PREPARED BY :

DATE

LU.XIAOFENG : May.17.2017

Y.TAKEDA

: May.17.2017

CHECKED BY HAN.XUN

DATE

: May.17.2017

M.OZAKI

: May.17.2017

SHARP

DISPLAY DEVICE COMPANY SHARP CORPORATION

SPEC LCY-W16Z01B

FILE No.

ISSUE: May.17.2017

PAGE :

31 pages

WUXI SHARP

ELECTRONIC

COMPONENTS CO., LTD.

SPECIFICATION

Device Specification for

TFT-LCD module

MODEL No. LQ156D1JX36

□ CUSTOMER'S APPROVAL

PRESENTED

T. Takatani

DIVISION MANAGER

DEVELOPMENT DIVISION

BUSINESS UNIT 6

BU₂

DISPLAY DEVICE COMPANY

SHARP CORPORATION

T.YAMAMOTO

GENERAL MANAGER

DESIGN CENTER NO.2

DEVELOPMENT GROUP

WUXI SHARP ELECTRONIC COMPONENTS CO.,LTD

© Gopunghi 2017 SHARF All rights reserved

RECORDS OF REVISION

MODEL NO: LQ156D1JX36 SPEC NO: LCY-W16Z01B

DATE	REVISED	PAGE	SUMMARY	NOTE
2016.12.21	-	-	-	1 st Issue
		DO.	Change Typ./Max. value: Current dissipation	
		P8	Change Typ./Max. value : Power dissipation	
			Fix Min. value: eDP Main Link Receiver Characteristics:	
			RLRX-DIFF	
		P9	Fix Max. value: eDP Main Link Receiver Characteristics:	
2017.3.20	\triangle 1		LRX-SKEW-INTRA-PAIR-High-Bit-Rate	2nd Issue
			Add t22:[Note 6-1-1]	
		P10	Add t22 Spec:[Note 6-1-1]	
			Change Typ. Vdd value: [Note 6-1-2] Maximum current condition	
		P29	Change Outline Dimensions	
		P3	Outline dimensions: Change Typ./Max. value :Mass	
			DC Electrical Characteristics: Change Typ. value : Current /	
		P8	Power dissipation1	
2017.5.17	△2	DO D10	ON-OFF conditions for supply voltage :t14\t15\t20Fix Min. value	3rd Issue
			Backlight driving: Change Typ./Max. value : Current / Power	
		P12		
			dissipation1	
			 	

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this technical literature may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this technical literature. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for general electronic equipment use.

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e. aircraft, trains, automobiles, etc.)
- Traffic signals Gas leakage sensor breakers Alarm equipment Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
 Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

Table of contents

1.	Applic	ration	3
2.	Overvi	iew	3
3.	Mecha	nical Specifications	3
4.	Input 7	Terminals	4
4	- 1.	Symbol	4
4	- 2.	eDP interface	6
5.	Absolu	nte Maximum Ratings	7
6.	Electri	cal Characteristics	8
6	- 1.	TFT-LCD panel driving	8
6	- 2.	Backlight driving	.12
7.	Timing	g Characteristics of Input Signals	.13
7	- 1.	Timing characteristics	.13
	- 2.	Input data signals and display position on the screen	.14
8.	Input S	Signals, Basic Display Colors and Gray Scale of Each Color	.15
9.	EDID	Specifications	.16
	- 1.	EDID data structure	.16
10.	Optica	1 Characteristics	.19
11.	Handli	ng Precautions	.22
12.	Precau	tions for Handling Tray	.24
13.	Packag	ging Condition	.25
14.	Label .		.25
		Directive	
16.	Reliab	ility Test Items	.27
	Fig. 1	Packaging Condition	. 28
	Fig. 2	Outline Dimensions	29

1. Application

This publication applies to a color TFT-LCD module, LQ156D1JX36.

2. Overview

This module is a color active matrix LCD module incorporating Oxide TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, a control circuit and power supply circuit, and a backlight unit. Graphics and texts can be displayed on a 3840×3×2160 dots panel with 16,777,216 colors by using eDP (Embedded Display Port) Ver1.3 interface and supplying +3.3V DC supply voltage for TFT-LCD panel driving and applying DC supply voltage for LED backlight-driving DC/DC converter.

In this TFT-LCD panel, color filters for excellent color performance and backlights for high brightness are incorporated to realize brighter and clearer pictures, making this model optimum for use in multi-media applications.

Optimum viewings are in all directions.

