WORLD I是是LLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 3/00, 13/00, C07H 21/00 C12P 21/06, 21/02, 21/04 C12N 15/00

(11) International Publication Number:

WO 92/14748

(43) International Publication Date:

3 September 1992 (03.09.92)

(21) International Application Number:

PCT/US92/01300

A1

(22) International Filing Date:

20 February 1992 (20.02.92)

(30) Priority data:

657,236

22 February 1991 (22.02.91) US

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

657,236 (CIP) 22 February 1991 (22.02.91)

(71) Applicant (for all designated States except US): AMERI-CAN CYANAMID COMPANY [US/US]; 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TERMAN, Bruce, Israel [US/US]; 17 Prospect Street, Monroe, NY 10950 (US). CARRION, Miguel, Eduardo [EC/US]; 26 Summit Avenue, Spring Valley, NY 10977 (US).

(74) Agent: GORDON, Alan, M.; American Cyanamid Company, 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU pean patent), MC (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

(57) Abstract

ī

A DNA sequence encoding a novel human growth factor receptor referred to as a type III receptor tyrosine kinase is described. The amino acid sequence of the receptor is also described. The receptor has a sequence which is similar to that of the kinase domains of known type III receptor tyrosine kinases, but which is unique in its kinase insert domain sequence. The receptor

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT:	Austria	FI	Finland	MI	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barhados	GA	Ciabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Fasa	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
Bl	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE.	Ireland	RO	Romania
CA	Canada	iT	Italy	RU	·
CF	Central African Republic	JP	Japan	SD	Russian Federation Sudan
CC	Congu	KP	Democratic People's Republic	SE	
CH	Switzerland		of Korea	SN	Sweden
Ct	Côte d'Ivoire	KR	Republic of Korea		Senegal Vertex III i
CM	Camerous	LI	l techtenstein	SU TD	Soviet Union
C?	Czecheslovakia	Lk	Sri Lanka		Chad
DE	Caurmany	LU	Luxembourg	TG	Togo
IЖ	Denmark	MC	Monaco	US	United States of America
ES	Spain	MG	Madagascar		

5

IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

10

20

FIELD OF THE INVENTION

This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor.

BACKGROUND OF THE INVENTION

Growth factors are small molecules which 25 regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of 30 tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

> There is increasing evidence that genetic alterations affecting the expression of receptor tyrosine kinases (RTK) can contribute to the altered cell growth associated with cancer. This conclusion is

35

10

15

20

25

30

35

supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the <u>ckit</u> proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of guanine nucleotide regulatory proteins (8) and protein phosphatases (9). PCR has been used to identify novel tyrosine kinase genes (10), though the primers used in

that study were designed from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

5 The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role 10 in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial 15 cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). 20 One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to 25 different macromolecules (14).

SUMMARY OF THE INVENTION

segments which together comrpise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the KDR protein (which stands for Kinase insert Domain containing Receptor). The KDR protein binds specifically to the growth factor VEGF (vascular endothelial cell growth factor).

10

15

20

25

30

The DNA segments are identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

In a principal embodiment, the present invention is directed to three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as KDR (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The use of the term KDR is intended to include any DNA segments which form the

10

15

20

25

30

35

human gene which encodes the novel type III RTK of this application.

The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

The present invention relates to methods for expression of the receptor protein, for example, in CMT-3 cells of monkey kidney origin. The receptor

WO 92/14748

5

10

15

protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human <u>KDR</u> gene and proteins encoded by related genes found in other species.

methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

25

20

Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

30

35

Figure 2 depicts the two sets of primers used for PCR (SEQ ID No: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III receptor tyrosine kinase cDNAs are aligned and degenerate oligonucleotide primers are designed based upon the consensus sequences.

10

15

20

25

30

35

Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ l) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder; Bethesda Research Laboratories, Bethesda, MD) are run as well.

Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose gel electrophoresis, digested with <u>Sal</u>l and <u>Eco</u>RI, and cloned into the plasmid vector pBlueScribe(+) (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

Figure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start of an arrow), or the M13 universal primer (no box) to initiate the reaction. In some cases, portions of these DNA segments are isolated using the

10

15

20

25

30

35

restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUCl18, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the KDR derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

Figure 7 depicts the DNA and predicted amino acid sequence of KDR, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the KDR protein.

Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the <u>KDR</u> protein to the <u>ckit</u> proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID NO: 9) (4), and the PDGF receptor (SEQ ID NO: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

Figure 10 depicts the identification of kdp receptor mRNA by Northern blot analysis. Five micrograms of bovine aortic endothelial cell polyA+ RNA

are used. A nick-translated [32P] CTP-labelled <u>EcoRI/Bam</u>HI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

5

Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [\$^{32}P]CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

15

10

Figure 12 depicts a Western blot analysis of CMT-3 cells which express the KDR protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the KDR gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-KDR.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago, IL).

25

30

20

Figure 13 depicts the results of [125] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pM [125] VEGF (specific activity equal to 4,000 cpm per fmol), for 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define

specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

Figure 14 depicts the results of affinity cross-linking of [125] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125] VEGF is added. After 90 minutes at room termperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

15

30

35

10

5

DETAILED DESCRIPTION OF THE INVENTION

The strategy used to discover the DNA segments for the novel type III RTK gene begins with 20 the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human 25 endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe+ (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

> The strategy just described provides several novel elements: 1) the DNA sequences of the oligonucleotide primers used during PCR; 2) the DNA sequence of the products generated by the polymerase chain

reaction; and 3) the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

5

Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

15

10

Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

20

25

SalI and EcoRI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

30

35

The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers designed from DNA sequences common to all tyrosine kinases allows for the identification of novel proteins. The present invention is the first to

WO 92/14748

5

10

15

20

25

30

35

contemplate the use of PCR to specifically target type III RTK.

The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 μ l. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5μ l of sample is separated on a 1% agarose gel and stained with ethidium bromide.

Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethidium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

The DNA from four continguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and SalI. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO. 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+). The recombinant clones are analyzed by sequencing using the dideoxy-method (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 sequencing kit. Figure 4 shows the DNA sequences for the 251 bp PCR

10

15

20

25

30

35

product and the 363 bp DNA segment derived from the 420 bp PCR product.

Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the isolation of more full length clones containing the

10

15

20

25

30

35

363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

The screening of the endothelial cell cDNA library is conducted as follows: Lambda gtll phage, 106, are adsorbed to E. coli LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5×10^5 phage per plate. After allowing the phage plaques to develop at 37°C, plaque lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus 1.5 M NaCl. The filters are washed with 2 x standard saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an [32P] ATP end labeled synthetic oligonucleotide, 5' -TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50°C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μ g/ml salmon sperm The filters are washed twice, 20 minutes per DNA. wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

Forty-five positive clones are obtained. Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with ECORI and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA insert of this clone overlaps that of the inserts contained in other two purified clones (designated BTIII079.11 and BTIII079.47A).

10

15

20

25

30

35

Digestion of the purified phage DNA of the clone designated BTIII081.8 with <u>Eco</u>RI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUCl18 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a <u>BglII/BglII</u> fragment into pUCl18 and sequencing across the <u>Eco</u>RI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUCl18 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

A [³²P]CTP-labelled, nick-translated <u>ECORI-Bam</u>HI DNA segment derived from clone BTIII081.8 (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8.

A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucleotides 3297-3325 of SEQ ID NO. 7) in order to rescreen the original endothelial cell cDNA library for more full 3' length DNA segments of the gene from which

WO 92/14748

5

10

15

the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plague purified.

One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thse fragments (2.5 kb) is cloned into pUCl19 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

A second clone isolated from the cDNA library 20 is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the 25 insert portion of the clone BTIII081.8 (Figure 6). clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the 30 novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. three clones define a 4,062 nucleotide sequence of the open reading frame of the gene extending to the 3' end, 35 followed by a 168 nucleotide non-coding region (SEQ ID

10

15

20

25

30

35

NO. 7). A sample of a lambda gtll phage harboring the clone BTIII081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gtll phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

fragment of BTIV200.2 is cloned into the plasmid pBlueScript KS (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Klenow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucleotides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids encoded by the KDR gene. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

10

15

20

25

30

35

The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the KDR gene. A sample of the plasmid pBlueScript KS which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

- 1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).
- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding site at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-X-Gly (26) (Figure 8).

- 4) Within the kinase domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: ckit proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the KDR gene.

In addition to the DNA sequence described for the KDR gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

In particular, the invention contemplates those DNA sequences which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency Southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

This invention also comprises DNA sequences which encode amino acid sequences which differ from those of the novel receptor, but which are the biological equivalent to those described for the

15

10

5

20

25

30

35

10

15

20

25

30

35

receptor. Such amino acid sequences may be said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variations which result in the production of a biologically equivalent protein.

10

15

20

25

30

35

In addition to the full length gene and protein, the invention encompasses biologically active fragments of each. By "biologically active" is meant a protein fragment which qualitatively retains the receptor activity of the larger KDR protein, or, in the case of a nucleotide sequence, which encodes such a protein fragment. It also refers, for purposes of antibody production, to fragments which are capable of eliciting production of antibodies capable of binding to the receptor protein.

To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an EcoRI/BamHI DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe. The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+RNA of ABAE bovine acrtic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the new proto-oncogene, increase during some cancers. This has been taken advantage of in designing diagnostic tests for these cancers.

10

15

20

25

30

Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. Mouse and human (Hela cell) DNA, 15 μ g of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% agarose gel. The DNA is transferred onto nitrocellulose. The filter is hybridized to a [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 µg/ml salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse samples. This indicates that the kdp gene is present in both species.

An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes. Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain EcoRI digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in EcoRI digested human-mouse somatic cell hybrid DNA:

Table I

5	Chromosome	of 1		of	scordant Hybrids	# Biscordancy
	1	4	19	8	4	34
	2	8	18	5	6	30
	3	11	12	3	9	34
10	4	14	24	0	0	0
	5	7	14	7	10	45
	6	7	19	7	5	32
	7	11	14	3	8	31
,	8	8	11	6	13	50
15	9	3	20	10	4	38
2	10	12	9	2	14	43
	11	9	13	4	11	41
	12	9	10	5	14	50
	13	7	18	7	6	34
20	14	11	8	3	16	50
* •	15	9	15	5	8	35
	16	7	19	7	5	32
	17	12	7	2	16	49
	18	11	14	3	10	34
25	19	7	18	7	6	34
•	20	9	10	5	14	50
	21	11	9	3	15	47
	22	3	16	10	7	47
	x	8	10	3	8	38
30						

The scoring is determined by the presence (+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar to those shown in Figure 11. The scoring is compared to the presence or absence of human chromosomes in each hybrid. A 0%

10

15

20

25

30

35

discordancy indicates a matched segregation of the DNA probe with a chromosome. Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transected with a vector containing the complete coding region of the KDR gene.

The complete coding portion of the <u>KDR</u> gene is assembled by sequentially cloning into pUCl19 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a <u>SmaI-Eco</u>RI fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO. 7) is blunt ended with Klenow polymerase and introduced into a <u>SmaI</u> site in pUCl19. Next, a <u>BamHI-SmaI</u> fragment of clone BTIII081.8 (nucleotides 2418-3151, SEQ ID NO. 7)

10

15

20

25

30

35

is introduced at a <u>Bam</u>HI-<u>Sma</u>I site. Finally, a <u>SalI-Bam</u>HI fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO. 7) is introduced at a <u>SalI-Bam</u>HI site. Part of the cloning site of pUC119 is contained in the <u>SalI-Bam</u>HI fragment, 5' to the <u>KDR</u> gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUC119) is digested with <u>SalI</u> and <u>Aspl18</u> and recloned into the eukaryotic expression vector pcDNAltkpASP.

This vector is a modification of the vector pcDNAl (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNAl. A small SV40 T splice and the SV40 polyadeny-lation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNAltkpASP.

Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the KDR protein (SEQ ID NO. 7), with a cysteine residue linked to the lysine (amino acid 997). The cysteine facilitates coupling of the peptide to a macromolecule which functions as a carrier for the peptide. For example, the peptide is coupled

10

15

20

25

30

35

to keyhole limpet haemocyanin (KLH) using m-maleimido-benzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β -galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-L-lysine.

Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

A sample of the expressed <u>KDR</u> protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred on to nitrocellulose paper for Western blot analysis and the anti-KDR.PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-KDR.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the <u>KDR</u> gene, but is absent in cells transfected with vector alone. The size of this protein is consistent with it being encoded by the <u>KDR</u> gene, in that the predicted amino acid sequence for the unglycosylated <u>KDR</u> protein is 156 kD, and that sequence contains 18 putative extracellular glycosylation sites

10

15

20

25

35

which would account for the balance of the size seen in the 190 kD band.

The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the KDR protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with 125I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [125] VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the <u>KDR</u> gene contain specific binding sites for [125]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

Further evidence that the KDR gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector alone (lane 1 of Figure 14) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free

10

15

20

25

30

35

Χ.

media containing 200 pM [125]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [125]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [125] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2).

The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

The described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation of new blood

10

15

20

25

30

35

capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given.

First, the methods described in this invention for studying the interaction of VEGF with KDR protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, calls expressing the KDR protein are incubated with [\$^{125}I]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the KDR protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

Second, using the teachings of this invention, those skilled in the art can study structural properties of the <u>KDR</u> protein involved in receptor function. This structural information can

then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the <u>KDR</u> gene by well established protocols is one approach, crystallization of the receptor binding site is another.

