

УУ- неделя выпуска ZZ – год выпуска

Тип корпуса:

Металлокерамический корпус H02.8-2B Первый вывод корпуса и обозначен выступом на внешнем выводе корпуса.

Условно графическое обозначение микросхемы (1299ПН2У-НН) (УГО)

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МИКРО-СХЕМЫ

- Выходное напряжение $(U_{OUT}) = 1,2 \div 5,5$ В, настраиваемое внешним резистивным делителем. Допустимое отклонение $\pm 5,0\%$ (без учёта погрешностей резистивного делителя).
- Входное напряжение (U_I) находится в диапазоне от 1,2 В до $U_{OUT}\,B$.
- Типовая частота коммутации, f_s составляет
 2 МГц.
- Масса микросхемы не более 1 г.
- Температурный диапазон: от минус 60° С до 85° С.
- Допустимое значение электростатического потенциала не более 1000 В.
- Типовой максимальный выходной ток при U_I = 2 B, U_{OUT} = 3,3 B равен 100 мA.
- Изготавливается по технологии КНИ-0,18 мкм.

СТРУКТУРНАЯ СХЕМА

назначение выводов

№ вывода	Имя вывода	Описание
1	GNDD	Вывод земли силового ключа
2	GNDD	Вывод земли силового ключа
3	GND	Вывод земли
4	EN	Вывод сигнала энерго- сбережения
5	REF	Вывод для подключения резистивного делителя
6	OUT	Вывод выходного напряжения
7	LX	Вывод с внутренних силовых ключей
8	LX	Вывод с внутренних силовых ключей
ТП1*		Электрическое соединение к монтажной площадке корпуса
ТП2*		Электрическое соединение к крышке корпуса

^{*}Должны быть заземлены

ОБЩЕЕ ОПИСАНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Микросхема 1299ПН2У-НН — высокочастотный контроллер повышающего преобразователя напряжения с настраиваемым внешним резистивным делителем напряжением. Микросхема предназначена для использования в бортовых цифровых вычислительных системах управления ракетно-космической и авиационной техники, на объектах атомной промышленности, в наземных вычислительных и управляющих комплексах.

Повышающий преобразователь постоянного напряжения 1299ПН2У-НН относится к классу импульсных стабилизаторов напряжения.

ОПИСАНИЕ ФУНКЦИОНИРОВАНИЯ МИКРОСХЕМЫ

Режимы работы (таблица истинности) 1299ПН2У-НН

Режим ИС	Сигналы на управляющих входах (EN)		
т сжим ис	не менее	не более	
рабочий режим	1,2 B	U _{OUT}	
режим энергосбережения (режим Shutdown)	0 B	0,4 B	

Выходное напряжение U_{OUT} устанавливается согласно формуле $U_{OUT} = \frac{R_1 + R_2}{R_1} * 0,6$, где R_1 , R_2 – резистивный делитель по схеме применения.

ТРЕБОВАНИЯ ПО СПЕЦСТОЙКОСТИ

7.И ₁ — по группе исполнения 5Ус,	Уровень бессбойной работы по 7.И ₈ должен
7.И ₆ — по группе исполнения 6Ус*,	быть не хуже 0,00007×1У _С .
7.И ₇ — по группе исполнения 4Ус,	Тиристорный эффект отсутствует.
7.C ₁ – по группе исполнения 100×1Ус,	Допускается в процессе и непосредственно по-
$7.C_4$ – по группе исполнения 0.5×1 Ус,	сле воздействия специального фактора 7.И с ха-
$7.K_1$ – по группе исполнения $0.5 \times 2K$.	рактеристикой 7.И ₆ временная потеря работоспо-
$7.K_4$ – по группе исполнения $0.5 \times 1K$.	собности микросхем.
$7.K_{11}(7.K_{12}) - 69 \text{ MэВ·см}^2/\text{мг}.$	* стойкость обеспечивается при условии:
	- ВПР после воздействия специального фактора
	7.И с характеристикой 7.И $_6$ менее 2 мс при токе
	нагрузки более 10мА,
	- ВПР после воздействия специального фактора
	7.И с характеристикой $7.И_6$ менее 4 мс при токе
	нагрузки менее 10 мА.
	При ВПР менее 2 мс и токе нагрузке менее 10
	мА стойкость по группе исполнения 7И6 равна
	0,06 x 1Ус.

