Bayesian variable selection approach in varying coefficient model: application in functional mapping

Marie Denis

in collaboration with B. Heuclin, F. Mortier, JM. Gion, S. Tisné

December 13, 2021

Outline

- Introduction
- Bayesian variable selection
- Varying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- 4 Bibliography

Objectives

Objectives during this presentation are:

- 1 to introduce Bayesian variable selection methods,
- to present a Bayesian variable selection method for selecting variables with effects evolving over time,
- 1 to apply Bayesian variable selection methods in the genetic context.

Outline

- Introduction
- 2 Bayesian variable selection
- Varying coefficient mode
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- 4 Bibliography

Why use variable selection approaches?

In various domains high-dimensional data:

- Genetic/Genomic: high-throughput sequencing,
- Ecophysiology/Ecology: high-throughput phenotyping,
- Economic: more and more variables,
-

resulting in a **high number** of variables p measured on a **limited number** of individuals $n \Rightarrow p > n$

For example in genetic:

- To identify the genomic regions involved in the variability of a phenotype Y
- \rightarrow n = 100 individuals genotyped with p = 5,000 SNPs (variables, X)

How to select the relevant SNPs? How to select the best subset of variables?

Variable selection in linear model

A linear model is a statistical model assuming that the response variable Y may be written as a linear combination of variables X:

$$\mathbf{Y} = \mu + \mathbf{X}_{1}\beta_{1} + \dots + \mathbf{X}_{p}\beta_{p} + \varepsilon, \quad \varepsilon \sim \mathcal{N}_{n}(0, \sigma^{2}Id_{n})$$

$$\Leftrightarrow \mathbf{Y} = \mu + \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}_{n}(0, \sigma^{2}Id_{n})$$

$$\Leftrightarrow \mathbf{Y} \sim \mathcal{N}_{n}(\mu + \mathbf{X}\beta, \sigma^{2}Id_{n})$$

with n the number of observations and p the number of variables.

Which variables are relevant ? \Leftrightarrow Which $\beta_i \neq 0$?

For example in genetic:

$$Y = \mu + SNP_1\beta_1 + \cdots + SNP_p\beta_p + \varepsilon$$

Which SNP is relevant \Leftrightarrow Which $\beta_j \neq 0$? \Leftrightarrow Does the position j affect the variability of phenotype $\stackrel{\textbf{Y}}{}$

Added compared to the initial presentation: Classical regression technique

Ordinary Least Square (OLS) regression

To minimize the loss function $L^{OLS}(\beta) = ||Y - X\beta||^2$:

$$\hat{\beta}^{OLS} = (X'X)^{-1}(X'Y)$$

But

- In presence of structures between predictors (as collinearity): $(X'X)^{-1}$ close to singularity and so, $\hat{\beta}^{OLS}$ not accurate
- When the number of predictors is high: $\hat{\beta}^{OLS}$ does not perform well in unseen datasets (overfitting), does not provide parsimonious models (Hadamard, 1902) and in very high dimension $(X'X)^{-1}$ not invertible
- → Need to use regularization methods

Variable selection in linear model

Classical approaches:

- Student test with multiple testing and adjustment for multiplicity,
- Comparison of all models by using criteria (R^2 , AIC, BIC, cross-validation, Fisher test),
- Backward stepwise selection, Forward stepwise selection

Problems: approaches not optimal or not feasible when p > n: need to use statistical methods allowing to **regularize** models

- → Frequentist context: penalized likelihood approaches (Lasso, Ridge, Elastic-Net,...) (Hoerl and Kennard, 1970; Tibshirani, 1996)
- \hookrightarrow Bayesian context: shrinkage priors (spike-and-slab prior, Bayesian Lasso prior,...)

In the following we will focus on Bayesian approaches

Introduction to Bayesian linear model

In the Bayesian context **prior** distributions are placed on the parameters (here: μ, β, σ^2)

Bayesian linear model

$$egin{aligned} oldsymbol{Y} | \mu, eta, \sigma^2 &\sim \mathcal{N}_{n}(\mu + oldsymbol{X}eta, \sigma^2 oldsymbol{I_n}) \ eta_j &\sim p_{eta}(eta_j), \ j = 1, \dots, p \ \mu &\sim p_{\mu}(\mu) \ \sigma^2 &\sim p_{\sigma^2}(\sigma^2) \end{aligned}$$

Usual prior distributions:

- σ^2 : Inverse Gamma distribution
- β : Normal distribution (no selection)
- μ: Uniform distribution

Bayesian variable selection

In the Bayesian context regularization is done by specifying shrinkage priors on the regression coefficients β .

