

Exam

Date and Time

- End of SemesterTuesday, 15.12.2020
- 9:00 10:00 (60 minutes)

Format

- Online
- Based on lecture and assignments

Allowed Material

Open book exam (everything is allowed)

Week	Topics	Practice Sessions
1	Intro	-
2	Mech Design	Intro
3	Spatial Descriptions 1	Mech Design + H-Matrix
4	Spatial Descriptions 2	Screw Theory
5	Forward Kinematics	Forward Kinematics + DH convention
6	Rigid Body Velocity	Velocity
7	Jacobian	Jacobian
8	Inverse Kinematics + Red. and Para. Robots	Inverse Kin and parallel Robots
9	-	Review + Mock Exam
10	Force Control + Vision 1	Force Control
11	Vision 2	Computer Vision
12	Vision 3 + Mobile Robots	Computer vision 2 + quick review of CV
13	Q&A	_
14	Written Exam	-

Repetition from last week: Degrees of freedom vs. degrees of mobility

Degrees of freedom (DoF in a d-dimensional space)

- d: translational DoF
- $\frac{d(d-1)}{2}$: rotational DoF

Degrees of freedom of the end effector

- Number of independent motions of a system
 The number of joints determines the number of DOF
- May depend on robot configuration

Degrees of Mobility of a robot

• The number of independently controlled joints on a robot

DoF ≠ DoM in the case of parallel robots or in singular configurations

Repetition from last week: Degrees of freedom vs. degrees of mobility

Screw theory

Every rigid body motion can be expressed by a rotation about an axis combined with a translation parallel to that axis. (= screw motion)

Method is based on rigid body motion instead of location!

→ Time dependent now!

Rigid body motions can be described in different ways:

- Screws (geometrical description: screw parameter)
- Twists (mathematical description: abstract)
- Product of exponentials (mathematical description: homogeneous)

Screw Theory: Geometrical Description

Pitch **h**

Ratio of translational motion to rotational motion

$$h = \frac{\omega^T v}{||\omega^2||} = \begin{cases} 0 & \text{pure rotation} \\ \in (0, \infty) & \text{screw motion} \\ \infty & \text{pure translation} \end{cases}$$

Axis I

- Axis of rotation, line through a point
- Direction of translation

$$l = \begin{cases} q + \lambda \omega & \text{pure rotation} \\ \frac{\omega \times v}{||\omega^2||} + \lambda \omega & \text{screw motion} \\ \lambda v & \text{pure translation} \end{cases}$$

Magnitude M

Screw Theory: Geometrical Description

Skew-symmetric matrix
$$a \times b = \hat{a}b = \begin{vmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{vmatrix} = \begin{vmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{vmatrix} b$$

Twist Coordinates

6x1 vector

Twist

4x4 matrix

General description

$$\xi = \begin{bmatrix} -\omega \times q + h\omega \\ \omega \end{bmatrix}$$

$$\xi = \begin{bmatrix} -\omega \times q + h\omega \\ \omega \end{bmatrix} \qquad \hat{\xi} = \begin{bmatrix} \hat{\omega} & -\omega \times q + h\omega \\ 0 & 0 \end{bmatrix}$$

with
$$-\omega \times q + h\omega = v$$

Screw Theory: Geometrical Description

Skew-symmetric matrix

$$a \times b = \hat{a}b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} b$$

Twist Coordinates

6x1 vector

Twist

4x4 matrix

Revolute joint

$$\xi = \begin{bmatrix} -\omega \times q \\ \omega \end{bmatrix}$$

$$\hat{\xi} = \begin{bmatrix} \hat{\omega} & -\omega \times q \\ 0 & 0 \end{bmatrix}$$

Prismatic joint

$$\xi = \left[\begin{array}{c} v \\ 0 \end{array} \right]$$

$$\hat{\xi} = \left[\begin{array}{cc} 0 & v \\ 0 & 0 \end{array} \right]$$

Rodrigues' Formula

All **rotation matrices** can be written as a matrix exponential of a **skew-symmetric** matrix!

Rodrigues' Formula:

$$e^{\hat{\omega}\theta} = I + \hat{\omega}\sin\theta + \hat{\omega}^2(1 - \cos\theta)$$

Homogeneous Transformation 4x4 matrix

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})(\omega \times v) + h\theta\omega \\ 0 & 1 \end{bmatrix}$$

Revolute joint

$$e^{\hat{\xi}\theta} = \begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta})(\omega \times v) \\ 0 & 1 \end{bmatrix}$$

Prismatic joint

Screw Theory: Mathematical Description

If a coordinate frame B is attached to a **rigid body** undergoing **a screw motion**, the **instantaneous** configuration of the coordinate frame B, relative to a fixed frame A, is given by

$$g_{ab}(\theta) = e^{\hat{\xi}\theta} g_{ab}(0)$$

g(0):

- All joint angles defined as being zero
- Describes transformation from the base frame to tool frame

This transformation can be **interpreted** as follows:

- Multiplication by $g_{ab}(0)$ maps the coordinates of a point relative to the B frame into A's coordinates
- The exponential map transforms the point to its final location (still in A coordinates).

Kinematics Toolbox

