

Structured Perceptron

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Problem setup

- Restricted set of POS tags: adjective, preposition, verb, determiner, noun
- We first have sentence "answer the question" with true POS sequence DET NN VB PRO
- Features are $(z_i, z_{i+1}), (z_i, w_i)$
- What's a maximum violation POS sequence?

Problem setup

- Restricted set of POS tags: adjective, preposition, verb, determiner, noun
- We first have sentence "answer the question" with true POS sequence DET NN VB PRO
- Features are $(z_i, z_{i+1}), (z_i, w_i)$
- What's a maximum violation POS sequence?
- Can do on paper because search is tractable

Problem setup

- Restricted set of POS tags: adjective, preposition, verb, determiner, noun
- We first have sentence "answer the question" with true POS sequence DET NN VB PRO
- Features are $(z_i, z_{i+1}), (z_i, w_i)$
- What's a maximum violation POS sequence?
- Can do on paper because search is tractable
- So we're all on the same page, let's all use DET DET DET
- Break ties lexicographically

Prediction: DET DET DET

■ Prediction: DET DET DET

Prediction: DET DET DET

Gold Features

(START, VB)

(VB, DET) (DET, NN)

(VB, answer)

(NN, question)

Shared Features

(DET, the)

Predicted Features

(START, DET)

(DET, DET)

(DET, answer)

(DET, question)

Prediction: DET DET DET

Gold Features

(START, VB) (VB, DET) (DET, NN) (VB, answer) (NN, question)

Shared Features

(DET, the)

Predicted Features

(START, DET) (DET, DET)

(DET, answer)

(DET, guestion)

New feature vector: (DET, DET): -2.00; (DET, NN): 1.00; (DET, answer): -1.00; (DET, question): -1.00; (NN, question): 1.00; (VB, DET): 1.00; (VB, answer): 1.00; (START, DET): -1.00; (START, VB): 1.00

Prediction: DET DET DET

Gold Features

(START, VB) (VB, DET) (DET, NN) (VB, answer) (NN, question)

Shared Features

(DET, the)

Predicted Features

(START, DET) (DET, DET) (DET, answer)

(DET, guestion)

New feature vector: (DET, DET): -2.00; (DET, NN): 1.00; (DET, answer): -1.00; (DET, question): -1.00; (NN, question): 1.00; (VB, DET): 1.00; (VB, answer): 1.00; (START, DET): -1.00; (START, VB): 1.00

$$\delta = \frac{PRO}{NN} \left(\\ NN \\ DET \\ VB \\ VB \\ \right)$$
 (1)

wSTART, PRO + wPRO, question =
$$0.00 + 0.00 = 0.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 0.00 \\ DET \\ VB \end{pmatrix}$$
 (1)

$$w_{START, NN} + w_{NN, question} = 0.00 + 1.00 = 1.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 1.00 \\ DET \\ VB \end{pmatrix}$$
 (1)

$$w_{START, DET} + w_{DET, question} = -1.00 + -1.00 = -2.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 1.00 \\ -2.00 \\ VB \end{pmatrix}$$
 (1

$$w_{START, VB} + w_{VB, question} = 1.00 + 0.00 = 1.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 1.00 \\ -2.00 \\ VB \end{pmatrix}$$
 (1)

$$\delta_0(NN) + w_{NN, PRO} + w_{PRO, the} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \begin{cases} PRO & \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ NN & \text{0.00} & \text{1.00} \\ DET & \text{0.00} & \text{0.00} \\ VB & \text{1.00} & \text{0.00} \\ 1.00 & \text{0.00} \end{cases}$$

$$\delta_0(NN) + w_{NN, NN} + w_{NN, the} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 \\ 1.00 & 1.00 \\ -2.00 \\ 1.00 \\ \end{pmatrix} \tag{1}$$

$$\delta_0(VB) + w_{VB, DET} + w_{DET, the} = 1.00 + 1.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 \\ 1.00 & 1.00 \\ -2.00 & 2.00 \\ 1.00 \\ \end{pmatrix} \tag{1}$$

$$\delta_0(NN) + w_{NN, VB} + w_{VB, the} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO & 0.00 & 1.00 \\ 1.00 & 1.00 \\ DET & -2.00 & 2.00 \\ VB & 1.00 & 1.00 \\ \end{array} \right) \tag{1}$$

$$\delta_1(DET) + w_{DET, PRO} + w_{PRO, answer} = 2.00 + 0.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 \\ -2.00 & 2.00 \\ 1.00 & 1.00 \\ \end{pmatrix} \tag{1}$$

$$\delta_1(DET) + w_{DET, NN} + w_{NN, answer} = 2.00 + 1.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 \\ 1.00 & 1.00 \\ \end{pmatrix} \tag{1}$$

$$\delta_1(VB) + w_{VB, DET} + w_{DET, answer} = 1.00 + 1.00 + -1.00 = 1.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 & 1.00 \\ 1.00 & 1.00 \\ \end{pmatrix} \tag{1}$$

$$\delta_1(DET) + w_{DET, VB} + w_{VB, answer} = 2.00 + 0.00 + 1.00 = 3.00$$

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 & 1.00 \\ 1.00 & 1.00 & 3.00 \\ \end{pmatrix} \tag{1}$$