Two classes of shrinkage priors:

- **Spike-and-slab priors**: Discrete mixture of two distributions (Mitchell and Beauchamp, 1988; George and McCulloch, 1997)
- Continuous shrinkage priors: Unimodal continuous distributions (Bayesian Lasso prior, Horseshoe prior, Elastic-Net prior, ...) (Kyung et al., 2010; Carvalho et al., 2008)

→ To shrink towards zero small effects while allowing large signals to escape from the overall shrinkage

Spike-and-slab prior

• Introduction of γ :

$$\gamma_j = \left\{ \begin{array}{c} 1 \text{ if variable } j \text{ is selected} \\ 0 \text{ otherwise} \end{array} \right.$$

$$eta_j | (\gamma_j = 1) \sim p_{Slab}(eta_j) \; , \qquad eta_j | (\gamma_j = 0) \sim p_{Spike}(eta_j)$$

• Bayesian hierarchical model:

$$\begin{aligned} & \mathbf{Y}|\mu, \beta, \sigma^2 \sim \mathcal{N}_n(\mu + \mathbf{X}_1\beta_1 + \dots + \mathbf{X}_p\beta_p, \sigma^2 \mathbf{I}_n) \\ & \beta_j|\gamma \sim \gamma_j \mathcal{N}(0, \sigma_\beta^2) + (1 - \gamma_j)\delta_0, \ \ j = 1, \dots, p \end{aligned}$$

• The estimation of $\mathbb{P}(\gamma_j = 1|Y)$ gives access to the a posteriori probability of variable selection

Figure 1: Spike-and-Slab prior distribution. Slab part in blue and spike part in red

Continuous shrinkage prior

Penalized likelihood approaches:

$$\hat{\beta} = \operatorname{argmin}_{\beta} \{ \parallel \mathbf{Y} - \mathbf{X}\beta \parallel^2 + \nu \sum_{j=1}^{p} \phi(\beta_j^2) \}$$

with ν the penalty parameter and ϕ the penalization function.

 Bayesian version of penalized likelihood approaches:

$$eta_j | au^2, \omega_j^2 \sim \mathcal{N}(0, au^2 \omega_j^2) \;\; j = 1, \dots, p$$
 $eta^2, \omega_i^2 \sim \mathcal{F}(au^2; \omega_i^2)$

Figure 2: Continuous shrinkage prior distributions

where

- ullet ${\cal F}$ is a distribution to specify,
- ullet au^2 controls the global shrinkage and ω_i^2 controls the individual shrinkage
- → Horseshoe prior, Bayesian Lasso prior (Laplace prior), ...

R packages for implementing Bayesian variable selection

Spike-and-slab prior

- BGLR (Pérez and de Los Campos, 2014)
- BoomSpikeSlab (Scott et al., 2021)

Continuous shrinkage priors

- bayesreg (Makalic and Schmidt, 2016)
- BGLR (Pérez and de Los Campos, 2014)
- horseshoe (van der Pas et al., 2016)
- fastHorseshoe (Hahn et al., 2016)
- dlbayes (Zhang and Li, 2018)

Monte Carlo Markov Chain (MCMC) algorithms are used to infer parameters

Application in genetic

Objective: to select the genetic markers involved in the variation of the compactness of *Arabidopsis thaliana* (data publicly available at phenotypes (Loudet, 2018) and genotypes)

- Individuals: n = 357 under well-watered environmental condition
- Markers: SNP, q = 532
- Phenotypic trait: compactness (Ratio between the projected rosette area and the convex hull area)
- Measurement frequency: daily for T=21

Figure 3: Arabidopsis thaliana (Marchadier et al., 2018)

Application in genetic

Evolution of the compactness over time for each individual:

In this first part the objective is to identify markers involved in the variability of the compactness at T=21.

Bayesian variable selection with R

Two R packages for implementing Bayesian variable selection with the spike-and-slab prior and the horseshoe prior:

- bayesreg allows to fit Bayesian regression models with continuous shrinkage priors (ridge, lasso, horsehoe, horsehoe+) for normal and non-normal distribution (Poisson, geometric, logistic, binomial, Laplace, Student)
- BoomSpikeSlab allows to fit Bayesian regression models with a spike-and-slab prior.

