Models for each category

INTERMEDIATE REGRESSION IN R

Richie Cotton

Data Evangelist at DataCamp

4 categories

unique(fish\$species)

"Bream" "Roach" "Perch" "Pike"

Splitting the dataset

The smart way

- base-R: split() + lapply()
- dplyr: nest_by() + mutate()

The simple way

```
bream <- fish %>%
  filter(species == "Bream")
perch <- fish %>%
  filter(species == "Perch")
pike <- fish %>%
  filter(species == "Pike")
roach <- fish %>%
  filter(species == "Roach")
```

4 models

```
Call:
lm(formula = mass_g ~ length_cm, data = bream)

Coefficients:
(Intercept) length_cm
   -1035.35 54.55
```

mdl_bream <- lm(mass_g ~ length_cm, data = bream)</pre>

mdl_perch <- lm(mass_q ~ length_cm, data = perch)</pre>

```
Call:
lm(formula = mass_g ~ length_cm, data = pike)

Coefficients:
(Intercept) length_cm
   -1540.82 53.19
```

mdl_pike <- lm(mass_g ~ length_cm, data = pike)</pre>

mdl_roach <- lm(mass_q ~ length_cm, data = roach)</pre>

```
Call:
lm(formula = mass_g ~ length_cm, data = perch)

Coefficients:
(Intercept) length_cm
   -619.18 38.91
```

Explanatory data

```
explanatory_data <- tibble(
  length_cm = seq(5, 60, 5)
)</pre>
```

Making predictions

```
prediction_data_bream <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_bream, explanatory_data),
    species = "Bream"
)
```

```
prediction_data_pike <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_perch, explanatory_data),
    species = "Perch"
)
```

```
prediction_data_perch <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_pike, explanatory_data),
    species = "Pike"
)
```

```
prediction_data_roach <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_roach, explanatory_data),
    species = "Roach"
)
```

Visualizing predictions

```
ggplot(fish, aes(length_cm, mass_g, color = species)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Adding in your predictions

```
ggplot(fish,aes(length_cm, mass_g, color = species)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(data = prediction_data_bream, size = 3, shape = 15) +
  geom_point(data = prediction_data_perch, size = 3, shape = 15) +
  geom_point(data = prediction_data_pike, size = 3, shape = 15) +
  geom_point(data = prediction_data_roach, size = 3, shape = 15)
```


Coefficient of determination

```
mdl_fish <- lm(mass_g ~ length_cm + species, data = fish)

mdl_fish %>%
  glance() %>%
  pull(adj.r.squared)
```

0.917

```
mdl_bream %>% glance() %>% pull(adj.r.squared)
0.874
mdl_perch %>% glance() %>% pull(adj.r.squared)
0.917
mdl_pike %>% glance() %>% pull(adj.r.squared)
0.941
mdl_roach %>% glance() %>% pull(adj.r.squared)
```

0.815

Adatacamp

Residual standard error

```
mdl_fish %>%
  glance() %>%
  pull(sigma)
```

103

mdl_bream %>% glance() %>% pull(sigma)

74.2

mdl_perch %>% glance() %>% pull(sigma)

100

mdl_pike %>% glance() %>% pull(sigma)

120

mdl_roach %>% glance() %>% pull(sigma)

38.2

Let's practice!

INTERMEDIATE REGRESSION IN R

One model with an interaction

INTERMEDIATE REGRESSION IN R

Richie Cotton

Data Evangelist at DataCamp

What is an interaction?

In the fish dataset

The effect of length on the expected mass is different for different species.

More generally

The effect of one explanatory variable on the expected response changes depending on the value of another explanatory variable.

Specifying interactions

No interactions

response ~ explntry1 + explntry2

With interactions (implicit)

response_var ~ explntry1 * explntry2

With interactions (explicit)

response ~ explntry1 + explntry2 + explntry1:explntry2

No interactions

mass_g ~ length_cm + species

With interactions (implicit)

mass_g ~ length_cm * species

With interactions (explicit)

mass_g ~ length_cm + species + length_cm:species

Running the model

```
lm(mass_g ~ length_cm * species, data = fish)
```

```
Call:
lm(formula = mass_g ~ length_cm * species, data = fish)
Coefficients:
          (Intercept)
                                 length_cm
                                                     speciesPerch
                                                                            speciesPike
           -1035.348
                                    54.550
                                                         416.172
                                                                              -505.477
         speciesRoach length_cm:speciesPerch length_cm:speciesPike length_cm:speciesRoach
             705.971
                                   -15.639
                                                          -1.355
                                                                               -31.231
```

Easier to understand coefficients

```
mdl_inter <- lm(mass_g ~ species + species:length_cm + 0, data = fish)</pre>
```

```
Call:

lm(formula = mass_g ~ species + species:length_cm + 0, data = fish)

Coefficients:

speciesBream speciesPerch speciesPike speciesRoach
-1035.35 -619.18 -1540.82 -329.38

speciesBream:length_cm speciesPerch:length_cm speciesPike:length_cm speciesRoach:length_cm
54.55 38.91 53.19 23.32
```


Familiar numbers

```
speciesBreamspeciesPerchspeciesPikespeciesRoach-1035.35-619.18-1540.82-329.38speciesBream:length_cmspeciesPerch:length_cmspeciesPike:length_cmspeciesRoach:length_cm54.5538.9153.1923.32
```

coefficients(mdl_bream)

(Intercept) length_cm -1035.34757 54.54998

Let's practice!

INTERMEDIATE REGRESSION IN R

Making predictions with interactions

INTERMEDIATE REGRESSION IN R

Richie Cotton

Data Evangelist at DataCamp

The model with the interaction

```
mdl_mass_vs_both_inter <- lm(mass_g ~ species + species:length_cm + 0, data = fish)
```

```
Call:

lm(formula = mass_g ~ species + species:length_cm + 0, data = fish)

Coefficients:

speciesBream speciesPerch speciesPike speciesRoach
-1035.35 -619.18 -1540.82 -329.38

speciesBream:length_cm speciesPerch:length_cm speciesPike:length_cm speciesRoach:length_cm
54.55 38.91 53.19 23.32
```

The prediction flow, again

```
library(dplyr)
library(tidyr)
explanatory_data <- expand_grid(</pre>
  length_cm = seq(5, 60, 5),
  species = unique(fish$species)
prediction_data <- explanatory_data %>%
  mutate(mass_g = predict(mdl_mass_vs_both_inter, explanatory_data))
```

Visualizing the predictions

```
ggplot(fish, aes(length_cm, mass_g, color = species)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(data = prediction_data, size = 3, shape = 15)
```



```
coeffs <- coefficients(mdl_mass_vs_both_inter)</pre>
```

```
speciesBreamspeciesPerchspeciesPikespeciesRoach-1035.34757-619.17511-1540.82427-329.37621speciesBream:length_cmspeciesPerch:length_cmspeciesPike:length_cmspeciesRoach:length_cm54.5499838.9114753.1948723.31926
```

```
intercept_bream <- coeffs[1]
intercept_perch <- coeffs[2]
intercept_pike <- coeffs[3]
intercept_roach <- coeffs[4]</pre>
```

```
slope_bream <- coeffs[5]
slope_perch <- coeffs[6]
slope_pike <- coeffs[7]
slope_roach <- coeffs[8]</pre>
```

```
explanatory_data %>%
  mutate(
   mass_g = case_when(

)
)
```

```
explanatory_data %>%
  mutate(
    mass_g = case_when(
      species == "Bream" ~
```

```
explanatory_data %>%
  mutate(
    mass_g = case_when(
      species == "Bream" ~ intercept_bream + slope_bream * length_cm
```

```
explanatory_data %>%
 mutate(
    mass_g = case_when(
      species == "Bream" ~ intercept_bream + slope_bream * length_cm,
      species == "Perch" ~ intercept_perch + slope_perch * length_cm,
      species == "Pike" ~ intercept_pike + slope_pike * length_cm,
      species == "Roach" ~ intercept_roach + slope_roach * length_cm
```

Let's practice!

INTERMEDIATE REGRESSION IN R

Simpson's Paradox

INTERMEDIATE REGRESSION IN R

Richie Cotton

Data Evangelist at DataCamp

A most ingenious paradox!

Simpson's Paradox occurs when the trend of a model on the whole dataset is very different from the trends shown by models on subsets of the dataset.

trend = slope coefficient

Synthetic Simpson data

X	y	group
62.24344	70.60840	D
52.33499	14.70577	В
56.36795	46.39554	С
66.80395	66.17487	D
66.53605	89.24658	E
62.38129	91.45260	Е

• 5 groups of data, labeled "A" to "E"

¹ https://www.rdocumentation.org/packages/datasauRus/topics/simpsons_paradox

Linear regressions Whole dataset

```
mdl_whole <- lm(
   y ~ x,
   data = simpsons_paradox
)
coefficients(mdl_whole)</pre>
```

```
(Intercept) x
-38.554 1.751
```

By group

```
mdl_by_group <- lm(
   y ~ group + group:x + 0,
   data = simpsons_paradox
)
coefficients(mdl_by_group)</pre>
```

```
groupA groupB groupC groupD groupE 32.5051 67.3886 99.6333 132.3932 123.8242 groupA:x groupB:x groupC:x groupD:x groupE:x -0.6266 -1.0105 -0.9940 -0.9908 -0.5364
```

Plotting the whole dataset

```
ggplot(simpsons_paradox, aes(x, y)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Plotting by group

```
ggplot(simpsons_paradox, aes(x, y, color = group)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Reconciling the difference

Good advice

If possible, try to plot the dataset.

Common advice

You can't choose the best model in general—it depends on the dataset and the question you are trying to answer.

More good advice

Articulate a question before you start modeling.

Test score example

60

80

Age

Infectious disease example

¹ https://stats.stackexchange.com/questions/478463/examples-of-simpsons-paradox-being-resolved-by-choosing-the-aggregate-data

Reconciling the difference, again

- Usually (but not always) the grouped model contains more insight.
- Are you missing explanatory variables?
- Context is important.

Simpson's paradox in real datasets

- The paradox is usually less obvious.
- You may see a zero slope rather than a complete change in direction.
- It may not appear in every group.

Let's practice!

INTERMEDIATE REGRESSION IN R

