

Developing a Project Plan

- Developing the Project Network
- From Work Package to Network
- Constructing a Project Network
- Activity-on-Node (AON) Fundamentals
- Network Computation Process
- Using the Forward Pass and Backward Pass
- Level of Details for Activities
- Practical Considerations
- Extended Network Techniques to Come Closer to Reality
- Activity-on-Arrow Method
- Summary

Copyright® 2006 The McGraw-Hill Companies. All rights reserved.

"I keep six honest serving-men (they taught me all I knew); their names are What and Why and When and How and Where and Who."

(Rudyard Kipling)

Commission 2006 The McCommission Alleights assessed

McGraw-Hill/Irwin 6-4

Developing the Project Plan

- The Project Network
 - -A flow chart that graphically depicts the sequence, interdependencies, and start and finish times of the project job plan of activities that is the *critical path* through the network.
 - \bullet Provides the basis for scheduling labor and equipment.
 - Enhances communication among project participants.
 - Provides an estimate of the project's duration.
 - \bullet Provides a basis for budgeting cash flow.
 - Identifies activities that are critical.
 - Highlights activities that are "critical" and can not be delayed.
 - Help managers get and stay on plan.

Copyright© 2006 The McGraw-Hill Companies. All rights reserve

McGraw-Hill/Irwin 6-

Constructing a Project Network • Terminology - Activity: an element of the project that requires time. - Merge Activity: an activity that has two or more preceding activities on which it depends. - Parallel (Concurrent) Activities: Activities that can occur independently and, if desired, not at the same time.

Onstructing a Project Network (cont'd) Terminology Path: a sequence of connected, dependent activities. Critical path: the longest path through the activity network that allows for the completion of all project-related activities; the shortest expected time in which the entire project can be completed. Delays on the critical path will delay completion of the entire project.

Constructing a Project Network (cont'd) • Terminology -Event: a point in time when an activity is started or completed. It does not consume time. -Burst Activity: an activity that has more than one activity immediately following it (more than one dependency arrow flowing from it). • Two Approaches -Activity-on-Node (AON) • Uses a node to depict an activity. -Activity-on-Arrow (AOA) • Uses an arrow to depict an activity.

Basic Rules to Follow in Developing Project Networks

- · Networks typically flow from left to right.
- An activity cannot begin until all of its activities are complete.
- Arrows indicate precedence and flow and can cross over each other.
- Identify each activity with a unique number; this number must be greater than its predecessors.
- · Looping is not allowed.
- · Conditional statements are not allowed.
- · Use common start and stop nodes.

Copyright® 2006 The McGraw-Hill Companies. All rights reserved.

McGraw-Hill/Irwin 6-1

D

Relationships between activities

- Predecessor activities
 - -Activities must be completed immediately before current activity
- Successor activities
 - -Activities must immediately follow current activity
- Concurrent activities
 - Activities can occur while current activity is taking place

Copyright® 2006 The McGraw-Hill Companies. All rights reserved

KOLL BUSINESS CENTER County Engineers Design Department			
Activity	Description	Preceding Activity	
A	Application approval	None	
В	Construction plans	Α	
C	Traffic study	A	
D	Service availability check	A	
E	Staff report	B, C	
F	Commission approval	B, C, D	
G	Wait for construction	F	
Н	Occupancy	E, G	

Network Computation Proces	ss
Forward Pass—Earliest Times	
-How soon can the activity start? (early start-	_FS)
, , ,	,
-How soon can the activity finish? (early finish	· · · · · ·
-How soon can the project finish? (expected	time—EI)
 Backward Pass—Latest Times 	
-How late can the activity start? (late start-L	-S)
-How late can the activity finish? (late finish-	–LF)
-Which activities represent the critical path?	
-How long can it be delayed? (slack or float-	-SL)
- ,	•
Copyright® 2006 The McGraw-Hill Companies. All rights reserved.	McGraw-Hill/Irwin 6-18

