Cochran's Theorem and Analysis of Variance

Theorem 5.1:(Cochran's Theorem)

Suppose $Y \sim N(\mu, \sigma^2 I)$ and A_1, \dots, A_k are symmetric and idempotent matrices with

$$rank(\mathbf{A}_i) = s_i \quad \forall i = 1, \dots, k.$$

Then $\sum_{i=1}^k A_i = I_{n \times n} \Longrightarrow \frac{1}{\sigma^2} Y' A_i Y \ (i = 1, \dots, k)$ are independently distributed as $\chi^2_{s_i}(\phi_i)$, with

$$\phi_i = \frac{1}{2\sigma^2} \mu' A_i \mu, \ \sum_{i=1}^k s_i = n.$$

Proof of Theorem 5.1:

By Result 5.15,

$$\frac{1}{\sigma^2} \mathbf{Y}' \mathbf{A}_i \mathbf{Y} \sim \chi_{s_i}^2(\phi_i)$$

with

$$\phi_i = \frac{1}{2\sigma^2} \boldsymbol{\mu}' \boldsymbol{A}_i \boldsymbol{\mu}$$

 $\therefore \frac{1}{\sigma^2} A_i \sigma^2 I = A_i$ is idempotent and has rank $s_i \quad \forall i = 1, \dots, k$.

$$\sum_{i=1}^{k} s_i = \sum_{i=1}^{k} rank(A_i)$$

$$= \sum_{i=1}^{k} trace(A_i)$$

$$= trace(\sum_{i=1}^{k} A_i)$$

$$= trace(I)$$

$$= n.$$

By Lemma 5.1, $\exists G_i = \sum_{n \times s_i} f_n > 0$

$$G_iG_i'=A_i, G_i'G_i=I_{s_i\times s_i} \quad \forall i=1,\ldots,k.$$

Now let $G = [G_1, \dots, G_k]$.

 \because G_i is $n \times s_i \quad \forall \ i = 1, \dots, k$ and $\sum_{i=1}^k s_i = n$, it follows that G is $n \times n$.

Moreover,

$$egin{aligned} oldsymbol{G}oldsymbol{G}' &= egin{bmatrix} oldsymbol{G}_1 & \dots & oldsymbol{G}_k \end{bmatrix} egin{bmatrix} oldsymbol{G}_1' & dots \ oldsymbol{G}_k' \end{bmatrix} \ &= \sum_{i=1}^k oldsymbol{G}_i oldsymbol{G}_i' = \sum_{i=1}^k oldsymbol{A}_i &= oldsymbol{I}. \end{aligned}$$

Thus, G_n has G' as its inverse; i.e., $G^{-1} = G'$. Thus G'G = I.

Now we have

$$egin{aligned} oldsymbol{I} &= oldsymbol{G}'oldsymbol{G} &= egin{bmatrix} oldsymbol{G}_1' \ oldsymbol{G}_2'oldsymbol{G}_1 & oldsymbol{G}_1'oldsymbol{G}_2 & \dots & oldsymbol{G}_1'oldsymbol{G}_k \ oldsymbol{G}_2'oldsymbol{G}_1 & oldsymbol{G}_2'oldsymbol{G}_2 & \dots & oldsymbol{G}_2'oldsymbol{G}_k \ oldsymbol{G}_1'oldsymbol{G}_1' & oldsymbol{G}_2'oldsymbol{G}_2 & \dots & oldsymbol{G}_2'oldsymbol{G}_k \ oldsymbol{G}_1'oldsymbol{G}_1'oldsymbol{G}_2' & \dots & oldsymbol{G}_2'oldsymbol{G}_k \ oldsymbol{G}_1'oldsymbol{G}_2' & \dots & oldsymbol{G}_2'oldsymbol{G}_2' \ oldsymbol{G}_1'oldsymbol{G}_1'oldsymbol{G}_2' & \dots & oldsymbol{G}_2'oldsymbol{G}_1' \ oldsymbol{G}_1'oldsymbol{G}_1''$$

$$\therefore \mathbf{G}_i'\mathbf{G}_i = \mathbf{0} \quad \forall \ i \neq j.$$

$$\therefore \mathbf{G}_i \mathbf{G}_i' \mathbf{G}_j \mathbf{G}_j' = \mathbf{0} \quad \forall \ i \neq j$$

$$A_i A_i = 0 \quad \forall i \neq j$$

$$\therefore \sigma^2 \mathbf{A}_i \mathbf{A}_i = \mathbf{0} \quad \forall \ i \neq j$$

$$A_i(\sigma^2 I)A_i = 0 \quad \forall i \neq j$$

 \therefore Independence, hold by Corollary 5.4, \forall pair of quadratic forms $Y'A_iY/\sigma^2$ and $Y'A_iY/\sigma^2$.

