Data Science

Mining Data Streams

Themis Palpanas University of Paris

Data Science

1

1

Thanks for slides to:

- Minos Garofalakis
- Divesh Srivastava
- Nick Koudas
- Jiawei Han
- Jeffrey Ullman
- Anand Rajaraman

Data Science 2

Motivating Examples: Store Replenishment Process

Data Science

3

3

Motivating Examples: Production Control System

Data Science 6

Motivating Examples: Production Control System

Data Science

7

7

Motivating Examples: Monitoring Vehicle Operation

Data Science

8

Motivating Examples: Monitoring Vehicle Operation

Data Science

9

9

Motivating Examples: Financial Applications

Data Science

Motivating Examples: Web Data Streams

- Mining query streams.
 - Google wants to know what queries are more frequent today than yesterday.
- Mining click streams.
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour.

Data Science 11

11

Motivating Examples: Network Monitoring

- 24x7 IP packet/flow data-streams at network elements
- Truly massive streams arriving at rapid rates
 - AT&T collects 600-800 Gigabytes of NetFlow data each day.
- Often shipped off-site to data warehouse for off-line analysis

Motivating Examples: Network Monitoring

Data Science 13

13

Motivating Examples: Network Monitoring

- Must process network streams in real-time and one pass
- Critical NM tasks: fraud, DoS attacks, SLA violations
 - Real-time traffic engineering to improve utilization
- Tradeoff communication and computation to reduce load
 - Make responses fast, minimize use of network resources
 - Secondarily, minimize space and processing cost at nodes

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science

15

15

Motivating Examples: Sensor Networks

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science 16

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science

17

17

Motivating Examples: Sensor Networks

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science

18

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science

19

Motivating Examples: Sensor Networks

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology

Data Science

20

19

- the sensors era
 - ubiquitous, small, inexpensive sensors
 - applications that bridge physical world to information technology
- sensors unveil previously unobservable phenomena

Data Science

21

21

Requirements

- develop efficient streaming algorithms
 - need to process this data online
 - allow approximate answers
 - operate in a distributed fashion (network as distributed database)
 - can also be used as one-pass algorithms for massive datasets

Requirements

- develop efficient streaming algorithms
 - need to process this data online
 - allow approximate answers
 - operate in a distributed fashion (network as distributed database)
 - can also be used as one-pass algorithms for massive datasets
- propose new data mining algorithms
 - help in data analysis in the above setting

Data Science 23

23

Data Stream Management System?

- Traditional DBMS data stored in finite, persistent data sets
- New Applications data input as continuous, ordered data streams
 - Network monitoring and traffic engineering
 - Telecom call records
 - Network security
 - Financial applications
 - Sensor networks
 - Manufacturing processes
 - Web logs and clickstreams
 - Massive data sets

Data Stream Management System!

26

Meta-Questions

- Killer-apps
 - Application stream rates exceed DBMS capacity?
 - Can DSMS handle high rates anyway?
- Motivation
 - Need for general-purpose DSMS?
 - Not ad-hoc, application-specific systems?
- Non-Trivial
 - DSMS = merely DBMS with enhanced support for triggers, temporal constructs, data rate mgmt?

DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- "Unbounded" disk store
- Only current state matters
- Passive repository
- Relatively low update rate
- No real-time services
- Precise answers
- Access plan determined by query processor, physical DB design

- Transient streams
- Continuous gueries
- Sequential access
- Bounded main memory
- History/arrival-order is critical
- Active stores
- Possibly multi-GB arrival rate
- Real-time requirements
- Imprecise/approximate answers
- Access plan dependent on variable data arrival and data characteristics

Data Science 28

28

Making Things Concrete

Data Science 29

Query 1 (SELF-JOIN)

Find all outgoing calls longer than 2 minutes

- Result requires unbounded storage
- Can provide result as data stream
- Can output after 2 min, without seeing END

Data Science 30

30

Query 2 (JOIN)

Pair up callers and callees

```
SELECT O.caller, I.callee
FROM Outgoing O, Incoming I
WHERE O.call_ID = I.call_ID
```

- Can still provide result as data stream
- Requires unbounded temporary storage ...
- ... unless streams are near-synchronized

Data Science 31

Query 3 (group-by aggregation)

Total connection time for each caller

SELECT O1.caller, sum(O2.time – O1.time) FROM Outgoing O1, Outgoing O2

WHERE (O1.call_ID = O2.call_ID AND O1.event = START

AND O2.event = END)

GROUP BY O1.caller

- Cannot provide result in (append-only) stream
 - Output updates?
 - Provide current value on demand?
 - Memory?

Data Science 32

32

Data Model

- Append-only
 - Call records
- Updates
 - Stock tickers
- Deletes
 - Transactional data
- Meta-Data
 - Control signals, punctuations

System Internals – probably need all above

Data Science 33

Query Model

34

Related Database Technology

- DSMS must use ideas, but none is substitute
 - Triggers, Materialized Views in Conventional DBMS
 - Main-Memory Databases
 - Distributed Databases
 - Pub/Sub Systems
 - Active Databases
 - Sequence/Temporal/Timeseries Databases
 - Realtime Databases
 - Adaptive, Online, Partial Results
- Novelty in DSMS
 - Semantics: input ordering, streaming output, ...
 - State: cannot store unending streams, yet need history
 - Performance: rate, variability, imprecision, ...

Data Science 35

Stream Projects

- Amazon/Cougar (Cornell) sensors
- Borealis (Brown/MIT) sensor monitoring, dataflow
- Hancock (AT&T) telecom streams
- Niagara (OGI/Wisconsin) Internet XML databases
- OpenCQ (Georgia) triggers, incr. view maintenance
- Stream (Stanford) general-purpose DSMS
- Tapestry (Xerox) pub/sub content-based filtering
- Telegraph (Berkeley) adaptive engine for sensors
- Tribeca (Bellcore) network monitoring

Data Science 36

36

Is that all?

Data Science 37

Distributed Stream Querying Space

"One-shot" vs. Continuous Querying

- One-shot queries: On-demand "pull" query answer from network
 - One or few rounds of communication
 - Nodes may prepare for a class of queries
- Continuous queries: Track/monitor answer at query site at all times
 - Detect anomalous/outlier behavior in (near) realtime, i.e., "Distributed triggers"
 - Challenge is to minimize communication Use "push-based" techniques May use one-shot algs as subroutines

Data Science 38

38

Distributed Stream Querying Space

Minimizing communication often needs approximation and randomization

- E.g., Continuously monitor average value
 - Must send every change for exact answer
 - Only need 'significant' changes for approx (def. of "significant" specifies an algorithm)
 - Probability sometimes vital to reduce communication
 - count distinct in one shot model needs randomness
 - Else must send complete data

Data Science 39

Distributed Stream Querying Space

Distributed Stream Querying Space

Other network characteristics:

- Unicast (traditional wired), multicast, broadcast (radio nets)
- Node failures, loss, intermittent connectivity, ...

Data Science 41

41

 One model of stream processing is when queries refer to all the data in a window that starts at the "beginning of time", extends up to the current time, and continuous expanding with time (potentially infinite length).

Data Science 42

42

Unrestricted Window

q w e r t y u i o p a s d f g h j k l z x c v b n m

Data Science 43

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

← Past Future →

Data Science

44

44

Unrestricted Window

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

← Past Future →

Data Science 45

46

Unrestricted Window

- One model of stream processing is when queries refer to all the data in a window that starts at the "beginning of time", extends up to the current time, and continuous expanding with time (potentially infinite length).
- What happens when we try to compute joins in this model?

Data Science 47

46

- One model of stream processing is when queries refer to all the data in a window that starts at the "beginning of time", extends up to the current time, and continuous expanding with time (potentially infinite length).
- What happens when we try to compute joins in this model?
 - Join results involving some piece of data may appear at any time in the future

Data Science 48

48

Unrestricted Window

- One model of stream processing is when queries refer to all the data in a window that starts at the "beginning of time", extends up to the current time, and continuous expanding with time (potentially infinite length).
- What happens when we try to compute joins in this model?
 - Join results involving some piece of data may appear at any time in the future
 - In order to correctly compute the result, we need to store all values that have appeared in the past!

