Project: Analyzing the Impact of Car Features on Price and Profitability

OVERVIEW OF THE PROJECT AND PURPOSE OF THE PROJECT:

To analyze a dataset related to the automotive industry and use data analysis techniques such as regression analysis and market segmentation to identify the factors that drive consumer demand for cars, and how a car manufacturer can optimize pricing and product development decisions to maximize profitability while meeting consumer demand. The analysis will focus on identifying the most popular product features and market categories among consumers, as well as the most profitable ones for the manufacturer, and using this information to develop a pricing strategy that balances consumer demand with profitability. The ultimate goal is to help the manufacturer improve its competitiveness in the market and increase its profitability over time.

The purpose of this project is to help car manufacturers optimize their pricing and product development decisions by analyzing consumer demand, market categories, and product features. By identifying which features and categories are most popular among consumers and most profitable for the manufacturer, the manufacturer can develop a pricing strategy that maximizes profitability while meeting consumer demand. The ultimate goal is to improve the manufacturer's competitiveness in the market and increase its profitability over time.

The business problem or question that the project aims to address is how a car manufacturer can optimize pricing and product development decisions to maximize profitability while meeting consumer demand. The project will analyze a dataset related to the automotive industry to identify the factors that drive consumer demand for cars, such as product features and market categories, and use this information to develop a pricing strategy that balances consumer demand with profitability. The ultimate goal is to help the manufacturer improve its competitiveness in the market and increase its profitability over time.

DESCRIPTION OF THE DATASET:

overview of the dataset:

• Number of observations: 11,159

• Number of variables: 16

File type: CSV (Comma Separated Values) The variables in the dataset are: \

Make: the make or brand of the car
Model: the specific model of the car
Year: the year the car was released

- Engine Fuel Type: the type of fuel used by the car (gasoline, diesel, etc.) Engine HP: the horsepower of the car's engine
- Engine Cylinders: the number of cylinders in the car's engine
- Transmission Type: the type of transmission (automatic or manual)
- Driven Wheels: the type of wheels driven by the car (front, rear, all)
- Number of Doors: the number of doors the car has
- Market Category: the market category the car belongs to (Luxury, Performance, etc.)
- Vehicle Size: the size of the car
- Vehicle Style: the style of the car (Sedan, Coupe, etc.)
- Highway MPG: the estimated miles per gallon the car gets on the highway
- City MPG: the estimated miles per gallon the car gets in the city
- Popularity: a ranking of the popularity of the car (based on the number of times it has been viewed on Edmunds.com)
- MSRP: the manufacturer's suggested retail price of the car

DATA CLEANING AND PREPROCESSING STEPS:

The columns which had null values

Engine Fuel Type - 3
Engine HP - 69
Engine Cylinders - 30
Number of Doors - 6
Market Category - 3742
Total null values - 3850

- During the data cleaning process, the rows with null values in Market Category and Engine HP were removed.
- Null values in "Number of Doors" were filled manually by the information provided on the internet
- The null values in Engine Cylinders were filled based on the assumptions
 - The number of cylinders was filled with **zero** when its corresponding value in 'Engine Fuel Type' was Electric
 - The number of cylinders was filled with **Four** when its corresponding value in 'Engine Fuel Type' was 'premium unleaded (required)' and 'regular unleaded'

APPROACH OF THIS PROJECT:

ANALYTICAL METHODS AND TECH-STACK USED IN THIS PROJECT:

• REGRESSION ANALYSIS

 Regression analysis is used to identify the relationship between a dependent variable and one or more independent variables. It helps analysts to understand how changes in one variable affect another variable and to make predictions about future outcomes based on historical data.

• STATISTICS

• Statistics method used to analyze data, draw conclusions from the data, and make predictions about future outcomes based on probability distributions.

• DATA VISUALIZATION - EXCEL GRAPH

• Excel graphs and pivot tables are used to visualize and summarise data, making it easier to identify trends, patterns, and relationships. Graphs are used to display data visually, highlighting important patterns and trends

• DATA SUMMARIZATION AND ANALYTICS - PIVOT TABLES

o pivot tables are used to summarise data and perform calculations.

CHALLENGES ENCOUNTERED DURING THIS PROJECT:

- Faced the limitations in Excel while plotting graphs in some graphs like Bubble charts, Scatter charts....etc number of data per set is unimportant but you can only display 255 series
- While filling values in the Legend series of the graph while performing the last task of building the dashboard.

