Homework 1

Aukkawut Ammartayakun CS 539 Machine Learning

Spring 2023

Problem 1

Consider two variables X and Y with joint distribution p(x,y). Prove the following two results

1. $\mathbb{E}[X] = \mathbb{E}_Y \left[\mathbb{E}_X[X|Y] \right]$

Solution. Consider the RHS,

$$\mathbb{E}_{Y} \left[\mathbb{E}_{X}[X|Y] \right] = \int_{\Omega_{Y}} f_{Y}(y) \, dy$$

$$= \int_{\Omega_{Y}} \int_{\Omega_{X}} x f_{X|Y}(x|y) f_{Y}(y) \, dx \, dy$$

$$= \int_{\Omega_{Y}} \int_{\Omega_{X}} x p(x,y) \, dx \, dy$$

$$= \int_{\Omega_{X}} \int_{\Omega_{Y}} x p(x,y) \, dy \, dx$$

$$= \int_{\Omega_{X}} x f_{X}(x) \, dx$$

$$= \mathbb{E}[X]$$

2. $\operatorname{Var}[X] = \mathbb{E}_Y \left[\operatorname{Var}_X[X|Y] \right] + \operatorname{Var}_Y \left[\mathbb{E}_X[X|Y] \right]$

Solution. Consider the LHS,

$$\begin{aligned} \operatorname{Var}[X] &= \mathbb{E}[X^2] - \mathbb{E}^2[X] \\ &= \mathbb{E}\left[\operatorname{Var}[X|Y] + \mathbb{E}^2[X|Y]\right] - \mathbb{E}^2[\mathbb{E}[X|Y]] \\ &= \mathbb{E}\left[\operatorname{Var}[X|Y]\right] + \mathbb{E}[\mathbb{E}^2[X|Y]\right] - \mathbb{E}^2[\mathbb{E}[X|Y]] \\ &= \mathbb{E}_Y\left[\operatorname{Var}_X[X|Y]\right] + \operatorname{Var}_Y\left[\mathbb{E}_X[X|Y]\right] \end{aligned}$$

Problem 2

Let X and Z be two independent random vectors, so that p(X,Z) = p(X)p(Z). Show that the mean of their sum Y = X + Z is given by the sum of the means of each of the variables separately. Similarly, show that the covariance matrix of Y is given by the sum of the covariance matrices of X and Z.

Solution. Consider the mean of joint distribution Y = X + Z,

$$\begin{split} \mathbb{E}[Y] &= \int_{\Omega_X} \int_{\Omega_Z} y f_Y(y) \; dy \; dx \\ &= \int_{\Omega_X} \int_{\Omega_Z} (x+z) f_X(x) f_Z(z) \; dx \; dz \\ &= \int_{\Omega_X} \int_{\Omega_Z} x f_X(x) f_Z(z) \; dx \; dz + \int_{\Omega_X} \int_{\Omega_Z} z f_X(x) f_Z(z) \; dx \; dz \\ &= \int_{\Omega_X} x f_X(x) \; dx + \int_{\Omega_Z} z f_Z(z) \; dz \\ &= \mathbb{E}[X] + \mathbb{E}[Z] \end{split}$$

And also consider the covariance matrix of joint distribution Y = X + Z,

$$\begin{aligned} \operatorname{cov}[Y] &= \mathbb{E}\left[\left(Y - \mathbb{E}[Y] \right) \left(Y - \mathbb{E}[Y] \right)^T \right] \\ &= \mathbb{E}\left[\left(X + Z - \mathbb{E}[X] - \mathbb{E}[Z] \right) \left(X + Z - \mathbb{E}[X] - \mathbb{E}[Z] \right)^T \right] \\ &= \mathbb{E}\left[\left(X - \mathbb{E}[X] \right) \left(X - \mathbb{E}[X] \right)^T \right] + \mathbb{E}\left[\left(Z - \mathbb{E}[Z] \right) \left(Z - \mathbb{E}[Z] \right)^T \right] \\ &= \operatorname{cov}[X] + \operatorname{cov}[Z] \end{aligned}$$

Problem 3

Consider a D-dimensional Gaussian random variable X with distribution $\mathcal{N}(x|\mu, \Sigma)$ in which the covariance Σ is known and for which we wish to infer the mean μ from a set of observations $\mathcal{X} = \{X_1, \ldots, X_n\}$. Given a prior distribution $p(\mu) = \mathcal{N}(\mu|\mu_0, \Sigma_0)$, find the corresponding posterior distribution $p(\mu|\mathcal{X})$

