Supervised Learning

Silèye Ba

Adjunct Lecturer, Neoma Business School, Paris Machine Learning Scientist, L'Oreal, Paris

02.02.2023

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Class evaluation

Group projects : deadline 31 of March 2023

- Choose a finance problem at https://challengedata.ens.fr/
- Constitute 3-persons groups : send group and problem
- Deliverables: data, working notebook and synthetic report

Personal projects

- Problem will be given 16th of March 2023
- Deadline to submit : deadline 31 of March 2023

Projects expectations

- Use what you learned during class: test and compare many models
- Evaluating your proposals properly : cross validation, use right metrics
- Being creative is always a plus : go beyong what you learned in class
- Code quality is part of the evaluation

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Few reminders from last classes

Gradient of $f: \mathbb{R}^D \to \mathbb{R}$

If $\mathbf{x} = (x_1, x_2, ..., x_D)^t$, the gradient of $f(\mathbf{x}) \in \mathbb{R}$ is the vector constituted of it's partial derivative $\nabla_{\mathbf{x}} f(\mathbf{x}) = (\frac{\partial f}{\partial x_1}(\mathbf{x}), \frac{\partial f}{\partial x_2}(\mathbf{x}), ..., \frac{\partial f}{\partial x_D}(\mathbf{x}))^t$

Gradient descent

 $f:\mathbb{R}^D \to \mathbb{R}$ a convex function, gradient descent is an algorithm to iteratively estimate the minimum $\hat{\mathbf{x}}$ of f according to the steps :

- ① Select an initial value $\hat{\mathbf{x}}_0$, set t = 0
- Opplying Update $\hat{\mathbf{x}}_{t+1} = \hat{\mathbf{x}}_t \lambda \nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_t) \ (\lambda > 0 : \mathsf{descent step})$
- ① Update t = t + 1, and loop back to step 2 until convergence

Supervised learning : classificatior

What is classification

We are given data samples (\mathbf{x}_n) with corresponding labels (y_n) where $y_n \in \{0, 1, ..., C-1\}$.

- C is called the number of classes
- Binary classification : C = 2
- Multi-class problem : C > 2
- Multi-label problem : non-mutually exclusive labels

Learning formalized as function approximation

- Hypothesis : assume $y = f_{\mathbf{w}}(\mathbf{x})$ for some unknown function $f_{\mathbf{w}}$ parametrized by \mathbf{w}
- Learning problem : estimate **w** given labeled dataset (\mathbf{x}_n, y_n)
- Make reliable predictions $y = f_{\mathbf{w}}(\mathbf{x})$ for new samples \mathbf{x}
 - Generalization : ability to reliably predict on new samples

Supervised learning : regression

What is regression

We are given data samples (\mathbf{x}_n) with associated values (\mathbf{y}_n) where \mathbf{y}_n are continuous variable $(\in \mathbb{R}^d)$.

Similar to classification problem but with continuous outputs

Learning formalized as function approximation

- Hypothesis : assume $\mathbf{y} = f_{\mathbf{w}}(\mathbf{x})$ for some unknown function $f_{\mathbf{w}}$ parametrized by \mathbf{w}
- Learning problem : estimate \mathbf{w} given training dataset $(\mathbf{x}_n, \mathbf{y}_n)$
- Make reliable prediction $\mathbf{y} = f_{\mathbf{w}}(\mathbf{x})$ for new samples \mathbf{x}

Supervised learning evaluation : cross validation

- Assessing models generalization abilities :
 - How well models performs on samples outside the training set
- Evaluation protocol : cross-validation
 - Split available data into three subset: training, validation, test
 - Use training data to fit model parameters :
 - Many model parameters' configurations are considered
 - Use the validation data to select the best parameters
 - Use the test data set to assess the best model generalization performances

Overview

- Class evaluation
- Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

K-nearest neighbors (KNN) method for classification

If we are given:

- Dataset (\mathbf{x}_n, y_n) of samples $\mathbf{x}_n \in \mathcal{X}$ with labels $y_n \in \mathcal{C} = \{0, ..., C-1\}$
- ullet Distance ho to compute proximity between elements of ${\cal X}$
- δ_c : Dirac delta function
- \bullet $\mathcal{N}_{\rho,K}(\mathbf{x})$: set of the K-nearest neighbors of samples \mathbf{x}

KNN classifier

K-nearest neighbors prediction for sample x is given by

$$f_{
ho,K}(\mathbf{x}) = rg \max_{c \in \mathcal{C}} \sum_{\mathbf{x}_k \in \mathcal{N}_{
ho,K}(\mathbf{x})} \delta_c(y_k)$$

KNN for classification : simple example

- Data : blue dots, green diamonds
- Red cross is a new sample
- Question : what is the class of red cross in a 5-NN classification?

