BAHUG 101 - Lecture 6

15th December 2015

Outline of Today's Lecture

- Strict evaluation
- Side effects and purity
- Adding strictness
- Short-circuiting
- ► Infinite Data Structures
- Profiling

Strict evaluation

Let's pretend Haskell is strict. If we have the following function

$$f x y = x + 2$$

and then evaluate

we would

Let's pretend Haskell is strict. If we have the following function

$$f x y = x + 2$$

and then evaluate

we would

evaluate 5 to 5

Let's pretend Haskell is strict. If we have the following function

$$f x y = x + 2$$

and then evaluate

we would

- ▶ evaluate 5 to 5
- evaluate 29³⁵⁷⁹² to something 52,343 digits long.

Let's pretend Haskell is strict. If we have the following function

$$f x y = x + 2$$

and then evaluate

we would

- ▶ evaluate 5 to 5
- evaluate 29³⁵⁷⁹² to something 52,343 digits long.
- ▶ Pass both values to f.

Let's pretend Haskell is strict. If we have the following function

$$f x y = x + 2$$

and then evaluate

we would

- ▶ evaluate 5 to 5
- evaluate 29³⁵⁷⁹² to something 52,343 digits long.
- ▶ Pass both values to f.

However, for the definition of f, we never use y!

Why use strict evaluation

Strict evaluation is convenient in many cases.

- The programmer can reason about the order of execution of a program.
- ► The programmer can easily perform order-dependent state changes.

```
f (release_monkeys(), increment_counter())
```

Lazy Evaluation

Unlike strict evaluation, in lazy evaluation the evaluation of a function's arguments is delayed as long as possible.

Lazy Evaluation

Unlike strict evaluation, in lazy evaluation the evaluation of a function's arguments is delayed as long as possible.

Unevaluated expressions are known as thunks.

Lazy Evaluation

Unlike strict evaluation, in lazy evaluation the evaluation of a function's arguments is delayed as long as possible.

Unevaluated expressions are known as thunks.

In the case of

f 5 (29³⁵⁷⁹²)

29³⁵⁷⁹² is turned into a thunk and not evaluated.

Pattern matching drives evaluation

The following function does not cause \mathbf{m} to be evaluated because the value of \mathbf{m} is not needed by the function.

```
f1 :: Maybe a \rightarrow [Maybe a] f1 m = [m,m]
```

Pattern matching drives evaluation

The following function does not cause \mathbf{m} to be evaluated because the value of \mathbf{m} is not needed by the function.

```
f1 :: Maybe a \rightarrow [Maybe a] f1 m = [m,m]
```

However, it is necessary to evaluate a value to it's outer constructor when pattern matching.

```
f2 :: Maybe a → [a]
f2 Nothing = []
f2 (Just x) = [x]
```

Note here that for f2, x is not evaluated.

```
f2 :: Maybe a → [a]
f2 Nothing = []
f2 (Just x) = [x]
```

Let's try with the following simple value.

```
Prelude> let x = Just $ map (+1) [1..10] :: Maybe [Int] Prelude> let <math>y = f2 x
```

```
f2 :: Maybe a → [a]
f2 Nothing = []
f2 (Just x) = [x]
```

Let's try with the following simple value.

```
Prelude> let x = Just $ map (+1) [1..10] :: Maybe [Int] Prelude> let <math>y = f2 x
```

We can call the **:sprint** GHCi function to show the current evaluation of an expression.

```
Prelude> :sprint y
y = _
Prelude> :sprint x
x = _
```

```
f2 :: Maybe a → [a]
f2 Nothing = []
f2 (Just x) = [x]
```

Let's try with the following simple value.

```
Prelude> let x = Just $ map (+1) [1..10] :: Maybe [Int] Prelude> let <math>y = f2 x
```

Let's find how many elements **f2** created (note **length** does not need the values inside a list)

```
Prelude> length y

1
Prelude> :sprint y
y = [_]
Prelude> :sprint x
x = Just _
```

```
f2 :: Maybe a \rightarrow [a]
f2 Nothing = []
f2 (Just x) = [x]
```

Let's try with the following simple value.

```
Prelude> let x = Just $ map (+1) [1..10] :: Maybe [Int] Prelude> let <math>y = f2 x
```

If we print y, we need the value of x as well.

```
Prelude> y
[[2,3,4,5,6,7,8,9,10,11]]
Prelude> :sprint x
x = Just [2,3,4,5,6,7,8,9,10,11]
```

Takeaway slogan

The slogan to remember is *pattern matching drives evaluation*. To reiterate the important points:

Expressions are only evaluated when pattern-matched

Takeaway slogan

The slogan to remember is *pattern matching drives evaluation*. To reiterate the important points:

- Expressions are only evaluated when pattern-matched
- only as far as necessary for the match to proceed, and no farther!

