FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

Relatório da Atividade Laboratorial T3A

Intensidade da Luz vs. Distância e Atenuação de Filtros

Laboratório de Física II PL1: grupo I, sub-grupo A

Mónica de Sousa Ribeiro Up202107908

Licenciatura em Engenharia Física Departamento de Física e Astronomia

maio de 2023

Resumo

Neste trabalho, foi verificada experimentalmente a relação de proporcionalidade entre V e ${
m d}^{-2}$, pelo que foi obtido um valor de $\,-1,984\pm0,008\,$ para o expoente, associado a um erro percentual relativo de 40,4%. Calculou-se também o valor do coeficiente de absorção dos filtros de acrílico usados na atividade, $0,199 \pm 0,007 \,\mathrm{mm^{-1}}$, as solved um erro percentual relativade E (%) 9% e uma

incerteza relativa de Incerteza 4%.

1. Objetivos

— Verificar experimentalmente a proporcionalidade inversa entre a potência luminosa de uma fonte luminosa e o quadrado da distância do detetor à fonte;

volor de referencia de ono

- Determinar o coeficiente de absorção de filtros;
- Interpretar gamas de fiabilidade da Lei em estudo vs. aparato experimental.

ne Introdução

1. Introdução 700 Esta atividade experimental pode ser dividida en duas partes. Na primeira, pretende-se provar a seguinte lei:

$$P = \frac{I_{\rm e}A}{R^2}S$$

A potência absorvida (P) no sensor será diretamente proporcional à sua tensão de saída (V), de forma que se tenha:

 $V = \frac{k}{R^2}$, sendo k uma contante e R a distância do sensor à fonte luminosa.

Se a esta relação forem ampliados logaritmos de base 10, a ambos os lados desta equação:

$$\log_{10}(V(d)) = \log_{10}\left(\frac{k}{R^2}\right) \Leftrightarrow \log_{10}(V(d)) = \log_{10}(R^{-2} \times k) \Leftrightarrow$$

$$\Leftrightarrow \log_{10}(V(d)) = \log_{10}(R^{-2}) + \log_{10}(k) \Leftrightarrow \log_{10}(V(d)) = -2 \times \log_{10}(R) + \log_{10}(k)$$

Desta forma, para verificar experimentalmente a relação de proporcionalidade será necessário recolher os valores de tensão de saída do sensor e os respetivos valores da sua distância à fonte luminosa e, a partir desses dados traçar um ajuste linear entre $\log_{10} (V(d))$ e $\log_{10} (R)$. Assim, dever-se-á obter um declive de aproximadamente -2, que corresponderá ao valor experimental do expoente.

Na segunda parte, pretende-se determinar o coeficiente de absorção de filtros de acrílico. A potência absorvida também pode ser dada pela equação seguinte:

$$P(x) = P_0 e^{-\alpha x}$$

onde P_0 é a potência absorvida no sensor, α é o coeficiente de absorção dos filtros de acrílico e x é a espessura desses filtros.

Conforme referido antes, a potência absorvida vai ser diretamente proporcional á tensão.

$$V(x) = Qe^{-\alpha x}$$
, sendo Q uma constante.

Desta vez, se se aplicar o logaritmo neperiano à equação:

$$\ln(V(x)) = \ln(Qe^{-\alpha x}) \iff \ln(V(x)) = \ln(Q) + \ln(e^{-\alpha x}) \iff \ln(V(x)) = \ln(Q) - \alpha x$$

ensõe
ao inverso de

montes en la publication de Assim para determinar α , depois de recolhidos os valores das espessuras e respetivas tensões, deve-se traçar um ajuste linear de $\ln(V(x))$, onde o declive obtido corresponderá ao inverso ϕ valor experimental do coeficiente de absorção.

2

2. Atividade Experimental

2.1. Método Experimental

Primeiramente, foi necessário escolher a gama experimental de distâncias que seria utilizada para a verificação da Lei: $V(d) = K \mathrm{d}^{-2}$. Para isso, depois de assegurada a montagem da figura 1, foi escolhida uma frequência de 133Hz para o chopper e, de seguida, foi feito um varrimento de distâncias. Com isto, foram estimados os valores de d a serem medidos, de forma que os logaritmos destes ficassem distribuídos de forma homogénea. Observou-se ainda como se comportava o sinal do osciloscópio, em DC e AC, para $d \approx 20~cm$.