Backlight-driving LED controller is built in this module.

eDP Transfer rate Specification : 5.4Gbps / 4 lane

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	39.652 (15.6") Diagonal	cm
Active area	345.60(H)×194.40 (V)	mm
D: 16	3840 (H)×2160 (V)	pixel
Pixel format	(1 pixel = R+G+B dots)	
Pixel pitch	$0.090 (H) \times 0.090 (V)$	mm
Pixel configuration	R,G,B vertical stripe	
Display mode	Normally black	
Confirm to the state and	Glare	
Surface treatment	Hard coating (3H)	

Outline dimensions

Parameter		Min.	Тур.	Max.	Unit	Remark
	Width	351.6	351.9	352.2	mm	
TT 1: 11 1:	Height	206.3	206.6	206.9	mm	w/o PWB
Unit outline dimensions		216.7	217.2	217.7	mm	w PWB
[Note 3-1]		2.45	2.60	2.75	mm	w/Heat Spreading tape
	Depth					w/o PWB
Mass		_	300 295	320 315	g	$\triangle 2$

[Note 3-1] Outline dimensions is shown in Fig.2(P27)

4. Input Terminals

4 - 1. Symbol CN1 (eDP signals, +3.3V DC power supply, and B/L power supply)

Pin No.	Symbol .	I/O	Function	Remark
	Symbol	-	Reserved for LCD manufacturer's use	
2	NC H. CND	<u>-</u> Р		[Note4-1-1]
	H_GND	I	High Speed Ground	[Note 4-1-2]
3	Lane3_N	I	Complement Signal Link Lane 3	
4	Lane3_P	P	True Signal Link Lane 3	DI 4 4 1 21
5	H_GND		High Speed Ground	[Note 4-1-2]
6	Lane2_N	I	Complement Signal Link Lane 2	
7	Lane2_P	I P	True Signal Link Lane 2	DI . 4.1.01
8	H_GND		High Speed Ground	[Note 4-1-2]
9	Lane1_N	I	Complement Signal Link Lane 1	
10	Lane1_P	I	True Signal Link Lane 1	r
11	H_GND	P	High Speed Ground	[Note 4-1-2]
12	Lane0_N	I	Complement Signal Link Lane 0	
13	Lane0_P	I	True Signal Link Lane 0	
14	H_GND	P	High Speed Ground	[Note 4-1-2]
15	AUX_CH_P	I	True Signal Auxiliary Channel	
16	AUX_CH_N	I	Complement Signal Auxiliary Channel	
17	H_GND	P	High Speed Ground	[Note 4-1-2]
18	VDD	P	LCD logic and driver power(3.3V)	
19	VDD	P	LCD logic and driver power(3.3V)	
20	VDD	P	LCD logic and driver power(3.3V)	
21	VDD	P	LCD logic and driver power(3.3V)	
22	NC	(-)	Reserved for LCD manufacturer's use	[Note4-1-1]
23	LCD_GND	P	LCD logic and driver ground	
24	LCD_GND	P	LCD logic and driver ground	
25	LCD_GND	P	LCD logic and driver ground	
26	LCD_GND	P	LCD logic and driver ground	
27	HPD	О	HPD signal pin	[Note 4-1-3]
28	BL_GND	P	Backlight ground	
29	BL_GND	P	Backlight ground	
30	BL_GND	P	Backlight ground	
31	BL_GND	P	Backlight ground	
32	BL_ENABLE	I	Backlight On/Off	[Note 4-1-4]
33	BL_PWM_DIM	I	System PWM	[Note 4-1-5]
34	NC	-	Reserved for LCD manufacturer's use	[Note4-1-1]
35	NC	-	Reserved for LCD manufacturer's use	[Note4-1-1]
36	VBL	P	Backlight power	
37	VBL	P	Backlight power	
38	VBL	P	Backlight power	
39	VBL	P	Backlight power	
40	NC	-	Reserved for LCD manufacturer's use	[Note4-1-1]

X1 I: Input, O: Output, P: Power:

[Note 4-1-2] The shielding case is connected with signal GND.

- Connector used: 20455-040E-76 (I-PEX)
- Corresponding connector: 20453-040T (I-PEX) or HD1P040MA1 (JAE)
 (Sharp is not responsible to its product quality, if the user applies a connector not corresponding to the above model.)

[Note 4-1-4] Input circuit is as below.

[Note 4-1-5] Input circuit is as below.

[Note 4-1-6] All terminals except NC terminal must be connected to input signal described as above or supply voltage or GND each.

4 - 2. eDP interface

Fig.4-2-1 DP architecture.

Fig.4-2-2 Main Link differential pair.

Fig.4-2-3 AUX Link differential pair.

