TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection

单击输入您的封面副标题

Arthors

Tielei Wang^{1,2}, Tao Wei^{1,2}, Guofei Gu³, Wei Zou^{1,2*}

¹Key Laboratory of Network and Software Security Assurance (Peking University),

Ministry of Education, Beijing 100871, China

²Institute of Computer Science and Technology, Peking University

³ Department of Computer Science & Engineering, Texas A&M University

{wangtielei, weitao, zouwei}@icst.pku.edu.cn, guofei@cse.tamu.edu

• 以AFL为代表的CGF主要流程

Ideal Real World

Motivation

• 1. White Box Fuzzing (e.g., Fuzzing Based on Symbolic Execution) cannot solve the constraints of checksum

• 2. Generation-based Fuzzing is unable to reverse engineer the checksum algorithms.

So, how to bypass the checksum?

High-Level Intuition

A Motivating Example

```
void decode_image(FILE* fd){
    int length
                 = get_length(fd);
    int recomputed_chksum = checksum(fd, length);
    int chksum_in_file = get_checksum(fd);
    //line 6 is used to check the integrity of inputs
    if (chksum_in_file != recomputed_chksum)
      error();
    int Width = get_width(input_file);
    int Height = get_height(input_file);
10
    int size = Width * Height * size of (int); //integer overflow
11
    int * p = malloc(size);
12
    ...
    for (i=0; i<Height; i++) (// read ith row to p
13
14
   read_row(p + Width*i, i, fd); //heap overflow
```


TaintScope Overview

A. Fine-grained Dynamic Taint Tracing

- Analysts can specify a filename or an IP address as a taint source.
- Data-flow dependency only: data movement instructions (e.g., MOV, PUSH), arithmetic instructions (e.g., SUB, ADD), and logic instructions (e.g., AND, XOR). Also eflag is also taken into consideration.

```
1 void decode_image(FILE* fd){
    int length
                = get_length(fd);
   int recomputed_chksum = checksum(fd, length);
    int chksum_in_file = get_checksum(fd);
    //line 6 is used to check the integrity of inputs
    if (chksum_in_file != recomputed_chksum)
    error();
    int Width = get_width(input_file);
    int Height = get_height(input_file);
    int size = Width * Height * size of (int); //integer overflow
10
11
    int* p = malloc(size);
12
    . . .
13
    for(i=0; i<Height;i++) {// read ith row to p
14
      read_row(p + Width*i, i, fd); //heap overflow
```

B. Identification of Hot Bytes

• By default, the execution monitor checks which input bytes can pollute the arguments of memory allocation functions (e.g., malloc, realloc) and string functions (e.g., strcpy, strcat).

```
void decode_image(FILE* fd){
    . . .
    int length = get_length(fd);
   int recomputed_chksum = checksum(fd, length);
    int chksum_in_file = get_checksum(fd);
    //line 6 is used to check the integrity of inputs
    if (chksum_in_file != recomputed_chksum)
      error();
    int Width = get_width(input_file);
    int Height = get_height(input_file);
    int size = Width * Height * size of (int); //integer overflow
10
11
    int* p = malloc(size);
12
   . . .
    for (i=0; i<Height; i++) (// read ith row to p
13
    read_row(p + Width*i, i, fd); //heap overflow
14
```

C. Locating Checksum Check Points and Checksum Fields

• There must be a special branch point (e.g., a conditional jump instruction such as JZ, JE) in the program, where all well-formed inputs follow the same branch whereas malformed inputs follow the other one.

- Identifying Potential Checksum Check Points. (all conditional jump instructions)
- Refinement Procedure. ((P1∩P'0) ∪ (P0∩P'1))
- Checksum Field Identification. (back to source)

P: Set of Assertion

P1: Well-formed Input Always Taken

P0: Well-formed Input Always not Taken

P'1: Malformed Input Always Taken

P'0: Malformed Input Always not Taken

D. Directed and Checksum-aware Fuzzing

• Checksum-aware Fuzzing. To force the conditional jump instructions always (not) taken, the condition code flags (e.g., OF, CF, ZF) in the eflags register are set to proper values before the execution of the branch instructions.

```
void decode_image(FILE* fd){
   int length = get_length(fd);
4 int recomputed_chksum = checksum(fd, length);
    int chksum_in_file = get_checksum(fd);
    //line 6 is used to check the integrity of inputs
    if (chksum_in_file != recomputed_chksum)
     error();
    int Width = get_width(input_file);
    int Height = get_height(input_file);
    int size = Width * Height * size of (int); //integer overflow
    int * p = malloc(size);
12
    for (i=0; i<Height; i++) (// read ith row to p
13
14
    read_row(p + Width*i, i, fd); //heap overflow
```

E. Repairing Test Cases Using Combined Concrete and Symbolic Execution

- The test case generated cannot pass the checksum!
- So it need to be repaired.

```
void decode_image(FILE* fd) {
    . . .
 3 int length = get_length(fd);
    int recomputed_chksum = checksum(fd, length);
    int chksum_in_file = get_checksum(fd);
    //line 6 is used to check the integrity of inputs
    if(chksum_in_file != recomputed_chksum)
    error();
    int Width = get_width(input_file);
    int Height = get_height(input_file);
    int size = Width * Height * size of (int); //integer overflow
10
11
    int * p = malloc(size);
12
13
    for (i=0; i<Height;i++) {// read ith row to p
14
    read_row(p + Width*i, i, fd); //heap overflow
```