Another example

Let's go through another example.

```
take 3 (repeat 7)
```

As a reminder, here are the definitions of repeat and take.

```
repeat :: a \rightarrow [a]

repeat x = x : repeat x

take :: Int \rightarrow [a] \rightarrow [a]

take n _ | n \leq 0 = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs
```

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n = n \leq 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
Step through
  take 3 (repeat 7)
```

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n = n \leq 0 = []
take _ [] = []
take n (x:xs) = x: take (n-1) xs
Step through
 take 3 (repeat 7)
```

Evaluate **take**. First two pattern matches fail, but the third matches on expansion.

```
= take 3 (7 : repeat 7)
```

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n _ n \leq 0 = []
take _ [] = []
take n (x:xs) = x: take (n-1) xs
Step through
= take 3 (7 : repeat 7)
```

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n _ n \leq 0 = []
take [] = []
take n (x:xs) = x : take (n-1) xs
Step through
= take 3 (7 : repeat 7)
Replace with the definition of take in the third pattern match.
= 7 : take (3-1) (repeat 7)
```

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n = n \leq 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
Step through
= 7 : take (3-1) (repeat 7)
```

```
repeat :: a \rightarrow [a]

repeat x = x : repeat x

take :: Int \rightarrow [a] \rightarrow [a]

take n _ | n \leq 0 = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

Step through
```

Attempt to evaluate **take** again. The attempt to match the first clause cause the substraction to occur.

```
= 7 : take 2 (repeat 7)
```

= 7 : take (3-1) (repeat 7)

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n = n \leq 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
Step through
= 7 : take 2 (repeat 7)
```

```
repeat :: a \rightarrow [a]

repeat x = x : repeat x

take :: Int \rightarrow [a] \rightarrow [a]

take n _ | n \leq 0 = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

Step through
```

Evaluate **take**. First two pattern matches fail, but the third matches on expansion.

```
= 7 : take 2 (7 : repeat 7)
```

= 7 : take 2 (repeat 7)

```
repeat :: a \rightarrow [a]
repeat x = x: repeat x
take :: Int \rightarrow [a] \rightarrow [a]
take n n \leq 0 = []
take []
take n(x:xs) = x : take (n-1) xs
Step through
And the rest
= 7 : 7 :  take (2-1) (repeat 7)
= 7 : 7 : take 1 (repeat 7)
= 7 : 7 : take 1 (7 : repeat 7)
= 7 : 7 : 7 :  take (1-1) (repeat 7)
= 7 : 7 : 7 :  take 0 (repeat 7)
= 7 : 7 : 7 : []
```

Consequences of purity

Purity

In order to enable lazy evaluation, the language is pure. Otherwise not knowing the evaluation order is very challenging to program

Space Usage

Laziness can have good, and poor, space usage.

```
badSum :: Num a \Rightarrow [a] \rightarrow a
badSum [] = 0
badSum (x:xs) = x + badSum xs
```

badSum is not tail recursive and processes the list right to left.

Space Usage can even be bad for tail recursion

A tail recursive function can also have poor space usage.

```
lazySum :: Num a \Rightarrow [a] \rightarrow a
lazySum = go 0
where go acc [] = acc
go acc (x:xs) = go (x + acc) xs
```

The problem is that all those uses of (+) never get evaluated, until the very end.

lazySum stepthrough

```
lazySum [1,2,3,4]
= go \ 0 \ [1,2,3,4]
= go (1 + 0) [2,3,4]
= go (2 + (1 + 0)) [3,4]
= go (3 + (2 + (1 + 0))) [4]
= go (4 + (3 + (2 + (1 + 0)))) []
= (4 + (3 + (2 + (1 + 0))))
= (4 + (3 + (2 + 1)))
= (4 + (3 + 3))
= (4 + 6)
= 10
```