ПРЕДЕЛЬНО-ДОПУСТИМЫЕ И ПРЕДЕЛЬНЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Наименование параметра, режима экс-	Буквенное обозначение пара-	Предельно- допустимая норма при эксплуатации		Предельная норма при эксплуатации	
плуатации, единица измерения	метра	не менее	не более	не менее	не более
Входное напряжение, В	Uı	1,2	U_{OUT}	минус 0,3	6
Напряжение на выводе LX, В	$U_{\rm LX}$	_	_	минус 0,3	6
Напряжение на выводе OUT, В	Uout	1,2	5,5	минус 0,3	6
Напряжение низкого уровня вывода EN, В	U_{IL}	0	0,4	минус 0,3	6
Напряжение высокого уровня вывода EN, В	U _{IH}	1,2	U _{OUT}	минус 0,3	6

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМЫ

Наименование параметра,	Буквенное обозначение параметра	Норма параметра		Температурный
единица измерения,		не менее	не более	режим, °С
Выходное напряжение, В	Uo	K* 0,6 - 5%	K* 0,6 + 5%	25, 85, -60
Опорное напряжение, В	$U_{ m REF}$	0,57	0,63	25
Ток потребления, мкА	I_{CC}	_	35	25
Ток потребления в режиме «Выключено», мкА	I_{CCZ}	_	1	25
Максимальная частота коммутации, МГц	f_S	1,6	2,6	25

Примечания:

- 1. Максимальное входное напряжение должно быть не более U_{OUT} для микросхем 1299ПН2У-НН.
- 2. К является коэффициентом деления резистивного делителя для микросхем 1299ПН2У-НН.

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

Элементы контура тока (L1, D1, C2, C4) должны располагаться как можно ближе к выводам LX и OUT корпуса для достижения наибольшей эффективности преобразования. Конденсаторы C1, C3 должны располагаться перпендикулярно конденсаторам C2, C4.

НАЗНАЧЕНИЕ ВЫВОДОВ ТИПОВОЙ СХЕМЫ ВКЛЮЧЕНИЯ.

Имя вывода	Описание		
IN1	Вывод входного напряжения		
IN2	Вывод сигнала энергосбережения		
OUТ Вывод выходного напряжения			
GND	Вывод земли		

НОМИНАЛЫ НАВЕСНЫХ ЭЛЕМЕНТОВ ТИПОВОЙ СХЕМЫ ВКЛЮЧЕНИЯ

Обозначение	Назначение	Номинал	Примечание
C1	Керамический конденсатор	С = 1 мкФ	
C2	Керамический конденсатор	С = 10 - 47 мкФ	Частота не менее 3 МГц, напряжение
C3	Керамический конденсатор	С = 0,1 мкФ	не менее 7 В, точность: ± 10%
C4	Керамический конденсатор	С = 0,1 мкФ	
L1	Катушка индуктивности	$L = 2,2 - 22$ мк Γ н	Ток не менее 1 А, частота не менее 3 $M\Gamma$ ц, точность: \pm 10%.
D1	Диод Шоттки	VT = 0,1 - 0,25B	Максимальное прямое напряжение не более 0,25 В, обратное напряжение без пробоя не менее 7 В, ток не менее 1 А. Чем меньше порог диода, тем выше эффективность преобразования.
R1	Резистор	Определяется пользователем	Коэффициент деления $K = \frac{R1+R2}{R1}$, установка K более 9 (включая погрешности резисторов) запрещена.
R2	Резистор	Определяется пользователем	Коэффициент деления $K = \frac{R1+R2}{R1}$, установка K более 9 (включая погрешности резисторов) запрещена.

ВРЕМЕННАЯ ДИАГРАММА РАБОТЫ МИКРОСХЕМЫ

Наименования входов и выходов в соответствии с типовой схемой включения 1299ПН2У-НН. Параметры сигналов в соответствии с таблицей норм электропараметров 1299ПН2У-НН.