Product Proposal

Linear Optimisation Perspective

Business Proposal Statement & Objectives

Problem Statement

This is a linear optimisation problem with the overall aim of determining the feasibility of developing a new product that offers better services for a bigger market segment and generates higher profit per unit compare to our exiting product.

Objectives

- To determine the feasibility of producing any of Type X and Type Y and sell them
- To determine whether it is better to produce only Type X or Type Y or both types
- To determine the proportional combination of Type X and Type Y that guarantees maximum

Method Selection & Justification

Method

Simplex Linear Programming

Justification

- It helps to determine the feasibility of the proposed product in terms of profit
- It provides various feasibly profitable proportional combinations of the proposed and existing products and then suggests the one that assures maximum profit.
- Most importantly, it will provides various alternatives that can be explored considering market uncertainties or peculiarities that may be difficult to capture mathematically.

Procedure

MODEL						
Objective Function:	\$25*x + \$30*y					
Hour_Per_Unit Constraint	$(1/200)^*x + (1/400)^*y \le 40$					
Weekly Production Constraint (x)	x <= 6000					
Weekly Production Constraint (y)	y <= 4000					

SOLUTION TOOLS

The solutions were provided using the following tools:

ı	Tools		Justification
•	Excel (Solver) AMPL (Simplex) Graphical Method Python (Revised Simplex)	•	What if analysis Easy and fast Feasible solution region Validation of optimal solution

RESULTS VISUALISATION

SIMPLEX LINEAR PROGRAMMING SOLUTION						
		MODEL				
		Products Type X Type Y			Available Resources	
		#to Produce				
		Time (hour)	30	10	40	
	Constraints	Production per week (X)			6000	
		Production per week (Y)			1400	
Objective FXN	Max	Profit	150000	42000	192000	

SCENARIO ANALYSIS

	Type X Only	Type Y Only	Both X & Y			Profits		ts	
Weekly Production	6000	4000	Туре Х	Type Y	\$250,000				
(Units)			6000	1400	\$200,000				
Profit Per Unit	\$25	\$30	\$25	\$30	\$150,000				
Time (h)	30	29	30	10	\$100,000				■ Profits
Time Slack	10	11	0	0	\$50,000				
Profit	\$150000	\$120000	\$150000	\$42000	\$0				
			\$192	000		Туре х	Type Y	Both X & \	,

Key Outcomes

- It is feasible to produce any of Type X and Type Y with expected profits of \$150,000 and \$12000 respectively, subject to machinery, person-hour and capacity of specialist available. Both have time slack of 10 and 11 hours respectively.
- However, the maximum profit of \$192000 is guaranteed when both types are produced in the proportional combination of 6000 and 1400 respectively.

ANTICIPATED CHALLENGES

Challenges	Likely Issues	Solutions
Competition	 Competition from incumbent giants Competition from new entrant Composite demand for type y causing decrease in demand for type x Competition from substitute products 	 Gathering adequate market intelligence e.g. PEST & VUCA analysis Getting customers' feedback Provide competitive price for the customer Maintaining direct communication channel with the customers Develop a unique value e.g. free health tips, free medical test, free software update, self-servicing, warranty, replacement, etc. and promote through rigorous marketing campaign
FDA Regulation	Meeting the condition for market entrance	 Premarket notification to FDA Premarket approval from FDA Market listing Quality System (QS) regulation
Overselling	Overselling could lead to: • Queue • Delay in delivery	 Capacity expansion Digitised inventory management Efficient forecasting models
Underselling	 Difficulty with usage Lack of trust in the effectiveness and efficiency of the new product 	 This is expected for a new product in an existing market. Agile methodology that involves improvement of the product based on the customers' feedback could be used.
Defeat	User interface defectQuality defect	 Total quality management approach based on six sigma Pilot testing

CONCLUSIONS

- A weekly production of 6000 type x and 1400 type y guarantees a maximum profit of \$192000 based on our current capacity.
- However, type y with higher profit per unit and improved services that offer pre-diagnosis monitoring promises a
 potentially bigger market and could generate higher return if necessary investment can be made on marketing
 and production capacity expansion.

FOLLOWUP QUESTIONS

- How much is the company willing to spend on market penetration campaign?
- Does the company have immediate plan to expand its capacity?

APENDICE

		MODEL				
		Products	Туре Х	Туре Ү	Available Resources	
		#to Produce	6000	1400		
		Time	30	10	40	
	Constraints	Production per week (X)			6000	
		Production per week (Y)			1400	
Objective FXN	Max	Profit	150000	42000	192000	

```
AMPL

ampl: option solver minos;
ampl: solve;
MINOS 5.51: optimal solution found.

2 iterations, objective 192000
ampl: display x.slack;
x.slack = 0

ampl: display y.slack;
y.slack = 1490

ampl: |

var x >= 0;
var y >= 0;
maximize profit: 25*x + 30*y;
subject to typex: x <= 6000;
subject to typey: y<= 4000;
subject to typey: y<= 4000;
subject to x_per_hour: 1/200 * x + 1/140 * y <= 40;

ampl: display y.slack;
y.slack = 1490
```

```
In [7]: import numpy as np
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings('ignore')
        from scipy.optimize import linprog
In [8]: profit = np.array([25, 30])
        LHS_constraints = np.array([[0.005, 0.007], [1, 0], [0, 1]])
        RHS_constraints = np.array([40, 6000, 4000])
        production = linprog(-profit, A ub = LHS constraints, b ub = RHS constraints,
        production
Out[8]:
             con: array([], dtype=float64)
             fun: -192857.14285714284
         message: 'Optimization terminated successfully.'
             nit: 3
           slack: array([ 0.
                                          0.
                                                     , 2571.42857143])
          status: 0
         success: True
               x: array([6000.
                                      , 1428.57142857])
```


Thank You!