Figura 1: Montagem experimental para a verificação a relação entre a potência luminosa de uma fonte pontual e a distância.

/sur Xoly +

Também, de forma a garantir que a lâmpada que incorpora as montagens era a única fonte luminosa presente, além da se usar uma sala escura, tapou-se as barras que suportam os movimentos do sensor com um pano preto, de forma a evitar possíveis reflecções. Posto isto, iniciou-se a recolha de dados. Foi-se variando a distância d e registando a respetiva tensão pico-a-pico em AC lida no canal 1 (ao qual estava ligado o sensor, o gerador de sinais estava ligado ao canal 2) no osciloscópio. Depois repetiu-se todo este processo, mas agora em DC, onde foi preciso ir ajustado o sinal do canal 1 para fazer as leituras necessárias para a atividade.

Figura 2: Montagem experimental para a determinação do coeficiente de absorção.

Nesta parte da atividade, para determinar o coeficiente de absorção dos filtros de acrílico, fixamos o valor de d=25cm. Selecionamos 7 filtros de acrílico que iriamos usar, numeramo-los e medimos e registamos a espessura de cada um. Depois, realizamos 5 ensaios, onde fomos variando a ordem e o número de filtros que iam sendo colocados em frente ao sensor e registando os respetivos valores de tensão pico-a-pico em AC, lidos no canal 1 do osciloscópio.

3. Análise de Dados

3.1. Estudo da Relação entre a Potência Luminosa de uma Fonte Pontual e a Distância

Os dados experimentais recolhidos foram organizados na tabela 1, que surge em anexo. Foi usada uma gama experimental de a $d \in [20,0;120,0] \pm 0,05cm$, visto que valores de distância inferiores a 20cm, o sinal apresentava-se demasiado instável e, para valores superiores a 120cm, a amplitude do sinal era muito pequena. Desta forma, para valores de d fora desta gama, os

valores de tensão lidos no osciloscópio não seriam tão confiáveis.

3.1.1. Corrente Alternada

Através dos dados recolhidos para a corrente alternada (AC), traçou-se um gráfico e o respetivo ajuste:

Gráfico 1: Gráfico log(V) em função de log(d) para a corrente alternada.

Gráfico 2: Resíduos de log(V) em função de log(d) para a corrente alternada.

orropier a graficato

Matriz de Ajuste AC							
m	-1,972 5,47 b						
u(m)	0,008	0,01	u(b)				
r ²	0,9997	0,008	u(y)				

Matriz 1: Matriz de ajuste para a corrente alternada.

Analisando o gráfico 2, verifica-se que todos os resíduos estão distribuídos de uma forma aleatória dentro do no intervalo $\pm 2s(y)$, pelo que se pode considerar que o ajuste feito é adequado.

Assim, tomando como valor de referência –2 e considerando o valor do declive obtido como o valor experimental para o expoente:

$$expoente_{AC} = -1,972 \pm 0,008$$
 $Inc_{AC}(\%) = 0,4\%$ $Er_{AC}(\%) = 1\%$

3.1.2. Corrente Contínua

Através dos dados recolhidos para a corrente contínua (DC), traçou-se um gráfico e o respetivo ajuste:

Gráfico 3: Gráfico log(V) em função de log(d) para a corrente alternada.

Gráfico 4: Resíduos de log(V) em função de log(d) para a corrente contínua.

NOTA: Podra ter nintetizado Ace DC nos mennos quipiros, pondo assim em evidencia a sua semelhança.

Matriz de Ajuste DC							
m	-1,984 5,48 b						
u(m)	0,008	0,01	u(b)				
r ²	0,9997	0,008	u(y)				

Matriz 2: Matriz de ajuste para a corrente contínua.

Analisando o gráfico 4, verifica-se também que todos os resíduos estão distribuídos de uma forma aleatória dentro do no intervalo $\pm 2s(y)$, pelo que se pode considerar novamente que o ajuste feito é adequado.

