Review Materials

Mostly from Dr. Hughes Slides and Sipser Chapter 0.

Chapter 0 - Outline

- 0.2 Mathematical Notions and Terminology
 - Sets
 - Sequences and tuples
 - Functions and relations
 - Ordinals, cardinals and infinities, Cardinality
 - Graphs
 - Strings and languages
 - Operations on Strings
 - Properties of Languages
- 0.3 Definitions, Theorems, and Proofs
- 0.4 Types of Proof
 - Proof by construction
 - Proof by contradiction
 - Proof by induction
 - Set/Language Recognizer and Generators

Sets

- **Sets** are unordered collections of distinct objects.
- **Sets** can be defined or specified in many ways:
 - By explicitly enumerating their members or elements
 e.g. S = { 1,2,3}

Note: If $S' = \{3,2,1\}$, then S and S' denote the same set (that is, S' = S)

- By specifying a condition for membership
 S = {x ∈ A | P(x)}, reads "S is the set of all x in A such that P(x) is true"
 P is called a "predicate" (a function from set A to {true, false})
 E.g. B = {x ∈ U | x is an even number}
- By Venn diagram

- The empty set is denoted, \emptyset , and is the set with no members; that is, $\emptyset = \{ \}$.
- Multisets (mset) or Bags are unordered collections of objects where we keep track of repeated elements
 - Multiplicity of element: number of instances, given for each element
 - Example: $S = \{1,2,3,1,2\} \rightarrow Multiplicity of 1 = 2$

- Membership: If S ≠ Ø, then there exists an x for which x ∈ S is true; this predicate is read "x is an element of S" or "x is a member of S". The symbol " ∈ " denotes the member relation. x ∉ S is true when x is not in S.
- Also, the predicate, $x \in \emptyset$ is always false! (why?)

- Operations:
- Let **A** and **B** be sets contained in our universe **U**.
 - Set Union: the union of A and B, denoted AUB is the set:

$$AUB = \{x: x \in A \text{ or } x \in B\}$$

• Set intersection: the intersection of A and B, denoted $A \cap B$ is the set:

$$A \cap B = \{x: x \in A \text{ and } x \in B\}$$

complement ~A (usually A with a bar on it).

$$\sim A = \{x \in U: x \notin A\}$$

A U B =
$$\{2,4,6,8,10,5,9,7\}$$

A\cap B = $\{6,8,10\}$
\(\sim A = \{100\}

- If A and B are sets, then we write "A ⊆ B" to mean that A is a subset of B.
 This means that for all x ∈ A, x ∈ B. Or, "∀x [x ∈ A ⇒ x ∈ B]".
- The expression, "A

 B" means that A is a proper subset of B.

 Mathematically, "∀x [x ∈ A ⇒ x ∈ B] and ∃y [y ∉ B and y ∈ A].
- $(A = B) \Leftrightarrow (A \subseteq B) \land (B \supseteq A)$

- The cross (Cartesian) product of two sets A and B is denoted, $A \times B$, and is the set defined as follows: $A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \}$.
- If $A \neq B$, then $A \times B \neq B \times A$.
- Note: (a,b) is a sequence not a set. (next slide)

$$A \times B = \{(a,1),(a,2),(b,1),(b,2)\}$$

A×B		1	2
	a	(a,1)	(a,2)
	b	(b,1)	(b,2)

Sequences

- While sets have no order and no repeated elements, sequences have order and can contain repeats at differing positions in the order.
 - \circ The **set** $\{5,2,5\} = \{5,2\} = \{2,5\}$
 - \circ The **sequence** $(5,2,5) \neq (2,5,5) \neq (5,5,2) \neq (5,2) \neq (2,5)$
- In sequence $(a_1, a_2, ..., a_k, ...)$, a_k is called the k-th element of the sequence.
- Finite sequences are often called tuples. (3-tuple, 4-tuple, 0-tuple?)
 - Those of length k are k-tuples.
 - A 2-tuple is also called a pair.

