Отчёт по лабораторной работе №6

Решение моделей в непрерывном и дискретном времени

Ким Реачна

Содержание

1	Целі	ь работы	5
2	Вып	олнение лабораторной работы	6
	2.1	Решение обыкновенных дифференциальных уравнений	6
		2.1.1 Модель экспоненциального роста	6
		2.1.2 Система Лоренца	9
	2.2	Модель Лотки-Вольтерры	11
	2.3	Задания для самостоятельного выполнения	12
3	Лист	гинги программы	29
4	Выв	од	57

Список иллюстраций

2.1	установка пакетов DifferentialEquations	C
2.2	Численное решение модель экспоненциального роста	7
2.3	График модель экспоненциального роста	7
2.4	Точность решения	8
2.5	Модель экспоненциального роста	8
2.6	Численное решение динамической системой Лоренца	9
2.7	Аттрактор Лоренца	10
2.8	Аттрактор Лоренца (интерполяция отключена)	10
2.9	Численное решение модель Лотки-Вольтерры	11
2.10	Модель Лотки-Вольтерры: динамика изменения численности по-	
	пуляций	11
2.11	Модель Лотки–Вольтерры: фазовый портрет	12
2.12	Решение модели Мальтуса	13
	График модели Мальтуса	13
2.14	Построение анимации	13
2.15	Анимация модели Мальтузы	14
	Решение логистическую модель роста популяции	15
	График логистическую модель роста популяции	15
	Построение анимации	15
	Анимация логистическую модель роста популяции	16
2.20	Решение SIR модель	17
	График SIR модель	17
2.22	Анимация SIR модель	18
	Решение SEIR-модель	19
	График SEIR-модель	19
2.25	Анимация SEIR-модель	20
2.26	Решение модели Лотки-Вольтерры	20
2.27	График модели Лотки-Вольтерры	21
2.28	Анимация модели Лотки-Вольтерры	21
	Решение модели роста популяции в условиях коконкуренции	22
2.30	График модели роста популяции в условиях коконкуренции	23
	Фазовый портрет	23
	Анимация модели роста популяции в условиях коконкуренции	24
	Решение модель консервативного гармонического осциллятора .	24
	График модели консервативного гармонического осциллятора	25
	Фазовый портрет	25
	Анимация модели консервативного гармонического осциллятора	26

2.37	Решение модели свободных колебаний гармонического осциллятора
2.38	График модели свободных колебаний гармонического осциллятора
2.39	Фазовый портрет
2.40	Анимация модели свободных колебаний гармонического осцилля-
	тора

1 Цель работы

Основной целью работы является освоение специализированных пакетов для решения задач в непрерывном и дискретном времени.

2 Выполнение лабораторной работы

2.1 Решение обыкновенных дифференциальных уравнений

2.1.1 Модель экспоненциального роста

Рис. 2.1: Установка пакетов Differential Equations

Рис. 2.2: Численное решение модель экспоненциального роста

Рис. 2.3: График модель экспоненциального роста

```
[4]: # задаём точность решения:
sol = solve(prob,abstol=1e-8,reltol=1e-8)
println(sol)
```

println(sol)

ODESolution(Float64, 1, Vector(Float64), Nothing, Nothing, Vector(Float64), Vector(Vector(Float64)), ODEProblem(Float64, Tuple(Float64, Float64), false, SciMLBase.NullParameters, ODEFunction(false, SciMLBase.AutoSpecialize, typeof(f), LinearAlgebra.UniformScaling(Bool), Nothing, Nothin

Рис. 2.4: Точность решения

Рис. 2.5: Модель экспоненциального роста

2.1.2 Система Лоренца

```
[6]: # подключаем необходимые пакеты:
                       import Pkg
Pkg.add("DifferentialEquations")
                                  Resolving package versions...
No Changes to `C:\Users\Reachna\.julia\environments\v1.9\Project.toml`
No Changes to `C:\Users\Reachna\.julia\environments\v1.9\Manifest.toml`
[7]: using DifferentialEquations, Plots;
                       # задаём начальное условие:
и0 = [1.0,0.0,0.0]
# задаём знанчения параметров:
                      # задаем энанчения параметро0:

p = (10,28,8/3)

# задаем интербал бремени:

tspan = (0.0,100.0)

# решение:

prob = ODEProblem(lorenz!,u0,tspan,p)

sol = solve(prob)
[7]: retcode: Success
                         The countries of the state of t
                                       0.0
3.5678604836301404e-5
                                       0.0003924646531993154
0.00032624077544510573
                                       0.009058075635317072
                                       0.01695646895607931
0.02768995855685593
                                       0.04185635042021763
                                       0.06024041165841079
0.08368541255159562
                                       0.11336499649094857
0.1486218182609657
0.18703978481550704
                                   99.14118781914485
                                    99.22588252940076
99.30760258626904
                                   99.39665422328268
```

Рис. 2.6: Численное решение динамической системой Лоренца

```
# подключаем необходимые пакеты:
using Plots
# строим график:
plot(sol, vars=(1,2,3), lw=2, title="Аттрактор Лоренца", xaxis="x",yaxis="y", zaxis="z",legend=false)

r Warning: To maintain consistency with solution indexing, keyword argument vars will be removed in a future version.
Please use keyword argument idxs instead.
caller = ip:0x0
@ Core :-1

ATTPAKTOP Лоренца
```

