1
$$A \cdot \begin{bmatrix} 7 & 1 \\ 5 & 3 \end{bmatrix}$$

O · $det(A \cdot 2I)$

O · $det(5 \cdot 3 \cdot 2I)$

O · $(-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$

O · $(-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$

O · $(-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$

O · $(-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$

O · $(-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot (-7 \cdot 2)(-3 \cdot 2) \cdot (1)(-5)$
 $O \cdot$

 $I(p) = p(0) + p(2)t - p(0)t^{2} - p(2)t^{3}$ 2a) p(+)=1-62 $p(0) \cdot 1 \quad p(2) = -3$ $T(p) = 1 + (-3t) - (t^2) - (-3t^3) = 1 - 3t - t^2 + 3t^3$ vi ken na se at pikke er en egenvekter fordi vi ikke ken trekke ut en 2 fra T(p) 26) p(+)=6-63 p(0)=0 p(2)=-6 T(p)=0+(-6+)-0+2-(-6+3)=-6++6+3 -6++663=2,(+,-+3) -6(t-8)=2(t-8) 2,=-6 her er p en egenvekter til I og egenverden er -6

2	* [1] 11 1 T
3a)	A 4-41 1 A= 2-21 v= 1 2-43 [1]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Så [i] er er egenichter fer A

	· · · · · · · · · · · · · · · · · · ·
21)	
36)	A = 2 - 2 - 1
	2-43
	Ter determinantes slik at vi kon finne egenverliere
	det 2 -2 1 - 020 2 -4 3 002
	2 -2-2 1
· ·	2 -4 3-1
	$(4-\lambda)$ $-2-\lambda$ 1 + (-4) 1 2 + 1 2 -2- λ 1 -4 3- λ 3- λ 2 2 -4
	$(4-\lambda)((-2-\lambda)(3-\lambda)+4)+(-4)(2-(2\cdot(3-\lambda)))+(2\cdot(-4)-(2\cdot(-2-\lambda)))$
	$-\lambda^3 + 5\lambda^2 - 2\lambda - 8 - 8\lambda + 16 + 2\lambda - 4$
	13 5 12 0 11 1 10 0
 	- x³+5x²-8x+4 => faktoriser ter sa a fá
	$\lambda = 1 \vee \lambda = 2$
	$\lambda_1 \circ \circ$
	broker disse egenverdiene til a lage d= U \r U
	også får vi p ved å ta busisen av A med alte ogenverdene
	$A\vec{x} = \lambda_1 \vec{x} = I \cdot \vec{x} , A\vec{x} = \lambda_2 \vec{x} = 2 \cdot \vec{x} $

X-2y=a X-2y=b 1-2 a 2 1-2 a 1-2 b 0 0 b-a Siden matrisen ikke her noen provid joggs i den nedroste noden vil elet si at systemet er inkesistent