- 1. 1A. (NOTHING)
- 2. 1B
- 3. **Vector Space**. A vector space *V* is a set that has scalar multiplication and vector addition defined on it with the following properties:
 - (a) Additive commutativity.
 - (b) Additive associativity of vectors (u + (v + w) = (u + v) + w) and multiplicative associativity for scalars ((ab)v = a(bv)).
 - (c) Additive identity.
 - (d) Additive inverses.
 - (e) Multiplicative identity
 - (f) BOTH distributive properties.
- 4. V-space (unique additive identity) A vector space has a unique additive identity.
- 5. V-space (unique additive inverses) Every element in a vector space has a unique additive inverse.
- 6. 1C
- Subspace. A subset U ⊆ V is a subspace of V if it is a vector space with the same additive identity, scalar
 multiplication, and vector addition as defined on V.
- 8. Conditions for a Subspace. A subset $U \subseteq V$ is a subspace of V iff U is closed under vector addition, scalar multiplication, and contains the "zero" element as in V.
- 9. **Sums of Subspaces.** Let V_1, \dots, V_n be subspaces of V. Then, we have the sum of subspaces as $V_1 + \dots + V_n = \{v_1 + \dots + v_n \mid v_i \in V_i \text{ for all } i\}$.
- Smallest subspace containing each subspace Suppose V₁,...,V_n are subspaces of V. Then, V₁ + ··· + V_n is the smallest subspace of V containing V₁,...,V_n.
- 11. Direct Sum. Suppose V_1, \dots, V_m are subspaces of V. Then:
 - (a) The sum $V_1 + \cdots + V_m$ is direct if each element of $V_1 + \cdots + V_m$ can be written uniquely as a sum $v_1 + \cdots + v_m$, where $v_i \in V_i$ for all i.
 - (b) If $V_1 + \cdots + V_m$ is a direct sum, then we write $V_1 \oplus \cdots \oplus V_m$.
- Conditions for a direct sum. Suppose V₁,...,V_n are subspaces of V. Then, V₁ + ··· + V_n is direct iff the only way to write 0 from v₁ + ··· + ν_n is by taking v_i = 0 for all i.
- 13. **Direct sum of subspaces.** If U,W are subspaces of V, then U+W is direct iff $U\cap W=\{0\}$.
- 14. 2A.
- 15. Span is the smallest containing subspace. The span of a list of vectors in V is the smallest subspace containing all of the vectors in the list.
- 16. **Zero polynomial.** The zero polynomial is said to have degree $-\infty$.
- 17. **Linear Independence.** A list of vectors $v_1, ..., v_n \in V$ is said to be linearly independent if $a_1v_1 + \cdots + a_nv_n = 0$ implies $a_i = 0$ for all i. Also, the empty list () is said to be linearly independent.
- Linear Dependence. A list of vectors v₁,...,v_n is said to be linearly dependent if a₁v₁ + ··· + a_nv₌0 impies a_i ≠ 0 for some i.
- 19. **Linear Dependence Lemma.** Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then, there exists $k \in \{1, \ldots, m\}$ such that $v_k \in \operatorname{span}(v_1, \ldots, v_{k-1})$. Furthermore, if k satisfies the condition in the previous sentence and the k^{th} term is removed from v_1, \ldots, v_m , then the span of the remaining list equals $\operatorname{span}(v_1, \ldots, v_m)$.
- length of linearly independent list; length of spanning list. In a finite-dimensional vector space, the length of every linearly independent list is at most the length of every spanning list of vectors.
- 21. Finite Dimensional subspaces. Every subspace of a finite-dimensional vector space is finite dimensional.
- 22. 2B.
- 23. **Basis.** A basis of V is a list of vectors that is linearly independent and spans V.
- 24. **Criterion for basis.** A list of vectors $v_1, \ldots, v_n \in V$ is a basis of V iff every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$, where $a_i \in F$ for all i.
- 25. Every spanning list contains a basis. Every spanning list in a vector space can be reduced to a basis of the vector space.
- 26. Basis of finite-dimensional vector space. Every finite-dimensional vector space has a basis.
- 27. Every linearly independent list extends to a basis. Every linearly independent list in a finite-dimensional vector space can be extended to a basis of the vector space.
- 28. Every subspace of V is part of a direct sum equal to V. Suppose V is finite-dimensional and U is a subspace of V. Then, there is a subspace W of V such that $V = U \oplus W$.
- 29. 2C.
- Basis length does not depend on basis. Any two bases of a finite-dimensional vector space have the same length.
- 31. **Dimension of a subspace.** If V is finite-dimensional and U is a subspace of V, then $\dim U \leq \dim V$.

- 32. **Linearly independent list of the right length is a basis.** Suppose *V* is finite-dimensional. Then, every linearly independent list of vectors in *V* (with list length equal to dim *V*) is a basis of *V*.