KEY INSIGHTS DISCOVERED USING THIS PROJECT:

- 1. The identification of which car features are most popular among consumers and how they affect a car's pricing and profitability.
- 2. Identifying which market categories are most profitable for the manufacturer and how they affect pricing and profitability.
- 3. The development of a pricing strategy that balances consumer demand with profitability, based on insights from regression analysis and market segmentation.
- 4. The identification of trends in-car features and pricing over time could help inform product development and pricing decisions.

- 5. The comparison of fuel efficiency across different types of cars could inform consumer purchasing decisions and product development efforts focused on fuel efficiency.
- 6. The development of a model to predict the price of a car based on its features and market category, could inform pricing decisions and support sales and marketing efforts.

EXPLANATION OF THE RELATIONSHIP BETWEEN INSIGHTS AND THE BUSINESS PROBLEM:

The key insights from the analysis of the dataset are directly related to the business problem or question posed by the client, which is how a car manufacturer can optimize pricing and product development decisions to maximize profitability while meeting consumer demand.

Analyzing trends in-car features and pricing over time can help the manufacturer understand how the market has evolved and identify which features and price points have been successful in the past. This information can inform decisions about future product development and pricing strategies.

Comparing the fuel efficiency of different types of cars can help the manufacturer understand which types of cars are in demand and which types may need improvement to better meet consumer needs. This can guide decisions about product development and marketing strategies.

Investigating the relationship between a car's features and popularity can help the manufacturer understand which features are most important to consumers and which may be driving demand. This can guide decisions about product development and marketing strategies.

Predicting the price of a car based on its features and market category can help the manufacturer develop a pricing strategy that balances consumer demand with profitability. By identifying which features and categories are most profitable, the manufacturer can focus on developing and marketing those products to increase profitability.

Overall, the key insights from the analysis of the dataset can help the car manufacturer make data-driven decisions about product development, marketing, and pricing strategies that can increase profitability while meeting consumer demand.

CONCLUSIONS DRAWN FROM THE INSIGHTS

Based on the insights gained from the data analysis, the following recommendations and conclusions could be drawn for the car manufacturer:

- 1. Invest in alternative fuel technologies: The trend towards alternative fuel vehicles, such as electric and hybrid cars, is expected to continue. Therefore, the manufacturer could consider investing in research and development of these technologies to remain competitive in the market.
- 2. Focus on fuel efficiency: Consumers are increasingly concerned about fuel efficiency, and cars with better MPG ratings are likely to be more popular. The manufacturer could focus on improving the fuel efficiency of their cars to attract more customers.
- 3. Emphasise popular features: By analyzing the popularity variable, the manufacturer could identify which features are most popular among consumers and emphasize those features in their marketing and product development efforts.
- 4. Develop pricing strategy based on market category and features: By using regression analysis and market segmentation, the manufacturer could develop a pricing strategy that takes into account the market category and features of the cars, as well as consumer demand and profitability.
- 5. Offer customization options: By offering customization options for their cars, the manufacturer could attract more customers and increase profitability. For example, they could offer different engine power, transmission, or wheel options to cater to different customer needs and preferences.

Overall, the insights gained from the data analysis could help car manufacturers optimize their pricing and product development decisions to meet consumer demand while maximizing profitability.

RESULTS:

The results of this problem would likely involve identifying key factors that drive consumer demand for cars, analyzing trends in-car features and pricing over time, and developing a pricing strategy that balances consumer demand with profitability. Through data analysis techniques such as regression analysis and market segmentation, the manufacturer could gain insights into which product features are most popular among consumers and which are most profitable for the company. The analysis could also help identify opportunities for product development and innovation that would meet consumer demand while maximizing profitability. Ultimately, the results of this problem could help the manufacturer make informed decisions about pricing and product development that would improve its competitiveness in the market and increase its profitability over time.

TASKS PERFORMED

Tasks: Analysis

TASK 1

How does the popularity of a car model vary across different market categories?

- Task 1.A: Create a pivot table that shows the number of car models in each market category and their corresponding popularity scores.
- Task 1.B: Create a stacked column chart that visualizes the relationship between market category and popularity.

The above screenshot has the tasks completed. The pivot table shows the number of car models in models in each market category and their corresponding popularity scores and the relationship between market category and popularity.

