10. Databázový procesor - teorie, pojmy

Databáze

- Uspořádaná množina dat (informací) uložena na paměťovém mediu
- Součástí databáze jsou softwarové prostředky pro manipulaci s daty + přístup k datům

Rozdělení

- Systémy sálových počítačů (Mainframe)
- dBase
 - o Souborově orientované databáze s indexsekvenční metodou přístupu
 - o Každá tabulka má samostatný .dbf soubor
 - o Software: dBase, FoxPro, Paradox, Access
- Relační databázové systémy (lepší datová integrita, bezpečnost...)
- Objektově orientované databáze (specializované uplatnění, data se ukládají jako objekt s vlastnostmi)

Databázový procesor

- Nástroj, který slouží pro práci s velkým množstvím dat; MS Access, Firebird, Oracle
- V databázi se data upravují, ukládají, získávají
- Obsahuje jednotlivé akce moduly:

o Tabulka	 Formuláře
o Dotazy	○ Sestavy

SŘBD; DBSŘ; DBMS

- Systém řízení báze dat; Databázový systém řízení; Database management system
- Softwarové vybavení, které zajišťuje práci s databází (tvoří rozhraní mezi aplikačními programy a uloženými daty)
- **Databázová aplikace** je program, který umožňuje vybírat, prohlížet a aktualizovat informace uložené prostřednictvím SŘBD
- SŘBD musí být schopen efektivně pracovat s velkým množstvím dat a také musí být schopný řídit data (vkládat, modifikovat, mazat) a definovat strukturu těchto dat

Služby

- Definice dat (definování a uchovávání datové entity)
- Údržba dat (každému členu entity vyhrazuje záznam skládající se z položek)
- Manipulace s daty (služby umožňující vkládání, aktualizaci, rušení a třídění dat)
- Zobrazování dat (poskytuje metody prezentace dat uživateli)
- Integrita dat (metody pro zajištění správnosti dat nepovolením vložení duplicitního řádku s unikátním klíčem)

Architektury DB

Centrální

Tato architektura je typická pro terminálovou síť, kdy se po síti přenáší vstupní údaje z terminálu na centrální počítač do příslušné aplikace, výstupy z této aplikace se přenáší na terminál. Protože aplikační program i vlastní zpracování probíhá na centrálním počítači, který může

zpracovávat více úloh, mají odezvy na dotazy určité zpoždění.

• Data i SŘBD jsou v centrálním počítači

File-Server

Tato metoda souvisí zejména s rozšířením osobních počítačů a sítí LAN.

- SŘBD a databázové aplikace jsou na jednotlivých počítačích
- Data jsou na File-Serveru

Komunikace uživatele se systémem:

- Uživatel zadá dotaz
- SŘBD přijme dotaz, zasílá požadavky na data file-serveru
- File-server posílá bloky dat na lokální počítač, kde jsou data zpracovávána podle zadaného dotazu (vyhledávání, setřídění...)
- Výsledek dotazu se zobrazí uživateli

Klient-Server

V podstatě je založena na lokální síti (LAN), personálních počítačích a databázovém serveru. Na počítačích běží program pro komunikaci se serverem.

LAN

PC

PC

SQL dotazy

Data (výsledky dotazů)

 Redukuje množství přenesených dat (v porovnání s File-Serverem)

Komunikace:

- Uživatel zadává dotaz (buď přímo v SQL, nebo musí být do tohoto jazyka přeložen)
- Dotaz je odeslán na server
- Server vykoná dotaz
- Výsledek dotazu je poslán zpět na vysílací počítač, kde je zobrazen

Databázový server

Báze dat

SŘBD

Distribuované

Množina databází, která je uložena na několika počítačích. Uživateli se však jeví jako jedna velká databáze.

