

Universidade do Estado do Amazonas Escola Superior de Tecnologia - EST Núcleo de Computação

Algoritmos e Estruturas de Dados II

Shellsort

Prof. Flávio José M. Coelho fcoelho@uea.edu.br

Objetivos

Entender o funcionamento do algoritmo de ordenação **Shellsort**

O Shellsort foi inventado por Donald L. Shell (1924-2015) em 1959 ("A high-speed sorting procedure". Communications of the ACM, vol. 2, no. 7. July 1959, 30-32).

Donald L. Shell (1984)

1. Divida a lista em segmentos de tamanho h, e ordene por inserção a lista formada por cada primeiro elemento de cada segmento.

- 1. Divida a lista em segmentos de tamanho h, e ordene por inserção a lista formada por cada primeiro elemento de cada segmento.
- 2. Aplique o passo 1 para cada segmento de tamanho h até o fim da lista.

- 1. Divida a lista em segmentos de tamanho h, e ordene por inserção a lista formada por cada primeiro elemento de cada segmento.
- 2. Aplique o passo 1 para cada segmento de tamanho h até o fim da lista.
- 3. Aplique os passos 1 e 2 para $h=1,4,13,40,121,364,1093,\ldots$, na ordem inversa

Esta **sequência de incrementos** de h é considerada uma das mais eficientes, obtida empiricamente (Segdewick e Wayne).

$$h = 4$$

$$h = 4$$

h = 4

$$h = 2$$

$$h = 1$$

SHELLSORT(A)

- h=1
- 2 enquanto h < A.tam/3 h = 3*h+1
- 3 enquanto $h \ge 1$
- 4 para i=h até A.tam-1
 - j = i
 - enquanto $j \geq h$ e A[j] < A[j-h]
 - troque A[j] com A[j-h]
 - j = j h
 - h = h/3

Shellsort

Shellsort está em posição intermediária entre os métodos simples e os eficientes.

Shellsort

Shellsort está em posição intermediária entre os métodos simples e os eficientes.

Utilizado por profissionais por ser simples, pequeno e não requerer memória extra (implementado em hardware ou em sistemas embarcados, se não for necessário um método mais rápido).

Referências

- A. Levitin. Introduction to the Design and Analysis of Algorithms. 3rd edition. Addison-Wesley,2007
- R. Sedgewick, K. Wayne. Algorithms. 4th edition, Addison-Wesley Professional, 2011
 - N. Ziviani. Projeto de Algoritmos com Implementação em Pascal C. Cengage Learning, 2012

Onde obter este material:

est.uea.edu.br/fcoelho