20

35

Bibliography

- 1. Yarden Y., and A. Ullrich, <u>Ann. Rev.</u> Biochem., <u>57</u>, 433-478 (1988).
- Bargmann, C., et al., <u>Nature</u>, <u>319</u>,
 226-230 (1986).
 - 3. Yarden, Y., et al., <u>EMBO J.</u>, <u>6</u>, 3341-3351 (1987).
 - 4. Coussens, L., et al., <u>Nature</u>, <u>320</u>, 277-280 (1986).
 - 5. Slamon, D., et al., <u>Science</u>, <u>244</u>, 707-712 (1989).
 - 6. Ullrich, A. and Schlessinger, J., <u>Cell</u>, <u>61</u>, 203-212 (1990).
- 7. Ruta, M., et al., <u>Oncogene</u>, <u>3</u>, 9-15 (1988).
 - 8. Strathmann, M., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 86</u>, 8698-8702 (1989).
 - 9. Streuli, M., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 86</u>, 8698-8702 (1989).
 - 10. Wilkes, A.F., <u>Proc. Natl. Acad. Sci., 86</u>, 1603-1607 (1989).
 - 11. Folkman, J., and Klagsbrun, M., <u>Science</u>, <u>235</u>, 442-445 (1987).
- 12. Ishikawa, F., et al., <u>Nature</u>, <u>338</u>, 557-562 (1989).
 - 13. Baird, A., and Bohlen, P., in <u>Peptide</u>

 <u>Growth Factors and Their Receptors</u>, pages 369-418

 (Spron, M.B., and Roberts, A.B., eds. 1990).
- 30 14. Senger, D.R., et al., <u>Science</u>, <u>219</u>, 983-985 (1983).
 - 15. Gospodarowicz, D., et al., <u>Proc. Natl,</u> <u>Acad. Sci., 86,</u> 7311-7315 (1989).
 - 16. Leung, D.W., et al., <u>Science</u>, <u>246</u>, 1306-1309 (1989).

- 17. Maglione, D., et al., <u>Proc. Natl. Acad.</u>
 <u>Sci.</u>, <u>88</u>, 9267-9271 (1991).
- 18. Gronwald, R., et al., <u>Proc. Natl. Acad.</u>
 <u>Sci., 85</u>, 3435-3439 (1988).
- 5 19. Shows, T., et al., <u>Somat. Del. Mol. Gen.</u>, <u>10</u>, 315-318 (1984).
 - 20. Rainer, G., et al., <u>Proc. Natl. Acad.</u> Sci., 85, 3435-3439 (1988).
 - 21. Lee, P. L., et al., <u>Science</u>, <u>245</u>, 57-60 (1989).
 - 22. Sanger, F., et al., <u>Proc. Natl. Acad.</u> Sci., 74, 5463-5467 (1977).
 - 23. Folkman, J., <u>Cancer Res.</u>, <u>46</u>, 467-473 (1986).
- 24. Burgess, W. and Maciag, T., <u>Ann. Rev.</u>
 <u>Biochem.</u>, <u>58</u>, 575-606 (1989).
 - 25. Matthews, W., et al., <u>Proc. Natl. Acad.</u> <u>Sci.</u>, <u>88</u>, 9026-9030 (1991).
- 26. Hannink, M. and Donoghue, D., <u>Proc. Natl.</u>
 20 <u>Acad. Sci., 82</u>, 7894-7898 (1985).
 - 27. Sambrook, J., et al., <u>Molecule Cloning:</u>
 A <u>Laboratory Manual</u>, 2nd ed., Cold Spring Harbor
 Laboratory Press, Cold Spring Harbor, N.Y. (1989).
- 28. Matsui, T., et al., <u>Science</u>, <u>243</u>, 800-804 25 (1989).
 - 29. Conn, G., et al., <u>Proc. Natl. Acad. Sci.,</u> 87, 2628-2632 (1990).

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- 5 (i) APPLICANT: Terman, Bruce I Carrion, Miguel E
 - (ii) TITLE OF INVENTION: Identification of a Novel Human Growth Factor Receptor
- (iii) NUMBER OF SEQUENCES: 14
 - (iv) CORRESPONDENCE ADDRESS:
- 15 (A) ADDRESSEE: Alan M. Gordon
 American Cyanamid Company
 - (B) STREET: 1937 West Main Street, P.O. Box 60
- 20 (C) CITY: Stamford
 - (D) STATE: Connecticut
 - (E) COUNTRY: USA

(F) ZIP: 06904

(v) COMPUTER READABLE FORM:

- 30 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC AT
 - (C) OPERATING SYSTEM: MS-DOS

25

	(D) SOFTWARE: ASCII from IBM DW 4
	(vi) CURRENT APPLICATION DATA:
5	(A) APPLICATION NUMBER:
	(B) FILING DATE:
	(C) CLASSIFICATION:
10	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 07/657,236
15	(B) FILING DATE: February 22, 1991
	(viii) ATTORNEY/AGENT INFORMATION:
20	(A) NAME: Gordon, Alan M.
20	(B) REGISTRATION NUMBER: 30,637
	(C) REFERENCE/DOCKET NUMBER: 31,298-01
25	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: 203 321 2719
30	(B) TELEFAX: 203 321 2971
	(C) TELEX:
	(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

•		(A) LENGTH: 27 base pairs	
	5	(B) TYPE: nucleic acid	
	3	(C) STRANDEDNESSS: single	
		(D) TOPOLOGY: linear	
	10	(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	15	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27	
*		(2) INFORMATION FOR SEQ ID NO: 2:	
	20	(1) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 35 base pairs	
		(B) TYPE: nucleic acid	
	25	(C) STRANDEDNESSS: single	
		(D) TOPOLOGY: linear	
	30	(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
•	·	GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC	35
	35		

(2)	INFORMATION	FOR	SEO	ID	NO:	3:
	-111 VIGHT - VI					

1	÷,	SECTIENCE	CHARACTERISTICS:
ı	_		

5 (A) LENGTH: 363 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

10

20

25

30

35

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GAA TTC TGC AAA TTT GGA AAC CTG TCC ACT TAC CTG 36

AGG ACG AAG AGA AAT GAA TTT GTC CCC TAC AAG ACC 72

AAA GGG GCA CGA TTC CGT CAA GGG AAA GAC TAC GTT 108

GGA GCA ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC 144

ACG CAT CAC CAG TAG CCA GAG CTC AGC CAG CTC TGG 180

ATT TGT GGA GGA GAA GTC CCT CAG TGA TGT AGA AGA 216

AGA GGA AGC TCC TGA AGA TCT GTA TAA GGA CTT CCT 252

GAC CTT GGA GCA TCT CAT CTG TTA CAG TTT CCA AGT 288

GGC TAA GGG CAT GGA GTT CTT GGC ATC GCG AAA GTG 324

TAT CCA CAG AGA CCT GGC AGC CAG GAA CGT GCT GAA 360

TTC 363

(2)	INFORMATION	FOR	SEQ	ID	NO:	4	:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 251 base pairs

10 (B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

(D) TOPOLOGY: linear

15

35

5

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

20 GTC GAC AAT CTG TTG GGG GCC TGC ACC ATC CCA ACA 36 TCC TGC TGC TCT ACA ACT ATT TTT ATG ACC GGA GGA 72 GGA TCT ACT TGA TTC TAG AGT ATG CCC CCC GCG GAG 108 25 CTC TAC AAG GAG CTG CAG AAG AGC TGC ACA TTT GAC 144 GAG CAG CGA ACA GCC ACG ATC ATG GAG GAG TTG GCA 180 30 GAT GCT CTA ATG TAC TGC CGT GGG AAG AAG GTG ATT 216 CAC AGA GAC CTG GCA GCC AGC AAC GTG CTG AAT TC 251

(2) INFORMATION FOR SEQ ID NO: 5:

	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 510 base pairs
5	(B) TYPE: nucleic acid
	(C) STRANDEDNESSS: single
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
15	(ix) FEATURE:
	(A) NAME/KEY: PDGF Receptor DNA
	(B) LOCATION: Internal sequence
20	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
25	(B) JOURNAL: Proc. Natl. Acad. Sci.
	(C) VOLUME: 85
	(D) PAGES: 3435-3439
30	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AAC CTG TGG GGG CCT GCA CCA AAG GAG GAC CAT CTA

	TA:	r ca:	r cti	LAT	CAT	CAC	TGA	GTA	CTG	CCG	CTA	CGG	72
	AG2	A CCI	r ggi	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108
5	CTI	r cci	r GCA	GCA	CCA	CTC	CGA	CAA	GCG	CCG	ccc	GCC	144
	CAG	G CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
10	GCI	ccc	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
	AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
	AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
15	GAG	ACG	TCA	AAT	AGC	A GA	CAT	CGA	GTC	CTC	CAA	CTA	324
	CAT	GGC	CCC	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	ccc	360
20	TGA	GAG	GAC	CTG	CCG	AGC	AAC	TTT	GAT	CAA	CGA	GTC	396
	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
	CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
.5	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG (GCT	AGG .	AAC	504
	GTC	CTT											510

- 30 (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(ix) FEATURE:	
20	(A) NAME/KEY: FGF Receptor DNA	
	(B) LOCATION: Internal sequence	
15	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Ruta, M., et al.	
20	(B) JOURNAL: Oncogene	
	(C) VOLUME: 3	
	(D) PAGES: 9-15	
25	(E) DATE: 1988	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
30	AAC CTG CTG GGG GCC TGC ACG CAG GAT GGT CCC TTG	36
	TAT GTC ATC GTG GAG TAT GCC TCC AAG GGC AAC CTG	72
	CGG GAG TAC CTG CAG ACC CGG AGG CCC CCA GGG CTG	108
35	GAA TAC TGC TAT AAC CCC AGC CAC AAC CCA GAG GAG	144

	CAG CTC TCC AAG GAC CTG GTG TCC TGC GCC TAC	180												
	CAG GAG GCC CGA GGC ATG GAG TAT CTG GCC TCC AAG	216												
5	AAG TGC ATA CAC CGA GAC CTG GCA GCC AGG AAT GTC	252												
	CTG	255												
10	(2) INFORMATION FOR SEQ ID NO: 7:													
10	(i) SEQUENCE CHARACTERISTICS:													
	(A) LENGTH: 4236 base pairs													
15	(B) TYPE: nucleic acid													
	(C) STRANDEDNESS: single													
20	(D) TOPOLOGY: linear													
 20	(ii) MOLECULE TYPE: DNA (genomic)													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:													
25	ATG GAG AGC AAG GTG CTG GCC GTC GCC CTG	33												
	Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu 1 5 10													
	TGG CTC TGC GTG GAG ACC CGG GCC GCC TCT GTG GGT	69												
30	Trp Leu Cys Val Glu Thr Arg Ala Ala Ser Val Gly													
	15 20													
		105												
35	Leu Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser 25 30 35													

	AT.	A CA	A AA	A GA	C AT	A CT	T AC	A AT	T AA	G GC	T AA	T ACA	141
	Il	e Gl	n Ly	s as	p Ile	e Le	u Th	r Il	e Ly	s Ala	a As	n Thr	
					40	0				4!	5		
•													
5												C TTG	177
	Thi	. Lei			e Thi	Cy:	s Arg		_	ı Arç	y Ası	e Leu	
			50)				5	5				
	GAC	TGG	CTI	TG	ccc	: AAT	' AA	CAC	G AGI	GGC	: AGI	GAG	213
10	Asp	Trp	Let	Tr	Pro	Asr	a Asr	Glr	n Ser	Gly	Ser	Glu	
	60)				65	;				70)	
	CAA	N.C.C	cmc	- C3-C	cme	3 Off		. maa		6 2 m	-		0.40
												CTC	249
15	GIII	ALY	AGI	75		THE	GIU	Cys		Asp	GTÅ	Leu	
				75					80				
	TTC	TGT	AAG	ACA	CTC	ACA	ATT	CCA	AAA	GTG	ATC	GGA	285
	Phe	Cys	Lys	Thr	Leu	Thr	Ile	Pro	Lys	Val	Ile	Gly	
		85					90					95	
20													
	AAT	GAC	ACT	GGA	GCC	TAC	AAG	TGC	TTC	TAC	CGG	GAA	321
•	Asn	Asp	Thr	Gly	Ala	Tyr	Lys	Cys	Phe	Tyr	Arg	Glu	
					100					105			
25	ACT	GAC	ጥ ገር	GCC	ጥርਫ	GTC	ልጥጥ	ጥልጥ	GTC	ጥልጥ	ሬጥጥ	CAA	357
									Val				33,
		<u>-</u> -	110					115	,	-1-	741	0111	
	GAT	TAC	AGA	TCT	CCA	TTT	ATT	GCT	TCT	GTT	AGT	GAC	393
30	Asp	Tyr	Arg	Ser	Pro	Phe	Ile	Ala	Ser	Val	Ser	Asp	
	120					125					130		
	~ •												
									GAG .				429
35	GIN	Hls			Val	Tyr	Ile		Glu i	Asn :	Lys	Asn	
J				135					140				

		m	, vc	. GIC	GI(a WIJ	Cu	i TG:	r Cre	افاقا د	s TC	J AT.	r TCA	46
•		Lys	Thr	: Val	. Val	Ile	Pro	Cys	Le	ı Gly	, Se	r Ile	e Ser	
			145	;				150)				155	
•														
	5	AAT	CTC	AAC	: GTG	TCA	СТТ	TG1	GCZ	AGI	ጥ አረ	e cor	GAA	50:
													Glu	50.
						160		· Oyl	, 1110	· nr	165		, GIU	
						100	•				705	,		
		AAG	AGA	ւերգերգեր	ויירים י	י ככייי	ር ልጥ	CCT	י אאר	, ycz	. አጥባ	י ייירר	TGG	537
	10												Trp	23,
		ب رب	ar 9	170		PIO	rap	GTĀ		_	TTE	: SET	Trb	
				170					175	1				
		GAC	AGC	AAG	AAG	GGC	W COURT	» с п	3 mm		300	mac	ATG	57 2
														573
	15			пур	тÃв	GIY		THE	TIE	Pro	Ser	_	Met	
	10	180					185					190		
		3.00	3.00	ma m		222	.	ama	5 500	-				400
2.													AAA	609
H .		TTG	Ser	TYF		GIY	Met	Val	Pne	_	GIU	ATS	Lys	
	20				195					200				
	20													
			AAT											645
		Ile	Asn	Asp	Glu	Ser	Tyr	Gln	Ser	Ile	Met	Tyr	Ile	
			205					210					215	
	25	GTT	GTC	GTT	GTA	GGG	TAT	AGG	ATT	TAT	GAT	GTG	GTT	681
		Val	Val	Val	Val	Gly	Tyr	Arg	Ile	Tyr	Asp	Val	Val	
						220					225			
		CTG	AGT	CCG	TCT	CAT	GGA	ATT	GAA	CTA	TCT	GTT	GGA	717
	30	Leu	Ser	Pro	Ser	His	Gly	Ile	Glu	Leu	Ser	Val	Gly	
				230			_		235				•	
•		GAA	AAG	CTT	GTC	TTA	AAT	TGT	ACA	GCA	AGA	ACT	GAA	753
			Lys											
	35	240	-4-				245	-, -			Y	250	JLU	
		240			•		4 T J					250		

