СПРАВОЧНЫЕ ДАННЫ	
------------------	--

Account more influencement						
Наимено-	Обозна-	Множитель	Наимено-	Обозна-	Множитель	
вание	чение		вание	чение		
мега	M	10^{6}	милли	M	10^{-3}	
кило	К	10^{3}	микро	МК	10^{-6}	
гекто	Γ	10^{2}	нано	Н	10 ⁻⁹	
деци	Д	10-1	пико	П	10^{-12}	
санти	С	10-2	фемто	ф	10^{-15}	

Константы

Константы	
Число π	$\pi = 3.14$
Ускорение свободного падения	$g = 10 \text{ m/c}^2$
Гравитационная постоянная	$G = 6.7 \cdot 10^{-11} H \cdot \text{m}^2 / \text{kg}$
Газовая постоянная	$R = 8,31$ Дж $c/(моль \cdot K)$
Постоянная Больцмана	$k = 1.38 \cdot 10^{-23} \text{Джc} / K$
Постоянная Авогадро	$N_A = 6 \cdot 10^{23}$ моль $^{-1}$
Скорость света в вакууме	$c = 3 \cdot 10^8 \text{M/c}$
Коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 H \cdot M^2 / Kn^2$
Заряд электрона	$e = -1.6 \cdot 10^{-19} \text{Kn}$
Постоянная Планка	$6,6 \cdot 10^{-34} Дж \cdot c$
Масса Земли	6·10 ²⁴ κг
Масса Солнца	2·10 ³⁰ κг
Расстояние между Землёй и Солнцем (1 астрономическая единица)	$1a.e. \approx 150$ млнкм = $1,5 \cdot 10^{11}$ м
Примерное число секунд в году	$3\cdot10^7c$

Соотношение между различными единицами

e o o i i o memoraj pustin i i o memora e e e e e e e e e e e e e e e e e e e	
Температура	$0K = -273,15^{\circ}C$
Атомная единица массы	$1a.e.m. = 1,66 \cdot 10^{-27} \kappa z$
1 атомная единица массы эквивалентна	931,5 МэВ
1 электрон-вольт	$1 \ni B = -1, 6 \cdot 10^{-19} \ Дж$

Масса частиц

электрона	$9.1 \cdot 10^{-31} \kappa = 5.5 \cdot 10^{-4} a.e.m$
протона	$1,673 \cdot 10^{-27} \text{kg} = 1,007a.e.\text{M}$
нейтрона	$1,675 \cdot 10^{-27} \text{kg} = 1,008 a.e. \text{M}$

11011100112			
алюминия	$2700 \ \text{кг/м}^3$	керосина	$800 \ \text{кг/m}^3$
бамбука	400 κΓ/ m^3	меди	8900 кг/м ³
воды	1000 кг/м ³	парафина	900 кг/м ³
древесины (сосны)	400 kg/m^3	пробки	250кг/м^3
древесины (ели)	$450 \ \text{кг/m}^3$	ртути	13600 кг/м ³

Удельная

теплоемкость воды	4200 Дж $/(\kappa$ г· K) $(4180$ Дж $/(\kappa$ г· K))
теплоёмкость гелия	3120 Дж $/(\kappa z \cdot K)$
теплоёмкость железа	640 Дж $/(\kappa z \cdot K)$
теплоемкость льда	2100 Дж/(кг $\cdot K$)
теплоёмкость меди	390Дж/(кг·К) (380 Дж/(кг·К))
теплоемкость свинца	130Дж/(кг·К)
теплоемкость стали	$460Дж/(\kappa r \cdot K)$
теплоёмкость чугуна	500 Дж $/(\kappa z \cdot K)$
теплота парообразования воды	$2,3 \cdot 10^6 Дж / к$ г ($2256 \cdot 10^3 Дж / \kappa$ г)
теплота плавления льда	330кДж/кг (333кДж/кг; 335кДж/кг)
Нормальные условия давление	10^5 Па, температура 0 °С

Молярные массы

азота					$28 \cdot 10^{-3}$ кг/моль
аргона					$40\cdot10^{-3}$ кг/ моль
водорода					$2 \cdot 10^{-3}$ кг / моль
воды, водяных	к паров				$18\cdot10^{-3}$ кг/ моль
гелия					$4 \cdot 10^{-3}$ кг / моль
воздуха					$29 \cdot 10^{-3}$ кг/ моль
кислорода					$32 \cdot 10^{-3}$ кг / моль
лития					$6 \cdot 10^{-3}$ кг / моль
неона					$20\cdot10^{-3}$ кг/ моль
серебра					$108 \cdot 10^{-3}$ кг / моль
молибдена					$96 \cdot 10^{-3}$ кг / моль
углекислого га	аза				$44\cdot10^{-3}$ кг/ моль
Температура давлении	кипения	воды	при	нормальном	100 °C
Температура давлении	плавления	льда	при	нормальном	0 °C

Масса атомов

азота 14 N 14,0067 а. е. м. http://vk.com/ege100ballov

	7 - 1			1	
бериллия	$^{8}_{4}Be$	8,0053 а. е. м.	лития	$_{3}^{6}Li$	6,0151 а. е. м.
водорода	${}^{1}_{1}H$	1.0087 а. е. м.	лития	$_{3}^{7}Li$	7,0160 а. е. м.
гелия	$_{2}^{3}He$	3,0160 а. е. м.	углерода	$_{6}^{12}C$	12,0000 а. е. м.
гелия	⁴ ₂ <i>He</i>	4,0026 а. е. м.	углерода	$^{13}_{6}C$	13,0034 а. е. м.
				0 -	

Энергия покоя

электрона 0,5 МэВ нейтрона 939,6 МэВ протона 938,3 МэВ

ядра азота	$_{7}^{14}N$	13040,3 МэВ	ядра кремния	$^{30}_{14}Si$	27913,4 МэВ
ядра алюминия	$^{27}_{13} Al$	25126,6 МэВ	ядра лития	$_{3}^{6}Li$	5601,5 МэВ
ядра аргона	$^{38}_{18}Ar$	35352,8 МэВ	ядра лития	$_{3}^{7}Li$	6533,8 МэВ
ядра бериллия	$^{8}_{4}$ Be	7454,9 МэВ	ядра магния	$_{12}^{24}Mg$	22335,8 МэВ
ядра бериллия	$_{_{4}}^{^{9}}Be$	8392,8 МэВ	ядра натрия	²³ Na	21409,2 МэВ
ядра бора	$_{5}^{10}B$	9324,4 МэВ	ядра натрия	$^{24}_{11} Na$	22341,9 МэВ
ядра водорода	1_1H	938,3 МэВ	ядра неона	²⁰ ₁₀ Ne	18617,7 МэВ
ядра гелия	$_{2}^{3}$ He	2808,4 МэВ	ядра трития	$_{1}^{3}H$	2809,4 МэВ
ядра гелия	$_{2}^{4}He$	3728,4 МэВ	ядра углерода	$_{6}^{12}C$	11174,9 МэВ
ядра дейтерия	$_{1}^{2}H$	1875,6 МэВ	ядра углерода	$_{6}^{13}C$	12109,5 МэВ
ядра кислорода	$_{8}^{15}O$	13971,3 МэВ	ядра фосфора	$_{15}^{30}P$	27917,1 МэВ
ядра кислорода	$_{8}^{17}O$	15830,6 МэВ			

