Глава 2. ТЕОРИЯ СТАТИСТИЧЕСКОЙ ПРОВЕРКИ ГИПОТЕЗ

2. 1. Основные понятия теории статистической проверки гипотез

Рассмотрим следующую статистическую задачу. Пусть имеется случайная выборка

$$X = (x_1^{\mathrm{T}}, \dots, x_n^{\mathrm{T}})^{\mathrm{T}} \in \mathcal{X} \subseteq \mathbb{R}^{nN}$$

из некоторого N-мерного распределения вероятностей $\mathbf{P}_{\theta}(\cdot)$, заданного на измеримом пространстве (Ω, \mathcal{F}) , где $\theta \in \Theta \subseteq \mathbb{R}^m$ — неизвестное истинное значение векторного параметра, Θ — параметрическое пространство, $\mathcal{X} \subseteq \mathbb{R}^{nN}$ — выборочное пространство. Пусть задано некоторое натуральное число $K \geq 2$ и определено разбиение параметрического пространства Θ на K областей:

$$\Theta = \bigcup_{k=0}^{K-1} \Theta_k, \ \Theta_k \cap \Theta_l = \emptyset, \ k \neq l.$$

Определение. Утверждение о неизвестном значении параметра θ , состоящее в том, что $\theta \in \Theta_k$, называется k-й гипотезой:

$$H_k: \theta \in \Theta_k, \quad k = 0, \dots, K-1.$$

Гипотеза H_k называется простой, если мощность $|\Theta_k|=1$, в противном случае — сложной (составной).

Если в действительности значение параметра $\theta \in \Theta_{\nu}, \ \nu \in \{0,\dots,K-1\}$, то говорят, что гипотеза H_{ν} истинна.

Задача статистической проверки гипотез

$$H_0, \ldots, H_{K-1}$$

состоит в том, чтобы по наблюдаемой выборке X оптимальным образом оценить номер ν истинной гипотезы: d=d(X)=k — выносим решение в пользу гипотезы H_k (d=d(X) — статистическая оценка для ν). Возможно K решений ($k \in \{0,1,\ldots,K-1\}$). Множество возможных решений обозначим

$$D = \{0, 1, \dots, K - 1\}, |D| = K,$$

и назовем пространством решений.

Определение. Решающим правилом (решающей функцией, критерием, тестом) в выше

сформулированной задаче статистической проверки гипотез называется функциональное отоб ражение выборочного пространства $\mathcal X$ в пространство решений D:

$$\mathcal{X} \stackrel{d(\cdot)}{\to} D.$$
 (1)

Существуют два основных типа решающих правил $(P\Pi)$ (1).

Определение. Нерандомизированным РП называется отображение (1) следующего вида:

$$d = d(X) = \begin{cases} 0, & X \in \mathcal{X}_0; \\ \vdots \\ K - 1, & X \in \mathcal{X}_{K-1}, \end{cases}$$

где $\{\mathcal{X}_0, \dots, \mathcal{X}_{K-1}\}$ — некоторое детерминированное борелевское разбиение выборочного пространства:

$$\mathcal{X} = \bigcup_{k=0}^{K-1} \mathcal{X}_k, \ \mathcal{X}_k \cap \mathcal{X}_l = \emptyset, \ k \neq l.$$

При этом, если выборка X фиксирована, то решение d=d(X) не случайно.

Определение. Рандомизированным РП называется случайное отображение (1) следующего вида:

$$d = d(X, \omega), \ \omega \in \Omega, \ X \in \mathcal{X}, \ d \in D,$$

причем если выборка X фиксирована, то решение $d=d(X,\omega)$ является дискретной случайной величиной с множеством значений D и некоторым дискретным распределением вероятностей:

$$\varphi_i = \varphi_i(X) = \mathbf{P}\{d = i | X\}, \ i \in D.$$

При этом борелевские функции $\varphi_i = \varphi_i(X)$, $i \in D$, удовлетворяют следующим ограничениям:

$$0 \le \varphi_i(X) \le 1, \ i \in D; \quad \sum_{i \in D} \varphi_i(X) = 1, \quad X \in \mathcal{X},$$

и называются критическими функциями.

Укажем алгоритм принятия решения с помощью рандомизированного решающего правила.

- 1. По выборке X вычисляем значения критических функций: $\varphi_i = \varphi_i(X), \ i \in D,$ и определяем дискретное распределение вероятностей $\{\varphi_0(X), \varphi_1(X), \dots, \varphi_{K-1}(X)\}.$
- 2. Проводим случайный эксперимент (жребий) со множеством исходов D и дискретным распределением вероятностей, найденным на шаге 1.

3. Регистрируем исход k этого жребия и принимаем решение d=k.

Нерандомизированное решающее правило есть частный случай рандомизированного решающего правила, если критические функции принимают одно из двух возможных значений:

$$\varphi_i(X) \in \{0,1\}, X \in \mathcal{X}; \mathcal{X}_i = \{X : \varphi_i(X) = 1\},\$$

2. 2. Решающее правило Неймана - Пирсона

Рассмотрим задачу проверки двух гипотез. Пусть имеется случайная выборка

$$X = (x_1^{\mathrm{T}}, \dots, x_n^{\mathrm{T}})^{\mathrm{T}} \in \mathbb{R}^{nN},$$

образованная наблюдениями с плотностью распределения вероятностей

$$p(x; \theta), x \in \mathbb{R}^N, \theta \in \Theta,$$

где θ — неизвестное истинное значение параметра. Совместная плотность распределения всей выборки X определяется равенством:

$$p(X;\theta) = \prod_{l=1}^{n} p(x_l;\theta);$$

вероятностная мера, определенная при значении параметра heta:

$$\mathbf{P}_{\theta}(A) = \int_{A} p(X; \theta) dX, \ A \in \mathcal{B}^{nN};$$

а пространство параметров ⊖ разбито на две непересекающиеся области:

$$\Theta = \Theta_0 \cup \Theta_1, \ \Theta_0 \cap \Theta_1 = \emptyset.$$

Определены две гипотезы:

 H_0 : $\theta \in \Theta_0$, H_1 : $\theta \in \Theta_1$.

Так как $H_1 = \overline{H_0}$, то H_1 называется *альтер-* нативой, а H_0 — основной или нулевой гипо-тезой.

Задача заключается в построении решающего правила (теста) для проверки гипотез H_0, H_1 по выборке X. Построим рандомизированное решающее правило (РП общего вида):

$$d = d(X, \omega), \ X \in \mathbb{R}^{nN}, \ \omega \in \Omega,$$
 (2)

где $d \in D = \{0, 1\},$

$$P\{d(X,\omega) = 1|X\} = \varphi(X),$$

$$P\{d(X,\omega) = 0|X\} = 1 - \varphi(X),$$
(3)

а $0 \le \varphi(X) \le 1$ — некоторая произвольная критическая функция.

Существует бесконечно много РП $d(\cdot)$, различающихся критическими функциями $\varphi(\cdot)$. Как найти оптимальную критическую функцию $\varphi_*(\cdot)$? Сформулируем критерий оптимальности.

