FCC TEST REPORT

For

MINIX TECHNOLOGY LIMITED

Intel mini PC

Model No.: NEO N42C-4

Prepared for : MINIX TECHNOLOGY LIMITED

Address : Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road,

Kowloon Bay, Kowloon, Hong Kong.

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an

District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : January 15, 2018

Number of tested samples : 1

Serial number : Prototype

Date of Test : January 15, 2018~February 25, 2018

Date of Report : February 25, 2018

FCC TEST REPORT FCC CFR 47 PART 15 C(15.247)

Report Reference No.: LCS180115007AEC

Date of Issue: February 25, 2018

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards ■

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: MINIX TECHNOLOGY LIMITED

Address: Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road,

Kowloon Bay, Kowloon, Hong Kong.

Test Specification

Standard......: FCC CFR 47 PART 15 C(15.247)

Test Report Form No.: LCSEMC-1.0

TRF Originator Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description.: Intel mini PC

Trade Mark.....: MINIX

Model/ Type reference: NEO N42C-4

Ratings: It is Powered by an Adapter.

Adapter parameters: Input: 100-240V~ 50/60Hz, 0.8A

Output: DC12V-, 3.0A, 36W Max

Result: Positive

Compiled by:

Supervised by:

Approved by:

Raing Ye/ File administrators

Dick Su/ Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS180115007AEC February 25, 2018

Date of issue

EUT.....: Intel mini PC Type / Model..... : NEO N42C-4 Applicant..... : MINIX TECHNOLOGY LIMITED Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road, Address..... Kowloon Bay, Kowloon, Hong Kong. Telephone..... : / Fax..... Manufacturer..... : MINIX TECHNOLOGY LIMITED Address......: Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road, Kowloon Bay, Kowloon, Hong Kong. Telephone..... Fax.....: : / Factory.....:: MINIX TECHNOLOGY LIMITED Address..... : Unit 01, 15/F, Chevalier Commercial Center, No.8 Wang Hoi Road, Kowloon Bay, Kowloon, Hong Kong. Telephone..... Fax..... : /

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ADAC-NEON42C-4	Report No.: LCS180115007AEC

Revision History

Revision	Issue Date	Revisions	Revised By
000	February 25, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1.	GENERAL INFORMATION	6
	1.1. DESCRIPTION OF DEVICE (EUT)	6
	1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	7
	1.3. EXTERNAL I/O CABLE	7
	1.4. DESCRIPTION OF TEST FACILITY	7
	1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	1.6. MEASUREMENT UNCERTAINTY	
_		
2.	TEST METHODOLOGY	
	2.1. EUT CONFIGURATION	
	2.2. EUT EXERCISE	
	2.3. GENERAL TEST PROCEDURES	
3.	SYSTEM TEST CONFIGURATION	
	3.1. JUSTIFICATION	
	3.2. EUT EXERCISE SOFTWARE	
	3.3. SPECIAL ACCESSORIES	
	3.4. BLOCK DIAGRAM/SCHEMATICS	
	3.6. Test Setup	
	SUMMARY OF TEST RESULTS	
5.	TEST RESULT	
	5.1. On Time and Duty Cycle	
	5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	13
	5.3. POWER SPECTRAL DENSITY MEASUREMENT	
	5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT	
	5.5. RADIATED EMISSIONS MEASUREMENT	19
	5.7. AC Power line conducted emissions and band edges test	
	5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS	
	5.9. ANTENNA REQUIREMENTS	
6.	LIST OF MEASURING EQUIPMENTS	42
7.	TEST SETUP PHOTOGRAPHS OF EUT	43
8.	EXTERIOR PHOTOGRAPHS OF THE EUT	43
9.	INTERIOR PHOTOGRAPHS OF THE EUT	43

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Intel mini PC

Test Model : NEO N42C-4

It is Powered by an Adapter.

Power Supply : Adapter parameters: Input: 100-240V~ 50/60Hz, 0.8A

Output: DC12V-, 3.0A, 36W Max

Hardware Version : JXAPLA

Software Version : Windows 10 Pro 64bit 1703

Bluetooth

Frequency Range : 2.402-2.480GHz

Channel Number 79 channels for Bluetooth V4.1 (DSS)

40 channels for Bluetooth V4.1(DTS)

Channel Spacing : 1MHz for Bluetooth V4.1 (DSS) 2MHz for Bluetooth V4.1 (DTS)

Modulation Type

GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.1 (DSS)

: GFSK for Bluetooth V4.1 (DSS)

GFSK for Bluetooth V4.1 (DTS)

Bluetooth Version : V4.1

Antenna Description: Integral antenna, 2dBi (Max.)

2.4G WLAN

Frequency Range : 2.412-2.462GHz

Channel Number : 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20)

7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40)

Channel Spacing : 5MHz

Modulation Type : IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK)

IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)

China 0: Integral antenna, 2dBi (Max.)

