Отчет о выполнении лабораторной работы Исследование взаимной диффузии газов

Лепарский Роман

18 апреля 2021 г.

1 Аннотация

Цель работы: 1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

2 Теоретические сведения

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их хаотического теплового движения.

Плотность потока вещества в результате взаимной диффузии определяется законом Фи-ка:

$$j = -D\frac{\partial n}{\partial x} \tag{1}$$

Поскольку объем трубки много меньше объемов сосудов, концентрацию в последних можно считать постоянной. Пусть в объемах V_1 и V_2 поддерживаются постоянные концентрации n_1 и n_2 . Тогда в трубе установится постоянный поток $J = -DS\frac{\partial n}{\partial x}$. Отсюда n(x) - линейная функция. Если подставить длину трубки l, получим:

$$J = -DS\frac{n_1 - n_2}{l} \tag{2}$$

Изменение компонента в сосудах: $V_1 \Delta n_1 = -V_2 \Delta n_2$

С другой стороны $V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t$

Разделив на Δt получим:

$$V_1 \frac{dn_1}{dt} = -V_2 \frac{dn_2}{dt} = -DS \frac{n_1 - n_2}{l}$$

После преобразований получим:

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS \left(\frac{1}{V_1} + \frac{1}{V_2}\right)$$

Примем $\Delta n = n_1 - n_2$, Δn_0 - разность концентраций примеси в начальный момент времени:

$$\Delta n = \Delta n_0 e^{-t/\tau}, \tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD}$$
 (3)

Напряжение на мосту убывает по экспоненциальному закону с тем же показателем. Прологарифмировав получим:

$$\ln V = \ln V_0 - \frac{t}{\tau} \tag{4}$$

3 Экспериментальная установка

Рис. 1: Схема установки

Для исследования взаимной диффузии газов и определения коэффициента диффузии используется установка, изображенная на рис.1. Два сосуда соединены трубкой сечения S и длины l. Сосуды заполнены смесью газов при одинаковом давлении.

4 Приборы и материалы

В работе используются:

- Измерительная установка;
- Форвакуумный насос;
- манометр;
- Баллон с газом (гелий);
- Источник питания;
- Магазин сопротивлений;
- Гальванометр;
- Секундомер.

5 Обработка результатов

Проведем измерения при различных давлениях. Таблицы с измеренными значениями находятся в приложении. По этим значениям построим графики и найдем коэффициент наклона 1/ au

Рис. 2: $P_{\rm pa6}=47.8$ Topp; $1/\tau=(3200\pm4)\cdot10^{-6}~{\rm c}^{-1}$

Рис. 3: $P_{\rm pa6}=117,6$ Торр; $1/\tau=(1108\pm6)\cdot10^{-6}~{\rm c}^{-1}$

Рис. 4: $P_{\rm pa6}=183{,}8$ Topp; $1/\tau=(834\pm5)\cdot10^{-6}~{\rm c}^{-1}$

Рис. 5: $P_{\rm pa6} = 241,\! 1$ Topp; $1/\tau = (615 \pm 5) \cdot 10^{-6} \ {\rm c}^{-1}$

Рис. 6: $P_{\mathrm{pa6}} = 22,\!1$ Торр; $1/\tau = (4651 \pm 8) \cdot 10^{-6} \ \mathrm{c^{-1}}$

На последнем графике и в таблице 6 соответственно представлена зависимость концентрации гелия от времени, но при проникновении смеси воздух-гелий в чистый гелий, чтобы показать, что это не влияет на итоговый результат.

Запишем в таблицу значения коэффициента $1/\tau$ и найдем по ним коэффициент диффузии из формулы (3). Так же внесем таблицу величину 1/P:

N	$1/P$, $Torr^{-1}$	$1/\tau$, 10^{-6} $1/c$	$D, \mathrm{cm}^2/\mathrm{c}$
1	0,02092050209205	3200	11,9
2	0,008503401360544	1108	4,1
3	0,00544069640914	834	3,1
4	0,004147656574036	615	2,3
5	0,045248868778281	4651	17,4

Рассчитаем приблизительно погрешность D. Примем $V_1=V_2=V$.

$$\sigma_D^2 = \left(\frac{l}{2S\tau}\right)^2 \sigma_V^2 + \left(\frac{V}{2\tau}\right)^2 \sigma_{l/s}^2 + \left(\frac{Vl}{2S}\right)^2 \sigma_{1/\tau}^2$$

Отсюда $\sigma_D = 0.2 \text{ cm}^2/\text{c}.$

Построим график зависимости D(1/P) по данным значениям.

Рассчитав по данной прямой значение для атмосферного давления (735 mmHg) получим $D_{\text{атм}}=0.56\pm0.03~\text{cm}^2/\text{c}.$

Оценим длину свободного пробега молекулы и ее диаметр:

$$\lambda = \frac{3D}{\langle V \rangle} \sim 1.3 \cdot 10^{-7} \; \mathrm{M}$$

$$d = \sqrt{rac{kT}{\pi P \lambda}} \sim 0.26$$
 нм

6 Вывод

Посчитав коэффициент диффузии для нескольких точек, мы смогли приблизительно найти коэффициент диффузии гелия в воздухе при атмосферном давлении $D_{\rm atm}=0.56\pm0.03$ см²/с. Что лежит довольно близко к табличному значению (0,62 см²/с). С помощью одного дополнительного измерения можно увидеть, что этот коэффициент не зависит от начальной концентрации гелия в воздухе. Также получилось оценить длину пробега $\lambda \sim 1.3 \cdot 10^{-7}$ м и диаметр молекулы гелия $d \sim 0.26$ нм. Эти значения тоже близки к табличным ($\lambda = 1.75 \cdot 10^{-7}$ м, d = 0.20 нм).