Определение. Принято говорить, что при принятии решений имеет место ошибка I рода, если на самом деле верна гипотеза H_0

(
u=0), а принято решение d=1 в пользу H_1 . При этом вероятностью ошибки I рода называется число

$$\alpha = \alpha(\theta) ::= \mathbf{P}_{\theta} \{ d(X, \omega) = 1 \} = \mathbf{E}_{\theta} \{ \varphi(X) \} =$$
$$= \int_{\mathbb{R}^{nN}} \varphi(X) p(X; \theta) dX, \ \theta \in \Theta_{0}.$$

Определение. Принято говорить, что имеет место ошибка II рода, если на самом деле верна гипотеза H_1 ($\nu=1$), а принято решение d=0 в пользу H_0 . При этом вероятностью ошибки II рода называется число

$$\beta = \beta(\theta) ::= \mathbf{P}_{\theta} \{ d(X, \omega) = 0 \} = \mathbf{E}_{\theta} \{ 1 - \varphi(X) \} =$$
$$= 1 - \int_{\mathbb{R}^{nN}} \varphi(X) p(X; \theta) dX, \ \theta \in \Theta_1.$$

Определение. Мощностью решающего правила $d = d(X, \omega)$ называется вероятность правильного принятия альтеративы H_1 ($\nu = d = 1$):

$$w = w(\theta) = \int_{\mathbb{R}^{nN}} \varphi(X) p(X; \theta) dX, \ \theta \in \Theta_1.$$

Отметим, что $w(\theta) = 1 - \beta(\theta)$.

Было бы целесообразно найти функцию $\varphi_*(\cdot)$ так, что $\alpha=\beta=0$. Очевидно, что в условиях регулярности это невозможно (также как невозможно было построить статистическую оценку с нулевой вариацией V=0). Как поступать в этой ситуации?

Определение. Критическую функцию $\varphi(X)$ в рандомизированном решающем правиле (2), (3) надлежит выбирать таким образом, чтобы вероятность ошибки I рода не превосходила некоторого наперед заданного числа $\varepsilon \in (0,1)$, а вероятность ошибки II рода была минимальной, то есть как решение следующей экстремальной задачи:

$$\sup_{\theta \in \Theta_0} \alpha(\theta) \leq \varepsilon, \quad \sup_{\theta \in \Theta_1} \beta(\theta) \to \min_{0 \leq \varphi(\cdot) \leq 1},$$

что эквивалентно:

$$\sup_{\theta \in \Theta_0} \alpha(\theta) \le \varepsilon, \quad \inf_{\theta \in \Theta_1} w(\theta) \to \max_{0 \le \varphi(\cdot) \le 1}. \tag{4}$$

При этом оптимальная критическая функция $\varphi_*(X)$ и соответствующее ей решающее правило $d_*(X,\omega)$ называются соответственно критической функцией Неймана — Пирсона и решающим правилом Неймана — Пирсона, величина $\sup_{\theta \in \Theta_0} \alpha(\theta)$ — размером теста, а ε — уровнем значимости теста.

Отметим, что экстремальная задача (4) — задача вариационного исчисления. Нейман и Пирсон решили эту задачу лишь для случая, когда H_0, H_1 — простые гипотезы: $\Theta = \{\theta_0, \theta_1\}$, а $\Theta_0 = \{\theta_0\}$ и $\Theta_1 = \{\theta_1\}$ — одноточечные множества.

Упростим обозначения:

$$H_i: \theta = \theta_i, \ p_i(X) = p(X; \theta_i), \ X \in \mathbb{R}^{nN}; \quad i = 0, 1;$$

$$\theta_0, \theta_1 \in \Theta, \ \theta_0 \neq \theta_1;$$

$$\mathbf{P}_{i}(B) = \mathbf{P}_{\theta_{i}}(B), \ Q(B) = \frac{1}{2}(\mathbf{P}_{0}(B) + \mathbf{P}_{1}(B)), \ B \in \mathcal{B}^{\eta}$$
$$\mathbf{E}\{\cdot\} \equiv \mathbf{E}_{\theta_{i}}\{\cdot\}.$$

Определение. Статистикой отношения правдоподобия для проверки простых гипотез H_0, H_1 называется статистика

$$L = L(X) = \frac{p_1(X)}{p_0(X)} \ge 0.$$

Теорема. Для выше сформулированной задачи проверки простых гипотез H_0, H_1 справедливы следующие три утверждения:

1. Для любого наперед заданного ε , $0<\varepsilon<1$, найдутся такие постоянные $c_*>0$, $\varkappa_*\in[0,1]$, что решающее правило (тест) Неймана — Пирсона $d=d_*(X,\omega)$ с критической функцией

$$\varphi_*(X) = \begin{cases} 0, & L(X) < c_*; \\ \varkappa_*, & L(X) = c_*; \\ 1, & L(X) > c_*, \end{cases}$$
 (5)

имеет размер, в точности равный ε ;

- 2. Тест Неймана Пирсона $d = d_*(X, \omega)$, определяемый (5), имеет наибольшую мощность w_* среди всех тестов, размер которых не превосходит ε ;
- 3. Тест $d = d_*(X, \omega)$ единственный с точностью до множества B нулевой меры: Q(B) = 0.

Доказательство. Запишем экстремальную задачу (4) с учетом определений, в явном виде:

$$\alpha = \int_{\mathbb{R}^{nN}} \varphi(X) p_0(X) dX \le \varepsilon,$$

$$w = \int_{\mathbb{R}^{nN}} \varphi(X) p_1(X) dX \to \max_{\varphi(\cdot)}. \tag{6}$$

Доказательство разобьем на три части.

1. Введем в рассмотрение функцию распределения статистики L=L(X) при верной гипотезе H_0 :

$$F_0(y) = \mathbf{P}_0\{L(X) < y\}, \ y \ge 0.$$

Считая произвольными c_* и \varkappa_* , вычислим для теста (5) вероятность ошибки I рода:

$$\alpha = \mathbf{E}_0\{\varphi(X)\} = \varkappa_* \mathbf{P}_0\{L = c_*\} + \mathbf{P}_0\{L > c_*\} =$$
$$= \varkappa_* (F_0(c_* + 0) - F_0(c_*)) + (1 - F_0(c_* + 0)). \tag{7}$$

В этом соотношении подберем произвольные константы c_* , \varkappa_* таким образом, чтобы

$$\alpha = \alpha_* = \varepsilon.$$

Для этого выберем c_{st} так, чтобы

$$F_0(c_*) \le 1 - \varepsilon \le F_0(c_* + 0).$$

Возможны два случая:

а) c_* — точка непрерывности функции $F_0(\cdot)$; тогда

$$c_* = F_0^{-1}(1-\varepsilon),$$

и из (7) имеем

$$\alpha_* = \varepsilon \quad \forall \varkappa_*;$$

б) c_* – точка разрыва; в этом случае выберем

$$\varkappa_* = \frac{F_0(c_* + 0) - (1 - \varepsilon)}{F_0(c_* + 0) - F_0(c_*)}.$$

Подставляя это значение в (7), получаем

$$\alpha_* = \varepsilon$$
.

2. Для критической функции $\varphi_*(\cdot)$ имеем

$$\alpha_* = \varepsilon, \quad w_* = \int_{\mathbb{R}^{nN}} \varphi_*(X) p_1(X) dX.$$
 (8)

Выберем произвольную критическую функцию $\tilde{\varphi}(X)$, для которой обозначим

$$\tilde{\alpha} = \int_{\mathbb{R}^{nN}} \tilde{\varphi}(X) p_0(X) dX \le \varepsilon,$$

$$\tilde{w} = \int_{\mathbb{R}^{nN}} \tilde{\varphi}(X) p_1(X) dX.$$

Покажем: $\tilde{w} \leq w_*$. Легко проверить поточечно, используя (5), что

$$\Delta = \Delta(X) ::= (p_1(X) - c_* p_0(X)) \times \times (\varphi_*(X) - \tilde{\varphi}(X)) \ge 0, \ \forall X \in \mathbb{R}^{nN}.$$

Отсюда с учетом (8) получаем

$$\int_{\mathbb{R}^{nN}} \Delta(X) dX = w_* - c_* \alpha_* - \tilde{w} + c_* \tilde{\alpha} =$$

$$= w_* - \tilde{w} - c_* (\varepsilon - \tilde{\alpha}) \ge 0.$$

Следовательно,

$$w_* \geq \tilde{w} + c_*(\varepsilon - \tilde{\alpha}) \geq \tilde{w}.$$

3. В экстремальной задаче (6) значения интегралов не изменятся, если значение $\varphi_*(X)$ изменить на множестве B: Q(B) = 0.

