

GAMES 102在线课程

几何建模与处理基础

刘利刚

中国科学技术大学

GAMES 102在线课程:几何建模与处理基础

几何优化

回顾:参数化中的优化问题

$$\min_{V} E(V) = \sum_{t \in T} (\sigma_{1}^{2} + \frac{1}{\sigma_{1}^{2}} + \sigma_{2}^{2} + \frac{1}{\sigma_{2}^{2}})$$
s.t. $\sigma_{1}\sigma_{2} > 0$, $\forall t$

回顾: 几何处理中的优化问题

Geometry Problem and Modeling

- 1. Formulate an objective energy E(x)
- 2. Define constraints, if apply
 - Equality / Inequality
 - Linear / Nonlinear
- 3. Numerical optimization

minimize
$$E(x)$$
subject to $c_1(x) = d_1$
 $c_2(x) > d_2$

Fundamentals

优化问题的一般形式

高维实值函数: $f: \mathbb{R}^n \to \mathbb{R}$

$$\min_{x \in \mathbb{R}^n} f(x)$$
 目标函数 or 能量函数 $\mathrm{s.t.}\ g(x) = 0$ 等式约束 $h(x) \geq 0$ 不等式约束

- Two roles
 - Client: Which optimization tool is relevant?
 - 不同的优化问题须用不同的优化方法
 - Designer: Can I design an algorithm for this problem?
 - 特定的优化问题需要设计特定的优化方法达到最佳性能
- Optimization is a huge field.

梯度 (Gradient): 一阶导数

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\to \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Courtesy of Justin Solomon and David Bommes

Jacobian: 一阶"导数"矩阵

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\to (Df)_{ij} = \frac{\partial f_i}{\partial x_j}$$

Hessian: 二阶"导数"矩阵

$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$f(x) pprox f(x_0) +
abla f(x_0)^ op (x - x_0) + (x - x_0)^ op H f(x_0)(x - x_0)$$

驻点 (Critical point)

Critical points may not be minima.

一般非线性函数的最小值

- 仍无法求解!
- 数值求解
 - 从某初值开始,逐步找其附近的极小值

凸函数的驻点就是最小值

优化问题的类型

- Constrained / Unconstrained
- Linear / Nonlinear
- Global / Local
- Convex / Nonconvex
- Continuous / Discrete
- Stochastic / Deterministic
- Single objective / Multiple objectives

minimize
$$(E_1(x), E_2(x), ..., E_k(x))$$

 $E = \lambda_1 E_1 + \lambda_2 E_2 + \cdots + \lambda_k E_k$

无约束的优化问题

Unconstrained Optimization

$$\min_{x} f(x)$$

- Gradient descent
- Newton
- Quasi-Newton
- Coordinate descent

梯度下降法 (Gradient descent)

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Gradient descent

牛顿法 (Newton's method)

$$x_{k+1} = x_k - [Hf(x_k)]^{-1} \nabla f(x_k)$$

拟牛顿法 (Quasi-Newton)

$$x_{k+1} = x_k - M_k^{-1} \nabla f(x_k)$$

Hessian approximation

- Estimate the Hessian based on previous gradients
- Recursively inverse Hessian
 - BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm)
 - L-BFGS

坐标下降法 (Coordinate descent)

Obj: minimize_{$$x,y$$} $E(x,y)$

Alternating variables

Repeat

1.
$$y_{k+1} = \min_{y} E(x_k, y)$$

2. $x_{k+1} = \min_{x} E(x, y_{k+1})$

Software

- Matlab: fminunc or minfunc
- C++: libLBFGS, dlib, others

Typically provide functions for function and gradient (and optionally, Hessian).

等式约束的优化问题

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

Many Options

Reparameterization

Eliminate constraints to reduce to unconstrained case

Newton's method

Approximation: quadratic function with linear constraint

Penalty method

Augment objective with barrier term, e.g. $f(x) + \rho |g(x)|$

Alternating Projection

Augmented Lagrangians

$$\min_x f(x)$$
 $\mathrm{s.t.} \quad g(x) = 0$
 \downarrow
 $\min_x f(x) + \frac{\rho}{2} \|g(x)\|_2^2$
 $\mathrm{constraint\ is\ satisfied}$

Add constraint to objective

Alternating Direction Method of Multipliers (ADMM)

$$\min_{x,z} f(x) + g(z)$$
s.t.
$$Ax + Bz = c$$

$$\Lambda_{
ho}(x,z;\lambda) = f(x) + g(z) + \lambda^{ op}(Ax + Bz - c) + rac{
ho}{2} \|Ax + Bz - c\|_2^2$$

$$x \leftarrow \arg\min_{x} \Lambda_{\rho}(x, z, \lambda)$$
 $z \leftarrow \arg\min_{z} \Lambda_{\rho}(x, z, \lambda)$
 $\lambda \leftarrow \lambda + \rho(Ax + Bz - c)$

The Art of ADMM "Splitting"

$$\left\{\begin{array}{ll} \min_{J} & \sum_{i} \|J_i\|_2 \\ \text{s.t.} & MJ = b \end{array}\right\} \longrightarrow \left\{\begin{array}{ll} \min_{J,\bar{J}} & \sum_{i} \left(\|J_i\|_2 + \frac{\rho}{2}\|J_i - \bar{J_i}\|_2^2\right) \\ \text{s.t.} & M\bar{J} = b \end{array}\right\}$$

$$J = \bar{J}$$
Augmented part

Takes some practice!

Solomon et al. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014.