Relations

- A relation, r, is a mapping from some set A to some set B;
 - We write, r: A →B, and we mean that r assigns to every member of A a subset of B;
 - that is, for every $a \in A$, $r(a) \subseteq B$ and $r(a) \neq \emptyset$.
 - A relation, r, can also be **defined in terms of the cross product** of A and B:
 - r⊆A× B such that for every a ∈ A there is at least one b ∈ B such that
 (a, b) ∈ r.
- We say that a relation, r, from A to B is a partial relation if and only if for some $a \in A$, $r(a) = \emptyset = \{ \}$.

partial relation

More on Relations

- A predicate or property is a function with range {TRUE, FALSE}.
- A property with a domain of n-tuples Aⁿ is an n-ary relation
- Binary relations are common, and like binary functions, we use infix notations for them
- Let R be a binary relation on A^2 . R is:
 - Reflexive if " $x \in A$, xRx
 - Symmetric if $x R y \rightarrow y R x$
 - Transitive if $(x R y, y R z) \rightarrow x R z$
 - An equivalence relation if it is reflexive, symmetric and transitive

Functions

- Functions are special types of relations. Let X and Y be sets. A function is a map $f:X \rightarrow Y$ such that for every $x \in X$, there is a unique $y \in Y$ where f(x) = y; that is, |f(x)| = 1.
- If f is a partial function from A to B, then f may not be defined for every $x \in A$. In this case we write $|f(x)| \le 1$, for every a in A; note that |f(x)| = 0 if and only if $f(x) = \emptyset$, and we say the function is undefined at a.

More on functions

- Domain is the complete **set of possible values** of on which f is defined.
- We say that X is the domain and Y is the codomain. The range or image is the set $f(X) = \{f(x) : x \in X\}$.

More on Functions

- A function, f, is said to be one-to-one (1-1) if and only if $x \neq y$ implies $f(x) \neq f(y)$.
 - A (total) function that is one-to-one is sometimes called an injection.
- A function, f: A → B, is said to be onto if and only if for every y ∈ B there is an x ∈ A such that y = f(x).
 - Total functions that are onto are called surjections.
- Ones that are 1-1 and onto are called bijections.

Ordinal and Cardinal Numbers

- **Definition**: Ordinal numbers are **symbols** used to designate relative position in an ordered collection.
 - The ordinals correspond to the natural numbers: 0, 1, 2, ...
 - The set of all natural (ordinal) numbers is denoted, N.
 - (Note: Here we include 0 as a natural number.)
- **Definition**. Let S be any set. We associate with S, the unique symbol S called its cardinality. Symbols of this kind are called cardinal numbers and denote the size of the set with which they are associated.
 - $|\emptyset| = 0$.
 - If $S = \{0, 1, 2, 3, ..., n-1\}$, for some natural number n>0, then S = n.
 - The **cardinality** of any **finite set** (including the empty set) is simply the ordinal number that specifies the number of elements in that set.

More on Cardinality

- **Definition**: If A and B are two sets, then $|A| \le |B|$ if and only if there exists an **injection**, f, from A to B; f is a 1-1 function from A into B.
- **Definition**: If A and B are two sets, then |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.
 - We may also say that |A| = |B| if and only if there is a bijection, f, from A to B; f is a 1-1 function from A onto B.
- **Definition**: If A and B are two sets, then |A| < |B| if and only if $|A| \le |B|$ and $|A| \ne |B|$.
- Definition: A set S is said to be finite if and only if S ∈ N; otherwise, S is said to be infinite.
- Definition: A set S is said to be countable if and only if S is finite or
 |S| = | N|; otherwise S is said to be uncountable.

Infinities

Examples of infinite sets:

- N (the set of Natural numbers),
- Z (the set of Integers),
- Z+ (the set of Positive Integers),
- Q (the set of Rational numbers) and
- R (the set of Real numbers).
- But, are all these infinite sets the same size??
- Answer: |N| = |Z+| = |Z| = |Q| < |R|.

Power Set

- **Definition**: Let S be a set, then the power set of S, denoted P(S) or 2^S , is defined by P(S)= { A | A \subseteq S }.
- Examples.
 - $P(\emptyset) = \{\emptyset\},\$
 - $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
 - $P(N) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, ..., \{0,1\}, \{0,2\}, \{0,3\}, ..., \{0,1,2\}, \{ N \} \}$

Undirected Graphs

An undirected Graph G is defined by a pair (V, E)

- V: Finite Set of Nodes/Vertices
- E: $\{ \langle a,b \rangle \mid a,b \in V \text{ are called } Edges / Arcs \}$
 - $E \subseteq V \times V$ such that $\langle a,b \rangle \in E$ implies $\langle b,a \rangle \in E$
- Degree of node is number of edges at that node (number of nodes it relates to)
- Graphs can be labeled or unlabeled.
 - Labels can go on nodes, edges or both.

