ОПИСАНИЕ ШИНЫ РСІ

ВВЕДЕНИЕ

PCI (Peripheral Component Interconnect bus) — шина для подсоединения периферийных устройств. Стала массово применяться для Pentium-систем, но используется и с 486 процессорами. Частота шины от 20 до 33 МГц, теоретически максимальная скорость 132/264 Мбайт/с для 32/64 бит. В современных материнских платах частота на шине PCI задается как 1/2 входной частоты процессора, т.е. при частоте 66 МГц на PCI будет 33 МГц, при 75 МГц — 37,5 МГц.

Имеет версии с питанием 5 В, 3,3 В и универсальную (с переключением линий +VI/O с 5 В на 3,3 В). Ключами являются пропущенные ряды контактов 12, 13 и 50, 51. Для слота с питанием 5 В ключ расположен на месте контактов 50, 51, для 3,3 В - 12, 13, а для универсального - два ключа: 12, 13 и 50,51. 32-битный слот заканчивается контактами A62/B62, 64-битный - A94/B94.

Слот PCI самодостаточен для подключения любого контроллера (VLB не работала без ISA), на системной плате может сосуществовать с любой из других шин ввода-вывода.

Шина PCI — первая шина в архитектуре IBM PC, которая не привязана к этой архитектуре. Она является процессорно-независимой и применяется, например, в компьютерах Macintosh. В отличие от остальных шин, компоненты расположены на левой поверхности плат PCI-адаптеров. По этой причине крайний PCI-слот обычно разделяет использование посадочного места с соседним ISA-слотом (Shared slot).

Процессор через так называемые мосты (PCI Bridge) может быть подключен к нескольким каналам PCI, обеспечивая возможность одновременной передачи данных между независимыми каналами PCI (возможно только в спецификации 2.1).

Автоконфигурирование устройств (выбор запросов прерывания, каналов DMA) поддерживается средствами BIOS материнской платы по образу и подобию стандарта Plug & Play. В настоящее время действует спецификация PCI 2.1.

Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода-вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода-вывода.

На PCI определены два основных вида устройств – инициатор (по ГОСТ – задатчик), т.е. устройство, получившее от арбитра шины разрешение на захват ее и устройство назначения, цель (target) с которым инициатор выполняет цикл обмена данными.

В мае 1999 года появилась спецификация 2.2 стандарта PCI и в это же время фирма Intel выпустила первый chipset с поддержкой версии 2.2 – i810. В соответствии с новой спецификацией появились следующие новые возможности:

- Поддержка "горячей" замены PCI-устройств, называемой в стандарте как PCI Hot-Plug. Ввод этой функции позволит добавлять/изымать PCI-платы без выключения компьютера. Такая возможность особенно необходима для серверных платформ
- Система управления энергопотреблением для устройств на шине PCI. Позволяет управлять энергопотреблением как для внешних PCI-плат так и для встроенных на материнской плате устройств. Механизм управления подстроен под стандарт ACPI для облегчения управления энергопотреблением PCI-устройств со стороны операционной системы.
- Дополнены и переработаны требования к конструктивной реализации РСІ плат.

Следует помнить, что для практического использования новых возможностей PCI расширения стандарта должны быть поддержаны как контроллером шины PCI так и самим PCI-устройством.

Сигналы шины РСІ

Знак "–" (минус) перед названием сигнала означает, что активный уровень этого сигнала – логический ноль, обозначение {XX:0} означает группу сигналов с номерами от 0 до XX.

мультиплексированная шина адреса/данных. Адрес передается по сигналу –FRAME, в последующих тактах передаются данные
команда/разрешение обращения к байтам. Команда, определяющая тип очередного цикла шины (чтение-запись памяти, ввода/вывода или чтение/запись конфигурации, подтверждение прерывания и другие) задается четырехбитным кодом в фазе адреса по сигналу –FRAME
индикатор фазы адреса (иначе - передача данных)
выбор инициатором устройства назначения
готовность инициатора к обмену данными
готовность устройства назначения к обмену данными
запрос устройства назначения к инициатору на останов текущей транзакции
используется для установки, обслуживания и освобождения захвата ресурса на PCI
запрос от PCI-устройства на захват шины (для слотов 3:0)
разрешение мастеру на использование шины
общий бит четности для линий AD {31:0} и C/BE {3:0}
сигнал об ошибке по четности (от устройства, ее обнаружившего)
сброс всех устройств
выбор устройства назначения в циклах считывания и записи конфигурации
системная ошибка, активизируется любым устройством PCI и вызывает немаскируемое прерывание процессора (NMI)
запрос на 64-битный обмен
подтверждение 64-битного обмена
линии запросов прерывания, направляются на доступные линии IRQ BIOS компьютера. Запрос по низкому уровню допускает разделяемое использование линий прерывания
сигнал синхронизации на тактовой частоте шины
сигналы для тестирования адаптеров по интерфейсу JTAG (на системной плате обычно не задействованы)
перевод в режим тестирования

