2025 28th International Symposium on Research in Attacks, Intrusions and Defenses (RAID)

RAID 2025

Table of Contents

Message from the General Chairs Message from the Program Co-Chairs Organizing Committee Program Committee Steering Committee Reviewers Sponsors	xv .xvii xviii xxi .xxii
Adversarial Machine Learning	
ViDToken: A Video-Transformer-Based Latent Token Defense for Adversarial Video Detection Wei Song (University of New South Wales, Australia), Zhenchang Xing (CSIRO's Data61, Australia), Liming Zhu (CSIRO's Data61, Australia), Yulei Sui (University of New South Wales, Australia), and Jingling Xue (University of New South Wales, Australia)	1
Robust Cross-Modal Deepfake Detection via Facial UV Maps and Momentum Contrastive Learni 18 Yuesen Tang (Southeast University, China), Yuanyang Zhang (Southeast University, China), Wangxiao Mao (Southeast University, China), and Li Yao (Southeast University, China)	ng
BadLogo: A Physically Realizable Adversarial Sticker for Evaluating the Robustness of Face Recognition Models Fuqi Qi (Xidian University), Haichang Gao (Xidian University), Boling Li (Xidian University), Shiping Guo (Xidian University), Yuming Zheng (Xidian University), and Bingqian Zhou (Xidian University)	32
The Adaptive Arms Race: Redefining Robustness in AI Security Ilias Tsingenopoulos (KU Leuven, Belgium), Vera Rimmer (KU Leuven, Belgium), Davy Preuveneers (KU Leuven, Belgium), Fabio Pierazzi (University College London, United Kingdom), Lorenzo Cavallaro (University College London, United Kingdom), and Wouter Joosen (KU Leuven, Belgium)	46

Red-Teaming LLMs with Token Control Score: Efficient, Universal, and Transferable
Jailbreaks
Security and Privacy in Federated & Distributed Learning
PRIV-HFL: Privacy-Preserving and Robust Federated Learning for Heterogeneous Clients Against Data Reconstruction Attacks
Guard-GBDT: Efficient Privacy-Preserving Approximated GBDT Training on Vertical Dataset 96 Anxiao Song (Xidian University), Shujie Cui (Monash University), Jianli Bai (Singapore Management University), Ke Cheng (Xidian University), Yulong Shen (Xidian University), and Giovanni Russello (University of Auckland)
Re-examine Federated Rank Learning: Analyzing Its Robustness Against Poisoning Attacks 112 Xiaofei Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaojie Zhu (King Abdullah University of Science and Technology), Chi Chen (Institute of Information Engineering, Chinese Academy of Sciences), and Paulo Esteves-Veríssimo (King Abdullah University of Science and Technology)
BadFU: Backdoor Federated Learning Through Adversarial Machine Unlearning
FedSIG: Privacy-Preserving Federated Recommendation via Synthetic Interaction Generation 144 Thirasara Ariyarathna (University of New South Wales, Australia), Salil S. Kanhere (University of New South Wales, Australia), Meisam Mohammady (Iowa State University, USA), and Hye-young Paik (University of New South Wales, Australia)
Attacks On and Defenses for ML Models
Reconstruction of Differentially Private Text Sanitization via Large Language Models
An In-model Spy in Edge Intelligence

VulCodeMark: Adaptive Watermarking for Vulnerability Datasets Protection	0
Unsupervised Backdoor Detection and Mitigation for Spiking Neural Networks	5
Functional Encryption in Secure Neural Network Training: Data Leakage and Practical Mitigations	'n
Alexandru Ioniță (Alexandru Ioan Cuza University of Iași, Romania) and Andreea Ioniță (Alexandru Ioan Cuza University of Iași, Romania)	U
Machine Learning for Security Applications	
On the Effectiveness of Custom Transformers for Binary Analysis	2
Developing a Strong CPS Defender: An Evolutionary Approach	6
Scalable and Generalizable RL Agents for Attack Path Discovery via Continuous Invariant Spaces	1
From Text to Actionable Intelligence: Automating STIX Entity and Relationship Extraction	9
Semantic Heat Guided Relational Privacy Inference Based on Panoptic Scene Graph	5

Systems and Software Security

DEPHP: A Source Code Recovery Method for PHP Bytecode with Improved Structural Analysis 309 Shiwu Zhao (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ningjun Zheng (Tencent Technology (Shanghai) Co., Ltd, China), Haoyu Li (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ruizhi Feng (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xingchen Chen (Chinese Academy of Sciences, China), Ru Tan (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Qixu Liu (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; University of Chinese Academy of
SyzRetrospector: A Large-Scale Retrospective Study of Syzbot
SyzGrapher: Resource-Centric Graph-Based Kernel Fuzzing
SH3ARS: Privilege Reduction for ARMv8.0-A Secure Monitors
TYPEFLEXER: Type Directed Flexible Program Partitioning
System Forensics and Investigation
A Comprehensive Quantification of Inconsistencies in Memory Dumps
MuSAR: Multi-Step Attack Reconstruction from Lightweight Security Logs via Event-Level Semantic Association in Multi-Host Environments

CasinoLimit: An Offensive Dataset Labeled with MITRE ATT&CK Techniques	
Exploring Runtime Evolution in Android: A Cross Version Analysis and Its implication for Memory Forensics	
Cybercrime and Threat Intelligence	
From Concealment to Exposure: Understanding the Lifecycle and Infrastructure of APT Domains	
The Persistent Threat of DGA-Domains Used by Botnets	
A Longitudinal Analysis of LockBit 3.0's Extortion Lifecycle and Response to Law Enforcement	
EventHunter: Dynamic Clustering and Ranking of Security Events from Hacker Forum Discussions	

