The International Association for the Properties of Water and Steam

London, England September 1998

Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance

©1998 International Association for the Properties of Water and Steam

Publication in whole or in part is allowed in all countries provided that attribution is given to the

International Association for the Properties of Water and Steam

President:
Dr. Roberto Fernández-Prini
CNEA
Av. Libertador 8250
Buenos Aires-1429
Argentina

Executive Secretary:
Dr. R.B. Dooley
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304, USA

This release replaces the corresponding release of 1985 and contains 23 pages.

This release has been authorized by the International Association for the Properties of Water and Steam (IAPWS) at its meeting in London, United Kingdom, 6 - 12 September 1998, for issue by its Secretariat. The members of IAPWS are: Argentina, Canada, the Czech Republic, Denmark, France, Germany, Italy, Japan, Russia, the United Kingdom, and the United States of America.

Further information about this release and other releases issued by IAPWS can be obtained from the Executive Secretary of IAPWS.

The material contained in this release is identical to that contained in the Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance, issued by IAPS in September, 1984, except for some minor revisions to make the information consistent with the equations contained in the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, the 1997 Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance, and the International Temperature Scale of 1990. The material in the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance, in turn, was essentially identical to that contained in the Release on Thermal Conductivity of Water Substance, issued by IAPS in December 1977.

The original experimental data have been collected in the document "Available Input of the Thermal Conductivity of Water Substance," K. Scheffler, M. Rosner, and M. Reimann (Institut A für Thermodynamik, Technische Universität, München, revised ed. 1977).

Contents of this Release

Appendix A. Critically Evaluated Experimental Data.

Table A.I. Reduced to a Uniform Grid

This material is unchanged from the Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.

Table A.II. Reduced to the Saturation Line

The saturation pressures in this table have been revised to conform with the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.

Appendix B. Recommended Interpolating Equation for Industrial Use.

This material has been revised to conform to the Release on the IAPWS Formulation 1997 for the Thermodynamic Properties of Water and Steam for Industrial Use and the ITS-90 temperature scale.

Appendix C. Recommended Interpolating Equation for General and Scientific Use.

This material has been revised to conform to the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, the 1997 Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance and the ITS-90 temperature scale.

Appendix D. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for Industrial Use.

Table D.I. Calculated over a Uniform Grid

Table D.II. Calculated along the Saturation Line

The thermal conductivities in these tables have been recalculated to conform to the revised equations of Appendix B.

Appendix E. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for General and Scientific Use.

Table E.I. Calculated over a Uniform Grid

Table E.II. Calculated along the Saturation Line

The thermal conductivities in these tables have been recalculated to conform to the revised equations of Appendix C.

Appendix A

Table A.I. Critically-Evaluated Experimental Data Reduced to a Uniform Grid

This material is unchanged from the Release on the LAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.

Upper value:

Thermal conductivity of water or steam, λ in mW K⁻¹ m⁻¹

Lower value:

Uncertainty in the thermal conductivity, $\pm \Delta \lambda$ in mW K⁻¹ m⁻¹

Pressure, p, in MPa

Temperature, t, in °C

The points enclosed by parentheses represent extrapolations in the fluid phase outside the range of reliable experimental data.

The point shown in italics represents an extrapolation into a region where the equilibrium phase is a solid.

The isotherms and isobars represented by this table are not smooth. This reflects the trends existing in the experimental data used in its construction.

Table A.II. Critically-Evaluated Experimental Data Reduced to the Saturation Line

The saturation pressures in this table have been calculated from the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. The experimental values of the thermal conductivity have not been revised, but are identical to values in the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance.

Thermal conductivity of saturated liquid, λ' , in mW K⁻¹ m⁻¹. Thermal conductivity of saturated vapor, λ'' , in mW K⁻¹ m⁻¹. $\pm \Delta \lambda'$, $\pm \Delta \lambda''$ uncertainty in the above values in mW K⁻¹ m⁻¹. Pressure, p, in MPa. Temperature, t, in °C.

Table A.I Critically Evaluated Experimental Data Reduced to a Uniform Grid

p/MPa	T					Tempera	ture/°C					
p/IVII u	0	25	50	75	100	150	200	250	300	350	375	400

0.1	563	610	643	664	25.0	28.9	33.3	38.1	43.3	49.0	52.0	54.9
0.5	563	9 610	9 643	10 664	0.5 680	0.6 688	0.7 34.1	0.8 38.7	0.9 43.7	1.0	1.0	1.1
0.5	11	9	9	10	10	10	1.0	1.2	1.3	49.1 1.5	52.6 1.6	55.5
1	564	611	643	666	681	689	35.9	39.5	44.3	49.5	53.0	1.7 56.0
	11	9	9	10	10	10	1.4	1.2	1.3	1.5	1.6	1.7
2.5	566	611	644	666	682	690	668	43.8	46.5	-50.9	54.7	56.9
_	11	9	9	10	10	10	10	1.4	1.4	1.5	1.6	1.7
5	567	613	645	668	683	691	671	625	52.7	54.1	56.5	58.6
7.5	11 570	12 614	12	13	13	13	13	12	1.6	1.9	1.7	1.8
1.3	11	12	647 12	669 13	685 13	694 13	673 13	62 8 12	63.6 1.9	59.6 1.8	60.5	62.7
10	571	615	648	669	686	695	675	631	557	68.2	1.8 65.3	1.9 66.9
	11	12	13	13	13	13	13	12	11	2.0	2.1	2.0
12.5	571	616	649	672	687	697	678	634	562	81.2	73.6	72.4
	11	12	13	13	13	13	13	12	11	2.4	2.2	2.2
15	573	617	650	673	689	700	680	638	566	107.5	84.8	79.9
175	11	12	13	13	13	14	13	12	11	6.7	2.5	2.4
17.5	573 11	618 12	651 13	674 13	691 13	701 14	682	639	571	452	104.2	90.0
20	574	619	653	676	691	703	13 684	12 641	11 576	13 465	3.1 144.0	2.7 104.9
	11	12	13	13	13	14	13	12	11	14	4.7	3.1
22.5	574	620	654	678	692	705	686	646	581	476	478	124.1
	11	12	13	13	13	14	13	12	11	14	39	4.6
25	577	621	655	679	694	707	689	648	588	482	400	166.4
27.5	11 578	12	13	13	13	14	13	13	11	14	14	6.7
21.3	11	622 12	656 13	680 13	696 13	708 14	690 13	651 13	589	490	413	240.8
30	578	623	658	681	697	710	692	653	11 593	14 498	14 426	8.4 337
	11	12	13	13	13	14	13	13	11	15	13	12
35	580	625	660	684	700	714	696	660	601	511	453	384
	11	12	13	13	14	14	13	13	12	15	13	12
40	583	626	662	686	702	717	700	664	608	526	471	399
45	11 584	12 629	13 664	13 690	14	14	14	13	12	15	14	16
7,	11	12	13	13	705 14	721 14	704 14	670 13	615 12	537	486	425
50	586	630	666	692	708	724	708	673	621	16 547	14 498	12 444
	11	12	13	13	14	14	14	13	12	44	40	36
55	589	633	667	694	710	726	712	678	629	558	510	461
	11	12	13	13	14	14	14	13	12	45	41	37
60	590	635	670	697	713	729	715	682	634	566	525	476
65	11 592	12 638	13 673	13 699	14 715	14 733	14 718	13	12	45 574	42 535	38
]	11	12	13	14	14	14	14	688 13	639 12	574 46	535 43	489 39
70	597	639	674	702	718	735	721	691	645	582	546	49 9
	11	12	13	14	14	14	14	13	12	47	44	40
75	599	641	675	705	720	738	725	696	648	589	554	511
	12	12	13	14	14	14	14	13	13	47	44	41
80	599	645	677	707	723	739	729	699	653	598	564	521
85	12 601	12 646	13 680	14 706	14 726	14 742	14 732	14 702	13 650	48 604	45 571	42 533
	12	12	13	14	14	14	14	702 14	659 13	604 48	571 46	532 43
90	604	648	681	710	728	745	735	707	665	611	578	544
	12	13	13	14	14	14	14	14	13	49	46	44
95	608	650	685	713	731	748	739	711	669	615	586	553
100	12	13	13	14	14	15	14	14	13	49	47	44
100	609 12	650 13	686 13	716 14	735	749	742	715	672	624	594	561
	12	13	13	14	14	15	14	14	13	50	47	45

Table A-1 (continued)

p/MPa	<u> </u>				<u> Femperatu</u>	re/°C				
	425	450	475	500	550	600	650	700	750	800
0.1	57.9	60.6	63.8	67.1	73.1	79.9	86.4	93.4	100.5	107.5
	1.2	1.2	1.3	1.3	1.5	2.4	2.6	2.8	3.0	3.2
0.5	58.5	61.4	64.5	67.7	74.0	80.5	87.2	93.8	100.9	108.0
1	1.8 58.6	1.8 61.7	1.9 64.7	2.0 68.0	2.2 74.3	3.2 81.0	3.5	3.8	4.0	4.3
•	1.8	1.9	1.9	2.0	2.2	3.2	87.7 3.5	94.3 3.8	101.4 4.1	108.6 4.3
2.5	59.6	62.6	65.6	68.7	75.1	81.5	88.8	95.3	102.4	109.5
_	1.8	1.9	2.0	2.1	2.3	3.3	3.6	3.8	4.1	4.4
5	60.9	64.0	66.4	69.3	75.4	81.5	91.4	95.7	103.6	109.6
7.5	1.8 64.0	1.9 66.7	2.0 69.5	2.1 73.3	2.3	3.3	3.7	3.8	4.1	4.4
7.5	1.9	2.0	2.1	73.3 2.2	80.0 2.4	87.3 3.5	96.4 5.3	101.0 4.0	108.1	112.4
10	67.4	69.4	72.1	75.6	82.5	89.4	97.5	102.9	4.3 111.2	4.5 118.1
	2.0	2.1	2.2	2.3	2.5	3.6	4.6	4.1	5.1	5.2
12.5	72.0	74.1	76.1	79.4	85.0	90.7	97.9	102.9	109.9	116.3
	2.2	2.2	2.3	2.4	2.6	3.6	3.9	4.1	4.4	4.7
15	77.8	78.4	79.3	82.4	87.5	93.4	100.3	105.6	112.7	118.0
17.5	2.3 84.8	2.4	2.4	2.5	2.6	3.7	4.0	4.2	4.5	4.7
17.5	2.5	84.0 2.5	84.2 2.5	85.7 2.6	90.2 2.7	96.2	102.5	106.0	114.4	119.7
20	93.7	90.8	90.1	91.6	94.9	3.8 98.6	4.1 105.5	4.2 109.3	4.6	4.8
	2.8	2.7	2.7	2.7	3.0	3.9	4.2	4.4	116.8 4.7	122.7
22.5	105.9	98.6	95.9	96.0	98.1	102.6	107.6	112.1	119.2	4.9 123.7
	3.2	3.0	2.9	2.9	2.9	4.1	4.3	4.5	4.8	4.9
25	120.6	108.3	102.8	101.5	102.3	105.7	110.7	114.5	121.5	126.2
27.5	3.6	3.2	3.1	3.0	3.1	4.2	4.4	4.6	4.9	5.0
27.3	139.2 6.3	120.3 3.6	111.1	107.3	106.1	108.7	113.0	118.0	123.4	127.8
30	175.0	133.8	3.3 119.4	3.2 114.1	3.2 110.6	4.3 112.3	4.5	4.7	4.9	5.1
	8.1	4.0	3.6	3.4	3.3	4.5	116.2 4.6	119.9 4.8	125.7 5.0	130.2
35	260.5	176.3	144.3	129.7	121.1	119.8	122.7	125.1	130.0	5.2 134.6
	7.8	5.5	4.3	3.9	3.6	4.8	4.9	5.0	5.2	5.4
10	331	233.2	178.9	152.9	133.9	129.2	129.5	131.8	135.8	139.3
5	11	7.2	5.5	4.6	4.0	5.2	5.2	5.3	5.4	5.6
ر.	365 11	287 12	219.0 7.9	180.1	148.2	138.5	136.4	137.7	141.1	144.5
0	381	325	263	5.4 211	4.4 164	5.5 150	5.5	5.5	5.6	5.8
	30	26	21	17	13	12	145 12	145 12	146 12	149
5	401	354	297	244	184	162	154	152	153	12 155
	32	28	24	20	15	13	12	12	12	12
0	423	366	322	277	207	176	164	159	159	161
5	34	29	26	22	16	14	13	13	13	13
,	438 35	387 31	332 26	299	228	191	175	168	166	167
0	453	406	35 5	24 322	18 253	15	14	13	13	13
	36	32	28	26	233	205 16	186 15	178 14	173 14	173
5	467	421	376	327	269	218	198	186	14 180	14 178
	37	34	30	26	22	17	16	15	14	178
0	480	435	393	346	298	235	209	(196)	(190)	(185)
.	38	35	31	28	34	19	17	16	15	15
5	488 39	448	410	366	312	246	222	(206)	(196)	(194)
0	500	36 460	33 424	29 385	33	20	18	17	16	15
-	40	37	34	31	308 25	259 21	233 19	(215)	(205)	(201)
5	510	473	434	396	322	273	243	17 (226)	16 (214)	16
	41	38	35	32	26	22	19	18	17	(207) 17
00	519	484	445	412	338	288	255	(236)	(221)	(215)
1	42	39	36	33	27	23	20	19	18	17

