

Agenda

- Review of the Data Types (from DATA270)
- Characteristics of Structured Data
- Basic Statistical Descriptions of Data
- Similarity and Dissmilarity Measures

SJSU SAN JOSÉ STATE UNIVERSITY

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects
- A data object represents an entity
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples , examples, instances, data points, objects, tuples
- Data objects are described by attributes
- In database lingo: database rows → data objects; database columns → attributes

႞ၭဎႜၴၭၟႝၭဎႜၹၭၟႝၭဎႜၹၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎႜၹၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹၴၭၟႝၭဎၹ

11

Data Attributes

- Attributes (or dimensions, features, variables)
 - A data field, representing a characteristic or feature of a data object.
 - e.g., customer _ID, name, address
- Attribute Types:
 - Categorical
 - Numerical
 - Continuous vs Discrete

Categorical Attribute Types

- Nominal: categories, states, or "names of things"
 - Values without any meaningful order or ranking
 - hair_color = {auburn, black, blond, brown, grey, red, white}, marital status, occupation, zip codes
- Binary (special case of nominal)
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - e.g., gender
 - Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
- Ordinal
 - Values have a meaningful order or ranking but magnitude between successive values is not known
 - Size = {small, medium, large}, grades, army rankings

Numerical Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - e.g., temperature in C°or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

15

Discrete vs. Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - e.g. zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
 - Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - e.g. temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables

Questions

What are the data attribute types (nominal or ordinal) of the following data types?

- Course letter grades
- Gender
- Customer satisfaction level
- Marital status

O-N-O-N

17

Question

Classify the following as Categorical (nominal or ordinal) or Numerical (interval or ratio).

• Time in terms of AM or PM.

- Brightness as measured by a light meter.
- Brightness as measured by people's judgments.
- Angles as measured in degrees between 0 and 360.
- Bronze, Silver, and Gold medals as awarded at the Olympics.
- Height above sea level.
- Number of patients in a hospital.
- Military rank.

Important Measurements of Data

To better understand the data, here are some important measures:

• Central Tendency
• Dispersion
• Graphic Displays of Basic Statics of Data
• Covariance and Correlation Analysis

Population vs Sample

A set of data points is a sample from a population:

- A population is the entire set of objects or events under study.
 - e.g., population can be hypothetical "all students" or all students in this class.
 - e.g., population can be all the houses in a region
- A sample is a "representative" subset of the objects or events under study. This is needed because it's impossible or intractable to obtain or compute with population data.

21

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population):

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \mu = \frac{\sum x}{N}$$

$$\mu = \frac{\sum x}{N}$$

sample vs population

weighted mean

- Median: middle value (odd # of values) or average of the middle 2 values (otherwise)
- Mode: Value that occurs most frequently in the data

bimodal

trimodal

Measuring Dispersion of Data

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Note: The subtle difference of formulae for sample vs. population

- n: the size of the sample
 - N: the size of the population

• Standard deviation s (or σ) is the square root of variance s² (or σ ²)

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are less than or equal to x_i
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

29

Measuring the Dispersion of Data

Quartiles, Outliners and Boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: IQR = Q₃ − Q₁
- Five number summary: min, Q₁, median, Q₃, max
- Outliner: a value higher/lower than 1.5x IQR of Q_1 or Q_3

Histograms Often Tell More than Boxplots

• Consider the following histograms:

- These may have the same boxplot representation:
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions.

SON SISON SI

33

SJSU SAN JOSÉ STATE UNIVERSITY

Quantile Plot

- Displays all of the data (assess both the overall behavior and unusual occurrences)
- Plots quantile information
- For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

35

SJSU SAN JOSÉ STATE UNIVERSITY

Scatter Plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Similarity and Dissmilarity Measures

- Data Matrix versus Dissimilarity Matrix
- Similarity Measures for:
 - Binary Attributes
 - Nominal Attributes
 - Ordinal Attributes
- Dissimilarity Measures for:
 - Numeric Data: Minkowski Distance
- Cosine Similarity of 2 Vectors
- Capturing Hidden Semantics in Similarity Measures