KNN for classification : simple example

- Data : blue dots, green diamonds
- Red cross is a new sample
- Question : what is the class of red cross in a 5-NN classification?

In a 5-NN classification, the class of the red cross is blue dot!

K-nearest neighbors (KNN) method for regression

Principle

- Dataset (\mathbf{x}_n, y_n) of samples $\mathbf{x}_n \in \mathcal{X}$ with labels $y_n \in \mathbb{R}^D$
- ullet Distance ho to compute proximity between elements of ${\cal X}$
- Averaging kernel $\omega(\mathbf{x}, \mathbf{x}_{n_k})$
- \bullet K-nearest neighbors regression of sample x is given by

$$f_{\rho,K}(\mathbf{x}) = \sum_{\mathbf{x}_k \in \mathcal{N}_{\rho,K}(\mathbf{x})} \omega(\mathbf{x}, \mathbf{x}_k) y_k$$

Example of averaging kernels

- Simple averaging : $\omega(\mathbf{x},\mathbf{x}_{n_k})=rac{1}{K}$
- Gaussian averaging : $\omega(\mathbf{x}, \mathbf{x}_{n_k}) = \frac{\exp{-\lambda \rho(\mathbf{x}, \mathbf{x}_{n_k})}}{\sum_{l=1}^K \exp{-\lambda \rho(\mathbf{x}, \mathbf{x}_{n_l})}}$

Remarks about K-nearest neighbors

Pro

- No parameters learning is required : model is fully specified when number of neighbors K and metric ρ are provided
- KNN allows to address problems with non-linear decision boundaries

Cons

- High computational cost : efficient search procedure are required to quickly find the K nearest neighbors
 - For every test samples \mathbf{x} , computing distance to all samples \mathbf{x}_n is needed
 - Computationally expensive for very large datasets
- Large storage capacity: all the samples are stored in memory

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Decision trees for classification

Definition

Given a dataset (\mathbf{x}_n, y_n) , decision trees for classification are models that are iteratively built by segmenting the input space of the samples \mathbf{x}_n into **homogenenous** regions in term of sample classes y_n . The decision tree classifier is a function of the form :

$$f_{\Omega}(\mathbf{x}) = \sum_{l=1}^{L} c_{l} \mathbb{I}_{\Omega_{l}}(\mathbf{x})$$

where \mathbb{I}_{Ω_l} is the indicator function of the set Ω_l , and c_l is the majority class of samples \mathbf{x}_n in region Ω_l .

Algorithm

- Choose an attribute (component) from $\mathbf{x} = (x^1, x^2, ..., x^D)$
- ② Compute the significance of an attribute x^d for splitting the data
- Split data based on the best attribute
- Loop back to step 1

Decision trees for classification : homogeneity measure

An homogeneity measure captures to which extent input space is segmented in regions containing samples of a single class.

Entropy as homogeneity measure

If in area Ω_l the occurrence probability of samples of class c is p_{lc} , entropy inside Ω_l is :

$$E_l = -\sum_{c=1}^C p_{lc} \log p_{lc}$$

- When Ω_l contains only samples of one class : $E_l = 0$
- When Ω_I contains uniformly samples of all classes : $E_I = \log C$

Global homogeneity measure : average entropy

$$E = \frac{1}{L} \sum_{l=1}^{L} E_{l}$$

Solving a simple decision tree classification problem

Build a decision tree to classify blue dots and green diamonds : $\mathbf{x} = (x^1, x^2)$

Simple classification problem : first split

- Proposed split based on attribute $x^1 : T1$
- Proposed split based on attribute $x^2 : U1$
- Which split is the best one?

T1 is the best split base on the entropy measure.

Simple classification problem : second split

• Second optimal split : split wrt to attribute x^2 : U1

Simple classification problem : decision tree

Decision trees for regression

Definition

Given a dataset (\mathbf{x}_n, y_n) , decision trees for regression are models that are iteratively built by segmenting the input space of the samples \mathbf{x}_n into regions Ω_l such that

$$\frac{1}{|\Omega_I|}\sum_{\mathbf{x}_n\in\Omega_I}\rho(y_n,y_{\Omega_I}(\mathbf{x}))<\epsilon.$$

The decision tree regressor is a function of the form :

$$f_{\Omega}(\mathbf{x}) = \sum_{l=1}^{L} y_{\Omega_l}(\mathbf{x}) \mathbb{I}_{\Omega_l}(\mathbf{x})$$

Algorithm

- ① Choose an attribute (component) from $\mathbf{x} = (x_1, x_2, ...)$
- Ompute the significance of an attribute for splitting the data
- Split data based on the best attribute
- Loop back to step 1

Regression trees fitting example

Fitting a regression tree to the function below when, for $\mathbf{x} \in \Omega_I$, considering as approximating function $y_{\Omega_I}(\mathbf{x})$ the average of the outputs y_n of samples $\mathbf{x}_n \in \Omega_I$:

$$y_{\Omega}(\mathbf{x}) = \frac{1}{|\Omega_I|} \sum_{\mathbf{x}_n \in \Omega_I} y_n$$

Regression trees fitting example : step 1

Input space is segmented into two regions : $x < \mathcal{T}_1$ and $x \geq \mathcal{T}_1$

Regression trees fitting example : step 2

region $x \geq T_1$ is segmented into two regions : $T_1 \leq x < T_2$ and $x \geq T_2$

Regression trees fitting example : step 3

region $x < T_1$ is segmented into two regions : $T_3 \le x < T_1$ and $x < T_3$

Regression trees fitting example: step 4

region $T_1 \le x < T_2$ is segmented into two regions : $T_1 \le x < T_4$ and $T_4 \le x < T_2$

Segmentation stops because in all regions, approximation is *close enough* to the sample outputs.

Remarks about decision trees

Pro

- Decision trees address non-linear classification/regression problems
- Decisions trees are not black-boxes : interpretable decision reasons
 - Attribute importances be computed

Cons

- Greedy iterative splitting: input space is exhaustively searched
 - Solution : use random splits
- Horizontal-vertical splitting leads to deep trees to address obliques classification boundaries or functions
 - Solution: use oblique decision trees with linear regression defining leaves
- Overfitting tendencies :
 - Solution : pruning, random forests

Random forest : bootstrapping decision trees

Principle

Given a training dataset $\mathcal{D} = \{(\mathbf{x}_n, y_n), n = 1, ..., N\}$

- for m = 1, ..., M
 - ullet Bootstrap a sub-dataset \mathcal{D}_m from \mathcal{D}
 - Build a regression tree $f_{\Omega}^{(m)}(x)$
- Random forest : aggregation of the built regression trees

$$F(x) = \frac{1}{M} \sum_{m=1}^{M} f_{\Omega}^{(m)}(x)$$

- Resulting models robust to noise due to averaging procedure
- Random forest are interpretable models as are regression trees
- Models of a family known as bagging, boosting
 - Any model can be bagged: support vecto machines, neural net, etc
 - Challenge top performing models are usually bagged models

Overview

- Class evaluation
- Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Kernel methods: motivations

Mapping inputs to a feature space where they can be explained linearly.

Kernel methods

Definition

Kernel methods are a class of models for pattern modelling in which linear models are turned into non-linear ones by applying the **kernel trick**, namely by non-linearly transforming input features \mathbf{x} to features $\phi(\mathbf{x})$ through a kernel κ defined by the scalar product $\kappa(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$.

Kernel trick

In practise, only the kernel $\kappa(\mathbf{x}, \mathbf{x}')$ is used and not directly the feature map ϕ , because the map ϕ always occurs as the scalar product $\phi(\mathbf{x})^{\top}\phi(\mathbf{x}')$.

Famous kernel methods

- Kernel regression
- Support vector machines (SVM)
- Kernel principal component analysis (PCA)

Kernel trick regression

Problem statement

We are given a dataset (\mathbf{x}_n, y_n) of input features \mathbf{x}_n with corresponding labels y_n . We are also given features map $\phi(\mathbf{x})$ and a kernel κ defined by the scalar product $\kappa(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}_m).$

Our goal is to build a linear regression mapping features to outputs as :

$$y = \mathbf{w}^{\top} \phi(\mathbf{x})$$

Regularized training loss

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\top} \phi(\mathbf{x}_n) - y_n)^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$$

with gradient :

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{\top} \phi(\mathbf{x}_n) - y_n) \phi(\mathbf{x}) + \lambda \mathbf{w}$$

Kernel trick regression

Vanishing gradient's loss gives

$$\mathbf{w} = \sum_{n=1}^{N} a_n \phi(\mathbf{x}_n) \text{ with } a_n = \frac{-1}{\lambda} (\mathbf{w}^{\top} \phi(\mathbf{x}_n) - y_n)$$

Replacing a_n in the training loss

$$L(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\top} K K \mathbf{a} - \mathbf{a}^{\top} K \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} + \frac{\lambda}{2} \mathbf{a}^{\top} K \mathbf{a}$$

with

$$K_{nm} = \phi(\mathbf{x}_n)^{\top} \phi(\mathbf{x}_m) = \kappa(\mathbf{x}_n, \mathbf{x}_m)$$

Solving for a_n gives $a = (K + \lambda I)^{-1}\mathbf{y}$ and finally the regression model is :

$$y(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\top} (K + \lambda I)^{-1} \mathbf{y}$$

with $\mathbf{k}(x)$ the vector with component $\kappa(\mathbf{x}, \mathbf{x}_n)$

Examples of kernels

Name	Kernel $\kappa(\mathbf{x}, \mathbf{x}')$
Linear kernel	$(\mathbf{x}^{\top}\mathbf{x}')^2$
Polynomial kernel	$(\mathbf{x}^{T}\mathbf{x}'+1)^D$
Gaussian kernel	$\exp{-\frac{1}{2\sigma^2}(\mathbf{x}-\mathbf{x}')^{\top}(\mathbf{x}-\mathbf{x}')}$
Laplace kernel	$\exp{-\frac{1}{\sigma}\sqrt{(\mathbf{x}-\mathbf{x}')^{\top}(\mathbf{x}-\mathbf{x}')}}$

Kernel trick regression : remarks

Instance based learning

- New prediction is obtained as a linear combination of target values from the training set
- Model requires kernel computation over all samples at evaluation

$$y(\mathbf{x}) = \mathbf{k}(x)^{\top} (K + \lambda I)^{-1} \mathbf{y}$$
$$\mathbf{k}(x) = (\kappa(\mathbf{x}, \mathbf{x}_n))$$
$$K = (\kappa(\mathbf{x}_n, \mathbf{x}_m))$$

Kernel trick

- Solution only depends on kernel $\kappa(\mathbf{x},\mathbf{x}')$ and not feature maps $\phi(\mathbf{x})$
- Support vector machine (SVM) is built following similar principle

Support vector machines : maximum margin classifiers

Linearly separable case

Considering the two-class classification with the model in feature space $\phi(\mathbf{x})$ of the form : $y(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b$

Denote by $t_n = +1$ if $y(\mathbf{x}) > 0$ and $t_n = -1$ if $y(\mathbf{x}) < 0$. Assuming samples are linearly separable many solutions can be found. Support vector machine looks for the unique maximal margin solution.

Posing SVM's max-margin classification problem

Distance between $\phi(\mathbf{x})$ and hyperplane $y(\mathbf{x}) = 0$

$$\frac{|y(\mathbf{x}_n)|}{\sqrt{\mathbf{w}^{\top}\mathbf{w}}} = \frac{t_n y(\mathbf{x}_n)}{\sqrt{\mathbf{w}^{\top}\mathbf{w}}} = \frac{t_n (\mathbf{w}^{\top}\phi(\mathbf{x}_n) + b)}{\sqrt{\mathbf{w}^{\top}\mathbf{w}}}$$

Max-margin problem

$$\arg\max_{\mathbf{w},b} \left(\frac{1}{\sqrt{\mathbf{w}^{\top}\mathbf{w}}} \min_{n} [t_{n}(\mathbf{w}^{\top}\phi(\mathbf{x}_{n}) + b)] \right)$$

- Problem is invariant to rescaling of w, b
- The distance to the closest point can be set to $t_n(\mathbf{w}^{\top}\phi(\mathbf{x}_n)+b)=1$
- Distance of any points to hyperplane verify $t_n(\mathbf{w}^{\top}\phi(\mathbf{x}_n) + b) \geq 1$

$$\left\{ \begin{array}{l} \arg \max_{\mathbf{w},b} \frac{1}{\sqrt{\mathbf{w}^{\top}\mathbf{w}}} \\ t_n(\mathbf{w}^{\top}\phi(\mathbf{x}_n) + b) \geq 1, \forall n \end{array} \right. \iff \left\{ \begin{array}{l} \arg \min_{\mathbf{w},b} \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} \\ t_n(\mathbf{w}^{\top}\phi(\mathbf{x}_n) + b) \geq 1, \forall n \end{array} \right.$$

SVMs: solving max-margin classification problem

Loss function introducing Lagrange multipliers $\mathbf{a} = (a_1, a_2, ..., a_N)$

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{n=1}^{N} a_n [t_n(\mathbf{w}^{\top} \phi(\mathbf{x}_n) + b) - 1]$$

$$\nabla_{\mathbf{w}} L = 0$$
 implies $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$

Solution replacing w

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x})^{\top} \phi(\mathbf{x}_n) + b = \sum_{n=1}^{N} a_n t_n \kappa(\mathbf{x}, \mathbf{x}_n) + b$$

- Karush Kuhn Tucker (KKT) conditions : if $t_n \phi(\mathbf{x}_n) \neq 1$, $a_n = 0$
- Only points \mathbf{x}_n lying on the margin (support vectors) count

Non linearly separable cases

Slack variables $\xi_1, \xi_2, ..., \xi_N$

$$\left\{ \begin{array}{l} \arg\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{n=1}^{N} \xi_n \\ t_n(\mathbf{w}^{\top} \phi(\mathbf{x}_n) + b) \geq 1 - \xi_n, \forall n \end{array} \right.$$

 Slack variables allows points to be on the wrong side of the decision plane

Overview

- Class evaluation
- 2 Reminders
- Supervised learning
 - K-nearest neighbors
 - Decision trees and random forests
 - Kernel methods
 - Neural networks

Artificial neurones

An artificial neurone implements the function

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + \dots + w_D x_D - b)}} \\
= \frac{1}{1 + e^{-\mathbf{w}^t \mathbf{x} - b}}$$

- $\mathbf{x} = (x_1, x_2, ..., x_D)^t$: input vector
- $\mathbf{w} = (w_1, w_2, ..., w_D)^t$: weight vector
- b : bias
- $\sigma(\mathbf{x})$: sigmoid activation function

Activitation of an artificial neurone

The articial neurone modulates its input using it activation function

- b : is a threshold
- Si $\mathbf{w}^t \mathbf{x} > b$: neurone sends value 1.0
- Si $\mathbf{w}^t \mathbf{x} < 0$: neurone sends value 0

Neural network : multi layer perceptron (MLP)

A neural network is a system of connected artificial neurones

- Layers : neurones at the same level
- Types of layers : input, hidden, outputs
- Hidden layers : network internal layers

Types of neural networks

Feed-forward networks

- Without cycles : information flow from input to output layers
- Used for static prediction : image recognition, spam prediction

Recurrent networks

- Networks with cycles : temporal feedback loops
- Used for tasks requiering sequential information : machine translation, stock price prediction

Feed-forward networks : formally

Inputs : $\mathbf{x} = (x_1, ..., x_D)$

Hidden layer
$$n^{\circ}1: \mathbf{y}^{(1)} = \left(y_1^{(1)}, y_2^{(1)}, ..., y_{\mathcal{K}_1}^{(1)}\right)$$

$$y_k^{(1)} = \phi \left(\sum_{d=1}^D w_{1d} x_d + w_{10} \right)$$

Hidden layer
$$\mathsf{n}^\circ\mathsf{l}: \mathbf{y}^{(l)} = \left(y_1^{(l)}, y_2^{(l)}, ..., y_{\mathcal{K}_l}^{(l)}\right)$$

$$y_k^{(I)} = \phi \left(\sum_{s=1}^{K_{l-1}} w_{ls} y_s^{(l-1)} + w_{l0} \right)$$

Output layer : $\mathbf{o} = \left(y_1^{(L)}, y_2^{(L)}, ..., y_{\mathcal{K}_L}^{(L)}\right)$

Activations functions $\phi(r)$

- Give to neural networks their nonlinear structures
- Without activation functions neural networks are linear regressions
- Previous layer information is modulated by activation function

Sigmoid function

$$\phi(r) = \frac{1}{1 + e^{-r}}$$

Activation function: hyperbolic tangent

Hyperbolic tangent : tanh

$$\phi(\mathbf{r}) = \frac{e^r - e^{-r}}{e^r + e^{-r}}$$

Activations to modulate networks response between [-1,1]

Rectified linear activation unit

Rectified linear unit: relu

$$\phi(r) = \max(0, r)$$

Most used activation nowadays

Softmax activation function

Softmax unit

Given K real values r_1 , r_2 , ..., r_K

$$\phi(r_k) = \frac{\mathrm{e}^{r_k}}{\sum_{l=1}^K \mathrm{e}^{r_l}}$$

- Activation for a multi-class classifier outputs $K \geq 2$
- If K = 2 softmax function is equivalent to a sigmoid function

Recurrent neural networks

Reccurent unit

- x_t: input vector
- h_t: hidden variable
- y_t: output vector
- \bullet W, U, b: weight and bias
- ϕ_h, ϕ_y : Activation functions

Reccurent unit equation

$$\mathbf{h}_t = \phi_h(W_h \mathbf{x}_t + U_h \mathbf{h}_{t-1} + b_h)$$

$$\mathbf{y}_t = \phi_o(W_V \mathbf{h}_t + b_V)$$

Output types for neural networks

Binary classication

- Output activation : sigmoid fonction
- Defines probability of class 1

Multi-class classification K

- Output activation : softmax
- Defines probabilities for all K classes

Regression

No output activation

Learning neural network parameters

Principles

- Supervised learning with a training datasets (x_n, y_n)
- Specification of a loss function allowing to compare desired outputs and network predictions
- Gradient descent on average loss over training samples

Feedforward networks

Error back propagation : retropropagate parameters updates from outputs to hidden layers to inputs

Reccurent networks

Temporal error back-propagation from final to initial time

Training a feedforward network without hidden layers

• Activation function : sigmoid $\sigma(u) = \frac{1}{1+e^{-u}}$

• Model output : $y(\mathbf{x}) = \sigma(\mathbf{w}^t \mathbf{x})$

Model training : estimation of parameters w

• Loss function : cross-entropy :

$$y_n \log \sigma(\mathbf{w}^t \mathbf{x_n}) + (1 - y_n) \log(1 - \sigma(\mathbf{w}^t \mathbf{x_n}))$$

Average loss :

$$L(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} y_n \log \sigma(\mathbf{w}^t \mathbf{x_n}) + (1 - y_n) \log(1 - \sigma(\mathbf{w}^t \mathbf{x_n}))$$

• Find \mathbf{w} : using gradient descent $\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}_{t-1})$

◆□▶◆御▶◆選▶◆選▶ 選 めの

Study of a feed-forward network with a single hidden layer

From inputs to hidden layers

$$x_1^{(1)} = \sigma \left(w_{01} + w_{11} x_1^{(0)} + w_{21} x_2^{(0)} \right) = \sigma(z_1^{(1)}) \text{ with } z_1^{(1)} = \mathbf{w}_{.1}^t \mathbf{x}^{(0)}$$

$$x_2^{(1)} = \sigma \left(w_{02} + w_{12} x_1^{(0)} + w_{22} x_2^{(0)} \right) = \sigma(z_2^{(1)}) \text{ with } z_2^{(1)} = \mathbf{w}_{.2}^t \mathbf{x}^{(0)}$$

From hidden to output layers

$$x_1^{(2)} = \sigma \left(h_{01} + h_{11} x_1^{(0)} + h_{21} x_2^{(0)} \right) = \sigma(z_1^{(2)}) \text{ with } z_1^{(2)} = \mathbf{h}_{.1}^t \mathbf{x}^{(1)}$$

$$x_2^{(2)} = \sigma \left(h_{02} + h_{12} x_1^{(0)} + h_{22} x_2^{(0)} \right) = \sigma(z_2^{(2)}) \text{ with } z_2^{(2)} = \mathbf{h}_{.2}^t \mathbf{x}^{(1)}$$

Network with a hidden layer: loss for a sample

Quadratic error

$$L(\mathbf{w}, \mathbf{h}) = \sum_{d=1}^{2} \frac{\left(y_d - x_d^{(2)}\right)^2}{2}$$

- Quadratic error between labels and network predictions
- Network parameters to optimize for w and h

Training by gradient error back propagation $1/3\,$

Compute gradient with respect to $\mathbf{h}_{.i}$

$$\nabla_{\mathbf{h}_{.i}} L(\mathbf{w}, \mathbf{h}) = \nabla_{\mathbf{h}_{.i}} \sum_{d=1}^{2} \frac{\left(y_{d} - x_{d}^{(2)}\right)^{2}}{2}$$

$$= \left(y_{i} - \sigma(z_{i}^{(2)})\right) \nabla_{\mathbf{h}_{.i}} \sigma\left(z_{i}^{(2)}\right)$$

$$= \left(y_{i} - x_{i}^{(2)}\right) \sigma'\left(z_{i}^{(2)}\right) \nabla_{\mathbf{h}_{.i}} z_{i}^{(2)}$$

$$= \left(y_{i} - x_{i}^{(2)}\right) \sigma'\left(z_{i}^{(2)}\right) \mathbf{x}^{(1)}$$

$$= e_{i}^{(2)} \mathbf{x}^{(1)}$$

where
$$e_i^{(2)} = \sigma'\left(z_i^{(2)}\right)(y_i - x_i^{(2)})$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久()

Training by gradient error back propagation 2/3

Compute gradient with respect to $\mathbf{w}_{.i}$

$$\nabla_{\mathbf{w}_{.j}} L(\mathbf{w}, \mathbf{h}) = \nabla_{\mathbf{w}_{.j}} \sum_{i=1}^{2} \frac{\left(y_i - x_i^{(2)}\right)^2}{2}$$
$$= \sigma'\left(z_j^{(1)}\right) \sum_{i} h_{ji} e_i^{(2)} \mathbf{x}^{(0)}$$
$$= e_j^{(1)} \mathbf{x}^{(0)}$$

where
$$e_{j}^{(1)}=\sigma'\left(z_{j}^{(1)}\right)\sum_{i}h_{ji}e_{i}^{(2)}$$

Training by gradient error back propagation $3/3\,$

Error back-propagation

- Select sample $\mathbf{x}^{(0)}$ and output $\mathbf{y} = (y_i)$
- ① Use $\mathbf{x}^{(0)}$ to compute network activations $z_j^{(1)}$, $x_j^{(1)}$, $z_i^{(2)}$, $x_i^{(2)}$
- Retro-propagate errors from outputs to inputs :
 - **①** Compute $e_i^{(2)} = \sigma'(z_i^{(2)})(y_i x_i^{(2)})$
 - Ompute $e_j^{(1)} = \sigma'\left(z_j^{(1)}\right) \sum_i h_{ji} e_i^{(2)}$
- Compute gradient :
 - Compute $\nabla_{\mathbf{w}_{.j}} L(\mathbf{w}, \mathbf{h}) = e_j^{(1)} \mathbf{x}^{(0)}$
 - Compute $\nabla_{\mathbf{h}_{,i}} L(\mathbf{w}, \mathbf{h}) = e_i^{(2)} \mathbf{x}^{(1)}$
- Update network parameters :
 - Update $\mathbf{h}_{.i} = \mathbf{h}_{.i} \alpha \nabla_{\mathbf{h}_{.i}} L(\mathbf{w}, \mathbf{h})$
 - Update $\mathbf{w}_{.i} = \mathbf{w}_{.i} \alpha \nabla_{\mathbf{w}_{.i}} \hat{\mathbf{L}}(\mathbf{w}, \mathbf{h})$
- Loop back to step 1

Convolutional neural networks CNN: Yann Lecun

- Specially designed for image processing
- Network weights are convolved with image to be processed
- Top performing network between 2014 to 2022

Image convolution by network weights

AlexNet: University Toronto Machine Learning Group

VGG-Net-16: Oxford Visual Geometry Group

Inception Network : Google

Residual networks (resnet): MSR Asia

- Deepest networks
- Deepest networks can reached 150 hidden layers
- Specificity: skip connections
- Since 2015 resnet hold best image classification performances measured in ImageNet Dataset

Challenge Imagenet

Transformers : Google Brain

- Standard architecture for NLP :
 - BERT : Google Brain
 - GPT, Chat-GPT : Open AI
- Encoder-decoder
- Multi-head attention layer
 - Self-attention

Visual transformers: Facebook

- Input is an image
- Transformer encoder layer : based on multi-head attention
- Top performing model with CNN on computer visions tasks

Next class: lab session

- Professor Anindya Roy
- Supervised learning : stock price movements prediction