OpenNCC SDK

API2.0.x 接口定义

历史版本

版本	日期	修改	变更摘要
1.0.0	2020/1/10	王新华	Initial version
1.0.1	2020/3/16	王洋	Optimized version
2.0.0	2020/4/7	左文平	修订接口,添加 python 接口

一: SDK C/C++接口说明

接口包含文件主要在 sdk.h、cameraCtrl.h 、Fp16Convert 3 个文件。

OpenNCC sdk 视频处理流程图

1.设备初始化相关接口

1.1 加载设备固件

接口名称	接口参数	参数说明
	const char* bootExe	Usb boot 程序路径
load_fw()	const char* firmware	固件文件放置路径

接口调用示例:

load_fw("./moviUsbBoot", "./fw/flicRefApp.mvcmd");

返回值: 0: 成功; -1 失败

接口功能说明:

自动加载设备固件,设备 boot 运行, host (PC) 打开 usb 设备。

1.2 获取连接设备 usb 版本信息

接口名称	接口参数	参数说明
get_usb_version()	void	无

接口调用示例:

get_usb_version();

返回值: 30: usb3.0、20: usb2.0

接口功能说明:

获取设备连接的 usb 版本信息 (端口和 usb 线)

1.3 初始化相机参数

接口名称	接口参数	参数说明
sdk_init()	vscRecvCb cb	回调函数
	void* param	回调函数参数
	char *blob_path	AI 模型文件(blob 格式)路径
	CameraInfo*cam	相机配置参数,具体内容见下方
	int cam_Len	相机配置结构体长度

媒体数据和 meta 数据有 2 种方式获取,一:通过回调函数被动获取,二:通过 read_XXX_data()主动获取,使用第二种方法不用设置回调函数以及回调参数。

typedef struct{

int imageWidth; //图像宽度 int imageHeight; //图像高度

int inputDimWidth; /* 缩放后模型输入宽,如果<=0,自动从模型的 xml 获取*/int inputDimHeight; /* 缩放后模型输入高,如果<=0,自动从模型的 xml 获取 */

IMAGE_FORMAT inputFormat; /* 模型输入格式, 只支持

RGB/RGB_PLANAR/BGR/BGR_PLANAR */

float meanValue[3]; /* 缩放后的数据二次预处玿如果 inputFormat 为 RGB:

R = (R-meanValue[0])/stdValue
G = (G-meanValue[0])/stdValue
B = (B-meanValue[0])/stdValue */

float stdValue;

int isOutputYUV; //使能开关 1 : open 0 :close

int isOutputH26X; int isOutputJPEG;

encodeMode mode; /* H264/H265 */

} CameraInfo;

接口调用示例:

sdk init(NULL, NULL, (char*) "./blob/face-detection.blob", &cam info, sizeof(cam info));

返回值: 0: 成功; -1 失败

接口功能说明:

指定相机 AI 模型文件,AI 计算参数,初始化设备算法模型,相机功能开关选择,通过 mode 参数设置视频

压缩编码参数(ENCODE_H264_MODE, ENCODE_H265_MODE),注意,此处仅仅是功能开关是否开启,视频输出还要通过 camera_video_out() 控制是否输出。

1.4 获取 meta data 大小

接口名称	接口参数	参数说明
get_meta_size()	void	无

接口调用示例:略。

返回值: cnn 计算结果 meta data 数据大小。

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

1.5 移除 sdk

接口名称	接口参数	参数说明
sdk_uninit()	void	无

接口调用示例:

sdk_uninit();

返回值:无

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

1.6 获取 sdk 版本信息

接口名称	接口参数	参数说明
get_sdk_version()	char* version	版本信息

接口调用示例:

char version[100];

get_sdk_version(version);

返回值: void

接口功能说明:

获取 sdk 版本信息。

2.视频流相关接口

2.1 获取设备 yuv 数据

接口名称	接口参数	参数说明
read_yuv_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
		返回

接口调用示例:

read_yuv_data(data_yuv,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 yuv 数据流

