Hierarchical Context enabled Recurrent Neural Network for Recommendation Kyungwoo Song*, Mingi Ji*, Sungrae Park, II-Chul Moon

(* : Equal Contribution)

30-Second Summary

Question: Can we detect where the user's interest changes?

Our answer: Yes!

<u>LSTM</u>

HCRNN-1

Local gate

Local gate

Reset

HCRNN-2

 c_{t-1}

How?: Interest drift assumption

 "If the user's local context (for sub-sequence) and the current item are very different, the user's temporary interest drift occurs."

More specific: Hierarchical Context enabled Recurrent Neural Network (HCRNN) Global context

 $c_t = f_t \odot c_{t-1} + i_t \odot \sigma_c(\tilde{c}_t)$

Direct connection

between c_t and h_t

 $h_t = o_t \odot \sigma_h(c_t)$

- Incorporate the interest drift assumption
- Design hierarchical contexts (global, local, and temporary)
- Keep local and temporary contexts independently
- Introduce interest drift gate to capture the interest drift

Model Assumption

- The user's interest can be hierarchically ranging from general interest to a temporary (global, local, and temporary)
- Each hierarchical context have different abstract levels of information.
- Interest drift assumption

Motivation

- A user history is a sequence of user orders or clicks, and the history represents the user's interest
- A long user history inevitably reflects the transitions of personal interests over time

Related Works

• NARM [CIKM-17] : Focus on long-term interest

• STAMP [KDD-18] : Focus on short-term interest

term and short-term interest modeling

 $\theta \quad M_{global} \quad h_{t-1}$

HCRNN (ours): Focus on interest drift with long-

There are no studies which capture user's

interest change with hierarchical context modeling

Update

Update

 We can predict next item better if we include modeling on an interest drift of users.

 h_{t-1} c_{t-1} x_t

Sequential Recommendation

Model Overview

- Goal : Predict next item y_T given $x_{1:T}$
- x_t : Current item embedding
- θ : Global context proportion for $x_{1:T}$
- *M_{alobal}* : Global context memory
- c_t : Local context (generated by global context, **not**
- ullet h_t : Temporary context (generated by previous

- current item)

(16)

(18)

(19)

(20) -

(18)

(19)

(20)

(21)

Inference

temporary context and current item, not local context)

Proportion for sequence

 $\theta^{(k)} \uparrow \Rightarrow M_{global}^{k}$ is important

Generation of local context

with local context gate $G_t^{(c)}$

Generation of temporary

context h_t (separation with

(Variational Encoder)

Attention weight

local context)

Results

Sub-sequence3 (Action/Romance)

Action Action/Romanc

Action

1) Quantitative Results

Sub-sequence1 (Action) Sub-sequence2 (Musical)

Action

Action

for sequence

Local context

for subsequence

Temporary context

for current

Musical Musical

	CiteULike				Lastrivi				MovieLens			
	R@3	R@20	M@3	M@20	R@3	R@20	M@3	M@20	R@3	R@20	M@3	M@20
POP	1.44	5.78	0.92	1.44	0.37	1.99	0.34	0.51	2.43	12.51	1.54	2.65
S-POP	1.26	4.99	0.79	1.23	0.87	3.65	0.55	0.87	2.27	12.23	1.42	2.52
Item-KNN	0.00	6.90	0.00	4.79	0.00	11.59	0.00	8.00	0.00	6.32	0.00	4.28
BPR-MF	0.49	3.15	0.27	0.60	0.82	2.15	0.59	0.73	1.69	8.93	1.07	1.91
LSTM4REC	7.07	23.33	4.93	6.82	15.29	24.75	12.68	13.95	8.52	32.80	5.63	8.45
GRU4REC	8.37	24.19	<u>5.98</u>	<u>7.86</u>	18.29	26.46	<u>15.85</u>	<u>16.95</u>	8.50	32.74	5.60	8.42
NARM	7.81	<u>24.82</u>	5.40	7.41	<u>18.30</u>	<u>33.60</u>	13.12	15.25	<u>9.14</u>	<u>33.42</u>	6.09	8.93
STAMP	5.09	21.93	3.25	5.22	9.29	19.84	6.62	8.01	3.95	20.52	2.65	4.47
HCRNN- 1	8.60	25.36	6.18	8.16	20.67*	34.40*	15.77	17.68*	9.23	33.78*	6.13	9.00
HCRNN- 2	8.83	25.10	6.41*	8.38*	20.78*	34.14*	16.20	18.08*	9.22	33.76*	6.14	9.01
HCRNN- 3	9.21*	25.42*	6.65*	8.61*	21.39*	34.72*	16.66*	18.52*	9.38*	33.67*	6.23*	9.08^{*}
HCRNN-3 + Bi	9.33*	25.81 *	6.74*	8.70*	21.90*	34.80*	17.33*	19.12*	9.53*	33.83*	6.38*	9.21*
Improvement(%)	11.47	3.99	12.71	10.69	19.67	3.57	9.34	12.80	4.27	1.23	4.76	3.14

HCRNN-1 > Baselines (NARM, STAMP)

Action

- necessity of hierarchical context
- HCRNN-3 > HCRNN-2, HCRNN-1
- Interest drift assumption is experimentally justifiable.
- HCRNN-3+Bi > HCRNN-3
- bi-channel attention with hierarchical contexts may improve the performance experimentally.

