

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

FLOWFIELD EFFECTS OF LAUNCH ON A VERTICALLY-LAUNCHED MISSILE

by

John J. Viniotis June 1989

Thesis Advisor:

Richard M. Howard

Approved for public release; distribution unlimited

S DTIC ELECTE NOV22 1989 B

89 11 20 106

Security Classification of this page			
	ENTATION PAGE		
1a Report Security Classification Unclassified	1b Restrictive Markings		
2a Security Classification Authority	3 Distribution/Availability of Report		
2b Declassification/Downgrading Schedule	Approved for public release; distribu		
4 Performing Organization Report Number(s)	5 Monitoring Organization Report Number(s)	
6a Name of Performing Organization 6b Office Symbol (If Applicable) 67	7a Name of Monitoring Organization Naval Postgraduate School		
6c Address (city, state, and ZIP code) Monterey, CA 93943-5000	7b Address (city, state, and ZIP code) Monterey, CA 93943-5000		
8a Name of Funding/Sponsoring Organization 8b Office Symbol (If Applicable)	9 Procurement Instrument Identification Num	ber	
8c Address (city, state, and ZIP code)	10 Source of Funding Numbers Program Element Number Project No Task No	Work Unit Accession No	
11 Title (Include Security Classification) FLOWFIELD EFF LAUNCHED MIS	ECTS OF LAUNCH ON A VERTICA		
12 Personal Author(s) John J. Viniotis			
13a Type of Report 13b Time Covered Master's Thesis From To	14 Date of Report (year, month,day) 1989 June	15 Page Count 147	
	thesis are those of the author and do n		
the official policy or position Government.	n of the Department of Defense or the	U.S.	
17 Cosati Codes 18 Subject Terms (continue on re-	verse if necessary and identify by block number)		
	-to-Air Missile, High-Angle-of-Attack	•	
Turbulence, Body of Rev	volution; Vortex Asymmetry . 12 1/2.	<u> به ر</u>	
19 Abstract (continue on reverse if necessary and identify by block number		.6.1	
The flowfield about a Vertically-Launched Surface-to-Air	Missile model at an angle of attack of	50° and a	
goal of this thesis is to determine the location and intensit	Reynold's number of 1.1x10 ⁵ was investigated in a low speed wind tunnel at the Naval Postgraduate School. The goal of this thesis is to determine the location and intensity of the asymmetric vortices in the wake of the VLSAM model and to display these vortices by velocity mapping and pressure contours. The two model configurations		
tested were for a cruciform missile with wings and tails;		\ .	
roll angle ("cross" aspect). Two flowfield conditions were			
a condition with a grid-generated turbulence of length scr			
turbulence length scale is 61.7% of the model diameter a			
were reached: 1) An increase in turbulence intensity tende			
generated vortices; 2) the two asymmetric vortices remain	ned in approximately the same position	for an increase in	
turbulence; 3) "cross" aspect vortices were more diffused	l, slightly larger and centered further av	way from the	
model surface than those of the "plus" aspect body config	guration, which correlates with the diff	erences in induced	
side forces for these configurations observed by Rabang;			
closer to the model surface and appeared to be stronger for		tion of wings and	
tails did not greatly alter the vortex pattern around the not	se of the missile model.		
20 Distribution/Availability of Abstract	21 Abstract Security Classification		
X unclassified/unlimited same as report DTIC users	Unclassified		
22a Name of Responsible Individual Richard M. Howard	22b Telephone (Include Area code) (408) 646-2870	22c Office Symbol Code 67Ho	
		assification of this page	
All other editio		Unclassified	

Approved for public release; distribution is unlimited.

Flowfield Effects of Launch on a Vertically-Launched Missile

by

John J. Viniotis Lieutenant, United States Navy B.S. United States Naval Academy, 1982

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL June 1989

Author:	Jalm Vinnot	
	John J. Viniotis	
Approved by:	Ribad M. Howard	_
	Richard M. Howard, Thesis Advisor	
	Witeam	
	J. Val Healey, Second Reader	
	E.O. Wand	
	E. R. Wood, Chairman,	
	Department of Aeronautics and Astronautics	
	- Halchacher	
	Gordon E. Schacher,	
	Dean of Science and Engineering	

ABSTRACT

The flowfield about a Vertically-Launched Surface-to-Air Missile model at an angle of attack of 50° and a Reynolds number of 1.1x105 was investigated in a low speed wind tunnel at the Naval Postgraduate School. The goal of this thesis is to determine the location and intensity of the asymmetric vortices in the wake of the VLSAM model and to display these vortices by velocity mapping and pressure contours. The two model configurations tested were for a cruciform missile with wings and tails; one at 0° roll angle ("plus" aspect) and the other at a 45° roll angle ("cross" aspect). Two flowfield conditions were treated: the nominal ambient wind tunnel condition and a condition with a grid-generated turbulence of length scale 1.08 inches and 1.88% turbulence intensity. The turbulence length scale is 61.7% of the model diameter and 4.7% of the model length. The following conclusions were reached: 1) An increase in turbulence intensity tended to reduce the strength of the asymmetric nose-generated vortices; 2) the two asymmetric vortices remained in approximately the same position for an increase in turbulence; 3) "cross" aspect vortices were more diffused, slightly larger and centered further away from the model surface than those of the "plus" aspect body configuration, which correlates with the differences in induced side forces for these configurations observed ', Rabang; 4) the top vortex of the two asymmetric vortices was closer. The model surface and appeared to be stronger for both configurations; and 5) the addition of wings and tails did not greatly alter the vortex pattern around the nose of the missile model.

TABLE OF CONTENTS

I.	IN	roi	DUCTION	1	
	A.	BA	CKGROUND	1	
	B.	HI	GH ANGLE OF ATTACK AERODYNAMICS	3	
		1.	Aerodynamic Regimes	3	
		2.	Asymmetric Vortex Theory	5	
		3.	Two-Dimensional Crossflow	6	
		4.	Three-Dimensional Vortices	11	
	C.	TU	RBULENCE	13	
	D.	LIF	FTING SURFACE EFFECTS	14	
	E.	VL	SAM LAUNCH ENVIRONMENT	16	
		1.	Marine Environment	16	
		2.	Launch and Crosswind Velocities	17	
		3.	Additional Launch Considerations	18	
II.	EX	EXPERIMENT AND PROCEDURES			
	A.	PU	RPOSE	19	
	B.	AP	PARATUS	21	
		1.	Wind Tunnel	21	
		2.	Turbulence-Generating Grids	23	
		3.	VLSAM Model and Support Equipment	29	
		4.	Velmex 8300 3-D Traverser	29	
		5.	5-Hole Pressure Probe	32	
		6.	Scanivalve and HP Data Acquisition System	32	

	C.	EXI	PERIMENTAL CONDITIONS	34
	D.	SOI	FTWARE AND PROCEDURES	37
		1.	PPROBE Program	38
		2.	CALP Program	40
		3.	CONVERT Program	42
		4.	TECPLOT System	43
	E.	PRI	ELIMINARY TESTS	43
		1.	Dynamic Pressure Calibration	43
		2.	Yaw and Pitch Angle Corrections	44
III.	RES	SULT	TS	45
	A.	COI	NFIGURATION 0A ("PLUS" WITHOUT TURBULENCE)	45
	B.	COI	NFIGURATION 3A ("PLUS" WITH TURBULENCE GRID 3)	48
	C.	COi	NFIGURATION OC ("CROSS" WITHOUT TURBULENCE)	52
	D.	COI	NFIGURATION 3C ("CROSS" WITH TURBULENCE GRID 3)	57
	E.	COI	MPARISONS	57
		1.	Between Body Configurations (A and C)	57
		2.	Between Turbulence Levels (0 and 3)	61
		3.	With Body-Only Configuration (B)	62
IV.	COI	NCL	USIONS AND RECOMMENDATIONS	66
APP	END	IX A	PPROBE Program	68
APP	END	IX B	. CALP Program	79
APP	END	IX C	. CONVERT Program	84
APP	END	IX D	RESULT 00.DAT	87
APP	END	IX E.	RESULT 0A.DAT	90
APP	END	IX F.	RESULT 3A.DAT	- 100

APPENDIX G. RESULT 0C.DAT	110
APPENDIX H. RESULT 3C.DAT	120
LIST OF REFERENCES	130
INITIAL DISTRIBUTION LIST	133

LIST OF FIGURES

Figur	е
-------	---

1.	Airflow Regimes	4
2.	Vortex Flow About a Slender Nose Cylinder	6
3.	Two-Dimensional Crossflow About a Cylinder	7
4 .	Side Force to Normal Force Ratio	9
5.	Effect of Reynold's Number on Maximum Side Force at ≈=55°	- 10
6.	Side Force Variations with Nose Roll Angle	11
7 .	The Planar Survey Grid	20
8.	Naval Postgraduate School Wind Tunnel	22
9.	Planview of VLSAM Model With Pressure Probe and Grid In the Test Section of the Wind Tunnel	24
10.	Square-mesh Turbulence-Generating Grid	25
11.	Grid Turbulence Intensities	26
12.	Grid Turbulence Length Scales	27
13.	Turbulence-Generating Grids	28
14.	Specifications of VLSAM Model	30
15.	Velmex 8300 Traversing Assembly	31
16.	5-Hole Pressure Probe and Measuring Tip	33
17.	HP Data Acquisition System	35
18.	VLSAM Model Body Configurations	36
19.	Program/Data File Flowchart	37
20.	Calibration Manometer	41
91	Velocity Vector Plot - Configuration 04	. AG

22 .	Total Pressure Coefficient - Configuration 0A	47
23.	Static Pressure Coefficient - Configuration 0A	49
24.	Velocity Vector Plot - Configuration 3A	50
25 .	Total Pressure Coefficient - Configuration 3A	51
26.	Static Pressure Coefficient - Configuration 3A	53
27 .	Velocity Vector Plot - Configuration 0C	54
28.	Total Pressure Coefficient - Configuration 0C	55
29.	Static Pressure Coefficient - Configuration 0C	56
30.	Velocity Vector Plot - Configuration 3C	- 58
31.	Total Pressure Coefficient - Configuration 3C	59
32.	Static Pressure Coefficient - Configuration 3C	60
33.	Velocity Vector Plot - Configuration 0B	63
34.	Total Pressure Coefficient - Configuration 0B	64
35	Static Pressure Coefficient - Configuration 0B	. 65

LIST OF TABLES

Table	e	
1.	Grid Specifications	25
2.	Grid Turbulence Parameters	2

NOMENCLATURE

C_{PT}	Total Pressure Coefficient
d	Base diameter of missile body
K	Wind tunnel calibration factor
l_N	Nose length
L_d	Missile diameter scale
L_{l}	Missile length scale
Lu	Longitudinal turbulence length scale
Q	Freestream dynamic pressure
P_s	Freestream static pressure
P_t	Freestream total pressure
P_{sL}	Local static pressure
P_{tL}	Local total pressure
P_1	Total pressure
P_2	Lateral static pressure
P_3	Lateral static pressure
P ₄	Pitch angle pressure
P ₅	Pitch angle pressaure
R_e	Reynold's number
T_u	Turbulence intensity
u'	Root-mean-square (rms) velocity fluctuation
U_{M}	Measured velocity

C_{PS} Static Pressure Coefficient

- U∞ Longitudinal mean velocity
- Z_C Roughness length
- ≈ Angle of attack (AOA)
- ∝_{AV} AOA for the formation of asymmetric vortices
- ϵ Blockage correction factor
- θA Nose semi-vertex angle
- φ Angle from crossflow
- φ_R Roll angle
- ρ Air density

ACKNOWLEDGEMENTS

Sincere graditude goes to my thesis advisor, Dr. Richard M. Howard, for his guidance and encouragement throughout the course of my study. I have been provided with a rewarding learning experience by being afforded the chance to conduct wind tunnel experiments.

I would also like to thank the following Naval Postgraduate School personnel for their support in this research:

Mr. Jack King, Aerolab

Mr. John Moulton, Aeronautics Shop

Capt. Dan Johnson, USA, NPS Student

Lt. Jim Pinaire, USN, NPS Student.

I. INTRODUCTION

A. BACKGROUND

The development of the Vertical Launch Surface to-Air Missile (VLSAM) has provided greater weapon system reliability, availability and flexibility over its predecessors. Earlier systems, such as trainable launchers and box launchers, were rather cumbersome and required excessive deck space, thus limiting the number of missiles per ship. Additionally, these systems were slow to reload since trainable launchers required cycling of rounds to get the desired one in position for launch, while box launchers were reloaded by hand. The vertical launcher provides for quick access to any round without cycling, rapid reloading and, due to its design and the fact that the missile blast is kept in a concentrated area near the launcher, it requires less deck space. [Refs. 1, 2 and 3]

The VLSAM's trajectory allows it to point to its target after launch and subsequently guide itself to the correct heading. Its aerodynamic characteristics may significantly change as it operates from subsonic to supersonic speeds during the launch, midcourse and terminal phases of its flight. [Ref. 2] The varying flight control requirements and the airflow about the missile during these phases provide for different flight regimes.

When launched, the VLSAM enters an open ocean environment and is subject to potentially significant cross-winds, the result of which is a missile flying at relatively low velocities at a high angle of attack. [Refs. 1 and 2] In particular, an example of this low velocity/high angle of attack condition is the Standard Missile 2–Block 4, or AEGIS Extended Range version, which

has an added sustainer section and leaves its launcher at a much lower speed than the unboosted SM-2 version. A missile flying at relatively low velocities at a high angle of attack may bring with it the formation of asymmetric vortices about the missile nose and afterbody which can generate unpredictable and undesired side forces, thereby affecting overall missile flight stability. The airflow around a ship's superstructure, the ocean surface conditions and the atmospheric boundary layer conditions during launch may also provide turbulent flow over the missile. [Ref. 2] The advent of the VLSAM and the desire to have highly maneuverable supersonic missiles have increased the need for further studies in high angle of attack research under various flowfield conditions.

This thesis continues experiments and research conducted to date at the Naval Postgraduate School (NPS) to understand the effects of turbulence on the VLSAM aerodynamic characteristics. Previously, Roane [Ref. 1] developed a system model to measure flowfield turbulence through the use of four different grids which generate varying turbulence levels in the NPS low speed wind tunnel. Rabang [Ref. 2] studied the effects of this turbulence on the asymmetric vortex forces on the missile model. Lung [Ref. 3] determined the location and intensity of the asymmetric vortices in the wake of the model by experimental flowfield measurements about a body-only missile configuration with and without freestream turbulence. Similarly, the goal of this study is to determine vortex locations and intensities, through a series of wind tunnel experiments, for two missile configurations, both with and without turbulence. The configurations considered are for a cruciform missile with wings

and tails; one at 0° roll angle ("plus" aspect) and the other at a 45° role angle ("cross" aspect).

B. HIGH ANGLE OF ATTACK AERODYNAMICS

In high angle of attack aerodynamics, flow separation from the body, wing and tail surfaces is important due to the strong normal and side forces which may be generated. Major factors which influence flow separation are nose shape, angle of attack, crossflow Reynolds number and nose fineness ratio. Other factors include roll angle and roll rate, free stream turbulence, surface roughness, acoustic environment and VLSAM model vibrations [Ref. 4].

1. Aerodynamic Regimes

As the angle of attack, \propto , of a slender body of revolution ranges from 0° to 90°, there are at least four distinct airflow regimes through which the missile body transitions. [Ref. 4]

- (1) Regime I (0°< \propto < 5°): At very low angles of attack, the axial flow dominates and there is no discernable boundary layer separation (flow is attached).
- (2) Regime II ($5^{\circ} < \infty < 20^{\circ}$): At intermediate angles of attack, boundary layer separation occurs on the lee side of the body. This becomes a free shear layer which rolls up into a symmetric vortex pair that is steady with time. No side forces or yawing moments are induced.
- (3) Regime III (20°< ∞ < 60°): At high angles of attack, crossflow effects start to dominate and vortices are now shed asymmetrically. These vortices induce side forces (out-of-plane forces) and yawing moments. The more asymmetric the vortex, the greater the side force magnitude. There are some flow instabilities toward the higher end of this angle of attack range.

(4) Regime IV (60°< ∝ < 90°): At very high angles of attack, the crossflow completely dominates and flow separation is unsteady. The Reynolds number, Mach number and geometry determine whether the boundary layer is shed as a von Karman vortex street or a random wake-like flow. [Refs. 1, 2 and 3]

Figure 1 shows sketches of all four vortex-generation regimes.

Figure 1. Airflow Regimes [Ref. 2]

2. Asymmetric Vortex Theory

The principal cause of the formation of asymmetric vortices is still not completely understood and may be attributed to many factors. One idea is that boundary-layer-induced asymmetry in the location of flow separation causes the vortex flowfield to become asymmetric. These boundary layer asymmetries may result from transition and separation differences on each side of the missile body. Another proposition is that a hydrodynamic (inviscid) instability in the pair of initially symmetric vortices causes the asymmetry. [Refs. 5, 6 and 7] These vortices, which increase in strength with angle of attack, interact with the surrounding potential flowfield to provide the asymmetric configuration. A vortex-switching phenomenon has also been observed in which the vortex pattern rapidly switches from an almost symmetric to a highly asymmetric configuration, which may possibly relate to a second inviscid solution in the leeward flowfield. [Refs. 8 and 9] At any rate, even though their major cause has not been determined, the behavior of asymmetric vortices has been well documented for a large number of models and shapes.

Nose-generated asymmetric vortices appear in the flowfield around an ogive-nosed, slender, cylindrical body. The vortex formation occurs along the entire body length and induces a significant side force on the body. Figure 2 shows this vortex flow along the length of an unyawed, slender nose cylinder.

Figure 2. Vortex Flow About a Slender Nose Cylinder [Ref. 1]

3. Two-Dimensional Crossflow

Airflow over a slender body can be divided into normal and axial components. Axial flow is along the missile body length while crossflow is essentially a two-dimensional flow normal to a cylinder. The crossflow analogy provides information for cylinder lift and drag which act in the crossflow direction. Depending on the type of flow separation on either side of the cylinder, side forces (at right angles to the crossflow) may exist. [Ref. 2]

Boundary layer transition and separation mechanisms may provide an explanation for flow separation and subsequent asymmetric vortex generation. The primary factor which influences the separation location of the boundary layer is the crossflow Reynolds number. Other factors include surface roughness and turbulence.

Flow around a cylinder in incompressible flow can be classified into four regions, represented by differing flow separation and drag behavior, as depicted in Figure 3. [Refs. 10, 11 and 2] In the subcritical range, the boundary layer is laminar and flow separation occurs close to the lateral meridian

Figure 3. Two-Dimensional Crossflow About a Cylinder [Ref. 2]

where the angle (ϕ) from the crossflow direction varies from 80° to 90°. [Ref. 12] In the critical Reynolds number region, a drag bucket is produced. The laminar boundary layer separates from the body at $\phi \approx 90^\circ$ and reattaches as a turbulent boundary layer which is more energetic. Separation is delayed to $\phi \approx 140^\circ$, resulting in a reduction of the drag. [Ref. 3] A laminar bubble is formed between the laminar separation and the turbulent reattachment. At this point, the flow separation may easily fluctuate from critical to subcritical for small changes in Reynolds number. From Figure 4 [Ref. 10], when critical separation exists on one side of the body while subcritical separation is on the other, a large difference in ϕ is possible. Therefore, vortices will be at maximum asymmetry and the side force at the highest magnitude. Since maximum side force occurs at the critical Reynolds number, it is a noteworthy parameter. [Ref. 13]

As the Reynolds number is further increased, turbulent separation moves forward to $\phi < 140^\circ$ and the laminar bubble no longer exists. At $\phi > 140^\circ$, asymmetric vortices are ineffective at producing a significant side force, thus the sudden decrease in magnitude (C_y/C_n) as shown in Figure 4. For supercritical and transcritical Reynolds numbers, the laminar transition point moves towards $\phi \approx 0^\circ$ and turbulent separation occurs at $\phi \approx 100^\circ$. The asymmetric transcritical separation point moves towards the lateral meridian, where the vortices once again produce a significant side force. [Refs. 5 and 2] The Reynolds number provides the greatest influence on the normal force and drag characteristics, particularly within the critical range where the maximum normalized side force and maximum vortex asymmetry occur. [Ref. 12]

Figure 4. Side Force to Normal Force Ratio [Ref. 5]

Another study by Lamont [Ref. 14] describes a different effect of Reynolds number on the maximum side force as illustrated by Figure 5, where the side force at an angle of attack of 55° is plotted. The maximum side force falls from a high value at laminar separation to almost zero in the middle of the transition region before climbing again to higher levels at fully

Figure 5. Effect of Reynold's Number of Maximum Side Force at ≈ = 55° [Ref. 14]

turbulent separation. Thus, there appears to be two different mechanisms for producing asymmetric flow and, hence, a side force on an ogive-cylinder. One mechanism operates in both the laminar and the fully turbulent separation regimes, in which the side force results from asymmetric vortex patterns in the wake of a body. The other mechanism occurs only in the transitional separation regime. Here, the Reynolds number at which the near-zero side forces were recorded, is the same range of Reynolds number in which the minimum drag coefficient on a 2–D cylinder occurs and in which no coherent vortex shedding can be detected.

4. Three-Dimensional Vortices

The missile nose geometry is an important factor in vortex generation and disposition since vortices shed at the nose tend to dominate other vortices along the body length. [Ref. 15, 8 and 16]

Nose-generated vortices are sensitive to the nose roll angle due to surface imperfections and nose geometric deviations [Ref. 17]. Rabang varied the roll angle in 45° increments and investigated the resulting side force coefficients, shown in Figure 6. The vortex system generated by the nose dominates afterbody vortices for body configurations with and without wings regardless of the turbulence conditions [Refs. 2, 18, and 19].

Figure 6. Side Force Variations With Nose Roll Angle [Ref. 2]

Nose geometry may be pointed or blunt for cones and ogives. For pointed noses, angle of attack for the onset of asymmetric vortices (\approx_{AV}) is a function of the semi-vertex angle (θ_A) . Asymmetric vortices start at the nose and are rapidly shed, yielding unsteady side forces. [Ref. 3] At all Mach numbers, asymmetric vortex shedding starts when \approx_{AV} is greater than θ_A . For a conical nose:

$$\theta_{A} \approx \propto_{AV}/2 \text{ (approximation)}$$
 (1)

For a tangent ogive nose:

$$\theta_{\rm A} = \tan^{-1} \left[\frac{l_{\rm N}/d}{l_{\rm N}^2/d - 0.25} \right]$$
 (2)

where l_N is the nose length and d is the base diameter, or

$$\theta_A = l_N/d \text{ (approximation)}$$
 (3)

Nose fineness ratio also affects the asymmetric vortex induced side forces in that as this ratio increases, the side force also increases. With an increasing ratio, both the nose apex angle (θ_A) and the angle of attack for the onset of asymmetric vortices (\sim_{AV}) will decrease, making the missile more susceptible to induced side forces at lower angles of attack. [Refs. 15 and 20] Decreasing nose fineness ratio has been found to be more beneficial in reducing side forces than blunting the nose [Ref. 15]. Side force decreases with an increasing Mach number to nearly zero at supersonic speeds [Refs. 18 and 21].

C. TURBULENCE

Turbulence denotes the presence of random, short duration variations in a flowfield with a given mean velocity. When calculating turbulence effects on a body in the flowfield, a comparison between the scale of the body and that of the turbulence must be made. The energy in the turbulence flowfield should also be considered. [Ref. 1]

Turbulence intensity, T_u , is the measure of the relative magnitude of velocity fluctuations in the flowfield. For a horizontal flowfield or crosswind, it is the ratio of the root-mean-square (rms) velocity fluctuation, u', to the mean velocity component in the flowfield, $U\infty$.

$$T_{\rm u} = u'/U_{\infty} \tag{4}$$

Turbulence length scales describe the time-averaged measure of the size of the constantly changing fluid disturbance eddies. An increase in the spatial length of the turbulence corresponds to an increase in the time the body is exposed to the fluctuation. Large and small scale turbulence length scales are both found in a flowfield.

From a single source, the cascade effect produces turbulence eddies of different length scales. This "cascade" effect is caused by a strain in one direction (x, y, z plane) which affects the orthogonal components due to the conservation of angular momentum. For example, an increase in the x and y velocity components of a vortex rotating in the x-y plane will have an effect on the velocity and length scales of the y-z components. [Ref. 1] Cascading continues until the smaller eddies disappear due to the viscosity. As turbulence decreases, the energy transfer decreases and the individual intensities of

each eddy will decrease at a faster rate. [Ref. 22] Thus, the larger scale turbulence predominates.

The length scale to body size ratio may determine the manner in which turbulence affects the VLSAM flowfield. It may be compared to missile length, $L_u:L_l$, or missile diameter $L_u:L_d$. [Refs. 1 and 2]

For length scales much greater than the body, $L_u >> L_l$, the effect is like a steady-state flowfield, where deviations in speed and direction would be of long duration. The flowfield effects on vortex development are mainly dominated by the same factors and conditions as for a two-dimensional cylinder.

In contrast, unwanted rolling, pitching and yawing motion of the body is primarily caused when the turbulence length scale is comparable to the body length, $L_u \approx L_l$. [Ref. 23] The flowfield is distinctly non-steady for this case.

When the length scale is of a dimension much smaller than the body, most significantly, when it is smaller than the missile diameter, $L_u << L_d$, it has a magnitude comparable to the boundary layer thickness on the missile surface. Thus, boundary layer development and flow separation over the body may be affected by the presence of small scale turbulence. An increase in turbulence intensity with a length scale on the order of the boundary-layer scale tends to reduce the magnitude of induced side forces. [Refs. 2, 24, and 25] A goal of the current investigation is to determine the effect of vortex-scale turbulence on the asymmetric vortices and resulting induced side forces.

D. LIFTING SURFACE EFFECTS

The complete vortex structure of the missile is a net result of the individual contributions from the body, wings, strakes and tails. In general, missiles use low aspect ratio wings (when compared with aircraft). Since some

missiles have wing spans that approach body diameter, it is important to consider the joint effects from a wing-body combination. Nose vortices dictate flow behavior over a missile body at high angles of attack and, consequently, these vortices may also be felt by the wings. Nose and body vortices move away from a missile body without wings but, when wings are added, they move closer to the body. This result is comparable to increasing the effective angle of attack causing unsteady asymmetric vortices. For wings with low aspect ratio, a major portion of the lift produced by the wing will be a result of vortex lift. The net effect of the wing-body combination appears to be a reduction in the effective angle of attack for the onset of asymmetric vortices and side forces. [Refs. 2, 3, and 26]

Vortex lift effects are improved by incorporating strakes with low aspect ratio wings. The strakes produce additional strong vortices. Some researchers have found that placing long strakes on a missile would induce interference with the crossflow component around the body, thus decreasing the effect of the forces and moments generated by asymmetric body vortices. [Ref. 6] Rabang has shown that the addition of typical VLSAM wings and strakes tend to preserve the induced side force for all levels of turbulence intensities and length scales. [Ref. 2]

The addition of tails has a minor influence on forebody flowfields and maximum side forces, in particular, at low angles of attack. At higher angles of attack, nose and wing vortices may have a slight effect on the tailflow, depending on the wing placement and afterbody length between the wings and tails.

E. VLSAM LAUNCH ENVIRONMENT

1. Marine Environment

Turbulence conditions which exist within the atmospheric boundary layer (ABL) may significantly impact the VLSAM. The ABL is the lowest portion of the atmosphere and is formed by its interaction with the surface over which it flows. Turbulence in this layer is the result of the transfer of heat, momentum and mass.

The surface layer, the lowest segment of the ABL, can vary in height from 5 to 200 meters but is typically on the order of 50 meters. It is also characterized by mechanically produced, small-scale turbulence resulting from surface roughness or friction from waves on the ocean surface. This small-scale turbulence is larger than the missile length. This region is described by variations in wind speed, nearly vertical heat and mass fluxes, and other meteorological fluctuations with height. [Refs. 27 and 23] Furthermore, the majority of the flow in the surface layer itself can be considered horizontally homogeneous and two-dimensional [Ref. 23].

A measure of the roughness of the surface is called the roughness length, Z_0 , which is a function of the mean wind velocity at various heights above the surface. By combining the roughness length with the elevation and wind speed, both the turbulence intensity and length scale can be empirically determined. [Refs. 2, 3 and 28] Typical open ocean surface roughness lengths are in the range of $0.001 < Z_0 < 0.01$, with Z_0 in meters. For a 10 meter elevation and a mean wind speed of 25 m/sec in a neutral atmosphere, turbulence intensities may range from 13 to 17 percent. [Ref. 28] The longitudinal turbulence length scale would then range from $262 < L_u < 295$ feet $(80 < L_u < 90)$

meters). Therefore, for a typical missile with a 1.1 foot diameter, the turbulence length scale to missile diameter length scale ratio is $L_u:L_d\approx280:1$. [Ref. 28] This represents a length scale very much larger than a conventional missile length and, therefore, would have little effect on its boundary layer development. However, the cascade effect from large scale turbulence and from crosswind interaction with a ship's superstructure allows length scales, initially much larger (85 meters) than the dimension of a missile, to decrease (cascade) to scales where they could affect the missile boundary layer development and the development of vortices from the missile nose. The actual amount of such small-scale turbulence present in the marine atmosphere is largely unknown, however. [Ref. 23]

2. Launch and Crosswind Velocities

A typical VLSAM at launch (vertical velocity = 164 ft/sec) is still well within the surface layer environment and is subject to both crosswind and turbulence effects. [Ref. 29] Crosswind velocity depends on both the ambient wind speed and the speed of the launch platform. A ship speed of 20 knots with a head wind of 20m/sec, combined with the VLSAM launch velocity, results in an effective angle of attack of 31° at 191 ft/sec, which places the missile in the asymmetric vortex region (Regime III) almost immediately after clearing the exit plane of the launcher, 0.2 seconds after launch. [Refs. 1 and 2]

When the missile first leaves its launcher it will experience an even greater effective angle of attack due to its slower velocity. A ship's hull and superstructure can dictate changing flow fields and turbulence at this initial launch altitude. The ship airwake may increase crosswind velocities and

cause significant crosswind gradients in the flowfield, thus increasing turbulence intensities while decreasing turbulence length scales. [Ref. 2]

Later in its launch profile, when the VLSAM pitches over towards a target, it may reach effective angles of attack of up to 50°. [Refs. 2 and 30] Thus, during the launch phase there exists a definite possibility of asymmetric vortex induced side forces on a VLSAM.

3. Additional Launch Considerations

During launch, a missile is influenced by many factors which are dependent on missile design, ship's orientation, launcher mechanics and missile flight control. Shipboard roll, pitch and yaw are directly transmitted to the launch platform and must be taken into account. Inherent factors, such as the plume (jet) effect of the missile's engine and blast effects of the vented exhaust gases, can also affect VLSAM aerodynamics. Exhaust gases can impinge directly on the missile surfaces or they can impact the flowfield in which the missile is launched, especially if the gases are vented upward into the vicinity of the accelerated missile. [Ref. 1] The manner in which control systems respond to missile orientation changes is another factor. Should the missile change its flight attitude, the flowfield around it will also be altered. Obviously, the considerations discussed in this section are not all-encompassing. There are many other factors that affect missile flight behavior during launch, but they are beyond the scope of this thesis and will not be included.

II. EXPERIMENT AND PROCEDURES

A. PURPOSE

In this study, the location and intensity of asymmetric vortices in the wake of the VLSAM model were determined for varying levels of turbulence. This turbulence was generated by the placement of a series of grids in the wind tunnel. The vortices were displayed by velocity mapping and pressure contours. To accomplish this, wind tunnel flowfield pressure measurements were taken for a specified survey grid using a scanivalve/probe data acquisition system.

Figure 7 [Ref. 3] shows the planar survey grid, the x-y plane, which was perpendicular to the freestream velocity and located 10.5 inches downstream from the missile model's nose. The model body was centered on the y dimension. For the actual data acquisition runs, 23 points were measured in the y direction. There were 11 points above and below the model centerline, with point 12 directly at the centerline. Along the x axis, 13 points were measured. the x-y dimension for the experiment was 3x5.5 inches, with a step distance (increment) of 0.25 inch (22x0.25≈5.5 and 12x0.25=3 inches). This dimension covered the main portion of asymmetric vortices.

