

НЕБЕСНА МЕХАНИКА

2018-2019 г.

Йоанна Мурджева | ФН: 62008 | СИ

Първа Задача

Условие

Пресметнете координатите и скоростите на планетите в деня, в който сте родени.

Решение

В задачата на Кеплер орбитата на всяка планета зависи от шест елемента:

- а дължина на голямата полу-ос на орбитата
- e ексцентрицитета на орбитата
- *i* наклонеността на плоскостта на орбитата
- /- средна аномалия
- $g + \theta$ дължина на перихелия
- θ дължина на възела

Пет от тези елементи са константи, единствено средната аномалия I е линейна функция на времето t.

Допълнителен елемент е ексцентричната аномалия u. В сила е уравнението на Кеплер:

$$l = u - e \cdot \sin u$$

Ексцентритетът e характеризира сплеснатостта на елипсата:

$$e=\sqrt{1-rac{b^2}{a^2}}\in [0,1),$$
 където b е дължината на малката полуос

Връзката на елиптичните елементи с декартовите координати в R^3

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ 0 \end{pmatrix}$$

Обръщаме θ , $g + \theta$ в радиани (* $\pi/180$)

Обръщаме і в градуси ($*\pi/180$)

Стойностите на ц за планетите

Планета	μ
Меркурий	1/6023600
Венера	1/408523
Земя	1/328900,5
Марс	1/3098708
Юпитер	1/1047,34
Сатурн	1/3497,8
Уран	1/22902,9
Нептун	1/19042
Плутон	1/135000000

$$\gamma=1+\mu$$
, където $\gamma=Gm_A$
$$=6.670*10^{-8}\frac{sm^3}{g*sec^2} \ {
m e}\ {
m гравитационна}\ {
m kohctahta}$$
 $n=\sqrt{\frac{\gamma}{a^3}}$

Величината n наричаме средно движение. Връзката между средната и ексцентричната аномалии: $l = u - e.\sin(u)$ наричаме уравнение на Кеплер.

Въвеждаме времето от рождената дата до 01. 01. 2000 г. (t). Рождена дата: 15. 02. 1997 г., t=2.876712328767123

От решението на задачата на Кеплер в декартови координати:

$$1 = \sqrt{\gamma} \cdot a^{-\frac{3}{2}} (t - T_0) = \lambda = n(t(2\pi) - T_0) = u - e \cdot \sin(u)$$

$$u = l + e \cdot \sin(l + e \cdot \sin(l + e \cdot \sin l))$$

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = Q \cdot a \left(\cos u - e \cdot \sin u \cdot \sqrt{(1 - e^2 \cdot 0)}\right)$$

$$v = Q \cdot \frac{-\sin u \cdot \cos u \cdot \sqrt{(1 - e^2 \cdot 0)} \cdot a \cdot n}{1 - e \cdot \cos u}$$

Където Q е от Основна формула на сферичната тригонометрия

[Теорема] Всяка матрица $Q \in SO(3,R)$ може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$\begin{pmatrix} \cos\theta\cos g - \sin\theta\sin g\cos i & -\cos\theta\sin g - \sin\theta\cos g\cos i & \sin\theta\sin i \\ \sin\theta\cos g + \cos\theta\sin g\cos i & -\sin\theta\sin g + \cos\theta\cos g\cos i & -\cos\theta\sin i \\ \sin g\sin i & \cos g\sin i & \cos i \end{pmatrix},$$

където
$$\theta,g\in[0,2\pi)$$
 и $i\in[0,\pi]$

Описаните процедури се повтарят за всяка планета по отделно:

	Меркурий	Венера	Земя	Марс	Юпитер	Сатурн	Уран	Нептун	Плутон
	-0.027885	0.33674	-0.82012	-1.5909	2.7018	9.3438	11.322	14.0106	-14.2978
r	-0.46191	-0.64372	0.55133	0.48505	-4.3449	1.4439	-16.233	-26.6687	-25.689
	-0.044667	-0.032548	0	-0.021397	-0.10844	-0.10535	-0.168269	-0.903005	-5.90033
	1.3061	1.037	-0.57357	-0.20625	0.36761	-0.066508	0.18576	0.1604	0.17118
v	-0.036536	0.53825	-0.8336	-0.70906	0.25221	0.31948	0.12011	0.085885	-0.099267
	0.10333	0.045233	0	-0.02174	0.0041244	0.013858	0.0022452	-0.0013237	-0.047031
r	0.4649	0.72721	0.98821	1.6634	5.1176	9.4553	19.7921	30.1385	29.9861
v	1.3107	1.1692	1.0119	0.73877	0.44583	0.32663	0.22122	0.18195	0.2034