However, we can prove more than pairwise independence.

$$\begin{bmatrix} G'_1 Y \\ \vdots \\ G'_k Y \end{bmatrix} = \begin{bmatrix} G'_1 \\ \vdots \\ G'_k \end{bmatrix} Y = \begin{bmatrix} G_1 & \dots & G_k \end{bmatrix}' Y = G' Y$$
$$\sim N(G' \mu, G'(\sigma^2 I)G = \sigma^2 G' G = \sigma^2 I).$$

By Result 5.4, G'_1Y, \dots, G'_kY are mutually independent.

 G'_1Y, \ldots, G'_kY mutually independent,

 $\implies \|G_1'Y\|^2, \dots, \|G_k'Y\|^2$ mutually independent $\implies Y'G_1G_1'Y, \dots, Y'G_kG_k'Y$ mutually independent $\implies Y'A_1Y/\sigma^2, \dots, Y'A_kY/\sigma^2$ mutually independent.

Copyright ©2012 Dan Nettleton (Iowa State University)

Example:

Suppose $Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$.

Find the joint distribution of $n\bar{Y}^2$ and $\sum_{i=1}^n (Y_i - \bar{Y}_i)^2$.

Let
$$A_1 = P_1 = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}' = \frac{1}{n}\mathbf{1}\mathbf{1}'.$$

Let
$$A_2 = I - P_1 = I - \frac{1}{n} \mathbf{1} \mathbf{1}'$$
.

Then

$$rank(A_1) = 1$$
 and $rank(A_2) = n - 1$.

Also, A_1 and A_2 are each symmetric and idempotent matrices \ni

$$A_1 + A_2 = P_1 + I - P_1 = I.$$

Let
$$Y = (Y_1, ..., Y_n)' \ni E(Y) = \mu 1$$
, $Var(Y) = \sigma^2 I$.

Cochran's Thenorem $\Longrightarrow \frac{1}{\sigma^2} Y' A_i Y \overset{\text{IND}}{\sim} \chi^2_{s_i}(\phi_i)$, where

$$s_i = rank(A_i)$$
 and $\phi_i = \frac{1}{2\sigma^2} \mu' A_i \mu = \frac{\mu^2}{2\sigma^2} \mathbf{1}' A_i \mathbf{1}.$

For i = 1, we have

$$\frac{1}{\sigma^2} \mathbf{Y}' \mathbf{1} \mathbf{1}' \mathbf{Y} / n = \frac{n}{\sigma^2} \overline{Y}_{\cdot}^2, \quad s_1 = 1, \quad \text{and}$$

$$\phi_1 = \frac{\mu^2}{2\sigma^2} \mathbf{1}' \left(\frac{1}{n} \mathbf{1} \mathbf{1}' \right) \mathbf{1} = \frac{n\mu^2}{2\sigma^2}.$$

For i = 2, we have

$$\frac{1}{\sigma^2} \mathbf{Y}' \mathbf{A}_2 \mathbf{Y} = \frac{1}{\sigma^2} \mathbf{Y}' \mathbf{A}_2' \mathbf{A}_2 \mathbf{Y}$$

$$= \frac{1}{\sigma^2} || \mathbf{A}_2 \mathbf{Y} ||^2$$

$$= \frac{1}{\sigma^2} || \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}' \right) \mathbf{Y} ||^2$$

$$= \frac{1}{\sigma^2} || \mathbf{Y} - \mathbf{1} \bar{\mathbf{Y}} \cdot ||^2$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \bar{\mathbf{Y}} \cdot)^2.$$

Also, $s_2 = n - 1$ and

$$\phi_2 = \frac{\mu^2}{2\sigma^2} \mathbf{1}' \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}' \right) \mathbf{1}$$
$$= \frac{\mu^2}{2\sigma^2} \left(\mathbf{1}' \mathbf{1} - \frac{1}{n} \mathbf{1}' \mathbf{1} \mathbf{1}' \mathbf{1} \right)$$
$$= \frac{\mu^2}{2\sigma^2} \left(n - \frac{n^2}{n} \right) = 0.$$

Thus,

$$n\bar{Y}^2_{\cdot} \sim \sigma^2 \chi_1^2 \left(\frac{n\mu^2}{2\sigma^2}\right)$$

independent of

$$\sum_{i=1}^{n} (Y_i - \bar{Y}_i)^2 \sim \sigma^2 \chi_{n-1}^2.$$

It follows that

$$\begin{split} \frac{n\bar{Y}_{\cdot}^{2}/\sigma^{2}}{\frac{\sum_{i=1}^{n}(Y_{i}-\bar{Y}_{\cdot})^{2}}{n-1}/\sigma^{2}} &= \frac{n\bar{Y}_{\cdot}^{2}}{\frac{\sum_{i=1}^{n}(Y_{i}-\bar{Y}_{\cdot})^{2}}{n-1}} \\ &\sim F_{1,n-1}\left(\frac{n\mu^{2}}{2\sigma^{2}}\right). \end{split}$$

If
$$\mu = 0$$
, $\frac{n\bar{Y}^2}{\sum_{i=1}^n (Y_i - \bar{Y}_i)^2} \sim F_{1,n-1}$.

