Out[2]

Importing necessary libraries:

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Dataset:

In [2]: proj1=pd.read_csv("Los_Angeles_International_Airport_-_Passenger_Traffic_By_
proj1

]:		DataExtractDate	ReportPeriod	Terminal	Arrival_Departure	Domestic_Internation
	0	05/10/2021 06:01:09 AM	04/01/2021 12:00:00 AM	T1	Departure	Dome
	1	05/03/2021 03:08:02 PM	03/01/2021 12:00:00 AM	T5	Departure	Dome
	2	05/27/2021 03:16:34 PM	04/01/2021 12:00:00 AM	Т5	Departure	Dome
	3	07/10/2021 06:01:27 AM	06/01/2021 12:00:00 AM	Т6	Arrival	Internati
	4	05/10/2021 06:01:09 AM	04/01/2021 12:00:00 AM	Т8	Arrival	Dome
	•••		•••	•••		
	7878	11/18/2023 05:28:20 AM	10/01/2023 12:00:00 AM	TBIT	Arrival	Internati
	7879	11/14/2023 05:28:19 AM	10/01/2023 12:00:00 AM	TBIT West Gates	Arrival	Internati
	7880	11/15/2023 05:28:26 AM	10/01/2023 12:00:00 AM	TBIT	Departure	Dome
	7881	11/15/2023 05:28:26 AM	10/01/2023 12:00:00 AM	T2	Arrival	Dome
	7882	11/15/2023 05:28:26 AM	10/01/2023 12:00:00 AM	T4	Arrival	Internati

7883 rows × 6 columns

Exploring the data:

In [3]: proj1.head()

Out[3]:	Data	ExtractDate	ReportPeriod	Terminal	Arrival_Departure	Domestic_International
	0	05/10/2021 06:01:09 AM	04/01/2021 12:00:00 AM	T1	Departure	Domestic
	1	05/03/2021 03:08:02 PM	03/01/2021 12:00:00 AM	T5	Departure	Domestic
	2	05/27/2021 03:16:34 PM	04/01/2021 12:00:00 AM	T5	Departure	Domestic
	3	07/10/2021 06:01:27 AM	06/01/2021 12:00:00 AM	Т6	Arrival	International
	4	05/10/2021 06:01:09 AM	04/01/2021 12:00:00 AM	Т8	Arrival	Domestic
In [4]:	proj1.	dtypes				
Out[4]:	Report Termin Arriva Domest Passen		obje obje obje ional obje int	ect ect ect		
In [5]:	proj1.	describe()				
Out[5]:		Passenger_C	ount			
	count	7883.000	0000			
	mean	150115.12	5079			
	std	152305.478	3195			
	min	0.000	0000			
	25%	19849.500	0000			
	50%	97231.000	0000			
	75%	259746.500	0000			

Data Cleaning:

max

Checking for missing values:

908951.000000

In [6]: proj1.isnull().sum()

```
Out[6]: DataExtractDate 0
ReportPeriod 0
Terminal 0
Arrival_Departure 0
Domestic_International 0
Passenger_Count 0
dtype: int64
```

Converting to date and time:

```
In [7]: proj1['DataExtractDate'] = pd.to_datetime(proj1['DataExtractDate'])
         # Create new columns for date and time
         proj1['EXDate'] = proj1['DataExtractDate'].dt.date
         proj1['EXTime'] = proj1['DataExtractDate'].dt.time
In [8]: proj1['ReportPeriod'] = pd.to datetime(proj1['ReportPeriod'], format='%m/%d/
         # Create a new column for date
         proj1['RPTDate'] = proj1['ReportPeriod'].dt.date
In [9]:
        proj1.head()
Out[9]:
            DataExtractDate ReportPeriod Terminal Arrival_Departure Domestic_International
                 2021-05-10
         0
                              2021-04-01
                                                T1
                                                            Departure
                                                                                   Domestic
                   06:01:09
                2021-05-03
         1
                              2021-03-01
                                               T5
                                                            Departure
                                                                                   Domestic
                   15:08:02
                 2021-05-27
         2
                              2021-04-01
                                               T5
                                                           Departure
                                                                                   Domestic
                   15:16:34
                 2021-07-10
         3
                              2021-06-01
                                                T6
                                                              Arrival
                                                                                International
                   06:01:27
                 2021-05-10
                              2021-04-01
                                               T8
                                                              Arrival
                                                                                   Domestic
                   06:01:09
```

