Assignment Project Exam Help

Week 7: Linear Methods for Regression I https://powcoder.com

Discipline felicles All tie Chemical to Dio Wincoder

Assignment Project Exam Help

- 1. Statistical and Machine Learning foundations and applications.
- 2. https://powcoder.com
- 3. Classification methods.
- 4. Add f We Chat powcoder

Week 7: Linear Methods for Regression I

Assignment Project Exam Help

2. Variable selection

3. Relation of power of the second of the se

Add WeChat powcoder

Reading: Chapters 6.1 and 6.2 of ISL.

Exercise questions: Chapter 6.8 of ISL, Q1, Q2, Q3, and Q4.

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Linear Methods for Regression

Assignment Project Exam Help In this lecture we focus again on the linear regression model for

In this lecture we focus again on the linear regression model for prediction. We move beyond OLS to consider other estimation methods.

meth https://powcoder.com

The motivation for studying these methods is that using many predictors it alinear regression model typically leads to everfitting. We will therefore accept some bias in order reduce variance.

Linear regression (review)

Assignment Project Exam Help

 $Y = f(x) + \varepsilon.$ The limear rigression noder is a special case based on a regression function of the form

Add_{(x}W_eC₁hat₂xpow₆c₂oder

OLS (review)

In the OLS method, we select the coefficient values that minimise

Assignment Project Exam Help

we of Aide for We Chat powcoder

$$\widehat{\boldsymbol{\beta}}_{\mathsf{ols}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

MLR model (review)

1. Linearity: if X = x, then

Assignment $P_{\text{roject}}^{Y} = P_{\text{roject}}^{+\beta_1 x} + \dots + P_{\text{roject}}^{+\beta_2 x} + \dots + P_{\text{roject}$

- 2. https://poweoder.com 0.
- 3. Constant error variance: $Var(\varepsilon|X) = \sigma^2$.
- 4. land the Wester Hiat arphorocoder
- 5. The distribution of X_1, \ldots, X_p is arbitrary.
- 6. There is no perfect multicollinearity (no column of X is a linear combination of other columns).

OLS properties (review)

Assignment Project Exam Help

Under Assumptions 1 (the regression function is correctly specified) and 2 (there are no omitted variables that are correlated with the predictors), the Osystan Conference on the correlated with the predictors), the Osystan Conference on the correlated with the predictors of the conference on the correct of the conference on the correct of the corre

Add WeChat powcoder

Why we are not satisfied with OLS?

A Stelletin property Lower feeting it was approximately correct), but potentially high variance. We can improve performance by setting some coefficients to zero or shrinking thems://powcoder.com

Interpretability. A regression estimated with too many predictors and his grid ce was r in positive to the order understand the big picture, we are willing to sacrifice some of the small details.

Linear model selection and regularisation

Variable selection. Identify a subset of k < p predictors to use.

Assignment Project Exam Help

Regularisation (shrinkage). Fit a model involving all the p predictors, but shrink the coefficients towards zero relative to OLS. Depending to the type of the coefficients towards zero relative to OLS. may be zero, in which case the method also performs variable selection.

Add WeChat powcoder

Dimension reduction. Construct a set of m < p predictors which are are linear combinations of the original predictors. Fit the model by OLS on these new predictors.

https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help

Best subset selection (key concept)

Assignment Project Exam Help

The **best subset selection** method estimates all possible models and selection method estimates all possible models are selection method estimates all possible

Given Aprellic or Where to the product to choose from.

Best subset selection

For example, if p=3 we would estimate $2^3=8$ models:

Assignment Project Exam Help

https://powcoder.com

$$\begin{array}{ccc} & k=2: & Y & = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon \\ & \text{Add} & \underset{Y}{\text{WeChat+powcoder}} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & &$$

$$k = 3: Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

Best subset selection

Significant Project Exam He 1: Estimate the null model \mathcal{M}_0 , which contains only the constant.

- 2: **for** k = 1, 2, ..., p **do**
- Fit the possible posts with each k codictor. Pick the model with the lowest RSS and call it \mathcal{M}_k .
- 5: end for
- Seact the best voca carried to provide the cross validation, AIC, or BIC.

Computational considerations

Assignment Project Exam. Help

explosion, since it requires the estimation of 2^p different models.

