Notations:

- n désigne un entier, $n \ge 2$
- On note $E = M_n(\mathbb{R})$ la \mathbb{R} -algèbre des matrices carrées d'ordre n à coefficients réels;
- Les éléments de E sont notés $M = (m_{i,j})_{1 \leq i,j \leq n}$;
- la matrice élémentaire E_{ij} est la matrice de E dont les coefficients sont tous nuls à l'exception de celui qui se trouve sur la i-ème ligne et sur la j-ème colonne, qui vaut 1. On donne aussi la formule

$$E_{i,j}E_{k,\ell} = \delta_{j,k}E_{I,\ell}$$

- Lorsque A et B sont des éléments de E, on note A. B leur produit.
- Si $M \in E$, on note Vect(M) le sous-espace vectoriel engendré par M
- $E^* = \mathcal{L}(E, \mathbb{R})$ la \mathbb{R} algèbre des formes linéaires sur E. On rappelle que : $\dim(E) = \dim(E^*)$.
- Si $M = (m_{ij})_{1 \leq i,j \leq n} \in E$, on note $\operatorname{Tr}(M)$ le réel $\sum_{k=1}^{n} m_{kk}$. A chaque matrice U de E, on associe :
 - L'application T_U de E vers $\mathbb{R}: M \mapsto T_U(M) = \operatorname{Tr}(U.M)$.
 - L'ensemble $H_U = \{ M \in E \mid / \operatorname{Tr}(U.M) = 0 \}.$

Partie I: Généralités, exemples.

- 1. (a) Montrer que Tr est une application linéaire.
 - (b) Pour $U \in E$, prouver que l'application T_U est dans E^* .
 - (c) Soit $U \in E$; reconnaître Ker (T_U) , et montrer que H_U est un sous-espace vectoriel de E.
- 2. Soit $A = (a_{ij})_{1 \leq i,j \leq n}$ et $B = (b_{ij})_{1 \leq i,j \leq n}$ des éléments de E.
 - (a) Montrer que Tr $(A . B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j i} b_{i j}$.
 - (b) En déduire les identités suivantes :

i.
$$Tr({}^{t}A.B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$$

ii.
$$Tr(B.A) = Tr(A.B)$$

- 3. Soit U dans E.
 - (a) Si U = 0, déterminer dim H_U .
 - (b) Si $U \neq 0$, montrer que l'on peut trouver un couple d'entiers (i_0, j_0) tel que $T_U(E_{i_0 j_0}) \neq 0$. En déduire dim H_U .
- 4. Pour $(i,j) \in [1,n]^2$, on note $T_{ij} = T_{E_{ji}}$.
 - (a) Les indices k et ℓ étant fixés, calculer $T_{ij}(E_{k\ell})$
 - (b) Montrons que $(T_{ij})_{1 \le i,j \le n}$ est une base de E^* .
- 5. Montrer que l'application φ de E vers $E^*: U \mapsto \varphi(U) = T_U$ est un isomorphisme d'espaces vectoriels.
- 6. On considère un hyperplan vectoriel H de E.
 - (a) Quelle est sa dimension?
 - (b) Soit A une matrice non nulle de E qui n'appartient pas à H, montrer que : $E = H \oplus \text{Vect}(A)$.
 - (c) Construire alors un élément ψ de E^* tel que $H = \operatorname{Ker}(\psi)$.
 - (d) Prouver l'existence d'un élément U de E tel que $H = H_U$.

Partie II: Tout hyperplan contient une matrice inversible

On se propose dans cette partie de montrer que chaque hyperplan vectoriel de E possède au moins une matrice inversible.

Pour
$$1 \leqslant r \leqslant n$$
, on note $R_r = \sum_{i=1}^r E_{ii}$.

7. Soit
$$P = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$
 c'est-à-dire $P = (p_{ij})_{1 \leqslant i,j \leqslant n}$ avec

$$\begin{cases} p_{i+1, i} = 1 & 1 \leqslant i \leqslant n - 1 \\ p_{1, n} = 1 \\ p_{i, j} = 0 & \text{ailleurs} \end{cases}$$

- (a) Montrer que P est inversible.
- (b) Prouver que P appartient à l'hyperplan H_{R_r} .
- 8. En déduire que chaque hyperplan vectoriel H de E possède au moins une matrice inversible. Indication: lorsque $H = H_U$, avec U de rang r, on rappelle l'existence de matrices S_1 et S_2 inversibles telles que $S_1.U.S_2 = R_r$.

Partie III: Les hyperplans de $M_n(\mathbb{R})$ stable par produit

Soit H un hyperplan de $M_n(\mathbb{R})$ stable par la multiplication des matrices.

On se propose de montrer que H est une sous-algèbre

Cela revient à démontrer que $I_n \in H$. Raisonnons par absurde, on suppose que $I_n \notin H$

- 9. (a) Montrer que H et $\mathbf{Vect}(\mathbf{I}_n)$ sont supplémentaires dans $M_n(\mathbb{R})$
 - (b) Soit p la projection sur $\mathbf{Vect}(\mathbf{I}_n)$ parallèlement à H. Montrer que p est un morphisme d'algèbres
- 10. Soit $A \in M_n(\mathbb{R})$ telle que $A^2 \in H$. Montrer que $A \in H$
- 11. (a) Soit $i, j \in [1, n]$ tels que $i \neq j$. Calculer $E_{i,j}^2$ puis montrer que $E_{i,j} \in H$
 - (b) En déduire que $\forall i \in [1, n]$, on a $E_{i,i} \in H$
- 12. Conclure

Partie I: Généralités, exemples.

- 1. (a) En notant $A = (a_{ij})_{1 \leqslant i,j \leqslant n}$ et $B = (b_{ij})_{1 \leqslant i,j \leqslant n}$ et $\lambda \in \mathbb{K}$. Pour tout $1 \leqslant i \leqslant n$, le coefficient (i,i) de $\lambda A + B$ est $\lambda a_{ii} + b_{ii}$. Ainsi, on a bien $Tr(\lambda A + B) = \lambda Tr(A) + Tr(B)$. Donc Tr est une forme linéaire.
 - (b) Soit $U \in E$. L'application T_U est bien définie de E à valeurs dans \mathbb{R} . Soit $A, B \in E$ et $\lambda \in \mathbb{R}$. On a

$$T_{U}(\lambda A + B) = Tr(U(\lambda A + B))$$

$$= Tr(\lambda UA + UB)$$

$$= \lambda Tr(UA) + Tr(UB) = \lambda T_{U}(A) + T_{U}(B)$$

- (c) Soit $U \in E$; par définition $\operatorname{Ker}(T_U) = \{M \in E \mid T(U.M) = 0\} = H_U$, donc H_U est un sous-espace vectoriel de E.
- 2. Soit $A = (a_{ij})_{1 \leq i,j \leq n}$ et $B = (b_{ij})_{1 \leq i,j \leq n}$ des éléments de E.
 - (a) Par définition $AB = (c_{ij})_{1 \leq i,j \leq n}$ avec $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, donc

$$T(A.B) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$

(b) i. On écrit ${}^tA = \left(a'_{ij}\right)_{1 \le i,j \le n}$, avec $a'_{ij} = a_{ji}$. D'après la question précédente

$$T(^{t}AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a'_{ji}b_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$$

ii. Par symétrie

$$T(BA) = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = T(AB)$$

- 3. Soit U dans E.
 - (a) Si U est la matrice nulle, alors T_U est l'application nulle, par le théorème du rang dim $H_U = \dim E = n^2$.
 - (b) Si $U = (u_{ij})_{1 \le i,j \le n}$ n'est pas la matrice nulle, alors il existe $(j_0,i_0) \in [1,n]^2$ tel que $u_{j_0i_0} \ne 0$. Le calcul de $UE_{i_0j_0}$ donne

$$UE_{i_0j_0} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} u_{k\ell} E_{k\ell} E_{i_0j_0} = \sum_{k=1}^{n} u_{ki_0} E_{kj_0}$$

Donc
$$T_U(E_{i_0j_0}) = T(UE_{i_0j_0}) = T\left(\sum_{k=1}^n u_{ki_0}E_{kj_0}\right) = u_{j_0i_0} \neq 0$$

On tire que $\text{Im}T_U = \mathbb{R}$ et par le théorème du rang dim $H_U = n^2 - 1$.

