EXHIBIT 14

IN THE UNITED STATES DISTRICT COURT

SOUTHERN DISTRICT OF NEW YORK

CARNEGIE INSTITUTION OF WASHINGTON AND M7D CORPORATION,

Plaintiffs,

CASE NO: 20-CV-189 (JSR) vs.

PURE GROWN DIAMONDS, INC., and IIA TECHNOLOGIES PTE. LTD. d/b/a IIA TECHNOLOGIES,

Defendants.

CARNEGIE INSTITUTION OF WASHINGTON and M7D CORPORATION,

Plaintiffs,

CASE NO: 20-CV-200 (JSR) vs.

FENIX DIAMONDS, LLC,

Defendants.

The video deposition of YOGESH K. VOHRA, Ph.D., taken remotely via Zoom videoconference with the witness located in Washington, DC, on July 31, 2020, commencing at approximately 10:00 a.m. ET

Reported by:

L. ALAN PEACOCK, RDR, CRC, CCR

JOB NO. 48951

```
2
1
                    APPEARANCES
    ON BEHALF OF THE PLAINTIFFS CARNEGIE INSTITUTION OF
    WASHINGTON AND M7D CORPORATION:
 3
          PERKINS COIE LLP
          1155 Avenue of the Americas
          22nd Floor
         New York, New York 10036
          212-399-8057
         BY: SARAH E. FOWLER, ESQ.
              sfowler@perkinscoie.com
                       and
              JOSEPH W. RICIGLIANO, Ph.D.
              jricigliano@perkinscoie.com
9
10
    ON BEHALF OF THE DEFENDANT IIA TECHNOLOGIES PTE
    LIMITED AND PURE GROWN DIAMONDS, INC., IN THE 189
11
    MATTER:
12
         FINNEGAN, HENDERSON, FARABOW, GARRETT
          & DUNNER, LLP
          901 New York Avenue, NW
          Washington, DC 20001
14
          202-408-4000
         BY: J. PRESTON LONG, ESQ.
              j.preston.long@finnegan.com
16
    ON BEHALF OF THE DEFENDANT FENIX DIAMONDS, LLC, IN
17
    THE 200 CASE:
         LEYDIG, VOIT & MAYER, LTD.
18
          180 North Stetson Avenue
          Suite 4900
          Chicago, Illinois 60601
20
          312-616-5600
21
         BY: DAVID M. AIRAN, ESQ.
              dairan@leydig.com
22
                    and
              MAX B. SNOW, ESQ.
23
              msnow@leydig.com.
24
25
```

Vohra, Yogesh K.

July 31, 2020

		8
1	THE VIDEOGRAPHER: All right. And will	09:09:12
2	the court reporter now please swear in the	09:09:12
3	witness.	09:09:12
4	MR. AIRAN: There are more appearances.	09:09:12
5	This is David Airan on from Leydig, Voit &	09:09:12
6	Mayer on behalf of Fenix Diamonds, LLC, in	09:09:14
7	the 200 case. And with me is Max Snow, also of	09:09:17
8	Leydig Voit & Mayer, also representing Fenix	09:09:21
9	Diamonds, LLC.	09:09:25
10	MR. MELLON: Although you can't see me,	09:09:27
11	this is David Mellon, M-E-L-L-O-N, counsel for	09:09:27
12	Dr. Vohra.	09:09:32
13	THE VIDEOGRAPHER: Okay. Now, will the	09:09:40
14	court reporter please swear in the witness.	09:09:41
15	THE COURT REPORTER: My name is Alan	09:09:43
16	Peacock with Henderson Legal Services. I am an	09:09:43
17	Alabama Certified Court Reporter. My license	09:09:43
18	number is AL013, and my license is available	09:09:43
19	for inspection.	09:09:43
20	At this time, do all parties agree to	09:09:43
21	waive any objection now or in the future to the	09:09:43
22	reporter swearing in the witness remotely?	09:09:43
23	Please so indicate.	09:09:43
24	MR. LONG: No objection here.	09:09:43
25	MR. AIRAN: No objection on behalf of	09:09:43

		9
1	Fenix.	09:09:43
2	THE COURT REPORTER: Thank you.	09:09:43
3	I would ask the witness to please raise	09:09:43
4	your right hand and face the camera.	09:09:43
5	YOGESH K. VOHRA, PH.D.,	09:09:43
6	the witness, having been first duly sworn	09:09:43
7	to speak the truth, the whole truth, and nothing but	09:09:43
8	the truth, testified as follows:	09:09:43
9	EXAMINATION	09:09:43
10	BY MR. LONG:	09:10:32
11	Q. So let me first start, Dr. Vohra, by	09:10:33
12	saying thank you for being here today. There are	09:10:36
13	probably any number of things you would rather be	09:10:39
14	doing today; so for what it's worth, we appreciate	09:10:41
15	your time.	09:10:43
16	Is this your first deposition?	09:10:44
17	A. That's correct.	09:10:47
18	Q. Okay. So I just want to run through a few	09:10:49
19	guidelines to make sure everything goes smoothly. I	09:10:52
20	think that the court reporter has already mentioned	09:10:55
21	it's best if we don't talk over one another so that	09:10:57
22	the court reporter can take down our conversation	09:11:00
23	and there's no cross talk. Is that okay?	09:11:02
24	A. That's fine.	09:11:07
25	Q. From time to time, I probably will ask a	09:11:09

