CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

Jihoon Tack, Sangwoo Mo, Jongheon Jeong , Jinwoo Shin 2020 NIPS

Presenter: jeonghoon park

Out-Of-Distribution Detection

• Dataset $\{x_m\}_{m=1}^M$

Out-of-distribution

Contrastive learning

Primitive form of the contrastive loss

$$\mathcal{L}_{\text{con}}(x, \{x_{+}\}, \{x_{-}\}) := -\frac{1}{|\{x_{+}\}|} \log \frac{\sum_{x' \in \{x_{+}\}} \exp(\sin(z(x), z(x'))/\tau)}{\sum_{x' \in \{x_{+}\} \cup \{x_{-}\}} \exp(\sin(z(x), z(x'))/\tau)},$$

where x: query, $\{x_+\}$: set of positive samples, $\{x_-\}$: set of negative samples, $\sin(z,z') = z \cdot z' / \|z\| \|z'\|$

SimCLR (w/o label)

positives

negatives

SupCLR (w/ label)

positives

negatives

Key Idea

• Discriminating within in-distribution => discriminating between in- and out-distribution

Negatives: from in-distribution

Sample x

OOD-like (hard augmented samples)

SimCLR

• SimCLR: for a given batch $\mathcal{B} := \{x_i\}_{i=1}^B$

$$\mathcal{L}_{\texttt{SimCLR}}(\mathcal{B};\mathcal{T}) := \frac{1}{2B} \sum_{i=1}^{B} \mathcal{L}_{\texttt{con}}(\tilde{\boldsymbol{x}}_{i}^{(1)}, \tilde{\boldsymbol{x}}_{i}^{(2)}, \tilde{\mathcal{B}}_{-i}) + \mathcal{L}_{\texttt{con}}(\tilde{\boldsymbol{x}}_{i}^{(2)}, \tilde{\boldsymbol{x}}_{i}^{(1)}, \tilde{\mathcal{B}}_{-i}),$$

$$\tilde{\mathcal{B}} := \{\tilde{x}_i^{(1)}\}_{i=1}^B \cup \{\tilde{x}_i^{(2)}\}_{i=1}^B \text{ and } \tilde{\mathcal{B}}_{-i} := \{\tilde{x}_j^{(1)}\}_{j \neq i} \cup \{\tilde{x}_j^{(2)}\}_{j \neq i}$$

where
$$\tilde{x}_i^{(1)} = T_1(x_i)$$
 and $\tilde{x}_i^{(2)} = T_2(x_i)$, $T_1, T_2 \sim \mathcal{T}$

	x_1	x_2	x_3
T_1	$\tilde{\chi}_1^{(1)}$	$\tilde{x}_2^{(1)}$	$\tilde{x}_3^{(1)}$
T_2	$\tilde{x}_1^{(2)}$	$\tilde{x}_2^{(2)}$	$\tilde{x}_3^{(2)}$

positives

Contrastive learning for distribution-shifting transformations

(I) Contrasting shifted instances loss

- ✓ Key finding: some augmentations can be useful for OOD detection by considering them as negatives
- \checkmark Family of augmentations S: distribution-shifting transformations, $S = \{S_0 = I, S_1, ..., S_{k-1}\}$
- ✓ Distributionally-shifted samples are considered as an OOD

$$\mathcal{L}_{ exttt{con-SI}} := \mathcal{L}_{ exttt{SimCLR}} \left(igcup_{S \in \mathcal{S}} \mathcal{B}_S; \mathcal{T}
ight), \quad ext{where } \mathcal{B}_S := \{S(x_i)\}_{i=1}^B.$$

