

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ОТЧЕТ

По лабораторной работе №1 По курсу «Анализ алгоритмов» Тема: «Расстояние Левенштейна»

Студент: Лумбунов Д.В. Группа: ИУ7-54

Преподаватель: Волкова Л.Л.

Оглавление

Введение	2	3
	аботы:	
1. Ai	алитическая часть	5
1.1	Описание алгоритмов	5
2. Ko	нструкторская часть	9
2.1	Разработка алгоритмов	10
2.2	Сравнительный анализ рекурсивной и нерекурсивной реализаций	16
3 Te	хнологическая часть	17
3.1	Требования к программному обеспечению	17
3.2	Средства реализации	17
3.3	Листинг кода	18
3.4	Описание тестирования	20
4 Эк	спериментальная часть	21
4.1	Примеры работы	21
4.2	Результаты тестирования	22
4.3	Постановка эксперимента по замеру времени [и памяти]	2 3
4.4	Сравнительный анализ на материале экспериментальных данных	24
Заключен	INP	25

Введение

Расстояние Левинштейна - минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую. Измеряется для двух строк, широко используется в теории информации и компьютерной лингвистике.

Впервые задачу поставил в 1965 году советский математик Владимир Левенштейн при изучении последовательностей, впоследствии более общую задачу для произвольного алфавита связали с его именем. Большой вклад в изучение вопроса внёс Дэн Гасфилд.

Расстояние Дамерау-Левенштейна - Эта вариация вносит в определение расстояния Левенштейна еще одно правило — транспозиция (перестановка) двух соседних букв также учитывается как одна операция, наряду со вставками, удалениями и заменами.

Еще пару лет назад Фредерик Дамерау мог бы гарантировать, что большинство ошибок при наборе текста — как раз и есть транспозиции. Поэтому именно данная метрика дает наилучшие результаты на практике.

Задачи работы:

- 1) изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- 2) применение метода динамического программирования для матричной реализации указанных алгоритмов;
- 3) получение практических навыков реализации указанных алгоритмов: двух алгоритмов в матричной версии и одного из алгоритмов в рекурсивной версии;
- 4) сравнительный анализ линейной и рекурсивной реализаций выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти);
- 5) экспериментальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработанного программного обеспечения на материале замеров процессорного времени

выполнения реализации на варьирующихся длинах строк;

6) описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчётно-пояснительная записка к работе.

1. Аналитическая часть

В данном разделе будут представлены описания алгоритмов, формулы и оценки сложностей алгоритмов

1.1 Описание алгоритмов

Рекурсивный алгоритм (Левенштейн)

Здесь и далее считается, что элементы строк нумеруются с первого, как принято в математике, а не с нулевого, как принято во многих языках программирования.

Пусть S_1 и S_2 — две строки (длиной M и N соответственно) над некоторым алфавитом, тогда редакционное расстояние (расстояние Левенштейна) $d(S_1, S_2)$ можно подсчитать по следующей рекуррентной формуле

$$d(S_1, S_2) = D(M,N)$$
, где

$$D(i,j) = f(x) = \begin{cases} 0, & i = 0, j = 0 \\ i, & j = 0, i > 0 \\ j, & i = 0, j > 0 \\ \min\{\\ D(i,j-1)+1, \\ D(i-1,j)+1, & j > 0, \\ D(i-1,j-1)+ & i > 0 \\ + m(S_1[i], S_2[j]) \\ \end{cases}$$
 (1)

$$m(a,b) = \begin{cases} 0, & a = b \\ 1, & a \neq b \end{cases}$$

Рекурсивный алгоритм напрямую реализует эту формулу.

