5.4 Graphs involving $\sin x$ and $\cos x$

Example. On $[0, 2\pi]$, graph $\sin x$, $1 + \sin x$ and $\sin \left(x - \frac{\pi}{2}\right)$.

Definition. A shift to the left or right of a wave shaped graph, such as $\sin x$ or $\cos x$, is called a **phase shift**.

Definition. The **amplitude** of a sinusoidal graph is equal to ½ of the distance from the top to the bottom of the waves.

Definition.

- The **period** of the oscillating function is the length of a cycle.
- For functions of the form $\sin(ax)$ the **period** is given by $\omega = \frac{2\pi}{a}$. The same holds for $\cos(ax)$, $\sec(ax)$ and $\csc(ax)$ since these 4 functions all have a **period** of 2π .
- When using tan(ax), cot(ax) we need to divide a by the functions original period: $\pi \Rightarrow \mathbf{period} \text{ is } \omega = \frac{\pi}{a}.$

Definition. The frequency is given by $\lambda = \frac{1}{\omega}$

3 cos
$$(\frac{\pi}{6}x)$$
-1

amplitude: $A = 3$

Range: $[-4,2]$

Period: $W = \frac{2\pi}{7/6} = 12$

Frequency: $\lambda = \frac{1}{4} = \frac{1}{7}$

3 cos
$$(\frac{\pi}{6}x)$$
-1

amplitudi: $A = 3$

Range: $[-4,2]$

Period: $\omega = \frac{2\pi}{7/6} = 12$

Frequency: $\lambda = \frac{1}{2}$

Frequency: $\lambda = \frac{1}{2}$

Frequency: $\lambda = \frac{1}{2}$

Frequency: $\lambda = \frac{1}{2}$