Apellido y Nombre:	
Carrera: DNI:	
Llenar con letra mavúscula de imprenta GRANDE	

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. 2do Parcial. Tema: 1A. [27 de Mayo de 2004]

- [Ej. 1] [Clases (20 puntos)] Escribir la implementación en C++ del TAD Arbol binario (clase btree) implementado con celdas enlazadas por punteros. Las funciones a implementar son insert(key,val), retrieve(key), erase(p), begin(), end(), clear() además de las clases iterator y cell. Observaciones:
 - Incluir las definiciones de tipo (typedef) y clases auxiliares necesarias.
 - Se puede escribir la interface avanzada (con templates, clases anidadas, sobrecarga de operadores).

[Ej. 2] [Programación (total = 60 puntos)]

a) [contenido (30 puntos)]

Escribir una función predicado bool contenido (btree<int> &A, btree<int> &B); que retorna verdadero si la estructura del árbol binario A esta "contenido" dentro de la de B y las etiquetas correspondientes de A son menores que las de B.

Para los árboles de la figura debemos tener .

- contenido(T2,T1) retorna true
- contenido(T3,T1) retorna false
- contenido(T3,T1) retorna false

En los casos que debe retornar false, el nodo que viola la condición está marcado. Se sugiere escribir una función auxiliar recursiva.

- b) [nodos-n (15 puntos)] Escribir una función int nodos_n(tree<int> &A, int n); que cuenta el número de nodos de un árbol ordenado orientado cuya etiqueta es exactamente igual a n.
- c) [verifica-par (15 puntos)] Escribir una función predicado bool verifica_par(tree<int> &A); que verifica si las etiquetas de todos los nodos de un árbol ordenado orientado A son pares.

[Ej. 3] [operativos (total = 10 puntos)]

- [rec-arbol (10 ptos)] Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son
 - ORD_PRE = $\{Z, A, X, U, V, Q, W, B, R, T\},\$
 - ORD_POST = $\{X, U, Q, V, W, A, T, R, B, Z\}$.
- [arbol-expr (10 ptos)] Escribir el árbol que corresponde a la expresión a*(b+c)/(d+z) x*(y-w)

Apellido y Nombre: Carrera: DNI:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
[Llenar con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
· · · · · · · · · · · · · · · · · · ·	antos por pregunta)] Responder según el sistema "multiple asillero apropiado. Atención: Algunas respuestas son a puntajes negativos!!]
¿Cuál es el nodo que está a la izquierda de Q no es antecesor de R	X Y T $\square \dots Z$ $\square \dots X$ $\square \dots Y$ $\square \dots Y$ $\square \dots R$
Sea el árbol ordenado orientado A=(4 7 6 (2 3 cemos las operaciones n = A.find(7); n++; n++; n = A.insert(n,1); ¿Cuál de las siguientes afirmaciones es verdades	Da un error Queda A=(4 7 6 (2 1 3)) Queda A=(4 7 6 (2 3) 1) Queda A=(4 7 6 1 (2 3))
Si A=(3 5 4 (6 7 8)) y B=(5 3) entonces ;cómo quedan A y B después de hacer? n=A.find(6); m=B.begin(); m=m.lchild(); m=m.lchild(); B.splice(m,n);	Da un error A=(3 5 4) y B=(5 (3 (6 7 8))) A=(3 5 4 6) y B=(5 (3 7 8)) A=(3 5 4) y B=(5 (3 (6 7 8)))
¿Cuál de los siguientes árboles binarios es "completo"?	(1 2 (3 . 7)) (1 2 (3 5 7)) (1 2 (3 5 .)) (1 (2 . 4) (3 5 7))