Рис. 2.7: Аттрактор Лоренца

Рис. 2.8: Аттрактор Лоренца (интерполяция отключена)

2.2 Модель Лотки-Вольтерры

```
| Import Pkg | Pkg. add ("ParameterizedFunctions") | Resolving package versions... | No Changes to Cilusers(Reachmat, julialenvironments\v1.9\Project.toml") | No Changes to Cilusers (Reachmat, julialenvironments\v1.9\Project.toml") | No Changes to Cilusers (Reachmat, julialenvironments\v1.9\Project.toml") | No Changes to Cilusers(Reachmat, ju
```

Рис. 2.9: Численное решение модель Лотки-Вольтерры

Рис. 2.10: Модель Лотки-Вольтерры: динамика изменения численности популяций

Рис. 2.11: Модель Лотки-Вольтерры: фазовый портрет

2.3 Задания для самостоятельного выполнения

1. Реализовать и проанализировать модель роста численности изолированной популяции (модель Мальтуса) : $\dot{x}=ax, a=b-c$

Использовала следующие коэффициенты: a=b-c=2.0, b=3.0, c=1.0 и интервал от 0 до 3. Я решила взять довольно большой коэффициент рождаемости и роста популяции тем самым ожидая на графике очень быстрый рост населения, что в принципе я и получила. Так как за 3 единицы времени размер изолированной популяции с 2 увеличилось до 800 по экспоненте.

Рис. 2.12: Решение модели Мальтуса

Рис. 2.13: График модели Мальтуса

```
[16]: animate(sol, fps=7, "Malthus.gif", label = "Численность изолированной популяции х(t)", color="green", ls=[:solid], title="Модель Мальтуса", хахіs="Бремя", уахіs="Размер изолированной популяции")

◀
```

Рис. 2.14: Построение анимации

Рис. 2.15: Анимация модели Мальтузы

2. Реализовать и проанализировать логистическую модель роста популяции, заданную уравнением: $\dot{x} = xr(1-\frac{x}{k}), r>0, k>0$

Задала коэффициенты следующие r=0.9, k=20. Таким образом коэффициент роста равен 0.9, а предельное значение численности популяции равно 20, поэтому график на интервале от 0 до 10 должен достичь по оси у значение 20 и выше не под- ниматься.

Рис. 2.16: Решение логистическую модель роста популяции

Рис. 2.17: График логистическую модель роста популяции

```
[19]: animate(sol, fps=7, "Logistic_population.gif", label = "Численность популяции х(t)", color="blue", ls=[:solid], title="Логистическая модель роста популяции", хахіs="Время", yaxіs="Размер популяции")
```

Рис. 2.18: Построение анимации

Рис. 2.19: Анимация логистическую модель роста популяции

3. Реализовать и проанализировать модель эпидемии Кермака–Маккендрика (SIR-модель):

$$\begin{cases} \dot{s} = -\beta i s, \\ \dot{i} = \beta i s - v i, \\ \dot{r} = v i \end{cases}$$
 (2.1)

Задала $\beta = 0.25, v = 0.05$

Рис. 2.20: Решение SIR модель

Рис. 2.21: График SIR модель

Видно, что число инфицированных растет намного медленнее, а также в целом

меньшее число людей было инфицировано по истечению времени, нежели в первом случае. Коэффициент интенсивности $R_0=\frac{\beta}{v}=3.$

Рис. 2.22: Анимация SIR модель

4. Как расширение модели SIR (Susceptible-Infected-Removed) по результатом эпидемии испанки была предложена модель SEIR (Susceptible-Exposed-Infected-Removed):

$$\begin{cases} \dot{s}(t) = -\frac{\beta}{N} s(t) i(t), \\ \dot{e}(t) = \frac{\beta}{N} s(t) i(t) - \delta e(t), \\ \dot{i}(t) = \delta e(t) - \gamma i(t), \\ \dot{r}(t) = \gamma i(t) \end{cases}$$
 (2.2)

Задала $\beta = 0.6, \gamma = 0.2, \delta = 0.1, N = 1.0$:

Рис. 2.23: Решение SEIR-модель

Рис. 2.24: График SEIR-модель

Рис. 2.25: Анимация SEIR-модель

5. Для дискретной модели Лотки-Вольтерры:

$$\begin{cases} X_1(t+1) = aX_1(t)(1-X_1(t)) - X_1(t)X_2(t), \\ X_2(t+1) = -cX_2(t) + dX_1(t)X_2(t) \end{cases} \tag{2.3}$$

Задала a = 2, c = 1, d = 5:

Рис. 2.26: Решение модели Лотки-Вольтерры

Рис. 2.27: График модели Лотки-Вольтерры

Рис. 2.28: Анимация модели Лотки-Вольтерры

6. Реализовать на языке Julia модель отбора на основе конкурентных отноше-

ний:

$$\begin{cases} \dot{x} = \alpha x - \beta x y, \\ \dot{y} = \alpha y - \beta x y \end{cases}$$
 (2.4)

