

D. K. Faddeev, On the concept of entropy of a finite probabilistic scheme, $Uspekhi\ Mat.\ Nauk,\ 1956,\ Volume\ 11,\ Issue\ 1(67),\ 227–231$

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 147.213.133.207

October 4, 2018, 14:09:48

YCHEXH MATEMATHYECKHX HAYK

к понятию энтропии конечной вероятностной схемы

Д. К. Фаддеев

- 1° . Как установлено в статье А. Я. Хинчина [1], энтропия $H\left(p_{1},\ p_{2},\ \ldots,\ p_{n}\right)$ конечной вероятностной схемы $(A_{1},\ A_{2},\ \ldots,\ A_{n})$ может быть охарактеризована следующей системой аксиом.
- 1. $H(p_1, p_2, \ldots, p_n)$ непрерывна относительно p_1, p_2, \ldots, p_n в области $0 \leqslant p_i \leqslant 1, p_1 + \ldots + p_n = 1$.
 - 2. $H(p_1, p_2, ..., p_n)$ симметрична относительно $p_1, p_2, ..., p_n$.
 - 3. $H(p_1, p_2, \ldots, p_n, 0) = H(p_1, p_2, \ldots, p_n)$.
- 4. $H(q_{11}, \ldots, q_{1m}; q_{21}, \ldots, q_{2m}; \ldots; q_{n1}, \ldots, q_{nm}) = H(p_1, p_2, \ldots, p_n) + \sum_{i=1}^{n} p_i H\left(\frac{q_{i1}}{p_i}, \ldots, \frac{q_{im}}{p_i}\right),$

где

$$p_i = q_{i1} + \ldots + q_{im}$$
 $(i = 1, \ldots, n)$

(эта аксиома сформулирована в статье [1] в других терминах).

5.
$$H(p_1, p_2, ..., p_n) \leqslant H\left(\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right)$$
.

Этими аксиомами энтропия определяется однозначно с точностью до положительного множителя. Целью настоящей заметки является некоторое упрощение системы аксиом. Именно, предлагаются следующие аксиомы:

- 1'. $H\left(p,\ 1-p\right)$ непрерывна при $0\leqslant p\leqslant 1$ и положительна хотя бы в одной точке.
 - 2'. $H\left(p_{1},\,p_{2},\,\ldots,\,p_{n}\right)$ симметрична относительно $p_{1},\,p_{2},\,\ldots,\,p_{n}.$
 - 3'. При $n \ge 2$

$$H\left(p_{1},\;\ldots,\;p_{n-1};\;q_{1},\;q_{2}\right)=H\left(p_{1},\;\ldots,\;p_{n-1},\;p_{n}\right)+p_{n}H\left(\frac{q_{1}}{p_{n}}\;,\;\frac{q_{2}}{p_{n}}\right).$$

Здесь $p_n = q_1 + q_2$.

Разница в этих двух системах аксиом заключается в том, что, во-первых, аксиома 5 (экстремальность) заменяется требованием положительности энтропии в одной точке и, во-вторых, аксиомы 3 и 4 заменяются одной аксиомой 3′, очень естественной, если рассматривать энтропию как меру неопределённости схемы. Действительно, «неопределённость» схемы

 $egin{pmatrix} A_1,&\dots,&A_{n-1};&B_1,&B_2\\ p_1,&\dots,&p_{n-1};&q_1,&q_2 \end{pmatrix}$ отличается от «неопределённости» схемы $egin{pmatrix} A_1,&\dots,&A_{n-1},&A_n\\ p_1,&\dots,&p_{n-1},&p_n \end{pmatrix}$ на «неопределённость», происходящую от подразделения события A_n на два подсобытия $B_1,&B_2$ с условными вероятностями $\frac{q_1}{p_n},&\frac{q_2}{p_n}$. Эта «неопределённость» должна быть преодолена только в том случае, если реализуется событие A_n , вероятность чего равна p_n .

 2° . Прежде всего, установим, что аксиомы 2, 3, 4 равносильны 2', 3'. Лемма 1. Из 2, 3, 4 следует, что H(1, 0) = 0.

