1. Вывести $\neg(\exists x)[\varphi \land (\exists z)\psi] \lor (\forall y)\theta \vdash (\exists y)\theta \rightarrow (\forall x)[(\forall z)\neg\psi \lor \neg\varphi]$

Бесперспективно.

Утверждение 1. Секвенция $\neg(\exists x)[\varphi \land (\exists z)\psi] \lor (\forall y)\theta \vdash (\exists y)\theta \rightarrow (\forall x)[(\forall z)\neg\psi \lor \neg\varphi]$ не является выводимой.

Доказательство. Возьмём формулы $\varphi = x \approx x, \psi = z \approx z, \theta = y \approx y$ Тогда для любого состояния σ верно $\sigma(\neg(\exists x)[\varphi \land (\exists z)\psi]) = 0$ и $\sigma((\forall y)\theta) = 1$. Заметим, что

(a)
$$\neg(\exists x)[\varphi \land (\exists z)\psi] \equiv (\forall x)[(\forall z)\neg\psi \lor \neg\varphi]$$
, следовательно $\sigma((\forall x)[(\forall z)\neg\psi \lor \neg\varphi]) = 1$

(b)
$$\sigma((\forall y)\theta) = 1 \Rightarrow \sigma((\exists y)\theta) = 1$$

Левая часть секвенции тождественно истинна. Правая часть секвенции тождественно ложна, так как посылка тождественно истинна и следствие тождественно ложно. Следовательно вся секвенция тождественно ложна.

Исчисление высказываний является непротиворечивым, следовательно секвенция $\neg(\exists x)[\varphi \land (\exists z)\psi] \lor (\forall y)\theta \vdash (\exists y)\theta \rightarrow (\forall x)[(\forall z)\neg\psi \lor \neg\varphi]$ не является выводимой.

2. Доказать что введение \exists слева обратимо. Сначала докажем, что $(\exists x) \varphi \vdash \varphi$ выводимо:

$$\frac{\varphi \vdash \varphi}{(\exists x)\varphi \vdash \varphi}$$
 (вв \exists лев)

Теперь можно воспользоваться допустимым правилом:

$$\frac{\Gamma, (\exists x) \varphi \vdash \psi}{\Gamma, \varphi \vdash \psi} \text{ (доп. выв.)}$$

3. Доказать что введение \exists справа необратимо. Рассмотрим сигнатуру $\Sigma = (\leq^{(2)}; +^{(2)}, 0^{(0)}, 1^{(0)})$ и алгебраическую систему в этой сигнатуре: $\mathcal{A} = (\omega, \leq; +, 0, 1)$. Пусть "введение \exists справа"обратимое правило, тогда верно

$$\frac{ \vdash (\exists x) x \le 0}{\vdash x < 0}$$

следовательно $\vdash x \leq 0$ выводима и является тождественно истинной. Но $\vdash x \leq 0$ не является тождественно истинной секвенцией, так как существует состояние $\sigma : \sigma(x) = 1$, на котором формула $x \leq 0$ ложна.