Bram Schuijff CSCI 387, §S01/02 Homework 1 February 6th, 2025 by 11:59pm

1. (a)

(c)

3. (a) The regular expression for this statement is

$$L = \Sigma^5 \Sigma^*$$

(b) The regular expression for this statement is

$$L = 1 \cup 1\Sigma^*$$

(c) The regular expression for this statement is

$$L = (0 \cup \epsilon)(1 \cup 10 \cup 101 \cup 110)^*0^*$$

This should produce the desired behavior as it is not possible to have more than 2 0s with a 1 afterwards.

4. Proof: Let A, B be regular languages. Then, there exist DFAs for A, B that we will refer to as A', B'. To prove that $A \cap B$ is a regular language, we can prove that there exists a DFA accepting $A \cap B$ which we will denote as $(A \cap B)'$. We will proceed by construction. First, we say that $Q_{A \cap B} = Q_A \times Q_B$. This is guaranteed to be finite because Q_A and Q_B are finite. Σ remains unchanged as both A and B need to have the same alphabet for their intersection to be well-defined. We define $\delta_{A \cap B}$ as follows:

$$\delta_{A \cap B} : Q_{A \cap B} \times \Sigma \to Q_{A \cap B}, \qquad \delta_{A \cap B}((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$$

where δ_A, δ_B are the transition functions of A', B' respectively. Because these functions are individually well-defined on their domains, $\delta_{A \cap B}$ is also well-defined. We then let $q_{0,A \cap B} = (q_{0,A}, q_{0,B})$ where these are the start states of A', B' respectively. Finally,

$$F_{A \cap B} = \{ (q_a, q_b) \in Q_A \times Q_B \mid q_a \in F_A, q_b \in F_B \}$$

In conclusion, we define

$$(A \cap B)' = (Q_{A \cap B}, \Sigma, \delta_{A \cap B}, q_{0,A \cap B}, F_{A \cap B})$$

This is a well-defined DFA because A and B are regular languages and as such we conclude that $A \cap B$ is a regular language.