The computational requirement is therefore very high, except in low doesn't power than the power of the computational requirement is therefore very high, except in low doesn't power than the computational requirement is therefore very high, except in low doesn't power than the computational requirement is therefore very high, except in low doesn't power than the computational requirement is therefore very high, except in low doesn't power than the computational requirement is therefore very high, except in low doesn't power than the computational requirement is therefore very high, except in low doesn't power than the computational requirement is the computational requirement in low doesn't power than the computational requirement is the computational requirement in low doesn't power than the computational requirement is the computational requirement in low doesn't power than the computational requirement is the computational requirement in low doesn't power than the computational requirement is the computation of the compu

For example, for $p\equiv 30$ we would need to fit a little over 1 billion models. Let Gubs the ection have per light wright for fost and is infeasible in practice for p larger than around 40.

Stepwise selection

Assignment Project Exam Help Stepwise selection methods are a family of search algorithms that

find promising subsets by sequentially adding or removing regrestrations are a ramily of search algorithms that find promising subsets by sequentially adding or removing regrestrations.

Conce Aught dhe War a popularing to best subset ediction, not different methods.

Forward selection

Algorithm Forward selection Selection Forward se

- 2: **for** k = 1, 2, ..., p **do**
- Fit all the p-k+1 models that add **one** predictor to \mathcal{M}_{k-1} . Let p-k+1 models that add **one** predictor to \mathcal{M}_{k-1} . it \mathcal{M}_k .
- 6: Selected de bes Who e Chatopo, w, coder to
 - cross validation, AIC, or BIC.

Backward selection

Algorithm Backward selection ssignment. Project Exam Help

- 2: **for** $k = p 1, \dots, 1, 0$ **do**
- Fit all the k+1/models that deleterone predictor from \mathcal{M}_{k+1} . it \mathcal{M}_k .
- 5: end for deWeChatopowcoder to
 - cross-validation, AIC, or BIC.

Stepwise selection

Assignment Project Exam Help stepwise algorithms reduce the number of estimations from 2^p

to 1+p(p+1)/2. For example, for p=30 the number of the transfer is $40.0 \ \mathrm{WCOCC}$.

• The disadvantage is that the final model selected by stepwise selected by stepwise selected by stepwise among the 2^p possible models.

Variable selection

Advantages

Assignment to estimating a moder with all predictors. Help

Interpretability. The final model is a linear regression model and the supplementary of the s

Disadvantages

- · Add WeChat powcoder
- By making binary decisions include or exclude particular variables, variable selection may exhibit higher variance than regularisation and dimension reduction approaches.

Illustration: Equity Premium Prediction (OLS)

Quarterly data from Goyal and Welch (2008).

Assignment Project Exame Help

1. dp Dividend to price ratio
2. dy Dividend vield

anttps://powcoder.com

5. ntis Net equity expansion6. tbl Treasury bill rate

7. Ardd Low threat heat powcoder

9. dfy Default yield spread
 10.dfr Default return spread

11.infl Inflation

12.ik Investment to capital ratio

Illustration: Equity Premium Prediction

		the thod: Least Squares F-statistic: 1.904 The third in the state of the state o						
	Dep. Varial	ole:	r	et R-squ	========= ared:		0.108	
	Model:		0	LS Adj. 1	R-squared:		0.051	
	Method:		Least Squar	es \digamma-sta	tistic: 🛖	7	1.901	•
A \$\$1.	onn	nen	t Pr	O12		∜ี่XЯ1		ł
TOOT	no. Observa	ations:	1	84 AIC:	ET HOOG	21 X COL		4
	Df Residual	ls:	1	72 BIC:			1321.	
	Df Model:			11				
	Covariance	Type:	nonrobu	st	4			
	http	S.4	$\mathbf{p}_{\mathbf{q}}$	VCO	der	95.(%):	nf nt.]	
	Intercept	26.1369	14.287	1.829	0.069	-2.064	54.337	
	dp	0.3280	8.247	0.040	0.968	-15.951	16.607	
	dy	3.3442	7.941	0.421	0.674	-12.330	19.019	
	Ada	0 31 3 -3 /4	2 345 6 719	12t	0.894	V-6.517	(1.942 (1.942)	Þ
•	ntis	-46.9566	38.911	-1.207	0.229	-123.762	29.848	
	tbl	-2.8651	20.922	-0.137	0.891	-44.162	38.432	
	ltr	10.2432	14.468	0.708	0.480	-18.314	38.800	
	tms	13.1083	11.129	1.178	0.240	-8.859	35.076	
	dfy	-156.8202	213.943	-0.733	0.465	-579.111	265.471	
	dfr	71.0710	29.099	2.442	0.016	13.634	128.508	
	infl	-36.9489	82.870	-0.446	0.656	-200.521	126.623	
	ik	-208.4868	242.844	-0.859	0.392	-687.824	270.851	

