The Observability Radius of Network Systems Minimum norm perturbations that prevent observability

G. Bianchin¹, P. Frasca², A. Gasparri³, and F. Pasqualetti¹

¹University of California, Riverside ²University of Twente ³Roma Tre University

July 6, 2016

From dynamical systems to networks

In this talk...

In this talk...

From dynamical systems to networks

Which network is more resilient to communication components failures or attacks, in terms of state reconstruction capabilities?

Networks Observability

In this talk... (2)

From dynamical systems to networks

Network systems robustness to different contingencies :

- Communication components failures
- Variations in network weights: unmodeled uncertainties, attacks

We aim at measuring robustness in terms of :

Size of smallest perturbation needed to prevent observability

We incorporate the topology in the study

Require the perturbation to match with structural constraints :

Outline

From dynamical systems to networks

- 1 Observability radius : from dynamical systems to networks
- 2 Observability radius as an optimization problem
- 3 Solving the optimization
- 4 The role of topology
- 5 Conclusions

■ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ described by

$$x(t+1) = Ax(t)$$

Monitored by sensor nodes $\mathcal{O} \subseteq \mathcal{V}$

$$y(t) = C_{\mathcal{O}}x(t)$$

■ Attacks/failures occur at some edges $\mathcal{M} \subseteq \mathcal{E}$

- Can the adversary make the dynamics unobservable?
- How large is the perturbation required to be?

■ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ described by

From dynamical systems to networks

$$x(t+1) = Ax(t)$$

■ Monitored by sensor nodes $\mathcal{O} \subseteq \mathcal{V}$

$$y(t) = C_{\mathcal{O}}x(t)$$

Attacks/failures occur at some edges $\mathcal{M} \subseteq \mathcal{E}$

- Can the adversary make the dynamics unobservable?
- How large is the perturbation required to be?

■ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ described by

$$x(t+1) = Ax(t)$$

■ Monitored by sensor nodes $\mathcal{O} \subseteq \mathcal{V}$

$$y(t) = C_{\mathcal{O}}x(t)$$

Attacks/failures occur at some edges $\mathcal{M} \subseteq \mathcal{E}$

- Can the adversary make the dynamics unobservable?
- How large is the perturbation required to be?

■ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ described by

$$x(t+1) = Ax(t)$$

■ Monitored by sensor nodes $\mathcal{O} \subseteq \mathcal{V}$

$$y(t) = C_{\mathcal{O}}x(t)$$

Attacks/failures occur at some edges $\mathcal{M} \subseteq \mathcal{E}$

- Can the adversary make the dynamics unobservable?
- How large is the perturbation required to be?

Preliminary: The observability radius

From dynamical systems to networks

Before perturbation, $(A, C_{\mathcal{O}})$ is observable

$$x(t+1) = Ax(t)$$
$$y(t) = C_{\mathcal{O}}x(t)$$

$$\min_{\Delta} \|\Delta\|_F^2$$
 s.t. $(A + \Delta, C_{\mathcal{O}})$ is unobservable $\Delta \in A_{\mathcal{U}}$

- Frobenius norm $||\Delta||_F^2 = \sum_{i,j} \delta_{ij}^2$ is chosen

Preliminary: The observability radius

From dynamical systems to networks

Before perturbation, $(A, C_{\mathcal{O}})$ is observable

$$x(t+1) = Ax(t)$$
$$y(t) = C_{\mathcal{O}}x(t)$$

The network observability radius is

$$\min_{\Delta} \left\| \Delta \right\|_F^2$$

s.t.
$$(A+\Delta, C_{\mathcal{O}})$$
 is unobservable $\Delta \in \mathcal{A}_{H}$

- A only is perturbed
- Structure is imposed : Δ must be compatible with a *constraint graph*
- Frobenius norm $||\Delta||_F^2 = \sum_{i,j} \delta_{ij}^2$ is chosen

Computing the observability radius

More explicitly:

$$\min_{\Delta,\lambda,x} \quad ||\Delta||_F^2 \qquad \qquad \text{Frobenius norm}$$
 s.t. $C_{\mathcal{O}}x=0 \qquad \qquad \text{unobservability}$ $(A+\Delta)x=\lambda x \qquad \text{eigenvalue constraint}$ $\|x\|_2=1 \qquad \qquad \text{normalization}$ $\Delta\in\mathcal{A}_H \qquad \qquad \text{structural constraint}$