2.2 获取设备 H.264 或 H.265 数据流

接口名称	接口参数	参数说明
read_26x_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
		返回

接口调用示例:

read_26x_data(data_26x,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 H.264 或 H.265 数据流

2.3 获取设备 jpeg 数据

接口名称	接口参数	参数说明
read_jpg_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
		返回

接口调用示例:

read_jpg_data(yuv420p,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 jpeg 数据流

2.4 获取设备 AI 算法运算结果

接口名称	接口参数	参数说明
read_meta_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
		返回

接口调用示例:

read_meta_data(data_mate,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备 AI 网络运算结果数据

2.5 获取设备 ir 数据

接口名称	接口参数	参数说明
read_ir_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小
	int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
		返回

接口调用示例:

read_ir_data(yuv420p,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备红外图像数据流,只有 3D 相机才支持该接口。

2.6 获取设备 depth 数据

接口名称	接口参数	参数说明
read_depth_data()	char* pbuf	接收缓存区
	int * size	输入输出参数,输入时表示输入缓存区大小,输出时表示返回视
		频数据大小

int blocked	数据返回 0: 如果无数据立即返回; 1: 阻塞直到读取到数据才
	返回

接口调用示例:

read_depth_data(data_depth,&size,1)

返回值: 0: 成功; -1 失败

接口功能说明:

获取设备深度图像数据流,只有 3D 相机才支持该接口。

3.相机控制相关接口

3.1 获取相机模组信息

接口名称	接口参数	参数说明
camera_control_get_features()	SensorModesConfig *	设备信息的结构体指针

接口调用示例:

SensorModesConfig cameraCfg;

camera control get features(&cameraCfg);

返回值: 0: 成功; -1 失败

cameraCfg.moduleName 相机模组名称

cameraCfg.camWidth 图像宽 cameraCfg.camHeight 图像高 cameraCfg.camFps 相机帧率

cameraCfg.AFmode 是否支持自动聚焦 1 支持, 0 不支持

cameraCfg.maxEXP 最大曝光时间,单位微秒 us

cameraCfg.minGain 最小增益倍数 cameraCfg.maxGain 最大增益倍数

接口功能说明:

获取相机可见光模组模式信息,有的相机支持多种视频模式,可以通过 camera_select_sensor () 选择使用。

3.2 选择模组工作模式

接口名称	接口参数	参数说明
camera_select_sensor()	int sensorid	camera_control_get_features 获
		取到相机支持的模组信息数组,
		sensorid 为数组的序号。

接口调用示例:

camera_select_sensor(0); 返回值: 0: 成功; -1 失败 接口功能说明:

设置相机可见光模组的工作模式。

3.3 控制相机视频输出方式

接口名称	接口参数	参数说明
camera_video_out()	int video_type	Yuv 数据输出模式
	camera_ctrl_VIDEO_out mode	禁止,单次(拍照用),连续

```
typedef enum
```

{

```
VIDEO_OUT_DISABLE, /* 禁止输出 */
VIDEO_OUT_SINGLE, /* 输出一次 */
VIDEO_OUT_CONTINUOUS, /* 连续输出 */
}camera_ctrl_video_out;
```

接口调用示例:

camera_video_out(YUV420p,VIDEO_OUT_CONTINUOUS);

返回值: 0: 成功; -1 失败

接口功能说明:

控制设备输出视频数据的模式,该设置当前对YUV420p,H26X,JPEG有效,其中好H26X不支持单次输出。

3.4 选择相机聚焦模式

接口名称	接口参数	参数说明
camera_control_af_mode()	camera_ctrl_af_mode af_mode	CAMERA_CONTROL_AF_MODE
		_OFF : 手动
		CAMERA_CONTROLAF_MODE
		_AUTO: 自动

接口调用示例:

camera_control_af_mode(CAMERA_CONTROL_AF_MODE_OFF);

返回值: 0: 成功; -1 失败

接口功能说明:

设置相机聚焦模式,通过 camera_control_get_features () 获取到相机是否支持手动模式 (cameraCfg.AFmode) ,只有支持手动才可以设置,否则设置无效,相机不执行该命令,默认自动。

