Лабораторная работа 11.1. Определение ширины запрещенной зоны полупроводника.

Дмитрий Норкин 13/03/2019

Цель работы

Исследовать температурную зависимость полупроводника. Определить ширину запрещенной зоны методом прямого измерения сопротивления.

Ход работы

Проведем измерения сопротивления каждого из образцов в зависимости от их температуры, выражаемой в разности потенциалов термопары U. Из теории полупроводимости известно, что электропроводность $\sigma = Ae^{-\frac{\Delta}{2k_BT}}$. Пересчитаем сопротивление в электропроводность по формуле $\sigma = \frac{l}{RS}$. Таким образом, линеаризовав зависимость с помощью графика $\ln \sigma(\frac{1}{T}) = -\frac{\Delta}{2k_B}\frac{1}{T} + \ln A$, рассчитаем по угловому коэффициенту ширину запрещенной зоны Δ . Для проводников зависимость проводимости от температуры линейна $\sigma = \sigma_0 + \alpha T$.

Измерения

Комнатная температура $T_0 = 26~C = 299~K$. Постоянная термопары $\alpha = 42~\mu V/K$.

Размеры медного образца: $l=20\ m,\ d=0.05\ mm.$

Размеры сверхпроводника: $l = 39 \ mm, \ a = b = 4 \ mm.$

Погрешность измерения термо ЭДС $\Delta U=0.01~V\Longrightarrow \Delta T=\frac{\Delta U}{\alpha}\Longrightarrow \Delta\frac{1}{T}$

Рис. 1: Зависимость проводимости меди от температуры

Рис. 2: Зависимость проводимости полупроводника от температуры

U, mV	$R_{Cu}, \ k\Omega$	$R_{SC}, k\Omega$	T, K	$1/T, \ mK^{-1}$	$\sigma_{Cu}, \ 10^7 \cdot 1/(\Omega \cdot m)$	$\sigma_{SC}, \ 1/(\Omega \cdot m)$	$\ln \sigma_{SC}$
0.11	0.181	0.289	301.7	3.315	5.628	8.43	2.13
0.45	0.185	0.264	310.0	3.226	5.506	9.23	2.22
0.74	0.189	0.228	317.0	3.155	5.389	10.69	2.37
1.05	0.194	0.186	324.6	3.081	5.25	13.1	2.57
1.37	0.199	0.145	332.4	3.008	5.119	16.81	2.82
1.71	0.205	0.11	340.7	2.935	4.969	22.16	3.1
2.02	0.21	0.084	348.3	2.871	4.85	29.02	3.37
2.34	0.215	0.066	356.1	2.808	4.738	36.93	3.61
2.61	0.22	0.053	362.7	2.757	4.63	45.99	3.83
2.89	0.224	0.044	369.5	2.706	4.547	55.4	4.01
3.14	0.228	0.036	375.6	2.662	4.468	67.71	4.22

Таблица 1: Зависимость проводимостей каждого из образцов от температуры

Рис. 3: Линеаризованный график зависимости проводимости полупроводника от температуры

Из графика коэффициент температурного сопротивления меди равен $\alpha=(-1.61\pm0.02)\cdot 10^5~\frac{1}{m\cdot\Omega\cdot K}$ Угловой коэффициент линеаризованной зависимости $\beta=-4020\pm30~K$. Ширина запрещенной зоны тогда равна $\Delta=-2k_B\beta=0.69\pm0.01~eV$.

Выводы

В лабораторной работе была исследована температурная зависимость проводимости проводника (меди) и полупроводника. Рассчитан коэффициент температурного сопротивления меди $\alpha=(-1.61\pm0.02)\cdot10^5~\frac{1}{m\cdot\Omega\cdot K}$ и ширина запрещенной зоны полупроводника $\Delta=0.69\pm0.01~eV$. Значение очень близко к ширине запрещенной зоны германия.