Нейросетевые рекомендации

RecSys

lecturer: Mollaev D. E. Sber Al Lab

План лекции

- Постановка задачи
- Общие архитектуры
 - RNN
 - Transformers
- Адаптация архитектур для рекомендательных систем
 - GRU4REC
 - SASREC
 - o BERT4REC
- Другое

План лекции

- Постановка задачи
- Общие архитектуры
 - RNN
 - Transformers
- Адаптация архитектур для рекомендательных систем
 - GRU4REC
 - SASREC
 - o BERT4REC
- Другое

В предыдущих методах мы напрямую не учитывали последовательную структуру наших рекомендаций:

Представьте, что вы рекомендуете человеку магазины и видите человека с такой упорядоченной историей:

зоомагазин, супермаркет, метрополитен, зоомагазин, кофейня, супермаркет, развлекательный сервис

Порекомендуете ли совершить следующую покупку в зоомагазине?

В предыдущих методах мы напрямую не учитывали последовательную структуру наших рекомендаций:

Представьте, что вы рекомендуете человеку магазины и видите человека с такой упорядоченной историей:

зоомагазин, супермаркет, метрополитен, зоомагазин, кофейня, супермаркет, развлекательный сервис, зоомагазин

Порекомендуете ли теперь совершить следующую покупку в зоомагазине?

Представим теперь, что у наша последовательность не отсортирована и мы просто знаем, что человек покупал в магазинах зоомагазин, супермаркет, кофейня, развлекательный сервис

Пора ли ему рекомендовать зоомагазин теперь?

User_id	Item_id	Date
5	4	2024-02-24
6	1	2024-02-24
5	3	2024-02-22
1	2	2024-02-13
5	1	2024-02-10
4	2	2024-02-08
2	3	2024-02-08
2	1	2024-02-07

1	4	2023-12-31

U/I	item 1	item2	item 3	item 4
User 1	0	1	0	1
User 2	1	0	1	0
User 3	0	1	0	1
User 4	0	1	0	0
User 5	1	0	1	1
User 6	1	1	0	1
User 7	0	1	1	0
User 8	1	0	0	1

User_id	Item_id	Date
5	4	2024-02-24
6	1	2024-02-24
5	3	2024-02-22
1	2	2024-02-13
5	1	2024-02-10
4	2	2024-02-08
2	3	2024-02-08
2	1	2024-02-07
1	4	2023-12-31

User1: [4,1]

Jser2: [2,3]

User3: [2, 4]

Jser4: [2]

Jser5: [1,3,4]

Jser5: [2,3,1]

Jser7: [2,3]

Jser8: [1,4]

Время

План лекции

- Постановка задачи
- Общие архитектуры
 - RNN
 - Transformers
- Адаптация архитектур для рекомендательных систем
 - GRU4REC
 - SASREC
 - o BERT4REC
- Другое

Цель: обработать последовательность x_1, x_2, \ldots, x_L зависимых наблюдений **нефиксированной** длины.

- Состояние h_t можно рассматривать как внутреннюю память модели на шаге t.
- Состояние h_t неявно зависит от всех x_1, \ldots, x_t , то есть хранит информацию о входах до шага t включительно.

$$egin{aligned} x_t \in \mathbb{R}^{1 imes d_x}, \ h_t, b \in \mathbb{R}^{1 imes d_h}, \ W_x \in \mathbb{R}^{d_x imes d_h}, \ W_h \in \mathbb{R}^{d_h imes d_h} \end{aligned}$$

$$egin{aligned} h_t &= ann(x_tW_x + h_{t-1}W_h + b), \ h_0 &= 0 \end{aligned}$$

Проблемы:

- Плохо параллелится
- Затухают или взрываются градиенты
- Не может запоминать длинный контекст

Общие архитектуры: Transformer

Общие архитектуры: Transformer

Общие архитектуры: Transformer

Transformer: self-attention

Each vector receives three representations ("roles")

"Hey there, do you have this information?"

$$\left[\begin{array}{c} W_{K} \end{array} \right] \times \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$
 Key: vector **at** which the query looks to compute weights

"Hi, I have this information – give me a large weight!"

"Here's the information I have!"

- query asking for information
- key saying that it has some information
- value giving the information

Transformer: self-attention

$$Attention(q, k, v) = softmax \left(\frac{qk^T}{\sqrt{d_k}}\right)v$$
 from to vector dimensionality of K, V

Transformer: self-attention

Transformer: masked self-attention

To forbid the decoder to look ahead, the model uses masked self-attention: future tokens are masked out.

