Chapter_2_NNs

January 25, 2022

1 Chapter 2: First Neural Network with PyTorch

Imports

```
[]: # importing the neccesary libraries
     # operating system
     import os
     # plotting
     import matplotlib.pyplot as plt
     import seaborn as sns
     # linalq
     import numpy as np
     # dataframes
     import pandas as pd
     # splitting datasets
     from sklearn.model_selection import train_test_split
     # metrics - CM + report
     from sklearn.metrics import confusion_matrix, classification_report
     # neural nets
     import torch
     import torch.nn as nn
     import torch.optim as optim
     # functional torch
     import torch.nn.functional as F
     # colored print statements :D
     import termcolor
     from termcolor import colored
```

Loading Data

```
[]: # lets load the data located in the data folder
     DATA_PATH = '../data/Chapter_2/weatherAUS.csv'
     # load into df
     df = pd.read_csv(DATA_PATH)
     # lets look at the shape of it
     #print(df.shape)
     # lets look at the columns
     #print(df.columns)
     # The book suggests keeping these columns:
     # cols=['Rainfall', 'Humidity3pm', 'Pressure9am', 'RainToday', 'RainTomorrow']
     # I will use the first and the last two only the rest I change
     cols =
     → ['Rainfall','WindSpeed9am','WindSpeed3pm','Pressure3pm','RainToday','RainTomorrow']
     # lets index the df with the respective cols
     df = df[cols]
     # lets look at the dtypes of the columns
     #print(df.dtypes) # we see that 3 are objects, let's look at them
     # we see WindDir3PM is about the direction, so let's remove that from the orig
     # and replace with windspeed 9 am
     # now we can replace the No and Yes with numbers
     d = {"No":0,"Yes":1}
     df['RainToday'].replace(d, inplace=True)
     df['RainTomorrow'].replace(d, inplace=True)
     # looking at nanas
     #df.isna().sum() # plenty of NaNs, lets drop them
     # dropping the nans
     df = df.dropna(how='any')
     # lets visualize the data
     sns.countplot(x = df.RainTomorrow);
     plt.show()
     # how many of the instances are for rain tomorrow?
     print(df.RainTomorrow.value_counts()/df.shape[0]) # high class imbalance
```


0.0 0.778723 1.0 0.221277

Name: RainTomorrow, dtype: float64

Splitting Data

```
[]: # now lets separate the data
     X = df.drop('RainTomorrow',axis=1).values
     Y = df.RainTomorrow.values
     # lets split the data
     TEST_SIZE = 0.2 # 20% for testing, 80% for training
     RAND\_SEED = 3407
     X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=TEST_SIZE,__
     →random_state=RAND_SEED)
     # convert all of them into tensors
     # training
     X_train = torch.from_numpy(X_train).float()
     y_train = torch.from_numpy(y_train).float()
     # testing
     X_test = torch.from_numpy(X_test).float()
     y_test = torch.from_numpy(y_test).float()
     # lets look at the training sizes
     print(X_train.shape, y_train.shape) # train
```

```
print(X_test.shape, y_test.shape) # test
    torch.Size([100775, 5]) torch.Size([100775])
    torch.Size([25194, 5]) torch.Size([25194])
    Model
[]: # lets define a simple neural network
     class ANN(nn.Module):
        def __init__(self, n_features):
             super(ANN, self).__init__()
             self.fc1 = nn.Linear(n features, 15)
             self.fc2 = nn.Linear(15,3)
             self.fc3 = nn.Linear(3,1)
        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            return torch.sigmoid(self.fc3(x))
[]: # number of features we will have
     n_features = X_train.shape[1]
     # instantiate the model
     model = ANN(n_features)
     #lets look at the model
     model
[]: ANN(
      (fc1): Linear(in_features=5, out_features=15, bias=True)
      (fc2): Linear(in_features=15, out_features=3, bias=True)
      (fc3): Linear(in_features=3, out_features=1, bias=True)
     )
    Activation Functions
[]: # we are using two different activation functions:
     # ReLU --> Rectified Linear Unit --> max(0, x)
     # Sigmoid --> No specific name
                                      --> 1 / (1+e^-x)
     # lets look at them
     def plot_activation(FUNC,start=-1,stop=1,step=5,title=None, grid=True):
        Helper function to plot the activation functions.
         args:
             start:type:int - defines the start value of the linspace
             stop:type:int - defines the stop value of the linspace
             step:type:int - defines the step of the linspace
             title:type:str - the title to add to the graph
```

```
output:
        plot with the given activation function on the linspace
    ax = plt.gca()
    space1 = np.linspace(start,stop,step)
    space2 = torch.linspace(start,stop,step)
    # applying the FUNC
    func_space = FUNC(space2).numpy()
    plt.plot(space1, func_space)
    ax.set_ylim([-1.5, 1.5])
    if grid:
        plt.grid()
    if title != None:
        plt.title(title)
    plt.show()
# showing ReLU
plot_activation(F.relu, start=-1, stop=1, step=5,title='ReLU Activation_⊔

¬Function', grid=True)

# showing sigmoid
plot_activation(torch.sigmoid, start=-10, stop=10, step=100,title='Sigmoid_
 →Activation Function',grid=True)
```


