Theory of Computation CS-202

Outline

- ☐ Push Down Automata
 - ☐ Deterministic Push Down Automata
 - □ Non Deterministic Push Down Automata

Context free Grammar, Language and PDA

Formal Definition of a deterministic PDA

A <u>pushdown automaton (PDA)</u> is defined by the seven-tuples:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite set of</u> input alphabet
- Γ A <u>finite</u> set of stack alphabet
- q_0 The initial/starting state, q_0 is in Q
- z_0 A starting stack symbol, is in Γ
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, where

$$δ$$
: Q x (Σ U {ε}) x Γ → Q x Γ*

z₀

stack

Block diagram of PDA

Input tape

Formal Definition of a NPDA

A non-deterministic <u>pushdown automaton (NPDA)</u> is defined by the seven-tuples:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite set of</u> input alphabet
- Γ A <u>finite</u> set of stack alphabet
- q_0 The initial/starting state, q_0 is in Q
- z_0 A starting stack symbol, is in Γ
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, where

$$\delta$$
: Q x (Σ U {ε}) x $\Gamma \rightarrow 2^{Q \times \Gamma^*}$

Design a NPDA for the language $L=\{ww^R, w \in (a, b)^+\}$

Input tape

b, a / b a a, a / a a b, b / b b

Problem: choosing middle point

Same symbol on stack as well as input tape(can assume it centre) but not necessarily true.

Design a NPDA for the language

Input tape

$$L=\{ww^R,$$

 $L=\{ww^{R}, w \in (a, b)^{+}\}$

$$\delta(q_0, a, a) = (q_0, aa) \text{ or } (q_1, \epsilon)$$

 $\delta(q_0, b, b) = (q_0, bb) \text{ or } (q_1, \epsilon)$

These moves make it NPDA

Power of DPDA and NPDA

Non Deterministic Pushdown Automata (NDPDA) is more powerful then Deterministic Pushdown Automata (DPDA).

Equivalence between CFG and PDA

CFG and PDA are equivalent in power: a CFG generates a context-free language and a PDA recognizes a context-free language.

A language is context-free iff some pushdown automaton recognizes it.

Practice Problem

1. Design a NPDA for the language $L=\{wbw^R, w \in (a, b)^+\}$

2. Design a NPDA for the language $L=\{ww, w \in (a, b)^+\}$

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA