

Reconhecimento de Padrões

First Project Milestone

Heart Disease Prediction (Scenario A)

2021/2022

Mestrado em Engenharia Informática

PL2	Gabriel Fernandes	2018288117	gabrielf@student.dei.uc.pt
PL2	Miguel Rabuge	2018293728	rabuge@student.dei.uc.pt
PL2	Pedro Rodrigues	2018283166	pedror@student.dei.uc.pt

Índice

Data Preprocessing	3
Carregamento	3
Scaling	3
Visualização dos Dados	3
Scatter Matrix	3
Box Plots	4
Redução e Seleção de Features	5
Análise de Redundância e Relevância Linear	5
Análise de Discriminância - Kruskal-Wallis	6
Principal Component Analysis	7
Scree Plot	8
Kaiser Criterion & Scree Test	8
Variância	8
Linear Discriminant Analysis	10
Feature Assessment	10
Distribuições	10
Total	10
Coronary Heart Disease (CHD)	11
No Coronary Heart Disease (No CHD)	11
Função de Repartição Empírica Vs Normal Padrão	12
Total	12
Coronary Heart Disease (CHD)	12
No Coronary Heart Disease (No CHD)	13
Análise de Normalidade - Kolmogorov-Smirnov	13
Classificadores	14
Minimum Distance Classifiers	14
Euclidean Linear Discriminant	14
PCA + ELD	14
LDA + ELD	15
Mahalanobis Linear Discriminant	15
PCA + MLD	15
LDA + MLD	15
Fisher Linear Discriminant	15
PCA + FLD	15
LDA + FLD	16
Conclusões	16
Bibliografia	17

1. Data Preprocessing

Neste capítulo detalhamos como foi feito o pré-processamento dos dados. Abordamos os temas do carregamento, *scaling*, visualização dos dados através de uma *scatter matrix* e *box plots* das *features*. Encontra-se também neste capítulo uma secção sobre redução e seleção de features, recorrendo à *Principal Component Analysis* e à *Linear Discriminant Analysis*. Pode observar-se também as features de um ponto de vista de redundância e relevância, através de uma matriz de correlação, de discriminância, através do teste não paramétrico *Kruskal-Wallis*, bem como as suas distribuições, analisando a normalidade através do teste de Kolmogorov-Smirnov.

1.1. Carregamento

Os dados foram carregados através do ficheiro CSV fornecido "heart_2020_cleaned", sendo divididos em dois sets: 200.000 entries para treino e o restante para validação, como referido no enunciado. As features são armazenadas na variável X da estrutura, enquanto que os labels são guardados na y, de acordo com o padrão das estruturas do **stprtool**.

1.2. Scaling

Depois de carregados os dados, é necessário normalizá-los devido à sensibilidade que o PCA tem sobre a variância. A não normalização destes dados poderia provocar a atribuição de quase toda a variância a uma determinada direção devido a ter uma escala de variância muito maior, relativamente às restantes, apesar de poderem até ser semelhantes. Ao normalizar, subtraindo a média e dividindo pelo desvio padrão, garantimos que isto não acontece.

1.3. Visualização dos Dados

Nesta secção apresentamos visualizações sobre os dados originais, bem como o nosso racional.

1.3.1. Scatter Matrix

Com o objetivo de visualizar os dados, produzimos uma *scatter matrix*, recorrendo ao módulo **pandas** do Python, <u>pandas.plotting.scatter matrix</u>:

Figura x - Scatter matrix CHD

Através desta matriz de plots, apesar da baixa resolução devido à combinatória, podemos observar que não se destaca nenhuma combinação de features a duas dimensões que discrimine bem as duas classes: Coronary Heart Disease (CHD) a vermelho, e sem Coronary Heart Disease (no-CHD) a verde. Na diagonal, encontram-se os histogramas de cada feature onde podemos observar as distribuições e sensivelmente identificar quais são as variáveis categóricas.

1.3.2. Box Plots

Com a finalidade de alcançar um ponto de vista mais detalhado sobre cada feature, recorremos à utilização de *box plots* para a visualização de cada uma das features.

