IKI10400 • Struktur Data & Algoritma: *Graph*

Fakultas Ilmu Komputer • Universitas Indonesia

Slide acknowledgments:
Suryana Setiawan, Ade Azurat, Denny, Ruli Manurung, Tisha Melia,
Clara Vania

Materi

- Motivasi
- Definisi dan Istilah
- Representasi Graph
- Algoritma mencari shortest path
- Topological Sort
- Minimum spanning tree
 - Prim's Algoritma
 - Kruskal's Algoritma

Penggunaan Graph

- Jaringan
- Peta
 - Mencari jalur terpendek
- Penjadwalan (Perencanaan Proyek)

Definisi

- Sebuah graph G = (V, E) terdiri dari:
 - V: kumpulan simpul (vertices/nodes)
 - E: kumpulan sisi/busur (edge) yang menghubungkan simpul-simpul.

• Sebuah sisi e = (a, b) memiliki informasi dua simpul yang dihubungkannya.

$$V = \{a,b,c,d,e\}$$

Istilah

- undirected graph
- directed graph
- adjacent vertices: adalah simpul-simpul yang dihubungkan oleh sebuah sisi (edge)
- degree (of a vertex): adalah jumlah simpul lain yang terhubung langsung melalui sebuah sisi.
 - Untuk kategori directed graph
 - in-degree
 - out-degree

Weighted Graph

weighted graph: setiap sisi memiliki bobot/nilai.

$$(V_0, V_1, 2), (V_0, V_3, 1), (V_1, V_3, 3), (V_1, V_4, 10)$$

 $(V_3, V_4, 2), (V_3, V_6, 4), (V_3, V_5, 8), (V_3, V_2, 2)$
 $(V_2, V_0, 4), (V_2, V_5, 5), (V_4, V_6, 6), (V_6, V_5, 1)$

■ |V| = 7; |E| = 12

Istilah

- Jalur/path: urutan simpul (vertices) $v_1, v_2, ... v_k$ sedemikian sehingga simpul yang berurutan v_i dan v_{i+1} adalah simpul yang terhubung.
- simple path: tidak ada simpul yang diulang.
- cycle: simple path, dengan catatan simpul awal sama dengan simpul akhir

DAG (Directed Acyclic Graph): Graph dengan busur/sisi yang memiliki arah dan tidak memiliki cycles.

Istilah

 connected graph: tiap simpul terhubung dengan simpul lain

 subgraph: bagian simpul dan sisi yang dapat membentuk graph

Representasi

Representasi: Edge List

- Struktur edge list hanya menyimpan simpul dan sisi dalam sebuah list yang tidak terurut.
- Pada tiap sisi disimpan informasi simpul yang terhubung oleh sisi tersebut.
- mudah diimplementasikan.
- Tidak efisien dalam keperluan mencari sisi bila diketahui simpulnya.

Edge List: Representation

```
class Node
{
   String label;
}

Node from;
Node to;
String label;
int weight;
}
```

```
class Graph
{
  List<Edge> edgeList;
}
```


Representasi: Adjancency List (traditional)

- Adjacency list dari sebuah vertex v adalah sekumpulan vertex yang terhubung dengan v
- Merepresentasikan graph, dengan menyimpan daftar adjacency lists dari seluruh vertex.
- struktur adjacency list dapat digabungkan dengan struktur edge list.

Adjacency List: Representation

```
class Node
{
   String label;
}
```

```
class AdjacencyList
{
   Node node
   List<Edge> adjacent;
}
```

```
class Edge
{
  Node from;
  Node to;
  String label;
  int weight;
}
```

```
class Graph
{
  List<AdjacencyList> adjacencyLists;
}
```


Adjacency List: Representation (alt.)

```
class Node
{
   String label;
}

Node from;
Node to;
String label;
Int weight;
}
```

```
class Graph
{
   Map<Node, List<Edge>> adjacencyLists;
}
```


Representasi: Adjacency Matrix (traditional)

- matrix M dengan eleman setiap pasang simpul
 - M[i,j] = true artinya ada sisi dari simpul (i,j) di graph.
 - M[i,j] = false artinya tidak ada sisi dari simpul (i,j) di graph.

