Ex. 2.1: Is it possible to find a general formula for p(C|A+B), analogous to (2-48), from the product and sum rules? If so, derive it; if not, explain why this cannot be done.

Answer:

Sure. We've derived Bayes theorem without naming it, which is simply product rule and commutativity, so we can say

$$p(C|A+B) = \frac{p(C) p(A+B|C)}{p(A+B)}$$
$$= \frac{p(C) (p(A) + p(B) - p(AB|C))}{p(A) + p(B) - p(AB)}.$$

Ex. 2.2: Now suppose we have a set of propositions $\{A_1, \dots, A_n\}$ which on information X are mutually exclusive: $p(A_iA_j|X) = p(A_i|X)\delta_{ij}$. Show that $p(C|(A_1+A_2+\dots+A_n)X)$ is a weighted average of the separate plausibilities $p(C|A_iX)$:

$$p(C|(A_1 + \dots + A_n)X) = p(C|A_1X + A_2X + \dots + A_nX) = \frac{\sum_i p(A_i|X)p(C|A_iX)}{\sum_i p(A_i|X)}.$$

Answer: For $i \neq j$,

$$p(C|A+B) = \frac{p(A+B|C)p(C)}{p(A+B)}$$
$$= \frac{(p(A)+p(B)-p(AB|C))p(C)}{p(A)+p(B)-p(AB|C)}.$$

Iterating this over $\sum_{i} A_{i}$ we get

$$p\left(\sum_{i} A_{i} \middle| X\right) = \sum_{i} p(A_{i} | X).$$

Thus, and in a similar manner to the above excercise,

$$\begin{split} p\left(C\middle|\sum_{i}A_{i}X\right) &= \frac{p\left(\sum_{i}A_{i}|CX\right)p(C|X)}{p(\sum_{i}A_{i}|X)} \\ &= \frac{\sum_{i}p(A_{i}|CX)p(C|X)}{\sum_{i}p(A_{i}|X)} \\ &= \frac{\sum_{i}p(A_{i}|X)p(C|A_{i}X)}{\sum_{i}p(A_{i}|X)}. \end{split}$$

Ex.: Let A_i mutually exclusive $(P(A_iA_j) = P(A_i)\delta_{ij})$. Then, $P(\sum_i A_i) = \sum_i P(A_i)$.

Answer:

If $i \in \{1, 2\}$, then

$$P(\sum_{i} A_{i}) = P(A_{1} + A_{2}) \tag{1}$$

$$= P(A_1) + P(A_2) - P(A_1 A_2)^{0}$$
 (2)

$$=\sum_{i} P(A_i). \tag{3}$$

Then, by induction,

$$P\left(\sum_{i}^{N+1} A_i\right) = P\left(\sum_{i}^{N} A_i\right) + P(A_{N+1}) - P\left(\sum_{i}^{N} A_i A_{N+1}\right) \tag{4}$$

$$= \sum_{i}^{N} P(A_i) + P(A_{N+1}) - \sum_{i}^{N} (A_i A_{N+1})^{\bullet}$$
 (5)

$$=\sum_{i}P(A_{i}). \tag{6}$$

Ex. 2.3: Limits on Probability Values: As soon as we have the numerical values a = P(A|C) and b = P(B|C), the product and sum rules place some limits on the possible numerical values for their conjunction and disjunction. Supposing that $a \le b$, show that the probability of the conjunction cannot exceed that of the least possible proposition: $0 \le P(AB|C) \le a$, and the probability of the disjunction cannot be less than that of the most probable proposition: $b \le P(A + B|C) \le 1$. Then show that, if a + b > 1, there is a stronger inequality for the conjunction; and if a + b < 1 there is a stronger one for the disjunction. These necessary general inequalities are helpful in detecting errors in calculations.

Answer:

For the conjunction,

$$P(AB|C) = P(A|C)P(B|AC)$$

$$= aP(B|AC) \qquad \leq a. \qquad (8)$$

Since P(AB|C) = b + a - P(A+B|C), if b+a > 1 then $P(AB|C) > 1 - P(A+B|C) = P(\overline{A+B}|C)$.

For the disjunction,

$$P(A+B|C) = P(A|C) + P(B|C) - P(AB|C)$$
(9)

$$= b + a - P(AB|C) \tag{10}$$

$$\geq b.$$
 (11)

And also, b + a < 1 implies $P(A + B|C) < 1 - P(AB|C) = P(\overline{AB}|C)$.