

Дискретная матемаика

Лекция 3

Множества и отношения

Отношения эквивалентности

Отношение R на множестве A называется отношением эквивалентности, если оно

- рефлексивно,
- симметрично,
- транзитивно.

Отношения эквивалентности

Отношение R на множестве A называется отношением эквивалентности, если оно

- рефлексивно,
- симметрично,
- транзитивно.

Какие из этих отношений являются отношениями эквивалентности?

$$=$$
, $<$, \leq , \parallel , \mid , \subseteq , \times

Пример

Рассмотрим следующее отношение R на \mathbb{Z} : x R y тогда и только тогда, когда x - y четно.

R является отношением эквивалентности. Доказательство транзитивности:

$$xRy \Leftrightarrow x-y=2k$$

 $yRz \Leftrightarrow y-z=2m$
 $x-z=2(k+m) \Rightarrow xRz$

Если x R y, то говорят, что x сравнимо с y по модулю 2, и пишут

$$x \equiv y \pmod{2}$$
.

<u>Разбиения</u>

Семейство \mathcal{P} подмножеств множества A называется разбиением A, если

- 1) подмножества, составляющие \mathcal{P} , попарно не пересекаются;
- 2) объединение всех подмножеств из \mathcal{P} равно A.

Другими словами:

семейство \mathcal{P} является разбиением множества A, если каждый элемент A принадлежит точно одному множеству из \mathcal{P} .

Элементы семейства \mathcal{P} называются *частями* разбиения.

$$A = \{0,1,2,3,4,5,6,7,8,9\},\$$

$$P_1 = \{0,3,6,9\},\$$

 $P_2 = \{1,2,4\},\$
 $P_3 = \{5\},\$
 $P_4 = \{7,8\}.$

 $\mathcal{P} = \{P_1, P_2, P_3, P_4\}$ – разбиение множества A на четыре части.

$$A = P_1 \sqcup P_2 \sqcup P_3 \sqcup P_4$$

Пусть \mathcal{P} – разбиение множества A. Определим отношение R на A: $x R y \Leftrightarrow x$ и y принадлежат одной части разбиения.

R является отношением эквивалентности.

Пусть \mathcal{P} – разбиение множества A. Определим отношение R на A: $x R y \Leftrightarrow x$ и y принадлежат одной части разбиения.

R является отношением эквивалентности.

Все отношения эквивалентности устроены подобным образом!

Теорема о факторизации.

Пусть R – отношение эквивалентности на множестве A. Существует такое разбиение \mathcal{P} множества A, что $\forall x,y \in A$ x R y тогда и только тогда, когда они принадлежат одной части разбиения \mathcal{P} .

Теорема о факторизации.

Пусть R – отношение эквивалентности на множестве A. Существует такое разбиение \mathcal{P} множества A, что $\forall x,y \in A$ x R y тогда и только тогда, когда они принадлежат одной части разбиения \mathcal{P} .

Доказательство проведем в три этапа:

1. Построим семейство \mathcal{P} подмножеств множества A.

Положим $[x] = \{y: x R y\}$ для каждого $x \in A$,

$$\mathcal{P} = \{ [x] : x \in A \}.$$

Замечание: может быть $x \neq y$, но [x] = [y].

Например, пусть R — отношение, представленное графом:

Очевидно, это отношение эквивалентности.

Здесь
$$[a] = [b] = [c] = \{a, b, c\}, [d] = \{d\},$$
 $[e] = [f] = \{e, f\},$

$$\mathcal{P} = \{ \{a, b, c\}, \{d\}, \{e, f\} \}.$$

Теорема о факторизации.

Пусть R – отношение эквивалентности на множестве A. Существует такое разбиение \mathcal{P} множества A, что $\forall x,y \in A$ x R y тогда и только тогда, когда они принадлежат одной части разбиения \mathcal{P} .

Доказательство проведем в три этапа:

- 1. Построим семейство \mathcal{P} подмножеств множества A.
- 2. Покажем, что \mathcal{P} является разбиением множества A.

1) Так как отношение R рефлексивно, то $x \in [x]$ для всех $x \in A$.

Поэтому каждый элемент $x \in A$ принадлежит хотя бы одному подмножеству из \mathcal{P} , т.е. объединение всех множеств из \mathcal{P} равно A:

$$\bigcup_{x \in A} [x] = A.$$

2) Теперь покажем, что если $[x] \neq [y]$, то [x] и [y] не пересекаются.

Предположим, что $[x] \cap [y] \neq \emptyset$. Тогда существует $z \in [x] \cap [y]$, т.е. z R x и z R y. Так как отношение R симметрично и транзитивно, то отсюда следует, что x R y. Теперь для любого $u \in A$ имеем:

$$u \in [x] \implies u R x \implies u R y \implies u \in [y]$$

и обратно. Следовательно, [x] = [y].

Теорема о факторизации.

