AD-A012 237

ROTATING BAND TORQUES AND STRESSES ON AMCAWS 30MM COPPER BANDED PROJECTILES

Michael R. Kane

Rock Island Arsenal Rock Island, Illinois

May 1975

DISTRIBUTED BY:

ADA 012237

AD

R-TR-75-022

ROTATING BAND TORQUES AND STRESSES ON AMCAWS 30MM COPPER BANDED PROJECTILES

MICHAEL R. KANE

MAY 1975

FINAL REPORT

Distribution Statement

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Spurgfield, 97, 22151

GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL
ROCK ISLAND, ILLINOIS 61201

ţ

7.

ACCESSION	i lar	
2114	White Section	1
acc	Beff Section	0
PIC ELAU	¢ co	\Box
1431313201	110# <u>.</u>	
94 91878180	TIGH AYAILASHITY 600	
Gist	ATTAC BED M SPEC	AL.
B		

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DEPOST POCHUEUTATION DAGE		READ INSTRUCTIONS		
REPORT DOCUMENTATION		BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.			
R-1R-75-022		F. 1-2.2 237		
6. TITLE (end Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
ROTATING BAND TORQUES AND STRESSE		Final		
AMCAWS 30MM COPPER BANDED PROJECT	ILES	6. PERFORMING ORG. REPORT NUMBER		
		o. PERFORMING ONG. REPORT ROMBER		
7. AUTHOR(e)	·	B. CONTRACT OR GRANT NUMBER(*)		
Michael R. Kane				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Advanced Concepts Division				
Acft & Air Def Wpn Sys Directorat	e	6.32.06.A		
GEN Thomas J. Rodman Laboratory		1F263206D044.01		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Acft & Air Def Wpn Sys Directorat	e	May 1975		
GEN Thomas J. Rodman Laboratory		13. NUMBER OF PAGES		
14 MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
		Unclassified		
		•		
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Ammunus diem Dublie Delegan Diet	uibution Unlimit			
Approved for Public Release; Dist	רוטענוסת טמוווווונ			
		meach ach		
		JUL 9 1975		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)				
		n		
		1		
18. SUPPLEMENTARY NOTES				
19. KEY WOPDS (Continue on reverse side if necessary an	d Identify by_block_number)			
19. KEY WOPDS (Continue on reverse side if necessary an	6. Band	stripping		
2. Barrel twist /				
3. Predictive model				
4. High performance medium caliber ammunities				
5. Compute: program				
20. ABSTRACT (Continue on reverse side if necessary and		conducted to design a more		
This report details the study effort and testing conducted to design a more optimum rifling profile for the Advanced Medium Caliber Aircraft Weapon				
System (AMCAWS 30MM) ammunition	avancea neatum o Several critica	1 narameters such as bearing		
System (AMCAWS 30MM) ammunition. Several critical parameters such as bearing stress and torque have been identified and their importance to the ultimate				
survivability of the band assesse	d. These critic	al parameters have been in-		
corporated into a preliminary mod	el to predict th	e success or failure of a		
given band and barrel combination.				
J		PRICES SUBJECT TO CHANGE		
A PARTY CONTINUES AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF				

DD 1 PAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

ABSTRACT

Quantitative values for the interaction of several candidate rifling profiles with the AMCAWS 30 ammunition were required so that a replacement for the original AMCAWS 30 barrel could be selected. This effort is primarily directed to that task.

A secondary effort was to document the process of deciding which candidate configurations would most probably be successful. There are several parameters arising out of this work designated as critical (such as bearing stress) and these critical parameters are included in a coarse model to predict success or failure of a given band and barrel combination.

CONTENTS

Section		Page
	Abstract	iii
1	Background	1
2	Description of Barrels	4
3	Interior Ballistics Performance	6
4	Development of Torque and Stress Equations	14
5	Observations	19
6	Firing Test	25 [.]
7	Evaluation of Results and Predictive Model	38
8	Conclusions and Recommendations	46
Appendice	<u>es</u>	
Α	Barrel/Torques Comparisons Computer Program	A-1
	CAL.COMP Graphics Output	A-62
В	AMCAWS 30 Interior Ballistics Linking Computer Program	B-1
Reterence	<u>s</u>	48

Preceding page blank

FIGURES

<u>NO</u> .		PAGE
1	Interferometer Trace for Firing A-421	2
2	Sectioned AMCAWS 30 Round	7
3	Velocity VS Time for Firing A-421	9
4	Interior Ballistic Parameters Graph With Respect to Position	12
5	Interior Ballistic Parameters Graph With Respect to Time	13
6	Gun Tube Rifling Layout	15
7	Rotating Band Sweep	18
8	Torque VS Position for Candidate Barrels	22
9	Torque VS Time for Candidate Barrels	23
10	Down Range Photographic Setup	26
11	Inflight Photograph, Round 63	28
12	Inflight Photograph, Round 68	29
13	Inflight Photograph, Round 72	30
14	Inflight Photograph, Round 74	31
15	Inflight Photograph, Round 75	32
16	Inflight Photograph, Round 80	33
17	Inflight Photograph, Round &6	34
18	Inflight Photograph, Round 87	35
19	Inflight Photograph, Round 88	36
20	Predictive Model Approach	40
A-1 thru A-18	CALCOMP Graphics Computer Output	A-62 thru A-79

THE SECTION OF THE PROPERTY OF

TABLES

<u>NO.</u>		PAGE
7	Firing Series Data	37
2	Peak Torque and Stress Values	42
3	Integral Values	45

BACKGROUND

Quantitative values for torque and rotating band stresses for AMCAWS 30mm projectiles were required to meaningfully evaluate different types of barrel twists. Displacement, velocity down barrel, and chamber pressure at various time increments were used as input for a computer program (Appendix A, <u>Barrel/Torque Comparisons</u>) that calculated, as its principle output, torque, bearing stress, and shear stress at the rotating band for each time increment. The interior ballistics data was based on an interferometer trace obtained at the Hercules, Inc., test range in Magna, Utah. This trace, Figure 1, is of excellent quality and is one of the best obtained. The particular round examined had essentially nominal chamber pressure, action time, and muzzle velocity.

Six barrels with different twist functions were compared in the program using the same interior ballistic parameters. The barrel types were: (1) current Rock Island Arsenal produced barrels (RIA); (2) current Hercules barrel (Hercules); (3) constant twist barrel and exponential gain twist barrels with exponents of (4) N = 1.6, (5) N = 1.8, and (6) N = 2.0. These barrels are fully described in the description of barrels.

The work to obtain torque and stress values was started as part of a routine investigation to complement the AMCAWS 30mm development work, but the work pace was accelerated when in-flight pictures indicated some stripping of bands (but no instability) on some rounds

: 2 MSEC PER CM 20K PER CM TIME SCALE: 2 MSEC PER PRESSURE: 20K PER CM MICROWAVE CALIBRATION:

2.567 INCHES PER CYCLE

TIME SCALE: 0.5 MSEC PER CM
PRESSURE: 20K PER CM
MICROWAVE CALIBRATION: 2.567 INCHES

l.B.

MICROWAVE DISTANCE VS TIME AND PRESSURE VS TIME FOR AMC 30 FIRING NO. A-421 FIGURE

13 JULY 1973

fired in the RIA barrels. This stripping was first noticed in June 1973. Work was begun on this effort in late August 1973, at which time the RIA and Hercules barrels were in use. The decision to fabricate a constant twist barrel and an N = 1.6 twist barrel was made in September 1973 and these two barrels became available at Rock Island in June 1974. The firing tests were conducted in late October 1974. The computer program itself was extensively rewritten after July 1974 to make use of a CALCOMP graphics system that became operational in Rodman Laboratory during that month.

DESCRIPTION OF BARRELS

- 1. RIA BARREL. This is an 85-inch barrel made to Rock Island Arsenal Print 74040070. This barrel has a 1.0 inch throat, free run to 4.0 inches, gain twist to 73.25 inches and constant twist at an 8°58' exit angle to the muzzle. The equation for the twist was obtained by fitting a curve to the x-y layout coordinates. The equation is $y = B_0 + B_1 (X-4.0) + B_2 (X-4.0)^2 + B_3 (X-4.0)^3 + B_4 (X-4.0)^4$. The coefficients are listed in the Barrel/Torque Comparisons program in subroutine AAMC 30 (Appendix A).
- 2. <u>HERCULES</u>. This is an 89-inch barrel. This barrel has a 1.0 inch throat and gain twist to the muzzle at an 8°5' exit angle. The barrel has no constant twist exit portion. The equation of the rifling layout is:

$$Y = .01008 (X-1.0)^{1.5}$$

是一个人,我们是一个人,我们是一个人,我们是一个人,我们们是一个人,我们们们的人,我们们们们们的人,我们们们的人,我们们们的人,我们们们的人,我们们们的人,我们

- 3. $\underline{\text{CONSTANT}}$. This is an 85-inch barrel with a 1.0 inch throat and constant twist throughout the remaining barrel length. The rifling angle is 8°58'.
- 4. N = 1.6. This is an 85-inch barrel. This barrel has a 1.0 inch throat, gain twist to 81.0 inches and constant twist to the muzzle at an 8°58' exit angle. The equation of the rifling is:

$$Y = .00641042 (X + 14.1582)^{1.6}$$

The gain twist function in this barrel starts with a rifling angle of $3^{\circ}0'$ at X = 1.0 inch and gains to $8^{\circ}58'$ at X = 81.0 inches.

5. $\underline{N = 1.8}$. This is identical to barrel N = 1.6 except the gain portion of rifling equation is:

$$Y = .00208633 (X + 25.9727)^{1.8}$$

6. $\underline{N} = 2.0$. This is identical to barrel N = 1.6 except the gain portion of rifling equation is:

$$Y = .000658627 (X + 38.78559)^{2.0}$$

All the barrels described have 20 lands. The depth of groove for the RIA barrel is .019 inches. The groove depth for the remaining barrels is .025 inches.

The notation $N = _.$, refers to the type of barrel that has an initial rifling angle of 3° with an exponential gain twist portion and a constant twist exit portion. $N = _.$ barrels include the N = 1.6, N = 1.8 and N = 2.0 barrels.

INTERIOR BALLISTICS PERFORMANCE

The AMCAWS 30mm round (Figure 2) is a fully telescoped, cased-consolidated round that is currently designed to operate in a stop mode. The primer is struck, which ignites a 45-grain booster charge. The ignition of the booster debullets the projectile and forces it into the bore where, after a total travel of generally less than 5 inches past the barrel face, the projectile stops (thus a stop mode). The hot gas from the booster also acts as an igniter for the 3000 grain consolidated main charge, which causes the large pressure rise that drives the projectile out the muzzle at about 3600 ft/sec.

The set of interior ballistics data used for the barrel comparisons was obtained by considering the round ballistics to be composed of three separate segments: (1) the velocity, position, chamber pressure, and time data points after primer strike and up to the projectile stopping in the bore; (2) the data points between stop and restart; and (3) the data points after restart to muzzle exit. These three regions and the times of occurrence are illustrated in Figure 1.a., which is an interferometer trace of a firing conducted at Hercules, Inc., Magna, "tah.

Figure 1.a. shows the total event with time progressing from right to left at two milliseconds per centimeter. The microwave pulses show that initial movement of the telescoped projectile accounted for

FIGURE 2. AMCAWS 30MM ROUND

about 3-1/4 cycles in about 3 milliseconds. The calibration factor for this firing is 2.567 inches per cycle, thus the 3-1/4 cycles indicates that the nose of the projectile moved approximately 8.34 inches before stopping. Using values of 4.4 inches between the projectile nose (point of reflection of microwave beam) and the center of the rotating band and a starting position of .25 inches between the nose and the start of the barrel, the position of the rotating band when stopped is then 3.69 inches from the barrel face. The microwave pulses show the projectile to be stopped for approximately 4 milliseconds (2 cm on the trace) and then the projectile accelerates rapidly with the rise in chamber pressure. The rapid acceleration is seen more clearly in Figure 1.b., where an expanded time scale is shown.

The most important of the three interior ballistics segments, as far as sustained high torque seen by the rotating band is concerned, is the restart to muzzle exit portion. Fortunately, the time scale, when expanded (Figure 1.b.), has excellent resolution of the traces and can be reduced to the graph of Figure 3. Corresponding chamber pressure for each time is also obtained. A smooth curve is fit through the raw velocity data points and the equation of this curve generated. This equation can be differentiated to yield projectile acceleration down the tube for this segment.

The second segment (between stop and restart) has a relatively constant pressure and no projectile movement. Pressure, velocity,

FIGURE 3, VELOCITY, PRESSURE AND TIME VS BARREL POSITION, AMCAWS 30 FIRING NO. A421

position, acceleration and time data points are easily generated for this segment.

The first segment (primer strike to stop) is the hardest to resolve to the point where ballistic data points can be obtained that have a high degree of confidence. The overall picture (Figure 1.a.) gives the time of occurrence and indicates some approximate values of position and time. The values obtained from the trace and other work done with booster performance enables "data" to be manufactured which should reasonably duplicate the performance of the round in the first segment. This data does not have as high a degree of confidence as the third segment data because of the poorer resolution, but torques are only seen in this segment for an extremely short time and projectile velocity is low, so possible inaccuracies in this segment of the data are not too important to the conclusions of this report.

Data representing the second segment was used as input for data generating program (Appendix B, AMCAWS 30mm Interior Ballistics). The program chiefly uses equations generated for position, velocity, and chamber pressure as functions of time for segments one and three and uses these equations to calculate the IB parameters for these segments. The program then links the data of the three ballistic segments and punches a complete data deck. This deck represents the nominal interior ballistics of the AMCAWS 30mm round, from primer strike to muzzle exit. The interior ballistics of the round are illustrated in

Figures 4 and 5. One result of obtaining acceleration by differentiating the smoothed velocity data can be seen by observing the slight discrepancy between the chamber pressure shape and the shape of the curve for acceleration. This problem is caused by an inability to more accurately resolve the original interferometer trace. The acceleration curve should be very close to the 'correct' curve and it is not felt that the results of the computer program are in any way unduly compromised.

AND THE THE THE PROPERTY OF THE PARTY OF THE

DEVELOPMENT OF TORQUE AND STRESS EQUATIONS

Figure 6 shows a rifling curve in the gun tube. Y is the arc length subtended by Θ , R is the nominal 30MM radius (.59175 inches) and X is the distance down the bore the rotating band has traveled. Assuming no shear in the rotating band, the rotation of the projectile after traveling X inches is Θ .

Torque and stress relationships will be obtained using the equation,

Torque =
$$I_{polar} \times \frac{d^2 \Theta}{dt^2}$$

therefore $\frac{d^2\Theta}{dt^2}$ is a quantity of much interest. From Figure 6,

$$RO = Y$$

$$\frac{d(R\Theta)}{dt} = R \frac{d\Theta}{dt} = \frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

but,

 $\frac{dx}{dt}$ = velocity of projectile down the tube, thus

$$\frac{d\Theta}{dt} = \frac{1}{R} \left[\frac{dy}{dx} \text{ (velocity)} \right]$$
. Differentiating again

- R NOMINAL 30MM RADIUS
- X DISPLACEMENT
- θ ANGLE OF ROTATION
- Y ARC LENGTH SUBTENDED BY 0

RIFLING CURVE LAYOUT

FIGURE 6

$$\frac{d}{dt} \left[R \frac{d\theta}{dt} \right] = \frac{d}{dt} \left[\frac{dy}{dx} \frac{dx}{dt} \right] = \left[\frac{dy}{dx} \frac{d^2x}{dt^2} + \frac{dx}{dt} \frac{d^2y}{dx^2} \frac{dx}{dt} \right]$$

$$= \left[\frac{dy}{dx} \frac{d^2x}{dt^2} + \frac{dx}{dt} \frac{d^2y}{dx^2} \right]$$

However,

$$\frac{d^2x}{dt^2}$$
 = acceleration of projectile down tube, thus

$$\frac{d^2\Theta}{dt^2} = \frac{1}{R} \left[\frac{dy}{dx} \quad (acceleration) + \frac{d^2y}{dx^2} \quad (velocity)^2 \right]$$

Summarizing.

$$\Theta = \frac{1}{R} \begin{bmatrix} \gamma \\ \dot{\theta} \end{bmatrix}$$

$$\dot{\theta} = \frac{1}{R} \begin{bmatrix} \frac{dy}{dx} & \text{velocity} \end{bmatrix}$$

$$\ddot{\theta} = \frac{1}{R} \begin{bmatrix} \frac{dy}{dx} & \text{acceleration} + \frac{d^2y}{dx} & (\text{velocity})^2 \end{bmatrix}$$

Values for velocity and acceleration (as discussed in the INTERIOR BALLISTICS portion of this report) are available to the BARREL/TORQUE COMPARISONS program so that with the proper equation of the rifling for the barrel under consideration θ can be determined for any position or time.

Given the values for θ , the other calculations are quite straightforward. Torque is obtained from the relationship

$$T = I_{polar} \theta$$

Torque, however, can be considered to be the result of a distributed force acting at the rotating band (nominal radius to rotating band is .59175 inches). The total force acting to create the torque is then

$$\Sigma F = T/R$$
.

The area upon which this total force acts is, of course, the bearing faces of the engraved rotating band (Figure 7). The bearing stress is then

 $S_{bearing} = \Sigma F/\Sigma$ (bearing face area).

Likewise, the shearing stress on the band is then

 $S_{shear} = \Sigma F/\Sigma$ (shearing face area).

The sketch of Figure 7.a. shows the dimensions of a rotating band that was fired through a RIA barrel. The nominal groove depth of the RIA barrel is .019 inches so the summation of bearing face areas is .137 square inches. The Hercules barrel has a groove depth of .025 inches so its total bearing face area is .180 square inches. The total shear for the recovered projectile is .677 square inches.

DIMENSIONS

ROTATING BAND SEGMENT

FIGURE 7-B

OBSERVATIONS

There are any number of ways to interpret the numbers generated by the Barrel/Torque Comparisons computer program. There is also a high probability that any arbitrary interpretation and the corresponding conclusions as to predicting the success of the rotating band and barrel twist combination will be incorrect. The most important aspect that must be considered when evaluating the program results and making useful conclusions is the actual mechanism of rotating band failure that may occur.

Factors which may affect the ultimate success of a rotating band probably include a combination of factors such as (1) peak torques, (2) time duration of high torques, (3) driving edge pressure, (4) area remaining that resists shear, (5) band properties, (6) band melting, (7) barrel wear, and probably several other considerations.

The way in which these named and unnamed factors interact in the AMCAWS 30mm system to determine the final condition of the rotating band is, of course, the mechanism of rotating band failure. Determining the actual mechanisms of failure for the rotating bands of high performance ammunition is certainly a large scale test and research program that is far beyond the scope of this report. A literature search (unclassified) has been relatively unsuccessful in uncovering work that specifically deals with copper rotating band failure in small to medium

calibers. What is primarily the scope of this report is to provide a basis for selecting a replacement for the RIA twist barrels. Hopefully, with the fabrication and availability of RIA, N = 1.6, constant twist, and Hercules barrels, some correlation between the program results and actual firing test results can be developed. Developing such a correlation is a secondary portion of the scope of this report. If a correlation between actual results and some combination of numbers generated by the program can be found, it might be able to act as a quick and coarse means of evaluating barrel twist suitability for future or proposed high performance medium caliber weapon systems. The remainder of this report is written with that in mind. Some general discussion of barrel twists is then pertinent.

Any gain twist barrel is sensitive to the interior ballistics of the round. A round with slightly delayed peak pressure and thus delayed peak acceleration will be in a steeper portion of the gain twist curve and therefore higher than optimum torques develop. The present RIA barrel configuration has good torque characteristics for certain ballistic performance, unfortunately they are not similar to the performance of the current AMCAWS 30mm round.

Another problem common to gain twist barrels is the rifling angle sweeping action that reduces the shear area of the rotating band and continually puts high bearing loads on the forward portion of the band. This sweep is due to the constantly increasing rifling angle

in the gain portion of the barrel and as illustrated in sketch of Figure 7.b. The 3° initial twist for the N = _._ barrels was chosen because it was felt the almost 9° sweep on the RIA barrel was one of the major contributing factors to the failure of that barrel-rotating band combination. The fact that there is evidence of band stripping on the RIA barrel but no in-flight instability of the round tends to indicate the bands finally do strip after the round has attained sufficient spin to be stable. The higher spin rates necessary to stabilize the round can only be imparted to the round in the muzzle portion of the gun tube where the rifling angles are high. Thus, it appears the bands do strip in the muzzle region of the RIA barrel, after experiencing most of the 8°58' sweep.

The behavior of gain twist barrels, especially with regard to increasing exponents, can be seen in Figures 8 and 9. The peak torque values occur later with increasing exponents. The peak values are less with increasing exponents but the curve itself is much flatter. These effects are particularly noticeable in the torque vs. displacement curve, Figure 8.

The barrel that appears most attractive, of the gain twist barrels considered, is the N=1.6 barrel. A constant twist exit portion is desired so that the torque is low at projectile exit. Four to five calibers of constant twist should be long enough to minimize any pertubations that might be caused by a high torque at exit. The

N=1.6 barrel has a slightly higher peak torque than the N=1.8 or the N=2.0 barrels, but it should handle slight round-to-round ballistic changes better.

Constant twist barrels are, compared to gain twist, relatively insensitive to interior ballistic changes. Constant twist causes none of the sweeping action found in gain twist barrels, so the shear area is always at a maximum for any given exit angle. Unfortunately, constant twist barrels exhibit higher torques than their gain twist counterparts. The time duration for the peak torque region is correspondingly less. This is shown by the sharper peak on the torque vs. displacement curve (Figure 8).

Constant twist barrels can also be fabricated with more manufacturing techniques than can gain twist barrels. Broaching, swaging, or hammer forging (which are possible only with constant twist) are generally cheaper than hook tooling or the more exotic ECM techniques, especially in a quantity production environment. The barrels used to date in the AMCAWS 30 program have all been hook tooled.

FIRING TEST

HERE HERE WELLE WINDER STEEL STEEL

Completion of the fabrication of an N = 1.6 and a constant twist barrel, combined with the availability of an RIA twist barrel, allowed a firing test to be conducted that was designed to evaluate the three band/barrel combinations. A series of 28 shots with basic Mann barrel instrumentation (chamber pressure, round action time, velocity) was fired with down-range photographic equipment set up (Figure 10) so that in-flight pictures of the fired AMCAWS 30 rounds could be obtained. The firing data for these rounds is listed in Table !. The ammunition used is Lot XO5. All three barrels had less than 20 rounds each fired through them when the test began.

The pictures obtained were of excellent clarity. The three pictures chosen for each barrel for inclusion in this report are very representative of all the pictures taken.

Rounds 63, 68, and 72 are rounds fired through the RIA twist barrel. These pictures show the bands completely stripped. The rounds are stable as shown in the pictures. Rounds fired through RIA twist barrels have always targeted well. This reaffirms the belief that these bands stripped only after a large enough spin rate was obtained for the round to be stable.

Rounds 74, 75, and 80 are rounds fired through the constant twist barrel. The bands on these projectiles are in excellent condition.

Rounds 86, 87, and 88 are rounds fired through the N=1.6 twist barrel. These bands are also in good condition. The gain twist sweep mentioned earlier is easily seen. The driving edge face is in very good condition for the entire width of the band.

AMCAWS 30mm Mann Barrel Rd. 63 - BBL 73D40042 - RIA Barrel

FIGURE 11.

