# III - Applications linéaires

### 1- Définition

**Définition 26.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux espaces vectoriels sur un même corps  $\mathbb{K}$ . On dit que  $f: \mathbb{E} \to \mathbb{F}$  est une **application linéaire** de  $\mathbb{E}$  dans  $\mathbb{F}$  sitôt que :

$$\forall (x,y) \in \mathbb{E}, \forall \lambda \in \mathbb{K}, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

On le note :  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ 

Remarque 26. • En français, on parle aussi d'homomorphisme d'espaces vectoriels.

• On a notamment f(x+y) = f(x) + f(y) et  $f(\lambda x) = \lambda f(x)$ .

**Définition 27.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ .

- Si f est bijective, on dit que c'est un isomorphisme.
- Si  $\mathbb{E} = \mathbb{F}$ , on dit que c'est un **endomorphisme** (et on note  $f \in \mathcal{L}(\mathbb{E})$ .
- Si  $\mathbb{F} = \mathbb{K}$ , on dit que c'est une forme linéaire.
- Si f est un endomorphisme et un isomorphisme, on dit que c'est un automorphisme, on le note  $f \in \mathcal{GL}(\mathbb{E})$ .

**Proposition 18.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ . On a toujours :

$$f(0_{\mathbb{E}}) = 0_{\mathbb{F}}$$

Exemple 25.

- $f: \mathbb{R}^2 \to \mathbb{R}^3$  $(x,y) \mapsto (x+y,2x-y,3y)$  est une application linéaire de  $\mathbb{R}^2$  dans  $\mathbb{R}^3$ .
- $D: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$  est un endomorphisme de  $\mathcal{C}^{\infty}(\mathbb{R})$
- $T: \mathcal{M}_2(\mathbb{C}) \to \mathcal{M}_2(\mathbb{C})$  est un automorphisme de  $\mathcal{M}_2(\mathbb{C})$
- l'application "trace" d'une matrice est une forme linéaire.

### 2- Noyau, image d'une application linéaire

**Définition 28.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ .

• On appelle **noyau** de f, noté Ker(f), l'ensemble des vecteurs pour lesquels f s'annule :

$$Ker(f) = \{x \in \mathbb{E} / f(x) = 0_{\mathbb{F}}\} = f^{-1}(\{0_{\mathbb{F}}\})$$

• On appelle **image** de f, noté Im(f), l'ensemble des vecteurs atteints par f:

$$\operatorname{Im}(f) = \{ y \in \mathbb{F} \mid \exists x \in \mathbb{E} \mid f(x) = y \} = f(\mathbb{E})$$

**Proposition 19.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ .

- Soit A un sous-espace vectoriel de  $\mathbb{E}$ , alors f(A) est un sous-espace vectoriel de  $\mathbb{F}$ .
- Soit B un sous-espace vectoriel de  $\mathbb{F}$ , alors  $f^{-1}(B)$  est un sous-espace vectoriel de  $\mathbb{E}$ .

# Démonstration 18.

Corollaire 3. Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ . Alors  $\mathrm{Ker}(f)$  est un sous-espace vectoriel de  $\mathbb{E}$  et  $\mathrm{Im}(f)$  est un sous-espace vectoriel de  $\mathbb{F}$ .

**Théorème 9.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ , alors

- 1- f est injective  $\Leftrightarrow Ker(f) = \{0_{\mathbb{E}}\}$
- 2- f est surjective  $\Leftrightarrow \text{Im}(f) = \mathbb{F}$

## Démonstration 19.

# 3- Opération sur les applications linéaires

## 3.a) Structure d'espace vectoriel

**Définition 29.** Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels. On définit sur  $\mathcal{L}(\mathbb{E},\mathbb{F})$  les opérations suivantes :

$$\forall (f,g) \in \mathcal{L}(\mathbb{E},\mathbb{F})^2, \quad f+g: \quad \mathbb{E} \quad \to \quad \mathbb{F}$$

$$\quad x \quad \mapsto \quad f(x) +_{\mathbb{F}} g(x)$$

$$\forall f \in \mathcal{L}(\mathbb{E}, \mathbb{F}), \forall \lambda \in \mathbb{K}, \quad \begin{array}{ccc} \lambda f : & \mathbb{E} & \rightarrow & \mathbb{F} \\ & x & \mapsto & \lambda f(x) \end{array}$$

**Proposition 20.** Soient  $\mathbb E$  et  $\mathbb F$  deux  $\mathbb K$ -espaces vectoriels. Alors :

- 1-  $(\mathcal{L}(\mathbb{E}, \mathbb{F}), +, \cdot)$  est un  $\mathbb{K}$ -espace vectoriel.
- 2- Si  $\mathbb E$  et  $\mathbb F$  sont de dimension finie, alors  $\dim \mathcal L(\mathbb E,\mathbb F)=\dim \mathbb E imes \dim \mathbb F$

Démonstration 20.