Pressure measurements were obtained by the 5-hole probe throughout the survey plane. The data from the pressure probe was reduced through the use of computer programs to obtain isobars of total pressure coefficient and static pressure coefficient, and to map the crossflow velocity vectors. These

Figure 7. The Planar Survey Grid [Ref. 3]

results were correlated with the force measurements of Rabang and with the previous experiments by Lung to provide a greater understanding of the vortex flowfield. The following sections further discuss the equipment and software used, and the experimental procedures followed.

B. APPARATUS

Information about the construction, specifications and configurations of the major pieces of equipment used in this study is described in this section.

1. Wind Tunnel

The low-speed, single return, horizontal-flow tunnel located in Halligan Hall at NPS was utilized. (Figure 8, [Ref. 31]). It is powered by a 100 horsepower electric motor coupled to a three-blade variable-pitch fan via a 4-speed Dodge truck transmission. Aft of the fan blades are a set of stator blades which help straighten flow. Two fine wire mesh screens located upstream of the settling chamber plus turning vanes at all four corners reduce turbulence. A heavy wire screen behind the test section prevents foreign object damage to the fan blades [Refs. 1, 2 and 31] The tunnel is 64 feet long and ranges from 21.5 to 25.5 feet wide.

The wind tunnel test section measures 45 inches by 32 inches. The walls diverge slightly to prevent reduction in freestream pressure due to boundary layer growth. The settling chamber area to test section area contraction ratio is approximately 10:1. Corner fillets, which house the lighting, reduce the section area from 10 ft² to 9.88 ft². Fillets are found at wall intersections throughout the tunnel to help reduce boundary layer effects. [Ref. 31]

Figure 8. Naval Postgraduate School Wind Tunnel [Ref. 31]

A reflection plane installed in the test section reduces the available height to 28 inches. A flush-mounted turntable allows for changes in model pitch angle or angle of attack via a remotely controlled electric motor beneath the tunnel. Since the test section operates at atmospheric pressure, breather slots are installed around the tunnel perimeter to replenish air lost through leaks and to ensure a uniform test section pressure. The tunnel was designed to provide test section velocities of up to 290 ft/sec. [Ref. 31]

Wind tunnel temperature is measured by a dial thermometer extending into the settling chamber. Dynamic pressure is measured by the static pressure difference between the test section and the settling chamber using a water filled manometer. The static pressure is measured by four pressure taps located upstream from the test section to avoid interference from the model. These taps are connected via a common manifold prior to feeding into the manometer. Pressure differences are measured in centimeters of water. Equation (5) is used to convert to the actual wind tunnel velocity. [Ref. 3]

$$U_{\rm m} = \left[\frac{(2)(2.0475) (P_{\rm cm} H_2 0)}{(K) (\rho)} \right]^{1/2}$$
 (5)

where:

$$\begin{split} U_m &= measured \ velocity \ (ft/sec) \\ 2.0475 &= conversion \ factor \\ P_{cm} \ H_20 &= manometer \ reading \\ K &= calibration \ factor \ (for \ specific \ grid) \\ \rho &= air \ density \ (lb/ft^2) \end{split}$$

2. Turbulence-Generating Grids

Four grids are used to create turbulence of varying intensities and length scales. Each is mounted in a wooden frame and placed 73 inches forward of the pivot axis of the model support system (see Figure 9). Three of the grids are constructed from wood and the fourth is made of wire. Grid specifications are listed in Table 1 and are shown in Figure 10. They are

Figure 9. Planview of VLSAM Model With Pressure Probe and Grid In the Test Section of the Wind Tunnel (not drawn to scale) [Ref. 2]

TABLE 1. GRID SPECIFICATIONS [REF. 2]

Grid	Mesh Width (in.)	Bar Diameter (in.)	Mesh/Diameter	Material
One	5.00	1.00	5	Wood
Two	3.75	0.75	5	Wood
Three	2.50	0.50	5	Wood
Four	1.00	0.0625	16	Wire

Figure 10. Square-Mesh Turbulence-Generating Grid [Ref. 3]

square-mesh square-bar biplanar grids which generate nearly isotropic homogeneous turbulence. [Ref. 29] Roane measured turbulence intensities and estimated length scales, shown in Figures 11 and 12. [Ref. 1] The grid turbulence parameters taken by Roane are summarized in Table 2. Grid turbulence effects, with respect to changing length scales at constant intensity or constant length scales with changing intensities, can not be investigated with the present grid geometries. [Ref. 3] Figure 13 shows photographs of the grids.

Figure 11. Grid Turbulence Intensities (dashed line indicates model pivot axis) [Ref. 2]

Figure 12. Grid Turbulence Length Scales [Ref. 2]

TABLE 2. GRID TURBULENCE PARAMETERS (AT MODEL PIVOT AXIS) [REF. 1]

Grid	Intensity (percent)	Length Scale (in.)	Turbulence/ Model Dia.	Dynamic Pressure (lb/ft ²)
One	3.31	1.84	1.05	15.35
Two	2.78	1.56	0.89	: 14.88
Three	1.88	1.08	0.62	16.38
Four	0.47	0.27	0.15	15.61
None	0.23		. •	15.85

Figure 13. Turbulence-Generating Grids

3. VLSAM Model and Support Equipment

The model was designed to represent a current cruciform tail-control missile with very low aspect ratio wings (long dorsal fins). It was constructed from 6061 and 2024 aluminum alloy by NPS personnel. [Ref. 1]

The hollow cylinder body section contains locating pin attachment points for the balance, sleeve, wings and tails. The machined sleeve provides a close tolerance fit between the balance gage and the interior of the model. [Ref. 3] Both body roll angle and nose roll angle may be varied in 45° increments. The wings with strakes and the tail control fins are rigidly connected to the model body by countersunk screws. Figure 14 depicts the dimensions and specifications of the VLSAM model. [Ref. 2] The model's surface is polished and free of protruberances.

The model support is rigidly fixed in the test section by the reflection plane turntable at the base and an aluminum reinforced clear plexiglass section at the top. The pivot point of this rotating support coincides with the approximate center of the VLSAM model. The plexiglass has three slots (7-, 8- and 10-inches long) cut in it, each 5/4 inches wide. These slots correspond to the positions of model length to diameter ratios of 3, 6 and 9; i.e., 5.25, 10.5 and 15.75 inches from the nose. [Refs. 2 and 3]

4. Velmex 8300 3-D Traverser

The Velmex 8300 is composed of a motor controller assembly and a traversing assembly, and uses three microcomputer-controlled stepping motors (one for each axis of movement). The motor controller assembly is capable of interpreting motor movement commands from a host computer,

Figure 14. Specifications of VLSAM Model [Ref. 2]

programmable control or terminal. Software commands allow the operator to select motor variables such as velocity, acceleration, increment distance and units (motor steps or inches). [Ref. 32]

The stainless steel and aluminum traverser assembly (Figure 15) consists of three separate motor/jackscrew assemblies.

Figure 15. Velmex 8300 Traversing Assembly

The traverser was mounted to existing hardware on top of the tunnel so as to minimize tunnel-induced vibrations. A 5-hole pressure probe, attached to the 8300 control drive, can be accurately and effectively moved through the test section.

5. 5-Hole Pressure Probe

The three-dimensional 5-hole probe, Figure 16 [Ref. 33], is made of corrosion resistant non-magnetic stainless steel. It is 0.125 inch in diameter and 24 inches in total length with 22 inches of reinforcement tubing. The probe has five measuring holes located on its prism-shaped tip. A centrally located hole (P_1) measures total pressure, while two lateral pressure holes (P_2, P_3) are used to determine yaw angle of flow. Pitch angle is determined by pressure holes (P_4, P_5) located above and below the total pressure hole. The probe is usable for speeds up to Mach 0.7.

The speed of reading depends on the length and diameter of the pressure passage inside the probe, the size of the pressure tubes to the manometer, and the displacement volume of the manometer. [Ref. 33] For smaller diameter tubes, the time constant increases rapidly. For this experiment, the tube diameter was 1/4-inch O.D. and the tube lengths were three feet, so the time delay was about 0.15-0.26 second. [Ref. 3]

6. Scanivalve and HP Data Acquisition System

One 48-port scanivalve was used to measure each of the 5-hole probe pressures. The Hewlett-Packard (HP) data acquisition system consists of a combination of hardware and software that enables the IBM PC-AT computer to act as a fully automated instrumentation system. [Ref. 34] Individual instruments include the Relay Multiplexer, Digital Multimeter and Relay Actuator.

Figure 16. The 5-Hole Pressure Probe and Measuring Tip [Ref. 33]

The scanivalve mechanism puts out a 7-bit binary coded decimal (BCD) signal that corresponds to the port (1-48) currently connected to the scanivalve transducer. This allows remote electronic monitoring of the port assembly configuration. [Ref. 3] The scanivalve consists of a transducer, motor drive, port assembly and solenoid controller, which actually regulates the scanivalve. Two commands allowed by this solenoid are STEP, which

moves the scanivalve to one port location, and HOME, which sends the scanivalve to port number 48. The Relay Actuator is used solely in controlling the scanivalve to STEP or HOME. [Ref. 3]

The HP Data Acquisition System is shown in Figure 17. The scanivalve signal, containing probe port pressure information, passes to the Relay Multiplexer which provides one common output channel for the Digital Multimeter (DMM). The signal is conditioned by a low pass filter prior to being measured by the multimeter. The DMM automatically converts input analog voltage signals into a digital (binary) form which can be read by the computer.

C. EXPERIMENTAL CONDITIONS

To facilitate data correlation, the conditions for this experiment were similar to the conditions of the previous studies by Lung and Rabang.

- (1) Test section reference dynamic pressures were set at 7.2 cm H_20 for the no grid run and at 10.0 cm H_20 for grid #3, which yielded a subcritical Reynolds number of R_e =1.1x10⁵. These reference pressures are the same as those used in the turbulence mapping by Roane [Ref. 1] and were duplicated in this study in order to ensure comparable test section velocities and turbulence grid length scales and intensities.
- (2) The VLSAM model nose geometry was held fixed at nose position eight, which Rabang showed gave the maximum side force magnitude. [Ref. 2]
- (3) Afterbody roll angles were as follows:
 - Body A: wings and tails at roll angle $\phi_R=0^\circ$ in a "+" configuration
 - Body B: no wings or tails at roll angle φ_R=45°
 - Body C: wings and tails at roll angle $\phi_R=45^\circ$ in a "x" configuration.

Figure 18 shows these three configurations. Only Bodies A and C were tested in this study.

Figure 17. HP Data Acquisition System [Ref. 3]

Figure 18. VLSAM Model Body Configurations [Ref. 2]

- (4) Model blockage factor corrections were calculated by Rabang for each body configuration. These factors are a function of the model angle of attack. For this experiment, the angle of attack was fixed at 50° , where the total blockage correction ϵ equalled 0.0123. This factor was implemented in data conversion programs.
- (5) The longitudinal position for data acquisition was at a length/body diameter ratio of 6, which was 10.5 inches from the nose of the missile model.
- (6) Wind tunnel temperatures were not allowed to vary by more than 20°F from the beginning to the end of a run. Wind tunnel settling chamber temperatures tended to rise quickly due to air friction, particularly when the grid was added. When temperatures were excessive, the tests were stopped and the air in the tunnel was circulated until it cooled down sufficiently before tests were continued.

D. SOFTWARE AND PROCEDURES

In order to correlate results with previous data, the computer programs used (or developed) by Lung to acquire and reduce data were also used for this study. Figure 19 [Ref. 3] is a schematic flowchart of the various programs and their resulting data files. The following sections provide further elaboration on these programs.

Figure 19. Program/Data File Flowchart [Ref. 3]

1. PPROBE Program (Data Acquisition)

The BASICA application program which runs the VLSAM experiment is comprised of STATEFILE, PGMSHEL and traverser programs. STATEFILE gives the computer configurations of the data acquisition instruments, while PGMSHEL informs the computer of all the functions available at each of these instruments. STATEFILE and PGMSHEL perform initialization chores and allow communication between the HP instruments and the IBM computer. [Ref. 34]

The traverser program is the actual application code which allows the operator to precisely control pressure probe movement by either manual or computer-controlled input. The traverser program was written by Kindelspire [Ref. 35] in the Advanced Basic Language. The PPROBE program is shown in Appendix A.

Manual control was used to initialize the pressure probe position prior to collecting data for the actual run, which utilized computer-controlled movements. While in the manual mode, the program asked a series of questions which enabled the operator to test motor movements and set traverser motor velocity and acceleration default values. Through manual inputs, the probe was positioned such that the P₁ (total pressure) hole was centered on the lengthwise axis of the VLSAM model body and placed as close as possible to it. From this point, the probe was moved vertically downward to the position of the first point in the data collection plane. For this experiment, the origin was located 2.75 inches below the model axis, and the data field dimensions were 2.75 inches above and below and 3 inches outward from the model.

After this initial probe position was set, the computer-controlled motor movement option was selected. The field dimensions (x, y coordinates), the traverser motor step distance, and the input file name were entered into the program. The data plane was 3.0" by 5.5" with a 0.25-inch step distance for this study. From this input, PPROBE then reiterated the total number of points to be measured (299 this case) and assigned filenames for each column of data. An example of how data files were named is as follows:

example: R0A1A3

where:

R = run

0 = grid number (type)

A = VLSAM model configuration

1 = field dimension (3, 5.5)A = step distance (0.25)

3 = test number

Thus, from the example above, the program assigned filenames R0A1A301.DAT through R0A1A313.DAT, which represented the 13 columns of data (23 points per column).

The 5-hole pressure probe scale wheel was then adjusted until the P₂ and P₃ (lateral) pressures were nearly equal (nulling), as measured by a portable digital manometer/calibrator. The measured yaw angle was read off the wheel and typed into the computer. Once this was accomplished, PPROBE moved the scanivalve from port 1 to port 4 via the Relay Actuator. There was a one-second delay to allow pressure equalization before the Digital Multimeter sampled the output voltage from the scanivalve transducer via the Relay Multiplexer. After ten samples were taken at port 4, the Relay Actuator stepped the scanivalve to the next port (5), where another ten

samples were taken. This process was repeated until all five channel pressures (ports 4 through 8) were measured. [Ref. 3] Note that scanivalve port 4 represents probe pressure P_1 , port 5 is P_2 , port 6 is P_3 , port 7 is P_4 , and port 8 is P_5 .

The Relay Actuator homed the scanivalve to port 48 after all the pressures were measured, and then PPROBE displayed the measurements and average values for each channel on the computer screen. The program either moved the probe upward one step (0.25") or remeasured the same point, depending on whether the data was within tolerance or not, as determined by the operator. For this study, the following tolerances were used: P2 and P3 differed by 0.09 psf or less, and P1 was a positive number (or a very small negative number on the order of -0.5 psf). Once a column of data was measured, PPROBE would store the average values for each point in a file (23 pts) and move the traverser to the next column position. The data acquisition process was continued until all 299 points were completed.

2. CALP Program (Scanivalve Transducer Calibration)

The CALP program (Appendix B) was the other data acquisition program utilized in this study. It was run both before and after the actual test (PPROBE) to account for any change in experimental conditions which might have occurred over the 8–10 hour period it took to run PPROBE.

The transducer voltage was first adjusted to approximately zero millivolts. Calibration manometer (Figure 20) readings were then entered into the computer. The manometer provided a known pressure source for scanivalve calibration. From the transducer output voltage and pressure data

Figure 20. Calibration Manometer [Ref. 3]

provided by CALP, two calibration curve equations were calculated (before/after PPROBE runs). An averaged slope equation was then used in data reduction computations to minimize errors. This slope equation was used by the CONVERT program to change voltage data into dynamic pressure data.

3. CONVERT Program

This program (Appendix C) was used to reduce data. It read the PPROBE data files (ex: R0A1A303.DAT) containing average pressures (P1-P5) and converted them into x-y coordinates, velocity, yaw angle, pitch angle (alpha), total local pressure, total pressure coefficient, local static pressure, and static pressure coefficient. The x, y coordinates and yaw angle were simply read from the PPROBE data files and input into CONVERT. The pitch angle coefficient was determined by a ratio of the pressures measured by the 5-hole probe. This coefficient was then used in an equation developed by Lung [Ref. 3] using commercial curve-fitting software in order to find the corresponding pitch angle. Calibration curves provided by the probe manufacturer were used for the curve-fit. The program also obtained velocity pressure coefficients for particular pitch angles, from which the local velocity was calculated after addition of a wind tunnel calibration factor, K, and other unit conversion factors. Additionally, the total and static pressure coefficients were obtained for different pitch angle regions.

Room ambient pressure was used as the reference pressure for these coefficients, which are functions of total and static pressures and are non-dimensionalized by the tunnel dynamic pressure:

$$C_{PS} = (P_{sL} - P_s)/Q \tag{6}$$

$$C_{PT} = (P_{tL} - P_t)/Q \tag{7}$$

where

CPS = Static pressure coefficient
CPT = Total pressure coefficient

Q = Freestream dynamic pressure
P_s = Freestream static pressure
P_t = Freestream total pressure

P_{sL} = Local static pressure P_{tL} = Local total pressure

The actual dynamic pressure is (nearly) the same for the two cases.

For this experiment, the reference dynamic pressure values were 7.2 cm H_{20} for grid 0 and 10.0 cm H_{20} for grid 3. Temperature input for the CONVERT program was an average of the initial and final wind tunnel temperatures for the entire run time. Similarly, barometric pressure values were recorded before and after each run. CONVERT also added yaw and pitch angle (alpha) corrections to the data. These factors are +5.0° for yaw and -17.942° for pitch. They were determined from a preliminary run conducted with no grid and no missile model in the wind tunnel. Further explanation of this run is discussed in the Preliminary Tests section. The output of the CONVERT program was stored in a file named RESULT.DAT, which, in turn, was used as input to the TECPLOT system.

4. TECPLOT

The commercial TECPLOT software system was used to generate crossplane velocity vector plots and pressure contour plots. These plots could be tailored in many different ways by choosing scale factors, arrowhead wedge angles, contour levels and spacing, and many other parameters. A Hewlett-Packard 7470A x-y pen plotter was utilized in conjunction with TECPLOT to provide both the vector and contour plots.

E. PRELIMINARY TESTS

1. Dynamic Pressure Calibration

All of the turbulence grids were previously calibrated in the wind tunnel. Readings from the tunnel calibration manometer and from a pitot-static tube inserted in the center of the test section were recorded over a speed range and wind tunnel calibration factors were obtained. These factors were used to adjust the tunnel flow velocity to the expected experimental

condition for the different grids. [Ref. 3] The calibration factors K are 0.8891, 1.5084, 1.6487, 1.6545 and 1.1167 for no grid, and grids 1 through 4 respectively. These values were used in the CONVERT program to calculate the pressure and velocity in the test section.

2. Yaw and Pitch Angle Corrections

A test was conducted to find correction factors for yaw and pitch angle. From previous arrow plot data by Lung [Ref. 3], inconsistent crossflow velocity magnitudes and directions were noted toward the outer boundaries of the body-only missile configuration run. These outer boundaries represented the wind tunnel freestream region, where crossflow velocity is expected to reach zero. Therefore, to duplicate just the freestream region, this preliminary test consisted of placing the pressure probe in the tunnel with no VLSAM model and no grid. Thus, the expected pitch and yaw angles should both have been zero. This was not the case however.

Results of the preliminary run (R001A2) are listed in Appendix D (Result 00.DAT File). The yaw angles measured ranged from -4.00° to -7.00°, with an average of -5.00°. The pitch angles (alpha) ranged from approximately +17.4° to approximately +18.4°, with the average +17.942°. Thus, to correct for these errors, +5.00° was added to the yaw angle and -17.942° was subtracted from the alpha values in the output file of the CONVERT program (RESULT.DAT).

Though the exact cause for the yaw and pitch angle errors was not known, one possibility might have been a slight bend which was noted in the 5-hole pressure probe. Other causes may have been improper calibration of the probe or a misalignment of the traverser assembly. The corrected errors only effect the velocity vector plots, and should have no effect on the pressure contour plots.

III. RESULTS

The following sections discuss the velocity vector plots and the total and static pressure coefficient contour plots for the VLSAM model configurations A (plus) and C (cross), both with and without turbulence. All plots depict the 3" by 5.5" data acquisition field and the position of the missile model (nose aspect) relative to the field. Vortex sizes and vortex distances from the model surface are referenced to the model base diameter d (1.75").

A. CONFIGURATION 0A ('PLUS' WITHOUT TURBULENCE)

For the plus configuration, the swirling patterns of the velocity vector plot (Figure 21) clearly denote the two asymmetric vortices, which form circles that rotate in opposite directions. Although the bottom vortex center is evident, this plot fails to show the center of the top vortex. The vortex strength is a maximum on the outer edges of the vortex cores, denoted by the large vector arrows, where the velocities flow back toward the missile body. Towards the outer boundaries of the data acquisition field, where the vortex strengths are minimal, the vectors plot as points.

The total pressure coefficient (CPT) contour plot (Figure 22) shows that the extent of the top vortex is approximately 0.72d at a distance of 0.33d from the missile surface. The bottom vortex is 0.83d at 0.67d from the body. There are more changes in the pressure gradient within a smaller area for the top

Figure 21. Velocity Vector Plot - Configuration 0A

Figure 22. Total Pressure Coefficient - Configuration 0A

vortex, which varies in C_{PT} from -0.14 to -1.35 within an inch, indicating greater vortex strength. The bottom vortex is slightly more diffused. The C_{PT} plot shows that the distance between the two vortex centers is approximately 0.77d.

The static pressure coefficient (Cps) contour plot (Figure 23) shows that the top vortex extends approximately 1.0d at a distance of 0.49d from the body. The bottom vortex extends about the same (1.1d) at a distance of 0.55d. Again, the top vortex appears to be stronger than the bottom vortex. Cps for the top vortex varies from -0.55 to -2.70 within 1.2 inches while the bottom vortex varies from -0.55 to about -2.18 in 1.6 inches. The distance between the vortices is approximately 0.70d on the Cps plot.

B. CONFIGURATION 3A ("PLUS" WITH TURBULENCE)

With added turbulence (grid 3), the velocity vector plot (Figure 24) still indicates vortex asymmetry, but it also indicates that the vortices have less strength (smaller vector arrows) than for the no grid condition. Again the vortex strength is maximized on the outer edges of the vortex cores.

From the CpT contour plot (Figure 25), the top vortex extends to approximately 0.72d, centered at about 0.44d from the model. The bottom vortex is slightly larger (0.83d) and is located 0.55d from the model body. The pressure gradient of the top vortex is steeper than for the bottom vortex, indicating greater strength. CpT varies from -0.14 to -1.5 within an inch for the top vortex and from -0.14 to -1.35 within 1.4 inches for the bottom vortex. The distance between the two vortices as measured on the CpT plot is approximately 0.72d.

Figure 23. Static Pressure Coefficient – Configuration 0A

Figure~24.~~Velocity~Vector~Plot-Configuration~3A

Figure 25. Total Pressure Coefficient - Configuration 3A

Examination of the Cps contour plot (Figure 26) reveals that both vortices are roughly 0.83d wide. The top vortex is closer to the missile body (0.39d) than the bottom vortex (0.55d). More contour levels in a smaller area and, consequently, a higher gradient and stronger vortex exists for the top vortex. Cps for the top vortex varies from -0.27 to -1.60 within 0.8 inch while the bottom vortex Cps ranges from -0.27 to -1.36 within 1.0 inch. On the Cps plot, the two vortices are about 0.66d apart.

C. CONFIGURATION 0C ("CROSS" WITHOUT TURBULENCE)

For the model C configuration (cross), the velocity vector plot (Figure 27) still clearly displays the two asymmetric vortices. As with configuration A, the strengths of the vortices are maximized at the edges of the circular swirls, where the flow is back toward the missile body.

Figure 28, the total pressure coefficient plot, displays a 0.77d wide top vortex located at about 0.5d from the model surface. The bottom vortex extends to approximately 0.88d and is 0.66d from the model. The bottom vortex is more tightly wrapped (i.e., more contour levels per area) closer to its core than is the top vortex. The CPT range for the bottom vortex (-0.14 to -1.23) is slightly greater than the range for the top vortex (-0.14 to -1.09). The vortex centers are roughly 0.66d apart.

From the static pressure coefficient contour (Figure 29), both vortices extend to 0.95d with the top vortex slightly closer to the model body (0.56d) than the bottom vortex (0.66d). The relative strengths of the vortices is difficult to interpret from the Cps plot, but the top vortex appears to be a little less diffused than the bottom vortex and therefore stronger. As with the total pressure coefficient plot, the vortices are 0.66d apart.

Figure 26. Static Pressure Coefficient - Configuration 3A

Figure 27. Velocity Vector Plot – Configuration 0C

Figure 28. Total Pressure Coefficient - Configuration 0C

Figure 29. Static Pressure Coefficient – Configuration 0C

D. CONFIGURATION 3C ('CROSS' WITH TURBULENCE)

The velocity vector plot (Figure 30) shows that the addition of turbulence (grid 3) diffuses the asymmetric vortices for model configuration C. The vector arrows plot smaller for this turbulent case than for the no grid case.

The C_{PT} contour plot (Figure 31) reveals a 0.92d bottom vortex at a distance of 0.66d from the model body and a 0.83d wide top vortex at 0.55d from the model. The bottom vortex appears to be slightly more tightly wrapped towards the vortex center than the top vortex. C_{PT} levels for both vortices range from about 0.0 to -1.23. The distance between the vortices is approximately 0.72d.

Figure 32, the static pressure coefficient plot, like the CpT plot, also shows the distance between the vortices to be 0.72d. The top vortex (extent 0.77d) is roughly 0.55d from the model's surface while the bottom vortex (extend 0.88d) is 0.66d. The vortices appear to have the same strength on the CpS plot, in which the coefficients range from 0.0 to approximately -1.1.

E. COMPARISONS

1. Between Body Configurations (A and C)

The following observations were noted when making comparisons between the two missile configurations for both the turbulent (grid 3) and non-turbulent (no grid) runs.

(1) From the total pressure coefficient (CpT) contour plots, the vortices are slightly larger for configuration C. This is more pronounced for the run conducted with added turbulence (grid 3).

Figure 30. Velocity Vector Plot - Configuration 3C

Figure 31. Total Pressure Coefficient - Configuration 3C

Figure 32. Static Pressure Coefficient - Configuration 3C

- (2) The vortices of the C configuration appear to be centered a little further away from the model surface than do the A configuration vortices. This shift is on the order of 0.2 inches, and is apparent in both the no-grid and grid 3 runs.
- (3) The relative distance between vortex centers does not seem to be affected when the configurations are changed.
- (4) The bottom vortex is more tightly wrapped (stronger) for configuration C based on the CpT plots. This is more noticeable for the run conducted without turbulence.

2. Between Turbulence Levels (0 and 3)

The following observations were noted when making comparisons between the two turbulence levels tested for each body configuration. Turbulence level 0 was the no-grid condition and level 3 was the run conducted with a grid inserted.

- (1) The velocity vector plots indicate smaller arrows, therefore weaker vortices (less crossflow), when turbulence is added. This trend holds for both body configurations.
- (2) The two vortices remain in approximately the same positions as indicated on both the vector plots and the static pressure coefficient (Cps) plots).
- (3) From the total press coefficient (CpT) plots, the center of the bottom vortex for configuration A shifts slightly closer to the model body when the turbulence increases. (-0.2 to 0.0 on the x-axis).
- (4) Also on the CpT plots, with added turbulence, the top vortex core for configuration C seems to shift away from the VLSAM body.
- (5) The CPT plots for both configurations are slightly more diffused with added turbulence. Specifically, the vortex centers are less tightly wrapped, thus indicating weaker vortices for the more turbulent condition.
- (6) There are no noticeable differences in the static pressure coefficient contours between the turbulent and non-turbulent runs.

3. With Body-Only Configuration (B)

The following observations were made in order to correlate the results of this study with the previous experiment conducted by Lung for a body-only VLSAM model configuration. [Ref. 3] The purpose is to note how the addition of wings and strakes might affect the vortex flow pattern around the missile. The velocity vector, total pressure and static pressure coefficient plots for the body-only run (0B) are displayed in Figures 33, 34, and 35 respectively. These comparisons were made for the nominal ambient (no-grid) flowfield condition.

- (1) From the velocity vector plots, the vortex pattern for configuration B is similar to the one for body C in that the vortex asymmetry is more pronounced for these cases. Body A vortices are closer to the model surface and asymmetry is less pronounced.
- (2) From the total pressure coefficient contours, the vortices appear to be located much closer to the missile body for body A than for either body C or B. Apparently the strake/wing-generated vortices for this configuration act to hold the nose-generated vortices near the body, resulting in the higher induced side forces for this configuration observed by Rabang.
- (3) Also from the C_{PT} plots, the strengths of the bottom vortices appear to be roughly the same for bodies A and B, while the plot for body C seems to be more tightly wrapped (stronger) near its center.
- (4) From the static pressure contours, the body-only vortices are more diffused and larger than either configuration with wings (A and C).
- (5) The relative distances between the top and bottom vortices remains the same on all three plots for all body configurations.

In general, the vortex pattern around the nose of the missile model with wings (in either configuration) resembles the vortex pattern for a body-only configuration. Though there are subtle differences as previously noted, the

relative strengths, sizes and positions of the asymmetric vortices were comparable in all cases.

Figure 33. Velocity Vector Plot – Configuration 0B

Figure 34. Total Pressure Coefficient - Configuration 0B

Figure 35. Static Pressure Coefficient – Configuration 0B

IV. CONCLUSIONS AND RECOMMENDATIONS

The flowfield about a Vertically-Launched Surface-to-Air Missile (VLSAM) model at high angle of attack was investigated in the wind tunnel of the Naval Postgraduate School. Missile "plus" and "cross" body configurations (A and C respectively) were both tested. The angle of attack was set at 50° with a Reynolds number of 1.1×10^5 for all data runs. Two flowfield conditions were treated: the nominal ambient wind tunnel condition (no grid) and a condition with a grid-generated turbulence of length scale 1.08 inches and 1.88% turbulence intensity (see Table 2). The following conclusions were reached:

- (1) An increase in turbulence intensity tended to reduce the strength of the asymmetric nose-generated vortices.
- (2) The two asymmetric vortices remained in approximately the same position for an increase in turbulence.
- (3) The top vortex was closer to the model surface and appeared to be stronger for both body configurations. This condition was more pronounced for configuration A.
- (4) The wing/strake arrangement of configuration C caused the vortices to be centered further away from the model surface than those of configuration A, correlating with the differences in induced side forces for those configurations observed by Rabang.
- (5) Configuration C vortices are more diffused and larger. This was more apparent when turbulence was added.
- (6) Crossflow velocity vector plots agreed with the behavior denoted by the total and static pressure coefficient contours for both body configurations and turbulence levels.

(7) Though subtle differences exist, the addition of wings and tails did not greatly alter the vortex pattern around the nose of the missile model, when compared to the body-only configuration tested by Lung.

Recommendations for a continued study of the behavior of asymmetric vortices under varying flowfield conditions are suggested as follows:

- (1) Examine the vortices at positions further back along the model body, where effects from the wings might better be seen. (Such as at a length/diameter ratio of 9.)
- (2) Investigate asymmetric vortex behavior for just a body-only configuration, at the position described above, to provide comparisons.
- (3) Continue to study vortex behavior at various angles of attack and turbulence with varying intensities and length scales in order to provide a large data base, which can be used to calculate vorticity contours.

