



## **Project Initialization and Planning Phase**

| Date          | 20 July 2025                   |  |
|---------------|--------------------------------|--|
| Team ID       | SWUID20250184320               |  |
| Project Title | Online Fraud Payment Detection |  |
| Maximum Marks | 3 Marks                        |  |

## **Project Proposal (Proposed Solution)**

To effectively detect fraudulent transactions in real-time and minimize financial loss, this project proposes the development of a **Fraud Detection System** using **machine learning algorithms** such as Random Forest, XG Boost, and Support Vector Machines (SVM). The solution will involve data preprocessing, model training, evaluation, and deployment of the best-performing model.

The system will analyse patterns in transaction data and identify anomalies that indicate fraud. It will be trained on a labelled dataset containing both fraudulent and legitimate transactions, allowing it to learn distinguishing characteristics.

Once deployed, the model will accept transaction inputs, process them through the trained pipeline, and return a prediction — whether the transaction is fraudulent or not — in near real-time.

| Project Overview  |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective         | To build a machine learning—based fraud detection system capable of identifying suspicious transactions in real-time, thereby reducing financial loss and enhancing user trust in digital payment platforms.                                                                                                                                                                                                          |  |
| Scope             | This project focuses on developing a classification model trained on historical transaction data to detect fraudulent activities. It includes data preprocessing, model training, performance evaluation, and optional deployment with a user-friendly interface, limited to binary classification (fraudulent vs. legitimate) and does not involve multiclass fraud categorization or network-based fraud detection. |  |
| Problem Statement |                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Description       | In the age of digital transactions, users, especially regular digital payment users and loyal online banking customers — are increasingly vulnerable to fraudulent activities due to delayed detection systems. Current systems often flag fraud after the damage is done, leading to loss of funds, mental distress, and a lack of trust in digital platforms.                                                       |  |





| Impact            | Solving this issue will empower users by ensuring safer financial transactions, minimizing financial loss, and rebuilding trust in digital payment systems. It also supports the financial ecosystem by proactively reducing fraudulent incidents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Proposed Solution |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Approach          | <ul> <li>Data Collection &amp; Preprocessing: Clean and prepare the dataset (handle missing values, encode categorical data, normalize features).</li> <li>Model Development: Use and compare algorithms such as Random Forest, XG Boost, SVM, and Decision Trees.</li> <li>Model Evaluation: Evaluate using metrics like precision, recall, F1-score, confusion matrix, and AUC-ROC.</li> <li>Model Deployment: Save the best-performing model and (optionally) deploy it using Streamlit /Flask or Render for user interaction.</li> <li>Documentation: Properly document code, performance, and limitations.</li> </ul>                                                                                                                                                                                                                      |  |  |
| Key Features      | <ul> <li>Real-Time Fraud Detection: Detects fraudulent transactions as they occur using trained ML models.</li> <li>Multi-Model Comparison: Implements and evaluates various ML models such as Random Forest, XG Boost, and SVM.</li> <li>Performance Evaluation: Uses precision, recall, F1-score, and ROC-AUC to determine the best-performing model.</li> <li>Data Preprocessing Pipeline: Handles missing values, feature scaling, and encoding efficiently.</li> <li>Model Saving &amp; Loading: Saves the best model for future predictions or deployment.</li> <li>Interactive Interface (Optional): (If deployed) Allows users to input transaction details and receive fraud risk predictions in real-time.</li> <li>Detailed Documentation: Includes structured code, comments, and visualizations to explain performance.</li> </ul> |  |  |





## **Resource Requirements**

| Resource Type           | Description                             | Specification/Allocation                                                                                 |  |  |
|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Hardware                |                                         |                                                                                                          |  |  |
| Computing Resources     | CPU for model training & testing        | AMD Ryzen 3 (dual/quad core, 3.5 GHz approx.)                                                            |  |  |
| Memory                  | RAM for dataset processing              | 8 GB DDR4                                                                                                |  |  |
| Storage                 | Local disk space for data, models, logs | 512 GB                                                                                                   |  |  |
| Software                |                                         |                                                                                                          |  |  |
| Frameworks              | Python frameworks                       | Flask / Streamlit/ Render                                                                                |  |  |
| Libraries               | ML and data processing                  | scikit-learn, xg boost, pandas,<br>NumPy, matplotlib, seaborn                                            |  |  |
| Development Environment | IDE and version control system          | Jupyter Notebook, VS Code,<br>Git, GitHub Desktop                                                        |  |  |
| Data                    |                                         |                                                                                                          |  |  |
| Data                    | Source, size, format                    | Kaggle dataset (e.g., "Online<br>Payments Fraud Detection<br>Dataset<br>"), ~284,807 rows, CSV<br>format |  |  |