Data Science 49

Shifting Window

 Another model of stream processing is that queries are about a window of length N, and this window advances by N, where N are the most recent elements received, or the most recent time units.

Data Science 50

50

Shifting Window

q w e r t y u i o p a s d f g h j k l z x c v b n m

Data Science 51

Shifting Window

q w e r t y u i o p a s d f g h j k l z x c v b n m q w e r t y u i o p a s d f g h j k l z x c v b n m

← Past Future →

Data Science

52

52

Shifting Window

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

← Past Future →

Data Science 53

Shifting Window

Data Science

54

54

Shifting Window

- Another model of stream processing is that queries are about a window of length N, and this window advances by N, where N are the most recent elements received, or the most recent time units.
- Useful queries within this model:
 - average number of calls every day
 - std deviation of packet losses every 10 minutes
 - etc.

Data Science 55

Sliding Window

 A useful model of stream processing is that queries are about a window of length N, where N are the most recent elements received, or the most recent time units.

Data Science 56

56

Sliding Window

Data Science 57

Sliding Window

- A useful model of stream processing is that queries are about a window of length N, where N are the most recent elements received, or the most recent time units.
- Interesting case: N is so large it cannot be stored in memory, or even on disk.
 - Or, there are so many streams that we cannot store the values for all the windows.

Data Science 58

58

Counting Bits --- (1)

- Problem: given a stream of 0's and 1's, be prepared to answer queries of the form "how many 1's in the last k bits?" where k ≤ N.
- Obvious solution: store the most recent N bits.
 - When new bit comes in, discard the N+1st bit.

Counting Bits --- (2)

- You can't get an exact answer without storing the entire window.
- Real Problem: what if we cannot afford to store N bits?
 - E.g., we are processing 1 trillion streams and N = 1 trillion, but we're happy with an approximate answer.

Data Science 60

60

Something That Doesn't (Quite) Work

- Summarize exponentially increasing regions of the stream, looking backward.
- Drop small regions if they begin at the same point as a larger region.

Example

We can construct the count of the last N bits, except we're Not sure how many of the last 6 are included.

62

What's Good?

- Stores only O(log²N) bits.
 - O(log N) counts of log₂N bits each.
- Easy update as more bits enter.
- Error in count no greater than the number of 1's in the "unknown" area.

Data Science 63

What's Not So Good?

- As long as the 1's are fairly evenly distributed, the error due to the unknown region is small --- no more than 50%.
- But it could be that all the 1's are in the unknown area at the end.
- In that case, the error is unbounded.

Data Science 64

64

Fixup

- Instead of summarizing fixed-length blocks, summarize blocks with specific numbers of 1's.
 - Let the block "sizes" (number of 1's) increase exponentially.
- When there are few 1's in the window, block sizes stay small, so errors are small.

DGIM* Method

- Store O(log²N) bits per stream.
- Gives approximate answer, never off by more than 50%.
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani

Data Science

66

66

Timestamps

- Each bit in the stream has a *timestamp*, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits.

Buckets

- A bucket in the DGIM method is a record consisting of:
 - The timestamp of its end $[O(\log N)$ bits].
 - The number of 1's between its beginning and end [O(log $\log N$) bits].
- Constraint on buckets: number of 1's must be a power of 2.
 - That explains the log log N in (2).

Data Science 68

68

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1's.
- Buckets do not overlap in timestamps.
- Buckets are sorted by size (# of 1's).
 - Earlier buckets are not smaller than later buckets.
- Buckets disappear when their end-time is > N time units in the past.

Data Science 69

Example

Data Science 70

70

Updating Buckets --- (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.
- If the current bit is 0, no other changes are needed.

Data Science 71

Updating Buckets --- (2)

- If the current bit is 1:
 - Create a new bucket of size 1, for just this bit.
 - End timestamp = current time.
 - 2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2.
 - 3. If there are now three buckets of size 2, combine the oldest two into a bucket of size 4.
 - 4. And so on...

