Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

2 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 281.47

Figure 1: Outline of path 1

2.1.1 Oxidation of primary alcohols with DMP

Substrates:

 $1. \ \, \hbox{$4$-hydroxy-2-butenyl-benzoat}$

Products:

1. O=CC=CCOC(=O)c1ccccc1

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and

10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.1.2 Hydrolysis of benzoates

Substrates:

1. O=CC=CCOC(=O)c1ccccc1

Products:

1. 4-hydroxy-but-2-enal

 $\textbf{Typical conditions:} \ \, \text{LiOH/K2CO3/NH3.MeOH.H2O.THF}$

Protections: none

Reference: 10.1021/jm0502788 and 10.1016/j.tetlet.2008.09.165 and 10.1021/jm034098e and 10.1021/jo049277y and 10.1055/s-0033-1338657

Retrosynthesis ID: 25136

2.1.3 Suzuki coupling of vinyl bromides with alkenyl boronic acids

Substrates:

- 1. (e)-2-(methoxycarbonyl)ethyl-1-enylboronic acid
- 2. 1-bromo-1,2-dichloro-ethene

Products:

1. COC(=O)C=CC(Cl)=CCl

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24937

2.1.4 Acid catalyzed transesterification

Substrates:

- 1. 4-hydroxy-but-2-enal
- 2. COC(=O)C=CC(Cl)=CCl

Products:

 $1. \ \, O{=}CC{=}CCOC({=}O)C{=}CC(Cl){=}CCl$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004 Retrosynthesis ID: 50438

2.1.5 Diels-Alder

Substrates:

1.
$$O=CC=CCOC(=O)C=CC(Cl)=CCl$$

Products:

1.
$$O=CC1C(Cl)C(Cl)=CC2C(=O)OCC21$$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116

2.1.6 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

2. O=CC1C(Cl)C(Cl)=CC2C(=O)OCC21

Products:

 $1. \ C/C=C/C1C(Cl)C(Cl)=CC2C(=O)OCC21$

Typical conditions: CrCl2.THF.DMF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.1.7 Synthesis of organotrifluoroborate salts in mild conditions

Substrates:

 $\begin{array}{ll} 1. \ \ 2\text{-}(\text{p-Toluenesulfonylamino}) \text{phenylboronic acid pinacol ester} - & \textit{available} \\ \textit{at Sigma-Aldrich} \end{array}$

Products:

1. Cc1ccc(S(=O)(=O)Nc2cccc2[B-](F)(F)F)cc1

 $\textbf{Typical conditions:} \ \text{KF.tartaric acid.CH3CN.THF.H2O.rt}$

Protections: none

Reference: DOI: 10.1002/anie.201203930

2.1.8 Alkylation of sulfonamides with alkyl chlorides

Substrates:

- 1. Cc1ccc(S(=O)(=O)Nc2cccc2[B-](F)(F)F)cc1
- $2. \ C/C=C/C1C(C1)C(C1)=CC2C(=O)OCC21$

Products:

 $\begin{array}{ll} 1. & C/C = C/C1C2COC(=O)C2C = C(Cl)C1N(c1ccccc1[B-l(F)F)F)S(=O)(=O)c1ccc(C)cc1 \end{array}$

Typical conditions: LDA

Protections: none

Reference: 10.1002/1099-0690(200101)2001:2<323::AID-EJOC323>3.0.CO;2-A

Retrosynthesis ID: 7727

2.1.9 Claisen Condensation

Substrates:

- $\begin{array}{ll} 1. & C/C = C/C1C2COC(=O)C2C = C(Cl)C1N(c1ccccc1[B-](F)(F)F)S(=O)(=O)c1ccc(C)cc1 \end{array}$
- 2. Methyl acetate available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C1C(N(c2cccc2[B-](F)(F)F)S(=O)(=O)c2ccc(C)cc2)C(C1) = CC2(C(C)=O)C(=O)OCC12$

Typical conditions: Base.Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.1.10 Suzuki Coupling of aryltrifluoroborates with alkenyl chlorides

Substrates:

 $1. \ C/C = C/C1C(N(c2cccc2[B-](F)(F)F)S(=O)(=O)c2ccc(C)cc2)C(C1) = CC2(C(C)=O)C(=O)OCC12$

Products:

 $1. \ C/C=C/C1C2C(=CC3(C(C)=O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

Typical conditions: PdCl2(dppf).K2CO3.toluene.reflux

Protections: none

Reference: 10.1002/chem.200900425 and 10.1016/j.tetlet.2014.10.078

Retrosynthesis ID: 10034105

2.2 Path 2

Score: 322.94

Figure 2: Outline of path 2

2.2.1 Appel Reaction

Substrates:

1. 2,3-Dibromoallyl alcohol - available at Sigma-Aldrich

Products:

1. 1,2,3-tribrom-propen

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja80

10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.2.2 Alkylation of 1,3 activated CH acids

Substrates:

1. 3-Oxobutanenitrile - available at Sigma-Aldrich

2. 1,2,3-tribrom-propen

Products:

1. CC(=O)C(C#N)CC(Br)=CBr

Typical conditions: base e.g. NaH.DMF

Protections: none

Reference: 10.1002/ejic.201403224 and 10.1016/j.bmcl.2005.11.008 and 10.1021/ja058303m and 10.1021/acs.orglett.9b03078 and 10.1016/S0040-4020(01)80336-7

Retrosynthesis ID: 31017076

2.2.3 Enol esters and ethers synthesis

Substrates:

1. TMSCl - available at Sigma-Aldrich

 $2.~\mathrm{CC}(=\mathrm{O})\mathrm{C}(\mathrm{C}\#\mathrm{N})\mathrm{CC}(\mathrm{Br}){=}\mathrm{CBr}$

Products:

1. CC(O[Si](C)(C)C)=C(C#N)CC(Br)=CBr

Typical conditions: 1. Et3N.Electrophile

Protections: none

Reference: 10.1016/S0040-4020(03)00977-3 AND 10.1021/ja00056a002

2.2.4 Dehydrogenation of silyl enol ethers

Substrates:

1. CC(O[Si](C)(C)C)=C(C#N)CC(Br)=CBr

Products:

1. CC(=O)C(C#N)=CC(Br)=CBr

 $\textbf{Typical conditions:} \ \mathrm{Pd}(\mathrm{OAc})2.\mathrm{Cu}(\mathrm{OAc})2.\mathrm{O2.MeCN}$

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

Retrosynthesis ID: 9999877

2.2.5 Acid hydrolysis of nitriles to carboxylic acids

Substrates:

1. CC(=O)C(C#N)=CC(Br)=CBr

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)O

Typical conditions: Hcl.heating.H2O

Protections: none

Reference: 10.1021/jm301796k and 10.1016/j.bmcl.2007.06.054 and

 $10.1021/\mathrm{jm}801532e$

Retrosynthesis ID: 16027

2.2.6 Opening of epoxides with carboxylic acids

Substrates:

1. ethynyl-oxirane

2. CC(=O)C(=CC(Br)=CBr)C(=O)O

Products:

1. C#CC(O)COC(=O)C(=CC(Br)=CBr)C(C)=O

Typical conditions: RCOOH.catalyst

Protections: none

Reference: 10.1021/ol051051+ AND 10.1016/j.tet.2005.05.050 and US2011/86912 A1 (P.13) and 10.1055/s-2003-42416 and 10.5012/bkcs.2013.34.8.2286

Retrosynthesis ID: 15151

2.2.7 Meyer-Schuster Rearrangement

Substrates:

1. C#CC(O)COC(=O)C(=CC(Br)=CBr)C(C)=O

Products:

1. CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O

Typical conditions: H+

Protections: none

Reference: 10.1021/cr60273a001

Retrosynthesis ID: 10143

2.2.8 Diels-Alder

Substrates:

1.
$$CC(=O)C(=CC(Br)=CBr)C(=O)OCC=CC=O$$

Products:

 $1. \ \mathrm{CC}(=\mathrm{O})\mathrm{C}12\mathrm{C} = \mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{Br})\mathrm{C}(\mathrm{C}=\mathrm{O})\mathrm{C}1\mathrm{C}\mathrm{O}\mathrm{C}2 = \mathrm{O}$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668>3.0.CO;2-Z AND10.1021/ja062508t

2.2.9 Takai olefination

Substrates:

1. 1,1-Diiodoethane - available at Sigma-Aldrich

 $2. \ \, CC(=O)C12C=C(Br)C(Br)C(C=O)C1COC2=O$

Products:

1. C/C=C/C1C(Br)C(Br)=CC2(C(C)=O)C(=O)OCC12

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF.DMF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10942

2.2.10 Alkylation of amines with alkyl bromides

Substrates:

- 1. 2-(p-Toluenesulfonylamino)phenylboronic acid pinacol ester available at Sigma-Aldrich
- $2. \ C/C = C/C1C(Br)C(Br) = CC2(C(C) = O)C(=O)OCC12$

Products:

Typical conditions: K2CO3 or other base

Protections: none

Reference: 10.1016/j.tetlet.2007.09.110

Retrosynthesis ID: 7668

2.2.11 Suzuki coupling of arylboronic pinacol esters with vinyl Bromides

Substrates:

Products:

 $1. \ C/C = C/C1C2C(=CC3(C(C)=O)C(=O)OCC13)c1ccccc1N2S(=O)(=O)c1ccc(C)cc1$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and 10.1007/3418_2012_32 and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H