 \hookrightarrow Selection of 8 markers involved in the variability of the compactness at T=21

BoomSpikeSlab

> library(BoomSpikeSlab)

To run the main function lm.spike

```
> # to specify the prior inclusion probabilities equal to 0.1
> prior <- SpikeSlabPrior(X.50, y.21, prior.inclusion.probabilities = rep(0.1,ncol(X.50)))
> res.ss <- lm.spike(y.21 ~ X.50-1, niter = niter, prior = prior)
> # posterior inclusion probabilities
> pp <- apply(res.ss$beta, 2, function(c){sum(c != 0) })/niter
> #selected markers
> which(pp > 0.5)
X.50c1_loc26.AA X.50c2_loc28.AA X.50c2_loc47.AA X.50c2_loc63.AA X.50c3_loc9.AA
                             17
                                              19
                                                              21
                                                                               23
X.50c3_loc75.AA X.50c5_17844.AA X.50c5_26671.AA
             31
                             46
                                              50
```

> beta.ss <- colMeans(res.ss\$beta)</pre>

To plot the estimated effects

```
> plot(rowMeans(res.hs$beta[pp> 0.5,]), ylab = "Effects", xlab = "Markers", ylim = c(-1,2))
> points(beta.ss[pp> 0.5], col =2)
```


How does the genetic architecture evolve over time?

We have identified the genetic markers involved in the variability of the compactness measured at $\mathcal{T}=21\,$

- Which are the genetic markers involved in the variability of the compactness measured at different time points? Are they the same over time?
- How are their effects? Are they the same over time ?

Need to analyze all the measures simultaneously, to select the relevant markers and to estimate their effects over time

⇒ Varying coefficient model

Outline

- Introduction
- 2 Bayesian variable selection
- Warying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- 4 Bibliography

From linear model to varying coefficient model

We assume that the response variables is followed over T times such that for the individual i we have: $y_i = (y_i^{t_1}, \dots, y_i^{t^T})'$.

Linear model:

$$y_i^{t_1} = \mu^{t_1} + (\beta_1^{t_1}, \dots, \beta_q^{t_1}) \begin{pmatrix} X_{i,1} \\ \vdots \\ X_{i,q} \end{pmatrix} + \varepsilon_i^{t_1}, \quad \varepsilon_i^{t_1} \sim N(0, \sigma^2)$$

From linear model to varying coefficient model

We assume that the response variables is followed over T times such that for the individual i we have: $y_i = (y_i^{t_1}, \dots, y_i^{t^T})'$.

Linear model:

From linear model to varying coefficient model

We assume that the response variables is followed over T times such that for the individual i we have: $y_i = (y_i^{t_1}, \dots, y_i^{t^T})'$.

Linear model:

$$\begin{array}{rclcrcl} y_{i}^{t_{1}} & = & \mu^{t_{1}} & + & (\beta_{1}^{t_{1}}, & \dots, & \beta_{q}^{t_{1}}) \\ y_{i}^{t_{2}} & = & \mu^{t_{2}} & + & (\beta_{1}^{t_{2}}, & \dots, & \beta_{q}^{t_{2}}) \\ \vdots & & \vdots & & \vdots & \vdots & \vdots \\ y_{i}^{t_{T}} & = & \mu^{t_{T}} & + & (\beta_{1}^{t_{T}}, & \dots, & \beta_{q}^{t_{T}}) \end{array} \begin{pmatrix} X_{i,1} \\ + & \varepsilon_{i}^{t_{2}}, & \varepsilon_{i}^{t_{2}} \sim N(0, \sigma^{2}) \\ \vdots \\ X_{i,q} \end{pmatrix} + & \varepsilon_{i}^{t_{T}}, & \varepsilon_{i}^{t_{T}} \sim N(0, \sigma^{2}) \end{array}$$

- Simple analysis at each time point does not take into account the correlations over the time
 - → Can lead to false positive detection and loss of statistical power

Varying coefficient model

Varying coefficient model (Hastie and Tibshirani, 1993)

$$\begin{pmatrix} y_i^{t_1} \\ \vdots \\ y_i^{t_T} \end{pmatrix} = \begin{pmatrix} \mu^{t_1} \\ \vdots \\ \mu^{t_T} \end{pmatrix} + \begin{pmatrix} \beta_1^{t_1} & \cdots & \beta_q^{t_1} \\ \vdots & & \vdots \\ \beta_1^{t_T} & \cdots & \beta_q^{t_T} \end{pmatrix} \begin{pmatrix} X_{i,1} \\ \vdots \\ X_{i,q} \end{pmatrix} + \begin{pmatrix} \varepsilon_i^{t_1} \\ \vdots \\ \varepsilon_i^{t_T} \end{pmatrix}, \quad \varepsilon_i \sim N_T(0,\sigma^2\Gamma) \\ \vdots \\ \varepsilon_i^{t_T} \end{pmatrix}, \quad \tau_{i,j} = \rho^{|i-j|} \\ -1 < \rho < 1$$