Функции за реализиране на решението:

```
function kepler_elements(a, e, i, L, w, omega, mu, t)
     theta = omega*pi/180;
     g = (w - omega)*pi/180;
     i = i*pi/180;
     Tita = [\cos(\text{theta}), -\sin(\text{theta}), 0;
              sin(theta), cos(theta), 0;
                  0
                      , 0 , 1 ];
        I = [\cos(i), 0, -\sin(i);
              0 , 1 , 0
              sin(i) , 0 , cos(i) ];
        G = [\cos(g), -\sin(g), 0;
              sin(g) , cos(g) , 0 ;
                  , 0 , 1 ];
     Q = Tita*I*G;
     gama = 1 + mu;
     n = sqrt(gama/a^3);
     to = ((w - L)/n)*pi/180;
     1 = n*(-t*2*pi - to);
     u = 1 + e*sin(1 + e*sin(1 + e*sin(1)));
     r = Q*a*[cos(u)-e ; sin(u)*sqrt(1-e^2) ; 0 ];
     v = Q*[-sin(u);cos(u)*sqrt(1-e^2);0]*a*n/(1-e*cos(u));
     disp('Coordinates (r)')
     disp(num2str(r))
     disp(['|r| = ', num2str(norm(r))])
     disp('Speed (v)')
     disp(num2str(v))
     disp(['|v| = ', num2str(norm(v))])
 end
function calculations (d)
   years = 2.876712328767123; %years from birth till 01.01.2000
   kepler_elements(d(1), d(2), d(3), d(4), d(5), d(6), d(7), years)
end
```

Втора Задача

Условие

Пресметнете елементите на Делоне и Поанкаре от I и II вид в деня, в който сте родени.

Решение

[От Теорема] Елементите на Делоне:

- *L*
- G
- Θ
- /
- g
- θ

където (l, L), (G, g) и (Θ , θ) са спрегнати канонично променливи, се изразяват чрез орбиталните (елиптични) елементи:

- а дължина на голямата полу-ос на орбитата
- е ексцентрицитета на орбитата
- і наклонеността на плоскостта на орбитата
- 1- средна аномалия
- $g + \theta$ дължина на перихелия
- θ дължина на възела

както следва:

$$L = \mu \sqrt{\gamma} \sqrt{a}$$

$$G = \mu \sqrt{\gamma} \sqrt{a} \sqrt{1 - \varepsilon^2}$$

$$\Theta = \mu \sqrt{\gamma} \sqrt{a} \sqrt{1 - \varepsilon^2} \cos i = G \cos i$$

Като при това l, g и θ съвпадат и в двата случая.

Елементите на Делоне - L , G , θ , l , g , θ са константи с хамилтониан:

$$\widehat{H} = -\frac{\mu^3 \gamma^2}{2L^3}$$

Обръщаме θ в радиани (* $\pi/180$)

Обръщаме і в градуси (*π/180)

$$1 = \sqrt{\gamma} \cdot a^{-\frac{3}{2}} (t - T_0)$$

$$u = l + e \cdot \sin(l + e \cdot \sin(l + e \cdot \sin l))$$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

 $(T_0$: момента на преминаване през перихелия на планета (начало на епоха))

Въвеждаме времето от рождената дата до 01. 01. 2000 г. (t). Рождена дата: 15. 02. 1997 г., t=2.876712328767123

$$l = n(t(2\pi) - T_0)$$

Чрез $\lambda = l + g + \theta$ (дължина на епоха) можем да изразим елементите от двете системи на Поанкаре.

Първа система (I) от шест елемента, характеризираща орбитите на планетите:

$$L$$
, $L-G$, $G-\Theta$, $l+g+\theta$, $-g-\theta$, $-\theta$

И втора система (II):

L,
$$\xi := \sqrt{2(L-G)}\cos(g+\theta)$$
, $p := \sqrt{2(G-\Theta)}\cos\theta$
 λ , $\eta := -\sqrt{2(L-G)}\sin(g+\theta)$, $q := -\sqrt{2(G-\Theta)}\sin\theta$

Описаните процедури се повтарят за всяка планета по отделно.

