A Guide to MP Volume 32

1993 Subject Index

This is an alphabetical list of topics included in Volume 32 of MP. Subject classifications are followed by issue number, then page number.

ABRASION

Corrosion rate, influence, 7-58 Injection water pipe elbows vs, 6-50 Materials' resistance, 7-50 Particulates in water well injection fluids, 7-44 Sand substitute search, 8-40 SiC tiles in refuse boiler, 12-31

ACIDS

Acetic, formic from oak, 9-63 Hydrochloric + Fe = FeCl₃ corrosivity, 11-64 Hydrogen fluoride, 6-55 Rocket exhausts vs coatings, 7-32 Sulfuric vs ductwork, 10-65 Sulfuric pilot plant sol. vs 316, 11-70 Zr vs, in paper industry, 6-65

Coatings, influence on cracking, 2-46 inorganic Zn-rich water base, 7-30

Aircraft: fastener selection, 4-64

AIR POLLUTION

8th Int'l Symp., Berlin, 10-19 Coal combustion vs steel, 10-54 EPA industrial sources listed, 1-3

MILIMINITA

Anode, galvanic quality checks, 10-2 Coatings, undersea petro equipment, 12-19 Ion implantation benefits for alloy, 6-77 Los Angeles atmosphere, 10-58

Ammeter: low cost, 7-58 Ammonia: deprop. pipe elbow vs H₂S⁺, 6-50 Amplifiers, low cost, 7-56

ATMOSPHERIC EFFECTS

AlZn coatings, 25-y test data, 4-69 Chlorides, sulfur dioxide vs steel, 10-55 Standard classifications: ISO/TC 156 WG4, etc., 10-53 Tin-plated Fe shingles, 10-62

Wetness time measurements, 10-55 Automobiles: See Motor Vehicles

Backfill: clean sand advantage on buried pipe, 8-26

Ballast: design for electric railroad, 7-37 Barges: American Bureau of Ship. rules for steel, ident., 9-36

concrete, coatings for, 9-38 Batteries: (accumulators) fast-charging systems, 3-12

Beverage bottle warmer: water inhibition, 6-61

BIOLOGICAL REACTIONS

Bacteria, by-products vs copper, 5-54 petro. injection systems, 8-46 planktonic, sessile vs biocides, 6-54 sulfate-reducing vs, 6-59 Biofilms vs biocides, 6-59 Early discoveries, 10-18 Marine fouling review, 9-16 Metal alloying vs 9-65 Oilfield biocide tests, 10-49 Ozone, silver ion water sterilization, 8-54 Petro. res. injection water sterilization, 8-46 Recent developments, 9-8 Steel water condenser pipes, 9-72 Sulfate, bacteria biocides, 6-59 control in seawater, 3-58 in oilfield equipment, 1-53

Blisters: boiler tube steel, internal deposits causing, 8-68

Boiler tube: brass SCC vs Na sulfite, 12-42 failure photo reference, 8-55 internal deposits analysis, 8-68 Boilers: coal-fired economics, 12-55

refuse, SiC tile in, 12-28 **Bolts:** See Fasteners

BONDS

Cast iron junction tests, 7-10 Joints of ductile iron pipe, cost factors, 8-26 Rail, for electric RR, 7-34

Cable stay protection, 2-64; 8-70 Stress factor for cable stay cables, 2-65 British pipeline coating practices, 3-36

Cables: bridge stay protection, 2-64 overhead for electric railroad, 7-34 Calcium carbonate: reactions with polyphosphates, 8-51

Carbon dioxide: injection water systems vs, wet gas pipelines vs, 9-57

CATHODIC PROTECTION

Cardboard: corrosives from, 9-63

Al anode quality tests, 10-20 Anodes, sacrificial, computer modeling, 12-16 Bolt failure undersea pipeline, 7-14 Calcareous deposit in seawater by, 9-17 Casing insulator effects, 2-40 Coatings, 50-y review, 6-42 Computer modeling on petro well, 12-15 Conductive polymeric cable groundbed system, 3-24

Current demand, PE-encased, tape-wrapped pipe, 8-26

Current density measurements, 12-16 Design fundamentals, 5-25; 8-28; 9-28 Ductile iron pipe, PE-unbonded coating, 8-23 Function tests, 10-25

Galvanic offshore systems, 5-25 History, applications, 6-30 Impressed current: design, 12-15

on oil rigs, potentiostatic controls, 4-18 Inorganic zinc coatings, by, 9-39 Inside tunnel wall, steel in concrete, 8-21

Installation errors, 6-32 Jacket pipeline system shorting, 9-21 Life maximation, impressed current, 6-27

Magnesium anodes for tank bottoms, 1-20 Marine biofouling effects, 9-16 Measurement equipment, distance effects,

12-17 Mechanical, geometric factors, 11-23

Monitoring remote impressed current, 6-28 Nitrogen-purged backfill for tank double bottoms, 1-20

Osmosis effects on coatings, 1-26 Petro, offshore rig design, 4-18

well jacket anodes in seawater, 9-26 **Pipeline**

coating damage, 11-29 computer monitoring, 2-30 dry climate effects, 3-18 impressed current systems tests, 2-35

parallel groundbeds, anodes, 3-25 undersea galvanically underprotected. 4-23; 9-21

Polarization, offshore petro well,12-16 Potential measurement techniques, 11-26; 12-23

Prestressed concrete cylinder pipe, 8-66 Pulse vs steady-state comparison, 6-23 Rebar in concrete, 9-31 Rectifier remote monitoring, 5-22

developments, 11-31; 12-22 Remote groundbeds performance, 3-93 Resistance factors, 11-23

Retrofit, offshore petro structures, 12-20 Ships, marine structures, others, 6-30 Soil properties, temp. influence on, 11-27 Submerged pipeline remote potential survey, 4-24

Surge suppression, 6-28 Tank bottoms, gravel, sand backfill, 4-4 Tank, double-bottom data, 1-20 Underground steel potentials, history, 11-21

Aluminum oxide, sulfur carbide fiberreinforced metal substitutes, 3-75 X-ray tomographic microscopy of composite formation, 8-70

CHLORIDES

Concrete vs, 8-32 Ferric, hazards in organic solvent distil., 11-64 Potable water piping vs, 9-56 Prestressed concrete cylinder pipe vs, 8-63 Reinforcing steel in concrete vs, 8-21 Sodium from boiling organic acids, 11-64 Soils, influence on corrosivity, 4-57 Stainless steel cracking due to, 4-65, 67

Chlorine dioxide: Ti, Zr for kraft reboilers vs.

