CaFe H(e, e'p) Elastics Kinematics

a beam energies:

10.3 GeV and 10.6 GeV

July 14, 2022

C. Yero

- At beam energy 10.3 GeV, cafe heep_kin2 setting restricted by the large beam pipe (min. 7.5 deg)
 - Still need to take hydrogen elastic singles during pionLT, with the smaller beam pipe installed to achieve angles smaller than 7.5 deg

delta_MF_10p3

5490

7.261

1.03

Entries

Mean

15

Std Dev

e_delta {Weight*(abs(h_delta)<10. && Pm<0.25 && Q2>1.8)}

Too many H(e, e'p) elastic kinematics. It is best to select 3 elastic points that span over entire CaFe range regardless of whether 10.6 or 10.3 GeV beam is delivered (see next slide)

Kinematic	SHMS P [GeV/c]	SHMS Angle [deg]	HMS P [GeV/c]	HMS Angle [deg]	Beam E [GeV]
CaFe MF	-8.55	8.3	1.82	48.3	10.6
CaFe SRC	-8.55	8.3	1.325	66.4	10.6
heep_kin0	-8.55	8.3	1.82	48.3	10.6
heep_kin1	-8.55	7.5	1.62	51.1	10.6
heep_kin2	-8.55	6.8	1.44	53.8	10.6
CaFe MF	-8.55	8.3	1.767	49	10.3
CaFe SRC	-8.55	8.3	1.325	65.8	10.3
heep_kin0	-8.55	9.6	2.196	44	10.6
heep_kin1	-8.55	8.77	1.963	46.7	10.6
heep_kin2	-8.55	8.23	1.815	48.5	10.6

H(e,e'p) Elastic Rate Estimates

• beam-on-target time: 1 hr

• beam current: 60 uA

• analysis_cuts:

✓ $|\delta_{HMS}|$ < 10 % , -10 % < δ_{SHMS} < 22 % ✓ HMS/SHMS Collimator Cuts

Invariant Mass, W

SHMS Hodoscope HV Study W {(Weight*0.155787E+07/10000.)}

- SHMS S1X+S2X paddles PMT HV turned OFF corresponding to unused part of momentum acceptance (\sim < 0 %)
 - SHMS Hodoscopes ALL paddles HV ON,
 - paddles >= 7 HV ON produces similar (e, e'p) elastic counts as ALL paddles HV ON
 -> safe to turn OFF paddles < 7 for S1X+S2X
 - as a test, Turning OFF paddles < 9 already shows a decrease in counts

h_pf/1000. {Weight*Normfac/1000000.*(Pm<0.250)}

theta_p*180./3.14 {Weight*Normfac/1000000.*(Pm<0.250)}

- Proton absorption: probability proton gets absorbed as it traverses thru spectrometer (HMS) before it makes a trigger
- (Top, bottom plots):
 Kinematic coverage for proton absorption
 in HMS acceptance @ MF kinematics for
 both possible beam energies, 10.3, 10.6 GeV
- The proton absorption measurement will be done at the same kinematics as the CaFe mean-field

Questions/Comments:

Is proton absorption at SRC kinematics needed? **NO**

How does a SRC: ~1.3 GeV (66 deg) proton and a MF: ~1.7 GeV (48 deg) proton compare as they traverse thru HMS? Maybe cross sections at these energies are not significantly different? And thus proton absorption results at only MF are sufficient? Previous measurements (Ruonan Li thesis, Carlos Yero thesis) show absorption is ~0.95 % for momentum range ~0.8 - 2.92 GeV . Also, pp-total cross sections are ~ momentum-independent in this range. Single proton absorption measurement at MF kinematics is sufficient

Even if proton absorption at SRC kinematics would be needed, that would require SHMS angles <7.5 deg, and thus CANNOT be done during CaFe (larger beam pipe installed) • beam-on-target time: 1 hr

• beam current: 60 uA

Invariant Mass, W

• analysis_cuts:

✓ $|\delta_{HMS}|$ < 10 % , -10 % < δ_{SHMS} < 22 % ✓ HMS/SHMS Collimator Cuts

Kinematic	SHMS P [GeV/c]	SHMS Angle [deg]	HMS P [GeV/c]	HMS Angle [deg]	Beam E [GeV]	Shms Delta
CaFe MF (+ proton abs.)	-8.55	8.3	1.82	48.3	10.6	10%
CaFe MF (+ proton abs.)	-8.55	8.3	1.767	49	10.3	7%

BACK-UP SLIDES

x-Bjorken for CaFe MF and SRC kinematics at either 10.6 or 10.3 GeV beam

Original MF @ 10.3 GeV

Larry's suggestion (step 2)

Larry's suggestion (step 2, but using SHMS angle 8.3 deg)

We'll use this MF kinematic @ 10.3 GeV (then I will match the Heep elastic to this kinematic, similar to what we did @ 10.6 GeV)

Kinematic	SHMS P [GeV/c]	SHMS Angle [deg]	HMS P [GeV/c]	HMS Angle [deg]	Beam E [GeV]
CaFe MF	-8.55	8.3	1.82	48.3	10.6
CaFe MF	-8.55	8.3	1.88	46.2	10.3
CaFe MF	-8.55	9.238	1.767	49.7	10.3
CaFe MF	-8.55	8.3	1.767	49.0	10.3

e_delta {Weight*(abs(h_delta)<10. && Pm<0.25 && Q2>1.8)}

Kinematic	SHMS P [GeV/c]	SHMS Angle [deg]	HMS P [GeV/c]	HMS Angle [deg]	Beam E [GeV]
CaFe MF	-8.55	8.3	1.82	48.3	10.6
CaFe MF	-8.55	8.3	1.88	46.2	10.3
CaFe MF	-8.55	9.238	1.767	49.7	10.3
CaFe MF	-8.55	8.3	1.767	49.0	10.3