CHAPTER - 19

Differential Equations

EE24BTECH11039 - Ranjith

I. MCQ's with One Correct Answer

- 1) The differential equation whose solution is $Ax^2 + By^2 = 1$ where A and B are arbitrary constants is of
 - a) second order and second degree
 - b) first order and second degree
 - c) first order and first degree
 - d) second order and first degree

[2006]

- 2) The differential equations of all the circles passing through the origin and having their centres on x-axis is

 - a) $y^2 = x^2 + 2xy\frac{dy}{dx}$ b) $y^2 = x^2 2xy\frac{dy}{dx}$ c) $x^2 = y^2 + xy\frac{dy}{dx}$ d) $x^2 = y^2 + 3xy\frac{dy}{dx}$

[2007]

- 3) The solution of the differential equation $\frac{dy}{dx} =$ $\frac{x+y}{x}$ satisfying the condition y(1) = 1 is
 - a) $y = \ln x + x$
 - b) $y = x \ln x + x^2$
 - c) $y = xe^{(x-1)}$
 - d) $y = x \ln x + x$

[2008]

- 4) The differential equation which represents the family of curves $y = c_1 e^{c_2} x$, where c_1 and c_2 are arbitrary constants, is

 - a) $\frac{d^2y}{dx^2} = y\frac{dy}{dx}$ b) $y\frac{d^2y}{dx^2} = \frac{dy}{dx}$ c) $y\frac{d^2y}{dx^2} = (\frac{dy}{dx})^2$ d) $\frac{dy}{dx} = y^2$

[2009]

- 5) Solutions of the differential equation $\cos x dy =$ $y(\sin x - y)dx$, $0 < x < \frac{\pi}{2}$ is
 - a) $y \sec x = \tan x + c$
 - b) $y \tan x = \sec x + c$
 - c) $\tan x = (\sec x + c)y$
 - d) $\sec x = (\tan x + c)y$

[2010]

- 6) If $\frac{d^2y}{dx^2} = y + 3$ and y(0) = 2, then $y(\ln 2 \text{ is equal})$
 - a) 5
 - b) 13
 - c) -2
 - d) 7

[2011]

- 7) Let be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by differential equation $\frac{dV_{(t)}}{dt} = -k(T-t)$, where k is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is

 - a) $l \frac{kT^2}{2}$ b) $l \frac{k(T-t)^2}{2}$ c) e^{-kT}

 - d) $T^2 \frac{1}{\iota}$

[2011]

- 8) The population p(t) at time of a certain mouse species satisfies the differential equation $\frac{dp_tt}{dt}$ = 0.5p(t) - 450.If p(0) = 850, then the time at which the population becomes zero is:
 - a) 2 ln 18
 - b) 2 ln 9
 - c) $\frac{1}{2} \ln 18$

[2012]

- 9) At present, a firm is manufacturing 2000times.It is estimated that the rate of change of production P with respect to additional number of workers x is given by $\frac{dP}{dx} = 100 - 12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is
 - a) 2500
 - b) 3000
 - c) 3500
 - d) 4500

[JEE M 2013]

- 10) Let the population of rabbits surviving at time t be governed by the differential equation $\frac{dp(t)}{dt}$ = $\frac{1}{2}p(t) - 200.\text{If}P(0) = 100, thenp(t)equals:$
 - a) $600 500e^{\frac{t}{2}}$
 - b) $400 300e^{\frac{-t}{2}}$
 - c) $400 300e^{\frac{t}{2}}$
 - d) $300 200e^{\frac{-t}{2}}$

[JEE M 2014]

- 11) Let y(x) be the solution of the differential equation $(x \log x) \frac{dy}{dx} + y = 2x \log x, (x \ge 1)$. Then y(e) is equal to:
 - a) 2
 - b) 2e
 - c) *e*
 - d) 0

[JEE M 2015]

- 12) If the curve y = f(x) passes through the point (1,1) and satisfies the differential equation, y(1+xy)dx = xdy, then $f(\frac{-1}{2})$ is equals to
 - a)
 - b)
 - c)

[JEE M 2016]

- 13) If $(24 \sin x) \frac{dy}{dx} + (y+1) \cos x = 0$ and y(0) = 1then $y(\frac{\pi}{2})$ is equal to

 - a) $\frac{4}{3}$ b) $\frac{1}{3}$ c) $\frac{2}{3}$ d) $\frac{1}{3}$

[JEE M 2017]

- 14) Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x, x \in (0, 2)$. If $y(\frac{\pi}{2}) = 0$, then $y(\frac{\pi}{6})$ is equal to

[JEE M 2018]

- 15) If y = y(x) is the differential equation $\sin x \frac{dy}{dx} + 2y = x^2$ satisfying y(a) = 1, then $y(\frac{1}{2})$ is equal to

 - d)

[JEE M 2019-9April(M)]

- 16) The solution of the differential equation $x\frac{dy}{dx}$ + $2y = x^2(x \neq 0)$ withy(1) = 1, is:

 - a) $y = \frac{4}{5}x^3 + \frac{1}{5x^2}$ b) $y = \frac{x^3}{5} + \frac{1}{5x^2}$ c) $y = \frac{x^2}{4} + \frac{3}{4x^2}$ d) $y = \frac{3}{4}x^2 + \frac{1}{4x^2}$

[JEE M 2019-9April(M)]