#D.Vishaal
#21BRS1173
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('penguins_size.csv')

df.head(15)

	species	island	<pre>culmen_length_mm</pre>	culmen_depth_mm	flipper_length_mm	body_ma
0	Adelie	Torgersen	39.1	18.7	181.0	37
1	Adelie	Torgersen	39.5	17.4	186.0	38
2	Adelie	Torgersen	40.3	18.0	195.0	32
3	Adelie	Torgersen	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	34
5	Adelie	Torgersen	39.3	20.6	190.0	36
6	Adelie	Torgersen	38.9	17.8	181.0	36
7	Adelie	Torgersen	39.2	19.6	195.0	46
8	Adelie	Torgersen	34.1	18.1	193.0	34
9	Adelie	Torgersen	42.0	20.2	190.0	42
10	Adelie	Torgersen	37.8	17.1	186.0	30
11	Adelie	Torgersen	37.8	17.3	180.0	37
12	Adelie	Torgersen	41.1	17.6	182.0	32
13	Adelie	Torgersen	38.6	21.2	191.0	38
11	Adalia	Torgoreon	21/6	71.1	108 0	A ,

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	342 non-null	float64
3	culmen_depth_mm	342 non-null	float64
4	flipper_length_mm	342 non-null	float64
5	body_mass_g	342 non-null	float64
6	sex	334 non-null	object

dtypes: float64(4), object(3)

memory usage: 18.9+ KB

df.describe()

c	ulmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
df.isnull().su	um()			
species	0			
island	0			
culmen le	ength mm 2			
culmen_de	epth_mm 2			

sns.distplot(df['culmen_length_mm'])

flipper_length_mm

body_mass_g

dtype: int64

sex

<ipython-input-14-87f900721a46>:1: UserWarning:

2

2

10

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['culmen_length_mm'])
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

sns.distplot(df['culmen_depth_mm'])

<ipython-input-15-9161f519b2fb>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['culmen_depth_mm'])
<Axes: xlabel='culmen_depth_mm', ylabel='Density'>

sns.distplot(df['flipper_length_mm'])

```
<ipython-input-16-25d29e01b18c>:1: UserWarning:
     `distplot` is a deprecated function and will be removed in seaborn v0.14.0.
df['culmen_length_mm']=df['culmen_length_mm'].fillna(df['culmen_length_mm'].median())
df['culmen depth mm']=df['culmen depth mm'].fillna(df['culmen depth mm'].median ())
df['flipper length mm']=df['flipper length mm'].fillna(df['flipper length mm'].median())
df['body_mass_8']=df['body_mass_g'].fillna(df['body_mass_g'].median())
df.isnull().sum()
    species
                          0
    island
                          0
    {\tt culmen\_length\_mm}
                          a
    culmen_depth_mm
                          0
    flipper_length_mm
                          0
    body_mass_g
                          2
                         10
    body_mass_8
                          0
    dtype: int64
                                  /
df.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 344 entries, 0 to 343
    Data columns (total 8 columns):
                           Non-Null Count Dtype
     #
         Column
     _ _ _
         -----
                            -----
      0
         species
                            344 non-null
                                            object
      1
         island
                            344 non-null
                                            object
         culmen_length_mm 344 non-null
      2
                                           float64
         culmen_depth_mm
                                           float64
      3
                            344 non-null
         flipper_length_mm 344 non-null
      4
                                           float64
      5
         body_mass_g
                            342 non-null
                                          float64
                            334 non-null
      6
         sex
                                           object
      7
         body_mass_8
                            344 non-null
                                          float64
     dtypes: float64(5), object(3)
    memory usage: 21.6+ KB
df['sex']=df['sex'].fillna(df['sex'].mode()[0])
df['sex']
    0
             MALE
    1
           FEMALE
    2
           FEMALE
    3
             MALE
    4
           FEMALE
    339
             MALE
    340
           FEMALE
    341
            MALE
    342
           FEMALE
    343
            MALE
    Name: sex, Length: 344, dtype: object
df.isnull().sum()
     species
                         0
    island
                         0
    culmen_length_mm
                         0
    culmen depth mm
    flipper length mm
    body_mass_g
                         2
                         0
     sex
    body_mass_8
                         0
    dtype: int64
```

