

Parcial 2 - Física I (FISI-1018) - 2016-10

Profesor: Jaime Forero — Fecha: Marzo 3, 2016

Yo, ________, con código _________, con código _________, con código de Uniandes, acepto hacer este exámen sin ayuda ni copia de fuentes no permitidas (incluyendo libros, notas y cualquier dispositivo electrónico excepto calculadoras digitales), sabiendo que hacer lo contrario va a ser considerado como fraude (una falta grave que se sanciona hasta con suspención de la Universidad por dos semestres como consta en el capítulo X del reglamento general de estudiantes).

- 1. Un adulto de masa M sostiene a un niño de masa m con una cuerda a través de una polea como se muestra en la Figura 1.
 - a) (10 puntos) Haga el diagrama de cuerpo libre sobre el adulto y el niño.
 - b) (10 puntos) Cuánto vale la normal (en Newton) que hace el piso sobre el adulto si $M=80{\rm kg}$ y $m=10{\rm kg}$?
- 2. La barra que se muestra en la Figura 2 (denotada por AB), esta sostenida por el cable BC, el cual tiene un extremo fijo en el punto C. Una persona aplica una fuerza de 1000N a lo largo de BD con un ángulo de 20° respecto a la vertical.
 - a) (10 puntos) Determine el valor de α para el cual la tensión es mínima en el cable.
 - b) (10 puntos) Encuentre la magnitud de la tensión para el ángulo que encontró en el inciso anterior.
- 3. Un automóvil entra a una curva de radio R, la carretera tiene un ángulo de inclinación θ y el coeficiente de fricción entre las llantas y el asfalto es μ ,
 - a) (10 puntos) Encuentre la máxima velocidad que puede tener el carro para mantenerse en la carretera sin deslizarse de lado.
 - b) (10 puntos) Encuentre la mínima velocidad que puede tener el carro para mantenerse en la carretera sin deslizarse de lado.
 - c) (10 puntos) Qué pasa en el caso $\mu = 1$ y $\theta = \pi/4$?
- 4. Tenemos la configuración de bloques mostrada en la Figura 3. Entre los bloques hay fricción con coeficiente estático μ , pero entre los bloques y el piso no hay fricción. Hay una fuerza F externa que se aplica halando una cuerda atada al bloque m_1 a la derecha.
 - a) (10 puntos) Haga un diagrama de cuerpo libre sobre cada uno de los cuatro cuerpos.
 - b) (10 puntos) Plantee la segunda ley Newton para cada uno de los cuatro cuerpos.
 - c) (10 puntos) Calcule la fuerza **máxima** F que se puede hacer antes de que el bloque m_1 a la derecha empieze a deslizarse sobre el bloque m_2 ?

NOTA: Todas las respuestas deben tener una justificación física y matemática adecuada. Tome $g = 10 \text{ m/s}^2$. 100 puntos corresponden a una calificación de 5.0.

Figura 1: Figura para el ejercicio 1.

Figura 2: Figura para el ejercicio 2.

Figura 3: Figura para el ejercicio 4.