BÀI TẬP GIẢI TÍCH 1

CHƯƠNG 3. GIỚI HẠN HÀM SỐ - SỰ LIÊN TỤC

TS. NGUYỄN ĐÌNH DƯƠNG BỘ MÔN TOÁN ỨNG DỤNG - KHOA KHOA HỌC ỨNG DỤNG

ĐT/Zalo: 0913.066.940 - Email: duongnda@hcmut.edu.vn

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4-2}}{x} \\ mx+m+\frac{1}{4} \end{cases}$$

 m để hàm số có giới hạn tại $x=0$.

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{nếu } x > 0 \\ mx+m+\frac{1}{4} & \text{nếu } x \leq 0 \end{cases}$$
 (với m là tham số). Tìm giá trị của tham số m để hàm số có giới hạn tại $x=0$.

TÀI LIỆU SƯU TẬP

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{nếu } x > 0 \\ mx+m+\frac{1}{4} & \text{nếu } x \leq 0 \end{cases}$$
 (với m là tham số). Tìm giá trị của tham số m để hàm số có giới han tại $x=0$.

Lời giải

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{nếu } x > 0 \\ mx+m+\frac{1}{4} & \text{nếu } x \leq 0 \end{cases}$$
 (với m là tham số). Tìm giá trị của tham số

m để hàm số có giới hạn tại x = 0.

Lời giải

Ta có
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x+4-2}}{x} = \lim_{x \to 0^+} \frac{x}{x(\sqrt{x+4}+2)} = \lim_{x \to 0^+} \frac{1}{\sqrt{x+4}+2} = \frac{1}{4}.$$

BÓI HCMUT-CNCP

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{nếu } x > 0 \\ mx+m+\frac{1}{4} & \text{nếu } x \leq 0 \end{cases}$$
 (với m là tham số). Tìm giá trị của tham số m để hàm số có giới han tại $x=0$.

m để hàm số có giới han tai x = 0.

Lời giải

Ta có
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x+4}-2}{x} = \lim_{x \to 0^+} \frac{x}{x(\sqrt{x+4}+2)} = \lim_{x \to 0^+} \frac{1}{\sqrt{x+4}+2} = \frac{1}{4}.$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(mx + m + \frac{1}{4} \right) = m + \frac{1}{4}.$$

Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{nếu } x > 0 \\ mx+m+\frac{1}{4} & \text{nếu } x \leq 0 \end{cases}$$
 (với m là tham số). Tìm giá trị của tham số m để hàm số có giới han tại $x=0$.

Lời giải

Ta có
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x+4}-2}{x} = \lim_{x \to 0^+} \frac{x}{x(\sqrt{x+4}+2)} = \lim_{x \to 0^+} \frac{1}{\sqrt{x+4}+2} = \frac{1}{4}.$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(mx + m + \frac{1}{4} \right) = m + \frac{1}{4}.$$

Hàm số có giới hạn tại x=0 khi và chỉ khi $\lim_{\mathsf{B} \ \mathsf{ACHK}} f(x) = \lim_{\mathsf{C} \ \mathsf{NCP}} f(x) \Leftrightarrow m+\frac{1}{4} = \frac{1}{4} \Leftrightarrow m=0.$

Bài 2.

Gọi
$$a,b$$
 là các giá trị để hàm số $f(x) = \begin{cases} \frac{x^2 + ax + b}{x^2 - 4} \\ x + 1 \end{cases}$ khi x dần tới -2 . Tính $3a - b$.

khi x < -2 có giới hạn hữu hạn khi $x \ge -2$

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Lời giải

$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (x+1) = -1.$$

Suy ra f(x) có giới hạn hữu hạn khi $x \to -2$ khi và chỉ khi

$$\lim_{x \to -2^{-}} f(x) = -1 \Leftrightarrow \lim_{x \to -2^{-}} \frac{x^{2} + ax + b}{x^{2} - 4} = -1 \Leftrightarrow \lim_{x \to -2^{-}} \frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0$$
 (*).

Do
$$\lim_{x\to -2^-}(x^2-4)=0$$
 nên điều kiện cần để có (*) là $\lim_{x\to -2^-}(2x^2+ax+b-4)=0$ \Rightarrow $2a-b=4$

BOI HCMUT-CNCF

Ngược lại, với 2a - b = 4 ta có

$$\lim_{x \to -2^{-}} \frac{2x^2 + ax + b - 4}{x^2 - 4} = 0 \Leftrightarrow \lim_{x \to -2^{-}} \frac{2x^2 + ax + 2a - 8}{x^2 - 4} = 0$$
$$\Leftrightarrow \lim_{x \to -2^{-}} \frac{2x + a - 4}{x - 2} = 0$$
$$\Leftrightarrow a = 8.$$

Suy ra
$$f(x)$$
 có giới hạn hữu hạn khi x dần tới $-2 \Leftrightarrow \begin{cases} a = 8 \\ b = 12. \end{cases}$
Vây $3a - b = 12$.

Bài 3.

Cho f(x) là một đa thức thỏa mãn $\lim_{x\to 1} \frac{f(x)-16}{x-1} = 24$. Tính giới hạn sau

$$\lim_{x \to 1} \frac{f(x) - 16}{(x - 1)\left(\sqrt{2f(x) + 4} + 6\right)}$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Bài 3.

Cho f(x) là một đa thức thỏa mãn $\lim_{x\to 1} \frac{f(x)-16}{x-1} = 24$. Tính giới hạn sau

$$\lim_{x \to 1} \frac{f(x) - 16}{(x - 1)\left(\sqrt{2f(x) + 4} + 6\right)}.$$

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Bài 3.

Cho f(x) là một đa thức thỏa mãn $\lim_{x\to 1}\frac{f(x)-16}{x-1}=24$. Tính giới hạn sau

$$\lim_{x \to 1} \frac{f(x) - 16}{(x - 1)\left(\sqrt{2f(x) + 4} + 6\right)}.$$

Lời giải

$$Vi \lim_{x \to 1} \frac{f(x) - 16}{x - 1} = 24 \, \text{nen} \, f(1) = 16. \text{ Khi do SUU TAP}$$

Bài 4.

