Lawjay Lee

Lab Partners

• Aaron W.

• Wyatt S.

• Abram J.

Lab: Equipotential Curves & Electric Fields

Course: PHYS-42

Section: M1069

Date: 2024-02-16

Concentric Cylinders

Parallel Plates

Question 1

Question 2

Yes, our field lines for the dipole actually look similar to the expected diagram. Just like in the diagram, we have circular curves of equipotential that are centered a bit behind the dipoles. For the positive dipole, we correctly drew the correct E-field lines. For the negative dipole, we drew lines 90° from the equipotential curves, but in the wrong direction.

Question 3

The friend in this situation incorrectly drew the field orientation. According to the diagram, V only changes values as you moves up or down vertically, and it doesn't change values as you move horizontally. In other words, it changes based on \hat{j} . That means that the perpendicular component of \vec{E} is actually in the \hat{i} direction.

A charge located on the 100 V curve would not change voltage and would remain 100 V is response to the friend's E_{\parallel}