Package 'nemTar'

January 30, 2021

y /
Type Package
Title A method for singlaing network inference from (epi)genetic aberration profiles Version
0.1.0
Author Yuchen ZHANG
${\bf Maintainer}~{\rm Yuchen}~{\rm ZHANG}~< {\tt yuczhang 9@163.com} > {\rm Xin}~{\rm WANG}~< {\tt xin.wang@cityu.edu.hk}>$
Description The package 'nemTar' are the extension of classic nest effects models(NEMs)
Depends R (>= $3.5.0$),
nem (>= $2.60.0$),
dplyr (<= 0.8.5)
License GPL (≥ 2)
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
${ m biocViews}$
Imports methods
RoxygenNote 7.1.1
R topics documented: compute_WIG nem_Tar_greedy nem_Tar_triples path_post permu_test sampleData2 WIGsig_test WIG_double WIG_sample
Indov

nem_Tar_greedy

compute_WIG	Calculating	the	weigheted	information	gain(WIG)	of each	S-
	genes						

Description

Calculating the weighted information gain(WIG) of each S-genes

Usage

```
compute_WIG(post_prob, path_affected, num_sgene)
```

Arguments

post_prob a list of the probablity that an E-gene is affected by an S-gene with

respect to a specific pathway

path_affected a list of the E-genes that are affected by the S-genes and are realted to a

specific pathway

num_sgene a numeric of the number of S-genes

Value

a list contains the probability of the uniform distribution before the nertwork inference, and the WIG profiles of every S-gene, as well as the WIGs of S-genes

nem_Tar_greedy	Inferring the signaling network from (epi)genetic aberrations and
	effect reporter gene profiles based on greedy hill climbing methods

Description

Inferring the signaling network from (epi)genetic aberrations and effect reporter gene profiles based on greedy hill climbing methods

Usage

```
nem_Tar_greedy(D, Sgenes, S_pattern, initial = NULL, control, verbose = TRUE)
```

Arguments

verbose

D	an E-gene observation matrix with the dimension of p(number of samples)
	\times n(number of effect reporter genes)
Sgenes	a character vector of S-genes
S_pattern	a binary matrix showing the state of whether signaling components (S-genes)are perturbed, with the dimension of m \times m
initial	the initial state of the S-gene graph
control	a list contains necessary parameters for implementing the methods, the details could be referred to ${\sf nem}$

a logic to whether present the execution process

nem_Tar_triples 3

Value

a list contains the network inference results, please also refer to nem

See Also

```
nem_Tar_triples nem
```

nem_Tar_triples	Inferring the signaling network from (epi)genetic aberrations and
	effect reporter gene profiles based on triple regition inference

methods

Description

Inferring the signaling network from (epi)genetic aberrations and effect reporter gene profiles based on triple realtion inference methods

Usage

```
nem_Tar_triples(D, Sgenes, S_pattern, control, verbose = TRUE)
```

Arguments

_		1 , •		1	1	c	/	1 1		1 \
11	an Hi cono o	hcorrotion	motrix with	n tha	dimongion	at r	/ miim	hor of	comn	IOC I
U	an E-gene o	DSCI VALIOII	madia wid	пинс	difficusion	<i>ว</i> ı .	'uuuu	net of	Samo	TCDI

 \times n(number of effect reporter genes)

Sgenes a character vector of S-genes

S_pattern a binary matrix showing the state of whether signaling components(S-

genes) are perturbed, with the dimension of m \times m(m is the number of

S-genes)

control a list contains necessary parameters for implementing the methods, as

nemTar is developed based on nem, the users of nemTar should apply the function nem::set.default.parameters(Sgenes,type="mLL",para=para), para

is a vector of length two:false positive rate and false negative rate.

verbose a logic to whether present the execution process

Value

a list contains the network inference results using triple relation, please also refer to the nem

See Also

```
nem_Tar_greedy nem
```

permu_test

path_post	To dissect the influenced E-genes and the probability of influence
	under the assumption of nested effects for a specific pathway

${\bf Description}$

To dissect the influenced E-genes and the probability of influence under the assumption of nested effects for a specific pathway

Usage

```
path_post(nemTar_rslt, path_list, Sgenes)
```

Arguments

nemTar₋rslt	the output of the signaling network inferred by nemTar
$path_list$	a character of the the signature genes of an pathway
Sgenes	a character of the S-genes within the signaling network

permu_test	Employing the permuation test

${\bf Description}$

Employing the permuation test

${\bf Usage}$

```
permu_test(path_post, nem_rslt, path_list, sampling_times)
```

Arguments

path_post	the influenced E-genes and the probability of influence under the assumption of nested effects
nem_rslt	the output of the signaling network inferred by nemTar
$path_list$	a character of the the signature genes of an pathway
$sampling_times$	a numeric number indicating the times of sampling

sampleData2 5

sampleData2	Generation of the data for sampling in the simulation of the cancer multi-omics samples
	-

Description

Generation of the data for sampling in the simulation of the cancer multi-omics samples

Usage

```
sampleData2(
   Phi,
   S_obs,
   p,
   m,
   uninformative = 0,
   type = "binary",
   typeI.err = typeI.err,
   typeII.err = typeII.err)
```

Arguments

Phi	adjacency matrix
S_obs	binary matrix inddicating the observation of S-genes' states
р	number of samples(patients) to sample
m	number of E-genes to sample
type	an integer, represents the number of row within the raw image
typeI.err	simulated type I error for binary data
typeII.err	simulated type II error for binary data

See Also

sampleData

 ${\tt WIGsig_test}$

The statistical significance test based on the bootstrap of WIGs

Description

The statistical significance test based on the bootstrap of WIGs

Usage

```
WIGsig_test(sample_WIG0, WIG, sampling_times)
```

6 WIG_sample

Arguments

sample_WIGO the background distribution of the WIG from the sampling of WIG

WIG the pathway-specific WIGcalculated using compute_WIG sampling_times a numeric number indicating the times of sampling

Value

the statistical significance (BH-adjusted p-value)

WIG_double Calculating the weighted information gain(WIG) of combinational perturbation of 2 S-genes

Description

Calculating the weigheted information gain(WIG) of combinational perturbation of 2 S-genes

Usage

```
WIG_double(path_post, num_sgene)
```

Arguments

path_post the influenced E-genes and the probability of influence under the assump-

tion of nested effects

num_sgene a numeric of the number of S-genes

 ${\tt WIG_sample} \qquad \qquad {\tt Sampling \ of \ the \ WIG \ to \ measure \ the \ statistical \ significance}$

Description

Sampling of the WIG to measure the statistical significance

Usage

```
WIG_sample(path_post, nem_rslt, path_list, num_sgene, sampling_times)
```

Arguments

path_post the influenced E-genes and the probability of influence under the assump-

tion of nested effects

nem_rslt the output of the signaling network inferred by nemTar
path_list a character of the the signature genes of an pathway

num_sgene a numeric of the number of S-genes

sampling_times a numeric number indicating the times of sampling

Index

```
compute_WIG, 2
nem, 2, 3
nem_Tar_greedy, 2, 3
nem_Tar_triples, 3, 3

path_post, 4
permu_test, 4

sampleData, 5
sampleData2, 5

WIG_double, 6
WIG_sample, 6
WIGsig_test, 5
```