Разъем шины РСІ

Ряд В	Номер	Ряд А	Ряд В	Номер	Ряд А	
-12 B	1	-TSTRES	-C / BE 3	26	IDSEL	
Test Clock	2	+ 12 B	AD 23	27	+3,3 B	
GND	3	TSTMSLCT	GND	28	AD 22	
Test DO	4	Test DO	AD 21	29	AD 20	
+5 B	5	+5 B	AD 19	30	GND	
+5 B	6	-INTR A	+3,3 B	31	AD 18	
-INTR B	7	-INTR C	AD 17	32	AD 16	
-INTR D	8	+5 B	-C / BE 2	33	+3,3 B	
-PRSNT 1	9	Reserved	GND	34	-FRAME	
Reserved	10	+VI / O	-IRDY	35	GND	
-PRSNT 2	11	Reserved	+3,3 B	36	-TRDY	
GND / Ключ	12*	GND /Ключ	-DEVSEL	37	GND	
GND / Ключ	13*	GND /Ключ	GND	38	-STOP	
Reserved	14	Reserved	-Lock	39	+3,3 B	
GND	15	-RST	ParityER	40	SDONE	
Clock	16	+VI / O	+3,3 B	41	-SBOFF	
GND	17	-GNT	SysERR	42	GND	
-REQ	18	GND	+3,3 B	43	PAR	
+V I/O	19	Reserved	-C / BE 1	44	AD 15	
AD 31	20	AD 30	AD 14	45	+3,3 B	
AD 29	21	+3,3 B	GND	46	AD 13	
GND	22	AD 28	AD 12	47	AD 11	
AD 27	23	AD 26	AD 10	48	GND	
AD 25	24	GND	GND	49	AD 9	
+3,3 B	25	AD 24	GND / Ключ	50**	GND / Ключ	
GND /Ключ	51**	GND / Ключ	GND	73	AD 56	
AD 8	52	-C / BE 0	AD 55	74	AD 54	
AD 7	53	+3,3 B	AD 53	75	+VI / O	
+3,3 B	54	AD 6	GND	76	AD 52	
AD 5	55	AD 4	AD 51	77	AD 50	
AD 3	56	GND	AD 49	78	GND	
GND	57	AD 2	+VI / O	79	AD 48	
AD 1	58	AD 0	AD 47	80	AD 46	
+ VI / O	59	+VI / O	AD 45	81	GND	
-ACK 64	60	-REQ64	GND	82	AD 44	
+5 B	61	+5B	AD 43	83	AD 42	
+5 B	62	+5B	AD 41	84	+VI / O	
Конен З	32-битного р	азъема	GND	85	AD 40	
Конец с	- ominoro p	ao Deivid	AD 39	86	AD 38	
Reserved	63	GND	AD 37	87	GND	
GND	64	-C / BE 7	+VI / O	88	AD 36	
-C / BE	65	- C / BE 5	AD 35	89	AD 34	
-C / BE	66	+ VI / O	AD 33	90	GND	
GND	67	PAR 64	GND	91	AD 32	
AD 63	68	AD 62	Reserved	92	Reserved	
AD 61	69	GND	Reserved	93	GND	
+VI / O	70	AD 60	GND	94	Reserved	
AD 59	71	AD 58	Конец	64-битного r	разъема	
AD 57	72	GND	Конец 64-битного разъема			

^{*12, 13 –} ключ для 3,3V **50,51 – ключ для 5V

Циклы шины

По сигналам С/ВЕ (от С/ВЕ3 до С/ВЕ0) во время фазы передачи адреса определяется тип цикла передачи данных.