	CTA	CAA /	r GT	GG(3 AT	C GA	C TT	CAA	C TG	G GA	A TAC	CCT	789
	Leu	ı Ası	ı Val	L Gly	, Ile	a Ası	Phe	a As	n Trj	Glı	1 Туі	r Pro	
				25	5				260)			
5	TCI	TCG	AAG	CAT	CAG	CAT	AA	. AA	A CTI	GTA	AAC	CGA	825
	Ser	Ser	Lys	His	Glr.	His	Lye	Lys	Let	ı Val	. Asr	Arg	
		265	;				270)				275	
	GAC	CTA	AAA	ACC	CAG	TCI	GGG	AGI	GAG	ATG	AAG	AAA	861
10	Asp	Leu	Lys	Thr	Gln	Ser	Gly	Ser	Glu	Met	Lys	Lys	
					280					285			
	TTT	TTG	AGC	ACC	TTA	ACT	ATA	GAI	GGT	GTA	ACC	CGG	897
	Phe	Leu	Ser	Thr	Leu	Thr	Ile	Asp	Gly	Val	Thr	Arg	
15			290					295	i				
	AGT	GAC	CAA	GGA	TTG	TAC	ACC	TGT	GCA	GCA	TCC	AGT	933
	Ser	Asp	Gln	Gly	Leu	Tyr	Thr	Cys	Ala	Ala	Ser	Ser	
	300					305					310		
20													
	GGG	CTG	ATG	ACC	AAG	AAG	AAC	AGC	ACA	TTT	GTC	AGG	969
	Gly	Leu	Met	Thr	Lys	Lys	Asn	Ser	Thr	Phe	Val	Arg	
				315					320				
25	GTC	CAT	GAA	AAA	CCT	TTT	GTT	GCT	TTT	GGA	AGT	GGC	1005
	Val	His	Glu	Lys	Pro	Phe	Val	Ala	Phe	Gly	Ser	Gly	
		325					330					335	
	ATG	GAA	TCT	CTG	GTG	GAA	GCC	ACG	GTG	GGG	GAG	CGT	1041
30	Met	Glu	Ser	Leu	Val	Glu	Ala	Thr	Val	Gly	Glu	Arg	
					340					345			
	GTC	AGA	ATC	CCT	GCG	AAG	TAC	CTT	GGT	TAC	CCA	CCC	1077
	Val	Arg	Ile	Pro	Ala	Lys	Tyr	Leu	Gly	Tyr	Pro	Pro	
35		-	350			_	_	355	_	_			

_	CCA GAA ATA AAA TGG TAT AAA AAT GGA ATA CCC CTT 111: Pro Glu Ile Lys Trp Tyr Lys Asn Gly Ile Pro Leu 360 365 370	3
5	GAG TCC AAT CAC ACA ATT AAA GCG GGG CAT GTA CTG 1149 Glu Ser Asn His Thr Ile Lys Ala Gly His Val Leu 375 380)
10	ACG ATT ATG GAA GTG AGT GAA AGA GAC ACA GGA AAT 1185 Thr Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn 385 390 395	;
15	TAC ACT GTC ATC CTT ACC AAT CCC ATT TCA AAG GAG 1221 Tyr Thr Val Ile Leu Thr Asn Pro Ile Ser Lys Glu 400 405	
20	AAG CAG AGC CAT GTG GTC TCT CTG GTT GTG TAT GTC 1257 Lys Gln Ser His Val Val Ser Leu Val Val Tyr Val 410 415	
	CCA CCC CAG ATT GGT GAG AAA TCT CTA ATC TCT CCT 1293 Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro 420 425 430	
25	GTG GAT TCC TAC CAG TAC GGC ACC ACT CAA ACG CTG 1329 Val Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu 435 440	
30	ACA TGT ACG GTC TAT GCC ATT CCT CCC CCG CAT CAC 1365 Thr Cys Thr Val Tyr Ala Ile Pro Pro Pro His His 445 450 455	
35	ATC CAC TGG TAT TGG CAG TTG GAG GAA GAG TGC GCC 1401 Ile His Trp Tyr Trp Gln Leu Glu Glu Glu Cys Ala 460 465	

	AAC	GAG	cc	AGO	CAA	A GCT	GTC	TC	A GTO	ACI	AA A	CCA	1437
	Asr	Glu	Pro	Sez	Glr	n Ala	val	Sez	r Val	Thi	: Ası	r Pro	
			470)				475	5				
5	TAC	CCI	TGI	GAA	GAA	TGG	AGA	AGI	GTG	GAG	GAC	TTC	1473
	Tyr	Pro	Cys	Glu	Glu	Trp	Arg	Ser	· Val	. Glu	. Asp	Phe	
	480	ı				485	;				490)	
	CAG	GGA	GGA	AAT	AAA	ATT	GAA	GTI	TAA '	AAA	LAA	CAA	1509
10	Gln	Gly	Gly	Asn	Lys	Ile	Glu	Val	. Asn	Lys	Asn	Gln	
				495					500	ı			
	TTT	GCT	CTA	ATT	GAA	GGA	AAA	AAC	AAA	ACT	GTA	AGT	1545
	Phe	Ala	Leu	Ile	Glu	Gly	Lys	Asn	Lys	Thr	Val	Ser	
15		505					510					515	
	ACC	CTT	GTT	ATC	CAA	GCG	GCA	AAT	GTG	TCA	GCT	TTG	1581
	Thr	Leu	Val	Ile	Gln	Ala	Ala	Asn	Val	Ser	Ala	Leu	
					520					525			
20													
	TAC	AAA	TGT	GAA	GCG	GTC	AAC	AAA	GTC	GGG	AGA	GGA	1617
	Tyr	Lys	Cys	Glu	Ala	Val	Asn	Lys	Val	Gly	Arg	Gly	
			530					535					
25	GAG	AGG	GTG	ATC	TCC	TTC	CAC	GTG	ACC	AGG	GGT	CCT	1653
	Glu	Arg	Val	Ile	Ser	Phe	His	Val	Thr	Arg	Gly	Pro	
	540					545					550		
													1689
30	Glu	Ile	Thr	Leu	Gln	Pro	Asp	Met	Gln	Pro	Thr	Glu	
				555					560				
													1725
	Gln	Glu	Ser	Val	Ser	Leu	Trp	Cys	Thr	Ala	Asp	_	
35		565					570					575	

	TC	T AC	G TT	T GA	G AA	C CT	C AC	A TG	G TA	C AA	G CT	T GGC	1761
												u Gly	
					58					58		-	
					•								
5	CC	A CA	G CC	T CT	G CCI	A ATO	CAT	r GT	G GGA	GAG	TT(G CCC	1797
												ı Pro	
			590					595					
	ACA	CCI	GTI	TGC	AAG	AAC	TTG	GAI	ACT	CTI	TGG	. AAA	1833
10	Thr	Pro	Va]	Cys	Lys	Asn	Leu	Asp	Thr	Leu	Tr	Lys	
	600)				605	;				610)	
												GAC	1869
	Leu	Asn	Ala	Thr	Met	Phe	Ser	Asn	Ser	Thr	Asn	Asp	
15				615	;				620				
												CAG	1905
	Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
		625					630					635	
20													
												AGG	1941
	As p	Gln	Gly	Asp	Tyr	Val	Cys	Leu	Ala	Gln	qaA	Arg	
					640					645			
0.5													
25									GTC				1977
	Lys	Thr		Lys	Arg	His	Cys	Val	Val	Arg	Gln	Leu	
			650					655					
30												GGA	2013
30		Val	Leu	Glu	Arg		Ala	Pro	Thr	Ile	Thr	Gly	
	660					665					670		
	~												
									ATT (2049
35	Asn	Leu			Gln	Thr	Thr	Ser	Ile (Gly	Glu	Ser	
J J				675					680				

- 48. -

	AT	C GA	A GI	'C TC	A TG	C AC	G GC	A TC	T GG	G AA	T CC	c cci	2085
	Il	e Gl	u Va	l Se	r Cy	s Th	r Al	a Se	r Gly	y As:	n Pro	o Pro	•
		68					69					695	
									•				
5	CC	A CA	G AT	C AT	G TG	G TT	T AA	A GA	r aat	GAO	3 ACC	CTI	2121
	Pro	o Gl	n Il	e Me	t Trj	o Pho	e Lys	a As	o Asr	ı Glı	ı Thi	: Leu	
					700					705			
	GT	A GA	A GA	C TCI	4 GGC	ATI	r Gta	TTC	AAG	GAT	GGG	AAC	2157
10	Val	L Gl	ı Ası	Sez	Gly	, Ile	≥ Val	Let	ı Lys	Asp	Gly	Asn	
			710	כ				715	;		_		
	CGG	AA(CTC	ACI	ATC	CGC	: AGA	GTG	AGG	AAG	GAG	GAC	2193
									Arg				
15	720					725					730	_	
	GAA	GGC	CTC	TAC	ACC	TGC	CAG	GCA	TGC	AGT	GTT	CTT	2229
	Glu	Gly	Leu	Tyr	Thr	Cys	Gln	Ala	Cys	Ser	Val	Leu	
				735					740				
20													
	GGC	TGT	GCA	AAA	GTG	GAG	GCA	TTT	TTC	ATA	ATA	GAA	2265
	Gly	Cys	Ala	Lys	Val	Glu	Ala	Phe	Phe	Ile	Ile	Glu	
		745					750					755	
25	GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	ATT	2301
	Gly	Ala	Gln	Glu	Lys	Thr	Asn	Leu	Glu	Ile	Ile	Ile	
					760					765			
	CTA	GTA	GGC	ACG	ACG	GTG	ATT	GCC	ATG	TTC	TTC	TGG	2337
30	Leu	Val	Gly	Thr	Thr	Val	Ile	Ala	Met	Phe	Phe	Trp	
			770					775					
		•											
	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC (GTT .	AAG (CGG	2373
	Leu	Leu	Leu	Val	Ile	Ile	Leu (Gly	Thr V	Val :	Lys i	Arg	
35	780					785		_			790	-	

		AT GGA (sn Gly (
			795			800	-4-		
5	ATC G	C ATG	SAT CCA	GAT	GAA C	TC CCA	TTG G	AT GAA	2445
		al Met A	sp Pro	qaA	Glu L	eu Pro	Leu A	sp Glu	
	80)5			810			815	
10		T GAA C							2481
10	His Cy	s Glu A			Tyr A	sp Ala		ys Trp	
			820				825		
		C CCC A							2517
15	Glu Ph	e Pro A	rg Asp	Arg :			Gly Ly	ys Pro	
		830				35			
		C CGT G							2553
	Leu Gl	y Arg G	ly Ala		Gly Gl	ln Glu			
20	040			845			85	50	
		C TTT G							2589
	Asp Al	a Phe G		Asp 1	Lys Th	r Ala	Thr Cy	s Arg	
		8!	55			860			
25	ACA GT	A GCA G	C AAA	ATG 1	TG AA	A GAA	GGA GC	A ACA	2625
		i Ala Va	l Lys			s Glu	Gly Al	a Thr	
	86!	5		8	370			875	
•		GAG C							2661
30	His Ser	Glu Hi	s Arg	Ala I	eu Me	t Ser (3lu Le	u Lys	
			880			8	885		
	ATC CTC								2697
35	Ile Leu	Ile Hi	s Ile	Gly H	is His	s Leu A	sn Va	l Val	
35		890			895	5			

	AA	c c	TT C	TA	GGT	GC	C TG	T A	CC A	AG (CA:	GGA	GG	G C	A 2733
	As	n L	eu L	eu	Gly	Ala	а Су	s Ti	ır L	ys F	ro	Gly	Gl	y Pi	:0
	90	0					90	5					91	0	
5	CT	C A	rg g	TG Z	ATT	GTG	GA.	A TI	C T	GC A	AA	TTT	GG.	A AA	C 2769
	Le	u Me	et V	al :	Ile	Val	Gl	u Ph	e C	ys L	ys	Phe	Gl	y As	n
					915						20				
	CT	G TC	C A	er 1	CAC	CTG	AG	3 AG	C AZ	AG A	GA Z	AAT	GAZ	A TT	T 2805
10	Let	u Se	r Ti	ır I	'yr	Leu	Arg	g Se	r Ly	s Ai	rg i	Asn	Glu	ı Ph	8
		92						93						93	
	GT	cc	C TA	C A	AG	ACC	AAA	GG	G GC	A CO	A 1	TC	CGI	CAZ	2841
	Va]	Pr	о Ту	r L	ys	Thr	Lys	Gl	y Al	a Ar	g I	he	Arg	Gli	1
15						940						45	_		
	GGG	AA	A GA	C T	AC	GTT	GGA	GC	AT	c cc	T G	TG	GAT	CTG	2877
	Gly	Ly	aA e	p T	yr '	Val	Gly	Ala	Il	e Pr	o V	al.	Asp	Leu	L
			95	0					95	5					
20															
	AAA	CGG	G CG	C T	rg (GAC	AGC	ATC	AC	CAG	T A	GC (CAG	AGC	2913
	Lys	Arc	Arg	j Le	eu 1	qaA	Ser	Ile	Thi	c Se	r S	er (Gln	Ser	
	960						965						970		
25	TCA	GCC	AGO	TC	T C	GA	TTT	GTG	GAG	GA	3 A	AG :	rcc	CTC	2949
	Ser	Ala	Sei	: Se	er G	ly	Phe	Val	Glu	. Gl	ı Ly	ys S	Ser	Leu	
				97	' 5					980)				
	AGT	GAT	GTA	GA	A G	AA	GAG	GAA	GCI	CCI	GZ	AA G	AT	CTG	2985
30	Ser	Asp	Val	Gl	u G	lu	Glu	Glu	Ala	Pro	G]	lu A	sp	Leu	
		985						990						995	
	TAT	AAG	GAC	TT	c c	TG 2	ACC	TTG	GAG	CAT	CI	C A	TC	TGT	3021
	Tyr														-
35						000					10				