Varying coefficient model

Varying coefficient model (Hastie and Tibshirani, 1993)

$$\begin{pmatrix} y_i^{t_1} \\ \vdots \\ y_i^{t_T} \end{pmatrix} = \begin{pmatrix} \mu^{t_1} \\ \vdots \\ \mu^{t_T} \end{pmatrix} + \begin{pmatrix} \beta_1^{t_1} & \cdots & \beta_q^{t_1} \\ \vdots & & \vdots \\ \beta_1^{t_T} & \cdots & \beta_q^{t_T} \end{pmatrix} \begin{pmatrix} X_{i,1} \\ \vdots \\ X_{i,q} \end{pmatrix} + \begin{pmatrix} \varepsilon_i^{t_1} \\ \vdots \\ \varepsilon_i^{t_T} \end{pmatrix}, \quad \varepsilon_i \sim N_T(0,\sigma^2 \Gamma)$$

Varying coefficient model

Varying coefficient model (Hastie and Tibshirani, 1993)

$$\begin{pmatrix} \gamma_i^{t_1} \\ \vdots \\ \gamma_i^{t_T} \end{pmatrix} = \begin{pmatrix} \mu^{t_1} \\ \vdots \\ \mu^{t_T} \end{pmatrix} + \begin{pmatrix} \beta_1^{t_1} & \cdots & \beta_q^{t_1} \\ \vdots & & \vdots \\ \beta_1^{t_T} & \cdots & \beta_q^{t_T} \end{pmatrix} \begin{pmatrix} X_{i,1} \\ \vdots \\ X_{i,q} \end{pmatrix} + \begin{pmatrix} \varepsilon_i^{t_1} \\ \vdots \\ \varepsilon_i^{t_T} \end{pmatrix}, \quad \varepsilon_i \sim N_T(0, \sigma^2 \Gamma)$$

 $(\beta_i^{t_1}, \dots, \beta_i^{t_T})'$ are assumed to be a realization of a function $\beta_i(t)$

- \hookrightarrow Estimation of $\beta_i(t)$ with functional or non functional methods
- \hookrightarrow <u>Selection</u> of significant variables X_j such that $(\beta_j^{t_1}, \dots, \beta_j^{t_T})' = (0, \dots, 0)'$ with a spike-and-slab prior

Outline

- Introduction
- Bayesian variable selection
- Warying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- 4 Bibliography

What is P-spline?

P-spline = B-spline + Penalisation

B-spline (Eubank, 1999)

 Approximates a real function as a linear combination of B-spline basis functions defined on K knots (K-1 intervals):

$$\beta_j(t) = \sum_{k=1}^{\nu} B_k b_{k,j} = B b_j,$$

Functional method: P-spline (Eilers and Marx, 1996)

B-spline approach strongly depends on the number of knots and the choice of their positions

- → A misspecification may lead to over- or under-fitting.
- → Penalized B-splines (P-splines) induce smoothness,
- → Penalize the first- or second-order finite differences in adjacent spline regression coefficients

Bayesian P-splines (Lang and Brezger, 2004):

Replace the penalties by their stochastic analogues

- \hookrightarrow first-order random walk such that $b_{k,j} \sim N(b_{k-1,j}, \lambda_j^{-1})$
- \Leftrightarrow $b_j|\lambda_j\sim N_{\nu}(0,(\lambda_jK)^{-1}),$ K the known appropriate penalty matrix defined by

$$K = \begin{pmatrix} 1 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{pmatrix}.$$

Functional versus non functional methods

Functional method: P-spline interpolation (Eilers and Marx, 1996)

$$\begin{pmatrix} \beta_j^{t_1} \\ \vdots \\ \beta_j^{t_T} \end{pmatrix} = \sum_{k=1}^{\nu} B_k b_{k,j} = B b_j,$$

+ penalization on $(b_{k,i} - b_{k-1,i})$ of order 1 or 2 $\hookrightarrow PS_1$ and PS_2

Non functional method: direct estimation of time coefficient functions) Li and Sillanpää (2013)

$$\begin{pmatrix} \beta_j^{t_1} \\ \vdots \\ \beta_j^{t_T} \end{pmatrix} = b_j$$

+ penalization on $(b_{t\tau,j} - b_{t\tau-1,j})$ of order 1 or 2

 $\hookrightarrow RW_1$ and RW_2

In both methods we assume that:

$$b_j \sim \mathcal{N}(0, (\lambda_j K)^{-1})$$

with K a structured matrix.

- Warying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results

Selection in varying coefficient model

Selection of relevant variables X_i , j = 1, ..., p:

$$(b_{t_1,j},\ldots,b_{t_T,j})'=(0,\ldots,0)'?$$

Group spike-and-slab prior on b_i (Ghosh and Ghattas, 2015; Yang and Narisetty, 2020):

$$b_j | \gamma_j, \lambda_j \sim \gamma_j N_{\nu}(0, (\lambda_j K)^{-1}) + (1 - \gamma_j) \delta_{\nu}(0)$$

 $\lambda_j \sim \textit{Gamma}(s, r),$
 $\gamma_j \sim \textit{Ber}(\pi),$

Bayesian Varying Coefficient model using Group Spike-and-Slab prior Heuclin et al. (2021)

Bayesian hierarchical model

$$Y_i|m, b, \rho, \sigma^2 \sim N_T(Bm + BbX_i, \sigma^2\Gamma)$$

 $m|\lambda_0 \sim N_v(0, (\lambda_0K)^{-1})$
 $b_j|\gamma_j, \lambda_j \sim \gamma_j N_v(0, (\lambda_j^2K)^{-1}) + (1 - \gamma_j)\delta_v(0), \quad j = 1, \dots, q$
 $\lambda_j \sim Gamma(s, r), \quad j = 0, \dots, q$
 $\gamma_j \sim Ber(\pi), \quad j = 1, \dots, q$
 $\rho \sim U_{[-1,1]}$
 $\sigma^2 \sim I - Gamma(s_{\sigma^2}, r_{\sigma^2})$

To infer the distribution of $m, b_i, \lambda_i, \gamma_i, \rho, \sigma^2 | Y$:

→ Gibbs algorithm (Markov Chain Monte Carlo algorithm)

- Introduction
- Bayesian variable selection
- Warying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- Bibliography

VCGSS package

VCGSS: an R package for implementing the sparse Bayesian Varying Coefficient model using Group Spike-and-Slab prior

→ Available on https://github.com/Heuclin/VCGSS

We will explore the two main functions:

VCM_fct()

To run the Bayesian Varying Coefficient model using Group Spike-and-Slab prior.

- allows to implement functional and non functional methods with penalty of order 1 or 2,
- calls an MCMC sampler implementation in C++.
- allows to run many repetitions in parallel,
- applies convergence diagnostics

plot_functional_effects():

To visualize the dynamic effects

To run the model

To run the model with a P-spline interpolation using a second order difference penalty

```
> library(VCGSS)
> fit <- VCM_fct(Y, X, ENV = NULL, selection = TRUE,
                 interpolation = "P-spline",
                 order diff = 2.
                 save = FALSE, core = -1,
                 rep = 2, niter = 1000, burnin = 500)
```

Arguments:

- selection: TRUE/FALSE
- interpolation: functional method = "P-spline", "B-spline", "Legendre", non-functional method = "RW",
- order_diff: order of the difference penalty,
- niter, burnin, thin: MCMC parameters.
- ...

- Introduction
- Bayesian variable selection
- Warying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- Bibliography

Application in functional mapping

Objectives:

To select the genetic markers involved in the variation of the compactness of Arabidopsis thaliana over time and to estimate their functional effects

To reduce the collinearity between adjacents markers

→ We remove all markers with correlations higher than 0.95: 125 markers

Application on Arabidopsis thaliana

Marginal posterior probabilities

Results

- 14 markers with posterior probability greater than 0.5
- Switch between some markers: Identification of genomic regions

Figure 4: Marginal posterior inclusion probabilities for the 125 markers

Application on Arabidopsis thaliana

Estimations of varying effects

Estimation of the effects for markers with the highest marginal posterior probabilities (PS_1: blue, PS_2: black, RW_2: red)

Conclusions

Conclusions

- Estimation:
 - Functional approach allows reduction of the number of parameters
 - Non-parametric interpolation does not restrict the form of the effect curves
 - P-spline allows fitting smooth or rather complicated curve
- Selection:
 - Spike-and-slab does not give biased estimations
 - Spike-and-slab has a good selection performance
- Various applications: Arabidopsis, Eucalyptus, Human, ...

