TEMA 2a: Funciones, límites y continuidad

Fernando Soria (UAM)

Curso 2022-23

Estructura del Tema 2:

- Funciones de varias variables
- Límites de funciones en \mathbb{R}^n . Noción de continuidad.
- Derivación. Derivadas parciales y gradiente.
- Cambios de coordenadas. Regla de la cadena.
- Derivadas de orden superior.
- Fórmula de Taylor.
- Máximos y mínimos. Extremos condicionales.

Tema 2a: Funciones de varias variables

Una **función** $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es una *regla* que asocia, a cada $(x_1, x_2, \cdots, x_n) \in A$, un único $(y_1, y_2, \cdots, y_m) \in \mathbb{R}^m$.

• Si m = 1, se dice que f es una **función escalar**:

$$(x_1, x_2, \cdots, x_n) \rightarrow f(x_1, x_2, \cdots, x_n) \in \mathbb{R}$$

 Si m > 1, se dice que f es una función vectorial y las m funciones que la definen se denominan funciones coordenadas:

$$(x_1, x_2, \dots, x_n) \to (f_1(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n))$$

El **dominio** de una función es el conjunto de puntos para los que está definida, A en este caso, y se denota por Dom(f).

Observación: Si no se indica explícitamente, entonces el dominio son todos aquellos puntos donde la fórmula que da *f* tiene sentido (**dominio natural**).

La **imagen** de una función es el conjunto de $(y_1, y_2, \dots, y_m) \in \mathbb{R}^m$ tales que existe un $(x_1, x_2, \dots, x_n) \in A$ con $f(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_m)$, y se denota por Img(f).

La gráfica de una función

La gráfica de una función escalar, $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, es el conjunto de puntos:

$$\operatorname{\mathsf{Graf}}(f) = \{(\vec{x}, f(\vec{x})) \in \mathbb{R}^{n+1} : \vec{x} \in A\} \subseteq \mathbb{R}^{n+1}$$

$$n=1$$
: $\operatorname{\mathsf{Graf}}(f)\subseteq\mathbb{R}^2$

$$n=2$$
: $\mathsf{Graf}(f)\subseteq\mathbb{R}^3$

$$n \ge 3$$
: ????

Curvas y superficies de nivel

Dada una función escalar, $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, y $C \in \mathbb{R}$, el conjunto de nivel de valor C es el conjunto de puntos $\vec{x} \in A$ para los cuales $f(\vec{x}) = C$:

$$N_C(f) = {\vec{x} \in A : f(\vec{x}) = C} \subseteq A \subseteq \mathbb{R}^n$$

Si n = 2, lo denominamos **curva de nivel de valor** C.

Si n = 3, lo denominamos superficie de nivel de valor C.

Idea: intersecamos la gráfica de f, z = f(x, y), con el plano horizontal z = C y proyectamos la intersección sobre el plano XY obteniéndose en este la curva de nivel f(x, y) = C.

Ejemplos: las isobaras o isotermas de un mapa del tiempo atmosférico.

Método de secciones

Una sección de la gráfica de $f:A\subset\mathbb{R}^2\to\mathbb{R}$ es la intersección de la gráfica de f con un plano (que suele ser vertical).

Utilidad: Ayudan a colocar a la altura adecuada las curvas de nivel de f, con lo que nos facilita el dibujar la gráfica de f.

Ejemplo: Si $f: \mathbb{R}^2 \to \mathbb{R}$ es $f(x,y) = x^2 + y^2$, la sección con el plano y = 0 (el plano XZ) es la parábola

$$\{(x,0,f(x,0)):x\in\mathbb{R}\}=\{(x,0,x^2):x\in\mathbb{R}\}.$$

Ejercicio: Dadas las siguientes funciones, representa los conjuntos de nivel y esboza, si es posible, sus gráficas:

- $f(x, y) = x^2 + y^2$
- $f(x,y) = x^2 y^2$
- $f(x, y, z) = x^2 + y^2 + z^2$

Límite de una función.

Sean un conjunto $U \subset \mathbb{R}^n$, una función $f: U \to \mathbb{R}^m$ y un punto x_0 de acumulación de U.

Definición

Decimos que f tiene límite $L \in \mathbb{R}^m$ en x_0 , si

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in U \ con \ 0 < \|x - x_0\| < \delta \ \Rightarrow \ \|f(x) - L\| < \varepsilon$$

En este caso, escribiremos $\lim_{x\to x_0} f(x) = L$.

Observación: Si existe el límite de la función, este es único. Además, si f tiene funciones coordenadas $f=(f_1,f_2,\ldots,f_m)$ y $L=(L_1,L_2,\cdots,L_m)\in\mathbb{R}^m$. Entonces

$$\lim_{x\to x_0} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x\to x_0} f_i(x) = L_i \quad \forall i=1,2,\cdots,m,$$

es decir, para calcular el límite de una función $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, basta calcular el límite de cada función coordenada por separado.