AMCAWS 30mm Mann Barrel Rd. 68 - BBL 73D40042 - RIA Barrel

FIGURE .12,

AMCAWS 30mm Mann Barrel 72 - BBL 73D40042 - RIA Barrel

FIGURE 13,

AMCAWS 30mm Mann Barrel Rd. 74 - BBL 73D40046 - Constant Twist Barrel

FIGURE 14,

AMCAWS 30mm Mann Barrel Rd. 75 - BBL 73D40046 - Constant Twist Barrel

FIGURE 15,

EXECTION OF THE PROPERTY OF TH

AMCAWS 30nm Mann Barrel Rd. 80 - BBL 73D40046 - Constant Twist Barrel

FIGURE 16,

AMCAWS 30mm Mann Barrel R4. 86 - BBL 73D40079 - N=1.6 Barrel

FIGURE 17.

AMCAWS 30mm Mann Barrel Rd. 87 - BBL 73D40079 - N:1.6 Barrel

FIGURE 18.

AMCAWS 30mm Mann Barrel Rd. 88 - BBL 73D40079 - N=1.6 Barrel

FIGURE 19.

Test Series No.	Subtest No.	Barrel Twist	Peak Pressure	Action Time	V ₅₀	In-Flight Picture	Comments
63	r-I		-	5	56	Ø	
64	5	RIA	NA	14.4	3607	Yes	
65	2	\vdash	9	∞	96	0	plit booster
99	4	-	6	A	08	No	Split booster cup
67	m	H	4.	15.0	62	No	•
89	. 9	щ	4.	A	62	O	
69	7	\vdash	4.	•	62	Yes	
7.0	∞	\vdash	0	0	54	0	
7.1	O.	\vdash	2	2	59	O	
7.2		\vdash	4.	2	64	മ	
73		\vdash	8	4.	65	0	
74	1.2	\circ	∞	14.3	52	Φ	
7.5		\circ	0	5.	57	ø	
76		\circ		7	56	0	
77		\circ	3	2	61	Ø	
7.8		0	О	3.	53	Yes	
79		0	4	2.	51	Φ	
80		0		3.	59	Ð	
81		0		4.	58	Φ	
82		\circ	о О	3	53	Ø	
83		•	2	о	48	Ð	
84		•	4.	K	46	0	
85		•			50	ø	
98		•		4.	47	O	
87		•	თ	S.	50	0	
88		•	o,	Ŋ	S	Yes	•
89		•	7	∾	48	ø	
06		1.6	5.	3	46	ø	

In-Flight Pictures for Rounds Fired Through RIA, Constant, N = 1.6 Barrels Table I.

EVALUATION OF RESULTS AND PREDICTIVE MODEL

LEAN TO THE THE PARTY OF THE PA

The initial decision to fabricate the N=1.6 barrel was made after the results of an early version of the <u>Barrel/Torque Comparisons</u> program were evaluated and the N=1.6 barrel appeared to offer a significant reduction in peak torque and it was noted the torque curve approached the curve for the Hercules barrel (which was known not to strip bands).

The decision to fabricate a constant twist barrel was made because it was felt that so basic a barrel type should be evaluated with actual firings. Historical inertia and the high peak torque values led most everyone involved in this decision to feel this barrel would most certainly fail the band.

The firing tests and in-flight pictures indicate that future barrels fabricated for the AMCAWS 30 program, using current interior ballistics and copper rotating bands, should have constant twist or the N=1.6 twist. The primary objective of this effort, choosing a replacement for the RIA twist barrel, has been met with that recommendation.

The secondary objective of this report, providing some coarse predictive model for evaluating the suitability of different band, interior ballistic, and twist combinations, is not as directly met. A model such as that will necessarily be simplistic since, as stated,

the "precise" mechanism of rotating band failure for this type of high performance ammunition has not been explicitly determined.

The model must also be simplistic because it is trying to generalize from a small amount of data and a limited firing test. The approach that will hopefully result in constructing the predictive model is one of essentially working from both ends to the middle (Figure 20). One end is the commenter program that assumes no band failure and calculates the values listed in the data matrix. The other end is the result of the firing test. The middle is the model that will evaluate the computer program output and predict the same results as occured in the firing test.

The model presented here suggests that two things should be considered; (1) the peak stress values must be able to be sustained by the rotating band, and (2) the time over which the high values act is very important.

The first consideration seems somewhat obvious. The band properties must be able to resist the peak shear and bearing loads. Shear stresses for the barrels considered do not exceed 10,000 PSI so failure in shear does not appear to be a problem. The bearing stresses are much higher, approaching 40,000 PSI.

The difficulty in determining if the peak bearing stress values exceed the band properties is finding data on band properties. Pub-

APPROACH PREDICTIVE MODEL

FIGURE 20

lished data from materials testing usually indicates that all rotating bands for high performance ammunition should fail. Most materials testing is done at a rate that does not begin to approach the rate of application of stresses in a gun. High strain rate tests do not usually result in data with easily comparable units, such as PSI. Rate of application certainly affects the ultimate limits of bearing strength and shear strength for the band material. One published value suggests 20,000 PSI as an allowable copper rotating band bearing stress, but the three successful barrels exceed that value by 11% to 65%. None of the barrels considered are less than 20,000 PSI in bearing. The constant twist barrel has a peak bearing stress of 33,200 PSI, so that might be considered a minimum for a range of values that describe the ultimate limit for rotating band bearing stress. The indications that the band are stripped well down the RIA barrel tend to suggest that the band withstands even the 38,000 PSI peak bearing stress of the RIA twist barrel successfully.

orthinesentalistical in the contraction of the cont

The peak torque, bearing stress, and shear stress values are listed in Table 2. These are the peak values computed in the program. Actually, however, the peak values for the constant or the $N = _._$ barrels are not listed. The nonspinning rotating band moving at about 200-250 fps engraving onto the 9° or 3° twist theoretically (since a no shear condition is assumed) produces infinite peaks. These peaks

J. Wolf and G. Cochran, <u>Rotating Band/Rifling Interaction Study</u>; General Electric Report 72APB552, November 1972.

Torques

Barrel	Band Position (in)	Time (msec)	Torque (in-1b)		
1.6	30.4	13.4	2378	108%	
1.8	32.7	13.5	2316	105%	
2.0	35.1	13.5	2274	103%	
RIA	38.7	13.6	3101	141%	
Hercules	30.4	13.5	2197	100%	
Constant	6.7	12.5	3579	162%	

Stresses

Barrel	Shearing	Stress (psi)	Bearing	Stress (psi)			
1.6	6613	105%	22210	111%	105%		
1.8	6410	102%	21647	108%	102%		
2.0	6288	100%	21250	106%	100%		
RIA	9482	150%	38158	190%	179%		
Hercules	6616	105%	27052	135%	127%		
Constant	9037	143%	33190	165%	156%		
		Suggested Val	ues 20000	100%			

PEAK TORQUE AND STRESS VALUES
TABLE 2.

last for such a small time period that they can be neglected. The print-out shows torque for the constant twist barrel is 0.0 in-lbs when the band is .816 inches into the barrel and 57.1 in-lbs at a band position of 1.124 inches. The time increment is .1 milliseconds. These values infer the time duration for the very high torque values are probably on the order of microseconds. The Gun Tube Handbook² refers to a five microsecond duration for the decay of infinite torque to "acceptable" values for a 37mm gun with 1.0 inch free run and a $y = px^{1.625}$ rifling profile. This background is presented in an effort to demonstrate that the time duration of peak values is important (again, there is also a rate of application relationship).

Bearing stresses for the six barrels compared appear to be the most critical values coming out of the program. The range of these values is very high relative to all published data (directly comparable or not) for properties of this class of copper. Bearing stress also relates to the amount of displacement the driving edge experiences, which could significantly change the remaining shear area. This might possibly reduce it to a critical region. Band melting might be accelerated by higher bearing stresses and the higher frictional forces. These parameters, which can be associated with bearing stress, are also felt to be rate dependent.

and the second of the contraction of the contractio

²AMCPM 706-252, Engineering Design Handbook, Gum Series, Gum Tubes, February 1964.

The idea of time duration and rate dependence is the reason a comparison of the integral of bearing stresses with respect to time is offered as the second test in this two-step model. The program uses a trapazoid summation to integrate torque, bearing stresses, and shear stresses with respect to time and position. The values are listed in Table 3.

Once again, a number which represents the dividing line between success and failure, for the integral test, is not readily available.

The dividing line value appears to be between 48 PSI-sec and 55 PSI-sec, assuming the RIA barrel does not cause band failure due to the first test.

and some supported to the solution of the solu

The proposed predictive model utilizes: (1) a computer program to calculate stress values caused by proposed interior ballistic performance acting on the candidate rifling profiles, (2) rotating band materials properties that can be meaningfully compared to the calculated stress values, and (3) a comparison of the integrals of the bearing stress versus time curves for the candidate barrels. This predictive model, based on very limited data and without precise knowledge of the mechanism of band failure that actually occurs, is somewhat incomplete. The model will provide a basis for evaluating any significantly different interior ballistic performance, such as when AMCAWS 30 goes to a non-stop mode. While the model will be refined and corrected with more firings and additional research, it now provides a better basis for selecting a barrel twist than was available previously.

INTEGRAL VALUES

BEARING STRESS	WRT POSITION	(N1-10)	RANK 2 0.137 E+67	971	3 0.140 E+07	145%	4 0.142 E+07	146% 5 0.162 E+07	167%	1 0.969 E+06	%00 I	6 0.205 E+07	9'1
BEAR	WRT TIME (PSI-SEC)	•	0.418 E+02 105%	2	0.418 E+02	850 I	0.418 E+02		121%	0.399 E+02	%00.1	0.553 E+02 139%	2
)	·	RANK 2		ო		4	S				9	
SHEAR STRESS	WRT POSITION (PSI IN)		0.421 E+06 160%		0.428 E+06	% 70 I	0.432 E+06	0.407 E+05	%+6-	0.264 E+06	%))	0.520 E+06 197%	
	WRT (P		RANK 3		4		2	2				9	
	WRT TIME (PSI-SEC)		0.125 E+02 115%		0.125 E+02	8) -	0.125 E+02 115%	0.119 E+02	800	0.109 E+02 100%	2	0.138 E+02 127%	
	3€)		RANK 5		4		က	2		_		9	
TOROU	WRT POSITION (IN-LB-IN)		RANK 3 0.147 E+06 141%		0.150 E+06 144%		0.152 E+06 145%	0.132 E+06 126%	:	0.104 E+06 100%		0.167 E+06 160%	
	₩.		RAN 3		4		Ω	7		ę		9	
	WRT TIME (IN-LB-SEC)	N=1.6 Barrel	RANK 3 0.447 E+01 114%	N=1.8 Barrel	4 0.447 E+01 114%	N=2.0 Barrel	5 0.447 E+01 114%	Hercules Barrel 1 0.392 E+01 100%	Constant Twist Barrel	2 0.431 E+01 110%	RIA Barrel	6 0.451 E+01 115%	
r													

TABLE 3

CONCLUSIONS AND RECOMMENDATIONS

The <u>Barrel/Torque Comparisons</u> computer program can easily be changed to provide comparisons of many possible barrels with a set of nominal ballistics data or comparisons of one barrel with a range of ballistic performance. This is a useful design tool so that someone charged with releasing a barel drawing can do so with some assurance that the twist profile appears compatible with the interior ballistics of the round. An advanced gun and ammunition development program, such as AMCAWS 30, should check barrels about to be released against current interior ballistic performance.

The predictive model is admittedly simplistic, based, as it is, on limited data, limited experience, and limited intuition. The model is not, hopefully, one of the arbitrary interpretations discussed under Observations. Work, to whatever degree possible, should continue on refining such a predictive model as it will fill a very real need in designing one aspect of the gun-ammunition interface.

The success of the N = 1.6 barrel as indicated by the values coming out of the computer program and the firing tests, is due to its hybrid design. The initial rifling angle of 3° is a very important design element to reduce the total sweep experienced by the rotating band while the 1.6 exponential gain allows low band stresses throughout the barrel. The N = 1.6 barrel essentially takes the zero band sweep

aspect of a constant twist barrel and combines it reasonably successfully with the low peak values associated with gain twist barrels.

The goal of the initial effort of this work was to provide a replacement for the unsuccessful RIA twist barrel. The recommendation of the constant or the N = 1.6 twist barrels with the current AMCAWS 30 interior ballistic performance meets that goal. There is a very high degree of confidence in those recommendations since they were actually fired. Looking ahead in the AMCAWS 30 program to non-stop ballistics and plastic rotating bands, a secondary goal of evaluating barrel/band combinations without fabrication and firing developed. The predictive model presented is a first step in meeting that goal.

Specific conclusions and recommendations follow:

CONCLUSIONS:

KARAMANA MARAMANA MA

- 1. Evaluate barrels about to be fabricated with current interior ballistics performance.
- 2. Current (May 1975) ballistic performance indicates N=1.6 or constant twist barrels should be used.
- 3. Rotating band sweep on gain twist barrels is a critical parameter that must be considered when suggesting a new gain twist function.
- 4. Rotating band sweep due to gain twist limits the rotating band width (width in the axial direction) that can be effectively used. Wider bands with gain twist barrels do not always have better survivability.

RECOMMENDATIONS:

- 1. Obtain better and more useable data on high rate properties of rotating band materials.
 - 2. Refine the rotating band predictive model.

REFERENCES

- J. Wolf and G. Cochran, <u>Rotating Band/Rifling Interaction Study</u>; General Electric Report 72APB552, November 1972.
- 2. AMCPM 706-252, Engineering Design Handbook, Gun Series, <u>Gun Tubes</u>, February 1964.

APPENDIX A

BARREL/TORQUE

COMPARISONS COMPUTER
PROGRAM WITH
CALCOMP GRAPHICS OUTPUT

```
FURTRAN IV G LEVEL 21
                                           MAIN
                                                              DATE = 75166
                                                                                    07/44/46
  U005
                  30 FURMAT (5(E16.7))
  0006
                                                                                            U0000540
                     J=J+1
  0007
                                                                                            00000550
                     A=([,L)ATAGBI
  0008
                                                                                            00000560
                     8=(S.L)ATAOBI
  0009
                                                                                            00000570
                     IBDATA(J.3)=C
  0010
                     INDATA (J.4) =D
                                                                                            00000580
  0011
                     IBDATA(J.5)=E
                                                                                           00000590
  0012
                     60 TO 20
                                                                                            00000600
 0013
                 40 CUNTINUE
                                                                                           00000610
 0014
                     NSET=J
                                                                                           00000620
 0015
                                                                                           00000630
                     VAL=NSET+2
 0014
                     RAD20G=57.2958279
                                                                                           00000640
 6017
                                                                                           00000650
                     SLOPE=.157788
 0018
                                                                                           00000660
                     ABORE=1.10008
 0019
                                                                                           00000670
                     R=.59175
 0020
                                                                                           00000680
                    STAR=1.0E70
 1500
                    KH0=.5856608
                                                                                           00000690
 0022
                                                                                           00000700
                    IPOLAR=3.8043E-04
 0023
                    MPROJ=1.10913E-03
                                                                                           00000710
 0024
                    UU 45 J=1.ASET
                                                                                           00000720
 0025
                    IBDATA(J.3)=IBCATA(J.3)+12.0
                                                                                           00000730
 0026
                    180ATA(J.4)=18CATA(J.4)+12.0
                                                                                           00000740
 0027
                 45 CONTINUE
                                                                                           00000750
             C
                                                                                           00000760
                                                                                           00000770
             C++++ BARRELS N=1.6,N=1.8,N=2.0 CALCULATIONS
                                                                                           00000780
 0028
                    START=1.0
                                                                                           00000790
 0029
                    END=81.0
                                                                                          00000800
 0030
                    P1=0.410420509E-03
                                                                                          00000810
0031
                    P2=2.086332E-03
                                                                                          00000820
0032
                                                                                          00000830
                    P3=6.58627282E-04
0033
                    N1=1.6
                                                                                          00000840
0034
                   A2=1.8
                                                                                          00000850
0035
                    N3=2.0
                                                                                          00000860
0036
                    XP1=14.15822971
                                                                                          00000870
0037
                    XP2=25.97271115
                                                                                          00000880
0038
                    XP3=38.78559/2
                                                                                          00000890
0039
                   AMT1=9.384274135
                                                                                          00000900
0040
                   AMT2=9.37723553
                                                                                          00000910
0041
                   AMT3=9.446034469
                                                                                          00000920
0042
                   U0 70 J=1.NSET
                                                                                          00000930
0043
                   IF (IBOATA (J.2) .GE.START) GO TO 50
                                                                                          00000940
0044
                   DO 46 M≈1.10
                                                                                          00000950
0045
                   BBL1(J.M)=0.0
                                                                                          00000960
0046
                                                                                          00000970
                   BBL2(J,M)=0,,
0047
                                                                                          00000980
                   BHL3(J.4)≈0.0
0048
                46 CONTINUE
                                                                                          00000990
0049
                                                                                         00001000
                   BULL (J.5) =STAR
0050
                                                                                         00001010
                   BBL2(J.5) #STA (
005;
                   8813(J.5)=STAR
                                                                                         00001020
0052
                   GO TO 70
                                                                                         00001030
0053
               50 IF (IBDATA (J. 2) . GT. END) GO TO 60
                                                                                         00001040
0054
                   CALL GAINP(J+P1+N1+XP1+T+T1+T2+TORQUE+ALEFT1+Y+DYDX+D2YDX2+
                                                                                         00001050
                                                                                         00001060
```

FORTRAN IV & LEVEL 21

DATE = 75166

07/44/46

88L2(J.3)=88L1(4.3)

86L3(J+3)=88L1(4+3)

66L2(J,4)=68L1(J,4)

86L1(J.4) = IPOLAR #88L1(J.3)

box

The second secon

.

```
FORTRAN IV G LEVEL 21
                                                MAIN
                                                                      DATE = 75166
                                                                                                 07/44/46
 0148
                       BBLAMC( J.6)=Y
                                                                                                          00002130
                       BELAMC( J.7) = ATAN (BYOX) - RADEUG
HBLAMC( J.8) = DZYDA2
                                                                                                          00002140
 0149
 0150
                                                                                                          00002150
                        EBLAHC( J.9) = SHEAR
 0151
                                                                                                          00002160
 0152
                       BELAMC (J.10) =BEAR
                                                                                                          00002170
 0153
                  JUO CONTINUE
                                                                                                          00002180
                c
                                                                                                          00002190
                                                                                                          00002200
                C
                C**** BARREL HERCULES CALCULATIONS
                                                                                                          20002210
 0154
                       START=1.0
                                                                                                          00002220
 0155
                       P3=.01008
                                                                                                          00002230
 0156
                       N3=1.5
                                                                                                          00002240
 0157
                       XP3=0.0
                                                                                                          00002250
 v158
                       00 100 J=1.NSET
                                                                                                          00002260
                       IF (IBUATA (J.2).GT.1.0) GO TO 90
 0159
                                                                                                          00002270
                       00 80 M=1.10
 0160
                                                                                                          00002280
 0161
                   90 RBFHFK(1*W)=0.0
                                                                                                          00002290
                       BBLHER (J.5) =STAR
 0162
                                                                                                          0002300
 0163
                       GO TO 100
                                                                                                          00002310
                    90 CONTINUE
                                                                                                          00002320
 0164
                       CALL GAINP(J+P3+N3+XP3+T+T1+T2+TORQUE+ALEFT+Y+DYDX+UZYDX2+
 0165
                                                                                                          00002330
                      15Ht AR. BEAR, IBDATA (J.2), 18DATA (J.3), 18DATA (J.4), 18DATA (J.5).
                                                                                                          00002340
                      1START + R + IPCLAR + MPROJ + RHO + ABORE)
                                                                                                          00002350
                         **** SHEAR AREA CALCULATION. AREA IS AREA SWEPT. ALEFT IS AREA
**** REMAINING ON THE ROTATING BAND PER SEGMENT
**** DRIVE IS DRIVING EDGE AREA
**** SUMFOR IS SUMMATION OF FORCES AT RADIUS TO PRODUCE TORQUE
                С
                                                                                                          00002360
                C
                                                                                                          00002370
                                                                                                          00002380
                                                                                                          00002390
 0166
                        AREA=.0648000#DYUX
                                                                                                          00002400
 0167
                       ALEFT=(0.0334627-AREA) +20.0
                                                                                                          00002410
 0168
                        SUMF OR=TORQUE/R
                                                                                                          00002420
                        SHEAR=SUMFOR/ALEFT
 U169
                                                                                                          00002430
                       DRIVE=(.3600/CCS(ATAN(DYDX)))*20.0*0.019
 0170
                                                                                                          00002440
 0171
                       BEAR=SUMFOR/DRIVE
                                                                                                          00002450
                       BEAK=SUMFOR/OR/VE

BBLHER( J+1)=T

BBLHER( J+2)=T1

BBLHER( J+3)=T2

BBLHER( J+4)=TORGUE

BBLHER( J+5)=ALLFT
 0172
                                                                                                          00002460
 0173
                                                                                                          00002470
 0174
                                                                                                          00002480
 0175
                                                                                                          U0002490
 0176
                                                                                                          00002500
                       BBLHER( J+6)=Y
 01/7
                                                                                                          00002510
                       BULHER ( J+7) =ATAN (DYDX) *RADZUG
 U178
                                                                                                          00002520
 01/9
                       SXUYSQ=(J+8)=DZYUXZ
                                                                                                          00002530
 0180
                       BELHEN ( J.9) = SPEAR
                                                                                                          00002540
 0181
                       BULHER (J. 10) =BEAH
                                                                                                          00002550
 0182
                  100 CONTINUE
                                                                                                          00002560
                                                                                                          00002570
                                                                                                          00002580
                C**** HARREL CONSTANT CALCULATIONS
                                                                                                          00002590
 V163
                       ENU=1.0
                                                                                                          0002600
 0184
                       AMT=U.0
                                                                                                          00002610
 0185
                       00 201 J=1.NSET
                                                                                                          00002620
 0186
                        IF (IBUATA (J.2). GE.1.0) GO TO 202
                                                                                                          00002630
 0167
                       01.1=M E0S 00
                                                                                                          00002640
                  203 BHLCON(J,M)=0.0
 0188
                                                                                                          00002650
```