	x_1	χ_2	x_3	$S_1(x_1)$	$S_1(x_2)$	$S_1(x_3)$	$S_2(x_1)$	$S_2(x_2)$	$S_2(x_3)$
T_1	$\widetilde{x}_1^{(1)}$	$\tilde{x}_2^{(1)}$	$\tilde{x}_3^{(1)}$	$\widetilde{S_1(x_1)}^{(1)}$	$\widetilde{S_1(x_2)}^{(1)}$	$\widetilde{S_1(x_3)}^{(1)}$	$\widetilde{S_2(x_1)}^{(1)}$	$\widetilde{S_2(x_2)}^{(1)}$	$\widetilde{S_2(x_3)^{(1)}}$
T_2	$\widetilde{x}_1^{(2)}$	$\tilde{x}_2^{(2)}$	$\tilde{x}_3^{(2)}$	$\widetilde{S_1(x_1)}^{(2)}$	$\widetilde{S_1(x_2)}^{(2)}$	$\widetilde{S_1(x_3)}^{(2)}$	$\widetilde{S_2(x_1)}^{(2)}$	$\widetilde{S_2(x_2)}^{(2)}$	$\widetilde{S_2(x_3)}^{(2)}$

positives

Contrastive learning for distribution-shifting transformations

(2) Classifying shifted instances loss

- \checkmark Predicts shifting transformation $y^S \in \mathcal{S}$ for a given input x
- \checkmark Add an linear layer to $f(\theta)$ for a classifier $p_{\text{cls-SI}}(y^S|x)$
- \checkmark \tilde{B}_S : batch augmented from B_S via SimCLR

$$\mathcal{L}_{\texttt{cls-SI}} := \frac{1}{2B} \frac{1}{K} \sum_{S \in \mathcal{S}} \sum_{\tilde{x}_S \in \tilde{\mathcal{B}}_S} -\log p_{\texttt{cls-SI}}(y^{\mathcal{S}} = S \mid \tilde{x}_S).$$

(3) Overall loss

$$\mathcal{L}_{\texttt{CSI}} = \mathcal{L}_{\texttt{con-SI}} + \lambda \cdot \mathcal{L}_{\texttt{cls-SI}}$$

Score functions for detecting out-of-distribution

Detection score

- ✓ Cosine similarity to the nearest training sample
- ✓ Norm of the representation

$$s_{con}(x; \{x_m\}) := \max_{m} \sin(z(x_m), z(x)) \cdot ||z(x)||.$$

Score functions for detecting out-of-distribution

Utilizing shifting transformations

$$s_{\text{con-SI}}(x; \{x_m\}) := \sum_{S \in \mathcal{S}} \lambda_S^{\text{con}} \ s_{\text{con}}(S(x); \{S(x_m)\}),$$
 $\lambda_S^{\text{con}} := M/\sum_m s_{\text{con}}(S(x_m); \{S(x_m)\}) = M/\sum_m \|z(S(x_m))\|$

$$\lambda_S^{\text{con}} := M / \sum_m s_{\text{con}}(S(x_m); \{S(x_m)\}) = M / \sum_m \|z(S(x_m))\|$$

$$s_{\mathtt{cls-SI}}(x) := \sum_{S \in \mathcal{S}} \lambda_S^{\mathtt{cls}} \ W_S f_{\theta}(S(x)),$$

$$\lambda_S^{\mathtt{cls}} := M / \sum_m [W_S f_{\theta}(S(x_m))]$$

$$s_{\text{CSI}}(x; \{x_m\}) := s_{\text{con-SI}}(x; \{x_m\}) + s_{\text{cls-SI}}(x)$$

Ensembling over random augmentations

 \checkmark Ensembling over random augmentations T

$$s_{\texttt{CSI-ens}}(x) := \mathbb{E}_{T \sim \mathcal{T}}[s_{\texttt{CSI}}(T(x))]$$

 $W_{\rm S}$ is the weight vector in the linear layer of $p_{cls-SI}(y^S|x)$

Experiments

Experimental Setting

- ✓ ResNet-18
- \checkmark Data augmentations T: Inception crop, horizontal flip, color jitter, and grayscale
- ✓ Distribution-shifting transformations S: random rotation 0°, 90°, 180°, 270°

Shifting transformation : the most OOD-like yet semantically meaningful samples.

