Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления

Отчет по лабораторной работе № <u>1</u>		
Молелирование инт	гегрального тензомоста	
	раторной работы)	
Преобразователи информаци	и и датчики физических величи	ІН
(название	дисциплины)	
	Выполнили студент	ы группы <u>ИВТ-32</u>
		Голев Андрей Дмитриевич
	(подпись)	(Ф.И.О.)
		игалов Даниил Владиславович
	(подпись)	(Ф.И.О.)
		7
	(подпись)	Лазарева Мария Викторовна (Ф.И.О.)
	(· · ·)	
	Про	оверил преподаватель
	C-	anning Marania Danier
	(подпись)	рачилов Максим Васильевич (Ф.И.О.)

1. Цель работы

На эквивалентной модели интегрального тензомоста изучить способы снижения температурного коэффициента чувствительности датчика деформации.

2. Оборудование

Настольный компьютер.

3. Теоретическая часть

Тензометрия — совокупность экспериментальных методов определения механического напряжения какой-либо детали.

Рисунок 1 - Проволочный тензодатчик

Полупроводниковые тензодатчики применяются в тех же случаях, что и обычные проволочные. Внедрение полупроводниковых тензодатчиков в качестве чувствительного элемента преобразователей механических величин в электрический сигнал позволило значительно повысить чувствительность систем. Важнейшим достоинством преобразователей механических величин (силы, давления, перемещения, ускорения) в электрические сигналы,

построенных на основе полупроводниковых тензодатчиков, является большой выходной сигнал, благодаря чему оказалось возможным использование таких датчиков в устройствах измерения и контроля без вспомогательных усилителей. Эта особенность позволила уменьшить вес и размеры измерительной аппаратуры и повысить точность измерений.

Рисунок 2 - Полупроводниковый тензорезистор

В качестве измерительной схемы можно использовать полный мост.

Рисунок 3. Схема полного моста

Однако на измеритель будет воздействовать не только входная физическая величина x, но и температура T. Таким образом, относительное изменение номинала резистора моста имеет зависимость

$$\varepsilon(x,T) = \frac{\Delta R}{R_0}$$

Пусть температура действует синфазно на резисторы моста:

$$R_1 = R_0(1 + \varepsilon_x + \varepsilon_T),$$
 $R_3 = R_0(1 - \varepsilon_x + \varepsilon_T),$ $R_2 = R_0(1 - \varepsilon_x + \varepsilon_T),$ $R_4 = R_0(1 + \varepsilon_x + \varepsilon_T),$

где $\varepsilon_T = \frac{\Delta T}{T_0} = \gamma \cdot \Delta T$, а $\gamma = \frac{\Delta R}{\Delta T \cdot R_0}$ — температурный коэффициент сопротивления (ТКС) — величина, показывающая относительное изменение сопротивления при нагреве или охлаждении материала на 1°.

Найдём выходное напряжение:

$$U_{\scriptscriptstyle \mathrm{BHX}} = \varphi_{A} - \varphi_{B}$$

$$\varphi_A = E \frac{R_2}{R_1 + R_2} = E \frac{R_0 (1 - \varepsilon_x + \varepsilon_T)}{R_0 (1 + \varepsilon_x + \varepsilon_T) + R_0 (1 - \varepsilon_x + \varepsilon_T)} = E \frac{1 - \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T}$$

$$\varphi_B = E \frac{R_4}{R_3 + R_4} = E \frac{R_0 (1 + \varepsilon_x + \varepsilon_T)}{R_0 (1 - \varepsilon_x + \varepsilon_T) + R_0 (1 + \varepsilon_x + \varepsilon_T)} = E \frac{1 + \varepsilon_x + \varepsilon_T}{2 + 2 \cdot \varepsilon_T}$$

$$U_{\text{\tiny Bbix}} = E \, \frac{1 - \varepsilon_{x} + \varepsilon_{T}}{2 + 2 \cdot \varepsilon_{T}} - E \, \frac{1 + \varepsilon_{x} + \varepsilon_{T}}{2 + 2 \cdot \varepsilon_{T}} = E \, \frac{-2 \cdot \varepsilon_{x}}{2 + 2 \cdot \varepsilon_{T}} = -E \cdot \varepsilon_{x} \, \frac{1}{1 + \varepsilon_{T}}$$

Продифференцируем итоговое выражение:

$$\frac{\partial U_{\text{BbIX}}}{\partial \varepsilon_{r}} = -E \frac{1}{1 + \gamma \cdot \Delta T}$$

На крутизну передаточной характеристики (зависимость выходного напряжения от входного воздействия в виде давления, силы и так далее) влияет такой дестабилизирующий фактор, как изменение температуры (каждый материал по-своему отвечает на это, что и определяет коэффициент у).

Рисунок 4 – Пример передаточной характеристики моста

По определению температурный коэффициент чувствительности имеет вид

$$TKY = \frac{\Delta U}{U(T_0)\Delta T}$$

Именно его снижением будем заниматься в данной лабораторной.

