Capitolo 1

cWB: proprietà dell'algoritmo per la rivelazione e la ricostruzione di segnali di onde gravitazionali

I metodi coerenti le statistiche vengono calcolate come somma coerente delle risposte dei detector singoli. Gli algoritmi che sfruttano questi metodi devono risultare più efficienti, devono cioè avere una probabilità di falso allarme più bassa, rispetto alle statistiche calcolate sulle risposte di ogni detector singolarmente.

Introduzione sull'algoritmo fatta nel paragrafo precedente, magari riprenderla velocemente.

Coherent analysis, significato e descrizione della likelihood: spiega quindi bene la differenza con gli algoritmi classici di confronto con segnali già modellati.

regolatori, antenna pattern

algoritmi utilizzati: wavelet transformation, (linear predicion error), mappa verosimiglianza, mappa energia coerente (con piccoli grafici esemplificativi)

(cenni sulla trasformazione di fase)

Figura 1.1: Prospetti [Abbott et al., 2020b]

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. [Abbott et al., 2017a].

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula. [Klimenko et al., 2008].

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio. [Klimenko et al., 2016].

Bibliografia

- [Abbott et al., 2019] Abbott, B., Abbott, R., Abbott, T., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R., Adya, V., Affeldt, C., and et al. (2019). Gwtc-1: A gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs. *Physical Review X*, 9(3).
- [Abbott et al., 2017a] Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., Adya, V., and et al. (2017a). Gw170817: Observation of gravitational waves from a binary neutron star inspiral. *Physical Review Letters*, 119(16).
- [Abbott et al., 2020a] Abbott, B. P., Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R. X., Adya, V. B., Affeldt, C., and et al. (2020a). Gw190425: Observation of a compact binary coalescence with total mass $\sim 3.4 M_{\odot}$. The Astrophysical Journal, 892(1):L3.
- [Abbott et al., 2020b] Abbott, B. P., Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adya, V. B., Affeldt, C., and et al. (2020b). Prospects for observing and localizing gravitational-wave transients with advanced ligo, advanced virgo and kagra. *Living Reviews in Relativity*, 23(1).
- [Abbott et al., 2017b] Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., and et al. (2017b). Search for post-merger gravitational waves from the remnant of the binary neutron star merger gw170817. *The Astrophysical Journal*, 851(1):L16.
- [Baumgarte et al., 2000] Baumgarte, T. W., Shapiro, S. L., and Shibata, M. (2000). On the maximum mass of differentially rotating neutron stars. *The Astrophysical Journal*, 528(1):L29–L32.
- [Hartle, 2003] Hartle, J. (2003). *Gravity: An Introduction to Einstein's General Relativity*. Addison-Wesley.
- [Hobson et al., 2006] Hobson, M., Efstathiou, G., and Lasenby, A. (2006). *General Relativity: An In-*

- troduction for Physicists. Cambridge University Press.
- [Klimenko et al., 2016] Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G., Lazzaro, C., Ackley, K., Tiwari, S., Da Silva, C., and et al. (2016). Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. *Physical Review D*, 93(4).
- [Klimenko et al., 2008] Klimenko, S., Yakushin, I., Mercer, A., and Mitselmakher, G. (2008). A coherent method for detection of gravitational wave bursts. *Classical and Quantum Gravity*, 25(11):114029.
- [Maggiore, 2008] Maggiore, M. (2008). *Gravitatio-nal Waves: Volume 1: Theory and Experiments*. Gravitational Waves. OUP Oxford.
- [Maggiore, 2018] Maggiore, M. (2018). Gravitational Waves: Volume 2: Astrophysics and Cosmology. Gravitational Waves. Oxford University Press.
- [Rezzolla and Takami, 2016] Rezzolla, L. and Takami, K. (2016). Gravitational-wave signal from binary neutron stars: A systematic analysis of the spectral properties. *Physical Review D*, 93(12).
- [Sarin and Lasky, 2020] Sarin, N. and Lasky, P. D. (2020). The evolution of binary neutron star post-merger remnants: a review.