Your Name: _____

Group Members:____

From class March 20:

Modulus	Quadratic residues	Quadratic nonresidues
2	1	None
3	1	2
5	1,4	2,3
7	1, 2, 4	3, 5, 6

Proposition (Proposition 4.5). Let p be an odd prime number and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$. Then

$$(a) \left(\frac{a^2}{p}\right) = 1$$

(b) If
$$a \equiv b \pmod{p}$$
 then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

$$(c) \ \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Theorem (Theorem 4.6). Let p be an odd prime number. Then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \end{cases}.$$

Theorem (Quadratic reciprocity). Let p and q be distinct primes.

(a) If
$$p \equiv 1 \pmod{4}$$
 or $q \equiv 1 \pmod{4}$, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$

(b) If
$$p \equiv q \equiv 3 \pmod{4}$$
, then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$

Problem 1 Let p be an odd prime number. Prove the following statements the following provided outlines, which will help solve the next problem, as well.

(a)
$$\left(\frac{3}{p}\right) = 1$$
 if and only if $p \equiv \pm 1 \pmod{12}$.

(b)
$$\left(\frac{-3}{p}\right) = 1$$
 if and only if $p \equiv 1 \pmod{6}$.

Proof (a) Since $3 \equiv \underline{\hspace{1cm}}$ (mod 4), we need two cases for Quadratic reciprocity.

- (i) If $p \equiv 1 \pmod{4}$, then $\left(\frac{3}{p}\right) =$ ______ by Quadratic reciprocity, and $\left(\frac{p}{3}\right) = 1$ if and only if $p \equiv$ _____ Then $p \equiv$ _____ (mod 12), and this is the unique equivalence class modulo 12 by the Chinese Remainder Theorem.
- (ii) If $p \equiv 3 \equiv -1 \pmod 4$, then $\left(\frac{3}{p}\right) =$ ______ by Quadratic reciprocity, and $\left(\frac{p}{3}\right) = -1$ if and only if $p \equiv$ _____. Then $p \equiv$ ______ (mod 12), and this is the unique equivalence class modulo 12 by the Chinese Remainder Theorem.

In this problem, this step is repetitive, but it is needed when $p \neq 3$.

Therefore, $\left(\frac{3}{p}\right) = 1$ if and only if $p \equiv \pm 1 \pmod{12}$.

- (b) From Theorem 4.25(c), $\left(\frac{-3}{p}\right) =$ ______. Again, we have two cases.
 - (i) If $p \equiv 1 \pmod{4}$, then $\left(\frac{-1}{p}\right) =$ ______ by Theorem 4.6 and $\left(\frac{3}{p}\right) =$ _____ by Quadratic reciprocity. Thus, $\left(\frac{-3}{p}\right) =$ _____ = 1 if and only if $p \equiv$ _____. Then $p \equiv$ _____ (mod 12), and this is the unique equivalence class modulo 12 by the Chinese Remainder Theorem.
 - (ii) If $p \equiv 3 \equiv -1 \pmod{4}$, then $\left(\frac{-1}{p}\right) =$ ______ by Theorem 4.6 and $\left(\frac{3}{p}\right) =$ ______ by Quadratic reciprocity. Thus, $\left(\frac{-3}{p}\right) =$ ______ = 1 if and only if $p \equiv$ ______. Then $p \equiv$ ______ (mod 12), and this is the unique equivalence class modulo 12 by the Chinese Remainder Theorem.

Therefore, $\left(\frac{-3}{p}\right) = 1$ if and only if $p \equiv 2 \pmod{12}$, which is equivalent to $p \equiv 1 \pmod{6}$.

Problem 2 Find congruences characterizing all prime numbers p for which the following integers are quadratic residues modulo p, as done in the previous exercise.

Outline is provided for the first part.

- (a) 5
- (b) -5
- (c) 7
- (d) -7

Proof (a) Since $5 \equiv \underline{\hspace{1cm}} \pmod{4}, \underline{\hspace{1cm}}$ by Quadratic reciprocity. Then $\left(\frac{5}{p}\right) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ 1 if and only if $\underline{\hspace{1cm}}$.