

Algorithms for Data Science

Decision Making (Decision Tree / Bayesian Networks)

Decision Trees: Learning from Choices

Why Decision Trees?

- Interpretable –
 Easy to understand.
- Handles both categorical & numerical data.
- Works well for rulebased decisionmaking.

How Do Decision Trees Make Splits?

$$H(X) = -\sum p_i \log_2 p_i$$

- Entropy = 0 → The node is pure (only one class is present).
- Entropy = 1 → The node is evenly split between two classes (e.g., 50% vs. 50%).
- Entropy > 1 →
 Happens when there are more than two classes.

Bayesian Networks: Probabilistic Reasoning

Bayesian Networks

- A Directed Acyclic Graph (DAG) that represents probabilistic relationships.
- Can model uncertainty and causal relationships.
- Useful for medical diagnosis, fraud detection, and AI reasoning.

Bayesian Inference & Conditional Probability

```
from pgmpy.models import BayesianNetwork
  from pgmpy.inference import VariableElimination
  from pgmpy.factors.discrete import TabularCPD
  # Define the structure
  model = BayesianNetwork([('Flu', 'Fever')])
  # Define Conditional Probability Distributions
  cpd flu = TabularCPD(variable='Flu', variable card=2, values=[[0.9], [0.1]])
  cpd fever = TabularCPD(variable='Fever', variable card=2,
                         values=[[0.15, 0.85], [0.85, 0.15]],
                         evidence=['Flu'], evidence card=[2])
  model.add cpds(cpd flu, cpd fever)
  # Perform Inference
  inference = VariableElimination(model)
  result = inference.query(variables=['Flu'], evidence={'Fever': 1})
  print(result)
✓ 0.0s
           phi(Flu)
Flu(0) |
             0.9808
             0.0192
```

Bayes Theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Prior Probability:

$$P(Flu) = 0.10$$

Conditional Probability:

$$P(\text{Fever} \mid \text{Flu}) = 0.85$$

Compute

Variable Elimination vs Gibbs Sampling

Feature	Exact	Complexity	Best Use Case
Variable Elimination	✓Yes	$O(n^2)$ to $O(n^3)$	Small Bayesian Networks
Gibbs Sampling	XNo	O(k) (for large k)	Large Bayesian Networks

Variable Elimination

Mathematically, if we have the joint distribution P(A,B), we can eliminate B by summing over all values of B

$$P(A) = \sum_{B} P(A, B)$$

Example:

A	В	P(A,B)
0	0	0.2
0	1	0.3
1	0	0.4
1	1	0.1

$$P(A = 0) = P(A = 0, B = 0) + P(A = 0, B = 1)$$

= $\mathbf{0}.\mathbf{2} + \mathbf{0}.\mathbf{3} = \mathbf{0}.\mathbf{5}$
 $P(A = 1) = P(A = 1, B = 0) + P(A = 1, B = 1)$
= $\mathbf{0}.\mathbf{4} + \mathbf{0}.\mathbf{1} = \mathbf{0}.\mathbf{5}$

A	P(A)
0	0.5
1	0.5

Gibbs Sampling

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pgmpy.models import BayesianNetwork
from pgmpy.sampling import GibbsSampling
from pgmpy.factors.discrete import TabularCPD
# Define the Bayesian Network Structure: Disease -> Test
model = BayesianNetwork([('Disease', 'Test')])
# Define Conditional Probability Distributions (CPDs)
cpd disease = TabularCPD(variable='Disease', variable card=2, values=[[0.95], [0.05]]) # P(D)
cpd_test = TabularCPD(variable='Test', variable_card=2,
                     values=[[0.80, 0.10], # P(T=0 | D=0), P(T=0 | D=1)
                              [0.20, 0.90]], # P(T=1 \mid D=0), P(T=1 \mid D=1)
                      evidence=['Disease'], evidence card=[2])
# Add CPDs to the model
model.add cpds(cpd disease, cpd test)
# Verify the model
assert model.check_model()
# Perform Gibbs Sampling
inference = GibbsSampling(model)
samples = inference.sample(size=500)
disease counts = samples['Disease'].value counts(normalize=True)
test counts = samples['Test'].value counts(normalize=True)
```


