WO 2005/019147 PCT/EP2004/009500

- 67 -

1. A compound of formula

$$E \xrightarrow{A_1} X_2 \xrightarrow{Q} X_1 \xrightarrow{R_2} X_2 \xrightarrow{R_3} X_2 \xrightarrow{R_2} X_2 \xrightarrow{R_3} X_2 \xrightarrow{R_2} X_2 \xrightarrow{R_3} X_2 \xrightarrow{R_2} X_3 \xrightarrow{R_3} X_2 \xrightarrow{R_3} X_3 \xrightarrow{R_2} X_3 \xrightarrow{R_3} X_4 \xrightarrow{R_3} X_5 \xrightarrow{R_3} X_4 \xrightarrow{R_3} X_4 \xrightarrow{R_3} X_4 \xrightarrow{R_3} X_4 \xrightarrow{R_3} X_5 \xrightarrow{R_3} X_$$

wherein

What is claimed is:

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

A₁ and A₂ are each independently of the other a bond or a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₃-C₈cycloalkyl;

is a C₁-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C3-C8cycloalkyl;

R₁ and R₂ are each independently of the other halogen, OH, SH, CN, nitro, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkyl-carbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₃-C₆alkynyloxy, C_2 - C_6 haloalkynyloxy, -(S=O) C_1 - C_6 alkyl, -S(=O) $_2$ - C_1 - C_6 alkyl or C_1 - C_6 alkoxycarbonyl;

 R_3 is H, halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkyl-carbonyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₂-C₆alkenyloxy, C2-C6haloalkenyloxy, C3-C6alkynyloxy, -(S=O)-C1-C6alkyl, -S(=O)2-C1-C6alkyl, C₁-C₆alkoxycarbonyl or C₂-C₆haloalkynyloxy; the substituents R₃ being independent of one another when m is 2;

R₄ and R₅ are each independently of the other H, halogen, cyano, nitro, C₁-C₀alkyl, C₁-C₃haloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₃alkyl-carbonyl, C₁-C₃haloalkylcarbonyl, C₁-C₆alkoxycarbonyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁-C₆alkyl or C₃-C₈cycloalkylcarbonyl;

is 1 or 2; m

is O, NR₆, S, SO or SO₂; Y

Q is O, NR₇, S, SO or SO₂: 1

- W is a bond, O, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(R₈)=N-O-, -C(=O)-NR₉-or -NR₉-C(=O)-;
- T is a bond, O, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₉- or -NR₉-C(=O)- or -C(R₈)=N-O-;

 R_6 and R_7 are each independently of the other H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_6 alkyl-carbonyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl or C_3 - C_8 cycloalkylcarbonyl;

- R₈ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl or C₃-C₈cycloalkyl;
- R_9 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkyl-carbonyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxycarbonyl or C_3 - C_8 cycloalkyl; and
- E is aryl unsubstituted or substituted from one to five times or heterocyclyl unsubstituted or, depending upon the possibilities of substitution on the ring, substituted from one to four times;

and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

- 2. A compound according to claim 1 in free form.
- 3. A compound according to any one of claims 1 to 2, wherein X_1 and X_2 are chlorine or bromine.
 - 4. A compound according to any one of claims 1 to 3, wherein Q is oxygen.
 - 5. A compound according to any one of claim 1 to 4, wherein A₃ is methylene.
 - 6. A compound according to any one of claim 1 to 5, wherein W is a bond.
- 7. A pesticidal composition which comprises as active ingredient at least one compound defined in any one of claims 1 to 6, in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 8. A method of controlling pests which comprises applying a pesticidal composition as defined in claim 7 to the pests or to the locus thereof.