Forcing evaluation using seq

Here is a version with good space performance by forcing the accumulator to be evaluated.

```
strictSum :: Num a \Rightarrow [a] \rightarrow a

strictSum = go 0

where go acc [] = acc

go acc (x:xs) = acc 'seq' go (x + acc) xs
```

where $seq: a \rightarrow b \rightarrow b$ forces the value of the first parameter before returning the second.

strictSum stepthrough

```
strictSum [1,2,3,4]
go 0 [1,2,3,4]
go (1 + 0) [2,3,4]
go (2 + 1) [3,4]
go (3 + 3) [4]
go (4 + 6) []
(4 + 6)
```

Another way to write **strictSum**

Another way to write **strictSum** is using the **BangPatterns** language extension, enabled at the top of this file

```
strictSum' :: Num a \Rightarrow [a] \rightarrow a

strictSum' = go 0

where go acc [] = acc

go !acc (x:xs) = go (x + acc) xs
```

Note the ! before acc in the second equation for go. Just like seq, this forces acc to be evaluated.

Short-circuiting operators

In many languages (C, Java, etc) have certain operators that *short circuit*: they evaluate one argument and then potentially return without evaluating the second. Examples include & and ||.

Short-circuiting operators

In many languages (C, Java, etc) have certain operators that *short circuit*: they evaluate one argument and then potentially return without evaluating the second. Examples include & and ||.

In Haskell, we get that ability for free! No special semantics required.

```
(&\): Bool \rightarrow Bool \rightarrow Bool True &\) x = x
False &\) _ = False
```

Regular (&&) operator

We could have defined (&), and it would produce the same values.

```
(&&!) :: Bool → Bool → Bool

True &&! True = True

True &&! False = False

False &&! True = False

False &&! False = False
```

Regular (&&) operator

We could have defined (&), and it would produce the same values.

```
(&&!) :: Bool → Bool → Bool
True &&! True = True
True &&! False = False
False &&! True = False
False &&! False = False
```

But it would not short circuit.

```
False & (34^9784346 > 34987345) — Time to evaluate: 0.02 secs False &! (34^9784346 > 34987345) — Time to evaluate: 0.54 secs
```

Regular (&&) operator

We could have defined (&), and it would produce the same values.

```
(&&!) :: Bool → Bool → Bool
True &&! True = True
True &&! False = False
False &&! True = False
False &&! False = False
```

But it would not short circuit.

```
False & (34^9784346 > 34987345) — Time to evaluate: 0.02 secs False &! (34^9784346 > 34987345) — Time to evaluate: 0.54 secs
```

And this would fail

```
False & (head [] == 'x') — False
False &! (head [] == 'x') — *** Exception: head: empty list
```

User defined control structure

In Haskell, we could define our own ${\bf if}$ without syntactic sugar.

```
if' :: Bool \rightarrow a \rightarrow a \rightarrow a if' True x _ = x if' False _ y = y
```

There are other control structures that can be built, but we will discuss those in a later lecture.

Infinite Data Structures

We can work on infinite data structures, like the following. We only use what we need

repeat 7 :: [Int]

Infinite Data Structures

We can work on infinite data structures, like the following. We only use what we need

repeat 7 :: [Int]

We can also work with practically infinite structures, like a tree representing the number of games in chess (10¹⁰⁵⁰). Only the nodes visited are evaluated.

Infinite Data Structures

We can work on infinite data structures, like the following. We only use what we need

```
repeat 7 :: [Int]
```

We can also work with practically infinite structures, like a tree representing the number of games in chess (10¹⁰⁵⁰). Only the nodes visited are evaluated.

Working with infinite lists is particularly common.

```
withIndices :: [a] \rightarrow [(a,Integer)] withIndices xs = zip xs [0..]
```

We could also define the [0..] list this way:

```
nats :: [Integer]
nats = 0 : map (+1) nats
```

Profiling

How to enable profiling

To profile a program it needs a main function. For example

main = print (lazySum [1..1000000])

We can then compile with the **-rtsopts** flag.

ghc main.hs -rtsopts

How to call the profiled program

Then, when calling the executable, pass in the RTS options

where

- ► -s is to record memory and time usage,
- ▶ -h is to create a heap profile, and
- ▶ -i is to set the heap sampling interval.

The resulting main.hp can be visualized with the hp2ps utility.

Profiling lazySum

Profiling strictSum