Similarity, Dissimilarity, and Proximity

- Similarity measure or function
 - a real-valued function that quantifies the similarity between two objects
 - measure how two data objects are alike: higher value
 ☐ more alike
 - usually falls in the range [0, 1]: 0: no similarity; 1: completely similar
- Dissimilarity (or Distance) measure
 - numerical measure of how different two data objects are
 - similar to the inverse of similarity: The lower, the more alike
 - minimum dissimilarity is often 0 (i.e., completely similar)
 - range [0, 1] or [0, ∞), depending on the definition
- Proximity usually refers to either similarity or dissimilarity

41

Data Matrix and Dissimilarity Matrix

- Data matrix
 - A data matrix of n data points with l dimensions

$$D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$$

- Dissimilarity (distance) matrix
 - n data points, but registers only the distance d(i, j)
 - Usually symmetric → only need a triangular matrix
 - Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
 - Weights can be associated with different variables based on applications and data semantics

$$\begin{pmatrix} 0 & & & \\ d(2,1) & 0 & & \\ \vdots & \vdots & \ddots & \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$$

SJSU SAN JOSÉ STATE UNIVERSITY

Distance on Numeric Data: Minkowski Distance

Minkowski Distance:

$$d(i, j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two *l*-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Distance Properties:
 - -d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positivity)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- p = 1: (L₁ norm) Manhattan (or city block) distance
 - e.g. the Hamming distance: # of bits that are different between two binary vectors

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{il} - x_{jl}|$$

• p = 2: (L₂ norm) Euclidean distance

$$d(i, j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- p $\rightarrow \infty$: (L_{max} norm, L_{∞} norm) "supremum" distance
 - The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p} = \max_{f=1}^l |x_{if} - x_{jf}|$$

STATE OF THE STATE

45

SJSU SAN JOSÉ STATE UNIVERSITY

Illustration of Manhantan, Euclidean and Chebyshev Distances

SJSU SAN JOSÉ STATE UNIVERSITY

Proximity Measures for Binary Attributes

- · To compute proximity for binary attributes, we utilize contingency tables
- Here's a contingency table for 2 binary data objects:

	Object j					
		1	0	sum		
	1	q	r	q + r		
Object i	0	S	t	s + t		
	sum	a + s	r + t	$\boldsymbol{\mathcal{D}}$		

- q: # attributes =1 for both i and j
- r: # attributes = 1 for i but = 0 for j
- s: # attributes = 0 for i but = 1 for j
- t: # attributes = 0 for both i and j

Proximity Measures for Binary Attributes

		Obj	ect j	
		1	0	sum
	1	q	r	q + r
Object i	0	S	t	s + t
	sum	q + s	r + t	p

• Distance measure for symmetric binary variables (2 states are equally important):

$$d(i, j) = \frac{r+s}{q+r+s+t}$$
 aka symmetric binary dissimilarity

• Distance measure for asymmetric binary variables (2 states aren't equally important):

$$d(i, j) = \frac{r+s}{q+r+s}$$
 aka asymmetric binary dissimilarity

• Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim(i, j) = \frac{q}{q + r + s} = 1 - d(i, j)$$
 aka symmetric binary similarity

49

Example: Dissimilarity between Asymmetric Binary Variables

• Consider the following patient record table:

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

• Gender is a symmetric attribute, all others are asymmetric binary

Let Y & P be 1 and N be 0 → create contingency tables!!!

Distance:
$$d(Jack, Jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(i, j) = \frac{r+s}{a+r+s}$$

$$d(Jack, Mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(Jim, Mary) = \frac{1+2}{1+1+2} = 0.75$$

$$d(Jim, Mary) = \frac{1+2}{1+1+2} = 0.75$$

Proximity Measures for Nominal Attributes

• For nominal attributes such as:

e.g.: color (red, yellow, blue, green), profession, etc.