Want two easy subproblems

不等式约束的优化问题

一般形式

几何解释

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0$ $i=1\ldots m$

几何解释


```
minimize f(x) subject to g_i(x) \leq 0 i=1\ldots m
```

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) & \leq 0 \qquad i=1\dots m \end{array}$

minimize f(x) subject to $g_i(x) \leq 0$ $i=1\dots m$

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0$ $i=1\dots m$


```
minimize f(x) subject to g_i(x) \leq 0 i=1\dots m
```


minimize f(x) subject to $g_i(x) \leq 0$ $i=1\ldots m$

minimize f(x) subject to $g_i(x) \leq 0$ $i=1\dots m$

minimize f(x) subject to $g_i(x) \leq 0$ $i=1\ldots m$

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) & \leq 0 \qquad i=1\dots m \end{array}$

First-Order Optimality Conditions

Necessary condition for minimum of

$$egin{array}{ll} ext{minimize} & f(x) \ ext{subject to} & g_i(x) & \leq 0 & i = 1 \dots m \end{array}$$

- Langrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$
- Karush-Kuhn-Tucker (KKT) conditions for minimum x^*
 - 1. Stationarity: $\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$
 - 2. Primal feasibility: $g_i(x^*) \leq 0$
 - 3. Dual feasibility: $\lambda_i \geq 0$
 - 4. Complementary slackness: $\lambda_i g_i(x^*) = 0$

without constraints just

$$\nabla f(x) = 0$$

First-Order Optimality Conditions

Necessary condition for minimum of

$$egin{array}{ll} ext{minimize} & f(x) \ ext{subject to} & g_i(x) & \leq 0 & i = 1 \dots m \end{array}$$

- Langrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$
- Karush-Kuhn-Tucker (KKT) conditions for minimum $oldsymbol{x}$
 - 1. Stationarity: $\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) = 0$
 - 2. Primal feasibility:
 - 3. Dual feasibility:
 - 4. Complementary slackness:

 $abla f = -\lambda
abla g$

Recall Lagrange Multiplier

 $egin{aligned} \lambda_i
abla g_i(x^*) &= 0 \ g_i(x^*) &\leq 0 \ \lambda_i &\geq 0 \ \lambda_i g_i(x^*) &= 0 \end{aligned}$ inactive $\lambda_3 = 0$

 $\lambda_1 > 0$ $g_1(x^*) = 0$

 g_1

inactive $\lambda_3 = 0$ $g_3(x^*) < 0$

 g_3

优化方法

Active set method

Repeated update active set

- 1. active set define equality constraints
- 2. compute the Lagrange multipliers of the active set
- 3. remove constraints with **negative** Lagrange multipliers
- 4. search for infeasible constraints
- Barrier method (Interior Point Method)

$$I_{-}(u) = \begin{cases} 0 & \text{if } u \leq 0 \\ \infty & \text{if } u > 0 \end{cases}$$

minimize
$$f(x)$$
 constrained subject to $g_i(x) \leq 0$ $i=1\ldots m$

unconstrained minimize
$$f(x) + \sum_{i=1}^m I_-(g_i(x))$$

Convex Optimization

凸函数能保证找到全局最小值

- Searching globally optimal solutions usually requires convexity!
- f convex if: $f((1-t)a + tb) \le (1-t)f(a) + tf(b)$ $t \in [0,1]$

凸优化问题

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) & \leq 0 \qquad i=1\dots m \end{array}$$

is convex optimization problem if f(x) and all $g_i(x)$ are convex functions

consequences

• feasible region is convex set

凸优化问题

minimize
$$f(x)$$

subject to $g_i(x) \leq 0$ $i = 1 \dots m$

is convex optimization problem if f(x) and all $g_i(x)$ are convex functions

consequences

- feasible region is convex set
- equality constraints can only be affine, i.e. $g_i(x) = a^T x + b$ since

$$g_i(x) = 0 \iff \begin{cases} g_i(x) & \leq 0 \\ -g_i(x) & \leq 0 \end{cases}$$

凸优化的主要方法

Linear Programming

$$\underset{x \in \mathbb{R}^n}{\text{minimize } q^T x} \quad \text{subject to} \quad \underset{Bx < b}{Ax = a}$$

Quadratic Programming

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \frac{1}{2} x^T Q x + q^T x \qquad \text{subject to} \quad \begin{array}{l} Ax = a \\ Bx < b \end{array}$$

Conic Programming

$$\sqrt{\sum_{i=1}^{n} x_i^2} \le x_0$$

Semidefinite Programming (SDP)

其他优化问题

Nonlinear Least Squares

Obj: minimize
$$\sum_i e_i^2(x)$$

Gauss-Newton

Levenberg-Marquardt

$$\nabla^2 e_i^2 \approx 2(\nabla e_i)^T \nabla e_i$$
$$\nabla^2 \approx J^T J$$

Mixed-Integer Optimization

几何处理中的优化问题

- 具有特殊的几何结构,往往能有特殊的优化方法
 - 比如:见"曲面参数化"和"几何映射"两节课

优化相关的软件

- **Eigen** linear algebra
- **IPOPT** fast opensource C++ interior point method
- Mosek commercial (convex) optimization in C, Java, Python...
- **Gurobi** commercial mixed-integer optimization
- **CPLEX** commercial mixed-integer optimization
- Matlab many algorithms, good for prototyping
- **CVX** prototyping for convex optimization
- **CoMISo** unified interface to above algorithms

参考书目

Optimization is a huge field!

S. Boyd and L. Vandenberghe Convex Optimization Cambridge University Press, 2004.

Get PDF online:

http://stanford.edu/~boyd/cvxbook/

J. Nocedal and S. J. Wright Numerical Optimization Springer, 2006.

G. L. Nemhauser and L. A. Wolsey Integer and Combinatorial Optimization John Wiley & Sons, 1999.

谢 谢!