2022년 제 2회 K-인공지능 제조데이터 분석 경진대회

원활한 양품 제조를 위한 용해 공정 규칙

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인

CONTENT

- 문제 정의
 - 공정 개요
 - 이슈 사항
 - 문제 해결
- 2. 제조 데이터
- RAW DATA
 - EDA
 - Machine Learning
 - Preprocessing

- - 4. After Preprocessing
 - Machine Learning
 - Deep Learning
 - 특이사항
 - 5. MELT_WEIGHT 수정
 - EDA
 - Machine Learning
 - Deep Learning
 - 6. 사후확률 Decision Tree
 - 7. 결론

22510107이다인 2

문제 정의

LPN

• 공정 개요 0112 최지현

22510112 최지형

22510112 최지현

- 용해 공정이란?
 - 분말-액상 원재료 또는 액상-액상 원재료를 탱크에서 혼합하는 공정이다.
 - 식품가공, 제약, 화학, 화장품 등의 업종에서 다양하게 운용된다.
- 본 과제의 용해 공정은 식품제조업의 용해 공정에 속한다.

LPK

울과학기술대학교 데이터사이언스학과

• 용해 공정의 품질

22510112 최지현 22510112 최지현

- 2.5 용질과 용매의 화학적 특징, 용질과 용매의 상대적 용량, 용해 온도, 교반 속도 등에 영향을 받는다. 🗀 🗀
- 용해 공정은 완제품의 품질을 결정할 뿐만 아니라, 완제품의 단가에도 큰 영향을 미친다.
 - ⇒ 효율적으로 제어하고 최적화 해야 한다.

LPK

LPK

LPK

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이타이

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인

1울과학기술대학교 데이터사이 22510112 최지현 22510107 이다인 -

LPK

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학교

이슈 사항 0112 최지현

22510112 최지현

22510112 최지현

- 용해 공정은 원재료 전처리 작업의 첫 단계
 - 본 공정의 결과물이 이후 공정의 품질에 영향을 많이 미친다.
- 용해 공정에서 다양한 원료가 균일하게 혼합되는 것이 매우 중요하다.
- 용해 품질은 다양한 요인들에 의해 영향을 받는다.
 - 현장 작업자들은 경험이나 암묵지에 의존하여 문제를 해결할 수 밖에 없다.
 - 22510107 이다인
- 용해 공정이 진행되면서 현장 작업자는 중간에 직접 용해 상태를 확인하게 된다.
 - 현장 상황에 따라 확인하는 것이 불가능할 때도 있다.
 - 따라서 공정이 완료된 후 에야 품질을 확인하게 되는 경우가 많다.

22510112 최지현

22510112 최지현 22510107 이다인 | 울과학기술대학교 데이터사이언스학 | 22510112 최지현 | 22510107 이다인 4

서울과학기술대학교 데이터사이언스학과

- 문제 해결 0112 최
 - 용해 공정이 진행중 연속적으로 변화하는 요인들 즉, 용해 온도나 교반 속도, 내용량 등의 데이터를 이용한다.
 - 사람에 의한 주관적인 판단이 아닌 데이터에 기반한 예측
 - 훨씬 편리하고 불량의 생산품을 만들어내는 확률도 줄어들 것이다.
 - 본 문제에 대해 우리는 양품과 불량의 규칙에 대한 가이드라인을 제시할 것이다.

22510112 최지현

- 용해 탱크 품질에 영향을 미치는 요인들이 어떤 조건을 가져야 공정 품질이 양품인지 불량인지에 대한 명확한 가이 드라인이 있다면 효율적인 생산량을 기반으로 설비 운영비 및 인건비에서 비용 절감 효과를 얻을 수 있을 것이다.
- 양품이 불량으로 분류된다면 용해 공정 이후로 넘어가지 않아 자원 낭비의 문제가 될 수 있다.
- 더 큰 문제는 불량을 양품으로 분류하는 것이다.
 - 불량을 양품으로 분류하게 된다면 최종 생산품의 품질에 좋지 않은 영향을 미칠 것이다.
 - 불량을 양품으로 분류하는 비율이 가장 작아지도록 하는 것을 모델의 성능으로 판단했다.