Esto último se debe a la desigualdad ya vista

$$|f_j(x) - L_j| \le ||f(x) - L|| \le \sum_{k=1}^n |f_k(x) - L_k|, \quad \forall j = 1, \ldots, n.$$

Cálculo operativo de límites

Sean $f,g:U\in\mathbb{R}^n\longrightarrow\mathbb{R}^m$ dos funciones para las que existen $\lim_{x\to x_0}f(x)$ y $\lim_{x\to x_0}g(x)$; entonces:

- (1) $\lim_{x\to x_0} (\lambda f(x)) = \lambda (\lim_{x\to x_0} f(x)), \text{ donde } \lambda \in \mathbb{R}.$
- (2) $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$.
- (3) $\lim_{x \to x_0} (f(x)g(x)) = (\lim_{x \to x_0} f(x)) (\lim_{x \to x_0} g(x))$, si m = 1.
- (4) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, si m = 1, y $\lim_{x \to x_0} g(x) \neq 0$.

Ejercicio: Demostrar, usando la definición, los siguientes límites

$$\lim_{(x,y)\to(0,0)} (2x^2 + y^2) = 0; \quad \lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2 + y^2} = 0,$$

$$\lim_{(x,y)\to(1,0)} \sqrt{(x-1)^2 + y^2} \operatorname{sen} \frac{x}{(x-1)^2 + y^2} = 0.$$

Límites y sucesiones

Teorema (Caracterización del límite de funciones por sucesiones)

Sean U un subconjunto de \mathbb{R}^n , una función $f:U\longrightarrow \mathbb{R}^m$, un punto x_0 de acumulación de U y $L\in \mathbb{R}^m$. Entonces $\lim_{x\to x_0} f(x) = L \Leftrightarrow \text{para toda}$ sucesión de U convergente a x_0 , $\{x_k\}_k \xrightarrow[k\to\infty]{} x_0$, se tiene $\lim_{k\to\infty} f(x_k) = L$

Dem.: La demostración es idéntica a la que se hace en una variable.

Consecuencia: Si hay dos sucesiones diferentes x_k , $y_k \to x_0$, de forma que las sucesiones $f(x_k)$ y $f(y_k)$ tienen límites diferentes, entonces lím $_{x\to x_0}$ f(x) no existe.

Ejemplo: Demuestra que no existe $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$.

Límite de una función escalar en \mathbb{R}^2 .

Este es un caso frecuente en los ejercicios, así que estudiamos algunas pautas para tratar de encontrarlos. Suponemos $f:U\subset\mathbb{R}^2\to\mathbb{R}$ una función, y queremos decidir si existe, y en ese caso hallar,

$$L = \lim_{(x,y)\to(a,b)} f(x)$$

Si existe L, podemos usar que cualquier forma de aproximarnos a (a, b) debería dar valores de f que se aproximan a L. Por ejemplo, podemos probar

$$\lim_{y\to b} f(a,y)$$
, o $\lim_{x\to a} f(x,b)$

Muy importante: Con esto hallamos un candidato al límite, pero no demostramos que el límite exista; podría ser que al aproximarnos de otra forma a (a, b), los valores de f se aproximaran a otro límite.

Límite de una función escalar en \mathbb{R}^2 (cont).

- ② Si encuentramos dos formas distintas de acercarnos a (a, b) donde la función f se aproxima a dos valores **diferentes**, entonces **el límite no existe**.
 - A menudo uno se aproxima con rectas de la forma $y = \lambda(x a) + b$, donde $\lambda \in \mathbb{R}$; Si

$$\lim_{x\to a} f(x,\lambda(x-a)+b) \qquad \text{depende de } \lambda,$$

el límite de la función no existe. (E.g., funciones homogéneas de grado 0).

A veces hay que probar con curvas más complicadas:

$$(x, \lambda(x-a)^k + b), \qquad \operatorname{con} x \to a, \lambda \in \mathbb{R},$$
 $(\lambda(y-b)^k + a, y), \qquad \operatorname{con} y \to b, \lambda \in \mathbb{R},$

• Las expresiones $\lim_{x\to a} \left(\lim_{y\to b} f(x,y)\right)$, $\lim_{y\to b} \left(\lim_{x\to a} f(x,y)\right)$, se denominan (si es que existen) **límites laterales**. Si existe el límite ordinario en (a,b) y los límites laterales, entonces todos deben coincidir. Pero hay un cúmulo de situaciones a tener en cuenta (veánse los ejercicios 6, 7 y 8 de la hoja 2.)

ó

Límite de una función escalar en \mathbb{R}^2 (cont).

• Podemos probar con coordenadas polares centradas en (a, b): si encuentramos una función F(r) con $\lim_{r\to 0^+} F(r) = 0$, tal que

$$|f(a+r\cos\theta,b+r\sin\theta)-L|\leq F(r)\underset{r\to 0}{\longrightarrow}0,$$

entonces $\lim_{(x,y)\to(a,b)} f(x,y) = L$.

