

OPI 2022 Modalidade Avançada

13 de Agosto de 2022 (Este caderno contém 10 problemas)

A PROVA TERÁ DURAÇÃO DE CINCO HORAS

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO ANTES DE INICIAR A PROVA

- Este caderno de tarefas é composto de 10 páginas (não contando esta folha de rosto). Verifique se o caderno está completo;
- Observem o nome do arquivo que deve ser enviado para cada problema especialmente em Java;
- Se for enviar uma submissão em Python/C++, verifique se está usando a versão adequada;
- Cada questão tem um tempo limite. Otimizem o código antes da submissão;
- É permitido consultar material impresso durante a prova, mas não é permitida a consulta de qualquer material online.

Problema A. Pamonha

Nome do Programa: A.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Abraão gosta muito do São João, em especial das comidas típicas como a Pamonha. Ele quer comprar w pamonhas na padaria. Ele deverá pagar k reais pela a primeira pamonha, 2*k reais pela segunda pamonha e assim por diante. Ou seja, para a i-ésima pamonha ele deverá pagar i*k reais.

Abraão tem n reais. Quantos reais ele deverá pegar emprestado dos seus pais para comprar w pamonhas?

Entrada

Cada caso de teste contém três linhas números inteiros k, n, w $(1 \le k, w \le 1.000, 0 \le n \le 10^9)$, respectivamente, onde k representa o custo da pamonha, n representa quantos reais Abraão possui, e w indica quantas pamonhas ele deseja comprar.

Saída

Para cada caso de teste, imprima a quantidade de reais que Abraão precisará pegar emprestado dos seus pais. Caso não precise pegar dinheiro emprestado, imprima 0.

	Entrada	Saída
3		13
17		
4	LIMDÍADA	DADAIDANA
	TIMITIALIA	PANAIDA
	Finkingda	Coldo

	Entrada	Saída
1	AT IMLOL	IOMA I IOI
2		
1		

Problema B. Uniformidade

Nome do Programa: B.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Raphael está lendo um livro sobre competições de programação e precisa da sua ajuda para resolver um problema de formatação. O livro possui palavras misturando letras maiúsculas e minúsculas e está dificultando a leitura do livro.

O seu objetivo é ajudar Raphael resolvendo esse problema de formatação. Para cada palavra, se a mesma tiver mais letras maiúsculas ou minúsculas, converter todas as letras da palavra para maiúsculas ou minúsculas, respectivamente. Caso haja a mesma quantidade de letras maiúsculas e minúsculas, converter todas as letras para minúsculas.

Por exemplo, maTRIx deverá ser convertido para matrix já que possui a mesma quantidade de letras maiúsculas e e minúsculas. HoUse deverá ser convertido para house, e ViP deverá ser convertido para VIP.

Entrada

Cada caso de teste contém uma linha com a palavra s com no máximo tamanho de 100 caracteres do nosso alfabeto.

Saída

Para cada caso de teste, imprima a palavra s na formatação sugerida por Raphael.

Entrada	Saída
HoUse	house A B A N A

Entrada	Saída
ViP	VIP

Entrada	Saída
maTRIx	matrix

Entrada	Saída
Key	key

Problema C. Computadores

Nome do Programa: C.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Valéria vai comprar computadores para os seus times do IFPB de maratona de programação treinarem. Ela está discutindo sobre o preço e a qualidade dos mesmos. Valéria acha que podem existir dois computadores A e B tal que o preço de A seja menor (não igual) do que o preço de B, e que a qualidade de A seja superior (não igual) a qualidade de B.

A sua tarefa é dizer se a hipótese de Valéria é válida ou não. Você receberá a descrição de n computadores e indicará se a hipótese é válida ou não.

Entrada

A primeira linha de cada caso de teste descreve um número inteiro n ($1 \le n \le 10^5$) representando o número de computadores. As n linhas seguintes possuem dois números inteiros a_i e b_i ($1 \le a_i$, $b_i \le n$) representando o preço e a qualidade do i-ésimo computador, respectivamente. Quanto maior o número, maior será a qualidade do computador. Todos os valores a_i são distintos. O mesmo ocorre para todos os valores de b_i .

Saída

Para cada caso de teste, imprima YES se a hipótese de Valéria for válida, ou NO, caso contrário.

Casos de Teste

Entrada	Saída
2	YES
2 1 TIALA	PAHAIDAN

DE INCODIÁTICA

	Entrada	Saída
2		NO
1 1		
2 2		

Problema D. Jogo

Nome do Programa: D.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Os integrantes do PET Computação, que é coordenado pelo Prof. Marcelo, vão jogar um novo jogo e precisam de sua ajuda. O avatar está na posição inicial 0, e poderá em cada rodada mover 1, 2, 3, 4 ou 5 posições para frente. O avatar deverá chegar ao destino localizado na posição x (x > 0).