제조 데이터 📗

- 총 835,200개의 rows × 7개의 columns

	STD_DT	NUM	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	INSP	TAG
	2020/03/04 0:00	0	489	<i>LP</i> 116	631	3.19 L	PK OK
ᆚ	2020/03/04 0:00	바이언스학과 변	433	기학교 테이트자이언 510112 지현	609	3.19	OK
	2020/03/04 0:00	2	464 22	51010 ₁₅₄	608	3.19	O7 OK
	2020/03/04 0:00	3	379	212	606	3.19	OK

22510107이다인 6

LPK

• 7개의 columns 최지현

서울과학기술대학교 데이터사이언스학과 22510112 최지현

22510112 최지현

변수 명	설명	타입	
STD_DT	날짜와 시간 (YYYY-MM-DD HH:MM:SS)	Object	
NUM	인덱스 <i>LPK</i>	Int	
MELT_TEMP	용해 온도) 112 최지현		
MOTORSPEED	용해 교반 속도	Int	
MELT_WEIGHT	용해 탱크 내용량	Int	
INSP	생산품의 수분 함유량	Float	
과학기술(TAG 데이터사) 22510112 최지현	불량(NG), 양품(OK)	object	

- 설명변수: MELT_TEMP, MOTORSPEED, MELT_WEIGHT, INSP
- 목표변수 : TAG
- 1(OK)과 0(NG)의 개수 확인
 - 양품(OK): 658,133개, 불량(NG): 177,067개 → 불균형 데이터
 - Accuracy만 성능지표로 쓰는 것은 바람직하지 않다.

27 시 | 울과학기술대학교 데이터사이언스학괴 | 22510112 최지현 | 22510107 이다인 | 8

Raw data

LPK

<mark>|울과학기술대학교 데이터사이언스학</mark>교

서울과학기술대학교 데이터사이언스학과

付울과학기술대학교 데이터사이언스학

22510112 최지현

22510112 쇠시연

- MELT_TEMP와 MOTOR SPEED는 유사한 분포를 보인다. → 주로 양 극단에 분포
- INSP는 3.19 인 경우가 가장 많다.

울과학기술대학교 데이터사이언스학교

서울과학기술대학교 데이터사이언스학과

1억기물내억교 네어디자이인스억 22510112 치되형

Boxplot 10112

A Per let

Boxplot 10112

Boxplot 10112

- MELT_WEIGHT의 경우 histogram으로는 분포가 잘 보이지 않아 boxplot을 그려보았다. 22510107
 - → 분포가 넓게 퍼져 있지만 데이터는 주로 하단에 몰려 있다.

LPK

LPK

울과한기술대학교 데이터사이언스학괴

서울과학기술대학교 데이터사이언스학과

• Heatmap 0112 최지현

• 변수들 간의 correlation을 이용한 heatmap

 일반적으로 MOTOR SPEED가 빨라질 수록 MELT_TEMP가 높아진다는 생각 을 할 수 있다.

→ 실제로 상관계수가 매우 높다. (0.94)

 MELT_WEIGHT는 다른 변수들과 상관 성이 없다. (0.00)

과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 서울과학기술대학교 데이터사이언 22510112 최지현 22510107 이다인

서울과학기술대학교 데이터사이언스학 22510112 최지현 22510107 이다인 ₁₂ EDA

|움과학기술대학교 데이터사이언스학교

- - TAG를 나눈 변수들 간의 pair plot
 - 대체적으로 O(NG, 주황색)이 각 변수들 에서 값이 적은 곳에 위치 한다.

→ 따라서 TEMP도 낮고, SPEED도 낮고, WEIGHT도 낮으면 불량으로 판단할 수 있지 않을까 예측

서울과학기술대학교 데이터사이언스학과 22510112 최지현

Machine Learning

- ML(머신러닝)과 DL(딥러닝)을 함께 분석하는 이유 : 일반적으로 성능이 좋은 DL은 설명력이 떨어지기 때문에 그 부분을 보완하기 위해 ML을 함께 분석했다.
- Decision Tree / Ada Boost / Gradient Boost / Random Forest
- 세팅
 - 4가지 기법 모두 train, test를 7:3으로 분리
- 성능지표
 - Accuracy, F1-Score, Precision, Recall

불량을 양품으로 분류

- 각 기법의 confusion matrix에서 0(NG)을 1(OK)로 분류하는 비율이 적은 모델을 찾으려고 했음
 - → 이를 FP/N = (False Positive)/(Negative) 라고 명명함

Machine Learning

Model	Precision	Recall	F1-score	Accuracy	FP/N
Decision Tree	0.8105	0.9560	0.8772	0.7890	0.8337
Ada Boost	0.7978	0.9864	0.8821	0.7922	0.9320
Gradient Boost	0.7955	0.9955	0.8843	0.7947	0.9541
Random Forest	0.7978	0.9907 ⁵¹⁰¹	0.8839	0.7947 225	0.9361
22510107 이	다인	2251010	07 이다인	225	10107 이나인 ₁₅

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

||울과학기술대학교 데이터사이언스학

Random Forest

- Raw data로 Random Forest 수행 후 Feature Importance를 확인하면 INSP가 가장 낮은 수치를 보인다.
- 따라서 목표변수에 중요하지 않은 변수라고 판단했다. → INSP 컬럼 제거