3.5 设置相机镜头距离

接口名称	接口参数	参数说明
camera control lens move()	uint32 t lens position	距离大小, 范围 (1-100)

接口调用示例:

camera_control_lens_move(10);

返回值: 0: 成功; -1 失败

接口功能说明:

手动聚焦时候用, 距离越大, 值越大。

3.6 触发单次聚焦

接口名称	接口参数	参数说明
camera_control_focus_trigger()	无	

接口调用示例:

camera_control_focus_trigger();

返回值: 0: 成功; -1 失败

接口功能说明:

单次聚焦。

3.7 选择相机曝光模式

接口名称	接口参数	参数说明
camera_control_ae_mode()	camera_ctrl_ae_mode	手动,自动选择。
	flash_mode	

接口调用示例:

 $camera_control_ae_mode(CAMERA_CONTROL_AE_AUTO_FLASH_MODE_AUTO);$

返回值: 0: 成功; -1 失败

接口功能说明:

曝光方法设置。

3.8 设置相机曝光时间

接口名称	接口参数	参数说明
camera_control_ae_set_exp()	uint32_t exp_compensation	曝光时间设置,单位微秒(us) 范围
		(1-1/fps)

接口调用示例:

camera_control_ae_set_exp(20000);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光,设置曝光时间。

3.9 设置相机曝光增益

接口名称	接口参数	参数说明
camera_control_ae_set_gain ()	uint32_t iso_val	增益值

接口调用示例:

camera control lens move(100);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光时候,设置增益值,通过上面 3.1 API 接口 camera_control_get_features () 获取到 minGain, maxGain 值(见结构体 SensorModesConfig),手动设置。

3.10 选择相机白平衡模式

接口名称	接口参数	参数说明
camera_control_awb_mode()	camera_ctrl_awb_mode	手动, 自动
	awb_mode	

接口调用示例:

 $camera_control_awb_mode(CAMERA_CONTROL_AWB_MODE_AUTO);$

返回值: 0: 成功; -1 失败

接口功能说明:

相机白平衡设置, 手动, 自动选择。

3.11 浮点数转化

接口名称	接口参数	参数说明
f16Tof32()	unsigned int x	16 位数据

接口调用示例:

Float f=f16Tof32(100);

返回值: 浮点数

接口功能说明:

16 位 short 数据转浮点数,用于 meta data 计算分析。

二: SDK Python 接口说明

从 API2.0.x 开始支持 python API, sdk 接口见 openncc.py 文件,使用时候导入该模块即可,如:import openncc as ncc。

1.设备初始化相关接口

1.1 获取 sdk 版本信息

接口名称	接口参数	参数说明
get_sdk_version()	无	

接口调用示例:

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version()))

返回值: 版本信息

接口功能说明:

获取 sdk 版本信息。

1.2 获取设备连接 usb 信息

接口名称	接口参数	参数说明
get_usb_version()	无	无

返回值: 30: usb3.0、20: usb2.0

接口调用示例:

print("get usb %d sdk versin %s" % (ncc.get usb version() ,ncc.get sdk version()))

接口功能说明:

获取设备连接的 usb 版本信息 (端口和 usb 线)

1.3 加载设备固件

接口名称	接口参数	参数说明
	bootExe	Usb boot 程序路径
load_fw()	firmware	固件文件放置路径

返回值: 0: 成功; -1 失败

接口调用示例:

res = ncc.load_fw("./moviUsbBoot","fw/flicRefApp.mvcmd")

if res<0:

printf('load firmware error!')

sys.exit(1)

接口功能说明:

自动加载设备固件,设备 boot 运行, host (PC) 打开 usb 设备。

1.4 初始化相机参数

接口名称	接口参数	参数说明
sdk_init()	vscRecvCb cb	回调函数
	param	回调函数参数
	blob_path	模型文件路径
	cam	相机配置参数具体内容见下方
	Cam_len	相机配置结构体长度

