Dr. Erick C. Jones, PhD, PE, CSSBB

University of Texas at Arlington RFID & Auto-ID Deployment (RAID) Labs

An overview of RFID and Auto-ID, and Transportation Logistics Center and future research opportunities for automating Health-care, Manufacturing, and Logistics

Presenters Background

- Industrial Experience (14 years)
 - Companies: UPS, Academy Sports, Tompkins Associates, Arthur Anderson, LLP
 - Positions: IE Specialist, IE Manager, Director of Engineering, Senior Consultant, Project Manager, Senior Manager
- Academia
 - Texas A&M (BS), Univ of Houston(MS,PhD)
 - University of Nebraska-Instructor
 - Courses: RFID, Logistics Optimization Modeling, Six-Sigma, Facilities Planning, Production Planning and Control, Advanced Manufacturing Systems, Simulation
 - Research Areas: RFID and ADC Technologies, Supply Chain Procurement and Logistics, Lean Six Sigma Strategies

National RFID Programs Appointment

- Current RFID Certification Chair for International Alliance
 - -ISCEA RFID Certification Chair
- RFID Journal Live Best in Show Judge
- Member of RFID National Certfication Groups
 - -GS1, EPC Global, AIM

Introduction to Radio Frequency Identification & Auto-Identification (RAID) Center

RAID Center Facilities Plan

Ex Experies

Mission:

 "Providing integrated solutions in logistics and other data driven environments through automatic data capture, real world prototypes, and analysis"

Objective:

- Attract Recognized Funding from notable federal agencies and nationally recognized organizations
- Provide a research facility that inspires future STEM researchers from K-12 and undergraduate students
- Attract national attention from academic rankings and research recognition

RAID Center Facilities Plan

- Room 411/413 Wolf Hall RFID Lab
- Room 309 Engineering Auto ID Lab
- Future Transportation Logistics Lab
- Equipment (Previous/Planned) Equipment
 - Military grade Fixed and Mobile Active RFID Systems (Lockheed Martin – Savi technologies, RF Code)
 - Industry grade high speed automated conveyor (Hytrol conveyor)
 - Industry recognized RFID edgeware, ERP and WMS systems, (Global Concepts)
 - Walmart/DOD mandated standard fixed and mobile passive RFID systems (Alien Technologies, Matrics)
 - Hospital tracking location systems (Ubisense Ultra Wide Band Real Time Location System)
 - Building modifications automated locks and MavID

Auto-ID Lab Facility (Plan)

RFID in Healthcare

How do you prevent this from happening to you

RFID Previous Research Microchip

RFID Surgical Sponges

RFID in Healthcare

- Ex Oprice
- RFID has been envisioned in Healthcare for
 - Patient Tracking
 - Personnel Tracking
 - Nurses
 - Surgeons
 - Inventory Tracking
 - Assets
 - IV Pumps
 - OR Sponge Tracking
 - Integration with Barcodes for
 - Electronic Medical Record Enablement
 - Current Research in Medical Error Reduction

RFID Significance

RFID Significance

Application	Benefits	Workflow
Medical	a. Reduced time to find	a. Automatic routing for
equipment	assets	request for equipment
/instruments	1. Responsiveness	b. Automatic notification
1. Real time	2. Idle time - staff waiting	/ alerts / Interface with
location	b. Increased utilization -	actuators (i.e Locks)
2. Boundary	Lower asset investment	c. Process triggers
checking	required	activation /expedition)
	1. Reduced shrinkage/lost	by logic of asset moves
	2. Efficiency / process	
	synchronization	
Pharmaceutic	a. Safety	Automatic acquisition/
als	b. Faster response to critical	verification of product
Inventory	events	origin/history
1. Pedigree		
Blood Product	a. Safety	Automatic acquisition/
management	b. Faster response to critical	verification of product
	events	origin/history

RFID Opportunities

- Building from Previous Research in
 - Automation Initiative in Healthcare
 - Barcodes
 - an array of parallel, narrow, rectangular bars and spaces that represent a group of characters in a particular pattern.
 - A reader scans the barcode, decodes it, and transfers data to a host computer
 - Barcode Point of Care (BPOC)
 - Bar-code medication administration (BCMA) systems
 - Computerized Physician Order Entry (CPOE)
 - Medication Error Identification
 - Previous RFID research
 - Micro-Manufacturing RFID tags
 - Dosage level packaging
 - Surgical RFID sponges for ER
 - Biosensor RFID tags for ingestion confirmation

* EXOSPHIC

Research Concept

Figure 3: RFID embedded in Medical devices and on individual doses. (Jones, 2009)

Expected Outcomes

Figure 6: The future of integration of RFID technologies in hospitals. (Jones, 2009)

Drug Confirmation System

Medical Error Research Background

- The Institute of Medicine (IOM) estimates that medical errors cost the United States about \$37.6 billion each year.
- Hospital errors rank between the fifth and eighth leading causes of death, killing more Americans than breast cancer, traffic accidents or AIDS.
- A specific example is of this is when an infant is given the wrong dosage of pre-packaged medicine.
 - Recently there have been several instances where adult doses of heparin have caused premature infant deaths (Wolf, 2006).
- Eliminating this type of dosage error is the primary focus of this research.

Neonatal Intensive Care Unit

RFID in the Future

Future NASA

Cargo Transfer Bags (CTBs)

Kevin Gifford, CU-Boulder

What is Industrial Engineering?

- Working with people, machines, materials
- Helping do things better, faster, safer

Different Areas of IE

Expansion

- Manufacturing Systems
- Operations Research
- Engineering Management
- Human Factors and Ergonomics
- Six Sigma and Quality Engineering
- Distribution and Logistics

Questions?

Expanse.

Contact Information

Erick C. Jones, PhD, CSSBB, P.E. University of Texas Arlington Industrial and Manufacturing Systems Engineering **Associate Professor** 420 Woolf Hall Arlington, TX 76019 ecjones@uta.edu (817) 272-7592

