Genesis.EA

Recall that the **Generator** creates a corresponding symbol table for every entry in the training database. Now, to generate the population and chromosomes — and additionally to **generalize** across proteins — we define a function:

$$F_i :< \text{Sequence} > \rightarrow < \text{Vector of fixed length P} >$$

F is essentially a **weighted sum** of all the composition functions $(f_1, f_2, ..., f_N)$ applied on some sequence X:

$$F(X) = a \cdot f_1(X) + b \cdot f_2(X) + \dots + z \cdot f_N(X)$$

Each **chromosome** in the population encodes one possible instantiation of this F — i.e., it holds the weights a, b, \ldots, z applied to the respective functions. So a chromosome is simply:

Chromosome for F:

Where each weight corresponds to a learned contribution of the respective feature extractor function f_i .

Fitness Computation

Fitness is calculated by evaluating F over all sequences in the training set. For a known protein X, we compute the table $[f_1(X), f_2(X), \ldots, f_N(X)]$, apply the weights from a given chromosome to get F(X), and then compare F(X) against the **true 3D structure or known representation**.

This comparison can use various metrics like **RMSD**, **phi/psi angle distance**, or any domain-specific structural distance. The **closer** the output of F is to the actual known structure, the **higher** the fitness score.

This process is repeated for every protein in the training set, and the **average (or aggregate)** error determines the **fitness of the chromosome**.

Optimization and Generalization

Over successive generations (if using EA) or iterations (if using PSO), the population of chromosomes is optimized to minimize error (or maximize fitness). The weights a, b, \ldots, z evolve accordingly.

Once the model achieves high enough accuracy (e.g., \geq 90%) on the training set, the **best-performing chromosome** is selected. The corresponding function F then becomes a **generalized estimator**.

Inference on Novel Proteins

For a novel protein sequence S_new :

- 1. Compute the table $[f_1(S_{new}), f_2(S_{new}), \dots, f_N(S_{new})]$.
- 2. Apply the learned F (i.e., use the evolved weights) to compute $F(S_{new})$.
- 3. The result is an estimated **3D representation** of S_{new} .

Since the composition functions f_i rely purely on sequence properties, and F is trained to generalize across many sequences, the model should be able to infer accurate approximations for **previously unseen proteins**.