第五周实验作业

2021年3月31日

1 Week5 Multiple Linear Regression

1.1 背景描述

汽车发动机在测功机上产生的**制动马力**被认为是**发动机转速** (每分钟转数,rpm)、**燃料的道路辛烷 值和发动机压缩值**的函数,我们在实验室里进行实验,研究它们的函数关系。

1.2 数据描述

变量名	变量含义	变量类型	变量取值范围
(自变量) rpm	发动机转速	continuous variable	\mathbb{R}^+
(自变量) Road_Octane_Number	道路辛烷值	continuous variable	\mathbb{R}^+
(自变量) Compression	压缩值	continuous variable	\mathbb{R}^+
(因变量) Brake_Horsepower	制动马力	continuous variable	\mathbb{R}^+

```
[1]: import pandas as pd
print('Data: \n', pd.read_csv('Project5.csv').values)
```

Data:

```
[[2000
        90 100 225]
[1800
            95 212]
       94
[2400
       88 110 229]
[1900
            96 222]
       91
[1600
           100 219]
       86
[2500
       96 110 278]
[3000
            98 246]
       94
```

```
[3200 90 100 237]
[2800 88 105 233]
[3400 86 97 224]
[1800 90 100 223]
[2500 89 104 230]]
```

1.3 问题

注: 这里使用 α =0.05 的显著性水平:

- 1. 请用统计模型描述制动马力和上述 3 个自变量之间的函数关系.
- 2. 请问 Q1 中所建立的模型是否合理.
- 3. 当发动机转速为 3000 转/min, 道路辛烷值为 90, 发动机压缩值为 100 时, 估计制动马力值的合理区间范围.

1.4 解决方案

Q1:

使用多元线性回归的方法,令发动机转速为 X_1 ,道路辛烷值为 X_2 ,压缩值为 X_3 ,制动马力为 Y。则线性模型为: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$,并假定随机误差项符合正态分布。根据以上数据,可以求得 $\hat{\beta_1}$, $\hat{\beta_2}$, $\hat{\beta_3}$ 及线性回归方程如下。

```
[2]: # Import standard packages
  import numpy as np
  import pandas as pd
  import scipy.stats as stats
  import matplotlib.pyplot as plt
  import math

# Import additional packages
  from statsmodels.formula.api import ols
  from statsmodels.stats.anova import anova_lm
  from scipy.stats import f
  from scipy.stats import t

alpha = 0.05
  p = 3
```

```
n = 12

x = pd.read_csv('Project5.csv')
x.insert(0, 'intercept', np.ones(len(x)))
data = x.values * 1
df = pd.DataFrame(data, columns = ['intercept', 'P1', 'P2', 'P3', 'F'])
print(df)

# Do the multiple linear regression
model = ols('F ~ P1 + P2 + P3', df).fit()
beta = model.params
print('参数估计值: \n', round(beta, 4))
X = data[:, 0 : p + 1]
Y = data[:, -1]
Y_hat = model.fittedvalues
model.summary()
```

```
Р3
   intercept
                 P1
                      P2
                                    F
0
         1.0 2000.0 90.0 100.0 225.0
         1.0 1800.0 94.0 95.0 212.0
1
2
         1.0 2400.0 88.0 110.0 229.0
         1.0 1900.0 91.0 96.0 222.0
3
         1.0 1600.0 86.0 100.0 219.0
4
         1.0 2500.0 96.0 110.0 278.0
5
         1.0 3000.0 94.0 98.0 246.0
6
7
         1.0 3200.0 90.0 100.0 237.0
         1.0 2800.0 88.0 105.0 233.0
8
9
         1.0 3400.0 86.0 97.0 224.0
10
         1.0 1800.0 90.0 100.0 223.0
         1.0 2500.0 89.0 104.0 230.0
11
参数估计值:
Intercept
          -266.0312
Ρ1
             0.0107
P2
             3.1348
РЗ
             1.8674
```

dtype: float64

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=12
"anyway, n=%i" % int(n))

