參考資料 (References)

第1章

- [1] Dylan Yeh、陳建鈞,《市值首度超越 Intel! NVIDIA 贏在哪裡?》, 2020 (https://www.bnext.com.tw/article/58410/nvidia-valuation-soars-past-intel-on-graphics-chip-boom)
- [2] Google Cloud 官網指南 (https://cloud.google.com/ai-platform/docs/ml-solutions-overview)
- [3] TensorFlow 官網說明 (https://www.tensorflow.org/install/gpu?hl=zh-tw)
- [4] NVIDIA 官網說明 (https://developer.nvidia.com/cuda-toolkit-archive)
- [5] 陳昭明,《Day 01:輕鬆掌握 Keras》, 2020 (https://ithelp.ithome.com.tw/articles/10233272)
- [6] Colaboratory 官網說明 (https://colab.research.google.com/notebooks/intro.ipynb)
- [7] Mike Driscoll, Jupyter Notebook: An Introduction (https://realpython.com/jupyter-notebook-introduction/)

第2章

- [1] Keith McNulty, 《Decision makers need more math》, 2018 (https://towardsdatascience.com/decision-makers-need-more-math-ed4d4fe3dc09)
- [2] Seaborn 官網 (https://seaborn.pydata.org/examples/index.html)
- [3] 台灣彩券官網 (https://www.taiwanlottery.com.tw/DailyCash/index.asp)
- [4] Univariate Distribution Relationships (http://www.math.wm.edu/~leemis/chart/UDR/UDR.html)
- [5] 維基百科中關於假設檢定的定義 (https://zh.wikipedia.org/wiki/%E5%81%87%E8%AA%AA%E6%AA%A2%E5%AE%9A)

[6] 陳昭明,《Day 14: 客服人力規劃(Workforce Planning) -- 線性規劃求解》, 2019 (https://ithelp.ithome.com.tw/articles/10222877)

第3章

- [1] 維基百科中針對常見的深度學習套件之比較圖表 (https://en.wikipedia.org/wiki/Comparison of deep-learning software)
- [2] Amol Mavuduru, 《Which deep learning framework is the best?》, 2020 (https://towardsdatascience.com/which-deep-learning-framework-is-the-best-eb51431 c39a)
- [3] TensorFlow 官方 GitHub (https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/architecture.md)
- [4] Sonu Sharma , 《Explained: Deep Learning in Tensorflow》, 2019 (https://towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-1-9ab389fe90a1)
- [5] TensorFlow 官網移轉指南 (https://www.tensorflow.org/guide/migrate)
- [6] TensorFlow 官網升級指南 (https://www.tensorflow.org/guide/upgrade)

第4章

- [1] 維基百科 Activation Function 的介紹 (https://en.wikipedia.org/wiki/Activation_function)
- [2] TensorFlow 優化器的介紹 (https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)
- [3] Keras 優化器的介紹 (https://keras.io/api/optimizers/)
- [¹] TensorFlow 損失函數的介紹 (https://www.tensorflow.org/api_docs/python/tf/keras/optimizers)
- [5] Keras 損失函數的介紹 (https://keras.io/api/losses/)
- [6] TensorFlow 官網中效能衡量指標的介紹 (https://www.tensorflow.org/api docs/python/tf/keras/metrics)

[7] TensorFlow 官網

(https://www.tensorflow.org)

[8] Keras 官網

(https://keras.io)

[9] TensorFlow 官網中 FashionMnist 的介紹

(https://www.tensorflow.org/datasets/catalog/fashion mnist)

[10] Keras 官網中神經層的介紹

(https://keras.io/api/layers/)

[11] Keras 官網 Activation Function 說明

(https://keras.io/api/layers/activations/)

[12] Keras 官網 Activation Layers 說明

(https://keras.io/api/layers/activation layers/)

[13] 維基百科關於鉸鏈損失函數的介紹

(https://zh.wikipedia.org/wiki/Hinge_loss)

[14] 《Understanding Nesterov Momentum (NAG)》, 2018

(https://dominikschmidt.xyz/nesterov-momentum/)

[15] Diederik P. Kingma \ Jimmy Ba, \(Adam: A Method for Stochastic Optimization \) \), 2014

(https://arxiv.org/abs/1412.6980)

[16] 深度學習於 NLP,《一文告訴你 Adam W、Amsgrad 區別和聯繫》, 2019

(https://zhuanlan.zhihu.com/p/39543160)