Solution. The likelihood of the multivariate Gaussian distribution is given by,

$$\mathcal{L}(\mu|X,\Sigma) = \left(\prod_{i=1}^{n} \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left((X_i - \mu)^{\top} \Sigma^{-1} (X_i - \mu)\right)\right)$$
$$= \frac{1}{(2\pi)^{Dn/2} |\Sigma|^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^{\top} \Sigma^{-1} (X_i - \mu)\right)$$

with prior,

$$p(\mu|\mu_0, \Sigma_0) = \frac{1}{(2\pi)^{D/2} |\Sigma_0|^{1/2}} \exp\left(-\frac{1}{2}(\mu - \mu_0)^{\top} \Sigma_0^{-1}(\mu - \mu_0)\right)$$

The posterior distribution would be

$$p(\mu|\mathcal{X}, \mu_0, \Sigma_0) \propto \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (\mu - \mu_0)^{\top} \Sigma_0^{-1} (\mu - \mu_0)\right) \frac{1}{(2\pi)^{Dn/2} |\Sigma|^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^n (X_i - \mu)^{\top} \Sigma^{-1} (X_i - \mu)\right)$$

$$= \frac{1}{(2\pi)^{(n+1)D/2} (|(\Sigma)^n \Sigma_0|)^{1/2}} \exp\left(-\frac{1}{2} \left[(\mu - \mu_n)^{\top} \Sigma_0^{-1} (\mu - \mu_n) + \sum_{i=1}^n (X_i - \mu)^{\top} \Sigma^{-1} (X_i - \mu)\right]\right)$$

which resemble the multivariate Gaussian distribution.

Problem 4

Consider a univariate Gaussian distribution $\mathcal{N}(x|\mu,\tau^{-1})$ having conjugate Gaussian-gamma prior given by

$$p(\mu, \lambda) = \mathcal{N}(\mu | \mu_0, (\beta \lambda)^{-1}) \operatorname{Gamma}(\lambda | a, b)$$

and a dataset $\mathcal{X} = \{X_1, \dots, X_n\}$ of i.i.d. observations. Show that the posterior distribution is also a Gaussian-gamma distribution of the same functional form as the prior, and write down expressions for the parameters of this posterior distribution.

Solution. Consider the fact that the conjugate prior of the Gaussian distribution is the Gaussian-gamma distribution. The posterior distribution would be in the same family due to the fact that

posterior =
$$c \times \text{conjugate prior} \propto (\text{likelihood})(\text{prior})$$

One can show this by evaluating the likelihood with Gamma prior.

$$\mathcal{L}(\mu, \lambda | \mathcal{X}) P(\mu, \lambda | a, b) = \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\tau^{-1}}} \exp\left(-\frac{\tau}{2} (X_i - \mu)^2\right) \right) \frac{\lambda^{a-1} e^{-b\lambda}}{\Gamma(a)}$$
$$= \frac{1}{(2\pi\tau^{-1})^{n/2} \Gamma(a)} \exp\left(-\frac{\tau}{2} \sum_{i=1}^{n} (X_i - \mu)^2\right) \lambda^{a-1} e^{-b\lambda}$$

Notice that if we were to substitute τ with $\beta\lambda$, we will get

$$\mathcal{L}(\mu, \lambda | \mathcal{X}) P(\mu, \lambda | a, b) = \frac{(\beta \lambda)^{n/2}}{(2\pi)^{n/2} \Gamma(a)} \exp\left(-\frac{\beta \lambda}{2} \sum_{i=1}^{n} (X_i - \mu)^2\right) \lambda^{a-1} e^{-b\lambda}$$

which is basically Gaussian-gamma distribution.

Problem 5

Show that if two variables X and Y are independent, then their covariance is zero.

Lemma 5.1. Let X and Y be random variable where $X \perp \!\!\! \perp Y$, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Proof. Assume that $X \sim \mu(x)$ and $Y \sim \nu(y)$ where $\mu : \Omega_X \to \mathcal{B}_X$ and $\nu : \Omega_Y \to \mathcal{B}_Y$ where \mathcal{B} is a Borel field, the expectation operator is defined as

$$\mathbb{E}[X] = \int_{\Omega_X} x \ d\mu(x)$$

Using the Fubini-Tonelli theorem, we can show that

$$\begin{split} \mathbb{E}[XY] &= \int_{\Omega_X} \int_{\Omega_Y} xy \ d\pi(x,y) \\ &= \int_{\Omega_X} x \ d\mu(x) \int_{\Omega_X} y \ d\nu(y) \\ &= \mathbb{E}[X] \mathbb{E}[Y] \end{split}$$

