فرض محروس رفم ﴿ الدورة الأولى الموضوع -

الثانوبث النأهبليث الأمير مولاي رشيد

|2017/2018|

د. العلالي عبد الفتاح

القسم: الثانية باكالوريا علوم تجريبية

المادة: الرياضيات

(3) التمرين الأول (3) نقط

: f علية الدوال الاصلية للدالة

$$f(x) = (2x^3 - 1)(x^4 - 2x + 1)^7$$
; $f(x) = \frac{x}{\sqrt{x^2 + 1}}$; $f(x) = \cos(3x + 1) + \sin(x)$

التمرين الثاني (10 نقط)

$$\begin{cases} u_0=0 \\ u_{n+1}=rac{2u_n+2}{u_n+3} \end{cases}$$
 : نعتبر المتتالية (u_n) المعرفة بما يلي

$$\forall n \in \mathbb{N} \; ; \; 0 \leq u_n \leq 1$$
: بين بالترجع أن $\mathbf{0}$

$$(0.75)$$
 $u_{n+1} - u_n = \frac{(1 - u_n)(u_n + 2)}{u_n + 3}$: نحقق أن (9

(ن) ثم استنتج أن
$$(u_n)$$
 متقاربة.

$$V_n = rac{1-u_n}{u_n+2}$$
 : نعتبر المتتالية العددية (V_n) المعرفة بما يلي : $oldsymbol{Q}$

$$($$
ن2 $)$ $V_n=-rac{1}{2}\left(rac{1}{4}
ight)^n$: ث $)$ بین أن (V_n) متتالیة هندسیة أساسها $rac{1}{4}$. ثم استنتج أن

$$(0.1.5)$$
 $u_n=rac{1+2V_n}{1-V_n}$ برين أن $\forall n\in\mathbb{N}$. $\forall n\in\mathbb{N}$. ثم أكتب $u_n=\frac{1+2V_n}{1-V_n}$

$$\lim_{n\to+\infty}u_n$$
 غي أحسب (ن0.5)

$$n$$
 بدلالة $\sum_{k=0}^{n}V_{k}$ بدلالة (ن $\mathbf{\Theta}$

$$(0.5)$$
 $rac{3}{u_n+2}=1-V_n$ (ن 0.5

(ن)
$$\sum_{k=0}^{n} S_k = n+1+rac{2}{3}\left(\left(1-rac{1}{4}
ight)^{n+1}
ight)$$
 : نضع: $S_n = rac{3}{u_n+2}$ نضع:

التمرين الثالث (7 نقط)

 $f(x) = x\sqrt{x^2 - 4}$: نعتبر الدالة العددية f المعرفة بما يلى

$$($$
ن $)$ $D_f =]-\infty;-2] \cup [2;+\infty[$: بین آن

(1ن) على يمين
$$2$$
 و على يسار 2 ثم أول النتيجة هندسيا f على يمين f على يمين f على يمين f أدر س قابلية إشتقاق الدالة f على يمين f

$$\lim_{n \to -\infty} f(x)$$
 و $\lim_{n \to +\infty} f(x)$ احسب

(ن2)
$$\lim_{n\to +\infty}\frac{f(x)}{x}=+\infty \ \ e^{-\frac{1}{2}} \lim_{n\to +\infty}\frac{f(x)}{x}=+\infty \ \ iii$$
 ثم بین آن $\frac{1}{2}$

(ن)
$$f'(x) = \frac{2(x^2-2)}{\sqrt{x^2-4}}$$
 : $D_f - \{-2; 2\}$ من $(x) = \frac{2}{\sqrt{x^2-4}}$

$$(10)$$
 . f عط جدو f تغیرات الدالة f .

$$(C_f)$$
 أنشئ المنحنى (C_f)