Deep Learning: Shallow Supervised Learning

Lecture 01

Razvan C. Bunescu

School of Electrical Engineering and Computer Science

bunescu@ohio.edu

Supervised Learning

- Task = learn an (unkown) function $t : X \to T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - Classification:
 - The output $t(\mathbf{x}) \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t(\mathbf{x}) \in T$ is continuous, or has a continuous component.
- Target function $t(\mathbf{x})$ is known (only) through (noisy) set of training examples:

$$(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_n, t_n)$$

Supervised Learning

- Task = learn an (unknown) function $t : X \rightarrow T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - function t is known (only) through (noisy) set of training examples:
 - Training/Test data: $(\mathbf{x}_1, \mathbf{t}_1), (\mathbf{x}_2, \mathbf{t}_2), \dots (\mathbf{x}_n, \mathbf{t}_n)$
- Task = build a function h(x) such that:
 - h matches t well on the training data:
 - => h is able to fit data that it has seen.
 - h also matches target t well on test data:
 - \Rightarrow h is able to generalize to unseen data.

Regression: Curve Fitting

Regression: Curve Fitting

• Training: Build a function $h(\mathbf{x})$, based on training examples $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_N, t_N)$

Lecture 01

Regression: Curve Fitting

• **Testing**: for arbitrary (unseen) instance $\mathbf{x} \in \mathbf{X}$, compute target output $h(\mathbf{x})$; want it to be close to $t(\mathbf{x})$.

Supervised Learning

Training

Testing

Parametric Approaches to Supervised Learning

- Task = build a function h(x) such that:
 - h matches t well on the training data:
 - => h is able to fit data that it has seen.
 - h also matches t well on test data:
 - \Rightarrow h is able to generalize to unseen data.
- **Task** = choose *h* from a "nice" *class of functions* that depend on a vector of parameters **w**:
 - $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
 - what classes of functions are "nice"?

Neurons

Soma is the central part of the neuron:

where the input signals are combined.

Dendrites are cellular extensions:

where majority of the input occurs.

Axon is a fine, long projection:

• carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:

where the communication takes place.

Neuron Models

https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-model.pdf

Year	Model Name	Reference
1907	Integrate and fire	[13]
1943	McCulloch and Pitts	[11]
1952	Hodgkin-Huxley	[12]
1958	Perceptron	[14]
1961	Fitzhugh-Nagumo	[15]
1965	Leaky integrate-and-fire	[16]
1981	Morris-Lecar	[17]
1986	Quadratic integrate-and-fire	[18]
1989	Hindmarsh-Rose	[19]
1998	Time-varying integrate-and-fire model	[20]
1999	Wilson Polynomial	[21]
2000	Integrate-and-fire or burst	[22]
2001	Resonate-and-fire	[23]
2003	Izhikevich	[24]
2003	Exponential integrate-and-fire	[25]
2004	Generalized integrate-and-fire	[26]
2005	Adaptive exponential integrate-and-fire	[27]
2009	Mihalas-Neibur	[28]

Spiking/LIF Neuron Function

http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

Fig. 2. (a) Illustration and (b) functional description of a leaky integrate-and-fire neuron. Weighted and delayed input signals are summed into the input current $I_{\rm app}(t)$, which travel to the soma and perturb the internal state variable, the voltage V. Since V is hysteric, the soma performs integration and then applies a threshold to make a spike or no-spike decision. After a spike is released, the voltage V is reset to a value $V_{\rm reset}$. The resulting spike is sent to other neurons in the network.

Neuron Models

https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-model.pdf

Year	Model Name	Reference
1907	Integrate and fire	[13]
1943	McCulloch and Pitts	[11]
1952	Hodgkin-Huxley	[12]
1958	Perceptron	[14]
1961	Fitzhugh-Nagumo	[15]
1965	Leaky integrate-and-fire	[16]
1981	Morris-Lecar	[17]
1986	Quadratic integrate-and-fire	[18]
1989	Hindmarsh-Rose	[19]
1998	Time-varying integrate-and-fire model	[20]
1999	Wilson Polynomial	[21]
2000	Integrate-and-fire or burst	[22]
2001	Resonate-and-fire	[23]
2003	Izhikevich	[24]
2003	Exponential integrate-and-fire	[25]
2004	Generalized integrate-and-fire	[26]
2005	Adaptive exponential integrate-and-fire	[27]
2009	Mihalas-Neibur	[28]

McCulloch-Pitts Neuron Function

Algebraic interpretation:

- The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
- It is often transformed through an activation / output function.

