

PERANCANGAN DAN REALISASI KURSI RODA PINTAR BERBASIS VOICE RECOGNITION DILENGKAPI SISTEM MONITORING POSISI MENGGUNAKAN GPS DAN IP KAMERA (BAGIAN: PENGOLAH SUARA)

BIDANG KEGIATAN

Proposal Tugas Akhir Program Studi D4 Teknik Telekomunikasi

Diusulkan oleh:

Widdi Noviantika; 151344028; 2015

POLITEKNIK NEGERI BANDUNG

BANDUNG

2019

HALAMAN PENGESAHAN

PENGESAHAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Perancangan dan Realisasi Kursi

Roda Pintar Berbasis Voice Recognition Dilengkapi Sistem Monitoring Posisi dengan GPS dan

Ip kamera

Bidang Kegiatan : Pengajuan Tugas Akhir
 Program Studi : D4 Teknik Telekomunikasi

4. Pengusul

a. Nama Lengkap : Widdi Noviantika

b. NIM : 151344028 c. Jurusan : Teknik Elektro

d. Universitas/ Institut/ Politeknik
e. Alamat Rumah dan No. Telp/HP
f. Alamat Email
i. Politeknik Negeri Bandung
i. Jl. Ciwaruga / 085523713920
i. noviantikaw@gmail.com

5. Dosen Pendamping

a. Nama Lengkap : Ferry Satria, BSEE.,MT

b. NIDN : 0016095805

c. Alamat Rumah dan No.Tel/HP : Jl.Rancabali I No.1A Gunung Batu

Bandung/08122140175

6. Biaya Kegiatan Total

a. Biaya Total : Rp 8.735.000

b. Sumber Lain : -

7. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 1 Februari 2019

Pengusul,

(Widdi Noviantika)

NIM.151344028

DAFTAR ISI

HALA	MAN PENGESAHAN	ii
BAB 1	PENDAHULUAN	1
1.1.	Latar Belakang Masalah	1
1.2.	Rumusan Masalah	2
1.3.	Manfaat Jangka Panjang	2
1.4.	Luaran yang diharapkan	2
BAB 2	TINJAUAN PUSTAKA	3
BAB 3	METODE PENELITIAN	5
3.1	Perancangan Perangkat Keras	6
3.2	Perancangan Perangkat Lunak	7
3.3	Realisasi	7
3.4	Pengujian dan Analisa	8
3.5	Evaluasi	8
BAB 4	BIAYA DAN JADWAL KEGIATAN	9
1.4	Anggaran Biaya	9
1.5	Jadwal Kegiatan	9
DAFT	AR PUSTAKA	10
LAMP	IRAN-LAMPIRAN	11
Lam	npiran 1. Biodata Ketua dan Anggota serta Dosen Pembimbing	. 11
Lam	piran 2. Justifikasi Anggaran Kegiatan	. 15
Lam	npiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	. 17
Lan	npiran 4. Surat Pernyataan	. 18
Lan	npiran 5. Gambaran Ilustrasi	. 19

BAB 1

PENDAHULUAN

1.1. Latar Belakang Masalah

Berbicara mengenai disabilitas, disabilitas merupakan suatu keterbatasan dalam melakukan atau menjalani aktifitas gerak seperti tangan dan kaki. Penyebabnya bisa dari cacat fisik yang dialami sejak lahir atau akibat dari kecelakaan yang terjadi yang menyebabkan hilangnya fungsi bagian anggota gerak. Hal tersebut menimbulkan suatu permasalahan yang cukup rumit dan membuat seseorang merasa sangat terbatas dalam melakukan aktifitasnya.

Berdasarkan permasalahan yang disebutkan, diperlukan suatu teknologi yang dapat mempermudah seseorang yang kehilangan fungsi anggota geraknya untuk menjalani aktifitasnya dengan mudah dan tidak khawatir. Untuk itu telah dibuat beberapa teknologi yang sudah ada sebagai sarana untuk membantu penyandang disabilitas tersebut dengan keunggulan berbeda beda namun masih memiliki kekurangan seperti:

- 1. Kontrol Kursi Roda Cerdas Menggunakan Pergerakan Kepala (Abrianto, 2012), Terdapat kelemahan dari sistem ini dimana pengguna atau penyandang disabilitas tidak diberikan kebebasan dalam bergerak khususnya pada bagian kepala.
- 2. Perancangan Dan Implementasi Sistem Robot Kursi Roda Menggunakan Speech Recognition (Hendri Mukri, 2017). Kelemahan dari sistem ini yaitu tingkat keakuratan sistem ini akan kurang optimal jika terkena noise suara dari.
- 3. Pengendalian Robot Kursi Roda Berdasarkan Pergerakan Pergelangan Tangan Menggunakan Leap Motion dengan Metode Proporsional (Arifa, 2017), Kekurangan nya tidak dapat diaplikasikan atau digunakan untuk orang cacat tangan dan kaki.

Berdasarkan pemaparan teknologi yang sudah ada beserta kekurangnya, akan diusulkan suatu sistem kendali kursi roda otomatis untuk penyandang disabilitas cacat tangan dan kaki. Akan dibuat sistem kendali dengan *voice based identification* dan juga kendali menggunakan gerakan kepala dilengkapi dengan fitur monitoring posisi pengguna kursi roda dan pengendalian kecepatan otomatis kursi roda itu sendiri.

Sistem ini memiliki keunggulan dengan mempunyai dua mode untuk mengendalikan kursi roda. Pada mode suara digunakan *voice based identification* untuk mengendalikan kursi roda dimana kursi roda hanya dapat diakses oleh suara pengguna kursi roda. Kemudian sistem juga dilengkapi dengan fitur monitoring posisi dimana pihak keluarga dapat memantau aktifitas pengguna dengan memonitoring posisi pengguna kursi roda dengan melihat gps dan tangkapan gambar dari fitur monitoring tersebut. Selain itu kursi roda ini pun dilengkapi dengan fitur kendali kecapatan kursi roda secra otomatis.

1.2. Rumusan Masalah

Berdasarkan permasalahan yang ada dapat dirumuskan bahwa:

- 1. Akan dibuat kursi roda otomatis yang dapat dikendalikan oleh suara
- 2. Akan dibuat kursi roda otomatis yang dapat dikendalikan oleh gerakan kepala
- 3. Akan dibuat sistem monitoring posisi sebagai fitur tambahan untuk keamanan pengguna kursi roda dengan gps dan dilengkapi ip kamera untuk enangkap gambar
- 4. Akan dibuat kendali kecepatan pada kursi roda secara otomatis.

1.3. Manfaat Jangka Panjang

- 2. Kursi roda pintar ini dapat digunakan penyandang disabilitas agar mempermudah aktifitas sehari hari dengan mengendalikan melalui suara dan juga gerakan kepala.
- 3. Memberikan kenyamanan dan kemanan pengguna dalam beraktifitas dengan yang ada pada sistemnya.

1.4. Luaran yang diharapkan

Sistem yang dibuat untuk mengendalikan kursi roda dengan fitur fitur yang terdapat didalamnya ini bisa digunakan dalam kehidupan sehari hari sehingga memberikan kemudahan bagi para penyandang disabilitas untuk mobilitas melakukan aktifitas dengan aman dan nyaman.

