2) Weak Law of Lange Numbers

Let X, X2, ..., Xn he a random sample

From f(x) with μ and $\sigma^2 < \infty$ Then $\overline{X} \xrightarrow{P} \mu$ (conv. in probability)

(ie. $\lim_{n \to \infty} P[|\overline{X} - \mu| > \varepsilon] \leq \lim_{n \to \infty} \frac{\sigma^2}{n \varepsilon^2} = 0$)

3) Strong Law of Longe Number

If μ exists, $P[\omega \mid \lim_{n \to \infty} X(\omega) = \mu] = 1$ i.e. $X \to \mu$ almost swelly

We will prove the weak LLN, but the strong LLN course be proven in this course (it's very difficult)