The following proposition is almost obvious, but very important. It shows that projectivities between projective lines are characterized by the preservation of the cross-ratio of any four points (three of which are distinct).

Proposition 26.20. Given any two projective lines Δ and Δ' , for any sequence (a, b, c, d) of points in Δ and any sequence (a', b', c', d') of points in Δ' , if a, b, c are distinct and a', b', c' are distinct, there is a unique projectivity $f: \Delta \to \Delta'$ such that f(a) = a', f(b) = b', f(c) = c', and f(d) = d' iff [a, b, c, d] = [a', b', c', d'].

Proof. First, assume that $f: \Delta \to \Delta'$ is a projectivity such that f(a) = a', f(b) = b', f(c) = c', and f(d) = d'. Let $h: \Delta \to \mathbb{P}^1_K$ be the unique projectivity such that $h(a) = \infty$, h(b) = 0, and h(c) = 1, and let $h': \Delta' \to \mathbb{P}^1_K$ be the unique projectivity such that $h'(a') = \infty$, h'(b') = 0, and h'(c') = 1. By definition, [a, b, c, d] = h(d) and [a', b', c', d'] = h'(d'). However, $h' \circ f: \Delta \to \mathbb{P}^1_K$ is a projectivity such that $(h' \circ f)(a) = \infty$, $(h' \circ f)(b) = 0$, and $(h' \circ f)(c) = 1$, and by the uniqueness of h, we get $h = h' \circ f$. But then, [a, b, c, d] = h(d) = h'(f(d)) = h'(d') = [a', b', c', d'].

Conversely, assume that [a,b,c,d] = [a',b',c',d']. Since (a,b,c) and (a',b',c') are projective frames, by Proposition 26.5, there is a unique projectivity $g: \Delta \to \Delta'$ such that g(a) = a', g(b) = b', and g(c) = c'. Now, $h' \circ g: \Delta \to \mathbb{P}^1_K$ is a projectivity such that $(h' \circ g)(a) = \infty$, $(h' \circ g)(b) = 0$, and $(h' \circ g)(c) = 1$, and thus, $h = h' \circ g$. However, h'(d') = [a',b',c',d'] = [a,b,c,d] = h(d) = h'(g(d)), and since h' is injective, we get d' = g(d).

As a corollary of Proposition 26.20, given any three distinct points a, b, c on a projective line Δ , for every $\lambda \in \mathbb{P}^1_K$ there is a unique point $d \in \Delta$ such that $[a, b, c, d] = \lambda$.

In order to compute explicitly the cross-ratio, we show the following easy proposition.

Proposition 26.21. Given any projective line $\Delta = \mathbf{P}(D)$, for any three distinct points a, b, c in Δ , if a = p(u), b = p(v), and c = p(u + v), where (u, v) is a basis of D, and for any $[\lambda, \mu]_{\sim} \in \mathbb{P}^1_K$ and any point $d \in \Delta$, we have

$$d = p(\lambda u + \mu v) \quad \textit{iff} \quad [a, b, c, d] = [\lambda, \mu]_{\sim}.$$

Proof. If (e_1, e_2) is the basis of K^2 such that $e_1 = (1, 0)$ and $e_2 = (0, 1)$, it is obvious that $p(e_1) = \infty$, $p(e_2) = 0$, and $p(e_1 + e_2) = 1$. Let $f: D \to K^2$ be the bijective linear map such that $f(u) = e_1$ and $f(v) = e_2$. Then $f(u + v) = e_1 + e_2$, and thus f induces the unique projectivity $\mathbf{P}(f): \mathbf{P}(D) \to \mathbb{P}^1_K$ such that $\mathbf{P}(f)(a) = \infty$, $\mathbf{P}(f)(b) = 0$, and $\mathbf{P}(f)(c) = 1$. Then

$$\mathbf{P}(f)(p(\lambda u + \mu v)) = [f(\lambda u + \mu v)]_{\sim} = [\lambda e_1 + \mu e_2]_{\sim} = [\lambda, \mu]_{\sim},$$

that is,

$$d = p(\lambda u + \mu v)$$
 iff $[a, b, c, d] = [\lambda, \mu]_{\sim}$,

as claimed.