BAB 2

TINJAUAN PUSTAKA

Untuk menunjang kebutuhan penyandang disabilitas, diperlukan suatu teknologi yang dapat mempermudah seseorang yang kehilangan fungsi anggota geraknya untuk menjalani aktifitasnya dengan mudah dan nyman. Telah dibuat beberapa teknologi yang sudah ada sebagai sarana untuk membantu penyandang disabilitas tersebut dengan keunggulan berbeda beda namun masih memiliki kekurangan seperti:

- 1. Kontrol Kursi Roda Cerdas Menggunakan Pergerakan Kepala, mengembangkan sistem pengontrolan kursi roda cerdas dengan menggunakan pergerakan kepala (head movement) sehingga pemakai kursi roda cerdas yang memiliki keterbatasan gerak tangan dapat mengoperasikannya (Abrianto, 2012). Terdapat kelemahan dari sistem ini dimana pengguna atau penyandang disabilitas tidak diberikan kebebasan dalam bergerak khususnya pada bagian kepala.
- 2. Perancangan Dan Implementasi Sistem Robot Kursi Roda Menggunakan Speech Recognition, Prinsip kerja dari alat ini adalah dengan memanfaatkan gelombang suara pada manusia sebagai masukan informasi pada alat untuk dapat menentukan arah gerak dari kursi roda otomatis tersebut (Hendri Mukri, 2017). Kelemahan dari sistem ini yaitu tingkat keakuratan sistem ini akan kurang optimal jika terkena noise suara dari luar dan juga tidak ada batasan akses untuk suara yang dapat mengendalikan kursi roda, sehingga bisa diakses atau dikendalikan oleh suara siapapun.
- 3. Pengendalian Robot Kursi Roda Berdasarkan Pergerakan Pergelangan Tangan Menggunakan Leap Motion dengan Metode Proporsional, sebuah sistem pengontrolan kursi roda dengan gestur tangan berdasarkan nilai sudut pitch dan yaw saat pergelangan tangan berotasi (Arifa, 2017). Kelemahan dari sistem ini yaitu tidak dapat digunakan oleh penyandang disabilitas yang mengalami cacat atau lumpuh pada bagian tangan.

Berdasarkan pemaparan teknologi yang sudah ada beserta kekurangnya, akan diusulkan suatu sistem kendali kursi roda otomatis untuk penyandang disabilitas cacat tangan dan kaki. Akan dibuat sistem kendali dengan *voice based identification* dan juga kendali menggunakan gerakan kepala dilengkapi dengan fitur monitoring posisi pengguna kursi roda dan pengendalian kecepatan otomatis kursi roda itu sendiri.

Sistem ini memiliki keunggulan dengan mempunyai dua mode untuk mengendalikan kursi roda. Pada mode suara digunakan *voice based identification* untuk mengendalikan kursi roda dimana kursi roda hanya dapat diakses oleh suara pengguna kursi roda. Kemudian sistem juga dilengkapi dengan fitur monitoring posisi dimana pihak keluarga dapat memantau aktifitas pengguna dengan memonitoring posisi pengguna kursi roda

dengan melihat gps dan tangkapan gambar dari fitur monitoring tersebut. Selain itu kursi roda ini pun dilengkapi dengan fitur kendali kecapatan kursi roda secra otomatis.

Sistem kendali kursi roda pintar ini terbagi kedalam 4 sub bagian, yaitu sub bagian pengolahan suara sebagai pengendali gerakan kursi roda, sub bagian pengolahan gerakan kepala sebagai pengendali gerakan kursi roda, Sub bagian fitur monitoring posisi dengan gps dan ip kamera dan sub pengendalian kecepatan kursi roda otomatis. Namun pada proposal ini akan berfokus kepada sub bagian pengolah suara. Dimana akan dipaparkan gambaran tentang bagaimana proses pengolahan suara tersebut.

BAB 3
METODE PENELITIAN

Gambar 3 Metode Pelaksanaan

Tujuan dari penelitian ini adalah membuat suatu sistem kendali kursi roda otomatis untuk orang berkebutuhan khusus atau disabilitas yang organ gerak seperti tangan dan kaki nya tidak berfungsi. Sistem ini menggunakan pengolahan suara dan gerakan kepala untuk mengatur gerakan dari kursi roda tersebut. Langkah pengerjaannya dilakukan tahap demi setahap, hal ini digambarkan dalam diagram alir yang ditunjukan pada Gambar 3. Literatur studi sudah dilakukan dengan mentelaah penelitian hingga 5 tahun kebelakang. Studi tersebut berfokus pada kekurangan metode yang sudah ada dan pengembangannya. Sistem