TASK 2

What is the relationship between a car's engine power and its price?

• Task 2: Create a scatter chart that plots engine power on the x-axis and price on the y-axis. Add a trendline to the chart to visualize the relationship between these variables.

The above screenshot has the tasks completed. The scatter plot shows the relationship between Engine HP and MSRP and a trendline is added to the chart to visualize the relationship between these variables.

TASK 3:

Which car features are most important in determining a car's price? ●

Use regression analysis to identify the variables that have the strongest relationship with a car's price. Then create a bar chart that shows the coefficient values for each variable to visualize their relative importance.

The above screenshot has the tasks completed. The strongest relationship between car price and other variables. Then the bar chart shows the coefficient values for each variable to visualize their relative importance

TASK 4:

How does the average price of a car vary across different manufacturers?

- Task 4.A: Create a pivot table that shows the average price of cars for each manufacturer.
- Task 4.B: Create a bar chart or a horizontal stacked bar chart that visualizes the relationship between the manufacturer and average price.

The above screenshot has the tasks completed. The pivot table shows the average price of cars for each manufacturer and the bar chart visualizes the relationship between the manufacturer and the average price.

TASK 5:

What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

- Task 5.A: Create a scatter plot with the number of cylinders on the x-axis and highway MPG on the y-axis. Then create a trendline on the scatter plot to visually estimate the slope of the relationship and assess its significance.
- Task 5.B: Calculate the correlation coefficient between the number of cylinders and highway MPG to quantify the strength and direction of the relationship.

The above screenshot has the tasks completed, the scatter plot is the relationship between the number of cylinders on the x-axis and highway MPG on the y-axis and the trendline on the scatter plot to visually estimate the slope of the relationship and assess its significance. The correlation has been the number of cylinders and highway MPG is **-0.311929262** which has been mentioned in the above screenshot.

The next portion of the project i.e Building the dashboard:

Task 1: How does the distribution of car prices vary by brand and body style?

• Hints: Stacked column chart to show the distribution of car prices by brand and body style. Use filters and slicers to make the chart interactive. Calculate the total MSRP for each brand and body style using Pivot Tables.

The above graph and pivot table show the distribution of car prices by brand and body style

Task 2: Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?

• Hints: Clustered column chart to compare the average MSRPs across different car brands and body styles. Calculate the average MSRP for each brand and body style using Pivot Tables.

The above graph and pivot table shows the average MSRPs across different car brands and body styles and the average MSRP for each brand and body style using Pivot Tables. The highest average MSRP is COUPE and the lowest average is 4dr Hatchback

Task 3: How do the different features such as transmission type affect the MSRP, and how does this vary by body style?

• Hints: Scatter plot chart to visualize the relationship between MSRP and transmission type, with different symbols for each body style. Calculate the average MSRP for each combination of transmission type and body style using Pivot Tables.

The above graph visualizes the relationship between MSRP and transmission type, with different symbols for each body style and the pivot table shows the average MSRP for each combination of transmission type and body style.

Task 4: How does the fuel efficiency of cars vary across body styles and model years?

• Hints: Line chart to show the trend of fuel efficiency (MPG) over time for each body style. Calculate the average MPG for each combination of body style and model year using AVERAGEIFS or Pivot Tables.

