TABLE OF CONTENTS

Basic Trig Functions

$$\begin{split} \sin(\theta) &= \frac{opp}{hyp} & & \csc(\theta) &= \frac{1}{\sin(\theta)} \\ \cos(\theta) &= \frac{adj}{hyp} & & \sec(\theta) &= \frac{1}{\cos(\theta)} \\ \tan(\theta) &= \frac{opp}{adj} & & \cot(\theta) &= \frac{1}{\tan(\theta)} \end{split}$$

► Graphs of sine, cosine, tangent

- ► Graphs of sine, cosine, tangent
- ► Sine, cosine, and tangent of reference angles: 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$

- ► Graphs of sine, cosine, tangent
- ► Sine, cosine, and tangent of reference angles: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$
- ► How to use reference angles to find sine, cosine and tangent of other angles

- ► Graphs of sine, cosine, tangent
- ► Sine, cosine, and tangent of reference angles: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$
- ► How to use reference angles to find sine, cosine and tangent of other angles
- ► Identities: $\sin^2 x + \cos^2 x = 1$; $\tan^2 x + 1 = \sec^2 x$; $\sin^2 x = \frac{1 \cos(2x)}{2}$; $\cos^2 x = \frac{1 + \cos 2x}{2}$

- ► Graphs of sine, cosine, tangent
- ► Sine, cosine, and tangent of reference angles: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$
- ► How to use reference angles to find sine, cosine and tangent of other angles
- ► Identities: $\sin^2 x + \cos^2 x = 1$; $\tan^2 x + 1 = \sec^2 x$; $\sin^2 x = \frac{1 \cos(2x)}{2}$; $\cos^2 x = \frac{1 + \cos 2x}{2}$
- ► Conversion between radians and degrees

CLP-1 has an appendix on high school trigonometry that you should be familiar with.

REFERENCE ANGLES

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin(x)\} \stackrel{?}{=} \cos(x).$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)(\cos(h)-1)}{h}+\lim_{h\to 0}\frac{\cos(x)\sin(h)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)(\cos(h)-1)}{h}+\lim_{h\to 0}\frac{\cos(x)\sin(h)}{h}$$

$$= \sin(x) \lim_{h \to 0} \frac{\cos(0+h) - \cos(0)}{h} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)(\cos(h)-1)}{h}+\lim_{h\to 0}\frac{\cos(x)\sin(h)}{h}$$

$$= \sin(x) \lim_{h \to 0} \frac{\cos(0+h) - \cos(0)}{h} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \sin(x) \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \cos(x) \right\} \Big|_{x=0} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin x\} = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1)}{h} + \lim_{h \to 0} \frac{\cos(x)\sin(h)}{h}$$

$$= \sin(x) \lim_{h \to 0} \frac{\cos(0+h) - \cos(0)}{h} + \cos(x) \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$=\sin(x)\frac{d}{dx}\{\cos(x)\}\Big|_{x=0} + \cos(x)\lim_{h\to 0}\frac{\sin(h)}{h}$$

$$\cos(x)\lim_{h\to 0}\frac{\sin(h)}{h}$$

since cos(x) has a horizontal tangent, and hence has derivative zero, at x = 0.

First, we investigate $\lim_{h\to 0} \frac{\sin h}{h}$ informally.

It seems $\sin h \approx h$ when $h \approx 0$, so $\lim_{h \to 0} \frac{\sin h}{h} \stackrel{?}{=} 1$.

We can prove this more formally using the Squeeze Theorem and more trigonometry. We will first prove that $\frac{\sin(h)}{h} \leq 1$ and then we will prove that $\frac{\sin(h)}{h} \geq \cos(h)$. Then we will apply the Squeeze Theorem.

Here is the proof that $\frac{\sin(h)}{h} \leq 1$.

$$\sin(h) \leq h$$

$$\frac{\sin(h)}{h} \le h \text{ so } \frac{\sin(h)}{h} \le 1$$

Now for the proof that $\frac{\sin(h)}{h} \ge \cos(h)$.

green area:

green area: $\frac{h}{2}$

green area: $\frac{h}{2}$

Blue area:

green area: $\frac{h}{2}$

Blue area: $\frac{\tan h}{2}$

green area: $\frac{1}{2}$

$$\frac{h}{2} \leq \frac{\tan(h)}{2}$$

Blue area: $\frac{\tan h}{2}$

green area: $\frac{1}{2}$

$$\frac{h}{2} \le \frac{\tan(h)}{2}$$

$$\cos(h) \le \frac{\sin(h)}{h}$$

 $\frac{\tan h}{2}$ Blue area:

$$cos h$$
 $\leq \frac{\sin h}{h}$
 \leq

$$\cos h$$
 $\leq \frac{\sin h}{h}$ ≤ 1 $\lim_{h \to 0} \cos h = 1$ $\lim_{h \to 0} 1 = 1$

$$\begin{array}{cccc} \cos h & \leq & \frac{\sin h}{h} & \leq & 1 \\ \lim_{h \to 0} \cos h = 1 & & \lim_{h \to 0} 1 = 1 \end{array}$$

