

Modelling and Simulation of Marine Craft

KINEMATICS

Edin Omerdic

Senior Research Fellow Mobile & Marine Robotics Research Centre University of Limerick

Outline

Kinematics

Reference Frames

ECEF Frame

NED Frame

BODY Frame

UNITY Frame

UTM

Transformations BODY - NED

Euler Angles

Quaternions

Quaternions from Euler Angles

Euler Angles from Quaternions

Transformations ECEF - NED

Lat-Lon from ECEF Coordinates

ECEF Coordinates from Lat-Lon

GNC Signal Flow

University of Limerick

bile & Marine Robotic Research Centre

GNC Signal Flow

ECEF Frame

Symbol	$\{\mathbf{e}\} = (\mathbf{x}_{\mathbf{e}}, \mathbf{y}_{\mathbf{e}}, \mathbf{z}_{\mathbf{e}})$			
Definition	The Earth-centered Earth-fixed frame which rotate around North-South axis with angular speed $w_e = 7.2921*10^{-5} \ rad/s$			
Туре	Right-handed			
Axes	$x_{ m e}$ (from origin through intersection of Prime Meridian and Equator)			
	$y_{ m e}$			
	$z_{ m e}$ (from origin through North pole)			
Origin	Location of ECEF origin $o_{ m e}$ is fixed to the Centre of the Earth.			
Assumption	For marine craft moving at relatively low speed the Earth rotation can be neglected and $\{e\}$ can be considered to be inertial, such			
	that Newton's laws apply.			
Application	Typically used for global guidance, navigation and control (for example, to describe motion and location of ships in transit between			
	continents).			

NED Frame

Symbol	$\{n\} = (x_n, y_n, z_n)$			
Definition	Tangent plane on the surface of Earth reference ellipsoid WGS 1984.			
Туре	Right-handed			
Axes	x_n = North			
	y_n = East			
	z_n = Downwards, normal to the surface.			
Origin	Location of NED origin o_n relative to ECEF frame $\{e\}=(x_e,y_e,\mathbf{z}_e)$ is determined using Lat and Lon.			
Assumption	$\{n\}$ is inertial, such that Newton's laws apply.			
Application	The position and orientation of the craft are described relative to $\{n\}$.			

BODY Frame

Symbol	$\{\boldsymbol{b}\} = (\boldsymbol{x}_b, \boldsymbol{y}_b, \boldsymbol{z}_b)$			
Definition	Moving frame fixed to the craft.			
Туре	Right-handed			
Axes	x_b = longitudinal axis (directed toward front);			
	y_n = transversal axis (directed toward starboard);			
	z_n = normal axis (directed toward bottom)			
Origin	Location of BODY origin o_b is usually chosen to coincide with a point midships in			
	the water line for marine crafts.			
Application	The linear and angular velocities of the vessel are described relative to $\{b\}$.			

UNITY Frame

Symbol	$\{u\}=(x_u,y_u,z_u)$		
Definition	Frame used for 3D visualisation in Unity 3D.		
Туре	Left-handed		
Axes	x_u = East y_u = Up z_u = North.		
Origin	Location of UNITY origin o_u relative to ECEF frame $\{e\}=(x_e,y_e,z_e)$ is determined using Lat and Lon.		
Application	The position and orientation of all vessels are sent to Unity 3D for visualisation.		

entre

UTM

Projected Coordinate Systems

Symbol	$\{UTM\} = (x_{UTM}, y_{UTM}, z_{UTM})$
Definition	The UTM system divides the Earth into 60 zones and uses a secant transverse Mercator projection in each zone (conformal projection) to give location on the surface of the Earth. Each zone is segmented into 20 latitude bands.
Туре	Right-handed
Axes	x_{UTM} = Northing y_{UTM} = Easting z_{UTM} = Downwards, normal to the surface.
Origin	Location of UTM origin o_{UTM} is shifted such that Northing and Easting coordinates are always positive. For this purpose artificial offset False Easting is added in Northern hemisphere, while both False Easting and False Northing are used in Southern hemisphere. In vertical plane the UTM origin is at sea level.

UTM (cont.)

Kinematics Transformations between Frames

Notation

ECEF position
$$p_{b/e}^{\epsilon} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$$

$$p_{b/e}^{e} = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^{3}$$
 Longitude and latitude $\Theta_{en} = \begin{bmatrix} l \\ \mu \end{bmatrix} \in S^{2}$

$$v^{\text{to}} = R^{\text{to}}_{\text{from}} v^{\text{from}}$$

NED position
$$p_{b/n}^n = \begin{bmatrix} N \\ E \\ D \end{bmatrix} \in \mathbb{R}^3$$

$$p_{b/n}^{n} = \begin{bmatrix} N \\ E \\ D \end{bmatrix} \in \mathbb{R}^{3} \qquad \text{Attitude (Euler angles)} \quad \Theta_{nb} = \begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} \in S^{3}$$

$$v_{b/n}^b = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \in \mathbb{R}^3$$

Body-fixed angular velocity
$$\omega_{b/n}^b = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \in \mathbb{R}^3$$

