

Stars and Galaxies

Observational Techniques

Author:
Matthew Rossetter

Lecturer:
Prof. Mark Swinbank

Lecture 1

- ➤ other stuff in notebook
- \triangleright Parts of atmosphere are opaque due to water vapour, O_3 , etc
- ➤ Correcting for atmospheric absorption:
 - **⇒** GET IMAGES FROM SLIDES

$$X = 1 \text{ airmass}$$

$$X = \sec(z) \text{ airmasses}$$

$$-\int_{I_C}^{I_O} \frac{dI}{I} = \int_0^X k \, dX$$

$$\ln \frac{I_{obs}}{I_{corr}} = kX + c$$

$$\frac{I_{obs}}{I_{corr}} = e^{-kX}$$

$$m_{obs} - m_{corr} = -2.5 \log \frac{I_{obs}}{I_{corr}}$$

$$m_{obs} - m_{corr} = -2.5 \log e^{-kX}$$

$$= 2.5kX \log e$$

$$m_{corr} = m_{obs} - A_{\lambda}(z = 0) \sec z$$

- ➤ Atmospheric refraction
 - **►** MATHS AND PICS IN SLIDES
 - ➡ plane parallel atmosphere
 - **⇒** apply laws of refraction
 - **→** basic trig stuff
 - ➡ always in small angle approx range

$$r = (n-1)\tan(z_0)$$

- ➤ Refractive index also has wavelength dep
- > atmos ref turns into an atmos dispersion
- ➤ disperses more for smaller wavelength
 - \implies 3 or 4 arcsecs
 - ⇒ a lot
- ➤ Every object appears as a spectrum as colors separate

- ➤ atmos emission
 - **→** fluorescent emission
 - **→** air glow
 - ⇒ emits thermal radiation for TE
 - ► Most emission is from OH molecules in upper atmos
 - → vibrational and rotational movement
- ➤ want to try and stay away from regions with lots of this emission
- ➤ Other sources of emission:
 - **⇒** light pollution
 - **→** from ground
 - **→** from satellites and aircraft
 - **⇒** zodiacal light
 - → light scattered from interplanetery dust
 - → in plane of the Solar System
 - **⇒** scattered light
 - → e.g. from the moon
 - → telescope scheduling to dark, grat, and bright time
- ➤ more diffcult observations at longer wavelengths
 - → more background issues
- ➤ dust causes lots of interference
 - ⇒ at longer wavelengths, interaction between dust and photons is smaller
 - **⇒** interaction cross-section
- ➤ easier to see through dust a lot easier and see other galaxies etc at longer wavelengths
- ➤ Atmospheric turbulence
 - → twinkle twinkle little star
 - ⇒ Stars twinkle due to light getting bounced around in atmos
- ➤ Angular resolution of telescope limited by Fraunhofer Diffraction
 - **→** see last year
 - → Airy disk
 - → assume stars as point sources
 - ⇒ large telescope ⇒ small airy disk
 - ⇒ small telescope ⇒ large airy disk
 - → how close before two stars are seen as one?
- ➤ Characterise resolution with Rayleigh criterion
 - ⇒ at some point the principle maximum of one star overlays with the principle minimum of the second
 - → diffraction limit
 - $\rightarrow \theta_{dl} = 1.22 \frac{\lambda}{D}$
 - → integrate round a cylinder using Bessel fns to get this
 - → covered sort of later on in other module
- ➤ Atmos is constantly moving
 - ⇒ changing size, density, and temperature causes different path lengths ever dt for stars
 - ⇒ sum up over lots of dt for observing
 - **⇒** causes blurring though
 - → no longer airy disk, severely blurry
- ➤ for atmos turbulence, the seeing is defined as minimum angle between two stars that can just be resolved
 - **⇒** typically in arcsec
 - \rightarrow 50x worse than the diffraction limit
- ➤ Detectors
 - **→** Charged Coupled Device
 - ⇒ little silicon micro-circuits
 - ⇒ little ray of capacitors
 - → discrete energy bands

- → conduction band and valence band
- \rightarrow difference of $\approx 1.1 \text{eV}$
- ⇒ upper cut-off wavelengths governed by band gap voltage difference
- ▶ lower wavelengths cut-off by absorption of photons into the silion
- **⇒** excellent Quantum efficiency
 - → > 90%
- ➡ high dynamic range
- **⇒** excellent linearity
- **⇒** excellent stability
- **⇒** still not enough pixels

Lecture 2

Back to CCDs:

