Capstone Retail Project

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from operator import attrgetter
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import datetime as dt
from scipy.stats import skewnorm
import scipy.stats as stats
from sklearn.preprocessing import LabelEncoder
from pandas_profiling import ProfileReport
import pylab as p
from sklearn.preprocessing import StandardScaler
%matplotlib inline
```

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
_classic_test.mplstyle:

The text.latex.preview rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
_classic_test.mplstyle:

The mathtext.fallback_to_cm rcparam was deprecated in Matplotlib 3.3 and w ill be removed two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib _classic_test.mplstyle: Support for setting the 'mathtext.fallback_to_cm' rcParam is deprecated since 3.3 and will be removed two minor releases lat er; use 'mathtext.fallback : 'cm' instead.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
\ classic test.mplstyle:

The validate_bool_maybe_none function was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
_classic_test.mplstyle:

The savefig.jpeg_quality rcparam was deprecated in Matplotlib 3.3 and will be removed two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
_classic_test.mplstyle:

The keymap.all_axes rcparam was deprecated in Matplotlib 3.3 and will be r emoved two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
_classic_test.mplstyle:

The animation.avconv_path rcparam was deprecated in Matplotlib 3.3 and wil 1 be removed two minor releases later.

In C:\Users\frees\Anaconda3\lib\site-packages\matplotlib\mpl-data\stylelib
\ classic test.mplstyle:

The animation.avconv_args rcparam was deprecated in Matplotlib 3.3 and wil 1 be removed two minor releases later.

In [2]:

```
df=pd.read_excel("Online Retail.xlsx", sheet_name='Online Retail')
```

In [3]:

df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Unitec Kingdorr
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Unitec Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	Unitec Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	Unitec Kingdorr
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	Unitec Kingdorr

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908

Data columns (total 8 columns):

Ducu	COTAMILIS (COC	ar o coramiis).	
#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	datetime64[ns]
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtype	es: datetime6	4[ns](1), float64	(2), int64(1), object(4)

memory usage: 33.1+ MB

In [5]:

```
df.describe().T
```

Out[5]:

_		count	mean	std	min	25%	50%	75%	
	Quantity	541909.0	9.552250	218.081158	-80995.00	1.00	3.00	10.00	{
	UnitPrice	541909.0	4.611114	96.759853	-11062.06	1.25	2.08	4.13	3
	CustomerID	406829.0	15287.690570	1713.600303	12346.00	13953.00	15152.00	16791.00	

In [6]:

```
#Perform descriptive analytics on the given data
profile = ProfileReport(df, title='Retail_Profiling_Report')
```

In [9]:

```
profile.to_file("Retail_Profiling_Report.html")
```

Data Cleaning

In [10]:

```
#missing Data and formulate an apt strategy to treat them
df.isnull().sum()
```

Out[10]:

InvoiceNo 0 StockCode 0 Description 1454 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 135080 Country dtype: int64

In [11]:

```
df.dropna(subset=['CustomerID'], inplace=True)
```

In [12]:

```
df.isnull().sum()
```

Out[12]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 0 Country 0 dtype: int64

In [13]:

```
#Remove duplicate data records
df.drop_duplicates(inplace = True)
```

In [14]:

```
df.duplicated().sum()
```

Out[14]:

0

Data Transformation

In [15]:

In [16]:

```
df_cohort.head()
```

Out[16]:

	cohort	order_month	n_customers
0	2010-12	2010-12	948
1	2010-12	2011-01	362
2	2010-12	2011-02	317
3	2010-12	2011-03	367
4	2010-12	2011-04	341

In [17]:

```
#Active customer each Cohort
df_cohort['period_number'] = (df_cohort.order_month - df_cohort.cohort).apply(attrgette
r('n'))
df_cohort.head()
```

Out[17]:

	cohort	order_month	n_customers	period_number
0	2010-12	2010-12	948	0
1	2010-12	2011-01	362	1
2	2010-12	2011-02	317	2
3	2010-12	2011-03	367	3
4	2010-12	2011-04	341	4

In [18]:

Out[18]:

period_number	0	1	2	3	4	5	6	7	8	9	10	
cohort												
2010-12	948.0	362.0	317.0	367.0	341.0	376.0	360.0	336.0	336.0	374.0	354.0	_
2011-01	421.0	101.0	119.0	102.0	138.0	126.0	110.0	108.0	131.0	146.0	155.0	
2011-02	380.0	94.0	73.0	106.0	102.0	94.0	97.0	107.0	98.0	119.0	35.0	
2011-03	440.0	84.0	112.0	96.0	102.0	78.0	116.0	105.0	127.0	39.0	NaN	
2011-04	299.0	68.0	66.0	63.0	62.0	71.0	69.0	78.0	25.0	NaN	NaN	
2011-05	279.0	66.0	48.0	48.0	60.0	68.0	74.0	29.0	NaN	NaN	NaN	
2011-06	235.0	49.0	44.0	64.0	58.0	79.0	24.0	NaN	NaN	NaN	NaN	
2011-07	191.0	40.0	39.0	44.0	52.0	22.0	NaN	NaN	NaN	NaN	NaN	
2011-08	167.0	42.0	42.0	42.0	23.0	NaN	NaN	NaN	NaN	NaN	NaN	
2011-09	298.0	89.0	97.0	36.0	NaN							
2011-10	352.0	93.0	46.0	NaN								
2011-11	321.0	43.0	NaN									
2011-12	41.0	NaN										

In [19]:

```
cohort_size = cohort_pivot.iloc[:,0]
retention_matrix = cohort_pivot.divide(cohort_size, axis = 0)
```

In [20]:

retention_matrix

Out[20]:

period_number	0	1	2	3	4	5	6	7	
cohort									
2010-12	1.0	0.381857	0.334388	0.387131	0.359705	0.396624	0.379747	0.354430	С
2011-01	1.0	0.239905	0.282660	0.242280	0.327791	0.299287	0.261283	0.256532	(
2011-02	1.0	0.247368	0.192105	0.278947	0.268421	0.247368	0.255263	0.281579	С
2011-03	1.0	0.190909	0.254545	0.218182	0.231818	0.177273	0.263636	0.238636	С
2011-04	1.0	0.227425	0.220736	0.210702	0.207358	0.237458	0.230769	0.260870	С
2011-05	1.0	0.236559	0.172043	0.172043	0.215054	0.243728	0.265233	0.103943	
2011-06	1.0	0.208511	0.187234	0.272340	0.246809	0.336170	0.102128	NaN	
2011-07	1.0	0.209424	0.204188	0.230366	0.272251	0.115183	NaN	NaN	
2011-08	1.0	0.251497	0.251497	0.251497	0.137725	NaN	NaN	NaN	
2011-09	1.0	0.298658	0.325503	0.120805	NaN	NaN	NaN	NaN	
2011-10	1.0	0.264205	0.130682	NaN	NaN	NaN	NaN	NaN	
2011-11	1.0	0.133956	NaN	NaN	NaN	NaN	NaN	NaN	
2011-12	1.0	NaN							

In [26]:

```
with sns.axes style("white"):
    fig, ax = plt.subplots(1, 2, figsize=(12, 8), sharey=True, gridspec_kw={'width_rati
os': [1, 11]})
    # retention matrix
    sns.heatmap(retention_matrix,
                mask=retention_matrix.isnull(),
                annot=True,
                fmt='.0%',
                cmap='coolwarm',
                #cmap='RdYLGn',
                ax=ax[1]
    ax[1].set_title('Monthly Cohorts: User Retention', fontsize=16)
    ax[1].set(xlabel='# of periods',
              ylabel='')
    # cohort size
    cohort_size_df = pd.DataFrame(cohort_size).rename(columns={0: 'cohort_size'})
    white_cmap = mcolors.ListedColormap(['black'])
    sns.heatmap(cohort_size_df,
                annot=True,
                cbar=False,
                fmt='g',
                cmap=white_cmap,
                ax=ax[0]
    fig.tight_layout()
```


Week 2

In [27]:

```
#Build RFM model
df['InvoiceDate'].max()
```

Out[27]:

Timestamp('2011-12-09 12:50:00')

In [28]:

Out[28]:

recency frequency monetary_value

CustomerID			
12346.0	325	2	2.08
12347.0	2	182	481.21
12348.0	75	31	178.71
12349.0	18	73	605.10
12350.0	310	17	65.30
18280.0	277	10	47.65
18281.0	180	7	39.36
18282.0	7	13	62.68
18283.0	3	721	1174.33
18287.0	42	70	104.55

4372 rows × 3 columns

RFM segments Quantile

In [29]:

```
quantiles = rfmtable.quantile(q=[0.25,0.5,0.75])
quantiles.to_dict()
```

Out[29]:

```
{'recency': {0.25: 16.0, 0.5: 50.0, 0.75: 143.0},
  'frequency': {0.25: 17.0, 0.5: 41.0, 0.75: 99.25},
  'monetary_value': {0.25: 52.73000000000004, 0.5: 128.925, 0.75: 299.097
5}}
```

In [30]:

```
segmented_rfm = rfmtable
```

In [31]:

```
def recencyscore(x,p,d):
    if x <= d[p][0.25]:
        return 1
    elif x <= d[p][0.50]:
        return 2
    elif x <= d[p][0.75]:
        return 3
    else:
        return 4
def fmscore(x,p,d):
    if x <= d[p][0.25]:
        return 4
    elif x <= d[p][0.50]:
        return 3
    elif x <= d[p][0.75]:
        return 2
    else:
        return 1
```

Type Markdown and LaTeX: α 2

In [32]:

```
segmented_rfm['r_quartile'] = segmented_rfm['recency'].apply(recencyscore, args=('recency',quantiles,))
segmented_rfm['f_quartile'] = segmented_rfm['frequency'].apply(fmscore, args=('frequency',quantiles,))
segmented_rfm['m_quartile'] = segmented_rfm['monetary_value'].apply(fmscore, args=('monetary_value',quantiles,))
segmented_rfm.head()
```

Out[32]:

	recency	frequency	monetary_value	r_quartile	f_quartile	m_quartile
CustomerID						
12346.0	325	2	2.08	4	4	4
12347.0	2	182	481.21	1	1	1
12348.0	75	31	178.71	3	3	2
12349.0	18	73	605.10	2	2	1
12350.0	310	17	65.30	4	4	3

In [33]:

```
segmented_rfm.to_csv('SegmentedRFM.csv')
segmented_rfm['RFMScore'] = segmented_rfm.r_quartile.map(str)+segmented_rfm.f_quartile.map(str)+segmented_rfm.m_quartile.map(str)
segmented_rfm.head()
```

Out[33]:

	recency	frequency	monetary_value	r_quartile	f_quartile	m_quartile	RFMScore
CustomerID							
12346.0	325	2	2.08	4	4	4	444
12347.0	2	182	481.21	1	1	1	11 ⁻
12348.0	75	31	178.71	3	3	2	332
12349.0	18	73	605.10	2	2	1	22.
12350.0	310	17	65.30	4	4	3	44:

In [34]:

```
#Customer Segementation according to RFM
pd.set_option("display.max_colwidth", 10000)
data = {'Customer Segement':['Best Customers', 'Loyal Customers', 'Big Spender', 'Almos
t Lost','Lost Customers','Lost Cheap Customers'], 'RFM':['111', 'X1X', 'XX1', '311','41
1','444'],'Desrciption':['Bought Most Recently and More Often', 'Buy Most Frequently',
'Spend The Most', 'Did not purchased for some time but purchased frequently and most',
'Did not purchased for some time but purchased frequently and most','Last purchased lon
g ago,purchased few and spent little']}
pd.DataFrame(data)
```

Out[34]:

FM [RFM	Customer Segement	
111 Bought Most Recently and	111	Best Customers	0
K1X Buy Mos	X1X	Loyal Customers	1
XX1 Sper	XX1	Big Spender	2
311 Did not purchased for some time but purchased frequent	311	Almost Lost	3
411 Did not purchased for some time but purchased frequent	411	Lost Customers	4
Last purchased long ago,purchased few and	444	Lost Cheap Customers	5

Week 3

Clustering using K-mean

In [35]:

```
cluster = segmented_rfm
cluster = cluster.reset_index(level=0).iloc[:,[2,3]].values
pd.DataFrame(cluster)
```

Out[35]:

0	1
2.0	2.08
182.0	481.21
31.0	178.71
73.0	605.10
17.0	65.30
10.0	47.65
7.0	39.36
13.0	62.68
721.0	1174.33
70.0	104.55
	2.0 182.0 31.0 73.0 17.0 10.0 7.0 13.0 721.0

4372 rows × 2 columns

In [36]:

```
sc= StandardScaler()
cluster = sc.fit_transform(cluster)
```

In [37]:

sns.distplot(cluster[0])

C:\Users\frees\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[37]:

<AxesSubplot:ylabel='Density'>

In [38]:

sns.distplot(cluster[1])

C:\Users\frees\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[38]:

<AxesSubplot:ylabel='Density'>

In [39]:

```
#WCSS
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++')
    kmeans.fit(cluster)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


In [45]:

```
#Optimum number of clusters to be formed is 4
kmeans = KMeans(n_clusters = 4, init = 'k-means++')
y_kmeans = kmeans.fit_predict(cluster)
plt.scatter(cluster[y_kmeans == 0, 0], cluster[y_kmeans == 0, 1], s = 5, c = 'red', lab
el = 'Lost Customer')
plt.scatter(cluster[y_kmeans == 1, 0], cluster[y_kmeans == 1, 1], s = 5, c = 'blue', la
bel = 'Loyal customer')
plt.scatter(cluster[y_kmeans == 2, 0], cluster[y_kmeans == 2, 1], s = 5, c = 'green', 1
abel = 'Average Customers')
plt.scatter(cluster[y_kmeans == 3, 0], cluster[y_kmeans == 3, 1], s = 5, c = 'orange',
label = 'Bought frequently but Spend less')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 20, c =
'cyan', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Total Spending')
plt.ylabel('Buying Frequency')
plt.legend()
plt.show()
```

Clusters of customers 30 25 Buying Frequency 20 15 Lost Customer 10 Loyal customer Average Customers 5 Bought frequently but Spend less Centroids 25 20 30 35 Total Spending

In []:	
In []:	
In []:	
In []:	
In []:	

In []:			
In []:			