	http:/	/vk.com	/6	tans	00bs	allov
ПРАВИЛО СЛОЖЕНИЯ	ПЕРЕПРАВА	ОТНОСИТЕЛЬНАЯ)	Покой	Равномерное
СКОРОСТЕЙ	через реку шириной АВ	СКОРОСТЬ			$a_x = 0$	прямолиней-
$\vec{\upsilon}' = \vec{\upsilon} + \vec{u}$		$\vec{\upsilon}_{2\textit{om}\textit{H}1} = \vec{\upsilon}_2 - \vec{\upsilon}_1$			$\sum F_{x} = 0$	ное движение
По течению $\upsilon' = \upsilon + u$	Смещение во время	Скорости тел совпадают			$v_x = 0$	$a_x = 0$
Против течения	переправы	по направлению $\vec{v}_1 \uparrow \uparrow \vec{v}_2$			$s_x = 0$	$\sum F_{x} = 0$
$\upsilon' = \upsilon - u$	$\frac{AB}{v} = \frac{BC}{u} \Rightarrow BC = \frac{AB \cdot u}{v}$	$\upsilon_{omh} = \upsilon_2 - \upsilon_1 $				$v_x = const$
Перпендикулярно	Минимальное время	Скорости тел			$x = x_0$	$s_x = v_x t$
течению	переправы $\vec{v} \uparrow \uparrow AB$	противоположно				$x = x_0 + v_x t$
$\upsilon' = \sqrt{\upsilon^2 + u^2}$		направлены $\vec{v_1} \uparrow \downarrow \vec{v_2}$				$\bar{\nu}_1 \uparrow \uparrow OX$
Движение катера	$t_{\min} = \frac{AB}{v}$	$\upsilon_{\scriptscriptstyle OMH} = \upsilon_1 + \upsilon_2$				$\vec{v}_2 \uparrow \downarrow OX$
$\ell = (\upsilon + u)t_1 = (\upsilon - u)t_2 = \upsilon t_3 = ut_4$	Кратчайший путь	Скорости тел				
	переправы $\vec{\upsilon}' \uparrow \uparrow AB$	перпендикулярны друг		$a_{x}(t)$	$\uparrow a_x$	$\uparrow a_x$
	$t = \frac{AB}{\sqrt{D^2 - \mu^2}}$	другу $\vec{v}_1 \perp \vec{v}_2$		$u_x(t)$	l X	u_x
	$\sqrt{\upsilon^2-u^2}$	<u> </u>				
		$\upsilon_{omh} = \sqrt{\upsilon_1^2 + \upsilon_2^2}$			Q t	$ $ $ $ $ $ $ $
РАВНОУСКОРЕННОЕ	СВОБОДНОЕ	движение по			ļ	
ПРЯМОЛИНЕЙНОЕ	ПАДЕНИЕ	ОКРУЖНОСТИ		$v_{x}(t)$	$\bullet \nu_{x}$	
ДВИЖЕНИЕ	(вертикальный бросок)	-		$O_{x}(t)$		1
Ускорение	Ускорение	Период				
$\pm a = \frac{\upsilon - \upsilon_0}{t} = \frac{\Delta \upsilon}{t}$	$g = 9.8 \frac{M}{c^2} \approx 10 \frac{M}{c^2}$	$T = \frac{t}{N} = \frac{1}{\nu}$			0 t	$\frac{1}{2}$
Время движения $t = \frac{v - v_0}{\pm a}$	Время движения $t = \frac{\upsilon - \upsilon_0}{\pm g}$	Частота			l	1 2
		$v = \frac{1}{T} = \frac{N}{t}$		$S_{x}(t)$	$\uparrow s_x$	s † /1
Скорость $\upsilon = \upsilon_0 \pm at$	Скорость $v = v_0 \pm gt$	Линейная скорость		~ x ()		S_x
Перемещение $\ell = s$	Перемещение $\ell = s = h$	$\upsilon = \frac{\ell}{t} = \frac{2\pi R}{T} = 2\pi R \upsilon = \frac{2\pi RN}{t} = \omega R$				
$1. s = \frac{(v_0 + v)t}{2}$	1. $s = h = \frac{(\upsilon + \upsilon_0)t}{2}$				0 t	
2	<u> </u>	Угловая скорость			'	1 2
$2. s = \frac{v^2 - v_0^2}{\pm 2a}$	2. $s = h = \frac{v^2 - v_0^2}{\pm 2g}$	$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi v = \frac{2\pi N}{t} = \frac{v}{R}$		$\ell(t)$	$igwedge \ell$	↑ <i>ℓ</i> /1
		Центростремительное		Всегда		2
$3{s} = v_0 t \pm \frac{at^2}{2}$	3. $s = h = v_0 t \pm \frac{gt^2}{2}$	ускорение		возрастаю-	$0 \xrightarrow{t}$	2
«+» разгон	«+» движение вниз	$a_{y.c.} = \frac{v^2}{R} = \omega^2 R = \frac{4\pi^2 R}{T^2} = 4\pi^2 R v^2$		щая функция		$ $ $ $ $ $ $ $
«-» торможение	«-» движение вверх	$R = \frac{W}{R} + $			ļ ,	<u>'</u>
Уравнение координаты	Уравнение координаты			x(t)	x 1	x^{\uparrow}
$x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$	$y = y_0 + v_{0y}t + \frac{g_y t^2}{2}$					
Уравнение проекции					0	x_c
перемещения	Уравнение скорости					
$s_x = v_{0x}t + \frac{a_xt^2}{2}$	$v_{y} = v_{0y} + g_{y}t$				•	$ \ \ \ \ t_C$
<u></u>						1
Уравнение проекции						
скорости						
$v_x = v_{0x} + a_x t$]			

;(1 (;	しハリロと	111()\/		
	Покой	Равномерное	Равноускорен-	Равнозамедлен-
	$a_x = 0$	прямолиней-	ное	ное
	$\sum F_x = 0$	ное движение	прямолинейное	прямолинейное
	$v_x = 0$	$a_x = 0$	движение	движение
		$\sum F_x = 0$	$a_x = const,$	$a_x = const,$
	$s_x = 0$	$v_x = const$	$\sum F_x = ma_x$	$\sum F_x = ma_x$
	$x = x_0$	$S_x = \mathcal{O}_x t$	$\vec{a} \uparrow \uparrow \vec{v}_0 \uparrow \uparrow OX$	$\vec{a} \uparrow \downarrow \vec{v}_0, \vec{v}_0 \uparrow \uparrow OX$
			$v_x = v_0 + at$	$v_x = v_0 - at$
		$x = x_0 + v_x t$	$s_x = v_0 t + \frac{at^2}{2}$	$s_x = v_0 t - \frac{at^2}{2}$
		$\vec{v}_1 \uparrow \uparrow OX$ $\vec{v}_2 \uparrow \downarrow OX$		
		$U_2 \mid \downarrow OX$	$x = x_0 + \upsilon_0 t + \frac{at^2}{2}$	$x = x_0 + \upsilon_0 t - \frac{at^2}{2}$
$a_{x}(t)$	$\uparrow a_x$	$\uparrow a_x$	a_x	$\uparrow a_x$
<i>x</i> < <i>y</i>	~	X	, and the second	
	→	<u></u>	$0 \longrightarrow t$	0
		t	$\begin{bmatrix} 0 \end{bmatrix}$	
	1	1	1	1
$v_x(t)$	$\bullet \nu_x$		v_x	$O_x lack$
-x	, a	1		
	d→	1		$ 0 \rangle$
	0 t	0 t	q t	
	1	1 2	ļ	l I
$S_x(t)$	$igwedge s_x$	s_x 1	s_x	S_x
X	X X	S_{x}	[x] /	
	<u>-</u>			
	0 t	$\begin{bmatrix} 0 & -\frac{t}{2} \end{bmatrix}$	0 t	0 t
		2		'
$\ell(t)$	$igwedge \ell$	↑ ℓ /1	1	1
Всегда				ا کہر ّا ا
возрастаю-	₀	2		
щая функция	0 t	$\begin{bmatrix} 0 \\ t \end{bmatrix}$		t t
		l	0	0
x(t)	x 1	x^{\uparrow}	$x \uparrow$	$x \uparrow$
				" / \
	0	x_{c}		
	"		t t	[
		$\begin{vmatrix} 0 & t_c \end{vmatrix}$	10	0

		// V IX. GUIII/
Проекции начальной скорости	$ \begin{array}{c cccc} Y & & & & & & & & & & & \\ h_0 & & & & & & & & & \\ \hline 0 & & & & & & & & & \\ & & & & & & & & \\ & & & & $	$ \begin{array}{cccc} Y & & & & & & & & & & \\ \downarrow & & & & & & & & & \\ 0 & & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & & & \\ 0 & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & & \\ 0 & & & & \\ 0 & & & & & \\ 0 & & & \\ 0 & & \\ 0 & & \\ 0 & & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & & \\ 0 & &$
Проекции ускорения свободного падения	$g_x = 0; g_y = -g$	$g_x = 0; g_y = -g$
Проекции мгновенной скорости	$v_x = v_0; \ v_y = -gt$	$\upsilon_{x} = \upsilon_{0} \cos \alpha ; \upsilon_{y} = \upsilon_{0} \sin \alpha - gt$
Модуль мгновенной скорости $v = \sqrt{v_x^2 + v_y^2}$	$\upsilon = \sqrt{\upsilon_0^2 + (gt)^2}$	$\upsilon = \sqrt{\upsilon_0^2 - 2\upsilon_0 \sin \alpha g t + g^2 t^2}$
Минимальная скорость	Начальная скорость	Скорость в верхней точке траектории $\upsilon_{\min} = \upsilon_0 \cos \alpha = \upsilon_h$
Максимальная скорость	Конечная скорость (при падении на землю)	Начальная скорость = конечной скорости
Угол наклона вектора скорости к горизонту	$tg\beta = \frac{v_y}{v_x} = \frac{gt}{v_0}$	$tg\beta_1 = \frac{v_y}{v_x} = \frac{v_0 \sin \alpha - gt_1}{v_0 \cos \alpha}$ $tg\beta_2 = \frac{v_y}{v_x} = \frac{-(v_0 \sin \alpha - gt_2)}{v_0 \cos \alpha}$
Угол наклона вектора скорости к вертикали	$tg\gamma = \frac{\upsilon_x}{\upsilon_y} = \frac{\upsilon_0}{gt}$	$tg\gamma = \frac{\upsilon_x}{\upsilon_y} = \frac{\upsilon_0 \cos\alpha}{\upsilon_0 \sin\alpha - gt}$
Тангенциальное ускорение	$a_{\tau} = g \cos \gamma$	$a_{\tau 1} = -g\cos\gamma \; ; a_{\tau 2} = g\cos\gamma$
Нормальное ускорение	a_{n}	$=g\sin\gamma$
Горизонт. смещение $x = x_0 + \nu_{0x}t + \frac{g_x t^2}{2}$	$x = v_0 t$	$x = v_0 \cos \alpha t$
М гновенная высота $y = y_0 + v_{0y}t + \frac{g_y t^2}{2}$	$y = h_0 - \frac{gt^2}{2}$	$y = v_0 \sin \alpha t - \frac{gt^2}{2}$
Время	Время падения (у=0)	Время подъема $(v_y = 0)$
	$t_{nao} = \sqrt{\frac{2h_0}{g}}$	$t_{no\partial} = \frac{\upsilon_0 \sin \alpha}{g}$
		Время полета (полное)
		$t_{now} = 2t_{no\partial} = \frac{2v_0 \sin \alpha}{g}$
Наибольшая высота подъема		$h = \frac{v_0^2 \sin^2 \alpha}{2g}$
Дальность полета	$\ell = \upsilon_0 t_{na\partial} = \upsilon_0 \sqrt{\frac{2h_0}{g}}$	$\ell = \frac{\upsilon_0^2 2 \sin \alpha \cos \alpha}{g} = \frac{\upsilon_0^2 \sin 2\alpha}{g}$
Уравнение траектории $y(x)$	$y(x) = h_0 - \frac{g}{2} \left(\frac{x}{\nu_0}\right)^2$	$y(x) = xtg\alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$

