

Information Technology

Binary and other Value Placed systems

Prepared by:
Ingrid Zuckerman based on CSE1303
Revised by Fabian Bohnert, Graham Farr and Maria Garcia de la Banda

Objectives

- To understand binary and what it can represent
- To understand how value placed systems work
- To be able to convert between (non-negative) integers encoded in binary, octal, decimal and hexadecimal

Place Value Systems

Bits, Bytes, Kilo-, Mega-, Giga-, ...

- Bit: 0 or 1
- Byte (B) = 8 bits
- Word: chunk of bits (8, 16, 32 or 64) used as basic unit of data in a computer (to store, operate on, move, etc)
 - depends on the computer
 - not always fixed size
- Kilobyte (KB) = 1024 bytes = 2^{10} bytes $\approx 10^3$ bytes
- Megabyte (MB) = $1024 \text{ KB} = 2^{20} \text{ bytes} \approx 10^6 \text{ bytes}$
- Gigabyte (GB) = $1024 \text{ MB} = 2^{30} \text{ bytes} \approx 10^9 \text{ bytes}$
- Terabyte (TB) = $1024 \text{ GB} = 2^{40} \text{ bytes} \approx 10^{12} \text{ bytes}$
- **Petabyte** (PB) = $1024 \text{ TB} = 2^{50} \text{ bytes} \approx 10^{15} \text{ bytes}$

How many values in N bits?

2ⁿ: think about it in tree form

Thinking binary

Since we have 2^N values in N bits:

$$2^{1} = 2$$
 $2^{12} = 4096$
 $2^{2} = 4$
 $2^{13} = 8192$
 $2^{14} = 16384$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{16} = 65536$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{20} = 1048576$
 $2^{20} = 1073741824$
 $2^{10} = 1024$
 $2^{20} = 1073741824$
 $2^{21} = 2048$
 $2^{21} = 2147483648$
 $2^{21} = 2147483648$

- Each digit worth a value depending on its position in a number
 - -600 > 060 > 006
- Ratio between adjacent columns' value is constant
 - 600 is ten times 060
 - 060 is ten times 006
- Ratio is called base of number system
 - Most human cultures now use base 10 (decimal)
 - Other base values are possible

What does "123" (decimal) mean?

Smaller bases: less compact, simpler range of digits

These are all representations of the number 1340 (decimal) in bases from 2 to 16

Higher bases: more compact, wider range of digits

```
10100111100
      1211122
      110330
      20330
      10112
      3623
      2474
      1748
      1340
      1009
      938
      7C1
      6BA
15
      5E5
16
      53C
```

```
Digits with value greater
than 9 use letters from the
           alphabet:
           A = ten (10)
          B = eleven (11)
          C = twelve (12)
         D = thirteen (13)
         E = fourteen (14)
          F = fifteen (15)
               etc.
```


Represented Unsigned Integers

Representing Unsigned Integers

- Humans often represent unsigned integers using a base-10 positional notation
 - So the number 90210 means $(90210)_{10} = 9 \times 10^4 + 0 \times 10^3 + 2 \times 10^2 + 1 \times 10^1 + 0 \times 10^0$
- Computers represent unsigned integers using a base-2 positional notation
 - So the number 101011 means $(101011)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ $= 1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 =$ $(43)_{10}$
- The range of unsigned integers we can represent in N bits is

$$0, 1, ..., 2^{N}-1$$

Representing Unsigned Integers

The first few binary numbers (4-bit, unsigned) are:

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Converting Decimal to/from Binary

7 6 5 4 3 2 1 2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2

Place value

Converting Decimal to/from Binary

128 64 32 16 8

Place value

Example:

Convert the unsigned binary number 10011010 to decimal

1 ||

 $\mathbf{0}$

2⁵

2.2

128

64

32 16

8

7 6 5 4 3 2 1 0 **1** 0 0 **1** 1 0 **1** 0 **128** 64 32 **16** 8 4 **2** 1

$$128 + 16 + 8 + 2 = 154$$

So, **10011010** in unsigned binary is **154** in decimal

Example:

Convert the decimal number 105 to unsigned binary

Q. Does 128 fit into 105?

A. No

Next, consider what's left: still 105

Q. Does 64 fit into 105?

A. Yes

Next, consider what 's left: 105-64=41

Q. Does 32 fit into 41?

A. Yes

Next, consider what 's left: 41-32=9

Q. Does 16 fit into 9?

A. No

Next, consider what's left: still 9

Q. Does 8 fit into 9?

A. Yes

Next, consider what 's left: 9 - 8 = 1

Q. Does 4 fit into 1?

A. No

Next, consider what's left: still 1

Q. Does 2 fit into 1?

A. No

Next, consider what's left: still 1

Q. Does 1 fit into 1?

A. Yes

For integer decimal-to-binary, we STOP here.