· Simple matching:

$$d(i,j) = \frac{p-m}{p}$$
 m: # of matches, p: total # of attributes

$$sim(i, j) = 1 - d(i, j) = \frac{m}{p}$$

- · Use a large number of binary attributes
 - create a new binary attribute for each of the M nominal states

51

Example: Dissmilarity between Nominal Attributes

• Consider the sample data with nominal attributes as shown:

Object Identifier	Test-1 (no
1	code A
2	code B
3	code C
4	code A

• Compute the dissimilarity matrix using the measure:

$$d(i,j) = \frac{p-m}{p}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ 1 & 1 & 0 & \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Proximity Measures for Ordinal Attributes

- Ordinal attributes can be discrete or continuous where order is important e.g. size (small, medium, large), class (freshman, sophomore, junior, senior)
- · Can be treated as interval-scaled
 - Replace an ordinal variable value by its rank: $r_{if} \in \{1, ..., M_f\}$
 - Map the range of each variable onto [0, 1] by replacing j^{th} object in the f^{th} attribute by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- e.g. freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - → distance: d(freshman, senior) = 1, d(junior, senior) = 1/3

53

Example: Dissmilarity between Ordinal Attributes

• Consider the sample data as shown (only consider ordinal):

Object Identifier	Test-1 (nominal)	Test-2 (ordinal)
1	code A	excellent
2	code B	fair
3	code C	good

- Compute the dissimilarity matri:
 - 3 states (fair, good, excellent) → M_f = 3

 - replace ordinal attribute values with rank \Rightarrow {3, 1, 2, 3}^T
 Normalize the ranking to [0, 1] using $z_{if} = \frac{r_{if} 1}{M_f 1} \Rightarrow$ {1, 0, 0.5, 1}^T
 - compute Euclidean distance → dissimilarity matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1.0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1.0 & 0.5 & 0 \end{bmatrix}$$

Document as a Data Matrix

 A document can be represented by document vector, with each attribute recording the frequency of a particular term (such as keyword, or phrase) in the document:

Document	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	Loss	Season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.

55

Cosine Similarity of Two Vectors

• Cosine Similarity : x and y are two vectors (e.g., term-frequency vectors)

||x|| is the Euclidean norm of vector $\mathbf{x} = (x_1, x_2, \dots, x_p)$, defined as $\sqrt{x_1^2 + x_2^2 + \dots + x_p^2}$

Example: Cosine Similarity of Documents

Find the (cosine) similarity between documents 1 and 2 from following document table.

Document	Team	Coach	Hockey	Baseball	Soccer	Penalty	Score	Win	Loss	Season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

• The document vectors are:

$$x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

• First, calculate vector dot product

$$x \cdot y = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 0 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

sjsuk sj

57

Example: Cosine Similarity of Documents

• Then, calculate the Euclidean norms of x and y:

$$||x|| = \sqrt{5^2 + 0^2 + 3^2 + 0^2 + 2^2 + 0^2 + 0^2 + 2^2 + 0^2 + 0^2} = 6.48$$

$$||y|| = \sqrt{3^2 + 0^2 + 2^2 + 0^2 + 1^2 + 1^2 + 0^2 + 1^2 + 0^2 + 1^2} = 4.12$$

• Cosine similarity:

$$sim(x, y) = \frac{x \cdot y}{||x||||y||} = 0.94$$

Capturing Hidden Semantics in Similarity Measures

- The similarity measures discussed so far cannot capture hidden semantics
 - Which pairs are more similar: Geometry, algebra, music, politics?
- The same bags of words may express rather different meanings
 - "The cat bites a mouse" vs. "The mouse bites a cat"
 - This is beyond what a vector space model can handle
- Moreover, objects can be composed of rather complex structures and connections (e.g., graphs and networks)
- New similarity measures needed to handle complex semantics
 - Distributive representation and representation learning

IN SI SUM SISUM SISUM

59

Summary

- Data attribute types: nominal, binary, ordinal, numerical (interval-scaled, ratio-scaled)
- Many types of data sets
 e.g., numerical, text, graph, web, image.
- Gain insight into the data by:
 - Descriptive Statistics: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Similarity Measurements: distance between data objects
- All these are the beginning of data preprocessing
- Many methods have been developed but still an active area of research