Roll No:	MIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	Constant Control of Co

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P. J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow Course B. TechBranch CSE Semester-3 Second Sessional Examination Year- (2021 - 2022)

Subject Name: DISCRETE STRUCTURE (ACSE 0306)

Time: 1.15Hours

[SET-A]

Max. Marks:30

General Instructions:

> This Question paper consists ofpages &questions.It comprises of three Sections, A, B, and C

Section A -Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.

Section B - Question No-3 is Short answer type questions carrying 5 marks each. Attempt any two out of three questions given.

➤ <u>Section C</u> -Question No. 4 & 5 are Long answer type (within unit choice) questions carrying 6 marks each. Attempt any one parta or b.

	0	SECTION – A	[08Marks]	
1.	All	All questions are compulsory		
SUK.	a.	What is the identity element In the group G = {2, 4, 6, 8} under multiplication modulo 10? A. 5 B. 9 C. 6 D. 12	(1)	CO2
	b.	If f be greatest integer function and g be modulas function then find the value of (gof)(5/3)-(fog)(5/3) 1. 1 2. 2 3. 0 4. 1.5	(1)	CO2
	c.	Let G={1,-1,i,-i} is a multiplicative group. Find the order of every element. 1. 1,1,2,2 2. 1,2,1,4 3. 2,1,4,1 4. 1,2,4,4	(1)	CO2
	d.	A house has 4 doors and 10 windows. In how many ways can a burglar rob the house entering through window and exiting through door. 1. 35 2. 33 3. 45 4. 40	(1)	CO2
2.	All q	uestions are compulsory	$(2 \times 2 = 4)$	
	a.	Show that 11 ⁿ - 4 ⁿ is divisible by 7 using mathematical induction.	(2)	CO2
	b	Draw the composition table for multiplication on the element in the set A={1,w,w²} where w is the cube root of unity. Show that it satisfy the properties of group.	(2)	CO2

0		SECTION - B	[10Marks]	
, 1	Ann	war any twoof the following-	(2×5=10)	
3.	a.	Present the statement of Lagranges theorem and provide its proving also.	(5)	59/
	b.	Define the cyclic group. How many generators are there of the cyclic group G of order 8?	(5)	CO2
	c.	What is permutation group? Define it properly and show that product of permutation group is not commutative.	(5)	CO2
		SECTION - C	[12Marks]	
	1 1 200	wer any one of the following-	(1×6=6)	
4	a.	Prove the following theorem: 1. The identity element of subgroup is same as that of group. 2. The inverse of any element in subgroup is same as inverse of element in group.	(6)	CO2
	1	If H is a subgroup of index 2 in G, then H is a normal subgroup of G.	(6)	
-	b.	swer any one of the following-	(1×6=6)	
5.	a.	Give the definition of following algebraic structure 1. Groupoid 2. Semigroup 3. Monoid 4. Group 5. Free semi group 6. SubGroup	(6)	CO2
	b.	Show that the following $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ forms a multiplicative group.	(6)	CO2
KIKS		N/Q		
		ciono		
		MIN ONE STILL		

Mankpro.com

Sank Pro. com