Antenna Description: China 1: Integral antenna, 2dBi (Max.)

The Directional Gain is 5.01dBi.

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
Powertron Electronics Corp.	ADAPTER	PA1030-120IB300		DOC

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
DC IN Sort	1	N/A
USB Port	3	N/A
HDMI Port	1	N/A
Type-c USB Port	1	N/A
RJ45 Port	1	N/A
Mini Display Port	1	N/A
SPDIF Sort	1	N/A

1.4. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001.

NVLAP Registration Code is 600167-0.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty:		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
		200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be 802.11b mode (Low Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11b Mode: 1 Mbps, DSSS. 802.11g Mode: 6 Mbps, OFDM. 802.11n Mode HT20: MCS0, OFDM. 802.11n Mode HT40: MCS7, OFDM.

1.8. Frequency of Channels

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
2412~2402IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1		7	2442
	2		8	2447
2422~2452MHz	3	2422	9	2452
2422~2432IVITZ	4	2427	10	
	5	2432	11	
	6	2437		

The Radio software & hardware version is same as the product software & hardware version in page6. The test software is QATool_Dbg, and test configuration of the software shows as below:

Test mode	Channel No.	Frequency(MHz)	Software setting value
	1	2412	21
802.11b	6	2437	21
	11	2462	21
	1	2412	20
802.11g	6	2437	20
	11	2462	20
	1	2412	19
802.11n20	6	2437	19
	11	2462	19
	3	2422	18
802.11n40	6	2437	18
	9	2452	18

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v04 and KDB 662911 are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (ACTsBTAPP) provided by application.

3.3. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	PC	Lenovo	Ideapad	A131101550	/	/	DOC
2	Power adapter	Lenovo	CPA-A090	36200414	1.00m	unshielded	DOC

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C					
FCC Rules	Description of Test	Result			
/	Duty Cycle	Compliant			
§15.247(b)	Maximum Conducted Output Power	Compliant			
§15.247(e)	Power Spectral Density	Compliant			
§15.247(a)(2)	6dB Bandwidth	Compliant			
§15.247(a)	Occupied Bandwidth	Compliant			
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant			
§15.205	Emissions at Restricted Band	Compliant			
§15.207(a)	Conducted Emissions	Compliant			
§15.203	Antenna Requirements	Compliant			
§15.247(i)§2.1093	RF Exposure	Compliant			

5. TEST RESULT

5.1. On Time and Duty Cycle

5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of the spectrum analyse.

5.1.3. Test Procedures

- 1. Set the centre frequency of the spectrum analyse to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.

5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Remark: 1. Please refer to Appendix C: Section 1 for Chain 0, and Appendix D: Section 1 for Chain 1.

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of the Spectrum analyse.

5.2.3. Test Procedures

According to KDB558074 D01 DTS Measurement Guidance v04 Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Maximum Conducted Output Power

Temperature	23.5℃	Humidity	51.6%
Test Engineer	Wilson Hong	Configurations	802.11b/g/n

Test Mode	Mode Channel Frequency		Measured Peak Output Power (dBm)			Limits	Verdict
		(MHz)	Chain 0	Chain 1	Sum	(dBm)	
IEEE	1	2412	15.68	15.11	/		
802.11b	6	2437	16.09	15.77	/	≤30	PASS
002.110	11	2462	15.57	16.17	/		
IEEE	1	2412	16.38	15.39	/		
802.11g	6	2437	15.51	15.40	/	≤30	PASS
802.11g	11	2462	15.43	16.09	/		
IEEE	1	2412	16.42	15.07	18.81		
802.11n	6	2437	15.94	15.99	18.98	≤30	PASS
HT20	11	2462	15.84	15.73	18.80		
IEEE	3	2422	15.27	15.69	18.50		
802.11n	6	2437	15.72	15.69	18.72	≤30	PASS
HT40	9	2452	15.73	16.11	18.93		

Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. The WLAN support MIMO technology.

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 30 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level shall not be great than 8dBm.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

Temperature	23.5℃	Humidity	51.6%
Test Engineer	Wilson Hong	Configurations	802.11b/g/n

Test Mode	Test Mode Channel Frequency			Measured Peak Power Spectral Density (dBm/30KHz)			Verdict
Tool mode		(MHz)	Chain 0	Chain 1	Sum	(dBm/3KHz)	v or allot
IEEE	1	2412	-0.428	-2.846	/		
802.11b	6	2437	-0.934	-2.192	/	≪8	PASS
002.110	11	2462	-1.054	-1.958	/		
IEEE	1	2412	-6.282	-9.330	/		
802.11g	6	2437	-7.917	-9.323	/	≪8	PASS
802.11g	11	2462	-7.437	-8.862	/		
IEEE	1	2412	-7.123	-9.251	-5.048		
802.11n	6	2437	-7.375	-8.337	-4.819	≪8	PASS
HT20	11	2462	-7.203	-8.678	-4.868		
IEEE	3	2422	-11.052	-12.018	-8.498		
802.11n	6	2437	-10.484	-11.933	-8.138	≪8	PASS
HT40	9	2452	-11.190	-11.818	-8.482		

Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to Appendix C: Section 3 for chain 0, and Appendix D: Section 3 for chain 1.
- 5. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain;

Array gain = 10 log (N_{ant}) =3.01, where N_{ant} is the number of transmit antennas;

6. The Directional Gain=5.01dBi less than 6.00dBi, so the PSD Limit no need to reduce.

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting

Please refer to section 6 of equipment's list in this report. The following table is the setting of the Spectrum Analyzer.

<u>, , , , , , , , , , , , , , , , , , , </u>	
Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 6dB Spectrum Bandwidth

Temperature	23.5 ℃	Humidity	51.6%
Test Engineer	Wilson Hong	Configurations	802.11b/g/n

Test Mode	Channel Frequency	6dB Ba (MI	Limits	Verdict		
rest Mode	Chamer	(MHz)	Chain 0	Chain 1	(MHz)	Verdict
	1	2412	9.570	9.160		
IEEE 802.11b	6	2437	9.139	9.160	≥0.500	PASS
	11	2462	9.140	9.159	1	
	1	2412	15.11	16.60		
IEEE 802.11g	6	2437	15.13	16.62	≥0.500	PASS
	11	2462	15.14	16.62		
IEEE 802.11n	1	2412	16.32	17.82		
HT20	6	2437	16.34	17.83	≥0.500	PASS
11120	11	2462	16.35	17.85		
IEEE 802.11n	3	2422	35.17	36.21		
HT40	6	2437	35.18	36.14	≥0.500	PASS
11140	9	2452	35.13	36.34		

Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to Appendix C: Section 4 for chain 0, and Appendix D: Section 4 for chain 1.

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
		5.35-5.46
		7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8-1722.2	13.25-13.4
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(\2\)
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 108-121.94 1718.8-1722.2 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.5.4. Test Setup Layout

Below 30MHz

Below 1GHz

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	23.5℃	Humidity	51.6%
Test Engineer	Wilson Hong	Configurations	802.11b/g/n

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)

	Temperature 25℃		Humidty	60%
-	Test Engineer	Wilson Hong	Configurations	802.11b (Low CH)

Test result for 802.11b (Low Channel) @ Chain 0

Vertical:

	rreq	Reading	Сарьов	Antrac	Measured	Timic	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dВ	
1	49.36	10.42	0.54	13.29	24.25	40.00	-15.75	QP
2	79.52	20.36	0.65	8.47	29.48	40.00	-10.52	QP
3	140.34	22.28	0.75	8.19	31.22	43.50	-12.28	QP
4	213.02	16.79	0.95	10.98	28.72	43.50	-14.78	QP
5	234.99	16.23	0.87	11.87	28.97	46.00	-17.03	QP
6	872.18	8.13	1.84	20.80	30.77	46.00	-15.23	QP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

Horizontal:

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
1	55.03	6.17	0.46	13.02	19.65	40.00	-20.35	QP
2	85.90	9.00	0.47	10.60	20.07	40.00	-19.93	QP
3	142.82	20.93	0.71	8.21	29.85	43.50	-13.65	QP
4	228.49	19.60	0.93	11.58	32.11	46.00	-13.89	QP
5	394.85	6.11	1.30	14.94	22.35	46.00	-23.65	QP
6	958.79	2.46	1.90	21.47	25.83	46.00	-20.17	QP

Note: 1. All readings are Quasi-peak values.

Note:

- 1). Pre-scan all mode and recorded the worst case results in this report (802.11b (Low Channel)@Chain0). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 2). Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

Please refer to the following page.

^{2.} Measured= Reading + Antenna Factor + Cable Loss3. The emission that ate 20db blow the offficial limit are not reported

Above 1GHz

Chain 0

The result for 802.11b Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	55.82	33.06	35.04	3.94	57.78	74	-16.22	Peak	Horizontal
4824.00	40.22	33.06	35.04	3.94	42.18	54	-11.82	Average	Horizontal
4824.00	55.92	33.06	35.04	3.94	57.88	74	-16.12	Peak	Vertical
4824.00	39.79	33.06	35.04	3.94	41.75	54	-12.25	Average	Vertical

The result for 802.11b Channel 6 / 2437MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	54.79	33.16	35.15	3.96	56.76	74	-17.24	Peak	Horizontal
4874.00	40.38	33.16	35.15	3.96	42.35	54	-11.65	Average	Horizontal
4874.00	54.37	33.16	35.15	3.96	56.34	74	-17.66	Peak	Vertical
4874.00	38.32	33.16	35.15	3.96	40.29	54	-13.71	Average	Vertical