Sua tarefa é ajudar os integrantes do PET Computação a descobrirem a quantidade mínima de rodadas necessárias para o avatar sair da posição inicial e chegar na posição final x.

Entrada

Cada caso de teste contém uma linha com um número inteiro x $(1 \le x \le 10^6)$.

Saída

Para cada caso de teste, imprima o número mínimo de rodadas necessárias para o avatar sair da posição inicial e chegar no destino.

Casos de Teste

E	ntrada	Saída
5		1

Entrada Saída 3

DE INFORMÁTICA

Problema E. Triângulos

Nome do Programa: E.(c|cpp|java|py2|py3)

Tempo: 6 segundos

Angelo é diretor do Virtus, que fica localizado em Campina Grande e possui vários projetos de software e hardware em parceria com empresas nacionais e internacionais. Ele é profundo conhecedor das localizações das cidades da Paraíba.

Ele sabe n coordenadas (x,y) de n cidades paraibanas, que podemos considerar que estão em um plano. Depois disso, ele conectou todos as coordenadas, e viu que, como resultado, muitos triângulos foram formados.

Sua tarefa é ajudar Angelo a contar o número de triângulos formados com a área maior do que zero a partir dessas coordenadas no plano.

Entrada

A primeira linha de cada caso de teste descreve um número inteiro n (1 \le n \le 2.000) representando o número de coordenadas das cidades paraibanas no plano. As n linhas seguintes possuem dois números inteiros x_i e y_i (-100 \le x_i , y_i \le 100) representando as coordenadas da i-ésima cidade. É garantido que duas cidades não estarão na mesma coordenada.

Saída

Para cada caso de teste, imprima o número máximo de triângulos formados com a área maior do que zero a partir dessas coordenadas no plano.

Entrada	Saída
⁴ DE INI	FORMÁTICA
0 0	ULIVITATION
2 0	
2 2	

Entrada	Saída
3	1
0 0	
1 1	
2 0	

Entrada	Saída
1	0
1 1	

Problema F. Árvore Emiso

Nome do Programa: F.(c|cpp|java|py2|py3)

Tempo: 3 segundos

A diversão do multicampeão Emerson atualmente é propor novas estruturas de dados e avançar o estado da arte e da prática. Uma árvore que ele criou foi chamada de Emiso. A Árvore Emiso tem uma raiz. Todas as arestas são direcionadas a partir da raiz. Um nó u é dito como filho do nó v se existir uma aresta de v para u. Um nó é dito folha se não tiver nós filhos e possuir um nó pai. O grande diferencial da Árvore Emiso é que todos os nós não-folha devem ter pelo menos 3 nós filhos que são nós folhas.

Sua tarefa é identificar se uma dada árvore é Emiso ou não.

Entrada

A primeira linha de cada caso de teste descreve um número inteiro n (3 \leq n \leq 1.000) representando o número de vértices. As n-1 linhas seguintes possuem um número inteiro p_i (1 \leq $p_i \leq$ i) representando o índice do nó pai do nó n+1.

Saída

Para cada caso de teste, imprima Yes se for uma Árvore EMISO, ou No, caso contrário.

Entrada	Saída
4	Yes
1	
1 01	- D.T.A
1 ULIMPÍANA	DABAIBANA

	Entrada	Saída
7	DE IMENI	No.
1		
1		
1		
2		
2		
2		

Entrada	Saída
8	Yes
1	
1	
1	
1	
3	
3	
3	

Problema G. Número Mágico

Nome do Programa: G.(c|cpp|java|py2|py3)

Tempo: 3 segundos

O multicampeão Lucas de Matos continua treinando para as maratonas de programação. Recentemente ele estava estudando teoria dos números e queria a sua ajuda para resolver uma tarefa. Lucas quer saber se a partir da soma de números no seguinte formato (contendo apenas dígitos 1s): 11, 111, 1111, 11111, ... podemos formar o número x. Se conseguirmos, indicamos que esse número é mágico. Os números 33 e 144 são mágicos já que podem ser formados a partir da soma desses números, conforme indicado a seguir:

- x = 33 = 11 + 11 + 11
- x = 144 = 111 + 11 + 11 + 11

Entrada

Cada caso de teste contém uma linha com um número inteiro x ($1 \le x \le 10^9$).

Saída

Para cada caso de teste, imprima YES se for possível formar o número, ou NO, caso contrário.