Body-fixed force
$$f_b^b = \begin{bmatrix} X \\ Y \end{bmatrix} \in$$

Body-fixed force
$$f_b^b = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \in \mathbb{R}^3$$
 Body-fixed moment $m_b^b = \begin{bmatrix} K \\ M \\ N \end{bmatrix} \in \mathbb{R}^3$

$\boldsymbol{p}_{b/UTM}^{UTM} = \begin{bmatrix} x_{UTM} \\ y_{UTM} \\ z_{UTM} \end{bmatrix}$	Position of vessel $\{o_b\}$ in UTM	$\boldsymbol{p}_{b/n}^{n} = \begin{bmatrix} x_n \\ y_n \\ z_n \end{bmatrix}$	Position of vessel $\{o_b\}$ in NED
$oldsymbol{v}_{b/n}^b = egin{bmatrix} u \ v \ w \end{bmatrix}$	Linear velocity of $\{o_b\}$ with respect to $\{n\}$ expressed in $\{b\}$	$v_{b/n}^n$	Linear velocity of $\{o_b\}$ with respect to $\{n\}$ expressed in $\{n\}$
$\boldsymbol{\theta}_{nb} = \begin{bmatrix} R \\ P \\ Y \end{bmatrix}$	Attitude (Euler angles) between {n} and {b}	$\boldsymbol{w}_{b/n}^b = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$	Angular velocity of $\{b\}$ with respect to $\{n\}$ expressed in $\{b\}$
$oldsymbol{p}_{n/UTM}^{UTM}$	Position of NED origin $\{o_n\}$ in UTM	$\dot{m{\Theta}}_{nb} = egin{bmatrix} \dot{R} \\ \dot{P} \\ \dot{Y} \end{bmatrix}$	Euler rate vector
$R_b^n(\theta_{nb})$	Transformation matrix of linear velocity vector $m{v}_{b/n}^b$ from $\{b\}$ to $m{v}_{b/n}^n$ in $\{n\}$	$T_{ heta}(heta_{nb})$	Transformation matrix of angular velocity vector $\mathbf{w}_{b/n}^b$ from $\{b\}$ to Euler rate vector $\dot{\mathbf{\theta}}_{nb}$ in $\{n\}$

$$\lambda \times a := S(\lambda)a$$

$$S(\lambda) = -S^{\top}(\lambda) = \begin{bmatrix} 0 & -\lambda_3 & \lambda_2 \\ \lambda_3 & 0 & -\lambda_1 \\ -\lambda_2 & \lambda_1 & 0 \end{bmatrix}, \quad \lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

Kinematics Transformations between Frames

Euler's Rotation Theorem:

Geometry perspective

Any displacement of a rigid-body in 3D, such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that passes through the fixed point.

Linear Algebra perspective

Any two Cartesian coordinate systems in 3D with a common origin are related by a rotation about some fixed axis passing through the origin.

Theorem 2.1 (Euler's Theorem on Rotation)

Every change in the relative orientation of two rigid bodies or reference frames $\{A\}$ and $\{B\}$ can be produced by means of a simple rotation of $\{B\}$ in $\{A\}$.

$$v_{b/n}^n = R_b^n v_{b/n}^b, \quad R_b^n := R_{\lambda,\beta}$$

$$R_{\lambda,\beta} = I_{3\times3} + \sin(\beta)S(\lambda) + [1 - \cos(\beta)]S^2(\lambda)$$

$$S^2(\lambda) = \lambda \lambda^{\mathsf{T}} - I_{3\times 3}$$

Kinematics Transformations BODY-NED Euler Angles

Linear Velocity Transformation

$$\dot{\boldsymbol{p}}_{b/n}^n = \boldsymbol{v}_{b/n}^n = \boldsymbol{R}_b^n(\boldsymbol{\theta}_{nb})\boldsymbol{v}_{b/n}^b = \boldsymbol{R}_{z,Y}\boldsymbol{R}_{y,P}\boldsymbol{R}_{x,R}\boldsymbol{v}_{b/n}^b$$

$$\mathbf{R}_{x,R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cR & -sR \\ 0 & sR & cR \end{bmatrix}, \mathbf{R}_{y,P} = \begin{bmatrix} cP & 0 & sP \\ 0 & 1 & 0 \\ -sP & 0 & cP \end{bmatrix}, \mathbf{R}_{z,Y} = \begin{bmatrix} cY & -sY & 0 \\ sY & cY & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Kinematics Transformations BODY-NED Euler Angles

Angular Velocity Transformation

$$\dot{\boldsymbol{\theta}}_{nb} = \boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{\theta}_{nb})\boldsymbol{w}_{b/n}^{b} = \begin{bmatrix} 1 & sRtP & cRtP \\ 0 & cR & -sR \\ 0 & sR/cP & cR/cP \end{bmatrix} \boldsymbol{w}_{b/n}^{b}$$

Singularity for $P=\pm 90^{\circ}$

Kinematics Transformations BODY-NED Euler Angles

6 DOF Kinematic Equations

$$\begin{bmatrix} \dot{\boldsymbol{p}}_{b/n}^{n} \\ \dot{\boldsymbol{\theta}}_{nb} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{b}^{n}(\boldsymbol{\theta}_{nb}) & \boldsymbol{0}_{3\times3} \\ \boldsymbol{0}_{3\times3} & \boldsymbol{T}_{\theta}(\boldsymbol{\theta}_{nb}) \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{b/n}^{b} \\ \boldsymbol{w}_{b/n}^{b} \end{bmatrix}$$

$$\dot{\boldsymbol{\eta}} = \boldsymbol{J}_{\boldsymbol{\Theta}}(\boldsymbol{\eta})\boldsymbol{\nu}$$

