STAT206B Homework #2

Due: 5pm, 01/28 (Friday) via email.

1. Let X_1, \ldots, X_n be an i.i.d. sample such that $X_i \mid \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$, where σ^2 is known and θ is unknown. Also, let your prior for θ be a mixture of conjugate priors, i.e.,

$$\pi(\theta) = \sum_{\ell=1}^{K} w_{\ell} \phi(\theta \mid \mu_{\ell}, \tau^{2})$$

where $\phi(\theta \mid \mu_{\ell}, \tau^2)$ denotes the Gaussian density with mean μ_{ℓ} and variance τ^2 and mixture weights $0 < w_{\ell} < 1$ for all $\ell = 1, ..., K$ with $\sum_{\ell=1}^{K} w_{\ell} = 1$.

Note: This questions is challenging. Use the results from the class example with $X_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$.

- (a) Find the posterior distribution for θ based on this prior.
- (b) Find the posterior mean.
- (c) Find the prior predictive distribution associated with this model (i.e., the marginal distribution of data).
- (d) Find the posterior predictive distribution associated with this model.
- 2. Let X_1, \ldots, X_n be an i.i.dsample such that $X_i \mid \theta \stackrel{iid}{\sim} N(\theta, 1)$. Suppose that you know that $\theta > 0$, and you want your prior to reflect that fact. Hence, you decide to set $\pi(\theta)$ to be a normal distribution with mean μ and variance τ^2 , truncated to be positive, i.e.,

$$\pi(\theta) = \frac{1}{\sqrt{2\pi\tau^2}\Phi(\mu/\tau)} \exp\left\{-\frac{(\theta-\mu)^2}{2\tau^2}\right\} I_{[0,\infty)}(\theta),$$

where $\Phi(\cdot)$ is the cdf of the standard normal distribution and $I_{[0,\infty)}(\cdot)$ the indicator function.

- (a) Find the posterior distribution for θ based on this prior.
- (b) Find the prior predictive distribution.
- 3. Let X_1, \ldots, X_n be an i.i.d. sample such that each X_i comes from a truncated normal with unknown mean θ and variance 1,

$$f(X_i \mid \theta) = \frac{1}{\sqrt{2\pi}\Phi(\theta)} \exp\left\{-\frac{(X_i - \theta)^2}{2}\right\} I_{[0,\infty)}(X_i).$$

If $\theta \sim N(\mu, \tau^2)$, find the posterior for θ .

- 4. (Robert 2.28 slightly reworded) Consider $x \mid \theta \sim \text{Binomial}(n, \theta)$ with n known.
 - (a) If the prior is $\theta \sim \text{Be}(\sqrt{n}/2, \sqrt{n}/2)$, give the associate posterior.

- (b) What is the estimator that minimizes the posterior expected loss if the loss function is $L(\delta,\theta) = (\theta \delta)^2$? Call such estimator $\delta^{\pi}(x)$ and show that its associated risk $R(\theta,\delta^{\pi}(x))$ is constant.
- (c) Let $\delta_0(x) = x/n$. Find the risk for this estimator, i.e., find $R(\theta, \delta_0(x))$. Compare the risks for $\delta^{\pi}(x)$ and $\delta_0(x)$ for n = 10, 50, and 100. Conclude about the appeal of $\delta^{\pi}(x)$.
- 5. (Robert 2.30 slightly reworded). Consider $x \sim N(\theta, 1)$ and $\theta \sim N(0, n)$. Let $\delta^{\pi}(x)$ be the estimator that minimizes the posterior expected loss under the square error loss. Show that the Bayes risk $r(\pi, \delta^{\pi})$ is equal to n/(n+1).
- 6. (Adapted from Robert 2.42) Consider the LINEX loss function defined by

$$L(\theta, d) = e^{c(\theta - d)} - c(\theta - d) - 1.$$

- (a) Show that $L(\theta, d) \ge 0$ and plot this loss as a function of (θd) when c = 0.1, 0.5, 1, 2.
- (b) Give the expression of a Bayes estimator $\delta^{\pi}(x)$ under this loss, i.e., find the estimator that minimizes the posterior posterior loss.
- (c) Find $\delta^{\pi}(x)$ when $x_i \mid \theta \stackrel{iid}{\sim} N(\theta, 1), i = 1, ..., n$ and $\theta \sim N(\mu, \tau^2)$.
- 7. Let $L(\theta, d) = w(\theta)(\theta d)^2$, with $w(\theta)$ a non-negative function, be the weighted quadratic loss (See CR Corollary 2.5.2). Show that $\delta^{\pi}(x)$, the estimator that minimizes the posterior expected loss $\rho(\pi, d \mid x)$ has the form $\delta^{\pi}(x) = \mathrm{E}(w(\theta)\theta \mid x)/\mathrm{E}(w(\theta) \mid x)$.

Hint: Show that any other estimator has a larger posterior expected loss.

- 8. Let $X \mid \theta \sim \text{Binomial}(n, \theta)$ with $\theta \sim \text{Be}(\alpha, \beta)$. Let $L(\theta, d) = (\theta d)^2 / \{\theta(1 \theta)\}$. Find the estimator that minimizes the posterior expected loss $\rho(\pi, \delta \mid x)$ under this loss function.
- 9. (Adapted from Robert 2.43). Consider $x \mid \theta \sim N(\theta, 1), \theta \sim N(0, 1)$ and the loss $L(\theta, d) = e^{3\theta^2/4}(\theta d)^2$.
 - (a) Show that the estimator that minimizes the Bayesian expected posterior loss in this case is $\delta^{\pi}(x) = 2x$. *Hint:* use results from #7.
 - (b) Show that $\delta_0(x) = x$ dominates $\delta^{\pi}(x)$.
- 10. Assume you have to guess a secret number θ . You know that θ is an integer. You can perform an experiment that would yield either the number before it or the number after it, with equal probability. You perform the experiment twice. More formally, let x_1 and x_2 be independent observations from $f(x = \theta 1 \mid \theta) = f(x = \theta + 1 \mid \theta) = 1/2$. Consider the 0-1 loss function, i.e.,

$$L(\theta, d) = \begin{cases} 0 & \text{if } \theta = d, \\ 1 & \text{if } \theta \neq d. \end{cases}$$

- (a) Find the risks $R(\theta, \delta)$ for the estimators $\delta_0(x_1, x_2) = (x_1 + x_2)/2$ and $\delta_1(x_1, x_2) = x_1 + 1$.
- (b) Find the estimator $\delta^{\pi}(x_1, x_2)$ that minimizes the posterior expected loss.
- 11. Consider a point estimation problem in which you observe x_1, \ldots, x_n as i.i.d. random variables of the Poisson distribution with parameter θ . Assume a squared error loss and a prior of the form $\theta \sim \text{Gamma}(\alpha, \beta)$.

- (a) Show that the Bayes estimator is $\delta^{\pi}(x) = a + b\bar{x}$ where a > 0, $b \in (0,1)$ and $\bar{x} = \sum_{i=1}^{n} x_i/n$. You may use the fact that the distribution of $\sum_{i=1}^{n} x_i$ is Poisson with parameter $n\theta$ without proof.
- (b) Find the MLE for θ (*Note:* to remind how to find MLEs, read Casella and Berger, Section 7.2.2 see Def 7.2.4).
- (c) Compute and graph the frequentist risks $R(\theta, \delta)$ for $\delta^{\pi}(x)$ and the MLE of θ .
- (d) Compute the Bayes risk of $\delta^{\pi}(x)$.
- (e) Suppose that an investigator wants to collect a sample that is large enough that the Bayes risk after the experiment is half of the Bayes risk before the experiment. Find that sample size.