Logik

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation
$$\neg A$$
 "Nicht" (!, ~, $\rightarrow \triangleright$)

Konjunkt.
$$A \wedge B$$
 "und" (&&, \Longrightarrow

Disjunkt.
$$A \lor B$$
 "oder" (11, \Rightarrow

$$\begin{array}{c} \textbf{Implikat.} \ \mathcal{A} \Rightarrow \mathcal{B} \ \text{,Wenn,} & \mathsf{dann} \text{``} \\ \text{,} \mathcal{B} \text{``} \ (\rightarrow, \ \mathsf{if}) \end{array}$$

 $\mathcal{A}\Rightarrow\mathcal{B}$ " \mathcal{A} hinreichend" $\mathcal{B} \Rightarrow \mathcal{A} ... \mathcal{A}$ notwendig"

Äquiv.
$$\mathcal{A} \Leftrightarrow \mathcal{B}$$
 "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, 1)$ "

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\overline{A}	В	$\neg A$	$\mathcal{A} \wedge \mathcal{B}$	$A \lor B$	$A \Rightarrow B$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Äquivale	Bezeichnung		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \lor A$	Rommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \lor (B \lor C)$	$(A \lor B) \lor C$		
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \lor A$	A		
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan	
$\neg(A \lor B)$	$\neg A \land \neg B$		
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (A \wedge B)$	A		
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Universums:

Existenzg. ∃ "Mind. eines"

Individuum ∃! ..Genau eines"

Allg. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\bot = \forall x \neg F(x)$

Klassische Tautologien	Bezeichnung	
$A \vee \neg A$	Ausgeschlossenes Drittes	
$A \land (A \Rightarrow B) \Rightarrow B$	Modus ponens	
$(A \land B) \Rightarrow A$	Abschwächung	
$A \Rightarrow (A \lor B)$	Abschwachung	

Negation (DE-MORGAN)

$$\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$$
$$\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$$

Häufige Fehler

- $U = \emptyset^{\complement}$ nicht notwendig
- $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$
- $\bullet \neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Beweistechniken

Achtung: Aus falschen Aussagen können wahre und falsche Aussagen folgen.

Direkt $A \Rightarrow B$ Angenommen A, zeige B. Oder: Ange- $\neg B$. $\neg A$ nommen zeige (Kontraposition).

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Fallunters. Aufteilen, lösen, zusammenführen. O.B.d.A = "Ohne Beschränkung der Allgemeinheit"

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$ Angenommen $A \wedge \neg B$, zeige Kontradiktion. (Reductio ad absurdum)

Ring (Transitivität der Implikation)

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$
$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow \mathbf{A}$$

Induktion $F(n) \quad \forall n > n_0 \in \mathbb{N}$

- 1. Anfang: Zeige $F(n_0)$.
- 2. **Schritt:** Angenommen F(n)(Hypothese), zeige F(n+1) (Behauptung

Starke Induktion:

Angenommen $F(k) \quad \forall n_0 \leq k \leq$ $n \in \mathbb{N}$.

Häufige Fehler

- Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Mengen Zusammenfassung

Element $x \in M$ "enthält"

Einschränkung $\{x \mid F(x)\}$

Objekte "Elemente".

Leere M. $\emptyset = \{\}$

Universum U

Relationen

Gleichheit M=N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

$$|M| egin{cases} = n & ext{endlich} \ \geq \infty & ext{unendlich} \ = |N| \Leftrightarrow \exists f_{ ext{bijekt.}}: M o N \end{cases}$$

Abzählbar $\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, ∅, ℕ, ℤ, □
- $M_{\mathsf{abz.}} \wedge N_{\mathsf{abz.}} \Rightarrow (M \cup N)_{\mathsf{abz.}}$ $(=\{m_1,n_1,m_2,n_2,\dots\})$
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

 $f(1) = 0, \mathbf{r}_{11} r_{12} r_{13} r_{14} \dots$ $f(2) = 0, r_{21} \mathbf{r}_{22} r_{23} r_{24} \dots$ $f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$ $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$

(CANTORS Diagonalargumente)

Naive Mengenlehre Operationen

Vereinig.
$$M \cup N$$
 $\Leftrightarrow \{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N} (= \emptyset "disjunkt")

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$ **Umkehrfunktion** $f^{-1}: Y \to X$ wenn

