ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ЛФИ

Лабораторная работа № 3.2.5 Вынужденные колебания в электрическом контуре

> Семёнов Андрей Группа Б02-010

Цель работы: исследование вынужденных колебаний и процессов их установления.

В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универслаьный мост.

1 Теоретическая часть

При подключении к контуру внешнего источника в нём возникают колебания, которые можно представить как суперпозицию двух синусоид: первая — с частотой собственных колебаний контура ω и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника Ω и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда этих колебаний максимальна при совпадении частоты Ω внешнего сигнала с собственной частотой контура ω_0 . Это явление называют резонансом. Зависимость амплитуды установившихся колебаний от частоты внешнего напряжения носит названия резонансной кривой.

2 Экспериментальная установка

Схема установки для исследования вынужденных колебаний приведена на рис. 1. Колебательный контур состоит из ёмкости C=0,1 мк Φ , индуктивности L=100 м Γ н и переменного сопроьтивления R.

Рис. 1: Схема экспериментальной установки для исследования вынужденных колебаний.

3 Экспериментальные данные

Таблица 1: Параметры установки.

	U_0 , мВ	$ u_0, \Gamma$ ц	L , м Γ н	C , мк Φ	R_L , Om
R = 0 Om	100	1567	100,01	0.1	25.58
R = 100 Om	10	1901	100,01	0,1	20,00

Таблица 2: Экспериментальные данные.

R = 0 Om		R = 100 Om		
ν/ν_0	U/U_0	ν/ν_0	U/U_0	
1,00	1,00	1,004	1	
1,01	0,90	1,041	0,9	
1,01	0,80	1,062	0,8	
1,01	0,70	1,084	0,7	
1,02	0,60	1,115	0,6	
1,02	0,50	1,158	0,5	
1,03	0,40	1,236	0,4	
1,05	0,30	1,410	0,3	
1,00	1,00	1,031	0,94	
0,99	0,90	1,049	0,86	
0,99	0,80	1,026	0,96	
0,99	0,70	1,013	1	
0,98	0,60	0,979	0,9	
0,98	0,50	0,966	0,8	
0,97	0,40	0,951	0,7	
0,96	0,30	0,936	0,6	
		0,921	0,5	
		0,899	0,4	
		0,869	0,3	
		0,992	0,96	
		0,987	0,94	
		0,973	0,86	

Таблица 3: Добротность.

R, Om	Q				
	ω_0/Ω	нараст	убыв	f(LCR)	
0	$38,9 \pm 1,5$	_	$34,5 \pm 5,4$	$39,1 \pm 0,8$	
100	$7,7 \pm 0,6$	$7,9 \pm 0,9$	$8,03 \pm 0,6$	$7,96 \pm 0,16$	

4 Обработка результатов

Рис. 2: Зависимости U/U_0 от ν/ν_0 при различных R.

Рис. 3: Пики колебаний при $R=100~{
m Om}.$

Рис. 4: Пики колебаний при R = 0 Ом.

5 Выводы

Таким образом, мы вычислили добротность контура при различных сопротивлениях резистора рахличными способами $Q=39,1\pm0,8$ при R=0 Ом и $Q=7,96\pm0,16$ при R=100 Ом. Результаты вычислений различными способами в пределах погрешностей совпадают.