UNIDAD 5:

TERMOQUÍMICA

UNIDAD 5: TERMOQUIMICA

- 5.A. Sistemas Químicos Reactivos. Calor de reacción. Descripción de los sistemas químicos reactivos. Variable grado de avance de la reacción. El primer principio de la termodinámica aplicada a las reacciones químicas. Reacción a presión constante. Entalpía normal de formación. Reacciones a volumen constante. Relación entre ΔH_{PT} y ΔU_{VT} . Bomba calorimétrica
- 5.B. Leyes Termoquímicas. Ley de Lavoisier Laplace. Ley de Hess. Dependencia de los calores de reacción con la temperatura. Ecuación de Kirchoff. Resolución por integral definida.
- 5.C. Combustión. La Combustión. Combustibles. Proceso de la combustión. Calor normal de combustión. Poder calorífico superior e inferior de un combustible. Punto de rocío de los humos. Análisis de los productos de la combustión. Temperatura máxima de reacción.

 2
 Temperaturas reales de llama.

TERMOQUÍMICA

BUSCA "MEDIR" O "CALCULAR" EL CALOR INTERCAMBIADO
CUANDO SE TRANSFORMAN
SISTEMAS QUÍMICOS "REACTIVOS" 1

CAMBIAN SU COMPOSICIÓN
O SEA, SISTEMAS
DE "COMPOSICIÓN VARIABLE"

CALOR INTERCAMBIADO:

TIENE DIFERENTE VALOR SEGÚN CÓMO SEA LA TRANSFORMACIÓN

SEGÚN EL PRIMER PRINCIPIO PARA SISTEMAS CERRADOS (masa fija):

Trabajo que realiza el sistema contra la presión P del medio cuando su volumen varía un dV.

$$dQ = dU + P dV$$

Si la transformación es a V = ctte:

$$dQ_v = dU$$

$$Q_v = U_{final} - U_{inicial}$$

Depende <u>sólo de los</u> <u>estados inicial y final</u> del sist. reactivo

$$H = U + PV$$

$$dQ = dH - VdP$$

Si la transf. es a P = ctte:

$$dQ_p = dH$$

$$Q_p = H_{final} - H_{inicial}$$

Depende <u>sólo de los estados</u> <u>inicial y final</u> del sist. reactivo Los conceptos que desarrollaremos se aplican no sólo a sistemas reactivos, sino también a otros casos de sistemas cuya composición varía durante la transformación como:

- **≻Disolución (Soluto en un solvente)**
- > Mezclado (Dos líquidos)
- > Dilución (más solvente a una soluc.)
- > Cambio de fase

Cambio en la energía potencial microscópica

Por su importancia, nos centraremos en sistemas químicos REACTIVOS: Cambian de composición por reacciones químicas, principalmente por combustión.

Reacción química:

Ejemplo:

$$C(s) + H_2(g) = C_6H_6(I)$$
; Qp

Balance de masa: Coef. estequiométricos

$$6C(s) + 3H2(g) = C6H6(l)$$

Balance de energía: Cambian los enlaces entre átomos y las energías de enlace

reacción a P=ctte

$$Q_p = H_{final} - H_{inicial}$$

Luego:

$$6 C(s) + 3 H2(g) = C6H6(l); Qp,25°C = 11,7 kcal/mol$$

O también:

-6 C (s) - 3
$$H_2$$
 (g) + C_6H_6 (l)=0; $Q_{p,25^{\circ}C}$ = 11,7 kcal/mol ECUACIÓN "TERMOQUÍMICA"

DESCRIPCIÓN DE SISTEMAS QUÍMICOS REACTIVOS

Grado de avance de la reacción:

$$\lambda = (n_i - n_i^{\circ}) / a_i$$

ni°. Número de moles de "i" inicial

n_i. Número de moles de "i" en un instante posterior

ai: Coeficiente estequiométrico de "i",

Reactivos: $a_i < 0$ Productos: $a_i > 0$

 λ indica cuántas veces se ha producido la reacción, a un cierto "t" contado a partir de que se pusieron en contacto los reactivos ($t_o = 0$)

Grado de avance de la reacción:

$$\lambda = (n_i - n_i^{\circ}) / a_i$$
; $n_i = n_i^{\circ} + a_i \lambda$

Ejemplo:

$$CH_4(g) + 2 O_2(g) = CO_2(g) + 2 H_2O(g)$$

Esto sucede cada vez que la reacción se produce 1 vez

$$\lambda = (n_i - n_i^{\circ}) / a_i$$
; $n_i = n_i^{\circ} + a_i \lambda$

(Ejemplo gráfico a V=ctte)

$$\lambda = 0$$

Ejemplo:
$$n_{CH4}^{\circ} = 5$$

 $n_{O2}^{\circ} = 8$
 $n_{CO2}^{\circ} = 2$
 $n_{H2O}^{\circ} = 3$

$$\lambda = 1$$

$$n_{CH4}^{1} = 5-1=4$$
 $n_{O2}^{1} = 8-2=6$
 $n_{CO2}^{1} = 2+1=3$
 $n_{H2O}^{1} = 3+2=5$

$$\lambda = 2$$

$$2 - 5 1 \times 2 - 4$$

$$n_{CH4}^2 = 5-1x2=3$$
 $n_{O2}^2 = 8-2x2=4$
 $n_{CO2}^2 = 2+1x2=4$
 $n_{H2O}^2 = 3+2x2=7$

11

Grado de avance de la reacción: (Ejemplo gráfico a V=ctte)

A medida que transcurre la reacción \Rightarrow aumenta λ El sistema MULTICOMPONENTE cambia su composición Por lo tanto <u>CAMBIAN SUS PROPIEDADES</u> (U, H, etc)