Доказательство. Подсчитаем $H\left(\frac{1}{2}\,,\,\frac{1}{2}\,,\,0,\,0\right)$ двумя способами. С одной стороны, в силу 3 имеем $H\left(\frac{1}{2}\,,\,\frac{1}{2}\,,\,0,\,0\right) = H\left(\frac{1}{2}\,,\,\frac{1}{2}\right)$. С другой стороны, $H\left(\frac{1}{2}\,,\,\frac{1}{2}\,,\,0,\,0\right) = H\left(\frac{1}{2}\,,\,0,\,\frac{1}{2}\,,\,0\right)$ и в силу 4 получим $H\left(\frac{1}{2}\,,\,0;\,\frac{1}{2}\,,\,0\right) = H\left(\frac{1}{2}\,,\,\frac{1}{2}\,,\,0,\,0\right) + \frac{1}{2}H\left(1,\,0\right)$. Следовательно, $H\left(1,\,0\right) = 0$.

Лемма 2. Из 2, 3, 4 следует 3'.

Доказательство. $H\left(p_{1},\ 0;\ \dots;\ p_{n-1},\ 0;\ q_{1},\ q_{2}\right)$ равно в силу 2 и 3 $H\left(p_{1},\ 0;\ \dots;\ p_{n-1},\ 0;\ q_{1},\ q_{2}\right)$, что равно в силу 4 $H\left(p_{1},\ \dots,\ p_{n-1},\ p_{n}\right)+p_{1}H\left(1,\ 0\right)+\dots+p_{n-1}H\left(1,\ 0\right)+p_{n}H\left(\frac{q_{1}}{p_{n}},\ \frac{q_{2}}{p_{n}}\right)=H\left(p_{1},\ \dots,\ p_{n-1},\ p_{n}\right)+p_{n}H\left(\frac{q_{1}}{p_{n}},\ \frac{q_{2}}{p_{n}}\right).$

 Π емма 3. Из 2', 3' следует, что H(1, 0) = 0.

Доказательство. Подсчитаем двумя способами $H\left(\frac{1}{2},\,\frac{1}{2},\,0\right)$. Содной стороны, в силу 3′ имеем $H\left(\frac{1}{2};\,\frac{1}{2},\,0\right) = H\left(\frac{1}{2},\,\frac{1}{2}\right) + \frac{1}{2}H(1,\,0)$. С другой стороны, $H\left(\frac{1}{2},\,\frac{1}{2},\,0\right) = H\left(0;\,\frac{1}{2},\,\frac{1}{2}\right) = H\left(0,\,1\right) + H\left(\frac{1}{2},\,\frac{1}{2}\right)$. Следовательно, $H\left(1,\,0\right) = 0$.

 Π емма 4. Uз 2', 3' cле ∂y еm 3.

Доказательство. $H(p_1, \ldots, p_{n-1}; p_n, 0) = H(p_1, \ldots, p_{n-1}, p_n) + p_n H(1, 0) = H(p_1, \ldots, p_{n-1}, p_n).$

Лемма 5. Из 3' следует:

$$\begin{split} H\left(p_{1},\;\ldots,\;p_{n-1};\;q_{1},\;\ldots,\;q_{m}\right) &= H\left(p_{1},\;\ldots,\;p_{n-1},\;p_{n}\right) + p_{n}H\left(\frac{q_{1}}{p_{n}}\;,\;\ldots,\;\frac{q_{m}}{p_{n}}\right). \\ & 3\partial ecb\;\;n \geqslant 2,\;\;p_{n} = q_{1} + \ldots + q_{m}. \end{split}$$

Доказательство. При m=2 утверждение леммы совпадает с аксломой 3', при $m\geqslant 3$ лемма легко доказывается индукцией по m.

Лемма 6. *Из* 2', 3' следует:

$$H(q_{11}, \ldots, q_{1m_1}; q_{21}, \ldots, q_{2m_2}; \ldots; q_{n1}, \ldots, q_{nm_n}) =$$

$$= H(p_1, \ldots, p_n) + \sum_{i=1}^n p_i H\left(\frac{q_{i1}}{p_i}, \ldots, \frac{q_{im_i}}{p_i}\right).$$

 $3\partial e c b p_i = q_{i1} + \ldots + q_{im_i}$

Доказательство. Нужно n раз применить лемму 5 к каждой группе аргументов, что возможно в силу симметрии.

Положив $m_1 = m_2 = \ldots = m_n = m$, получим, что из 2', 3' следует 4.

Итак, мы установили равносильность групп аксиом 2, 3, 4 и 2', 3'.