The result for 802.11b Channel 11 / 2462MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	57.89	33.26	35.14	3.98	59.99	74	-14.01	Peak	Horizontal
4924.00	43.78	33.26	35.14	3.98	45.88	54	-8.12	Average	Horizontal
4924.00	54.07	33.26	35.14	3.98	56.17	74	-17.83	Peak	Vertical
4924.00	40.10	33.26	35.14	3.98	42.20	54	-11.80	Average	Vertical

The result for 802.11g Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	57.03	33.06	35.04	3.94	58.99	74	-15.01	Peak	Horizontal
4824.00	42.45	33.06	35.04	3.94	44.41	54	-9.59	Average	Horizontal
4824.00	55.69	33.06	35.04	3.94	57.65	74	-16.35	Peak	Vertical
4824.00	43.36	33.06	35.04	3.94	45.32	54	-8.68	Average	Vertical

The result for 802.11g Channel 6 / 2437MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	59.42	33.16	35.15	3.96	61.39	74	-12.61	Peak	Horizontal
4874.00	43.82	33.16	35.15	3.96	45.79	54	-8.21	Average	Horizontal
4874.00	54.13	33.16	35.15	3.96	56.10	74	-17.90	Peak	Vertical
4874.00	40.91	33.16	35.15	3.96	42.88	54	-11.12	Average	Vertical

The result for 802.11g Channel 11 / 2462MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	58.16	33.26	35.14	3.98	60.26	74	-13.74	Peak	Horizontal
4924.00	44.87	33.26	35.14	3.98	46.97	54	-7.03	Average	Horizontal
4924.00	56.30	33.26	35.14	3.98	58.40	74	-15.60	Peak	Vertical
4924.00	40.88	33.26	35.14	3.98	42.98	54	-11.02	Average	Vertical

The result for 802.11n HT20 Channel 1 / 2412MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	58.03	33.06	35.04	3.94	59.99	74	-14.01	Peak	Horizontal
4824.00	44.37	33.06	35.04	3.94	46.33	54	-7.67	Average	Horizontal
4824.00	52.88	33.06	35.04	3.94	54.84	74	-19.16	Peak	Vertical
4824.00	40.96	33.06	35.04	3.94	42.92	54	-11.08	Average	Vertical

The result for 802.11n HT20 Channel 6 / 2437MHz

	Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
	4874.00	55.75	33.16	35.15	3.96	57.72	74	-16.28	Peak	Horizontal
ĺ	4874.00	40.99	33.16	35.15	3.96	42.96	54	-11.04	Average	Horizontal
	4874.00	52.76	33.16	35.15	3.96	54.73	74	-19.27	Peak	Vertical
	4874.00	39.13	33.16	35.15	3.96	41.10	54	-12.90	Average	Vertical

The result for 802.11n HT20 Channel 11 / 2462MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	57.65	33.26	35.14	3.98	59.75	74	-14.25	Peak	Horizontal
4924.00	44.75	33.26	35.14	3.98	46.85	54	-7.15	Average	Horizontal
4924.00	55.94	33.26	35.14	3.98	58.04	74	-15.96	Peak	Vertical
4924.00	42.09	33.26	35.14	3.98	44.19	54	-9.81	Average	Vertical

The result for 802.11n HT40 Channel 3 / 2422MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4844.00	56.78	33.06	35.04	3.94	58.74	74	-15.26	Peak	Horizontal
4844.00	41.52	33.06	35.04	3.94	43.48	54	-10.52	Average	Horizontal
4844.00	58.32	33.06	35.04	3.94	60.28	74	-13.72	Peak	Vertical
4844.00	41.57	33.06	35.04	3.94	43.53	54	-10.47	Average	Vertical

The result for 802.11n HT40 Channel 6 / 2437MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	57.15	33.16	35.15	3.96	59.12	74	-14.88	Peak	Horizontal
4874.00	41.08	33.16	35.15	3.96	43.05	54	-10.95	Average	Horizontal
4874.00	54.41	33.16	35.15	3.96	56.38	74	-17.62	Peak	Vertical
4874.00	40.22	33.16	35.15	3.96	42.19	54	-11.81	Average	Vertical

The result for 802.11n HT40 Channel 9 / 2452MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4904.00	60.10	33.26	35.14	3.98	62.20	74	-11.80	Peak	Horizontal
4904.00	44.77	33.26	35.14	3.98	46.87	54	-7.13	Average	Horizontal
4904.00	55.06	33.26	35.14	3.98	57.16	74	-16.84	Peak	Vertical
4904.00	39.82	33.26	35.14	3.98	41.92	54	-12.08	Average	Vertical

