CS 2750 Machine Learning Lecture 10

Multi-layer neural networks

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

CS 2750 Machine Learning

Linear units Logistic regression

Linear regression

Gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i)) \mathbf{x}_i$$

Online:
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha(y - f(\mathbf{x}))\mathbf{x}$$

$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(\mathbf{w}^T \mathbf{x})$

Gradient update:

The same

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i)) \mathbf{x}_i$

Online: $\mathbf{w} \leftarrow \mathbf{w} + \alpha (y - f(\mathbf{x}))\mathbf{x}$

Limitations of basic linear units

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$

Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j)$$

Function linear in inputs!!

Linear decision boundary!!

CS 2750 Machine Learning

Extensions of simple linear units

• use feature (basis) functions to model nonlinearities

Linear regression

Logistic regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}) \qquad f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

 $\phi_j(\mathbf{x})$ - an arbitrary function of \mathbf{x}

Multi-layered neural networks

- Offer an alternative way to introduce nonlinearities to regression/classification models
- Idea: Cascade several simple logistic regression units.
- Motivation: from a neuron and synaptic connections.

Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

Example: a (2 layer) classifier with non-linear decision boundaries

Input layer

Hidden layer

Output layer

CS 2750 Machine Learning

Multilayer neural network

- Models non-linearities through logistic regression units
- Can be applied to both regression and binary classification problems

Multilayer neural network

- Non-linearities are modeled using multiple hidden logistic regression units (organized in layers)
- Output layer determines whether it is a **regression and binary** classification problem

Learning with MLP

- How to learn the parameters of the neural network?
- Gradient descent algorithm.
- On-line version: Weight updates are based on $J_{\text{online}}(D_i, \mathbf{w})$

$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} J_{\text{online}} (D_i, \mathbf{w})$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!

• The process is called back-propagation

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level

 $x_i(k)$ - output of the unit i on level k

 $z_i(k)$ - input to the sigmoid function on level k

 $w_{i,j}(k)$ - weight between units j and i on levels (k-1) and k

$$z_i(k) = w_{i,0}(k) + \sum_j w_{i,j}(k)x_j(k-1)$$

$$x_i(k) = g(z_i(k))$$

CS 2750 Machine Learning

Backpropagation

Update weight $w_{i,j}(k)$ using a data point $D_u = \langle \mathbf{x}, y \rangle$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w})$$

Let
$$\delta_i(k) = \frac{\partial}{\partial z_i(k)} J_{online}(D_u, \mathbf{w})$$

Then:
$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

S.t. $\delta_i(k)$ is computed from $x_i(k)$ and the next layer $\delta_i(k+1)$

$$\delta_i(k) = \left[\sum_l \delta_l(k+1) w_{l,i}(k+1)\right] x_i(k) (1 - x_i(k))$$

Last unit (is the same as for the regular linear units):

$$\delta_i(K) = -(y - f(\mathbf{x}, \mathbf{w}))$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

Learning with MLP

- Online gradient descent algorithm
 - Weight update:

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{\text{online}}(D_u, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_{j}(k-1)$ - j-th output of the (k-1) layer $\delta_{i}(k)$ - derivative computed via backpropagation

- a learning rate

CS 2750 Machine Learning

Online gradient descent algorithm for MLP

Online-gradient-descent (*D, number of iterations*)

Initialize all weights $w_{i,j}(k)$

for i=1:1: number of iterations

select a data point $D_u = \langle x, y \rangle$ from Ddo

set $\alpha = 1/i$

compute outputs $x_i(k)$ for each unit **compute** derivatives $\delta_i(k)$ via backpropagation update all weights (in parallel)

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

end for

return weights w

Problems with learning MLPs

- Decision about the number of units must be made in advance
- Converges to a local optima
- Sensitive to initial set of weights

CS 2750 Machine Learning

MLP in practice

- Optical character recognition digits 20x20
 - Automatic sorting of mails
 - 5 layer network with multiple output functions