Пусть R – отношение эквивалентности на множестве A. Существует такое разбиение \mathcal{P} множества A, что $\forall x,y \in A$ x R y тогда и только тогда, когда они принадлежат одной части разбиения \mathcal{P} .

Доказательство проведем в три этапа:

- 1. Построим семейство $\mathcal P$ подмножеств множества A.
- 2. Покажем, что \mathcal{P} является разбиением множества A.
- 3. Покажем, что $x R y \Leftrightarrow x$ и y принадлежат одной части разбиения \mathcal{P} .

Если x R y, то $y \in [x]$. Но $x \in [x]$, поэтому x и y оба принадлежат [x].

Обратно, если $x \in [z]$ и $y \in [z]$ для некоторого z, то x R z и y R z. Отсюда (из симметричности и транзитивности отношения R) следует, что x R y.

Итак, если на множестве A задано отношение эквивалентности R, то множество A разбивается на части так, что любые два элемента из одной части находятся в отношении R, а любые два элемента из разных частей не находятся в этом отношении.

Эти части называются классами эквивалентности.

Семейство классов эквивалентности называется ϕ актор-множеством множества A по отношению R и обозначается A/R.

Пример 1

Пусть $n \in \mathbb{N}$. Определим следующее отношение R_n на \mathbb{N}_0 :

 $x \ R_n \ y$ означает, что n делит x-y, т.е. существует такое целое k, что x-y=kn.

(ранее был рассмотрен частный случай n = 2).

 R_n является отношением эквивалентности для любого n.

Если x R y, то говорят, что x сравнимо с y по модулю n и пишут

$$x \equiv y \pmod{n}$$
.

Два целых числа сравнимы по модулю n тогда и только тогда, когда они дают одинаковые остатки при делении на n. Поэтому в R_n имеется ровно n классов эквивалентности:

```
[0] = \{0, n, 2n, 3n, \dots\},\
[1] = \{1, n+1, 2n+1, 3n+1, \dots\},\
[2] = \{2, n+2, 2n+2, 3n+2, \dots\},\
\vdots
[n-1] = \{n-1, 2n-1, 3n-1, 4n-1, \dots\}.
```

Пример 2

Отношение | является отношением эквивалентности. Каждый класс эквивалентности состоит из всех прямых одного направления.

Отношения порядка

Отношение R на множестве A называется отношением порядка, если оно

- рефлексивно,
- антисимметрично,
- транзитивно.

Если R есть отношение порядка и x R y, то говорят "x предшествует y" или "x меньше y".

Отношения порядка

Отношение R на множестве A называется отношением порядка, если оно

- рефлексивно,
- антисимметрично,
- транзитивно.

Если R есть отношение порядка и x R y, то говорят "x предшествует y" или "x меньше y".

Какие из этих отношений являются отношениями порядка?

$$=$$
, $<$, \leq , $|$, \in , \subseteq , $|$

Строгий порядок

Отношение R на множестве A называется отношением строгого порядка, если оно

- антирефлексивно,
- антисимметрично,
- транзитивно.

Сравните отношения < и ≤.

Строгий порядок

Отношение R на множестве A называется отношением строгого порядка, если оно

- антирефлексивно,
- антисимметрично,
- транзитивно.

Сравните отношения < и ≤.

Замечание: строгий порядок *не является* частным случаем порядка.

Строгий порядок

Отношение R на множестве A называется отношением строгого порядка, если оно

- антирефлексивно,
- антисимметрично,
- транзитивно.

Сравните отношения < и ≤.

Замечание: строгий порядок *не является* частным случаем порядка.

Является ли отношение | порядком или строгим порядком?

Упорядоченное множество

Множество A с заданным на нем отношением порядка R называется упорядоченным множеством.

Точнее, упорядоченное множество — это пара (A, R).

```
Примеры: (\mathbb{Z}, \leq); (2^A, \subseteq) для любого множества A; (\mathbb{N}, \mid).
```

Есть важное различие между (\mathbb{Z}, \leq) и $(2^A, \subseteq)$.

Для любых $x, y \in \mathbb{Z}$ выполняется хотя бы одно из неравенств $x \le y, y \le x$.

Для $X,Y \in 2^A$ может быть $X \subseteq Y$ и $Y \subseteq X$. Например:

$$X = \{a, b\}, \quad Y = \{a, c\}.$$

Пусть (A, R) – упорядоченное множество и $x, y \in A$. x и y сравнимы, если x R y или y R x, иначе они несравнимы.

В (\mathbb{Z}, \leq) любые два элемента сравнимы.

В $(2^A, \subseteq)$ имеются несравнимые элементы.

Порядок R на множестве A называется *линейным порядком*, если любые два элемента сравнимы, иначе он называется *частичным порядком*.

В первом случае (A, R) есть *линейно упорядоченное множество*,

во втором оно является частично упорядоченным множеством.