Cutout/Sobel filtering/Gaussian noise/Gaussian blur/Rotation: reported to be ineffective in SimCLR

Such transformations shift the in-distribution => considering as positive samples can be harmful.

OOD-ness: the AUROC between in-distribution vs. transformed samples under vanilla SimCLR (one-class CIFAR-10)

Experiments

Experimental Setting

- \checkmark Such transformations shift the in-distribution => considering as positive samples can be harmful.
- ✓ Using hard augmented samples as negative samples improves OOD detection performance.

Base		Cutout	Sobel	Noise	Blur	Perm	Rotate
87.9	+Align	84.3	85.0	85.5	88.0	73.1	76.5
	+Shift	88.5	88.3	89.3	89.2	90.7	94.3

Unlabeled one-class datasets

- ✓ In-distribution: one of the classes
- ✓ OOD: remaining classes

(a) One-class CIFAR-10

Method	Network	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Mean
OC-SVM* [59]	-	65.6	40.9	65.3	50.1	75.2	51.2	71.8	51.2	67.9	48.5	58.8
DeepSVDD* [56]	LeNet	61.7	65.9	50.8	59.1	60.9	65.7	67.7	67.3	75.9	73.1	64.8
AnoGAN* [58]	DCGAN	67.1	54.7	52.9	54.5	65.1	60.3	58.5	62.5	75.8	66.5	61.8
OCGAN* [52]	OCGAN	75.7	53.1	64.0	62.0	72.3	62.0	72.3	57.5	82.0	55.4	65.7
Geom* [15]	WRN-16-8	74.7	95.7	78.1	72.4	87.8	87.8	83.4	95.5	93.3	91.3	86.0
Rot* [25]	WRN-16-4	71.9	94.5	78.4	70.0	77.2	86.6	81.6	93.7	90.7	88.8	83.3
Rot+Trans* [25]	WRN-16-4	77.5	96.9	87.3	80.9	92.7	90.2	90.9	96.5	95.2	93.3	90.1
GOAD* [2]	WRN-10-4	77.2	96.7	83.3	77.7	87.8	87.8	90.0	96.1	93.8	92.0	88.2
Rot [25]	ResNet-18	78.3±0.2	$94.3{\scriptstyle\pm0.3}$	$86.2{\scriptstyle\pm0.4}$	$80.8{\scriptstyle\pm0.6}$	89.4 ± 0.5	89.0 ± 0.4	$88.9{\scriptstyle\pm0.4}$	$95.1{\scriptstyle\pm0.2}$	92.3 ± 0.3	89.7 ± 0.3	88.4
Rot+Trans [25]	ResNet-18	80.4±0.3	96.4 ± 0.2	85.9 ± 0.3	81.1 ± 0.5	91.3 ± 0.3	89.6 ± 0.3	89.9 ± 0.3	95.9 ± 0.1	95.0 ± 0.1	92.6 ± 0.2	89.8
GOAD [2]	ResNet-18	75.5 ± 0.3	$94.1{\scriptstyle\pm0.3}$	$81.8{\pm}0.5$	$72.0{\scriptstyle\pm0.3}$	83.7 ± 0.9	84.4 ± 0.3	$82.9{\scriptstyle\pm0.8}$	$93.9{\scriptstyle\pm0.3}$	$92.9{\scriptstyle\pm0.3}$	$89.5{\scriptstyle\pm0.2}$	85.1
CSI (ours)	ResNet-18	89.9 ±0.1	99.1 ±0.0	93.1 ±0.2	86.4 ±0.2	93.9 ±0.1	93.2 ±0.2	95.1 ±0.1	98.7 ±0.0	97.9 ±0.0	95.5 ±0.1	94.3

(c) One-class ImageNet-30

Method	Network	AUROC	Method	Network	AUROC
OC-SVM* [59]	-	63.1	Rot* [25]	ResNet-18	65.3
Geom* [15]	WRN-16-8	78.7	Rot+Trans* [25]	ResNet-18	77.9
Rot [25]	ResNet-18	77.7	Rot+Attn* [25]	ResNet-18	81.6
Rot+Trans [25]	ResNet-18	79.8	Rot+Trans+Attn* [25]	ResNet-18	84.8
GOAD [2]	ResNet-18	74.5	Rot+Trans+Attn+Resize* [25]	ResNet-18	85.7
CSI (ours)	ResNet-18	89.6	CSI (ours)	ResNet-18	91.6

Unlabeled multi-class datasets

- ✓ In-distribution: multi-class dataset w/o labels
- ✓ OOD: external datasets

(a) Unlabeled CIFAR-10

			${\sf CIFAR10} \rightarrow$							
Method	Network	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR-100	Interp.		
Likelihood*	PixelCNN++	8.3	-	64.2	-	-	52.6	52.6		
Likelihood*	Glow	8.3	-	66.3	-	-	58.2	58.2		
Likelihood*	EBM	63.0	-	-	-	-	-	70.0		
Likelihood Ratio* [55]	PixelCNN++	91.2	-	-	-	-	-	-		
Input Complexity* [61]	PixelCNN++	92.9	-	58.9	-	-	53.5	-		
Input Complexity* [61]	Glow	95.0	-	71.6	-	-	73.6	-		
Rot [25]	ResNet-18	97.6±0.2	89.2±0.7	90.5 ± 0.3	77.7±0.3	83.2±0.1	79.0 ± 0.1	64.0±0.3		
Rot+Trans [25]	ResNet-18	$97.8{\scriptstyle\pm0.2}$	$92.8{\scriptstyle\pm0.9}$	94.2 ± 0.7	81.6 ± 0.4	86.7 ± 0.1	82.3 ± 0.2	$68.1{\scriptstyle\pm0.8}$		
GOAD [2]	ResNet-18	$96.3{\scriptstyle\pm0.2}$	$89.3{\scriptstyle\pm1.5}$	91.8 ± 1.2	78.8 ± 0.3	83.3 ± 0.1	77.2 ± 0.3	59.4 ± 1.1		
CSI (ours)	ResNet-18	99.8 ±0.0	97.5 ±0.3	97.6 ±0.3	90.3 ±0.3	93.3 ±0.1	89.2 \pm 0.1	79.3 ±0.2		

			ImageNet-30 \rightarrow								
Method	Network	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD		
Rot [25]	ResNet-18	76.5 ± 0.7	77.2±0.5	70.0±0.5	87.2±0.2	72.7±1.5	52.6±1.4	70.9±0.1	89.9±0.5		
Rot+Trans [25]	ResNet-18	74.5 ± 0.5	77.8 ± 1.1	$70.0{\scriptstyle\pm0.8}$	86.3 ± 0.3	71.6 ± 1.4	53.1 ± 1.7	70.0 ± 0.2	89.4 ± 0.6		
GOAD [2]	ResNet-18	71.5 ± 1.4	$74.3{\scriptstyle\pm1.6}$	$65.5{\pm}1.3$	82.8 ± 1.4	68.7 ± 0.7	51.0 ± 1.1	67.4 ± 0.8	87.5 ± 0.8		
CSI (ours)	ResNet-18	90.5 \pm 0.1	97.1 ±0.1	85.2 ± 0.2	94.7 ±0.4	89.2 \pm 0.3	78.3 \pm 0.3	87.1 ± 0.1	96.9 \pm 0.1		

Unlabeled multi-class datasets

- ✓ In-distribution: multi-class dataset w/o labels
- ✓ OOD: external datasets

Figure 5: Current benchmark datasets: resized LSUN (left two) and ImageNet (right two).