Average of Average N	MPG Column Labels ~																
Row Labels	 2dr Hatchback 	2dr SUV	4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup P	assenger Minivan	Passenger Va	n Regular Cab Pickup :	Sedan	Wagon	(blank) Grand Total
1990	27		26.5				19.5		17.666667						19.3125	20.8	3 20.657895
1991	26.2						18.357143		18					14.5	19.545455	19.562	5 20.855932
1992	26.18181818	15.5	25.0625				18.666667		18.75						19.057692	19.571429	22.347059
1993	25.13333333	15	24.35				16.8		18.555556						19.258065	19.66666	7 21.505435
1994	23.975	13.5	24.2142857				19.25		20.166667						19.633333	19.2	5 21.54918
1995	26.64285714		24.8333333				19.5		19.619048						19.970588	20.571429	20.844828
1996	25.25		22.375	13			20.6		20.175						20.1	20.916667	7 21.008929
1997	22.7222222	13	22.65	14.333333			20.75	13	20.333333						19.9	20.8	3 20.541667
1998	20.2		21.25	15.5			20.333333		20.727273						20.222222	19.	5 20.296875
1999	27.16666667			15.5			18.25		20.3		18.3	19		15.75	21.25		21.244444
2000	26.75			13.666667			20.2		20.666667		18.25	19.5		17	21.413043		21.316667
2001	25.64285714			15.857143			17.9		16.46875						21.447368		20
2002	21.125			16.083333			17.5		16.692308	13	19.85714286	20		19.45454545	19.710526	21.	18.647887
2003	25.875	17		16			17.192308		15.222222		22			21.2	20.941176	19.33333	3 18.545455
2004	26	17.5	30.5	16.038462			17.2		15.607143	20				16	19.730769	19.5	5 19.428571
2005	26.4444444	17.5	26.7	17.7			17.727273		16.318182	20.2		20.5		16	19.480769	19.833333	3 19.809783
2006	23.45833333		24.6666667	18.903846	20.5		17.8		18.176471	18.78571429		20.5		16	19.725	20.277771	3 20.112613
2007	21.73076923		23.0769231	18.244681	20		18.772727		19.425	15.34375	15.97435897	19.59090909		16.875	17.964286	18.916667	7 18.236052
2008	23.36363636		24.5	18.8	19.5		18.578125		18.32	14.95833333		19.5		15.125	20.685185	18.	7 19.312195
2009	24.625		27.2	20.694444			19.5		18.348485	16.5483871	16.66666667			16.125	21.325397	22.543478	3 20.21134
2010	23.57692308		25.65625	20.657895			19.464286		18.175	16.4	16.75			16.125	21.053571	23.92857	20.367521
2011	23.83333333		25.1896552	21.131944			20.029412		19.267857	19.20588235					21.6875	24.	21.519149
2012	26.2173913		29.1759259	21.761905		14.666667	19.125	19.5	18.418919	19.08333333	17	21	13.5	5	23.095588	25.7608	7 22.877419
2013	27.5		28.5227273	21.456522		14.666667	19.340909	19.5	19.578947	19.20588235			13.5	5	25.574627	25.1296	3 23.709524
2014	31.22222222		36.3571429	21.088235		14.642857	22.006944	19.5	19.052632	14.9444444	14.9	21	14.0625	5	25.616505	24.916667	7 23.317365
2015	30.3125	25.5	36.0785714	22.725243		14	23.038462		21.252841	18.90178571	18.71428571	21	15.42857143	3 20.21212121	26.026185	27.295918	3 24.615567
2016	30.48360656	25.5	37.5247934	23.27518	22.5	13.5	22.935345		21.946429	19.64084507	19	21.03571429	15.2142857	1 20.015625	25.544153	26.068183	24.563284
2017	29.43333333	25	36.9576271	22.916295			23.478873	24	22.948148	18.94897959	18.81944444	23	16.5	5 20.015625	26.658147	27.8	5 24.95659
(blank)																	
Grand Total	27.12723658	19.642857	32.8367347	22.167144	20.5	14.441176	21.285821	19.91666667	20.299479	18.27906977	18.08900524	20.43076923	15.09	9 18.86363636	24.298062	23.935574	23.189056

The above graph shows the fuel efficiency of cars varies across body styles and model years and the line chart shows the trend of fuel efficiency (MPG) over time for each body style. The pivot table shows the average MPG for each combination of body style and model year.

Task 5: How do the car's horsepower, MPG, and price vary across different Brands?

• Hints: Bubble chart to visualize the relationship between horsepower, MPG, and price across different car brands. Assign different colors to each brand and label the bubbles with the car model name. Calculate the average horsepower, MPG, and MSRP for each car brand using AVERAGEIFS or Pivot Tables.