- ➤ Well Depth
 - → how many electrons can be stored in the upper state, usually 100s of thousands
- ➤ use binary for how many levels for the signal
 - \rightarrow i.e. 8 bit = $2^8 = 256$ levels
- ➤ System Gain
 - → how many photo-electrons are required for digital output of 1
 - ⇒ small gain means reduced saturation signal

Photometry

- ➤ Process of obtaining quatative (numerical) values of the birghtness of celestial objects
- ➤ CCD gives output prop to number of photons incident on each pixel
- ➤ Photometry takes raw data and corrects for noise from other sources
- ➤ Noise is just any interference for the image
- ➤ SNR (signal to noise ratio) defined as ratio of useful to non-useful data
- ➤ Poisson stats
 - ⇒ arrival of photons governed by this
 - ⇒ studied for how cameras observe sky stuff
 - ➡ see stats last vear
 - Hughes and Hase and labs stuff $P(n,N) = \frac{\exp(-N)N^n}{n!}$
- ➤ High means approximates Gaussian stats
- ➤ mean is N
 - → also Variance
 - \Rightarrow std dev is \sqrt{N}
- ➤ Telescope experiments can take eight hours or so
 - **▶** so use Poisson errors for easy error in counts
- ➤ Small error associated with read out

Basic Data Reduction to Correct for Background in CCD

- ➤ Bias
 - ⇒ a zero second readout while results in a constant offset
 - ⇒ allows for understanding of the "noise" quantity
- ➤ Dark
 - → CCD band stuff
 - → CCD will be in TE so will promote thermal photons
 - ➡ thermal photons can hit detector and skew results
 - ⇒ this will increase in time
- ➤ Flat Field

- **→** variations in sensitivity
- → varied energy ever so slightly across CCD
- ➡ quantum efficiency
- ⇒ slight changes across the CCD in efficiency causes a non-uniform field across CCD
- ➤ Also have sky background counts
 - **▶** these are often the most significant contributor

$$\begin{aligned} & \text{Final Frame} = \frac{\text{Object Frame} - (\text{dark+bias})}{\text{Flat Field} - (\text{dark+bias})} \\ & = \frac{\text{Object Frame} - (\text{dark+bias})}{\text{Flat Field} - (\text{dark+bias})} - \frac{\text{Sky Frame} - (\text{dark+bias})}{\text{Flat Field} - (\text{dark+bias})} \\ & = \frac{\text{Object Frame} - \text{Sky Frame}}{\text{Flat Field} - (\text{dark+bias})} \end{aligned}$$

Noise Sources

- ➤ Basic sources of noise are:
 - 1. Readout noise, σ_{rd} electrons (Gaussian)
 - 2. Photon noise on the signl from the object (Poisson)

$$\Rightarrow = \sqrt{f_{abj}t}$$

3. Photon noise on the signal from the sky background (Poisson)

$$\Rightarrow = \sqrt{f_{bg}t}$$

- 4. Photon noise on the dark current (Poisson)
 - $\rightarrow \sqrt{dt}$
- ➤ Uncorrelated noise sources can be added in quadrature

$$\rightarrow \sigma_{\text{total}} = \sqrt{\sigma_1^2 + \sigma_2^2}$$

➤ Signal/Noise

$$SNR = \frac{S}{\sqrt{S + D + B + \sigma_{rd}^2}}$$

- ➤ S signal
- ➤ B background
- ➤ D dark
- $\triangleright \sigma_{rd}$ read error
- ➤ Prev equation assumes all the terms are in photo-electrons
- ➤ Will need to be accounted for if in ADU
- > counts in number of photons
- ➤ gain can be set to more than 1
 - ⇒ confuses simple SNR eqn and changes what you plug in

SNR Approximations

- ➤ Common approximations:
 - 1. Photon noise limited on the object
 - ⇒ signal dominates so can ignore other terms for SNR
 - 2. Sky Limited
 - sky background dominates, only count background
 - 3. Read Noise Limited
 - read background dominates, only count read term

