NAME:		MAT.NR.	
-------	--	---------	--

Prüfung zu

Analysis in einer Variable für das Lehramt

Sommersemester 2020, 1. Termin, 2.7.2020 Roland Steinbauer

Erläuterungen zum Multiple Choice Teil: Für jede der 24 Fragen sind

4 Antwortmöglichkeiten angegeben, von denen 1, 2 oder 3 korrekt sind.

Die "Bepunktung" ist wie folgt: Für das Kreuzen einer korrekten Antwort erhalten Sie 1/(Anzahl der korrekten Antwortmöglichkeiten bei dieser Frage) Punkte (also z.B. bei 2 richtigen Antwortmöglichkeiten 1/2 Pkt pro gekreuzter richtiger Antwort, etc). Beim Ankreuzen einer falschen Antwort wird 1/4 Punkt abgezogen, Nichtankreuzen einer richtigen oder einer falschen Antwort ergibt keine Punkte. Pro Frage gibt es keine negativen Punkte, d.h. Sie können jeweils zwischen 0 und 1 Punkt pro Frage erreichen, insgesamt also höchstens 24 Punkte.

Die MC-Fragen müssen Sie auf dem gesonderten Antwortbogen ankreuzen. Dort müssen Sie Ihren Namen angeben und ihre Matrikelnummer eintragen und vertikal als Ziffern ankreuzen.

Beim **offenen Teil** der Prüfung können Sie ebenfalls maximal 24 Punkte erreichen. Die Punkte sind bei den jeweiligen Teilaufgaben angegeben.

Viel Erfolg!

Bitte nicht ausfüllen!

MC	1	2	3	ОТ	\sum	Note

Teil 1: Multiple Choice Aufgaben

1 Zentrale Begriffe und Definitionen

- 1. (*Zur Grenzwertdefinition*.) Welche Aussagen sind korrekt? Für eine reelle Folge (a_n) und $a \in \mathbb{R}$ gilt $\lim_{n \to \infty} a_n = a$, falls
 - (a) in jeder ε -Umgebung von a alle Folgenglieder a_n liegen.
 - (b) $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : \quad |a_n a| < \varepsilon \quad \forall n \ge N.$
 - (c) $\exists \varepsilon > 0 \quad \exists N \in \mathbb{N} : |a_n a| < \varepsilon \quad \forall n \ge N.$
 - (d) in jeder ε -Umgebung von a unendlich viele Folgenglieder a_n liegen.
- 2. (Zum Begriff der Reihe.) Welche Aussagen sind korrekt? Sei $(a_n)_n$ eine reelle Folge. Der Audruck $\sum_{n=0}^{\infty} a_n$ bezeichnet
 - (a) die n-te Partialsumme $\sum_{m=0}^{n} a_m$.
 - (b) den Reihenwert im Fall der Konvergenz.
 - (c) den Grenzwert $\lim_{m \to \infty} s_m = \lim_{m \to \infty} \sum_{n=0}^m a_n$, falls er existiert.
 - (d) die Folge der Partialsummen.
- 3. (Stetigkeit.) Welche Aussagen sind korrekt? Eine Funktion $f:\mathbb{R}\to\mathbb{R}$ ist stetig in $a\in\mathbb{R}$, falls
 - (a) für jede reelle Folge (x_n) mit $x_n \to a$ auch $f(x_n) \to f(a)$ gilt.
 - (b) $\forall \delta > 0 \quad \exists \varepsilon > 0 : \quad \forall x \in \mathbb{R} \text{ mit } |x a| < \delta$ $\implies |f(x) - f(a)| < \varepsilon$.
 - (c) $\forall \varepsilon > 0 \quad \exists \delta > 0 : \quad \forall x \in \mathbb{R} \text{ mit } |x a| < \delta$ $\implies |f(x) - f(a)| < \varepsilon.$
 - (d) es zu jedem "Sicherheitsintervall" $U_{\delta}(a)$ eine "Toleranz" ε gibt, sodass für alle $x \in U_{\delta}(a)$ gilt, dass $f(x) \in U_{\varepsilon}(f(a))$.
- 4. (*Potenzen.*) Sei $x \in \mathbb{R}$, x>0. Welche Aussagen sind korrekt?
 - (a) $x^{\alpha} = \exp(\alpha \log(x))$ für $\alpha \in \mathbb{R}$.
 - (b) $x^{\alpha} = \exp(x \log(\alpha))$ für $\alpha \in \mathbb{R}$.
 - (c) $x^{\alpha} = \underbrace{x \cdot x \cdot \dots \cdot x}_{\alpha \text{ mal}}$ für $\alpha \in \mathbb{R}$.
 - (d) $x^q = \sqrt[n]{x^m}$ für $q = \frac{m}{n} \in \mathbb{Q}$.

