TD 8 2013 - 2014

Processus stochastiques en temps discret

TD 8 - Chaînes de Markov

14 novembre 2013

Si vous repérez des erreurs dans les feuilles d'exercices ou si vous avez des questions, n'hésitez pas à m'envoyer un mail à l'adresse suivante : jhihhuang.li@gmail.com

Exercice 8.1. On note (X_n) une chaîne de Markov de fonction de transition Q à valeurs dans un espace d'états dénombrable S. On note aussi $N_x = \sum_{x \in \mathbb{N}} \mathbf{1}_{X_n = x}$.

- 1. Donner un exemple où l'ensemble des points visités par la chaîne issue de x n'est pas déterministe.
- 2. Donner un exemple où, sans que x soit récurrent, sous \mathbb{P}_x , l'ensemble des points visités par la chaîne est p.s. toujours le même. Donner un exemple où, de plus, l'ordre des 3 premiers points visités en partant de x n'est pas déterministe.
- 3. Pour $x, y \in S$, a-t-on : y récurrent et il existe n tel que $Q^n(x, y) > 0$, alors $N_y = \infty$ \mathbb{P}_x -p.s.?
- 4. Montrer que pour $x, y \in S$, $\mathbb{E}_x(N_y) = \infty$ implique que y est récurrent. La réciproque est-elle vraie?
- 5. Peut-on avoir $0 < \mathbb{E}_x(N_y) < \infty$ avec y récurrent?
- 6. Si $\mathbb{E}_x(N_y) = \infty$, quelles valeurs peut prendre $\mathbb{E}_y(N_x)$?
- 7. On suppose que pour tout $x \in S$, l'ensemble $V_x = \{y \in S, \exists n \text{ tel que } Q^n(x,y) > 0\}$ est fini. Montrer qu'il existe des états récurrents.
- 8. On suppose qu'il existe un état $x_0 \in E$ tel que pour tout $x \in E$, on a $\sum_{n} Q^n(x_0, x) > 0$ et $\mathbb{P}_x(\tau_{x_0} < \infty) = 1$ avec τ_{x_0} le temps d'atteinte de x_0 . La chaîne est-elle récurrente?

Exercice 8.2. Soit Q la fonction de transition sur \mathbb{N} donnée par :

$$Q = \begin{pmatrix} r_0 & p_0 & 0 & 0 & 0 & \cdots \\ q_1 & r_1 & p_1 & 0 & 0 & \cdots \\ 0 & q_2 & r_2 & p_2 & 0 & \cdots \\ 0 & 0 & q_3 & r_3 & p_3 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

avec $p_0 > 0$, $p_0 + r_0 = 1$, $p_i, q_i > 0$ et $p_i + r_i + q_i = 1$ pour $i \ge 1$. Soit $X = (X_n)_{n \in \mathbb{N}}$ une chaîne de Markov à valeurs dans \mathbb{N} de fonction de transition Q.

1. Montrer que X est irréductible.

TD 8 2013 - 2014

2. On suppose que

$$\sum_{i>1} \frac{p_0 \cdots p_{i-1}}{q_1 \cdots q_i} < \infty.$$

Montrer que X admet une mesure de probabilité réversible π qu'on déterminera. Que peut-on en déduire sur X?

3. On pose $p_i = p > 0$ pour tout $i \ge 0$ et $q_i = q > 0$ pour tout $i \ge 1$ avec p < q. On note T_k le premier temps de retour en k. Calculer $\mathbb{E}_k(T_k)$.

Exercice 8.3 (rayon spectral). Soit G un graphe connexe de degré borné. On laisse une marche aléatoire simple symétrique $(X_n)_{n\in\mathbb{N}}$ sur ce dernier et définit la quantité suivante

$$\rho(G) = \limsup \mathbb{P}_x (X_n = x)^{1/n}.$$

Elle s'appelle le rayon spectral du graphe G et représente la plus grande valeur propre de l'opérateur de transition. Dans cet exercice, on va voir comment elle nous aide à caractériser la transience ou la récurrence de la marche.

- 1. Pourquoi $\rho(G)$ ne dépend pas du point de départ?
- 2. Dans cette question, on va prouver qu'on peut remplacer la lim sup par une simple limite d'une autre suite de probabilités.
 - (a) (lemme sous-additif) Soit $(a_n)_{n\in\mathbb{N}}$ est une suite à valeurs dans $\mathbb{R}\cup\{-\infty\}$ vérifiant

$$\forall m, n \in \mathbb{N}, \ a_{m+n} \le a_m + a_n.$$

Montrer que, lorsque n tend vers $+\infty$,

$$\frac{a_n}{n} \longrightarrow \inf \left\{ \frac{a_k}{k}, k \in \mathbb{N} \right\}.$$

- (b) Montrer que $\rho(G) = \lim \mathbb{P}_x(X_{2n} = x)^{1/2n}$. En déduire $\mathbb{P}_x(X_n = x) \leq \rho(G)^n$.
- (c) Montrer que si le graphe G n'est pas biparti, alors $\rho(G) = \lim \mathbb{P}_x(X_n = x)^{1/n}$.
- 3. Montrer que si $\rho(G) < 1$, alors la marche est transiente. La réciproque est-elle vraie ?
- 4. Soit $k \in \mathbb{N}$ un entier. On dit qu'un graphe est k-régulier si chaque sommet du graphe a exactement k voisins. On note \mathbb{T}_k l'arbre k-régulier, i.e. le graphe k-régulier ayant la structure d'un arbre.
 - (a) Montrer que parmis les graphes k-réguliers, \mathbb{T}_k est le graphe ayant le plus petit rayon spectral. Autrement dit, pour tout graphe k-régulier G, on a $\rho(G) \geq \rho(\mathbb{T}_k)$.
 - (b) Montrer que $\rho(\mathbb{T}_k) \leq \frac{2\sqrt{k-1}}{k}$. En déduire qu'une marche aléatoire simple symétrique sur \mathbb{T}_k est transiente.