Lane0	Lane1	Lane2	Lane3
R0-7:0	R1-7:0	R2-7:0	R3-7:0
G0-7:0	G1-7:0	G2-7:0	G3-7:0
B0-7:0	B1-7:0	B2-7:0	B3-7:0
R4-7:0	R5-7:0	R6-7:0	R7-7:0
G4-7:0	G5-7:0	G6-7:0	G7-7:0
B4-7:0	B5-7:0	B6-7:0	B7-7:0
R8-7:0	R9-7:0	R10-7:0	R11-7:0
G8-7:0	G9-7:0	G10-7:0	G11-7:0
B8-7:0	B9-7:0	B10-7:0	B11-7:0

Fig.4-2-4 eDP 4 lane 8 bit input data mapping.

5. Absolute Maximum Ratings

			Rat	ings			
Parameter	Symbol Condition		Min.	Max.	Unit	Remark	
+3.3V supply voltage	VDD	Ta=25℃	-0.3	+4.0	V		
Back Light supply voltage	VBL	Ta=25°C	-0.3	+26.5	V		
Input voltage(eDP)	VI	Ta=25°C	-0.3	+1.8	V	[Note 5-1]	
Input voltage(BL)	BL_I	Ta=25°C	-0.3	VDD+0.3	V	[Note 5-2]	
Storage temperature (ambient)	Tstg		-20	+60	$^{\circ}$	[Note 5-3]	
Operating temperature(ambient)	Topa		0	+50	$^{\circ}\! \mathbb{C}$		

[Note 5-1] eDP signals

[Note 5-2] Back light control signals (BL_ENABLE, BL_PWM_DIM)

[Note 5-3] Humidity : 90%RH Max. at Ta \leq +40°C

Maximum wet-bulb temperature at $+39^{\circ}$ C or less at Ta> $+40^{\circ}$ C.

No condensation.

6. Electrical Characteristics

6 - 1. TFT-LCD panel driving

Ta=25℃

_						1a-25 C		
DC Electrical Characteristics								
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark		
Supply voltage	VDD	+3.0	+3.3	+3.6	V	[Note 6-1-1]		
Current dissipation 1	IDD1	_	600 540 519	700	mA	[Note 6-1-2] \(\triangle 1 \) \(\triangle 2 \)		
Power dissipation 1	PDD1	_	1.98 1.78 1.71	2.10	W	[Note 6-1-2] \(\triangle 1 \) \(\triangle 2 \)		
Current dissipation 2	IDD2	_	950 1070	1070 1450	mA	[Note 6-1-2] △1		
Power dissipation 2	PDD2	_	3.13 3.53	3.21 4.35	W	[Note 6-1-2] △1		
Inrush current	Irush	_		1.5	A	[Note 6-1-3]		
Permissive input ripple voltage	V _{RP}	- 6	(4)	100	$mV_{P\text{-}P}$	VDD = +3.3V		
	eDP HPD Signa	al Chara	cteristic	s				
Parameter	Symbol	Min.	Тур.	Max	Unit	Remark		
HPD High level output voltage	VOH _{HPD}	7	VDD-0.1	_		No Load		
HPD Low level output voltage	VOL _{HPD}	_	0	_		No Load		
	eDP AUX Chan	nel Chara	acteristics	5				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark		
Unit Interval for AUX channel	UI _{AUX}	0.4	0.5	0.6	μs			
AUX peak-to-peak voltage at a transmitting device	V	0.39	0.6	1.38	V			
AUX peak-to-peak voltage at a receiving device	Vaux-diffp-p	0.32	0.6	1.32	V			
AUX DC Common Mode Voltage	VAUX-DC-CM	_	0.5	_	V			
AUX Short Circuit Current Limit	IAUX_SHORT	_	_	90	mA			
AUX CH termination DC resistance	RAUXTERM	_	100		Ω			
AUX AC Coupling Capacitor	Caux	75	_	200	nF			
Number of pre-charge pulses	Pre-charge pulses	10	_	16	_			

eDP Main Link Receiver Characteristics								
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark		
Link clock down spreading	Down_Spread_ Amplitude	_	_	0.5	%			
Differential Peak-to-peak Input Voltage at RX package pins	V _{RX-DIFFp-p}	90	_	1200	mV			
Differential Return Loss at 1.35 GHz at RX package pins	RL _{RX-DIFF}	9	_	_	dB	△ 1		
RX DC Common Mode Voltage	V _{RX-DC-CM}	0	_	2.0	V			
Differential termination resistance	V _{RX-TERM}	_	100	_	Ω			
RX Short Circuit Current Limit	Irx-short	_	_	50	mA			
Lane Intra-pair Skew at RX package pins	LRX-SKEW-INTRA -PAIR-High-Bit-Rate	_	_	50	ps	△ 1		

[Note] Do not keep the interface signal high-impedance or unusual signal when power is on.