APPENDIX A. PPROBE PROGRAM

```
1 DEF SEG: CLEAR , &HFE00: GOTO 4 'Begin PCIB Program Shell
2 GOTO 1000 ' User program
3 GOTO 900 ' Error handling
4 I=&HFE00 ' Copyright Hewlett-Packard 1984,1985
5 PCIB.DIR$=ENVIRON$("PCIB")
6 I$=PCIB.DIR$+"\PCIBILC.BLD"
7 BLOAD I$, I
8 CALL I(PCIB.DIR$, I%, J%): PCIB.SEG=I%
9 IF J%=0 THEN GOTO 13
10 PRINT "Unable to load.";
11 PRINT "
            (Error #";J%;")"
12 END
13 '
14 DEF SEG=PCIB.SEG:O.S=5:C.S=10:I.V=15
15 I.C=20:L.P=25:LD.FILE=30
16 GET.MEM=35:L.S=40:PANELS=45:DEF.EPR=50
17 PCIB.ERR$=STRING$(64,32) : PCIB.NAME$=STRING$(16.32)
18 CALL DEF.ERR(PCIB.ERR,PCIB.ERR*,PCIB.NAME*,PCIB.GLBERR) : PCIB.BASERR=255
19 ON ERROR GOTO 3
20 J = -1
21 I #= PCJB. DIR #+"\PCIB. SYN"
22 CALL O.S(I$)
23 IF PCIB.ERR<>0 THEN ERROR FCIB.BASERR
24 I=0
25 CALL I.V(I, READ. REGISTER, READ. SELFID, DEFINE, INITIALIZE. SYSTEM)
26 IF PCIB.ERR<>O THEN FROOT PCIB BASERS
27 CALL I.V(I.ENABLE.SYSTEM, DISABLE.SYSTEM, INITIALIZE, POWER.ON)
28 IF PCIB.ERR<>0 THEN ERROR FCIB.BASERR
29 CALL I.V(I.MEASURE,OUTFUT,START,HALT)
30 IF PCIB.ERR<>0 THEN ERROR PCIB.BASEPR
31 CALL I.V(I, ENABLE.INT.TRIGGER, DISABLE.INT.TRIGGER, ENABLE.OUTFUT, DISABLE.OUTFU
T)
32 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
33 CALL I.V(I, CHECK. DONE, GET. STATUS, SET. FUNCTION, SET. RANGE)
34 IF PCIB.ERR<>O THEN ERROR PCIB.BASERR
35 CALL I.V(I,SET.MODE,WRITE.CAL,READ.CAL,STORE.CAL)
36 IF PCIB.EPR<>0 THEN ERROR PCIB.BASERR
37 CALL I.V(I, DELAY, SAVE, SYSTEM, J, J)
38 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
39 I=1
40 CALL I.V(I,SET.GATETIME,SET.SAMPLES,SET.SLOPE,SET.SOURCE)
41 IF PCIB.ERR<>0 THEN ERROR PCIB.FASERR
42 CALL I.C(I, FREQUENCY, AUTO, FREQ, PERIOD, AUTO, PER)
43 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
44 CALL I.C(I,INTERVAL,RATIO,TOTALIZE,R100MILLI)
45 IF FCIB.ERR<>0 THEN ERROR PCIB.BASERR
46 CALL I.C(I,R1,R10,R100,R1KILO)
47 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
48 CALL I.C(I,R10MEGA,R100MEGA,CHAN.A,CHAN.B)
49 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
50 CALL I.C(I, POSITIVE, NEGATIVE, COMN, SEPARATE)
51 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
52 I=2
53 I=3
```

```
54 CALL I.V(I, ZERO. OHMS, SET. SPEED, J, J)
55 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
56 CALL I.C(I,DCVOLTS,ACVOLTS,OHMS,R200MILLI)
57 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
58 CALL I.C(I,R2,R20,R200,R2KILO)
59 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
60 CALL I.C(I,R20KILO,R200KILO,R2MEGA,R20MEGA)
61 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
62 CALL I.C(I, AUTOM, R2.5, R12.5, J)
63 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
64 I=4
65 CALL I.V(I,SET.COMPLEMENT,SET.DRIVER,OUTPUT.NO.WAIT,ENABLE.HANDSHAKE)
66 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
67 CALL I.V(I, DISABLE. HANDSHAKE, SET. THRESHOLD, SET. START. BIT, SET. NUM. BITS)
68 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
69 CALL I.V(I,SET.LOGIC.SENSE,J,J,J)
70 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
71 CALL I.C(I, POSITIVE, NEGATIVE, TWOS, UNSIGNED)
72 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
73 CALL I.C(1,OC,TTL,R0,R1)
74 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
75 CALL I.C(I,R2,R3,R4,R5)
76 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
77 CALL I.C(I,R6,R7,R8,R9)
78 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
79 CALL I.C(I,R10,R11,R12,R13)
80 IF PCIB.ERR<>0 THFN ERROR PCIB.BASERR
81 CALL I.C(I,R14,R15,R16,J)
82 IF PCIB.ERR<>0 THEN ERROR FCIB.BASERR
63 I=6
84 CALL I V(I, SET. FREQUENCY, SET. AMPLITUDE, SET. OFFSET, SET. SYMMETRY)
85 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
86 CALL I.V(I,SET.BURST.COUNT,J,J,J)
87 IF FCIB.ERR<>0 THEN ERROR FCIB.BASERR
88 CALL I.C(I,SINE,SQUARE,TRIANGLE,CONTINUOUS)
89 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
90 CALL I.C(I,GATED,BURST,J,J)
91 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
92 I=7
93 CALL I.V(I, AUTOSCALE, CALIBRATE, SET. SENSITIVITY, SET. VERT. OFFSET)
94 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
95 CALL I.V(I,SET.COUPLING,SET.FOLARITY,SET.SWEEPSPEED,SET.DELAY)
96 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
97 CALL I.V(I,SET.TRIG.SOURCE,SET.TRIG.SLOPE,SET.TRIG.LEVEL,SET.TRIG.MODE)
98 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
99 CALL I.V(I,GET.SINGLE.WF,GET.TWO.WF,GET.VERT.INFO,GET.TIMEBASE.INFO)
100 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
101 CALL I.V(I,GET.TRIG.INFO,CALC.WFVOLT,CALC.WFTIME,CALC.WF.STATS)
102 IF PCIB.ERR<>0 THEN ERROR PCIB.BASEPR
103 CALL I.V(I, CALC. RISETIME, CALC. FALLTIME, CALC. PERIOD, CALC. FREQUENCY)
104 IF FCIB.ERR<>0 THEN ERROR PCIB.BASERR
105 CALL I.V(I, CALC. PLUSWIDTH, CALC. MINUSWIDTH, CALC. GVERSHOOT, CALC. PRESHOOT)
106 IF PUIB.ERR<>0 THEN ERROR PCIB.BASERR
107 CALL I.V(I, CALC. FK. TO. FK, SET. TIMEOUT, SCOPE. START, MEASURE. SINGLE. WF)
108 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
109 CALL I.V(I, MEASURE.TWO.WF, J, J, J)
```

```
110 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
111 CALL J.C(I.R10NANO, R100NANO, R1MICRO, R10MICRO)
112 IF FCIB.ERR<>0 THEN ERROR FCIB.BASERR
113 CALL I.C(I,R100MICRO,R1MILLI,R10MILLI,R100MILLI)
114 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
115 CALL I.C(I,R1,RJU,R20NANO,R200NANO)
116 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
   CALL I.C(I,R2MICRO,R2OMICRO,R200MICRO,R2MILLI)
118 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
119 CALL I.C(I,R20MILLI,R200MILLI,R2,R20)
120 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
121 CALL I.C(I,R50NANO,R500NANG,R5MICRO,R50MICRO)
122 IF PCIE.ERR<>0 THEN ERROR FCIB.BASERR
123 CALL I.C(I,R500MICRO,R5MILLI,R50MILLI,R500MILLI)
124 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
125 CALL I.C(I,R5,R50,CHAN.A,CHAN.B)
126 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
127 CALL I.C(I, EXTERNAL, POSITIVE, NEGATIVE, AC)
128 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
129 CALL I.C(I,DC,TRIGGERED,AUTO.TRIG,AUTO.LEVEL)
130 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
131 CALL I.C(I,X1,X10,STANDARD,AVERAGE)
132 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
133 I=8
134 CALL I.V(I,OPEN.CHANNEL,CLOSE.CHANNEL,J,J)
135 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
136 CALL C.S
137 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
138 I$=PCIB.DIR$+"\PCIB.PLD"
139 CALL L.P(I$)
140 IF PCIB.ERR<>O THEN ERROR PCIB.BASERR
141 I$="DMM.01":I=3:J=0:K=0:L=1
142 CALL DEFINE(DMM.O1, I$, I, J, K, L)
143 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
144 I$="Func.Gen.O1":I=6:J=0:K=1:L=1
145 CALL DEFINE(Func.Gen.O1, I$, I, J, K, L)
146 IF PCIB.ERR<00 THEN ERROR PCIB.BASERR
147 I$="Scope.01":I=7:J=0:K=2:L=1
148 CALL DEFINE(Scope.01,1$,1,J,K,L)
149 IF PCIB.ERR<>0 THEN ERROR PCIB.BASEPR
150 1$="Counter.01":J=1:J=0:K=3:L=1
151 CALL DEFINE(Counter.01, I$, I, J, K, L)
152 IF PCIB.ERR⇔0 THFU EFFOR PCIB.BASERR
153 I$="Dig.In.01":I=4:J=0:K=4:L=1
154 CALL DEFINE(Dig.In.01,I$,I,J,K,L)
155 IF PCIB.ERR<>0 THEN ERPOR PCIB.BASERR
156 I$="Dig.Out.O1":I=4:J=1:K=+.L=1
157 CALL DEFINE(Dig. Out. 01, 1$, 1, J, K, L)
158 IF PCIB.ERR<>O THEN ERROR PCIB.RASERR
159 I$="Relay.Act.01":I=8:J=0:K=5:L=1
160 CALL DEFINE(Relay.Act.01,I$,I,J,K,L)
161 IF PCIB.ERRCOO THEM ERROR PCIB.PASERR
162 I$="Relay.Mux.01":I=2:J=0:K=6:L=1
163 CALL DEFINE(Pelay.Mux.01,I$,I,J,K,L)
164 IF PCIB.ERR<>O THEN ERROR PCIB.PASERR
800 1$=ENVIRON$("FANEL3")+"\PANELS.EXE
801 CALL L.S([$)
899 GOTO 2
```

```
900 IF ERR=PCIB.BASERR THEN GOTO 903
901 FRINT "BASIC error #"; ERR; " occurred in line "; ERL
902 STOP
903 TMPERR=PCIB.ERR: IF TMPERR=C THEN TMPERR=PCIB.GUBERR
904 PRINT "PC Instrument error #";TMPERR;" detected at line ";ERL
905 PRINT "Error: "; PCIB. ERR$
906 IF LEFT$(PCIB.NAME$,1)<>CHR$(32) THEN PRINT "Instrument: ";PCIB.NAME$
907 STOP
908 COMMON PCIB.DIR$, PCIB.SEG
909 COMMON LD.FILE, GET.MEM, PANELS, DEF. ERR
910 COMMON PCIB.BASERR.PCIB.FRR.PCIB.ERR$,PCIB.NAME$,PCIB.CLEERR
911 COMMON READ. REGISTER, READ. SELFID, DEFINE, INITIALIZE. SYSTEM, ENABLE. SYSTEM, DISA
BLE. SYSTEM, INITIALIZE, POWER. ON, MEASURE, OUTPUT, START, HALT, ENABLE, INT. TRIGGER, DISA
BLE.INT.TRIGGER, ENABLE.OUTPUT, DISABLE.OUTPUT, CHECK.DONE, GET.STATUS
912 COMMON SET.FUNCTION, SET.RANGE, SET.MODE, WRITE.CAL, READ.CAL, STORE.CAL, DELAY, SA
VE.SYSTEM, SET.GATETIME, SET.SAMPLES, SET.SLOPE, SET.SOURCE, ZERO.OHMS, SET.SPEED, SET.
COMPLEMENT, SET. DRIVER, OUTPUT. NO. WAIT, ENABLE. HANDSHAKE, DISABLE. HANDSHAKE
913 COMMON SET.THRESHOLD, SET.START.BIT.SET.NUM.BITS, SET.LOGIC.SENSE, SET.FREQUENC
Y, SET. AMPLITUDE, SET. OFFSET, SET. SYMMETRY, SET. BURST. COUNT, AUTOSCALE, CALIBRATE, SET.
SENSITIVITY, SET. VERT. OFFSET, SET. COUPLING, SET. POLARITY, SET. SWEEPSPEED
914 COMMON SET. DELAY, SET. TRIG. SOURCE, SET. TRIG. SLOPE, SET. TRIG. LEVEL, SET. TRIG. MODE
.GET.SINGLE.WF.GET.TWO.WF.GET.VERT.INFO.GET.TIMEBASE.INFO.GET.TRIG.INFO.CALC.WFV
OLT, CALC, WFTIME, CALC, WF, STATS, CALC, RISETIME, CALC, FALLTIME, CALC, PERIOD
915 COMMON CALC.FREQUENCY, CALC.PLUSWIDTH, CALC.MINUSWIDTH, CALC.OVERSHOOT, CALC.PRE
SHOOT, CALC. PK. TO. PK, SET. TIMEOUT, SCOPE. START, MEASURE. SINGLE. WF, MEASURE. TWO. WF, OPE
N. CHANNEL, CLOSE, CHANNEL
916 COMMON FREQUENCY, AUTO. FREQ, FERIOD, AUTO. PEP, INTERVAL, RATIO, TOTALIZE, R100MILLI
,R1,R10,R100,R1KILO,R10MEGA,R10UMEGA,CHAN.A,CHAN.B,POSITIVE,NEGATIVE,COMN,SEPARA
TE.DCVOLTS.ACVOLTS.OHMS.R200MILLI.R2.R20.R200.R2KILO.R20KILO.R20UKILO
917 COMON R2MEGA, R20MEGA, AUTOM, R2.5, R12.5, POSITIVE, NEGATIVE, TWOS, UNSIGNED, OC, TT
L,R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,SINE,SQUARE,TRIANGLE
, CONTINUOUS, GATED, BURST, R10NANO, R100NANO, R1MICRO, R10MICRO, R100MICRO
918 COMMON RIMILLI, R10MILLI, R100MILLI, R1, R10, R20NANO, R200NANO, R2MICPO, R20MICRO, R
200MICRO, R2MILLI, R20MILLI, R200MILLI, R2, R20, R50NANO, R500NANO, R5MICRO, R50MICRO, R50
OMICRO, R5MILLI, R50MILLI, R500MILLI, R5, R50, CHAN. A. CHAN. B, EXTERNAL, FOSITIVE
919 COMMON NEGATIVE, AC, DC, TRIGGERED, AUTO, TRIG, AUTO, LEVEL, X1, X10, STANDAPD, AVERAGE
920 COMMON DMM.01, Func.Gen.01, Scope.01, Counter.01, Dig. In.01, Dig. Out.01, Relay. Act
.01, Relay. Mux. 01
999 'End PCIB Program Shell
1000 REM This step initialzes the HP system
1010 CLS
1020 OFTION BASE 1
1030 DIM P(5), PA(50,5), PP(50,5), XPT(50), YFT(50), X(50), Y(50), YAW(50)
1050 CALL INITIALIZE.SYSTEM(PGMSHEL.HPC)
1060 REM
1070 PEM SET FUNCTIONON THE 'DMM', 'RELAY MUX, 'RELAY ACTUATOR'
1080 PEM
1090 CALL SET. FUNCTION (DMM. 01, DCVOLTS)
1100 CALL SET. RANGE (DMM. 01, AUTOM)
1110 CALL DISABLE.INT.TPICGER(DMM.01)
1120 CALL ENABLE.OUTPUT(PELAY.MUX.01)
1130 CALL ENABLE.OUTPUT(RELAY.ACT.01)
1140 .EM ********** FROGRAM TRAVERSE *************
1150 PEM
1160 REM
             OPEN THE COM FORT AND INITIALIZE THE MOTOR SETTINGS
1170 OFEN "com1:1200," 1.rs,cs,ds,cd" AS #1
1180 FEM SET MOTOR DE
                          T VALUES
1190 DATA 2000,2000,2( ,2,2,2,0.000125,0.000125,0.000125 ,
```

```
1200 READ V1, V2, V3, R1, R2, R3, C1, C2, C3
1210 REM DEFINE CHARACTERS FOR DATA REDUCTION ALGORITHM
1220 RN2$="RENAME A:RAW.DAT "
1230 HEAD1$ = " #
                                P1
                                         P2
                                                  P3
                                                                   P5
                                                                           ìΑ
1240 FORMATS= "## ##.## ##.## ###.### ###.### ###.###
                                                                          ...
                                                         *** ***
                                                                 ... ...
. # # "
1250 PRINT
1270 PRINT "** USER MUST SELECT 'CAPS LOCK' FUNCTION **"
1280 PRINT "********************************
              DISPLAY MOTOR DEFAULT SETTINGS
1290 REM
1300 FRINT "
                        *************
1310 PRINT "
                     INITIALIZED VALUES FOR ALL MOTOR SETTINGS:"
1320 FRINT "
                          VELOCITY = 1000 STEFS/SEC"
1330 PRINT "
                          RAMP(MOTOR ACCELERATION) = 2
                                                      (6000 STEPS/SEC^2)"
1340 FRINT "
                          DEFAULT INCREMENTAL UNITS ARE INCHES"
1350 PRINT "
                        ***********
1360 PRINT
1370 PRINT "NOTE!! USE MANUAL CONTROL TO INITIALIZE PROBE POSITION BEFORE"
1380 FRINT "
                    SELECTING COMPUTER CONTROLLED MOVEMENT.
1390 FRINT
1400 INPUT "MANUAL CONTROL OR COMPUTER CONTROL (ENTER 'MAN' or 'CP')"; CON$
1410 IF CON$="CP" THEN 3490
1420 REM OPTION TO CHANGE DEFAULT SETTINGS OF VELOCITY OR ACCELERATION RAMP
1430 PRINT
1440 PRINT
1450 FRINT " DO YOU WANT TO CHANGE THE VELOCITY OR ACCELERATION RAMP"
1460 FRINT "
                   DEFAULT SETTINGS? (Y or N)"
1470 FRINT
1480 PRINT "IF 'NO', THIS PROGRAM WILL THEN LET YOU DEFINE THE"
1490 PRINT "DISTANCE YOU WANT TO MOVE (IN INCHES). IF 'YES','
1500 PRINT "YOU CAN CHANGE ANY OR ALL OF THE DEFAULT SETTINGS FOR ANY MOTOR."
1510 PRINT
1520 FRINT
1530 PRINT
1540 INPUT "DO YOU WANT TO CHANGE ANY OF THE DEFAULT SETTINGS? (Y or N)";D$
1550 IF D$="Y" THEN 1590
1560 IF D$="N" THEN 2220
1570 REM
1580 REM
          **** OPERATOR SELECTED MOTOR VARIABLES *****
1590 FRINT
1500 FRINT
1610 INPUT "WHICH DEFAULT VALUE? (ENTER '1'FOR VELOC OR '2' FOP ACCEL RAMP)";L
1620 ON L GOTO 1690,1930
1630 FRINT "DO YOU WANT TO CHANGE THE DEFAULT VELOCITY? (Y OR N)"
1640 INPUT V$
1650 IF V$="Y" THEN 1690
1660 PRINT "DO YOU WANT TO CHANGE THE DEFAULT ACCELERATION RAMP? (Y or N)"
1670 IF R$="Y" THEN 1990
1680 IF R$="N" THEN 1450
1690 FRINT
1700 PRINT
1710 INPUT "WHICH MOTOR VELOCITY DO YOU WISH TO CHANGE? (1,2, or 3)";J
1720 ON J GOTO 1730,1830,1880
1730 PRINT
1740 PRINT
1750 INFUT "ENTER DESIRED VELOCITY OF MOTOR #1"; V1
1760 FRINT
1770 PRINT
1780 PRINT
1790 FRINT "DO YOU WANT TO CHANGE VELOCITY OF ACOTHER MOTOR? (Y OR N)"
```

```
1800 INPUT V$
1810 IF V$="Y" THEN 1690
1820 IF V$="N" THEN 1430
1830 PRINT
1840 PRINT
1850 INPUT "ENTER DESIRED VELOCITY OF MOTOR 2"; V2
1860 PRINT
1870 GOTO 1780
1880 PRINT
1890 PRINT
1900 INPUT "ENTER DESIRED VELOCITY OF MOTOR #3"; V3
1910 PRINT
1920 GOTO 1780
1930 PRINT
1940 PRINT
1950 INPUT "WHICH MOTOR ACCEL RAMP DO YOU WANT TO CHANGE? (1, 2, or 3)":K
1960 ON K GOTO 1970,2060,2120
1970 PRINT
1980 PRINT
1990 INPUT "ENTER DESIRED ACCELERATION RAMP OF MOTOR #1":R1
2000 PRINT
2010 PRINT
2020 PRINT "DO YOU WANT TO CHANGE THE ACCEL RAMP OF ANOTHER MOTOR? (Y or N)?"
2030 INFUT RM$
2040 IF RM$="Y" THEN 1930
2050 IF RM$="N" THEN 1450
2060 PRINT
2070 PRINT
2080 INPUT "ENTER DESIRED ACCELERATION RAMP OF MOTOR #2";R2
2030 PRINT
2100 PRINT
2110 GOTO 2000
2120 PRINT
2130 PRINT
2140 INFUT "ENTER DESIRED ACCELERATION RAMP OF MOTOR #3":R3
2150 PRINT
2160 FRINT
2170 GOTO 2000
2180 REM
2190 REM DEFINE DISTANCE TO MOVE MOTOR
2200 PRINT
2210 FRINT
2220 PRINT
2230 REM INITIALIZE MOTOR INCREMENTS TO ZERO
2240 I1=0
2250 I2=0
2260 I3=0
2270 PRINT
P **
2290 ERI'
                     DEFINE WHICH MOTOR YOU WANT TO MOVE
                                                                          * * 11
2300 PP
           **
2315 - Rit.r " **
                      NOTELLE A POSITIVE ('+') INCREMENT TO A MOTOR
                                                                          * + "
2320 PRINT " **
                     MOVES TRAVERSER AWAY FROM THAT PARTICULAR MOTOR
2330 PRINT " **
                                                                          * * "
2340 PRINT " ** -- MOTOR #1 MOVES THE PROBE UPSTREAM AGAINST THE FLOW
2350 PRINT " ** -- MOTOR #2 MOVES THE PROBE TOWARD THE ACCESS WINDOW
2360 PRINT " ** -- MOTOR #3 MOVES THE PROBE VERTICALLY DOWNWARD
                                                                         **"
                                                                         * * "
                                                                         **"
2380 PRINT
2390 PRINT
2400 INPUT "WHICH MOTOR DO YOU WANT 10 MOVE? (1,2, or 3)";L
2410 ON L GOTO 2420,2680,2970
```

```
2420 PRINT
2430 PRINT
2440 PRINT "HOW FAR DO YOU WANT TO MOVE MOTOR #1?"
2450 PRINT " ******** (ENTER DISTANCE IN INCHES) ********
2460 INPUT I1
2470 PRINT
2480 PRINT" *************************
2490 PRINT
2500 PRINT "SUMMARY OF OPERATOR INPUTS:"
2510 PRINT "
                             VELOCITY = ":V1
                 MOTOR #1
2520 PRINT "
                             ACCELERATION RAMP = ":R1
2530 PRINT "
                             INCREMENTAL DISTANCE = ": I1: "INCHES"
2550 PRINT "DO YOU WANT TO CHANGE ANY OF THESE VALUES? (Y or N)"
2560 PRINT
2570 PRINT "ENTER 'N' TO START MOTOR MOVEMENT. ENTER 'Y' TO RETURN"
2580 PRINT "TO VARIABLE SELECTION SUBROUTINE."
2590 INPUT V$
2600 IF V$="Y" THEN 1430
2610 GOSUB 3410
2620 PRINT
2630 PRINT "DO YOU WANT TO MOVE ANOTHER MOTOR ALSO? (Y or N)?"
2640 INPUT C$
2650 IF C$="Y" THEN 2220
2660 IF C$="N" THEN 3260
2670 PRINT
2680 PRINT
2690 PRINT "HOW FAR DO YOU WANT TO MOVE MOTOR #2?"
2700 FRINT " ******** (ENTER DISTANCE IN INCHES) ********
2710 INPUT I2
2720 PRINT
2730 PRINT
2740 REM DISPLAY OPERATOR SELECTED MOTOR VARIABLES
2750 PRINT"
2760 PRINT
2770 PRINT "SUMMARY OF OPERATOR INPUTS:"
2780 PRINT "
              MOTOR #2 VELOCITY ≈ "; V2
2790 PRINT "
                             ACCELERATION RAMP = ";R2'
2800 PRINT "
                             INCREMENTAL DISTANCE = ":12:"INCHES"
2820 PRINT
2830 PRINT
2840 PRINT "DO YOU WANT TO CHANGE ANY OF THESE VALUES? (Y or N)"
2850 PRINT
2860 PRINT "ENTER 'N' TO START MOTOR MOVEMENT. ENTER 'Y' TO RETURN"
2870 PRINT "TO VARIABLE SELECTION SUBROUTINE."
2880 INPUT V$
2890 IF V$="Y" THEN 1430
2900 GOSUB 3410
2910 PRINT
2920 PRINT "DO YOU WANT TO MOVE ANOTHER MOTOR ALSO? (Y or N)?"
2930 INPUT C$
2940 IF C$="Y" THEN 2220
2950 IF C$="N" THEN 3260
2960 PRINT
2970 PRINT
2980 PRINT "HOW FAR DO YOU WANT TO MOVE MOTOR #3?"
2990 PRINT " ******** (ENTER DISTANCE IN INCHES) ********
3000 INPUT 13
3010 PRINT
3020 PRINT
3030 REM DISPLAY OPERATOR SELECTED MOTOR VARIABLES
```

```
3040 PRINT" ********************
3050 PRINT
3060 PRINT "SUMMARY OF OPERATOR INPUTS:"
3070 PRINT "
               MOTOR #3 VELOCITY = "; V3
3080 PRINT "
                                ACCELERATION RAMP = ":R3
3090 PRINT "
                                INCREMENTAL DISTANCE = ":13:"INCHES"
3100 PRINT
3110 PRINT" ****************************
3120 PRINT
3130 PRINT
3140 PRINT "DO YOU WANT TO CHANGE ANY OF THESE VALUES? (Y or N)"
3150 PRINT
3160 PRINT "ENTER 'N' TO START MOTOR MOVEMENT. ENTER 'Y' TO RETURN"
3170 PRINT "TO VARIABLE SELECTION SUBROUTINE."
3180 INPUT V$
3190 IF V$="Y" THEN 1430
3200 GOSUB 3410
3210 PRINT
3220 PRINT
3230 INPUT "DO YOU WANT TO INPUT ANOTHER MANUAL MOTOR MOVEMENT (Y or N)";M$
3240 IF M$="Y" THEN 2210
3250 PRINT
3260 PRINT "DO YOU WANT TO INPUT COMPUTER CONTROLLED MOTOR MOVEMENT?"
3270 PRINT "
                   ******* NOTE!!! *******
3280 PRINT " ALL PREVIOUS MOTOR INCREMENT INPUTS HAVE BEEN ZEROIZED."
3290 PRINT "PROGAM WILL LET YOU CHOOSE MANUAL OR CP-CONTROLLED MOVEMENT."
3300 PRINT "***** (IF 'NO', THE PROGRAM WILL END), *****"
3310 PRINT
3320 INPUT "DO YOU WANT COMPUTER CONTROLLED MOTOR MOVEMENT (Y or N)"; N$ 3330 IF N$="Y" THEN 3500
3340 PRINT
3350 PRINT
3360 PRINT
3370 PRINT "
3380 PRINT "
                 THE PROGRAM HAS ENDED."
3390 PRINT "
3400 END
3410 REM ****** MOTOR MOVEMENT SUBROUTINE *******
3420 PRINT #1, "&" :PRINT #1, "E":"C1=";C1;":C2=";C2;":C3=";C3
3430 FRINT #1, "I1=";I1;":V1=";V1;":R1=";R1;
3440 PRINT #1, ":I2=";I2;":V2=";V2;":R2=";R2
3450 PRINT #1. "13=":13:":V3=";V3;":R3=";R3:":@"
3460 RETURN
3470 REM
           ***************
3480 REM
           ***************
3490 PRINT
3500 REM ****** COMPUTER CONTROLLED MOVEMENT ******
3510 PRINT
3520 PRINT "THE PRESSURE DATA WILL BE WRITTEN TO FILES ON DRIVE 'A' "
3530 PRINT
3540 PRINT "YOU WILL BE ASKED TO INPUT FILE NAMES FOR THESE."
3550 PRINT
3560 INPUT "IS A FORMATTED DISK IN DRIVE 'A'? PRESS 'ENTER' TO CONTINUE": D$
3570 PKINT
3580 PRINT
3590 PRINT
3600 PRINT "
3610 PRINT "
                                                       **"
                * *
                               NOTE !!!
3620 PRINT "
                ** COMPUTER CONTROLLED MOVEMENT
                                                        ** "
                                                       **"
3630 PRINT "
                * *
                        IS PROGRAMMED WITH A
3640 PRINT "
                ** DEFAULTED NEGATIVE MOTOR INCREMENT **"
3650 PRINT "
                                                       **"
                ** (i.e. MOTOR #3 WILL MOVE UPWARD
3660 PRINT "
                ** BY ENTERING A (+) DISTANCE).
3670 PRINT "
                *************
3680 PRINT
3690 REM SET INITIAL MOVEMENT DISTANCE AND NUMBER OF DATA POINTS TO ZERO
3700 HT=0
```

```
3710 WD=0
3720 DIST=0
3730 XPT=0
3740 YPT=0
3750 N=0
3760 PRINT
3770 PRINT
3780 INPUT "WHAT IS THE DIMENSION ( X , Y ) (IN INCHES) THAT YOU WANT TO MEASURE
." ; WD, HT
3790 PRINT
3800 INPUT "WHAT IS THE STEP (IN INCHES) THAT YOU WANT TO MOVE.";DIST
3810 \text{ YPT=INT(HT /DIST)} + 1
3820 XPT=INT(WD /DIST)+ 1
3830 N=XPT*YPT
3840 PRINT
3850 PRINT "THERE ARE ";XFT;" * ";YPT;" = ";N;" POINTS TO BE MEASURED "
3860 PRINT
3870 INPUT "ARE THE NUMBER OF POINTS IS OK. (Y OR N)"; C$
3880 IF C$="N" THEN 3780
3890 CLS
3900 N=XPT
3910 IF (N < 1) OR (M > 99) GOTO 3760
3920 REM *** GENERATING STRING SERMENTS FOR DATA FILE NAMES
3930 B$ = MID$(STR$(1), 2): REM ** STRING NUMBER "1"
3940 E$ = MID$(STR$(N), 2): REM ** ENDING STRING NUMBER "N"
3950 X$ = "XXXXXX"
3960 EX$ = ".DAT"
3970 CLS
3980 PRINT "DATA FILES WILL BE INCREMENTED FROM:"
3990 PRINT
4000 PRINT (X$ + B$ + EX$); " To "; (X$ + E$ + EX$)
4010 PRINT
4020 PRINT
4030 INPUT "ENTER DATA FILE NAME (6 CHARACTERS MAX -- NO EXTENSION)":F2$
4040 PRINT
4050 PRINT
4060 IF LEN(F2$) > 6 OR LEN(F2$) < 1 GOTO 4030
4070 CLS
4080 FRINT N; "DATA FILES WILL BE GENERATED AND INCREMENTED AS FOLLOWS:"
4090 PRINT
4100 PRINT
4110 PRINT (F2$ + B$ + EX$); " To "; (F2$ + E$ + EX$)
4120 PRINT
4130 PRINT
4140 INPUT "ARE THE NUMBER OF POINTS AND FILE NAMES OK. (Y OR N)": C$
4150 IF C$ = "N" GOTO 3780
4160 IF C$ = "Y" GOTO 4180
4170 GOTO 4140
4180 CLS
4190 PRINT
4200 PRINT
4210 REM SET INITIAL POSITION DATA
4220 X(1)=-DIST
4230 Y(1)=-DIST
4240 FOR IX=2 TO XPT+1
4250 X(IX)=0
4260 NEXT IX
4270 FOR JY=2 TO YPT+1
4280 Y(JY)=0
4290 NEXT JY
4300 FOR I=1 TO XPT
4302 I1=0
4304 I2=0
4306 I3=0
4310 FOR J=1 TO YFT
4320 REM MOTOR CP-CONTROLLED MOTOR MOVEMENT
```

```
4330 I1=0
4340 I2=0
4350 I3=0
4360 REM EACH POINT TAKE 10 TIMES READINGS
4370 X(I+1)=X(I)+DIST
4380 XPT(J)=X(I+1)
4390 Y(J+1)=Y(J)+DIST
4400 \text{ YPT}(J) = Y(J+1)
4405 INPUT " ADJUST THE WHEEL TO MAKE THE P2 =P3, INPUT THE YAW ANGLE": YAW(J)
4508 PRINT
4410 INPUT " PRESS 'ENTER' TO START THE MEASUREMENT"; MOVES
4420 REM
4430 REM READ FIVE CHANNELS AND DISPLAY THE DATA
4440 REM
4450 STEPPER=4
4460 SWITCH = 3
4470 HOMER=8
4480 DELAY1 = .1
4490 DELAY2 = 1
4500 REM SET THE S.V PORT TO #4
4510 FOR IL=1 TO 3
4520 THYME = TIMER
4530 CALL OUTPUT(RELAY.ACT.01,STEPPER)
4540 CHKTIME = TIMER
4550 IF CHKTIME < (THYME + DELAY1) GOTO 4540
4560 CALL OPEN.CHANNEL(RELAY.ACT.01,SWITCH)
4570 CLS
4580 NEXT IL
4590 PRINT
4600 PRINT " NOW IS POINT ":J
4610 REM START MEASURE FROM PORT 4 TO PORT 8
4620 FOR JJ=1 TO 5
4630 CALL OUTPUT(RELAY.ACT.01,STEPPER)
4640 CHKTIME = TIMER
4650 IF CHKTIME < (THYME + DELAY2) GOTO 4640
4660 REM EACH PORT SAMPLE 10 TIMES
4670 FOR II=1 TO 10
4680 ROUT=1
4690 CALL OUTPUT(RELAY.MUX.01.ROUT)
4700 CALL MEASURE(DMM.01, VOLTS)
4710 PA(II,JJ)=VOLTS
4720 NEXT II
4730 CALL OFEN. CHANNEL (RELAY. ACT. 01, SWITCH)
4740 IF JJ=5 THEN 4760
4750 NEXT JJ
4760 REM HOME THE S.V PORT TO #48
4770 CALL OUTPUT(PELAY.ACT.01, HOMER)
4780 CALL OPEN.CHANNEL(RELAY.ACT.01, HOMER)
4790 REM
480G REM DISPLAY THE SAMPLE DATA
4810 REM
4820 PRINT HEAD1$
4830 FOR IS= 1 TO 10
4840 PRINT USING FORMAT$; IS, XPT(J), YPT(J), PA(IS, 1), PA(IS, 2), PA(IS, 3), PA(IS, 4), PA
(IS,5), YAW(J)
4850 NEXT 13
4860 REM
4870 REM AVERAGE THE DATA
4880 REM
4890 \text{ FOR JA} = 1 \text{ TO } 5
4900 TOTAL = U
4910 FOR IA = 1 TO 10
4920 TOTAL = TOTAL + PA(IA, JA)
4930 NEXT IA
4940 AVERAGE = TOTAL /10
4950 F(JA)=AVERAGE
```

