

Parramatta Marist High School

Mathematics Extension 2

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- · Write using black pen
- · Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I - 10 marks (pages 2-4)

- · Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II - 90 marks (page 5-19)

- · Attempt Questions 11-23
- · Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1 What is the contrapositive of $P \Longrightarrow \neg Q$?
 - A. $Q \Longrightarrow P$
 - B. $\neg Q \Longrightarrow P$
 - C. $Q \Longrightarrow \neg P$
 - D. $\neg Q \Longrightarrow \neg P$
- 2 Let z = 2 7i and w = 5 + 3i.

What is the value of $\bar{z} - 2w$?

- A. -8 13i
- B. -8+i
- C. 12 i
- D. 12 + 13i
- 3 What is the Cartesian form of $r = i \sec \theta + j \tan \theta$?
 - A. $x^2 y^2 = 1$
 - B. $x^2 + y^2 = 1$
 - C. $y^2 x^2 = 1$
 - D. $x^2 y^2 = -1$
- 4 What are the roots of the polynomial $P(x) = x^3 + 3x^2 + 4x + 2$?
 - A. 1, 1+i, 1-i
 - B. -1, 1+i, 1-i
 - C. 1, -1+i, -1-i
 - D. -1, -1+i, -1-i

- 5 What is the negation of $\exists x \in \mathbb{Z} : x^2 = -1$?
 - A. $\exists x \notin \mathbb{Z} : x^2 = -1$
 - B. $\exists x \in \mathbb{Z} : x^2 \neq -1$
 - C. $\forall x \in \mathbb{Z} : x^2 = -1$
 - D. $\forall x \in \mathbb{Z} : x^2 \neq -1$
- What is the angle between the vectors $\underline{u} = i + k$ and $v = j \underline{k}$?
 - A. $\frac{\pi}{3}$
 - B. $\frac{\pi}{2}$
 - C. $\frac{2\pi}{3}$
 - D. π
- 7 Let z = 1 i.
 - What is z^3 in exponential form?
 - A. $e^{\frac{3\pi i}{4}}$
 - B. $e^{-\frac{3\pi i}{4}}$
 - C. $2^{\frac{3}{2}}e^{\frac{3\pi i}{4}}$
 - D. $2^{\frac{3}{2}}e^{-\frac{3\pi i}{4}}$
- 8 The point (0,1,-1) lies on which line?
 - A. $r = i + j + \lambda(i + k)$
 - B. $\underline{r} = \underline{i} + \underline{j} + \lambda(\underline{j} + \underline{k})$
 - C. $r = i + k + \lambda(i + j)$
 - D. $\underline{r} = \underline{i} + \underline{k} + \lambda (j + \underline{k})$

9 The probability function $f(x) = \begin{cases} \pi x \sin \pi x, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$

What is
$$P(x \le \frac{1}{2})$$
?

- A. $\frac{1}{\pi^2}$
- B. $\frac{1}{\pi}$
- C. $\frac{1}{2}$
- D. $\frac{\pi}{2}$
- 10 A particle, initially at rest at the origin, moves with equation of motion $a = 1 + v^2$. What is the equation of motion for v in terms of x?
 - A. $v = \tan x$
 - B. $v = e^x 1$
 - C. $v = x + \frac{1}{3}x^3$
 - D. $v = \sqrt{e^{2x} 1}$

Section II

90 marks

Attempt Questions 11–23

Allow about 2 hours and 45 minutes for this section

Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.

Your responses should include relevant mathematical reasoning and/or calculations.

Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Question 11 (3 marks)	
Prove that $2^{n+1} + 3^{2n-1}$ is divisible by 7 for $n \in \mathbb{Z}^+$.	3

Question 12 (4 marks)		
(a)	Express $1+i\sqrt{3}$ in exponential form.	2
(b)	Hence find the two values of $\sqrt{1+i\sqrt{3}}$ in Cartesian form.	2
	estion 13 (4 marks) he box below, shade the region in the complex plane that simultaneously satisfies	
z <	$< z-2-2i $ and $\frac{\pi}{12} \le \arg z \le \frac{5\pi}{12}$.	

