中国科学技术大学 2020-2021学年第2学期期末试卷

课程名称: 概率论 日期: 2021年7月11日 开课院系: 数学科学学院

姓名: _			学号	·:				
题号	1	2	3	4	5	6	7	总分
分数								

1. (15分) 设 $\{X_k: 1 \le k \le n\}$ 独立同分布且方差有限的随机变量列, 记

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k,$$

求协方差 $Cov(\overline{X}, X_k - \overline{X})$.

2. (15分) (X,Y) 联合密度为

$$f(x,y)=cx(y-x)e^{-y},\ 0\leq x\leq y<\infty.$$

求常数c, 条件密度 $f_{X|Y}(x|y)$ 与条件期望 $\mathbb{E}(Y|X)$.

3. (15分) 设U,V为独立地均匀地取自n维单位超立方体上两点, X_n 表示两点欧氏距离. 证明

$$\mathbb{E}(X_n)/\sqrt{n} \to 1/\sqrt{6}, \quad n \to \infty.$$

4. (15分) 设 $\{X_k\}$ 相互独立且服从指数分布, $\mathbb{E}(X_k) = \mu_k$. 证明若

$$\lim_{n\to\infty}\frac{\max\{\mu_1,\ldots,\mu_n\}}{\sum_{k=1}^n\mu_k}=0,$$

则

$$\frac{1}{\sqrt{\sum_{k=1}^{n} \mu_k^2}} \sum_{k=1}^{n} (X_k - \mu_k) \xrightarrow{D} N(0,1).$$

- 5. (15分) 对所有取正整数值的随机变量X, 若给定 $\mathbb{E}(X) = 1/p \ (p \in (0,1))$, 问何时X的熵最大? 并求最大熵.
- 6. (10分) 对某概率空间上随机变量 X, X_n 和 N_k , 其中 N_k 服从参数为正整数k的Poisson分布. 若 $X_n \xrightarrow{D} X$ 且 $\{X_n\}$ 与 N_k 独立, 试证明

$$X_{N_k} \xrightarrow{D} X, \quad k \to \infty.$$

- 7. (15分) 高斯随机矩阵定义为 $A_n=(a_{ij}^{(n)})_{i,j=1}^2$, 其中 $\{a_{ij}^{(n)}:1\leq i,j\leq 2,n=1,2,\ldots\}$ 为独立同标椎正态分布随机变量列. $|\mathbf{x}|$ 表示2维列向量 \mathbf{x} 的标准欧氏范数,试回答
 - (i) 若非零随机向量 \mathbf{x} (可能退化为一固定向量)与 A_1 独立,则 $A_1\mathbf{x}$ |与 \mathbf{x} 独立;
 - (ii)任给非零2维向量x, 试证明

$$\frac{1}{n}\log\left(\frac{|A_nA_{n-1}\cdots A_1\mathbf{x}|}{|\mathbf{x}|}\right)$$

的极限存在且与x无关(不必求出精确的值).