4960 NEXT JA

```
4970 PRINT
4980 PRINT "THE AVERAGES ARE: "
5000 PRINT HEAD1$
5010 FOR JD=1 TO 5
5020 PP(J,JD)=P(JD)
5030 NEXT JD
5040 PRINT USING FORMAT$; J, XPT(J), YPT(J), PP(J,1), PP(J,2), PP(J,3), PP(J,4), PP(J,5)
(L)WAY,
5045 PRINT
5048 PRINT USING "THE NULLING ERROR IS +#. ####"; PP(J,3)-PP(J,2)
5049 PRINT
5050 PRINT "DO YOU WANT RE-MEASURE AGAIN (Y / N)"
5060 PRINT
5062 PRINT "IF 'Y' WILL RE-SAMPLE AGAIN."
5064 PRINT
5070 INPUT "IF 'N' WILL MOVE THE TRAVERSER STEP UPWARD (WAIT 7 SEC )";C$
5075 PRINT
5080 IF C$="Y" THEN 4405
5082 IF C$="N" THEN 5090
5084 GO TO 5070
5090 IF J=YPT THEN 5160
5100 REM
5110 REM MOVE THE TRAVERSER STEP UPWARD.
5120 REM
5130 I3=-DIST
5.40 GOSUB 3410
5150 NEXT J
5160 REM*** STORE DATA BEFORE NEXT SAMPLE***
5170 OPEN "A:\RAW.DAT" FOR OUTPUT AS #2
5180 PRINT #2 ,HEAD1$ 5190 FOR ID=1 TO YPT
5200 PRINT #2 USING FORMAT$; ID, XPT(ID), YPT(ID), PP(ID, 1), PP(ID, 2), PP(ID, 3), PP(ID
,4),PP(ID,5),YAW(ID)
5210 NEXT ID
5220 CLOSE #2
5230 REM *** GENERATING INCREMENTED DATA FILE NAME
5240 IF (I > 10) OR (I = 10) THEN I$ = MID$(STR$(I), 2)
5250 IF (I < 10) THEN I$ = (MID$(STR$(0), 2) + MID$(STR$(I), 2))
5260 \text{ FI2} = \{F2\$ + I\$ + EX\$\}
5270 PRINT
5280 PRINT " WRITING DATA FILE ": FI2$
5290 DF2$=RN2$+F12$
5300 REM ** RENAME DATA FILE
5310 SHELL DF2$
5320 REM
5330 REM MOVE THE TRAVERSER TO THE NEXT SAMPLE POSITION
5340 REM
5350 PRINT
5360 IF I=XPT THEN 5430
5370 INPUT "THEN PRESS 'ENTER' FOR NEXT COLUMN SAMPLE( 90 SEC) ": MOVE$
5390 I2=-DIST
5400 I3=HT
5410 GOSUB 3410
5420 NEXT I
5430 CLS
5440 PRINT "ALL MOVEMENTS COMPLETE"
5450 PRINT
5460 PRINT
5470 PRINT "YOU WANT TO REPOSITION TRAVERSER FOR ANOTHER MOVEMENT (Y OR N)?"
5480 PRINT
5490 PRINT "IF 'Y', THE PROGRAM WILL TAKE YOU TO MANUAL CONTROL SUBROUTINE."
5500 PRINT "IF 'N', THE PROGRAM WILL END."
5510 PRINT
5520 INPUT "ANOTHER MOVEMENT"; R$
5530 IF R$ = "Y" THEN 1370
5540 IF R$ = "N" THEN 3370
```

APPENDIX B. CALP PROGRAM

```
1 DEF SEG:CLEAR ,&HFE00:GOTO 4 'Begin PCIB Program Shell
2 GOTO 1000 'User program 3 GOTO 900 'Error handling
4 I=&HFE00 ' Copyright Hewlett-Packard 1984,1985
5 PCIB.DIR$=ENVIRON$("PCIB")
6 I *= PCIB. DIR *+ "\PCIBILC. BLD"
7 BLOAD I$, I
8 CALL I(PCIB.DIR$.I%,J%):PCIB.SEG=I%
9 IF J%=0 THEN GOTO 13
10 PRINT "Unable to load.";
11 PRINT "
             (Error #":J%:")"
12 END
1.3
14 DEF SEG=PCIB.SEG: O.S=5: C.S=10: I.V=15
15 I.C=20:L.P=25:LD.FILE=30
16 GET.MEM=35:L.S=40:PANELS=45:DEF.ERR=50
17 PCIB.ERR$=STRING$(64,32) : PCIB.NAME$=STRING$(16,32)
18 CALL DEF.ERR(PCIB.ERR, PCIB.ERR$, PCIB.NAME$, PCIB.GLBERR) : PCIB.BASERR=255
19 ON ERROR GOTO 3
20 J = -1
21 I$=PCIB.DIR$+"\PCIB.SYN"
22 CALL O.S(I$)
23 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
24 I=0
25 CALL I.V(I, READ. REGISTER, READ. SELFID, DEFINE, INITIALIZE. SYSTEM)
26 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
27 CALL I.V(I, ENABLE.SYSTEM, DISABLE.SYSTEM, INJTIALIZE, POWER.ON)
28 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
29 CALL I.V(I, MEASURE, OUTPUT, START, HALT)
30 IF PCIP ERR<>0 THEN ERROR PCIB.BASERR
31 CALL I I, ENABLE.INT.TRIGGER, DISABLE.INT.TRIGGER, ENABLE.OUTPUT, DISABLE.OUTPU
T)
32 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
33 CALL I.V(I, CHECK. DONE, GET. STATUS, SET. FUNCTION, SET. RANGE)
34 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
35 CALL I.V(I,SET.MODE,WRITE.CAL,READ.CAL,STORE.CAL)
36 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
37 CALL I.V(I, DELAY, SAVE, SYSTEM, J, J)
38 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
39 T=1
40 CALL I.V(I, SET. GATETIME, SET. SAMPLES, SET. SLOPE, SET. SOURCE)
41 IF PCIB.ERR<>0 THEN EPROR PCIB.BASERR
42 CALL I.C(I, FREQUENCY, AUTO, FREQ, PERIOD, AUTO, PER)
43 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
44 CALL I.C(I, INTERVAL, RATIO, TOTALIZE, R100MILLI)
45 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
46 CALL I.C(I,R1,R10,R100,R1KILO)
47 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
48 CALL I.C(I,R10MEGA,R100MEGA,CHAN.A,CHAN.B)
49 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
50 CALL I.C(I, POSITIVE, NEGATIVE, COMN, SEPARATE)
51 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
52 I=2
```

53 I=3

```
54 CALL I.V(I,ZERO.OHMS,SET.SPEED,J,J)
55 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
56 CALL I.C(I,DCVOLTS,ACVOL 3,OHMS,R200MILLI)
57 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
58 CALL I.C(I,R2,R20,R200,R2KILO)
59 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
60 CALL I.C(I,R20KILO,R200KILO,R2MEGΛ,R20MEGΛ)
61 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
62 CALL I.C(I, AUTOM, R2.5, R12.5, J)
63 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
64 I=4
65 CALL I.V(I,SET.COMPLEMENT,SET.DRIVER,CUTPUT.NO.WAIT,ENABLE.HANDSHAKE)
66 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
67 CALL I.V(I, DISABLE. HANDSHAKE, SFT. THRESHOLD, SET. START. BIT, SET. NUM. BITS)
68 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
69 CALL I.V(I,SET.LOGIC.SENSE,J,J,J)
70 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
71 CALL I.C(J, POSITIVE, NEGATIVE, TWOS, UNSIGNED)
72 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
73 CALL I.C(I,OC,TTL,R0,R1)
74 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
75 CALL I.C(I,R2,R3,R4,R5)
76 IF PCIB.ERR<>0 THEN ERROR FCIB.BASERR
77 CMLL J.C(I,R6,R7,R8,R9)
78 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
79 CALL I.C(I,P10,R11,R12,R13)
80 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
81 CALL I.C(I,R14,R15,R15,J)
82 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
83 I=6
84 CALL I.V(I,SET.FREQUENCY,SET.AMPLITUDE,SET.OFFSET,SET.SYMMETRY)
85 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
86 CALL I.V(I,SET.BURST.COUNT,J,J,J)
87 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
88 CALL I.C(I, SINE, SOUARE, TRIANGLE, CONTINUOUS)
89 IF PCIB.ERR<>0 THEN ERROR FCIB.BASERR
90 CALL I.C(I,GATED,BURST,J,J)
91 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
92 I=7
93 CALL I.V(I, AUTOSCALE, CALIBRATE, SET. SENSITIVITY, SET. VERT. OFFSET)
94 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
95 CALL I.V(I,SET.COUPLING,SET.POLARITY,SET.SWEEPSPEED,SET.DELAY)
96 IF FCIB.ERR<>0 THEN EPROR FCIB.BASERR
97 CALL I.V(I,SET.TFIG.SOURCE,SET.TRIG.SLOPE,SET.TRIG.LEVEL,SET.TRIG.MODE)
98 JF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
99 CALL I.V(I,GET.SINGLE.WF,GET.TWO.WF,GET.VERT.INFO,GET.TIMEBASE.INFO)
100 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
101 CALL I.V(I,GET.TRIG.INFO,CALC.WFVOLT,CALC.WFTIME,CALC.WF.STATS)
102 IF PCIB.ERR<>0 THEN ERROR PCIB.PASERR
103 CALL I.V(I, CALC.RISETIME, CALC.FALLTIME, CALC.PERIOD, CALC.FREQUENCY)
104 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
105 CALL I.V(I, CALC.PLUSWIDTH, CALC.MINUSWIDTH, CALC.OVERSHOOT, CALC.PRESHOOT)
106 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
107 CALL I.V(I, CALC.PK.TO.PK, SET.TIMEOUT, SCOPE.START, MEASURE.SINGLE.WF)
108 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
109 CALL I.V(I, MEASURE.TWO.WF, J, J, J)
```

```
110 IF PCIB.ERRCYO THEN ERROR PCIB.BASERR
111 CALL I.C(I,R10NANO,R100NANO,R1MICRO,R10MICRO)
112 IF PCIB.ERF<>O THEN ERROR PCIB.BASEPR
113 CALL I.C(I,R100MICRO,R1MILLI,R10MILLI,R100MILLI)
114 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
115 CALL T.C(I,R1,R10,R20NANO,R200NANO)
116 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
117 CALL I.C(I,R2MICRO,R20MICRO,R200MICRO,R2MILLI)
118 IF PCIB.ERR OO THEN ERROR PCIB.BASERR
119 CALL I.C(I,R20MILLI,R200MILLI,R2,R20)
120 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
121 CALL I.C(I, R50NANO, R500NANO, R5MICRO, R50MICRO)
122 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
123 CALL I.C(I,R500MICRO,R5MILLI,R50MILLI,R500MILLI)
124 IF PCIB.ERRCOO THEN ERROR PCIB.BASERR
125 CALL I.C(I,R5,R50,CHAN.A.CHAN.B)
126 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
127 CALL I.C(I, EXTERNAL, POSITIVE, NEGATIVE, AC)
128 IF PCIB.ERR<>0 THEN EPROR PCIB.BASERR
129 CALL I.C(I, DC, TRIGGERED, AUTO. TRIG, AUTO. LEVEL)
130 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
131 CALL I.C(I,X1,X10,STANDARD,AVERAGE)
132 IF PCIB.ERR<>O THEN ERROR PCIB.BASERR
133 I=8
134 CALL I.V(I,OPEN.CHANNEL,CLOSE.CHANNEL,J,J)
135 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
136 CALL C.S
137 IF PCIB.ERR<>0 THEN ERPOR PCIB.BASERR
138 I = PCIB.DIR +"\PCIB.PLD"
139 CALL L.P(It)
140 IF PCIB.ERR OO THEN ERROR PCIB.BASERR
141 I$="DMM.01":I=3:J=0:K=0:L-1
142 CALL DEFINE(DMM.01, I$, I, J, K, L)
143 IF PCIB.ERR OO THEN ERROR PCIB.BASERR
144 I$="Func.Gen.O1":I=6:J=0:K=1:L=1
145 CALL DEFINE(FUNC.GEN.O1.I*.I.J.K.L)
146 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
147 1$="Scope.01":I=7:J=0:K=2:L=1
148 CALL DEFINE(SCOPE.01,1$,1,J,K,L)
149 IF PCIB.ERR > 0 THEN EPROR PCIB.BASERR
150 I$="Counter.01": I=1:J=0:K=3:L=1
151 CALL DEFINE(COUNTER.O1,1$,1,J,K,L)
152 IF PCIP.ERR<>0 THEN ERROR PCIB.BASERR
153 I$-"F .In.01":I=4:J=0:K=4:L=1
154 CALL _ZFINE(DIG.IN.01, I$, I, J, K, L)
155 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
156 I$="Dig.Out.O1": I=4:J=1:K=4:L=1
157 CALL DEFINE(DIG.OUT.01,1$,1,J,K,L)
158 IF PCIB.ERF<>0 THEN ERROR PCIB.BASERR
159 I$="Relay.Act.O1":I=8:J=0:K=5:L=1
160 CALL DEFINE(RELAY.ACT.01,1$,1,J,K,L)
161 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
162 I$="Pelay.Mux.01":I=2:J=0:K=6:L=1
163 CALL DEFINE(RELAY.MUX.01.1$,I,J,K,L)
164 IF PCJB.ERR<>0 THEN ERROR PCJB.BASERR
800 I = ENVIPON * ("PANELS") + "\PANELS. EXE"
801 CALL L.S(I$)
899 GOTO 2
```

```
900 IF ERR=PCIB.BASERR THEN GOTO 903
901 PRINT "BASIC error #"; ERR; " occurred in line "; ERL
902 STOP
903 TMPERR=PC.B.ERR:IF TMPERR=0 THEN TMPERR=PCIB.GLBERR
904 PRINT "PC Instrument error #"; TMPERR; " detected at line "; ERL
905 PRINT "Error: "; PCIB.ERR$
906 IF LEFT$(PCIB.NAME$,1)<>CHR$(32) THEN PRINT "Instrument: ";PCIB.NAME$
907 STOP
908 COMMON PCIB.DIR$, PCIB.SEG
909 COMMON LD.FILE, GET. MEM, PANELS, DEF. ERR
910 COMMON PCIB.BASERR, PCIB.ERR, PCIB.ERR$, PCIB.NAME$, PCIB.GLBERR
911 COMMON READ. REGISTER, READ. SELFID, DEFINE, INITIALIZE, SYSTEM, ENABLE, SYSTEM, DISA
BLE.SYSTEM, INITIALIZE, POWER.ON, MEASURE, OUTPUT, START, HALT, ENABLE.INT.TRIGGER, DISA
BLE.INT.TRIGGER, ENABLE.OUTPUT, DISABLE.OUTPUT, CHECK.DONE, GET.STATUS
912 COMMON SET.FUNCTION, SET.RANGE, SET.MODE, WRITE.CAL, READ.CAL, STORE.CAL, DELAY, SA
VE.SYSTEM, SET. GATETIME, SET. SAMPLES, SET. SLOPE, SET. SOURCE, ZERO. OHMS, SET. SPEED, SET.
COMPLEMENT, SET. DRIVER, OUTPUT. NO. WAIT, ENABLE HANDSHAKE, DISABLE HANDSHAKE
913 COMMON SET. THRESHOLD, SET. START. BIT, SET. NUM. BITS, SET. LOGIC, SENSE, SET. FREQUENC
Y, SET. AMPLITUDE. SET. OFFSET, SET. SYMMETRY, SET. BURST. COUNT, AUTOSCALE, CALIBRATE, SET.
SENSITIVITY, SET. VERT. OFFSET, SET. COUPLING, SET. FOLARITY, SET. SWEEPSPEED
914 COMMON SET.DELAY, SET.TRIG.SOURCE, SET.TRIG.SLOPE, SET.TRIG.LEVEL, SET.TRIG.MODE
, GET.SINGLE.WF, GET.TWO.WF, GET.VERT.INFO, GET.TIMEBASE.INFO, GET.TRIG.INFO, CALC.WFV
OLT, CALC. WFTIME, CALC. WF. STATS, CALC. RISETIME, CALC. FALLTIME, CALC. PERIOD
915 COMMON CALC. FREQUENCY, CALC. PLUSWIDTH, CALC. MINUSWIDTH, CALC. OVERSHOOT, CALC. PRE
SHOOT, CALC, PK, TO, PK, SET, TIMEOUT, SCOPE, START, MEASURE, SINGLE, WF, MEASURE, TWO, WF, OPE
N. CHANNEL, CLOSE, CHANNEL
916 COMMON FREQUENCY, AUTO, FREQ. PERIOD, AUTO, PER, INTERVAL, RATIO, TOTALIZE, R100MILLI
R1.R10,R100,R1KILO,R10MEGA,R100MEGA,CHAN.A,CHAN.B,POSITIVE,NEGATIVE,COMN,SEPARA
TE. DCVOLTS, ACVOLTS, OHMS, R200MILLI, R2, R20, R200, R2KILO, R20KILO, R200KILO
917 COMMON R2MEGA, R2OMEGA, AUTOM, R2.5, R12.5, POSITIVE, NEGATIVE, TWOS. UNSIGNED, OC, TT
L,R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,SINE,SQUARE,TRIANGLE
, CONTINUOUS, GATED, BURST, RIONANO, RIONANO, RIMICRO, RIOMICRO, RIOMICRO
918 COMMON RIMILLI, RIOMILLI, RIOOMILLI, PI, RIO, RZONANO, RZOGNANO, RZMICRO, RZOMICRO, R
200MICRO, R2MILLI, R20MILLI, R200MILLI, R2, R20, R50NANO, R500NANO, R5MICRO, R50MICRO, R50
OMICRO, R5MILLI, R50MILLI, R500MILLI, R5, R50, CHAN. A, CHAN. B, EXTERNAL. POSITIVE
919 COMMON NEGATIVE.AC.DC.TRIGGERED.AUTO.TRIG.AUTO.LEVEL.X1.X10.STANDARD.AVERAGE
920 COMMON DMM.01, FUNC.GEN.01, SCOPE.01, COUNTER.01, DIG. VN.01, DIG. OUT.01, RELAY. ACT
.01, RELAY MUX.01
999 'End PCIB Program Shell
1000 REM
1010 REM This step initialzes the HP system
1020 CLS
1030 OPTION BASE 1
1040 DIM P(10), FA(50,6), FP(50,6), XPT(40), CAL(40)
1050 CALL INITIALIZE.SYSTEM(PGMSHEL.HPC)
1060 REM
1070 REM All PC devices now have an initial state
1080 REM Set function on the DMM and Relay MUX
1090 REM
1100 CALL SET.FUNCTION(DMM.01,DCVOLTS)
1110 CALL SET.RANGE(DMM.01, AUTOM)
1120 CALL DISABLE.INT.TRIGGER(DMM.01)
1130 CALL ENABLE.OUTPUT(RELAY.MUX.01)
1140 FORMAT$="##
                  一条件。并并分析 年件,并并并的 有件,并并并并
1200 FOR I=1 TO 10
1210 CAL(I)=0.0
```

```
1220 NEXT I
1510 REM
1520 REM READ THE VOLTAGE OF 48TH CHANNEL AND DISPLAY THE DATA
1530 REM
1540 PRINT " CHOOSE 6 POINTS"
1550 PRINT
1550 PRINT "THE CALIBRATION WILL BE STORES IN 'CAL.DAT'"
1560 REM
1570 REM Begin sampling loop
1580 REM
1600 FOR J=1 TO 1
1610 PRINT
1630 FOR JJ=1 TO 6
1631 INPUT "INPUT THE CALIBRATION PRESSURE"; CAL(JJ)
1632 INPUT "PRESS 'ENTER' TO START MEASUREMENT"; MOVES
1640 FOR JI=1 TO 10
1650 ROUT=1
1660 CALL OUTFUT(RELAY.MUX.01, ROUT)
1670 CALL MEASURE(DMM.01, VOLTS)
1680 PA(II,JJ) VOLTS
1690 NEXT II
1700 IF JJ=6 THEN 1740
1730 NEXT JJ
1740 REM
1750 REM DISPLAY THE SAMPLE DATA
1760 REM
1780 FOR IS= 1 TO 10
1790 PRINT USING FORMAT$; IS, PA(IS, 1), PA(IS, 2), PA(IS, 3), PA(IS, 4), PA(IS, 5), PA(IS, 6)
1800 NEXT IS
1810 REM
1820 REM AVEFAGE THE DATA
                                                                                  ì
1830 REM
1840 FOR JA = 1 TO 6
1850 TOTAL = 0
1860 \text{ FOR IA} = 1 \text{ TO } 10
1870 TOTAL = TOTAL + FA(IA,JA)
1880 NEXT IA
1890 AVERAGE = TOTAL /10
1900 F(JA)=AVERAGE
1920 NEXT JA
1930 FRINT
1940 PRINT "THE AVERAGE ARE: "
2000 FOR JN=1 TO 6
2010 PP(J,JD)=P(JD)
2020 NEXT JD
2055 PRINT USING FORMAT$; J. PP(J.1), FP(J.2), FP(J.3), PP(J.4), FP(J.5), PP(J.6)
2070 FRINT
2080 INPUT "DO YOU WANT RE-MEASURE AGAIN ? (Y / N)";C$
2090 IF C$="Y" THEN 1580
2101 REM*** STORE DATA BEFORE NEXT SAMPLE***
2102 OPEN "A:\CAL.DAT" FOR OUTPUT AS #2
2106 FOR ID=1 TO 6
2107 PRINT #2, USING FORMATS; ID, PP(J, ID), CAL(ID)
2108 NEXT ID
2109 CLOSE #2
2210 NEXT J
```

APPENDIX C. CONVERT PROGRAM

```
* THIS PROGRAM CONVERTS THE VOLTAGE OF TRANSDUCER INTO PHYSICAL *
* PRESSURE, VELOCITY, YAW ANGLE AND PITCH ANGLE. THOSE DATA ARE
* USED FOR PLOT PROGRAM LATER.
            CHARACTER*12 FNAME
            CHARACTER*12 NAME
            CHARACTER*2 A(50)
            CHARACTER*80 ST
            REAL K, INTR
            INTEGER COLS, RWS, DTPTS
           INTEGER COLS, RWS, DTPTS

DATA A/'01'.'02','03','04','05','06','07','08','09',

'10','11','12','13','14','15','16','17','18',

'19','20','21','22','23','24','25','26','27',

'28','29','30','31','32','33','34','35','36',

'37','38','39','40','41','42','43','44','45',

'46','47','48','49','50'/

WRITE (*,'(A\)') ' # OF COLS (AWAY FROM MSL) = '

READ (*,'(I5)') COLS

WRITE (*,'(A\)') ' * OF DATA PTS IN A COL (UP/DOWN)
            WRITE (*,'(A\)') ' # OF DATA PTS IN A COL (UP/DOWN) = ''
READ (*,'(15)') RWS
            WRITE (*,'(A\)') ' DATA FILE NAME? (IE ROO1A2XX.DAT) ' READ (*,'(A12)') NAME
            WRITE (*,'(\lambda\)') ' PI (F4.2) = '
READ (*,'(F4.2)') PI
            WRITE (*,'(A\)') ' PF (F4.2) = '
READ (*,'(F4.2)') PF
            WRITE (*,'(A\)') ' TI (F3.1) = '
READ (*,'(F3.1)') TI
            WRITE (*,'(A\)') ' TF (F3.1) = '
READ (*,'(F3.1)') TF
            WRITE (*,'(A\)') ' K (F6.4) = '
READ (*,'(F6.4)') K
            WRITE (*,'(A\)') ' SLOPE FOR DELTAF (F9.6) = '
READ (*,'(F9.6)') SLOPE
WRITE (*,'(A\)') ' INTERCEPT FOR DELTAP (F9.6) = '
READ (*,'(F9.6)') INTR
            WRITE (*,'(A\)') ' QM1 FACTOR (F4.2) = '
READ (*,'(F4.2)') QM1FAC
            WRITE (*,'(A\)') ' X OFFSET = '
READ (*,'(F5.2)') XOFF
            WRITE (*,'(A\)') ' Y OFFSET = '
REND (*,'(F5.2)') YOFF
  CONVERT THE PRESSURE UNIT FROM inlig TO psf
            FATM=(PI+PF)*35.3631
            R=1716.5
            E=0.0123
            T=(TI+TF)/2.+460
            RO=PATM/(R*T)
            DTPTS=RWS*COLS
```

```
OPEN A NEW FILE TO STORE THE REDUCED DATA
      OPEN(2,FILE='RESULT.DAT',STATUS='OLD')
      WRITE(2,222) DTPTS
222
      FORMAT (15)
  OPEN A SEQUENTIAL OF DATA FILE
      DO 20 I=1,COLS
         NAME(7:8)=A(I)
         FNAME=NAME
         OPEN(1, FILE=FNAME)
      READ(1,100,END=20)ST
100
       FORMAT(A65)
15
        READ(1,1000,END=30)NO,X,Y,V1,V2,V3,V4,V5,BETA
1000
        FORMAT(12,F7.2,F6.2,5F9.3,F8.2)
 CONVERT THE VOLTAGE TO PRESSURE IN LBF/FT**2
        P1=DELTAP(V1, SLOPE, INTR)*2.0475+PATM
        P2=DELTAP(V2, SLOPE, INTR)*2.0475+PATM
        P3=DELTAP(V3, SLOPE, INTR)*2.0475+PATM
        P4=DELTAP(V4, SLOFE, 1NTR)*2.0475+PATM
        P5=DELTAP(V5, SLOPE, INTR)*2.0475+PATM
  CALCULATE THE PITCH ANGLE IN DEGREES
        F = (P4 - P5)/(P1 - P2)
        ALPHA=FPITCH(P)
  CALCULATE THE VELOCITY IN FT/SEC
        YSLOF=FYSLOP(ALFHA)
        VELM=SQRT((2*YSLOP*(F1-P2))/(RO*K))
        VEL=VELM*(1+E)
  CALCULATE THE LOCAL DYNAMIC PRESSURE
        QM1=QM1FAC*2.0475/K
        QM=RO*VEL**2/2.
        Q1=QM1*(1+2*E)
        Q=QM+(1+2*E)
  CALCULATE THE YAW ANGLE IN DEGREES
        YAW=FYAW(BETA+5.0)
  CALCULATE THE VELOCITY COMPONENTS
        BETAR=YAW*.017453
        ALFHAR=(ALFHA-17.942)*.017453
        VELY=VEL*SIN(ALPHAR)
        VELX=VEL*COS(ALPHAR)*SIN(BETAR)
  CALCULATE THE TOTAL PRESSURE IN LBF/IN**2 FTC=FFT(ALPHA)
        PT1=P1-Q*PTC
        PT=PT1/144.
        CPT=(PT1-FATM-Q1)/Q1
  CALCULATE THE STATIC PRESSURE IN LBF/IN**2
        FS1=FT1-Q
        PS=PS1/144
        CPS=(PS1-PATM)/Q1
 WRITE ZERO VALUES IF VELOCITY IS TOO HIGH (BAD)
        IF(VEL.GT.200.0) THEN
          2=0.0
          WRITE (2,2000)-X+XOFF,Y+YOFF,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z,Z
          ELSE
          WRITE(2,2000)-X+XOFF,Y+YOFF, VEL, VELX, VELY, YAW,
    C
          ALPHA-17.942, FT, CPT, PS, CPS
```

```
FORMAT(11F10.3)
2000
       ENDIF
       GO TO 15
30
      CLOSE(1)
20
      CONTINUE
      CLOSE(2)
      STOP
      END
* THIS FUNCTION CONVERTS THE VOLTAGE TO PHYSICAL PRESSURE
      FUNCTION DELTAP(X, SLOPE, INTR)
      REAL INTR
      DELTAP=X*SLOPE+INTR
      END
**********************
* THIS FUNCTION CALCULATES THE PITCH ANGLE
      FUNCTION FPITCH(X)
      FPITCH=3.759+53.7568*X-1.3085*X**2-1.6583*X**3
            -0.8061*X**4+16.5115*X**5
****************
* THIS FUNCTION CALCULATES THE VELOCITY PRESSURE COEFFICENT
      FUNCTION FYSLOP(X)
      IF(X.LT.-10)THEN
       FYSLOP=0.981-0.0102*X-3.000E-4*X**2-2.500E-6*X**3
      ELSE IF((X.GE.-10).AND.(X.LE.10))THEN
       FYSLOP=0.98-0.006*X+2.000E-4*X**2
      ELSE
       FYSLOP=0.9801-0.0035*X-1.143E-4*X**2+5.833E~6*X**3
      END IF
      END
*********
          ******************
* THIS FUNCTION CALCULATES THE YAW ANGLE
      FUNCTION FYAW(X)
      IF((X.GE.O).AND.(X.LE.180)) THEN
       FYAW=-X
      ELSE
       FYAW=360-X
      END IF
      END
*****************
* THIS FUNCTION CALCULATES THE TOTAL PRESSURE COEFFICIENT
      FUNCTION FFT(X)
      IF(X.LE.-30) THEN
       FPT=-0.01
      ELSE IF((X.GT.-30).AND.(X.LT.-20)) THEN
       FPT=0.02+1.00E-3*X
      ELSE IF((X.GE.-20).AND.(X.LE.30)) THEN
        FPT=0
      ELSE
       FPT=0.03-1.00E-3*X
      END IF
      END
```

