Problem Definition:

給定-字典為 word Diet 和一字串為

S. 欲判断 s 是否可利用字典中的字组成.

Example: 5 = " air plane"

word Dict = [" air", " plane"]

则为 true.

S= "hahaha"

word Dict = ["ha"]

同樣為 true.

Solution:

O. Dynamic Programming:

定養子問題為 s[i.j] 是否丁由 wordlind 组合而而成

to optimal value 孝 di.j 則:

 $d_{\lambda,j} = \begin{cases} \text{true} & \text{if } \exists k, \lambda \leq k \leq j \text{ } \\ d_{\lambda,k} = \text{true}, d_{\mu\nu,j} = \text{true} \end{cases}$ $\text{true} & \text{if } S[\lambda:j] \text{ in word } D_{i} \neq k$ false otherwise.

For example: S = "air plane"

 故計算: do,n 时, 需失算得:
do 1, d2,7 do.2, d3,7 do.3, d4.7 do.4 dr.7 do.5, d6.7
故填表顺序应答: do,1~di.2~…~do.1

再季,才為: J.,...

	A	i	r/	P	1	A	M	e	<i>/</i> 1	do,, 2 & &
A	F	F	T	F	F	F	F			d3.7
ì	X	۴	F	F	F	۴	F	۴		
r	×	×	Ŧ	۴	兀	F	4	F		
r	Х	X	X	F	F	F	F	T	,	
1	۴	×	X	×	F	F	ഥ	F		
4	X	x	×	×	x	F	F	F		
h	×	X	X	X	X	×	F	F		
e	X	X	×	X	X	X	×	F		

2). 重新定義 子問題為:

S[: i] 是不丁由 word Diet 组合而成。

見) optimal value 為 di

For example: 5 = "leet code leet"

word Dict = ["lect", "code"]

則 d[3] = true. d[7) 為 true, d[11) 為 true.

共有 O(n) 介 state, 每个 state 要 過歷 O~ i-1 且 核查 Substring S[k+1: i] 是否在 word Dict 中 Time: O(n3) 事實上, 图 word Diet 已知: 每个 state 中, 可核查 word Did 中每个 word, 設 rize 卷k 別· J[i] = { true if I - word 在 word Dict 中 便得 d[i-k] = true 用 S[i-k+1:i] 為此 word. true if I - word, s[:i]為此 word.

s = "leet code leet"

Ex:

word Dict = ["leet", "code"]

| d[7] = true : 存在 "code" + d[3] = true 且 s[4:7] = "code"

et DJ, Time Complexity \$: O(n) × O(m.l)

on: word Diet size

l: average word len in word Dict.