Микросхема для обработки низкочастотного сигнала с сейсмодатчика

Н.И.Малашевич, А.С.Росляков, С.А.Поломошнов, Р.А.Фёдоров

НПК «Технологический центр» МИЭТ

Рассмотрены особенности приема и обработки низкочастотного сигнала с сейсмодатчика на примере микросхемы на основе базового матричного кристалла серии 5507. Микросхема предназначена для обнаружения движения человека. Приводятся особенности информационного сигнала, полученного на выходе сейсмодатчика, основные характеристики микросхемы, ее структура.

Ключевые слова: сигнал с сейсмодатчика; обнаружительная способность; цифровой фильтр; базовый матричный кристалл.

В настоящее время широкое распространение получили микросистемы, осуществляющие обработку сигнала с преобразователей физических величин (ПФВ). С помощью подобных систем создаются различные средства обнаружения и распознавания объектов. В основе средств обнаружения, использующих сейсмический принцип лежит анализ сейсмических возмущений грунта, вызванных движением [1]. Миниатюризация соответствующих средств обнаружения, снижение потребляемой мощности, уменьшение вероятности ложных тревог являются основными тенденциями в области проектирования систем охраны в России [2].

Особенности таких систем, алгоритмы обработки, а также их полное описание в открытой печати недоступны. В большинстве современных зарубежных систем анализ сигналов с преобразователей осуществляется за счет применения не только аппаратных, но и программных средств [3]. Улучшение обнаружительной способности устройства при использовании программных средств приводит к увеличению потребляемой мощности и площади, занимаемой устройством на кристалле. Однако в некоторых случаях трудно найти компромиссное решение по выбору параметров и требуется применение специальных алгоритмов обработки сигнала с сейсмодатчика без ущерба для характеристик микросистемы.

В настоящей работе представлена микросхема, созданная на основе базового матричного кристалла серии 5507 (БМК5507), осуществляющая прием и обработку сигнала с сейсмодатчика. БМК5507 представляет собой вентильную матрицу нескоммутированных элементов, электрические связи между которыми реализуются с помощью слоя металлизации. Применение БМК5507 обеспечивает значительное уменьшение габаритов устройства обнаружения и энергопотребления, повышает надежность изделия. Одно из основных достоинств изготовления БИС на основе БМК5507 — это возможность реализации на одном кристалле как цифровых, так и аналоговых схем.

Сигнал, полученный на выходе сейсмодатчика, представляет собой случайную величину, т.е. является функцией времени, значение которой неизвестно и может быть предсказано лишь с некоторой вероятностью. Это объясняется тем, что амплитуды сигналов и фазы флуктуируют как из-за условий окружающей среды, изменения положе-

[©] Н.И.Малашевич, А.С.Росляков, С.А.Поломошнов, Р.А.Фёдоров, 2010

ния источника сейсмических колебаний, так и по другим причинам. Вследствие этого сигнал, поступающий в систему электронной обработки, является крайне «зашумленным» из-за воздействия разнообразных физических процессов, имеющих недетерминированную природу. Сигнал с сейсмодатчика включает информацию как о самих передвигающихся объектах, так и о характеристиках их движения (скорости передвижения и др.), удаленности источника сейсмических возбуждений относительно датчика, природе грунта, в который установлен сейсмодатчик.

На рис.1 представлена временная форма входного сигнала с сейсмодатчика, характерная для движения человека шагом на расстоянии 4 м относительно установленного в грунт сейсмического датчика, на рис.2 – спектральная форма указанного сигнала.

Puc. 1. Временная форма входного сигнала с сейсмодатчика при движении человека шагом

Рис.2. Спектрально-временная характеристика входного сигнала с сейсмодатчика при движении человека шагом

Входным каскадом микросхемы является дифференциальный каскад операционного усилителя, построенный на КМОП-транзисторах. Его входное сопротивление составляет 2 МОм. Это позволяет считывать маломощные сигналы с входного преобразователя. Поскольку операционный усилитель выведен на низкий ток потребления, частота среза составляет 100 кГц.

Характеристики входного сигнала:

- среднее квадратичное значение напряжения (СКЗН) шума на выходе сейсмодатчика в полосе частот 10–150 Гц достигает 1 мкВ;
- СКЗН полезного сигнала составляет от 5 мкВ до 5 мВ в зависимости от типа грунта, физических характеристик движущегося объекта, расстояния, на которое удален датчик от объекта;
- основная энергия шагов человека сосредоточена в полосе частот 70–110 Гц и в зависимости от различных условий (типа грунта, темпа движения, физических характеристик человека) может смещаться между границами указанного диапазона;
- входной сигнал имеет регулярный характер, что отличает его от сигнала, порожденного движением транспорта или воздействием естественных источников шума;
- продолжительность одного шага (как удара о землю) находится в диапазоне 0,09-0,2 с в зависимости от темпа движения, длительность паузы между двумя шагами составляет 0,3-0,6 с.