		167
1	degree of polycrystallinity mean?	02:23:08
2	A. I think this is a very general statement.	02:23:20
3	What it really means is that you have some	02:23:23
4	appearance of polycrystalline growth at the edges,	02:23:32
5	which can be a machine or laser cut to remove.	02:23:34
6	Q. Okay.	02:23:42
7	A. I think that's what it really means.	02:23:43
8	Because X-ray diffraction which is doing the rocking	02:23:48
9	curve can also measure the polycrystalline	02:23:53
10	diffraction pattern. And if you get your single,	02:23:54
11	that means you have some polycrystallinity in the	02:23:57
12	sample.	02:24:01
13	Q. Okay. Makes sense. Now, we can go to	02:24:06
14	Exhibit 10, which is that Dr. Yan paper you brought	02:24:09
15	up earlier.	02:24:15
16	Do you see the portion I highlighted here?	02:24:45
17	A. Yes.	02:24:55
18	Q. Can you explain what that's referring to?	02:24:57
19	A. I'll have to look at these Reference 9 and	02:25:37
20	13.	02:25:40
21	Q. I don't know if they're Attached as	02:25:47
22	exhibits, 9 and 13. No, they're not. But that's	02:25:50
23	okay. If you don't remember that's okay.	02:25:58
24	A. The other thing is that 9 and 13, I really	02:26:00
25	cannot say what are the indications of this.	02:26:03

		168
1	Q. Okay. What do you think would happen,	02:26:09
2	though if you're able to answer this without	02:26:15
3	looking at these references what would you expect	02:26:17
4	to happen if plasma concentrated at tips and edges?	02:26:21
5	A. Well, if we have a plasma concentration at	02:26:32
6	tips and edges, you get graphite growth at those	02:26:37
7	edges.	02:26:41
8	Q. Would that mean that the tips and edges	02:26:42
9	would be much hotter than the center?	02:26:44
10	A. Yes.	02:26:47
11	Q. Okay. And by "much hotter," much hotter	02:26:50
12	than 20 degrees Celsius?	02:26:53
13	A. If you have graphite nucleation at the	02:26:58
14	edges, you will get a lot of temperature range.	02:27:01
15	Q. Larger than 20 degrees Celsius?	02:27:06
16	A. Oh, yes.	02:27:09
17	Q. Is that what you're saying?	02:27:09
18	A. Yes.	02:27:11
19	Q. Okay. So now here I want to go to Fig. 1.	02:27:12
20	And I know this isn't are you familiar with this	02:27:20
21	picture?	02:27:29
22	A. Yes.	02:27:30
23	Q. Okay. So it's kind of a blurry picture.	02:27:33
24	And I was hoping you could explain what is being	02:27:41
25	shown on the right side and on the bottom. And,	02:27:44

		169
1	here, let me show you the caption first. The	02:27:52
2	caption is right here.	02:27:56
3	A. Yes. So basically it is a commercial	02:28:02
4	yellow diamond plate on the left. And we put it in	02:28:06
5	the plasma CVD reactor. And then it is enlarged	02:28:11
6	after the growth experiment. And the insert was at	02:28:18
7	the bottom is showing that you are beginning to form	02:28:22
8	some kind of a (111) edge.	02:28:26
9	So you start out with sharp phases, six	02:28:31
10	phases of (100) diamond. And after the growth, you	02:28:33
11	are beginning to see some formation of (111) diamond	02:28:40
12	plate.	02:28:45
13	Q. So are you referring to that little thing	02:28:47
14	that that I	02:28:49
15	A. Yeah.	02:28:50
16	Q. So is that kind of like a lump on the	02:28:51
17	corner?	02:28:55
18	A. Yes. So I think that the main point of	02:28:56
19	showing this is that, even though you start with a	02:28:59
20	cube, after the growth experiment, it's going to	02:29:01
21	become what is known as octahedron shaped, the	02:29:06
22	diamond. And you have (100) and (111) phases. So	02:29:11
23	basically it's showing the early signs of, you know,	02:29:16
24	an octahedron shape.	02:29:19
25	Q. Okay. So let me I can't show you these	02:29:24

