Hadoop, Hive and Spark based distributed data processing and ML System building

- 1. Install and configure Hadoop
- 2. Install Hive on Hadoop
- 3. Run distributed query using Hive and do data query
- 4. Install Spark and load bank.csv and do data anyalse
- 5. Create RandomForestClassifier using Spark ML
- Problem Statement Implement data processing tasks using Spark DataFrame API

github link: https://github.com/bairagis/hadoop-spark-hive

|-- poutcome: string (nullable = true)
|-- y: string (nullable = true)

```
import pandas as pd
import matplotlib.pyplot as plt
```

1. Utilize PySpark DataFrame API for tasks like filtering, grouping, and aggregation.

```
1. *Installing PySpark *:
!pip install pyspark
Requirement already satisfied: pyspark in /usr/local/lib/python3.11/dist-packages (3.5.1)
    Requirement already satisfied: py4j==0.10.9.7 in /usr/local/lib/python3.11/dist-packages (from pyspark) (0.10.9.7)
   2. Creating a Spark Session:
from pyspark.sql import SparkSession
# Create a SparkSession
spark = SparkSession.builder.appName("SparkSession").getOrCreate()
   3. Loading Dataset:
# Import necessary libraries
from pyspark.sql.functions import col
# Load the dataset into a DataFrame
file_path = "bank.csv"
df = spark.read.csv(file_path, header=True, inferSchema=True)
# Show the schema of the DataFrame
df.printSchema()
      |-- age: integer (nullable = true)
      |-- job: string (nullable = true)
      -- marital: string (nullable = true)
      |-- education: string (nullable = true)
      |-- default: string (nullable = true)
|-- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      -- loan: string (nullable = true)
      |-- contact: string (nullable = true)
      |-- day: integer (nullable = true)
      |-- month: string (nullable = true)
      -- duration: integer (nullable = true)
      |-- campaign: integer (nullable = true)
      |-- pdays: integer (nullable = true)
      |-- previous: integer (nullable = true)
```

Display the first few rows of the DataFrame
df.show()

- 4	++			+	+	+			H	+			+	+	++	
	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	ро
Ī	30	unemployed	married	primary	l no	1787	l no	no	cellular	19	oct	79	1	-1	0	u
i	33	services	married	secondary	no	4789	yes	yes	cellular	11	may	220	j 1	339	j 4 j	f
i	35	management	single	tertiary	no	1350	yes	no	cellular	16	apr	185	j 1	330	j 1 j	f
i	30	management	married	tertiary	j no	1476	yes	yes	unknown	j 3 j	j un	199	j 4	j -1	į oj	u
j	59	blue-collar	married	secondary	j no	0	yes	no	unknown	5	may	226	j 1	j -1	j 0 j	u
	35	management	single	tertiary	l no	747	no	l no	cellular	23	feb	141	2	176	3	f
	36	self-employed	married	tertiary	l no	307	yes	l no	cellular	14	may	341	1	330	2	
	39	technician	married	secondary	l no	147	yes	l no	cellular	6	may	151	2	-1	0	u
	41	entrepreneur	married	tertiary	l no	221	yes	l no	unknown	14	may	57	2	-1	0	u
	43	services	married	primary	l no	-88	yes	yes	cellular	17	apr	313	1	147	2	f
	39			secondary		9374	yes	l no	unknown	20	may	273	1	-1	0	u
	43	admin.	married	secondary	l no	264	yes	no	cellular	17	apr	113	2	-1	0	u
	36	technician	married	tertiary	l no	1109	no	no	cellular	13	aug	328	2	-1	0	u
	20	student	single	secondary	l no	502	no		cellular	1	apr	261	1	-1	0	u
	31	blue-collar		,			,		cellular		jan		1	241		f
	40	management				194	l no	, ,	cellular		aug			-1	0	u
	56	technician		,					cellular		aug			-1		u
	37	admin.		tertiary			,	l no	cellular		apr			152		f
- 1	25	blue-collar					,			- 1	may			-1		u
	31	services	married	secondary	l no	132	l no	no	cellular	7	jul	148	1	152	1	
+	++		+	+	+	+		+	+	+		+	+	+	++	