[17] Keras 官網中效能衡量指標的介紹

(https://keras.io/api/metrics/)

[18] Keras 官網中超參數測試範圍的設定

(https://keras-team.github.io/keras-tuner/documentation/hyperparameters/)

[19] Keras 官網效能調校(Tuners)的介紹

(https://keras-team.github.io/keras-tuner/documentation/tuners/)

[20] Keras 官網中 Oracle 的介紹

(https://keras-team.github.io/keras-tuner/documentation/oracles/)

第5章

[1] Keras 官網『Model saving & serialization API』

(https://keras.io/api/models/model_saving_apis/)

[2] Keras 官網『Callbacks API』 (https://keras.io/api/callbacks/)

[3] F A Walkthrough with UCI Census Data (https://pair-code.github.io/what-if-tool/learn/tutorials/walkthrough/)

[4] 參考範例

(https://colab.research.google.com/github/pair-code/what-if-tool/blob/master/What_If_Tool_Notebook_Usage.ipynb)

- [5] TensorFlow 官網的 TensorBoard 指南 (https://www.tensorflow.org/tensorboard/get_started)
- [6] TensorFlow 官網中的『TensorFlow Serving with Docker』案例 (https://www.tensorflow.org/tfx/serving/docker)
- [7] TensorFlow 官網中的 TensorFlow Serving 架構說明 (https://www.tensorflow.org/tfx/serving/architecture)
- [8] TensorFlow 官網中關於 Dataset 的說明 (https://www.tensorflow.org/api_docs/python/tf/data/Dataset)
- [9] TensorFlow 官網中關於 Dataset 效能的說明 (https://www.tensorflow.org/guide/data_performance)

第6章

- [1] Prateek Karkare, 《Convolutional Neural Networks—Simplified》, 2019 (https://medium.com/x8-the-ai-community/cnn-9c5e63703c3f)
- [2] 《Convolutional Neural Networks—Simplified》文中卷積計算的 GIF 動圖 (https://miro.medium.com/max/963/1*wpbLgTW_lopZ6JtDqVByuA.gif)
- [3] TensorFlow 內建的 Cifar 圖像 (https://www.tensorflow.org/datasets/catalog/cifar10?hl=zh-tw)
- [4] TensorFlow/Keras 提供的資料增補函數 ImageDataGenerator 參數 (https://keras.io/api/preprocessing/image/#imagedatagenerator-class)
- [5] Keras 官網提供的範例 (https://keras.io/examples/vision/image_classification_from_scratch/)
- [6] Albumentations (https://github.com/albumentations-team/albumentations)

[7] Jason Brownlee, 《How to Visualize Filters and Feature Maps in Convolutional Neural Networks》, 2019

(https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/)

[8] SHAP 套件的安裝與介紹說明 (https://github.com/slundberg/shap)

[9] 維基百科中關於 Shapley value 的介紹 (https://en.wikipedia.org/wiki/Shapley_value)

[10] LIME 套件的安裝與介紹說明 (https://github.com/marcotcr/lime)

[11] Bolei Zhou, Aditya Khosla, Agata Lapedriza et al, 《Learning Deep Features for Discriminative Localization》, 2015 (https://arxiv.org/pdf/1512.04150.pdf)

[12] Kaggle 中介紹的實作 (https://www.kaggle.com/aakashnain/what-does-a-cnn-see)

第7章

- [1] Sergey Ioffe · Christian Szegedy, 《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》, 2015 (http://proceedings.mlr.press/v37/ioffe15.pdf)
- [2] Kaiming He \ Xiangyu Zhang \ Shaoqing Ren \ Jian Sun, \(\) Deep Residual Learning for Image Recognition \(\) , 2015 \(\) (https://arxiv.org/abs/1512.03385)
- [3] Keras 官網關於 Keras Applications 的介紹 (https://keras.io/api/applications/)
- [4] Marie Stephen Leo, 《How to Choose the Best Keras Pre-Trained Model for Image Classification》, 2020

(https://towardsdatascience.com/how-to-choose-the-best-keras-pre-trained-model-for-image-classification-b850ca4428d4)

[5] yrevar GitHub (https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a)

[6] Ethan Rosenthal, $\langle\!\langle Using \ Keras' \ Pretrained \ Neural Networks for Visual Similarity Recommendations <math display="inline">\rangle\!\rangle$, 2016

(https://www.ethanrosenthal.com/2016/12/05/recasketch-keras/)

