Real, Apparent and Reactive Power

Malabika Basu

Real Power (P)

- Real Power (P) measured in Watts is required to do useful work
 - Boil kettles, turn motors, power light bulbs.
 - Single phase $P = |V|.|I|.cos(\phi)$
 - Three phase $P = 3.|V_{LN}|.|I|.cos(\phi)$ or $P = \sqrt{3}.|V_{LL}|.|I|.cos(\phi)$
- Note: Real power is actually the average of instantaneous power.

Apparent Power (S)

- The apparent power (S) measured in VA is just the product of (rms) Volts and (rms) Amps
 - The apparent power (S) is a useful figure for determining the size of electrical equipment.
 - Single phase S = |V|.|I|
 - Three phase $S = 3.|V_{LN}|.|I|$ or $S = \sqrt{3}.|V_{LL}|.|I|$

Reactive Power (Q)

- You should know by now that inductors and capacitors don't dissipate any power $(\cos(\phi) = 0)$ but they still draw current.
- Reactive power (Q) measured in vars is an indication of how much current is being drawn by inductors and capacitors.
 - Single phase $Q = |V|.|I|.\sin(\phi)$
 - Three phase $Q = 3.|V_{LN}|.|I|.\sin(\phi)$ or $Q = \sqrt{3}.|V_{LL}|.|I|.\sin(\phi)$
- By convention
 - Inductors draw positive vars (Q positive)
 - Capacitors draw negative vars (Q negative)

Examples

- Resistor: $\phi = 0^{\circ}$
 - P = |V|.|I|
 - S = |V|.|I|
 - Q = 0
- Inductor: $\phi = 90^{\circ}$ Lagging
 - P = 0
 - S = |V|.|I|
 - Q = +|V|.|I|
- Capacitor: $\phi = 90^{\circ}$ Leading
 - P = 0
 - S = |V|.|I|
 - Q = -|V|.|I|

Relationships

•
$$P = S.cos(\phi)$$

 $Q = S.sin(\phi)$
 $S^2=P^2+Q^2$

- See the power triangle:
- NB: cos(φ) is usually called the Power Factor or PF for short.

Power factor correction

- High Q (lots of inductors or capacitors) is a bad thing.
 - High Q => low power factor
 - For a given level of useful work a high Q will require higher S and higher current => higher losses in transmission.
- Utilities (ESB) penalise industrial users if their power factor falls below 0.95
 - Unfortunately most industrial loads (e.g.motors and transformers) have high inductance => low power factor
 - Luckily you can add capacitors (negative Q) to cancel out the positive Q of inductors.

Power Factor Correction

Power Factor Correction Capacitors supply Q_c vars. (Capacitors consume negative vars, this is the same as supplying positive vars)

Question

- A factory draws 1MVA at a power factor of 0.8 lagging from a 10kV 3 phase supply.
- What is the current drawn from the supply?
- How many vars of power factor correction capacitance are required to bring the power factor up to 0.95?
- What will the new current be after the capacitors are fitted?