Quebra-Cabeça das 8 peças

Integrantes Caio Cezar e Phillipe Souza

> Juiz de Fora 2019

Sumário

Introdução	3
Apresentação do problema	3
Estado inicial	3
Descrição das ações possíveis	3
Modelo de transição	3
Teste de objetivo	3
Custo de caminho	3
Métodos	4
A*(A-Estrela)	4
Estados e bordas	4
Estados	4
Bordas	4
Bibliotecas	4
Random	4
Datetime	4
OS	4
Heurística	4
Resultados	5
1ª Execução	5
2ª Execução	5
3ª Execução	6
Conclusão	6
Dificuldades	6

Introdução

Apresentação do problema

Dado um tabuleiro com 8 peças numéricas e uma peça vazia, em uma ordem aleatória, aplicar uma série de ações que resultem no tabuleiro com a configuração da figura ao lado. A primeira peça deve ser a vazia e as demais deverão conter as peças numéricas ordenadas crescentemente.

Estado inicial

Qualquer estado pode ser designado como o estado inicial.

Descrição das ações possíveis

Movimentos do quadrado vazio: Esquerda, Direita, Para Cima ou Para Baixo.

Modelo de transição

Dado um estado e ação, devolve o estado resultante.

Teste de objetivo

Verifica se o estado corresponde à configuração de estado objetivo.

Custo de caminho

Cada passo custa 1. Custo do caminho é o número de passos.

Métodos

A*(A-Estrela)

A * (conhecido como "A-estrela") é um algoritmo de busca de caminho e de gráfico , que é frequentemente usado na ciência da computação devido à sua completude, otimalidade e eficiência ideal. Uma grande desvantagem prática é sua complexidade do espaço, pois armazena todos os nós gerados na memória. Assim, em sistemas práticos de roteamento de viagem, geralmente é superado por algoritmos que podem pré-processar o gráfico para obter melhor desempenho, bem como abordagens limitadas à memória; no entanto, A * ainda é a melhor solução em muitos casos.

Estados e bordas

Estados

Os estados foram representados através das setas que são escritas no console.

Bordas

Cima, baixo, direita e esquerda, respeitando o tamanho do tabuleiro.

Bibliotecas

Random

Foi escolhido essa biblioteca pois, queríamos que o computador escolhesse os números aleatoriamente.

Datetime

Nós serviu para pegar a hora inicial e final de execução, assim fazendo com que tenhamos o tempo de execução do algoritmo.

OS

Utilizamos esta biblioteca para limpar o console.

Heurística

O algoritmo vai comparar as posições das peças do tabuleiro com as posições das peças da solução. Quanto mais posições corretas melhor.

Resultados

1ª Execução

2ª Execução

3ª Execução

Conclusão

Após a criação do código, o script em python consegue chegar ao resultado do tabuleiro desejado utilizando o algoritmo A*. O script armazena os tabuleiros com um ponteiro para que seja possível percorrer de uma folha até seu ponto inicial.

Dificuldades

- 1. Tivemos dificuldades de representar, a parte em que mostra o caminho percorrido pelo algoritmo;
- 2. Necessitou bastante de pesquisas para entender de fato como o algoritmo se comporta;
- 3. Contudo o objetivo de solucionar o tabuleiro gerado aleatoriamente foi alcançado.