2. Co as stated in the hint the volume of the d-dimensional ball is: The acceptance rate of a sample is proportional to the ratio of volumes of the d-dimensional unit box (1 d=1) and ball $\left(\frac{2\pi}{J}, \left(\frac{d}{2}, \frac{d}{2}\right)\right)$ => meaning The acceptance probability is: $p = V_0 - 2\pi^{\frac{d}{2}}$ $V_{13} - J \cdot (\frac{d}{2} - I)I$ · For d=10: P = 2 11 2.5 = 34.98 = 0.145 =) as seen in the lecture, Following the geometric distribution Expectation, the Expected number of samples to obtain \mathcal{L} accepted one is: $E = \overline{p}$ meaning to obtain 1000 accepted samples ve will need: 1000E = 1000 = 1000 = 6859.7 = 6860 samples

=) similarly, for
$$d=20$$
 $P = \frac{2\pi}{90.3!} = 0.0278$
 $E = 38.7 mg$
 $1000E = 38,7 ug,3 n = 28,750$ samples

=) and for $d = u0$;

 $P = \frac{2\pi}{100.13!} = 3.6.10^{-9}$
 $E = 272,413,226.2$
 $1000E = 2.27.10$ samples