Cleaning: compounds, organic chlorides, acids vs Cu, 5-24 surface contaminants, 12-64

Climatic factors: pipeline protection, 3-18 Coal: materials vs mine effluent, 7-53 properties vs combustion, 12-54

Acrylics water-based, high-build epoxy, inorg. Zn, tabul. data, 4-32 Adhesion: influence on bending tests, 2-51 tests for pipeline polymeric, 3-64 tests on steel pipelines, 9-26 Al,Pt, gas turbine blades, 12-57 Al, Zn hot dip, 25-y on steel, 4-68 Ballast water zones, double-hull tankers, 9-31 Cathodic protection oil rigs, effects of, 4-21 Cementitious, PE, steel sheathing; bridge cables, 2-64

Ceramic, combst. chem. deposition, 7-41 Coal tar epoxy vs marine environments, 9-39

A Guide to MP Volume 32

1993 Subject Index

This is an alphabetical list of topics included in Volume 32 of MP. Subject classifications are followed by issue number, then page number.

ABRASION

Corrosion rate, influence, 7-58 Injection water pipe elbows vs, 6-50 Materials' resistance, 7-50 Particulates in water well injection fluids, 7-44 Sand substitute search, 8-40 SiC tiles in refuse boiler, 12-31

ACIDS

Acetic, formic from oak, 9-63 Hydrochloric + Fe = FeCl₃ corrosivity, 11-64 Hydrogen fluoride, 6-55 Rocket exhausts vs coatings, 7-32 Sulfuric vs ductwork, 10-65 Sulfuric pilot plant sol. vs 316, 11-70 Zr vs, in paper industry, 6-65

Coatings, influence on cracking, 2-46 inorganic Zn-rich water base, 7-30

Aircraft: fastener selection, 4-64

AIR POLLUTION

8th Int'l Symp., Berlin, 10-19 Coal combustion vs steel, 10-54 EPA industrial sources listed, 1-3

MILIMINITA

Anode, galvanic quality checks, 10-2 Coatings, undersea petro equipment, 12-19 Ion implantation benefits for alloy, 6-77 Los Angeles atmosphere, 10-58

Ammeter: low cost, 7-58 Ammonia: deprop. pipe elbow vs H₂S⁺, 6-50 Amplifiers, low cost, 7-56

ATMOSPHERIC EFFECTS

AlZn coatings, 25-y test data, 4-69 Chlorides, sulfur dioxide vs steel, 10-55 Standard classifications: ISO/TC 156 WG4, etc., 10-53 Tin-plated Fe shingles, 10-62

Wetness time measurements, 10-55 Automobiles: See Motor Vehicles

Backfill: clean sand advantage on buried pipe, 8-26

Ballast: design for electric railroad, 7-37 Barges: American Bureau of Ship. rules for steel, ident., 9-36

concrete, coatings for, 9-38 Batteries: (accumulators) fast-charging systems, 3-12

Beverage bottle warmer: water inhibition, 6-61

BIOLOGICAL REACTIONS

Bacteria, by-products vs copper, 5-54 petro. injection systems, 8-46 planktonic, sessile vs biocides, 6-54 sulfate-reducing vs, 6-59 Biofilms vs biocides, 6-59 Early discoveries, 10-18 Marine fouling review, 9-16 Metal alloying vs 9-65 Oilfield biocide tests, 10-49 Ozone, silver ion water sterilization, 8-54 Petro. res. injection water sterilization, 8-46 Recent developments, 9-8 Steel water condenser pipes, 9-72 Sulfate, bacteria biocides, 6-59 control in seawater, 3-58 in oilfield equipment, 1-53

Blisters: boiler tube steel, internal deposits causing, 8-68

Boiler tube: brass SCC vs Na sulfite, 12-42 failure photo reference, 8-55 internal deposits analysis, 8-68 Boilers: coal-fired economics, 12-55

refuse, SiC tile in, 12-28 **Bolts:** See Fasteners

BONDS

Cast iron junction tests, 7-10 Joints of ductile iron pipe, cost factors, 8-26 Rail, for electric RR, 7-34

Cable stay protection, 2-64; 8-70 Stress factor for cable stay cables, 2-65 British pipeline coating practices, 3-36

Cables: bridge stay protection, 2-64 overhead for electric railroad, 7-34 Calcium carbonate: reactions with polyphosphates, 8-51

Carbon dioxide: injection water systems vs, wet gas pipelines vs, 9-57

CATHODIC PROTECTION

Cardboard: corrosives from, 9-63

Al anode quality tests, 10-20 Anodes, sacrificial, computer modeling, 12-16 Bolt failure undersea pipeline, 7-14 Calcareous deposit in seawater by, 9-17 Casing insulator effects, 2-40 Coatings, 50-y review, 6-42 Computer modeling on petro well, 12-15 Conductive polymeric cable groundbed system, 3-24

Current demand, PE-encased, tape-wrapped pipe, 8-26

Current density measurements, 12-16 Design fundamentals, 5-25; 8-28; 9-28 Ductile iron pipe, PE-unbonded coating, 8-23 Function tests, 10-25

Galvanic offshore systems, 5-25 History, applications, 6-30 Impressed current: design, 12-15

on oil rigs, potentiostatic controls, 4-18 Inorganic zinc coatings, by, 9-39 Inside tunnel wall, steel in concrete, 8-21

Installation errors, 6-32 Jacket pipeline system shorting, 9-21 Life maximation, impressed current, 6-27

Magnesium anodes for tank bottoms, 1-20 Marine biofouling effects, 9-16 Measurement equipment, distance effects,

12-17 Mechanical, geometric factors, 11-23

Monitoring remote impressed current, 6-28 Nitrogen-purged backfill for tank double bottoms, 1-20

Osmosis effects on coatings, 1-26 Petro, offshore rig design, 4-18

well jacket anodes in seawater, 9-26 **Pipeline**

coating damage, 11-29 computer monitoring, 2-30 dry climate effects, 3-18 impressed current systems tests, 2-35

parallel groundbeds, anodes, 3-25 undersea galvanically underprotected. 4-23; 9-21

Polarization, offshore petro well,12-16 Potential measurement techniques, 11-26; 12-23

Prestressed concrete cylinder pipe, 8-66 Pulse vs steady-state comparison, 6-23 Rebar in concrete, 9-31 Rectifier remote monitoring, 5-22

developments, 11-31; 12-22 Remote groundbeds performance, 3-93 Resistance factors, 11-23

Retrofit, offshore petro structures, 12-20 Ships, marine structures, others, 6-30 Soil properties, temp. influence on, 11-27 Submerged pipeline remote potential survey, 4-24

Surge suppression, 6-28 Tank bottoms, gravel, sand backfill, 4-4 Tank, double-bottom data, 1-20 Underground steel potentials, history, 11-21

Aluminum oxide, sulfur carbide fiberreinforced metal substitutes, 3-75 X-ray tomographic microscopy of composite formation, 8-70

CHLORIDES

Concrete vs, 8-32 Ferric, hazards in organic solvent distil., 11-64 Potable water piping vs, 9-56 Prestressed concrete cylinder pipe vs, 8-63 Reinforcing steel in concrete vs, 8-21 Sodium from boiling organic acids, 11-64 Soils, influence on corrosivity, 4-57 Stainless steel cracking due to, 4-65, 67

Chlorine dioxide: Ti, Zr for kraft reboilers vs.

