

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

MATH5425 - Graph Theory

Author: Edward McDonald

Student Number: z3375335

1 Question 1

For this question, G is a graph with n vertices.

Proposition 1. Suppose that G has at least n edges. Then G contains a cycle.

Proof. Suppose that G has k connected components, G_1, \ldots, G_k . There must exist a connected component G_j with $|E(G_j)| \geq |V(G_j)|$, since otherwise we would have |E(G)| < |V(G)|, but we are assuming that $|E(G)| \geq n$.

Let G_j be a connected component with $|E(G_j)| \ge |V(G_j)|$. We will show that G_j contains a cycle. If G_j contains no cycle, then G_j is a tree by definition. However by Corollary 1.5.3 in the course notes, this can only be true if $|E(G_j)| = |V(G_j)| - 1$. But this contradicts $|E(G_j)| \ge |V(G_j)|$. Hence G_j contains a cycle.

Proposition 2. Suppose that G has strictly more than n edges. Then G contains two distinct (not necessarily disjoint) cycles.

Proof. Let $e \in E(G)$. Then G - e has at least n edges, so by Proposition 1 G - e contains a cycle. Call such a cycle C_1 .

Now choose $f \in E(C)$. Again by proposition 1, G - f contains a cycle, call it C_2 .

Hence C_1 and C_2 are two cycles in G, and since $f \in C_1$ and $f \notin C_2$, the cycles are distinct.

Proposition 3. Suppose that G has minimum degree $\delta(G) \geq 3$. Then G contains a cycle of even length.

Proof. Observe that G always contains at least one cycle, since by the handshaking lemma,

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) \ge 3|V(G)|. \tag{1}$$

Hence $E(G) \geq V(G)$, so by Proposition 1 G contains a cycle.

We will perform a proof by contradiction. We will assume that G contains only odd cycles, then construct a cycle of even length.

Assume that G contains only odd cycles.

First suppose that G is connected. Let T be a spanning tree for G, and let w be a leaf of T connected to the edge $t \in E(T)$. Hence $d_T(w) = 1$ but $d_G(v) \ge 3$, so there exist two distinct edges, $e, f \in E(G)$ with endpoints at w not contained in T.

Now, since a tree is maximally acyclic, T + e contains a cycle C_1 and T + f contains a cycle C_2 . We must have t as an edge of C_1 and C_2 , since C_1 must pass through e, and hence through t since $d_{T+e}(w) = 2$, similarly C_2 must pass through t. By assumption C_1 and C_2 have odd length.

Suppose that C_1 and C_2 contain k common edges. We must have $k \geq 1$ since t is common. Consider the cycle C obtained by joining together C_1 and C_2 , and removing the common edges this is possible since $k \geq 1$. Hence $|E(C)| = |E(C_1)| + |E(C_2)| - 2k$. But then |E(C)| is even, since by assumption $|E(C_1)|$ and $|E(C_2)|$ are odd.

Hence G contains an even cycle when G is connected.

If G is not connected, then each connected component H satisfies $\delta(H) \geq 3$, so we may run the above argument to show that H has a cycle of even length, so hence G has a cycle of even length.

2 Question 2

We shall say that a graph G on n vertices has degree sequence $\mathbf{d} = (d_1, d_2, \dots, d_n)$ if \mathbf{d} is a nondecreasing sequence and the degrees of the vertices of G when arranged in nondecreasing order are the entries of \mathbf{d} . We consider the following condition:

$$\sum_{i=1}^{n} d_i = 2n - 2. \tag{*}$$

Proposition 4. Suppose that T on n vertices with degree sequence d. Then d satisfies (*).

Proof. By Corollary 1.5.3 in the course notes, T has n-1 edges. Hence by the handshaking lemma,

$$\sum_{i=1}^{n} d_i = 2|E(T)| = 2(n-1) = 2n - 2.$$
 (2)

So
$$(*)$$
 holds.

Proposition 5. Now suppose that n = 2, and \mathbf{d} is a sequence such that (*) holds. Then there exists a tree T with degree sequence \mathbf{d} .

Proof. If (*) holds, then $d_1 + d_2 = 2(2) - 2 = 2$. Hence we can choose T to be the unique tree on two vertices. Then we have $d_1 = d_2 = 1$.

Proposition 6. Now let $n \geq 3$, and let \mathbf{d} be a sequence such that (*) holds. Let $\delta = d_1$ and $\Delta = d_n$ be the minimum and maximum entries of \mathbf{d} respectively. Then,

- 1. $\delta = 1$ and $\Delta > 2$.
- 2. There exists a tree T with degree sequence d.

