湖南大学课程考试试卷(期末考试2018.1)

课程名称: 普通物理 A ;课程编码: 试卷编号: 1;考试时间: 120分钟

题 号	_	1 1	111	四	五	六	七	八	九	+	总分
应得分	24	28	10	10	10	10	8				100

答案要写在专门设计的答卷纸上,写在试卷纸上不得分!

一、选择题(单选题,每小题3分,共24分)

1、在一点电荷q产生的静电场中,一块电介质如图放置,以点电荷所在 处为球心作一球形闭合面 S,则对此球形闭合面:

(C) 由于电介质不对称分布, 高斯定理不成立.

(D) 即使电介质对称分布,高斯定理也不成立.

2、如图所示, 一球形导体, 带有电荷 q, 置于一任意形状的空腔导体中. 当用 导线将两者连接后,则与未连接前相比系统静电场能量将

(B) 减小.

(C) 不变.

(D) 如何变化无法确定.

Γ ٦

- (A) M 的左端出现 N 极. (B) P 的左端出现 N 极.
- (C) O 的右端出现 N 极. (D) P 的右端出现 N 极.

Γ 7

7

Γ

电

4、如图, 平板电容器(忽略边缘效应)充电时, 沿环路 L1 的磁场强度 H的环流与沿环路 L_2 的磁场强度 \overline{H} 的环流两者,必有:

(A)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' > \oint_{L_2} \vec{H} \cdot d\vec{l}'$$
.

(B)
$$\oint_{L_1} \vec{H} \cdot d\vec{l}' = \oint_{L_2} \vec{H} \cdot d\vec{l}'.$$

胡

课 锃

试 试

卷

(题目

可的女生的。	A エエい	-16111.1.2					
(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,	会看到这	时钟比与他					
相对静止的相同的时钟走得慢些.							
(A) (1) , (3) , (4) . (B) (1) , (2) , (4) .	_	_					
(C) (1), (2), (3). (D) (2), (3), (4).							
5、当照射光的波长从 4000 Å 变到 3000 Å 时,对同一金属,在光电 止电压将:	且效应实验	中测得的遏					
(A) 減小 0.56 V. (B) 減小 0.34 V.							
(A) 减小 0.56 V. (B) 减小 0.34 V. (C) 增大 0.165 V. (D) 增大 1.035 V.	[]					
(普朗克常量 $h = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$, 基本电荷 $e = 1.60 \times 10^{-19} \text{C}$)							
7、已知粒子在一维矩形无限深势阱中运动,其波函数为: $\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, (-a \leqslant x \leqslant a)$							
那么粒子在 x = 5a/6 处出现的概率密度为							
(A) $1/(2a)$. (B) $1/a$.							
(C) $1/\sqrt{2a}$. (D) $1/\sqrt{a}$.]					
3、 关于不确定关系 $\Delta p_x \Delta x \geq \hbar$ ($\hbar = h/(2\pi)$, 有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:							
(A) (1), (2). (B) (2), (4).							
(C) (3), (4). (D) (4), (1).]					
二、填空题(共 28 分,其余每小题 4 分) 1 、一个半径为 R 的薄金属球壳,带有电荷 q ,壳内真空,壳外是无限大的相对介电常量为 ε_r 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U =							
2、顺磁质的微观结构特点是; 抗磁质	5的微观约	吉构特点是					
	第 2 〕	页(共 页)					

Γ

]

 $\oint_{L_1} \vec{H} \cdot d\vec{l}' < \oint_{L_2} \vec{H} \cdot d\vec{l}'.$

5、在狭义相对论中,下列说法中哪些是正确的?

(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.

(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是

 $\oint \vec{H} \cdot d\vec{l}' = 0.$

(D)

3、 在一个中空的圆柱面上紧密地绕有两个完全相同的线圈 aa' 和 bb' (如图). 已知每个线圈的自感系数都等于 $0.05~\mathrm{H}$.

 $E=\frac{A}{a}$ 、 $E=\frac{A}{b}$,两端相接, $E=\frac{A}{b}$,则整个线圈的自感 $E=\frac{A}{b}$ 两端相连, $E=\frac{A}{b}$ 两端相连, $E=\frac{A}{b}$ 为接入电路,则整个线圈的自感 $E=\frac{A}{b}$

- $\overline{}$ $\overline{}$

- 4、图示为一圆柱体的横截面,圆柱体内有一均匀电场 E ,其方向垂直纸面向内, \bar{E} 的大小随时间 t 线性增加,P 为柱体内与轴线相距为 r 的一点则
 - (1) *P* 点的位移电流密度的方向为
 - (2) *P* 点感生磁场的方向为_____.
- 5、在相对磁导率 $\mu_r = 2$ 和相对介电常数 $\varepsilon_r = 4$ 的各向同性的均匀媒质中传播的平面电磁波的磁场强度振幅为 $H_0 = 1$ A/m,则此电磁波的平均坡印亭矢量大小是_____,而这个电磁波的最大能量密度是______. (真空的介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$,真空的磁导率 $\mu_0 = 4\pi \times 10^{-7} \, \text{H/m}$)
- 6、令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量,c为真空中光速,h为普朗克常量). 当电子的动能等于它的静止能量时,它的德布罗意波长是 $\lambda = \underline{\qquad \qquad } \lambda_c$.

三、计算题 (每题 10 分, 共 40 分):

- 1、如图所示,一厚为b的"无限大"带电平板 , 其电荷体密度分布为 $\rho=kx$ (0 $\leq x \leq b$),式中 k 为一正的常量、求:
 - (1) 平板外两侧任一点 P_1 和 P_2 处的电场强度大小;
 - (2) 平板内任一点 P 处的电场强度;
 - (3) 场强为零的点在何处?

2、在一无限长的半圆筒形的金属薄片中,沿轴向流有电流,在垂直电流方向单位长度的电流为 $i = k \sin \theta$,其中 k 为常量, θ 如图所示. 求半圆筒轴线上的磁感强度.

- 3、如图所示,有一半径为 r=10 cm 的多匝圆形线圈,匝数 N=100,置于均匀磁场 \bar{B} 中(B=0.5 T).圆形线圈可绕通过圆心的轴 O_1O_2 转动,转速 n \times \bar{B} \times \times
- =600 rev/min. 求圆线圈自图示的初始位置转过 $\frac{1}{2}\pi$ 时,
- (1) 线圈中的瞬时电流值(线圈的电阻 R 为 100Ω , 不计自感);
 - (2) 圆心处的磁感强度. ($\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$)

- (1) 在图示位置时, I_1 产生的磁场通过线圈平面的磁通量;
- (2) 线圈与直线电流间的互感系数.
- (3) 保持 I_1 、 I_2 不变,使线圈绕轴 OO' 转过 90° 外力要做多少功?

 $O_1 X$

X

四、论述题(8分)

试论述量子物理中,"波粒二象性"所指的粒子性、波动性与经典物理的粒子性、 波动性有何异同。