优化方法基础

神秘

2024年11月25日

· //	<u> </u>		填	空	题
------	----------	--	---	---	---

1. 凸集的定义:。
2. 凸函数的两种判定方法:,。
3. 对于①、不满足 Slater's 条件的非凸优化问题 ②、不满足 Slater's 条件
的凸优化问题 ③、满足 Slater' 条件的非凸优化问题 ④、满足 Slater' 条件的凸
优化问题,请选出弱对偶性一定成立的选项 和强对偶性一定成立的选
项
4. 采用牛顿方法求解优化问题时,所经历的两种迭代过程分别是 和
°
5. 处理只包含等式约束凸优化问题的常用方法有:,。
$\min f_0(x)$
s.t. $g_i(x) \le 0$ $i = 1, 2,, m$
Ax = b
写出该优化问题满足的 KKT 方程:

三、判定凸集及凸函数

- 1. $D = \{x : ||Ax + b|| \le c\}$, 判断是否是凸集, 并证明。
- 2. $f(x,y) = x^4 + y^4 + 3x^2 + 3y^2 + e^{x+y}$, 判断是否是凸函数, 并证明。

四、对以下优化问题

min
$$4x^2 - 6x + 3$$

s.t. $(x-2)(x-4) \le 0$

- 1. 请求出该优化问题的可行解集 X、最优解 x^* 和最优值 p^* 。
- 2. 请写出该优化问题对应的拉格朗日函数 $L(x,\lambda)$ 及对偶函数 $g(\lambda)$, λ 为不等式约束对应的拉格朗日乘子。并证明该对偶函数 $g(\lambda)$ 是凹函数。
- 3. 请写出该优化问题的拉格朗日对偶问题,并求解对偶最优解 λ^* 及对偶最优值 d^* 。判断此时强对偶性是否成立,并说明理由。

五、对于无约束优化问题

- 1. 写出 d^k 为下降方向的充要条件, 并证明。
- 2. 写出非规范最速下降方向和规范化最速下降方向,证明 Euclid 范数 $\|\cdot\|_2$ 下的非规范化最速下降方向是负梯度方向。
 - 3. 写出此时对应的采用回溯直线搜索的下降方法。

六、对于等式约束优化问题

$$\min_{x} f(x)$$
, s.t. $Ax = b$

满足以下假设:

- 1. 函数 $f: \mathbb{R}^n \to \mathbb{R}$ 为二阶连续可微的凸函数;
- 2. 矩阵 $A \in \mathbb{R}^{p \times n}$, rank(A) = p < n.
- 1. 用二阶近似最优性得到牛顿下降方向 d_x 并证明证明牛顿下降方向 d_x 是**可行**的**下降**方向。
 - 2. 写出牛顿减少量 $\lambda(x)$ 的形式并证明 $f(x) p^* \approx \frac{1}{2}\lambda(x)^2$.
 - 3. 写出可行迭代点的牛顿下降回溯直线搜索算法。

七、对于等式不等式约束优化问题

$$\min_{x} f_0(x), s.t. f_i(x) \le 0, i = 1, 2, ...m, Ax = b$$

满足如下假设:

- 1. 函数 $f_0, ... f_m : \mathbb{R}^n \Rightarrow \mathbb{R}$ 为二阶连续可微的凸函数;
- 2. 矩阵 $A \in \mathbb{R}^{p \times n}$, rank(A) = p < n;
- 3. 该优化问题严格可行,即存在 $x \in D$ 满足 Ax = b, $f_i(x) < 0$, i = 1, ..., m
- 4. 该问题对偶问题的可行解为 $\lambda \in \mathbb{R}^m, v \in \mathbb{R}^p$ 。

记 x^* 为该优化问题的最优解, p^* 为最优值。

根据假设现使用障碍方法求解该优化问题,请完成下列问题:

- 1. 请使用近似示性函数将将该优化问题转化为近似等式约束优化问题,并 写出所对应的对数障碍函数
 - 2. 请写出 $x^*(t)$ 满足的 $f(x^*(t))$ 与 p^* 差值的上界
- 3. 写出从可行初始点 x^0 出发的障碍方法;并估计至多需要多少轮外部迭代,能够达到 ϵ 的精度要求。