Laporan Eksperimental: Pengaruh Dimensionality Reduction dan Regularization pada Model Supervised

Kelompok:

- 1. Rayhan Firdaus Ardian (23/519095/PA/22279)
- 2. Amalia Muti'ah Khairunnisa
- 3. Kartika Adhi N.W
- 4. Atika Dwi Aryanti
- 5. Iffa Hesti

Ringkasan

Laporan ini menyajikan hasil eksperimen menggunakan empat algoritma machine learning (Logistic Regression, Naive Bayes, SVM, dan KNN) dengan tiga variasi pendekatan: baseline, dimensionality reduction dengan PCA, dan kombinasi PCA dengan regularisasi/optimasi. Dataset yang digunakan berupa adalah Breast Cancer Wisconsin yang didapat dari kaggle.

Algoritma yang Dievaluasi

- 1. Logistic Regression (LR): Model linear untuk biner classification.
- Naive Bayes (NB): Classifier Probabilistik berdasarkan Bayes Theorem.
- Support Vector Machine (SVM): Mencari hyperplane optimal untuk pemisah kelas.
- 4. K-Nearest Neighbor : Klasifikasi berdasarkan kemiripan dengan tetangga terdekat.

Variasi Eksperimental

- 1. Baseline: Model dasar
- 2. PCA: Principal Component Analysis (Dimensional Reduction) dengan 95% variance
- 3. PCA + Regularization/Optimization:
 - LR: Regularisasi L2 dengan GridSearch untuk Parameter C yang optimal
 - NB: Optimasi var smoothing
 - SVM : Optimasi parameter C dan gamma
 - KNN : Optimasi n_neighbors, weights dan parameter jarak (p)

Metriks Evaluasi

- 1. Accuracy
- ROC AUC → Area Under Receiver Operating Characteristic curve, mengukur kemampuan diskriminatif model

Hasil dan Analisis

Perbandingan Performa Algorithm

Hasil eksperimen menunjukkan bahwa Logistic Regression menggunakan PCA + Regularization memberikan performa terbaik, dengan Accuracy 0.982 dan ROC AUC 0.998.

	Model	Algorithm	Variant	Accura	ROC
				су	AUC
1	PCA + Reg LR	Logistic Regression	PCA + Reg	0.9824 56	0.9980 16
2	PCA LR	Logistic Regression	PCA	0.9736 84	0.9970 24
3	Baselin e LR	Logistic Regression	Baselin e	0.9649 12	0.9960 32
4	PCA + Opt SVM	SVM	PCA	0.9649 12	0.9953 70
5	PCA SVM	SVM	PCA + Opt	0.9649 12	0.9953 70
6	Baselin e SVM	SVM	Baselin e	0.9736 84	0.9947 09
7	Baselin e NB	Naive Bayes	Baselin e	0.9210 53	0.9890 87
8	PCA KNN	KNN	PCA	0.9561 40	0.9837 96
9	PCA + Opt KNN	KNN	PCA + Opt	0.9649 12	0.9824 74
10	Baselin e KNN	KNN	Baselin e	0.9561 40	0.9823 08
11	PCA NB	Naive Bayes	PCA	0.8947 37	0.9613 10
12	PCA + Opt NB	Naive Bayes	PCA + Opt	0.8947 37	0.9613 10

Analisis

- 1. Logistic Regression
 - PCA mengurangi dimensi tanpa kehilangan performa signifikan
 - Accuracy dan ROC AUC tertinggi dicapai oleh PCA + Reg Logistic Regression
 - Accuracy dan ROC AUC seiring meningkat dengan menambahkan variasi.

2. Naive Bayes

- Menambah variasi PCA dan PCA + Opt justru menurunkan accuracy dan ROC AUC
- PCA dan PCA + Opt memiliki accuracy dan ROC AUC yang sama

3. SVM

- Tidak ada perbedaan antara PCA dan PCA + Opt baik di Accuracy ataupun ROC AUC
- Baseline SVM memiliki accuracy paling tinggi namun ROC AUC paling rendah dibanding PCA dan PCA + Opt

4. KNN

- PCA + Opt KNN memberikan accuracy tertinggi (0.956) dibanding PCA KNN dan baseline KNN, namun ROC AUC milik PCA + Opt KNN relatif lebih rendah (0.956) dibanding PCA KNN
- Accuracy baseline KNN dan PCA KNN sama (0.956140)
- PCA KNN memiliki ROC AÚC Paling Tinggi

Mengapa Respons Tiap Model berbeda?

Karakteristik Model & Asumsi

- Logistic Regression dan SVM adalah model linear (atau kernel-based) yang profit dari reduksi dimensi:
 - a. PCA menghilangkan fitur yang berisik/kolinear tanpa mengorbankan informasi penting,
 - b. L2-regularization (LR) atau tuning C/γ (SVM) mengendalikan kompleksitas sehingga generalisasi membaik.
- Naive Bayes mengasumsikan fitur saling independen. Komponen PCA justru merupakan kombinasi linear yang

saling berkorelasi, sehingga transformasi ini merusak asumsi dasar NB dan malah menurunkan performa meski parameter var_smoothing di-optimasi.

Trade-off Akurasi vs ROC AUC

- Accuracy cuma mengukur "benar/salah" prediksi, sedangkan ROC AUC menilai kualitas ranking probabilitas.
- KNN yang sudah menghasilkan label dengan benar (accuracy tinggi) sering kali kurang terkalibrasi pada skala probabilitas, sehingga AUC-nya lebih rendah meski akurasinya bagus.

Sensitivitas terhadap Dimensi

- Sebagian besar model (LR, SVM)
 robust terhadap jumlah fitur yang besar;
 PCA memotong dimensi tanpa banyak
 kehilangan kapabilitas pemisahan.
- 2. KNN sangat sensitif pada metrik jarak:
 - a. PCA mengubah struktur ruang jarak, sehingga tetangga terdekat bisa berubah; optimasi hyper-parameter (n_neighbors, weights, p) membantu memulihkan akurasi, namun estimasi confidence masih berbeda.

Overfitting vs Underfitting

- Pada baseline tanpa regularisasi, model cenderung fit terlalu ketat pada fitur asli (terutama pada SVM/RF), yang bisa menurunkan generalisasi tetapi menerjemahkannya ke probabilitas yang "tegas", meningkatkan AUC tapi tidak selalu akurasi.
- Penambahan regularisasi menghaluskan decision boundary, menyeimbangkan bias-variance trade-off, sehingga LR dan SVM membaik pada kedua metrik