Informatika UAD



Misalkan  $a \le x \le b$  adalah rentang pada fungsi kontinyu f(x)

Maka integral tertentu fungsi f(x) dengan x dari a sampai b

$$\int_{a}^{b} f(x) dx$$

Dengan a adalah batas bawah dan b adalah batas atas

Bila a > b maka

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = 0$$

$$\int_{a}^{b} c dx = c(b - a)$$

$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx, a < c < b$$

Untuk a < b berlaku :

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Contoh:

$$\int_{1}^{2} x^{2} dx = \frac{1}{3}x^{3} \Big|_{1}^{2} = \frac{1}{3}(2)^{3} - \frac{1}{3}(1)^{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}$$

$$\int_{1}^{3} 4 \, dx = 4x \Big|_{1}^{3} = 4(3-1) = 8$$

$$\int_{0}^{2} 2x \, dx = x^{2} \Big|_{0}^{2} = (2)^{2} - (0)^{2} = 4$$

#### LATIHAN

1. 
$$\int_{1}^{5} \left( \frac{1}{3x} - 5 \right) dx$$

2. 
$$\int_{1}^{5} \sqrt{3x-2} \ dx$$

3. 
$$\int_1^2 5x\sqrt{(2x+1)} \, dx$$

4. 
$$\int_{1}^{5} \left( \frac{1}{5x} - \frac{2}{x+2} \right) dx$$

#### PANJANG KURVA

Panjang kurva bisa didekati dengan polygon

Sehingga panjangnya bisa dihitung dengan menjumlahkan setiap garis pada segment polygon

Panjang kurva bisa diperkirakan dengan polygon menggunakan integral





#### PANJANG KURVA

Jika f' kontinu pada [a,b] maka panjang kurva y=f(x) untuk  $a \le x \le b$ :

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Jika f' kontinu pada [a,b] maka panjang kurva x=f(y)

untuk  $a \le y \le b$ :

$$L = \int_{a}^{b} \sqrt{1 + [f'(y)]^{2}} dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

Hitung panjang kurva dari parabola  $y^2 = x^3$  antara titik (1, 1) dan titik (4, 8)



Terhadap sumbu X

Maka panjang kurvanya

$$y^{2} = x^{3} \Rightarrow y = x^{3/2}, \qquad \frac{dy}{dx} = \frac{3}{2}x^{1/2}$$

$$L = \int_{1}^{4} \sqrt{1 + \left(\frac{3}{2}x^{\frac{1}{2}}\right)^{2}} dx = \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx$$

$$u = 1 + \frac{9}{4}x \Rightarrow du = \frac{9}{4}dx \Rightarrow dx = \frac{4}{9}du$$

$$L = \int_{1}^{4} u^{\frac{1}{2}} \left(\frac{4}{9}\right) du = \left[\left(\frac{4}{9}\right)\left(\frac{2}{3}\right)\left(1 + \frac{9}{4}x\right)^{\frac{3}{2}}\right]_{1}^{4} = \frac{8}{27}\left[\left(1 + \frac{9}{4}x\right)^{\frac{3}{2}}\right]_{1}^{4}$$

$$L = \frac{8}{27}\left(1 + \frac{9}{4}(4)\right)^{\frac{3}{2}} - \frac{8}{27}\left(1 + \frac{9}{4}(1)\right)^{\frac{3}{2}} = \frac{80}{27}\sqrt{10} - \frac{13}{27}\sqrt{13}$$

### LUASAN DAERAH

Integral tertentu digunakan untuk menghitung luasan daerah yang dibatasi oleh kurva

#### Syarat:

- Bila ada kurva y = f(x) dan kurva y = g(x) kontinu pada  $a \le x \le b$
- Bila kurva y = f(x) terletak diatas atau pada kurva y = g(x)
- Maka luas daerah S yang dibatasi kurva y = f(x), kurva y = g(x),  $x = a \, \mathrm{dan} \, x = b \, \mathrm{adalah}$ :



#### LUASAN DAERAH

$$L = \int_{a}^{b} [f(x) - g(x)] dx$$



#### CARA MENGHITUNG LUASAN DAERAH

- 1. Tentukan daerah kurva dengan menggambar daerah yang diminta dari kurva dan batasan yang ditentukan
- 2. Tentukan batasan integrasinya dari daerah kurva yang digambar
- 3. Tentukan cara menghitung luasan yang mudah
  - Terhadap  $x \Rightarrow L = \int f(x) dx$
  - Terhadap  $y \Rightarrow L = \int f(y) dy$
- 4. Hitung nilai integral sebagai luasan daerahnya



Tentukan luasan daerah yang dibatasi oleh garis y = -2x + 4, sumbu Y dan sumbu X!

