

UNIVERSIDADE FEDERAL DO CARIRI CENTRO DE CIÊNCIAS E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Probabilidade e Estatística - Unidade IV - Projeto Rosilda Benício de Souza

> Wanderson Faustino Patricio João Isaac Alves Farias Karla Mikaelly Paz de Almeida

1 Apresentação dos dados

Durante várias etapas da programação é necessário executar buscas em bancos de dados. Existem vários algoritmos de busca, cada um deles tendo um desempenho específico e um tempo de execução característico, que pode variar dependendo do sistema operacional, da memória do computador utilizado para executar o algoritmo, da ordem dos elementos, etc.

Dentre os parâmetros que podem alterar o tempo de execução de uma busca está o tamanho da entrada fornecida, ou seja, a quantidade de elementos que deverão ser visitados até ser encontrado o elemento desejado.

Para esse estudo analisaremos o tempo de execução de um algoritmo de busca linear em uma lista não ordenada. Como o funcionamento do algoritmo baseia-se em visitar todos os elementos da lista um a um, em sequência, até encontrar o elemento chave, caso a lista não possua o número tido como parâmetro da procura, o programa terá que visitar todos os elementos da lista até terminar sua execução. Desta forma, considerando que a visita a um elemento seja realizada em um tempo constante, o tempo de execução total do algoritmo dependerá linearmente do tamanho da lista.

Escrevendo em notação "big O" temos:

$$T(n) \in O(n) \Rightarrow T(n) \approx A + B \cdot n$$

Onde T(n) é o tempo que o algoritmo leva para varrer uma lista de tamanho n.

Para minimizar possíveis erros devido a outros fatores além do tamanho da entrada faremos o valor de n "varrer valores grandes" $(n \ge 10^6)$.

Executando o algoritmo e registrando os resultados exibidos pelo compilador podemos montar a seguinte tabela:

n (em milhões)	Tempo (s)	
1	0.8850	
2 0.9041		
3	0.9262	
4	0.9489	
5	0.9710	
6	0.9768	
7	0.9940	
8	1.0210	
9	1.0310	
10	1.0530	
11	1.0870	
12	1.0820	
13	1.1100	
14	1.1210	
15	1.1510	
16	1.1750	
17	1.1860	
18	1.2230	
19	1.2360	
20	1.2480	

n (em milhões)	Tempo (s)	
21	1.2680	
22	1.2840	
23	1.3130	
24	1.3200	
25	1.3410	
26	1.3570	
27	1.3760	
28	1.4020	
29	1.4020	
30	1.4430	
31	1.4620	
32	1.4440	
33	1.4970	
34	1.5020	
35	1.5110	
36	1.5360	
37	1.5470	
38	1.5640	
39	1.6760	
40	1.6080	

Tabela $T \times n$ (dados coletados pela equipe)

2 Gráfico de Dispersão

Plotando o gráfico de dispersão dos pontos teremos

Figura 1: Gráfico de dispersão dos pontos $T \times n$

Através da análise gráfica vemos indícios que as duas variáveis estão correlacionadas entre si. Ademais, o gráfico mostra uma tendência linear positiva com baixa dispersão entre os pontos, ou seja, os pontos encontrados através do experimento estão de maneira bem ajustada a uma reta. Portanto, podemos inferir que o tempo de execução do algoritmo possui dependência linear com o tamanho da entrada.

considerando o tamanho n como a variável x, o tempo de execução como a variável y e N a quantidade de pontos, podemos calcular o coeficiente de correlação linear de Pearson para a distribuição:

$$r = \frac{N \cdot \sum (xy) - \left(\sum x\right) \cdot \left(\sum y\right)}{\sqrt{N \cdot \left(\sum x^2\right) - \left(\sum x\right)^2} \cdot \sqrt{N \cdot \left(\sum y^2\right) - \left(\sum y\right)^2}} = 0,99921$$

Como o coeficiente de correlação tende a 1 percebemos uma correlação muito forte.

