

# **Considering Turbofan Operability in Hybrid Electric Aircraft Propulsion System Design**

**Jeffryes Chapman**

**NASA Glenn Research Center, Cleveland, OH**

AIAA SciTech Forum and Exposition, 23-27 January 2023



This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

# Introduction

*Electrified aircraft propulsion (EAP) engine design:*

*Concepts using a turbofan to produce a large proportion of:*

- Thrust
- Power
- Generally, an engine is designed to produce thrust or power. When the engine is expected to produce large amounts of both a design dichotomy is created resulting in.
  - Operability issues (overspeed, surge margin)
  - Sizing issues (fan vs. electric machines)
  - Power generation vs. Thrust.



# Engine

*Engine baseline make use of the NASA gFan+ concept:*

Advanced Composite Fan

1.46 PR, 70.6" fan  
Advanced 3-D aero design  
Sculpted features, low noise  
Thin, durable edges



Advanced nacelle

Slender OD  
Unitized composite  
Advanced acoustic features

Integrated thrust reverser/VFN

Highly variable fan nozzle

LPT

6-Stage  
GENx style architecture  
CMC+Ti/Al Blades/Vanes

LP Compressor

1.45 PR  
3 Stages

Ultra-high PR core compressor

28:1 PR class, 9 stages  
Active clearance control

Advanced eTAPS combustor

HPT  
2-Stage, uncooled  
2<sup>nd</sup> Gen CMC nozzles + blades  
Active purge control  
Next-gen disk material

Highly advanced dual spool Turbofan engine

- High Bypass : 12 BPR
- TIT : 3440 degR
- Thrust : 22000 lbf
- TSFC : 0.486 lbm/hr/lbf

# Engine MDP design

## *Multipoint engine design*

- Makes use of Numeric Propulsion Simulation System (NPSS) wrapped within OpenMDAO.
- Top of climb (TOC) is the engine sizing point sets speeds.
- Cruise (CRZ) is used to set bypass ratio
- Rolling take off (RTO) sizes air, fuel, and cooling flows.
- Sea level static (SLS) is run for comparison purposes



# MDP Baseline Design

*Map locations for MDP design*

- *Baseline engine with 0 power extraction and insertion*
- *Starting point for design space explortation*



# Engine Lapse Rate

*Total engine power changes with operational point and is function of air density*

- Altitude
- Mach number

*Total engine power output is combination of:*

- Thrust
- Power extraction or insertion (electrical power)



Thrust and power extraction/insertion are not independent and must be coordinated as the engine is throttled or operating point changed

# Study overview

*Two main studies are completed :*

- Cruise thrust assist : power extraction (PEX)
  - Assumed distributed propulsion system will use power from engine to operate electrically driven propulsors
  - Power is extracted at cruise from low pressure spool
  - Power extraction beyond cruise point level is undesirable due to increased size of electric machines
- Take-off thrust assist : power injection (PIN)
  - Electrical power is used to boost engine during high power output reducing the size of the engine and allowing it to run at a higher more efficient power level at cruise
  - Power is injected at rolling take off from low pressure spool
  - Cruise operates with no power insertion

# Cruise Assist

*Engine designed with increasing LPS power extraction applied to all operating points:*

- At RTO and SLS, LPC surge margin and HPC speed decrease
- At CRZ, LPC surge margin and HPC speed increase
- Limits observed must be observed in surge margin and HPC speed.



## CA Mitigating operability issues, additional power

*Balance operation by adding additional power extraction when engine total power output is higher than at cruise*

- Increasing RTO and SLS power extraction
- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, increase in LPC surge margin and HPC speed
- Requires increasing the size of the electric machines



# CA Mitigating operability issues, power split

*Balance operation by unloading high-pressure compressor*

- Adding HPS power extraction at TOC and CRZ, then removing this power extraction at SLS and RTO
- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, increase in LPC surge margin and HPC speed
- Requires adding electric machines to the HP shaft



## Take off assist

*Engine designed with increasing LPS power insertion applied at RTO and SLS points:*

- At RTO and SLS, LPC surge margin and HPC speed decrease
- Limits observed must be observed in surge margin and HPC speed.



# Engine performance with Take off assist

*Key performance parameters with varying amounts of thrust assist (LPS power insertion at RTO and SLS)*

- *Take off assist shrinks core and increases bypass ratio*
- *Cruise thrust specific fuel consumption reduces*
- *Cruise and top of climb points operate at higher turbine inlet temperatures*



## TA Mitigating operability issues, HPS power insertion

*Replacing LPS power insertion with HPS power insertion:*

- At RTO and SLS, LPC surge margin and HPC speed increase
- Thrust specific fuel consumption benefits much less than those developed with LPS power insertion



## TA Mitigating operability issues, TOC power insertion

*Increasing power insertion at TOC to build margin in RTO and SLS limits:*

- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, LPC surge margin and HPC speed decreases
- Thrust specific fuel consumption benefits much less than those developed with LPS power insertion.



## TA combining method

*Making use of LPS power insertion, HPS power insertion and TOC power insertion allows the most power to be inserted onto the engine:*

- *Making use of LPS power insertion is the most efficient method of inserting power to gain cruise efficiency*
- *Using LPS and HPS power insertion allows for much more power (nearly 2x) to be added to the engine, but the efficiency is less*
- *TOC offset increases the power moderately, but is much less efficient*

|                                                      | Baseline | LPS PIN at RTO | with HPS offset | with LPS TOC offset |
|------------------------------------------------------|----------|----------------|-----------------|---------------------|
| LPS PIN, hp                                          | 0        | 3470           | 5100            | 4512                |
| HPS PIN, hp                                          | 0        | 0              | 1200            | 0                   |
| Total PIN at RTO, hp                                 | 0        | 3470           | 6300            | 4512                |
| TSFC at CRZ, lbm/hr/lbf                              | 0.486    | 0.471          | 0.4608          | 0.4696              |
| TSFC reduction from baseline, %                      | None     | 3.09%          | 5.19%           | 3.37%               |
| CRZ TSFC reduction per total PIN at RTO, %/(hp/1000) | None     | 0.89%          | 0.82%           | 0.75%               |

## Summary and Conclusions

*Designs of a turboshaft engine were completed with varying levels of power augmentation*

- Two main studies
  - Cruise Assist (distributed propulsion system) : Power extraction at cruise to enable high efficiency distributed propulsion concepts
  - Take off Assist : Power insertion at high power points to increase engine efficiency
- System designs demonstrate issues with LPC surge margin and HPC overspeed
- Operability issue mitigation
  - for cruise assist : increase RTO and SLS power extraction or update HPS/LPS power split
  - For take off assist : update HPS/LPS power split or increase TOC power insertion
- Take off assist shown to decrease cruise TSFC by over 5%

# Acknowledgments

*Funding for this Work:*

- NASA's Advanced Air Transport Technology (AATT) project



AMERICAN INSTITUTE OF  
AERONAUTICS AND ASTRONAUTICS