More on Graphs

A subgraph H of a graph G is a subset of the nodes of G with all edges retained from G that involve node pairs in H.

- A path is a sequence of nodes connected by edges.
- A graph is connected if every two nodes are connected by a path.
- A cycle is a path that starts and ends in the same node.
- A simple cycle is a cycle such that all its vertices and edges are distinct.

Nodes: A,B,C,....

Edges: AB, BD,GF,...

Path: HAB, DBC, CE,...

Cycle: BDCB, ABDHA,...

Subgraph: BDFECB

More on Graphs

- A tree is a graph that is connected and has no simple cycles.
- A tree may contain a special node called the root.
- The nodes of degree 1 in a tree, excepting the root, are called leaves.
- The **set of leaves** of a tree are called the **frontier**.

Tree

leaves

In Directed Graph

- If the edges have direction then a graph is called directed
- in-degree (edges into node)
- out-degree (edges out of node).

in-degree of b = 1Out-degree of b = 2

Alphabet String Language

Alphabets and Strings

- **DEFINITION 1.** An alphabet Σ is a finite, non-empty set of abstract symbols.
- The members of the alphabet are the symbols of the alphabet.

- Example:
 - $\Sigma = \{0,1\}$
 - $\Sigma = \{a, b, c, ..., z\}$
 - $\Sigma = \{1,2,3,...,9\}$

Strings

- A string over an alphabet is a finite sequence of symbols from that alphabet, usually written next to one another and not separated by commas.
- Examples:
 - If $\Sigma = \{0,1\} \rightarrow \underline{01001}$ is a string over Σ .
 - If $\Sigma = \{a,b,c,...,z\} \rightarrow \underline{racadabra}$ is a string over Σ .

More on Strings

• **DEFINITION 2.** Σ^* , the set of all **strings** over the alphabet, Σ , is given inductively as follows.

Basis:

- $\varepsilon \in \Sigma^*$ (the null string is denoted by ε , it is the string of length 0, that is $|\varepsilon| = 0$)
- $\forall a \in \Sigma$, $a \in \Sigma^*$ (the members of Σ are strings of length 1, |a| = 1)

Induction rule:

- If $x \in \Sigma^*$, and $a \in \Sigma$, then $a.x \in \Sigma^*$ and $x.a \in \Sigma^*$.
- Furthermore, ε . x = x. $\varepsilon = x$, and $|a \cdot x| = |x \cdot a| = 1 + |x|$
- NOTE: α . x denotes "a concatenated to x " and is formed by appending the symbol a to the left end of x.
- Similarly, $x \cdot a$, denotes appending a to the right end of x.
- In either case, if x is the null string (ε) , then the resultant string is "a".

Operations on Strings

- Let s, t be arbitrary strings over Σ
 - $s = a_1 a_2 ... a_j$, $j \ge 0$, where each $a_i \in \Sigma$
 - $t = b_1 b_2 ... b_k$, $k \ge 0$, where each $b_i \in \Sigma$
- length: |s| = j; |t| = k
- concatenate: = s.t= st= $a_1a_2... a_ib_1b_2... b_k$; |st| = j+k
- power: sⁿ= ss... s (n times)
- reverse: $s^R = a_i a_{i-1} \dots a_1$
- substring: for $s = a_1 a_2 ... a_j$, any $a_p a_{p+1} ... a_q$ where $1 \le p \le q \le j$ or ε .