- 4. Pour $(i, j) \in [1, n]^2$, on note $T_{ij} = T_{E_{ji}}$.
 - (a) Soit $(k, \ell) \in [1, n]^2$, on a $E_{ji}E_{k\ell} = \delta_{ik}E_{j\ell}$, donc

$$T_{ii}(E_{k\ell}) = T(E_{ii}E_{k\ell}) = \delta_{ik}T(E_{i\ell}) = \delta_{ik}\delta_{i\ell}$$

(b) Montrons que $(T_{ij})_{1 \leqslant i,j \leqslant n}$ est une base de E^* . La famille contient exactement n^2 éléments et dim $E^* = n^2$, donc il suffit de montrer sa liberté. Soit, alors $(\alpha_{ij})_{1 \leqslant i,j \leqslant n} \in \mathbb{R}^{n^2}$ telle que $\sum_{i=1}^n \sum_{j=1}^n \alpha_{ij} T_{ij} = 0$.

Pour $(k, \ell) \in [1, n]^2$, on a

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} T_{ij} (E_{k\ell}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \delta_{ik} \delta_{j\ell} = \alpha_{k\ell}$$

5. L'application φ de E vers E^* est linéaire. En effet : Soit $U, V \in E$ et $\lambda \in R$, alors pour tout $M \in E$, on a :

$$\varphi(\lambda U + V)(M) = T_{\lambda U + V}(M)$$

$$= T((\lambda U + V)M) = T(\lambda UM + VM)$$

$$= \lambda T(UM) + T(VM) = \lambda T_U(M) + T_V(M)$$

$$= (\lambda \varphi(U) + \varphi(V))(M)$$

Donc $\varphi(\lambda U + V) = \lambda \varphi(U) + \varphi(V)$.

D'après la question II.2) l'application φ est injective. Vu dim $E=\dim E^*$, alors φ est un isomorphisme d'espaces vectoriels

- 6. On considère un hyperplan vectoriel H de E.
 - (a) $\dim H = n^2 1$
 - (b) Soit $A \in E \setminus H$, alors $H \cap \mathbf{Vect}(A) = \{0\}$ et puisque $\dim H + \dim \mathbf{Vect}(A) = \dim E$ on obtient $E = H \oplus \mathbf{Vect}(A)$.
 - (c) Pour $x \in E$, il existe un unique $(x_H, \lambda_x) \in H \times \mathbb{R}$ tel que $x = x_H + \lambda_x A$. On définit ψ par $\psi(x) = \lambda_x$.
 - ψ est une forme linéaire?

Soit $x, y \in E$ et $\lambda \in \mathbb{R}$, alors il existe deux couples uniques $(x_H, y_H) \in H^2$ et $(\alpha_x, \alpha_y) \in \mathbb{R}^2$ tels que $x = x_H + \alpha_x A$ et $y = y_H + \alpha_y A$. On écrit

$$\lambda . x + y = \underbrace{\lambda . x_H + y_H}_{\in H} + \underbrace{\left(\lambda . \alpha_x + \alpha_y\right) . A}_{\in \mathbf{Vect}(A)}$$

Puis $\psi(\lambda x + y) = \lambda \cdot \alpha_x + \alpha_y = \lambda \cdot \psi(x) + \psi(y)$, donc ψ est linéaire

 $-- \operatorname{Ker} (\psi)$?

Soit $x \in E$, alors $x \in \text{Ker}(\psi)$ équivaut à $\alpha_x = 0$ si, et seulement, si $x \in H$. Donc $\text{Ker}(\psi) = H$

(d) ψ est une forme linéaire, d'après la question précédente, il existe un élément $U \in E$ tel que $\ell = T_U$, puis $H = \operatorname{Ker} \psi = \operatorname{Ker} (T_U) = H_U$

Partie II: Tout hyperplan contient une matrice inversible

Pour $1 \leqslant r \leqslant n$, on note $R_r = \sum_{i=1}^r E_{ii}$.