- 5. (Lokale Maxima.) Welche Aussagen sind korrekt? Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar, dann ist $\xi \in \mathbb{R}$ ein lokales Maximum von f, falls
 - (a) $\forall \varepsilon > 0 \quad \forall x \in U_{\varepsilon}(\xi) : f(\xi) \leq f(x)$.
 - (b) $f'(\xi) = 0$ gilt.
 - (c) es eine Umgebung U von ξ gibt, sodass $f(x) \leq f(\xi)$ für alle $x \in U$ gilt.
 - (d) $\forall \varepsilon > 0 \quad \forall x \in U_{\varepsilon}(\xi) : f(\xi) \ge f(x)$.
- 6. (Integrierbarkeit.) Welche Aussagen sind korrekt? Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist Riemann-integrierbar, falls

 $(\mathfrak{T}[a,b]$ bezeichnet den Raum der Treppenfunktionen auf [a,b])

(a) f eine Treppenfunktion ist.

(b)
$$\inf \left\{ \int_a^b \varphi(t)dt \,\middle|\, \varphi \in \mathfrak{T}[a,b], \, f \leq \varphi \right\} > \sup \left\{ \int_a^b \psi(t)dt \,\middle|\, \psi \in \mathfrak{T}[a,b], \, \psi \leq f \right\}$$

(c) Ober- und Unterintegral existieren.

(d)
$$\inf \left\{ \int_a^b \varphi(t)dt \mid \varphi \in \mathfrak{T}[a,b], f \leq \varphi \right\} = \sup \left\{ \int_a^b \psi(t)dt \mid \psi \in \mathfrak{T}[a,b], \psi \leq f \right\}$$

2 Sätze & Resultate

- 7. (Folgen & Konvergenz). Welche Aussagen über reelle Folgen sind korrekt?
 - (a) Es gibt monotone nicht konvergente Folgen.
 - (b) Jede Folge hat genau einen Grenzwert.
 - (c) Jede konvergente Folge ist beschränkt.
 - (d) Jede monotone und beschränkte Folge konvergiert.
- 8. ($Zur \, Vollständigkeit \, von \, \mathbb{R}$.) Welche der folgenden Aussagen sind äquivalent zur (Ordnungs-)Vollständigkeit der reellen Zahlen?
 - (a) Jede konvergente Folge ist eine Cauchy-Folge.
 - (b) Das Intervallschachtelungsprinzip.
 - (c) Jede beschränkte Folge konvergiert
 - (d) Jede beschränkte Folge hat einen Häufungswert.
- 9. (Eigenschaften stetiger Funktionen.) Welche Aussagen sind korrekt?
 - (a) Jede stetige Funktion ist differenzierbar.
 - (b) Jede auf einem abgeschlossenen Intervall definierte stetige Funktion hat ein Maximum und ein Minimum.
 - (c) Jede stetige Funktion ist beschränkt.
 - (d) Ist $f: \mathbb{R} \to \mathbb{R}$ stetig und gilt $f(x_0) > 0$, dann gibt es ein Intervall $U = (x_0 \delta, x_0 + \delta)$ (mit einem $\delta > 0$) sodass f(x) > 0 für alle $x \in U$.

- 10. (Exponentialfunktion.) Welche Aussagen sind korrekt?
 - (a) $\exp(x+y) = \exp(x) + \exp(y)$.

(b)
$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n}$$
.

(c)
$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$
.

(d)
$$\exp(-x) = (\exp(x))^{-1}$$
.

- 11. (Eigenschaften von differenzierbaren Funktionen.) Welche der folgenden Aussagen sind korrekt?
 - (a) Jede differenzierbare Funktion ist auch stetig.
 - (b) Jede differenzierbare Funktion $f:[a,b]\to\mathbb{R}$ ist integrierbar.
 - (c) Treppenfunktionen sind differenzierbar.
 - (d) Jede differenzierbare Funktion ist beschränkt.
- 12. Hauptsatz der Differential- und Integralrechnung. Welche Aussagen sind korrekt? Die erste Aussage des HsDI kann geschrieben werden als

(a)
$$\frac{d}{dt} \int_a^t f(x)dt = f(x)$$
.