Loss Function and Optimizer We have: 1. Our Model - Simple ANN with ReLU and Sigmoid 2. We split our data

What do we need now? 1. Criteria - Loss Function 2. Optimizer - How to we update our weights -> Optimizer + Hyperparamers -> Learning Rate

```
[]: # define some things

LEARNING_RATE = 0.001

# defining our criteria

criterion = nn.BCELoss() # Binary Cross Entropy -- measures the difference

between two binary vectors

# optimizer --> we pass in the models or nets or Neural Networks parameters,

and then define the learning rate

opt = optim.Adam(model.parameters(), lr=LEARNING_RATE)
```

Helper Functions

```
return (y == pred).sum().float() / len(y)

# we also need a rounding helper
def round_t(TENSOR, decimal_places=3):
    return round(TENSOR.item(), decimal_places)
```

Custom Training loop

```
[]: def train_lop(MODEL, CRITERIA, OPTIMIZER, EPOCHS, TEST_BATCH):
         Custom training loop to use the model, criteria and optimizer for the \Box
      ⇔specified number of epochs
         111
         for EPOCH in range(EPOCHS):
             # TRAINING MODE
             MODEL.train()
             # the prediction of the model
             y_pred = MODEL(X_train)
             y_pred = torch.squeeze(y_pred)
             # training loss
             train_loss = CRITERIA(y_pred, y_train)
             # information from model every nth EPOCH
             if EPOCH%TEST BATCH == 0:
                 # train accuracy
                 train_acc = get_accuracy(y_train, y_pred)
                 # put the moel into EVAL mode!
                 MODEL.eval()
                 # prediction
                 test_pred = MODEL(X_test)
                 # squeezing
                 test_pred = torch.squeeze(test_pred)
                 #calculating our test loss
                 test_loss = CRITERIA(test_pred, y_test)
                 #test accuracy
                 test_acc = get_accuracy(y_test, test_pred)
                 # text to print
                 train_text = f"TRAINING: EPOCH: {EPOCH} LOSS =

¬{round_t(train_loss)} ACCURACY = {round_t(train_acc)}"

                 test text = f"TESTING: EPOCH: {EPOCH} LOSS = {round t(test loss)},
      →ACCURACY = {round_t(test_acc)}"
      aprint(colored(text=train_text,color='red',on_color='on_grey',attrs=['bold']))
      aprint(colored(text=test_text,color='green',on_color='on_white',attrs=['bold']))
             # zeroing the gradients - else accumulated gradients from each iter
             OPTIMIZER.zero_grad()
             # Backprop
```

```
train_loss.backward()
# stepping the optimizer
OPTIMIZER.step()
```

[]: train_lop(model, criterion, opt, 1000,100)

```
TRAINING: EPOCH: 0 LOSS = 0.484 ACCURACY = 0.787
TESTING: EPOCH: 0 LOSS = 0.487 ACCURACY = 0.784

PRAINING: EPOCH: 100 LOSS = 0.476 ACCURACY = 0.792
TESTING: EPOCH: 100 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 200 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 200 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 300 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 300 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 400 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 400 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 400 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 500 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 600 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 600 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 600 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 600 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 700 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 800 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 900 LOSS = 0.48 ACCURACY = 0.792
TESTING: EPOCH: 900 LOSS = 0.48 ACCURACY = 0.792
```

Evaluation

```
[]: # lets look a little deeper into the model
classes = ['No Rain','Rain']
# lets predict
predz = model(X_test)
predz = predz.ge(0.5).view(-1)
# classification report
cr = classification_report(y_test, predz, target_names=classes)
print(cr)
```

support	f1-score	recall	precision	
19589	0.88	0.97	0.80	No Rain
5605	0.25	0.16	0.61	Rain
05404	0.70			
25194	0.79			accuracy
25194	0.56	0.56	0.70	macro avg
25194	0.74	0.79	0.76	weighted avg

```
[]: # lets look at a confusion matrix
# format of (tn, fp, fn, tp)
cm = confusion_matrix(y_test, predz)
dfcm = pd.DataFrame(cm, index=classes, columns=classes)
g = sns.heatmap(dfcm,annot=True,fmt='d')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
```



```
[]: (tn, fp), (fn, tp) = confusion_matrix(y_test, predz)
print(f"True Negatives: {tn}")
print(f"False Positives: {fp}")
print(f"False Negatives: {fn}")
print(f"True Positives: {tp}")
```

True Negatives: 19022 False Positives: 567 False Negatives: 4726 True Positives: 879