Question 14 (7 marks)

(a)	Let $u_1 = 1$, $u_n = u_{n-1} + n$ for $n \ge 2$. Prove that $u_n = \frac{1}{2}n(n+1)$ for $n \in \mathbb{Z}^+$.	3
(b)	Hence, prove that $\sum_{k=0}^{n} k^3 = u_n^2$ for $n \in \mathbb{Z}^+$.	4
	\overline{k} =0	
	k=0	
	<i>k</i> =0	

Question 15 (15 marks) (a) Find $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \cos x}.$ 3 (b) Find $\int \frac{dx}{\sqrt{x^2 + 2x + 2}}$.

Question 15 continues on page 9

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

Question 15 (continued)		
(c)	Find $\int_0^{\frac{\pi}{4}} \tan^3 x \sec^4 x dx$.	4
	$\int A dr$	
(d)	Find $\int \frac{4 dx}{(x^2+1)(x-1)}.$	4
(d)	Find $\int \frac{1}{(x^2+1)(x-1)}.$	4
(d)	Find $\int \frac{1}{(x^2+1)(x-1)}$.	4
(d)		4

End of Question 15

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

-9-

Question 16 (5 marks)

The displacement x at time t of a particle moving on the x-axis is given by

$$x = 3 + \sqrt{3}\sin 3t + \cos 3t.$$

(a)	Show that the motion of the particle is simple harmonic.	2
(b)	Find the amplitude and phase of the motion.	3

Using vectors, prove that \overrightarrow{BC} is half the magnitude of, and parallel to, \overrightarrow{DE} .

Questions 11-17 are worth 42 marks in total.

Question 18 (4 marks)

(a)	Prove that $\frac{x+y}{2} \ge \sqrt{xy}$ for $x, y \in \mathbb{R}^+$.	2
(b)	Hence prove that $\frac{a}{b} + \frac{b}{a} \ge 2$ for $a, b \in \mathbb{R}^+$.	2

Question 19 (8 marks)

(a)	Consider the sphere given by the Cartesian equation $x^2 + y^2 + z^2 + 2x - 4z - 4 = 0$. Show that the vector equation of the sphere is $\begin{vmatrix} z - \begin{bmatrix} -1 \\ 0 \\ 2 \end{vmatrix} \end{vmatrix} = 3$.	2
(b)	Find the points of intersection between the sphere and the line $\underline{r} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.	3
(c)	Show that the line $\underline{r} = -\underline{i} + \underline{j} - \underline{k} + \mu \underline{j}$ is tangent to the sphere.	3

Question 20 (7 marks)

(a)	Let $I_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x dx$.	3
	Show that for $n \ge 2$, $I_n = \frac{n-1}{n}I_{n-2}$.	
(b)	Hence find the volume of revolution for $y = \cos^3 x$ about the x-axis for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.	4

Question 21 (7 marks)

(a)	Using De Moivre, show that $\cos 5x = 16\cos^5 x - 20\cos^3 x + 5\cos x$.	3
(b)	Hence, show that $\cos 18^\circ = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.	4

Question 22 (10 marks)

A projectile is launched from the ground with an initial velocity of u m/s at an angle of θ to the horizontal. The projectile experiences the effect of gravity, and a resistance proportional to its velocity in both the horizontal and vertical directions.

The equations of motion are given by $\underline{a} = -0.1\underline{v} - 10\underline{j}$, where \underline{a} is the acceleration vector.

(a)	Show that the velocity vector $y = e^{-0.1t} (\underline{u} + \underline{j}) - \underline{j}$, where $\underline{u} = u \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$, satisfies the equations of motion and initial conditions.	3
(b)	Show that the projectile reaches its peak (maximum height) after $10\ln(u\sin\theta+1)$ seconds.	3

Question 22 continues on page 17

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

Question 22 (continued)

(c)	Let the speed of the projectile at its peak be w m/s.	4
	Show that $\lim_{u\to\infty} w = \cot \theta$.	

