Smart Obstacle Avoidance

Time required: 60 minutes

By combining 90 degree turns and ultrasonic sensor readings, your robot can determine which way to go when it senses an obstacle. This program uses more blocks (functions) and a Boolean variable to track whether an obstacle has been detected or not.

A Boolean variable is either true or false. mBlock doesn't have Boolean variables, we use a 0 for false or 1 for true.

A Boolean variable (also known as a flag) keeps track of the state of the mBot, it allows the mBot to "remember" something for later use. This program will remember whether an obstacle has been detected or not.

Tutorial Assignment

- 1. Start mBlock.
- 2. Open Calibrate Distance and Square
- 3. Save the program as **Smart Obstacle Avoidance**.
- 4. Complete and test the program as pictured with the requirements listed.

Requirements

- When it detects an obstacle: turn right, take a sensor reading, turn left, take a sensor reading. Turn the robot in the direction that has the longest distance.
- Use the accurate turn and movement programs created earlier to make turns and movement more accurate.
- Test the obstacle avoidance with your foot.

Assignment

Start with your tutorial project and add the following.

- Setup a maze with available objects, see if your robot can navigate through the maze.
- When the robot moves forward, if there is an obstacle ahead (e.g. 50 cm away), the robot will be alerted and turn on an alarm light and/or very short sound.

Page 1 of 5 Revised: 10/8/2023

Page 2 of 5 Revised: 10/8/2023

Page 3 of 5 Revised: 10/8/2023

Page 4 of 5 Revised: 10/8/2023

Assignment Submission

- **All students** → Attach finished programs to the assignment in Blackboard.
- **In class assignment submission** → Demonstrate in person.
- Online submission \rightarrow A link to a YouTube video recording showing the assignment placed in the submission area in BlackBoard.

Page 5 of 5 Revised: 10/8/2023