

- $\hfill \square$ Decreasing β will shift the red line slightly to the right.
- $\hfill \square$ Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

lacksquare Decreasing eta will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

- Increasing 8 will create more oscillations within the red line
- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
 - $\alpha = 0.95^t \alpha_0$

 - $\bigcap \alpha = \frac{1}{1+2*t}\alpha_0$
 - $\bigcap \alpha = \frac{1}{\sqrt{t}} \alpha_0$

✓ Correct

5. Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2\,10^oC$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0, v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5, v_2^{corrected} = 10$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$\bigcirc$$
 $v_2 = 7.5$, $v_2^{corrected} = 7.5$

$$v_2 = 10, v_2^{corrected} = 7.5$$

✓ Correct

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	
If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
✓ Correct	
If the mini-batch size is 1, you end up having to process the entire training set before making any pro	gress.
If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole tr before making progress.	aining set
✓ Correct	
2. Which of these statements about mini-batch gradient descent do you agree with?	,
 One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iter gradient descent. 	ration of batch
 Training one epoch (one pass through the training set) using mini-batch gradient descent is faster tha epoch using batch gradient descent. 	n training one
 You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches at the algorithm processes all mini-batches at the same time (vectorization). 	itches, so that
✓ Correct	
Optimization algorithms	7
100%	
 Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? 	1/1 point
a[8]{8}(7)	
$\bigcirc \ a^{[8]\{3\}(7)}$	
$\bigcirc a^{[3]\{7\}(8)}$	
$\bigcirc \ a^{[8]\{7\}(3)}$	
✓ Correct	
10. Which of the following statements about Adam is False?	
\bigcirc The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
Adam should be used with batch gradient computations, not with mini-batches.	
We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.995$	
Adam combines the advantages of RMSProp and momentum Output Description: A series of the Hyperparameters p_1, p_2 and $p_1 = 0.3, p_2 = 0.33$.	$\theta, \varepsilon = 10^{-8} \text{ s}$
1	$(0, arepsilon = 10^{-8})$