Spectral Geometric Methods for Deformable 3D Shape Retrieval

Chunyuan Li

Concordia Institute for Information Systems Engineering
Concordia University
Montreal, Canada

Outline

1. Introduction

- 3D Shapes
- Diffusion Geometry
- Overview

2. Intrinsic Spatial Partition Matching

- Spectral Signatures
- Codebook Model
- Intrinsic Spatial Partition
- Experimental Results

3. Spectral Graph Wavelet Signature

- From Fourier to Wavelet
- Proposed Multiresolution Shape Signature
- Cubic Spline Wavelet for Retrieval
- Experimental Results

4. Conclusions

3D Shape Retrieval

Background

(National Design Repository)

Related Works

- ShapeDNA [Reuter et al. '06]
- Global Point Signature [Rustamov '07]
- Heat Kernel Signature [Sun et al. '09]
- Wave Kernel Signature [Aubry et al. '11]
- Shape Google [Bronstein et al. '11]
- Many others!

Deformable Shape

Geodesic

Topology

Human images adapted from Bronstein et al.

Spectral Geometry

Laplace-Beltrami (LB) operator

$$\Delta_{\mathbb{M}} f = -\frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{2} \frac{\partial}{\partial u^{j}} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial u^{i}} \right)$$

Eigen-decomposition

$$\Delta \boldsymbol{\varphi}_i = \lambda_i \boldsymbol{\varphi}_i$$

Properties

- intrinsic: isometric invariant
- a complete orthonormal basis

Diffusion

Topology

Human images adapted from Bronstein et al.

Discretization

Generalized eigenvalue problem

$$C\varphi_i = \lambda_i A \varphi_i$$
$$0 = \lambda_1 < \lambda_2 \le \dots \le \lambda_m$$

Cotangent weight scheme

□ Area Matrix

 $A = \operatorname{diag}(a_i)$, a_i is the area of the voronoi cell

$$C = \begin{cases} \sum_{i=1}^{m} c_{ij} & \text{if } i = j \\ -c_{ij} & \text{if } i \sim j \\ 0 & \text{o.w.} \end{cases} \quad c_{ij} = \begin{cases} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} & \text{if } i \sim j \\ 0 & \text{o.w.} \end{cases}$$

Pipeline

Shape Google

Signatures *e.g.* HKS

Horse Image adapted from Bronstein et al.

Analogy to
Images/documents

Contributions

Dictionary Learning (offline)

Descriptors Review

Spectral Graph Wavelet Signature

Ambiguity Modeling

Intrinsic Spatial Pyramid Matching

Intrinsic Spatial Partition Matching

Spectral Signatures (cont.)

☐ ShapeDNA and Eigenvalue Descriptor (Reuter CAD'06, Jain GMP'06)

Normalized sequence of the first eigenvalues

☐ Global Point Signature (GPS) (Rustamov SGP'07)

$$GPS(x) = \left(\frac{\varphi_2(x)}{\sqrt{\lambda_2}}, \frac{\varphi_3(x)}{\sqrt{\lambda_3}}, \dots, \frac{\varphi_i(x)}{\sqrt{\lambda_i}}, \dots\right)$$

☐ Heat Kernel Signature (HKS) (Sun SGP'09)

$$\mathfrak{p}_t(x,y) = \sum_{i=1}^{\infty} e^{-\lambda_i t} \varphi_i(x) \varphi_i(y)$$

Spectral Signatures

□ Scale Invariant Heat Kernel Signature (SIHKS) (Bronstein CVPR'10)

$$F\left[\tilde{\mathfrak{p}'}\right](\omega) = \tilde{H}'(\omega) = \tilde{H}(\omega)e^{-j\omega 2\log_{\alpha}a} \qquad |\tilde{H}'(\omega)| = |\tilde{H}(\omega)|$$

- Remove the dependence of scale effect in HKS

Wave Kernel Signature (WKS) (Aubry ICCVW'11)
$$P(x,t) = \sum_{k=1}^{\infty} C_t \exp\left(\frac{-(\log t - \log \lambda_k)^2}{\sigma^2}\right) \varphi_k(x)^2$$

- WKS is band-pass, while HKS is low-pass
- ☐ Heat Mean Signature (HMS) (Fang CVPR'11)

$$\mathrm{HMS}_t(x) = \frac{1}{m} \sum_{y \neq x} \mathfrak{p}_t(x, y)$$

HMS is the average of heat kernels used by HKS

Codebook Models

- Fitting Kernels
 - Laplace Kernel
 - Gaussian Kernel

Ambiguity Modeling

(Gemert PAMI'09)

	Best Candidate	Multiple Candidates
Constant Weight	Traditional Codebook	• Kernel Codebook
Kernel Weighted	 Codeword Plausibility 	 Codeword Uncertainty

Motivation

Spatial information

Proper generalization

	Descriptor (HOG)	Bag of Feature	Shape Contexts	SPM
Image	Dalal et al. CVPR 2005	Sivic et al. ICCV 2003	Belongie et al. PAMI 2002	Lazebnik et al. CVPR 2006
Surface	Zaharescu et al. CVPR 2000	Bronstein et al. SIGGRAPA 11	Kokkinos et al. CVPR 2012	?

Isocoutours

- The second LB eigenfunction, because
 - the smoothest map from the manifold to real line

Intrinsic Spatial Partition

Intrinsic Cuts

- consistent with isometric deformation
- correspondence of isocontours

Matching with R partitions

$$\mathcal{B}^{R}(P,Q) = \min(\mathcal{A}^{R}(H_{P}, H_{Q}), \mathcal{A}^{R}(H_{P}, T_{Q}))$$

Intrinsic Spatial Pyramid Matching

Dissimilarity with L levels

$$\mathcal{D}^{L}(P,Q) = \mathcal{B}^{L}(P,Q) + \sum_{\ell=0}^{L-1} \frac{1}{2^{L-\ell}} (\mathcal{B}^{\ell}(P,Q) - \mathcal{B}^{\ell+1}(P,Q))$$

SHREC 2010: Comparisons

- Evaluation Measure: Discounted Cumulative Gain (DCG)
- Descriptors

Spectral Descriptors	HKS	SIHKS	HMS	WKS	GPS	ShapeDNA	EVD
DCG	0.848	0.877	0.754	0.727	0.757	0.801	0.636

Ambiguity Modeling

Ambiguity Type	Traditional	Kernel	Uncertainty	Plausibility	
DCG	0.872	0.850	0.874	0.872	

SHREC 2010: Improvement with ISPM

Single Level Partition

■ Single *v.s.* Pyramid

${\bf Spectral} \qquad {\bf Level} \ L$		Codeword Uncertaint				
Descriptor	(Partitions)	Single	Pyramid			
	1 (2)	0.8449	0.8496			
HKS	2 (4)	0.8593	0.8603			
	3 (8)	0.8602	0.8628			
	4 (16)	0.8597	0.8644			
SIHKS	1 (2)	0.8747	0.8759			
	2 (4)	0.8787	0.8823			
	3 (8)	0.8797	0.8830			
	4 (16)	0.8847	0.8851			

SHREC 2011

Spectral Graph Wavelet Signature

Graph Fourier Transform

Forward and inverse graph Fourier

$$\hat{f}(\ell) = \langle \boldsymbol{\chi}_{\ell}, f \rangle = \sum_{i=1}^{n} \boldsymbol{\chi}_{\ell}^{*}(i) f(i), \quad \ell = 1, \dots, n$$
 $f(j) = \sum_{\ell=1}^{n} \hat{f}(\ell) \boldsymbol{\chi}_{\ell}(j), \quad j \in \mathcal{V}$

- Eigensystem
 - eigenvalues act as the frequencies, eigenfunctions as basis functions

Results

- Spectral Signatures
 - HKS & WKS
- Limitation
 - the time information of a signal is lost

Spectral Graph Wavelet Transform (SGWT)

Expressing continuous wavelet transform in Fourier domain

Results

$$(T^{t}f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\psi}^{*}(t\omega) \hat{f}(\omega) e^{i\omega x} d\omega$$

- SGWT
- Wavelet function: generating kernel \mathcal{G}
 - analogous to the Fourier domain wavelet
 - band-pass filter to analog wavelet function
- Scaling function: generating kernel h
 - low-pass filter to analog scaling function

Proposed Multiresolution Shape Signature

- Assuming the signal is a unit impulse function
- Coefficients of wavelet function

$$W_{\delta_j}(t,j) = \langle \psi_{t,j}, \delta_j
angle = \sum_{\ell=1}^n g(t\lambda_\ell) oldsymbol{\chi}^2_\ell(j)$$
 L=1 $W_{\delta_j(t_1,j)}$ $S_{\delta_j(j)}$