Y finalmente, muchas veces, para demostrar el valor de un límite, hay que trabajar con desigualdades (en particular con el lema del sandwich).

Ejemplos: Calcular $\lim_{(x,y)\to(0,0)} f(x,y)$ para:

(a)
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$

(b)
$$f(x,y) = \begin{cases} x \operatorname{sen}(\frac{1}{y}) & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

(c)
$$f(x,y) = \frac{x^2y}{x^4+y^2}$$

(d)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(e)
$$f(x,y) = \frac{x^3+y^3}{x^2+y^2+y^4}$$

Continuidad de funciones.

Definición (Funcion continua)

• Dado un conjunto abierto $U \subset \mathbb{R}^n$, decimos que $f: U \to \mathbb{R}^m$ es continua en un punto $x_0 \in U$ si:

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in U \ con \ \|x - x_0\| < \delta \ \Rightarrow \ \|f(x) - f(x_0)\| < \varepsilon$$

- O, equivalentemente: $\lim_{x \to x_0} f(x) = f(x_0)$
- f es continua en U si es continua en todo punto $x_0 \in U$.

Resumiendo, para que f sea continua en el punto x_0 , necesitamos:

- que exista $\lim_{x\to x_0} f(x)$,
- que f esté definida en x_0 , esto es, que exista $f(x_0)$,
- que ambos valores coincidan: $\lim_{x \to x_0} f(x) = f(x_0)$

Cálculo operativo de las funciones continuas.

Sean $f,g:U\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ continuas en x_0 , entonces:

- f(x) + g(x) es continua en x_0 .
- **1** f(x)g(x) es continua en x_0 , si m=1.
- f(x)/g(x) es continua en x_0 , si m=1 y $g(x_0)\neq 0$.

Lemma

Si $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$, $f(x) = (f_1(x), \dots, f_m(x))$ entonces f es continua en x_0 si y sólo si f_i es continua para todo $i = 1, 2, \dots, m$.

Teorema (Composición)

Sean $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, $g: B \subset \mathbb{R}^m \to \mathbb{R}^k$ con $f(A) \subset B$. Si $x_0 \in A$, f es continua en x_0 , g es continua en $f(x_0)$, entonces la composición $g \circ f$ es continua en x_0 .

Ejercicio: estudiar la continuidad de las funciones vistas anteriormente

Propiedades de las funciones continuas

Al igual que en el caso de las funciones de una variable, se tiene:

Teorema (Existencia de valores intermedios sobre un conexo)

Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es continua y U es un conexo (por arcos) entonces dados $x_1, x_2 \in U$ y $f(x_1) \le m \le f(x_2)$, existe $x \in U$ de forma que f(z) = m.

Dem.: Elegimos una función $\varphi:[0,1]\to U$ continua con $\varphi(0)=x_1,\quad \varphi(1)=x_2$. Entonces la función compuesta $f\circ\varphi:[0,1]\to\mathbb{R}$ es continua y podemos aplicar el resultado en una variable para concluir la demostración.

Teorema (Existencia de máximo y mínimo sobre compactos)

Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es continua y U es un compacto, entonces f está acotada y alcanza su supremo e ínfimo en valores de su dominio (es decir, posee máximo y mínimo).

Dem.: La demostración es idéntica a la que se hace en una variable, sustituyendo el Teorema de Bolzano-Weierstrass por la caracterización de los compactos a través de sucesiones (en un compacto toda sucesión posee una subsucesión convergente cuyo límite pertenece al conjunto).

Caracterización topológica de la continuidad

Dados $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y $V \subset \mathbb{R}^m$, definimos la **preimagen/ imagen inversa** de V por f como

$$f^{-1}(V) = \{x \in \mathbb{R}^n : f(x) \in V\}$$

Teorema

Una función $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es continua si y solo si para todo $V \subset \mathbb{R}^m$ abierto, la preimagen $f^{-1}(V)$ es un abierto.

Dem.: Para la demostración usaremos que f es continua en un punto $x_0 \iff \forall \epsilon > 0, \ \exists \delta > 0$ de forma que $f(B_\delta(x_0)) \subset B_\epsilon(f(x_0))$, es decir $B_\delta(x_0) \subset f^{-1}(B_\epsilon(f(x_0)))$. Además, si $f(x_0) \in V$ y este conjunto es abierto, entonces $\exists \epsilon > 0$ con $B_\epsilon(f(x_0)) \subset V$.

Análogamente, una función $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es continua si y solo si para todo $H \subset \mathbb{R}^m$ cerrado, la preimagen $f^{-1}(H)$ es un cerrado. (Esto se debe a que $(f^{-1}(H))^c = f^{-1}(H^c)$).