By the Squeeze Theorem,

$$\begin{array}{cccc} \cos h & \leq & \frac{\sin h}{h} & \leq & 1 \\ \lim_{h \to 0} \cos h = 1 & & \lim_{h \to 0} 1 = 1 \end{array}$$

By the Squeeze Theorem,

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

DERIVATIVES OF SINE AND COSINE

¿From before,

$$\frac{\mathrm{d}}{\mathrm{d}x}\{\sin(x)\} = \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h} =$$

DERIVATIVES OF SINE AND COSINE

¿From before,

$$\frac{d}{dx}\{\sin(x)\} = \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h} = \cos(x)$$

$$\sin x = \frac{b}{c} = \cos\left(\frac{\pi}{2} - x\right)$$
$$\cos x = \frac{a}{c} = \sin\left(\frac{\pi}{2} - x\right)$$

Now for the derivative of \cos . We already know the derivative of \sin , and it is easy to convert between \sin and \cos using trig identities.

$$\sin x = \frac{b}{c} = \cos\left(\frac{\pi}{2} - x\right)$$
$$\cos x = \frac{a}{c} = \sin\left(\frac{\pi}{2} - x\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\cos(x)\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left[\sin\left(\frac{\pi}{2} - x\right)\right] = -\frac{\mathrm{d}}{\mathrm{d}x}\left[\sin\left(x - \frac{\pi}{2}\right)\right] = -\cos\left(x - \frac{\pi}{2}\right) = -\sin x$$

since $\sin(-\theta) = -\sin(\theta)$ and $\cos(-\theta) = \cos(\theta)$.

When we use radians:

Derivatives of Trig Functions

$$\frac{d}{dx}\{\sin(x)\} = \cos(x)$$

$$\frac{d}{dx}\{\cos(x)\} = -\sin(x)$$

$$\frac{d}{dx}\{\cos(x)\} = \frac{d}{dx}\{\cot(x)\} = \frac{d}{dx}\{\cot(x)\} = \frac{d}{dx}\{\cot(x)\} = \frac{d}{dx}(\cot(x)) = \frac{d}{d$$

Honorable Mention

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $y = \sin x$, radians

 $y = \sin x$, degrees

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\frac{d}{dx}[\tan(x)] = \frac{d}{dx} \left[\frac{\sin(x)}{\cos(x)} \right]$$

$$= \frac{\cos(x)\cos(x) - \sin(x)[-\sin(x)]}{\cos^2(x)}$$

$$= \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos^2(x)} = \sec^2(x)$$

$$\sec(x) = \frac{1}{\cos(x)}$$

$$\sec(x) = \frac{1}{\cos(x)}$$

$$\frac{d}{dx}[\sec(x)] = \frac{d}{dx} \left[\frac{1}{\cos(x)} \right]$$

$$= \frac{\cos(x)(0) - (1)(-\sin(x))}{\cos^2(x)}$$

$$= \frac{\sin(x)}{\cos^2(x)}$$

$$= \frac{1}{\cos(x)} \frac{\sin(x)}{\cos(x)}$$

$$= \sec(x) \tan(x)$$

$$\csc(x) = \frac{1}{\sin(x)}$$

$$\csc(x) = \frac{1}{\sin(x)}$$

$$\frac{d}{dx}[\csc(x)] = \frac{d}{dx} \left[\frac{1}{\sin(x)} \right]$$

$$= \frac{\sin(x)(0) - (1)\cos(x)}{\sin^2(x)}$$

$$= \frac{-\cos(x)}{\sin^2(x)}$$

$$= \frac{-1}{\sin(x)} \frac{\cos(x)}{\sin(x)}$$

$$= -\csc(x) \cot(x)$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

$$\frac{d}{dx}[\cot(x)] = \frac{d}{dx} \left[\frac{\cos(x)}{\sin(x)} \right]$$

$$= \frac{\sin(x)(-\sin(x)) - \cos(x)\cos(x)}{\sin^2(x)}$$

$$= \frac{-1}{\sin^2(x)}$$

$$= -\csc^2(x)$$

MEMORIZE

$$\frac{d}{dx}\{\sin(x)\} = \cos(x) \qquad \qquad \frac{d}{dx}\{\sec(x)\} = \sec(x)\tan(x)$$

$$\frac{d}{dx}\{\cos(x)\} = -\sin(x) \qquad \qquad \frac{d}{dx}\{\csc(x)\} = -\csc(x)\cot(x)$$