			178
1	holder?		02:46:54
2	A.	Yeah. That's what it would imply.	02:46:58
3	Q.	Okay. Sure. Now, I want to go to oh,	02:47:03
4	let me as	k you a question. Is there a difference in	02:47:22
5	surface mo	orphology between single-crystal diamond	02:47:25
6	and polyc	rystalline diamond?	02:47:29
7	A.	Yes.	02:47:36
8	Q.	Okay. So now I'm going to go to the same	02:47:40
9	document.	I'm going to go to Paragraph 152. It	02:47:45
10	talks abou	ut temperature gradient and heat-sinking	02:47:57
11	holder.		02:48:08
12		Do you see that?	02:48:15
13	A.	Yes.	02:48:16
14	Q.	Okay. Now, it lists a few temperature	02:48:22
15	gradients	across the growth surface. It says less	02:48:24
16	than 100,	less than 50, 40, 30, 20, 10.	02:48:27
17	A.	Yes.	02:48:34
18	Q.	Okay. What would a diamond with a	02:48:38
19	temperatu	re gradient across the growth surface of	02:48:44
20	100 degre	es Celsius look like compared to one with	02:48:47
21	10 degrees	s Celsius?	02:48:54
22	A.	I really don't recall those details.	02:49:00
23	Q.	Okay. So do you remember if you grew a	02:49:07
24	diamond w	ith a temperature gradient of 100 degrees	02:49:12
25	Celsius?		02:49:16

		179
1	A. I don't remember those details.	02:49:17
2	Q. So I just want to go back to so this	02:49:27
3	sentence here: "This results in samples with a	02:49:38
4	widely varied surface morphology indicating an	02:49:42
5	uneven thermal gradient across the surface."	02:49:44
6	So if you had a diamond that had kind of a	02:49:49
7	large crystal in the center and polycrystalline	02:49:56
8	diamond on the sides, would that indicate a widely	02:50:00
9	varied surface morphology?	02:50:05
10	A. Not necessarily. Because you could have	02:50:15
11	the center portion small with (100) growth, and then	02:50:17
12	on the edges, you may have so your surface	02:50:23
13	morphology in the center may be very small, but you	02:50:27
14	still have polycrystalline on the outside.	02:50:29
15	Q. What about the transition region between	02:50:35
16	the single-crystal in the center and the polycrystal	02:50:38
17	on the side?	02:50:43
18	A. That would be a case of a different	02:50:51
19	morphology.	02:50:55
20	Q. So that would be a case of different	02:50:56
21	surface morphologies? Is that what you said?	02:50:58
22	A. Yes. That's correct.	02:51:01
23	Q. Okay. Great. So let's say you want	02:51:02
24	going back to Paragraph 152, but let's say you	02:51:20
25	wanted to achieve a temperature gradient across the	02:51:23

		180
1	growth surface of less than 20 degrees or 10 degrees	02:51:28
2	or even let's say less than 30 degrees. What do	02:51:31
3	you think you would require in order to accomplish	02:51:43
4	that?	02:51:46
5	A. I think it would be the substrate holder	02:51:58
6	design.	02:52:01
7	Q. The one that contacts the diamonds on	02:52:03
8	their sides?	02:52:05
9	A. Correct. Yes.	02:52:06
10	(DEPOSITION EXHIBIT 103 WAS MARKED FOR	02:52:06
11	IDENTIFICATION.)	02:52:06
12	BY MR. SNOW:	02:52:08
13	Q. Okay. So now I want to go Exhibit 103.	02:52:08
14	Dr. Vohra, is this are you an author of	02:52:37
15	this paper?	02:52:40
16	A. Yes, I am.	02:52:42
17	Q. Okay. And is Chih-shiue Yan, is he a	02:52:45
18	co-inventor of the 078 patent?	02:52:51
19	A. Yes, he is.	02:52:56
20	Q. And did you write this paper together?	02:52:58
21	A. Yes, we did.	02:53:02
22	Q. Okay. So let's go down. And I know you	02:53:06
23	have kind of seen maybe a little bit lower-quality	02:53:13
24	versions of these pictures earlier today because I	02:53:18
25	think that some of these were in the Yan	02:53:21

		181
1	dissertation. But I wanted to talk about some of	02:53:27
2	these pictures, if that's okay with you.	02:53:29
3	A. Okay.	02:53:32
4	Q. So, first, I want us to look at this	02:53:38
5	diamond, DRUK1.	02:53:46
6	A. Okay.	02:53:48
7	Q. So is this area in the center all one big	02:53:50
8	crystal?	02:54:02
9	A. It is.	02:54:03
10	Q. Okay. What's the black stuff around the	02:54:05
11	edges?	02:54:09
12	A. Most likely some graphite nucleation.	02:54:13
13	Q. Okay. Is this in your experience, is	02:54:18
14	this kind of a pretty good surface morphology or a	02:54:29
15	poor one?	02:54:35
16	A. I would say if you go up, DRUK2, that's a	02:54:37
17	better one.	02:54:41
18	Q. This one?	02:54:46
19	A. Yes. Because you can see, you are	02:54:46
20	beginning to develop remember, this is a circular	02:54:49
21	plate, so you have the upper edges which are (100)	02:54:53
22	surface on the side. So this one has a much better	02:54:57
23	morphology than the other one.	02:55:03
24	Q. Okay.	02:55:05
25	A. So out all of these pictures, this is the	02:55:06