2) Context Embedding

	Genre	Movie Title
$M_{global}^{(6)}$	Animation	Pinocchio, Yellow Submarine,
	Aiiiiiatioii	Snow White and the Seven Dwarfs
$M_{global}^{(19)}$	Action	Star Trek: Generations, Predator,
	Action	Butch Cassidy and the Sundance Kid
$M_{global}^{(31)}$	Horror	Scream, An American Werewolf
	1101101	in London, Dracula

 If the genre of the current input is different with previous items, $r_t \odot G_t^{(d)}$ has a smaller value compared to the opposite situation.

4) Bi-Channel Attention

Interest drift assumption $x_t \odot c_t \downarrow \implies r_t \downarrow \implies h_t \text{ focus}$ on the current input instead of h_{t-1}

 $r_t = \sigma_r(x_t W_{xr} + h_{t-1} W_{hr} + c_t W_{cr} + b_r)$ (18) $\widetilde{h}_t = (r_t \odot h_{t-1})W_{hh} + x_t W_{xh} + b_h$ (19) $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \sigma_h(\widetilde{h}_t)$ (20) $r_t = \sigma_r(x_t W_{xr} + h_{t-1} W_{hr} + (x_t \odot c_t) W_d + b_r)$

 $r_t = \sigma_r(x_t \overline{W_{xr} + h_{t-1} W_{hr}} + (x_t \odot c_t) \overline{W_d + b_r})$

Methodology

 $\alpha_t^{(k)} = \operatorname{softmax}(v_{\theta}^T \sigma(h_{t-1} W_{h\alpha} + (\theta^{(k)} M_{global}^{(k)}) W_{\theta\alpha}))$

 $G_t^{(c)} = \sigma_l(x_t W_{xl} + h_{t-1} W_{hl} + c_{t-1} W_{cl} + b_l)$

 $z_t = \sigma_z (x_t W_{xz} + h_{t-1} W_{hz} + c_t W_{cz} + b_z)$

 $r_t = \sigma_r (x_t W_{xr} + h_{t-1} W_{hr} + c_t W_{cr} + b_r)$

 $r_t = \sigma_r (x_t W_{xr} + h_{t-1} W_{hr} + c_t W_{cr} + b_r)$

 $\widetilde{h}_t = (r_t \odot h_{t-1})W_{hh} + x_t W_{xh} + b_h$

 $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \sigma_h(\widetilde{h}_t)$

 $s.t.W_d \ge 0$

 $s.t.W_d \ge 0$

 $c_t = (1 - G_t^{(c)}) \odot c_{t-1} + G_t^{(c)} \odot \widetilde{c}_t$

 $\widetilde{h}_t = (r_t \odot h_{t-1})W_{hh} + x_t W_{xh} + b_h$

 $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \sigma_h(\widetilde{h}_t)$

 $\widetilde{\theta} \sim q(\widetilde{\theta}) = \mathcal{N}(\widetilde{\theta}; \mu(x_{1:T}), \operatorname{diag}(\sigma^2(x_{1:T})))$

 $\theta \sim \operatorname{softmax}(\widetilde{\theta})$

 $\widetilde{c}_t = \sum_{k=1} \alpha_t^{(k)} M_{global}^{(k)}$

- $G_t^{(d)} = \sigma_d((x_t \odot c_t)W_d + b_d) \quad s.t.W_d \ge 0$ (22) $r_t = \sigma_r(x_t W_{xr} + h_{t-1} W_{hr} + b_r)$ $\widetilde{h}_t = (r_t \odot (G_t^{(d)} \odot h_{t-1}))W_{hh} + x_t W_{xh} + b_h$
- Sigmoid function is not sharp $\Rightarrow r_t$ in Eq. 21 : 0.47 (± 0.03) It is hard to incorporate the interest drift
- Introduce the interest drift gate $(G_t^{(d)})$ to make h_t focus on the current input

$\alpha_t^{(h)}$ in bi-channel attention 6 8 10 12 14 16 18

- The bi-channel attentions distinguishes the attentions
- $\alpha_t^{(c)}$ focuses on the neighbor attention (short-term)
- $\alpha_t^{(n)}$ reads out through the whole sequence (long-term)

5) Case Study

- $G_{t=17}^{(d)}$ has a relatively small value
- This small value is caused by the selection of different category items to the previous sub-sequence at t=16.

HCRNN-3+Bi

 $\alpha_{tj}^{(c)} = \operatorname{softmax}(\frac{(c_t W_{c\alpha}^{(1)})(c_j W_{c\alpha}^{(2)})^T}{\sqrt{|H|}})$ $\alpha_{tj}^{(h)} = \operatorname{softmax}(v_h^T \sigma(h_t W_{h\alpha}^{(1)} + h_j W_{h\alpha}^{(2)}))$

 $\widehat{y}_t = \operatorname{softmax}(W_{emb}^T W_B[h_t, h_t^{(c)}, h_t^{(h)}])$

 h_{t-1}

- $h_t^{(c)} = \sum_i \alpha_{tj}^{(c)} h_j$ and $h_t^{(h)} = \sum_i \alpha_{tj}^{(h)} h_j$

(28) /

- $\alpha_t^{(c)}$: attention based on the local context (Short-term dependency) (26)
 - $\alpha_t^{(h)}$: attention based on the temporary context (Longterm dependency)
- Variational inference by optimizing the evidence lower bound (ELBO) $\log p(y_{1:T}|c_{1:T}, h_{1:T}) = \log \int p(\widetilde{\theta}) \prod_{t=1} p(y_t|\widetilde{\theta}, c_t, h_t) d\widetilde{\theta}$
- $\geq \sum_{t=0}^{T} E_{q(\widetilde{\theta})}[\log p(y_t | \widetilde{\theta}, c_t, h_t)] \text{KL}[(q(\widetilde{\theta}) | | p(\widetilde{\theta}))]$