Figura X - Scaled Features Box Plots

Como podemos observar na figura acima, existem algumas features que revelam alguma discriminância sobre Coronary Heart Disease, como a *AgeCategory* e *GenHealth*, utilizando apenas uma mera análise visual. Iremos proceder a uma análise mais profunda para estas features, de modo a quantificar a discriminância das mesmas.

1.4. Redução e Seleção de Features

Nesta secção explicamos o procedimento efetuado na escolha das features mais discriminantes para os nossos classificadores.

1.4.1. Análise de Redundância e Relevância Linear

Com vista a inspecionar a redundância e relevância das nossas features, recorremos a uma matriz de correlação (pearson) para esse efeito. Abaixo, consta essa matriz onde cada célula corresponde à correlação de Pearson entre cada feature:

Figura X - Matriz de Correlação de Pearson - Features + Label

Importa notar que a última coluna/linha não é uma feature, mas sim o label booleano CHD (Coronary Heart Disease) cujas features estamos a investigar para produzirmos classificadores robustos.

Podemos observar que determinadas features apresentam alguma correlação com outras, nomeadamente *BMI*, *Stroke*, *PhysicalHealth*, *MentalHealth*, *DiffWalking*, *AgeCategory*, *Diabetic*, *PhysicalActivity*, e *GenHealth*, o que revela redundância destas features com as que estas se correlacionam mais fortemente. Por outro lado, é possível observar também que as features *Stroke*, *PhysicalHealth*, *DiffWalking*, *AgeCategory*, *Diabetic* e *GenHealth* se correlacionam bem com o label, o que sustenta a relevância destas features para o problema em mãos.

1.4.2. Análise de Discriminância - Kruskal-Wallis

Com a finalidade de inspecionar e quantificar as features sobre a sua discriminância para as classes "CHD" (Coronary Heart Disease) e "No CHD" (No Coronary Heart Disease), aplicamos o teste não paramétrico

Kruskal-Wallis e ordenamos as features pelo valor do qui-quadrado. Abaixo estão apresentados os resultados:

Feature	Qui-quadrado			
Menos Relevante				
MentalHealth	0.28			
SleepTime	14.54			
AlcoholDrinking	155.32			
Asthma	240.65			
Race	406.54			
x_BMI5	500.73			
Sex	687.29			
PhysicalActivity	1255.28			
Smoking	1375.21			
PhysicalHealth	3203.73			
Diabetic	3833.52			
Stroke	4732.90			
DiffWalking	5790.09			
GenHealth	7518.71			
AgeCategory	8292.66			
Mais Relevante				

Tabela 3 - Resultados Kruskal-Wallis

Como podemos observar, as features que identificamos informalmente nos passos anteriores, recorrendo à matriz de correlação e aos *box plots*, encontram-se entre as mais discriminantes segundo este teste, corroborando assim as nossas hipóteses.

1.4.3. Principal Component Analysis

Nesta subsecção fazemos uma *Principal Component Analysis* dos dados com o objetivo de reduzir a dimensionalidade do nosso problema,

enquanto procuramos manter sensivelmente a mesma informação que tínhamos originalmente.

1.4.3.1. Scree Plot

Figura X - Scree Plot PCA

1.4.3.2. Kaiser Criterion & Scree Test

Com base no *plot* acima, podemos observar que:

- Há 4 principal components cujos valores próprios são maiores do que 1
- Não existe uma clara estabilização dos valores próprios

Deste modo:

- Seguindo o Kaiser Criterion deveremos escolher as 4 primeiras principal components (43% da variância).
- Seguindo o Scree test, deveremos escolher todas as principal components, dado que o plot não estabiliza (100% da variância).