Lecture 3

- **3.1** Spectroscopy
 - ➤ Most useful tool in astro

- ➤ measurement of intensity of a light source
 - **→** function of wavelength
- ➤ Different specta:
 - 1. light from source straight to detector
 - **→** continous spectrum
 - 2. light from source travels through a cloud of gas straight to detector
 - **⇒** continuous spectrum with dark lines
 - 3. light from source travels into cloud and scatters through it to detector
 - ⇒ bright line spectrum on black background
- ➤ Types of spectrograph
 - 1. Refraction (prisms)
 - 2. Diffraction gratings
 - 3. Interference (Fabry-Perot interferometer)
 - → focus on diffraction grating
- ➤ Diffraction grating
 - 1. Slit
 - → need this to focus light from source of interest and block everything else
 - 2. Collimating lens
 - ➤ make sure light lands parallel to diffraction grating
 - 3. Diffraction grating
 - 4. Camera
- ➤ Condition for constructive interference:

$$n\lambda = d\sin\theta$$
$$\frac{d\theta}{d\lambda} = \frac{n}{d\cos\theta}$$

- $\blacktriangleright \ \frac{d\theta}{d\lambda}$ is known as angular dispersion (rad/nm)
 - higher dispersions from higher spectral orders and smaller line spacings
 - ightharpoonup more convenient for Reciprocal Linear dispersion $\left(\frac{d\lambda}{dx}\right)$

 - ⇒ measuring wavelength per unit x at detector (nm/mm) ⇒ multiply $\frac{d\theta}{d\lambda}$ by plate scale $\frac{d\theta}{dx} = \frac{1}{f_{cam}}$

$$\frac{d\lambda}{dx} = \frac{d\lambda}{d\theta} \frac{d\theta}{dx} = \frac{d}{f_{cam}n} \cos \theta$$

Grating Equation

- ➤ For angles of incidence to grating
- ➤ For diffraction grating or reflection

$$n\lambda = d(\sin \alpha + \sin \beta)$$
$$n\lambda \rho = \sin \alpha + \sin \beta \; ; \; \rho = \frac{1}{d}$$

Resolving Power

➤ Recall angle for blurred star

$$\theta = 1.22 \frac{\lambda}{D}$$

- ➤ Resolving power of a spectrograph is wavelength over band pass:
 - $\Rightarrow \lambda$ is the wavelength
 - \rightarrow $\Delta \lambda$ is the minimum discernible difference in λ

$$R = \frac{\lambda}{\Delta \lambda} = nN$$

$$R = \frac{n\rho \lambda W}{\chi D_T}$$

- ➤ Where
 - ⇒ n is diffraction order#
 - → N is number of lines
 - $\rightarrow \rho$ is the ruling density (lines/mm)
 - $\Rightarrow \lambda$ is the wavelength
 - → W is the grating size
 - \Rightarrow χ is the angular size of the image of a star on slit
 - $\rightarrow D_T$ is the telescope size
- ➤ Don't want too narrow a slit
 - → optimise width of slit for photons from star
 - **⇒** spectral resolution gets blurred
- ➤ Second equation above is for a practical spectrograph
 - \rightarrow At most wavelengths, this value of R is much less than that given by nN

CDs, DVDs, and Blu-Rays

- ➤ basically diffractions gratings
- ➤ DVDs store more info than CDs based on diffraction types
- ➤ Blu-Rays need UV light to make sense

Lecture 4

- 4.1 Measuring Stars
 - ➤ Black body radiation

$$E(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

- ▶ Characteristic temperature is where $\frac{dE}{d\lambda} = 0$, bump at top of curve
- ➤ Colours of stars depends on plot, nearest colour to peak is visible colour

$$L = 4\pi R^2 \sigma T^4$$

- ➤ Calc distance to star?
 - ⇒ use parallax
 - \rightarrow define 1 parsec as distance corresponding to parallax of $\theta = 1$ "
 - \rightarrow 1 psc = 206265AU

4.2 Interferometry

- ➤ Combines light from two telescopes
 - **→** makes it possible to measure stars
 - **▶** interfere the light and measure phase difference
 - \rightarrow diffraction limit: $1.22\frac{\lambda}{D}$
- ➤ As star tracks across sky, path length changes
 - ⇒ phase will shift in and out of phase with movement
 - → more complicated for two light sources
 - \Longrightarrow get a more complex fringe pattern
 - \rightarrow modulated by $\frac{\lambda}{D}$ for each telescope
- ➤ Moving telescopes apart changes fringe pattern

- ⇒ at some point apart, the fringe pattern will disappear and will resolve the star
- \Rightarrow can then use maths to find θ and find the radius using that and the distance away
- → VLT uses more than two telescopes
- ➤ Aperture synthesis
 - **⇒** a trick we need for observations
 - ⇒ path length will not change between two telescopes, if they come over parallel
 - → Will have a 'y' pattern of telescope arrays so that path length will always be changing no matter what way it is passing over the sky