Следствие. Если функция распределения $F_0(\cdot)$ статистики отношения правдоподобия

$$L = L(X)$$

при гипотезе H_0 — непрерывная функция, то РП Неймана — Пирсона является нерандомизированным и имеет следующий вид:

$$d = d_*(X) = \begin{cases} 0, & L(X) < c_*; \\ 1, & L(X) \ge c_*, \end{cases}$$

где

$$c_* = F_0^{-1}(1 - \varepsilon).$$

Доказательство. Обратимся к первому пункту доказанной выше теоремы. Если $F_0(\cdot)$ непрерывна, то \varkappa_* можно выбирать произвольно на отрезке [0,1], поэтому выберем

$$\varkappa_*=1,$$

тогда, согласно (5),

$$\varphi_*(X) \in \{0; 1\},$$

то есть жребий исчезает и имеет место детерминированное (нерандомизированное) решающее правило. **Пример.** Есть два нормальных распределения с одинаковыми дисперсиями

$$\sigma_1 = \sigma_2 = \sigma$$

и разными математическими ожиданиями

$$\theta_1 < \theta_0$$
.

Для случайной выборки

$$X = (x_1, \dots, x_n)^{\mathbf{T}} \in \mathcal{X} \subseteq \mathbb{R}^n, \ x_t \in \mathbb{R}, \ n = 1, \dots, N,$$

нужно построить решающее правило Неймана-Пирсона с уровнем значимости arepsilon для решения задачи:

$$H_0 : \theta = \theta_0, H_1 : \theta = \theta_1.$$
 (9)

Решение. Отношение правдоподобия в данном случае имеет вид:

$$L(X) = \frac{p_1(X)}{p_0(X)} = \frac{\prod_{t=1}^n n_1(x_t \mid \theta_1, \sigma^2)}{\prod_{t=1}^n n_1(x_t \mid \theta_0, \sigma^2)}$$

где

$$n_1(z \mid \theta_i, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(z - \theta_i)^2}{2\sigma^2}\right),$$

a $z \in \mathbb{R}, \ i \in \{0, 1\}.$

Таким образом, отношение правдоподобия для этого примера после ряда очевидных элементарных преобразований примет вид:

$$L(X) = \frac{\prod_{t=1}^{n} \exp\left(-\frac{(x_t - \theta_1)^2}{2\sigma^2}\right)}{\prod_{t=1}^{n} \exp\left(-\frac{(x_t - \theta_0)^2}{2\sigma^2}\right)} = \prod_{t=1}^{n} \exp\left(\frac{(x_t - \theta_0)^2}{2\sigma^2} - \frac{(x_t - \theta_1)^2}{2\sigma^2}\right) = \exp\left(n\frac{\theta_1 - \theta_0}{\sigma^2} \overline{x}_t - n\frac{\theta_1^2 - \theta_0^2}{2\sigma^2}\right)$$

Очевидно, что L(X) является возрастающей функцией от \overline{x} . Поэтому для каждого $c_*>0$ существует единственное число $\varkappa_*\in[0,1]$, при котором условие $L(X)>c_*$ равносильно $\overline{x}>\varkappa_*$. Заметим, что при истинном математическом ожидании θ_0 , то есть в случае, когда истинной является гипотеза H_0 , выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

имеет нормальное распределение

$$\mathcal{L}\{\overline{x}\} = \mathcal{N}\left(\theta_0, \frac{\sigma^2}{n}\right).$$

Действительно, так как

$$\mathcal{L}\lbrace x_j\rbrace = \mathcal{N}\left(\theta_0, \, \sigma^2\right), \, j = 1, 2, \dots, n,$$

то характеристическая функция случайной величины x_i вычисляется по формуле

$$f_{x_j}(t) = \exp\{-i\theta_0 t\} \cdot \exp\{-\frac{1}{2}\sigma^2 t^2\}, j = 1, 2, \dots, n,$$
(10)

характеристическая функция суммы

$$S = \sum_{j=1}^{n} x_j -$$

по формуле

$$f_S(t) = \prod_{j=1}^n f_{x_j}(t) = \exp\{-in\theta_0 t\} \cdot \exp\{-\frac{1}{2}n(\sigma t)^2\},$$

а характеристическая функция выборочного среднего \overline{x} :

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t -$$

по формуле

$$f_{\overline{x}}(t) = \exp\left\{-i\theta_0 t\right\} \cdot \exp\left\{-\frac{1}{2} \frac{\sigma^2}{n} t^2\right\}, \qquad (11)$$

Сравнивая равенства (11) и (10) видим, что функция $f_{\overline{x}}(t)$ из (11) — характеристическая

функция нормального распределения
$$\mathcal{N}\left(heta_0, rac{\sigma^2}{n}
ight)$$

Аналогично рассуждая, можно показать, что случайная величина

$$y = \sqrt{n} \frac{\overline{x} - \theta_0}{\sigma}$$

имеет стандартное нормальное распределение:

$$\mathcal{L}\{y\} = \mathcal{N}(0,1).$$

А неравенство

$$\overline{x} > \varkappa_*$$

равносильно неравенству

$$y > \zeta$$
,

где

$$\zeta = \sqrt{n} \frac{\varkappa_* - \theta_0}{\sigma}.$$

В решающем правиле Неймана-Пирсона вероятность ошибки первого рода должна равняться ε то есть:

$$\alpha = \mathbf{P}_0 \{ L(X) > c_* \} = \mathbf{P}_0 \{ \overline{x} > \varkappa_* \} =$$
$$= \mathbf{P}_0 \{ y > \zeta \} = \varepsilon.$$

С другой стороны,

$$P_0 \{y > \zeta\} = 1 - \Phi(\zeta).$$

Следовательно,

$$1 - \Phi(\zeta) = \varepsilon.$$

Отсюда мы находим квантиль

$$\zeta = \Phi^{-1}(1 - \varepsilon),$$

критическое значение

$$\varkappa_* = \theta_0 + \zeta \frac{\sigma}{\sqrt{n}},$$

и в итоге получаем решающее правило

$$\begin{cases} \theta = \theta_0, & \text{ если } \overline{x} \leq \varkappa_* = \theta_0 + \zeta \frac{\sigma}{\sqrt{n}}, \\ \theta = \theta_1, & \text{ если } \overline{x} > \varkappa_* = \theta_0 + \zeta \frac{\sigma}{\sqrt{n}}, \end{cases}$$

где

$$\zeta = \Phi^{-1}(1 - \varepsilon).$$

2. 3. Проверка простой гипотезы против сложной альтернативы

Пусть на \mathbb{R}^N задано семейство вероятностных мер $\{\mathbf{P}_{\theta}\,|\,\theta\in\Theta\}$, и в множестве параметров Θ фиксировано одно значение θ_0 . Требуется проверить простую гипотезу

$$H_0: \theta = \theta_0$$

против альтернативы общего вида

$$H_1: \theta \neq \theta_0.$$

Обычно это делают так. Выбирают какуюнибудь скалярную статистику T(X), для которой при $\theta=\theta_0$ известна функция распределения

$$F(z) = \mathbf{P}_{\theta_0} \left\{ T(X) \le z \right\}.$$

В области изменения T(X) находят такой отрезок $[\Delta_1, \Delta_2]$, что

$$\mathbf{P}_{\theta_0}\left\{T(X)\in [\Delta_1,\Delta_2]\right\}\geq 1-\varepsilon.$$

По нему определяют решающее правило

$$\begin{cases} \theta = \theta_0, & \text{если } T(X) \in [\Delta_1, \Delta_2], \\ \theta \neq \theta_0, & \text{если } T(X) \notin [\Delta_1, \Delta_2]. \end{cases}$$
 (12)

По построению оно имеет уровень значимости ε . Затем для каждого $\theta \neq \theta_0$ проверяют, будет ли вероятность

$$P_{\theta} \{ T(X) \in [\Delta_1, \Delta_2] \}$$

стремиться к нулю при возрастании объема выборки X. Если это так, то решающее правило (12) состоятельно.