Proof. First we prove (1). Suppose that $\delta \geq 2$. This means that

$$\sum_{i=1}^{n} d_i \ge 2n. \tag{3}$$

But then $2n-2 \ge 2n$, which is impossible. Now if we assume that $\Delta < 2$, then we must have $\Delta = 1$, so d = (1, 1, ..., 1). Thus,

$$n = \sum_{i=1}^{n} d_i = 2n - 2. \tag{4}$$

But then n=2, which is impossible since $n\geq 3$ by assumption.

Now we prove (2) by induction. Suppose that for all k < n, we know that for any degree sequence (d_1, d_2, \ldots, d_k) with $\sum_{i=1}^k d_i = 2k - 2$ there exists a tree on k vertices with degree sequence k.

Now let $\mathbf{d} = (d_1, \dots, d_n)$ be a sequence satisfying (*).

Let

$$q = \min\{j \ d_j > 1\}. \tag{5}$$

We know that q>1, since we proved that $\Delta\geq 2$. Consider the sequence of n-1 numbers,

$$\tilde{\boldsymbol{d}} = (d_2 \dots, d_q - 1, \dots, d_n). \tag{6}$$

Then we can see that d is a sequence satisfying (*), since

$$d_2 + \dots + (d_q - 1) + \dots + d_n = 2n - 2 - 1 - d_n = 2n - 4 = 2(n - 1) - 2.$$
 (7)

Hence, there exists a tree with degree sequence d by our inductive hypothesis. Let T be such a tree, and let v be a vertex with degree $d_q - 1$.

Consider the tree F obtained by joining a new leaf to v. Then F has n vertices, and has degree sequence $(1, d_2, \ldots, d_n) = \mathbf{d}$. Thus the assertion is proved by induction since by Proposition 5 it is true for n = 2.

Proposition 7. There exist two non-isomorphic trees with identical degree sequence.

Proof. Consider the following two trees. T_1 :

and T_2 :

We can see that T_1 and T_2 both have degree sequence (1, 1, 1, 1, 1, 2, 3, 4), but they are not isomorphic, since T_1 has a vertex of degree 4 attached to 3 leaves, but T_2 only has a vertex of degree 4 attached to 2 leaves.

3 Question 3

For this question, we let G be the following graph on 10 vertices:

Proposition 8. There is no perfect matching of G.

Proof. By Tutte's theorem (Theorem 2.1.1 in the course notes), it suffices to find $S \subseteq V(G)$ such that the number of connected components of G - S with an odd number of vertices, q(G - S) exceeds |S|.

Take $S = \{4\}$. Then the connected components of G - S have vertices $\{1, 2, 3\}$, $\{5, 6, 7\}$ and $\{8, 9, 10\}$. Hence q(G - S) = 3. But |S| = 1, so q(G - S) > |S|. Thus there is no perfect matching of G.

Proposition 9. A maximum matching of G is:

$$M = \{23, 45, 67, 89\}. \tag{8}$$

Proof. It is clear from the picture that M is a matching. Since M covers 8 vertices, and there is no matching of G with 10 vertices by Proposition 8, and a matching must cover an even number of vertices, we conclude that M is maximum.

4 Question 4

Proposition 10. Let G be a graph on 2r vertices, with minimum degree $\delta(G) \ge r$ with $r \ge 1$. Then G has a perfect matching.

Proof. By Dirac's theorem (Theorem 10.1.1 in the course notes), G has a Hamilton cycle. Label the vertices of G as v_1, v_2, \ldots, v_{2r} so that the cycle passes through $v_1v_2\cdots v_{2r}$. Now match up vertices according to the cyclic order, $\{v_1, v_2\}, \{v_3, v_4\}, \ldots, \{v_{2r-1}, v_{2r}\}$. This is possible since 2r is even. Hence G has a perfect matching.

For the remainder of this question, G is a graph on n vertices with minimum degree $\delta(G) \geq 1$, and $\Delta := \Delta(G)$ is the maximum degree. Let F be a maximum matching of G, and let $\nu := \nu(G) = |F|$ be the size of a maximum matching in G. Recall that we say that a vertex x of G is covered by F if x is an endpoint of an edge in F.

Proposition 11. Let x be a vertex not covered by F. Then every neighbour of x is covered by F.

Proof. If x has a neighbour y not covered by F, then $F \cup \{xy\}$ is a matching strictly larger than F, which contradicts the assumption that F is maximum. Hence every neighbour of x is covered by F.

5

Proposition 12. Let x, y be two distinct vertices not covered by F, and $a, b \in V(G)$. If $xa, yb \in E(G)$, then $ab \notin F$.

Proof. If a and b are not distinct, then $ab \notin F$. So assume that $a \neq b$. Suppose that $xa, yb \in E(G)$, and $ab \in F$. Then consider the set $F' = (F \setminus \{ab\}) \cup \{xa, yb\}$. Then F' is a matching strictly larger than F, contradicting the assumption that F is maximum.

