Wykład 2

Twierdzenie 2.1 Dla dowolnych liczb zespolonych z i s zachodzą wzory:

a)
$$Re(z+s) = Re(z) + Re(s)$$
, $Im(z+s) = Im(z) + Im(s)$, $\overline{z+s} = \overline{z} + \overline{s}$.

b)
$$\overline{z \cdot s} = \overline{z} \cdot \overline{s}$$
, $|z \cdot s| = |z| \cdot |s|$, $Arg(z \cdot s) = Arg(z) + Arg(s)$.

c)
$$r(\cos \alpha + i \sin \alpha) \cdot s(\cos \beta + i \sin \beta) = rs(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$$

Twierdzenie 2.2 wzory de Moivre'a

$$[r(\cos\varphi + i\sin\varphi)]^n = r^n(\cos n\varphi + i\sin n\varphi)$$

Definicja 2.3 Pierwiastkiem pierwotnym stopnia n z 1 nazywamy taką liczbę zespoloną z, że $z^n = 1$ ale dla każdego $1 \le m < n$, $z^m \ne 1$.

Przykład 2.4 Pierwiastkiem pierwotnym stopnia n z 1 jest na przykład $\varepsilon_n = (\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n})$

Twierdzenie 2.5 Jeżeli $a \neq 0$ to równanie $x^n = a$ ma w liczbach zespolonych dokładnie n różnych rozwiązań różniących się o potęgę pierwiastka pierwotnego z 1. Dokładniej: jeżeli $a = r(\cos\alpha + i\sin\alpha)$ to rozwiązania równania $x^n = a$ są postaci $x_k = \sqrt[n]{r}(\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n}) = \sqrt[n]{r}(\cos\frac{\alpha}{n} + i\sin\frac{\alpha}{n})\varepsilon_n^k$

Twierdzenie 2.6 $|z|^2 = z\overline{z}$.

Algorytm rozwiązywania równań stopnia 2:

$$ax^2 + bx + c = 0$$

$$\Delta = b^2 - 4ac$$

 $\sqrt{\Delta}$ dowolne rozwiązanie równania $x^2 = \Delta$

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

Przykład 2.7 $y^3 + py + q = 0$

gdzie współczynniki p,q sq liczbami zespolonymi. Określmy jego wyróżnik jako

$$\begin{split} &\Delta = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2. \\ &W \acute{o} w cz as \\ &y_{1,2,3} = \sqrt[3]{-\frac{q}{2} - \sqrt{\Delta}} + \sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} = \sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} - \frac{p}{3\sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}}} \end{split}$$

Twierdzenie 2.8 (Zasadnicze twierdzenie Algebry) Każdy wielomian o współczynnikach zespolonych stopnia ≥ 1 ma pierwiastek.

Bez dowodu

Twierdzenie 2.9 Wielomiany nad ciałem można dzielić z resztą.

Twierdzenie 2.10 (Bezoute'a.) Liczba z jest pierwiastkiem wielomianu w(x) wtedy i tylko wtedy gdy wielomian (x-z) dzieli w(x)

Twierdzenie 2.11 Wielomiany o współczynnikach zespolonych rozkładają się na iloczyn wielomianów stopnia 1.

Twierdzenie 2.12 Wielomiany o współczynnikach rzeczywistych rozkładają się na iloczyn wielomianów stopnia ≤ 2 .

Przykład 2.13
$$x^5 - 1 = (x - 1)(x^2 - 2x\cos\frac{2\pi}{5} + 1)(x^2 - 2x\cos\frac{4\pi}{5} + 1)$$

Przestrzenie liniowe.

Definicja 2.14 Niech K będzie ciałem. Przestrzenią liniową V nad ciałem K nazywamy strukturę algebraiczną (algebrę)

 $\mathbf{V} = \{V; \theta, +, \cdot\}$, w której: V jest zbiorem z wyróżnionym elementem θ oraz dwoma działaniami + $i \cdot z$ wanymi dodawaniem i mnożeniem przez liczby. Elementy V nazywamy wektorami. Dodawanie przyporządkowuje parze wektorów wektor zaś mnożenie liczbie i wektorowi wektor.

$$\begin{array}{l} +: V \times V \to V, \; \alpha + \beta \in V. \\ \cdot: K \times V \to V, \; a \cdot \alpha \in V. \end{array}$$

W przestrzeni liniowej działania spełniają następujące warunki zwane aksjomatami przestrzeni: Dla każdych $\alpha, \beta, \gamma \in V$ i $a, b \in K$

Twierdzenie 2.15 Ciało ma naturalną strukturę przestrzeni liniowej nad swoim podciałem.

Twierdzenie 2.16 Niech W będzie przestrzenią liniową nad ciałem K zaś X zbiorem. Wówczas $V = W^X$ zbiór wszystkich funkcji z X do W jest przestrzenią liniową z działaniami:

$$(f+g)(x) \stackrel{df}{=} f(x) + g(x) i$$

 $(rf)(x) \stackrel{df}{=} r(f(x)).$

Wniosek 2.17 Ciągi K^n i macierze K^n_t z działaniami po współrzędnych są przestrzeniami liniowymi.

Podstawowe własności przestrzeni liniowych:

- 1) $a \cdot \alpha = \theta \Leftrightarrow a = 0$ lub $\alpha = \theta$
- 2) $a \neq 0 \Rightarrow a \cdot x = \beta$ ma jedno rozwiązanie.
- 3) $\alpha + \beta = \theta \Leftrightarrow \beta = (-1)\alpha$.

Definicja 2.18 Niech V przestrzenią liniową nad ciałem K. Podzbiór $W \subset V$ nazywamy podprzestrzenią jeżeli:

- 1) $\theta \in W$.
- 2) Jeżeli $\alpha, \beta \in W$ to $\alpha + \beta \in W$.
- 3) Jeżeli $\alpha \in W$ i $r \in K$ to $r\alpha \in W$.

Twierdzenie 2.19 Podprzestrzeń jest przestrzenią.