Measurement of the Electric Permittivity of Free Space

DATA	Distance (meters) x	Capacitance (picoFarads) y	x = 1/Distance	y = C/Area
	0.0	7 1.5E-12	14.28571429	1.911E-10
	0.0	8 3E-12	12.5	3.822E-10
	0.0	9 4.5E-12	11.11111111	5.732E-10
	0.	1 6.6E-12	10	8.408E-10
	0.1	1 8.7E-12	9.090909091	1.108E-09
	0.1	2 1.03E-11	8.333333333	1.312E-09
Measured Electric Permitivity	> 8.99333E-1	Percent Difference =	0.02	%
Theoretical Constant	> 8.85419E-1	2 t =	0.006909124	
LINEST OUTPUT				
Slope -	-1.89673E-1	0 2.79955E-09	<- y intercept	
Uncertainty -	> 2.01387E-1	1 2.23027E-10	<- uncert of y-int	
R^2 -	> 0.95685256	2 1.00163E-10	<- Variance	
Fisher -	> 88.7053879	7 4		
	8.89941E-1	9 4.01302E-20		
	DATA COLLECTION	ON C VS. X		
1.4E-11				
1.2E-11			<u></u>	
1E-11			T	
8E-12				
6E-12		T		
4E-12	_			
2E-12				
0				
0 0.02	0.04 0.06	0.08 0.1	0.12	0.14

Measurement of the Electric Permittivity of Free Space

A.1 Yes, the slope is very close to the theoretical constant. A difference of 0.2% - 0.02% difference I would say is within a reasonable tolerance.

A.2 I would assert that averaging out the distance/capacitance measurement would minimize most human error. I would further hypothesize that a "constant" source of environmental electro-magnetic "noise" could be a source of random error. This "noise" could originate from over head lighting or humans. I do believe that this is a reasonable way to **demonstrate** the permittivity constant but an electro-magnetically shielded room that is able to create a vacuum would be a better place to do precise measurements.

Randy McMillan

rmcmillan1@mail.usf.edu