PRIMER PRINCIPIO APLICADO A REACCIONES QUÍMICAS

VIMOS QUE:

$$dQ_p = dH$$

$$dQ_v = dU$$

PARA SISTEMAS QUÍMICOS

$$H = f (T, P, n_1, n_2, n_3, ..., n_m)$$

$$U = f (T, V, n_1, n_2, n_3, ..., n_m)$$

Como
$$n_i = n_i^o + a_i \lambda$$

$$H = f(T, P, \lambda)$$
 $U = f(T, V, \lambda)$

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P,\lambda} dT + \left(\frac{\partial H}{\partial P}\right)_{T,\lambda} dP + \left(\frac{\partial H}{\partial \lambda}\right)_{T,P} d\lambda$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,\lambda} dT + \left(\frac{\partial U}{\partial V}\right)_{T,\lambda} dV + \left(\frac{\partial U}{\partial \lambda}\right)_{T,V} d\lambda$$

Si la transf. es a P = ctte; dP = 0

$$dQ_{P} = dH = \left(\frac{\partial H}{\partial T}\right)_{P,\lambda} dT + \left(\frac{\partial H}{\partial \lambda}\right)_{T,P} d\lambda$$

Si la transf. es a V = ctte; dV = 0

$$dQ_{V} = dU = \left(\frac{\partial U}{\partial T}\right)_{V,\lambda} dT + \left(\frac{\partial U}{\partial \lambda}\right)_{T,V} d\lambda$$

REACCIONES A PRESIÓN CONSTANTE

$$dQ_{P} = dH = \left(\frac{\partial H}{\partial T}\right)_{P,\lambda} dT + \left(\frac{\partial H}{\partial \lambda}\right)_{T,P} d\lambda$$

Si λ = ctte (composición constante); $dQ_{P\lambda} = ($

$$dQ_{P\lambda} = C_{P\lambda} dT$$

Capacidad calorífica de la mezcla reactiva para una cierta composición (λ = ctte) y a P=ctte

$$C_{P\lambda} = n_1 c_{p1} + n_2 c_{p2} + ... + n_m c_{pm}$$

De igual forma:

$$H = n_1 h_1 + n_2 h_2 + ... + n_m h_m$$

Siendo

ħ i "entalpía molar parcial" contribución a la entalpía total H por cada mol de los componentes presentes en la mezcla reactiva, a la P y T de la mezcla

Volviendo a la expresión del 1º Ppio:

$$dQ_P = dH = C_{P\lambda} dT + \left(\frac{\partial H}{\partial \lambda}\right)_{PT} d\lambda$$

$$\Delta H_{PT}: Calor de reacción.$$

Coincide con el calor intercambiado con el medio cuando:

- Además de P es también T constante
- λ varía de 0 a 1: La reacción se produjo en forma completa una vez.

VEAMOS CÓMO SE PUEDE CALCULAR EL CALOR DE REACCIÓN "ΔH_{DT}"

$$\Delta H_{PT} = \left(\frac{\partial H}{\partial \lambda}\right)_{PT}$$

$$H_{PT} = n_1 \, \hbar_{1PT} + n_2 \, \hbar_{2PT} + \dots + n_m \, \hbar_{mPT}$$

$$\Delta H_{PT} = \left(\frac{\partial H}{\partial \lambda}\right)_{PT} = \left(\frac{\partial H}{\partial n_1}\right)_{PTn_j} \frac{dn_1}{d\lambda} + \left(\frac{\partial H}{\partial n_2}\right)_{PTn_j} \frac{dn_2}{d\lambda} + \dots + \left(\frac{\partial H}{\partial n_m}\right)_{PTn_j} \frac{dn_m}{d\lambda}$$

Como
$$n_{i} = n_{i}^{o} + a_{i}\lambda$$
 ; $\frac{\partial n_{i}}{\partial \lambda} = a_{i}$

Y además: $\left(\frac{\partial H}{\partial n_{i}}\right)_{PTn_{j}} = \overline{h_{iPT}}$

Y además:
$$\left(\frac{\partial H}{\partial n_i}\right)_{PTn_i} = \overline{h_{iPT}}$$

$$\Delta H_{PT} = \sum a_i \overline{h_{iPT}} \, \Big|$$

$$\Delta H_{PT} = \sum a_i h_{iPT}$$

Si la mezcla se considera "ideal": $h_{iPT} = h_{iPT}$

h_{iPT}: Entalpía molar del componente "i" **puro** a la P y T de la mezcla

$$\Delta H_{PT} = \sum a_{i}h_{iPT}$$

$$= \sum a_{i}h_{iPT} - \sum |a|_{i}h_{i,PT}$$
Productos
Reactives

Entalpía de formación del componente "i" a P y T

$$\Delta H_{298}^{\circ}$$
 = Calor de reacción estándar

$$\Delta H_{298}^{o} = \sum a_i h_{i,298}^{o}$$

$$= \sum_{\text{Productos}} a_i h_{i,298}^{o} - \sum_{\text{Reactivos}} |a|_i h_{i,298}^{o}$$

h_{i,298}° = Entalpías "normales" de formación

<u>Estado de referencia</u>: Elementos puros a 25°C y 1atm, en el estado de agregación en que se encuentren. (Se le atribuye valor cero)

<u>Para los compuestos:</u> La entalpía normal de formación se obtiene a partir del calor de reacción para la formación del compuesto a partir de los elementos puros

$$\frac{1}{2} O_2(g) + H_2(g) = H_2O(l)$$

 $\Delta H_{,298}^{\circ} = h_{H2O,298}^{\circ} - h_{H2,298}^{\circ} - \frac{1}{2} h_{O2,298}^{\circ} = h_{H2O,298}^{\circ}$

