Hydrodynamique: Contrôle (2010-2011)

<u>Valeurs et formules utiles</u>: densité du pétrole ρ=800kg/m³; viscosité cinématique du pétrole ν=1,77·10⁴ m²/s; accélération de pesanteur g≈10m/s²

$$\lambda = \begin{cases} \frac{64}{\text{Re}}, & \text{Re} < 2000 - \text{régime laminaire} \\ 0.11 \left(\varepsilon - \frac{68}{\text{Re}} \right)^{1/4}, & 3000 < \text{Re} < \frac{500}{\varepsilon} - \text{régime turbulent lisse} \\ 0.11 \varepsilon^{1/4}, & \text{Re} > \frac{500}{\varepsilon} - \text{régime turbulent rugueux} \end{cases}$$

1. Théorie (6,5 pts.)

1.1. Expliquer le sens physique du nombre de Reynolds. Quelle est sa valeur correspondante au passage entre les deux régimes d'écoulement?

1.2. On maintient deux feuilles de papier A4 verticalement à une distance environ 3 cm entre elles comme le montre le schéma cicontre. On souffle de l'air dans l'espace entre ces deux feuilles et on remarque qu'elles s'attirent. Expliquer ce phénomène.

1.3. Un profil d'une aile d'avion est représenté schématiquement sur la figure cidessous. $\mathbf{v_1}$ et $\mathbf{v_2}$ sont les vitesses moyennes de l'air au-dessus et au-dessous de l'aile. Expliquer qualitativement le phénomène de portance.

2. Oléoduc (6 pts.)

On transporte du pétrole dans un oléoduc horizontal de diamètre interne $D=\sqrt{\pi}\approx 1,77$ m et longueur L=10 km à raison de G=360T/h. La rugosité de la surface interne de l'oléoduc est de $\delta=0.5$ mm.

En prenant $\pi^2 \approx 10$, trouver les valeurs numériques de

- 2.1) la vitesse moyenne du pétrole v (moyennée sur la section de l'oléoduc);
- 2.2) le nombre de Reynolds Re. Quel est le régime d'écoulement ?;
- 2.3) le coefficient de frottement λ ;
- 2.4) les pertes de pression ΔP_{pertes} le long de l'oléoduc. Pour simplifier l'application numérique, arrondir toutes les valeurs intervenant dans ΔP_{pertes} à 1 chiffre significatif (ex: 1,88 \approx 2).

3. Venturi (7,5 pts.)

On considère l'écoulement d'un <u>liquide idéal</u> dans un tube d'axe horizontal qui présente un étranglement, son diamètre passant de D_A à D_B , puis revenant à $D_C = D_A$. La vitesse du liquide au niveau de la section A est v_A . La masse volumique du liquide est ρ .

- 3.1. Trouver la vitesse v_B sur la section B et la vitesse v_C sur la section C en fonction de v_A , D_A et D_B .
- 3.2. Trouver les pressions P_B et P_C aux points B et C en fonction de la pression P_A au point A ainsi qu'en fonction de v_A , D_A et D_B .

Dans le tube horizontal et dans les trois tubes verticaux, le fluide n'a pas de mouvement suivant la direction verticale.

- 3.3. Trouver les hauteurs de colonnes du liquide, h_A , h_B , h_C dans chaque tube en fonction de la pression atmosphérique P_0 qui règne dans l'air situé au-dessus, des pressions P_A , P_B et de la vitesse v_A .
- 3.4. Déduire la différence de hauteur h_C - h_A de colonne du liquide dans le tube A et C. Calculer la valeur numérique de h_C - h_A pour v_A =1m/s, D_A =10 cm, D_B =5 cm et P_0 =1m/s.

Expérimentalement, on trouve que le niveau h_C dans le troisième tube (C) est inférieur à celui h_A dans le tube (A).

3.5. Proposer une interprétation de ce fait expérimental.