

Using Prosodic and Lexical Information for Learning Utterance-level Behaviors in Psychotherapy

Karan Singla, Zhuohao Chen, Nikolaos Flemotomos, James Gibson, Dogan Can, David C. Atkins, Shrikanth Narayanan

A multimodal system that uses both prosodic and textual information for behavior code prediction in Motivational Interviewing sessions.

Highlights

- > Combined model for patient and therapist codes.
- > Changes in word-level prosodic patterns can predict behavior codes.
- > Prosodic information improves over text-based system for the task.
- ➤ Model gives insight into the effect of these feature streams by use of self-attention mechanism.

Data word boundries Human Frame-level prosodic feature Extractor Therapist: Okay. can you tell me something new like about drinking Therapist: Okay. Can Force you tell me some Alignder things that you like Patient: Usually just about drinking? relaxes me. Word level Patient: Usually it just prosodic Feature relaxes me. Extractor Utterance ____utterance boundries----Segmentation prosodic lexical features features features Multimodal MISC Prediction System

Code	Description	#Train	#Test	
Therapist (T)				
REF	Reflection	6577	3456	
QES	Question	6546	3348	
OTH	Other	13112	7625	
Total		26235	14429	
Patient	(P)			
FN	Follow/Neutral	22020	12229	
NEG	Sustain Talk	4019	1660	
POS	Change Talk	3151	1272	
Total		29190	15161	

Patient: I really think I can quit this time. {POS}

Therapist: So you feel confident that you can quit. {REF} What gives you that confidence? {QES}

General Method

Feature Type	Prosodic						
	Pitch	Loudness	Jitter	Pause	Word Length	Lexicon	
Word-level	Mean and Standard Deviation			Quantized into a 10-bit vector	Aligned Duration	Word Embedding	
Dimensions	2	2	2	10	1	100	
Two-fold speaker normalization: z-normalization for each audio feature for each study							

type; normalize each audio feature for each speaker.

Architecture for Utterance Encoder. • can be 1 or 0 for therapist and patient utterance respectively.

Multimodal Approach

Comb-WL: Word-level lexical features T and prosodic features A are word-wise concatenated to make input W before feeding it to the utterance encoder.

Comb-LF: Train utterance encoder using lexical features and a separate encoder using prosodic features, and then concatenate them before the dense layer.

Results

	Avg. F1 score			
Features	LSTM without Attention	LSTM with Attention		
Text	0.54	0.57		
Prosodic	0.42	042		
Comb-WL	0.56	0.58		
Comb-LF	0.58	0.60		

Features	Avg. F1 score	
ASR text	0.47	
Comb-WL	0.52	
Comb-LF	0.53	

- ➤ Prosodic model performs better than majority class baseline, where the avg. F1 score is 0.33.
- ➤ Multimodal approach helps in making a better prediction; Comb-LF gives the best performance.
- > Results using ASR have a similar trend.

Ablation experiments where we only evaluate on Utterances > 15 words

Comparison of attention weights for one question sample (QES)

- For long utterances performance of prosodic system is comparable to text-only system.
- ➤ Prosodic information at the beginning and end has greater discriminative power compared to text.

Conclusion

- > Using prosodic features in addition to lexical features aids in the prediction of utterance-level behaviors in psychotherapy.
- > Attention layer helps improve the performance.
- ➤ Comb-LF outperforms other models with both human transcribed text and automatically transcribed text.
- ➤ Encoder architecture efficiently exploits word-level prosodic variation.