План лекции

- Постановка задачи
- Общие архитектуры
 - RNN
 - Transformers
- Адаптация архитектур для рекомендательных систем
 - o GRU4REC
 - SAS4REC
 - o BERT4REC
- Другое

GRU4REC

GRU4REC

s - логиты, p - предсказанное распределение (M классов)

SASREC (Self-Attentive Sequential Recommendation)

SASREC

- Shared эмбеддинги айтемов на входе и на выходе
- BCELoss
- Обучаемые positional embeddings
- Маскируем аттеншн: не можем смотреть в будущее

$$L_{BCE} = -\sum_{\mathcal{S}^u \in \mathcal{S}} \sum_{t \in [1,2,\ldots,n]} \left[\log(\sigma(r_{o_t,t})) + \sum_{j \notin \mathcal{S}^u} \log(1 - \sigma(r_{j,t})) \right].$$

Note that we ignore the terms where $o_t = \langle pad \rangle$.

SASREC

Как посчитать релевантность i-го айтема:

- Прогоняем всю последовательность через модель
- Берем последний hidden layer
- \bullet Умножаем на $embedding_i$

SASREC: качество

Dataset	Metric	(a) PopRec	(b) BPR	(c) FMC	(d) FPMC	(e) TransRec	(f) GRU4Rec	(g) GRU4Rec ⁺	(h) Caser	(i) SASRec	Improve (a)-(e)	ment vs. (f)-(h)
Beauty	Hit@10 NDCG@10	0.4003 0.2277	0.3775 0.2183	0.3771 0.2477	0.4310 0.2891	0.4607 0.3020	0.2125 0.1203	0.3949 0.2556	0.4264 0.2547	0.4854 0.3219	5.4% 6.6%	13.8% 25.9%
Games	Hit@10 NDCG@10	0.4724 0.2779	0.4853 0.2875	0.6358 0.4456	0.6802 0.4680	$\frac{0.6838}{0.4557}$	0.2938 0.1837	0.6599 <u>0.4759</u>	0.5282 0.3214	0.7410 0.5360	8.5% 14.5%	12.3% 12.6%
Steam	Hit@10 NDCG@10	0.7172 0.4535	0.7061 0.4436	0.7731 0.5193	0.7710 0.5011	0.7624 0.4852	0.4190 0.2691	$\frac{0.8018}{0.5595}$	0.7874 0.5381	0.8729 0.6306	13.2% 21.4%	8.9% 12.7%
ML-1M	Hit@10 NDCG@10	0.4329 0.2377	0.5781 0.3287	0.6986 0.4676	0.7599 0.5176	0.6413 0.3969	0.5581 0.3381	0.7501 0.5513	$\frac{0.7886}{0.5538}$	0.8245 0.5905	8.5% 14.1%	4.6% 6.6%

BERT4REC

(c) SASRec model architecture.

(d) RNN based sequential recommendation methods.

Архитектура Bert4Rec

(b) BERT4Rec model architecture.

Модель состоит из

- Слоя эмбеддингов айтемов
- *L* трансформерных слоев
- Проецирующей головы, выполняющей предсказания

Архитектура Bert4Rec

(b) BERT4Rec model architecture.

Модель состоит из

- Слоя эмбеддингов айтемов
- L трансформерных слоев
- Проецирующей головы, выполняющей предсказания

На вход подаются айтемы позитивных взаимодействий пользователя в порядке по времени

В конец истории добавляется специальный айтем [mask]

К выходному эмбеддингу, соответствующему этому специальному айтему, применяем проекционную голову, предсказывающую релевантный следующий айтем

Архитектура Bert4Rec

(b) BERT4Rec model architecture.

Модель состоит из

- Слоя эмбеддингов айтемов
- L трансформерных слоев
- Проецирующей головы, выполняющей предсказания

На вход подаются айтемы позитивных взаимодействий пользователя в порядке по времени

В конец истории добавляется специальный айтем [mask]

К выходному эмбеддингу, соответствующему этому специальному айтему, применяем проекционную голову, предсказывающую релевантный следующий айтем

Проекционный слой устроен как $P(v) = \operatorname{softmax} \left(GELU(h_i^L W^P + b^P) E^T + b^O \right),$ где $E \in \mathbb{R}^{|V| \times d}$ – обучаемая матрица айтемов.

Обучение Bert4Rec

• Случайным образом замаскируем долю айтемов ρ из истории пользователя, то есть заменим на специальный айтем [mask]

Input:
$$[v_1, v_2, v_3, v_4, v_5] \xrightarrow{\text{randomly mask}} [v_1, [\text{mask}], v_3, [\text{mask}], v_5]$$

• Пусть S_u^m – множество замаскированных позиций пользователя u, S_u' – последовательность айтемов с замененными на [mask] айтемами, v_m^* – предсказания айтемов на замаскированных позициях

Тогда оптимизируем правдоподобие, то есть:

$$\mathcal{L} = -\frac{1}{|S_u^m|} \sum_{m \in S_u^m} \log P(v_m^* = v_m | S_u')$$

Другими словами, обучение похоже на Masked Language
Model обучение в текстовых задачах