Si P=1atm pero T#25°C

$$h_T^o = h_{298}^o + \int_{298}^T c_p dT$$

Si entre 25°C y T hay un cambio de fase a Ti:

$$h_{T}^{o} = h_{298}^{o} + \int_{298}^{T_{i}} c'_{p} dT + L + \int_{T_{i}}^{T} c''_{p} dT$$

CALORES Y ENERGÍAS LIBRES DE FORMACIÓN

Tabla 3-202. Calores y energías libres de formación de compuestos orgánicos e inorgánicos — (Continuación)

Compuesto											- 100 - 100	The material and the second			Estado †	Calor de formación ‡ § ΔΗ (formación) 25°C, Kcal./mol	Energía libre de formación \Delta F (formación) a 25 ° C. Kcal./mol
HC₂H;	O:	2 .													1 400	-116.2	-93.56
H ₂ C ₂ O	٠.											١.			aq, 400 c	-116.74 -196.7	96.8
HCOC	H						ij.						1 5		aq, 300	-194.6 -97.8	-165.64
H ₂ CO ₂												1	٠	-	aq, 200	-98.0	-82.7 -85.1
HF .							:	:	•		•		•		aq g	-167.19 -64.2	-149.0
ні.							- 5				•		•		aq, 200	-75.75	-64.7
	•	. *	•	•		•	•	•			•	•	•		aq, 400	6.27 —13.47	0.365 —12.35
HIO. HIO:	•	•	•	•											aq	-38	-12.33 -23.33
	•	•	•	٠		•	•		•	•	•		•	•	C aq	-56.77 -54.8	-32.25
HN ₃ .	•		•	•		•	•								8	70.3	78.50
		•	•	•		•	•	•		•	•	•	•	۰	S endist pa	-31.99 -41.35	-17.57 -19.05
HNO3.	H ₂	0			•			•			٠				aq, 400	-49.210 -112.91	—78.36
H₂O .									ž.						g	-57.7979	193.70 54.6351
H ₂ O ₂		1					- 3	2	+							-68.3174	56.6899
	•	•	•	•	•	•	•	•		•	•	•	•	•	aq, 200	-45.16 -45.80	-28.23 -31.47
H ₂ PO ₂	•	•	•	٠	٠	٠					•		•	٠	C aq	-145.5 -145.6	
H ₂ PO ₂															c	-232.2	-120.0
H ₂ PO ₄							3		of the same					192	aq	-232.2 -306.2	-204.0
H ₂ S .							1	10 m		•	•		•	•	aq, 400	-309.32	-270.0
	•	•	•	•	٠	•	•	. €€\$3 1889	•	•	•	•	•	٠	aq, 2 000	-4.77 -9.38	—7.85
12S2																-3.6	

Para el agua:

En 2: Líquido ligeramente comprimido a T=25°C y Po=1atm

• Se cumple para este líquido que $h_2 \sim h_{f2'}$ (a T=25°C)

Estado hipotético: vapor, con comportamiento de gas ideal, a T=25°C y Po=1atm (no se puede ubicar en el diagrama)

Se cumple para este vapor que

$$h_{v,25^{\circ}C,1atm} \sim h_1 = h_{g1}$$
 a T=25°C, por considerarse gas ideal con h=f(T).

Luego:
$$h_{v,25^{\circ}C,1atm} = h_{f2'} + h_{fg, 25^{\circ}C}$$

CALOR DE REACCIÓN A VOLUMEN CONSTANTE

$$dQ = dU + P \, dV$$

Si la transformación es a V = ctte: dQv = dU

$$U = f(T, V, \lambda)$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,\lambda} dT + \left(\frac{\partial U}{\partial V}\right)_{T,\lambda} dV + \left(\frac{\partial U}{\partial \lambda}\right)_{T,V} d\lambda$$

Como la transf. es a V = ctte; dV = 0

$$dQ_{V} = dU = \left(\frac{\partial U}{\partial T}\right)_{V,\lambda} dT + \left(\frac{\partial U}{\partial \lambda}\right)_{T,V} d\lambda$$

CALOR DE REACCIÓN A VOLUMEN CONSTANTE

$$dQ_{V} = dU = \left(\frac{\partial U}{\partial T}\right)_{V,\lambda} dT + \left(\frac{\partial U}{\partial \lambda}\right)_{T,V} d\lambda$$

$$dQ_{v} = C_{V\lambda}dT + \Delta U_{VT}d\lambda$$

Calor de reacción a volumen constante

Coincide con el calor intercambiado con el medio cuando:

- Además de V es también T constante
- λ varía de 0 a 1: La reacción se produjo en forma completa una vez.

