컴퓨터네트워크

1강 - 회선교환

김명환 (<u>dolsoiq@wku.ac.kr</u>)

교과목 안내

• 담당교수

- 김명환(<u>ddrapper79@gmail.com</u> : 질의 및 레포트 제출 전용 메일)

- 연락처: 010-8648-3887

• 수업진행

- WAFFLE 자료실에 강의 자료 참조
- WAFFLE 공지사항 통해 과제 부여(강의 계획서 참조)
- 중간/기말고사평가 시행

• 평가

- 중간, 기말: 각 30%
- 출석, 과제, 발표, 태도: 40%

• 교재

- 데이터 통신과 네트워킹 5th, Behrouz A. Forouzen 지음, 김한규외
- 데이터 통신 2nd Edition, 이재광 편저, 생능출판

교환(switching)

• 교환(Switching)

다중 장치가 있을 때, 각각의 장치를 어떻게 1 대 1로 연결할 것인가

교환(switching)

• 교환망의 종류

- 회선 교환(circuit switching)
- 패킷 교환(packet switching)
- 메시지 교환(message switching)

• 회선 교환망은

- _ 물리 링크로 연결된 일련의 교환기로 구성.
- 두 지국간의 연결은 하나 또는 그 이상의 링크로 만들어진 전용 경로
- _ 각 연결은 각 링크 중 하나의 전용 채널을 사용
- 각 링크는 보통 FDM 이나 TDM 방식으로 n개의 채널로 나뉘게 됨.

• 이번 절에서는

- Three Phases
- Efficiency
- Delay
- 전화망에서 회선 교환 기술

Simple circuit switching

회선 교환망은 각 링크가 n개의 채널로 나뉘어진 물리 링 크들로 연결된 교환기의 집합으로 이루어진다

회선 교환에서는 연결 설정 단계에서 자원이 할당되며, 연결 해제 단계에 들기 전까지는 계속해서 전체 데이터 전송 기간 동안 전용으로 할당되어야 한다

예1

간단한 예로서, 작은 지역에서 8개의 전화를 연결하는 회선 교환망을 생각해 보자. 통신은 4 kHz 음성 채널을 사용한다. 각 링크는 링크당 최대 두 개의 채널을 사용할 수 있도록 FDM을 사용한다고 하자. 각 링크의 대역폭은 따라서 8 kHz이다. 아래 그림은 지국들을 보여준다. 1번 전화는 7번 전화에, 2번은 5번에 3번은 8번에, 4번은 6번에 연결되어 있다. 물론 새로이 연결 상황이 바뀌면 연결 상태가 다시 바뀐다. 교환기가 연결을 제어 한다.

• 예2

다른 예로서, 어느 회사의 두 지점 사이에 컴퓨터들을 연결하는 회선 교환망을 생각하자. 두 사무실은 통신 서비스 회사로부터 전세 낸 T-1 회선을 사용하여 서로 연결되어 있다. 이 네트워크는 두 개의 4 X 8(4 입력 8 출력) 교환기가 있다. 각 교환기는 각 사무실의 컴퓨터들 사이의 통신을 위하여 4개의 입력 포트로 네 개의 출력 포트가 접속되어 있으며, 나머지 4개의 출력 포트는 두 사무실 사이의 통신에 사용된다. 아래 그림에 이 상황이 그려져 있다.

Three Phases

- 1. 연결 설정 단계 교환기 사이에 전용 회선을 만드는 것
- 2. 데이터 전송단계
- 3. 연결 해제 단계

• 회선 교환망의 지연

전통적인 전화망에서 물리층 교환은 회선 교환 방식을 사용한다.

- 데이터 통신에 있어서는 한 끝에서 다른 끝으로 메시지를 보내야 하는 것.
- 메시지가 패킷 교환 네트워크를 통한다면 메시지는 일정 크기 또는 가변 크기의 패킷으로 나뉘어져야 한다.
- 패킷의 크기는 네트워크와 프로토콜에 따라 결정된다.

