Difusão de Compton

Instituto Superior Técnico Mestrado Integrado em Engenharia Física Tecnológica LFAOFR Grupo 3D - Terça-feira

B. Silva | J. Cunha(GAY) | G. Soares | D. Valada

26 de Novembro de 2017

VERIFICAR CASAS DECIMAIS E ALGARISMOS SIGNIFICATIVOS NAS TABELAS METER SINAL NOS DESVIOS EM SIGMA?????

I. Calibração

Para a calibração, foram utilizadas em simultâneo as seguintes fontes: ^{137}Cs , ^{22}Na e ^{57}Co . Foram contudo apenas utilizados os picos disponíveis bem definidos, ou seja, aqueles que não se encontravam em sobreposição com outros picos.

Pico	Area _{total} (ctg)	Area _{sinal} (ctg)	Centróide (canal)	FWHM (canal)	E _{tab} (keV)	E_{exp} (keV)	Desvio σ
Abs _{tot} ¹³⁷ Cs	11934 ± 109	5088 ± 290	180.35 ± 0.17	28.07	122	112.19 ± 0.23	42.2
Aniquilação β^+ ²² Na	8495 ± 92	5604 ± 282	683.34 ± 0.33	58.45	511	508.24 ± 0.41	6.8
Abs _{tot} ⁵⁷ Co	9175 ± 96	7864 ± 216	881.10 ± 0.33	68.59	662	663.96 ± 0.45	-4.3

Tabela 1: Resultados experimentais obtidos para a calibração em energia.

De referir que o erro do centróide é: $\sigma_C = \frac{FWHM}{2\sqrt{2ln(2)Area_{sinal}}}$

Realizou-se então uma calibração energia-canal da forma: $E = P_0C + P_1$, recorrendo aos valores tabelados para a energia dos picos presentes na tabela anterior, que originou o ajuste seguinte, cujos parâmetros permitiram calcular a E_exp e o respetivo erro dado por:

$$\sigma_E = \sqrt{P_0^2 \sigma_C^2 + C^2 \sigma_{P_0}^2 + \sigma_{P_1}^2}$$

Figura 1: Ajuste da relação energia-canal.

P_0 (keV/canal)	P ₁ (keV)	χ^2/ν
0.78740 ± 0.00037	-29.82 ± 0.18	171/1

Tabela 2: *Parâmetros de ajuste.*

O parâmetro P_0 revela um erro bastante reduzido, o que se pode dever ao reduzido erro dos pontos. O parâmetro P_1 revela um valor bastante abaixo do valor esperado (P_1 =0), apresentando um valor negativo para a energia do canal 0, valor esse de energia que não tem sentido físico neste contexto. Verifica-se então que a relação de proporcionalidade do amplificador não é respeitada, sendo esta discrepância devida a erros sistemáticos. Já o valor de χ^2/μ é bastante elevado, o que se deve ao número reduzido de pontos usados para a calibração e/ou uma eventual subestimação do erro dos centróides.

II. Energia do fotão difundido em função do ângulo

I. Ajustes

Realizaram-se vários ensaios variando a posição angular da fonte em relação ao detetor (para os ângulos de 0º e 10º foi também feita uma aquisição sem difusor, de modo a conseguir-se distinguir a influência dos fotões não difundidos no detetor). Para cada um dos ângulos estudados foi ajustado o espectro obtido à equação:

$$F(x) = P_0 e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma_g}\right)^2} + e^{P_1 + P_2 x} \tag{1}$$

onde F(x) são as contagens do canal, P_0 , μ , σ_g a amplitude do pico da gaussiana, o centróide, σ e o desvio padrão da gaussiana, respetivamente. P_1 e P_2 são parâmetros de ajuste da componente exponencial, exponencial essa com unidades de contagens(traduz o comportamento da corrente negra).