[7] Tensorflow 官網提供的範例『Load images』

(https://www.tensorflow.org/tutorials/load_data/images)

- [8] Sergey Ioffe · Christian Szegedy, 《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》, 2015 (https://arxiv.org/pdf/1502.03167.pdf)
- [9] Aman Sawarn, 《Why Batch Normalization Matters?》, 2020 (https://medium.com/towards-artificial-intelligence/why-batch-normalization-matters-4a6d753ba309)
- [10] alexirpan, 《On The Perils of Batch Norm》, 2017 (https://www.alexirpan.com/2017/04/26/perils-batch-norm.html)

第8章

[1] Joseph Redmon · Anelia Angelova, 《Real-Time Grasp Detection Using Convolutional Neural Networks》, 2015
(https://docs.google.com/presentation/d/1Zc9-iR1eVz-zysinwb7bzLGC2no2ZiaD897_14dGbhw/edit?usp=sharing)

- [2] 2011 年 ImageNet ILSVRC 挑戰賽比賽說明 (http://image-net.org/challenges/LSVRC/2011/index)
- [3] 2017 年 ImageNet ILSVRC 挑戰賽比賽說明 (http://image-net.org/challenges/LSVRC/2017/)
- [4] Fei-Fei Li \ Justin Johnson \ Serena Yeung, \(\) Lecture 11: Detection and Segmentation \(\) \, 2017 \(\) (http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf \)
- [5] Adrian Rosebrock, 《Image Pyramids with Python and OpenCV》, 2015 (https://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opency/)

[6] IIPImage

(https://iipimage.sourceforge.io/documentation/images/)

[7] Adrian Rosebrock, \langle Sliding Windows for Object Detection with Python and OpenCV \rangle , 2015

(https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opency/)

- [8] 素娜 93,《方向梯度直方圖 (HOG)》, 2017 (https://www.jianshu.com/p/6f69c751e9e7)
- [9] Adrian Rosebrock, 《Histogram of Oriented Gradients and Object Detection》, 2014 (https://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-det

ection/)

[10] Adrian Rosebrock, Non-Maximum Suppression for Object Detection in Python , 2014

(https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/)

[11] Tomasz Malisiewicz, 《Ensemble of Exemplar-SVMs for Object Detection and Beyond》

(http://www.cs.cmu.edu/~tmalisie/projects/iccv11/index.html)

[12] Ross Girshick \ Jeff Donahue \ Trevor Darrell \ Jitendra Malik, \(\) Rich feature hierarchies for accurate object detection and semantic segmentation \(\) \, 2014 \(\) \(\

[13] Lung-Ying Ling,《R-CNN 學習筆記, LaptrinhX》, 2019 (https://laptrinhx.com/r-cnn-xue-xi-bi-ji-1145354539/)

[14] Kaiming He \ Xiangyu Zhang \ Shaoqing Ren \ Jian Sun, \(\sqrt{Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)}, 2015 (https://arxiv.org/abs/1406.4729)

[15] v1_vivian,《SPP-Net 論文詳解》, 2017 (https://www.itread01.com/content/1542334444.html)

[16] Ross B. Girshick 於 GitHub 上放置的 Faster R-CNN 程式碼 (https://github.com/rbgirshick/py-faster-rcnn)

[17] YOLO 官網 (https://pireddie.com/darknet/yolo/)

[18] Alexey Bochkovskiy · Chien-Yao Wang · Hong-Yuan Mark Liao, 《YOLOv4: Optimal Speed and Accuracy of Object Detection》, 2020 (https://arxiv.org/abs/2004.10934)

[19] YOLO5 GitHub (https://github.com/ultralytics/yolov5)

[20] Joseph Redmon \ Santosh Divvala \ Ross Girshick \ Ali Farhadi, \(You Only Look Once: Unified, Real-Time Object Detection \) , 2016 (https://docs.google.com/presentation/d/1kAa7NOamBt4calBU9iHgT8a86RRHz9Yz 2oh4-GTdX6M/edit?usp=sharing)

[21] Jason Brownlee, 《How to Perform Object Detection With YOLOv3 in Keras》, 2019

 $(\underline{https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-i} \\ \underline{n-keras/})$

[22] YOLO4 GitHub

(https://github.com/SoloSynth1/tensorflow-volov4)

[23] COCO 資料集的 80 個類別

(https://github.com/amikelive/coco-labels/blob/master/coco-labels-2014_2017.txt)

