

planetmath.org

Math for the people, by the people.

closed set in a compact space is compact

 ${\bf Canonical\ name} \quad {\bf Closed Set In A Compact Space Is Compact}$

Date of creation 2013-03-22 13:34:02 Last modified on 2013-03-22 13:34:02 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Proof Classification msc 54D30

 $Related\ topic \qquad Closed Subsets Of A Compact Set Are Compact$

Proof. Let A be a closed set in a compact space X. To show that A is compact, we show that an arbitrary open cover has a finite subcover. For this purpose, suppose $\{U_i\}_{i\in I}$ be an arbitrary open cover for A. Since A is closed, the complement of A, which we denote by A^c , is open. Hence A^c and $\{U_i\}_{i\in I}$ together form an open cover for X. Since X is compact, this cover has a finite subcover that covers X. Let D be this subcover. Either A^c is part of D or A^c is not. In any case, $D\setminus\{A^c\}$ is a finite open cover for A, and $D\setminus\{A^c\}$ is a subcover of $\{U_i\}_{i\in I}$. The claim follows. \square