

Численное интегрирование

Предмет: Вычислительная математика

Преподаватель: Парамонов А.А.

Содержание

- Основные понятия
- Метод трапеций
- Метод Симпсона
- Метод Гаусса

Основные понятия

Поскольку функция f(x) в задаче аналитического решения интеграла вида

$$I = \int_{a}^{b} f(x) dx$$
 на $[a,b]$.

не всегда представима в виде элементарных функций, то вычисления аналитическими методами становятся трудно выполнимыми.

Для подобного типа задач используются численные методы интегрирования.

Метод трапеций

Принцип метода: отрезок [a;b]

разбивается на n равных интервалов длины h, т.е. h $=\frac{b-a}{n}$, а узлы вычисляются по формуле: $x_i=a+i*h$, тогда интеграл (I) представим в следующем виде:

$$I = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) dx = \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} h$$

$$= \frac{h}{2} (f(a) + 2 * \sum_{i=1}^{n-1} f(x_i) + f(b))$$

Метод Симпсона

Принцип метода: отрезок [a;b] разбивается на 2n (чётное количество) равных интервалов длины h, т.е. $h = \frac{b-a}{2n}$, тогда интеграл (I) представим в следующем виде:

$$I = \frac{h}{3}(f(a) + 2 * \sum_{i=1}^{n-1} f(x_{2i}) + 4 * \sum_{i=1}^{n} f(x_{2i-1}) + f(b))$$

Метод Гаусса

Принцип метода: основан на

полиномах Лежандра
$$P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{d^n x} (x^2 - 1)^n$$
 -

полином степени $n, x \in [-1,1]$. Тогда в общем виде, решение исходного интеграла представляется в следующем виде:

$$\int_{-1}^{1} f(t) \cdot dt = \sum_{i=1}^{n} A_i \cdot f(t_i)$$

Решение методом Гаусса

Для исходного интеграла берётся замена $x_i = \frac{a+b}{2} + \frac{b-a}{2} t_i$, которая переводит заданный отрезок [a;b] в отрезок [-1;1]. Тогда интеграл решается следующим образом:

$$I = \frac{b-a}{2} * \sum_{i=1}^n A_i f\left(\frac{a+b}{2} + \frac{b-a}{2} t_i\right)$$
, где A_i - коэффициенты квадратурной формулы.

Оформление домашнего задания

По вариантам:

- 1) Рассчитываете интеграл по трём методам, для трёх различных n.
- 2) Строите графики сходимости для КАЖДОГО метода (3 метода => 3 графика)

Максимальный балл – 4.

Контакты

Решения делать рукописные, сканируете решения, преобразуете в pdf. Готовые работы собирает староста (!) и в день следующего занятия (или по готовности) высылает их на почту: paramonov a@mirea.ru

Домашнее задание по третьей теме выслать сегодня через старосту до конца рабочего дня.

Напоминаю, что сегодня последний день приёма домашнего задания по второй теме.