End of Question 22

Question 23 (12 marks)

Recall that $x \in \mathbb{Q} \iff \exists p \in \mathbb{Z}, q \in \mathbb{Z}^+ : x = \frac{p}{q}$.

(a)	Show that $\forall r \in \mathbb{Z}^+ \exists n \in \mathbb{Z}^+ : 0 < \int_0^1 x^n e^x dx < \frac{1}{r}$.	3
(b)	Prove, using induction, that for all integers $n \ge 0$, $\exists \alpha, \beta \in \mathbb{Z} : \int_0^1 x^n e^x dx = \alpha + \beta e$.	4

Question 23 continues on page 19

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

Question 23 (continued)

(c)	Let $p \in \mathbb{Z}$, $q \in \mathbb{Z}^+$, $x = \frac{p}{q} \in \mathbb{Q}$.	
	Show that $\forall \alpha, \beta \in \mathbb{Z} : \left\{ \alpha + \beta x \neq 0 \implies \alpha + \beta x \geq \frac{1}{q} \right\}.$	2
(d)	Hence, prove that $e \not\in \mathbb{Q}$.	3

End of Question 23

End of Paper

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2} (a + b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{2}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
 and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}$$
, $\sin A \neq 0$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

If
$$t = \tan\frac{A}{2}$$
 then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1+t^2}$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$$

$$\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$$

$$\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than
$$\ Q_1-1.5 imes IQR$$
 or more than $\ Q_3+1.5 imes IQR$

Normal distribution

- approximately 68% of scores have z-scores between –1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x) dx$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1 - p)^{n-r}$$

$$X \sim Bin(n, p)$$

$$\Rightarrow P(X=x)$$

$$= \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x) [f(x)]^{n-1}$$

$$v = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a) f'(x) a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int_a^b f(x) dx$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

Integral Calculus

$$\int f'(x) [f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$$

where
$$n \neq -1$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\int f'(x)\sin f(x) dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x)dx$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\approx \frac{b - a}{2n} \left\{ f(a) + f(b) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] \right\}$$
where $a = x_0$ and $b = x_n$

where
$$a = x_0$$
 and $b = x_0$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${\binom{n}{r}} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$${(x+a)^{n}} = x^{n} + {\binom{n}{1}}x^{n-1}a + \dots + {\binom{n}{r}}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} |\,\underline{u}\,| &= \left|\,x\underline{i} + y\underline{j}\,\right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left|\,\underline{u}\,\right| \left|\,\underline{v}\,\right| \cos\theta = x_1 x_2 + y_1 y_2\,, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{split}$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$
$$\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$

Parramatta Marist High School

Mathematics Extension 2

General Instructions

- · Reading time 10 minutes
- Working time 3 hours
- · Write using black pen
- · Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- · Show relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I – 10 marks (pages 2–4)

- Attempt Questions 1–10
- · Allow about 15 minutes for this section

Section II - 90 marks (page 5-19)

- Attempt Questions 11–23
- · Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

 $(A \Rightarrow B) \Leftarrow (A \Rightarrow A)$

- What is the contrapositive of $P \Longrightarrow \neg O$? 1
 - A. $O \Longrightarrow P$
 - B. $\neg Q \Longrightarrow P$
 - (C.) $Q \Longrightarrow \neg P$
 - D. $\neg O \Longrightarrow \neg P$
- 2 Let z = 2 7i and w = 5 + 3i.

What is the value of $\bar{z} - 2w$?

2 -2w = 2+7' -2(5+3') = 2-10 + (7-6)2

1. B

- A. -8 13i
- (B) -8+i
 - C. 12 i
- D. 12 + 13i
- What is the Cartesian form of $y = i \sec \theta + j \tan \theta$?
- 1 + tan2 d = Sec2 d See & - tan = 1

- (A.) $x^2 y^2 = 1$ B. $x^2 + v^2 = 1$
- C. $v^2 x^2 = 1$
- D. $x^2 y^2 = -1$
- What are the roots of the polynomial $P(x) = x^3 + 3x^2 + 4x + 2$?
 - A. 1, 1+i, 1-i
 - sum = -3, .. D. B. -1, 1+i, 1-i
 - C. 1, -1+i, -1-i
 - (D) -1, -1+i, -1-i

