Orthogonal Matching Pursuit Algorithm

A brief introduction

Andersen Ang

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

ms \mathbf{x} ang@uwaterloo.ca, where $\mathbf{x} = \lfloor \pi \rfloor$ Homepage: angms.science

First draft: August 14, 2017 Last update: April 5, 2022

Signal model and inverse problem

▶ Given $\mathbf{b} \in \mathbb{R}^m$ (observed data), $\mathbf{A} \in \mathbb{R}^{m \times n}$ (measurement process) with $n \gg m$ (short-fat matrix, more columns than rows). Find $\mathbf{x} \in \mathbb{R}^m$ such that

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

- ▶ This is called an *inverse problem*: given (A, b), find x.
- ▶ The forward problem: given (A, x), find b, is often easier.
- ▶ In machine learning, the observed data is usually modelled with noise as

$$\mathbf{b} = \mathbf{A}\mathbf{x}_* + \boldsymbol{\epsilon},$$

where $\epsilon \in \mathbb{R}^m$ denotes error, usually the measurement noise.

Signal recovery of sparse signal

- ▶ We are interested in the case A has more columns than rows: Ax = b is under-determined, which has ∞ many sol.
- ► Statistician George Box: "all models are wrong, some are useful." Here: "All solutions are wrong, but some are useful".
- ightharpoonup A want to find x: find x with only a few non-zero elements¹. To find such x mathematically, we solve the following NP-hard problem

$$(\mathcal{L}_0) \ : \ \operatorname{argmin} \ \|\mathbf{x}\|_0 \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{b},$$

where $\|\mathbf{x}\|_0$ is the ℓ_0 pseudo norm of \mathbf{x} , which is the number of non-zero element in \mathbf{x} .

▶ The key message: if A fulfills some conditions, such NP-hard problem can be solved by the *Orthogonal Matching Pursuit* (OMP) algorithm, because the sol. of Problem (\mathcal{L}_0) will be the same as the solution to a ℓ_1 norm minimization problem, which OMP can solve it.

 $^{{}^{1}\}text{Why:}$ for some applications, sparse $\mathbf x$ is easier to interpret.

Terminologies and definitions

▶ **Support** For a vector $\mathbf{x} \in \mathbb{R}^m$, the set of all indices of non-zero elements in \mathbf{x} is called the support of \mathbf{x} , denoted as $\operatorname{supp}(\mathbf{x})$:

$$\operatorname{supp}(\mathbf{x}) = \{ i : x_i \neq 0 \}.$$

- ▶ Sparsity The sparsity of $\mathbf{x} = \#$ non-zero element in $\mathbf{x} = \text{the cardinality of } \operatorname{supp}(\mathbf{x})$. Notation: $|\operatorname{supp}(\mathbf{x})|$ or $||\mathbf{x}||_0$.
- ▶ **s-sparse** A vector is *s*-sparse if $\|\mathbf{x}\|_0 \leq s$.
- ▶ Mutual incoherence For n vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, $\mathbf{x}_i \in \mathbb{R}^m \ \forall i$, the mutual incoherence M is the largest absolute value of normalized correlation between these vectors.

$$M = \max_{i \neq j} \frac{|\langle \mathbf{x}_i, \mathbf{x}_j \rangle|}{\|\mathbf{x}_i\|_2 \|\mathbf{x}_i\|_2}.$$

Note: here $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y}$.

A recovery theorem

▶ Theorem. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $n \gg m$ and $\mathbf{b} \in \mathbb{R}^m$. If $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \in \mathbb{R}^n$ can be exactly recovered by OMP if \mathbf{A} and \mathbf{x} satisfy following inequality:

$$\mu_{\mathbf{A}} < \frac{1}{2s_{\mathbf{x}} - 1},$$

where $\mu =$ mutual coherence of column vectors of ${\bf A}$ and s = sparsity of ${\bf x}$.

- ▶ That is, assumes we know \mathbf{x} is s-sparse, then as long as the mutual coherence of \mathbf{A} satisfies the inequality, \mathbf{x} can be recovered exactly from the given (\mathbf{A}, \mathbf{b}) by OMP.
- ▶ Proof: Theorem 5.14 in *A Mathematical Introduction to Compressive Sensing* by Simon Foucart and Holger Rauhut.
- ► This document : show the OMP algorithm.