Thus, we can test $H_0: \mu=0$ by comparing $\frac{n\bar{Y}^2}{\frac{\sum_{i=1}^n(Y_i-\bar{Y}_i)^2}{n-1}}$ to $F_{1,n-1}$ distribution and rejecting H_0 for large values.

Note

$$\frac{n\bar{Y}_{\cdot}^{2}}{\frac{\sum_{i=1}^{n}(Y_{i}-\bar{Y}_{\cdot})^{2}}{n-1}}=t^{2},$$

where

$$t = \frac{\bar{Y}}{\sqrt{s^2/n}},$$

the usual *t*-statistics for testing $H_0: \mu = 0$.

Example:

ANalysis Of VAriance (ANOVA):

Consider $Y = X\beta + \varepsilon$, where

$$m{X} = [m{X}_1, m{X}_2, \dots, m{X}_m], \; m{eta} = egin{bmatrix} m{eta}_1 \ m{eta}_2 \ dots \ m{eta}_m \end{bmatrix}, \; m{arepsilon} \sim N(m{0}, \sigma^2 m{I}).$$

Let
$$P_j = P_{[X_1,...,X_j]}$$
 for $j = 1,...,m$.

Let

$$A_1 = P_1$$

$$A_2 = P_2 - P_1$$

$$A_3 = P_3 - P_2$$

$$\vdots$$

$$A_m = P_m - P_{m-1}$$

$$A_{m+1} = I - P_m$$

Note that $\sum_{j=1}^{m+1} A_j = I$.

Then A_j is symmetric and idempotent $\forall j = 1, \dots, m+1$.

$$s_{1} = rank(\mathbf{A}_{1}) = rank(\mathbf{P}_{1})$$

$$s_{2} = rank(\mathbf{A}_{2}) = rank(\mathbf{P}_{2}) - rank(\mathbf{P}_{1})$$

$$\vdots$$

$$s_{m} = rank(\mathbf{A}_{m}) = rank(\mathbf{P}_{m}) - rank(\mathbf{P}_{m-1})$$

$$s_{m+1} = rank(\mathbf{A}_{m+1}) = rank(\mathbf{I}) - rank(\mathbf{P}_{m})$$

$$= n - rank(\mathbf{X}).$$

It follows that

$$\frac{1}{\sigma^2} \mathbf{Y}' \mathbf{A}_j \mathbf{Y} \stackrel{\text{IND}}{\sim} \chi^2_{s_j}(\phi_j), \quad \forall j = 1, \dots, m+1,$$

where

$$\phi_j = \frac{1}{2\sigma^2} \beta' X' A_j X \beta.$$

Note

$$\phi_{m+1} = \frac{1}{2\sigma^2} \beta' X' (I - P_X) X \beta$$
$$= \frac{1}{2\sigma^2} \beta' X' (X - P_X X) \beta$$
$$= \frac{1}{2\sigma^2} \beta' X' (X - X) \beta = 0.$$

Thus,

$$\frac{1}{\sigma^2} \mathbf{Y}' \mathbf{A}_{m+1} \mathbf{Y} \sim \chi^2_{n-rank(\mathbf{X})}$$

and

$$F_{j} = \frac{Y'A_{j}Y/s_{j}}{Y'A_{m+1}Y/(n-rank(X))}$$

$$\sim F_{s_{j},n-rank(X)}\left(\frac{1}{2\sigma^{2}}\beta'X'A_{j}X\beta\right) \quad \forall j = 1, \dots, m.$$

We can assemble the ANOVA table as below:

Source	Sum of	DF	Mean	Expected	F
	Squares		Square	Mean Square	
A_1	$Y'A_1Y$	s_1	$Y'A_1Y/s_1$	$\sigma^2 + \boldsymbol{\beta}' \boldsymbol{X}' \boldsymbol{A}_1 \boldsymbol{X} \boldsymbol{\beta} / s_1$	$\overline{F_1}$
:	:	:	÷	÷	÷
A_m	$Y'A_mY$	S_m	$Y'A_mY/s_m$	$\sigma^2 + \beta' X' A_m X \beta / s_m$	F_m
A_{m+1}	$Y'A_{m+1}Y$	s_{m+1}	$\mathbf{Y}'\mathbf{A}_{m+1}\mathbf{Y}/s_{m+1}$	σ^2	
\overline{I}	Y'IY	n			

This ANOVA table contains sequential (a.k.a type I) sum of squares.