APPENDIX D. RESULT 00.DAT

84	.000	.000	122.209	-7.000	18.214	15.002	.017	1
4.875	060							_
2	.000	.500	122.155	-7.000	18.388	15.002	.015	1
4.875	061				10.05/	45 000	017	1
3	.000	1.000	122.267	-7.000	18.254	15.002	.017	-
4.875	062	1.500	122.199	-7.000	18.297	15.002	.016	1
4.875	.000 061	1.500	122,199	7.000	10.27,	13.000		_
5	.000	2.000	122.310	-7.000	18.433	15.002	.018	1
4.875	061							_
6	.000	2.500	122.155	-7.000	18.388	15.002	.016	1
4.875	061			7 000	13 202	15.002	.018	1
7 4.875	.000 061	3.000	122.293	-7.000	18.302	13.002	.010	•
4.875	.000	3.500	122.359	-7.000	18.287	15.002	.018	1
4.875	062	0.000			-			
9	.000	4.000	122.287	-7.000	18.357	15.002	.017	1
4.875	062					45 000	013	
10	.000	4.500	125.471	-5.000	17.651	15.002	.017	1
4.868	118 .000	5.000	125.733	~5.000	17.773	15.002	018	1
4.868	122	3.000	123.733	3.000				
12	.000	5.500	125.881	-5.000	17.614	15.002	.019	1
4.867	124							
1	.500	.000	125.918	~5.000	17.784	15.002	.017	1
4.867	127	.500	125.733	~5.000	17.773	15.002	.018	1
2 4.868	.500 122	. 300	125.755	3.000	17.775	10.002		-
3	.500	1.000	126.131	-5.000	17.814	15.002	.015	1
4.866	132							
4	.500	1.500	125.773	-5.000	17.714	15.002	.016	1
4.867	125			5 000	17.764	15.002	.015	1
5 4.867	.500 131	2.000	126.015	-5.000	17.704	13.002	.013	-
4.007	.500	2.500	125.812	-5.000	17.655	15.002	.013	1
4.867	128							
7	.500	3.000	125.624	-5.000	17 669	15.001	.012	1
4.867	126			5 000	17 570	15.002	.015	1
8 4.867	.500 126	3.500	125.731	-5.000	17.570	13.002	.013	•
4.867	.500	4.000	125.777	-5.000	17.688	15.002	.014	1
4.867	127		,	***	•			
10	.500	4.500	125.944	-5.000	1 0.1	15.002	.013	1
4.867	131	5 000		5 000	4.7	15 003	015	1
11	.500	5.000	126.524	-5.000	17	15.002	.015	•
4.865	140 .500	5.500	125.918	-5.000	17.784	15.002	.015	1
4.867	~.129	3.300	120.710	2.000				-
4.007								

1	1.000	.000	126.500	-5.000	17.408	15.001	.012	1
4.865 2	142 1.000	.500	126.304	-5.000	17.474	15.002	.015	1
4.866	136						205	
3 4.866	1.000 134	1.000	126.169	-5.000	17.625	15.002	.015	1
4	1.000	1.500	125.976	-5.000	17.822	15.001	.011	1
4.866 5	134 1.000	2.000	125.656	-5.000	17.662	15.001	.012	1
4.867	126	2.500	125.659	-5.000	17.636	15.001	.012	1
4.867	1.000 127							
7 4.867	1.000 126	3.000	125.571	~5.000	17.604	15.001	.011	i
8	1.000	3.500	125.821	-5.000	17.602	15.001	.011	1
4.867 9	131 1.000	4.000	125.881	-5.000	17.614	15.001	.013	1
4.867	130	, 500	125 617	-5 000	17 777	15 001	009	1
10 4.867	1.000 129	4.500	125.617	-5.000	17.722	15.001	.009	1
11	1.000	5.000	125.492	-5.000	17.723	15.001	.010	1
4.867 12	125 1.000	5.500	126.317	-5.000	17.396	15.002	.014	1
4.866 1	137 1.500	.000	126.253	-5.000	17.611	15.001	.011	1
4.866	138							
2 4.867	1.500 131	.500	125.896	-5.000	17.509	15.001	.012	1
3	1.500	1.000	125.926	-5.000	17.732	15.001	.011	1
4.866	133 1.500	1.500	125.860	-5.000	17.543	15.001	.011	1
4.866 5	132 1.500	2.000	125.405	-5.000	17.895	15.001	.008	1
4.867	126							
6 4.866	1.500 135	2.500	125.941	-5.000	17.627	15.001	.009	1
7	1.500	3.000	126.016	-5.000	17.536	15.001	.007	1
4.866 8	139 1.500	3.500	126.063	-5.000	17.424	15.001	.010	1
4.866 9	136 1.500	4.000	125.824	-5.000	17.576	15.001	.007	1
4.866	135	4.000		3.000	27.137.0			
10 4.866	1.500 133	4.500	125.881	-5.000	17.614	15.001	.010	1
11	1.500	5.000	125.853	-5.000	17.594	15.001	.008	1
4.866 12	134 1.500	5.500	125.784	-5.000	17.635	15.001	.008	1
4.866	133							
1 4.866	2.000 133	.000	125.709	-5.000	17.727	15.001	.007	1
2	2.000	.500	125.242	-5.000	17.725	15.001	.007	1
4.867 3	125 2.000	1.000	125.934	-5.000	17.679	15.001	.006	1
4.866	138 2.000	1.500	125.925	-5.000	17.529	15.001	.006	1
4.866	137							
5 4.866	2.000 136	2.000	125.833	-5.000	17.726	15.001	.006	1
6	2.000	2.500	125.844	-5.000	17.876	,15.001	.006	1
4.866	136							

7	2.000	3.000	125.890	-5.000	17.765	15.001	.008	1
4.866 8	135 2.000	3.500	126.253	-5.000	17.611	15.001	.009	1
4.865 9	141 2.000	4.000	125.720	-5.000	17.649	15.001	. 008	1
4.866	132		123.720	3.000	17.049			
10 4.867	2.000 127	4.500	125.289	-5.000	17.613	15.001	.006	1
11	2.000	5.000	125.982	-5.000	17.770	15.001	.009	1
4.866 12	136 2.000	5.500	125.549	-5.000	17.762	15.001	.007	1
4.867	130							
1 4.866	2.500 139	.000	125.971	-5.000	17.848	15.001	.005	1
2	2.500	.500	125.873	-5.000	17.667	15.001	.006	1
4.866 3	137 2.500	1.000	125.760	-5.000	17.589	15.001	.005	1
4.866	136		125 006	-E 000				•
4.866	2.500 137	1.500	125.886	-5.000	17.791	15.001	.006	1
5 4.867	2.500 127	2.000	125.235	-4.000	17.778	15.000	.005	1
5	2.500	2.500	125.696	-4.000	17.603	15.000	.005	1
4.866 7	135 2.500	3.000	125.117	-4.000	17.726	15.000	.005	1
4.867	124							
8 4.867	2.500 130	3.500	125.394	-4.000	17.539	15.000	.004	1
9	2.500	4.000	125.169	-4.000	17.793	15.001	.006	1
4.867 10	124 2.500	4.500	125.871	-4.000	17.464	15.001	.007	1
4.866	135	E 000	124 012	-1. 000	17 01.0	15.001	.006	1
11 4.868	2.500 119	5.000	124.912	-4.000	17.848	13.001	.000	7
12 4.868	2.500 118	5.500	124.873	-4.000	17.676	15.001	.007	1
1	3.000	.000	125.254	-4.000	17.646	15.001	.006	1
4.867 2	125 3.000	.500	125.013	~4.000	17.800	15.000	.002	1
4.867	125							
3 4.867	3.000 129	1.000	125.231	-4.000	17.804	15.000	.002	1
4	3.000	1.500	125.775	-4.000	17.484	15.000	.004	1
4.866 5	137 3.000	2.000	125.213	-4.000	17.706	15.001	.007	1
4.867 6	124 3.000	2.500	125.353	-4.000	17.599	15.001	.005	1
4.867	128							_
7 4.867	3.000 130	3.000	125.550	-4.000	17.532	15.001	.007	1
8	3.000	3.500	124.923	-4.000	17.768	15.000	.005	1
4.868 9	121 3.000	4.000	125.558	-4.000	17.479	15.000	.002	1
4.866	135	4.500	125.077	-4.000	17.787	15.001	.006	1
10 4.867	3.000 123							1
11 4.868	3.000 119	5.000	124.878	-4.000	17.649	15.001	.006	1
12	3.000	5.500	125.433	-4.000	17.480	15.001	.005	1
4.867	130					•		

APPENDIX E. RESULT 0A.DAT

299 1	.000	. 200	150.248	-16.000	15.148	14.700	041	1
4.516	604	. • • •	200.0.0	20,000	20,110	1400		
2	.000	.250	155.911	-15.000	14.475	14.701	039	1
4.502	722 .000	.500	160.315	-15.000	13.866	14.701	037	1
4.491	817		100.015	10.000	13.000	14.701		-
4	.000	.750	164.509	-14.000	13.393	14.701	037	1
4.480 5	911 .000	1.000	169.716	-14.000	12.697	14.701	039	1
4.465	-1.033	1.000	107.710	14.000	12.077	14.701	.039	•
6	.000	1.250	175.393	-13.000	10.631	14.700	047	1
4.448	-1.177 .000	1.500	180.980	-8.000	2.980	14.688	147	1
4.420	-1.414	2.000	100.700	0.000	2.700	14.000	.14,	-
8	.000	1.750	185.168	9.000	-5.242	14.637	581	1
4.357	-1.955 .000	2.000	179.544	39.000	-23.961	14.556	-1.262	1
4.293	-2.493	2.000	1,,,,,,,,,,	33.000	20.701	14.550	1.200	•
10	.000	2.250	181.551	73.000	-13.886	14.587	999	1
4.318	-2.281 .000	2.500	199.011	84.000	-1.061	14.673	274	1
4.349	-2.016	2.000	1,,,,,,	01.000	1.001	14.073		•
12	.000	2.750	192.122	81.000	585	14.649	480	1
4.347	-2.035 .000	3.000	190.920	61.000	-17.689	14.604	856	1
4.307	-2.379	3.000	1,50.520	01.000	17.007	14.004	.050	•
14	.000	3.250	186.191	24.000	-3.723	14.533	-1.456	1
4.250 15	-2.857 .000	3.500	190.574	4.000	3.291	14.621	713	1
4.325	-2.227	3.500	170.574	4.000	3.271	14.021	.,15	•
16	.000	3.750	188.810	-8.000	4.141	14.679	219	1
4.388 17	-1.687 .000	4.000	178.573	-11.000	3.863	14.693	102	1
4.433	-1.310	4.000	1/0.5/5	11.000	3.003	14.073	.102	
18	.000	4.250	171.008	-13.000	4.608	14.696	077	1
4.457 19	-1.101 .000	4.500	162.822	-13.000	6.181	14.696	075	1
4.480	911	4.300	102.022	13.000	0.101	14.090	.075	1
20	.000	4.750	155.653	-13.000	8.050	14.697	074	1
4.499 21	752 .000	5.000	151.143	-12.000	9.417	14.696	075	1
4.510	656	3.000	131.143	12.000	9.417	14.690	.073	1
22	.000	5.250	150.027	-12.000	10.473	14.697	073	1
4.513	631 .000	5.500	147.773	-12.000	11.461	14.697	073	1
4.518	585	3.300	147.773	12.000	11.401	14.077	.073	
1	.250	.000	147.058	-12.000	16.164	14.692	112	1
4.515	609 .250	.250	152.564	-16.000	15.207	14.696	077	1
4.506	688	.230	132,364	-16.000	13.207	14.090	077	1
3	. 250	. 500	157.323	-16.000	14.221	14.696	076	1
4.494	789 .250	.750	159.896	~17.000	14.424	14.690	- 121	1
4.481	901	. 730	137.030	17.000	14.424	14.070	131	1
5	. 250	1.000	169.024	-16.000	12.905	. 14.696	078	1
4.463	-1.056							

	250	1 250	176.146	-16.000	11.158	14.695	087	1
6 4.442	.250 -1.235	1.250			5.264	14.681	206	1
7	. 250	1.500	183.110	-10.000	3.204			4
4.407 8	-1.527 .250	1.750	184.142	2.000	1.110	14.636	~.589	1
4.359	-1.936	2.000	164.120	25.000	12.257	14.586	-1.009	1
9 4.366	.250 -1.874				-2.918	14.613	779	1
10	. 250	2.250	187.888	68.000	-2.910			•
4.325	-2.223 .250	2.500	189.832	84.000	1.471	14.656	-,418	1
4.362	-1.913	2.750	191.492	81.000	-3.333	14.661	376	1
12 4.361	.250 -1.915	2.730			-16.674	14.586	-1.014	1
13	.250 -2.592	3.000	192.988	63.000				1
4.281 14	.250	3.250	193.453	22.000	-23.030	14.565	-1.189	•
4.259	-2.780 .250	3.500	203.195	1.000	-5.046	14.655	426	1
15 4.318	-2.285				.336	14.686	159	1
16	.250	3.750	192.065	-9.000			075	•
4.385 17	-1.713 .250	4.000	178.709	-11.000	3.538	14.596	-,075	1
4.436	-1.286	4.250	169.131	-11.000	4.692	14.698	~ .064	1
18 4.464	.250 -1.045				6.521	14.697	071	1
19	.250	4.500	159.931	-12.000				
4.488 20	842 .250	4.750	153.467	-12.000	7.862	14.698	065	1
4.505	696 .250	5.000	151.014	-12.000	9.189	14.698	063	1
21 4.512	642			12 000	10.150	14.698	063	1
22	.250 619	5.250	149.874	-12.000			061	•
4.514	.250	5.500	149.154	-12.000	11.166	14.698	061	1
4.516	602 .500	.000	150.077	-14.000	16.013	14.696	078	1
1 4.512	637				15.585	14.697	067	1
2	.500 685	. 250	152.885	-13.000			065	1
4.506 3	.500	.500	156.663	-14.000	15.429	14.698	065	•
4.497	764 .500	.750	161.989	-14.000	14.704	14.698	063	1
4.483	880			-15.000	14.154	14.697	069	1
5 4.466	.500 -1.028	1.000	168.212	-13.000			~,078	1
6	.500	1.250	175.219	-16.000	13.498	14.696		
4.445	-1.204 .500	1.500	185.504	-12.000	9.860	14.686	~.164	1
4.405	-1.546	1.750	187.433	-1.000	9.338	14.655	428	1
8 4.368	.500 -1.860				0 013	14.550	-1.312	1
9	.500	2.000	165.116	12.000	8.913			
4.328 10	-2.200 .500	2.250	186.450	60.000	6.790	14.624	688	1
4.340	-2.095 .500	2.500	189.835	78.000	5.301	14.678	234	1
4.383	-1.729			90 000	-1.206	14.678	229	1
12	.500 -1.697	2.750	188.824	80.000	1.200			
4.387	1.03/					•		

					. 7 . 70	14.643	524	1
13	.500	3.000	194.616	60.000	-17.478		-,651	1
4.334	-2.146 .500	3.250	193.223	25.000	-27.707	14.628		1
14 4.324	-2.236		191.035	.000	-14.391	14.656	-,415	
15	.500 -1.941	• • •		-10.000	-4.021	14.683	191	1
4.358 16	.500	3.750	202.			14.693	103	1
4.414	-1.470 .500	4.000	170.055	-12.000	2.001		076	1
4.457	-1.105 .500	4.250	163.175	-11.000	4.393	14.696		1
18 4.479	919	4.500	156.143	-11.000	6.655	14.697	073	
19 4.497	.500 761		151.731	-10.000	7.797	14.697	074	1
20	.500 667	4.750		-10.000	8.948	14.697	-,070	1
4.509 21	.500	5.000	150.462			14.697	070	1
4.512 22	638 .500	5.250	149.237	-10.000	10.084		070	1
4.515	612 .500	5.500	147.595	-10.000	10.912	14.697		
23 4.519	578		145.274	-12.000	17.251	14.691	121	1
1 4.519	.750 -,582	.000		-12.000	16.399	14.697	074	1
2	.750	.250	152.155		16.382	14.697	-,069	1
4.507 3	~.677 .750	.500	153.989	-12.000		14.697	071	1
4.503	711 .750	.750	158.660	-14.000	16.088		074	1
4.491	814	1.000	164.981	-15.000	15.845	14.697		
5 4.474	.750 959		172.719	-16.000	15.866	14.695	087	1
6	.750 -1.152	1.250		-15.000	15.086	14.689	139	1
4.451	.750	1.500	179.926			14.670	299	1
4.424 8	-1.380 .750	1.750	179.845	-4.000	16.331		597	1
4.406	-1.538 .750	2.000	170.797	17.000	20.555	14.635		
9 4.396	-1.617		173.431	47.000	16.014	14.643	525	1
10 4.398	.750 -1.608	2.250		71.000		14.680	214	1
11	.750	2.500	176.462			14.691	120	1
4.426	-1.370 .750	2.750	173.657	75.000			457	1
4.445	-1.208 .750	3.000	170.957	60.000	-18.135	14.651		
13 4.413	-1.480			23.000	-28.507	14.639	559	1
14 4.408	.750 -1.519	3.250				14.674	266	1
15		3.500				41 600	143	1
4.429 16	,750	3.750	170.676				097	1
4.450	-1,160	4.00	0 162.930	-11.00	0383			
4.477	934	4.25		-11.00	0 3.759		080	_
18 4.499				_	00 6.12	3 , 14.696	077	1
19	.750		0 151.79			•		
4.508	073							

20	⁻50	4.750	148.596	-11.000	7.698	14.696	076	1
4.516 21	. 605 . 750	5.000	147.997	-11.000	8.892	14.697	073	1
4.518	589	5.250	146.891	-11.000	10.095	14.697	073	1
22 4.520	.750 567	3.230					075	1
23 4.521	.750 562	5.500	146.590	-11.000	10.781	14.696	075	•
1	1.000	.000	146.890	-12.000	17.324	14.696	07 9	1
4.520 2	573 1.000	. 250	147.914	-12.000	17.458	14.697	074	1
4.518	589 1.000	. 500	151.406	-12.000	17.417	14.697	073	1
4.509	660						0.25	1
4 4.496	1.000 772	.750	156.556	-13.000	17.266	14.696	075	1
5	1.000	1.000	162.577	-14.000	17.246	14.696	078	1
4.480 6	908 1.000	1.250	167.675	-15.000	17.796	14.696	077	1
4.466 7	-1.024 1.000	1.500	170.656	-15.000	19.734	14.693	106	1
4.455	-1.123							•
8 4.450	1.000 -1.164	1.750	167.455	-7.000	22.512	14.679	222	1
9	1.000	2.000	161.789	11.000	24.818	14.659	389	1
4.446	-1.202 1.000	2.250	153.979	38.000	22.243	14.654	434	1
4.460	-1.075	2.500	.154.384	63.000	15.365	14.681	202	1
11 4.487	1.000 853							
12 4.507	1.000 683	2.750	150.441	65.000	7.824	14.692	116	1
13	1.000	3.000	156.105	54.000	-12.188	14.682	198	1
4.483	885 1.000	3.250	152.532	24.000	-30.428	14.657	409	1
4.467 15	-1.019 1.000	3.500	155.504	2.000	-25.690	14.675	254	1
4.478	928						4 2 0	
16 4.488	1.000 845	3.750	156.984	-6.000	-11.813	14.689	139	1
17	1.000	4.000	153.365	-7.000	-2.027	14.694	092	1
4.502 18	721 1.000	4.250	152.086	-8.000	2.982	14.696	082	1
4.507	683	4.500	149.479	-9.000	5.555	14.696	080	1
19 4.513	1.000 627	4.500						
20 4.518	1.000 588	4.750	147.604	-9.000	7.457	14.696	080	1
21	1.000	5.000	147.178	-9.000	8.759	14.696	080	1
4.519 22	580 1.000	5.250	146.303	-9.000	9.897	14.696	077	1
4.521	559	5.500	146.112	-9.000	10.535	14.696	076	1
23 4.522	1.000 554							
1 4.526	1.250 521	.000	143.934	-11.000	18.032	14.695	086	1
2	1.250	.250	147.049	-10.000	17.891	14.695	083	1
4.519 3	580 1.250	. 500	150.805	-11.000	18.032	14.696	079	1
4.510	654					•		

' L	1.250	.750	152.581	-11.000	18.451	14.696	082	1
4.505 5	694 1.250	1.000	156.293	-14.000	18.681	14,695	085	1
4.496 6	776 1.250	1.250	159.465	-14.000	19.636	14.695	085	1
4.488	845 1.250	1.500	159.374	-14.000	23.039	14.693	107	1
4.485	865	1.750	155.497	-10.000	28.847	14.688	144	1
4.491	1.250				32.505	14.672	-,281	1
9 4.493	1.250 798	2.000	148.004	6.000				
10 4.509	1.250 667	2.250	136.553	30.000	32.222	14.661	376	1
11 4.530	1.250 489	2.500	137.451	50.000	23.529	14.684	181	1
12	1.250	2.750	130.058	52.000	15.444	14.693	106	1
4.555	1.250	3.000	132.861	42.000	-3.035	14.693	105	1
4.549	327 1.250	3.250	140.729	23.000	-20.497	14.687	158	1
4.525 15	~.530 1.250	3.500	146.995	6.000	-18.677	14.689	136	1
4.513 16	632 1.250	3.750	148.910	-2.000	-9.649	14.694	097	1
4.513	632	4.000	147.630	-7.000	-1.620	14.695	-,089	1
17 4.517	1.250 597						086	
18 4.519	1.250 577	4.250	146.738	-8.000	2.969	14.695		1
19 4.525	1.250 527	4.500	144.477	-8 OOC	5.902	14.696	082	1
20 4.524	1.250 -,532	4.750	144.758	-9.000	7.645	14.696	082	1
21	1.250	5.000	144.212	10.000	9.007	14.695	085	1
4.525 22	525 1.250	5.250	144.362	-8.000	10.099	14.695	084	1
4.525 23	527 1.250	5.500	144.482	-8.000	10.769	14.696	083	1
4.525 1	528 1.500	.000	144.399	-11.000	18.211	14.694	098	1
4.523	541 1.500	.250	143.875	-11.000	18.874	14.695	086	1
4.526	520		_			14.695	085	1
3 4.519	1.500 577	.500	146.765	-10.000	18.882			
4.514	1.500 621	.750	149.098	-11.000	19.123	14.696	082	1
5 4.513	1.500 633	1.000	149.425	-12.000	19.987	14.695	087	1
6	1.500 657	1.250	150.554	-12.000	21.497	14.695	088	1
4.510	1.500	1.500	146.989	-9.000	25.643	14.695	091	1
4.518 8	587 1.500	1.750	144.651	-5.000	31.710	14.694	096	1
4.523	544 1.500	2.000	140.980	6.000	39.948	14.689	140	1
4.526	516		134.535	24.000	39.304	14.685	168	1
10 4.538	1.500 421	2.250	104.555	24.000	32.304	14.003	. 200	•

11	1.500	2.500	126.672	38.000	28.349	14.691	119	1
4.560	1.500	2.750	121.238	40.000	19.736	14.695	089	1
4.575 13	107 1.500	3.000	122.646	31.000	5.343	14.695	090	1
4.572	131 1.500	3.250	129.062	21.000	~5.348	14.694	~.098	1
4.558 15	251 1.500	₹.500	137.188	9.000	~8.529	14.694	~.098	1
4.540 16	401 1.500	3.750	141.477	.000	-4.700	14.694	093	1
4.531	479 1.500	4.000	142.942	-4.000	.016	14.695	087	1
4.528	502							
18 4.528	1.500 499	4.250	142.681	-6.000	3.828	14.695	090	1
19 4.530	1.500 487	4.500	142.203	-7.000	6.380	14.695	087	1
20 4.529	1.500 491	4.750	142.386	-8.000	8.066	14.695	087	1
21 4.524	1.500 533	5.000	144.617	-8.000	9.066	14.695	085	1
22 4.528	1.500 ~.504	5.250	143.124	-8.000	10.249	14.695	085	1
23	1.500	5.500	142.683	-8.000	10.919	14.695	086	1
4.529	496 1.750	.000	141.506	-9.000	18.702	14.694	091	1
4.531	478 1.750	.250	143.781	~10.000	18.934	14.695	090	1
4.526	521 1.750	.500	144.629	-10.000	19.340	14.695	087	1
4.524	536 1.750	.750	146.268	-11.000	19.788	14.695	086	1
4.529 5	567 1.750	1.000	144.476	-9.000	20.866	14.693	100	1
4.523 6	545 1.750	1.250	142.575	-8.000	22.820	14.894	092	1
4.528	-,499 1.750	1.500	139.562	-6.000	26.376	14.695	090	1
4.536 8	439							
4.546	1.750 349	1.750	134.757	-1.000	31.806	14.694	092	1
9 4.552	1.750 300	2.000	132.375	8.000	36.357	14.695	087	1
10 4 562	1.750 214	2.250	127.296	18.000	35.297	14.694	092	1
11 4.570	1.750 147	2.500	123.417	26.000	27.562	14.694	092	1
12 4.580	1.750 065	2.750	119.050	29.000	21.176	14.695	084	1
13 4.574	1.750 115	3.000	121.768	24.000	11.504	14.695	088	1
14 4.568	1.750	3.250	124.045	16.000	3.943	14.694	094	1
15	160 1.750	3.500	129.513	9.000	. 237	14.694	094	1
4.557 16	255 1.750	3.750	135.102	2.000	.421	14.694	098	1
4.545 17	362 1.750	4.000	138.314	-1.000	2.993	14.694	092	1
4.538	417							

18	1.750	4.250	141.095	-4.000	5.168	14.695	088	1
4.532	~.466 1.750	4.500	141.603	-6.000	6.952	14.695	090	1
4.531 20	478 1.750	4.750	141.016	-6.000	8.538	14.695	090	1
4.532	466	4.730						
21 4.530	1.750 484	5.000	141.857	-7.000	9.607	14.694	091	1
22	1.750	5.250	141.262	-7.000	10.438	14.695	089	1
4.532 23	470 1.750	5.500	141.679	-8.000	11.172	14.695	089	1
4.531	478 2.000	.000	140.603	-8.000	18.846	14.694	091	1
4.533	460	.000	140.003					
2 4.531	2.000 479	. 250	141.762	-8.000	19.271	14.695	087	1
3	2.000	.500	141.204	-8.000	19.868	14.694	092	1
4.532	472 2.000	.750	142.729	-7.000	20.171	14.694	091	1
4.528	502	1 000	142 057	-6.000	21.208	14.695	089	1
5 4.530	2.000 486	1.000	142.057	-8.000	21.206	14.033	.009	
6	2.000	1.250	137.202	-6.000	23.387	14.695	090	1
4.541	393 2.000	1.500	135.449	-3.000	25.579	14.695	090	1
4.545 8	360 2.000	1.750	132.664	1.000	28.438	14.694	092	1
4.551	311							
9 4.559	2.000 243	2.000	129.110	8.000	30.712	14.695	089	1
10	2.000	2.250	125.656	14.000	29.880	14.694	091	1
4.566 11	184 2.000	2.500	121.723	19.000	26.464	14.694	091	1
4.573 12	117 2.000	2.750	120.114	20.000	21.600	14.695	088	1
4.577	087					16 605	- 007	
13 4.575	2.000 100	3.000	120.962	19.000	15.284	14.695	087	1
14	2.000	3.250	124.213	12.000	8.984	14.694	091	1
4.568 15	159 2.000	3.500	129.190	7.000	5.797	14.694	092	1
4.558	248 2.000	3.750	132.360	3.000	4.641	14.695	091	1
16 4.551	304	3.730	132.300	3.000	4.041			
17 4.544	2.000 ~.370	4.000	135.840	.000	5.429	14.694	092	1
18	2.000	4.250	136.641	-2.000	6.915	14.694	~.096	1
4.541 19	~.389 2.000	4.500	138.622	-5.000	8.039	14.695	~.090	1
4.538	421							
20 4.534	2.000 455	4.750	140.363	-6.000	9.088	14.695	091	1
21	2.000	5.000	140.388	-7.000	10.113	14.694	093	1
4.533 22	458 2.000	5.250	140.115	-7.000	10.725	14.694	091	1
4.534	450 2.000	5.500	139.474	-7.000	11.784	14.695	088	1
4.536	435							
1 4.536	2.250 437	.000	139.150	-8.000	19.331	14.694	097	1

	2.250	. 250	139.879	-8,000	19.482	14.694	034	1
4.534	449 2.250	. 500	140.493	-8.000	19.896	14.694	091	1
4.533	458 2.250	.750	139.515	-7.000	20.720	14.694	092	1
4.535	439							
5 4.536	2.250 432	1.000	139.098	-6.000	21.430	14.694	092	1
6 4.541	2.250 390	1.250	136.812	-5.000	22.758	14.694	094	1
7	2.250	1.500	134.041	-3.000	24.479	14.694	093	1
4.547 8	337 2.250	1.750	131.625	.000	25.857	14.694	094	1
4.553 9	293 2.250	2.000	129.434	4.000	26.472	14.694	093	1
4.557	253							
10 4.565	2.250 189	2.250	125.858	8.000	26.214	14.694	092	1
11 4.571	2.250 141	2.500	123.005	12.000	24.345	14.694	093	1
12	2.250	2.750	121.787	14.000	20.795	14.694	093	1
4.573 13	120 2.250	3.000	123.064	13.000	16.584	14.694	092	1
4.571	140	2.250	126 607	10.000	13 251			
14 4.565	2.250 192	3.250	126.007	10.000	12.254	14.694	092	1
15 4.559	2.250 241	3.500	128.818	6.000	9.059	14.694	092	1
16	2.250	3.750	130.406	3.000	8.319	14.694	394	1
4.555 17	271 2.250	4.000	133.263	.000	7.898	14.694	094	1
4.549 18	324 2.250	4.250	136.828	-2.000	8.247	14.694	093	1
4.541	390						İ	
19 4.538	2.250 421	4.500	138.581	-4.000	8.893	14.694	092	1
20 4.536	2.250 430	4.750	138.972	-5.000	9.896	14.694	~.093	1
21	2.250	5.000	139.883	-6.000	10.476	14.694	093	1
4.534	448 2.250	5.250	140.954	-7.000	11.068	14.695	091	1
4.532 23	466 2.250	5.500	139.195	~7.000	12.018	14.695	091	1
4.536	432							
1 4.535	2.500 441	.000	139.106	-8.000	19.184	14.693	101	1
2 4.539	2.500 413	.250	138.050	-7.000	19.868	14.694	094	1
3	2.500	.500	139.275	~7.000	19.905	14.694	092	1
4.536	435 2.500	.750	137.681	-6.000	20.869	14.694	091	1
4.540	404 2.500	1 000				14.694	092	
4.543	375	1.000	136.138	-5.000	21.704			1
6 4.546	2.500 353	1.250	134.820	-3.000	22.396	14.694	095	1
7	2 500	1.500	131.967	-2.000	23.529	14.694	093	1
4.552 8	299 2.500	1.750	129.894	.000	24.565	14.694	093	1
4.556	261							

9	2.500	2.000	128.533	3.000	24.775	14.694	095	1
4.559 10	239 2.500	2.250	126.605	6.000	24.010	14.694	094	1
4.563	204	2 500	124 167	9.000	23.041	14.694	092	1
11 4.569	2.500 159	2.500	124.167	9.000	23.041	14.074	.0,2	-
12	2.500	2.750	124.178	10.000	20.269	14.694	092	1
4.568 13	-,159 2,500	3.000	123.766	10.000	17.285	14.694	091	1
4.569	152				*/ 250	37 604	- 084	1
14 4.565	2.500 187	3.250	125.674	8.000	14.250	14.694	094	•
15	2.500	3.500	128.244	5.000	11.864	14.694	093	1
4.560 16	231 2.500	3.750	130.984	2.000	10.355	14.694	~.092	1
4.554	280			000	9.763	14.694	092	1
17 4.549	2.500 322	4.000	133.260	.000	9.763	14.094	.072	•
18	2.500	4.250	134.352	-1.000	9.967	14.694	095	1
4.547 19	345 2.500	4.500	137.272	-3.000	9.854	14.695	091	1
4.541	395	4.500	13/12/2				225	
20	2.500	4.750	138.307	-4.000	10.717	14.694	095	1
4.538 21	419 2.500	5.000	138.018	-5.000	11.186	14.694	097	1
4.538	416	r 250	140.275	-6.000	11.427	14.694	092	1
22 4.534	2.500 454	5.250	140.273	8.000	11.427	14.074		
23	2.500	5.500	139.403	-6.000	12.040	14.694	092	1
4.536 1	437 2.750	.000	136.503	-6.000	19.577	14.694	095	1
4.542	385	250	129 029	-6 000	19.644	14.694	093	1
2 4.539	2.750 413	.250	138.039	-6.000	19.044		1	
3	2.750	.500	136.966	-5.000	20.210	14.694	092	1
4.541	391 2.750	.750	135.667	-5.000	21.090	14.694	099	1
4.543	374				21 206	14.694	096	1
5 4.543	2.750 372	1.000	135.751	-4.000	21.306	14.694	.070	•
6	2.750	1.250	133.520	-2.000	22.140	14.694	097	1
4.548 7	331 2.750	1.500	132.715	-1.000	22.617	14.694	094	1
4.550	314			200	22 226	11. 691.	097	1
8 4.555	2.750 274	1.750	130.405	.000	23.326	14.694	037	1
9	2.750	2.000	128.451	2.000	23.336	14.694	094	1
4.559 10	237 2.750	2.250	126.067	5.000	23.275	14.694	094	1
4.564	195					44 604	095	1
11 4.565	2.750 187	2.500	125.547	6.000	21.968	14.694	095	1
12	2.750	2.750	124.766	8.000	19.978	14.694	095	1
4.567 13	173 2.750	3.000	125.708	7.000	17.726	14.694	095	1
4.565	189							
14	2.750 214	3.250	127.202	6.000	15.210	14.694	~.094	1
4.562 15	2.750	3.500	128.912	4.000	13.281	14.694	094	1
4.558	245					•		