	TA	C AG	C TT	C CA	A GT	G GC	T AA	G GG	C AT	G GA	G TI	C TTG	3057
	Ту	r Se	r Ph	e Gl	n Va	l Al	a Ly	s Gl	у Ме	t Gl	u Ph	e Lev	l
			10						15				
5	GC	A TC	G CG	A AAC	F TG	T AT	C CA	C AG	G GA	C CT	G GC	G GCA	3093
												a Ala	
	10					102					10		
				•									
	CG	A AA	T AT	CTC	TT	A TC	GA	3 AA	G AA	GT	GT:	T AAA	3129
10												l Lys	
				103					104			-	
	ATO	TG	GAC	TTT	GGC	TTG	GCC	CG	GAI	' AT	TAT	AAA 1	3165
	Ile	Cys	a Asp	Phe	Gly	Leu	Ala	Arg	y Asp	Ile	туз	: Lys	
15		104					105					105	5
	GAI	CCA	GAT	TAT	GTC	AGA	AAA	GGA	GAT	GCI	CGC	CTC	3201
	Asp	Pro	Asp	Tyr	Val	Arg	Lys	Gly	Asp	Ala	Arg	Leu	
					106	0				106	5		
20													
												GAC	3237
	Pro	Leu			Met	Ala	Pro	Glu	Thr	Ile	Phe	Asp	
			107	0				107	5				
. =													
25												TTT	3273
			Tyr	Thr	Ile			Asp	Val	Trp	Ser	Phe	
	108	0				108	5				109	0	
											•		
10													3309
	Gly	Val	Leu	Leu		Glu	Ile	Phe	Ser	Leu	Gly	Ala	
		٠		1095	5				1100)			
												TTT	3345
5	Ser			Pro	Gly	Val	Lys	Ile	Asp	Glu	Glu	Phe	
		1105	5				1110)				1115	

	TGT	AGG	CGA	TTG	AAA	GAA	GGA	ACI	AGA	ATG	AGG	GCC	3381
	Cys	Arg	Arg	Leu	Lys	Glu	Gly	Thr	Arg	Met	Arg	Ala	
					112	0				112	5		
_													
5													3417
	Pro	Yab	_		Thr	Pro	GIU			GIN	The	Met	
			113	O				113	9				
	CTG	GAC	TGC	TGG	CAC	GGG	GAG	CCC	AGT	CAG	AGA	CCC	3453
10	Leu	Asp	Cys	Trp	His	Gly	Glu	Pro	Ser	Gln	Arg	Pro	
	114	0				114	5				115	0	
	ACG	TTT	TCA	GAG	TTG	GTG	GAA	CAT	TTG	GGA	AAT	CTC	3489
	Thr	Phe	Ser	Glu	Leu	Val	Glu	His	Leu	Gly	Asn	Leu	
15				1155	5				1160)			
													2525
-													3525
	Leu	Gln		ASN	ATS	GIN		_	GIY	тАв	Asp	_	
20		1165	•				1170	,				1175	
	y dada	ርጥጥ	بلملت	CCG	ልጥል	TCA	GAG	АСТ	ጥጥሮ	AGC	ATG	GAA	3561
		Val											
					1180					1185	_		
25	GAG	GAT	TCT	GGA	CTC	TCT	CTG	CCT	ACC	TCA	CCT	GTT	3597
	Glu	Asp	Ser	Gly	Leu	Ser	Leu	Pro	Thr	Ser	Pro	Val	
			1190)				1195	5				
													3633
30	Ser	Cys	Met	Glu	Glu			Val	Cys				
	1200)				1205					1210)	
												m: =	0.666
		CAT											3669
35	Phe	His	_	-		Thr .	Ala	_		ser	GIN	ıyr	
. J				1215					1220				

	CIG CAG	AAC AGT	AAG CGA	AAG AGC	CGG CCT GT	G AGT 3705
	Leu Gln	a Asn Ser	Lys Arg	Lys Ser	Arg Pro Va	l Ser
	122			1230	_	1235
5	GTA AAA	ACA TTT	GAA GAT	ATC CCG	ITA GAA GA	A CCA 3741
	Val Lys	Thr Phe	Glu Asp	Ile Pro 1	Leu Glu Gl	u Pro
			1240		1245	
10						G GAC 3777
10	Glu Val		Ile Pro	Asp Asp A	sn Gln Thi	r Asp
		1250		1255		
	3.00					
					AG CTG AAA	
15	l260	Met Val			lu Leu Lys	Thr
	1260		1265		127	'0
	ጥጥር ርአአ	GAC ACA	300 333	mm. man -		
					CA TCT TTT ro Ser Phe	
		1275	THE TYPE		ro ser Pne 280	GIÀ
20				4.0	200	
	GGA ATG	GTG CCC	AGC AAA J	AGC AGG GI	AG TCT GTG	GCA 3885
					lu Ser Val	
	1285			L290		1295
25					C TAC CAG	
	Ser Glu	Gly Ser 1	Asn Gln 1	hr Ser Gl	y Tyr Gln	Ser
		3	L300		1305	
30					C ACC GTG	
30			ap Asp I	hr Asp Th	r Thr Val	Tyr
		1310		1315		
	MCC 3 cm c		-			
					G CTG ATA	
35	1320	ern ern y		eu Leu Ly	s Leu Ile	
-	1320		1325		1330	

- 54 -

	ATT GGA GTG CAA ACC GGT A Ile Gly Val Gln Thr Gly A 1335		4029									
5	CAG CCT GAC ACG GGG ACC AGC IN Pro Asp Thr Gly Thr 1		4065									
10	GTT TAAAAGGAAG CATCCACACC Val 1356	C CCAACTCCCG GACATCACAT	4108									
	GAGAGGTCTG CTCAGATTTT GAA	GTGTTGT TCTTTCCACC	4148									
15	AGCAGGAAGT AGCCGCATTT GAT	TTTCATT TCGACAACAG	4188									
,	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC 422											
	TTGTGACC	4236										
20	TTGTGACC (2) INFORMATION FOR SEQ											
20		ID NO: 8:										
20	(2) INFORMATION FOR SEQ	ID NO: 8:										
	(2) INFORMATION FOR SEQ (1) SEQUENCE CHARACTE	ID NO: 8: RISTICS: amino acids										
25	(2) INFORMATION FOR SEQ (1) SEQUENCE CHARACTE (A) LENGTH: 433	ID NO: 8: RISTICS: amino acids										
	(2) INFORMATION FOR SEQ (i) SEQUENCE CHARACTE (A) LENGTH: 433 (B) TYPE: amino ac	ID NO: 8: RISTICS: amino acids cid										
25	(2) INFORMATION FOR SEQ (i) SEQUENCE CHARACTE (A) LENGTH: 433 (B) TYPE: amino according to the control of th	ID NO: 8: RISTICS: amino acids cid										

25

- (A) NAME/KEY: ckit proto-oncogene receptor
- (B) LOCATION: Amino acids 543-975

(x) PUBLICATION INFORMATION:

- (A) AUTHORS: Yarden, Y., et al.
- 10 (B) JOURNAL: EMBO J.
 - (C) VOLUME:
- (D) PAGES: 3341-3351
 - (E) DATE: 1987
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
- Leu Thr Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln
 543 545 550 555
 - Trp Lys Val Val Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr
 560 565 570
 - Ile Asp Pro Thr Gln Leu Pro Tyr Asp His Lys Trp Glu Phe 575 580
- Pro Arg Asn Arg Leu Ser Phe Gly Lys Thr Leu Gly Ala Gly 30 585 590 595
 - Ala Phe Gly Lys Val Val Ala Glu Thr Ala Tyr Gly Leu Ile 600 605 610
- 25 Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met Leu Lys

- 56 -

			615					620)				625	
5	Pro	Ser	Ala	His 630		Thr	Glu	Arg	Glu 635		Leu	Met	Ser	Glu 640
3	Leu	Lys	Val	Leu	Ser 645		Leu	Gly	Asn	His 650	Met	Asn	Ile	Val
10	Asn 655	Leu	Leu	Gly	Ala	Cys 660	Thr	Ile	Gly	Gly	Pro 665	Thr	Leu	Val
	Ile	Thr 670	Glu	Tyr	Cys	Cys	Tyr 675	Gly	Asp	Leu	Leu	Asn 680	Phe	Leu
15	Arg	Arg	Lys 685	Arg	Asp	Ser	Phe	Ile 690	Cys	Ser	Lys	Gln	Glu 695	Asp
20	His	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
	Glu	Ser	Ser	Cys	Ser 715	Asp	Ser	Thr	Asn	Glu 720	Tyr	Met	Asp	Met
25	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	Lys 735	Ala	Asp	Lys
	Arg	Arg 740	Ser	Val	Arg	Ile	Gly 745	Ser	Tyr	Ile	Glu	Arg 750	Asp	Val
30	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	As p 760	Glu	Leu	Ala	Leu	Asp 765	Leu
	Glu	Asp		Leu 770	Ser	Phe	Ser		Gln 775	Val	Lys	Gly		Ala 780

•		Ph	e Le	u Al	la Se	r Ly 78		n Cy	s Il	e Hi	5 Ar		p Le	u Al	a Ala
•	5	Ar 79	g As 5	n Il	.e Le	u Le	u Th:		s Gly	y Aro	y Ile	805		s Il	e Cys
		As	P Ph 81	e Gl O	y Le	u Ala	a Arq	Ası 815		. Lys	. Asr	a Asp	820		n Tyr
	10	Va]	l Va:	l Ly 82	s Gly 5	y Ası	n Ala	Arg	830		Val	Lys	Va]	. Met 835	: Ala
	15	Pro	Glu	Se:	r Ile 840	Phe	Asn	Cys	Val	Tyr 845	Thr	Glu	Glu	Ser	* Asp
		Val	Trp	Ser	Tyr	Gly 855		Phe	Leu	Trp	Glu 860	Leu	Phe	Ser	Leu
	20	Gly 865	Ser	Ser	Pro	Tyr	Pro 870	Gly	Met	Pro	Val	Lys 875	Ser	Lys	Phe
		Tyr	Lys 880	Met	Ile	Lys	Glu	Gly 885	Phe	Arg	Met	Leu	Ser 890	Pro	Glu
	25	His	Ala	Pro 895	Ala	Glu	Met	Tyr	As p 900	Ile	Met	Lys	Thr	Cys 905	Trp
	30	Asp	Ala	Asp	Pro 910	Leu	Lys	Arg		Thr :	Phe	Lys	Gln	Ile	Val 920
•		Gln	Leu	Ile	Glu 92		Gln	Ile :	Ser (Glu ! 93(Thr 2	Asn	His	Ile
	35	Tyr 935	Ser	Asn	Leu .		Asn (940	Cys (Ser I	Pro A		Arg (3ln :	Lys :	Pro

(D) PAGES:

	Val Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Thr 950 955 960
5	Ala Ser Ser Gln Pro Leu Leu Val His Asp Asp Val 965 970 975
	(2) INFORMATION FOR SEQ ID NO: 9:
10	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 437 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESSS:
	(D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: peptide
20	(ix) FEATURE:
	(A) NAME/KEY: CSF-1 receptor
25	(B) LOCATION: Amino acids 536-972
	(x) PUBLICATION INFORMATION:
30	(A) AUTHORS: Coussens, L., et al.
	(B) JOURNAL: Nature
	(C) VOLUME: 320

277-280

(E) DATE: 1986

	5	(2	ki) :	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	No:	9:			
		Le:	ı Lei	и Ту	r Ly	540		s Gli	ı Lyı	s Pro	545		r Gl	n Va	l Arg
	10	Trp 550	Lys	3 Il	e Ile	e Glu	1 Se1 555		Glu	ı Gly	7 Asn	560		r Th	r Phe
	15	Ile	Asp 565	Pro	The	Gln	Leu	Pro 570		: Asn	Glu	Lys	575		Phe
		Pro	Arg	As r 580		Leu	Gln	Phe	Gly 585		Thr	Leu	Gly	* A la	Gly
	20	Ala	Phe	Gly	Lys 595		Val	Glu	Ala	Thr 600	Ala	Phe	Gly	Leu	Gly 605
		Lys	Glu	Asp	Ala	Val 610	Leu	Lys	Val	Ala	Val 615	Lys	Met	Leu	Lys
	25	Ser 620	Thr	Ala	His	Ala	As p 625	Glu	Lys	Glu	Ala	Leu 630	Met	Ser	Glu
	30	Leu	Lys 635	Ile	Met	Ser	His	Leu 640	Gly	Gln	His	Glu	Asn 645	Ile	Val
		Asn	Leu	Leu 650	Gly	Ala	Cys		His 655	Gly	Gly	Pro	Val	Leu 660	Val
• •	35	Ile '	Thr	Glu	Tyr 665	Cys	Cys	Tyr		Asp :	Leu :	Leu .	Asn		Leu 675

