清华大学本科生考试试题专用纸

考试课程 微积分B(1) (期末考试) A卷 2012年1月6日8:00-10:00 班级_____ 姓名_____ 学号_____

一、填空题(每题4分,共40分) 直接将答案填写在横线上,写在其他地方无效!

1.
$$\lim_{x\to 0} \frac{\sin x - e^x + 1}{1 - \sqrt{1 + x^2}} = \underline{\hspace{1cm}}$$

2.
$$\int \frac{x+1}{x^2 - 3x + 2} dx = \underline{\qquad} + C.$$

3. 数列
$$\left\{ \frac{(n+1)^3}{(n-1)^2} \right\}$$
 $(n=2,3,\cdots)$ 的最小项的项数为 $n=$ ______.

4.
$$\forall f(x) = x^2 e^x$$
, $\bigcup f^{(10)}(x) = \underline{\hspace{1cm}}$

5. 设数列
$$\{a_n\}$$
 单调减少,且 $\lim_{n\to\infty}a_n=0$. 又 $S_n=\sum_{k=1}^na_k(n=1,2,\cdots)$ 无界,则幂级数

$$\sum_{n=1}^{\infty} a_n (x-1)^n$$
 的收敛域是_______.

6. 若
$$\lim_{x\to+\infty} \left(\frac{x-a}{x+a}\right)^x = \int_a^{+\infty} x e^{-x} dx$$
,则 $a = \underline{\qquad}$.

7.
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \underline{\hspace{1cm}}$$

8. 函数
$$f(x) = \begin{cases} 1, & 0 \le x \le \pi, \\ -1, & -\pi < x < 0 \end{cases}$$
 的以 2π 为周期的 Fourier 级数是______.

10. 函数项级数
$$\sum_{n=1}^{\infty} u_n(x)$$
 在区间 I 一致收敛于 $S(x)$ 的 ε - N 定义是指:

二、解答题 (第11-15 题每题10分,第16题15分,共65分)

11. 已知函数 f(x) 在 x = 0 处具有一阶导数,且满足条件 $\lim_{x \to 0} \left(\frac{f(x)}{x} + \frac{e^{x^2} \sin x}{x^2} \right) = 1$.

求 f(x) 在 x = 0 处的带皮亚诺型余项的一阶泰勒公式.

- 12. 求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{n+2}{n+1} x^n$ 的收敛域及和函数.
- 13. 证明 $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi 2x)} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin^2 x}{x(\pi 2x)} dx$,并计算定积分 $I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi 2x)} dx$.
- 14. 己知曲线段 $L: y = \ln x$ ($1 \le x \le \sqrt{3}$),有界区域 D 由 L 与 x 轴及直线 $x = \sqrt{3}$ 围成.
 - (I) 求D绕x轴旋转一周所成的旋转体的体积;
 - (II) 求曲线段L的长.
- 15. 已知函数 f(x) 在区间[0, a] (a > 0)上可导,且点(0,0), (a,a) 在曲线 y = f(x) 上.

证明: (I) 存在 $\xi \in (0, a)$, 使得 $f(\xi) = \frac{a}{2}$;

(II) 存在
$$\eta_1, \eta_2 \in (0, a)$$
, 使得 $\frac{1}{f'(\eta_1)} + \frac{1}{f'(\eta_2)} = 2$.

- 16. 已知函数 $f(x) = \ln \frac{e^x 1}{x}$, $x_1 = 1$, $x_{n+1} = f(x_n)$ $(n = 1, 2, \dots)$.
 - (I) 求 f(x) 的单调区间;
 - (II) 证明 $\lim_{n\to\infty} x_n = 0$.
 - (III) 证明级数 $\sum_{n=1}^{\infty} x_n$ 收敛.