Cleaning: compounds, organic chlorides, acids vs Cu, 5-24 surface contaminants, 12-64

Climatic factors: pipeline protection, 3-18 Coal: materials vs mine effluent, 7-53 properties vs combustion, 12-54

Acrylics water-based, high-build epoxy, inorg. Zn, tabul. data, 4-32 Adhesion: influence on bending tests, 2-51 tests for pipeline polymeric, 3-64 tests on steel pipelines, 9-26 Al,Pt, gas turbine blades, 12-57 Al, Zn hot dip, 25-y on steel, 4-68 Ballast water zones, double-hull tankers, 9-31 Cathodic protection oil rigs, effects of, 4-21 Cementitious, PE, steel sheathing; bridge cables, 2-64

Ceramic, combst. chem. deposition, 7-41 Coal tar epoxy vs marine environments, 9-39 Compression failure causes, 2-46 Concrete vs pits, oil well casings, 9-70 Cost, performance statistics, 4-31, 33, 36, 43; 8-37

Cracking causes, 2-45 Cross linking, curing, 2-49 Crystalline vs atomic, molecular reactions,

Cure tests after exposures, other, 5-49 Damage repair responsibility, PDCA standard, 3-46

Diamond-type, vapor deposited, 12-59
Dielectric under aluminum bracelet anodes, 10-21

Delamination from design faults, 2-45 Epoxy, for bridge cables, 2-64 cure solubility test, 2-51 fusion bonded, 2-49 others, gas pipeline, 1-26 polyurethane vs seacoast environment, 7-26

primer, PVF, PE tests, 7-28 Ethyl silicate, inorganic Zn, 9-40 Failure insurance, 5-35 Fastener, 4-63 Fusion-bonded epoxy on pipelines, 3-36 Gas pipeline adhesion problems, 8-38 Glass transition, theoretical factors, 2-49, 52 Hazardous contents list, 40 CFR 261-24,

Historical review, sea marine exposures, 9-37 Inorg, zinc for marine exposures, 9-38 Inspector data, 6-40; 8-37; 10-39; 11-39 Isopolyester on steel pipe pier supports, 7-40 Kennedy Space Center tests, 7-26 Lead-based, application and removal, 2-53;

3-40, 42, 48 remover qualification by SSPC, 5-39 Life warranty irregularities, 5-33 Maintenance factors, economics, 4-33; 5-34 Multilayer pipelines tests, 3-64 Nickel electroless (chemical) plating qualities, 10-36

Offshore riser pipe research program, 3-47 Overcoatings causing delamination, 2-45 PdRuZr alloy resists wear, other deter., 4-2 Pipe, 50-y review, 6-42

buried, performance records, 3-24 computer monitoring, 2-30 defects, voltage tests, 2-35 disbondment, 1-26; 6-21; 8-37 gas, performance study, 8-37 merits of types, 6-44 selection factors; new tests suggested, 8-38

Pipeline, statistics, 1992-1993, 8-37 undersea computer modeling, 9-25 undersea PE, concrete, 4-23 Plural component spray system diagram,

1-26 Polymeric exterior, prestressed concrete

pipe, for, 8-66 on pipelines, 1-26 Record keeping, 9-42 Recycling of waste, 6-48 Rocket exhaust vs, 7-26 Roll, explosion clad, Ni alloys, 12-60 Rubber, polymers for marine surfaces, 9-37 Shop priming, failures due to, 2-47 Silica-containing, development, 9-41 Stress changes causing failures, 2-45 Surface condition measurement, 2-55 Tape on gas pipelines, 1-26 Trailer linings, 5-42 Water-based powder coatings, 18-mo tests,

Wear resist, YtBa, BaTi, YtFe, others, 7-41 Work sheets for coating estimates, 4-44, 45 Ultraviolet radiation vs. 2-45 Unbonded PE on ductile cast iron pipe, 8-23 Zinc-base, galvan., metallizing: influence of pH, 4-32 Zinc galv. vs atmos., 10-54

Composites: carbons, ceramics, intermetallics, vs fossil fuels, 12-58 materials for cable-stayed bridge, 8-70

COMPUTER DEVELOPMENTS

Cathodic protection modeling, 12-58 Coatings info. exchange, 2-61 Expert system development, 5-10 NACE-NIST Corrosion Data Program, 11-13 National waste exchange, 3-14 Offshore oil well cathodic protection control, 5-25

Pipeline corrosion control monitoring, 2-30 Tank bottom gravel back-filled oxygen attack,

Concentration cell: sensing tube attack due to. 5-63

CONCRETE

Acid, sulfuric vs, 10-66 Building code, ACI 318, 8-31 Hydraulic, steel-reinforced, 5-58 Mortar coating, prestressed concrete pipe, 8-62 Petroleum tank leak control using, 8-41 Pipe, prestressed concrete cylinder, 8-62 Polymer for machine tool bases, 3-45 for repairs steel in reinforced, 5-59 for roads, bridge surfaces, 3-45 Steel reinforced, repair materials tests, 5-59 cathodic protection, 8-31 probe in tunnel, 8-16 Condensates, acid ductwork vs, 10-65 Condensers: brass tube SCC, 12-42

COPPER AND ALLOYS

"Ant nest" attack, 5-53 K-500 Monel[†] bolts, saltwater hydrogen embrittlement, 7-14 Potable water system reactions, 9-56 Soldering residues vs, 5-53 Thermogalvanic attack, 6-70 Velocity factor in hot water attack, 4-72

Corrosion failures: ancillary factors, 6-76 Corrosion rates: types vs design, 6-72 Corrosion products: steel in concrete, analysis, 5-61 analyses of, 5-61 Cracking, pipeline welds, 1-58

Crevice attack, potable water system pipes, 8-69

Deaeration: injection water, petro reservoir, Dental alloy: ZrPdRu, NIST development, 9-65

Acid gas desulfur. ductwork, 10-65 Al galvanic anodes, 10-20 Al wear resistance increase, 6-77 Cathodic protection impressed current, 6-27 Coating systems, 2-45 Data anal, for metal, 6-72 Flue gas scrubber materials, 12-61 Gas turbine materials, 12-56 Materials selection and control, 6-15 Offshore oil well and pipeline cathodic protection, 5-25, 12-17 Offshore platform cathodic protection 36-y life, 4-23 Paper mill roll steel failure, 6-76

Petro. offshore rig impressed current cathodic protection, 4-18 Pipe coating selec., 6-43

Polymeric anode cable cathodic protection, 3-24 Primary materials concerns, 6-75 Railways, electrical, 6-36 Refuse furnaces, 12-28, 32 Rigid cellular polystyrene insulation for foundation, 3-74 "Smart" materials research at Ga. Tech., 2-92 Specifications control criticality, 11-71