Proposition 13. The number of vertices of G not covered by F is at most $(\Delta - 1)\nu$.

Proof. Let $v_1, v_2, \ldots, v_{\nu}$ be a set of representative vertices of each edge in F. That is, for each $e \in F$ there is exactly one e so that e is incident on e. Now, for each e is incident on e incident on e. Now, for each e is incident on e in the sat most e in total and it connected to at least one matched vertex. This means that there cannot be more than e in the same properties in the same properties

Proposition 14. We have $\nu \geq n/(\Delta+1)$.

Proof. Let k be the number of vertices of G not covered by F. However each edge of F connects to two unique vertices, so the number of edges covered by F is 2ν . Thus $n = k + 2\nu$. But by Proposition 13, $k \le (\Delta - 1)\nu$. Hence,

$$n = k + 2\nu \tag{9}$$

$$\leq (\Delta - 1)\nu + 2\nu \tag{10}$$

$$= (\Delta + 1)\nu. \tag{11}$$

So
$$\nu \geq n/(\Delta+1)$$
.

5 Question 5

For this question, G is a 2-edge connected graph. That is, G is connected and for any $e \in E(G)$, G-e is connected. We define a relation \sim on E(G) as follows: $e \sim f$ if and only if e = f or $G - \{e, f\}$ is disconnected.

Proposition 15. Let $e, f \in E(G)$ be such that every cycle containing e contains f and vice versa. Then $e \sim f$.

Proposition 16. We prove the contrapositive: we show that if $e \nsim f$, then there is a cycle containing e but not f.

Assume that $e \nsim f$. Then e and f are distinct, and $G - \{e, f\}$ is connected. Let e = xy. Then there is a path P joining x and y in $G - \{e, f\}$. Hence P + e is a cycle in G containing e but not f.

Hence if every cycle containing e contains f, then $e \sim f$. Thus a forteriori, if every cycle containing e contains f and vice versa, $e \sim f$.

Proposition 17. Suppose we have $e, f \in E(G)$ with $e \sim f$. Then every cycle which contains e also contains f.

Proof. If e = f the result is trivial, so we consider $e \neq f$.

Hence, $G - \{e, f\}$ is disconnected, but since G is 2-edge connected, we have that G - e and G - f are connected.

Let C be a cycle in G which contains e but not f. Let $a, b \in V(G)$ be two vertices which are disconnected in $G - \{e, f\}$. Let P be a path joining a and b in G - f. Hence P must pass through e.

But if P passes through e, then this is a contradiction since we can adjoin C-e to the path P-e to get a path joining a and b in $G-\{e,f\}$.

Thus, every cycle containing e must contain f.

Proposition 18. \sim is an equivalence relation on E(G), and the equivalence classes of \sim are subsets of cycles of G.

Proof. We must prove that \sim is reflexive, symmetric and transitive.

We immediately get that for any edge e, $e \sim e$ since e = e.

Now if $e \sim f$, then e = f or $G - \{e, f\}$ is disconnected. But this holds true if and only if f = e and $G - \{f, e\}$ is connected. Hence $f \sim e$ so \sim is symmetric.

Now we prove that \sim is transitive. Let e, f, g be edges with $e \sim f$ and $f \sim g$. Then by Proposition 17, every cycle which contains e also contains f, and every cycle which contains f contains g. Hence every cycle containing e also contains g. Hence, by Proposition 15 we conclude that $e \sim f$.

Let e is an edge, and $[e]_{\sim}$ is the equivalence class of \sim containing e. e must be contained in a cycle, since otherwise G-e is disconnected, which contradicts 2-edge-connectivity.

Let C be a cycle containing e. Then every element of $[e]_{\sim}$ is contained in \sim by Proposition 17. Thus $[e]_{\sim} \subseteq E(C)$.

П

Proposition 19. Let $P \subseteq E(G)$ be an equivalence class of \sim . Then every connected component of G-P with at least two vertices is 2-edge-connected.

Proof. Let H be a connected component of G-P with at least two vertices, and let $x,y \in V(H)$. It is required to prove that H-xy is connected. In other words, we must prove that H contains a cycle containing xy. Note that there exists a cycle containing xy in G since G is 2-edge-connected.

We now show that there exists a cycle containing xy in G which is disjoint from every element of P.

Suppose that C is a cycle in G containing xy which also contains $e \in P$. But then since C is a cycle containing e, it must also contain all f such that $f \sim e$. Hence if C is a cycle containing some element of P, it must contain all elements of P. So it suffices to show that there is a cycle containing xy which does not contain a particular element of P.

Let $e \in P$, then since $e \nsim xy$, by Proposition 15, there is a cycle containing xy but not e.

Hence, there is a cycle C containing xy disjoint from P, so C is a cycle in G-P containing xy. Hence, H contains a cycle containing xy. Therefore, H is 2-edge-connected.