REORGANIZAÇÃO INTELIGENTE DE CLUSTERS EM COMPUTAÇÃO EM NÉVOA UTILIZANDO APRENDIZADO POR REFORÇO

Aluno: Moises H. Pereira - 83390

Orientador: Vitor Barbosa Carlos de Souza

Coorientador: Levi Henrique Santana de Lelis

Sumário

- Névoa
- Motivação
- Projeto
- Desafios
- O que foi feito
- Aprendizado por reforço
- Modelagem Testes
- Cronograma
- Referências

Névoa

- Nuvem próxima do usuário
- Capacidade de processamento menor
- Mais rápida
- Diminui o tráfego de rede

Motivação

- Popularização da IoT (Internet of Things)
- Aplicações de tempo real
- Complementação da Nuvem
- Flexibilidade quanto a tamanho e recurso

Projeto

Estudar uma abordagem para reorganização inteligente dos dispositivos disponíveis para compor a Névoa, utilizando aprendizagem por reforço

Desafios

- Estudar e escolher o simulador que será usado
- Desenvolver um ambiente de testes
- Definir variáveis que serão necessárias
- Extrair dados
- Refinamento
- Modelagem do problema
- Utilizar aprendizagem por reforço para clusterização

O que foi feito

- Estudar e escolher o simulador que será usado
 - OMNeT++
- Desenvolver um ambiente de testes
- Definir variáveis que serão necessárias
 - Posição do host
 - Tempo conectado
 - Tempo desconectado
 - Ponto de acesso que esta conectado

O que foi feito

- Extração de dados
- Refinamento dos dados
- Definição de modelos para treino
- Treinamento
- Testes

Ambiente de testes

Ambiente de testes

Aprendizado por reforço

- Aprende estratégias ao interagir com o meio (ambiente)
- Aprende por meio de recompensas
- Em fase de treinamento o agente testa diferentes ações para tentar maximizar a recompensa

Aprendizado por reforço

- Política: comportamento do agente no tempo
- Recompensa: informa ao agente o que é bom e o que é ruim
- Função valor: montante de recompensas em um dado período de tempo
- Modelo do ambiente: representação aproximada do ambiente (opcional)

Modelagem – recompensas

- Toda vez que o agente se desconectar de um ponto de acesso ele será punido
- A cada instante que o agente ficar desconectado ele será punido
- A cada instante que o agente ficar conectado em um dado ponto de acesso ele recebe recompensa

Modelagem – matriz valor

	(AP_0, M)	(AP_1, M)	(AP_2, M)	(AP_3, M)
(P_A, P_0, AP_0)				
(P_A, P_0, AP_1)				
(P_A, P_0, AP_2)				
(P_A, P_0, AP_3)				
•••				

Legenda:

(AP_i, M): conjunto de ações disponíveis para cada estado;

 (P_A, P_j, AP_i) : conjunto de estados;

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	4.25	19.51	-4.92	5.31
Teste 2	3.99	19.51	-5.04	5.19
Teste 3	3.99	19.51	-5.04	5.19
Teste 4	4.25	19.51	-4.92	5.31
Teste 5	4.25	19.51	-4.92	5.31

Número de trocas	AP1	AP2	AP3	Média trocas
Teste 1	4.92	19.07	-6.11	4.90
Teste 2	4.67	19.07	-6.23	4.78
Teste 3	4.67	19.07	-6.23	4.78
Teste 4	4.92	19.07	-6.11	4.90
Teste 5	4.92	19.07	-6.11	4.90

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	6.65	14.07	3.47	8.32
Teste 2	6.64	14.07	3.47	8.31
Teste 3	6.65	14.07	3.47	8.32
Teste 4	6.64	14.07	3.47	8.31
Teste 5	6.64	14.07	3.47	8.31

Número de trocas	AP1	AP2	AP3	Média trocas
Teste 1	7.24	13.88	2.44	8.10
Teste 2	7.24	13.88	2.44	8.10
Teste 3	7.24	13.88	2.44	8.10
Teste 4	7.24	13.88	2.44	8.10
Teste 5	7.24	13.88	2.44	8.10

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	3.85	20.79	3.21	9.21
Teste 2	3.85	20.78	3.21	9.21
Teste 3	3.85	20.79	3.21	9.21
Teste 4	3.85	20.79	3.21	9.21
Teste 5	3.85	20.95	3.21	9.27

Número de trocas	AP1	AP2	AP3	Média trocas
Teste 1	3.90	20.01	2.89	8.88
Teste 2	3.90	20.01	2.89	8.88
Teste 3	3.90	20.01	2.89	8.88
Teste 4	3.90	20.01	2.89	8.88
Teste 5	3.90	20.18	2.89	8.93

Testes 3 APs – mão dupla

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	-1.73	5.37	2.41	1.93
Teste 2	-1.73	5.37	2.41	1.93
Teste 3	-1.73	1.93	4.03	1.84
Teste 4	-2.15	1.93	4.43	1.84
Teste 5	-1.73	5.37	2.41	1.93

