

INA228 JAJSKZ6A - JANUARY 2021 - REVISED MAY 2022

INA228 85V、20Bit、極高精度電力/エネルギー/充電モニター I²C インターフェ イス付き

1 特長

- 高分解能、20 ビット・デルタ シグマ ADC
- 電流モニタ精度:
 - オフセット電圧:±1µV (最大値)
 - オフセットのドリフト:±0.01µV/℃ (最大値)
 - ゲイン誤差:±0.05% (最大値)
 - ゲイン誤差ドリフト:±20ppm/℃ (最大値)
 - 同相信号除去:154dB(最小値)
- 電力モニタリング精度:
 - 0.5% フルスケール、-40℃~+125℃ (最大値)
- エネルギーと充電の精度:
 - 1.0% フルスケール (最大値)
- 高速アラート応答:**75us**
- 広い同相範用:-0.3V~+85V
- バス電圧センス入力:0V~85V
- シャント・フルスケール差動範囲: ±163.84mV / ±40.96mV
- 入力バイアス電流:2.5nA (最大値)
- 温度センサ:±1℃(最大値 25℃ 時)
- 抵抗温度補償をプログラム可能
- 変換時間と平均化をプログラム可能
- 2.94MHz 高速 I^2C インターフェイス、16 ピンで選択 可能なアドレス付き
- 2.7V~5.5V 電源で動作:
 - 動作時電流:640µA (標準値)
 - シャットダウン電流:5µA (最大値)

2 アプリケーション

- DC/DC コンバーター と パワー・インバーター
- 産業用バッテリー・パック
- パワー・オーバー・イーサネット(PoE)
- 通信機器
- エンタープライズ・サーバー

3 概要

INA228 は、電流センシング・アプリケーションに特化して 設計された 20 ビットのデルタ - シグマ ADC を内蔵した、 超高精度のデジタル電力モニタです。このデバイスは、抵 抗性シャント・センス素子の両端で ± 163.84mV または ± 40.96mV のフルスケール差動入力を測定でき、コモン・モ ード電圧は -0.3V~+85 V でサポートされます。

INA228 は、±0.5% の高精度内蔵オシレータを使用しな がら、電流、バス電圧、温度、電力、エネルギー、電荷の 蓄積量を報告すると同時に、必要な計算をバックグラウン ドで実行します。内蔵の温度センサはダイ温度測定の精 度が±1℃で、システムの周囲温度を監視するため役立 ちます。

INA228 は低オフセットおよび低ゲイン・ドリフト設計のた め、このデバイスは製造時に複数の温度較正を行わない 正確なシステムで使用できます。さらに、非常に低いオフ セット電圧とノイズにより、mA~kA のセンシング・アプリケ ーションでの使用が可能になり、センシング・シャント素子 での大きな消費電力損失なしに、広いダイナミック・レンジ を実現できます。入力バイアス電流が低いことから、より大 きな電流センス抵抗を使用できるため、uA の範囲で正確 に電流を測定できます。

このデバイスでは、50µs から 4.12ms までの ADC 変換 時間を選択でき、1x から 1024x までのサンプル平均化を 行うことで、測定データのノイズをさらに減らすことができま

製品情報(1)

部品番号	パッケージ	本体サイズ (公称)
INA228	VSSOP (10)	3.00mm × 3.00mm

提供されているすべてのパッケージについては、データシートの 末尾にあるパッケージ・オプションについての付録を参照してくだ さい

ブロック概略図

目次

1 特長 1	7.4 デバイスの機能モード	.19
2 アプリケーション1	7.5 プログラミング	19
3 概要1	7.6 レジスタ・マップ	.22
4 改訂履歴2	8 アプリケーションと実装	
5 ピン構成と機能3	8.1 アプリケーション情報	.32
6 仕様3	8.2 代表的なアプリケーション	.37
6.1 絶対最大定格3	9 電源に関する推奨事項	.41
6.2 ESD 定格4	10 レイアウト	.41
6.3 推奨動作条件4	10.1 レイアウトのガイドライン	41
6.4 熱に関する情報4	10.2 レイアウト例	41
6.5 電気的特性5	11 デバイスおよびドキュメントのサポート	.42
6.6 タイミング要件 (I ² C)8	11.1 Receiving Notification of Documentation Updates	42
6.7 タイミング図8	11.2 サポート・リソース	
6.8 標準的特性9	11.3 商標	42
7 詳細説明13	11.4 Electrostatic Discharge Caution	
7.1 概要13	11.5 Glossary	
7.2 機能ブロック図13	12 メカニカル、パッケージ、および注文情報	.42
7.3 特長の説明13		

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

CI	hanges from Revision * (January 2021) to Revision A (May 2022)	Page
•	文書全体の表、図、相互参照の採番方法を更新	1
•	ドキュメントに記載されている図と数式のすべてを、商用データシートと一致するよう更新	1
•	「電気的特性」表で、電源除去比のパラメータ名をシャント・オフセット電圧と電源との関係に変更	5
•	電源に対する V _{BUS} オフセット電圧の標準値を「電気的特性」表に追加	5
	ADC の標準変換時間に対してレジスタ・フィールド設定を追加。	
	「高精度デルタ - シグマ ADC」セクションに内容を追加	
	シャント・キャリブレーション (SHUNT_CAL) レジスタの 14-0 ビット名を CURRLSB から SHUNT_CAL に変更	
	デバイス ID (DEVICE_ID) レジスタのリセット値を変更	
	式 2 の式の定義を変更	

5 ピン構成と機能

図 5-1. DGS パッケージ 10 ピン VSSOP 上面図

表 5-1. ピン機能

	ピン	│ - 種類	説明		
番号 名称 1 Δ1		1里沒	況均		
1	A1	デジタル入力	I ² C アドレス・ピン。 GND、SCL、SDA、 または VS に接続する。		
2	A0	デジタル入力	I ² C アドレス・ピン。GND、SCL、SDA、または VS に接続する。		
3	ALERT	デジタル出力	オープン・ドレインのアラート出力で、デフォルト状態はアクティブ Low。		
4	SDA	デジタル入力/出力	オープン・ドレイン双方向 I ² C データ。		
5	SCL	デジタル入力	I ² C クロック入力。		
6	VS	電源	電源、2.7V~5.5V。		
7	GND	グランド	グランド。		
8	VBUS	アナログ入力	バス電圧入力。		
9	IN-	アナログ入力	デバイスへの負入力。下限側アプリケーションの場合は、センス抵抗の負荷側に接続する。上限側アプリケーションの場合は、センス抵抗のグランド側に接続する。		
10	IN+	アナログ入力	デバイスへの正入力。下限側アプリケーションの場合は、センス抵抗の電源側に接続する。上限側アプリケーションの場合は、センス抵抗の負荷側に接続する。		

6 仕様

6.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

		最小值	最大値	単位
Vs	電源電圧		6	V
V _{IN+} , V _{IN-} (2)	差動 (V _{IN+}) - (V _{IN-})	-40	40	V
VIN+、VIN-	同相	-0.3	85	V
V _{VBUS}		-0.3	85	V
V _{ALERT}	ALERT	-0.3	V _S + 0.3	V
V _{IO}	SDA, SCL	-0.3	6	V
I _{IN}	各ピンの入力電流		5	mA
I _{OUT}	デジタル出力電流		10	mA
TJ	接合部温度		150	°C
T _{stg}	保存温度	-65	150	°C

^{(1) 「}絶対最大定格」に示された値を上回るストレスがかかった場合、デバイスに永続的な損傷が発生する可能性があります。これはストレスの定格の みについて示してあり、このデータシートの「推奨動作条件」に示された値を超える状態で本製品が正常に動作することを暗黙的に示すものでは ありません。絶対最大定格の状態に長時間置くと、本製品の信頼性に影響を与えることがあります。

⁽²⁾ VIN+とVIN-はそれぞれ IN+ピンとIN-ピンの電圧です。

6.2 ESD 定格

			値	単位
V		人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠、すべてのピン(1)	±2000	V
V _(ESD)	静電気放電 	荷電デバイス・モデル (CDM)、JEDEC 規格 JESD22-C101 準拠、すべてのピン ⁽²⁾	±1000	V

- (1) JEDEC のドキュメント JEP155 に、500V HBM では標準の ESD 制御プロセスで安全な製造が可能であると規定されています。
- (2) JEDEC のドキュメント JEP157 に、250V CDM では標準の ESD 制御プロセスで安全な製造が可能であると規定されています。

6.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

		最小値	公称値 最大	単位
V _{CM}	同相入力範囲	-0.3	85	V
Vs	動作電源電圧範囲	2.7	5.5	V
T _A	周囲温度	-40	125	°C

6.4 熱に関する情報

		INA228	
	熱評価基準 ⁽¹⁾	DGS (VSSOP)	単位
		10 ピン	
$R_{\theta JA}$	接合部から周囲までの熱抵抗	177.6	°C/W
$R_{\theta JC(top)}$	接合部からケース (上部) までの熱抵抗	66.4	°C/W
$R_{\theta JB}$	接合部から基板までの熱抵抗	99.5	°C/W
Ψ_{JT}	接合部から上部までの特性評価パラメータ	9.7	°C/W
Y_{JB}	接合部から基板までの特性評価パラメータ	97.6	°C/W
R _{θJC(bot)}	接合部からケース (底面) までの熱抵抗	N/A	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション・レポートを参照してください。

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6.5 電気的特性

 $T_A = 25$ °C、 $V_S = 3.3$ V、 $V_{SENSE} = V_{IN+} - V_{IN-} = 0$ V、 $V_{CM} = V_{IN-} = 48$ V (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
入力						
V _{CM}	同相入力範囲	T _A = -40°C~+125°C	-0.3		85	V
V _{VBUS}	バス電圧入力範囲		0		85	V
CMRR	同相除去	-0.3V < V _{CM} < 85V, T _A = -40°C∼+125°C	154	170		dB
\ /		$T_A = -40$ °C \sim +125°C, ADCRANGE = 0	-163.84		163.84	mV
V_{DIFF}	シャント電圧入力範囲	T _A = -40°C~+125°C, ADCRANGE = 1	-40.96		40.96	mV
\ <u>'</u>	>>	V _{CM} = 48V, T _{CT} > 280μs		±0.3	±1	μV
V _{os}	シャント・オフセット電圧	V _{CM} = 0V, T _{CT} > 280μs		±0.3	±1	μV
dV _{os} /dT	シャント・オフセット電圧ドリフト	T _A = -40°C~+125°C		±2	±10	nV/°C
PSRR	シャント・オフセット電圧と電源との関係	$V_S = 2.7V \sim 5.5V$, $T_A = -40^{\circ}C \sim +125^{\circ}C$		±0.05	±0.5	μV/V
V _{os_bus}	V _{BUS} オフセット電圧	V _{BUS} = 20mV		±1	±2.5	mV
dV _{os} /dT	V _{BUS} オフセット電圧ドリフト	T _A = -40°C~+125°C		±4	±20	μV/°C
PSRR	V _{BUS} オフセット電圧と電源	V _S = 2.7V∼5.5V		±0.25		mV/V
I _B	入力バイアス電流	IN+ または IN- のいずれかの入力、V _{CM} = 85V		0.1	2.5	nA
Z _{VBUS}	VBUS ピンの入力インピーダンス	アクティブ・モード	0.8	1	1.2	ΜΩ
I _{VBUS}	VBUS ピンのリーク電流	シャットダウン・モード、V _{BUS} = 85V		10		nA
R _{DIFF}	入力差動インピーダンス	アクティブ・モード、V _{IN+} - V _{IN-} < 164mV		92		kΩ
DC 精度					1	
G _{SERR}	シャント電圧のゲイン誤差	V _{CM} = 24V		±0.01	±0.05	%
G _{S_DRFT}	シャント電圧のゲイン誤差ドリフト				±20	ppm/°C
G _{BERR}	V _{BUS} 電圧のゲイン誤差			±0.01	±0.05	%
G _{B_DRFT}	V _{BUS} 電圧のゲイン誤差ドリフト				±20	ppm/°C
P _{TME}	電力の合計測定誤差 (TME)	T _A = -40°C~+125°C (フルスケール)			±0.5	%
E _{TME}	エネルギーと充電の TME	フルスケール電力			±1	%
	ADC の分解能			20		ビット
		シャント電圧、ADCRANGE = 0		312.5		nV
	41 00 7 4 1/-	シャント電圧、ADCRANGE = 1		78.125		nV
	1LSB ステップ・サイズ	バス電圧	,	195.3125		μV
		温度		7.8125		m°C
		変換時間フィールド = 0h		50		
		変換時間フィールド = 1h		84		
		変換時間フィールド = 2h		150		
-	ADO 35-10 to 88 (1)	変換時間フィールド = 3h		280		
CT	ADC 変換時間 ⁽¹⁾	変換時間フィールド = 4h		540		μs
		変換時間フィールド = 5h		1052		
Г _{СТ}		変換時間フィールド = 6h		2074		
		変換時間フィールド = 7 h		4120		
INL	積分非直線性誤差			±2		m%
DNL	微分非直線性誤差			0.2		LSB
クロック・ソ	· /ース					
Fosc	内部発振器の周波数			1		MHz

6.5 電気的特性 (continued)

 T_A = 25°C、 V_S = 3.3V、 V_{SENSE} = V_{IN+} - V_{IN-} = 0V、 V_{CM} = V_{IN-} = 48V (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
E	内郊が振明の国連券公羊	T _A = 25°C			±0.5	%
FOSC_TOL	内部発振器の周波数公差	T _A = -40°C~+125°C			±1	%

Submit Document Feedback

6.5 電気的特性 (continued)

 T_A = 25°C、 V_S = 3.3V、 V_{SENSE} = V_{IN+} - V_{IN-} = 0V、 V_{CM} = V_{IN-} = 48V (特に記述のない限り)

	パラメータ	テスト条件	最小値	標準値	最大値	単位
温度セン	か	·				
	測定範囲		-40		+125	°C
		T _A = 25°C		±0.15	±1	°C
	温度精度	T _A = -40°C~+125°C		±0.2	±2	°C
電源		·				
Vs	電源電圧		2.7		5.5	V
	±5. ↓ □+ 高砂ケ	V _{SENSE} = 0V		640	750	μΑ
IQ	静止時電流	$V_{SENSE} = 0V$, $T_A = -40^{\circ}C \sim +125^{\circ}C$			1.1	mA
I _{QSD}	静止時電流、シャットダウン	シャットダウン・モード		2.8	5	μA
т	ゴックのお動吐胆	パワーアップ (NPOR)		300		
T _{POR}	デバイスの起動時間	シャットダウン・モードから		60		μs
デジタル	入出力					
V _{IH}	ロジック入力レベル、High	SDA, SCL	1.2		5.5	V
V_{IL}	ロジック入力レベル、Low		GND		0.4	V
V _{OL}	ロジック出力レベル、Low	I _{OL} = 3mA	GND		0.4	V
I _{IO_LEAK}	デジタル・リーク入力電流	$0 \le V_{IN} \le V_{S}$	-1		1	μA

⁽¹⁾ 発振器の精度とドリフトの影響を受けます

6.6 タイミング要件 (I²C)

		最小値	公称值	最大値	単位
I ² C バス (高	j速モード)				
F _(SCL)	I ² C クロック周波数	1		400	kHz
t _(BUF)	STOP 条件と START 条件間のバス開放時間	600			ns
t _(HDSTA)	START 条件反復後のホールド時間。この時間が経過した後、最初のクロックが 生成される。	100			ns
t _(SUSTA)	反復 START 条件のセットアップ時間	100			ns
t _(SUSTO)	STOP 条件のセットアップ時間	100			ns
t _(HDDAT)	データ・ホールド時間	10		900	ns
t _(SUDAT)	データ・セットアップ時間	100			ns
t _(LOW)	SCL クロックの Low 期間	1300			ns
t _(HIGH)	SCL クロックの High 期間	600			ns
t _F	データ立ち下がり時間			300	ns
t _F	クロック立ち下がり時間			300	ns
t _R	クロック立ち上がり時間			300	ns
I ² C バス (高	速モード)				
F _(SCL)	I ² C クロック周波数	10		2940	kHz
t _(BUF)	STOP 条件と START 条件間のバス開放時間	160			ns
t _(HDSTA)	START 条件反復後のホールド時間。この時間が経過した後、最初のクロックが 生成される。	100			ns
t _(SUSTA)	反復 START 条件のセットアップ時間	100			ns
t _(SUSTO)	STOP 条件のセットアップ時間	100			ns
t _(HDDAT)	データ・ホールド時間	10		125	ns
t _(SUDAT)	データ・セットアップ時間	20			ns
t _(LOW)	SCL クロックの Low 期間	200			ns
t _(HIGH)	SCL クロックの High 期間	60			ns
t _F	データ立ち下がり時間			80	ns
t _F	クロック立ち下がり時間			40	ns
t _R	クロック立ち上がり時間			40	ns

6.7 タイミング図

図 6-1. I²C タイミング図

6.8 標準的特性

 T_A = 25°C、 V_{VS} = 3.3V、 V_{CM} = 48V、 V_{SENSE} = 0、 V_{VBUS} = 48V (特に記述のない限り)

6.8 標準的特性 (continued)

 T_A = 25°C、 V_{VS} = 3.3V、 V_{CM} = 48V、 V_{SENSE} = 0、 V_{VBUS} = 48V (特に記述のない限り)

6.8 標準的特性 (continued)

 T_A = 25°C、 V_{VS} = 3.3V、 V_{CM} = 48V、 V_{SENSE} = 0、 V_{VBUS} = 48V (特に記述のない限り)

6.8 標準的特性 (continued)

 T_A = 25°C、 V_{VS} = 3.3V、 V_{CM} = 48V、 V_{SENSE} = 0、 V_{VBUS} = 48V (特に記述のない限り)

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7 詳細説明

7.1 概要

INA228 デバイスは、I²C デジタル・インターフェイスを搭載したデジタル電流センス・アンプです。このデバイスは、シャント電圧、バス電圧、内部温度を測定して、システムを精密に制御する際の正確な判断を行うために必要な電流、電力、エネルギー、充電を計算します。プログラマブル・レジスタにより、測定の精度をフレキシブルに構成することができ、連続動作やトリガ動作も可能になります。レジスタ情報の詳細については、セクション 7.6 を参照してください。

7.2 機能ブロック図

7.3 特長の説明

7.3.1 多用途の高電圧測定機能

INA228 は 2.7V~5.5V の電源で動作しますが、最大 85V のレール上の電圧と電流を測定することができます。電流は、IN+ ピンと IN- ピンにある外部シャント抵抗の電圧降下を検出することにより測定します。INA228 の入力段は、入力の同相電圧がデバイスの電源電圧 V_Sよりも高くなるように設計されています。入力ピンでサポートされている同相電圧の範囲は、-0.3V~+85V です。そのため、このデバイスは電流測定値の下限側と上限側のどちらにも最適です。同相入力範囲とデバイスの電源電圧は互いに独立しているため、電源シーケンスに関して特に考慮することはありません。したがって、バス電圧は電源電圧のオフ時およびオン時に発生するため、デバイスに損傷を与えることはありません。

また、このデバイスは、V_{BUS} ピンでバスの電源電圧を測定し、内蔵の温度センサで温度を測定します。 差動シャント電圧は IN+ ピンと IN- ピンの間で測定し、バス電圧はデバイスのグランドを基準にして測定します。 監視対象となるバス電圧の範囲は 0V~85V で、監視対象の温度範囲は -40℃~+125℃ です。

シャント電圧、バス電圧、および温度の測定値は、図 7-1 に示すように、内部で 1 つの ADC に多重化されています。

図 7-1. 高電圧入力マルチプレクサ

7.3.2 内部測定および計算エンジン

電流と充電はシャント電圧の測定後に計算され、電力とエネルギーはバス電圧の測定後に計算されます。電力とエネルギーは、前回の電流の計算結果と最新のバス電圧の測定値に基づいて計算されます。SHUNT_CAL レジスタにロードされた値が 0 の場合、電力、エネルギー、充電の値は 0 として通知されます。

図 7-2 に示すように、平均の数が 1 に設定されていると、電流、電圧、温度の値はすぐに出ます。ただし、平均化を使用している場合、ADC の各測定値は対応の平均化レジスタに保存されている中間結果です。すべての ADC のサンプルの後で、新たに計算された電流、電圧、温度の値は、設定した平均数に達するまで、対応の平均化レジスタに追加されます。すべてのサンプルの測定後、平均電流と電圧が決定され、電力が計算されると、結果は対応の出力レジスタにロードされ、そこから読み取りが可能となります。

エネルギーと充電の値は、それぞれの変換サイクルごとに累積されます。そのため、INA228 の平均化機能はこれらには 適用されません。

電力、充電、エネルギーの計算はバックグラウンドで実行されるため、変換時間全体には追加されません。

図 7-2. 電力、エネルギー、充電の計算方法

7.3.3 低いバイアス電流

INA228 は非常に低い入力バイアス電流を特長としており、いくつかの利点があります。INA228 は入力バイアス電流が低いため、アクティブ状態とシャットダウン状態の両方で、デバイスの消費電流が低減されます。低バイアス電流のもう 1 つの利点は、信号をデジタル・データに変換する前に、入力フィルタを使用して高周波ノイズを除去できることです。従来のデジタル電流センス・アンプでは、入力フィルタの追加に伴い、精度が低下していました。しかし、低バイアス電流のため、入力フィルタによる精度の低下は最小限に抑えられます。低バイアス電流の他の利点は、小さな電流を正確に検出するために、大きなシャント抵抗を使用できることです。シャント抵抗に大きな値を使用すると、デバイスは sub-mA の範囲で電流を正確に監視することができます。

INA228 のバイアス電流は、検出された電流が 0 のときに最小となります。電流が増加し始めると、シャント抵抗の両端の 差動電圧降下は増加し、その結果、図 6-14 に示すように、バイアス電流が増加します。

7.3.4 高精度デルタ - シグマ ADC

統合型 ADC は、シャント電圧測定チャネルにおける双方向電流をサポートするように設計された、高性能、低オフセット、低ドリフトのデルタ・シグマ ADC です。測定された入力は、図 7-1 に示す高電圧入力マルチプレクサを経由して選択され、ADC 入力に入ります。ADC アーキテクチャにより、温度範囲全体の低ドリフト測定と、同相電圧、温度、電源変動に対する安定したオフセット測定を実現しています。電流センシング・アプリケーションでは、システムの実用的なダイナミック・レンジを最大化する OV 近くのオフセット電圧を供給する低オフセット ADC が推奨されます。

