네트워크 프로그래밍

12. 다중 접속 서버 구현

다중 접속 서버 구현 방법

- □ **멀티프로세스(Multiprocess)** 기반 서버
 - □ 다수의 프로세스를 생성하는 방식
- □ **멀티플렉싱(Multiplexing)** 기반 서버
 - □ 입출력 대상을 묶어서 관리하는 방식
- □ **멀티쓰레드(Multithread)** 기반 서버
 - □ 클라이언트의 수만큼 쓰레드를 생성하는 방식

프로세스

□ 프로세스란?

- □ 실행중인 프로그램
- □ 프로그램은 디스크에 저장된 파일과 같은 수동적인 개체
- □ 프로세스는 프로그램 카운터(PC)를 가진 능동적인 개체
- 프로그램이 주기억장치에 적재되어 처리를 시작할 때 비로소 프로세스라는 활동적인 개체가 됨

프로그램과 프로세스의 관계

- □ 프로그램(program): 사용자가 컴퓨터에 작업을 시키기 위한 명령어 의 집합
- □ 프로세스(process): 실행중인 프로그램
- □ 프로세서(processor): 중앙처리장치

실행 파일 구조 & 프로세스의 구조메모리에 로드된 프로그램을 프로세스라고 한다.

질문: 스택과 힘은 비슷한 공간을 사용하는 것이 아닌가. 그래서 오버플로우가 발생하는거 아닌가요?

프로세스와 쓰레드의 관계

Operating System

PCB란 os가 프로세스를 표현한것. 즉. 프로세스에 대한 메타데이터이다

멀티프로세스 vs 멀티쓰레드

문맥을 찾아서 거기서 부터 실행

멀티 프로세스(Multiprocesses)

멀티 쓰레드 (Multithreads)

- 운영체제 관점에서의 실행흐름을 제어한다.
- 컨텍스트 스위칭에 대한 부담이 크다
- 프로세스간 데이터 교환이 불가능하다. (IPC 필요)
- * 컨텍스트 스위칭(context switching): 현재 실행중인 프로세스의 실행 정보를 PCB에 저장하고 다음으로 실행할 프로세스의 실행 정보를 가져오는 과정

Thread공유

아나이 프로세스

- 프로세스 내에서의 실행흐름을 제어한다.
- 컨텍스트 스위칭에 대한 부담이 덜하다
- 쓰레드간 데이터 교환이 매우 쉽다.

멀티프로세스 (Multiprocess)

- □ 구조
 - □ 클라이언트 마다 서버 프로세스를 생성하는 구조
- □ 장점
 - □ 구현이 단순하다.
 - □ 안정성이 높다.
 - □ 다수의 요청을 동시에 처리 가능
- □ 단점
 - □ 프로세스 생성 오버헤드가 발생
 - □ 많은 자원을 소요한다.

멀티플렉싱 (Multiplexing)

□ 구조

□ 한 프로세스가 다수의 클라이언트를 처리할 수 있는 구조

□ 장점

- □ 구현이 단순하며 짧은 연결에 유용하다.
- □ 프로세스 생성 오버헤드가 없다.

□ 단점

- □ 프로세스가 다운될 경우 안정성이 낮다.
- □ 한번에 여러 요청을 처리하지 못한다.
- □ 접속허용량이 낮다.

구조 장점 단점 그냥 읽어보는 수준, 셤안나옴

멀티쓰레드 (Multithreads)

- □ 구조
 - □ 쓰레드 당 하나의 클라이언트를 처리하는 구조
- □ 장점
 - □ 멀티프로세스에 비해 비교적 자원 소요량이 적다.
 - □ 다수의 요청을 동시에 처리 가능
 - □ 구현이 단순하다.
- □ 단점
 - □ 프로세스 다운시 안정성이 낮다.