Komplement M^{\complement} $\{x \mid x \notin M\}$

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

Quantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

$$\bigcup_{i \in I} M_i := \{x \mid \exists i \in I : x \in M_i\}$$
$$\bigcap_{i \in I} M_i := \{x \mid \forall i \in I : x \in M_i\}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\begin{split} \mathcal{P}(M) := & \{ N \mid N \subseteq M \} \\ |\mathcal{P}(M)| = & 2^{|M|} \quad (\in / \not \in \mathsf{bin\"{a}r}) \end{split}$$

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

$$\mathbf{f}: X \to Y$$

Graph $gr(f) := \{(x, f(x)) \mid x \in X\}$

Identität

$$\mathsf{id}_A:A \to A$$
 $\mathsf{id}_A(a):=a \quad \forall a \in A$

f bijektiv und $(f \circ f^{-1})(y) = f$

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X:$$
 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv
$$\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$$

Bijektiv wenn injektiv und surjektiv

Verkettung $f \circ g : A \to C$

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

 \equiv Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow id_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \mathsf{id}_M \cap R = \emptyset$

 \equiv Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$

Antis. $\forall x,y: ((x,y) \in R \land (y,x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{y}$ $\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$

 \equiv Transitiv $\forall x, y, z$: $((x,y) \in R \land Analysis$ $(y, z) \in R$ \Rightarrow $(\mathbf{x}, \mathbf{z}) \in R$ $\Leftrightarrow R: R \subseteq R$

Vollst. $\forall \mathbf{x}, \mathbf{y} \in M : (x, y) \in R \vee$ $(y,x) \in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

Inverse Relation R^{-1} mit $R \in M \times Addition (\mathbb{R}, +)$ $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p) \in M \times P \mid \exists n \in N : \}$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation 0

All relation $M \times M$

 \hat{A} guivalenzrelation \equiv reflexiv. metrisch und transitiv. (Gleichheit***)

Äquivalenzklasse [m] auf M. Vertreter $m \in M$.

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- ∅ ∉ N
- *M* = ∫ ∫ *N*
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv) := \{ [m]_{\equiv} \mid m \in M \}$$

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{O})

Körperaxiome $(\mathbb{R}, +, *)$ $a, b, c \in \mathbb{R}$

Assoziativität

$$a + (b+c) = (a+b) + c$$

Kommutativität a+b=b+a

Neutrales Element Null $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Multiplikation $(\mathbb{R},*)$

Assoziativität a*(b*c) = (a*b)*c

Kommutativität a * b = b * a

Neutrales Element Eins

 $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$ Inverses ..Kehrwert"

 $a*(a^{-1})=1$ $a \neq 0, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

a < b oder a = b oder b < a \Rightarrow Irreflexivität $(a < b \Rightarrow a \neq b)$

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

Archimedes Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a*n$$

teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$
- $\bullet \quad \overset{a}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}} \stackrel{a*d}{\overset{}{\overset{}}{\overset{}}}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- \bullet $\frac{a}{b} + \frac{c}{d} = \frac{a*d+c*b}{b*d}$

Wurzeln
$$b^n = a \Leftrightarrow b = \sqrt[n]{a}$$

- $\sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $\bullet \ a^{\times} * b^{\times} = (a * b)^{\times}$
- \bullet $a^x * a^y = a^{x+y}$
- $(a^x)^y = a^{x*y}$

Intervalle

Sei
$$A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$$
.

Geschlossen
$$[a;b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$$
 ("Ecken sind mit enthalten")

(
$$\Rightarrow \sqrt{2} \notin \mathbb{Q}$$
, da mit $\frac{a}{b} = \sqrt{2}$ nicht **Offen** $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

$$\begin{array}{l}
\mathbf{Minimum} \ \min(A) := a_0 \\
\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a
\end{array}$$

Maximum
$$\max(A) := a_0$$

 $\Leftrightarrow \forall a \in A : \mathbf{a} \le a_0$
 $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt
$$\exists s \in \mathbb{R} \forall a \in A : a \leq s$$

Unten beschränkt
$$\exists s \in \mathbb{R} \forall a \in A : s \leq a$$

Vollständigkeit

Infimum (klein)
$$\inf(A)$$

:= $\max\{s \in \mathbb{R} \mid \forall a \in A : s \le a\}$

Supremum (groß)
$$\sup(A)$$

:= $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$

Vollständigkeitsaxiom
$$\exists \sup(A)$$
.