Pipeline for wet gas, 9-49

System preventing underwater insulation attack, 3-60 Tension leg platform, for CP, 12-19
Turbine blade droplet suction slots, 4-74

Weather barriers vs thermal insulation attack, 3-60

Desulfurization: system controls, 10-65 Dezincification: potable water systems, 8-60 Disbonding: pipeline coatings vs cathodic protection, 8-38 Distillation: iron chloride, organic acid

problems, 11-64

Ductwork, for desulfurization systems, 10-65

ECOLOGICAL

Hazardous waste incin., 2-23 Inorganic zinc coatings, 9-40

ECONOMICS

Bridge, lead-based coatings removal, 2-53 Cathodic protection shorting petrowell jackets to pipelines, 9-21 Certification, ISO 9000, 12-36 Coatings, cost selection, 4-31

cure test equipment, 2-51 Conductive polymeric cable cathodic protection, 3-24

Corrosion engineers' value vs, 4-78 Data maintenance crucial inspection interval

guide, 3-56 Fossil fuel, 12-53

Fusion-bonded epoxy pipeline coatings, 3-36 Improved detection methods cut costs, 3-55 Internal quality std, ISO 9002, 5-50 Leaking buried tanks cleanup, 3-34 Sewage disposal via polymer force mains,

Solar cathodic protection generators, 3-22 Steam generator costs, 2-12 Tank, underground cleanup fund, 9-27 Tax. depreciation factors, 5-68 Electrical fingerprint: See Tests, Field

signature method Electrical resist .: monitoring pipe corrosion, 3-53

Electromagnetic radiation: EPA health effects probe, 5-31

Electronic test devices: 7-56 Electrophoresis: capillary tests procedure,

ENVIRONMENTAL FACTORS

Auto designs consider recycling problems, 5-19 Auto attack increases vs time, 5-47 Coatings' life vs, 4-32 EPA rules, 5-17 Lead-based coatings removal, 3-40 Pollution control statistics, 9-63 Record-making procedures, 4-46 Recycling used auto steels, 5-75

ENGINEERING CONTRACTS

Competitive bidding drawbacks, 8-34 Service competence, experience factors, 8-36

ENGINEERS

Attributes of, 8-36

1992-1993 vs 1989 positions avail. forecast, 11-73

Companies with summer jobs for students, 11-82

Ethics, NACE Code of, 8-74 Survey, 54 companies' salary increases,

FROSION

Water droplets vs steam turbine blades, 11-74 Water velocity injection limit, API RP14E,

Engineered struct., results of multiple, 8-35 Prestressed concrete pipe, 8-64, 66 Time estimates, guide to control decisions,

FASTENERS

Attack modes, 4-61 Bolts, Cd-plated embrittlement, 1-65 cathodic protection on underwater pipeline, 7-13 prod. quality results, NIST program, 2-4 Stainless steel for thermal insulation, 3-62

Fertilizers: aust. SS cracking in, 4-65 Fire protection: tanks above ground, regulation flux, 1-17

Flue gas scrubbers: Ni alloys vs, 12-60 Fluorides: aust. SS vs, 6-54 Fretting: causes and controls, 9-66 Fuel, fossil: history, economics, forecasts,

GALVANIC ATTACK

Statue of Liberty, 4-63 Steel reinforcing in concrete tunnel, 8-21 Zinc-coated iron-copper pipe, 6-74 Gas, coal: production, 12-54

GAS, NATURAL

Distribution 3-y forecast, 8-3 Petro. reservoir repressuring, 7-46 Wet pipelines, 9-49, 57

Glass block: in desulf. systems, 10-66 Gloss: coatings tests, 7-30, 31 Glycol, wet: pipeline benefits from, 9-57 Halides: nonchloride vs SS, nickel-base, titanium, zirconium alloys, 6-54 Health: probe for abrasives info, 8-40 Heat-affected zones: pipeline welds, 1-58 Heat exchangers: corrosion product deposit failure in, 6-75

thermogalvanic attack, 6-71 Heat treatment: 316 SS (S 31600) weld stress relief, 3-4

pipe, resistance welded, 2-80 Historical: corrosion control chronology, 2-14 NACE origin, 2-14

Hurricane: damage to tanks, 1-34

HYDROGEN EMBRITTLEMENT

Fastener mechanism, 4-62 Monel[†] bolts on pipeline undersea, 7-14 Stressing wires in concrete pipe, 8-66

Hydrogen peroxide: zirconium vs, 6-65

HYDROGEN SULFIDE

Zirconium vs. 6-68

Bolts vs. 4-64 Catalytic plant injection, pipe accel. attack, 6-50 Injection water systems vs, 9-46 Naphthenic acid, influence on attack, 4-53 Pipeline welds vs. 1-58

Incineration of waste, 2-23, 82 Industrial waste exchange, 3-14 Infrastructure: causes, effects, 8-10

INHIBITION, INHIBITORS

Amine, steel attacked by, 9-64 Applications review, 11-61 Bridge cable, 2-64 Copper pitting vs, 5-56 Filming + diesel vs oxygen attack on casings, 10-48 Gas, wet, pipeline, for, 9-49

Glutaraldehyde, 6-60 Injection nozzle designed dilution effects, 9-65 Naphthenic acid vs, 4-53 Petrowell repressuring, for, 8-48 Sodium sulfide alternate to vanadium pentoxide, 2-68 Steel in condenser water, 9-72 Surface preparation by water jet, 1-38 Vanadates for carbonate sol., 2-69

Inspection: double-hulled tankers, 9-32 flue gas scrubbers, 12-64 undersea petro equipment modeling, 12-21 Inspectors: coatings, certification qualification 6-40

Vapor space in tank bottom backfills, 1-20 Wear, corrosion vs. 7-50

INSULATION

Cathodic protection influence, oil well pipeline interference, 5-25 Electric railway, 6-36 Pipe joint vs stray underground current, 6-39 Polyethylene for electric railroad rails, 7-37 Polymeric water barriers for thermal, 3-62 Rails of electric RR, 7-31 Rigid polystyrene for thermal, 3-74 Thermal: designs vs attacks under, 3-60 rigid polystyrene for, 3-74 steel thickness tests through, 3-74 Urethane foam vs pipe attack, 5-65 Water reactions in five thermal types, 3-61

Iron: CO, corrosion product reactions, 9-59

IRON, CAST

Abrasion vs hard 7-51 Heat treatment of white, 11-67 White (+ Cr, Mn, Cu, Si, P) vs NaCl, 11-66

Intermetallics: fossil fuels vs, 12-58

Kraft digester: zirconium for, 6-66 Leak detection: aboveground storage tanks, regulations, 1-19

Lightning: cathodic protection system vs, 6-28 Linings: See coatings

Liquid metal: 304L welded, cracking, 2-88 embrittlement: bolts, galvanized, Cd plated, 1-65