STD_DT의 데이터 타입을 object에서 timestamp로 변경하고, 시계열 분석을 위해 인덱스로 지정했다. 2 최지현

	STD_DT	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	INSP	TAG
0	2020-03-04 0:00	489	116	631	3.19	OK
1	2020-03-04 0:00	433	78	609	3.19	OK
2	2020-03-04 0:00	464	154	608	3.19	OK
3	2020-03-04 0:00	379	212	606	3.19	OK
4	2020-03-04 0:00	798	1736	604	3.21	OK

MELT_TEMP MOTORSPEED MELT_WEIGHT INSP TAG

STD_DT					
2020-03-04	489	116	631	3.19	ОК
2020-03-04	433	78	609	3.19	ОК
2020-03-04	464	154	608	3.19	OK
2020-03-04	379	212	606	3.19	ОК
2020-03-04	798	1736	604	3.21	ОК

22510107 이다인 17

Preprocessing

LPK

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

- 이상치 탐지 12 최지현
 - MOTOR SPEED = 0인 데이터가 굉장히 많다. → 이상치로 판단
 - 제거 후 분석을 수행했다.

LPK

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 **LPK**

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 ₁₈ Preprocessing

LPK

LPK

서울과학기술대학교 데이터사이언스학괴

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스 22510112 최지현 22510107 이다이

이상치 탐지 12 최지현

- MELT_WEIGHT는 10,000 이상의 데이터가 별로 없다. → 이상치로 판단
- 제거해서 분석을 수행했다.

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인

After Preprocessing

Machine Learning

- 전처리 과정을 거친 데이터 셋을 사용해 분석했다. 22510112 최지현
 - INSP 제거
 - MOTOR SPEED = 0 인 데이터 제거
 - MELT_WEIGHT 값이 10,000 이상인 데이터 제거

	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	INSP	TAG			MELT_TEMP	MOTORSPEED	MELT_WEIGHT	TAG	
0	489	0 E A 116	선스학과 631	3.19	서울		0	489	<u> 선</u> 학과 116	631	1017	
1.2	225101433	최지현 78	609	3.19	1		01 1 23	최지현 433	78	609	1	
2	22510 464	0	608	3.19	1		167	DIEFOI 464	154	608	1	
3	379	212	606	3.19	1		3	379	212	606	1	
4	798	1736	604	3.21	1		4	798	1736	604	1	
83519	5 755	1743	318	3.21	1		835194	749	1740	319	1	
83519	6 385	206	317	3.19	1		835195	755	1743	318	1	
83519	7 465	148	316	3.20	1		835196	385	206	317	1	
83519	8 467	IOIEIAIOI0	시하다 314	3.19	서 <u>\$</u>		835197	465	148 사하다	316	1	
83519	9 453	125	312	3.20	1	22514	835199	453	125	312	1	
835200	rows × 5 column	ns						ws × 4 colum	ns			
												22510107 이다인 ₂₁

Machine Learning

Model	Precision	Recall	F1-score	Accuracy	FP/N
Decision Tree	0.8173	0.9601	0.8830	0.7974	0.8374
Ada Boost	0.8052	0.9862	0.8865	0.7990	0.9310
Gradient Boost	0.8025	0.9965	GIO E 0.8890	0.8019	0.9570
Random Forest	0.8040	0.9925	0.8884	0.8015 225	0.9439
22510107 이타인 22510107 이타인 22510107 이타					

서울과학기술대학교 데이터사이언스학괴

- 이상치 제거 12 최지현
 - MELT_WEIGHT 10000 이상인 행 제외
 - MOTOR SPEED 0인 행 제외
- Train : Test = 70 : 30

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 ₂₃

- 단일 LSTM 112 최지현
 - 학습이 진행될 때 마다 loss 값이 줄어드는 모습을 확인할 수 있다.
 - confusion matrix를 보면 실제 1(OK)을 1(OK)로 잘 예측하는 모습을 보인다.
 - 실제 O(NG)을 O(NG)로 잘 분류하지 못하고 있다. ⇒ FP/N이 높다

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9887	0.8740	0.9278	0.8654	0.9404

Model: "sequential_23"

Layer (type)	Output Shape	Param #
Istm_24 (LSTM)	(None, 50)	10800
dense_17 (Dense)	(None, 1)	51
	0112 죄지형	

Total params: 10,851

Trainable params: 10,851 Non-trainable params: 0

> *LPK* 을과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다의

> > LPK

22510112 최지현 22510107 이다인 ₂

• 단일 GRU 0112 2

학습이 진행될 때 마다 loss 값이 줄어드는 모습을 확인할 수 있다.

