全国 2015 年 4 月高等教育自学考试

概率论与数理统计(二)试题

课程代码:02197

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分

注意事项:

- 1. 答题前,考牛务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔 填写在答题纸规定的位置上。
- 2. 每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡 皮擦干净后,再洗涂其他答案标号。不能答在试题卷上。
 - 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将"答题 纸"的相应代码涂黑。错涂、多涂或未涂均无分。
 - 1. 设 A, B 为随机事件,且 $B \subset A$, P(A) = 0.4, P(B) = 0.2 ,则 P(B|A) =
 - A. 0.2
- B. 0.4
- C. 0.5
- D. 1

- 2. 设随机变量 $X \sim B(3, 0.2)$,则 $P\{X > 2\}$ =
 - A. 0.008
- B. 0.488
- C. 0.512 D. 0.992
- 3. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x+2)^2}{8}}$, 则 $X \sim$
 - A. N(-2, 2) B. N(-2, 4) C. N(2, 2) D. N(2, 4)

- 4. 设随机变量 X 的分布函数为 F(x),则下列结论中不一定成立的是

- A. $F(-\infty)=0$ B. $F(+\infty)=1$ C. $0 \le F(x) \le 1$ D. F(x) 是连续函数
- 5. 设二维随机变量(X, Y)的分布律为

则 $P(X \leq Y) =$

- A. 0.25
- B. 0.45
- C. 0.55
- D. 0.75

浙 02197 # 概率论与数理统计(二)试题 第 1 页(共 4 页)

6.	设随机变量 X 服从参数为 $\stackrel{\cdot}{=}$ 的指数分布,则 $E(2X-1)=$					
	A. 0	B. 1	C. 3	D. 4		
7.	7. 设随机变量 X 与 Y 相互独立,且 $D(X) = D(Y) = 4$,则 $D(3X - Y) =$					
	A. 8	B. 16	C. 32	D. 40		
8.	8. 设总体 X 服从正态分布 $N(0, 1)$, x_1, x_2, \cdots, x_n 是来自 X 的样本,则 $x_1^2 + x_2^2 + \cdots + x_n^2 \sim$					
	A. $N\left(0, \frac{1}{n}\right)$	B. N(0, 1)	C. $\chi^2(n)$	D. <i>t</i> (<i>n</i>)		
9.	设 x ₁ , x ₂ , x ₃ , x ₄ 为来	天自总体 X 的样本,」	$\exists E(X) = \mu . \ \exists \hat{\mu}_1 = \frac{1}{2}$	$\frac{1}{2}(x_1+x_2+x_3)\;,$		
$\hat{\mu}_2 = \frac{1}{3}(x_1 + x_3 + x_4)$, $\hat{\mu}_3 = \frac{1}{4}(x_1 + x_2 + x_4)$, $\hat{\mu}_4 = \frac{1}{5}(x_2 + x_3 + x_4)$, $\emptyset \mu$ 的无偏估计是						
	A. $\hat{\mu}_1$	B. $\hat{\mu}_2$	C. $\hat{\mu}_3$	D. $\hat{\mu}_4$		
10. 设总体 $X \sim N(\mu, \sigma_0^2)$, σ_0^2 已知, x_1, x_2, \cdots, x_n 为来自 X 的样本, \overline{x} 为样本均值. 假						
	设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, μ_0 已知,检验统计量 $u = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}}$,给定检验水平 α ,则					
	拒绝 H_0 的理由是					
	A. $ u < u_{\frac{\alpha}{2}}$	$B. u > u_{\frac{a}{2}}$	C. $ u < u_{\alpha}$	D. $ u > u_{\alpha}$		
非选择题部分						
注意	意事项:					
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。						
=,	二、填空题(本大题共 15 小题,每小题 2 分,共 30 分)					
11.	1. 设事件 $A 与 B$ 相互独立, $P(A) = 0.3$, $P(B) = 0.5$, 则 $P(AB) =$					
12.	12. 设 A, B 为随机事件,且 $P(A) = 0.6$, $P(B) = 0.3$, $P(B A) = 0.2$,则 $P(A \cup B) = $					
13.	13. 设某射手命中率为 0.7, 他向目标独立射击 3 次,则至少命中一次的概率为					

14. 设随机变量 X 的分布律为

$$\begin{array}{c|ccccc} X & 0 & 1 & 2 \\ \hline P & 0.1 & c & 0.3 \\ \end{array}$$

则常数 $c = _____.$

- 15. 设随机变量 X~B(2,0.1),则 P{X=1}=_____.
- 16. 设随机变量 X 服从区间 [a,b] 上的均匀分布,则当 a < x < b 时,X 的分布函数 $F(x) = ______.$
- 17. 设随机变量 X 与 Y 相互独立,且 $P\{X \le 2\} = \frac{1}{3}$, $P\{Y \le 1\} = \frac{2}{5}$,则 $P\{X \le 2, Y \le 1\} = \frac{1}{3}$
- 18. 设随机变量 X 与 Y 相互独立,X 服从区间 [-2, 2] 上的均匀分布,Y 服从参数为 1 的指数分布. 则当 -2 < x < 2,y > 0 时,(X, Y) 的概率密度 $f(x, y) = _____.$
- 19. 设随机变量 X 与 Y 的相关系数为 0.4,且 D(X) = D(Y) = 9,则 $Cov(X,Y) = _____.$
- 20. 设随机变量 X 服从参数为 λ 的泊松分布, E(X) = 5 ,则 $\lambda =$ ______.
- 21. 设随机变量 X 与 Y 相互独立,且 $X \sim N(2,4)$, $Y \sim U(-1,3)$,则 E(XY) =
- 22. 设二维随机变量(X,Y)的分布律为

Y	1	2
0	0.1	0.3
1	0.2	0.4

则 $P{X + Y \le 2} =$ _____.

- 23. 设随机变量 X 的方差 D(X) 存在,则对任意小正数 ε ,有 $P\{|X-E(X)|<\varepsilon\}\geq$ ______.
- 24. 设 x_1, x_2, \dots, x_n 为来自正态总体N(1, 4) 的样本,则 $\frac{\bar{x}-1}{2/\sqrt{n}} \sim$ ______.
- 25. 设总体 $X \sim N(\mu, \sigma^2)$, 检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, μ_0 已知,给定检验水平 α ,则拒绝 H_0 的可信度为______.
- 三、计算题(本大题共2小题,每小题8分,共16分)
- 26. 盒中有 4 个白球, 2 个红球. 从中连续不放回地取两次, 每次取 1 个球. 求第二次取到红球的概率.
- 27. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 1 e^{-2x}, x > 0, \\ 0, x \le 0, \end{cases}$ 其概率密度为 f(x).

求: (1) f(5); (2) $P\{X > 5\}$.

浙 02197 # 概率论与数理统计(二)试题 第 3 页(共 4 页)

- 四、综合题(本大题共2小题,每小题12分,共24分)
- 28. 设随机变量 X 服从[0,1]上的均匀分布,随机变量 Y 的概率密度为

$$f_{\gamma}(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0, \end{cases}$$

且X与Y相互独立.

求: (1) X 的概率密度 $f_X(x)$; (2) (X, Y) 的概率密度 f(x,y); (3) $P\{X+Y \le 1\}$.

29. 设二维随机变量(X, Y)的分布律为

求: (1) E(X), E(Y); (2) D(X), D(Y); (3) E(XY), Cov(X,Y).

- 五、应用题(10分)
- 30. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases} (\theta > 0)$$

 x_1, x_2, \dots, x_n 为来自总体 X 的样本,求未知参数 θ 的极大似然估计 $\hat{\theta}$.