Бросок с горы (частный случай горизонтального броска)

lpha - угол наклона плоскости к горизонту

s - расстояние от места бросания до места падения

Дальность полета $\ell = s \cos \alpha$

Начальная высота $h_0 = s \sin \alpha$

Бросок под углом к горизонту с некоторой высоты (упругое отражение от наклонной плоскости вертикально падающего тела)

Уравнение координаты х

$$x = v_0 \cos \alpha t$$

Уравнение координаты у

$$y = h_0 + v_0 \sin \alpha t - \frac{gt^2}{2}$$

Уравнение траектории

$$y = h_0 + xtg\alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$$

Бросок под углом к горизонту с учетом силы сопротивления воздуха

Проекции ускорения

$$a_{x} = -a$$
; $g_{y} = -g$

Проекции мгновенной скорости $v_x = v_0 \cos \alpha - at$; $v_y = v_0 \sin \alpha - gt$

Уравнения координаты

$$x = v_0 \cos \alpha t - \frac{at^2}{2}$$

$$gt^2$$

$$y = v_0 \sin \alpha t - \frac{gt^2}{2}$$

			5. ДИНАМИКА	
ЗАКОНЫ НЬЮТОНА		Cł	ИЛА ВСЕМИРНОГО ТЯГОТЕНИЯ	СИЛА ТЯЖЕСТИ
$\Sigma \vec{F_i} = 0$ Второй зак $\vec{R} = \Sigma \vec{F_i} = n$ Третий зако	Первый закон $\Sigma \vec{F}_i = 0; \vec{a} = 0$ Второй закон (РуПД) $\vec{R} = \Sigma \vec{F}_i = m\vec{a} \; ; \; \vec{a} \uparrow \uparrow \vec{R}$ Третий закон $\vec{F}_1 = -\vec{F}_2$		$F_1 = F_2 = F_{msc} = \frac{Gm_1m_2}{r^2}$ r -расстояние между центрами тел $G = 6.67 \cdot 10^{-11} \frac{H \cdot M^2}{\kappa c^2}$ гравитационная постоянная	$F_{m\!s:\!s:\!c}=mg$ $F_{m\!s:\!s:\!c}=rac{GMm}{(R+H)^2}=rac{GMm}{r^2}$ $r=R+H$ - радиус орбиты
	Движение ИС	3	$F_{\scriptscriptstyle m\!\scriptscriptstyle B\!N\!\!\scriptscriptstyle S\!C}=ma_{\scriptscriptstyle y.c.}$ ИЛИ	$\frac{GMm}{(R+H)^2} = ma_{y.c.}$
	g		$\nu_{_I}$	T
$a_{y.c.}$	$a_{y.c.} = g$		$a_{y.c.} = \frac{v^2}{r}$	$a_{u.c.} = \frac{4\pi^2 r}{T^2}$
II 3.H.	$\frac{GMm}{\left(R+H\right)^2}=n$	ıg	$\frac{GMm}{\left(R+H\right)^2} = \frac{m\upsilon_I^2}{R+H}$	$\frac{GMm}{(R+H)^2} = \frac{m4\pi^2(R+H)}{T^2}$
На высоте Н	Hа высоте H $g = \frac{GM}{(R+H)^2} = \frac{GM}{r^2}$		$\upsilon_{I} = \sqrt{\frac{GM}{R+H}} = \sqrt{\frac{GM}{r}}$ $\upsilon_{I} = \sqrt[3]{\frac{2\pi GM}{T}}$	$T = 2\pi \sqrt{\frac{(R+H)^3}{GM}} = 2\pi \sqrt{\frac{r^3}{GM}}$
H = 0	$H = 0 g_0 = \frac{GM}{R^2}$		$\upsilon_I = \sqrt{\frac{GM}{R}}$	$T = 2\pi \sqrt{\frac{R^3}{GM}}$
$M = \rho \cdot \frac{4}{3}\pi R^3$ $H = 0$	3 3 7		$\upsilon_I = 2R\sqrt{\frac{G\rho\pi}{3}}$	$T = \sqrt{\frac{3\pi}{G\rho}}$
- 0	$H = 0$ $GM = g_0 R^2$		$\upsilon_I = \sqrt{\frac{g_0 R^2}{(R+H)}} = \sqrt{\frac{g_0 R^2}{r}}$	$T = 2\pi \sqrt{\frac{(R+H)^3}{g_0 R^2}} = 2\pi \sqrt{\frac{r^3}{g_0 R^2}}$
СИЛА УПІ	СИЛА УПРУГОСТИ		СИЛА ТРЕНИЯ	BEC ТЕЛА $P = F_{\partial aes.}$
Закон	Гука	Трение скольжения		$(\vec{a}=0)P_0=mg$
F_{ynp} =	=kx,	$F_{mp.c\kappa.} = \mu N$		Ускорение опоры направленно
Γ де $x = \Delta$	$\Delta \ell = \left \ell - \ell_0 \right $	или		BBepx: $P_{\uparrow} = m(g+a)$
	- деформация пружины		$F_{mp.c\kappa.} = \mu F_{\partial a \epsilon n}$	BHИ3: $P_{\perp} = m(g-a)$
Коэффициент жесткости $E \cdot S$		Трение покоя		Нижняя точка вогн. Моста
k = -	$k = \frac{E \cdot S}{\ell_0}$		$0 < F_{mp.n} < F_{mp.c\kappa}.$	$P_{\cup} = m(g + a_{y.c.})$
Параллельное		Трение покоя и		Верхняя точка вып. Моста
соединение		приложенная сила		$P_{\cap} = m(g - a_{u.c.})$
	$k_{nap} = k_1 + k_2$ Последовательное		$F_{mp.n} = F_{npun.}$	Верхняя точка «мертвой петли»
соединение		Если $F_{npun.} > \mu N$, то		P = m (a - a)
$\frac{1}{k_{noc\pi}} = \frac{1}{k_{noc\pi}}$		F	$F_{mp.} = F_{mp.c\kappa.} = \mu N$	Перегрузка $\frac{P}{P_0} = \frac{P}{mg}$
				Hевесомость $P = 0$

$ \frac{1}{6}$	6. СТАТИКА И ГИДРОСТАТИКА							
ПРАВИЛО	ДАВЛЕНИЕ	СИЛА ДАВЛЕНИЯ						
MOMEHTOB								
Момент силы	Давление твердого тела	$F_{\partial a \epsilon n} = p S$						
$M = F \cdot d$,	$p = \frac{F}{S} = \frac{mg}{S}$	На дно сосуда						
где d - плечо силы	5 5	$F_{\scriptscriptstyle \partial a B n} = ho_{\scriptscriptstyle {\scriptscriptstyle \mathcal{H}\!\!\!\!/}} g h a b$						
Правило моментов	Давление жидкости	На боковую грань сосуда						
$\sum M_{no \ vac.cmp.} = \sum M_{np.vac.cmp.}$	$p= ho_{\mathcal{H}}gh, \ h$ - глубина определяется	$F_{\partial a G n} = \frac{\rho_{, n c} g h}{2} h b$						
Правило моментов для	от поверхности жидкости	2 dasa 2						
двух сил	Атмосферное давление							
$F_1 \cdot d_1 = F_2 \cdot d_2$	$p = \rho_{pm} gh$							
	Давление на глубине							
	$p = p_{am_{\mathcal{M}}} + \rho_{\mathcal{H}} gh$							
EMIDADIMI IDECC	A DATIME HOD A CITILA	успория пларания						
ГИДРАВЛИЧ. ПРЕСС	АРХИМЕДОВА СИЛА	УСЛОВИЯ ПЛАВАНИЯ ТЕЛ						
Закон Паскаля	Закон Архимеда	Тело тонет						
	*							
$p_{_{\scriptscriptstyle{\mathcal{M}}}}=p_{_{\scriptscriptstyle{\mathcal{G}}}}$	$F_{Apx} = P_{\mathcal{H}u\partial.},$	$F_{msx.} > F_{Apx.}; \ \rho_{m} > \rho_{xc}$						
$\frac{F_{\scriptscriptstyle M}}{S_{\scriptscriptstyle M}} = \frac{F_{\scriptscriptstyle \delta}}{S_{\scriptscriptstyle \delta}}$	где $P_{\mathscr{H}u\partial}$ - вес,	Тело плавает внутри						
3.n. O	вытесненной телом	жидкости						
Работа поршней	жидкости (или газа)	$F_{m,m,m} = F_{Apx.}; \rho_m = \rho_{m}$						
(без потерь энергии)	$F_{Apx} = \rho_{x}V_{n.y.}g,$	Тело всплывает						
$A_{_{M}}=A_{_{E}}$	где $V_{n,y}$ - объём	$F_{ extit{ms.mc.}} < F_{ extit{Apx.}}; ho_{ extit{m}} < ho_{ extit{sc}}$						
$F_{_{\scriptscriptstyle{M}}}h_{_{\scriptscriptstyle{M}}}=F_{_{\scriptscriptstyle{B}}}h_{_{\scriptscriptstyle{B}}}$	погруженной части	Тело плавает на						
Выигрыш в силе	тела	поверхности						
$F_{\sigma} \ _ \ h_{\scriptscriptstyle M} \ _ \ S_{\sigma}$	$F_{Apx} = P_{\theta\theta\theta} - P_{xc}$, где	$F_{_{Apx}}=F_{_{maxe.}}=P_{_{mexa}}$						
$\frac{F_{\delta}}{F_{M}} = \frac{h_{M}}{h_{\delta}} = \frac{S_{\delta}}{S_{M}}$	1	$\rho_{m}V_{m}g = \rho_{sc}V_{n,y}g$						
	$P_{_{\it воз \it d}}$ - вес тела в	Часть тела, погруженная в						
	воздухе;	жидкость						
	$P_{\scriptscriptstyle\mathcal{M}}$ - вес этого тела в	$V_{n.u.} = \rho_m$						
	жидкости	$\frac{1}{V_m} - \frac{1}{\rho_{\kappa}}$						

	ЗАКОНЫ СОХРАНЕН	
ИМПУЛЬС	ІІ З.НЬЮТОНА В	ЗАКОН СОХРАНЕНИЯ
	ИМПУЛЬСНОМ	ИМПУЛЬСА (ЗСИ)
	виде	, , ,
Определение импульса	$\vec{F}\Delta t = \Delta \vec{p}$	Полный импульс
$\vec{p} = m\vec{\upsilon}$	-	$\vec{p} = \vec{p}_1 + \vec{p}_2$
Относительный импульс	Реактивная сила	Закон сохранения
$\vec{p} = m\vec{v}_{2omH1} = m(\vec{v}_2 - \vec{v}_1)$	$F_p = \frac{\Delta m \upsilon}{\Delta t}$	импульса
	II 3.Н. для ракеты	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$
Изменение импульса	-	$m_1 O_1 + m_2 O_2 - m_1 O_1 + m_2 O_2$
$\Delta \vec{p} = \vec{p} - \vec{p}_0$	$F_p = Ma^{\text{ИЛИ}} \frac{\Delta m \upsilon}{\Delta t} = Ma$	
МЕХАНИЧЕСКАЯ	МОЩНОСТЬ	КПД
РАБОТА	, , ,	
$A = Fs \cos \alpha$, где	Определение А	Определение
	Определение $N = \frac{A}{t}$	
F - модуль конкретной	Мощность при РмПД	$\eta = rac{A_{no.nesp.}}{A_{no.mas}} 100\%$
силы; <i>S</i> - модуль	$N = F_m v$	²¹ полная ИЛИ
перемещения; α - угол	Средняя мощность	-
между $ec{F}$ и $ec{s}$	-	$\eta = rac{N_{nonesp.}}{P_{nompe6.}} 100\%$
	$N_{cp.} = F_m \nu_{cp.}$	
	Мгновенная мощность	Наклонной плоскости
	$N_{_{MZH.}} = F_{_m} v_{_{MZH.}}$	$\eta = \frac{mgh}{F\ell} 100\%$
DITHI	DATCOLL	1 (
ВИДЫ	ЗАКОН	РАБОТА И ИЗМЕНЕНИЕ
МЕХАНИЧЕСКОЙ	СОХРАНЕНИЯ	ЭНЕРГИИ
ЭНЕРГИИ	МЕХАНИЧЕСКОЙ	
	ЭНЕРГИИ (ЗСЭ)	
Кинетическая энергия	Полная энергия	Изменение энергии
$E_k = \frac{mv^2}{2}$,	$E = E_k + E_p$	$\Delta E = E - E_0$
\sum_{k} 2	Закон сохранения	Работа $A = \Delta E$
где υ - мгновенная	механической	Работа внешней силы и
скорость	энергии	силы трения
Потенциальная энергия	$E_{k0} + E_{p0} = E_k + E_p$	_
поднятого над Землёй		$\Delta E = A(F_{\text{\tiny GH.C.}}) + A(F_{mp.}),$
тела	Упругий центральный	где $A(F_{mp.}) < 0$
$E_p = mgh$,	удар о неподвижное	Превращение
где h - высота центра	тело	механической энергии во
масс	$3CM: m_1 \nu_1 = m_1 \nu_1' + m_2 \nu_2'$	внутреннюю
Потенциальная энергия	$3C9: \frac{m_1 v_1^2}{2} = \frac{m_1 v_1'^2}{2} + \frac{m_2 v_2'^2}{2}$	
упруго деформирован-		$E_0 = E + Q$
ной пружины	Итог:	Энергия, выделяемая при
	$OX: \nu_1' = \frac{m_1 - m_2}{m_1 + m_2} \nu_1$	взрыве
$E_p = \frac{kx^2}{2}$		$E_0 + Q = E$
2	$OX: v_2' = \frac{2m_1}{m_1 + m_2} v_1$	
	$m_1 + m_2$	

8. МОЛЕКУЛЯРНАЯ ФИЗИКА И ГАЗОВЫЕ ЗАКОНЫ

		UDDIE SAKUNDI
ИЗ ХИМИИ	МОЛЕКУЛЫ	ЧИСЛО ЧАСТИЦ
Относительная атомная	Масса молекулы	Число частиц
масса Ar в т. Менделеева	$m_0 = \frac{M}{N_A}$	N = nV
, где т-	**	Число молекул
$Ar = \frac{m_0}{1}$	Количество вещества	$N = vN_A = \frac{m}{M}N_A$
$Ar=rac{m_0}{rac{1}{12}m_{0C}}$, где	$v = \frac{N}{N_A} = \frac{m}{M}$	IVI
m_0 - масса одного атома,	Концентрация	Число атомов
m_{0C} - масса атома углерода		$N = vN_A \cdot k$, ГДе
Относительная	$n = \frac{N}{V}$	k - количество атомов в
молекулярная масса	Плотность	молекуле
$Mr = \sum Ar$	$\rho = \frac{m}{V}$	Двухатомный газ
Молярная масса	$\rho - \frac{1}{V}$	перешёл в атомарное
$M = Mr \cdot 10^{-3}$	Масса вещества	состояние
	$m = \rho V = vM$	$M_2 = \frac{M_1}{2}$; $v_2 = 2v_1$
СЛЕДУЕТ ЗНАТЬ	ОСНОВНОЕ	СЛЕДСТВИЯ ИЗ
	УРАВНЕНИЕ МКТ	ОСНОВНОГО
		УРАВНЕНИЯ МКТ
Абсолютная температ.	1. $p = \frac{1}{3} m_0 n v^2$	Скорость движения
T = t + 273		частиц
Изменение температуры $\Delta T = \Delta t$	$2. p = \frac{1}{3}\rho \overline{v^2}$	$\upsilon = \sqrt{\frac{3kT}{m_0}}$ ИЛИ $\upsilon = \sqrt{\frac{3RT}{M}}$
Нормальные условия	3. $p = \frac{2}{3}nE_k$	Температура и средняя
$T_o = 273 \text{ K}; p_o = 10^5 \Pi a$	4. p = nkT	кинетическая энергия
Двухатомные газы	$+. p - n\kappa I$	$=$ 3 \overline{z} $2\overline{E}_{\nu}$
H_2 , O_2 , N_2 , Cl_2		$\overline{E}_k = \frac{3}{2}kT \qquad T = \frac{2E_k}{3k}$
УРАВ. СОСТОЯНИЯ	ГАЗОВЫЕ ЗАКОНЫ	НАСЫЩЕННЫЙ ПАР.
При изменении	При неизменной М,	ВЛАЖНОСТЬ
M, m, v, N	<i>m,v,N</i>	ВОЗДУХА
1. $pV = \frac{m}{M}RT$	Объединенный газовый	Давление насыщенного
1/1	3akoh $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	пара
2. $pV = vRT$	_	$p_{_{HAC}}=f(T); p=nkT$
3. $p = \frac{\rho}{M}RT$	Бойля – Мариотта (Т)	$p_{_{Hac}} \neq f(V)$
IVI	$p_1V_1 = p_2V_2$	Относительная
Все величины должны	Гей – Люссака (р)	влажность
быть выражены в СИ!	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	$\varphi = \frac{\rho}{\rho_{nac}(t)} \cdot 100\%$
	Шарля (V) $\frac{p_1}{T_1} = \frac{p_2}{T_2}$	$\varphi = \frac{p}{p_{\text{\tiny Mac}}(t)} \cdot 100\%$
	Температура в $[K]$!	