only showing top 20 rows

Task 1: Filtering

```
import matplotlib.pyplot as plt

# Task 1: Filtering
# Filter the DataFrame to select rows where the 'Education' column is 'primary'
primary_df = df.filter(col("education") == "primary")
primary_df.show()

# Convert the filtered DataFrame to Pandas
primary_pandas_df = primary_df.toPandas()
```


only showing top 20 rows

Task 2: Grouping and Aggregation

```
# Task 2: Grouping and Aggregation
# Group the DataFrame by 'marital' and 'job', then calculate the average the 'duration' for each group
grouped_df = df.groupBy("marital", "job").agg({"duration": "sum"})
grouped_df.show()

# Convert the grouped DataFrame to Pandas
grouped_pandas_df = grouped_df.toPandas()

# Pivot the DataFrame for easy plotting
pivot_df = grouped_pandas_df.pivot(index='marital', columns='job', values='sum(duration)')
```

```
# Plot a grouped bar chart
ax = pivot_df.plot(kind='bar', figsize=(12, 8), rot=45)
ax.set_xlabel('month')
ax.set_ylabel('Sum of Campaign')
ax.set_title('Campaign Count Grouped by housing loan and Month')
plt.legend(title='Month')
plt.show()
```

sum(duration	,	marital
2905	self-employed	++
3023	management	
388	self-employed	
1546	self-employed	
3551	entrepreneur	married
38	unknown	divorced
5862	admin.	married
1988	admin.	divorced
2444	unemployed	married
7004	management	single
6366	services	married
2954	services	single
17896	blue-collar	married
1625	services	divorced
9528	technician	married
636	entrepreneur	divorced
508	housemaid	single
332	retired	single
3365	admin.	single
2032	technician	divorced

Campaign Count Grouped by housing loan and Month Month admin. 175000 blue-collar entrepreneur housemaid 150000 management retired self-employed services 125000 student technician unemployed Sum of Campaign unknown 100000 75000 50000 25000 month

3. Handle missing data and outliers using Spark's data preprocessing capabilities.

1. Fill Missing Values:

For numeric columns, you can fill missing values with mean, median, or any other statistical measure.

df.show()

only showing top 20 rows

```
# find missing values using pyspark
from pyspark.sql.functions import col,isnan, when, count

df.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in df.columns]
    ).show()
```


Implement a Classification AI Model using Spark

```
# import pyspark ml
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

# train test split
train_df, test_df = df.randomSplit([0.7, 0.3], seed=42)
# train the random forest classifier
```

Task

Use spark ml randomforestclassifier to train the model with train_df and test_df. Explain the selected code. Explain the error in the selected code. If possible, fix the error and incorporate the changes into the existing code. Otherwise, try to diagnose the error.

Identify categorical columns

Subtask:

Determine which columns in the DataFrame are of string type and need to be converted.

Reasoning: Iterate through the columns and check their data types to identify string columns.

```
string_cols = [col_name for col_name, col_type in df.dtypes if col_type == 'string']
print("String columns:", string_cols)

String columns: ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y']
```

Apply string indexing

Subtask:

Use StringIndexer to convert each categorical string column into a numerical index column.

Reasoning: Convert the categorical string columns to numerical indices using StringIndexer as identified in the previous step.

```
from pyspark.ml.feature import StringIndexer
string_cols = [col_name for col_name, col_type in df.dtypes if col_type == 'string']
indexed cols = [col name + " indexed" for col name in string cols]
indexer = StringIndexer(inputCols=string_cols, outputCols=indexed_cols)
indexed df = indexer.fit(df).transform(df)
indexed_df.printSchema()
→ root
      |-- age: integer (nullable = true)
      -- job: string (nullable = true)
      |-- marital: string (nullable = true)
      |-- education: string (nullable = true)
      |-- default: string (nullable = true)
|-- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      -- loan: string (nullable = true)
      -- contact: string (nullable = true)
      |-- day: integer (nullable = true)
      -- month: string (nullable = true)
      |-- duration: integer (nullable = true)
      -- campaign: integer (nullable = true)
      -- pdays: integer (nullable = true)
      |-- previous: integer (nullable = true)
      -- poutcome: string (nullable = true)
      |-- y: string (nullable = true)
      I-- iob indexed: double (nullable = false)
      |-- marital_indexed: double (nullable = false)
      -- education_indexed: double (nullable = false)
      |-- default_indexed: double (nullable = false)
      -- housing_indexed: double (nullable = false)
      -- loan_indexed: double (nullable = false)
      |-- contact_indexed: double (nullable = false)
      -- month_indexed: double (nullable = false)
      -- poutcome indexed: double (nullable = false)
      |-- y_indexed: double (nullable = false)
```

