermore, several reports have suggested that SEMA3A is important in the pathogenesis of SLE^{100,101}. Serum SEMA3A levels, which are decreased in patients with SLE, inversely correlate with the severity of SLE, including the presence of renal damage and of serum cardiolipin-specific antibodies¹⁰⁰. These findings indicate that SEMA3A is a potential therapeutic agent for SLE.

Allergic diseases. The pathological implications of semaphorins have also been reported for allergic diseases. The therapeutic effects of SEMA3A on atopic dermatitis have been shown using mouse models in the context of neuro-immune crosstalk. Atopic dermatitis is a chronically relapsing itch or inflammatory skin condition that markedly reduces the quality of life. Itching sensations are conducted by afferent C fibres, which are unmyelinated nerve fibres that originate from neurons of the dorsal root ganglia. In normal conditions, the free nerve endings of C fibres are located at the boundary between the epidermis and the dermis. By contrast, in patients with atopic dermatitis, C fibres in the epidermis increase

Atopic dermatitis

A chronic inflammatory, relapsing and itchy skin disorder. Impaired epidermal barrier functions and allergic responses have important roles in the pathogenesis of atopic dermatitis.

REVIEWS

NC/Nga mice

A well-described animal model for atopic dermatitis. In conventional housing conditions, these mice develop skin lesions that are clinically and histologically similar to human atopic dermatitis.

and sprout, probably in response to the nerve growth factor (NGF) that is produced by keratinocytes or fibroblasts in response to scratching, which results in hypersensitivity and more itching94. Intracutaneous injection of SEMA3A protein into the skin lesions of NC/Nga mice, which are an animal model of atopic dermatitis, attenuated several symptoms, such as scratching behaviour, erosion and oedema¹⁰². The validity of this therapeutic strategy is supported by the finding that patients with atopic dermatitis have lower levels of SEMA3A in the epidermis compared with control patients. In addition, it has been reported that the expression of SEMA3A is lower in psoriatic skin than in skin from healthy control patients, whereas the expression of NGF is higher 103. Given these findings, it is reasonable to conclude that decreased SEMA3A expression is involved in the development of itching and skin inflammation in both atopic dermatitis and psoriasis. On a related note, decreased SEMA3A expression in the nasal mucosa might contribute to nasal hypersensitivity during allergic rhinitis104, and intranasal administration of recombinant SEMA3A decreases sneezing and nasal rubbing symptoms in mouse rhinitis models104. Therefore, it seems that SEMA3A is required for the homeostasis of the C fibres that conduct itching sensations by balancing the effects of NGF.

SEMA4A has been implicated in the regulation of T_H cell differentiation²³, and increased levels of SEMA4A may be involved in the pathogenesis of autoimmunity⁹⁶. By contrast, SEMA4A insufficiency results in allergic diseases, including atopic dermatitis and airway hypersensitivity ^{105,106}. In a model of ovalbumin-specific experimental asthma, SEMA4A-deficient mice had enhanced airway hyper-reactivity with increased pulmonary eosinophil infiltration, which was associated with increased levels of T_H^2 -type cytokines and IgE in bronchoalveolar lavage fluid. Consistent with these observations, recombinant SEMA4A protein suppresses T_H^2 -type cytokine production and the severity of airway hyper-reactivity. Thus, it is plausible that SEMA4A has therapeutic potential for allergic diseases.

GVHD. Acute GVHD is a major complication in allogeneic bone marrow transplantation, in which donor T cells respond to alloantigens on recipient DCs. In mouse allogeneic bone marrow transplantation, it has been shown that mice transplanted with SEMA4D-deficient T cells

have decreased mortality and GVHD-mediated target organ damage¹⁰⁷, which shows the potential therapeutic application of blocking SEMA4D in tissue and/or organ transplantation.

As described here, new evidence is emerging that semaphorins and their receptors are crucial for the pathogenesis of several diseases, particularly for diseases in which several biological systems, such as the immune, nervous and vascular systems, are involved. Thus, blocking signalling that is mediated by semaphorins might have beneficial effects not only for attenuating immune responses but also for protecting tissues or promoting tissue repair.