Приложение

t, c	V, mv	$\ln(V)$
0	27,11	3,29990266351057
10	26,26	3,26804686887465
20	25,44	3,23632273847192
30	24,69	3,20639830335709
40	23,86	3,17220341666977
50	23,11	3,14026542428629
60	22,38	3,10816770288378
70	21,66	3,07546724157284
80	20,97	3,04309284491383
90	20,29	3,01012815383772
100	19,64	2,97756830292632
110	19,09	2,94916463773766
120	18,44	2,91452221812845
130	17,88	2,88368276974537
140	17,39	2,85589532836619
150	16,78	2,82018770103906
160	16,25	2,78809290877575
170	15,78	2,75874331541773
180	15,24	2,7239235502585
190	14,76	2,69192081917233
200	14,3	2,66025953726586
210	13,84	2,62756295018952
220	13,4	2,59525470695687

Таблица 1: $P_{\text{раб}} = 47,8$ Торр

t, c	V, mv	$\ln(V)$
0	22,75	3,12456514539696
20	22,24	3,10189246938238
40	21,75	3,07961375753469
60	21,25	3,05635689537043
80	20,76	3,03302805829769
100	20,28	3,00963517872298
120	19,81	2,98618686071046
140	19,36	2,96320908184843
160	18,92	2,94021956362373
180	18,5	2,91777073208428
200	18,09	2,8953592994072
220	17,67	2,87186828633161
240	17,27	2,84897089215859
260	16,88	2,82612948916781
280	16,51	2,80396625793204
300	16,17	2,78315767358902
320	15,84	2,76253838638628
340	15,51	2,74148497718845
360	15,18	2,71997877196748
380	14,92	2,70270259477561
400	14,6	2,68102152871429
420	14,3	2,66025953726586
440	14,01	2,63977136034892

Таблица 2: $P_{\rm pa6} = 117,6$ Торр

t, c	V, mv	$\ln(V)$
0	20,54	3,02237420450041
20	20,16	3,00370044320317
40	19,81	2,98618686071046
60	19,46	2,96836107675786
80	19,09	2,94916463773766
100	18,81	2,93438864331294
120	18,49	2,91723004539903
140	18,16	2,89922137317315
160	17,84	2,88144312715186
180	17,52	2,86334308550825
200	17,21	2,84549061022345
220	16,91	2,82790516291049
240	16,61	2,8100049236252
260	16,33	2,79300390698237
280	16,08	2,77757626375082
300	15,84	2,76253838638628
320	15,66	2,75110969056266
340	15,4	2,73436750941958
360	15,15	2,71800053195538
380	14,91	2,70203212877665
400	14,67	2,68580459215489
420	14,44	2,67000213346468
440	14,22	2,65464942437509

Таблица 3: $P_{\rm pa6} = 183,8$ Торр

t, c	V, mv	$\ln(V)$
0	19,54	2,97246364661464
20	19,29	2,95958682691764
40	19,06	2,94759189822606
60	18,78	2,93279247378012
80	18,54	2,91993056013771
100	18,28	2,905807566026
120	18,04	2,89259151463448
140	17,81	2,87976009730157
160	17,57	2,86619290219901
180	17,36	2,8541687092322
200	17,14	2,84141491316963
220	16,91	2,82790516291049
240	16,68	2,8142103969306
260	16,48	2,80214752448133
280	16,3	2,79116510781272
300	16,14	2,7813006628418
320	15,97	2,77071196222692
340	15,8	2,76000994003292
360	15,65	2,75047091698616
380	15,43	2,73631366637507
400	15,24	2,7239235502585
420	15,07	2,7127060126384
440	14,89	2,70068984669592

Таблица 4: $P_{\rm pa6} = 241,1$ Торр

t, c	V, mv	$\ln(V)$
0	18,53	2,91939104029727
5	18,12	2,89701630061483
10	17,7	2,87356463957978
15	17,29	2,8501282996952
20	16,89	2,82672173081971
25	16,5	2,80336038090653
30	16,11	2,77944019718888
35	15,73	2,75556971707019
40	15,35	2,73111547403321
45	15,01	2,70871664564537
50	14,62	2,68239045432163
55	14,33	2,66235524184008
60	13,99	2,63834278867739
65	13,67	2,61520365073586
70	13,36	2,5922651681085
75	13,05	2,5687881337687
80	12,76	2,54631527791664
85	12,47	2,52332575969195
90	12,18	2,49979526228175
95	11,91	2,47737838336721
100	11,65	2,45530618001171
105	11,38	2,43185742869818
110	11,13	2,40964416528745

Таблица 5: $P_{\rm pa6} = 22,1$ Торр