- 33. Subspace of full dimension equals the whole space. Suppose V is finite-dimensional and U is a subspace of V such that $\dim U = \dim V$. Then, U = V.
- 34. **Spanning list of the right length is a basis.** Suppose V is finite-dimensional. Then, every spanning list of V of length dim V is a basis of V.
- 35. **Dimension of a sum.** If V_1, V_2 are subspaces of a finite-dimensional vector space, then $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2)$.
- 36. 3A.
- 37. **Set of Linear Maps.** The linear of linear maps from $V \to W$ is written $\mathcal{L}(V,W)$ and the set of linear maps from $V \to V$ is written $\mathcal{L}(V)$.
- 38. **Linear Map lemma.** Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Then, there exists a unique linear map $T: V \to W$ such that $Tv_k = w_k$ for each k.
- 39. **Linear maps take 0 to 0.** Suppose $T: V \to W$ is a linear map. Then, T(0) = 0.
- 40. 3B.
- 41. **null space is a subspace.** Suppose $T \in \mathcal{L}(V, W)$. Then, T is a subspace of V.
- 42. **injectivity iff null is 0.** Let $T \in \mathcal{L}(V, W)$. Then, T is 1-1 iff $T = \{0\}$.
- 43. **range is a subspace.** If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.
- 44. **Fundamental Theorem of Linear Maps.** Suppose V is finite-dimensional and $T \in \mathcal{L}(V,W)$. Then, range T is finite dimensional and $\dim V = \dim \operatorname{Id} T + \dim \operatorname{range} T$.
- 45. linear map to a lower-dim space is not 1-1. Suppose V, W are finite-dimensional vector spaces such that dimV > dimW. Then, no linear map from V → W is 1-1.
- 46. **linear map to a higher-dim space is not onto.** Suppose V,W are finite-dimensional vector spaces such that dim $V < \dim W$. Then, no linear map from $V \to W$ is onto.
- 47. 3C. (NOTHING)
- 48. 3D.
- 49. **Theorem.** Let V, W be finite-dimensional vector spaces such that $\dim V = \dim W$ and let $T \in \mathcal{L}(V, W)$. Then, T is invertible iff T is 1-1 iff T is onto.
- 50. isomorphism. An isomorphism is an invertible linear map
- dimension and isomorphic. Two finite-dimensional vector spaces are isomorphic iff they have the same dimension.
- 52. **Theorem.** Suppose V and W are finite-dimensional. Then, $\mathscr{L}(V,W)$ is finite-dimensional and $\dim \mathscr{L}(V,W) = (\dim V)(\dim W)$.
- 53. **matrix of identity operator with respect to two bases.** Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are two bases of V. Then, the matrices $\mathcal{M}(I;u_1, \ldots, u_n; v_1, \ldots, v_n)$ and $\mathcal{M}(I;v_1, \ldots, v_n; u_1, \ldots, u_n)$ are invertible and are inverses of each other.
- 54. **Change of basis formula.** Let $T \in \mathcal{L}(V, W)$. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are two bases of V. Let $A = \mathcal{M}(T; u_1, \ldots, u_n)$ and $B = \mathcal{M}(T; v_1, \ldots, v_n)$ and $C = \mathcal{M}(I; u_1, \ldots, u_n; v_1, \ldots, v_n)$. Then, $A = C^{-1}BC$.
- 55. Suppose that v_1, \ldots, v_n is a basis of V and $T \in \mathcal{L}(V)$ is invertible. Then, $\mathcal{M}(T^{-1}) = (\mathcal{M}(T))^{-1}$, where both matrices are with respect to the basis v_1, \ldots, v_n .
- 56. 3E.
- 57. **Product of vector spaces is a vector space.** Suppose V_1, \dots, V_m are vector spaces over \mathbb{F} . Then, $V_1 \times \dots \times V_m$ is a vector space over \mathbb{F} .
- 58. **dimension of a product is the sum of the dimensions.** Suppose V_1, \dots, V_m are finite-dimensional vector spaces. Then, $V_1 \times \dots \times V_m$ is finite-dimensional and $\dim(V_1 \times \dots \times V_m) = \dim V_1 + \dots + \dim V_m$.
- 59. **Products and direct sums.** Suppose V_1, \dots, V_m are subspaces of V. Define a linear map $\Gamma: (V_1 \times \dots \times V_m) \to (V_1 + \dots + V_m)$ by $\Gamma(v_1, \dots, v_m) = v_1 + \dots + v_m$. Then, $V_1 + \dots + V_m$ is direct iff Γ is 1-1.
- 60. **direct sum iff dimensions add up.** Suppose V is finite-dimensional and V_1, \dots, V_m are subspaces of V. Then, $V_1 + \dots + V_m$ is direct iff $\dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m$.
