Topo-Clustering Classification with Deep Neural Networks

ATLAS Machine Learning Forum

Aviv Cukierman^{1,2} Michael Kagan² David Miller³ Joakim Olsson³ Ariel Schwartzman²

¹Stanford University ²SLAC National Accelerator Laboratory ³University of Chicago

February 2, 2017

Introduction

(Slides from <u>ATLAS Hadronic Final State Forum</u>, Dec 2016 @SLAC)

- Is it possible to do local cluster calibration using machine learning?
- How well can we do compared to default LC calibration?

- Start with a simpler problem: π^{\pm} vs. π^{0} classifier
- Build images from cells associated with clusters for the 6 layers of the barrel calorimeter (LAr + Tile)
 - EMB1, EMB2, EMB3, TileBar0, TileBar1, TileBar2
- Selection
 - $|\eta_{\rm clus}| < 0.7$ (Barrel only)
 - $0.5 \text{ GeV} < E_{\text{clus}} < 100 \text{ GeV}$

Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging of electrodes in φ. The sam Arty by the prior the prior tower is also shown.

Preparing the Images

- ► Steps: ESD Athena TTree root_numpy numpy arrays for Keras
- Source code: https://github.com/jmrolsson/MLTree

Training

- Training performed using Keras (with TensorFlow)
 - $600\,000~(50/50~\pi^0~{\rm and}~\pi^\pm)$ training clusters, and $66\,000~{\rm test}$ clusters
- EMB2 pixels, flattened to a 1D-array + total cluster energy
 - 1 layer with 128 neurons (seems to converge after about 100 epochs)
 - 3 layers with 128, 64, and 32 neurons, respectively (takes longer to run, but converges after fewer epochs)
- Convolutional NN in EMB2, keeping the 2D information (but not including cluster energy)
 - Takes longer to train, but converges after only 3-5 epochs or so
- All pixels in all layers, flattened to a 1D-array + total cluster energy
 - 3 layers with 128, 64, and 32 neurons, respectively
 - 4 layers with 512, 256, 128, and 64 neurons, respectively

Result

Very preliminary, but we're definitely learning some information

Conclusions and Future Plans

We are definitely doing better than random!

- The NN with 3 layers (128, 64, 32 neurons, respectively) does a little better than the one with just one 128 neuron layer
- The ConvNet does as well as the simple NNs, despite not including the total cluster energy as a feature
- Training on a feature vector of all the pixels (in all barrel layers) does improve things a little

Next steps for cluster classification

- Compare with what is currently used for distinguishing EM vs. HAD showers
- Implement 2D DNN/ConvNet that takes all the (barrel) layers into account
- Add tracking information (per layer)
- Look at clusters in a more dense environment (inside jets, etc.)

► Main Goal: Cluster calibration using regression

- Perform cluster calibration by training on cells associated with a cluster (using the truth cluster energy as labels)
- How well we can do with a DNN compared to LC?

Thanks!