Assignment 1,2

Problem 53, 58 of UGC Math 2019

Vishnu G

Indian Institute of Technology Hyderabad

Table of contents

1. Problem 53

2. Assignment 2

Problem 53

Question

Suppose (X,Y) follows bivariate normal distribution with means $\mu 1\mu 2$, standard deviations $\sigma 1,\sigma 2$ and correlation coefficient ρ , where all parameters are un-known. Then, testing Ho: $\sigma 1=\sigma 2$ is equivalent to testing the independence of

- 1.) X and Y
- 2.) X and X-Y
- 3.) X+Y and Y
- 4.) X+Y and X-Y

Answer: 4

Definition

Bivariate Normal Distribution:

Distribution XY in 2 dimensions is said to be Bi-variate normal distribution if X and Y are independently normal distributions and are jointly normal in 2 dimensions.

Correlation of of X,Y ρ [X, Y] = $\frac{\sigma_{[X,Y]}}{\sqrt{\sigma_X^2 \times \sigma_Y^2}}$ If X,Y are independent then $\sigma_{XY} = 0$

So, for testing the independence, if we assume they are independent and then try to prove if $\sigma_{XY}=0$, for all the options, we can find out the answer.

3

Known equations

$$\sigma_{[X+Y,Z]} = \sigma_{[X,Z]} + \sigma_{[Y,Z]} \tag{1}$$

$$\sigma_{[X,X]} = \sigma_{[X]}^2 \tag{2}$$

if
$$\sigma[X, Y] = \sigma[X]^2$$
 then $X = Y$ (3)

$$\sigma_{[X,Y]} = 0 \implies X, Yare dependent$$
 (4)

(Proofs for above equations are given in the end)

Testing Independence of X,Y

1. If $\sigma_{[X,Y]}$ is equal to 0, from Eq 4 it means that Y=X, which means both of them are dependent

$$\sigma[X, Y] = E((X - \mu_X)(Y - \mu_Y))$$

$$= E[(XY) - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$$

$$= E(XY) - \mu_X E(Y) - \mu_Y E(X) + \mu_X \mu_Y$$

$$= E(XY) - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y$$

$$\sigma[X, Y] = 0 \implies E(XY) = E(X)E(Y)$$

if
$$E(XY) = E(X)E(Y)$$
 then $\rho(X, Y) = 1 \implies X, Y$ are dependent

Testing Independence of X and X-Y

1

$$\begin{split} \sigma_{[X-Y,X]} &= \sigma_{[X,X]} - \sigma_{[X,Y]} \\ &= \sigma_X^2 - \sigma_{[X,Y]} \end{split}$$

2. if $\sigma_X^2 = \sigma_{[X,Y]}$ then it means Y = X From Eq 3 which means they are dependant

Testing independence of X+Y, Y

1.

$$\begin{split} \sigma_{\text{[X+Y,X]}} &= \sigma_{\text{[X,X]}} + \sigma_{\text{[X,Y]}} \\ &= \sigma_{\text{X}}^2 + \sigma_{\text{[X,Y]}} \end{split}$$

2. if $\sigma_X^2 = \sigma_{[X,Y]}$ then it means Y = -X which means they are dependant

Testing for Independence of X+Y and X-Y

1.

$$\begin{split} &\sigma_{[X+Y,X-Y]}\\ &=\sigma_{[(X+Y),X]}-\sigma_{[(X+Y),Y]}\\ &=\sigma_{[X,X]}+\sigma_{[X,Y]}-\sigma_{[X,X]}-\sigma_{[X,Y]}\\ &=\sigma_X^2-\sigma_Y^2 \end{split}$$

- 2. Now testing for $\sigma_X = \sigma_Y \implies \sigma_{[X+Y,X-Y]} = 0$
- 3. $\Rightarrow \rho[X+Y,X-Y] = 0$
- 4. Hence testing for $\sigma_X = \sigma_Y \implies X + Y, X Y$ are independent.