Lubricants: residues vs Cu, 5-55 Materials: fossil fuel boiler, gas turbine selection, 12-56 powder metallurgy for turbines, 12-59 selection economics, 5-68

METAL ALLOYING

Aluminum vs microbiological effects, 9-66 Copper vs microbiological effects, 9-65 Nickel alloys, combustion gas vs, 12-60 Nickel vs microbiological effects, 9-66 Titanium vs microbiological effects, 9-67 Steel, stainless vs microbiological effects, 9-66

Metals: strip and sheet defect insp., 9-75 Microbiological: See Biological Microstructure: metal weld effects, 1-62 Monticello: roof restoration, 10-61

MOTOR VEHICLES

Electric battery charging research, 3-12, 8-3 Environmental attack on, 5-46 Exhaust muffler alloy attacks, 10-69 International corrosion rates vs, 5-48 Material for gasoline, methanol fuels, 5-72 Nitrogen compounds vs automobiles, 5-47 U.S. companies' joint research, 10-3

Naphthenic acids: in petro. refining, 4-50, 53 Natural gas: vehicles burning, design, 2-28 Nickel-base alloys: vs over 600°C waste incineration 2-83

Nuclear reactors: 304, 316 SS cracking in. 12-47

aust. SS cracking in, 4-65, 67; 12-47

Confined space regulations, 9-48 Consolidates const. rules, 10-3 Hazardous chem. regulations in 29 CFR 1910-119, 4-3

Oilfield equipment: sulfate bacteria vs, 1-53 Oil wells: cathodic protection interference controls, 5-25

Orthophosphates: chemistry of potable water inhibitors, 8-50

Oxides: Fe 25 Cr, Ce, La, Yt, Hf, Ni, Zr hightemp. anal., 1-48

OXYGEN

Impressed current cathodic protection, generation of, 1-21 Injection water systems vs, 9-46 Prestressed concrete pipe vs. 8-65 Scavenging with Na sulfite, 12-43 SCC stainless steels vs neutron radiation, 12-50

Pavement: pipeline coatings' surveys through, 2-36 Peroxides: zirconium vs, 6-68

PETROLEUM

Coatings vs attack by, 3-59 Fuel economics, 12-50 Injection water for reservoirs, 7-44; 9-46 Offshore CP modeling via computers, 12-15 Refining: economics, 12-54 ethylene oxide plant inhibitors, 2-68 naphthenic acid attack, 4-50 Steam flood sulfur bacteria biocide tests. Sulfate bacteria attack in North Sea, 3-58 Tension leg platform, CP design, 12-19 Well casing corrosion, 9-69; 10-46 Well pumping rod design changes, 10-72

pH: coatings, pipeline influence of, 1-26 environmental vs prestressed concrete pipe. 8-63

Pilings, steel in soil, 10-30 steel wharf, coatings for, 7-40

PIPEL INES

Aluminum bracelet anodes for, 10-21 Alyeska corrosion controls, 3-13 Casings: insulators vs cathodic protection, 2-40

test station defects, 2-40 Cathodic protection offshore interference controls, 5-25 on multiple buried, 3-24 subsea, 9-21

Coatings: adhesion tests, 3-64 deterioration controls, 3-24 disbonding, cathodic protection, 6-21 epoxy, 2-49 epoxy fusion-bonded, 10-y results, 3-36 performance study, 8-37

polyethylene for British fittings, bends, etc., 3-36 survey case histories, 3-37 tests on parallel lines, 2-37 urethane repairs, 3-38 voltage tests, 2-35 Computer corrosion control monitoring, 2-30 Dry climate, cathodic protection influence of,

Dry climate, cathodic protection influence of, 3-18

Gas, wet: glycol + CO₂ vs, 9-57

inhibition of, 9-49
liquid flow pattern calculations, 9-50
liquid flow pattern calculations, 9-50
Metal tape locator for polyethylene, 2-73
Pigging damage, 9-62

Polyethylene sewer, 2-73 Safety: local, state, fed. rules, 3-3; 6-3; 11-84 Spheres, pigs influence inhibition wet gas, 9-54, 55

Surface in arid regions, 3-18
Undersea, K-Monel bolt failure on, 7-14
underprotected galvanically, 4-23
Weld stress corrosion cracking, 1-58

PIPES

Aboveground storage tanks regs on, 1-19
Carbon steel resistance welded, 2-78
Coatings, 50-y review, 2-42
Copper, "ant nest" attack, concentration cells, 5-53

potable water protection vs, 8-43, 56 Corrosion product, cleaning from, 9-72 Depropanizer elbow vs hydrogen sulfide, ammonia, 6-50

Ductile iron unbonded polyethylene coating on, 8-23

Economics calculations, 5-68
Field signature internal corrosion tests, 3-51
Floor, wall penetration hole gaps, flashing
covers, 5-66

Foam insulation attack by, 5-65 Gas, coatings rehabilitation, 1-26 "Horseshoe" attack on depropanizer, 6-50 Nonmetal or lined for petro injection wells, 8-49

Polymer concrete for sewers, 3-45 Polyvinyl chloride vs potable water, 8-60 Prestressed concrete sewer, 8-62 Resistance welded, ASTM A 214 and 178, 2-78

Steam, sound as attack rate indicator, 5-64 Stray current vs, 6-38 Steel, building condenser microbiological attack, 9-72

DITS

Copper, by soldering, cleaner residues, 5-56 Impressed current cathodic protection vs dooble tank bottoms, 1-20 Naphthenic acids, from, 4-50 Tank bottoms, gravel backfill influence on,

Plating: electroless nickel quality controls, 10-34

Polarization: saw-tooth, square cathodic protection pulse for crevice, 6-25

POLYMERICS

Biocides vs, 6-59 Concrete: used in, 3-45 Polyamide precursor alternate benefits, 2-58 Polystyrene insul. for grade foundations, 3-74 Thermoplastic: welding, 2-90 Tank truck liner, cleaning of, 5-43

Potable water: See Water, Potable Potentiostat: low cost, 7-56

Pressure: internal pipe vs weld SCC, 9-58

prestressed concrete cylinder pipe vs, 8-62

PULP AND PAPER

Chemical alternatives for pulping processes, 6-68

History of paper manufacture, 6-65 Roll material selection error, 6-76 Zirconium uses for industry, 6-65

Radiation: nuclear vs AISI 304 and 306, 12-47 ultraviolet vs coatings, 2-45

RAILROADS

Electric, drainage bond effects, 6-38 power station spacing, 6-37 rail isolation, 7-34 stray current controls, 6-35 tunnel, concrete underwater, 8-16

Rate graphics: attack types synthesis, 6-73 Records: coatings' operations, 9-42 for ISO, 12-35