Desta forma, obtivemos:

$$expoente_{DC} = -1,984 \pm 0,008$$

 $Inc_{DC}(\%) = 0,4\%$
 $Er_{DC}(\%) = 0,8\%$

3.2. Estudo da Absorção

Em anexo, encontram-se as tabelas 2 e 3, que contêm os dados experimentais que permitiram determinar o coeficiente de absorção. Reunindo os dados de todos os ensaios nos seguintes gráficos:

🌈ráfico 5 e 6: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para todos os ensaios.

Considerando cada ensaio individualmente e considerando como valor de referência lpha =

0,219 mm⁻¹ (com base em valores de trabalhos deste ano na UC), obteve-se:

Ensaio 1:

Gráfico 7 e 8: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para o ensaio 1.

Matriz de Ajuste 1						
m	-0,20	6,3	b			
u(m)	0,01	0,2	u(b)			
r ²	0,990	0,2	u(v)			

Matriz 3: Matriz de ajuste para o ensaio 1.

$\alpha_1 = (0.20 \pm 0.01) \text{mm}^{-1}$
$Inc_1(\%) = 5\%$
$Er_1(\%) = 9\%$

Ensaio 2:

Gráfico 9 e 10: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para o ensaio 2.

Matriz 4: Matriz de ajuste para o ensaio 2.

Matriz de Ajuste 2							
m	-0,20	6,1	b				
u(m)	0,01	0,1	u(b)				
r ²	0,994	0,1	u(y)				

$$\alpha_2 = (0.20 \pm 0.01) \text{mm}^{-1}$$

$$Inc_2(\%) = 5\%$$

$$Er_2(\%) = 9\%$$

Ensaio 3:

Gráfico 11 e 12: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para o ensaio 3.

Matriz de Ajuste 3								
m	m -0,184 6,09							
u(m)	0,006	0,08	u(b)					
r ²	0,997	0,08	u(y)					

Matriz 5: Matriz de ajuste para o ensaio 3.

$$\alpha_3 = (0.184 \pm 0.006) \text{mm}^{-1}$$

$$Inc_3(\%) = 3\%$$

$$Er_3(\%) = 16\%$$

Ensaio 4:

Gráfico 13 e 14: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para o ensaio 4.

Matriz de Ajuste 4							
m	m -0,180 6,0						
u(m)	0,008	0,1	u(b)				
r ²	0,994	0,1	u(y)				

Matriz 6: Matriz de ajuste para o ensaio 4.

$$\alpha_4 = (0.180 \pm 0.008) \text{mm}^{-1}$$

$$Inc_4(\%) = 4\%$$

$$Er_4(\%) = 18\%$$

Ensaio 5:

Gráfico 15 e 16: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para o ensaio 5.

Matriz de Ajuste 5							
m -0,181 5,9 b							
u(m)	0,007	0,1	u(b)				
r^2	0,996	0,09	u(y)				

Matriz 7: Matriz de ajuste para o ensaio 5.

$$\alpha_5 = (0.181 \pm 0.007) \text{mm}^{-1}$$

$$Inc_5(\%) = 4\%$$

$$Er_5(\%) = 17\%$$

Analisando os gráficos, verificamos que em todos dos resíduos apresentam uma certa tendência parabólica. Além disso, verifica-se que os três últimos ensaios estão associados a erros percentuais relativos maiores. Deste modo, optou-se por considerar apenas a média dos dois primeiros ensaios.

2 ensais 11 estatistica pier

» uma box opéan.

Gráfico 17 e 18: Gráfico de log(V) em função da espessura dos filtros de acrílico e respetivos resíduos para a média.

٨	Matriz de Ajuste							
m	-0,199	6,2	b					
u(m)	0,007	0,1	u(b)					
r ²	0,991	0,1	u(y)					

Matriz 8: Matriz de ajuste para a média.

$$\alpha = (0.199 \pm 0.007) \text{mm}^{-1}$$

$$Inc(\%) = 4\%$$

Er(%) = 9%

Pelo novo gráfico de resíduos, verifica-se que a tendência diminuiu e que os resíduos estão contidos no intervalo $\pm 2s(y)$, pelo que se pode considerar que este novo ajuste é mais adequado.

4. Resultados Fin w

Na verificação da relação de proporcionalidade entre a potência luminosa de uma fonte pontual e a distância, obteve-se dois valores, uma para AC e outros para DC:

	expoente	Inc	Inc(%)	Er(%)
AC	-1,972	0,008	0,4	1
DC	-1,984	0,008	0,4	0,8

por ser mais do-2. Amb n tem qualidade 18 semalhanto Perante isto, optou se pelo valor obtido com a corrente contínua

Assim, finalmente:

expoente =
$$-1,984 \pm 0,008$$

 $Inc(\%) = 0,4\%$
 $Er(\%) = 0,8\%$

Chegou-se ao coeficiente de absorção dos filtros:

$$\frac{\alpha}{\alpha} = (0,199 \pm 0,007) \text{mm}^{-1}$$

$$\frac{\text{Er(\%)} = 9\%}{9}$$
Mad (mead)

5. Conclusão

Verificou-se experimentalmente a relação de proporcionalidade entre a potência luminosa e a distância de uma fonte pontual de luz, usando corrente contínua e corrente alternada. Determinou-se o valor do expoente para ambos os casos, tendo sido escolhido como valor final o obtido usando DC. Chegando ao valor $-1,984 \pm 0,008$, que surge associado a uma incerteza percentual relativa de 0,4% e a um erro percentual relativo de 0,8%.

Também, após a análise dos ensaios realizados para a determinação experimental do coeficiente de absorção dos filtros de acrílico usados, optou-se por descartar três deles e considerar como valor final a média dos dois primeiros ensaios. Assim, o valor obtido para o coeficiente de absorção foi $\alpha = (0.199 \pm 0.007) \text{mm}^{-1}$, que surge associado a uma incerteza percentual relativa de 4% e a um erro percentual relativo de 9%

6. Anexos

				Corrente	Alternada					Corrente	e Contínua		
(d±0,05) (cm)	log(d)	V (mV)	u(V) (mV)	log(V)	u(log(V))	Ajuste	Resíduos	V (mV)	u(V) (mV)	log(V)	u(log(V))	Ajuste	Resíduos
20,00	1,301	792	1	2,899	0,001	2,904	0,0048	830	1	2,919	0,001	2,902	-0,0170
23,00	1,362	608	1	2,784	0,002	2,784	-0,0001	608	1	2,784	0,002	2,782	-0,0022
26,00	1,415	464	1	2,667	0,002	2,679	0,0123	464	1	2,667	0,002	2,676	0,0095
29,00	1,462	384	1	2,584	0,003	2,585	0,0010	388	1	2,589	0,003	2,582	-0,0069
32,00	1,505	318	1	2,502	0,003	2,501	-0,0014	316	1	2,500	0,003	2,497	-0,0026
35,00	1,544	274	1	2,438	0,004	2,424	-0,0135	258	1	2,412	0,004	2,420	0,0083
39,00	1,591	222	1	2,346	0,005	2,332	-0,0148	210	1	2,322	0,005	2,327	0,0045
43,00	1,633	180	1	2,255	0,006	2,248	-0,0073	174	1	2,241	0,006	2,243	0,0020
48,00	1,681	144	1	2,158	0,007	2,154	-0,0047	138	1	2,140	0,007	2,148	0,0079
53,00	1,724	116	1	2,064	0,009	2,069	0,0044	112	1	2,049	0,009	2,062	0,0132
58,00	1,763	97,0	0,1	1,987	0,001	1,992	0,0048	95,2	0,1	1,979	0,001	1,985	0,0061
64,00	1,806	78,4	0,1	1,894	0,001	1,907	0,0130	80,0	0,1	1,903	0,001	1,900	-0,0032
70,00	1,845	67,2	0,1	1,827	0,001	1,831	0,0032	67,2	0,1	1,827	0,001	1,823	-0,0047
76,00	1,881	56,0	0,1	1,748	0,002	1,760	0,0119	56,0	0,1	1,748	0,002	1,752	0,0037
82,00	1,914	50,4	0,1	1,702	0,002	1,695	-0,0074	48,0	0,1	1,681	0,002	1,686	0,0051
89,00	1,949	42,4	0,1	1,627	0,002	1,625	-0,0025	42,0	0,1	1,623	0,002	1,616	-0,0075
96,00	1,982	36,8	0,1	1,566	0,003	1,560	-0,0058	36,8	0,1	1,566	0,003	1,551	-0,0153
104,00	2,017	30,6	0,1	1,486	0,003	1,491	0,0057	30,4	0,1	1,483	0,003	1,482	-0,0013
112,00	2,049	27,0	0,1	1,431	0,004	1,428	-0,0034	26,4	0,1	1,422	0,004	1,418	-0,0039
120.00	2.079	23.4	0.1	1.369	0.004	1.369	-0.0003	22.6	0.1	1.354	0.004	1.358	0.0042

Tabela 1: Tabela com os dados referentes ao Estudo da Relação entre a Potência Luminosa de uma Fonte Pontual e a Distância.