- What is the negation of $\exists x \in \mathbb{Z} : x^2 = -1$? It is not the case that there exists $x \in \mathbb{Z} : x^2 = -1$ 5
 - A. $\exists x \notin \mathbb{Z} : x^2 = -1$
 - B. $\exists x \in \mathbb{Z} : x^2 \neq -1$
 - C. $\forall x \in \mathbb{Z} : x^2 = -1$
 - $\forall x \in \mathbb{Z} : x^2 \neq -1$
- What is the angle between the vectors $\underline{u} = \underline{i} + \underline{k}$ and $\underline{v} = \underline{j} \underline{k}$? 6
 - A.
 - B.

i. for any x ∈ 2, x2 ≠ -1.

7 Let z = 1 - i.

What is z^3 in exponential form?

- A $e^{\frac{3\pi i}{4}}$
- 121 = Sz
- B $e^{-\frac{3\pi i}{4}}$
- Ay (23) < 0
- C. $2\frac{3}{2}e^{\frac{3\pi i}{4}}$
- (D) $2^{\frac{3}{2}}e^{-\frac{3\pi i}{4}}$
- i. D
- 8 The point (0, 1, -1) lies on which line?
 - (A) $r = i + j + \lambda(i + k)$
- x=0 => A or C, Light x=1. y=1 when x=1=7 A
- B. $r = i + j + \lambda(j + k)$ C. $r = i + k + \lambda (i + j)$
- D. $r = i + k + \lambda (j + k)$

9 The probability function
$$f(x) =\begin{cases} \pi x \sin \pi x, & x \in [0,1] \\ 0, & x \notin [0,1] \end{cases}$$
 = $\begin{bmatrix} -\frac{\pi}{1} \times \cos \pi x & dx \\ -\frac{\pi}{1} \times \cos \pi x & dx \end{bmatrix}$

What is $P(x \le \frac{1}{2})$?

A. $\frac{1}{\pi^2}$

B. $\frac{1}{\pi}$

C. $\frac{1}{2}$

D. $\frac{\pi}{2}$

A particle, initially at rest at the origin, moves with equation of motion $a = 1 + v^2$.

A.
$$v = \tan x$$

B.
$$v = e^x - 1$$

C.
$$v = x + \frac{1}{3}x^3$$

D. $v = \sqrt{e^{2x} - 1}$

As this is M.C., booking at 1 THE should indicate the solution is the square root of an exportertial, hence 0.

What is the equation of motion for
$$v$$
 in terms of x ?

A. $v = \tan x$

B. $v = e^{x} - 1$

C. $v = x + \frac{1}{3}x^{3}$

D. $v = \sqrt{e^{2x} - 1}$

As 's M.C.,

At $\int \frac{v dv}{1 + v^{2}} = \int dx$

When $t = 0$, $v = 0$:

I which the square root

A ($t + v^{2}$) = $0 + C$

I which the square root

A ($t + v^{2}$) = $0 + C$

I when $t = 0$, $t = 0$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A ($t + v^{2}$) = $0 + C$

A

Section II

90 marks

Attempt Questions 11-23

Question 11 (3 marks)

Allow about 2 hours and 45 minutes for this section

Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.

Your responses should include relevant mathematical reasoning and/or calculations.

Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Prove that $2^{n+1} + 3^{2n-1}$ is divisible by 7 for $n \in \mathbb{Z}^+$. Same (n=1): $2^{1+1} + 3^{2n-1} = 4 + 3$	3
= 3	
Assume 3k & Zt : 3 P & 2: 2k+1 + 52k-1 = 7 P => 2k+1 = 7P-	3 ZK-
(ousider: 2 k+2 + 3 2 k+1 = 2 (2 k+1) + 3 2 k+1	
$=2(2\ell-3^{2k-1})+3^{2k+1}$	
$= 7(20) + 3^{2k-1}(9-2)$	
= 7 (2P + 3 ^{2k-1})	
$= 2 \alpha / for Q = 2l + 32h-1$	
and Q clearly in 2.	
the by mattematical induction.	