$\sigma_{[X+Y,Z]} = \sigma_{[X,Z]} + \sigma_{[Y,Z]}$

$$\sigma_{[X+Y,Z]} = E((X + Y - \mu_{X+Y}) \times (Z - \mu_{Z}))$$

$$= E((X + Y - \mu_{X} - \mu_{Y}) \times (Z - \mu_{Z}))$$

$$= E(XZ - X\mu_{Z} + YZ - Y\mu_{Z} - Z\mu_{X} + \mu_{X}\mu_{Z} - \mu_{Y}Z + \mu_{Y}\mu_{Z})$$

$$= E((XZ - \mu_{Z}X - \mu_{X}Z + \mu_{Z}\mu_{X}) + (YZ - Y\mu_{Z} - \mu_{Y}Z + \mu_{Y}\mu_{Z}))$$

$$= E((X - \mu_{X})(Z - \mu_{Z}) + (Y - \mu_{Y})(Z - \mu_{Z}))$$

$$= E((X - \mu_{X})(Z - \mu_{Z})) + E((Y - \mu_{Y})(Z - \mu_{Z}))$$

$$= \sigma_{[X,Z]} + \sigma_{[Y,Z]}$$

 $\sigma_{[X,Y]} = \sigma^2_{[X]}$

$$\sigma_{[X,Y]} = E[(X - \mu_X)(Y - \mu_Y)], \quad \text{if} \quad Y = X$$

$$\sigma_{[X,X]} = E[(X - \mu_X)(X - \mu_X)]$$

$$= E[(X - \mu_X)^2]$$

$$= \sigma_X^2$$

Assignment 2

Question

A sample of size n=2 is drawn from a population of size N=4 using probability proportional to size without replacement sampling scheme, where the probabilities proportional to size are The probability of inclusion of unit 1 in the sample is

- 1. 0.4
- 2. 0.6
- 3. 0.7
- 4. 0.75

Answer: Option - 3 - (0.7)

Definition of PPS without replacement

- In a simple random sampling scheme, every unit in the population, has an equal probability of getting selected for a sample subset.
- But when if in a given population sizes of different classes are different, then probability that a sample belonging to a certain class (or unit) differs.
- 3. Immediate repetition of a sample from same class is not allowed in PPSWOR

Solution

For finding the inclusion probability of unit 1 in a sample of 2, we need find in how many ways unit 1 can be included in a sample of 2.

- 1. U_1 is included in 1st draw, and not in second draw
- 2. U_1 is not included in 1^st draw and is included in second draw.

Probability of U_1 being included in 2^{nd} draw

 $P_{i(2)}$ which is probability that i^{th} unit is drawn from the population in the second draw. It can be derived as follows:

 $P_{i(2)}$ can occur in following possible ways:

- U_1 is selected in 1st draw and S_i is selected at 2 draw
- U_2 is selected in 1st draw and S_i is selected at 2 draw
- ٠.
- •
- U_{i-1} is selected in 1st draw and S_i is selected at 2 draw
- U_{i-1} is selected in 1st draw and S_i is selected at 2 draw
- U_N is selected in 1st draw and S_i is selected at 2 draw

Probability of U_1 being included in 2^{nd} draw

It has to be noted that S_i is being skipped in for first draw because repetition is not allowed in PPS without replacement scheme. S_1 is selected in 1^{st} draw and S_i is selected at 2 draw is derived as Let S_1 is selected in 1^{st} draw be Event A, S_i is selected at 2 as Event B

$$P(A, B) = P(A) \times P(B/A), \quad where, P(A) = P_1,$$

 $P(B/A) = \frac{P_i}{1 - (P_1)}$

P(B/A) = Population of P_i over total remaining population, which is $1 - P_1$, because P_1 can not be selected again

Probability of U_1 being included in 2^{nd} draw

$$P_{i(2)} = P1 \times \frac{P_i}{1 - P_1} + P2 \times \frac{P_i}{1 - P_2} + \dots$$

$$+ P_{i-1} \times \frac{P_i}{1 - P_{i-1}} + P_{i+1} \times \frac{P_i}{1 - P_{i+1}} + P_N \times \frac{P_i}{1 - P_N}$$

$$P_{i(2)} = \sum_{j=i}^{N} P_j \times \frac{P_i}{1 - P_j} - P_i \times \frac{P_i}{1 - P_i}$$

$$P_{i(2)} = \sum_{j=i}^{N} P_j \times \frac{P_i}{1 - P_j} - P_i \times \frac{P_i}{1 - P_i}$$

$$= 0.4 \times \left(\frac{0.2}{1 - 0.2} + \frac{0.2}{1 - 0.2} + \frac{0.2}{1 - 0.2} + \frac{0.4}{1 - 0.4} - \frac{0.4}{1 - 0.4}\right)$$

$$= 0.4 \times \left(\frac{0.6}{0.8}\right)$$

$$= 0.3$$

Total inclusion probability of unit 1

- The probability of inclusion of unit 1 in the sample is $P_{i(1)} + P_{i(2)}$
- \cdot 0.3+0,4 = 0.7