

Desarrollo de un modelo de Machine Learning para la estimación del Indice de Area Foliar (LAI) a partir de imágenes de satélite

JOSE ESTEVEZ

Estimación de LAI y Machine Learning

Indice de área foliar LAI [m²/m²]

- Densidad de vegetación y capacidad fotosintética
- Crecimiento de cultivos y fenologia

Métodos de medición:

- Directos
- Indirectos
 - Hemispherical Photography (DHP)
 - Transmittance
 - Reflectance

Recolección de datos

Datos insitu

DHP -> LAI

Proveedor:

29 sites

Landcovers:

Datos de satélite

Reflectancia de superficie

Fuente: Sentinel-2

Proveedor:

Unión de los datasets

	date_sat	date_insitu	longitude	latitude	B2	В3	В4	B5	В6	В7	В8	B8A	B11	B12	LAI_Warren
0	2019-06-07	2019-06-04	-72.171458	42.537834	0.0198	0.0532	0.0169	0.0982	0.3507	0.4087	0.4433	0.4232	0.1646	0.0673	4.030
1	2019-06-27	2019-07-02	-72.171458	42.537834	0.0236	0.0405	0.0193	0.0782	0.3244	0.4116	0.4295	0.4490	0.1786	0.0718	4.820
2	2019-07-12	2019-07-16	-72.171458	42.537834	0.0197	0.0203	0.0126	0.0247	0.0888	0.1154	0.0948	0.1156	0.0293	0.0117	3.871
3	2019-08-01	2019-07-30	-72.171458	42.537834	0.0176	0.0422	0.0188	0.0757	0.3112	0.3827	0.3980	0.3963	0.1670	0.0656	3.790
4	2019-08-26	2019-08-27	-72.171458	42.537834	0.0204	0.0405	0.0182	0.0711	0.2746	0.3450	0.3710	0.3663	0.1580	0.0626	4.281

Sp	ectral bands	nm	m	
B1	Coastal aerosol	443	60	
B2	Blue	490	10	
B3	Green	560	10	
B4	Red	665	10	
B5	Vegetation red edge	705	20	
B6	Vegetation red edge	740	20	
B7	Vegetation red edge	783	20	
B8	NIR	842	10	
B8a	Narrow NIR	865	20	
B9	Water vapour	945	60	
B10	SWIR-Cirrus	1375	60	
B11	SWIR	1610	20	
B12	SWIR	2190	20	

Métodos

Método empírico

Datos insitu (LAI)

Datos de satélite (B2,B3,B4,B5,B6,B7,B8, B8A,B11,B12)

Machine Learning (GPR)

LAI pred

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

División del dataset

Test set -> 2023
Train set y Val set -> 2018 a 2022
(estratificación por tipo de cubierta)

Construcción del modelo de ML

Métricas usadas:

- RMSE
- MAPE
- UAR (Uncertainty Agreement Ratio)
- R²

Feature selection y model testing

Feature reduction tecniques:

Visual, SelectedFromModel, RFE, SFS, Hard voting, Full_num_features

Machine Learning models:

Regresion Lineal, Ridge, Lasso, ElasticNet, SVR, RandomForest, XGBoost, LightGBM, CatBoost

6 * 9 = 54 modelos

Results

Top 4 Features mas predictivas (hard voting)

- B7 (red edge)
- B8A (NIR)
- B11 (SWIR)
- B12 (SWIR)

Cross Validation

1	CatBoost-SFS: 0.57
2	SVR-SFS: 0.57
3	LightGBM-SFS: 0.57
4	SVR-Full_num_features: 0.58
5	SVR-SelectedFromModel: 0.59
6	SVR-RFE: 0.59
7	SVR-Hard voting: 0.59
8	Random Forest-SFS: 0.59
9	SVR-Visual: 0.60
10	Random Forest-SelectedFromModel: 0.61
31	Regresion Lineal-Full_num_features: 0.75

Preselección de modelos

Contra val_set

SVR-SFS

(6 Bandas)

[B6, B7, B8, B8A, B11, B12]

Linear Regression

(10 bandas)

[B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12]

Modelo base

Modelo final

Ecuación de la regresión lineal:

Análisis de errores del modelo

Distribución de residuos

Análisis de residuos por cubierta

LAI True

Aplicaciones: Fenología de la vegetación

Serie temporal de LAI

Conclusiones

- Modelo viable y mejorable para estimar LAI a gran escala espacial y temporal.
- La regresión lineal mostró desempeño un similar que modelos mucho más complejos.
- Las bandas del infrarrojo son más relevantes.
- La reducción de features no siempre mejora el modelo.
- Dificultad para predecir valores en los extremos.
- Los outliers disparan el RMSE.
- Unas cubiertas se estiman mejor que otras.
- Los errores se reducen con mejores datos de entrenamiento.

Acciones de mejora

- Conseguir más datos.
- Probar en otras zonas y a diferentes latitudes.
- Introducir ruido para generar nuevas muestras.
- Filtrar outliers.
- Reducir el umbral temporal.
- Forzar predicciones negativas a cero.
- Probar con PCA y GPR.
- Probar con reflectancias TOA.
- Implementar una web app (ej. Google Earth Engine Apps o Streamlit)

Código fuente

Estructura:

- Scripts para la recolección de datasets.
- Funciones para la limpieza, preprocesado y unión de los datasets.
- Pipelines para entrenar y testear el modelo.

https://github.com/esjoal/ML LAI Estimation/tree/main