en de la proposition de la compact de la

210.0=(S)YMMUGX

```
FURTRAN IV & LEVEL 21
                                           MAIN
                                                              DAIE = 75166
                                                                                      01/44/46
                     ALLMMY(1)=0.0-4000.
                                                                                             00003720
 U-74
                     *00000 = 40000 .
                                                                                             00003730
 0219
                     CALL SCALE (XUUMMY, YT, 2.1)
                                                                                             00003740
 0580
                     (E) YMMLOX=A HA 30
                                                                                             00003750
 02-1
                     DEARDV=XDUPMY (4)
                                                                                             00003760
 9565
                     110L1 (N14.9) = SHEF V
                                                                                             00003770
 0263
                     #612(N18.9)=SHHFV
 0294
                                                                                             00003780
                     7763(N18+9)≈54kFV
                                                                                             00003790
 0285
                     HOL "C(N18.4) = SMRFV
                                                                                             00003800
 0230
                     BULTER (N18,9) =SHRF V
                                                                                             00003810
 15257
                     MELCON(NIA,9)=SHRFV
                                                                                             00003820
 0244
                     #861 (N14+4) = SHRUY
                                                                                             00003830
 0599
                    d8L2(N) 9.9) = SHRUV
                                                                                             00003840
 0250
                    HHL3 (N19+9)=SHHUV
                                                                                             00003850
 0291
                    BULAMC (N19.9) = 5HHDV
 0272
                                                                                             00003860
                    COLDER(N19.9)=SHRDV
                                                                                             00003870
 0293
                    ##LCON (N19.9) = SHRDV
                                                                                             00003880
 0254
                    MHLCON(NIB+1U)=HEARFV
                                                                                             00003890
 0295
                    BULHER (NId. 10) = WEARF V
                                                                                             00003900
 0295
                    THE AMC (N18.10) = HEARFY
                                                                                             00003910
 0247
                    3013 (N18 - 10) = 3E ARFV
                                                                                             00003920
 0298
                    UUL2(418.10) =BEANFV
                                                                                             00003930
 0299
                    OHL1 (N18+10) = BEAKFY
 0300
                                                                                            00003940
                    UML1 (N19,10) = BEARDY
 0301
                                                                                            00003950
                    9812(N19+10)=BEARDY
                                                                                            00003960
 0302
                    HELJ (N19.10) = BEARDY
                                                                                            00003970
 0303
                    BBL AMC (N19.1U) =BEARDV
                                                                                             00003980
 0304
                    HILHER (N19, 10) = HEAR.)V
                                                                                            00003990
0365
                    HHLCON(N19+10)=BEARDY
                                                                                            00004000
0366
                    ET=1.0
                                                                                            00004010
                                ULIFUI FUN N=1.6 BARNEL
0307
                                                                                            00004020
                    NH [ [ (6.1)
                                                                                            00004030
0360
                  1 FORMAT(')',
                                      ' ////////////////////// 101, 20x,
                                                                                            00004040
                               TOAHREL 1. 3 DEGREE INITIAL ANGLE, 8.967 EXIT. Y=.0064500004050
                   170601001.6.
                                     N=1.6 BARREL+)
                                                                                            v0004060
0.569
                    #KITE (6,400)
               400 FORMAT(*1*,*BARKEL 1, 3 DEGREE INITIAL ANGLE: 8.967 EXII, Y=.0064500004080
U310
                  196604001.6,
                                    N=1.6 BARREL!)
                                                                                            00004090
0311
                        WRITE (6,210)
                                                                                            00004100
0312
                   UU 2/0 J=1.45ET
0313
                                                                                            00004110
                   AKITE (1.200) U. IBLATA (U.2), BBL1 (U.6), BBL1 (U.4) + BBL1 (U.5),
                                                                                            00004120
                  U, (7, U) 1188, (1, U) ATAGEI (1, U) 1188, (V, U) 1188
                                                                                            00004130
0314
               270 CUNTINUE
                                                                                            00004140
0315
                   WFIFE (6.7)
                                                                                            00004150
0 116
                   CALL FPLCT(NSE1+1+180ATA(1+2) . BBL1(1+4)+0+SET+SET+SET+SET)
                                                                                            00004160
U317
                   WRITE (6.8)
                                                                                            00004170
0318
                   CALL FPLCT (NSET+1+18DATA(1+1)+
                                                      86L1(1.4).0.SET.SET.SET.SET)
                                                                                            00004180
0314
                    CALL AXIS(0.0.0.0.35HTORQLE SPINNING PROJECTILE (IN-LBS).
                                                                                            00004190
                              +35,YT,90,0,GFV,GDV)
0320
                   CALL AXIS(0.0.0.0.40HPROJECTILE POSITION DOWN BARREL (INCHES).
                                                                                           00004200
                                                                                           00004210
                              -40,XP,0.0,PFV.PDV)
                                                                                           00004220
0321
                    CALL LINE (180ATA(1.2), BBL1(1.4), NSET, 1, 15, 11)
                                                                                           00004230
0322
                   CALL SYMBOL (4.2.7.5,.21.12HN=1.6 BARREL.U.0,+12)
                                                                                           00004240
```

```
FORTRAN IV & LEVEL 21
                                          MAIN
                                                             DATE = 75166
                                                                                    01/44/46
                     CALL LINE (IBUATA(1+2)+BBL1(1+9)+ASET+1+25+1)
 0324
                                                                                           0 304250
                     CALL LINI ([BUATA(]+2)+BBL1(1+1v)+NSET+1+20+2)
 0325
                    CALL AXISI-1.0.0.0.35HSHEAR STRESS UN RUTATING BAND (PSI).
                                                                                           15004260
                                                                                           00004270
                    1+35+YT+90.0+SHRFV+SHRDV)
 0326
                    CALL AXIS (-.5.0.0.37 HBEARING STRESS ON RUTATING BAND (PSI).
                                                                                           20004280
                    1+37+YT+90.0+BEARFV+REARDV)
                                                                                           UCU04290
 0327
                                                                                           (004300
                    CALL LEGEND (6.900,1,222)
 0328
                                                                                           60004310
                    CALL PLOT(15.0.0.0.0.3)
                     CALL AXIS(0.0.0.0.35HTORQUE SFINNING PROJECTILE (IN-LUS),
 0 129
                                                                                           10004320
                                                                                           10004330
                               +35+Y[+90.0+GFV+4DV]
 UJJO
                    CALL AXIS(0.0.0.0.33HTIME FROM PRIMER STRIKE (SECUNDS),
                                                                                           00064340
                                                                                           00004 350
                               -33.XT.0.0.TFV.TUV)
 0 531
                                                                                           00004360
                     CALL LINE( 180ATA(1.1),88L1(1.4),NSET.1.15.11)
                    CALL SYMBOL (4.2.7.5..21.12HN=1.6 BARREL.0.0.+12)
 0332
                                                                                           000004370
 0333
                    CALL PLOT(15.0.0.0.3)
                                                                                           00004380
                                                                                           00004390
                                GUTPUT FOR N=1.8 BARREL
 0.3.34
                    *RITE (6,2)
                                                                                           00004400
                                                                                          00004410
 0335
                  2 FURMAT( 11 , 1
                                         ///////////////////// 101, 20x,
                                *BARKEL 2. 3 DEGREE INITIAL ANGLE. 8.967 EXIT. Y=.002100004430
                                                                                           00004420
                   1/6444**1.8.
                                   N=1.8 BARREL 1)
 0336
                                                                                          00004440
                    WRITE (6,410)
               410 FORMAT(11 . BARREL 2, 3 DEGREE INITIAL ANGLE, 8.96/ EXIT, Y=.002100004460
UJ37
                   1764°×**1.8.
                                  N=1.8 BARREL+)
9338
                                                                                          00004470
                       wRITE (6.210)
0339
                    00 260 J=1.NSET
                                                                                          00004480
0.340
                   #RITE(6,200)J.18DATA(J.2).8BL2(J.6).8BL2(J.4).8BL2(J.5).
                                                                                          00004440
                                                                                          00004500
                  UHBL2(J.9) .BBL2(J.10) . IBDATA(J.1) .BBL2(J.7) .J
0341
                                                                                          00004510
               260 CONTINUE
0342
                                                                                          00004520
                    WRITE (6.7)
0343
                   CALL FPLOT (NSET+1+180ATA(1+2) + BBL2(1+4)+0+SET+SET+SET+SET)
                                                                                          00004530
6344
                                                                                          00004540
                    KRITE (6,8)
                   CALL FPLOT (NSET. 1: 18DATA (1:1) . 88L2(1:4) .0.SET.SET.SET.SET)
0345
                                                                                          00004550
                    CALL AXIS(0.0.0.0.35HTORQUE SPINNING PROJECTILE (IN-LBS).
0346
                                                                                          00004560
                                                                                          00004570
                              +35+Y[+90.0,GFV+GDV)
034/
                   CALL AXIS(0.4.0.4.40HPROJECTILE POSITION DOWN BARREL (INCHES).
                                                                                          00004580
                                                                                          00004590
                              -40, XP, 0.0, PFV, PDV)
                    CALL LINE (IBDATA (1,2), EBL2(1,4), NSET, 1,15,11)
9.348
                                                                                          09004600
0.149
                                                                                          00004610
                   CALL SYMHOL (4.2.7.5..21,12HN=1.8 BARREL.0.0.+12)
0350
                   CALL LINE (IBDATA() .2) .BBL2(1.9) .NSET.1.25.1)
                                                                                          01004620
v351
                   CALL LINE ( 1 HUATA (1 . 2) . BBL2 (1 . 10) . NSET . 1 . 20 . 2)
                                                                                          00004630
0352
                   CALL AXIS (-.5.0.0.37HBEARING STRESS ON HOTATING BAND (PSL),
                                                                                          00004640
                                                                                         00004650
                  1+3/.YT.90.0. UEARF V. BLARDV)
                   CALL AXIS (-1.0.0.0.35HSHEAR STRESS ON HOTATING BAND (PSI).
0353
                                                                                         00004060
                                                                                         00064670
                  1+35+YT+90.0+SHRFV+SHRDV)
0354
                   CALL LEGEND (6.000.1.222)
                                                                                         00004680
UJ55
                   CALL PLOT (15.0.0.0.-3)
                                                                                         00004690
                    CALL AXIS(0.0.0.0.35HTORQUE SPINNING PROJECTILE (IN-LUS):
0356
                                                                                         00004700
                                                                                         00004710
                             +35,YT,90,0,6FV,QDV)
0.357
                  CALL AXIS(0.0.0.0.33HTIME FROM PRIMER STRINE (SECUNDS).
                                                                                         00004720
                                                                                         00004730
                             -33.x1.0.0.TFV.TOV)
035A
                    CALL LINE ( IBCATA(1.1) .BBL2(1.4) .NSET.1.15.11)
                                                                                         00004740
                   CALL SYMBOL (4.2,1.5,.21,12HN=1.8 BARREL.0.4.+12)
0359
                                                                                         00004750
0360
                   CALL PLUT (15.0.0.0.-3)
                                                                                         00004760
                                                                                         UUU04710
```

DATE = 75166

01/44/46

00005230

00005300

FURTRAN IV G LEVEL /1

6346

6397

#RITE (6.7)

CALL FPLOT (NSET+1+18CATA(1+2)+BBLAMC(1+4)+0+SET+SET+SET+SET)

DAIE = 75166

01/44/46

00005830

the factories of the trained trained and the second and the second of the second of the second of the second of

FURTRAN IV G LEVEL 2

0435

CALL LEGEND (6.611,1.222)

DATE = 75166

07/44/46

JUU06350

00000360

INTERNATIONAL CONTROL OF THE CONTROL OF THE PROPERTY OF THE PR

FORTRAN IV G LEVEL 21

0474

0475

CALL LINE (IBUATA (1+2) + BBLAMC (1+10) + NSET+1++30+9)

karrandaran da karrandaran karrandaran karrandaran karrandaran karrandaran karrandaran karrandaran karrandaran

00007410

the state of the first or words to the contract of the second section of the second section of the second second

CALL SYMBOL (2.25.7.5...21.27H

0001		SUBMOUTINE AAMCJU (X+X1+X2+START+R+RHO+ABORE+PBASE+PULAR+APHOJ+	00007630
0001		1Y+T+T1+T2+DYDX+D2YDX2+TORQUE+ALEFT+SHEAR+HEAR)	00007640
2000		30=-1.26797E=04	00007650
0002		#1= 0.26041E=05	00007660
0003		#2= 1.49651E=03	00007670
0004		83=-4.28221E-06	U00U7680
0006		834-282212-06 84= 8-61423E - 09	00007690
0000		17- 0-014235-07 17-18-18-18-18-18-18-18-18-18-18-18-18-18-	200077700
8000		XX1=XX	00007710
0009		xx2=xx*xx	00007710
0019		**************************************	00007720
6011		**************************************	00007730
0011		Y=EG+B1*XX1+B2*XX2+B3*XX3+B4*XX4	00007740
2100			υ0007750 υ000776υ
0013		T=Y/R JYDX=B1+2.*d2*XX1+3.*B3*XX2+4.*B4*XX3	00007760 00007770
		• • • • • • • • • • • • • • • • • • • •	
0015		1)2YUX2=2.*82 +6.°63*XX]+12.°64*XX2	00007780
0016		11=x1*DYDX/R	0000/790
0017		12=(\1°X1*0\2\0\x2*\2*6\0\X)/h	00007800
0018		TURDUE=PGLAR*T2	00007810
	C	*** SHEAR AREA CALCULATION. AREA IS AREA SWEPT, ALEFT IS AREA	00007820
	Ċ	OSOO REMAINING UN THE ROTATING HAND PER SEGMENT	00007830
	Ċ	OFF DRIVE IS CRIVING EDGE AREA	v0007840
	Ĺ	*** SUMFOR IS SUMMATION OF FURCES AT HADJUS TO PRODUCE TOROUGE	00007856
0019		APE A= . 0648000 CYDX	01007860
0020		ALEF I = (0.033462/-AREA) *20.0	00007870
0021		SUMP OR = TORCUE/R	00007880
0022		SHE AR=SUMFOR/ALEFT	00007890
0023		URIVE=(.3600/CC5(ATAN(CYDX)))°20.0°0.019	0000/900
0324		BEAR=SUMFOR/URIVE	60007910
0025		RETORN	00007920
0026		ENI	υ 0007930

THE STANDARD SERVICE OF THE STANDARD PROPERTY OF THE STANDARD PROPERTY OF THE SERVICE OF THE STANDARD SERVICE OF THE SERVICE O

FPLOT

and the control of the control of the state of the control of the

FURTRAN	IV & LLVLL	1	FPLOT	DATE = 75166	07/44	
0029					01744	+/46
0030	140) J=1.101 5)=3LANK			U000E700
0031			//=5LANK K=1.M			00002700
0032			L=1+14			00008720
0033		12 () ()	L=1+IV			00008720
0034		V 21 - (2	*K1.GT.YMAXX.UR.Y(L.K).LE.((L)-XMIN)/XINC+1	YMAXX-YINC)) GO TO 161		00008730
0035			**レノニニリスタイノスス(しゃ)			00008750
0036		TE /L IN	E(NXL) .EG . BLANK) GO TO 170			00008760
0037		I THE IN	F(NXL).EL.MARK(K)) GG TO 17 XL)=MARK(10)	0		00008770
U038		60 TO	17) VE1=6 MUV (10)			00008780
0039	170		XL)=PARK(K)			00008790
0040	151	LUNTIN	NET ARRIKT			0008800
0041			YMAXX-YINC			00008910
0042		IF O IN	ECT-10)160,190,190			00008820
UU43	190	LINECT	=1			00008830
0044			6.2001) YSCALE ((KI+10)/10)	0.0.		00008840
0045	2001	FURMAT	(* '+F14.5+A1,101A1)	DASH LINE		00008850
0046		or On	1300			00008860
0047	180	LINECT:	=LINECI+1			UUU08870
UJ48		WRITE (5-1100) COT-LINE			00008880
0049	1100	FURMAT	(* *+14X+A1+1J1A1)			00008890
v050	1 300	CONTINE	JE			00008900
dar I		00 200	I=1,101			00008910
0052	. 200	LINE(I)	= 001			00008920
0053		00 210	I=1+101+10			00008930
0054	210	LINE (I)	=PAA			00008940
0055		WHITE (6	1500) LINE			00008950
0056	1500	FURMAT (' '+15X+101A1)			00008960
0057		441TE (6	+2002) (XSCALE(1) .T=1.11.2)			00008970
0058	2002	rukmai (' '+6(2X+F14.5.4X))			08480000
0059 0060		%KITE (6	12003) (XSCALF (1) .1=2.10.2)			00008990
0061	2003	rukmai (" '+10X+5(2X+F14+5+4x))			00009000
0065		X	INCOlu.			00009010
0063	,	YINCH=Y	INCan.			00009020
0064		WHITE (6	,9000) XINC,YINC			00009030
0065	9000 i	ORMAT (101.20X.1X-1NCREMENT=1,E15.	6.20x.1Y=IACDENENT-1.CIC		00009040
0065	04.4	MITE (6	+9001) XINCH+YINCH	- 1 - 1 - 14 CK CWC 141 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	61	00009050
0000	9001 6	OKMAT (1 1,20x, 1x-SCALE IS 1,E16.6	I PER INCHIALIXALVECOMO		00009060
0067	16	16.5	PER INCH!)	THE THOM STANDS LABOURE	12 ,	00009070
0068		RETURN				00009080
4400	t	NU				00009090
						00009100

FU-THAN IV G LEVEL	Z1	LEGENU	DATE = 75166	07/44/46
6001	SHINROUTINE L	EGENC (XP+YPPP)		00009480
0.002	≯~=×hbb			U0UU9490
4403	~YMXP=XP28	١		00009500
00:14	YMYP=ŸP+.07	,		00009510
0005	CALL SYMMOL (SYFXF .SYPIP 14 . 11	.0,-1)	00004520
0006	SYMXP=SYMXP=	• 21		00009530
0007	CALL SYMPOLIC	SYMXF.SYMYP14.11.u	•0+-4;	00009540
სისგ	LALL SYMHOL (XP+YP+.14+6HT0KUUE+U	•0 •0	00005550
0009	40-44-G			00005560
0010	, • ^ YP=5YMYP=			00005570
0011	CALL SYMHOL (SYMA-,5YMYP.,14,2,0,	0 1	00004540
0012	SYMXH=SYMXF+			00004540
0013		574 14,57474,.14,2,0,		009600
0014		XP+YP+.14+14HBEARIKU	SIALSS.0.6.141	### ### ### ### ### ### ### ### ### ##
0015	14=14-*5			00009650
0016	2~~~~= <ymyf-< td=""><td></td><td></td><td>00009630</td></ymyf-<>			00009630
U017		SYMXH+SYMYH+.14+1+0.	0,-1)	90009540
0018	214XH=24HXH-			J0004650
6019		SYMXF.SYMYP14.1.0.		0000 iE+0
0020	· · · · · · · · · · · · · · · · · · ·	XP.YF14.12HShtak 5	TRESS+(+0+12)	10009070
0021	ME ESHIV			00007640
0055	E v'			60009690

00010050

0035

E, . .

FORTRAN IV	ů Lt,VÉL	51	THAP	DATE = 75166	07/44/46
JOOL		S ALT TAS	THAF (N.XX.YY.SUM)		•
0002		41 A. AY (25	1 1 4 5 (N + XX + YY + SUP)		00010060
(063		5 J=1+N	23-14 (252) + XLUMMY (252)	+YUUMMY (252)	·10010u/u
u004		- ('C) Y ('J') =			00010080
. JU 5		= (L) YMMU:			U60100A
0006	5	+ Dal Pang	11(3)		00010100
6007		50 = 0.0			00010110
8000		AIMAP=N-1	2		00010120
0009		.₽1S=N=2	-		0610136
0010		Ju . 3 /= 1 .	A THAE		00010140
UU11		DEL TATICAL	I MKY L (I A VOLÁBLY L LA LA LA		
0012		3114=5UM+UE	1 TA) YMMUUX- (1+L) YMMUUX) 4 (0+	3); 00010160
J013	10	CONTINUE			000101
UJ 14		RE FUNN			v0016180
0015		END			00010190
					00010200

HAPPER IN 3 DECORE INITIAL ANGLE . 8.967 EATT Y= . 906459064891.6. N=1.6 BARKEL

1AH	esc 10 3 .	comft: 14111	AL 4 (LE+ 8+)	967 tall. Y=.440045	.0.1**X**	N=1.6 HANNEL			
J	POSTFION (INCHES)	(1%CH(-5)	(IV-P42) INNGQE	SHEAH ÁHLA (IRCHES##2)	SMEAN STRESS (PSI)	BÉARING STHESS (PSI)	TÍPE (SECORUS)	HIFU'(NG ANGLE (DEGREES)	J
1	±4.642	0.0	0.0	************	J. 0	4.0	• 0.0	⊍.0 .	1
-	-4. 574	7 · U	U. U	**********	0.0	V.U	0.00010	0.0	į
	-4.017	む・ロト	0.0	**********	0.0	0.0	0.00020	v.0	ž
4	-4.047	U•U	9.0	**********	U.0	V.0	0.000.0	U.O	•
כ		4.0	0.0	******	0.0	0.0	U-00040	3.0	2
6		4 • O	0.0	************	0. u	0.0	U.0U05U	U • 0	6
,	400,712	0.0	0.0	****************	0.0	U.0	0.00060	J.O.	1
	-4.200	n•Á	U•V	*************	0.0	V.0	0.00070.	ಚಿಕ್ಕಾ	1
4	1-4.097	9.0	v.0		0.0	6.0	U.U008U	0.0	7
ίυ	-3.909	0.0	1.1)	*************	0.0	0.0	0.00090	U.U	10
(1)	-3.646	(i o U	9.0	*************	0.0	U.0	0.00100	U•0	11
ìc	-3.400	0.0	0.0	*****************	U. (0.0	0.00110	0.0	16
13	-3.208	11.0	0.0	*****************	0.0	V.0	0.00120	V.0	13
14 15	-2.931 -c.651	₽ . U	· 0 • 0	*************	0.0	0.0	0.00130	0.0	14
in.	-2.354	0.0	9.0	************	0.0	0.0	0.00140	0.0	15
17	-6,034	n•0 0•0	1.0	***************	1.0	0.0	0.00150	0.0	10
Ĭø	-1.730	0.0	10.0 0.0	**************	0.0 0.0	U.0	0.00160	V-0	17
19	-1.419	ile U	0	*************			0.00170	0.0	Įd
20	-1.090	0.0		***********	0.0 0.0	0.0	0.00160	V.U	14
21	-96717	V+1.	2.0	*************	U•U U•U	0.0	0.00200	۷ ٠ 0	50
21	-0.455	0.0		************	0.0	U.U U.O	0.00210	0.0	51
23	-0.134	0.0	41.44	*************	0.0	0.0	0.00550	9.0 9.0	.22
24	0.186	9.0	0	**************	0.0	U.0	0.00230	0.0	્∤ટ ક
10	0.503	0.0).0	***********	ŭ.0	0.0	0.00230	V•0	25
۷٥	0.815	0.0	0.0	************		0.0	0.00250	V.0	20
21	1.124	しゅうひょ	-0.65	U.BERY	- (* • •)		0.00250	3.015	ξĭ
64	1.4.75	4.519	-11.31	9.0691	***		0.00270	3.070	24
61	1./19	0.535	-21.501	V+66/+			0.00280	3.00%	ج تے
30	1.00%	0.550	-31 - 104	. U.bnto	۱۲۰		0.00250	3.117	30
11	6.771	りゅうかつ	-42.90	0.6559	·		0.00300	3.14"	31
36	くいりとう	0.579	-55.90	6.6652	• • • •	-524.00	0.00310	1.177	32
و. ق	.2.159	0.562	-69.4:		- '.+)	-655,50	0.00320	1.264	33
34	6.410	0.004	-84.327		#6 14 a 75	-/90.44	0.00330	3.220	34
35	3,154	6.614	-38.73	y.6636	- mu.le	-920.79	0.06340	3.240	35
15	3.310	0.623	-110.494		-141.54		0.00350	3.26r	36
47	3.445	0.530	-117.87		*** **		0.00360	3.2MU	31
34	3.723	0.035	125.054		41		0.00370	3.240	۾ ق
بور 40	3.574	0.24	124.655		*		0.00 160	3.7 16	34
41	3.564 3.595	0.640 0.539	11/03/6		** ****1		0.00340	3.29-	40
٠,	3.80'	•651	21.09/1		*****		0.00400	300 011	4 !
٠,	3.00°	りゅうう	V•0	(.ng2"	•0	0.0	0.00515	3.320	41
44.4	3.800	0.051	0	L.6620	0.0	0.0	0.00540	1.300	4.5
4,	3.600	0.651	υ• `	0.6620	0	0.0	0.005/0	ao delu	44
4.	3.800	0.051	U•U	U•66£U U•66£U	•	0.0	0.00000	3.376	47
41	1.300	0.651	V • 1	0.0650	1.01	0.0 0.0	0.00630	3.321	40
+6	3.400	0.051	''• O	0.0020	**************************************		0.00560	1.370	4.
47	1.000	0.051	1.0	V.6620	····	0.0	0.00690	J+ 120	48
50	1.801	1.051	•0	U.662U	0.0	C.0	0.00720 0.00750	3.320	44
วไ	J. 80%	V.051	1.1)	0.0620	0.0	V.Ú	0.00750	1.3eu 126	50
زد	3.000	0.051	1.0	U.00£U	0.0	V.0	0.00770	3.320	5: 5/
			- 3 4		7,0	V."	2400.510	40360	7/

