Лабораторная работа №1

Исследование статической системы стабилизации высоты в тангажном варианте

Пащенко А.Е. Зарубин Р.А. Вариант 3

Цуль работы: Исследование методов математического моделирования системы стабилизации высоты на персональном компьюторе.

1 Теоретический минимум

Стабилизация высоты полёта может быть достигнута как воздействием на руль высоты, так и посредством изменением тяги. Будем рассматривать наиболее распространённый случай, когда скорость полёта постоянна, а высота стабилизируется рулём высоты.

В общем видет при постоянной скорости полёта структурная схема высоты показана на рис. 1

Рис. 1: Структурная схема системы стабилизации высоты

Устойчивость такого контура может быть обеспечина двумя путями:

- 1) введением внутренней стабилизирующей обратной связи по сигналу угла тангажа ϑ , т.е. введением автопилота угла тангажа;
- 2) введением в закон управления $R_H(p)$ сигнал первой производной отклонения высоты для случая, если сервопривод имеет жёсткую обратную связь, и ссумы сигналов первой и всторой производных от сигнала отклонения высоты для случая,

когдасервопривод имеет скоростную или изодромную обратную связь.

На рис. 2 приведена структурная схема системы стабилизации высоты, содержащей автопилот угла тангажа.

Рис. 2: Структурная схема системы стабилизации высоты

Основным приемуществом такой системы чвляется то, что устойчивость траекторного контура обеспечивается регулятором $R_H(p)=i_H$ за счёт сигнала угла тангажа, снимаемого с надёжного датчика – гировертикали, практически лишённого запаздывания. Система содержащая регулятор $R_H(p)=i_H$, называется статической системой т.к. этот регулятор не обеспечивает астатизм регулярования в отношении других возмущений.

$$\begin{cases}
\dot{\Delta \alpha} = \Delta \omega_z - \bar{Y}_a^{\alpha} \Delta \alpha \\
\dot{\Delta \omega}_z = \bar{M}_z^{\alpha} \Delta \alpha + \bar{M}_z^{\omega_z} \Delta \omega_z + \bar{M}_z^{\delta_B} \Delta \delta_B \\
\dot{\Delta \vartheta} = \Delta \omega_z \\
\dot{\Delta V}_y = V_0 \bar{Y}_a^{\alpha} \Delta \alpha \\
\dot{\Delta H} = \Delta V_y \\
\dot{\Delta n}_y = n_y^{\alpha} \Delta \alpha
\end{cases} \tag{1}$$

Где система (1) – это система дифференциальных уравнений, используемая для маделирования движения самолёта в короткопериодическом движении.

$$\begin{cases} \Delta \delta_B = K_{\omega_z} \Delta \omega_z + K_{\vartheta} (\Delta \vartheta - \Delta \vartheta + f) \\ \Delta \vartheta = i_H (\Delta H - \Delta H) + i_p \int_0^t (\Delta H - \Delta H) dt \end{cases}$$
 (2)

2 Выполнение работы

2.1 Исходные данные

Таблица 1: Исходные данные

m_0	25000 кг
S	50 m^2
b_a	5м
J_z	$50000 \ {\rm Kr} \ {\rm M}^2$
H	1000 м
M	0,5

Таблица 2: Исходные данные

	/ 1 / 1
$\bar{Y}_a^{\alpha} = a_{11}, 1/c$ $\bar{M}_z^{\alpha} = a_{21}, 1/c^2$	0.642
$\bar{M}_z^{\alpha} = a_{21}, 1/c^2$	5.65
$\bar{M}_z^{\omega_z} = a_{22}, 1/c$	0.468
$\overline{M_z^{\omega_z} = a_{22}, 1/c}$ $\overline{M_z^{\delta_B} = b_2}$	4.5
$V_0 = a_{46}, \text{M}/c$	168
$n_y^{\alpha} = a_{51}$	11.0
K_{ω_z}, c	0.4
K_{ϑ}	0.5, 1, 2
i_H рад/м	$0.000875 \ 0.00175 \ 0.002625$
i_p рад/м	0.0000875 0.000175 0.0002625
\hat{t}_{cp}, c	8
$\hat{\sigma}_{\Delta H},\%$	30
$\hat{n}_{y_{max}}, c$	1.2
$\hat{H}_{cm}, {\scriptscriptstyle \mathrm{M}}$	20
m, m	20

2.2 Ход работы

- 1. На персональном компьютере установить задачу 1, после чего в цикле для каждой пары коэффициентов заданных в табл. 1, определяются:
 - а) при отработке управляющего воздействия = 100м:
 - время срабатывания
 - максимальное значение высоты
 - максимальное значение перегрузки.
 - б) при отработке постоянного возмущения f = -0.035 рад:
 - статическую ошибку регулирования.

Результаты расчетов оформить в виде таблица ??.

Таблица 3: Нестандартные болты для левой резьбы.

Нестандартные болты	Диаметр	
пестапдартные облив	Норма	Разброс
Размеры	10 мм	1 мм

2. Построить по данным табл. ?? графики следующих зависимостей:

$$t_{cp} = f_1(K_{\vartheta}, i_H); \sigma_{\Delta H} = f_2(K_{\vartheta}, i_H)$$

$$\Delta n_{y_{max}} = f_3(K_{\vartheta}, i_H); \Delta H_{cm} = f_4(K_{\vartheta}, i_H)$$

Нанести на графики прямые линии, соответствующие максимально допустимым величинам показателей качества переходных процессов t_{cp} .

$$\hat{\sigma}_{\Delta H}; \Delta n_{y_{max}}; \Delta \hat{H}_{cm}$$
 (смотри табл. 2)

Рис. 3: Время срабатывания t_{cp}

Рис. 4: Относительное перерегулирование $\sigma_{\Delta H}$

Рис. 5: Максимальное значение нормальной перегрузки $\Delta n_{y_{max}}$

Рис. 6: Статистическая ошибка по высоте ΔH_{cm}

3. Построить, используя зависимости п. 2, допустимую область изменения коэффициентов усиления $K_{\vartheta} = f(i_H)$ из условия $t_{cp} \leq \hat{t}_{cp}; \ \sigma_{\Delta H} \leq \hat{\sigma}_{\Delta H_{cp}}; \ \Delta n_{y_{max}} \leq \Delta \hat{n}_{y_{max}}; \ \Delta H_{cm} \leq \Delta \hat{H}_{cm}$

Рис. 7: Область изменения коэффициента усиления

2.3 Переходные процессы

Рис. 8: График ппереходного процесса при $K_{\vartheta}=0.5, i_{H}=0,000875$ [рад/м], f=0

Рис. 9: График ппереходного процесса при $K_{\vartheta}=1, i_{H}=0,002$ [рад/м], f=0

2.4 Выводы

- 1. Статическая ошибка, возникающая при наличии возмущений, уменьшается с увеличением коэффициентов стабилизации.
- 2. При увеличении K_{ϑ} и i_H , рад/м время срабатывания системы уменьшается.
- 3. При увеличении коэффициентов K_{ϑ} и i_H $\Delta n_{y_{max}}$ возрастает.

4. Относительное перерегулирование при увеличении коэффициента K_{ϑ} уменьшается, а при увеличении i_H увеличивается.				