MATH 576 Homework

Problem 1 Analyze the Subtraction- $\{2,5,6\}$ game. What are the \mathcal{P} - and \mathcal{N} -positions? Justify your answer.

For brevity, in this problem we denote n by \underline{n} . We claim that for all $n \in \mathbb{N}$, we have

$$\underline{n} \in \begin{cases} \mathcal{P} & \text{if } n \mod 11 \in \{0, 1, 4, 8\} \\ \mathcal{N} & \text{otherwise.} \end{cases}$$
 (*)

We proceed by induction on n. For the base case, we check $\underline{0}$ through $\underline{10}$:

- Clearly, we have $0, 1 \in \mathcal{P}$ and $2, 5, 6 \in \mathcal{N}$.
- Since $3-2=1\in\mathcal{P}$, we have $3\in\mathcal{N}$.
- The only option in $\underline{4}$ is $\underline{4-2} = \underline{2} \in \mathcal{N}$, so $\underline{4} \in \mathcal{P}$.
- Since $7-6=\underline{1}\in\mathcal{P}$, we have $\underline{7}\in\mathcal{N}$.
- The options for $\underline{8}$ are $\underline{8-2} = \underline{6} \in \mathcal{N}, \ \underline{8-5} = \underline{3} \in \mathcal{N}, \ \text{and} \ \underline{8-6} = \underline{2} \in \mathcal{N}, \ \text{so} \ \underline{8} \in \mathcal{P}.$
- Since $9-5=\underline{4}\in\mathcal{P}$, we have $\underline{9}\in\mathcal{N}$.
- Since $10 2 = \underline{8} \in \mathcal{P}$, we have $\underline{10} \in \mathcal{N}$.

For the induction step, let $n \in \mathbb{N}$, n > 10, and suppose (\star) holds for all m < n. Let \equiv denote equivalence (mod 11). We check that (\star) holds in each case:

- $n \equiv 0$: The options for \underline{n} are $n-2 \equiv \underline{9} \in \mathcal{N}$, $n-5 \equiv \underline{6} \in \mathcal{N}$, and $n-6 \equiv \underline{5} \in \mathcal{N}$ by the IH, so $\underline{n} \in \mathcal{P}$.
- $n \equiv 1$: The options for \underline{n} are $\underline{n-2} \equiv \underline{10} \in \mathcal{N}$, $\underline{n-5} \equiv \underline{7} \in \mathcal{N}$, and $\underline{n-6} \equiv \underline{6} \in \mathcal{N}$ by the IH, so $\underline{n} \in \mathcal{P}$.
- $n \equiv 2$: Since $n-2 \equiv \underline{0} \in \mathcal{P}$ by Case 0, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 3$: Since $n-2 \equiv \underline{1} \in \mathcal{P}$ by Case 1, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 4$: The options for \underline{n} are $n-2 \equiv \underline{2} \in \mathcal{N}$, $n-5 \equiv \underline{10} \in \mathcal{N}$, and $n-6 \equiv \underline{9} \in \mathcal{N}$, so $\underline{n} \in \mathcal{P}$.
- $n \equiv 5$: Since $n 5 \equiv \underline{0} \in \mathcal{P}$ by Case 0, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 6$: Since $\underline{n-6} \equiv \underline{0} \in \mathcal{P}$ by Case 0, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 7$: Since $n 6 \equiv \underline{1} \in \mathcal{P}$ by Case 1, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 8$: The options for \underline{n} are $\underline{n-2} \equiv \underline{6} \in \mathcal{N}$, $\underline{n-5} \equiv \underline{3} \in \mathcal{N}$, and $\underline{n-6} \equiv \underline{2} \in \mathcal{N}$, so $\underline{n} \in \mathcal{P}$.
- $n \equiv 9$: Since $\underline{n-5} \equiv \underline{4} \in \mathcal{P}$ by Case 4, we have $\underline{n} \in \mathcal{N}$.
- $n \equiv 10$: Since $\underline{n-2} \equiv \underline{8} \in \mathcal{P}$ by Case 8, we have $\underline{n} \in \mathcal{N}$.

Therefore, (\star) holds in all cases.

Problem 2 Consider a Kayles game with position $\underline{1}\,\underline{2}\,\underline{4}\,\underline{5}\,\underline{8}\,\underline{9}\,\underline{10}\,\underline{11}\,\underline{12}$. Is this game a \mathcal{P} -position or a \mathcal{N} -position? Justify your answer.

Let G be the given Kayles position. Consider the three Kayles games G_1, G_2, G_3 where G_1 and G_2 are Kayles games with 2 pins and G_3 is a Kayles game with 5 pins. There is a natural correspondence between G and $G' := (G_1 + G_2) + G_3$, and it is clear that $G' \in \mathcal{N}$ if and only if $G \in \mathcal{N}$.

We proved in class that for any impartial game H, we have $H+H \in \mathcal{P}$. Since $G_1 = G_2$, we have $G_1+G_2 \in \mathcal{P}$. Since G_3 is a Kayles game with a positive number of pins, we have $G_3 \in \mathcal{N}$. Therefore, by Problem 4, we have $G' \in \mathcal{N}$, so the given game is a \mathcal{N} -position.

Clearly, we have $0 \in \mathcal{P}$ and $1, 3, 5, \{1,3,5\}, \{1,3,5\}, \{1,3,5\}\}$ and $0 \in \mathbb{R}$ because removing 1 token token (or indeed 3 or 5 tokens) yields an option in $0 \in \mathbb{R}$. This shows that $0 \in \mathbb{R}$ since it only has options in $0 \in \mathbb{R}$. We proved in Problem 1 that we also have $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$ token $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$ in $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$ in $0 \in \mathbb{R}$

Problem 4 Prove that if the game G is in \mathcal{P} and the game H is in \mathcal{N} , then the game G + H is in \mathcal{N} .

Since H is an \mathcal{N} -position, there is an option H' from H in \mathcal{P} . From a result in class, we have $G + H' \in \mathcal{P}$ since $G \in \mathcal{P}$ and $H' \in \mathcal{P}$. Therefore, since G + H has G + H' as an option in \mathcal{P} , we have $G + H \in \mathcal{N}$. \square

Problem 5 Two players play the game G + H, where G is the game $\begin{cases} 400 \\ \{1,2,3\} \end{cases}$ and H is the game of Kayles with 1001 pins in a row. Which player has a winning strategy? Justify your answer.

We proved in class that $n \in \mathbb{R}$ is in \mathcal{P} if $n \equiv 0 \pmod{4}$, so G is in \mathcal{P} since $400 \equiv 0 \pmod{4}$. We also proved in class that the game of Kayles is in \mathcal{N} for any positive number of pins, so H is in \mathcal{N} . Therefore, by Problem A, G + H is in \mathcal{N} .