Prévision

- 1. Atmosphère
- 2. Vent
- 3. Thermodynamique
- 4. Nuages
- 5. Brume et brouillard
- 6. Précipitations
- 7. Masses d'air et fronts
- 8. Climatologie
- 9. Dangers pour l'aviation
- 10. Information météorologique

3. Thermodynamique

3.1 Changements d'état

*La condensation est la liquéfaction dans le langage courant.

3.1 Changements d'état

nécessite de l'énergie prélève de l'énergie au milieu

libère de l'énergie dans le milieu

Humidité absolue : masse de vapeur d'eau en g/m³ d'air sec

Air froid

Humidité relative*

$$\nearrow$$
 Humidité relative (%) = $\cfrac{Vapeur d'eau}{Vapeur d'eau à saturation}$

Point de rosée* (T_d): température à laquelle se produit la saturation (HR 100 %)

Saturation: refroidir l'air ou apporter de la vapeur d'eau

- 1) Refroidissement à pression constante = isobare*
- 2) Refroidissement par détente*

Refroidissement isobare

Refroidissement par détente

$$HR = 100 \% \longrightarrow T_d = 10 °C$$

T = 20 °C

$$HR(\%) = \frac{Vapeur\ d'eau}{Vapeur\ d'eau\ \grave{a}\ saturation}$$

9

$$HR = 60 \%$$

Refroidissement par **DÉTENTE** ADIABATIQUE

- augmentation volume
- baisse de température

Air saturé

Météo 2025

13

Gradients adiabatiques		Profil vertical T
Air sec	Air saturé	ISA
1°C / 100 m	~ 0,6°C / 100 m	0,65°C / 100 m

Devenir de la bulle d'air?

- Profil de température
- Humidité

3.4 Stabilité/instabilité

Sans cumulus, pas d'ascendances?

Repérage des ascendances

Quand matérialisées :

→ Observer le ciel

Repérage des ascendances

Quand matérialisées :

- → Observer le ciel
- → Forme du cumulus renseigne sur cycle de vie de l'ascendance

En thermique pur : Observer le sol et le relief

Météo 2025

26

Facteurs limitant la convection

Facteurs limitant la convection

Facteurs limitant la convection

Questions

Prévision

- 1. Atmosphère
- 2. Vent
- 3. Thermodynamique
- 4. Nuages
- Brume et brouillard
- 6. Précipitations
- 7. Masses d'air et fronts
- 8. Climatologie
- 9. Dangers pour l'aviation
- 10. Information météorologique

4. Nuages

4.1 Composition

4.2 Formation

4.2 Formation

Soulèvement de grande échelle (dépression)

4.2 Formation

Soulèvement orographique

4.2 Formation

Soulèvement frontal

Météo 2025

Météo 2025

Météo 2025

Stratocumulus Sc