sns.boxplot(df['culmen_depth_mm'])

sns.boxplot(df['culmen_length_mm'])

sns.boxplot(df['body_mass_g'])

sns.boxplot(data=df['flipper_length_mm'])

from sklearn import preprocessing

 ${\tt label_encoder=preprocessing.LabelEncoder()}$

df['species']=label_encoder.fit_transform(df['species'])
df.tail(10)

	sp	ecies	island	culmen_length_mm	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g	sex	body_ı
	334	2	Biscoe	46.20	14.1	217.0	4375.0	FEMALE	
<pre>df['island']=label_encoder.fit_transform(df['island']) df['island'].unique()</pre>									
	array([2	2, 0, 1	L])						

df.head()

body_ma	sex	body_mass_g	flipper_length_mm	<pre>culmen_depth_mm</pre>	<pre>culmen_length_mm</pre>	island	species	
37	MALE	3750.0	181.0	18.7	39.10	2	0	0
38	FEMALE	3800.0	186.0	17.4	39.50	2	0	1
32	FEMALE	3250.0	195.0	18.0	40.30	2	0	2
40	MALE	NaN	197.0	17.3	44.45	2	0	3
34	FEMALE	3450.0	193.0	19.3	36.70	2	0	4

sns.histplot(data=df['island'])

<Axes: xlabel='island', ylabel='Count'>

sns.countplot(x='island',hue='species',data=df)

<Axes: xlabel='island', ylabel='count'>

sns.barplot(x='species',y='culmen_length_mm',hue='sex',data=df)

<Axes: xlabel='species', ylabel='culmen_length_mm'>

sns.barplot(x='species',y='culmen_depth_mm',hue='sex',data=df)

sns.barplot(x='island',y='body_mass_g',hue='species',data=df)

<Axes: xlabel='island', ylabel='body_mass_g'>

sns.barplot(x='island',y='culmen_length_mm',hue='species',data=df)

sns.barplot(x='island',y='culmen_depth_mm',hue='species',data=df)

<Axes: xlabel='island', ylabel='culmen_depth_mm'>

X=df.drop('species',axis=1)
y=df['species']
X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	body_mass_8	\blacksquare
0	2	39.10	18.7	181.0	3750.0	2	3750.0	ılı
1	2	39.50	17.4	186.0	3800.0	1	3800.0	
2	2	40.30	18.0	195.0	3250.0	1	3250.0	
3	2	44.45	17.3	197.0	NaN	2	4050.0	
4	2	36.70	19.3	193.0	3450.0	1	3450.0	

```
y.head()
```

0 0 1 0 2 0

3 0 4 0

Name: species, dtype: int64

```
df['sex']=label_encoder.fit_transform(df['sex'])
df['sex']
```

Name: sex, Length: 344, dtype: int64

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

```
X_scaled=pd.DataFrame(sc.fit_transform(X),columns =X.columns)
X_scaled.head()
```

	island	<pre>culmen_length_mm</pre>	<pre>culmen_depth_mm</pre>	flipper_length_mm	body_mass_g	sex	body_mass_8
0	1.844076	-0.887622	0.787289	-1.420541	-0.564142	0.960230	-0.564625
1	1.844076	-0.814037	0.126114	-1.063485	-0.501703	-1.017729	-0.502010
2	1.844076	-0.666866	0.431272	-0.420786	-1.188532	-1.017729	-1.190773

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X_scaled,y,test_size=0.2,random_state=42)
X_train.shape

(275, 7)

y_train.shape

(275,)

X_test.shape

(69, 7)

y_test.shape

(69,)

Colab paid products - Cancel contracts here

√ 0s completed at 10:43 PM