Apply one-hot encoding

Subtask:

Use OneHotEncoder to convert the indexed columns into one-hot encoded vector columns.

Reasoning: Import OneHotEncoder and apply it to the indexed columns to create one-hot encoded vector columns as per the instructions.

```
from pyspark.ml.feature import OneHotEncoder
indexed_cols = [col_name + "_indexed" for col_name, col_type in df.dtypes if col_type == 'string']
encoded_cols = [col_name + "_vec" for col_name in indexed_cols]
encoder = OneHotEncoder(inputCols=indexed cols, outputCols=encoded cols)
encoded_df = encoder.fit(indexed_df).transform(indexed_df)
encoded_df.printSchema()
→ root
       |-- age: integer (nullable = true)
       |-- job: string (nullable = true)
       |-- marital: string (nullable = true)
       |-- education: string (nullable = true)
       |-- default: string (nullable = true)
       |-- balance: integer (nullable = true)
       -- housing: string (nullable = true)
       -- loan: string (nullable = true)
       |-- contact: string (nullable = true)
       -- day: integer (nullable = true)
       |-- month: string (nullable = true)
|-- duration: integer (nullable = true)
```

```
|-- campaign: integer (nullable = true)
-- pdays: integer (nullable = true)
|-- previous: integer (nullable = true)
-- poutcome: string (nullable = true)
|-- y: string (nullable = true)
|-- job_indexed: double (nullable = false)
-- marital_indexed: double (nullable = false)
-- education indexed: double (nullable = false)
 -- default_indexed: double (nullable = false)
-- housing indexed: double (nullable = false)
 -- loan_indexed: double (nullable = false)
-- contact_indexed: double (nullable = false)
 -- month_indexed: double (nullable = false)
-- poutcome_indexed: double (nullable = false)
 -- y_indexed: double (nullable = false)
-- job_indexed_vec: vector (nullable = true)
-- marital_indexed_vec: vector (nullable = true)
-- education_indexed_vec: vector (nullable = true)
-- default_indexed_vec: vector (nullable = true)
|-- housing_indexed_vec: vector (nullable = true)
|-- loan indexed vec: vector (nullable = true)
-- contact_indexed_vec: vector (nullable = true)
|-- month_indexed_vec: vector (nullable = true)
-- poutcome_indexed_vec: vector (nullable = true)
|-- y_indexed_vec: vector (nullable = true)
```

Update vectorassembler

Subtask:

Include the newly created one-hot encoded columns in the VectorAssembler input columns.

