Tutorial Sheet - 3 (Hints and Answer)

SPRING 2017

MATHEMATICS-II (MA10002)

January 10, 2017

1. (a) Rank A=2.

 $\det A = 0$. Show at least one second order minor is nonzero.

(b) Rank A=2.

Every minor of order 3 is zero. Show at least one second order minor is non zero.

- 2. Use elementary row operation to reduce to the row-echelon form.
 - (a) Row-echelon form will be $\begin{pmatrix} 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$. Number of non zero row is 3. So rank is
 - 3.

 - (b) Row-echelon form will be $\begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Rank is 2. (c) Row-echelon form will be $\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Rank is 3.
- 3. Since rank is less than 3, det = 0. Then solve for x. $x = -\frac{1}{2}, 1, 1$.
- 4. Since coefficient of x^2 is 0, sum of the roots will be 0. Using this fact, show det = 0 and atleast one second order minor is non-zero.
- 5. (a) After row operations, the coefficient matrix will be $\begin{pmatrix} 1 & 1 & -1 \\ 0 & -5 & 3 \\ 0 & 0 & 0 \end{pmatrix}$. Solution is $(\frac{2}{5}c, \frac{3}{5}c, c)$, c is an arbitrary constant.
 - (b) After row operations, the coefficient matrix will be $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & \frac{11}{2} \end{pmatrix}$. Solution is $(\frac{3}{2}c, -\frac{c}{2}, c)$.
 - (c) After row operations, the system of equations reduces to

$$x_1 - 3x_2 + 2x_3 - x_4 + 2x_5 = 2$$
$$x_3 + 2x_4 - x_5 = 1$$

- 6. (i) Augmented matrix $\overline{A} = \begin{pmatrix} 1 & 1 & 0 & 4 \\ 0 & 1 & -1 & 1 \\ 2 & 1 & 4 & 7 \end{pmatrix}$ Apply row operations on \overline{A} . Solution (3, 1, 0).
 - (ii) inconsistent

(iii) $\overline{A} = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & -1 & 1 & 0 \end{pmatrix}$. After row operation equivalent system is given by

$$x_1 + \frac{4}{7}x_3 = 0$$
$$x_2 + \frac{1}{7}x_2 = 0$$

Solution $k(4,1,-7), k \in \mathbb{R}$.

- 7. For non-trivial solution $\det(\text{coefficient matrix}) = 0$, rank < 3.
 - (i) k = 1. (ii) $k = 2, \frac{11}{3}, \frac{11}{3}$.
- 8. (i) For $a \neq 1$, the system has unique solution.

For (ii) $a = 1, b \neq -1$, the system has no solution.

For (iii) a = 1, b = -1, the system has many solutions.

- (b) (i) $a \neq 1$, the system has unique solution.
- (ii) $a = 1, b \neq 1, -3$, the system has no solution.
- (iii) a = 1, b = 1 or a = 1, b = -3, system has many solutions.
- (c) (i) det A = 0, the system cannot have unique solution.
- (ii) For $a \neq 1, \frac{2}{3}$, the system has no solution. (iii) For $a = 1, \frac{2}{3}$, the system has infinitely many solution.
- 9. det(A) = 0. Applying elementary row/column operations a + b + c = 0 or a = b = c.
- 10. $A = \frac{1}{2}[A + A^*] + \frac{1}{2}[A A^*]$ where $A^* = (\bar{A})^T$ and $\frac{1}{2}[A + A^*]$ is Hermitian part and $\frac{1}{2}[A A^*]$ is Skew-Hermitian part.
- 11. Find AA^* and show $(AA^*)^* = AA^*$.
- 12. Considering any third order arbitrary matrix A, show $(A A^T)$ is skew symmetric matrix of odd order. Hence the determinant is zero. Considering the second order minors, prove that $rank(A - A^T) = 2.$
- 13. Prove from the condition of unitary matrix $A\overline{A}^T = I$.
- 14. $\overline{a} = e^{-\frac{2i\pi}{3}}$, $\overline{a}^2 = e^{-\frac{4i\pi}{3}}$, $a^3 = 1$ and $\overline{a}^3 = 1$. Therefore a is the cube root of unity. Hence show