	Al	rg A	rg Lj	ys A.		Lu Al BO	la Me	t Le	u Gl	y Pro 685		Leu	Sei	Pro
5	G1 69		ln As	sp Pı	ro G]	lu G1 69		y Vai	l Asp	y Tyr	Lys 700	Asn	Ile	His
	Le	u G] 70		s Ly	s Ty	r Va	1 Ar		y Asp	Ser	Gly	Phe 715	Ser	Ser
10	Gli	n Gl	y Va 72		p Th	r Ty:	r Val	725		Arg	Pro	Val	Ser 730	Thr
15	Sei	r Se	r Ası	n Asj 73!		r Phe	s Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745
	Asj	Gl	y Arg	g Pro	750		Leu	Arg	Asp	Leu :	Leu :	His :	Phe	Ser
20	Ser 760		n Val	. Ala	Glr	1 Gly 765		Ala	Phe	Leu i	Ala :	Ser :	Lys	Asn
	Cys	Ile 775		Arg	Asp	Val	Ala 780	Ala	Arg	Asn V		Leu] 785	Leu '	Thr
25	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe G	ely I		la i	Arg
30	Asp	Ile	Met	Asn 805	Asp	Ser	Asn		Ile ' 810	Val I	ys G	ly A		Ala 815
	Arg	Leu	Pro	Val	Lys 820	Trp	Met	Ala :		31u S 325	er I	le P	he A	rsb
35	Cys 830	Val	Tyr	Thr	Val	Gln 835	Ser :	Asp 7	Val 1	rp Se	er T	yr G	ly I	le

		Leu	Leu 845	Trp	Glu	lle	Phe	850		ı Gly	Leu	Asr	855		Pro
	5	Gly	Ile	Leu 860	Val	Asn	Ser	Lys	Phe 865		Lys	Leu	Val	Lys 870	Asp
		Gly	Tyr	Gln	Met 875	Ala	Gln	Pro	Ala	Phe 880	Ala	Pro	Lys	Asn	Ile 885
	10	Tyr	Ser	Ile	Met	Gln 890	Ala	Cys	Trp	Ala	Leu 895	Glu	Pro	Thr	His
1	15	Arg 900	Pro	Thr	Phe	Gln	Gln 905	Ile	Сув	Ser	Phe	Leu 910	Gln	Glu	Gln
	15	Ala	Gln 915	Glu	Asp	Arg	Arg	Glu 920	Arg	Asp	Tyr	Thr	As n 925	Leu	Pro
	20	Ser		Ser 930	Arg	Ser	Gly	Gly	Ser 935	Gly	Ser	Ser	Ser	ser 940	Gl u
÷		Leu	Glu :		Glu 945	Ser	Ser	Ser		His 950	Leu	Thr	Cys		Glu 955
2	!5	Gln	Gly /	Asp :		Ala 960	Gln	Pro	Leu		Gln 965	Pro	Asn	Asn	Tyr
3	0	Gln 1 970	?he (Cys											
		(2)	INFO	RMAT	rion	FOR	SEQ	ID 1	NO: :	10:					
		. (i) s	EQUE	ENCE	CHAI	RACTI	ERIS:	rics:	:					

(A) LENGTH: 566 amino acids

	(B) TYPE: amino acid
5	(C) STRANDEDNESSS:
5	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	(ix) FEATURE:
	(A) NAME/KEY: PDGF receptor
15	(B) LOCATION: Amino acids 522-1087
	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
20	(B) JOURNAL: Proc. Natl. Acad. Sci.
	(C) VOLUME: 85
25	(D) PAGES: 3435-3439
	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
30	Met Leu Trp Gln Lys Lys Pro Arg Tyr Glu Ile Arg Trp Lys 522 525 530 535

Val Ile Glu Ser Val Ser Ser Asp Gly His Glu Tyr Ile Tyr

545

540

35

	Val Asp Pro Val Gln Leu Pro Tyr Asp Ser Thr Trp Glu Leu
	550 555 560
5	Pro Arg Asp Gln Leu Val Leu Gly Arg Thr Leu Gly Ser Gly 565 570 575
	Ala Phe Gly Gln Val Val Glu Ala Thr Ala His Gly Leu Ser 580 585 590
10	His Ser Gln Ala Thr Met Lys Val Ala Val Lys Met Leu Lys 595 600 605
15	Ser Thr Ala Arg Ser Ser Glu Lys Gln Ser Leu Met Ser Glu 610 615
	Leu Lys Ile Met Ser His Leu Gly Pro His Leu Asn Val Val 620 625 630
20	Asn Leu Leu Gly Ala Cys Thr Lys Gly Gly Pro Ile Tyr Ile 635 640 645
	Ile Thr Glu Tyr Cys Arg Tyr Gly Asp Leu Val Asp Tyr Leu 650 655 660
25	His Arg Asn Lys His Thr Phe Leu Gln Arg His Ser Asn Lys 665 670 675
10	His Cys Pro Pro Ser Ala Glu Leu Tyr Ser Asn Ala Leu Pro 680 685
	Val Gly Phe Ser Leu Pro Ser His Leu Asn Leu Thr Gly Glu 690 695 700
5	Ser Asp Gly Gly Tyr Met Asp Met Ser Lys Asp Glu Ser Ile 705 710 715

	720 725 730
5	Ala Asp Ile Glu Ser Pro Ser Tyr Met Ala Pro Tyr Asp Asn 735 740 745
	Tyr Val Pro Ser Ala Pro Glu Arg Thr Tyr Arg Ala Thr Leu 750 755
10	Ile Asn Asp Ser Pro Val Leu Ser Tyr Thr Asp Leu Val Gly 760 765 770
15	Phe Ser Tyr Gln Val Ala Asn Gly Met Asp Phe Leu Ala Ser 775 780 785
	Lys Asn Cys Val His Arg Asp Leu Ala Ala Arg Asn Val Leu 790 795 800
20	Ile Cys Glu Gly Lys Leu Val Lys Ile Cys Asp Phe Gly Phe 805 810 815
	Ala Arg Asp Ile Met Arg Asp Ser Asn Tyr Ile Ser Lys Gly 820 825
25	Ser Thr Tyr Leu Pro Leu Lys Trp Met Ala Pro Glu Ser Ile 830 835 840
30	Phe Asn Ser Leu Tyr Thr Thr Leu Ser Asp Val Trp Ser Phe 845 850 855
	Gly Ile Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Thr Pro 860 865 870
35	Tyr Pro Glu Leu Pro Met Asn Asp Gln Phe Tyr Asn Ala Ile 875 880 885

•		Ly	s Ar	g Gl	у Ту	890		t Ala	a Glr	Pro	895		Ala	Ser	Asp
	5	Gl: 900		э Ту	r Gli	l Ile	905		l Lys	Cys	Trp	Glu 910		Lys	Phe
		Glu	Th:		g Pro) Pro	Phe	920		Leu	Val	Leu	Leu 925	Leu	Glu
. •	10	Arg	Lev	930		Glu	Gly	Tyr	Lys 935	Lys	Lys	Tyr	Gln	Gln 940	Val
	15	Asp	Glu	Glu	Phe 945	Leu	Arg	Ser	Asp	His 950	Pro	Ala	Ile	Leu	Arg 955
	15	Ser	Gln	Ala	Arg	Phe 960	Pro	Gly	Ile	His	Ser 965	Leu	Arg	Ser	Pro
	20	Leu 970	Asp	Thr	Ser	Ser	Val 975	Leu	Tyr	Thr	Ala	Val 980	Gln	Pro .	Asn
		Glu	Ser 985	Asp	Asn	Asp	Tyr	Ile 990	Ile	Pro	Leu		Asp	Pro :	Lys
	25	Pro	Asp	Val		Asp	Glu	Gly	Leu 1005		Glu	Gly	Ser :	Pro (Ser
	30	Leu	Ala	Ser	Ser 1015		Leu	Asn		Val .	Asn '	Thr	Ser (Thr 025
		Ile	Ser	Cys		Ser 1030	Pro	Leu	Glu :		Gln (Glu (Glu 1	Pro 0	In
	35	Gln .		Glu	Pro		Ala (Leu (Glu (Pro (3ln A	sp S	er

- 66 -

	Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Leu 1055 1060 1065
5	Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080
	Ala Glu Asp Ser Phe Leu 1085
10	(2) INFORMATION FOR SEQ ID NO: 11:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 16 base pairs
	(B) TYPE: nucleic acid
20	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	TCGACGCGCG ATG GAG 16
30	

<u>.</u>

10

15

20

25

30

35

We claim:

- 1. An isolated DNA sequence encoding the Kinase insert Domain containing Receptor.
- 2. The DNA sequence of Claim 1 wherein said sequence is a human gene.
- 3. An isolated DNA sequence comprising a DNA sequence capable of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.
- 4. A method for the production of a growth factor receptor which comprises transforming a host cell with the DNA sequence of Claim 3 and culturing the host cell under conditions which result in expression of the gene by an expression vector.
 - 5. The method of Claim 4 wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
 - 6. The method of Claim 5 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
 - 7. The method of Claim 5 where the expression vector is pcDNAltkpASP expression vector.
 - 8. A lambda gtll phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC Accession number 40,975).
 - 9. A plasmid pBlueScript KS which contains the clone BTIV169 (ATCC accession number 75200).
 - 10. An isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
 - 11. The receptor of Claim 10 comprising the amino acid sequence of Figure 7.
 - 12. The receptor of Claim 10 encoded by an isolated DNA sequence comprising a DNA sequence capable

10

15

of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.

- 13. A biologically active protein fragment which retains the receptor activity of the receptor of Claim 10.
- 14. An isolated DNA sequence encoding a biologically active protein fragment which retains the receptor activity of an isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 15. An oligonucleotide primer consisting of an oligonucleotide primer having 21 bases and having a sequence depicted for Primer 1 in Figure 2.
- 16. An oligonucleotide primer consisting of an oligonucleotide primer having 29 bases and having a sequence depicted for Primer 2 in Figure 2.
- 17. The 363 base pair product having the sequence depicted in Figure 4, or a biological equivalent of said sequence.

20

25

30

FIG. 1

FIG.2

GAATTC AG CAC GTT ICT AGC CGC CAG GTC TCT GTG CAC AGA GAC CTG GCC GCT AGI AAC GTG CT CONSENSUS PRIMER 2 PDGF CSF FGF

SUBSTITUTE SHEET

PRIMER 1

PRIMER 2

RECEPTOR

GTCGAC AAC CTG TTG GGG GCC TGC AAC

AAC CTG TTG GGG GCC TGC ACC T A T A T A A

PDGF CK! t CSF FGF

RECEPTOR

PRIMER 1

FIG. 3

タート ひ ター タ ひ タ し し しじじょくしょうしょ A H H A G A H C C H C A A H H H G C C H H G L 女 L L U L U C U U CAAACCAAAC JC JA GA JA P G G C **A C C C C C C C D A C** 040000444010 UUUUUUUU UU VUUU ママ マン しょり じじじ じ こ マ ロ じ し ひ し ひ ひ ひ ひ ひ ひ ひ し し し じ じ む ひ し し し じ じ む し ママロロロロコーロママ **DUADADADADADA** ロターこり マヤいじ マイロット A C I C A C I I C A

FIG.4A

ソートとりトンマ A H C A C C A T P I C C C I F 0 - C C D D - C 4 C D A A D F PAGAAGAA A G - G C G A CALCALAC D Q U U U Q Q 0-40-6-6 P C C P P I C I A C C C C C C C A T G G C A C A AAGCGAHA G A C A C C G CAACAGCA TIN C A A A G CIG

