### Flexible Mechanical Elements

ME 313: Mechanical Design Week 8



# What are Flexible Mechanical Elements?

- Elastic elements used in conveying and transmission of power
  - ▶ Belts, ropes, chains, etc..
- Used to transmit power over long distance
- ▶ Replace gears, shafts, and/or bearings



# Advantages of Using Flexible Elements

- Absorb shock loads and isolate vibrations
- Simplify design
- Save cost



Dr. Sappinandana Akamphon

#### Belts

- Usually coupled with pulleys
- Cheapest method of power transmission
- Shafts do not have to align
- Very little noise
- No lubrication and small maintenance required





# Types of Belts

- Flat belts
  - Simple, flat rectangular cross section



- Round belts
  - Circular cross section





Trapezoidal cross section



- ▶ Timing Belts
  - Have teeth to match toothed pulley





Dr. Sappinandana Akamphon

#### Flat and Round Belt Drives

 Belts usually consists of elastic core surrounded by an elastomer



Contact angles

$$\theta_d = \pi - 2\sin^{-1}\frac{D - d}{2C}$$

$$\theta_D = \pi + 2\sin^{-1}\frac{D - d}{2C}$$



# Length of Belt

$$L = \left[4C^2 - (D - d)^2\right]^{1/2} + \frac{1}{2}(D\theta_D + d\theta_d)$$

When the belts are crossed, contact angles are the same

$$\theta = \pi + 2\sin^{-1}\frac{D+d}{2C}$$

And length is

$$L = [4C^2 - (D-d)^2]^{1/2} + \frac{\theta}{2}(D+d)$$



Dr. Sappinandana Akamphon

#### **Belt Tension**

• Assume belt mass is very small, pulley and belt has coefficient of friction  $\mu$  and angle of contact  $\theta$ 



F<sub>2</sub>: 100se side

$$F_2 = F_1 e^{-\mu\theta}$$



# Torque Transmission

 Torque transmission is related to the difference in belt tensions

$$F_{1} - F_{2} = \frac{T}{D/2} = \frac{2T}{D}$$

$$F_{1}(1 - e^{-\mu\theta}) = \frac{2T}{D}$$

$$F_{1} = \frac{2T}{D(1 - e^{-\mu\theta})}$$



Dr. Sappinandana Akamphon

#### Power Transmission

ightharpoonup If belt is moving at speed  $\nu$ , then

$$P = (F_1 - F_2)v$$



#### V Belts



- Standard V belt cross section is usually 40 degree trapezoid
- The pulleys also have grooves for belts to fit into
- This allows the belt to fit further into the groove as belt tension increases



Dr. Sappinandana Akamphon

# Torque Transmission

Belt friction depends on the angle on the grooves

| <b>Groove Angles</b> | <b>Coefficient of Friction</b> |
|----------------------|--------------------------------|
| 30                   | 0.5                            |
| 34                   | 0.45                           |
| 38                   | 0.4                            |

$$F_1 - F_2 = \frac{T}{D/2} = \frac{2T}{D}$$

$$F_1 = \frac{2T}{D(1 - e^{-\mu\theta})}$$



## Timing Belts



- Belt teeth to fit into grooves of pulley
  - Prevent slipping and eliminate need for initial belt tension
  - Transmits power at constant velocity
- Require no lubrication, quiet operation
- Attractive solution for precisiondrive



Dr. Sappinandana Akamphon

#### Roller Chains





 Chains of constant pitch, coupled with a sprocket, for power transmission



# Roller Chain Geometry



## ▶ Pitch, *p*

Distance between adjacent chains



 Angle between adjacent teeth

$$\sin\frac{\gamma}{2} = \frac{p/2}{D/2}$$

$$D = \frac{p}{\sin(\gamma/2)}$$

Dr. Sappinandana Akamphon



▶ If there are N teeth on the sprocket, and roller chain has pitch p

$$D = \frac{p}{\sin(180/N)}$$



# Chain Velocity

$$v = Np\omega$$

- $\nu$  = chain velocity
- ▶ *N* = number of sprocket teeth
- p = chain pitch
- $\omega = \text{angular velocity}$
- However, chain velocity is not constant, due to sprocket uneven radius

$$v_{\text{max}} = \frac{\omega p}{2\sin(\gamma/2)}$$
$$v_{\text{min}} = \frac{\omega p \cos(\gamma/2)}{2\sin(\gamma/2)}$$



Dr. Sappinandana Akamphon

# Chordal Speed Variation

▶ The variation in speed is

$$\frac{\Delta v}{v} = \frac{v_{\text{max}} - v_{\text{min}}}{v} = \frac{\pi}{N} \left[ \frac{1}{\sin(180/N)} - \frac{1}{\tan(180/N)} \right]$$

This is called the *chordal speed variation* 



#### Chain Failure

- ▶ Chains seldom fail because they lack tensile stress
- There mode of failure is usually from long hours of service due to wear on the rollers or pins and fatigue of rollers



Dr. Sappinandana Akamphon

# Wire Rope

- Made up of windings of wire into strands, and of strands into rope
- Many uses especially in very long and heavy load carriers
  - Elevators
  - Mineshafts





## Stress in Wire Rope

From beam bending

$$M = \kappa EI = \frac{EI}{R}$$
 and  $M = \frac{\sigma I}{c}$ 

- ► *M* = bending moment
- $\kappa$  = curvature
- ► *E* = Young's modulus
- I = moment of inertia

$$ightharpoonup R$$
 = radius of curvature

c = furthest distance from neutral axis

$$\sigma = E_r \frac{d_w}{D}$$

- $E_r$  = Young's modulus of rope
- $d_w =$  wire diameter

D = sheave diameter (radius of curvature of wire rope)



Dr. Sappinandana Akamphon

# Importance of Pulley Diameter vs Rope Diameter

- The smaller the pulley diameter, the higher the bending stress
- When analyze stress in the rope, must consider both tensile and bending stress
- General rule:

$$\frac{D}{d_w} \ge 400$$

e.g. mine shafts and elevators, the ratio goes from 800-1000



#### Elevator Problem

 Assume rope is massless, rope tension due to load acceleration-deceleration is

$$F_t = \frac{W}{n} \left( 1 + \frac{a}{g} \right)$$

- ₩ is weight at the end of the rope
- n is the number of wire ropes supporting the load
- ▶ Therefore the total stress in the rope is

$$\sigma_{total} = \sigma_{bending} + \sigma_{t}$$

$$= E_{r} \frac{d_{w}}{D} + \frac{W}{nA} \left( 1 + \frac{a}{g} \right)$$



Dr. Sappinandana Akamphon

Questions?