http://vk.com/ege100ballov 9. графики изопроцессов

ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ НАГРЕВАНИИ И ОХЛАЖДЕНИИ

1-2	Нагревание твердого тела	$Q=c_mm(t_{nn}-t_o)$
2-3	Плавление $(\mathbf{t}_{\mathbf{n}\mathbf{n}})$	$Q = \lambda m$
3-4	Нагревание жидкости	$Q=c_{\mathcal{H}} m(t_{\kappa un}-t_{n\pi})$
4-5	Кипение (\mathbf{t}_{κ ип)	Q = r m
5-6	Нагревание пара	$Q = c_n m(t - t_{\kappa un})$
6-7	Охлаждение пара	$Q = c_n m (t_{\kappa un} - t)$
7-8	Конденсация $(\mathbf{t}_{\kappa\mathbf{n}\mathbf{n}})$	Q = -rm
8-9	Охлаждение жидкости	$Q=c_{\mathcal{H}} m(t_{nn}-t_{\kappa un})$
9-10	Отвердевание $(\mathbf{t}_{\mathbf{n}\mathbf{n}})$	$Q = -\lambda m$
10-11	Охлаждение твердого тела	$Q = c_m m (t_o - t_{nn})$

To: TEI WI	ЭДИПАЧИКА
КОЛИЧЕСТВО ТЕПЛОТЫ	ВНУТРЕННЯЯ ЭНЕРГИЯ ИД. ГАЗА
Нагревание и охлаждение	Внутренняя энергия
$Q = cm(t_2 - t_1)$	$U = \frac{i}{2} \cdot \frac{m}{M} RT = \frac{i}{2} \nu RT = \frac{i}{2} pV$
Теплоемкость и молярная	2 1/1 2 2
теплоемкость $C = c m$	Степень свободы газа і
Сгорание топлива $Q = q m$	Одноатомного 3, двухатомного 5,
Плавление и отвердевание	трех- и более 6
0 14	Изменение внутренней энергии
$Q=\pm \lambda m, \ \ t_{nn}$ Кипение и конденсация	$\Delta U = \frac{i}{2} \cdot \frac{m}{M} R\Delta T = \frac{i}{2} vR\Delta T = \frac{i}{2} (p_2 V_2 - p_1 V_1) =$
	$=\frac{i}{2}p\Delta V=\frac{i}{2}\Delta pV$
$Q = \pm rm, t_{\kappa un}$	<u> </u>
«+» энергия поглощается	Работа в термодинамике
«-» энергия выделяется	$A' = p\Delta V = \frac{m}{M} R\Delta T = vR\Delta T = \Delta pV$
Мощность теплопередачи или	Геометрический смысл работы
теплоотвода $P = Q$	
t	$A' = S_{\phi$ игуры в осях (p, V)
ПЕРВОЕ НАЧАЛО	МАКСИМАЛЬНЫЙ КПД тепловой
ТЕРМОДИНАМИКИ	машины
$\pm \Delta U = \pm Q \pm A'$	$1. n = Q_{H} - Q_{x} 10004$
Изотермический процесс	$1 \cdot \eta = \frac{Q_u - Q_x}{Q_u} 100\%$
$\Delta U=0$; $Q=A'$	2 A' A'
Изохорный процесс	$2 \cdot \eta = \frac{A'}{Q_{_{H}}} 100\% = \frac{A'}{A' + Q_{_{X}}} 100\%$
$A' = 0; \Delta U = Q$	
Изобарное расширение газа	4. $\eta = \frac{T_{H} - T_{X}}{T} 100\%$
$\Delta U = Q - A'$	$I_{_H}$
Адиабатный процесс	$A' = Nt \; ; \; Q_{\scriptscriptstyle H} = P_{\scriptscriptstyle H}t \; ; \; Q_{\scriptscriptstyle X} = P_{\scriptscriptstyle X}t$
$Q=0; \ \Delta U=A'$	Температура в $\left[K ight]$!
КПД электронагревателей	КПД нагревателей
Чайник	Газовый или спиртовой нагреватель
$\eta = \frac{cm\Delta t}{P_t} \cdot 100\%$	$n = \frac{cm\Delta t}{100\%}$
$\eta = \frac{100\%}{Pt}$	$\eta = rac{cm\Delta t}{qm_{_{mon}}} \cdot 100\%$
Кофейник, самовар	Плавильная печь
$\eta = \frac{cm\Delta t + rm}{Pt} \cdot 100\%$	$n = \frac{cm\Delta t + \lambda m}{100\%}$
$r_1 = Pt$	$\eta = \frac{cm\Delta t + \lambda m}{qm_{mon}} \cdot 100\%$

	T	ΔU	V	A'	Первое начало
1-2	T = const	0	↑	$A'_{12} < 0$	$0 = Q_{12} - A_{12}'$
2-1	T = const	0	\	$A'_{21} > 0$	$0 = -Q_{21} + A_{21}'$

	T	ΔU	V	A'	Первое начало
1-2	↑	$\Delta U_{12} > 0$	V = const	0	$+\Delta U_{12} = +Q_{12}$
2-1	\rightarrow	$\Delta U_{21} < 0$	V = const	0	$-\Delta U_{21} = -Q_{21}$

	изооарный процесс							
	p ↑ 1 2 V V		p_1 2					
Что можно определить по графику	$A' = p\Delta V$ $\Delta U = \frac{3}{2} p\Delta V$	$A' = vR\Delta T$ $\Delta U = \frac{3}{2}vR\Delta T$	$A' = \nu R \Delta T$ $\Delta U = \frac{3}{2} \nu R \Delta T$					

	T	ΔU	V	A'	Первое начало
1-2	↑	$\Delta U_{12} > 0$	↑	$A'_{12} < 0$	$\Delta U_{12} = Q_{12} - A_{12}'$
2-1	+	$\Delta U_{21} < 0$	\	$A'_{21} > 0$	$-\Delta U_{21} = -Q_{21} + A_{21}'$

Произвольный процесс

$A' = \frac{p_1 + p_2}{2} (V_2 - V_1); A'_{12} < 0$
$\Delta U = \frac{3}{2} \nu R \Delta T ; \Delta U_{12} > 0$ $\Delta U = \frac{3}{2} \nu R (T_2 - T_1) = \frac{3}{2} (p_2 V_2 - p_1 V_1)$
$\Delta U_{12} = Q_{12} - A_{12}'$

