CONTROLE E SERVOMECANISMOS

Engenharia da Computação

Aula 18 - "Resposta em Frequência I"

Prof. Dr. Victor Leonardo Yoshimura

Universidade Federal de Mato Grosso do Sul Faculdade de Computação

05 de julho de 2017

Diagramas de Bode

Diagramas de Bode

Resposta à Excitação Senoidal

- Resposta em Frequência: Resposta em regime a uma entrada senoidal.
- Esta resposta foi obtida na aula 14: vide (14.1)-(14.8):

$$u(t) = U_{max} \operatorname{sen} \omega t \stackrel{G(j\omega)}{\Longrightarrow} y(t) = U_{max} |G(j\omega)| \operatorname{sen}(\omega t + \operatorname{arg}(G(j\omega)))$$

- A representação gráfica da resposta em frequência, $G(j\omega)$, pode ser feita por:
 - Diagramas de Bode (logarítmicos);
 - Diagramas de Nyquist (polares);
 - Diagramas de Black-Nichols (log magnitude versus fase).

Diagramas de Bode

Diagramas de Bode

Observe que a resposta em frequência pode ser reescrita como:

$$G(j\omega) = |G(j\omega)|e^{j\arg(G(j\omega))}$$

Para facilitar a escrita de respostas de produtos de FTs, define-se:

$$||G(j\omega)|| = 20\log|G(j\omega)| \quad [\mathsf{dB}] \tag{18.2}$$

Pois, para G(s)H(s):

$$G(j\omega)H(j\omega) = |G(j\omega)H(j\omega)|e^{j(\arg(G(j\omega)) + \arg(H(j\omega)))}$$
(18.3)

Logo:

$$||G(j\omega)H(j\omega)|| = ||G(j\omega)|| + ||H(j\omega)||$$
 (18.4a)

$$||G(\jmath\omega)H(\jmath\omega)|| = ||G(\jmath\omega)|| + ||H(\jmath\omega)||$$
 (18.4a)

 $\arg(G(j\omega)H(j\omega)) = \arg(G(j\omega)) + \arg(H(j\omega))$

(18.4b)

(18.1)

Regras para o Traçado

Observação

Diagramas de Bode: Dois gráficos, $||G|| \times \log \omega$ e $\arg(G) \times \log \omega$. O traçado dos diagramas de Bode necessita de papel mono-log!

- Como a FT é uma função racional, determinamos apenas 4 termos:
 - Termo constante;
 - Fator integrador ou derivador;
 - Fator de 1^a ordem;
 - Fator de 2^a ordem.
- Diagramas exatos: Difícil construção, não apresenta erro;
- Diagramas assintóticos: Simples, porém com erros.

Termo Constante e Integrador/Derivador

Ganho constante (K > 0):

$$||K|| = 20\log|K| \tag{18.5a}$$

$$\arg(K) = 0^{\circ} \tag{18.5b}$$

Termo integrador/derivador:

$$||(j\omega)^{\pm 1}|| = 20\log|(j\omega)^{\pm 1}| = \pm 20\log|\omega|$$
 (18.6a)

$$\arg((j\omega)^{\pm 1}) = \arg(\pm j\omega^{\pm 1}) = \pm 90^{\circ}$$
 (18.6b)

Observação

Termo constante: ganho constante e fase nula para $\omega \in [0,\infty)$. Termo integrador/derivador: variação de ± 20 dB por década, desde a origem e fase constante em $\pm 90^{\circ}$.

Termo de 1ª Ordem
$$\left(1+j\frac{\omega}{\omega_n}\right)^{\pm 1}$$

Determinação de ganho e de fase:

$$||\cdot|| = 20 \log \left| \left(1 + j \frac{\omega}{\omega_n} \right)^{\pm 1} \right| = \pm 20 \log \left| 1 + j \frac{\omega}{\omega_n} \right|$$
$$= \pm 10 \log \left(1 + \left(\frac{\omega}{\omega_n} \right)^2 \right) \quad (18.7a)$$

$$\arg(\cdot) = \pm \arctan\left(\frac{\omega}{\omega_n}\right)$$
 (18.7b)

Regras assintóticas:

- Ganho: Nulo até ω_n , a partir de então $\pm 20 \mathrm{dB}$ por década.
- Fase: Nula até uma década antes de ω_n . 90° uma década após ω_n . Variação linear entre estes valores.