Refinery: depropanizer pipe failure, 6-50 economics, 12-54

Refractories: refuse boiler in, 12-28 SiC tile in refuse boiler, 12-28

Resistivity: pipeline bracelet anode variations undersea, 12-17

REGULATIONS

National Institute for Occupational Safety, 10-41 OSHA: lead in construction, 29 CFR 1926.62— Lead, 11-43 scaffolding, 10-19

Tanks, aboveground storage, 1-17 U.S. National Safety Training Board: 1992 Pipeline Safety Act, 11-84

Resistivity: soils' influence on attack, 4-58 Roads: deicing salts pollution vs autos, 5-47 polymeric concrete for, 3-45

Roofs: limestone control of acid rain effects, 10-74 tin-plated stainless shingles, survival, 10-61 zinc sheets failures, 10-74

SAFET

Confined space OSHA regulations, 9-48 Employers' views on training, 11-84 Lead-based coatings removal, 3-40 Scaffolding regulations by OSHA, NIOSH, 10-41

Training: accident prevention, confined spaces, 9-12

Scales: Ca carbonate on steel vs cathodic protection, 9-17 CaCO₃ in potable water systems, 8-5 materials, on, 2-82

SEA/MARINE ENVIRONMENTS

Coatings vs, 7-26 Corrosion control, 9-37 Seawater: effects on oil rig cathodic protection, 4-21

Sewers: polyethylene (HDPE) force main, 2-73 Sheet lining: for flue gas scrubbers, 12-61 Ships: tankers, double-hull maintenance, 9-31 Silica particles in epoxy coating, 1-26 Silicones: gasoline-methanol blends vs, 5-72 Silver: ionic, water cleaning by, 8-56 Slurries: See Abrasion "Smart" materials: See Design

Sodium sulfite: brass condenser tubes vs, 11-66 steel reinforced concrete vs, 5-58 Sodium sulfite: brass condenser tubes vs, 12-42

SOILS

Pilings, steel vs, 10-30 Corrosivity, analysis, 10-19 factors, 4-56 Type impact on pipeline coatings, 8-38

Solar energy: pipeline cathodic protection using, 3-21
Solder: residues vs. copper tubing, 5-54

Solder: residues vs copper tubing, 5-54 Sound: as corrosion rate indicator in steam, 5-64

STANDARDS

ASTM, DIN for pipeline coating tests, 3-66 Cathodic protection design, Norwegian, 12-17

Impact on engineering contracts, 8-36 International for atmos. attack classification, 10-53, 55

ISO 9000, 12-35

Prestressed concrete cylinder pipe ident., 8-62, 65

Steel cable sheathing, ASTM A 882, 2-65 Welding clad mtal sheets, ASME boiler codes, Sec. IX, 12-62

STATISTICS

Al galvanic anodes, 6-y experience, 10-21 Naphthenic acid attack, 4-52 Petro ind. environmental expenses, 11-63 Pollution control, 9-63 Prestressed concrete pipe failures, 8-64 SiC test tiles in refuse boiler, 12-30 Soil corrosivity analyses, 10-19 Water cooling towers, industrial, 8-54

STEELS

Atmos vs ISO standards, 10-55 Carbon

Anhydrous HF system failure analysis, 11-50 Atmos. attack classifications, 10-53

Boiler tube blisters, 8-68 H-sulfide cracking in petro refineries, 11-55

Injection water contamination by rust, 9-46

Polyphosphate inhib + Ca for water, 8-50 Polysulfide inhib SCC in sulfides, 11-58 Potable water vs, 9-56 Stress corrosion cracking in petro ref,

Stress cracking in thiocyanate, sulfate, carbonates, chlorides + N, 11-56
Nickel-base: bromides, iodides vs, 6-56

Nonchloride halide attack, 6-54 Stainless

304 and 316 vs water temperature, nuclear radiation, 12-47 316 and 317, other vs flue gas, 12-60 Abrasion resistance, 11-50 AISI 304 liquid metal embrittlement 2

AISI 304 liquid metal embrittlement, 2-88 AISI 316 tin-plated roof shingles, 10-61 AISI 321, 315 SN sensitization tests, 10-69

AISI 430 failure in automobiles, 5-46 Alloying Nb, Cu, Si, Ti, 454, 677C vs sensitization, 10-70 Bromides vs, 6-55 Ferric chloride vs, 11-64

lodides vs, 6-55 Lab, pilot plant sulf acid sol vs AISI 316,

11-70
Nonchloride, halide attacks on, 6-54
Potable water vs, 8-56
Powdered, high-nickel alloy, 9-65
Sensitized to fluorides, 6-58
Storage, failures in, 4-65
Valve spec. mixup failure, 11-71

Steam: corrosion cost reduction, 2-12 turbine blades vs water droplet erosion,

STRAY CURRENT

Direct, on electric railroad welded rails, 7-34 Pipelines vs, 2-38; 10-17 Railway, controls for, 6-35 Rectifiers, influence on, 12-22 Reinforced concrete steel in tunnel attack. 8-18

SCAT tests for oil well components' pits, 9-69

STRESS

Coatings' effects due to, 2-45 Cracking aust SS due to, 4-65 Pipeline weld attack factor, 1-58

STRESS CORROSION CRACKING

Brass, admiralty, condenser tubes, 12-42 Design, precautions related to, 6-72 Neutron radiation assisted, AISI 304 and 316, 12-47

Pipelines, temperature influence on buried, 11-28

tests on, 1-26 welds, 1-58

Stainless steels in storage, 4-65 Steel in ethylene oxide systems, 2-68

Sulfates in soils, influence, 4-57 Sulfides vs biocides, 6-59 Sulfur compounds vs autos, 5-47 dioxide in boilers, 12-44 from waste combustion, vs materials,

Summer jobs for students, 11-82 Surface oxides: Fe 25Cr, La,O,, 1173 K: electron microscopic anal, 1-48

SURFACE PREPARATION

Contamination removal by water jetting, 1-38 NACE, SSPC standards descriptions, 1-46 Pipelines before coating, 1-26 Steel, coated, vs sea marine environment, 7-29 Steel mill scale vs water jetting, 1-38

Tankers: double-hulled, inspection regs, 9-31

Surface profile for water blasting, 1-38

Aboveground storage regulations flux, 1-17 Aluminum failure due to welding errors, 6-76 Bottoms: cathodic protection design, 9-32 condition evaluations, 10-27 protection, gravel, sand backfill, 4-4 Buried, leak cleanup costs, 3-34; 8-41 Cathodic protection, 6-31 Computer monitoring bottom protection, 2-33 Concrete for leak containment, 8-41 Design standards vs wind, 1-34 Res. Conservation Recovery Act vs buried. 8-42 Small scale tests, double bottom cathodic

protection, 1-20 Uniform Fire Code for aboveground, 8-41

Water, lead-based coatings on, 1-44 Telluric current: avoiding effects, 2-35

TEMPERATURE

1,173 K surface oxides on Fe 25Cr, La,O, Boiler tubes, sulfite residuals, limits, 12-43 Bolt liquid metal embrittlement at 400°C, 1-65 CaCO₃, effects of, 8-51 Cast iron, white, influence NaCl, 11-68 Coatings, on pipelines, vs high, 3-64 stress due to changes, 2-45

