CMSC 127

Data Modeling Using the

Entity Relationship Model Reginald Neil C. Recario

Institute of Computer Science University of the Philippines Los Baños

Overview

- □ The ER Model
- □ ER Model Definition of Terms
- Entity, Entity Type, Entity Set and Relationship
- □ ER Model Constraints
- □ Design Issues

ER Model Concepts

□ Entity

A specific object or thing in the real world with an independent existence

□ Attribute

A property used to describe an entity

ER Model Concepts

- A specific entity will have a value for each of its attributes.
- □ Each attribute has a value set (or data type) associated with it e.g. integer, string, subrange, enumerated type, ...

ER Model Concepts

- □ Simple
 - An attribute that is atomic or not divisible
- □ Composite
 - An attribute that is made up of several components or parts

Example of a composite attribute

Types of Attributes

□ Single-valued

Each entity has only one value for this kind of attribute.

□ Multivalued

An entity may have multiple values for this attribute.

Types of Attributes

□ Derived

Can be determined or computed based from the value of other attributes

Types of Attributes

- In general, composite and multi-valued attributes may be nested arbitrarily to any number of levels, although this is rare.
 - For example, Previous Degrees of a STUDENT is a composite multi-valued attribute denoted by {Previous Degrees (College, Year, Degree, Field)}.
 - Multiple Previous Degrees values can exist.
 - Also called as complex attribute

Entity Set

- An entity set is a collection of all entities of a particular entity type in the database at any point in time.
- Usually, same name is used to refer to both the entity type and the entity set.

Key Attributes

- □ A key attribute is an attribute whose values are distinct for each individual entity in the entity set.
- It is used to identify each entity uniquely.
- □ A key attribute may be composite.
- An entity type may have more than one key.

Displaying an Entity type

- An entity type is displayed in a rectangular box.
- Attributes are displayed in ovals.
 - ■Each attribute is connected to its entity type.
 - ■Components of a composite attribute are connected to the oval representing the composite attribute.

Displaying an Entity type

- ■Each key attribute is underlined.
- Multivalued attributes are displayed in double ovals.
- Derived attributes are represented by dashed ovals.

An Entity type

- □ ENTITY TYPES
 - DEPARTMENT
 - ■Name, number, locations

An Entity type

Name, number, address, salary, sex, and birthdate

Relationships and Relationship Types

- A relationship is an association among several entities.
- Relationships of the same type are grouped or typed into a relationship type.

Relationship Degree

- The degree of a relationship type is the number of participating entity types.
- A relationship type of degree two is called a binary relationship while one of degree three is called a ternary.
 - WORKS_FOR is binary relationship

COMPANY Database Relationship Types

- There should be six relationship types
 - WORKS_FOR (between EMPLOYEE, DEPARTMENT)
 - MANAGES (also between EMPLOYEE, DEPARTMENT)
 - CONTROLS (between DEPARTMENT, PROJECT)
 - WORKS_ON (between EMPLOYEE, PROJECT)
 - SUPERVISION (between EMPLOYEE (as subordinate), EMPLOYEE (as supervisor))
 - DEPENDENTS_OF (between EMPLOYEE, DEPENDENT)

Displaying a Relationship Type

- A relationship type is represented as follows:
 - Diamond-shaped box is used to display a relationship type.
 - Connected to the participating entity types via straight lines.