Предположим, что функция распределения

$$F(z) = \mathbf{P}_{\theta_0} \left\{ T(X) \le z \right\}.$$

непрерывна. Тогда решающее правило (12) можно записать в равносильной форме

$$\begin{cases} \theta = \theta_0, & \text{если } F(T(X)) \in [\delta_1, \delta_2], \\ \theta \neq \theta_0, & \text{если } F(T(X)) \notin [\delta_1, \delta_2], \end{cases}$$
 (13)

где $\delta_i = F(\Delta_i), i \in \{0, 1\}.$

Замечание. По определению случайная величина x является функцией на каком-то вероятностном пространстве

$$x: \Omega \to \mathbb{R}$$
.

Рассмотрим новую случайную величину F(x), являющуюся результатом подстановки случайной величины x в качестве аргумента ее

функции распределения $F(\cdot)$, то есть композицию двух функций

$$x: \Omega \to \mathbb{R}$$
.

И

$$F: \mathbb{R} \to [0, 1].$$

Полученную таким образом случайную величину F(x) называют p-уровнем исходной случайной величины x. Известно, что если функция распределения случайной величины x непрерывна на вещественной оси, то ее p-уровень F(x) равномерно распределен на отрезке [0, 1].

Следовательно, случайная величина F(T(X)) является p-уровнем статистики T(X). И она равномерно распределена на отрезке [0,1] (при $\theta=\theta_0$). Поэтому

$$\delta_2 - \delta_1 = \mathbf{P}_{\theta_0} \{ F(T(X)) \in [\delta_1, \delta_2] \} \ge 1 - \varepsilon.$$

Если функция распределения F(z) разрывна, то вместо решающего правила (13) можно использовать следующее:

$$\begin{cases} \theta = \theta_{0}, & \text{если } F\left(T(X)\right) > \delta_{1} \\ & \text{и } F\left(T(X) - 0\right) < \delta_{2}, \\ \theta \neq \theta_{0}, & \text{если } F\left(T(X)\right) \leq \delta_{1} \\ & \text{или } F\left(T(X) - 0\right) \geq \delta_{2}, \end{cases}$$
 (14)

где

$$\delta_2 - \delta_1 = 1 - \varepsilon.$$

Замечание. Известно, что неравенство

$$F(T(X)) > \delta_1$$

выполняется с вероятностью не меньше $1-\delta_1$, а неравенство

$$F\left(T(X)-0\right)<\delta_2$$

выполняется с вероятностью не меньше δ_2 . Вероятность того, что хотя бы одно из них нарушается, не превосходит

$$\delta_1 + (1 - \delta_2) = \varepsilon.$$

Это доказывает, что последний тест имеет уровень значимости ε .

Пример 1. Пусть

$$X = (x_1, \ldots, x_n)^{\mathbf{T}} \in \mathcal{X} \subseteq \mathbb{R}^n, \ x_t \in \mathbb{R}, \ t = 1, \ldots, N, -1$$

случайная выборка из нормального распределения $\mathcal{N}(a,\sigma^2)$ с известной дисперсией σ^2 . Построить критерий для проверки гипотезы $a=a_0$.

Решение. Известно, что при $a=a_0$ статистика

$$T(X) = \frac{1}{\sigma\sqrt{n}} \sum_{t=1}^{n} (x_t - a_0) = \frac{\sqrt{n}}{\sigma} (\overline{x} - a_0)$$

имеет стандартное нормальное распределение $\mathcal{N}\left(0,1\right)$

$$\mathcal{L}\{T(X)\} = \mathcal{N}(0,1).$$

Подберем такое число Δ , при котором

$$P\{|T(X)| \le \Delta\} = 1 - \varepsilon.$$

Очевидно, это

$$\Delta = \Phi^{-1} \left(1 - \frac{\varepsilon}{2} \right).$$

Соответствующий критерий с уровнем значимости ε имеет вид

$$\begin{cases} a = a_0, & \text{если } |T(X)| \le \Delta, \\ a \ne a_0, & \text{если } |T(X)| > \Delta, \end{cases}$$
 (15)

где
$$\Delta = \Phi^{-1} \left(1 - \frac{\varepsilon}{2} \right)$$
 .

2. 4. Краткое описание нескольких часто используемых вероятностных распределений

 χ^2 -распределение с n степенями свободы. Пусть $\xi_1, \xi_2, \dots, \xi_n$ — независимые случайные величины, распределенные по стандартному нормальному закону:

$$\mathcal{L}\{\xi_i\} = \mathcal{N}(0, 1), i = \overline{1, n}.$$

Тогда случайная величина

$$\chi_n^2 = \xi_1^2 + \xi_1^2 + \dots + \xi_n^2$$

имеет распределение «хи-квадрат» с n степенями свободы

$$\mathcal{L}\{\chi_n^2\} = \chi_n^2.$$

Его математическое ожидание равно n, а дисперсия 2n.

 t^2 -распределение Стьюдента с n степенями свободы. Пусть $\xi_0, \xi_1, \ldots, \xi_n$ — независимые случайные величины со стандартным нормальным распределением

$$\mathcal{L}\{\xi_i\} = \mathcal{N}(0, 1), i = \overline{0, n}.$$

Тогда распределение случайной величины

$$t_n = \sqrt{n} \frac{\xi_0}{\sqrt{\xi_1^2 + \xi_1^2 + \dots + \xi_n^2}}$$

называется распределением Стьюдента с n степенями свободы. При возрастании n оно сходится к стандартному нормальному распределению.

Распределение Фишера с n и m степенями свободы. Пусть χ^2_n и χ^2_m — две независимые случайные величины, имеющие распределения «хи-квадрат» с n и m степенями свободы соответственно. Тогда распределение случайной величины

$$F_{n,m} = \frac{m\chi_n^2}{n\chi_m^2}$$

называется распределением Фишера с n и m степенями свободы.

2. 5. Критерии согласия

Предположим, что мы наблюдаем выборку $X = \{x_1, x_2, \dots, x_n\}$ из некоторого распределения $\mathcal{L}\{x\}$ с функцией распределения F(z). Требуется определить, совпадает ли F(z) с другой (заранее заданной) функцией распределения $F_0(z)$. Иначе говоря, нам нужно проверить простую гипотезу

$$H_0: F(z) \equiv F_0(z)$$

против альтернативы общего вида

$$H_1: F(z) \not\equiv F_0(z).$$

При такой постановке задачи H_0 называется гипотезой согласия (потому что она утверждает, что выборка X «согласуется» с распределением $F_0(z)$), а соответствующее ей решающее правило называется критерием согласия. Наиболее популярны два критерия согласия: χ^2 -критерий Пирсона и критерий Колмогорова.

