Relatório 11: Determinação das Perdas em Máquinas Síncronas

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introdução

A determinação das perdas Joule em uma máquina síncrona é extremamente importante para a determinação do rendimento da máquina e outras performances nas condições nominais de operação da máquina.

Geralmente qualquer dispositivo de conversão eletromecânica de energia opera com rendimento máximo quando está operando nas suas condições nominais e a pior situação de rendimento é quando está operando em vazio ou com baixa carga.

As perdas consideradas são as perdas no ferro (núcleo), perdas mecânicas por atrito e ventilação, perdas Joule (corrente nos enrolamentos) e as perdas suplementares. Essas perdas, podem ser determinadas a partir de ensaios feitas na mesma pela medição da potência mecânica no seu eixo.

Ao se acionar o eixo da máquina por uma máquina primária, a potência mecânica no eixo pode ser calculada a partir da retirada das perdas Joule no circuito da armadura do motor de corrente contínua. Estas perdas são é extremamente importantes para o estudo das características operacionais da máquina, tais como, regulação de tensão, rendimento, entre outros.

II. Objetivos Gerais e Específicos

Este relatório tem por objetivo a obtenção das perdas em uma máquina síncrona, a determinação do rendimento quando a mesma está operando na suas condições nominais, o levantadas as curvas caraterísticas das perdas Joule e suplementares em função da corrente da armadura e das perdas no ferro em função da tensão em vazio.

III. Materiais

- Uma máquina síncrona trifásica ligada em estrela;
- Um motor de corrente contínua, ligado com excitação independente, para acionar o eixo da máquina síncrona;
- Duas fontes de tensão contínua, respectivamente, de 220 V/0,6 A e 220V /10;
- Um tacômetro;
- Multímetros:
- Dois varivolts;

IV. Desenvolvimento

Para a realização deste relatório, foram realizados três ensaios.

A. Determinação das perdas mecânicas

Para a determinação das perdas mecânicas, a máquina síncrona foi acionada na sua velocidade nominal pelo motor de corrente contínua com excitação independente e o enrolamento de campo da máquina síncrona e o estator foram deixados em aberto (desenergizados).

Neste ensaio foram medidos a tensão nos terminais da máquina de corrente contínua, a corrente da armadura e a potência ativa na entrada da mesma.

Depois, retirando da potência ativa às perdas Joule na armadura (Eq 1) tem-se a potência mecânica entregue no eixo da máquina síncrona (Eq 2) que representa as perdas mecânicas por atrito e ventilação. Como a máquina síncrona sempre opera na velocidade constante estas perdas são constantes.

$$P_1 = R_A I_{CC_{I_f=0}}^2 (1)$$

$$P_{Mec} = V_T I_{CC_{I_f=0}} - P_1 \tag{2}$$

B. Determinação das perdas no ferro

Para a determinação das perdas no ferro, a máquina síncrona foi acionada na sua velocidade nominal pelo motor de corrente contínua com excitação independente, o enrolamento de campo da máquina síncrona foi alimentado por uma fonte de tensão contínua variável de forma que circulasse a corrente nominal, sendo de aproximadamente 0,7 A, e os terminais do estator foram deixados em aberto.

Depois, para cada variação da corrente no enrolamento de campo da máquina síncrona foram medidos a corrente da armadura da máquina de corrente contínua e calculada a sua potência ativa na entrada (Eq. 3) e as perdas Joule na armadura (Eq. 4).

$$P_{Ativa} = V_T I_{CC} \tag{3}$$

$$P_{Joule} = R_A I_{CC}^2 \tag{4}$$

Sabendo que a diferença entre a potência ativa e as perdas Joule (Eq. 5) é a potência mecânica entregue no eixo da máquina síncrona (Eq. 6) que também representa a soma das perdas mecânicas mais as perdas no ferro. Descontando das perdas totais as perdas mecânicas, determinadas conforme o item 1.1, tem-se as perdas no ferro (Eq 7).

$$P_1' = R_A I_{CC_{I_s}=0.7}^2 (5)$$

$$P'_{Mec} = V_T I_{CC_{I_f}=0,7} - P'_1 \tag{6}$$

$$P_{Ferro} = P'_{Mec} - P_{Mec} \tag{7}$$

Estas perdas podem ser separadas para cada excitação do enrolamento de campo, medindo a tensão gerada em vazio do gerador é esperado um curva semelhante a mostrada na Fig 1. Nesta figura quando a corrente de campo for a nominal (0,7 A) temos as perdas no ferro na sua condição nominal.