10 4.554	2.750 286	3.750	131.082	2.000	11.912	14.694	096	1
17	2.750	4.000	133.010	.000	11.213	14.694	098	1
4.549	322 2.750	4.250	134.364	-2.000	11.045	14.694	097	1
4.546 19	346 2.750	4.500	135.631	-2.000	11.369	14.694	097	1
4.544	371 2.750	4.750	135.879	-4.000	11.604	14.694	094	1
4.543 21	372 2.750	5.000	136.300	-4.000	12.006	14.694	097	1
4.542	383							
22 4.539	2.750 406	5.250	137.662	-5.000	12.127	14.694	094	1
23 4.538	2.750 414	5.500	137.966	-6.000	12.482	14.694	096	1
1	3.000	.000	137.666	-7.000	19.159	14.694	099	1
4.539	411 3.000	.250	136.269	-6.000	19.793	14.694	094	1
4.543	380 3.000	. 500	136.121	-6.000	20.107	14.694	097	1
4.542	-,380 3.000	.750	135.758	-5.000	20.499	14.694	097	1
4.543	373	1.000	135.100	~3.000	20.755	14.694	097	1
4.545	3.000 360							
6 4.550	3.000 319	1.250	132.869	-2.000	21.721	14.694	`097	1
7 4.551	3.000 307	1.500	132.240	-1.000	21.942	14.694	096	1
8 4.554	3.000 281	1.750	130.758	.000	22.124	14.694	097	1
9	3.000	2.000	128.425	2.000	22.556	14.694	098	1
4.559 10	240 3.000	2.250	127.872	4.000	21.826	14.694	097	1
4.560 11	229 3.000	2.500	125.955	5.000	21.269	14.6.93	101	1
4.564 12	200 3.000	2.750	126.365	5.000	19.824	14.694	~.096	1
4.564	202							
13 4.561	3.000 221	3.000	127.438	5.000	17.839	14.694	097	1
14 4.558	3.000 245	3.250	128.762	4.000	15.775	14.694	097	1
15 4.557	3.000 257	3.500	129.447	2.000	14.213	14.694	097	1
16	3.000	3.750	131.016	1.000	13.191	14.694	095	1
4.554 17	283 3.000	4.000	131.773	.000	12.485	14.694	096	1
4.552 18	298 3.000	4.250	134.443	-1.000	11.912	14.694	094	1
4.547	345 3.000	4.500	135.208	-3.000	12.111	14.694	098	1
4.544	364							
20 4.544	3.000 ·.368	4.750	135.578	-4.000	12.020	14.694	095	1
21 4.540	3.000 397	5.000	137.068	-5.000	12.267	14.694	096	1
22 4.540	3.000 400	5.250	137.214	-4.000	12.644	14.694	097	1
23	3.000	5.500	138.068	-6.000	12.904	14.694	097	1
4.538	416							

APPENDIX F. RESULT 3A.DAT

					29	9		
1	.000	.000	102.457	-14.000	15.145	14.699	016	1
4.613	.018 .000	.250	105.302	-15.000	14.925	14.699	013	1
4.609 3	034 .000	.500	108.193	-16.000	14.512	14.699	015	1
4.604	092							
4 4.598	.000 152	.750	111.256	-16.000	14.187	14.699	012	1
5 4.596	.000 180	1.000	112.435	-15.000	13.569	14.698	016	1
6	.000	1.250	116.266	-12.000	12.188	14.696	044	1
4.586 7	288 .000	1.500	116.796	-5.000	6.146	14.676	~.266	1
4.566 8	522 .000	1.750	113.592	12.000	-2.410	1/2 6 2 1	- 703	1
4.526	970	1.750	113.372	12.000	-2.410	14.631	~.783	1
9 4.483	.000 -1.465	2.000	105.727	15.000	-18.450	14.573	-1.436	1
10	.000	2.2:0	112.650	72.000	-10.308	14.604	-1.090	1
4.501 11	-1.258 .000	2.500	121.443	80.000	.145	14.651	555	1
4.531 12	913 .000	2.750	122.507	76.000	2.894	14.641	674	1
4.519	-1.055							
13 4.467	.000 -1.649	3.000	114.758	62.000	907	14.573	-1.436	1
14	.000	3.250	115.506	29.000	-3.502	14.564	-1.543	1
4.456 15	-1.771 .000	3.500	127.261	7.000	2.973	14.639	689	1
4.508 16	-1.179 .000	3.750	124.883	-6.000	4.305	14.680	227	1
4.553	663					Ĭ.		
17 4.576	.000 409	4.000	119.450	-11.000	5.371	14.692	095	1
18	.000 272	4.250	114.584	-12.000	5.783	14.694	063	1
4.588 19	.000	4.500	109.382	-13.000	7.370	14.695	059	1
4.598 20	161 .000	4.750	104.913	-13.000	8.771	14.695	061	1
4.605	074							
21 4.610	.000 021	5.000	102.151	-13.000	10.026	14.695	060	1
22	.000	5.250	99.973	-12.000	10.983	14.694	067	1
4.613 23	.013	5.500	99.244	-12.000	11.734	14.694	070	1
4.614	.024 .250	.000	99.007	-13.000	16.599	14.689	128	1
4.609	030							
2 4.610	.250 026	. 250	102.225	-14.000	15.663	14.694	064	1
3 4.605	.250 075	.500	105.584	-13.000	15.208	14.696	049	1
4	.250	.750	109.947	-15.000	14.537	14.695	051	1
4.597 5	164 .250	1.000	111.917	-15.000	13.818	.14.696	046	1
4.594	199	2.000		10.000	20.020	,	.040	•

6	.250	1.250	116.050	-15.000	12.554	14.694	069	1
4.585 7	308 .250	1.500	115.894	-18.000	8.020	14.671	325	1
4.562 8	562 .250	1.750	111.691	6.000	4.110	14.626	837	1
4.525	985		106.136	38.000	-8.086	14.571	-1.462	1
4.480	.250 -1.499	2.000						
10 4.508	.250 -1.177	2.250	116.315	68.000	-4.916	14.618	932	1
11	.250	2.500	123.638	80.000	1.103	14.659	460	1
4.536 12	867 .250	2.750	121.840	78.000	-1.236	14.644	632	1
4.524 13	999 .250	3.000	117.905	61.000	-13.427	14.589	-1.260	1
4.476	-1.540							1
14 4.468	.250 -1.632	3.250	119.056	25.000	-17.151	14.583	-1.327	Ţ
15	. 250	3.500	122.576	3.000	-5.042	14.631	788	1
4.509 16	-1.171 .250	3.750	121.202	-9.000	1.027	14.669	356	1
4.550 17	708 .250	4.000	117.119	-12.000	4.538	14.689	127	1
4.577	390			-12.000	6.053	14.692	087	1
18 4.591	.250 239	4.250	111.865					
19 4.601	.250 125	4.500	106.677	-12.000	7.574	14.693	077	1
20	.250	4.750	102.973	-12.000	8.538	14.693	- n77	1
4.607 21	053 .250	5.000	100.629	-11.000	9.803	14.693	083	1
4.611	015 .250	5.250	99.034	-10.000	10.696	14.692	086	1
4.613	.011						•	
23 4.614	.250 .025	5.500	9€.167	-10.000	11.313	14.692	088	1
1	.500	.000	98.413	-13.000	16.611	14.690	112	1
4.612	004 .500	.250	101.564	-14.000	16.245	14.694	072	1
4.610	022 .500	.500	105.061	-14.000	15.761	14.695	055	1
4.606	071					11 605	059	1
4.601	.500 125	.750	107.600	-15.000	15.474	14.695		
5 4.592	.500 226	1.000	112.692	-16.000	14.832	14.695	057	1
6	.500	1.250	115.654	-16.000	14.043	14.693	083	1
4.584 7	314 .500	1.500	116.735	-11.000	11.956	14.675	284	1
4.564	539 .500	1.750	113.647	2.000	10.109	14.638	708	1
4.533	897							
9 4.496	.500 -1.312	2.000	103.777	30.000	4.818	14.584	-1.321	1
10	.500	2.250	115.338	61.000	2.243	14.622	885	1
4.514	-1.109 .500	2.500	119.358	77.000	2.778	14.663	418	1
4.548	729 .500	2.750	122.453	76.000	-2.076	14.662	430	1
12 4.541	810	2.750	166.433	, 0, 000	2.0.0		, . 	-

13 4.498	.500 -1.293	3.000	116.265	56.000	-18.045	14.608	-1.048	1
14	.500	3.250	122.111	22.000	-21.903	14.619	923	1
4.498 15	-1.296 .500	3.500	121.160	.000	-13.009	14.641	665	1
4.522	-1.016 .500	3.750	120.284	-10.000	-3.352	14.677	255	1
4.560 17	587 .500	4.000	116.651					
4.582	336			-13.000	2.459	14.693	083	1
18 4.595	.500 186	4.250	110.173	~12.000	5.354	14.694	068	1
19 4.604	.500 093	4.500	105.546	-12.000	7.166	14.694	068	1
20	.500	4.750	102.194	-11.000	8.362	14.694	067	1
4.609 21	028 .500	5.000	100.392	-11.000	9.737	14.694	069	1
4.612 22	.003 .500	5.250	99.530	-10.000	10.559	14.693	074	1
4.613	.014							
23 4.614	.500 .028	5.500	98.634	-10.000	11.221	14.693	077	1
1 4.619	.750 .084	.000	95.558	-15.000	18.163	14.693	076	1
2 4.617	.750 .056	.250	98.128	-17.000	17.883	14.695	`058	1
3	.750	.500	99.621	-17.000	18.016	14.695	057	1
4.614	.030 .750	.750	103.641	-17.000	17.445	14.696	050	1
4.606 5	039 .750	1.000	106.934	-18.000	17.074	14.695	053	1
4.603	106							
6 4.595	.750 187	1.250	109.850	-19.000	17.213	14.693	077	1
7 4.583	.750 332	1.500	110.546	-17.000	17.596	14.682	207	1
8	.750	1.750	85.529	-16.000	25.840	14.633	763	1
4.573 9	436 .750	2.000	71.067	5.000	28.441	14.597	-1.169	1
4.556 10	634 .750	2.250	80.319	37.000	14.872	14.615	959	1
4.563	553	2.500						
11 4.594	.750 198		97.719	63.000	7.230	14.672	319	1
12 4.594	.750 201	2.750	100.959	63.000	-1.452	14.677	263	1
13 4.565	.750	3.000	84.073	39.000	-37.227	14.622	882	1
14	532 .750	3.250	83.792	7.000	-58.694	14.622	884	1
4.565 15	531 .750	3.500	96.421	-5.000	-29.768	14.653	531	1
4.578 16	387 .750	3.750	101.893	-18.000	-10.090	14.676	268	1
4.592	224							
17 4.607	.750 052	4.000	98.526	-18.000	. 273	14.686	159	1
18 4.622	.750 .113	4.250	89.234	-21.000	4.126	14.686	154	1
19	.750	4.500	87.949	-20.000	7.847	14.687	145	1
4.624	.143							

20	. 750	4.750	87.887	-18.000	9.952	14.689	125	1
4.626	.164	5.000	87.645	-18.000	11.298	14.689	118	1
4.627 22	.175 .750	5.250	87.342	-16.000	12.154	14.690	-,114	1
4.628	.183 .750	5.500	87.415	-16.000	12.911	14.690	111	1
4.628	.186							
4.618	1.000 .068	.000	96.264	-13.000	18.081	14.693	079	1
2 4.616	1.000	.250	97.677	-14.000	18.196	14.693	075	1
3	1.000	.500	99.431	-15.000	18.181	14.694	071	1
4.613	.019 1.000	.750	101.525	-16.000	18.281	14.694	072	1
4.610 5	021 1.000	1.000	104.078	-17.000	18.567	14.694	072	1
4.606	069							
6 4.600	1.000 134	1.250	107.156	-18.000	19.289	14.693	077	1
7 4.595	1.000 188	1.500	107.180	-16.000	21.635	14.688	131	1
8	1.000	1.750	103.297	-8.000	23.270	14.670	338	1
4.584	321 1.000	2.000	95.999	11.000	24.132	14.644	637	1
4.569	486 1.000	2.250	90.685	40.000	18.752	14.636	730	1
10 4.569	487							
11 4.597	1.000 163	2.500	. 94.632	61.000	14.185	14.670	339	1
12 4.608	1.000	2.750	98.709	62.000	4.109	14.687	147	1
13	1.000	3.000	102.864	46.000	-16.235	14.673	302	1
4.588	276 1.000	3.250	98.566	17.000	-32.752	14.656	501	1
4.577 15	396 1.000	3.500	101.731	-1.000	-24.308	14.671	323	1
4.588	275							
16 4.596	1.000 176	3.750	104.921	-8.000	-9.762	14.686	162	1
17	1.000	4.000	102.181	-10.000	777	14.691	105	1
4.606 18	067 1.000	4.250	99.692	~10.000	4.004	14.692	093	1
4.611	008 1.000	4.500	97.560	-10.000	6.666	14.692	092	1
4.615	.032					14.692		1
20 4.616	1.000 .052	4.750	96.394	-10.000	8.416	14.072	092	1
21 4.615	1.000 .035	5.000	97.039	-9.000	9.728	14.691	098	1
22	1.000	5.250	96.773	-9.000	10.474	14.691	097	1
4.615	.041 1.000	5.500	96.661	-9.000	11.250	14.691	098	1
4.616	.042 1.250	.000	97.770	-12.000	17.727	14.692	088	1
4.615	.032 1.250	. 250	98.844	-12,000	17.960	14.693	081	1
4.614	.020							
3 4.612	1.250 .002	. 500	99.910	-11.000	18.359	14.693	079	1

4 (00	1.250	.750	101.885	-12.000	18.504	14.693	079	1
4.609	034 1.250	1.000	104.621	-13.000	18.724	14.693	077	1
4.604 6	085 1.250	1.250	105.257	-13.000	20.428	14.693	083	1
4.603	103							
7 4.603	1.250 095	1.500	103.937	-11.000	24.025	14.691	101	1
8 4.598	1.250 152	1.750	101.837	-6.000	27.631	14.683	197	1
9	1.250	2.000	96.149	10.000	28.491	14.663	416	1
4.588 10	267 1.250	2.250	89.410	35.000	26.651	14.656	497	1
4.591	233							
11 4.614	1.250 .022	2.500	90.132	51.000	20.337	14.680	230	1
12 4.627	1.250 .172	2.750	89.270	50.000	10.748	14.692	094	1
13	1.250	3.000	93.274	40.000	-6.844	14.688	136	1
4.617	.063 1.250	3.250	96.970	20.000	-19.226	14.682	200	1
4.606	066				17.220		.200	•
15 4.604	1.250 092	3.500	99.719	4.000	-16.445	14.684	177	1
16	1.250	3.750	100.666	-3.000	-7.599	14.689	122	1
4.607 17	055 1.250	4.000	99.493	-6.000	590	14.691	103	1
4.611	015		•					
18 4.613	1.250 .009	4.250	98.444	-8.000	3.859	14.691	098	1
19	1.250	4.500	97.239	-9.000	6.660	14.691	100	1
4.614 20	.030 1.250	4.750	96.095	-9.000	8.573	14.691	101	1
4.616 21	.049 1.250	5.000	96.536	-10.000	9.714	14.691	103	1
4.615	.039				7.714	14.071	103	-
22 4.615	1.250 .039	5.250	96.393	-8.000	10.477	14.691	105	1
23	1.250	5.500	96.164	-8.000	11.102	14.691	101	1
4.616 1	.048 1.500	.000	96.080	-10.000	18.857	14.691	102	1
4.616	.048							
2 4.615	1.500 .032	. 250	97.668	-11.000	18.759	14.692	090	1
3 4.613	1.500	.500	98.462	-10.000	19.261	14.692	092	1
4	1.500	.750	99.912	-11.000	19.633	14.692	090	1
4.611	009 1.500	1.000	99.959	-11.000	20.766	14.692	090	1
4.611	010							1
6 4.610	1.500 016	1.250	100.299	-11.000	22.280	14.692	090	1
7	1.500	1.500	98.345	~9.000	26.126	14.691	098	1
4.613 8	.011 1.500	1.750	96.469	-5.000	30.741	14.688	131	1
4.613	.013							
4.611	1.500 008	2.000	92.707	8.000	35.146	14.681	217	1
10 4.616	1.500 .049	2.250	87.781	27.000	32.588	14.679	242	1
4.040								

11	1.500	2.500	84.424	38.000	24.848	14.686	157	1
4.628 12	.186 1.500	2.750	83.900	38.000	15.662	14.692	092	1
4.635 13	.260 1.500	3.000	85.581	30.000	2.586	14.691	~.105	1
4.631	. 220	3.000	45.501	30.000	2.500	14.071	.103	•
14 4.624	1.500 .133	3.250	89.913	18.000	-7.235	14.689	123	1
15	1.500	3.500	93.919	6.000	-7.982	14.689	124	1
4.617 16	.064 1.500	3.750	95.981	.000	-3.717	14.690	114	1
4.615	.038	3.750	73.761	.000	3.717	14.090	.114	•
17 4.615	1.500 .038	4.000	96.097	-4.000	.804	14.690	112	1
18	1.500	4.250	96.161	-6.000	4.285	14.690	113	1
4.615 19	.036 1.500	4.500	95.900	-7.000	6.483	14.690	116	1
4.615	.038	4.500	93.900	7.000	0.403	14.090	110	*
20 4.615	1.500	4.750	96.113	-7.000	7.933	14.690	117	1
21	1.500	5.000	95.992	-8.000	9.017	14.689	120	1
4.615 22	.032 1.500	\$.250	96.413	.000	9.779	14.689	120	1
4.614	.025	3.250	90.413	.000	9.779	14.669	120	1
23 4.614	1.500	5.500	96.016	~9.000	10.352	14.689	121	1
1	.030 1.750	.000	94.009	-9.000	18.398	14.693	074	1
4.622	.113	.250	. 04 222	.0.000	10 (0)	1/ /02	- 077	•
2 4.621	1.750 .105	. 230	94.237	-9.000	18.682	14.693	077	1
3	1.750	.500	94.814	-9.000	19.152	14.693	075	1
4.620	.097 1.750	.750	94.484	-8.000	20.009	14.694	-,072	1
4.621 5	.106 1.750	1.000	93.920	-7.000	20.890	14.694	072	1
4.622	.116	1.000	33.920	7.000	20.030	14.074	.072	1
6 4.623	1.750 .132	1.250	93.212	-6.000	22.355	14:694	~.068	1
7.023	1.750	1.500	90.777	-4.000	24.931	14.693	~.079	1
4.626 8	.163	1 750	00.003	-1.000	27.004	14 600	- 000	
4.629	1.750 .192	1.750	88.902	-1.000	27.004	14.693	080	1
9	1,750 ,222	2.000	86.939	4.000	28.381	14.693	082	1
4.631 10	1.750	2.250	83.861	11.000	27.685	14.692	092	1
4.635	. 260	2 500	02 56/	16 000	23 056	16 607	000	
11 4.637	1.750 .283	2.500	82.564	16.000	23.956	14.692	090	1
12	1.750	2.750	82.981	18.000	18.856	14.694	065	1
4.638 13	.301 1.750	3.000	83.399	15.000	13.646	14.693	082	1
4.636	.278 1.750	3.250	84.960	11.000	8.886	14.691	- 006	,
14 4.633	.239						096	1
15 4.630	1.750 .208	3.500	86.841	6.000	6.315	14.691	098	1
16	1.750	3.750	89.393	2.000	5.694	14.691	099	1
4.626 17	.165 1.750	4.000	91.298	-1.000	6.332	14,691	098	1
4.624	.135		72.070	2.000	J. J. J	,	.070	•

18 4.622	1.750 .118	4.250	92.271	-3.000	7.284	14.691	098	1
19	1.750	4.500	93.531	-5.000	8.406	14.691	101	1
4.620 20	.094 1.750	750	94.118	-6.000	9.225	14.691	099	1
4.619	.085							
21 4.619	1.750 .087	5.000	93.920	-7.000	10.093	14.691	101	1
22 4.619	1.750 .084	5.250	93.930	-7.000	10.640	14.691	104	1
23	1.750	5.500	93.847	-7.000	11.300	14.691	104	1
4.619	.085 2.000	.000	91.870	-8.000	19.014	14.690	109	1
4.622	.114 2.000	.250	91.914	-8.000	19.370	14.692	094	1
4.623	.129	.230	71.714	0.000	17.370	14.692	094	
3 4.622	2.000 .118	. 500	92.790	-7.000	19.526	14.692	089	1
4	2.000	.750	91.851	-6.000	20.507	14.692	087	1
4.624 5	.137 2.000	1.000	91.450	-5.000	21.328	14.692	087	1
4.624	.143						.00,	•
6 4.626	2.000 .163	1.250	89.835	-4.000	22.789	14.692	094	1
7	2.000	1.500	88.170	-2.000	24.131	14.691	097	1
4.628 8	.187 2.000	1.750	86.432	.000	25.580	14.692	094	1
4.631	.219	2 000						
9 4.634	2.000 .255	2.000	. 84.670	5.000	27.429	14.692	085	1
10 4.636	2.000 .277	2.250	82.338	.000	25.561	14.691	098	1
11	2.000	2.500	81.975	12.000	23.624	14.693	073	1
4.639	.308 2.000	2.750	83.162	14.000	19.664	14.696	0 4 6	1
4.640 13	.318 2.000	3.000	83.903	12.000	15.440	14.695	056	1
4.638	.296					14.075	.030	
14 4.636	2.000 .271	3.250	84.740	9.000	12.121	14.694	068	1
15	2.000	3.500	87.154	1.000	9.655	14.694	064	1
4.633 16	.237 2.000	3.750	88.830	2.000	8.664	14.694	069	1
4.630	. 205		00 225	000	,			
17 4.628	2.000 .178	4.000	90.335	.000	8.563	14.694	070	1
18	2.000	4.250	91.765	-2.000	9.086	14.693	073	1
4.625 19	.152 2.000	4.500	92.619	-4.000	9.646	14.693	073	1
4.624	.137							•
20 4.624	2.000 .139	4.750	92.560	-4.000	10.355	14.694	072	1
21 4.623	2.000 .128	5.000	93.276	-5.000	10.838	14.694	071	1
22	2.000	5.250	93.131	-6.000	11.466	14.694	071	1
4.623 23	.130 2.000	5.500	93.224	-7.000	11 075	14 604	- 077	
4.623	.128			-7.000	11.975	14.694	072	1
1 4.625	2.250	.000	92.923	-7.000	18.964	14.695	061	1
4.023						•		

	•							
2	2.250	.250	92.939	-7.000	19.373	14.695	059	1
4.625	.146 2.250	.500	92.104	-6.000	20.099	14.695	059	1
4.826 4	.160 2.250	.750	91.778	-5.000	20.561	14.694	066	1
4.626 5	.159 2.250	1.000	90.785	-5.000	21.612	14.694	064	1
4.627	.177 2.250	1.250	89.973	-4.000	22.387	14.694	065	1
4.629	.190							
7 4.631	2.250 .213	1.500	88.498	-2.000	23.316	14.694	066	1
8 4.632	2.250 .233	1.750	87.297	1.000	23.870	14.694	066	1
9	2.250	2.000	85.229	3.000	24.368	14.694	068	1
4.635	.263 2.250	2.250	83.489	6.000	24.278	14.693	073	1
4.637	.285 2.250	2.500	82.547	9.000	22.324	14.693	077	1
4.638 12	.296 2.250	2.750	83.658	10.000	19.162	14.694	061	1
4.638	. 294	3.000	83.333	9.000	16.490	14.693	079	1
13 4.637	2.250 .281							
14 4.635	2.250 .260	3.250	84.599	7.000	13.975	14.693	081	1
15 4.633	2.250 .236	3.500	86.013	4.000	11.915	14.693	083	1
16	2.250	3.750	. 87.663	2.000	10.789	14.693	083	1
4.630 17	.210 2.250	4.000	88.991	.000	10.384	14.693	~.080	1
4.629 18	.191 2.250	4.250	90.110	-2.000	10.481	14.693	083	1
4.627 19	.169 2.250	4.500	91.566	-4.000	10.769	14.693	083	1
4.625	.145					14.692	086	1
20 4.624	2.250 .141	4.750	91.610	-4.000	11.171			
21 4.625	2.250 .144	5.000	91.555	-5.000	11.587	14.692	084	1
22	2.250 .130	5.250	92.289	-6.000	12.029	14.692	085	1
4.623 23	2.250	5.500	91.893	-6.000	12.500	14.692	088	1
4.624 1	.134 2.500	.000	91.560	-7.000	19.061	14.693	077	1
4.625 2	.152 2.500	. 250	92.009	-6.000	19.338	14.694	072	1
4.625	.148							
3 4.625	2.500 .150	.500	91.723	-6.000	19.779	14.693	075	1
4.626	2.500 .159	.750	91.319	-5.000	20.322	14.693	073	1
5	2.500	1.000	90.127	-4.000	21.200	14.693	076	1
4.627 6	.176 2.500	1.250	89.567	-3.000	21.728	14.693	076	1
4.628 7	.186 2.500	1.500	88.310	~2.000	22.420	14.693	079	1
4.630	.203 2.500	1,750	86.670	.000	22.892	14.693	-,077	1
4.632	. 231	1.750	00.070	.000	66.076	,	,077	1

9 4.633	2.500 .240	2.000	85.969	2,000	22.707	14.693	080	1
10	2.500	2.250	84.224	4.000	22.530	14.692	085	1
4.635 11	.262 2.500	2.500	84.007	5.000	21.010	14.692	086	1
4.635 12	.264 2.500	2.750	84.061	6.000	19.271	14.693	079	1
4.636	.271 2.500							
4.634	. 251	3.000	84.715	5.000	16.808	14.692	088	1
14 4.634	2.500 .246	3.250	84.589	4.000	15.321	14.692	095	1
15 4.631	2.500 .219	3.500	86.336	2.000	13.493	14.692	094	1
16	2.500	3.750	87.139	1.000	12.460	14.691	096	1
4.630 17	.205 2.500	4.000	88.613	.000	12.040	14.692	095	1
4.628 18	.182 2.500	4.250	89.726	-2.000	11.616	•		
4.626	.164					14.692	094	1
19 4.626	2.500 .160	4.500	90.245	-3.000	11.725	14.692	090	1
20 4.625	2.500	4.750	90.971	-4.000	12.015	14.692	093	1
21	2.500	5.000	91.511	-5.000	12.219	14.692	094	1
4.624	.135 2.500	5.250	91.362	-6.000	12.652	14.692	095	1
4.624 23	.137 2.500	5.500	. 91.328	-6.000	12.983	14.691	096	1
4.624	.136 2.750	.000						
4.625	.155		91.392	-7.300	19.116	14.693	077	1
2 4.626	2.750 .158	.250	91.334	-6.000	19.617	14.693	075 i	1
3 4.626	2.750 .163	.500	91.078	-6.000	19.948	14.693	073	1
4	2.750	.750	89.948	-4.000	20.765	14.694	070	1
4.628 5	.185 2.750	1.000	90.279	-3.000	20.865	14.694	069	1
4.628	.181 2.750	1.250	89.358	-2.000	21.300	14.694	071	1
4.629 7	. 194							
4.630	2 750 .209	1.500	88.115	-2.000	21.736	14.693	077	1
8 4.631	2.750 .219	1.750	87.428	-1.000	21.959	14.693	077	1
9 4.633	2.750 .239	2.000	86.165	1.000	21.878	14.693	078	1
10	2.750	2.250	85.369	4.000	21.404	14.693	081	1
4.634 11	.248 2.750	2.500	85.128	5.000	20.256	14.693	080	1
4.634 12	. 253 2.750	2.750	85.040	5.000	18.772	14.693	079	
4.634	.255							1
4.633	2.750 .242	3,000	85.167	3.000	17.104	14.692	090	1
14 4.633	2.750 .236	3.250	85.256	2.000	15.700	14.692	095	1
15 4.631	2.750 .216	3.500	86.455	2.000	14.368	14.691	096	1
T. UJ.	. 210							

16 4.630	2.750 .208	3.750	87.240	. 000	13.360	14.693	-,091	1
17	2.750	4.000	88.755	-1.000	12.647	14.692	095	1
4.628	.180 2.750	4.250	88.990	-2.000	12 573	14.691	096	1
4.627 19	.175 2.750	4.500	89.990	-3.900	12.328	14.692	094	1
4.626 20	.161 2.750	4.750	90.463	-4.000	12.409	14.592	094	1
4.625 21	.152 2.750	5.000	90.749	-5.000	12.439	14.692	095	1
4.625	.147							
22 4.624	2.750 .136	5.250	91.233	-5.000	12.568	14.691	098	1
23 4.624	2.750 .142	5.500	90.735	-5.000	13.073	14.691	101	1
1 4.626	3.000 .159	.000	91.045	-6.000	19.015	14.693	078	1
2	3.000	.250	90.844	-5.000	19.513	14.694	071	1
4.627	.169 3.000	.500	90.071	-5.000	20.110	14.693	077	1
4.627	.177 3.000	.750	89.285	-4.000	20.535	14.693	075	1
4.629 5	.191 3.000	1.000	89.378	-3.000	20.613	14.694	071	1
4.629 6	.194 3.000	1,250	88.641	-2.000	20.975	14.693	075	1
4.630	. 201							
7 4.631	3.000 .215	1.500	87.780	-1.000	21.311	14.693	076	1
8 4.632	3.000 .227	1.750	86.667	.000	21.519	14.693	081	1
9 4.633	3.000 .238	2.000	86.102	1.000	21.138	14.693	~.079	1
10 4.634	3.000	2.250	85.416	3.000	20.609	14.693	079	1
11	3.000	2.500	85.428	2.000	19.804	14.693	079	1
4.634 12	.249 3.000	2.750	85.133	3.000	18.556	14.693	083	1
4.634	.250 3.000	3.000	85.059	2.000	17.413	14.692	072	1
4.633	.242 3.000	3.250	85.748	1.000	16.023	14.692	094	1
4.632	.229							
15 4.631	3.000	3.500	85.929	1.000	15.219	14.691	099	1
16 4.630	3.000 .205	3.750	87.250	.000	14.095	14.692	094	1
17 4.629	3.000 .193	4.000	88.061	.000	13.537	14.692	093	1
18 4.628	3.000 .183	4.250	88.435	-2.000	13.227	14.691	097	1
19	3.000	4.500	89.064	-2.000	13.298	14.691	097	1
4.627	.173 3.000	4.750	88.967	-3.000	13.290	14.691	101	1
4.627	.171 3.000	5.000	89.440	-3.000	13.249	14.691	099	1
4.626 22	.164 3.000	5.250	89.756	-4.000	13.409	14.691	101	1
4.626	.157 3.000	5.500	89.789	-4.000	13.653	14.691	101	
4.626	. 157	2.300	07.707	4.000	13.033	,14.071	.101	1

