Homework 5 Selected Sol's

$$A = \begin{pmatrix} -1 & 3 & 0 \\ 3 & -9 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

The columns of an orthogonal P which makes
PTAP diagonal are unit eigenvectors of A. The char poly of A is

det
$$\begin{pmatrix} -1-\gamma & 3 & 0 \\ 3 & -9-\gamma & 0 \end{pmatrix} = -(\lambda+2)(\lambda+10)$$

So the eigenvalues are $\lambda = -(\lambda+2)\lambda(\lambda+10)$

Eigenvector for -10:

$$\begin{pmatrix}
9 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & 8
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix}
= 0$$

$$9x + 3y = 0$$

$$3x + y = 0$$

$$Z = 0$$

so a Unit eigenvector is $\sqrt{10}$ (1,-3,0)

Eigenvecht for -2:

$$\begin{pmatrix} 1 & 3 & 0 \\ 3 & 8 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 9 \\ 4 \\ 2 \end{pmatrix} = 0$$

So a unit eigenvector is (0,0,1)

Eigenvector for
$$7 = 0$$
 -2;37=0

 $\begin{pmatrix} -1 & 3 & 0 \\ 3 & -9 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

So a unit eigenvector 19 $\sqrt{10} \left(3, 1, 0 \right)$

(6) To check that
$$A = BB$$
 is symmetric:

 $A^T = (B^TB)^T$
 $= B^TB^TT$
 $= B^TB$

Since $A^T = A$, A is symmithin.

To check that A is positive semiologinite, recollabled the associated quadratic form is

 $Q(X) = X^TAX$.

Now $X^TAX = X^TB^TBX$
 $= (BX)^TBX = ||BX||^2 > 0$.

Furthermore, if B is invertible, then $BX \neq 0$ for $X \neq 0$, D is positive definite.

(6) Let $Q(X) = X^TAX$. There exists P such that P^TAP is diagonal. Let $X = Py$. Then

 $Q(X) = y^TP^TAPy$
 $= y^TD$

Since Q is positive semidefinite, $Ai > 0$. So

 $Q(X) = (JA, Y_1)^2 + \cdots + JA, Y_n$

Since Q is positive semidefinite, $Ai > 0$. So

 $Q(X) = (JA, Y_1)^2 + \cdots + (JA, Y_n)^2$

Now $Y = PX$, so the Y_1 are just linear functions Y_1 the X_1, \dots, X_n . Set $L_1(X_n) = JX_1^2 Y_1$. Then