```
In []: import pandas as pd
    import numpy as np
    from sklearn import preprocessing
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set(style="white")
    sns.set(style="whitegrid",color_codes=True)
    import warnings
    warnings.simplefilter(action='ignore')
```

```
In [2]: df=pd.read_csv(r"C:\Users\pavan\Downloads\used_cars_data (1).csv")
    df
```

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	First	20.54 kmpl	1598 CC	103.6 bhp	5.0	NaN
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	First	17.21 kmpl	1197 CC	103.6 bhp	5.0	NaN
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	First	23.08 kmpl	1461 CC	63.1 bhp	5.0	NaN
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Third	17.2 kmpl	1197 CC	103.6 bhp	5.0	NaN
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	First	10.0 kmpl	2148 CC	170 bhp	5.0	NaN

7253 rows × 14 columns

In [3]: df.head()

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Pric
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.7
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.5
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.5
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.0
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.7

In [4]: df.tail()

Out[4]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	First	20.54 kmpl	1598 CC	103.6 bhp	5.0	NaN
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	First	17.21 kmpl	1197 CC	103.6 bhp	5.0	NaN
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	First	23.08 kmpl	1461 CC	63.1 bhp	5.0	NaN
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Third	17.2 kmpl	1197 CC	103.6 bhp	5.0	NaN
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	First	10.0 kmpl	2148 CC	170 bhp	5.0	NaN
4												_	

In [5]: df.shape

Out[5]: (7253, 14)

In [6]: df.describe()

Out[6]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64
d+vn/	$0.5 \cdot floot64(2)$ int	61(3) object(0)	

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

```
In [8]: df.isnull().sum()
Out[8]: S.No.
                               0
        Name
                               0
        Location
                               0
        Year
                               0
        Kilometers_Driven
                               0
        Fuel_Type
        Transmission
                               0
        Owner_Type
                               0
        Mileage
                               2
                              46
        Engine
                              46
        Power
        Seats
                              53
        New_Price
                            6247
        Price
                            1234
```

dtype: int64

```
In [9]: ax=df["Seats"].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
    df["Seats"].plot(kind='density',color='violet')
    ax.set(xlabel='Seats')
    plt.xlim(-0,25)
    plt.show()
```



```
In [10]: print(df["Seats"].mean(skipna=True))
print(df["Seats"].median(skipna=True))
```

5.27972222222222

5.0

```
In [11]: print(df["New_Price"].isnull().sum()/df.shape[0])
    print(df["Price"].isnull().sum()/df.shape[0])
    print(df["Mileage"].isnull().sum()/df.shape[0])
    print(df["Engine"].isnull().sum()/df.shape[0])
    print(df["Power"].isnull().sum()/df.shape[0])
```

- 0.8612987729215497
- 0.1701364952433476
- 0.0002757479663587481
- 0.006342203226251206
- 0.006342203226251206

```
In [12]: print(df['Engine'].value_counts())
         sns.countplot(x='Engine',data=df,palette='Set3')
         plt.xlim(-0,45)
         plt.show()
         Engine
         1197 CC
                   732
         1248 CC
                   610
         1498 CC
                   370
         998 CC
                   309
         1198 CC
                   281
                   . . .
         1489 CC
                     1
         1422 CC
                     1
         2706 CC
                     1
         1978 CC
                     1
         1389 CC
                     1
```

Name: count, Length: 150, dtype: int64


```
In [13]: data=df.copy()
    data['Seats'].fillna(df['Seats'].median(skipna=True),inplace=True)
    data.drop('New_Price',axis=1,inplace=True)
    data['Price'].fillna(df['Price'].median(skipna=True),inplace=True)
    data['Mileage'].fillna(df['Mileage'].value_counts().idxmax(),inplace=True)
    data.drop('Engine',axis=1,inplace=True)
    data.drop('Power',axis=1,inplace=True)
```

```
In [15]: data.isnull().sum()
Out[15]: S.No.
                              0
                              0
         Name
         Location
                              0
         Year
         Kilometers_Driven
         Fuel_Type
                              0
         Transmission
         Owner_Type
                              0
                              0
         Mileage
         Seats
                              0
         Price
                              0
         dtype: int64
```

In [16]: df.head()

Out[16]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Pric
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.7
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.5
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.5
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.0
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.7

```
In [17]: plt.figure(figsize=(15,8))
    ax=df["Price"].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
    df["Price"].plot(kind='density',color='teal')
    ax.legend(['Mileage','Seats'])
    ax.set(xlabel='Price')
    plt.xlim(-9,80)
    plt.show()
```


In [18]: training=pd.get_dummies(data,columns=["S.No."])
 final_train=training
 final_train.head()

Out[18]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Seats	Price	 S.No7243	S.No7244	S.No
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	5.0	1.75	 False	False	
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	5.0	12.50	 False	False	
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	5.0	4.50	 False	False	
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	7.0	6.00	 False	False	
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	5.0	17.74	 False	False	

5 rows × 7263 columns

In []: EXPLORATORY DATA ANALYSIS

In [20]: sns.barplot(x='Price',y='Year',data=final_train,color='mediumturquoise')
plt.show()

In [21]: import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x='Year',y='Seats',data=df,color='aquamarine')
plt.show()