Ouestion 12 (4 marks)

(a) Express $1 + i\sqrt{3}$ in exponential form.

2

moduly = 2 , argument = 4/3

1. 1+ LUS = Ze

(b) Hence find the two values of $\sqrt{1+i\sqrt{3}}$ in Cartesian form.

2

= ± (1/2 + 1/2)

Question 13 (4 marks)

(2+26) < |2-(2+26)) -> 2 '-> closer to 0 than (2+26)

In the box below, shade the region in the complex plane that simultaneously satisfies |z| < |z - 2i| and $\frac{\pi}{12} \le \arg z \le \frac{5\pi}{12}$.

PARRAMATTA MARIST HIGH SCHOOL
YEAR 12 MATHEMATICS EXTENSION 2 = \(\subseteq \subseteq

Ouestion 14 (7 marks)

triangle numbers! Yay!

3

(a)	Let $u_1 = 1$, $u_n = u_{n-1} + n$ for $n \ge 2$.	3
	Prove that $u_n = \frac{1}{2}n(n+1)$ for $n \in \mathbb{Z}^+$.	
	When n=1 , 4, = = = (1+1)	
	=1 /	
	: true for n=1.	
	: true for $N=1$. Assume $\exists k \in \mathbb{Z}^{+}$: $k = \frac{k(k+1)}{2}$	
	Consider MKM = = = k(kH) + (kH)	
	= \(\frac{1}{2}k(kH) + \frac{2}{3}(kH)	
	= \(\frac{1}{2}(kH)(\frac{1}{2}k+2)\)	
	= = (k+1)(k+2)	
	i true by mathemetical Calustian.	
(b)	Hence, prove that $\sum_{k=0}^{n} k^3 = u_n^2$ for $n \in \mathbb{Z}^+$.	4
	Prase Case, N=1: \(\frac{1}{2}\) h3 = 0\(\frac{1}{2}\) \(\lambda_1^2 = 1^2\)	
	Assume $\exists j \in \mathbb{Z}^+$: $\stackrel{\leftarrow}{\succeq} h^3 = u_i^2$	
	(an: $\frac{5H}{5}$ $k^{3} = \frac{1}{2} k^{5} + (5H)^{3}$	
	$= \frac{1}{4} \int_{0}^{1} (j+1)^{2} + (j+1)^{3} \times \frac{4}{4}$	

= (S+1)²[j²+45+4] x + $= \frac{1}{4} \left(\frac{1}{2} + 1 \right)^2 \left(\frac{1}{2} + 2 \right)^2$ = \(\lambda_{\frac{2}{2}}^2\)

: true by mathematical industion.

- (a) Find $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+\cos x} = \frac{\pi}{2}$ $I = \int_{0}^{\frac{\pi}{2}/2} \left[-\cos x \right] dx$ $= \int_{0}^{\frac{\pi}{2}/2} \left[-\cos x \right] dx$ $= \int_{0}^{\frac{\pi}{2}/2} \left[-\cos x \right] dx$ $= \left[-\cos x \right] \left[-\cos x \right] dx$ $= \left[-\cos x \right] \left[-\cos x \right] \left[-\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] \left[\cos x \right] dx$ $= \left[-\cos x \right] dx$ =
- (b) Find $\int \frac{dx}{\sqrt{x^2 + 2x + 2}}$.

 $\int \frac{dx}{\sqrt{(n+1)^2+1}} = \ln\left((x+1)^2 + \sqrt{(x+1)^2+1}\right) + C$ $= \ln\left(n^2 + 2n + (1+\sqrt{n^2+2n+2})\right) + C$

(4)

from a standard integral?

.....