- 61. **v** + **U**. Suppose $v \in V$ and $U \subseteq V$. Then, $v + U = \{v + u \mid u \in U\}$.
- 62. **Translate.** For $v \in V$ and $U \subseteq V$, the set v + U is called a translate of U.
- 63. **Quotient Space.** Let U be a subspace of V. Then, the quotient space V/U is the set of all translates of U, that is, $V/U = \{v + U \mid v \in V\}$.
- 64. two translates of a subspace are either equal or disjoint. Suppose U is a subspace of V and v, w ∈ V. Then, v − w ∈ U iff v + U = w + U iff (v + U) ∩ (w + U) ≠ ∅.
- 65. Addition and scalar multiplication on Quotient space. Let U be a subspace of V. Then, we have (for all v, w ∈ V, λ ∈ F):
 - (a) addition on V/U: (v+U) + (w+U) = (v+w) + U.
 - (b) scalar multiplication on V/U: $\lambda(v+U) = (\lambda v) + U$.
- 66. **quotient space is a vector space.** Let U be a subspace of V. Then, the quotient space V/U is a subspace of V under the defined scalar multiplication and vector addition.

- 67. **quotient map.** Let U be a subspace of V. Then, the quotient map $\pi:V\to V/U$ is the linear map defined by $\pi(v)=v+U$ for each $v\in V$.
- 68. **dimension of quotient space.** Suppose V is finite-dimensional and U is a subspace of V. Then, $\dim(V/U) = \dim V \dim U$.
- 69. Column rank. The column rank (rank of the column span of a matrix) is rank T_A .
- 70. **Theorem.** If A is a rectangular matrix of elements in a field F, then row rank A = column rank A.
- RIBET DEFS.
- 72. **Endomorphism.** An endomorphism is a group homomorphism from a set to itself (NOTE: does not have to be invertible.)
- 73. **End V.** The symbol V is the set of all endomorphisms on V (and multiplication on V is defined to be function composition)
- 74. F-Module. An F-module is a generalization of vector spaces over rings.
- 75. Subspace. Let V be a vector space. X is a subspace of V if X ⊆ V and closed under all relevant operations of V, X ≠ Ø, and X ∋ 0.
- 76. **Linear Map / Linear Transformation.** Let V be a vector space over a field F with $v,w \in V$. Let T be a map on V with T(v+w)=T(v)+T(w) and $T(\lambda v)=\lambda T(v)$ for all $\lambda \in F$. Then, T is called a linear map or linear transformation.
- Linear Operator. If T is a linear transformation on a vector spaces V with T: V → V, then T is linear operator on V.
- 78. **Spans.** The list v_1, \ldots, v_n spans V iff $T: F^n \to V$ is onto.
- 79. **Linearly Independent.** The list v_1, \ldots, v_n is linearly independent iff $T: F^n \to V$ is 1-1. Equivalently, the list v_1, \ldots, v_n is linearly independent if $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ implies $\lambda_i = 0$ for all i.
- 80. **Linearly Dependent.** The list v_1, \dots, v_n is linearly dependent iff $\lambda_1 v_1 + \dots + \lambda_n v_n = 0$ implies $\lambda_i \neq 0$ for some i.
- 81. **Basis.** The list v_1, \ldots, v_n is a basis of V if $\text{span}\{v_1, \ldots, v_n\} = V$ and v_1, \ldots, v_n is linearly independent.
- 82. **Finite-dimensional.** V is finite-dimensional if V is spanned by a finite list of vectors.
- 83. **Sum of Subspaces.** Let X_1, \ldots, X_t be subspaces of V. Then, we define their sum as $X_1 + \cdots + X_t = \{x_1 + \cdots + x_t \mid x_1 \in X_1, \ldots, x_t \in X_t\}$.
- 84. **Direct Sum of Subspaces.** Let X_1, \ldots, X_t be subspaces of V. Then, their direct sum, $X_1 \oplus \cdots \oplus X_t$, is given by a 1-1 linear map T, with $T: X_1 \times \cdots \times X_t \to V$.
- 85. **Complement of Subspace.** Let X, Y be subspaces of of V. Then, Y is a complementary subspace of X iff X + Y = V and $X + Y = X \oplus Y$.
- 86. Rank, Nullity. The rank of a linear map is the dimension of the range of the linear map. The nullity is the dimension of the null space of the linear map.
- 87. Null Space. The null space is the set of vectors that are mapped to 0.
- 88. **Isomorphic Vector Spaces.** Two vector spaces V, W are isomorphic if there exists a linear map $T: V \to W$ that is 1-1 and onto.
- 89. **Quotient Space.** Suppose U is a subspace of V. Then, the quotient space V/U is the set $V/U = \{v + U \mid v \in V\}$.
- 90. **Column Rank.** The column rank (rank of the column span of a matrix) is defined to be rank T_A .