- 이 절에서는
 - Routing Table
 - Efficiency
 - Delay
 - Internet : Datagram Network

패킷 교환망에서 자원 예약은 없으며, 자원은 필요에 따라 할당된다.

- 4개의 교환기(라우터)를 이용한 데이터그램 망
 - 각 패킷(데이터그램)은 다른 패킷과 무관하게 취급
 - 네트워크 층에서 이루어짐

• 데이터그램망에서 경로지정 표(Routing table)

데이터그램 망의 교환기는 목적지 주소를 기반으로 한 경로지정 표를 가지고 있다.

데이터그램 망에서 헤더 목적지 주소는 패킷이 전송되는 동안 내내 같은 값을 유지한다

• 데이터그램에서 지연

- Total delay = 3T(전송 시간) + 3 π(전파 지연 시간) + W1 + W2(대기 시간)

인터넷에서 교환은 네트워크 층에서 패킷을 교환하는 데이터그램 방식이다

- 가상 회선망(virtual-circuit network)는 회선 교환 망과 데이터그램 망을 섞은 것과 같다.
- 두 망의 특성을 모두 가지고 있다.

- 이 절에서는
 - Addressing
 - Three Phases
 - Efficiency
 - Delay
 - WAN에서 회선 교환 기술

• 가상 회선망 특성

- 회선 교환망처럼 설정 및 해체 단계가 있다
- 회선 교환처럼 자원이 설정 단계에서 할당될 수도 있고, 필요에 따라 할당될 수도 있다
- 데이터그램 망처럼 데이터는 패킷으로 전송되며, 각 패킷은 헤더에 주소를 담는다
- 회선 교환처럼 연결이 설정되고 나면 **패킷은 같은 경로를 따라 전송**된다
- 가상회선 망은 보통 데이터 링크층에서 구현된다

• 가상회선 주소지정

- 전역 주소(Global address)
 - 네트워크 전체에서 통용되는 주소
- 가상회선 식별자(VCI, Virtual Circuit Identifier)
 - 교환기에서 사용되는 주소로서 프레임에서 사용

• 가상 회선망의 교환기와 표

• 가상 회선망에서 발신지-대-목적지 데이터 전송

• 가상 회선망에서 설정 요청

• 가상 회선망에서 설정 확인응답

가상 회선 교환에서 같은 발신지와 목적지에 속한 모든 패킷은 동일한 경로를 거치지만 한정된 자원에 대해 서로 다른 지연으로 목적지에 도착할 수 있다

• 가상 회선망에서 지연

전체 지연 = $3T + 3\tau + 연결 설정 지연 + 연결 해제 지연$

교환식 WAN에서 링크 계층 교환은 보통 가상 회선 기술들을 사용하여 구현된다

- 공간-분할(Space-Division) 교환
 - 회선에서 경로는 다른 것들과 공간적으로 분리(crossbar switch)

• Crossbar 교환

각 교차점상의 전기 마이크로 스위치(transistor)를 이용하여,
격자 내에서 n 입력과 m 출력을 연결

• 크로스바 교환

- 3개의 입력과 4개의 출력을 갖는 크로스바 교환기(Crossbar switch)

• 다단교환기

- 다른 교환기와 계층적 구조를 가짐

• 시 분할(Time Division) 교환

- TDM(Time-division multiplexing)과 TSI(Time-Slot Interchange)을 이용해 확립
- TSI: 요구되는 연결상에 기반으로 한 틈새의 번호를 변경

시분할 교환기

• 공간 분할 교환기와 시분할 교환기 결합

• 패킷 교환기 구조

- 구성 요소 : 입력 포트, 출력 포트, 라우팅 처리기, 교환 회로

• 입력 포트

 패킷 교환의 물리 및 데이터 링크층 기능을 수행 입력 포트

• 출력 포트

- 순서만 반대일뿐 입력 포트와 같은 기능 수행

반얀 교환기(Banyan switch)

• 반얀 교환기(Banyan switch)의 경로 지정 예

a. 입력 1이 출력 6으로 셀을 보낸다

b. 입력 5는 출력 2로 셀을 보낸다