Zápočtový test KIV/IDT

28. 4. 2023

Příjme	ení a jméno:							
Osobr	ní číslo:							
Cvičer	ní: Pondělí 11.1 Pondělí 13.0 Pondělí 14.5 Úterý 11.10 Úterý 14.50 Úterý 16.40 Středa 8.25 Středa 13.00 Středa 14.50 Středa 16.40 Čtvrtek 12.0 Čtvrtek 15.4 Pátek 9.20 (00 (Váša) 50 (Frank) (Potužák) (Hotovec) (Potužák) 0 (Hácha) 0 (Hácha) 0 (Hácha) 5 (Majdišo 5 (Vítová)	ová)					
□ Body:	Pátek 9.20 (-	,					
1	2	3	4	5	6	7	8	celkem

Úloha 1 (6 bodů)

Napište metodu int Onion (int[][] matrix, int n, int i), která ve čtvercové matici celých čísel velikosti n krát n reprezentované jako pole polí určí součet prvků v i-té slupce. Slupkou se myslí všechny prvky vzdálené od okraje právě i kroků (viz obrázek). Předpokládejte, že číslo n je sudé a všechny parametry jsou zadány korektně (kladná velikost matice, existující požadovaná slupka atd.).

Úloha 2 (6 bodů)

Zásobník je reprezentován dynamickým polem. Pole bylo inicializováno na velikost 1, zvětšuje se vždy na **dvojnásobek**, používá se běžná strategie zvětšování (ze cvičení). Do zásobníku bylo postupně vloženo 17954 prvků, žádný prvek nebyl odebrán. **Kolikrát** došlo ke **zvětšení** pole? Kolik **prvků** pole bylo v rámci zvětšování **zkopírováno**? Odpovědi zapište jako čísla nebo jako jednoznačně vyhodnotitelné výrazy.

Úloha 3 (6 bodů)

Do následující neúplné implementace ADT Fronta doplňte metodu Remove () pro odebrání prvku.

```
class Link {
  public Link next;
  public int data;
}

class LinkQueue implements IQueue{
  Link first;
  Link last;

  public double Get() {
    if (first!=null)
      return first.data;
    else throw new Exception();
  }
```

}

Úloha 4 (6 bodů)

Je dána funkce $f(n) = 3n\sqrt{n} + 4n + 12,5$. Určete, zda patří do následujících množin funkcí (množinu, do které funkce **patří**, označte křížkem):

0(1)	O(n)	$O(n^2)$	$O(3n\sqrt{n} + 4n + 12,5)$
$\Omega(1)$	$\Omega(n)$	$\Omega(n^2)$	$\Omega(3n\sqrt{n}+4n+12,5)$
$\Theta(1)$	$\Theta(n)$	$\Theta(n^2)$	$0(3n\sqrt{n} + 4n + 12,5)$

Úloha 5 (7 bodů)

Následující program byl spuštěn bez parametrů příkazové řádky a zastavil se na vyznačené řádce, která dosud nebyla vykonána. Zapište celý obsah paměťové oblasti zásobník a halda. U všech pojmenovaných entit uveďte datový typ, jméno a hodnotu, u nepojmenovaných zapište třídu a všechny atributy (datové typy, názvy a hodnoty). Pokud je hodnotou reference, pak zakreslete šipku k instanci, na kterou reference odkazuje. Vyznačte zásobníkové rámce. Odpověď zapište na následující stranu.

```
class TriForce {
  TriForce power, wisdom, courage;
  void Attach(TriForce[] f, int i) {
    this.power = f[(i+1)%4];
    this.wisdom = f[(i+2)%4];
    this.courage = f[(i+3)%4];
    Console.WriteLine("Now");
  }
  public static void Main(String[] args) {
    TriForce[] forces = new TriForce[4];
    for (int i = 0; i < 4; i++)
      forces[i] = new TriForce();
    for (int i = 0; i < 4; i++)
      forces[i].Attach(forces, i);
  }
}
```

Úloha 6 (7 bodů)

Je dán následující program:

```
int n = ...;
for (int i = 1;i<100*n;i++) {
    M(i,0);
}
for (int j = 0;j<n;j++) {
    for (int i = 1;i<n;i++) {
        M(i,j);
        M(i,j);
        M(i,j);
        M(i,j);
    }
}</pre>
```

Zapište počet volání metody $M(\ldots)$ jako funkci proměnné n. Proveďte důkaz, že funkce patří/nepatří do množiny $\Theta(n^2)$.

Úloha 7 (6 bodů)

Uvažte následující rekurzivní program:

```
static void Hanoi(char s, char t, char m, int c) {
  if (c == 0)
    return;
  else {
    hanoi(s, m, t, c-1);
    Console.WriteLine(s + "->" + t + ", ");
    hanoi(m, t, s, c-1);
  }
}
```

Následující program představuje neúplnou nerekurzivní variantu tohoto programu. Doplňte chybějící řádky.

```
class Task {
   public char s, t, m;
    public int c, segment;
    public Task(char s, char t, char m, int c) {
        this.t = t;
        this.m = m;
        this.c = c;
        segment = 0;
    }
}
static void HanoiNR(char s, char t, char m, int c) {
    Stack<Task> tasks = new Stack<Task>();
    tasks.Push(new Task(s, t, m, c));
    while(tasks.Count>0) {
        Task task = tasks.Peek();
        switch (task.segment) {
           case 0:
              if (task.c == 0)
                  tasks.Pop();
                  break;
              task.segment += 1;
              break;
              Console.WriteLine(task.s + "->" + task.t + ", ");
              tasks.Push(new Task(task.m, task.t, task.s, task.c-1));
              break;
           case 2:
              tasks.Pop();
              break;
        }
   }
}
```

Úloha 8 (6 bodů)

Mějme následující program:

```
class MyClassA {
  virtual public void PrintSomething() {
    Console.WriteLine("42");
  }
}

class MyClassB : MyClassA{
  override public void PrintSomething() {
    Console.WriteLine("24");
  }
}

class MyClassC : MyClassB{
  override public void PrintSomething() {
    Console.WriteLine("0");
  }
}
```

Co vypíše následující úsek programu?

```
MyClassA mc1 = new MyClassA();
MyClassA mc2 = new MyClassB();
MyClassA mc3 = new MyClassC();
MyClassB mc4 = (MyClassB) mc2;
mc1.PrintSomething();
mc2.PrintSomething();
mc3.PrintSomething();
mc4.PrintSomething();
Console.WriteLine(mc1 is MyClassA);
Console.WriteLine(mc1 is MyClassB);
Console.WriteLine(mc2 is MyClassA);
Console.WriteLine(mc2 is MyClassB);
Console.WriteLine(mc3 is MyClassA);
Console.WriteLine(mc3 is MyClassB);
Console.WriteLine(mc4 is MyClassA);
Console.WriteLine(mc4 is MyClassB);
```