

SUPERSERVER 6026T-NTR+

USER'S MANUAL

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.0a

Release Date: January 8, 2010

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright $\mbox{@}$ 2010 by Super Micro Computer, Inc. All rights reserved.

Printed in the United States of America

Preface

About This Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 6026T-NTR+. Installation and maintainance should be performed by experienced technicians only.

The SuperServer 6026T-NTR+ is a high-end server based on the SC825TQ-R720LPB-1 2U rackmount chassis and the X8DTN+ dual processor serverboard.

Manual Organization

Chapter 1: Introduction

The first chapter provides a checklist of the main components included with the server system and describes the main features of the X8DTN+ serverboard and the SC825TQ-R720LPB-1 chassis.

Chapter 2: Server Installation

This chapter describes the steps necessary to install the SuperServer 6026T-NTR+ into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

Chapter 4: System Safety

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the SuperServer 6026T-NTR+.

Chapter 5: Advanced Serverboard Setup

Chapter 5 provides detailed information on the X8DTN+ serverboard, including the locations and functions of connections, headers and jumpers. Refer to this chapter when adding or removing processors or main memory and when reconfiguring the serverboard.

Chapter 6: Advanced Chassis Setup

Refer to Chapter 6 for detailed information on the SC825TQ-R720LPB-1 server chassis. You should follow the procedures given in this chapter when installing, removing or reconfiguring SAS/SATA or peripheral drives and when replacing system power supply units and cooling fans.

Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed information on running the CMOS Setup Utility.

Appendix A: BIOS Error Beep Codes

Appendix B: Installing Windows

Appendix C: System Specifications

Notes

Table of Contents

Chapter	1	Introduction	1
---------	---	--------------	---

1-1	Overview	1-1
1-2	Serverboard Features	1-2
	Processors	1-2
	Memory	1-2
	Serial ATA	1-2
	PCI Expansion Slots	1-2
	UIO	1-2
	Onboard Controllers/Ports	1-3
	ATI Graphics Controller	1-3
	Other Features	1-3
1-3	Server Chassis Features	1-3
	System Power	1-3
	Serial ATA Subsystem	1-3
	Front Control Panel	1-4
	I/O Backplane	1-4
	Cooling System	1-4
1-4	Contacting Supermicro	1-6
Chap	oter 2 Server Installation	
2-1	Overview	2-1
2-2	Unpacking the System	2-1
2-3	Preparing for Setup	2-1
	Choosing a Setup Location	2-1
	Rack Precautions	2-2
	Server Precautions	2-2
	Rack Mounting Considerations	2-3
	Ambient Operating Temperature	2-3
	Reduced Airflow	2-3
	Mechanical Loading	2-3
	Circuit Overloading	2-3
	Reliable Ground	2-3
2-4	Installing the System into a Rack	2-4
	Separating the Sections of the Rack Rails	2-4
	Installing the Inner Rail Extension	2-4
	Outer Rack Rails	2-6
2-5	Checking the Serverboard Setup	2-8

2-6	Checking the Drive Bay Setup	2-10
Chap	oter 3 System Interface	
3-1	Overview	3-1
3-2	Control Panel Buttons	3-1
	Reset	3-1
	Power	3-1
3-3	Control Panel LEDs	3-2
	Power Fail	3-2
	Overheat/Fan Fail:	3-2
	NIC1	3-2
	NIC2	3-2
	HDD	3-3
	Power	3-3
3-4	SATA Drive Carrier LEDs	3-3
Chap	oter 4 System Safety	
4-1	Electrical Safety Precautions	4-1
4-2	General Safety Precautions	4-2
4-3	ESD Precautions	4-3
4-4	Operating Precautions	4-4
Chap	oter 5 Advanced Serverboard Setup	
5-1	Handling the Serverboard	5-1
	Precautions	5-1
	Unpacking	5-2
5-2	Serverboard Installation	5-2
5-3	Connecting Cables	5-3
	Connecting Data Cables	5-3
	Connecting Power Cables	5-3
	Connecting the Control Panel	5-3
5-4	I/O Ports	5-4
5-5	Installing a Processor and Heatsink	5-5
	Installing an LGA1366 Processor	5-5
	Installing the Heatsink	5-7
	Removing the Heatsink	5-8
	Memory Support	5-9
	DIMM Installation	5-9
	Memory Support	5-10
		= 40
	Populating DIMMs	5-10

5-8	Serverboard Details	5-12
	X8DTN+ Quick Reference	5-13
5-9	Connector Definitions	5-14
5-10	Jumper Settings	5-20
5-11	Onboard Indicators	5-23
5-12	Floppy, IDE and SATA Ports	5-24
5-13	Installing Software	5-26
	Supero Doctor III	5-27
Chap	oter 6 Advanced Chassis Setup	
6-1	Static-Sensitive Devices	6-1
	Precautions	6-1
	Unpacking	6-1
6-2	Control Panel	6-2
6-3	System Fans	6-3
	System Fan Failure	6-3
	Replacing System Fans	6-3
6-4	Drive Bay Installation/Removal	6-4
	Accessing the Drive Bays	6-4
	SATA Drive Installation	6-5
	Hard Drive Backplane	6-6
	DVD-ROM and Floppy Drive Installation	6-7
6-5	Power Supply	6-8
	Power Supply Failure	6-8
	Removing/Replacing the Power Supply	6-8
Chap	oter 7 BIOS	
7-1	Introduction	7-1
7-2	Main Setup	7-2
7-3	Advanced Setup Configurations	7-4
4-4	Security Settings	
4-5	Boot Configuration	
7-4	Security Settings	7-24
7-5	Boot Configuration	7-25
7-6	Exit Options	7-26
Appe	endix A BIOS Error Beep Codes	
Appe	endix B Installing Windows	
Appe	endix C System Specifications	

Chapter 1

Introduction

1-1 Overview

The SuperServer 6026T-NTR+ is a high-end server comprised of two main subsystems: the SC825TQ-R720LPB-1 2U server chassis and the X8DTN+ dual processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the system (www.supermicro.com).

In addition to the serverboard and chassis, various hardware components have been included with the 6026T-NTR+, as listed below:

- One slim DVD-ROM drive (DVM-TEAC-DVD-SBT)
- One SATA to USB adapter for DVD-ROM drive (CDM-USATA-G)
- One internal USB cable for DVD-ROM drive (CBL-0341L)
- Three 8-cm chassis fans (FAN-0094L4)
- Two passive heatsinks (SNK-P0038P)
- One air shroud (MCP-310-28001-0N)
- SATA Accessories

One SAS/SATA backplane (BPN-SAS-825TQ)

One 2-ft. SATA cable (CBL-0044L)

Two 35-cm SATA cables (CBL-0061L)

Two 40-cm SGPIO cables (CBL-0157L)

Two 48-cm SATA cables (CBL-0178L)

One 70-cm SATA cable (CBL-0179L)

Eight drive carriers (MCP-220-00001-01)

- One rackmount kit (MCP-290-00053-0N)
- One CD containing drivers and utilities
- SuperServer 6026T-NTR+ User's Manual

1-2 Serverboard Features

At the heart of the SuperServer 6026T-NTR+ lies the X8DTN+, a dual processor serverboard based on the Intel 5520 + ICH10R chipset and designed to provide maximum performance. Below are the main features of the X8DTN+. (See Figure 1-1 for a block diagram of the chipset).

Processors

The X8DTN+ supports single or dual Intel® Xeon® 5500 processors and future Intel Nehalem processor families (next generation Intel Xeon processor). Please refer to the serverboard description pages on our web site for a complete listing of supported processors (www.supermicro.com).

Memory

The X8DTN+ has eighteen DIMM slots that can support up to 144 GB of DDR3-1333/1066/800 registered ECC SDRAM. The memory operates in an interleaved configuration and requires requires modules of the same size and speed to be installed two at a time. See Chapter 5 for details.

Serial ATA

A Serial ATA controller is integrated into the ICH10R (South Bridge) portion of the IOH-36D chipset to provide a six-port 3 Gb/s SATA subsystem, which is RAID 0, 1, 10 and 5 supported. The SATA drives are hot-swappable units.

Note: The operating system you use must have RAID support to enable the hotswap capability and RAID function of the SATA drives.

PCI Expansion Slots

The X8DTN+ has two PCI Express 2.0 x8 slots, one PCI Express x4 slot (in a x8 slot), three 64-bit 133/100 MHz PCI-X slots and one UIO slot (see below).

UIO

The X8DTN+ is a specially-designed serverboard that features Supermicro's UIO (Universal I/O) technology. UIO serverboards have a PCI-Express x8 connector that can support any one of several types of UIO card types (low-profile only) to add SAS ports, additional LAN ports, etc. to the serverboard. This allows the user to tailor the serverboard to their own needs. **Note:** the 6026T-NTR+ does not come with a UIO card pre-installed.

Onboard Controllers/Ports

A floppy drive connector is included on the serverboard as well as one onboard ATA/100 connector, which supports IDE hard drives or ATAPI devices. The color-coded I/O ports include one COM port (an additional COM header is located on the serverboard), a VGA (monitor) port, two USB 2.0 ports (two additional USB headers and one Type A port are included on the serverboard), PS/2 mouse and keyboard ports and two gigabit Ethernet ports.

ATI Graphics Controller

The X8DTN+ features an integrated ATI video controller based on the ES1000 32 MB graphics chip. The ES1000 was designed specifically for servers, featuring low power consumption, high reliability and superior longevity.

Other Features

Other onboard features that promote system health include onboard voltage monitors, a chassis intrusion header, auto-switching voltage regulators, chassis and CPU overheat sensors, virus protection and BIOS rescue.

1-3 Server Chassis Features

The following is a general outline of the main features of the SC825TQ-R720LPB-1 server chassis.

System Power

The SC825TQ-R720LPB-1 features a redundant 720W power supply composed of two separate power modules. This power redundancy feature allows you to replace a failed power supply without shutting down the system.

Serial ATA Subsystem

The SC825TQ-R720LPB-1 supports up to six 3 Gb/s Serial ATA drives. The SATA drives are hot-swappable units and are connected to a backplane that provides power and control.

Note: The operating system you use must have RAID support to enable the hot-swap capability of the SATA drives.

Front Control Panel

The control panel on the SuperServer 6026T-NTR+ provides you with system monitoring and control. LEDs indicate system power, HDD activity, network activity, system overheat and power supply failure. A main power button and a system reset button are also included. In addition, two USB ports and one serial port have been incorporated into the control panel to provide front side USB and COM port access.

I/O Backplane

The SC825TQ-R720LPB-1 is an ATX form factor chassis designed to be used in a 2U rackmount configuration. The I/O backplane provides one UIO slot, seven low-profile expansion slots, one COM port, a VGA port, two USB 2.0 ports, PS/2 mouse and keyboard ports and two gigabit Ethernet ports.

Cooling System

The SC825TQ-R720LPB-1 chassis has an innovative cooling design that includes three 8-cm hot-plug system cooling fans located in the middle section of the chassis. An air shroud channels the airflow from the system fans to efficiently cool the processor area of the system. The power supply module also includes a cooling fan.

Figure 1-1. Intel 5520/ICH10R Chipset: System Block Diagram

Note: This is a general block diagram. Please see Chapter 5 for details.

1-4 Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.

980 Rock Ave.

San Jose, CA 95131 U.S.A.

Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008

Email: marketing@supermicro.com (General Information)

support@supermicro.com (Technical Support)

Web Site: www.supermicro.com

Europe

Address: Super Micro Computer B.V.

Het Sterrenbeeld 28, 5215 ML

's-Hertogenbosch, The Netherlands

Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525

Email: sales@supermicro.nl (General Information)

support@supermicro.nl (Technical Support)

rma@supermicro.nl (Customer Support)

Asia-Pacific

Address: Super Micro Computer, Inc.

4F, No. 232-1, Liancheng Rd.

Chung-Ho 235, Taipei County

Taiwan, R.O.C.

Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3991

Web Site: www.supermicro.com.tw

Technical Support:

Email: support@supermicro.com.tw

Tel: 886-2-8228-1366, ext.132 or 139

Chapter 2

Server Installation

2-1 Overview

This chapter provides a quick setup checklist to get your SuperServer 6026T-NTR+ up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components.

2-2 Unpacking the System

You should inspect the box the SuperServer 6026T-NTR+ was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the SuperServer 6026T-NTR+. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

2-3 Preparing for Setup

The box the SuperServer 6026T-NTR+ was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

Choosing a Setup Location

 Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing.

- This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like).
- This product is not suitable for use with visual display work place devices according to §2 of the German Ordinance for Work with Visual Display Units.

Warnings and Precautions!