Folgen

Folge $(a_n)_{n\in\mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

Arithmetische Folge
$$a_{n+1} = a_n + d$$

 $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge
$$a_{n+1} = a_n * q$$

 $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p}$$

Summen und Produkte

Summe
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n$$

Produkt
$$\prod_{i=1}^n i = 1 * 2 * 3 * \cdots * n$$

Fakultät
$$n! = \prod^n i \ (0! = 1)$$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + n * x$$

Binom. Koeff.
$$\binom{n}{k} = \frac{n!}{k!*(n-k)!}$$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} * b^k$$

Grenzwerte

$$\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \le x \\ - & x & x < 0 \end{array} \right.$$

Lemma |x * y| = |x| * |y|

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$
 $\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \geq n_0 :$
 $|\mathbf{a_n} - \mathbf{a}| \leq \epsilon$
 $(a - \epsilon \leq a_n \leq a + \epsilon)$

$$\xrightarrow[a-\epsilon \quad a \quad a+\epsilon \quad]{\mathsf{Epsilonumgebung}} \xrightarrow[a]{\mathsf{Epsilonumgebung}} \mathbb{R}$$

•
$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$$

 ${\sf Beschr\ddot{a}nkt} \ + \ {\sf monoton} \ \Rightarrow \ {\sf konvergent};$

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{fall.}} \\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\text{steig.}} \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty} \frac{1}{n^k} = 0$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} n * q^n = 0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a>0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$\begin{array}{c} a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow \\ \forall R > 0 \exists n \geq n_0 \in \mathbb{N} : a_n \geq R \\ a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow \\ \forall R < 0 \exists n > n_0 \in \mathbb{N} : a_n \leq R \end{array}$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \text{div.} & \le -1 \end{cases}$$

Monotonie

Monoton fallend

$$a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$$

Monoton steigend

$$a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a}_n| \le \mathbf{k}$$

- Konvergent \Rightarrow beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b$ (Max. einen Grenzw.)
- $a = \mathbf{0} \wedge (b_n)_{beschr.}$ $\Leftrightarrow \lim_{n \to \infty} a_n * b_n = \mathbf{0}$
- $a_n \le b_n \Leftrightarrow a \le b$ (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n \in \mathbb{N}}$ mit $(n_k)_{k \in \mathbb{N}}$, sodass $b_k = \mathbf{a}_{nk} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}.$$

(nicht streng!)

Häufungspunkt h mit einer Teilfolge

$$\lim_{n\to\infty} a_{n\,k} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

Bolzano-Weierstraß

$$(a_n)_{n\in\mathbb{N}_{\textit{beschr.}}}\Rightarrow \exists h_{\textit{H\"{a}\it{uf.}}}$$
 (Teilfolge + (beschr.) $\Rightarrow \exists$ H\"{a}\textit{uf.})

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von R

$$(a_n)_{n\in\mathbb{N}_{\mathrm{CAUCHY}}}\Leftrightarrow \exists \lim_{n\to\infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

Reihe
$$(s_n)_{n\in\mathbb{N}}=\sum_{k=1}^\infty a_k$$
 mit den Gliedern $(a_k)_{k\in\mathbb{N}}.$

nte Partialsumme
$$s_n = \sum_{k=1}^n a_k$$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n konvergiert

Spezielle Reihen

Geom.
$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$
 $q \in (-1; 1)$

Harmon.
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergiert $\forall \alpha > 1$

Lemma

$$\bullet \sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k \text{ konvergent}$$

$$- \sum_{k=1}^{\infty} \mathbf{a}_k + \sum_{k=1}^{\infty} \mathbf{b}_k =$$

$$\sum_{k=1}^{\infty} (\mathbf{a}_k + \mathbf{b}_k)$$

$$- \mathbf{c} * \sum_{k=1}^{\infty} \mathbf{a}_k = \sum_{k=1}^{\infty} \mathbf{c} * \mathbf{a}_k$$

- $\exists N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $\bullet \ (\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \\ \Rightarrow \ \forall N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0$

Konvergenzkriterien

Cauchy

$$(\sum_{k=1}^{\infty}a_k)_{\mathrm{konv.}}$$

$$\Leftrightarrow (\sum_{k=1}^{n}a_k)_{n\in\mathbb{N}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > m > n_0:$$

$$|\sum_{k=m+1}^{n}a_k| \leq \epsilon$$

Notwendige

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$
$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{div.}}$$

Hinreichende

Lemma $a_k \ge 0 \ (\Rightarrow mnt.) \ \forall k \in \mathbb{N}$

$$(\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\text{beschr.}}$$

$$\begin{array}{ll} \textbf{Majorante} \ \ 0 \ \leq \ \mathbf{a_k} \leq \mathbf{b_k} & \forall k \ \in \\ \mathbb{N} \\ \text{(Min.} \leq \mathsf{Major.)} \end{array}$$

$$(\sum_{k=1}^{\infty} b_k)_{\text{konv.}} \Leftrightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$$