Name:	
MATH 308	"Mathematics is the queen of the sciences and number theory is the queen of mathematics." — Carl Friedrich Gauss
Fall 2022	
HW 14: Due 11/10	

Problem 1. (10pt) For each of the following pairs (a, b), determine the quotient q and remainder r from the division algorithm and express b as b = aq + r:

- (a) (a,b) = (4,17)
- (b) (a,b) = (3,117)
- (c) (a,b) = (-6,25)
- (d) (a,b) = (9,-82)

Problem 2. (10pt) Showing all your work and explaining all your reasoning, answer the following:

- (a) Use the Euclidean algorithm to find gcd(220, 815).
- (b) Do there exist integer solutions x, y to the equation 20x 84y = 25? Explain.

Problem 3. (10pt) Showing all your work, use the extended Euclidean algorithm to express $\gcd(350,480)$ as a linear combination of 350 and 480.

Problem 4. (10pt) Recall that a rational number is a real number of the form $\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$. A real number which is not rational is called irrational. All integers are rational numbers: if $n \in \mathbb{Z}$, we have $n = \frac{n}{1}$. Some real numbers are rational, e.g. $0.26 = \frac{26}{100} = \frac{13}{50}$ and $0.\overline{3} = \frac{1}{3}$. However, not all real numbers are rational. Write a proof that $\sqrt{2}$ is not rational by completing the following:

- (a) We know that $\sqrt{2}$ is either rational or irrational. If $\sqrt{2}$ is not irrational, what do we know about $\sqrt{2}$?
- (b) Explain why we can write $\sqrt{2}$ as $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$, $b \neq 0$, and $\gcd(a, b) = 1$.
- (c) Show that (b) implies that $a^2 = 2b^2$.
- (d) Use Euclid's Theorem to show that 2|a.
- (e) Explain why (d) implies that $b^2 = 2k^2$ for some $k \in \mathbb{Z}$.
- (f) Explain why (e) implies that 2|b.
- (g) Explain why (f) contradicts (b). What does this imply about $\sqrt{2}$?