Sprawozdanie - Dynamiczna Alokacja Pamięci

Kamil Kuczaj

6 marca 2016

1 Wstęp

Podanym zadaniem był pomiar czasu wykonywania alokacji pamięci dla tablicy dynamicznej elementów typu int. Należało wykonać pomiary zapisu: $10^1,\ 10^3,\ 10^5,\ 10^6,\ 10^9$ danych oraz stworzyć specjalną klasę, która będzie zarządzać zapisem danych oraz alokacją pamięci. Poniżej listing pliku nagłówkowego klasy.

```
class pojemnik {
  private:
    int *elementy;
    unsigned long rozmiar;
    unsigned long indeks;

public:
    pojemnik(int x=10);
    ~pojemnik();
    bool czy_pelne();
    void zapisz(int dana);
    int zwieksz_rozmiar();
    unsigned long zwroc_rozmiar();
    void wypisz(); // w celu debuggowania
};
```

Rysunek 1: Listing pliku pojemnik.h

2 Specyfikacja komputera

Wersja kompilatora $g++$	4.8.4
System	Ubuntu 14.04.4
Procesor	Intel Core i5 2510M 2.3 GHz
Pamięć RAM	8 GB DDR3 1600 MHz
Rozmiar zmiennej int	4 bajty

3 Wybrane metody alokacji pamięci i wyniki

1. Zwiększanie rozmiaru tablicy o 1 element

Rozmiar	Ilość elementów
10	$1 \mu s$
1 000	1,63 ms
100 000	18,483 s
1 000 000	$2070,91 \ s = \ 34,5min$
1 000 000 000	zbyt długo

2. Zwiększanie rozmiaru tablicy o 100 elementów

Rozmiar	Ilość elementów
10	1 μs
1 010	$33 \ \mu s$
100 010	$206,995 \ ms$
1 000 010	19,7127 s
1 000 000 000	zbyt długo

3. Zwiększanie rozmiaru tablicy o 10000 elementów

Rozmiar	Ilość elementów
10	$1 \mu s$
10 010	$14 \ \mu s$
100 010	3,097 ms
1 000 010	$227,339 \ ms$
1 000 000 000	zbyt długo

4. Podwajanie rozmiaru tablicy

Rozmiar	Ilość elementów
10	$2 \mu s$
1 280	$25 \mu s$
163 840	$2,381 \ ms$
1 310 720	$20,657 \ ms$

Przy większych ilościach danych następował wyciek pamięci, gdyż potrzebna była zbyt duża ilość pamięci danych:

$$1310720 * 2^{10} = 1342177280 (> 10^{9})$$
$$\frac{1310720 * 2^{10}}{2^{20}} * 4 = 5 120 MB$$

Program więc potrzebował 5 GB pamięci podręcznej, czego mój system nie mógł zapewnić.

5. Potrajanie rozmiaru tabliicy

Rozmiar	Ilość elementów
10	$1 \mu s$
2 430	17 μs
196 830	$1,375 \ ms$
1 771 470	15,127 ms

Przy większych ilościach danych następował wyciek pamięci, gdyż potrzebna była zbyt duża ilość pamięci danych tak jak w poprzednio wyjaśnionym przypadku.

6. Zwiększanie rozmiaru tablicy o 50%

Rozmiar	Ilość elementów
10	1 μs
1 234	$29 \ \mu s$
106 710	$2,017 \ ms$
1 215 487	$20,354 \ ms$

Przy większych ilościach danych następował wyciek pamięci, gdyż potrzebna była zbyt duża ilość pamięci danych tak jak w poprzednio wyjaśnionym przypadku.

4 Wnioski

Choć najbardziej optymalną metodą zwiększania rozmiaru tablicy jest jej podwajanie, to przy bardzo dużych danych może się skończyć brakiem pamięci fizycznej wynikającej z ograniczeń sprzętowych (zbyt mała ilość pamięci RAM komputera). To samo tyczy się potrajania rozmiaru tablicy oraz zwiększania jej rozmiaru o 50%. Niemniej jednak są to bardzo wydajne metody.

Żadna z metod dodawania elementów, nawet w ilościach takich jak 10 000 nie dorównują wspomnianym powyżej metodom. Poniżej zamieściłem wykres ilustrujący szybkość zapisu trzech najwydajniejszych metod.

Rysunek 2: Wyraźnie widać, że najlepszą metodą w eksperymencie okazało się potrajanie rozmiaru tablicy