Table A.II Critically Evaluated Experimental Data Reduced to the Saturation Line

					-
t	p	λ'	$\pm \Delta \lambda'$	λ"	±Δλ"
0.01	0.000 611 7	565	11	16.7	0.5
10	0.001 228	584	12	17.4	0.5
20	0.002 339	602	12	18.1	0.5
30	0.004 247	617	12	19.0	0.6
40	0.007 385	631	13	19.7	0.6
50	0.012 35	642	13	20.4	0.6
60	0.019 95	652	13	21.2	0.6
70	0.031 20	660	13	22.2	0.7
80	0.047 41	669	13	23.1	0.7
90	0.070 18	675	14	24.0	0.7
100	0.1014	679	14	25.0	0.8
110	0.1434	681	14	25.7	0.8
120	0.1987	685	14	26.8	0.8
130	0.2703	686	14	28.7	0.9
140	0.3615	686	14	29.7	0.9
150	0.4762	686	14	31.0	0.9
160	0.6182	682	14	31.9	1.3
170	0.7922	678	14	33.6	1.3
180	1.003	674	13	35.2	1.3
190	1.255	670	13	37.2	1.2
200	1.555	664	13	38.8	1.4
210	1.908	654	13	40.5	1.7
220	2.320	643	13	43.2	1.3
230	2.797	632	13	45.3	1.4
240	3.347	626	12	47.9	1.4
250	3.976	615	12	51.0	1.5
260	4.692	602	12	54.2	1.6
270	5.503	590	12	57.7	1.7
280	6.417	577	11	61.3	1.8
290	7.442	564	11	67.3	2.8
300	8.588	547	11	73.2	3.8
310	9.865	532	11	79.8	4.3
320	11.284	512	10	88.3	4.8
330	12.858	485	10	99.1	5.9
340	14.601	455	14	116.7	7.9
350	16.529	447	14	138	11
360	18.666	425	23	174	15
370	21.044	418	36	293	55
371	21.297	429	38	331	62
372	21.554	450	42	377	83
373	21.814	520	50	464	141

Appendix B: Recommended Interpolating Equation for Industrial Use

This material has been revised to conform to the Release on the IAPWS Formulation 1997 for the Thermodynamic Properties of Water and Steam for Industrial Use and the ITS-90 temperature scale.

B.1. Nomenclature

- T denotes absolute temperature on the International Temperature Scale of 1990
- ρ denotes density¹
- λ denotes thermal conductivity

B.2. Reference constants

Reference temperature²:
$$T = 647.26 \text{ K}$$
 (1)

reference density:
$$\rho^{\bullet} = 317.7 \text{ kg m}^{-3}$$
 (2)

reference thermal conductivity:
$$\lambda^* = 1 \text{ W m}^{-1} \text{ K}^{-1}$$
 (3)

The two reference constants T^* and ρ^* are close to but not identical with the critical constants.

B.3. <u>Dimensionless variables</u>

Temperature:
$$\vec{T} = T/T^*$$
 (4)

density:
$$\overline{\rho} = \rho/\rho^*$$
 (5)

thermal conductivity:
$$\bar{\lambda} = \lambda / \lambda^*$$
 (6)

B.4. Range of validity of equation

IAPWS endorses the validity of Eq. (8) for the thermal conductivity in the following range of pressures p and temperatures t

$$p \le 100 \text{ MPa}$$
 for $0 \text{ °C} \le t \le 500 \text{ °C}$

$$p \le 70 \text{ MPa}$$
 for $500 \,^{\circ}\text{C} < t \le 650 \,^{\circ}\text{C}$

$$p \le 40 \text{ MPa} \text{ for } 650 \text{ }^{\circ}\text{C} \le t \le 800 \text{ }^{\circ}\text{C}$$
 (7)

¹To reproduce the values given in Appendix D. the density should be computed with the aid of the IAPWS Industrial Formulation 1997 (IAPWS-IF97). If another density formulation is used, a relative departure of $\Delta\rho/\rho$ induces at most a relative departure of $\pm\Delta\lambda/\lambda = 2\Delta\rho/\rho$ outside the near-critical region.

²The reference temperature differs from that given in the Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance because of conversion to the ITS-90 temperature scale.

B.5. Interpolating equation

The values appearing in Tables A.I and A.II may be reproduced within the stated tolerances by the use of the following empirical interpolating equation which is recommended for industrial use. This equation yields a finite value of the thermal conductivity at the critical point instead of the theoretically-justified infinity.

The interpolating equation for industrial use is defined by

$$\overline{\lambda} = \overline{\lambda}_0 (\overline{T}) + \overline{\lambda}_1 (\overline{\rho}) + \overline{\lambda}_2 (\overline{T}, \overline{\rho})$$
 (8)

The function $\bar{\lambda}_0$ (\bar{T}) represents the thermal conductivity of steam in the ideal-gas limit and has the form

$$\overline{\lambda}_0(\overline{T}) = \sqrt{\overline{T}} \sum_{k=0}^3 a_k \overline{T}^k$$
 (9)

with the coefficients a_k given in Table B.I. The function $\overline{\lambda}_1$ ($\overline{\rho}$) is defined by

$$\overline{\lambda}_1(\overline{\rho}) = b_0 + b_1\overline{\rho} + b_2 \exp\left\{B_1(\overline{\rho} + B_2)^2\right\}$$
 (10)

with coefficients b_i and B_i given in table B.II. The function $\overline{\lambda}_2$ (\overline{T} , $\overline{\rho}$) is defined by

$$\overline{\lambda}_{2}(\overline{T}, \overline{\rho}) = \left(\frac{d_{1}}{\overline{T}^{10}} + d_{2}\right) \overline{\rho}^{9/5} \exp\left[C_{1}(1 - \overline{\rho}^{14/5})\right]
+ d_{3}S \overline{\rho}^{Q} \exp\left[\left(\frac{Q}{1 + Q}\right) \left(1 - \overline{\rho}^{1+Q}\right)\right] + d_{4} \exp\left[C_{2}\overline{T}^{3/2} + \frac{C_{3}}{\overline{\rho}^{5}}\right]$$
(11)

