R Lab (Extra): Probability Distributions in R

Ikuma Ogura

August 23, 2019

Distributions Typically Used in Statistics

- In data analysis we often deal with classes of probability distributions whose specific shape can be determined with a few parameters.
- Example: by specifying the value of μ and σ , we can determine the exact shape of the normal distribution;

$$N(\mathbf{x}|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\Big(-\frac{1}{2\sigma^2}(\mathbf{x}-\mu)^2\Big)$$

- R contains useful functions to deal with probability distributions.
 - ▶ For each class of distribution, R has 4 types of functions.
 - ★ PMF/PDF
 - * CDF
 - * Quantile
 - * Random number generator

Functions Related with Probability Distributions in R (1)

Probability Mass Functions (PMF)/Probability Density Function (PDF)

- ▶ PMF of a discrete probability distribution f(X = x) describes the probability that the random variable X takes the value x.
- ▶ PDF of a continuous probability distribution f(x) describes the *density* where X equals to x (i.e., relative likelihood of occurence of value x)
- In R, PMF/PDF of a distribution is represented with a function starting from the letter d.
 - * e.g., PDF of a normal distribution can be computed with dnorm() function

Functions Related with Probability Distributions in R (2)

Cumulative Density Function (CDF)

- ▶ CDF of a probability distribution F(X = x) describes the probability that X is equal to or smaller than x (i.e., $F(X = x) = Pr(X \le x)$)
- Mathematically,

$$F'(X) = f(X)$$
$$\int_{-\infty}^{x} f(X)dx = F(X = x)$$

- In R, CDF of a distribution is represented with a function starting from the letter p
 - ★ e.g., CDF of a normal distribution can be computed with pnorm() function

Functions Related with Probability Distributions in R (3)

- Inverse distribution function or Quantile function is the inverse function of the CDF. Therefore, it takes the cumulative probability as the input and returns the value X = x as the output.
 - In R, quantile function of a distribution is represented with a function starting from the letter q
 - e.g., Quantile function of a normal distribution can be computed with qnorm() function

Functions Related with Probability Distributions in R (4)

- In R, we can simulate the value of X based on the PMF/PDF of a distribution
 - we call this practice as random number generation
- Functions to generate random numbers start from the letter r
 - e.g., we can generate random numbers from a normal distribution using the rnorm() command
- Strictly speaking, value of X simulated in R is not random; they are a deterministic sequence of numbers which look like random
 - To make sure that we can completely replicate the numbers, we determine the first number by specifying the seed through set.seed() command.
 - e.g., First type set.seed(123) and then rnorm(2) into the R console. You'll get the two numbers -0.5604756 and -0.2301775 regardless of the computing environment.

Distributions Commonly Used in Statistics

Name	PMF/PDF	CDF	Quantile	Random Number
Uniform	dunif	punif	qunif	runif
Binomial	dbinom	pbinom	qbinom	rbinom
Poisson	dpois	ppois	qpois	rpois
Negative Binomial	dnbinom	pnbinom	qnbinom	rnbinom
Normal	dnorm	pnorm	qnorm	rnorm
Logistic	dlogis	plogis	qlogis	rlogis
t	dt	pt	qt	rt
F	df	pf	qf	rf
χ^2	dchisq	pchisq	qchisq	rchisq
Exponential	dexp	pexp	qexp	rexp
Weibull	dweibull	pweibull	qweibull	rweibull
Gamma	dgamma	pgamma	qgamma	rgamma

Examples

• The probability that a binomial random variable X equals to 3 when n=10 and p=0.4 is

```
dbinom(x = 3, size = 10, prob = 0.4)
```

[1] 0.2149908

• The probability that a binomial random variable X is larger than 5 when n=13 and p=0.3 is

```
1 - pbinom(q = 5, size = 13, prob = 0.3)
```

```
## [1] 0.1653975
```

```
# or
pbinom(q = 5, size = 13, prob = 0.3, lower.tail = FALSE)
```

```
## [1] 0.1653975
```

Examples (cont.)

• The probability that a random variable X following the normal distribution with $\mu=3$ and $\sigma^2=16$ falls between 5 and 7 is

```
pnorm(q = 7, mean = 3, sd = 4) - pnorm(q = 5, mean = 3, sd = 4)
```

[1] 0.1498823

• If you want to find the value of $X \sim N(-2,4)$ where the cumulative probability just exceeds 0.4,

```
qnorm(p = 0.4, mean = -2, sd = 2)
```

[1] -2.506694

Exercises

- What is the probability of getting 4 heads out of 10 flips of a fair coin?
- What is the probability that a random variable $X \sim N(4,5)$ get values larger than 2 and smaller than 5?
- Generate 1,000 (quasi) random numbers from a Poisson distribution with $\lambda = 4$. Confirm that the mean and variance of the simulated values are close to 4.
 - What happens if we increase the number of random numbers to 100,000?

10 / 10