Symbol	Min	Max	Unit	Note
t1	0.5	10	ms	
t2	0	100	ms	
t3	0	100	ms	
t4	-	-	ms	allows for the source to read link capability and initialize
t5	-	-	ms	[Note 3]
t6	-	-	ms	[Note 3]
t7	0	50	ms	
t8	-	-	ms	[Note 4]
t9	-	-	ms	[Note 5]
t10	0	500	ms	
t11	1	50	ms	[Note 1]
t12	500	-	ms	[Note 2]
t13	-	-	ms	[Note 6]
t14	1	10	ms	$\triangle 2$
t15	100		ms	$\triangle 2$
t16	0	-	ms	[Note 7]
t17	0	-	ms	
t18	0	-	ms	[Note 7]
t19	-	-	ms	
t20	0.1	-	ms	△2
t21	100		ms	
t22	300	-	ms	△1

[Note 1] As for the power off sequence for VDD (t11), Be sure to keep above mentioned timing.

If the VDD power off sequence timing is other than shown above, LCD may cause permanent damage.

As for the power sequence for backlight, it is recommended to apply above mentioned input timing.

If the backlight is light on and off at a timing other than shown above, displaying image may get disturbed.

[Note 2] As for the power off-on sequence for VDD (t12), Be sure to keep above mentioned timing.

If the VDD power off-on sequence timing is other than shown above, LCD may cause permanent damage.

[Note 3] Dependant on the Source Link training protocol and Link idle.

[Note 4] The Source must assure display video is stable.

[Note 5] The Source must assure backlight is no longer illuminated.

[Note 6] Even if VBL Power is on earlier than VDD, It is not have any problem.

[Note 7] Prohibit the BL_ENABLE input of the period when it is not VBL Power on.

VDD-dip conditions

1) $2.5 \text{ V} \leq \text{VDD} < 3.0 \text{ V}$

 $td \leq 10 \text{ ms}$

Under above condition, the display image should return to an appropriate figure after VDD voltage recovers.

VDD-dip conditions should also follow the ON-OFF conditions for supply voltage

[Note 6-1-2] Current condition: WHITE V255

TYP VDD=+3.3V MAX VDD=+3.0V

Maximum current condition: 2H dot + 1line shift pattern.

TYP VDD=+3.0V3.3V $\triangle 1$ MAX VDD=+3.0V

[Note 6-1-3]

·Rising time VDD:

6 - 2. Backlight driving

The backlight system is an edge-lighting type with white-LED.

(It is usually required to measure under the following condition. : Ta=25°C±2°C)

Parameter	Symbol	Min.	Тур.	Max	Unit	Remark
Supply voltage	VBL	5.0	12.0	21.0	V	
Current dissipation 1	I_{BL1}	_	335 330	380 377	mA	VBL=12.0V
Power dissipation 1	P_{BL1}	_	4.02 3.96	4.56 4.52	W	Duty Ratio=100% △2
Current dissipation 2	I_{BL2}	_	_	980	mA	VBL=5.0V (max.)
Power dissipation 2	P_{BL2}	_	_	4.90	_ W	Duty Ratio=100%
Inrush current 1	I _{rush1-BL}	_	_	1.5	Α	VBL=12.0V [Note 6-2-5]
Inrush current 2	I _{rush2-BL}	_) <u>ج</u>	1.8	A	VBL=21.0V [Note 6-2-5]
Madulated light gional valtage	$V_{PWM}H$	2.2	3.3	3.6	V	
Modulated light signal voltage	$V_{PWM}L$	0	_	0.7	V	
Brightness Control Duty Ratio	Duty	1) –	100	%	[Note6-2-1]
Brightness Control pulse width	T_{PWM}	5	_	_	μs	[Note6-2-2]
Brightness Control frequency	f_{PWM}	150	200	2000	Hz	
	V _{BL-ENABL} H	1.8	3.3	3.6	V	[Note6-2-3]
BL-ENABLE signal voltage	$V_{BL\text{-}ENABL}L$	_	_	0.5	V	[Note6-2-3]
Input signal pin current	$ m I_{IN}$	_	$V_{IN}/51K\Omega$	_	μΑ	BL_ENABLE
Input signal pin current	I_{IN}	_	$V_{IN}/51K\Omega$	_	μΑ	BL_PWM_DIM
LED lifetime	-	_	15,000	_	h	[Note6-2-4]

[Note6-2-1] PWM_Duty: 100% = Max luminance 1% = Min luminance

[Note6-2-2] The minimum value of the dimming signal pulse width is assumed regulations of the width of high and the width of low.

