Megadados

Índices, particionamento

Engenharia

Maciel C. Vidal

Indices

Índices

Índices são estruturas de dados que facilitam a localização de informação no banco de dados.

Cria-se um índice a partir de uma coluna de uma tabela.

Quando criar indice?

Sempre que:

- Chave primária
- Chave estrangeira
- Colunas
 - Com muita demanda de busca,
 - sem muita repetição de valores,
 - sem muitos NULL, e que
 - não mudam com frequência (preferencialmente nunca)

Quando não criar indice

- Colunas que mudam com frequência
- Colunas com muita repetição de valores
- Colunas com muitos NULL
- Colunas que não são usadas com frequência em buscas

Alem disso:

Não crie mais que 6 indices por tabela

CREATE INDEX

```
CREATE INDEX index_name [index_type]
ON tbl_name (index_col_name,...)
```

```
index_type:
    USING {BTREE | HASH}
```

- Como funcionam os índices? Implementações mais comuns:
 - Hash tables
 - B-trees

CREATE INDEX

USE megadados; CREATE INDEX idxTelefone ON Funcionario (telefone);

Quando criar?

- Chave primária
- Chave estrangeira
- Colunas usadas frequentemente para busca

Quando não criar?

- Colunas com muitos NULL
- Colunas com muitos valores iguais
- Tabelas muito pequenas

Não crie mais do que 6 índices por tabela

Hash tables

- Mapa chave-valor organizados pelo valor hash da chave
- Bom para buscas por valor exato
- Ruim para buscas por faixas de valor

Exemplo

Hash tables: Complexidade

Lembrando das disciplinas de **Algoritmos**:

- Busca?
- Inserção?
- Remoção?

Hash tables: Complexidade

Lembrando das disciplinas de **Algoritmos**:

- Busca? O(1)
- Inserção? O(1)
- Remoção?O(1)

B-trees

Um tipo de árvore balanceada de busca

- Razoável para buscas por valor exato
- Boa para buscas por faixa de valor

O professor demonstrará o processo de construção da árvore.

Complexidade das B-trees

- Busca?
- Inserção?
- Remoção?

Complexidade das B-trees

Busca? O(log(n))

Inserção? O(log(n))

Remoção? O(log(n))

Particionamento

Particionamento

Particionar é dividir as tabelas de um banco de dados em partes menores.

Permite distribuir o banco de dados em vários nós, aumentando o desempenho em situações de acesso concorrente intenso.

Tipos de particionamento

- Vertical: as tabelas são separadas por colunas em várias tabelas com relacionamento 1:1
 - A tabela original é o INNER JOIN das várias tabelas derivadas
- Horizontal: as tabelas são separadas por linhas em fragmentos (shards). Esse procedimento também é chamado de fragmentação (sharding)
 - A tabela original é o UNION das várias tabelas derivadas

Particionamento vertical

Id	Coluna_1	Coluna_2	Coluna_3
1	a	b	С
2	d	е	f
3	g	h	i
4	J	k	l

Id	Coluna_1
1	а
2	d
3	g
4	J

Id	Coluna_2	Coluna_3
1	b	С
2	е	f
3	h	i
4	k	I

Particionamento horizontal

id	colA	colB
1	а	b
2	С	d
3	е	f
4	g	h
5	i	j
6	k	I
7	m	n

Função de partição

id	colA	colB
2	С	d
4	g	h
6	k	I

id	colA	colB
1	а	b
3	е	f
5	i	j
7	m	n

www.insper.edu.br