Рис. 2.29: Решение модели роста популяции в условиях коконкуренции

Рис. 2.30: График модели роста популяции в условиях коконкуренции

Рис. 2.31: Фазовый портрет

Рис. 2.32: Анимация модели роста популяции в условиях коконкуренции

7. Реализовать на языке Julia модель консервативного гармонического осциллятора: $\ddot{x}=\omega_0^2x=0, x(t_0)=x_0, \dot{x}(t_0)=y_0$

Рис. 2.33: Решение модель консервативного гармонического осциллятора

Рис. 2.34: График модели консервативного гармонического осциллятора

Рис. 2.35: Фазовый портрет

Рис. 2.36: Анимация модели консервативного гармонического осциллятора

8. Реализовать на языке Julia модель свободных колебаний гармонического осциллятора: $\ddot{x}+2\gamma\dot{x}+\omega_0^2x=0, x(t_0)=x_0, \dot{x}(t_0)=y_0$

Рис. 2.37: Решение модели свободных колебаний гармонического осциллятора

Рис. 2.38: График модели свободных колебаний гармонического осциллятора

Рис. 2.39: Фазовый портрет

Рис. 2.40: Анимация модели свободных колебаний гармонического осциллятора

3 Листинги программы

```
# подключаем необходимые пакеты:
import Pkg
Pkg.add("DifferentialEquations")
using Differential Equations
# задаём описание модели с начальными условиями:
a = 0.98
f(u,p,t) = a*u
u0 = 1.0
# задаём интервал времени:
tspan = (0.0, 1.0)
# решение:
prob = ODEProblem(f,u0,tspan)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 5-element Vector{Float64}:
 0.0
 0.10042494449239292
 0.35218603951893646
```

```
0.6934436334555072
 1.0
u: 5-element Vector{Float64}:
 1.0
 1.1034222047865465
 1.4121908848175448
 1.9730384867968267
 2.664456142481423
# подключаем необходимые пакеты:
using Plots
# строим графики:
plot(sol, linewidth=5,title="Модель экспоненциального роста",
xaxis="Bpems",yaxis="u(t)",label="u(t)")
plot!(sol.t, t->1.0*exp(a*t),lw=3,ls=:dash,label="Аналитическое решение")
# задаём точность решения:
sol = solve(prob,abstol=1e-8,reltol=1e-8)
println(sol)
# строим график:
plot(sol, lw=2, color="black", title="Модель экспоненциального роста",
xaxis="Время",yaxis="u(t)",
    label="Численное решение")
plot!(sol.t, t->1.0*exp(a*t),lw=3,ls=:dash,color="red",
label="Аналитическое решение")
# подключаем необходимые пакеты:
import Pkg
Pkg.add("DifferentialEquations")
$\beta$
using Differential Equations, Plots;
```

```
# задаём описание модели:
function lorenz!(du,u,p,t)
    \sigma, \rho, \rho, \rho = \rho
    du[1] = \frac{\pi}{u[2]-u[1]}
    du\lceil 2\rceil = u\lceil 1\rceil * (\$ \cdot rho\$ - u\lceil 3\rceil) - u\lceil 2\rceil
    du\lceil 3 \rceil = u\lceil 1 \rceil * u\lceil 2 \rceil -  beta * u\lceil 3 \rceil
end
# задаём начальное условие:
u0 = [1.0, 0.0, 0.0]
# задаём знанчения параметров:
p = (10, 28, 8/3)
# задаём интервал времени:
tspan = (0.0, 100.0)
# решение:
prob = ODEProblem(lorenz!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 1263-element Vector{Float64}:
   0.0
   3.5678604836301404e-5
   0.0003924646531993154
   0.0032624077544510573
   0.009058075635317072
   0.01695646895607931
   0.02768995855685593
   0.04185635042021763
   0.06024041165841079
```

- 0.08368541255159562
- 0.11336499649094857
- 0.1486218182609657
- 0.18703978481550704

•

- 99.05535949898116
- 99.14118781914485
- 99.22588252940076
- 99.30760258626904
- 99.39665422328268
- 99.49536147459878
- 99.58822928767293
- 99.68983993598462
- 99.77864535713971
- 99.85744078539504
- 99.93773320913628

100.0

u: 1263-element Vector{Vector{Float64}}:

[1.0, 0.0, 0.0]