[Note6-2-3] V_{BL_ENABLE} Input : High = BL turn on, Low or OPEN =BL turn off

VBL-dip conditions

1) Vth \leq V $_{BL}$ < Vmin : td \leq 20ms

2) $V_{BL} < Vth$: The condition of instantaneous voltage drop is apply to

© Copyright 2017 SHARP All rights reserved. input voltage sequences

[Note6-2-4] Luminance becomes 50% of an initial value. (Ta=25 $^{\circ}$ C, PWM=100%) [Note 6-2-5]

·Rising time VDD:

7. Timing Characteristics of Input Signals

7 - 1. Timing characteristics

					15.0 ,		
	Symbol	Min.	Тур.	Max.	Unit	Remark	
Clock	Frequency	1/Tc		533.28		MHz	[Note 7-1-1]
		TH		4000		clock	
Data enable Signal	Horizontal period		Č.	7.501		μs	
	Horizontal period (High)	THd		3840		clock	
	Vertical period	TV		2222		Line	
			Ò	16.67		ms	
	Vertical period (High)	TVd		2160		line	

[Note 7-1-1] In case of using the long vertical period, the deterioration of display quality, flicker, etc, may occur.

7 - 2. Input data signals and display position on the screen

Display position of input data(V • H)

0: Low level voltage, 1: High level voltage

Each basic color can be displayed in 256 gray scales from 8 bit data signals.

According to the combination of 24 bit data signals, the 16.7M color display can be achieved on the screen.

9. EDID Specifications

9 - 1. EDID data structure

This is the EDID(Extended Display Identification Data) data formats to support displays as defined in the VESA Plug & Display

Byte	Byte	Field Name and Comments	Value	Value
(decimal)	(hex)	Tiera Tume una Commento	(hex)	(binary)
0	00	Header	00	00000000
1	01	Header	FF	11111111
2	02	Header	FF	11111111
3	03	Header	FF	11111111
4	04	Header	FF	11111111
5	05	Header	FF	11111111
6	06	Header	FF	11111111
7	07	Header	00	00000000
8	08	EISA manufacture code = SHP	4D	01001101
9	09	EISA manufacture code (Compressed ASCII)	10	00010000
10	0A	Product code (LQ156D1JX36 : 5248)	80	10000000
11	0B	Product code (hex,LSB first)	14	00010100
12	0C	LCD module Serial No (fixed "0")	00	00000000
13	0D	LCD module Serial No (fixed "0")	00	00000000
14	0E	LCD module Serial No (fixed "0")	00	00000000
15	0F	LCD module Serial No (fixed "0")	00	00000000
16	10	Week of manufacture	05	00000101
17	11	Year of manufacture - 1990 (ex 2000 – 1990 = 10)	1B	00011011
18	12	EDID structure version # = 1	01	00000001
19	13	EDID revision # = 4	04	00000100
20	14	Video i/p definition = Digital 8bit DP support	A5	10100101
21	15	Max H image size(cm) = 35cm	23	00100011
22	16	Max V image size(cm) = 19cm	13	00010011
23	17	Display gamma $(2.2 \times 100) - 100 = 120$	78	01111000
24	18	Feature support(stanby,suspend,RGB color/Prefer Time)	06	00000110
25	19	Red/Green Low bit(RxRy/GxGy)	DE	11011110
26	1A	Blue/White Low bit(BxBy/WxWy)	50	01010000
27	1B	Red X(Rx) (written value 0.64)	A3	10100011
28	1C	Red Y(Ry) (written value 0.33)	54	01010100
29	1D	Green X(Gx) (written value 0.3)	4C	01001100
30	1E	Green Y(Gy) (written value 0.6)	99	10011001
31	1F	Blue X(Bx) (written value 0.15)	26	00100110
32	20	Blue Y(By) (written value 0.06)	0F	00001111
33	21	White X(Wx) (written value 0.313)	50	01010000
34	22	White Y(Wy) (written value 0.329)	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Established timings 3(Manufacture's reserved timing)	00	00000000
38	26	Standard timing ID1	01	00000001
39	27	Standard timing ID1	01	00000001
40	28	Standard timing ID2	01	00000001
41	29	Standard timing ID2	01	00000001
42	2A	Standard timing ID3	01	00000001

