Optimal threshold strategies for remote state estimation with communication costs

Jhelum Chakravorty & Aditya Mahajan

Electrical & Computer Engineering

The communication system

Source $\triangleright X_t \in \mathbb{Z}$

▶ Transition matrix P is Toeplitz, i.e., $P_{i,j} = p_{|i-j|}$, where $p_0 \geqslant p_1 \geqslant \cdots$.

Receiver $\triangleright \hat{X}_t = g_t(Y_{1:t})$

▶ Distortion: $d(X_t - \hat{X}_t)$ where $d(e) = d(-e) \leq d(e+1)$

Communication \blacktriangleright Transmission strategy $f = \{f_t\}_{t=0}^{\infty}$

Strategies \blacktriangleright Estimation strategy $g = \{g_t\}_{t=0}^{\infty}$.

Assumptions on the model

(Ao) $X_t \in \mathbb{Z}$, and $X_0 = 0$.

(A1) The transition matrix is Toeplitz with decaying off-diagonal terms.

▶ Nayyar et al, assumed that the transistion matrix was banded, that is, $\exists b$ such that $p_k = 0$, for all $k \geqslant b$.

(A2) The distortion function is even and increasing on $\mathbb{Z}_{\geqslant 0}$. $\forall e \in \mathbb{Z}_{\geqslant 0}: \quad \mathrm{d}(e) = \mathrm{d}(-e) \quad \text{and} \quad \mathrm{d}(e) \leqslant \mathrm{d}(e+1).$

The constrained optimization problem

$$\min_{(f,g)} D_{\beta}(f,g) \quad \text{ such that } N_{\beta}(f,g) \leqslant \alpha$$

Minimize expected distortion such that expected # of transmissions is less than lpha

Discounted setup
$$\begin{aligned} D_{\beta}(f,g) &= (1-\beta) \ \mathbb{E}^{(f,g)} \left[\left. \sum_{t=0}^{\infty} \beta^t d(X_t - \hat{X}_t) \, \right| X_0 = 0 \right] \\ N_{\beta}(f,g) &= (1-\beta) \ \mathbb{E}^{(f,g)} \left[\left. \sum_{t=0}^{\infty} \beta^t U_t \, \right| X_0 = 0 \right] \end{aligned}$$

$$\begin{split} D_{1}(f,g) &= \limsup_{T \to \infty} \frac{1}{T} \Big[\sum_{t=0}^{T-1} d(X_{t} - \hat{X}_{t}) \ \Big| \ X_{0} = 0 \Big] \\ N_{1}(f,g) &= \limsup_{T \to \infty} \frac{1}{T} \Big[\sum_{t=0}^{T-1} U_{t} \ \Big| \ X_{0} = 0 \Big] \end{split}$$

Salient Features

- Comparision ► As in information theory, the optimization problem may be viewed as minimizing average distortion under an average-power constraint.
 - Theory ► Unlike information theory, the source reconstruction must be done in real-time (or with zero delay).
 - ▶ Therefore, classical information theory techniques do not work. Source-channel separation is not optimal.
 - ▶ We use the decentralized control approach to real-time communication (following Witsenhausen, Walrand-Varaiya, Teneketzis, ...

- Comaprision to ► Two decision makers—the transmitter and the receiver.
- decentralized ► (One-sided) nested information structure:
 - the transmitter knows all the information available to the receiver. ► Constrained optimization problem, where the constraint does not depend on the "common information" (i.e., the information at the receiver).

Lagrange Relaxation

 $\min D_{\beta}(f,g)$ such that $N_{\beta}(f,g) \leq \alpha$

Minimize expected distortion such that expected # of transmissions is less than α

Relaxation

 $C_{\beta}^{*}(\lambda) \coloneqq \inf_{(f,g)} C_{\beta}(f,g;\lambda) \quad \text{where } C_{\beta}(f,g;\lambda) = D_{\beta}(f,g) + \lambda N_{\beta}(f,g)$

strategies (f, g)

- ▶ Restrict the search space of strategies (f, q) by identifying structure of optimal tranmission and estimation strategies
- ▶ Difficulty: Non-classical information structure

Structure of optimal estimator (Nayyar et al, 2013)

Transmitted Let Z_t denote the most recently transmitted value of the Markov Process source.

 $Z_0=0 \quad ext{and} \quad Z_t= \left\{ egin{array}{ll} X_t & ext{if $U_t=1$;} \ Z_{t-1} & ext{if $U_t=0$.} \end{array}
ight.$

The estimator can keep track of Z_t as follows:

$$Z_0 = 0$$
 and $Z_t = \left\{ egin{array}{ll} Y_t & \mbox{if } Y_t
eq \epsilon; \ Z_{t-1} & \mbox{if } Y_t = \epsilon. \end{array}
ight.$

The process $\{Z_t\}_{t=0}^{\infty}$ is a sufficient statistic at the estimator and an optimal estimation strategy is given by

 $\hat{X}_{t} = g_{t}^{*}(Z_{t}) = Z_{t}$

Remark ► The optimal estimation strategy is time-homogeneous and can be specified in closed form.

Structure of optimal transmitter (Nayyar et al, 2013)

Error process Let $E_t = X_t - Z_{t-1}$ denote the error process. $\{E_t\}_{t=0}^{\infty}$ is a controlled Markov process where

$$\mathsf{E}_0 = \mathsf{0} \quad \text{and} \quad \mathbb{P}(\mathsf{E}_{\mathsf{t}+1} = \mathsf{n} \mid \mathsf{E}_{\mathsf{t}} = e, \mathsf{U}_{\mathsf{t}} = \mathsf{u}) = \left\{ \begin{aligned} \mathsf{P}_{\mathsf{0n}}, & \text{if } \mathsf{u} = \mathsf{1}; \\ \mathsf{P}_{en}, & \text{if } \mathsf{u} = \mathsf{0}. \end{aligned} \right.$$

Theorem 2 When the estimation strategy is of the form (*), then $\{E_t\}_{t=0}^{\infty}$ is a sufficient statistic at the transmitter.