Inicialmente, os ajustes foram feitos utilizando intervalos de canais grandes, visto não se conhecer o desvio padrão da gaussiana. Utilizaram-se os parâmetros obtidos para este ajuste como aproximação inicial de um novo segundo ajuste, desta na zona em torno da gaussiana dada por $[\mu - 4\sigma_g; \mu + 4\sigma_g]$, dado que a componente exponencial teria uma importância mais reduzida (o que é desejável, visto isto ser uma aproximação ao comportamento da corrente negra, evitando-se o erro que seria introduzido por esta aproximação). Note-se que foi considerado um intervalo de $2 \times 4\sigma_g$, e não $2 \times 3\sigma_g$, como é habitual, de modo a compensar uma possível subestimação de σ_g , sendo preferível considerar um intervalo maior a desprezar pontos de interesse.

Figura 2: Ajuste à Eq. 1 para $\theta = 0^{\circ}$ com difusor.

Figura 4: Ajuste à Eq. 1 para $\theta = 10^{\circ}$ com difusor.

Figura 3: Ajuste à Eq. 1 para $\theta = 0^{\circ}$ sem difusor.

Figura 5: Ajuste à Eq. 1 para $\theta = 10^{\circ}$ sem difusor.

Figura 6: Ajuste à Eq. 1 para $\theta = 20^{\circ}$.

Figura 7: *Ajuste à Eq. 1 para* $\theta = 30^{\circ}$.

Figura 8: Ajuste à Eq. 1 para $\theta = 40^{\circ}$.

Figura 9: Ajuste à Eq. 1 para $\theta = 50^{\circ}$.

Figura 10: Ajuste à Eq. 1 para $\theta = 70^{\circ}$.

Figura 11: Ajuste à Eq. 1 para $\theta = 90^{\circ}$.

θ (°)	t _{aq} (s)	P ₀ (ctg)	μ (Canal)	σ_g (Canal)	P_1	P_2 (Canal ⁻¹)	χ^2/ν (1° ajuste)	χ^2/ν (2° ajuste)
0 (s/ difusor)	20	118.0 ± 1.5	897.53 ± 0.38	33.40 ± 0.36	9.8 ± 1.1	-0.0101 ± 0.0014	1295/707=1.83	298/237=1.26
0 (c/ difusor)	20	84.2 ± 1.3	896.15 ± 0.45	32.85 ± 0.51	11.2 ± 2.6	-0.0120 ± 0.0033	1073/698=1.54	241/228=1.06
10 (s/ difusor)	30	72.7 ± 1.2	885.17 ± 0.50	33.49 ± 0.50	5.42 ± 0.81	-0.0053 ± 0.0010	1093/695=1.57	283/236=1.20
10 (c/ difusor)	30	61.6 ± 1.1	887.48 ± 0.55	32.61 ± 0.61	6.4 ± 1.5	-0.0064 ± 0.0019	949/691=1.37	267/231=1.16
20 (c/ difusor)	180	9.85 ± 0.47	804.8 ± 2.6	49.1 ± 2.8	4.43 ± 0.18	-0.00407 ± 0.00027	864/695=1.24	479/425=1.13
30 (c/ difusor)	210	8.76 ± 0.38	759.0 ± 2.5	55.4 ± 2.3	3.21 ± 0.19	-0.00295 ± 0.00029	748/701=1.07	432/442=0.98
40 (c/ difusor)	290	11.37 ± 0.51	697.2 ± 2.1	45.9 ± 2.2	3.72 ± 0.20	-0.00320 ± 0.00031	780/709=1.10	412/352=1.17
50 (c/ difusor)	300	7.64 ± 0.50	626.0 ± 2.9	41.7 ± 3.1	4.21 ± 0.16	-0.00402 ± 0.00029	998/851=1.17	373/330=1.13
70 (c/ difusor)	600	17.73 ± 0.93	505.0 ± 1.8	32.9 ± 2.0	5.441 ± 0.041	-0.00517 ± 0.00011	821/619=1.33	509/437=1.17
90 (c/ difusor)	800	22.0 ± 1.5	411.7 ± 1.8	24.2 ± 1.9	5.95 ± 0.10	-0.00582 ± 0.00027	405/396=1.02	181/187=0.97

Tabela 3: Resultados dos ajustes das figuras 2 a 11.