43	2B	Standard timing ID3	01	00000001
43	2C	Standard timing ID4	01	00000001
45	2D	Standard timing ID4 Standard timing ID4	01	00000001
45	2D 2E	Standard timing ID5 Standard timing ID5	01	00000001
47	2F	Standard timing ID5 Standard timing ID5	01	00000001
		Standard timing ID6		
48	30		01	00000001
		Standard timing ID6 Standard timing ID7	01	00000001
50	32			
51	33	Standard timing ID7 Standard timing ID8	01	00000001
52	34		01	00000001
53	35	Standard timing ID8	01	00000001
54	36	Detailed timing descriptor#1 fck/10000 (=533.28MHz/10000=53328=D050h)	50	01010000
55	37	#1 fck	D0	11010000
56	38	#1 Horizontal active 3840=F00h 00h	00	00000000
57	39	#1 Horizontal blanking 160=0A0h A0h	A0	10100000
58	3A	#1 Horizontal active/Horizontal blanking F0h	F0	11110000
59	3B	#1 Vertical active 2160=870h 70h	70	01110000
60	3C	#1 Vertical blanking 62=03Eh 3Eh	3E	00111110
61	3D	#1 Vertical active/Vertical blanking 80h	80	10000000
62	3E	#1 Horizontal sync , offset(Thfp) 48=030h 30h	30	00110000
63	3F	#1 Horizontal sync , width 32=020h 20h	20	00100000
64	40	#1 Vertical sync,offset / Vertical sync,width (offset=3h/width=5h)	35	00110101
65	41	#1 Horizontal sync offset/width/Vertical sync offset/width	00	00000000
66	42	#1 Horizontal image size 345.6mm=15Ah 5Ah	5A	01011010
67	43	#1 Vertical image size 194mm=0C2h C2h	C2	11000010
68	44	#1 Horizontal image size / Vertical image size 10h	10	00010000
69	45	Horizontal boader	00	00000000
70	46	Vertical boader	00	00000000
71	47	Flags(Non-interlaced=0/non 3D=00/Degital separate=11/Horizontal polarity/Vertical polarity=00)	18	00011000
72	48	Detailed timing descriptor#2 fck/10000	00	00000000
73	49	#2 fck	00	00000000
74	4A	#2 Horizontal active	00	00000000
75	4B	#2 Horizontal blanking	10	00010000
76	4C	#2 Horizontal active/Horizontal blanking	00	00000000
77	4D	#2 Vertical active	00	00000000
78	4E	#2 Vertical derive	00	0000000
79	4F	#2 Vertical blanking	00	0000000
80	50	#2 Horizontal sync , offset	00	0000000
81	51	#2 Horizontal sync , width	00	0000000
82	52	#2 Vertical sync,offset / Vertical sync,width	00	0000000
83	53	#2 Horizontal sync offset/width/Vertical sync offset/width	00	0000000
84	54	#2 Horizontal image size	00	0000000
85	55	#2 Vertical image size	00	0000000
86	56	#2 Vertical image size #2 Horizontal image size / Vertical image size	00	0000000
87	57	Horizontal boader	00	00000000
88	58	Vertical boader	00	00000000
89			00	0000000
90	59 5A	Flags Detailed timing descriptor #3	00	0000000
90	5A 5B	<u> </u>	00	00000000
91	ЭĎ	Flag	00	00000000

92	5C	Reserved	00	00000000
93	5D	Dummy Descriptor		00010000
94	5E	Flag		00000000
95	5F	1st Dummy		00000000
96	60	2nd Dummy	00	00000000
97	61	3rd Dummy	00	00000000
98	62	4th Dummy	00	00000000
99	63	5th Dummy	00	00000000
100	64	6th Dummy	00	00000000
101	65	7th Dummy	00	00000000
102	66	8th Dummy	00	00000000
103	67	9th Dummy	00	00000000
104	68	10th Dummy	00	00000000
105	69	11th Dummy	00	00000000
106	6A	New line character #3 indicates end	00	00000000
107	6B	Padding with "blank" character	00	00000000
108	6C	Detailed timing descriptor #4	00	00000000
109	6D	Flag	00	00000000
110	6E	Reserved	00	00000000
111	6F	Display Product name	FE	11111110
112	70	Flag	00	00000000
113	71	Supplier P/N#1 (L)	4C	01001100
114	72	Supplier P/N#2 (Q)	51	01010001
115	73	Supplier P/N#3 (1)	31	00110001
116	74	Supplier P/N#4 (5)	35	00110101
117	75	Supplier P/N#5 (6)	36	00110110
118	76	Supplier P/N#6 (D)	44	01000100
119	77	Supplier P/N#7 (1)	31	00110001
120	78	Supplier P/N#8 (J)	4A	01001010
121	79	Supplier P/N#9 (X)	58	01011000
122	7A	Supplier P/N#10 (3)	33	00110011
123	7B	Supplier P/N#11 (6)	36	00110110
124	7C	Supplier P/N#12 ("Space")	0A	00001010
125	7D	(If<13 char,then terminate with ASCII code 0Ah,set remaining char 20h)	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	FC	11111100