- 7. (a) Les vecteurs colonnes de P sont exactement les éléments de la base canonique de $M_{n,1}(\mathbb{R})$, donc elle est de rang n. Autrement P est inversible.
 - (b) Si r = n, alors $R_r = I_n$ et $T_{R_r}(P) = \text{Tr}(P) = 0$
 - Si r=1, alors $R_1=E_{11}$ et $R_1P=E_{1n}$ puis $T_{R_r}(P)=\operatorname{Tr}(P)=0$
 - Sinon, on a bien $P = E_{1,n} + \sum_{i=1}^{n-1} E_{i+1,i}$. Par multiplication

$$R_{r}P = \sum_{j=1}^{r} E_{j,j}E_{1,n} + \sum_{j=1}^{r} \sum_{i=1}^{n-1} E_{j,j}E_{i+1,i}$$

$$= \sum_{j=1}^{r} \delta_{j,1}E_{j,n} + \sum_{j=1}^{r} \sum_{i=1}^{n-1} \delta_{j,i+1}E_{j,i}$$

$$= E_{1,n} + \sum_{j=1}^{r} \sum_{i=1}^{n-1} \delta_{j,i+1}E_{j,i}$$

$$= E_{1,n} + \sum_{i=1}^{r-1} E_{i+1,i}$$

Donc $\operatorname{Tr}(R_r P) = 0$

Ce qui prouve que P appartient à l'hyperplan H_{R_r} .

8. D'après ce qui précède il existe U non nulle telle $H = H_U$. Posons $r = \mathbf{rg}(U)$, il existe deux matrices S_1 et S_2 telles que $S_1.U.S_2 = R_r$.

Posons $Q = S_2 P S_1$, cette matrice est inversible car elle est produit de matrices inversibles et

$$T_U(Q) = \operatorname{Tr}(US_2PS_1) = \operatorname{Tr}(S_1US_2P) = \operatorname{Tr}(R_rP) = 0$$

Donc $Q \in H$.

Bilan : Tout hyperplan de $M_{n}\left(\mathbb{R}\right)$ contient au moins une matrice inversible

Partie III: Les hyperplans de $M_n(\mathbb{R})$ stable par produit

9. (a) Comme H un hyperplan de $M_n(\mathbb{R})$ et $I_n \notin H$, alors $M_n(\mathbb{R}) = H \oplus \mathbf{Vect}(I_n)$

(b) p est une application linéaire, alors il suffit de de montrer que $p(I_n) = I_n$ et que si $A, B \in M_n(\mathbb{R})$, alors $p(A \times B) = p(A) \times p(B)$.

— Décomposons A et B selon la somme directe $M_n(\mathbb{R}) = H \oplus \mathbf{Vect}(\mathbf{I}_n)$:

$$A = H_A + \underbrace{\lambda_A \mathbf{I}_n}_{=p(A)}; \quad B = H_B + \underbrace{\lambda_B \mathbf{I}_n}_{=p(B)}$$

alors:

$$A \times B = \underbrace{H_A \times H_B + \lambda_B H_A + \lambda_A H_B}_{\in \mathbf{H}} + \underbrace{\lambda_A \lambda_B \mathbf{I}_n}_{\in \mathbf{Vect}(\mathbf{I}_n)}$$

Puis

$$p(A \times B) = \lambda_A \lambda_B I_n = p(A) \times p(B)$$

10. Soit $A \in M_n(\mathbb{R})$. Posons $A = H_A + \lambda I_n$ avec $H_A \in H$ et $\lambda \in \mathbb{R}$; d'où :

$$A^2 = \underbrace{\left(H_A^2 + 2\lambda H_A\right)}_{\in H} + \lambda^2 \operatorname{I}_n$$

Si $A^2 \in H$, alors $\lambda^2 = 0$ c'est-à-dire $\lambda = 0$ et donc $A \in H$.

- 11. (a) On sait que $E_{i,j}E_{k,\ell}=\delta_{j,k}E_{I,\ell}$, donc si $i\neq j$, alors $E_{i,j}^2=0\in H$ et donc $f_{i,j}\in A$ d'après la question précédente.
 - (b) Soit $i \in \{1, \dots, n\}$. Considérons un indice $j \in [\![1, n]\!] \setminus \{i\}$; on observe que $E_{i,i} = E_{i,j} \times F_{j,i} \in H$.
- 12. Comme $I_n = \sum_{i=1}^n E_{i,i}$, Il résulte que $I_n \in H$, contrairement à l'hypothèse. On a donc établi par l'absurde que tout hyperplan de $M_n(\mathbb{R})$, stable par multiplication est une sous-algèbre de $M_n(\mathbb{R})$