 χ^2 -критерий Пирсона. Произвольным образом разобьем вещественную прямую на K частей точками

$$-\infty = b_0 < b_1 < \dots < b_{K-1} < b_K = \infty.$$

Положим

$$\Gamma_k = (b_{k-1}, b_k].$$

Вероятность того, что случайная величина x с функцией распределения $F_0(z)$ попадет в Γ_k , равна

$$P\{x \in \Gamma_k\} = p_k = F_0(b_k) - F_0(b_{k-1}), k = \overline{1, K}.$$

Будем предполагать, что все $p_k > 0$, а для каждой выборки $X = \{x_1, x_2, \dots, x_n\}$ обозначим через ν_k число выборочных значений x_i , попавших в Γ_k , а через \widehat{p}_k — эмпирические вероятности

$$\hat{p}_k = \frac{\nu_k}{n}$$
.

Определение. χ^2 -статистика Пирсона — это

$$\chi^{2}(X) = \sum_{k=1}^{K} \frac{(\nu_{k} - np_{k})^{2}}{np_{k}} = n \sum_{k=1}^{K} \frac{(\hat{p}_{k} - np_{k})^{2}}{p_{k}}.$$
(16)

Лемма. Если верна гипотеза H_0 , то при $n \to \infty$ имеет место сходимость к χ^2 -распределению с K-1 степенями свободы:

$$\mathcal{L}\{\chi^2\} \to \chi^2_{K-1},$$

ИЛИ

$$\mathbf{P}_{H_0}\{\chi^2 < y\} \to F_{\chi^2_{m-1}}(y), \ n \to +\infty, \quad y \ge 0,$$
(17)

где $F_{\chi^2_{K-1}}(\cdot)$ — функция χ^2 -распределения с K-1 степенями свободы.

Доказательство. Обозначим нормированные частоты, входящие в (16):

$$\nu_k^*(n) = \frac{\nu_k - np_k}{\sqrt{n}}, \ k = 1, \dots, K; \quad \sum_{k=1}^K \nu_k^*(n) \equiv 0,$$
(18)

и определим (K-1)-вектор нормированных частот

$$\nu^*(n) = (\nu_1^*(n), \dots, \nu_{K-1}^*(n))^{\mathrm{T}} \in \mathbb{R}^{K-1}.$$

Заметим, что в силу условия нормировки в $(18) \ \nu_K^*(n)$ линейно зависит от $\nu^*(n)$:

$$\nu_K^*(n) = -\sum_{l=1}^{K-1} \nu_l^*(n). \tag{19}$$

В асимптотике $n \to +\infty$ воспользуемся центральной предельной теоремой для $\nu^*(n)$ (многомерный аналог теоремы Муавра — Лапласа):

$$\mathcal{L}\{\nu^*(n)\} \to \mathcal{N}_{K-1}(0_{K-1}, \Sigma),$$
 (20)

где

$$\Sigma = (\sigma_{ij})_{i,j=1}^K, -$$

асимптотическая ковариационная матрица, для элементов которой справедлива формула:

$$\sigma_{ij} = p_i(\delta_{ij} - p_j), i, j = 1, \dots, K - 1.$$

Непосредственной проверкой можно убедиться, что в этом случае для обратной матрицы справедливо выражение

$$\Sigma^{-1} = (\overline{\sigma}_{ij})_{i,j=1}^{K},$$

$$\overline{\sigma}_{ij} = \frac{1}{p_m} + \frac{\delta_{ij}}{p_i}, i, j = 1, \dots, m - 1.$$
(21)

Из (16), (18)–(21) имеем представление для χ^2 -статистики в виде квадратичной формы:

$$\chi^{2} = \sum_{k=1}^{K-1} \frac{(\nu_{k}^{*}(n))^{2}}{p_{k}} + \frac{(\sum_{l=1}^{K-1} \nu_{l}^{*}(n))^{2}}{p_{K}} =$$

$$= \sum_{k=1}^{K-1} \sum_{l=1}^{K-1} \nu_{k}^{*}(n) \nu_{l}^{*}(n) \overline{\sigma}_{kl} =$$

$$= (\nu^{*}(n))^{T} \Sigma^{-1} \nu^{*}(n).$$

Введем в рассмотрение случайный вектор $\xi(n) = (\xi_1(n), \, \xi_2(n), \dots, \xi_{K-1}(n))^{\mathrm{T}}$ такой, что

$$\xi(n) = (\Sigma^{1/2})^{-1} \nu^*(n) \in \mathbb{R}^{K-1},$$

где матрица $\Sigma^{1/2}$ — решение по Y матричного уравнения

$$Y^{\mathrm{T}} \Sigma^{-1} Y = \mathrm{I}_{K-1}$$

или

$$\Sigma = \Sigma^{1/2} (\Sigma^{1/2})^{\mathrm{T}}.$$

Тогда χ^2 -статистика представима в виде суммы квадратов:

$$\chi^2 = \xi^{\mathrm{T}}(n)\xi(n) = \sum_{k=1}^{K-1} \xi_k^2(n),$$

причем в силу (20)

$$\mathcal{L}\{\xi(n)\} \to \mathcal{N}_{K-1}(\mathbf{0}_{K-1}, \mathbf{I}_{K-1}).$$

Отсюда по определению χ^2 -распределения получаем (17).

Определение. χ^2 -критерий согласия Пирсона имеет вид

$$d = d(X) = \begin{cases} 0, & \chi^2 < \Delta, \\ 1, & \chi^2 \ge \Delta, \end{cases} \Delta = F_{\chi^2_{K-1}}^{-1} (1 - \varepsilon),$$
(22)

где $F_{\chi^2_{K-1}}^{-1}$ $(1-\varepsilon)$ — квантиль χ^2 -распределения с K-1 степенЯМИ свободы уровня $1-\varepsilon$, $0<\varepsilon<1$.

Из теоремы вытекает, что вероятность ошибки первого рода

$$\mathbf{P}\left\{\chi^2(X) \ge \Delta \mid H_0\right\} \to \varepsilon$$

при $n \to \infty$. Мы всегда можем снизить эту вероятность до приемлемого уровня за счет выбора достаточно малого ε .

С другой стороны, предположим, что выборка X подчиняется распределению F(z), отличному от $F_0(z)$. Тогда числа

$$q_k = F(b_k) - F(b_{k-1})$$

скорее всего будут отличаться от

$$p_k = F_0(b_k) - F_0(b_{k-1}).$$

По усиленному закону больших чисел эмпирические вероятности \widehat{p}_k почти наверное будут

сходиться к q_k при $n \to \infty$. Поэтому отношение

$$\frac{\chi^2(X)}{n}$$

будет сходиться к числу

$$c = \sum_{k=1}^{K} \frac{(q_k - p_k)^2}{p_k} > 0,$$

сама случайная величина $\chi^2(X)$ будет неограниченно возрастать, и выбор будет делаться в пользу гипотезы

$$H_1: F(z) \not\equiv F_0(z).$$

Другими словами, рассматриваемый критерий состоятелен.

К сожалению, вероятность ошибки второго рода стремится к нулю не равномерно по отношению к распределению $F(z) \not\equiv F_0(z)$. Чем меньше отличается F(z) от $F_0(z)$, тем больше нужно брать размер выборки, чтобы гарантировать малость этой вероятности. А в случае, когда распределение F(z) может быть сколь угодно близко к $F_0(z)$, мы ни при каком n не можем утверждать, что вероятность ошибки второго рода мала.

Замечание. χ^2 -критерий согласия Пирсона справедлив и для N-мерных (N>1) функций распределения $F(x), \ x \in \mathbb{R}^N$.

