

Class: Machine Learning

Convolutional Neural Networks

Instructor: Matteo Leonetti

Learning outcomes

- Describe the main elements of a Convolutional Neural Network (CNN)
- Compute the convolution between a filter and an image
- Assemble an architecture for a CNN

What is the convolution?

$$f(x)*g(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau$$

Filter application

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	0	1	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

1		

1	1	1
0	0	1
0	0	1

Filter application

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	0	0	0	1	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

1	1		

1	1	1
0	0	1
0	0	1

Filter application

	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	1	1	1	1	1	0
x =	0	1	0	0	0	1	0
	0	1	1	1	1	1	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

$$w = \begin{array}{c|cccc} & 1 & 1 & 1 \\ & 0 & 0 & 1 \\ \hline & 0 & 0 & 1 \end{array} + w_0$$

1	1	1	1	0
1	1	1	2	0
3	4	4	5	2
2	2	1	2	1
2	3	3	3	2

$$= \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

The filter can be implemented with a neuron!

However, the input is not "static" because the filter is slid across the image

Padding

	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	0	0
x =	0	0	1	0	0	0	1	0	0
	0	0	1	1	1	1	1	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

	0	0	0	0	0	0	0
	1	1	1	1	1	0	
•		1	1	1	2	0	
		3	4	4	5	2	
		2	2	1	2	1	
		2	3	3	3	2	

The application of the filter would reduce the size of the image. This can be prevented by padding the image, typically with zeros.

$$w = \begin{array}{c|cccc} 1 & 1 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 0 & 1 \end{array}$$

Stride

	U	U	U	U	U	U	U
	0	0	0	0	0	0	0
	0	1	1	1	1	1	0
x =	0	1	0	0	0	1	0
	0	1	1	1	1	1	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

1	1	0
3	4	2
2	3	2

The stride can be more than 1, which downsamples the image.

$$w = \begin{array}{c|cccc} 1 & 1 & 1 \\ \hline 0 & 0 & 1 \\ \hline 0 & 0 & 1 \end{array}$$

Clearly not all strides are possible. For instance in this image 2 is ok, but 3 would not work.

Images and filters

Architecture

Rectified Linear Units (ReLUs)

$$o(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

(Max) Pooling

1	1	1	1
1	1	1	2
3	4	4	5
2	2	1	2

Max pooling is the most common way to downsample the image, in order to focus on higher-level patterns.

From convolutional to MLP

Convolutional Neural Network

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Architectures

AlexNet Krizhevsky et al. in 2012

60 million parameters

Architectures

VGG16 Simonyan and Zisserman 2014

138 million parameters

Architectures

5 million parameters, then revised with 23 million parameters

Conclusion

Learning outcomes

- Describe the main elements of a Convolutional Neural Network (CNN)
- Compute the convolution between a filter and an image
- Assemble an architecture for a CNN