Here Q and S are functions of

$$\Delta \overline{T} = |\overline{T} - 1| + C_4, \tag{12}$$

where:

$$Q = 2 + \frac{C_5}{\Lambda \overline{T}^{3/5}}$$
 (13)

$$S = \begin{cases} \frac{1}{\Delta \overline{T}} & \text{for } \overline{T} \ge 1\\ \frac{C_6}{\Delta \overline{T}^{3/5}} & \text{for } \overline{T} < 1 \end{cases}$$
 (14)

The coefficients d_i and C_i are given in Table B.III.

B.6. Remarks

Users should be aware of the fact that the above equation is subject to exponential underflows which most computers set to zero; this causes no errors in the final result.

The equation adopted in this Appendix is not the only possible, relatively simple, empirical interpolation formula. An alternative form has been proposed in Engineering Sciences Data Item No. 78039 (Engineering Sciences Data Unit, London, 1978), Appendix A.4.

Table B.I. Coefficients a_k for $\overline{\lambda}_0$ (\overline{T})

 $a_0 = 0.0102811$

 $a_1 = 0.0299621$

 $a_2 = 0.0156146$

 $a_3 = -0.00422464$

Table B.II Coefficients b_i and B_i for $\overline{\lambda}_1$ ($\overline{\rho}$)

 $b_0 = -0.397070$

 $B_1 = -0.171587$

 $b_1 = 0.400302$

 $B_2 = 2.392 190$

 $b_2 = 1.060000$

Table B.III Coefficients d_i and C_i for $\overline{\lambda}_2(\overline{T}, \overline{\rho})$

 $d_1 = 0.070 130 9$

 $C_1 = 0.642857$

 $d_2 = 0.011 852 0$

 $C_2 = -4.11717$

 $d_3 = 0.00169937$

 $C_3 = -6.17937$

 $d_4 = -1.0200$

 $C_4 = 0.003 089 76$

 $C_s = 0.0822994$

 $C_6 = 10.0932$

Appendix C: Recommended Interpolating Equation for General and Scientific Use

This material has been revised to conform to the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, the 1997 Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance and the ITS-90 temperature scale.

C.l. Nomenclature

- T denotes temperature on the International Temperature Scale of 1990
- ρ denotes density³
- p denotes pressure
- λ denotes thermal conductivity

C.2. Reference constants

Reference temperature⁴:
$$T' = 647.226 \text{ K}$$
 (15)

reference density:
$$\rho^{\bullet} = 317.763 \text{ kg m}^{-3}$$
 (16)

reference pressure:
$$p^* = 22.115 \times 10^6 \,\mathrm{Pa}$$
 (17)

reference thermal conductivity:
$$\lambda^* = 0.4945 \text{ W m}^{-1} \text{K}^{-1}$$
 (18)

The three reference constants, T^* , ρ^* , p^* are close to but not identical with the critical constants.

C.3. <u>Dimensionless variables</u>

Temperature:
$$\overline{T} = T/T^*$$
 (19)

density:
$$\bar{\rho} = \rho/\rho^{\bullet}$$
 (20)

pressure
$$\overline{p} = p/p^*$$
 (21)

(symmetrized)

compressibility:
$$\overline{\chi}_{T} = \overline{\rho} \left[\frac{\partial \overline{\rho}}{\partial \overline{p}} \right]_{\overline{x}}$$
 (22)

thermal conductivity:
$$\vec{\lambda} = \lambda/\lambda^*$$
 (23)

³To reproduce the values given in Appendix E. the density should be computed with the aid of the IAPWS Formulation 1995 for General and Scientific Use.

⁴The reference temperature differs from that given in the Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance because of conversion to the ITS-90 temperature scale.

C.4. Range of validity of equation

IAPWS endorses the validity of Eq. (25) for the thermal conductivity in the following range of pressures p and temperatures t

$$p \le 400 \text{ MPa}$$
 for $0 \text{ °C} \le t \le 125 \text{ °C}$
 $p \le 200 \text{ MPa}$ for $125 \text{ °C} < t \le 250 \text{ °C}$
 $p \le 150 \text{ MPa}$ for $250 \text{ °C} < t \le 400 \text{ °C}$
 $p \le 100 \text{ MPa}$ for $400 \text{ °C} < t \le 800 \text{ °C}$ (24)

C.5. <u>Interpolating equation</u>

The values appearing in Tables A.I and A.II may also be reproduced within the stated tolerances by the following alternative equation which incorporates in it the present-day understanding of the nature of the critical anomaly in thermal conductivity. In particular, the thermal conductivity becomes infinite at the critical point.

The interpolating equation for scientific use is defined by

$$\overline{\lambda} = \overline{\lambda}_0 (\overline{T}) \cdot \overline{\lambda}_1 (\overline{T}, \overline{\rho}) + \overline{\lambda}_2 (\overline{T}, \overline{\rho}). \tag{25}$$

The factor $\overline{\lambda}_0$ (\overline{T}) represents the thermal conductivity of steam in the ideal gas limit and has the form

$$\overline{\lambda}_0(\overline{T}) = \frac{\sqrt{\overline{T}}}{\sum_{i=0}^3 \frac{L_i}{\overline{T}^i}}$$
 (26)

with coefficients L_i given in Table C.I. The factor $\overline{\lambda}_1$ $(\overline{T}, \overline{\rho})$ is

$$\overline{\lambda}_{1}(\overline{T}, \overline{\rho}) = \exp \left[\overline{\rho} \sum_{i=0}^{4} \sum_{j=0}^{5} L_{ij} \left(\frac{1}{\overline{T}} - 1 \right)^{i} (\overline{\rho} - 1)^{j} \right]$$
(27)

with coefficient L_{ij} given in Table C.II. The additive term $\overline{\lambda}_2$ (\overline{T} , $\overline{\rho}$) in (25) which accounts for an enhancement of the thermal conductivity in the critical region is defined by

$$\overline{\lambda}_{2}(\overline{T}, \overline{\rho}) = \frac{0.001 \ 384 \ 8}{\overline{\mu}_{0}(\overline{T}) \cdot \overline{\mu}_{1}(\overline{T}, \overline{\rho})} \left(\frac{\overline{T}}{\overline{\rho}}\right)^{2} \left(\frac{\partial \overline{p}}{\partial \overline{T}}\right)^{2}_{\overline{\rho}} \overline{\chi}_{T}^{0.4678} \overline{\rho}^{1/2}$$

$$\times \exp[-18.66(\bar{T}-1)^2 - (\bar{\rho}-1)^4]$$
, (28)

where the functions $\vec{\mu}_0$ (\vec{T}) and $\vec{\mu}_1$ (\vec{T} , $\vec{\rho}$) are those defined in Appendix B.5 of the 1997 Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance.