APPENDIX G. RESULT 0C.DAT

200								
299 1	.000	.000	135.701	12.000	14.346	14.737	.063	1
4.585	225	250	4.0.006	12 000	42.204	4. 5.5		
2 4.581	.000 262	.250	140.986	-13.000	12.734	14.745	.128	1
3	.000	.500	143.144	-14.000	12.003	14.745	.132	1
4.576	301 .000	.750	143.325	-15.000	10.993	14.745	.132	
4.576	304			4.5 000				
5 4.570	.000 351	1.000	145.356	-17.000	9.953	14.745	.127	3
6	.000	1.250	143.712	-15.000	4.871	14.725	043	1
4.554	488 .000	1.500	149.850	4.000	-11.861	14.715	~.128	1
4.529	699							_
8 4.501	.000 942	1.750	153.629	15.000	-19.567	14.695	291	1
9	.000	2.000	151.278	44.000	-29.743	14.665	547	1
4.476	-1.148 .000	2.250	162,101	70.000	~12.751	14.694	307	1
4.477	-1.145	2 500	467.045	27 000	2 2 4		4.60	
11 4.481	.000 -1.112	2.500	167.065	77.000	2.944	14.711	160	1
12	.000	2.750	175.726	73.000	9.831	14.699	~258	1
4.445	-1.418 .000	3.000	172.112	55.000	16.570	14.656	627	1
4.411	-1.699 .000	3.250	168.349	26.000	21.499	14 657	. 615	1
4.423	-1.597	3.250	160.349	26.000	21.499	14.657	615	1
15 4.468	.000 -1.220	3.500	168.201	8.000	21.068	14.701	241	1
16	.000	3.750	149.545	-6.000	8.895	14.675	462	1
4.491	-1.026 .000	4.000	157.828	-17.000	8.079	14.731	.007	1
4.525	736	4.000	1,7,020	17.000	0.079	14.731	.007	1
18 4.545	.00n 564	4.250	154.562	-16.000	12.284	14.742	.197	1
19	.000	4.500	149.529	-14.000	12.413	14.743	.112	1
4.558	452 .000	4.750	140 561	-16 000	12 1.1.6	16 766	116	
4.561	427	4.730	148.561	-14.000	12.446	14.744	. 116	1
21 4.567	.000 384	5.000	146.364	-12.000	12.679	14.743	.114	1
22	.000	5.250	143.843	-11.000	12.963	14.743	. 111	1
4.572	336 .000	K 500	142 001	- 11 000	12 261	16 763	111	
4.574	321	2 2,111	143.081	-11.000	13.261	14.743	.111	1
1 4.585	.250	.000	132.867	~12.000	15.605	14.731	.007	1
4.363	228 .250	.250	142.775	-13.000	13.341	14.744	.121	1
4.576	~.305	E00	145 750	15 000	12 684	11. 71.5	121	
4.570	.250 355	. 500	145.758	~15.000	12.454	14.745	.131	1
4 4.562	. 250 424	.750	148.977	-16.000	11.239	14.745	.128	1
4 .562 5	.250	1.000	150.799	-18.000	9.884	14.745	.128	1
4.557	462					•		

6 4.537	.250 633	1.250	154.569	~16.000	6.363	14.734	.038	1
7	.250	1.500	162.436	-2.000	-5.137	14.720	084	1
4.502 8	930 .250	1.750	162.148	12.000	-16.843	14.673	483	1
4.456	-1.321 .250	2.000	162.590	42.000	-27.952	14.622	911	1
4.404	-1.760							
10 4.443	.250 -1.435	2.250	164.872	74.000	-13.870	14.667	533	1
11 4.458	.250 -1.306	2.500	173.461	82.000	.397	14.706	201	1
12	. 250	2.750	175.977	76.000	2.980	14.688	355	1
4.432	-1.521 .250	3.000	149.982	60.000	2.154	14.594	-1.149	1
4.409 14	-1.722 .250	3.250	168.175	19.000	7.057	14.611	-1.011	1
4.377	~1.989							
15 4.427	.250 -1.565	3.500	175.525	3.000	10.704	14.681	410	1
16 4.477	.250 -1.143	3.750	167.877	-10.000	6.064	14.709	172	1
17	.250	4.000	159.261	-17.000	9.054	14.732	.023	1
4.523 18	751 .250	4.250	154.163	-16.000	11.100	14.742	.106	1
4.546 19	556 .250	4.500	148.675	-15.000	11.766	14.744	.118	1
4.561	428							
20 4.568	.250 373	4.750	146.031	-14.000	12.087	14.744	.118	1
21 4.568	.250 368	5.000	145.914	-12.000	12.199	14.744	.121	1
22 4.573	.250 330	5.250	143.882	-11.000	12.613	14.744	.118	1
23	.250	5.500	142.481	-10.000	12.946	14.744	.118	1
4.576	302 .500	.000	139.198	-12.000	14.892	14.742	.103	1
4.582	252 .500	.250	142.098					
4.577	~.297		142.098	-13.000	13.863	14.743	.115	1
3 4.569	.500 361	.500	145.454	-14.000	13.243	14.744	.119	1
4	.500	.750	151.754	-16.000	12.043	14.744	.120	1
4.554	491 .500	1.000	156.454	-18.000	10.963	14.744	.117	1
4.542	~.595 .500	1.250	160.952	-18.000	7.847	14.738	.072	1
4.524	740 .500	1.500						
4.484	-1.085		168.533	-9.000	1.301	14.718	098	1
8 4.447	.500 -1.395	1.750	163.098	5.000	-3.847	14.667	534	1
9 4.396	.500 -1.826	2.000	143.480	35.000	-26.721	14.566	-1.387	1
10	. 500	2.250	171.707	72.000	-4.380	14.669	513	1
4.425 11	-1.575 .500	2.500	182.794	80.000	1.619	14.723	060	1
4.447	-1.397 .500	2.750	183.419	78.000	-2.722	14.706	198	
4.429	-1.551	2.750	100.413	70.000	2.166	14.708	.170	1

13 4,376	.500 -1.998	3.000	167.126	60.000	-15.922	14.607	-1.045	1
14	.500	3.250	172.456	17.000	-16.400	14.611	-1.011	1
4.365 15	-2.091 .500	3.500	176.695	-2.000	589	14.678	442	1
4.420 16	-1.626 .500	3.750	173.935	-7.000	3.007	14.725	044	1
4.475 17	-1.160 .500	4.000	161.446	-16.000	7.520	14.737	.059	1
4.522	764 .500	4.250	155.708	-15.000	9.528	14.744	.120	1
4.544	576							
19 4.564	.500 408	4.500	146.914	-13.000	10.912	14.742	.101	1
20 4.572	.500 336	4.750	143.760	-12.000	11.546	14.743	.109	1
21	. 500	5.000	144.642	-11.000	11.070	14.743.	.115	1
4.571	349 .500	5.250	145.209	-11.000	12.019	14.743	.112	1
4.569 23	363 .500	5.500	142.775	-10.000	12.499	14.743	.113	1
4.575	313 .750	.000	140.591	-11.000	14.871	14.743	.109	1
4.580	273							
2 4.573	.750 326	.250	143.323	-12.000	14.649	14.743	.111	1
3 4.568	.750 370	. 500	145.531	-14.000	14.119	14.743	.112	1
4.555	.750 478	.750	150.600	-16.000	13.515	14.743	.108	1
5	.750	1.000	157.465	-19.000	12.714	14.743	.108	1
4.538 6	626 .750	1.250	163.323	-19.000	11.520	14.738	.069	1
4.518	796 .750	1.500	169.848	-12.000	6.396	14.722	064	1
4.484	-1.082 .750	1.750	167.730	.000	8.944	14.685	381	1
4.453	-1.349			25.000	4.923	14.592	-1.167	1
4.420	.750 -1.628	2.000	144.568					
10 4.425	.750 -1.586	2.250	175.792	61.000	7.052	14.680	425	1
11 4.459	.750 -1.294	2.500	177.358	78.000	5.303	14.719	094	1
12	.750	2.750	180.378	76.000	-1.937	14.719	095	1
4.450 13	-1.371 .750	3.000	182.138	56.000	-19.087	14.672	487	1
4.399 14	-1.807 .750	3.250	178.197	16.000	-27.991	14.668	527	1
4.406 15	-1.748 .750	3.500	183.748	-3,000	-9.988	14.713	148	1
4.434	-1.509							
16 4.489	.750 -1.039	3.750	170.629	-7.000	-1.229	14.730	002	1
17 4.528	.750 711	4.000	160.593	-15.000	4.599	14.741	.092	1
18 4.552	.750 506	4.250	151.566	-14.000	7.923	14.742	.101	1
19	.750	4.500	144.754	-13.000	9.962	14.742	. 102	1
4.569	363							

20 4.575 21 4.575	.750 312 .750	4.750 5.000	142.311	-12.000	11.115	14.742	. 104	1
21	.750	5.000						
			142.236	-11.000	11.374	14.742	.102	1
	313							
22 4.576	.750 306	5.250	141.997	-10.000	11.797	14.742	.104	1
23	.750	5.500	140.999	-9.000	12.268	14.742	.105	1
4.578	286 1.000	.000	139.824	-12.000	15.877	14.741	.094	1
4.580	274	.000	137.024		13.077		.071	
2	1.000	.250	141.010	-13.000	15.974	14.742	. 102	1
4.578	288 1.000	.500	145.331	-15.000	15.286	14.742	. 104	1
4.568	373					44 5.5	402	
4.557	1.000 465	.750	149.707	-16.000	15.314	14.742	.103	1
5	1.000	1.000	155.589	-17.000	14.970	14.742	.103	2
4.542	590 1.000	1.250	162.647	-19.000	14.998	14.741	.091	1
6 4.522	~.759	1.230	102.047	19.000	14.550	14.741	.071	•
7	1.000	1.500	167.301	-15.000	14.658	14.725	043	1
4.494 8	-1.000 1.000	1.750	167.898	-4.000	16.258	14.706	203	1
4.473	-1.175							_
9 4.467	1.000 -1.226	2.000	160.472	20.000	19.773	14.680	425	1
10	1.000	2.250	165.125	50.000	14.600	14.694	302	1
4.469	-1.209	2 500	166 151	22 000	8.456	14.729	009	1
11 4.501	1.000 940	2.500	,166.154	72.000	5.456	14.725	009	•
10	1.000	2.750	167.262	72.000	1.246	14.733	.029	1
4.502	-,927 1,000	3.000	164.428	51.000	-19.543	14.696	283	1
4.473	-1.174						i	
14 4.470	1.000 -1.204	3.250	164.282	20.000	-25.503	14.693	316	1
15	1.000	3.500	168.203	-3.000	-15.672	14.715	123	1
4.482	-1.102	2 750	1(7,026	12 000	622	14.735	.046	1
16 4.519	1.000 791	3.750	162.036	-12.000	-5.622	14.735	.040	•
17	1.000	4.000	154.477	-14.000	2.555	14.741	.095	1
4.544	574	4.250	148.954	-13.000	6.621	14.743	.114	1
18 4.560	1.000 438	4.230	140.934	13.000	0.021	14.743	.114	•
19	1.000	4.500	144.130	-12.000	8.945	14.744	.119	1
4.572	334 1.000	4.750	141.491	-11.000	10.368	14.744	.119	1
4.579	281	450	1-1.171	11.000	10.000			
21	1.000	5.000	141.625	-10.000	11.289	14.744	.118	1
4.578	285 1.000	5.250	139.889	-9.000	11.967	14.743	.115	1
4.582	254		•	_				
23 4.579	1.000 278	5.500	141.326	-9.000	12.335	14.744	.119	1
1	1.250	.000	130.251	-16.000	18.744	14.740	.087	1
4.600	099	250	122 021	- 17 000	10 /27	14.743	100	•
2 4.599	1.250 110	.250	132.031	-17.000	18.427	14.743	. 109	1
3	1.250	.500	133.449	~18.000	19.196	14.743	.113	1
4.596	132					•		

4 4.592	1.250 172	.750	135.252	-20.000	19.980	14.742	.107	1
5	1.250	1.000	137.600	-23.000	20.789	14.742	.104	1
4.586 6	220 1.250	1.250	138.908	-25.000	22.934	14.739	.079	1
4.580	271					14.737	.073	-
7 4.571	1.250 350	1.500	139.116	-26.000	26.961	14.730	.003	1
8	1.250	1.750	131.898	-17.000	31.812	14.705	210	1
4.562 9	426	2 000	137 (53	2 000	25.425			_
4.557	1.250 461	2.000	127.652	2.000	38.120	14.692	321	1
10	1.250	2.250	117.633	29.000	31.219	14.685	378	1
4.571 11	-/346 1.250	2.500	129.667	56.000	20.458	14.723	059	•
4.584	235						.033	•
12 4.588	1.250 200	2.750	134.967	58.000	6.096	14.738	.074	1
13	1.250	3.000	133.208	43.000	-18.586	14.715	127	1
4.568 14	368 1.250	3.250	130.398	8.000	-39.174	44 600	264	
4.558	454	3.230	130.396	8.000	-39.174	14.699	264	1
15 4.567	1.250 383	3.500	139.705	-8.000	-26.762	14.728	018	1
16	1.250	3.750	141.158	-12.000	-10.015	14.737	.061	1
4.573	333						`	•
17 4.585	1.250 226	4.000	138.039	-14.000	.859	14.742	.106	1
18	1.250	4.250	.135.955	-13.000	6.206	14.743	.110	1
4.590 19	183 1.250	4.500	133.573	-13.000	8.855	14.743	.111	1
4.596	137	4.500		13.000	0.055		.111	1
20 4.596	1.250 132	4.750	133.391	-13.000	10.640	14.743	.113	1
21	1.250	5.000	133,472	-13.000	11.799	14.743	.115	1
4.596 22	131 1.250	5 250	122 024	12 000	42 222			
4,597	122	5.250	132.834	-12.000	12.232	14.743	.113	1
23	1.250	5.500	132.974	-12.000	12.880	14.743	.115	1
4.597 1	122 1.500	.000	134.633	-10.000	18.295	14.735	.042	1
4.585	226				10.275	14.733	.042	•
2 4.582	1.500 257	.250	139.641	-11.000	17.475	14.742	.107	1
3	1.500	. 500	142.828	-12.000	17.458	14.743	.112	1
4.575	315	350		13.000				
4.571	1.500 350	.750	144.611	-13.000	18.004	14.743	.113	1
5 1. 562	1.500	1.000	148.444	-14.000	18.541	14.744	.116	1
4.562 6	425 1.500	1.250	153.197	-15.000	20.159	14.743	.113	1
4.549	528							1
7 4.549	1.500 529	1.500	152.768	~13.000	24.145	14.742	.103	1
8	1.500	1.750	149.813	-7.000	29.800	14.735	.045	1
4.550 9	525 1.500	2.000	140,858	10.000	22 550	11. 717		
4.553	496	2.000	140,000	10.00	33.559	14.717	108	1
10	1.500	2.250	132.801	35.000	30.724	14.712	154	1
4.566	388					•		

11 4.596	1.500	2.500	128.548	53.000	25.001	14.733	.024	1
12	132 1.500	2.750	125.862	51.000	13.554	14.742	.100	1
4.611	008 1.500	3.000	130.583	41.000	-5.156	14.740	.089	1
4.600 14	104 1.500	3.250	137.768	21.000	-20.669	14.732	.022	1
4.576 15	306 1.500	3.500	141.283	3.000	-17.513			
4.572	341					14.736	.055	1
16 4.573	1.500 332	3.750	143.024	-5.000	-7.419	14.741	.099	1
17 4.579	1.500 280	4.000	141.164	-8.000	.351	14.743	.114	1
18	1.500	4.250	139.051	-9.000	4.993	14.743	.114	1
4.584 19	239 1.500	4.500	138.066	-0.000	7. 7 06	14.743.	.114	1
4.586 20	220 1.500	4.750	138.196	-9.000				
4.586	220				9.576	14.743	.116	1
21 4.586	1.500 221	5.000	139.079	-8.000	11.097	14.745	.132	1
22	1.500	5.250	139.367	-9.000	11.635	14.743	.115	1
4.583 23	243 1.500	5.500	139.201	-8.000	11.915	14.743	.114	1
4.583	242 1.750	.000	136.003	-10.000	18.036	14.741	.095	1
4.588	199		138.038					
4.586	1.750	.250		-10.000	18.130	14.743	.111	1
3 4.580	1.750 274	.500	140.745	-11.000	18.312	14.743	.112	1
4 4.578	1.750 ~.290	.750	141.745	-11.000	18.896	14.743	.116	1
5	1.750	1.000	142.073	-11.000	20.125	14.743	.113	1
4.577 6	299 1.750	1.250	144.335	-12.000	22.251	14.743	.112	1
4.571	345 1.750	1.500	142.761	-10.000				
4.576	318	1.300	142.761	-10.000	26.418	14.743	.108	1
8 4.583	1.750 245	1.750	138.788	-6.000	33.601	14.742	.102	1
9	1.750	2.000	135.251	7.000	39.858	14.737	.063	1
4.586 10	217 1.750	2.250	126.872	28.000	38.345	14.735	.048	1
4.603 11	078 1.750	2.500	119.810	38.000		14.741		
4.623	.091		113.010	38.000	28.628	14.741	.095	1
12 4.634	1.750 192	2.750	114.731	38.000	19.354	14.743	.113	1
13 4.627	1.750 .127	3.000	118.630	30.000	5.704	14.743	.111	1
14	1.750	3.250	124.230	19.000	-5.190	14.742	.102	1
4.615 15	.023 1.750	3.500	131.934	6.000	-7.685	14.742	.104	1
4.598 16	114 1.750	3.750	134.980	-1,000				
4.592	164				-3.566	14.743	.110	1
17 4.591	1.750 175	4.000	135.951	-4.000	1.752	14.744	.117	1

18 4.590	1.750 184	4.250	136.167	-6.000	5.624	14.743	.113	1
19	1.750	4.500	137.488	-7.000	7.878	14.743	.115	1
4.587 20	207 1.750	4.750	136.808	-7.000	9.622	14.743	.113	1
4.589 21	196 1.750	5.000	138.312	-8.000	10.576	14.743		
4.585	225						. 113	1
22 4.586	1.750 222	5.250	138.281	-8.000	11.512	14.743	.115	1
23 4.588	1.750 203	5.500	137.170	-8.000	12.306	14.743	.113	1
1 4.591	2.000 180	.000	135.553	-9.000	17.879	14.742	. 105	1
2	2.000	.250	135.580	-8.000	18.774	14.743	.113	1
4.591 3	173 2.000	.500	137.043	-9.000	19.083	14.743	.111	1
4.588	203 2.000	.750	136.293					
4.590	186		130.293	-8.000	20.233	14.743	.113	1
5 4.586	2.000 220	1.000	137.823	-9.000	20.977	14.743	. 109	1
6 4.591	2.000 177	1.250	135.653	-8.000	23.599	14.743	.111	1
7	2.000	1.500	134.506	-6.000	27.254	14.743	111	1
4.594 8	154 2.000	1.750	130.342	.000	32.902	14.743	.111	1
4.603	077 2. 000							
4.609	022	2.000	127.358	8.000	37.165	14.743	.112	1
10 4.621	2.000 .074	2.250	121.656	19.000	35.322	14.743	.109	1
11 4.629	2.000	2.500	117.405	27.000	28.040	14.742	.106	1
12	2.000	2.750	115.629	28.000	20.396	14.743	.112	1
4.633	.176 2.000	3.000	116.073	14.000	11.884	14.743	.109	1
4.632 14	.167 2.000	3.250	119.315	17.000				
4.625	.112				3.472	14.743	.108	1
15 4.614	2.000 .018	3.500	124.807	8.000	.529	14.743	.108	1
16 4.600	2.000 102	3.750	131.573	1.000	1.534	14.743	.108	1
17	2.000	4.000	132.475	-2.000	4.119	14.743	.110	1
4.598 18	117 2.000	4.250	134.709	-4.000	6.642	14.743	.108	1
4.593 19	161 2.000							
4.589	191	4.500	136.228	-5.000	8.425	14.742	.107	1
20 4.590	2.000 186	4.750	136.170	-6.000	9.841	14.743	.111	1
21 4.585	2.000 224	5.000	138.069	-7.000	10.800	14.743	.109	1
22	2.000	5.250	137.440	-7.000	11.649	14.743	.113	1
4.587 23	208 2.000	5.500	136.740	-7.000	12.133	14.743	.110	1
4.589 1	198 2.250	.000	135.362					
4.591	175	.000	133.362	-8.000	18.392	14.742	. 107	1

2 4.589	2.250	.250	136.262	-8.000	18.740	14.742	. 106	1
3	193 2.250	.500	135.637	-7.000	19.325	14.742	.105	1
4.590 4	182 2.250	.750	135.107	-6.000	20.334	14.743	.109	1
4.592 5	167 2.250	1.000	134.338	-6.000	21.686	14.742	.106	1
4.593 6	156 2.250	1.250	132.534	-6.000	23.747	14.742	.106	1
4.597	122							_
7 4.600	2.250 103	1.500	131.471	-4.000	26.193	14.742	. 106	1
8 4.607	2.250 044	1.750	128.279	-2.000	29.454	14.742	.107	1
9	2.250	2.000	124.259	7.000	30.897	14.742	.105	1
4.615	.025 2.250	2.250	120.398	13.000	30.254	14.742	.105	1
4.623 11	.091 2.250	2.500	117.111	18.000	25.819	14.742	. 106	1
4.629	. 147							
12 4.632	2.250 .168	2.750	115.876	18.000	21.013	14.742	.107	1
13 4.632	2.250 .170	3.000	115.611	18.000	15.443	14.742	. 105	1
14 4.622	2.250 .085	3.250	120.879	12.000	9.187	14.742	.107	1
15	2.250	3.500	123.448	8.000	6.053	14.742	.104	1
4.616	.038 2.250	3.750	.127.522	3.000	5.719	14.742	.106	1
4.608 17	031 2.250	4.000	131.820	.000	6.437	14.743	.108	1
4.599 18	107 2.250	4.250	132.895	-3.000	7.990	14.742	.106	1
4.597 19	129 2.250	4.500	134.755	-4.000	9.152	14.742	.106	1
4.593 20	164 2.250	4.750	135.773	-6.000	10.432	14.743	.108	1
4.590	181		2001	0.000	10.432	19,743	.100	•
21 4.591	2.250 175	5.000	135.463	-6.000	11.203	14.743	.108	1
22 4.589	2.250 195	5.250	136.525	-7.000	12.045	14.743	.108	1
23	2.250	5.500	136.245	-7.000	12.418	14.743	.109	1
4.590	189 2.500	.000	133.212	-7.000	18.899	14.742	.107	1
4.596 2	134 2.500	.250	134.589	-7.000	19.150	14.743	. 114	1
4.594	153	500	425 202					
4.592	2.500 171	.500	135.737	~8.000	19.506	14.744	.118	1
4 4.595	2.500 144	.750	134.186	-7.000	20.348	14.743	.116	1
5 4.599	2.500 110	1.000	132.180	-6.000	21.764	14.743	.112	1
6 4.602	2.500	1.250	130.867	-6.000	23.229	14.743	.112	1
7	2.500	1.500	129.322	-3.000	24.708	14.743	.113	1
4.605	057 2.500	1.750	128.325	.000	26.047	14.743	.112	1
4.607	040							

9 4.615	2.500	2.000	124.946	3.000	26.810	14.743	.115	1
10	.023 2.500	2.250	121.848	8.000	26.057	14.743	.115	1
4.621	.077 2.500	2.500	118.980	12.000	23.961	14.743	. 115	1
4.627	.125	2.750						
12 4.628	2.500 .138		118.270	13.000	20.871	14.744	.116	1
13 4.625	2.500 .114	3.000	119.701	12.000	16.567	14.744	.116	1
14	2.500	3.250	121.593	10.000	12.813	14.743	.113	1
4.621 15	.079 2.500	3.500	124.659	5.000	10.150	14.743	.114	1
4.615 16	.027 2.500	3.750	126.673	2.000	8.682	14.743	.115	1
4.611 17	~.007	4 00C	120 063	-1 000	9 (()	44 7/4		
4.604	2.500 067	4.000	130.092	-1.000	8.662	14.744	.116	1
18 4.600	2.500 104	4.250	132.067	-3.000	9.495	14.743	.116	1
19	2.500	4.500	133.770	-4.000	10.173	14.743	.116	1
4.596 20	136 2.500	4.750	134.656	-5,000	10.938	14.743	.113	1
4.594	155	4.730	134.030	3.000	10.936	14.743	.113	1
21 4.593	2.500 162	5.000	134.945	-6.000	11.654	14.743	.112	1
22	2.500	5.250	135.749	-7.000	12.251	14.743	.113	1
4.591 23	176 2.500	5.500	135.960	~7.000	12.703	14.743	.114	1
4.591	179		•					
1 4.594	2.750 151	.000	134.168	-8.000	18.668	14.743	.108	1
2 4.592	2.750 169	.250	135.286	-8.000	18.770	14.743	.111	1
3	2.750	.500	133.362	-7.000	19.800	14.743	.112	1
4.596 4	132 2.750	.750	133.330	-7.000	20.206	14.743	.112	1
4.596	131							
5 4.599	2.750 111	1.000	132.317	-6.000	21.125	14.743	.113	1
6	2.750	1.250	128.822	-4.000	22.820	14.743	.113	1
4.606 7	048 2.750	1.500	127.548	-2.000	23.608	14.743	.112	1
4.609	026	1 750	126 126	000	,			
8 4.611	2.750 008	1.750	126.496	.000	24.278	14.743	.111	1
9 4.614	2.750 .022	2.000	124.958	3.000	24.495	14.743	. 114	1
10	2.750	2.250	121.745	7.000	24.064	14.743	.111	1
4.621 11	.074 2.750	2.500	120.189	10.000	22.501	14.743	.114	,
4.624	.103						.114	1
12 4.625	2.750 .110	2.750	119.673	10.000	20.362	14.743	.112	1
13	2.750	3.000	120.237	9.000	17.457	14.743	. 114	1
4.624 14	.103 2.750	3.250	122.532	7.000	14.598	14.743	.112	1
4.619	.062							
15 4.614	2.750 .022	3.500	124.683	4.000	12.629	14.743	.109	1

16 4.609	2.750 025	3.750	127.432	1.000	11.250	14.743	.111	1
17	2.750	4.000	129.310	-1.000	10.685	14.743	.111	1
4.605 18	059 2.750	4.250	130.544	-2.000	10.684	14.743	.109	1
4.602 19	082 2.750	4.500	132.113	-3.000	11.232	14.743	.112	1
4.599	109							1
20 4.594	2.750 149	4.750	134.199	-4.000	11.598	14.743	.111	
21 4.594	2.750 150	5.000	134.250	-5.000	12.084	14.743	.111	1
22	2.750	5.250	134.819	-6.000	12.688	14.743	. 109	1
4.593	~.162 2.750	5.500	135.451	-6.000	12.928	14.743	.113	1
4.592	171 3.000	.000	133.856	-6.000	18.782	14.743	. 114	1
4.595	140	.250	101.943	-5.000	19.493	14.743	.111	1
2 4.599	3.000 107							
3 4.598	3.000 114	.500	132.324	-5.000	19.619	14.743	.111	1
4.599	3.000 112	.750	132.137	-6.000	20.044	14.743	.109	1
5	3.000	1.000	130.158	-4.000	21.078	14.743	.110	1
4.603 6	075 3.000	1.250	128.937	-3.000	21.836	14.742	.107	1
4.605 7	055 3.000	1.500	126.693	-1.000	22.696	14.743	.113	1
4.611	010		•				.111	1
8 4.613	3.000 .007	1.750	125.627	1.000	23.022	14.743		
9 4.617	3.000 .046	2.000	123.270	3.000	23.437	14.743	.108	1
10 4.620	3.000 .069	2.250	121.979	5.000	22.902	14.743	.109	1
11	3.000	2.500	120.487	7.000	21.763	14.743	.111	1
4.623	.095 3.0 00	2.750	120.773	8.000	19.838	14.743	.111	1
4.623	.091 3.000	3.000	122.215	6.000	17.752	14.743	.112	1
4.620	.067						.113	1
14 4.615	3.000 .030	3.250	124.387	4.000	15.308	14.743		
15 4.613	3.000 .014	3.500	125.427	2.000	13.911	14.743	.114	1
16 4.609	3.000	3.750	127.281	1.000	12.724	14.743	.113	1
17	020 3.000	4.000	128.661	.000	12.058	14.743	.109	1
4.606 18	048 3.000	4.250	130.582	~2.000	11.948	14.743	.111	1
4.602 19	082 3.000	4.500	132.377	-3.000	12.096	14.743	.110	1
4.598	116							
20 4.598	3.000 121	4.750	132.726	-4.000	12.532	14.743	. 111	1
21 4.595	3.000 139	5.000	133.751	-5.000	12.591	14.743	.112	1
22	3.000	5.250	133.585	-5.000	13.246	14.743	.108	1
4.595	3.000	5.500	133.965	-6.000	13.427	,14.743	.110	1
4.595	145							

APPENDIX H. RESULT 3C.DAT

299								
1	.000	.000	96.737	-11.000	13.372	14.690	.172	1
4.614	.303	. 250	97.806	-12.000	12.936	14.690	.168	1
2 4.612	.000 .279	. 250	37.000	12.000	12.730	14.630	. 200	•
3	.000	.500	99.054	-13.000	12.116	14.690	.170	1
4.610	. 259 . 000	.750	99.880	-14.000	11.094	14.690	. 169	1
4.609	. 243			46 000	40 430	44 (00	160	
5 4.607	.000 .225	1.000	100.846	-16.000	10.170	14.690	.169	1
6	.000	1.250	100.238	-15.000	8.460	14.681	.065	1
4.599 7	.133 .000	1.500	98.974	-3.000	-4.648	14.653	250	1
4.573	160						4.70	
8 4.553	.000 386	1.750	98.912	15.000	-13.092	14.633	478	1
9.555	. 000	2.000	94.907	37.000	-22.132	14.602	837	1
4.528	673	2 250	00 970	cs 000	-12 020	14.619	639	1
10 4.538	.000 565	2.250	99.870	65.000	-13.838	14.019	.037	1
11	.000	2.500	104.963	73.000	2.199	14.640	403	1
4.550	426	2.750	100 (13	71 000	10.500	14 636	452	1
12 4.539	.000 547	2.750	108.612	71.000	10.560	14.636	432	1
13	.000	3.000	103,958	59.000	15.672	14.602	837	1
4.513	840					44 505	207	
14 4.509	.000 888	3.250	102.772	30.000	19.279	14.595	~.907	1
15	.000	3.500	103.466	11.000	21.003	14.625	~.567	1
4.538	561					4		
16 4.551	.000 417	3.750	101.685	-4.000	12.623	14.635	457	1
17	.000	4.000	107.602	-15.000	10.328	14.676	.011	1
4.582	064							
18	.000 .070	4.250	104.468	-16.000	13.372	14.683	.083	1
4.593 19	.000	4.500	103.733	-14.000	12.835	14.688	.143	1
4.600	. 144							
20	.000	4.750	101.574	-13.000	12.751	14.687	.138	1
4.603 21	.180 .000	5.000	99.819	-12.000	12.832	14.687	.135	1
4.606	.210							_
22	.000	5.250	98.659	-11.000	12.899	14.687	.130	1
4.607 23	.226 .000	5.500	96.949	-10.000	13.331	14.686	.125	1
4.609	. 252							
1	.250	.000	96.502	-11.000	14.210	14.688	.148	1
4.612	.284 .250	. 250	98.184	-13.000	13.427	14.689	.157	1
4.610	. 261	. 2 3 0	20.409	20.000				_
3	.250	.500	99.601	-14.000	12.825	14.690	. 161	1
4.608 4	. 240 . 250	.750	102.050	-16.000	11.671	14.690	.168	1
4.605	.201	. 730	102.030	10.000	11.0/1	24.000	. 200	•
5	.250	1.000	103.829	-17.000	10.458	14.689	.161	1
4.601	.160							

