Réseaux Master 1 Prospective

Louis-Claude Canon louis-claude.canon@univ-fcomte.fr

Bureau 429C

Master 1 informatique – Semestre 7

Évolution des réseaux

- ▶ Des concepts fondamentaux (mode connecté, adressage, routage, résolution d'adresse, . . .).
- ▶ Des technologies anciennes (TCP/IP et Ethernet développées en 1974, ...).
- Inertie importante liée au besoin d'interopérabilité.
- ► Mais, un domaine qui évolue : de nouvelles technologies apparaissent, d'autres tendent à être remplacées, . . .

Veille technologique

Principe:

- informatique : domaine qui évolue constamment
- ▶ limite d'une formation : état des connaissances à un moment donné
- veille : se positionner dans un domaine en évolution
- étudier le développement des technologies et les tendances
- objectif : déterminer quand il faut mettre à jour ses connaissances

Plan

Ethernet

IΡ

TCP

HTTP

Plan

Ethernet

ΙP

TCP

HTTP

- Twinax (2 conducteurs dans un câble coaxial)
- ► Backplane (fond de panier : bus sur un circuit imprimé)
- Fibre optique
 - single-mode
 - multi-mode
 - EPON (Ethernet Passive Optical Network)
- Paire torsadée
 - connecteur RJ45 (8P8C en fait)
 - level 1, level 2, Cat3, Cat4, Cat5, Cat5e, Cat6, Cat6a (2009), Class F,
 Class Fa (2010), Category 8 (début 2016)

- Twinax (2 conducteurs dans un câble coaxial)
- ► Backplane (fond de panier : bus sur un circuit imprimé)
- Fibre optique
 - single-mode
 - multi-mode
 - EPON (Ethernet Passive Optical Network)
- Paire torsadée
 - connecteur RJ45 (8P8C en fait)
 - level 1, level 2, Cat3, Cat4, Cat5, Cat5e, Cat6, Cat6a (2009), Class F,
 Class Fa (2010), Category 8 (début 2016)

- ► Twinax (2 conducteurs dans un câble coaxial)
- ▶ Backplane (fond de panier : bus sur un circuit imprimé)
- Fibre optique
 - single-mode
 - multi-mode
 - ► EPON (Ethernet Passive Optical Network)
- Paire torsadée
 - connecteur RJ45 (8P8C en fait)
 - level 1, level 2, Cat3, Cat4, Cat5, Cat5e, Cat6, Cat6a (2009), Class F,
 Class Fa (2010), Category 8 (début 2016)

- Twinax (2 conducteurs dans un câble coaxial)
- ► Backplane (fond de panier : bus sur un circuit imprimé)
- Fibre optique
 - single-mode
 - multi-mode
 - EPON (Ethernet Passive Optical Network)
- Paire torsadée
 - connecteur RJ45 (8P8C en fait)
 - level 1, level 2, Cat3, Cat4, Cat5, Cat5e, Cat6, Cat6a (2009), Class F,
 Class Fa (2010), Category 8 (début 2016)

Faits marquants pour les paires torsadées

- ▶ 1999 Cat5 pour 1 Gb/s sur 100 m
- 2006 Cat6 pour 10 Gb/s sur 37-55 m
- ▶ 2008 Cat6a pour 10 Gb/s sur 100 m
- ▶ 2013 Category 8 pour 40 Gb/s sur 30 m

Évolution des débits

- ▶ 100 Gb/s Ethernet (débuté en 2007, standardisé en 2011 pour le twinax et en 2013 pour la fibre optique)
- ▶ 400 Gb/s Ethernet (débuté en 2013, standardisation prévue en 2017)

Distances maximales

- Twinax
 - ▶ 15 m en 10 Gb/s (10GBASE-CX4)
 - 7 m en 100 Gb/s (100GBASE-CR10)
- Paire torsadée : 100 m (sauf pour le 40 Gb/s)
- Fibre optique
 - 40 km en 100 Mb/s (100BASE-BX)
 - ightharpoonup pprox 70 km en 1 Gb/s (1000BASE-ZX)
 - ▶ 80 km en 10 Gb/s (10GBASE-ZR)
 - ▶ 40 km en 100 Gb/s (100GBASE-ER4)

Routage

Shortest Path Bridging (IEEE 802.1aq)

- Évolution d'Ethernet parmi les plus significatives depuis son introduction.
- Standardisé en 2012.
- Permet d'exploiter l'ensemble des liens d'un réseau maillé (topologie mesh) grâce au protocole de routage IS-IS (similaire à OSPF pour le niveau 2).
- ▶ Augmente le nombre maximum de VLANs de 4096 à 16 millions.