Simulation Model Attitude representation: **Euler Angles**

$$H \equiv \mathbb{R}^4$$

Basis:
$$1, i, j, k$$
 $i^2 = j^2 = k^2 = ijk = -1$

$$ij = k,$$
 $ji = -k,$
 $jk = i,$ $kj = -i,$
 $ki = j,$ $ik = -j,$

$$q = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
Vector

"Real" quaternions: $a\mathbf{1} + 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$

"Pure" quaternions: 01 + bi + cj + dk

$$(a_1 \mathbf{1} + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) + (a_2 \mathbf{1} + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k})$$

= $(a_1 + a_2) \mathbf{1} + (b_1 + b_2) \mathbf{i} + (c_1 + c_2) \mathbf{j} + (d_1 + d_2) \mathbf{k}$

Scalar

 $\alpha(a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}) = \alpha a\mathbf{1} + \alpha b\mathbf{i} + \alpha c\mathbf{j} + \alpha d\mathbf{k}$ Multiplication:

Quaternion Multiplication:

$$(a_1 \mathbf{1} + b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k})(a_2 \mathbf{1} + b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k})$$

$$= (a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2) \mathbf{1}$$

$$+ (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2) \mathbf{i}$$

$$+ (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2) \mathbf{j}$$

$$+ (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2) \mathbf{k}$$

Scalar part
$$q=(\vec{r},\vec{v})$$
Vector part

 $(r_1, \vec{v}_1) + (r_2, \vec{v}_2) = (r_1 + r_2, \vec{v}_1 + \vec{v}_2)$ Addition:

Scalar

 $\alpha(r, \vec{v}) = (\alpha r, \alpha \vec{v})$ Multiplication:

Quaternion

 $(r_1, \vec{v}_1)(r_2, \vec{v}_2) = (r_1r_2 - \vec{v}_1 \cdot \vec{v}_2, r_1\vec{v}_2 + r_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2)$ Multiplication:

$$q = (\vec{r}, \vec{v}) = r\mathbf{1} + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

Vector part

Conjugate:
$$q^* = (r, -\vec{v}) = r\mathbf{1} - v_x \mathbf{i} - v_y \mathbf{j} - v_z \mathbf{k}$$

$$qq^* = (r, \vec{v})(r, -\vec{v}) = (r^2 + |\vec{v}|^2, \vec{0}) = (r^2 + v_x^2 + v_y^2 + v_z^2)\mathbf{1} + 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$$

$$q^*q = (r, -\vec{v})(r, \vec{v}) = (r^2 + |\vec{v}|^2, \vec{0}) = qq^*$$

$$(q_1q_2)^* = q_2^*q_1^*$$

$$||q|| = \sqrt{qq^*} = \sqrt{(r^2 + |\vec{v}|^2)} = \sqrt{(r^2 + v_x^2 + v_y^2 + v_z^2)}$$

$$||pq||^2 = (pq)(pq)^* = pqq^*p^* = p||q||^2p^* = pp^*||q||^2 = ||p||^2||q||^2$$

$$q^{-1} = \frac{q^*}{\|q\|^2}$$

$$q^{-1}q = qq^{-1} = 1$$

Unit Quaternion:

$$||q|| = 1 \Rightarrow r^2 + |\vec{v}|^2 = 1 \Rightarrow \exists \theta \in [0, \pi] : \cos \theta = r, \sin \theta = |\vec{v}|$$

$$||q|| = 1 \Rightarrow q = (r, \vec{v}) = r + |\vec{v}| |\vec{v}| = \cos \theta + \sin \theta \vec{v} = e^{(0, \theta \vec{v})}$$

$$q = \|q\| \frac{q}{\|q\|} = \|q\| \left(\cos \theta + \sin \theta \vec{\hat{v}}\right) = \|q\| e^{\left(0, \theta \vec{\hat{v}}\right)}$$

$$q^{p} = \|q\|^{p} e^{\left(0,(p\theta)\vec{\hat{v}}\right)} = \|q\|^{p} \left(\cos(p\theta) + \sin(p\theta)\vec{\hat{v}}\right)$$

Euler Formula (General Case):

$$e^{(r,\vec{v})} = e^{\left(r,\vec{0}\right) + \left(0,|\vec{v}|\vec{\hat{v}}\right)} = e^{\left(r,\vec{0}\right)}e^{\left(0,\theta\ \vec{\hat{v}}\right)} = e^r e^{\left(0,\theta\ \vec{\hat{v}}\right)} = e^r \left(\cos\theta\,,\sin\theta\,\vec{\hat{v}}\right)$$

Euler Formula ("Pure" Quaternion):

$$q=(0,\vec{v})$$

$$q^2 = (0, \vec{v})(0, \vec{v}) = (-|\vec{v}|^2, \vec{0})$$

$$q^3 = (-|\vec{v}|^2, \vec{0})(0, \vec{v}) = (0, -|\vec{v}|^2 \vec{v})$$

$$q^4 = (0, -|\vec{v}|^2 \vec{v})(0, \vec{v}) = (|\vec{v}|^4, \vec{0})$$

$$q^5 = (|\vec{v}|^4, \vec{0})(0, \vec{v}) = (0, |\vec{v}|^4 \vec{v})$$

$$q^6 = (0, |\vec{v}|^4 \vec{v})(0, \vec{v}) = (-|\vec{v}|^6, \vec{0})$$

$$q^7 = (-|\vec{v}|^6, \vec{0})(0, \vec{v}) = (0, -|\vec{v}|^6 \vec{v})$$

;

$$e^{q} = 1 + q + \frac{q^{2}}{2!} + \frac{q^{3}}{3!} + \frac{q^{4}}{4!} + \frac{q^{5}}{5!} + \frac{q^{6}}{6!} + \frac{q^{7}}{7!} \cdots$$

$$e^{(0,\vec{v})} = (1,0) + (0,\vec{v}) + \frac{(-|\vec{v}|^2,0)}{2!} + \frac{(0,-|\vec{v}|^2\vec{v})}{3!} + \frac{(|\vec{v}|^4,0)}{4!} + \frac{(0,|\vec{v}|^4\vec{v})}{5!} \cdots$$

$$e^{(0,\vec{v})} = \left(\left(1 - \frac{|\vec{v}|^2}{2!} + \frac{|\vec{v}|^4}{4!} \cdots \right), \left(1 - \frac{|\vec{v}|^2}{3!} + \frac{|\vec{v}|^4}{5!} \cdots \right) \frac{\vec{v}}{|\vec{v}|} \right) = \left(\cos|\vec{v}|, \sin|\vec{v}| \, \hat{\vec{v}} \right)$$

Special case: Rotation About Perpendicular Axis

$$\vec{v}' = \cos\theta \, \vec{v} + \sin\theta \, (\hat{\vec{n}} \times \vec{v})$$

Solution using Quaternions:

$$v = (0, \vec{v})$$

$$n = (0, \vec{\hat{n}})$$

$$n^2 = (0, \vec{\hat{n}})(0, \vec{v}) = (0, \vec{\hat{n}} \times \vec{v})$$

$$n^2 = (0, \vec{\hat{n}})(0, \vec{\hat{n}}) = (-1, \vec{0})$$

$$v' = (0, \vec{v}') = \left(0, \cos\theta \, \vec{v} + \sin\theta \, \left(\vec{\hat{n}} \times \vec{v}\right)\right) = \left(\cos\theta \, , \sin\theta \, \vec{\hat{n}}\right)(0, \vec{v}) = e^{\left(0, \theta \, \vec{\hat{n}}\right)}(0, \vec{v}) = e^{\left(0, \theta \, \vec{\hat{n}}\right)}v$$

$$v = e^{\left(0,\theta \, \vec{\hat{n}}\,\right)} v$$

Rotation About General Axis

$$\vec{v}_{\perp}' = \cos\theta \, \vec{v}_{\perp} + \sin\theta \, (\vec{\hat{n}} \times \vec{v}_{\perp})$$

Vector Projection onto Line

Scalar

Projection Matrix

Special Case:
$$\vec{b} = \vec{\hat{n}}$$
 $|\vec{\hat{n}}| = 1$

$$\vec{v}_{\parallel} = \frac{\vec{\hat{n}} \cdot \vec{v}}{\vec{\hat{n}} \cdot \vec{\hat{n}}} \vec{\hat{n}} = \frac{\vec{\hat{n}} \cdot \vec{v}}{\left|\vec{\hat{n}}\right|^2} \vec{\hat{n}} = (\vec{\hat{n}} \cdot \vec{v}) \vec{\hat{n}}$$

Scalar

$$\vec{v}_{\parallel} = \frac{\vec{\hat{n}}\vec{\hat{n}}^T}{\vec{\hat{n}}^T\vec{\hat{n}}}\vec{v} = \frac{\vec{\hat{n}}\vec{\hat{n}}^T}{\left|\vec{\hat{n}}\right|^2}\vec{v} = \boxed{\vec{\hat{n}}\vec{\hat{n}}^T}\vec{v}$$

Projection Matrix

Special Case:
$$\vec{b} = \vec{q} = \sin \frac{\theta}{2} \vec{\hat{n}}$$

$$|\vec{q}| = \sin\frac{\theta}{2}$$

$$\vec{v}_{\parallel} = \frac{\vec{q} \cdot \vec{v}}{\vec{q} \cdot \vec{q}} \vec{q} = \frac{\vec{q} \cdot \vec{v}}{|\vec{q}|^2} \vec{q} = \frac{\vec{q} \cdot \vec{v}}{\sin^2 \frac{\theta}{2}} \vec{q}$$

$$\vec{v}_{\parallel} = \frac{\vec{q}\vec{q}^T}{\vec{q}^T\vec{q}}\vec{v} = \frac{\vec{q}\vec{q}^T}{|\vec{q}|^2}\vec{v} = \frac{\vec{q}\vec{q}^T}{\sin^2\frac{\theta}{2}}\vec{v}$$