BERT4REC: качество

Datasets	Metric	POP	BPR-MF	NCF	FPMC	GRU4Rec	GRU4Rec+	Caser	SASRec	BERT4Rec	Improv.
	HR@1	0.0077	0.0415	0.0407	0.0435	0.0402	0.0551	0.0475	0.0906	0.0953	5.19%
	HR@5	0.0392	0.1209	0.1305	0.1387	0.1315	0.1781	0.1625	0.1934	0.2207	14.12%
Daguter	HR@10	0.0762	0.1992	0.2142	0.2401	0.2343	0.2654	0.2590	0.2653	0.3025	14.02%
Beauty	NDCG@5	0.0230	0.0814	0.0855	0.0902	0.0812	0.1172	0.1050	0.1436	0.1599	11.35%
	NDCG@10	0.0349	0.1064	0.1124	0.1211	0.1074	0.1453	0.1360	0.1633	0.1862	14.02%
	MRR	0.0437	0.1006	0.1043	0.1056	0.1023	0.1299	0.1205	0.1536	0.1701	10.74%
	HR@1	0.0159	0.0314	0.0246	0.0358	0.0574	0.0812	0.0495	0.0885	0.0957	8.14%
	HR@5	0.0805	0.1177	0.1203	0.1517	0.2171	0.2391	0.1766	0.2559	0.2710	5.90%
Chaam	HR@10	0.1389	0.1993	0.2169	0.2551	0.3313	0.3594	0.2870	0.3783	0.4013	6.08%
Steam	NDCG@5	0.0477	0.0744	0.0717	0.0945	0.1370	0.1613	0.1131	0.1727	0.1842	6.66%
	NDCG@10	0.0665	0.1005	0.1026	0.1283	0.1802	0.2053	0.1484	0.2147	0.2261	5.31%
	MRR	0.0669	0.0942	0.0932	0.1139	0.1420	0.1757	0.1305	0.1874	0.1949	4.00%
	HR@1	0.0141	0.0914	0.0397	0.1386	0.1583	0.2092	0.2194	0.2351	0.2863	21.78%
	HR@5	0.0715	0.2866	0.1932	0.4297	0.4673	0.5103	0.5353	0.5434	0.5876	8.13%
ML-1m	HR@10	0.1358	0.4301	0.3477	0.5946	0.6207	0.6351	0.6692	0.6629	0.6970	4.15%
MIL-IIII	NDCG@5	0.0416	0.1903	0.1146	0.2885	0.3196	0.3705	0.3832	0.3980	0.4454	11.91%
	NDCG@10	0.0621	0.2365	0.1640	0.3439	0.3627	0.4064	0.4268	0.4368	0.4818	10.32%
	MRR	0.0627	0.2009	0.1358	0.2891	0.3041	0.3462	0.3648	0.3790	0.4254	12.24%
	HR@1	0.0221	0.0553	0.0231	0.1079	0.1459	0.2021	0.1232	0.2544	0.3440	35.22%
ML-20m	HR@5	0.0805	0.2128	0.1358	0.3601	0.4657	0.5118	0.3804	0.5727	0.6323	10.41%
	HR@10	0.1378	0.3538	0.2922	0.5201	0.5844	0.6524	0.5427	0.7136	0.7473	4.72%
IVIL-ZUIII	NDCG@5	0.0511	0.1332	0.0771	0.2239	0.3090	0.3630	0.2538	0.4208	0.4967	18.04%
	NDCG@10	0.0695	0.1786	0.1271	0.2895	0.3637	0.4087	0.3062	0.4665	0.5340	14.47%
	MRR	0.0709	0.1503	0.1072	0.2273	0.2967	0.3476	0.2529	0.4026	0.4785	18.85%

План лекции

- Постановка задачи
- Общие архитектуры
 - RNN
 - Transformers
- Адаптация архитектур для рекомендательных систем
 - GRU4REC
 - SASREC
 - o BERT4REC
- Другое

Sequential modelling: Loss functions

Original SASRec loss: binary cross entropy with one negative sample for each positive

$$\mathcal{L}_{BCE} = -\sum_{u \in II} \sum_{t=1}^{n_u} \log(\sigma(r_{t,i_t}^{(u)})) + \log(1 - \sigma(r_{t,-}^{(u)})),$$

BERT4Rec loss: full cross entropy

$$\mathcal{L}_{CE} = -\sum_{u \in U} \sum_{t \in T_u} \log \frac{\exp(r_{t,i_t}^{(u)})}{\sum_{i \in I} \exp(r_{t,i}^{(u)})}$$

Sampled cross-entropy from "Turning Dross Into Gold Loss: is BERT4Rec really better than SASRec?"

$$\mathcal{L}_{CE-sampled_N} = -\sum_{u \in U} \sum_{t=1}^{n_u} \log \frac{\exp(r_{t,i_t}^{(u)})}{\exp(r_{t,i_t}^{(u)}) + \sum_{i \in I_N^{-(u)}} \exp(r_{t,i}^{(u)})},$$

Does It Look Sequential? An Analysis of Datasets for Evaluation of Sequential Recommendations

В данной работе оценивают насколько сильную последовательную структуру имеют некоторые открытые датасеты