Activation Functions

unit step
$$f(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Perceptron

logistic
$$f(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression

identity f(z) = z

Linear Regression

0

Lecture 01

Linear Regression

• Polynomial curve fitting is Linear Regression:

$$\mathbf{x} = \mathbf{\phi}(x) = [1, x, x^2, ..., x^{\mathbf{M}}]^{\mathbf{T}}$$
$$h(\mathbf{x}) = \mathbf{w}^{\mathbf{T}}\mathbf{x}$$

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, \dots, w_M]$
 - Find w that minimizes an *error* / *cost function* $E(\mathbf{w})$ which measures the misfit between $h(x_n, \mathbf{w})$ and t_n .
 - Expect that: $h(x_n, \mathbf{w})$ performing well on training examples $x_n \Rightarrow h(x, \mathbf{w})$ will perform well on arbitrary test examples $x \in X$.

Inductive Learning Hyphotesis

• Least Squares error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(x_n, \mathbf{w}) - t_n\}^2$$

why squared?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(x_n, \mathbf{w}) - t_n\}^2$$

• How do we find \mathbf{w}^* that minimizes $E(\mathbf{w})$?

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$$

• Least Square solution is found by solving a set of M + 1 linear equations:

$$\sum_{j=0}^{M} A_{ij} w_j = T_i, \text{ where } A_{ij} = \sum_{n=1}^{N} x_n^{i+j}, \text{ and } T_i = \sum_{n=1}^{N} t_n x_n^i$$

• Prove it.

Gradient Descent (Batch)

- Want to minimize a function $f: \mathbb{R}^n \to \mathbb{R}$.
 - -f is differentiable and convex.
 - compute gradient of f i.e. direction of steepest increase:

$$\nabla f(\mathbf{w}) = \left[\frac{df}{dw_1}(\mathbf{w}), \frac{df}{dw_2}(\mathbf{w}), \dots, \frac{df}{dw_k}(\mathbf{w}) \right]$$

- choose a sequence of points \mathbf{w}^1 , \mathbf{w}^2 , ... and a learning rate η such that:

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla f(\mathbf{w}^{\tau})$$

• Sum-of-squares error: $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} {\{\mathbf{w}^T \mathbf{x}_n - t_n\}}^2$

Gradient Descent: Convex Objective

http://www2.math.umd.edu/~jmr/241/gradients.html

Gradient Descent: Non-Convex Objective

http://www2.math.umd.edu/~jmr/241/gradients.html

Gradient Descent: Saddle Points & Plateaus

http://www2.math.umd.edu/~jmr/241/gradients.html

Gradient Descent: Zig-Zagging Behavior

Stochastic Gradient Descent (Online)

Decompose error function in sum of example errors:

$$E(\mathbf{w}) = \sum_{n=1}^{N} \frac{1}{2} (\mathbf{w}^{T} \mathbf{x}_{n} - t_{n})^{2} = \sum_{n=1}^{N} E_{n}(\mathbf{w})$$

• Update parameters w after each example, sequentially:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$
$$= \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \mathbf{x}_n) \mathbf{x}_n$$

=> the least-mean-square (LMS) algorithm.

- Generalization = how well the parameterized $h(x, \mathbf{w}^*)$ performs on arbitrary (unseen) test instances $x \in X$.
- Generalization performance depends on the value of M.

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

- Model Selection: choosing the order M of the polynomial.
 - Best fit obtained with M = 3.
 - M = 9 obtains poor fit, even though it fits training examples perfectly:
 - But M = 9 polynomials subsume M = 3 polynomials!
- Overfitting = good performance on training examples, poor performance on test examples.

Overfitting

Measure fit using the Root-Mean-Square (RMS) error:

$$E_{RMS}(\mathbf{w}) = \sqrt{\frac{\sum_{n} (\mathbf{w}^{T} \mathbf{x}_{n} - t_{n})^{2}}{N}}$$

• Use 100 random test examples, generated in the same way:

Over-fitting and Parameter Values

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	$-5\overline{321.83}$
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Overfitting vs. Data Set Size

- More training data \Rightarrow less overfitting.
- What if we do not have more training data?
 - Use regularization.

Regularization

- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping.
- Noise robustness.
- Sparse representations.
- Adversarial training.

Regularization

• Penalize large parameter values:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$regularizer$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E(\mathbf{w})$$

9th Order Polynomial with Regularization

9th Order Polynomial with Regularization

Training & Test error vs. $\ln \lambda$

How do we find the optimal value of λ ?