[2]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

========	:=======		, :====	=====		========	
Dep. Variab	ole:		F	R-sq	uared:		0.807
Model:		С	DLS	Adj.	R-squared:		0.734
Method:		Least Squar	es	F-sta	atistic:		11.12
Date:		Wed, 31 Mar 20)21	Prob	(F-statistic	:	0.00317
Time:		16:12:	47	Log-	Likelihood:		-40.708
No. Observa	ations:		12	AIC:			89.42
Df Residual	ls:		8	BIC:			91.36
Df Model:			3				
Covariance	Type:	nonrobu	ıst				
========				:====:		=======	=======
	coei	std err		t	P> t	[0.025	0.975]
Intercept	-266.0312	92.674	-2	.871	0.021	-479.737	-52.325
P1	0.0107	0.004	2	.390	0.044	0.000	0.021
P2	3.1348	0.844	3	3.712	0.006	1.188	5.082
Р3	1.8674	0.535	3	.494	0.008	0.635	3.100
=======	:======			=====		=======	=======
Omnibus:		0.3	392	Durb	in-Watson:		1.043
Prob(Omnibu	ıs):	0.8	322	Jarq	ıe-Bera (JB):		0.230
Skew:		-0.2	282	Prob	(JB):		0.891
Kurtosis:		2.6	325	Cond	. No.		9.03e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.03e+04. This might indicate that there are strong multicollinearity or other numerical problems.

11 11 11

```
[3]: # 输出多元线性回归方程
print('Y_hat = %.2f + (%.2f * X1) + (%.2f * X2) + (%.2f * X3)' % (beta[0], □
→beta[1], beta[2], beta[3]))
```

```
Y_{hat} = -266.03 + (0.01 * X1) + (3.13 * X2) + (1.87 * X3)
```

将数据中心化之后, 求经验回归方程:

```
[4]: # 求均值
    X_{mean} = []
    for k in range(p + 1):
        X_mean.append(np.mean(data[:, k])) # 自变量 x 的均值
    Y_mean = np.mean(data[:, -1]) # 因变量 y 的均值
    #数据中心化
    X_{cent} = X - X_{mean}
    Y_cent = Y - Y_mean
    # Do the multiple linear regression
    df = pd.DataFrame(X_cent, columns = ['intercept_cent', 'P1_cent', 'P2_cent', "P2_cent']
     df['F_cent'] = Y_cent
    model_cent = ols('F_cent ~ P1_cent + P2_cent + P3_cent', df).fit()
    beta_cent = model_cent.params
    print('参数估计值: \n', round(beta_cent, 4))
    Y_hat_cent = model_cent.fittedvalues
    model_cent.summary()
```

参数估计值:

```
Intercept -0.0000
P1_cent 0.0107
P2_cent 3.1348
P3_cent 1.8674
dtype: float64
```

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-particles for the control of the control

packages/scipy/stats/stats.py:1604: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=12 "anyway, n=%i" % int(n))

[4]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variab	ole:	F_	cent	R-sq	uared:		0.807
Model:			OLS	Adj.	R-squared:		0.734
Method:		Least Squ	ares	F-st	atistic:		11.12
Date:		Wed, 31 Mar	2021	Prob	(F-statistic):	0.00317
Time:		16:1	2:47	Log-	Likelihood:		-40.708
No. Observa	ations:		12	AIC:			89.42
Df Residual	ls:		8	BIC:			91.36
Df Model:			3				
Covariance	Type:	nonro	bust				
=======			=====	=====			=======
					P> t	_	_
					4 000		
_					1.000		
_					0.044		
P2_cent	3.1348	3 0.844		3.712	0.006	1.188	5.082
P3_cent	1.8674	1 0.535		3.494	0.008	0.635	3.100
======================================			.392	Durb	========= in-Watson:	=======	1.043
	\ .						
Prob(Omnibu	18):		.822	-	ue-Bera (JB):		0.230
Skew:			.282				0.891
Kurtosis:		2	.625	Cond	. No.		574.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[5]: # 输出中心化后的多元线性回归方程 print('Y_hat_cent = %.2f + (%.2f * X1_cent) + (%.2f * X2_cent) + (%.2f * x_0) →X3_cent)' % (beta_cent[0], beta_cent[1], beta_cent[2], beta_cent[3]))

```
Y_{\text{hat\_cent}} = -0.00 + (0.01 * X1_{\text{cent}}) + (3.13 * X2_{\text{cent}}) + (1.87 * X3_{\text{cent}})
```

通过对比数据中心化前后后的结果,我们可以发现,对数据进行中心化之后回归常数变为 0,而回归系数值未改变。

Q2:

要验证模型是否合理,可以使用多元线性模型的显著性检验,可决系数的检验,以及残差检验等方法。

```
[6]: # 求解相关项

SSE = sum((Y - Y_hat) ** 2)

SST = sum((Y - Y_mean) ** 2)

SSR = sum((Y_hat - Y_mean) ** 2)

sigma2 = SSE / (n - p - 1) # 方差

sigma = np.sqrt(sigma2) # 标准差

c = np.dot(X.T, X)

C = np.linalg.inv(c) # 求逆

# print(C)
```

多元线性模型的显著性检验——F 检验:

检验假设: $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ vs $H_1: \exists \beta_i \neq 0, i = 1, 2, 3$

```
[7]: # 计算 FO
FO = (SSR / p) / (SSE / (n - p - 1))
# FO = model.fvalue
print('FO: %.2f' % FO)
F = round(f.ppf(0.95, dfn = p, dfd = n - p - 1), 2)

# 法 1:
pVal1 = f.sf(FO, p, n - p - 1)
# pVal1 = model.f_pvalue
print('pVal1: %.2f' % pVal1)
```

```
if pVal1 < alpha:
    print('\nSince p-value < 0.05, reject H0.')
else:
    print('\nAccept H0.')

# 法 2:
if F0 > F:
    print('Since F0 > F(0.95, 3, 8) = %.2f, reject H0.' % F)
else:
    print('Accept H0.')
```

F0: 11.12
pVal1: 0.00

Since p-value < 0.05, reject H0.
Since F0 > F(0.95, 3, 8) = 4.07, reject H0.
由 F 检验结果可知,该回归方程是显著的。

多元线性模型的显著性检验——t 检验:

检验假设: $H_{0j}: \beta_j = 0$ vs $H_{1j}: \beta_j \neq 0, j = 1, 2, 3$

```
# 法 1:
for i in range(p):
    if pVal2[i + 1] < alpha:</pre>
        print ('Since p%d-value < 0.05, reject H0%d.' % (i + 1, i + 1))</pre>
    else:
        print('Accept H0%d.' % (i + 1))
print('\n')
# 法 2:
for i in range(p):
    if abs(t0[i + 1]) > tVal:
        print('Since t0%d > t(0.975, 8) = \%.4f, reject H0%d' % (i + 1, tVal, i<sub>\sqrt</sub>
 + 1))
    else:
        print('Accept H0%d.' % (i + 1))
t0 值为: [-2.8706 2.3896 3.7123 3.4936]
t 的临界值为: 2.3060
P 值为: [0.0104 0.0219 0.003 0.0041]
Since p1-value < 0.05, reject H01.
Since p2-value < 0.05, reject H02.
Since p3-value < 0.05, reject H03.
Since t01 > t(0.975, 8) = 2.3060, reject H01
Since t02 > t(0.975, 8) = 2.3060, reject H02
Since t03 > t(0.975, 8) = 2.3060, reject H03
由t检验结果可知,各回归系数都是显著的。
```

复相关系数(可决系数)的检验:

```
[9]: # 可决系数
R2 = SSR / SST
print('可决系数: %.4f' % R2)
```

调整可决系数 R2c = 1 - (SSE/(n-p-1)) / (SST/(n-1)) print('调整可决系数: %.4f' % R2c)

可决系数: 0.8065 调整可决系数: 0.7340

由于复相关系数(可决系数)值接近 1,可以说明整体上 X_1, X_2 与 Y 呈线性关系。

综上所述, Q1 中所建的多元线性回归模型是合理的。

残差分析 0: 计算制动马力的残差

[10]: # 计算制动马力的残差

```
data_res = data * 1.0 # 乘 1.0 不然会损失精度
for i in range(n):
    data_res[:, p + 1] = Y - Y_hat

df = pd.DataFrame(data_res, columns = ['intercept', 'P1', 'P2', 'P3', 'F_res'])
res = data_res[:, p + 1]
# res = model.resid
print(df.head())
```

```
intercept P1 P2 P3 F_res

0 1.0 2000.0 90.0 100.0 0.731289

1 1.0 1800.0 94.0 95.0 -13.328247

2 1.0 2400.0 88.0 110.0 -11.958476

3 1.0 1900.0 91.0 96.0 3.137442

4 1.0 1600.0 86.0 100.0 11.555798
```

残差分析 1: 残差的正态概率图

使用残差正态概率图可验证残差呈正态分布的假设。残差的正态概率图应该大致为一条直线。

[11]: # 残差的正态概率图

```
osm, osr = stats.probplot(res, dist = 'norm', plot = plt)
x = osm[0][0]
y = osm[1][0]
plt.text(x, y, '%.2f' % float(y), ha='center', va= 'bottom', fontsize=9)
plt.grid()
plt.show()
```



```
[12]: # 异常值检验

MSE = SSE / (n - p - 1)

# MSE = model.mse_resid

d = np.abs(y) / np.sqrt(MSE)

if d < 3:

    print('残差', round(y, 2), '不是异常值.')

else:

    print('残差', round(y, 2), '是异常值')
```

残差 -13.33 不是异常值.

从残差的正态概率图可以看出,这些点大致在一条直线附近,说明数据近似服从正态分布。

残差分析 2: 残差与拟合值的关系图

使用残差与拟合值图可验证"残差随机分布"和"具有常量方差"的假设。理想情况下,点应当在 0 的两端随机分布(模型的拟合点应该平均散布在被拟合值点附近),点中无可辨识的模式。 下表中的模式可能表示该模型不满足模型假设:

模式	模式的含义		
残差相对拟合值呈扇形或不均匀分散	异方差		
曲线	缺少高阶项		
远离 0 的点	异常值		
在 X 方向远离其他点的点	有影响的点		

```
[13]: # 残差与拟合值的关系图 plt.scatter(Y_hat, res, c = 'red') plt.title('Plot of residuals versus y_i') plt.xlabel('y_i') plt.ylabel('e_i')
```

[13]: Text(0, 0.5, 'e_i')

从残差与拟合值的关系图中,无法拒绝方差齐性的假设。所以不能认为模型不合理,即认为模型合理。

【补充】方差分析可以看成特殊情况下的回归分析,方差分析就是解释变量全为分组的 dummy (哑

变量)的回归分析。

参考网址: https://zhuanlan.zhihu.com/p/129043279

方差齐性检验的本质: 样本以及总体的方差分布是常数,和自变量或因变量没关系。

线性回归里面我们一般用残差图来检验方差齐性,画散点图是为了弄清因变量和残差之间有没有关系。这里并不是说不同指标的方差不同,因为这里的自变量不像 ANOVA 中是可以人为控制的(分组-取值),这里的自变量是**观察**到的,如果我们没法取到每个 x 值所有对应的 y 值,就不能说对不同的指标方差不同,只是说观测值的方差不同(也只是一种探测);我们这里只是用残差图去估计因变量的方差齐性(比较主观,看残差分布是否与拟合值没有明显的趋势关系)。

当然我们并不能通过残差的分布来证明因变量的方差齐性,我们只是提出了"方差齐性"的假设,然后画出残差图,它杂乱无章,不相关,看起来是独立的,所以我们不能推翻这个假设,就认为观测值的方差是齐性的。

参考网址: https://blog.csdn.net/weixin_33448555/article/details/112650361

Q3:

本题需要使用估计与预测的方法确定预测得到的制动马力。可以使用 $E(y_0)$ 的估计或 y_0 的预测区间作为制动马力的大致区间。

关于 $E(y_0)$ 的估计:

```
[14]: # 给定 x_0, 求 E(y_0) 的估计值

def confidence_interval(x0):
    x0 = np.array(x0)
    Y0 = np.dot(x0.T, beta)
    delta0 = tVal * sigma * np.sqrt(x0.T @ C @ x0)
    Y0_int = [Y0 - delta0, Y0 + delta0]
    return Y0_int

x0 = [1]
for i in range(p):
    x0.append(int(input()))
print('给定 x = ', x0, ', E(y_0) 的置信区间: ', np.
    →round(confidence_interval(x0), 4))
```

```
3000
```

90

100

给定 x = [1, 3000, 90, 100] , $E(y_0)$ 的置信区间: [226.2457 243.7181]

关于 y₀ 的预测:

3000

90

100

给定 x = [1, 3000, 90, 100], y_0 的预测区间: [212.8622 257.1016]

由于计算公式不同,计算得到的 y_0 的预测区间要略宽于 $E[y_0]$ 的置信区间。这里采用 y_0 的预测区间作为预测得到的制动马力,即 [212.86, 257.10]。