Cho hàm số đa thức
$$y=f(x)$$
 thỏa mãn $\lim_{x\to +\infty}\left(\sqrt{f(x)-2x}\right)=2$. Tính giới hạn
$$\lim_{x\to +\infty}\frac{f(x)-4x^2}{2x+3}.$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Lời giải

Theo giả thiết
$$\lim_{x \to +\infty} \left(\sqrt{f(x)} - 2x \right) = 2 \, \text{nên} \, f(x) = 4x^2 + bx + c$$
. Suy ra

$$\lim_{x \to +\infty} \frac{f(x) - 4x^2}{2x + 3} = \lim_{x \to +\infty} \frac{\left(\sqrt{f(x)} - 2x\right)\left(\sqrt{f(x)}\right)}{2x + 3}$$

$$TA = \lim_{x \to +\infty} \frac{\left(\sqrt{f(x)} - 2x\right)\left(\sqrt{4x^2 + bx + c} + 2x\right)}{2x + 3}$$

$$= 2.01 \text{ HCMUT-CNCP}$$

Bài 5.

Cho
$$A = \lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$$
, $B = \lim_{x \to +\infty} \left(\frac{x}{\arctan x}\right)^x$, $C = \lim_{x \to 1^+} \left(\frac{\ln x}{x}\right)^{\frac{1}{x}}$. Những giới hạn nào sau đây không có dạng vô định?

A. A , B .

B. A , C .

C. B , C .

D. B .

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Bài 5.

Cho
$$A = \lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$$
, $B = \lim_{x \to +\infty} \left(\frac{x}{\arctan x}\right)^x$, $C = \lim_{x \to 1^+} \left(\frac{\ln x}{x}\right)^{\frac{1}{x}}$. Những giới hạn nào sau đây không có dạng vô định?

A. A , B .

B. A , C .

C. B , C .

D. B .

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Bài 5.

Cho
$$A = \lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$$
, $B = \lim_{x \to +\infty} \left(\frac{x}{\arctan x}\right)^x$, $C = \lim_{x \to 1^+} \left(\frac{\ln x}{x}\right)^{\frac{1}{x}}$. Những giới hạn nào sau đây không có dạng vô định?

A. A , B .

B. A , C .

C. B , C .

D. B .

Lời giải

C

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Biết
$$L = \lim_{x \to 0} \frac{\ln \cos 2x}{(x^2 + 3x)\sin x} = \frac{a}{b} \left(\frac{a}{b} \text{ tối giản}\right)$$
. Tính tổng $S = a + b$.
A. $S = 2$. **B.** $S = 3$. **C.** $S = 1$. **D.** $S = 0$.

A.
$$S = 2$$
.

$$S = 3.$$

C.
$$S = 1$$
.

D.
$$S = 0$$
.

TÀI LIÊU SƯU TẬP

Biết
$$L = \lim_{x \to 0} \frac{\ln \cos 2x}{(x^2 + 3x)\sin x} = \frac{a}{b} \left(\frac{a}{b} \text{ tối giản}\right)$$
. Tính tổng $S = a + b$.

A.
$$S = 2$$
. **B.** $S = 3$.

$$\mathbf{C}. S = 1.$$

D.
$$S = 0$$
.

TÀI LIỆU SƯU TẬP

Lời giải

BỞI HCMUT-CNCP

Biết
$$L = \lim_{x \to 0} \frac{\ln \cos 2x}{(x^2 + 3x)\sin x} = \frac{a}{b} (\frac{a}{b} \text{ tối giản}).$$
 Tính tổng $S = a + b$.
A. $S = 2$. **B.** $S = 3$. **C.** $S = 1$. **D.** $S = 0$.

Lời giải

Khi
$$x \to 0$$
, ta có
$$\begin{cases} \ln(\cos 2x) = \ln(1 + (\cos 2x - 1)) \sim \cos 2x - 1 = -2\sin^2 x \sim -2x^2 \\ \sin x \sim x \implies (x^2 + 3x)\sin x \sim x^2(x + 3) \end{cases}$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Biết
$$L = \lim_{x \to 0} \frac{\ln \cos 2x}{(x^2 + 3x)\sin x} = \frac{a}{b} (\frac{a}{b} \text{ tối giản}).$$
 Tính tổng $S = a + b$.
A. $S = 2$. **B.** $S = 3$. **C.** $S = 1$. **D.** $S = 0$.

Lời giải

Khi
$$x \to 0$$
, ta có
$$\begin{cases} \ln(\cos 2x) = \ln(1 + (\cos 2x - 1)) \sim \cos 2x - 1 = -2\sin^2 x \sim -2x^2 \\ \sin x \sim x \implies (x^2 + 3x)\sin x \sim x^2(x + 3) \end{cases}$$
Vậy $L = \lim_{x \to 0} \frac{\ln\cos 2x}{(x^2 + 3x)\sin x} = \frac{-2}{3}$.

BŐI HCMUT-CNCP

Bài 7.

Tính giới hạn
$$L = \lim_{x \to 1} \frac{\sqrt{4x+5} - \sqrt{x+8}}{\sqrt{3+x} - 2}$$
.

TÀI LIỆU SƯU TẬP

OACN

BỞI HCMUT-CNCP

Bài 7.

Tính giới hạn
$$L = \lim_{x \to 1} \frac{\sqrt{4x+5} - \sqrt{x+8}}{\sqrt{3+x} - 2}$$
.

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Bài 7.

Tính giới hạn
$$L = \lim_{x \to 1} \frac{\sqrt{4x + 5 - \sqrt{x + 8}}}{\sqrt{3 + x} - 2}$$
.