Casos de Teste

Entrada	Saída
33	YES
Entrada	Saída
144	YES
Dr	
Entrada A	□ ∧ □ ∧ Saída N A
69	NO

DE INFORMÁTICA

Problema H. Backup

Nome do Programa: H.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Hyggo é diretor do Virtus, que fica localizado em Campina Grande e possui vários projetos de software e hardware em parceria com empresas nacionais e internacionais. Em um dos seus projetos, ele teve um problema com um backup e perdeu os dados de um array muito importante. Mas ele sabe algumas propriedades do array:

- Todos os números no array são inteiros e estão no intervalo de l e r (inclusos);
- A soma de todos os elementos do array é divisível por 3.

A sua tarefa é ajudar Hyggo a identificar quantas possibilidades de array podem existir considerando essas propriedades. Como o número de possibilidades pode ser grande, as repostas devem ser dadas usando o módulo 10⁹+7. Caso não exista esse tipo de array, imprima 0.

Entrada

Cada caso de teste contém uma linha contendo três números inteiros n, l, r ($1 \le n \le 2*10^5$, $1 \le l \le r \le 10^9$) representando o número de elementos do array, e o intervalo l e r dos possíveis valores dos elementos do array, respectivamente.

Saída

Para cada caso de teste, imprima quantas possibilidades de array podem existir considerando essas propriedades usando o módulo 109+7.

Entrada	Saída A
2 1 3	13 A 11 A 1
DE DIECE	A TICA
Entrada	MA I Saída
3 2 2	1

Entrada	Saída
9 9 99	711426616

Problema I. Número Abella

Nome do Programa: I.(c|cpp|java|py2|py3)

Tempo: 3 segundos

O lendário multicampeão Felipe Abella, que é irmão do treinador Daniel Abella da UniFacisa, começou a treinar o seu sobrinho Arthur Abella para as maratonas de programação. Felipe está ensinando Arhur sobre teoria dos números.

Um número Abella é um inteiro positivo que possui apenas os dígitos 4 e 7, que são os números de sorte de Daniel e Felipe. Por exemplo, os números 47, 74, 4 são números Abella. Entretanto, os números 5, 27, 547 não são.

Sua tarefa é ajudar Arthur a descobrir o menor número Abella d que satisfaz a uma condição. Considere a função conta(x) que indica o número de ocorrências do número x em um número d como substring. Por exemplo, se d = 747747, então conta(4) = 2, conta(7) = 4, conta(47) = 2, e conta(74) = 2. As seguintes condições devem ser satisfeitas simultaneamente: conta(4) = a_1 , conta(7) = a_2 , conta(47) = a_3 , e conta(74) = a_4 .

Entrada

Cada caso de teste contém uma linha contendo quatro números inteiros a_1 , a_2 , a_3 , a_4 ($1 \le a_1$, a_2 , a_3 , $a_4 \le 10^6$), respectivamente.

Saída

Para cada caso de teste, imprima o menor número Abella, sem considerar zeros à esquerda, tal que conta(4) = a_1 , conta(7) = a_2 , conta(47) = a_3 , e conta(74) = a_4 . Caso esse número não exista, imprima -1.

Entrada					Saída		
2 2	1	1	UĽ	INFOR	4774	ILA	

Entrada					Saída		
4	7	3	1		-1		

Entrada	Saída
2 2 1 2	7474

Problema J. Triângulos

Nome do Programa: J.(c|cpp|java|py2|py3)

Tempo: 3 segundos

Os integrantes do laboratório Brain estão desenvolvendo um novo jogo que consiste em um campo n × m que contém apenas em pontos ('.') e asteriscos ('*'). Sua tarefa é os integrantes do Brain a contar todos os triângulos retângulos com dois lados paralelos aos lados quadrados, cujos vértices estão nos centros das células '*'. Um triângulo retângulo é um triângulo em que um ângulo é reto (ou seja, um ângulo de 90 graus).

Entrada

A primeira linha de cada caso de teste descreve dois números inteiros positivos n e m ($1 \le n$, m ≤ 1.000). As n linhas seguintes possuem m caracteres cada descrevendo o campo. Só podem existir os caracteres ponto ('.') e asterisco ('*').

Saída

Para cada caso de teste, imprima um número indicando a quantidade máxima de triângulos retângulos que podem ser criados no campo considerando as restrições dadas no problema.

	Entrada	Saída
2 2		1
**		
* •		

Entrada	Saída N A
3 4 TALA	9АПАІ
** ** DE INFO	MÁTICA
*.**	TWI THE