Scores

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 & 1.00 \\ 1.00 & 1.00 & 3.00 \end{array} \right) \end{array} \tag{1}$$

Backpointers

$$\beta = \begin{cases} \text{PRO} & \text{NN} & \text{DET} \\ \text{NN} & \text{DET} \\ \text{DET} & \text{VB} & \text{VB} \\ \text{NN} & \text{DET} \end{cases}$$
 (2)

Scores

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 & 1.00 \\ 1.00 & 1.00 & 3.00 \end{array} \right) \end{array} \tag{1}$$

Backpointers

$$\beta = \begin{array}{c} \text{the}_1 & \text{answer}_2 \\ \text{PRO} \left(\begin{array}{cc} NN & DET \\ NN & DET \\ \text{VB} & VB \\ NN & DET \end{array} \right)$$

$$(2)$$

Scores

$$\delta = \begin{array}{c} \text{question}_0 & \text{the}_1 & \text{answer}_2 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 \\ 1.00 & 1.00 & 3.00 \\ -2.00 & 2.00 & 1.00 \\ 1.00 & 1.00 & 3.00 \end{array} \right) \end{array} \tag{1}$$

Backpointers

$$\beta = \frac{PRO}{NN} \begin{pmatrix} NN & DET \\ NN & DET \\ DET & VB & VB \\ NN & DET \end{pmatrix}$$
 (2)

Reconstruction: VB DET NN

Prediction: VB DET NN

Prediction: VB DET NN

Prediction: VB DET NN

Shared Features

(START, VB) (VB, DET) (DET, NN) (VB, question) (DET, the) (NN, answer)

Predicted Features

Gold Features

Prediction: VB DET NN

Shared Features

Gold Features

(START, VB) (VB, DET) (DET, NN) (VB, question) (DET, the) (NN, answer)

Predicted Features

New feature vector: (DET, DET): -2.00; (DET, NN): 1.00; (DET, answer): -1.00; (DET, question): -1.00; (NN, question): 1.00; (VB, DET): 1.00; (VB, answer): 1.00; (START, DET): -1.00; (START, VB): 1.00

$$\delta = \frac{PRO}{NN} \begin{pmatrix} VB \end{pmatrix}$$
 you₀ demand₁ the₂ delay₃
$$\delta = \frac{PRO}{NN} \begin{pmatrix} VB \end{pmatrix}$$
 (3)

$$w_{\text{START, PRO}} + w_{\text{PRO, you}} = 0.00 + 0.00 = 0.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ DET \\ VB \end{pmatrix}$$
 (3)

$$w_{\text{START, NN}} + w_{\text{NN, you}} = 0.00 + 0.00 = 0.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{pmatrix}$$

$$VB \qquad (3)$$

$$w_{\text{START, DET}} + w_{\text{DET, you}} = -1.00 + 0.00 = -1.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 \\ 0.00 \\ 0.ET \\ VB \end{pmatrix} \begin{pmatrix} 0.00 \\ -1.00 \\ 0.00 \\ \end{pmatrix}$$
 (3)

$$w_{START, VB} + w_{VB, you} = 1.00 + 0.00 = 1.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ NN & 0.00 & 0.00 \\ DET & -1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ \end{array} \right) \tag{3}$$

$$\delta_0(VB) + w_{VB, PRO} + w_{PRO, demand} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \frac{PRO}{NN} \begin{pmatrix} 0.00 & 1.00 \\ 0.00 & 0.00 \\ DET & -1.00 \\ 1.00 & 0.00 \end{pmatrix}$$
(3)

$$\delta_0(VB) + w_{VB, NN} + w_{NN, demand} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \\ NN \\ DET \\ VB \\ \end{array} \begin{array}{c} 0.00 & 1.00 \\ 0.00 & 1.00 \\ -1.00 \\ 1.00 \\ \end{array} \right) \tag{3}$$

$$\delta_0(VB) + w_{VB, DET} + w_{DET, demand} = 1.00 + 1.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO & 0.00 & 1.00 \\ 0.00 & 1.00 \\ -1.00 & 2.00 \\ 1.00 \end{array} \right) \tag{3}$$

$$\delta_0(VB) + w_{VB, VB} + w_{VB, demand} = 1.00 + 0.00 + 0.00 = 1.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \\ NN \\ DET \\ VB \\ \end{array} \begin{array}{c} 0.00 & 1.00 \\ 0.00 & 1.00 \\ -1.00 & 2.00 \\ 1.00 & 1.00 \\ \end{array} \right) \tag{3}$$