KOLL BUSINESS CENTER County Engineers Design Department			
Activity	Description	Preceding Activity	Activity Time
Α	Application approval	None	5
В	Construction plans	A	15
C	Traffic study	A	10
D	Service availability check	A	5
E	Staff report	B, C	15
F	Commission approval	B, C, D	10
G	Wait for construction	F	170
Н	Occupancy	E, G	35

Forward Pass Computation

- Add activity times along each path in the network (ES + Duration = EF).
- Carry the early finish (EF) to the next activity where it becomes its early start (ES) unless...
- The next succeeding activity is a merge activity, in which case the largest EF of all preceding activities is selected.

Copyright@ 2006 The McGraw-Hill Companies. All rights reserved

McGraw-Hill/Irwin 6-22

Backward Pass Computation

- Subtract activity times along each path in the network (LF - Duration = LS).
- Carry the late start (LS) to the next activity where it becomes its late finish (LF) *unless*
- The next succeeding activity is a burst activity, in which case the smallest LF of all preceding activities is selected.

Copyright© 2006 The McGraw-Hill Companies. All rights reserved.

Determining Slack (or Float)

- Slack (or Float)
 - -The amount of time an activity can be delayed after the start of a longer parallel activity or activities.
- Total slack
- The amount of time an activity can be delayed without delaying the entire project.
- The critical path is the network path(s) that has (have) the least slack in common.

Convight® 2006 The McGraw-Mill Companies All rights means

McGraw-Hill/Irwin 6-25

Practical Considerations

- Network Logic Errors
- Activity Numbering
- Use of Computers to Develop Networks
- Calendar Dates
- Multiple Starts and Multiple Projects

Copyright© 2006 The McGraw-Hill Companies. All rights reserved

Extended Network Techniques to Come Close to Reality

- Laddering
 - Activities are broken into segments so the following activity can begin sooner and not delay the work.
- Lags
- -The minimum amount of time a dependent activity must be delayed to begin or end.
 - Lengthy activities are broken down to reduce the delay in the start of successor activities.
 - Lags can be used to constrain finish-to-start, start-to-start, finish-to-finish, start-to-finish, or combination relationships.

Copyright@ 2006 The McGraw-Hill Companies. All rights reserved

Hammock Activities

- Hammock Activity
 - -An activity that spans over a segment of a project.
 - -Duration of hammock activities is determined after the network plan is drawn.
 - -Hammock activities are used to aggregate sections of the project to facilitate getting the right amount of detail for specific sections of a project.

Copyright© 2006 The McGraw-Hill Companies. All rights reserved.

Graw-Hill/Irwin 6

Key Terms		
Activity Activity-on-arrow (AOA) Activity-on-node (AON) Burst activity Concurrent engineering Critical path Early and late times	Gantt chart Hammock activity Lag relationship Merge activity Network sensitivity Parallel activity Slack/float—total and free	

Activity Description A Application approx	Preceding Activity Activity Time
	val None 5
B Construction plans	: A 15
C Traffic study	A 10
D Service availability	check A 5
E Staff report	B, C 15
F Commission appro	val B, C, D 10
G Wait for constructi	on F 170
H Occupancy	E, G 35

AON Method	Comparison of AON and AOA
Advantages	Methods
No dummy activities are used. Events are not used.	
 Events are not used. AON is easy to draw if dependencies are 	not intense.
4. Activity emphasis is easily understood by	
5. The CPM approach uses deterministic tim	nes to construct networks.
Disadvantages	
	. If the network is not available, computer outputs
must list the predecessor and successor	
2. Network drawing and understanding are i	more difficult when dependencies are numerous.
AOA Method	
Advantages	
 Path tracing is simplified by activity/event 	
A0A is easier to draw if dependencies are	
Key events or milestones can easily be fla	gged.
Disadvantages	
1. Use of dummy activities increases data re	equirements.