- 91. **Conjugation.** Let A be an $n \times n$ matrix (over F) and let Q be an $n \times n$ matrix (over F). Then, the conjugation of A by Q is $Q^{-1}AQ$.
- 92. RIBET THMS.
- 93. **Lemma.** Let F be a field, $\lambda \in F$, V a vector space over F (denoted by V/F), $v \in V$. Then, if $\lambda v = 0$, then $\lambda = 0$ or v = 0.
- 94. Lemma. A vector space over a field is a module over a field.
- 95. **Theorem.** The intersection of a family of subspaces of a vector space V is a subspace of V.
- 96. **Lemma.** Let $S = \{v_1, \dots, v_t\}$. Then the subspace of all linear combinations of the elements of S is the span S.

- 97. **Theorem.** Let $L = v_1, \dots, v_n$ be a list of vectors in a vector space V over a field F and let $T : F^n : \to V$ be linear transformation with $(\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 v_1 + \dots + \lambda_n v_n$. Then, we have the following:
 - (a) L spans V iff T is onto.
 - (b) L is linearly independent iff T is 1-1 iff $\operatorname{nul} T = \{0\}$.
 - (c) L is a basis iff T is 1-1 and onto
- 98. **Prop.** Consider $T: F^n \to V$ with $(\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 v_1 + \dots + \lambda_n v_n$, so $T(e_i) = v_i$ for all i. Then, T is the unique linear map $F_n \to V$ that sends $e_i \mapsto v_i$ for all i.
- 99. **Theorem.** Every subspace X of V has complement.
- 100. **Lemma.** If $v_1, ..., v_t$ is linearly dependent list, then there is an index k such that $v_k \in \operatorname{span}(v_1, ..., v_{k-1}, v_{k+1}, ..., v_t)$. Furthermore, the span of the list of length t-1 gotten by removing v_k from the list is the same as the span of the original list.
- 101. Prop. In a finite-dimensional vector space, the length is of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.
- 102. Cor. Two bases of V have the same number of elements.
- 103. **Prop.** X + Y is direct iff the null space of the sum map is $\{0\}$.
- 104. Theorem. Every subspace of a finite-dimensional vector space is finite-dimensional.
- 105. Prop. Every spanning list for a vector space can be pruned down to a basis of the space.
- 106. Cor. Every finite-dimensional vector space has a basis.
- 107. Prop. In a finite-dimensional vector space, every linearly independent list can be extended to a basis of the space.
- 108. Major Theorem. Every subspace of a finite-dimensional vector space has a complement.
- 109. **Prop.** Let X, Y be subspaces of a finite-dimensional vector space V. Then:
 - (a) $\dim X + \dim Y = \dim V$.
 - (b) $X \cap Y = \{0\}.$

Then, $V = X \oplus Y$.

- 110. **Prop.** $\dim(X \oplus Y) = \dim X + \dim Y$
- 111. **Prop.** If V is a finite-dimensional vector space (with $\dim V = n$), then every subspace has dimension at most n.
- 112. **Prop.** Let $\dim V = n$. Then, a linearly independent list of vectors of V with length n is a basis for V.
- 113. **Prop.** Let $\dim V = n$. Then, every spanning list for V of length n is a basis for V.
- 114. **Lemma.** The list $(x_1, 0), \dots, (x_t, 0); (0, y_1), \dots, (0, y_k)$ of length t + k is a basis of $X \times Y$.
- 115. **Cor.** $\dim(X \times Y) = \dim X + \dim Y$.
- 116. **Cor.** Let $T: V \to W$ be a linear map with dim V = d. Then, rank $T \le d$.
- 117. **Rank-Nullity Theorem.** $\dim V = \operatorname{rank} V + \operatorname{nullity} V$
- 118. **Prop.** If $T: V \to W$ is 1-1, then nullity T = 0.
- 119. **Cor.** If $T: V \to W$ is 1-1 and onto, then $\dim V = \dim W$
- 120. **Theorem.** The set of linear maps $V \to W$ is a vector space $L \cdot (F^n, W) \to T \longrightarrow (Te_1, \dots, Te_n) \in W^n$.
- 121. **Theorem.** $\dim(X+Y) = \dim X + \dim Y \dim(X \cap Y)$.
- 122. Cor. $\dim(V/X) = \dim V \dim X$.
- 123. **Theorem.** If A is a rectangular matrix with elements in a field F, then row rank A = column rank A.
- 124. **Prop.** Let $T: V \to W$ be 1-1. Then, $\dim W \ge \dim V$.
- 125. **Prop.** Let $T: V \to W$ be onto. Then, $\dim V \ge \dim W$.
- 126. **Prop.** Let $T: V \to W$ and $\dim V = \dim W$. Then, T 1-1 iff T onto iff T bijective iff T invertible.