Representation: Adjancency Matrix

	0	1	2	3	4	5	6
0	Ø	Ø	NW 35	Ø	DL 247	Ø	Ø
1	Ø	Ø	Ø	AA 49	Ø	DL 335	Ø
2	Ø	AA 1387	Ø	Ø	AA 903	Ø	TW 45
3	Ø	Ø	Ø	Ø	Ø	UA 120	Ø
4	Ø	AA 523	Ø	AA 411	Ø	Ø	Ø
5	Ø	UA 877	Ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	Ø	Ø	Ø	Ø

BOS DFW JFK LAX MIA ORD SFO 1 2 3 4 5 6

Representation: Adjancency Matrix

```
class Node
{
   String label;
}
```

```
class Edge
{
   String label;
   int weight;
}
```

```
class Graph
{
  List<Node> nodeList;
  Edge[][] adjacencyMatrix;
}
```

see the other slides

GRAPH TRAVERSAL

GRAPH ALGORITHMS

Shortest Path:

- Vertex awal: V₂
- Bila sisi tidak memiliki bobot, gunakan algoritma BFS (Breadth First Search).

Dijkstra's Algorithm

- Banyak masalah

 weighted graph (mis: jaringan transport)
- Algoritma Dijkstra menghitung jarak tiap simpul dari simpul awal hingga akhirnya diketahui jarak terpendek simpul akhir yang diinginkan.
- Algoritma mengingat simpul mana saja yang telah dihitung jarak terpendeknya dan dinyatakan dalam kelompok hijau (pada literatur dinyatakan sebagai awan putih/white cloud).
- Untuk simpul yang baru sebagian dihitung jaraknya dan belum bisa dipastikan apakah itu jarak terpendek, dinyatakan dengan kelompok abu-abu.
- Untuk simpul yang sama sekali belum dihitung, dinyatakan dalam kelompok hitam.

Dijkstra's Algorithm

- Algoritma menggunakan label D[v] untuk menyimpan perkiraan jarak terpendek antara s dan v.
- Ketika sebuah simpul v ditambahkan kedalam kelompok aba-abu nilai D[v] sama dengan bobot antara s dan v.
- pada awalnya, nilai label D untuk setiap simpul adalah:
 - -D[s]=0
 - $-D[v] = \infty$ untuk $v \neq s$

Awal: Tentukan simpul awal.

Expanding the White Cloud

- Setiap penambahan simpul, kita harus uji apakah jalur melalui u lebih baik.
- Misalkan u adalah sebuah simpul yang tidak berada di kelompok hijau, tapi sudah diketahui jarak terpendeknya dari s
 - tambahkan u ke dalam kelompok hijau
 - hitung jarak simpul lain dengan algoritma berikut:

```
Untuk tiap simpul z yang terhubung ke u lakukan:
```

```
jika z tidak di kelompok hijau maka
if D[u] + bobot(u,z) < D[z] then
D[z] = D[u] + bobot(u,z)</pre>
```


• setelah V_2 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung ke V_2

- Tambahkan ke dalam kelompok hijau simpul pada kelompok abu-abu yang memiliki nilai D[V] minimum.
- Pada contoh adalah simpul V₃

• Setelah V_3 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_3 . Simpul-simpul tersebut menjadi kelompok abu-abu.

 Pilih dari kelompok abu-abu, simpul yang memiliki nilai D[V] paling minimum dan tambahkan pada kelompok hijau.

• Setelah V_4 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_4 . Simpul-simpul tersebut menjadi kelompok abu-abu.

 Pilih dari kelompok abu-abu, simpul yang memiliki nilai D[V] paling minimum dan tambahkan pada kelompok hijau.

• Setelah V_4 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_4 . Simpul-simpul tersebut menjadi kelompok abuabu.

- Pilih dari kelompok abu-abu, simpul yang memiliki nilai D[V] paling minimum dan tambahkan pada kelompok hijau.
- Setelah V_5 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_5 . Simpul-simpul tersebut menjadi kelompok abu-abu.

- Pilih dari kelompok abu-abu, simpul yang memiliki nilai D[V] paling minimum dan tambahkan pada kelompok hijau.
- Setelah V_6 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_{6} .

