

DESIGN OF MULTIMEDIA APPLICATIONS

DESIGN OF MULTIMEDIA APPLICATIONS

Assignment 3: GStreamer! research

<u>OVERVIEW</u>

- Assignment 1: Intro to media processing
- Assignment 2: Making a product that uses media
- Assignment 3: Misuse GStreamer for research

MOTION DETECTION

Detect when something is moving inside a scene

APPLICATIONS

A battery operated wildlife camera

A surveillance camera system

BACKGROUND SUBTRACTION

Current frame

EXAMPLE

Background model

Input video

EXAMPLE

Background model

Foreground mask

BACKGROUND MODELING

background initialization

- background update
 - When background objects leave the scene
 - When objects become background

Background initialization

Background update

		Predicted condition		
	Total population	Predicted Condition positive	Predicted Condition negative	
TRUE condition	condition positive	<u>True positive</u>		
	condition negative		<u>True negative</u>	

		Predicted condition		
	Total population	Predicted Condition positive	Predicted Condition negative	
TRUE condition	condition positive	<u>True positive</u>	<u>False Negative</u> (Type II error)	
	condition negative	<u>False Positive</u> (Type I error)	<u>True negative</u>	

		Predicted condition		
	Total population	Predicted Condition positive	Predicted Condition negative	
TRUE condition	condition positive	<u>True positive</u>	<u>False Negative</u> (Type II error)	
	condition negative	<u>False Positive</u> (Type I error)	<u>True negative</u>	
	Accuracy (ACC) = Σ True positive + Σ	Positive predictive value (PPV), Precision = Σ True positive/ Σ Test outcome positi ve		
IIIIIII GHENT UNIVERSITY	True negative/Σ Total population			

True positive rate (TPR),

Sensitivity, Recall, probability of

detection =

Σ True positive/

Σ Condition positive

	Predicted condition				
	Total population	Predicted Condition positive	Predicted Condition negative	Prevalence = Σ Condition positive/ Σ Total population	
TRUE condition	condition positive	<u>True positive</u>	<u>False Negative</u> (Type II error)	True positive rate (TPR), Sensitivity, Recall, probability of detection = Σ True positive/ Σ Condition positive	False negative rate (FNR), Miss rate = Σ False negative/ Σ Condition positive
	condition negative	<u>False Positive</u> (Type I error)	<u>True negative</u>	False positive rate (FPR), Fallout, probability of false alarm = Σ False positive/Σ Condition negative	True negative rate (TNR), Specificity (SPC) = Σ True negative/ Σ Condition negative
	Accuracy (ACC) = Σ True positive + Σ	Positive predictive value (PPV), Precision = Σ True positive/ Σ Test outcome positi ve	<u>Faise omission rate (FOR) =</u> $ \underline{\Sigma \text{ False negative}} $ Σ Test outcome negative	Positive likelihood ratio (LR+) = TPR/FPR	Diagnostic odds ratio (DOR) =
IIIIIII GHENT UNIVERSITY	True negative/Σ Tota population	False discovery rate (FDR) = Σ False positive/ Σ Test outcome positi ve	Negative predictive value (NPV) = Σ True negative/ Σ Test outcome negative	Negative likelihood ratio (LR-) = FNR/TNR	<u>LR+/LR-</u>

DATASET

Groundtruth

Region of interest

The groundtruth images contain 5 labels namely:

- ~0 : Static
- ~50 : Hard shadow
- ~85 : Outside region of interest
- ~170: Unknown motion (usually around moving objects, due to semi-transparency and motion blur)
- ~255 : Motion

DATASET

Input video

Datasets can be in a different format:

- MP4[AVC]
- MKV[JPG]
- ...

GSTREAMER

- Use Gstreamer to handle all these formats transparently.
 - Appsrc
 - Appsink

APPSRC AND APPSINK

APPSRC AND APPSINK

<u>ASSIGNMENT</u>

- modular media research framework for motion detection
 - input & groundtruth: read using Gstreamer
 ROI: read using OpenCV: cv2.imread()
 - The groundtruth can be binarized:
 background (values 0 and 85)
 foreground (values 50, 170, and 255)
 - Visualize the background model and foreground mask.
 - Evaluate using precision, and recall.

			Predicted condition			
		Total population	Predicted Condition positive	Predicted Condition negative	Prevalence = Σ Condition positive/ Σ Total population	
	TRUE condition	condition positive	<u>True positive</u>	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall , probability of detection = Σ True positive/ Σ Condition positive	False negative rate (FNR), Miss rate = Σ False negative/ Σ Condition positive
		condition negative	<u>False Positive</u> (Type I error)	<u>True negative</u>	False positive rate (FPR), Fallout, probability of false alarm = Σ False positive/Σ Condition negative	True negative rate (TNR), Specificity (SPC) = Σ True negative/ Σ Condition negative
		Accuracy (ACC) = Σ True positive + Σ	Positive predictive value (PPV), Precision = Σ True positive/ Σ Test outcome positi ve	False omission rate (FOR) = Σ False negative/ Σ Test outcome negative	Positive likelihood ratio (LR+) = TPR/FPR	Diagnostic odds ratio (DOR) =
GHENT UNIVERSITY	GHENT	True negative/Σ Total population False discovery rate (FDR) = Σ False positive/ Σ Test outcome positive ve	Negative predictive value (NPV) = Σ True negative/ Σ Test outcome negative	Negative likelihood ratio (LR-) = FNR/TNR	<u>LR+/LR-</u>	

MEAN MOTION ESTIMATOR

— Background = mean of the X previous frames.

BLOCK BASED ESTIMATOR

Background

Foreground

MIXTURE OF GAUSSIANS

- OpenCV: Open Source Computer Vision Library
- Mixture of Gaussians motion estimator

- Instead of mean/pixel
- Gaussian distribution/pixel
- If part of distribution

 background

Head supervisor: Glenn Van Wallendael [Glenn.VanWallendael@UGent.be]

Supervisors:

Vasileios Avramelos Vasileios. Avramelos @ UGent.be

Sven Lieber Sven.Lieber@UGent.be

Baptist Vandersmissen Baptist. Vandersmissen @UGent.be

Niels Van Kets Niels.VanKets@UGent.be

