Lecture 5

ME EN 415
Andrew Ning
aning@byu.edu

Drag Breakdown

Parasitic Drag + Induced Drag + Compressibility Drag

Wake Vortex

Common Misconceptions

https://youtu.be/dfY5ZQDzC5s

Circulation

Kutta Joukowski Theorem

Inviscid Induced Drag

$$D_i = \frac{L^2}{q_{\infty} \pi b^2 e_{inv}}$$

$$C_{Di} = \frac{C_L^2}{\pi A Re_{inv}}$$

1 1 () stribution elliptic =) einu = (

> Pinv 0.98 invscrid span efficiency

$$e_{inv} \approx 0.99 \left[1 - 2 \left(\frac{d_F}{b} \right)^2 \right]$$

Viscous Induced Drag

$$C_{D_i,v} = KC_{D_p}C_L^2$$

TTAReinu e~ 0.7 -0.85 V 15 C0-5 inviscid Z CL / KCDPTA TRE Oswald efficience factor Zins