Функция (1) составлена из следующих соображений:

- 1. Для перевода из пустой строки в пустую требуется ноль операций.
- 2. Для перевода из пустой строки в строку a требуется |a| операций. Аналогично, для перевода из строки a в пустую требуется |a| операций.
- Для перевода из строки а в строку b требуется выполнить последовательно некоторое кол-во операций (удаление, вставка, замена) в некоторой последовательности. Как можно показать сравнением, последовательность проведения любых двух операций можно поменять, и, как следствие, порядок проведения операций не имеет никакого значения. Тогда цена преобразования из строки а в строку b может быть выражена как (полагая, что a', b' строки a и b без последнего символа соответственно):
 - 3.1 Сумма цены преобразования строки a' в b и цены проведения операции удаления, которая необходима для преобразования a в a';
 - 3.2 Сумма цены преобразования строки a в b' и цены проведения операции вставки, которая необходима для преобразования b' в b;
 - 3.3 Сумма цены преобразования из a' в b' и операции замены, предполагая, что a и b оканчиваются разные символы;
 - 3.4 Цена преобразования из a' в b', предполагая, что a и b оканчиваются на один и тот же символ.

Очевидно, что минимальной ценой преобразования будет минимальное

значение этих вариантов.

Алгоритм Вагнера-Фишера (построчный)

Прямая реализация формулы (1) может быть малоэффективна при больших i, j, т. к. множество промежуточных значений D(i, j), $1 \le i \le |a|,$ $1 \le j \le |b|$ вычисляются заново множество раз подряд. Для оптимизации нахождения расстояния Левенштейна предложено использовать матрицу (двумерный массив) в целях хранения соответствующих промежуточных значений. В таком случае алгоритм представляет собой построчное заполнение матрицы A|a|,|b| значениями D(i,j) по формуле (1).

Можно заметить, что при каждом заполнении новой строки значения предыдущей становятся ненужными. Поэтому можно провести оптимизацию по памяти и использовать дополнительно только одномерный массив размером $\min(|a|,|b|)$. Такой вариант алгоритма называется построчным и именно он реализован в данной работе в качестве нерекурсивного.

Формула для нахождения расстояния с использованием матрицы:

$$D(i,j) = \begin{cases} 0, \text{ если } i == 0, \quad j == 0 \\ i, \text{ если } i > 0, \quad j == 0 \\ j, \text{ если } j > 0 \quad i == 0 \end{cases}$$

$$D(s1[1 \dots i], s2[1 \dots j-1]) + 1 \quad (2)$$

$$D(s1[1 \dots i-1], s2[1 \dots j]) + 1$$

$$D(s1[1 \dots i-1], s2[1 \dots j-1]) + \begin{bmatrix} 0, s1[i] == s2[j] \\ 1, \text{иначе} \end{bmatrix}$$

Расстояние Дамерау-Левенштейна.

Между двумя строками a, b определяется функцией $d_{a,b}(|a|,|b|)$ как:

$$d_{a,b}(i,j) = \begin{cases} \max(i,j), & \min(i,j) = 0 \\ d_{a,b}(i-1,j) + 1 \\ d_{a,b}(i,j-1) + 1 \\ d_{a,b}(i-1,j-1) + 1_{(a_i \neq b_j)}, i,j > 1 \text{ and } a_i = b_{j-1} \text{ and } a_{i-1} = b_j \\ d_{a,b}(i-2,j-2) + 1 \end{cases}$$

$$min \begin{cases} d_{a,b}(i-1,j) + 1 \\ d_{a,b}(i,j-1) + 1 \\ d_{a,b}(i,j-1) + 1 \end{cases}, \text{ otherwise}$$

$$d_{a,b}(i-1,j-1) + 1_{(a_i \neq b_j)} \end{cases}$$
(3)

Где $1_{(a_i \neq b_j)}$ – индикаторная функция, равная нулю при $a_i = b_j$ и 1 в противном случае.

Формула (3) выводится по тем же соображениям, что и формула (1).

Т. к. прямое применение этой формулы неэффективно, то аналогично действиям из предыдущего пункта производится добавление матрицы для хранения промежуточных значений рекурсивной формулы и оптимизация по памяти. В таком случае необходимо хранить одномерный массив длиной $3 \min(|a|, |b|)$.