- The optimization is performed over Δ and λ , x
- Not convex
- Not necessarily feasible
- Because $(A, C_{\mathcal{O}})$ is observable, Δ must be nonzero

Solving the optimization

Two steps approach:

Two steps approach:

From dynamical systems to networks

Two steps approach:

0000

- Exhaustive search seems unavoidable:
 - Guangdi Hu and Edward J Davison. Real controllability/stabilizability radius of Iti systems. IEEE transactions on automatic control, 49(2):254-257, 2004
- For some topologies optimal λ can be found analytically
- The choice of λ may be guided by the application

From dynamical systems to networks

Two steps approach:

- Exhaustive search seems unavoidable:
 - Guangdi Hu and Edward J Davison. Real controllability/stabilizability radius of Iti systems. IEEE transactions on automatic control, 49(2):254-257, 2004
- For some topologies optimal λ can be found analytically
- The choice of λ may be guided by the application

Step 1

Incorporate structural constraints in $||\Delta||_F^2$:

$$||\Delta||_F^2 = \sum_{i=1}^n \sum_{j=1}^n (b_{ij} - a_{ij})^2 v_{ij}^{-1}, \quad v_{ij} \in \{0, 1\}$$

and the observability constraint

$$(A + \Delta) := B \quad \Rightarrow \quad Bx = \lambda x$$

Step 1

Incorporate structural constraints in $||\Delta||_F^2$:

$$||\Delta||_F^2 = \sum_{i=1}^n \sum_{j=1}^n (b_{ij} - a_{ij})^2 v_{ij}^{-1}, \quad v_{ij} \in \{0, 1\}$$

and the observability constraint

$$(A + \Delta) := B \quad \Rightarrow \quad Bx = \lambda x$$

We decompose $\lambda = \lambda_{\Re} + i\lambda_{\Im}$ and $x = x_{\Re} + ix_{\Im}$ and rewrite an equivalent optimization problem:

$$\begin{split} \|\bar{\Delta}^*\|_{\mathrm{F}}^2 &= \min_{\bar{B}, x_{\widehat{\Re}}^2, x_{\widehat{\Im}}^2} \quad \sum_{i=1}^n \sum_{p+1}^n (\bar{b}_{ij} - \bar{a}_{ij})^2 v_{ij}^{-1}, \\ \text{s.t.} & \begin{bmatrix} \bar{B} - \bar{N} & \bar{M} \\ -\bar{M} & \bar{B} - \bar{N} \end{bmatrix} \begin{bmatrix} x_{\widehat{\Re}}^2 \\ x_{\widehat{\Im}}^2 \end{bmatrix} = 0 \end{split}$$

Step 2

Step 1

Incorporate structural constraints in $||\Delta||_F^2$:

$$||\Delta||_F^2 = \sum_{i=1}^n \sum_{j=1}^n (b_{ij} - a_{ij})^2 v_{ij}^{-1}, \quad v_{ij} \in \{0, 1\}$$

and the observability constraint

$$(A + \Delta) := B \quad \Rightarrow \quad Bx = \lambda x$$

We decompose $\lambda = \lambda_{\Re} + i\lambda_{\Im}$ and $x = x_{\Re} + ix_{\Im}$ and rewrite an equivalent optimization problem:

$$\|\bar{\Delta}^*\|_{\mathrm{F}}^2 = \min_{\bar{B}, x_{\Re}^2, x_{\Im}^2} \quad \sum_{i=1}^n \sum_{p+1}^n (\bar{b}_{ij} - \bar{a}_{ij})^2 v_{ij}^{-1},$$

Step 2

s.t.
$$\begin{bmatrix} \bar{B} - \bar{N} & \bar{M} \\ -\bar{M} & \bar{B} - \bar{N} \end{bmatrix} \begin{bmatrix} x_{\Re}^2 \\ x_{\Im}^2 \end{bmatrix} = 0$$

TOTAL LEAST SQUARES MINIMIZATION PROBLEM!!

