Tarea 4 Calculo Computacional

Victor Tortolero CI:24.569.609

Respuesta 2

Al correr el programa obtenemos los siguientes datos:

Figura 1: Five-Point Endpoint

Iteracion	h	f'(x)
0	1.00000000	6.35289005
1	0.50000000	-1.10989924
2	0.25000000	0.39205105
3	0.12500000	0.35929249
4	0.06250000	0.35724538
5	0.03125000	0.35714812
6	0.01562500	0.35714315
7	0.00781250	0.35714287
8	0.00390625	0.35714286
9	0.00195312	0.35714286

Figura 2: Five-Point Midpoint

Iteracion	h	f'(x)	
0	1.00000000	0.32321664	
1	0.50000000	0.39597566	
2	0.25000000	0.35989484	
3	0.12500000	0.35731683	
4	0.06250000	0.35715375	
5	0.03125000	0.35714354	
6	0.01562500	0.35714290	
7	0.00781250	0.35714286	
8	0.00390625	0.35714286	

Respuesta 3

Al calcular la derivada de la función dada el algoritmo de extrapolación de Richardson, con M=4, tenemos:

0.18888904	0.00000000	0.00000000	0.00000000	0.00000000
0.34420401	0.39597566	0.00000000	0.00000000	0.00000000
0.35597213	0.35989484	0.35748946	0.00000000	0.00000000
0.35698066	0.35731683	0.35714496	0.35713950	0.00000000
0.35711048	0.35715375	0.35714288	0.35714284	0.35714286

Respuesta 4

Queremos saber si la regla de Simpson integra correctamente a todos los polinomios de grado menor o igual a 3, osea si integra correctamente a:

$$p(x) = Ax^3 + Bx^2 + Cx + D$$

Entonces, si calculamos la integral, tendríamos:

$$\int_{a}^{b} (Ax^{3} + Bx^{2} + Cx + D)dx = \frac{A}{4}(b^{4} - a^{4}) + \frac{B}{3}(b^{3} - a^{3}) + \frac{C}{2}(b^{2} - a^{2}) + D(b - a)$$

Entonces, al aplicar la regla de Simpson a p(x), y desarrollando, tendríamos:

$$\begin{split} \int_{a}^{b} p(x) dx &\approx \frac{b-a}{6} \left[Aa^{3} + Ba^{2} + Ca + D + 4 \left(A \left(\frac{a+b}{2} \right)^{3} + B \left(\frac{a+b}{2} \right)^{2} + C \left(\frac{a+b}{2} \right) + D \right) + Ab^{3} + Bb^{2} + Cb + D \right] \\ &= \frac{b-a}{6} \left[A \left(a^{3} + 4 \left(\frac{a+b}{2} \right)^{3} + b^{3} \right) + B \left(a^{2} + 4 \left(\frac{a+b}{2} \right)^{2} + b^{2} \right) + C \left(a + 4 \left(\frac{a+b}{2} \right) + b \right) + 6D \right] \\ &= \frac{b-a}{6} \left[A \left(a^{3} + \frac{1}{2} \left(a^{3} + 3a^{2}b + 3b^{2}a + b^{3} \right) + b^{3} \right) + B \left(a^{2} + a^{2} + 2ab + b^{2} + b^{2} \right) + C \left(a + 2a + 2b + b \right) + 6D \right] \\ &= \frac{b-a}{6} \left[A \left(\frac{3}{2}a^{3} + \frac{3}{2}a^{2}b + \frac{3}{2}b^{2}a + \frac{3}{2}b^{3} \right) + B \left(2a^{2} + 2ab + 2b^{2} \right) + C \left(3a + 3b \right) + 6D \right] \\ &= \frac{b-a}{6} \left[\frac{3}{2}A \left(a^{3} + a^{2}b + b^{2}a + b^{3} \right) + 2B \left(a^{2} + ab + b^{2} \right) + 3C \left(a + b \right) + 6D \right] \\ &= \frac{A}{4} \left(a^{3} + a^{2}b + b^{2}a + b^{3} \right) \left(b - a \right) + \frac{B}{3} \left(a^{2} + ab + b^{2} \right) \left(b - a \right) + \frac{C}{2} \left(a + b \right) \left(b - a \right) + D \left(b - a \right) \\ &= \frac{A}{4} \left(a^{3} + a^{2}b + b^{2}a + b^{3} \right) + \frac{B}{3} \left(a^{2} + ab + b^{2} \right) + B \left(a^{2} + ab^{2} + b^{3} - a^{3} - a^{2}b - ab^{2} \right) + \frac{C}{2} \left(ab + b^{2} - a^{2} - ab \right) + D \left(b - a \right) \\ &= \frac{A}{4} \left(b^{4} - a^{4} \right) + \frac{B}{3} \left(b^{3} - a^{3} \right) + \frac{C}{2} \left(b^{2} - a^{2} \right) + D \left(b - a \right) \end{split}$$

 \therefore Se puede observar que llegamos al resultado de la integral. Y como los polinomios de grado 2, 1 y 0, son casos particulares de los polinomios de grado 3 (Cuando A, B o C son 0), queda demostrado que la regla de Simpson integra correctamente a todos los polinomios de grado menor o igual a 3 con error cero.

Respuesta 5

Al correr el algoritmo, obtenemos las siguientes filas:

4.14325965519

1.16967243896, 0.17847670022

0.47189752603, 0.23930588839, 0.24336116760

0.40065410544, 0.37690629858, 0.38607965926, 0.38834503214

0.38654671223, 0.38184424782, 0.38217344444, 0.38211144103, 0.38208699558