Programación Paralela: Práctica de laboratorio 3

Lenin Pavón Alvarez ¹, Lucía Martínez Rivas², Miguel Ángel Perez de León³

¹Nikpalewia in notemachtiane Laboratorio, Facultad de Ciencias, UNAM

²Nikpalewia in notemachtiane, Facultad de Ciencias, UNAM ³Temachtiane, Facultad de Ciencias, UNAM

Febrero 2024

Índice

1	Introducción	1
	1.1 Requerimientos	1
	1.2 Formato de entrega	2
2	El supercómputo en la UNAM hoy	2
3	Pensando en paralelo	2

1. Introducción

Esta es la tercera práctica de laboratorio del Seminario de Ciencias de la Computación A: *Introducción a la programación en paralelo con MPI, OpenMP y CUDA*.

1.1. Requerimientos

Para realizar esta práctica se debe contar con acceso a internet y a un equipo de cómputo, ya sea local o remoto.

1.2. Formato de entrega

Se deben de subir los siguientes archivos al repositorio de GitHub en un directorio un directorio con tu nombre y primer apellido (e.g. LeninPavon):

1. Un archivo de markdown (o en su defecto un pdf) respondiendo a las preguntas teóricas.

Otro formato de entrega aceptable es

1. Un notebook (archivo con extensión .ipynb) donde se respondan las preguntas teóricas

2. El supercómputo en la UNAM hoy

Es importante recordar que existe la ciencia que se hace y se escribe en español. En particular, la UNAM hace un trabajo importante con respecto a mantenerse en la vanguardia y apoyar a los proyectos de Cómputo de Alto Rendimiento.

Realiza una de las siguientes dos actividades:

- 1. Si asististe al seminario de becarios DGTIC, resume (en aproximadamente 250 palabras) el contenido de cualquier plática a la que hayas asistido.
- 2. Si no asististe a ninguna ponencia del seminario, lee el siguiente Cuaderno Técnico y describe el funcionamiento y arquitectura de GRID UNAM.

3. Pensando en paralelo

Antes de empezar a programar, escoge dos de los siguientes problemas y describe si es posible paralelizarlos o no. Justifica y argumenta tu respuesta y realiza un diagrama tipo PERT o un diagrama de flujo (que indique las acciones necesarias para resolver un problema) sobre qué partes se podrían paralelizar. Supón que tienes recursos computacionales infinitos y tiempo infinito.

- 1. Multiplicación de dos matrices
- 2. Problema de *n* cuerpos
- Búsqueda de un libro en una biblioteca con el sistema de clasificación Library of Congress
- 4. Suma de los primeros *n* números naturales

- 5. Solución de un sistema de ecuaciones lineales
- 6. Ordenar un conjunto de libros en orden alfabético
- 7. Teniendo un plan de estudios que tiene materias con prerrequisitos obligatorios, encontrar la organización de materias que te permite graduarte en el menor tiempo posible