[24] Aditya Chakraborty, 《Create your own dataset for YOLOv4 object detection in 5 minutes》, 2020

(https://medium.com/analytics-vidhya/create-your-own-dataset-for-yolov4-object-detection-in-5-minutes-fdc988231088)

[25] YOLO4 GitHub

(https://github.com/AlexeyAB/darknet)

[26] SSD 官網

(https://github.com/weiliu89/caffe/tree/ssd)

[27] LoveMIss-Y,《一文看盡目標檢測演算法 SSD 的核心架構與設計思想》, 2019 (https://blog.csdn.net/qq_27825451/article/details/89137697)

[28] TensorFlow 2 Detection Model Zoo

(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf 2_detection_zoo.md)

[29] TensorFlow Object Detection API 的安裝環境需求 (https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/)

[30] Python Image Processing Cookbook GitHub (https://github.com/PacktPublishing/Python-Image-Processing-Cookbook)

[31] Tensorflow Object Detection API 官網文件

(https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html)

[32] Oz Ramos, 《Introducing Handsfree.js - Integrate hand, face, and pose gestures to your frontend》

(https://dev.to/midiblocks/introducing-handsfree-js-integrate-hand-face-and-pose-gest ures-to-your-frontend-4g3p)

[33] Jen Looper, 《Ombromanie: Creating Hand Shadow stories with Azure Speech and TensorFlow.js Handposes》

(https://dev.to/azure/ombromanie-creating-hand-shadow-stories-with-azure-speech-and-tensorflow-js-handposes-3cln)

第9章

[1] Vijay Badrinarayanan · Alex Kendall · Roberto Cipolla, 《SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation》, 2015

(https://arxiv.org/abs/1511.00561)

- [2] keras-mnist-VAE GitHub (https://github.com/lyeoni/keras-mnist-VAE)
- [3] Liang-Chieh Chen、George Papandreou 等人,《DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs》, 2017
 (https://arxiv.org/pdf/1606.00915.pdf)
- [4] Guosheng Lin \ Anton Milan \ Chunhua Shen, \(RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation \) , 2016 \((https://arxiv.org/pdf/1611.06612.pdf)
- [5] Hengshuang Zhao Jianping Shi Xiaojuan Qi, 《Pyramid Scene Parsing Network》, 2017 (https://arxiv.org/pdf/1612.01105.pdf)
- [6] Olaf Ronneberger \ Philipp Fischer \ Thomas Brox, \(\langle U-Net: Convolutional Networks for Biomedical Image Segmentation \) \, 2015 \(\text{https://arxiv.org/pdf/1505.04597.pdf} \)
- [7] Keras 官網提供的範例『Image segmentation with a U-Net-like architecture』(https://keras.io/examples/vision/oxford_pets_image_segmentation/)
- [8] Harshall Lamba, 《Understanding Semantic Segmentation with UNET》, 2019 (https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be 4f42d4b47)
- [9] Kaiming He、Georgia Gkioxari、Piotr Dollár 等人,《Mask R-CNN》, 2018 (https://arxiv.org/pdf/1703.06870.pdf)
- [10] akTwelve Mask R-CNN 函數庫 (https://github.com/akTwelve/Mask_RCNN)
- [11] Jason Brownlee, $\langle\!\!\langle$ How to Use Mask R-CNN in Keras for Object Detection in Photographs $\rangle\!\!\rangle$, 2020

(https://machinelearningmastery.com/how-to-perform-object-detection-in-photograph s-with-mask-r-cnn-in-keras/)

- [12] fast-style-transfer GitHub (https://github.com/lengstrom/fast-style-transfer)
- [13] 翁書婷、《催生全球首位 AI 繪師 Andy, 美圖搶攻人工智慧卻面臨一大挑戰》, 2017

(https://www.bnext.com.tw/article/47330/ai-andy-meitu)

[14] Leon A. Gatys \ Alexander S. Ecker \ Matthias Bethge, \(A Neural Algorithm of

Artistic Style , 2015 (https://arxiv.org/abs/1508.06576)

[15] TensorFlow 官網提供的範例『Neural Style Transfer』 (https://www.tensorflow.org/tutorials/generative/style_transfer)

[16] Kaipeng Zhang、Zhanpeng Zhang、Zhifeng Li、Yu Qiao, 《Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》, 2016 (https://arxiv.org/abs/1604.02878)

