Лабораторно-практическая работа.

Тема: Исследование электрических цепей постоянного тока при смешанном соединение резисторов.

Цель работы: Сформировать умения по расчету цепей постоянного тока при смешанном соединении резисторов.

Оборудование:

- 1. Набор резисторов;
- 2. Вольтметр магнитоэлектрической системы;
- 3. Амперметр магнитоэлектрической системы;
- 4. Источник постоянного напряжения.

Методические рекомендации.

В схемах электрических цепей постоянного тока возможны три способа соединения резисторов: последовательное, параллельное и смешанное. При последовательном соединении резисторы соединяются в одну неразветвленную цепочку (рис. 1).

Ток в каждом резисторе одинаков и равен общему току всей цепи:

$$I_{oou} = I_1 + I_2 + I_3$$

Напряжение $U_{oбщ}$ приложенное к цепи, равно сумме падений напряжений на каждом резисторе:

$$U_{oou} = U_1 + U_2 + U_3$$

Общее сопротивление всей цепи равно сумме сопротивлений отдельных резисторов:

$$R_{o \delta u \mu} = R_1 + R_2 + R_3$$

Величина сопротивления каждого резистора определяется по закону Ома для участка электрической цепи:

$$R_1 = \frac{U_1}{I_1} \; ; \; R_2 = \frac{U_2}{I_2} \; ; \; R_3 = \frac{U_3}{I_3} \; .$$

При параллельном соединении все резисторы подключены к двум узловым очкам цепи (рис. 2). I_1 I_2 I_3

Рис. 1. Последовательное соединение резисторов

Рис. 2. Параллельное соединение резисторов

При параллельном соединении напряжение на всех резисторах одинаково, так как их концы подключены к одному и тому же источнику электрической энергии:

$$U_{o \delta u \mu} = U_1 + U_2 + U_3$$

Общий ток неразветвленной части цепи равен сумме токов в каждом разветвлении (в каждом резисторе) — первый закон Кирхгофа:

$$I_{\text{обш}} = I_1 = I_2 = I_3$$
.

Величина тока в каждом резисторе определяется по закону Ома для участка цепи:

$$I_1 = \frac{U_1}{R_1} \; ; \; I_2 = \frac{U_2}{R_2} \; ; \; I_3 = \frac{U_3}{R_3} \; .$$

Общая проводимость всей цепи равна сумме проводимостей отдельных ветвей:

$$g_{o\delta uu} = g_1 + g_2 + g_3$$

Так как $g = \frac{1}{R}$ общее сопротивление цепи можно определить из соотношения

$$\frac{1}{R_{oбiu}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

При смешанном соединении резисторы включаются в цепь последовательно и параллельно (рис. 3).

Общее сопротивление цепи можно определить по формуле

$$R_{o \delta u \mu} = R_1 + rac{R_2 R_3}{R_2 + R_3} \ .$$

Сопротивление отдельных резисторов определяется по формулам

$$R_1 = \frac{U_1}{I_1}$$
; $R_2 = \frac{U_2}{I_2}$; $R_3 = \frac{U_3}{I_2}$.

Порядок выполнения работы

- 1. Внимательно ознакомиться с методическими рекомендациями лабораторной работы.
 - 2. Собрать электрическую цепь по схеме рис. 3

Рис. 3. Смешанное соединение резисторов

3. Рассчитать значение сопротивлений $R_{\text{общ}}$, используя значения сопротивлений $R_1,\,R_2,\,R_3.$

Таблица 1:

	Задано	Вычислено		
R ₁ , O _M	R ₂ , O _M	R ₃ , O _M	R _{общ} , Ом	

4. С помощью мультиметра измерить токи и напряжения на отдельных ее участках (резисторах R_1 , R_2 , R_3 ,) и результаты измерений записать в табл. 2, вычислить значения $R_{\text{общ}}$, R_1 , R_2 , R_3 .

Таблица 2

Измерено					Вычислено				
U _{общ} , В	U ₁ , B	U _{2,3} , B	I ₁ , A	I ₂ , A	I ₃ , A	R _{общ} , Ом	R ₁ , Ом	R ₂ , Ом	R ₃ , Ом

- 5. Проверить экспериментально, что в последовательной цепи ток одинаков через все сопротивления, а в параллельной цепи разделяется так, что сумма всех токов через параллельно соединенные элементы, равна полному току через весь участок.
 - 6. Проверить экспериментально, что в последовательной цепи напряжение на

всем участке равно сумме напряжений на каждом элементе, а в параллельной цепи, напряжение одно и то же на каждом элементе.

Контрольные вопросы

- 1. Как формулируется закон Ома для участка цепи?
- 2. Чему равно полное сопротивление цепи из последовательно соединенных пяти одинаковых резисторов?
- 3. Какой опыт, из приведенных в этой работе, служит проверкой первого закона Кирхгофа?
- 4. Как определить полное сопротивление цепи, состоящей из четырех параллельно соединенных резисторов?
- 5. Как изменится общий ток цепи из трех параллельно соединенных одинаковых резисторов, если один из них отключить?
- 6. Как определить общее сопротивление цепи, состоящей из четырех одинаковых резисторов, которые соединены попарно, параллельно, а также при последовательном, соединении всех четырех?

Выводы: