1 Úvod

Poznámka (Historie)

- První formalizace pojmu algoritmus Ada, Countess of Lovelace 1852.
- Intenzivnější vývoj s rozvojem počítačů ve 2. čtvrtině 20. století.
- Co stroje umí a co ne? Church, Turing, Kleene (konečné automaty / neuronové sítě), Post, Markov, Chomsky (zásobníkové automaty a formální teorie konečných automatů, zkoumal Angličtinu).

Poznámka (Cíl)

Osvojit si abstraktní model počítače, vnímat jak drobné změny v definici vedou k velmi rozdílným důsledkům. Zažít skutečnost alg. nerozhodnutelných problémů a připravit se na přednášku o složitosti a NP-úplnosti.

Poznámka (Praktické využití)

Korektnost algoritmů, zpracování přirozeného jazyka, lexikální a syntaktická analýza v překladačích. Návrh, popis a verifikace hardwaru (automaty, integrované obvody, stroje). Vyhledávání v textu atd.

2

Definice 2.1 (Deterministický konečný automat (DFA))

Deterministický konečný automat $A=(Q,\Sigma,\delta,q_0,F)$ sestává z: konečné množiny stavů (Q), konečné neprázdné množiny vstupních symbolů (abecedy, Σ), přechodové funkce, tj. zobrazení $Q\times\Sigma\to Q$ (značí se hranami grafu, δ), počátečního stavu (vede do něj šipka 'odnikud', $q_0\in Q$) a neprázdné množiny (přijímajících) stavů (značí se dvojitým kruhem / šipku 'ven', $F\subseteq Q$).

 $\acute{U}mluva$

Přidáváme 0-2 stavy: fail (pokud je nějaký přechod nedefinován, vede sem a všechno z fail vede do fail) a final (pokud je F prázdné, všechny šipky z něj vedou zpět do něj).

Definice 2.2 (Slovo, jazyk)

Mějme neprázdnou množinu symbolů Σ . Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ε .

Množinu všech slov v abecedě Σ značíme Σ^* a množinu všech neprázdných Σ^+ .

Definice 2.3 (Operace: zřetězení, mocnina, délka slova)

Nad slovy Σ^* definujeme operace: Zřetězení slov u.v nebo uv, mocnina (počet opakování) u^n ($u^0 = \lambda$, $u^1 = u$, $u^{n+1} = u^n.u$), délka slova |u| ($|\lambda| = 0$, |auto| = 4), počet výskytů $s \in \Sigma$ ve slově u značíme $|u|_s$ ($|zmrzlina|_z = 2$).

Definice 2.4 (Rozšířená přechodová funkce)

Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně: $\delta^*(q, \lambda) = q$ a $\delta^*(q, wx) = \delta(\delta^*(q, w), x)$ pro $x \in \Sigma$ a $w \in \Sigma^*$.

Definice 2.5 (Jazyky rozpoznatelné konečnými automaty, regulární jazyky)

Jazykem rozpoznávaným (akceptovaným, přijímaným) konečným automatem A nazveme jazyk $L(A) = \{w | w \in \Sigma^* \wedge \delta^*(q_0, w) \in F\}.$

Jazyk je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L=L(A).

Třídu jazyků rozpoznatelných konečnými automaty označíme ${\mathcal F}$ a nazveme ji regulární jazyky.

Věta 2.1 (!Iterační (pumpin) lemma pro regulární jazyky)

Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \ge n$ můžeme rozdělit na tři části, w = xyz, že $y \ne \lambda \land |xy| \le n \land \forall k \in \mathbb{N}_0$, slovo xy^kz je také v L.

$D\mathring{u}kaz$

Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A). Vezmeme libovolné slovo $a_1 a_2 \ldots a_n \ldots a_m = w \in L$ délky $m \geq n$, $a_i \in \Sigma$. Následně definujeme $\forall i : p_i = \delta^*(q_0, a_1 a_2 \ldots a_i)$. Platí $p_0 = q_0$. Z Dirichletova principu se některý stav opakuje. Vezmeme první takový, tj. $(\exists i, j)(0 \leq i < j \leq n \land p_i = p_j)$.

Definujeme $x=a_1a_2\ldots a_i,\ y=a_{i+1}a_{i+2}\ldots a_j$ a $z=a_{j+1}a_{j+2}\ldots a_m,$ tj. w=xyz, $y\neq\lambda,\ |xy|\leq n.$