Gene family evolution across the Fungi

Lineage-specific expansions and contractions

Jason Stajich

Duke University

Fungal genome evolution

• How have fungi adapted to niches?

 Are family expansions or contractions the result of adaptive evolution? 37 Fully sequenced fungal genomes

51+ More funded and in progress world-wide

Sequencing In-Progress

Species	Clade	Sequencing center
$Schizosaccharomyces\ japonicus$	Archaeascomycta	Broad-FGI
Schizosaccharomyces octosporus	Archaeascomycta	Broad-FGI
Pneumocystis carinii	Archaeascomycta	Sanger, UC, Broad-FGI
Pneumocystis carinii hominis	Archaeascomycta	UC, Broad-FGI, UC
Amanita bisporigera	Basidiomycota: Homobasidiomycota	MSU
Crinipellis perniciosa	Basidiomycota: Homobasidiomycota	Univ Campinas
Ganoderma lucidum	Basidiomycota: Homobasidiomycota	Yang-Ming Univ
Hebeloma cylindrosporum	Basidiomycota: Homobasidiomycota	INRA
Laccaria bicolor	Basidiomycota: Homobasidiomycota	JGI-DOE
Phakopsora pachyrhizi	Basidiomycota: Homobasidiomycota	JGI-DOE
Postia placenta	Basidiomycota: Homobasidiomycota	JGI-DOE
Schizophyllum commune	Basidiomycota: Homobasidiomycota	JGI-DOE
Sporobolomyces roseus	Basidiomycota: Urediniomycota	JGI-DOE
Phakopsora meibomiae	Basidiomycota: Urediniomycota	JGI-DOE
$Batrachochytrium\ dendrobatidis$	Chytridiomycota	Broad-FGI & JGI-DOE
Piromyces sp.	Chytridiomycota	JGI-DOE
Glomus intraradices	Glomeromycota	JGI-DOE
Phycomyces blakesleeanus	Zygomycota	JGI-DOE
Brachiola algerae	Microsporidia	Genoscope
Nosema (Antonospora) locustae	Microsporidia	MBL
Enterocytozoon bieneusi	Microsporidia	Tufts Univ

Sequencing In-Progress

Species	Clade	Sequencing center	
Aspergillus niger	Euascomycota: Eurotiomycota	DOE-JGI	
Aspergillus flavus	Euascomycota: Eurotiomycota	NCSU	
$Aspergillus\ clavatus$	Euascomycota: Eurotiomycota	OU	
Neosartorya fischeri	Euascomycota: Eurotiomycetes	TIGR	
Histoplasma capsulatum WU24	Euascomycota: Eurotiomycota	Broad-FGI	
Histoplasma capsulatum 186R,217B	Euascomycota: Eurotiomycota	WUSTL	
$Coccidioides\ posadas ii$	Euascomycota: Eurotiomycota	TIGR	
Coccidioides immitis 10 strains	Euascomycota: Eurotiomycota	Broad-FGI & TIGR	
$Paracoccidio ides\ brasiliens is$	Euascomycota: Eurotiomycota	Univ of Brazil	
Ascosphaera apis	Euascomycota: Eurotiomycota	BCM	
Epichloe festucae	Euascomycota: Sordariomycetes	UK	
Podospora anserina	Euascomycota: Sordariomycetes	Broad-FGI	
$Trichoderma\ atroviride$	Euascomycota: Sordariomycetes	DOE-JGI	
Trichoderma virens	Euascomycota: Sordariomycetes	DOE-JGI	
$Leptosphaeria\ maculans$	Euascomycota: Dothideomycetes	Genoscope	
Alternaria brassicicola	Euascomycota: Dothideomycetes	VPI & WUSTL	
Xanthoria parietina (lichen)	Euascomycota: Lecanoromycetes	DOE-JGI	
Candida albicans WO-1	Hemiascomycota	Broad-FGI	
Lodderomyces elongisporus	Hemiascomycota	Broad-FGI	
Pichia stipitis	Hemiascomycota	JGI-DOE	
Saccharomces bayanus	Hemiascomycota	(49, 167)	
Saccharomces castellii	Hemiascomycota	(49)	
Saccharomces cerevevisiae RM11-1A	Hemiascomycota	Broad-FGI	
Saccharomces cerevevisiae YJM789	Hemiascomycota	(113)	
Saccharomyces kluyeri	Hemiascomycota	WUSTL (finishing)	
Saccharomces kudriavzevii	Hemiascomycota	(49)	
Saccharomces mikatae	Hemiascomycota	(49, 167)	
Saccharomces paradoxus	Hemiascomycota	(167)	
Saccharomyces pastorianus	Hemiascomycota	Kitasato Univ	
Zygosaccharomyces rouxii	Hemiascomycota	CNRS-Genoscope	