FIG.4B

100v CCGCACA GCAA A GCCAAGA	40° , :1600061	DL000-	CCATGCT	AAGAAGA	ZI U^ TGCCGAG	CTG A CTGTATAA 2286	470v Fraagaari	CCGAAA	310^	·
70v 80v 90v 100v TGCCGCTACGGAGACCTGGTGGACTACCTGCACCGCAACA TGC T GGA ACCTG TACCTG GCAA A TGCAAATTTGGAAACCTGTCCACTTACCTGAGGAGGAGA	30" 40" 170v AGCAATGCTCTGCCCGT	AGCAAT SGAGCAAT)v 270v GGACTATGTGCC	r Atgr Cagtgatgtag	COUT V 37 0v CTGAGAGGACCT		460v 470	GTTCT G C (GTTCTTGGCAT	3000	FIG.5A
70v 80v CTACGGAGACCTGGTG T GGA ACCTG			250v 260v AGGACGAGTCGGTGG	GGA AGTC 1 GGAGAAGTCCC1	350v 360v ACGTTCCCTCTGCCCTI		450v CAATGGCATGGA	A GGCATGGA	-062 -	
V 70V ACTGCCGCTACGG TGC T GG TGCAAATTTGG	150v ICCCAGCGCGGA	66A	240v 2 Sgacatgagcaa	16A TG G A 16ATTTGTGG-A	340v 3 Acgataactacg		440v TACCAGGTGGC	T CCA GTGG	187	
50v Catcactgagi	110v 120v 130v 140v 150v 160v 150v 160v 160v 160v 160v 160v 160v 160v 16	AAG	230v GGTGGCTACATE	G GCT TG GCCAGCTCTG 170^	E		20V 430V 440v 450v 460v 470v CTCGTGGGCTTCAGCTACCAGGTGGCAATGGCATGGAGTTCTGGCTTCAAAA	TGGAGCATCTCATCTTACAGCTTCCAAGTGGTAAG-GGCATGGAGTTCT G C C GAA -TGGAGCATCTCATCTTACAGCTTCCAAGTGGTAAG-GGCATGGAGTTCTTGGCATCGCGAAA	77	
40v TATCATCTATA	0v 130v CACCACTCCGACA	u GCAC A TCCG CAAG AAAGGG—GCACGATTCCGTCAAG 70^ 80^	220v JGGGAGAGCGAC	L AGAGCTCA	320v STCCTCCAACTA		420V	TGGA CTC TGGAGCAT <u>CTC</u>		
30v iaggaccatota	10v 120v CCTTCCTGCAGCAC	CCAAAGGG—G 70^	210v GTCCTTGACCG	u GCATCACCAGT∤ ^ 150^	31 0v GCAGACATCGAG		410v GCTAAGCTAC		500v 510v ictaggaacgtgctt	AGGAACGTGCT CAGGAACGTGCT 10^
20v Ctgcaccaaagg	I ACAC-A	ALA ALC ICCCTACAAGACCA 60^	OV 200V	u C CGGCGCTTGGACAG 130^ 140^	GACGTCAAATA	T	400v CGAGTCTCCAG		490v 50	I CCACAGAGACCTGGCAGCCTCCCAGCCAGCCAGCCAGCCA
10v 20v 30v 40v 50v 60v 70v 80v 90v 100v 100v ACCTGTGGGGGCCTGCACGAAGGAGGACCATCTATATCATCATCACTGAGTACTGCCGCAACCAAC	A	ALA ALC 6 GCAC A TCC6 CAGG GAATGAATTGTCCCCTACAAGACCAAAGGG—GCACGATTCCGTCAAGACAAGA	v 190v 200v 210v 220v 230v 240v 250v 250v 260v 270v 270v 270v 270v 270v 270v 270v 27	TGGATCTGAAACGGCGCTTGGACAGCATCACCAGTAGCCAGGCTC—TGGATTTGTGG-AGGAAGTCCCTCAGTGATGTAGAAGAAGA 120* 130* 140* 150* 160* 160*	v 290v 300v GGACATGAAAGGAGACGTCAAATAG GGA GAGA	GGAAGCTCCTGAAGAT 220^	v 390v 400v CAACTTTGATCAACGAGTCTCCAGT	GGACTTCCTGACCT- 240° 250°	480v 490v 500v 510v 16CG-TCCACAGAGGCTGCTT	CCACAGAGCCTGCCAGGAACGTGCT GTGTATCCACAGAACCTGCCAGCAGGAACGTGCT 320^ 330^ 340^
PDGF 360 bp	PDGF	360 bp	POGF	360 bp	PDGF	360 bp	PDGF	360 bp	PDGF	360 bp
			S	Maria Vilail	TIITE	(dimma	-			

FIG. 5B

CHROTITUTE CO.

	•					8/29					
	CGG Arg>		ATA Ile>	0.	TGC AGG Cys Arg>		CAA Gln>	270	ATT Ile>		ACT Thr>
50	R L		AGC ATA Ser Ile	160	TGC		GAG Glu		ACA	320	GAA Glu
	GAG Glu	0 +	CTC		ACT Thr	210	AGT Ser		CTC	က	CGG GAA ACT Arg Glu Thr
	GTG Val	100	CCC AGG CTC Pro Arg Leu		ATT		GGC Gly	260	ACA Thr		TAC Tyr
40	TGC		CCC	150	CAA Gln		AGT	2	AAG ACA Lys Thr	0+	rrc Phe
•	TGG CTC TGC GTG Trp Leu Cys Val		CTG		CTT	200				310	AAG TGC TTC Lys Cys Phe
		96	GAT Asp		ACT Thr	×	RR	© *	TTC Phe		AAG Lys
	CTG Leu		CTT	140	ACA Thr		AAT Asn	250	CTC		TAC
30	GCC Ala		TCT	*	N. R.	0 *	CCC		GGC Gly	300	GCC TAC Ala Tyr
	GTC Val	80	GTT Val		AAG GCT Lys Ala	190	TGG Trp		GAT Asp		GGA Gly
	GCC Ala		AGT	130	AAG Lys		CTT	240	AGC		ACT Thr
20	CTG Leu		CCT Pro	+	ATT Ile		TGG Trp		TGC	290	GAC Asp
	ATG GAG AGC AAG GTG CTG Met Glu Ser Lys Val Leu	70	GTG GGT TTG Val Gly Leu		ACA	180 *	GGA CAG AGG GAC TTG GAC TGG Gly Gln Arg Asp Leu Asp Trp		AGG GTG GAG GTG ACT GAG TGC Arg Val Glu Val Thr Glu Cys	*	AAT Asn
	GTG Val	•	GGT Gly		CAA AAA GAC ATA CTT Gln Lys Asp Ile Leu		TTG	230	ACT Thr		GGA Gly
10	AAG Lys		GTG Val	120	ATA Ile		GAC Asp		GTG Val	0 *	ATC Ile
	AGC		TCT Ser		GAC Asp	170	AGG Arg		GAG Glu	280	GTG Val
	GAG Glu	6 09	GCC		aaa Lys	•	CAG Gln	0, *	GTG Val		aaa Lys
	ATG Met		GCC	110	CAA Gln		GGA Gly	220	AGG Arg		CCA AAA GTG ATC GGA AAT GAC 7A Pro Lys Val Ile Gly Asn Asp
				• •							ZA

	WO 92	2/14748								PC	T/US92/01300
	·	TTT ATT Phe Ile>	430	AAC AAA Asn Lys>		CTT TGT Leu (Cys>	540 %	* * & & & & & & & & & & & & & & & & & &		G GTC t Val>	A GTT e Val>
•	0.	* CCÀ Pro	k	AAA AAC AAA Lys Asn Lys	480	TCA CTT Ser Leu		* TCC TGG GAC Ser Trp Asp)	590	GGC ATG) FAC ATA Fyr ile
•	370	A TCT CCA g Ser Pro	. 0 *	3 AAC AAA 1 Asn Lys		GTG Val	530			GCT Ala	640 * ATG TAC Met Tyr
		TAC AGA Tyr Arg	420	ACT GAG Thr Glu				* AAC AGA ATT Asn Arg Ile	580	AGC TAT Ser Tyr	630 * CAG TCT ATT ATG TAC ATA GTT Gln Ser Ile Met Tyr Ile Val
	360	GAT Asp		ATT Ile	470	TCA AAT CTC Ser Asn Leu	520	GGT Gly		ATC Ile	630 * CAG TV Gln S
		GTT CAA Val Gln	410	GTC GTG TAC Val Val Tyr			τυ	CCT GAT Pro Asp	570	TAC ATG Tyr Met	AGT TAC Ser Tyr
	350			GTC G	460	TCC		GTT CO	'n		
		AT GTC Yr Val	400	AT GGA IS GIY		C 666	510	A TTT g Phe		T CCC AGC e Pro Ser	GAT
	340	TCG GTC ATT TAT GTC TAT Ser Val 11e Tyr Val Tyr		GAC CAA CAT GGA Asp Gln His Gly	450	ACT GTG GTG ATT CCA TGT CTC Thr Val Val Ile Pro Cys Leu		GCA AGA TAC CCA GAA AAG AGA Ala Arg Tyr Pro Glu Lys Arg	560	AGC AAG AAG GGC TTT ACT ATT Ser Lys Lys Gly Phe Thr Ile	600 * TTC TGT GAA GCA AAA ATT AAT Phe Cys Glu Ala Lys Ile Asn
	36	G GTC r Val	0*	AGT GAC Ser Asp		r cca e Pro	500	A GAA		TTT ?	610 * AAA A' Lys I
		SCC TC Ala Se	390	str AG	440	TG AT		AC CC	550	AG GGC ys Gly	AA GCA lu Ala
	330	GAC TTG GCC Asp Leu Ala		GCT TCT GTT Ala Ser Val	4	GTG G	490	AGA T		AAG A Lys L	600 * TGT G Cys G
•		GAC	380	GCI		ACT	4	GCA Ala		AGC Ser	TTC Phe

* AGG GTC Arg Val>

F16.7C

							lad				
700	* GGA ATT Gly Ile>		CTA Leu>	810	* AAG Lys>	10,	TTT & Phe>		ACC Thr>	0	* AGG GTC Arg Val>
7	GGA G1y		GAA Glu		CAT	098	AAA Lys		TAC ACC Tyr Thr	970	* AGG GTC Arg Val:
	CAT H1s	750	ACT		CAG Gln	8	AAG Lys	0.	rrg Leu		GTC
	CCG TCT Pro Ser		GCA AGA Ala Arg	800	CAT H1s		AGT GAG ATG AAG AAA Ser Glu Met Lys Lys	910	caa gga ttg Gln Gly Leu		rrr Phe
069	CCG Pro	;	GCA Ala	۵	TCG AAG CAT Ser Lys His	0 *	GAG Glu		CAA	096	ACA Thr
	CTG AGT (Leu Ser	740	AST CYS THE		TCG	850	AGT Ser		GAC		AGC
	CTG		Cys	0 *	TCT		GGG G1.y	006	AGT GAC Ser Asp	*	AAC A
680	GTG GTT Val Val	* *	AAI	790	CCT TCT Pro Ser		TCT Ser			950	
	GAT GTG Asp Val				TAC Tyr	840	CAG Gln		ACC CGG Thr Arg	6	AAG AAG Lys Lys
	GAT Asp	730	Val Leu		GAA Glu			890	_		ACC 1
029	TAT Tyr	راليل	Leu	780	TGG Trp		AAA ACC Lys Thr	©	GGT GTA Gly Val	0 *	ATG A
9	ATT Ile	200	Lys			830			GAT Asp	940	GGG CTG ATG ACC AAG AAG Gly Leu Met Thr Lys Lys
	AGG Arq	720			TTC AAC Phe Asn	8	GAC CTA Asp Leu	0 *	ATA Ile i		3GG (
	TAT Tyr	GGA G	Gly	770				88	ACT I		
* 099	GTT GTA GGG TAT Val Val Gly Tyr	710 * GAA CTA TCT GTT GGA	Val	7	ATT Ile	0 *	Asn		TTA ACT Leu Thr	930	rcc z
	GTA Val	710 * TCT	Ser		666 61y	820	GTA		ACC Thr 1	O,	CA 1
	GTT Val	CTA	Leu	0 *	GTG Val		Leu	870	AGC 1 Ser 1		SCA G
650	GTC Val	GAA	Glu Leu Ser Val Gly	760	AAT GTG GGG ATT GAC Asn Val Gly Ile Asp		AAA CIT GTA AAC CGA Lys Leu Val Asn Arg	_	TTG AGC ACC Leu Ser Thr	0 *	GT YS
•					• • •	•	7 17		 H	920	7C Cys Ala Ala Ser Ser
											~

CHECTITITE CHEET

-						11/2	1				
	GAA GCC Glu Ala>	1080	CCA CCC CCA Pro Pro Pro>		AAA Lys>	"/3	TAC	0	* TCT Ser>		GTG Val>
		• •	CCA CCC CCA Pro Pro Pro	1130	ACA ATT Thr Ile	3	* AAT Asn	1240	GTC		CCT
1020	GTG Val			11	ACA Thr	<u>0</u>	GGA G1y		GTG Val	1290	TCT
	rcr crc crc Ser Leu Val	1070	CTT GGT TAC Leu Gly Tyr		CAC	1180	AGA GAC ACA GGA Arg Asp Thr Gly		CAT H1s	77	ATC Ile
	TCT	H	GGT G1y	20,	* Aat Asn		GAC Asp	1230	AGC Ser		CTA
1010	GGC ATG GAA TCT CTG GTG Gly Met Glu Ser Leu Val		CTT	1120	CCC CTT GAG TCC AAT Pro Leu Glu Ser Asn			1-3	AAG CAG AGC CAT GTG GTC TCT Lys Gln Ser His Val Val Ser	1280	TCT
Ħ	ATG Met	60	TAC		GAG Glu	1170	GTG AGT GAA Val Ser Glu		AAG Lys	12	aaa Lys
		1060	AAG Lys		CTT	• •	AGT	1220	AAG GAG Lys Glu		GAG Glu
1000	AGT		GCG	1110	CCC		GTG Val	13	TCA AAG GAG Ser Lys Glu	2 *	GGT Gly
10	GCT TTT GGA AGT Ala Phe Gly Ser		GTC AGA ATC CCT GCG AAG TAC Val Arg Ile Pro Ala Lys Tyr	••	GGA ATA CCC CTT GAG Gly Ile Pro Leu Glu	1160	ATT ATG GAA Ile Met Glu		TCA	1270	CCA CCC CAG ATT GGT GAG AAA TCT Pro Pro Gln Ile Gly Glu Lys Ser
	TTT	1050	ATC 11e			Ħ	ATG Met	<u>0</u> *	CCC ATT Pro 11e		CAG Gln
	GCT		AGA Arg	1100	AAA AAT Lys Asn		ATT Ile	1210			CCC Pro
066 *	GTT			H	aaa Lys	020	ACG Thr		AAT Asn	1260	CCA
	CCT TTT Pro Phe	1040	GGG GAG CGT Gly Glu Arg		TAT	1150	CTG		ACC Thr	-	GTC Val
	CCT		GAG Glu	06	GAA ATA AAA TGG Glu Ile Lys Trp		CAT GTA CTG His Val Leu	1200	CTT		CTG GTT GTG TAT Leu Val Val Tyr
980	aaa Lys	•	666 61y	1090 *	aaa Lys		CAT His		ATC Ile	1250	GTG Val
	CAT GAA AAA His Glu Lys	30	ACG GTG Thr Val		ATA Ile	1140	GCG GGG Ala Gly		ACT GTC ATC CTT Thr Val 11e Leu	12	GTT Val
	CAT H1s	1030	Thr		GAA Glu	• •	GCG Ala	1190	ACT Thr		CTG Leu
			<i>:</i>					1			70
											1