Figure 6: Proposed datasets: LSUN (FIX) (left two) and ImageNet (FIX) (right two).

Ablation study

(a) Training objective

(b) Detection score

	SimCLR	Con.	Cls.	AUROC		Con.	Cls.	Ensem.	AUROC
$\mathcal{L}_{\mathtt{SimCLR}}$ (2)	√	-	-	87.9	$s_{con}(6)$	√	-	-	91.3
$\mathcal{L}_{ exttt{con-SI}}$ (3)	\checkmark	\checkmark	-	91.6	$s_{\mathtt{con-SI}}$ (7)	\checkmark	-	\checkmark	93.3
$\mathcal{L}_{ t cls-SI}$ (4)	-	-	\checkmark	88.6	$s_{ t cls-SI}$ (8)	-	\checkmark	\checkmark	93.8
$\mathcal{L}_{\texttt{CSI}}$ (5)	\checkmark	\checkmark	\checkmark	94.3	$s_{\mathtt{CSI}}$ (9)	\checkmark	\checkmark	\checkmark	94.3

SupCLR

- ✓ Supervised Contrastive Learning
- ✓ For training confidence-calibrated classifiers
- \checkmark For a given batch $\mathcal{C} = \{(x_i, y_i)\}_{i=1}^B, \tilde{\mathcal{C}} = \tilde{\mathcal{C}}_y \cup \tilde{\mathcal{C}}_{-y}$

$$\mathcal{L}_{ exttt{SupCLR}}(\mathcal{C}; \mathcal{T}) := rac{1}{2B} \sum_{j=1}^{2B} \mathcal{L}_{ exttt{con}}(ilde{x}_j, ilde{\mathcal{C}}_{y_j} \setminus \{ ilde{x}_j\}, ilde{\mathcal{C}}_{-y_j}).$$

 \checkmark Add a linear layer on $f_{\theta}(x)$ to classify $p_{\text{SupCLR}}(y|x)$

Class	у	1	y_2			
samples	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4		
T_1	$\widetilde{x}_1^{(1)}$	$\tilde{\chi}_2^{(1)}$	$\tilde{x}_3^{(1)}$	$\widetilde{x}_4^{(1)}$		
T_2	$\widetilde{x}_1^{(2)}$	$\tilde{\chi}_2^{(2)}$	$\tilde{x}_3^{(2)}$	$\widetilde{x}_4^{(2)}$		

positives

Supervised extension of CSI

- ✓ For training confidence-calibrated classifiers
- ✓ Family of augmentations S: distribution-shifting transformations, $S = \{S_0 = I, S_1, ..., S_{k-1}\}$
- ✓ Distributionally-shifted samples are considered as an OOD

$$\mathcal{L}_{ exttt{sup-CSI}} := \mathcal{L}_{ exttt{SupCLR}} \left(igcup_{S \in \mathcal{S}} \mathcal{C}_S; \mathcal{T}
ight), \quad ext{where } \mathcal{C}_S := \{ (S(x_i), (y_i, S)) \}_{i=1}^B.$$

 \checkmark Now, an added linear layer on $f_{\theta}(x)$ classifies the shifted instances with joint labels (y_i, S)

Class	y_1		y_2		${oldsymbol y}_1$		y_2	
samples	x_1	x_2	<i>x</i> ₃	x_4	$S_1(x_1)$	$S_1(x_2)$	$S_1(x_3)$	$S_1(x_4)$
T_1	$\widetilde{x}_1^{(1)}$	$\tilde{\chi}_2^{(1)}$	$\tilde{\chi}_3^{(1)}$	$\widetilde{\chi}_4^{(1)}$	$\widetilde{S_1(x_1)}^{(1)}$	$\widetilde{S_1(x_2)}^{(1)}$	$\widetilde{S_1(x_3)}^{(1)}$	$\widetilde{S_1(x_4)}^{(1)}$
T_2	$\widetilde{x}_1^{(2)}$	$\widetilde{\chi}_{2}^{(2)}$	$\widetilde{x}_3^{(2)}$	$\widetilde{\chi}_4^{(2)}$	$\widetilde{S_1(x_1)}^{(2)}$	$\widetilde{S_1(x_2)}^{(2)}$	$\widetilde{S_1(x_3)^{(2)}}$	$\widetilde{S_1(x_4)^{(2)}}$

