STAT 422: Homework #4

Due: March 02, 2022 (midnight)

Problem 1

Statement

Assume $X_1, X_2 ... X_n$ are independent, normal random variables with $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$, i = 1, 2, ..., n. Recall that the mgf of the $N(\mu, \sigma^2)$ distribution is $e^{\mu t + \frac{t^2 \sigma^2}{2}}$.

- a. Is $X_1, X_2 \dots X_n$ a random sample, why or why not?
- b. Find the distribution (including parameters) of $Y = \sum_{i=1}^{n} X_i$ using mgfs. Explain, in words, what this result indicates and how you think it is useful.
- c. THM 6.3 in your book is a generalization of the result you found in part (b). Explain, in words, how this builds upon the result you found in (b).
- d. Give the distribution (including parameters) of each of the following random variables. Justify/explain each step in your path to determining each constructed RVs corresponding distribution. You may use the theorems you proved in parts a-c and THM 6.3.
 - $3X_1 + 5X_2$
 - $Z_1^2 + Z_2^2$, where $Z_i = \frac{X_i \mu_i}{\sigma_i}$ for i = 1, 2, ..., n
 - $\frac{Z_2 Z_1}{\sqrt{2}}$, where $Z_i = \frac{X_i \mu_i}{\sigma_i}$ for i = 1, 2, ..., n
 - $\frac{(Z_1 + Z_2)^2}{(Z_3 Z_4)^2}$, where $Z_i = \frac{X_i \mu_i}{\sigma_i}$ for i = 1, 2, ..., n

Solution

Problem 2

Statement

Let X_i , i=1,2,3 be independent with $N(i,i^2)$ distributions. That is, $X_1 \sim N(1,1^2)$, $X_2 \sim N(2,2^2)$, and $X_3 \sim N(3,3^2)$. For each of the following situations, use any subset of the

 X_i s to construct a random variable with the stated distribution. Justify why each constructed random variable follows the corresponding distribution of interest.

- a. Standard normal distribution
- b. Chi-squared distribution with 3 degrees of freedom.
- c. t distribution with 2 degrees of freedom
- d. F distribution with 1 numerator and 2 denominator degrees of freedom

Solution