媒体数据以及 meta 数据有 2 种获取方法,具体见 c/c++对应的该接口描述。接口调用示例:

```
cam_info=ncc.CameraInfo()
cam_info.inputFormat=ncc.IMG_FORMAT_BGR_PLANAR
cam_info.stdValue=1

cam_info.isOutputYUV=1
cam_info.isOutputH26X=1
cam_info.isOutputJPEG=1

cam_info.imageWidth = cameraCfg.camWidth
cam_info.imageHeight = cameraCfg.camHeight
cam_info.startX = 0
cam_info.startY = 0
```

cam_info.endX = cameraCfg.camWidth
cam_info.endY = cameraCfg.camHeight
cam_info.inputDimWidth =0
cam_info.inputDimHeight =0
ncc.SetMeanValue(cam_info,0.0,0.0,0.0)

 $ret = ncc.sdk_init(None, None, "./blob/face-detection-retail-0004-fp16.blob", cam_info, struct.calcsize("13I4f"))$

```
print("xlink_init ret=%d " % ret)
if (ret<0):
    return</pre>
```

接口功能说明:

指定相机 AI 模型文件,AI 计算参数,初始化设备算法模型,相机功能开关选择,通过 mode 参数设置视频

压缩编码参数(ENCODE_H264_MODE, ENCODE_H265_MODE),注意,此处仅仅是功能开关是否开启,视频输出还要通过 camera_video_out()控制是否输出。

1.5 移除 sdk

接口名称	接口参数	参数说明
sdk_uninit()	无	无

接口调用示例:

sdk_uninit();

返回值:无

接口功能说明:

相机关闭, 重新加载算法模型, 更换模型前调用

2.视频流相关接口

2.1 获取设备 yuv 数据

接口名称	接口参数	参数说明
GetYuvData()	yuvbuf	接收缓存区,bytearray 类型

接口调用示例:

metasize=ncc.get_meta_size()

offset=struct.calcsize(media head)

yuvsize=cameraCfg.camWidth*cameraCfg.camHeight*2

yuvbuf = bytearray(yuvsize+offset)

metabuf = bytearray(metasize+offset)

size = ncc.GetYuvData(yuvbuf)

返回值:yuv实际数据大小。

接口功能说明:

获取设备 yuv 数据流

2.2 获取设备 H.264 或 H.265 数据流

接口名称	接口参数	参数说明
GetH26xData()	databuf	接收缓存区,bytearray 类型

接口调用示例:

用法同获 2.1 获取 yuv 数据

接口功能说明:

2.3 获取设备 jpeg 数据

接口名称	接口参数	参数说明
GetJpegData()	databuf	接收缓存区,bytearray 类型

接口调用示例:

用法同获 2.1 获取 yuv 数据

接口功能说明:

获取设备 jpeg 数据流

2.4 获取设备 AI 网络数据运算结果

接口名称	接口参数	参数说明
GetMetaData()	databuf	接收缓存区,bytearray 类型

接口调用示例:

用法同获 2.1 获取 yuv 数据

接口功能说明:

获取设备 AI 网络运算结果数据

3.相机控制相关接口

3.1 获取相机模组信息

接口名称	接口参数	参数说明
CameraSensor 类	GetFirstSensor () ,	
	GetNextSensor ()	

接口调用示例:

sensors=ncc.CameraSensor()

sensor1 = ncc.SensorModesConfig()

if sensors.GetFirstSensor(sensor1)==0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

 $maxEXP:%dus,gain[%d, %d]\n" % ($

sensor1.moduleName, sensor1.camWidth, sensor1.camHeight, sensor1.camFps, sensor1.AFmode, sensor1.maxEXP, sensor1.minGain, sensor1.maxGain))

sensor2 = ncc.SensorModesConfig()

while sensors.GetNextSensor(sensor2) == 0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

maxEXP:%dus,gain[%d, %d]\n" % (

sensor2.moduleName, sensor2.camWidth, sensor2.camHeight, sensor2.camFps,

sensor2.AFmode, sensor2.maxEXP, sensor2.minGain, sensor2.maxGain))

接口功能说明:

获取相机可见光模组模式信息,有的相机支持多种视频模式,可以通过 camera_select_sensor () 选择使用。

3.2 选择模组工作模式

接口名称	接口参数	参数说明
camera_select_sensor()	sensorid	camera_control_get_features 获
		取到相机支持的模组信息数组,
		sensorid 为数组的序号。

接口调用示例:

 $ncc.camera_select_sensor(0)$

返回值: 0: 成功; -1 失败

接口功能说明:

设置相机可见光模组的工作模式。

3.3 控制相机视频输出方式

接口名称	接口参数	参数说明
camera_video_out()	video_type	数据类型
	out mode	禁止,单次(拍照用),连续

接口调用示例:

ncc.camera_video_out(ncc.YUV420p,ncc.VIDEO_OUT_CONTINUOUS)

返回值: 0: 成功; -1 失败

接口功能说明:

控制设备输出视频数据的模式,该设置当前对YUV420p,H26X,JPEG有效,其中好H26X不支持单次输出。

3.4 设置相机聚焦模式

接口名称	接口参数	参数说明
camera_control_af_mode()	camera_ctrl_af_mode af_mode	CAMERA_CONTROL_AF_MODE
		_OFF : 手动
		CAMERA_CONTROLAF_MODE
		_AUTO:自动

接口调用示例:

 $ncc.camera_control_af_mode(ncc.CAMERA_CONTROL_AF_MODE_AUTO);\\$

返回值: 0: 成功; -1 失败

接口功能说明:

设置相机聚焦模式,通过 camera_control_get_features () 获取到相机是否支持手动模式 (cameraCfg.AFmode) ,只有支持手动才可以设置,默认自动。

3.5 选择相机镜头距离

接口名称	接口参数	参数说明
camera_control_lens_move()	lens_position	距离大小,范围 (1-100)

接口调用示例:

ncc.camera_control_lens_move(10);

返回值: 0: 成功; -1 失败

接口功能说明:

手动聚焦时候用, 距离越大, 值越大。

3.6 触发单次聚焦

接口名称	接口参数	参数说明
camera_control_focus_trigger()	无	

接口调用示例:

camera_control_focus_trigger();

返回值: 0: 成功; -1 失败

接口功能说明:

单次聚焦。

3.7 选择相机曝光模式

接口名称	接口参数	参数说明
camera_control_ae_mode()	camera_ctrl_ae_mode	手动, 自动选择。
	flash_mode	

接口调用示例:

ncc.camera_control_ae_mode(ncc.CAMERA_CONTROL_AE_AUTO__FLASH_MODE__AUTO);

返回值: 0: 成功; -1 失败

接口功能说明:

曝光方法设置。

3.8 选择相机曝光时间

接口名称	接口参数	参数说明
camera_control_ae_set_exp()	exp_compensation	曝光时间设置,单位微秒(us) 范围
		(1-1/fps)

接口调用示例:

ncc.camera control ae set exp(20000);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光,设置曝光时间。

3.9 选择相机曝光增益大小

接口名称	接口参数	参数说明
camera_control_ae_set_gain ()	iso_val	增益值

接口调用示例:

ncc.camera control lens move(100);

返回值: 0: 成功; -1 失败

接口功能说明:

手动曝光时候,设置增益值,通过上面 3.1 API 接口 camera_control_get_features () 获取到 minGain, maxGain 值(见对象 SensorModesConfig),手动设置。

3.10 选择相机白平衡模式

接口名称	接口参数	参数说明
camera_control_awb_mode()	camera_ctrl_awb_mode	手动, 自动
	awb_mode	

接口调用示例:

ncc.camera control awb mode(ncc.CAMERA CONTROL AWB MODE AUTO);

返回值: 0: 成功; -1 失败

接口功能说明:

相机白平衡设置,手动,自动选择。

3.11 浮点数转化

接口名称	接口参数	参数说明
f16Tof32()	x	16 位数据

接口调用示例:

f=f16Tof32(100);

返回值: 浮点数

接口功能说明:

16 位 short 数据转浮点数,用于 meta data 计算分析。