Thinking binary

binary value

decimal

value

hexadecimal

digit

Hexadecimal

- Base 16
 - Digits 0 to 9, A to F
 - Often called "hex" for short
- Convenient shorthand for writing binary values
 - Easier for humans to read
 - Still shows underlying binary representation
 - -16 = 2⁴ (power of two)
- Computers don't use hex internally
 - All memory is bits (binary)

Binary to hex

fill with
zeroes at
front to make
digit count a
multiple of
four

0101001111002

collect binary digits in groups of four digits ("quartets")

write hex equivalent of each binary quartet

Hex to binary

Representing Signed Integers

Representing Signed Integers

- To handle negative integers, we need to use one of the bits to store the sign
- The largest signed integer we can represent in N bits is roughly half the largest unsigned integer
- Three representation methods:
 - Signed magnitude
 - Two's complement
 - Excess-k

Used for exponents for float representation, not studied in FIT1008/FIT2085

Signed Magnitude Representation

- The most significant bit (MSB) stores the sign
 - MSB: the one with the highest place value (leftmost)
- The rest store the absolute value of the number
 - i.e., its magnitude
- That is why it is known as "signed magnitude"
- The range of signed integers we can represent in N bits is

$$-(2^{N-1}-1), ..., 2^{N-1}-1$$

Why? Recall, for unsigned the range with N bits

$$0, ..., 2^{N-1}$$

■ We need one bit for the sign (so 2^{N-1}-1) and can be negative so… lets see an example

Signed Magnitude -- Example with 4 bits

Representable numbers:

We have +0 and -0

Adding in Signed Magnitude

Rule1

 If the signs are the same, add the magnitudes and use same sign for result

Rule2

- If the signs differ, determine which integer has the largest magnitude
- Sign of result: same as sign of integer with the largest magnitude
- Magnitude: subtract smaller magnitude from larger one

Note: might get overflow, if the sum is too large

- That is, if the resulting number is outside the range $-(2^{N-1}-1), ..., 2^{N-1}-1$
- Try to encode -7 + (-3) with 4 bits...

Two's Complement Representation

- Aim: makes arithmetic operations easy, regardless of the signs of the operands
- For N bits, -M is represented as 2^N M
- For example, for N= 4:
 - -1 is represented as $2^4 1 = 16 1 = 15$ which in binary is 1111
 - -8 is represented as $2^4 8 = 16-8 = 8$ which in binary is 1000
- But careful, M must be within range:
 - Half of the range is positive, half negative. For example, for 4 bits: the numbers from 0000 to 0111 are positive and the numbers from 1000 to 1111 are negative
- In general, the range of signed integers we can represent in N bits is -2^{N-1}, ..., 2^{N-1}-1

Two's Complement -- Example with 4 bits

Representable numbers:

0000	Τ Λ
0000	.TU
0001	+1
0010	.+2
0011	
0100	_
0101	.+5
0110	.+6
0111	.+7
1000	–8
1001	
1010	–6
1011	
1100	
1101	-
1110	
1111	–1

We have only +0

Two's Complement to Decimal

For N bits, you can:

- Give the MSB a negative weight
 - E.g., if using 8 bits, then the MSB has positional value **–2**⁷, instead of +2⁷

OR:

- Convert to decimal as usual
- If result is $\ge 2^{N-1}$ (means the MSB was 1):
 - Subtract the decimal value from 2^N and negate

Two's Complement – Example

What integer does 101011 represent in a 6-bit computer?

Negative weight for MSB

$$1 \times (-2^5) + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $1 \times (-32) + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$
= $(-21)_{10}$

Usual conversion and subtracting 2^N

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $1 \times 3^2 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1$
= $(43)_{10}$

Since $43 \ge 32 = 2^{6-1}$, it represents a negative number.

So compute 2^N- M and negate:

$$-(2^6-43)=-(64-43)=-21$$

Negating Two's Complement is easy!

Flip 0011 into 1100 and add 1 to get 1101

Flip 1101 into 0010 and add 1 to get 0011

Negation with Two's Complement

- To negate a two's complement number:
 Flip all its bits and then add 1
 - Example (positive number)

Example (negative number)

Two's Complement to Decimal Alternative

- If MSB = 0, as usual for unsigned
- Otherwise, we know it is a negative number, so:
 - Negate the binary:
 - Flip 1s by 0s and viceversa,
 - Add 1,
 - Convert as usual for unsigned
 - Negate the resulting decimal

Summary (of the lesson)

- Value Places Systems
- Unsigned integers in binary, octal, decimal and hexadecimal
- Signed integers in
 - Signed Magnitude
 - Two's complement