Lời giải

Ta có

$$L = \lim_{x \to 1} \frac{\left(\sqrt{4x+5} - \sqrt{x+8}\right)\left(\sqrt{4x+5} + \sqrt{x+8}\right)\left(\sqrt{3+x} + 2\right)}{\left(\sqrt{3}+x-2\right)\left(\sqrt{3}+x+2\right)\left(\sqrt{4x+5} + \sqrt{x+8}\right)}$$

$$= \lim_{x \to 1} \frac{\left(3x-3\right)\left(\sqrt{3}+x+2\right)}{\left(x-1\right)\left(\sqrt{4x+5} + \sqrt{x+8}\right)}$$

$$= \lim_{x \to 1} \frac{3\left(\sqrt{3}+x+2\right)}{\left(\sqrt{4x+5} + \sqrt{x+8}\right)} = 2.$$

$$= \lim_{x \to 1} \frac{3\left(\sqrt{3}+x+2\right)}{\left(\sqrt{4x+5} + \sqrt{x+8}\right)} = 2.$$

Bài 8.

Cho
$$\lim_{x\to 5} \frac{\sqrt[3]{3x-7}-x+3}{3-\sqrt{x+4}} = 4+\frac{m}{n}$$
, trong đó m,n là các số nguyên và $\frac{m}{n}$ tối giản. Tính $\frac{m}{n}$.

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Lời giải

Ta có

$$\lim_{x \to 5} \frac{\sqrt[3]{3x - 7} - x + 3}{3 - \sqrt{x + 4}} = \lim_{x \to 5} \frac{\left(\sqrt[3]{3x - 7} - 2\right) - (x - 5)}{3 - \sqrt{x + 4}}$$
$$= \lim_{x \to 5} \frac{\sqrt[3]{3x - 7} - 2}{3 - \sqrt{x + 4}} - \lim_{x \to 5} \frac{x - 5}{3 - \sqrt{x + 4}}.$$

Mà

$$\lim_{x \to 5} \frac{\sqrt[3]{3x - 7} - 2}{3 - \sqrt{x + 4}} = \lim_{x \to 5} \frac{(3x - 15)(3 + \sqrt{x + 4})}{(5 - x)(\sqrt[3]{(3x - 7)^2} + 2\sqrt[3]{3x - 7} + 4)} = -\frac{3}{2}.$$

Và

$$\lim_{x \to 5} \frac{x - 5}{3 - \sqrt{x + 4}} = \lim_{x \to 5} \frac{(x - 5)(3 + \sqrt{x + 4})}{5 - x} = -6.$$

TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$
.

TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$

Lời giải

Ta viết
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} - \lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x}$$

TÀI LIÊU SƯU TẬP

BổI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$

Lời giải

Ta viết
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} - \lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x}$$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} = \lim_{x \to 0} \frac{2 \sin^2(x/2)}{2x \sin x \cos x} = \lim_{x \to 0} \frac{\sin(x/2)}{2x \sin(x/2) \cos(x/2) \cos x} = \frac{1}{4}.$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$

Lời giải

Ta viết
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} - \lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x}$$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} = \lim_{x \to 0} \frac{2 \sin^2(x/2)}{2x \sin x \cos x} = \lim_{x \to 0} \frac{\sin(x/2)}{2x \sin(x/2) \cos(x/2) \cos x} = \frac{1}{4}.$$

•
$$\lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{\sin^2 x}{2x \sin x \cos^3 x} = \lim_{x \to 0} \frac{\sin x}{2x \cos^3 x} = \frac{1}{2}.$$

BOI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x}$$

Lời giải

Ta viết
$$L = \lim_{x \to 0} \frac{1 - \cos x - \tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} - \lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x}$$

$$\therefore 1 - \cos x \qquad \therefore 2 \sin^2(x/2) \qquad \sin(x/2)$$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin 2x} = \lim_{x \to 0} \frac{2 \sin^2(x/2)}{2x \sin x \cos x} = \lim_{x \to 0} \frac{\sin(x/2)}{2x \sin(x/2) \cos(x/2) \cos x} = \frac{1}{4}.$$

•
$$\lim_{x \to 0} \frac{\tan^2 x}{x \sin 2x} = \lim_{x \to 0} \frac{\sin^2 x}{2x \sin x \cos^3 x} = \lim_{x \to 0} \frac{\sin x}{2x \cos^3 x} = \frac{1}{2}.$$

• Vậy $L = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}.$

Vậy
$$L=rac{1}{4}-rac{1}{2}=-rac{1}{4}$$
. Bởi HCMUT-CNCI

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1}{x} \cdot \ln \sqrt{\frac{1+x}{1-x}}$$
.

TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1}{x} \cdot \ln \sqrt{\frac{1+x}{1-x}}$$
.

Lời giải

TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to 0} \frac{1}{x} \cdot \ln \sqrt{\frac{1+x}{1-x}}$$
.

Lời giải

Ta có
$$L = \lim_{x \to 0} \frac{1}{x} \cdot \ln \sqrt{\frac{1+x}{1-x}} = \lim_{x \to 0} \frac{1}{2x} \cdot \ln \left(1 + \frac{2x}{1-x} \right) = \lim_{x \to 0} \frac{1}{2x} \cdot \frac{2x}{1-x} = 1$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tính các giới hạn sau:

a)
$$\lim_{x\to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$$
, $(b \neq 0)$;

c)
$$\lim_{x \to 1} \frac{\sqrt[8]{255 + x^2} - \sqrt[7]{127 + x^2}}{x - 1}$$
;

b)
$$\lim_{x \to 0} \frac{\sqrt[m]{1 + ax} \sqrt[n]{1 + bx} - 1}{x}$$
, $(ab \neq 0)$

d)
$$\lim_{x \to 1} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$$
;

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tính các giới hạn sau:

a)
$$\lim_{x\to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$$
, $(b \neq 0)$;

c)
$$\lim_{x \to 1} \frac{\sqrt[8]{255 + x^2} - \sqrt[7]{127 + x^2}}{x - 1}$$
;

b)
$$\lim_{x \to 0} \frac{\sqrt[m]{1 + ax} \sqrt[n]{1 + bx} - 1}{x}$$
, $(ab \neq 0)$

d)
$$\lim_{x \to 1} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$$

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính các giới hạn sau:

a)
$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}, \quad (b \neq 0)$$

c)
$$\lim_{x \to 1} \frac{\sqrt[8]{255 + x^2} - \sqrt[7]{127 + x^2}}{x - 1}$$
;

b)
$$\lim_{x \to 0} \frac{\sqrt[m]{1 + ax} \sqrt[n]{1 + bx} - 1}{x}$$
, $(ab \neq 0)$

d)
$$\lim_{x \to 1} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$$

Lời giải

Đáp số:

TÀI LIỀU SƯU TẬP

BỞI HCMUT-CNCP

Tính các giới hạn sau:

a)
$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)},$$

$$(b \neq 0)$$

c)
$$\lim_{x \to 1} \frac{\sqrt[8]{255 + x^2} - \sqrt[7]{127 + x^2}}{x - 1}$$

b)
$$\lim_{x\to 0} \frac{\sqrt[m]{1+ax}\sqrt[n]{1+bx}-1}{x}$$
, $(ab \neq 0)$

d)
$$\lim_{x \to 1} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$$

Lời giải

Đáp số:

a)
$$\frac{a^2}{b^2}$$
;

b)
$$\frac{a}{m} + \frac{b}{n}$$
 HCMUT) $\frac{9}{3584}$

Bài 12.

Tính
$$L = \lim_{x \to +\infty} \left(\sqrt{x^2 + 3x + 2} - x \right).$$

TÀI LIỆU SƯU TẬP

 $\langle \cap A \cap \lambda \rangle$

BÓI HCMUT-CNCP

Bài 12.

Tính
$$L = \lim_{x \to +\infty} \left(\sqrt{x^2 + 3x + 2} - x \right).$$

Lời giải

· O A C A

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Bài 12.

Tính
$$L = \lim_{x \to +\infty} \left(\sqrt{x^2 + 3x + 2} - x \right).$$

Lời giải

$$L = \lim_{x \to +\infty} \frac{3x + 2}{\sqrt{x^2 + 3x + 2 + x}} = \lim_{x \to +\infty} \frac{x\left(3 + \frac{2}{x}\right)}{|x|\sqrt{1 + \frac{3}{x} + \frac{2}{x^2} + x}}$$
$$= \lim_{x \to +\infty} \frac{x\left(3 + \frac{2}{x}\right) + 2}{x\left(\sqrt{1 + \frac{3}{x} + \frac{2}{x^2} + 1}\right)} = \lim_{x \to +\infty} \frac{x\left(3 + \frac{2}{x}\right)}{\sqrt{1 + \frac{3}{x} + \frac{2}{x^2} + 1}} = \frac{3}{2}$$

Bài 13.

Cho a,b là hai số dương thỏa mãn giới hạn $I = \lim_{x \to +\infty} \left(ax - \sqrt{bx^2 - 2x + 2018} \right)$ hữu hạn.

Tính I.

BÓI HCMUT-CNCP

Bài 13.

Cho a,b là hai số dương thỏa mãn giới hạn $I=\lim_{x\to +\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)$ hữu hạn. Tính I.

Lời giải

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Bài 13.

Tính I.

Cho a,b là hai số dương thỏa mãn giới hạn $I=\lim_{x\to +\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)$ hữu hạn.

Lời giải

Ta có

$$I = \lim_{x \to +\infty} \left(ax - \sqrt{bx^2 - 2x + 2018} \right) = \lim_{x \to +\infty} \frac{(a^2 - b)x^2 + 2x - 2018}{ax + \sqrt{bx^2 - 2x + 2018}}$$

$$= \lim_{x \to +\infty} \frac{(a^2 - b)x + 2 - \frac{2018}{x}}{a + \sqrt{b - \frac{2}{x} + \frac{2018}{x^2}}} \Longrightarrow \begin{cases} a^2 - b = 0 \\ I = \frac{2}{a + \sqrt{b}} \end{cases} \Longrightarrow I = \frac{1}{a}.$$
BACHKHOACNCP.COM

Tính các giới hạn sau

a)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} - \sqrt{x^2 - x} \right);$$

c)
$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 - 1} - x \right);$$

e)
$$\lim_{x \to +\infty} \left[\sin \left(\ln(x+1) \right) - \sin(\ln x) \right].$$

b)
$$\lim_{x \to +\infty} \left(\sqrt{3x^2 - 4x + 2} - \sqrt{3x^2 + 4x - 1} \right);$$

d)
$$\lim_{x\to+\infty} (\sin\sqrt{x+1} - \sin\sqrt{x});$$

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Tính các giới hạn sau

a)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} - \sqrt{x^2 - x} \right);$$

c)
$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 - 1} - x \right);$$

e)
$$\lim_{x \to +\infty} [\sin(\ln(x+1)) - \sin(\ln x)].$$

o)
$$\lim_{x \to +\infty} \left(\sqrt{3x^2 - 4x + 2} - \sqrt{3x^2 + 4x - 1} \right);$$

d)
$$\lim_{x\to+\infty} \left(\sin\sqrt{x+1} - \sin\sqrt{x}\right);$$

Lời giải

TAI LIỆU SƯƯ TẬP

BŐI HCMUT-CNCP

Tính các giới hạn sau

a)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} - \sqrt{x^2 - x} \right);$$

c)
$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 - 1} - x \right);$$

e)
$$\lim_{x \to +\infty} [\sin(\ln(x+1)) - \sin(\ln x)].$$

b)
$$\lim_{x \to +\infty} \left(\sqrt{3x^2 - 4x + 2} - \sqrt{3x^2 + 4x - 1} \right);$$

d)
$$\lim_{x\to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x});$$

Lời giải

Đáp số

I AI LIỆU SƯƯ TẬF

BỞI HCMUT-CNCP

Tính các giới hạn sau

a)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} - \sqrt{x^2 - x} \right);$$

- c) $\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 1} x \right);$
- e) $\lim_{x \to +\infty} [\sin(\ln(x+1)) \sin(\ln x)].$

b)
$$\lim_{x \to +\infty} \left(\sqrt{3x^2 - 4x + 2} - \sqrt{3x^2 + 4x - 1} \right);$$

d) 0

d) $\lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x});$

Lời giải

Đáp số

- e) 0

- - BACHKHOACNCP.COM

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)g(x)$.