**Proposition 21.** Soient  $\mathbb{E}$ ,  $\mathbb{F}$  et  $\mathbb{G}$  trois  $\mathbb{K}$ -espaces vectoriels, et soient  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$  et  $g \in \mathcal{L}(\mathbb{F}, \mathbb{G})$ .

Démonstration 21.

**Théorème 10.**  $(\mathcal{L}(\mathbb{E}), +, \circ, \cdot)$  est une  $\mathbb{K}$ -algèbre non-commutative, contenant éventuellement des diviseurs de zéro.

Remarque 27. Sur la structure de  $\mathbb{K}$ -algèbre :

- Attention, ce n'est vrai que pour les endomorphismes (sinon, la composition n'est pas bien définie).
- Si dim  $\mathbb{E} = n$ , alors  $(\mathcal{L}(\mathbb{E}), +, \circ, \cdot)$  a exactement la même structure que  $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$  (Il existe un isomorphisme entre les deux).
- Le théorème suivant encourage encore plus cette similarité.

**Théorème 11.** Soit  $\mathbb{E}$  un  $\mathbb{K}$ -espace vectoriel. Muni de la composition  $(\mathcal{GL}(\mathbb{E}), \circ)$  est un groupe. On dit que  $\mathcal{GL}(\mathbb{E})$  est le **groupe linéaire de**  $\mathbb{E}$ 

Remarque 28. cf devoir maison  $n^3$ :

- Les symétries, les homotéthies, et l'identité, font partie du groupe linéaire de  $\mathbb{E}$ . Ce sont des automorphismes de  $\mathbb{E}$ .
- Les projecteurs (à l'exception de l'identité) n'en font pas partie : ce sont des endomorphismes non-inversibles.

### 3.c) Isomorphismes

**Proposition 22.** Soit  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$ . Alors :

f est un isomorphisme  $\Leftrightarrow$  L'image d'une base de  $\mathbb{E}$  par f est une base de  $\mathbb{F}$ .

Démonstration 22.

**Définition 30.** Deux espace vectoriels  $\mathbb{E}$  et  $\mathbb{F}$  sont dit **isomorphes** sitôt qu'il existe  $f \in \mathcal{L}(\mathbb{E}, \mathbb{F})$  qui soit un isomorphisme.

**Exemple 26.** •  $\mathbb{C}$  et  $\mathbb{R}^2$  sont isomorphes.

- $\mathbb{R}^4$  et  $\mathcal{M}_4(\mathbb{R})$  sont isomorphes.
- $\mathcal{M}_{n,p}(\mathbb{K})$  et  $\mathcal{M}_{p,n}(\mathbb{K})$  sont isomorphes.
- $\mathbb{R}[X]$  et  $\{(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}\ /\ \exists p\in\mathbb{N}\ /\ \forall q\geqslant p,u_q=0\}$  sont isomorphes.

**Théorème 12.** Caractérisation des espaces vectoriels isomorphes : Soient  $\mathbb{E}$  et  $\mathbb{F}$  deux  $\mathbb{K}$ -espaces vectoriels de dimension finie.

 $\mathbb{E} \ et \ \mathbb{F} \ sont \ isomorphes \Leftrightarrow \dim \mathbb{E} = \dim \mathbb{F}.$ 

# Démonstration 23.

**Exemple 27.** Suites linéaire récurrentes. Soit  $(a,b) \in \mathbb{C}^2$ , soit l'ensemble :

$$\mathcal{S}_{a,b} = \{ (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} / \forall n \in \mathbb{N}, n \geqslant 0 \implies u_{n+2} = au_{n+1} + bu_n \}$$

C'est un sous-espace vectoriel de  $\mathbb{C}^{\mathbb{N}}$ , isomorphe à  $\mathbb{C}^2$ , et donc de dimension 2. En effet :

Il suffit donc, pour en trouver un base, de trouver une famille libre à deux éléments.