How sparse the recoverable ${\bf x}$ can be

- ► Rearranging the inequality $\mu < \frac{1}{2s-1}$ gives $s < \frac{1}{2} \left(\frac{1}{\mu} 1 \right) = \frac{1}{2\mu} \frac{1}{2}$.
- ▶ s is integer, hence $s \leq \left\lfloor \frac{1}{2\mu} \frac{1}{2} \right\rfloor$.
- ▶ Algebra of floor function $\lfloor a+b \rfloor \leq \lfloor a \rfloor + \lfloor b \rfloor + 1$ gives

$$s \le \left\lfloor \frac{1}{2\mu} - \frac{1}{2} \right\rfloor \le \left\lfloor \frac{1}{2\mu} \right\rfloor + \left\lfloor -\frac{1}{2} \right\rfloor + 1 = \left\lfloor \frac{1}{2\mu} \right\rfloor,$$

- i.e., recoverable x can be at most $\left| \frac{1}{2\mu} \right|$ -sparse.
- ► This $\frac{1}{2\mu}$ -sparse condition on $\mathbf x$ links to the uniqueness of solving problem ($\mathcal P$), see page 12 here.

The idea of OMP

- ▶ Imagine the solution \mathbf{x}^* has only 1 non-zero element, say the 3rd element is non-zero and has the value 0.47 as $\mathbf{x}^* = [0, \ 0, \ 0.47, \ 0, \ \dots, \ 0]^\top$.
- The product $\mathbf{A}\mathbf{x}^*$ will be the 3rd column of \mathbf{A} multiplied by 0.47. Let \mathbf{a}_i denotes the *i*th column of \mathbf{A} and x_i denotes the *i*th element of \mathbf{x} . The vector $\mathbf{b} = \mathbf{A}\mathbf{x}^*$ we observed will be $x_3^*\mathbf{a}_3 = 0.47\mathbf{a}_3$.
- Now, suppose we ask somebody to recover \mathbf{x}^* given only (\mathbf{A}, \mathbf{b}) . To recover \mathbf{x}^* , a key is to **utilize** the fact that \mathbf{x}^* is sparse \implies we know \mathbf{b} is a sparse linear combination of columns of \mathbf{A} .
- ▶ In the example, $\mathbf{b} = 0.47\mathbf{a}_3$, so \mathbf{b} will have the highest correlation towards the 3rd column of \mathbf{A} .
- ▶ We can compute the correlations of b to all the columns of A, and see which column gives the "highest correlation". That column tells which index of x^* is non-zero. This is the "matching" part in OMP.
- ► The above is the idea behind OMP for 1-sparse x.
 For s-sparse x with s > 1, the same idea applies with one more step: each time when a column in A is extracted, the effect of the extracted column on vector b has to be "removed" so that next time the same column will not be extracted again. This is the "orthogonal" part in OMP.

Orthogonal Matching Pursuit Algorithm

- ► OMP is
 - ightharpoonup an iterative algorithm : it finds x element-by-element in a step-by-step iterative manner.
 - ▶ a greedy algorithm: at each stage, the problem is solved optimally based on current info.
- ▶ Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, an optional step is to normalize all the column vectors of \mathbf{A} to unit norm:

$$\mathbf{a}_i \leftarrow \frac{\mathbf{a}_i}{\|\mathbf{a}_i\|_2}.$$

This normalization make sure the dot product (correlation) between any two columns of $\bf A$ is within the range [-1 + 1] and hence the absolute value of it is bounded by 1:

$$0 \le |\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \le 1.$$

OMP algorithm ... initialization phase

- lacktriangle (Optional step) Normalize the columns of ${\bf A}$ to unit ℓ_2 -norm.
- ► (Optional step) Remove duplicated columns in A.
- Set residue $\mathbf{r}_0 \leftarrow \mathbf{b}$ \mathbf{r}_k is the key in extracting the "important columns" of \mathbf{A} . It is the "remaining portion" of \mathbf{b} that has not been "explained" by $\mathbf{A}\mathbf{x}_k$.
- ▶ Set the index set $\Lambda_0 = \emptyset$ Λ_k stores all the indices of the "important columns" of \mathbf{A} .
- ▶ Set iteration counter $k \leftarrow 1$ k keeps track of the number of times the "column extraction" has occurred.