3°. Положим, следуя статье [1], $F(n) = H\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$ при $n \geqslant 2$ и

F (1) = 0. Применяя лемму 6 к случаю $m_1 = \ldots = m_n = m, q_{ij} = \frac{1}{mn}$, получим:

$$F(mn) = F(m) + F(n) \tag{1}$$

при $m \geqslant 2$, $n \geqslant 2$. При m = 1 или n = 1 соотношение (1) тривиально. Далее, применяя лемму 5 к $H\left(\frac{1}{n}; \frac{1}{n}, \ldots, \frac{1}{n}\right)$, получим:

$$H\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) = H\left(\frac{1}{n}, \frac{n-1}{n}\right) + \frac{n-1}{n}H\left(\frac{1}{n-1}, \ldots, \frac{1}{n-1}\right),$$

откуда следует:

$$\eta_n = H\left(\frac{1}{n}, \frac{n-1}{n}\right) = F(n) - \frac{n-1}{n}F(n-1).$$

Лемма 7. $\Pi pu n \to \infty$

$$\mu_n = \frac{F(n)}{n} \rightarrow 0$$
 $\mu_n = F(n) - F(n-1) \rightarrow 0$.

Доказательство. В силу непрерывности $H\left(p,\,1-p\right)$ при $p=\eta_n=H\left(\frac{1}{n}\,,\frac{n-1}{n}\right)$ \longrightarrow $H\left(0,\,1\right)=0.$

Далее, $n\eta_n = nF(n) - (n-1)F(n-1)$, откуда

$$nF(n) = \sum_{k=1}^{n} k \eta_k$$

И

$$\frac{F(n)}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k \eta_k = \frac{n+1}{2n} \cdot \frac{2}{n(n+1)} \sum_{k=1}^{n} k \eta_k.$$

Ho $\frac{2}{n(n+1)}\sum_{k=1}^n k\eta_k$ есть среднее арифметическое первых $\frac{n(n+1)}{2}$ членов стре-

мящейся к нулю последовательности $\eta_1,\ \eta_2,\ \eta_3,\ \eta_3,\ \eta_3,\ \dots$ Следовательно,

$$\frac{2}{n(n+1)}\sum_{k=1}^{n}k\eta_{k} \to 0 \text{ if } \mu_{n} = \frac{F(n)}{n} \to 0.$$

Далее, $\lambda_n = F(n) - F(n-1) = \eta_n - \frac{1}{n}F(n-1) \to 0$. Лемма доказана.

В силу соотношения (1) F (n) будет определено при всех натуральных n, как только заданы значения функции F на простых числах. Именно, если $n=p_1^{\alpha_1},\ldots,p_s^{\alpha_s}$, где p_1,\ldots,p_s простые, то F (n) = α_1F (p_1) + \ldots + α_sF (p_s). Положим F (p) = c_p lg p. Тогда

$$F(n) = \alpha_1 c_{p_1} \lg p_1 + \ldots + \alpha_s c_{p_s} \lg p_s.$$

Лемма 8. Среди чисел c_p ($p=2,3,5,7,\ldots$) существует наибольшее. Доказательство. Допустим противное и покажем, что это предположение вступит в противоречие с предположением о непрерывности

H(p, 1-p) при p=0.

Действительно, если в последовательности c_p ($p=2,3,5,7,\ldots$) нет наибольшего числа, то можно построить бесконечную последовательность простых чисел p_1, p_2, \ldots, p_i так, что $p_1=2, p_i$ есть наименьшее простое число, такое, что $c_{p_i}>c_{p_{i-1}}$. Из способа построения этой последовательности ясно, что как только простое число q меньше p_i , то $c_q\leqslant c_{p_i}$.

Пусть i>1 и $q_1^{\alpha_1}$... $q_s^{\alpha_s}$ есть каноническое разложение числа p_i-1 . Рассмотрим

$$\begin{split} h_{p_{i}} &= F\left(p_{i}\right) - F\left(p_{i} - 1\right) = \\ &= F\left(p_{i}\right) - \frac{F\left(p_{i}\right)}{\lg p_{i}} \lg \left(p_{i} - 1\right) + c_{p_{i}} \lg \left(p_{i} - 1\right) - F\left(p_{i} - 1\right) = \\ &= \frac{F\left(p_{i}\right)}{p_{i}} \cdot \frac{p_{i}}{\lg p_{i}} \lg \frac{p_{i}}{p_{i} - 1} + \sum_{i=1}^{s} \alpha_{j} \left(c_{p_{i}} - c_{q_{i}}\right) \lg q_{j}. \end{split}$$

Ясно, что

$$\sum_{j=1}^{s} \alpha_{j} (c_{p_{i}} - c_{q_{j}}) \lg q_{j} \geqslant (c_{p_{i}} - c_{2}) \lg 2 \geqslant (c_{p_{2}} - c_{2}) \lg 2,$$

ибо $q_j < p_i$, $c_{q_j} \leqslant c_{p_i}$ и в силу чётности p_i-1 среди q_j присутствует число 2 с ненулевым показателем.