1.4.3.3. Variância

Principal	Valores Próprios	Variância	
Component		Individual	Cumulativa
1	2.64	0.18	0.18

2	1.45	0.10	0.27
3	1.17	0.08	0.35
4	1.12	0.07	0.43
5	0.98	0.07	0.49
6	0.97	0.06	0.56
7	0.95	0.06	0.62
8	0.89	0.06	0.68
9	0.86	0.06	0.74
10	0.82	0.05	0.79
11	0.78	0.05	0.84
12	0.74	0.05	0.89
13	0.57	0.04	0.93
14	0.57	0.04	0.97
15	0.47	0.03	1.00

Tabela 1 - Principal Components

Figura X - Variância cumulativa PCA

Dado que as abordagens discutidas acima não funcionam muito bem (*Kaiser Criterion* e *Scree Test*), decidimos calcular a variância cumulativa para nos ajudar na escolha da nova dimensão a usar no PCA. Utilizando um *threshold* de 0.8 (80%), temos de utilizar uma dimensão de 11 para assegurar que ficamos com uma variância superior a este.

Com base neste estudo, optamos por reduzir a dimensão do dataset para 11 utilizando o PCA.

1.4.4. Linear Discriminant Analysis

Analogamente à secção anterior, iremos repetir a mesma ideia, porém fazendo uma *Linear Discriminant Analysis*. Ao contrário do PCA, o LDA reduz sempre para C - 1 features, onde C é o número de classes, ou seja 2 - 1 = 1. Deste modo, aplicando o LDA aos dados, obtemos um único *linear discriminant* cujo valor próprio é 11303,36.

1.5. Feature Assessment

Nesta secção iremos analisar as distribuições das features do ponto de vista da sua normalidade. Para tal, numa primeira parte iremos apresentar as suas distribuições, e no final a comparação das funções de repartição destas com a função de repartição normal padrão. Este procedimento será efetuado para a totalidade dos dados, e para cada uma das duas possíveis labels.

1.5.1. Distribuições

Analisando as distribuições, apresentamos abaixo os plots.

1.5.1.1. Total

Figura X - Distribuições das features com distribuição normal padrão

1.5.1.2. Coronary Heart Disease (CHD)

Figura X - Distribuições das features com distribuição normal padrão

1.5.1.3. No Coronary Heart Disease (No CHD)

Figura X - Distribuições das features com distribuição normal padrão

Podemos observar que os histogramas diferem da distribuição normal padrão, exceto o *BMI* e o *SleepTime*. Vejamos melhor através da comparação das funções de repartição abaixo.

1.5.2. Função de Repartição Empírica Vs Normal Padrão

Agora, apresentamos a comparação entre as funções de repartição.

1.5.2.1. Total

Figura X - Função de Repartição Empírica Vs Normal Padrão

1.5.2.2. Coronary Heart Disease (CHD)

Figura X - Função de Repartição Empírica Vs Normal Padrão

1.5.2.3. No Coronary Heart Disease (No CHD)

Figura X - Função de Reparticão Empírica Vs Normal Padrão

Podemos observar que as comparações diferem, exceto o *BMI* e o *SleepTime*. As *features AgeCategory* e *GenHealth* aproximam-se também da função de repartição da distribuição normal no caso de No CHD. Deste modo, surge a necessidade de quantificar a normalidade destas distribuições. Para tal, iremos recorrer ao teste não paramétrico Kolmogorov-Smirnov.

1.5.3. Análise de Normalidade - Kolmogorov-Smirnov

Aplicando o teste KS, através da função <u>kstest</u> do Matlab, para o nível de confiança de 95%, às várias *features*, obtivemos os seguintes resultados:

Feature	P-Valor Total	P-Valor CHD	P-Valor No CHD
BMI	0	0	0
Smoking	0	0	0
AlcoholDrinking	0	0	0
Stroke	0	0	0
PhysicalHealth	0	0	0
MentalHealth	0	0	0
DiffWalking	0	0	0

Sex	0	0	0
AgeCategory	0	0	0
Race	0	0	0
Diabetic	0	0	0
PhysicalActivity	0	0	0
GenHealth	0	0	0
SleepTime	0	0	0
Asthma	0	0	0

Deste modo, para um nível de confiança de 95%, rejeitamos sempre a hipótese nula, o que nos diz que os dados não seguem a distribuição normal padrão.