Reasoning: Identify the numerical and one-hot encoded columns and update the VectorAssembler.

```
# Apply the assembler transformation to the encoded df
assembled_df = assembler.transform(encoded_df)
# Split the assembled_df into training and testing sets
train_data, test_data = assembled_df.randomSplit([0.7, 0.3], seed=42)
train_data.printSchema()
test_data.printSchema()
→ root
      |-- age: integer (nullable = true)
      |-- job: string (nullable = true)
      |-- marital: string (nullable = true)
      |-- education: string (nullable = true)
      -- default: string (nullable = true)
      -- balance: integer (nullable = true)
      |-- housing: string (nullable = true)
      |-- loan: string (nullable = true)
      -- contact: string (nullable = true)
       -- day: integer (nullable = true)
      |-- month: string (nullable = true)
      -- duration: integer (nullable = true)
      |-- campaign: integer (nullable = true)
      -- pdays: integer (nullable = true)
       -- previous: integer (nullable = true)
       -- poutcome: string (nullable = true)
      -- y: string (nullable = true)
      |-- job indexed: double (nullable = false)
       -- marital indexed: double (nullable = false)
      -- education_indexed: double (nullable = false)
      -- default_indexed: double (nullable = false)
|-- housing_indexed: double (nullable = false)
       -- loan_indexed: double (nullable = false)
      -- contact_indexed: double (nullable = false)
       -- month_indexed: double (nullable = false)
       -- poutcome_indexed: double (nullable = false)
       -- y_indexed: double (nullable = false)
       -- job indexed vec: vector (nullable = true)
      -- marital indexed vec: vector (nullable = true)
       -- education indexed vec: vector (nullable = true)
      -- default_indexed_vec: vector (nullable = true)
       -- housing_indexed_vec: vector (nullable = true)
      |-- loan_indexed_vec: vector (nullable = true)
       -- contact_indexed_vec: vector (nullable = true)
      -- month_indexed_vec: vector (nullable = true)
       -- poutcome_indexed_vec: vector (nullable = true)
         y_indexed_vec: vector (nullable = true)
      |-- features: vector (nullable = true)
```

```
root
  -- age: integer (nullable = true)
 |-- job: string (nullable = true)
  -- marital: string (nullable = true)
 |-- education: string (nullable = true)
 |-- default: string (nullable = true)
 |-- balance: integer (nullable = true)
 |-- housing: string (nullable = true)
 -- loan: string (nullable = true)
 |-- contact: string (nullable = true)
 |-- day: integer (nullable = true)
 |-- month: string (nullable = true)
  -- duration: integer (nullable = true)
  -- campaign: integer (nullable = true)
  -- pdays: integer (nullable = true)
  -- previous: integer (nullable = true)
  -- poutcome: string (nullable = true)
     v. ctrina (nullahla :
```

Train the model

Subtask:

Retrain the RandomForestClassifier with the transformed data.

Reasoning: Retrain the RandomForestClassifier model with the transformed data.

```
# Initialize and train the RandomForestClassifier model
# Use 'y_indexed' as the label column as it's the numerical representation of the target variable
rf_model = RandomForestClassifier(labelCol="y_indexed", featuresCol="features", numTrees=10)
rf_model = rf_model.fit(train_data)
# Make predictions on the test data
predictions = rf_model.transform(test_data)
# Evaluate the model
# Use 'y_indexed' as the label column for evaluation
evaluator = MulticlassClassificationEvaluator(labelCol="y_indexed", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print(f"Test Accuracy = {accuracy}")

Test Accuracy = 0.9968944099378882
```

Summary:

Data Analysis Key Findings

- The categorical string columns in the dataset were identified as: job, marital, education, default, housing, loan, contact, month, poutcome, and y.
- These string columns were successfully converted into numerical indexed columns using StringIndexer, adding columns with a _indexed suffix (e.g., job_indexed).
- The indexed columns were further transformed into one-hot encoded vector columns using <code>OneHotEncoder</code>, resulting in columns with a <code>_vec</code> suffix (e.g., <code>job_indexed_vec</code>).
- The VectorAssembler was updated to include both the numerical columns and the newly created one-hot encoded vector columns as features
- The data was successfully split into training and testing sets *after* applying the VectorAssembler transformation to the DataFrame containing the one-hot encoded features.
- A RandomForestClassifier model was initialized with y indexed as the label column and features as the features column.
- The model was successfully trained on the train_data and used to make predictions on the test_data.
- The model's performance was evaluated using MulticlassClassificationEvaluator, yielding a test accuracy of approximately 0.997.

Insights or Next Steps

- The high accuracy suggests the model is performing very well on the test set; further investigation into potential overfitting or evaluation with different metrics (like precision, recall, F1-score) on a validation set would be beneficial.
- Consider exploring hyperparameter tuning for the RandomForestClassifier (e.g., numTrees, maxDepth, maxBins) to potentially improve performance further or address overfitting.