RELACIÓN ENTRE ΔH_{PT} Y ΔU_{VT}

$$H = U + PV$$

Si P y T son constantes

$$\Delta H_{PT} = \Delta U_{PT} + P \Delta V_{PT}$$

$$\Delta U_{PT} = \Delta U_{VT} = \Delta U_{T}$$

$$\Delta H_{PT} = \Delta U_{VT} + P \Delta V_{PT}$$

RELACIÓN ENTRE ΔH_{PT} Y ΔU_{VT} $\Delta H_{PT} = \Delta U_{VT} + P \Delta V_{PT}$

Para líquidos y sólidos:
$$\Delta V_{PT} = 0$$

 $\Delta H_{PT} = \Delta U_{VT}$

Para gases:
$$PV = nRT$$
 $V = nRT/P$ $\Delta V_{PT} = \Delta nRT/P$ $P\Delta V_{PT} = \Delta nRT$ $\Delta H_{PT} = \Delta U_{VT} + P\Delta V_{PT}$ $\Delta H_{PT} = \Delta U_{VT} + \Delta nRT$ Sólo para gases: $\Sigma \eta_{gproductos} - \Sigma \eta_{greactivos}$

MEDICIÓN DEL CALOR DE REACCIONES DE COMBUSTIÓN BOMBA CALORIMÉTRICA:

- **≻Rápida**
- **≻**Completa
- **>Sin reacciones 2°**

Ej: a) OFe (s) + CO (g) = $CO_2(g) + Fe(s)$; kcal/mol

$$\Delta H_{PT}^{\circ} = \sum_{i} a_{i} h_{iPT}^{\circ}$$

$$= (\sum_{i} a_{i} h_{iPT}^{\circ})_{prod} - (\sum_{i} |a_{i}| h_{iPT}^{\circ})_{react}$$

- > Ecuación química balanceada estequiométricamente
- \succ Las unidades de ΔH_{PT}° : Kcal/mol se refieren al mol de los compuestos que tengan coeficiente esteq. = 1
- > Al buscar los h_{i PT} en Tablas, tener en cuenta <u>la fase</u>

Tablas de Calores Normales de Formación del MANUAL PERRY (GUÍA DE TABLAS)

Rta. a) -3,016 kcal/mol

LEYES TERMOQUÍMICAS

1 – LEY DE LAVOISIER Y LAPLACE:

"El cambio térmico que acompaña a una reacción química en una dirección es de magnitud exactamente <u>igual</u> pero de <u>signo contrario</u> al que va asociado con la misma reacción <u>en sentido inverso</u>"

LEY DE LAVOISIER Y LAPLACE

EJEMPLO:

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l)$$
 $\Delta H_{298}^{\circ} = -21280 \frac{kcal}{mol}$

$$\Delta H_{298}^{\circ} = -21280 \frac{kcal}{mol}$$

$$CO_2(g) + 2H_2O(l) = CH_4(g) + 2O_2(g)$$
 $\Delta H_{298}^{\circ} = 21280 \frac{kcal}{mol}$

$$\Delta H_{298}^{\circ} = 21280 \frac{kcal}{mol}$$

2 - LEY DE HESS:

"El cambio térmico a P=ctte o a V=ctte de una reacción química dada es el mismo, tanto si tiene lugar en una etapa como si se verifica en varias etapas"

Es decir: ΔU o ΔH dependen sólo de los <u>estados</u> <u>inicial y final</u> del sistema y son independientes del camino seguido.

Por lo tanto: A las ecuaciones químicas se le pueden aplicar <u>operaciones matemáticas como si fueran</u> ecuaciones algebraicas.

LEY DE HESS

Así, mediante la combinación de diferentes reacciones, cuyo calor de reacción se conoce o se puede medir fácilmente, se puede <u>calcular el de otra reacción de difícil medición</u>.

Ejemplo: Cálculo del calor de formación del metano (CH₄).

C (grafito) +
$$2H_2$$
 (g) = CH_4 (g); ΔH_{298}° = ?

Tomemos las siguientes reacciones:

a -
$$CH_4(g) + 2 O_2(g) = CO_2(g) + 2 H_2O(l);\Delta H_{298}^{\circ} = -212,798 \text{ kcal/mol}$$

$$b - H_2(g) + \frac{1}{2} O_2(g) = H_2O(l)$$
; $\Delta H_{298b} = -68,3174 \text{ kcal/mol}$

c - C (grafito) +
$$O_2$$
 (g) = CO_2 ; $\Delta H_{298}^{\circ} = -94,052 \text{ kcal/mol}$

Se deben combinar estas tres reacciones de forma de obtener la reacción cuyo calor se quiere conocer, que es:

C (grafito) +
$$2H_2(g) = CH_4(g)$$
; $\Delta H_{298}^{\circ} = ?$

Esto se logra operando así: 2 b + c - a

2 b:
$$2 H_2(g) + O_2(g) = 2 H_2O(l)$$
; $2*\Delta H_{298b} = 2*(-68,3174)$ kcal/mol

c: C (grafito) +
$$\mathcal{O}_2$$
 (g) = CO_2 ; $\Delta H_{298}^{\circ} = -94,052 \text{ kcal/mol}$

-a:
$$CO_2(g) + 2H_2O(l) = CH_4(g) + 2O_2(g); -\Delta H_{298}^{\circ} = 212,798 \text{ kcal/mol}$$

2 b + c - a:
$$C(grafito) + 2H_2(g) = CH_4(g)$$

$$\Delta H_{298}^{\circ} = 2*\Delta H_{298b}^{\circ} + \Delta H_{298c}^{\circ} - \Delta H_{298a}^{\circ}$$

$$\Delta H_{298}^{\circ} = -2*68,3174 - 94,052 + 212,798 = (-17,889 \text{ kcal/mol})$$