Вводится дополнительная операция перестановки или транспозиция, 2 буквы, стоимость = 1. Если индексы позволяют, и если соседние буквы s1[i] совпадает с s2[j-1] и s1[i-1]=s2[j], то в минимум включается перестановка (транспозиция).

Применение алгоритмов:

- Поиск по словарю (частная задача лингвистики)
- Биоинформатика
- Поисковые системы, для предложения более подходящего запроса, в случае, если пользователь допустил ошибку или ввел одну букву раньше другой.

2. Конструкторская часть

В данном разделе будут размещены схемы алгоритмов и сравнительный анализ рекурсивной и не рекурсивной реализаций.

2.1 Разработка алгоритмов

Ниже будут приведены схемы реализованных алгоритмов:

Рисунок 1. Алгоритм Левенштейна часть 1

Рисунок 2. Алгоритм Левенштейна часть 2

Рисунок 3. Алгоритм Дамерау-Левенштейна часть 1

Рисунок 4. Алгоритм Дамерау-Левенштейна часть 2

L-Длина, $S\{n\}-$ взятие подстроки от 0, до n- го символа строки S

Рисунок 5. Алгоритм Дамерау-Левенштейна рекурсивно часть 1

Рисунок 6. Алгоритм Дамерау-Левенштейна рекурсивно часть 2

2.2 Сравнительный анализ рекурсивной и нерекурсивной реализаций

Рекурсивный алгоритм, по сравнению с матричной реализацией работает медленнее, так как при исчерпывании всех возможных комбинаций, возникает ситуация, когда рекурсивные вызовы функций абсолютно идентичны и происходит нерациональная трата ресурсов. Например:

В Рекурсивной реализации алгоритма Левенштейна при заданных словах «скат», «кот» будет выполнено 2 одинаковых рекурсивных вызова («ска», «ко»). Неполный фрагмент работы:

Рисунок 7. Минус рекурсивного алгоритма

Затраты в памяти реализаций алгоритмов так же отличаются:

Пусть n = s1.lenght(); m = s2.lenght();

Матричная реализация Левенштейна:

- (n + 1) * (m + 1) * sizeof(int) + 6 * int + 1 вызов функции min()
 Матричная реализация Дамерау-Левенштейна:
- (n + 1) * (m + 1) * sizeof(int) + 6 * int + 2 вызова функции min() Рекурсивная реализация Дамерау-Левенштрейна:
 - 2 * sizeof(int) + 2 вызова min() + 4 вызова самой себя

3 Технологическая часть

В данном разделе будут приведены Требования к программному обеспечению, средства реализации, листинг кода и примеры тестирования.

3.1 Требования к программному обеспечению

На вход подаются 2 строки, на выходе необходимо получить матрицу и 3 результата, выдаваемых матричными реализациями обоих алгоритмов и рекурсивной реализации алгоритма Дамерау-Левенштейна.

Требуется замерить время работы каждой реализации.

3.2 Средства реализации

В качестве языка программирования был выбран C++ в связи с его широким функционалом и быстротой работы. Среда разработки - Dev C/C++. Время работы процессора замеряется с помощью функции:

```
unsigned long long tick(void)
{
   unsigned long long d;
   __asm___volatile__ ("rdtsc" : "=A" (d) );
   return d;
}
```

Листинг 1. Функция замера времени

3.3 Листинг кода

```
void fillBaseMatrix(int s1, int s2, int **matrix)
    for (int i = 1; i < s1 + 1; i++)</pre>
        matrix[i][0] = i;
    for (int j = 1; j < s2 + 1; j++)
       matrix[0][j] = j;
int LevensteinMatrix(string s1, string s2)
    int row count = s1.length();
    int column count = s2.length();
    int **matrix = allocateMatrix(row count, column count);
    fillBaseMatrix(s1.length(), s2.length(), matrix);
    int cost = 0;
    for (int i = 1; i < row_count + 1; i++)</pre>
        for (int j = 1; j < column count + 1; j++)
            if (s1[i - 1] == s2[j - 1])
                cost = 0;
            }
            else
            {
                cost = 1;
            matrix[i][j] = minimum(matrix[i - 1][j] + 1, matrix[i][j - 1]
1] + 1, matrix[i - 1][j - 1] + cost);
        }
    //cout << "=== Levenstein Matrix ===" << endl;</pre>
   printMatrix(row count, column count, matrix);
   int result = matrix[s1.length()][s2.length()];
    clearMatrix(matrix, row count);
    return result;
```