[17] MTCNN_face_detection_alignment GitHub (https://github.com/kpzhang93/MTCNN_face_detection_alignment)

[18] face-recognition GitHub 的範例 (https://github.com/ageitgey/face_recognition)

[19] 陳昭明,《dlib 安裝心得 -- Windows 環境》, 2020 (https://ithelp.ithome.com.tw/articles/10231535)

[20] Shaoqing Ren、Xudong Cao、Yichen Wei 等人,《Face Alignment at 3000 FPS via Regressing Local Binary Features》, 2014 (http://www.jiansun.org/papers/CVPR14_FaceAlignment.pdf)

[21] Georgios Tzimiropoulos ${\bf \cdot}$ Maja Pantic, 《Optimization problems for fast AAM fitting in-the-wild 》, 2013

(https://ibug.doc.ic.ac.uk/media/uploads/documents/tzimiro_pantic_iccv2013.pdf)

[22] V.Kazemi $\, \cdot$ J. Sullivan, $\langle \! \langle \, \text{One Millisecond Face Alignment with an Ensemble of Regression Trees} \, \rangle$, 2014

(http://www.csc.kth.se/~vahidk/face_ert.html)

[23] Filip Zelic $\, \cdot \,$ Anuj Sable, $\, \langle \! \langle \, A \,$ comprehensive guide to OCR with Tesseract, OpenCV and Python $\, \rangle \! \rangle \,$, 2021

(https://nanonets.com/blog/ocr-with-tesseract/)

[24] Tesseract 官網的語言列表

[25] Aswinth Raj, 《Car License Plate Recognition using Raspberry Pi and OpenCV》, 2019

(https://circuitdigest.com/microcontroller-projects/license-plate-recognition-using-raspberry-pi-and-opency)

[26] Disadvantages of CNN models (https://iq.opengenus.org/disadvantages-of-cnn/)

第10章

- [1] 自由時報,《全球首次!AI創作肖像畫 10月佳士得拍賣》,2018 (https://news.ltn.com.tw/news/world/breakingnews/2529174)
- [2] 佳士得官網《Is artificial intelligence set to become art's next medium?》 (https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx)
- [3] 佳士得官網關於 Edmond de Belamy 肖像畫的介紹 (https://www.christies.com/lot/lot-edmond-de-belamy-from-la-famille-de-6166184)
- [4] the-gan-zoo GitHub (https://github.com/hindupuravinash/the-gan-zoo)
- [5] Liqian Ma、Xu Jia、Qianru Sun 等人,《Pose Guided Person Image Generation》, 2018
 (https://arxiv.org/pdf/1705.09368.pdf)
- [6] Yanghua Jin、Jiakai Zhang 等人,《Towards the Automatic Anime Characters Creation with Generative Adversarial Networks》, 2017 (https://arxiv.org/pdf/1708.05509.pdf)
- [7] Yunjey Choi、Minje Choi、Munyoung Kim 等人,《StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation》, 2017 (https://arxiv.org/abs/1711.09020)
- [8] Christian Ledig、Lucas Theis、Ferenc Huszár 等人,《Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network》, 2017 (https://arxiv.org/pdf/1609.04802.pdf)
- [9] Tero Karras、Samuli Laine、Miika Aittala 等人,《Analyzing and Improving the Image Quality of StyleGAN》, 2020 (https://arxiv.org/pdf/1912.04958.pdf)
- [10] Jonathan Hui, 《GAN Some cool applications of GAN》, 2018 (https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900)
- [11] Keras 官網範例『DCGAN to generate face images』
 (https://keras.io/examples/generative/dcgan_overriding_train_step/)
- [12] Tero Karras、Timo Aila、Samuli Laine 等人,《Progressive Growing of GANs for Improved Quality, Stability, and Variation》, 2017 (https://arxiv.org/abs/1710.10196)
- [13] Mehdi Mirza Simon Osindero, (Conditional Generative Adversarial Nets), 2014

(https://arxiv.org/abs/1411.1784)

[14] Qiwen Fu · Wei-Ting Hsu · Mu-Heng Yang, 《Colorization Using ConvNet and GAN》, 2017

(http://cs231n.stanford.edu/reports/2017/pdfs/302.pdf)

[15] ColorGAN GitHub

(https://github.com/bbc/ColorGAN#end-to-end-conditional-gan-based-architectures-for-image-colourisation)