 (\mathbb{Z}, \leq) – линейно упорядоченное множество,

 $(2^{A}, ⊆)$ – частично упорядоченное множество.

Порядок R на множестве A называется *линейным порядком*, если любые два элемента сравнимы, иначе он называется *частичным порядком*.

В первом случае (A, R) есть *линейно упорядоченное множество*, во втором оно является *частично упорядоченным*

 (\mathbb{Z}, \leq) – линейно упорядоченное множество,

множеством

 $(2^{A}, ⊆)$ – частично упорядоченное множество.

Упорядоченное множество $(\mathbb{N}, |)$ линейно или частично упорядочено? А множество $(\mathbb{Z}, |)$?

30

Непосредственное предшествование

Пусть (A, R) – упорядоченное множество, x R y и $x \neq y$.

Элемент x непосредственно предшествует элементу y, если не существует такого элемента z, отличного от x и y, что x R z и z R y.

Отношение непосредственного предшествования для отношения R будем обозначать R^* .

Примеры

- 1. (\mathbb{Z}, \leq)
- 2. (ℝ, ≤)

3. *R*

 R^*

aRe

aR*c, cR*d, dR*e

Теорема о конечных упорядоченных множествах.

Пусть (A, R) – конечное упорядоченное множество, a и b – различные элементы множества A и aRb. Тогда существует последовательность z_1, z_2, \ldots, z_n элементов множества A такая, что $z_1 = a, z_n = b$ и $z_k R^* z_{k+1}$ для $k = 1, \ldots, n-1$.

Доказательство. Обозначим

$$M(a,b) = \{x: x \neq a, x \neq b, aRx, xRy\}.$$

Пусть |M(a,b)| = m. Проведем индукцию по m.

1) m = 0. Тогда aR*b и полагаем $z_1 = a, z_2 = b$.

2) m > 0. Возьмем какой-нибудь элемент $x \in M(a,b)$.

Тогда |M(a,x)| < m и |M(x,b)| < m.

По предположению индукции, существуют последовательности элементов, связанных отношением R^* , соединяющие a с x и x с b. Соединяя их в одну, получим последовательность, соединяющую a с b.

34

Граф отношения R^* называется диаграммой Хассе или диаграммой непосредственных предшествований отношения R.

Обычно вершины на диаграмме располагают так, чтобы меньший (предшествующий) элемент находился *ниже* большего. Тогда отношение между элементами можно изображать линией, а не стрелкой.

Диаграмма Хассе упорядоченного множества $(2^{\{a,b,c\}},\subseteq)$

Максимальные и минимальные элементы

 $x \in A$ называется *максимальным* элементом упорядоченного множества (A, R), если не существует такого y, что $y \neq x$ и x R y.

Иначе говоря, не существует элемента больше х.

x -*минимальный* элемент, если не существует элемента *меньше* x.

 (\mathbb{Z}, \leq) не имеет ни максимальных, ни минимальных элементов.

 (\mathbb{N}, \leq) имеет один минимальный элемент и ни одного максимального.

Каждое *конечное* упорядоченное множество имеет максимальные и минимальные элементы.

Теорема. Если (A, R) – конечное упорядоченное множество и $x \in A$, то существует максимальный элемент у такой, что x R y.

Доказательство.

- x максимальный \longrightarrow полагаем y = x
- x не максимальный \longrightarrow существует $y_1 \neq x$, больший x
- y_1 максимальный \longrightarrow полагаем $y = y_1$
- y_1 не максимальный \longrightarrow существует $y_2 \neq y_1$, больший y_1

. . .

и т.д.

Получаем последовательность элементов

$$x, y_1, y_2, \ldots,$$

в которой каждый следующий элемент *больше* предыдущего. Докажем, что все элементы в этой последовательности *различны*.

Допустим, $y_i = y_k$, i < k.

Ввиду транзитивности должно быть:

$$y_i R y_{i+2}, y_i R y_{i+3}, ..., y_i R y_{k-1}.$$

Так как $y_i = y_k$, то $y_k R y_{k-1}$. Но в то же время $y_{k-1} R y_k$.

Это противоречит антисимметричности.

Таким образом, все элементы последовательности

$$x, y_1, y_2, \dots$$

различны. Так как множество A конечно, то и эта последовательность конечна:

$$x, y_1, y_2, \ldots, y_n$$
.

Но тогда y_n – максимальный элемент и полагаем $y = y_n$.

Наибольшие и наименьшие элементы

 $x \in A$ называется *наибольшим* элементом упорядоченного множества (A, R), если для каждого $y \in A$ выполняется y R x.

Иначе говоря x больше любого другого элемента из A.

x — *наименьший* элемент, если он меньше любого другого элемента из A.

Частично упорядоченное множество

$$(\{1,2,3,4,5,6\}, \mid)$$

Линейно упорядоченное множество

$$(\{1,2,3,4,5,6\}, \leq)$$

