Setting up simplex tableau in matrix form

Initial set of equations in matrix form:

$$\begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$
 (1)

After any iteration:

$$\begin{bmatrix} Z \\ \mathbf{X}_B \end{bmatrix} = \begin{bmatrix} \mathbf{C}_B \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{B}^{-1} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{C}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

Premultiply the initial set of equation (1) by $\begin{bmatrix} 1 & C_B B^{-1} \\ 0 & B^{-1} \end{bmatrix}$, we have

$$\begin{bmatrix} 1 & \mathbf{C}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{c} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{C}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$

Thus, the set of equations after any iteration in matrix form:

$$\begin{bmatrix} 1 & \mathbf{C}_{B}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c} & \mathbf{C}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1}\mathbf{A} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{B}\mathbf{B}^{-1}\mathbf{b} \\ \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$
(2)

JKJ@IITKGP

6

Simplex tableau in matrix form (contd...)

Simplex Tableau in matrix form

		Coeffici		
Iteration		Original variables (x)	Slack variables (x _s)	RHS
0	\mathbf{x}_{B}	A	I	b
	Z	-c	0	0
Any	\mathbf{x}_{B}	B-1A	B-1	B-1b
	Z	$c_B B^{-1} A - c$	$\mathbf{c}_B \mathbf{B}^{-1}$	$c_B B^{-1} b$

How to remember the table:

- Basic Formula, $x_B = B^{-1}b$, $Z = c_B B^{-1}b$
- For any iteration, obtain
 - x_B raw by pre-multiplying with B^{-1} in the initial row of x_B
 - Z raw by pre-multiplying with $c_B \mathbf{B}^{-1}$ in the initial row of \mathbf{x}_B and adding it to the initial Z raw

Revised Simplex Method

1. *Initialization:* Same as for the original simplex method.

2. Iteration:

Step 1: Determine the entering basic variable: Same as for the original simplex method.

Step 2: Determine the leaving basic variable: Same as for the original simplex method, except calculate only the numbers required to do this [the coefficients of the entering basic variable in every equation but Eq. (0), and then, for each strictly positive coefficient, the right-hand side of that equation].

Step 3: Determine the new BF solution: Derive \mathbf{B}^{-1} and set $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$.

3. *Optimality test:* Same as for the original simplex method, except calculate only the numbers required to do this test, i.e., the coefficients of the *nonbasic variables* in Eq. (0).

JKJ@IITKGP

In Augment form

TechEdge Co. example

$$c = [50, 40]$$

$$[A, I] = \begin{bmatrix} 3 & 5 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 8 & 5 & 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 150 \\ 20 \\ 300 \end{bmatrix} \qquad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad x_s = \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \qquad \mathbf{x}_s = \begin{pmatrix} \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \end{pmatrix}$$

Iteration 0

$$c_B = [0, 0, 0] \Rightarrow Z = c_B B^{-1} b = [0, 0, 0] \begin{pmatrix} 150 \\ 20 \\ 300 \end{pmatrix} = 0$$

Iteration 1

Simplex Iteration

	origina	iables;	319	ie v	anables	15
Basis	X_1	X_2	X_3	X_4	X_5	RHS
X_3	0	25/8	1	0	-3/8	75/2
X_4	0	1	0	1	0	20
$\mathbf{X_1}$	1	5/8	0	0	1/8	75/2
Z	0	-70/8	0	0	50/8	1875

$$c_B = [0, 0, 50] \Rightarrow Z = [0, 0, 50] \begin{pmatrix} 75/2 \\ 20 \\ 75/2 \end{pmatrix} = 1875$$

$$C_{0}B^{-}A - C_{0} = [0 \ 0 \ 50][0 \ 25/8]$$

$$= [5 \ 0 \ 40] = [0 \ -7\%]$$

Iteration 2