Листинг 2. Реализация Левенштейна с помощью матрицы

```
int DamerauLevensteinRecursion(string s1, string s2)
    if (s1.length() == 0)
        return s2.length();
    if (s2.length() == 0)
        return s1.length();
    int cost = 1;
    if (s1[s1.length() - 1] == s2[s2.length() - 1])
        cost = 0;
    else
        cost = 1;
    int result = minimum(DamerauLevensteinRecursion(s1.substr(0,
s1.length() - 1), s2) + 1, DamerauLevensteinRecursion(s1, s2.substr(0,
s2.length() - 1)) + 1,
                           DamerauLevensteinRecursion(s1.substr(0,
s1.length() - 1), s2.substr(0, s2.length() - 1)) + cost);
    if (((s1.length() > 1 \&\& s2.length() > 1) \&\& s1[s1.length() - 1] ==
s2[s2.length() - 2]
         && s2[s2.length() - 1] == s1[s1.length() - 2]))
result = __min(result, DamerauLevensteinRecursion(s1.substr(0,
s1.length() - 2), s2.substr(0, s2.length() - 2)) + cost);
    //unsigned tick2 = tick();
    //cout << tick1 << " " << tick2 << endl;
    return result;
}
```

Листинг 3. Реализация Дамерау-Левенштейна рекурсивно

```
int DamerauLevinsteinMatrix(string s1, string s2)
    int row count = s1.length();
    int column count = s2.length();
    int **matrix = allocateMatrix(row count, column count);
    fillBaseMatrix(s1.length(), s2.length(), matrix);
    int cost = 1;
    for (int i = 1; i < row count + 1; i++)</pre>
        for (int j = 1; j < column count + 1; j++)
            if (s1[i - 1] == s2[j - 1])
                cost = 0;
            }
            else
            {
                cost = 1;
            matrix[i][j] = minimum(matrix[i - 1][j] + 1, matrix[i][j - 1]
1] + 1, matrix[i - 1][j - 1] + cost);
            if ((i > 1 \&\& j > 1) \&\& s1[i - 1] == s2[j - 2] \&\& s2[j - 1]
1] == s1[i - 2])
                matrix[i][j] = min(matrix[i][j], matrix[i - 2][j -
2] + cost);
    int result = matrix[s1.length()][s2.length()];
    clearMatrix(matrix, row count);
    return result;
```

Листинг 4. Реализация алгоритма Дамерау-Левенштейна

3.4 Описание тестирования

Тестирование будет проведено на следующих примерах, включая пустые строки и строки, содержащие пробелы:

- 1) Интоксикация, Детоксикация
- 2) Крот, Кот
- 3) Кофе, Коеф
- 4) "". ""
- 5) "Kot", "Kopt"

4 Экспериментальная часть

В данном разделе будут приведены примеры работы программы, постановка эксперимента и сравнительный анализ алгоритмов на основе экспериментальных данных.

4.1 Примеры работы

```
Kope
Input second string
Koep
let's see the answer
=== Levenstein Matrix ===
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 1 1
4 3 2 1 2
=== Damerau Levenstein Matrix ===
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 1 1
4 3 2 1 1
Result of Levenstein : 2
Result of Damerau_Levenstein_Matrix : 1
Result Damerau_Levenstein_recurs : 1
```