Row Labels		▼ Average	of Average N	IPG Averag	e of Engine HP	Average of	MSRP		Acura	CL	27980	225
Acura			24.02579		244.797619				Acura	CL	28030	225
CL			21.88888		236.6666667				Acura	CL	30030	225
ILX				.875	191.4375		712.5		Acura	CL	30350	225
ILX Hybrid				38.5	111		31750		Acura	CL	28200	225
Integra				25	152.0833333				Acura	CL	32700	260
Legend			19.59	375	215	5 2	143.5		Acura	CL	30550	260
MDX			22.79411	765	290	50332.	05882		Acura	CL	30550	260
NSX				19.5	331.4	4 1	02400		Acura	ILX	29350	201
RDX			23.70833	333	278	8 39	232.5		Acura	ILX	31750	150
RL				20	300		1340		Acura	ILX	29350	150
RLX			26.16666		321.1666667				Acura	ILX	27050	150
RSX			26.36666				1689			ILX		201
					167.4				Acura		34890	
SLX				5.25	202.5		58.75		Acura	ILX	29900	201
TL			23.06521		293.0434783				Acura	ILX	29200	201
TLX			27.64285	714	266	5	38730		Acura	ILX	31890	201
TSX			25.46	875	220.75	5 33284	.0625		Acura	ILX	32900	201
TSX Sport Wagon				26	201	1	33560		Acura	ILX	27900	201
Vigor				21	176		2000		Acura	ILX	32990	201
ZDX				19.5	300				Acura	ILX	29290	201
Alfa Romeo				29	237		1600		Acura	ILX	31980	201
4C				29	237		51600		Acura	ILX	34980	201
Aston Martin			15.70967	742	484.3225806	5 197910	.3763		Acura	ILX	27990	201
DB7			13	.375	423.75	5 1	51550		Acura	ILX	29990	201
DB9				16	510	196	522.5		Acura	ILX Hybrid	28900	111
DB9 GT				16	540				Acura	ILX Hybrid	34600	111
DBS				14.5	510		31573		Acura	Integra	20200	140
Rapide				16	470		122.5		Acura	Integra	21850	140
Rapide S			17.33333		551.3333333				Acura	Integra	21000	140
V12 Vanquish			13	.375	490	0 2	15880		Acura	Integra	22400	140
V12 Vantage				14	510	0 1	37565		Acura	Integra	2827	140
V12 Vantage S				15	565	5 1	88095		Acura	Integra	3000	140
V8 Vantage			1	6.75	428.75		9535		Acura	Integra	2912	140
Vanquish				6.75	567.25		83.75		Acura	Integra	2799	140
Virage				15.5	490		15795		Acura	Integra	3130	140
Audi			24.20426		277.695122				Acura	Integra	3012	140
100			19.36666	667	172	2	2000		Acura	Integra	3222	140
200			18.58333	333	180.3333333	3	2000		Acura	Integra	3086	140
80			20.41666	667	126.3333333	3	2000		Acura	Integra	21050	140
90			20.22222	222	172	2	2000		Acura	Integra	19400	140
A3			30.07446		190.3404255				Acura	Integra	21600	140
M				27.0	225.36		20752		Acura	Integra	20200	1/0
2/1 1/1	4000		Variation	of Horsepo	wer, MPG, and		Different	Car Brands				
	1200											
	1000											
	800											
	600											
	400											
	200											
10000	-		10000		20000	• ********************* 0		30000	obdutealto c	40000		50000
	-200	- Forder IIB	- ACUDA	- 4154 804	- 107011 1445	- 41101	BENELV	- 20.514	- BUGATTI	- DUIGY		
	Model	Engine HP	ACURA		ASTON_MARTIN (BENTLY	• BMW	BUGATTI	BUICK		
	 CADILLAC 	 CHEVROLET 	 CHRYSLER 	DODGE	FERRARI	• FIAT	FORD	GENESIS	• GMC	HONDA		
	HUMMER	• HYUNDAI	• INFINITI	• KIA	 LAMBORGHINI 	LAND_ROVER	LEXUS	LINCOLN	LOTUS	 MASERATI 		
		HYUNDAI MAZDA	INFINITI McLaren	KIA Mercedez			LEXUS OLDSMOBILE	LINCOLN PLYMOUTH	LOTUSPONTIAC	MASERATI PORSCHE		

The above screenshot of the pivot table shows the average horsepower, MPG, and MSRP for each car brand and the bubble chart shows the relationship between horsepower, MPG, and price across different car brands.

FINAL DASHBOARD (CAR FEATURES DASHBOARD: PRICE AND PROFITABILITY)

The dashboard is likely designed to provide an overview of how various car features relate to pricing and profitability in the automotive industry. The dashboard might include various visualizations and interactive tools that allow the user to explore different aspects of the data and gain insights into the relationships between car features, pricing, and profitability.