13. ЭЛЕКТРОСТАТИКА			
СИЛА КУЛОНА	ТОЧЕЧНЫЙ ЗАРЯД	СИСТЕМА ЗАРЯДОВ	
Закон Кулона	Модуль напряженности	Результирующая сила	
$F_K = \frac{k q_1 \cdot q_2 }{2r^2};$	$E = \frac{kQ}{r^2}$	$ec{R} = \sum ec{F}_i$	
EF.		Общая напряженность	
$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{Kn^2}$	где Q - модуль заряда,	$\vec{E} = \sum_{i} \vec{E}_{i}$	
0	создающего поле	Общий потенциал	
Определение	Потенциал (учитывайте		
напряженности	знак заряда)	$\varphi = \sum \pm \varphi_i$	
$\vec{E} = \frac{F_K}{q} \Rightarrow F_K = q_0 \vec{E}$	$\varphi = Er = \pm \frac{kQ}{r}$	Потенциальная энергия	
q_0 Избыток электронов	<i>r</i> Потенциальная энергия	$W_p = \sum \pm W_{_{\!\it BCEX}-\it nap}$	
I -	двух зарядов (учиты-		
$N = \frac{q}{q_e}$	вайте знак заряда)		
$q_a = -1.6 \cdot 10^{-19} \text{Kz}$	$W_p = \pm \frac{kq_1q_2}{r}$		
16			
НАПРЯЖЕННОСТЬ	ПОТЕНЦИАЛ СФЕР.	ОДНОРОДНОЕ ПОЛЕ	
СФЕР. ПРОВОДНИКА	ПРОВОДНИКА		
Внутри $(r < R)$	Внутри и на поверхности	Разность потенциалов	
E=0	$(0 < r \le R)$	$\varphi_1 - \varphi_2 = Er_{12}$	
На поверхности $(r=R)$	$\varphi = \frac{kQ}{R}$	Напряжение	
$E = \frac{kQ}{R^2}$	R But $(r>R)$	U = Ed	
BHE $(r>R)$	bhe (r>k)	Сила Кулона	
$E = \frac{kQ}{r^2} = \frac{kQ'}{(R+a)^2}$	$\varphi = \frac{kQ}{r} = \frac{kQ}{R+a}$	$F_K = qE = q\frac{U}{d}$	
		и	
РАБОТА ЭЛ/СТАТИЧ.	КОНДЕНСАТОРЫ	СОЕДИНЕНИЕ	
ПОЛЯ	2	КОНДЕНСАТОРОВ	
Учитывайте знак	Электроемкость	Последов. соединение	
3 аряда 1. $A = F_K s \cos \alpha$	$C = \frac{\varepsilon_0 \varepsilon S}{d}$	$U = U_1 + U_2$ $q = q_1 = q_2$	
$ \begin{array}{ccc} 1. & A = F_K s \cos \alpha \\ 2. & A = \pm q E s \cos \alpha \end{array} $	Заряд, напряжение,	1 11 12	
^	электроёмкость	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$	
$3. A = \pm qE(r_0 - r)$	$C = \frac{q}{II}$	Параллельное	
4. $A = \mp (qEr - qEr_0) = -\Delta W_p$	U	соединение	
$5. A = \pm q \frac{U}{J} s \cos \alpha$	«Конденсатор отключен от источника»	$U = U_1 = U_2$ $q = q_1 + q_2$	
a	q = q'	$C = C_1 + C_2$	
$6. A = \pm q \frac{U}{d} (r_0 - r)$	«Конденсатор подключен	Параллельное	
7. $A = \pm q(\varphi_1 - \varphi_2) = \pm qU_{12}$	к источнику»	соединение	
8. $A = \frac{mv^2}{2} - \frac{mv_0^2}{2} = \Delta E_k$	U = U'	конденсаторов	
$A = \frac{1}{2} - \frac{1}{2} = \Delta E_k$	Энергия конденсатора	одноименно («+») и разноименно («-»)	
	$W_{3} = \frac{q^{2}}{2C} = \frac{CU^{2}}{2}$	заряженными пластинами	
	", - 2C - 2		
		$U' = \frac{q'}{C'} = \frac{C_1 U_1 \pm C_2 U_2}{C_1 + C_2}$	

14. 3 <i>A</i>	аконы постоянного) TOKA
СИЛА ТОКА, СОПРОТИВЛЕНИЕ, НАПРЯЖЕНИЕ	СОЕДИНЕНИЯ ПРОВОДНИКОВ	ЗАКОНЫ ОМА
Определение силы тока $I = \frac{\Delta q}{\Delta t} = \frac{q}{t} = \frac{Nq_e}{t}$ Заряд при равномерном изменении тока $q = \frac{I_1 + I_2}{2}t$ Определение сопрот. $R = \frac{\rho\ell}{S}$ Зависимость от температуры $R = R_0(1 + \alpha t)$ Напряжение $U = \frac{A_{2i}}{q}$	Последовательное $I = I_1 = I_2$ $U = U_1 + U_2$ $R = R_1 + R_2$ Одинаковые сопротивления $R = nR_0$ Параллельное $I = I_1 + I_2$ $U = U_1 = U_2$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ Одинаковые сопротивления $R = \frac{R_0}{n}$	Для участка цепи $I = \frac{U}{R}$ Для полной цепи $I = \frac{\varepsilon}{R+r}$ ЭДС $\varepsilon = \frac{A_{cm}}{q}$ Падение напряжения, напряжение на полюсах источника $U = IR = \varepsilon - Ir$ Ток короткого замыкания $R \to 0; I_{\kappa.3.} = \frac{\varepsilon}{r}$ КПД источника $\eta = \frac{U}{\varepsilon} \cdot 100\% = \frac{R}{R+r} \cdot 100\%$

	МОЩНОСТЬ	РАБОТА, КОЛИЧЕСТВО
	,	ТЕПЛОТЫ
На внешней цепи, на нагрузке, полезная	$P_{\omega_{\text{escau}}} = IU = \frac{U^2}{R} = I^2 R = \left(\frac{\varepsilon}{R+r}\right)^2 R$	$A_{overu} = IUt = \frac{U^2}{R}t = I^2Rt = \left(\frac{\varepsilon}{R+r}\right)^2Rt = Q_{over}$
Максимальная на внешней цепи, при $R=r$	$P_{\text{max}} = \left(\frac{\varepsilon}{2r}\right)^2 r = \frac{\varepsilon^2}{4r}$	$A_{\max} = \left(\frac{\varepsilon}{2r}\right)^2 rt = \frac{\varepsilon^2}{4r}t = Q_{\max}$
Внутренней цепи, внутри источника	$P_{\text{ensymp}} = I^2 r = \left(\frac{\varepsilon}{R+r}\right)^2 r$	$A_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
Полная	$P_{norm} = I\varepsilon = I^{2}(R+r) = \frac{\varepsilon^{2}}{R+r}$	$A_{\scriptscriptstyle NOJH} = P_{\scriptscriptstyle NOJH} t = Q_{\scriptscriptstyle NOJH}$

Работа, энергия, количество теплоты, мощность и время

$$A = W = Q = Pt$$

Закон Джоуля – Ленца

 $Q = I^2 R t$

КПД электродвигателя

СИЛА АМПЕРА	РАБОТА СИЛЫ	ЧАСТИЦЫ
	АМПЕРА	
$F_{A} = BI\ell \sin \alpha,$	$A = F_A s \cos \alpha',$	Протон $q_p > 0$
где α - угол между	где $lpha'$ - угол между	Электрон $q_e < 0$
направлением B и	направлением $ec{F}_{_A}$ и	Нейтрон $q_n = 0$
условным направлением	перемещением \vec{S}	lpha - частица
тока	1	$q_{\alpha}=2q_{p}; m_{\alpha}=4m_{p}$

СИЛА ЛОРЕНЦА $F = avR\sin \alpha$

$F_{II} = q v B \sin \alpha$			
Движение заряженной частицы в магнитном поле $(\vec{v} \perp \vec{B})$			
	qvB =	= ma _{ų.c.}	Итог
υ		$a_{u.c.} = \frac{v^2}{R}$	$\upsilon = \frac{qBR}{m}$
R		$a_{u.c.} = \frac{v^2}{R}$	$R = \frac{m\upsilon}{qB}$
ω	$\upsilon = \omega R$	$a_{u.c.} = \omega^2 R$	$\omega = \frac{qB}{m}$
T	$\upsilon = \frac{2\pi R}{T}$	$a_{u.c.} = \frac{4\pi^2 R}{T^2}$	$T = \frac{2\pi n}{qB}$
V	$\upsilon = 2\pi R \nu$	$a_{y.c.} = 4\pi^2 R v^2$	$v = \frac{qB}{2\pi m}$
$p = m \upsilon$		$a_{u.c.} = \frac{v^2}{R}$	p = qBR
$E_k = \frac{mv^2}{2}$		$a_{u.c.} = \frac{v^2}{R}$	$E_k = \frac{q \upsilon BR}{2}$

МАГНИТНЫЙ ПОТОК	ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ	
	Изменение магнитного	$\varepsilon_i = -N \frac{\Delta \Phi}{\Delta r}$
$\Phi = BS\cos\alpha$	потока	$\varepsilon_i = -IV \frac{\Delta t}{\Delta t}$
$\Phi = BS\cos(\omega t)$	Изменение вектора	$\varepsilon_i = -N \frac{\Delta B}{\Delta t} S \cos \alpha$
$\Phi = LI$	магнитной индукции	$c_i = i V \Delta t$
$N\Phi = IJ$	Изменение площади	$\varepsilon_i = -NB \frac{\Delta S}{\Delta t} \cos \alpha$
		$\mathcal{E}_i = -IVD \frac{1}{\Delta t} \cos \alpha$
ВИЗЧЭНЕ	Изменение угла	$\varepsilon_i = -NBS \frac{\Delta \cos \alpha}{\Delta t}$
МАГНИТНОГО ПОЛЯ		$\varepsilon_i = -IVBS \frac{\Delta t}{\Delta t}$
II^2	ЭДС самоиндукции	, <i>M</i>
$W_{_{M}}=\frac{LI^{2}}{2}$	-	$\varepsilon_{is} = -L \frac{-}{\Delta t}$
	ЭДС индукции в	$\varepsilon_i = \upsilon B \ell \sin \alpha$
	движущихся	
	проводниках	