Data Science 72

72

Example

Example

Data Science 74

74

Example

Data Science 75

Data Science 76

76

Example

Data Science 77

Data Science 78

78

Example

Data Science 79

Data Science 80

80

Example

Data Science 81

Data Science 82

82

Example

Data Science 83

84

Querying

- To estimate the number of 1's in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last.
 - 2. Add in half the size of the last bucket.
- Remember, we don't know how many 1's of the last bucket are still within the window.

Error Bound

- Suppose the last bucket has size 2^k.
- Then by assuming 2^{k-1} of its 1's are still within the window, we make an error of at most 2^{k-1} .
- Since there is at least one bucket of each of the sizes less than 2^k , the true sum is no less than 2^k-1 .
- Thus, error at most 50%.

Data Science 86

86

More Stream Mining

- Counting Distinct Elements
- Computing "Moments"
- Frequent Itemsets
- Elephants and Troops
- Exponentially Decaying Windows

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Data Science 89

89

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?).
- How many different Web pages does each customer request in a week?

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Data Science 91

91

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to at least log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
- Record R = the maximum r(a) seen.
- Estimate = 2^R .

^{*} Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Data Science

Why It Works

- The probability that a given h (a) ends in at least r 0's is 2^{-r}.
- If there are m different elements, the probability that $R \ge r$ is $1 (1 2^{-r})^m$.

 Prob. all h(a)'s Prob. a given h(a) ends in fewer than

r 0's.

Data Science 93

93

Why It Works -(2)

r 0's.

- Since 2^{-r} is small, 1 $(1-2^{-r})^m \approx 1 e^{-m\bar{2}^r}$.
- If $2^r >> m$, $1 (1 2^{-r})^m \approx 1 (1 m2^{-r})$ $\approx m/2^r \approx 0$. First 2 terms of the Taylor expansion of e^x
- If $2^r << m$, 1 $(1 2^{-r})^m \approx 1 e^{-m2^r} \approx 1$.
- Thus, 2^R will almost always be around m.

Why It Doesn't Work

- E(2^R) is actually infinite.
 - Probability halves when R -> R +1, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Data Science 95

95

Solution

- Partition your samples into small groups.
- Take the average of groups.
- Then take the median of the averages.

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment is the sum of $(m_i)^k$ over all i.

Data Science 97

97

Special Cases

- 0th moment = number of different elements in the stream.
 - The problem just considered.
- 1st moment = count of the numbers of elements = length of the stream.
 - Easy to compute.
- 2nd moment = surprise number = a measure of how uneven the distribution is.

Data Science 98

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9. Surprise # = 910.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Surprise # = 8,110.

Data Science 99

99

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on 2nd moment.
- Based on calculation of many random variables X.
 - Each requires a count in main memory, so number is limited.

Data Science 100

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- $X = n^*$ ((twice the number of a's in the stream starting at the chosen time) 1).
 - Note: store n once, count of a's for each X.

Data Science 101

101

Expected Value of *X*

- 2^{nd} moment is $\Sigma_a(m_a)^2$.
- $E(X) = (1/n) (\Sigma_{\text{all times } t} n^*)$ (twice the number of times the stream element at time t appears from that time on) -1).
- $= \sum_{a} (1/n)(n)(1+3+5+...+2m_a-1).$ $= \sum_{a} (m_a)^2.$ Time when the last a is seen the first a is seen by the value seen

 Time when the penultimate a is seen is seen to seen

Data Science 102

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.
- Proper balance of group sizes and number of groups assures not only correct expected value, but expected error goes to 0 as number of samples gets large.

Data Science 103

103

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable
 the number of inputs seen so far.

Fixups

- The variables X have n as a factor keep n separately; just hold the count in X.
- Suppose we can only store k counts. We must throw some X's out as time goes on.
 - Objective: each starting time t is selected with probability k/n.

Data Science 105

105

Solution to (2)

- Choose the first *k* times for *k* variables.
- When the n^{th} element arrives (n > k), choose it with probability k / n.
- If you choose it, throw one of the previously stored variables out, with equal probability.

New Topic: Counting Itemsets

- Problem: given a stream, which items appear more than s times in the window?
- Possible solution: think of the stream of baskets as one binary stream per item.
 - 1 = item present; 0 = not present.
 - Use DGIM to estimate counts of 1's for all items.

