MATHS SPECIALITE

FICHE D'EXERCICES N°1 SUITES ET RAISONNEMENT PAR RECURRENCE

Exercice N°1

On donne la suite (u_n) définie par :

$$u_0 = 1$$
 et pour n entier naturel , $u_{n+1} = 0.25 \times u_n + 2$

- 1) Donner les trois premiers termes de cette suite.
- 2) Comment cette suite est-elle définie?
- 3) En utilisant le raisonnement par récurrence démontrez que :

Pour tout entier naturel n , $u_n \leq 3$

Exercice N°2

On considère la suite (u_n) définie par :

$$u_0 = 0$$
 et pour n entier naturel : $u_{n+1} = u_n + 2n + 2$

- 1) Donner les trois premiers termes de cette suite.
- 2) Etudier le sens de variation de cette suite.
- 3) Démontrer en utilisant le raisonnement par récurrence que :

Pour tout entier naturel n , $u_n = n(n+1)$

Exercice N°3 Quelques sommes :

en utilisant le raisonnement par récurrence démontrez que :

- 1) Pour tout entier naturel n , non nul :1 + 2 + \cdots ... + $n = \frac{n(n+1)}{2}$
- 2) Pour tout entier naturel n , non nul : $1^2 + 2^2 + \cdots = n^2 = \frac{n(n+1)(2n+1)}{6}$

EXERCICE N°4 On considère la suite (v_n) , définie par :

$$v_0=1$$
 et pour n'entier naturel , $v_{n+1}=rac{9}{6-v_n}$

1°Démontrer que pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = \frac{(3-v_n)^2}{6-v_n}$

2) Démontrer en utilisant le raisonnement par récurrence que : pour tout $n \in \mathbb{N}$

$$0 < v_n < 3$$

- 3) en utilisant les questions précédentes, étudiez le sens de variation de cette suite.
- 4) On considère la suite (w_n) définie par ,pour $n \in \mathbb{N} : w_n = \frac{1}{v_n 3}$

- a) démontrer que la suite (w_n) est une suite arithmétique : précisez la raison et le premier terme .
- b) Déduire l'expression de w_n puis de v_n en fonction de n .

Exercice N°5 : démontrer que pour tout entier naturel n , 4^n-1 est divisible par 3

Définition : un entier relatif b est divisible par un autre entier relatif a , s'il existe un entier relatif k tel que : $b=a\times k$

EXERCICE N°6 Soit la suite (u_n) définie par :

$$u_o=0 \ \ {
m et} \ u_1=1 \ \ \ {
m et} \ {
m pour} \ {
m n} \ {
m entier} \ {
m naturel}$$
 , $u_{n+2}=4u_{n+1}-3u_n$

Démontrer par récurrence double que : pour tout n entier naturel , $u_n=rac{3^{n}-1}{2}$

EXERCICE N°7: (u_n) la suite définie pour tout entier naturel n par :

$$u_n = 2 - 3 \times 0.85^n$$

- 1)a) Calculez les 3 premiers termes de cette suite
 - b) Montrez que cette suite n'est pas arithmétique
 - c) Montrez que cette suite n'est pas géométrique(comparez deux quotients)
- 2) Etudiez le sens de variation de cette suite.
- 3) Démontrer que pour tout entier n , $u_n \le 2$
- 3) Déterminez le plus petit entier naturel n tel que $:u_n > 1.99$.Utilisez la calculatrice