Conclusions

Semaphorins form a family of immunoregulatory molecules. In conjunction with their receptors — mainly neuropilins and plexins — semaphorins mediate multiple biological activities. A lack of semaphorin signalling results in several immune disorders — including autoimmune and allergic diseases — but excess semaphorin signalling can also induce disease. Thus, semaphorins and their receptors have crucial roles in maintaining immunological homeostasis. An increased understanding of the mechanisms by which semaphorins and their receptors regulate the immune system should aid in the development of therapeutic targets for several human diseases.

However, several issues still remain to be clarified. First, although NRPs and plexins have been found to mediate cell motility and morphology through their role as semaphorin receptors in the nervous system, it is unknown how and to what extent they also regulate immune cell trafficking in vivo. Second, we need to clarify the molecular basis for the multiple biological activities of semaphorins in different tissues and cells in both physiological and pathological conditions. Third, the details of ligand-receptor interactions remain unclear because of the controversial and confusing nature of findings regarding the adhesive properties of the extracellular domains of NRPs and plexins. Fourth, for the potential clinical application of semaphorins and their receptors, side effects outside of the immune system — for example, in the central nervous and vascular systems — must be considered. To address these issues, careful and definitive evaluation using gene-targeted mice or binding analyses will be crucial (TABLE 2), not only to fully elucidate the functions of these molecules but also to identify potential diagnostic and therapeutic targets for immune disorders.

- Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. *Cell* 75, 1389–1399 (1903)
- Semaphorin Nomenclature Committee. Unified nomenclature for the semaphorins/collapsins. Cell 97, 551–552 (1999).
- Pasterkamp, R. J. Getting neural circuits into shape with semaphorins. *Nature Rev. Neurosci.* 13, 605–618 (2012).
- Takamatsu, H. & Kumanogoh, A. Diverse roles for semaphorin-plexin signaling in the immune system. *Trends Immunol.* 33, 127–135 (2012).
- Tamagnone, L. Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. *Cancer Cell* 22, 145–152 (2012).

- Bruder, D. et al. Neuropilin-1: a surface marker of regulatory T cells. Eur. J. Immunol. 34, 623–630 (2004).
- Hansen, W. et al. Neuropilin 1 deficiency on CD4*Foxp3 regulatory T cells impairs mouse melanoma growth. J. Exp. Med. 209, 2001–2016 (2012).
- Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3 T reg cells. J. Exp. Med. 209, 1723–1742 (2012).
- Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).
 - References 8 and 9 show that NRP1 is a marker of thymus-derived but not of peripherally derived $T_{\rm Reg}$ cells and that it is involved in $T_{\rm Reg}$ cell functions.

- Negishi-Koga, T. et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Med. 17, 1473–1480 (2011).
 - This study shows that SEMA4D inhibits bone formation by inhibiting IGF1-induced signals.
- 11. Hayashi, M. *et al.* Osteoprotection by semaphorin 3A. *Nature* **485**, 69–74 (2012).
 - This study identifies the osteoprotective effects of SEMA3A and its crosstalk with WNT signals.
- Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nature Cell Biol. 6, 1204–1211 (2004).
- Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