Converting columns to appropriate data types:

Out[12]:		DataExtractDate	ReportPeriod	Terminal	Arrival_Departure	Domestic_Internation
	0	2021-05-10 06:01:09	2021-04-01	T1	Departure	Dome
	1	2021-05-03 15:08:02	2021-03-01	T5	Departure	Dome
	2	2021-05-27 15:16:34	2021-04-01	T5	Departure	Dome
	3	2021-07-10 06:01:27	2021-06-01	Т6	Arrival	Internati
	4	2021-05-10 06:01:09	2021-04-01	Т8	Arrival	Dome
	•••		•••	•••		
	7878	2023-11-18 05:28:20	2023-10-01	TBIT	Arrival	Internati
	7879	2023-11-14 05:28:19	2023-10-01	TBIT_WG	Arrival	Internati
	7880	2023-11-15 05:28:26	2023-10-01	TBIT	Departure	Dome
	7881	2023-11-15 05:28:26	2023-10-01	T2	Arrival	Dome
	7882	2023-11-15 05:28:26	2023-10-01	Т4	Arrival	Internati

7097 rows × 9 columns

Dropping the missing values and duplicates:

```
In [13]: proj1 = proj1.dropna()
    proj1 = proj1.drop_duplicates()
In [14]: proj1.head()
```

Out[14]:	Dat	aExtractDate	ReportPeriod	Terminal	Arrival_Departure	Domestic_International	
	0	2021-05-10 06:01:09	2021-04-01	T1	Departure	Domestic	
	1	2021-05-03 15:08:02	2021-03-01	Т5	Departure	Domestic	
	2	2021-05-27 15:16:34	2021-04-01	Т5	Departure	Domestic	
	3	2021-07-10 06:01:27	2021-06-01	Т6	Arrival	International	
	4	2021-05-10 06:01:09	2021-04-01	Т8	Arrival	Domestic	
In [15]:	proj1.	columns					
Out[15]:	<pre>Index(['DataExtractDate', 'ReportPeriod', 'Terminal', 'Arrival_Departure',</pre>						
In [16]:	ture', 'Domestic_Inte						
	<pre>average_counts_df = pd.pivot_table(average_passenger_count, values='Passeng</pre>						
<pre>average_counts_df.columns = ['_'.join(col).strip() for col in ave</pre>							
	averag	ge_counts_df					

Out[16]:		Arrival_Domestic	Arrival_International	Departure_Domestic	Departure_Inte
	Terminal				
	T1	354044.378505	0.000000	352428.593458	329:
	T2	132597.121495	131873.090909	131786.630841	13735
	Т3	231852.354167	17026.396226	226932.729167	3503
	T4	344668.018692	29768.300493	336670.509346	4288
	Т5	290258.443925	28740.522472	296076.771028	26274
	Т6	232399.327103	24997.601896	228366.733645	5140

48606.201878

3570.039326

463822.528037

152050.766667

260751.584112

124034.727700

27219.680851

63863.766667

T7

T8

TBIT

TBIT_WG

254699.471963

125758.380282

10769.109827

65220.900000

36930

705(

40090

14400

Exploratory Data analysis (EDA):

1. Average Arrival Passenger Count by Terminal:

```
In [17]: terminal_order = ['T1', 'T2', 'T3', 'T4', 'T5', 'T6', 'T7', 'T8', 'TBIT', 'T
    average_arrival_counts = proj1[proj1['Arrival_Departure'] == 'Arrival'].grounts.grounts.plot(kind='bar', ax=ax, color='#f5a455')

ax.set_xlabel('Terminal')
    ax.set_ylabel('Average Arrival Passenger Count')
    ax.set_title('Average Arrival Passenger Count by Terminal')
    plt.grid(True)
    plt.xticks(rotation=45, ha='right')
    plt.show()
```



```
In [18]: average_arrival_counts = proj1[proj1['Arrival_Departure'] == 'Arrival'].grou
    average_arrival_counts_sorted = average_arrival_counts.sort_values(ascending
    fig, ax = plt.subplots(figsize=(8, 4))
    average_arrival_counts_sorted.plot(kind='bar', ax=ax, color='#f5a455')

ax.set_xlabel('Terminal')
    ax.set_ylabel('Average Arrival Passenger Count')
    ax.set_title('Average Arrival Passenger Count by Terminal')
    plt.grid(True)
```

```
plt.xticks(rotation=45, ha='right')
plt.show()
```