Data Science 107

107

Extensions

- In principle, you could count frequent pairs or even larger sets the same way.
 - One stream per itemset.
- Drawbacks:
 - 1. Only approximate.
 - 2. Number of itemsets is way too big.

Approaches

- "Elephants and troops": a heuristic way to converge on unusually strongly connected itemsets.
- Exponentially decaying windows: a heuristic for selecting likely frequent itemsets.

Data Science 109

109

Elephants and Troops

- When Sergey Brin wasn't worrying about Google, he tried the following experiment.
- Goal: find unusually correlated sets of words.
 - "High Correlation" = frequency of occurrence of set >> product of frequencies of members.

Experimental Setup

- The data was an early Google crawl of the Stanford Web.
- Each night, the data would be streamed to a process that counted a preselected collection of itemsets.
 - If {a, b, c} is selected, count {a, b, c}, {a}, {b}, and {c}.
 - "Correlation" = $n^2 \times \#abc/(\#a \times \#b \times \#c)$.
 - n = number of pages.

Data Science 111

111

After Each Night's Processing . . .

- Find the most correlated sets counted.
- 2. Construct a new collection of itemsets to count the next night.
 - All the most correlated sets ("winners").
 - Pairs of a word in some winner and a random word.
 - Winners combined in various ways.
 - Some random pairs.

After a Week . . .

- The pair {"elephants", "troops"} came up as the big winner.
- Why? It turns out that Stanford students were playing a Punic-War simulation game internationally, where moves were sent by Web pages.

Data Science 113

113

New Topic: Mining Streams Versus Mining DB's

- Unlike mining databases, mining streams doesn't have a fixed answer.
- We're really mining in the "Stat" point of view, e.g., "Which itemsets are frequent in the underlying model that generates the stream?"

Stationarity

Our assumptions make a big difference:

- Is the model stationary?
 - I.e., are the same statistics used throughout all time to generate the stream?
- 2. Or does the frequency of generating given items or itemsets change over time?

Data Science 115

115

Some Options for Frequent Itemsets

- Run periodic experiments, like E&T.
 - Like SON itemset is a candidate if it is found frequent on any "day."
 - Good for stationary statistics.
- Frame the problem as finding all frequent itemsets in an "exponentially decaying window."
 - Good for nonstationary statistics.

Exponentially Decaying Windows

- If stream is a_1 , a_2 ,... and we are taking the sum of the stream, take the answer at time t to be: $\Sigma_{i=1,2,...,t} a_i e^{-c(t-i)}$.
- c is a constant, presumably tiny, like 10^{-6} or 10^{-9} .

Data Science 117

117

Example: Counting Items

- If each a_i is an "item" we can compute the characteristic function of each possible item x as an E.D.W.
- That is: $\sum_{j=1,2,...,t} \delta_j e^{-c(t-j)}$, where $\delta_j = 1$ if $a_j = x$, and 0 otherwise.
 - Call this sum the "count" of item x.

Sliding Versus Decaying Windows

Data Science

119

119

Counting Items – (2)

- Suppose we want to find those items of weight at least ½.
- Important property: sum over all weights is $1/(1-e^{-c})$ or very close to 1/[1-(1-c)] = 1/c.
- Thus: at most 2/c items have weight at least $\frac{1}{2}$.

Data Science 120

Extension to Larger Itemsets*

- Count (some) itemsets in an E.D.W.
- When a basket B comes in:
 - 1. Multiply all counts by (1-c);
 - 2. For uncounted items in B_r create new count.
 - 3. Add 1 to count of any item in *B* and to any counted itemset contained in *B*.
 - 4. Drop counts $< \frac{1}{2}$.
 - 5. Initiate new counts (next slide).
 - * Informal proposal of Art Owen

Data Science

121

121

Initiation of New Counts

- Start a count for an itemset S⊆B if every proper subset of S had a count prior to arrival of basket B.
- Example: Start counting {i, j} iff both i and j were counted prior to seeing B.
- Example: Start counting {i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B.

How Many Counts?

- Counts for single items \leq (2/c) times the average number of items in a basket.
- Counts for larger itemsets = ??. But we are conservative about starting counts of large sets.
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts.

Data Science 123