Languages

- **DEFINITION 3**. Let Σ be an alphabet. A language over Σ is a subset, **L**, of Σ^* .
- **Example:** Languages over the alphabet $\Sigma = \{a, b\}$.
 - \emptyset (the empty set) is a language over Σ
 - Σ^* (the universal set) is a language over Σ
 - {a, bb, aba } (a finite subset of Σ^*) is a language over Σ .
 - { $ab^n a^m | n = m^2$, n, m > 0 } (infinite subset) is a language over Σ .
- A language is a set of strings.
- Reversal: $L^R = \{w^R \mid w \in L\}$
- Example: $L = \{001, 10, 111\} \rightarrow L^R = \{100, 01, 111\}$

More on Languages

- **DEFINITION 4.** Let **L** and **M** be two languages over Σ . Then the concatenation of L with M, denoted L.M is the set, L.M = $\{x,y \mid x \in L \text{ and } y \in M\}$
- The concatenation of arbitrary strings x and y is defined inductively as follows:
 - Basis:
 - When $|x| \le 1$ or $|y| \le 1$, then x.y is defined as in Definition 2.
 - Inductive rule:
 - when |x| > 1 and |y| > 1, then x = x'.a for some $a \in \Sigma$ and $x \in \Sigma^*$, where |x'| = |x|-1. Then x.y=x'.(a.y).

Recognizer and Generators (of a language)

- A recognizer for a specific language is a program or computational model that differentiates members from non-members of the given language
 - A portion of the job of a compiler is to check to see if an input is a legitimate member of some specific programming language

An automata is a recognizer.

Recognizer and Generators (of a language)

 A generator for a specific language is a program that generates all and only members of the given language

• A grammar is a generator.

Proofs: Terminology

- Definitions: describe the mathematical objects and notions we use.
- Statement or assertion: expresses that some object has a certain property. The statement may or may not be true.
- Proof: is a convincing logical argument that a statement is true.
- Theorem: is a mathematical statement proved TRUE.
- Lemma: is a theorem that are not interesting on their own but are useful for proving other theorems
- Corollary: is a follow-on theorem that are easy to prove once you prove their parent theorems

Types of Proofs

- Direct Argument
 - Use assertions from theorem statement, known true properties and valid rules of inference
- Construction
 - Prove something exists by showing how to make it
- Contradiction
 - Prove something is true by showing it can't be false

More on types of Proofs

- Prove by induction
 - Weak Induction
 - Strong Induction
- Our goal is to prove that P(k) is true for each natural number k.
- Every proof by induction consists of two parts,
 - the basis: prove that P(1) is true.
 - the induction step: For each i≥1, assume that P(i) is true and use this assumption to show that P(i + 1) is true. (WI)
 - P(i) is true is called the induction hypothesis.

Sample Proof by Induction

Prove, if n is a positive whole number and $n \ge 4$, then $2^n \ge n^2$.

Hint: use induction with a base of n=4.

Proof by Induction:

- **Base Case:** n = 4: $2^4 \ge 4^2$ since $16 \ge 16$.
- Induction Hypothesis: Assume $2^k \ge k^2$, for some $k \ge 4$.
- Induction Step: Prove $2^{(k+1)} \ge (k+1)^2$
- First, we observe that $k^2 \ge 2k+1$ when $k \ge 3$. $(K>2 \rightarrow k.k>2.k \rightarrow k^2>2k \rightarrow k^2>2k+1)$
 - Consider k=m+1, where $k \ge 3$; and so $m \ge 2$
 - $k^2 = (m+1)^2 = m^2 + 2m+1 \ge 4 + 2m+1 > 2m+3 = 2(m+1) + 1 = 2k+1$.
- Using this,
- $2^{(k+1)} = 2^{k*} 2 = 2^k + 2^k \ge k^2 + k^2 \ge k^2 + 2k + 1 = (k+1)^2$

QED

Sample Proof by Contradiction

- Prove, if p and q are distinct prime numbers, then $\sqrt{\frac{p}{q}}$ is irrational.
- Assume $\sqrt{\frac{p}{q}}$ is rational where p and q are distinct primes. Let $\frac{a}{b}$ be the reduced fraction (no common prime factors) that equals $\sqrt{\frac{p}{q}}$.
- $\sqrt{\frac{p}{q}} = \frac{a}{b}$: assumption (note a≠b, as p≠q) $\frac{p}{q} = \frac{a^2}{b^2}$: square both sides

 - $p = a^2$ and $q = b^2$: since p and q have no common prime factors, and a and b have no common prime factors.
 - But this is not possible because p and q are prime numbers and so cannot have multiple factors (e.g., a.a, in the case of p).
 - This contradicts our original assumption that $\sqrt{\frac{p}{q}}$ is rational , so it must be irrational.