Chain 1 The result for 802.11b Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	53.57	33.06	35.04	3.94	55.53	74	-18.47	Peak	Horizontal
4824.00	40.12	33.06	35.04	3.94	42.08	54	-11.92	Average	Horizontal
4824.00	56.86	33.06	35.04	3.94	58.82	74	-15.18	Peak	Vertical
4824.00	39.14	33.06	35.04	3.94	41.10	54	-12.90	Average	Vertical

The result for 802.11b Channel 6 / 2437MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	56.93	33.16	35.15	3.96	58.90	74	-15.10	Peak	Horizontal
4874.00	42.05	33.16	35.15	3.96	44.02	54	-9.98	Average	Horizontal
4874.00	56.12	33.16	35.15	3.96	58.09	74	-15.91	Peak	Vertical
4874.00	39.63	33.16	35.15	3.96	41.60	54	-12.40	Average	Vertical

The result for 802.11b Channel 11 / 2462MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	57.48	33.26	35.14	3.98	59.58	74	-14.42	Peak	Horizontal
4924.00	42.66	33.26	35.14	3.98	44.76	54	-9.24	Average	Horizontal
4924.00	56.54	33.26	35.14	3.98	58.64	74	-15.36	Peak	Vertical
4924.00	40.35	33.26	35.14	3.98	42.45	54	-11.55	Average	Vertical

The result for 802.11g Channel 1 / 2412MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	55.55	33.06	35.04	3.94	57.51	74	-16.49	Peak	Horizontal
4824.00	41.36	33.06	35.04	3.94	43.32	54	-10.68	Average	Horizontal
4824.00	56.57	33.06	35.04	3.94	58.53	74	-15.47	Peak	Vertical
4824.00	41.96	33.06	35.04	3.94	43.92	54	-10.08	Average	Vertical

The result for 802.11g Channel 6 / 2437MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	59.62	33.16	35.15	3.96	61.59	74	-12.41	Peak	Horizontal
4874.00	41.71	33.16	35.15	3.96	43.68	54	-10.32	Average	Horizontal
4874.00	53.37	33.16	35.15	3.96	55.34	74	-18.66	Peak	Vertical
4874.00	42.29	33.16	35.15	3.96	44.26	54	-9.74	Average	Vertical

The result for 802.11g Channel 11 / 2462MHz

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	57.10	33.26	35.14	3.98	59.20	74	-14.80	Peak	Horizontal
4924.00	44.19	33.26	35.14	3.98	46.29	54	-7.71	Average	Horizontal
4924.00	54.55	33.26	35.14	3.98	56.65	74	-17.35	Peak	Vertical
4924.00	43.82	33.26	35.14	3.98	45.92	54	-8.08	Average	Vertical

The result for 802.11n HT20 Channel 1 / 2412MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	57.78	33.06	35.04	3.94	59.74	74	-14.26	Peak	Horizontal
4824.00	42.13	33.06	35.04	3.94	44.09	54	-9.91	Average	Horizontal
4824.00	55.51	33.06	35.04	3.94	57.47	74	-16.53	Peak	Vertical
4824.00	43.44	33.06	35.04	3.94	45.40	54	-8.60	Average	Vertical

The result for 802.11n HT20 Channel 6 / 2437MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	55.62	33.16	35.15	3.96	57.59	74	-16.41	Peak	Horizontal
4874.00	39.97	33.16	35.15	3.96	41.94	54	-12.06	Average	Horizontal
4874.00	54.46	33.16	35.15	3.96	56.43	74	-17.57	Peak	Vertical
4874.00	39.76	33.16	35.15	3.96	41.73	54	-12.27	Average	Vertical

The result for 802.11n HT20 Channel 11 / 2462MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	57.31	33.26	35.14	3.98	59.41	74	-14.59	Peak	Horizontal
4924.00	44.48	33.26	35.14	3.98	46.58	54	-7.42	Average	Horizontal
4924.00	55.55	33.26	35.14	3.98	57.65	74	-16.35	Peak	Vertical
4924.00	40.67	33.26	35.14	3.98	42.77	54	-11.23	Average	Vertical

The result for 802.11n HT40 Channel 3 / 2422MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4844.00	55.25	33.06	35.04	3.94	57.21	74	-16.79	Peak	Horizontal
4844.00	43.69	33.06	35.04	3.94	45.65	54	-8.35	Average	Horizontal
4844.00	56.42	33.06	35.04	3.94	58.38	74	-15.62	Peak	Vertical
4844.00	43.61	33.06	35.04	3.94	45.57	54	-8.43	Average	Vertical

The result for 802.11n HT40 Channel 6 / 2437MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	57.29	33.16	35.15	3.96	59.26	74	-14.74	Peak	Horizontal
4874.00	42.16	33.16	35.15	3.96	44.13	54	-9.87	Average	Horizontal
4874.00	53.77	33.16	35.15	3.96	55.74	74	-18.26	Peak	Vertical
4874.00	37.81	33.16	35.15	3.96	39.78	54	-14.22	Average	Vertical

