

MATEMÁTICA BÁSICA – CE82 SEMANA 6 – SP1

Temario: Función exponencial, función logarítmica, ecuaciones exponencial y logarítmicas.

Logro de la sesión: Al término de la sesión el estudiante reconoce una función exponencial y logarítmica, determina su regla de correspondencia, gráfica, dominio y resuelve ecuaciones exponenciales, logarítmicas.

FUNCIÓN EXPONENCIAL

Toda función de la forma $f(x) = \mathbf{b}^x$; donde b y x son números reales tal que b > 0 y diferente de uno, se denomina **función exponencial**, con base b.

Por ejemplo:
$$f(x) = 2^x$$
, $g(x) = 3^x$, $h(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$, $f(x) = (0.35)^x$

Ejemplo:

Si
$$f(x) = 2^x$$

$Si_{j}(x) = 2$				
x	f(x)			
-3	0,125			
-2	0,25			
-1	0,5			
0	1			
1	2			
2	4			
3	8			

Características de la función:

$$f(x) = 2^x$$

$$Dom f = \underline{\hspace{1cm}}$$

$$Ran f = \underline{\hspace{1cm}}$$

Intersección con el eje *x*:

Intersección con el eje y: _____

Monotonía:

Asíntota:

Ejercicio 1:

Si
$$f(x) = \left(\frac{1}{2}\right)^x$$

	` ´
x	f(x)
-3	
-2	
-1	
0	
1	
2	
3	

Características de la función:

$$f(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$$

$$Dom f =$$

$$Ran f = \underline{\hspace{1cm}}$$

Intersección con el eje *x*: _____

Intersección con el eje y: _____

Monotonía:

Asíntota:

Conclusiones:

Si $f(x) = b^x$ tal que la base es mayor que 1, es decir, b >____

Si $f(x) = b^x$ tal que la base es un número mayor que 0 pero menor que 1, es decir, ___< b <___

Función exponencial: $f(x) = b^x$

Dominio: Dom*f* = _____

Rango: $Ran f = \underline{\hspace{1cm}}$

No hay intersección con el eje ____ Intersecta al eje y en el punto: _____

Si la base: b > 1 entonces la función es _____

Si la base: 0 < b < 1 entonces la función es _____

La asíntota es el eje _____, cuya ecuación es _____

Ejercicios 2: Esboce el gráfico de las siguientes funciones

EPE INGENIERÍA 2/6

FUNCIÓN EXPONENCIAL NATURAL

Cualquier número no negativo se puede usar como base para una función exponencial. Sin embargo, uno de los más utilizados es el número irracional e (constante de Euler), cuyo valor aproximado a 14 decimales es e = 2,71828182845905.

La función exponencial natural es la función exponencial con base e: $f(x) = e^x$

x	f(x)
-2	0,135
-1	0,367
0	1
1	2,718
2	7,389

Características de la función:
$$f(x) = e^x$$

Intersección con el eje x: _____

Intersección con el eje y: _____

Monotonía:

Asíntota:

FUNCIÓN LOGARITMO

Toda función de la forma $f(x) = \log_b x$; donde b y x son números reales tal que b > 0 y diferente de uno, se denomina función logaritmo con base b.

Y se cumple que: $\log_b x = y \Leftrightarrow \mathbf{b}^y = x$

En consecuencia, $\log_b x$ es el exponente al cual hay que elevar la base b para obtener x.

Ejemplos:

$$log_2 8 = 3...$$
; Por qué? _____

$$\log_3 9 = 2$$
 ... ¿Por qué? _____

Ejercicio 3:

Halle (sin calculadora) cada uno de los siguientes logaritmos:

a)
$$\log_{4} 16 =$$

a)
$$\log_4 16 =$$
 b) $\log_{10} 1000 =$ c) $\log_2 0.5 =$ d) $\log_5 5 =$ ___

c)
$$\log_2 0.5 =$$

d)
$$\log_2 5 =$$

Ejemplo:

Si
$$f(x) = \log_2 x$$

x	f(x)
0,125	
0,25	
0,5	
1	
2	
4	
8	
2	

Características de la función:

$$f(x) = \log_2 x$$

$$Ran f =$$

Intersección con el eje x: _____

Intersección con el eje y: _____

Monotonía: ____

Asíntota: _____

Ejercicio 4:

Si
$$f(x) = \log_{0.5} x$$

x	f(x)		У				1		1.	1	
0,125								T	T	T	T
0,25		3.						T	T	Î	1
0,5		2.						T	T	T	T
1								T	Ţ		
2		-1		2	3	4	5	6	7	S	9
4		-1-	2000								
8								T	T		

Características de la función:

$$f(x) = \log_{0.5} x$$

$$Ran f = \underline{\hspace{1cm}}$$

Intersección con el eje x: _____

Intersección con el eje y: _____

Monotonía:

Asíntota: _____

Conclusiones:

Si $f(x) = \log_b x$ tal que la base es mayor que 1, es decir, b >____

Si $f(x) = \log_b x$ tal que la base es un número mayor que 0 pero menor que 1, es decir,