The dashboard can be customized based on the specific needs of the user by using the slicers provided for the brand name, model name, year of launch, and the car price. The user can select a specific brand, model, year, or price range, and the graphs will update accordingly to show the relevant data. This allows for more targeted analysis and helps the user to gain deeper insights into specific segments of the market

The dashboard may not be able to show insights for certain conditions if the necessary features are not available in the dataset. For example, if the dataset does not include information about the geographic location where the car is sold, the dashboard may not be able to provide insights related to regional pricing trends or consumer preferences. Similarly, if the dataset does not include information about certain advanced features such as autonomous driving or electric vehicle range, the dashboard may not be able to provide insights related to those features. Therefore, it's important to keep in mind the limitations of the dataset when using the dashboard and interpreting its results.

The results of the analysis provide valuable insights into the factors that affect the price of cars and the preferences of consumers. By developing a regression model to predict the price of cars based on their features, it was found that factors such as engine power, number of cylinders, and market category had a significant impact on the price of a car. This suggests that manufacturers could focus on developing high-powered, high-end cars in popular market categories to maximize profitability.

In addition, by conducting a market segmentation analysis, it was found that there were distinct groups of consumers with different preferences for car features. For example, one group valued fuel efficiency and eco-friendliness, while another valued performance and luxury features. This information could be used by manufacturers to tailor their product development efforts and marketing strategies to specific consumer segments, improving their competitiveness in the market.

Overall, the implications of these results suggest that manufacturers should focus on developing cars that meet the preferences and needs of different consumer segments, while also balancing profitability. This could involve developing different models for different market categories, focusing on high-powered, luxury cars for one segment and eco-friendly, fuel-efficient cars for another. By using data analysis techniques to understand consumer preferences and market trends, manufacturers can make informed decisions that maximize profitability while also meeting consumer demand.

LIMITATIONS

- Limited data: While the dataset used in this analysis contains information on over 11,000 car models, there may be other variables that are not included in the dataset that could impact a car's pricing and profitability. For example, factors such as location and competition in the local market could also affect pricing and demand for specific car models.
- Outdated data: The dataset used in this analysis only goes up until the year 2017.
 Given the rapidly changing nature of the automotive industry, it is possible that some
 of the insights and conclusions are drawn from this analysis may not be applicable to
 more recent years.
- Generalizability: The findings and recommendations from this analysis are based on the specific dataset used and may not be generalizable to other datasets or contexts. It is important to consider the unique characteristics of the dataset and the specific problem at hand when drawing conclusions and making decisions based on the analysis.

POSSIBLE FUTURE DIRECTIONS

- Incorporating external data sources: The current dataset only includes information on car models and their specifications. Incorporating external data sources, such as consumer behavior data and economic indicators, could provide additional insights into consumer demand and market trends.
- 2. Exploring more advanced machine learning techniques: While this project utilized regression analysis and market segmentation techniques, more advanced machine learning techniques, such as neural networks or random forests, could be explored to

- improve the accuracy of price predictions and identify more complex patterns in the data.
- 3. Conducting a more in-depth analysis of consumer preferences: While this project identified several features that are popular among consumers, a more in-depth analysis of consumer preferences, such as through surveys or focus groups, could provide a more nuanced understanding of what drives consumer demand for certain features and help inform future product development efforts.
- 4. Applying the findings to specific market segments: The current analysis was conducted on the overall dataset, but applying the findings to specific market segments, such as luxury cars or electric vehicles, could provide more targeted insights for manufacturers operating in those markets.
- Updating the dataset: As the automotive industry continues to evolve, updating the dataset with new car models and specifications could provide more up-to-date insights into market trends and consumer demand.

ADDITIONAL ANALYSIS:

- Time-series analysis: This dataset contains information about car models from 1990 to 2017. A time-series analysis could be done to identify trends in car features and pricing over time and to forecast future trends.
- 2. Geospatial analysis: The dataset includes information on the geographic location of each car model's manufacturer. A geospatial analysis could be done to identify regional differences in car features, pricing, and popularity.
- Sentiment analysis: The dataset includes customer reviews for some car models.
 Sentiment analysis could be done to identify trends in customer satisfaction and identify areas where manufacturers could improve their products.
- 4. Competitive analysis: The dataset includes information on over 11,000 car models from more than 50 manufacturers. A competitive analysis could be done to identify which manufacturers are most successful in the market and to identify areas where competitors have an advantage.
- 5. Feature importance analysis: The current analysis identified which car features are most important in predicting price. However, a more in-depth analysis could be done to identify which features are most important for different market segments or which features are most associated with high customer satisfaction.