Problem 3

Suppose at time t = 0, we are given four zero-coupon bond prices $\{B_1, B_2, B_3, B_4\}$ that mature at times t = 1, 2, 3, 4. This forms the term structure of interest rates.

We also have one-period forward rates $\{f_0, f_1, f_2, f_3\}$ where each f_i is the rate contracted at time t = 0 on a loan that begins at time t = i and ends at time t = i + 1. In other words, if a borrower borrowns \$N at time t = i, he or she will pay back $N(1 + f_i)$ at time t = i + 1. The spot rate is denoted by r_i . Clearly, $r_0 = f_o$. The B_i and all forward loans are default free.

At each time period there are two possible states of the world, denoted by $\{u_i, d_i\}$ for i = 1, 2, 3, 4.

2 .87 .09 3 .82 .10	i	$\mathrm{B_{i}}$	f_{i-1}
3 .82 .10	1	.90	.08
0 .02 .10	2	.87	.09
4 .75 .18	3	.82	.10
	4	.75	.18

- (a) At time i = 0, how many possible states of the world are there at i = 3? There are $2^3 = 8$ possible states of the world at i = 3.
- (b) Form an arbitrage portfolio that will guarantee a positive payoff at time i = 0 and non-negative payoff at times $i \ge 1$.

An arbitrage portfolio that guarantees a postive payoff at time i = 0 and a non-negative payoff at time i = 1 would be purchasing the bond that matures at time i = 1 and lending money at f_0 . The cashflows from this strategy would be:

i	CF from B ₁	CF from Lending	Total
0	90	.93	.03
1	1	-1	0

(c) Given a default-free zero-coupon bond, B_n that matures at time t = n, and all the forward rates $\{f_0, \ldots, f_{n-1}\}$ obtain a formula that expresses B_n as a function of f_i .

$$B_n = \prod_{i=0}^{n-1} \frac{1}{1 + f_i}$$

(d) Consider the system below. Can the B_i be determined independently?

$$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ B_2^u & B_2^d \\ B_3^u & B_3^d \\ B_4^u & B_4^d \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$

No, all the B_i depend on the same underlying term structure.

(e) In the above system, can all the $\{f_i\}$ be determined independently?

No they cannot. The forward rates are defined recursively. So forward rates with longer time horizons depend on forward rates with shorter time horizons.

1