Question 15 continues on page 9

= So Lange seindn + So tanga seinda (d) Find $\int \frac{4 dx}{(x^2+1)(x-1)}$. $4 = (Ax + B)(x-1) + (C)(x^2+1)$ 21=1=) 4=2c=) C=2. 2 = (2) + 2 - A - B, 0 = -A + B =) B = AA = -2 = 3 A = -2 = 3

End of Question 15

= -2 tani x + 2 la |x-1 | +C

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

Question 16 (5 marks)

The displacement x at time t of a particle moving on the x-axis is given by

$$x = 3 + \sqrt{3}\sin 3t + \cos 3t.$$

(a)	Show that the motion of the particle is simple harmonic.	2
	i = 35, 6,34 - 3,8,34	
	i = - 32 63 str 34 - 32 657 36	
	=-9[35-3++63+3	
	=-9[x]	
	: SHM	
(b)	Find the amplitude and phase of the motion. $2\ell = 3 + 2\left(\frac{3}{2}5 + \frac{1}{2} + \frac{1}{2$	3
	20-5+2(=7-5+7+25-7+7)	
	= 3 + 2 (5 \square 7/3 5 \square 1 + (5) 7/3 (5-3 t)	
	$= 3 + 2 \cos (3 + - i)/3)$	
	= 3+2 60 (3 (+- \(\gamma/4))	
	: amplitude = 2, phase = Tyg	

Question 17 (4 marks)

In the diagram below, B is the midpoint of AD and C is the midpoint of AE.

Using vectors, prove that \overrightarrow{BC} is half the magnitude of, and parallel to, \overrightarrow{DE} .

 = 03 + BA + AC +1	CB	
 = 0.6 + 0.4 + 4.4 + 0.	as DB = BA	an AC = CE)
 = 2 (52)		

Questions 11-17 are worth 42 marks in total.

Question 18 (4 marks)

(b)

(a)	Prove that $\frac{x+1}{2}$	$\frac{y}{y} \ge \sqrt{y}$	\overline{xy} for $x, y \in$	\mathbb{R}^+ .	
	0.1		m+	(1)	-5)20

2

W.	 	
	 2+y-2525y 70	
	x + 5 7/2 Jag	
	244 7 124	
	~ /	• • •
	 	• • •

2

Hence prove that $\frac{a}{b} + \frac{b}{a} \ge 2$ for $a, b \in \mathbb{R}^+$.	
hence: let x= =, y= =	otherwise: let a, b & R+
Han 2 +5 2 1/25	otherse: let a, b ∈ R+ (√3 - √=)2 > 0
7	2+2~270
=) ユートランノラウ	\$ + \(\frac{a}{b} + \frac{b}{a} \) 2
9 W	16 Ta 1
7 + 2 7 2	

Question 19 (8 marks)

2

3

(a) Consider the sphere given by the Cartesian equation $x^2 + y^2 + z^2 + 2x - 4z - 4 = 0$. Show that the vector equation of the sphere is $\begin{vmatrix} z - \begin{bmatrix} -1 \\ 0 \\ 2 \end{vmatrix} \end{vmatrix} = 3$.

C1: (x^2+2x+1) -1 + $y^2+(x^2-4x+4)$ -4-4=0 $(x+1)^2+y^2+(x-2)^2-1=0$ $(x+1)^2+y^2+(x-2)^2=3^2$ and this is the equation of a orthogonal of the state of the equation of a orthogonal of the state of the equation of a orthogonal of the state of the state of the equation of a orthogonal of the state of the equation of a orthogonal of the state of the equation of a orthogonal of the equation o

centered at (2) with radius 3.

(b) Find the points of intersection between the sphere and the line $\underline{r} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$. $\begin{vmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 3$ $\begin{pmatrix} 1 + 2 \\ 1 + 2 \end{pmatrix} \cdot \begin{pmatrix} 1 + 2 \\ 1 + 2 \end{pmatrix} = 9$ $\begin{pmatrix} 1 + \gamma \end{pmatrix}^2 + \begin{pmatrix} 1 + \gamma \end{pmatrix}^2 + \begin{pmatrix} 2 - \gamma - 1 \end{pmatrix}^2 = 9$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix}^2 = 6$

 $\gamma = \pm 1$ $\vdots \quad \begin{pmatrix} 0+1 \\ 1+1 \\ 1+2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \underbrace{ANO} \quad \begin{pmatrix} 0-1 \\ 1-1 \\ 1-2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$

(c) Show that the line $r = -i + j - k + \mu j$ is tangent to the sphere.