>3		0.021	v.11	0.0660				
34		0.051	0.0	0.0020	0.0	0.0 0.00H40	3.324	53
55		0.051	0.0	V-0620	0.0	U.O 0.00570	3.320	54.
56	3.800	0.051	6.0	U-662U	0.0	0.0 0.00400	3.320	55
5/	うっつひり	0.051	0.0	0.0050	0.0	0.0 0.00430	3.320	56
50	3.600	0.651	0.0	0.0520	6.0	V.V 0.00960	3.320	57
59	3.600	0.65	9.1	0.0620	0.0	0.0 0.00990	3.320	58
j	3.000	9.65	V.0		0.0	0.0 0.01020	3.320	59
10	*•80	U. O.	0.0	0.650 0.650	0.0	0.0 0.01050	3.320	60
62	3.800	V-551	V•0	0.0020	0.0	(0.0 0.01080	3.320	61
63	*90%	0.051	9.0	V•6620	0.0	0.0 0.01110	3.320	62
64	John t	0.151	U.C		U.Q	0.0 0.01140	3.320	63
65	1.000	U.M. I	U•J	0.0540	U.O	0.0 0.011an	3.320	64
96	4.HOD	40.00	2:5.697	0.0670	0.0	0.0 0.01200	3.320	65
01	3.401	0.061	404.619	0.6620	550.63	2021.64 0.01203	3.320	66
٥d	4.102	6.004	5/4.468	0.6619	1033.54	3192.20 0.01200	3.338	67
09	4.252	4.675	725.040	0.6615	1407.15	5380.32 0.01209	3.354	68
/υ	4.361	(1.544	450.020	0.6609	1853.90	6/95.18 0.01212	3.364	69
71	4.495	11.697	977.209	0.6696	2197.23	8049.57 0.01215	1.342	70
72	** 640	0.701	1081.645	0.6603	2501.15	9150.27 0.01218	765.د	71
13	••#••3	0.410	-1173.8e4	0.6599	2/49.96	10136.85 0.01222	3.413	12
74	4.987	0.721	1255.467	0.6595	3007.45	11000.90 0.01255	J 30	13
75	7.197	11 . 7	1327.939	0.6590	3214.26	11765.40 0.01228	1.450	/3 /4
16	5.431	1.7.4	1392.430	0.6565	34111.72	12444.27 0.01231	3.4/3	15
- 11	2.595	4.760	1450.7:7	0.6580	35/6.65	13050.14 0.01234	3.498	76
10	7.91.	0.764	1503.311	0.6573	3/29.73	13594.25 0.0123/	3.526	17
19	2.361	Den s	1551.253	0.6566	3009.09	14086.41 0.01240	3.557	78
11)	5.66	1) . 1121.	1595.325	0.0558	3597.25	14535.10 0.01743	3.592	79
c!	1.07	0.451	1/36.215	0.0550	4116.21	14441.52 0.01246	3.530	80
62	7.501	11.579	1574.444	0.6540	4241.68	15327.85 0.01249	3.671	18
03	7.454	0.401	1710.455	0.6530	·+333.06	15687.25 0.01252	3.714	45
24	دروائها و مح		1/44.7/6	0.6520	4433.57	16024.14 0.01255	3.761	83
25	H.472	0.775	1777.615	0.0508	4530.27	16344.31 0.01259	311	r, 19•4
85	5.56.	1.01%	1309.364	0.6497	c24.00	16650.96 0.01262	3.863	05
e/	1 1 - 107	1.054	1440.155	0.6484	4/15.55	16940.86 0.01265	3.910	
٤٩	10.719	1.097	1870.329	0.6471	4805.57	17234.45 0.01268	3.976	ده د/
69	11.359	1.140	1900.03/	0.0457	4594.62	17515.77 0.01271	4.035	, c
40	12.021	1+141	1921.430	0.6443	4983.21	17792.63 0.01274	4.091	89
21	12.722	نر 4,5	1950.641	0.042+	5071.72	18066.42 0.01277	4.161	40
•2	13.443	100'00	997.755	0.0414	5150.49	18338.40 0.01280	4.221	51 51
43	1 140	1 . 35%	2016-832	0.6359	5649.75	18609.3/ 0.01283	4.244	71
1944	14.966	1 + + 1 1	2042.826	0.6383	5339.65	18479.65 0.01266	4.353	93
45	15.754	1/3	2074.905	0.6367	5430.24	19150-02 0.01289	4.43.	94
45	19.5/8	1 - 234	2103.512	0.6350	5521.48	19419.73 0.01292	4.500	95
41	17.421	Lioniz	7132.511	0.6334	2012.11	19588.29 6.01295	4.7/7	90
413	14.689	1.020	£160.965	0.6317	5705.05	19954.75 0.01299	4.654	197
44	19.177	1.752	-118b.b/d	0.6299	5746.17	SUL10.0 88.1150>	4.7.50	> 77
.00	20.090	1.70%	r215.731	0.0545	5697.77	20475.82 0.01305	4.507	99.
. 91	21.024	1.710	2341.765	0.0264	5971.48	20/20.51 0.01308	4.845	100
100	21.900	1.194	2260.4en	0.0246	6665.17	20967.54 0.01311	4.954	101
103	72.95%	*****	2289.501	0.6229	6150.04	21146.18 0.01314	5.044	105
104	23.65"	2017	2310.769	0.6209	6531.55	21404.64 0.01317	5.125	102
ivo	24.477	1.635	2329.009	0.6191	6307.83	21604.79 0.01320	5.207	103
105	20.050	6.300	63671907 63471967	0.6172	63/8.71	21778.05 0.01323	5.290	105
107	27.002	7.41 T	2354.040	U-6153	6443.01	61926.07 0.01366	5.3/3	105
136	70.165	1.30/	436H.933	0.6134	6439.64	22047.15 0.01329	5,458	107
109	29.256	1.675	2375.167	0.6114	6547.59	42136.39 0.01332	5.543-	107 108
110	10.334	c. 140	2377.533	0.6095	6585.43	22:91.61 0:01336	5.620	109
111	11.520	7.901	2375.799	0.6075	6613.80	22210.20 g.gl339	5.714	110
115	32.665	1.01 4	2364.540	0.6055	6630.34	22119.77 0.01347	5.801	111
			. 01 . 1 7411	v.6035	66,14.95	22120.71 0.61345	5.688	111
						· ·	,	116

113	13.861	3.142	.35					
114	35.052	31267	2358.85n	0.0015	6027.02	22025:44 0.01348		
115	35.259		2343.612	0.5995	6006.27	21879.56 0.01351	5.976	113
:15	31.461	3.524	5357-930	0.5975	6572.61	21671.30 0.01354	6.064	114
117	38.717	3.665	C\$64.210	0.5455	6525.93	£1460.75 0.01357	6.152,	115
118	39.966		2210.825	0.5934	6466.50	21400.75 0.01357	6.240	115
119	41.2211	3+505	5530.015	0.5914	6395.07	21189.39 0.01360	6.329	117
120	4291		5501.510	0.5894	6312.23	20880.17 0.01363	6.417	118
121	43.178	4.09 1	2161.481	0.5874	6218.84	20535.46 0.01366	6.506	117
155	43.776	4.242	211#•57/	0.5853	6116.47	20158.51 0.01369	6.594	120
123		4.394	2073.247	0.5833	6006.32	19754.83 0.01372	0.642	121
124	46.366	4+55%	2026.164	V.5813	5890.13	19328.64 0.01376	6.170	152
	4/.671	4.704	1977-411	0.5793	5690.13	1885.80 0.01379	o.Abd	iži
125	44.945	40060	1929-139	0.5773	5/09.61	18432.12 0.01382	6.946	124
126	50.299	25004	1880.724	V.5753	5647.12	17975.17 0.01385	7.033	125
151	51.621	5.198	1833.256	0.5733	5524.48	17520.80 0.01388	7.119	126
128	56.464	2.30%	1787.619	0.5713	5403.80	17075.71 0.01391	1.206	
129.	54.279	5•534	1744.3e7	0.5694	5287.37	16647.07 0:01394	7.292	12/
1.30	55.615	5./12	1704.201		5177.32	16241.36 0.0139/	1.3/7	128
131	50.450	5.882	1667.584	0.5674	50/5.50	15864.13 0.01400	7.462	124
132	50.302	h-ubs	1635.290	0.5655	4583.57	15520.25 0.01403	7.547	130
133	79.653	5.250	1607.357	0.5635	4903.90	15216.70 0.01406	7.631	131
134	~1.å11	5.435	1584.158	0.5616	4836.76	14953.82 0.01409		125
135	62.375	5.623	1565.701	0.5597	4783.52	14735.42 0.01412	7.716	133
136	53.750	0.814	1552-137	0.5577	47.44.24	14561.20 0.01416.	7.799	134
137	45:132	7.007		0.5558	4/19.19	14431.38 0.01419	7.883	135
138	65.525	7.207	1542.765	0.5539	4706.86	14340.93 0.01422	7.966	136
139	57.928	1.408	1537.472	0.5520	4107.20	14289.14 0.01425	8.050	137
140	69.343	7.014	1535.197	0.5500	4/16.70	14265.01 0.01428	H•133	136
141	70.771	1.023	1534.957	0.5481	4732.56	14259.77 0.01431	8.217	139
142	12.211	H+U36	1536.284	0.5462	4753.44	14269.09 0.01434	8+300	140
143	73.662	h•453	1536.781	0.5442	4/71.87	14270 54 0 01 07	8.384	141
144	75.122	#•474	1535.376	0.5423	4784.55	14270.56 0.01437	8.468	142
145-	75.589		1554.417	0.5404	4/84.64	14254.40 0.01440	8.552	143
140	73.060	9+694	1515.740	0.5364	4766.75	14200.5870.01443	8.635	144
147	79.525	4.455	1499.376	V+5365	4/22.86	14093.70 0.01446	8.719	145
140	40.982	9+153	1469.844	0.5346	4646.37	13910.89 0.01449	8.802	146
149		4.341	1428-217	0.5327	4530.74	13633.85 0.01453	2.084	147
150	22.416	4.000	45.265	0.5327	<12.87	13244.78 0.01456	8.966	143
151	33.814	7.859	19,379	0.5327	48.37	800.66 0.01459	8.967	149
171	85.160	10.041	-615818	0.5327		181.93 0,01462	8.967	150
				******	-154.30	-580.35 0.01465	8.967	151

HARREL 2. 3 DEGREE INITIAL ANDLE. H.967 EXII. Y=.00210764-X--1.8. N=1.8 BARREL

WARMEL 2. 3 BUTTHER INTIAL ANGLES 0.907 FAILS 15.002107640x001.8. N=1.d BARNEL

j	ecsition (Picers)	Y (IACHES)	10400F)	(IVCHF2005) SHETH THE	SHEAN STRESS (PSI)	BEARING STRESS (PSI)	TIPE (SECONDS)	HIFLING ANGLE	J
1	-4.048	9.0	0.0	·•••••••••••••	0.0				
<	-4.0%	0.5	0.0	***********	0.0	0.0		0.0	1
3	6/5	٠.	0.0	**********	0.0	U.Q		11 • Ü	?
5	-4.5n7	0	0.0	*********	0.0	U•0		0.0	3
~	-4.505	ij.a. (la, i	0.0	********	0.0	0.0		U+0 U+0	4
- 1	3 31	9.6	0.0 U.U	*************	(0.0	U.0		0.0	5
5	-~.200	6.11	0.0	************	1 0.0	V.0		0.0	0
4	.4.047	0.11	0.0	*******	0.0	0.0	0.00070	0.0	,
1 છે	-3.409	J - U	J.0	*******	0.0	U.0		0.0	ÿ
11	-J.646	4.4	0.0	************	0.0	0.0		U.0	10
12	-3.462	0.0	U. 0	******	0.0	0.0		0.0	ĬÌ
13	-3.508	U • ·	U.U	•••••	0.0	0.0		U.0	15
1+ 15	-2.937	4.4	0.0	************	Ů.O	0.0 0.0		0.0	13
10	-2.651	d • •	0.0	~~~~~~~~~	0.0	0.0	0.00130 0.00140	0.0	14
17	-2.044 -2.044	0.0	0.0	******	0.0	0.0	0.00150.	U.O	15
13	-1./36	##.G	0.0	***********	0.0	0.0	0.00160	U.O	16
19	-1.419	v•0	0.0	***********	0.0	0.0	0.00170	0.0	17
<0	-1.096	U • U	0.0 0.0	************	0.0	0.0	0.00150	Ŭ•O	18 19
<1	-0.777	0.0	0.0		0.0	0.0	0.00190	0.0	20
22	-11.455	U • 14	0.3	******	0.0	0.0	0.00200	v.ů	ΣĬ
53	-0.134	0.0	0.0	**********	0.0	0.0	0.00210	0.0	25
24	3-186	٠.٥		**********	0.0	0.0	0.00220	0.0	دَج
25	いっちゅる	9.0	0.0	***********	0.0	0.0	0.00230	0.0	24
20	6.610	0.0			4.0	0.0	0.00240	0.0	25
ر ر 2 م	1.124	.142	-9.744	0.6690	-24.61		0.00260	0.0	20
24	1.425	0.00*	-16.014		-40.64	-150-70	0.00270	3.011	51
30	2.602	7•453 6•834	-23.905	***************************************	-60.49	-224.11	0.00200	3.038 3.054	28
JÌ	6.211	9.853	-33.340		-84.44	-312.56	0.00290	3.069	20
بے و	6.767	U+467	-44.381 -50.80/	0.6667	-112.49		0.00300	3.112	30 31
و ق	2.159	v+840	-/0.213	0.6662	-144.10	-537.53	0.00310	3.135	31
34	2.510	0.592	-93.952	0.665/ 0.6653	-178.23	-650.18	0.00320	3.155	33
35	3.154	4.402	-97.207	V.0649	-613.24		0.00330	3.174	34
36	3.310	0.410	-104,400	V.0646	-247.04 -216.81		0.00340	3.190	35
31	3.4 13	9.917	-117.774	V. 6644	-249:56	-1020.50		3.203	36
3M ,14	وم وق	0.922	-122.505	0.6642	-311.93	-1103.96 -1149.24		3.214	31
40	3.579 3.602	0.924	-122.075	U.0641	-310.63	-1144.26		3.222	34
41	3.595	146.0	-115.08/	0.0541	-242.67	-1078.76		3.221	34
ج ب	1.600	0.754	25.108 0.0	0.0641	66.44	244.72	0.00400	9-529 45 5 .6	40
43	3.000	v.>3=	0.0	0.0637	0.0	0.0	0.00515	3.246	41 42
44	3.200	0.734	v.0	0.053/	0.0	0.0	0.00540	3.246	43
45	J.600	0.434	0.0	0.0637 0.66J7	0.0	U•0	0.00570	3.246	44
40	1.000	0.439	U.0	0.6637	0.0		0.00000	3.246	45
47	j. 200	0.43H	0.0	0.6637	0.0		0.00630	3.246	46
48 44	3.800	U-93H	0.0	0.0637	0.0		0.00660	3.246	41
50	J. #00	0.93m	0.0	V+6637	0.0		0.00690	4.546	48
51	J.400	¢}434	0.0	0.6637	0.0		0.00720	3.246	44
52	3.000	#***}#	0.0	0.6637	0.0		0.00750 0.00780	3.246	50
	312.70	" • 7 J ¬	0.0	0.6637	0.0		0.00810	3.246 3.246	52 52

53	3.800	46.0	9.0					
54	3.400	ù.93n	0.0	U-6637	0.0	0.0 0.00840	3.246	53
55	3.000	0.434	V•0	0.6637	0.0	0.0- 0.00870	246	54
56	3.600	0.938	Ŭ•O	0.6637	0.0	0.0 0.JU900	3.346	55
5/	3.800	9.934	0.0	0.6637	0.0	0.0 0.00430	3.246	56
58	3.000	0.438	V•0	V-6637	0.0	0.0 0.00960	3.2.6	57
57	3.600	V. 737	0.0	0.6637	0.0	0.0 0.00990	3.24	58
60	3.400	0.432	0.0	0.6637	0.0-	0.0. 0.01020	3.246	59
-51	3.400	0.434	0.0 0.0	0.6637	0.0	V.C V.01050	3.246	60
62	3.400	0.434	0.0	0.6637	0.0	0.0 0.01080	3.246	61
63	3.400	0.93%	0.0	0.5637	Ú•0	0.0 0.01110	3.246	65
64	3.800	NF6.0	V.0	0.6637	0.0	0.0 0.01140	3.746	61
õ۶	3.800	0.438	0.0	0.6637	0.%	0.0 0.01190	J.246	64
66	3.400	0.43A	210.85×	0.6637	0.0	0.0 0.01200	3.2	
67	3.961	0.947	395-115	Ŭ∙6637	536.91	1976.43 0.01203	3.241	65 65
68	4.102	0.455	560.006	0.6634	1006.56	3703.47 0.01206	3.260	67
69	4.432	0.463	706.513	0.6631	1427.22	5248.95 0.01209	3.272	65
70	4.361	0.970	H35.921	0.6628	1801.31	6622.11 0.01212	3.284	6
73	4.495	6.974	949.717	0.6656	2132.07	7835.00-0.01215	3.295	10
12	4.040	0.955	1049.440	0.6623	2423.26	8901.43-0.01218	3.306	
73	4.603	0.996	1136.668	0.6620	2678.87	9835.96 0.01222	J.319	7.
74	4.987	1.005	1212.929	0.0617	2902.94	10653.39 0.01225	3.333	72
75	5.195	1.019	1279.663	0.6613	3099.39	11367.95-0.01228	3.349	13
76.	5.431	1.033	1338.514	0.0609	3271.93	11993.19 0.01231	3.367	74
17	5.696	1.047	1389.814	0.6605	3424.04	12541.72 0.01234	3.387	75
16	5.493	1.056	1435.557	0.6599	3558.85	13024.96 0.01237	3.410	76
79	6.321	1.086		0.6594	3679.19	13453.29 0.01240	3.436	7/
60	6.641	1.100	1476.429	0.6567	3787.61	13835.91 0.01243	3.464	78
81	7.075	1.132	1513.291	0.6580	3686.31	14180.89 0.01246	3.495	79
82	7.501	1.154	1540.910	0.6573	3977.25	14495.41 0.01249	3.528	60
83	7.459	1.187	1577.953	0+0564	4062.15	14785.73 0.01252	3.564	81
84	8.450	1.215	1606.996	0.6556	4142.49	15057.22 0.01255		95
c 5	8.472	1.252	1634.549	0.6546	4219.58	15314.6H 0.01259	3.60,1	43
86	9.524	1.287	1661.043	0.6536	4294.54	15562.15 0.01262	3.645 [,] 3.689	84
07	10.107	1.325	1586.565	0.6526	4368.35	15803.24 0.01265	3.689 3.735	85
6d	10.719	1.366	1712.324	0.6515	4441.86	16040.95 0.01268		86
69	11.359	1.410	1/3/./28	0.6503	4515.78	16277.87 0.01271	3.784 3.835	67
90	12.027	1.455	1763.265	0.6491	4590.74	16516.23 0.01274		86
91	12.7/2	1.504	1789-176	0.6478	4667.20	16757.64 0.01277	3.882 3.944	89
څو	13.443	1.554	1915•55 <i>1</i> 1842•56 <i>1</i>	V+0465	4745.57	17003.55 0.01280	4.001	90
43	14.190	1.600	1870.142	0.6452	4826.14	17254.87 0.01283	4.061	91
94	14.962	1.064	1890.419	0.6438	4909.06	17512.15 0.01286	4.122	92
95	15.758	1.163	1927-345	0.6423	4994.40	27775.51 0.01289	4.185	93
70	16.578	1.704	1956.832	0.6409	₹ 5 n02•15	18044.85 0.01292	4.250	94
97	17.421	1.848	1986.775	0.6354	5172.10	18319.33 0.01295	4.316	45
40	18.286	1.715	2017.032	0.6378	5263.98	18597.97 0.01299	4.384	96
99	19.177	1.945		0.6362	5357.46	18879.42 0.01302	4.454	97
100	20.090	2.055	2047.397 2077.649	0.6346	5451.99	19161-78 6701305	4.525	34
101	21.024	2.134	2107.518	0.6330	5=47.01	19442.95/J.01308	4.597	- 99
102	21.980	2.212	2136.711	0.0313	5641.80	19720.39 0.01311	4.672	100
103	25.454	2.294	2164.961	0.6256	5/15.58	19991.39 0.01314	4.747	101
10-	23.958	2.379	2191.759	0.6278	5827.52	20253.04 0.01317	4.824	102
lus.	24.978	2.464	2516.963	0.6260	5916.69	20502.10 0.01320	4.902	103
106,	26.020	4.559	2210.963 2240.102	0.6242	10.5009	20734.99 0.01323	4.982	104
107	27.002	2.054	2260.102 2260.824	0.6224	6042.62	20948.81 0.01326	5.063	105
108	20.105	2.752	7278.780	0.6205	6157.42	21139.90 0.01329	5.145	1061
109	27.766	2.854	2278.780 2293.643	0.6186	6225.39	21304.98 0.01332	5.228	107
110	30.388	7.953	<305.105	0.6167	6285.58	21441.02 0.01336	5.313	108
111	31.526	Jenon	3312.411	0.6147	6337.06	21545.15 0.01339	2.313	109
112	32.685	3.180	2316.740	0.6127	6378.95	21614.68 0.01342	5.485	110
		q. •	49106140	0.6107	6410.54	21647.57 0.01345	5.573	111
							30273	115