DEPENDENCIA DE LOS CALORES DE REACCIÓN CON LA TEMPERATURA. ECUACIÓN DE KIRCHHOFF

Anteriormente, vimos que:

$$dQ_{P} = dH = \left(\frac{\partial H}{\partial T}\right)_{P,\lambda} dT + \left(\frac{\partial H}{\partial \lambda}\right)_{T,P} d\lambda$$

$$dQ_P = C_{P\lambda}dT + \Delta H_{PT}d\lambda$$

Por una propiedad de las derivadas parciales:

$$\frac{\partial C_{P\lambda}}{\partial \lambda} = \frac{\partial \Delta H_{PT}}{\partial T}$$

$$C_{P\lambda} = n_1 c_{p1} + n_2 c_{p2} + ... + n_m c_{pm}$$
; $n_i = n_i^o + a_i \lambda$

$$\left(\frac{\partial C_{P\lambda}}{\partial \lambda}\right) = \left(\frac{\partial C_{P\lambda}}{\partial n_1}\right)_{n_j} \frac{dn_1}{d\lambda} + \left(\frac{\partial C_{P\lambda}}{\partial n_2}\right)_{n_j} \frac{dn_2}{d\lambda} + \dots + \left(\frac{\partial C_{P\lambda}}{\partial n_m}\right)_{n_j} \frac{dn_m}{d\lambda}$$

$$\frac{\partial C_{P\lambda}}{\partial \lambda} = c_{P1}a_1 + c_{P2}a_2 + \dots = \sum_{i=1}^{m} c_{Pi}a_i$$

Teorema de Kirchhoff

Luego, como
$$\frac{\partial C_{P\lambda}}{\partial \lambda} = \frac{\partial \Delta H_{PT}}{\partial T}$$
 \Rightarrow $\frac{\partial \Delta H_{PT}}{\partial T} = \sum_{i=1}^{m} c_{Pi} a_i$

$$\frac{\partial \Delta H_{PT}}{\partial T} = \sum_{i=1}^{m} c_{Pi} a_{i}$$

$$\frac{\partial \Delta H_{PT}}{\partial T} = \sum_{productos} c_{Pi} a_i - \sum_{reactivos} c_{Pi} |a_i|$$

$$\frac{\partial \Delta H_{PT}}{\partial T} = \sum_{i=1}^{m} c_{Pi} a_{i}$$

$$d\Delta H_{PT} = \sum_{1}^{m} a_i c_{pi} dT$$

Integrando en forma definida:

$$\int_{\Delta H_{PT1}}^{\Delta H_{PT2}} d\Delta H_{PT} = \int_{T_1}^{T_2} \sum_{1}^{m} a_i c_{pi} dT$$

$$\Delta H_{PT2} = \Delta H_{PT1} + \int_{T_1}^{T_2} \sum_{1}^{m} a_i c_{pi} dT$$

$$\Delta H_{PT2} = \Delta H_{PT1} + \int_{T_1}^{T_2} \sum_{1}^{m} a_i c_{pi} dT$$

Hay que conocer cómo varían los c_{pi} con T

$$c_{pi} = c_{pi} \frac{|T_2|}{|T_1|} = ctte$$

$$c_{pi} = A_i + B_i T + C_i T^2$$

En este último caso:

$$\Delta H_{PT2} = \Delta H_{PT1} + \int_{T_1}^{T_2} \sum_{i=1}^{m} a_i (A_i + B_i T + C_i T^2) dT$$

$$\alpha = \sum a_i A_i \qquad \beta = \sum a_i B_i \qquad \delta = \sum a_i C_i$$

$$\Delta H_{PT2} = \Delta H_{PT1} + \int_{T_1}^{T_2} \left(\alpha + \beta T + \delta T^2\right) dT$$

$$\Delta H_{PT2} = \Delta H_{PT1} + \alpha (T_2 - T_1) + \frac{\beta}{2} (T_2^2 - T_1^2) + \frac{\delta}{3} (T_2^3 - T_1^3)$$

$$\int_{\Delta H_{PT1}}^{\Delta H_{PT2}} d\Delta H_{PT} = \int_{T_1}^{T_2} \sum_{1}^{m} a_i c_{pi} dT$$

Si ahora consideramos:

$$c_{pi} = c_{pi} \frac{1}{2} \Big|_{T_1}^{T_2} = ctte$$

$$\int_{\Delta H_{PT1}}^{\Delta H_{PT2}} d\Delta H_{PT} = \sum_{i=1}^{m} a_i c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} \int_{T_1}^{T_2} dT = \sum_{i=1}^{m} a_i c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} \left(T_2 - T_1\right)$$

$$\int_{\Delta H_{PT1}}^{\Delta H_{PT2}} d\Delta H_{PT} = \sum_{productos} a_i c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_2 - T_1) + \sum_{reactivos} |a_i| c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_2 - T_2)$$

$$\Delta H_{PT2} = \Delta H_{PT1} + \sum_{productos} a_i c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_2 - T_1) + \sum_{reactivos} |a_i| c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_1 - T_2)$$
43

$$\Delta H_{PT2} = \sum_{reactivos} \left| a_i \right| c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_1 - T_2) + \Delta H_{PT1} + \sum_{productos} a_i c_{pi \frac{1}{2}} \Big|_{T_1}^{T_2} (T_2 - T_1)$$

Hemos aplicado la Ley de Hess!!!!

Tabla 19. Capacidades caloríficas medias molares de gases entre 25 y t °C a P=ctte cal/(mol-g) (°K)

