Advanced Machine Learning Project 2: Cost-Aware Customer Selection

Bruno Tobiasz, Mikołaj Trębski

Warsaw University of Technology

June 2025

Outline

- Problem overview
- 2 Evaluation metric
- Feature selection
- Models and strategies
- Final model
- **6** Conclusions

Problem overview

- Goal: Identify electricity customers likely to exceed usage threshold
- Business case: Target 1,000 households for energy-saving offers
- Challenge: Balance accuracy vs. feature acquisition costs

Dataset

- 5,000 training samples
- 500 anonymized features
- Binary target (usage above/below threshold)

Cost-aware evaluation

Score function

Score =
$$10 \times \text{True Positives} - 200 \times \text{Number of Features}$$
 (1)

Example 1:

- 850 correct predictions
- 12 features used
- Score: €6,100

Example 2:

- 300 correct predictions
- 2 features used
- Score: €2,600

Key insight: Feature cost dramatically impacts profitability!

Feature selection strategy

Methods used

- SelectKBest() Top k features by statistical score
- SelectFromModel() Random Forest feature importance

Key finding

Only 13 out of 500 features had importance > 0.003

Observation: Performance degraded with >25 features due to:

- Lower accuracy
- Dramatically increased costs

Machine Learning algorithms

5 algorithms were tested:

- Logistic Regression
- Random Forest Classifier
- AdaBoost
- Gradient Boosting Classifier
- Bagging Classifier

Hyperparameters tuned:

- Regularization parameters (C, penalty)
- Number of estimators
- Maximum tree depth

Model performance comparison

Algorithm	Score	Accuracy	Features
Logistic Regression	4265	69.2%	2
Random Forest	4380	72.4%	4
AdaBoost	3860	70.6%	2
Gradient Boosting	3342	71.7%	4
Bagging	3055	70.7%	6

Winner

Random Forest achieved the highest cost-adjusted score of €4,380

Final model selection

Chosen model: Random Forest

Configuration:

- 400 estimators
- Maximum depth: 5
- 4 features (SelectKBest)

Performance

- Score: €4,380
- Accuracy: 72.4%
- Features used: 4 out of 500

Why random forest worked best

Advantages for this problem:

- Ensemble method Reduces overfitting
- Built-in feature selection Natural importance ranking
- Robust to noise Important with 500 features
- Good bias-variance tradeoff Especially with limited features

Key insight

Ensemble methods can achieve high performance while maintaining parsimony in feature selection

Key findings

- Feature costs matter: Cost-aware selection is crucial
- 2 Less is more: 4 features outperformed larger sets
- Ensemble advantage: Random Forest provided best cost-benefit
- 4 Effective evaluation: Score function balanced accuracy vs. cost

Thank you for your attention!

Questions?