TP2 d'intégration numérique d'équations différentielles

Pendule pesant

Un pendule pesant de masse m au bout d'une barre rigide de longueur ℓ et de masse nulle, dans un champ de gravité g, suit l'équation :

$$\begin{cases} \theta''(t) = -\frac{q}{l}\sin\theta(t), \\ \theta(0) = \frac{\pi}{2}, \ \theta'(0) = 0. \end{cases}$$
 (1)

1) Simuler ce système avec les schémas du TP précédents (Euler, RK2 ou RK3). On prendra l=1 et g=9.81.

La simulation est-elle cohérente avec la réalité?

2) Le schéma d'Euler implicite donnant \mathbf{y}_{k+1} en fonction de \mathbf{y}_k est défini par :

$$\mathbf{y}_{k+1} = \mathbf{y}_k + h f(t_{k+1}, \mathbf{y}_{k+1}) \tag{2}$$

Implémenter ce schéma pour cette exemple.

3) Utilisez maintenant le schéma d'intégration de Runge-Kutta implicite d'ordre 4 pour résoudre numériquement l'équation (1) et tracer $\theta(t)$ pour $t \in [0, 20]$ avec un pas d'intégration fixe de 10^{-1} .

4) On se place dans la situation où θ_0 est petit (mais pas trop) et θ_0' nul. Mesurer les écarts sur les périodes mesurées selon que l'on remplace $\sin \theta(t)$ par $\theta(t)$ ou par $\theta(t) - \frac{\theta(t)^3}{6}$.