Скриншот 1. Пример работы на словах кофе и коеф. Демонстрация разницы алгоритмов

4.2 Результаты тестирования

```
int mainTest(void)
{
    string strings[10] = { "Intoxication", "Detoxication", "Krot",
    "Kot", "Cofe", "Coef", " ", " ", "Kot", "Kort"};
    cout << "\n _____ Testing Damerau Recurs ____ \n"
<< endl;
    DamerauLevensteinRTesting(strings);
    cout << "\n ____ Testing Damerau Matrix ____ \n"
<< endl;
    DamerauLevensteinMTesting(strings);
    cout << "\n ____ Testing Levenstein ____ \n" << endl;
    LevensteinMTesting(strings);
    return 0;
}</pre>
```

Листинг 5. Функция тестирования

	:======	===Testin	ng======	==
	_Testing	Damerau	Recurs	
Test1: SUCCESSED Test2: SUCCESSED Test3: SUCCESSED Test4: SUCCESSED Test5: SUCCESSED				
	_Testing	Damerau	Matrix	
Test1: SUCCESSED Test2: SUCCESSED Test3: SUCCESSED Test4: SUCCESSED Test5: SUCCESSED				
	_Testing	Levenst	ein	
Test1: SUCCESSED Test2: SUCCESSED Test3: SUCCESSED Test4: SUCCESSED Test5: SUCCESSED				

Скриншот 2. Результат тестирования

Nº	S1	S2	Ожидаемый	Полученный
			результат	результат

1	Пустая строка	Пустая строка	0, 0, 0	0, 0, 0
2	Пустая строка	ааааа	5, 5, 5	5, 5, 5
3	ааааа	Пустая строка	5, 5, 5	5, 5, 5
4	\ s	\s	0, 0, 0	0, 0, 0
5	same	same	0, 0, 0	0, 0, 0
6	cofe	coef	2, 1, 1	2, 1, 1
7	krot	kot	1, 1, 1	1, 1, 1
8	kot	kort	1, 1, 1	1, 1, 1
9	spot	spok	1, 1, 1	1, 1, 1

Таблица 1. Результаты тестирования

В таблице 1 в столбцах результатов указаны 3 значения через запятую, соответствующие реализациям алгоритмов Левенштейна, Дамерау-Левенштейна и рекурсивного алгоритма Дамерау-Левенштрейна. Во время тестирования программа корректно сработала на ввод пустых строк и строк содержащие одинаковые символы, а так же на операции удаления, добавления, замены и операции перестановки.

4.3 Постановка эксперимента по замеру времени [и памяти]

Для произведения замеров времени выполнения реализаций алгоритмов будет использована следующая формула $t=\frac{Tn}{N}$, где t- время выполнения, N- количество замеров. Неоднократное измерение времени необходимо для построения более гладкого графика.

Количество замеров будет взято равным 50.

Тестирование будет проведено на одинаковых входных данных. Для сравнения матричных реализации длины строк 0-500 с шагом 100. Для сравнения матричной и рекурсивной реализации длины строк 0-10 с шагом 1.

4.4 Сравнительный анализ на материале экспериментальных данных

Ниже приведены графики зависимости временных затрат (в тиках процессора) от размеров входных данных.

График 1. Сравнение матричных реализаций

По графику видно, что алгоритм Дамерау-Левенштейна работает медленнее алгоритма Левенштейна, так как в нем есть дополнительные проверки.

График 2. Сравнение матричной и рекурсивной реализации алгоритма Дамерау-Левенштейна

В результате проведенного эксперимента был получен следующий вывод:

Рекурсивный алгоритм Дамерау-Левенштейна работает гораздо дольше итеративной реализации, начиная с длины строк = 6, время его работы увеличивается в геометрической прогрессии. Итеративный алгоритм значительно превосходит его по эффективности.

Заключение

В ходе работы были изучены и реализованы в матричной форме алгоритмы Левенштейна и Дамерау-Левенштейна и в рекурсивной алгоритм Дамерау-Левенштейна. Выполнено сравнение рекурсивного и итеративного алгоритмов Левенштейна. Изучены зависимости времени выполнения алгоритмов от длин строк. Также были реализованы 3 описанных алгоритма нахождения расстояний Левенштейна и Дамерау-Левенштейна.