

GENERALIZATION AND REGULARIZATION IN DQN

Jesse Farebrother

Marlos C. Machado

Michael Bowling

MOTIVATION

Do deep neural networks allow RL agents to generalize to small variations of high-dimensional environments, e.g, game flavours in the ALE?

Can regularization methods in supervised learning, e.g., dropout, weight decay, be leveraged to allow deep RL agents to generalize to these variations?

Do these regularization methods allow for more adaptable representations, i.e., can we fine-tune the representation to improve sample efficiency?

GAME FLAVOURS IN THE ALE

GENERALIZATION AND OVERFITTING

- Evaluate the learned policy from the default flavour to every other game flavour
- We observe the agent overfitting to the default flavour in some games when evaluation during training

REGULARIZATION IN DEEP RL

- Employ dropout and weight decay during training to study the effect on generalization
- Dropout and weight decay work in tandem and improves evaluation performance on some flavours

DQN objective with weight decay:

$$\min_{\theta} \frac{\lambda}{2} \| \theta \|_{2}^{2} + \mathbb{E}_{S_{t}, A_{t}, R_{t+1}, S_{t+1} \sim U(\cdot)} \left[\left(R_{t+1} + \max_{a' \in A} Q(S_{t+1}, a'; \theta^{-}) - Q(S_{t}, A_{t}; \theta) \right)^{2} \right]$$

Drop neural unit according to: $d_i^{(l)} \sim \mathbf{Bernoulli}(p)$

GAME VARIANT		EVAL. WITH REGULARIZATION			Eval. Without Regularization		LEARN FROM SCRATCH	
>	м1р0	5.8	(3.5)	0.2	(0.2)	4.8	(9.3)	
FREEWAY	м1р1	4.4	(2.3)	0.1	(0.1)	0.0	0.0	
	м4D0	20.6	(0.7)	15.8	(1.0)	29.9	(0.7)	
HERO	м1р0	116.8	(76.0)	82.1	(89.3)	1425.2	(1755.1)	
포	м2D0	30.0	(36.7)	33.9	(38.7)	326.1	(130.4)	
BREAKOUT	м12р0	31.0	(8.6)	43.4	(11.1)	67.6	(32.4)	
INVADERS	м1р0	456.0	(221.4)	258.9	(88.3)	753.6	(31.6)	
	м1р1	146.0	(84.5)	140.4	(61.4)	698.5	(31.3)	
SPACE	м9р0	290.0	(257.8)	179.0	(75.1)	518.0	(16.7)	

VALUE FUNCTION FINE-TUNING

- Re-use the regularized representation post-training from one flavour to fine-tune on a different flavour
- Fine-tuning from a regularized representation improves sample efficiency and outperforms training from scratch in most flavours
- Re-learning co-adaptations between regularized layers and randomly initialized layers doesn't provide any immediate benefit

	GAME VARIANT		FINE-TUNE		REGULARIZED FINE-TUNE		SCRATCH	
			50M		50M		100M	
	AY	м1р0	22.5	(7.5)	25.4	(0.2)	7.5	(11.5)
	FREEWAY	м1р1	17.4	(11.4)	25.4	(0.4)	2.5	(7.3)
	ш	м4D0	31.4	(0.5)	32.2	(0.5)	32.8	(0.2)
	HERO	м1р0	496.7	(362.8)	4104.6	(2192.8)	5026.8	(2174.6)
	Ĭ	м2D0	92.5	(26.2)	211.0	(100.6)	323.5	(76.4)
	BREAKOUT	м12р0	69.1	(14.9)	96.1	(11.2)	55.2	(37.2)
	DERS	м1о0	926.1	(56.6)	1033.5	(89.7)	979.7	(39.8)
	E INVADERS	м1р1	799.4	(52.5)	920.0	(83.5)	906.9	(56.5)
	SPACE	м9D0	574.1	(37.0)	583.0	(17.5)	567.7	(40.1)

TAKEAWAYS

- DQN struggles to generalize to even slight variations of the underlying MDP
- Regularization methods designed to prevent deep neural networks from overfitting improve generalization and adaptability of DQN