Tutoring of Mathematical Analysis I TEST SIMULATION - E

1. The domain of $f(x) = \log(\sqrt{x-2} - 3)$ is:

- (a) [2,3]
- (b) $[11, +\infty)$
- (c) $(5, +\infty)$
- (d) $(11, +\infty)$
- (e) $[3, +\infty)$

2. The function $f(x) = |\log(x-3)|$

- (a) is invertible in the interval $[3, +\infty)$
- (b) is invertible in the interval $[4, +\infty)$
- (c) is invertible in the interval $(0, +\infty)$
- (d) is not invertible in any interval
- (e) is invertible in the interval (3,5)

3. Let z = 1 - 2i. Then $|z^2 + \bar{z}|$ equals

- (a) $2\sqrt{2}$
- (b) 8
- (c) 4
- (d) $4\sqrt{2}$
- (e) 2

4. The limit $\lim_{x\to +\infty} \frac{e^{-2x}-2x+\cos x}{e^{-x}+3x-3\sin x}$ takes value

- (a) -2
- (b) -1
- (c) 2
- (d) 0
- (e) $-\frac{2}{3}$

5. For $x \to 0$ $f(x) \sim (x^2 \cdot \cos x)$ and $g(x) \sim (e^x - 1)$, then:

- (a) $\lim_{x \to 0} \left| \frac{f(x)}{g(x)} \right| = +\infty$
- (b) $\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{1}{2}$
- (c) $\lim_{x \to 0} \frac{f(x)}{g(x)} = 0$
- (d) $\lim_{x \to 0} \frac{f(x)}{g(x)} = +\infty$
- (e) $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$

- 6. The limit $\lim_{x\to +\infty} (3x^3-4x^2)\sin x$ takes value
 - (a) $-\infty$
 - (b) $+\infty$
 - (c) 0
 - (d) both $+\infty$ and $-\infty$
 - (e) does not exist
- 7. Let a_n be a sequence bounded from below. Then
 - (a) $\forall k > 0 \ \exists \bar{n} \in N \text{ such that } n > \bar{n} \Rightarrow a_n \geq k$
 - (b) for every $n, a_n \geq 0$
 - (c) $\exists k < 0$ such that for every $n, a_n < k$
 - (d) $\exists \bar{n} \in N \text{ such that } n > \bar{n} \Rightarrow a_n \geq 0$
 - (e) $\exists k < 0$ such that for every $n, a_n > k$
- 8. Let $f(x) = (3\cos x)^{(4\cos x)}$. Then f'(0) equals
 - (a) 1
 - (b) 0
 - (c) $\frac{3}{4}$
 - (d) $\log \frac{3}{4}$
 - (e) -1
- 9. The function $f(x) = \begin{cases} 2x & \text{if } x \leq 0 \\ 2\sqrt{x} & \text{if } x > 0 \end{cases}$
 - (a) belongs to C^1
 - (b) is differentiable in the origin
 - (c) is not continuous in the origin
 - (d) is continuous but not differentiable in the origin
 - (e) none of previous answers is correct
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 4, f'(0) = 3. Given that $h(x) = \frac{1}{f(x)}$, it holds
 - (a) $h'(0) = -\frac{3}{16}$
 - (b) $h'(0) = -\frac{4}{3}$
 - (c) $h'(0) = \frac{1}{3}$
 - (d) $h'(0) = \frac{3}{16}$
 - (e) $h'(0) = -\frac{1}{3}$