Como se pode verificar pelos valores de χ^2/ν , na maior parte dos casos, o valor diminui, tornando-se mais próximo de 1, confirmando que a aproximação inicial feita e o intervalo de ajuste menor permitiram diminuir os erros causados pela aproximação do modelo.

No caso da difusão para os 30° e 90° , este valor assumiu um comportamento inesperado, e tornou-se menor do que 1, mas os desvios para 1 são pequenos o suficiente para se considerar que foi somente variação estatística.

Para os 40° , observa-se que o valor de χ^2/ν aumenta ligeiramente, mas devido à pequena diferença, e por uma questão de coerência, consideraram-se os valores do segundo ajuste.

Como se estava à espera, pela relação de Compton, o valor do centróide (μ) diminuiu com o ângulo. Verifica-se, no entanto, que o comportamento face à presença de difusor não foi o esperado para os 10° , onde a presença do difusor aumentou o valor do centróide. Apesar desta destabilização, pela diferença entre os ensaios a 0° , facilmente se atribui esta variação à dispersão estatística natural.

II. Obtenção da massa do eletrão

A partir da calibração em energia foram obtidos os valores experimentais para as energias dos fotões difundidos sendo estes comparados com os valores tabelados obtidos a partir da Eq. 2

F' —	E_{γ}	(2	١,
L_{γ} —	$1 + \frac{E_{\gamma}}{m_{\alpha}c^2}(1 - \cos\theta)$	(2	.,

θ (°)	μ (canal)	E'_{γ} (keV)	$E'_{\gamma_{tab}}$ (keV)	Desvio (#σ)
0	896.15 ± 0.45	675.81 ± 0.52	662	-26.8
10	887.48 ± 0.55	668.98 ± 0.57	649.22	-34.5
20	804.8 ± 2.6	603.9 ± 2.1	614.03	4.9
30	759.0 ± 2.5	567.8 ± 2.0	564.09	-1.8
40	697.2 ± 2.1	519.2 ± 1.7	508.02	-6.5
50	626.0 ± 2.9	463.1 ± 2.3	452.57	-4.5
70	505.0 ± 1.8	367.8 ± 1.4	357.37	-7.4
90	411.7 ± 1.8	294.4 ± 1.4	288.39	-4.2

Tabela 4: Comparação dos resultados obtidos com os tabelados previstos pela Eq. 2.

Pela análise dos desvios em $\#\sigma$, pode-se verificar na grande maioria dos valores a existência de um desvio em sigmas negativo, no entanto o valor de 20° revela que o mesmo não é suficientemente grande para se sobrepor totalmente aos erros estatísticos. A partir dos valores da Tab. 4 fez-se um ajuste à Eq. 3 com o objetivo de obter a massa de repouso do eletrão e energia da radiação incidente.

$$\frac{1}{E_{\gamma}'} = P_0(1 - \cos\theta) + P_1 \tag{3}$$

Figura 12: *Ajuste efetuado para obtenção da massa do eletrão.*

$P_0 \; (MeV^{-1})$	$P_1 \ (MeV^{-1})$	χ^2/ν
1.9199 ± 0.0099	1.47561 ± 0.00084	225/6

Tabela 5: *Parâmetros de ajuste.*

Uma vez que $m_e c^2 = \frac{1}{P_0}$ e $E_{\gamma} = \frac{1}{P_1}$ tem-se:

$m_e c^2 exp$ (keV)	$m_e c^2 tab$ (keV)	Desvio (# σ)	$E_{\gamma}exp$ (keV)	$E_{\gamma}tab$ (keV)	Desvio (#σ)
520.9 ± 2.7	511	-3.7	677.69 ± 0.39	662	-40

Tabela 6: Valores da massa do eletrão e da energia do fotão do Cs-137 obtidos pelo ajuste e tabelados.

