Perceptron

Fatemeh Mansoori

A Biological Neuron

Perceptron

- Perceptron was introduced by Frank Rosenblatt in 1957
- He proposed a Perceptron learning rule
- A Perceptron is an algorithm for supervised learning of binary classifiers
 - Has limited capacity to learn complex pattern
 - inability to handle non-linearly separable data

How Does Perceptron Work?

- multiplying all input values and their weights
- adds these values to create the weighted sum
- weighted sum is applied to the activation function 'f' to obtain the desired output
- activation function is also known as the step function and is represented by 'f.'
- single-layer perceptron model analyze the linearly separable objects with binary outcomes

A simple mathematical model of a neuron

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

Learning: Binary Perceptron

- Start with weights w = 0
- For each training instance f(x), y*:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct: (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Learning: Binary Perceptron

- Start with weights w = 0
- For each training instance f(x), y*:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

Non-Separable Case

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability of + going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability of + going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$
$$= \frac{e^z}{e^z + 1}$$

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability of + going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability of + going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

$$P(y = +1 \mid x; w) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

$$P(y = +1 \mid x; w) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

$$P(y = -1 \mid x; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x)}}$$

= Logistic Regression

A 1D Example

$$P(red|x; w) = \phi(w \cdot f(x)) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

A 1D Example: varying w

$$P(red|x; w) = \phi(w \cdot f(x)) = \frac{1}{1 + e^{-w \cdot f(x)}}$$

Best w?

Likelihood =
$$P(\text{training data}|w)$$

= $\prod_{i} P(\text{training datapoint }i \mid w)$
= $\prod_{i} P(\text{point }x^{(i)} \text{ has label }y^{(i)}|w)$
= $\prod_{i} P(y^{(i)}|x^{(i)};w)$
Log Likelihood = $\sum_{i} \log P(y^{(i)}|x^{(i)};w)$

Best w?

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$
If $y = 0$: $p(y|x) = 1 - \hat{y}$
 $p(y|x) = \hat{y}$ $(1-\hat{y})^{(1-\hat{y})}$
If $y = 1$: $p(y|x) = \hat{y}$ $(1-\hat{y})^{(1-\hat{y})}$
 $y = 1$: $p(y|x) = \hat{y}$ $y = 1$: $p(y|x) = 1$

Cost on *m* examples

log
$$p(lobols)$$
 in trotog set) = log $\prod_{i=1}^{m} p(y(i)|\chi(i))$

log $p(----) = \sum_{i=1}^{m} log p(y(i)|\chi(i))$

Movimum likelihood attends

$$- \chi(y(i), y(i))$$

$$= -\sum_{i=1}^{m} \chi(y(i), y(i))$$
 $= \sum_{i=1}^{m} \chi(y(i), y(i))$

(minimize)

 $= \sum_{i=1}^{m} \chi(y(i), y(i))$

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

Cross Entropy Loss Optimization

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$
Want to find w, b that minimize $J(w, b)$

Loss Optimization

 $J(w_0, w_1)$

 w_1

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Gradient Descent

"Walking downhill and always taking a step in the direction that goes down the most."

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Logistic regression derivatives

$$x_{1}$$

$$w_{1}$$

$$x_{2}$$

$$z = w_{1}x_{1} + w_{2}x_{2} + b$$

$$dz = \frac{dl}{dz} = \frac{dl(ay)}{dz}$$

$$= \frac{dl}{dz} = \frac{dl}{dz}$$

$$= \frac{dl}{dz} = \frac{dl}{dz}$$

$$= \frac{dl}{dz} = \frac{dl}{dz}$$

Logistic regression on *m* examples

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \chi(\alpha^{(i)}, y^{(i)})$$

$$\Rightarrow \alpha^{(i)} = \gamma^{(i)} = \varepsilon(z^{(i)}) = \varepsilon(\omega^{T} x^{(i)} + b)$$

$$\frac{\partial \omega_{i}}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} \chi(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial \omega_{i}}{\partial \omega_{i}} - (x^{(i)}, y^{(i)})$$

What is Vectorization?

$$\begin{aligned}
& z = \omega^{T} \times tb \\
& \omega = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \times c \mathbb{R}^{n} \times c \mathbb$$