各入力の ADC 変換時間は、ADC_CONFIG レジスタの VSHCT、VBUSCT、VTCT ビットごとに、それぞれ 50µs~4.12ms の範囲で設定可能です。さらに、1x~1024x の範囲でサンプル平均化機能が実装されており、ADC_CONFIG レジスタの AVG ビットで選択することができます。サンプル変換時間と平均化は、セクション 7.3.4.1 で説明している内蔵デジタル・フィルタの一部です。

INA228 は、シャント電圧、バス電圧、ダイ温度、または ADC_CONFIG レジスタの MODE ビットで選択した設定に基づいた、これらの組み合わせを測定することができます。これにより、シャント電圧のみ、またはバス電圧のみを変換するモー

ドを選択できるため、ユーザーは特定のアプリケーション要件を満たすように監視機能を設定することができます。平均化が選択されていない場合、ADC 変換が完了すると、変換された値は対応するレジスタで個別に更新され、変換完了時にデジタル・インターフェイスから読み出すことが可能です。シャント電圧、バス電圧、温度入力の変換時間は、ADC_CONFIG レジスタでプログラムされた値に応じて、50µs~4.12ms の範囲で個別に設定されます。有効な測定入力はシーケンシャルに変換されるため、すべての入力の総変換時間は、各入力の変換時間と有効な入力数によって異なります。平均化が使用されている場合、平均化アキュムレータに中間値が保存され、変換シーケンスは平均化の回数に到達するまで繰り返されます。すべての平均化が完了すると、最終的な値は対応のレジスタで更新され、読み出しが可能になります。これらの値は、次に変換が完了して結果が書き換えられるまで、データ出力レジスタに保持されます。この場合、データ出力レジスタの読み取りは、動作中の変換には影響しません。

ADC には、連続モードとトリガ・モードの 2 種類の変換モードがあり、ADC_CONFIG レジスタの MODE ビットで設定されます。連続変換モードでは、前述のように、ADC は入力測定値の変換と出力レジスタの更新を無限ループで連続して行います。トリガ変換モードでは、前述のように ADC は入力測定値を変換し、その後 MODE ビットへの書き込みによって別のシングルショット・トリガが生成されるまで ADC はシャットダウン・モードに入ります。MODE ビットを書き込むと、動作中のトリガ変換や連続変換は割り込みが入り、再始動します。デバイスはいつでも読み出すことが可能であり、最後に行われた変換のデータは有効なまま保持されますが、トリガ変換の調整に使われる変換準備フラグ (DIAG_ALRT レジスタのCNVRF ビット) は使用することができます。このビットは、すべての変換と平均化が完了した後に設定されます。

変換準備フラグ (CNVRF) は、以下の条件でクリアされます。

- ADC_CONFIG レジスタに書き込む (シャットダウン・モード選択時を除く)
- DIAG ALRT レジスタを読み出す

INA228 デバイスがいずれかの変換モードで使用されている場合、セクション 7.3.2 に記載されているように、専用デジタル・エンジンは電流、電力、充電、エネルギーの値をバックグラウンドで計算しています。トリガ・モードでは、デバイスは経過時間のトラックを保存しないため、蓄積レジスタ (ENERGY & CHARGE) は無効になります。エネルギーと充電の測定時間の蓄積について、重要な測定が必要とされるアプリケーションの場合、デバイスは蓄積結果を連続更新し、システムの充電とエネルギー消費を正しく表現できるよう、デバイスが連続変換モードを使用するように設定する必要があります。すべての計算はバックグラウンドで実行され、変換時間に影響しません。

システムの他のコンポーネントとの同期が必要なアプリケーションの場合、INA228 の変換時間は CONFIG レジスタの CONVDLY ビットをプログラミングすることにより、0 (遅延なし)~510ms の範囲で遅延する可能性があります。変換遅延のプログラミングにおける分解能は 2ms です。変換遅延は、デフォルトで 0 に設定されます。電圧や電流を監視する目的で使用される外部のデバイスが複数ある場合、変換遅延によって測定の同期が行われます。電圧と電流を測定する際に時間を合わせる必要があるアプリケーションの場合、外部の電圧と電流の測定がほぼ同時に行われるように、遅延している電流測定には 2 つのデバイスを使用することができます。ADC の内部時間のベースが正確でも、内部時間と外部時間のベースの不一致により、時間の経過とともに同期は失われていくことに注意してください。

7.3.4.1 低レイテンシのデジタル・フィルタ

このデバイスは、ADC 出力データに対してデシメーションとフィルタリングの両方を行うローパス・デジタル・フィルタが内蔵しており、ノイズの軽減に役立ちます。デジタル・フィルタは、さまざまな出力データ・レートを自動的に調整して、常に 1回の変換サイクル内に収まるようにします。ユーザーは、出力変換時間 T_{CT} を 50μ s~4.12ms の間で柔軟に選択できます。この構成では、出力信号のナイキスト周波数に 1 つ目の振幅ノッチが現れます。これは選択した変換時間によって決まり、 f_{NOTCH} = 1 / (2 x T_{CT}) で定義されます。これは、記載されているように、フィルタのカットオフ周波数のスケーリングがデータ出力レートと比例することを意味しています。図 7-3 に、1.052ms の変換時間が選択されたときのフィルタ応答を示します。

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

変換時間 = 1.052ms、変換は1回のみ

図 7-3. ADC の周波数応答

7.3.4.2 フレキシブルな変換時間と平均化

シャント電圧、バス電圧、温度の ADC 変換時間は、50µs~4.12ms の間で個別に設定することができます。変換時間をフレキシブルに設定できることにより、さまざまなノイズの多い環境でも堅牢な動作が可能となります。また、このデバイスは、1回の変換から 1024 回の変換までのすべての平均化時間をプログラム可能です。選択した平均の量は、アクティブなすべての測定入力に均一に適用されます。表 7-6 に示すように、ADC_CONFIG レジスタには、サポートされている変換時間と平均化モードのさらに詳細な内容が提供されています。INA228 の ADC の有効分解能は、変換時間を長くし、平均化の数を増やすことにより、向上します。図 7-4 と 図 7-5 に、入力信号が一定の場合の変換時間と平均化の影響について示します。

図 7-4. ノイズと変換時間の関係 (平均化 = 1)

図 7-5. ノイズと変換時間の関係 (平均化 = 128)

変換時間と平均化を行う変換数の設定は、測定の有効分解能に影響します。平均化によるノイズの低減や有効ビット数 (ENOB) の増加の詳細については、セクション 8.1.3 を参照してください。

7.3.5 シャント抵抗ドリフト補償

INA228 デバイスは、-40℃~+125℃ のダイ温度測定が可能な内部温度センサを備えています。温度センサの精度は、動作温度範囲にわたって ±2℃ です。温度の値は DIETEMP レジスタ内に格納され、デジタル・インターフェイスを使用して読み取ることができます。

このデバイスには、温度の測定値を利用してシャント抵抗の温度分散を補償する機能があります。この機能は、CONFIG レジスタの TEMPCOMP ビットを設定することにより有効にできます。SHUNT_TEMPCO は、使用されるシャントの温度係数を入力するようにプログラムできるレジスタです。SHUNT_TEMPCO レジスタのフルスケール値は 16384ppm/℃です。温度補償は +25℃ を基準としています。シャントは常に正の温度係数を持つと仮定すると、温度補償は式 1 のようになります。

$$R_{ADJ} = R_{NOM} + \frac{R_{NOM} \times (DIETEMP - 25) \times SHUNT_TEMPCO}{10^6}$$
(1)

ここで

- R_{NOM} は、25℃ におけるシャント抵抗の公称値 (Ω) です。
- DIETEMP は DIETEMP レジスタ内の温度の値で、単位は °C です。
- SHUNT TEMPCO はシャント温度係数で、単位は ppm/℃ です。

この機能を有効にして正しくプログラムすると、CURRENT レジスタのデータはダイ温度を常時監視することによって訂正され、温度の関数になります。INA228 のダイ温度が補償に使われているため、補償の有効性は、抵抗と INA228 が熱結合している程度によって異なります。

注

警告: 温度補償が何らかの条件下で有効になっている場合、計算された電流値の結果は実際の値よりも低くなる可能性があります。一般的に、シャント電圧の値が大きい (全範囲の 70% を超える) 場合、温度係数の値が高い (2000ppm/℃ を超える) シャントがある場合、高温 (100℃ を超える) の場合に、この条件が発生します。低温時にシャント電圧が上限範囲になるよう、温度係数を高くしたシャントに定電流が流れる状況を想像してください。温度が上昇すると、最大シャント電圧になるまで、デバイスは定電流を正確に通知します。最大シャント電圧に達した後も温度は上昇し続けるため、デバイスはさらに低い電流を通知し始めます。これは、選択した ADC 範囲を電圧が超えているために、検出されたシャント電圧が一定のままでも、計算された実効抵抗が増加し続けるためです。

7.3.6 内蔵高精度発振器

デバイス内部のタイムベースは、室温において公差 0.5% 未満にトリムされた内部発振器から供給されます。高精度発振器は、ADC 変換のタイミング・ソースであり、エネルギーや充電の計算で時間の計測に使用されます。デジタル・フィルタ応答は変換時間によって異なるため、高精度クロックによって、温度範囲全体にわたるフィルタ応答とノッチ周波数の一貫性が保証されます。電源投入時、内部発振器と ADC は約 300µs で 1% 未満の誤差安定性に到達します。クロックが安定すると、ADC のデータ出力は、セクション 6 に示す電気的仕様どおりの正確な値となります。

7.3.7 マルチアラート監視とフォルト検出

INA228 には、多目的のオープン・ドレイン ALERT 出力ピンがあり、複数の診断結果の通知や、デバイスがトリガ・モードと連続変換モードの両方で動作しているときに、ADC 変換が完了したことを示すために使用することができます。表 7-1 に示す診断は定期的に監視され、監視された出力値が関連の範囲外スレッショルドを超えるたびに、ALERT ピンを経由して通知されます。

表 7-1. ALERT 診断の説明

INA228 診断	DIAG_ALRT レジスタのステータス・ビット (RO)	範囲外スレッショルド・ レジスタ (R/W)	レジスタのデフォルト値
シャント低電圧制限	SHNTUL	SUVL	0x8000 h (2 の補数)

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 7-1. ALERT 診断の説明 (continued)

INA228 診断	DIAG_ALRT レジスタのステータス・ビット (RO)	範囲外スレッショルド・ レジスタ (R/W)	レジスタのデフォルト値
シャント過電圧制限	SHNTOL	SOVL	0x7FFF h (2 の補数)
バス電圧制限超過	BUSOL	BOVL	0x7FFF h (2 の補数、正の値のみ)
バス電圧低電圧	BUSUL	BUVL	0x0000 h (2 の補数、正の値のみ)
温度制限超過	TMPOL	TEMP_LIMIT	0xFFFF h (2 の補数、正の値のみ)
電力制限超過	POL	PWR_LIMIT	0x7FFF h (2 の補数)

DIAG_ALRT レジスタからの読み取り値は、ALERT ピンでトリガされた診断の種類を判断するために使用されます。このレジスタは、表 7-16 に示すように、その他の関連診断を監視したり、ALERT ピンの一部の機能の構成にも使用することができます。

