

Ching Chang^{1,2*} Jeehyun Hwang¹ Yidan Shi¹ Haixin Wang¹ Wen-Chih Peng² Tien-Fu Chen² Wei Wang¹

¹University of California, Los Angeles ²National Yang Ming Chiao Tung University

*Correspondence to: Ching Chang <chingchang0730@ucla.edu>

NEURAL INFORMATION PROCESSING SYSTEMS Project Website

Introduction

> 3 main challenges in current time series benchmarks

➤ Regular-only assumptions → unrealistic in practice

Regular Unimodal

- ➤ Multimodal integration with synchronous timestamps
 → ignores asynchrony
- ➤ No understanding of irregularity causes → *limits interpretability*

> TIME-IMM solves the absence of realistic, cause-driven irregular multimodal time series benchmarks

9 multimodal (numerical + text) real datasets capturing distinct causes of irregularity

Irregular

in TS

timestamps

A unified multimodal forecasting library (IMM-TSF)

 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} t_{11} t_{12} t_{13} t_{14}

- ➤ Modular fusion strategies for asynchronous numerical—text data
- Empirical proof that modeling multimodality under irregularity yields robust forecasting gains.

TIME-IMM: Dataset for Irregular Multimodal Multivariate Time Series

> Real-world irregularities arise from three fundamental causes, each with unique modeling challenges.

- > **Trigger-Based**: Observations occur only when external events or internal triggers happen.
- Constraint-Based: Sampling limited by operational schedules, resource availability, or human timing.
- Artifact-Based: Irregularity caused by system faults, delays, or multi-source asynchrony.

Dataset Construction Pipeline

- 1. Numerical Data
 - Real-world time series for each irregularity type
 - Preserve native timestamps (no resampling)
- 2. Textual Data
 - Collect relevant reports, logs, or notes linked to each dataset
 - Filter & summarize using GPT-4.1 Nano
 - Retain original timestamps for text entries
- 3. Multimodal Integration
 - Combine numerical and textual data while preserving asynchronous timestamps

Dataset	# Entities	# Features	# Unique Timestamps	# Observations	Feature Observability Entropy	Temporal Observability Entropy	Mean Inter-Obseration Interval	# Text Entries [†]	Textual Temporal Observability Entropy†
GDELT	8	5	34317	193205	1	0.9964	7.2364 hours	14357	0.9896
RepoHealth	4	10	6783	67830	1	0.9658	1.8217 days	12310	0.9821
MIMIC	20	30	91098	219949	0.8461	0.6556	14.6157 minutes	1593	0.6758
FNSPID	10	6	3659	209688	1	0.9969	1.4507 days	20826	0.9488
ClusterTrace	3	11	12615	69001	0.893	0.9753	18.1425 minutes	688	0.9971
StudentLife	20	9	1743	153610	0.92	0.9775	1.0191 days	6623	0.9761
ILINet	1	11	4918	4918	0.9267	1	6.989 days	650	1
CESNET	30	10	51107	512760	1	1	1.17 hours	224	0.9869
EPA-Air	8	4	6587	49552	0.3777	0.9576	1.0242 hours	1244	0.9956

IMM-TSF: Benchmark Library for Irregular Multimodal Multivariate Time Series Forecasting

Problem Formulation: Irregular Multimodal Multivariate Time Series Forecasting

Predict future time series values using irregularly sampled numerical data and asynchronous textual context.

➤ Multimodal TSF Library: A plug-and-play framework for forecasting on irregular multimodal time series.

Timestamp-to-Text Fusion (TTF)

- > RecAvg: recency-weighted aggregation of past text embeddings
- > T2V-XAttn: Time2Vec-augmented cross-attention for temporal relevance

Multimodality Fusion (MMF)

- > GR-Add: GRU-gated residual addition for adaptive text influence
- XAttn-Add: cross-attention addition between numerical and textual features

Experimental Results

> Effectiveness of Multimodality

- Across all nine TIME-IMM datasets, incorporating textual information consistently improves forecasting accuracy compared to unimodal (numerical-only) models.
- Average MSE reduction: 6.7%
- Maximum improvement: 38.4% in datasets with highly informative text

Multimodal Forecasting Analysis

- a) Gains Across Datasets
 - Multimodal models outperform unimodal baselines on all datasets, with larger gains when text provides strong contextual signals (e.g., ClusterTrace).
- b) Fusion Strategies
- GR-Add gives the most stable and accurate results; both RecAvg and T2V-XAttn perform similarly.
- c) Frozen LLM Backbones
 - Text encoder choice has limited effect forecasting depends more on temporal alignment than on large-scale language understanding.

