Predicting Quarterback 2nd Contract Value

Paul Sabin

Contents

0.1	1. Introduction
0.2	2. Data Loading and Preprocessing
0.3	3. Modeling Approach
0.4	4. Model Specification and Training
0.5	5. Model Evaluation
0.6	6. Variable Importance
0.7	7. Summary

0.1 1. Introduction

This analysis builds a random forest regression model to predict a quarterback's second contract value (APY as a percentage of salary cap).

College and NFL performance metrics, physical traits, and draft data are used as predictors.

We use **k-fold cross-validation** to estimate performance and produce: - Variable importance plots

- Cross-validated metrics (RMSE, MAE, Bias)
- Visualization of predicted vs actual performance
- Review of largest over- and under-predictions

0.2 2. Data Loading and Preprocessing

The entire script is in this file:

```
source("predict_qb_contract.R")
```

```
## read in cfb qb usage data from
                                   2013
## read in cfb qb usage data from
                                   2014
## read in cfb qb usage data from
                                   2015
## read in cfb qb usage data from
                                   2016
## read in cfb qb usage data from
                                   2017
## read in cfb qb usage data from
                                   2018
## read in cfb qb usage data from
                                   2019
## read in cfb qb usage data from
                                   2020
## read in cfb qb usage data from
                                   2021
## read in cfb qb usage data from
                                   2022
## read in cfb qb usage data from
                                   2023
## read in cfb qb usage data from
```

To confirm the structure:

```
data_to_model %>%
  glimpse()
```

```
## Rows: 111
## Columns: 33
                       <chr> "00-0030998", "00-0031064", "00-0031076", "00-00312~
## $ gsis_id
## $ player
                       <chr> "Keith Wenning", "Tom Savage", "David Fales", "Tedd~
## $ college
                       <chr> "Ball State", "Pittsburgh", "San Jose State", "Loui~
                       <chr> "MAC", "ACC", "MWC", "AAC", "ACC", "MWC", "SEC", "A~
## $ conference
## $ birth_date
                       <date> 1991-02-14, 1990-04-26, 1990-10-04, 1992-11-10, 19~
                       <int> 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 201~
## $ draft_year
## $ draft_number
                       <dbl> 194, 135, 183, 32, 120, 36, 163, 214, 3, 1, 147, 98~
## $ undrafted
                       ## $ apy_cap_pct
                       <dbl> 0.003, 0.008, 0.004, 0.034, 0.004, 0.150, 0.001, 0.~
## $ height
                       <dbl> 74, 76, 73, 74, 78, 75, 73, 76, 77, 76, 75, 73, 73,~
## $ weight
                       <dbl> 223, 230, 219, 215, 250, 215, 207, 221, 245, 231, 2~
                       <dbl> 24.54483, 26.35181, 24.90897, 22.80630, 24.16975, 2~
## $ rookie_age
## $ usg_overall
                       <dbl> 0.543, 0.497, 0.503, 0.519, 0.544, 0.591, 0.472, 0.~
## $ usg_pass
                       <dbl> 0.973, 0.945, 0.907, 0.973, 0.872, 0.920, 0.896, 0.~
## $ usg rush
                       <dbl> 0.067, 0.077, 0.063, 0.096, 0.255, 0.068, 0.086, 0.~
## $ usg_1st_down
                       <dbl> 0.504, 0.390, 0.441, 0.399, 0.464, 0.557, 0.431, 0.~
## $ usg_2nd_down
                        <dbl> 0.519, 0.517, 0.553, 0.568, 0.544, 0.608, 0.457, 0.~
## $ usg_3rd_down
                        <dbl> 0.768, 0.748, 0.595, 0.801, 0.745, 0.694, 0.697, 0.~
## $ usg_standard_downs
                       <dbl> 0.518, 0.414, 0.434, 0.432, 0.478, 0.536, 0.419, 0.~
                       <dbl> 0.609, 0.673, 0.662, 0.728, 0.672, 0.740, 0.599, 0.~
## $ usg_passing_downs
                        <dbl> 454, 376, 487, 382, 391, 605, 347, 504, 351, 422, 3~
## $ passing_att
                       <dbl> 296, 230, 312, 268, 224, 424, 225, 335, 239, 276, 2~
## $ passing_cmp
                       <dbl> 0.652, 0.612, 0.641, 0.702, 0.573, 0.701, 0.648, 0.~
## $ passing_pct
## $ passing_yds
                       <dbl> 3933, 2834, 4189, 3523, 2861, 4866, 3075, 3528, 328~
## $ passing_td
                       <dbl> 34, 21, 33, 28, 16, 48, 26, 21, 22, 24, 21, 12, 30,~
## $ passing_int
                       <dbl> 6, 9, 13, 4, 13, 7, 9, 7, 7, 17, 5, 5, 16, 6, 11, 2~
                       <dbl> 8.7, 7.5, 8.6, 9.2, 7.3, 8.0, 8.9, 7.0, 9.3, 8.4, 8~
## $ passing_ypa
                       <dbl> 40, 72, 48, 57, 159, 40, 53, 83, 79, 49, 148, 83, 8~
## $ rushing att
## $ rushing_yds
                       <dbl> 45, -208, 7, 54, 295, 117, 186, 267, 179, 80, 548, ~
## $ rushing_td
                       <dbl> 5, 3, 2, 0, 4, 2, 7, 6, 5, 3, 8, 4, 2, 0, 5, 14, 4,~
## $ rushing_ypc
                       <dbl> 1.1, -2.9, 0.1, 0.9, 1.9, 2.9, 3.5, 3.2, 2.3, 1.6, ~
## $ rushing_long
                       <dbl> 11, 12, 16, 20, 26, 17, 57, 53, 20, 28, 29, 21, 35,~
## $ rush_pct
                       <dbl> 0.08097166, 0.16071429, 0.08971963, 0.12984055, 0.2~
```

0.3 3. Modeling Approach

We model apy_cap_pct using all variables from conference onward as predictors. Before modeling the log-transformation is taken then converted back before evaluation.