Solution. We will show that if $X \perp \!\!\! \perp Y$, then cov(X,Y) = 0. Recall that the definition of covariance is

$$cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right] \tag{1}$$

From this, we can simplify the covariance as

$$cov(X,Y) = \mathbb{E} [(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \mathbb{E} [XY - Y\mathbb{E}[X]Y - X\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y])]$$

$$= \mathbb{E}[XY] - \mathbb{E}[Y]\mathbb{E}[X] - [X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y])$$

$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Since, $X \perp \!\!\!\perp Y$. That implies $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ (from lemma 5.1). In other words, $\operatorname{cov}(X,Y) = 0$.

Problem 6

Evaluate the Kullback-Leibler divergence between two Gaussians $p(x) = \mathcal{N}(x|\mu, \sigma^2)$ and $q(x) = \mathcal{N}(x|m, s^2)$

Solution. Recall the definition of KL divergence between two measures p(x) and q(x) given that $p, q : \mathbb{R} \to \mathcal{B}$ where \mathcal{B} is a Borel field.

$$D_{KL}(p(x)||q(x)) = \int_{-\infty}^{\infty} p(x) \ln\left(\frac{p(x)}{q(x)}\right) dx$$
 (2)

In this case,

$$D_{KL}(p(x)||q(x)) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ln\left(\frac{\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}{\frac{1}{\sqrt{2\pi}s} \exp\left(-\frac{(x-\mu)^2}{2s^2}\right)}\right) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \left(\ln\left(\frac{s}{\sigma}\right) + \left[\frac{(x-m)^2}{2s^2} - \frac{(x-\mu)^2}{2\sigma^2}\right]\right) dx$$

$$= \ln\left(\frac{s}{\sigma}\right) + \frac{1}{\sqrt{2\pi}\sigma} \left[\int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \frac{(x-m)^2}{2s^2} dx - \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \frac{(x-\mu)^2}{2\sigma^2} dx\right]$$

$$= \ln\left(\frac{s}{\sigma}\right) - \frac{1}{2} + \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \frac{(x-m)^2}{2s^2} dx$$

$$= \ln\left(\frac{s}{\sigma}\right) - \frac{1}{2} + \frac{(\mu-m)^2 + \sigma^2}{s^2}$$

Problem 7

For Inverse Gamma distribution

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(-\frac{\beta}{x}\right)$$

1. Show the mean of the distribution is

$$\mathbb{E}[X] = \frac{\beta}{\alpha - 1}$$

Solution. We want to show that $\mathbb{E}[X] = \frac{\beta}{\alpha - 1}$. Using the definition of expectation and the fact that

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} \exp(-x) \, dx \tag{3}$$

Let $u = \frac{\beta}{x}$

$$\mathbb{E}[X] = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \beta^{-\alpha+1} \int_{0}^{\infty} u^{\alpha-2} \exp(-u) du$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \beta^{-\alpha+1} \Gamma(\alpha - 1)$$
$$= \frac{\beta}{\alpha - 1}$$

2. Find maximum likelihood estimate of α and β given N independent sample of x_i

Solution. The maximum likelihood can be evaluated from its likelihood function. Namely,

$$\mathcal{L}(\alpha, \beta | X) = \prod_{i=1}^{N} f(x_i | a, b)$$
(4)

In this case, the likelihood function is

$$\mathcal{L}(\alpha, \beta | X) = \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right)^{n} \exp\left(-\sum_{i=1}^{N} \frac{\beta}{x_{i}}\right) \prod_{k=1}^{N} x_{k}^{-(\alpha+1)}$$

Minimize the log-likelihood with respect to α while fixing β

$$\begin{split} \frac{\partial}{\partial \alpha} \ln \left(\mathcal{L}(\alpha, \beta | X) \right) &= \frac{\partial}{\partial \alpha} \ln \left[\left(\frac{\beta^{\alpha}}{\Gamma(\alpha)} \right)^{N} \exp \left(-\sum_{i=1}^{N} \frac{\beta}{x_{i}} \right) \prod_{k=1}^{N} x_{k}^{-(\alpha+1)} \right] \\ &= \frac{\partial}{\partial \alpha} \left[N \ln \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)} \right) - \sum_{i=1}^{N} \frac{\beta}{x_{i}} + \sum_{i=1}^{N} x_{k}^{-(\alpha+1)} \right] \\ &= \frac{\partial}{\partial \alpha} \left[N \alpha \ln(\beta) - N \ln(\Gamma(\alpha)) + \sum_{k=1}^{N} x_{k}^{-(\alpha+1)} \right] \\ &= N \ln(\beta) - N \psi(\alpha) + \sum_{k=1}^{N} (-x_{k}^{-(\alpha+1)} \ln(x_{k})) \end{split}$$

and with respect to β while fixing α

$$\frac{\partial}{\partial \beta} \left[N\alpha \ln(\beta) - N \ln(\Gamma(\alpha)) - \sum_{i=1}^{N} \frac{\beta}{x_i} \right] = \frac{N\alpha}{\beta} - \sum_{i=1}^{N} \frac{1}{x_i}$$

Now, we can set the partial derivative to zero and solve for α and β .

$$N\ln(\beta) - N\psi(\alpha) + \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) = 0$$
 (5)

$$\frac{N\alpha}{\beta} - \sum_{i=1}^{N} \frac{1}{x_i} = 0 \tag{6}$$

From the equation 6, we can see that $\beta = \frac{N\alpha}{\sum_{i=1}^{N} \frac{1}{x_i}}$. Substituting this into equation 5, we can solve for α . That is,

$$\begin{split} N \ln \left(\frac{N\alpha}{\sum_{i=1}^{N} \frac{1}{x_i}} \right) - N\psi(\alpha) + \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= 0 \\ N \ln \left(\frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}} \right) - N\psi(\alpha) + \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= 0 \\ \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= N\psi(\alpha) - N \ln \left(\frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}} \right) \\ \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= N\psi(\alpha) - N \ln(N) + N \ln \left(\frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{x_i}} \right) \\ \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= N\psi(\alpha) - N \ln(N) + N \ln \left(\frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{x_i}} \right) \\ \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= N\psi(\alpha) - N \ln(N) + N \ln \left(\frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}} \right) \\ \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) &= N\psi(\alpha) + N \ln \left(\sum_{i=1}^{N} \frac{1}{x_i} \right) \\ \psi(\alpha) &= \frac{1}{n} \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) - \ln(\sum_{i=1}^{N} \frac{1}{x_i}) \\ \alpha &= \psi^{-1} \left(\frac{1}{n} \sum_{k=1}^{N} (-x_k^{-(\alpha+1)} \ln(x_k)) - \ln(\sum_{i=1}^{N} \frac{1}{x_i}) \right) \end{split}$$

where ψ^{-1} is the inverse of the digamma function.

3. Discuss if f(x) follows an exponential family distribution or not.

Solution. To show that $f(x|\theta)$ is the exponential family, we need to show that

$$f(x|\theta) = h(x)c(\theta)\exp(T(x)\tau(\theta))$$

From the definition of f(x), we can expand it as

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(-\frac{\beta}{x}\right)$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp\left(\ln(x^{-\alpha - 1})\right) \exp\left(-\frac{\beta}{x}\right)$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp\left((-\alpha - 1)\ln(x) - \frac{\beta}{x}\right)$$

In this case, $T(x) = \begin{bmatrix} \ln(x) & \frac{1}{x} \end{bmatrix}$ and $\tau(\theta) = \begin{bmatrix} -\alpha - 1 & \beta \end{bmatrix}$, $c(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}$ and h(x) = 1. Thus, f(x) is in the exponential family.

4. Discuss if X is an inverse gamma distribution with $\alpha=1$ and $\beta=c$, then Y=1/X is an exponential distribution with rate c

Solution. Using the CDF method, one can come to conclude that $P(X \ge 1/y) = 1 - F(\frac{1}{y})$ for Y = y and Y = 1/X. Thus, evaluate its derivative and we can get

$$g(y) = \frac{1}{y^2} f\left(\frac{1}{y}\right) = \frac{1}{y^2} \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha+1} \exp\left(-\beta y\right)$$

Let $\alpha = 1, \beta = c$ we will get exponential PDF.

$$g(y) = c \exp(-cy)$$

5. For distribution Y, and with a prior on c define the posterior of c. Pick a proper prior for c first.

Solution. Using gamma prior, one can get the posterior of c from conjugate prior,

$$P(c|Y) \propto P(Y|c)P(c)$$

$$= c^{n+\alpha-1} \exp\left(-c\left(\left[\sum_{i=1}^{n} y\right] - \beta\right)\right)$$

$$P(c|Y) \sim \operatorname{Gamma}\left(n + \alpha, \left[\sum_{i=1}^{n} y\right] - \beta\right)$$

That is, the posterior of c would be a gamma distribution with parameters $n + \alpha$ and $\left[\sum_{i=1}^{n} y\right] - \beta$.