AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (currently amended) An apparatus, comprising:
- a comparator to receive an analog input signal V_{IN} along with a comparison signal V_{C} and to generate a digital result, the comparison signal V_{C} being received at a comparison node; and

an adjustment circuit to adjust the comparison signal based on successive digital results from the comparator

a higher-threshold sample and hold element to receive V_C and to selectively provide V_H to a higher-threshold node;

a higher-threshold resistor having a resistance R coupled between the higher-threshold node and the comparison node;

a lower-threshold sample and hold element to receive V_C and to selectively provide V_L to a lower-threshold node; and

 $\underline{\text{a lower-threshold resistor coupled between the lower-threshold node and the comparison}} \\ \underline{\text{node}} \; .$

- 2. (currently amended) The apparatus of claim 1, wherein the adjustment circuit includes:

 an higher-threshold portion associated with a higher-threshold signal V_H; and

 a lower-threshold portion associated with a lower-threshold signal V_L; wherein the

 comparison signal is adjusted based on successive digital results from the comparator and V_C

 substantially equals (V_H + V_L)/2.
 - 3. (currently amended) The apparatus of claim [[2]] $\underline{1}$, wherein the comparator receives V_c from a comparison node and:

the higher-threshold portion of the adjustment circuit includes:

a higher-threshold sample and hold element to receive V_e and to selectively provide V_u to an higher-threshold node, and

a higher-threshold resistor having a resistance R coupled between the higher-threshold node and the comparison node; and

the lower-threshold portion of the adjustment circuit includes:

a lower-threshold sample and hold element to receive V_e and to selectively provide V_h to a lower-threshold node, and

a lower-threshold resistor having has a resistance substantially equal to R and being coupled between the lower-threshold node and the comparison node.

- 4. (currently amended) The apparatus of claim [[3]] 1, wherein the higher-threshold and lower-threshold sample and hold elements are amplifiers each having an output that is isolated from an input.
 - 5. (currently amended) The apparatus of claim [[3]] 1, further comprising: a first switch coupled between the higher-threshold node and a reference voltage; and a second switch coupled between the lower-threshold node and ground.
- 6. (original) The apparatus of claim 5, wherein the first and second switches are to be closed to initialize V_H to the reference voltage and V_L to ground.
 - 7. (original) The apparatus of claim 5, further comprising:
- a third switch coupled between the output of the higher-threshold sample and hold element and the higher-threshold node; and
- a fourth switch coupled between the output of the lower-threshold sample and hold element and the lower-threshold node.

- 8. (original) The apparatus of claim 1, further comprising:
- a multi-bit result register to store results from the comparator.
- 9. (currently amended) The apparatus of claim 1, wherein the adjustment circuit apparatus is further to convert multiple digital input signals into an analog output signal V_{OUT}.
 - 10. (currently amended) A method, comprising:

initially setting a higher-threshold signal V_H;

comparing an analog input signal V_{IN} to a comparison signal V_C ;

providing a digital result of the comparison;

adjusting V_e based on the digital result

when a digital result indicates V_{IN} is less than the existing V_C , transferring the existing V_C through a sample and hold element to set V_H to the existing V_C ; and

successively performing comparisons [[, stores,]] and adjustments transfers to generate a digital representation of V_{IN} .

11. (currently amended) The method of claim 10, wherein said adjusting includes further comprising:

initially setting a higher-threshold signal V₁₁; and

initially setting a lower-threshold signal V_L , wherein V_C substantially equals $(V_H + V_L)/2$.

- 12-13. (canceled)
- 14. (original) The method of claim 11, further comprising:

when a digital result indicates V_{IN} is not less than the existing V_C , setting V_L to the existing V_C .

- 15. (original) The method of claim 15, wherein V_L is set to the existing V_C by transferring the existing V_C through a sample and hold element.
- 16. (original) The method of claim 11, wherein V_H is initially set to a reference voltage and V_L is initially set to ground.
 - 17. (original) The method of claim 10, wherein said providing comprising: storing results in a multi-bit result register.
 - 18. (currently amended) A system, comprising:
 - a processor having an analog to digital conversion portion that includes:
 - a comparator to receive an analog input signal V_I along with a comparison signal V_C and to generate a digital result, the comparison signal V_C being received at a $\frac{\text{comparison node}}{\text{comparison node}}, \\ \frac{\text{and}}{\text{comparison node}}, \\ \frac{\text{and}}{\text{comparison node}}, \\ \frac{\text{comparison node}}{\text{comparison node}}, \\ \frac{\text{c$

an adjustment circuit to adjust the comparison signal based on successive digital results from the comparator

a higher-threshold sample and hold element to receive V_C and to selectively provide V_H to a higher-threshold node,

a higher-threshold resistor having a resistance R coupled between the higher-threshold node and the comparison node.

a lower-threshold sample and hold element to receive V_C and to selectively provide V_L to a lower-threshold node, and

<u>a lower-threshold resistor coupled between the lower-threshold node and the comparison node</u>; and

a battery input to receive power to be provided to the processor.

19. (currently amended) The system of claim 18, wherein the adjustment circuit includes: an higher-threshold portion associated with a higher-threshold signal $V_{\rm H}$; and a lower-threshold portion associated with a lower-threshold signal $V_{\rm L}$, wherein the comparison signal is adjusted based on successive digital results from the comparator and $V_{\rm C}$ substantially equals $(V_{\rm H} + V_{\rm L})/2$.

20. (currently amended) The system of claim 19, wherein the comparator receives V_c from a comparison node and:

the higher-threshold portion of the adjustment circuit includes:

a higher-threshold sample and hold element to receive V_{ε} and to selectively provide V_{ii} to an higher-threshold node, and

a higher-threshold resistor having a resistance R coupled between the higher-threshold node and the comparison node; and

the lower-threshold portion of the adjustment circuit includes:

a lower-threshold sample and hold element to receive V_e and to selectively provide $V_{\rm L}$ to a lower-threshold node, and

 ${\tt a}$ lower-threshold resistor ${\tt having}$ ${\tt has}$ a resistance substantially equal to R ${\tt and}$ being coupled between the lower-threshold node and the comparison node .