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x)$ $(f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)}$$

BổI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)} (\text{ dang } 1^{\infty})$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)} (\text{dang } 1^{\infty}) = e^{\lim_{x \to 0} \ln f(x)^{g(x)}} = e^{\lim_{x \to 0} g(x) \ln f(x)}$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)} (\text{ dang } 1^{\infty}) = e^{\lim_{x \to 0} \ln f(x)^{g(x)}} = e^{\lim_{x \to 0} g(x) \ln f(x)}$$

• Lại có
$$\lim_{x\to 0} g(x) \ln f(x) = \lim_{x\to 0} g(x) \ln (1 + (f(x) - 1))$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)^{g(x)}$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)} (\text{dang } 1^{\infty}) = e^{\lim_{x \to 0} \ln f(x)^{g(x)}} = e^{\lim_{x \to 0} g(x) \ln f(x)}$$

• Lại có
$$\lim_{x \to 0} g(x) \ln f(x) = \lim_{x \to 0} g(x) \ln (1 + (f(x) - 1)) \stackrel{\text{VCB}}{=} \lim_{x \to 0} g(x) (f(x) - 1) = 2020.$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Biết
$$\lim_{x\to 0} f(x) = 1$$
, $\lim_{x\to 0} g(x) = +\infty$ và $\lim_{x\to 0} g(x) (f(x) - 1) = 2020$. Tính $I = \lim_{x\to 0} f(x)g(x)$.

Lời giải

• Ta có
$$I = \lim_{x \to 0} f(x)^{g(x)} (\text{dang } 1^{\infty}) = e^{\lim_{x \to 0} \ln f(x)^{g(x)}} = e^{\lim_{x \to 0} g(x) \ln f(x)}$$

• Lại có
$$\lim_{x \to 0} g(x) \ln f(x) = \lim_{x \to 0} g(x) \ln (1 + (f(x) - 1)) \stackrel{\text{VCB}}{=} \lim_{x \to 0} g(x) (f(x) - 1) = 2020.$$

• Vây $I = e^{2020}$.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tính giới hạn
$$L=\lim_{x\to +\infty}\left(\frac{x+a}{x+b}\right)^x$$
 với $a\neq b$.

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to +\infty} \left(\frac{x+a}{x+b} \right)^x$$
 với $a \neq b$.

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính giới hạn
$$L = \lim_{x \to +\infty} \left(\frac{x+a}{x+b}\right)^x$$
 với $a \neq b$.

Lời giải

Ta có
$$L = \lim_{x \to +\infty} \left[\left(1 + \frac{a-b}{x+b} \right)^{\frac{x+b}{a-b}} \right]^{\frac{x(a-b)}{x+b}} = e^{a-b}$$

$$\left(\frac{a-b}{x+b}\right)^{\frac{x+b}{a-b}} = e^{a-b}$$

Tính giới hạn
$$L = \lim_{x \to +\infty} \left(\frac{x+a}{x+b}\right)^x$$
 với $a \neq b$.

Lời giải

Ta có
$$L = \lim_{x \to +\infty} \left[\left(1 + \frac{a-b}{x+b} \right)^{\frac{x+b}{a-b}} \right]^{\frac{x}{x+b}} = e^{a-b}$$

vì
$$\lim_{n \to \infty} \frac{x(a-b)}{x+b} = a-b$$
.

BÓI HCMUT-CNCP

Tính
$$I = \lim_{x \to +\infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$$
.

TÀI LIỆU SƯU TẬP

BÓI HCMUT-CNCP

Tính
$$I = \lim_{x \to +\infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$$
.

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính
$$I = \lim_{x \to +\infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$$
.

Lời giải

• Ta có
$$I = e^{\lim_{x \to +\infty} x \ln \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)}$$
.

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tính
$$I = \lim_{x \to +\infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$$
.

Lời giải

• Ta có
$$I = e^{\lim_{x \to +\infty} x \ln\left(\sin\frac{1}{x} + \cos\frac{1}{x}\right)}$$

• Mà
$$\lim_{x \to +\infty} x \ln \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right) = \lim_{x \to +\infty} \frac{\sin(1/x) + \cos(1/x) - 1}{1/x} = \lim_{x \to +\infty} \frac{\sin(1/x)}{1/x} - \frac{\sin(1/x)}{1/x}$$

$$\lim_{x\to +\infty} \frac{2\sin^2(1/2x)}{1/x} = 1.$$
 TAI LIỆU SƯU TẬP

BŐI HCMUT-CNCF

Tính
$$I = \lim_{x \to +\infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x$$
.

Lời giải

• Ta có
$$I = e^{\lim_{x \to +\infty} x \ln\left(\sin\frac{1}{x} + \cos\frac{1}{x}\right)}$$

• Mà
$$\lim_{x \to +\infty} x \ln \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right) = \lim_{x \to +\infty} \frac{\sin(1/x) + \cos(1/x) - 1}{1/x} = \lim_{x \to +\infty} \frac{\sin(1/x)}{1/x}$$

$$\lim_{\substack{x \to +\infty \\ \text{Suy ra } I = e.}} \frac{2\sin^2(1/2x)}{1/x} = 1. \text{ TALLIEU SUUTAP}$$

BOI HCMUT-CNC

Tính các giới han sau:

a)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 1}}$$

c)
$$\lim_{x \to 0} (x + e^{2x})^{\frac{1}{x}};$$

b)
$$\lim_{x \to 0} (1 + \sin x)^{1/x}$$
;
d) $\lim_{x \to 0} (\cos 3x)^{\cot^2 x}$;

- e) $\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}}$. TÀI LIÊU SƯU TÂP

Tính các giới hạn sau:

a)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 1}}$$

c)
$$\lim_{x \to 0} (x + e^{2x})^{\frac{1}{x}};$$

b) $\lim_{x \to 0} (1 + \sin x)^{1/x}$; d) $\lim_{x \to 0} (\cos 3x)^{\cot^2 x}$;

e) $\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}}$. TÀI LIÊU SƯU TÂP

Lời giải

Tính các giới hạn sau:

a)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 1}}$$

c)
$$\lim_{x \to 0} (x + e^{2x})^{\frac{1}{x}};$$

b) $\lim_{x \to 0} (1 + \sin x)^{1/x}$; d) $\lim_{x \to 0} (\cos 3x)^{\cot^2 x}$;

e) $\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}}$. TÀI LIÊU SƯU TÂP

Lời giải

Tính các giới han sau:

a)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1}\right)^{\frac{x - 1}{x + 1}}$$

c)
$$\lim_{x \to 0} (x + e^{2x})^{\frac{1}{x}};$$

b)
$$\lim_{x \to 0} (1 + \sin x)^{1/x}$$
;
d) $\lim_{x \to 0} (\cos 3x)^{\cot^2 x}$;

