

Měření zpoždění přítahu relé

Martin Zlámal

Datum měření 12. listopadu 2013 © Datum poslední revize 19. listopadu 2013 LATEX

1 Zadání

- 1. Změřte zpoždění sepnutí a rozepnutí spínače ve všech polohách přepínače na přípravku.
- 2. Zaznamenejte a popište průběhy při spínání.
- 3. Porovnejte rozdíly mezi jednotlivými spínači nejen z hlediska spínací doby, ale i z hlediska průběhu spínacího děje.

2 Schéma zapojení

Obrázek 1: Schéma zapojení přípravku

3 Naměřené a vypočítané hodnoty

Tabulka 1: Naměřené hodnoty jednotlivých prvků přípravku

Relé	f[Hz]	t_{on}	t_{off}	t_{rise}	t_{fall}	Poznámka
Velké relé	5	7.3 ms	5.9 ms	< 3 us	< 3 us	zákmity
Malé relé	5	4,1 ms	9,8 ms	< 3 us	< 3 us	zákmity
Jazýčkové relé	5	93,1 us	75,9 us	< 940 us	1,4 us	zákmity
Polovodičové relé	5	376 us	37,5 us	285 us	1 us	lineární náběh
Optočlen	5	8,4 us	10,9 us	18 us	19,5 us	exponenciální
Spínací tranzistor	5	16 ns	100 ns	24 ns	185 ns	exponenciální

4 Závěr

Z naměřených hodnot lze vyčíst, že se různé prvky velmi zásadně liší. Například čas náběhu t_{on} je u velkého relé 7, 3 ms a u spínacího tranzistoru je $t_{on}=16\,ns$. Obdobně je tomu u vypínacího času. Zajímavé je, že u mechanických relátek dochází k zákmitům. U polovodičového relé dochází k uměle vytvořenému lineárnímu náběhu, aby nedocházelo ke skokové změně a tedy nekonečné časové derivaci.

5 Přístroje

- Napájecí zdroj, evid. 117254
- Osciliskop DIGI MSO-X2002A, evid. 206127
- Přípravek se spínači