Coefficients of the scaling function

$$S_{\delta_j}(j) = \sum_{\ell=1}^n h(\lambda_\ell) \chi_\ell^2(j)$$

 $L=3 oxed{W_{\delta_j}(t_1,j)} oxed{W_{\delta_j}(t_2,j)} oxed{W_{\delta_j}(t_3,j)} oxed{S_{\delta_j}(j)}$

 $L=2 igg| W_{\delta_j}(t_1,j) igg| W_{\delta_j}(t_2,j) igg|$

■ The Signature

$$\mathcal{S}_R(j) = \{oldsymbol{s}_L(j) \mid L=1,\ldots,R\}$$
 $L=4igg[W_{\delta_j}(t_1,j)igg]igg[W_{\delta_j}(t_2,j)igg]igg[W_{\delta_j}(t_3,j)igg]igg[W_{\delta_j}(t_4,j)igg]igg[S_{\delta_j}(j)igg]$

$$s_L(j) = \{W_{\delta_j}(t_k, j) \mid k = 1, \dots, L\} \cup \{S_{\delta_j}(j)\}$$

Design wavelet functions for retrieval

- Desired descriptor properties
 - Invariance
 - Insensitive to isometric transformation
 - Discriminative Power
 - Micro and macro structures
 - Efficiency
 - Compact; Polynomial; No overlap
- Cubic spline wavelet and scaling function kernels

$$g(x) = \begin{cases} x^2 & \text{if } x < 1 \\ -5 + 11x - 6x^2 + x^3 & \text{if } 1 \le x \le 2 \\ 4x^{-2} & \text{if } x > 2 \end{cases} \quad h(x) = \gamma \exp\left(-\left(\frac{x}{0.6\lambda_{\min}}\right)^4\right)$$

Relation to HKS

Relation to WKS

Proposed Signature Revisited

SHREC 2010

- Performance with varying resolutions
 - It yields high accuracy with a very compact representation
 - Stable results and simple parameters' selection
- Behavior with ISPM
 - Consistent high improvement
 - Achieve best accuracy on a lower level of ISPM

Level l	SIHKS	HKS	WKS	Spectral Graph Wavelet Signature (R)					
(Partitions)				1	2	3	4	5	6
0(1)	0.8719	0.8448	0.7280	0.8124	0.8635	0.8541	0.8454	0.8547	0.8497
1 (2)	0.8734	0.8420	0.7290	0.8172	0.8593	0.8603	0.8498	0.8554	0.8527
2 (4)	0.8793	0.8509	0.7509	0.8789	0.8792	0.8732	0.8681	0.8665	0.8634
3 (8)	0.8817	0.8531	0.7612	0.8781	0.8737	0.8682	0.8651	0.8604	0.8615
4 (16)	0.8841	0.8520	0.7634	0.8687	0.8721	0.8636	0.8640	0.8563	0.8590
Improvement	0.0122	0.0083	0.0354	0.0665	0.0157	0.0191	0.0227	0.0118	0.0137

SHREC 2011

Higher accuracy than SIHKS, HKS and WKS

Best result compared with signatures in the framework of diffusion geometry

Level l	SIHKS	HKS	WKS	Spectral Graph Wavelet Signature (R)					
(Partitions)				1	2	3	4	5	6
0(1)	0.8262	0.8114	0.6801	0.8043	0.8948	0.8536	0.8731	0.8613	0.8633
1 (2)	0.8436	0.8277	0.7097	0.8419	0.9208	0.8858	0.9002	0.8873	0.8911
4 (16)	0.8671	0.8721	0.7933	0.9203	0.9508	0.9443	0.9526	0.9471	0.9517
7 (128)	0.8771	0.8878	0.8042	0.9132	0.9427	0.9366	0.9383	0.9344	0.9359
9 (512)	0.8793	0.8902	0.8029	0.8982	0.9344	0.9241	0.9319	0.9277	0.9272
Improvement	0.0531	0.0788	0.1241	0.1160	0.0560	0.0907	0.0795	0.0858	0.0884

Conclusions

Contributions

- Intrinsic Spatial Partition Matching
- Spectral Graph Wavelet Signature

■ Future directions

- Unifying Topology and Geometry
- Applications of the Global Intrinsic Coordinate System
- Design of Wavelet Generating Kernels
- From Image Processing to Geometry Processing

The end

Thanks!

Chunyuan Li

Concordia Institute for Information Systems Engineering Concordia University

Email: chunyuan.li@hotmail.com

Web: https://sites.google.com/site/chunyuan24/