- 14. Casazza, A. et al. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J. Clin. Invest. 120, 2684-2698 (2010). This study shows that SEMA3E-plexin D1 interactions are relevant to the malignancies and the metastatic activities of human cancers.
- Maione, F. et al. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J. Clin. Invest. 122, 1832–1848 (2012).
- 16. Maione, F. et al. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. *J. Clin. Invest.* **119**, 3356–3372 (2009). Takegahara, N. *et al.* Plexin-A1 and its interaction with
- DAP12 in immune responses and bone homeostasis. Nature Cell Biol. 8, 615-622 (2006). This is the first definitive study to show that plexin A1 is indispensable in both immune and skeletal systems.
- Toyofuku, T. et al. Endosomal sorting by semaphorin 4A in retinal pigment epithelium supports photoreceptor survival. Genes Dev. 26, 816-829 (2012).
- Bougeret, C. et al. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J. Immunol. 148, 318-323
- Kumanogoh, A. et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling, Immunitu 13, 621-631 (2000). This is the first report to show that semaphorins have crucial roles in the immune system.
- Shi, W. et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity **13**, 633–642 (2000). This is the first knockout study in mice to show that
- semaphorins are crucial for immune responses 22. Kumanogoh, A. et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2
- Nature **419**. 629–633 (2002). Kumanogoh, A. et al. Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity 22, 305-316 (2005)
- Suzuki, K. et al. Semaphorin 7A initiates T-cellmediated inflammatory responses through $\alpha 1\beta 1$ integrin. Nature 446, 680-684 (2007)
- Takamatsu, H. et al. Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. *Nature Immunol.* 11, 594–600 (2010). This is the first definitive study using imaging analysis to show that plexins are involved in immune cell migration.
- Suzuki, K., Kumanogoh, A. & Kikutani, H. Semaphorins and their receptors in immune cell interactions. *Nature Immunol.* **9**, 17–23 (2008).
- Capparuccia, L. & Tamagnone, L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment — two sides of a coin. J. Cell Sci. 122, 1723-1736 (2009).
- Nojima, S. *et al.* A point mutation in Semaphorin 4A associates with defective endosomal sorting and causes retinal degeneration. Nature Commun. 4, 1406 (2013).
- Okuno, T., Nakatsuji, Y. & Kumanogoh, A. The role of immune semaphorins in multiple sclerosis. FEBS Lett. **585**, 3829–3835 (2011).
- Takagi, S. et al. The A5 antigen, a candidate for the neuronal recognition molecule, has homologies to complement components and coagulation factors. Neuron 7, 295-307 (1991).
- He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell **90**, 739–751 (1997).
- Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753-762 (1997).
- Takahashi, T. et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99 59-69 (1999).
- Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPIanchored semaphorins in vertebrates. Cell 99, 71-80 (1999)
 - This study establishes the concept of semaphorinplexin interactions.
- Prud'homme, G. J. & Glinka, Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 3, 921-939 (2012).

- Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor Cell 92, 735-745 (1998). This study identifies that NRP1 is a receptor for VEGF.
- 37. Glinka, Y. & Prud'homme, G. J. Neuropilin-1 is a receptor for transforming growth factor $\beta 1$, activates its latent form, and promotes regulatory T cell activity. *J. Leukoc. Biol.* **84**, 302–310 (2008).
- Robinson, S. D. et al. ανβ3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J. Biol. Chem. 284, 33966-33981 (2009).
- Valdembri, D. et al. Neuropilin-1/GIPC1 signaling regulates $\alpha 5\beta 1$ integrin traffic and function in endothelial cells. PLoS Biol. 7, e25 (2009).
- Lanahan, A. et al. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. *Dev. Cell* **25**, 156–168 (2013).
- Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037-6046 (2000).
- Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. **29**, 163-183 (2011).
- Grage-Griebenow, E. et al. Anti-BDCA-4 (neuropilin-1) antibody can suppress virus-induced IFN- α production of plasmacytoid dendritic cells, Immunol, Cell Biol, 85. 383-390 (2007).
- Lepelletier, Y. et al. Control of human thymocyte migration by neuropilin-1/semaphorin-3A-mediated interactions. Proc. Natl Acad. Sci. USA 104, 5545–5550 (2007). Tordiman, R. *et al.* A neuronal receptor, neuropilin-1.
- is essential for the initiation of the primary immune response. Nature Immunol. 3, 477-482 (2002).
- Sarris, M., Andersen, K. G., Randow, F., Mayr, L. & Betz, A. G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. *Immunity* **28**, 402–413
- Solomon, B. D., Mueller, C., Chae, W. J. Alabanza, L. M. & Bynoe, M. S. Neuropilin-1 attenuates autoreactivity in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 2040-2045 (2011).
- Battaglia, A. et al. Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123, 129-138 (2008).
- Delgoffe, G. M. et al. Stability and function of regulatory T cells is maintained by a neuropilin-1semaphorin-4a axis. Nature 501, 252-256 (2013).
- Serini, G. *et al.* Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. *Nature* **424**, 391–397 (2003).
- Makino, N. et al. Involvement of Sema4A in the progression of experimental autoimmune myocarditis.
- FEBS Lett. **582**, 3935–3940 (2008). Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305, 862-865 (2004).
- Tamagnone, L. & Mazzone, M. Semaphorin signals on the road of endothelial tip cells. *Dev. Cell* **21**, 189–190 (2011).
- Barberis, D. et al. p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling. J. Cell Sci. 118, 4689–4700
- Perrot, V., Vazquez-Prado, J. & Gutkind, J. S. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J. Biol. Chem. 277, 43115-43120
- Swiercz, J. M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51-63 (2002).
- Terman, J. R., Mao, T., Pasterkamp, R. J., Yu, H. H. & Kolodkin, A. L. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexinmediated axonal repulsion. Cell 109, 887-900
- Toyofuku, T. et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nature Neurosci. 8, 1712-1719 (2005).

