Math 440 – Real Analysis II Homework 7

Amandeep Gill

April 4, 2015

Problem 42 If $\{I_n\}_n$ is a finite or countable collection of disjoint open intervals with $\bigcup_n I_n \subset (a,b)$ then $\sum_n m(I_n) \leqslant m((a,b))$

Proof: Let $\{I_n\}$ be a countable set of disjoint open intervals such that $\bigcup_n I_n \subset (a,b)$, and each interval $I_i = (a_i,b_i)$ where $i \in \mathbb{N}$ and $i \leq n$.

Because each interval is disjoint and each a_i and b_i is bounded below by a and above by b, the intervals can be arranged in such a way that $a\leqslant a_1\leqslant b_1\leqslant a_2\leqslant b_2\leqslant \cdots\leqslant b$. By definition of measure $m(I_i)=b_i-a_i$, so $\sum\limits_n m(I_n)=(b_1-a_1)+(b_2-a_2)+\cdots$. From this, we can see that $(b_1-a_1)+(b_2-a_2)=(b_2-a_1)-(a_2-b_1)\leqslant (b_2-a_1)$. Similarly, $(b_1-a_1)+(b_2-a_2)+(b_3-a_3)\leqslant (b_2-a_1)+(b_3-a_3)\leqslant (b_3-a_1)$. Continuing the pattern $(b_1-a_1)+\cdots+(b_i-a_i)\leqslant (b_i-a_1)$, and since $a\leqslant a_1\leqslant b_i\leqslant b$, for all $i,(b_i-a_1)\leqslant (b-a)=m((b-a))$. Therefore $\sum\limits_n m(I_n)\leqslant m((a,b))$.

Problem 43 The measure of the Cantor Set in [0,1] is 0.

Proof: Let P denote the Cantor Set. Defined as a sequence of steps where intervals are removed from the set [0,1], then let

$$\begin{array}{l} P_1 = \left(\frac{1}{3},\frac{2}{3}\right) \\ P_2 = \left(\left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{1}{3},\frac{2}{3}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right)\right) \\ P_3 = \left(\left(\frac{1}{27},\frac{2}{27}\right) \cup \left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{7}{27},\frac{8}{27}\right) \cup \left(\frac{1}{3},\frac{2}{3}\right) \cup \left(\frac{13}{27},\frac{14}{27}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right) \cup \left(\frac{25}{27},\frac{26}{27}\right)\right) \\ P_4 = \dots \\ \text{Such that } P = [0,1] \backslash \left(\lim_{n \to \infty} P_n\right) \end{array}$$

Since P_n is a finite union of disjoint open sets,

$$m(P_n) = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \cdots$$

 $m(P_n) = \sum_{k=0}^{n} \frac{1}{3} \left(\frac{2}{3}\right)^k$

Therefore
$$\lim_{n \to \infty} m(P_n) = \sum_{k=0}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^k = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = 1$$

Finally, by Definition 10.2.10, $m(P) = m([0,1]) - \lim_{n \to \infty} m(P_n) = 0$.

Problem 44 If E is a finite subset of \mathbb{R} then m(E) = 0.

Proof: Let $E = \{x_1, x_2, \dots, x_n\}$ be a finite, ordered set of n points in \mathbb{R} such that for some $a, b \in \mathbb{R}$, $a < x_1 < x_2 < \dots < x_n < b$. Then $(a, b) \setminus E = (a, x_1) \cup (x_1, x_2) \cup (x_2, x_3) \cup \dots \cup (x_{n-1}, x_n) \cup (x_n, b)$. The measure of (a, b) = b - a by the definition of measure, and since $(a, b) \setminus E$ is a disjoint union of open sets, $m((a, b) \setminus E) = (x_1 - a) + (x_2 - x_1) + \dots + (b - x_n)$. Given that this is a telescoping sum, $m((a, b) \setminus E) = b - a$. Because finite sets are compact, $m(E) = m((a, b)) - m((a, b) \setminus E) = 0$.

Problem 45 Calculate the following measures

(a) $m(\{1\} \cup [2,5]) = 3$ Since $\{1\}$ and [2,5] are disjoint, the measure of the union is the $m(\{1\})+m([2,5])$, which is 0+3 by p.44 and Definition 10.2.1 respectively.

- (b) $m([1,2) \cup (3,4]) = 2$ Since intervals of the form [a,b) can be written as $\{a\} \cup (a,b)$, by previous work then m([a,b)) = b-a
- (c) where P is the Cantor Set, $m([0,1]\backslash P)=1$ Since $P^c=[0,1]\backslash P$ is a union of open sets, P^c is an open set. Therefore, by Theorem 10.2.15 $m(P\cap[0,1])+m(P^c\cap[0,1])=1$, and because $m(P\cap[0,1])=m(P)$ and $P^c\cap[0,1]=P^c$, $m(P^c)=1$

Problem 46 If K_1 and K_2 are disjoint compact subsets of \mathbb{R} , then $m(K_1 \cup K_2) = m(K_1) + m(K_2)$

Proof: Let K_1, K_2 be disjoint, compact subsets of \mathbb{R} . Since the sets are compact in \mathbb{R} , they are both bounded and there exists U = (a, b) such that $K_1 \cup K_2 \subset U$. Then by Definition 10.2.10, $m(K_1 \cup K_2) = m(U) - m(U \setminus (K_1 \cup K_2))$. However because, $U \setminus (K_1 \cup K_2) = (U \setminus K_1) \cap (U \setminus K_2)$, and since $(U \setminus K_1)$ and $(U \setminus K_2)$ open sets $m(U \setminus K_1) + m(U \setminus K_2) = m(U) + m((U \setminus K_1) \cap (U \setminus K_2)) = m(U) + m(U \setminus (K_1 \cup K_2))$ by Theorem 10.2.9. Using the fact that $m(K_1) = m(U) - m(U \setminus K_1)$ and $m(K_2) = m(U) - m(U \setminus K_2)$, we have that

$$m(K_1 \cup K_2) = m(U) - m(U \setminus (K_1 \cup K_2))$$

$$= 2m(U) - (m(U \setminus K_1) + m(U \setminus K_2))$$

$$= 2m(U) - (2m(U) + m(K_1) + m(K_1))$$

$$= m(K_1) + m(K_1)$$

Problem 47 Let $E = \{\frac{1}{n} : n \in \mathbb{N}\}$, calculate $\lambda^*(E)$ and $\lambda_*(E)$

Proof: Let $m \in \mathbb{N}$ and $K_m = \{\frac{1}{n} : n < m\}$, since K_m is a finite, compact subset of E, and because $m(K_m) = 0$ is true for all $m \in \mathbb{N}$, then $\lambda_*(E) = 0$ as $\lambda_*(E) = \max\{m(K_m)\}$ by definition.

Let $\epsilon > 0$ be given and $U = \bigcup_{n=1}^{\infty} \left(\frac{1}{n} - \epsilon, \frac{1}{n} + \epsilon\right)$. As proved previously, there exists an $m \in \mathbb{N}$ such that for all n > m, $\left|\frac{1}{n} - 0\right| < \epsilon$, which means that $\bigcup_{n=m}^{\infty} \left(\frac{1}{n} - \epsilon, \frac{1}{n} + \epsilon\right) \subset (-\epsilon, 2\epsilon)$. Therefore, by Theorem 10.2.6, $m(U) \leqslant m\epsilon + 3\epsilon$. As $\lambda^*(E) \leqslant m(U)$ and because ϵ is arbitrary, $\lambda^*(E) = 0$.