- [0.9996434557625105, 0.0009988049817849058, 1.781434788799208e-8]
- [0.9961045497425811, 0.010965399721242457, 2.146955365838907e-6]
- [0.9693591634199452, 0.08977060667778931, 0.0001438018342266937]
- [0.9242043615038835, 0.24228912482984957, 0.0010461623302512404]
- [0.8800455868998046, 0.43873645009348244, 0.0034242593451028745]
- [0.8483309847495312, 0.6915629321083602, 0.008487624590227805]
- [0.8495036669651213, 1.0145426355349096, 0.01821208962127994]
- [0.9139069574560097, 1.4425599806525806, 0.03669382197085303]
- [1.088863826836895, 2.052326595543049, 0.0740257368585531]
- [1.4608627354936607, 3.0206721193016133, 0.16003937020467585]

```
[2.162723488309695, 4.633363843843712, 0.37711740539408584]
 [3.3684644104189387, 7.26769410983553, 0.936355641713984]
 [12.265454131109882, 12.598146409807255, 31.546057337607913]
 [10.48677626670755, 6.494631680470132, 33.669742813875764]
 [6.893277189568002, 3.1027383340030155, 29.77818388970318]
 [4.669609096878053, 3.061564434452441, 25.1424735017959]
 [4.188801916573263, 4.617474401440693, 21.09864175382292]
 [5.559603854699961, 7.905631612648314, 18.79323210016923]
 [8.556629716266505, 12.533041060088328, 20.6623639692711]
 [12.280585075547771, 14.505154761545633, 29.332088452699942]
 [11.736883151600804, 8.279294641640229, 34.68007510231878]
 [8.10973327066804, 3.2495066495235854, 31.97052076740117]
 [4.958629886040755, 2.194919965065022, 26.948439650907677]
 [3.8020065515435855, 2.787021797920187, 23.420567509786622]
# подключаем необходимые пакеты:
using Plots
# строим график:
plot(sol, vars=(1,2,3), lw=2, title="Аттрактор Лоренца",
xaxis="x",yaxis="y", zaxis="z",legend=false)
# отключаем интерполяцию:
plot(sol, vars=(1,2,3), denseplot=false, lw=1, title="Аттрактор Лоренца",
xaxis="x",yaxis="y", zaxis="z",legend=false)
# подключаем необходимые пакеты:
import Pka
Pkg.add("ParameterizedFunctions")
using ParameterizedFunctions, DifferentialEquations, Plots;
# задаём описание модели:
```

```
lv! = @ode_def LotkaVolterra begin
    dx = a*x - b*x*y
    dy = -c*y + d*x*y
end a b c d
# задаём начальное условие:
u0 = [1.0, 1.0]
# задаём знанчения параметров:
p = (1.5, 1.0, 3.0, 1.0)
# задаём интервал времени:
tspan = (0.0, 10.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 34-element Vector{Float64}:
  0.0
  0.0776084743154256
  0.23264513699277584
  0.4291185174543143
  0.6790821987497083
  0.9444046158046306
  1.2674601546021105
  1.6192913303893046
  1.9869754428624007
  2.2640902393538296
  2.5125484290863063
  2.7468280298123062
```

```
3.0380065851974147
  6.455762090996754
  6.780496138817711
  7.171040059920871
  7.584863345264154
  7.978068981329682
  8.48316543760351
  8.719248247740158
  8.949206788834692
  9.200185054623292
 9.438029017301554
 9.711808134779586
 10.0
u: 34-element Vector{Vector{Float64}}:
 [1.0, 1.0]
 [1.0454942346944578, 0.8576684823217127]
 [1.1758715885138267, 0.639459570317544]
 [1.4196809607170826, 0.4569962601282084]
 [1.876719395008001, 0.32473342927911314]
 [2.5882500645533466, 0.26336255535952163]
 [3.8607089092207665, 0.2794458098285253]
 [5.750812667710396, 0.5220072537934558]
 [6.814978999130169, 1.9177826328390666]
 [4.3929992925714245, 4.194670792850584]
 [2.1008562663496626, 4.31694049248469]
 [1.2422757654297396, 3.1073646247560807]
 [0.9582720921023357, 1.7661433892230374]
```

