Cosine Similarity Benchmark

Eric Crockett

May 8, 2025

List of Corrections

Eric: Feel free to improve the variable names	
Eric: I suspect Shai had a different algorithm in mind since he said it may take up to depth	r
this step	
Fric: Is it possible to use scheme-switching to do a bit-by-bit comparison?	

1 Introduction

This document describes Shai Halevi's algorithm for cosine similarity. We have a dataset with N (key, value) records. Each key is an ℓ_2 -normalized m-dimensional vector. Let A be the $m \times N$ matrix with all of these keys. We assume that each value fits in k slots.

There is a single secret query (row) vector v of dimension m, also ℓ_2 -normalized.

There is a threshold $\tau < 1$, and a promise that no more than M records in the dataset are τ -close to v. The goal is to fetch the values corresponding to the keys that are τ -close to v.

The server has encryptions of the key and value for each record. Shai assumes we are using a ring dimension of size 65K, so there are 32K slots (note that K is never a variable). The encrypted data is batched into blocks of size 32K records, where the keys for block i are encoded into the slots of m ciphertexts, and the values for block i are encoded into the slots of k additional ciphertexts. The number of blocks is $n = \lceil N/32K \rceil$.

The following list summarizes the notation:

- ullet N the number of records
- \bullet m the number of slots per record key
- ullet k the number of slots per record value
- $n := \lceil N/32K \rceil$, the number of ciphertexts required to hold N slots
- τ the dot product threshold. We return values for keys whose dot product with the query is $\geq \tau$.
- ullet M the maximum number of keys above the dot product.
- ullet C chunk size, used in the compaction step.
- $r := \lceil \log_{\frac{M \cdot C}{32K}}(2^{-32}) \rceil$, the maximum number of 1s in a slice of size $C \cdot n$, with probability 2^{-32} .
- $R := \lfloor 32K/C \rfloor$, the number of output ciphertexts

We require $C \cdot n \leq 32$ K, and $r \cdot k \leq 32$ K. Eric: Feel free to improve the variable names The procedure proceeds as follows:

Eric!

1. Dot Products Compute $u=v\cdot A$. We can isolate and duplicate each coefficient of v using a multiplication by a (public) mask, followed by 16 shifts and 15 additions. Then we multiply each coefficient ciphertext by a packed row of A, and add the products together (for each block). This process has depth 2. Eric: I suspect Shai had a different algorithm in mind since he said it may take up to depth 8 for this step. See DotProds in Algorithm 1.

Eric!

- 2. Thresholding Compare the slots of u against the threshold τ . Shai suggests using a polynomial approximation for this step, consuming 6 or 7 levels.
- 3. Compacting The algorithm requires a promise that at most M dot products will be larger than τ , so the comparison vector has at most M 1s in it. The output is R ciphertexts, each with at most $r \cdot k$ non-zero left-justified slots. Roughly, the algorithm involves "slicing" the threshold vector and value matrix by taking C slots from each of the n ciphertexts (in the input, or in one row of the value matrix). We compact these slots into a single ciphertext, then compute a running sum. With high probability, the sum will be $\leq r$, by design. For $i \in [1, r]$, we do an equality test on the running sum and multiply by the threshold vector to obtain an indicator vector with a one in the position of the ith one in the threshold vector. We can then extract the corresponding value coefficient from the value matrix, and compactly store it in an output ciphertext. See Algorithm 2 for details.

Algorithm 1 Encrypted vector/matrix multiplication. v is a single CT with data in first m non-zero slots. A is a matrix with m rows, where each row is composed of n ciphertexts. The jth ciphertext in the ith row is $A_{i,j}$.

```
1: procedure Replicate(x)
                                                                                    \triangleright x has a value in one slot and 0s elsewhere
                                                                                          \triangleright Output has this value in all 32K slots
2:
 3:
         for i in range(15) do
                                                                                                           \triangleright Hard-coded for 32K slots
             x \leftarrow x + (x \gg 2^i)
 4:
 5:
         return x
 6:
                                                                                                  \triangleright Return a CT with v_i in all slots
 7: procedure ExtractCoeff(v, i)
         mask \leftarrow Indicator(i)
8:
 9:
         w \leftarrow mask \cdot v_0
         return Replicate(w)
10:
11:
12: procedure DotProds(v, A)
         \operatorname{prods} \leftarrow [0] * n
13:
         for j in range(m) do
14:
              v_i \leftarrow \text{ExtractCoeff}(v, j)
15:
16:
              for i in range(n) do
17:
                  \operatorname{prods}[i] \leftarrow \operatorname{prods}[i] + v_i \cdot A_{i,j}
         return prods
18:
```