Model Selection

- Put aside an independent validation set.
- Select parameters giving best performance on validation set.

Lecture 01

Neuron Function

Algebraic interpretation:

- The output of the neuron is a linear combination of inputs from other neurons,
 rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
- It is often transformed through a monotonic activation function.

Activation Functions

unit step
$$f(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Perceptron

logistic
$$f(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression

identity f(z) = z

Linear Regression

0

Lecture 01

Perceptron

- Assume classes $T = \{c_1, c_2\} = \{1, 0\}.$
- Training set is $(x_1,t_1), (x_2,t_2), ... (x_n,t_n)$.

$$\mathbf{x} = [1, x_1, x_2, ..., x_k]^{\mathrm{T}}$$
$$h(\mathbf{x}) = step(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

Perceptron Learning

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, \dots, w_k]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $x_n \Rightarrow h(x, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathbf{X}$.
- Least Squares error function?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$
 # of mistakes

Least Squares vs. Perceptron Criterion

- Least Squares => cost is # of misclassified patterns:
 - Piecewise constant function of w with discontinuities.
 - Cannot find closed form solution for w that minimizes cost.
 - Cannot use gradient methods (gradient zero almost everywhere).

Perceptron Criterion:

- Want $\mathbf{w}^T \mathbf{x}_n > 0$ for $\mathbf{t}_n = 1$, and $\mathbf{w}^T \mathbf{x}_n < 0$ for $\mathbf{t}_n = 0$.
- \Rightarrow would like to have $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{n}}(2t_{\mathrm{n}}-1) > 0$ for all patterns
- \Rightarrow want to minimize $-\mathbf{w}^{T}\mathbf{x}_{n}(2t_{n}-1)$ for all missclassified patterns M.

$$\Rightarrow$$
 minimize $E_P(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \mathbf{x}_n (2t_n - 1)$

Stochastic Gradient Descent

• Update parameters w sequentially after each mistake:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}^{(\tau)}, \mathbf{x}_n)$$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \mathbf{x}_n (2t_n - 1)$$

• The magnitude of w is inconsequential => set $\eta=1$.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \mathbf{x}_n (2t_n - 1)$$

The Perceptron Algorithm: Two Classes

- 1. **initialize** parameters $\mathbf{w} = 0$
- 2. **for** i = 1 ... n

3.
$$h_i = step(\mathbf{w}^T \mathbf{x}_i)$$

4. if
$$y_i \neq t_i$$
 then

5.
$$\mathbf{w} = \mathbf{w} + \mathbf{x}_{i}(2t_{i}-1)$$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

Neuron Function

Algebraic interpretation:

- The output of the neuron is a linear combination of inputs from other neurons,
 rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
- It is often transformed through a monotonic activation function.

Activation Functions

unit step
$$f(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$

Perceptron

logistic
$$f(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression

identity f(z) = z

Linear Regression

0

Lecture 01

Logistic Regression

- Can be used for both classification and regression:
 - Classification: $T = \{C_1, C_2\} = \{1, 0\}.$
 - Regression: T = [0, 1] (i.e. output needs to be normalized).
- Training set is $(x_1,t_1), (x_2,t_2), ... (x_n,t_n)$.

$$\mathbf{x} = [1, x_1, x_2, ..., x_k]^{\mathrm{T}}$$

$$h(\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$
 Lecture 01

Logistic Regression for Binary Classification

 Model output can be interpreted as posterior class probabilities:

$$p(C_1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

$$p(C_2 \mid \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}) = \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

- How do we train a logistic regression model?
 - What **error/cost function** to minimize?

Logistic Regression Learning

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, \dots, w_k]$
 - Find w that minimizes an *error function* $E(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_n, \mathbf{w})$ and t_n .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_n \Rightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in X$.
- Least Squares error function?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{h(\mathbf{x}_{n}, \mathbf{w}) - t_{n}\}^{2}$$

- Differentiable => can use gradient descent ✓
- Non-convex => not guaranteed to find the global optimum X

Maximum Likelihood

Training set is D = $\{\langle \mathbf{x}_n, t_n \rangle \mid t_n \in \{0,1\}, n \in 1...N\}$

Let
$$h_n = p(C_1 | \mathbf{x}_n) \Leftrightarrow h_n = p(t_n = 1 | \mathbf{x}_n) = \sigma(\mathbf{w}^T \mathbf{x}_n)$$

Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of the labels.