서울과학기술대학교 데이터사이언스학과 22510112 최지형 Layer (type) Output Shape Param #

gru_2 (GRU) (None, 50) 8250

dense_2 (Dense) (None, 1) 51

Total params: 8,301

Model: "sequential_2"

Trainable params: 8,301

Non-trainable params: 0

- confusion matrix를 보면 실제 0(NG)을 0(NG)로 단일 LSTM보다 더 잘 분류한다. ⇒ FP/N 낮아짐
 - 실제 1(OK)을 1(OK)로 분류하는 게 단일 LSTM보다 분류하지 못한다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9889	0.8219	0.8977	0.8146	0.8913

LPK

22510112 최지현 22510107 이다인 ₂

- |술대학교 데이터사이언스학과 서울과학기술대학교 데이터사이언스학교
- 다중 LSTM 12 최지학
 - 학습이 진행될 때 마다 loss 값이 줄어드는 모습을 확인할 수 있다.
 - confusion matrix를 보면 단일 LSTM과 약간 더 높은 성능을 보여준다.
 - epochs가 단일 LSTM, 단일 GRU보다 적어 모델 학습이 빨리 완료된다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9887	0.8686	0.9246	0.8699	0.9802

Model: "sequential"

Layer (type)	Output Shape	 Param #
Istm (LSTM)	(None, 10, 50)	10800
dropout (Dropout)	(None, 10, 50)	0
lstm_1 (LSTM)	(None, 10, 50)	20200
dropout_1 (Dropout)	(None, 10, 50)	0
lstm_2 (LSTM)	(None, 50)	20200
dense (Dense)	(None, 1)	51

Total params: 51,251
Trainable params: 51,251
Non-trainable params: 0

1.0

울과학기술대학교 데이터사이언스학과 22510112 최지현

22510107 이다인

LPK

22510112 최지현 22510107 이다인 ₂₆ **LPK**

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

서울과약기술내약교 네이터사이언스 22510112 최지형

MELT_WEIGHT 특이점 탐지

22510112 최지현

22510107 017101

• MELT_WEIGHT 주기 확인해보자.

- 시간을 X축으로 MELT_WEIGHT의 그래프를 그려보면 다음과 같은 주기를 확인할 수 있다.
- 이전 값에 비해 10% 증가 혹은 감소하는 부분이 존재한다.

LPK

서울과학기술대학교 데이터사이언스학교

- MELT_WEIGHT 특이점 탐지
 - MELT_WEIGHT의 중앙값(Median)과 최댓값(Max)의 차이가 굉장히 크다.
 - Boxplot을 보아도 대부분 10,000 이하에 분포하는데, 50,000 이 넘는 데이터가 존재한다.
 - 용해 탱크에도 용량이 존재할 텐데 왜 이러한 특이점이 보이는지 알아보고자 했다.

MELT_WEIGHT의 요약 통계량

	MELT_WEIGHT
Mean	582.962
Std	1217.604
Median	383
Min	LPK 0
Max	술대학교 55252 언스학과

LPK

|울과학기술대학교 데이터사이 22510112 최지현

LPK

|울과학기술대학교 데이터사이언스학교 | 22510112 최지현

서울과학기술대학교 데이터사이언스학과

• MELT_WEIGHT 특이점 탐지

22510112 최지현

• 2020/03/04 02:20 ~ 2020/03/04 03:20 구간만 잘라서 확인

• 앞의 값으로 대체

• 맨 뒤의 숫자를 지우고 앞과 뒤의 숫자 관계를 보면 이어지는 숫자 임을 확인했다.

LPK

서울과학기술대학교 데이터사이언스학괴

- MELT_WEIGHT 특이점 탐지
 - 2020/03/04 02:20 ~ 2020/03/04 03:20 구간만 잘라서 확인
 - 앞의 값으로 대체
 - 디지털 숫자 0을 8로 인식한 것으로 보인다.
 - 앞의 숫자와 뒤의 숫자를 보고 8을 지우면 이상치가 정상 데이터로 나온다.

최지현 22510112 최지현 이다인 22510107 이다인

MELT_WEIGHT 수정

EDA LPK

LF

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

2251

• MELT_TEMP와 MOTOR SPEED는 수정한 부분이 없으므로 처음과 동일하다.

• MELT_WEIGHT 수정 후, 처음 분포 보다 일관성 있게 분포하는 것을 확인할 수 있다.

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 ₃₂ 서울과학기술대학교 데이터사이언스학교

서울과학기술대학교 데이터사이언스학과

울과학기술대학교 데이터사이언스학과 22510112 최지형

Boxplot 10112

April

Boxplot 10112

April

Boxplot 10112

Boxplot 101

• MELT_WEIGHT 수정 후, boxplot도 마찬가지로 처음보다 데이터가 일관되게 분포하는 것을 확인할 수 있다.

