Numer indeksu:	
----------------	--

Logika dla informatyków

		Egzamin j	poprawkow	y (pierw	sza część)	
			19 lutego czas pisania			
		t y). W prostoką } spełniających o		ej z formu	ł poniżej wpisz	liczbę wartościowań
[0	$p \wedge q \wedge r$	$r \wedge s$		$(p \wedge q) \vee (r \wedge q)$	s)
Т	16	$(p\vee q)\wedge (r$	$\vee s)$		$(p \land q) \land (\neg p \lor \neg q)$	q)
Zadai	nie 2 (2 punkt i normalnej róv	t y). Nie używają vnoważną formule	ac spójnika " \Rightarrow e $\neg (p \Rightarrow \neg (q \Rightarrow$	" wpisz w p $(-r)$).	rostokąt poniżej f	ormułę w negacyjnej
		t y). Czy formuła wpisz odpowiedź				$\{p, q \Rightarrow \neg p, \neg p \lor \neg q\}?$
powied ścisłe	dni prostokąt w	pisz dowolne taki Z Y jest równowa	ie zbiory. W prz	eciwnym raz		ny warunek, to w od- E. Symbol ⊊ oznacza
, ,	$\mathcal{P}(A) \cap \mathcal{P}(B) \subsetneq$					
(c) 7	$\mathcal{P}(A) \cap \mathcal{P}(B) \supsetneq$	$\mathcal{P}(A\cap B)$				
poniżs	nie 5 (2 punkt zych zbiorów, t di $\cap, \cup, \exists, \forall$.	ty). Dla $n, m \in \mathbb{R}$ zn. wpisz w pros	\mathbb{N} niech $A_{n,m}$ = tokąt obok wyr	$= \{x \in \mathbb{R} \mid -$ rażenie oznac	$n - \frac{1}{m} < x < n + $ ezające ten sam zb	$\left\{-\frac{1}{m}\right\}$. Wylicz wartość piór i nie zawierające
(a) \	$ \int_{m=1}^{\infty} \bigcap_{n=0}^{\infty} A_{n,n} $	m				
(b) ($\bigcap_{m=1}^{\infty} \bigcup_{n=0}^{\infty} A_{n,n}$	m				

Zadanie 6 (2 punkty). W podany prostokąt wpisz liczbę takich relacji równoważności R na zbio-
rze $\{a,b,c,d,e\}$, że $\langle a,b\rangle \in R$ oraz $\langle c,d\rangle \in R$
Zadanie 7 (2 punkty). Jeśli istnieje relacja równoważności na zbiorze liczb naturalnych, która ma skończenie wiele klas abstrakcji i każda z tych klas abstrakcji jest zbiorem skończonym, to w prostokąt poniżej wpisz dowolną taką relację równoważności. W przeciwnym razie wpisz uzasadnienie, dlaczego taka relacja nie istnieje.
Zadanie 8 (2 punkty). Jeśli formuła $(\exists x\; p(x)) \Rightarrow \neg \forall x. \neg p(x)$ jest tautologią rachunku zdań, to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 9 (2 punkty). Niech R będzie taką relacją binarną na zbiorze A , że $R \subseteq R$; R . Czy z tego wynika, że R jest zwrotna? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontr-przykład.
Zadanie 10 (2 punkty). Niech $A=\{1,2,3,4\}$. Rozważmy relację binarną $R\subseteq A\times A$ zdefiniowaną wzorem $R=\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle,\langle 4,1\rangle\}$. W prostokąt poniżej wpisz wyliczoną wartość przechodniego domknięcia relacji R .

	Numer indeksu:	
inform jest za	nie 11 (2 punkty). Rozważmy zbiór barów B i soków S oraz nującą o tym jakie bary podają jakie soki. W prostokąt poniżej wpupytaniem relacyjnego rachunku dziedzin oznaczającym wykaz bar stóre są podawane w barze 'Przekręt'.	isz taką formułę φ , że $\{b \in B \mid \varphi\}$
minim	nie 12 (2 punkty). Jeśli istnieje taki zbiór uporządkowany, w kalne i dokładnie dwa maksymalne, to w prostokąt poniżej wpisz ceciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie	dowolny przykład takiego zbioru.
$n \in \mathbb{N}$ w pros	nie 13 (2 punkty). Niech $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ będzie dana w definiujemy $f_1(n) = f(2n)$ oraz $f_2(n) = f(2n+1)$. Jeśli funktokąt poniżej wpisz tę funkcję. W przeciwnym przypadku wpistna nie istnieje.	kcja F ma funkcję odwrotną, to
funkcj że fun	nie 14 (2 punkty). Niech $f:A\to B$ i $g:B\to C$ będą takin ą różnowartościową. Załóżmy dodatkowo, że zbiory A,B i C są kcja g jest różnowartościowa? W prostokąt poniżej wpisz odpowiorzykład.	równoliczne. Czy z tego wynika,
$F_f(A)$	nie 15 (2 punkty). Niech $F_f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ dla $f: \mathbb{N} \to \mathbb{N}$ bęc $= f^{-1}[A]$.	
(b) 1	Podaj przykład funkcji "na" f , dla której F_f jest funkcją "na" przykład nie istnieje. Podaj przykład funkcji "na" f , dla której F_f nie jest funkcją "	
t	taki przykład nie istnieje.	

Zadanie 16 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ definiujemy relację równoważności \simeq wzorem
$A \simeq B \iff \{y \in \mathbb{N} \mid \exists x. \langle x, y \rangle \in A\} = \{y \in \mathbb{N} \mid \exists x. \langle x, y \rangle \in B\}.$
W prostokąty poniżej wpisz odpowiednio moce zbioru klas abstrakcji relacji \simeq oraz moce klas abstrakcji zbiorów $\{\langle 0,0\rangle\}$ i $\mathbb{N}\times\mathbb{N}$.
$ \mathcal{P}(\mathbb{N}\times\mathbb{N})_{/\simeq} = \boxed{\qquad} [\{\langle 0,0\rangle\}]_{\simeq} = \boxed{\qquad} [\mathbb{N}\times\mathbb{N}]_{\simeq} = \boxed{\qquad}$
Zadanie 17 (2 punkty). Czy istnieją takie funkcje f i g , że żadna z nich nie jest różnowartościowa, a ich złożenie gf jest funkcją różnowartościową? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio przykład takich funkcji lub dowód ich nieistnienia.
Zadanie 18 (2 punkty). W prostokąt poniżej wpisz izomorfizm pomiędzy porządkami $\langle \mathbb{Z}, \leq \rangle$ oraz $\langle \mathbb{Z} \times \{0,1,2\}, \leq_{lex} \rangle$ lub uzasadnienie, że taki izomorfizm nie istnieje.
Zadanie 19 (2 punkty). Jeśli istnieje taki nieskończony zbiór uporządkowany $\langle P, \preceq \rangle$, że \preceq^{-1} jest porządkiem regularnym na zbiorze P , to w prostokąt poniżej wpisz dowolny przykład takiego zbioru uporządkowanego. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki zbiór nie istnieje.
Zadanie 20 (2 punkty). W tym zadaniu f, g i h są symbolami funkcyjnymi, a, b są symbolami stałych, natomiast u, x, y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które
są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są

unifikowalne, wpisz słowo "NIE".

$f(g(x,y),z) \stackrel{?}{=} f(y,a)$	$f(g(x,x),g(y,y)) \stackrel{?}{=} f(y,a)$	
$g(z, f(z, u)) \stackrel{?}{=} g(a, x)$	$f(f(a,b),y) \stackrel{?}{=} f(x,f(z,b))$	