kendali kursi roda otomatis ini diharuskan bisa memberi kemudahan untuk penggunanya dalam melakukan pergerakan pada kursi roda untuk mempurmudah aktivitasnya tanpa mengurangi keakuratan data dan keamanan dari pengguna. Karena itu rancangan yang dibuat sangat menitikberatkan kepraktisan ergonomis sebagai bahan pertimbangan utama dengan hanya menggunakan suara dan pergerakan pada kepala pengguna dapat mengendalikan kursi roda dengan aman dan nyaman. Desain yang didapat dari tahap perancangan tidak dibatas hanya satu, pada tahap ini akan dibuat beberapa rancangan guna mengetahui rancangan terbaik lewat perbandingan *prototype* yang dibuat.

Pembuatan *prototype*, pengujian, dan analisa adalah tahap – tahap yang dilakukan untuk mencari kelebihan dan kekurangan dari masing – masing desain yang ada. Data – data tersebut masuk tahap evaluasi untuk menentukan keunggulan dan kekurangan dari masing masing desain *prototype*. Jika tidak ada perbaikan yang diperlukan, maka penelitian akan dilanjutkan ke langkah selanjutnya untuk menghasilkan gambar beserta dimensi produk dan jenis bahannya serta kontrol elektronik dan sistim informasi yang paling sesuai. Setelah menyelesaikan tugas disain, akan dimulai proses realisasi. Realisasi adalah tahapan dimana prototype dari pada desain terbaik akan di sempurnakan dan ditambah komponen estetik seperti kaca spion dan juga lampu. Luaran dari proses ini adalah sebuah sistem kendali kursi roda otomatis yang siap didistribusikan dan siap dipakai oleh masyarakat. Setelah proses realisasi dilakukan akan dilakukan tahap hasil yang akan menjadi topik dalam *focus group discussion* untuk persiapan pembuatan publikasi ilmiah. dalam sebuah konferensi nasional.

3.1 Perancangan Perangkat Keras

Tujuan penelitian ini adalah pembuatan *prototype* sistem kendali kursi roda otomatis yang dikendalikan oleh suara. Dimana sistem ini terdiri dari *microphone*, mikrokontroler *raspberry pi*, *driver* motor, motor dc. Seperti diperlihatkan gambar 3.1.

Gambar 3.1 Blok Diagram Sistem

Penjelasan diagram blok perancangan sistem pada Gambar 3.1 adalah sebagai berikut:

- 1. *Microphone* digunakan sebagai input untuk kendali pergerakan kursi roda.
- 2. Raspberry digunakan untuk bagian proses pengolahan suara.

3. *Driver* motor dan motor dc berfungsi sebagai bagian yang akan menggerakan roda.

3.2 Perancangan Perangkat Lunak

Gambar 3.1.3 Flowchart Sistem

Flowchart sistem menjelaskan tentang bagaimana proses pengendalian kursi roda secara otomatis. Data dari input berupa berupa suara yang terdeteksi oleh microphone akan dikirim ke mikrokontroler. Selanjutnya data akan diolah atau diproses oleh mikrokontroler, proses pengolahan suara terdiri dari proses pengenalan dan proses identifikasi suara. Jika data suara sudah diproses dan teridentifikasi mikrokontroler akan memberikan perintah untuk menggerakan *driver* motor dan juga motor de agar kursi roda dapat bergerak sesuai dengan instruksi suara. Flowchart sistem ditunjukan pada Gambar 3.1.3

3.3 Realisasi

Microphone akan didesain seperti desain *microphone* yang menyatu dengan *headset*. Mikrokontroler akan disimpan pada bagian belakang kursi roda. Motor dc dan *driver* motor akan disimpan pada bagian roda.

