Übungsblatt 11

Abgabetermin: 06.07.2017, 9:20 Uhr.

Aufgabe 1 $(2+2+1 = 5 \ Punkte)$

a) Sei A eine Matrix über einem Körper K. Zeigen Sie: A ist ähnlich zu ihrer Transponierten A^t . (Benutzen Sie das Kriterium von Satz 28.2.)

Beweisen Sie Bemerkung 28.7 der Vorlesung, indem Sie folgendermaßen vorgehen:

- b) Sei nun L ein Erweiterungskörper von K. Seien weiterhin $f, g \in K[X]$ zwei Polynome. Dann gilt $\operatorname{ggT}_{L[X]}(f,g) = \operatorname{ggT}_{K[X]}(f,g)$.
- c) Folgern Sie: Sind zwei Matrizen mit Einträgen in K ähnlich als Elemente von $M(n \times n, L)$, so sind sie auch ähnlich als Elemente von $M(n \times n, K)$.

(Hinweis: Das Symbol für Ähnlichkeit in der Vorlesung war \approx .)

Aufgabe 2 $(2+2 = 4 \ Punkte)$

a) Berechnen Sie die Invariantenteiler, die Determinantenteiler und die Frobenius-

Normalform der Matrix
$$\begin{pmatrix} 10 & -11 & -11 & -32 \\ -1 & 0 & -2 & 4 \\ 1 & -1 & 1 & -4 \\ 2 & -2 & -2 & -6 \end{pmatrix} \in M(4 \times 4, \mathbb{Q}).$$

b) Entscheiden Sie mithilfe des Invariantenteilersatzes, ob die folgenden Matrizen über $\mathbb Q$ ähnlich sind:

$$A = \begin{pmatrix} -5 & -3 & 5 \\ 0 & 1 & -1 \\ -8 & -4 & 7 \end{pmatrix}, B = \begin{pmatrix} -3 & 8 & 12 \\ 1 & -1 & -3 \\ -2 & 4 & 7 \end{pmatrix}.$$

Aufgabe 3 (2+2=4 Punkte)

- a) Sei K ein Körper und $g \in K[t]$ ein nicht-konstantes und normiertes Polynom. Zeigen Sie: $\chi_{B_q}^{\min} = g$. (Hinweis: Benutzen Sie den Satz von Cayley-Hamilton.)
- b) Sei $A \in M(n \times n, K)$ und seien g_1, \ldots, g_r (mit $g_1 | \ldots | g_r$) die nicht-konstanten Invariantenteiler von A. Zeigen Sie: $\chi_A^{\min} = g_r = c_n(A)$.

Aufgabe 4 (3 Punkte)

Bestimmen Sie ein Vertretersystem für die Ähnlichkeitsklassen aller 2×2 -Matrizen mit Einträgen in \mathbb{F}_3 .