RDCSS 2020: Newton 力学小测验

詹有丘

2020年7月20日

全开卷; 时间 120 分钟; 满分 150 分.

问题 1 令

$$t: \mathbb{R}^4 \to \mathbb{R}: (a_0, a_1, a_2, a_3) \mapsto a_1 + 2a_2 - 3a_3,$$

给出 Galileo 构造 (\mathbb{R}^4 , t) 与 Galileo 坐标系的同构.

问题 2 具有单位质量的光滑小环套在水平放置的直长硬轨道上,一根弹簧一端固定在距离轨道 d 的某处,另一端固定在小环上. 当弹簧的长度为 l 时,具有势能 $U = \frac{1}{5} (l - l_0)^2$. 求小环的微振动周期.

问题 3 有一维势场 U, 满足在相平面内, 对应于任意的能量 $E > U_{\min}$ 的 等能集为简单封闭曲线, 且该曲线围成的图形的面积 $S(E) = E^2$.

- 1. 求能量为 E 的质点在该势场中运动的周期 T(E).
- 2. U 是在 $[0, +\infty)$ 上单调增的偶函数, 且 U(0) = 0. 求 U.

提示.

$$\int \frac{x}{\sqrt{a-x}} dx = -\frac{2}{3} (2a+x) \sqrt{a-x} + C.$$

- 1. 证明对于任意的 $\omega \in \mathbb{N}$, 存在 ω 次多项式 P, 使得 $f(\omega, x) = P(\cos x)$.
- 2. 输入 $\cos x$ 和自然数 n, 给出一种能在 O(n) 时间内使用四则运算计算 出 $f(2^n, x)$ 的算法.(请使用主流的计算机语言或流程图.)

问题 5 有有心势场 $U = kr^2$, 其中 k > 0.

- 1. 对于一维的情形, 画出相曲线, 并证明相曲线为椭圆.
- 2. 对于二维的情形,证明轨迹为椭圆.
- 3. 对于三维的情形,证明轨迹为椭圆.
- 4. 对于四维的情形,证明轨迹为椭圆.
- 注. 我们认为线段或点也算椭圆的一种 (即退化了的椭圆).

问题 6 系统由质量分别为 m_1 和 m_2 的两质点组成, 且具有的势能

$$U = U\left(|\mathbf{r}_1 - \mathbf{r}_2|\right).$$

证明当 $m_1 \to \infty$ 时, 在 m_1 初始静止的参考系中 m_1 将始终静止, 且 m_2 相对于 m_1 的运动等同于具有单位质量的质点在有心力场 $V = U(r)/m_2$ 中的运动.