- アラート・ラッチ・イネーブル ALERT ピンがトリガされた場合、この機能により、すべての診断状態がクリアされてもピンの値は保持されます。DIAG_ALRT レジスタの読み取りによって、ALERT ピンの状態はリセットされます。この機能は、ALATCH ビットを設定することによりイネーブルになります。
- 変換準備イネーブル ADC 変換が完了して、デジタル・インターフェイスから出力値を読み取る準備ができるとアサートされるように、ALERT ピンをイネーブルにします。この機能は、CNVR ビットを設定することによりイネーブルになります。CNVR ビットの設定に関係なく、CNVRF ビットからは変換完了イベントも読み取ることが可能です。
- 平均出力でのアラート比較 ADC で生成された平均データ値と範囲外スレッショルド値を比較することができます。この機能により、範囲外スレッショルドと比較するときに、出力データからさらにノイズを除去して、ノイズに起因する誤アラートを防止できます。ただし、平均化に必要な時間があるため、診断は遅延します。この機能は、SLOWALERT ビットを設定するとイネーブルになります。
- アラート極性 デバイスは ALERT ピンのアクティブ状態を反転させることができます。ALERT ピンはオープン・ドレイン出力のため、抵抗によってプルアップする必要があります。ALERT ピンはデフォルトでアクティブ Low であり、APOL 制御ピンを使用してアクティブ High 機能に構成できます。

ALERT ピンで通知されないが DIAG ALRT レジスタの読み取りによって利用可能なその他の診断機能:

- 算術オーバーフロー MATHOF ビットにより示され、算術演算によって内部レジスタのオーバーフローが発生した場合に通知されます。
- メモリ・ステータス MEMSTAT ビットにより示され、デバイスの不揮発性トリム・メモリの状態を監視します。デバイスが正常に動作している場合、このビットは常に 1 です。
- エネルギー・オーバーフロー ENERGYOF ビットにより示され、データの蓄積によって ENERGY レジスタがオーバーフロー状態に達すると通知されます。
- 充電オーバーフロー CHARGEOF ビットにより示され、データの蓄積によって CHARGE レジスタがオーバーフロー 状態に達すると通知されます。

ADC 変換完了イベントが通知されるように ALERT ピンを構成すると、ALERT ピンは多目的通知出力になります。図 7-6 は、INA228 デバイスがシャント過電圧 (過電流) イベント、バス低電圧イベント、過熱イベント、電力制限超過イベントの影響を受けているときに、デバイスが ADC 変換完了イベントを通知している例です。

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

図 7-6. マルチアラートの構成

7.4 デバイスの機能モード 7.4.1 シャットダウン・モード

2 つの変換モード (連続およびトリガ) に加えて、このデバイスにはシャットダウン・モードがあり (ADC_CONFIG レジスタ の MODE ビットで選択)、静止時電流を 5µA 未満に低減し、デバイス入力への電流をオフにして、デバイスが使用されて いないときの電源ドレインへの影響を軽減します。デバイスのレジスタの書き込みと読み取りは、デバイスがシャットダウン・モードのときに可能になります。デバイスは、他のトリガ変換のコマンドか連続変換のコマンドを受信するまで、シャットダウン・モードを継続します。

シャットダウン・モード中は、デバイスは変換を実行するためのトリガを行うことができます。変換がトリガされると、ADCは変換を開始します。変換が完了すると、デバイスはシャットダウン状態に戻ります。

シャットダウン電流は非アクティブな通信バスで規定されています。図 6-23 に示すように、アクティブ・クロックとデータのアクティビティによって、バス周波数の関数として消費電流は増加します。

7.4.2 パワーオン・リセット

V_S が 1.26V (標準値) 以下まで降下すると、パワーオン・リセット (POR) はアサートされ、そのときすべてのレジスタがデフォルト値にリセットされます。 CONFIG レジスタの RST ビットを設定すると、デバイスのリセットを手動で開始することができます。 パワーアップ・レジスタのデフォルト値は、各レジスタの説明のリセット列に記載されています。 各レジスタの説明へのリンクは、セクション 7.6 を参照してください。

7.5 プログラミング

7.5.1 I²C シリアル・インターフェイス

INA228 は、SMBus インターフェイスおよび I²C インターフェイスの両方で 2 次デバイスとしてのみ動作します。バスへの接続は、オープン・ドレインの SDA と SCL ラインを介して行われます。SDA と SCL ピンは、スパイク抑制フィルタとシュミット・トリガを内蔵し、入力スパイクとバス・ノイズの影響を最小限に抑えます。このデバイスは、デジタル I/O ラインにスパイク抑制フィルタを内蔵していますが、適切なレイアウト手法により、通信ラインへのカップリングの量を最小限に抑えることができます。このノイズは、2 つの通信ライン間の容量性カップリングの信号エッジから発生するか、またはシステム内に存在する他のスイッチング・ノイズ・ソースから発生します。通常、プリント回路基板 (PCB) 上のレイヤ間でグランドと並列にパターンを配線すると、通信ライン間のカップリングの影響が低減されます。通信ラインにシールドを付けることにより、意図しないノイズ・カップリングがデジタル I/O ラインに発生して、スタート・コマンドやストップ・コマンドが誤って解釈される可能性を低減します。

INA228 は、転送プロトコルとして高速モード (1kHz~400kHz)、およびハイスピード・モード (1kHz~2.94MHz) をサポートしています。 データ・バイトはすべて、最上位バイトが最初に転送され、SMBus 3.0 転送プロトコルに従います。

INA228 と通信するには、最初にメイン・デバイスが、2 次デバイスのアドレス・バイトを使用して、2 次デバイスのアドレッシングを行う必要があります。2 次デバイスのアドレス・バイトは、7 ビットのアドレス・ビットと、動作が読み出しか書き込みかを示す 1 ビットの方向ビットで構成されています。

このデバイスには、A0 と A1 の 2 つのアドレス・ピンがあります。表 7-2 に、16 個の設定可能な各アドレスのピン・ロジック・レベルを示します。デバイスは、すべてのバス通信における A0 ピンと A1 ピンの状態をサンプリングします。インターフェイス上での動作が発生する前に、ピンの状態を確立します。SDA ピンを A0 または A1 に接続してデバイス・アドレスを設定する場合、I2C アドレスの MSB には、適切なデバイス・アドレッシングを行うために、さらに 100ns のホールド時間が必要です。

A1	Α0	2 次デバイス・アドレス
GND	GND	1000000
GND	VS	1000001
GND	SDA	1000010
GND	SCL	1000011
VS	GND	1000100
VS	VS	1000101
VS	SDA	1000110
VS	SCL	1000111
SDA	GND	1001000
SDA	VS	1001001
SDA	SDA	1001010
SDA	SCL	1001011
SCL	GND	1001100
SCL	VS	1001101
SCL	SDA	1001110
SCL	SCL	1001111

表 7-2. アドレス・ピンと 2 次デバイス・アドレス

7.5.1.1 I²C シリアル・インターフェイスを使用した書き込みと読み取り

INA228 の特定のレジスタにアクセスすることにより、レジスタのポインタに適切な値を書き込むことができます。レジスタ、および対応のアドレスの一覧については、セクション 7.6 を参照してください。レジスタのポインタの値 (図 7-9 を参照) は、R/W ビットが Low になっている 2 次デバイス・アドレス・バイトの後に送信される最初のバイトです。デバイスへの書き込み動作を行うたびに、レジスタのポインタに指定する値が必要です。

レジスタへの書き込みは、メイン・デバイスによって送信される最初のバイトから開始されます。このバイトは2次デバイス・アドレスで、R/W ビットはLowです。有効なアドレスを受信すると、デバイスはアクノリッジ応答をします。メイン・デバイスによって送信される次のバイトは、アクセスされるレジスタのアドレスです。このレジスタのアドレス値により、レジスタのポインタは目的の内部デバイス・レジスタに更新されます。次の2バイトは、レジスタのポインタによってレジスタ・アドレスに書き込まれます。デバイスは、データ・バイトを受信するたびにアクノリッジ応答をします。開始条件または終了条件が生成されることにより、メイン・デバイスはデータ送信を終了することがあります。

デバイスから読み取りを行う場合、書き込み動作によってレジスタのポインタに保存されている最後の値によって、読み取り動作時に読み取るレジスタが決定されます。読み取り動作のレジスタのポインタを変更するには、レジスタのポインタに新しい値を書き込む必要があります。この書き込みを行うには、2次デバイス・アドレス・バイトをR/W ビット Low で発行し、続いてレジスタのポインタ・バイトを送信します。追加のデータは必要ありません。次に、メイン・デバイスは開始条件を生成し、2次デバイスに R/W ビット High でアドレス・バイトを送信して、読み取りコマンドを実行します。次のバイトは2次デバイスによって送信され、レジスタのポインタで指定されるレジスタの最上位バイトです。このバイトに続いて、メイン・デバイスからアクノリッジ応答があります。次に、2次デバイスは最下位バイトを送信します。2番目のデータ・バイトを受信し

たとき、メイン・デバイスはアクノリッジ応答をする場合としない場合があります。データ・バイトの受信後に非アクノリッジ応答が生成されること、または開始条件や終了条件が生成されることにより、メイン・デバイスはデータ送信を終了することがあります。同じレジスタから繰り返し読み取ることが望ましい場合は、レジスタのポインタ・バイトを連続送信する必要はありません。次の書き込み動作によって変更されるまで、デバイスはレジスタのポインタ値を保持するためです。

図 7-7 に、書き込み動作のタイミング図を示します。図 7-8 に、読み取り動作のタイミング図を示します。これらの図は、16 ビットのレジスタに対する読み取り / 書き込みを示しています。大きなバイト数のレジスタは、似た動作をします。

レジスタのバイトは、最初に最上位バイト、次に下位バイトの順に送信されます。

- A. 2 次デバイス・アドレス・バイトの値は、A0 ピンと A1 ピンの設定によって決まります。表 7-2 を参照してください。
- B. このデバイスは、パケット・エラー・チェック (PEC) はサポートしておらず、クロック・ストレッチは動作しません。

図 7-7. ワード書き込み形式のタイミング図

- A. 2 次デバイス・アドレス・バイトの値は、A0 ピンと A1 ピンの設定によって決まります。表 7-2 を参照してください。
- B. 読み取りデータは、最後のレジスタのポインタ位置から取得します。新しいレジスタを読み取る必要がある場合は、レジスタのポインタを更新してください。 図 7-9 を参照してください。
- C. メイン・デバイスからの ACK も送信されます。
- D. このデバイスは、パケット・エラー・チェック (PEC) はサポートしておらず、クロック・ストレッチは動作しません。

図 7-8. ワード読み取り形式のタイミング図

A. 2 次デバイス・アドレス・バイトの値は、A0 ピンと A1 ピンの設定によって決まります。表 7-2 を参照してください。

図 7-9. 標準的なレジスタのポインタ設定

7.5.1.2 高速 I²C モード

バスがアイドルのときは、SDA ラインと SCL ラインの両方がプルアップ抵抗によって High にプルされます。メイン・デバイスは、後ろに高速 (HS) メイン・デバイス・コード 00001XXX を含む有効なシリアル・バイトが付いている開始条件を生成します。この送信は、400kHz 以下のときに、高速モード (400kHz) または標準モード (100kHz) (F/S) で確立されます。デバイスは HS メイン・デバイス・コードには応答しませんが、このコードを認識し、その内部フィルタを切り替えて、2.94MHzでの動作をサポートします。

