

Myopia Study

Statistics for BA II

By Eva Giannatou

The Dataset

Data from the Orinda Longitudinal Study of Myopia (OLSM), a cohort study of ocular component development and risk factors for the onset of myopia in children.

Ī	ID	STUDYYEAR	MYOPIC	AGE	GENDER	SPHEQ	AL	ACD	LT	VCD	SPORTHR	READHR	COMPHR	STUDYHR	TVHR	DIOPTERHR	MOMMY	DADMY
-	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	1	1992	1	6	1	-0.052	21.89	3.690	3.498	14.70	45	8	0	0	10	34	1	1
	2	1995	0	6	1	0.608	22.38	3.702	3.392	15.29	4	0	1	1	7	12	1	1
	3	1991	0	6	1	1.179	22.49	3.462	3.514	15.52	14	0	2	0	10	14	0	0
	4	1990	1	6	1	0.525	22.20	3.862	3.612	14.73	18	11	0	0	4	37	0	1
	5	1995	0	5	0	0.697	23.29	3.676	3.454	16.16	14	0	0	0	4	4	1	0
	6	1995	0	6	0	1.744	22.14	3.224	3.556	15.36	10	6	2	1	19	44	0	1

Dataset included

Eye measurements, family history of myopia & various visual activities

Data subjects

618 children who had at least five years of follow-up and were not myopic when they entered the study.

Project purpose

is to examine which variables contribute to the development of Myopia

GLM Model Evaluation

Binomial logistic regression

call:

Confusion Matrix

	Actual 0	Actual 1
Predict 0	TN =525	FN =50
Predict 1	FP =12	TP =31

TP = true positive (declare H1 when, in truth, H1)

FN = false negative (declare H0 when, in truth, H1)

FP = false positive

TN = true negative

2 Precision

= 31/(31+12) = 0.72

$$Precision = \frac{tp}{tp + fp}$$

3 Recall

= 31/(31+50) = 0.38

$$ext{Recall} = rac{tp}{tp + fn}$$

4 F-Score

 $= 2x (0.38 \times 0.72) / (0.38 + 0.72) = 0.50$

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

5 Accuracy

= 556/618 = 0.90

Conclusions

- The dataset is imbalanced. Only 15% of the dataset's subjects are myopic students.
- Model's accuracy is high (approx. 90%). However, the model is unable to successfully predict myopic students.
- Lower accuracy levels may have better predictive power, better precision, recall and F score.
- This statistic analysis provides insights concerning the correlation between the studied variables and the existence of myopia in children, but the fitted model does not have strong predictive power.