		·	,					r	,			,	,		
t'	H ₂	N ₂	CO.	Aire	O 2	NO	H ₁ O	CO:	HCI	Cl:	CH.	802	C ₂ H ₄	80,	C.H.
25	6,894	6,961	6,965	6,972	7,017	7,134	8,024	8,884	6,96	8,12	8,55	9,54	10,45	12,11	12,63
100	6,924	6,972	6,983	6,996	7,083	7,144	8,084	9,251	6,97	8,24	8,98	9,85	11,35	12,84	13,78
200	6,957	6,996	7,017	7,021	7,181	7,224	8,177	9,701	6,98	8,37	9,62	10,25	12,53	13,74	15,27
300	6,970	7,036	7,070	7,073	7,293	7,252	8,215	10,108	7,00	8,48	10,29	10,62	13,65	14,54	16,72
400	6,982	7,089	7,136	7,152	7,406	7,301	8,409	10,462	7,02	8,55	10,97	10,94	14,67	15,22	18,11
500	6,995	7,159	7,210	7,225	7,515	7,389	8,539	10,776	7,06	8,61	11,65	11,22	15,60	15,82	19,39
600	7,011	7,229	7,289	7,299	7,616	7,470	8,678	11,053	7,10	8,66	12,27	11,45	16,45	16,33	20,58
700	7,032	7,298	7,365	7,374	7,706	7,549	8,816	11,303	7,15	8,70	12,90	11,66	17,22	16,77	21,68
800	7,060	7,369	7,443	7,447	7,792	7,630	8,963	11,53	7,21	8,73	13,48	11,84	17,95	17,17	22,72
900	7,076	7,443	7,521	7,520	7,874	7,708	9,109	11,74	7,27	8,77	14,04	12,01	18,63	17,52	23,69
1000	7,128	7,507	7,587	7,593	7,941	7,773		11,92		-	1	_		The state of the s	
1100	7,169	7,574	7,653	7,660	8,009	7,839	9,389	12,10	7,39	8,82	15,04	12,28	19,81	18,17	25,40
1200	7,209	7,635	7,714	7,719	8,068	7,898	9,524	12,25	7,45	8,94	15,49	12,39	20,33	18,44	26,15
1300	7,252	7,692	7,772	7,778	8,123	7,952	9,66	12;39	Ť	· I	Ť		<u></u>	}	
1400	7,288	7,738	7,818	7,824	8,166	7,994	9,77	12,50			- 1		[
1500	7,326	7,786	7,866	7,873	8,203	8,039	9,89	12,69			- 1		1	1	
1600	7,386	7,844	7,922	7,929	8,269	8,092	9,95	12,75			- 1		. {	I	,
1700	7,421	7,879	7,958	7,965	8,305	8,124	10,13	12,70		. [1	[{	[
	7.467			-	• ,	•		12,94			l	1			:
	7,505							13,01	1	- 1		ļ	Ì	Į	
	7,548							13,10	l		1	ſ		4	
	7,588							13,17	İ		ł	I	Ī	{	
	7,624							13,24	İ					1	

COMBUSTIÓN

COMBUSTIÓN

COMBUSTIBLES

Tradicionales: HC

- Carbón mineral
- HC derivados del petróleo:

Líquidos Gaseosos

Nafta Diesel Gas natural

 C_8H_{18} $C_{12}H_{26}$ CH_4

(Octano) (dodecano) (metano)

Alternativos

- Biogas
- Biodiesel
- Alcoholes
- -Otros residuos orgánicos

COMBUSTIÓN

Ejemplo: Combustión del metano con oxígeno molecular

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$$
; $\Delta H_{298}^\circ = -191,76$ kcal/mol "Humos"
$$\begin{cases} 21 \text{ moles de } O_2: 21\% \text{ molar o en volumen} \\ 79 \text{ moles de } N_2: 79\% \text{ molar o en volumen} \end{cases}$$

$$21 \text{ moles } O_2 = -191,76 \text{ kcal/mol}$$

1 mol O₂ 79/21 moles N₂ 3,76

Completa: Todo el "C" del combustible se oxida a CO₂

Ej:

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$$

COMBUSTIÓN

Incompleta: En los humos aparece parte de CO y/o HC no quemado

Ej:

$$CH_4(g) + 1,95 O_2(g) = 0,9 CO_2(g) + 0,1 CO(g) + 2 H_2O(g)$$

AIRE TEÓRICO:

Aire que suministra el O₂ "estequiométrico" para combustión "completa"

$$CH_4(g) + 2O_2(g) + 7,52N_2(g) = CO_2(g) + 2H_2O(g) + 7,52N_2(g)$$

9,52 moles de "aire teórico"

EXCESO DE AIRE

Se suministra más aire que el estequiométrico para conseguir combustión completa

```
Ej.: 150% aire teórico
```

Se multiplican los moles de aire teórico por 1,5

$$CH_4(g) + 1.5 *2 O_2(g) + 1.5 *7.52 N_2(g) = CO_2(g) + 2 H_2O(g) + 1.5 *7.52 N_2(g) + 0.5 *2 O_2(g)$$

También: 50% de "exceso" de aire ; o sea
$$e=0.5$$
 (1+e) (1+e) (1+e) (1+o.5) 7,52 N₂(g)=CO₂(g) + 2 H₂O(g) + (1+o.5) 7,52 N₂(g) = CO₂(g) + 0.5 *2 O₂(g) (1+e) e

RELACIÓN AIRE - COMBUSTIBLE: A/C

 $A/C = n^{\circ}$ moles aire / n° moles combust

A/C = masa aire / masa combustible

(15-16 para combustión estequiométrica)

A/C = volumen aire (Nm³)/masa combust

CALOR DE COMBUSTIÓN

"Calor de reacción" de una combustión, a P y T, en kcal/mol comb.