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

次に、メイン・デバイスは反復される開始条件を生成します (反復の開始条件のタイミングは開始条件と同じです)。この反復の開始条件の後、プロトコルは F/S モードと同じですが、許容転送速度は最大 2.94MHz になります。バスを HS モードで維持するには、終了条件を使用する代わりに、反復の開始条件を使用します。終了条件により HS モードは終了し、デバイスの内部フィルタをすべて切り換え、F/S モードをサポートします。

7.5.1.3 SMBus のアラート応答

INA228 は、SMBus アラート応答アドレスに応答するように設計されています。SMBus アラート応答により、シンプルな 2 次デバイスのフォルトをすばやく識別することができます。アラートが発生すると、メイン・デバイスは読み取り / 書き込みビットを High にセットして、アラート応答を 2 次デバイスのアドレス (0001 100) に送信します。このアラート応答の後、アラートを生成する 2 次デバイスは、アラート応答の受信と、そのアドレスをバスに送信することによって自身を識別します。

I²C のジェネラル・コールと同様に、アラート応答により、さまざまな複数のスレーブ・デバイスを同時にアクティブにすることができます。1 つ以上のスレーブが応答を試みた場合、バス・アービトレーション・ルールが適用されます。負けたデバイスはアクノリッジを生成せず、デバイスがアービトレーションに勝つまでアラート・ラインを Low に保持し続けます。

7.6 レジスタ・マップ

7.6.1 INA228 レジスタ

表 7-3 に、INA228 レジスタの一覧を示します。表 7-3 に記載のないレジスタの位置はすべて予約済みであり、レジスタの内容を変更することはできません。

アドレス	略称	レジスタ名	レジスタ・サイズ (ビット)	セクション
0h	CONFIG	構成	16	表示
1h	ADC_CONFIG	ADC の構成	16	表示
2h	SHUNT_CAL	シャント・キャリブレーション	16	表示
3h	SHUNT_TEMPCO	シャント温度係数	16	表示
4h	VSHUNT	シャント電圧の測定値	24	表示
5h	VBUS	バス電圧の測定値	24	表示
6h	DIETEMP	温度測定値	16	表示
7h	CURRENT	電流の結果	24	表示
8h	POWER	電力の結果	24	表示
9h	ENERGY	エネルギーの結果	40	表示
Ah	CHARGE	充電の結果	40	表示
Bh	DIAG_ALRT	診断フラグとアラート	16	表示
Ch	SOVL	シャント過電圧スレッショルド	16	表示
Dh	SUVL	シャント低電圧スレッショルド	16	表示
Eh	BOVL	バス過電圧スレッショルド	16	表示
Fh	BUVL	バス低電圧スレッショルド	16	表示
10h	TEMP_LIMIT	温度制限超過スレッショルド	16	表示
11h	PWR_LIMIT	電力制限超過スレッショルド	16	表示
3Eh	MANUFACTURER_ID	メーカー ID	16	表示
3Fh	DEVICE_ID	デバイス ID	16	表示

表 7-3. INA228 レジスタ

表の小さなセルに収まるように、複雑なビット・アクセス・タイプを記号で表記しています。 表 7-4 に、このセクションでアクセス・タイプに使用している表記を示します。

表 7-4. INA228 アクセス・タイプ・コード

アクセス・タイプ	表記	説明
読み出しタイプ		
R	R	読み出し

表 7-4. INA228 アクセス・タイプ・コード (continued)

		- '
アクセス・タイプ	表記	説明
書き込みタイプ		
W	W	書き込み
リセットまたはデフ	オルト値	
-n		リセット後の値またはデフォルト値

7.6.1.1 構成 (CONFIG) レジスタ (アドレス = 0h) [リセット = 0h]

表 7-5 に、CONFIG レジスタを示します。

概略表に戻ります。

表 7-5. CONFIG レジスタ・フィールドの説明

22 / -0. COM 10 V 2/ 7 7 7 1 V 201-73				
ビット	フィールド	タイプ	リセット	説明
15	RST	R/W	Oh	リセット・ビット。このビットを「1」に設定すると、パワーオン・リセットと同じシステム・リセットが発生する。 すべてのレジスタをデフォルト値にリセットする。 Oh = 通常動作 1h = システム・リセットにより、レジスタはデフォルト値に設定されるこのビットはセルフ・クリアされる。
14	RSTACC	R/W	Oh	累積レジスタ ENERGY および CHARGE の内容を 0 にリセットする 0h = 通常動作 1h = ENERGY および CHARGE レジスタをデフォルト値にクリアする
13-6	CONVDLY	R/W	Oh	初期の ADC 変換の遅延を 2ms ごとに設定する。 0h = 0s 1h = 2ms FFh = 510ms
5	TEMPCOMP	R/W	0h	外部シャントの温度補償をイネーブルにする Oh = シャントの温度補償がディセーブル 1h = シャントの温度補償がイネーブル
4	ADCRANGE	R/W	Oh	IN+とIN-の間のフルスケール・レンジで選択してシャントする。 0h = ±163.84mV 1h = ±40.96mV
3-0	RESERVED	R	0h	予約済み。常に0を読み出す。

7.6.1.2 ADC 構成 (ADC_CONFIG) レジスタ (アドレス = 1h) [リセット = FB68h]

表 7-6 に、ADC_CONFIG レジスタを示します。

概略表に戻ります。

表 7-6. ADC_CONFIG レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-12	MODE	R/W	Fh	ユーザーは、MODE ビットによって、バス電圧、シャント電圧、温度測定に対して連続モードまたはトリガ・モードを設定することができる。 Oh = シャットダウン
				1h = トリガ・バス電圧、シングル・ショット
				2h = トリガ・シャント電圧、シングル・ショット
				3h = トリガ・シャント電圧およびバス電圧、シングル・ショット
				4h = トリガ温度、シングル・ショット
				5h = トリガ温度およびバス電圧、シングル・ショット
				6h = トリガ温度およびシャント電圧、シングル・ショット
				7h = トリガ・バス電圧、シャント電圧および温度、シングル・ショット
				8h = シャットダウン
				9h = 連続バス電圧のみ
				Ah = 連続シャント電圧のみ
				Bh = 連続シャントおよびバス電圧
				Ch = 連続温度のみ
				Dh = 連続バス電圧および温度
				Eh = 連続温度およびシャント電圧
				Fh = 連続バス電圧、シャント電圧および温度
11-9	VBUSCT	R/W	5h	バス電圧の測定値の変換時間を設定する。 Oh = 50µs
				1h = 84μs
				2h = 150µs
				3h = 280µs
				4h = 540µs
				5h = 1052μs
				6h = 2074µs
				7h = 4120μs
8-6	VSHCT	R/W	5h	シャント電圧の測定値の変換時間を設定する。
				$0h = 50\mu s$
				1h = 84μs
				2h = 150µs
				$3h = 280\mu s$ $4h = 540\mu s$
				5h = 1052µs
				6h = 2074µs
				7h = 4120µs
5-3	VTCT	R/W	5h	温度の測定値の変換時間を設定する。
				Tang
				1h = 84µs
				2h = 150μs
				$3h = 280 \mu s$
				$4h = 540 \mu s$
				5h = 1052μs
				6h = 2074µs
				7h = 4120μs

表 7-6. ADC CONFIG レジスタ・フィールドの説明 (continued)

		_		
ビット	フィールド	タイプ	リセット	説明
2-0	AVG	R/W	0h	ADC サンプリング平均化カウントを選択する。平均化設定は、すべてのアクティブ入力に適用される。
				Oh を超えている場合、平均化が完了した後に出力レジスタが更新される。
				0h = 1 1h = 4
				2h = 16
				3h = 64
				4h = 128
				5h = 256
				6h = 512
				7h = 1024

7.6.1.3 シャント・キャリプレーション (SHUNT_CAL) レジスタ (アドレス = 2h) [リセット = 1000h]

表 7-7 に、SHUNT_CAL レジスタを示します。

概略表に戻ります。

表 7-7. SHUNT CAL レジスタ・フィールドの説明

	ビット	フィールド	タイプ	リセット	説明
Ī	15	RESERVED	R	0h	予約済み。常に0を読み出す。
	14-0	SHUNT_CAL	R/W		このレジスタは、電流値の計算に使用するシャント抵抗を表す変換定数をアンペア単位でデバイスに提供する。また、CURRENT レジスタの分解能も設定する。値は、セクション 8.1.2 に基づいて算出される。

7.6.1.4 シャント温度係数 (SHUNT_TEMPCO) レジスタ (アドレス = 3h) [リセット = 0h]

表 7-8 に、SHUNT TEMPCO レジスタを示します。

概略表に戻ります。

表 7-8. SHUNT TEMPCO レジスタ・フィールドの説明

		_		
ビット	フィールド	タイプ	リセット	説明
15-14	RESERVED	R	0h	予約済み。常に0を読み出す。
13-0	TEMPCO	R/W	0h	温度補償補正のためのシャントの温度係数。+25°C で計算される。 レジスタのフル・スケール値は 16383ppm/°C。 16 ビット・レジスタの分解能は 1ppm/°C/LSB となる 0h = 0ppm/°C 3FFFh = 16383ppm/°C

7.6.1.5 シャント電圧測定値 (VSHUNT) レジスタ (アドレス = 4h) [リセット = 0h]

表 7-9 に、VSHUNT レジスタを示します。

概略表に戻ります。

表 7-9. VSHUNT レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
23-4	VSHUNT	R		シャント出力の両端で測定された差動電圧。2の補数値。 変換係数: ADCRANGE = 0 のとき、312.5nV/LSB ADCRANGE = 1 のとき、78.125nV/LSB

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 7-9. VSHUNT レジスタ・フィールドの説明 (continued)

ビット	フィールド	タイプ	リセット	説明
3-0	RESERVED	R	0h	予約済み。常に0を読み出す。

7.6.1.6 バス電圧測定値 (VBUS) レジスタ (アドレス = 5h) [リセット = 0h]

表 7-10 に、VBUS レジスタを示します。

概略表に戻ります。

表 7-10. VBUS レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
23-4	VBUS	R	0h	バス電圧出力。2 の補数で、常に正の値となる。 変換係数:195.3125μV/LSB
3-0	RESERVED	R	0h	予約済み。常に0を読み出す。

7.6.1.7 温度測定値 (DIETEMP) レジスタ (アドレス = 6h) [リセット = 0h]

表 7-11 に、DIETEMP レジスタを示します。

概略表に戻ります。

表 7-11. DIETEMP レジスタのフィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	DIETEMP	R	0h	内部ダイ温度の測定値。2 の補数値。 変換係数:7.8125m℃/LSB

7.6.1.8 電流の結果 (CURRENT) レジスタ (アドレス = 7h) [リセット = 0h]

表 7-12 に、CURRENT レジスタを示します。

概略表に戻ります。

表 7-12. CURRENT レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
23-4	CURRENT	R		電流出力の計算値 (アンペア)。2 の補数値。 値については、セクション 8.1.2 で説明する。
3-0	RESERVED	R	0h	予約済み。常に0を読み出す。

7.6.1.9 電力の結果 (POWER) レジスタ (アドレス = 8h) [リセット = 0h]