 A_{m+1} corresponds to "error."

We can use F_i to test

$$H_{0j}: \frac{1}{2\sigma^2} \beta' X' A_j X \beta = 0 \iff$$

 $H_{0j}: \beta' X' A'_j A_j X \beta = 0 \iff$

$$H_{0j}: \quad \beta' X' A'_j A_j X \beta = 0 \Longleftrightarrow$$

$$H_{0j}: A_j X \beta = \mathbf{0}.$$

Now

$$egin{aligned} m{A_j X eta} &= m{A_j [X_1, \dots, X_m]} egin{bmatrix} m{eta}_1 \ dots \ m{eta}_m \end{bmatrix} \ &= m{A_j \sum_{i=1}^m X_i eta_i} \ &= \sum_{i=1}^m m{A_j X_i eta_i} \ &= \sum_{i=1}^m (m{P}_j - m{P}_{j-1}) X_i m{eta}_i \quad orall \ j = 1, \dots, m \ (ext{where } m{P}_0 = m{0} \). \end{aligned}$$

Recall $P_j = P_{[X_1,...,X_j]}$.

Thus, $P_jX_i = X_i \quad \forall \ i \leq j$.

It follows that

$$(P_j - P_{j-1})X_i = 0$$
 whenever $i \le j - 1$.

Therefore

$$egin{aligned} m{A}_j m{X} m{eta} &= \sum_{i=1}^m (m{P}_j - m{P}_{j-1}) m{X}_i m{eta}_i \ &= \sum_{i=i}^m (m{P}_j - m{P}_{j-1}) m{X}_i m{eta}_i. \end{aligned}$$

For j = m, this simplifies to

$$A_{m}X\beta = (P_{m} - P_{m-1})X_{m}\beta_{m}$$
$$= (I - P_{m-1})P_{m}X_{m}\beta_{m}$$
$$= (I - P_{m-1})X_{m}\beta_{m}.$$

Now

$$(I - P_{m-1})X_m\beta_m = \mathbf{0}$$

$$\iff X_m\beta_m \in \mathcal{N}(I - P_{m-1})$$

$$\iff X_m\beta_m \in \mathcal{C}(P_{m-1})$$

$$\iff X_m\beta_m \in \mathcal{C}([X_1, \dots, X_{m-1}]).$$

Now

$$X_m \beta_m \in \mathcal{C}([X_1, \dots, X_{m-1}])$$
 $\iff E(Y) = X\beta$

$$= \sum_{i=1}^m X_i \beta_i$$

$$\in \mathcal{C}([X_1, \dots, X_{m-1}])$$

 \iff Explanatory variables in X_m are irrelevant in the presence of X_1, \ldots, X_{m-1} .

For the special case where *X* is of full column rank,

$$X_m \beta_m \in \mathcal{C}([X_1, \dots, X_{m-1}])$$
 $\iff X_m \beta_m = \mathbf{0}$
 $\iff \beta_m = \mathbf{0}.$

Thus, in this full column rank case, F_m tests

$$H_{0m}: \boldsymbol{\beta}_m = \mathbf{0}.$$

Explain what F_i tests for the special case where

$$X'_k X_{k^*} = \mathbf{0} \quad \forall \ k \neq k^*.$$

Now suppose

$$X_k'X_{k^*}=\mathbf{0}\quad\forall\;k\neq k^*.$$

Then

$$P_j X_i = egin{cases} X_i & ext{for } i \leq j \ \mathbf{0} & ext{for } i > j \end{cases}$$
 $\therefore [X_1, \dots, X_j]' X_i = egin{bmatrix} X_1' X_i \ dots \ X_j' X_i \end{bmatrix} = egin{bmatrix} \mathbf{0} \ dots \ \mathbf{0} \end{bmatrix} & ext{for } i > j. \end{cases}$

It follows that

$$A_j X \beta = \sum_{i=1}^m (P_j - P_{j-1}) X_i \beta_i = P_j X_j \beta_j = X_j \beta_j.$$

Thus, for the orthogonal case, F_j can be used to test

$$H_{0j}: X_j \beta_j = \mathbf{0} \quad \forall j = 1, \ldots, m.$$

If we have X full column rank in addition to the orthogonality condition, F_i tests

$$H_{0j}: \boldsymbol{\beta}_j = \mathbf{0} \quad \forall j = 1, \dots, m.$$