MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA INSTITUTO MILITAR DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

LUCIO ENZO HORIE DANIEL ECCARD BASTOS VIVAS

CONTROLE DA PARTIDA ESTRELA-TRIÂNGULO DE UM MOTOR CA TRIFÁSICO COM O MICROCONTROLADOR AT89S51

Sumário

1	OBJETIVOS	2
2	PARTIDA ESTRELA-TRIÂNGULO	2
2.1	CORRENTE DE PARTIDA	2
2.2	VANTAGENS E DESVANTAGENS	3
3	SIMULAÇÃO	3

1 Objetivos

Este trabalho tem por finalidade apresentar o desenvolvimento de uma rotina, no simulador EdSim51, para o controle da partida estrela-triângulo de um motor CA trifásico.

2 Partida Estrela-Triângulo

Neste tipo de acionamento, o motor parte com uma tensão reduzida em seus enrolamentos de armadura (esquema estrela - Y) e, por conseguinte, uma corrente de partida reduzida quando comparada à partida direta (esquema triângulo - Δ).

2.1 Corrente de partida

Considere a partida direta na configuração triângulo, a corrente na linha é dada por:

$$I_{P_{\Delta}} = \frac{\sqrt{3}U_F}{Z} = \frac{\sqrt{3}U_L}{Z} \tag{1}$$

Onde Z é a impedância série do motor, U_F é a tensão fase-neutro aplicada nos terminais do motor e U_L a tensão entre os terminais do motor.

Para a configuração estrela, o valor de corrente de linha é dado por:

$$I_{P_Y} = \frac{U_F}{Z} = \frac{U_L}{\sqrt{3}Z} \tag{2}$$

Desse modo, a relação entre as correntes de partida para as configurações estrela e triângulo é obtida dividindo-se as equações (2) e (1):

$$\frac{I_{P_Y}}{I_{P_\Delta}} = \frac{\frac{U_L}{\sqrt{3}Z}}{\frac{U_L}{\sqrt{3}Z}} = \frac{1}{3} \tag{3}$$

A Tabela 1 mostra as correntes de partida calculadas para o motor SEW-EURODRIVE DZ71K4, cuja placa está apresentada na 1.

Tabela 1 – Correntes de partida para o motor SEW-EURODRIVE DZ71K4.

Tensão de operação (V)	$I_{P_{\Delta}} = I_n \mathbf{X} \frac{I_n}{I_P} (\mathbf{A})$	$I_{P_Y} = \frac{I_{P\Delta}}{3} (\mathbf{A})$
220	6,36	2,12
380	3,66	1,22

Figure 1 – Dados de placa do motor SEW-EURODRIVE DZ71K4.

2.2 Vantagens e desvantagens

Dentre as vantagens que este método de partida apresenta estão:

- Baixo custo de implementação;
- Redução da corrente de partida e, consequentemente, do impacto na rede;
- Poucos componentes necessários para a implementação;
- Sem limites de manobras.

As principais desvantagens são:

- Redução do conjugado de partida (método utilizado preferencialmente para partida em vazio);
- O motor deve possuir no mínimo 6 terminais.

3 Simulação

Para a simulação, foi utilizada a seguinte lógica nos pinos do 8051 representados no EdSim51:

- Os switches P2.0, P2.1 e P2.2 definem a entrada do usuário para o intervalo de tempo até a comutação estrela-triângulo, onde P2.2 é o bit mais significativo. Assim, 000 = 1 s, 001 = 2 s, ..., 111 = 8 s;
- O switch P2.3 comanda a partida do motor, fechando o contator K1.
- O switch P2.4 alterna o sentido de rotação, fechando o contator K1 (sentido antihorário) ou K1' (sentido horário).
- O switch P2.5 serve como botão para desligamento de emergência;

- O LED conectado a P1.0 indica o fechamento do contator K1, enquanto o LED conectado a P1.1 indica o fechamento do contator K1', conforme representado na Figura 2;
- O LED conectado a P1.2 indica o fechamento do contator K2 (motor em estrela), enquanto o LED conectado a P1.3 indica o fechamento do contator K3 (motor em triângulo), conforme representado na Figura 2;

Figure 2 – Diagrama unifilar e lógica de acionamento com o 8051.