Assignment 2

Linear Algebra, Numerical & Complex analysis (MA11004) Department of Mathematics, Indian Institute of Technology Kharagpur

Q1. (a) Consider the following system of linear equations

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Solve the system (carry your calculation keeping results rounded off to 6 decimal places) using Jacobi's iteration method starting from initial guess (x, y, z) = (0, 0, 0). After how many iterations the result comes close to (error tolerance $< 10^{-3}$) the exact solution?

- Q1. (b) Use Bisection method to find a root of the equation $x^3 + 4x^2 10 = 0$ in the interval [1,2] correct upto three decimal places.
- Q2. (a) Consider the following system of linear equations

$$3x + 7y + 13z = 76$$

$$x + 5y + 3z = 28$$

$$12x + 3y - 5z = 1$$

Perform 3 iterations (correct upto 4 decimal places) using Gauss-Seidel iteration method starting from initial guess (x, y, z) = (1, 0, 1). Do the values tend to converge? Make the system diagonally dominant and carry the iteration keeping result rounded off to 5 decimal places. After how many iterations the result comes close (error tolerance $< 10^{-3}$) to exact solution?

- Q2. (b) The equation $x^3 2x 5 = 0$ has a root near x = 2. Use Newton-Raphson method to compute the root correct upto three decimal places.
- Q3. Let $f(x) = x^4 x 10$.
 - (a) Show that the fixed point iterates $x_{n+1} = g(x_n)$, of f(x) converges to a root α of f(x), with $x_0 = 4$, where $g(x) = (x+10)^{\frac{1}{4}}$. Also find the root α correct up to four decimal places by using the iterates $x_{n+1} = g(x_n)$.
 - (b) Let $g(x) = x + \beta f(x)$. Find the possible values (or range) of β such that the fixed point iterates $x_{n+1} = g(x_n)$ converges, where $x_0 = 4$.

1

Q4. Consider the following data:

x	0	2	4	6	8	10
f(x)	-1	3	-2	5	4	-7

- (i) Write the Newton forward difference table. Find the Newton forward difference interpolating polynomial and estimate the value of f(5).
- (ii) Find the Newton backward difference interpolation polynomial. Do the Newton forward and backward difference interpolating polynomials coincide?
- Q5. (a) Using Lagrange's interpolation formula, determine the curve passing through the points (0,0), (1,1) and (2,20).
 - (b) Using Lagrange's interpolation formula, find y(9.5) from the following table

x: 7 8 9 10
y: 3 1 1 9

- Q6. (a) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2. Hence, obtain an approximate value of π .
 - (b) By dividing the range into ten equal parts, evaluate $\int_0^{\pi} \sin x \, dx$ by Simpson's $\frac{1}{3}$ rd rule.
- Q7. a) Examine whether the function $f(z) = (2x^2 + y) + i(y^2 x)$ is analytic at any point.
 - b) Find out whether the function $u(x,y) = x^3 3xy^2 5y$ is harmonic in the entire complex plane. If so, find the harmonic conjugate function of u.
- Q8. a) Evaluate $\int_C |z| \bar{z} dz$, where C consists of the line segment $-1 \le x \le 1$ and C^+ , the upper half of the circle |z| = 1, positively oriented.
 - b) Evaluate the integral $\int_0^{1+i} (x y + ix^2) dz$,
 - i) along the straight line from z = 0 to z = 1 + i
 - ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis from z = 1 to z = 1 + i.