Convergence

- ▶ Les réseaux semblent converger vers de l'Ethernet pour le niveau 2 (faible coût et performance raisonnable) : Ethernet in the first mile (EFM).
- Certains MAN utilisent Ethernet de bout en bout.

Plan

Ethernet

IΡ

TCP

HTTP

Épuisement des adresses IPv4

IANA

L'organisation globale qui attribue des blocs d'adresses aux Registres Internet Régionaux (RIR) : APNIC, RIPE NCC, ARIN, LACNIC et l'AfriNIC.

Adresses disponibles

- L'IANA n'a plus d'adresse depuis le 31 janvier 2011.
- L'APNIC a atteint la pénurie le 15 avril 2011.
- ▶ RIPE NCC a atteint la pénurie le 14 septembre 2012.
- ► LACNIC a atteint la pénurie le 10 juin 2014.
- L'ARIN a atteint la pénurie en juillet 2015.

Pas complètement en pénurie

Pour RIPE NCC et l'APNIC, les adresses actuellement allouées le sont dans le dernier bloc /8.

Region Covered

Africa Region

Asia/Pacific Region

North America Region

Latin America and some Caribbean Islands

Europe, the Middle East, and Central Asia

Épuisement des adresses IPv4

IANA

L'organisation globale qui attribue des blocs d'adresses aux Registres Internet Régionaux (RIR) : APNIC, RIPE NCC, ARIN, LACNIC et l'AfriNIC.

Adresses disponibles

- ▶ L'IANA n'a plus d'adresse depuis le 31 janvier 2011.
- L'APNIC a atteint la pénurie le 15 avril 2011.
- ▶ RIPE NCC a atteint la pénurie le 14 septembre 2012.
- ► LACNIC a atteint la pénurie le 10 juin 2014.
- L'ARIN a atteint la pénurie en juillet 2015.

Pas complètement en pénurie

Pour RIPE NCC et l'APNIC, les adresses actuellement allouées le sont dans le dernier bloc /8.

RIR IPv4 Address Run-Down Model

Épuisement des adresses IPv4

IANA

L'organisation globale qui attribue des blocs d'adresses aux Registres Internet Régionaux (RIR) : APNIC, RIPE NCC, ARIN, LACNIC et l'AfriNIC.

Adresses disponibles

- L'IANA n'a plus d'adresse depuis le 31 janvier 2011.
- L'APNIC a atteint la pénurie le 15 avril 2011.
- ▶ RIPE NCC a atteint la pénurie le 14 septembre 2012.
- ► LACNIC a atteint la pénurie le 10 juin 2014.
- L'ARIN a atteint la pénurie en juillet 2015.

Pas complètement en pénurie

Pour RIPE NCC et l'APNIC, les adresses actuellement allouées le sont dans le dernier bloc /8.

Effet indirect: 512k day

- ► Le 12 août 2014, plusieurs routeurs Cisco ont atteint leur limite mémoire.
- ▶ Déconnexion de plusieurs centres de données.
- Multiplication des sous-réseaux pour optimiser l'utilisation des adresses.
- Les tables de routage ne pouvaient plus stocker l'ensemble des routes.

Solution: NAT + RFC1918

- Network Adress Translation.
- Convertit une adresse publique et un port TCP/UDP en une adresse privé (une adresse par port).
- Limité par les pares-feux qui filtrent les ports.
- ▶ Fournit une sécurité relative : rejette toutes les requêtes par défaut.
- ▶ Une solution temporaire à l'origine.