表 7-13 に、POWER レジスタを示します。

概略表に戻ります。

表 7-13. POWER レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
23-0	POWER	R		電力出力の計算値。 出力値 (ワット)。 符号なし表記。正の値。 値については、セクション 8.1.2 で説明する。

Submit Document Feedback

7.6.1.10 エネルギーの結果 (ENERGY) レジスタ (アドレス = 9h) [リセット = 0h]

表 7-14 に、ENERGY レジスタを示します。

概略表に戻ります。

表 7-14. ENERGY レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
39-0	ENERGY	R		エネルギー出力の計算値。 出力値の単位はジュール。符号なし表記。正の値。 値については、セクション 8.1.2 で説明する。

7.6.1.11 充電の結果 (CHARGE) レジスタ (アドレス = Ah) [リセット = 0h]

表 7-15 に、CHARGE レジスタを示します。

概略表に戻ります。

表 7-15. CHARGE レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
39-0	CHARGE	R	1	充電出力の計算値。出力値の単位はクーロン。2の補数値。 値については、セクション 8.1.2 で説明する。

7.6.1.12 診断フラグおよびアラート (DIAG_ALRT) レジスタ (アドレス = Bh) [リセット = 0001h]

表 7-16 に、DIAG_ALRT を示します。

概略表に戻ります。

表 7-16. DIAG_ALRT レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	ALATCH	R/W	0h	アラート・ラッチ・イネーブル・ビットが透過モードに設定されている場合、フォルトがクリアされると、アラート・ピンとフラグ・ビットはアイドル状態にリセットされる。 アラート・ラッチ・イネーブル・ビットがラッチ・モードに設定されている場合、DIAG_ALRT レジスタが読み出されるまで、アラート・ピンとフラグ・ビットはフォルト後もアクティブのままを維持する。 Oh = 透過 1h = ラッチ済み
14	CNVR	R/W	Oh	このビットを High に設定すると、変換準備フラグ (ビット 1) がアサートされたときにアラート・ピンがアサートされるように構成され、変換サイクルが完了したことを示す。 Oh = ALERT ピンの変換準備フラグをディセーブルにする 1h = ALERT ピンの変換準備フラグをイネーブルにする
13	SLOWALERT	R/W	Oh	イネーブルのとき、ALERT 機能は完了済みの平均値でアサートされる。 これにより、平均値を超えるまで ALERT を柔軟に遅延させることができる。 Oh = 平均化されていない (ADC) 値での ALERT 比較 1h = 平均化された値での ALERT 比較
12	APOL	R/W	0h	アラート極性ビットは、ALERT ピンの極性を設定する。 Oh = 通常 (アクティブ Low、オープン・ドレイン) 1h = 反転 (アクティブ High、オープン・ドレイン)

表 7-16. DIAG_ALRT レジスタ・フィールドの説明 (continued)

ビット	フィールド	タイプ	リセット	説明
11	ENERGYOF	R	Oh	このビットは、ENERGY レジスタの状態を示す。 40 ビットの ENERGY レジスタがオーバーフローした場合、このビットは 1 にセットされる。 0h = 通常 1h = オーバーフロー ENERGY レジスタが読み出されるとクリアされる。
10	CHARGEOF	R	Oh	このビットは、CHARGE レジスタの状態を示す。 40 ビットの CHARGE レジスタがオーバーフローした場合、このビットは 1 にセットされる。 0h = 通常 1h = オーバーフロー CHARGE レジスタが読み出されるとクリアされる。
9	MATHOF	R	0h	算術演算の結果がオーバーフローエラーになると、このビットは 1 にセットされる。 電流および電力データが無効である可能性があることを示している。 Oh = 通常 1h = オーバーフロー 他の変換をトリガするか、または RSTACC ビットでアキュムレータをクリア することにより、手動でクリアする必要がある。
8	RESERVED	R	0h	予約済み。常に0を読み出す。
7	TMPOL	R/W	0h	温度測定値が温度制限超過レジスタのスレッショルドを超えると、このビットは 1 にセットされる。 Oh = 通常 1h = 過熱イベント ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリアされる。
6	SHNTOL	R/W	Oh	シャント電圧の測定値がシャント制限超過レジスタのスレッショルド制限を 超えると、このビットは 1 にセットされる。 0h = 通常 1h = シャント電圧超過イベント ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリア される。
5	SHNTUL	R/W	0h	シャント電圧の測定値がシャント制限未満レジスタのスレッショルド制限を 下回ると、このビットは 1 にセットされる。 0h = 通常 1h = シャント電圧未満イベント ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリア される。
4	BUSOL	R/W	0h	バス電圧の測定値が、バス制限超過レジスタのスレッショルド制限を超えると、このビットは 1 にセットされる。 Oh = 通常 1h = バス制限超過イベント ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリアされる。
3	BUSUL	R/W	Oh	バス電圧の測定値が、バス制限未満レジスタのスレッショルド制限を下回ると、このビットは 1 にセットされる。 Oh = 通常 1h = バス制限未満イベント ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリアされる。

表 7-16. DIAG_ALRT レジスタ・フィールドの説明 (continued)

				7 1 77 1 05 May 1 (00 11 11 11 11 11 11 11 11 11 11 11 11 1
ビット	フィールド	タイプ	リセット	説明
2	POL	R/W	0h	電力の測定値が電力制限レジスタのスレッショルド制限を超えると、このビットは 1 に設定される。
				0h = 通常
				1h = 電力制限超過イベント
				ALATCH = 1 の場合、このビットはこのレジスタを読み取ることによりクリア される。
1	CNVRF	R/W	0h	変換が完了すると、このビットは 1 にセットされる。
				Oh = 通常
				1h = 変換が完了
				ALATCH = 1 の場合、このビットはこのレジスタを読み出すか、新しいトリ ガ変換を開始することでクリアされる。
0	MEMSTAT	R/W	1h	デバイスのトリムのメモリ空間でチェックサム・エラーが検出されると、このビットは 0 にセットされる。
				Oh = メモリ・チェックサム・エラー
				1h = 通常動作

7.6.1.13 シャント過電圧スレッショルド (SOVL) レジスタ (アドレス = Ch) [リセット = 7FFFh]

このレジスタに負の値が入力されると、シャント電圧の測定値 0V 時にこのアラームが作動します。シャントの低電圧スレッショルドおよび過電圧スレッショルドに負の値を使用する場合は、2 つの値の大きい方 (つまり負の値の小さい方) に過電圧スレッショルドを設定する必要があります。表 7-17 に、SOVL レジスタを示します。

概略表に戻ります。

表 7-17. SOVL レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	SOVL	R/W		シャント過電圧 (過電流保護) を検出するために、値を比較するためのスレッショルドを設定する。 2 の補数値。変換係数: ADCRANGE = 0 のとき、 $5\mu V/LSB$ ADCRANGE = 1 のとき、 $1.25\mu V/LSB$

7.6.1.14 シャント低電圧スレッショルド (SUVL) レジスタ (アドレス = Dh) [リセット = 8000h]

表 7-18 に、SUVL レジスタを示します。

概略表に戻ります。

表 7-18. SUVL レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	SUVL	R/W		シャント低電圧 (低電流保護) を検出するために、値を比較するためのスレッショルドを設定する。 2 の補数値。変換係数: ADCRANGE = 0 のとき、 $5 \mu V/LSB$ ADCRANGE = 1 のとき、 $1.25 \mu V/LSB$

7.6.1.15 バス過電圧スレッショルド (BOVL) レジスタ (アドレス = Eh) [リセット = 7FFFh]

表 7-19 に、BOVL レジスタを示します。

概略表に戻ります。

表 7-19. BOVL レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	RESERVED	R	0h	予約済み。常に0を読み出す。

表 7-19. BOVL レジスタ・フィールドの説明 (continued)

ビット	フィールド	タイプ	リセット	説明
14-0	BOVL	R/W	7FFFh	バス過電圧 (過電圧保護) を検出するために、値を比較するためのスレッショルドを設定する。 符号なし表記、正の値のみ。 変換係数:
				3.125mV/LSB

7.6.1.16 パス低電圧スレッショルド (BUVL) レジスタ (アドレス = Fh) [リセット = 0h]

表 7-20 に、BUVL レジスタを示します。

概略表に戻ります。

表 7-20. BUVL レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15	RESERVED	R 0h 予約済み。常に0を読み出す。		予約済み。常に0を読み出す。
14-0	BUVL	R/W		バス低電圧 (低電圧保護) を検出するために、値を比較するためのスレッショルドを設定する。符号なし表記、正の値のみ。変換係数: 3.125mV/LSB

7.6.1.17 温度制限超過スレッショルド (TEMP_LIMIT) レジスタ (アドレス = 10h) [リセット = 7FFFh]

表 7-21 に、TEMP_LIMIT レジスタを示します。

概略表に戻ります。

表 7-21. TEMP_LIMIT レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	TOL	R/W		温度超過の測定値を検出するために、値を比較するためのスレッショルドを設定する。2の補数値。 このフィールドに入力された値は DIETEMP レジスタの値と直接比較され、温度超過状態かどうかを判断する。変換係数:7.8125m°C/LSB

7.6.1.18 電力制限超過スレッショルド (PWR_LIMIT) レジスタ (アドレス = 11h) [リセット = FFFFh]

表 7-22 に、PWR_LIMIT レジスタを示します。

概略表に戻ります。

表 7-22. PWR_LIMIT レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	POL	R/W		電力制限超過の測定値を検出するために、値を比較するためのスレッショルドを設定する。符号なし表記、正の値のみ。 このフィールドに入力された値は POWER レジスタの値と直接比較され、電力超過状態かどうかを判断する。変換係数:256 × 電力 LSB

7.6.1.19 メーカー ID (MANUFACTURER_ID) レジスタ (アドレス = 3Eh) [リセット = 5449h]

表 7-23 に、MANUFACTURER ID レジスタを示します。

概略表に戻ります。

表 7-23. MANUFACTURER_ID レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-0	MANFID	R	5449h	TI を ASCII コードで読み戻す。

7.6.1.20 デバイス ID (DEVICE_ID) レジスタ (アドレス = 3Fh) [リセット = 2281h]

表 7-24 に、DEVICE_ID レジスタを示します。

概略表に戻ります。

表 7-24. DEVICE_ID レジスタ・フィールドの説明

ビット	フィールド	タイプ	リセット	説明
15-4	DIEID	R	228h	デバイス識別ビットを格納する。
3-0	REV_ID	R	1h	デバイスのリビジョン ID。

8 アプリケーションと実装

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 アプリケーション情報

8.1.1 デバイスの測定範囲と分解能

INA228 デバイスは、シャント電圧の測定に 2 つの入力範囲をサポートしています。IN+ ピンと IN- ピンの間でサポートされているフルスケールの差動入力は、CONFIG レジスタの ADCRANGE ビットに応じて、±163.84mV または ±40.96mV のいずれかになります。バス電圧の測定値の範囲は 0V~85V です。内部ダイ温度センサの範囲は、-256℃~+256℃に拡張されますが、パッケージによって -40℃~125℃ に制限されます。

表 8-1 に、シャント電圧、バス電圧、温度のフルスケール測定値と、それぞれのステップ・サイズを示します。

パラメータ	フルスケール値	分解能
シャント電圧	±163.84mV (ADCRANGE = 0)	312.5nV/LSB
	±40.96mV (ADCRANGE = 1)	78.125nV/LSB
バス電圧	0V∼85V	195.3125μV/LSB
温度	-40°C∼+125°C	7.8125m°C/LSB