EDA LPK

LPK

LPK

서울과학기술대학교 데이터사이언스학교

MELT_WEIGHT 수정 후

울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다이

|울과학기술대학교 데이터사이언스학괴 22510112 최지현 22510107 이다인

• MELT_WEIGHT의 상관관계를 보면

• 아주 약간의 수가 올랐지만 여전히 다른 변수와 관계가 없다고 볼 수 있다.

LPK

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인

LPK

|울과학기술대학교 데이터사이언스학괴 22510112 최지현 22510107 이다인 ₃₄ EDA /

LPK

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학과

• WEIGHT 주기 확인

- 22510112 최지현
- 이전 값에 비해 10% 뛰던 값이 안정화 된다.

서울과학기술대학교 데이터사이언스학괴 22510112 최지현 22510107 이다인

LPK |술대학교 데이터사이언스학괴 22510112 최지현 22510107 이다인

LPK |술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 ₃₅ 욱과한기숙대한교 데이터사이**언스한**과

서울과학기술대학교 데이터사이언스학괴

기골대학교 대어디자이라드학

• 불량과 양품 비교

- 22510112 최지현
- 어떤 시간(혹은 날짜)에 불량(=0)이 더 많을지 확인하기 위해 시간을 X축으로 TAG에 대한 그래프를 그렸다.
- 그래프를 보면 3월 중순 ~ 4월 중순 까지만 불량(=0, 파란색)이 존재하는 것을 알 수 있다.
- 실제로 원데이터 csv파일을 확인하면 03/17 ~ 04/14 까지만 불량(=0)이 존재하는 것을 확인할 수 있다.

LPK

서울과학기술대학교 데이터사이언스학괴 22510112 최지현 22510107 이다인

LPK

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 ₃₆

Machine Learning

Model	Precision	Recall	F1-score	Accuracy	FP/N
Decision Tree	0.7908	0.9559	0.8776	0.7898	0.8296
Ada Boost	0.7885	1	0.8818	0.7885	1 DK
Gradient Boost	0.7975	0.9934	0.8847	0.7959	0.9406
Random Forest	0.7982	0.99165101	0.8844	0.7957 225	0.9349
22510107 이	다인	2251010	07 미다인	225	10107 이나인 37

서울과학기술대학교 데이터사이언스학과

- 이상치 제거 12 최지현
 - MELT_WEIGHT 이상(weird)
 - 이상치 탐지하여 제거
- Train: Test = 70:30

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다이

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인

과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 *LPK*

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다인 ₃₈

단일LSTM: MOTOR SPEED = 0, MELT_WEIGHT는 10,000 이상의 데이터

Model: "sequential

Laver (type)

Istm (LSTM)

dense (Dense)

Deep Learning Model

- 단일 LSTM
 - 학습이 진행될 때 마다 loss 값이 줄어드는 모습을 확인할 수 있다.
 - confusion matrix를 보면 실제 O(NG)을 O(NG)로 잘 예측하는 모습을 보인다.

Total params: 10,851
Trainable params: 10,851
Non-trainable params: 0

Output Shape

(None, 1)

Param #

10800

51

• 중량 이상치 제거 후 실제 0(NG)을 1(OK)로 예측하는 비율이 <u>단일LSTM</u>보다 적어진다. ⇒ FP/N 하락

이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9931	0.7648	0.8642	0.76235	0.4463

LPK

22510112 최지현 22510107 이다인 a

단일 GRU 0112 최지현

Layer (type)	Output Shape	Param #
gru_2 (GRU)	(None, 50)	8250
dense_2 (Dense)	(None, 1)	51
225	10112 최지형	

Model: "sequential 2"

- 학습이 진행될 때 마다 loss 값이 약간 튀지만 전반적으로 줄어드는 모습을 확인할 수 있다.
- confusion matrix를 보면 실제 O(NG)을 O(NG)로 잘 예측하는 모습을 보인다. \Rightarrow FP/N 작아짐.
 - 실제 1(OK)을 0(NG)로 예측하는 비율이 상당히 높다.

이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9955	0.6845	0.8112	0.6851	0.2592

- 다중 LSTM 112 최지현
 - 학습이 진행될 때 마다 loss 값이 줄어드는 모습을 확인할 수 있다.
 - confusion matrix를 보면 단일 LSTM보다 나은 성능을 보여준다. ⇒ FP/N 하락
 - epochs가 가장 적다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9959	0.7564	0.8598	0.7561	0.2653

Model: "sequential

Layer (type)	Output Shape	Param #
Istm (LSTM)	(None, 10, 50)	10800
dropout (Dropout)	(None, 10, 50)	0
lstm_1 (LSTM)	(None, 10, 50)	20200
dropout_1 (Dropout)	(None, 10, 50)	0
lstm_2 (LSTM)	(None, 50)	20200
dense (Dense)	(None, 1)	51
=======================================	:======================================	

