# UNIVERSITA' DEGLI STUDI DI GENOVA SCUOLA POLITECNICA



Corso di Studi in Ingegneria Elettronica

### Progetto e simulazione di un circuito Full Adder TSPC

Alessio Caligiuri, Emanuele Anfuso

#### Indice

| 1 | Introduzione                                     | 1 |
|---|--------------------------------------------------|---|
|   | Analisi 2.1 Il modello MOS                       |   |
|   | Progettazione 3.1 Dimensionamento dei transistor |   |
| 4 | Simulazione                                      |   |
| 5 | Conclusioni finali                               | 7 |

#### Introduzione

In Fig. 1.1 il diagramma di flusso che descrive le fasi del nostro lavoro.



FIGURA 1.1: Flusso di processo.

#### Analisi

#### 2.1 Il modello MOS

In Fig. 2.1 il simbolo per un NMOS.



FIGURA 2.1: Simbolo NMOS (a sinistra) e PMOS (a destra)

L'Eq. 2.1 descrive il comportamento di un MOS in zona di saturazione.

$$I_D = \frac{1}{2}\mu_n C'_{ox} \frac{W}{L} (V_{gs} - V_{th})^2$$
(2.1)

L'Eq. 2.2 è la relazione che consente di ricavare il rapporto d'aspetto necessario affinché il condensatore sia caricato/scaricato nel tempo desiderato.

$$\frac{W}{L} = \begin{cases}
\frac{2C_L V_{DD}}{\tau \mu_n C'_{ox} (V_{DD} - V_{thn})^2} & NMOS \\
\frac{2C_L V_{DD}}{\tau \mu_p C'_{ox} (V_{DD} - |V_{thp}|)^2} & PMOS
\end{cases}$$
(2.2)

Analisi 3

#### 2.2 Il Full Adder TSPC

### Progettazione

#### 3.1 Dimensionamento dei transistor

In Tab. 3.1 le dimensioni ottenute per ciascun transitor.

| Id MOS | Rapporto d'aspetto | $W(\mu m)$ | $L(\mu m)$ |
|--------|--------------------|------------|------------|
| 1      | 30                 | 3.24       | 0.12       |
| 2      | 12                 | 2.24       | 0.12       |

Tabella dimensioni MOS

#### 3.2 Layout fisico

In Fig. 3.1 il layout finale del Full Adder TSPC.

Analisi 5



FIGURA 3.1: Layout finale.

#### Simulazione

page header

#### Conclusioni finali

page header

# Bibliografia