.

```
[0.952206525526163, 1.4383448433913901]
 [1.1004623776276266, 0.7526620730760382]
 [1.5991134291557523, 0.3903181675223147]
 [2.614253967788294, 0.26416945387525886]
 [4.241076127191749, 0.3051236762921916]
 [6.791123785297795, 1.1345287797146113]
 [6.265370675764892, 2.74169350754023]
 [3.7807651118880545, 4.431165685863461]
 [1.816420140681761, 4.064056625315978]
 [1.1465021407690728, 2.7911706616216976]
 [0.9557986135403302, 1.6235622951850799]
 [1.0337581256020607, 0.9063703842886133]
plot(sol, label = ["Жертвы" "Хищники"], color="black", ls=[:solid :dash],
    title="Модель Лотки - Вольтерры", xaxis="Время",yaxis="Размер популяции")
# фазовый портрет:
plot(sol, vars=(1,2), color="black", xaxis="Жертвы",
    yaxis="Хищники", legend=false)
# Task1
using ParameterizedFunctions, DifferentialEquations, Plots;
# задаем описание модели:
lv! = @ode_def Malthus begin
    dx = a*x
end a
# задаём начальное условие:
u0 = \lceil 2 \rceil
# задаём знанчения параметров:
b = 3.0
c = 1.0
```

```
p = (b-c)
# задаём интервал времени:
tspan = (0.0, 3.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 12-element Vector{Float64}:
 0.0
 0.07579340539309044
 0.2176538131796436
 0.39326275375009306
 0.6100444793398203
 0.8636787203353302
 1.1544101119687582
 1.4789340537388638
 1.8349001265017795
 2.219134461733416
 2.628731787861167
 3.0
u: 12-element Vector{Vector{Float64}}:
 [2.0]
 [2.327358634990142]
 [3.0908767890047213]
 [4.391507855871063]
 [6.774976441549192]
 [11.251525438518586]
```

```
[20.12503871207196]
 [38.513500897099114]
 [78.48706775956025]
 [169.25231460681178]
 [383.9709586782193]
 [806.8145670268354]
plot(sol, label = "Численность изолированной популяции <math>x(t)",
    color="green", ls=[:solid], title="Модель Мальтуса",
    xaxis="Время", yaxis="Размер изолированной популяции")
animate(sol, fps=7, "Malthus.gif",
    label = "Численность изолированной популяции x(t)",
    color="green", ls=[:solid], title="Модель Мальтуса",
    xaxis="Время", yaxis="Размер изолированной популяции")
# Task2
using ParameterizedFunctions, DifferentialEquations, Plots;
# задаем описание модели:
lv! = @ode_def Logistic_population begin
    dx = r*x*(1-x/k)
end r k
# задаём начальное условие:
u0 = [1.0]
# задаём знанчения параметров:
p = (0.9, 20)
# задаём интервал времени:
tspan = (0.0, 10.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
```

```
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 14-element Vector{Float64}:
  0.0
  0.10320330193850687
  0.3855506045099877
  0.780748965506008
  1.262015691559725
  1.8586159628422565
  2.574933530608521
  3.471498551774082
  4.571529609523612
  5.629314234929612
  6.930091225213617
  8.078262639019435
  9.531767314565881
 10.0
u: 14-element Vector{Vector{Float64}}:
 [1.0]
 [1.092018818522065]
 [1.3860627615966585]
 [1.9212436077635002]
 [2.816088473652035]
 [4.379382291381814]
 [6.9638339217858904]
 [10.897151531483962]
 [15.262798385676023]
 [17.860400164058895]
 [19.28300459695191]
```

```
[19.73872139608262]
 [19.928358494866384]
 [19.95293645513508]
plot(sol, label = "Численность популяции x(t)", color="blue", ls=[:solid],
    title="Логистическая модель роста популяции",
    xaxis="Время", yaxis="Размер популяции")
animate(sol, fps=7, "Logistic_population.gif",
    label = "Численность популяции x(t)", color="blue", ls=[:solid],
    title="Логистическая модель роста популяции",
    xaxis="Время", yaxis="Размер популяции")
#Task3
# задаём описание модели:
lv! = @ode_def SIR begin
ds = -b*i*s
di = b*i*s - v*i
dr = v*i
end b v
# задаём начальное условие:
u0 = [1.0, 0.1, 0]
# задаём знанчения параметров:
p = (0.25, 0.05)
# задаём интервал времени:
tspan = (0.0, 100.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
```

```
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 19-element Vector{Float64}:
   0.0
   0.08088145925786733
   0.674649456103469
   1.9774507638268786
   3.928608933045557
  6.371598738903415
  9.52414865378298
  13.099293783864182
 17.0272982736033
  22.927215420937856
  27.195723313986843
  33.36650873512655
 39.87152643660008
 49.090534040944405
  57.69126316873367
 69.09753551513025
 81.37728197451536
 95.06634205664659
 100.0
u: 19-element Vector{Vector{Float64}}:
 [1.0, 0.1, 0.0]
 [0.9979636107059043, 0.10162869618330198, 0.0004076931107937434]
 [0.9821139347502068, 0.11427647441254161, 0.003609590837251619]
 [0.9414409947662143, 0.1464902846000639, 0.012068720633721717]
 [0.8642596086672918, 0.2065639776528575, 0.029176413679850716]
 [0.74121657128916, 0.29889094291007307, 0.05989248580076701]
```

```
[0.5567300467580422, 0.42613510184975667, 0.11713485139220119]
 [0.360654706841008, 0.5353792639828872, 0.20396602917610487]
 [0.20739657233924386, 0.5779798290842139, 0.3146235985765423]
 [0.09060823642513902, 0.5292223125052752, 0.4801694510695858]
 [0.05338199009370889, 0.46063944558344505, 0.585978564322846]
 [0.028391022566481953, 0.35937261970727175, 0.7122363577262463]
 [0.0170789878367201, 0.26904206253122753, 0.8138789496320523]
 [0.010313325603209397, 0.17491074430234183, 0.9147759300944487]
 [0.007575677466988872, 0.11594548156094338, 0.9764788409720677]
 [0.005875265433141473, 0.0667974153589635, 1.027327319207895]
 [0.00503471355663355, 0.03675496060375371, 1.0582103258396127]
 [0.004593344331796414, 0.018844607044236347, 1.0765620486239673]
 [0.004499446877146492, 0.014807724434560448, 1.080692828688293]
plot(sol, label = ["Восприимчивые" "Инфицированные" "Переболевшие"],
    color=["blue" "green" "red"], ls=[:solid :dash :dot],
    title="Модель эпидемии Кермака-Маккендрика SIR",
    xaxis="Время", yaxis="Размер популяции")
animate(sol, fps=7, "SIR.gif", label = ["Восприимчивые" "Инфицированные"
    "Переболевшие"], color=["blue" "green" "red"],
    ls=[:solid :dash :dot], title="Модель эпидемии Кермака-Маккендрика SIR",
    xaxis="Время", yaxis="Размер популяции")
# Task4
using ParameterizedFunctions, DifferentialEquations, Plots;
N = 1.0
# задаём описание модели:
lv! = @ode_def SEIR begin
    ds = -(\frac{h}{N})*s*i
    de = (\$\beta/N)*s*i - \$\beta*e
    di = \frac{di}{delta} - \frac{mas*i}{delta}
```

```
dr = \gamma^* gamma
end $\beta$ $\gamma$ $\delta$
initialInfect = 0.1
# задаём начальное условие:
u0 = Γ(N - initialInfect), 0.0, initialInfect, 0.0]
# задаём знанчения параметров:
p = (0.6, 0.2, 0.1)
# задаём интервал времени:
tspan = (0.0, 100.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 25-element Vector{Float64}:
   0.0
   0.024423707511123237
   0.21983937298994613
   0.672446110582935
   1.3433111385495904
   2.2048531822239386
   3.3191976283637796
   4.685982405908369
   6.3524541259891905
   8.357303010682124
  10.779894718728759
```

```
13.70832499771059
```