6	. 250	1.250	104.395	-17.000	8.573	14.682	.074	1
4.593	.063 .250	1.500	103.435	-7.000	823	14.653	249	1
4.566 8	242 .250	1.750	103.086	-1.000	-7.788	14.624	587	1
4.537	574							
9 4.506	.250 923	2.000	94.559	39.000	-22.304	14.579	-1.093	1
10	.250	2.250	100.821	68.000	-13.193	14.601	842	1
4.518	786	2.500	110.243	77.000	.516	14.640	396	1
11 4.541	.250 524	2.300	110.243	77.000	.316	14.640	.390	•
12	. 250	2.750	113.049	74.000	5.440	14.633	475	1
4.529 13	662 .250	3.000	101.824	61.000	3.994	14.575	-1.139	1
4.490	-1.102	2 250	404 405	*/ 000			. 222	
14 4.474	.250 -1.285	3,250	101.485	26.000	4.513	14.558	-1.329	1
15	.250	3.500	106.355	6.000	11.286	14.606	792	1
4.513 16	843 .250	3.750	107.919	-9.000	8.127	14.639	408	1
4.544	490							
17 4.580	.250 086	4.000	106.988	-17.000	10.581	14.673	023	1
18	.250	4.250	104.264	-18.000	12.185	14.685	110	1
4.596 19	.101 .250	4.500	102.121	-16.000	12.377	14.687	.138	1
4.602	.170	4.500	102.121	10.000	12.377	14.007	.130	
20 4.604	.250 .188	4.750	101.333	-14.000	12.111	14.688	.141	1
21	.250	5.000	99.732	-12.000	12.258	14.687	.137	1
4.606	.214 .250	5.250	97.907	-11.000	12.518	14.687	.132	1
22 4.609	. 242	3.230	97.907	-11.000	12.516	14.007	.154	•
23	.250	5.500	96.575	-10.000	12.897	14.687	.132	1
4.611	.266 .500	.000	91.565	-11.000	16.192	14.674	010	1
4.606	.211			4.5.000				
2 4.609	.500 .244	.250	97.493	-12.000	14.454	14.686	.126	1
3	.500	.500	100.384	-14.000	13 25	14.688	.147	1
4.606 4	.211 .500	.750	103.031	-16.000	12.529	14.688	. 148	1
4.602	.163	.730	103.031	10.000	12.527	14.000	.140	•
5	.500	1.000	105.289	-18.000	11.701	14.688	. 147	1
4.598	. 118 . 500	1.250	107.485	-18.000	10.302	14.683	.083	1
4.588	.010						4.61	
7 4.564	.500 266	1.500	108.919	-10.000	4.025	14.661	164	1
8	.500	1.750	99.871	5.000	-1.323	14.612	719	1
4.531	645 .500	2.000	92.828	33.000	-15.353	14.558	-1.331	1
4.488	~1.131							
10 4.514	.500 835	2.250	105.376	77.000	-8.410	14.605	804	1
11	.500	2.500	114.442	78.000	1.004	14.651	277	1
4.544	493			25 000		16 (12	_ 276	
12 4.533	.500 619	2.750	115.768	75.000	. 447	14.642	375	1

13	. 500	3.000	106.614	61.000	-8.569	14.579	-1.088	1
4.487	-1.144 .500	3.250	105.033	23.000	-14.855	14.559	-1.317	1
4.469 15	~1.341 .500	3.500	110.667	1.000	-1.026	14.609	753	1
4.509	890	3.300	110.007	1.000	1.020	14.003		-
16	.500	3.750	111.552	-12.000	3.680	14.649	302	1
4.547	458 .500	4.000	107.804	-18.000	8.075	14.672	038	1
4.577	117						440	
18 4.594	.500 .079	4.250	105.384	-18.000	10.495	14.685	.110	1
19	.500	4.500	100.400	-16.000	11.451	14.687	. 130	1
4.604 20	.194 .500	4.750	99.509	-14.000	11.722	14.687	.127	1
4.606	. 207							_
21 4.607	.500 .225	5.000	98.404	-12.000	11.801	14.686	. 124	1
22	. 500	5.250	97.393	-11.000	12.154	14.686	.121	1
4.608	. 241	E 500	06 005	-10 000	12 702	11. 696	110	1
23 4.610	.500 .262	5.500	96.005	-10.000	12.782	14.686	.118	1
1	.750	.000	97.198	-12.000	15.176	14.688	. 145	1
4.611	.268 .750	. 250	98.757	-13.000	14.856	14.689	.151	1
4.609	. 245						•	
3 4.607	.750 .219	.500	100.395	-14.000	14.467	14.689	. 154	1
4.607	.750	. 750	103.847	-15.000	13.774	14.689	.156	1
4.601	.155	1 000	106 622	-16 000	12 269	14.689	.151	1
5 4.596	.750 .095	1.000	106.623	-16.000	13.359	14.609	. 151	1
6	.750	1.250	109.165	-19.000	12.820	14.683	.082	1
4.585	024 .750	1.500	109.984	-12.000	9.363	14.663	142	1
4.564	265							
8 4.537	.750 566	1.750	106.534	.000	7.824	14,630	512	1
9.337	.750	2.000	97.337	26.000	1.073	14.581	-1.075	1
4.503	954	2 250	102 220	(1.000	4.0.6	14 603	- 017	1
10 4.516	.750 806	2.250	103.220	61.000	.406	14.603	817	1
11	.750	2.500	117.028	74.000	3.171	14.662	148	1
4.550 12	420 .750	2.750	117.409	74.000	160	14.658	198	1
4.545	478		11					
13 4.502	.750 964	3 .000	112.016	56.000	-15.666	14.605	799	1
14	.750	3.250	111.196	23.000	-22.328	14.597	884	1
4.496	-1.032					44 686	F 4 .	
15 4.517	.750 794	3.500	115.114	-1.000	-10.267	14.626	564	1
16	.750	3.750	112.534	-12.000	-1.891	14.659	184	1
4.556 17	360 .750	4.000	109.175	-16.000	4.855	14.680	.055	1
4.583	052							
18	.750	4.250	104.321	-15.000	8.493	14.685	. 111	1
4.596 19	.101 .750	4.500	99.889	-13.000	10.106	14.687	.130	1
4.605	. 204							

20	.750	4.750	98.034	-12.000	11.0/9	14.687	.134	1
4.609 21	. 241 . 750	5.000	97.562	-11.000	11.411	14.686	.126	1
4.609 22	.242 .750	5.250	97,200	-10.000	11.755	14.687	.132	1
4.610	.255	3.200	77.200	10.000	11.755	14.007		
23 4.611	.750	5.500	96,015	-9.000	12.364	14.686	. 125	1
1	.270 1.000	.000	92.973	-11.000	16.732	14.679	.045	1
4.609	. 243	250	07 310	12 000	15 702	11. 606	.125	1
2 4.609	1.000 .247	.250	97.219	-12.000	15.783	14.686	.123	•
3	1.000	.500	99.888	-13.000	15.442	14.688	.145	1
4.607 4	.218 1.000	.750	102.472	-15.000	15.370	14.688	.148	1
4.602	.173							
5 4.596	1.000 .099	1.000	105.913	-16.000	15.095	14.688	.141	1
6	1.000	1.250	109.237	-18.000	15.245	14.685	. 115	1
4.588 7	.007 1.000	1.500	110.946	-14.000	14.219	14.675	008	1
4.574	151							
8 4.550	1.000 418	1.750	108.157	-3.000	13.826	14.646	332	1
9	1.000	2.000	99.929	21.000	13.533	14.612	721	1
4.530 10	648 1.000	2.250	101.992	51.000	8.347	14.616	669	1
4.531	635							
11 4,563	1.000 275	2.500	105.643	69.000	6.770	14.654	239	1
12	1.000	2.750	111.612	71.000	1.544	14.671	046	1
4.569	203 1.000	3.000	109.155	54.000	-15.730	14.629	521	1
4.532	627	3.000					l	
14 4.526	1.000 701	3.250	107.114	22.000	-25.062	14.619	635	1
15	1.000	3.500	108.876	-1.000	-18.298	14.637	433	1
4.540	534	3.750	108.996	-12.000	-6.883	14.666	101	1
16 4.569	1.000 204	3.750	100.336	-12.000	0.003	14.000	.101	•
17	1.000	4.000	105.868	-13.000	2.447	14.682	.072	1
4.590 18	.032 1.000	4.250	102.374	-14.000	6.782	14.686	.117	1
4.600	.143			40.000				
19 4.607	1.000 .225	4.500	98.241	~12.000	9.184	14.686	.121	1
20	1.000	4.750	96.145	-11.000	10.421	14.686	.122	1
4.611	.264 1.000	5.000	96.077	-10.000	11.098	14.686	.123	1
4.611	. 266							
22	1.000 .253	5.250	96.339	-10.000	11.624	14.685	.115	1
4.610	1.000	5.500	94.905	-9.000	12.157	14.685	. 114	1
4.612	. 278	000	96.335	-11.000	15.709	14.686	.121	1
1 4.610	1.250 .260	.000		. 11.000				1
2	1.250	.250	97.455	-13.000	15.844	14.686	.123	1
4.609	. 242 1.250	.500	98.732	-13.000	16.025	14.686	.126	1
4.607	. 221		· · · ·			,		

					•r 053	14.686	. 125	1
4	1.250	.750		-14.000	15.953	14.686	. 121	1
4.602 5	,165 1.250	1.000	104.803	-16.000	16.256		, 114	1
4.596 6	.102 1.250	1.250	107.173	-17.009	17.238	14.685		1
4.592	.048 1.250	1,500	108.121	-16.000	18.968	14.681	.059	
4.585	026 1.250	1.750	101.937	-7.000	21.148	14.653	252	1
8 4.568	217	2.000	95.570	12.000	21.238	14.629	531	1
9 4.554	1.250	2.250	93.882	41.000	15.812	14.626	563	1
10 4.554	1.250		100.797	61.000	11.438	14.672	041	1
11 4,589	1.250 .015	2.500		62.000	4.491	14.687	.129	1
12 4.600	1.250 .144	2.750	102,990		-12.738	14.665	119	1
13	1.250 175	3.000	106.615	50.000		14.640	399	1
4.572 14	1.250	3.250	101.650	20.000	-28.102		137	1
4,556 15	359 1.250	3.500	105.706	.000	-22.013	14.663		1
4.572 16	174 1.250	3.750	105.923	-10.000	-9.544	14.677	.023	
4.586	018 1.250	4.000	102.964	-13.000	. 221	14.683	.092	1
17 4.597	.107	4.250	. 99,508	-12.000	5.272	14.685	.110	1
18 4.604	1.250		96.297	-11.000	7.984	14.685	.106	1
19 4.609	1.250	4.500		-11.000	9.495	14.685	.104	1
20 4.609	1.250 .242	4.750	96.357		10.397	14.684	.103	1
21	1.250	5.000	95.758	-10.000		14.684	.102	1
4.609 22	1.250	5.250	96.329	-10.000	10.988		.097	1
4.608 23	.240 1.250	5.500	95.217	-10.000	11.729	14.684		
4.610	.255 1.500	.000	95.007	-10.000	16.130	14.686	.123	1
4.612	.285 1.500	. 250	96.037	-11.000	16.911	14.686	.123	1
4,611	. 267	.500	97.264	-12.000	17.110	14.686	.125	1
4,609	1.500	.750			17.358	14.687	.128	1
4,606	1.500	1.000			18.126	14,686	.124	1
5 4,603	1.500 .179					14.686	.121	1
4.600	1.500	1.250	_	- 455	_		.094	1
7	1.500	1.500					004	1
4.598	1.500	1.75	0 100.17				247	
4.593 9	.064 1.500	2.00	0 93.06	2 9.000				
4.583	-,051 1,500	2.25	0 87.50	2 34.000	26.085	14.648	-,312	, 4
4.585	-,023							

11 4.609	1.500 .246	2.500	88.434	51.000	20.498	14.673	028	1
12	1.500	2.750	87.630	52.000	11.521	14.683	.091	1
4.621	.378 1.500	3.000	92.393	41.000	-6.264	14.682	.070	1
4.612 14	.278 1.500	3.250	95.325	21.000	-19.830	14.672	034	1
4.598 15	.122 1.500	3.500	97.392	4.000	-17.915			
4.598	.123					14.676	.003	1
16 4.602	1.500 .164	3.750	98.584	-5.000	-8.052	14.681	.066	1
17 4.607	1.500 .224	4.000	97.081	-8.000	.147	14.684	.099	1
18 4.610	1.500 .258	4.250	95.480	-9.000	5.111	14.685	.105	1
19	1.500	4.500	94.482	-10.000	7.935	14.684	.103	1
4.611 20	.275 1.500	4.750	94,502	-9.000	9.457	14.685	.104	1
4.611	.275 1.500	5.000	94.006					
4.612	. 278			-9.000	10.302	14.684	.099	1
22 4.611	1.500 .270	5.250	94.448	-9.000	10.910	14.684	.098	1
23 4.612	1.500 .282	5.500	93.488	-8.000	11.756	14.684	.094	1
4.612	1.750	.000	92.894	-9.000	17.627	14.683	.088	1
2	.286 1.750	.250	. 94.517	-10.000	17.520	14.685	. 112	1
4.612	.283 1.750	.500	95.581	-11.000	17.955	14.686	.116	1
4.611	.268 1.750	.750	96.595	-11.000				
4.609	. 249				18.597	14.685	.115	1
5 4.608	1.750 .236	1.000	97.845	-11.000	19.581	14.686	.125	1
6 4.608	1.750 .230	1.250	97.916	-11.000	21.410	14.686	.120	1
7 4.610	1.750	1.500	95.953	-10.000	25.644	14.685	.111	1
8	.256 1.750	1.750	94.386	-6.000	30.707	14.682	.074	1
4.609 9	.247 1.750	2.000	90.723	8.000	35.600	14.673	024	1
4.606	. 212				•			1
4.611	1.750 .268	2.250	86.236	26.000	32.641	14.672	042	1
11 4.624	1.750 .411	2.500	83.219	39.000	25.691	14.680	.054	1
12 4.631	1.750 .502	2.750	81.682	40.000	16.561	14.686	.121	1
13	1.750	3.000	83.031	32.000	3.477	14.685	.111	1
4.629 14	.471 1.750	3.250	87.326	18.000	-7.288	14.682	.081	1
4.620 15	.373 1.750	3,500	91.390					
4.615	.310			7.000	-8.551	14.683	.086	1
16 4.613	1.750 .294	3.750	92.676	-1.000	-3.705	14.683	.091	1
17 4.614	1.750 .300	4.000	92.762	-5.000	1.497	14.684	.099	1
4.514	.300							

18 4.613	1.750 .295	4.250	93.135	-6.000	5.401	14.684	.101	1
19	1.750	4.500	93.124	-8.000	7.974	14.684	.098	1
4.613 20	.293 1.750	4.750	93.009	-8.000	9.260	14.684	.095	1
4.613 21	.292 1.750	5.000	93.389		10.438			
4.612	. 282			-8.000		14.683	.092	1
22 4.613	1.750 .288	5.250	93.368	-8.000	11.150	14.684	.097	1
23 4.612	1.750 .286	5.500	93.181	~8.000	11.886	14.683	.092	1
1	2.000	.000	93.140	-8.000	17.710	14.683	.086	1
4.612	.280 2.000	.250	94.026	-8.000	17.834	14.685	.110	1
4.613	.289							
3 4.612	2.000 .281	.500	94.754	-9.000	18.071	14.685	.114	1
4.612	2.000 .277	.750	94.910	-9.000	18.865	14.685	.114	1
5	2.000	1.000	95.039	-9.000	19.911	14.685	.112	1
4.611 6	.274 2.000	1.250	93.587	-8.000	22.007	14.685	.115	1
4.614	.302 2.000	1.500	91.878	-7.000	25.237	14.685	.108	1
4.616 8	.324 2.000	1.750	90.137	-2.000			•	
4.618	. 345				29.506	14.684	.099	1
9 4.621	2.000 .378	2.000	. 86.717	7.000	34.178	14.682	.077	1
10 4.624	2.000 .419	2.250	83.605	18.000	33.172	14.681	.068	1
11	2.000	2.500	80.851	28.000	26.148	14.683	.085	1
4.629 12	.478 2.000	2.750	80.075	30.000	18.652	14.686	. 123	1
4.634	.527 2.000	3.000	80.632	24.000	9.609	14.684	.097	1
4.631	.493							
14 4.627	2.000 .446	3.250	83.079	15.000	1.474	14.683	.087	1
15 4.622	2.000 .389	3.500	86.533	9.000	-1.162	14.683	.084	1
16	2.000	3.750	89.123	1.000	.640	14.683	.084	1
4.618 17	.347 2.000	4.000	90.442	-3.000	3.640	14.683	.086	1
4.616 18	.326 2.000	4.250	91.362	-5.000	6,351	14.683	.086	1
4.615 19	.311							
4.614	2.000 .299	4.500	92.002	-6.000	8.271	14.683	.085	1
20 4.613	2.000 .288	4.750	92.287	-7.000	9.510	14.682	.079	1
21 4.611	2.000	5.000	93.240	-7.000	10.354	14.682	.081	1
22	2.000	5.250	92.851	-7.000	11.256	14.682	.077	1
4.612 23	.277 2.000	5.500	92.639	-7.000	11.871	14.682	.076	1
4.612	.279 2.250	.000	92.403	-8.000				
4.614	.298	.000	72.4VJ	-0.000	18.107	14.683	.091	1

4.614	2.250	.250	93.692	~8.000	18.184	14.686	.121	3
3	.306 2.250	.500	93.746	~8.000	18.877	14.686	.121	1
4.614	.305 2.250	.750	93.966	-8.000	19,615	14.686	.122	1
4.614	.302							
5 4.614	2.250 .308	1.000	93.590	-7.000	20.713	14.686	.121	1
6 4.617	2.250	1.250	91.805	-6.000	22.343	14.686	.125	1
7	2.250	1.500	90.291	-4.000	24.914	14.686	.122	1
4.619 8	.365 2.250	1.750	88.769	-1.000	27.282	14.686	.123	1
4.622	.392							
9 4.624	2.250 .420	2.000	85.854	1.000	30.087	14.685	.105	1
10 4.629	2.250 .471	2.250	82.768	13.000	28.943	14.685	.107	1
11	2.250	2.500	80.886	20.000	25.116	14.685	.107	1
4.631 12	.499 2.250	2.750	80.979	21.000	19.520	14.687	.137	1
4.634	.528							
13 4.631	2.250 .502	3.000	81.587	18.000	13.444	14.686	.120	1
14 4.628	2.250 .467	3.250	82.561	13.000	7.897	14.684	.100	1
15	2.250	3.500	85.327	6.000	4.955	14.684	.098	1
4.624	.422 2.250	3.750	. 88.056	2.000	4.944	14.684	.101	1
4.621	.381							
17 4.618	2.250 .345	4.000	90.051	~2.000	6.074	14.684	.098	1
18 4.616	2.250 .323	4.250	91.463	.000	7.592	14.684	.099	1
19	2.250	4.500	92.141	~5.000	8.893	14.684	.098	1
4.615	.310 2.250	4.750	92.377	~6.000	10.016	14.684	.096	1
4.614	. 303							
21 4.613	2.250 .295	5.000	92.780	~6.000	10.764	14.684	.094	1
22 4.614	2.250 .303	5.250	92.515	-6.000	11.521	14.684	.097	1
23	2.250	5.500	92.687	~7.000	12.127	14.684	.097	1
4.614	.300 2.500	.000	90.377	-8.000	18.355	14.679	.045	1
4.612	.286							
2 4.614	2.500 .303	.250	92.261	-8.000	18.384	14.684	.094	1
3 4.614	2.500	.500	92.515	-8.000	18.957	14.684	.099	1
4	2.500	.750	92.688	-7.000	19.447	14.684	.099	1
4.614	.302 2.500	1.000	91.432	-6.000	20.727	14.684	.100	1
4.616	. 324							
6 4.617	2.500 .343	1.250	90.060	-5.000	22.253	14.684	.096	1
7 4.620	2.500 .367	1.500	88.704	-3.000	23.742	14.684	.097	1
8	2.500	1.750	86.956	.000	25.346	14.683	.090	1
4.621	.388							

9	2.500	2.000	85.017	3.000	26.416	14.683	.086	1
4.624	.414 2.500	2.250	82.750	8.000	25.923	14.683	.084	1
4.627 11	.448 2.500	2.500	80.820	12.000	23.480	14.683	.086	1
4.629	.479							
12 4.630	2.500 .490	2.750	81.486	14.000	19.431	14.685	. 106	1
13	2.500	3.000	81.651	12.000	15.271	14.683	.087	1
4.628 14	.468 2.500	3.250	82.508	10.000	11.210	14.682	.072	1
4.626 15	.440 2.500	3.500	85.286	5.000	8.610	14.683	.082	1
4.623	.407							
16 4.620	2.500 .376	3.750	87.315	1.000	7.650	14.683	.083	1
17	2.500	4.000	89.155	-1.000	8.057	14.603	.082	1
4.618 18	.344 2.500	4.250	90.679	~3.000	8.715	14.683	.086	1
4.616 19	.322 2.500	4.500	91.148	-5.000	9.540	14.682	.079	1
4.614	.307							
20 4.613	2.500 .295	4.750	91.837	-6.000	10.196	14.682	.078	1
21	2.500	5.000	92.040	-7.000	11.007	14.682	.077	1
4.613 22	.290 2.500	5.250	92.076	-7.000	11.834	14.682	.076	1
4.613	.289 2.500	5.500	92.143	-8.000	12.116	14.682	.077	1
23 4.613	.288		•					
1 4.615	2.750 .310	.000	91.217	-7.000	18.257	14.683	.083	1
2	2.750	.250	91.071	-6.000	18.570	14.684	.094	1
4.616	.324 2.750	.500	91.242	-6.000	19.077	14.684	. 097	1
4.616	.324 2.750	.750	90.064	-6.000	20.103	14.684	. 097	1
4.618	. 343	.750	70.004					
5 4.617	2.750 .338	1.000	90.326	-6.000	20.643	14.684	.095	1
6	2.750	1.250	88.862	-4.000	21.857	14.684	.097	1
4.619 7	.363 2.750	1.500	87.337	-2,000	22,948	14.684	.094	1
4.621	.386		06 100	000	33.004	17. 603	000	1
8 4.623	2.750 .401	1.750	86.183	.000	23.884	14.683	.090	1
9 4.625	2.750 .431	2.000	84.029	3.000	24.597	14.683	.087	1
10	2.750	2.250	82.292	6.000	24.046	14.683	.086	1
4.628 11	.457 2.750	2.500	81.353	9.000	22.450	14.683	.088	1
4.629	.473					14 604	102	,
12 4.630	2.750 .487	2.750	81.458	10.000	19.475	14.684	.103	1
13 4.628	2.750 .460	3,000	82.045	10.000	16.387	14.683	.086	1
14	2.750	3.250	83.289	7.000	13,230	14.682	.072	1
4.625 15	.428 2.750	3.500	84.357	4.000	11.507	14.682	.073	1
4.624	.412	0.000			,	.*		_

16	2.750	3.750	86.106	1.000	10.404	14.682	.072	1
4.621 17	.384 2.750	4.000	86.862	.000	10.048	14.681	.069	1
4.620 18	.368 2.750	4.250	88.866	-3.000	10.242	14.681	.066	1
4.617	.333							
19 4.616	2.750 .327	4.500	89.571	-4.000	10.572	14.682	.072	1
20	2.750	4.750	90.345	-5.000	11.021	14.681	.068	1
4.615 21	.310 2.750	5.000	90.176	-6.000	11.803	14.681	.069	1
4.615 22	.314 2.750	5.250	90.795	-6.000	12.137	14.681	.064	1
4.614	.299							
23 4.614	2.750 .305	5.500	90.414	-6.000	12.509	14.681	.064	1
1 615	3.000	.000	90.729	-6.000	18.408	14.682	.080	1
4.615 2	.316 3.000	.250	91.000	-6.000	18.565	14.683	.087	1
4.615	.318 3.000	.500	90.794	-5.000	10 062	16 693	006	•
4.615	.320	. 300		- 3.000	19.062	14.683	.086	1
4 4.617	3.000 .335	.750	89.922	-5.000	19.655	14.683	.086	1
5	3.000	1.000	89.061	-4.000	20.550	14.683	.087	1
4.618 6	.350 3.000	1.250	88.460	-3.000	21.208	14.683	.088	1
4.619 7	.362 3.000	1.500	87.082	-1 000	22 021			,
4.621	.379			-1.000	22.031	14.683	.083	1
8 4.623	3.000 .405	1.750	85.296	1.000	22.807	14.682	.081	1
9	3.000	2.000	84.083	3.000	22.941	14.682	.079	1
4.625 10	.423 3.000	2.250	82.996	5.000	22.115	14.682	. 079 ⁱ	1
4.626 11	.439 3.000	2.500	82.411	7.000	21.137	14.682	.081	1
4.627	. 450			7.000	21,137	14,002	.001	1
12 4.627	3.000 .450	2.750	82.629	8.000	19.176	14.683	.084	1
13	3.000	3.000	83.322	6.000	16.658	14.682	.074	1
4.625 14	.429 3.000	3.250	83.675	4.000	14.871	14.681	.065	1
4.624	.415	2 500	01.013					
15 4.622	3.000 .390	3.500	85.012	3.000	13.020	14.681	.061	1
16 4.620	3.000 .371	3.750	86.292	.000	11.938	14.681	.063	1
17	3.000	4.000	87.459	-1.000	11.491	14.681	.062	1
4.618 18	.352 3.000	4.250	88.465	-2.000	11.467	14.681	.060	1
4.617	.333							
19 4.616	3.000 .328	4.500	88.831	-3.000	11.636	14.681	.061	1
20 4.615	3.000 .315	4.750	89.728	-5.000	11.852	14.681	.062	1
21	3.000	5.000	89.913	~6.000	12.185	14.681	.059	1
4.614 22	.309 3.000	5.250	90.264	-6.000	12.537	14.680	.055	1
4.614	.299							
23 4.614	3.000 .304	5.500	89.872	~6.000	12.973	,14.680	.054	1

LIST OF REFERENCES

- 1. Roane, D. P., The Effect of a Turbulent Airstream on a Vertically-Launched Missile at High Angles of Attack, M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1987.
- 2. Rabang, M. P., Turbulence Effects on the High Angle of Attack Aerodynamics of a Vertically-Launched Missile, M.S. Thesis, Naval Postgraduate School, Monterey, CA, June 1988.
- 3. Lung, Ming-Hung, Flowfield Measurements in the Vortex Wake of a Missile at High Angle of Attack in Turbulence, M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1988.
- 4. Dahlem, V., Flaherty, J. I., Shereda, D. E., High Angle of Attack Missile Aerodynamics at Mach Numbers 0.3 to 1.5, Technical Report AFWAL-TR-80-3070, Rutgers, NJ, November 1980.
- 5. Ericsson, L. E. and Reding, J. P., Asymmetric Vortex Shedding From Bodies of Revolution, Tactical Missile Aerodynamics, American Institute of Aeronautics and Astronautics, Inc., 1986.
- 6. Gregoriou, G., Modern Missile Design for High Angle of Attack, AGARD/VKI lecture series no. 121, High Angle of Attack Aerodynamics, March 1982.
- 7. Keener, E. R. and Chapman, G. T., Similarity in Vortex Asymmetries Over Slender Bodies and Wings, AIAA Journal, v. 15, no. 9., pp. 1370-1372, September 1977.
- 8. Deffenbaugh, F. D., and Koerner, Asymmetric Vortex Wake Development on Missiles at High Angles of Attack, Journal of Spacecraft, jv. 14, no. 3, pp. 155-162, March 1977.
- 9. Clark, W. C., and Nelson, R. C., Body Vortex Formation on Missiles at High Angles of Attack, AIAA Paper 76-65, January 1976.
- 10. Achenbach, Elmar, Influence of Surface Roughness on the Crossflow Around a Circular Cylinder, Journal of Fluid Mechanics, pp. 321-335, v. 46, part 2, 1971.
- 11. Ericsson, L. E. and Reding, J. P., Dynamics of Forebody Flow Separation and Associated Vortices, AIAA Paper 83-2118, August 1983.

- 12. Reding, J. P. and Ericsson, L. E., Re-examination of the Maximum Normalized Vortex-Induced Side Force, Journal of Spacecraft, v. 21, no. 5, September-October 1984.
- 13. Reding, J. P. and Ericsson, L. E., Maximum Vortex-Induced Side Forces on Slender Bodies, AIAA Paper 77-1155, 1977.
- 14. Lamont, P. J., Pressure Measurements on an Ogive-Cylinder at High Angles of Attack With Laminar, Transitional, or Turbulent Separation, AIAA Paper 80-1556, 1980.
- 15. Jorgensen, L. H. and Nelson, E. R., Experimental Aerodynamic Characteristic for a Cylindrical Body Revolution with Various Noses at AOA from 0° to 58° and Mach Numbers from 0.6 to 2.0, NASA TM X-3130, March 1975.
- 16. Wardlaw, A. B., Jr., and Morrison, A. M., Induced Side Forces on Bodies of Revolution at High Angles of Attack, NSWC/WOL/TR 75-176, November 1975.
- 17. Pick, George S., Investigation of Side Forces on Ogive-Cylinder Bodies at High Angles of Attack in the M=0.5 to 1.1 Range, AIAA Paper 71-570, 1971.
- 18. Keener, E. R. and others, Side Force on Forebodies at High AOA and Mach Number from 0.1 to 0.7; Two Tangent Ogives, Paraboloid and Cone, NASA-TM-X-3438, Moffet Field, CA, February 1977.
- 19. Kruse, Robert L, Keener, Earl R., and Chapman, Gary T., Investigation of the Asymmetric Aerodynamic Characteristics of Cylindrical Bodies of Revolution With Various Variations in Nose Geometry and Rotational Orientation, NASA-TM 78533, September 1979.
- 20. Yongnian, Y., Xinzhi, Y., and Jianying, L., Active Control of Asymmetric Forces at High Incidence, Journal of Aircraft, v. 25, no. 2, pp. 190-192, February 1988.
- 21. Keener, E. R. and others, Side Forces on a Tangent Ogive Forebody with a Fineness Ratio of 3.5 at High AOA and Mach From 0.1 to 0.7, NASA-TM-X-3437, Moffet Field, CA, February 1977.
- 22. Bradshaw, P., An Introduction to Turbulence and Its Measurement, Pergamon Press, 1971.

- 23. Tieleman, H. W., A Survey of the Turbulence in the Marine Surface Layer for the Operation of Low-Reynolds Number Aircraft, Virginia Polytechnic Institute Report VPI-E-85-10, Blacksburg, VA, March 1985.
- 24. Castro, I. P., Effects of Free Stream Turbulence on Low Reynolds Number Boundary Layers, Journal of Fluids Engineering, Volume 106, pp. 298-306, September 1984.
- 25. Meier, H. U. and Kreplin, H. P., Influence of Freestream Turbulence on Boundary-Layer Development, AIAA Journal, Volume 18, Number 1, pp. 11-15, January 1980.
- 26. Deane, J. R., Missile Body Vortices and Their Interaction With Lifting Surfaces, AGARD/VKI, lecture series, no. 121, High Angle of Attack Aerodynamics, March 1982.
- 27. Arya, S. P., Atmospheric Boundary Layers Over Homogeneous Terrain, Engineering Meteorology, Elsevier Scientific Publishing Company, 1982.
- 28. Healey, J. V., Simulating the Helicopter-Ship Interface as an Alternative to Current Methods of Determining the Safe Operating Envelopes, Naval Postgraduate School Report, NPS 67-86-003, Monterey, CA, September 1986.
- 29. Hancock, P. E. and Bradshaw, P., The Effect of Free-Stream Turbulence on Turbulent Boundary Layers, Journals of Fluids Engineering, Vol. 105, p. 285, September 1983.
- 30. Gregoriou, G. and Knoche, H. G., High Incidence Aerodynamics of Missiles During Launch Phase, MBB GMBH Report UA-523-80, January 1980.
- 31. Department of Aeronautics, Laboratory Manual for Low-Speed Wind Tunnel Testing, Naval Postgraduate School, Monterey, CA, 1983.
- 32. Velmex, Inc., User's Guide to 8300 Series Stepping Motor Controller/Drivers, East Bloomfield, NY, January 1988.
- 33. United Sensors, Inc., 5-Hole Probes Calibration Manual, Watertown, MA, June 1988.
- 34. Hewlett-Packard, Inc., PC Instruments System Owner's Guide Using HP 610618 System Interface, February 1986.
- 35. Kindelspire, D. W., The Effects of Freestream Turbulence on Airfoil Boundary Layer Behavior at Low Reynolds Number, Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1988.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexanderia, VA 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3.	Chairman Department of Aeronautics, Code 67 Naval Postgraduate School Monterey, CA 93943-5000	1
4.	Commander Naval Surface Warfare Center, Code G205 Dahlgren, VA 22448-5000	1
5.	Standard Missile Program Office PMS 422, G205 ATTN: Thomas McCants Dr. Jesse East Naval Surface Warfare Center Dahlgren, VA 22448-5000	2
6.	Commander Naval Weapons Center, Code 406 China Lake, CA 93555	1
7.	Commander Naval Surface Weapons Center Silver Spring, MD 20903-5000	1
8.	Commander Pacific Missile Test Center Point Mugu, CA 93041	1
9.	NASA Ames Research Center Technical Library	1

10.	Prof. R. M. Howard Department of Aeronautics, Code 67Ho Naval Postgraduate School Monterey, CA 93943-5000	7
11.	Prof. J. V. Healey Department of Aeronautics, Code 67Ho Naval Postgraduate School Monterey, CA 93943-5000	1
12.	LT. Lung, Ming-Hung No. 114-5 Chung-Ching Rd. Taichung Taiwan 400 Republic of China	1
13.	LT. J. J. Viniotis, USN 379 Ocean Avenue Massapegua Pk. NY 11762	2