Projection Matrix

Scalar

Rotation About General Axis

$$\vec{v}_{\perp}' = \cos\theta \, \vec{v}_{\perp} + \sin\theta \, (\vec{\hat{n}} \times \vec{v}_{\perp})$$

$$\vec{v}' = \vec{v}_{\parallel}' + \vec{v}_{\perp}' = \vec{v}_{\parallel} + \cos\theta \vec{v}_{\perp} + \sin\theta \left(\hat{\vec{n}} \times \vec{v}_{\perp} \right) = \vec{v}_{\parallel} + \cos\theta \left(\vec{v} - \vec{v}_{\parallel} \right) + \sin\theta \left(\hat{\vec{n}} \times (\vec{v} - \vec{v}_{\parallel}) \right)$$

$$= (1 - \cos\theta)\vec{v}_{\parallel} + \cos\theta \vec{v} + \sin\theta \left(\hat{\vec{n}} \times \vec{v} \right) - \sin\theta \vec{n} \times \vec{v}_{\parallel}$$

$$\vec{v}_{\parallel} = (\vec{v} \cdot \vec{\hat{n}}) \vec{\hat{n}}$$

Rodrigues Rotation Formula:
$$\vec{v} = \cos\theta \vec{v} + (1 - \cos\theta)(\vec{v} \cdot \vec{n})\vec{n} + \sin\theta (\vec{n} \times \vec{v})$$

Rotation About General Axis: Solution using Quaternions

$$v=(0,\vec{v})$$

$$n = \left(0, \vec{\hat{n}}\right)$$

$$v_{\parallel} = (0, \vec{v}_{\parallel})$$

$$v_{\perp} = (0, \vec{v}_{\perp})$$

$$v'=(0,\vec{v}')$$

$$V = (0, V)$$

$$\vec{v}' = \vec{v}'_{\parallel} + \vec{v}'_{\perp} = \vec{v}_{\parallel} + \vec{v}'_{\perp}$$

$$v' = (0, \vec{v}') = (0, \vec{v}_{\parallel} + \vec{v}_{\perp}') = (0, \vec{v}_{\parallel} + \vec{v}_{\perp}')$$

$$v' = v_{\parallel} + v'_{\perp} = v_{\parallel} + e^{\left(0,\theta\,\vec{\hat{n}}\,\right)}v_{\perp}$$

Lema 1:
$$e^{\left(0,\theta\vec{\hat{n}}\right)}v_{\parallel}=v_{\parallel}e^{\left(0,\theta\vec{\hat{n}}\right)}$$

Lema 2:
$$e^{\left(0,\theta\vec{\hat{n}}\right)}v_{\perp} = v_{\perp}e^{\left(0,-\theta\vec{\hat{n}}\right)}$$

$$v^{,}=e^{\left(0,\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}e^{\left(0,-\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}v_{\parallel}+e^{\left(0,\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}e^{\left(0,\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}v_{\perp}=e^{\left(0,\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}v_{\parallel}e^{\left(0,-\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}+e^{\left(0,\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}v_{\perp}e^{\left(0,-\frac{\theta}{2}\overrightarrow{\hat{n}}\right)}$$

Lema 1

$$v' = e^{\left(0,\frac{\theta}{2}\vec{\hat{n}}\right)}(v_{\parallel} + v_{\perp})e^{\left(0,-\frac{\theta}{2}\vec{\hat{n}}\right)} = e^{\left(0,\frac{\theta}{2}\vec{\hat{n}}\right)}ve^{\left(0,-\frac{\theta}{2}\vec{\hat{n}}\right)}$$

$$\vec{v}_{\parallel} = \frac{\vec{q} \cdot \vec{v}}{\vec{q} \cdot \vec{q}} \vec{q}$$

Rodrigues Rotation Formula:
$$\vec{v} = \cos\theta \vec{v} + (1 - \cos\theta)(\vec{v} \cdot \vec{n})\vec{n} + \sin\theta (\vec{n} \times \vec{v})$$

$$\vec{v}' = (1 - \cos \theta) \left((\vec{v} \cdot \vec{n}) \vec{n} - \vec{v} + \vec{v} \right) + \cos \theta \, \vec{v} + \sin \theta \, (\vec{n} \times \vec{v})$$

$$= (1 - \cos \theta) \left((\vec{v} \cdot \vec{n}) \vec{n} - \vec{v} \right) + (1 - \cos \theta + \cos \theta) \vec{v} + \sin \theta \, (\vec{n} \times \vec{v})$$

$$\mathbf{v}' = (I_{3\times3} + (1 - \cos\theta)S^2(n) + \sin\theta S(n))\mathbf{v}$$

$$R_{n,\theta}$$

Rotation Formula using Quaternions:
$$v' = e^{\left(0,\frac{\theta}{2}\vec{n}\right)}(v_{\parallel} + v_{\perp})e^{\left(0,-\frac{\theta}{2}\vec{n}\right)} = e^{\left(0,\frac{\theta}{2}\vec{n}\right)}ve^{\left(0,-\frac{\theta}{2}\vec{n}\right)} = qvq^*$$