Número de trocas	AP1	AP2	AP3	Média das trocas
Teste 1	-1.46	5.56	1.53	1.74
Teste 2	-1.46	5.56	1.53	1.74
Teste 3	-1.46	1.86	3.32	1.64
Teste 4	-1.46	1.86	3.32	1.64
Teste 5	-1.46	5.56	1.53	1.74

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	-3.65	5.27	3.47	1.76
Teste 2	-3.24	1.88	4.69	1.68
Teste 3	-3.24	5.27	3.03	1.74
Teste 4	-3.65	2.13	1.51	0.09
Teste 5	-3.24	5.40	2.93	1.74

Número de trocas	AP1	AP2	AP3	Média das trocas
Teste 1	-2.94	5.47	2.10	1.56
Teste 2	-2.97	1.83	3.91	1.48
Teste 3	-2.97	5.47	2.08	1.54
Teste 4	-2.94	2.08	0.34	-0.10
Teste 5	-2.97	5.47	2.08	1.54

Testes 3 APs - 700x500

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	10.00	11.05	-23.09	-4.25
Teste 2	10.00	11.05	-23.09	-4.25
Teste 3	10.00	11.05	-23.09	-4.25
Teste 4	10.00	11.05	-23.09	-4.25
Teste 5	10.00	11.05	-23.09	-4.25

Número de trocas	AP1	AP2	AP3	Média trocas
Teste 1	9.51	11.11	-24.05	-4.71
Teste 2	9.51	11.11	-24.05	-4.71
Teste 3	9.51	11.11	-24.05	-4.71
Teste 4	9.51	11.11	-24.05	-4.71
Teste 5	9.51	11.11	-24.05	-4.71

Tempo conectado	AP1	AP2	AP3	Tempo médio
Teste 1	3.70	6.62	-1.49	3.67
Teste 2	3.70	6.62	-1.49	3.67
Teste 3	3.70	6.62	-1.49	3.67
Teste 4	3.70	6.82	-1.81	3.67
Teste 5	3.70	6.62	-1.49	3.67

Número de trocas	AP1	AP2	AP3	Média trocas
Teste 1	2.70	5.71	-1.68	2.91
Teste 2	2.70	5.71	-1.68	2.91
Teste 3	2.70	5.71	-1.68	2.91
Teste 4	2.70	5.71	-1.68	2.91
Teste 5	2.70	5.71	-1.68	2.91

Testes 5 APs - 900x600

Tempo conectado	AP1	AP2	AP3	AP4	AP5	Tempo médio
Teste 1	-11,22	-0,65	-8,34	3,13	11,96	-1,95
Teste 2	-11,22	-0,65	-8,33	3,14	11,96	-1,95
Teste 3	-11,22	-0,65	-8,35	3,11	11,96	-1,95
Teste 4	-11,24	-0,66	-8,32	3,16	11,96	-1,95
Teste 5	-11,22	-0,65	-8,34	3,13	11,96	-1,95

Número de trocas	AP1	AP2	AP3	AP4	AP5	Média trocas
Teste 1	-11,79	-2,37	-8,82	2,18	12,25	-2,66
Teste 2	-11,79	-2,37	-8,81	2,21	12,25	-2,66
Teste 3	-11,79	-2,37	-8,82	2,20	12,25	-2,65
Teste 4	-11,81	-2,39	-8,80	2,17	12,25	-2,66
Teste 5	-11,79	-2,37	-8,82	2,18	12,25	-2,66

Testes - Observações

- Visão limitada do agente
- Posição dos APs sobre a malha:
 - Tamanho da interseção
 - Rotas que tangenciam os limites do APs
 - Cobertura adequada das esquinas
- Quantidade de APs
- Complexidade das malhas
- Malhas com "ponto final" ou circulares

Testes – Observações

Testes - Observações

Simulador X Q-Learing --- Rota 168

Testes - Conclusão

- Apresenta grande potencial;
- Necessita de mais estudos e testes.

Cronograma 2019-2

	Agosto	Setembro	Outubro	Novembro	Dezembro
	A90310		COIODIO	TTOTOTIO	DOZUMBIO
1.	X	X			
2.	X	X	X		
3.	X	X	X	X	
4.			X	Χ	X

Legenda:

- 1. Modelagem
- 2. Implementação
- 3. Testes
- 4. Escrita

Obrigado!

Link do projeto:

https://github.com/MoisesHenr/INF496

Referências

- Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August).
 Fog computing and its role in the internet of things.
 In Proceedings of the first edition of the MCC workshop on
 Mobile cloud computing (pp. 13-16). ACM.
- Chiang, Mung, et al. "Clarifying fog computing and networking: 10 questions and answers." IEEE Communications Magazine55.4 (2017): 18-20.
- Perato, L., & Al Agha, K. (2002). Handover prediction: user approach versus cell approach. In 4th International Workshop on Mobile and Wireless Communications Network (pp. 492-496). IEEE.

Referências

- Shin, M., Mishra, A., & Arbaugh, W. A. (2004, June). Improving the latency of 802.11 hand-offs using neighbor graphs. In Proceedings of the 2nd international conference on Mobile systems, applications, and services (pp. 70-83). ACM.
- SUTTON, R. S., & BARTO, A. G. (2018). REINFORCEMENT LEARNING: AN INTRODUCTION. MIT PRESS.
- Imagem slide 3: autoria própria