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack before you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow the hot plug SATA drives and power supply modules to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

Reduced Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

2-4 Installing the System into a Rack

This section provides information on installing the SC825 chassis into a rack unit with the quick-release rails provided. There are a variety of rack units on the market, which may mean the assembly procedure will differ slightly. You should also refer to the installation instructions that came with the rack unit you are using.

Note: This rail will fit a rack between 26" and 33.5" deep.

Separating the Sections of the Rack Rails

The chassis package includes two rail assemblies in the rack mounting kit. Each assembly consists of two sections: an inner fixed chassis rail that secures directly to the server chassis and an outer fixed rack rail that secures directly to the rack itself.

Installing the Inner Rail Extension

The SC825 chassis includes a set of inner rails in two sections: inner rails and inner rail extensions. The inner rails are pre-attached to the chassis, and do not interfere with normal use of the chassis if you decide not to use a server rack. The inner rail extension is attached to the inner rail to mount the chassis in the rack.

Installing the Inner Rails

- Place the inner rail extensions on the side of the chassis aligning the hooks
 of the chassis with the rail extension holes. Make sure the extension faces
 "outward" just like the pre-attached inner rail.
- 2. Slide the extension toward the front of the chassis.
- Secure the chassis with 2 screws as illustrated. Repeat steps for the other inner rail extension.

Figure 2-1. Separating the Rack Rails

Separating the Inner and Outer Rails

- 1. Locate the rail assembly in the chassis packaging.
- 2. Extend the rail assembly by pulling it outward.
- 3. Press the quick-release tab.
- 4. Separate the inner rail extension from the outer rail assembly.

Figure 2-2. Assembling the Outer Rails

Outer Rack Rails

Outer rails attach to the rack and hold the chassis in place. The outer rails for the SC825 chassis extend between 30 inches and 33 inches.

Installing the Outer Rails to the Rack

- 1. Secure the back end of the outer rail to the rack, using the screws provided.
- 2. Press the button where the two outer rails are joined to retract the smaller outer rail.
- 3. Hang the hooks of the rails onto the rack holes and if desired, use screws to secure the front of the outer rail onto the rack.
- 4. Repeat steps 1-3 for the remaining outer rail.

Figure 2-3. Installing the Rack Rails

Installing the Chassis into a Rack

- 1. Extend the outer rails as illustrated above.
- 2. Align the inner rails of the chassis with the outer rails on the rack.
- 3. Slide the inner rails into the outer rails, keeping the pressure even on both sides. When the chassis has been pushed completely into the rack, it should click into the locked position.
- 4. Optional screws may be used to secure the to hold the front of the chassis to the rack.

2-5 Checking the Serverboard Setup

After you install the 6026T-NTR+ in the rack, you will need to open the unit to make sure the serverboard is properly installed and all the connections have been made.

Accessing the inside of the System

- 1. First, grasp the two handles on either side and pull the unit straight out until it locks (you will hear a "click").
- 2. Next, depress the two buttons on the top of the chassis to release the top cover.
- 3. You can then lift the top cover from the chassis to gain full access to the inside of the server.

Checking the Components and Setup

- You may have one or two processors already installed into the serverboard. Each processor needs its own heat sink. See Chapter 5 for instructions on processor and heat sink installation.
- 2. Your 6026T-NTR+ server system may have come with system memory already installed. Make sure all DIMMs are fully seated in their slots. For details on adding system memory, refer to Chapter 5.
- If desired, you can install add-on cards to the system. See Chapter 5 for details on installing PCI add-on cards.
- 4. Make sure all power and data cables are properly connected and not blocking the chassis airflow. Also make sure that no cables are positioned in front of the fans. See Chapter 5 for details on cable connections.

Figure 2-3. Accessing the Inside of the System

2-6 Checking the Drive Bay Setup

Next, you should check to make sure the peripheral drives and the SATA drives have been properly installed and all connections have been made.

Checking the Drives

- All drives are accessable from the front of the server. For servicing the DVD-ROM and floppy drives, you will need to remove the top chassis cover. The hard drives can be installed and removed from the front of the chassis without removing the top chassis cover.
- A slim DVD-ROM and a floppy drive may be preinstalled in your server. Refer to Chapter 6 if you need to install a DVD-ROM and/or floppy disk drive to the system.
- Depending upon your system's configuration, your system may have one or more drives already installed. If you need to install hard drives, please refer to Chapter 6.

Checking the Airflow

- 1. Airflow is provided by three hot-swappable 8-cm chassis cooling fans. The system component layout was carefully designed to direct sufficient cooling airflow to the components that generate the most heat.
- 2. Note that all power and data cables have been routed in such a way that they do not block the airflow generated by the fans.

Providing Power

- Plug the power cord(s) from the power supply unit(s) into a high-quality power strip that offers protection from electrical noise and power surges. It is recommended that you use an uninterruptible power supply (UPS).
- 2. Depress the power on button on the front of the chassis.

Chapter 3

System Interface

3-1 Overview

There are several LEDs on the control panel as well as others on the SATA drive carriers to keep you constantly informed of the overall status of the system as well as the activity and health of specific components. There are also two buttons on the chassis control panel.

3-2 Control Panel Buttons

There are two buttons located on the front of the chassis: a reset button and a power on/off button.

Reset

Use the reset button to reboot the system.

Power

This is the main power button, which is used to apply or turn off the main system power. Turning off system power with this button removes the main power but keeps standby power supplied to the system.

3-3 Control Panel LEDs

The control panel located on the front of the chassis has several LEDs. These LEDs provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take.

Power Fail

Indicates a power supply module has failed. The second power supply module will take the load and keep the system running but the failed module will need to be replaced. Refer to Chapter 6 for details on replacing the power supply. This LED should be off when the system is operating normally.

Overheat/Fan Fail:

When this LED flashes, it indicates a fan failure. When on continuously it indicates an overheat condition, which may be caused by cables obstructing the airflow in the system or the ambient room temperature being too warm. Check the routing of the cables and make sure all fans are present and operating normally. You should also check to make sure that the chassis covers are installed. Finally, verify that the heatsinks are installed properly (see Chapter 5). This LED will remain flashing or on as long as the indicated condition exists.

NIC1

Indicates network activity on the LAN1 port when flashing.

NIC₂

Indicates network activity on the LAN2 port when flashing.

HDD

Indicates IDE channel activity. On the SuperServer 6026T-NTR+, this LED indicates hard drive and/or DVD-ROM drive activity when flashing.

Power

Indicates power is being supplied to the system's power supply units. This LED should normally be illuminated when the system is operating.

3-4 SATA Drive Carrier LEDs

Each SATA drive carrier has two LEDs:

- Green: When illuminated, the green LED on the SATA drive carrier indicates drive activity. A connection to the SATA backplane enables this LED to blink on and off when that particular drive is being accessed. Please refer to Chapter 6 for instructions on replacing failed drives.
- Red: The red LED indicates a SATA drive failure. If one of the drives fails, you should be notified by your system management software. Please refer to Chapter 6 for instructions on replacing failed drives.

Notes

Chapter 4

System Safety

4-1 Electrical Safety Precautions

Basic electrical safety precautions should be followed to protect yourself from harm and the SuperServer 6026T-NTR+ from damage:

- Be aware of the locations of the power on/off switch on the chassis as well as the room's emergency power-off switch, disconnection switch or electrical outlet. If an electrical accident occurs, you can then quickly remove power from the system.
- Do not work alone when working with high voltage components.
- Power should always be disconnected from the system when removing or installing main system components, such as the serverboard, memory modules and floppy drive. When disconnecting power, you should first power down the operating system first and then unplug the power cords. The unit has more than one power supply cord. Disconnect two power supply cords before servicing to avoid electrical shock.
- When working around exposed electrical circuits, another person who is familiar
 with the power-off controls should be nearby to switch off the power if necessary.
- Use only one hand when working with powered-on electrical equipment. This
 is to avoid making a complete circuit, which will cause electrical shock. Use
 extreme caution when using metal tools, which can easily damage any electrical
 components or circuit boards they come into contact with.
- Do not use mats designed to decrease static electrical discharge as protection from electrical shock. Instead, use rubber mats that have been specifically designed as electrical insulators.
- The power supply power cords must include a grounding plug and must be plugged into grounded electrical outlets.

- This product may be connected to an IT power system. In all cases, make sure that the unit is also reliably connected to Earth (ground).
- Serverboard Battery: CAUTION There is a danger of explosion if the onboard battery is installed upside down, which will reverse its polarites (see Figure 4-1). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.
- DVD-ROM Laser: CAUTION this server may have come equipped with a DVD-ROM drive. To prevent direct exposure to the laser beam and hazardous radiation exposure, do not open the enclosure or use the unit in any unconventional way.
- Mainboard replaceable soldered-in fuses: Self-resetting PTC (Positive Temperature Coefficient) fuses on the mainboard must be replaced by trained service technicians only. The new fuse must be the same or equivalent as the one replaced. Contact technical support for details and support.

4-2 General Safety Precautions

Follow these rules to ensure general safety:

- Keep the area around the 6026T-NTR+ clean and free of clutter.
- The 6026T-NTR+ weighs approximately 57 lbs (25.9 kg.) when fully loaded.
 When lifting the system, two people at either end should lift slowly with their feet spread out to distribute the weight. Always keep your back straight and lift with your legs.
- Place the chassis top cover and any system components that have been removed away from the system or on a table so that they won't accidentally be stepped on.
- While working on the system, do not wear loose clothing such as neckties and unbuttoned shirt sleeves, which can come into contact with electrical circuits or be pulled into a cooling fan.

- Remove any jewelry or metal objects from your body, which are excellent metal
 conductors that can create short circuits and harm you if they come into contact
 with printed circuit boards or areas where power is present.
- After accessing the inside of the system, close the system back up and secure
 it to the rack unit with the retention screws after ensuring that all connections
 have been made.

4-3 ESD Precautions

Electrostatic Discharge (ESD) is generated by two objects with different electrical charges coming into contact with each other. An electrical discharge is created to neutralize this difference, which can damage electronic components and printed circuit boards. The following measures are generally sufficient to neutralize this difference before contact is made to protect your equipment from ESD:

- Use a grounded wrist strap designed to prevent static discharge.
- Keep all components and printed circuit boards (PCBs) in their antistatic bags until ready for use.
- Touch a grounded metal object before removing the board from the antistatic bag.
- Do not let components or PCBs come into contact with your clothing, which may retain a charge even if you are wearing a wrist strap.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

4-4 Operating Precautions

Care must be taken to assure that the chassis cover is in place when the 6026T-NTR+ is operating to assure proper cooling. Out of warranty damage to the system can occur if this practice is not strictly followed.

Figure 4-1. Installing the Onboard Battery

Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Chapter 5

Advanced Serverboard Setup

This chapter covers the steps required to install the X8DTN+ serverboard into the chassis, connect the data and power cables and install add-on cards. All serverboard jumpers and connections are also described. A layout and quick reference chart are included in this chapter for your reference. Remember to completely close the chassis when you have finished working with the serverboard to better cool and protect the system.

5-1 Handling the Serverboard

Electrostatic discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully (see previous chapter). To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from electric static discharge.

Precautions

- Use a grounded wrist strap designed to prevent Electrostatic Discharge (ESD).
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging to avoid electrical static discharge. When unpacking the board, make sure the person handling it is static protected.

5-2 Serverboard Installation

This section explains the first step of physically mounting the X8DTN+ into the SC825TQ-R720LP-1 chassis. Following the steps in the order given will eliminate the most common problems encountered in such an installation. To remove the serverboard, follow the procedure in reverse order.

Installing to the Chassis

- 1. Access the inside of the system by removing the screws from the back lip of the top cover of the chassis, then pull the cover off.
- 2. The X8DTN+ requires a chassis big enough to support a 13.68" x 13.05" serverboard, such as Supermicro's SC825TQ-R720LP-1.
- 3. Make sure that the I/O ports on the serverboard align properly with their respective holes in the I/O shield at the back of the chassis.
- 4. Carefully mount the serverboard to the serverboard tray by aligning the board holes with the raised metal standoffs that are visible in the chassis.
- 5. Insert screws into all the mounting holes on your serverboard that line up with the standoffs and tighten until snug (if you screw them in too tight, you might strip the threads). Metal screws provide an electrical contact to the serverboard ground to provide a continuous ground for the system.
- 6. Finish by replacing the top cover of the chassis.

Warning: To avoid damaging the motherboard and its components, do not apply any force greater than 8 lbs. per square inch when installing a screw into a mounting hole.

5-3 Connecting Cables

Now that the serverboard is installed, the next step is to connect the cables to the board. These include the data cables for the peripherals and control panel and the power cables.

Connecting Data Cables

The cables used to transfer data from the peripheral devices have been carefully routed to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to keep them routed as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). The following data cables (with their locations noted) should be connected. (See the layout on page 5-10 for connector locations.)