OMP algorithm ... main loop step 1

► Step-1. Important column extraction.

$$\lambda_k = \underset{j \notin \Lambda_{k-1}}{\operatorname{argmax}} |\langle \mathbf{a}_j, \mathbf{r}_{k-1} \rangle|.$$

"Important column" = the column in A that has the largest absolute value of correlation with the residue vector \mathbf{r}_{k-1} .

- ▶ The constraint $j \notin \Lambda_{k-1}$ is to avoid repeatedly extracting the same column index that has been extracted previously.
- ▶ It is possible that $\underset{j\notin\Lambda_{k-1}}{\operatorname{argmax}} \left| \langle \mathbf{a}_j, \mathbf{r}_{k-1} \rangle \right|$ produces multiple solutions (if \mathbf{A} has duplicated columns). So it is useful to remove duplicated columns in the initialization stage.
- ► Implementation: this step can be done as

$$\mathbf{h}_k = \mathbf{A}^{\top} \mathbf{r}_{k-1}.$$
 $\lambda_k = \operatorname*{argmax}_{j \notin \Lambda_k} \left| \mathbf{h}_k \right|.$

OMP algorithm ... main loop steps 2

- ▶ Step-2. Augment the index set: $\Lambda_k = \Lambda_{k-1} \cup \{\lambda_k\}$ (put the index into the index set).
- ightharpoonup At k=0, $\Lambda_k=\varnothing$.
- ightharpoonup At k=1, Λ_k holds 1 index.
- ightharpoonup At k=2, Λ_k holds 2 indices.

- ▶ As Λ_k holds k indices, so at k = n step (n is the dimension of \mathbf{x}), Λ_n will hold all the column indices in \mathbf{A} . That means we should stop OMP at this point and \mathbf{x} is fully-dense (there is no zero element).
- \blacktriangleright As we assume **x** is s-sparse, so we should stop at iteration k=s.

OMP algorithm ... main loop step 3

▶ Step-3. Obtain signal estimate x_k . This can be done by solving a regression

$$\mathbf{x}_k(i \in \Lambda_k) = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}_{\Lambda_k}\mathbf{x} - \mathbf{b}\|_2, \ \mathbf{x}_k(i \notin \Lambda_k) = 0,$$

where \mathbf{A}_{Λ_k} is a sub-matrix of \mathbf{A} with columns indicated by Λ_k . The analytical solution of this problem is

$$\mathbf{x}_k(\Lambda_k) = \mathbf{A}_{\Lambda_k}^\dagger \mathbf{b},$$

where † is pseudo-inverse.

lackbox What this means: use the columns in ${f A}_{\Lambda_k}$ to regress the vector ${f b}$.

selected columns in A

 \blacktriangleright As we only use some columns of **A** to regress **b**, for those unused columns in **A**, they contribute nothing in such regression, and hence those corresponding x_i is set to zero.

OMP algorithm ... main loop steps 4 and 5

fewer entries).

- ▶ Step-4. Compute $\hat{\mathbf{b}}_k = \mathbf{A}\mathbf{x}_k$. $\hat{\mathbf{b}}_k$ is the approximation of \mathbf{b} using the column \mathbf{A} with the coefficients \mathbf{x}_k at iteration k. In other words, $\hat{\mathbf{b}}_k$ is the portion of \mathbf{b} being "explained" by $\mathbf{A}\mathbf{x}_k$.
- If we use the notation \mathbf{A}_{Λ_k} to form $\hat{\mathbf{b}}$, then $\hat{\mathbf{b}} = \mathbf{A}_{\Lambda_k} \mathbf{x}_k (i \in \Lambda_k)$. Note that it is important to limit the vector \mathbf{x}_k for those $i \in \Lambda_k$, otherwise the dimensions of the matrix and vector do not match. Theoretically $\hat{\mathbf{b}}_k = \mathbf{A}\mathbf{x}_k$ and $\hat{\mathbf{b}}$, then $\hat{\mathbf{b}} = \mathbf{A}_{\Lambda_k} \mathbf{x}_k (i \in \Lambda_k)$ are the same, but for implementation, the later one is more efficient (since we are now working on a vector with
- ▶ Step-5. Update residue $\mathbf{r}_{k+1} \leftarrow \mathbf{b} \hat{\mathbf{b}}_k$. It means removing the "explained portion of \mathbf{b} at iteration k" from \mathbf{b} , and take this "unexplained portion" of \mathbf{b} as the residue.
- ▶ Steps 4 & 5 can be combine into one single step: $\mathbf{r}_k = \mathbf{b} \mathbf{A}\mathbf{x}_k$ or $\mathbf{b} \mathbf{A}_{\Lambda_k}\mathbf{x}_k (i \in \Lambda_k)$.