$$q = e^{\left(0, \frac{\theta}{2} \vec{n}\right)} = \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{n}\right) = (q_0, \vec{q}), \quad q_0^2 + |\vec{q}|^2 = 1$$

$$v' = (0, (\mathbf{I}_{3\times3} + (1 - \cos\theta)\mathbf{S}^2(\mathbf{n}) + \sin\theta\mathbf{S}(\mathbf{n}))\vec{v}) =$$

$$= \left(0, \left(\mathbf{I}_{3\times3} + 2\sin^2\frac{\theta}{2}\mathbf{S}^2(\mathbf{n}) + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\mathbf{S}(\mathbf{n})\right)\vec{v}\right)$$

$$v' = \left(0, \left(I_{3\times 3} + 2S^2 \left(\sin\frac{\theta}{2}n\right) + 2\cos\frac{\theta}{2}S \left(\sin\frac{\theta}{2}n\right)\right)\vec{v}\right)$$

$$v' = \left(0, \left(\underline{I_{3\times3} + 2S^2(\vec{q}) + 2q_0S(\vec{q})}\right)\vec{v}\right)$$

$$R_b^n(q) = R_{(q_0,\vec{q})}$$

$$\mathbf{S}^2(\vec{q}) = \vec{q}\vec{q}^T - |\vec{q}|^2 \mathbf{I}_{3\times 3}$$

$$v' = e^{\left(0,\theta \vec{\hat{n}}\right)}(v_{\parallel} + v_{\perp}) = e^{\left(0,\theta \vec{\hat{n}}\right)}v_{\parallel} + e^{\left(0,\theta \vec{\hat{n}}\right)}v_{\perp}$$

$$v' = e^{\left(0, \frac{\theta}{2} \vec{n}\right)} (v_{\parallel} + v_{\perp}) e^{\left(0, -\frac{\theta}{2} \vec{n}\right)} =$$

$$= \underbrace{\left[e^{\left(0, \frac{\theta}{2} \vec{n}\right)} v_{\parallel}\right] e^{\left(0, -\frac{\theta}{2} \vec{n}\right)} + \left[e^{\left(0, \frac{\theta}{2} \vec{n}\right)} v_{\perp}\right] e^{\left(0, -\frac{\theta}{2} \vec{n}\right)}}_{\vec{p}_{\perp}'}$$

Rotation Formula using Quaternions:
$$v' = e^{\left(0, \frac{\theta}{2}\vec{n}\right)}(v_{\parallel} + v_{\perp})e^{\left(0, -\frac{\theta}{2}\vec{n}\right)} = e^{\left(0, \frac{\theta}{2}\vec{n}\right)}ve^{\left(0, -\frac{\theta}{2}\vec{n}\right)} = qvq^*$$

$$q = e^{\left(0, \frac{\theta}{2} \vec{\hat{n}}\right)} = \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{\hat{n}}\right) = (q_0, \vec{q}), \quad q_0^2 + |\vec{q}|^2 = 1$$

Quaternion Rotation Operator:

$$v' = L_q(v) := qvq^* = (q_0, \vec{q})(0, \vec{v})(q_0, -\vec{q}) = \left(0, (q_0^2 - |\vec{q}|^2)\vec{v} + 2(\vec{q} \cdot \vec{v})\vec{q} + 2q_0(\vec{q} \times \vec{v})\right)$$
$$(q_0^2 - |\vec{q}|^2)\vec{v} = (q_0^2 + |\vec{q}|^2 - 2|\vec{q}|^2)\vec{v} = \left(1 - 2\sin^2\frac{\theta}{2}\right)\vec{v} = \cos\theta\vec{v}$$

$$(1 - \cos \theta)\vec{v}_{\parallel} = \left(2\sin^{2}\frac{\theta}{2}\right)\frac{\vec{q}\cdot\vec{v}}{\vec{q}\cdot\vec{q}}\vec{q} = \left(2\sin^{2}\frac{\theta}{2}\right)\frac{\vec{q}\cdot\vec{v}}{|\vec{q}|^{2}}\vec{q} = 2\vec{q}\vec{q}^{T}\vec{v} = 2(\vec{q}\cdot\vec{v})\vec{q}$$

$$= \left(2\sin^{2}\frac{\theta}{2}\right)\frac{\vec{q}\cdot\vec{v}}{\sin^{2}\frac{\theta}{2}}\vec{q} = 2(\vec{q}\cdot\vec{v})\vec{q} = 2\vec{q}(\vec{q}^{T}\vec{v}) = 2\vec{q}\vec{q}^{T}\vec{v}$$

$$\vec{v}_{\parallel} = \vec{v}_{\parallel}$$
Projection Matrix

$$v' = \left(0, \left((q_0^2 - |\vec{q}|^2) I_{3 \times 3} + 2 \vec{q} \vec{q}^T + 2 q_0 S(\vec{q}) \right) \vec{v} \right)$$

$$\vec{v}_{\parallel} = \vec{v}_{\parallel}$$
ojection atrix
$$(q_0^2 - |\vec{q}|^2)\vec{v}$$

$$\vec{q} = \sin \frac{\theta}{2}\hat{n} \quad \vec{0}$$

Linear Velocity Transformation

$$\dot{\boldsymbol{p}}_{b/n}^n = \boldsymbol{v}_{b/n}^n = \boldsymbol{R}_b^n(\boldsymbol{q})\boldsymbol{v}_{b/n}^b$$