- SATA drive data cables (I-SATA0 ~ I-SATA5)
- Control Panel cable (JF1)
- DVD-ROM drive cable (IDE)
- USB cable for front side access (USB2/3)
- COM Port cable for front side access (COM2)

Important! Make sure the cables do not come into contact with the fans.

Connecting Power Cables

The X8DTN+ has a 24-pin primary power supply connector (JPW1) for connection to the ATX power supply. In addition, there are two 8-pin 12V processor power connectors (JPW3 and JPW4) that must be connected to your power supply. See Section 5-9 for power connector pin definitions.

Connecting the Control Panel

JF1 contains header pins for various front control panel connectors. See Figure 5-1 for the pin locations of the various front control panel buttons and LED indicators.

All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the board. The other end connects to the Control Panel PCB board, located just behind the system status LEDs on the chassis. See Chapter 5 for details and pin descriptions.

Ground NMI x (Key) x (Key) Power On LED Vcc HDD LED Vcc NIC1 LED Vcc NIC2 LED Vcc OH/Fan Fail LED Vcc Power Fail LED Vcc Ground Reset (Button) Ground 0 Power (Button)

Figure 5-1. Control Panel Header Pins

5-4 I/O Ports

The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-2 below for the colors and locations of the various I/O ports.

Mouse (Green)

USB01

LAN1 LAN2

Keyboard USB0 COM1 Port VGA Port (Purple)

(Purple)

(Blue)

Figure 5-2. I/O Ports

5-5 Installing a Processor and Heatsink

When handling the processor package, avoid placing direct pressure on the label area of the fan.

Notes:

- Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.
- If you buy a CPU separately, make sure that you use an Intel-certified multidirectional heatsink only.
- Make sure to install the serverboard into the chassis before you install the CPU heatsinks.
- When receiving a serverboard without a processor pre-installed, make sure that
 the plastic CPU socket cap is in place and none of the socket pins are bent;
 otherwise, contact your retailer immediately.
- Refer to the Supermicro web site for updates on CPU support.

Installing an LGA1366 Processor

- Press the socket clip to release the load plate, which covers the CPU socket, from its locked position.
- 2. Gently lift the socket clip to open the load plate.
- 3. Hold the plastic cap at its north and south center edges to remove it from the CPU socket.

Note: The photos on this page and succeeding pages are for illustration purposes only. They do not necessarily reflect the exact product(s) described in this manual.

Holding the north & south edges

- After removing the plastic cap, use your thumb and the index finger to hold the CPU at the north and south center edges.
- Align the CPU key (the semi-circle cutout) with the socket key (the notch below the gold color dot on the side of the socket).
- Once the CPU and the socket are aligned, carefully lower the CPU straight down into the socket.
 Do not rub the CPU against the surface of the socket or its pins to avoid damaging the CPU or the socket.
- With the CPU in the socket, inspect the four corners of the CPU to make sure that it sits level and is properly installed.
- 5. Once the CPU is securely seated in the socket, lower the CPU load plate to the socket.
- 6. Use your thumb to gently push the socket clip down to the clip lock.

Important! Please save the plastic cap. The serverboard must be shipped with the plastic cap properly installed to protect the CPU socket pins. Shipment without the plastic cap properly installed may cause damage to the socket pins.

Installing the Heatsink

- Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the retention mechanism.
- 2. Remove the thin layer of protective film from the copper core of the heatsink.

Warning: The CPU may overheat if the protective film is not removed from the heatsink.

- Apply the proper amount of thermal grease on the CPU. If your heatsink came with a thermal pad, please ignore this step.
- Screw in two diagonal screws (i.e. the #1 and the #2 screws) until just snug (do not over-tighten the screws, which may damage the CPU.)
- 5. Finish the installation by fully tightening all four screws.

Note: The 6026T-NTR+ uses passive heatsinks.

Removing the Heatsink

Warning: We do not recommend removing the CPU or the heatsink. If you do need to remove the heatsink, please follow the instructions below to prevent damage to the CPU or other components.

- 1. Unplug the power cord from the power supply.
- 1. Unscrew and remove the heatsink screws in the sequence shown in the picture below.
- 2. Hold the heatsink and gently wiggle it to loosen it from the CPU. (Do not use excessive force when doing this!)
- 3. Once the heatsink is loosened, remove it from the CPU.
- Clean the surface of the CPU and the heatsink to get rid of the old thermal grease. Reapply the proper amount of thermal grease before you reinstall the heatsink.

5-6 Installing Memory

CAUTION! Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

Memory Support

The X8DTN+ supports up to 144 GB of DDR3 1333/1066/800 registered ECC SDRAM in 18 DIMM slots. Three-way interleaved memory is supported. For optimal memory performance, install DIMMs three at a time. Use memory modules of the same type and speed. See the following table for memory installation.

DIMM Installation

Installing Memory Modules

- Insert the desired number of DIMMs into the memory slots, beginning with DIMM #1A and DIMM #2A, then DIMM #3A and DIMM #4A, etc. (see Memory Configuration Table below). Always spread DIMMs across all three banks for each CPU (see Figure 5-4).
- 2. Insert each DIMM module vertically into its slot. Pay attention to the notch along the bottom of the module to avoid installing incorrectly (see Figure 5-3).
- Gently press down on the DIMM module until it snaps into place in the slot. Repeat for all modules.

To Install: Insert module vertically and press down until it snaps into place. Pay attention to the alignment notch at the bottom.

To Remove:

Use your thumbs to gently push the release tabs near both ends of the module. This should release it from the slot.

Front View

Note: Notch should align with the receptive key point on the slot.

Release Tab

Release Tab

Top View of DDR3 Slot

Memory Support

The X8DTN+ supports up to 144 GB Registered ECC DDR3-1333/1066/800 MHz registered ECC SDRAM in 18 DIMM slots. DIMM sizes of 8 GB, 4 GB, 2 GB and 1 GB are supported.

Populating DIMMs

Follow the tables below when installing memory.

Populating DIMMs for Optimal Performance For One CPU (CPU1) Installed (Populate the CPU1 DIMM slots)									
	CPU1: Branch 0		СР	J1: Brand	anch 1 CPU1: Branch 2			ch 2	
3 DIMMs	1A			2A			3A		
6 DIMMs	1A	1B		2A	2B		3A	3B	
9 DIMMs	1A	1B	1C	2A	2B	2C	3A	3B	3C

	Populating DIMMs for Optimal Performance For One CPU (CPU2) Installed (Populate the CPU2 DIMM slots)								
	CPU2: Branch 0			СРІ	J2: Brand	ch 1	CPU2: Branch 2		
3 DIMMs	1A			2A			3A		
6 DIMMs	1A	1B		2A	2B		3A	3B	
9 DIMMs	1A	1B	1C	2A	2B	2C	3A	3B	3C

	Populating DIMMs for Optimal Performance For Two CPUs Installed																	
CPU1 DIMMs									CPU	J2 DI	MMs							
	В	ranch	0	В	ranch	1	В	Branch 2 Branch 0		nch 0 Branch 1 Branc		ranch	2					
6 DIMMs	1A			2A			ЗА			1A			2A			ЗА		
12 DIMMs	1A	1B		2A	2B		ЗА	3B		1A	1B		2A	2B		ЗА	3B	
18 DIMMs	1A	1B	1C	2A	2B	2C	ЗА	3B	3C	1A	1B	1C	2A	2B	2C	ЗА	3B	3C

	Memory Population Table							
DIMM Slots per Channel	DIMMs Populated per Channel	DIMM Type (Reg.= Registered)	Speeds (in MHz)	Ranks per DIMM (any combination; SR=Single Rank, DR=Dual Rank, QR=Quad Rank)				
3	1	Reg. DDR3 ECC	800,1066,1333	SR, DR				
3	1	Reg. DDR3 ECC	800,1066,	QR				
3	2	Reg. DDR3 ECC	800,1066	SR, DR				
3	2	Reg. DDR3 ECC	800	SR, DR, QR				
3	3	Reg. DDR3 ECC	800	SR, DR				

Notes: Due to OS limitations, some operating systems may not show more than 4 GB of memory.

Due to memory allocation to system devices, the amount of memory that remains available for operational use will be reduced when 4 GB of RAM is used. The reduction in memory availability is disproportional. (See the Table below.)

Possible System Memory Allocation & Availability						
System Device	Size	Physical Memory Remaining (Available) (4 GB Total System Memory)				
Firmware Hub flash memory (System BIOS)	1 MB	3.99 GB				
Local APIC	4 KB	3.99 GB				
Area Reserved for the chipset	2 MB	3.99 GB				
I/O APIC (4 Kbytes)	4 KB	3.99 GB				
PCI Enumeration Area 1	256 MB	3.76 GB				
PCI Express (256 MB)	256 MB	3.51 GB				
PCI Enumeration Area 2 (if needed) -Aligned on 256-MB boundary-	512 MB	3.01 GB				
VGA Memory	16 MB	2.85 GB				
TSEG	1 MB	2.84 GB				
Memory available for the OS & other applications		2.84 GB				

5-7 Installing PCI Add-On Cards

The 6026T-NTR+ can accommodate seven low-profile, full-length PCI add-on cards.

Installing an Add-on Card

- 1. Begin by removing the shield for the PCI slot you wish to populate.
- 2. Fully seat the card into the slot, pushing down with your thumbs evenly on both sides of the card.
- Finish by using a screw to secure the top of the card shield to the chassis.
 The PCI slot shields protect the serverboard and its components from EMI and aid in proper ventilation, so make sure there is always a shield covering each unused slot.

5-8 Serverboard Details

Figure 5-4. X8DTN+ Layout (not drawn to scale)

X8DTN+ Quick Reference

Jumper	Description	Default Setting
JBT1	CMOS Clear	See Section 5-10
J12	SMB to PCI-Exp. Slots	Pins 2-3 (Disabled)
J13	SMB to PCI-X Slots	Pins 2-3 (Disabled)
J21	Watch Dog Enable/Disable	Pins 1-2 (Reset)
JP3	IDE Enable/Disable	Pins 1-2 (Enabled)
JPG1	VGA Enable/Disable	Pins 1-2 (Enable)
JPL1	LAN1/2 Enable/Disable	Pins 1-2 (Enabled)

Connector	Description
COM1/COM2	COM1/COM2 Serial Port/Header
FAN 1-8	System/CPU Fan Headers (Fans 7~8: CPU Fans)
Floppy	Floppy Disk Drive Connector
IPMB	IPMB I ² C Connector (for IPMI Card)
I-SATA0 ~ I-SATA5	(Intel South Bridge) SATA Ports
JAR	Alarm Reset
JD1	PWR LED/Speaker Header
JF1	Front Panel Connector
JL1	Chassis Intrusion Header
JOH1	Overheat LED Header
JPW1	24-pin ATX Main Power Connector
JPW3/JPW4	8-pin 12-V Power Connectors
JWOL1	Wake-On-LAN Header
JWOR1	Wake-On-Ring Header
JWF1	Compact Flash Power Connector
JK1	Keylock
LAN1/2	Gigabit Ethernet (RJ45) Ports
PWR I ² C	Power I ² C (SMB) Connector
SIMLP	(Low Profile) SIMLP IPMI 2.0 Socket
T-SGPIO-1/T-SGPIO-2	Serial General Purpose Input/Output Headers
USB0/1	(Back Panel) Universal Serial Bus (USB) Ports
USB 2/3, 4, 6, 7	Front Panel Accessible USB Headers

LED Description

LE1 Onboard Standby PWR warning LED Indicator

5-9 Connector Definitions

Main ATX Power Supply Connector

The primary power supply connector (JPW1) meets the SSI (Superset ATX) 24-pin specification. Refer to the table on the right for the pin definitions of the ATX 24-pin power connector. You must also connect the 8-pin (JPW3/ JPW4) processor power connectors to your power supply (see below).

Secondary	Power	Connector	

JPW3 must also be connected to the power supply. See the table on the right for pin definitions.

Secondary Power Connector

JPW4 must also be connected to the power supply. See the table on the right for pin definitions.

Power Button

The Power On connection is on pins 1 and 2 of JF1. These should be connected to the chassis power button. See the table on the right for pin definitions.

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1 and attaches to the reset switch on the computer chassis. See the table on the right for pin definitions.

	ATX Power 24-pin Connector Pin Definitions (JPW1)						
Pin#	Definition	Pin#	Definition				
13	+3.3V	1	+3.3V				
14	-12V	2	+3.3V				
15	СОМ	3	COM				
16	PS_ON	4	+5V				
17	СОМ	5	COM				
18	COM	6	+5V				
19	СОМ	7	COM				
20	Res (NC)	8	PWR_OK				
21	+5V	9	5VSB				
22	+5V	10	+12V				
23	+5V	11	+12V				
24	COM	12	+3.3V				

+12V 8-pin Power Pin Definitions (JPW3)				
Pins	Definition			
1 - 4	Ground			
5 - 8	+12V			

Required Connection

+12V 8-pin Power Pin Definitions (JPW4)				
Pins	s Definition			
1 - 4	Ground			
5 - 8	+12V			

Required Connection

Power Button Pin Definitions (JF1)				
Pin#	Definition			
1	Power Signal			
2	Ground			

Reset Button Pin Definitions (JF1)	
Pin#	Definition
3	Reset
4	Ground

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions.