Обобщение χ^2 -критерия согласия Пирсона для сложных гипотез согласия. χ^2 -критери Пирсона допускает обобщение для случая сложных гипотез согласия:

$$H_0: F(\cdot) \in F_0,$$

где

$$F_0 = \{F_0(z; \theta), z \in \mathbb{R}^N : \theta \in \Theta \subseteq \mathbb{R}^m\} -$$

некоторое параметрическое семейство функций распределения с m-мерным параметром θ . Появляется дополнительное ограничение: K>m+1, и критерий согласия имеет вид

$$d = d^{0}(X) = \begin{cases} 0, & \inf_{\theta} \chi^{2}(\theta) < \Delta, \\ 1, & \inf_{\theta} \chi^{2}(\theta) \ge \Delta, \end{cases}$$

где

$$\Delta = F_{\chi_{K-m-1}^2}^{-1} (1 - \varepsilon) -$$

квантиль χ^2 -распределения с K-m-1 степенями свободы уровня $1-\varepsilon$, $0<\varepsilon<1$,

$$\chi^{2}(\theta) = \sum_{k=1}^{K} \frac{(\nu_{k} - np_{k}(\theta))^{2}}{np_{k}(\theta)} \ge 0,$$

$$p_k(\theta) = \mathbf{P}_{\theta}\{x_i \in \Gamma_k\}, \ k = 1, \dots, K.$$

Статистика

$$\tilde{\theta} = \arg\min_{\theta} \chi^2(\theta)$$

называется χ^2 -оценкой параметра θ .

Критерий Колмогорова. Будем предполагать, что гипотеза согласия $H_0: F(\cdot) \equiv F_0(\cdot)$ — простая, причем функция $F_0(\cdot)$ непрерывна. Построим по наблюдаемой выборке X выборочную функцию распределения, изученную ранее:

$$\widehat{F}(z) = F_n(z) = \frac{1}{n} \sum_{i=1}^n 1(z - x_i) = \frac{1}{n} \sum_{i=1}^n 1(z - x_{(i)}),$$

где $z \in \mathbb{R}^1, x_{(1)} < x_{(2)} < \ldots < x_{(n)}$ — вариационный ряд выборки X.

Выборочная функция распределения — сильно состоятельная оценка истинной функции распределения:

$$F_n(z) \xrightarrow[n \to +\infty]{\mathbf{P}=1} F(z), z \in \mathbb{R}^1.$$

Определение. Расстоянием Колмогорова между выборочной функцией распределения $F_n(x)$

и гипотетической функцией распределения $F_0(x)$ называется величина

$$D_n = \sup_{-\infty < z < +\infty} |F_n(z) - F_0(z)|,$$

$$0 < D_n < 1.$$
(23)

Лемма. Если верна гипотеза H_0 , то случайные величины $u_1 = F_0(x_1)$, $u_2 = F_0(x_2)$, . . . , $u_n = F_0(x_n)$ независимы и одинаково распределены со стандартным равномерным распределением: $\mathcal{L}_{H_0}\{u_i\} = \mathcal{R}[0,1]$, $i=1,\ldots,n$.

Доказательство. Независимость $\{u_i\}$ вытекает из независимости $\{x_i\}$ и соответствующей теоремы о борелевских функциональных преобразованиях. Вычислим функцию распределения для случайной величины u_i при условии, что верна гипотеза H_0 :

$$F_{u_i}(y) ::= \mathbf{P}_{H_0} \{ u_i < y \} = \mathbf{P}_{H_0} \{ x_i < F_0^{-1}(y) \} =$$

$$= F_0(F_0^{-1}(y)) = y, \ 0 \le y \le 1.$$

Это и есть функция распределения стандартного равномерного закона $\mathcal{R}[0,1]$.

Теорема. Если верна нулевая гипотеза H_0 , то распределение вероятностей статистики Колмогорова D_n , определяемой формулой (23), не зависит от гипотетической функции распределения $F_0(\cdot)$:

$$\mathcal{L}_{H_0}\{D_n\} = \mathcal{L}\{D_n^*\},$$

$$D_n^* = \sup_{0 \le u \le 1} |\Psi_n(u) - u|;$$

$$\Psi_n(u) = \frac{1}{n} \sum_{i=1}^n 1(u - u_i),$$

где $\{u_i\}$ — независимые в совокупности случайные величины, имеющие стандартное равномерное распределение: $\mathcal{L}\{u_i\} = \mathcal{R}[0,1]$, $i=1,\ldots,n$.

Доказательство вытекает из леммы и замены переменных $x = F_0^{-1}(u)$, $u = F_0(x)$ в экстремальной задаче (23).

Теорема. Если верна гипотеза H_0 , то при бесконечном увеличении объема выборки n

 $(n \to +\infty)$ функция распределения нормированной статистики $\sqrt{n}D_n$ сходится к распределению Колмогорова:

$$P_{H_0}\{\sqrt{n}D_n < z\} \to K(z) = \sum_{j=-\infty}^{+\infty} (-1)^j e^{-2j^2 z^2},$$
 $z > 0.$

Определение. Пусть ε — некоторое число: $0 < \varepsilon < 1$, а $K^{-1}(1 - \varepsilon)$ — квантиль распределения Колмогорова уровня $1 - \varepsilon$. Тогда тест

$$d = d(X) = \begin{cases} 0, & \sqrt{n}D_n < K^{-1}(1-\varepsilon); \\ 1, & \sqrt{n}D_n \ge K^{-1}(1-\varepsilon), \end{cases} (24)$$

называется критерием согласия Колмогорова.

Замечание. Распределение статистики D_n не зависит от гипотетической функции распределения $F_0(\cdot)$, в результате чего имеет место универсальность теста Колмогорова.

Следствие. При $n \to \infty$ асимптотический размер теста Колмогорова (24) совпадает с наперед заданным уровнем значимости $\varepsilon \in (0,1)$.

Доказательство основывается на соотношениях (24), теореме и заключается в проверке следующего факта: $\alpha \to \varepsilon$, где α — вероятность ошибки I рода.

2. 6. Критерий отношения правдоподобия для проверки сложных гипотез

Рассмотрим теперь универсальный критерий проверки сложных гипотез — критерий отношения правдоподобия, суть которого состоит в следующем.

Пусть наблюдается случайная выборка

$$X \in \mathbb{R}^{nN}$$

объема n из некоторого N-мерного распределения вероятностей с плотностью

$$p(x;\theta), x \in \mathbb{R}^N, \theta \in \Theta \subseteq \mathbb{R}^m.$$

Определены две, в общем случае сложные, гипотезы:

$$H_0$$
: $\theta \in \Theta_0 \subset \Theta$; H_1 : $\theta \in \Theta_1 = \Theta \setminus \Theta_0$.