$$\delta_1(DET) + w_{DET, PRO} + w_{PRO, the} = 2.00 + 0.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 0.00 & 1.00 \\ -1.00 & 2.00 \\ 1.00 & 1.00 \\ \end{pmatrix} \tag{3}$$

$$\delta_1(DET) + w_{DET, NN} + w_{NN, the} = 2.00 + 1.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 \\ 0.00 & 1.00 & 3.00 \\ -1.00 & 2.00 \\ 1.00 & 1.00 \\ \end{pmatrix} \tag{3}$$

$$\delta_1(VB) + w_{VB, DET} + w_{DET, the} = 1.00 + 1.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{ccccc} & you_0 & demand_1 & the_2 & delay_3 \\ PRO & 0.00 & 1.00 & 2.00 \\ 0.00 & 1.00 & 3.00 \\ -1.00 & 2.00 & 2.00 \\ VB & 1.00 & 1.00 \\ \end{array} \right) \end{subarray}$$

$$\delta_1(DET) + w_{DET, VB} + w_{VB, the} = 2.00 + 0.00 + 0.00 = 2.00$$

$$\delta = \begin{array}{cccc} & you_0 & demand_1 & the_2 & delay_3 \\ PRO & 0.00 & 1.00 & 2.00 \\ NN & 0.00 & 1.00 & 3.00 \\ -1.00 & 2.00 & 2.00 \\ VB & 1.00 & 1.00 & 2.00 \\ \end{array} \right) \end{subarray} \end{subarray} \label{eq:delay3}$$

$$\delta_2(NN) + w_{NN, PRO} + w_{PRO, delay} = 3.00 + 0.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \\ NN \\ DET \\ VB \end{array} \begin{pmatrix} 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 \\ -1.00 & 2.00 & 2.00 \\ 1.00 & 1.00 & 2.00 \\ \end{pmatrix} \tag{3}$$

$$\delta_2(DET) + w_{DET, NN} + w_{NN, delay} = 2.00 + 1.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{ccccc} & you_0 & demand_1 & the_2 & delay_3 \\ PRO & 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 \\ VB & 1.00 & 1.00 & 2.00 \\ \end{array} \right) \end{subarray} \end{subarray}$$

$$\delta_2(NN) + w_{NN, DET} + w_{DET, delay} = 3.00 + 0.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{ccccc} you_0 & demand_1 & the_2 & delay_3 \\ PRO & 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 & 3.00 \\ VB & 1.00 & 1.00 & 2.00 \end{array} \right) \eqno(3)$$

$$\delta_2(NN) + w_{NN, VB} + w_{VB, delay} = 3.00 + 0.00 + 0.00 = 3.00$$

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 & 3.00 \\ 1.00 & 1.00 & 2.00 & 3.00 \end{array} \right) \end{subarray} \tag{3}$$

Scores

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 & 3.00 \\ 1.00 & 1.00 & 2.00 & 3.00 \end{array} \right) \end{subarray} \tag{3}$$

Backpointers

$$\beta = \begin{pmatrix} \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ \text{PRO} \begin{pmatrix} VB & DET & NN \\ VB & DET & DET \\ VB & VB & NN \\ VB & DET & NN \end{pmatrix}$$
(4)

Scores

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 & 3.00 \\ 1.00 & 1.00 & 2.00 & 3.00 \end{array} \right) \end{subarray} \tag{3}$$

Backpointers

$$\beta = \begin{pmatrix} \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ \text{PRO} \begin{pmatrix} VB & DET & NN \\ VB & DET & DET \\ VB & VB & NN \\ VB & DET & NN \end{pmatrix}$$
(4)

Scores

$$\delta = \begin{array}{c} \text{you}_0 & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ PRO \left(\begin{array}{cccc} 0.00 & 1.00 & 2.00 & 3.00 \\ 0.00 & 1.00 & 3.00 & 3.00 \\ -1.00 & 2.00 & 2.00 & 3.00 \\ 1.00 & 1.00 & 2.00 & 3.00 \end{array} \right) \end{subarray} \tag{3}$$

Backpointers

$$\beta = \begin{array}{ccc} & \text{demand}_1 & \text{the}_2 & \text{delay}_3 \\ \text{PRO} \left(& VB & DET & NN \\ VB & DET & DET \\ VB & VB & NN \\ VB & DET & NN \end{array} \right) \tag{4}$$

Reconstruction: VB DET NN DET

Wrapup

- Not just for POS tagging: parsing, machine translation
- Hard to overstate how important features $\vec{\Phi}$ are
- Deep learning: get algorithm to find features for us?

Wrapup

- Not just for POS tagging: parsing, machine translation
- Hard to overstate how important features $\vec{\Phi}$ are
- Deep learning: get algorithm to find features for us?
- Project ideas:
 - Deep learning of features
 - Applying perceptron to your favorite problem, designing great features
 - Efficient data structures for finding max violation