:13	33.861	3.245	2310.4/4	4 . 4. 4				
11-	35.052	3.414	/311.995	0.6087	-9431-11	21641.84 0.0134H	>+661	
115	30.25%	3.537	2303.253	0.6067	6440.27	21596.59 0.01351	5.751	113 114
116	37.401	1.053	2240.201	U.6046	0437.80	21511.49 0.01354	5.841	
117	34.717	3.192	2272.921	0.6025	6423.40-	21386.09 0.01357	5.932	115
110	39.500	1.752	2251.511	0.0004	6397.18	21221.23 0.01360		116
119	+1.726	4.061		0.5963	6359.70	21019.24 0.01363	6.023	117
120	42.491		2226.037	0.5402	6311.33	20781.86 0.01366	6.116	110
121	43.776	** 143	2198.082	0.5941	6252.73	20511./0 0.01369	6.206	119
122	45.005		2166.533	0.5919	6165.25	20213.64,0.013/2	5.301	120
123	45.36¢	4.444	2136-375	0.5H98	6109.66	19891.26 0.01376	6.395	121
124	47.671	~•n3/	2090165	U.5876	6028.14	19549.99 0.01379	6•488	122
125		4.101	2058.50-	0.2355	5941.56	17347.99 0.01379	6.54%	123
120	40.467	443	5050-155	0.5833	5852.33	19194-93 0.01382	6.676	124
	50.299	5.101	1981-521	0.5812	5/62.12	18833.27 0.01385	6.770	125
321	51.4.1	5.201	1943.600	0.5790	5672.89	18470.61 0.0130H	6.464	125
128	56.448	7.42.	1907-065	0.576d	5546.86	18113.61 0.01391	6∙95⊎	127
14	54.219	5.560	1472.441	0.5747		17/08.76 0.01394	7.052	128
130	55.615	7.753	1840.429	0.5725	5506.06	17442.64 0.01397	1.180	124.
131	56.450	2.430	1411-543	0.5704	5432.33	17140.82 0.01400	7.260	130
175	59.302	7-16-	1766.563	0.5682	5367.32	10868.26 0.01403	7.334	131
193	59.653	か・とせと	1765-551		5313.46	15632.11 0.01406	7.428	132
13-	51.011	0.452	1744.960	0.5560	5671.04	16432.56 0.01409	7.522-	132
? J 5	62.376	2.045	1/36.757	0.5639	5241.59	16274.99 0.01-12	7.617	134
:36	63.750	hed	1729 • 141	0.5617	5225.26	16158.22 0.01416	7.711	
137	65.132	1.02.	1725.491	0.5595	5222.49	15083.38 0.01419	7.805	135
130	66.525	1.210	./25.845	0.55/3	5431.53	16045.82 0.01422	7.900	136
137	57.420	7.416	1/27.047	0.5551	5253.68	16045.34 0.01425	7.995	137
140	59.343-	1.517		0.5529	5684.44	10071.31 0.01428		138
141	70.771	7.55	1/34.200	.0.5507	5321.53	16115.34 0.01431	8.091	134
1-2	12.211	0.030	17850	0∙54ĕ 5	5363.79	10173.50 0.01434	8-187	140
143	13.562	8.036 8.251	17-0-101	0.5462	5403.81	16223.57 0.01437	d.284	141
144	/5.122	9+470	1740+608	0.5440	5438.32	16255.71 0.01440	B • 3B1	142
145	74.589		1750-418	0.5417	5460.44	16249.79 0.01443	8.478	143
140	70.060	3.643	1/44.453	0.5395	5464.69	14100 51 0 01443	6.576	144
147	19.526	4.419	17. 0.177	0.5372	5442.81	16190.21 0.01446	8.674	145
		4.1-6	1705.532	0.5349	5387.87	16053.51 0.01449	4.112	146
145	40.462	7.314	1665.457	0.5327	5292.93	15820.67 0.01453	4.469	167
	42.416	4.001	۲5•2¢5	0.5327	212.61	15473.00 0.01456	6.905	148
150	43.414	4.655	14.379	U.5327		800.66 0.01459	4.967	149
151	85.160	10.034	-4.016	0.5327	46.37	181.93 0.01462	8.967	150
				V • J J E /	-154.30	-580.35 0.01465	8.907	151

MARKEL 3. 3 ULGREE INITIAL ANULE . 8.967 EXII. Y=.00066696* x=*2.0 MARKEL

and the second of the second o

nARRI	.r 7• 3 n	COMER CALL	AL ANGLES 5.907 E	.AII. Y#.U0066	.0.5**x*dv6	V=5.0 PUHHER			
	PUSTITION (INCHES)	r (186465)	1988UE +15-E851	SHEAR AREA (INCHES**2)	SHEAM STHESS (PSI)	BEARING STRESS (PSI)	11ME (SECONUS)	RIFLING ANGLE (BEGREES)	J
,	-44.2	V• U	().() ••••	**********	v•0	U. 0	0.0	0.9	1
خ	-4.694	0.0	D.O mase	**********	0.0	0.0		0.0	2
.3	-4 1%	0.0		*********	0.0	0.0		0.0	و
•	-45	9.0		**********	0.0	U • 0		0.0	4
5	-11.507	11.0		*******	0.0	U.0		0.0	5
0		U.0	,,,		0.0	0.0		U.O	6 /
	-4. 3400	1.0	***		0.0	0.0		∪.0 ∪.0	΄ σ
н	-4.266	6.0	₩.	******	0.0	0.0		0.0	ÿ
10	-4.05/ -3.905	9 . U	V • • •		0.0	0.0		0.0	10
11	-3.694	0.0	****	*****	0.0	0.0		0.0	ii
12	-3.462	0.,		*********	0.0	U.0		v.0	15
13	-3.204	U•U		*********	0.0	0.0		0.0	13
14	-2,431	0.0			0.0	U.0		U.O	14
15	-2.651	0.0			0.0	V.0		U.O	İs
15	-2.354	4.	1		0.0	0.0	0.00150	0.0	10
11	-6.000)	V • •	.11 000	**********	0.0	0.0	0.00160	0.0	17
lo	-1./36	0.4	1.0 ***		0.0	0.0	0.001/0	0.0	19
19	-1.419	J. 1			0.0	0.0		U•0	19
20	-1.090	V • **	. • • • •		0.0	0.0		0.0	50
41	-0.777	U+*	7.4.7		0.0			0.0	- 51
22	-0,455	V • U		********	0.0	0.0		d v	42
23	-0-134	to a fi	, , , ,		0.0	0.0		0.0	وخ
. 4	0.155	0.0			U•0	0.0		0.0	
<i>(</i> 5	0.503	0.6	,		0.0			0.0 v.0	25 26
20 21	0.61	1.964	4.6 4000 -11.14.5	v.6690	0.0 1.95-		9 6.00250	3.009	57
60	1.124	1.915	-17.5%	0.0625	-43.8		d 0.007/0	J.032	SP.
54	1.719	1.021	-25.000	0.0000	-63.3		5 0.00200	3.054	بَوْخ
30	2.002	1.055	-34.276	0.0675	-86.7		4.0.00290	3.075	30
ñ	2.271	1.110	-47.050	0.06/1	-114.2		0-0-05.00	3.096	Ji
32	.525	1.164	-51.221	U.066/	-145.1		1 0.00310	3.115	32
	4.754	1.137	-70.355	0.0663	-178.4		2 0.00320	3.132	33
94	2.970	1-140	-HJ.1 10	0.6653	-212.0	5 ~105.4	8 0.00J30	J.148	34
راد	3.174	1 - 159	-96.735	U.0555	-245.6		0.00340	3.165	35
Jn	3.310	1.107	-lum.luy	U-005J	-214.6		1 0.00350	3.174	36
3/	3.433	1.174	-112.///	1400.0	-246.1		P 0.00160	3.143	37
187	3.50	1.179	-1710000	0.0544			1 0.003/0	3.190	36
314	3.7/4	1 - 195	-121.850	0.0549	-10/.1		2 0.06360	3.154	39
40	3.500	1.183	-11.1.900	0.6646	-584.2		3 0.00390	3.196	40
41	3.595	1.107	22.941	0.0640	65.6		2 0.00400	J.195 J.211	41
4.3 4.3	3.509	1.194	7 + 1) () + 1)	0.6645 0.6645	U•0		0.00540	3.211	42 43
44	1.000 1000	1.194	0.0	Ü+0545	0.0			3.211	44
45	3.5400	1.194	0.0	U.0543	0.0			3.211	45
46	3.460	1.194	0.0	0.0645	0.0			3.211	40
47	3.460	1.144	0.0	0.0045	0.0			1.511	41
41	3.800	1.194	4.0	0.6645	U•0			3.211	44
49	3.200	1.194	0.0	0.0645	0.0			3.211	47
50	3.000	1.194	6.6	V.0045	0.0			1.211	50
51	3.500	1.194	0.0	0.6645	0.0	0.0	0.00780	3.211	51
52	3.500	1.194	0.0	V+6645	0.0	0.0	0.00810	3.211	55

			,					
53	3.800	17194	ύ• 0					
54	J.800	1.194	0.0	V+6645	0.0	0.0 0.00840		
>>	3.500	1.194		0.0645	0.0	0.0 0.00070	3.211	53
56	3.800	1.194	0.0	0.6645	0.0	0.0 0.00900	3,211	54
57	3.800	1.194	0.0	0.6645	0.0	0.0 0.00930	j.211	55
55	3.800	1.194	0.0	0.0645	0.0	0.0 0.00760	3.211	56
54	3.890	1.194	0.0	0.6645	ܕ0		3.511	51
60	3.400	1.154	ñ•0	U+6645	0.0		3.211	58
61	3.800		9∙0	0.6645	Ú. 0		3.211	59
62	3.600	1.19.	0.0	0.0645	U.O		3.211	60
63	3.600	1.194	0.0	V+6645	0.0	0.0 0.01080	3.211	61.
54		1.194	0.0	U.0645	0.0	0.0 0.01110	3.211	62
05	3.800	1.154	9.0	0.0645	0.0	0.0 0.01140	3.211	63
66	3.400	1.194	0.0	0.0645		0.0 0.01180	3.212	64
67	3.800	1.194	508.751	U.0645	0.0	0.0 0.01200/	3.2.1	65
	3.961	1.204	390.5 +	0.0642	530.39	1954.88 0.01205	3.211	65
68	4.102	1.511	553.271	0.6640	593.72	3061.04 0.01206	3.223	67
69	4.232	1.219	547.618	0.6637	1408-18	5186.03 0.01209	3.233	68
70	4.361	1.224	424.607		1776-17	6538.99 0.01212	3.243	69
/1	4.495	1.234	930.434	0.6635	2400.84	7731.66 0.01215	1.253	
72	4.640	1.242	1033.961	0.6633	2385.81	8/7/.32 0.0121A	3.263	70
73	4.803	1.251	1118.547	0.6630	2634.92	9690.03 0.01222	3.214	71
74	4.907	1.262	1192.054	0.6620	2652.06	10484.05 0.01225		15
15	5.145	1.274	1255.563	0.0624	3041.03	11173.24 0.01228	3.286	73
16	5.431	1.200	1311.244	0.0651	3205.48	11770.93 0.01231	3.300	74
17	5.696	1.303		0.6617	3348.82	12284.60 0.01234	3.316	75
18	5.493	1.321	1354.402	U.6612	3474.19	12740.69 0.01237	3.333	16
14	6.321	1.340	1401.4/5	0.6607	3584.45	13134-71 0.01240	3.353	7/
50	6.661	1.345	1430.401	0.0602	3682.22	17641 10 4 6154	3+376	78
81	7.075		14/1.320	0.6596	3769.80	13481.19 0.01243	3.400	14
82	7.501	1+365	1500.803	0.6589	3849.26	13768.56 0.01246	3.427	80
63	7.954	1.411	1527.048	0.6562	3522.44	14064.43 0.01249	3.45/	61
84	8.450	1.434	1552.467	V.65/4	3790.96	14315.52 0.01252	3.489	65
85	6.912	1 • • 70	1575-877	0.0565	4056.20	14547.74 0.01255	3.524	#3
do,		1.502	1594.306	0.0550	4119.58	14766.34 0.01259	3.560	44
67	4.524	1.537	1620.201	0.5547	4182.03	14975.86 0.01262	3.600	45
64	10.107	1.5/4	1641.930	0.6537	4244.57	15180.31 0.01265	3.641	40
	10.719	1.014	1667.805	U.0521	4307.99	15383.15 0.01268	3.685	ěĬ
49 50	11.359	1.655	1686.544	0.0510		15587.25 0.01271	3.731	66
	12.027	1.701	1705.5.	0.0504	43/3.01	15795.13 0.01274	3.779	69
71	15.755	1.747	1732-7.11	V.0492	4440.16	16000.70 0.01277	3.829	90
45	13.443	1+797	17576267	0.0440	4509.94	19558-61 0.01560	J.861	91
33	1190	1.54=	1782.842	0.0467	4582.65	16458.94 0.01283	3.930	92
94	14.952	1.903	1809.431	0.6454	4658.51	16697.35 0.01286	3.992	43
45	15.758	1.95.	1837+021	V.0441	4/37.64	16945.16 0.0128)	4-050	93 94
30	10.574	2.013	1865.544	V.6427	4620.02	1/202.25 0.01292	4.109	95
97	17,461	2:0+1	1494.499		4905.53	1/468.00 0.01295	4.171	
98	14.500	2.145	1424.452	0.6412	4993.91	17741.42 0.01299	4.234	96
99	15.177	2.211	1955-511	0.0347	5064.84	18021.27 0.01302	4.299	97
100	20.090	2.2.1	1986.358	0.6365	5177.86	10305.75 0.01305		29
101	21.024	20.350	2017.23-	0.6367	5672.40	18592.80 0.01308	366	84
106	21.950	7.0: 32	2047.755	0.6351	5367.80	1880.00 0.01311	4.415	100
103	24.450	2.2.1	2017.919	0.6334	5463.33	19164.70 0.01314	4.505	101
104	23.954	2.543		0.6318	5558.18	19444.03 0.01317	4.575	501
105	24.974	3.07H	2107+050	0.6301	5651.48	19/14.88 0.01320	4.650	103
106	20.020	2.766	2134+3e1	0.6283	5742.18	19973.68 0.01323	4.725	10-
107	27.062	2.857	2161-307	0.6265	5849.46	20217.59 0 0133	4.801	c01
100	24.165	2.425	2145.655	0.6247	5912.25	20217.58 0.01326	4.679	106
09	56.500	3.450	2207.565	0.0229	5989.55	20442.89 0.01329	4.959	107
10	30.388		5551.065	0.6210	6060.43	20646.39 0.01332	5.040	100
ii	31.528	3+151	2243.471	0.6191	6123.96	20824.94 0.01336	5.122	107
iż	32.685	3.256	7250.010	0.6171	6179.25	20975.61 0.01339	5.206	110
	J. 1003	3.354	1266.243	U.015c	6225.57	21095.56 0.01342	5.292	111
					700707	21182.62-0.01345	5.378	115

THE STATE OF THE S

.113-	33.861	140.070	251251c4	0.6132.	6262516.	21234.54 0.01348	>.466	113
114	35.052	3.74	2774.147	U.5111	64557	21250.20:0.01351	5.555	114
115	30.250	16.16.3-	7272.221	V-0091	6304.52	61228.54 U.V.1354	5.646	115
116	37.481	4.45	215-0355	V-007ú	6309.62	21170.00-0.01357	5.737	110
117	38.717	50.40	.2256+345	0.5049	6303.89	21073.83 0.01360	5.829	117
110	19.956	4.064	7242.540	V.6027	6487.76	20942.32 0.01363	5.972	118
.114	-1-726	-4.Cin	-2225-257	0.6005	6261.49	20770:00 0:01366	6.017	119
-20	42.441		-204.546	V-5484.	6425.59-	20579.43.0.01369	6.111	120
121.	43.77		2160.862	0.5962	6161.20	23354.67.0.01372	6-207	121
122	47.042	631-	2154.575	9.3740	6129.43	20105-63 0-01376	6.303	155
:23	40.36n	4.715	2120.221	0.5418	-6071-42	19637.32 0.01379	6.400	123
144	-7.671	4.461	2096.302	0.5396	6006.60	19554.42 0.01382	6.447	164-
:25	~e. 5nc	20613	(065.557	U.587J	5543.04	19263.67 0.01385	0.595	125
120	50.299	50.77	2934.543	U.5851.	5876.30	18970.45 0.01388	6.693	125
151	51.62:	5.323	2003.90	U-5828-	5810.23	18681.40 0.0 341	6.791	:21
125	32.446	5.544	1974.350	0.5866	5/-6-96	18402-37 0.01394	6.89u	ićo.
.129	54.279	5.15	1946-625	0.5783	5tht.47	18139.93 0:01397	6.989	129
ı jû.	55.015	****	1721.25-	U+>76U	5030.53	17899.60:0.01.00	7:088	(130
وأدن	50.954	5.037	1948.761	0.573/	-5542.81	1/680.33.0.01-03	7.186	.131
132	56.302	noche	1614.377	0.5714	5559.69	17507.30 0.01400	7.288	132
133	59.653	-0° Jr.	1964.76	0.5691	5537.54	17363.22.0.01409	7.388	133
. 1 . 1 .	51.011.	つきっちゃり	1454.100	0.5668	5561.91	17258.46 0.0:412	7.489	134
132	52:3/6	7.740	1847.57	(0.5545	5531.05	.17193.25_0.01416	7.590:	135
otí	53.750	6.464	1845.317	15621	5547.48	17168.59 0.01419	7.692	136
331	~5:132	7.110	1847-001	0.5598	5575.95	17150.09 0.01-22	7.195	137
:JA	^46•525	41 . 50 w	1852.601	0.5574	5016.71	17227.90 0.01-25	76890	138
134	47.429	7.500	Sùu-1eF-	บ∙555ข้	'5066.55'	17301.64 0.01429	8.002	139
140	65.343	1.101	1471.321°	0.5526.	5722.41.	1/393.17-0.01431	8.106	140
15-1	70.771.	7.96%	14-3-200	ひ・ラング!	5784.74	17498.92 0.01434	9.515	141
146	12:511	4.114	1894.220	0.5417	5044.69	(17590-52-0:01437	:0.31c	142
143	13.000	4.324	1903-335	ひ・コチュン	5499.49	17676.33 0.01440	8.426	141
. 44 44	75:122	4.544	1900.359.	0.5427	5442.26	17718-10.0-01443	8.533	144.
147	10.764	H. 16.1	.1987-613-	0.5462	5767.45	17706.03 0.01446	8.642	145
-140	78.060	2. 6. 6. 5	1885.416	0.5377	5966759	1/616.12 0.01449	8.750	140
100	19.520	4:510	1574.742	0.5352	5932-51	17428.85=0.01453	ಕ.85ಕ	-141
146	204,000	70-044	1440.003	0.5321	5857.51,	17124.75 0:01456	8.965.	148
149	7.6.4	ە ئەنگە <u>،</u>	とららくもつ	0.5327	£12.67	800.66 0.01459	8.967	149
150	435614	و, پايا ۾ ت	719,319	0.5327	48.37	181.93 0.01462	8.967	150
:51	n5 150	10.102	-61-418	0.5327	~154.30	-580.35 0.01465	0.461	-151

PRESENT PIA AMO QUI MARHEL "TIN-FREE HUN" 11-75IN CONSTANT EXIT AT 8-967 DEGREES" RIA HARREL

PRESENT HIS AND 30 BANHELS IIN FARE HUMS ILSTSIN CONSTANT EXIL OF ROYGE DEGREES. HIS BANHEL

J	PCSITION (INCHES)	r (IsCres)	TOHGUE (IN-LUS)	SHEAR AREA (INCHES®02)	SHEAM STRESS (PSI)	ULAMING STRESS (PSI)	TIPE	RIFLING ANGLE	J
				1100000	17317	173[]	(SECONUS)	(OLGREES)	
1	-4.045	0.0	u.0	••••••••••	0.0	0.0	0.0	V.0	1
2	-4.654	0.0	v.0	******	0.0	Ü. (0.0	خ
3	-4.574	U• V-	0.0	*****	0.0			U_0	3
4	-4.045	0.0	0.0	**********	0.0	0.0		0.0	
•	-4.557	9.0	0.17	*******	0.0	0.0	0.00040	0.0	5
6	505	0.0	0.0	************	0.0	U.0	0.00050	0.0	6
1	- 34c	9.0	0.0	~~~~~	U.U	0.0	0.00000	0.0	ī
ø	-4.261	0.0	0.0	**********	0.0	U. 0	0.00070	0.0	Ü
10	-4.097	0.u	0.0	***********	0.0	U.0	0.00080	0.0	ÿ
11	-3.909	0.0	0.0	************	0.0	U.0	0.00090	U. O	10
12	-J.696 -J.462	0.0	0.0	***********	0.0	6.0	0.00100	0.0	11
13	-3.20%		0.0	************	0.0	0.0		0.0	12
14	-2.937	0 0.0	0.0	***********	0.0	U.0		J.0	13
15	-4.651	U . ·	0.0	**************	U+0	0.0		J.0	14
	-4.354	0.v	0.0	*************	0.0	U. 0		v.0	Ja
17	-2.049	0.0	V•0	************	0.0	0.0		U•0	15
lø	-1.736	0.0	4.0	************	0.0	0.0		7 . G	17
17	-1.419	0.4	9.9 Vali	*************	0.0	0.0		0.0	ls
20	-1.098	0.5	V.O	*************	0.0	0.0		0.0	14
21	-0.777	6.0	0.0	*************	0.0	0.0		0.0	20
22	~0.455	U• v	0.0	************	0.0	0.0		6.0	ĉ١
53	-0.134	0.0	V.U	************	0.0	0.0		0.0	20
24	0.166	U • U	0.0	************	9.0	0.0		U+0	c :
ري _	0.503	0.0	0.0	*************	0 • 0	0.0		0.0	24
60	V-e16	บ•บ	0.0	************	0.0	0.0		u.o	25
21	1.124	U•U	0.0	V•0684	0.0	0.0		0.0	50
CH	1.425	Ualj	0.0	8900.0	0.0	0.0		0.0	27
51	1.719	0.0	0.0	U.064H	0.0	9.U 0.E		U.O	58
30	2.00%	J+1)	0.0	V•65e8	υ.0	0.0		0.0	54
JÌ	2.271	0.0	0.0	HH00+U	0.0	U•0		0.0	310
15	2.575	6.0	0.0	0.6658	0.0	0.0		0.0 0.0	:1
دد	2.159	9.0	V.0	V.6668	0.0	0.0		v.0	32 33
3.4	2.9/0	4+40	U+0	v-tota	0.0	0.0		0.0	34
35	3.154	4.0	បិ 🕫 ប	0.6688	0	0.0		0.0	35
30	3.310	** • ()	6.0	8900+0	ن ،	V•0		0.0	36
37	3.433	0.0		0.6688	0.0	V.0	0.00100	U•0	37
30	3.563	0.0	9.0	0.6668	0.0	6 0	0.36370	0.0	38
34	3.575	0.0	U+U	V.0048	0.0	0.5		0.0	34
40	3.602	0.0	0.0	0.0683	. 0.0	0.0		0.0	40
41	3.595	U • U	U • U	0.6628	0.0	U.0	0.00400	0.0	41
4 }	3.400	0.0	0.0	0.6656	0.0	0.0	0.00515	0.0	42
4.	3.800 3.800	0.0	0.0	0.0688	0.0	0.0	0.00540	0.0	43
-77	3.603	0.6	6.0	0.6663	0.0	0.0	0.05570	0.0	44
46	7.400	0 • U	U+0	0.6668	0.0	0.0	0.00000	0.0	45
-7	3.800	0.0	U•0	0.0684	0.0	V.0	0.00630	0.0	46
48	3.800	3.0	9.9	U+66PH	0.0	V•0	0.00660	U.O	41
44	3.400	Û•Û	•0	0.6668	0.0	0.0	0.00690	0.0	43
Su	3.400	0.0		0.6688	0.0	0.0	0.00720	0.0	49
51	3.600	1.00	U • 0	0.6688	0.0	0.0	0.00/50	0.0	50
25	3.800	9.0	0.0	0.6688 0.6688	0.0	4.0	0.007.0	0.0	5١
_			., • 0	0.0000	0.0	0.0	0.60419	0.0	52

