- 1. Prove that for all $a, b \in \mathbb{R}$, $|\sin a \sin b| \le |a b|$.
- 2. Find a such that the integral $\int_1^\infty \left(\frac{ax}{x^2+1} \frac{1}{2x}\right) dx$ converges.

Linear Algebra

- 1. A matrix $N \in M_n(\mathbb{F})$ is called *nilpotent* if $N^k = 0$ for some positive integer k where 0 is the zero matrix. Show that $\det(N) = 0$ if N is nilpotent.
- 2. Let $B_1 = \{(1,1), (1,-1)\}$ and $B_2 = \{(1,1,0), (0,1,1), (1,0,1)\}$ be bases for \mathbb{R}^2 and \mathbb{R}^3 respectively, and $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 1 & 1 \end{pmatrix}$ be the matrix of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ with respect to

 B_1 and B_2 . Find the matrix of T with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 .

- 1. Evaluate $\int \ln(x^2 + x) dx$.
- 2. Find the Taylor polynomial of $f(x) = \tan^{-1} x$ and determine the interval such that f(x) converges.

- 1. Let V and W be vector spaces, and let $T: V \to W$ be linear and invertible. Show that $T^{-1}: W \to V$ is linear.
- 2. Let A and B be n by n matrices and A + B = AB. Prove that AB = BA.

- 1. If f is continuous on $[0,\pi]$. Show that $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx$.
- 2. Find the height and radius of the largest right circular cylinder that can be put in a sphere of radius $\sqrt{3}$.

- 1. Suppose that $A \in M_n(\mathbb{R})$ and $A^T = -A$. Find all possible values for det (A).
- 2. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by T(f(x)) = f(x) + f'(x) + f''(x). Determine whether T is invertible. If T is invertible, find T^{-1} .

- 1. Please answer the following questions.
 - (a) Please statement what is the Mean Value Theorem. [Please describe completely]
 - (b) Please explain the geometric meaning of the Mean Value Theorem.

 [Drawings or text descriptions are acceptable]
 - (c) Please answer this question True or False: In Mean value Theorem, if the value of c is found, is there only one value? [Do not show your reason]
 - (d) In (c). If there is only one value, please explain why. If there is more than one, please give an example and explain how to find these values.
- 2. Determine whether the integral $\int_0^\infty e^{-x^2} dx$ converges or not. Please show your reason.

- 1. Let A and B be n by n matrices. Show that I AB is invertible if and only if I BA is invertible.
- 2. Define the transformation $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by $T(f(x)) = \begin{pmatrix} f(1) f(2) & 0 \\ 0 & f(0) \end{pmatrix}$. Find a basis for the range space R(T).

- 1. Prove that if f is differentiable, then f is continuous.
- 2. Evaluate $\lim_{t\to 0} \left(\frac{1}{t\sqrt{1+|t|}} \frac{1}{t}\right)$.

- 1. Find all possible $a \in \mathbb{R}$ such that the vectors $(1,3,a), (a,4,3), (0,a,1) \in \mathbb{R}^3$ are linearly dependent.
- 2. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear operator defined by T(p(x)) = p(2x+5), that is, $T(a+bx+cx^2) = a+b(2x+5)+c(2x+5)^2$.
 - (a) Find the matrix T with respect to the basis $B = \{1, x, x^2\}$.
 - (b) Is T one-to-one? If so, find the matrix for T^{-1} with respect to the basis B.

- 1. Evaluate $\int \sec^3 x \, dx$.
- 2. Use the Riemann integral to evaluate $\int_{-1}^{0} x x^2 dx$.

Linear Algebra

■ 1. Let $W_1, W_2, ...$ be subspaces of a vector space V for which $W_1 \subseteq W_2 \subseteq \cdots$. Let

$$W = \bigcup_{i=1}^{\infty} W_i = W_1 \cup W_2 \cup \dots$$

Prove that W is a subapace of V.

■ 2. Let $T: \mathbb{R}_2[x] \to M_2(\mathbb{R})$ be the linear transformation satisfying

$$T(1+x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ T(x+x^2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ T(1+x^2) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Find $T(a + bx + cx^2)$.

- 1. Evaluate $\int \tan^{-1} x \, dx$.
- 2. Suppose $f(x) = \int_0^x \frac{\sin^{-1} t}{\sqrt{1-t^2}} dt \int_0^x \frac{t}{\sqrt{1-t^2}} dt + \int_0^{\frac{\pi}{2}} \cos t \, dt$. Prove that f is constant function.

- 1. Suppose f(x) = x and g(x) = |x|.
 - (a) Prove that f and g are linearly independent in C[-1,1].
 - (b) Prove that f and g are linearly dependent in C[0,1].
- 2. An operator T is *idempotent* if $T^2 = T$. Suppose that A and B are symmetric matrices. If AB is idempotent. Show that BA is idempotent.

- 1. Let f be a conntinuous real function satisfying the identity f(2x) = 3f(x) for all x. If $\int_0^1 f(x) dx = 1$, find $\int_1^2 f(x) dx$.
- 2. Prove that $\sum_{n=1}^{\infty} \left(\frac{a_n}{1+a_n}\right)$ converges if $a_n > 0$ for all n and $\sum_{n=1}^{\infty} a_n$ converges.

- 1. In \mathbb{R}^2 , let L be the line y = mx where $m \neq 0$. Find an expression for T(x,y), where T is the reflection of \mathbb{R}^2 about L.
- 2. Let A be a nonsingular matrix and A I is nonsingular. If $A^r = I$ for integer $r \ge 2$, prove that $A + A^2 + A^3 + \cdots + A^{r-1} = -I$.

- 1. Suppose that $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$.
 - (a) Is $\lim_{x\to 0^+} f(x)$ exist?
 - (b) Is $\lim_{x\to 0^-} f(x)$ exist?
 - (c) Is $\lim_{x\to 0} f(x)$ exist?
- 2. Show that $\lim_{x\to a} f(x)$ is unique. [Hint: Use $\varepsilon \delta$ definition]

- 1. Let A and B be $n \times n$ matrices. Assume that A is invertible and $B^3 = 0$. If AB = BA, prove that A + B is also invertible.
- 2. Prove that $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ are colinear if and only if $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$.

- 1. Evaluate $\int \left(\frac{1}{2} + x^2\right) e^{x^2} dx$.
- 2. A resistor consists of two parts of the resistors R_1 and R_2 connected in parallel, and the total resistor R satisfies

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

If R_1 and R_2 increase by $0.3 \Omega/\text{sec}$ and $0.2 \Omega/\text{sec}$, respectively. What is the rate of increase in R when $R_1 = 80 \Omega/\text{sec}$ and $R_2 = 120 \Omega/\text{sec}$?

- 1. Let V be a vector space over the real number \mathbb{R} . Let u, v, w be distinct vectors in V. Show that $\{u, v, w\}$ is linearly independent if and only if $\{u + v, u + w, v + w\}$ is linearly independent.
- 2. Let $a \cdot b \cdot c$ be the lengths of the sides of $\triangle ABC$. If the determinant $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$, then what must be the shape of $\triangle ABC$?
 - (1) Equilateral triangle
 - (2) Isosceles triangle
 - (3) Right triangle
 - (4) Acute triangle
 - (5) Obtuse triangle