- 17.247755058759296
- 21.418982739513048
- 26.11587299819979
- 31.347120286227476
- 37.434253818037966
- 45.57027277276479
- 51.92822542671895
- 59.56906630189384
- 67.00367237385267
- 75.35077774263594
- 84.11521635193901
- 93.80030928820192
- 100.0

u: 25-element Vector{Vector{Float64}}:

```
[0.9, 0.0, 0.1, 0.0]
```

- [0.8986852898870974, 0.0013131042225504326, 0.09951432022141568, 0.0004872856689
- [0.8884555417234649, 0.011417324323729522, 0.09582374914118306, 0.00430338481162
- [0.8376686538121818, 0.05813585741007436, 0.08027144058351698, 0.023924048194226
- [0.8051950526908224, 0.08442177816749856, 0.07327976147138879, 0.037103407670290
- [0.7680943013707942, 0.11059043221384872, 0.06848784016256021, 0.052827426252796
- [0.6792664312390849, 0.15805852226928974, 0.0688812349182705, 0.0937938115733548
- [0.623382992351777, 0.17997364305440322, 0.07423208615365647, 0.1224112784401633
- [0.4768637125359172, 0.2186438129000962, 0.09277106500685588, 0.2117214095571307
- [0.29653469968020435, 0.22432013816924648, 0.10906830780960446, 0.37007685434094

```
[0.21812154248717963, 0.20203117991295588, 0.10739980642601175, 0.47244747117385
 [0.15806973255508666, 0.16563080905944505, 0.09651368465549173, 0.57978577372997
 [0.11491898104500536, 0.1215634160999261, 0.077464413236204, 0.6860531896188644]
 [0.08400800945909402, 0.07403353279384636, 0.05147687832977306, 0.79048157941728
 [0.07130232240330717, 0.04833829861708447, 0.035216955841511605, 0.8451424231380
 [0.06276940082693701, 0.02824847582139928, 0.021352251676490398, 0.8876298716751
 [0.05825882147195975, 0.0165002046928897, 0.012753410930975914, 0.91248756290417
 [0.055521002402506674, 0.008936742931616089, 0.007009643484943623, 0.92853261118
 [0.054029149007287586, 0.004666816658196447, 0.003692034829599681, 0.93761199950
 [0.05320737945653188, 0.002268337061083503, 0.0018033195237675385, 0.94272096395
 [0.05292214534843295, 0.001427809361623715, 0.0011373400856070426, 0.94451270520
plot(sol, label = ["Восприимчивые" "Контактные" "Инфицированные" "Переболевшие"],
    color=["blue" "black" "green" "red"],
    ls=[:solid :dash :dot :dashdot], title="Модель SEIR",
    xaxis="Время", yaxis="Размер популяции")
animate(sol, fps=7, "SEIR.gif", label = ["Восприимчивые" "Контактные"
    "Инфицированные" "Переболевшие"],
    color=["blue" "black" "green" "red"], ls=[:solid :dash :dot :dashdot],
    title="Модель SEIR", xaxis="Время", yaxis="Размер популяции")
import Pkg
Pkg.add("LaTeXStrings")
# Task5
using Differential Equations, Plots, Parameterized Functions, LaTeXStrings
# задаём знанчения параметров:
a, c, d = 2, 1, 5
# задаем функцию для дискретной модели
next(x1, x2) = [(a*x1*(1 - x1) - x1*x2), (-c*x2 + d*x1*x2)]
```

```
# рассчитываем точку равновесия
balancePoint = [(1 + c)/d, (d*(a - 1)-a*(1 + c))/d]
# задаём начальное условие:
u0 = [0.8, 0.05]
modelingTime = 100
simTrajectory = Array{Union{Nothing, Array}}(nothing, modelingTime)
for t in 1:modelingTime
    simTrajectory[t] = []
    if(t == 1)
        simTrajectory[t] = u0
    else
        simTrajectory[t] = next(simTrajectory[t-1]...)
    end
end
scatter([simTrajectory[1][1]], [simTrajectory[1][2]],
    c=:red, ms=9, label="Начальное состояние")
plot!(first.(simTrajectory), last.(simTrajectory), color=:green,
    linestyle=:dash, marker = (:dot, 5, Plots.stroke(0)),
    label="Траектория модели",
    title = "Дискретная модель Лотки-Вольтерры")
scatter!([balancePoint[1]], [balancePoint[2]], color=:orange, markersize=5,
    label="Точка равновесия",
    xlabel="Жертвы", ylabel="Хищники")
n = 100
```

```
anim = @animate for i in 1:n
    modelingTime = (i)
    # задаём значения параметров:
    a, c, d = 2, 1, 5
    # задаём начальное условие:
    u0 = [0.8, 0.05]
    simTrajectory = Array{Union{Nothing, Array}}(nothing, modelingTime)
    for t in 1:modelingTime
        simTrajectory[t] = []
        if(t == 1)
            simTrajectory[t] = u0
        else
            simTrajectory[t] = next(simTrajectory[t-1]...)
        end
    end
    scatter([simTrajectory[1][1]], [simTrajectory[1][2]],
    c=:red, ms=9, label="Начальное состояние")
    plot!(first.(simTrajectory), last.(simTrajectory), color=:green,
    linestyle=:dash, marker = (:dot, 5, Plots.stroke(0)),
    label="Траектория модели", title = "Дискретная модель Лотки-Вольтерры",
    xlabel="Жертвы", ylabel="Хищники")
    scatter!([balancePoint[1]], [balancePoint[2]], color=:orange, markersize=5,
    label="Точка равновесия", xlabel="Жертвы", ylabel="Хищники")
end
gif(anim, "LotkaVolterra.gif", fps=7)
```

```
[ Info: Saved animation to C:\Users\Reachna\computer-analysis\LotkaVolterra.gif
# Task6
using ParameterizedFunctions, DifferentialEquations, Plots;
# задаем описание модели:
lv! = @ode_def CompetitiveSelectionModel begin
    dx = a*x - b*x*y
    dy = a*y - b*x*y
end a b
# задаём начальное условие:
u0 = [1.0, 1.4]
# задаём знанчения параметров:
p = (0.5, 0.2)
# задаём интервал времени:
tspan = (0.0, 10.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 20-element Vector{Float64}:
  0.0
  0.13063515958673816
  0.6620095919016169
  1.4745519498111759
  2.384274376329455
  3.4538271544345127
  4.562673961852109
  5.67839475574588
```