PWR Fail LED Pin Definitions (JF1)	
Pin#	Definition
5	Vcc
6	Ground

Overheat/Fan Fail LED (OH)

Connect an LED to the OH connection on pins 7 and 8 of JF1 to provide advanced warning of chassis overheating. Refer to the table on the right for pin definitions.

OH/Fan Fail LED Pin Definitions (JF1)	
Pin#	Definition
7	Vcc
8	Ground

OH/Fan Fail Indicator Status	
State	Definition
Off	Normal
On	Overheat
Flash- ing	Fan Fail

NIC2 (JLAN2) LED

The LED connections for JLAN2 are on pins 9 and 10 of JF1. Attach an LED cable to display network activity. See the table on the right for pin definitions.

NIC2 LED Pin Definitions (JF1)	
Pin#	Definition
9	Vcc
10	Ground

NIC1 (JLAN1) LED

The LED connections for JLAN1 are on pins 11 and 12 of JF1. Attach an LED cable to display network activity. See the table on the right for pin definitions.

NIC1 LED Pin Definitions (JF1)		
Pin#	Definition	
11	Vcc	
12	Ground	

HDD LED

The HDD LED connection is located on pins 13 and 14 of JF1. This LED is used to display <u>all</u> IDE and SATA activity. See the table on the right for pin definitions.

HDD LED Pin Definitions (JF1)		
Pin#	Definition	
13	Vcc	
14	HD Active	

Power On LED

The Power On LED connector is located on pins 15 and 16 of JF1 (use JLED for a 3-pin connector). This connection is used to provide LED indication of power being supplied to the system. See the table on the right for pin definitions.

Power LED Pin Definitions (JF1)	
Pin#	Definition
15	5V Stby
16	Control

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

NMI Button Pin Definitions (JF1)	
Pin#	Definition
19	Control
20	Ground

Fan Headers

There are eight fan headers on the serverboard, all of which are 4-pin fans. Pins 1-3 of the fan headers are backward compatible with the traditional 3-pin fans. (Fan speed control is supported with 4-pin fans only.) See the table on the right for pin definitions. The onboard fan speeds are controlled by Thermal Management (via Hardware Monitoring) under the Advanced Section in the BIOS. The default is disabled. When using Thermal Management setting, please use all 3-pin fans or all 4-pin fans.

Fan Header Pin Definitions (FAN1-8)	
Pin#	Definition
1	Ground (Black)
2	+12V (Red)
3	Tachometer
4	PWM Control

Note: Fan 7 is for the CPU1 and Fan8 is for the CPU2 heatsink.

ATX PS/2 Keyboard and PS/2 Mouse Ports

The ATX PS/2 keyboard and the PS/2 mouse are located beside the USB0/1 ports. The mouse port is above the keyboard port. See the table on the right for pin definitions.

PS/2 Keyboard and Mouse Port Pin Definitions (J28)	
Pin#	Definition
1	Data
2	NC
3	Ground
4	VCC
5	Clock
6	NC

Chassis Intrusion

The Chassis Intrusion header is designated JL1. Attach an appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened

Chassis Intrusion Pin Definitions (JL1)	
Pin#	Definition
1	Intrusion Input
2	Ground

Wake-On-LAN

The Wake-On-LAN header is designated JWOL1 on the serverboard. See the table on the right for pin definitions. You must also have a LAN card with a Wake-On-LAN connector and cable to use this feature.

Wake-On-LAN Pin Definitions (JWOL1)	
Pin#	Definition
1	+5V Standby
2	Ground
3	Wake-up

Wake-On-Ring

The Wake-On-Ring header is designated JWOR1. This function allows your computer to receive and be "awakened" by an incoming call when in the suspend state. See the table on the right for pin definitions. You must also have a WOR card and cable to use this feature.

Wake-On-Ring Pin Definitions (JWOR1)		
Pin# Definition		
1 Ground (Black)		
2	Wake-up	

LAN1/2 (Ethernet Ports)

Two Ethernet ports (designated LAN1 and LAN2) are located beside the VGA port on the I/O backplane. These ports accept RJ45 type cables.

Serial Ports

Two serial ports are included on the serverboard. COM1 is a backpanel port and COM2 is a header located near the JWOL header. See the table on the right for pin definitions.

Serial Port Pin Definitions (COM1/COM2)				
Pin #	# Definition Pin # Definition			
1	DCD	6	DSR	
2	RXD	7	RTS	
3	TXD	8	CTS	
4	DTR	9	RI	
5	Ground	10	NC	

Power LED/Speaker

On JD1 header, pins 1-3 are for a power LED and pins 4-7 are for the speaker. Close pins 4-7 with a jumper to use an external speaker. If you wish to use the onboard speaker, please close pins 6-7. See the table on the right for speaker pin definitions.

Power LED/Speaker Connector (JD1)		
Pin Setting Definition		
Pins 6-7 Internal Speaker		
Pins 4-7	External Speaker	

Universal Serial Bus (USB)

There are two Universal Serial Bus ports located on the I/O panel and five additional USB headers located on the serverboard. The headers can be used to provide front side USB access (cables not included). See the table on the right for pin definitions.

Universal Serial Bus Pin Definitions (USB)			
USB0/1 USB2/3/4/6/7 Pin # Definition Pin # Definition			
1	+5V	1	+5V
2	PO-	2	PO-
3	PO+	3	PO+
4	Ground	4	Ground
5	N/A	5	Key

SGPIO Headers

The SGPIO (Serial General Purpose Input/Output) headers are used to communicate with the enclosure management chip on the backplane. See the table on the right for pin definitions.

SGPIO Header Pin Definitions (T-SGPIO-1/T-SGPIO-2)			
Pin# Definition Pin Definition			
1	NC	2	*NC
3	Ground 4 DATA Out		DATA Out
5	5 Load 6 Ground		
7	Clock	8	*NC

NC = No Connection

Alarm Reset

If three power supplies are installed, the system can notify you when any of the three power modules fail. Connect JAR to a micro-switch to enable you to turn off the alarm that is activated when a power module fails. See the table on the right for pin definitions.

Alarm Reset Header Pin Definitions (JAR)		
Pin Setting	Definition	
Pin 1 Ground		
Pin 2 +5V		

Power I²C Connector

The power System Management Bus (I²C) connector monitors the status of the power supply, fan and system temperature. See the table on the right for pin definitions.

PWR I2C Connector Pin Definitions (PWR I2C)		
Pin#	Definition	
1	Clock	
2	Data	
3	PWR Fail (Input from PS to MB)	
4	Ground	
5	+3.3V	

IPMB Connector

A connector for the IPMI (Intelligent Platform Management Interface) slot is designated IPMB. Connect the appropriate cable here to utilize this management feature on your system.

IPMB Connector Pin Definitions (IPMB)		
Pin#	Definition	
1	Data	
2	Ground	
3 Clock		
4	No Connection	

Overheat LED/Fan Fail (JOH1)

The JOH1 header is used to connect an LED to provide warning of chassis overheating or fan failure. This LED will blink to indicate a fan failure. Refer to the tables on right for LED status and pin definitions.

OH/Fan Fail LED States		
State	Message	
Solid Overheat		
Blinking Fan Fail		

Overheat LED Pin Definitions (JOH1)		
Pin# Definition		
1	5vDC	
2 OH Active		

Keylock

The keyboard lock connection is designated JK1. Utilizing this header allows you to inhibit any actions made on the keyboard, effectively "locking" it.

Keylock Pin Definitions (JK1)	
Pin#	Definition
1 Ground	
2	Keylock R-N

Compact Flash Card PWR Connector

A Compact Flash Card Power Connector is located at JWF1. For the Compact Flash Card to work properly, you will need to enable with JCF1 and connect a Compact Flash Card power cable to JWF1 first.

Compact Flash Card PWR Connector (JWF1)	
Jumper	Definition
On	Compact Flash Power On
Off	Compact Flash Power Off

5-10 Jumper Settings

Explanation of Jumpers

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the serverboard layout pages for jumper locations.

Note: On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" means the jumper is either on only one pin or completely removed.

CMOS Clear

JBT1 is used to clear CMOS (which will also clear any passwords). Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To clear CMOS,

- 1. First power down the system and unplug the power cord(s).
- 2. With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver.
- 3. Remove the screwdriver (or shorting device).
- 4. Reconnect the power cord(s) and power on the system.

Note: Do not use the PW ON connector to clear CMOS.

VGA Enable/Disable

JPG1 allows you to enable or disable the VGA port. The default position is on pins 1 and 2 to enable VGA. See the table on the right for jumper settings.

VGA Enable/Disable Jumper Settings (JPG1)		
Jumper Setting	Definition	
Pins 1-2	Enabled	
Pins 2-3	Disabled	

LAN1/2 Enable/Disable

Change the setting of jumper JPL1 to enable or disable the LAN1/LAN2 Ethernets port on the serverboard. See the table on the right for jumper settings. The default setting is enabled.

LAN1/2 Enable/Disable Jumper Settings (JPL1)		
Jumper Setting	Definition	
Pins 1-2	Enabled	
Pins 2-3	Disabled	

Watch Dog Enable/Disable

Jumper J21 controls the Watch Dog function. Watch Dog is a system monitor that can reboot the system when a software application hangs. Jumping pins 1-2 will cause WD to reset the system if an application hangs. Jumping pins 2-3 will generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in BIOS.

Note: When enabled, the user needs to write their own application software in order to disable the Watch Dog Timer.

Watch Dog Jumper Settings (J21)	
Jumper Setting	Definition
Pins 1-2	Reset
Pins 2-3	NMI
Open	Disabled

IDE Enable/Disable

Jumper JP3 allows you to enable or disable the onboard IDE connector. The default setting is Pins 1-2 to enable the connection. See the table on the right for jumper settings.

IDE Enable Jumper Settings		
Jumper Definition		
1-2	IDE Enable	
2-3	IDE Disable	

I²C Bus to PCI-X/PCI-Exp. Slots

Jumpers J12 and J13 allow you to connect the System Management Bus (I²C) to the PCI slots. The default setting is Open (Disabled.) <u>Both jumpers must be set to the same setting</u> See the table on the right for jumper settings.

I ² C to PCI-X/PCI-E Slots Jumper Settings (J12/J13)			
Jumper Setting Definition			
JI ² C1: Closed	JI ² C2:Closed	Enabled	
Jl ² C1: Open Jl ² C2: Open Disabled			

5-11 Onboard Indicators

LAN1/2 LEDs

The Ethernet ports (located beside the VGA port) have two LEDs. On each port, the yellow LED flashes to indicate activity while the other LED may be green, amber or off to indicate the speed of the connection. See the table on the right for the functions associated with the connection speed LED.

GLAN1/2 LED (Connection Speed Indicator)		
LED Color	Definition	
Off	NC or 10 Mb/s	
Green	100 Mb/s	
Amber	1 Gb/s	

Onboard Power LED (LE1)

An Onboard Power LED is located at LE1. This LED Indicator is lit when the system is on. Be sure to unplug the power cable before removing or adding any components. See the table on the right for more details.

Onboard PWR LED Indicator (LE1)		
LED Color	Definition	
Off	System Off (PWR cable not connected)	
Green	System On	
Green: Flashing Quickly	ACPI S1 State	
Green: Flashing Slowly	ACPI S3 (STR) State	

5-12 Floppy, IDE and SATA Ports

Use the following information to connect the IDE hard disk drive cables.

- A red mark on a wire typically designates the location of pin 1.
- The 80-wire ATA100/66 IDE hard disk drive cable that came with your system has two connectors to support two drives. This special cable should be used to take advantage of the speed this new technology offers. The blue connector connects to the onboard IDE connector interface and the other connector(s) to your hard drive(s). Consult the documentation that came with your disk drive for details on actual jumper locations and settings for the hard disk drive.

Floppy Drive Connector

The floppy connector is located beside the IDE connector. See the table below for pin definitions.