> Furthermore, an optimal transmission strategy is characterized by a time-varying threshold $\{k_t\}_{t=0}^{\infty}$, i.e.,

$$U_t = f_t(E_t) = \begin{cases} 1 & \text{if } |E_t| \geqslant k_t; \\ 0 & \text{if } |E_t| < k_t. \end{cases}$$

results of [Wang-Woo-Madiman, 2014].

Proof idea ► The proof of [Nayyar et al, 2013] was based on some majorization inequalities of [Hajek et al, 2009] for distributions with finite support. ▶ We extend these inequalities to distributions over integers using

Performance of a threshold based strategy

Threshold-based We analyze the performace of $(f^{(k)}, g^*)$, where $f^{(k)}(e) \coloneqq \begin{cases} 1, & \text{if } |e| \ge k; \\ 0, & \text{if } |e| < k. \end{cases}$

Cost until first Define $S^{(k)}=\{e\in\mathbb{Z}:|e|\leqslant k-1\}$ and let $\tau^{(k)}$ be the stopping time transmission when the Markov process starting at state 0 at time t=0 escapes the

Define
$$L_{\beta}^{(k)}\coloneqq\mathbb{E}\left[\left.\sum_{t=0}^{\tau^{(k)}-1}\beta^{t}d(E_{t})\middle|E_{0}=0\right]\right]$$

$$M_{\beta}^{(k)}\coloneqq\frac{1-\mathbb{E}[\beta^{\tau^{(k)}}\mid E_{0}=0]}{1-\beta}$$
 and

$$L_1^{(k)} \coloneqq \mathbb{E}\left[\left.\sum_{t=0}^{\tau^{(k)}-1} d(E_t)\right| E_0 = 0\right]$$

$$M_1^{(k)} \coloneqq \mathbb{E}[\tau^{(k)}-1 \mid E_0 = 0]$$

 $D_{\beta}^{(k)} \coloneqq D_{\beta}(f^{(k)}, g^*) = \frac{L_{\beta}^{(k)}}{M_{\alpha}^{(k)}}$

 $N_{\beta}^{(k)} \coloneqq N_{\beta}(f^{(k)}, g^*) = \frac{1}{M_{\rho}^{(k)}} - (1 - \beta)$

Performance of a threshold based strategy (cont.)

 $L_1^{(k)} = \lim_{\beta \uparrow 1} L_{\beta}^{(k)}, \quad M_1^{(k)} = \lim_{\beta \uparrow 1} M_{\beta}^{(k)}.$ $D_1^{(k)} = \lim_{\beta \uparrow 1} D_{\beta}^{(k)} = \frac{L_1^{(k)}}{M^{(k)}}$ $N_1^{(k)} = \lim_{\beta \uparrow 1} N_{\beta}^{(k)} = \frac{1}{M_1^{(k)}}$

Optimal stategy for the Lagrange relaxation

 $L_{\beta}^{(k)} < L_{\beta}^{(k+1)}, \quad M_{\beta}^{(k)} < M_{\beta}^{(k+1)}, \quad D_{\beta}^{(k)} < D_{\beta}^{(k+1)}.$

 $C_{\beta}^{(k)}(\lambda) \coloneqq C(f^{(k)}, g^*; \lambda) = D_{\beta}^{(k)} + \lambda N_{\beta}^{(k)}$ Lagrangian cost

Optimal For all $\lambda \in (\lambda_{\beta}^{(k)}, \lambda_{\beta}^{(k+1)}]$ the threshold strategy $f^{(k+1)}$ is optimal. $ightharpoonup C^*_{eta}(\lambda) = \min_{k \in \mathbb{Z}} C^{(k)}_{eta}$ is piecewise linear, continuous, concave, and increasing function of λ .

Back to the constrained optimization problem

Bernoulli Let $\theta \in [0, 1]$ and f_1 and f_2 be two stationary strategies. randomized The Bernoulli randomized strategy (f_1, f_2, θ) randomizes between f_1 and **strategy** f_2 at each stage, choosing f_1 with probability θ and f_2 with probability $(1-\theta)$.

Simple rand. A Bernoulli randomized strategy (f_1, f_2, θ) is simple if the actions **strategy** prescribed by f_1 and f_2 differ only at one state.

optimal for the constrained optimization problem for $eta \in (0,1]$

An example: Symmetric birth-death Markov Chain

$$P_{ij} = \begin{cases} p, & \text{if } |i-j| = 1; \\ 1-2p, & \text{if } i=j; \\ 0, & \text{otherwise.} \end{cases} \quad \text{where } p \in (0, \frac{1}{2}), \quad d(e) = |e|$$

Summary and Conclusion

Problem ► Real-time transmission of a Markov source under constraints on the number of transmissions.

- ▶ Investigated both discounted and average cost infinite horizon setups.
- ▶ Modeled as a decentralized stochastic control problem with two decision maker.
- ▶ As long as the transmitter uses a symmetric threshold based strategy, the estimation strategy does not depend on the transmission strategy.
- ▶ The problem of find the "best response" transmitter is a centralized stochastic control problem.

Main results \triangleright Simple Bernoulli randomized strategies $(f^{(k^*)}, f^{(k^*+1)}, \theta)$ are optimal. $ightharpoonup k^*$ and θ can be computed easily.