Nº do filtro	(x ± 0,01) (mm)			x _{filtro} (mm)	u(x _{filtro})(mm)
1	4,25	4,26	4,29	4,27	0,08
2	4,62	4,66	4,67	4,65	0,08
3	4,47	4,06	4,08	4,2	0,3
4	4,54	4,56	4,50	4,53	0,09
5	4,20	4,39	4,08	4,2	0,2
6	4,24	4,27	4,32	4,3	0,1
7	4,24	4,27	4,26	4,26	0,06

Tabela 2: Tabela com os dados referentes aos filtros de acrílico e respetivas espessuras.

Ensaio	Ordem dos Filtros	x _{filtro} (mm)	V (mV)	u(V) (mV)	ln(V)	u(ln(V))	Ajuste	Resíduos	Ajuste _{média}	Resíduos _{média}
1	1	4,27	260	2	5,561	0,008	5,400	-0,1612	5,329	0,232
	1+2	8,92	76,7	0,3	4,340	0,004	4,456	0,1159	4,403	-0,063
	1+2+3	13,12	32,4	0,6	3,48	0,02	3,603	0,1246	3,565	-0,087
	1+2+3+4	17,65	13,8	0,4	2,62	0,03	2,683	0,0580	2,662	-0,037
	1+2+3+4+5	21,88	7,12	0,2	1,96	0,03	1,826	-0,1373	1,821	0,142
2	5	4,22	206	1	5,328	0,005	5,267	-0,0612	5,338	-0,010
	5+2	8,87	80,0	0,4	4,382	0,005	4,358	-0,0245	4,411	-0,029
	5+2+4	13,41	28,6	0,6	3,35	0,02	3,471	0,1178	3,508	-0,155
	5+2+4+6	17,68	12,7	0,4	2,54	0,03	2,635	0,0935	2,656	-0,114
	5+2+4+6+7	21,94	6,88	0,3	1,93	0,04	1,803	-0,1257	1,808	0,121
3	7	4,26	216	3	5,38	0,01	5,302	-0,0731		
	7+3	8,46	88,0	2	4,48	0,02	4,528	0,0504		
	7+3+5	12,68	38,8	0,6	3,66	0,02	3,750	0,0912		
	7+3+5+1	16,95	20,2	0,5	3,01	0,02	2,963	-0,0422		
	7+3+5+1+6	21,23	9,04	0,5	2,20	0,06	2,176	-0,0262		
4	3	4,20	190	2	5,25	0,01	5,195	-0,0521		
	3+7	8,46	86,8	1	4,46	0,01	4,427	-0,0368		
	3+7+2	13,11	31,2	0,8	3,44	0,03	3,588	0,1473		
	3+7+2+1	17,38	16,2	0,5	2,79	0,03	2,818	0,0329		
	3+7+2+1+5	21,60	8,56	0,4	2,15	0,05	2,056	-0,0913		
5	4	4,53	176	2	5,17	0,01	5,082	-0,0889		
	4+2	9,18	65,0	1	4,17	0,02	4,241	0,0667		
	4+2+7	13,44	31	1	3,42	0,03	3,472	0,0508		
	4+2+7+5	17,66	14,1	0,6	2,65	0,04	2,708	0,0623		
	4+2+7+5+1	21,93	7,6	0,5	2,03	0,07	1,937	-0,0908		

Tabela 3: Tabela com os dados referentes ao Estudo do Coeficiente de Absorção dos Filtros de Acrílico.

7. Web grafia

Docentes Responsáveis Pela UC Laboratório de Física II. "ESTUDO DA RELAÇÃO ENTRE A POTÊNCIA LUMINOSA DE UMA FONTE PONTUAL E A DISTÂNCIA. ESTUDO DA ABSORÇÃO". Em: Protocolos para a UC de Laboratório de Física II. FCUP, 2023.