Tal como referido anteriormente, os valores apresentam um desvio sistemático negativo, o que irá refletir nos respetivos valores obtidos para a massa de repouso do eletrão e para a energia da radiação incidente. Apesar de tudo, em termos de exatidão, os valores encontram-se bastante satisfatórios, especialmente no caso da massa do eletrão.

III. Secção eficaz diferencial em função do ângulo de difusão

Para o estudo da secção eficaz diferencial, é necessário determinar-se o número de difusões de Compton detetados por unidade de tempo (R_{det}) para cada ângulo de difusão θ . Para tal, começou-se por calcular as áreas de cada uma das gaussianas a partir da Eq. 4

$$N = \sqrt{2\pi} P_0 \sigma_g \qquad \sigma_N = \sqrt{2\pi P_0^2 \sigma_{\sigma_g}^2 + 2\pi \sigma_g^2 \sigma_{P_0}^2}$$
 (4)

Em seguida, fez-se uma correção destes valores tendo em conta o quociente das áreas obtidos para o ângulo de $0^{\rm o}$ com e sem difusor. De facto esta correção só será relevante para o valor relativo aos $10^{\rm o}$, uma vez que todos os outros valores foram obtidos com difusor, não havendo emissão de γ 's diretos, sendo o termo corretivo nulo neste caso. Da mesma forma obtém-se que para o ângulo de $0^{\rm o}$ que o valor de N_c será nulo, pelo que o seu respetivo rate R_{det} não será tido em conta.

$$N_c = N_{c/dif} - N_{s/dif} \frac{N_{0_{c/dif}}}{N_{0_{s/dif}}}$$
 (5)

$$\sigma_{N_c} = \sqrt{\sigma_{N_c/dif}^2 + \left(\frac{N_{0_c/dif}}{N_{0_s/dif}}\right)^2 \sigma_{N_s/dif}^2 + \left(\frac{N_{s/dif}}{N_{0_s/dif}}\right)^2 \sigma_{N_{0_c/dif}}^2 + \left(\frac{N_{s/dif}N_{0_{c/dif}}}{N_{0_s/dif}^2}\right)^2 \sigma_{N_{0_s/dif}}^2}$$
(6)

$$R_{det} = \frac{N_c}{t_{aq}} \qquad \sigma_{R_{det}} = \frac{\sigma_{N_c}}{t_{aq}} \tag{7}$$

θ (°)	t_{aq} (s)	N (ctg · canal)	N_c (ctg · canal)	R_{det} (ctg · canal · s ⁻¹)
0 (s/ difusor)	20	9879 ± 166	-	-
0 (c/ difusor)	20	6931 ± 151	-	-
10 (s/ difusor)	30	6102 ± 138	-	-
10 (c/ difusor)	30	5032 ± 132	751 ± 202	25.0 ± 6.7
20 (c/ difusor)	180	1213 ± 90	1213 ± 90	6.74 ± 0.50
30 (c/ difusor)	210	1216 ± 74	1216 ± 74	5.79 ± 0.35
40 (c/ difusor)	290	1307 ± 85	1307 ± 85	4.51 ± 0.29
50 (c/ difusor)	300	799 ± 79	799 ± 79	2.66 ± 0.26
70 (c/ difusor)	600	1464 ± 116	1464 ± 116	2.44 ± 0.19
90 (c/ difusor)	800	1329 ± 139	1329 ± 139	1.66 ± 0.17

Tabela 7: Valores corrigidos das contagens (N_c) e rates (R_{det}) para os vários ângulos de difusão.

