An introduction to PCA

Weekly AI pills

Fabio Brau.

2020-10-16

SSSA, Emerging Digital Technologies, Pisa.

Summary

- The aim of Principal Component Analysis
- Derivation
 - 1. A Geometrical idea
 - 2. A statistical Derivation
 - 3. Singolar Value Decomposition
- · PCA from Encoder Decoder NN
- Dummy examples

1

A Geometrical Idea

Let $X \in \mathbb{R}^{N \times n}$ be a dataset of N observation within n variables.

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_N^T \end{bmatrix} = \begin{bmatrix} x^{(1)} & | & \dots & | & x^{(n)} \end{bmatrix}$$
 (1)

Notations:

- $x_i \in \mathbb{R}^n$ represents a single observation, i.e a sample in the feature space.
- $x^{(i)} \in \mathbb{R}^N$ represents the single variable, i.e a column of the dataset.
- The object $\mathbb{1}_n \in \mathbb{R}^n$ is the unitary columnar vector of length n $\mathbb{1}_n = [1, \dots, 1]$.

