

WO 99/09189

30

PCT/FR98/01814

CLAIMS

1. Nucleic acid fragment, characterized in that it comprises a nucleic acid sequence coding for an androctonine.

5 2. Nucleic acid fragment according to claim 1, characterized in that it is a sequence of DNA.

a 3. Nucleic acid fragment according to ~~Claim 1~~ either of claims 1 and 2, characterized in that the androctonine consists of a peptide which can be 10 produced by and isolated from scorpions, in particular from the species *Androctonus australis*, the said peptide comprising at least 20 amino acids, preferably at least 25 amino acids, and 4 cysteine residues which form disulphide bridges between themselves.

SJ15> 4. Nucleic acid fragment according to ~~one~~ ~~Claim 1~~ of claims 1 to 3, characterized in that the androctonine essentially comprises the peptide sequence of general formula (I) below

20 (I)

in which

Xaa represents a peptide residue comprising at least 1 amino acid,

Xab represents a peptide residue of 5 amino acids,

25 Xac represents a peptide residue of 5 amino acids,

Xad represents a peptide residue of 3 amino acids, and

Xae represents a peptide residue comprising at least 1 amino acid.

31

*sub
BRI
cont*

5. Nucleic acid fragment according to claim
4, characterized in that Xab and/or Xad and/or Xae
comprise at least one basic amino acid.

6. Nucleic acid fragment according to claim
5, characterized in that the basic amino acids are
chosen from lysine, asparagine and homoasparagine.

a
a

7. Nucleic acid fragment according to ~~one~~
~~claims 4 to 6~~, characterized in that

Xaa represents the peptide sequence Xaa'-Val, in which
10 Xaa' represents NH₂ or a peptide residue comprising at
least 1 amino acid, and/or

Xab represents the peptide sequence -Arg-Xab'-Ile, in
which Xab' represents a peptide residue of 3 amino
acids, and/or

15 Xac represents the peptide sequence -Arg-Xac'-Gly-, in
which Xac' represents a peptide residue of 3 amino
acids, and/or

Xad represents the peptide sequence -Tyr-Xad'-Lys, in
which Xad' represents a peptide residue of 1 amino
20 acid, and/or

Xae represents the peptide sequence -Thr-Xae', in which
Xae' represents COOH or a peptide residue comprising at
least 1 amino acid.

8. Nucleic acid fragment according to claim
25 7, characterized in that
Xaa' represents the peptide sequence -Arg-Ser-, and/or
Xab' represents the peptide sequence -Gln-Ile-Lys-,
and/or

32

W.D. > Xac' represents the peptide sequence -Arg-Arg-Gly-,
and/or

B.B.1 *cont'd* Xad' represents the peptide residue -Tyr-, and/or

Xaa' represents the peptide sequence -Asn-Arg-Pro-Tyr.

Claim 1

5 9. Nucleic acid fragment according to ~~one~~
~~of claims 1 to 8~~, characterized in that the
androctonine is represented by the peptide sequence of
25 amino acids described by the sequence identifier No.
1 (SEQ ID NO. 1) and the homologous peptide sequences.

10 10. Nucleic acid fragment according to claim
9, characterized in that it is represented by the
sequence identifier No. 1 (SEQ ID NO. 1), a homologous
sequence or a sequence complementary to the said
sequence, more particularly the coding portion of this
15 SEQ ID NO. 1, corresponding to bases 1 to 75.

11. Nucleic acid fragment, characterized in
that it comprises a nucleic acid sequence coding for a
"peptide-androctonine" or "androctonine-peptide",
advantageously "peptide-androctonine", fusion peptide,
20 the androctonine being defined according to ~~one of~~
~~claims 1 to 9~~.

R *A* 12. Nucleic acid fragment according to claim
11, characterized in that the peptide fused to
androctonine is a signal peptide or a transit peptide.

25 13. Nucleic acid fragment according to claim
12, characterized in that the transit peptide is a
chloroplast-addressing signal or a mitochondrion-
addressing signal.

33

14. Nucleic acid fragment according to claim
12, characterized in that the signal peptide is an
N-terminal signal or "prepeptide", optionally in
combination with a signal responsible for retaining the
protein in the endoplasmic reticulum, or a vacuole-
addressing peptide or "propeptide".

15. Nucleic acid fragment according to claim
14, characterized in that the signal peptide is the
signal peptide of the tobacco PR-1 α gene.

10 16. Nucleic acid fragment according to claim
15, characterized in that the "peptide-androctonine"
fusion peptide is represented by the sequence
identifier No. 3 (SEQ ID NO. 3)..