- 6.618742680948912
- 7.174117808180357
- 7.581652232104449
- 7.907287404662807
- 8.211743148258813
- 8.476131118651619
- 8.723933719403542
- 8.961493008998673
- 9.203605421462836
- 9.457562739292689
- 9.735425791326456
- 10.0

u: 20-element Vector{Vector{Float64}}:

- [1.0, 1.4]
- [1.028414415994334, 1.4554136105342876]
- [1.1349867943706582, 1.6919333806954628]
- [1.2538768556942972, 2.0899703101538307]
- [1.2907022905384151, 2.608347267277165]
- [1.1633365332504924, 3.412641939340822]
- [0.8307911711859107, 4.746685014866651]
- [0.3930025927897952, 7.233789081223332]
- [0.11653304820955845, 11.063651811087418]
- [0.03764043695860551, 14.488643868861088]
- [0.012491831797030182, 17.729605845536696]
- [0.004202666799768924, 20.85409224693543]
- [0.001245992590926548, 24.27939005309544]
- [0.00036185736409178275, 27.709728708980833]
- [9.560318903313416e-5, 31.364442854341014]
- [2.244509754328223e-5, 35.32009587775201]

```
[4.313586083190942e-6, 39.86535971687741]
 [6.934576244296251e-7, 45.26283767286127]
 [1.4912772355035453e-7, 52.009055572552825]
 [4.679085610076088e-8, 59.365007376922144]
plot(sol, label = ["1-ый биологический вид" "2-ой биологический вид"],
    color=["blue" "red"], ls=[:solid :dash],
    title="Модель роста популяции в условиях конкуренции",
    xaxis="Время", yaxis="Размер популяции")
# фазовый портрет:
plot(sol, vars=(1,2), color="black", title="Фазовый портрет",
    xaxis="1-ый биологический вид",
    yaxis="2-ой биологический вид", legend=false)
animate(sol, fps=7, "CompetitiveSelection.gif", label = ["1-ый биологический вид'
    "2-ой биологический вид"], color=["blue" "red"], ls=[:solid :dash],
    title="Модель роста популяции в условиях конкуренции",
    xaxis="Время", yaxis="Размер популяции")
# Task7
# задаём описание модели:
lv! = @ode_def classicOscillator begin
dx = y
dy = -(w0^2)^*x
end w0
# задаём начальное условие:
u0 = [1.0, 1.0]
# задаём знанчения параметров:
p = (2.0)
# задаём интервал времени:
tspan = (0.0, 10.0)
```

```
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 31-element Vector{Float64}:
  0.0
  0.07580097943195412
  0.2069885812216689
  0.35309669557584694
  0.5285194634228536
  0.7514914358697009
  1.0072081570278821
  1.2779920001493048
  1.5687719973957874
  1.9026764818913302
  2.2229737198679334
  2.5850540372165933
  2.9526997573066778
  5.742944245724529
  6.171924002188556
  6.584586020436235
 7.010469902680138
 7.433067666627458
  7.849769901055738
  8.282275752485367
```

```
8.684259757356292
```

- 9.126171387660838
- 9.52416872011131
- 9.970147020711996
- 10.0

u: 31-element Vector{Vector{Float64}}:

