Python Code for QSS Chapter 6: Probability

Kosuke Imai, Python code by Jeff Allen

First Printing

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from math import comb, exp, factorial, log
```

Section 6.1: Probability

Section 6.1.1: Frequentist versus Bayesian

Section 6.1.2: Definition and Axioms

Section 6.1.3: Permutations

```
[]: def birthday(k):
         logdenom = k * log(365) + log(factorial(365 - k)) # log denominator
         lognumer = log(factorial(365)) # log numerator
         \# P(at \ least \ two \ have \ the \ same \ bday) = 1 - P(nobody \ has \ the \ same \ bday)
         pr = 1 - exp(lognumer - logdenom) # transform back
         return pr
     k = pd.Series(np.arange(1, 51))
     bday = k.apply(birthday) # apply the function to each element of k
     bday.index = k # add labels
     sns.set_style('ticks')
     sns.relplot(
         x=k, y=bday, color='white', edgecolor='black', height=4, aspect=1.5
     ).set(ylabel='Probability that at least\n two people have the same birthday',
           xlabel='Number of people').despine(right=False, top=False)
     # horizontal line at 0.5
     plt.axhline(0.5, color='black', linewidth=0.75)
```

[]: <matplotlib.lines.Line2D at 0x18e6a345840>

Section 6.1.4: Sampling With and Without Replacement

```
[]: k = 23 # number of people
sims = 10000 # number of simulations
event = 0 # initialize counter

for i in range(sims):
    days = np.random.choice(np.arange(1,366), size=k, replace=True)
    days_unique = np.unique(days) # number of unique days
    '''
    if there are duplicates, the number of unique birthdays will be less than
        the number of birthdays, which is 'k'
        '''
    if len(days_unique) < len(days):</pre>
```

```
event += 1
answer = event / sims
answer
```

[]: 0.5032

Section 6.1.5: Combinations

[]: comb(84, 6)

[]: 406481544

Section 6.2: Conditional Probability

In Progress