- The likelihood function is $p(\mathbf{t} \mid \mathbf{w}) = \prod_{n=1}^{N} h_n^{t_n} (1 h_n)^{(1 t_n)}$
- The negative log-likelihood (cross entropy) error function:

$$E(\mathbf{w}) = -\ln p(\mathbf{t} \mid \mathbf{x}) = -\sum_{n=1}^{N} \left\{ t_n \ln h_n + (1 - t_n) \ln(1 - h_n) \right\}$$

Maximum Likelihood Learning for Logistic Regression

• The ML solution is:

w_{ML} =
$$\arg \max_{\mathbf{w}} p(\mathbf{t} \mid \mathbf{w}) = \arg \min_{\mathbf{w}} E(\mathbf{w})$$

- ML solution is given by $\nabla E(\mathbf{w}) = 0$.
 - Cannot solve analytically => solve numerically with gradient based methods: (stochastic) gradient descent, conjugate gradient, L-BFGS, etc.
 - Gradient is (prove it):

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T$$

Regularized Logistic Regression

• Use a Gaussian prior over the parameters:

$$\mathbf{w} = [w_0, w_1, \dots, w_M]^{\mathrm{T}}$$

$$p(\mathbf{w}) = N(\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

• Bayes' Theorem:

$$p(\mathbf{w} \mid \mathbf{t}) = \frac{p(\mathbf{t} \mid \mathbf{w})p(\mathbf{w})}{p(\mathbf{t})} \propto p(\mathbf{t} \mid \mathbf{w})p(\mathbf{w})$$

MAP solution:

$$\mathbf{w}_{MAP} = \arg\max_{\mathbf{w}} p(\mathbf{w} \mid \mathbf{t})$$

Regularized Logistic Regression

• MAP solution:

$$\mathbf{w}_{MAP} = \arg\max_{\mathbf{w}} p(\mathbf{w} \mid \mathbf{t}) = \arg\max_{\mathbf{w}} p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w})$$

$$= \arg\min_{\mathbf{w}} - \ln p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w})$$

$$= \arg\min_{\mathbf{w}} - \ln p(\mathbf{t} \mid \mathbf{w}) - \ln p(\mathbf{w})$$

$$= \arg\min_{\mathbf{w}} E_D(\mathbf{w}) - \ln p(\mathbf{w})$$

$$= \arg\min_{\mathbf{w}} E_D(\mathbf{w}) + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) + E_{\mathbf{w}}(\mathbf{w})$$

$$E_D(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\} \longrightarrow data \ term$$

$$E_{\mathbf{w}}(\mathbf{w}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} \longrightarrow regularization \ term$$
Lecture 01

Regularized Logistic Regression

• MAP solution:

$$\mathbf{w}_{MAP} = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) + E_{\mathbf{w}}(\mathbf{w})$$

→ still convex in w

• ML solution is given by $\nabla E(\mathbf{w}) = 0$.

$$\nabla E(\mathbf{w}) = \nabla E_D(\mathbf{w}) + \nabla E_{\mathbf{w}}(\mathbf{w}) = \sum_{n=1}^{N} (h_n - t_n) \mathbf{x}_n^T + \alpha \mathbf{w}^T$$
where $h_n = \sigma(\mathbf{w}^T \mathbf{x}_n)$

- Cannot solve analytically => solve numerically:
 - (stochastic) gradient descent [PRML 3.1.3], Newton Raphson iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

Softmax Regression = Logistic Regression for Multiclass Classification

Multiclass classification:

$$T = \{C_1, C_2, ..., C_K\} = \{1, 2, ..., K\}.$$

• Training set is $(x_1,t_1), (x_2,t_2), ... (x_n,t_n)$.

$$\mathbf{x} = [1, x_1, x_2, ..., x_M]$$

 $\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_n \in \{1, 2, ..., K\}$

• One weight vector per class [PRML 4.3.4]:

$$p(C_k \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j} \exp(\mathbf{w}_j^T \mathbf{x})}$$

Softmax Regression (K ≥ 2)

• Inference:

- Training using:
 - Maximum Likelihood (ML)
 - Maximum A Posteriori (MAP) with a Gaussian prior on w.

Softmax Regression

• The negative log-likelihood error function is:

$$E_{D}(\mathbf{w}) = -\frac{1}{N} \ln \prod_{n=1}^{N} p(t_{n} \mid \mathbf{x}_{n})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \ln \frac{\exp(\mathbf{w}_{t_{n}}^{T} \mathbf{x}_{n})}{Z(\mathbf{x}_{n})}$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{k}(t_{n}) \ln \frac{\exp(\mathbf{w}_{k}^{T} \mathbf{x}_{n})}{Z(\mathbf{x}_{n})}$$

where
$$\delta_t(x) = \begin{cases} 1 & x = t \\ 0 & x \neq t \end{cases}$$
 is the *Kronecker delta* function.