Сила тока и заряд
$$I = \frac{\Delta q}{\Delta t} = \frac{\mathcal{E}_i}{R}$$

	10. KOJIEDAIIIIJI II DOJI	
МЕХ. КОЛЕБАНИЯ	АМПЛИТУДА	ПУТЬ
Уравнение	Амплитуда скорости	1. $\ell(T/4) = \ell(\pi/2) = X_m$
$x = X_m \sin(\omega t + \varphi_o)$	$\upsilon = x'(t); \upsilon_m = \omega X_m$	$2. \ \ell(T/2) = \ell(\pi) = 2X_m$
Циклическая частота	Амплитуда ускорения	3. $\ell(3T/4) = \ell(3\pi/2) = 3X_m$
$\omega = 2\pi v = \frac{2\pi}{T}$	$a = x''(t); a_m = \omega^2 X_m$	$4. \ \ell(T) = \ell(2\pi) = 4X_m$
_	Амплитуда силы	Bесь путь $L = N4X_m$
Период $T = \frac{t}{N} = \frac{1}{v} = \frac{2\pi}{\omega}$	$F_m = ma_m = m\omega^2 X_m$	$E = 10 + X_m$
МАТЕМ. МАЯТНИК	ПРУЖИН. МАЯТНИК	ЭЛЕКТРИЧ. КОНТУР
Период	Период $T = 2\pi \sqrt{\frac{m}{k}}$	Период $T = 2\pi\sqrt{LC}$
$T = 2\pi \sqrt{\frac{\ell}{g}}$; $T = 2\pi \sqrt{\frac{\ell}{a_{max}}}$	1	Частота $v = \frac{1}{2\pi\sqrt{LC}}$
	Частота $v = \frac{\sqrt{k}}{2\pi\sqrt{m}}$	$V = \frac{1}{2\pi\sqrt{LC}}$
Частота $v = \frac{\sqrt{g}}{2\pi\sqrt{\ell}}$	•	Циклическая частота
	Циклическая частота \sqrt{k}	$\omega = \frac{1}{\sqrt{LC}}$
Циклическая частота \sqrt{g}	$\omega = \frac{\sqrt{k}}{\sqrt{m}}$	Соединение катушек и
$\omega = \frac{\sqrt{g}}{\sqrt{\ell}}$	Соединение пружин	конденсаторов
Маятник в вертикальном	$k_{nap} = k_1 + k_2$	$C_{nap} = C_1 + C_2; \frac{1}{L_{nap}} = \frac{1}{L_1} + \frac{1}{L_2}$
эл. поле	$\frac{1}{k_{noc2}} = \frac{1}{k_1} + \frac{1}{k_2}$	L_{nap} L_1 L_2
$T = 2\pi \sqrt{\frac{\ell}{g \pm qE}}$	k_{nocn} k_1 k_2	$\frac{1}{C_{noci}} = \frac{1}{C_1} + \frac{1}{C_2}; L_{noci} = L_1 + L_2$
ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ	ПЕРЕМЕННЫЙ ТОК	ТРАНСФОРМАТОР
Полная энергия	Действующие значения	Коэффициент
колебаний пружинного	$I_{\partial} = \frac{I_m}{\sqrt{2}}; U_{\partial} = \frac{U_m}{\sqrt{2}}$	трансформации
маятника	√2 √2 Закон Ома	$\frac{U_1}{U_2} = \frac{n_1}{n_2} = \frac{I_2}{I_1} = k$
$E = \frac{kX_m^2}{2} = \frac{kx^2}{2} + \frac{mv^2}{2} = \frac{mv_m^2}{2}$		1
2 2 2 2	$I_{\partial} = \frac{U_{\partial}}{Z}; I_{m} = \frac{U_{m}}{Z}$	КПД $\eta = \frac{I_2 U_2}{I_1 U_1} \cdot 100\%$
Полная энергия	Активное сопрот. <i>R</i>	ВОЛНЫ
колебательного контура	Ёмкостное сопротив. 1 1	Длина мех. волны
$\frac{CU_{m}^{2}}{2} = \frac{CU^{2}}{2} + \frac{Li^{2}}{2} = \frac{LI_{m}^{2}}{2}$	$X_C = \frac{1}{\omega C} = \frac{1}{2\pi \nu C}$	$\lambda = vT = \frac{v}{v} = \frac{v \cdot 2\pi}{\omega}$
2 2 2 2 MIIM	Индуктивн. сопротив.	v w
$q_{}^2 q^2 Li^2 LI_{}^2$	$X_L = \omega L = 2\pi v L$	Длина эл/м волны
$\frac{q_m^2}{2C} = \frac{q^2}{2C} + \frac{Li^2}{2} = \frac{LI_m^2}{2}$	Последователь соед.	$\lambda = cT = \frac{c}{V} = c \cdot 2\pi \sqrt{LC}$
Период энергии и	$Z = \sqrt{R^2 + (X_L - X_C)^2}$	интерференция
период колебаний	Закон Джоуля –Ленца	Условие максимума
$T_{_{\mathfrak{M}}} = \frac{T_{_{KOI}}}{2}$	$Q = I_{\partial}^{2} Rt$	$\Delta d = n\lambda$, где
2	Мощность	$n = 0; \pm 1; \pm 2; \pm 3$
	$P = I_{\partial}^{2} R = \frac{U_{\partial}^{2}}{R}$	Условие минимума
	·	$\Delta d = (2n+1)\frac{\lambda}{2}$

Пружинн	Пружинный маятник		
$x = X_m \sin(\omega t)$	$\upsilon = x'(t) = X_m \omega \cos(\omega t)$		
$X_{\overline{m}}$ $X_{\overline{m}}$ T_{κ}	$\begin{array}{c c} v, m/c \\ \hline v_m & \hline \\ \hline \begin{matrix} \overline{T_\kappa} \\ \hline \end{matrix} & \hline \end{matrix} & t, c \\ \hline \begin{matrix} T_\kappa \\ \hline \end{matrix} & \hline \end{matrix} & \tau, pad \\ \hline \end{array}$		
E_{pm} O T_{s} $2T_{s}$ t, c $E_{p} = \frac{kx^{2}}{2} = \frac{kX_{m}^{2} \sin^{2}(\omega t)}{2}$	E_{km} C C T_{s} $2T_{s}$ $E_{k} = \frac{m\upsilon^{2}}{2} = \frac{m\omega^{2}X_{m}^{2}\cos^{2}(\omega t)}{2}$		
Полная энергия $E_{pm} = E_p + E_k = E_{km}$ $\frac{kX_m^2}{2} = \frac{kx^2}{2} + \frac{mv^2}{2} = \frac{mv_m^2}{2}$	$E_{no,nh} = E_{pm} = E_{km}$ $E \longrightarrow T_{s} \qquad 2T_{s} \longrightarrow t, c$		
$a = x''(t) = -X_m \omega^2 \sin(\omega t)$	$F = ma = mX_m \omega^2 \sin(\omega t)$		
$a_{m} \xrightarrow{T_{\kappa}} t, c$ $O \qquad \pi \qquad 2\pi \varphi, pace$			
Yumume: $T(x) = T(v) = T(v)$	$a)=T(F),$ но T_{9 нергии $=rac{T_{\kappa оле 6 anu \bar{u}}}{2}$		