Total params: 51,251 Trainable params: 51,251 Non-trainable params: 0

LPK

울과학기술대학교 데이터사이언스학 22510112 최지현

22510107 이다인

LPK

22510112 최지현 22510107 이다인 /

• TCN 22510112 최지현

- 서울과학기술대학교 데이터사이언스학과
- 학습이 진행될 때 마다 loss 값이 튀는 모습을 확인할 수 있다.
- confusion matrix를 보면 실제 O(NG)을 O(NG)로 잘 예측하는 모습을 보인다.
 - 성능이 좋은 편이지만 학습이 느리다.

이에 따른 성능 지표는 다음과 같다.

Model: "sequential_1"

Layer (type)	Output Shape	Param #
tcn_1 (TCN)	(None, 20)	13700
dense_1 (Dense)	(None, 1)	21

Total params: 13,721

Trainable params: 13,721 Non-trainable params: 0

LPK 울과학기술대학교 데이터사이언스학과 22510112 최지현

LPK

성능 지표	precision	recall	f1-score	accuracy	FP/N
	0.9915	0.7900	0.8793	0.7858	0.2608

22510112 최지현 22510107 이다인 ₄

- TCN & LSTM 2 A A B
 - 학습이 진행될 때 마다 loss 값이 많이 줄어들지 않고 튀는 모습을 확인할 수 있다.
 - confusion matrix를 보면 실제 O(NG)을 O(NG)로 잘 예측하는 모습을 보인다.
 - 다중 LSTM보다 학습 속도가 느리다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9957	0.7191	0.8351	0.7193	0.2639

Model: "sequential_2"

Layer (type)	Output Shape	Param #
Istm_5 (LSTM)	(None, 10, 50)	10800
dropout_4 (Dropout)	(None, 10, 50)	0
lstm_6 (LSTM)	(None, 10, 50)	20200
dropout_5 (Dropout)	(None, 10, 50)	0
tcn_1 (TCN)	(None, 50)	90600
dense_2 (Dense)	(None, 1)	51

Total params: 121,651 Trainable params: 121,651 Non-trainable params: 0

울과학기술대학교 데이터사이언스학

22510107 이다인

LPK

22510112 최지현 22510107 이다인

• TCN & GRU 12

• 학습이 진행될 때 마다 loss 값이 상당히 크고 튀는 모습을 확인할 수 있다.

- confusion matrix를 보면 실제 0(NG)을 0(NG)로 잘 예측하는 모습을 보인다. ⇒ FP/N 최소
 - 학습하는 데 시간이 오래 걸린다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표	precision	recall	f1-score	accuracy	FP/N
22510107	0.9958	0.7180	0.8344	0.7183	0.2578

Model: "sequential_5"

Layer (type)	Output Shape	Param #
gru_4 (GRU)	(None, 10, 50)	8250
dropout_10 (Dropout)	(None, 10, 50)	0
tcn_6 (TCN)	(None, 20)	17460
dense_5 (Dense)	(None, 1)	21

LPK 울과학기술대학교 데이터사이언스³ 22510112 최지현

22510107 이타인

LPK

22510112 최지현 22510107 이다인

- TCN & GRU 2
 - 학습이 진행될 때 마다 loss 값이 크고, 튀는 모습을 확인할 수 있다.
 - TCN & GRU 1보다 loss값이 많이 안정 돼있는 모습을 볼 수 있다.
 - confusion matrix를 보면 실제 O(NG)을 O(NG)로 잘 예측하는 모습을 보인다.

• 이에 따른 성능 지표는 다음과 같다.

성능 지표 precision		recall	f1-score	accuracy	FP/N	
22510107	0.9957	0.7280	0.8404	0.7271	0.2639	

Model: "sequential_4"

Layer (type)	Output Shape	Param #
gru_2 (GRU)	(None, 10, 50)	8250
dropout_8 (Dropout)	(None, 10, 50)	0
gru_3 (GRU)	(None, 10, 30)	7380
dropout_9 (Dropout)	(None, 10, 30)	0
tcn_5 (TCN)	(None, 25)	23950
dense_4 (Dense)	(None, 1)	26
		=======

Total params: 39,606 Trainable params: 39,606 Non-trainable params: 0

> ~~ ^ ^ 배학교 데이터사이언스학

22510112 최지현 22510107 이다인

LPK

22510112 최지현 22510107 이다인 2

방법론2510112 최지현

- 1. 모델을 만들고 이 모델에 테스트 셋을 넣으면 데이터의 예측 결과 즉, 사후확률이 나오게 된다. 1010 기타인
 - 여기까지는 일반적인 딥러닝 모델로 블랙박스이다.
- 2. 이걸 전체 데이터 셋에 대해 실행해 전체 데이터 셋에 대한 사후확률을 받는다.
 - Train과 Test를 다르게 해 보면서 사후확률을 구한다.

rule, 성능 지표를 비교해 본다.