3 Teste de Hipótese para a correlação

Consideremos como hipótese nula a proposição de que não existe correlação entre as variáveis, e hipótese alternativa a hipótese que a correlação entre elas é positiva.

$$\begin{cases} H_o: & \rho = 0 \\ H_1: & \rho > 0 \end{cases}$$

Calculando o t através da fórmula

$$t_{ob} = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

encontramos

$$t_{ob} = 155, 44$$

A um nível de significância de 1% para 38 graus de liberdade e um teste bilateral a direita temos um t de student tabelado de

$$t_c = 2,423$$

Como $t_{ob} >> t_c$ rejeitamos a hipótese nula, e concluímos que as variáveis possuem correlação positiva.

OBS: Para o t_c encontramos um coeficiente de correlação mínimode

$$r_c = 0,36582$$

que está bem abaixo de r, o que colabora para a rejeição da hipótese nula.

4 Equação de regressão

A equação de regressão é uma aproximação paraos pontos a uma reta, de tal forma que os erros em relação aos pontos experimentais seja minimizado. Tal equação é dada pela reta

$$\hat{T} = a + b \cdot n$$

Com

$$b = \frac{\sum x(y - \bar{y})}{\sum x(y - \bar{y})} = 0,000000187$$

е

$$a = \bar{y} - b\bar{x} = 0,8709$$

Teremos, portanto, uma aproximação para o tempo de execução em função da entrada dada por

$$\hat{T}(n) = 0,8709 + 0,000000187 \cdot n$$

Colocando a reta de regressão e os putos experimentais em um gráfico temos:

Figura 2: Reta ajustada

Fazendo uma tabela com o erro relativo para cada ponto em relação à reta:

n (em milhões)	$e_i = y_i - (a + bx_i) \text{ (s)}$	n (em milhõe
1	-0.0046	21
2	-0.0042	22
3	-0.0008	23
4	0.0032	24
5	0.0066	25
6	-0.0063	26
7	-0.0078	27
8	0.0005	28
9	-0.0082	29
10	-0.0049	30
11	0.0104	31
12	-0.0133	32
13	-0.0040	33
14	-0.0117	34
15	-0.0004	35
16	0.0049	36
17	-0.0028	37
18	0.0155	38
19	0.0098	39
20	0.0031	40

n (em milhões)	$e_i = y_i - (a + bx_i) $ (s)		
21	0.0044		
22	0.0017		
23	0.0120		
24	0.0003		
25	0.0026		
26	-0.0001		
27	0.0002		
28	0.0075		
29	-0.0112		
30	0.0111		
31	0.0114		
32	0.0077		
33	0.0090		
34	-0.0047		
35	-0.0144		
36	-0.0081		
37	-0.0158		
38	-0.0175		
39	0.0108		
40	-0.0109		

Através da tabela percebemos que o erro de cada medida é muito pequeno em relação aos tempos medidos.

5 Análise da variável independente

Calculando o coeficiente de determinação encontramos

$$R^{2} = \frac{\sum (a + bx - \bar{y})^{2}}{\sum (y - \bar{y})^{2}} = 0,99843 = 99,843\%$$

Concluímos que a variância no tempo de execução do programa depende 99,843% do tamanho da entrada e 0,157% devido a outros fatores intervenientes.

5.1 Teste ANOVA para o b

Consideremos como hipótese nula a proposição de que não existe dependência do tempo de execução com o tamanho da entrada, e hipótese alternativa a hipótese que há dependência.

$$\begin{cases} H_o: b=0\\ H_1: b\neq 0 \end{cases}$$

Analisando as somas dos quadrados e a razão f encontramos

Fonte de Variação	SQ	gl	QM	f
Regressão	SQR = 1.8592017	1	QMR = 1.8592017	f=710720.03
Erro	SQE = 0.0000994	38	QME = 0.0000026	

O f tabelado para 1% de significência, com 1 grau de liberdade no numerador e 38 no denominador é

$$f_c = 7,31$$

Como $f>>f_c$ rejeitamos H_o e concluímos que o tempo tem dependência com o tamanho da entrada.

6 Considerações finais

A partir das análises gráficas e dos testes de hipóteses podemos concluir ,com confiança de 99%, que o tempo de execução de um algoritmo de busca linear sobre um vetor não ordenado depende linearmente do tamanho da entrada fornecida. Portanto, consideramos que a variável independente escolhida (tamanho da amostra) é extremamente significante para o nosso modelo.