Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

Test 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 1,75:0,25 2 $\left(\frac{17}{4}$ 2,25 $\right)$ = 3.
- **5p** 2. Determinați imaginea funcției $f:[1,5] \to \mathbb{R}$, f(x) = 2x + 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(2x+4) = 4$.
- **5p 4.** După o ieftinire cu 20%, prețul unui produs este de 144 lei. Determinați prețul produsului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,a) și B(5,0), unde a este număr real. Determinați numerele reale a, știind că segmentul AB are lungimea egală cu 5.
- **5p 6.** Arătați că $\sin^2 130^\circ + \cos^2 50^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 6 \\ -2 & -4 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că $\det A = 0$.
- **5p b)** Arătați că $A \cdot A + A = O_2$.
- **5p** c) Demonstrați că există o infinitate de matrice $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât det $X = \det(X + I_2)$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = -xy + x + y$.
- **5p** a) Arătați că $1 \circ \sqrt{2} = 1$.
- **5p b**) Demonstrați că $x \circ y = -(x-1)(y-1)+1$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real x pentru care $3^x \circ 5^x = 1$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 2x^2 63$.
- **5p** a) Arătați că $f'(x) = 4x(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{x \to 3} \frac{f(x)}{x^2 9}$.
 - **2.** Se consideră funcțiile $F:(-1,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^2}{x+1}$ și $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 1 \frac{1}{(x+1)^2}$.
- $\mathbf{5p}$ a) Demonstrați că funcția F este o primitivă a funcției f .
- **5p b)** Calculați $\int_{0}^{1} f(x) dx$.
- **5p** c) Determinați numărul real a, a > 1, pentru care $\int_{1}^{a} \frac{f(x)}{F(x)} dx = \ln \frac{8}{3}$.