Chapitre 2 : Vecteurs aléatoires - Couple de vecteurs aléatoires

MA 361 : TDS et Probabilités

 $\label{eq:pierre-Alain TOUPANCE} Pierre-alain.toupance@esisar.grenoble-inp.fr$

Grenoble INP - ESISAR 3^{ième} année

12 octobre 2016

Soient X et Y deux variables aléatoires sur l'espace probabilisé (Ω, \mathcal{A}, P) .

On appelle couple de variable aléatoire l'application Z=(X,Y) définie sur Ω par :

$$\forall \omega \in \Omega, \ Z(w) = (X(w), Y(w))$$

Loi d'un couple

Connaître la loi de (X, Y) consiste à déterminer :

$$\forall (A, B) \in (\mathcal{P}(\mathbb{R}))^2, \ \mathbb{P}(X \in A, \ Y \in B)$$

On note $\forall C \in \mathcal{P}(\mathbb{R}^2), \mathbb{P}_{(X,Y)}(C) = \mathbb{P}((X,Y) \in C).$

On dit que les lois de X et de Y sont les **lois marginales** de (X,Y).

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$
- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$
- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$

Remarque : Pour tout intervalle I et J de \mathbb{R} , on a :

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$
- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$

Remarque : Pour tout intervalle I et J de \mathbb{R} , on a : $\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$
- $\forall \mathcal{B} \subset \mathbb{R}^2$, $\mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$

Remarque : Pour tout intervalle I et J de \mathbb{R} , on a :

$$\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$$
$$= \iint_{I} \left(\int_{J} f(x, y) dy \right) dx$$

La loi conjointe d'un couple (X,Y) est définie par un fonction f de \mathbb{R}^2 dans \mathbb{R}^+ telle que :

- f est continue presque partout (l'ensemble des points de discontinuité est de surface nulle).
- $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$
- $\forall \mathcal{B} \subset \mathbb{R}^2, \ \mathbb{P}((X,Y) \in \mathcal{B}) = \iint_{\mathcal{B}} f(x,y) dx dy$

Remarque : Pour tout intervalle I et J de \mathbb{R} , on a :

$$\mathbb{P}(X \in I, Y \in J) = \iint_{I \times J} f(x, y) dx dy$$
$$= \iint_{I} \left(\int_{J} f(x, y) dy \right) dx$$
$$= \iint_{J} \left(\int_{I} f(x, y) dx \right) dy$$

Exemple de loi conjointe

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x,y) = \begin{cases} \frac{3(x^2+y^2)}{8} & \text{si } (x,y) \in ([-1,+1])^2\\ 0 & \text{sinon} \end{cases}$$

- ② Soit (X,Y) un couple de VA dont f est la densité conjointe. Calculer $\mathbb{P}(X \in [0;1/2], Y \in [1/2;1]$ et P(0 < X < Y).

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$

$$F_{(X,Y)}(\alpha,\beta) =$$

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dx dy$$

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dx dy$$

Remarque : Si l'on connait la fonction de répartition F d'un couple (X,Y) et que F est deux fois dérivable presque partout alors la densité de cette loi conjointe est :

Définition : fonction de répartition

Soit (X,Y) un couple de variables aléatoires de densité $f_{(X,Y)}$. On appelle fonction de répartition de (X,Y) la fonction $F_{(X,Y)}$ définie par :

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ F_{(X,Y)}(\alpha, \beta) = P(X < \alpha, \ Y < \beta)$$
$$F_{(X,Y)}(\alpha, \beta) = \int_{-\infty}^{\alpha} \int_{-\infty}^{\beta} f_{(X,Y)}(x, y) dx dy$$

Remarque : Si l'on connait la fonction de répartition F d'un couple (X,Y) et que F est deux fois dérivable presque partout alors la densité de cette loi conjointe est :

