#icesat-2_bathymetry

Project members: Arnab Muhuri, Ethan Carr, Aidana Mukhamedina, JP Swinksi, Lena Buth, Saeed Memari, Hannah Glover

Project goal: Identify where ICESat-2 data crosses a stationary location (e.g., a river) or a moving location (e.g., a melt pond) and then use ICESat-2 returns to calculate bathymetry.

What worked:

Chat-JP™

 Developed a workflow that is able to track a moving point over time to see if at any point ICESat-2 moved over and was able to measure the moving target.

 This has many potential uses such as remotely measuring pond depth on ice flows and other stuff

Future Plans:

Narrow down the ICESat-2 search for minimum turbidity by using visible band satellite imagery.

Hackweek2025 can be used to look at the new ATL24 product.

Use code snippets for our own projects.

What didn't work:

- Extracting bathymetry in highly turbid inland waters
- Calculating volume based on depth values for small inland lakes.
- Trying to search 1,000 buoy locations at once for matching ICESat-2 crossovers.
- Precisely isolating lake bottom photons using only KDEs/histograms.

Further refinement is needed to identify photons corresponding to the lake bottom

Not enough ICESat-2 passes to interpolate bathymetry and calculate volume for small inland water bodies

