Project 2

Online Retail II: Sales Analysis & Customer Segmentation

A SQL and Python project analyzing e-commerce sales, customer behavior, and segmentation strategies

Ironhack Data Science and Machine Learning Bootcamp

Author: Ginosca Alejandro Dávila

Date: December 20, 2024

Project Overview

Project Goals:

- Analyze sales trends, customer behavior, and product performance using real-world e-commerce data from a UK-based online retailer
- Build a clean, relational database and use SQL to answer business questions
- Segment customers using RFM metrics for marketing strategy

Project Scope:

- Data cleaning and transformation
- Exploratory data analysis (EDA)
- SQL-based business insights
- Customer segmentation

Tools & Technologies:

- Python (Pandas, Matplotlib, Seaborn, SQLite, dotenv)
- SQL (MySQL)
- Tableau
- Google Colab
- Jupyter
- Anaconda Prompt
- Github

Dataset Summary

Dataset

- Online Retail II UCI Machine Learning Repository
- Over 1 million
 e-commerce
 transactions from
 UK-based online
 retailer

Source File:

- online_retail_II.xlsx
- Sheets used:
 - o Year 2009-2010
 - o Year 2010-2011
- Date range: 2009-12-01 to 2011-12-09

Key Variables

- InvoiceNo: Transaction ID (prefix 'C' = cancellation)
- StockCode: Product ID
- Description: Product name
- Quantity: Number of items purchased per transaction
- InvoiceDate: Date and time of the transaction
- UnitPrice: Price per unit (GBP)
- CustomerID: Unique customer identifier
- Country: Country where the transaction occurred

Data Quality Assessment

Initial Issues Identified:

- Missing values in CustomerID and Description
- Canceled invoice (prefix "C" in InvoiceNo)
- A Negative or zero values in Quantity and UnitPrice
- Fully duplicated rows in raw dataset
- Non-product StockCode (e.g., POST, DOT, BANK CHARGES)
- StockCode-Description inconsistencies
- Conflicting CustomerID-Country and InvoiceNo-InvoiceDate mappings
- Duplicate line items within invoices (same InvoiceNo and StockCode)

Assessment Approach:

- Validated foreign key candidates
- Thecked data range consistency (2009-2011)
- Verified identifiers and invoice integrity
- Used Python (pandas) in 1_data_cleaning_online_retail_ii.ipynb to inspect, validate, and understand data issues

Confidential

Copyright ©

Data Cleaning Summary

• Cleaning Steps Performed:

- Standardized column names (snake_case) and categorical values
- Removed rows with negative or zero values in quantity and unit_price
- Dropped canceled invoices (invoice_no starting with "C")
- Removed rows with missing customer_id and description
- Cast identifiers like invoice_no and stock_code to strings
- Removed fully duplicates rows
- © Created line_revenue as quantity×unit_price
- Removed non-product stock_code values
- Oleaned and resolved stock_code-description conflicts
- Standardized customer_id-country mappings
- © Cleaned invoice metadata: enforced one-to-one mapping between invoice_no, customer_id, and invoice_date
- Aggregated repeated invoice items (same invoice_no and stock_code)
- o Normalized into 4 relational tables: customers.csv, products.csv, invoices.csv, invoice_items.csv
- Resolved ID conflicts and ensured referential integrity

Output Files:

- 4 normalized relational tables (for MySQL): customers.csv, products.csv, invoices.csv and invoice_tems.csv

SQL Project Structure

• **Business Questions (12 total):** Grouped into 4 sections based on analytical focus:

- Q1. Monthly Revenue Trend
- Q2. Top 10
 Products by Revenue
- Q3. Top 10 Invoices by Transaction Value

Country and Regional Insights

- Q4a.
 Revenue by
 Country (incl.
 UK)
- Q4b.
 Revenue by
 Country
 (excl. UK)
- Q5. Customer Behavior by Country

Customer Insights

- Q6.
 One-Time vs.
 Repeat
 Customers
- Q7. Top 10
 Customers by
 Avg. Order
 Value
- Q8. Top 10
 Customers by
 Total Spend

RFM Analysis

- Q9. Recency (Days Since Last Purchase)
- Q10. Frequency (Number of Purchases)
- Q11.
 Monetary(Total Spend)
- Q12. RFM-Based Customer Segmentation

Confidential

Copyright ©

Project Workflow

- **EDA Phase:** Python + Pandas on the flat cleaned dataset in 2_eda_online_retail_ii.ipynb
- SQL Queries in SQLite: SQL executed via Python in 3_sql_analysis_sales_performance_online_retail_ii.ipynb on normalized tables
- MySQL Validation & Final SQL Execution: Real SQL environment for final results in 1_validate_online_retail_ii.sql and 2_business_questions_online_retail_ii.sql