- Proposé en 1998.
- ▶ Les trois premiers bits sont toujours 001 (2000::/3). Il reste donc 7 tentatives au cas où les pratiques d'allocation se révèlent désastreuses.
- ▶ Progression constante mais encore faible.
- Événements marquants :
 - "World IPv6 Day", le 8 juin 2011 (test)
 - "World IPv6 Launch Day", le 6 juin 2012
- Mesurable de plusieurs façons :
 - coeur de réseau (Autonomous System)
 - utilisateur (client)
 - contenu (site Web)
 - préfixes alloués par les RIR (adresses de réseau)
 - offres d'emploi

- Proposé en 1998.
- ▶ Les trois premiers bits sont toujours 001 (2000::/3). Il reste donc 7 tentatives au cas où les pratiques d'allocation se révèlent désastreuses.
- ▶ Progression constante mais encore faible.
- Événements marquants :
 - "World IPv6 Day", le 8 juin 2011 (test)
 - "World IPv6 Launch Day", le 6 juin 2012
- Mesurable de plusieurs façons :
 - coeur de réseau (Autonomous System)
 - utilisateur (client)
 - contenu (site Web)
 - préfixes alloués par les RIR (adresses de réseau)
 - offres d'emploi

- Proposé en 1998.
- ► Les trois premiers bits sont toujours 001 (2000::/3). Il reste donc 7 tentatives au cas où les pratiques d'allocation se révèlent désastreuses.
- Progression constante mais encore faible.
- Événements marquants :
 - "World IPv6 Day", le 8 juin 2011 (test)
 - "World IPv6 Launch Day", le 6 juin 2012
- Mesurable de plusieurs façons :
 - coeur de réseau (Autonomous System)
 - utilisateur (client)
 - contenu (site Web)
 - préfixes alloués par les RIR (adresses de réseau)
 - offres d'emploi

- Proposé en 1998.
- ▶ Les trois premiers bits sont toujours 001 (2000::/3). Il reste donc 7 tentatives au cas où les pratiques d'allocation se révèlent désastreuses.
- ▶ Progression constante mais encore faible.
- Événements marquants :
 - "World IPv6 Day", le 8 juin 2011 (test)
 - "World IPv6 Launch Day", le 6 juin 2012
- Mesurable de plusieurs façons :
 - coeur de réseau (Autonomous System)
 - utilisateur (client)
 - contenu (site Web)
 - préfixes alloués par les RIR (adresses de réseau)
 - offres d'emploi

Plan

Ethernet

ΙP

TCP

HTTP

Importance de Google

- ► Classement des sites les plus populaires :
 - 1. google.com
 - 2. facebook.com
 - 3. youtube.com
- ► Chrome : navigateur le plus utilisé depuis 2012.

Stratégie de Google

- ▶ Parmi les mieux placés (présence massive du coté serveur et client) pour tester et déployer de nouvelles technologies à large échelle.
- ► Centrer sur la réactivité des applications Web.

Usage share of web browsers

Importance de Google

- Classement des sites les plus populaires :
 - 1. google.com
 - 2. facebook.com
 - 3. youtube.com
- ► Chrome : navigateur le plus utilisé depuis 2012.

Stratégie de Google

- ▶ Parmi les mieux placés (présence massive du coté serveur et client) pour tester et déployer de nouvelles technologies à large échelle.
- ► Centrer sur la réactivité des applications Web.

QUIC

- ▶ Évolution de TCP pour réduire la latence (proposé par Google).
- ► Construit au dessus d'UDP avec une sécurité du niveau de TLS/SSL.
- Implémenté dans Chrome (depuis de 20 août 2013).
- ▶ Utilisé dans la moitié des connections entre Chrome et Google.

Zero RTT Connection Establishment

- 1. Repeat connection
- 2. Never talked to server before

Plan

Ethernet

ΙP

TCP

HTTP

HTTP/2

- Standardisé en février 2015.
- ▶ Basé sur SPDY (proposé en 2009), une technologie portée par Google.
- L'objectif est de réduire le temps de chargement (compression de l'en-tête notamment).
- Adoption significative depuis 2015.

Timeline

1991	1996	1999	2009	2015
HTTP/0.9	HTTP/1.0	HTTP/LI	SPDY	HTTP/2