10. Optical Characteristics

Ta=+25°C, VDD=+3.3V, VBL=+12.0V

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Horizontal	θ21,θ22		80	89		deg.	D 10 1 10 2 10 1
Viewing	Vertical	θ11	CR≧10	80	89		deg.	[Note 10-1, 10-3, 10-4,
angle range		θ12		80	89	_	deg	10-6]
Contrast ra	tio	CR	θ=0°	1200	1500	_		[Note 10-2, 10-4, 10-6]
Response ti	me	τr+τd		_	33	_	ms	[Note 10-1, 10-5, 10-6]
Chromaticity	of white	X		0.283	0.313	0.343		
		у		0.299	0.329	0.359		
Chromaticity	of red	X		_	0.640	_		
		у		_	0.330	_ ,		[Note 10-2, 10-6]
Chromaticity of green		X	θ=0°	_	0.300	-X		Normal operation
		у	0-0	_	0.600	(-)		(PWM Duty=100%)
Chromaticity	Chromaticity of blue		X		0.150			
		y		- (0.060	_		
NTSC ratio					72	_	%	
Luminance of white		Y_{LI}		255	300	_	cd/m ²	[Note 10-2, 10-6] Normal operation (PWM Duty=100%)
White Uniformity		$\delta_{W(5)}$	0.00)_	_	1.25		[Note 10-7]
		$\delta_{W(13)}$	θ=0°	_	_	1.67		(PWM Duty=100%)

^{*} The measurement shall be taken 30 minutes after lighting the module at the following rating:

Condition: PWM Duty = 100%

The optical characteristics shall be measured in a dark room or equivalent.

[Note 10-1] Measurement of viewing angle range [Note 10-2] Measurement of luminance and and Response time.

Chromaticity and Contrast.

Viewing angle range: EZ-CONTRAST / Response time: Photo diode

[Note 10-3] Definitions of viewing angle range:

LCD Panel

[Note 10-4] Definition of contrast ratio:

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white Contrast Ratio (CR) Luminance (brightness) with all pixels black

[Note 10-5] Definition of response time:

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white" .

[Note 10-6] This shall be measured at center of screen.

[Note 10-7] Definition of white uniformity:

White uniformity is defined as the following with below measurements 5points $(A \sim E) / 13$ points $(A \sim M)$.

 $\delta w = \frac{\text{Maximum Luminance of measured points (brightness)}}{\text{Minimum Luminance of measured points (brightness)}}$

11. Handling Precautions

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.

 Please insert for too much stress not to join a connector in the case of insertion of a connector.
- b) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) Since the front polarizer is easily damaged, pay attention not to scratch it.
- d) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- e) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- f) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- g) Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling. Observe all other precautionary requirements in handling components.
- h) This module has its circuitry PCBs on the side and should be handled carefully in order not to be stressed.
- i) Protect sheet(Laminate film) is attached to the module surface to prevent it from being scratched. Peel the sheet off slowly just before the use with strict attention to electrostatic charges. Ionized air shall be blown over during the action. Blow off the 'dust' on the polarizer by using an ionized nitrogen gun, etc. Working under the following environments is desirable.
 - All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.
 - Use Ionized blower for electrostatic removal, and peel of the protect sheet with a constant speed. (Peeling of it at over 2 seconds)
- j) The polarizer surface on the panel is treated with Anti Glare. In case of attaching protective board over the LCD, be careful about the optical interface fringe etc. which degrades display quality.
- k) Do not expose the LCD module to a direct sunlight, for a long period of time to protect the module from the ultra violet ray.
- When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in
 the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent,
 adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD
 modules.
- m) Liquid crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.
- n) Disassembling the module can cause permanent damage and should be strictly avoided.

 Please don't remove the fixed tape, insulating tape etc that was pasted on the original module.

 (Except for protection film of the panel.)
- o) Be careful when using it for long time with fixed pattern display as it may cause afterimage. (Please use a screen saver etc., in order to avoid an afterimage.)
- p) If a minute particle enters in the module and adheres to an optical material, it may cause display non-uniformity issue, etc. Therefore, fine-pitch filters have to be installed to cooling and inhalation hole if you intend to install a fan.
- q) Epoxy resin (amine series curing agent), silicone adhesive material (dealcoholization series and oxime series),
 - tray forming agent (azo compound) etc, in the cabinet or the packing materials may induce abnormal display with polarizer film deterioration regardless of contact or noncontact to polarizer film.