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$$

lois marginales Variables aléatoires continues indépendantes

Propriété

Soit (X,Y) un couple de VA dont la densité conjointe est $f \mathbb{R}^2 \to \mathbb{R}$, alors X et Y possèdent des densités appelées densités marginales définies respectivement par :

$$f_X(x) =$$

Démonstration :

< □ ト < 圖 ト < 厘 ト < 厘 ト

Propriété[']

$$f_X(x) =$$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X < \alpha) &= & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \end{array}$$

$$f_X(x) =$$

$$\begin{array}{lll} D\acute{e}monstration: \\ \mathbb{P}(X < \alpha) & = & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \\ & = & \mathbb{P}((X,Y) \in A) \text{ où } A = \{(x,y) \in \mathbb{R}^2, \ x < \alpha\} \end{array}$$

$$f_X(x) =$$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X < \alpha) & = & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \\ & = & \mathbb{P}((X,Y) \in A) \text{ où } A = \{(x,y) \in \mathbb{R}^2, \ x < \alpha\} \\ & = & \iint_A f(x,y) dx dy \end{array}$$

$$f_X(x) =$$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X < \alpha) & = & \mathbb{P}(X < \alpha, Y \in \mathbb{R}) \\ & = & \mathbb{P}((X,Y) \in A) \text{ où } A = \{(x,y) \in \mathbb{R}^2, \ x < \alpha\} \\ & = & \iint_A f(x,y) dx dy \\ & = & \int_{-\infty}^{\alpha} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx \end{array}$$

$$f_X(x) =$$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X<\alpha) &=& \mathbb{P}(X<\alpha,Y\in\mathbb{R}) \\ &=& \mathbb{P}((X,Y)\in A) \text{ où } A = \{(x,y)\in\mathbb{R}^2,\ x<\alpha\} \\ &=& \iint_A f(x,y) dx dy \\ &=& \int_{-\infty}^{\alpha} \bigg(\int_{-\infty}^{+\infty} f(x,y) dy\bigg) dx \\ \text{Ainsi } f_X(x) &=& \int_{\mathbb{R}} f(x,y) dy \end{array}$$

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
 et $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$

$$\begin{array}{ll} D\acute{e}monstration: \\ \mathbb{P}(X<\alpha) &=& \mathbb{P}(X<\alpha,Y\in\mathbb{R}) \\ &=& \mathbb{P}((X,Y)\in A) \text{ où } A = \{(x,y)\in\mathbb{R}^2,\ x<\alpha\} \\ &=& \iint_A f(x,y) dx dy \\ &=& \int_{-\infty}^{\alpha} \bigg(\int_{-\infty}^{+\infty} f(x,y) dy\bigg) dx \end{array}$$
 Ainsi $f_X(x) = \int_{\mathbb{R}} f(x,y) dy$

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leqslant 1\\ 0 & \text{sinon} \end{cases}$$

Exemple

Soit Z = (X, Y) la loi uniforme sur le disque unité, la loi conjointe est définie par la densité f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{si } x^2 + y^2 \leqslant 1\\ 0 & \text{sinon} \end{cases}$$

Déterminer les lois marginales.

Variables aléatoires continues indépendantes

Définition (rappel)

Soient X et Y deux variables aléatoires.

X et Y sont indépendantes si et seulement si $\forall (A, B) \in \mathcal{P}(\mathbb{R})^2$,

$$\mathbb{P}(X \in A, Y \in B) = P(X \in A) \times \mathbb{P}(Y \in B)$$

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Démonstration :

Propriétés

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Démonstration:

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Démonstration :

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Propriétés |

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Démonstration:

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Par conséquent $f_{(X,Y)}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial x \partial y}(x,y) = \frac{\partial F_X}{\partial x}(x)\frac{\partial F_Y}{\partial y}(y)$

Si X et Y sont des variables aléatoires indépendantes à densité f_X et f_Y , alors la densité conjointe $f_{(X,Y)}$ est définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ f_{(X,Y)}(x,y) = f_X(x) \times f_Y(y)$$