- 3. 받은 사후확률로 새로운 데이터 셋을 만들고 이 새로운 데이터 셋으로 decision tree를 그려서 원래의 데이터 셋과
 - rule를 받아오면서 화이트박스로 만들어 진다.

22510107 0 46

- 먼저 데이터 셋은 <u>이상치제거데이터</u>을 사용한 데이터 셋을 이용했다.
- 모델 선정
 - 실제 O(NG)을 O(NG)로 잘 예측하는 모델 중 가장 빠른 다중 LSTM 모델을 사용했다.
- Train Test은 아래 그림과 같이 나눠 딥러닝을 두 번 시행했다.
 - 종속변수의 값 중 O(NG)의 값이 가운데에 집중 되어있다.
 - 0(NG)와 1(OK)가 비교적 균등하게 들어갈 수 있도록 절반씩 나누어 진행했다.

- 사후확률을 받아 0.5 이상이면 1, 0.5 미만이면 0으로 치환한다.
- 이렇게 만들어진 최종 데이터 셋은 다음과 같다.

	STD_DT	MELT_TEMP	MOTORSPEED	MELT_WEIGHT	TAG	predict
0	2020-03-04 00:01:00	507	128	596	1	1
1	2020-03-04 00:01:00	408	66	595	1	1
2	2020-03-04 00:01:00	474	138	594	PK ¹	1
1 5 T S	2020-03-04 00:01:00	358	201	592	 	IELAHOI
4	2020-03-04 00:01:00	740	1740	590	1	1
	25 10 1 12 되지면			225101	1723	ILIOI 네시턴
417585	2020-04-30 23:59:00	755	1743	318	1	1
417586	2020-04-30 23:59:00	385	206	317	1	1
417587	2020-04-30 23:59:00	465	148	316	1	1
417588	2020-04-30 23:59:00	467	0	314	1	1
417589	2020-04-30 23:59:00	453	125	312	1	1

predict column이 사후확률을 받아 만든 새로운 column이다.

22510107 0|E|PL 48

Decision Tree - Classification

• 사후확률 데이터 셋

value = [6349, 8119]

value = [4701, 5751]

- Decision Tree Classification
- 사후확률 데이터 셋
- confusion matrix와 성능 지표는 아래와 같다.

	성능 지표	precision	recall	f1-score	accuracy	FP/N	LPK
2	과학기술대학교	0.7932	0.9739	0.8743	0.7792	0.9466	울과학기술대학교 데이터사이언스학과
	2251011	2 최지현		225101	12 최지현		' 22510112 죄지현

22510112 최지현 22510107 이다인 ₅₁

22510107 이다인

22510107 이다인

- Decision Tree Classification
- 원래 데이터 셋
- confusion matrix와 성능 지표는 아래와 같다.

	성능 지표	precision	recall	f1-score	accuracy	FP/N
£ []		0.7949	0.9933	0.8831	0.7927	0.9554
	2251011	Z 최시언		225101	1기의시언	

22510107 이다인

LPK 학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 ₅₂

역출과약기술대약교 데이터사이언스약과

- 113.5 > MOTORSPEED ≤ 224.5,
- 467.5> MELT_TEMP ≤ 502.5,
- 38.5 > MELT_WEIGHT ≤ 471.5
- Entropy=0.349, Value=[1102, 15747]