MySQL Environment Setup & Validation

- X Notebook: 4_mysql_real_env_setup_online_retail_ii.ipynb
 - Created retail_sales schema (4 relational tables: customers, products, invoices, and invoice_items)
 - Loaded cleaned CSVs into MySQL from cleaned relational tables using Python
 - Secure credentials handled via .env + dotenv
- // Initial Validation in Python:
 - Row counts checks after insertion
 - Foreign key relationship tests
 - Ohecked for:
 - Orphan invoice items
 - Invoice with no customer
 - Invoice with no items
 - Products never sold

Final SQL Validation & Business Questions Execution in MySQL

SQL Scripts:

- / 1_validate_online_retail_ii.sql
 - Confirmed shema structure (4 tables: customers, products, invoices, and invoice_items)
 - Verified row counts, primary keys, and foreign keys
 - Verified invoice date ranges and data consistency
 - Ran sanity checks on quantities, unit prices, and line revenue
 - ✓ Invoice date within expected range (2009-2011)
- 2_business_questions_online_retail_ii.sql
 - Answered all 12 business questions using MySQL queries
 - Results matched EDA and SQLite outputs
 - Simulated real SQL production environment

Business Insights - Sales Performance

Monthly Revenue Trend

- Revenue peaked in
 November of both 2010
 (£1.16M) and 2011
 (£1.14M) reflecting strong pre-holiday shopping activity.
- A consistent
 post-holiday dip is
 visible in January and
 February, aligning with
 typical retail seasonality.
- The Q4 surge followed by Q1 slowdown highlights clear annual seasonality in consumer behavior.

Confidential

Copyright ©

Top Products by Revenue

- The top product, regency cakestand 3 tier, generated £277,656.25 in revenue from 24,124 units, with an average unit price of £12.46.
- In second place, white
 hanging heart t-light holder
 earned £247,048.01 from
 91,757 units a low-cost,
 high-revenue product that
 sold exceptionally well.
- Other high-revenue products were affordable, decorative items such as: paper craft, little birdie; assorted colour bird ornament and; jumbo bag red retrospot.

Mighest Revenue Invoices

- Invoice 581483 generated
 £168,469.60 from a single
 item an extreme outlier likely
 a bulk order or possible data
 anomaly
- Top 10 invoices range from £22,206.00 to £168,469.60 in total revenue. Most fall between £22k and £77k.
- Item counts vary widely some invoices contain over 130 items, while others list only 1-2 items.
- Customers 18102 and 17450 appear multiple times, suggesting loyal, high value clients with repeated large purchases.

Dashboard - Sales Performance

Business Insights - Country & Regional Insights

Revenue by Country

- **UK** generated £14.29M across 33,374 invoices accounting for ~91% of all revenue.
- Ireland (Eire) leads among non-UK countries, with approximately £586k in revenue and a high average invoice value of ~£1,111.
- The Netherlands tops in average invoice value at ~
 £2,545, despite a moderate volume of 216 invoices.
- Countries like Australia, Switzerland, and Denmark generate significant revenue from fewer than 100 invoices each.
- Germany and France show a healthy balance of volume and value, indicating mature and stable market performance.
- Markets such as Netherlands, Australia, and
 Denmark are strong candidates for B2B or premium expansion due to high-value, low-frequency trends.

Customer Behavior by Country

- The UK has 5,334 customers with an average of
 6.26 invoices and £2,679 revenue per customer our largest and most balanced group.
- With only 3 customers, Ireland shows
 exceptionally high values (~£195 revenue and
 176 invoices per customer) likely due to atypical
 client behavior such as bulk purchasing client,
 internal use account, or testing/demo user.
- Netherlands has strong potential market with
 £24.9K per customer and ~10 invoices/customer
 indicating high engagement and value.
- France and Germany show a balance customer base and solid per-customer revenue (~£3.3K-£3.6K)
- Sweden, Switzerland, Denmark, and Australia show low-frequency but high value purchasing behavior - ideal for premium offerings or B2B targeting.

Dashboard - Country & Regional Insights

Business Insights - Customer Behavior

One-Time vs Repeat

- Nearly 3 out of 4
 customers made
 multiple purchases,
 suggesting decent
 customer retention.
- Around 28% of users only purchased once, which presents an opportunity for re-engagement campaigns.