	WO 92/14748				73.000 40	
					PCI/U	JS92/01300
	1350 * TAT GCC ATT Tyr Ala Ile>	1400 * C GCC AAC S Ala Asn>	1440 1450 AAC CCA TAC CCT TGT GAA GAA TGG AGA ASn Pro Tyr Pro Cys Glu Glu Trp Arg>	1510 + c/c/	1540 1550 1560 ACT GTA AGT ACC CTT GTT ATC CAA GCG GCA Thr Val Ser Thr Leu Val Ile Gln Ala Ala>	1610 1620 * AAA GTC GGG AGA GGA GAG Lys Val Gly Arg Gly Glu>
•	1340 * CG GTC TAT hr Val Ty1	GAG TG Glu Cy	1450 * CCT TGT GAA GAA Pro Cys Glu Glu	AAA AAT Lys Asn	1560 * ' ATC CAA Ile Gln	1610 * C GGG AGA 1 Gly Arg
	rgr A	1390 * ; GAG GAA	CCT TGI Pro Cys	1500 * GAA GTT AAT Glu Val Asn	1550 * ACC CTT GTT Thr Leu Val	1 AAA GTC Lys Val
· · · · · · · · · · · · · · · · · · ·	1330 5 CTG ACA :	CAG TTG	1440 * AAC CCA TAC ASN Pro Tyr		1 AGT ACC Ser Thr	1570 1580 1590 1600 *
	r caa acg	1380 * 5 TAT TGG 7 TYF TFP	430 * ACA Thr	AAT AA Asn Ly	1540 ACT GTA	GAA GCG
	1300 1310 1320 * GAT TCC TAC CAG TAC GGC ACC ACT ASP Ser Tyr Gln Tyr Gly Thr Thr	CCT CCC CCG CAT CAC ATC CAC TGG Pro Pro Pro His His Ile His Trp		60 1470 1480 * * * * * * * * * * * * * * * * * * *	* AAC AAA ASn Lys	1590 * AAA TGT Lys Cys
	1310 * AG TAC GGC ln Tyr Gly	CAC ATC His Ile	1410 1420 * * GAG CCC AGC CAA GCT GTC TCA Glu Pro Ser Gln Ala Val Ser	TTC CAG Phe Gln	1530 * * GAA GGA AAA AAC Glu Gly Lys Asn	1580 * T TTG TAC a Leu Tyr
	1.3 TAC CAG Tyr Gln	1360 * CCG CAT Pro His	AGC CAA Ser Gln	1470 * GAG GAC Glu Asp	1520 * 'A ATT GAA	1: TCA GCT Ser Ala
	1300 * GAT TCC ASP Ser	CCT CCC Pro Pro	1410 * GAG CCC Glu Pro	1460 * AGT GTG Ser Val	1520 1530 * * * GCT CTA ATT GAA GGA AAA AAC AAA Ala Leu Ile Glu Gly Lys Asn Lys	1570 * * AAT GTG ASN Val
				∺		. 7E

CAA GAC AGG AAG Gln Asp Arg Lys>

^		A	13/28	_	
GAC Asp>	AGA TCT Arg Ser>	1780 * ATC CAT Ile His>		1890 * ' AAG Lys>	AAG Lys>
1670 * A CCT n Pro		1780 * ATC CJ Ile H	aaa Lys	CTT	1940 * C AGG P Arg
1670 * TTG CAA CCT Leu Gln Pro	1720 * GCA GAC Ala Asp	1780 * CTG CCA ATC CAT Leu Pro Ile H1s	1830 * TGG Trp	1890 * GAG CTT AAG Glu Leu Lys	1940 * GAC AGG ASP ATG
TTG		CTG	1830 * ACT CTT TGG AAA TTG Thr Leu Trp Lys Leu	1880 * C ATG e Met	CAA
50 * ACT Thr	ACT	1770 * CCT Pro	ACT	18 ATC Ile	0 * GCT Ala
1660 * ATT A(1710 * TCT TTG TGG TGC ACT Ser Leu Trp Cys Thr	1770 * CCA CAG CCT Pro Gln Pro		TTG	1930 * CTT GCT Leu Ala
GAA Glu	1710 * TGG Trp		18 TTG Leu	0 * ATT Ile	TGC
CCT	1 TTG Leu	1760 * T GGC u Gly	AAC Asn	1870 * GAC A: Asp I:	GTC Val
1650 ACC AGG GGT CCT GAA ATT ACT Thr Arg Gly Pro Glu Ile Thr		1760 * AAG CTT GGC Lys Leu Gly	1800 1810 1820 * TTG CCC ACA CCT GTT TGC AAG AAC TTG GAT Leu Pro Thr Pro Val Cys Lys Asn Leu Asp	1870 ACA AAT GAC ATT TTG ATC ATG Thr Asn Asp Ile Leu Ile Met	1900 1910 1920 1930 1940 * GCA TCC TTG CAG GAC CAA GGA GAC TAT GTC TGC CTT GCT CAA GAC AGG Ala Ser Leu Gln Asp Gln Gly Asp Tyr Val Cys Leu Ala Gln Asp Arg
AGG	0 1700 CAG GAG AGC GTG Gln Glu Ser Val		1810 TGC AV	ACA Thr	1 GAC ASP
ACC Thr	17 AGC Ser	50 * TAC Tyr	GTT Val		GGA Gly
1640 * CAC GTG H1s Val	GAG Glu	1750 * TGG TJ Trp T	CCT	* AAT ASD	1910 * CC CAA ip Gln
1 CAC His	90 * CAG Gln	ACA	1800 * : ACA	TCT Ser	19 GAC ASP
1630 AGG GTG ATC TCC TTC Arg Val Ile Ser Phe	1690 * GAG C	1740 1750 * TTT GAG AAC CTC ACA TGG TAC Phe Glu Asn Leu Thr Trp Tyr	CCC Pro	1850 * G TTC t Phe	1910 * CAG GAC CAA GGA GAC TAT Gln Asp Gln Gly Asp Tyr
30 + TCC Ser	1680 * ATG CAG CCC ACT Met Gln Pro Thr	1740 * AAC Asn	TTG	1850 ACC ATG TTC Thr Met Phe	0 * TTG Leu
1630 * ATC TU Ile Su	CCC	GAG Glu	1790 * 'A GAG 'Y Glu	ACC Thr	1900 * TCC TTG Ser Leu
GTG Val	1680 * CAG Gln	TTT	66 61	10 * GCC Ala	GCA
AGG	ATG	1730 * ACG Thr	GTG Val	1840 * * AAT GCC ACC ATG Asn Ala Thr Met	* AAT Asn
		•			لد

F16. 76

1	۱- ۵		^		. ^	15/29	5 ^		^	^
0;	ATT 11e>		GCC	2430	GAA Glu>		GAA Glu>		66c 61y>	90 * ACA Thr>
2320			CGG GCC Arg Ala>	. ~	gat Asp	2480			TTT Phe	259 AGG Arg
	AIT CTA GTA GGC ACG ACG GTG Ile Leu Val Gly Thr Thr Val	2370	AAG		CCA	20	AGC AAA TGG Ser Lys Trp	30	CGT GGT GCC Arg Gly Ala	TGC
			GTT	2420	GAT Asp		AGC	2530	GGT G1y	ACT Thr
2310	66C 61V		ACC GTT Thr Val	24	ATG GAT Met Asp	2*	GCC Ala		GGC CGT GGT GCC Gly Arg Gly Ala	2580 * ACA GCA ACT Thr Ala Thr
	Leu Glu Ile Ile Leu Val Gly	2360	ATC CTA GGG ACC GTT Ile Leu Gly Thr Val		GTC	2470	GAT Asp		GGC G1y	2 ACA Thr
	Leu	2	ATC CTA Ile Leu	0] *	ATC Ile		TAT Tyr	2520		AAG
2300	Ile			2410	TCC ATC Ser Ile		CCT TAT Pro Tyr	N	CCT	
2	Ile	\$0 *	ATC 11e		TTG	2460	CTG		AAG Lys	2570 * ATT GAC Ile Asp
<u>ب</u> الا	Glu Ile Ile	2350	GTC ATC Val 11e		TAC TTG Tyr Leu	8	CGA	2510		25 GGA ATT Gly Ile
2290 *	Glo		CTT	2400	66C 61y		GAA Glu	25	CTA	
22	Leu		CTA CTT CTT Leu Leu Leu	••	AAG ACA GGC TAC TTG Lys Thr Gly Tyr Leu	2450	CAT TGT His Cys		AAC Asn	2560 * GCC TTT Ala Phe
נא מ מ		2340	CTA		aag Lys	. 57	CAT His	0 *	CTG	GAT
	Thr		TGG	2390	CTG Leu		GAA Glu	2500		
2280 *	Lys		TTC	2	GAA Glu	으 *	GAT Asp		GAC CGG Asp Arg	2550 * GAA
ממט	G1 u	2330	TTC		666 61y	2440	TTG		AGA Arg	2 ATT Ile
170 2280 * * GCC CAG GAA AAG ACG	Ala Gin Giu Lys Thr	2:	GCC ATG TTC TTC TGG Ala Met Phe Phe Trp	۰ * ۵	AAT GGA GGG GAA CTG Asn Gly Gly Glu Leu		CTC CCA TTG GAT GAA Leu Pro Leu Asp Glu	2490	TTC CCC AGA GAC CGG Phe Pro Arg Asp Arg	GAG Glu
2270 * GCC	Ala		GCC	2380	AAT Asn		CTC Leu	2	TTC	2540 2550 * CAA GAG ATT GAA GCA Gln Glu ile Glu Ala
(V			·							25 7H

F16. 7H

GTA GCA GTC AAA ATG TTG AAA GAA GGA GCA ACA CAC AGT GAG CAT CGA GCT CTC Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg Ala Leu> ATG TCT GAA CTC AAG ATC CTC ATT CAT ATT GGT CAC CAT CTC AAT GTG GTC AAC Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His His Leu Asn Val Val Asn> CTT CTA GGT GCC TGT ACC AAG CCA GGA GGG CCA CTC ATG GTG ATT GTG GAA TTC Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu Met Val Ile Val Glu Phe> TGC AAA TTT GGA AAC CTG TCC ACT TAC CTG AGG AGC AAG AGA AAT GAA TTT GTC Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu Arg Ser Lys Arg Asn Glu Phe Val> Pro Tyr Lys Thr Lys Gly Ala Arg Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala> ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA IIe Pro Val Asp Leu Lys Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser> CCC TAC AAG ACC AAA GGG GCA CGA TTC CGT CAA GGG AAA GAC TAC GTT GGA GCA

2970 *	u Glu Glu> 3020	* TGT TAC Cys Tyr>	ATC CAC	3130 * AAA ATC Lys Ile>	3180 * TAT GTC AGA AAA Tyr Val Arg Lys>	3240 * TTT GAC AGA Phe Asp Arg>
2960 * T GTA GAA GAA	sp Val Glu Glu 3010 3	G CAT CTC ATC U His Leu Ile	3070 * TCG CGA AAG TGT ATC CAC Ser Arg Lys Cys Ile His>	3120 * 5 AAC GTG GTT 5 ASn Val Val	GAT Asp	3230 * ACA ATT Thr Ile
2950 * CC CTC AGT GA	er Leu Ser As 30 3	GAC TTC CTG ACC TTG GAG CAT CTC ATC TGT TAC ASP Phe Leu Thr Leu Glu His Leu Ile Cys Tyr:	3060 * IC TTG GCA TCO	3110 * 'A TCG GAG AAC	3170 * T AAA GAT CCA r Lys Asp Pro	3220 * TGG ATG GCC CCA GAA Trp Met Ala Pro Glu
2940 2950 2960 2970 * GTG GAG GAG TCC CTC AGT GAT GTA GAA GAG GAA	Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Glu> 2990 3000 3020	TAT AAG GAC TIC CTG ACC TTG GAG CAT CTC ATC TGT TAC Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr>	10 3050 3060 3070 * * * * * * * * * * * * * * * * * * *	3100 AT ATC CTC TT Sn lle Leu Le	3160 * CGG GAT ATT TAT Arg Asp Ile Tyr	3210 * CCT TTG AAA TGG AT Pro Leu Lys Trp Me
1			~ 1	180 3120 3100 3110 3120 ** AGG GAC CTG GCG GCA CGA AAT ATC CTC TTA TCG GAG AAG AAC GTG GTT ATG ASP Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Lys Asn Val Val	3140 3150 3160 3170 * TGT GAC TTT GGC TTG GCC CGG GAT ATT TAT AAA GAT CCA Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp Pro	3200 * GC CTC CCT TO Arg Leu Pro Le
2920 2930 * CCC AGC TCT GGA TTT	2980 2980	GCT CCT GAA GAT CTG Ala Pro Glu Asp Leu	3030 30 * AGC TTC CAA GTG GCT Ser Phe Gln Val Ala	3080 * AGG GAC CTG Arg Asp Leu	3140 * TGT GAC TTT GGC TTG GCC Cys Asp Phe Gly Leu Ala	3190 * GGA GAT GCT CGC CTC Gly Asp Ala Arg Leu
				(7)		77

3250 3260 3270 3270 3320 3320 3320 3320 3320 3320 3320 3320 3320 3320 3330 3330 3330 3330 3330 3330 3340 3340 3340 3420 3420 3430 3430 3420 3430 3430 3420 3430 3540	3280 * GGT GTT TTG CTG TGG GAA ATA Gly Val Leu Leu Trp Glu Ile>	3330 * GGG GTA AAG ATT GAT GAA GAA TTT TGT Gly Val Lys Ile Asp Glu Glu Phe Cys>	3390 3400 * * CCT GAT TAT ACT ACA CCA GAA Pro Asp Tyr Thr Thr Pro Glu>	3440 3450 4	3490 3500 3510 * * CTC TTG CAA GCT AAT GCT CAG CAG Leu Leu Gln Ala Asn Ala Gln Gln>	3550 * TCA GAG ACT TTG AGC ATG GAA GAG Ser Glu Thr Leu Ser Met Glu Glu>
3250 TAC ACA ATC CAG TYT Thr 11e Gln 3300 3310 ATC TTA GGT GCT Ser Leu Gly Ala 3410 3410 3410 3410 3470 A TAC CAG ACC ATG TYT Gln Thr Met TYT Gln Thr Met 3520 TCA GAG TTG GTG Ser Glu Leu Val 3520 GGC AAA GAC TAC GGL AAA GAC TAC GGL AAA GAC TAC GGL AAA GAC TAC		3320 CCA TAT CCT Pro Tyr Pro	3370 * ACT AGA Ihr Arg	GAC TGC Asp Cys	3480 * CAT TTG GGA AAT His Leu Gly Asn	30 * GTT CTT CCG ATA Val Leu Pro Ile
GTG Val Val 3350 AGG Arg	rc cAG	3300 * TTT TCC TTA GGT GCT TC Phe Ser Leu Gly Ala Se	3360 3 CGA TTG AAA GAA 3 Arg Leu Lys Glu	3 3 ACC ATG 1 Thr Met		AC TAC SP Tyr