Define Lagrange multipliers and write $\nabla \mathcal{L} = 0$

Step 3

Define Lagrange multipliers and write $\nabla \mathcal{L} = 0$

Optimality conditions yield to the problem of computing z and $\bar{\sigma}$ s.t.

$$\underbrace{\begin{bmatrix} 0 & \tilde{A}^\mathsf{T} \\ \tilde{A} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z} = \bar{\sigma} \underbrace{\begin{bmatrix} D_y & 0 \\ 0 & D_x \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z}$$

Step 4

Step 3

Define Lagrange multipliers and write $\nabla \mathcal{L} = 0$

Optimality conditions yield to the problem of computing z and $\bar{\sigma}$ s.t.

$$\underbrace{\begin{bmatrix} 0 & \tilde{A}^{\mathsf{T}} \\ \tilde{A} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z} = \bar{\sigma} \underbrace{\begin{bmatrix} D_{y} & 0 \\ 0 & D_{x} \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z}$$

Step 4

GENERALIZED NONLINEAR EIGENVALUE PROBLEM: Finding smallest nonzero $\bar{\sigma}$ and z s.t.

$$Hz = \bar{\sigma}D_z z$$

Step 3

Define Lagrange multipliers and write $\nabla \mathcal{L} = 0$

Optimality conditions yield to the problem of computing z and $\bar{\sigma}$ s.t.

Step 4

$$\underbrace{\begin{bmatrix} 0 & \tilde{A}^\mathsf{T} \\ \tilde{A} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z} = \bar{\sigma} \underbrace{\begin{bmatrix} D_y & 0 \\ 0 & D_x \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z}$$

GENERALIZED NONLINEAR EIGENVALUE PROBLEM: Finding smallest nonzero $\bar{\sigma}$ and z s.t.

 $Hz = \bar{\sigma}D_z z$

Step 5

Solve iteratively by "freezing" the nonlinearity D_z (inverse power iteration method)

Power iteration method: when convergent gives (sub)-optimal solutions

Bart De Moor. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Transactions on Signal Processing, 42(11):3104–3113, 1994 The role of topology

The role of graph topology

When weights are chosen randomly $\mathcal{U}[0,1]$...

Line topology

Line is structurally observable ⇒ disconnection

$$\mathbb{E}[\delta(n)] = \frac{1}{n}$$

Star topology

Best perturbation introduces an artificial symmetry

$$\mathbb{E}[\delta(n)] \sim \frac{1}{\sqrt{2} n^2}$$
 as $n \to \infty$

The role of graph topology

When weights are chosen randomly $\mathcal{U}[0,1]...$

Line topology

Line is structurally observable ⇒ disconnection

$$\mathbb{E}[\delta(n)] = \frac{1}{n}$$

Star topology

Best perturbation introduces an artificial symmetry

$$\mathbb{E}[\delta(n)] \sim \frac{1}{\sqrt{2} n^2}$$
 as $n \to \infty$

The bound is tight:

Conclusions

In this talk...

- Extend classical observability radius to networks
- Resilience measure for network systems
- Optimal problem formulation
- 4 Heuristic algorithm for its solution
- 5 Results can be extended to controllability

Research questions...

- \blacksquare How do we chose λ
- More on the role of topology

- G. Bianchin, P. Frasca, A. Gasparri, and F. Pasqualetti. The observability radius of network systems. In American Control Conference, Boston, MA, USA, Jul. 2016
- G. Bianchin, P. Frasca, A. Gasparri, and F. Pasqualetti. The observability radius of network systems: Algorithms and estimates for random networks.

In IEEE Transactions on Automatic Control [Submitted], 2016

The Observability Radius of Network Systems

Thank you!

Questions?

EXTRAS: More about total least squares

From...

Bart De Moor. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Transactions on Signal Processing, 42(11):3104-3113, 1994

"The Total least squares problem reduces to finding a matrix approximation B in Frobenius norm to a given matrix A. This can be formulated as:"

$$\min_{B \in \mathbb{R}^{n \times n}, y \in \mathbb{R}^n} \|A - B\|_{\mathsf{F}}^2$$

subject to
$$By = 0$$
 $y^Ty = 1$

EXTRAS: Algorithm performance

From dynamical systems to networks

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix} + \Delta = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & b_{22} & b_{23} \\ 0 & b_{32} & b_{33} \end{bmatrix}$$

$$(b_{22} - a_{22}) - (b_{33} - a_{33}) + \frac{b_{33} - b_{22}}{b_{32}}(b_{23} - a_{23}) = 0$$

$$(b_{32} - a_{32}) - \frac{b_{23}}{b_{32}}(b_{23} - a_{23}) = 0$$

$$2\lambda_{\Re} + b_{22} + b_{33} = 0$$

$$b_{22}b_{33} - b_{23}b_{32} - \lambda_{\Re}^2 + \lambda_{\Im}^2 = 0$$

EXTRAS: Algorithm performance

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix}$$

Optimal perturbations can be computed analytically:

$$\begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix} + \Delta = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & b_{22} & b_{23} \\ 0 & b_{32} & b_{33} \end{bmatrix}$$

$$(b_{22} - a_{22}) - (b_{33} - a_{33}) + \frac{b_{33} - b_{22}}{b_{32}} (b_{23} - a_{23}) = 0,$$

$$(b_{32} - a_{32}) - \frac{b_{23}}{b_{32}} (b_{23} - a_{23}) = 0,$$

$$2\lambda_{\Re} + b_{22} + b_{33} = 0,$$

$$b_{22}b_{33} - b_{23}b_{32} - \lambda_{\Re}^{2} + \lambda_{\Im}^{2} = 0.$$

EXTRAS: Algorithm performance

FIGURE: Mean and standard deviation of the approximation error over 100 simulation executions.

Our algorithm converges to a solution which has the same norm as the optimal perturbation.

EXTRAS : Algorithm implementation (1)

Optimality conditions can be written in matrix form as

$$\underbrace{\begin{bmatrix} 0 & \tilde{A}^{\mathsf{T}} \\ \tilde{A} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z} = \bar{\sigma} \underbrace{\begin{bmatrix} D_{y} & 0 \\ 0 & D_{x} \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{z}.$$

Lemma

(Generalized eigenvalues of (H, D)) Given a vector $z \in \mathbb{R}^{2n+2p}$. Then,

- $0 \in spec(H, D)$;
- **2** if $\lambda \in \operatorname{spec}(H, D)$, then $-\lambda \in \operatorname{spec}(H, D)$; and
- **3** if (H, D) is regular, then spec $(H, D) \subset \mathbb{R}$.

Conclusions

Observations:

From dynamical systems to networks

- \blacksquare the zero eigenvalue of (H, D) leads the inverse iteration to instability
- the presence of eigenvalues of (H, D) with equal magnitude may induce non-decaying oscillations in the solution vector

EXTRAS : Algorithm implementation (2)

Observations:

From dynamical systems to networks

- \blacksquare the zero eigenvalue of (H, D) leads the inverse iteration to instability
- the presence of eigenvalues of (H, D) with equal magnitude may induce non-decaying oscillations in the solution vector

We employ the following shifting mechanism:

- **I** z is iteratively updated by solving the equation $(H \mu D)z_{k+1} = Dz_k$
- If $\sigma \in \operatorname{spec}(H, D)$, then $\sigma + \mu \in \operatorname{spec}(H \mu D, D)$
- **3** The pairs $(H \mu D, D)$ and (H, D) share the same eigenvectors
- 4 By selecting $\mu = \psi \cdot \min\{\sigma \in \operatorname{spec}(H, D) : \sigma > 0\}$, the pair $(H \mu D, D)$ has nonzero eigenvalues with distinct magnitude

EXTRAS: Algorithm implementation (3)

From dynamical systems to networks

Algorithm 1 Inverse power iteration with shifting

```
Input: Matrix H; max iterations max<sub>iter</sub>; \psi \in (0.5, 1).
Output: \sigma and z
repeat
     z \leftarrow (H - \mu D)^{-1} Dz
     \sigma \leftarrow \|\mathbf{z}\|
     z \leftarrow z/\sigma
     \mu = \psi \cdot \min\{\sigma \in \operatorname{spec}(H, D) : \sigma > 0\}
     update D i \leftarrow i + 1
until convergence or i > \max_{iter};
return (\sigma + \mu, z) or fail if i = \max_{iter}
```

From dynamical systems to networks

Bart De Moor.

Total least squares for affinely structured matrices and the noisy realization problem.

IEEE Transactions on Signal Processing, 42(11):3104–3113, 1994.

G. Bianchin, P. Frasca, A. Gasparri, and F. Pasqualetti.

The observability radius of network systems.

In American Control Conference, Boston, MA, USA, Jul. 2016.

G. Bianchin, P. Frasca, A. Gasparri, and F. Pasqualetti.

The observability radius of network systems : Algorithms and estimates for random networks.

In IEEE Transactions on Automatic Control [Submitted], 2016.

Guangdi Hu and Edward J Davison.

Real controllability/stabilizability radius of Iti systems.

IEEE transactions on automatic control, 49(2):254-257, 2004.

Extras