2. Average Departure Passenger Count by Terminal:

```
In [19]: average_departure_counts = proj1[proj1['Arrival_Departure'] == 'Departure'].

fig, ax = plt.subplots(figsize=(8, 4))

average_departure_counts.plot(kind='bar', ax=ax, color='#4b89d9')

ax.set_xlabel('Terminal')
 ax.set_ylabel('Average Departure Passenger Count')
 ax.set_title('Average Departure Passenger Count by Terminal')

plt.xticks(rotation=45, ha='right')
 plt.grid(True)
 plt.show()
```


3. Average Counts Based on Arrival/Departure and Terminal:

```
In [20]: average_counts = proj1.groupby(['Terminal', 'Arrival_Departure'])['Passenger
    fig, ax = plt.subplots(figsize=(14, 8))
    bars = average_counts.plot(kind='bar', stacked=True, width=0.8, ax=ax, alpha
    ax.set_xlabel('Terminal')
    ax.set_ylabel('Average Passenger Count')
    ax.set_title('Average Passenger Count by Arrival/Departure and Terminal', for
    ax.legend(title='Arrival/Departure')

for bar in bars.patches:
    width, height = bar.get_width(), bar.get_height()
    x, y = bar.get_xy()
    ax.annotate(f'{height:.1f}', (x + width/2, y + height/2), ha='center', v

plt.xticks(rotation=45, ha='right')
    plt.grid(True)

plt.show()
```


4. Distribution of Passengers between Domestic and International Flights:

```
In [21]: passenger_distribution = proj1.groupby('Domestic_International')['Passenger_
fig, ax = plt.subplots()
    ax.pie(passenger_distribution, labels=passenger_distribution.index, autopct=
    ax.set_title('Distribution of Passengers - Domestic vs International')
    plt.show()
```

Distribution of Passengers - Domestic vs International

5. Overall Peak times at LAX:

```
In [22]: proj1['Hour'] = proj1['DataExtractDate'].dt.hour
    average_hourly_counts = proj1.groupby('Hour')['Passenger_Count'].mean()
    plt.figure(figsize=(12, 6))
    average_hourly_counts.plot(marker='o', linestyle='-', color='skyblue')
    plt.title('Average Passenger Count by Hour at LAX')
    plt.xlabel('Hour of the Day')
    plt.ylabel('Average Passenger Count')
    plt.grid(True, linestyle = '--')
    plt.show()
```


6. Peak times for domestic and international flights:

```
In [23]:
    plt.figure(figsize=(12, 6))
    domestic_data = proj1[proj1['Domestic_International'] == 'Domestic']
    domestic_hourly_counts = domestic_data.groupby('Hour')['Passenger_Count'].me
    domestic_hourly_counts.plot(marker='o', linestyle='-', color='#ce4b5a', labe

international_data = proj1[proj1['Domestic_International'] == 'International
    international_hourly_counts = international_data.groupby('Hour')['Passenger_
    international_hourly_counts.plot(marker='o', linestyle='-', color='orange',

    plt.title('Average Passenger Count by Hour at LAX - Domestic vs Internationa
    plt.xlabel('Hour of the Day')
    plt.ylabel('Average Passenger Count')

plt.legend()
    plt.grid(True, linestyle = '--')

plt.show()
```


7. Total Passenger Count by Terminal with Busiest Terminal Highlighted:

Busiest Terminal: TBIT

Statistical Analysis:

Chi-square test to assess the independence of the Terminal and Arrival/Departure:

```
In [26]: from scipy.stats import chi2_contingency
    terminal_arrival_contingency = pd.crosstab(proj1['Terminal'], proj1['Arrival chi2_stat, p_value, _, _ = chi2_contingency(terminal_arrival_contingency)

if p_value < 0.05:
    print("The Terminal and Arrival/Departure are not independent.")
    else:
        print("There is no significant relationship between Terminal and Arrival</pre>
```

There is no significant relationship between Terminal and Arrival/Departure categories.

ANOVA for Terminal Comparison:

```
In [27]: from scipy.stats import f_oneway
    terminals = proj1['Terminal'].unique()
    terminal_groups = [proj1[proj1['Terminal'] == terminal]['Passenger_Count'] f
    f_stat, p_value = f_oneway(*terminal_groups)

if p_value < 0.05:
    print("There are significant differences in passenger counts among the telse:
    print("There are no significant differences in passenger counts among the terminals.

In []:

In []:</pre>
```