Amendments to the Claims

- 2 -

1. (currently amended) A bicyclic cyclopropane derivative of the Formula (I)

$$\begin{bmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & &$$

in which R¹, R², X, Y, n, m and r, independently of one another, having the following meanings:

n+m = 0 to 8;

r = 1 to 4;

 R^1 = is absent, or a C_1 - C_{20} alkylene radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} arylene or C_7 - C_{20} alkylenearylene radical;

 R^2 is for r=1: a C_1 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl or C_7 - C_{20} alkylaryl radical, with the proviso that when m+n=3, $Y=[[CH_2-]]$ - CH_2 -, R^1 is absent, and X is absent, then R^2 is a C_2 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl, or a C_7 - C_{20} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{20} radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, an aromatic C_6 - C_{14} radical or aliphaticaromatic C_7 - C_{20} radical;

X = is absent, -CO-O-, -CO-NH- or -O-CO-NH- and

 $Y = CH_2$, O or S.

2. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 1 to 5;

r = 1 to 3;

 R^1 = is absent, or a C_1 - C_{10} alkylene radical which can be interrupted by O, cyclohexylene, a bicyclic C_6 - C_9 radical, phenylene or a C_7 - C_{10} alkylenearylene radical;

 R^2 is for r = 1: a C_1 - C_6 alkyl radical which can be interrupted by O, a cycloaliphatic or bicyclic C_6 - C_8 radical, a C_6 - C_{10} aryl or C_7 - C_{10} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{12} radical which can be interrupted by O, a cycloaliphatic C_5 - C_7 radical, an aromatic C_6 - C_{10} radical or aliphatic-aromatic C_7 - C_{10} radical;

X = is absent, -CO-O- or -O-CO-NH- and

 $Y = CH_2 \text{ or } O.$

Serial No. 10/658,993

3. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 2 or 3;

r = 1 or 2;

 R^1 = is absent, a -(CH₂)₁₋₄- radical which can be interrupted by O, cyclohexylene or phenylene;

 R^2 is for r = 1: a C_1 - C_4 alkyl radical which can be interrupted by a O, cyclohexyl, bicyclo[2.2.1]heptyl or;

for r > 1: an r-times substituted aliphatic C_2 to C_6 radical, an r-valent cyclohexane radical or an r-valent benzene radical;

X = is absent or -CO-O- and

 $Y = CH_2.$

4. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein r is equal to 1 and R^2 is unsubstituted or substituted by alkyl, halogen, OCH₃, OC₂H₅, vinyl, propenyl, (meth)acryl, COOR³, SiCl₃, Si(OR⁴)₃, or a mesogenic group, with $R^3 = H$, a C₁ to C₁₀ alkyl or a phenyl radical and $R^4 = H$ or a C₁ to C₁₀ alkyl radical.

5. (currently amended) A bicyclic cyclopropane derivative of the Formula (I)

in which R¹, R², X, Y, n, m and r, independently of one another, having the following meanings:

n+m = 0 to 8;

r = [[1]] 2 to 4;

 R^1 = is absent, or a C_1 - C_{20} alkylene radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} arylene or C_7 - C_{20} alkylenearylene radical;

 R^2 ____ is for r = 1: a C_1 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl or C_7 - C_{20} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{20} radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, an aromatic C_6 - C_{14} radical or aliphaticaromatic C_7 - C_{20} radical;

X = is absent, -CO-O-, -CO-NH- or -O-CO-NH- and

Y = CH_2 , O or S, wherein r is greater than 1 and R^2 is unsubstituted or substituted by alkyl, halogen, OCH_3 , OC_2H_5 , vinyl, propenyl, (meth)acryl, $CO-OR^3$ or a mesogenic group, with $R^3 = H$ or C_1 to C_{10} alkyl or a phenyl radical.

6.-23. (canceled)

24. (new) A bicyclic cyclopropane derivative according to claim 5, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 1 to 5;

r = 2 or 3;

 R^1 = is absent, or a C_1 - C_{10} alkylene radical which can be interrupted by O, cyclohexylene, a bicyclic C_6 - C_9 radical, phenylene or a C_7 - C_{10} alkylenearylene radical;

 R^2 = is an r-times substituted aliphatic C_1 to C_{12} radical which can be interrupted by O, a cycloaliphatic C_5 - C_7 radical, an aromatic C_6 - C_{10} radical or aliphatic-aromatic C_7 - C_{10} radical;

X = is absent, -CO-O- or -O-CO-NH- and

 $Y = CH_2 \text{ or } O.$

25. (new) A bicyclic cyclopropane derivative according to claim 5, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 2 or 3;

r = 2;

 R^1 = is absent, a -(CH₂)₁₋₄- radical which can be interrupted by O, cyclohexylene or phenylene;

 R^2 is an r-times substituted aliphatic C_2 to C_6 radical, an r-valent cyclohexane radical or an r-valent benzene radical;

X = is absent or -CO-O- and

 $Y = CH_2.$

26. (new) A bicyclic cyclopropane derivative of the Formula (I)

in which R¹, R², X, Y, n, m and r, independently of one another, having the following meanings:

n+m = 0 to 8;

r = 1 to 4;

 R^1 = is absent, or a C_1 - C_{20} alkylene radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} arylene or C_7 - C_{20} alkylenearylene radical;

 R^2 is for r=1: a C_2 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl or C_7 - C_{20} alkylaryl radical, with the proviso that when m+n=3, $Y=-CH_2$ -, R^1 is absent, and X is absent, then R^2 is a C_2 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl, or a C_7 - C_{20} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{20} radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, an aromatic C_6 - C_{14} radical or aliphaticaromatic C_7 - C_{20} radical;

X = is absent, -CO-O-, -CO-NH- or -O-CO-NH- and Y = CH₂, O or S.

27. (new) A bicyclic cyclopropane derivative according to claim 26, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 1 to 5;

r = 1 to 3;

 R^1 = is absent, or a C_1 - C_{10} alkylene radical which can be interrupted by O, cyclohexylene, a bicyclic C_6 - C_9 radical, phenylene or a C_7 - C_{10} alkylenearylene radical;

 R^2 is for r = 1: a C_2 - C_6 alkyl radical which can be interrupted by O, a cycloaliphatic or bicyclic C_6 - C_8 radical, a C_6 - C_{10} aryl or C_7 - C_{10} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{12} radical which can be interrupted by O, a cycloaliphatic C_5 - C_7 radical, an aromatic C_6 - C_{10} radical or aliphatic-aromatic C_7 - C_{10} radical;

X = is absent, -CO-O- or -O-CO-NH- and

 $Y = CH_2 \text{ or } O.$

28. (new) A bicyclic cyclopropane derivative according to claim 26, wherein at least one variable of the Formula (I) has one of the following meanings:

$$n+m = 2 \text{ or } 3;$$

r = 1 or 2;

 R^1 = is absent, a -(CH₂)₁₋₄- radical which can be interrupted by O, cyclohexylene or phenylene;

 R^2 is for r = 1: a C_2 - C_4 alkyl radical which can be interrupted by a O, cyclohexyl, bicyclo[2.2.1]heptyl or;

for r > 1: an r-times substituted aliphatic C_2 to C_6 radical, an r-valent cyclohexane radical or an r-valent benzene radical;

X = is absent or -CO-O- and

 $Y = CH_2.$

29. (new) A bicyclic cyclopropane derivative according to claim 26, wherein r is equal to 1 and R^2 is unsubstituted or substituted by alkyl, halogen, OCH₃, OC₂H₅, vinyl, propenyl, (meth)acryl, COOR³, SiCl₃, Si(OR⁴)₃, or a mesogenic group, with $R^3 = H$, a C_1 to C_{10} alkyl or a phenyl radical and $R^4 = H$ or a C_1 to C_{10} alkyl radical.