3.4 Pengujian dan Analisa

Proses pengujian pada pengolahan suara terdiri dari beberapa tahap, tahap pertama akan dilakukan pengujian untuk proses pengenalan suara. Dibutuhkan banyak data untuk pelatihan agar akurasi ketepatan pengenalan suara pada kata yang diucapkan tinggi. Akan diuji beberapa kata untuk instruksi kendali kursi roda seperti, "Maju", "Berhenti", "Belok kanan", "Belok kiri", "Mundur". Setiap satu kata akan dicoba diucapkan oleh 5 orang berbeda. Jika sistem sudah dapat mengenal suara untuk kata yang akan menjadi perintah, tahap selanjutnya yaitu tahap identifikasi suara. Tahap identifikasi suara ini bertujuan agar sistem hanya dapat dikendalikan oleh pemilik kursi roda. Proses pengujian dari ke 5 orang yang sebelumnya melakukan uji coba pengucapan kata, akan dipilih satu untuk dijadikan sample sebagai identitas pemilik. Tahap selanjutnya menganalisa setiap respon dari kata yang diucapkan oleh ke 5 orang tersebut untuk disimpulkan apakah sistem dapat mengenali suara pemilik dan ketepatan kata yang diucapkan. Tahap terakhir menguji sistem yang sudah terintegrasi dengan motor dc dan *driver* motor apakah bisa dikendalikan oleh suara kemudian ditarik kesimpulan

3.5 Evaluasi

Pada tahap evaluasi, setiap pertimbangan dan pernyataan dari analisis akan dikaji sehingga kemungkinan pengembangan dari setiap desain akan didapatkan dan potensi dari desain-desain akan tergali. Tahap ini juga akan menentukan desain mana yang terbaik dan akan dipakai sebagai wajah dan jati diri dari sistem kendali kursi roda otomatis ini.

BAB 4
BIAYA DAN JADWAL KEGIATAN

1.4 Anggaran Biaya

Tabel 4.1 Anggaran biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang Diperlukan	6.820.000
2	Bahan Habis Pakai	505.000
3	Biaya Perjalanan	90.000
4	Lain-lain	1.320.000
	JUMLAH	8.735.000

1.5 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

			Bu	lan			Bu	lan			Bu	lan	l		Bu	lan			Bu	lan	
No	Kegiatan		ke	-1			ke	-2			ke	-3			ke	-4			ke	-5	
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Perancangan																				
2	Survey																				
2	Komponen																				
	Implementasi																				
3	Alat dan																				
3	membuat																				
	aplikasi																				
4	Tahap Analisi																				
5	Pengujian Alat																				
3	dan aplikasi																				
6	Evaluasi																				
7	Pembuatan																				
,	Laporan Akhir																				

DAFTAR PUSTAKA

- Abrianto, D. A., 2012. Kontrol Kursi Roda Cerdas Menggunakan Pergerkan Kepala, s.l.: s.n.
- Arifa, D., 2017. Pengendalian Robot Kursi Roda Berdasarkan Pergerakan Pergelangan Tangan Menggunakan Leap Motion dengan Metode Proporsional.
- Dimas Bayu Mahendra, K. J. K. A. W., 2018. Pengembangan Voice Based Identification Sebagai Door Lock System. *Jurnal Teknik Elektro dan Komputer TRIAC*, Volume 5, p. 2.
- Hendri Mukri, I. W. U. S., 2017. Perancangan Dan Implementasi Sistem Robot Kursi Roda Menggunakan Speech Recognition. Volume 4.
- Mada Sanjaya S.W, Z. S., 2014. Implementasi Pengenalan Pola Suara Menggunakan Melf Frequency Cepstrum Coefficients (MFCC) dan Adaptive Neuro Fuzzy Inferense System Sebagai Kontrol Lampu Otomatis. *Alhazen Jurnal of physics*, Volume 1, p. 1.
- Siahaan, S. N. O., 2018 . Rancang Bangun Simulasi Kursi Roda Dengan Menggunakan Komunikasi Bluetooth Berbasis Arduino Nano, Medan: s.n.
- Yudi Gunardi, T. K. W., 2015. Rancang Bangun Robot Pengendali Kursi Roda Menggunakan Suara. *Sinergi: Jurnal Teknik Mercu Buana*.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pembimbing Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Widdi Noviantika
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	151344028
5	Tempat dan Tanggal	Garut, 15 November 1996
	Lahir	Garat, 13 110 veniber 1990
6	Alamat E-mail	noviantikaw@gmail.com
7	Nomor Telepon/HP	0815523713920

