Lecture Notes EMSE 4765: DATA ANALYSIS - Probability Review

Chapter 4: Discrete Random Variables

Version: 01/08/2021

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Text Book: A Modern Introduction to Probability and Statistics, Understanding Why and How

By: F.M. Dekking. C. Kraaikamp, H.P.Lopuhaä and L.E. Meester

4.1 Random Variables...

Definition: Let Ω be a sample space. A discrete random variable is a function $X:\Omega\to\mathbb{R}$, that takes on a finite number of values a_1,a_2,\ldots,a_n or an infinite number of values a_1,a_2,\ldots

Die Example: $\Omega = \{1, 2, 3, 4, 5, 6\}$: Introducing the random variable function $X: \Omega \to \mathbb{R}$, one defines:

$$X({x}) = x, x = 1, \dots 6$$

The "function" argument part "($\{x\}$)" and the wording "function" in the above definition is usually omitted and one writes simply X = x. However, that means one ought to provide the definition in words for the random variable X, i.e. in the die example:

 $X \equiv$ "The outcome value when throwing a die once".

4.2 The probability distribution function of a discrete random variable...

Coin Toss Example: $\Omega = \{\text{heads, tails}\}$: Introducing the random variable function $X : \Omega \to \mathbb{R}$, one defines: $X(\{\text{heads}\}) = 0$ and $X(\{\text{tails}\}) = 1$, or vice versa. When one omits the " $(\{\text{heads}\})$ " part and the wording "function", one needs to define:

$$X = \begin{cases} 0 & \text{"heads" turns up on the single coin toss} \\ 1 & \text{"tails" turns up on the single coin toss} \end{cases}$$

Definition: The probability mass function (pmf) $p(\cdot)$ of a discrete random variable $X: \Omega \to \mathbb{R}$ is the function $p: \mathbb{R} \to [0, 1]$, defined by

$$p(x) = Pr(X = x)$$
 for $-\infty < x < \infty$

• If X is a discrete random variable that takes on values x_1, x_2, \ldots then

$$p(x_i) > 0$$
, $p(x_1) + p(x_2) + \dots = 1$ and $p(x) = 0$ for all other x .

4.2 The probability distribution of a discrete random variable...

Die Example:
$$p(x) = Pr(X = x) = \frac{1}{6}, x = 1, 2, ..., 6.$$

Coin Toss Example:
$$p(x) = Pr(X = x) = \frac{1}{2}, x = 0, 1.$$

Definition: The cumulative distribution function (cdf) $F(\cdot)$ of a discrete random variable $X:\Omega\to\mathbb{R}$ is the function $F:\mathbb{R}\to[0,1],$ defined by

$$F(x) = Pr(X \le x)$$
 for $-\infty < a < \infty$

• If X is a discrete random variable that takes on values a_1, a_2, \ldots then

$$p(a_i) > 0, \ p(a_1) + p(a_2) + \dots = 1 \text{ and } F(a) = \sum_{a_i \le a} p(a_i).$$

4.2 The probability distribution of a discrete random variable...

• Both the probability mass function and the cumulative distribution function of a discrete random variable X contain all the probabilistic information; The probability distribution of X is determined by either.

4.2 The probability distribution of a discrete random variable...

• Both the probability mass function and the cumulative distribution function of a discrete random variable X contain all the probabilistic information; The probability distribution of X is determined by either.

- 4 Discrete Random Variables
- 4.2 The probability distribution of a discrete random variable...

Three properties of distribution functions:

- 1. For $a \le b$ we have $F(a) \le F(b)$ since $\{X \le a\} \subset \{X \le b\}$
- 2. Since F(a) is a probability, $F(a) \in [0, 1]$ and:

$$a \xrightarrow{\lim_{a \to \infty} F(a)} = \lim_{a \to \infty} Pr(X \le a) = 1$$
$$a \xrightarrow{\lim_{a \to \infty} F(a)} = \lim_{a \to \infty} Pr(X \le a) = 0$$

3. F is **right continuous**, i.e. $\lim_{\epsilon \downarrow 0} F(a + \epsilon) = F(a)$.

Think "coming from the right" we have continuity.

- 4 Discrete Random Variables
- 4.3 The Bernoulli probability distribution...
- The Bernoulli distribution models an experiment with only two possible outcomes "Success" $\equiv 1$ and "Failure" $\equiv 0$, respectively.

Definition: A discrete random variable X has a **Bernoulli distribution** with parameter $p \in [0, 1]$, if its probability mass function is given by

$$p_X(1) = Pr(X = 1) = p \text{ and } p_X(0) = Pr(X = 0) = 1 - p$$

We denote this distribution with Ber(p) and $X \sim Ber(p)$.

4.3 The Binomial probability distribution...

• Assume that **per trial probability to win is** *p* **and that winning in a trial is independent from the previous trials.** Defining now the random variable

$$X \equiv$$
 "# of successes in n trials"

 $\binom{n}{k}$ = the number of different ways one chooses k out of a group of n.

$$= \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1)\dots(n-k+1)}{k!} \Rightarrow {10 \choose 2} = \frac{10 \cdot 9}{2} = 45$$

Definition: A discrete random variable X has a **Binomial distribution** with parameters n > 0 and $p \in [0, 1]$, if its probability mass function is given by

$$p_X(k) = Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ for } k = 1, \dots, n$$

We denote this distribution with Bin(n,p) and $X \sim Bin(n,p)$

4.3 The Binomial probability distribution...

4.4 The Geometric Distribution...

Assume that per trial probability to win is p and that winning in a trial is independent from the previous trials. Define random variable $X \equiv$ "# of trials to win"

$$Pr(X = 1) = p, Pr(X = 2) = (1 - p)p, \dots, Pr(X = k) = (1 - p)^{k-1}p$$

Definition: A discrete random variable X has a **Geometric distribution** with parameter $p \in [0, 1]$, if its probability mass function is given by

$$p_X(k) = Pr(X = k) = (1 - p)^{k-1}p \text{ for } k = 1, 2, 3$$

We denote this distribution with Geo(p) and $X \sim Geo(p)$

4.4 The Geometric Distribution...

4.4 The Geometric Distribution...

Exercise: Let $X \sim Geo(p)$. Show that $Pr(X > n) = (1 - p)^n$

Solution: $Pr(X > n) = Pr("No success in n trials") = (1 - p)^n$

• The memoryless property of a Geo(p) distribution:

$$Pr(X > n + k | X > k) = Pr(X > n)$$

Proof:

$$Pr(X > n + k | X > k) = \frac{Pr(X > n + k \cap X > k)}{Pr(X > k)} = \frac{Pr(X > n + k)}{Pr(x > k)}$$
$$= \frac{(1 - p)^{n+k}}{(1 - p)^k} = (1 - p)^n = Pr(X > n).$$

Conclusion: If you did not win in the first k trials, the probability that you will not win in the next n trials is the same as the probability of not winning in the first n trials.

