Semaine du 09/03 au 13/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(\mathbb{K}[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine **si et seulement si** il est divisible par X - a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

2 Méthodes à maîtriser

- Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.

3 Questions de cours

Base duale

Soit E un espace vectoriel de base (e_1, \dots, e_n) . Montrer que la famille des formes linéaires coordonnées (e_1^*, \dots, e_n^*) est une base de l'espace dual E^* .

Divisibilité et racines

Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Montrer que a est racine de P si et seulement si X - a divise P.

Polynômes «périodiques»

Déterminer les polynômes $P \in \mathbb{K}[X]$ tels que P(X + 1) = P(X).

Formule de Leibniz

Soit $(P, Q) \in \mathbb{K}[X]^2$. On admet que (PQ)' = P'Q + PQ'. Montrer que pour tout $n \in \mathbb{N}$,

$$(PQ)^{(n)} = \sum_{k=0}^{n} {n \choose k} P^{(k)} Q^{(n-k)}$$

Formule de Taylor

Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Montrer que

$$P(X + a) = \sum_{n=0}^{+\infty} \frac{P^{(k)}(a)}{k!} X^{k} 0$$

Identité de Vandermonde

Soit
$$n \in \mathbb{N}$$
. Montrer que $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$.