3 $\begin{pmatrix} -1 & + 1 \\ 1 & + k \end{pmatrix}$ $\begin{pmatrix} -1 & + 1 \\ 1 & +$

 $(1+\mu)^{\alpha} + (-5)^{\alpha} = 0$ $(1+\mu)^{\alpha} = 0$ (

: this line is a largest to the sphere

Question 20 (7 marks)

(a) Let $I_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x \, dx$.

Show that for $n \ge 2$, $I_n = \frac{n-1}{n} I_{n-2}$. $I_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n x \, dx$ $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x_n x_n) \int_{-\frac{\pi}{2}}^{\frac{$

Question 21 (7 marks)

(a)	Using De Moivre, show that $\cos 5x = 16\cos^3 x - 20\cos^3 x + 5\cos x$.	3
	(6592 16-57) = (cox +16/12)5	
	= 605 x+5 660 9x 5-12 -10 603 25-12x -1066032	on 3 x
	+5 Loo 2 5/2 4x + 65/2 x	
	Egpating sed and imaginas:	
	6752 = 6052 - 10 6032 x 5622 x + 5 602 5 m + x	
	= 405x - 10 603x(1-62x)+5 60x(1-2652x+60	4n)
	= 605 x ~ (0 603 x + 10 605 x + 5 600 x ~ 10 603 x + 5 605	
	= 16 con 5 x ~ 20 cos 2 + 5 con x	
	10 + 2 /5	
(b)	Hence, show that $\cos 18^\circ = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.	4
	(5x(5x(8°) = 16 6,518° -20 (,18° +5 (,18°	
	0 = 16 605 18° - 20 cm 5 18° + 5 cm 18°	
	Nov 4518° 70,50	
	0 = 16 con 18° - 20 con 218° + 5	
	co2 18° = 20 ± \$ 400 - 300 by calculate	r
	32 methods, ded	uce to take
	= 20 + 116 J5 + ve square	- vost.
	32	
	2 10 + 2 55	
	(b)	
	(Los 18° = 1/10+7/17	artlen
	4 50, take post	e Alu ar.

Question 22 (10 marks)

A projectile is launched from the ground with an initial velocity of u m/s at an angle of θ to the horizontal. The projectile experiences the effect of gravity, and a resistance proportional to its velocity in both the horizontal and vertical directions.

The equations of motion are given by a = -0.1y - 10j, where a is the acceleration vector.

3

(a) Show that the velocity vector $\underline{y} = e^{-0.1t} (\underline{u} + \underline{j}) (-\underline{j})$ where $\underline{u} = u \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$, satisfies the

(b) Show that the projectile reaches its peak (maximum height) after $10\ln(u\sin\theta+1)$ seconds.

Question 22 continues on page 17

PARRAMATTA MARIST HIGH SCHOOL YEAR 12 MATHEMATICS EXTENSION 2

(c)	Let the speed of the projectile at its peak be w m/s.
	Show that $\lim w = \cot \theta$.
	20.1 €
	V2 = 1 Co 0 e -0.1 t
	When t = 10 ln (ush 0 +1);
	Va= 1 60 8 (u sh 8 +1)-1
	= 1. /a A
	asmoti
	l'u w = l'u (50)
	4-700 4-700 Shat +1/4
	€ 6×9
	SÍNÐ
	= Cot 8.