C.6. Remarks

To produce the values given in Appendix E, the density, the isothermal compressibility as well as the partial derivative $(\partial p/\partial T)_{\rho}$ should be calculated with the aid of the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Alternatively, for industrial use, these quantities can be calculated using the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam with only a small change in results. If another density formulation is used, a relative departure $\pm \Delta \rho/\rho$ induces, at most, a relative departure $\pm \Delta \lambda/\lambda = 2\Delta \rho/\rho$, except for the near-critical region.

A further discussion of this equation can be found in Appendix II of the paper "Representative Equations for the Thermal Conductivity of Water Substance," J. V. Sengers, J. T. R. Watson, R. S. Basu, B. Kamgar-Parsi, and R. C. Hendricks, Journal of Physical and Chemical Reference Data 13 (1984), pp. 893-933.

Table C.I. Coefficients L_i for $\overline{\mathcal{L}}_0$ (\overline{T})

 L_0 = 1.000 000 L_1 = 6.978 267 L_2 = 2.599 096 L_3 = -0.998 254

Table C.II. Coefficients L_{ij} for $\overline{\lambda}_1$ $(\overline{T}, \overline{\rho})$

j	$L_{0 m j}$	$L_{ m tj}$	$L_{2\mathrm{j}}$	L_{3j}	L 4j
0	+1.329 304 6	+1.701 836 3	+5.224 615 8	+8.712 767 5	-1.852 599 9
1	-0.404 524 37	-2.215 684 5	-10.124 111	- 9.500 061 1	+0.934 046 90
2	+0.244 094 90	+1.651 105 7	+4.987 468 7	+4.378 660 6	0.0
3	+0.018 660 751	-0.767 360 02	- 0.272 976 94	- 0.917 837 82	0.0
4	-0.129 610 68	+0.372 833 44	- 0.430 833 93	0.0	0.0
5	+0.044 809 953	-0.112 031 60	+0.133 338 49	0.0	0.0

Appendix D

The thermal conductivities in these tables have been recalculated to conform to the revised equations of Appendix B.

Table D.I Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for Industrial Use, Calculated Over a Uniform Grid

Thermal conductivity, λ , in mW K⁻¹ m⁻¹; Pressure, p, in MPa; Temperature, t, in °C

Values obtained with the aid of the interpolating equation defined in Appendix B and density values based on the 1997 Formulation for Industrial Use.

The point shown in italics represents an extrapolation into a region where the equilibrium phase is a solid. The two points in parentheses have values slightly outside the tolerances given in Table A.I.

(Note: To assist in programming, the tabular entries contain more significant digits than are justified by the tolerances listed in Table A.I.)

Table D.II. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for Industrial Use, Calculated along the Saturation Line

Thermal conductivity of saturated liquid, λ' , and thermal conductivity of saturated vapor, λ'' , in mW K⁻¹ m⁻¹; Pressure, p, in MPa; Temperature, t, in °C

(Note assist in programming, the tabular entries contain more significant digits than are justified by the tolerances listed in Table A.I.I)

Values obtained with the aid of the interpolating equation defined in Appendix B and with saturation pressures and saturation densities based on the 1997 Formulation for Industrial Use.

Table D.I Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for Industrial Use, Calculated over a Uniform Grid

p/MPa					Tem	perature/°C					
	0	25	50	75	100	150	200	250	300	350	375
0.1	562.0	607.5	6 40.5	663.5	24.8	28.8	33.4	38.3	43.5	49.0	51.8
0.5	562.3	607.7	64 0.7	663.7	678.0	683.9	34.2	38.8	43.9	49.3	52.1
1	562.6	608.0	641.0	663.9	678.3	684.2	36.1	39.7	44.5	49.8	52.6
2.5	563.4	608.8	641.7	664.7	679.1	685.2	664.2	43.9	46.8	51.5	54.1
;	564.9	610.1	643.0	666.0	680.5	686.9	666.4	619.1	53.0	55.2	57.1
7.5	566.4	611.4	644.3	667.4	681.9	688.5	668.6	622.3	64.0	60.6	61.1
10	567.8	612.7	645.6	668.6	683.2	690.2	670.7	625.5	548.1	68.5	66.4
2.5	569.3	614.1	646.9	669.9	684.6	691.8	672.8	628.5	553.6	81.1	73.7
5	570.8	615.4	648.1	671.2	685.9	693.4	674.9	631.5	558.7	104.1	84.5
7.5	572.2	616.7	649.4	672.5	687.3	695.0	676.9	634.4	563.6	441.9	103.1
.0	573.6	617.9	650.6	673.8	688.6	696.5	678.9	637.2	568.3	454.1	145.2
2.5	575.1	619.2	651.9	675.0	689.9	698.1	680.9	640.0	572.9	464.7	477.
5	576.5	620.5	653.1	676.3	691.2	699.6	682.9	642.7	577.2	474.1	386.9
7.5	577.9	621.8	654.4	677.5	692.5	701.2	684.8	645.4	581.4	482.7	405.3
0	579.3	623.1	655.6	678.8	693.8	702.7	686.7	648.0	585.5	490.6	420.6
5	582.1	625.6	658.0	681.3	696.4	705.7	690.5	653.2	593.2	504.7	443.9
0	584.9	628.1	660.4	683.7	699.0	708.6	694.2	658.1	600.5	517.3	462.4
5	587.6	630.6	662.8	686.1	701.5	711.6	697.8	662.9	607.4	528.7	478.2
0	590.3	633.0	665.2	688.5	704.0	714.4	701.3	667.5	614.0	539.1	492.0
5	593.0	635.5	667.6	690.9	706.5	717.3	704.8	672.0	620.3	548.7	504.4
0	595.7	637.9	669.9	693.2	708.9	720.0	708.1	676.4	626.3	557.7	515.8
55	598.3	640.3	672.2	695.6	711.3	722.8	711.5	680.6	632.1	566.1	526.2
0	600.9	642.6	674.5	697.9	713.7	725.5	714.7	684.8	637.7	574.0	535.9
5	603.5	645.0	676.8	700.2	716.0	728.2	717.9	688.8	643.0	581.5	545.(
0	606.1	647.3	679.0	702.4	718.4	730.8	721.1	692.8	648.2	588.7	
5	608.6	649.6	681.3	704.7	720.7	733.4	724.2	696.6	653.3	595.5	553.5
0	611.1	651.9	683.5	706.9	723.0	736.0	727.2	700.4	658.1		561.5
5	613.6	654.2	685.7	709.1	725.0	738.5	730.2	700.4 704.1		602.0	569.2
00	616.0	656.4	687.8	711.3	727.5	741.0	733.2		662.8	608.3	576.4
``	010.0	050.4	067.0	711.3	121.3	/41.0	133.4	707.7	667.4	614.3	583.

