Downloading data from MAST	
Secretary of the second control of the secon	
2. Per last an extension of the control of the cont	
Fig. 10 Comment Comm	
Time conditions of the control of	
The control of the co	
Fig. 1. Sec. 1	
Institution Additional Control of State Additional Control o	
To the demonstative of the policy of the production of the labeled debased, in this insurance the median harmon, You may various and warning all this step with the case productions of the productions of the production of the pro	
Obserz/dos inex/ain transis/envi/posta-scape-1.01 li/pyshada.0/site-spackages/aumgy/lib/nor furethime.py:127: Runt inelianting: All-NeW Alice encountered experience function brosscontexteds_func_connection, longitude-despitatory lead and rate initis. Subper 128b, 284st Now we need to extinct the papid wheel position of the GRYDOXD func the header given by the appropriate between the despitatory large transition banded eding activity. One papid wheel position of the GRYDOXD function be needed in the papid position of the GRYDOXD function between the value from the header, roce before from activities banded eding activity. One papid wheel position of the GRYDOXD function between the value from the header, roce before from activities banded using the GRATCH method. The keyword we are interested in is the papidgestion from activities in the papidgestion in the papidgestion from activitiesgestion from activitiesgestiongestion from activitiesgestiongestion from activitiesgestiongestion from activitiesgestion	
Now we need to extract the pupil wheel position of the GR70XD from the header given by the appropriate xeyword. Also, a JWST distanced ubject makes it easy to search keywords but using the SEBTCH method. The keyword we are interested in is the pupil_position data is loaded using astropy, one can use the PKCPOS keyword to extract the value from the header, see below: from ustropy, it is import filts proved into import	
Lenstruent (dict) Linstruent (. Alternativel
print(f"The PWCPOS value for {rateints.meta.filename} is {pwcpos:3f} degrees") The PWCPOS value for jwd1512005001_03102_00001_nis_rateints.fits is 245.808000 degrees Now let's plot the SOSS Observation data. # Plot the image plt.figurc(figsize=(6,3), dp1=200) plt.title(f'(rateints.meta.filename)') plt.timle(mplan_to_num(mplan	
<pre>plt.figure(figsize=(6,3), dpi=200) plt.title(f'{rateints.meta.filename}') plt.imshow(np.nan_to_num(median_rateints), vmin=0, vmax=20, origin='lower', aspect='auto',cmap='inferno') plt.xlabel('x [pix]') plt.ylabel('y [pix]') plt.show() jw01512005001_03102_00001_nis_rateints.fits 250 -</pre>	
jw01512005001_03102_00001_nis_rateints.fits	
∑ 150 -	
<u>□</u> > 100 -	
50 -	
0 250 500 750 1000 1250 1500 1750 2000 x [pix]	
The example observation show the three dispersed spectral orders along with some cross-contamination overlap of dispersed spectral orders from nearby field star. An order 0 of the nearby field star is present in the top right. The 1/f noise is given by the striped-banding acroin addition to the dispersed zodiacal background given by the sudden jump in counts near pixel column 700. It is a known issue that have a large number of D0_N0T_USE pixels with the current JWST calibration pipeline and are working to resolve this issues. These pixels were mark as nans. We can ignore these for the demo.	ross the imaç
Generate Trace Positions for a NIRISS/SOSS observation using PASTASOSS We will demonstratte how to use PASTASOSS to generate the spectral traces a NIRISS/SOSS observation where we only require the pupil wheel position or PWCPOS value which we have already extracted from the file header/datamodel.	
To do this we will use the <pre>get_soss_traces function from PASTASOSS .</pre> # get the order 1 traces for the desired PWCPOS traces_order1 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='1', interp=True) # now for order 2	
traces_order2 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='2', interp=True) The get_soss_traces method will use the included trace and wavelength calibration model to predict the trace (x, y) pixel positions and their associated wavelength values in units of microns. This method will return a TraceModel that is a dataclass object to store the trace (x, y, wavelength).	ice properties
type(traces_order1) pastasoss.soss_traces.TraceModel print(traces_order1) TraceModel(order='1' v=array([4	
TraceModel(order='1', x=array([4., 5., 6.,, 2041., 2042., 2043.]), y=array([83.099029 , 83.05656555, 83.0141021 ,, 74.89775841, 75.0819369 , 75.26284468]), wavelength=array([2.82857137, 2.8275845 , 2.82659758,, 0.85211363, 0.85123528, 0.85035722])) You can also called the function in a single line by the follow: # uncomment this line and run the cell	
# traces_order1, traces_order2 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='12', interp=True) Next, lets plot our traces we just generated for this observation ontop of our image. Let separate our traces into their x-,y-compenents. x1, y1, wave1 = traces_order1.x, traces_order1.y, traces_order1.wavelength	
x2, y2, wave2 = traces_order2.x, traces_order2.y, traces_order2.wavelength Now lets plots traces for orders 1 and 2 on top of our example SOSS observations. plt.figure(figsize=(6,3), dpi=200) plt.title(f'NIRISS/SOSS GR700XD\ntrace positions at PWCPOS={pwcpos:.3f}')	
<pre>plt.imshow(np.nan_to_num(median_rateints), vmin=0, vmax=30, origin='lower', aspect='auto', cmap='inferno') plt.plot(x1,y1, lw=1.5, label=f'order 1', color='cornflowerblue') plt.plot(x2,y2, lw=1.5, label=f'order 2', color='orangered') plt.xlabel('x [pix]') plt.ylabel('y [pix]') plt.legend()</pre>	
NIRISS/SOSS GR700XD trace positions at PWCPOS=245.808	
250 — order 1 — order 2	
200 - Sider 2 - 150 -	
Xig 100	
50 -	
0 250 500 750 1000 1250 1500 1750 2000	
X [pix] As you can see, we are able to predict the traces positions for orders 1 and 2 very well with sub-pixel performance. Order 1 has full coverage across the detector while order 2 extends from pixel column 1000 to 1750. This was due to the limit data at the time of producing the updated in the future to span 650 to 1750 and eventually span all of order 2. Order 3 will be supported in the future.	trace model
Spectral Extraction Now that we have our traces positions for spectral order 1 and 2, we can perform a simple aperutre extraction to extract the spectrum.	
<pre>data = np.nan_to_num(median_rateints.copy()) # ignore values less zero data[data<0] = 0 # Define how many pixels we want to set our aperture above and below the trace center</pre>	
<pre>npix = 15 # perform a simple aperture extraction via cutout of a desired window size. flux_order1 = [data[int(y)-npix:int(y)+npix, int(x)].sum() for x, y in zip(x1, y1)] flux_order2 = [data[int(y)-npix:int(y)+npix, int(x)].sum() for x, y in zip(x2, y2)]</pre>	
<pre>fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6)) fig.suptitle('Extracted SOSS Spectra') ax1.set_title('Order 1') ax1.plot(wave1, flux_order1, lw=1.5, label=f'order 1', color='cornflowerblue')</pre>	
<pre>ax1.set_xlabel('wavelength [um]') ax1.set_ylabel('DN/s') ax2.set_title('Order 2') ax2.plot(wave2, flux_order2, lw=1.5, label=f'order 2', color='orangered')</pre>	
<pre>ax2.set_xlabel('wavelength [um]') ax2.set_ylabel('DN/s') plt.tight_layout() plt.show()</pre>	
Order 1 Order 2	
20000 -	
15000 - Na 12500 - Na 10000 -	
10000 - 7500 - 5000 - 5000 - 7500 - 7	
2500	
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 wavelength [um] wavelength [um] plt.figure(figsize=(8,6), dpi=187) plt.plot(wave1, flux_order1, lw=1.5, label=f'order 1', color='cornflowerblue') plt.xlabel('wavelength [um]')	
<pre>plt.ylabel('DN/s') plt.text(1.25, 25000, 'Order 1', color='cornflowerblue') plt.twiny() plt.plot(wave2, flux_order2, lw=1.5, label=f'order 2', color='orangered') plt.text(0.7, 20000, 'Order 2', color='orangered') plt.ylabel('DN/s (order 2)')</pre>	
<pre>plt.xlabel('wavelength [um]') # plt.legend() plt.tight_layout() plt.show()</pre>	
wavelength [um] 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	
25000 - Order 1	
20000 - Order 2	
15000 - <u>≤</u>	
10000	
5000 -	
0-	
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 wavelength [um]	
Conclusion wavelength [um]	
This concludes the demo (v1.1) of how to use the PASATSOSS Package. Our goal with PASTASOSS to provide the community with a tool to predict the spectral traces (i.e, their positions on the detector and associated wavelengths for the three GR700XD diffraction orders) given a PWCPOS value. Future priority updates to include into the PASTASOSS package:	
Future priority updates to include into the PASTASOSS package: 1. Support for order 3 traces and wavelength calibration 2. Update trace and wavelength calibration models when more data becomes available 3. Possible integration into the JWST calibration pipeline (TBD).	
Additional features that may be included in the future: 1. integrated method(s) to trace spectral such as: • the applesoss edge-triger algorithm • transitspectroscopy cross-correlation algorithm	
 spatial profiles Background model prediction for Background Subtraction (integrated or standalone) 1/f noise removal 	
 spatial profiles Background model prediction for Background Subtraction (integrated or standalone) If noise removal If you use this tool in your work, please cite the tool and author(s). For questions about the tool or interested in contributing to the package in any way, please contact the authors. Links to Technical Reports (TBD): Visit-to-visit Trace Characterization (Jdox arXiv) 	
 spatial profiles Background model prediction for Background Subtraction (integrated or standalone) If noise removal If you use this tool in your work, please cite the tool and author(s). For questions about the tool or interested in contributing to the package in any way, please contact the authors. Links to Technical Reports (TBD):	