The result for 802.11n HT40 Channel 9 / 2452MHz

Freq. MHz	Readin g dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4904.00	60.08	33.26	35.14	3.98	62.18	74	-11.82	Peak	Horizontal
4904.00	44.18	33.26	35.14	3.98	46.28	54	-7.72	Average	Horizontal
4904.00	54.67	33.26	35.14	3.98	56.77	74	-17.23	Peak	Vertical
4904.00	40.03	33.26	35.14	3.98	42.13	54	-11.87	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 5. The WLAN support MIMO technology

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

Temperature	23.5 ℃	Humidity	51.6%
Test Engineer	Wilson Hong	Configurations	IEEE 802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Measured Frequency Range	Spurio	us RF Con Emission (dBc)	ducted	Limits (dBc)	Verdict	
		(=)	i requerie, riange	Chain 0	Chain 1	Sum	(323)		
IEEE	1	2412	9 KHz – 26.5 GHz	<-20	<-20	/			
802.11b	6	2437	9 KHz – 26.5 GHz	<-20	<-20	/	-20	PASS	
802.110	11	2462	9 KHz – 26.5 GHz	<-20	<-20	/			
IEEE	1	2412	9 KHz – 26.5 GHz	<-20	<-20	/			
802.11g	6	2437	9 KHz – 26.5 GHz	<-20	<-20	/	-20	PASS	
802.119	11	2462	9 KHz – 26.5 GHz	<-20	<-20	/			
IEEE	1	2412	9 KHz – 26.5 GHz	<-20	<-20	<-20			
802.11n	6	2437	9 KHz – 26.5 GHz	<-20	<-20	<-20	-20	PASS	
HT20	11	2462	9 KHz – 26.5 GHz	<-20	<-20	<-20			
IEEE	1	2412	9 KHz – 26.5 GHz	<-20	<-20	<-20			
802.11n	6	2437	9 KHz – 26.5 GHz	<-20	<-20	<-20	-20	PASS	
HT40	11	2462	9 KHz – 26.5 GHz	<-20	<-20	<-20			

Remark:

- 1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. Please refer to Appendix C: Section 6 for Band-edge of chain 0, and Appendix D: Section 6 for Band-edge of chain 1.
- 6. Please refer to Appendix C: Section 5 for Conducted Spurious Emissions of chain 0, and Appendix D: Section 5 for Conducted Spurious Emissions of chain 1.
- 7. The WLAN support MIMO technology.

5.7. AC Power line conducted emissions

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of power adapter @ AC 120V/60Hz @ IEEE 802.11b (worst case) Line:

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.18	24.54	9.61	0.02	10.00	44.17	64.59	-20.42	QP
2	0.18	24.66	9.61	0.02	10.00	44.29	54.59	-10.30	Average
3	0.55	21.19	9.63	0.04	10.00	40.86	56.00	-15.14	QP
4	0.55	21.12	9.63	0.04	10.00	40.79	46.00	-5.21	Average
5	1.64	12.98	9.64	0.05	10.00	32.67	56.00	-23.33	QP
6	1.65	12.39	9.64	0.05	10.00	32.08	46.00	-13.92	Average
7	3.29	6.48	9.65	0.06	10.00	26.19	56.00	-29.81	QP
8	3.29	6.34	9.65	0.06	10.00	26.05	46.00	-19.95	Average
9	6.73	10.15	9.68	0.07	10.00	29.90	60.00	-30.10	QP
10	6.73	10.93	9.68	0.07	10.00	30.68	50.00	-19.32	Average
11	16.75	12.27	9.73	0.11	10.00	32.11	60.00	-27.89	QP
12	16.75	12.19	9.73	0.11	10.00	32.03	50.00	-17.97	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

Neutral:

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.18	21.34	9.63	0.02	10.00	40.99	64.42	-23.43	QP
2	0.18	5.04	9.63	0.02	10.00	24.69	54.41	-29.72	Average
3	0.54	20.34	9.62	0.04	10.00	40.00	56.00	-16.00	QP
4	0.54	4.21	9.62	0.04	10.00	23.87	46.00	-22.13	Average
5	1.15	13.80	9.63	0.05	10.00	33.48	56.00	-22.52	QP
6	1.15	-1.45	9.63	0.05	10.00	18.23	46.00	-27.77	Average
7	6.95	14.44	9.69	0.07	10.00	34.20	60.00	-25.80	QP
8	6.95	-10.73	9.69	0.07	10.00	9.03	50.00	-40.97	Average
9	10.23	11.97	9.72	0.08	10.00	31.77	60.00	-28.23	QP
10	10.23	-9.38	9.72	0.08	10.00	10.42	50.00	-39.58	Average
11	19.95	12.63	9.89	0.12	10.00	32.64	60.00	-27.36	QP
12	19.95	-8.56	9.89	0.12	10.00	11.45	50.00	-38.55	Average
									_