[16] Phillip Isola \ Jun-Yan Zhu \ Tinghui Zhou, \(\) Image-to-Image Translation with Conditional Adversarial Networks \(\) \, 2016 \(\) (https://arxiv.org/abs/1611.07004)

[17] CMP Facade Database (https://cmp.felk.cvut.cz/~tylecr1/facade/)

[18] Jun-Yan Zhu、Taesung Park、 Phillip Isola、Alexei A. Efros, 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》, 2017 (https://arxiv.org/abs/1703.10593)

[19] Tensorflow 官網有關 CycleGAN 的說明 (https://www.tensorflow.org/datasets/catalog/cycle_gan)

- [20] 李宏毅老師的 PPT『Introduction of Generative Adversarial Network (GAN)』(https://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_GAN.pdf)
- [21] Shakir Mohamed Danilo Rezende, (Tutorial on Deep Generative Models), 2017 (http://www.shakirm.com/slides/DeepGenModelsTutorial.pdf)
- [22] Alan Zucconi, 《Understanding the Technology Behind DeepFakes》, 2018 (https://www.alanzucconi.com/2018/03/14/understanding-the-technology-behind-deepfakes/)
- [23] Aayush Bansal \ Shugao Ma \ Deva Ramanan \ Yaser Sheikh, \(Recycle-GAN: Unsupervised Video Retargeting \) \, 2018 \(\frac{https://arxiv.org/abs/1808.05174} \)
- [24] Jonathan Hui, 《Detect AI-generated Images & Deepfakes》, 2020 (https://jonathan-hui.medium.com/detect-ai-generated-images-deepfakes-part-1-b518e d5075f4)
- [25] Louis (What's AI) Bouchard, 《DeepFakes in 5 minutes》, 2020 (https://pub.towardsai.net/deepfakes-in-5-minutes-155c13d48fa3)
- [26] Jonathan Hui, 《Detect AI-generated Images & Deepfakes (Part 1)》, 2020 (https://jonathan-hui.medium.com/detect-ai-generated-images-deepfakes-part-1-b518e

d5075f4)

[27] 林妍溱,《微軟開發能判別 Deepfake 影像及內容變造的技術》, 2020 (https://www.ithome.com.tw/news/139740)

第11章

- [1] Sebastian Andrei, 《South Korea's Convenience Store Culture》, 2018 (https://medium.com/@sebastian_andrei/south-koreas-convenience-store-culture-187c3a649a6)
- [2] 維基百科關於 tf-idf 的說明 (https://en.wikipedia.org/wiki/Tf%E2%80%93idf)
- [3] Tomas Mikolov \ Quoc V. Le \ Ilya Sutskever, \(\) Exploiting Similarities among Languages for Machine Translation \(\) \, 2013 \(\) (https://arxiv.org/pdf/1309.4168v1.pdf)
- [4] NSS, 《An Intuitive Understanding of Word Embeddings: From Count Vectors to Word2Vec》, 2017
 (https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/)
- [5] Ria Kulshrestha, 《NLP 102: Negative Sampling and GloVe》, 2019 (https://towardsdatascience.com/nlp-101-negative-sampling-and-glove-936c88f3bc68)
- [6] Gensim 官網關於 Word2Vec 的說明 (https://radimrehurek.com/gensim/models/word2vec.html)
- [7] Jeffrey Pennington \ Richard Socher \ Christopher D. Manning, \(\bigcolon Global \) Vectors for Word Representation \(\bigcolon \), 2014

 (https://www.aclweb.org/anthology/D14-1162.pdf)
- [8] 自由時報 蘇金鳳、《中市明第二輪分區限水 百貨業買 20 個水塔桶》, 2021 (https://news.ltn.com.tw/news/life/breakingnews/3497315)
- [9] 布丁布丁吃布丁,《彙整中文與英文的詞性標註代號》, 2017 (http://blog.pulipuli.info/2017/11/fasttag-identify-part-of-speech-in.html)
- [10] pkuseg GitHub (https://github.com/explosion/spacy-pkuseg)
- [11] spaCy 101 官網『spaCy 101: Everything you need to know』(https://spacy.io/usage/spacy-101)