53	3.860	0.0	ü•õ	0.5688			*	
54	3.900	C.U	6.0	0.0688	0.0	0.0 0.00840	0.0	53
כל	J. 860	0.0	6.0	0.6688	0.0	0.0 0.00870	0.0	54
25	3.800	0°0	0.0		0.0	0.0 0.60960	0.0	55
5/	3.800	0.0	4.0	4830.0	0.0	0.0 9.6093 0	U.G	56
58	3.600	7.0		0.0068	0.0	0.0 0.00960	0.0	57
59	3.800		9.0	0.6688	0.0	U.O 0.0099U	V.0	
60		V•U	0.0	V+6588	0.6	0.0 0.01020	0.0	-58
	3.800	0.0	V•0	บ •อ์ว8ย	0.0	0.0 0.01050		59
61	3.000	0.0	0.0	0.6588	0.0		0.0	60
62	3.600	0.0	0.0	U.0688	6.0		0.0	61
Ľв	3.400	0.0	U• U	89000	0.0	0.0 0.01110	0.0	62
0.4	3.800	0.0	U+D	0+6688		0.0 0.01140	0.0	63
65	3.400	0.0	0.0	0.6668	0.0	0.0 0.01160	0.0	64
66	U06.E	U.U	U=Q		0.0	0.01200	0.0	65
67	3.961	0.0	U•0	V+0688	0.0	0.0 0.01203	0.0	60
60	4.102	-0.000		0+4698	0.0	0.0 0.01206	0.0	67
07	4.232		4.430	0.5668	11.21	54.79 0.01269	0.021	68
Žú		-0-000	12.024	0.6683	30.41	148.53 0.01212		
71	*•361	0.000	55.435	U•6678	58.04	283.31 0.01215	0.043	63
	4.495	0.000	37•80B	0.6673	95.75		0.065	70
15	4.640	0.001	57 - 358	U=6667	145.39	467.05 0.01218	0.088	+ 71
13	4.HU3	0.001	÷2.256	0+6661		708.54 0.01222	0.113	72
14	4.9n7	U+U01	113.064	0.6654	208-69	1010.15 0.01225	0.141	13
15	5.175	0.002	150-161	0.6646	287.16	1340.04 0.01554	0.172	74
16	5.431	U-00.3	19344		391.69	1820-19 0-01531	0.208	15
77	5.695	0.904	244.064	0.6637	443.54	2394.30 0.01234	0.248	76
76	5.993	0.005		0.6626	622•33	3014.44 0.01237	0.292	ii
79	5.321	0.008	370+649	9.6615	768.04	3713.88 0.01240	0.342	78
80			353.405	U-0603	930.12	4489.06 0.01243		
81	5.681	0.011	431.e/n	0.6589	1107.67	5334.86 0.01246	0.398	19
	1.075	0.014	505.564	0.6574	1299.59	6245.02 0.01249	0.45R	60
٥٤	7.501	U•U1H	543.494	U+6558	1504.62		0.524	έl
n3	1.959	11.1163	666.263	9.6541	1721.40	1212.50 0.01252	0.595	원근
£4.44	F-450	0.024	752.062	0.0522	1948.54	8229.82 0.01255	0.671	દક
85	6.972	V • U3/	H40.594	0.6503		9289.50 0.01259	0.752	d→
8(.	5.524	0.045	931.591		2184-69	10384.07 0.01262	U,838	ВŠ
e/	10.107	0.055	1024.230	0.6482	2428.55	11506.52 0.01265	0.924	90
68	10.717	U.Un/	1118.137	0.6461	2678.94	12650.39 0.01268	1.024	87
44	11.355	0.080		0.0434	2934.76	13809.80 0.012/1	1.123	ð.
90	12.02/	V•U55	1212.695	0.6415	3145.07	14979.58 0.01274	1.220	
51	12.722		1306.123	0.0391	3459.03	16155.12 0.01277		87
ځځ		0.111	1443.540	0.0366	3725.94	17332.50 0.01260	1.333	90
43	13.443	0.130	1498.845	V*6340	3995.18	18508.54 0.01283	1.444	91
94	1190	0.151	1593+810	0.6313	4406.21		1.559	45
-	14.962	9 • 175	1684.261	0.0286	4538.59	19640.07 0.01246	1.675	93
75	15.758	102**	1781.712	0.6258	4811.89	23844.58 0.01289	1.797	94
'200	15-5/6	0.559	1474.671	0.0224		51494.71 0.01545	1.921	45
÷1	17.421	0.500	1965.319	0.6500	5045.66	£3143.22 0.01295	2.047	96
48	18.544	9.244	2055.669		5359.46	74272.61 0.01299	2.176	91
79	19.177	0+331	2145.457	0+6170	5632.84	25385.62 0.01302	2.30H	98
100	20.090	0.371		0.6140	5905.21	26474.46 0.01305	2.442	99
101	21.024		2232.564	0.0109	6175.97	27551.15 0.01308	2,579	
102	21.980	0.414	2317.559	U+007/	6444.36	28597.34 0.01311	6.717	100
103		0.461	2400.300	U-6046	67119.55	29614.25 0.01314		101
104	22.556	0.511	2460.346	0.6013	6970.63	30597.94 0.01317	₹.25H	105
	53.95H	い・コウン	2557.371	0.5980	7226.52	11641 44 0 01110	3.001	103
105	24.976	4.055	2620.948	0.5947	7475.54	31543.84 0.01320	3.145	104
100	50.050	U+6+.3	2700.719	0.5914	7717.79	32446.71 0.01323	3.545	105
107	21.092	0.744	2760.217	0.5880		33302.15 0.01356	3,440	106
100	26.105	6.0814	2827.011	0.5845	7950-61	34104.32 0.01329	3.545	107
109	29.266	0.051	2882.617		8172.98	34441.93 0.01332	3.740	ion
110	10.388	0.959		U.SA11	8383.51	35527.83 0.01,36	3.892	103
iii	31.528	1.051	5935.805	0.5776	8580.75	36138.90 0.01339	4.046	110
112	32.685		2976.970	0.5/41	8/63.22	36676.04 0.01342	4.200	
	20 100 1	1.135	3014.849	0.5705	8929.64	37135.16 0.01345		111
						2: VIVIJAD	4.355	115

113	33.261	1.224	3046.056	U+5670	9078.64	J/512.14 0.01348	4.511	
:1-	35.052	1.367	2070.503	U.5634	9209.23	37604.43 0.01351	4.655	113 114
115	36.254	1.40%	3087.961	0.5559	9320.58	38010.29 0.01354	~•825	115
116	37.401	1.240	3098.24	0.5563	9411.84	38128.06 0.01357	4.982	116
117	78.717	:.034	2101.403	V+5527	9482.56	3815/-92 0-01360	5.139	117
lle	39.966	1.751	7097.675	U.5491	9532.96	38102.54 0.01363	5.296	
119	41.225	1.072	308/.167	U.5455	9563.02	37963.74 0.01366	5.453	11d 119
120	42.447	1-995	3070-217	U->420	9573.14	37745.08 0.01369	5.609	120
121	-3.77e	C+12C	3047.339	U.5384	9564.68	37453.65 0.013/2	5.775	151
125	45.663	٠٠٥٥٠	3010.950	0.5349	9538.57	37094.91 0.01376	5.920	122
123	45.365	2.341	2945.834	U+>313	9496.56	36677.20 0.01379	6.075	123
124	£7.671	<.731	294h.56J	0.5278	9440.48	36206.82 0.01382	6.229	124
125	46.962	2.675	2908-105	0.5243	9373.04	35701.53 0.01385	6.381	122
150	50.299	と・ドシフ	2865.221	v.5208	9296.45	35164.59 0.01388	6.533	126
121	51.621	2.474	5450.907	U-5174	9213.38	34608.92 0.01391	6.683	127
159	42.944	3-136	2775.823	0.5140	9126.95	34046.57 0.01394	6.833	159
164	54.279	30147	2731-211	U.5106	9040.10	33488.77 0.01397	6.961	159
130	55.615	3.467	2681.162	U.5072	8955.66	32945.79 0.01400	7.128	130
131	56.955	3.032	2646.323	v.5038	8676.27	32427.15 0.01403	1.275	131
132	78.302	3.007	2607 . 470	v•5005	4805.59	31945.54 0.01406	7.420	132
133	59.653	1.94.9	25/2+665	0.4972	6/44.72	31504.09 0.01409	1.564	133
114	01.011	4+165	2541.463	0.4939	H696.28	31111.35 0.01412	7.707	134
135	62.311	4.351	2514.408	0.4906	4061.23	30769.68 0.01416	7.849	135
136	63.75	4.543	2491 • 179	V.4873	8640.06	30482.29 0.01419	7.991	136
. 57	15.13c	4.134	2413.266	0.4841	n634.15	30244.53 0.01422	8.132	137
130	40.525	4.734	¿45n•840	0:4808	6641.99	30058.20 0.01425	H.273	138
:37	61.464	5.144	2447.558	0.4776	8600.73	29909.5- 0.01426	8-413	137
i→O	64.343	5.350	243H•5UH	0.4743	non7.56	29788.10 0.0143	8 • 553	146
141	79.771	707/1	2431.347	0.4711	8721.48	29689.65 0.01434	8.693	141
: 42	12.211	7.194	2423.446	0.4679	8753.29	29582.65 0.01437	0.832	142
143	13.662	6.023	230.613	U•4679	>×2.31	2138.62 0.01440	8.967	143
144	りつりょうさ	200	221.441	0.4679	574.32	2109.25 0.01443	8.967	144
14%	10HA	**** 1	214.417	0.4679	551.51	2025.49 0.01446	b.967	145
146	78.050	70/27	201 - 367	0.4679	508.46	1807.40 0.01449	8.767	146
141	19.560	7+44	174.552	0.4679	440.86	1619.10 0.01453	8.967	147
144	40.962	1.215	1 16.551	0.4679	344.81	1260.38 0.01456	d.967	148
149	42.410	10-03	45.265	0.4679	215.35	790.40 0.01459	8.967	149
150	83.81-	1.021	19,3/9	0.4679	48.93	179.71 0.01462	5.961	150
151	45.140	1.430	-61-914	U.4679	-156.10	-573.28 0.01465	8.967	151

A STATE OF THE PARTY OF THE PAR

PHESENT MERCULES MARREL WITH V. INITIAL ANGLE-8.9667 EXIT AND Y=.01008*X**1.5

PRESENT HERCULES MARREL WITH U. INTITAL ANGLESS. 9667 EXIT AND YE. 010080X001.S

J	PCSITION (INCHES)	(IACHES)	TORGUE	SHEAR AREA (INCHES**2)	SHEAR STRESS (PSI)	BEARING STRESS (PSI)	TIPE (SECUNUS)	RIFLING ANGLE (DEGHEES)	J
1	-4.697	U•U	0.0	**********	0.0	v.0	0.0	2.2	
2	-4.694	4.0	0.0	************	0.0	U.0		0.0	1
3	-4.679	Ů •U	υ• 0	***********	0.0	U•0		0.0 0.0	٤
4	-4.645	ܕU	0.0	************	0.0	U.0		0.0	3
5	-4.567	0.0	U•0	***********	0.0	V. 0		0.0	4
•	-4.505	0.0	0.0	*******	0.0	U•0		0.0	5
7	-4.396	0.0	U•0	************	0.0	0.0		0.0	6
9	-4.2eu	0.0			0.0	0.0		0.0	á
10	-4.09/ -3.909	0.0	0.0	***********	0.0	0.0	0.00000	0.0	ÿ
11	-3.904	0.0		***********	0.0	0.0	0.00090	v.0	10
12	-3.462	0•U	0.0	************	0.0	0.0	0.00100	0.0	ii
15	-3.20r		• • •	******	0.0	0.0	0.00110	0.0	iż
14	-2.937	J•U U•O	0.0		0.0	U.0	0.00120	0.0	13
15	-5.451	0.0		***********	0.0	0.0	0.00130	0.0	14
lo	-2.354	6.0	0.0	*******	0.0	0.0	0.00140	0.0	15
17	-2.049	0.0	0.0 ·	~~~~~~	0.0	0.0	0.00150	0.0	16
lø	-1.736	0.0		***********	0.0	0.0	0.00160	0.0	17
19	-1.419	3.0			0.0	0.0	0.00170	U•0	18
20	-1.09#	1.0	0.0	******	0.0	0.0	0.00160	0.0	19
<1	-0.7/7	0.0			0.0	0.0	0.00140	0.0	20
22	-0.455	0.0	0.0	**********	0.0	0.0	0.00200	0.0	21
ڌج	-0.134	0.0		***********	0.0	0.0	0.00210	0.0	22
24	0.100	0.0	0.0	*********	0.0	0.0	0.00220	0.0	23
25	1.503	U•U		***********	0.0	0.0	0.00230	0.0	24
40	0.816	0.0	U • Ú ·	**********	0.0 0.0	0.0	0.00240	0.0	25
21	1.124	0.015	30.457	0.6485	96.15	0.0	0.00250	0.0	26
28	1.425	0.017	27.645	0.0459	72.34		0.00260	0.918	21
29	1.714	4.023	14.942	0.6436	49.74		0.00270 0.00280	1.034	28
30	C+002	440.0	10.075	0.8415	26.54	400175	0.00290	1.136 1.225	29
31	2.271	0 • U 3 5	0.142	U+6397	1.85		0.00270	1.305	30
30	2.525	11+040	-4.251	0.6381	-24.52		0.00310	1.376	31
33	2.754	0.045	-14.663	U+6367	-52.19		0.00320	1.439	33 33
34	2.970	0.052	-30.164	0•5355	-60.23		0.00330	1.493	34
35 36	3.154	U+U5h	-40.264	0+6345	-107.24		0.00340	1.538	35
3/	3.310 J.433	100.0	-49.236	V+6336	~131.32		0.00350	1.576	36
Je	3.563	0.04-	-50.323	0.6329	~150.38	-695.49	0.0"360	1.605	37
34	3.574	0 • U6.7 0 • U65	-60.701	0.6325	-162.14	-749.54	0.00370	1.626	38
40	3.602	0.069	-61.61H	0.6355	~164.71		0.00140	1.638	39
~1	3.545	0.060	-50.528 13.269	0.63%1	~156.48	-722.71	0.00390	1.644	40
42	3.800	0.075	0.0	0.0351	35.48	163.85	0.00400	1.642	41
4 9	J. 900	0.075	0.0	U+0311	0.0	0.0	0.00515	1.648	42
44	3.800	0.075	0.6	0.6311	0.0	0.0	0.00540	1.648	43
45	3.HL	0.075	6.0	0.6311 0.6311	0.0	0.0	0.00570	1.688	44
45	3.800	0.075	0.0	0.6311	0.0	0.0	0.00600	1.688	45
47	3.060	0.0/2	9.0	U.6311	0.0	0.0	0.00630	1.688	46
46	3.800	0.075	U•U	0.6311	0.U	0.0	0.00660	1.688	41
49	3.400	0.075	9.0	0.6311	0.0	0.0	0.00690	1.648	46
50	3.800	U+075	0.0	0.6311	0.0	0.0	0.00720	1.688	49
51	3.400	ひ・ひろつ	0.0	U+6311	0.0	U.O O.O	0.00750 0.00780	1.68A	50
52	3.800	0.075	U • U	0.6311	0.0	0.0	0.00780	1.688	51
					***	V.U	4.00010	1 • 0 8 A	52

5 3	1							
5.	J.600 J.ne0	0.075	(r, i)	0.6311	0.0	0.0 0.00H40		
55		0.075	0.0	0.6311	0.5		1.688	5)
56	3.400	0.075	0.0	0.6311	0.0		1.688	54
27	3.600	4.075	v•0	V.6311	0.0	0.0 0.00900	J •698	55
	3.800	0.075	⊍ ≈0	0.6311	0.0	0.0 0.00930	1.688	56
54	3.460	0.075	0.0	0.6311		0.0 0.00960	1.688	5/
54	3.000	4.075	v•)	0.6311	0.0	0.0 0.00990	1.688	58
60	3.400	0.075	0.0	0.6311	0.0	0.0 0.01020	1.608	59
61	3.400	0.0/5	0.0		0.0	0.0 0.0105u	1+688	60
62	3.800	0.075	V•0	0.6311	U•0	0.0 0.01080	1.688	61
63	3.400	0.075	0.0	0.6311	0.0	0.0 0.01110	1.688	65
54	3.800	0.075	0.0	0.6311	0.0	0.0 6.01140	1.688	63
55	3.400	0.075		0.6311	0.0	0.0 0.01180	1.688	
06	3.800	0.075	0.0	V+6311	0.0	0.0 0.01200	1.688	64
67	3.961	0.079	109.578	v.6311	273.44	1353.04 0.01203		65
68	4.102		208-867	v•6303	560.04	2578.99 0.01206	1.648	66
69	4.232	0.084	300.751	0.6296	897.28	3713.46 0.01209	1.724	67
70	4.361	0.088	385+634	0.6289	1036.16	4761.46 0.01212	1.754	68
71		0.042	464.482	0.6283	1249.22	5724 04 0 01212	1.782	69
	4.495	0.096	538.530	0.0277	1449.81	5734.93 0.01215	1.808	70
13	4.640	0.101	609.05.	0.6270	1641.44	6649.09 0.01218	1.836	71
/3	4.803	0.106	671.240	0.6263	1627.32	7519.78 0.01222	1.465	12
74	4.407	0.112	744.030	V.6255		8361.42 0.01225	1+898	73
15	3.195	0.119	810.124	0.0246	2010.15	9185.84 0.V1228	1.934	74
10	it.	651.0	675.941	0.6536	2191.89	10001.60 0.01231	1.974	75
27	5.696	0.137	941.640	0.6225	2373.77	10813.87 0.01234	2.018	76
*	5.993	0.168	1007.204		2556.36	11624.70 0.01237	2.067	ii
14	156.0	0.1.0	1072.418	0.6213	2739.61	12433.50 0.01240	2.120	18
80	6.661	0.174	1136.990	0.6200	5653.06	13238.12 0.01243	2.177	19
ol	7.075	0.150	1200.605	0.0186	3106.05	14034.70 0.01246	5.538	
d?	7.501	0.201	1262.857	0.6171	1467.62	14819.17 0.01249	2.303	80
ದ ತ	7.959	0.420		V·6156	3466.89	15587.35 0.01252	2.371	81
84	0.450	0.448	1323.581	0.6140	3643.04	16335.47 0.01255		58
45	2.912	0.271	1382.392	0.6123	3615.34	17060.36 0.01259	2.443	63
06	9.524	0.244	1439.142	0.6106	3983.24	17759.66 0.01262	2.517	84
67	10.107		149 1.740	0.6083	4146.36	15431.84 0.01265	2.593	65
88	10.719	0.35.	1544.025	0+6070	4304.47	19076-17 0-01268	2+672	75
87	11.359	0+354	1596.055	V+6U51	4457.53	19692.61 0.012/1	2.152	87
90		6.342	1543.967	0.6032	4605.59	20201 27 0 0 271	₹•#34	8 ಕ
¥1	12.027	0 + 4 2 ()	1069./10	0.6013	4748.82	20281.77 0.01274	2.917	44
	12.722	0.457	1733.433	0.5994	4887.43	20844.52 0.012//	3.002	90
45	13.443	0.457	1775+246	0.5974	5021.69	<1345.50 0.01580	3.087	91
93	14.170	V.c.0	1815.252	0.5954	5151.83	21896.16 0.01283	3.173	92
94	14.462	0.5~3	1453.552	0.5935	5276.08	22367.71 0.01286	3.260	93
95	15.758	0.631	1890.224	0.5915	5400.64	22858.05 0.01289	3.347	44
30	16.578	0.640	1925.37.0	0.5895		23308.24 0.01292	3.435	95
97	17.421	0.733	1958.1.43	0.5675	5519.54	23738.73 0.01295	3.523	96
98	16.648	0.104	1990.786	V.5855	5634.81	24147.73 0.01299	3.611	41
99	14.177	0.841	2021.000	0.5834	5746.36	24541.12 0.01302	3.700	98
100	20.090	0.90m	2044. 127		5853.94	24912.05 0.01305	3.788	69
101	21.024	0.912	2076.310	0.5814	5757.23	25261.39 0.01308	3.877	100
162	21.900	1.039	2100.9-0	0.5794	6055.60	25587.45 0.01311	3.966	101
103	22.958	1.109	2123.337	0.5774	6149.08	25888.15 0.01314	4.055	102
104	23.958	1.12	2143.277	0.5754	6236.47	26161.22 0.01317	4.144	
105	24.978	1.254		0.5733	6317.23	26403.90 0.01320		103
166	25.020	1.334	2160.492	0.5713	6340.51	26612.89 0.01323	4.233	104
107	11.042	1.421	2174.781	0.5693	6455.61	26765.73 0.01326	4.321	105
โปห	20.165	1.507	2185.862	0.5673	6511.61	26918.96 0.01329	4.410	106
109	79.266		2193.453	0.5653	6557.67	27009.62 0.01332	4.499	107
iló	30.388	1.596	2197.452	0.5632	6593.00	27054.99 0.01336	4.588	108
iii		1.669	2197.534	0.5612	6616.88	27052-55 0.01336	4.676	109
115	31.528	1.744	2193.549	0.5592	6628.59	27000.00.00.01339	4.765	110
	32.685	1+884	2162+374	0.5572	6621.63	27000.00 0.01342	4.853	111
				-		26895.89 0.01345	4.941	115

enated been according an article and bushes and a cold and and about the state of the best and before and the

113								
115		1.955	2172.902	6-5555				
115	35.052	とっひゃき	2150-113	0.5532	6613.48	26/38.78 U.01348	5.028	
116	36.259	2.201	2135.062	U-5513	6585.98	26528.60 0.01351	5.115	113
	37.461	و : د ۲۰	2109-785	U-5493	6545.11	26265.98 0.01354		114
11/	38./17	204611	2020-448	0.5473	6490.84	25951.44 0.01357	5.202	115
ila	39.700	2.547	2047.354		6423.52	25587.00 0.01360	5.289	116
117	41.765	2.0hh	2010-753	0.5454	6343.95	25176.39 0.01363	5.375	117
120	±2.497	2.743	1970.978	0.5434	6252.76	24722.80 0.01366	5-460	118
:21	43.776	4.450	1928.573	0.5415	6150.86	24230.27 0.01369	5.545	119
122	45.068	3.050	1463-956	0.5356	6039.84	23705.53 0.01372	5-629	120
143	*6.366	3.162	1837.709	0.5377	5920.92	23153./2 0.01376	5.713	121
124	47.671	34.113	1790-346	0.5358	5795.85	22582.04 0.01379	5.796	122
125	48.402	3.456	1742.733	0.5340	5666.31	21997.28 0.01382	5.876	123
146	50.299	3.546	1695.316	0.5321	5534.65	21408.62 0.01385	5.960	124
127	51.621	3.734	1979-310	V-5303	5402.66	20423	6.041	125
128	72.945	1.584	1648.787	V•5285	5272.42	20823.04 0.01388	6.121	126
127	54.279	4.03)	1603.625	0.5267	5146.15	20248.50 0.01391	6.200	127
130	55.615	4.161	1561-062	0.5249	5025.94	19693.37 0.01394	6.278	125
131	56.956	4.333	1521-026	0.5231	4913.57	19165.41 0.01397	6.356	129
135	54.302	4.4H/	1484-141	0.5214	4810.68	18671.07 0.01400 .	6-433	130
133	59.653		1451-213	U.5196	4/19.51	18216.14 0.01403	6.510	131
134	61-011	4-644	1422-133	U.5179	4640.34	17808.69 0.01406	6.586	132
135	62 . 376	4.800	1397.314	U-5162	4040-34	17449.16 0.01404	0.66;	
136		40766	1376.735	0.5145	4574.49	17142.02 0.01412	6.736	133
137	53.750	5-131	1360-412	V-5128	4522.03	16886.96 0.01416	6.810	134
130	65-132	5.244	1347-861	0.5111	4463.18	16684-16 0.01419	6.884	135
139	65.525	50454	1339.074	U-5094	4456.55	16527.91 0.01422		136
	67.928	5.641	1332.461	0.5074 0.5078	4442.05	16417.34 0-01425	0.957	137
140	59.343	2.451	1328.727		4436.38	16339.81 0.01428	7.030	136
141	79.771	0.001	1325.961	0.5061	4436.51	10285.32 0.01431	7-103	139
142	12.211	6.145	1322.577	0.5044	4442.35	16245.80 0.01434	7-176	140
143	73.662	6.373	1317-658	0.502/	4445.71	16204.71 0.01437	7.249	141
144	75.122	6.563	1309-347	0.5011	4443.89	16141.81 0.01440	1.322	142
145	76.569	0.750	1296.205	0.4994	4430.53	16037.36 0.01443	7.394	143
146	76-069	0.952	1276-115	U+4978	4400.61	15873.78 0.01445	7.466	144
147	79.566	1.144	1247.384	0+4961	4346.71	16436 13 6 33 3	7.534	145
148	40.442	7.345		0.4945	4662.75	15625-18 0-01449	7.609	140
149	46.416	1.542	1204.370	0.4929	4142.77	15270.87 0.01453	7.679	147
120	43.814	1.735	1156-907	0.4914	3978.88	14790.83 6.01456	7.748	146
151	A5.160	1.425	1091-412	0.4899	3765.14	14156.62 0.01459	7.816	149
	• •		1010.940	U-4864	3497.77	13354.9H 0.014hc	7.891	150
					3777611	12368.43 0.01465	7.943	151
								131