Lecture 5

- ➤ Zero-point mag gives one count
- ➤ See example sheet from Lecture 6 for some good notes
- **5.1** Multi-Wavelength Techniques
 - ➤ Missing a huge fraction of images outside visual
 - → how do we see the rest of it?
 - ➤ X-ray radiations
 - **⇒** electrons wizzing around
 - → Accelerated to high energies in plasma state
 - ⇒ effectively in about a million K
 - → protons will make electrons change path, and emit energy
 - **⇒** accretion disks generate some of this
 - ➤ Difficulties
 - ➤ X-rays have too high energies
 - → mirrors absorb it and don't work

 - **→** Grazing incidence
 - ➤ UV radiation
 - ightharpoonup temperatures of around $50 \, kK$
 - **→** massive stars
 - ⇒ clumpy as all around clumps of new big stars forming in groups
 - ➤ Difficulties
 - → CCDs have lower QE for these lower energies
 - ⇒ hard to move energy level difference in CCDs to measure UV accurately
 - **⇒** swamped by other photons
 - ⇒ use a blocking filter to try and filter visual photons away and just get UV
 - ➤ Infra-red radiation
 - begin to suffer from sky background here
 - to do it accurately, you need to be in space
 - ⇒ see a 'fuzz' tracing spiral arms on galaxies
 - → hot dust in the interstellar medium being heated by stars
 - → emission from cooler stars
 - → globular clusters of old stars
 - ➤ Sub-millimeter radiation
 - \blacktriangleright looking at $T = 3 \rightarrow 10 \, K$
 - **⇒** challenging to detect such low energies
 - **→** very sensitive thermometers
 - ➡ liquid helium at a few micro-Kelvin
 - ⇒ changes resistance and allows current to flow for a second
 - ➤ Why
 - → Pillars of Creation
 - **▶** lots of dusty regions
 - → actively forming stars in the dust clouds

- ⇒ carbonaceous material graphite, diamonds etc
- → silicates
- → ices
- ⇒ optical photons increases dust temperature slightly, still around 10 K though
 - → emits 100 micron wavelength photons to lose temperature
- ▶ looking at Pillars in sub-millimeter shows clouds glowing now
- ⇒ can observe nebulae very differently in sub-millimeter
- ➤ Radio radiation
 - **→** 3 components
 - → local thunderstorms
 - → distant thunderstorms radio waves bounce round atmosphere
 - → constant hiss with period of 23 hours 56 minutes and 4.1 seconds
 - → sidereal day
 - ➡ This hiss is the galactic emission
 - ⇒ surface of telescopes need to be 'smooth'
 - ⇒ smoothness isn't as necessary for radios
 - ⇒ easy to build big telescopes for radio without this concern
 - ⇒ very difficult to get a high resolution radio telescope

Lecture 6

6.1 Radios Ctd

- ➤ Biggest telescope is FAST
 - → 500m diameter
- ➤ Why observe in radio?
 - **⇒** 21cm
 - → Neutral H emission
 - ⇒ electron can have parallel or anti-parallel spin
 - → two sub ground states
 - ⇒ anti-parallel is lower energy than parallel so will eventually flip to this one
 - → very small energy difference
 - → hyper-fine energy splitting
 - → this takes a few millions years though
 - **▶** lots of H in galaxies
 - → probability adds up to observe this
 - → pointing radio telescopes sees this

6.2 Telescope Tech

- ➤ 'Twinkling star'
 - ⇒ caused by atmosphere moving around and bumping image around
 - ➡ break it up into sub-images
 - **→** speckles
 - → whole image will also move around
- ➤ Fried parameter
 - $ightharpoonup r_0 \approx 10 \, cm$
 - ⇒ size of turbulent cells
 - **⇒** coherence time
 - $\rightarrow t_0 = \frac{r_0}{v}$
 - → v is wind speed
 - \Rightarrow this means that a star will only be stable for about $10 \, ms$
- ➤ Correcting this
 - ⇒ light comes in normally
 - → hits third mirror that can change angle with actuators

- \Rightarrow then hits a beam splitter
 - \rightarrow 50% to computer analyser
 - \rightarrow 50% to somewhere else
- > computer constantly measures image and changes actuators to correct image for turbulence
 - → uses fast Fourier transforms to get back to real image
 - → happens every millisecond or so
- ⇒ this requires bright star though
- \Rightarrow shine lasers up to 15 km into atmosphere to focus
 - → this creates a fake star for corrections 'natural guide star'

6.3 Exoplanets

- ➤ How do we observe planets against photon noise of stars?
 - ⇒ observe stellar spectrum and planet spectrum for comparison
 - → heavier molecules are more difficult to observe as they're lower down
 - \rightarrow refraction issues
 - \rightarrow detecting O_3 would be a key trigger for life
 - \rightarrow not able to do it yet