Función logaritmo: $f(x) = \log_b x$

Dominio: Dom*f* = _____

Rango: $Ranf = \underline{\hspace{1cm}}$

No hay intersección con el eje ____ Intersecta al eje *x* en el punto: _____

- Si la base: b > 1 entonces la función es _____
- Si la base: 0 < b < 1 entonces la función es _____
- La asíntota es el eje _____, cuya ecuación es _____

EPE INGENIERÍA 4/6

LOGARITMO COMÚN y LOGARITMO NATURAL

La función logaritmo con base 10 se llama logaritmo común y se representa por: $f(x) = \log x$

Ejemplos:
$$\log x = 2 \Rightarrow 10^2 = x$$
, $\log x = -3 \Rightarrow 10^{-3} = x$, $\log x = a \Leftrightarrow 10^a = x$

La función logaritmo con base e se llama logaritmo natural y se representa por: $f(x) = \ln x$

Ejemplos:
$$\ln x = 2 \Rightarrow e^2 = x$$
, $\ln x = -3 \Rightarrow e^{-3} = x$, $\ln x = a \Leftrightarrow e^a = x$

FUNCIÓN EXPONENCIAL Y FUNCIÓN LOGARITMO

La función exponencial $f(x) = \mathbf{b}^x$ y función logaritmo $f(x) = \log_{\mathbf{b}} x$ son mutuamente inversas, por lo tanto, cumplen con las propiedades de las funciones inversas.

Si
$$f(x) = b^x$$
 entonces: Dom $f =$ _____ y Ran $f =$ _____; asíntota: _____

Si
$$f(x) = \log_b x$$
 entonces: Dom $f = \underline{\hspace{1cm}}$ y Ran $f = \underline{\hspace{1cm}}$; asíntota: $\underline{\hspace{1cm}}$

Relación gráfica: Las curvas son simétricas respecto a la recta y = x.

Relación analítica

a)
$$\log_b x = a \Rightarrow b^a = x$$

b)
$$\log_3 x = 2 \Longrightarrow 3^2 = x$$

a)
$$\log_b x = a \Rightarrow b^a = x$$
 b) $\log_3 x = 2 \Rightarrow 3^2 = x$ c) $\ln x = -1 \Rightarrow e^{-1} = x$

d)
$$b^x = a \Rightarrow x = \log_b a$$

d)
$$b^x = a \Rightarrow x = \log_b a$$
 e) $5^x = 7 \Rightarrow x = \log_5 7$ f) $e^x = 9 \Rightarrow x = \ln 9$

f)
$$e^x = 9 \Rightarrow x = \ln 9$$

g)
$$8^x = 4 \Rightarrow$$
 _____ i) $3^x = 6 \Rightarrow$ _____

h)
$$e^x = 2 \Rightarrow$$

i)
$$3^x = 6 \Rightarrow$$

j)
$$\log_4 x = 3 \Rightarrow$$
 _____ l) $\ln x = 8 \Rightarrow$ _____

k)
$$\log_7 x = -2 \Rightarrow$$

$$\ln x = 8 \Longrightarrow \underline{\hspace{1cm}}$$

Propiedades fundamentales:

$$\log_b b = \underline{\hspace{1cm}} y \log_b 1 = \underline{\hspace{1cm}}$$

Ejemplos: $\log_4 4 =$

$$\log_5 1 =$$

$$\log 10 =$$

PROPIEDADES DE LOGARITMOS

PROPIEDAD	APLICACIÓN
$\log_{b}(m) + \log_{b}(n) = \log_{b}(m \cdot n)$	a) $\log_7 4 + \log_7 8 = \log_7($ $) = \log_7($ $)$ b) $\log_3 21 = \log_3(7 \cdot 3) = \log_3 + \log_3$
$\log_{b}(m) - \log_{b}(n) = \log_{b}\left(\frac{m}{n}\right)$	a) $\log_7 4 - \log_7 8 = \log_7 () = \log_7 ()$ b) $\log_2 \left(\frac{8}{9}\right) = \log_2\log_2$
$\log_{b}(m)^{k} = k \log_{b}(m)$	a) $\log_3(x)^5 = -\log_3(x)$ b) $9\log_4(x) = \log_4(x)$

Ejercicios 5:

a) $\log_3 7 + \log_3 5 =$	b) $\ln 12 - \ln 3 + \ln 2 =$	$\mathbf{c)} \ln \left(x^2 \right)^5 =$
d) $\log x^6 - \log x^4 - 2\log x =$	e) $\log_2 8^6 - \log_3 9^5 =$	$\mathbf{f}) \ln(\mathbf{e})^5 =$

CIERRE DE CLASE

- A. La función $f(x) = 3^{-x}$, ¿es creciente?
- B. La función $g(x) = e^x$ ¿Tiene asíntota vertical?
- C. La función $h(x) = \ln x$ ¿es negativa?

Problema (Competencia Razonamiento Cuantitativo)

Una colonia de ranas está en un proceso de extinción de forma exponencial. El gráfico muestra la cantidad de ejemplares que aún quedan vivos por mes.

- A) ¿Cuántas ranas había inicialmente?
- **B**) Escribe una función del tipo $r(t) = k(b)^{t} \text{ con la que se pueda}$ calcular la cantidad de ranas vivas que hay cada mes.

C) ¿Qué porcentaje de ranas se muere cada mes?