Figura 1. Gráfico das perdas no ferro em função da tensão de excitação.

C. Determinação das perdas Joule na armadura da máquina síncrona

Para a determinação das perdas no ferro, a máquina síncrona foi acionada na sua velocidade nominal pelo motor de corrente contínua com excitação independente, o enrolamento de campo da máquina síncrona é alimentado neste caso por uma fonte de tensão variável até que a corrente neste enrolamento chegue em valor de modo que a corrente no enrolamento da armadura da máquina síncrona esteja no nominal.

Os terminais do estator foram curto-circuitados no ensaio, sendo a corrente nominal de 5 A. Como os terminais do estator estão em curto-circuito o nível de fluxo é baixo nestas condições e as perdas no ferro podem ser desprezadas.

Para uma corrente de campo correspondente a corrente nominal da armadura da máquina de síncrona, a corrente da armadura da máquina de corrente contínua são medidas, já a potência ativa na entrada (Eq. 8) e as perdas Joule na armadura (Eq. 9) são calculadas.

$$P_{Ativa} = V_T I_{CC} \tag{8}$$

$$P_{Joule} = R_A I_{CC}^2 \tag{9}$$

Conforme dito anteriormente, a diferença entre a potência ativa e as perdas Joule é a potência mecânica entregue no eixo da máquina síncrona que representa a soma das perdas mecânicas mais as perdas Joule na sua armadura. Descontando desta potência as perdas mecânicas, obtidas conforme o item 1.1, temos as perdas Joule na armadura da máquina síncrona, equações Eq. 5 Eq. 6 Eq. 7.

As perdas Joule representam as perdas ôhmicas, as perdas no ferro, devido ao fluxo de dispersão na armadura, e as perdas muito baixas no ferro devido ao fluxo resultante.

Na condição nominal as perdas ôhmicas é dada pela Eq. 10. Se esta perda ôhmica for descontada das perdas Joule temos as perdas devido aos efeitos peliculares e as correntes parasitas nos condutores da armadura e as perdas no ferro devido ao fluxo de dispersão, que são chamadas de perdas suplementares, Eq. 11. A Fig 2 mostra um gráfico esperado para as perdas Joule e das perdas suplementares em função da corrente de armadura.

$$P_{Ferro} = R_A I_{CC_{I_A=5}}^2 \tag{10}$$

$$P_{Suplementares} = P_{Mec} - P_{Ferro} \tag{11}$$

Figura 2. Gráfico das perdas Joule e das perdas suplementares em função da corrente de armadura.

D. Rendimento

Após determinar todas as perdas, foi calculado o rendimento da máquina:

$$P_{Out} = P_{in} - P_{Suplementares} - P_{Ferro} - P_{Joules}$$
 (12)

$$\eta = \frac{P_{Out}}{P_{In}} \tag{13}$$

V. Resultados e Discussões

Inicialmente, foi medido a resistência da armadura da máquina de corrente contínua, sendo ela de $R_A = 2\Omega$.

A. Determinação das perdas mecânicas

Para este ensaio sabemos que ω é constante, $I_A=0$ e $V_T=E_f$. Depois, ao realizar os procedimentos descritos na seção IV-A, foi obtido a Tabela I. Em seguida, por meio da Eq. 1 e Eq. 2 foi calculada as perdas por atrito e ventilação da máquina (P_1) , quando $I_f=0$. Depois, para $I_f=0,7$, foi calculado a potencia no eixo (P_2) e depois as perdas no ferro (P_3) .

