

# GUFU

## **Diversity Similarity Join for Big Data**

Yas Silva<sup>1</sup>, Juan Martinez<sup>1</sup>, Pedro Castro<sup>1</sup>, Humberto Razente<sup>2</sup>, Maria Nardini Loyola University Chicago - <sup>2</sup>Univ. Federal de Uberlandia



Yas Silva

## Motivation and Contribution

#### The Problem

- oThe Similarity Join can generate massive amounts of result pairs with big datasets
- oMany of the output pairs can be very similar to others adding little value to the analysis process

#### **Our Contribution**

- oDistributed Diversity Similarity Join (D2SJ), a distributed operator to diversify the output of the similarity join with big datasets
- •Guarantees that each pair is generated once
- Supports many distance functions and data types
- °Source code of implementation in Apache Spark

## Notion of Diversity



Builds on notion introduced by Santos et al. SISAP'15

## **Evaluation Setup**

Algorithms (Spark 3.0) Spark °D2SJ, DSJ-CP (direct Spark extension of single-node alg.)

#### Computer cluster

oGoogle Cloud Platform (1 master, 20 workers), node config: 4 vCPUs, 15 GB of memory, 500 GB of disk space

#### **Datasets**

°CoPhIR dataset (16D-282D)

flickr

- °Size (SFN): N x 1M (equally divided between R and S)
- ∘ε: % of the max potential distance between two records

## **D2SJ Partitioning**

Initial Datasets (2D space)

Dataset S Dataset R

Generated **Partitions** 



#### Strategy

- Partition the input into two partitions such that we can still identify all the similarity balls (B<sub>1</sub>-B<sub>7</sub>) (each ball has all the points in S within  $\varepsilon$  from a point in R)
- Each ball should be finally processed in only one partition producing the diverse pairs in the ball

#### **Solution** (using two pivots/partitions)

- Partition the input using two pivots ( $P_0$  and  $P_1$ ) such that each point belongs to the partition of its closest
- Additionally, duplicate the points in the windows regions (A2, A3), generating:

Part0 = A1 + A2 + A3, Part1 = A2 + A3 + A4

- Each ball is processed in a single partition, the one corresponding to its smallest closest-pivot (using index): Balls B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub>, and B<sub>4</sub> are processed in Part0 while B<sub>5</sub>,B<sub>6</sub>, and B<sub>7</sub> in Part1
- Processing a ball (S-points around point r) identifies the subset of diverse pairs (r, s')

## **Evaluation**

**Increasing Dataset Size** 



**Increasing** Dimensionality





D2SJ with larger datasets



D2SJ with higher # of dimensions