On Relationship Types

- More than one relationship type can exist between the same participating entity types.
 - e.g. MANAGES and WORKS_FOR
 - Different meanings and different relationship instances

Recursive Relationship Type

- A relationship type that associates entities which are members of the same entity type
- □ e.g. SUPERVISION
- Roles must be specified to distinguish the meaning of each participation.
- EMPLOYEE participates twice in two distinct roles:
 - ■supervisor (or boss) role
 - □ supervisee (or subordinate) role

Partial ERD with Recursive Relationship

Constraints on Relationships

- □ Cardinality Ratio
 - specifies the *maximum number* of relationship instances that an entity can participate in
- □ Types of cardinality ratios
 - ■One-to-one (1:1)
 - One-to-many (1:N) or Many-to-one (N:1)
 - ■Many-to-many (M:N) (N:M /N:N)

1:1 and 1:N

N:1 and M:N

Constraints on Relationships

- Participation Constraint or Existence
 Dependency Constraint
 - Specifies whether the existence of an entity depends on its being related to another entity via the relationship type
 - Specifies the *minimum number* of relationship instances that each entity can participate in
 - Sometimes called the minimum cardinality constraint

Types of Participation Constraints

□ Total

Every entity in entity set E must participate in at least one relationship in relationship set R

□ Partial

Only some entities in E participate in relationships in R

Notation for Constraints on Relationships

- □ Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or M:N
 - Shown by placing appropriate numbers on the relationship edges
- Participation constraint (on each participating entity type): total or partial.
 - ■Total shown by double line, partial by single line

Partial ERD with Constraints

Attributes of Relationship Types

- The value of these attributes depends on the combination of entities.
 - ■e.g. Hours (WORKS_ON)
 - Mgr_start_date (MANAGES)
 - Number_of_employees (WORKS_FOR)

Placement of Relationship Attributes

- Depends on the cardinality ratio of the relationship
- If M:N, relationship attributes are connected to the relationship.
- If 1:N or N:1, relationship attributes are transferred to the entity type on the N-side of the relationship.
- If 1:1, relationship attributes are transferred to the entity type having a total participation in the relationship.

Partial ERD with Relationship Attributes

Weak Entity Types

- An entity that does not have a key attribute
- Owner or Identifying Entity Type
 - Where the existence of a weak entity type depends on
- Identifying relationship type of the weak entity type
 - The relationship that associates the weak entity type to its identifying entity type

Example of a weak entity type

- □ Weak Entity Type: DEPENDENT
- □ Identifying Entity Type: EMPLOYEE
- Identifying Relationship Type:DEPENDENTS OF

Partial key

- the set of attributes that can uniquely identify weak entities that are related to the same owner entity.
- □ Also called as *discriminator*
- Entities belonging to a weak entity type are identified by the combination of:
 - A partial key of the weak entity type
 - ■The particular entity they are related to in the identifying entity type

Example of a partial key

- □ Partial key: First Name
- □ A DEPENDENT entity is identified by the dependent's first name, and the specific EMPLOYEE with whom the dependent is related.

Displaying a weak entity type

- Weak entity type is represented using a box(rectangle) surrounded by double lines.
- Its identifying relationship is displayed using diamonds which is also surrounded by double lines.
- Partial key attribute is underlined with a dashed or dotted line.

Summary of notation for ER diagrams

Alternative (min, max) notation

Specifies that each entity e in E
 participates in at least min and at most
 max relationship instances in R

Design Convention

- □ Naming
 - Entity type: Singular
- □ Case
 - Entity type: Uppercase
 - Relationship type: Uppercase
 - Attribute: First letter capitalized
 - Role name: Lowercase
- □ Readability
 - Left to right, Top to bottom

- ☐ Use of entity types vs. attributes
 - An attribute that exists in several entity types may be elevated to an entity type.
 - An entity type with only one attribute and participates in only one relationship may be reduced to an attribute.

☐ Use of entity types vs. relationship types

LOAN (Relationship)

LOAN (Entity)

□ Binary vs. n-ary relationship types

Binary vs. ternary

Binary vs. ternary

Binary vs. ternary

Reference(s):

- Elmasri, R. and S.B. Navathe. 2010.

 Fundamentals of Database Systems. 6th
 Edition. Addition Wesley. ISBN-13: 9780-136-08620-8
- □ Elmasri, R. and S.B. Navathe. 2007.

 Fundamentals of Database Systems. 5th Edition. Addition Wesley. ISBN: 981-06-9800-3