19. ОПТИКА		
ГЕОМЕТРИЧЕСКАЯ ОПТИКА	линзы	
Закон отражения	Формула тонкой линзы	
$\alpha = \beta$	$\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$	
Закон преломления	-F $-d$ $-f$	
$\sin \alpha \ n_2 \ n_2 \ \lambda_1$	Увеличение линзы	
$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = n_{21} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$	$\Gamma = \frac{H}{h} = \frac{f}{d} = \sqrt{\frac{S_{uso\delta p}}{S}}$	
Для вакуума	$h = h = d = \sqrt{S_{npeom}}$	
$n = 1;$ $v = c = 3.10^8 \frac{M}{c}$	Оптическая сила линзы	
Полное отражение возможно только	$D = \frac{1}{F} = \left(\frac{n_{\text{mursu}}}{n_{\text{control}}} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	
при переходе из ОБП в ОМП	Составные линзы	
$\frac{\sin \alpha_{npeo}}{2} = \frac{n_2}{n_2} = \frac{\nu_1}{n_2} = \frac{\lambda_1}{n_2}$	$D = D_1 + D_2$	
$\frac{-\sin 90^{\circ}}{\sin 90^{\circ}} - \frac{-n_1}{n_1} - \frac{-n_2}{n_2} - \frac{\lambda_2}{\lambda_2}$		
ВОЛНОВЫЕ СВОЙСТВА СВЕТА	ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ	
<u>ПОЛЯРИЗАЦИЯ</u>	Релятивистское увеличение массы и	
Доказывает $ec{\upsilon} \perp ec{B} \perp ec{E}$	времени	
ИНТЕРФЕРЕНЦИЯ СВЕТА	$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{2}}} \qquad t = \frac{t_0}{\sqrt{1 - \frac{v^2}{a^2}}}$	
Условие максимума	$\sqrt{1-\frac{\upsilon^2}{2}}$ $\sqrt{1-\frac{\upsilon^2}{c^2}}$	
$\Delta d = n\lambda$, где $n = 0;\pm 1;\pm 2;\pm 3$	2	
0-первый порядок	Уменьшение длины $\ell = \ell_0 \sqrt{1 - \frac{v^2}{c^2}}$	
Условие минимума		
$\Delta d = (2n+1)\frac{\lambda}{2}$	Сложение скоростей $v + u$	
«Просветление оптики» - свет	$v' = \frac{v + u}{1 + \frac{vu}{c^2}}$	
проходит через пленку		
	Релятивистский импульс	
$2h = \frac{\lambda}{2n_{\text{angular}}}$	$p = m\upsilon = \frac{m_0\upsilon}{\sqrt{1 - \frac{\upsilon^2}{2}}} = \frac{E_{no.m}}{c^2}\upsilon$	
Максимальное отражение	$\sqrt{1-\frac{b^2}{c^2}}$	
$2h = \frac{\lambda}{n_{n_{NEMKU}}}$	Полная и кинетическая энергия	
<i>п_{пленки}</i> ДИФРАКЦИЯ	$F = -\frac{m_0 c^2}{1 - c \sqrt{n^2 + m^2 c^2}}$	
<u>дифракция</u> Максимум дифракционной решетки	$E_{noin} = \frac{m_0 c^2}{\sqrt{1 - \frac{U^2}{c^2}}} = c \sqrt{p^2 + m_0^2 c^2}$	
$d\sin\varphi = n\lambda$, где	V c ²	
,	$E_k = \frac{m_0 c^2}{\sqrt{1 - \frac{\upsilon^2}{c^2}}} - m_0 c^2$	
n = 0;1;2;3 порядок максимума	$\sqrt{1-\frac{\upsilon^2}{2}}$	
0 – центральный максимум	у с ⁻ Энергия и масса. Работа и энергия	
$d = \frac{\ell}{N}$ - период решетки	$E = mc^2$ или $\Delta E = \Delta mc^2$	
При мапых углах а		
При малых углах $\sin \varphi \approx tg\varphi = \frac{a}{b}$	$A = \frac{m_0 c^2}{\sqrt{1 - \frac{v_2^2}{2}}} - \frac{m_0 c^2}{\sqrt{1 - \frac{v_1^2}{2}}}$	
Максимальный период, если	$\sqrt{1-\frac{z}{c^2}} \sqrt{1-\frac{z}{c^2}}$	
$\sin \varphi \approx 1$		

20. КВАНТОВАЯ ФИЗИКА			
КОНСТАНТЫ	ФОТОЭФФЕКТ	ФОТОНЫ	
Постоянная Планка	Формула Эйнштейна	Энергия одного фотона	
$h = 6,62 \cdot 10^{-34} $ Дж $\cdot c$	$E_{\Phi} = A_{\text{GbLX}} + E_{k}$	$E_0 = h v = \frac{hc}{\lambda} = m_0 c^2$	
Скорость света	Энергия фотона	λ Масса и импульс одного	
$c = 3 \cdot 10^8 \text{m/c}$		фотона	
Заряд и масса	$E_{\phi} = h \nu = \frac{hc}{2}$	L	
фотоэлектрона	λ	$m_0 = \frac{E_0}{c^2} = \frac{hv}{c^2} = \frac{h}{c\lambda}$	
$q_e = e = 1.6 \cdot 10^{-19} \text{Kn}$	Работа выхода	$p_0 = m_0 c = \frac{hv}{c} = \frac{h}{2}$	
$m_e = 9.1 \cdot 10^{-31} \kappa c$	$A_{\scriptscriptstyle GbLX} = h u_{\scriptscriptstyle KP} = rac{hc}{\lambda}$	ι λ	
Единицы энергии	кр	Заряд фотона $q=0$	
$19B = 1,6 \cdot 10^{-19}$ Джс	Кинетическая энергия	Число фотонов	
Постоянная Ридберга	электрона	$N = \frac{E}{E_0} = \frac{Pt}{E_0} = \frac{m_{\text{scex}}}{m_0}$	
$R = 3.3 \cdot 10^{15} \Gamma u$	$E_k = \frac{m_e v^2}{2} = q_e U_{3a\partial}$		
Атомная единица массы	2	Длина волны де Бройля	
$1a.e.м. = 1,66 \cdot 10^{-27} $ кг		$p = m\upsilon = \frac{h}{\lambda_{E_p}}$	
		Дифракция волн де Бройля	
		$d\sin\varphi = n\lambda_{Ep}$	
ИЗЛУЧЕНИЕ	ДАВЛЕНИЕ	ATOM	
Энергия излучения	Давление света при	Обозначение атома	
поглощения атома	поглощении		
	$p = \frac{W}{tS_a} = \frac{I}{a} [\Pi a]$	$_{Z}^{A}X$	
$hv = \frac{hc}{\lambda} = E_n - E_k$	isc c	А - атомный вес (число	
Частота излучения	Давление света при	нуклонов)	
$v = R \left(\frac{1}{k^2} - \frac{1}{n^2} \right); k < n$	зеркальном отражении	A = Z + N	
$\begin{pmatrix} k^2 & n^2 \end{pmatrix}$	$p = \frac{2W}{tSc} = \frac{2I}{c} [\Pi a]$	Z - число протонов и	
	Сила давления света	электронов; N – число	
	$F = pS_{nos}[H]$	нейтронов	
ЧАСТИЦЫ	РАСПАД ЯДЕР	РАДИОАК. РАСПАД	
Протон $_{1}^{1}p=_{1}^{1}H$	lpha - распад	Число не распавшихся	
	$_{7}^{A}X = _{2}^{4}He + _{7-2}^{A-4}Y$	ядер	
Нейтрон $\frac{1}{0}$ n	eta - распад	$N = \frac{N_0}{t}$ или $m = \frac{m_0}{t}$	
Электрон $_{-1}^{0}e$, .		
- 1	$_{Z}^{A}X = _{-1}^{0}e + _{Z+1}^{A}Y$	2^T 2^T	
Позитрон $_{+1}^{0}e$	γ - распад	где Т- период полураспада	
α – частица ${}_{2}^{4}$ He	${}_{7}^{A}X = {}_{7}^{A}X$	Число распавшихся ядер	
	L L	N ₀ – N	
АТОМНОЕ ЯДРО	ЯДЕРНЫЕ РЕАКЦИИ	ЙИДУАБИ ВИТИВНИЯ ВИТИВНИЕ	
Дефект массы ядра		Энергия выделяется, если	
$\Delta m = Zm_p + Nm_n - m_g$	Законы сохранения	$\Delta m > 0$	
Энергия связи ядра	$\Sigma Z = \Sigma Z'; \Sigma A = \Sigma A'$	Энергия поглощается, если	
$E_{ce.} = \Delta mc^2$,	·	$\Delta m < 0$	
Удельная энергия связи	$\Sigma N = \Sigma N'$	Выделяемая или	
	Дефект массы в ядерных	поглощаемая энергия	
$\frac{E_{cs.}}{\Lambda}$	реакциях	$E = \Delta mc^2$	
A	$\Delta m = (m_1 + m_2) - (m_1' + m_2')$		

ОПРЕДЕЛЕНИЕ ВЕЛИЧИН ЧЕРЕЗ ПЛОЩАДЬ ФИГУРЫ ПОД ГРАФИКОМ

Зависимость скорости от	Зависимость давления от	Зависимость давления от
времени (или силы тока,	объема	объема (замкнутый
или мощности)		цикл)
$0 \xrightarrow{v_x; i; P} t$	$ \begin{array}{c c} p_2 & & \\ \hline p_1 & & \\ \hline V_1 & V_2 & V \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$s = S_1 - S_2 ; \ell = S_1 + S_2$ $\upsilon_{cp} = \frac{\ell}{t}; \vec{\upsilon}_{cp} = \frac{s}{t}$	$A = \frac{p_1 + p_2}{2} (V_2 - V_1)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$q = S_{duzvpbi}; A = S_{duzvpbi}$		

ОПРЕДЕЛЕНИЕ ВЕЛИЧИН ЧЕРЕЗ ПЛОЩАДЬ ФИГУРЫ ПОД ГРАФИКОМ

TIMPINOM	
Зависимость силы	Зависимость силы
тяжести от высоты	упругости от
	деформации
$F_{ms,kc}$ h	F_{ynp} α α α
$A = S_{npsmoye.}$ $A = mgh$	$A = S_{mpeye.}; A = \frac{kx^2}{2}$
	Зависимость силы тяжести от высоты $F_{ms, m} = \begin{pmatrix} & & & & & & & & & & & & \\ & & & & & &$