Démonstration :

$$\forall (x,y) \in \mathbb{R}^2$$

$$F_{(X,Y)}(x,y) = \mathbb{P}(X < x, Y < y) = \mathbb{P}(X < x)\mathbb{P}(Y < y)$$

Ainsi
$$F_{(X,Y)}(x,y) = F_X(x)F_Y(y)$$

Par conséquent
$$f_{(X,Y)}(x,y) = \frac{\partial^2 F_{(X,Y)}}{\partial x \partial y}(x,y) = \frac{\partial F_X}{\partial x}(x) \frac{\partial F_Y}{\partial y}(y)$$
 ainsi $f_{(X,Y)}(x,y) = f_X(x) f_Y(y)$

Exercice

Robert et Brad doivent faire un exercice de probabilité. Les temps de la résolution de l'exercice par Robert et Brad suivent des lois exponentielles de paramètres respectifs 2λ et 3λ en mn où $\lambda \in \mathbb{R}^+$. On suppose qu'ils cherchent de façon indépendante cet exercice.

Déterminer la probabilité que Robert ait trouvé la solution de l'exercice avant Brad

Somme de 2 VA

Soient X et Y deux variables aléatoires de densité conjointe $f_{(X,Y)}.$

on a:

$$F_{(X+Y)}(t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy \text{ où } \mathcal{D} = \{(x+y), x+y < t\}$$

X + Y est une VA réelle à densité f_{X+Y} définie par :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_{(X,Y)}(y, t - y) dy$$

Si X et Y sont indépendantes alors :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = (f_X * f_Y)(t)$$

$$\forall t \in \mathbb{R}, \ P(X + Y < t) =$$

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$ On effectue le changement de variable
$$\begin{cases} u = x \\ v = x+y \end{cases}$$

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

On effectue le changement de variable $\begin{cases} u = x \\ v = x + y \end{cases}$

Ainsi:

$$P(X+Y < t) = \int_{\mathbb{R}} \int_{-\infty}^{t} f_{(X,Y)}(u, v - u) dv \ du$$
$$= \int_{-\infty}^{t} \int_{\mathbb{R}} f_{(X,Y)}(u, v - u) du \ dv$$

$$\forall t \in \mathbb{R}, \ P(X+Y < t) = \iint_{\mathcal{D}} f_{(X,Y)}(x,y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2, \ x+y < t\}$

On effectue le changement de variable $\begin{cases} u = x \\ v = x + y \end{cases}$

Ainsi:

$$P(X+Y< t) = \int_{\mathbb{R}} \int_{-\infty}^t f_{(X,Y)}(u,v-u) dv \ du$$

$$= \int_{-\infty}^t \int_{\mathbb{R}} f_{(X,Y)}(u,v-u) du \ dv$$
 D'où $f_{X+Y}(v) = \int_{\mathbb{R}} f_{(X,Y)}(u,v-u) du$

Exercice

Notre ami Robert va acheter son pain tous les matins, le temps de parcours en minutes de son domicile à la boulangerie suit une loi uniforme sur [10; 12].

- En supposant que le temps du retour suit la même loi que l'aller et est indépendante de celle-ci, déterminer la loi de la variable aléatoire égale au temps de l'aller retour.
- ② D'autre part, le temps passé dans la boulangerie suit une loi exponentielle de paramètre $\frac{1}{2}$ et indépendante du temps de parcours, déterminer le temps moyen que met Robert pour aller chercher son pain.

$$f_X(x) = \frac{1}{2} 1_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} 1_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_X(x) = \frac{1}{2} 1_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} 1_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} 1_{[10;12]}(t-x) dx$$