Table D.I (continued)

p/MPa					Temp	erature/°C					
_	400	425	450	475	500	550	600	650	700	750	800
0.1	54.7	57.7	60.7	63.8	66.9	73.3	79.9	86.7	93.6	100.6	107.7
0.5	55.0	58.0	61.0	64.0	67.2	73.6	80.1	86.9	93.8	100.8	107.9
1	55.4	58.4	61.4	64.4	67.5	73.9	80.4	87.2	94.0	101.0	108.2
2.5	56.8	59.6	62.5	65.5	68.6	74.9	81.4	88.0	94.9	101.8	108.9
5	59.5	62.1	64.8	67.6	70.6	76.7	83.0	89.6	96.3	103.2	110.2
7.5	62.9	65.1	67.5	70.1	72.8	78.7	84.8	91.2	97.8	104.6	111.5
0	67.2	68.6	70.6	72.8	75.3	80.8	86.8	93.0	99.5	106.1	113.0
12.5	72.8	73.0	74.2	76.0	78.2	83.2	88.9	94.9	101.2	107.7	114.4
15	79.9	78.3	78.5	79.7	81.4	85.8	91.1	96.9	103.0	109.4	116.0
17.5	89.6	84.9	83.6	83.9	85.0	88.7	93.6	99.1	105.0	111.2	117.6
20	103.4	93.4	89.8	88.8	89.1	91.9	96.2	101.4	107.0	113.0	119.3
22.5	124.2	104.3	97.2	94.4	93.7	95.4	99.1	103.8	109.2	115.0	121.1
25	160.0	118.9	106.3	101.1	99.0	99.2	102.1	106.4	111.5	117.0	123.0
27.5	232.4	138.9	117.5	108.9	105.0	103.4	105.4	109.2	113.9	119.2	124.9
30	328.1	167.3	131.5	118.0	111.9	108.0	109.0	112.1	116.4	121.4	126.9
5	373.0	253.6	170.8	141.6	128.5	118.6	116.9	118.5	121.8	126.2	131.2
10	398.5	321.1	(225.0)	(173.2)	149.7	131.2	125.9	125.7	127.8	131.4	135.8
15	419.9	354.9	277.9	211.9	175.7	145.9	136.2	133.6	134.3	136.9	140.7
50	438.3	379.4	315.7	251.3	205.5	162.9	147.7	142.3	141.4	143.0	145.9
55	454.4	400.0	343.1	285.4	236.0	181.7	160.3	151.8	149.1	149.4	151.5
50	468.8	417.9	365.2	312.9	264.6	201.8	174.1	162.1	157.2	156.2	157.4
55	481.8	433.9	384.3	335.5	289.8	222.4	188.7	173.0	165.9	163.4	163.6
70	493.7	448.3	401.3	355.1	311.7	242.7	203.8	184.4	175.0	171.0	170.0
75	504.7	461.5	416.8	372.5	330.9	262.0	219.2	196.3	184.5	178.8	176.7
30 L	514.9	473.7	430.9	388.4	348.2	280.2	234.6	208.5	194.3	187.0	183.7
35	524.5	485.0	443.9	402.9	363.9	297.1	249.6	220.8	204.3	195.3	190.8
00	533.5	495.5	456.0	416.4	378.5	312.7	264.2	233.1	214.5	203.9	190.8
)5	542.0	505.4	467.3	429.0	392.1	327.3	278.3	245.3	214.3	203.9	
100	550.0	514.7	477.9	440.8	404.8	341.0	291.7	243.3 257.3	235.0	212.3	205.6 213.2

Table D.II. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for Industrial Use, Calculated along the Saturation Line

t	P	λ'	λ"
°C	MPa	mW K-1 m-1	mW K-1 m-1
0.01	0.0006117	561.99	16.49
10	0.001 228	581.92	17.21
20	0.002 339	599.47	17.95
30	0.004 247	614.95	18.71
40	0.007 384	628.56	19.48
50	0.012 35	640.46	20.28
60	0.019 95	650.76	21.10
70	0.031 20	659.57	21.96
80	0.047 41	666.96	22.86
90	0.070 18	673.00	23.80
100	0.1014	677.76	24.79
110	0.1434	681.28	25.85
120	0.1987	683.61	26.96
130	0.2703	684.80	28.15
140	0.3615	684.87	29.42
150	0.4761	683.86	30.77
160	0.6181	681.80	32.22
170	0.7921	678.71	33.77
180	1.003		
190	1.255	674.60 669.49	35.42
200	1.555		37.19
210	1.907	663.38	39.10
220	2.319	656.28 648.18	41.14
230	2.797		43.34
240	3.347	639.08 628.97	45.72
250	3.976		48.32
260	4.692	617.81	51.16
270	5.503	605.58	54.30
280	6.416	592.25 577.75	57.81
290	7.442	562.01	61.79
300	8.588	544.95	66.37 71.75
310	9.865		
320		526.47	78.24
330	11.284	506.46	86.35
	12.858	484.81	96.96
340 350	14.600	461.44	111.75
	16.529	436.45	134.53
360 370	18.666	411.93	176.63
	21.043	418.09	309.47
371	21.296	432.57	346.99
372	21.553	462.02	403.69
373	21.813	534.96	507.03

Appendix E

The thermal conductivities in these tables have been recalculated to conform to the revised equations of Appendix C.