C/BE	Команда
0000	Interrupt Acknowledge (подтверждение прерывания)
0001	Special Cycle (специальный цикл)
0010	I/O Read (чтение порта)
0011	I/O Write (запись в порт)
0100	reserved (резервировано)
0101	reserved (резервировано)
0110	Memory Read (чтение памяти)
0111	Memory Write (запись в память)
1000	reserved (резервировано)
1001	reserved (резервировано)
1010	Configuration Read (чтение конфигурации)
1011	Configuration Write (запись конфигурации)
1100	Multiple Memory Read (множественное чтение памяти)
1101	Dual Address Cycle (двойной цикл адреса)
1110	Memory-Read Line (чтение памяти)
1111	Memory Write and Invalidate (запись в память и проверка)

Подтверждение прерывания (0000)

Контроллер прерываний автоматически распознает сигнал INTA и реагирует на него передачей вектора прерывания по шине AD.

Специальный цикл (0001)

AD15-AD0	Описание		
0x0000	Processor Shutdown (процессор прекращает работу)		
0x0001	Processor Halt (останов процессора)		
0x0002	x86 Specific Code (специальный код для машин на архитектуре Intel x86)		
0x0003 to 0xFFFF	Reserved (зарезервировано)		

Чтение порта (0010) и запись в порт (0011)

Порты ввода/вывода на шине PCI могут быть 8 или 16-ти разрядными, хотя собственно стандарт на шину PCI позволяет иметь 32-х разрядное адресное пространство. Это вызвано тем, что на компьютерах с архитектурой Intel х86, адрес порта может иметь не более 16 разрядов. Пока и 16-ти разрядный адрес порта не может быть использован, так как карты на шине ISA могут декодировать только 10 разрядов.

Адресное пространство конфигурации доступно по адресам портов 0x0CF8 (Адрес) и 0x0CFC (Данные), причем адрес должен быть записан первым.

Чтение памяти (0110) и запись в память (0111)

По шинам AD передается адрес двойным словом (четыре байта). Сигналы AD0 и AD1 декодировать не требуется. Истинность данных определяется сигналами C/BE.

Чтение конфигурации (1010) и запись конфигурационных данных (1011)

Эти операции выполняются для конфигурационного пространства PCI карты. Размер области конфигурации составляет 256 байт, причем читать/записывать в нее можно только в 32-х разрядной сетке, т.е. двойными словами. Поэтому AD0 и AD1 должны быть установлены в 0, AD2-7 содержать адрес двойного слова, AD8-10 используются для выбора адресуемого устройства, а оставшиеся шины адреса игнорируются.

Адрес/Бит	32	24	23	16	15	8	7	0
00	Unit ID				Manufacturer ID			
04	Status			Command				
08	Class Code					Revision		
0C	BIST		Header		I	Latency	CLS	
10-24	Регистр адреса							
28	Резерв							
2C	Резерв							
30	Базовый адрес ПЗУ устройства							
34	Резерв							
38	Резерв							
3C	MaxLa	t	Mı	nGNT	I	NT-pin	INT-line	
40-FF	Используется самим устройством							

Примечания:

- 1. Unit ID идентификационный номер устройства
- 2. Manufacturer ID идентификатор производителя устройства
- 3. Status состояние
- 4. Class Code код класса устройства
- 5. BIST Built-In Self Test встроенный тест

Множественное чтение памяти (1100)

Это расширение обычного цикла чтения памяти. Используется для чтения больших блоков памяти без кэширования.

Двойной цикл адреса (1101)

Двойной цикл адреса необходим в том случае, если необходимо передать 64-х разрядный адрес в версии PCI с 32-х разрядной адресной сетке. В первом цикле передаются четыре младших байта адреса, затем четыре старших байта. Во втором цикле необходимо также передать команду, определяющую тип устройства, чей адрес выставлен (порт ввода/вывода, память и т.д.). Собственно PCI поддерживает 64 разряда адреса для портов ввода/вывода, но в PC на процессорах архитектуры от Intel такое адресное пространство не поддерживается (не позволяет сам процессор).

Цикл передачи данных на PCI, включает 4 фазы передачи данных, без тактов ожидания. Данные передаются по переднему фронту сигнала **CLK**

Цикл передачи данных на PCI включает 3 фазы передачи данных с тактами ожидания. Данные передаются по переднему фронту сигнала **CLK**.