Tabela I Ensaio a vazio

I_F (A)	E_F (V)	V_T (V)	I_{CC} (A)
0,000	4,600	220,000	0,650
0,010	16,400	220,000	0,670
0,050	34,500	220,000	0,680
0,100	62,300	220,000	0,700
0,150	83,000	220,000	0,740
0,200	100,500	220,000	0,750
0,250	112,000	220,000	0,790
0,300	122,000	220,000	0,810
0,350	129,000	220,000	0,830
0,400	137,000	220,000	0,840
0,450	143,000	220,000	0,850
0,500	149,000	220,000	0,880
0,550	153,000	220,000	0,880
0,600	158,000	220,000	0,920
0,650	162,000	220,000	0,930
0,700	165,000	220,000	0,930

$$P_{Mec} = 220 \cdot 0,65 - 2 \cdot 0,65^2 = 142,155 \ W \tag{14}$$

B. Determinação das perdas no ferro

Para determinar as perdas no ferro, utilizaremos o resultado das perdas mecânicas, ou seja, $P_{Mec} = 142,155 \, W$. Portanto, subtraindo este valor, de cada potência fornecida ao eixo da máquina síncrona $(V_T \cdot I_{CC} - P_{Mec})$, obteremos as perdas no ferro (P_{Fe}) .

Portanto, realizando este processo para cada tensão e corrente da máquina CC, obteremos o gráfico da Figura 3.

Figura 3. Perdas no Ferro.

Agora, para a corrente nominal de I_f , temos:

$$P_{Fe} = 220 \cdot 0.930 - 142.155 = 62.445 W$$
 (15)

C. Determinação das perdas Joule na armadura da máquina síncrona

Para este ensaio foi considerado que as perdas no ferro são nulas. Primeiramente foi determinado a potência fornecida ao eixo da máquina síncrona, portanto: $P_{eixo} = V_T \cdot I_{CC} - R_A \cdot I_{CC}^2$. Agora, sabendo que a potência fornecida ao eixo da máquina síncrona é a soma da potência mecânica com as perdas joules, temos que:

$$P_{ioule} = P_{eixo} - P_{Mec} \tag{16}$$

Portanto, realizando esta mesma conta para todos os valores de V_T e I_{CC} , da Tabela II vamos obter o gráfico da Figura 4.

Tabela II Ensaio de curto-circuito

I_F (A)	I_A (A)	V_T (V)	I_{CC} (A)
0,000	0,140	220,000	0,630
0,020	0,580	220,000	0,640
0,050	0,920	220,000	0,660
0,100	1,760	220,000	0,720
0,150	2,610	220,000	0,810
0,200	3,410	220,000	0,930
0,250	4,260	220,000	1,100
0,300	5,030	220,000	1,270
0,350	5,700	220,000	1,430

Figura 4. Perdas Suplementares e Perdas Joule.

Agora, calculando as perdas joule, para a corrente nominal do estator, temos:

$$P_{joule} = 220 \cdot 1,270 - 2 \cdot 1,270^2 - 142,55 = 134,02 \ W \ (17)$$

D. Rendimento

O rendimento desta máquina, operando em suas condições nominais:

$$\eta = \frac{P_{out}}{P_{In}} = \frac{P_{out}}{P_{out} + \sum Perdas}$$
 (18)

sendo $\sum Perdas=134,02+62,445+145,155$ e supondo que está máquina tenha um FP = 0,85 para sua operação nominal, então $P_{out}=1,5~kW,$ logo:

$$\eta = \frac{1500}{1500 + 341,62} = 0,8145 = 81,45\% \tag{19}$$

VI. Conclusões

Portanto, através deste experimento conseguimos definir quais são as perdas de uma máquina síncrona e levantar as curvas de perda, tanto para os ensaios em vazio e em curto circuito. A determinação dessas perdas é de suma importância de ser conhecida para saber o seu rendimento.

Referências

- [1] Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 11.
 D.E.L.-UFV, 2022.