Table E.I Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for General and Scientific Use, Calculated Over a Uniform Grid

Thermal conductivity, λ , in mW K⁻¹ m⁻¹; Pressure, p, in MPa; Temperature, t, in °C

Values obtained with the aid of the interpolating equation defined in Appendix C and density values as well as the values of the thermodynamic derivatives based on the Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.

The point shown in italics represents an extrapolation into a region where the equilibrium phase is a solid.

(Note: To assist in programming, the tabular entries contain more significant digits than are justified by the tolerances listed in Table A.I.)

Table E.II. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for General and Scientific Use, Calculated along the Saturation Line

Thermal conductivity of saturated liquid, λ' , and thermal conductivity of saturated vapor, λ'' , in mW K⁻¹ m⁻¹; Pressure, p, in MPa; Temperature, t, in °C

Values obtained with the aid of the interpolating equation defined in Appendix C with saturation pressures and saturation densities as well as the values of the thermodynamic derivatives based on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.

(Note: To assist in programming, the tabular entries contain more significant digits than are justified by the tolerances listed in Table A.II.)

Table E.I. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for General and Scientific Use, Calculated Over a Uniform Grid

p/MPa					Ten	nperature/°C					
	0	25	50	75	100	150	200	250	300	350	375
0.1	561.1	607.2	643.6	666.8	25.08	28.86	33.28	38.17	43.42	48.97	51.83
0.5	561.3	607.4	643.8	667.0	679.3	682.1	34.93	39.18	44.09	49.45	52.26
1	561.6	607.6	644.0	667.2	679.6	682.4	37.21	40.52	44.96	50.07	52.80
2.5	562.4	608.3	644.7	668.0	680.4	683.4	664.1	45.16	47.82	52.06	54.53
5	563.8	609.4	645.9	669.2	681.8	685.1	666.3	622.5	53.85	55.99	57.87
7.5	565.2	610.6	647.0	670.5	683.1	686.8	668.5	625.7	63.12	61.05	62.00
10	566.5	611.7	648.2	671.7	684.5	688.4	670.6	628.8	550.7	68.09	67.34
12.5	567.9	612.8	649.4	673.0	685.9	690.1	672.7	631.8	556.2	79.12	74.67
15	569.3	614.0	650.5	674.2	687.2	691.8	674.9	634.8	561.4	100.8	85.52
17.5	570.7	615.1	651.7	675.5	688.6	693.4	676.9	637.7	566.5	452.2	103.6
20	572.1	616.2	652.8	676.7	689.9	695.1	679.0	640.5	571.3	463.2	141.5
22.5	573.4	617.4	654.0	678.0	691.3	696.7	681.1	643.4	575.9	472.6	439.4
25	574.8	618.5	655.2	679.2	692.6	698.4	683.2	646.1	580.4	481.1	410.9
27.5	576.2	619.7	656.3	680.4	694.0	700.0	685.2	648.9	584.7	488.8	425.9
30	577.5	620.8	657.5	681.7	695.3	701. 7	687.2	651.6	588.8	496.0	438.1
35	580.2	623.1	659.8	684.2	698.0	704.9	691.3	656.8	596.8	509.0	457.3
40	582.9	625.3	662.1	686.6	700.7	708.2	695.3	662.0	604.3	520.7	472.9
45	585.6	627.6	664.4	689.1	703.3	711.4	699.2	667.0	611.5	531.5	486.2
50	588.2	629.8	666.7	691.5	706.0	714.6	703.1	671.9	618.3	541.5	498.2
55	590.8	632.1	669.0	694.0	708.6	717.8	707.0	676.8	624.9	550.8	509.1
60	593.3	634.3	671.3	696.4	711.2	721.0	710.9	681.5	631.2	559.6	519.2
65	595.8	636.5	673.5	698.8	713.9	724.1	714.7	686.2	637.3	568.0	528.7
70	598.3	638.7	675.8	701.2	716.4	727.2	718.5	690.7	643.2	575.9	537.6
75	600.7	640.9	678.0	703.6	719.0	730.4	722.2	695.3	648.9	583.4	546.1
80	603.1	643.0	680.3	705.9	721.6	733.5	726.0	699.7	654.4	590.7	554.2
85	605.4	645.1	682.5	708.3	724.1	736.6	729.7	704.2	659.8	597.6	561.9
90	607.7	647.3	684.7	710.6	726.7	739.7	733.4	708.5	665.1	604.3	569.3
95	610.0	649.3	686.8	712.9	729.2	742.7	737.1	712.9	670.3	610.7	576.4
100	612.2	651.4	689.0	715.2	731.7	745.8	740.8	717.1	675.3	617.0	583.2

