ADAMAS UNIVERSITY PURSUE EXCELLENCE

ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: MAY 2021

(Academic Session: 2020 – 21)

PURSUE EXCELLENCE	(Academie 5	ession. 2020 21)		
Name of the Program:	B.TECH (CSE)	Semester:	VIII	
Paper Title :	Numerical Analysis	Paper Code:	SMA44102	
Maximum Marks:	40	Time duration:	3 hrs.	
Total No of questions:	8	Total No of Pages:	1	
	 At top of sheet, clearly mention Name, Roll No., Enrolment No., Paper Name & Code, and Date of Exam. Assumptions made if any, should be stated clearly at the beginning of your answer. 			
	3. All parts of a Question should be answered consecutively.			

Instructions:

Attempt any three questions from **Section A** (each carrying 4 marks); any **Two Questions** from **Section B** (each carrying 10 marks). **Section C** is Compulsory (carrying 8 marks).

	Section A (Attempt any Three) $3 \times 4 = 12$			
	zeotion ii (iiiionip i miy i miyo)			
1	i) Three approximate value of the number $\frac{1}{3}$ are given as 0.30, 0.33 and 0.34. Which of these three is			
	the best approximation?			
	ii) Find the quotient $q = x/y$, where $x = 735.504$, $y = 15.38$			
2	Newton's forward interpolation formula to find $f(x)$ at $x = 2.5$ for the following data			
	x 1 3 5 7 9 11 13 15			
	f(x) 1 7 20 55 100 208 345 510			
3	Write the formula for composite Trapizoidal rule and explain geometrically.			
		4		
4	Construct the polynomial $f(x)$ by using Lagrange's interpolation formula from the following data.	4		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Section B (Attempt any Two) $2 \times 10 = 20$			
5	i) Define quadrature formula.	2+8		
	ii) Solve the following differential equations by Euler's method for $x = 1, h = 0.2$			
	$\frac{dy}{dx} = xy, y(0) = 1.$			
6	i) That the real root of equation we will be only the regularians method correct to three decimal			
	places.			
	ii) Find the cubic root of 12 by using Nerton-Rapson formula correct to two decimal places with initial approximation 2.1.			
7	approximation 2.1. $\frac{\pi}{2}$			
	Find the value of $\int_0^{\frac{\pi}{2}} e^{\sin x} dx$ by using Simpson's $1/3^{\text{rd}}$ rule taking 6 equal subintervals.			
	Section C(Compulsory)1 \times 8 = 8			
8	Solve the equation $\frac{dy}{dx} = x^2 - y^2$, $y(0) = 2$ by Runge-Kutta method of order 4 taking $h = 0.1$ at			
	x = 0.2			