

Mathematical Foundations of Computer Science

Lecture 8: Asymptotics

Announcements

- Homework 2 is out. See Canvas Syllabus page for PS2.pdf
 To be submitted on Crowdmark by Oct. 11 (Tues) night
- After today's class on Big-Oh, Asymptotics you should be able to do all the questions.
- See the Canvas Syllabus page for Discussion section notes.
- Midterm on October 26th (Wed) in class.

Which is Bigger?

$$f(n) = 100n \log n$$
 or $g(n) = 2n^2 - n$?
 $n = 1,2,3,...$?

How do we compare?

- Consider large values of n (reason about large inputs)
- Mathematically well-defined and elegant

Asymptotic Analysis:

 Gives good qualitative understanding of function

Only higher order terms matter.

Big-Oh Notation

• g(n) = O(f(n)): g is upper bounded on the order of f(n) Eg. $g(n) = O(\log n)$: "g is Big-Oh of logn".

$$g(n) = O(f(n))$$
 iff there exists $c \ge 0, n_0 \in \mathbb{N}$, such that $g(n) \le c \cdot f(n)$ for all sufficiently large $n \ge n_0$

Prop. Suppose g(n) = 1000n + 2000000, then g(n) = O(n).

Proof.
$$C = 2000$$
, $n_0 = 2000$

$$g(n) = 1000 n + 2000 \times 1000 = 1000 n + 1000 \times n_0 \leq 1000 n + 1000 n$$

$$\leq 2000 n = Cn$$
Hence $g(n) = O(n)$

• $g(n) = \Omega(f(n))$: g is asymptotically lower bounded by f(n)

$$g(n) = \Omega(f(n)) \text{ iff } f(n) = O(g(n)).$$

• $g(n) = \Theta(f(n))$: f and g are asymptotically of the same order of magnitude (same upto constant factors)

$$g(n) = \Theta(f(n))$$
 iff $f(n) = O(g(n))$ and $g(n) = O(f(n))$.

E.g.
$$a, b, c \ge 0$$
, $g(n) = an^2 + bn + c$. Then $g(n)$ vs n^2 ?
$$g(n) = \Theta(n^2)$$

$$\lim_{n\to\infty}\frac{an^2+bn+c}{n^2}=\lim_{n\to\infty}\left(a+\frac{b}{n}+\frac{c}{n^2}\right)=a$$

Relation to Limits (Calculus 101)

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \le c$$
 for some constant $0 \le c < \infty$, then $f(n) = O(g(n))$

E.g. $f(n) = 1000n + 20000000$. $g(n) = 2n^2$. Prove $f(n) = O(g(n))$

$$\lim_{n\to\infty} \frac{f(n)}{f(n)} = \lim_{n\to\infty} \frac{10000000}{f(n)} = \lim_{n\to\infty} \frac{500}{n} + \lim_{n\to\infty} \frac{10000000}{n^2} = \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = o(g(n))$

Limits and Big-Oh

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \in (0, \infty)$$

$$c \in (0, \infty)$$

$$c = \infty$$

$$f(n) = 0 \quad \text{fin} = \omega \text{fin}$$

Limits and Big-Oh

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0 \quad \text{(can include)}$$

$$f(n) = 0 \quad \text{(g(n))}$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \quad \lim_{n\to\infty} \frac{f(n)}{g(n)} = c \in (0,\infty)$$

$$c \in (0,\infty)$$

$$f(n) = o(g(n))$$

Dealing with Logarithms

$$f(n) = n \log n \quad \text{vs} \quad g(n) = n^2$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{h \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n}$$

Hôpital rule: If $n \to \infty$, f(n), $g(n) \to \infty$: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$

Hôpital rule: If
$$n \to \infty$$
, $f(n)$, $g(n) \to \infty$: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$

Sometimes easier to compare logarithms of fundaments.

Sometimes easier to compare logarithms of functions i.e. compare $\log f(n)$, $\log g(n)$ e.g. exponentials (but be careful).

Simple Rules for Big-Oh

1. Transitivity:

$$g(n) = O(f(n)), h(n) = O(g(n)) \Rightarrow h(n) = O(f(n))$$

- 2. Constant factors don't matter: $c \cdot f(n) = \Theta(f(n))$
- 3. Smaller terms don't matter e.g. $an^2 + bn + c \neq \Theta(n^2)$.
- 4. Among polynomials, exponent is most important.

i.e.
$$n^a = o(n^b)$$
 if $a < b$.

Lim n^a
 n^b
 n^b

5. Logarithms are dominated by polynomials

Limits and Big-Oh

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0 \quad \text{(can include)}$$

$$f(n) = 0 \left(g(n) \right)$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \quad \lim_{n\to\infty} \frac{f(n)}{g(n)} = c \in (0,\infty)$$

$$c \in (0,\infty)$$

$$f(n) = o \left(g(n) \right)$$

Taking Logarithms

How do you compare $e^{\sqrt{n}}$ and n^{100} ?

Theorem. If $f(n), g(n) \ge 1 \ \forall n \in \mathbb{N}$, and $\log f(n) = o(\log g(n))$, then f(n) = o(g(n)).

*not clear for
$$O()$$
: needs to be done more carefully

$$f(n) = e^{-n}$$

$$f(n) = e$$

Simple rules: 1.
$$n = 2^{\log n}$$
 2. $(x^a)^b = x^{ab}$

3.
$$n^a = (2^{\log n})^a = 2^a \frac{\log n}{2}$$
 4. $a^x = (2^{\log a})^x = 2^x \log a$

Taking Logarithms (Proof)

Theorem. If $f(n), g(n) \ge 1 \ \forall n \in \mathbb{N}$, and $\log f(n) = o(\log g(n))$, then f(n) = o(g(n)).

Broof is for interested folks. You don't need to know this.

If Let
$$p(n) = \log f(n)$$
, $q(n) = \log g(n)$.
Given: $p(n) = o(q(n)) \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \exists n \in \mathbb{N} \text{ s.t. for every constant}$

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} \le c \cdot q(n) \quad \forall n \ge n_0.$$

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} \le \lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} \le \lim_{n \to \infty} \frac{p(n)}{q(n)} = o \Longrightarrow \lim_{n \to \infty} \frac{p(n)}{q(n)} \le \lim_{n \to \infty} \frac{p$$

Alternatively: Comparing exponents

How do you compare $e^{\sqrt{n}}$ and n^{100} ?

Theorem. If $f(n), g(n) \ge 1 \ \forall n \in \mathbb{N}$, and f(n) = o(g(n)), then for any constant a > 1, $a^{f(n)} = o(a^{g(n)})$.

Big-Oh, Theta, Small-oh

How do we compare two non-negative functions f(n), g(n)?

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) = o(g(n))$$

 $g(n) = \omega(f(n))$

Also,

$$f(n) = O(g(n))$$

$$g(n) = SL(f(n))$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) = \bigoplus (g(n))$$

$$g(n) = \bigoplus (f(n))$$

$$f(n) = 0 (g(n))$$

 $f(n) = \Omega(g(n))$
 $g(n) = \Omega(f(n))$
 $g(n) = 0 (f(n))$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$f(n) = \omega(g(n))$$
$$g(n) = o(f(n))$$

$$g(n) = O(f(n))$$

$$f(n) = \Omega(g(n))$$

$$g(n) = n$$

$$f(n) = n |Sin(n)|$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=|S(n)|$$

$$|S(n)|$$