Lección 3: Principios de diseño de una computadora

Prof.Ing. Fabián Zamora Ramírez.

CE-4301 Arquitectura de Computadores I Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica

Agenda

Tendencias en tecnología

Principios de diseño RISC

Tendencias en Tecnologías

- Tecnología de circuitos lógicos integrados
- Tecnología de memorias (RAM / Flash / Discos magnéticos)

Tecnología de circuitos integrados

- La densidad de transistores se incrementa aproximadamente un 35% por año
- El tamaño de la oblea, sin embargo, aumenta entre un 10 o 20%

RAM: Random access memory

- SRAM: Se utiliza como caché
- **DRAM:** Entre 2003 y 2011 se ha ido incrementando en un 25-40% por año.

CA:AQA Edition	Year	DRAM growth rate	Characterization of impact on DRAM capacity		
1	1 1990 60%/year		Quadrupling every 3 years		
2	1996	60%/year	Quadrupling every 3 years		
3	2003	40%-60%/year	Quadrupling every 3 to 4 years		
4	2007	40%/year	Doubling every 2 years		
5	2011	25%-40%/year	Doubling every 2 to 3 years		

Tendencias

Mem. Flash

- Evolución de EEPROM
- Memoria no volátil
- Especialmente utilizada en dispositivos móviles
- 15 o 20 veces más barata que la DRAM
- Su capacidad se dobla cada 2 años.

_

Resumen en tecnologías

Microprocessor	16-bit address/ bus, microcoded	32-bit address/ bus, microcoded	5-stage pipeline, on-chip I & D caches, FPU	2-way superscalar, 64-bit bus	Out-of-order 3-way superscalar	Out-of-order superpipelined, on-chip L2 cache	Multicore OOO 4-way on chip L3 cache, Turbo
Product	Intel 80286	Intel 80386	Intel 80486	Intel Pentium	Intel Pentium Pro	Intel Pentium 4	Intel Core i7
Year	1982	1985	1989	1993	1997	2001	2010
Die size (mm ²)	47	43	81	90	308	217	240
Transistors	134,000	275,000	1,200,000	3,100,000	5,500,000	42,000,000	1,170,000,000
Processors/chip	1	1	_ 1	1	1	ı	4
Pins	68	132	168	273	387	423	1366
Latency (clocks)	6	5	5	5	10	22	14
Bus width (bits)	16	32	32	64	64	64	196
Clock rate (MHz)	12.5	16	25	66	200	1500	3333
Bandwidth (MIPS)	2	6	25 .	132	600	4500	50,000
Latency (ns)	320	313	200	76	50	15	4

Memory module	DRAM	Page mode DRAM	Fast page mode DRAM	Fast page mode DRAM	Synchronous DRAM	Double data rate SDRAM	DDR3 SDRAM
Module width (bits)	16	16	32	64	64	64	64
Year	1980	1983	1986	1993	1997	2000	2010
Mbits/DRAM chip	0.06	0.25	1	16	64	256	2048
Die size (mm ²)	35	45	70	130	170	204	50
Pins/DRAM chip	16	16	18	20	54	66	134
Bandwidth (MBytes/s)	13	40	160	267	640	1600	16,000
Latency (ns)	225	170	125	75	62	52	37

◆ロ > ← □ > ←

Principios de diseño RISC

Principios de diseño RISC

- Todas las instrucciones se ejecutan directamente en hardware
- Maximizar el ritmo con el que se emiten instrucciones
- Las instrucciones deben ser fáciles de decodificar
- Solo las instrucciones Load/Store deben hacer referencia a memoria
- Incluir abundantes registros

Referencias

J Hennesy and David Patterson (2012)

Computer Architecture: A Quantitative Approach. 5th Edition. Elsevier – Morgan Kaufmann. [Cap 1]

Andrew S. Tanenbaum (2000)

Organización de computadoras - Un enfoque estructurado. [Cap 2]

Jeferson González G. (2017)

Material de clase: Arquitectura de computadores I.