

ALGORITMOS

Estruturas de Controle de fluxo

O que veremos hoje?

- Introdução
- Estruturas de Controle de Fluxo em C
- Exercícios

Estruturas de Controle de Fluxo

- Estruturas de controle de fluxo
 - São estruturas utilizadas para controlar o fluxo de execução dos comandos em um algoritmo ou programa
 - Estruturas condicionais
 - Permitem controlar a execução ou não de um comando ou bloco de comandos
 - Estruturas de repetição
 - Permitem controlar a repetição de um comando ou bloco de comandos

Estruturas Condicionais

- Alternativa Simples (se)
 - Executa ou não um comando (ou bloco de comandos) de acordo com um teste realizado
- Alternativa Dupla (se senão)
 - Executa um ou outro comando (ou bloco de comandos) de acordo com um teste realizado
- Alternativa Múltipla (caso)
 - Executa um comando (ou bloco de comandos) de acordo com um valor específico de uma variável

Operadores Relacionais e Lógicos

- As estruturas condicionais são normalmente utilizadas em conjunto com os operadores relacionais e lógicos
- Operadores relacionais e lógicos utilizam os seguintes valores
 - Verdadeiro: 1 (Diferente de zero)
 - Falso: 0

Operadores Relacionais

Operação	Algoritmo	С
Igual	П	==
Diferente	<>	!=
Maior ou igual	>=	>=
Maior	>	>
Menor ou igual	<=	<=
Menor	<	<

Operadores Lógicos

Operação	Algoritmo	С
Conjunção	е	&&
Disjunção	ou	
Negação	não	!

Χ	Υ	XeY
F	F	F
F	V	F
V	F	F
V	V	V

Χ	Υ	X ou Y
F	F	F
F	>	V
V	F	V
V	>	V

X	não X
F	V
V	F

Alternativa Simples (se)

 Executa ou não um comando (ou bloco de comandos) se o teste (expressão booleana) for verdadeiro

Algoritmo	С
se teste então comando;	if (teste) comando;
se teste então	if (teste)
início	{
comandos;	comandos;
fim;	}

Exemplo: Alternativa Simples

- Algoritmo para ler um número inteiro e verificar se maior que 0, menor que 0 ou igual a 0
 - Declaração de Variáveis
 - x:inteiro;
 - Início
 - Escreva("Digite um valor inteiro");
 - Leia(x);
 - se x > 0 então Escreva("Maior que zero");
 - se x < 0 então Escreva("Menor que zero");
 - se x = 0 então Escreva("Igual a zero");
 - Fim.

Alternativa Simples em C

```
int main(int argc, char ** argv) {
  int x;
  printf("Digite um valor inteiro");
  scanf("%d",&x);
  if (x > 0) printf("Maior que zero");
  if (x < 0) printf("Menor que zero");
  if (x == 0) printf("Igual a zero");
  return 0;
```

Alternativa Dupla (se-senão)

 Executa um comando (ou bloco de comandos) se o teste for verdadeiro ou outro comando (ou bloco de comandos) se o teste for falso

Algoritmo	С
se teste então comando1;	if (teste) comando1;
senão comando2;	else comando2;
se teste então início	if (teste) {
comandos1;	comandos1;
fim;	}
senão início	else {
comandos2;	comandos2;
fim;	}

Exemplo: Alternativa Dupla

- Algoritmo para ler um número inteiro e verificar se é par ou impar
 - Declaração de Variáveis
 - x : inteiro;
 - Início
 - Escreva("Digite um valor inteiro");
 - Leia(x);
 - se x mod 2 = 0 então Escreva("Par");
 - senão Escreva("Ímpar");
 - Fim.

Alternativa Dupla em C

```
int main(int argc, char ** argv) {
  int x;
  printf("Digite um valor inteiro");
  scanf("%d",&x);
  if (x \% 2 == 0)
    printf("Número PAR");
  else
   printf("Número ÍMPAR");
  return 0;
```

If-Else Aninhados

Função que compara duas datas, retornando -1 (data1 menor), 1 (data2 maior) ou 0 (datas iguais) int dateCompare(int Year1,int Month1,int Day1, int Year2,int Month2, int Day2) { int result; if (Year1 < Year2) result = -1; else if (Year1 > Year2) result = 1; else if (Month1 < Month2) result = -1; else if (Month1 > Month2) result = 1; else if (Day1 < Day2) result = -1; else if (Day1 > Day2) result = 1; else result = 0: return result;

Alternativa Múltipla (caso)

 Executa um comando (ou bloco de comandos) de acordo com um valor específico de uma variável, que deve ser inteira, caractere ou string

Algoritmo	С
caso Variável seja	switch (Variável)
<pre><valor1> : comandos1; <valor2> : comandos2; <valorn> : comandosN;</valorn></valor2></valor1></pre>	<pre>case <valor1> : comandos1; break; case <valor2> : comandos2; break; case <valorn> : comandosN; break;</valorn></valor2></valor1></pre>
senão: comandosX;	default : comandosX; break;
fim;	}

Regras do Switch no C

- Os rótulos case devem ser expressões constantes
- Os rótulos devem ser únicos
- Rótulos vazios são permitidos, mas rótulos não vazios devem encerrar com um break
- O rótulo default é opcional

Regras do Switch no C

```
int main (void ) {
         int valor;
          printf("Digite um valor de 1 a 7:");
  scanf("%d",&valor);
  switch(valor){
  case 1:printf("Domingo");break;
  case 2:printf("Segunda");break;
  case 3:printf("terça");break;
  case 4:printf("Quarta");break;
  case 5:printf("Quinta");break;
  case 6:printf("Sexta");break;
  case 7:printf("Sábado");break;
  default: printf("Valor inválido\n");
  return 0;
```

Exemplo: Alternativa Múltipla

- Algoritmo para ler um código DDD e mostrar a cidade correspondente
 - Declaração de Variáveis
 - x : string;
 - Início
 - Escreva("Digite um código DDD");
 - Leia(x);
 - caso x seja
 - "11": Escreva("São Paulo");
 - "21" : Escreva("Rio de Janeiro");
 - "84" : Escreva("Natal");
 - senão Escreva("Cidade não cadastrada");
 - fim;
 - Fim.

Operador Condicional Ternário

 O operador condicional ternário ? retorna um valor ou outro de acordo com uma expressão booleana

result = booleanExpression ? valor-1 : valor-2;

```
scanf("%d",&x);
printf("%s",x%2==0?"Par":"Ímpar");
```

Exercícios

- 1. Ler dois números reais e imprimir o maior deles, ou a mensagem "Números iguais", se forem iguais.
- 2. Ler dois números inteiros do teclado. Se o segundo for diferente de zero, calcular e imprimir o quociente do primeiro pelo segundo. Caso contrário, imprimir a mensagem: "Divisão por zero".
- 3. Ler quatro números inteiros, calcular a soma dos números pares e a soma dos números ímpares.
- 4. Calcular as raízes reais da equação $aX^2 + bX + c = 0$, dados a, b e c.
- 5. Ler três valores e dizer se eles formam um triângulo. Caso afirmativo, dizer seu tipo (equilátero, isósceles ou escaleno).
- 6. Ler três valores e apresentá-los em ordem crescente.
- 7. Ler o último número da placa de um veículo e identificar o mês de pagamento do IPVA de acordo com a lista a seguir: 1 janeiro; 2 fevereiro; 3 março; 4 abril; ...; 9 setembro; 0 outubro.
- 8. Ler o número do mês (1 janeiro; 2 fevereiro; ...; 12 dezembro) e identificar em que trimestre o mês está incluído.

Dúvidas