A partir dos valores de R_{det} pretende-se saber o número de difusões de Compton que incidem no detetor por unidade de tempo, dado pela Eq. 8. No entanto, uma vez que a energia dos fotões difundidos varia com o ângulo de difusão é preciso ter em conta como varia a eficiência intrínseca do detetor com a energia.

$$R_{inc} = \frac{R_{det}}{\epsilon_{int}} \qquad \sigma_{R_{inc}} = \sqrt{\frac{1}{\epsilon_{int}^2} \sigma_{R_{det}}^2 + \left(\frac{R_{det}}{\epsilon_{int}^2}\right)^2 \sigma_{\epsilon_{int}}^2}$$
 (8)

Figura 13: Variação da eficiência intrínseca com a energia para detetores de diferentes dimensões. O detetor utilizado é de 2×2 (5 por 5 cm).

Uma vez que a relação apresentada na Fig. 14 entre a ϵ_{int} e a energia é linear, sendo a escala em cada um dos eixos logarítmica tem-se que esta relação deve ser dada por uma expressão do tipo:

$$log(\epsilon_{int}) = P_0 + P_1 log(E) <=> e^{log(\epsilon_{int})} = e^{P_0 + P_1 log(E)} <=> \epsilon_{int} = e^{P_0} E^{P_1}$$

$$\tag{9}$$

Recolheram-se então os valores da Fig. 14 para um detetor 2x2 e fez-se um ajuste à Eq. 9

Figura 14: Ajuste da eficiência intrínseca do detetor em função da energia.

P_0 (keV)	P_1	χ^2/ν
-1.831 ± 0.073	-1.099 ± 0.084	0.76/3

Tabela 8: Parâmetros de ajuste do gráfico da Fig. 13.

Tal como seria de esperar, o valor de χ^2/ν é bastante reduzido, uma vez que foi necessário sobreestimar os erros para os valores da Fig. 14, dada a falta de sensibilidade do olho humano a escalas logarítmicas. Para além do mais, os valores utilizados apresentam uma correlação entre si, pelo menos em primeira análise, justificando este mesmo valor.

θ (°)	E_{γ}'	ϵ_{int}	R _{det}	Rinc	$\frac{R_{inc}}{R_{inc20}}$
10	0.66898 ± 0.00057	0.249 ± 0.020	25.0 ± 6.7	100 ± 28	4.2 ± 1.2
20	0.6039 ± 0.0021	0.279 ± 0.024	6.74 ± 0.50	24.2 ± 2.7	1.00 ± 0.11
30	0.5678 ± 0.0020	0.298 ± 0.026	5.79 ± 0.35	19.4 ± 2.1	0.803 ± 0.086
40	0.5192 ± 0.0017	0.329 ± 0.030	4.51 ± 0.29	13.7 ± 1.5	0.567 ± 0.064
50	0.4631 ± 0.0023	0.373 ± 0.036	2.66 ± 0.26	7.13 ± 0.99	0.295 ± 0.041
70	0.3678 ± 0.0014	0.481 ± 0.054	2.44 ± 0.19	5.07 ± 0.69	0.210 ± 0.029
90	0.2944 ± 0.0014	0.614 ± 0.078	1.66 ± 0.17	2.70 ± 0.44	0.112 ± 0.018

Tabela 9: Eficiência intrínseca e rates incidentes normalizados a 20°, para os vários ângulos.

Assim, tem-se $\frac{\frac{dU}{d\Omega}}{\left(\frac{d\sigma}{d\Omega}\right)_{\theta=20}} = \frac{R_{inc}}{R_{inc20}}$, obtém-se o gráfico da figura 15 da secção eficaz diferencial em função do ângulo de difusão, após uma normalização através do valor referente aos 20° , visto ser o menor ângulo para o qual se obtiveram valores de erro razoáveis, removendo-se qualquer dependência da geometria da montagem.

Figura 15: Secção eficaz diferencial normalizada para os 20°, e comparação com os modelos teóricos de Klein-Nishima e Thomson.

não esquecer, identificar curvas à mão.

Em paralelo, desenharam-se as funções de Klein-Nishina, e a sua aproximação para baixas energias ($E_{\gamma} << m_e \times c^2$), a equação de Thomson, dadas pelas equações 10 e 11 respetivamente, novamente normalizadas para os 20°, de modo a poder compará-las. Obtiveram-se, então, os valores da tabela ??.

$$\left(\frac{d\sigma}{d\Omega}\right)_{KN} = Zr_o^2 \left(\frac{1}{1 + \alpha(1 - \cos\theta)}\right)^2 \left(\frac{1 + \cos^2\theta}{2}\right) \left(1 + \frac{\alpha^2(1 - \cos\theta)^2}{(1 + \cos^2\theta)(1 + \alpha(1 - \cos\theta))}\right) \tag{10}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Th} = Zr_o^2 \left(\frac{1 + \cos^2\theta}{2}\right) \tag{11}$$

$$r_0 = \frac{e^2}{m_e c^2}$$
 raio clássico do eletrão (12)

$$\alpha = \frac{E_{\gamma}}{m_e c^2} \tag{13}$$

$$Z = 13$$
 (difusor de alumínio) (14)

$\theta(^{\rm o})$	Valor Experimental	Método Klein-Nishina	δ(%)	$\delta(\#\sigma)$	Método Thomson	δ(%)	$\delta(\#\sigma)$
10	4.2 ± 1.2	1.2	71.9	-2.5	1.0	74.8	-2.6
20	1.00 ± 0.11	1.00	0.0	0.0	1.00	0.0	0.0
30	0.803 ± 0.086	0.793	1.2	-0.11	0.929	15.7	1.5
40	0.567 ± 0.064	0.601	5.9	0.53	0.843	48.6	4.3
50	0.295 ± 0.041	0.449	52.1	3.7	0.750	154.4	11
70	0.210 ± 0.029	0.271	28.9	2.1	0.593	182.5	13
90	0.112 ± 0.018	0.202	80.5	5.0	0.531	374.2	23

Tabela 10: Secções eficazes diferenciais pelo método de Klein-Nishina e pela aproximação de Thomson, para valores normalizados aos 20°.

O primeiro ponto que é necessário referir, é o facto de que o ponto referente aos 20º não tem qualquer significado, visto a normalização ter sido feita para o mesmo. Outro facto de relevo é que, como se tinha esperado, a correção efetuada para os 10º, na tentativa de remover a contribuição dos fotões transmitidos diretamente não foi suficiente, observando-se o grande desvio para ambos os modelos teóricos.

Por outro lado, para os 30° e 40° o modelo de KN ajusta-se perfeitamente, intercetando o intervalo de erro dos pontos experimentais. O mesmo não pode ser dito para o modelo de Thomson, que no entanto ainda apresenta uma aproximação aceitável [desvio (# σ)<5].

Para ângulos superiores já se começa a notar uma dimninuição da correlação entre o modelo de KN e a prática, devido à diminuição do valor do erro (que deixa de cobrir o esperado). Este facto, aliado a uma possível inflação do $R_{inc_{20}}$ (devido à eventual existência de diretos), e consequente subestimação dos valores apresentados (que tendem a ser menores que o esperado) contribui para a discrepância apresentada. No entanto, o modelo de KN continua a apresentar-se como uma estimativa muito boa, ao contrário de Thomson, que deixa de ser fiável.

Tal como se tinha esperado, o modelo de Thomson não é aplicável para a maior parte dos ângulos considerados, nunca se obtendo um desvio inferior a 1.5σ , visto a energia da radiação ser superior ao limite de aplicação (662keV > 511keV).

Figura 15: Secção eficaz diferencial normalizada para os 20°, e comparação com os modelos teóricos de Klein-Nishima e Thomson.

Figura 15: Secção eficaz diferencial normalizada para os 20°, e comparação com os modelos teóricos de Klein-Nishima e Thomson.

Figura 15: Secção eficaz diferencial normalizada para os 20°, e comparação com os modelos teóricos de Klein-Nishima e Thomson.

Figura 15: Secção eficaz diferencial normalizada para os 20°, e comparação com os modelos teóricos de Klein-Nishima e Thomson.