B. Kegiatan Mahasiswa Yang Sedang Diikuti / Pernah Diikuti

No	Jenis Kegiatan	Status Dalam kegiatan	Waktu dan tempat		
1	PPKK	Peserta	2015 Polban		
2	Bela Negara	Peserta	2015 Pusdikhub		
3	Pelatihan ESQ	Peserta	2015 Polban		
4	Sertifikasi Fiber Optik	Peserta	2017 PT. Indosat		
5	Himpunan Mahasiswa	Ketua Divisi Departemen	2017 – 2018 Polban		

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir Program D3/D4 Teknik Telekomunikasi.

Bandung,1 Februari 2019

Pengusul,

Widdi Noviantika

Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Ferry Satria, BSEE.,MT			
2	Jenis Kelamin	Laki-laki			
3	Program Studi	Teknik Telekomunikasi			
4	NIP/NIDN	19580916 198403 1 001 / 0016095805			
5	Tempat dan Tanggal	Bandung, 16 September 1958			
3	Lahir				
6	E-mail	ferrypolban@gmail.com			
7	Nomor Telepon/HP	08122140175			

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Megister	S3/Doktor
Nama Institusi	Universite of Kentucky USA	Institut Teknologi Bandung	-
Jurusan/Prodi	Teknik Elektro	Teknik Elektro	-
Tahun Masuk Lulus	1987 – 1990	2001 - 2004	-

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat

D. Penghargaan dalam 5 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 1, kompetisi indonesia ICT award (INAICTA)	Politeknik Negeri Bandung	2013
2.	Juara 3, kompetisi muatan roket Indonesia(KOMURINDO)	Universitas Negeri Yogyakarta	2012

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir Program D3/D4 Teknik Telekomunikasi.

Bandung, 1 Februari 2019

Dosen Pembimbing,

<u>Ferry Satria, BSEE.,MT</u> NIP.195809161984031001

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Jumlah (Rp)	
Protoboard	4 buah	40.000	160.000	
Modul microphone	1 set	500.000	500.000	
Joystick	1 set	80.000	80.000	
Motor Servo	2 buah	60.000	120.000	
Driver motor	2 buah	150.000	300.000	
Motor DC	2 buah	275.000	550.000	
Raspberry Pi 3	2 Set	750.000	1.500.000	
LCD Monitor	1 buah	900.000	900.000	
Wifi modul	1 Buah	60.000	60.000	
Sensor Ultrasonik	2 Buah	50.000	100.000	
Modul GPS	1 Buah	175.000	175.000	
Sensor LDR dan lampu	1 Buah	25.000	25.000	
IP Kamera	1 Set	300.000	300.000	
Aki VRLA Battery	1 Set	350.000	350.000	
Kursi Roda	1 buah	1.000.000	1.000.000	
Magnetic Compass Module	1 buah	700.000	700.000	
	S	UB TOTAL (Rp)	6.820.000	
2. Bahan Habis	Volume	Harga	Jumlah (Rp)	
Designation (VI-vi-vi)	1 C -4	Satuan (Rp)	10,000	
Resistor (Varian)	1 Set	10.000	10.000	
LED	10 buah	1000	10.000	
Potensiometer 10K	3 buah	5.000	15.000	
Kabel Tembaga	1 Set	10.000	10.000	
Kabel pelangi	10 set	15.000	150.000	
Kapasitor	1 set	10.000	10.000	
PCB Board Fiber	8 buah	35.000	280.000	
Spacer	20 buah	1.000	20.000	
	S	UB TOTAL (Rp)	505.000	
	<u> </u>	Harga		
3. Perjalanan	Volume	Satuan (Rp)	Jumlah (Rp)	
Ongkos kirim	3	30.000	90.000	
SUB TOTAL (Rp) 90.000				