4

End of Question 22

Ouestion 23 (12 marks) Recall that $x \in \mathbb{Q} \iff \exists p \in \mathbb{Z}, q \in \mathbb{Z}^+ : x = \frac{p}{q}$. (a) Show that $\forall r \in \mathbb{Z}^+ \exists n \in \mathbb{Z}^+ : 0 < \int_0^1 x^n e^x dx < \frac{1}{r}$. 3 The ex is concare up, monotonic increasing in 20 (0,1). clearly So we at 20 as 20 ex 70 in 26 CO,13 a, e<3, ex<3 for x 6 CO, 1) hence: 0 < 5 20 exdx < 5 3 20 dx $0 < \int_{0}^{1} 2^{n} e^{x} dx < \frac{3}{n+1}$ now choose a such that 3 < 1: 12 Hence Vrez' o < \ x'ex dre < + (b) Prove, using induction, that for all integers $n \ge 0$, $\exists \alpha, \beta \in \mathbb{Z} : \int_0^1 x^n e^x dx = \alpha + \beta e$. But use n=0: I=5' enda = e-1 =) d=-1, B=1 Assume FREN: Fd, BEZ+: In = S' xtex dx = d+Be. Consider Inn = S' xt+ex dx = [uk+ ex] - [o(k+) nk ex dr = e - (k+1) In = Q - (K+1) (X+Be) = -(k+1) + (1-(k+1) + (k+1) + (1-(k+1) + (k+1) +Now -(k+1) & = 2 as k, & < 2 and (1- (k+1) B) & 2 as & B & Z.

Question 23 continues on page 19

. true by mathematical induction

Question 23 (continued)

(c)	Let $p \in \mathbb{Z}$, $q \in \mathbb{Z}^+$, $x = \frac{p}{q} \in \mathbb{Q}$.	
	Show that $\forall \alpha, \beta \in \mathbb{Z} : \left\{ \alpha + \beta x \neq 0 \implies \alpha + \beta x \geq \frac{1}{q} \right\}.$ 2	
	Consider 12 (+ Bx)2. Note Q = 0. Suppose	
	1 + Bx \$0. Then 2'(++Bx)2 \$0. Now	
	$Q^{2}(++\beta x)^{2}=(dq+\beta \rho)^{2}\in \mathbb{Z}^{+}, art, b, \beta, \rho \in \mathbb{Z},$	
	and $q^2(\lambda+\beta u)^2 \neq 0$.	
	50 q2(d+f2)7/1 => (d+Ba)27 T2	
	=> (+ + B 21 7) = as recognised	
(d)	Hence, prove that $e \notin \mathbb{Q}$. from a) $0 < \int_0^1 x^n e^{x} dx < \frac{1}{x}$	
	from b) So n'endr = d+Be for some ABEZ	
	fonc), suppose e's satural; e = /2 / as defined poents	dy
	then 1d + Be 1 ? T	
	ush, a) and b): 0< f+Be < 1	
	which contradits c): L+Be 7 = a L+Be = =	
	i e's not not land, i.e. e & a.	

End of Question 23
End of Paper

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2} (a + b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$
 and $\alpha\beta\gamma = -\frac{d}{a}$

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1-r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

If
$$t = \tan \frac{A}{2}$$
 then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1 - t^2}{1 + t^2}$$

$$\tan A = \frac{2t}{1 - t^2}$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A + B) + \sin(A - B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$$

$$\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$$

$$\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than
$$Q_1-1.5 imes IQR$$
 or more than $Q_3+1.5 imes IQR$

Normal distribution

- approximately 68% of scores have z-scores between –1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x) dx$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1 - p)^{n-r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X=x)$$

$$= \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Differential Calculus

Function

Derivative

$$y = f(x)^n$$

$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$v = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$

$$y = g(u)$$
 where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$y = \frac{u}{x}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a) f'(x) a^{f(x)}$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int_a^b f(x) dx$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

$$\approx \frac{2n}{2n} \{f(a) + f(b) + 2n\}$$
where $a = x_0$ and $b = x_0$

Integral Calculus

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1} [f(x)]^{n+1} + c$$

where
$$n \neq -1$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$

$$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan^{-1} \frac{f(x)}{a} + c$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x)dx$$

$$\approx \frac{b-a}{2n} \left\{ f(a) + f(b) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] \right\}$$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${\binom{n}{r}} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + {\binom{n}{1}}x^{n-1}a + \dots + {\binom{n}{r}}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{l} \underline{u} \right| &= \left| x \underline{i} + y \underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \underline{u} \right| \left| \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2 \,, \\ \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \\ r &= a + \lambda b \end{split}$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$

$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$