(b)
$$\frac{d}{dx} \int_a^b f(t)dt = f(x)$$
.

(c)
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$
.

(d)
$$\frac{d}{dt} \int_{a}^{x} f(t)dt = f(x)$$
.

3 Beispiele & Gegenbeispiele

- 13. (Konvergenz von Folgen.) Welche der folgenden Aussagen über Folgen sind korrekt?
 - (a) Falls $a_n \rightarrow a$, dann ist $a_n a$ eine Nullfolge.
 - (b) $\frac{(-1)^n}{n}$ hat zwei verschiedene Häufungswerte.
 - (c) $\left(\frac{1}{n}\right)_{n\geq 1}$ ist beschränkt.
 - (d) $\frac{n^2 + 4n}{n^2 + 3}$ ist eine Nullfolge.

14. (Konvergenz von Reihen.) Welche der folgenden Aussagen sind korrekt?

(a)
$$\sum_{n=1}^{\infty}q^n=\frac{1}{1-q}$$
 für $|q|{<}1.$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{n^2} < \infty$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} < \infty.$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 konvergiert.

15. (Die Euler'sche Zahl). Welche der Gleichungen stimmen?

(a)
$$e = (1 + \frac{1}{n})^n$$

(b)
$$e = \exp(1)$$
.

(c)
$$e = 2.713$$

(d)
$$e = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

16. (Funktionseigenschaften.) Welche der Aussagen trifft auf die Funktion

$$f: [0, \infty) \to \mathbb{R}, \quad f(x) = \sqrt{x} \quad \text{zu?}$$

(a)
$$f$$
 ist auf $[0,1]$ integrierbar.

(b)
$$f$$
 ist (überall) stetig.

(c)
$$f$$
 ist beschränkt.

(d)
$$f$$
 ist (überall) differenzierbar.

17. (Funktionsgrenzwerte.) Welche der folgenden Aussagen sind korrekt?

(a)
$$\lim_{x \to \infty} \frac{\log(x)}{x} = 0$$

$$\text{(b)} \ \lim_{x\to\infty}\frac{e^x}{x^k}=\infty \quad \text{für } k\in\mathbb{N}.$$

(c)
$$\lim_{x \to \infty} e^x = \infty$$

(d)
$$\lim_{x \to 0} \frac{\cos(x)}{x} = 1$$

18. (*Differenzierbare Funktionen*.) Welche der folgenden Funktionen ist auf ihrem gesamten Definitionsbereich differenzierbar?

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 3x^2 + 6x - 7$.

(b)
$$f:(0,\infty)\to\mathbb{R}$$
 $f(x)=\frac{1}{x}$.

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = |x|$.

(d)
$$f:(0,\infty)\to\mathbb{R}$$
 $f(x)=x\sin\left(\frac{1}{x}\right)$.

4 Rechenaufgaben

19. (Grenzwerte konkret). Welche der folgenden Aussagen sind korrekt?

(a)
$$\frac{n!}{(n-1)!} \to 0$$
.

(b)
$$\frac{n^2 + 3n + 2}{2n^2 + 8n + 4} \rightarrow \frac{3}{8}$$
.

(c)
$$\frac{n!}{n^n} \rightarrow 0$$
.

(d)
$$\frac{2^n}{n^2} \rightarrow 0$$
.

20. (Funktionsgrenzwerte konkret). Welche der folgenden Aussagen sind korrekt?

(a)
$$\lim_{x\to 0} \frac{1}{|x^2|} = \infty$$
.

(b)
$$\lim_{x\to 0} x^2 = 0$$
.

(c)
$$\lim_{x\to 0} \frac{1}{x^2} = -\infty$$
.

(d)
$$\lim_{x\to 0-}\frac{1}{x}=\infty.$$

21. (Differenzieren, konkret, 1.) Berechne die Ableitung von

$$f(x) = e^{x^2} \cos(e^x).$$

Welche Ergebnisse sind korrekt?