$$\frac{d}{dx}\{\tan(x)\} = \sec^2(x) \qquad \qquad \frac{d}{dx}\{\cot(x)\} = -\csc^2(x)$$

$$\lim_{x \to a} \frac{\sin x}{x} = 1$$

1. Let $f(x) = \frac{x \tan(x^2 + 7)}{15e^x}$. Use the **definition of the derivative** to find f'(0).

2. Differentiate $(e^x + \cot x) (5x^6 - \csc x)$.

3. Let
$$h(x) = \begin{cases} \frac{\sin x}{x} & , & x < 0 \\ \frac{ax+b}{\cos x} & , & x \ge 0 \end{cases}$$
 Which values of a and b make $h(x)$ continuous at $x = 0$?

Let
$$f(x) = \frac{x \tan(x^2 + 7)}{15e^x}$$
. Use the definition of the derivative to find $f'(0)$.

Differentiate $(e^x + \cot x) (5x^6 - \csc x)$.

$$\operatorname{Let} h(x) = \left\{ \begin{array}{ll} \frac{\sin x}{x} & , & x < 0 \\ \frac{ax+b}{\cos x} & , & x \geq 0 \end{array} \right.$$
 Which values of a and b make $h(x)$ continuous at $x = 0$?

2.8: Derivatives of Trig Functions

Practice and Review

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

Is f(x) differentiable at x = 0?

$$g(x) = \begin{cases} e^{\frac{\sin x}{x}}, & x < 0\\ (x - a)^2, & x \ge 0 \end{cases}$$

What value(s) of *a* makes g(x) continuous at x = 0?

We don't have rules for differentiating f(x) at x = 0, so we have to fall back on the definition of the derivative.

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \cos(\frac{1}{h}) - 0}{h}$$
$$= \lim_{h \to 0} h \cos(\frac{1}{h}) = 0$$

Since the limit exists, f(x) is differentiable at 0.

By the definition of continuity, g(x) is continuous at x = 0 if

$$\lim_{x \to 0} g(x) = g(0)$$

$$ightharpoonup g(0) = (0-a)^2 = a^2$$

$$\blacktriangleright \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x - a)^2 = a^2$$

In order for g(x) to be continuous, we need $a^2 = e$. That is, $a = \sqrt{e}$ or $a = -\sqrt{e}$.

A ladder 3 meters long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, measured in radians, and let y be the height of the top of the ladder. If the ladder slides away from the wall, how fast does y change with respect to θ ? When is the top of the ladder sinking the fastest? The slowest?

A ladder 3 meters long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, measured in radians, and let y be the height of the top of the ladder. If the ladder slides away from the wall, how fast does y change with respect to θ ? When is the top of the ladder sinking the fastest? The slowest?

We want to find how fast y is changing with respect to θ , so we want $\frac{dy}{d\theta}$, or $y'(\theta)$. To calculate that, we need to find y as a function of θ . Note that the ladder forms a right triangle with the wall, and y is the side adjacent to θ , while 3 is the hypotenuse. So, $\cos(\theta) = \frac{y}{3}$, hence $y = 3\cos(\theta)$. Now we differentiate, and see

$$\frac{dy}{d\theta} = -3\sin(\theta)$$

To answer the other questions, note that θ never gets larger than $\pi/2$, since at that point the ladder is lying on the ground. When $0 \le \theta \le \pi/2$, the smaller θ gives the smaller rate of change (in absolute value); so the top of the ladder is sinking slowly at first, then faster and faster, fastest just as it hits the ground.

Suppose a point in the plane that is r centimetres from the origin, at an angle of θ ($0 \le \theta \le \frac{\pi}{2}$), is rotated $\pi/2$ radians. What is its new coordinate (x, y)? If the point rotates at a constant rate of a radians per second, when is the x coordinate changing fastest and slowest with respect to θ ?

Suppose a point in the plane that is r centimetres from the origin, at an angle of θ ($0 \le \theta \le \frac{\pi}{2}$), is rotated $\pi/2$ radians. What is its new coordinate (x,y)? If the point rotates at a constant rate of a radians per second, when is the x coordinate changing fastest and slowest with respect to θ ?

$$x = r\cos\left(\theta + \frac{\pi}{2}\right) = -r\sin(\theta)$$

and

$$y = r \sin\left(\theta + \frac{\pi}{2}\right) = r \cos(\theta)$$

To find how fast x is changing with respect to θ , we take $x'(\theta) = -r\cos(\theta)$. We see that when $\theta = 0$, x changes a lot when θ changes; and when $\theta = \pi/2$, x only changes a little when θ changes.

Included Work

'Brain' by Eucalyp is licensed under CC BY 3.0 (accessed 8 June 2021), 72