- 59. Takegahara, N. et al. Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J. 24, 4782-4792 . (2010).
- 60 Saito, Y., Oinuma, I., Fujimoto, S. & Negishi, M. Plexin-B1 is a GTPase activating protein for M-Ras, remodelling dendrite morphology. EMBO Rep. 10, 614-621 (2009).
- Wang, Y. et al. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci. Signal. 5, ra6 (2012).
- Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. *Nature Cell Biol.* **4**, 720–724 (2002).
- Toyofuku, T. et al. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2.
- Genes Dev. 18, 435–447 (2004). Wong, A. W. et al. CIITA-regulated plexin-A1 affects T-cell-dendritic cell interactions. Nature Immunol. 4, 891-898 (2003).
- Gu, C. & Giraudo, E. The role of semaphorins and their receptors in vascular development and cancer. *Exp. Cell Res.* **319**, 1306–1316 (2013).
- Suto, F. et al. Interactions between plexin-A2. plexin-A4, and semaphorin 6A control laminarestricted projection of hippocampal mossy fibers. Neuron **53**, 535–547 (2007).
- Kigel, B., Rabinowicz, N., Varshavsky, A., Kessler, O. & Neufeld, G. Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling. *Blood* **118**, 4285–4296 (2011).
- Roney, K., Holl, E. & Ting, J. Immune plexins and semaphorins: old proteins, new immune functions
- Protein Cell 4, 17–26 (2013). Yamamoto, M. *et al.* Plexin-A4 negatively regulates T lymphocyte responses. *Int. Immunol.* **20**, 413–420
- Wen, H., Lei, Y., Eun, S. Y. & Ting, J. P. Plexin-A4semaphorin 3A signaling is required for Toll-like receptor- and sepsis-induced cytokine storm. *J. Exp. Med.* **207**, 2943–2957 (2010).
- Tamagnone, L. & Comoglio, P. M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 10, 377-383 (2000).
- Deng, S. et al. Plexin-B2, but not Plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J. Neurosci. 27, 6333-6347 (2007).
- Artigiani, S. et al. Functional regulation of semaphorin receptors by proprotein convertases. *J. Biol. Chem.* **278**, 10094–10101 (2003).
- Chabbert-de Ponnat, I. et al. Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. Int. Immunol. 17, 439-447 (2005).
- Granziero, L. et al. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5 + B lymphocytes. *Blood* **101**, 1962-1969 (2003).
- Smith, E. P. et al. Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor. *BMC Immunol.* **12**, 30 (2011).
- Li, M. et al. Endogenous CD100 promotes glomerular injury and macrophage recruitment in experimental crescentic glomerulonephritis. Immunology 128, 114–122 (2009). Giraudon, P. *et al.* Semaphorin CD100 from activated
- T lymphocytes induces process extension collapse in oligodendrocytes and death of immature neural cells. J. Immunol. 172, 1246-1255 (2004).
- Okuno, T. et al. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 1499–1506
- Oinuma, I., Katoh, H., Harada, A. & Negishi, M. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J. Biol. Chem. 278, 25671-25677 (2003)
- Basile, J. R., Barac, A., Zhu, T., Guan, K. L. & Gutkind, J. S. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. *Cancer Res.* **64**, 5212–5224 (2004). Vikis, H. G., Li, W. & Guan, K. L. The plexin-B1/Rac
- interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev. 16, 836-845 (2002).

REVIEWS

- Holl, E. K. et al. Plexin-B2 and Plexin-D1 in dendritic cells: expression and IL-12/IL-23p40 production. PLoS ONF 7, e43333 (2012)
- PLoS ONE 7, e43333 (2012).