Genome Annotation

- Genome assembly only for half of genomes
- Developed automated annotation pipeline for fungal genome
- Combine evidence based and ab initio gene prediction and species-specific training

http://fungal.genome.duke.edu

Generic Genome Browser

Gene family sizes follow power law distribution

Phylogenetic evaluation of gene family size change

- Previous methods only used ad hoc statistics
- Explicit model for gene family size change according to a Birth-Death (BD) models
- Apply BD to family size along phylogeny using probabilistic graph models
- CAFE Computational Analysis of gene Family Evolution

Hahn et al, Genome Res 2005 De Bie, et al Bioinformatics 2006

CAFE

- Ancestral states
- Birth and Death rate
- Per branch changes
- P-values

Methods: gene family identification

- All-vs-All pairwise sequence searches (FASTP)
- Cluster genes by similarity using Markov
 CLustering (MCL) algorithm
- Identify families with unusually large size changes along phylogeny with CAFE
- 37 fungal genomes from 5 major clades

Summary of fungal family analysis

- 917 families have at least one member in outgroup present in > 75% of ingroup.
- 47 families had significant expansions and contractions

Families with significant expansions

49 significant families

Transporters
Kinases
P450
Oxidation

Vitamin & Cofactor transport				
Lactose & sugar transport				
Amine transport				
Myo-instol, quinate, and glucose transport				
Oligopeptide transport				
ABC transporter				
MFS, drug pump, & sugar transport				
Transport				
Monocarboxylate & sugar transport				
ABC transport				
Amino acid permease				

Transporters

- Of 45 significant families, 22 were related to transport
- Vitamin and amino acid transport
- Sugar and sugar-like transporters
- Multidrug and efflux pumps
- ABC transporters (ATP Binding Cassette)

Vitamin & Cofactor Transporters

Marked branches with significant (P<0.05)

expansions or contractions

Branches with transporter expansions

 Sugar related, Drug pump, and Major Facilitator Superfamily

Aspergillus spp, Fusarium spp, S. nodorum

Euascomycota

Vitamin transport

C. neoformans, Fusarium

• A. nidulans (Biotin)

Family size contractions

- Histoplasma, Coccidioides many families
- Hemiascomycetes P450
- C. neoformans P450
- U. maydis Lactose transport

Focus on Basidiomycota

Hymenomycota Homobasidiomycota Basidiomycota

Cryptococcus neoformans Cryptococcus neoformans grubii Cryptococcus gattii WM276 Cryptococcus gattii R265 Phanerochaete chrysosporium

Coprinus cinereus Ustilago maydis

C.neoformans P.chrysosporium

C.cinereus

U.maydis

Cryptococcus sugar transporters expansion

Sugar transporter use in phytopathogens

- Sugar transporters are used to extract nutrients from host
 - Haustorium: specialized structure for plant parasitism
 - Many sugar transporters highly and specifically expressed in haustoria

Cryptococcus sugar transporters

- 3x as many sugar transporters in C.
 neoformans (~50) than other basidiomycetes
- "sugar coated killer"
- Capsule is a mixture of glucose, xylose, and mannose.
- Transporters could be important in capsule synthesis

Zerpa et al, 1996

Gene family changes

- P450 (CYP64) [Homobasidio]
- Hydrophobins [Homobasidio]
- Monosaccharide metabolism [Homobasidio]
- Oxidoreductase [Cryptococcus]

P450 CYP64

P450 enzymes involved in synthesis and cleavage of chemical bonds. Drug metabolism in animals.

CYP64: Step in Aspergillus spp aflatoxin pathway *P. chrysosporium* implicated in lignin and hydrocarbon degradation.

CYP64 was from independent duplication

C. cinereus expansion

P. chrysosporium expansion

Local duplications created CYP64 expansion

Interpretation of CYP64 expansion

Hydrophobin Family

P.chr	C.cin	C.neo	U.may
21	33	0	2

- Self assembling proteins involved in fungal cell wall
- Part of what makes a mushroom
- 8 Cysteine residues critical to function
- Help spores stay airborne resisting water

Local Duplications

Hydrophobin Expansion

- Due to several local duplications
- Expansion is lineage specific
- Important in cell wall construction mushroom formation

Conclusions

- Sugar transporters are highly expanded in independent lineages
 - Saprophytic and phytopathogenic lifestyles
- P450 CYP64 independent expansions in Homobasidiomycetes
 - Lignin degradation and saprophytic lifestyles
- Family size contractions among lineages containing primary pathogens
 - Genome streamlining?

Future directions

- Confirm contractions in clade of highly pathogenic fungi
- Focus on more clade specific families

 Can we classify fungal lifestyles by family composition?

Acknowledgements

Matthew Hahn

Fred Dietrich

Mario Stanke Ian Korf Aaron Mackey

Duke UPGG Sequencing centers
Broad Institute
Duke University
Joint Genome Institute
Génolevures
Stanford University
Washington University