Далее, при
$$i \to \infty$$
 $\xrightarrow{F(p_i)} f$ $\xrightarrow{p_i} 0$, $\frac{p_i}{\lg p_i} \lg \frac{p_i}{p_i - 1} f$ и $\lambda_{p_i} f$ $\xrightarrow{p_i} 0$.

Следовательно, $(c_{p_2}-c_2)\lg 2 \leqslant 0$, что невозможно.

Совершенно таким же образом устанавливается, что среди c_p существует наименьшее.

 Π емма 9. $F(n) = c \lg n$, $e \partial e \ c - nocmoshhoe$.

Доказательство. Достаточно установить, что все c_p равны друг другу.

Допустим, что найдётся такое простое число p', что $c_{p'}>c_2$. Обозначим через p то простое число, для которого c_p принимает наибольшее значение. Тогда $c_p>c_2$ и p>2.

Пусть m — натуральное число и $q_1^{s_1} \dots q_s^{s_s}$ есть каноническое разложение p^m-1 . Рассмотрим

$$\begin{split} \lambda_{p^m} &= F\left(p^m\right) - F\left(p^m - 1\right) = \\ &= F\left(p^m\right) - \frac{F\left(p^m\right)}{\lg p^m} \lg \left(p^m - 1\right) + c_p \lg \left(p^m - 1\right) - F\left(p^m - 1\right) = \\ &= \frac{F\left(p^m\right)}{p^m} \cdot \frac{p^m}{\lg p^m} \lg \frac{p^m}{p^m - 1} + \sum_{j=1}^s \alpha_j \left(c_p - c_{q_j}\right) \lg q_j \geqslant \\ &\geqslant \frac{F\left(p^m\right)}{p^m} \cdot \frac{p^m}{\lg p^m} \lg \frac{p^m}{p^m - 1} + \left(c_p - c_2\right) \lg 2. \end{split}$$

При переходе к пределу при $m \to \infty$ получим:

$$(c_p - c_2) \lg 2 \le 0$$
,

что невозможно. Таким образом, для всех p' имеет место $c_{p'} \leqslant c_2$.

Совершенно таким же образом устанавливается, что $c_{p'} \gg c_2$ при всех p'. Лемма доказана.

Теорема.

$$H(p_1, p_2, \ldots, p_n) = c \sum_{i=1}^{n} p_i \lg \frac{1}{p_i}$$
 (c > 0).

Доказательство. Рассмотрим сначала случай n=2. Пусть $p=-\frac{r}{s}$ при целых r и s.

Применим лемму 6 к $H\left(\frac{1}{s}, \ldots, \frac{1}{s}\right)$, соединив аргументы в две групны из r и s-r элементов. Получим:

$$H\left(\frac{1}{s},\ldots,\frac{1}{s}\right)=$$

$$=H\left(\frac{r}{s},\ 1-\frac{r}{s}\right)+\frac{r}{s}H\left(\frac{1}{r},\ \ldots,\frac{1}{r}\right)+\frac{s-r}{s}H\left(\frac{1}{s-r},\ \ldots,\frac{1}{s-r}\right),$$

откуда

$$\begin{split} H\left(p,\,1-p\right) &= F\left(s\right) - pF\left(r\right) - (1-p)\,F\left(s-r\right) = \\ &= c\,\lg s - pc\,\lg r - (1-p)\,c\,\lg\left(s-r\right) = \\ &= c\left(\,p\,\lg\frac{s}{r} + (1-p)\,\lg\frac{s}{s-r}\,\right) = \\ &= c\left(\,p\,\lg\frac{1}{p} + (1-p)\lg\frac{1}{1-p}\,\right). \end{split}$$

В силу непрерывности H(p, 1-p) полученная формула может быть распространена и на иррациональные значения $p.\ c>0$ в силу положительности H(p, 1-p) хотя бы в одной точке.

Переход к общему случаю осуществляется **методом математиче**ской индукции, на основании аксиомы 3'.

Поступило в редакцию 21 июля 1955 г.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

[1] А. Я. Хинчин, Понятие энтропии в теории вероятностей, УМН VIII, вып. 3 (55), (1953).