$$R_b^n(q) = R_{(q_0,\vec{q})} = I_{3\times3} + 2S^2(\vec{q}) + 2q_0S(\vec{q})$$

$$q = (q_0, \vec{q}) = q_0\mathbf{1} + q_1\mathbf{i} + q_2\mathbf{j} + q_3\mathbf{k}$$

$$q_0 = \cos\frac{\theta}{2}$$

$$\vec{q} = \sin\frac{\theta}{2}\hat{\vec{n}}$$

$$\mathbf{R}_b^n(\mathbf{q})^{-1} = \mathbf{R}_b^n(\mathbf{q})^T$$

$$\boldsymbol{R}_b^n(\boldsymbol{q}) = \begin{bmatrix} 1 - 2(q_2^2 + q_3^2) & 2(q_1q_2 - q_3q_0) & 2(q_1q_3 + q_2q_0) \\ 2(q_1q_2 + q_3q_0) & 1 - 2(q_3^2 + q_1^2) & 2(q_2q_3 - q_1q_0) \\ 2(q_1q_3 - q_2q_0) & 2(q_2q_3 + q_1q_0) & 1 - 2(q_1^2 + q_2^2) \end{bmatrix}$$

Angular Velocity Transformation

$$\dot{R}_b^n(q) = R_b^n(q)S(w_{b/n}^b) \Rightarrow \dot{q} = T_q(q)w_{b/n}^b$$

$$q = (q_0, \vec{q}) = q_0 \mathbf{1} + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

$$q_0 = \cos \frac{\theta}{2} \qquad \qquad \boldsymbol{T}_{\boldsymbol{q}}^T(\boldsymbol{q}) \boldsymbol{T}_{\boldsymbol{q}}(\boldsymbol{q}) = \frac{1}{4} \boldsymbol{I}_{3 \times 3}$$

$$\vec{q} = \sin\frac{\theta}{2}\vec{\hat{n}}$$

$$T_{q}(q) = \frac{1}{2} \begin{bmatrix} -\vec{q}^{T} \\ q_{0}I_{3\times3} + S(\vec{q}) \end{bmatrix}$$

$$\boldsymbol{T_q}(\boldsymbol{q}) = \frac{1}{2} \begin{bmatrix} -q_1 & -q_2 & -q_3 \\ q_0 & -q_3 & q_2 \\ q_3 & q_0 & -q_1 \\ -q_2 & q_1 & q_0 \end{bmatrix}$$

Kinematics Transformations BODY-NED Quaternions versus Euler Angles

Angular Velocity Transformation

Quaternions

$$\boldsymbol{T_q(q)} = \frac{1}{2} \begin{bmatrix} -q_1 & -q_2 & -q_3 \\ q_0 & -q_3 & q_2 \\ q_3 & q_0 & -q_1 \\ -q_2 & q_1 & q_0 \end{bmatrix}$$

Euler Angles

$$T_{\theta}(\theta_{nb}) = \begin{bmatrix} 1 & sRtP & cRtP \\ 0 & cR & -sR \\ 0 & sR/cP & cR/cP \end{bmatrix}$$

Singularity for $P=\pm 90^{\circ}$

6 DOF Kinematic Equations

$$\begin{bmatrix} \dot{\boldsymbol{p}}_{b/n}^{n} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{b}^{n}(\boldsymbol{q}) & \boldsymbol{0}_{3\times3} \\ \boldsymbol{0}_{4\times3} & \boldsymbol{T}_{\boldsymbol{q}}(\boldsymbol{q}) \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{b/n}^{b} \\ \boldsymbol{w}_{b/n}^{b} \end{bmatrix}$$
$$\dot{\boldsymbol{\eta}} = \boldsymbol{J}_{\boldsymbol{q}}(\boldsymbol{\eta})\boldsymbol{v}$$

Simulation Model Attitude representation: Quaternions

Kinematics Transformations BODY-NED Quaternions from Euler Angles

Euler Angles → Quaternions

$$\boldsymbol{q} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} c(R/2)c(P/2)c(Y/2) + s(R/2)s(P/2)s(Y/2) \\ s(R/2)c(P/2)c(Y/2) - c(R/2)s(P/2)s(Y/2) \\ c(R/2)s(P/2)c(Y/2) + s(R/2)c(P/2)s(Y/2) \\ c(R/2)c(P/2)s(Y/2) - s(R/2)s(P/2)c(Y/2) \end{bmatrix}$$

Kinematics Transformations BODY-NED Euler Angles from Quaternions

Quaternions → Euler Angles

$$\boldsymbol{\theta_{nb}} = \begin{bmatrix} R \\ P \\ Y \end{bmatrix} = \begin{bmatrix} \operatorname{atan2}\left(2(q_2q_3 + q_1q_0), 1 - 2(q_1^2 + q_2^2)\right) \\ \operatorname{asin}\left(2(q_0q_2 - q_3q_1)\right) \\ \operatorname{atan2}\left(2(q_0q_3 + q_1q_2), 1 - 2(q_2^2 + q_3^2)\right) \end{bmatrix}$$

Kinematics Transformations ECEF-NED Lat-Lon Transformations

$$\mathbf{R}_{z,Y} = \begin{bmatrix} c\lambda & -s\lambda & 0 \\ s\lambda & c\lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y,-\varphi-\frac{\pi}{2}} = \begin{bmatrix} c\left(-\varphi - \frac{\pi}{2}\right) & 0 & s\left(-\varphi - \frac{\pi}{2}\right) \\ 0 & 1 & 0 \\ -s\left(-\varphi - \frac{\pi}{2}\right) & 0 & c\left(-\varphi - \frac{\pi}{2}\right) \end{bmatrix}$$

Kinematics Transformations ECEF-NED Lat-Lon Transformations

$NED \rightarrow ECEF$

$$\dot{m{p}}_{b/e}^e = m{R}_n^e(m{ heta}_{en})\dot{m{p}}_{b/n}^n = \begin{bmatrix} -c\lambda s \varphi & -s\lambda & -c\lambda c \varphi \\ -s\lambda s \varphi & c\lambda & -s\lambda c \varphi \\ c \varphi & 0 & -s \varphi \end{bmatrix} \begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \dot{z}_n \end{bmatrix}$$
 North Velocity East Velocity Down Velocity \ddot{x}_n

ECEF → NED

$$\dot{\boldsymbol{p}}_{b/n}^{n} = \boldsymbol{R}_{e}^{n}(\boldsymbol{\theta}_{en})\dot{\boldsymbol{p}}_{b/e}^{e} = \boldsymbol{R}_{n}^{eT}(\boldsymbol{\theta}_{en})\dot{\boldsymbol{p}}_{b/e}^{e} = \begin{bmatrix} -c\lambda s\varphi & -s\lambda s\varphi & c\varphi \\ -s\lambda & c\lambda & 0 \\ -c\lambda c\varphi & -s\lambda c\varphi & -s\varphi \end{bmatrix} \begin{bmatrix} \dot{x}_{e} \\ \dot{y}_{e} \\ \dot{z}_{e} \end{bmatrix}$$
NED
$$\boldsymbol{R}_{e}^{n}(\boldsymbol{\theta}_{en}) \qquad \dot{\boldsymbol{p}}_{b/e}^{e}$$

Speed & Heading

Speed =
$$\sqrt{\dot{x}_n^2 + \dot{y}_n^2}$$

Heading = $\tan^{-1} \frac{y_n}{x_n}$

Kinematics Transformations ECEF-NED Geodetic Latitude vs Geocentric Latitude

Geodetic Latitude vs Geocentric Latitude

Raw GNSS (GPS, GLONASS and Gallileo) output $m{p}_{b/e}^e$ is given in Cartesian ECEF frame.

It is presented to users in terms of longitude $\,\lambda$, latitude $\,\varphi\,$ and height $\,h\,$ relative to WGS-84 ellipsoid.

$$\varphi$$
 — Geodetic Latitude ψ — Geocentric Latitude

$$\psi(\varphi) = \tan^{-1} ((1 - e^2) \tan \varphi)$$

WGS-84 parameters:

$$a = 6378137.0m (semi - major axis)$$

$$b = 6356752.3142m (semi - minor axis)$$

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$
 (eccentricity)

$$e' = \sqrt{\frac{a^2 - b^2}{b^2}}$$

$$f = (a - b)/a$$
 ("flattening" parameter)

$$e^2 = 2f - f^2$$

Kinematics Transformations ECEF-NED Height Datums

- 1. Mean Sea Level (MSL) Datum (height relative to geoid)
- 2. GPS height (height above WGS-84 ellipsoid)

 $h-ellipsoidal\ height\ (geodetic)$

 $H-orthometric\ height\ (MSL)$

 $M-geoid\ separation\ (undulation)\ |M| \le 100m$

 ε_d – deflection of the vertical ≈ 0

Kinematics Transformations ECEF-NED ECEF Coordinates from Lat-Lon

Lat-Lon → ECEF Coordinates

$$N = \frac{a^2}{\sqrt{(a^2 \cos^2 \varphi + b^2 \sin^2 \varphi)}}$$
 (Prime Vertical of Curvature (m))

$$\boldsymbol{p}_{b/e}^{e} = \begin{bmatrix} x_{e} \\ y_{e} \\ z_{e} \end{bmatrix} = \begin{bmatrix} (N+h)\cos\varphi\cos\lambda \\ (N+h)\cos\varphi\sin\lambda \\ \left(\frac{b^{2}}{a^{2}}N+h\right)\sin\lambda \end{bmatrix}$$

Kinematics Transformations ECEF-NED Lat-Lon from ECEF Coordinates

ECEF Coordinates → Lat-Lon

$$p = \sqrt{x_e^2 + y_e^2}$$

$$p = \sqrt{x_e^2 + y_e^2}$$
$$\theta = \tan^{-1} \frac{z_e a}{pb}$$

$$\lambda = \tan^{-1} \frac{y_e}{x_e}$$

$$\varphi = \tan^{-1} \frac{z_e + e^{2}b\sin^3 \theta}{p - e^2a\cos^3 \theta}$$

$$h = \frac{p}{\cos \varphi} - N$$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691980.

Ricerche