表 8-1. ADC のフルスケール値

デバイスのシャント電圧、バス電圧、温度の測定値は、それぞれ VSHUNT、VBUS、DIETEMP レジスタから読み取ることが可能です。VSHUNT レジスタと VBUS レジスタのデジタル出力は、20 ビットです。シャント電圧の測定値は、システムの双方向電流により正の値にも負の値にもなります。そのため、VSHUNT のデータ値は、正の値にも負の値にすることも可能です。VBUS のデータ値は常に正の値です。出力データは、デジタル値にそれぞれの分解能サイズを掛けることにより、電圧に直接変換することができます。DIETEMP レジスタのデジタル出力は 16 ビットで、上記の分解能サイズを掛けることにより、℃ に直接変換することができます。この出力値は、正の値にも負の値にもなります。

さらに、セクション 8.1.2 に示すように、このデバイスは計算された電流をアンペアで、電力をワットで、充電をクーロンで、エネルギーをジュールで通知する柔軟性も備えています。

8.1.2 電流、電力、エネルギー、および充電の計算

INA228 デバイスが電流値をアンペア単位で通知するには、SHUNT_CAL レジスタに一定の変換値を書き込む必要があります。この値は、アプリケーションで使用される電流およびシャント抵抗の測定された最大値によって異なります。SHUNT_CAL レジスタは、式 2 に基づいて計算されます。CURRENT_LSB は、電流値がアンペア単位で格納されるCURRENT レジスタの LSB のステップ・サイズです。CURRENT_LSB の値は、式 3 に示す最大想定電流に基づいており、CURRENT レジスタの分解能を直接定義します。CURRENT_LSB の値を最小にすることにより、分解能は最大となりますが、一般的に、CURRENT_LSB には大きいおよその数 (ただし、8x より大きくないこと)を選択して、CURRENTの変換を簡素化します。

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

 R_{SHUNT} は、IN+ ピンと IN- ピン間の差動電圧を生じさせるために使われる外部シャントの抵抗値です。ADCRANGE=0 の場合、式 2 を使用します。ADCRANGE=1 の場合、 $SHUNT_CAL$ の値は 4 倍にする必要があります。

SHUNT_CAL =
$$13107.2 \times 10^6 \times CURRENT_LSB \times R_{SHUNT}$$
 (2)

ここで

- 13107.2 x 10⁶ は、スケーリングを適切に維持するために使用される内部固定値です。
- ADCRANGE = 1 の場合、SHUNT CAL の値は 4 倍にする必要があります。

電流は、SHUNT_CAL レジスタで設定される値に基づき、シャント電圧の測定値に従って計算されます。SHUNT_CAL レジスタにロードされる値が 0 の場合、CURRENT レジスタによって通知される電流値も 0 になります。

計算値を使用して SHUNT_CAL レジスタをプログラミングすると、CURRENT レジスタから電流の測定値をアンペア単位で読み取ることができます。 最終値は CURRENT LSB でスケーリングされ、以下の式 4で計算されます。

ここで

• CURRENT は、CURRENT レジスタからの読み取り値です

電力値は、POWER レジスタから 24 ビットの値として読み取り、以下の式 5 を使用して、ワット単位に変換することができます。

Power [W] =
$$3.2 \times CURRENT_LSB \times POWER$$
 (5)

ここで

- POWER は、POWER レジスタからの読み取り値です。
- CURRENT LSB は、式 3 で定義されるように、電流計算の LSB サイズです。

エネルギー値は、ENERGY レジスタから 40 ビットの符号なし値として読み取ることができ、単位はジュールです。ジュール単位のエネルギー値は、以下の式 6を使用して変換します。

Energy [J] =
$$16 \times 3.2 \times \text{CURRENT_LSB} \times \text{ENERGY}$$
 (6)

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

充電値は、CHARGE レジスタから 40 ビットの 2 の補数値として読み取ります。単位はクーロンです。クーロン単位の充電値は、以下の式7を使用して変換します。

(7)

ここで

- CHARGE は、CHARGE レジスタからの読み取り値です。
- CURRENT_LSB は、式 3 で説明されているように、電流計算の LSB サイズです。

オーバーフロー時は、ENERGY レジスタと CHARGE レジスタはロールオーバーし、0 から開始します。 CONFIG レジスタの RSTACC ビットを設定することにより、レジスタの値はいつでもリセットすることができます。

これらの式を使用する設計例については、セクション8.2.2を参照してください。

8.1.3 ADC 出力のデータ・レートとノイズ性能

INA228 のノイズ性能と有効分解能は、ADC 変換時間によって異なります。また、このデバイスはデジタル平均化もサポートしており、デジタル・ノイズの低減に役立ちます。ADC 変換時間とデータ平均化を選択できる柔軟性により、信号対雑音比が向上し、最小のオフセットで最高のダイナミック・レンジを実現します。低信号レベルにおけるノイズのプロファイルは、主に 1/f ノイズまたはホワイト・ノイズで構成されるシステム・ノイズが中心となっています。INA228 の ADC の有効分解能は、変換時間を長くし、平均値を増やすことで向上できます。

表 8-2 に、デバイスでサポートされる出力データ・レート変換設定を示します。最も高速な変換設定は 50µs です。標準的なノイズフリーの分解能は、デバイスの測定データに基づいて有効ビット数 (ENOB) として表されます。 ENOB はノイズのピーク・ツー・ピーク値に基づいて計算されるため、ノイズの分布全体を考慮に入れることができます。

ADC 変換時間 [µs]	出力サンプル平均化 [サンプ ル]	出力サンプル期間 [ms]	ノイズフリー ENOB (±163.84mV) (ADCRANGE = 0)	ノイズフリー ENOB (±40.96mV) (ADCRANGE = 1)
50		0.05	12.4	10.4
84		0.084	12.6	10.4
150		0.15	13.3	11.4
280	4	0.28	13.8	11.8
540	1	0.54	14.2	12.4
1052		1.052	14.5	12.6
2074		2.074	15.3	13.3
4120		4.12	16.0	13.8
50		0.2	13.1	11.4
84		0.336	13.9	11.8
150		0.6	14.3	12.2
280	4	1.12	14.9	12.8
540	4	2.16	15.1	13.0
1052		4.208	15.8	13.8
2074		8.296	16.1	14.3
4120		16.48	16.5	14.4

表 8-2. INA228 ノイズ特性

表 8-2. INA228 ノイズ特性 (continued)

ADC 変換時間 [µs]	出力サンプル平均化 [サンプ ル]	出力サンプル期間 [ms]	ノイズフリー ENOB (±163.84mV) (ADCRANGE = 0)	ノイズフリー ENOB (±40.96mV) (ADCRANGE = 1)
50		0.8	13.9	12.3
84		1.344	14.7	12.9
150		2.4	15.1	13.0
280	16	4.48	15.8	13.7
540		8.64	16.3	14.3
1052		16.832	16.5	14.6
2074		33.184	17.1	15.3
4120		65.92	17.7	15.9
50		3.2	15.0	13.3
84	64	5.376	15.9	13.8
150		9.6	16.4	14.4
280		17.92	16.9	14.5
540		34.56	17.7	15.3
1052		67.328	17.7	15.9
2074		132.736	18.1	16.3
4120		263.68	18.7	16.5
50	128	6.4	15.5	13.4
84		10.752	16.3	14.3
150		19.2	16.9	14.7
280		35.84	17.1	15.2
540		69.12	18.1	15.9
1052		134.656	18.1	16.4
2074		265.472	18.7	16.9
4120		527.36	19.7	17.1
50		12.8	15.5	14.4
84		21.504	16.7	14.7
150		38.4	17.4	15.3
280	256	71.68	17.7	15.7
540	230	138.24	18.7	16.1
1052		269.312	18.7	16.7
2074		530.944	19.7	17.4
4120		1054.72	19.7	17.7
50		25.6	16.7	14.3
84		43	17.4	15.4
150		76.8	17.7	15.5
280	512	143.36	18.7	16.3
540	312	276.48	18.7	16.5
1052		538.624	19.7	17.4
2074		1061.888	19.7	17.7
4120		2109.44	19.7	18.7

表 8-2. INA228 ノイズ特性 (continued)

ADC 変換時間 [µs]	出力サンプル平均化 [サンプ ル]	出力サンプル期間 [ms]	ノイズフリー ENOB (±163.84mV) (ADCRANGE = 0)	ノイズフリー ENOB (±40.96mV) (ADCRANGE = 1)
50		51.2	17.1	15.0
84		86.016	17.7	15.9
150	1024	153.6	18.1	16.0
280		286.72	18.7	16.9
540	1024	552.96	19.7	17.1
1052		1077.248	19.7	17.7
2074		2123.776	19.7	18.1
4120		4218.88	20	18.7

8.1.4 入力フィルタリングに関する検討事項

これまでに説明したように、INA228 にはノイズ・フィルタリングの複数のオプションが提供されており、ユーザーは ADC_CONFIG レジスタで変換時間と平均化の数を個別に選択することができます。変換時間はシャント電圧とバス電圧 の測定値に対して個別に設定できるため、電源バスの監視における柔軟性が向上します。

内蔵 ADC は優れた内部ノイズ除去機能を実現していますが、サンプリング・レート高調波、またはその付近で発生する過渡によって障害が起きる可能性があります。これらの信号は 1MHz 以上であるため、デバイスの入力時にフィルタリングを導入することで管理することが可能です。高周波信号をフィルタリングすることにより、測定値の精度にほぼ影響を与えずに、フィルタ上に値の低い直列抵抗を使用することができます。最良の結果を得るためには、可能な限り最小の直接抵抗(標準で 100Ω 以下)とセラミック・コンデンサを使用してフィルタリングを行います。このコンデンサの推奨値は、0.1μF~1μFです。図 8-1 に、入力にフィルタを追加したデバイスを示します。

デバイス入力に対しては、さらに過負荷状態も考慮します。デバイス入力の公差は、IN+ ピンと IN- ピンの両端で ±40V の差動となるように規定されています。大きな差動シナリオでは、シャントの負荷側でグランドに短絡する可能性があります。この種類のイベントが発生した場合、シャント両端に電源電圧がフルに印加される可能性があります (ただし、電源またはエネルギー保存コンデンサがサポートしている場合に限る)。グランドへの短絡を除去すると、誘導性キックバックが発生して、デバイスの 40V の差動、または 85V の同相絶対最大定格を超える可能性があります。誘導性キックバック電圧は、十分なエネルギー保存コンデンサと組み合わせたツェナー型過渡吸収デバイス (一般に TRANSZORB といいます) によって最適に制御されます。電流センシング抵抗を電流が通過するとき、その両端に発生する電圧を測定するために使用される下限側電流シャント監視については、「電流シャント監視の過渡堅牢性」のリファレンス設計を参照してください。

シャントの片側または両側に、大容量のエネルギー保存や電解コンデンサがないアプリケーションでは、入力に対して電圧の過剰な dV/dt が印加されることにより、入力オーバーストレス状態が発生する可能性があります。このイベントの主な原因は、物理的な短絡です。この問題は、大量の電流を流せるシステムのデバイスで、過剰な dV/dt によって ESD 保護が作動する可能性があることです。デバイスの各入力と直列に 10Ω 抵抗を追加することで、この dV/dt 障害の最大 40Vのデバイスの差動電圧定格に対する入力は十分に保護されることが、テストによって証明されます。これらの抵抗を記載されている範囲内で選択することにより、精度への影響を最小限に抑えることができます。