CONSTANT THIST CANKEL

Copy available to DDC does not permit fully legible reproduction

COUR	I A e s I	THIST	HANAGE

J.	PC-1110A (1NCHE5)	1 (Intres)	TOPLUE (IA-LHS)	SHEAR AREA (INCHES**2)	SHEAR STRESS (PSI)	GEAMING STRESS (PSL)	TIPE (SECGNUS)	difling angle (degaffe)	J
1	-4.64E	0.0	U• <i>U</i>	************	0.0	0.9	v.0	4.0	
2	-4.694	0.0	0.0	***********	0.0	0.0		0.0 0.0	ŕ
3	-4.675	0.0	0.0	**********	0.0	V = 0		v.0	2
4	-4.045	0.0	0.0	***********	0.0	v.0		0.0	
5	-4.587	0.0	0.0	************	0.0	0.0		U.O	3
0	505	0.0	₽•0	*************	0.0	y.0		0.0	6
7	-4.396	0.0	0.0	************	0.0	0.0		0.0	ž
ÿ	-4.260 -4.097	0.0	0.0	************	0.0	0.0	0.00070	9.0	ė
lu	-3.909	0.0	0.0	***********	0.0	0.0	0.00080	0.0	4
11	-3.907	0.U	0.0	************	0.0	U.0	0.00090	0.0	10
خن	-3.462	0.0	0.0	***********	0.0	0.0	0.00100	0.0	11
13	-3:20H	0.0	U.U 0.0	**************	0.0	U.0	0.00110	0.0	ič
14	-2.937	U•U	U•U	*************	0.0	0.0	0.00120	U•Q	iJ
i5	-4.651	0.0	0.0	***************************************	0.0	0.0	0.00130	0.0	14
16	-2.354	,	0.0	***********	0.0	0.0	0.00140	0.0	15
17	-6.044	0.0	0.0	************	0.0	0.0	0.00150	0.0	16
18	-1.736	0.0	0.0	***********	0.0	U.0	0.00160	0.0	17
19	-1.419	U+U	0.0	***********	0.0	U+U	0.00170	0.0	19
20	-1.090	0.0	V.0	***********	0.0 V.O	U-0	0.00160	0.0	19
21	-0.7/1	0.0	U.O	************	0.0	9.0	0.00140	0.0	20
22	-0.455	UeÜ	0.0	************	U.O	U. U	0.00200	0.0	SI
43	-0.134	0.0	U•U	************	0.0	0.0	0.00510	0.0	55
24	0.166	0.0	V.0	************	0.0	0.0	0.00220 0.00220	0.0	23
25	0.503	0.0	0.0	**********	0.0	0.0	0.00240	0.0	24
26	0.416	0.0	0.0	**********	0.0	0.0	0.00250	0.0	55
27	1.124	U-020	-57.163		-144.24		0.00560	e•967	21 21
24 24	1.42	0.067	-74.075		-187.04	-686.94	0.00270	2.967	54
30	1.719	0-113	-94.869		-239.55		0.00280	8.967	29
30	2.2/1 2.2/1	3.15%	-119.709		-Ju2.27	-1110.14	0.00240	8.96?	30
31	2.513	0-201	-148.523		-375.03	-1377.39	0.00300	8.967	31
Š	2.159	0.241 11.214	-180.665		-456.19		0.00310	U.967	مُو
34	2.970	0.311	-215-034		-542.97		0.00320	U.467	3
Jb	3.154	0.340	-244.944 -245.314		-631.12		0.00330	8.967	34
36	3.310	0.364	-31<.336		-/15.40		0.00340	4.401	jo
37	3.433	0.344	~33~•065		-788.67		0.00350	8.967	36
Ìs	3.523	4.394	-345.110	V•6693 V•6593	-543.53		0.00360	8.967	37
39	3.579	. 0.407	- 342.0cb	0.0573	-871.42	******	0.003/3	8.467	38
40	3.602	0.4)1	-371.909	V•0693	-812.84		0.00360	8.967	34
41	3.595	0.439	73.03/				0.00340	8.967	44
42	1.800	00000	0.0	0.0693	184.42 0.0		0.04400	4.967	41
43	3.800	0.442	0.0	0.0693	4.0	U.O	0.00515	8.967	46
44	3.800	v.442	Dev	0.0693	0.0	0.0	0.00540 0.0057u	8.967	43
47	3.400	0.442	0.0	0.6693	0.0	0.0	0.00570	8•961 8•°61	44
417	3.400	0.442	0.0	V+6693	0.0	U.0	0.00630	8.957	45
41	3.400	0.442	U.O	0.6693	0.0	0.0	0.00550	d.967	46
40	3.800	11.442	0.0	U.0693	0.0	0.0	0.00690	8.96/	48
50	J-800	9.442	V.0	0.6693	0.0	0.0	0.00720	4.967	49
50 51	3.400	0.442	6.0	U+669J	0.0	0.0	0.00750	8.967	50
25	3.400	0.462	0.0	0.0693	0.0	U.0	0.00780	8.957	51
26	3.800	0.446	0.0	V•6643	0.0	0.0	0.00010	8.96/	52

Copy evailable to DDC does not permit fully legible reproduction

رد	2.000	J	G•U					
٠٠٠	J.80v	6.4-2	3.0	0.6653	0.0	V-V 0.00840	8.967	53
22	1.000	v/	0.0	0.069.	0.0	U.O G.JO070	0.967	5,
ファ		110000	6.0	U.6553	0.0	0.0 0.00900	109.0	55
اد	1-700	J.4-7	Ů-0	0.5593	0.0	U.C 9.00439	4.567	50
214	りゅっと	3.460	y.c	0.6693	0.0	0.0 0.00460	3.461	57
ンソ	3.400	40006	6.4		0.0	U.U U.U6751)	5.957	58
60	3.500	0.4	0.0	0.0693	0.0	0.0 0.01020	0.961	.59
61	3.800	0.447	0.0	0.6653 0.6653	5.0	6.0 0.01020	8.967	60
06	೨.ವ೮ರಿ	02	0.0	0.0693	0.0	0.0 0.01060	8.967	61
63	4.500	0	V•0	0.6693	y.0	0-6 0-01116	6.907	62
54	3. 40n	U	ù.J	V-6693	0.0	U-U 0.0314U	4.857	63
69	** 40 *	61-44	0.0	0.0043	0.0	0.0 0.01160	0.967	64
რს		0.~~.?	565.617	V-6693	0.0	0.01500	8-967	65
6/	20.051	13.00	104-10	6.993	1401.24	5440.06 0.01203	8.957	66
68	20105		1544-261	U+0693	2763.19	10148.20 0.01206	5.707	67
61	4.02	4	1939-219	£690°0	3599.35	14320.70 0.01207	8.967	64
70	4.351	11.0	1287.154	0.6693	4096.64	17983.57 0.01212	m.967	2.4
71	4.445	0.5°.	2510,250	6.0093	5762.58	51163.80 0.v1215	4.957	70
15	4.540	6.5/-	>42~.~U4	0.0693	6505.18	Czaatojo Oonicia	11.951	71
13	~03	to a true	1031-150	L930.0	7132.74	59130-15 0-01555	8.901	12
/-	4.407	****	119065	9.0043	7653 . 95 5077 . 31	28110.16 0.01625	4.557	13
15	20172	U.m.	1331.259	6.5653	8411.54	29665.04 0.01228	4.901	14
/0	5.431	110,34,0	1431.000	L699°A		30892.54 0.01231	4.961	15
77	5.590	0./-:	3503.541	U+6653	8005.20	31824.13 0.01234	4.961	70
/e	5. 143	ù•Ic¤	3550.029	0.6247	8444.63 8764.00	32490.41 0.01237	8.961	71
19	5-321	∵• 7≈0	3574.215	0.0693	9025.09	32921-51 0-01240	8.407	18
อก	5.663	0.164	3574.061	0.6693	9037.34	33145.89 0.21243	8.957	19
0.1	7.4/5	U → pt	156/.356	6.699.1	y007.77	33190.88 0.01246	4.967	90
82	7.501	i.ura	1541.6e2	0.6693	8542.95	33045.58 0.01564	M.967	e I
73	1.959	1 + +44	3504.425	6.0063	8848 . 95	32044.19 0.01252	8.967	42
74	C. +50	1+2/5	1457.HeZ	0.0693	8/31.35	32498.50 0.01255	4.961	83
65	4.612	1000	1463.457	0.0693	H5Y5.1Y	3206/-07 0-01259	4.461	84
65 67	4.75.4	1. 1.7	93446454	0.0553	445.01	3150/.00 0.01262	7.957	85
	19.107	1.45/	1261-040	U+6693	9244.61	31015.45 0.01265	4.967	85
em =	19./13	1.55	1714.450	0.0693	8114.05	30427-09 0-01268	4.561	E7
70	11.156	1.0	41→7•5±0	0.0693	7947.71	29814.64 0.012?1	4.961	88
7,0	12.021	1.6.	3014.565	0.6693	7776.22	29187.05 0.01274 28557.25 0.01277	4.967	4.4
ئےو	12.722	j.es	1012.055	0.6693	7005.61	2/932.65 0.01277	6.967	93
وُرُ	14.190	1.91 1	1945.443	6+0043	7437.41	2/314.90 0.0:243	4.56/	41
44	14.702	7 · U···	1840.712	U•6693	7612.71	26/10.02 0.01285	8.967	52
75	11./50	2+291 2+32+	calbo: /4	0.5543	7112.25	26120.73 0.01269	8.967	وي
**,	11/8		27544360	0.5593	t >56.45	25540.50 0.01247	6.967	9.4
71	17.461	20453 2054}	15950000	U-0643	6:05.27	4493.30 b.d1245	e-967	95
945	10.000	2012-	430.000	0.0652	6658.53	24454.35 0.01299	M+967	45
77	19.177	7.844 2.154	~540.44J	6.000.3	6515.75	23530.02 0.01247	3.451	7/
100	26.090	20.00	7525.164	4.5053	6376.27	2341/./2 0.01.105	8.557	49
ivi	71.024	1-150	2470.465	0.6653	6634.22	22714.40 0.01305	8.557	49
102	210	1+310	1411.254	U-~4.93	6103.65	2241c.50 0.01311	7.907	100
.03	26.424	J+46'>	23636761	U-3513	5968.53	21920.7- 0.012:4	0.967 0.967	101
104	13.450	3.000	1304.465	6.2643	5032.79	21421.72 0.01317	8.96/	195
105	14.10	3.1-3	1255+5e4	U-0653	5675.34	20916.91 0.01360		103
100	15.020	1.145	2199.958	U+0693	5555.02	20401.50 0.01323	d•961 d•957	104
107	21.002	*•115	2142.114	0.0073	5410.99	19872.61 0.01326	7.77/ 5.96/	100
195	25.153	4.546	2024.919	0.0693	5262.27	19326.39 0.01369	2.96 <i>1</i>	105
1174	20.066	4.400	2022-448 1954-464	0.6693	5108.06	18760.05 0.01332	8.961	107
110	10.348	*** 17		0.0693	4947.77	18171.37 0.01336	d.557	104
1	11.75	4.717	1493.344 1424.578	0.6693	4780.93	17550.61 6.01339	8.957	109
117	32.000	5.000	1753+064	6.00.7	4607.21	16420.62 0.01342	8.901	110
			1123064	0.6693	4426.54	15257.24 0.01345	d.961	111
								116

Copy available to DDC does not permit fully legible reproduction

113	33.8nl	5.145	1674-565	0.0693	4639.08	15560.59 0.01348	109.5	113
11-	35.752	7.371	1001.474	C+69.u	40-5.07	14656.04 0.01351	8.967	114
115	36.254	5•3e•	1522-463	v-0693	3545.21	14122.0/ 0.01354	d.967	115
110	37.401	3.756	1441.575	V-0693	36-0.00	13360.61 0.01357	8.95/	116
117	34.717	つ・サラト	1754.617	6.6673	3430.59	32599.31 C.01360	8,967	117
126	39.444	50144	1274.478	0.6653	3216.13	11819.02 0.01363	8.967	118
!!~	41.725	4.341	1189.526	£930.U	3003.80	11032.10 0.01366	di967	117
120	4247	4.564	1104.5//	U.0693	2789.12	10243.42 0.01369	9.95/	124
121	~J. 178	20.750	1020-062	0.5463	2575.77	9454.85 0.01372	8.967	12.
165	~±.000	1,44.00	936+710	V-56-J	2365.26	ded6.74 0.01376	8.967	155
163	46.300	7+15m	555.175	0.6572	2159.42	7930.76 0.01379	6.967	123
164	47.671	7.354	770.164	V-cc?3	1959.91	7198.03 0.01382 -	8.96	124
125	~P.987	7.571	200.45n	4.0673	1/68.79	6476.13 0.01365	8.967	125
100	50.244	1.119	454×114	0.0693	1287.54	5830.46 0.01388	8.957	126
121	51.001	7.4H1	561.4/4	0.6643	1-17-75	5266.69 0.01391	8.957	121
120	52.44"	5-197	464.354	4.0693	1401.00	4631-18 0-01394	8.401	128
16 +	5214	4.401	44.3+004	U+0693	1118.61	4100.25 0.01397	4.461	153
130	55.615	0.516	392.0/0	F-500-0	991.51	3641.47 0.01400	U-907	130
111	50.450	5.524	340.064	0.0693	000.41	£0+10+0 Se+££\$£	10907	
132	50.302	7.041	311-446	0.6693	186.42	2888.25 C.01406	e.967	131
وو:	59.653	7.255	260.155	0.5693	708.92	2603.61 0.01409	6.967	135
126	61.011	4.409	250.629	6.496.3	848.08	2380-15 0-01-12	9.401	133
235	42.376	3.074	235.75.	L699.0	602.97	2214.49 0.01416	8.961	136
135	23.750	4.401	226.344	6.6673	572.79	2103.67 0.01414		135
137	25.132	10-114	214.966	0.0093	555.43	2039.90 0.01422	8.961	136
130	66.525	100334	217.730	0.6693	549.78	2019-15 0-01425	8.967	137
13.	21.920	ערלייון	21n - 732	0.6693	>52.31	2028-44 0-01428	6.967	130
140	9.363	10.10-	221.750	0.6593	200.05	2056.76 0.01431	b.967	139
1-1	10.773	11.003	220.1/7	V•0693	>71.11	2097.48 0.01434	8.967	144
142	16.211	11.235	224.509	4.0653	5/9.52	2126.37 0.01437	4.967	141
143	13.662	11.465	230+613	F499•0	582.31	2138.62 0.01440	d•967	142
j	15-122	11.016	227.441	L499.0	574.32		8.967	143
14	/c.569	11.961	2140+15	0.0693	551.51	2109.25 9.01443	8.967	144
144	12.000	17.159	201.3e/	U•6693	508-46	2025.49 0.01446	6.967	145
1-7	19.560	12.351	174.576	646949	440.66	1867.40 0.01449	0.961	146
146	40.402	14.036	136.55/	U+0073		1619-10 0-01453	9.961	141
144	H2.410	16.069	45.245	0.6593	344.81 615.35	1266.38 0.01456	8.567	148
150	43.614	13.06/	14.3/4	6.69.0		790-90 0-01459	8.967	149
121	47.100	13.219	-61-014		48.93	179-71 0-01-62	8.967	150
		130617	-21.01.0	0.0093	~156.10	-573.28 0.01-65	8.967	151

Copy available to DDC does not permit fully legible reproduction

ANT THE	GUE ******	SHEAR !	L VALUES STRESS *******	DAINA 36	
(IC-LH-SEC)	ent POSTICA (IN-LH-IN)	#HT TIME (PSI=SEC)	HHT POSITION (PSI+IN)	HRT TIPE (PSI-SEC)	HT POSITION (PSI-IN)
##1.5 BANNEL 0.4-/3643E-01	v.14724661 + 15) 16 W			
	***************************************	9-1523200F+05	0.42104876+06	0.41765376.02	0.1373403E.07
0-44751UDE+U1	V.15921151 + v.6				
	v+13351136 +0H	0-1248706E+02	U.427/394E+06	0.41779756.02	0.14013881+07
4=2.0 HARREL 0.4474454E.U1	a b book				
	011-19261-10	0.1245112E-02	0.43176346+06	0.41786326+02	U-1418066E+07
MENCULES HANNEL					
10+35254H45	.13464411+06	0.12104726.02	U.4176750E+06	0.49078836.462	0.16560446.07
CONSTANT THESE B	THE F			***************************************	0.1020044E+01
0.430/4426+111	U.1U448/9F+96	0.10#7657F.05	0.2638393t+06	0.39945361.02	0.466.4116.02
are asuatt					
V+4510077E+J1	0.1671994F + Oh	0.137/387£+02	0.5202468£.06	0.5534512E.02	V•20-9215E•01

KEDHANI BANGARAN PANGARAN KANTAKAN KANTAKAN PANGARAN PANGARAN PANGARAN PANGARAN PANGARAN PANGARAN PANGARAN PAN

A-64

and the contraction of the contr

A-67

FIGIA

CHEST STATES OF THE STATES OF

and deposite the compact of the compact of the contract of the

A-70

ESTRICTION OF THE PROPERTY OF THE SECOND OF THE PROPERTY OF TH

A-76

A-77

APPENDIX B

AMCAWS 30 INTERIOR

BALLISTICS LINKING COMPUTER

PROGRAM

-415

tale = 75:60

261k3133

P465 0051

EDUTATE IN C. FEARS ST

Copy available to DDC does not permit fully legible reproduction

	Forther IV	o céric di	*=1%	CATE = 75166 0	to/5t/33	P=GE 0502
###	3536		me 35.16m2349 6 n 1 7		42406430	
V-12						
Setal Seta						
253- 243						
Coling						
CV156 PC157						
Delify				÷		
Cold						
CALL PREST						
19			£512			
00000550 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 000050 0000050				£	,	
G3-2				-		
000000000000000000000000000000000000						
100-						
AGL 130 CO.TINEE 00000500						
1947 1						
0000680 0000			-		***************************************	
0000650					0830000	
0950						
3051 ALCI 3-(1) 0000500 0000500 0000500 0000500 0000500 0000500 0000500 0000500			_ 7			
0052						
035 032-1 0300660 035 121-1 0000660 035 121-1 122-1 0000670 035 121-1 122-1 0000670 035 121-1 122-1 131-1 131-1						
10						
0955					00000660	
10 15 12 12 12 12 12 13 13 13			12			
VEE(1) = H(1) - T VEE(1-1)						
10 10 10 10 10 10 10 10						
15 PAS(1) = P(1) + T + PPAS(1-1)					20000760	
0000796						
0000796						
3043					00000796	
0000810 0000810 0000820 000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 0000820 00008					00800000	
COAST CONTINUE CONTONUE CONTONUE CONTINUE CONTONUE C					90000810	
C646					00000820	
0007 0067 0068 0068 0069 00 120 J=2.65E1 00000850 0070 0070 0070 0070 0070 0070	L066				02000830	
0000 0000960 0010 00116 00116 00100860 0010 126 1176 (J) = TIME (J			•		06605840	
0070			=AA+UtLIA		00000850	
00000490	11769	00 120	J=2.ASET		00000860	
0072 0074 0074 0074 0074 0074 0074 0074	0070	166 117E (J)	=TIME (J-11 +DEL TA		U0000870	
##11E(6.30)#. J. IMF(J). K. J). VEL(J). ACC(J).PRS(J) 00000900 0673	6271	~=1			00000440	
0073 30 FORMAT(* ** 13.15-13.210.3(13.210.3) C*** REMOVE COMMENT DESIGNATORS FROM NEXT TWO CAMDS TO GET PUNCHED OUTPOUR9090920 0074 PUNCH35.TIME(J).x(J).VEL(J).ACC(J).PRS(J) 00000940 0075 JS FORMAT(S(Elb.7): 00000940 0076 RETIE(5.80) TIME(J).x(J).VEL(J).ACC(J).PRS(J) 00000950 0077 d0 FORMAT(* ** 5E16.7* ***) 00000960 0078 40 CONTINUE 00000970 0079 STOP 00000980	2140	UO 40 J	1=1 •NSET		60506890	
C*** REMOVE COMMENT CESIGNATORS FROM NEXT THO CAMDS TO GET PUNCHED OUTPUROVORDED 0074 PUNCHES, TIME(J) & X(J) & X(J) & X(C) & PRS(J) 0075 JS FORMAT(S(EIGHT)** 00000940 0076 RELIE(6-80) TIME(J) & X(J) & XCC(J) & PRS(J) 0077 do FORMAT(* & SEI6-7 * **) 0078 40 CONTINUE 00000970 0079 STOP 00000980		L #417216	JV . (LIX . (L) PMII M(CE.	L(J) · ACC(J) ·PRS(J)	00000900	
0074	0673	30 FORMAT	* * 13.15.13.610.3.4113.E	10,3))	00000910	
0075 35 FORMAT(5(E16.7): 00000940 0000950 0076		COOO REMOVE (COMMENT CESIGNATORS FROM NE	XI THE CAMOS TO GET PUNCHED	05150000000950	
0075 35 FORMAT(5(E16.7): 00000940 0000950 0076	0074	PUI:CH35	.) 22A+ (L) J4v+ (L) x+ (L) 34I T+) +2R5 (J)	00000936	
0077 d0 F0941(* 'c 5E16,7 · * *) 00000960 0978 40 CUNTIBLE 00000970 0079 STCP 00000980	9975				00000940	
0077 d0 F0941(* % 5E16,7 * **) 00000960 0078 40 CUNTIBLE 00000970 0079 STCP 00000980	0075	#KITE 16	4. (L) JSV. (L) X. (L) 3417 (08.	CC(J) +PHS(J)	00000950	
0079 STCP 00000960	0677				00000960	
	9978	49 CUNTING	ε		00000970	
0090 ENU 0000990	0079	SICP			00000980	
	0040	ENU			00000990	

```
FOMIPAN IN G LEVEL 21
                                         PHESTP
                                                           DATE = 75166
                                                                                 08/58/33
  0001
                                                                                                      PAGE 0001
                     SUBMOUTINE PRESTP
  0002
                     REAL POS(50) . VEL (50) . ACC (50) . TIME (50)
                                                                                        00000010
                                                                                        000000000
  0004
            HEAL, PPUS(111+YVEL(11)+AACC(111+B(112)
                                                                                        00000640
  2025
  0007
 4000
4000
 0010
0011
 0012
0013
0014
 0015
 0017
 0020
 0053
0053
 0024
0025
 DOZA
COZA
0029
0031
0032
0034
0035
0036
003H
0039
0040
0042
U64 3
0044
               JI CONTINUE
TIME (7) =0.0
                                                                                     00000490
U04H
                  VEL (7) =0.00
ACC (7) =48800.0
                                                                                     00000510
                                                                                     00000530
```