Gas line coatings' effects, 1-26 Gas, wet pipeline influence on attack rate, 9-61 Halides vs titanium, influence of, 6-57 High, ceramic coatings, metal substitute vs, 3-75: 7-41 Inhibitors that attack steel vs, 9-64 Potable water vs copper, iron, stainless pipes, 8-58

Zones: attack due to different, 6-70 Al galvanic anodes, 10-21-24 AlZn coatings on C steels, 25 y, 4-68 Atmospheric attack models, 10-63 Attack rates identify susceptible components, 3-56 Biocide screening, 10-49, 50 Boilers: SO,, 12-44 tubes, brass, 12-42 Bolts, 7-14 Calorimeter of epoxy coatings, 2-49 Capillary electrophoresis, parts/billing concentrations, 9-60, 61 Carbonate solutions, slow strain date, 2-68 Cathodic protection function, 10-25 Clad metal welding, 12-63

Coatings: adhesion, 2-46 bending, adhesion influence, 2-51 fusion-bonded epoxy solubility, 2-51 inspector training, 10-39 performance predictive, 10-42 residual entropy, 2-52 Computerized statistics of pipes, 3-53

Computer program alternates to, 5-52 Concrete: prestressed cylinder pipe, 8-64 steel reinforcing, repair effects, 5-58
Corrosion rate probes: wrapped and tape-

coated pipes, 8-21 Corrosive ions, anions, cations, ident, quantification, 9-61

Coupons in atmos, 10-57 Cyanide SCC of steel, 11-56 DC, thru pipe for defect locations, 3-50 voltage on pipeline coatings, 2-35

Electron microscope, high temp. surface oxides, 9-48 Electronic devices for, low cost, 7-56

Epoxy, fusion bonded, cure, 2-49 Field signature method for pipelines, 3-50 Fractographic, neutron irrad. SS, 12-47 Glycol effects in wet gas pipelines, 9-57 Indoor atmos standards, 10-58 Inhibitor, API RP38, others, 6-59

Iron oxide scale for failed well casings, 10-46 In-place steel thickness thru thermal insulation, Inspection site choices, 3-57

Lead content of removed coatings, 3-40 Liquid metal embrittlement 304L by zinc, 2-88 Magnetic flux exclusion, tank bottoms, 10-27 Microbiological attack oilfield systems, 1-53 Naphthenic acid attack, 4-51 Ni 200 vs 625, 61 (UNS 02061) and 14L (UNS

W 82141) filler welds, 3-71 Nondestructive, in-place pipes, 3-50 Oil well casing: SCAT-stray current accel, 9-69 sulfate bacteria, 10-46 Peel/shear machine for pipeline coatings, 3-65

Piling vs soils research project, 10-30 Pipeline: cathodic protection, parallel ground beds, 3-26

cathodic protection, pulsed for disbonded coating, 6-22 coatings, value of, 8-38 pigging damage, 9-62

welding methods, 1-63 Polymeric: coatings on pipe vs CP, temperature, soil stress, 1-26

Potentiodynamic, chromium-inhibited carbonates, 2-70 Refinery depropanizer pipe elbow failure, 6-51 Resistivity, soil meas, 10-18 Results variation of lab vs pilot plant sulfuric acid sol, 11-70 Scale model oil rig cathodic protection, 4-19 Sensitization vs temperature, AISI 321, Japanese 315SN, 10-69 Slow strain rate: bolts in seawater, 7-14

cable cathodic protection, 3-24

carbon steel vs H₂S, 11-55 Soil corrosivity methods, 4-57; 10-17 Soil sensor for buried steel piling, 10-31 Spark, tank trailer linings, 5-43 Stainless pipe pitting via electrical resist, 3-63 Steel sheet + low chromium, copper, nickel vs anhydrous HF, 11-53

Stray current on bare cast iron water main, Tank bottoms: API 653 details, 10-28

condition evaluation, 10-27 inspection modes, 10-28 Tanker, double-hull thickness, 9-35

Thermoanalytical, others for epoxy pipeline coatings, 3-37 Thermoelectric factors, 3-20

Truck liner cleaning, maintenance, 5-43, 44 Ultrasonic, tank bottoms, 10-23 Undersea pipeline cathodic prot computer, 9-25

Voltage drop unburied pipelines, 3-18 Water jetting, 1-38 Weld resistance defects in pipe, 2-78 White cast iron, potentiostatic, microstructure influence vs NaCl. 11-67

Thermogalvanic attack, 6-70 Thermoplastic filaments cured by infrared, 5-74

Ties: concrete, wood insulation on electric RR, 7-35

Time: coatings shrinkage due to, 2-45 Tin-plated roof shingles, 10-63 Titanium: vs Br, IO, HF, 6-56 nonchloride halide attack, 6-54 steam turbines in, 12-59

Transport: vehicles using natural gas, 2-28 Turbines: steam and coal burning, 12-55 Tunnel: concrete, steel reinf survey of, 8-16 Turbulence: influence on H₂S, ammonia pipe attack, 6-53

waste incin. materials effects on, 2-86 Turbines, steam: blade material select., 4-74

Valves, aboveground storage tanks' regs, 1-19 Vapor, test for attack by, 9-61

VELOCITY

Copper vs hot water, 4-72 Injection water, petro. res., 7-45; 9-48 Potable water pipes vs high, 8-59 Wet gas in pipeline, influence on glycol inhib,

Volatile organics: coatings with, regulations vs. 7-26 Voltage criterion to prevent soil corrosion,

WASTE DISPOSAL

Combustion products effects, 2-84 Incinerators: Al, high-Co, Cr, Si coatings; SiC plate, alloy 625, 2-82, 86 Lead-based coatings, 3-42 Refuse boiler desing, 12-28 Spent acid reuse, 10-59

WATER

Boiler tube internal, deposits from, 8-68
Cooling, ozone treatment, 11-89
Cooling tower statistics, 8-54
Copper attack in, 5-53
Floods: microbiological attack controls, 1-53
Injection, gas-petrol reservoirs, 8-46
Ozone, silver ion cleaning, 8-54
Sea: pipeline case histories cathodic
protection in, 9-21
rate limits for injection wells, 7-44
scale + cathodic protection in, 9-17
Systems: galv iron-copper pipe-insulator for,
6-74

WATER, POTABLE

Analysis vs copper pipe, 8-44 AWWA computer program for control, 10-60 Building systems' corrosion review, 8-56 Chemistry vs scaling, 8-57 Copper pipe protection vs, 8-43 Copper, steel-galv attack in, 8-56, 61 Iron, Mn stabilization by polyphosphates, 8-52