• Funkční

Objektové

Vertikální členění

Horizontální členění

Návrh DB

- Určení účelu DB
- Vyhledání a uspořádání požadovaných informací
- Rozdělení informací do tabulek
- Převod jednotlivých informací do sloupců
- Zadání primárních klíčů
- Vytvoření relací mezi tabulkami
- Úprava návrhu
- Použití normalizačních pravidel
 - Sémantické modelování analyzuje požadavky a zobrazuje tyto požadavky určitými grafickými prostředky
 - o Entitně relační modelování (E/R diagram)

E/R Diagram

- Entita
 - o Subjekt, o němž se bude v databázi uchovávat informace
- Relace
 - Propojení tabulek
- Tabulky
 - o Slouží k uložení dat
- Sloupce, atributy
 - o Popisuje určitou část dat, kterou má každý záznam
 - Sloupec představuje část tabulky
 - o Atribut se vztahuje k reálné entitě
- Domény
 - Popisují typ dat, obor hodnot
- Řádky, záznamy, n-tice
 - o Každý řádek v tabulce představuje záznam o jedné entitě

Klíče

Databázová konstrukce, sloužící ke zrychlení vyhledávacích a dotazovacích procesů v databázi, definování unikátní hodnoty sloupce tabulky

- Primární klíč
 - o Svou hodnotou jednoznačně identifikuje každý záznam
- Unikátní klíč
 - Nemusí být jediný
- Cizí klíč
 - Odkaz mezi tabulkami

Kardinalita

Vyjadřuje, kolik entit jednoho typu může být ve vztahu s kolika entitami z druhého typu entit

- 1:1
 - o Používá se, pokud záznamu odpovídá právě jeden záznam v jiné tabulce
- 1:N
 - o Přiřazuje jednomu záznamu více záznamů z jiné tabulky
- N: M
 - o Umožňuje několika záznamům z jedné tabulky přiřadit několik záznamů z tabulky druhé
 - o V praxi se spíše používá 1:N a M:1 pomocí jedné propojovací tabulky

Relační Algebra

- Základní prostředek pro manipulaci s daty
- Teoretický základ dotazovacích jazyků (SQL, LINQ, DMX, MDX, Datalog)
- Je dána operátory, které se aplikují na relace a výsledkem jsou opět další relace
- R({A₁, A₂, ... A_n}); S({B₁, B₂, ... B_m})

Základní operace

- Sjednocení (Union) R
 - o Vytvoření relace obsahující všechny řádky (prvky) obou relací, ale shodné řádky se neopakují
 - o Relace S, R musí být kompatibilní
 - Mají stejný počet atributů, v některých případech musí mít atributy stejný název a datový typ
- Průnik (Intersection)
 - Vytvoření relace obsahující společné řádky obou relací, ale společné řádky se neopakují
 - o Relace S, R musí být kompatibilní

- **Rozdíl** (Diference)
 - o Vytvoření relace obsahující jen ty řádky první relace, které nejsou obsaženy v druhé relaci
 - o Relace S, R musí být kompatibilní
- Kartézský součin (Cartesian product)
 - Vytváří relaci obsahující všechny řádky první relační tabulky zřetězené postupně se všemi řádky druhé relační tabulky

Speciální operace

- **Projekce** (Projection)
 - \circ Projekce R[C] na relaci se schématem R({A₁, A₂, ... A_n }) na množinu C, kde C je menší, nebo rovno množině { A₁, A₂, ... A_n }
 - Odstraní se i duplicitní řádky
- Selekce, Restrikce (Selection, Restriction)
 - \circ Je relace se schématem R({A₁, A₂, ... A_n}) podle logické podmínky ϕ (ϕ je jednoznačně true/false)
 - o Projekce a selekce jsou operace s jednou relací **unární** operace
- Spojení (Join)
 - o Slouží pro spojení množin na základě společných prvků zvoleného atributu
 - Natural join
 - Podmínka je určována automaticky, ne často se používá
 - o Inner join
 - Kartézský součin
 - o Full outer join
 - Stejné jako inner join
 - Left outer join
 - Výsledek uzná, pokud existuje levá část vazby a pravá neexistuje
 - Do hodnot sloupců z připojované části se vloží NULL
 - Right outer join
 - Pokud bude existovat pravá, připojovaná část a nebude k ní levá část, bude stejně ve výpisu zahrnut

Relační kalkul

- Formální neprocedurální jazyk
- N-ticově a doménově orientovaný

Zápis:

• Termy	Predikáty
o Proměnné	o >
 Jejich komponenty 	0 <
 Konstanty 	o >=
	o <=
	o <>
	o =

• Atomické formule

- Konjunkce &
- o Disjunkce V
- Negace ¬
- Implikace ⇒
- \circ Ekvivalence \Leftrightarrow

• Kvantifikátory

- O Univerzální (∀) "pro každý "
- o Existenční (∃) "existuje