서울과학기술대학교 데이터사이언스학과 22510112 최지현 22510107 이다이

LPK

서울과학기술대학교 데이터사이언스학과 22510112 최지현

• entropy가 가장 낮고 가장 잘 분류된 rule, 상위 5개2510112 최지현

	사후확률 Decision tree / 총 rule 개수: 30	원 데이터 Decision tree / 총 rule 개수 : 41
1	MELT_WEIGHT ≤ 358.5, MELT_TEMP > 433.5	MELT_TEMP > 464.5, MOTORSPEED > 224.5
ı	Entropy = 0.0, Value = [0, 229,570]	Entropy=0.0, Value=[0, 133345]
	370.5 > MELT_WEIGHT ≤ 599.5, MOTORSPEED > 108.5,	MELT_TEMP > 464.5, MOTORSPEED ≤ 224.5,
2	MELT_TEMP > 481.5	MELT_WEIGHT > 799.5
서旨	Entropy = 0.0, Value = [0, 73,356]	Entropy=0.066, Value=[85, 10857]
	MELT_WEIGHT ≤ 358.5, MELT_TEMP ≤ 433.5,	113.5 > MOTORSPEED ≤ 224.5, MELT_TEMP > 467.5,
3	MOTORSPEED ≤ 179.5	MELT_WEIGHT ≤ 38.5
	Entropy = 0.0, Value = [0, 23,797]	Entropy=0.325, Value=[593, 9412]
	370.5 > MELT_WEIGHT ≤ 498.5, 432.5 > MELT_TEMP ≤ 462.5,	113.5 > MOTORSPEED ≤ 224.5, 467.5 > MELT_TEMP ≤ 502.5,
4	MOTORSPEED ≤ 132.5	38.5 > MELT_WEIGHT ≤ 471.5
	Entropy = 0.0, Value = [0, 14,501]	Entropy=0.349, Value=[1102, 15747]
서울	370.5 > MELT_WEIGHT ≤ 497.5, 462.5 > MELT_TEMP ≤ 481.5,	113.5 > MOTORSPEED ≤ 224.5, 467.5 > MELT_TEMP ≤ 493.5,
5	MOTORSPEED > 108.5	200.5 > MELT_WEIGHT ≤ 310.5
	Entropy = 0.0, Value = [0, 15,230]	Entropy=0.359, Value=[1196, 16345]

- LPK
- 나무 안의 색이 같은 색 계열이면 같은 집단으로 분류를 한 것이다.

22510112 최지현

• 색이 진해질 수록 정확하게 분류를 했다는 것이다.

- 22510107 이다인
- 트리를 보면 사후확률로 그린 그래프가 같은 색의 집단으로 분명하게 분류되는 것을 알 수 있다.
- 실제 0을 1로 예측하는 비율이 사후확률 Decision Tree가 더 작다.
 - FP/N 이 더 작음.
- 서울과학기술대학교 데이터사이언스학과 서울과학기술대학교 데이터사이언스학과 서울과학기술대학
- 모든 룰의 entropy 값 0.5 이하임을 알 수 있다.
 - value 안의 값을 보면 사후확률 decision tree의 값이 더 잘 분류된 모습을 볼 수 있다.

학기술대학교 데이터사이언스학과 22510112 치지형

서울과약기울대약교 데이터사이 22510112 최지현 22510107 이다인 | 울과학기술대학교 데이터사이언스학교 | 22510112 최지현 | 22510107 이다의 -- **LPK**

LPK

서울과학기술대학교 데이터사이언스학과

서울과학기술대학교 데이터사이언스학교

<mark>너울과학기술대학교 데이터사이언스학</mark>

데이터 결론 112 최지현

22510112 최지현

22510112 최지현

• MELT_WEIGHT에 이상치가 많다.

• 데이터 베이스에 MELT_WEIGHT의 입력 방식이 화면 인식을 통한 딥러닝 분류 기법인 것 같다.

• 디지털 숫자를 인식하는데 0과 8이 비슷해 8000대의 이상치가 존재하는 것 같다.

• (예시)

• 정확한 MELT_WEIGHT 값이 입력될 수 있는 방법을 찾아야 한다.

• 설명변수와 목표변수의 관계가 크지 않다.

2•5 이는 0과 1의 분류가 잘 되지 않는 문제로 이어진다. 이미인

• 더 큰 상관관계를 갖는 변수를 추가해야 한다.

울과학기술대학교 데이터사이언

22510112 최지현

22510107 이다인

LPK

라

22510112 최지

서울과학기술대학교 데이터사이언스학교 22510112 최지현 22510107 이다인 ₅₆

최종 결론

- 머신 러닝의 성능이 낮은 이유는 데이터 불균형이 심하고, 설명변수와 목표변수의 관계가 없기 때문이다.
- 또한 머신 러닝으로 시계열 분석은 불가능하다.
- 따라서 딥러닝으로 시계열 분석을 진행했다.
- 확실한 성능 향상이 있었지만 시간이 오래 걸리고 만족할 만한 결과를 도출하지 못했다.
 - 머신러닝과 비교해서 성능이 높지만 딥러닝도 0과 1을 제대로 분류하지 못 한다.
- 성능이 좋아도 90% 이상의 정확도를 가지지 않는다.
- 따라서 현장작업자가 양품을 잘 만들 수 있는 규칙이 정립될 수 있으면 좋겠다고 생각했다.
 - 딥러닝을 화이트 박스 모델로 만들어줄 방법을 고안했다.
 - 사후확률 Decision Tree 이다.
- 이 <u>사후확률 규칙</u>을 지킨다면 불량이 발생할 확률이 감소할 것이다.
 - 현장작업자가 직접 용해 상태를 보고 판단하는 것이 아닌 설명변수의 설정값 만으로도 양품을 만들어 낼 수 있을 것 이다. 0107 이다인

감사합니다.