EgoLifter: Open-world 3D Segmentation for Egocentric Perception

Qiao Gu^{1,2}, Zhaoyang Lv², Duncan Frost², Simon Green², Julian Straub², Chris Sweeney²

¹ University of Toronto, ² Meta Reality Labs

Computer Science
UNIVERSITY OF TORONTO

Build diverse and photorealistic 3D digit assets, from egocentric videos of natural everyday activities.

Overview

- > Egocentric videos capture diverse object instances and extensive dynamics.
- > Open-world 3D instance segmentation without expensive annotation or extra training.
- > A transient prediction module to remove floaters in reconstruction.
- > A dynamic egocentric video benchmark for 3D reconstruction and segmentation.

3D Gaussians with Contrastive Instance Feature

Contrastive Lift [1]: implicitly solving the multi-view association problem of 2D masks.

Handle egocentric videos collected by fisheye cameras (Project Aria Glasses).

et al. "Contrastive lift: 3d object instance segmentation by slow-fast contrastive fusion." NeurIPS 2023 [2] Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." ACM Trans. Graph 2023. [3] Ye, Mingqiao, et al. "Gaussian grouping: Segment and edit anything in 3d scenes." ECCV 2024. [4] Yang, Zeyu, et al. "Real-time photorealistic dynamic scene representation and rendering with 4d gaussian splatting." ICLR 2024.

Transient Prediction for Floaters Removal

- > Egocentric videos present sparse and rapid dynamic phenomena.
- > Naïve 3D reconstruction results in many ghostly "floaters" and bad rendering results.
- > We proposed a transient prediction module to remove dynamics, which can be trained in a selfsupervised manner without extra annotations.

Experiment & Quantitative Results

Evaluations

- > Aria Digital Twin (ADT): Provides 2D and 3D object segmentation ground truth.
- > Query-based segmentation: Segmentation by in-view or cross-view query features.
- > Aria Everyday Activities (AEA) & Ego-Exo4D: For qualitative results.

Baselines & Ablations

- > SAM: Segment-Anything on rendered images; only supports in-view queries
- Gaussian Grouping [3]: Uses a video tracker for mask association; learns mask ID.
- > **EgoLifter-Static**: Disables the transient prediction network.
- > EgoLifter-Deform: Uses a deformable variant of 3DGS [4] to handle dynamics.

Evaluation	2D mIoU (In-view)			2D mIoU (Cross-view)			PSNR			3D mIoU
Object set	Static	Dynamic	All	Static	Dynamic	All	Static	Dynamic	All	Static
SAM	54.51	32.77	50.69	_	-	-	-	-	-	-
Gaussian Grouping	35.68	30.76	34.81	23.79	11.33	21.58	21.29	14.99	19.97	7.48
$EgoLifter ext{-}Static$	55.67	39.61	52.86	51.29	18.67	45.49	21.37	15.32	20.16	21.10
$EgoLifter ext{-} \mathrm{Deform}$	54.23	38.62	51.49	51.10	18.02	45.22	21.16	15.39	19.93	20.58
EgoLifter (Ours)	58.15	37.74	54.57	$\boldsymbol{55.27}$	19.14	48.84	22.14	14.37	20.28	23.11

Qualitative Results

Main Results on Egocentric Datasets EgoLifter (Ours) EgoLifter-Static

Open-vocabulary Object Reconstruction and Extraction

Extracted 3D Objects

Results on Non-egocentric Datasets

Rendered Feature (PCA)

Rendered RGB

Rendered Feature (PCA)