Integrales 1 / 7

Integrales

2015-02-13 7:00

1 Definiciones

Definición

Dado $\gamma\colon [a,b]\to \mathbb{C}$, escribimos $\gamma(t)=x(t)+iy(t)$. Decimos que γ es continua (derivable) si x,y son funciones continuas (derivables) $[a,b]\to \mathbb{R}$. Decimos que γ es suave si $\gamma(t)$ es derivable y $\gamma'(t)$ es continua. Si γ es continua, definimos

$$\int_a^b \gamma(t) dt = \int_a^b x(t) dt + i \int_a^b y(t) dt.$$

Si γ es derivable, escribimos $\gamma'(t) = x'(t) + iy'(t)$. Si $U \subseteq \mathbb{C}$ es abierto y $\gamma([a,b]) \subseteq U$, decimos que γ es una curva en U.

Definición

Sean $U \subseteq \mathbb{C}$ abierto, $f: U \to \mathbb{C}$ una función continua, y γ una curva suave en U. Definimos la integral de f sobre γ como:

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Propiedades de la integral

• Si $f_1, f_2: U \to \mathbb{C}$ y γ es una curva suave en U, se tiene:

$$\int_{\gamma} (f_1 + f_2)(z) \, dz = \int_{\gamma} f_1(z) \, dz + \int_{\gamma} f_2(z) \, dz.$$

Propiedades de la integral

• Si $f_1, f_2: U \to \mathbb{C}$ y γ es una curva suave en U, se tiene:

$$\int_{\gamma} (f_1 + f_2)(z) dz = \int_{\gamma} f_1(z) dz + \int_{\gamma} f_2(z) dz.$$

• Si $f: U \to \mathbb{C}$ y $c \in \mathbb{C}$, se tiene:

$$\int_{\gamma} cf(z) dz = c \int_{\gamma} f(z) dz.$$

Camino inverso

Definición (Camino inverso)

Dado $\gamma \colon [a,b] \to \mathbb{C}$, definimos el camino inverso $-\gamma \colon [a,b] \to \mathbb{C}$ como:

$$(-\gamma)(t) = \gamma(a+b-t).$$

Camino inverso

Definición (Camino inverso)

Dado $\gamma: [a, b] \to \mathbb{C}$, definimos el camino inverso $-\gamma: [a, b] \to \mathbb{C}$ como:

$$(-\gamma)(t) = \gamma(a+b-t).$$

Se tiene que:

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz.$$

Definición (Camino suave a trozos)

Sea $U\subseteq\mathbb{C}$ abierto. Sea $\gamma\colon [a,b]\to U$ continua tal que existen $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$ y $\gamma_1,\gamma_2,\ldots,\gamma_n$ curvas suaves en U con dominios $[x_{i-1},x_i]$ para $i=1,\ldots,n$ respectivamente. Decimos entonces que γ es un camino suave a trozos y escribimos:

$$\gamma = \gamma_1 + \cdots + \gamma_n$$
.

Definición (Camino suave a trozos)

Sea $U\subseteq\mathbb{C}$ abierto. Sea $\gamma\colon [a,b]\to U$ continua tal que existen $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$ y $\gamma_1,\gamma_2,\ldots,\gamma_n$ curvas suaves en U con dominios $[x_{i-1},x_i]$ para $i=1,\ldots,n$ respectivamente. Decimos entonces que γ es un camino suave a trozos y escribimos:

$$\gamma = \gamma_1 + \cdots + \gamma_n$$
.

Definición

Si γ es suave a trozos, con la notación anterior definimos:

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \cdots + \int_{\gamma_n} f(z) dz.$$

Teorema

Las propiedades de la integral demostradas hasta ahora se conservan si γ se supone suave a trozos.