- Pilih dari kelompok abu-abu, simpul yang memiliki nilai D[V] paling minimum dan tambahkan pada kelompok hijau.
- Setelah V_1 ditambahkan ke kelompok hijau, hitung $D[V_x]$ untuk setiap V_x yang terhubung dengan V_1

Latihan

• Tentukan jarak minimum dari verteks O ke setiap verteks pada graph!

Jawaban

Variasi shortest path problem

Negative-weighted Shortest-path

All-Pair Shortest Path: Floyd

- Sebuah topological sort mengurutkan simpul-simpul dari sebuah directed acyclic graph (DAG) sedemikian hingga jika ada lintasan di dalam graf dari u ke v, maka u akan muncul sebelum v di dalam urutan tersebut.
- Setiap DAG memiliki minimal satu topological sort.
- Sebuah graph yang memiliki cycle, tidak memiliki topological sort, karena untuk simpul u dan v dalam cycle, maka akan ada lintasan dari u ke v, dan dari v ke u, sehingga setiap urutan simpul yang dibentuk pasti akan kontradiksi dengan salah satu dari lintasan tersebut.
- Contoh permasalahan:
 - Urutan pengerjaan proyek bangunan
 - Urutan pengambilan mata kuliah (dengan informasi prasyarat)

Topological Sorting: Algoritma

- Mulai dari sebuah simpul dengan in-degree = 0 (Tidak ada panah/sisi yang menuju simpul tersebut.)
- buang semua sisi yang berasal dari simpul tersebut.
- Sesuaikan nilai in-degree simpul lain-nya.

Latihan

 Lakukan topological sorting pada graph berikut ini, apabila ada pilihan node yang memiliki indegree 0, pilih berdasarkan urutan alfabet.

Jawaban

• Urutan pengerjaan:

$$-A-B-F-C-G-E-D$$

Minimum Spanning Tree (MST)

- Adalah sebuah struktur tree yang terbentuk dari graph, dimana sisi-sisi yang menghubungkan setiap simpul memiliki nilai total paling kecil.
- "Spanning tree" T = (V,F) dari graph G adalah graph dengan verteks yang sama dengan G dan memiliki |V|-1 buah edges, yang membentuk sebuah tree.
- Nilai total dari sebuah spanning tree, adalah jumlah total bobot tiap sisi dalam tree tersebut.
- Penerapan:
 - Mencari jumlah biaya kabel paling minimum untuk menghubungkan sebuah kelompok perumahan atau perkotaan.
 - Mencari biaya minimum terendah untuk menghubungkan jaringan komputer.
 - Mencari biaya produksi total terendah untuk pengerjaan proyek.

Minimum Spanning Tree (MST)

Minimum Spanning Tree: a graph

Minimum Spanning Tree

- mulai dari sebuah simpul
- bangun tree dengan menambahkan sebuah sisi/busur satu persatu.
 - secara berulang pilih sisi terkecil yang dapat menyambung tree.
- greedy algorithms:
 - Pilihan langkah diambil berdasarkan pilihan terbaik secara local tanpa memperhatikan pengaruhnya secara global.

V	known	d_V	p _V
V ₁	0	0	0
V ₂	0	∞	0
V ₃	0	∞	0
V ₄	0	∞	0
V ₅	0	∞	0
V ₆	0	∞	0
V ₇	0	∞	0

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	0	2	V_1
V_3	0	4	V_1
V_4	0	1	V_1
V_{5}	0	∞	0
V_6	0	∞	0
V ₇	0	∞	0

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	0	2	V_{1}
V_3	0	2	$V_{_4}$
V_4	1	1	V_{1}
V_{5}	0	7	$V_{_4}$
V_6	0	8	V_4
V_7	0	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	0	2	$V_{_4}$
V_4	1	1	V_{1}
V_{5}	0	7	$V_{_4}$
V_6	0	8	V_4
V_7	0	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	1	2	$V_{_4}$
V_4	1	1	V ₁
V_{5}	0	7	V_4
V_6	0	5	V_3
V_7	0	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	1	2	$V_{_4}$
V_4	1	1	V_1
V_{5}	0	6	V_7
V_6	0	1	V ₇
V ₇	1	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	1	2	$V_{_4}$
V_4	1	1	V ₁
V_{5}	0	6	V_7
V_6	1	1	V ₇
V ₇	1	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	1	2	$V_{_4}$
V_4	1	1	V_1
V_{5}	1	6	V_7
$\mathbf{V}_{\mathbf{e}}^{\mathbf{e}}$	1	1	V ₇
V ₇	1	4	V_4