15 17. Nucleic acid fragment according to claim
16, characterized in that the coding sequence is
represented by the sequence identifier No. 3
(SEQ ID NO. 3), a homologous sequence or a
complementary sequence, more particularly the coding
portion of this SEQ ID NO. 3, corresponding to bases 12
20 to 176 of this sequence.

18. "Peptide-androctonine" or "androctonine-
peptide", preferably "peptide-androctonine", fusion
protein, characterized in that it is defined according
to Claim 11
to claims 11 to 16.

a
Sub 25>
BB2
19. Chimeric gene comprising a coding
sequence and heterologous regulation elements in
positions 5' and 3' which can function in a host
organism, in particular plant cells or plants, these

34

Sub 7
BBA
cont
a elements being functionally linked to the said coding sequence, characterized in that the said coding sequence comprises at least one DNA fragment coding for androctonine as defined according to *claims 1 to 17.* *Claim 1*

5 20. Chimeric gene according to claim 19, characterized in that the host organism is chosen from bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyces* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a

10 baculovirus, and plant cells and plants.

a 21. Chimeric gene according to either of *claims 19 and 20*, characterized in that it is combined with a selection marker adapted to the transformed host organism. *Claim 19*

15 22. Cloning or expression vector for the transformation of a host organism, characterized in that it comprises at least one chimeric gene as defined according to *claims 19 to 21.* *Claim 19*

20 23. Process for transforming host organisms, in particular plant cells, by incorporating at least one nucleic acid fragment or one chimeric gene as defined in *claims 19 to 21.* *Claim 19*

25 24. Process according to claim 23, characterized in that the chimeric gene is incorporated by means of *a Vector* according to claim 22. *Claim 23*

a 25. Process according to either of *claims 23 and 24*, characterized in that the host organism is chosen from bacteria, for example *E. coli*, yeasts, in

35

SJ *BBQ*
cont

particular yeasts of the genera *Saccharomyces* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants.

26. Process according to claim 25,

5 characterized in that the host organism is a plant cell.

27. Process according to claim 26,
characterized in that plants are regenerated from transformed plant cells.

10 28. Transformed host organism, in particular plant cell or plant, characterized in that it comprises
a chimeric gene defined according to *Claim 19* ~~one of claims 19~~
a ~~to 21.~~

29. Host organism according to claim 28,
15 characterized in that it is chosen from bacteria, for example *E. coli*, yeasts, in particular yeasts of the genera *Saccharomyces* or *Kluyveromyces*, *Pichia*, fungi, in particular *Aspergillus*, a baculovirus, and plant cells and plants.

20 30. Plants, characterized in that they comprise transformed plant cells according to claim 29.

31. Plant according to claim 30,
characterized in that it is regenerated from transformed plant cells.

25 32. Plant, characterized in that it is obtained from the cultivating and/or crossing of the regenerated plants according to claim 31.

✓ 33. Plant according to *Claim 30* ~~one of claims 30 to~~

36

a 33, characterized in that it is chosen from corn,
~~soybean~~, wheat, rapeseed, soybean, rice, sugar cane, beetroot,
~~tobacco~~ tobacco and cotton.

a 34. Plant according to ~~one of claims 30 to~~

a 5 33, characterized in that it is resistant to fungal
diseases such as those caused by Cercospora, in
particular Cercospora beticola, Cladosporium, in
particular Cladosporium herbarum, Fusarium, in
particular Fusarium culmorum or Fusarium graminearum,
10 or by Phytophthora, in particular Phytophthora
cinnamomi.

a 35. Plant seeds according to ~~one of claims~~
a ~~30 to 34.~~ ~~Claim 30~~

a 36. Process for cultivating transformed
a 15 plants according to ~~one of claims 30 to 34, or obtained~~
a ~~by the process according to claim 27, the said process~~
consisting in planting the seeds of the said
transformed plants in an area of a cultivation
environment, in particular a field, which is suitable
20 for cultivating the said plants, in applying an
agrochemical composition to the said area, without
substantially affecting the said transformed seeds or
plants, and then in harvesting the plants cultivated
when they reach the desired maturity, and optionally in
25 separating the seeds from the harvested plants.

37. Process according to claim 36,
characterized in that the agrochemical composition
comprises at least one active product having at least a

37

fungicidal and/or bactericidal activity.

38. Process according to claim 37,
characterized in that the active product has an
activity complementary to that of the androctonine
5 produced by the transformed plants.

~~O-30 >~~ 39. Process for preparing ~~the~~ androctonine
~~BB3~~ defined according to one of claims 1 to 28, comprising
the steps of cultivating the transformed host organism
~~Claim 28~~
~~defined according to either of claims 28 and 29 in an~~
10 appropriate cultivation environment, followed by the
extraction and total or partial purification of the
androctonine obtained.

BB4 >