 $\Delta H_{PT} < 0$; "exotérmica"

CALOR "NORMAL" DE COMBUSTIÓN

"Calor de reacción" de una combustión, a 1atm y 25°C, en kcal/mol comb

 $\Delta H_{298}^{\circ} < 0$; "exotérmica"

ESTÁN TABULADOS

PODER CALORÍFICO

"Calor de reacción" de una combustión completa del combustible a P y T, en kcal/kg comb, en valor absoluto (siempre positivo)

PODER CALORÍFICO NORMAL

"Calor de reacción" de una combustión completa del combustible, a 1atm y 25°C, en kcal/kg comb, en valor absoluto (siempre positivo)

PODER CALORIFICO SUPERIOR

Calor de reacción de una combustión, a 1atm y 25°C, en kcal/kg comb, en valor absoluto (siempre positivo), estando el <u>agua en estado líquido</u> : Ns

PODER CALORÍFICO INFERIOR

Calor de reacción de una combustión, a 1atm y 25°C, en kcal/kg comb, en valor absoluto (siempre positivo), estando el <u>agua en estado</u> Ni vapor:

$$Ni = Ns - L(a + 9h)$$

Sabemos que:
$$H_2 + \frac{1}{2} O_2 = H_2 O$$

En masa:
$$2 \text{ kg} + 16 \text{kg} = 18 \text{kg}$$

En masa:
$$2 \text{ kg} + 16 \text{kg} = 18 \text{kg}$$

O bien: $1 \text{ kg} + 8 \text{ kg} = 9 \text{ kg}$

L: Calor latente de vaporización del agua a: kg agua en el comb / kg comb h: kg de hidrógeno en el comb/kg comb

CALORES DE COMBUSTIÓN

Tabla 3-203. Hidrógeno, carbono, monóxido de carbono e hidrocarburos

Los calores de combustión de compuestos formados por adición se calculan partiendo de los calores de formación dados en la tabla 3-202, página 183.

Los valores siguientes proceden de las tablas del American Petroleum Institute Research, Project 44, del National Bureau of Standards, sobre Colección, Análisis, Cálculo y Recopilación de Datos sobre las Propiedades de los Hidrocarburos.

	4	Estado	Caler de combustión, —∆He°, a 25 °C. y presión constante						
Compuesto			H ₂ O (1	íq.) y CO2	(gas)	H ₂ O (gas) y CO ₂ (gas)			
	Fórmula		Kcal. por mol	cal. por g	B.t.u. por lb.	Kcal. por mol	cal. por g	B.t.u. por lb.	
Hidrógeno	H ₂	gas sól.	68.3174 94.0518	33 887.6 7 831.1	60 957.7 14 086.8	57.7979	28 669.6	51 571.4	
Carbono, monóxido	co	grafito gas	67.6361	2 414.7	4 343.6				
	100		Parafina	ls .			w. in a julian		
Metano	CH ₄ C ₂ H ₆	gas	212.798 372.820	13 265.1 12 399.2	23 861 22 304	191.759 341.261	11 953.6 11 349.6	21 502 20 416	
Propano	C.H.	liq.	530.605	12 033.5	21 646 21 490	488.527 484.704	11 079.2 10 992.5	19 929 19 774	
Propano	C ₄ H ₁₀		526.782 687.982	11 946.8 11 837.3	21 293	635.384	10 932.3	19 665	
e-Butano	C.H.	liq.	682.844	11 748.9	21 134	630.246	10 843.9	19 506	
-Metilpropano (isobutano) .	C4H10		686.342	11 809.1	21 242	633.744	10 904.1	19 614	
-Metilpropano (isobutano) .	CaHa	liq.	681.625	11 727.9	21 096	629.027	10 822.9	19 468	
-Pentano	CaH12	gas	845.16	11 714.6	21 072	782.04	10 839.7	19 499	
-Pentano	CeH11	liq.	838.80	11 626.4	20 914	775.68	10 751.5	19 340	
-Metilbutano (isopentano) .	CaH12	liq.	843.24	11 688.0	21 025	780.12	10 813.1	19 451	
2-Metilbutano (isopentano) .	C4H11	liq.	837.31	11 605.8	20 877	774.19	10 730.9	19 303	
2,2-Dimetilpropano (neopen-	CaHıs	2.0	840.49	11 649.8	20 956	777.37	10 775.0	19 382	
tano)	Carris	gas	040.49	11 043.0	20 930	111.31	10 773.0	13 302	
tano)	C ₄ H ₁₂	líg.	835.18	11 576.2	20 824	772.06	10 701.4	19 250	
-Hexano	CaHia		1 002.57	11 634.5	20 928	928.93	10 780.0	19 391	
-Hexano	CaHia	liq.	995.01	11 546.8	20 771	921.37	10 692.2	19 233	
2-Metilpentano	CeH14	gas	1 000.87	11 614.8	20 893	927.23	10 760.2	19 356	
2-Metilpentano	C4H14	liq.	993.71	11 531.7	20 743	920.07	10 677.1	19 206	
-Metilpentano	CeH14	liq.	1 001.51	11 622.2	20 906	927.87	10 767.6	19 369	
-Metilpentano	C6H14		994.25	11 538.0	20 755 20 837	920.61	10 683.4 10 728.9	19 218 19 299	
2,2-Dimetilbutano	CeHie	liq.	998.17 991.52	11 583.5 11 506.3	20 698	924.53 917.88	10 651.7	19 161	
	CaH14		1 000.04	11 605.2	20 876	926.40	10 750.6	19 338	
2,3-Dimetilbutano	CeH14	gas líg.	993.05	11 524.0	20 730	919.41	10 669.5	19 192	
-Heptano	C ₂ H ₁₀	gas	1 160.01	11 577.2	20 825	1 075.85	10 737.2	19 314	
-Heptano	CtHie	lig.	1 151.27	11 489.9	20 668	1 067.11	10 650.0	19 157	
2-Metilhexano	CiHie	gas	1 158.30	11 560.1	20 795	1 074.14	10 720.2	19 284	
2-Metilhexano	CtH16	liq.	1 149.97	11 477.0	20 645	1 065.81	10 637.0	19 134	
3-Metilhexano	C7H10	gas	1 158.94	11 566.5	20 806	1 074.78	10 726.6	19 295	
-Metilhexano	CrH16	liq.	1 150.55	11 482.8	20 655	1 066.39	10 642.8	19 145	
3-Etilpentano	CtHie	gas	1 159.56	11 572.7	20 817	1 075.40	10 732.7 10 648.6	19 306 19 155	
3-Etilpentano	C1H16	liq.	1 151.13	11 488.6	20 666	1 066.97	1U 010.0	19 133	

PUNTO DE ROCIO

Es la Tsat del vapor de agua a la presión parcial del vapor en los humos.