A random forest is used because it handles nonlinearities, interactions, and mixed variable types naturally.

0.4 4. Model Specification and Training

```
# Define the recipe
rf_recipe <- recipe(apy_cap_pct ~ ., data = data_to_model) |>
  update_role(gsis_id, player, college, birth_date, draft_number, new_role = "ID") |>
  step_rm(gsis_id, player, college, birth_date) |>
  step_dummy(all_nominal_predictors()) |>
  step_zv(all_predictors()) |>
  step_normalize(all_numeric_predictors())
# Random forest model spec
rf_spec <- rand_forest(mtry = tune(), min_n = tune(), trees = 500) |>
  set_mode("regression") |>
  set_engine("ranger", importance = "permutation")
# Workflow
rf_workflow <- workflow() |>
  add_model(rf_spec) |>
  add_recipe(rf_recipe)
# Cross-validation folds
folds <- vfold_cv(data_to_model, v = 5)</pre>
# Tune model
rf_tune <- tune_grid(</pre>
 rf_workflow,
 resamples = folds,
  grid = 10,
  metrics = metric_set(rmse, mae, rsq)
# Select best parameters
best_params <- select_best(rf_tune, metric = "rmse")</pre>
# Finalize workflow
final rf workflow <- finalize workflow(rf workflow, best params)
# === Fit resamples to get out-of-fold predictions ===
cv_fit <- fit_resamples(</pre>
 final_rf_workflow,
 resamples = folds,
  control = control_resamples(save_pred = TRUE)
)
# --- Collect out-of-fold predictions ---
cv_preds <- collect_predictions(cv_fit)</pre>
```

0.5 5. Model Evaluation

0.5.1 5.1 Cross-Validated Metrics

```
cv_metrics %>%
  dplyr::select(-.estimator) |>
  bind_rows(
    tibble(.estimate = cv_bias$bias, .metric = "bias")
    ) %>%
  kable(digits = 4, caption = "Cross-Validated Performance Metrics") %>%
  kable_styling(full_width = FALSE)
```

Table 1: Cross-Validated Performance Metrics

.metric	.estimate
rmse	0.0739
rsq	0.1040
mae	0.0349
bias	-0.0273

0.5.2 5.2 Predicted vs Actual Plot

```
cv_preds %>%
  ggplot(aes(y = apy_cap_pct, x = .pred)) +
  geom_point(alpha = 0.7) +
  geom_smooth(method = 'glm', color = 'red', se = FALSE) +
  geom_abline(slope = 1, intercept = 0, color = "black") +
  xlim(0, 0.25) + ylim(0, 0.25) +
  labs(
    title = "Predicted vs Actual Contract Value",
    x = "Predicted APY (as % of Cap)",
    y = "Actual APY (as % of Cap)"
) +
  theme(aspect.ratio = 1)
```


Figure 1: Predicted vs Actual apy_cap_pct

0.5.3 5.3 Biggest Over/Under Predictions

```
cv_preds %>%
  mutate(error = .pred - apy_cap_pct, abs_error = abs(error)) %>%
  arrange(desc(abs_error)) %>%
  select(player, apy_cap_pct, .pred, error) %>%
  head(10) %>%
  kable(digits = 4, caption = "Largest Model Misses (Over/Under Predictions)") %>%
  kable_styling(full_width = FALSE)
```

Table 2: Largest Model Misses (Over/Under Predictions)

player	apy_cap_pct	.pred	error
Justin Herbert	0.234	0.0069	-0.2271
Josh Allen	0.236	0.0125	-0.2235
Joe Burrow	0.245	0.0254	-0.2196
Lamar Jackson	0.231	0.0149	-0.2161
Patrick Mahomes	0.227	0.0197	-0.2073
Kyler Murray	0.221	0.0162	-0.2048
Trevor Lawrence	0.215	0.0171	-0.1979
Jalen Hurts	0.227	0.0333	-0.1937
Tua Tagovailoa	0.208	0.0211	-0.1869
Brock Purdy	0.190	0.0071	-0.1829

0.6 6. Variable Importance

```
final_rf_fit <- fit(final_rf_workflow, data = data_to_model)
final_rf_fit %>%
   extract_fit_parsnip() %>%
   vip(num_features = 20)
```

0.7 7. Summary

This report used a random forest to predict quarterback second-contract values as a proportion of the salary cap.

Key takeaways: - The model achieves weak predictive accuracy (see RMSE and MAE above). - Key predictors often include age (selection bias), passing numbers, and running efficiency. - The largest outliers are quarterbacks who ended up being among the best in the NFL because they get paid so much better than anyone else.

Figure 2: Top 20 Most Important Features