Termo de 1ª Ordem
$$\left(1+j\frac{\omega}{\omega_n}\right)^{\pm 1}$$

$\overline{\log\left(\frac{\omega}{\omega_n}\right)}$	G [dB]	$arg(G)[^{\circ}]$
-3	$\pm 4.34 \cdot 10^{-6}$	$\pm 0,057$
-2	$\pm 4,34 \cdot 10^{-4}$	$\pm 0,57$
-1	$\pm 4,32 \cdot 10^{-2}$	$\pm 5,7$
0	$\pm 3,01$	± 45
1	$\pm 20,04$	$\pm 84,\!29$
2	± 40	$\pm 89,\!43$
3	± 60	$\pm 89,94$

Termo de 2ª Ordem
$$\left(1+2\zeta\left(j\frac{\omega}{\omega_n}\right)+\left(j\frac{\omega}{\omega_n}\right)^2\right)^{\pm 1}$$

Observação

Interessa apenas o caso subamortecido. Por quê?

Ganho e fase:

$$\left\| \left(1 + 2\zeta \left(j \frac{\omega}{\omega_n} \right) + \left(j \frac{\omega}{\omega_n} \right)^2 \right)^{\pm 1} \right\| = \pm 10 \log \left(\left(1 + \left(\frac{\omega}{\omega_n} \right)^2 \right)^2 + \left(2\zeta \frac{\omega}{\omega_n} \right)^2 \right)$$

$$\operatorname{arg} \left(\left(1 + 2\zeta \left(j \frac{\omega}{\omega_n} \right) + \left(j \frac{\omega}{\omega_n} \right)^2 \right)^{\pm 1} \right) = \pm \operatorname{arctg} \left(\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n} \right)^2} \right)$$

$$(18.8b)$$

Termo de 2ª Ordem
$$\left(1+2\zeta\left(j\frac{\omega}{\omega_n}\right)+\left(j\frac{\omega}{\omega_n}\right)^2\right)^{\pm 1}$$

Algumas observações:

- Traçado fortemente dependente do amortecimento!
- Para $\omega \ll \omega_n$: $||\cdot||, \arg(\cdot) \to 0$;
- Para $\omega \gg \omega_n$: $\arg(\cdot) \to 180^\circ$, e:

$$||\cdot|| \to \pm 40 \log \frac{\omega}{\omega_n}$$
 (18.9)

• Para $\omega = \omega_n$, $\arg(\cdot) = \pm 90^\circ$ e o ganho:

$$||\cdot|| = \pm 10\log(1 + (2\zeta)^2)$$
 (18.10)

Frequência e Pico de Ressonância

Considere a FT senoidal:

$$G(j\omega) = \frac{1}{D(j\omega)} = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2}$$
(18.11)

- Frequência de ressonância (ω_r) : Frequência de ganho máximo.
- Pico de ressonância (M_r) : O ganho anteriormente citado.

Aplicando as técnicas de obtenção de mínimo em $||D(j\omega)||$:

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \tag{18.12a}$$

$$M_r = ||G(j\omega_r)|| = \left(2\zeta\sqrt{1-\zeta^2}\right)^{-1}$$
 (18.12b)

Observação

Não há ressonância para $\zeta > \frac{1}{\sqrt{2}} \approx 0.707.$

$$\zeta = 0.1$$
, $\zeta = 0.3$, $\zeta = 0.5$ e $\zeta = 0.707$

Diagramas de Bode

Sistemas de Fase Mínima

Importante!

Considere um SLIT-C estável. Diz-se que este é de fase mínima se seus zeros estiverem no semi-plano complexo esquerdo.

Importante!

Sejam G(s) e H(s) SLIT-Cs estáveis, G(s) de fase mínima, e $||G(j\omega)|| = ||H(j\omega)||, \forall \omega > 0$. Então a excursão de fase de G é menor ou igual à de H.

Observação

O sistema $G(s)=e^{-sT}, T>0$ (atraso de transporte puro) é de fase não-mínima. (Por quê?)

Curva de Ganho e Erros Estáticos

Considere o sistema:

Partindo de (14.10), pode-se reescrever:

$$G(j\omega) = \frac{K}{(j\omega)^N} \prod_{\substack{k=1\\n-N}}^{M} (1+j\omega\tau_k)$$

$$\prod_{i=1}^{N} (1+j\omega T_i)$$
(18.13)

Observação

Note que, com o TVF, $s \to 0 \Rightarrow \omega \to 0$.

Curva de Ganho e Erros Estáticos

Partindo de (14.13):

$$||G(j0)|| = 20 \log K_p, \quad N = 0$$
 (18.14)

Partindo de (14.15):

$$||G(j\omega)|| = 20 \log \left| \frac{K_v}{j\omega} \right|, \quad N = 1$$
 (18.15)

Em (18.15), observe que $||G(jK_v)|| = 0$ dB. Partindo de (14.17):

$$||G(j\omega)|| = 20\log\left|\frac{K_a}{(j\omega)^2}\right|, \quad N = 2$$
(18.16)

Similarmente, para $||G(j\sqrt{K_a})|| = 0$, obtém-se a constante de erro.