Проблемное восстановление реальных данных в модели Курамото

25 декабря 2017 г.

Рассмотрим задачу восстановления функции каплинга по реальным данным (polar faculae) для магнитного поля Солнца.

Дано. Две временные серии, соответствующие магнитной активности на северном и южном полюсах соответственно; будем обозначать их N_t и S_t . Целью является восстановить функцию каплинг.

Рис. 1: Графики N_t и S_t без сглаживания

Предложим следующую процедуру:

1. Посчитаем скользящую корреляцию $\hat{C}_0(t)$ в окне периода (\approx 11 лет) у временных серий N_t и S_t :

Рис. 2: $\hat{C}_0(t)$

2. Будем исходить из квазистационарности, т.е. положим, что фазовая разность $\hat{\theta}(t)$ между N_t и S_t довольно близка к константе. Тогда, как известно, $\hat{C}_0(t) = \cos \hat{\theta}(t)$; тогда $\hat{\theta}(t) = \arccos \hat{C}_0(t)$:

Рис. 3: Фазовая разность из реальных данных в предположении о квазистационарности

3. Исходя из предположения о том, что $\frac{d}{dt}\hat{\theta}_0(t)\approx 0$, получаем

$$0 \approx \frac{d}{dt}\hat{\theta}_0(t) = 2\Delta w - k_0(t)\sin\hat{\theta}_0(t)$$
$$k_0(t) = \frac{2\Delta w}{\sin\hat{\theta}_0(t)}$$

Рис. 4: Полученное $k_0(t)$

Заметим также, что из-за такого пересчета, поскольку $\left|\sin\hat{\theta}_0(t)\right| \leq 1$ невозможно получить нарушение основного Курамото-неравенства.

4. Что произойдет, если мы начнем теперь восстанавливаться с найденного $k_0(t)$? Ясно, что решение дифференциального уравнения приведет к получению $\hat{\theta}_0(t)$. При помощи данной функции сконструируем два виртуальных маятника X_t и Y_t :

$$\begin{cases} X_t = \sin(\Omega t) \\ Y_t = \sin(\Omega t + \hat{\theta}_0(t)) \end{cases}$$

Посчитав скользящую корреляцию между ними в том же окне периода, мы получим новую $C_0(t)$ и соответственно новую фазовую разницу $\varphi(t) = \arccos C_0(t)$:

Рис. 5: Сравнение $\hat{\theta}_0(t)$ и $\varphi(t)$

Теперь по полученной фазовой разнице можно ровно так же получить $\hat{k}(t)$:

$$\hat{k}(t) = \frac{2\Delta w}{\sin \varphi(t)}$$

Рис. 6: Сравнение $k_0(t)$ и $\hat{k}(t)$

Описанная процедура, помимо того, что довольно странна, оставляет ряд вопросов:

- В результате никогда не случается катастрофа (за счет деления на синус, как указано выше);
- В некотором смысле мы действительно говорим о том, что мы восстанавливаем некоторое нулевое приближение, полученное из данных; однако важный нюанс заключается в том, что в данном процессе мы и нулевое приближение и реконструкцию получили из соображений квазистационарности;
- Правда ли, что корректно проводить реконструкцию, не решая по-честному ни одного дифференциального уравнения?
- Верно ли считать, что на самом деле мы восстанавливаем некоторое другое K(t), а k_0 и \hat{k} оба являются результатами восстановления (и если да, то лучше же k_0 ? с другой стороны,

он был получен из реальных данных без виртуальных маятников только из модельного соображения про зависимость скользящей корреляции от фазовой разницы в константном случае)