Malware Analysis and Detection

Demystifying Feature Engineering in Malware Analysis of API Call Sequences Tianheng Qu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Hongsong Zhu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Limin Sun (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Haining Wang (The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, USA), Haiqiang Fei (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Zheng He (National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China), and Zhi Li (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China)	.7
Malware and Vulnerability Analysis using Graph-synchronized Language Model	;1
Evaluating LLM-Based Detection of Malicious Package Updates in npm	<i>₹</i> 7
ADAPT: A Pseudo-labeling Approach to Combat Concept Drift in Malware Detection	52
Intrusion Detection and Response	
Perry: A High-level Framework for Accelerating Cyber Deception Experimentation	32
Carbon Filter: Scalable, Efficient, and Secure Alert Triage for Endpoint Detection & Response) 8
Jonathan Oliver (Broadcom Inc.), Raghav Batta (Broadcom Inc.), and Adam Bates (University of Illinois at Urbana-Champaign)	
STGraph: Spatio-Temporal Graph Mining for Anomaly Detection in Distributed System Logs61 Teng Li (Xidian University), Shengkai Zhang (Xidian University), Yebo Feng (Nanyang Technological University), Jiahua Xu (University College London), Zexu Dang (Xidian University), Yang Liu (Nanyang Technological University), and Jianfeng Ma (Xidian University)	.4

Detecting and Adapting to Stealthy Label-Inversion Drifts via Conditional Distribution Inference 628
Xiaoli Zhang (University of Science and Technology Beijing), Yue Xiao (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Zhengyang Li (University of Science and Technology Beijing), Xinyan Wang (China Unicom Digital Tech Co., Ltd), Jianrong Zhang (China Unicom Digital Tech Co., Ltd), Ke Xu (Tsinghua University), Qi Li (Tsinghua University), and Xu-Cheng Yin (University of Science and Technology Beijing)
NIDP: Solving Feature Distribution Shifts in Network Intrusion Detection via Neural
Pruning
Network and Protocol Security
Overlapping IPv4, IPv6, and TCP data: exploring errors, test case context, and multiple overlaps inside network stacks and NIDSes with PYROLYSE
Active Attack Resilience in 5G: A New Take on Authentication and Key Agreement
Revealing Informed Scanners by Colocating Reactive and Passive Telescopes
Web and Media Security
{{alert('CSTI')}}: Large-Scale Detection of Client-Side Template Injection
Deep Learning-Based Attacks on Traditional Watermarking Systems in Real-Time Live Video
Streams

H2FUZZ: Guided, Black-box, Differential Fuzzing for HTTP/2-to-HTTP/1 Conversion Anomalies . 734 Anthony Gavazzi (Northeastern University, United States), Weixin Kong (Northeastern University, United States), and Engin Kirda (Northeastern University, United States)
Deception Meets Diagnostics: Deception-based Real-Time Threat Detection in Healthcare Web Systems
Portal: Enabling Accurate Siemens PLC Rehosting via Peripheral Proxying and Proactive Interrupt Synchronization
Activation Functions Considered Harmful: Recovering Neural Network Weights through Controlled Channels
Zebrafix: Mitigating Memory-Centric Side-Channel Leakage via Interleaving
RF-Eye-D: Probing Feasibility of CMOS Camera Watermarking with Radio-Frequency Injection818 Hui Zhuang (Northeastern University), Yan Long (Northeastern University), and Kevin Fu (Northeastern University)
ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
IoT, Mobile and VR Security
DeepFW: A DNN-Based Firmware Version Identification Framework for Online IoT Devices 854 Zhen Lei (Taiyuan University of Technology, China), Nian Xue (Shandong University of Technology, China), Zhen Li (Shandong University of Technology, China), Dan Yu (Taiyuan University of Technology, China), Xin Huang (Taiyuan University of Technology, China), and Yongle Chen (Taiyuan University of Technology, China)
TAPPecker: TAP Logic Inference and Violation Detection in Heterogeneous Smart Home Systems. 869 Qixiao Lin (Beihang University, China), Jian Mao (Beihang University, China; Tianmushan Laboratory, China; Hangzhou Innovation Institute, China; Zhongguancun Laboratory, China), Ziwen Liu (Beihang University, China), and Zhenkai Liang (National University of Singapore, Singapore)

Careless Whisper: Exploiting Silent Delivery Receipts to Monitor Users on Mobile Instant Messengers Gabriel K. Gegenhuber (University of Vienna), Maximilian Günther (University of Vienna), Markus Maier (University of Vienna), Aljosha Judmayer (University of Vienna), Florian Holzbauer (University of Vienna), Philipp É. Frenzel (SBA Research), and Johanna Ullrich (University of Vienna)	887
When (Inter)actions Speak Louder Than (Pass)words: Task-Based Evaluation of Implicit Authentication in Virtual Reality	905
MotionDecipher: General Video-assisted Passcode Inference In Virtual Reality	919
Enterprise Cloud and Infrastructure Security	
Uncontained Danger: Quantifying Remote Dependencies in Containerized Applications	935
RBAClock: Contain RBAC Permissions through Secure Scheduling Qingwang Chen (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ru Tan (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Xinyu Liu (Institute of Information Engineering, Chinese Academy of Sciences, China), Yuqi Shu (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Zhou Tong (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Haoqiang Wang (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)	950
Scalable Active Directory Defense with α -Metagraph	966
Author Index	987