第12章

- [1] Christopher Olah, 《Understanding LSTM Networks》, 2015 (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
- [2] keras 官網 LSTM 的說明 (https://keras.io/zh/layers/recurrent/)
- [3] Jason Brownlee, 《Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras》, 2016 (https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras)
- [4] Junyoung Chung、 Caglar Gulcehre、KyungHyun Cho、Yoshua Bengio,《Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling》, 2014 (https://arxiv.org/abs/1412.3555)
- [5] Michael Phi, 《Illustrated Guide to LSTM's and GRU's: A step by step explanation》, 2018
 (https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21)
- [6] Alexandre Xavier, 《Predicting stock prices with LSTM》, 2019 (https://medium.com/neuronio/predicting-stock-prices-with-lstm-349f5a0974d4)
- [7] 陳昭明,《演算法交易(Algorithmic Trading) 實作》, 2021 (https://ithelp.ithome.com.tw/articles/10255111)
- [8] 張俊林博客,《深度學習中的注意力機制(2017 版)》, 2017 (https://blog.csdn.net/malefactor/article/details/78767781)
- [9] Meng Lee,《淺談神經機器翻譯 & 用 Transformer 與 TensorFlow 2 英翻中》, 2019 (https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.htm
- (https://leemeng.tw/neural-machine-translation-with-transformer-and-tensorflow2.htm <u>l</u>)
- [10] TensorFlow 官網所提供的範例『Neural machine translation with attention』 (https://www.tensorflow.org/tutorials/text/nmt_with_attention)
- [11] Andrej Karpathy, 《The Unreasonable Effectiveness of Recurrent Neural Networks》, 2015 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
- [12] Ashish Vaswani Noam Shazeer Niki Parmar, (Attention Is All You Need), 2017
- [13] Raimi Karim, 《Illustrated: Self-Attention》, 2019

(https://arxiv.org/pdf/1706.03762.pdf)

(https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a)

[14] Jay Alammar, 《The Illustrated Transformer》, 2018 (http://jalammar.github.io/illustrated-transformer/)

[15] GeeksforGeeks, 《Self-attention in NLP》, 2020 (https://www.geeksforgeeks.org/self-attention-in-nlp/)

[16] Jason Brownlee, 《A Gentle Introduction to Calculating the BLEU Score for Text in Python》, 2019 (https://machinelearningmastery.com/calculate-bleu-score-for-text-python/)

[17] Jacob Devlin \ Ming-Wei Chang \ Kenton Lee \ Kristina Toutanova, \(\) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding \(\) \, 2018 (https://arxiv.org/abs/1810.04805)

[18] Rani Horev, 《BERT Explained: State of the art language model for NLP》, 2018 (https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270)

[19] BERT GitHub

(https://github.com/google-research/bert)

[20] Transformers GitHub (https://github.com/huggingface/transformers)

[21] Transformers Quick tour (https://huggingface.co/transformers/quicktour.html)

- [22] Transformers 官網『Summary of the tasks』的 Extractive Question Answering (https://huggingface.co/transformers/task_summary.html#extractive-question-answering)
- [23] Transformers 官網『Summary of the tasks』的 Masked Language Modeling (https://huggingface.co/transformers/task_summary.html#masked-language-modeling)
- [24] Transformers 官網『Summary of the tasks』的 Text Generation (https://huggingface.co/transformers/task_summary.html#text-generation)
- [25] Transformers 官網『Summary of the tasks』的 Named Entity Recognition (https://huggingface.co/transformers/task summary.html#named-entity-recognition)
- [26] Transformers 官網『Summary of the tasks』的 Summarization (https://huggingface.co/transformers/task_summary.html#summarization)
- [27] Adam Roberts、Staff Software Engineer、Colin Raffel 等人,《Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer》, 2020

(https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)

[28] Transformers 官網『Summary of the tasks』的 Translation (https://huggingface.co/transformers/task_summary.html#translation)

[29] Transformers 官網『Training and fine-tuning』 (https://huggingface.co/transformers/training.html#tensorflow)

[30]

(https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)

[31] 王若樸,《AI 趨勢周報第 142 期:推理能力新突破! OpenAI 新作 GPT-f 能自動證明數學定理》, 2020

(https://www.ithome.com.tw/news/140030)

[32] 王若樸,《AI 趨勢周報第 167 期:臉書新模型融合自監督和 Transformer,不需標註資料還能揪出複製圖》, 2021 (https://www.ithome.com.tw/news/144208)

第13章

[1] Adnan Rehan, $\langle 10 \text{ Best Chatbot Development Frameworks to Build Powerful Bots} \rangle$, 2020

(https://geekflare.com/chatbot-development-frameworks/)

[2] ChatBotAI GitHub

(https://github.com/ahmadfaizalbh/Chatbot)