Algorithm 2 Compaction. us is the output of the thresholding step, a vector with n ciphertexts. ps is a $k \times n$ matrix where each row ps_i is n packed ciphertexts. $ps_{i,j}$ means the jth ciphertext in the ith row

```
1: procedure RUNNINGSUM(v)
         rs \leftarrow v \cdot \operatorname{Indicator}(0)
 2:
          acc \leftarrow v
 3:
                                                                                \triangleright Extracts the i^{\mathrm{th}} component of the running sum
          for i in range(1, 32K) do
 4:
 5:
              acc \leftarrow v + (acc \gg 1)
              rs \leftarrow rs + (acc \cdot \operatorname{Indicator}(i))
 6:
 7:
 8:
 9: procedure ExtractSlice(xs, t)
                                                                                                        \triangleright xs is a list of n CTs, t \in [0, R)
         \text{mask} \leftarrow [1]^*C + [0]^*(32768 - C)
10:
          x \leftarrow 0
11:
          for i in range(n) do
12:
              x \leftarrow x + (((xs_i \cdot (mask \gg C \cdot t)) \ll C \cdot t) \gg C \cdot i)
13:
14:
          return x
15:
16: procedure Compactify(us, ps)
          accs \leftarrow [0]*R
17:
          for t in range(R) do
                                                                                                                      ▶ Loop over each slice
18:
              u \leftarrow \text{ExtractSlice}(us, t)
19:
20:
              v \leftarrow \text{RunningSum}(u)
              xs \leftarrow [0]*r
21:
              for i in range(1, r + 1) do
22:
                                                                                        \triangleright 1 where the running-sum is i, 0 elsewhere
23:
                   w_i \leftarrow \text{map}((==i), v)
                                                                                                               \triangleright Extracts the i^{\text{th}} 1 from u
                   xs_i \leftarrow w_i \cdot u
24:
                                                                                                   \triangleright k is the number of slots per value
              for i in range(k) do
25:
26:
                   p \leftarrow \text{ExtractSlice}(ps_i, t)
                   for j in range(1, r + 1) do
                                                                                      \triangleright We assume that there are at most r 1s in u
27:
                                                                                     \triangleright The value corresponding to the j^{\rm th} 1 from u
28:
                        x \leftarrow p \cdot xs_j
                        y \leftarrow \text{Replicate}(x)
                                                                                                           ▶ The value is now in all slots
29:
                        z \leftarrow y \cdot \operatorname{Indicator}(j \cdot k + i - 1)
                                                                                ▶ The value is now in the appropriate output slot
30:
                        accs[t] \leftarrow accs[t] + z
31:
32:
          return accs
```

2 Failure Modes

2.1 Broken Promise

If there are in fact > M matches, this does not necessarily invalidate the results. The effect is more indirect in that it increases the probability that more than r keys match in a given slice.

2.2 Unlucky Distribution

The algorithm returns up to r results per slice, and therefore up to $r \cdot R$ results total. If more than r keys match for a given slice (either because we got very unlucky, or because there are more than M matches and we are only slightly unlucky), only up to r results are returned per slice.

2.3 High-Precision Threshold

One problem that Shai identified with the thresholding step is that the polynomial approximation will return values ≈ 1 if the dot product is larger than τ and ≈ 0 if the dot product is smaller than τ . However, for values very close to τ , the polynomial approximation will return values near 1/2, which results in inaccurate results. One way to prevent this is to require a "promise" that the dot products are sufficiently far away from τ . Eric: Is it possible to use scheme-switching to do a bit-by-bit comparison?

Eric!