Аналогично критерию Неймана — Пирсона введем в рассмотрение статистику отношения правдоподобия:

$$\tilde{\Lambda}_n = \tilde{\Lambda}_n(X; \Theta_0) = \frac{\sup_{\theta \in \Theta_1} p(X; \theta)}{\sup_{\theta \in \Theta_0} p(X; \theta)}, \quad (25)$$

где

$$p(X;\theta) = \prod_{k=1}^{n} p(x_k;\theta) = L(\theta) -$$

функция правдоподобия. Часто рассматривают эквивалентные статистики:

$$\Lambda_{n} = \Lambda_{n}(X; \Theta_{0}) = \frac{\sup_{\theta \in \Theta} p(X; \theta)}{\sup_{\theta \in \Theta_{0}} p(X; \theta)} \ge 1; \qquad (26)$$

$$\lambda_{n} = \lambda_{n}(X; \Theta_{0}) = \frac{1}{\Lambda_{n}(X; \Theta_{0})} =$$

$$= \frac{\sup\limits_{\theta \in \Theta_0} p(X;\theta)}{\sup\limits_{\theta \in \Theta} p(X;\theta)} \in [0,1].$$

Статистики (26) взаимно-однозначно функционально связаны между собой и статистикой отношения правдоподобия (25):

$$\Lambda_n = \max\{1, \tilde{\Lambda}_n\}, \quad \lambda_n = \min\left\{1, \frac{1}{\tilde{\Lambda}_n}\right\} \in [0, 1].$$

Определение. Критерием отношения правдоподобия (КОП) в задаче проверки сложных гипотез H_0, H_1 по выборке X объема n называется следующий статистический критерий

 $(C \in [0,1])$:

$$d = d(X) = \begin{cases} 0, & \lambda_n(X; \Theta_0) > C; \\ 1, & \lambda_n(X; \Theta_0) \le C, \end{cases}$$

или в эквивалентном виде

$$d = d(X) = \begin{cases} 0, & -2 \ln \lambda_n(X; \Theta_0) < \delta; \\ 1, & -2 \ln \lambda_n(X; \Theta_0) \ge \delta, \end{cases}$$
 (27)

где критическое (пороговое) значение $\delta \geq 0$ выбирается так, чтобы критерий имел наперед заданный уровень значимости ε :

$$\mathbf{P}_{\theta}\{d(X) = 1\} = \int_{\lambda_n(X;\Theta_0) \le C} p(X;\theta) dX =$$

$$= \mathbf{P}_{\theta}\{-2 \ln \lambda_n \ge \delta\} \le \varepsilon, \ \forall \theta \in \Theta_0.$$
 (28)

Как было показано ранее теорема, известная как фундаментальная лемма Неймана — Пирсона), для простых гипотез КОП оптимален при любом n. Для сложных гипотез это, вообще говоря, не так. Тем не менее КОП широко применяется на практике. Оказывается, что он асимптотически оптимален при $n \to \infty$.

Рассмотрим вначале случай простой гипотезы H_0 и сложной альтернативы H_1 .

Теорема. Пусть определены простая гипотеза

$$H_0: \theta = \theta_0,$$

где $\theta_0 = (\theta_{0i}) \in \Theta$ — фиксированная точка m-мерной области Θ , и сложная альтернатива

$$H_1: \theta \neq \theta_0,$$

тогда при выполнении условий регулярности, принятых в теории оценок максимального правдоподобия, асимптотический $(n \to \infty)$ размер КОП (27), в котором $\delta = F_{\chi_m^2}^{-1}(1-\varepsilon)$ — квантиль уровня $1-\varepsilon$ от χ^2 -распределения с m степенями свободы, совпадает с ε :

$$\mathbf{P}_{\theta_0}\{d(X) = 1\} = \mathbf{P}_{\theta_0}\{-2\ln\lambda_n(X;\theta_0) \ge \delta\} \to \varepsilon.$$
(29)

Доказательство. В силу (28) для доказательства (29) достаточно показать сходимость к χ^2 -распределению:

$$\mathcal{L}_{H_0}\{-2\ln\lambda_n(X;\theta_0)\}\to\chi_m^2,\ n\to\infty,$$

где из (26) следует

$$-2\ln\lambda_n(X;\theta_0) = 2\left(l(\widehat{\theta}) - l(\theta_0)\right),\tag{30}$$

 $l(\theta) = \ln p(X; \theta)$ – логарифмическая функция правдоподобия, а $\hat{\theta} = \arg \max_{\theta \in \Theta} p(X; \Theta)$ – ОМП,

которая в условиях регулярности обладает свойством сильной состоятельности:

$$\widehat{\theta} \stackrel{\Pi.H.}{\longrightarrow} \theta^0, \ n \to \infty.$$

Следовательно, $\forall \varepsilon > 0 \; \exists \; \overline{n} = \overline{n}(\varepsilon)$, что $\forall n \geq \overline{n}$ с вероятностью единица: $|\widehat{\theta} - \theta_0| \leq \varepsilon$. В силу условий регулярности применим к $l(\theta_0)$ в (30) квадратичную формулу Тейлора с остаточным членом в форме Лагранжа (учитывая, что $\nabla_{\theta} l(\theta)|_{\theta = \widehat{\theta}} = 0_m$):

$$-2\ln \lambda_n(X;\theta_0) = n(\widehat{\theta} - \theta_0)^{\mathrm{T}} \left(-\frac{1}{n} \nabla_{\theta^*}^2 l(\theta^*) \right) (\widehat{\theta} - \theta_0).$$

Здесь θ^* — «промежуточная точка»:

$$|\theta^* - \theta_0| < |\widehat{\theta} - \theta_0|,$$

следовательно,

$$\theta^* \xrightarrow{\Pi.H.} \theta_0.$$

В силу условий регулярности выполняется усиленный закон больших чисел:

$$\begin{split} -\frac{1}{n} \nabla_{\theta}^2 l(\theta^*) &= \frac{1}{n} \sum_{k=1}^n \left(-\nabla_{\theta^*}^2 \ln p(x_k; \theta^*) \right) \stackrel{\text{\Pi.H.}}{\longrightarrow} \\ \xrightarrow{\Pi.H.} \mathbf{E}_{\theta_0} \left\{ -\nabla_{\theta_0}^2 = \ln p(x_k; \theta_0) \right\} &= \\ &= \mathcal{I}(\theta_0), \end{split}$$

где $\mathcal{I}=\mathcal{I}(\theta_0)$ – информационная матрица Фишера для выборочного значения. Из свойств ОМП

$$\mathcal{L}_{H_0}\{\sqrt{n}(\widehat{\theta}-\theta_0)\} \to \mathcal{N}_m(\mathbf{0}_m,\mathbb{I}^{-1}(\theta_0)), \ n \to \infty,$$

и по свойствам линейного преобразования многомерного нормального распределения:

$$\mathcal{L}_{H_0}\{\sqrt{n}(\mathcal{I}^{\frac{1}{2}}(\theta_0))^{\mathrm{T}}(\widehat{\theta} - \theta_0)\} =$$

$$= \mathcal{L}\{\xi_n\} \to \mathcal{N}_m(\mathbf{0}_m, \mathcal{I}_m) =$$

$$= \mathcal{L}\{\xi\}.$$

В результате имеем

$$\mathcal{L}_{H_0}\{-2\ln\lambda_n(X;\theta_0)\} \to \mathcal{L}\{\xi^{\mathbf{T}}\xi\} = \chi_m^2, \ n \to \infty.$$

Замечание. Если H_0 является сложной гипотезой вида

 $H_0: \theta \in \Theta_0, \ \Theta_0 = \{\theta: h_j(\theta) = 0, \ j = \overline{1, m-s}\},$ где $1 \leq s \leq m-1, \ \{h_j(\cdot)\}_{j=0}^{m-s}$ — фиксированные непрерывные функции, то результат теоремы остается в силе, только

$$\delta = F_{\chi_{m-s}^2}^{-1}(1 - \varepsilon).$$

2. 7. Байесовское решающее правило

Предположим, что параметр θ — случайная величина, принимающая одно из двух возможных значений:

$$\theta \in \Theta = \{\theta_0, \theta_1\};$$

$$\mathbf{P}\{\theta = \theta_i\} = \Pi_i, \ 0 < \Pi_i < 1, \ i = 0, 1;$$

$$\Pi_0 + \Pi_1 = 1.$$

Наблюдается случайная выборка

$$X = (x_1^{\mathrm{T}}, \dots, x_n^{\mathrm{T}})^{\mathrm{T}} \in \mathbb{R}^{nN}$$

объема n из некоторого распределения вероятностей с условной плотностью $p(x|\theta)$, $x \in \mathbb{R}^N$. $\theta \in \Theta$.

