COMP9101 Homework4 z5239391

Question4

Solution:

1. Setup

Let us denote dp(d, l) is the maximum total weight end at node d with exactly length l, w(s, d) is the weight of the edge from s to d, DP(j) is the maximum total weight with length equal to l.

2. Subproblems

To find the path with maximum total weight with length $\,l\,$, we can denote there is an end node $\,d\,$, so the maximum total weight is:

$$DP(l) = max\{dp(d, l)\}, \quad for all d \in G$$

And we can compute each dp(d,l) by compute $max\{dp(d',l-1)+w(d',d)\}$ for each d' has an edge to d.

Hence, the subproblems are 'the path with maximum total weight with length l' end at node d'', it's dp(d', l-1); for $d' \in G$ and l' < l.

3. Build-up order

Solve the subproblems in the order

$$dp(d,0), dp(d,1), dp(d,2), ... dp(d,l); for all d \in G$$

4. base case

$$dp(d,0) = 0$$
; for all $d \in G$

5. Recursion

Assume we had solved all the subproblem that we got all dp(g,t); for all $s,d \in G$; t < l'.

Then we need to compute dp(d, l'), we can compute by each node d' which has a path from d' to d:

COMP9101 Homework4 z5239391

$$dp(d, l') =$$

$$\max\{dp(d',l'-1)+w(d',d)\}; if\ Edge(d',d)\ exist; for\ all\ d,d'\in G$$

6. Final solution

$$DP(K) = max\{dp(d,K)\}, for all d \in G.$$

7. Time complexity

There are K subproblems and each subproblems is O(VE), hence the overall time complexity of the algorithm is O(KVE).