Langkah 1 : Gambar daerah nya

Langkah 2: Tentukan batasannya

• Titik potong sumbu Y  $y = -2(0) + 4 = 4 \Rightarrow (0,4)$ 

Titik potong sumbu X

$$x = -\frac{1}{2}(0 - 4) = 2 \Rightarrow (2,0)$$



Langkah 3: Tentukan bentuk integrasi yang mudah

• Bila batas 0 sampai 2 maka basis perhitungan integral terhadap X

$$L = \int_0^2 (-2x + 4) dx = -x^2 + 4x|_0^2 = 4$$
 satuan luas

• Bila batas 0 sampai 4 maka basis perhitungan integral terhadap Y

$$L = \int_0^4 \left( -\frac{y-4}{2} \right) dy = -\frac{1}{4}y^2 + 2y|_0^4 = 4$$
 satuan luas

Tentukan luasan daerah yang dibatasi kurva  $y = x^2 - 5x + 4$  dan sumbu X!

Langkah 1: Gambar daerahnya!

Langkah 2: Tentukan batasannya!

• Titik potong sumbu Y  $y = (0)^2 - 5(0) + 4 = 4 \Rightarrow (0,4)$ 

• Titik potong sumbu X

$$x^{2} - 5x + 4 = (x - 4)(x - 1)$$

$$x = 4 \Rightarrow (4,0)$$

$$x = 1 \Rightarrow (1,0)$$



Langkah 3: Tentukan bentuk integrasi yang mudah

• Batas 1 sampai 4 maka basis perhitungan integral terhadap X

$$L = \int_{1}^{4} \left[ 0 - (x^{2} - 5x + 4) \right] dx = -\frac{1}{3}x^{3} + \frac{5}{2}x^{2} - 4x \Big|_{1}^{4}$$

$$L = -\frac{1}{3}(4)^{3} + \frac{5}{2}(4)^{2} - 4(4) - \left( -\frac{1}{3}(1)^{3} + \frac{5}{2}(1)^{2} - 4(1) \right)$$

$$= -\frac{64}{3} + 40 - 16 + \frac{1}{3} - \frac{5}{2} + 4 = -21 + 40 - 16 - \frac{5}{2} + 4 = \frac{9}{2}$$

### MENGHITUNG VOLUME

Bila diambil satu sampel potongan  $x_i^*$ 

Luas penampang silinder  $A(x_i^*)$ 

Tinggi / lebar silinder  $\Delta x$ 

Maka volume potongan tersebut adalah





$$V(S_i) \approx A(x_i^*)\Delta x$$

Sehingga total volume benda padat dapat dihitung dengan

$$V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) dx$$

#### **VOLUME BENDA PUTAR**

Dibuat dengan memutar bidang pada sebuah sumbu Untuk menghitung volume benda putar digunakan :

- Metode cakram
- Metode cincin
- Metode kulit tabung



# CAKRAM CINCIN KULIT TABUNG









# Metode Cakram

Metode cakram menggunakan volume tabung dalam

memperkirakan volume bend padat

$$V = \pi r^2 t$$

Jari-jari = r = y = f(x)

dan tinggi =  $h = \Delta x$ 

Volume dihitung dengan :  $V \approx \pi r^2 h \approx \pi f(x)^2 \Delta x$ 











Tentukan volume benda padat hasil dari perputaran area yang dibatasi kurva  $y=\sqrt{x}$  terhadap sumbu X dari 0 ke 1 !



# **Jawab**

Kita ketahui radiusnya  $\sqrt{x}$  maka luas setiap potongannya :

$$A(x) = \pi y^2 = \pi r^2 = \pi (\sqrt{x})^2 = \pi x$$

Jadi volume nya

$$V = \int_{0}^{1} A(x)dx = \int_{0}^{1} \pi y^{2}dx = \int_{0}^{1} \pi x \, dx = \left[\pi \frac{1}{2}x^{2}\right]_{0}^{1} = \frac{\pi}{2}$$

# METODE CINCIN

Metode cincin menggunakan volume cincin dalam memperkirakan volume benda padat

R= cincin luar dan r= cincin dalam

$$V = \pi (R^2 - r^2)h$$

Volume terhadap sumbu X

$$V = \pi \int_{a}^{b} (y_1^2 - y_2^2) dx$$

Volume terhadap sumbu Y

$$V = \pi \int_{a}^{b} (x_1^2 - x_2^2) dy$$



# Contoh

Tentukan volume benda padat hasil dari perputaran area yang dibatasi kurva y = x dan  $y = x^2$ , terhadap sumbu X!