4. Lain-lain	Volume	Harga Satuan (Rp)	Jumlah (Rp)		
Kertas HVS A4	4 rim	80.000	320.000		
Biaya pembuatan mekanik	2 buah	350.000	700.000		
Penulisan laporan	4 set	300.000	300.000		
SUB TOTAL (Rp) 1.320.000					
TOTAL 1+2+3+4 (Rp) 8.735.000					
(Terbilang delapan juta tujuh ratus tiga puluh lima ribu rupiah)					

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/mingg	Uraian Tugas
1.	Abdel Jamil A (151344001)	D4 - T. Telekomunikasi	T. Elektro	10 jam	Pengolahan kendali gerakan
2.	Natasya Anggari (151344024)	D4 - T. Telekomunikasi	T. Elektro	10 jam	Monitoring Posisi dengan GPS dan ip Kamera
3.	Widdi Noviantika (151344028)	D4 - T. Telekomunikasi	T. Elektro	10 jam	Pengolahan Suara
4.	Yunike Wandasari (151344030)	D4 - T. Telekomunikasi	T. Elektro	10 jam	Pengolahan Kendali Motor DC

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889 Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN PELAKSANA

Saya yang menandatangani Surat Pernyataan ini:

Nama : Widdi Noviantika

NIM : 151344028

Program Studi : Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal Pengajuan Tugas Akhir Program Studi D-4 Teknik Telekomunikasi saya dengan judul "Perancangan dan Realisasi Kursi Roda Pintar Berbasis Voice Recognition dan Dilengkapi Sistem Monitoring Posisi dengan GPS dan Ip kamera" yang diusulkan untuk Tugas Akhir Program ini adalah asli karya saya dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 1 Februari 2019

Yang mengajukan,

(Widdi Noviantika)

NIM.151344028

Lampiran 5. Gambaran Teknologi Yang Akan Diterapkan

Gambar 5 Blok Diagram Sistem Keseluruhan

Sistem kendali kursi roda pintar ini terbagi kedalam 4 sub bagian, yaitu sub bagian pengolahan suara sebagai pengendali gerakan kursi roda, sub bagian pengolahan gerakan kepala sebagai pengendali gerakan kursi roda, Sub bagian fitur monitoring posisi dengan gps dan ip kamera dan sub pengendalian kecepatan kursi roda otomatis. Namun pada proposal ini akan berfokus kepada sub bagian pengolah suara. Dimana akan dipaparkan gambaran tentang bagaimana proses pengolahan suara tersebut.

Pada bagian pengolah suara, microphone berfungsi sebagai input. Dimana suara dari microphone akan dioleh oleh prosesor. Prosesor yang akan digunakan prosesor ARM7 yang terdapat di raspberry. Perintah berupa suara akan diolah menggunakan metode voice based identification dengan bahasa pemrograman phyton.

Gambaran Ilustrasi Sistem

Gambar 5. 1 Ilustrasi Sistem

Sistem ini memiliki keunggulan dengan mempunyai dua mode untuk mengendalikan kursi roda. Pada mode suara digunakan *voice based identification* untuk mengendalikan kursi roda dimana kursi roda hanya dapat diakses oleh suara pengguna kursi roda. Kemudian sistem juga dilengkapi dengan fitur monitoring posisi dimana pihak keluarga dapat memantau aktifitas pengguna dengan memonitoring posisi pengguna kursi roda dengan melihat gps dan tangkapan gambar dari fitur monitoring tersebut. Selain itu kursi roda ini pun dilengkapi dengan fitur kendali kecapatan kursi roda secra otomatis.