- e) $\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}}$. TÀI LIÊU SƯU TÂP

Lời giải

a) 1

b) e

- c) $g^3_{ACHKHOA}$ $e^{-9/2}_{CP.COM}$ e) $\frac{1}{\sqrt{e}}$

Tìm một hàm số tương đương dạng ax^{α} khi $x \to 0$ của các hàm số sau:

$$a) f(x) = x \ln(1 + 2x)$$

a)
$$f(x) = x \ln(1+2x)$$
; b) $f(x) = x^2 - 2\sin(x)$; c) $f(x) = e^x - e^{2\tan(x)}$

c)
$$f(x) = e^x - e^{2\tan(x)}$$

TÀI LIÊU SƯU TÂP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to 0$ của các hàm số sau:

a)
$$f(x) = x \ln(1 + 2x)$$
;

a)
$$f(x) = x \ln(1+2x)$$
; b) $f(x) = x^2 - 2\sin(x)$; c) $f(x) = e^x - e^{2\tan(x)}$

c)
$$f(x) = e^x - e^{2\tan(x)}$$

Lời giải

TÀI LIÊU SƯU TÂP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to 0$ của các hàm số sau:

a)
$$f(x) = x \ln(1 + 2x)$$
;

a)
$$f(x) = x \ln(1+2x)$$
; b) $f(x) = x^2 - 2\sin(x)$; c) $f(x) = e^x - e^{2\tan(x)}$

c)
$$f(x) = e^x - e^{2\tan(x)}$$

Lời giải

Đáp số:

TÀI LIÊU SƯU TẬP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to 0$ của các hàm số sau:

a)
$$f(x) = x \ln(1 + 2x)$$

a)
$$f(x) = x \ln(1+2x)$$
; b) $f(x) = x^2 - 2\sin(x)$; c) $f(x) = e^x - e^{2\tan(x)}$

c)
$$f(x) = e^x - e^{2\tan(x)}$$

Lời giải

Đáp số:

a)
$$2x^2$$
;

b)
$$-2x$$
;

c)
$$-x$$

TÀI LIÊU SƯU TẬP

Tìm một hàm số tương đượng dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

a)
$$f(x) = x + 2\ln(x)$$

a)
$$f(x) = x + 2\ln(x)$$

c) $f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2\right)$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

TÀI LIÊU SƯU TÂP

Tìm một hàm số tương đượng dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

a)
$$f(x) = x + 2\ln(x)$$

a)
$$f(x) = x + 2\ln(x)$$

c) $f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2\right)$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

TÀI LIÊU SƯU TẬP

Tìm một hàm số tương đượng dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

$$a) f(x) = x + 2\ln(x)$$

a)
$$f(x) = x + 2\ln(x)$$

c) $f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2\right)$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

Đáp số:

TÀI LIÊU SƯU TẬP

Tìm một hàm số tương đượng dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

$$a) f(x) = x + 2\ln(x)$$

a)
$$f(x) = x + 2\ln(x)$$

c) $f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2\right)$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

Đáp số:

TÀI LIÊU SƯU TẬP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

a)
$$f(x) = x + 2 \ln(x)$$

c)
$$f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2 \right)$$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

Đáp số:

a) *x*;

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

a)
$$f(x) = x + 2 \ln(x)$$

c)
$$f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2 \right)$$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

Đáp số:

a) *x*;

TÀI b) 3x2; U SƯU TẬP

BÓI HCMUT-CNCP

Tìm một hàm số tương đương dạng ax^{α} khi $x \to +\infty$ của các hàm số sau:

a)
$$f(x) = x + 2 \ln(x)$$

c)
$$f(x) = \arctan(x) \left(\sqrt{x^2 + 1} - x^2 \right)$$

b)
$$f(x) = 3x^2 - 2\sin(x)$$

Lời giải

Đáp số:

TAI b)
$$3x^2$$
; U SUU TAc) $-\frac{\pi x^2}{2}$

BỞI HCMUT-CNCP

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

Gợi ý:

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

Gợi ý:

$$\lim_{x \to 0} \frac{f(x)}{g(x)} =$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

Gợi ý:

a)
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{x^2 - 2\sin(x)}{x\cos(x)} = 2 \Rightarrow \text{cung bậc};$$

$$\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \frac{1}{2} = 2 \Rightarrow \text{cung bậc};$$

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

Gợi ý:

a)
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2 - 2\sin(x)}{x\cos(x)} = -2 \Rightarrow \text{cung bậc}; \quad \overrightarrow{AP}$$

b)
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\ln(1 - 2x^2 + x^3)}{x - 2^x} = 0 \Rightarrow \text{bâc } f(x) \text{ bé hơn bậc } g(x).$$

So sánh bậc các vô cùng bé hoặc vô cùng lớn sau:

a)
$$f(x) = x^2 - 2\sin(x)$$
, $g(x) = x\cos(x)$, $x \to 0$

b)
$$f(x) = \ln(1 - 2x^2 + x^3)$$
, $g(x) = x - 2^x$, $x \to +\infty$

c)
$$f(x) = \frac{x}{2^x}$$
, $g(x) = \frac{\sin(x)}{x^2}$, $x \to +\infty$

Lời giải

Gợi ý:

a)
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^2 - 2\sin(x)}{x\cos(x)} = -2 \Rightarrow \text{cung bậc}; \quad \overrightarrow{AP}$$

b)
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\ln(1 - 2x^2 + x^3)}{x - 2^x} = 0 \Rightarrow \text{bâc } f(x) \text{ bé hơn bâc } g(x).$$

c) ??? không tồn tại $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$

Bài 4.

