封闭切削循环 G73

指令功能

系统根据精车余量、退刀量、切削次数等数据自动计算粗车偏移量、粗车的单次进刀量和粗车轨迹,每次切削的轨迹都是精车轨迹的偏移,切削轨迹逐步靠近精车轨迹,最后一次切削轨迹为按精车余量偏移的精车轨迹。G73的起点和终点相同,指令适用于成型毛坯的粗车。G73指令为非模态指令。

指令格式

指令说明

指令字说明

精车轨迹

指令 $ns \sim nf$ 程序段给出工件精加工轨迹,精加工轨迹的起点(即 ns 程序段的起点)与 G73 的起点、终点相同,简称 A 点;精加工轨迹的第一段(ns 程序段)的终点简称 B 点;精加工轨迹的终点(nf 程序段的终点)简称 C 点。精车轨迹为 A 点 $\rightarrow B$ 点 $\rightarrow C$ 点。

粗车轨迹	为精车轨迹的一组偏移轨迹,粗车轨迹数量与切削次数相同。坐标偏移后精车轨迹的		
	A、B、C 点分别对应粗车轨迹的 An、Bn、Cn 点(n 为切削的次数,第一次切削表示		
	为 A1、B1、C1 点,最后一次表示为 Ad、Bd、Cd 点)。第一次切削相对于精车轨迹		
	的坐标偏移量为($\Delta i \times 2 + \Delta u$, $\Delta w + \Delta k$)(按直径编程表示),最后一次切削相对于精		
	车轨迹的坐标偏移量为(Δu , Δw),每一次切削相对于上一次切削轨迹的坐标偏移量		
	为 (\(\Delta i \times 2 / ((d-1)), \(\Delta k / ((d-1)) \).		
Δί	X 轴粗车退刀量(半径值,有符号)		
	Δi 等于 A1 点相对于 Ad 点的 X 轴坐标偏移量(半径值), 粗车时 X 轴的总切削量(半		
	径值)等于 $ \Delta i $,X轴的切削方向与 Δi 的符号相反: $\Delta i > 0$,粗车时向X轴的负方向		
	切削。未输入 $U(\Delta i)$ 时,以数据参数 $NO.5135$ 的值作为 X 轴粗车退刀量。		
Δk	Z 轴粗车退刀量 (半径值,有符号), Δk 等于 $A1$ 点相对于 Ad 点的 Z 轴坐标偏移量,		
	粗车时 Z 轴的总切削量等于 $ \Delta k $, Z 轴的切削方向与 Δk 的符号相反: $\Delta k > 0$,粗车		
	时向 Z 轴的负方向切削。		
	未输入 W (Δk)时,以数据参数 NO.5136 的值作为 Z 轴粗车退刀量。		
1	切削的次数, R5 表示 5 次切削完成封闭切削循环。R(d)代码值执行后保持。		
d	未输入 R(d) 时,以数据参数 NO.5137 的值作为切削次数。		
ns	精车轨迹的第一个程序段的程序段号		
nf	精车轨迹的最后一个程序段的程序段号		
	X 轴的精加工余量(直径值,有符号)		
Δu	最后一次粗车轨迹相对于精车轨迹的 X 轴坐标偏移,即: Ad 点相对于 A 点 X 轴绝对		
Δu	坐标的差值。 $\Delta u > 0$,最后一次粗车轨迹相对于精车轨迹向 X 轴的正方向偏移。		
	未输入 U(Δu)时,系统按 Δu=0 处理,即:粗车循环 X 轴不留精加工余量。		
Δw	Z 轴的精加工余量(半径值,有符号)		
	最后一次粗车轨迹相对于精车轨迹的 Z 轴坐标偏移,即:Ad 点相对于 A 点 Z 轴绝对		
	坐标的差值。 $\Delta w > 0$,最后一次粗车轨迹相对于精车轨迹向 Z 轴的正方向偏移。		
	未输入 \mathbf{W} ($\Delta \mathbf{w}$)时,系统按 $\Delta \mathbf{w}$ =0处理,即:粗车循环 \mathbf{Z} 轴不留精加工余量。		
M _N S	代码字可在第一个 G73 代码或第二个 G73 代码中,也可在 ns~nf 程序中指定。在 G73		
M、S T、F	循环中,ns~nf间程序段号的 M、S、T、F 功能都无效,仅在有 G70 精车循环的程序		
	段中才有效。		

地址	增量系统	公制输入(单位: mm)	英制输入(单位: inch)
U (Δi)	ISB 系统	-999999.999~999999.999	-99999.9999~99999.9999
	ISC 系统	-99999.9999~99999.9999	-9999.99999~9999.99999
W (Δk)	ISB 系统	-999999.999~999999.999	-99999.9999~99999.9999
	ISC 系统	-99999.9999~99999.9999	-9999.99999~9999.99999

R (d)	ISB、ISC	1~999(次)(忽略小数部分)	1~999(次)(忽略小数部分)
U (Δu)	ISB 系统	-999999.999~999999.999	-99999.9999~99999.9999
	ISC 系统	-99999.9999~99999.9999	-9999.99999~9999.99999
W (\Delta w)	ISB 系统	-999999.999~999999.999	-99999.9999~99999.9999
	ISC 系统	-99999.9999~99999.9999	-9999.99999~9999.99999
P (ns)	ISB 系统	0~99999	0~99999
	ISC 系统	0~99999	0~99999
Q (nf)	ISB 系统	0~99999	0~99999
	ISC 系统	0~99999	0~99999

G73 指令的三个部分

- (1) 给定退刀量、切削次数和切削速度、主轴转速、刀具功能的程序段;
- (2) 给定定义精车轨迹的程序段区间、精车余量的程序段;
- (3) 定义精车轨迹的若干连续的程序段,执行 G73 时,这些程序段仅用于计算粗车的轨迹,实际并未被执行。

NS~NF 编程要求说明

- (1) ns~nf 程序段建议紧跟在 G73 程序段后编写(中间为空行时也视为紧跟)。 否则系统执行完成粗车循环后,会从 G73 的下一程序段执行;
- (2) ns 程序段只能是的 01 组 G00、G01 、G02、G03 模态代码;
- (3) ns~nf 程序段中,不能指令子程序调用代码;
- (4) ns~nf 程序段中,只可以指令以下 G 代码: G00、G01、G02、G03、G04、G96、G97、G98、G99、G40、G41、G42;
- (5) G96、G97、G98、G99、G40、G41、G42 代码在执行 G73 粗车循环中无效, 执行 G70 精加工循环时有效;
- (6) $ns \sim nf$ 程序段中,X 轴切削方向须与进刀方向相反,Z 轴必须单调(一直变大,或一直变小);

精车余量说明

 Δi 、 Δk 反应了粗车时坐标偏移和切入方向, Δu 、 Δw 反应了精车时坐标偏移和切入方向; Δi 、 Δk 、 Δu 、 Δw 可以有多种组合,在一般情况下,通常 Δi 与 Δu 的符号一致,常用有四种组合,图中:A 为起刀点,B→C 为工件轮廓,B'→C'为粗车轮廓,B"→C"为精车轨迹。

(1) $\Delta i < 0 \Delta k > 0 \Delta u < 0 \Delta w > 0$;

(2) Δ i>0 Δ k>0 Δ u>0 Δ w>0;

(3) $\Delta i < 0 \Delta k < 0 \Delta u < 0 \Delta w < 0$;

(4) Δ i>0 Δ k<0 Δ u>0 Δ w<0;

执行过程

- (1) A→A1: 快速移动。
- (2) 第一次粗车, A1→B1→C1:
- (3) A1→B1: ns 程序段是 G0 时按快速移动速度,ns 程序段是 G1 时按 G73 指定的切削进给速度。
- (4) B1→C1: 切削进给。
- (5) C1→A2: 快速移动。
- (6) 第二次粗车, A2→B2→C2:
- (7) A2→B2: ns 程序段是 G0 时按快速移动速度, ns 程序段是 G1 时按 G73 指定的切削进给速度。
- (8) B2→C2: 切削进给。
- (9) C2→A3: 快速移动。
- (10)
- (11) 第 n 次粗车, An→Bn→Cn:
- (12) An→Bn: ns 程序段是 G0 时按快速移动速度, ns 程序段是 G1 时按 G73 指定的切削进给速度。
- (13) Bn→Cn: 切削进给。
- (14) Cn→An+1: 快速移动;
- (15)
- (16) 最后一次粗车, Ad→Bd→Cd:
- (17) Ad→Bd: ns 程序段是 G0 时按快速移动速度, ns 程序段是 G1 时按 G73 指定的切削进给速度.
- (18) Bd→Cd: 切削进给。
- (19) Cd→A: 快速移动到起点。

编程示例

O0001 G99 G00 X200 Z10 M3 S500; (指定没转进给,定位起点,启动主轴) G73 U15 W15 R3; (X轴退刀 15mm, Z轴退刀 15mm) (粗车,X轴留2mm,Z轴留1mm精车余量) G73 P1 Q2 U2 W1 F0.3; N1 G0 X80 Z0; G01 W-20 F0.15 S600; X120 W-10; 精加工形状程序段 W-20; G02 X160 W-20 R20; N2 G01 X180 W-10; 精加工 G70 P1 Q2; M30;

注意事项

- (1): 在 G73 代码执行过程中,可以停止自动运行并手动移动,但要再次执行 G73 循环时,必须要回到手动移动前的位置。如果不返回就继续执行,后面的运行轨迹将错位;
- (2): 执行单程序段的操作,在运行完当前一次切削循环并到达该次切削轨迹的终点后程序停止;
- (3): Δi , Δu 都用同一地址 U 指定, Δk , Δw 都用同一地址 W 指定,其区分是根据该程序段有无指定 P,Q 代码字;
 - (4): 在录入方式中不能执行 G73 代码, 否则产生报警;
- (5): 由 P 和 Q 指定的循环体中,Z 轴向必须单调,如果需要加工 X 轴向非单调的工件,为避免过切,需要将 Z 轴的退刀量和精切余量设置为零。
- (6):编程时,当切削方向上起始定位点后退一个进刀量的值后在轮廓范围内时,由于此编程状态下退刀方向同进刀方向,故请先空运行以观察系统自带的轨迹显示上有无过切现象。