[3] Dialogflow 的官網說明

(https://cloud.google.com/dialogflow/docs)

第14章

[1] Michael Picheny $\,$ Bhuvana Ramabhadran $\,$ Stanley F. Chen, $\,$ Lecture 1 Introduction/Signal Processing, Part I $\,$, 2012

(https://www.ee.columbia.edu/~stanchen/fall12/e6870/slides/lecture1.pdf)

[2] Roger Jang (張智星),《Audio Signal Processing and Recognition (音訊處理與辨識)》, 2005

(http://mirlab.org/jang/books/audioSignalProcessing/audioIntro.asp?language=chinese)

- [3] 國立臺灣大學普通物理實驗室官網關於示波器使用教學 (https://web.phys.ntu.edu.tw/gphyslab/modules/tinyd2/index8803.html?id=7)
- [4] Pema Grg, 《Audio Signal Processing》, 2020

(https://blog.ekbana.com/audio-signal-processing-f7e86d415489)

- [5] File:CPT-Sound-ADC-DAC.svg Wikimedia Commons (https://commons.wikimedia.org/wiki/File:CPT-Sound-ADC-DAC.svg)
- [6] Vincent Koops, 《Introduction Basic Audio Feature Extraction》, 2017 (http://www.cs.uu.nl/docs/vakken/msmt/lectures/SMT B Lecture5 DSP 2017.pdf)
- [7] Nagesh Singh Chauhan, 《Audio Data Analysis Using Deep Learning with Python (Part 1)》, 2020

(https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-1.html)

- [8] Henry Haefliger, 《Python audio spectrum analyzer》, 2019 (https://medium.com/quick-code/python-audio-spectrum-analyser-6a3c54ad950)
- [9] Nagesh Singh Chauhan, 《Audio Data Analysis Using Deep Learning with Python (Part 2)》, 2020

(https://www.kdnuggets.com/2020/02/audio-data-analysis-deep-learning-python-part-2.html)

[10] Kunal Vaidya, 《Music Genre Recognition using Convolutional Neural Networks (CNN) — Part 1》, 2020

(https://towardsdatascience.com/music-genre-recognition-using-convolutional-neural-networks-cnn-part-1-212c6b93da76)

[11] 陳昭明, 《Day 25:自動語音辨識(Automatic Speech Recognition) -- 觀念與實踐》, 2018

(https://ithelp.ithome.com.tw/articles/10195763)

- [12] kaggle 官網『TensorFlow Speech Recognition Challenge』 (https://www.kaggle.com/c/tensorflow-speech-recognition-challenge)
- [13] 維基百科關於音素的說明 (https://zh.wikipedia.org/wiki/音位)
- [14] Oscar Contreras Carrasco, 《Gaussian Mixture Models Explained》, 2019 (https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95)
- [15] 心學-知行合一,《語音辨識系列 2--基於 WFST 解碼器_u012361418 的博客-程式師宅基地》, 2019

(http://www.cxyzjd.com/article/u012361418/90289912)

- [16] 『愛丁堡大學語音辨識課程』第 11 章 (http://www.inf.ed.ac.uk/teaching/courses/asr/lectures-2019.html)
- [17] 陳柏琳,《現階段大詞彙連續語音辨識研究之簡介》,2005

(http://berlin.csie.ntnu.edu.tw/Berlin_Research/Manuscripts/2005_ACLC LP-Newsletter 現階段大詞彙連續語音辨識研究之簡介 Final.pdf)

第 15 章

[1] 維基百科關於強化學習的說明

(https://zh.wikipedia.org/wiki/%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0)

[2] Sayan Mandal, 《Install OpenAI Gym with Box2D and Mujoco in Windows 10》, 2019

(https://medium.com/@sayanmndl21/install-openai-gym-with-box2d-and-mujoco-in-windows-10-e25ee9b5c1d5)

[3] Denny Britz Github

(https://github.com/dennybritz/reinforcement-learning)

[4] 維基百科關於蒙地卡羅方法的說明

(https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE %85%E6%96%B9%E6%B3%95)

- [5] Yaodong Yang \ Jun Wang, \(\) An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective \(\) , 2020 \(\) (https://arxiv.org/abs/2011.00583)
- [6] Jeremy Zhang, 《Reinforcement Learning Implement TicTacToe》, 2019 (https://towardsdatascience.com/reinforcement-learning-implement-tictactoe-189582b ea542)