

Compound	R ¹	R ²	R ³
Alpha (α)	CH ₃	CH ₃	CH ₃
Beta (β)	CH ₃	H	CH ₃
Gamma (γ)	H	CH ₃	CH ₃
Delta (δ)	H	H	CH ₃

Fig. 1

<u>Compound</u>	<u>R¹</u>	<u>R²</u>	<u>R³</u>	<u>R⁴</u>	<u>R⁵</u>
1	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
2	(CH ₂) ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
3	(CH ₂) ₃ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
4	(CH ₂) ₄ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
5	(CH ₂) ₅ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
6	(CH ₂) ₇ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
7	CH ₂ CO ₂ H	CH ₃	H	CH ₃	phytyl
8	CH ₂ CO ₂ H	CH ₃	H	CH ₃	phytyl
9	CH ₂ CO ₂ H		H	CH ₃	phytyl
10	CH ₂ CONH ₂	CH ₃	CH ₃	CH ₃	phytyl
11	CH ₂ CO ₂ CH ₃	CH ₃	CH ₃	CH ₃	phytyl
12	CH ₂ CON(CH ₂ CO ₂ H) ₂	CH ₃	CH ₃	CH ₃	phytyl
13	CH ₂ CH ₂ OH	CH ₃	CH ₃	CH ₃	phytyl
14	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	CH ₃
15	RS-CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl

Fig. 2A

<u>Compound</u>	<u>R¹</u>	<u>R²</u>	<u>R³</u>	<u>R⁴</u>	<u>R⁵</u>
16	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	COOH
17	R/RS CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
18	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	isoprenyl
19	NH ₃ Cl	CH ₃	CH ₃	CH ₃	phytyl
20	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
21	OSO ₃ NHET ₃	CH ₃	CH ₃	CH ₃	phytyl
22	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
23	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
24	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
25	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	phytyl
26	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	other
27	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	other
28	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	ester
29	CH ₂ CO ₂ H	CH ₃	CH ₃	CH ₃	ester

Fig. 2B

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl.

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl carboxylic acids or carboxylates.

Fig. 3A

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl carboxamides and esters

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl thioamides, thioesters and thioacids.

Fig. 3B

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl thioesters.

Fig. 3C

R^1 = alkyl, alkenyl, alkyne, aryl, and heteroaryl amines.

3) Trifluoroacetic acid

R^1 = alkyl, alkenyl, alkyne, aryl, and heteroaryl carboxamides.

Fig. 3D

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl sulfonates.

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl sulfates.

Fig. 3E

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl phosphates.

R^1 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl alcohols, ethers, and nitrites.

Fig. 3F

R^2 = benzyl carboxylic acid or carboxylate.

R^2 = benzyl carboxamides or esters.

Fig. 4A

Fig. 4B

R^3, R^4 = benzyl carboxylic acid or carboxylate.

R^3, R^4 = benzyl carboxamides or esters.

Fig. 5A

Fig. 5B

R^5 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl.

R^5 = alkyl, alkenyl, alkynyl, aryl, and heteroaryl amides and esters.

Fig. 6

Fig. 7A

Fig. 7B

Fig. 7C

Fig. 7D

Mean body weights of mice +/- S.D. with an n=5
 ut = untreated; veh = vehicle control; VES-20 = ester succinated vitamin E at 20 mg/day; #1 = compound #1 at 20, 10, and 5 mg/day.

FIG. 8

MDA MB-435 Human Breast Cancer Cells

FIG. 9A

DU-145 Human Prostate Cancer Cells

FIG. 9B

HT-29 Human Colon Cancer Cells

FIG. 9C