Problemstellung

- \bullet Gleichungssystem mit p + q Variablen und p Gleichungen
 - nach q Variablen auflösen

- Vorgehensweise:
 - alle "ungwollten" Variablen auf linke Seite
 - Koeffizientenmatrix aufstellen
 - * invertierbar <==> auflösbar nach "gewollten" Variablen

Hauptsatz über implizite Funktionen

- f: $M \subseteq \mathbb{R}^{p+q} > \mathbb{R}^p$
 - M offen
 - GLS mit p+q Variablen und p Gleichungen
 - $-\ M(\zeta): f_i(x_1,...,x_p,y_{p+1},y_{p+q}) = 0$
- auflösbar, wenn folgende Bedingungen erfüllt sind
 - $-f_i(\zeta) = 0$ für i = 1 bis p
 - Koordinaten
funktion f_i mindestens einmal stetig differenzier
bar
 - * für i = 1 bis p
 - Ableitungsmatrix (nicht Jacobi)
 - $* \ \det(\tfrac{\partial (f_1,\ldots,f_p)}{\partial (x_1,\ldots,x_p)}) \neq 0$
- kann auch ohne Bedingungen auflösbar sein

[[Extremwertaufgaben mit Nebenbedingungen]] [[Funktionen $\mathbb{R}^{\widehat{}}p$ auf $\mathbb{R}^{\widehat{}}q]]$