positives

Supervised extension of CSI: confidence score

- Additionally train two linear classifiers: $p_{\text{CSI}}(y|x)$, $p_{\text{CSI-joint}}(y, y^{\mathcal{S}}|x)$
- "CSI": Confidence computed by $p_{\rm CSI}$

$$s_{\sup}(x) = \max_{y} p_{\mathrm{CSI}}(y|x)$$

• "CSI-ens": Confidence computed by $p_{\mathrm{CSI-joint}}$

$$s_{\sup}(x) = \max_{y} p_{\text{CSI-ens}}(y|x)$$

$$p_{\texttt{CSI-ens}}(y|x) := \sigma\left(\frac{1}{K}\sum_{k} \underline{l(S_k(x))_k}\right)$$

$$p_{\texttt{CSI-joint}}(y, y^{\mathcal{S}} = S_k | x)$$

 $l(x)_k \in \mathbb{R}^C$

Labeled multi-class datasets

- ✓ In-distribution: multi-class dataset w/ labels
- ✓ OOD: external datasets
- ✓ Calibrated well?

(a) Labeled CIFAR-10

			.10	CIFAR10 \rightarrow							
Train method	Test acc.	ECE	SVHN	LSUN	ImageNet	LSUN (FIX)	ImageNet (FIX)	CIFAR100	Interp.		
Cross Entropy	93.0±0.2	6.44±0.2	88.6±0.9	90.7±0.5	88.3±0.6	87.5±0.3	87.4±0.3	85.8±0.3	75.4±0.7		
SupCLR [30]	93.8 ± 0.1	5.56 ± 0.1	97.3 ± 0.1	92.8 ± 0.5	91.4 ± 1.2	91.6 ± 1.5	90.5 ± 0.5	88.6 ± 0.2	75.7 ± 0.1		
CSI (ours)	94.8 ± 0.1	4.40 ± 0.1	96.5 ± 0.2	96.3 ± 0.5	96.2 ± 0.4	92.1 ± 0.5	92.4 ± 0.0	90.5 ± 0.1	78.5 ± 0.2		
CSI-ens (ours)	96.1 ±0.1	3.50 ± 0.1	97.9 ± 0.1	97.7 ±0.4	97.6 ±0.3	93.5 ±0.4	94.0 \pm 0.1	92.2 ±0.1	80.1 ±0.3		

(b) Labeled ImageNet-30

			ImageNet-30 \rightarrow							
Train method	Test acc.	ECE	CUB-200	Dogs	Pets	Flowers	Food-101	Places-365	Caltech-256	DTD
Cross Entropy	94.3	5.08	88.0	96.7	95.0	89.7	79.8	90.5	90.6	90.1
SupCLR [30]	96.9	3.12	86.3	95.6	94.2	92.2	81.2	89.7	90.2	92.1
CSI (ours)	97.0	2.61	93.4	97.7	96.9	96.0	87.0	92.5	91.9	93.7
CSI-ens (ours)	97.8	2.19	94.6	98.3	97.4	96.2	88.9	94.0	93.2	97.4

Summary

- ✓ Utilize contrastive learning for OOD detection by discriminating between in- and out-distribution
- ✓ Verify the effectiveness under various environments (unlabeled one-class, unlabeled multi-class, labeled multi-class)
- ✓ Larger improvement in harder OOD samples (verify with fixed version of the dataset)