SSD Mobilenet

Object detection in embedded applications.

Overview

- SSD
- SSD vs YOLO
- Mobilenet
- SSD with Mobilenet
- Applications

SSD

- Object detection method
- Single DNN
- Discretizes output space of bounding boxes
- Default boxes with different aspect ratios
- Scales per feature map location
- Generate scores for each object in each default box
- Combines predictions from multiple feature maps with varying resolutions.

SSD Vs YOLO

SSD	Yolo
Provides more aspect ratios. Hence wraps around object more tightly.	Predefined grid cell's aspect ratio is fixed.
Adds more convolutional layers for detection.	Uses two fully connected layers instead.
Detects objects in multiple scales better.	Multiple scale object detection is possible.

SSD Vs Yolo

SSD Architecture

Detector + Classifier

Default boxes

confidence

SSD Detection Process

MobileNets

•model for mobile and embedded vision applications.

Definition

- Backbone Architecture Mobile Nets
- Class of efficient models
- Proposed by Google
- Designed specifically for mobile and embedded vision applications.

Classifier

MOBILENET

- Based on a streamlined architecture
- Uses depthwise separable convolutions
- Build light weight deep neural networks

Depth wise Separable Convolution Layer

- Replaces the standard convolution with a two-step operation.
- Each Df x Df filter is only in charge of filtering a single depth of the input feature map
- Point wise convolution: A simple 1 x 1 convolution layer that is used for combining channel information.

DSC steps

Convolution & DSC

Comparison

Convolution

CONVOIULION			
3 x 3 conv layer	16 input channels	32 output channels	
32 3x3 kernels	Each input channel is traversed.	16 x 32 feature maps	
Merge one feature map By adding them up.	Out of every input channel	Done 32 times. ->>> 32 output channels	
Pocult	16 v 32 v 3 v 3	> 1608 parameters	

Result------ 16 x 32 x 3 x 3 parameters

----->>4608 parameters

DSC

Result---->>

3 x 3 conv layer	16 input channels	32 output channels
1 3x3 kernel	Each input channel is traversed.	16 feature maps

16x3x3 + 16x32x1x1

parameters

----Before Merging---
32 1x1 convolution

Each of feature map is traversed.

32 feature maps
----->>656 parameters

Filter Comparison

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1 × 1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Parameter and Cost

Layer	Parameter Size	Computation Cost
Standard	$F \times F \times C_1 \times C_2$	$F \times F \times D_M \times D_M \times$
Conv		$C_1 \times C_2$
Depthwise	$F \times F \times C_1 + 1 \times$	$F \times F \times D_M \times D_M \times$
Separable	$1 \times C_1 \times C_2$	$C_1+1\times1\times C_1\times C_2$

Reduction of parameters and cost

The reduction of computation cost is therefore:

$$\frac{F \times F \times D_M \times D_M \times C_1 + C_1 \times C_2 \times D_N \times D_N}{F \times F \times D_M \times D_M \times C_1 \times C_2 \times D_N} = \frac{1}{N} + \frac{1}{F^2} \tag{1}$$

And hence the parameter reduction:

$$\frac{F \times F \times C_1 + 1 \times 1 \times C_1 \times C_2}{F \times F \times C_1 \times C_2} = \frac{1}{C_2} + \frac{1}{F^2} \tag{2}$$

Mobile net with DSC module

A DSC module

Mobilenet classifier

Mobile net classifier accuracy

cited from the Google paper [11]

Model	Dataset	Accuracy
		(Top-1)
MobileNets-Full	ImageNet	70.5%
VGG16	ImageNet	71.5%
MobileNets-Full	Customized VOC	69.8%
MobileNets-Small	Customized VOC	67.6%

Classifier + Detector

SSD with Mobile net

SSD Mobilenet

- Mobile first object detection model
- Maximize accuracy
- Restricted resources
- Low power
- Low latency
- Small

SSD Mobile net Architecture

COCO object detection results comparison using different frameworks and network architectures. mAP is reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95)

Framework Resolution	Model	mAP	Billion Mult-Adds	Million Parameters
	deeplab-VGG	21.1%	34.9	33.1
SSD 300	Inception V2	22.0%	3.8	13.7
	MobileNet	19.3%	1.2	6.8
Faster-RCNN	VGG	22.9%	64.3	138.5
300	Inception V2	15.4%	118.2	13.3
	MobileNet	16.4%	25.2	6.1
Faster-RCNN	VGG	25.7%	149.6	138.5
600	Inception V2	21.9%	129.6	13.3
	Mobilenet	19.8%	30.5	6.1

SSD Mobilenet Detection Example in Tf detect android app

Tf Detect(Object Detection in Android OS)

Comparison of different models

Type of model	Size on disk	Detection speed	mAP
Yolo2-full	269.9MB	Out of memory	76.8
Yolo2-tiny	60.5MB	0.487fps	57.1
Yolo2-full eight-bit	64.4MB	0.153fps	61.3
Yolo2-tiny eight-bit	15.2MB	0.343fps	49.8
Temporal Detection	4.4MB	2.566fps	*
Mobile-Det	27.5MB	0.712fps	41.9

Thank You!