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

***Note: Pre-scan all mode and recorded the worst case results in this report (802.11b).

5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 v04 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8. Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship: E = EIRP 20log D + 104.77=EIRP+95.23

Where:

E = electric field strength in dBµV/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test Results

For Chain 0

	IEEE 802.11b											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
2310.000	-43.79	2.0	53.44	Peak	74.00	PASS						
2310.000	-54.25	2.0	42.98	AV	54.00	PASS						
2390.000	-39.19	2.0	58.04	Peak	74.00	PASS						
2390.000	-49.67	2.0	47.56	AV	54.00	PASS						
2483.500	-41.14	2.0	56.09	Peak	74.00	PASS						
2483.500	-52.30	2.0	44.93	AV	54.00	PASS						
2500.000	-40.34	2.0	56.89	Peak	74.00	PASS						
2500.000	-52.32	2.0	44.91	AV	54.00	PASS						

	IEEE 802.11g											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
2310.000	-44.40	2.0	52.83	Peak	74.00	PASS						
2310.000	-54.31	2.0	42.92	AV	54.00	PASS						
2390.000	-40.62	2.0	56.61	Peak	74.00	PASS						
2390.000	-51.60	2.0	45.63	AV	54.00	PASS						
2483.500	-40.45	2.0	56.78	Peak	74.00	PASS						
2483.500	-52.37	2.0	44.86	AV	54.00	PASS						
2500.000	-42.60	2.0	54.63	Peak	74.00	PASS						
2500.000	-52.98	2.0	44.25	AV	54.00	PASS						

IEEE 802.11n-HT20										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector Limit (dBuV/m		Verdict				
2310.000	-44.06	2.0	-44.06	Peak	74.00	PASS				
2310.000	-54.32	2.0	-54.32	AV	54.00	PASS				
2390.000	-42.49	2.0	-42.49	Peak	74.00	PASS				
2390.000	-52.19	2.0	-52.19	AV	54.00	PASS				
2483.500	-40.57	2.0	-40.57	Peak	74.00	PASS				
2483.500	-52.55	2.0	-52.55	AV	54.00	PASS				
2500.000	-41.76	2.0	-41.76	Peak	74.00	PASS				
2500.000	-53.03	2.0	-53.03	AV	54.00	PASS				

IEEE 802.11n-HT40										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
2310.000	-44.00	2.0	53.23	Peak	74.00	PASS				
2310.000	-54.29	2.0	42.94	AV	54.00	PASS				
2390.000	-35.95	2.0	61.28	Peak	74.00	PASS				
2390.000	-48.12	2.0	49.11	AV	54.00	PASS				
2483.500	-40.59	2.0	56.64	Peak	74.00	PASS				
2483.500	-50.36	2.0	46.87	AV	54.00	PASS				
2500.000	-41.42	2.0	55.81	Peak	74.00	PASS				
2500.000	-52.53	2.0	44.70	AV	54.00	PASS				

For Chain 1

155 000 44b										
IEEE 802.11b										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
2310.000	-44.79	2.0	52.44	Peak	74.00	PASS				
2310.000	-54.87	2.0	42.36	AV	54.00	PASS				
2390.000	-42.28	2.0	54.95	Peak	74.00	PASS				
2390.000	-53.23	2.0	44.00	AV	54.00	PASS				
2483.500	-44.02	2.0	53.21	Peak	74.00	PASS				
2483.500	-54.19	2.0	43.04	AV	54.00	PASS				
2500.000	-44.46	2.0	52.77	Peak	74.00	PASS				
2500.000	-53.99	2.0	43.24	AV	54.00	PASS				

	IEEE 802.11g										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict					
2310.000	-44.95	2.0	52.28	Peak	74.00	PASS					
2310.000	-55.00	2.0	42.23	AV	54.00	PASS					
2390.000	-37.57	2.0	59.66	Peak	74.00	PASS					
2390.000	-51.81	2.0	45.42	AV	54.00	PASS					
2483.500	-39.65	2.0	57.58	Peak	74.00	PASS					
2483.500	-51.08	2.0	46.15	AV	54.00	PASS					
2500.000	-42.77	2.0	54.46	Peak	74.00	PASS					
2500.000	-53.46	2.0	43.77	AV	54.00	PASS					