V	known	d_v	\mathbf{p}_{v}
V_1	1	0	0
V_2	1	2	V_1
V_3	1	2	$V_{_4}$
V_4	1	1	V_1
V_{5}	1	6	V_7
V_6	1	1	V ₇
V ₇	1	4	V_4

- Dari sebuah graph G = (V, E), buatlah graph baru T dengan verteks yang sama dengan G namun belum memiliki edges.
- List semua edges yang terdapat pada G, urutkan berdasarkan bobot, dari yang terkecil hingga yang terbesar
- Lakukan iterasi untuk setiap edge secara terurut. Untuk setiap edge (v,u):
 - Jika u dan v tidak terhubung oleh suatu path pada T, tambahkan (u,v) ke dalam T, atau dengan kata lain tambahkan edge ke dalam graph T apabila tidak menimbulkan cycle.

Iterasi dilakukan hingga semua verteks terhubung (jumlah edge = jumlah verteks – 1)

- Pemeriksaan cycle dapat menggunakan struktur data "Union-Find Disjoint Sets"
- Graph T yang terbentuk merupakan MST dari graph G.

Weight	Action
1	-
1	-
2	-
2	_
3	-
4	-
4	-
5	_
6	-
	1 2 2 3 4 4 5

Edge	Weight	Action
(V_1, V_4)	1	Α
(V_6, V_7)	1	-
(V_1, V_2)	2	-
(V_{3}, V_{4})	2	_
(V_2, V_4)	3	_
(V_1, V_3)	4	_
(V_4, V_7)	4	_
(V_3, V_6)	5	_
(V_5, V_7)	6	_
· J. //	•	

Edge	Weight	Action
(V_1, V_4)	1	Α
(V_6, V_7)	1	Α
(V_1, V_2)	2	-
(V_3, V_4)	2	_
(V_2, V_4)	3	-
(V_1, V_3)	4	-
(V_4, V_7)	4	-
(V_3, V_6)	5	_
(V_5, V_7)	6	-

Edge	Weight	Action
(V_1, V_4)	1	Α
(V_6, V_7)	1	Α
(V_1, V_2)	2	Α
(V_3, V_4)	2	_
(V_2, V_4)	3	_
(V_1, V_3)	4	_
(V_4, V_7)	4	_
(V_3, V_6)	5	_
(V_5, V_7)	6	-

Edge	Weight	Action
(V_1, V_4)	1	Α
(V_6, V_7)	1	Α
(V_1, V_2)	2	A
(V_3, V_4)	2	Α
(V_2, V_4)	3	_
(V_1, V_3)	4	-
(V_4, V_7)	4	_
(V_3, V_6)	5	_
(V_5, V_7)	6	-

Weight	Action
1	Α
1	Α
2	Α
2	Α
3	R
4	R
4	Α
5	-
6	-
	1 1 2 2 3 4 4 5

Kruskal's Algorithm

Edge	Weight	Action
(V1, V4)	1	Α
(V6, V7)	1	Α
(V1, V2)	2	Α
(V3, V4)	2	Α
(V2, V4)	3	R
(V1, V3)	4	R
(V4, V7)	4	Α
(V3, V6)	5	R
(V5, V7)	6	Α

Kruskal's Algorithm

Edge	Weight	Action
(V1, V4)	1	Α
(V6, V7)	1	Α
(V1, V2)	2	Α
(V3, V4)	2	Α
(V2, V4)	3	R
(V1, V3)	4	R
(V4, V7)	4	Α
(V3, V6)	5	R
(V5, V7)	6	Α

Latihan

 Gambarkan minimum spanning tree yang terbentuk dari graph berikut beserta total bobot minimum yang dicapai.
 Gunakan Prim's dan Kruskal algorithm!

