# **Dynamic Programming**

Algorithms

# **Topics**

- Dynamic Programming
  - Fibonacci solution via Divide and Conquer
  - Introduction to Dynamic Programming
  - Shortest Path
  - Longest Common Subsequence
  - Knapsack

# Divide and Conquer

- Divide the problem into smaller subproblems
- Conquer the subproblems recursively until the subproblem is small enough to solve
- Example Binary Search, Merge Sort

## Binary Search

- Binary Search (array A, first, last, v)
  - If (last <first) output -1</p>
  - Mid = (last + first) / 2
  - If A[mid]= v output mid
  - If A[mid]>v
    - ■Binary\_search (A, first, mid-1,v)
  - Else Binary\_search (A, mid+1, last,v)

# Fibonacci Example

#### Fibonacci Numbers

- **F**(n)
  - If (n>=2) F(n)=F(n-1)+F(n-2)
  - If (n=1) F(n)=1
  - If (n=0) F(n)=0
- Running Time
- T(n)=T(n-1)+T(n-2)
  - = T(n-2) + T(n-3) + T(n-2) > = 2T(n-2)
  - $-T(n)>=2T(n-2)>=2^2T(n-4)>=2^kT(n-2k)$
  - So when k= n/2.  $T(n) > = 2^{n/2}T(1)$ , exponential

# Introduction to Dynamic Programming

- "Programming" refers to a organized set of activities
  - Example Graduation program, TV program
- Stores the results for small subproblems, and looks them up instead of recomputing
- Used for recursive algorithms which would solve many subproblems repeatedly
- Usually applied to <u>optimization problems</u>
  - Problems where there are many solution, but one is looking for the best (either maximum or minimum)
  - Ex: Shortest path between node a and node b

#### **Shortest Path**

- Given a G=(V,E) and W edge weights of the edges and vertices s, t. Find the shortest path from s to t.
- d(s,t)=distance of shortest path from s to t

#### **Shortest Path**

- Un-weighted graph: BFS (breadth first search) (as opposed to Depth-First Search)
- Single Source Shortest Path (SSSP)
- O(|E|+|V|)

 $Q = \{5\}$ 



#### Example (1)

D[5] = 0

5





#### Example (3)



#### Example (4)



#### Example (5)

This is the BFS = SSSP © spanning tree when BFS is started from vertex 5

# Floyd-Warshall Shortest Path

- For edge e=(i,j)

  Set d(e)=infinity if e is not an edge otherwise set d(e)=w(e)
- For k=1 to n
  - For i = 1 to n
    - For j= 1 to n
      - $-d(i,j)=\min \{d(i,j),d(i,k)+d(k,j)\}$
- n<sup>3</sup> running time (n<100): Floyd-Warshall
- All pairs shortest paths: APSP
- Can have negative weight

## Bellman Ford

- Single Source Shortest Path: SSSP
- $O(|V|^{2*}|E|)$  if  $E=O(|V|^2)$  what is running time
- May have negative weight cycle

# Dijkstra's Shortest Path

- Most famous (Dijkstra's algorihtm)
- Finds shortest path from a given source s to all other vertices: SSSP
- Very similar to Prim's Algorithm
- Greedy Algorithm
- Fibonacci heap: O(|E|+ |V|Ig |V|)
- Min priority queue O(|V|2)
- OSPF (open shortest path first) protocol in networking
- Special implementation for sparse graphs
- How do you store a graph?

#### **Shortest Path**

- Input, G=(V,E,W) source s
- Output d[v] = best distance from s to v
- Set d[v]=∞ for all v ≠s
- Set d[s]=0, S= { } Q=V
- While Q is not empty
  - Find u which satisfies min {d[v], v∈ Q}
  - $S= S U \{u\}, Q=Q-\{u\}$
  - For each v adjacent to u, i.e. (u,v)∈ E
    - $\blacksquare$ d[v]= min{ d[v], d[u]+W(u,v)}

# Longest Common Subsequence

- Given two string, find the longest common subsequence
- Example
  - S=accggtcgagtgcgcggaagccggccgaa
  - T=gtcgttcggaatgccgttgctctgtaaa
  - Longest subsequence gtcgtcggaagccggccgaa
- Similar to Diff command in Unix
- Used for file revisions or remote updates, spelling corrections, plagiarism detection, speech recognition, comparing two DNA sequences

# Longest Common Subsequence

#### Theorem

```
Let X = \langle x_1, x_2, ..., x_m \rangle Y = \langle y_1, y_2, ..., y_n \rangle, and Z = \langle z_1, z_2, ..., z_k \rangle
be a LCS of X and Y
```

- If  $x_m = y_n$ , then  $z_k = x_m = y_n$  and  $Z_{k-1}$  is a LCS of  $X_{m-1}$  and  $Y_{n-1}$
- If  $x_m \neq y_n$  and  $z_k \neq x_m$ , then Z is a LCS of  $X_{m-1}$  and  $Y_n$
- If  $x_m \neq y_n$ , and  $z_k \neq y_n$  then Z is a LCS of  $X_m$  and  $Y_{n-1}$

### LCS

- ■Define c[i.j] to be the length of the LCS of X<sub>i</sub> and Y<sub>i</sub>
- What is c[0,j]?
  - -0
- What is c[i,0]?
  - -0
- What is c[i,j], if i,j >0 and  $x_i=y_i$ ?
  - -c[i-1,j-1]+1
- What is c[i,j], if i,j >0 and  $x_i \neq y_i$ ?
  - Max{ c[i,j-1],c[i-1,j] }

#### LCS

```
LCS-Length(X,Y)
   - m= length(X), n= length(Y)
   Set c[i,0]=0 for all I from 1 to m
   - Set c[0,j]=0 for all j from 1 to n
   - For i is 1 to m
       For j=1 to n
          - If xi=yi
               ■Then c[i,j]=c[i-1,j-1]+1, and b[i,j]="\"
               ■else if c[i-1,j]>= c[i,j-1]
                          then c[i,j]=c[i-1,j] and b[i,j]="\uparrow"
                          else c[i,j]=c[i,j-1] and b[i,j]="\leftarrow"
```

|    | уj | 0 | 1        | 2          | 3          | 4 | 5        | 6 |
|----|----|---|----------|------------|------------|---|----------|---|
| xi |    |   | В        | D          | С          | A | В        | Α |
| 0  |    | 0 | 0        | 0          | 0          | 0 | 0        | 0 |
| 1  | A  |   | <b>↑</b> | $\uparrow$ | $\uparrow$ | _ | <b>←</b> | K |
|    |    | 0 | 0        | 0          | Ö          | 1 | 1        | 1 |
| 2  | В  | 0 |          |            |            |   |          |   |
| 3  | С  | 0 |          |            |            |   |          |   |
| 4  | В  | 0 |          |            |            |   |          |   |
| 5  | D  | 0 |          |            |            |   |          |   |
| 6  | Α  | 0 |          |            |            |   |          |   |
| 7  | В  | 0 |          |            |            |   |          |   |