Illustration: Equity Premium Prediction

Assign the AIC: Projective with the AIC:

Best https://powooder.com

 $\stackrel{\text{Forward selection: (ik, trasselfr)}}{Add} \stackrel{\text{(ik, trasselfr)}}{We} \stackrel{\text{(fir)}}{Chat powcoder}$

Backward selection: (dy, tms, dfr)

Illustration: Equity Premium Prediction

Assignment Project Exam Help

Illustration: Equity Premium Prediction (OLS)

Wrong ways to do variable selection

A stipe the relation of the selection criterion. It does not sufficiently penalise additional predictors.

Removing statistically insignificant predictors. A statistically significant coefficient means we can reliably say that it is not exactly zero dhis has almost bothing to do with predicting (see the regression output slide). Furthermore, there are multiple testing issues.

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Regularisation methods (key concept)

Assignment of Embigal Escation in Fellow 19 Assignment of Embigal

$$https://percoder.com$$

Here, Addun We Chat powcoder

function will be the norm of the vector of regression coefficients β . The choice of norm leads to different regularisation properties.

Ridge regression (key concept)

Assignment Project Exam Help

$$\widehat{\boldsymbol{\beta}}_{\text{https:/}} / \left\{ \widehat{\boldsymbol{p}}_{1} \widehat{\boldsymbol{\phi}}_{\text{wcojer}} \widehat{\boldsymbol{e}}_{r} \right\}_{r}^{2} \widehat{\boldsymbol{c}}_{\text{op}} \widehat{\boldsymbol{\beta}}_{j}^{2} ,$$

Add WeChat powcoder

The penalty term $\lambda ||\beta||_2^2$ has the effect of shrinking the coefficients relative to OLS. We refer to this procedure as ℓ_2 regularisation.

Ridge regression

Assignments Projectulix amns Help minimisation problem

Add WeChat powcoder

for some t > 0.

Practical details

Assignment of control the mount of shrink telp

- 2. We do not penalise the intercept. In practice, we center the penalise the intercept as $\widehat{\beta}_0 = \overline{y}$.
- 3. The field Worth arish at the pack the minimisation problem.

Ridge regression

We can write the minimisation problem in matrix form as

Assignment Project Exam Help

$$\min_{\beta} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \, \boldsymbol{\beta}^T \boldsymbol{\beta}.$$

https://powcoder.com

Relying on the same techniques that we used to derive the OLS estimator, we can show the ridge estimator has the formula

estimator, we can show the ridge estimator has the formula $Add \ \, \ \, \ \, WeChat \ \, powcoder$

$$\widehat{\boldsymbol{\beta}}_{\mathsf{ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \, \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Orthonormal vectors

Assignment Project Exam Help We say that two vectors u and v are orthonormal when

https://powcoder.com 0.

We say that the design of this control when all its columns are orthonormal. When all its power of the columns are orthonormal.

Ridge regression: shrinkage (key concept)

Assignment Project Exam Help

just a scaled version of the OLS estimate

https://powcoder.com

In a management what ay notweep green method will shrink together the coefficients of correlated predictors.

Ridge regression

Assignment Project Exam Help

The nearly like the stimated parameters.

Ridge coefficient profiles (equity premium data)

Selecting λ

Assignment Project Exam Help

The ridge regression method leads to a range of models for different transport. A policy cords a hidation are generalised cross validation.

GCV iAcordulativa/ye (nvehicator phismodel coder

Selecting λ (equity premium data)

The Lasso

As The graph three popular principles of the penalised estimation problem

$$\widehat{\beta}_{\text{lasso}} \underbrace{\text{ttps:}}_{\beta} \left\langle \underbrace{p}_{i=1}^{N} \underbrace{O_{i} \mathbf{W}_{\beta} \mathbf{Coe}_{j=1}^{p} \mathbf{Coe}_{i}}_{j=1}^{2} \mathbf{Coe}_{j=1}^{p} \beta_{j} | \right\rangle,$$

for a tAindra WeChat powcoder

The Lasso therefore performs ℓ_1 regularisation.