Một cốc cà phê chứa 100mg caffeine được đào thải liên tục ra khỏi cơ thể với tốc đô 17% mỗi giờ.

a) Chứng minh lương caffein còn lại trong cơ thể sau t giờ được tính bởi công thức

$$P(t) = 100e^{-0.17t}.$$

b) Kết luận gì khi t đủ lớn.

Bài 4.

Một cốc cà phê chứa 100mg caffeine được đào thải liên tục ra khỏi cơ thể với tốc độ 17% mỗi giờ.

a) Chứng minh lượng caffein còn lại trong cơ thể sau t giờ được tính bởi công thức

$$P(t) = 100e^{-0.17t}.$$

b) Kết luận gì khi t đủ lớn.

🔭 Lời giải

Bài 4.

Một cốc cà phê chứa 100mg caffeine được đào thải liên tục ra khỏi cơ thể với tốc độ 17% mỗi giờ.

a) Chứng minh lượng caffein còn lại trong cơ thể sau t giờ được tính bởi công thức

$$P(t) = 100e^{-0.17t}.$$

b) Kết luận gì khi t đủ lớn.

T >: -: ?:

🔭 Lời giải

Tìm tiệm cận của đường cong cho bởi

a)
$$f(x) = \frac{\sqrt{x^2 + 4}}{3x - 2}$$

c)
$$f(x) = 2x + 1 + \frac{\ln(x)}{x}$$

b)
$$f(x) = \arctan\left(\frac{x^2 + 3}{x - 1}\right)$$

d)
$$f(x) = (x+2)e^{-\frac{2}{x}}$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Tìm tiệm cận của đường cong cho bởi

a)
$$f(x) = \frac{\sqrt{x^2 + 4}}{3x - 2}$$

c)
$$f(x) = 2x + 1 + \frac{\ln(x)}{x}$$

b)
$$f(x) = \arctan\left(\frac{x^2 + 3}{x - 1}\right)$$

d)
$$f(x) = (x+2)e^{-\frac{2}{x}}$$

Lời giải

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Tìm tiệm cận của đường cong cho bởi

a)
$$f(x) = \frac{\sqrt{x^2 + 4}}{3x - 2}$$

c)
$$f(x) = 2x + 1 + \frac{\ln(x)}{x}$$

b)
$$f(x) = \arctan\left(\frac{x^2 + 3}{x - 1}\right)$$

d)
$$f(x) = (x+2)e^{-\frac{2}{x}}$$

Lời giải

Đáp án:

TÀI LIÊU SƯU TẬP

BỞI HCMUT-CNCP

Xét tính liên tục trái, liên tục phải, liên tục của các hàm số sau

a)
$$f(x) = \begin{cases} \frac{\sin(x)}{|x|}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 tại $x = 0, x = 1$
b) $f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$ tại $x = 0$

b)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$$

$$f(x) = \begin{cases} xe^{x}, & x < 0, \\ x^{2} - 2x, & x \ge 0, \end{cases} \quad \text{tai } x = 0$$

c)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x > 0, \\ x^2 - 2x, & x \le 0, \end{cases}$$
 tại $x = 0$ SửU TẬP

Xét tính liên tục trái, liên tục phải, liên tục của các hàm số sau

a)
$$f(x) = \begin{cases} \frac{\sin(x)}{|x|}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 tại $x = 0, x = 1$
b) $f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$ tại $x = 0$

b)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$$
 tại x

c)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x > 0, \\ x^2 - 2x, & x \le 0, \end{cases}$$

c)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x > 0, \text{ At } x \neq 0 \end{cases}$$
 tai $x \neq 0$ SUU TÂP

Lời giải

Xét tính liên tục trái, liên tục phải, liên tục của các hàm số sau

a)
$$f(x) = \begin{cases} \frac{\sin(x)}{|x|}, & x \neq 0, \\ 1, & x = 0, \end{cases}$$
 tại $x = 0, x = 1$
b) $f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$ tại $x = 0$

b)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x < 0, \\ x^2 - 2x, & x \ge 0, \end{cases}$$

c)
$$f(x) = \begin{cases} xe^{\frac{1}{x}}, & x > 0, \\ x^2 - 2x, & x \le 0, \end{cases}$$

c) $f(x) = \begin{cases} xe^{\frac{1}{x}}, & x > 0, \text{ At } x \neq 0 \end{cases}$ tai $x \neq 0$ SUU TÂP

Lời giải

Đáp án:

Một công ty tính phí 7.5đ/lít cho một loại sơn cho tất cả các đơn đặt hàng 50 lít trở xuống và 6.75 đ/lít cho các đơn hàng trên 50 lít. Đặt P(x) là chi phí để công ty mua x lít sơn.

- a) Tìm chi phí mua 40 lít, 50 lít, 60 lít.
- b) P không liên tục tại đâu?

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Một công ty tính phí 7.5đ/lít cho một loại sơn cho tất cả các đơn đặt hàng 50 lít trở xuống và 6.75 đ/lít cho các đơn hàng trên 50 lít. Đặt P(x) là chi phí để công ty mua x lít sơn.

- a) Tìm chi phí mua 40 lít, 50 lít, 60 lít.
- b) P không liên tục tại đâu?

Lời giải

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Một công ty tính phí 7.5đ/lít cho một loại sơn cho tất cả các đơn đặt hàng 50 lít trở xuống và 6.75 đ/lít cho các đơn hàng trên 50 lít. Đặt P(x) là chi phí để công ty mua x lít sơn.

- a) Tìm chi phí mua 40 lít, 50 lít, 60 lít.
- b) P không liên tục tại đâu?

Lời giải

Gợi ý:

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Một công ty tính phí 7.5đ/lít cho một loại sơn cho tất cả các đơn đặt hàng 50 lít trở xuống và 6.75 đ/lít cho các đơn hàng trên 50 lít. Đặt P(x) là chi phí để công ty mua x lít sơn.

- a) Tìm chi phí mua 40 lít, 50 lít, 60 lít.
- b) P không liên tục tại đâu?