І. Расчёт параметров принципиальной схемы модели

Таблица 1. Исходные данные для моделирования

Ва риант	$\gamma(\%C^{-1})$	$\alpha(\%C^{-1})$	±Δ T (°C)	R ₀ (кОм)	$\pm x_{max}$ (%)	$g(\frac{\kappa O M}{B})$	E (B)	R_k
6	0,	-	±4	1,	0,32	0	9	1,
	21	0,92	5	0		,82		1

Таблица 2. Что-то

a_1	a_2	a_3	a_4	a_5
1	1	1	1	0,25

1. Устанавливаем номинальные сопротивления плеч моста R_0 :

$$U_0 = -\frac{R_0}{g \cdot a_1} = -\frac{10^3}{0.82 \cdot 10^3 \cdot 1} \approx -1.22 \text{ B}$$

2. Вычисляем амплитуду входного воздействия $U_{\rm d}$ по рассчитанному U_0 и выбранным значениям a_1 и a_2 :

$$U_{\mathrm{A}} = \pm x_{max} \cdot U_0 \cdot \frac{a_2}{a_1} = \mp 0,32 \cdot 10^{-2} \cdot 1,22 \cdot \frac{1}{1} = \mp 3,9 \text{ мВ}$$

3. Вычисляем синфазную (температурную) составляющую в сигнале управления:

$$E_c = \frac{\gamma \cdot R_0 \cdot \Delta T}{a_4 \cdot g} = \frac{0.21 \cdot 10^{-2} \cdot 10^3 \cdot (\pm 45)}{1 \cdot 0.82 \cdot 10^3} = \pm 0.115 \text{ B}$$

4. Вычисляем номинальное сопротивление терморезистора при заданном α :

$$R_{T_0} = -rac{\gamma \cdot R_0}{lpha} = -rac{0.21 \cdot 10^{-2} \cdot 10^3}{-0.92 \cdot 10^{-2}} \approx 228 \ \mathrm{Om}$$

5. Устанавливаем номинальное сопротивление терморезистора R_{T_0} :

$$U_{\text{cm}} = \frac{R_{T_0}}{g \cdot a_5} = \frac{228}{0.82 \cdot 10^3 \cdot 0.25} \approx 1.11 \text{ B}$$

Таблица 3. Расчётные параметры модели

U_0 , B	$U_{\mathrm{д}}(x)$, мВ	$U_{\scriptscriptstyle exttt{CM}}$, $\mathrm B$	E_c , B
-1,22	∓3,9	1,11	±0,115

II. Корректировка параметров базовой схемы тензомоста

Рисунок 5. Схема моделирования тензомоста с изменёнными параметрами

Рисунок 2. Что-то

III. Моделирование тензомоста при разных температурных условиях

1. При 0 мВ:

Рисунок 6. Моделирование при 0 мВ и без компенсации

Рисунок 3. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 4. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 5. Моделирование при 0 мВ и с компенсацией $R_{T_0} = 228~{\rm Om}$

2. При -115 мВ:

Рисунок 6. Моделирование при -115 мВ и без компенсации

Рисунок 7. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 8. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 9. Моделирование при -115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

3. При 115 мВ:

Рисунок 10. Моделирование при 115 мВ и без компенсации

Рисунок 11. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=1$,1 кОм

Рисунок 12. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 13. Моделирование при 115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

Таблица 4. Результаты моделирования тензомоста

	Вари	Результаты моделирования Оце									ценка результатов			
ант	1	т сэультаты модолирования						моделирования						
									модолирования					
	(T	,		T								
	6	T	T =		T =		T =				ая	1		
		T_0 ,		T_1	(TT)	T_2		B)		Термочувствит средняя 1).	стн	ıdıı ı		
			(Ec(T)	($(T_{\rm mi})$		$(T_{\rm m}$	х0 (м	0x		раст	c-Ta		
		=0 MB)		n)	n)		(x) $\begin{bmatrix} x \\ y \end{bmatrix}$		$\Delta U_1 = U_{ m BBIX1}$ - $U_{ m BBIX0}$ (MB) $\Delta U_2 = U_{ m BBIX2}$ - $U_{ m BBIX0}$	вит с	итр	МО		
								- 1x1	bix2	ВСТЕ	BCTE	r-Tb.		
				(<i>Ec(T</i>) =-115 MB)		(Ec(T)		$=U_{\mathrm{BI}}$	= U	очу	очу	Чувствит-ть. мос-та при «В/%)		
		U	Γ	D	5	=+115 MB)		U_1 =	$U_2^=$	ерм	Термочувствит расчетная).	$T{=}T_{\emptyset} \ \ ext{(MB/\%)}$		
		7	7	7	$\frac{1}{2}$		Γ			Te (MKBC ⁻¹⁾ .	Те (мкВС ⁻¹⁾ .	h (м)		
		BbIX()		BbIX1		BbIX2				мкВ	мкВ	$=T_{0}$		
		<u>B</u>		[B]		m Z				- O	()			
	× %	85,3		15,4		60,7		0,1	24,6	0,8		9,2		
	= 0,32%			,			-	0,1	21,0					
Без :ации	II													
Без компенсации	x %	285,4		316,0		260,8		30,6	4,6	61,3		89,2		
ЭМПЕ	=- 0,32%	200, .		310,0		200,0		30,0	7,0	01,5		07,2		
KC	ıi						163							
E	×	36,0		42,5		30,2		,5	5 0	3,7		2.5		
нсап	= 0,32%	30,0	278	74,3)3	30,2		,5	5,8	3,1		2,5		
Компенсаци кОм) =		27		393		16							
Kom R _K =1,1kOm	× %	126 1		142.6		120.2				12.0		42.5		
K=1	0,32%	136,1		142,6		130,2			,9	13,8		42,5		
я К	<u> </u>							6,5						
1	×	0.2		2.0		{						_		
сац	= 0,32%	9,3		2,0		6,7			2,6	,9		7,9		
Компенсаци Ом	= 0,							,7						
Kon	×			_		-								
Ко я R _к =2кОм	=- 0,32%	89,4		92,1		86,8			,6	5,9		27,9		
яR	=- 0;							2,7						
		l	<u> </u>	l	<u> </u>	l	1	,,	L	I				

Компенсация)м	x = 0,32%	32,6	32,8	32,5	,2	0,1	,3	2,7
Kom R _T =2280m	x =- 0,32%	232,6	232,8	232,5	0,2	0,1	0,8	1,9