Top Customers by AOV

- Customer 16446 stands out with an average order value of £84,236.25, placing just two orders - a clear outlier likely reflecting bulk or business purchases..
- Other high-ranking customers, such as 15098 and 15749, average between £13.3K and £14.8K per order.
- While these values are impressive, 99.8% of customers have an AOV under £5,600, showing a strongly right-skewed distribution with a few extreme cases.

6 Top Customers by Total Spend

- Customer 18102 tops the list with £580,987 across 145 orders.
- Several others (e.g. 14646, 14156) show high revenue from consistent repeat ordering.
- Customer 16446 stands out with just 2 orders but £168K total spend - likely a bulk B2B transaction or anomaly.
- These customers warrant special attention for retention, loyalty programs or custom offers.

Dashboard - Customer Behavior

Business Insights - RFM Metrics

Recency (R)

- Measures days since a customer's last purchase (relative to 2011-12-09)
- Most customers made their most recent purchase within the first 100 days
- Recency spans from 0 to 738 days.
- Some customers haven't purchased in over 2 years
 indicating churn risk
- Distribution is right-skewed, with many recent buyers and a few long-inactive users.

Frequency (F)

- Number of unique purchases per customer (invoice count).
- Most users placed 1 to 8
 orders, with some outliers
 exceeding 100+ orders.
- The spread reveals a core of casual shoppers and a small group of highly engaged customers.

Monetary (M)

- Total revenue generated per customer.
- Over 99% of customers spent less than £20K.
- A few outliers including one at £580K - generate a large share of total revenue.
- Distribution is highly right-skewed, emphasizing top-value clients.

Business Insights - RFM Segmentation

RFM Metrics

- Each customer was scored from 1 (low) to 4 (high) on:
 - Recency → Days since last purchase (as of 2011-12-09)
 - Frequency →
 Number of unique purchases
 - Monetary → Total spending

Segment Breakdown

- Customers were grouped into key behavioral segments:
 - O High Value → Big
 Spenders with frequent orders
 - O Loyal → Recent and frequent buyers
 - At risk → Long inactive but previously valuable
 - One-Time →
 Single-purchase,
 low-engagement users
 - Other → Doesn't meet specific criteria for grouping

Key Insights

- High-Value segment is largest
 major revenue driver.
- Other and At-Risk segments are the next largest groups.
- Loyal and One-Time customers form smaller but strategically important segments.
- This distribution reveals a diverse customer base with distinct behavioral patterns.

Dashboard - RFM Analysis

Business Recommendations

* Key actions based on Python and SQL analysis:

Prioritize High-Value Customers

 Reward top spenders with VIP perks, early access, or loyalty programs to boost retention.

Retain Loyal & Re-Engage At-Risk Buyers

 Use targeted email campaigns, offers, and incentives to keep loyal users engaged and bring back long-inactive customers.

Convert One-Time Buyers

 Design onboarding flows and personalized discounts to turn first-time shoppers into repeat customers.

Capitalize on Seasonal Peaks

 Strengthen marketing and inventory strategies ahead of Q4, especially October-November, to maximize holiday revenue.

Grow in High-Value Markets

Expand marketing in Ireland, Netherlands,
 Germany, and explore premium strategies for
 Switzerland and Australia

Optimize Product Strategy

 Double down on bestsellers and seasonal items. Test bundling and complementary offers to increase average order value.

Future Steps

Strategic Next Steps

- Customer Lifetime Value (CLV) Modeling
 - Predict long-term value per segment to guide budget allocation and retention strategies.
- Cohort & Churn Analysis
 - Track behavior of customer groups over time and identify early signs of churn for proactive.
- A/B Testing & Campaign Tracking
 - Run experiments on emails, offers, and loyalty perks to optimize conversions and ROI.
- Product Affinity & Bundling
 - Analyze purchase patterns to identify frequently bundled items and improve cross-selling opportunities
- Personalized Marketing
 - Use RFM segments and buying behavior to tailor messaging, promotions, and product recommendations.

Limitations

Data is Historical (2011)

• The dataset ends in December 2011, so customer behavior trends may not reflect current realities.

Lack of Demographic Information

No age, gender, or region data - limiting personalization and advanced customer segmentation.

Unclear Customer Type (B2B vs B2C)

 The dataset does not distinguish between business and individual buyers, which could affect segmentation logic.

Limited Product Classification

 No structured product categories - insights are based on item descriptions and stock codes only

RFM Threshold Assumptions

 Segment labels are based on quartile logic, which may not fully capture business-specific nuances.

IRON HACK

Thank You!

Questions?

Contact:

Ginosca Alejandro Dávila

Confidential