Perspectives

Group spike-and-slab can have poor mixing when T increases

⇔ extend continuous shrinkage prior: group horseshoe prior.

Results

Thanks for your attention !

- Introduction
- Bayesian variable selection
- Varying coefficient model
 - Estimation of $\beta_i(t)$
 - Selection of relevant variables X_i
 - VCGSS package
 - Results
- Bibliography

- Carvalho, C. M., Polson, N. G., and Scott, J. G. (2008). The horseshoe estimator for sparse signals. Biometrika, 97(2):465-480.
- De la Cruz-Mesía, R., Quintana, F. A., and Marshall, G. (2008). Model-based clustering for longitudinal data. Computational Statistics & Data Analysis, 52(3):1441–1457.
- Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B -splines and penalties. Statistical Science, 11(2):89-121.
- Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. CRC press.
- George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection. Statistica sinica, pages 339-373.
- Ghosh, J. and Ghattas, A. (2015). Bayesian Variable Selection Under Collinearity. The American Statistician, 69(3):165-173.
- Hahn, P. R., He, J., and Lopes, H. (2016). Elliptical slice sampling for bayesian shrinkage regression with applications to causal inference. URL http://faculty.chicagobooth.edu/richard. hahn/research. html.
- Hastie, T. and Tibshirani, R. (1993). Varying-Coefficient Models. Journal of the Royal Statistical Society. Series B (Methodological), 55(4):757-796.
- Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1):55.
- Kyung, M., Gill, J., Ghosh, M., Casella, G., et al. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5(2):369-411.
- Lang, S. and Brezger, A. (2004). Bayesian P-Splines. Journal of Computational and Graphical Statistics, 13(1):183-212.
- Li, Z. and Sillanpää, M. J. (2013). A Bayesian Nonparametric Approach for Mapping Dynamic Quantitative Traits. Genetics, 194(4):997-1016.
- Loudet, O. (2018). Raw phenotypic data obtained on the arabidopsis rils with the phenoscope robots (marchadier, hanemian, tisné et al., 2018).
- Makalic, E. and Schmidt, D. F. (2016). High-dimensional bayesian regularised regression with the bayesreg package. arXiv preprint arXiv:1611.06649.
- Marchadier, E., Hanemian, M., Tisne, S., Bach, L., Bazakos, C., Gilbault, E., Haddadi, P., Virlouvet, L., and Loudet, O. (2018). The complex genetic architecture of shoot growth natural variation in Arabidoosis thaliana.
- Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. *Journal of the american statistical association*, 83(404):1023–1032.
- Monni, S. and Tadesse, M. G. (2009). A stochastic partitioning method to associate high-dimensional responses and covariates. Bayesian Analysis, 4(3):413–436.
- Pérez, P. and de Los Campos, G. (2014). Genome-wide regression and prediction with the bglr statistical package. Genetics, 198(2):483–495.
- Scott, S. L., Scott, M. S. L., and Boom, D. (2021). Package 'boomspikeslab'.
- Tadesse, M. G., Sha, N., and Vannucci, M. (2005). Bayesian variable selection in clustering high-dimensional data. *Journal of the American Statistical Association*, 100(470):602–617.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288. van der Pas, S., Scott, J., Chakraborty, A., and Bhattacharya, A. (2016). horseshoe: Implementation of the horseshoe prior. *R package version 0.1. 0.*
- Value of Fas, 3., 5.00t, 3., Chakrabory, A., and Bhattacharya, A. (2010). Horseshoe: Implementation of the horseshoe prior. A package version 0.1. 0.

 Xu, P., Peng, H., and Huang, T. (2018). Unsupervised learning of mixture regression models for longitudinal data. Computational Statistics & Data

 Analysis, 125:44–56.

Yang, X. and Narisetty, N. N. (2020). Consistent group selection with bayesian high dimensional modeling. Bayesian Analysis.

Zhang, S. and Li, M. (2018). "dlbayes" available at cran, r package for implementing the dirichlet-laplace shrinkage prior in bayesian linear regression and variable selection.

Why classical regression techniques do not work?

Ordinary Least Square (OLS) regression

To minimize the loss function $L^{OLS}(\beta) = ||Y - X\beta||^2$:

$$\hat{\beta}^{OLS} = (X'X)^{-1}(X'Y)$$

But when the number of predictors is high:

- \(\hat{\textit{O}} \) does not perform well in unseen datasets (overfitting), does not provide parsimonious models (Hadamard, 1902) and in very high dimension (X'X)⁻¹ not invertible
- Need to use regularization methods