 84. Witherden, D. A. et al. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal yô T cell function. Immunity 37, 314–525 (2012).
- Pasterkamp, R. J., Peschon, J. J., Spriggs, M. K. & Kolodkin, A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. *Nature* 424, 398–405 (2003).
- Kang, S. et al. Intestinal epithelial cell-derived semaphorin 7A negatively regulates development of colitis via ανβ1 integrin. J. Immunol. 188, 1108–1116 (2012)
- Comeau, M. R. *et al.* A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. *Immunity* 8, 473–482 (1998).
 Kang, H. R., Lee, C. G., Homer, R. J. & Elias, J. A.
- Kang, H. R., Lee, C. G., Homer, R. J. & Elias, J. A. Semaphorin 7A plays a critical role in TGF-β1-induced pulmonary fibrosis. *J. Exp. Med.* 204, 1083–1093 (2007).
- Gitler, A. D., Lu, M. M. & Epstein, J. A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. *Dev. Cell* 7, 107–116 (2004).
- Toyofuku, T. et al. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J. 26, 1373–1384 (2007).
- Choi, Y. I. et al. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. *Immunity* 29, 888–898 (2008).
- Holl, E. K. et al. Plexin-D1 is a novel regulator of germinal centers and humoral immune responses. J. Immunol. 186, 5603–5611 (2011).
- Meda, C. et al. Semaphorin 4A exerts a proangiogenic effect by enhancing vascular endothelial growth factor-A expression in macrophages. J. Immunol. 188, 4081–4092 (2012).
- 94. Goshima, Y., Sasaki, Y., Yamashita, N. & Nakamura, F. Class 3 semaphorins as a therapeutic target. Expert Opin. Ther. Targets 16, 933–944 (2012).
 95. Kumanogoh, A. et al. Requirement for the lymphocyte
- Kumanogoh, A. et al. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigenspecific T cells and the maturation of dendritic cells. J. Immunol. 169, 1175–1181 (2002).
- Nakatsuji, Y. et al. Elevation of Sema4A implicates Th cell skewing and the efficacy of IFN-β therapy in multiple sclerosis. J. Immunol. 188, 4858–4865 (2012)
- Ikeda, M., Hosoda, Y., Hirose, S., Okada, Y. & Ikeda, E. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J. Pathol. 191, 426–433 (2000).
- Kong, J. S. et al. Anti-neuropilin-1 peptide inhibition of synoviocyte survival, angiogenesis, and experimental arthritis. Arthritis Rheum. 62, 179–190 (2010).
- Catalano, A. The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis. J. Immunol. 185, 6373–6383 (2010)
- Vadasz, Z. et al. Semaphorin 3A is a marker for disease activity and a potential immunoregulator in systemic lupus erythematosus. Arthritis Res. Ther. 14, R146 (2012).