# **JAWAB**

#### Kita ketahui radiusnya:

$$R = y_1 = x \operatorname{dan} r = y_2 = x^2$$

maka luas setiap potongannya:

$$A(x) = \pi(y_1^2 - y_2^2) = \pi(R^2 - r^2) = \pi(x^2 - (x^2)^2) = \pi(x^2 - x^4)$$

Batasnya :  $x = x^2 \Rightarrow x(x - 1) = 0$ 

$$x = 0 \operatorname{dan} x = 1$$

Jadi volume nya

$$V = \int_{0}^{1} A(x)dx = \int_{0}^{1} \pi(y_{1}^{2} - y_{2}^{2})dx = \int_{0}^{1} \pi(x^{2} - x^{4}) dx = \pi \left[\frac{1}{3}x^{3} - \frac{1}{5}x^{5}\right]_{0}^{1} = \frac{2\pi}{15}$$

# METODE KULIT TABUNG

Metode kulit tabung menggunakan volume kulit tabung dalam memperkirakan volume benda padat

$$V = 2\pi r h \Delta r$$

Volume terhadap sumbu vertikal dihitung dengan :

$$V \approx 2\pi \int_{a}^{b} x [f(x)] dx$$

Volume terhadap sumbu horizontal dihitung dengan :

$$V \approx 2\pi \int_{a}^{b} y [f(y)] dy$$



Tentukan volume benda padat hasil dari perputaran area yang dibatasi kurva  $y=2x^2-x^3$  dan y=0, terhadap sumbu Y!





# **JAWAB**

Kita ketahui radiusnya :  $r = f(x) = y = 2x^2 - x^3$ 

Batasnya :  $y = 2x^2 - x^3 \Rightarrow x^2(2 - x) = 0$ 

 $x = 0 \operatorname{dan} x = 2$ 

Jadi volume nya

$$V = \int_{0}^{2} 2\pi x f(x) dx = 2\pi \int_{0}^{2} x (2x^{2} - x^{3}) dx$$
$$= 2\pi \int_{0}^{2} (2x^{3} - x^{4}) dx = 2\pi \left[ \frac{1}{2} x^{4} - \frac{1}{5} x^{5} \right]_{0}^{2} = \frac{16\pi}{5}$$

# Tugas

- Hitung panjang kurva  $y = x^3 + 2$  antara titik (1, 1) dan titik (2, 4)
- Tentukan luasan daerah yang dibatasi kurva  $y=x^2-7x+10$  dan sumbu X !
- Tentukan volume benda padat hasil dari perputaran area yang dibatasi kurva  $y=x^2+2$  terhadap sumbu X dari 0 ke 3! (Cakram)
- Tentukan volume benda padat hasil dari perputaran area yang dibatasi kurva y=x+4 dan  $y=x^2+2$ , terhadap sumbu X! (Cincin)
- Tentukan volume benda putar yang dibentuk oleh putaran daerah yang dibatasi oleh  $x = e^{-y^2}$  dan sumbu-y ( $0 \le y \le 1$ ) dengan sumbu-x sebagai sumbu putarnya. (Kulit Tabung)



# MOMEN DAN TITIK PUSAT MASSA



Titik P yang membuat sebuah bidang sembarang seimbang disebut titik pusat massa

Untuk menghitung titik pusat massa pada daerah yang dibatasi kurva dan sumbu

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x f(x) dx$$
$$\bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} [f(x)]^{2} dx$$

Untuk menghitung titik pusat massa pada daerah yang dibatasi dua kurva

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x[f(x) - g(x)]dx$$

$$\bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} \{ [f(x)]^{2} - [g(x)]^{2} \} dx$$

Tentukan titik pusat massa dari area yang dibatasi kurva  $y = \sqrt{r^2 - x^2}$  dan dibatasi sumbu X !

Diketahui batasannya:

$$y = \sqrt{r^2 - x^2} \Rightarrow y^2 = r^2 - x^2 = 0$$
$$x^2 = r^2 \Rightarrow x = \pm r$$

$$x = -r \operatorname{dan} x = r$$

Luas areanya = Luas area setengah lingkaran =  $\frac{1}{2}\pi r^2$ 



# **JAWAB**

Titik pusat massanya:

$$\bar{x} = \frac{1}{A} \int_{a}^{b} x f(x) dx = \frac{1}{\frac{1}{2}\pi r^2} \int_{-r}^{r} x \sqrt{r^2 - x^2} dx$$

$$\text{Misal } u = r^2 - x^2 \Rightarrow du = -2x dx$$

$$\Rightarrow dx = -\frac{1}{2x} du$$

$$\bar{x} = \frac{2}{\pi r^2} \int_{r-r}^{r} x \sqrt{u} \left( -\frac{1}{2x} \right) du$$

$$= \frac{2}{\pi r^2} \int_{-r}^{r} \sqrt{u} \left( -\frac{1}{2} \right) du$$

$$\bar{x} = \frac{2}{\pi r^2} \left[ -\frac{1}{3} (r^2 - x^2)^{\frac{3}{2}} \right]_{r}^{r} = 0$$

$$\bar{y} = \frac{1}{A} \int_{a}^{b} \frac{1}{2} [f(x)]^{2} dx$$

$$= \frac{1}{\frac{1}{2}\pi r^{2}} \int_{-r}^{1} \frac{1}{2} (r^{2} - x^{2}) dx$$

$$\bar{y} = \frac{1}{\pi r^{2}} \left[ xr^{2} - \frac{1}{3}x^{3} \right]_{-r}^{r}$$

$$= \frac{1}{\pi r^{2}} \left[ \frac{2}{3}r^{3} - (-\frac{2}{3}r^{3}) \right] = \frac{4r}{3\pi}$$