Jawaban

figure 14.6

The basic item stored in an adjacency list


```
// Represents a vertex in the graph.
   class Vertex
 3
       public String
                        name; // Vertex name
       public List<Edge> adj; // Adjacent vertices
       public double dist; // Cost
       public Vertex
                        prev; // Previous vertex on shortest path
                        scratch;// Extra variable used in algorithm
       public int
       public Vertex( String nm )
10
         { name = nm; adj = new LinkedList<Edge>(); reset(); }
11
12
       public void reset( )
13
        { dist = Graph.INFINITY; prev = null; pos = null; scratch = 0; }
14
15 }
```

figure 14.7

The Vertex class stores information for each vertex

figure 14.12

A recursive routine for printing the shortest path


```
// Represents an entry in the priority queue for Dijkstra's algorithm.
   class Path implements Comparable < Path>
 3
       public Vertex
                         dest;
                                // w
                         cost: // d(w)
       public double
       public Path( Vertex d, double c )
           dest = d;
           cost = c;
10
11
12
       public int compareTo( Path rhs )
13
14
           double otherCost = rhs.cost;
15
16
           return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;
17
18
19 }
```

figure 14.26

Basic item stored in the priority queue


```
/**
        * Single-source weighted shortest-path algorithm.
 2
 3
       public void dijkstra( String startName )
 5
           PriorityQueue<Path> pq = new PriorityQueue<Path>( );
 7
           Vertex start = vertexMap.get( startName );
           if( start == null )
 9
                throw new NoSuchElementException( "Start vertex not found" );
10
11
           clearAll( );
12
           pq.add( new Path( start, 0 ) ); start.dist = 0;
13
14
           int nodesSeen = 0;
15
           while( !pq.isEmpty( ) && nodesSeen < vertexMap.size( ) )</pre>
16
17
                Path vrec = pq.remove();
18
                Vertex v = vrec.dest:
19
               if( v.scratch != 0 ) // already processed v
20
                    continue;
21
22
                v.scratch = 1;
23
                nodesSeen++;
24
25
26
               for( Edge e : v.adj )
27
28
                    Vertex w = e.dest;
                    double cvw = e.cost;
29
30
                    if(cvw < 0)
31
                        throw new GraphException( "Graph has negative edges" );
32
33
                    if( w.dist > v.dist + cvw )
34
35
                        w.dist = v.dist + cvw;
36
                        w.prev = v;
37
                        pq.add( new Path( w, w.dist ) );
38
39
                }
40
41
       }
42
```


A positive-weighted, shortest-path algorithm: Dijkstra's algorithm

Extra material

UNION FIND DISJOINT SET

Union-Find Disjoint Sets

- Can support two types of operations efficiently
 - find(x): returns the "representative" of the set that x belongs
 - union(x, y): merges two sets that contain x and y
- Both operations can be done in (essentially) constant time
- Simple and short implementation!
- Applications:
 - track connected components of an undirected graph
 - used for implementing Kruskal's algorithm to find the minimum spanning tree of a graph.
 - connecting an edge from two connected vertices will create a cycle

Data Structure

- Main idea: represent each set by a rooted tree
 - Every node maintains a link to its parent
 - initially, each node points to itself
 - A root node is the "representative" of the corresponding set
 - Example: two sets {x, y, z} and {a, b, c, d}

Implementation

- find(x): follow the links from x until a node points itself (the representative node)
 - This can take O(n) time but we will make it faster
 - Path compression
 - The shape of the tree is not important as long as the root stays the same
 - After find(x) returns the root, backtrack to x and reroute all the links to the root
- union(x, y): run find(x) and find(y) to find corresponding root nodes and direct one to the other
 - Another improvement: Union by rank: attach the smaller tree to the larger tree

Path Compression

Initially

After calling findSet (8)

Java Implementation

```
public class UnionFindDisjointSet
    private int parent[];
    public UnionFindDisjointSet (int size) {
        parent = new int[size];
        for (int ii = 0; ii < size; ii++) {
            parent[ii] = ii;
    public int findSet (int i) {
        if (parent[i] == i) {
            return i;
        } else {
            return parent[i] = findSet (parent[i]); // path compression
    public void unionSet (int i, int j) {
        parent[findSet (i)] = findSet (j);
    public boolean isSameSet (int i, int j) {
        return findSet (i) == findSet (j);
```