The OMP algorithm

Algorithm 1: OMP(A, b)

```
Input: A, b
```

Result: x_k

1 Initialization $\mathbf{r}_0 = \mathbf{b}$, $\Lambda_0 = \emptyset$:

2 Normalize all columns of A to unit L_2 norm;

3 Remove duplicated columns in A;

4 for k = 1, 2, ... do

Step-1. $\lambda_k = \operatorname{argmax} |\langle \mathbf{a}_i, \mathbf{r}_{k-1} \rangle|;$

 $j \notin \Lambda_{k-1}$ 6 Step-2. $\Lambda_k = \Lambda_{k-1} \cup \{\lambda_k\};$

7 | Step-3. $\mathbf{x}_k(i \in \Lambda_k) = \operatorname{argmin} \|\mathbf{A}_{\Lambda_k}\mathbf{x} - \mathbf{b}\|_2, \ \mathbf{x}_k(i \notin \Lambda_k) = 0;$

Step-4. $\hat{\mathbf{b}}_k = \mathbf{A}\mathbf{x}_k$; Step-5. $\mathbf{r}_k \leftarrow \mathbf{b} - \hat{\mathbf{b}}_k$;

0 end

Compact OMP algorithm

Algorithm 2: OMP(A, b)

```
Input: A.b
Result: \mathbf{x}_k
```

- 1 Initialization $\mathbf{r}_0 = \mathbf{b}, \Lambda_0 = \emptyset$;
- 2 Normalize all columns of A to unit L_2 norm:
- 3 Remove duplicated columns in A (make A full rank);
- 4 for k = 1, 2, ... do

5 Step-1-2.
$$\Lambda_k = \Lambda_{k-1} \cup \left\{ \operatorname*{argmax}_{j \notin \Lambda_{k-1}} \left| \langle \mathbf{a}_j, \mathbf{r}_{k-1} \rangle \right| \right\};$$

- Step-3. $\mathbf{x}_k(i \in \Lambda_k) = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}_{\Lambda_k}\mathbf{x} \mathbf{b}\|_2, \quad \mathbf{x}_k(i \notin \Lambda_k) = 0;$ Step-4-5. $\mathbf{r}_k \leftarrow \mathbf{b} \mathbf{A}\mathbf{x}_k;$
- 8 end

Another form of compact OMP algorithm using p.10

```
Algorithm 3: OMP(A, b)
```

```
Input: A, b
```

Result: \mathbf{x}_k

- 1 Initialization $\mathbf{r}_0 = \mathbf{b}$, $\Lambda_0 = \emptyset$;
- 2 Normalize all columns of A to unit L_2 norm:
- 3 Remove duplicated columns in A (make A full rank);
- 4 for k = 1, 2, ... do

5 Step-1-2.
$$\Lambda_k = \Lambda_{k-1} \cup \left\{ \operatorname*{argmax}_{j \notin \Lambda_{k-1}} \left| \mathbf{A}^{\top} \mathbf{r}_{k-1} \right| \right\};$$

6 Step-3. $\mathbf{x}_k(i \in \Lambda_k) = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{A}_{\Lambda_k}\mathbf{x} - \mathbf{b}\|_2, \quad \mathbf{x}_k(i \notin \Lambda_k) = 0;$ 7 Step-4-5. $\mathbf{r}_k \leftarrow \mathbf{b} - \mathbf{A}\mathbf{x}_k;$

8 end

End of document