School of Mathematics and Statistics MAST30030

Applied Mathematical Modelling

Problem Sheet 5. Cartesian tensors

Question 1

Which of the following expressions make sense in index notation?

i.
$$a = b_i c_{ij} d_j$$

ii.
$$a_i = b_i + c_{ij}d_{ji}e_i$$

iii.
$$a = b_i c_i + d_i$$

iv.
$$a_l = \varepsilon_{ijk} b_i c_k$$

v.
$$a_k = b_i c_{ki}$$

vi.
$$a_{ij} = b_i c_j + e_{jk}$$

Question 2

Simplify the expression

$$(A_{ijk} + A_{jki} + A_{kji})x_ix_jx_k$$

Question 3

Use Cartesian tensor methods to prove the following identities:

i.
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

ii.
$$\nabla \times \nabla \phi = 0$$

iii.
$$\nabla \cdot \nabla \times \mathbf{a} = 0$$

iv.
$$\nabla \cdot (\mathbf{u} \times \mathbf{v}) = (\nabla \times \mathbf{u}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{u}$$

v.
$$\nabla \cdot (\rho \mathbf{u}) = \rho \nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \rho$$

vi.
$$\nabla \times \mathbf{r} = 0$$
 where $\mathbf{r} = (x, y, z)$

vii.
$$\mathbf{a} \times \mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} \times \mathbf{b} = 0$$

viii.
$$\frac{D}{Dt}(\mathbf{r} \times \rho \mathbf{u}) + (\mathbf{r} \times \rho \mathbf{u})\nabla \cdot \mathbf{u} = \mathbf{r} \times \left[\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u})\right]$$

ix.
$$\mathbf{u} \cdot \nabla \mathbf{u} = \frac{1}{2} \nabla (\mathbf{u} \cdot \mathbf{u}) + (\nabla \times \mathbf{u}) \times \mathbf{u}$$

x.
$$\nabla \times (\mathbf{u} \times \mathbf{v}) = (\mathbf{v} \cdot \nabla)\mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{v} + (\nabla \cdot \mathbf{v})\mathbf{u} - (\nabla \cdot \mathbf{u})\mathbf{v}$$

Hint: use the identity

$$\varepsilon_{ijk}\varepsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$$

freely. Convert the identity to component form, manipulate then convert back to dyadic form.

Question 4

Prove or disprove , where b_{ij} is not symmetric:

- i. $b_{ij}x_iy_j = b_{ij}y_ix_j$
- ii. $b_{ij}x_ix_j = b_{ji}x_ix_j$
- iii. $(b_{ij} + b_{ji})x_iy_j = 2b_{ji}x_iy_j$
- iv. $(b_{ij} + b_{ji})x_ix_j = 2b_{ji}x_ix_j$
- v. $\varepsilon_{ijk}\tau_{ij} = 0 \Rightarrow \tau_{ij} = \tau_{ji}$

Question 5

Show that

- i. S:T=0 if S is symmetric and T is antisymmetric.
- ii. $\varepsilon_{ijk}\varepsilon_{ijl}=2\delta_{kl}$

Question 6

Evaluate

- i. δ_{ii}
- ii. $\delta_{ij}\delta_{ji}$
- iii. $\delta_{ij}\delta_{ik}\delta_{jk}$
- iv. $\varepsilon_{ijk}\varepsilon_{ijk}$