Floppy Drive Connector Pin Definitions (Floppy)			
Pin#	Definition	Pin :	# Definition
1	Ground	2	FDHDIN
3	Ground	4	Reserved
5	Key	6	FDEDIN
7	Ground	8	Index
9	Ground	10	Motor Enable
11	Ground	12	Drive Select B
13	Ground	14	Drive Select B
15	Ground	16	Motor Enable
17	Ground	18	DIR
19	Ground	20	STEP
21	Ground	22	Write Data
23	Ground	24	Write Gate
25	Ground	26	Track 00
27	Ground	28	Write Protect
29	Ground	30	Read Data
31	Ground	32	Side 1 Select
33	Ground	34	Diskette

IDE Connector

There is a single IDE connector on the serverboard. The IDE connector may be used for a Compact Flash Card. (See the note below.) See the table on the right for pin definitions.

Note: If populated with a Compact Flash Card, the IDE connector will be available for one device only. For the Compact Flash Card to work properly, you will need to connect a power cable to JWF1 first.

IDE Drive Connector Pin Definitions (IDE)			
Pin#	Definition	Pin#	Definition
1	Reset IDE	2	Ground
3	Host Data 7	4	Host Data 8
5	Host Data 6	6	Host Data 9
7	Host Data 5	8	Host Data 10
9	Host Data 4	10	Host Data 11
11	Host Data 3	12	Host Data 12
13	Host Data 2	14	Host Data 13
15	Host Data 1	16	Host Data 14
17	Host Data 0	18	Host Data 15
19	Ground	20	Key
21	DRQ3	22	Ground
23	I/O Write	24	Ground
25	I/O Read	26	Ground
27	IOCHRDY	28	BALE
29	DACK3	30	Ground
31	IRQ14	32	IOCS16
33	Addr1	34	Ground
35	Addr0	36	Addr2
37	Chip Select 0	38	Chip Select 1
39	Activity	40	Ground

SATA Ports

There are no jumpers to configure the onboard SATA connectors. See the table on the right for pin definitions.

SATA Port Pin Definitions (I-SATA0~I-SATA5)		
Pin #	Definition	
1	Ground	
2	TXP	
3	TXN	
4	Ground	
5	RXN	
6	RXP	
7	Ground	

5-13 Installing Software

After the hardware has been installed, you should first install the operating system and then the drivers. The necessary drivers are all included on the Supermicro CDs that came packaged with your motherboard.

Driver/Tool Installation Display Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents of the CD.

Supero Doctor III

The Supero Doctor III program is a Web base management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The Supero Doctor III program included on the CD-ROM that came with your motherboard allows you to monitor the environment and operations of your system. Supero Doctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the Figure below for a display of the Supero Doctor III interface.

Note: The default User Name and Password for SuperDoctor III is ADMIN / ADMIN.

Note: When SuperDoctor III is first installed, it adopts the temperature threshold settings that have been set in BIOS. Any subsequent changes to these thresholds must be made within Super Doctor, as the Super Doctor settings override the BIOS settings. To set the BIOS temperature threshold settings again, you would first need to uninstall SuperDoctor III.

Supero Doctor III Interface Display Screen (Health Information)

Supero Doctor III Interface Display Screen (Remote Control)

Note: SD III Software Revision 1.0 can be downloaded from our Web Site at: ftp://ftp. supermicro.com/utility/Supero_Doctor_III/. You can also download the SDIII User's Guide at: http://www.supermicro.com/PRODUCT/Manuals/SDIII/UserGuide.pdf>. For Linux, we will recommend using Supero Doctor II.

Chapter 6

Advanced Chassis Setup

This chapter covers the steps required to install components and perform maintenance on the SC825TQ-R720LPB-1 chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the step that follows.

Tools Required: The only tool you will need to install components and perform maintenance is a Philips screwdriver.

6-1 Static-Sensitive Devices

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage.

Precautions

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

Figure 6-1. Front and Rear Chassis Views

6-2 Control Panel

The control panel (located on the front of the chassis) must be connected to the JF1 connector on the serverboard to provide you with system status indications. A ribbon cable has bundled these wires together to simplify the connection. Connect the cable from JF1 on the serverboard to the Control Panel PCB (printed circuit board). Make sure the red wire plugs into pin 1 on both connectors. Pull all excess cabling out of the airflow path. The LEDs inform you of system status.

See Chapter 3 for details on the LEDs and the control panel buttons. Details on JF1 can be found in Chapter 5.

6-3 System Fans

Three 8-cm hot-swap fans provide the cooling for the system. It is very important that the chassis top cover is properly installed and making a good seal in order for the cooling air to circulate properly through the chassis and cool the components. See Figure 6-2.

System Fan Failure

Fan speed is controlled by system temperature via a BIOS setting. If a fan fails, the remaining fans will ramp up to full speed and the overheat/fan fail LED on the control panel will turn on. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan). Remove the top chassis cover while the system is still running to determine which of the fans has failed.

Replacing System Fans

Removing a Fan

- 1. Remove the chassis cover.
- 2. Press the tabs on the sides of the fan to unlock and remove the fan and its housing. The fan's power connections will automatically detach.
- 3. System power does not need to be shut down since the fans are hot-pluggable.

Installing a New Fan

- 1. Replace the failed fan with an identical 8-cm, 12 volt fan (available from Supermicro, p/n FAN-0094L4).
- 2. Position the new fan into the space vacated by the failed fan previously removed. A "click" can be heard when the fan is fully installed in place and the power connections are made.
- 3. If the system power is on, the hot-plug feature will cause the fan to start immediately upon being connected to its header on the serverboard.

Figure 6-2. Removing System Cooling Fans

6-4 Drive Bay Installation/Removal

Accessing the Drive Bays

<u>SATA Drives</u>: You do not need to access the inside of the chassis or remove power to replace or swap SATA drives. Proceed to the next step for instructions.

Note: You must use standard 1" high, SATA drives in the system.

<u>DVD-ROM/Floppy Disk Drive</u>: For installing/removing the DVD-ROM or floppy disk drive, you will need to gain access to the inside of the server by removing the top cover of the chassis. Proceed to the "DVD-ROM and Floppy Drive Installation" section later in this chapter for instructions.

Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro Web site at http://www.supermicro.com/products/nfo/files/storage/SAS-1-CompList-110909.pdf

SATA Drive Installation

The SATA drives are mounted in drive carriers to simplify their installation and removal from the chassis. These carriers also help promote proper airflow for the drives. For this reason, even empty carriers without hard drives installed must remain in the chassis.

Mounting a SATA Drive in a Drive Carrier

- 1. To add a new SATA drive, install the drive into the carrier with the printed circuit board side facing down so that the mounting holes align with those in the carrier.
- 2. Secure the drive to the carrier with four screws, as shown in Figure 6-3.

Installing/Removing Hot-swap SATA Drives

- 1. Push the release button located beside the drive's LEDs.
- 2. Swing the handle fully out and use it to pull the drive carrier straight out (see Figure 6-4).

Note: Your OS must have RAID support to enable the hot-plug capability of the drives.

Figure 6-3. Mounting a SATA Drive in a Carrier

Use caution when working around the SATA backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the holes, which aid in proper airflow.

<u>Important:</u> Regardless of how many hard drives are installed, all drive carriers must remain in the drive bays to maintain proper airflow.

Figure 6-4. Removing a SATA Drive Carrier

<u>Important:</u> All of the drive carriers must remain in the drive bays to maintain proper cooling airflow.

Hard Drive Backplane

The hard drives plug into a backplane that provides power, drive ID and bus termination. A RAID controller can be used with the backplane to provide data security. The operating system you use must have RAID support to enable the hot-swap capability of the hard drives. The backplane is already preconfigured, so no jumper or switch configurations are required.

DVD-ROM and Floppy Drive Installation

The top cover of the chassis must be opened to gain full access to the DVD-ROM and floppy drive bays. The 6026T-NTR+ accommodates only slim type DVD-ROM drives. Side mounting brackets are typically needed to mount a slim DVD-ROM drive in the server.

Accessing the Inside of the Chassis

- 1. Grasp the two handles on either side and pull the unit straight out until it locks (you will hear a "click").
- 2. Next, depress the two buttons on the top of the chassis to release the top cover and at the same time, push the cover away from you until it stops. You can then lift the top cover from the chassis to gain full access to the inside of the server. Note: You must power down the system before installing or removing floppy or IDE components.

Drives mount on rails and should "click" into place to be correctly and fully installed in their bays.

- The floppy disk drive cable has seven twisted wires.
- A color mark on a cable typically designates the location of pin 1.
- A single floppy disk drive ribbon cable has 34 wires and two connectors to provide for two floppy disk drives. The connector with twisted wires always connects to drive A, and the connector that does not have twisted wires always connects to drive B.

6-5 Power Supply

The SuperServer 6026T-NTR+ has a 720 watt redundant power supply consisting of two power modules. Each power supply module has an auto-switching capability, which enables it to automatically sense and operate at a 100V - 240V input voltage.

Power Supply Failure

If either of the two power supply modules fail, the other module will take the full load and allow the system to continue operation without interruption. The PWR Fail LED will illuminate and remain on until the failed unit has been replaced. Replacement units can be ordered directly from Supermicro (see contact information in the Preface). The power supply units have a hot-swap capability, meaning you can replace the failed unit without powering down the system.

Removing/Replacing the Power Supply

You do not need to shut down the system to replace a power supply unit. The backup power supply module will keep the system up and running while you replace the failed hot-swap unit. Replace with the same model (see part number in the Appendix), which can be ordered directly from Supermicro.

Removing the Power Supply

- 1. First unplug the AC power cord from the failed power supply module.
- 2. Depress the locking tab on the power supply module.
- 3. Use the handle to pull it straight out with the rounded handle.

Installing a New Power Supply

- 1. Replace the failed hot-swap unit with another identical power supply unit.
- 2. Push the new power supply unit into the power bay until you hear a click.
- 3. Secure the locking tab on the unit.
- 4. Finish by plugging the AC power cord back into the unit.

Chapter 7

BIOS

7-1 Introduction

This chapter describes the AMI BIOS Setup Utility for the X8DTN+. The AMI ROM BIOS is stored in a Flash EEPROM and can be easily updated. This chapter describes the basic navigation of the AMI BIOS Setup Utility setup screens.

Starting BIOS Setup Utility

To enter the AMI BIOS Setup Utility screens, press the <Delete> key while the system is booting up.

Note: In most cases, the <Delete> key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as <F1>, <F2>, etc.

Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it. (**Note**: the AMI BIOS has default text messages built in. Supermicro retains the option to include, omit, or change any of these text messages.)

The AMI BIOS Setup Utility uses a key-based navigation system called "hot keys". Most of the AMI BIOS setup utility "hot keys" can be used at any time during the setup navigation process. These keys include <F1>, <F10>, <Enter>, <ESC>, arrow keys, etc.

Note: Options printed in **Bold** are default settings.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing at the appropriate time during system boot.

Starting the Setup Utility

Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup Utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen below the copyright message.

Warning! Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is updating. This is to avoid possible boot failure.

7-2 Main Setup

When you first enter the AMI BIOS Setup Utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS Setup screen is shown below.

System Overview: The following BIOS information will be displayed:

System Time/System Date

Use this option to change the system time and date. Highlight *System Time* or *System Date* using the arrow keys. Key in new values through the keyboard and press <Enter>. Press the <Tab> key to move between fields. The date must be entered in Day MM/DD/YY format. The time is entered in HH:MM:SS format. (**Note:** The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.)

Supermicro X8DTN+

- BIOS Build Version: This item displays the BIOS revision used in your system.
- BIOS Build Date: This item displays the date when this BIOS was completed.
- AMI BIOS Core Version: This item displays the revision number of the AMI BIOS Core upon which your BIOS was built.

Processor

The AMI BIOS will automatically display the status of the processor used in your system:

- CPU Type: This item displays the type of CPU used in the motherboard.
- Speed: This item displays the speed of the CPU detected by the BIOS.
- Physical Count: This item displays the number of processors installed in your system as detected by the BIOS.
- Logical Count: This item displays the number of CPU Cores installed in your system as detected by the BIOS.
- Micro_code Revision: This item displays the revision number of the BIOS Micro_code used in your system.

System Memory

This displays the size of memory available in the system:

• Size: This item displays the memory size detected by the BIOS.

7-3 Advanced Setup Configurations

Use the arrow keys to select Boot Setup and hit <Enter> to access the submenu items:

▶BOOT Features

Quick Boot

If Enabled, this option will skip certain tests during POST to reduce the time needed for system boot. The options are **Enabled** and Disabled.

Quiet Boot

This option allows the bootup screen options to be modified between POST messages or the OEM logo. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled.

AddOn ROM Display Mode

This sets the display mode for Option ROM. The options are **Force BIOS** and Keep Current.

Bootup Num-Lock

This feature selects the Power-on state for Numlock key. The options are Off and **On**.

Wait For 'F1' If Error

This forces the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and **Enabled**.

Hit 'Del' Message Display

This feature displays "Press DEL to run Setup" during POST. The options are **Enabled** and Disabled.

