Chapter 10: You, me and AUC

Lecture 26: To binge or not to binge...

Learning objectives

- ✓ Interpret the meaning of the area under a curve in various scientific contexts
- \checkmark Understand the meaning of the area under a curve

Scientific examples

 \checkmark Exposure to alcohol with different drinking patterns

Maths skills

✓ Estimate the area under a curve

We have noted that in pharmacology, the area unplerntdProjecentrFignqqqvd-Islap important
physical meaning. Specifically, a key determinant
of the impact of a drug once it has entered the
bloodstream is the total exposure of the body to
the drug, which is the area under the curve (AUC).
Other relaxed pharmers a include the bioavailabil-

Image 10.1: The Drunks (1629), Diego Velazquez (1599 – 1660), Museo del Prado, Madrid. (Source: en.wikipedia.org)

 $\frac{ity}{the}$ of drugs administered by different routes and the $Glycaemic\ Index\ (GI)$ of foods.

In this chapter we study areas under curves (AUCs). The primary mathematical tool for analysing AUCs is the *integral*. While SCIE1000 does not cover integration techniques, we will discuss several methods of finding or estimating AUCs, and we will mainly use the *trapezoid rule*. More importantly, you will need to know how to use and interpret the results.

10.1 Areas under curves

- Given a graph, the area under the curve or AUC of that graph is the area bounded by that curve, the x-axis and two points on the x-axis.
- The AUC often has a useful physical meaning, which depends on what is being graphed.

Question 10.1.1

What is meant by the AUC in each of the following.

(a) A graph of velocity versus time.

True 1 = 1 lok-/h, for 2 hours 60

Assignment Project Exam Help

(b) A graph of electricity consumption in a household versus time.

AUC = total onom to Leveryy used in that period

(c) A graph of chlorine concentration in water versus time.

nuys was - with

Exposure to chloring

Case Study 21: **Dying for a drink**

Photo 10.1: Left: mellow and yellow. Right: better red than dead. (Source: DM.)

Question 10.1.2

Figure 10.1 shows a graph with a line fitted to some measured blood alcohol concentrates ignorement Project Exam Help

(a) What are the units of the AUC in the graph?

7. 60

Question 10.1.2 (continued)

(b) What does the AUC represent and why is it significant?

- In addition to the immediate risks associated with alcohol consumption (such as accidents), the risk of many negative long-term health effects is increased by both the frequency and volume of consumption.

 Assignment Project Exam Help
- Thus, long-term health risks are affected by the <u>exposure</u> to alcohol, (that is, the area under the alcohol concentration curve).
- Recall that the "standard" Widmark formula is:

- The "standard" Widmark formula, does not account for absorption, but it can be used to estimate the area under the alcohol concentration curve.
- Since each standard drink contains 10 grams of alcohol, and alcohol is removed from the blood at a rate of 0.015%/h, we have A = 10

$$B = \frac{10n}{rM} \times 100\% - 0.015t,$$

where B is measured in %, \underline{n} is the number of standard drinks, M is the person's mass in grams, and t is measured in hours.

• Recall that r is the proportion of the person's mass that is water. Typically, $r \approx 0.7$ for males (on average) and $r \approx 0.6$ for females (on average).

Question 10.1.3

The Widmark formula is used to estimate blood alcohol content (BAC); see Question 9.3.6. For a 'typical' 80 kg man drinking n standard drinks, his estimated % BAC at time t in hours since commencing drinking is

$$B = \frac{10n}{560} - 0.015t.$$

(a) Define the total exposure to alcohol E as the AUC of B from t=0until the BAC reaches 0 again. Find an expression for E for this man. [Hint: You will need to find an expression for the time at which his BAC returns to 0.

AUC = { base x haght B(1) op

B = 100 httm- "

B = httpsis/(tultores.com

= = WeChat: cstutorcs

AUC =
$$\frac{1}{2}$$
 b-se x height
= $\frac{1}{2}$ $\left(\frac{100}{560}\right)\left(\frac{100}{560}\right)$

~ 0.011 n2

Question 10.1.3 (continued)

(b) Assume that long-term damage to internal organs from consumption of alcohol is proportional to the total exposure to alcohol E (which is simplistic, but not unreasonable). Discuss the impact on E of "one extra drink for the road".

E = 0.011 n2 graduatic function E (1, hr) Assignment Project Exam Help significally increase exposure 3-b4 drinks almost double exposure

Question 10.1.3 (continued)

(c) A 'typical' man with mass 80 kg consumes two standard drinks every day. A second 'typical' man with the same mass consumes 14 standard drinks once a week, but does not drink at any other time. Estimate the weekly value of E for each man. What are some of the physical ramifications of your answer in relation to binge drinking?

14 Assignment Project Exam Help

https://tutores.com

for "La se We Chat: cstutores

(d) For a 'typical' woman of mass 60 kg, $E = 0.0257n^2$. Find the ratio of the values of E for the 'typical' woman and 'typical' man. What does this mean?

(ignimi): Ewomen = 0.0257 pt ~ 2.3

more than twice the emosure

for the "typical" women compared

to be "typical" men for

Program specifications: Write a Python program that uses the Widmark formula to graph the total exposure to alcohol for a person who consumes from zero to 14 standard drinks.

Program 10.1: Wilful exposure (to alcohol)

```
# Calculate exposure to alcohol.
 from pylab import *
 # Input
 mass_person = float(input("What is the person's mass (in kg?)
 sex_person = int(input("Enter 1 for female, 2 for male: "))
 # Estimate exposure for each number of drinks
  if sex person == 1:
9
      mass\ water = 1000 * mass\ person * 0.7
  else:
      mass\ water = 1000 * mass\ person * 0.6
 no drinks = arange(0,15)
 peak_bac = Assignmental roject Exam Help
 time_bac_0 = peak_bac / 0.015
  auc = time bac 0 * peak bac / 2.0
                    https://tutorcs.com
17
  plot (no drinks, auc, "bo", markersize=6)
19
  grid (True)
  xlabel ("Number of dw/ka")
  ylabel ("Total exposure (% hours)
 xlim (0,14)
 ylim(0,3)
 show()
```

The program was run with inputs of 80 kg and 1 (male), see Figure 10.2.

Figure 10.2: Program output showing total exposure to alcohol according to drinks consumed.

End of Case Study 21: Dying for a drink.