GAT Asp

_			19/2	ર્	
GAG GAA Glu Glu>	3670 * TAT CTG Tyr Leu>	3720 * * AGT GTA AAA ACA TTT GAA GAT ATC Ser Val Lys Thr Phe Glu Asp Ile>	3780 * A A A C CAG ACG GAC AGT A A A SP ASP GIN Thr ASP Ser	TTA	GCA TCT Ala Ser>
GAG Glu		GAT Asp	GAC	3830 * C AAA r Lys	GCA
3610 * TGT ATG GAG GAG Cys Met Glu Glu	CAG Gln	3720 * GAA Glu	ACG	38 ACC Thr	30 * GTG Val
3610 * GAG G Glu G	AGT	TTT	3770 * IC CAG in Gln	aga Arg	3880 * TCT G
ATG Met	3660 * ATC Ile	ACA Thr	37 AAC Asn	:0 * GAC ASP	GAG Glu
3590 3600 3610 CCT ACC TCA CCT GTT TCC TGT ATG GAG GAG Pro Thr Ser Pro Val Ser Cys Met Glu Glu	3660 * GCA GGA ATC AGT CAG Ala Gly Ile Ser Gln	3710 * A AAA 1 Lys	3760 3770 * CCA GAT GAC AAC CAG Pro Asp Asp Gln	3830 GAG CTG AAA ACT TTG GAA GAC AGA ACC AAA Glu Leu Lys Thr Leu Glu Asp Arg Thr Lys	AGG Arg
3600 * TCC Ser	GCA Ala	37 GTA Val	io * Gat Asp	TTG	3870 * AGC Ser
GTT	3650 * C ACA n Thr	AGT Ser	3760 * CCA GAT Pro Asp	ACT	3 AAA Lys
CCT	3650 * GAC AAC ACA ASP ASN Thr	00 * GrG Val	ATC Ile	381Q * AAA Lys	AGC
3590 * C TCA r Ser		3700 * CGG CCT GTG Arg Pro Val	GTA Val	3 CTG Leu	3860 * G CCC 1 Pro
3. ACC Thr	3640 * CAT TAT His Tyr	3700 * CGG CCT GTG Arg Pro Val	1750 * AAA Lys	GAG	3860 4 GTG CCC Val Pro
		AGC	GTA Val	3800 * TCA GAA Ser Glu	ATG Met
80 * CTG Leu	TTC	3690 * AAG Lys	GAA Glu	38 TCA Ser	50 * GGA ATG Gly Met
3580 * TCT C	aaa Lys			GCC	3850 * GGT G
3570 358 GAT TCT GGA CTC TCT ASP Ser Gly Leu Ser	3630 * GAC CCC Asp Pro	3680 * CAG AAC AGT AAG CGA Gln Asn Ser Lys Arg	3730 3740 * CCG TTA GAA GAA CCA Pro Leu Glu Glu Pro		TTT Phe
GGA G1y	GAC Asp	3680 * C AGT n Ser	GAA	3790 * GTT C' Val L	TCT Ser
3570 * TCT Ser	TGT	3680 * CAG AAC AGT Gln Asn Ser	30 * TTA Leu	ATG Met	3840 * TCT CCA TCT TTT Ser Pro Ser Phe
GAT	3620 * GTA Val	CAG G1n	3730 * CCG T' Pro L	GGT G1y	3 TCT Ser
	Ю				ب

	•		A	29/28	,		
01	* ACA Thr		ATT Ile>	4 050 4 050	ACA Thr>		
3940	GAC Asp		GAG Glu	4.	ACC Thr		
	GAT Asp	3990	ATA Ile		666 G1y		
	TCC	(*)	CTG	4040	CCT GAC ACG GGG ACC ACA Pro Asp Thr Gly Thr Thr		
3930	CAC		AAG Lys	4(GAC A sp		
(*)	TAC CAG TCC GGA TAT CAC TCC GAT GAC ACA Tyr Gln Ser Gly Tyr His Ser Asp Asp Thr>	3980	TCC AGT GAG GAA GCA GAA CTT TTA AAG CTG ATA GAG ATT Ser Ser Glu Glu Ala Glu Leu Leu Lys Leu Ile Glu Ile>				
	GGA G1y	36	CTT	30	AGC ACA GCC CAG ATT CTC CAG Ser Thr Ala Gln Ile Leu Gln		
3920	TCC		GAA Glu	4030	CTC		
3	CAG Gln	2 *	GCA		ATT Ile		
	TAC	3970	GAA Glu		CAG Gln		
0 *	ACA AGC GGC Thr Ser Gly		GAG Glu	4020	GCC Ala		
3910	AGC		AGT	•	ACA Thr	4070	GTT TAA
	ACA Thr	3960	TCC		AGC	4(GTT
	CAG Gln	(*)	GTG TAC Val Tyr	4010	GGT Gly		CCT
3900 *	GGC TCA AAC CAG Gly Ser Asn Gln		GTG Val	4	CAA ACC GGT Gln Thr Gly	60	CCT
.,	TCA	3950	ACC Thr		CAA Gln	4060	TCT
	GGC G1y	36	GAC ACC ACC Asp Thr Thr	4000	GGA GTG Gly Val		CTG AGC TCT CCT CCT Leu Ser Ser Pro Pro
3890	GAA Glu		GAC Asp	40	GGA G1y		CTG

F 16.

21/28

1013 AKGMEFLASRKCIHRDLAARNILLSEKNVVKICDFGLARDIYKDPDYVRKGD

KDR

	•		
DIKY*D	\sim	PDGF	
DLDKEDGRPL	741	CSF1	
D-KRRSVRIGSYIERDVTD	3	ckit	
EEEEEAPEDLYKDF	987	KDR	
		PDGF	
	069	CSF1	
	9	ckit	
ARFROGKDYVGAIPVDLKRRLDSIT-SSOSSASSGFVFFKSIchy	4	KDR	
*	\sim	PDGF	
*1*0*1*	639	CSF1	
	4	ckit	
HIGHHINVVNLLGACTKPGGPLMVIVEFCKFGNI,STYL.RSKRNFFVDVK#WC	891	KDR	
	57	PDGF	
C * A * * * * * * * * * * * * * * * * *	587	CSF1	
T	59	ckit	
* * * * PLGRGAFGQEIEADAFGIDKTATCRTVAVKMI,KEGATHSEHDALMSELVTTT	839	KDR	
Σ	52	PDGF	
6 LLY*YKQKPKYQVRWKIIESYEGNSYTFIDPTO***NE-*****NN*OF**	53	CSF1	
	54	ckit	
1 GTVKRANGGELKTGYLSIVMDPDELPLDEHCERLPYDASKWEFPRDRINI	787	KDR	

-***A*; *Q**A*; *N**D*;		KMI***F**LS*EHAPA***DI*KT**DAD*LK***KQIVCLIEKQISEST KLV*D*YQ*AQ*AFAPKNI*SI*QA**AL**TH****QQICSF*QEQAQEDR NAI*R*Y**AQ*AHASD*I*EI*QK**EEKFET**P**Q**LL*ER**GEGY	QQDGKDYIVLPISETLSMEEDSGLSLPTSPVSCMEEEEVCDPKFHYDNTAGI NHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV RERDYTNLPSSSRSGG*GSSS*E*EEESSSEHLTCC*QGDIAQPLLQPNNYQ KKKYQQVDEEFLRSDHPAILR*QARF*GIHSLRSPLDTSSVLYTAVQPNESD	SQYLQNSKRKSRPVSVKTFEDIPLEEPEVKVIPDDNQTDSGMVLASEELKTL FC	ND*IIPLPDPKPD*ADEGLPEGSPSLASSTLNEVNTSSTISCDSPL*LQEEP	EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSFL
· ~	CSF1 828 CSF1 814 PDGF 831	とまに	<u>KDR</u> 1169 ckit 932 CSF1 914 PDGF 934	121 96	PDGF 987	KDR 1273 PDGF1039

KDR 1325 ELLKLIEIGVQTGSTAQILQPDTGTTLSSPPV F16.9B

IDENTIFICATION OF kdp mRNA

FIG. 10

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

BAND 1_			
BAND 2_			_200
			_97
			_ 69
			_46
BAND 3_			_ 30 _ 21
	1	2	

FIG. 14

INTERNATIONAL SEARCH REPORT

International Application No. PCT/USS2/01300

			mitamedula Application No.	PO1/0552/01300	
		ON OF SUBJECT MATTER (if sever		licate ell) ³	
IPC (S): C07K	stional Patent Classification (IPC) or to b 3/00, 13/00; C07R 21/00; C12 387; 536/27; 435/69.1, 70.1,	P 21/06. 21/02. 21/04: C12	¥ 15/00	
II. FIEL	DS SEAR				
<u> </u>			Imentation Searched 4		
Cleanificat	tion System		Classification Symbols		
U.S.	•	530/387; 536/27; 435/6	9.1, 70.1, 71.1, 320.1		
			d other then Minimum Documentati uments are included in the Fields Se	-·· k	
	DIALOG n terms	: type III receptor tyros	ine kinase		
III. DOCUMENTS CONSIDERED TO BE RELEVANT 14					
Category*	Citatio	n of Document, ¹⁶ with indication, where a	opropriate, of the relevant passages 17	Relevant to Claim No. 18	
Y,P Y K,P	Mathewisolathematolinkag docume Proc. A.F. identireacti Oncoge "Ident recept docume Oncoge novel modula	Natl. Acad. Sci., Volume Wilks, "Two putative pr fied by applicatin of on", pages 1603-1607, see ne, Volume 6, issued 199 ification of a new endothe or tyrosine kinase", pages	tyrosine kinase cDNA of enriched primitive biting close genetic 026-9030, see entire 86, Issued March 1989, otein-tyrosine kinases the polymerase chain entire document. 1, B.I. Terman et al., lial cell growth factor 1677-1683, see entire 8, M. Ruta et al., "A ene whose expression is cell differentiation",	1-17 1-17 1-17	
*Special categories of cited documents: 16 "A" document defining the general state of the art which is not considered to be of perfouter relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "V" document of perticular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family IV. CERTIFICATION Date of the Actual Completion of the International Search 13 MAY 1992					
		ng Authority ¹	Signature of Authorized Office		
ISA	/US		JUGO Spector	in a fux	

FURTHE	R INFORMATION CONTINUED FROM THE SECOND SHEET	
A Y	Oncogene, volume 5, issued 1990, M. Shibuya et al., "Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.	1-17
Y	Proc. Natl. Acad. Sci., Volume 85, Issued May 1988, R.G.K. Gronwald et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class", pages 3435-3439, see entire document.	
v. □ os	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹	
	stional search report has not been established in respect of certain claims under Article 17(2) (a) for	the following researc:
	im numbers _, because they relate to subject matter (1) not required to be searched by this Author	
	-	
	•	
2. 🔲 Clair	n numbers , because they relate to perte of the international application that do not comply with th	
pre	ecribed requirements to such an extent that no meaningful international search can be carried out (1)	, specimenty:
3. Cain	n numbers ,, because they are dependent claims not drafted in accordance with the second and thin CT Rule 6.44s).	d sentences
	SERVATIONS WHERE UNITY OF INVENTION IS LACKING ²	
	xional Searching Authority found multiple inventions in this international application as follows: ms 1-9 and 14-17, drawn to nucleic acids and expression thereof	. Class 536,
	a 27 and Class A15, subclass 59.1.	1
II. Cla 387.	ims 10-13, drawn to an isolated growth factor receptor. Class	330, 5201255
1. 図 45 4	I required additional search fees were timely paid by the applicant, this international search report of	overs all searchable
— cleir	ns of the international appacazon. (Telephone Practice)	i
2. As or	nly some of the required additional search fees were timely paid by the applicant, this international a those claims of the international application for which fees were paid, specifically claims:	MEGI INNI WAR
•		İ
	•	
3. No m	quired additional eserch fees were timely paid by the applicant. Consequently, this international se- oled to the invention first mentioned in the claims; it is covered by claim numbers:	sen report #
		A A A A A A A A A A A A A A A A A A A
4. Age	i searchable claims could be searched without effort justifying an additional fee, the international Se twite payment of any additional fee.	BEEN AUCHORRY DIG
Remark on	• •	
The	additional search fees were accompanied by applicant's protest.	
☐ No p	rotast accompanied the payment of additional search feet.	į

•

		international Application No. PC1	7000270 1300
-	III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
	Category*	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No. 18
	Y	Proc. Natl. Acad. Sci., Volume 86, Issued November 1989, M. Streuli et al., "A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila", pages 8698-8702, see entire document.	1-14
•	Y	M.A. Innes et al., PCR Protocols, a guide to methods and applications, published 1990 by Academic Press (N.Y.), see page 10.	15, 16
:			
į		į	
		:	
ļ			
·		·	
4 7			
			į
	l		
	•		
• . •		į	
	į		
		·	
•			
		İ	:
	1		
Į	Form Borra	5A/210 (extra sheet)(May 1986) &	
'		and to form a manifestal 10001 B	