Al enfriarse los humos y alcanzar esta temperatura, el agua comienza a condensarse y suele combinarse con el SO₂ que puede estar presente en los humos. Se forma SO₄H₂ (ácido sulfúrico) **MUY CORROSIVO.**

Se debe mantener la temperatura de lo humos mayor a la de rocío hasta su descarga a la atmósfera. 56

ANÁLISIS DE LOS PRODUCTOS DE LA COMBUSTIÓN (En base SECA)

Figura 5 - 4: Arreglo esquemático del aparato de ORSAT

TEMPERATURA MÁXIMA DE LLAMA Ó TEMPERATURA DE LLAMA ADIABÁTICA

Anteriormente, vimos que:

$$dQ_{P} = dH = \left(\frac{\partial H}{\partial T}\right)_{P,\lambda} dT + \left(\frac{\partial H}{\partial \lambda}\right)_{T,P} d\lambda$$

$$dQ_P = C_{P\lambda}dT + \Delta H_{PT}d\lambda$$

Si la cámara de combustión es adiabática: $dQ_P = 0$

$$0 = C_{P\lambda}dT + \Delta H_{PT}d\lambda$$

$$T_{o}$$
 λ_{o}
 λ_{f}

$$0 = \int_{T_o}^{T_f} C_{P\lambda} dT + \int_{\lambda_o}^{\lambda_f} \Delta H_{PT} d\lambda$$

$$T_{f}$$
 T_{o}
 $\lambda_{o}=0$
 $\lambda_{f}=1$
 $\lambda_{f}=1$
 $\lambda_{f}=1$

$$0 = \int_{\lambda_o=0}^{\lambda_f=1} \Delta H_{PTo} d\lambda + \int_{T_o}^{T_f} C_{PT} dT ; Siendo C_{P\lambda f} = \sum_{\text{Productos}} n_i c_{pi}$$

Y si son cantidades estequiométricas

$$C_{P\lambda f} = \sum_{\text{Productos}} a_i c_{pi}$$

$$\int_{\lambda_o=0}^{\lambda_f=1} \Delta H_{PTo} d\lambda = \Delta H_{PTo}$$

$$\lambda_o=0$$

Luego:

$$0 = \int_{T_o}^{T_f} C_{P\lambda f} dT + \int_{\lambda_o=0}^{\lambda_f=1} \Delta H_{PTo} d\lambda$$

Resulta

$$0 = \int_{T_o}^{T_f} \left(\sum_{\text{Productos}} a_i c_{Pi} \right) dT + \Delta H_{PTo}$$

$$0 = \int_{T_o}^{T_f} \left(\sum_{\text{Productos}} a(C_{Pi}) \right) dT + \Delta H_{PTo}$$

Hay que conocer cómo varían los $C_{piproductos}$ con T

$$c_{pi} = c_{pi} \frac{|Tf|}{|T_o|} = ctte$$

$$c_{pi} = A_i + B_i T + C_i T^2$$

En este último caso:

$$0 = \Delta H_{PTo} + \int_{To \text{Productos}}^{Tf} \sum_{i} a_i \left(A_i + B_i T + C_i T^2 \right) dT$$

Si:
$$\alpha = \sum_{\text{Productos}} a_i A_i$$
 $\beta = \sum_{\text{Productos}} a_i B_i$ $\delta = \sum_{\text{Productos}} a_i C_i$

Luego:
$$0 = \Delta H_{PTo} + \int_{To}^{IJ} (\alpha + \beta T + \delta T^2) dT$$

Integrando:

$$0 = \left(\alpha T_f + \frac{\beta}{2} T_f^{2} + \frac{\delta}{3} T_f^{3}\right) - \left(\alpha T_o + \frac{\beta}{2} T_o^{2} + \frac{\delta}{3} T_o^{3}\right) + \Delta H_{PTo}$$

Hay que resolver una ecuación cúbica en Tf

Si ahora se considera:

$$c_{piPRODUCTOS} = c_{piPR} \frac{1}{2} \Big|_{To}^{T_f} = ctte$$

$$0 = \Delta H_{PTo} + \int_{To \text{Productos}}^{Tf} \sum_{a_i c_{pi} \frac{1}{2}} \left| a_i c_{pi} \right|_{To}^{Tf} dT = \Delta H_{PTo} + \left(T_f - T_o \right) \sum_{\text{Productos}} a_i c_{pi} \frac{1}{2} \left| r_o \right|_{To}^{Tf}$$

Despejando:

$$T_{f} = T_{o} + \frac{\left(-\Delta H_{PT_{o}}\right)}{\sum_{\text{Productos}} a_{i} c_{Pi \frac{1}{2}} \Big|_{To}}$$

Se resuelve por iteraciones, asumiendo un T_f .

La temperatura máxima de llama real es < a la teórica debido a:

- ➤ La combustión no es adiabática (Pérdidas por radiación y conducción)
- > Combustión incompleta
- ➤ Disociación endotérmica del CO₂ y del H₂O a temperaturas elevadas
- > Exceso de aire

FIN