- 11. The McLaurin polynomial of order 6 of the function $f(x) = e^{\cos x^3}$ is
 - (a) $1 + \frac{1}{2}x^6$
 - (b) $e \frac{e}{2}x^6$
 - (c) $2 + \frac{1}{2}x^6$
 - (d) $1 + \frac{1}{6}x^6$
 - (e) $1 + \frac{1}{6}x^6$
- 12. If f has Taylor expansion $f(x) = 2 4(x+5)^7 + o((x+5)^7)$ for $x \to -5$, then
 - (a) f has an inflection point in x = -5
 - (b) f has a maximum in x = 0
 - (c) f has a minimum in x = 0
 - (d) f has a minimum in x = -5
 - (e) f has a maximum in x = -5
- 13. Let $f:[0,3]\to\mathbb{R}$ be a continuous and decreasing function. Then we can conclude that
 - (a) f([0,3]) is an open set
 - (b) f((0,3)) is an open set
 - (c) f((0,3]) = (f(3), f(0)]
 - (d) f([0,3]) = [f(3), f(0)]
 - (e) f([0,3]) contains al least two points
- 14. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = f(1) = 0. Given $g(x) = f^4(x)$, then
 - (a) the derivative g'(x) has at least three zeros
 - (b) the derivative g'(x) has exactly two zeros
 - (c) the derivative g'(x) has exactly three zeros
 - (d) the derivative g'(x) has no zeros
 - (e) the derivative g'(x) has at least 4 zeros
- 15. Let $f(x) = 3x + \sqrt{4x^2 + 2x^3}$. For $x \to 0^+$ its principal part, with respect to $\varphi(x) = x$, is:
 - (a) 5x
 - (b) $x^{3/2}$
 - (c) $\sqrt{2}x^{3/2}$
 - (d) 3x
 - (e) 3x + o(x)
- 16. A primitive of the function $f(x) = \frac{3x}{2x^2 + 2}$ is:
 - (a) $\frac{3}{4}\log(x^2+1)$
 - (b) $\frac{3}{4} \arctan x$
 - (c) $3\log(x^2+1)$
 - (d) $\frac{3}{4}\arctan(x^2+1)$
 - (e) none of the previous answers

- 17. Find which of the following statements is correct.
 - (a) if f is differentiable in [a,b], then $\exists c \in [a,b]$ such that $f'(c) = \frac{1}{b-a} \int_{c}^{b} f(x) dx$
 - (b) if f is continuous in [a, b], then $\exists c \in [a, b]$ such that $f'(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
 - (c) if f is continuous in [a, b], then $\exists c \in [a, b]$ such that $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$
 - (d) se f is continuous in [a,b], then $\exists c \in [a,b]$ such that $f(c) = \int_a^b f(x)dx$
 - (e) se f is integrable in [a,b], then $\exists c \in [a,b]$ such that $f(c) = \int_a^b f(x) dx$
- 18. Let $F(x) = \int_0^x t^2 \cosh(t^2) dt$. Then
 - (a) F is increasing on $(0, +\infty)$ and decreasing on $(-\infty, 0)$
 - (b) F is increasing on \mathbb{R}
 - (c) F has a minimum in 0
 - (d) F has a maximum in 0
 - (e) none of the previous answers is correct
- 19. Let f be a continuous function on $[0, +\infty)$ and such that $f(x) \le 0$ for every $x \ge 0$. Then, the improper integral $\int_0^{+\infty} f(x)dx$ is necessarily
 - (a) indeterminate
 - (b) divergent to $-\infty$
 - (c) convergent to a negative number
 - (d) convergent, or divergent to $-\infty$
 - (e) none of the previous answers
- 20. The differential equation y'' y = 0
 - (a) has at least an unbounded solution on $(0, +\infty)$
 - (b) has no bounded solutions on $(0, +\infty)$
 - (c) has no unbounded solutions on $(0, +\infty)$
 - (d) has at least a solution that changes sign infinite times
 - (e) has only positive solutions

$\underline{\mathbf{A}}\underline{\mathbf{N}}\underline{\mathbf{S}}\underline{\mathbf{W}}\underline{\mathbf{E}}\underline{\mathbf{R}}\underline{\mathbf{S}}$

Item n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	d	b	a	e	c	e	e	b	d	a	b	е	d	a	a	a	c	b	d	a