Lời giải

Gợi ý:

Một công ty tính phí 7.5đ/lít cho một loại sơn cho tất cả các đơn đặt hàng 50 lít trở xuống và 6.75 đ/lít cho các đơn hàng trên 50 lít. Đặt P(x) là chi phí để công ty mua x lít sơn.

- a) Tìm chi phí mua 40 lít, 50 lít, 60 lít.
- b) P không liên tục tại đâu?

Lời giải

Gợi ý:

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} & x \le 0 \\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} & x > 0 \end{cases}$$

liên tục trên \mathbb{R} . Tính f(3).

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} & x \le 0 \\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} & x > 0 \end{cases}$$

liên tục trên \mathbb{R} . Tính f(3).

Lời giải

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} & x \le 0 \\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} & x > 0 \end{cases}$$

liên tục trên \mathbb{R} . Tính f(3).

Lời giải

ullet Hàm số liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại $x=0 \iff \lim_{x\to 0} f(x)=f(0).$

BổI HCMUT-CNCP

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} & x \le 0 \\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} & x > 0 \end{cases}$$

liên tuc trên \mathbb{R} . Tính f(3).

Lời giải

- Hàm số liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại $x=0 \iff \lim_{x\to 0} f(x)=f(0)$. Ta có $\lim_{x\to 0^-} f(x)=\lim_{x\to 0^-} e^x=1=f(0)$.

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} \quad x \le 0\\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} \quad x > 0 \end{cases}$$

liên tuc trên \mathbb{R} . Tính f(3).

Lời giải

- Hàm số liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại $x=0 \iff \lim_{x\to 0} f(x)=f(0)$.
 Ta có $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^x = 1 = f(0)$.
 Để $\lim_{x\to 0^+} f(x) = 1$ thì $\sqrt{ax+b}-2=0$ tại $x=0 \implies b=4$.

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} \quad x \le 0\\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} \quad x > 0 \end{cases}$$

liên tuc trên \mathbb{R} . Tính f(3).

Lời giải

- Hàm số liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại $x=0 \iff \lim_{x\to 0} f(x) = f(0)$.
- Ta có $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} = 1 = f(0)$. Để $\lim_{x \to 0^{+}} f(x) = 1$ thì $\sqrt{ax + b} 2 = 0$ tại $x = 0 \implies b = 4$.
- Khi đó $\lim_{x\to 0^+} f(x) = \frac{a}{4} = 1 \implies a \stackrel{\mathsf{BACHKHOACNCP.COM}}{= 4}$

(HK191) Cho các số thực a, b sao cho

$$f(x) = \begin{cases} e^x & \text{n\'eu} \quad x \le 0\\ \frac{\sqrt{ax+b}-2}{x} & \text{n\'eu} \quad x > 0 \end{cases}$$

liên tuc trên \mathbb{R} . Tính f(3).

Lời giải

- Hàm số liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại $x=0 \iff \lim_{x\to 0} f(x) = f(0)$.
- •Ta có $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{x} = 1 = f(0)$. Để $\lim_{x \to 0^{+}} f(x) = 1$ thì $\sqrt{ax + b} 2 = 0$ tại $x = 0 \implies b = 4$.
- Khi đó $\lim_{x\to 0^+} f(x) = \frac{a}{4} = 1 \implies a = 4.$ Vậy $f(3) = \frac{2}{3}.$

Bài 4.
$$\frac{1-\cos 6x}{x^2} \quad \text{v\'oi } x < 0$$

$$\frac{\ln x}{x^2 + 2x - 3} \quad \text{v\'oi } x \leq 1 \text{ liên tục trên } \mathbb{R}.$$

$$\frac{\ln x}{x^2 + 2x - 3} \quad \text{v\'oi } x > 1$$

$$\mathbf{B.} \ a = \frac{71}{4}, b = 18.$$

$$\mathbf{C.} \ a = -\frac{71}{4}, b = 18.$$

$$\mathbf{D.} \ \mathsf{C\'ac} \ \mathsf{c\^{a}u} \ \mathsf{kia} \ \mathsf{d\^{e}u} \ \mathsf{sai}.$$

C. $a = -\frac{71}{4}$, b = 18.

D. Các câu kia đều sai. TAI LIÊU SƯU TAP

Bài 4.
$$\frac{1-\cos 6x}{x^2} \quad \text{v\'oi } x < 0$$

$$\frac{\ln x}{x^2 + 2x - 3} \quad \text{v\'oi } x \leq 1 \text{ liên tục trên } \mathbb{R}.$$

$$\frac{\ln x}{x^2 + 2x - 3} \quad \text{v\'oi } x > 1$$

$$\mathbf{B.} \ a = \frac{71}{4}, b = 18.$$

$$\mathbf{C.} \ a = -\frac{71}{4}, b = 18.$$

$$\mathbf{D.} \ \mathsf{C\'ac} \ \mathsf{c\^{a}u} \ \mathsf{kia} \ \mathsf{d\^{e}u} \ \mathsf{sai}.$$

A.
$$a = 3, b = 18.$$

C.
$$a = -\frac{71}{4}$$
, $b = 18$.

B.
$$a = \frac{71}{4}, b = 18$$

D. Các câu kia đều sai.

Lời giải

Bài 4.
$$\frac{1-\cos 6x}{x^2} \quad \text{v\'oi } x < 0$$

$$\frac{\ln x}{x^2+2x-3} \quad \text{v\'oi } x \leq 1 \text{ liên tục trên } \mathbb{R}.$$

$$\frac{\ln x}{x^2+2x-3} \quad \text{v\'oi } x \leq 1 \text{ liên tục trên } \mathbb{R}.$$

$$\frac{\ln x}{x^2+2x-3} \quad \text{v\'oi } x \geq 1$$

$$\text{B. } a = \frac{71}{4}, b = 18.$$

$$\text{C. } a = -\frac{71}{4}, b = 18.$$

$$\text{D. Các câu kia đều sai.}$$

A.
$$a = 3, b = 18$$
.

C.
$$a = -\frac{71}{4}$$
, $b = 18$.

$$\frac{111x}{x^2 + 2x - 3}$$

B.
$$a = \frac{71}{4}$$
, $b = 18$

D. Các câu kia đều sai.

Lời giải