(a)
$$f'(x) = e^{x^2} (e^x \sin(e^x) - 2x \cos(e^x))$$
.

(b)
$$f'(x) = e^{x^2} (2x\cos(e^x) - e^x\sin(e^x)).$$

(c)
$$f'(x) = 2xe^{x^2} (\sin(x) - \cos(e^x)).$$

(d)
$$f'(x) = 2xe^{x^2}(\cos(e^x) - \sin(e^x)).$$

22. (Differenzieren, konkret, 2.) Welche der Rechnungen sind (für x>0) korrekt?

(a)
$$f(x) = x^{\alpha}$$
 $(\alpha \in \mathbb{R})$, $f'(x) = \alpha x^{\alpha - 1}$.

(b)
$$f(x) = x^x$$
, $f'(x) = x \cdot x^{x-1}$.

(c)
$$f(x) = \frac{1}{x^2}$$
, $f'(x) = \frac{2}{x^3}$.

(d)
$$f(x) = |x^2|$$
, $f'(x) = 2x$.

23. (Integrieren, explizit, 1.) Welche Aussagen sind korrekt?

(a)
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} \quad (\alpha \in \mathbb{R}).$$

(b)
$$\int e^x dx = \frac{e^{x-1}}{x-1}$$
.

(c)
$$\int \sin(x) dx = \cos(x).$$

(d)
$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \in \mathbb{N}).$$

24. (Integrieren, explizit, 2.) Berechne

$$\int_{1}^{3} x \log(x) \, dx.$$

Welche Ergebnisse sind korrekt?

(a)
$$\frac{9}{2}\log(3) - \frac{9}{4}$$
.

(b)
$$\frac{9}{2}\log(3) - 2$$
.

(c)
$$\frac{9}{4}\log(3) - 2$$
.

(d)
$$9\log(\sqrt{3}) - 2$$
.

Teil 2: Offene Aufgaben

- 1. Folgen, Reihen & Konvergenz.
 - (a) Definieren Sie (exakt!) den Begriff "beschränkte reelle Folge" und fertigen Sie eine instruktive Skizze an. (1 Pkt)
 - (b) Argumentieren Sie (in Worten), warum jede konvergente reelle Folge beschränkt ist und fertigen Sie eine Skizze an. (3 Pkte)
 - (c) Formulieren Sie (exakt!) den 1. Unterpunkt (d.h. den über Konvergenz) des Quotiententests für Reihen. (1 Pkt). Diskutieren Sie die Voraussetzung im Quotiententest im Vergleich zur Bedingung

$$\left| \frac{a_{n+1}}{a_n} \right| < 1 \quad \forall n \ge n_0 : \tag{*}$$

Was ist der Unterschied zwischen den beiden Bedingungen? Würde der Quotiententest auch mit Bedingung (*) "funktionieren"? Warum (nicht)? (2 Pkte)

- 2. Funktionen, Stetigkeit & Differenzierbarkeit.
 - (a) Definieren sie (genau!) den Begriff der gleichmäßigen Stetigkeit für eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ (1 Pkt) und benennen Sie den Unterschied zur Stetigkeit von f auf D. (1 Pkt)
 - (b) Berechnen Sie direkt aus der Definition der Differenzierbarkeit die Ableitung der Funktion $f(x) = \frac{1}{x}$ im Punkt $\xi \in (0, \infty)$. (2 Pkte)
 - (c) Formulieren Sie anschaulich die Aussage des Mittwelwertsatzes der Differentialrechnung und fertigen Sie eine Skizze an. (2 Pkte)
 - (d) Formulieren Sie (exakt!) den Satz von Rolle. (1 Pkt) Geben Sie die wesentlichen Beweisschritte an und nennen Sie alle dabei verwendeten Resultate. (4 Pkte)
- 3. Hauptsatz der Differential- und Integralrechnung.
 - (a) Formulieren Sie (genau!) den 1. Teil des Hauptsatzes der Differential- und Integralrechnung. (1 Pkt)
 - (b) Geben Sie eine Beweisskizze und beschreiben Sie den Beweisverlauf in einem Satz (3 Pkte). Beantworten Sie die folgenden Fragen (je 1 Pkt).
 - Welches wichtige Resultat geht an entscheidender Stelle ein?
 - Wo wird die Stetigkeit (der Ausgangsfunktion) verwendet?