THE PARTY NAMED IN

THE PARTY OF THE P

FORTHAN IN G LEV	tt 31	PHESTE	งบุริาธุ" ≱ำ79166.	08/24/33	PAGE 0002
UGSO	VEL (4/)50.	Je		.00000540	~
00:1	2CC(07) =550			20009550	
0452	¥15			00000566	
0053	09 32 3147	42		00600570	
ひせらら	PUNCH35 . TOM	1111446111160461111	-A2C(J) -PRS-	0620000	
4055		1344 11612054 11613HE		.00000590-	
		5614.7. 1. 41)	inter successive and an arrange	00000600-	
	32 CONTINUE	333357		00000010	
0058	RETURN			00002620	
11050	END			0.0000636	

```
0.0
                  -0.4692418E+01
                                    3.0
                                                      0.488000GE+05
  0.1000c03E-03
                                                                       0.1000000E+04
                  -0.4693966E+01
                                    0.4884786E+01
                                                     0.1175702E+06
                                                                       0.1000000E+04
  0.2000003E-03
                  ~0.4679356E+01
                                    0.1998500E+02
                                                     0.1510021E+06
                                                                       0.1000000E+04
  0.3000002E-03
                  -0.4644872E+01
                                    0.37908845+02
                                                     0.1792384E+06
  0#4000003E-03
                                                                       0-1000000E+04
                  -0.4587496E+01
                                    0.5802625E+02
                                                     0.2011746E+06
                                                                       0.100000UE+04
  0.5000001E+03
                  -0.45050U9E+01
                                    0,7964322E+02
                                                     0.2161697E+06
                                                                      0.10000000000404
  ·0.6000001E-03
                  -0.4396038E+01
                                    0.1020463E+03
                                                     0.2240306E+06
                                                                      0.1000000E+04
  V.7000002E-03
                  -0.4260061E+01
                                    0.1245421E+03
                                                     0.2249585E+06
                                                                      0.1000000E+04
  0-8000000E-03
                  -0.4097357E+@
                                    0.1464913E+03
                                                     0.2194916E+96
                                                                      0.1000000E+04
  0.899999E-03
                  -0.3908926E+01
                                    9.1673353E+03
                                                     0.2084404E+06
  0.9999997E-03
                                                                      0.1000000E+04
                  -0.3696380E+01
                                    0.1866162E+03
                                                     0.1928084E+06
  0.1100000E-02
                                                                      0.1000000E+04
                  -0.3461813E+01
                                    0.2039879E+03
                                                     0.1737176E+06
  0.1199999E-02
                                                                      0.1000000E+04
                  -0.3207667E+01
                                    0.2192220E+03
                                                     0.1523407E+06
                                                                      0.100000UE+04
  0.1299999E-02
                  -0.2936584E+01
                                    0.2322044E+03
                                                     0.1298237E+06
 0.1399999E-02
                                                                      0.1009000E+04
                  -0.2651283E+01
                                    0.2429266E+03
                                                     0.1072226E+06
 0.1499999E-02
                                                                      0.1000000E+04
                  -0.2354432E+01
                                    0.2514726E+03
                                                     0.8545975E+05
 0.1599999E-02
                                                                      0.1000000E+04
                 -0.2048557E+01
                                    0.2579990E+03
                                                     0.6526413E+05
 0.1699999E-02
                                                                      0.1000000E+04
                 -0.1735960E+01
                                    0.2627141E+03
                                                     0.4715088E+05
 0.1799998E-02
                                                                      0.1000000E+04
                 -0.1418674E+01
                                    0,2658545E+03
                                                     0.3140381E+05
 0.1899998E-02
                                                                      0.1000000E+04
                 -0-1098444E+01
                                    0.2676604E+03
                                                     0.1805908E+05
 0.1999998E-02
                                                                      0.100000UE+04
                 -0.7767363E+00
                                   0.2683513E+03
                                                     0.6909180E+04
 0.2099998E-02
                                                                      0.1000000E+04
                 -0.4547749E+00
                                    0.2681067E+03
                                                   -0.2446289E+04
 0.2199998E-02
                                                                      0.1000000E+04
                 -0.1336050E+00
                                   0.2670457E+03
                                                   -0.1061035E+05
 0.2299997E-02
                                                                      0.1000000E+04
                  0.1858282E+00
                                   0.2652131E+03
                                                   -0.1832520E+05
 0.2399997E-02
                                                                      0.100000UE+04
                  0.5025854E+00
                                   0.2625737E+03
                                                   -0.2639404E+05
 0.24999978-02
                                                                      0.1000000E+Q4
                  0.8156328E+00
                                   0.2590068E+03
                                                    -0.3566895E+05
                                                                      0.1000000E+04
 v.2599997E-02
                  0.1123751E+01
                                   U.2543141E+03
                                                   -0.4692688E+05
 0.2699997E-02
                                                                      0.1000000E+04
                  0.1425431E+01
                                   0.2482289E+03
                                                   -0.6085266E+05
 0.2799997E-02
                                                                     0.1000000E+04
                  0.1718811E+01
                                   0.2404353E+03
                                                   -0.7793544E+05
 0.2899996E-02
                                                                     0.100000UE+04
                  U.2001658E+01
                                   0.2306012E+03
                                                   -0.9834119E+05
 U.2999996E-02
                                                                     0.1000000E+04
                  0.2271308E+01
                                   0.2184000E+03
                                                   -0.1220122E+06
 0.3099996E-02
                                                                     0.1000000E+04
                  0.2524759E+01
                                   0.2035583E+03
                                                   -0.1484164E+06
 0.3199996E-02
                                                                     0.1000000E+04
                  0.2758718E+01
                                   0.1858933E+03
                                                   -0.1766508E+06
 0.3299996E-02
                                                                     0.100000UE+04
                  0.2969764E+01
                                   0.1653604E+03
                                                   -0.2053291E+06
 0.3399996E-02
                                                                     0.1000000E+04
                  0.3154484E+01
                                   0.1420856E+03
                                                   -0.2327471E+06
 0.3499995E-02
                                                                     0.1000000E+04
                  0.3309816E+01
                                   0.1164272E+03
                                                   -0.2565849E+06
 0.3599995E-02
                                                                     0.1000000E+04
                  0.3433199E+01
                                   0.8898361E+02
                                                   -0.2744354E+06
                                                                     0.1000000E+04
0.3699995E-02
                  0.3523000E+01
                                   0.6063272E+02
                                                   -0.2835089E+06
U.3799995E-02
                                                                     0.1000000E+04
                  0.3578825E+01
                                   0.3253175E+02
                                                   -0.2810097E+06
0.3899995E-02
                                                                     0.100000UE+04
                 0.3601729E+01
                                  0.6086893E+01
                                                   -0.2644486E+06
                                                                     U.1000000E+04
0.3999993E-02
                 0.3594741E+01
                                  0.0
                                                    0.6000000E+05
0.5150001E-02
                                                                     0-1000000E+04
                 0.3800000E+01
                                  0.0
                                                    0.0
0.5399998E-02
                                                                     0.4000000E+03
                 0.3800000E+01
                                  0.0
                                                   0.0
                                                                     0.4000000E+03
0.5700000E-02
                 0.3800000E+01
                                  0.0
                                                    0.0
0.6000001E-02
                                                                     0:4000000E+03
                 0.3800000E+01
                                  0.0
                                                   0.0
0.6299999E-02
                                                                    0.4000000E+03
                 0.3800000E+01
                                  0.0
                                                   0.0
0.6600000E-02
                                                                    0.4000000E+03
                 0.3800000E+01
                                  0.0
                                                   0.0
0.6900001E-02
                                                                    0.5550000E+03
                 0.38U0000E+01
                                  0.0
                                                   0.0
0.7199999E-02
                                                                    0.7100000E+03
                 U.3800006E+01
                                  0.0
                                                   0.0
0.7500000E-02
                                                                    0.865G000E+03
                 0.3800000E+01
                                  0.0
                                                   0.0
0.7800002E-02
                                                                    0.1020000E+04
                 0.3800000E+01
                                  0.0
0.80999998-02
                                                   0.0
                                                                    0.1175000E+04
                 0.3800000E+01
                                  Ú.Ų
                                                   0.0
0.8400001E-02
                                                                    0.1330000E+04
                 0.3800000E+01
                                  0.0
                                                   0.0
0.8699998E-02
                                                                    0.148500UE+04
                 0.3800000E+01
                                  0.0
                                                   0.0
0.9000000E-02
                                                                    0.1640000E+04
                 0.3800000E+01
                                  0.0
                                                   0.0
0.9300001E-02
                                                                    0.1795000E+64
                 0.3800000E+01
                                  0.0
                                                   0.0
0.9599999E-02
                                                                    0.1950000E+04
                 0.3800000E+01
                                  0.0
                                                   0.0
0.9900000E-02
                                                                    0.2150000E+04
                 0.3800000E+01
                                  0.0
                                                   0.0
                                                                    0.2260000E+04
0.1020000E-01
                 0.3800000E+01
                                  0.0
                                                   0.0
                                                                    0.2415000E+04
```

THE PROPERTY.

i

```
0.1050000E=01
                    0:3800000E+01
                                     0.0
                                                      0.0
   0-10H2000E-01
                                                                       0.2570000E+04
                    0.3800000E+01
                                     0.0
                                                      0.0
  0.1110000E-01
                                                                       0.2725000E+04
                    0.3600000E+01
                                     0.0
                                                      0.0
   0.1140000E-01
                                                                       0.2880000E+04
                    0.3800000E+01
                                    0.0
                                                      0.0
  0.11800008-01
                   0.3800000E+01
                                                                       0.3035000E+04
                                    0.0
                                                      0.0
  .0.1200000E-01
                                                                       0.3190000E+04
                   0.38000000001
                                    0.0
  0.12030806-61
                                                      0.0
                                                                       0.3500000E+94
                   0.3799999E+01
                                    0.1344604E+0U
                                                      0.4819073E+06
  0.1206159E-01
                                                                       0.5020449E+04
                   0.39612062-01
                                    0.2152451E+02
                                                      0.8989772E+05
  0.1209239E-01
                                                                       0.1038937E+05
                   0.4101937E+01
                                    0.5502438E+02
                                                     0.1268615E+07
  0.12123198-01
                   0.4232200E+01
                                                                       0.1533757£+05
                                    0.9920726E+02
                                                     U-1593072E+07
  0.1215398E-01
                                                                       0.1990467E+05
                   0.4360620E+Q1
                                    0.1527158£+03
                                                     0.1874798E+07
  U.1218478E-01
                   0-44945702+01
                                                                      0.24123428+05
                                    0.2142828E+03
                                                     0.2116397E+0/
                                                                      0.28020726+05
  0.1221558E-01
                   0.4640272E+01
                                    0.2827046E+03
  0.1224637E-01
                                                     0.23205826.07
                   0.4802919E+01
                                                                      0.3161852E+05
                                    0.3568765E+03
                                                     0.2490135E+07
  0.1227717E-01
                                                                      0.3493459E+05
                   0.4986775E+01
                                    0.4357698E+03
                                                     0.2627874E+07
  0.123079/6-01
                   0.5195277E+01
                                                                      0.3798330E+05
                                    9.5184529E+03
                                                     0.2736612E+07
  0.1233876E-01
                                                                      0.4077628E+05
                   0.5431127E+Gi
                                    0.6040750E+03
                                                     0.2819136E+07
  0-1236956E-01
                   0.5696382E+01
                                                                      0.43322976+05
                                    0.6918694E+03
                                                     0.2878166E+07
                                                                      0.4563117E+05
  0.12400368-01
                   0.59925358+01
                                    0.7811545E+03
  0.1243116E-01
                                                     U.2916349E+07
                                                                      0+4770746E+65
                   0.6320602E+01
                                    0.8713274E+03
                                                     U.2936224E+07
  0+1246195E-01
                                                                      0.49557602+05
                   0.6681172E+01
                                    0.96186185+03
  0.1249275É-01
                                                     0.2940210E+07
                  0.7074505E+01
                                                                      0.5118689E+05
                                    0.1052303E+04
                                                     0.2930590E+07
 0.1252355E-01
                                                                      0.5260045E+05
                  0.7500561E+01
                                   0.1142267E+04
                                                     0.2909499E+67
 0.1255434E-01
                  0.7959072E+61
                                                                      0.5380338£+05
                                    0.1231430E+04
                                                    0.2878917E+07
 0.1258514E-01
                                                                      0.5480102E+05
                  0.8449588E+01
                                   0.1319528E+04
 0.1261594E-01
                                                    0.2840656E+07
                                                                      0.3559911E+05
                  J.8971533E+01
                                   0.1406351E+04
                                                    0.27963598+07
 0.12646735-01
                                                                      0.5620381E+05
                  U.9524216E+01
                                   0+1491736E+04
                                                    0.2747501E+07
 0.1267753E-01
                                                                     0.5662186E+05
                  .0 - 1010690E+02
                                   0.1575563E+04
                                                    0-2695381E+07
 U-1270833E-01
                                                                     U.5686059E+05
                  0-1071880E+02
                                   U.1657748E+04
 0.1273913E-01
                                                    0.2641126E+07
                                                                     0.5692786E+U5
                  0.11359148+02
                                   0-1738244E+04
                                                    0.25857086+07
 U-1276942E-di
                                                                     0.568J226E+05
                  0-12027146+02
                                                                                     4
                                   0.1817023E+04
 0.1280072E-01
                                                    0.2529918E+07
                  0+1272206E+02
                                                                     0.5658280E+05
                                   0.1894088E+04
                                                    0.2474411E+07
 0.1283152E-01
                                                                     0.5618907£+05
                  0-1344320E+JZ
                                   0.1969455E+04
 0-1286231E-01
                                                    0.24196875+07
                  0.1418989E+02
                                                                     0.5566116E+05
                                                                                     ø
                                   0.20431526+04
                                                    0.2366105E+07
 0.1289311E-01
                                                                     0.5500944E+05
                  0.1495155E+02
                                                                                     ø
                                   0.2115219E+04
 0.1292391E-01
                                                    0.2313903E+07
                  0.1575764E+02
                                                                     0.5424465E+05
                                   0.21857.045+04
 0.1295470E-01
                                                    0.2263211E+07
                                                                     0.5337769E+05
                  0.1657768E+02
                                                                                     Ü
                                   0.22546498+04
 0.1298550E-01
                                                    0.2214029E+07
                  0.1742123E+02
                                                                     0.52419598+05
                                   0.2322100E+04
                                                    0.2166286E+07
 0.1301630E401
                                                                     0.5138140E+05
                 0.1828795E+02
                                                                                     45
                                   0+2388104E+04
                                                    0.2119839E+07
 0.1304710E=01
                                                                     0.5027411E+05
                  0.19177498+02
                                   U-2452693E+04
                                                    0-2074456E+07
 0.1307789E-01
                                                                     0.4910835E+05
                 10.2008952E+02
                                  U.2515899E+04
 0.13108695-01
                                                    0.2029870E+07
                                                                     0.4789480E+05
                  0.2102382E.02
                                  0.2577738E+04
                                                    0.1985763E+07
0.1313949E-01
                                                                     0.4664364E+05
                  0.2198012E+0S
                                                                                     Φ
                                  U.2630219E+04
0.1317028E-01
                                                    V•1941802E+07
                  0.22958165+02
                                                                    0.4536434E+05
                                  U.2697349E+04
                                                   0.1897641E+07
0.1320108E-01
                                                                    0.4406619E+05
                                                                                    ø
                 0.2395769E+02
                                  0.27551145.04
                                                   0.1852922E+07
0.1323188E-01
                                                                    0.4275809£+05
                 0.2497838E+02
                                                                                    *
                                  0.2811476E+04
                                                   0.1807278E-07
0.1326267E-01
                                                                    0.4144757E+05
                 0.26019995.02
                                                                                    *
                                  0.2866426E+04
                                                   0.1760413E+07
0.1329347E-01
                 0.2708218E+02
                                                                    0.4014224E+05
                                  0.2919904E+04
                                                   0.1712026E+07
0.1332427E-01
                                                                    J.3884877E+05
                 0.2816451E+02
                                                                                    •
                                  0.2971864E+04
                                                   0.1661856£+07
0.1335507E-01
                                                                    0.3757268E+05
                                                                                    4
                 0.2926649E+02
                                  0.3022250E+04
0.1338586E-01
                                                   0.1609709E+07
                                                                    0.3631930£+05
                 0.3038776E+02
                                                                                    ♦
                                  0.307\003E+04
                                                   0.1555427E+07
0.1341666E-01
                                                                    0.3509323E+05
                 0.3152760E+02
                                  0.31180452+04
0.1344746E-01
                                                   0.1498911E+07
                 0.3268544E+02
                                                                    0.3389712E+05
                                  0.3163216E+04
                                                   0.1440146E+07
0.1347825E-01
                                                                    0.3273487E+05
                 0.3386050E+02
                                                                                    ŭ
                                  0=3206731E+04
0.1350905E-01
                                                   0.1379142E+07
                 0.3505208E+02
                                                                    0.3160873E+05
                                 .0.3248242E+04
                                                   0.1316024E+07
0.1353985E-01
                                                                    0.3051961E+05
                 0.3625935E+02
                                                                                    4
                                  0.32877865+04
                                                   0.1251002E+07
0.1357064E-01
                 0.3748132E+02
                                                                    0.2946870E+U5
                                                                                    ø
                                  0.3325292E+04
                                                   0.11842576+05
0.1360144E-01
                                                                    0.2845565E+05
                 0.3871700E+02
                                                                                    #
                                  U.3360707E+04
0.1363224E-01
                                                   0.1116108E+07
                 0.3996562E+02
                                                                    0.2748131E+05
                                  0.3394032E+04
0.1366303E-01
                                                   0.1046986E+07
                                                                    0.2654422E+05
                 0.4122600E+02
                                  0.3425210E+04
                                                   0.9772770E+06
                                                                    0.2564523E+05
```

```
0.1369383E-01
                  0.4249721E+02
                                   U.3454217E+04
                                                    0.9074120E+06
 0.1372463E-01
                                                                     0.2478049E+05
                  0.4377829E+02
                                   0.3481105E+04
                                                    U.8380000E+06
 0.1375543E-01
                                                                     0.2395120E cgs
                  0.4505813E+02
                                   U.3505857E+04
                                                    0.76951405+05
 0.1378622E-01
                                                                     0.2315179E+05
                  0.4636592E+02
                                   0.3528525E+04
                                                    0.7025470E+06
 0.1381702E-01
                  0.4767075E+02
                                                                     0.2238451E+05
                                   0.3549141E+04
                                                    0.6376370E+06
                                                                     0.2164789E+05
 0.1384782E-01
                  0.4898189E+02
                                   0.3567828E+04
                                                    0.5754590E+06
 0.1387861E-01
                                                                     0.2093587E+05
                  0.50298842+02
                                   0.3584643E+04
 0.1390941E-01
                                                    0.5164910E406
                                                                    0.20252852+05
                  0.5162083E+02
                                   0.3599683E+04
                                                    0.46125202+06
                                                                    0.1959304E+05
 0.1394021E-01
                  0.5294777E+02
                                  U.3613048E+84
                                                    0.4102530E~
0.1397100E-01
                                                                    0.1895677E+05
                  0.5427902E+02
                                  0.3625008E+04
 0.14001305-01
                                                   0.3639290E+06
                                                                    0.1834476E+05
                 0.55615055+02
                                  0.3635566E+04
                                                   0.3225790E+06
                                                                    0.1775431E+05
 3.14032601-01
                 0.56955645.02
                                  0.3644909E+04
                                                   0.2864320E+06
U.1406340E-01
                                                                    0.17182886+05
                 0.5830157E+02
                                  U.3653277E+(.,
                                                   0.2558550E+06
0.14094196-01
                                                                    U.1664011E+05
                 0.5965J15E+02
                                  U.3660742E
                                                   0.2306410E+06
U-1412499E-01
                                                                    U.1611369E+05
                 0.6101120E+02
                                  0.3667530E+L
0.1415579E-01
                                                   0.2108450E+06
                                                                    0.1561445E+05
                 0.6237605E+02
                                  0.3673773E+04
                                                   0.1961700E+06
0.14186586-01
                                                                    0.1513847E+05
                 0.6374960E+02
                                  0.36/9662E+U4
                                                   0.1863530E+06
0.1421738E-01
                                                                    0.1467940E+05
                 0.65131916.02
                                  U.3685265E+04
                                                   0.1807040E+06
0.1424818E-01
                                                                    0.1425851E+05
                 0.6652463E+02
                                  U.3690834E+04
                                                   0.1788660E+06
0.1427897E-01
                                                                    0.1385346E+05
                 0.6792841E+02
                                  U.3696337E+04
                                                   0.1796890E+06
0.1430977E-01
                                                                    0.1347916£+05
                 0.6934346E+02
                                  0.3701865E+04
                                                   0.1821980E+06
U-1434057E-01
                                                                    0.1312322E+05
                 0.7077135E #02
                                  0.3707638E+04
                                                   0.1858050E+06
                                                                    0.1279090E+05
U-1437137E-01
                 0.72211172+02
                                  0.3713393E+04
                                                   0.18854101+66
0.1440216E-01
                                                                    0.1247523E+05
                 0.7366190E+02
                                  0.3719240E+04
                                                   0.1894490E+06
0.1443296E-01
                                                                    0.12195346+05
                 0.7512219E+02
                                  U.37250U3E+04
U.1446376E-01
                                                   0.1868480£-06
                                                                   0.1191098E+05
                 0.7658949E+02
                                  0.3730676E+04
                                                   0.1794280E+06
0.1449455E-01
                                                                    0.1163548E+05
                 0.7805966E+02
                                  0.3735961E+U4
0.1452535E-01
                                                  0.1654230E+06
                                                                    0.1134989E+05
                 0.7952635E+02
                                  0.3740727E+04
                                                  0.1434280E+06
0.1455615E-01
                 0.8098186E+02
                                                                   0.11064218+05
                                  0.3744745E+U4
                                                  0.11218206+06
0.1498694E-01
                                                                   0.10/3695E+05
                0.3241580E+02
                                 0.3747571E+04
0.1461774E-01
                                                  0.1006200E+05
                                                                   0.1037077E+05
                0.83813812+02
                                 0.3748902E+04
                                                  0.1592000E+05
                                                                   U.9923262E+U4
0.1464854E-01
                0.8515953E+02
                                 0.3748406E+04
                                                 -0.5078400E+05
                                                                   0.9377691E+04
```