# Microprocessor Lab-work #2.1uvision Use of discrete LEDs

100-11-14

# [1] Subject and goals

- (a) The access of every individual LED for ON/OFF control in the 2 sets of discrete LED modules.
- (b) Organized display patterns in static or dynamic form can be achieved as required.

#### [2] Preparations

- (a) Refer to the ckt schematic diagram:
  - (a.1) how ON/OFF control of the LED module is to be done?
  - (a.2) functions of TTL 74244 and its role in the ckt?
  - (a.3) functions of the array resistors RN4 and RN6, and their roles in the ckt?
  - (a.4) data path from 51CPU to the discrete LED modules?
- (b) Datasheets reading:
  - (b.1) TTL 74244
- (c) Readiness-evaluation:

Can you or can you not

- (c.1) check the discrete LED module to see if it's working or not by manual wiring the circuitry?
- (c.2) carry out trouble shooting along the path way when the lab-work isn't going as expected? How will you do that?

# [3] Lab-work for all:

The task here is to use the two discrete LDE modules for dynamic display patterns as graphically depicted below.



# (a) Operating Procedure

(a.1) jumper-wiring for ckt setup

Refer to the schematic circuit diagram, do all jumper-wiring necessary for setting up the circuitry as required below.



# (a.2) code preparation:

\*\* edit the following sample 51 assembly code under  $\mu V sion 51$ .

| org  | 0        | mov  | a, #0ccH | mov  | p1, a          | mov    | a, #0fH   |
|------|----------|------|----------|------|----------------|--------|-----------|
| mov  | sp, #50H | mk2: |          | call | delay          | jmp    | mk1       |
| clr  | С        | срІ  | a        | rlc  | a              | delay: |           |
| mov  | a, #0feH | mov  | r6, a    | mov  | r7, a          | push   | 5         |
| mov  | R7, a    | mov  | p1, a    | mov  | a, r6          | ; p    | ush R5??? |
|      |          | mov  | a, r7    | jc   | mk3            | push   | 6         |
| mov  | a, #0fH  | mov  | p0, a    |      |                | push   | 7         |
| mk1: |          | call | delay    | mov  | a, #0ccH       | mov    | r5, #2    |
| cpl  | a        | rrc  | a        | mk4: |                | dd1:   |           |
| mov  | r6, a    | mov  | r7,a     | cpl  | a <b>; XXX</b> | mov    | r6, #200  |
| mov  | p1, A    | mov  | a, r6    | mov  | r6, a          | dd2:   |           |
| mov  | a, r7    | jc   | mk2      | mov  | p0, a          | mov    | r7, #250  |
| mov  | p0, a    |      |          | mov  | a, r7          | djnz   | r7, \$    |
| call | delay    | mov  | a, #0f0H | mov  | p1, a          | djnz   | r6, dd2   |
| rlc  | а        | mk3: |          | call | delay          | djnz   | r5, dd1   |
| mov  | r7, a    | срІ  | a        | rrc  | a              | рор    | 7         |
| mov  | a, r6    | mov  | r6, a    | mov  | r7,a           | рор    | 6         |
| jc   | mk1      | mov  | p0, a    | mov  | a, r6          | pop    | 5         |
|      |          | mov  | a, r7    | jc   | mk4            | ret    |           |

end

- (a.3) task execution:
  - \*\* start IDE51 emulation,
  - \*\* start execution and trouble-shooting if necessary.

### (b) Observations

- (b.1) Through the display of IDE51 in emulation mode, get yourself acquainted with the machine codes of instructions in the sample program.
- (b.2) Is the code running well? If not, congratulate you that you have a chance for getting more experience in trouble-shooting.

  If so, also congratulate you that you may call it a day
- (b.3) Any possibility of making the codes more concise?

# [4] Comprehension evaluation

- (a) Can you identify the stack status (where SP is pointing to, contents of the stack, etc.) at any instance during the task execution?
- (b) When seeing a specific patterns appearing on the two LED modules, can you tell exactly which instruction line (or some instruction lines) is (are) possibly being executed? And the contents of associated registers?
- (c) For the code line marked with ;XXX, how would the display pattern sequence changed if it is removed?