IEEE 802.11n-HT20										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
2310.000	-44.83	2.0	52.40	Peak	74.00	PASS				
2310.000	-54.99	2.0	42.24	AV	54.00	PASS				
2390.000	-37.18	2.0	60.05	Peak	74.00	PASS				
2390.000	-51.02	2.0	46.21	AV	54.00	PASS				
2483.500	-35.70	2.0	61.53	Peak	74.00	PASS				
2483.500	-50.75	2.0	46.48	AV	54.00	PASS				
2500.000	-42.73	2.0	54.50	Peak	74.00	PASS				
2500.000	-53.46	2.0	43.77	AV	54.00	PASS				

IEEE 802.11n-HT40										
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict				
2310.000	-44.95	2.0	52.28	Peak	74.00	PASS				
2310.000	-55.00	2.0	42.23	AV	54.00	PASS				
2390.000	-37.57	2.0	59.66	Peak	74.00	PASS				
2390.000	-51.81	2.0	45.42	AV	54.00	PASS				
2483.500	-39.65	2.0	57.58	Peak	74.00	PASS				
2483.500	-51.08	2.0	46.15	AV	54.00	PASS				
2500.000	-42.77	2.0	54.46	Peak	74.00	PASS				
2500.000	-53.46	2.0	43.77	AV	54.00	PASS				

For Combined Antenna Chain 0 and Antenna Chain 1

IEEE 802.11n HT20

Frequency (MHz)	Conducted Power (dBm)			Directional	Ground Reflection	Covert Radiated		Limit	
	Chain 0			Gain (dB)	(dB) Factor (dB) (dBuV/m		E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)
2310.000	-44.06	-44.83	-41.42	5.010*	0.000	58.82	Peak	74.00	PASS
2310.000	-54.32	-54.99	-51.63	5.010*	0.000	48.61	AV	54.00	PASS
2390.000*	-42.49	-37.18	-36.06	5.010*	0.000	64.18	Peak	74.00	PASS
2390.000	-52.19	-51.02	-48.56	5.010*	0.000	51.68	AV	54.00	PASS
2483.500*	-40.57	-35.70	-34.48	5.010*	0.000	65.76	Peak	74.00	PASS
2483.500	-52.55	-50.75	-48.55	5.010*	0.000	51.69	AV	54.00	PASS
2500.000	-41.76	-42.73	-39.21	5.010*	0.000	61.03	Peak	74.00	PASS
2500.000	-53.03	-53.46	-50.23	5.010*	0.000	50.01	AV	54.00	PASS

IEEE 802.11n HT40

Fraguency	Conducted Power (dBm)			Directional	Ground Reflection	Covert Radiated		Over	
Frequency (MHz)	Chain 0	Chain 1	Sum	Gain (dB)	Factor (dB)	E Level At 3m (dBuV/m)	Detector	limit dB	Verdict
2310.000	-44.00	-44.95	-41.44	5.010*	0.000	58.80	Peak	74.00	PASS
2310.000	-54.29	-55.00	-51.62	5.010*	0.000	48.62	AV	54.00	PASS
2390.000*	-35.95	-37.57	-33.67	5.010*	0.000	66.57	Peak	74.00	PASS
2390.000	-48.12	-51.81	-46.57	5.010*	0.000	53.67	AV	54.00	PASS
2483.500	-40.59	-39.65	-37.08	5.010*	0.000	63.16	Peak	74.00	PASS
2483.500	-50.36	-51.08	-47.69	5.010*	0.000	52.55	AV	54.00	PASS
2500.000*	-41.42	-42.77	-39.03	5.010*	0.000	61.21	Peak	74.00	PASS
2500.000	-52.53	-53.46	-49.96	5.010*	0.000	50.28	AV	54.00	PASS

Remark:

- 1. Measured Band-edge measurements for radiated emissions at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
 - "---"means that the fundamental frequency not for 15.209 limits requirement.
- 4. No need measure Average values if Peak values meets Average limits;
- 5. * means maximum values of frequency band 2310 2390 MHz, 2483.5 2500 MHz;
- 6. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain=5.01;
 - Array gain = 10 log (N_{ant})=3.01, where N_{ant} is the number of transmit antennas.
- 7. Covert Radiated E Level At 3m = Conducted average power + Directional Gain + 104.77-20*log(2);
- 8. Please refer to Appendix C: Section 7 for chain 0, and Appendix D: Section 7 for chain 1;

5.9. Antenna Requirements

5.9.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The gains of antenna used for transmitting is 2.0dBi, and the antenna are Integral antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
6	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
7	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
8	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
9	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
10	EMI Test Receiver	R&S	ESR 7	101181	2017-06-17	2018-06-16
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
14	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
15	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-06-10	2018-06-09
16	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
17	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
18	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
19	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
20	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-00 32	2017-06-17	2018-06-16
21	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16
22	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2017-10-28	2018-10-27
23	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A
Note: Al	l Leguipment is calibrat	Led through GLIANG	I ZHOLLISALCALI	BRATION AND T	FST COLLTC	<u> </u>

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----