22
Table E.I. (continued)

p/MPa					Ten	nperature/°C					
	400	425	450	475	500	550	600	650	700	750	800
0.1	54.76	57.74	60.77	63.85	66.98	73.36	79.90	86.57	93.38	100.3	107.3
0.5	55.14	58.08	61.09	64.15	67.26	73.61	80.14	86.80	93.60	100.5	107.5
1	55.62	58.52	61.49	64.52	67.61	73.94	80.44	87.10	93.88	100.8	107.8
2.5	57.15	59.90	62.75	65.69	68.71	74.95	81.40	88.02	94.76	101.6	108.5
5	60.06	62.49	65.10	67.86	70.74	76.79	83.13	89.67	96.35	103.1	109.9
7.5	63.56	65.54	67.82	70.33	73.03	78.84	85.04	91.49	98.09	104.8	111.5
10	67.88	69.18	70.99	73.16	75.61	81.11	87.14	93.48	99.98	106.6	113.2
12.5	73.39	73.62	74.72	76.41	78.52	83.61	89.43	95.63	102.0	108.5	115.0
15	80.68	79.12	79.17	80.18	81.83	86.38	91.92	97.96	104.2	110.6	116.9
17.5	90.77	86.10	84.52	84.55	85.58	89.43	94.62	100.5	106.6	112.8	119.0
20	105.5	95.14	91.02	89.67	89.85	92.78	97.55	103.2	109.1	115.2	121.2
22.5	128.5	107.1	99.01	95.66	94.70	96.47	100.7	106.0	111.8	117.7	123.6
25	168.2	123.3	108.9	102.7	100.2	100.5	104.1	109.1	114.6	120.3	126.0
27.5	245.5	145.4	121.1	. 111.0	106.5	104.9	107.8	112.3	117.6	123.1	128.6
30	332.0	175.8	136.2	120.7	113.6	109.8	111.7	115.8	120.8	126.0	131.3
35	384.7	257.9	176.5	145.0	130.7	120.7	120.3	123.2	127.5	132.2	137.0
40	414.2	323.8	227.2	176.0	151.7	133.4	129.9	131.4	134.8	138.9	143.2
45	434.9	363.6	275.8	211.5	176.2	147.8	140.5	140.3	142.6	146.0	149.7
50	451.3	391.3	315.5	247.0	202.9	163.7	152.0	149.7	150.9	153.4	156.5
55	465.2	412.5	346.3	279.4	230.0	180.6	164.2	159.7	159.6	161.2	163.5
60	477.4	429.7	370.8	307.9	255.8	198 .1	176.9	169.9	168.5	169.1	170.7
65	488.4	444.1	391.0	332.2	279.7	215.6	189.8	180.4	177.5	177.2	177.9
70	498.5	456.7	408.0	353.2	301.5	232.8	202.7	190.9	186.5	185.2	185.2
75	507.9	468.0	422.7	371.5	321.2	249.2	215.3	201.2	195.5	193.2	192.4
80	516.8	478.2	435.6	387.6	338.9	264.9	227.6	211.4	204.2	201.0	199.5
85	525.2	487.7	447.2	401.8	354.9	279.7	239.5	221.1	212.7	208.6	206.4
90	533.2	496.5	457.6	414.6	369.4	293.7	250.8	230.5	220.9	215.9	213.0
95	540.8	504.9	467.2	426.1	382.7	306.9	261.7	239.5	228.7	213.9	219.4
100	548.2	512.8	476.1	436.6	394.8	319.3	272.0	248.0	236.0	229.5	219.4

Table E.II. Values of the Thermal Conductivity of Ordinary Water Substance Obtained with the Aid of the Recommended Interpolating Equation for General and Scientific Use, Calculated along the Saturation Line

°C MPa mW K-1 m ⁻¹ mW K-1 0.01 0.000 611 7 561.0 17.07 0 0.001 228 580.0 17.62 0 0.002 339 598.4 18.23 0 0.004 247 615.5 18.89 0 0.007 385 630.6 19.60 0 0.012 35 643.6 20.36 0 0.019 95 654.3 21.19 0 0.031 20 663.1 22.07 0 0.047 41 670.0 23.01 0 0.070 18 675.3 24.02 0 0.1014 679.1 25.10 0 0.1434 681.7 26.24 0 0.1987 683.2 27.47 0 0.2703 683.7 28.76 0 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75	t	р	λ'	λ"
0.001 228 580.0 17.62 0.002 339 598.4 18.23 0.004 247 615.5 18.89 0.007 385 630.6 19.60 0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.004 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.10434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 <th>°C</th> <th>MPa</th> <th>mW K*1 m*1</th> <th>mW K⁻¹ m⁻¹</th>	°C	MPa	mW K*1 m*1	mW K ⁻¹ m ⁻¹
0.001 228 580.0 17.62 0.002 339 598.4 18.23 0.004 247 615.5 18.89 0.007 385 630.6 19.60 0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.004 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.10434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 <td>0.01</td> <td>0.000.611.7</td> <td>561.0</td> <td>17.07</td>	0.01	0.000.611.7	561.0	17.07
0.002 339 598.4 18.23 0.004 247 615.5 18.89 0.007 385 630.6 19.60 0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.031 20 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 668.8 38.24 1.598 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692				
0.004 247 615.5 18.89 0.007 385 630.6 19.60 0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.031 20 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.7 4.8588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	10			
0.007 385 630.6 19.60 0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.0019 12 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.255 668.8 38.24 1.255 668.8 38.24 1.598 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5	20			
0.012 35 643.6 20.36 0.019 95 654.3 21.19 0.031 20 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 668.8 38.24 1.555 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.3976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5	30			
0.019 95 654.3 21.19 0.031 20 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.2555 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 38.11 60.61 7.442 565.0 64.71 8.588 547.	40			
0.031 20 663.1 22.07 0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 668.8 38.24 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 <td>50</td> <td></td> <td></td> <td></td>	50			
0.047 41 670.0 23.01 0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.02703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 <td>60</td> <td></td> <td></td> <td></td>	60			
0.070 18 675.3 24.02 0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 668.8 38.24 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1	70			
0.1014 679.1 25.10 0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.998 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	80			
0.1434 681.7 26.24 0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4	90			
0.1987 683.2 27.47 0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7	100			
0.2703 683.7 28.76 0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0	110			
0.3615 683.3 30.14 0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4	120			
0.4762 682.0 31.60 0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4	130			
0.6182 680.0 33.13 0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	140			
0.7922 677.0 34.75 1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	150			
1.0028 673.3 36.45 1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	.60			33.13
1.255 668.8 38.24 1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	170	0.7922		34.75
1.555 663.3 40.11 1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	80	1.0028		36.45
1.908 657.0 42.09 2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	90	1.255	668.8	38.24
2.320 649.7 44.17 2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	200	1.555	663.3	40.11
2.797 641.3 46.38 3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	210	1.908	657.0	42.09
3.347 631.8 48.73 3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	20	2.320	649.7	44.17
3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	30	2.797	641.3	46.38
3.976 621.2 51.26 4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	40	3.347	631.8	48.73
4.692 609.2 54.03 5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	50	3.976	621.2	51.26
5.503 595.9 57.11 6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	260			
6.417 581.1 60.61 7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	270			
7.442 565.0 64.71 8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	280			
8.588 547.4 69.65 9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	90	7.442		
9.865 528.7 75.84 11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	00			
11.284 509.2 83.91 12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	10			
12.858 489.1 94.94 14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	20			
14.601 468.5 110.9 16.529 447.4 135.9 18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	30			
16.529447.4135.918.666425.7181.521.044425.0323.821.297438.4367.321.554467.4438.1	40			
18.666 425.7 181.5 21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	50			
21.044 425.0 323.8 21.297 438.4 367.3 21.554 467.4 438.1	660			
21.297 438.4 367.3 21.554 467.4 438.1	570			
21.554 467.4 438.1	571			
	572			
21.814 547.9 590.7	773			