2. Classificadores

Neste capítulo apresentamos os resultados obtidos ao aplicar os seguintes classificadores aos dados pré-processados. Estes serão analisados através da média das métricas obtidas ao aplicar k-fold Cross-Validation a estes classificadores. Estas métricas incluem a *accuracy*, *sensitivity* e *specificity*. No final, é indicado também o resultado final dos modelos, treinando com a totalidade do *set* de treino, para o *set* de teste.

2.1. Minimum Distance Classifiers

Nesta secção abordamos o ELD e o MLD enquanto classificadores de CHD.

2.1.1. Euclidean Linear Discriminant

Para o ELD, aplicamos o PCA e o LDA como técnicas de redução de *features* antes destas serem classificadas, tal que:

2.1.1.1. PCA + ELD

	Accuracy	Sensitivity	Specificity
Avg 10 Folds	0.79	0.63	0.80

Teste 0.79 0.63 0.80

2.1.1.2. LDA + ELD

	Accuracy	Sensitivity	Specificity
Avg 10 Folds	0.74	0.80	0.73
Teste	0.74	0.80	0.73

2.1.2. Mahalanobis Linear Discriminant

De modo análogo ao ELD, aplicamos o PCA e o LDA como técnicas de redução de *features* antes destas serem classificadas, de modo que:

2.1.2.1. PCA + MLD

	Accuracy	Sensitivity	Specificity
Avg 10 Folds	0.77	0.71	0.77
Teste	0.77	0.72	0.77

2.1.2.2. LDA + MLD

	Accuracy	Sensitivity	Specificity
Avg 10 Folds	0.74	0.80	0.73
Teste	0.74	0.80	0.73

2.2. Fisher Linear Discriminant

Nesta secção abordamos o FLD enquando classificador de CHD.

2.2.1. PCA + FLD

, and the second	Accuracy Sens	sitivity Specificity
--	---------------	----------------------

Avg 10 Folds	0.80	0.65	0.81
Teste	0.80	0.64	0.81

2.2.2. LDA + FLD

	Accuracy	Sensitivity	Specificity
Avg 10 Folds	0.74	0.80	0.73
Teste	0.74	0.80	0.73

3. Conclusões

- ❖ Tendo em conta a natureza da assimetria no número de *samples* por classe (18085 CHD, 300873 No CHD), a *accuracy* pouco diz sobre a performance do modelo.
- Considerando a média dos 10 folds, podemos observar que a accuracy, quando utilizado o LDA como técnica de redução e seleção de features, o sistema apresenta resultados inferiores do que com o PCA.
- ❖ Também nos folds, observamos que o LDA consegue muito mais sensitivity (TPR) do que o PCA. No caso da specificity (TNR), verifica-se o contrário. Encontramo-nos perante uma situação de tradeoff. Considerando que é mais relevante acertar naqueles que realmente têm CHD do que nos que não têm, os modelos que recorrem ao LDA enquanto técnica de redução e seleção de features, aparentam ser mais vantajosos.
- ❖ Comparando os resultados da média de 10 *folds* e teste, verificamos que os resultados são semelhantes. Deste modo, podemos afirmar que o modelos são robustos, tendo as métricas chave entre 70% a 80%.

4. Bibliografia

- ❖ Slides RP @ 2022
- de Sá, J. M. P. (2001). Pattern Recognition: Concepts, Methods and Applications (1st ed.). Springer.
- ◆ An illustrative introduction to Fisher's Linear Discriminant Thalles' blog
- Factor analysis Wikipedia
- Kaiser Rule Displayr
- ♦ Discriminant Analysis Essentials in R Articles STHDA
- https://sthalles.github.io/fisher-linear-discriminant/
- Proportion of explained variance in PCA and LDA Cross Validated
- Linear Discriminant Analysis
- ❖ sklearn.metrics.classification report scikit-learn 1.0.2 documentation
- Spearman's Rank-Order Correlation A guide to when to use it, what it does and what the assumptions are.