図 8-1. 入力フィルタリング

R_{FII TER} に、100Ω を超える値は使用しないでください。ゲイン誤差が低下し、非直線性が向上します。

8.2 代表的なアプリケーション

INA228 のオフセット電圧と入力バイアス電流が低いため、電流を幅広い範囲で正確に監視することができます。電流を高分解能で正確に監視するには、結果のセンス電圧が最大許容差動入力電圧範囲 (抵抗の設定に応じて、±163.84mVまたは ±40.96mV のいずれか) の近似値になるように、シャント抵抗の値を選択します。図 8-2 に、下限側構成における電流監視のための回路を示します。

図 8-2. INA228 下限側センシング・アプリケーション図

8.2.1 設計要件

INA228 は、電流センシング抵抗 (R_{SHUNT}) を電流が通過するとき、その両端に発生する電圧を測定します。また、このデバイスはバス電源電圧も測定して、キャリブレーション時の電力を計算します。さらに、アラート機能を備えており、ユーザー定義のイベントや変換準備通知に応答するようにアラート・ピンをプログラムすることも可能です。

図 8-2 に示す回路の設計要件を表 8-3 に示します。

表 8-3. 設計パラメータ

設計パラメータ	値の例
電源電圧 (V _S)	5V
バス電源レール (V _{CM})	48V
バス電源レールの過電圧フォルト・スレッショルド	52V
平均電流	6A
過電流フォルト・スレッショルド (I _{MAX})	10A
ADC 範囲の選択 (V _{SENSE_MAX})	±163.84mV

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 8-3. 設計パラメータ (continued)

設計パラメータ	値の例
温度	25°C
充電累積時間	1 時間

8.2.2 詳細な設計手順

8.2.2.1 シャント抵抗の選択

表 8-3 の値を使用して、シャント抵抗の最大値は、検出された電流の最大値 (I_{MAX}) と選択した ADC 範囲の最大許容検 出電圧 (V_{SENSE_MAX}) に基づいて計算されます。最大電流で動作する場合、差動入力電圧はデバイスの最大フルスケール範囲 V_{SENSE_MAX} を超えることはできません。ここで使われている設計パラメータに 式 8 を使用すると、 R_{SHUNT} の最大値は 16.38m Ω と算出されます。算出された最大値より小さく、最も標準に近い抵抗値は 16.2m Ω です。 R_{SHUNT} は、最大負荷条件において、その抵抗の両端で消費される電力を処理する能力が必要です。

$$R_{SHUNT} < \frac{V_{SENSE_MAX}}{I_{MAX}}$$
(8)

8.2.2.2 デバイスの構成

INA228 をプログラムする最初のステップは、デバイスと ADC 構成レジスタを適切に設定することです。最初の電源投入時に、CONFIG レジスタと ADC_CONFIG レジスタは、それぞれ 表 7-5 と 表 7-6 に示すようなリセット値に設定されます。このデフォルトのパワーオン状態では、デバイスは ± 163.84 mV の範囲で測定されるように設定され、シャント電圧、バス電圧、温度を連続モードで ADC 変換します。デフォルトのパワーアップ条件が設計要件を満たしていない場合、各 V_S の電源サイクル・イベント後に、これらのデバイスを正しく設定する必要があります。

8.2.2.3 シャント・キャリブレーション・レジスタのプログラム

シャント・キャリブレーション・レジスタは、デバイスが電流に基づいて結果を適切に通知できるように、各 V_S の電源投入時に正確にプログラムされる必要があります。このレジスタを適切に設定するには、まず 式 3 を使用して、電流の LSB 値を計算します。この式に最大想定電流 10A を当てはめると、LSB サイズは $19.0735\mu A$ になります。CURRENT_LSB とシャント抵抗に対して選択した値に 式 2 の式を当てはめると、シャント・キャリブレーション・レジスタの設定は 4050d (FD2h) になります。シャント・キャリブレーション・レジスタに不適切な値を設定すると、電流に基づく結果はすべて 0 になります。

8.2.2.4 目標のフォルト・スレッショルドの設定

フォルト・スレッショルドを設定するには、目標のトリップ・スレッショルドを対応するフォルト・レジスタにプログラムします。サポートされているフォルト・レジスタを表 7-1 に示します。フォルト制限レジスタの長さは 16 ビットであるため、これらのレジスタに対する実効 LSB サイズは、バス電圧と電流の戻り値の計算に使用される対応する 20 ビット LSB よりも 16 倍大きくなります。

過電流スレッショルドを設定するには、シャント過電圧制限レジスタ (SOVL)をプログラムします。このレジスタにプログラムする必要のある電圧は、過電流スレッショルドにシャント抵抗を乗算して求めます。この例では、過電流スレッショルドは10Aで、電流センス抵抗の値は16.2mΩのため、シャント電圧制限は162mVになります。シャント電圧制限を計算した後は、シャント電圧制限をシャント電圧のLSBサイズで除算して、シャント過電圧制限レジスタの値を求めます。

この例では、シャント過電圧制限レジスタの値は 162mV/(312.5nV × 16) = 32400d (7E90h) となります。

バス電圧の過電圧フォルト・スレッショルドを設定するには、バス過電圧制限レジスタ (BOVL) をプログラムします。この例では、目標の過電圧スレッショルドは 52V です。このレジスタにプログラムする必要のある電圧は、目標スレッショルド電圧をバス電圧フォルト制限の LSB 値 3.125mV で除算します。この例では、BOVL レジスタの目標値は、52V/ (195.3125 μ V × 16) = 16640d (4100h) になります。

電力の上限値を設定する場合、制限レジスタに必要な値の計算に使用される LSB サイズは、電力 LSB の 256 倍になります。これは、電力レジスタの長さが 24 ビットで、電力フォルト制限レジスタが 16 ビットであるためです。

アラート制限レジスタに格納される値は、 V_S 電力サイクル・イベント後はデフォルト値にセットされ、電力が印加されるたびに再プログラムする必要があります。

8.2.2.5 戻り値の計算

パラメータ値は、戻り値と LSB の値の乗算で求めます。次の 表 8-4 に、表 8-3 に示す設計要件を前提とした場合の、このアプリケーション例における戻り値を示します。

次 0-4. 戻り値の計算									
パラメータ	戻り値	LSB の値	計算結果						
シャント電圧 (V)	311040d	312.5nV/LSB	0.0972V						
電流 (A)	314572d	10A/2 ¹⁹ = 19.073486μA/LSB	6A						
バス電圧 (V)	245760d	195.3125μV/LSB	48V						
電力 (W)	4718604d	電流 LSB x 3.2 = 61.035156µW/LSB	288W						
エネルギー (J)	1061683200d	電力 LSB x 16 = 976.5625µJ/LSB	1036800J						
充電 (C)	1132462080d	電流 LSB = 19.073486µC/LSB	21600C						
温度 (℃)	3200d	7.8125m°C/LSB	25°C						

表 8-4. 戻り値の計算

シャント電圧、電流、バス電圧 (正の値のみ)、充電、および温度の戻り値は、2 の補数形式で表現されています。2 の補数形式では、バイナリの負の値は戻り値の最上位ビットが 1 になります。これらの値は、最初にすべてのビットを反転し、1 を足して、符号なしバイナリ値にすることによって 10 進数に変換することができます。次に、この値に負の符号を付けて、10 進数に変換する必要があります。たとえば、シャント電圧の測定値が 1011 0100 0001 0000 0000 だとします。MSBが 1 なので、これは負の値です。ビットを反転して 1 を足すと、計算結果は 0100 1011 1111 0000 0000 (311040d) になります。これは、表 8-4 のシャント電圧の例から 97.2mV の電圧と相関関係にあります。戻り値は負の値だったため、シャント電圧の測定値は -97.2mV です。

8.2.3 アプリケーション曲線

図 8-3 および 図 8-4 に、バス過電圧フォルトに対する ALERT ピンの応答を示します。ここでは、変換時間 50µs、平均化は 1、バスのみの変換に対して SLOWALERT ビットを 0 に設定しています。こうしたスコープ・ショットでは、ALERT チャネルでの持続性はイネーブルになっており、多数のフォルト・イベントが連続した場合のさまざまなアラート応答を示しています。フォルトが十分大きい場合、図 8-3 に示すように、ALERT 応答は ADC 変換の 1/4 の速度になります。制限スレッショルドを超過している瞬間のフォルト状態では、図 8-4 に示すように、ALERT ピンの応答時間は約 0.5~1.5 の変換サイクルで変動する可能性があります。アラート応答の変動は、外部のフォルト・イベントが内部の ADC 変換開始と同期していないために起こります。また、ADC は結果を取得するために定期的にサンプリングを行っているため、0 から始まるフォルト・イベントの応答時間は、設定されたフォルト・スレッショルドに近い値から始まるフォルト・イベントよりも遅くなります。アラートのタイミングを予測することは難しいため、アラートのタイミングが重要なアプリケーションでは、バス電圧やシャント電圧のみの変換については、アラート応答を ADC 変換時間の 1.5 倍と仮定する必要があります。

9 電源に関する推奨事項

このデバイスの入力回路は、その電源電圧 V_S を超える同相電圧の信号を正確に測定できます。たとえば、電源端子 V_S には 5V の電圧を印加できますが、監視対象の負荷電源電圧 (同相電圧) は最大 85V まで可能です。このデバイスは、電源が投入されているかどうかに関係なく、 $0V\sim85V$ のすべての範囲で入力端子電圧に耐えることもできます。デバイスへの電源が投入されてアクティブなときに、CND ピンが切断されるアプリケーションは避けてください。

必要な電源バイパス・コンデンサは、デバイスの電源端子とグランド端子にできるだけ近づけて配置します。この電源バイパス・コンデンサの標準値は 0.1µF です。ノイズの多い、または高インピーダンスの電源を使用するアプリケーションは、電源のノイズを除去するために、デカップリング・コンデンサの追加が必要となることがあります。

10 レイアウト

10.1 レイアウトのガイドライン

ケルビン接続、または 4 線接続を使用して、入力ピン (IN+ と IN-) をセンシング抵抗に接続します。この接続技術により、 入力ピン間の電流センシング抵抗のインピーダンスだけを検出することが可能です。一般的に、電流センシング抵抗の配線に不備があると、入力ピンの間に追加の抵抗が発生します。電流センシング抵抗の抵抗値が非常に低い場合、大電流が流れるインピーダンスを追加すると、測定値に大きな誤差が生じます。電源バイパス・コンデンサは、電源端子とグランド端子にできるだけ近づけて配置します。

10.2 レイアウト例

- (1) 負荷電力計算のため、VBUS ピンを負荷への供給電圧に接続します。
- (2) 未使用の場合はオープンのままにできます。

図 10-1. INA228 レイアウト例

11 デバイスおよびドキュメントのサポート

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。

11.3 商標

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
INA228AIDGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	2281
INA228AIDGSR.A	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	2281
INA228AIDGST	Last	Production	VSSOP (DGS) 10	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	2281
	Time Buy								

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF INA228:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

• Automotive : INA228-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA228AIDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
INA228AIDGST	VSSOP	DGS	10	250	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA228AIDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
INA228AIDGST	VSSOP	DGS	10	250	366.0	364.0	50.0

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated