

Lógica y Teoría de la Computación Primer semestre 2022

Daniel Vega Araya

• ¿Cómo demostramos que $\Sigma = \varphi$?

- ¿Cómo demostramos que $\Sigma = \varphi$?
- Necesitamos un método que nos ayude a esto.

- Necesitamos un método que nos ayude a encontrar, de ser posible, el unificador de máxima generalidad.
- Propuesto en 1965 por J. A. Robinson.

Sean E y F dos términos que queremos unificar. Consideramos inicialmente σ_0 = {} una sustitución vacía, es decir, que no cambia ninguna variable. Dado que vamos a realizar un proceso iterativo, consideramos inicialmente E_0 = σ_0 (E) y F_0 = σ_0 (F). En cada iteración k del algoritmo se realizan los siguientes pasos:

- 1. Si $E_k = F_k$ entonces las cláusulas E y F son unificables y un unificador de máxima generalidad es $\sigma = \sigma_k \circ \cdots \circ \sigma_0$. Además, el término E_k es el término unificado. En este caso el proceso termina aquí.
- 2. Si $E_k \neq F_k$ entonces se busca el primer par de discordancia entre E_k y F_k . Sea éste D_k .
- 3. Si D_k contiene una variable y un término (pueden ser dos variables y una de ellas hace de término) pasamos al siguiente paso. En otro caso los términos no son unificables y terminamos el proceso.

- 4. Si la variable aparece en el término se produce un *occur check* por lo que E y F no unifican y terminamos. Si esto no ocurre pasamos al siguiente paso.
- 5. Construimos una nueva sustitución que vincule la variable con el término de D_k . Sea esta sustitución σ_{k+1} . Construimos ahora dos nuevos términos $E_{k+1} = \sigma_{k+1}(E_k)$ y $F_{k+1} = \sigma_{k+1}(F_k)$ y volvemos al paso 1.

Este algoritmo siempre termina para dos términos cualesquiera. Si los términos no eran unificables terminará indicándose así y si eran unificables devolverá un unificador de máxima generalidad y el término resultante unificado.

Ejemplo

1. Sean los términos p(a, X) y p(X, Y).

Ejemplo

1. Sean los términos p(a, X) y p(X, Y).

Sean E y F dos términos que queremos unificar. Consideramos inicialmente $\sigma_0 = \{\}$ una sustitución vacía, es decir, que no cambia ninguna variable. Dado que vamos a realizar un proceso iterativo, consideramos inicialmente $E_0 = \sigma_0(E)$ y $F_0 = \sigma_0(F)$. En cada iteración k del algoritmo se realizan los siguientes pasos:

- 1. Si $E_k = F_k$ entonces las cláusulas E y F son unificables y un unificador de máxima generalidad es $\sigma = \sigma_k \circ \cdots \circ \sigma_0$. Además, el término E_k es el término unificado. En este caso el proceso termina aquí.
- 2. Si $E_k = F_k$ entonces se busca el primer par de discordancia entre E_k y F_k . Sea éste D_k .
- 3. Si D_k contiene una variable y un término (pueden ser dos variables y una de ellas hace de término) pasamos al siguiente paso. En otro caso los términos no son unificables y terminamos el proceso.
- 4. Si la variable aparece en el término se produce un *occur check* por lo que E y F no unifican y terminamos. Si esto no ocurre pasamos al siguiente paso.
- Construimos una nueva sustitución que vincule la variable con el término de D_k . Sea esta sustitución σ_{k+1} . Construimos ahora dos nuevos términos $E_{k+1} = \sigma_{k+1}(E_k)$ y $F_{k+1} = \sigma_{k+1}(F_k)$ y volvemos al paso 1.

Lo que queremos demostrar es:

$$|\Sigma| = \varphi$$
?

Equivalente a mostrar que:

$$\Sigma \cup \{\neg \phi\}$$
 es contradictorio (i.e. $\Sigma \mid = \Box$)

Nota: decimos que □ es la cláusula vacía porque una **cláusula sin literales** no es satisfacible.

Nos valdremos de la siguiente Regla de Resolución:

$$\begin{array}{c}
 p_1 + ... + p_j + ... + p_m \\
 q_1 + ... + q_k + ... + q_n
 \end{array}$$

$$(p_1 + ... + p_j + ... + p_m + q_1 + ... + q_k + ... + q_n) \theta$$

Donde p_i y q_k son uno la negación del otro (complementarios) y θ es su unificador

Suponga que quiere demostrar que ϕ es consecuencia lógica de Σ :

- Transforme $\Sigma \cup \{\neg \phi\}$ a Forma Normal de Skolem.
- Usando la equivalencia $\forall x (A(x) * B(x)) \equiv \forall x A(x) * \forall x B(x)$
 - Transforme las fórmulas a un conjunto de cláusulas $C = \{c_1, ..., c_n\}$ (sin cuantificadores)
 - Mientras \Box no pertenezca a C y existen c_i y c_k en C tales que la regla de resolución es aplicable:
 - Aplique la regla de resolución a c_i y c_k generando C'
 - Hacer C = C U {C'}

Ejercicio: Demostrar que

$$\mid \exists X (P(X) \rightarrow \forall y P(y))$$

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}\$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

 $\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$

[eliminamos \rightarrow]

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

$$\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x \neg (\neg P(x) \lor \forall y P(y))$$

[eliminamos \rightarrow]

[ingresamos ¬]

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

$$\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x \neg (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x (P(x) \land \neg \forall y P(y))$$

[eliminamos \rightarrow]

[ingresamos ¬]

[ingresamos ¬]

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

$$\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x \neg (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x (P(x) \land \neg \forall y P(y))$$

$$\equiv \forall x (P(x) \land \neg \forall y P(y))$$

$$\equiv \forall x (P(x) \land \exists y \neg P(y))$$
[ingresamos ¬]
[ingresamos ¬]

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup {\neg \phi} = {\} \cup {\neg \exists x (P(x) \rightarrow \forall y P(y))}}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

$$\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x \neg (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x (P(x) \land \neg \forall y P(y))$$

$$\equiv \forall x (P(x) \land \exists y \neg P(y))$$

$$\equiv \forall x \exists y (P(x) \land \neg P(y))$$

```
[eliminamos →]
[ingresamos ¬]
[ingresamos ¬]
[ingresamos ¬]
[exteriorizar ∃y]
```

Ejercicio: Demostrar que

$$|=\exists x (P(x) \rightarrow \forall y P(y))$$

$$\Sigma \cup \{\neg \phi\} = \{\} \cup \{\neg \exists x (P(x) \rightarrow \forall y P(y))\}$$

Transformamos las fórmulas a un conjunto de cláusulas

$$\neg \exists x (P(x) \rightarrow \forall y P(y))$$

$$\equiv \neg \exists x (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x \neg (\neg P(x) \lor \forall y P(y))$$

$$\equiv \forall x (P(x) \land \neg \forall y P(y))$$

$$\equiv \forall x (P(x) \land \exists y \neg P(y))$$

$$\equiv \forall x \exists y (P(x) \land \neg P(y))$$

$$\equiv \forall x (P(x) \land \neg P(f(x)))$$

[eliminamos →]
[ingresamos ¬]
[ingresamos ¬]
[ingresamos ¬]
[exteriorizar ∃y]
[skolemizar]

$$C = \{P(x), \neg P(f(x))\}\$$

$$C = \{P(x), \neg P(f(x))\}\$$

es conveniente renombrar las variables

$$C = \{P(x), \neg P(f(x))\}\$$

es conveniente renombrar las variables... para encontrar unificaciones

$$C = \{P(x), \neg P(f(x))\}\$$

es conveniente renombrar las variables... para encontrar unificaciones

$$C = \{P(x), \neg P(f(y))\}\$$

$$C = \{P(x), \neg P(f(x))\}\$$

es conveniente renombrar las variables... para encontrar unificaciones

$$C = \{P(x), \neg P(f(y))\}\$$

una aplicación de la regla de resolución permite obtener:

$$P(x) \{x/f(y)\}$$
$$\neg P(f(y))$$

Otra forma de representar la aplicación de la regla de resolución es mostrarlo como un **Grafo Acíclico Dirigido** (GAD)

LPO - Un sistema completo

El sistema basado en resolución sólo nos permite usar cláusulas.

Sólo podemos usar resolución para demostrar que ¬C es inconsistente.

- Dados:
 - un conjunto de cláusulas Σ
 - una cláusula C

Una demostración por resolución de C desde Σ es una secuencia de cláusulas C_1 , C_2 , ..., C_n tal que:

- Para cada i ≤ n:
 - \mathbf{C}_{i} pertenece a Σ o
 - C_i es una tautología o
 - C_{i} es obtenido por aplicación de regla de resolución a partir de C_{i} y C_{k}
- $C_n = C$

Σ | Res. C

• **Teorema**: (Completitud de Resolución) Dado un conjunto de cláusulas Σ U {C}

si
$$\Sigma \mid$$
 = C entonces $\Sigma \mid$ Res. C

• **Teorema**: (Correctitud de Resolución) Si C se puede deducir desde Σ usando el conjunto de reglas, entonces C es consecuencia lógica de Σ . En símbolos:

si
$$\Sigma$$
 | Res. C entonces Σ | = C

• **Teorema**: (Completitud de Resolución) Dado un conjunto de cláusulas Σ U {C}

si
$$\Sigma \mid$$
 = C entonces $\Sigma \mid$ Res. C

• **Teorema**: (Correctitud de Resolución) Si C se puede deducir desde Σ usando el conjunto de reglas, entonces C es consecuencia lógica de Σ . En símbolos:

si
$$\Sigma$$
 | Res. C entonces Σ | = C

Finalmente:

$$\Sigma \mid -\text{Res. C} \longrightarrow \Sigma \mid = C$$

LPO - Un sistema completo

El sistema basado en resolución sólo nos permite usar cláusulas.

¿Cómo generar un sistema completo para cualquier tipo de fórmula?

Lógica y Teoría de la Computación Primer semestre 2022

