Computer Sciences Department University of Wisconsin-Madison CS/ECE 552 – Introduction to Computer Architecture In-Class Exercise (03/10) SOLUTION

Answers to all questions should be uploaded on Canvas.

- 1. [1 point] (Twist on Check Yourself 5.9) Which of the following statements (if any) are generally true?
 - 1. There is no way to reduce compulsory misses.
 - 2. Fully associative caches have no conflict misses.
 - 3. In reducing misses, associativity is more important than capacity.

Given that 2 is right, why is 3 wrong?

Solution:

2 is right because, by definition, fully associative caches remove all conflict misses. 3 is wrong because increasing cache capacity potentially helps all 3 C's (compulsory, capacity, conflict) by allowing more data to be stored in the cache at the same time – associativity only helps when we have conflicts.

- 2. [2 points] Assume a 4-way set-associative cache uses a 16-bit set index and has 12-bit tags for 32-bit memory addresses.
 - (a) [1 point] What is the block size?

Solution:

$$2^{(32-16-12)} = 16$$
-byte blocks

(b) [1 point] What is the cache capacity?

Solution:

16-byte blocks
$$\times$$
 64K sets \times 4 ways = 4MB capacity

3. [3 points] Show how a 1MB 16-way set-associative cache with 128-byte blocks will be indexed given a 32-bit memory address. In the table below, specify which bits will be used for the tag (**T**), set (**S**) and offset (**O**).

Solution:

														В	it I	nde	ex														
3	3	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1										
1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	S	S	S	S	S	S	S	S	S	O	O	O	O	O	O	O

Since the blocks are 128B, there are $log_2(128) = 7$ bits for the offset – these are the lowest 7 bits.

There are 1MB/128B = 8KB entries in our cache (each entry is 128B). Given that we have 16 sets, this means there are 8K/16 = 512 sets, each with 16 entries in them. To index into these sets, we need $\log_2(512) = 9$ bits. These are the next 9 bits.

The remaining bits are the tag bits.

- 4. [4 points] Consider the following sequence of accesses to memory blocks in one set of a 4-way set-associative cache.
 - (a) [3 points] Fill in the table below assuming LRU replacement. When there are unpopulated ways, assume they get filled in from left to right.

Solution:

Block	Way Contents Before	Way Contents After	LRU Before	LRU After
A	[-, -, -, -]	[A, -, -, -]	1	
В	[A, -, -, -]	[A, B, -, -]	-	
С	[A, B, -, -]	[A, B, C, -]	1	
D	[A, B, C, -]	[A, B, C, D]	1	A
C	[A, B, C, D]	[A, B, C, D]	A	A
E	[A, B, C, D]	[E, B, C, D]	A	В
Α	[E, B, C, D]	[E, A, C, D]	В	D
C	[E, A, C, D]	[E, A, C, D]	D	D
D	[E, A, C, D]	[E, A, C, D]	D	E
В	[E, A, C, D]	[B, A, C, D]	E	A
E	[B, A, C, D]	[B, E, C, D]	A	C
Α	[B, E, C, D]	[B, E, A, D]	C	D
С	[B, E, A, D]	[B, E, A, C]	D	В

(b) [1 point] What is the miss rate?

Solution:

10 misses out of 13 accesses \rightarrow 77%