Recurrent Neural Network

Agenda

• Recurrent Neural Network ทำไมถึงเหมาะกับการทำ NER หรือ sequence tagging

• RNN มีวิธีการทำงานอย่างไร มี parameter อะไรบ้าง

Recurrent Neural Network Parameters

RNN as a Classifier

Recurrent Neural Network

• เหมาะกับ Sequence Labeling ที่ต้องใช้บริบทกว้าง เช่น Language Modeling, NER, ตัดคำ

• เหมาะกับการใช้เป็น classifier เพราะเก็บบริบทได้ครบ

• ในทางปฏิบัติแล้ว train ลำบาก

Training RNN

Concept ที่สำคัญ

• Backpropagation Through Time (BPTT) algorithm

Exploding gradient

Vanishing gradient

Backpropagation Through Time

Exploding Gradient

Vanishing Gradient

การเทรน RNN

• RNN Parameter น้อย แต่ว่าเทรนล้าบาก

- Exploding gradient ทำให้ Loss เป็น NaN หรือ parameter แกว่ง มากในแต่ละ iteration --> Gradient Clipping
- Vanishing gradient ทำให้ network ไม่เขยื้อน —> GRU, LSTM

Gated Recurrent Unit (GRU)

+ Long Short-Term Memory (LSTM)

RNN Cell

$$c_t = \tanh(W_c \cdot [c_{t-1}; x_t] + b_c)$$

Peter

RNN Cell

Gated Recurrent Unit

Long Short-Term Memory Unit B-PER h_{t-1} LSTM Cell

Peter

Gated Recurrent Unit

• RNN โดยทั่วไป เรียกว่า Vanilla RNN

• GRU และ LSTM เป็น RNN แบบที่เทรนง่ายขึ้นเพราะ แก้ปัญหา Vanishing gradient ได้ดี แต่ parameter เยอะขึ้น

Bidirectional RNN

Bidirectional RNN

• Bidirectional Gated Recurrent Unit (Bi-GRU)

• Bidirectional Long Short-Term Memory (Bi-LSTM)

• BiLSTM + CRF

BI-LSTM / BI-GRU

BI-LSTM-CRF

Bi-LSTM-CRF in Practice

Word Embedding vs Discrete Features

Tagging performance on POS, chunking and NER tasks with only word features.

		POS	CoNLL2000	CoNLL2003
Senna	LSTM	94.63 (-2.66)	90.11 (-2.88)	75.31 (-8.43)
	BI-LSTM	96.04 (-1.36)	93.80 (-0.12)	83.52 (-1.65)
	CRF	94.23 (-3.22)	85.34 (-8.49)	77.41 (-8.72)
	LSTM-CRF	95.62 (-1.92)	93.13 (-1.14)	81.45 (-6.91)
	BI-LSTM-CRF	96.11 (-1.44)	94.40 (-0.06)	84.74 (-4.09)

- Discrete features เหมาะกับ CRF
- Word embedding เหมาะกับ LSTM

ควรใช้ Pre-trained Embedding

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
Random	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
Senna	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

Almost State-of-the-art POS tagging

System	accuracy	extra data
Maximum entropy cyclic dependency	97.24	No
network (Toutanova et al., 2003)		
SVM-based tagger (Gimenez and Marquez, 2004)	97.16	No
Bidirectional perceptron learning (Shen et al., 2007)	97.33	No
Semi-supervised condensed nearest neighbor	97.50	Yes
(Soegaard, 2011)		
CRFs with structure regularization (Sun, 2014)	97.36	No
Conv network tagger (Collobert et al., 2011)	96.37	No
Conv network tagger (senna) (Collobert et al., 2011)	97.29	Yes
BI-LSTM-CRF (ours)	97.43	No
BI-LSTM-CRF (Senna) (ours)	97.55	Yes

Almost State-of-the-art NER

System	accuracy
Combination of HMM, Maxent etc. (Florian et al., 2003)	88.76
MaxEnt classifier (Chieu., 2003)	88.31
Semi-supervised model combination (Ando and Zhang., 2005)	89.31
Conv-CRF (Collobert et al., 2011)	81.47
Conv-CRF (Senna + Gazetteer) (Collobert et al., 2011)	89.59
CRF with Lexicon Infused Embeddings (Passos et al., 2014)	90.90
BI-LSTM-CRF (ours)	84.26
BI-LSTM-CRF (Senna + Gazetteer) (ours)	90.10

สรุปคือยังใง

• Bi-LSTM-CRF เป็นโมเดลที่มีประสิทธิภาพ เทรนไม่ยากมาก และใช้กัน แพร่หลายตอนนี้ (ปี 2020)

- ควรจะใช้ pre-trained embedding + discrete features
- ไม่แน่เสมอไปว่าจะดีกว่า CRF หรือแม้แต่ Maximum Entropy