Chapitre 2 : Vecteurs aléatoires

$$f_X(x) = \frac{1}{2} 1_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} 1_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} 1_{[10;12]}(t-x) dx$$

$$D'où f_{X+Y}(t) = \begin{cases} 0 & \text{si } t < 20 \\ \frac{1}{4}(t-20) & \text{si } t \in [20;22] \\ \frac{1}{4}(24-t) & \text{si } t \in [22;24] \\ 0 & \text{si } t > 24 \end{cases}$$

$$f_X(x) = \frac{1}{2} 1_{[10;12]}(x)$$
 $f_Y(y) = \frac{1}{2} 1_{[10;12]}(y)$

X et Y sont indépendantes, on obtient la densité de X+Y :

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(x) f_Y(t-x) dx = \frac{1}{4} \int_{10}^{12} 1_{[10;12]}(t-x) dx$$

$$D'où f_{X+Y}(t) = \begin{cases} 0 & \text{si } t < 20 \\ \frac{1}{4}(t-20) & \text{si } t \in [20;22] \\ \frac{1}{4}(24-t) & \text{si } t \in [22;24] \\ 0 & \text{si } t > 24 \end{cases}$$

ullet Soit T la VA égale au temps passé dans la boulangerie, le temps moyen est :

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale

Loi conjointe Fonction de répartition lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}($

Loi conjointe Fonction de répartition lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2)$

Fonction de répartition lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

Si X_1 et X_2 ne sont pas indépendantes on a :

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

$$X_1 + X_2 \leadsto \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2 + 2Cov(X_1, X_2)})$$

où
$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2)$$

Loi conjointe Fonction de répartition lois marginales Variables aléatoires continues indépendantes Somme de 2 variables aléatoires continues

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

On a:

$$\frac{(x-m_1)^2}{2\sigma_1^2} + \frac{(t-x-m_2)^2}{2\sigma_2^2} =$$

$$\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \Big((x - m_1) - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (t - m_1 - m_2) \Big)^2 + \frac{1}{2(\sigma_1^2 + \sigma_2^2)} (t - m_1 - m_2)^2$$

Démonstration : cas de VA indépendantes

La densité de $Z = X_1 + X_2$ est

$$f_Z(t) = \int_{\mathbb{R}} \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(t-x-m_2)^2}{2\sigma_2^2}} dx$$

On a:

$$\frac{(x-m_1)^2}{2\sigma_1^2} + \frac{(t-x-m_2)^2}{2\sigma_2^2} =$$

$$\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \Big((x - m_1) - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (t - m_1 - m_2) \Big)^2 + \frac{1}{2(\sigma_1^2 + \sigma_2^2)} (t - m_1 - m_2)^2$$

Ainsi
$$X_1 + X_2 \rightsquigarrow \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

Exercice

On admet que le poids d'un tronc d'arbre, en tonnes, est une variable aléatoire X qui suit une loi normale de moyenne m=2 et d'écart-type $\sigma=0,6$.

- Soit $n \in \mathbb{N}^*$. Pour tout entier i tel que $1 \le i \le n$, soit X_i la variable aléatoire qui, à chaque chargement de n troncs d'arbre, associe le poids du i-ème tronc. Les variables aléatoires X_i , supposées indépendantes, suivent toutes la loi de X. On considère la variable aléatoire $Y = X_1 + X_2 + ... + X_n$. Déterminer la loi de probabilité de Y.
- ② Un transporteur accepte une charge maximale de 25 tonnes. Déterminer le nombre maximal de troncs que l'on peut charger, en ayant une probabilité de surcharge ne dépassant pas 1%.

Exercice

Soit X et Y deux variables aléatoires réelles exponentielles de paramètre λ ($\lambda > 0$) indépendantes.

- Quelle est la loi de X^2 ?
- Quelle est celle de $V = \begin{cases} X & \text{si } 0 \le X \le 1 \\ 2X & \text{si } X > 1 \end{cases}$
- Déterminer la loi de $(Z, S) = (\frac{X}{X+Y}, X+Y)$. Les variables Z et S sont-elles indépendantes?