Като резултат получаваме следните таблици:

]	Меркури	й		Венера	Земя			
L	1.0328e-07				2.0814e-0	3.0404e-06			
G		1.0108e-0	7		2.0814e-0	3.0400e-06			
Θ	1.0033e-07				2.0777e-0	3.0400e-06			
l	78.1282				30.2807		18.0318		
g	0.5084				0.9586		1.7966		
θ	0.8435				1.3383	0			
Н	-2.1449e-07				-1.6928e-0	-1.5202e-06			
_	0.6221	0.0132	0.0045	0.8503	0.8503 1.5305e-05 0.0015		1	1.2801e- 04	0
I	1.8025e-09	-1.3519	-0.8435	3.6327e- 08	1 -2 2969 1 -1 3383 1		5.3066e- 08	-1.7966	0
	0.6221	1.4384e- 05	2.5823e-05	0.8503 -5.7473e-06 1.9688e-05		1	- 6.2462e- 06	0	
II	1.8025e-09 6.4652e- 05 -2.9014e-05			3.6327e- 08	-6.4729e-06	-8.3148e-05	5.3066e- 08	2.7192e- 05	0

	Марс			Юпитер			Сатурн		
L	3.9826e-07			0.0022			8.8298e-04		
G	3.9654e-07			0.0022			8.8174e-04		
Θ	3.9633e-07			0.0022			8.8091e-04		
1	9.9551				1.8667		-0.1305		
g	-1.2829			-1.4965			-0.3676		
θ	0.8650			1.7536			1.9838		
Н	-1.0595e-07			-9.1860e-05			-1.4995e-05		
,	1.2341	0.0053	6.3977e- 04	2.2808	0.0026	5.8999e- 04	3.0880	0.0043	0.0029
I	6.9510e- 09	0.4179	-0.8650	3.8026e- 05	-0.2571	-1.7536	1.5411e- 05 -1.6161 -1		-1.9838
II	1.2341	.2341 5.3698e- 05 1.3181e- 2.2808 0.0022		0.0022	-1.9299e- 04	3.0880	- 7.1412e- 05	- 5.1684e- 04	
	6.9510e- 09	2.3844e- 05	-1.5466e- 05	3.8026e- 05	-5.6977e- 04	-0.0010	1.5411e- 05	-0.0016	-0.0012

		Уран			Нептун		Плутон			
L	1.9127e-04			2.8263e-04			4.6544e-08			
G	1.9106e-04			2.8262e-04			4.5090e-08			
Θ	1.9104e-04			2.8249e-04			4.3088e-08			
1	2.6984			-1.6372			0.3322			
g	1.6919			-1.5153			1.9856			
θ	1.2918			2.3001			1.9252			
Н	-1.1377e-06			-8.5709e-07			-9.3807e-11			
_	4.3805	0.0048	3.9719e- 04	5.4835	1.7548e- 04	0.0026	6.2835	0.1963	0.2703	
I	3.3383e- 06	-2.9837	-1.2918	4.9329e- 06	-0.7848	-2.3001	8.1235e- 10	-3.9107	-1.9252	
II	4.3805	-6.4210e- 04	5.1285e- 05	5.4835	9.5162e- 05	-3.4604e- 04	6.2835	- 3.8747e- 05	- 2.1959e- 05	
11	3.3383e- 06			4.9329e- 06	-9.5042e- 05	-3.8724e- 04	8.1235e- 10	3.7507e- 05	- 5.9354e- 05	

Функции за реализиране на решението

```
function elements(a, e, i, L, w, omega, mu, t)
    i = i*pi/180;
    n = sqrt(1/a^3);
    to = ((w - L)/n)*pi/180;
    gamma = 1 + mu;
    L = mu*sqrt(gamma*a)
    G = L*sqrt(1-e^2)
    bigTheta = G*cos(i)
    1 = n*(t*2*pi - to)
    g = (w - omega)*pi/180
     theta = omega*pi/180
    H = - mu*gamma/(2*a)
    %First Poincare System of equations
     P11 = sqrt(a)
     P12 = (L-G) / (mu*sqrt(gamma))
     P13 = (G-bigTheta) / (mu*sqrt(gamma))
     P14 = L*pi/180
     P15 = -g-theta
     P16 = -theta
     %Second Poincare System of equations
     P21 = P11
     P22 = sqrt(2*(L-G))*cos(g+theta)
     P23 = sqrt(2*(G-bigTheta))*cos(theta)
     P24 = P14
     P25 = -sqrt(2*(L-G))*sin(g+theta)
     P26 = -sqrt(2*(G-bigTheta))*sin(theta)
end
```

Ресурси

- 1. Стойности на Кеплеровите елементи http://www.met.rdg.ac.uk/~ross/Astronomy/Planets.html
- 2. За реализацията на функциите е използвана програмата MatLab R2015A