Необходимость полного учета спектральных и амплитудных характеристик сигнала, его регулярности и временных особенностей обусловили применение специальных алгоритмов обработки сигнала с сейсмодатчика.

В состав микросхемы на основе БМК5507 входят два основных блока:

- сейсмоканал (осуществляет аналоговую обработку сигнала);
- логический блок (осуществляет цифровой алгоритм обработки).

Структура микросхемы представлена на рис.3.

В блоке сейсмоканала используются 9 малопотребляющих операционных усилителей, реализованных в базисе БМК5507. Они выполняют функцию усиления, интегрирования и сравнения.

В блоке сейсмоканала сигнал с сейсмодатчика подвергается фильтрации активным полосовым фильтром третьего пополосой пропускания 70-110 Гц. В составе устройства имеется схема автоматической регулировки усиления, которая позволяет контролировать уровень естественных сейсмических шумов и выделять полезную составляющую сигнала. Общий коэффициент усиления достигает 6000, однако возможно его увеличение до 20000. За счет использования малопотребляющих аналоговых элементов в рабочем режиме микросхема имеет собственное потребление не более 200 мкА.

Логический блок выполняет цифровую фильтрацию и управление. В состав блока входит эвристический фильтр с оригинальным алгоритмом фильтрации, позволяющий сохранить достоинства цифровой фильтрации при ограниченных аппаратных затратах по сравнению с традиционными фильтрами с конечной и бесконечной импульсными характеристиками [4]. В основе алгоритма – быстрый и простой подход к выполнению оценки, базирующийся на проведении экспериментов и выявлении общих закономерностей входного сигнала, полученного при различных внешних условиях. Цифровой фильтр производит анализ временных характеристик сигнала и выраба-

Рис.3. Структура микросхемы на основе БМК5507: АРУ – автоматическая регулировка усиления; ОУ – операционные усилители; УВХ – устройство выбора и хранения

Рис. 4. Фрагмент обработки сигнала с сейсмодатчика: A — усиленный сигнал с сейсмодатчика; B — сигнал на емкости хранения; B — сигнал-признак; Γ — сигнал записи; Π — сигнал сброса

тывает команды на запись в момент достижения полезной составляющей сигнала максимального значения, игнорируя помехи. Логический блок выдает команды для фломирования сигнала-призрака, что показано на рис.4.

Входящий в состав микросхемы RC-генератор позволяет осуществлять подстройку под резонансную частоту пьезоэлектрического преобразователя.

Таким образом, разработанная микросхема приема и обработки сигнала с сейсмодатчика в составе устройства позволяет обнаружить движущегося человека на расстоянии 5–10 метров с вероятностью не ниже 0,95.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (грант Президента РФ для поддержки молодых российских ученых МК-826.2009.8) и в рамках реализации проектов по ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, «Развитие электронной компонентной базы и радиоэлектроники на 2008–2015 годы».

Литература

- 1. *Козинный А., Косарев А., Матвеев В.* Нарушителя выдаст грунт. Сейсмические средства обнаружения для охраны территориально распределенных объектов // БДИ -2006. № 4(67). С. 74-77.
- 2. *Звежинский С.С.* Периметровые маскируемые сейсмические средства обнаружения // Специальная техника. -2004. -№ 2. C. 20-28; № 3. C. 26-37.
- 3. Perimeter Security Sensor Technologies Handbook for DARPA and JPSG// NISE East Electronic Security Systems. -1997.-P.250
- 4. *Титце У.*, *Шенк К.* Полупроводниковая схемотехника: Справочное руководство. М.: Мир, 1983. 512 с.

Статья поступила 2 июня 2010 г.

Малашевич Наталья Иосифовна — магистрант кафедры проектирования и конструирования интегральных микросхем МИЭТ. *Область научных интересов*: проектирование и разработка цифровых и смешанных КМОП интегральных схем.

Росляков Алексей Сергеевич — магистрант кафедры интегральной электроники и микросистем МИЭТ. *Область научных интересов*: проектирование и разработка цифровых и смешанных КМОП интегральных схем.

Фёдоров Роман Александрович — кандидат технических наук, старший научный сотрудник НПК «Технологический центр» МИЭТ. *Область научных интересов*: проектирование и разработка цифровых и смешанных КМОП интегральных схем.

Поломошнов Сергей Александрович — кандидат технических наук, доцент кафедры интегральной электроники и микросистем (ИЭМС) МИЭТ, старший научный сотрудник НПК «Технологический центр» МИЭТ. *Область научных интересов:* физика и технология элементов ИС и МЭМС. **E-mail: S.Polomoshnov@tsen.ru**

Вниманию читателей журнала «Известия высших учебных заведений. Электроника»

Оформить годовую подписку на электронную версию журнала можно на сайте

Научной Электронной Библиотеки:

www.elibrary.ru