Обозначим:

$$p_i(X) = \prod_{j=1}^n p(x_j | \theta_i), i = 0, 1, -$$

условная плотность распределения выборки X при условии, что $\theta = \theta_i$.

Истинное значение θ неизвестно и определены две простые гипотезы:

$$H_i: \theta = \theta_i, i = 0, 1.$$

Задача заключается в построении теста для проверки H_0, H_1 по выборке X.

Эту задачу можно решить с помощью теста Неймана — Пирсона, но в таком случае игнорируется информация о $\{\Pi_i\}$. Поэтому рассмотрим другой подход.

Построим рандомизированное решающее правило:

$$d = d(X, \omega) \in D = \{0, 1\}, \ X \in \mathbb{R}^{nN}, \ \omega \in \Omega;$$

$$(31)$$

$$\mathbf{P}\{d(X, \omega) = 1 | X\} = \varphi(X),$$

$$\mathbf{P}\{d(X, \omega) = 0 | X\} = 1 - \varphi(X),$$

где $\varphi(X)$ — произвольная критическая функция, $0 \le \varphi(X) \le 1$.

Обозначим: $\nu=\nu(\omega)\in\{0,1\}$ номер истинной гипотезы H_{ν} . $\nu=\nu(\omega)\in\{0,1\}$ — случайная величина Бернулли. В силу случайности θ

$$P(H_i) = P\{\theta = \theta_i\} = \Pi_i, i = 0, 1,$$

поэтому Π_i принято называть *априорной ве-роятностью* i-й гипотезы.

Определение. Функцией потерь в рассматриваемой задаче проверки двух гипотез H_0, H_1 называется функция двух переменных:

$$w = w(i, j) \ge 0, i, j \in D = \{0, 1\},\$$

где w(i,j) — величина потерь, которые несет статистик в ситуации, когда на самом деле $\nu=i$ (верна H_i), а принято решение d=j в пользу гипотезы H_j .

Определение. Принято говорить, что имеет место (0-1)-функция потерь, если

$$w(i,j) = 1 - \delta_{ij} = \begin{cases} 0, & i = j; \\ 1, & i \neq j. \end{cases}$$

Функцию потерь удобно задавать в виде матрицы потерь: $W=(w_{ij})$, $w_{ij}=w(i,j)$. В случае (0-1)-матрицы потерь имеем

$$W = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Определение. Функционалом риска называется математическое ожидание случайных потерь (средние потери)

$$r = r(\varphi(\cdot)) = \mathbf{E}\{w(\nu, d(X, \omega))\} \ge 0.$$
 (32)

Определение. (Байесовский принцип оптимальности.) Критическую функцию $\varphi(\cdot)$ в рандомизированном решающем правиле (31) надлежит выбирать таким образом, чтобы функционал риска (32) достигал минимального значения:

$$r(\varphi^*(\cdot)) = \inf_{\varphi(\cdot)} r(\varphi(\cdot)). \tag{33}$$

При этом критическая функция $\varphi^*(\cdot)$, определяемая (33), называется байесовской критической функцией, а соответствующее решающее правило $d^*(X,\omega)$, определяемое (31), обайесовским решающим правилом (БРП).

Теорема. Пусть в сформулированной выше задаче проверки простых гипотез H_0, H_1 функция потерь имеет следующий вид:

$$w(i,j) = \begin{cases} 0, & i = j; \\ w_0, & i = 0, j = 1; \\ w_1, & i = 1, j = 0, \end{cases}$$
 (34)

где $w_0 > 0$, $w_1 > 0$ — некоторые заданные величины.

Тогда байесовская критическая функция задается соотношением $(X \in \mathbb{R}^{nN})$:

$$\varphi^*(X) = \begin{cases} 0, & L(X) < C^*; \\ \varkappa^*, & L(X) = C^*; \\ 1, & L(X) > C^*, \end{cases}$$
 (35)

где

$$L(X) = \frac{p_1(X)}{p_0(X)} \ge 0, \quad C^* = \frac{\Pi_0 w_0}{\Pi_1 w_1} \ge 0, \quad \varkappa^* \in [0, 1]$$

Доказательство. Прежде всего заметим, что в силу произвола в выборе \varkappa^* байесовская критическая функция неоднозначна. Сформулируем экстремальную задачу (33) в явном виде и решим ее. Из (32) и (34) имеем

$$r = r(\varphi(\cdot)) =$$

$$= 0 \cdot \mathbf{P} \{ d(X, \omega) = \nu \} + w_0 \cdot \mathbf{P} \{ \nu = 0, d = 1 \} +$$

$$+ w_1 \cdot \mathbf{P} \{ \nu = 1, d = 0 \} =$$

$$= w_0 \cdot \mathbf{P} \{ \nu = 0 \} \cdot \mathbf{P} \{ d = 1 | H_0 \} +$$

$$+w_1 \cdot \mathbf{P}\{H_1\} \cdot \mathbf{P}\{d = 0 | H_1\} =$$
$$= w_0 \cdot \Pi_0 \cdot \alpha + w_1 \cdot \Pi_1 \cdot \beta.$$

Используя интегральные представления вероятностей ошибок α , β , приходим к задаче:

$$r = r(\varphi(\cdot)) =$$

$$= \Pi_0 w_0 \int_{\mathbb{R}^{nN}} \varphi(X) p_0(X) dX +$$

$$+ \Pi_1 w_1 \int_{\mathbb{R}^{nN}} (1 - \varphi(X)) p_1(X) dX =$$

$$= \Pi_1 w_1 - \int_{\mathbb{R}^{nN}} \varphi(X) G(X) dX \to \min_{\varphi(\cdot)}, \quad (37)$$

где

$$G(X) = \Pi_1 w_1 p_1(X) - \Pi_0 w_0 p_0(X).$$

Из (37) получаем эквивалентную экстремальную задачу:

$$\int_{\mathbb{R}^{nN}} \varphi(X) G(X) dX \to \max_{\varphi(\cdot)},$$

являющуюся линейной задачей вариационного исчисления, причем ограничения носят точечный, локальный характер: $0 \le \varphi(X) \le 1$,

 $X \in \mathbb{R}^{nN}$, поэтому решение очевидно:

$$\varphi^*(X) = \begin{cases} 0, & G(X) < 0; \\ \varkappa^*, & G(X) = 0; \\ 1, & G(X) > 0. \end{cases}$$

С учетом обозначений (36) последнее соотношение эквивалентно (35). Найдем минимум риска, который при этом достигается:

$$r^* = r(\varphi^*) = \Pi_1 w_1 - \int_{G(X)>0} G(X) dX.$$

Следствие. Среди байесовских решающих правил (35) существует нерандомизированное решающее правило:

$$d = d^*(X) = \begin{cases} 0, & L(X) < C^*; \\ 1, & L(X) \ge C^*. \end{cases}$$

Доказательство. Для доказательства достаточно выбрать $\varkappa^*=1$.

Следствие. Если имеет место (0-1)-функция потерь, то есть $w_0=w_1=1$, и гипотезы H_0,H_1 равновероятны $(\Pi_0=\Pi_1=\frac{1}{2})$, то БРП имеет вид

$$d = d^*(X) = \begin{cases} 0, & p_0(X) > p_1(X); \\ 1, & p_1(X) \ge p_0(X). \end{cases}$$
(38)

ДоказательствоИз формулы (36) имеем: $C^* = 1, \varkappa^* = 1.$

Заметим в заключение, что решающее правило (38) часто называют тестом максимального правдоподобия.