- [1.0, 1.0]
- [1.0640413705392677, 0.6864865930281919]
- [1.1166550813709244, 0.11102078370062098]
- [1.0853087396797187, -0.5370470078797774]
- [0.9269048870800588, -1.2503554234259173]
- [0.5666112375440778, -1.9276425383253635]
- [0.022386691007709538, -2.2356196821467753]
- $\lceil -0.5570284464613865, -1.9387831861313267 \rceil$
- [-0.9979739926547287, -1.0080686210010363]
- [-1.0957225558152268, 0.4445374258736321]
- [-0.7456354461054244, 1.6661869368567293]
- [-0.006569139131189493, 2.2360614231772953]
- [0.7451324586587859, 1.6671355348183015]
- .
- [0.03021521168044187, 2.235606930351544]
- [0.8654637606214528, 1.41627272049878]
- [1.1073959714327866, -0.3112605647462868]
- [0.6122516331842249, -1.871658434967589]
- [-0.29388388213013045, -2.1580890344574137]
- [-0.9963842964392918, -1.015855708266747]
- [-1.0328816676509016, 0.8579542164981876]
- [-0.4077221808745367, 2.0829571936841744]
- [0.5467601666298106, 1.9514927878253023]

```
[1.0797592054767065, 0.583755858914729]
 [0.9051310875033446, -1.3144311246694527]
 [0.8643018846988861, -1.4201082114276489]
plot(sol, label = ["x(t)" "dx(t)"], color=["purple" "red"], ls=[:solid :dash],
    title="Модель консервативного гармонического осциллятора",
    xaxis="Время", yaxis="Отклик")
# фазовый портрет:
plot(sol, vars=(1,2), color="black", title="Фазовый портрет",
xaxis="x(t)", yaxis="dx(t)", legend=false)
animate(sol, fps=7, "harmonic_oscillator_model.gif",
    label = ["x(t)" "dx(t)"], color=["red" "green"], ls=[:solid :dash],
    title="Модель консервативного гармонического осциллятора",
    xaxis="Время",yaxis="Отклик")
# Task8
# задаём описание модели:
lv! = @ode_def Oscillator begin
dx = y
dy = -2*v*y - (w0^2)*x
end v w0
# задаём начальное условие:
u0 = [0.5, 1.0]
# задаём знанчения параметров:
p = (0.5, 2.0)
# задаём интервал времени:
tspan = (0.0, 10.0)
# решение:
prob = ODEProblem(lv!,u0,tspan,p)
```

```
sol = solve(prob)
retcode: Success
Interpolation: specialized 4th order "free" interpolation,
specialized 2nd order "free" stiffness-aware interpolation
t: 31-element Vector{Float64}:
  0.0
  0.07472295275624102
  0.2111474073618621
  0.370998115535819
 0.5569932690427111
  0.7935651279847608
 1.0592494385311997
 1.3434677044587358
 1.6345590088704463
  1.9695771278946115
  2.298725814870145
  2.6637691425219807
  3.0363220157596453
  5.737115484628017
  6.172863902331125
  6.563858473632751
  6.9841201699413915
 7.37336534430487
 7.815553300011508
  8.212080450073843
 8.639453151000238
```

9.029651151704007

9.479283944498775

```
9.87771453843803
 10.0
u: 31-element Vector{Vector{Float64}}:
 [0.5, 1.0]
 [0.566294838471426, 0.7739308462880993]
 [0.6437437851223823, 0.3637766487994777]
 [0.6656226258660081, -0.08049773973260232]
 [0.6094379096181167, -0.503508004573969]
 [0.4452831172025973, -0.8447598314155575]
 [0.20099102764791993, -0.9462443065396515]
 [-0.04954803582308005, -0.7771790317510109]
 [-0.22751020774505532, -0.42797996515316294]
 \lceil -0.2962791192338872, 0.00818480202141821 \rceil
 \lceil -0.23845282512709462, 0.3134414248513738 \rceil
 [-0.09679021863435247, 0.42129625389844744]
 [0.04524414886471238, 0.3125279503774128]
 [-0.03315737624036357, 0.07927158408600336]
 [0.0017326274212230485, 0.07121962845594192]
 [0.022062892859074344, 0.030158917447841632]
 [0.024809347789294035, -0.014651796201659706]
 [0.014235235204598871, -0.0355305572028829]
 [-0.0014083593645169308, -0.03091031727427868]
 [-0.01013099472742578, -0.01203260641848518]
 [-0.010785598009219697, 0.0077159074914185674]
 [-0.005781690145433664, 0.016065370061608866]
 [0.0011806103102176132, 0.013025832366786661]
 [0.004710304453757682, 0.004335633036576887]
```

[0.005069760406208022, 0.0015704622491427875]

```
plot(sol, label = ["x(t)" "dx(t)"], color=["blue" "green"], ls=[:solid :dash],
    title="Модель свободных колебаний гармонического осциллятора",
    xaxis="Время",yaxis="Отклик")

# фазовый портрет:

plot(sol, vars=(1,2), color="black", title="Фазовый портрет",
    xaxis="x(t)", yaxis="dx(t)", legend=false)

animate(sol, fps=7, "oscillator_model.gif", label = ["x(t)" "dx(t)"],
    color=["blue" "green"], ls=[:solid :dash],
    title="Модель свободных колебаний гармонического осциллятора",
    xaxis="Время",yaxis="Отклик")
```

4 Вывод

Освоила специализированных пакетов для решения задач в непрерывном и дискретном времени.