Softmax Regression

• The ML solution is:

$$\mathbf{w}_{ML} = \arg\min_{\mathbf{w}} E_D(\mathbf{w})$$

• The **gradient** is (prove it):

$$\nabla_{\mathbf{w}_{k}} E_{D}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - p(C_{k} \mid \mathbf{x}_{n}) \right) \mathbf{x}_{n}$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_{k}(t_{n}) - \frac{\exp(\mathbf{w}_{k}^{T} \mathbf{x}_{n})}{Z(\mathbf{x}_{n})} \right) \mathbf{x}_{n}$$

$$\nabla E_D(\mathbf{w}) = \left[\nabla_{\mathbf{w}_1}^T E_D(\mathbf{w}), \nabla_{\mathbf{w}_2}^T E_D(\mathbf{w}), \dots, \nabla_{\mathbf{w}_K}^T E_D(\mathbf{w})\right]^T$$
Lecture 01

Regularized Softmax Regression

• The new **cost** function is:

$$E(\mathbf{w}) = E_D(\mathbf{w}) + E_\mathbf{w}(\mathbf{w})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n)}{Z(\mathbf{x}_n)} + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• The new gradient is (prove it):

$$\nabla_{\mathbf{w}_k} E(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \left(\delta_k(t_n) - p(C_k \mid \mathbf{x}_n) \right) \mathbf{x}_n^T + \alpha \mathbf{w}_k^T$$

Softmax Regression

- ML solution is given by $\nabla E_D(\mathbf{w}) = 0$.
 - Cannot solve analytically.
 - Solve numerically, by pluging [cost, gradient] = $[E_D(\mathbf{w}), \nabla E_D(\mathbf{w})]$ values into general convex solvers:
 - L-BFGS
 - Newton methods
 - conjugate gradient
 - (stochastic / minibatch) gradient-based methods.
 - gradient descent (with / without momentum).
 - AdaGrad, AdaDelta
 - RMSProp
 - ADAM, ...

Implementation

• Need to compute [cost, gradient]:

$$cost = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_k(t_n) \ln p(C_k \mid \mathbf{x}_n) + \frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_k^T \mathbf{w}_k$$

• gradient_k =
$$-\frac{1}{N} \sum_{n=1}^{N} (\delta_k(t_n) - p(C_k \mid \mathbf{x}_n)) \mathbf{x}_n^T + \alpha \mathbf{w}_k^T$$

=> need to compute, for k=1,...,K:

• output
$$p(C_k | \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n)}{\sum_{j} \exp(\mathbf{w}_j^T \mathbf{x}_n)}$$
 Overflow when $\mathbf{w}_k^T \mathbf{x}_n$

are too large.

Implementation: Preventing Overflows

• Subtract from each product $\mathbf{w}_k^T \mathbf{x}_n$ the maximum product:

$$c = \max_{1 \le k \le K} \mathbf{w}_k^T \mathbf{x}_n$$

$$p(C_k \mid \mathbf{x}_n) = \frac{\exp(\mathbf{w}_k^T \mathbf{x}_n - c)}{\sum_{j} \exp(\mathbf{w}_j^T \mathbf{x}_n - c)}$$

Implementation: Gradient Checking

- Want to minimize $J(\theta)$, where θ is a scalar.
- Mathematical definition of derivative:

$$\frac{d}{d\theta}J(\theta) = \lim_{\epsilon \to \infty} \frac{J(\theta + \epsilon) - J(\theta - \epsilon)}{2\epsilon}$$

• Numerical approximation of derivative:

$$\frac{d}{d\theta}J(\theta) \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2\varepsilon} \quad \text{where } \varepsilon = 0.0001$$

Implementation: Gradient Checking

- If θ is a vector of parameters θ_i ,
 - Compute numerical derivative with respect to each θ_i .
 - Aggregate all derivatives into numerical gradient $G_{\text{num}}(\theta)$.
- Compare numerical gradient $G_{\text{num}}(\theta)$ with implementation of gradient $G_{\text{imp}}(\theta)$:

$$\frac{\left\|G_{num}(\boldsymbol{\theta}) - G_{imp}(\boldsymbol{\theta})\right\|}{\left\|G_{num}(\boldsymbol{\theta}) + G_{imp}(\boldsymbol{\theta})\right\|} \le 10^{-6}$$