Chapter 3: Dealing with Uncertainty

Outline

- Sources of uncertainty
- Bayesian updating
- Certainty theory
- Fuzzy set & fuzzy logic

Certainty Theory

 Bayesian updating → probability → statistical data → much data

What is data are insufficiently much?

Certainty Theory

- Why statistics required?
 - Mathematic foundation
- Computer science is new → it can setup it own foundation occasionally
 - Less mathematical correctness but more practical usage

Certainty Value

- Given a hypothesis H
 - C(H) = 1.0 H is true
 - C(H) = 0.0 H is unknown
 - C(H) = -1.0 H is false

Certainty Value

Given a hypothesis H

$$- C(H) = 1.0 H is true$$

$$-$$
 C(H) = 0.0 H is unknown $P(H) = P(H) < \text{what}?>$

$$- C(H) = -1.0 H$$
 is false

$$P(H) = 1.0$$

$$P(H) = P(H) < \text{what?} >$$

$$P(H) = 0.0$$

Certainty Factor

IF evidence *E* THEN hypothesis *H* WITH certainty factor *CF*

Certainty Factor

IF evidence *E* THEN hypothesis *H* WITH certainty factor *CF*

E is not certain?

Certainty Factor

IF evidence *E* THEN hypothesis *H* WITH certainty factor *CF*

$$CF' = CF \bullet C(E)$$

Certainty Updating

Updating C(H), given evidence E $C(H) \leftarrow C(H|E)$

Certainty Updating

```
Updating C(H), given evidence E
C(H) \leftarrow C(H|E)
CF' = ?
if C(H) \ge 0 and CF' \ge 0: C(H|E) = C(H) + [CF' \bullet (1-C(H))]
if C(H) \ge 0 and CF \ge 0: C(H|E) = C(H) + [CF' \bullet (1 + C(H))]
if C(H) \ge and CF \ge 0:
               C(H \mid E) = \frac{C(H) + CF'}{1 - \min(|C(H)|, |CF'|)}
```

Meanings behind

- $-1 \le C(H|E) \le 1$
- C(H) or CF' is 1(-1), so is C(H|E)
- $C(H) = -CF' \rightarrow C(H|E) = 0$
- $C(H) = 0 \rightarrow C(H|E) = CF'$
- $C(E) = 1 \rightarrow CF' = CF$

Evidence Logical Combination

Conjunction

IF
$$E_1$$
 AND E_2 THEN H WITH CF $C(E_1$ AND $E_2) = min[C(E_1), C(E_2)]$

Disjunction

IF
$$E_1$$
 OR E_2 THEN H WITH CF

$$C(E_1 \text{ OR } E_2) = \max[C(E_1), C(E_2)]$$

Negation

IF NOT E THEN H WITH CF
$$C(\sim E) = -C(E)$$

Example

Read for yourself

Possibility theory

- Probability: likelihood of the hypothesis
- Possibility: meaning of the hypothesis

Possibility theory

- Probability: likelihood of the hypothesis
- Possibility: meaning of the hypothesis
 - Fuzzy set

Possibility theory

- Probability: likelihood of the hypothesis
- Possibility: meaning of the hypothesis
 - Fuzzy set
 - Fuzzy logic

Crisp set and fuzzy set

- Vague in languages:
 - Water level is low
 - Temperature is high
- Crisp set:

$$\{Low\} \cap \{High\} = \emptyset$$

Fuzzy set:

$$\{Low\} \cap \{High\} \neq \emptyset$$

Crisp set

Fuzzy set

• *F* is a fuzzy set, *x* is a value

$$x \in F$$
?

Fuzzy set

• *F* is a fuzzy set, *x* is a value

$$x \in F$$
? $\Leftrightarrow \mu_F(x)$

Fuzzy set

F is a fuzzy set, x is a value

$$x \in F$$
? $\Leftrightarrow \mu_F(x)$

- $-\mu_F(x)$: membership value of x in F
- $-0 \leq \mu_F(x) \leq 1$

Fuzzy rules

- IF temperature high THEN pressure high
- IF temperature medium THEN pressure medium
- IF temperature low THEN pressure low

```
t = 200°C ?

t = 300°C ?

t = 400°C ?
```

Condition Combination

- IF temperature high AND water NOT low THEN pressure high
- IF temperature high THEN pressure high
- IF water high THEN pressure high
- IF temperature high OR water high THEN pressure high

Fuzzy Logic

- $\bullet \ \mu_{A \cap B}(x) = \min[\mu_A(x), \ \mu_B(x)]$
- $\mu_{A \cup B}(x) = \max[\mu_A(x), \mu_B(x)]$
- $\bullet \ \mu_{\sim A}(x) = 1 \mu_A(x)$

Defuzification

•
$$t = 350$$
°C
 $\mu_{HT}(x) = 0.75$ $\mu_{MT}(x) = 0.25$

- IF temperature high THEN pressure high
- IF temperature medium THEN pressure medium
- Pressure in terms of MNn²???

Defuzification

- Scaling membership function
- Finding combined centroid

Scaling membership function – Mamdami's method

Scaling membership function – Larson's method

Finding combined centroid

- Formula << textbook
- What is the formula?

Worked Example

- IF x is A_1 AND y is B_1 THEN z is C_1
- IF x is A_2 AND y is B_2 THEN z is C_2

$$\mu_{A1}(x) = (x-2)/3 \ (2 \le x \le 5) \ (8-x)/3 \ (2 < x \le 5)$$
 $\mu_{A2}(x) = (x-3)/3 \ (3 \le x \le 6) \ (9-x)/3 \ (6 < x \le 9)$
 $\mu_{B1}(y) = (y-5)/3 \ (5 \le y \le 8) \ (11-y)/3 \ (8 < y \le 11)$
 $\mu_{B2}(y) = (y-4)/3 \ (4 \le y \le 7) \ (10-y)/3 \ (7 < y \le 10)$
 $\mu_{C1}(z) = (z-1)/3 \ (1 \le z \le 4) \ (7-z)/3 \ (4 < z \le 7)$
 $\mu_{C2}(z) = (z-3)/3 \ (3 \le z \le 6) \ (9-z)/3 \ (6 < z \le 9)$
 $x = 4, y = 8, z = ?$