- Vadasz, Z. & Toubi, E. Semaphorin 3A a marker for disease activity and a potential putative diseasemodifying treatment in systemic lupus erythematosus. *Lupus* 21, 1266–1270 (2012).
- 102. Yamaguchi, J. et al. Semaphorin3A alleviates skin lesions and scratching behavior in NC/Nga mice, an atopic dermatitis model. J. Invest. Dermatol. 128, 2842–2849 (2008).
- 103. Kou, K. et al. Decreased expression of semaphorin-3A, a neurite-collapsing factor, is associated with itch in psoriatic skin. Acta Derm. Venereol 92, 521–528 (2012).
- 104. Sawaki, H. et al. Intranasal administration of semaphorin-3A alleviates sneezing and nasal rubbing in a murine model of allergic rhinitis. J. Pharmacol. Sci. 117, 34–44 (2011).
- 105. Nkyimbeng-Takwi, E. H. et al. Neuroimmune semaphorin 4A downregulates the severity of allergic response. Mucosal Immunol. 5, 409–419 (2012).
 106. Morihana, T. et al. An inhibitory role for Sema4A in
- 106. Morihana, T. et al. An inhibitory role for Sema4A in antigen-specific allergic asthma. J. Clin. Immunol. 33, 200–209 (2013).
- 107. Duran-Struuck, R. et al. A novel role for the semaphorin Sema4D in the induction of allo-responses. Biol. Blood Marrow Transplant. 13, 1294–1303 (2007).
 108. Adams, R. H., Lohrum, M., Klostermann, A., Betz, H.
- 108. Adams, R. H., Lohrum, M., Klostermann, A., Betz, H. & Puschel, A. W. The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. *EMBO J.* 16, 6077–6086 (1997).
- 109. Chen, H., He, Z. & Tessier-Lavigne, M. Axon guidance mechanisms: semaphorins as simultaneous repellents and anti-repellents. *Nature Neurosci.* 1, 436–439 (1998).
- Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R. G. & Strittmatter, S. M. Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. *Neuron* 21, 1093–1100 (1998).
- 111. Parker, M. W., Xu, P., Guo, H. F. & Vander Kooi, C. W. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition. *PLoS ONE* 7, e49177 (2012).
 112. Geretti, E., Shimizu, A., Kurschat, P. & Klagsbrun, M.
- 112. Geretti, E., Shimizu, A., Kurschat, P. & Klagsbrun, M Site-directed mutagenesis in the B-neuropillin-2 domain selectively enhances its affinity to VEGF165, but not to semaphorin 3F. J. Biol. Chem. 282, 25698–25707 (2007).
- 113. Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/ semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146, 233–242 (1999).
- 114. Parker, M. W., Guo, H. F., Li, X., Linkugel, A. D. & Vander Kooi, C. W. Function of members of the neuropilin family as essential pleiotropic cell surface receptors. *Biochemistry* 51, 9437–9446 (2012).
- Janssen, B. J. et al. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nature Struct. Mol. Biol. 19, 1293–1299 (2012)
- Siebold, C. & Jones, E. Y. Structural insights into semaphorins and their receptors. Semin. Cell Dev. Biol. 24, 139–145 (2013).
- 117. Vadasz, Z. *et al.* The involvement of immune semaphorins and neuropilin-1 in lupus nephritis. *Lupus* **20**, 1466–1473 (2011).

- 118. Hitomi, Y. et al. Human CD72 splicing isoform responsible for resistance to systemic lupus erythematosus regulates serum immunoglobulin level and is localized in endoplasmic reticulum. BMC Immunol. 13, 72 (2012).
- Takagawa, S. et al. Decreased semaphorin3A expression correlates with disease activity and histological features of rheumatoid arthritis. BMC Musculoskelet Disord. 14, 40 (2013).
- 120. Williams, A. et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130, 2554–2565 (2007).
- leda, M. et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nature Med. 13, 604–612 (2007).
- 122. Catalano, A. et al. Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood 107, 3321–3329 (2006).
- 123. Nakagawa, Y. et al. Identification of semaphorin 4B as a negative regulator of basophil-mediated immune responses. J. Immunol. 186, 2881–2888 (2011).
- 124. Cautier, G. et al. The class 6 semaphorin SEMA6A is induced by interferon-y and defines an activation status of langerhans cells observed in pathological situations. Am. J. Pathol. 168, 453–465 (2006).
- 125. Xie, G. et al. Association of granulomatosis with polyangiitis (Wegener's) with HLA-DPB I *04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 65, 2457–2468 (2013).
- Delaire, S. et al. Biological activity of soluble CD100.
 II. Soluble CD100, similarly to H-SemallI, inhibits immune cell migration. J. Immunol. 166, 4348–4354 (2001).
- 127. Zhu, L. et al. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1039–1045 (2009).
- 128. Čzopik, A. K., Bynoe, M. S., Palm, N., Raine, C. S. & Medzhitov, R. Semaphorin 7A is a negative regulator of T. cell responses. *Immunity* 24, 591–600 (2006)
- of T cell responses. *Immunity* 24, 591–600 (2006). 129. Walzer, T., Galibert, L., Comeau, M. R. & De Smedt, T. Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. *J. Immunol.* 174, 51–59 (2005).

Acknowledgements

We gratefully thank S. Kang, K. Morimoto, S. Nojima and H. Yoshida for help with the figures and tables. This study was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to A.K. and H. K.), and by the Funding Programs for Core Research for Evolutional Science and Technology (to A.K.).

Competing interests statement

The authors declare no competing financial interests.

DATABASES

ClinicalTrails.gov: http://www.clinicaltrials.gov/| NCT01764737

ALL LINKS ARE ACTIVE IN THE ONLINE PDF