Evaluation

Category	Application	Version	OS	Category	Application	Version	OS
Image Viewer	Google Picasa	3.1.0	Windows		MPlayer	SVN-28979	Linux
	Adobe Acrobat	9.1.3	Windows	Media Player	Gstreamer	0.10.15	Linux
	ImageMagick	6.5.2-7	Linux	1	Winamp	5.552	Windows
	Microsoft Paint	5.1	Windows		libtiff	3.8.2	Linux
Web Browser	Amaya	11.1	Windows	Other	XEmacs	21.4.22	Linux
	Dillo	2.1.1	Linux	1	wxWidgets	2.8.10	Linux

Table I
AN INCOMPLETE LIST OF APPLICATIONS USED IN OUR EXPERIMENT

Executable	Package	Input Format	Input Size (Bytes)	# Hot Bytes	# X86 Instrs	Run Time
	ImageMagick	TIFF	5778	18	191,759,211	2m53s
Display			2,020	18	82,640,260	1m30s
		PNG	5,149	9	19,051,746	1m54s
Display			1,250	29	47,246,043	1m8s
		JPEG	6,617	11	48,983,897	1m13s
			6,934	9	48,823,905	1m11s
	Google Picasa	GIF	3,190	14	304,993,501	1m25s
			6,529	43	536,938,567	2m57s
PicasaPhotoViewer.exe		PNG	2,730	18	712,021,776	5m16s
Treasur note viewer.exe			1,362	16	660,183,239	4m8s
		BMP	3,174	8	310,909,256	1m21s
			7,462	19	468,273,580	2m35s
	Adobe Acrobat	BMP	1,440	6	658,370,048	4m25s
Acrobat.exe			3,678	6	663,923,080	5m2s
		PNG	770	21	297,492,758	3m8s
			1,250	12	354,685,431	4m31s
		JPEG	1,012	13	328,365,912	4m14s
			2,356	4	356,136,453	4m36s

Table II HOT BYTES IDENTIFICATION RESULTS

Evaluation

Executable	Package (Version)	File Format	Checksum Algorithm	$ \mathcal{A} $	$ (\mathcal{P}_1 \cap \mathcal{P}'_0) \cup (\mathcal{P}_0 \cap \mathcal{P}'_1) $	Detected?
PicasaPhotoViewer	Google Picasa (3.1)	PNG	CRC32	830	1	
Acrobat	Adobe Acrobat (9.1.3)	FNO	CKC32	5,805	1	
Snort	snort (2.8.4.1)	PCAP	TCP/IP checksum	2	2	
tcpdump	tcpdump (4.0.0)	ICAI		5	2	
sigtool	clamav (0.95.2)	CVD	MD5	2	1	
vcdiff	open-vcdiff (0.6)	VCDIFF	Adler32	1	1	
Tar	GNU Tar (1.22)	Tar Archive	Tar checksum	9	1	
objcopy	GNU binutils (2.17)	Intel HEX	Intel HEX checksum	62	1	

Table III
CHECKSUM IDENTIFICATION RESULTS

Evaluation

● 単击此

Package	Vuln-Type	# Vulns	Checksum-aware?	Advisory	Severity Rating	
Microsoft Paint	Memory Corruption	1	N	CVE-2010-0028	Moderate	
Google Picasa	Infinite loop	1	N	pending	N/A	
	Integer Overflow	1		SA38435	Moderate	
Adobe Acrobat	Infinite loop	1	N	CVE-2009-2995	Extremely critical	
	Memory Corruption	1	N	CVE-2009-2989	Extremely critical	
ImageMagick	Integer Overflow	1	N	CVE-2009-1882	Moderate	
CamlImage	Integer Overflow	3	Y	CVE-2009-2660	Moderate	
LibTIFF	Integer Overflow	2	N	CVE-2009-2347	Moderate	
wxWidgets	Buffer Overflow	2	N	CVE-2009-2369	Moderate	
WAWIdgets	Double Free	1	Y	C V L-2009-2309	Moderate	
IrfanView	Integer Overflow	1	N	CVE-2009-2118	High	
GStreamer	Integer Overflow	1	Y	CVE-2009-1932	Moderate	
Dillo	Integer Overflow	1	Y	CVE-2009-2294	High	
XEmacs	Integer Overflow	3	Y	CVE-2009-2688	Moderate	
ALIIIacs	Null Dereference	1	N	N/A	N/A	
MPlayer	Null Dereference	2	N	N/A	N/A	
PDFlib-lite	Integer Overflow	1	Y	SA35180	Moderate	
Amaya	Integer Overflow	2	Y	SA34531	High	
Winamp	Buffer Overflow	1	N	SA35126	High	
Total		27				

Table V VULNERABILITIES DETECTED BY TAINTSCOPE