Optimal Diagonal Width for a Given Sparsity

Donnelly Shane

Variable Definitions

sparsity $\in [0, 1]$: sparsity parameter

n : matrix length (assuming square matrix)

diagonal width : width of the diagonal band (odd number)

density = 1 - sparsity : matrix density

 $sdw = \frac{diagonal_width - 1}{2} : semi-diagonal width$

Conditions

• diagonal_width is an odd number between 0 and 2n-1

• If diagonal_width = 0, then density = 0 and sparsity = 1

• If diagonal_width $\geq 2n-1$, then density = 1 and sparsity = 0

Diagonal Area Calculation

The diagonal area represents the number of elements covered by the diagonal band.

diagonal_area =
$$n + 2\sum_{i=1}^{sdw}(n-i)$$

= $n(1 + 2sdw) - 2\sum_{i=1}^{sdw}i$
= $n(1 + 2sdw) - sdw(sdw + 1)$

Diagonal Width from Given Sparsity

To find the optimal diagonal width for a given sparsity and matrix length (n):

$$d = 1 - s$$

$$d = 1 - s$$

$$target_diagonal_area = n^2 \cdot d$$

$$target_diagonal_area = n(1 + 2sdw) - sdw(sdw + 1)$$
 (Using the formula above)

Now we just rename $sdw \to x$ and $target_diagonal_area \to da$:

$$da = n(1 + 2x) - x(x + 1)$$

$$\Rightarrow n + 2nx - x^{2} - x - da = 0$$

$$\Rightarrow -x^{2} + (2n - 1)x + (n - da) = 0$$

This gives a quadratic equation:

$$a=-1, \quad b=2n-1, \quad c=n-da \text{ (with } da=n(1-s))$$

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=\frac{-b+\sqrt{b^2-4ac}}{2a} \quad \text{(the real solution)}$$

The chosen sdw is then:

$$sdw = \text{round}(x)$$

Final Formula

By adding everything together, we get:

$$best_diagonal_width(n,s) = 2 \cdot \left(round \left(\frac{2n - 1 - \sqrt{(2n - 1)^2 + 4(n - n^2(1 - s))}}{2} \right) \right) + 1$$

which is odd as expected.