Classification d'images :

Introduction au deep learning à travers une compétition de machine learning

Par Antoine VASTEL, Doctorant en informatique à INRIA Lille Meetup #3 Big Data and Machine Learning - 09/02/2017

Data science game 2016

117 équipes, 50 universités, 28 pays

Notre équipe Polytech Lille :

Fabien Gontier
Crédit Agricole
assurances

Perrine Martin
VISEO

Jacques Peeters
Weave

Antoine Vastel
INRIA

Mission: Classification d'images

- Prédire l'orientation de toits de bâtiments
- 4 catégories :
 - Nord-Sud
 - Est-Ouest
 - Toit plat
 - Autre

Approche générale

2 approches pour extraire les features :

- Approche n°1 : Old school
- Approche n°2 : Réseaux de neurones

Extraction des features, approche n°1

- > Prétraitement des images
 - Niveau de gris
 - > Normalisation, redimensionnement
- > Calculer features "manuellement"
 - HOG (Histogramme de gradient orienté)
 - SIFT (Scale Invariant Feature Transform)
 - > Filtres
 - Combinaison de features

Approche n°1 (suite)

Choisir classifieur supervisé **Prédire**

- Entrainer classifieur
- Hyperparamètres liés aux features

Accuracy ~= 0.6

En résumé

- Difficulté: Trouver bonne combinaison features
- Long et accuracy moyenne

Améliorer l'extraction de features

- > Utilisation des réseaux de neurones
 - Convolutional Neural Network (CNN)
 - Extrait features automatiquement
 - Invariance rotation/translation/petites déformations

Passons aux CNN alors!

Oui mais ...

- Peu de données (8000 images)
- Pas de GPU
- PC avec pentium celeron + 4 Go RAM

- Mauvais résultats (from scratch)
- Data augmentation difficile dans notre cas (rotation importante)
- Long à entrainer

Les "Models Zoos" à notre rescousse

Réseaux de neurones déjà entraînés Disponible en ligne

Aucun modèle ne résout notre problème de classification de toits

Solution : Utiliser le CNN comme extracteur de features

Extraction des features, approche n°2

- > Prétraitement des images
 - Normalisation, redimensionnement
- Passer image dans CNN
 - Sauvegarder CNN codes dans un fichier

Approche n°2 (suite)

Choisir classifieur supervisé

- Entrainer classifieur
- Indépendant du CNN

Prédire

Accuracy ~= 0.75

En résumé

- Facilite extraction features
- Améliore accuracy

Approche générale CNN

- From scratch (design CNN)
- Si peu de données mais GPU :
 - Remplacer couche output par nouvelle couche
 - Réentrainer (transfer learning/fine tuning)
- Exemple: Kaggle data science bowl
 - ResNet model + boosted tree
 - ~ 150eme/1000 (https://lc.cx/JNa4)

Résultats

Méthode 1 : ~ 0.60 **Méthode 2** : ~ 0.75

- Classés 45 / 117 (0.75167)
- 1er (0.86762) : fine tuning + vote différents CNN

45	↑2	Hakuna maData - Polytech Lille - France 🂤	0.7516 7	38	Sun, 10 Jul 2016 13:25:23
46	Į1	mETHiculous - ETH Zürich - Switzerland 🏴	0.75071	5	Sun, 10 Jul 2016 18:11:16
47	↓3	SID's Heterogeneity - ENSAI - FRANCE 🎄	0.75012	18	Tue, 05 Jul 2016 12:15:12 (-9.9d)
48	†3	datamacska_CEU_HUNGARY #	0.75000	27	Thu, 30 Jun 2016 07:40:49 (-3d)
49	-	Trojans - USC - USA 🎩	0.74952	16	Sun, 10 Jul 2016 01:54:29 (-6d)
50	↓4	Dataxidermistes - Centrale Lille - France ル	0.74869	25	Wed, 06 Jul 2016 10:37:58 (-10d)
51	↓8	TeamIBA-IBA-Pakistan 🎜	0.74833	60	Fri, 08 Jul 2016 20:30:56 (-8.8d)
52	†1	Maximum Entropy - Ensae - France 🎉	0.74393	12	Sun, 10 Jul 2016 23:55:41 (-1h)
					6 401 10045 40 07 40

Notebook disponible à l'adresse suivante :

http://bit.ly/2kyBTrX