Health limit: NaOH additions, 8-44

pH factors, 8-44

Pictorial (color) review of attack in, 8-56
Piping, chemical treatment of, 8-61
concentration cell attacks in, 8-56
Polyphosphates for, 8-50
Polyvinylchloride, polybutylene pipes in
buildings, 8-60
Regulations for, 8-45
Scale table: attack modes on carbon steel,
zirconium-coated, 8-57

Water, rain + sulfates vs zinc roof, 10-74

Wax: bridge stay cable coating, 2-64

Wear: surface profile influence on corrosion,
7-50

System cleaning, preliminary treatments, 8-53

WELDING

Aluminum, bracelet anodes on pipelines, 10-21 failure due to filler selection, 6-76 Clad metal ASME criteria identification, 12-62 Exothermic on cast iron pipe joints, 7-12 Hardness: pipeline effects, 1-58 Heat-affected zone cracking, 4-66 Near bead attack, type identification, 3-70

Oil well casing failures due to, 9-70 Pipeline, stress corrosion cracking, 1-58 Qualification for welders, clad metal, 12-62 Resistance, carbon steel pipes, pitting, 2-78 Sea water attack, injection wells, 8-48 Thermoplastics, resistive implant tape, 2-90 Underwater, AWS spec, 9-74

Wells, gas petro injec tubing materials design, 7-46 Wind, damage to tanks, 1-34 Wood: oak, corrosives from, 9-62

Zinc: 304L embrittlement by, 2-88 potable water, films on, 8-50

ZIRCONIUM

Alloys, iodides and bromides vs, 6-58 Kraft liquor vs heaters, 6-67 Nonchloride halide attack, 6-54 Pulp and paper mfg tests, 6-25

1993 Author Index

Ashbaugh, W.G., 2-89 Avery, R.E., 12-60

Babaian-Kibala, E., 4-50 Baboian, R., 5-45; 7-56 Baboian, R., 5-45; 7-56 Baker, M.J., 10-61 Behmlander, R., 5-42 Bianchetti, R.L., 8-62 Blanchard, K.V., 4-50 Boffardi, B.P., 8-50 Brevoort, G.H., 4-31 Britton, J., 10-20 Brousseau, R., 6-21 Buck, E., 9-49 Burnette, C.C., 7-14 Byrnes, G., 2-45

Carpenter, J.E., 10-69 Chaker, V., 10-30 Cochran, F.L., 10-69 Cogan, E., 11-71 Cohen, A., 8-43, 56 Corbett, P.M., 10-69 Craig, B.D., 6-72 Craig Jr., H.L., 4-50 Cramer, S.D., 10-61 Czaban, B.A., 4-72 Czaban, B.A., 5-66

Davidson, M.C., 2-35 Dean, S.W., 10-53 Deans, S.D., 10-49 Dice, R.J., 6-27 Dillon, C.P., 11-64 Dinon, M., 10-46 Dohi, K., 12-47 Dolan, M.P., 5-22 Dugstad, A., 9-57 Dupuy, R., 1-38

Elliott, P., 2-82 Erickson, D., 9-49 Evans, S., 9-21 Farquhar, G.B., 1-53; 10-49 Fitzgerald, J.H., 10-17 Futamura, Y., 12-47

Gartland, P.O., 12-15 Genculu, S., 1-65; 8-68 Grab, L.A., 6-59 Graham, M.J., 1-48 Grapiglia, J.P. 2-35 Gummow, R.A., 11-21 Gutzeit, J., 7-64

Halvorsen, G.T., 8-31 Hamner, N.E., 4-61; 6-70 Harding, K.S., 5-58 Hashim, H.H., 11-50 Hepburn, W.K., 10-65 Hide, K., 12-47 Hoffman, R.A., 9-73 Hotaling, A.C., 2-78 Howell, A.G., 12-42 Howell, K.M., 8-16 Howlett Jr., J.J., 1-38

Johnsen, R., 12-15 Joosten, M.W., 7-14

Keifer, J.H., 1-20 Kelly, R.G., 7-60 Kendall, D., 12-42 Koch, G.H., 6-54 Koester, R.D., 6-74 Kolts, J., 9-49 Kulkarni, P.G., 4-65 Kumar, V., 11-66

Lacey, C.A., 10-49 Leeds, J.M., 1-26 Liening, G., 5-42 Little, B., 9-16, 65 Lunde, L., 9-57

MacDowell III, L.G., 7-26

Martucci, S., 10-46 Maurin III, A.E., 9-21 Mayuzumi, M., 12-47 McCollom, B., 8-23 McGrath, J.N., 4-18 McMillan, G., 11-31, 12-22 McNabb, W.J., 10-34 Munger, C.G., 9-37 Murray, M.A., 8-34 Myers, J.R., 8-43

Neal, D., 2-49 Notoya, T, 5-53 Nyborg, R., 9-57

Onchi, T., 12-47 Osvoll, H., 5-25, 12-15

Pandolph, J.E., 1-34 Patton, C.C., 8-46 Pattwardhan, A.K., 11-66 Pendexter, L.A., 9-31 Pfister, J.A.S., 5-25 Polk, C.J., 2-78 Poulmentis, J., 10-39 Prew. P., 7-56

Quinter, R.C., 4-50

Rastogi, P.K., 4-65 Rials, S.R., 1-20 Rippon, I.J., 9-21 Robinson, R.C., 2-30 Robinson, W.C., 4-56; 7-10 Roebuck, A.H., 4-31 Rose, T.J., 4-50 Rowley, P.N., 1-48 Rusk, G.L., 4-50

Salama, M.M., 7-44 Schaaf, D., 12-35 Schiff, M.J., 8-23 Schumacher, W.J., 7-50 Schutt, H.U., 2-68; 11-55 Scully, H.S., 7-60 Shah, B.K., 4-65 Sidoriak, W., 7-34 Singleton, H., 9-69 Sinha, A.K., 4-65 Slatter, J.D., 2-35 Smith. S.N., 4-23 Steele, J.M., 5-31, 36; 6-40; 9-42: 11-37 Stoner, G.E., 7-60 Strach, L., 12-28 Stringer, J., 12-53 Strommen, R.D., 5-25, 12-15 Summers, M.A., 4-50 Surkein, M.B., 5-25 Szeliga, M.J., 6-35

Tabor, K.C., 5-63 Tatnall, R.E., 10-74 Taylor, M., 5-25 Theis, A.B., 6-59 Thomason, W.H., 9-21 Tighe-Ford, D.J., 4-18 Townsend, H.E., 4-68

Uehlein, B.L., 4-50

Valerioti, W.L., 11-50 Vernon, S., 11-43 Virmani, Y.P., 2-64

Wagner, P., 9-16, 65 Wasyluk, D.T., 12-28 Wheat, H.G., 5-58 Wilde, B.E., 6-50 Wolfe, L.H., 7-14 Wong, W.T., 2-35

Yau, T.-L., 6-65