Lecture 4.1: Inner product

Optimization and Computational Linear Algebra for Data Science

The Euclidean dot product

Definition

We define the Euclidean dot product of two vectors x and y of \mathbb{R}^n as:

$$\underline{x \cdot y} = \sum_{i=1}^{n} x_i y_i = \underline{x_1 y_1} + \dots + \underline{x_n y_n}.$$

$$\bullet \quad \alpha \cdot \alpha = \|\alpha\|_2^2$$

Inner product

Let V be a vector space.

Definition

An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to \mathbb{R} that verifies the following points:

- 1. Symmetry: $\langle \underline{u}, \underline{v} \rangle = \langle \underline{v}, \underline{u} \rangle$ for all $u, v \in V$.
- 2. Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}$.
- 3. Positive definiteness: $\langle v, v \rangle \ge 0$ with equality if and only if v=0.

$$\mathcal{E}_{X}$$
: for $V = \mathbb{R}^{n}$, the Euclidean dot prod. $(x,y) = x \cdot y$, is on inner product on \mathbb{R}^{n}

Other example

If V is the set of all random variables (on a probability space Ω) that have a finite second moment, then

have a finite second moment, then
$$\langle X,Y \rangle \stackrel{\mathrm{def}}{=} \mathbb{E}[XY] \quad \forall \quad X \rightarrow X$$

is an inner product on V.

is an inner product on
$$V$$
.
Symmetry $\langle X, Y \rangle = \mathbb{E}[XY] = \mathbb{E}[YX] = \langle Y, X \rangle$

Norm induced by an inner product

Proposition

If $\langle \cdot, \cdot \rangle$ is an inner product on V then

$$\underline{\|v\|} \stackrel{\mathrm{def}}{=} \sqrt{\langle v, v \rangle}$$

is a norm on V. We say that the norm $\|\cdot\|$ is induced by the inner product $\langle \cdot, \cdot \rangle$.

product
$$\langle \cdot, \cdot \rangle$$
.

Example: On $V = \mathbb{R}^n$, the Euclidean norm $||\cdot||_2$
is included by the Euclidean dot product:

 $||x||_2 = \sqrt{2 \cdot x}$

Example

Consider again the set V of all random variables (on a probability space Ω) that have a finite second moment, with the inner product:

Cauchy Schwarz inequality

Theorem (Cauchy-Schwarz inequality)

Let $\|\cdot\|$ be the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on the vector space V. Then for all $x,y\in V$:

$$\underbrace{|\langle x, y \rangle|}_{====} \le \underbrace{\|x\| \|y\|}_{====}. \tag{1}$$

Moreover, there is equality in (1) if and only if x and y are linearly dependent, i.e. $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbb{R}$.

$$\frac{\mathcal{E}_{x}}{|x \cdot y|} = \frac{\|x\|_{2} \|y\|_{2} \cos(9)}{|x \cdot y|} \leq \|x\|_{2} \|y\|_{2}$$

Examples

Examples