Interpreting Derivatives

Madiba Hudson-Quansah

March 2023

Contents

Chapter 1		Page 2
1.1	Instantaneous Rate of Change	2
1.2	The Slope of the Tangent Line	2
1.3	Increasing and Decreasing Functions	2
	Increasing Functions — 2 • Decreasing Functions — 3 • Critical Points — 3	

Chapter 1

1.1 Instantaneous Rate of Change

In the case where f is a function of x f'(x) measures the instantaneous rate of change of f with respect to x.

Example 1.1.1

The term widget is an economic term for a generic unit of manufacturing output. Suppose a company produces widgets and knows that the market supports a price of \$10 per unit. Let P(n) give the profit, in dollars, earned by manufacturing and selling n widgets, The company likely cannot make a (positive) profit making just one widget; the start-up costs will likely exceed \$10. Mathematically, we would write this as P(1) < 0.

What do P(1000) = 500 and P'(1000) = 0.25 mean?. Approximate P(1100)

Solution:

The equation P(1000) = 500 means that selling 1,000 widgets returns a profit of \$500.

We interpret P'(1000) = 0.25 as meaning that the profit is increasing at the rate of \$0.25 per widget (the units are "dollars per widget").

Since we have no other information to use, out best approximation for P(1100) is:

$$P(1100) \approx P(1000) + P'(1000) \times 100$$
$$= P(1000) + P'(1000) \times 100$$
$$= 500 + 0.25 \times 100$$
$$= 525$$

We approximate that selling 1.100 widgets returns a profit of \$525

1.2 The Slope of the Tangent Line

We can measure the instantaneous rate of change at a given x value c of a non-linear function by computing f'(c). We can determine the behaviour of the function f by observing the slopes of its tangent lines.

1.3 Increasing and Decreasing Functions

1.3.1 Increasing Functions

f(x) is increasing whenever $x_1 < x_2$ and $f(x_1) < f(x_2)$, I.e as you go up the x axis the y or function values increase.

f(x) is increasing if the slope on any point on it's graph is positive throughout the function's entire domain.

1.3.2 Decreasing Functions

f(x) is decreasing whenever $x_1 < x_2$ and $f(x_1) > f(x_2)$, i.e as you go up the x axis the y or function values decrease

f(x) is increasing if the slope on any point on it's graph is negative throughout the function's entire domain.

1.3.3 Critical Points

- Points where the gradient is equal to 0, i.e. f'(x) = 0
- Points where the gradient does not exist, i.e. $f'(x) = \emptyset$

Example 1.3.1 $(t\sqrt[3]{t^2-4})$

$$g(t) = t\sqrt[3]{t^2 - 4}$$

$$g(t) = t(t^2 - 4)^{\frac{1}{3}}$$

$$g'(t) = (1)(t^2 - 4)^{\frac{1}{3}} + (\frac{1}{3})(2t)(t^2 - 4) \times (t)$$

$$g'(t) = (t^2 - 4)^{\frac{1}{3}} + \frac{2}{3}t^2(t^2 - 4)^{-\frac{2}{3}}$$

$$g'(t) = (t^2 - 4)^{\frac{1}{3}} + \frac{2t^2}{3(t^2 - 4)^{\frac{2}{3}}}$$

$$g'(t) = \frac{(t^2 - 4)^{\frac{1}{3}}}{1} + \frac{2t^2}{3(t^2 - 4)^{\frac{2}{3}}}$$

$$g'(t) = \frac{3(t^2 - 4) + t^2}{3(t^2 - 4)^{\frac{2}{3}}}$$

$$0 = \frac{3(t^2 - 4) + t^2}{3(t^2 - 4)^{\frac{2}{3}}}$$

$$0 = 3t^2 - 12 + 2t^2$$

$$0 = 5t^2 - 12$$

$$12 = 5t^2$$

$$\frac{12}{5} = t^2$$

$$\pm \sqrt{\frac{12}{5}} = t$$

$$3(t^2 - 4)^{\frac{2}{3}} = 0$$

$$(t^2 - 4)^{\frac{2}{3}} = 0$$

$$t = \pm 2$$

Interval	Test Value	$Slope_{g'(x)}$
x < -2	-3	+
$-2 < x < -\sqrt{\frac{12}{5}}$	-1.7	+
$-\sqrt{\frac{12}{5}} < x < \sqrt{\frac{12}{5}}$	0	_
$\sqrt{\frac{12}{5}} < x < 2$	2	+
x > 2	7	+

:. When
$$g'(x) = 0$$
, $x = -\sqrt{\frac{12}{5}}$, $x = \sqrt{\frac{12}{5}}$

:. Increasing
$$(-\infty, -2)$$
, $(2, \infty)$, $(-2, -\sqrt{\frac{12}{5}})$, $(\sqrt{\frac{12}{5}}, 2)$

Decreasing
$$\left(-\sqrt{\frac{12}{5}}, \sqrt{\frac{12}{5}}\right)$$