The UWA method

1. UWA method for clay

Unit skin friction f_{si} in layer i is :

$$f_{si} = \tau_f = 0.055 q_t \left[max \left(\frac{h}{R^*} , 1 \right) \right]^{-0.2}$$

$$f_{si} = \tau_f = \frac{0.23 q_t \left[max \left(\frac{h}{R^*} , 1 \right) \right]^{-0.2}}{\left(q_t / \sigma_y' \right)^{0.15}}$$

where

$$R^* = (R^2 - R_i^2)^{0.5}$$

2. UWA method for sand

Unit skin friction f_{si} in layer i is :

$$\begin{split} f_{\rm si} &= \tau_f = \sigma'_{rf} \cdot \tan \delta_{cv} = \frac{f}{f_c} (\sigma'_{rc} + \Delta \sigma'_{rd}) \tan \delta_{cv} \\ \sigma'_{rc} &= 0.03 \cdot q_c (A^*_{rs})^{0.3} \left[max \left(\frac{h}{D_{out}}, 2 \right) \right]^{-0.5} \\ A^*_{rs} &= 1 - IFR \left(\frac{D^2_{in}}{D^2_{out}} \right) \\ IFR_{avg} &= min \left[1, \left(\frac{D_{in}}{1.5m} \right)^{0.2} \right] \\ \Delta \sigma'_{rd} &= 4G \cdot \frac{\Delta r}{D_{out}} \\ \frac{G}{q_c} &= 185 \cdot q_{c1N}^{-0.75} \quad , \text{ with } q_{c1N} = \frac{q_c/Pa}{(\sigma'_{v0}/Pa)^{0.5}} \end{split}$$

where

 σ'_{rf} = radial effective stress at failure

 σ_{rc}' = radial effective stress after installation and equalization

 $\Delta\sigma'_{rd}$ = change/increase in radial stress due to loading stress path (dilation)

 δ_{cv} = constant volume interface friction angle

 $\frac{f}{f_c}$ = 1 for compression and 0.75 for tension

 q_c = cone resistance

 A_{rs}^* = effective area ratio

IFR = incremental filling ratio

h = relative distance above the pile tip (= pile length - depth)

 Δr = the interface dilation, assumed for analyses=0.02mm, as for ICP-05

Pa = a reference stress equal to 100 kPa

Unit end bearing q_b is:

$$q_b = (0.15 + 0.45 A_{rb}^*) \overline{q_c}$$

$$A_{rb}^* = 1 - FFR \left(\frac{D_{in}^2}{D_{out}^2} \right)$$

$$FFR = min \left[1, \left(\frac{D_{in}}{1.5m} \right)^{0.2} \right]$$