 Be sure to confirm the component of them.
- r) Do not use polychloroprene. If you use it, there is some possibility of generating Cl₂ gas that influences the reliability of the connection between LCD panel and driver IC.

- s) Do not put a laminate film on LCD module, after peeling of the original one. If you put on it, it may cause discoloration or spots because of the occurrence of air gaps between the polarizer and the film.
- t) Ground module bezel to stabilize against EMI and external noise.
- u) When you peel off the protection film,
 - -Be sure to peel off slowly (recommended more than 5sec) and constant speed.
 - -Peeling direction shows the following Figure.
 - -Be sure to ground person with adequate methods such as the anti-static wrist band.
 - -Be sure to ground all terminals of the PWB connector while peeling of the protection film.
 - -Ionized air should be blown over during peeling action.
 - -The protection film must not touch driver-ICs, PWB and all components on PWB.
 - -If adhesive may remain on the polarizer after the protection film peeling off, please remove with isopropyl-alcohol.

Front view

- v)The glass of display is bigger than Back-light, so please be careful of below points(especially about 4 corners.)
- -Don't hit LCD module with hard solid to prevent glass cracking.
- -Please wear the gloves etc. to protect hands when handling LCD module.
- w.) If you apply downward force from connector above especially edge of pull bar when you un-plug from Receptacle, there is a possibility to damage PCB like picture below. This downward force on edge of pull-bar will be caused of short and circuit and disconnection of PCB layout. Therefore, please don't apply and load from above.

12. Precautions for Handling Tray

a.) Hold center of short side of tray with both hands when handling one or more trays.

Caution: Do not handle with only one hand.

- b.) Always place tray on flat surface.
- c.) When stacking trays, please align same shape corner of each tray.
 - One corner is R corner. (Ref. Pic. 1)
- d.) Maximum stacking quantity is the number of trays inside one box.

Ex.: In case of 30pcs LCD module per box (2pcs LCD module per tray), maximum stacking is 15 trays.

R Corner

Pic.1 Stacking tray

13. Packaging Condition

Piling number of cartons	8
Package quantity in one carton	40pcs
Carton size	565x475x289mm
Total mass of one carton filled with full modules	20.58kg
Packing form	Fig.1

14. Label

1) Module barcode label:

A:Label Contents

①SHARP logo

②LENOVO model name: LQ156D1JX36

③SHARP control number: -

4 User model name (P/N): 5D10M42865

⑤ Serial number: Refer to the table below.

⑥Barcode: Code 39

7 Manufacturing: Made in China

B: Serial No. / Barcode contents

2) Packing bar code label

- ① SHARP Model No. LQ156D1JX36
- ② Date
- ③ Quantity (40pcs / Carton)
- 4 USER Model No. 5D10M42865

15. RoHS Directive

This LCD module is compliant with RoHS Directive.

16. Reliability Test Items

No.	Test item	Conditions				
1	High temperature storage test	$Ta = 60^{\circ}C$ 240h				
2	Low temperature storage test	$Ta = -20^{\circ}C$ 240h				
3	High temperature	$Ta = 40^{\circ}C$; 90RH 240h				
	& high humidity operation test	(No condensation)				
4	High temperature operation test	$Ta = 50^{\circ}C$ 240h				
5	Low temperature operation test	$Ta = 0^{\circ}C$ 240h				
6	Vibration test	Frequency: 5~22H z/Vibration width: 1.54mm				
	(non- operating)	: 22~500H z / Acceleration : 14.7m/s2				
		Sweep time: 30minutes				
		Test period : 1 hour for each direction of X,Y,Z				
		(total 3 hours)				
7	Shock test Max. acceleration : 490 m/s2, Pulse width : 11 ms					
	(non- operating)	Half sine wave direction : $\pm X, \pm Y, \pm Z$				
		Once for each direction				
8	ESD	± 200 V, 200 pF(0Ω) 1time/each terminal				

[Result Evaluation Criteria] Under the display quality test conditions with normal operation state. Do not change these conditions as such changes may affect practical display function.

[Normal operation state] Temperature : $+15 \sim +35 ^{\circ}$ C, Humidity : $45 \sim 75 ^{\circ}$, Atmospheric pressure : $86 \sim 106$ kPa

Fig. 1 Packaging Condition

SHARP Confidential

Fig. 2 Outline Dimensions $\triangle 1$