Interrupt 19 Capture

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Enabled, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at boot and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Disabled, the ROM BIOS of the host adaptors will not capture Interrupt 19, and the drives attached to these adaptors will not function as bootable devices. The options are Enabled and **Disabled**.

Power Configuration

Power Button Function

If set to Instant_Off, the system will power off immediately as soon as the user hits the power button. If set to 4_Second_Override, the system will power off when the user presses the power button for 4 seconds or longer. The options are **Instant_Off** and 4 Second Override.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select Power-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last state before a power loss. The options are Power-On, Power-Off and Last State.

Watch Dog Timer

If enabled, the Watch Dog Timer will allow the system to reboot when it is inactive for more than 5 minutes. The options are Enabled and **Disabled.**

▶ Processor and Clock Options

This submenu allows the user to configure the Processor and Clock settings.

Ratio CMOS Setting

This option allows the user to set the ratio between the CPU Core Clock and the FSB Frequency. (**Note**: if an invalid ratio is entered, the AMI BIOS will restore the setting to the previous state.) The default setting depends on the type of CPU installed on the motherboard. The default setting for the CPU installed in your motherboard is **[21]**. Press "+" or "-" on your keyboard to change this value.

C1E Support

Select Enabled to use the feature of Enhanced Halt State. C1E significantly reduces the CPU's power consumption by reducing the CPU's clock cycle and voltage during a "Halt State." The options are Disabled and **Enabled**.

Hardware Prefetcher (Available when supported by the CPU)

If set to Enabled, the hardware pre fetcher will pre fetch streams of data and instructions from the main memory to the L2 cache in the forward or backward manner to improve CPU performance. The options are Disabled and **Enabled**.

Adjacent Cache Line Prefetch (Available when supported by the CPU)

The CPU fetches the cache line for 64 bytes if this option is set to Disabled. The CPU fetches both cache lines for 128 bytes as comprised if **Enabled**.

Intel® Virtualization Technology (Available when supported by the CPU)

Select Enabled to use the feature of Virtualization Technology to allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are **Enabled** and Disabled. **Note**: If there is any change to this setting, you will need to power off and restart the system for the change to take effect. Please refer to Intel's web site for detailed information.

Execute-Disable Bit Capability (Available when supported by the OS and the CPU)

Set to Enabled to enable the Execute Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. The default is **Enabled**. (Refer to Intel and Microsoft Web Sites for more information.)

Simultaneous Multi-Threading (Available when supported by the CPU)

Set to Enabled to use the Simultaneous Multi-Threading Technology, which will result in increased CPU performance. The options are Disabled and **Enabled.**

Active Processor Cores

Set to Enabled to use a processor's Second Core and beyond. (Please refer to Intel's web site for more information.) The options are **All**, 1 and 2.

Intel® EIST Technology

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency in an effort to reduce power consump-

tion and heat dissipation. Please refer to Intel's web site for detailed information. The options are **Disable (Disable GV3)** and Enable (Enable GV3).

Intel® TurboMode Technology (Available when Intel® EIST Technology is enabled)

Select Enabled to use the Turbo Mode to boost system performance. The options are **Enabled** and Disabled.

Intel® C-STATE Tech

If enabled, C-State is set by the system automatically to either C2, C3 or C4 state. The options are **Disabled** and Enabled.

C-State package limit setting (Available when Intel® C-State Tech is enabled)

If set to Auto, the AMI BIOS will automatically set the limit on the C-State package register. The options are **Auto**, C1, C3, C6 and C7.

C1 Auto Demotion

When enabled, the CPU will conditionally demote C3, C6 or C7 requests to C1 based on un-core auto-demote information. The options are Disabled and **Enabled.**

C3 Auto Demotion

When enabled, the CPU will conditionally demote C6 or C7 requests to C3 based on un-core auto-demote information. The options are Disabled and **Enabled.**

Clock Spread Spectrum

Select Enable to use the feature of Clock Spectrum, which will allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are **Disabled** and Enabled.

► Advanced Chipset Control

The items included in the Advanced Settings submenu are listed below:

▶CPU Bridge Configuration

QPI Links Speed

This feature selects QPI's data transfer speed. The options are Slow-mode, and **Full Speed**.

QPI Frequency

This selects the desired QPI frequency. The options are **Auto**, 4.800 GT, 5.866GT, 6.400 GT.

QPI L0s and L1

This enables the QPI power state to low power. L0s and L1 are automatically selected by the motherboard. The options are **Disabled** and Enabled.

Memory Frequency

This feature forces a DDR3 frequency slower than what the system has detected. The available options are **Auto**, Force DDR-800, Force DDR-1066, and Force DDR-1333.

Memory Mode

The options are **Independent**, Channel Mirror, Lockstep and Sparing.

Independent - All DIMMs are available to the operating system.

Channel Mirror - The motherboard maintains two identical copies of all data in memory for redundancy.

Lockstep - The motherboard uses two areas of memory to run the same set of operations in parallel.

Sparing - A preset threshold of correctable errors is used to trigger fail-over. The spare memory is put online and used as active memory in place of the failed memory.

Demand Scrubbing

A memory error-correction scheme where the Processor writes corrected data back into the memory block from where it was read by the Processor. The options are Enabled and **Disabled**.

Patrol Scrubbing

A memory error-correction scheme that works in the background looking for and correcting resident errors. The options are Enabled and **Disabled**.

Memory ECC Error Threshold

This feature allows the user to set the correctable memory ECC error limit for AMI BIOS to handle it. The Default setting is 255.

Throttling - Closed Loop/Throttling - Open Loop

Throttling improves reliability and reduces power in the processor by automatic voltage control during processor idle states. Available options are **Disabled** and Enabled. If Enabled, the following items will appear:

Hysteresis Temperature (Available for Closed Loop only)

Temperature Hysteresis is the temperature lag (in degrees Celsius) after the set DIMM temperature threshold is reached before Closed Loop Throttling begins. The options are Disabled, **1.5°C**, 3.0°C, and 6.0°C.

Guardband Temperature (Available for Closed Loop only)

This is the temperature which applies to the DIMM temperature threshold. Each step is in 0.5°C increment. The default is **[006]**. Press "+" or "-" on your keyboard to change this value.

Inlet Temperature

This is the temperature detected at the chassis inlet. Each step is in 0.5°C increment. The default is **[070]**. Press "+" or "-" on your keyboard to change this value.

Temperature Rise

This is the temperature rise to the DIMM thermal zone. Each step is in 0.5°C increment. The default is **[020]**. Press "+" or "-" on your keyboard to change this value.

Air Flow

This is the air flow speed to the DIMM modules. Each step is one mm/ sec. The default is **[1500]**. Press "+" or "-" on your keyboard to change this value.

Altitude

This feature defines how many meters above or below sea level the system is located. The options are **Sea Level or Below,** 1~300, 301~600, 601~900, 901~1200, 1201~1500, 1501~1800, 1801~2100, 2101~2400, 2401~2700, 2701~3000.

DIMM Pitch

This is the physical space between each DIMM module. Each step is in 1/1000 of an inch. The default is **[400]**. Press "+" or "-" on your keyboard to change this value.

Serial Debug Message Level

This feature allows the user to set the level of debug messages to be displayed. The options are **None**, MIN, MAX and Test.

► North Bridge Configuration

This feature allows the user to configure the settings for the Intel North Bridge chip.

Crystal Beach/DMA (Direct Memory Access)

This feature works with the Intel I/O AT (Acceleration Technology) to accelerate the performance of TOE devices. (**Note**: A TOE device is a specialized, dedicated

processor that is installed on an add-on card or a network card to handle some or all packet processing of this add-on card.) When this feature is set to Enabled, it will enhance overall system performance by providing direct memory access for data transferring. The options are Enabled and **Disabled.**

Crystal Beach/DCA (Direct Cache Access) (Available when Crystal Beach/DMA is enabled)

This feature works in conjunction with the Intel I/O AT (Acceleration Technology) to accelerate the performance of the TOE device. When this feature set to Enabled, it will enhance overall system performance by providing direct cache access for data transferring. The options are Enabled and **Disabled.**

Intel VT-d

Select Enabled to enable Intel's Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to VMM through the DMAR ACPI Tables. This feature offers fully-protected I/O resource-sharing across the Intel platforms, providing the user with greater reliability, security and availability in networking and data-sharing. The settings are Enabled and **Disabled**.

▶ SouthBridge Configuration

This feature allows the user to configure the settings for the Intel ICH South Bridge chipset.

USB Functions

This feature allows the user to decide the number of onboard USB ports to be enabled. The Options are: Disabled, 2 USB ports, 4 USB ports, 6 USB ports, 8 Ports, 10 Ports and 12 USB ports.

Legacy USB Support

Select Enabled to use Legacy USB devices. If this item is set to Auto, Legacy USB support will be automatically enabled if a legacy USB device is installed on the motherboard, and vise versa. The settings are Disabled, **Enabled** and Auto.

USB 2.0 Controller

This item indicated if the USB 2.0 controller is activated. The options are Enabled and Disabled.

USB 2.0 Controller Mode

This setting allows you to select the USB 2.0 Controller mode. The options are Hi-Speed (480 Mbps) and **Full Speed (12 Mbps)**.

BIOS EHCI Hand-Off

Select Enabled to enable BIOS Enhanced Host Controller Interface support to provide a workaround solution for an operating system that does not have EHCI Hand-Off support. When enabled, the EHCI Interface will be changed from the BIOS-controlled to the OS-controlled. The options are Disabled and **Enabled**.

►Intel PCI-X Hub Configuration

PCI Bus A0/B0 Frequency

This option allows the user to set the maximum PCI speed to be used in the PCI slot specified. Select Auto to allow the BIOS to automatically detect the capability of the device installed on the bus. The options are **Auto**, 33 MHz PCI, 66 MHz PCI, 66 MHz PCI-X MI, 100 MHz PCI-X MI, and 133 MHz PCI-X MI.

I/O Port Decode

This option allows the user to select the decode range for the I/O connections. The options are **4K Decode** and 1K Decode.

RAS Sticky Error Handling

This option allows the user to decide how to handle Sticky RAS errors. The options are **Clear Errors** and Leave Errors (unchanged).

VGA 16-Bit Decode

Select Enabled to enable the function of decoding VGA for the devices installed behind the PXH PCI Controller Hub. The options are **Enabled** and Disabled.

▶IDE/SATA/Floppy Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of the IDE devices and displays the following items:

SATA#1 Configuration

If Compatible is selected, it sets SATA#1 to legacy compatibility mode, while selecting Enhanced sets SATA#1 to native SATA mode. The options are Disabled, **Compatible** and Enhanced.

Configure SATA#1 as

This feature allows the user to select the drive type for SATA#1. The options are **IDE,** RAID and AHCI. (When the option-RAID is selected, the item-ICH RAID Code Base will appear. When the option-AHCI is selected, the item-SATA AHCI will be available.)

ICH RAID Code Base (This feature is available when the option-RAID is selected)

Select Intel to enable Intel's SATA RAID firmware to configure Intel's SATA RAID settings. Select Adaptec to enable Adaptec's SATA RAID firmware to configure Adaptec's SATA RAID settings. The options are **Intel** and Adaptec.

SATA AHCI (This feature is available when the option-AHCI is selected)

Select Enable to enable the function of Serial ATA Advanced Host Interface. (Take caution when using this function. This feature is for advanced programmers only.) The options are Enabled and **Disabled**. If the option-Enabled is selected, the following item will display.

SATA#2 Configuration (This feature is available when the option-IDE is selected)

Selecting Enhanced will set SATA#2 to native SATA mode. The options are Disabled, and **Enhanced**.

Primary IDE Master/Slave, Secondary IDE Master/Slave, Third IDE Master, and Fourth IDE Master

These settings allow the user to set the parameters of Primary IDE Master/Slave, Secondary IDE Master/Slave, Third and Fourth IDE Master slots. Hit <Enter> to activate the following submenu screen for detailed options of these items. Set the correct configurations accordingly. The items included in the submenu are:

Type

Select the type of device connected to the system. The options are Not Installed, **Auto**, CD/DVD and ARMD.

LBA/Large Mode

LBA (Logical Block Addressing) is a method of addressing data on a disk drive. In the LBA mode, the maximum drive capacity is 137 GB. For drive capacities over 137 GB, your system must be equipped with a 48-bit LBA mode addressing. If not, contact your manufacturer or install an ATA/133 IDE controller card that supports 48-bit LBA mode. The options are Disabled and **Auto**.

Block (Multi-Sector Transfer)

Block Mode boosts the IDE drive performance by increasing the amount of data transferred. Only 512 bytes of data can be transferred per interrupt if Block Mode is not used. Block Mode allows transfers of up to 64 KB per interrupt. Select Disabled to allow data to be transferred from and to the device one sector at a time. Select Auto to allow data transfer from and to the device occur multiple sectors at a time if the device supports it. The options are **Auto** and Disabled.

PIO Mode

The IDE PIO (Programmable I/O) Mode programs timing cycles between the IDE drive and the programmable IDE controller. As the PIO mode increases, the cycle time decreases. The options are **Auto**, 0, 1, 2, 3, and 4.

Select Auto to allow the AMI BIOS to automatically detect the PIO mode. Use this value if the IDE disk drive support cannot be determined.

Select 0 to allow the AMI BIOS to use PIO mode 0. It has a data transfer rate of 3.3 MBs.

Select 1 to allow the AMI BIOS to use PIO mode 1. It has a data transfer rate of 5.2 MBs.

Select 2 to allow the AMI BIOS to use PIO mode 2. It has a data transfer rate of 8.3 MBs.

Select 3 to allow the AMI BIOS to use PIO mode 3. It has a data transfer rate of 11.1 MBs.

Select 4 to allow the AMI BIOS to use PIO mode 4. It has a data transfer bandwidth of 32-Bits. Select Enabled to enable 32-Bit data transfer.

DMA Mode

Select Auto to allow the BIOS to automatically detect IDE DMA mode when the IDE disk drive support cannot be determined.

Select SWDMA0 to allow the BIOS to use Single Word DMA mode 0. It has a data transfer rate of 2.1 MBs.

Select SWDMA1 to allow the BIOS to use Single Word DMA mode 1. It has a data transfer rate of 4.2 MBs.

Select SWDMA2 to allow the BIOS to use Single Word DMA mode 2. It has a data transfer rate of 8.3 MBs.

Select MWDMA0 to allow the BIOS to use Multi Word DMA mode 0. It has a data transfer rate of 4.2 MBs.

Select MWDMA1 to allow the BIOS to use Multi Word DMA mode 1. It has a data transfer rate of 13.3 MBs.

Select MWDMA2 to allow the BIOS to use Multi-Word DMA mode 2. It has a data transfer rate of 16.6 MBs.

Select UDMA0 to allow the BIOS to use Ultra DMA mode 0. It has a data transfer rate of 16.6 MBs. It has the same transfer rate as PIO mode 4 and Multi Word DMA mode 2.

Select UDMA1 to allow the BIOS to use Ultra DMA mode 1. It has a data transfer rate of 25 MBs.

Select UDMA2 to allow the BIOS to use Ultra DMA mode 2. It has a data transfer rate of 33.3 MBs.

Select UDMA3 to allow the BIOS to use Ultra DMA mode 3. It has a data transfer rate of 66.6 MBs.

Select UDMA4 to allow the BIOS to use Ultra DMA mode 4. It has a data transfer rate of 100 MBs.

Select UDMA5 to allow the BIOS to use Ultra DMA mode 5. It has a data transfer rate of 133 MBs.

Select UDMA6 to allow the BIOS to use Ultra DMA mode 6. It has a data transfer rate of 133 MBs. The options are **Auto**, SWDMAn, MWDMAn, and UDMAn.

S.M.A.R.T. For Hard disk drives

Self-Monitoring Analysis and Reporting Technology (SMART) can help predict impending drive failures. Select Auto to allow the AMI BIOS to automatically detect hard disk drive support. Select Disabled to prevent the AMI BIOS from using the S.M.A.R.T. Select Enabled to allow the AMI BIOS to use the S.M.A.R.T. to support hard drive disk. The options are Disabled, Enabled, and **Auto**.

32Bit Data Transfer

Select Enable to enable the function of 32-bit IDE data transfer. The options are **Enabled** and Disabled.

Hot Plug (This feature is available when the option-AHCI Under "Confiigure SATA#1 as" is selected)

Select Enable to enable the hot plug function for the SATA devices. The options are **Enabled** and Disabled.

IDE Detect Timeout (sec)

Use this feature to set the time-out value for the BIOS to detect the ATA, ATAPI devices installed in the system. The options are 0 (sec), 5, 10, 15, 20, 25, 30, and 35.

▶PCI/PnP Configuration

Clear NVRAM

This feature clears the NVRAM during system boot. The options are **No** and Yes.

Plug & Play OS

Selecting Yes allows the OS to configure Plug & Play devices. (This is not required for system boot if your system has an OS that supports Plug & Play.) Select **No** to allow the AMI BIOS to configure all devices in the system.

PCI Latency Timer

This feature sets the latency Timer of each PCI device installed on a PCI bus. Select 64 to set the PCI latency to 64 PCI clock cycles. The options are 32, **64**, 96, 128, 160, 192, 224 and 248.

PCI IDE BusMaster

When enabled, the BIOS uses PCI bus mastering for reading/writing to IDE drives. The options are Disabled and **Enabled**.

Load Onboard LAN1 Option ROM/Load Onboard LAN2 Option ROM

Select Enabled to enable the onboard LAN1 or LAN2 Option ROM. This is to boot computer using a network interface. The options are Enabled and **Disabled.**

► Super IO Device Configuration

Onboard Floppy Controller

Select Enabled to enable the onboard floppy controller. The options are Disabled and **Enabled**.

Floppy Drive Swap

Select Enabled to enable floppy drive swap. The options are **Disabled** and Enabled.

Serial Port1 Address/ Serial Port2 Address

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1 and Serial Port 2. Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port physically becomes unavailable. Select 3F8/IRQ4 to allow the serial port to use 3F8 as its I/O port address and IRQ 4 for the interrupt address. The options for Serial Port1 are Disabled, **3F8/IRQ4**, 3E8/IRQ4, 2E8/IRQ3. The options for Serial Port2 are Disabled, **2F8/IRQ3**, 3E8/IRQ4, and 2E8/IRQ3.

► Remote Access Configuration

Remote Access

This allows the user to enable the Remote Access feature. The options are Disabled and **Enabled**.

If Remote Access is set to Enabled, the following items will display:

Serial Port Number

This feature allows the user decide which serial port to be used for Console Redirection. The options are **COM 1** and COM 2.

Base Address, IRQ

This item displays the based address and IRQ of the serial port specified above. The options are **COM 1** and COM 2.

Serial Port Mode

This feature allows the user to set the serial port mode for Console Redirection. The options are **115200 8**, **n 1**; 57600 8, n, 1; 38400 8, n, 1; 19200 8, n, 1; and 9600 8, n, 1.

Flow Control

This feature allows the user to set the flow control for Console Redirection. The options are **None**, Hardware, and Software.

Redirection After BIOS POST

Select Disabled to turn off Console Redirection after Power-On Self-Test (POST). Select Always to keep Console Redirection active all the time after POST. (Note: This setting may not be supported by some operating systems.) Select Boot Loader to keep Console Redirection active during POST and Boot Loader. The options are Disabled, Boot Loader, and **Always**.

Terminal Type

This feature allows the user to select the target terminal type for Console Redirection. The options are **ANSI**, VT100, and VT-UTF8.

VT-UTF8 Combo Key Support

A terminal keyboard definition that provides a way to send commands from a remote console. Available options are **Enabled** and Disabled.

Sredir Memory Display Delay

This feature defines the length of time in seconds to display memory information. The options are **No Delay**, Delay 1 Sec, Delay 2 Sec, and Delay 4 Sec.

► Hardware Health Monitor

This feature allows the user to monitor system health and review the status of each item as displayed.

CPU Overheat Alarm

This option allows the user to select the CPU Overheat Alarm setting which determines when the CPU OH alarm will be activated to provide warning of possible CPU overheat.

Warning! 1.Any temperature that exceeds the CPU threshold temperature predefined by the CPU manufacturer may result in CPU overheat or system instability. When the CPU temperature reaches this predefined threshold, the CPU and system cooling fans will run at full speed. 2. To avoid possible system overheating, please be sure to provide adequate airflow to your system.

The options are:

- The Early Alarm: Select this setting if you want the CPU overheat alarm (including the LED and the buzzer) to be triggered as soon as the CPU temperature reaches the CPU overheat threshold as predefined by the CPU manufacturer.
- The Default Alarm: Select this setting if you want the CPU overheat alarm (including the LED and the buzzer) to be triggered when the CPU temperature reaches about 5°C above the threshold temperature as predefined by the CPU manufacturer to give the CPU and system fans additional time needed for CPU and system cooling. In both the alarms above, please take immediate action as shown below.

CPU Temperature/System Temperature

This feature displays current temperature readings for the CPU and the System.

The following items will be displayed for your reference only:

CPU Temperature

The CPU thermal technology that reports absolute temperatures (Celsius/Fahrenheit) has been upgraded to a more advanced feature by Intel in its newer processors. The basic concept is each CPU is embedded by unique temperature information that the motherboard can read. This 'Temperature Threshold' or 'Temperature Tolerance' has been assigned at the factory and is the baseline on which the motherboard takes action during different CPU temperature conditions (i.e., by increasing CPU Fan speed, triggering the Overheat Alarm, etc). Since CPUs can have different 'Temperature Tolerances', the installed CPU can now send information to the motherboard what its 'Temperature Tolerance' is, and not the other way around. This results in better CPU thermal management.

Supermicro has leveraged this feature by assigning a temperature status to certain thermal conditions in the processor (Low, Medium and High). This makes it easier for the user to understand the CPU's temperature status, rather than by just simply

seeing a temperature reading (i.e., 25°C). The CPU Temperature feature will display the CPU temperature status as detected by the BIOS:

Low – This level is considered as the 'normal' operating state. The CPU temperature is well below the CPU 'Temperature Tolerance'. The motherboard fans and CPU will run normally as configured in the BIOS (Fan Speed Control).

User intervention: No action required.

Medium – The processor is running warmer. This is a 'precautionary' level and generally means that there may be factors contributing to this condition, but the CPU is still within its normal operating state and below the CPU 'Temperature Tolerance'. The motherboard fans and CPU will run normally as configured in the BIOS. The fans may adjust to a faster speed depending on the Fan Speed Control settings.

User intervention: No action is required. However, consider checking the CPU fans and the chassis ventilation for blockage.

High – The processor is running hot. This is a 'caution' level since the CPU's 'Temperature Tolerance' has been reached (or has been exceeded) and may activate an overheat alarm.

User intervention: If the system buzzer and Overheat LED has activated, take action immediately by checking the system fans, chassis ventilation and room temperature to correct any problems.

Notes: The system may shut down if it continues for a long period to prevent damage to the CPU.

The information provided above is for your reference only. For more information on thermal management, please refer to Intel's Web site at www.intel.com.

System Temperature: The system temperature will be displayed (in degrees in Celsius and Fahrenheit) as it is detected by the BIOS.

Fan Speed Readings

This feature displays the fan speed readings from Fan1 through Fan8.

Fan Speed Control Monitor

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vice versa. Select Workstation if your system is used as a Workstation. Select Server if your system is used as a Server. Select "Disabled, (Full Speed @12V)" to disable the fan speed control function and allow the onboard fans to constantly run at the full speed (12V). The Options are: 1. **Disabled (Full Speed)**, 2. Server Mode, 3. Workstation Mode.

Voltages Readings

The following voltage readings will be displayed.

CPU1 Vcore, CPU2 Vcore, +5Vin, +12V, -12V 3.3Vcc (V), and Battery Voltage

► ACPI Configuration

Use this feature to configure Advanced Configuration and Power Interface (ACPI) power management settings for your system.

ACPI Version Features

The options are **ACPI v1.0**, ACPI v2.0 and ACPI v3.0. Please refer to ACPI's website for further explanation: http://www.acpi.info/.

ACPI APIC Support

Select Enabled to include the ACPI APIC Table Pointer in the RSDT (Root System Description Table) pointer list. The options are **Enabled** and Disabled.

APIC ACPI SCI IRQ

When this item is set to Enabled, APIC ACPI SCI IRQ is supported by the system. The options are Enabled and **Disabled**.

Headless Mode

This feature is used to enable system to function without a keyboard, monitor or mouse attached The options are Enabled and **Disabled**.

High Performance Event Timer

Select Enabled to activate the High Performance Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are Enabled and **Disabled**.

►Trusted Computing

TCG/TPM Support

Select Yes on this item and enable the TPM jumper on the motherboard to enable TCG (TPM 1.1/1.2)/TPM support in order to improve data integrity and network security. The options are **No** and Yes.

If this feature is set to Yes, the following items will display:

TPM Enable/Disable Status

This item displays the status of TPM Support to indicate if TPM is currently enabled or disabled.

TPM Owner Status

This item displays the status of TPM Ownership.

▶IPMI Configuration

Intelligent Platform Management Interface (IPMI) is a set of common interfaces that IT administrators can use to monitor system health and to manage the system as a whole. For more information on the IPMI specifications, please visit Intel's website at www.intel.com.

Status of BMC

Baseboard Management Controller (BMC) manages the interface between system management software and platform hardware. This is an informational feature which returns the status code of the BMC micro controller.

►View BMC System Event Log

This feature displays the BMC System Event Log (SEL). It shows the total number of entries of BMC System Events. To view an event, select an Entry Number and pressing <Enter> to display the information as shown in the screen.

- Total Number of Entries
- SEL Entry Number
- SEL Record ID
- SEL Record Type
- Timestamp, Generator ID
- Event Message Format User
- Event Sensor Type
- Event Sensor Number,
- Event Dir Type
- Event Data.

Clear BMC System Event Log

Select OK and press the <Enter> key to clear the BMC system log. Select Cancel to keep the BMC System log. The options are **OK** and Cancel.

Caution: Any cleared information is unrecoverable. Make absolutely sure that you no longer need any data stored in the log before clearing the BMC Event Log.

► Set LAN Configuration

Set this feature to configure the IPMI LAN adapter with a network address as shown in the following graphics.

Channel Number - Enter the channel number for the SET LAN Config command. This is initially set to [1]. Press "+" or "-" on your keyboard to change the Channel Number.

Channel Number Status - This feature returns the channel status for the Channel Number selected above: "Channel Number is OK" or "Wrong Channel Number".

▶IP Address Configuration

Enter the IP address for this machine. This should be in decimal and in dotted quad form (i.e., 192.168.10.253). The value of each three-digit number separated by dots should not exceed 255 as shown in the screen below.

Parameter Selector

Use this feature to select the parameter of your IP Address configuration.

IP Address

The BIOS will automatically enter the IP address of this machine; however it may be over-ridden. IP addresses are 6 two-digit hexadecimal numbers (Base 16, 0 ~ 9, A, B, C, D, E, F) separated by dots. (i.e., 00.30.48.D0.D4.60).

Current IP Address in BMC

This item displays the current IP address used for your IPMI connection.

► MAC Address Configuration

Enter the Mac address for this machine. This should be in decimal and in dotted quad form (i.e., 192.168.10.253). The value of each three-digit number separated by dots should not exceed 255 as shown in the screen below.

Parameter Selector

Use this feature to select the parameter of your Mac Address configuration.

Mac Address

The BIOS will automatically enter the Mac address of this machine; however it may be over-ridden. Mac addresses are 6 two-digit hexadecimal numbers (Base 16, 0 ~ 9, A, B, C, D, E, F) separated by dots. (i.e., 00.30.48.D0.D4.60).

Current Mac Address in BMC

This item displays the current Mac address used for your IPMI connection.

► Subnet Mask Configuration

Subnet masks tell the network which subnet this machine belongs to. The value of each three-digit number separated by dots should not exceed 255.

Parameter Selector

Use this feature to select the parameter of your Subnet Masks configuration.

Subnet Mask

This item displays the current subnet mask setting for your IPMI connection.

▶SEL PEF Configuration

PEF Support

Select Enabled to enable the function of Platform Event Filter (PEF) which will interpret BMC events and perform actions based on pre-determined settings or events and performs actions based on pre-determined settings or 'traps' under IPMI 1.5 specifications. For example, powering the system down or sending an alert when a triggering event is detected. The default is **Disabled.**

The following will appear if PEF Support is set to Enabled.

PEF Action Global Control (Available if the item-PEF Support is enabled)

These are the different actions based on BMC events. The options are **Alert**, Power Down, Reset System, Power Cycle, OEM Action, Diagnostic Interface.

Alert Startup Delay (Available if the item-PEF Support is enabled)

This feature inserts a delay during startup for PEF alerts. The options are Enabled and **Disabled**.

PEF Alert Startup Delay (Available if the item-PEF Support is enabled)

This sets the pre-determined time to delay PEF alerts after system power-ups and resets. Refer to Table 24.6 of the IPMI 1.5 Specification for more information at www.intel.com. The options are No Delay, 30 sec, 60 sec, 1.5 min, 2.0 min.

Startup Delay (Available if the item-PEF Support is enabled)

This feature enables or disables startup delay. The options are Enabled and **Disabled**.

PEF Startup Delay (Available if the item-PEF Startup is enabled)

This sets the pre-determined time to delay PEF after system power-ups and resets. Refer to Table 24.6 of the IPMI 1.5 Specification for more information at www.intel.com. The options are **No Delay**, 30 sec, 60 sec, 1.5 min, 2.0 min.

Event Message for PEF Action (Available if the item-PEF Support is enabled)

This enables of disables Event Messages for PEF action. Refer to Table 24.6 of the IPMI 1.5 Specification for more information at www.intel.com. The options are **Disabled** and Enabled.

BMC Watch Dog Timer Action

Allows the BMC to reset or power down the system if the operating system hangs or crashes. The options are **Disabled**, Reset System, Power Down, Power Cycle.

BMC Watch Dog TimeOut [Min:Sec]

This option appears if BMC Watch Dog Timer Action (above) is enabled. This is a timed delay in minutes or seconds, before a system power down or reset after an operating system failure is detected. The options are **[5 Min]**, [1 Min], [30 Sec], and [10 Sec].

▶DMI Event Log

View Event Log

Use this option to view the System Event Log.

Mark all events as read

This option marks all events as read. The options are OK and Cancel.

Clear event log

This option clears the Event Log memory of all messages. The options are OK and Cancel.

7-4 Security Settings

The AMIBIOS Setup Utility provides a Supervisor and a User password. If you use both passwords, the Supervisor password must be set first.

Supervisor Password

This feature indicates if a supervisor's password has been entered (installed).

User Password

This feature indicates if a user's password has been entered (installed).

Change Supervisor Password

Select this option and press <Enter> to access the submenu, and then enter the password.

Change User Password

Select this option and press <Enter> to access the submenu, and then enter the password.

Clear User Password (Available only if User Password has been set)

This item allows you to clear a user password after it has been entered.

Password Check

This item allows you to check a password after it has been entered. The options are **Setup** and Always.

Boot Sector Virus Protection

When Enabled, the AMI BIOS displays a warning when any program (or virus) issues a Disk Format command or attempts to write to the boot sector of the hard disk drive. The options are Enabled and **Disabled**.

7-5 Boot Configuration

Use this feature to configure boot settings.

▶Boot Device Priority

This feature allows the user to specify the sequence of priority for the Boot Device. The settings are 1st boot device, 2nd boot device, 3rd boot device, 4th boot device, 5th boot device and Disabled.

- 1st Boot Device [USB: XXXXXXXXX]
- 2nd Boot Device [CD/DVD: XXXXXXXXX]

► Hard Disk Drives

This feature allows the user to specify the boot sequence from all available hard disk drives. The settings are Disabled and a list of all hard disk drives that have been detected (i.e., 1st Drive, 2nd Drive, 3rd Drive, etc).

1st Drive - [SATA: XXXXXXXXX]

▶Removable Drives

This feature allows the user to specify the boot sequence from available Removable Drives. The settings are 1st boot device, 2nd boot device, and Disabled.

- 1st Drive [USB: XXXXXXXXX]
- 2nd Drive

7-6 Exit Options

Select the Exit tab from the AMI BIOS Setup Utility screen to enter the Exit BIOS Setup screen.

Save Changes and Exit

When you have completed the system configuration changes, select this option to leave the BIOS Setup Utility and reboot the computer, so the new system configuration parameters can take effect. Select Save Changes and Exit from the Exit menu and press <Enter>.

Discard Changes and Exit

Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>.

Discard Changes

Select this option and press <Enter> to discard all the changes and return to the AMI BIOS Utility Program.

Load Optimal Defaults

To set this feature, select Load Optimal Defaults from the Exit menu and press <Enter>. Then, select OK to allow the AMI BIOS to automatically load Optimal Defaults to the BIOS Settings. The Optimal settings are designed for maximum system performance, but may not work best for all computer applications.

Load Fail-Safe Defaults

To set this feature, select Load Fail-Safe Defaults from the Exit menu and press <Enter>. The Fail-Safe settings are designed for maximum system stability, but not for maximum performance.

Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen.

Fatal errors are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error.

A-1 BIOS Error Beep Codes

BIOS Error Beep Codes		
Beep Code	Error Message	Description
1 beep	Refresh	Circuits have been reset. (Ready to power up)
5 short beeps + 1 long beep	Memory error	No memory detected in the system
8 beeps	Display memory read/write error	Video adapter missing or with faulty memory
1 continuous beep w/ Front Panel OH LED on	System Overheat	1 continuous beep with the front panel OH LED on

Notes

Appendix B

Installing Windows

After all hardware components have been installed, you must first configure Intel South Bridge RAID Settings before you install the Windows OS and other software drivers. To configure RAID settings, please refer to RAID Configuration User Guides posted on our website at www.supermicro.com/support/manuals.

B-1 Installing Windows to a RAID System

- 1. Insert Microsoft's Windows XP/2003/2008/Vista Setup CD in the CD driver and the system will start booting up from CD.
- 2. Press the <F6> key when the message "Press F6 if you need to install a third party SCSI or RAID driver" displays.
- 3. When the Windows OS Setup screen appears, press "S" to specify additional device(s).
- 4. Insert the driver diskette "ITE RAID Windows XP/2003/2008/Vista Driver for IDE" into the floppy drive and press the <Enter> key.
- 5. When the Windows OS Setup screen appears, press "S" to specify additional device(s).
- Insert the driver diskette "Intel AA Windows XP/2003/2008/Vista Driver for ICH10R" into the floppy drive and press the <Enter> key.
- 7. Choose the Intel(R) ICH10R SATA RAID Controller from the list indicated in the Windows OS Setup Screen, and press the <Enter> key.
- 8. Press the <Enter> key to continue the installation process. (If you need to specify any additional devices to be installed, do so at this time.) Once all devices are specified, press the <Enter> key to continue with the installation.
- From the Windows OS Setup screen, press the <Enter> key. The Windows
 OS Setup will automatically load all device files and then, continue the Windows OS installation.
- 10. After the Windows OS Installation is completed, the system will automatically reboot.

B-2 Installing Windows to a Non-RAID System

- 1. Insert Microsoft's Windows XP/Windows 2003/Windows 2008/Windows Vista Setup CD in the CD drive and the system will start booting up from CD.
- 2. Continue with the OS installation. The Windows OS Setup screen will display.
- 3. From the Windows OS Setup screen, press the <Enter> key. The Windows OS Setup will automatically load all device files and then continue with the Windows OS installation.
- 4. After the Windows OS Installation is completed, the system will automatically reboot.
- 5. Insert the Supermicro Setup CD that came with your motherboard into the CD drive during system boot, and the main screen will display.

Appendix C

System Specifications

Processors

Single or dual Intel® Xeon® 5500 processors (both CPUs must be of the same type)

Note: Please refer to our web site for a complete listing of supported processors.

Chipset

Intel 5520/ICH10R chipset

BIOS

32 Mb AMI® SPI Flash ROM

Memory Capacity

Eighteen DIMM sockets supporting up to 144 GB of DDR3-1333/1066/800 registered ECC SDRAM

Note: Interleaved memory - requires memory must be installed four modules at a time. See Section 5-6 for details.

SATA Controller

Intel on-chip (ICH10R) controller for 6-port 3 Gb/s SATA (RAID 0, 1, 10 and 5 supported)

SATA Drive Bays

Eight hot-swap drive bays to house six standard SATA drives

Peripheral Drive Bays

One slim floppy drive (optional)
One slim DVD-ROM drive

Expansion Slots

Two PCI-Express Gen. 2 x8 slots (one in a x16 slot), one PCI-Express x4 slot (in a x8 slot), three 64-bit 133/100 MHz PCI-X slots and one UIO slot.

Serverboard

X8DTN+ (Extended ATX form factor)

Dimensions: 13.68 x 13.05 in (348 x 332 mm)

Chassis

SC825TQ-R720LPB-1 (2U rackmount)

Dimensions: (WxHxD) 16.8 x 3.5 x 25.5 in. (427 x 89 x 648 mm)

Weight

Gross (Bare Bone): 57 lbs. (25.9 kg.)

System Cooling

Three (3) 8-cm system cooling fans

System Input Requirements

AC Input Voltage: 100-240V AC auto-range

Rated Input Current: 9A - 4A

Rated Input Frequency: 50 to 60 Hz

Efficiency: 80+ (Gold Level)

Power Supply

Rated Output Power: 720W (Part# PWS-721P-1R) Rated Output Voltages: +12V (59A), +5Vsb (4A)

Operating Environment

Operating Temperature: 10° to 35° C (50° to 95° F)

Non-operating Temperature: -40° to 70° C (-40° to 158° F) Operating Relative Humidity: 20% to 95% (non-condensing) Non-operating Relative Humidity: 5 to 95% (non-condensing)

Regulatory Compliance

Electromagnetic Emissions: FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22 Class A

Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and

Canada), CE Marking (Europe)

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

(continued from front)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.