Low-Rank and Predictive Process Models

Abhirup Datta, Andrew O. Finley and Sudipto Banerjee

University of California, Los Angeles, USA

Multivariate Gaussian likelihoods for geostatistical models

- \triangleright $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_n\}$ are locations where data is observed
- $y(\ell_i)$ is outcome at the *i*-th location, $y = (y(\ell_1), y(\ell_2), \dots, y(\ell_n))^{\top}$
- ▶ Model: $y \sim N(X\beta, K_\theta)$
- ► Estimating process parameters from the likelihood:

$$-\frac{1}{2}\log\det(K_{\theta}) - \frac{1}{2}(y - X\beta)^{\top}K_{\theta}^{-1}(y - X\beta)$$

- $ightharpoonup K_{\theta}$ is usually dense with no exploitable structure
- ▶ Bayesian inference: Priors on $\{\beta, \theta\}$
- ▶ Challenges: Storage and $chol(K_{\theta}) = LDL^{\top}$.

Prediction and interpolation

Conditional predictive density

$$p(y(\ell_0) | y, \theta, \beta) = N(y(\ell_0) | \mu(\ell_0), \sigma^2(\ell_0))$$
.

"Kriging" (spatial prediction/interpolation)

$$\begin{split} \mu(\ell_0) &= \mathrm{E}[y(\ell_0) \,|\, y, \theta] = x^\top(\ell_0) \beta + k_\theta^\top(\ell_0) K_\theta^{-1}(y - X\beta) \;, \\ \sigma^2(\ell_0) &= \mathrm{var}[y(\ell_0) \,|\, y, \theta] = K_\theta(\ell_0, \ell_0) - k_\theta^\top(\ell_0) K_\theta^{-1} k_\theta(\ell_0) \;. \end{split}$$

▶ Bayesian "kriging" computes (simulates) posterior predictive density:

$$p(y(\ell_0) \mid y) = \int p(y(\ell_0) \mid y, \theta, \beta) p(\beta, \theta \mid y) \mathrm{d}\beta \mathrm{d}\theta$$

Computational Details

▶ Compute the mean and variance (for any given $\{\beta, \theta\}$ and ℓ_0):

```
 \begin{array}{ll} \text{Solve for } u \colon & K_{\theta}u = k_{\theta}(\ell_0) \ ; \\ \text{Predictive mean:} & x^{\mathrm{T}}(\ell_0)\beta + u^{\mathrm{T}}(y - X\beta) \ ; \\ \text{Predictive variance:} & K_{\theta}(\ell_0,\ell_0) - u^{\mathrm{T}}k_{\theta}(\ell_0) \ . \end{array}
```

▶ Compute the mean and variance (for any given $\{\beta, \theta\}$ and ℓ_0):

```
Cholesky:  \begin{array}{ll} \operatorname{Chol}(K_{\theta}) = LDL^{\top} \; ; \\ \operatorname{Solve} \; \operatorname{for} \; v \colon & v = \operatorname{trsolve}(L, k_{\theta}(\ell_{0})) \; ; \\ \operatorname{Solve} \; \operatorname{for} \; u \colon & u = \operatorname{trsolve}(L^{\top}, D^{-1}v) \; ; \\ \operatorname{Predictive} \; \operatorname{mean:} & x^{\mathrm{T}}(\ell_{0})\beta + u^{\mathrm{T}}(y - X\beta) \; ; \\ \operatorname{Predictive} \; \operatorname{variance:} & K_{\theta}(\ell_{0}, \ell_{0}) - u^{\mathrm{T}}k_{\theta}(\ell_{0}) \; . \end{array}
```

▶ Primary bottleneck is chol(·)

Burgeoning literature on spatial big data

- Low-rank models (Wahba, 1990; Higdon, 2002; Kamman & Wand, 2003; Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007, 2008; Cressie & Johannesson, 2008; Banerjee et al., 2008; 2010; Gramacy & Lee 2008; Sang et al., 2011, 2012; Lemos et al., 2011; Guhaniyogi et al., 2011, 2013; Salazar et al., 2013; Katzfuss, 2016)
- Spectral approximations and composite likelihoods: (Fuentes 2007; Paciorek, 2007; Eidsvik et al. 2016)
- Multi-resolution approaches (Nychka, 2002; Johannesson et al., 2007; Matsuo et al., 2010; Tzeng & Huang, 2015; Katzfuss, 2016)
- ► Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A^{-1})
 - 1. Covariance tapering (Furrer et al. 2006; Du et al. 2009; Kaufman et al., 2009; Shaby and Ruppert, 2013)
 - 2. GMRFs to GPs: INLA (Rue et al. 2009; Lindgren et al., 2011)
 - 3. LAGP (Gramacy et al. 2014; Gramacy and Apley, 2015)
 - 4. Nearest-neighbor models (Vecchia 1988; Stein et al. 2004; Stroud et al 2014; Datta et al., 2016)