The Lasso

Assignment Project Exam Help

for some t > 0.

The Lasso: shrinkage and variable selection (key concept)

Assignment Perojects Exiam Help

coefficients towards zero. However, the nature of this shrinkage is different, as we will see below.

https://powcoder.com

Variable selection. In addition to shrinkage, the lasso also performs variable selection. With λ sufficiently large, some estimated Cofficiently will be ax a yzep, QaMgCopoleT models. This is a key difference from ridge.

The Lasso: variable selection property

Estimation picture for the lasso (left) and ridge regression (right):

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Practical details

Assignment Project Exam Help 2. As with ridge, we center and standardise the predictors before

2. As with ridge, we center and standardise the predictors before computing the solution.

https://powcoder.com

Computing the lasso solution is a quadratic programming problem.

Add WeChat powcoder

4. There are efficient algorithms for computing an entire path of solutions for a range of λ values.

The Lasso

Assignment Project Exam, Help

https://poweogler.com

The not stell live the enate of the compared to the estimated parameters.

Lasso coefficient profiles (equity premium data)

Model selection for the equity premium data

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Subset selection, ridge, and lasso: comparison in the orthonormal case (optional)

Assignment Project Exam Help

Add WeChat powcoder Estimators of β_i in the case of orthonormal columns of X.

45/52

Ridge and Lasso: comparison in the orthonormal case (optional)

Assignment Project Exam Help

Which method to use?

Recall the no free lunch theorem: neither ridge regression or

Assignment deficient Exam Help

- In general terms, we can expect the lasso to perform better when a small subset of predictors have important coefficients, while the remaining predictors having small cross of the control of the contro coefficients (sparse problems).
- · RAs degless Weendpattopowenter predictors all have similar importance.
- The lasso may have better interpretability since it can lead to a sparse solution.

Elastic Net

Assignment Project Exam Help

$$\widehat{\beta}_{\text{EN}} \underset{\text{argmin}}{\text{http}} \sum_{i}^{N} \left(y_{i} - \beta_{0} - \sum_{j}^{p} \beta_{i} x_{ij} \right)^{2} + \lambda \sum_{j}^{p} \left(\alpha \beta_{j}^{2} + (1 - \alpha) |\beta_{j}| \right),$$

for $\lambda \geq 0$ and $0 < \alpha < 1$.

The elastic net performs variable select processor, and shrinks together the coefficients of correlated predictors like ridge regression.

Illustration: equity premium data

Estimated coefficients (tuning parameters selected by leave-one-out CV)

Assignment Project Exam Help

	dp	0.566	0.159	0.000	0.111	
1	dy /	0.602	0.197	0.000	0.153	
https	S ep / /	'DO '	W100 (0.148	m
P	bm	1.055	0.033	0.000	0.000	
	ntis	-0.276	-0.067	-0.000	-0.000	
A 1 1	tbl 🚤	-0.489	-0.248	-0.000	-0.178	1
Add	ltr) បានប	100	WA	oder
Add	ltr tms	0.762	0.286	0161	W /2 4 0.239	oder
Add			0.286 0.031	0.161 0.000		oder
Add	tms	0.762			0.239	oder
Add	tms dfy	0.762 0.145	0.031	0.000	0.239 0.000	oder
Add	tms dfy dfr	0.762 0.145 1.570	0.031 0.377	0.000 0.131	0.239 0.000 0.294	oder

Illustration: equity premium data

Assignment Project Exam Help

Comparison with variable selection

Assignment Project Exam Help Regularisation methods have two important advantages over

variable selection.

https://powcoder.com

1. They are continuous procedures, generally leading to lower

- They are continuous procedures, generally leading to lower variance.
- 2. AddutaWaeChatuposwtcoder

Review questions

• What is best subset selection?

Assignment Project Exam Help

• What are the advantages and disadvantages of variable

https://powcoder.com

- What are the penalty terms in the ridge and Lasso methods?
- What are the key differences in type of shrinkage between the ridge and Lasso methods nat powcoder
- In what situations would we expect the ridge or lasso methods to perform better?