Bayesian low rank models

- ► A *low rank* or *reduced rank* process approximates a *parent* process over a smaller set of points (*knots*).
- Start with a parent process $w(\ell)$ and construct $\tilde{w}(\ell)$

$$w(\ell) \approx \tilde{w}(\ell) = \sum_{j=1}^{r} b_{\theta}(\ell, \ell_{j}^{*}) z(\ell_{j}^{*}) = b_{\theta}^{\mathrm{T}}(\ell) z,$$

where

- $z(\ell)$ is any well-defined process (could be same as $w(\ell)$);
- $b_{\theta}(\ell, \ell')$ is a family of basis functions indexed by parameters θ ;
- $\{\ell_1^*, \ell_2^*, \dots, \ell_r^*\}$ are the knots;
- ▶ $b_{\theta}(\ell)$ and z are $r \times 1$ vectors with components $b_{\theta}(\ell, \ell_j^*)$ and $z(\ell_j^*)$, respectively.

Bayesian low rank models (contd.)

- $\tilde{w} = (\tilde{w}(\ell_1), \tilde{w}(\ell_2), \dots, \tilde{w}(\ell_n))^T$ is represented as $\tilde{w} = B_{\theta}z$
- ▶ B_{θ} is $n \times r$ with (i, j)-th element $b_{\theta}(\ell_i, \ell_j^*)$
- ► Irrespective of how big n is, we now have to work with the r (instead of n) $z(\ell_i^*)$'s and the $n \times r$ matrix B_{θ} .
- ightharpoonup Since r << n, the consequential dimension reduction is evident.
- \triangleright \tilde{w} is a valid stochastic process in r-dimensions space with covariance:

$$cov(\tilde{w}(\ell), \tilde{w}(\ell')) = b_{\theta}^{T}(\ell) V_z b_{\theta}(\ell') ,$$

where V_z is the variance-covariance matrix (also depends upon parameter θ) for z.

▶ When n > r, the joint distribution of \tilde{w} is singular.

The Sherman-Woodbury-Morrison formulas

- ▶ Low-rank dimension reduction is similar to Bayesian linear regression
- ▶ Consider a simple hierarchical model (with $\beta = 0$):

$$N(z \mid 0, V_z) \times N(y \mid B_{\theta}z, D_{\tau}) ,$$

where y is $n \times 1$, z is $r \times 1$, D_{τ} and V_z are positive definite matrices of sizes $n \times n$ and $r \times r$, respectively, and B_{θ} is $n \times r$.

- ▶ The low rank specification is $B_{\theta}z$ and the prior on z.
- $ightharpoonup D_{ au}$ (usually diagonal) has the residual variance components.
- Computing var(y) in two different ways yields

$$(D_{\tau} + B_{\theta} V_z B_{\theta}^{\mathrm{T}})^{-1} = D_{\tau}^{-1} - D_{\tau}^{-1} B_{\theta} (V_z^{-1} + B_{\theta}^{\mathrm{T}} D_{\tau}^{-1} B_{\theta})^{-1} B_{\theta}^{\mathrm{T}} D_{\tau}^{-1} \; .$$

► A companion formula for the determinant:

$$\det(D_{\tau} + B_{\theta} V_z B_{\theta}^{\mathrm{T}}) = \det(V_z) \det(D_{\tau}) \det(V_z^{-1} + B_{\theta}^{\mathrm{T}} D_{\tau}^{-1} B_{\theta}) .$$

Sudipto Banerjee (UCLA)

Practical implementation for Bayesian low rank models

▶ In practical implementation, better to avoid SWM formulas.

$$\underbrace{\begin{bmatrix} D_{\tau}^{-1/2} y \\ 0 \end{bmatrix}}_{y_*} = \underbrace{\begin{bmatrix} D_{\tau}^{-1/2} B_{\theta} \\ V_z^{-1/2} \end{bmatrix}}_{B_*} z + \underbrace{\begin{bmatrix} e_1 \\ e_2 \end{bmatrix}}_{e_*}.$$

- $e_* \sim N(0, I_{n+r}).$
- $V_z^{1/2}$ and $D_\tau^{1/2}$ are matrix square roots of of V_z and D_τ , respectively.
- ▶ If D_{τ} is diagonal (as is common), then $D_{\tau}^{1/2}$ is simply the square root of the diagonal elements of D_{τ} .
- ▶ $V_z^{1/2} = \text{chol}(V_z)$ is the triangular (upper or lower) Cholesky factor of the $r \times r$ matrix V_z .
- Use backsolve to efficiently obtain $V_z^{-1/2}z$

Practical implementation for Bayesian low rank models (contd.)

▶ The marginal density of $p(y_* | \theta, \tau)$ after integrating out z now corresponds to the normal linear model

$$y_* = B_* \hat{z} + e_* ,$$

where \hat{z} is the ordinary least-square estimate of z.

- Use 1m function to compute \hat{z} applying the QR decomposition to B_* .
- ▶ Thus, we estimate the Bayesian linear model

$$p(\theta, \tau) \times N(y_* \mid B_* \hat{z}, I_{n+r})$$

- ▶ MCMC will generate posterior samples for $\{\theta, \tau\}$.
- Recover the posterior samples for z from those of $\{\theta, \tau\}$:

$$p(z \mid y) = \int N(z \mid \hat{z}, M) \times p(\theta, \tau \mid y) d\theta d\tau$$

where
$$M^{-1} = V_z^{-1} + B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta}$$
.

Predictive process models (Banerjee et al., *JRSS-B*, 2008)

- ► A particular low-rank model emerges by taking
 - $ightharpoonup z(\ell) = w(\ell)$
 - $z = (w(\ell_1^*), w(\ell_2^*), \dots, w(\ell_r^*))^\top \text{ as the realizations of the parent process } w(\ell) \text{ over the set of knots } \mathcal{L}^* = \{\ell_1^*, \ell_2^*, \dots, \ell_r^*\},$

and then taking the conditional expectation:

$$\tilde{w}(\ell) = \mathbf{E}[w(\ell) \mid w^*] = b_{\theta}^{\top}(\ell)z.$$

▶ The basis functions are *automatically* derived from the spatial covariance structure of the parent process $w(\ell)$:

$$b_{\theta}^{\top}(\ell) = \operatorname{cov}\{w(\ell), w^*\} \operatorname{var}^{-1}\{w^*\} = K_{\theta}(\ell, \mathcal{L}^*) K_{\theta}^{-1}(\mathcal{L}^*, \mathcal{L}^*) \;.$$

Biases in low-rank models

▶ In low-rank processes, $w(\ell) = \tilde{w}(\ell) + \eta(\ell)$. What is lost in $\eta(\ell)$?

► For the predictive process,

$$\mathrm{var}\{w(\ell)\} = \mathrm{var}\{\mathrm{E}[w(\ell)\,|\,w^*]\} + \mathrm{E}\{\mathrm{var}[w(\ell)\,|\,w^*]\} \geq \mathrm{var}\{\mathrm{E}[w(\ell)\,|\,w^*]\}\;.$$

Bias-adjusted or modified predictive processes

• $\eta(\ell)$ is a Gaussian process with covariance structure

$$Cov{\eta(\ell), \eta(\ell')} = K_{\eta,\theta}(\ell, \ell')$$

= $K_{\theta}(\ell, \ell') - K_{\theta}(\ell, \mathcal{L}^*) K_{\theta}^{-1}(\mathcal{L}^*, \mathcal{L}^*) K_{\theta}(\mathcal{L}^*, \ell')$.

▶ Remedy:

$$\tilde{w}_{\epsilon}(\ell) = \tilde{w}(\ell) + \tilde{\epsilon}(\ell) ,$$

where $\tilde{\epsilon}(\ell) \stackrel{ind}{\sim} N(0, \delta^2(\ell))$ and

$$\delta^{2}(\ell) = \operatorname{var}\{\eta(\ell)\} = K_{\theta}(\ell,\ell) - K_{\theta}(\ell,\mathcal{L}^{*})K_{\theta}^{-1}(\mathcal{L}^{*},\mathcal{L}^{*})K_{\theta}(\mathcal{L}^{*},\ell) .$$

▶ Other improvements suggested by Sang et al. (2011, 2012) and Katzfuss (2017).

Oversmoothing in low rank models

Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure (1(c)) exhibits oversmoothing by a low-rank process (predictive process with 64 knots)