

Toward NLP

Tagging

 (PoS) tags: syntactic categories such as nouns, verbs and adjectives

Shallow parsing

- Light parsing
- Identify the constituents (noun groups, verbs), but not the internal structure
- Two main steps:
 - Part of Speech tagging (POS)
 - Chunking

2

Tagging

- (PoS) tags can be used for the identification of noun phrases etc.
 - Thematic categorization: focus is on noun terms
 - Sentiment categorization: adjectives

Part-of-speech (PoS) tagging

- By introducing part-of-speech tags we introduce wordtypes enabling to differentiate words functions
 - For text-analysis part-of-speech information is used mainly for "information extraction" where we are interested in e.g. named entities which are "noun phrases"
 - Another possible use is reduction of the vocabulary (features)
 - ...it is known that nouns carry most of the information in text documents
- Part-of-Speech taggers are usually learned by probabilistic models (e.g., HMM, SVM) on manually tagged data; there exists also rule-based algorithms

PoS examples

PoS table (tagset)

part of speech	function or "job"	example words	example sentences
<u>Verb</u>	action or state	(to) be, have, do, like, work, sing, can, must	EnglishClub.com is a web site. I like EnglishClub.com.
Noun	thing or person	pen, dog, work, music, town, London, teacher, John	This is my dog . He lives in my house . We live in London .
<u>Adjective</u>	describes a noun	a/an, the, 69, some, good, big, red, well, interesting	My dog is big . I like big dogs.
<u>Adverb</u>	describes a verb, adjective or adverb	quickly, silently, well, badly, very, really	My dog eats quickly . When he is very hungry, he eats really quickly.
Pronoun	replaces a noun	I, you, he, she, some	Tara is Indian. She is beautiful.
Preposition	links a noun to another word	to, at, after, on, but	We went to school on Monday.
Conjunction	joins clauses or sentences or words	and, but, when	I like dogs and I like cats. I like cats and dogs. I like dogs but I don't like cats.
Interjection	short exclamation, sometimes inserted into a sentence	oh!, ouch!, hi!, well	Ouch! That hurts! Hi! How are you? Well, I don't know.

POS tagging algorithms

- POS-Tagging generally requires:
 - Training phase where a manually annotated corpus is processed by a machine learning algorithm;
 - Tagging algorithm that processes texts using learned parameters.
- Performance is generally good (around 96%) when staying in the same domain.

Illustration with TreeTagger

- H. Schmid, University of Stuttgart, Germany
- English: "Mary has a cat."
 - Mary NP Mary
 - has VHZ have
 - a DT a
 - white JJ white
 - cat NN cat
 - . SENT .
- French: "Mary a un chat."
 - Mary NAM Mary
 - a VER avoir
 - un DET un
 - chat NOM chat
 - SENT.

Brill tagger

- The dataset (e.g., the Brown corpus) is split into 3 sets:
 - 90% (first) training set
 - 5% (second) training set
 - 5% test set
- Assigns initially the most likely tags
- Uses 2 basic procedures to improve performance
- Acquires patches to take the context into account

11

Rule-based taggers

- Using a set of rules to do the tagging
- Alternative to the probabilistic models
- Advantages:
 - Reduction in stored information required
 - Small set of meaningful rules
 - Better portability to other tag set / languages
- For instance: the Brill tagger [Brill, 1992]

Brill tagger (con't)

- 2 basic procedures for previously unseen words: capitalized words -> proper nouns ended with the same 3 letters -> same POS e.g.: blahblahous -> adjective
- Acquiring patches (rules) using templates:

Change tag a to tag b when:

- The preceding (following) word is tagged z
- The word two before (after) is tagged z
- One of the two preceding (following) words is tagged z
- The current word is (is not) capitalized etc.

10

Brill tagger (con't)

- For each error triple <tag a, tag b, number> and patch, the error reduction is calculated
- The patch with the best improvement is applied
- For instance:

VB NN PREV-1-OR-2-TAG AT <noun, verb, 159> -> <noun, verb, 79>

Tagging dance scores

 Laban Notation: standardized graphical representation of choreography

• Used in many areas: dance, sport, physiotherapy etc.

Brill tagger (con't)

- 71 patches with the Brown corpus:
 - TO IN NEXT-TAG AT
 - VBN VBD PREV-WORD-IS-CAP YES
 - VBD VBN PREV-1-OR-2-OR-3-TAG HVD
 - VB NN PREV-1-OR-2-TAG AT etc.
- Performance comparable to probabilisticbased algorithmes, around 95%-97%

Tagging dance scores (con't)

- Tagging with high-level (semantic) symbols: body actions (walk, run, jump, etc.), shape (arc-like, spoke-like, etc.), flow effort (bound or free) etc.
- Using these tags for describing the scores, some tasks are easier to deal with (e.g., genre classification).

14

Tagging dance scores (3)

Chunking (an illustration)

- Based on rules of context-free grammar:
 e.g.: GN --> Det Adj N
- Examples of extract patterns:

```
{ Det="the", Adj="good", N="wife" }
{ Det="a", Adj="broad", N="ship" }
{ Det="the", Adj="red", N="balloon" }
etc.
```

Chunking

- Finding Syntactic constituents like Noun Phrases (NPs) or Verb Groups (VGs) within a sentence
- Less costly than full parsing
- More robust to novel words, bad tokenization, wrong sentence split etc.
- Very useful in finding named entities (persons, companies, locations, patents...)

Ambiguity

- Natural language is highly ambiguous and must be disambiguated.
 - I saw the man on the hill with a telescope.
 - I saw the Grand Canyon flying to LA.
 - Time flies like an arrow.
 - Horse flies like a sugar cube.
 - Time runners like a coach.
 - Time cars like a Porsche.

18

Meaning of a sentence

- Compare these 3 sentences [Chomsky]:
 - Colorless green ideas sleep furiously
 - Furiously sleep ideas green colorless
 - Ideas furiously colorless sleep green
- Languages have rules => constraints the way in which words can be combined into an acceptable sentences

21

Lesk's algorithm

- Simple algorithm for WSD [Lesk, 86]
- Assumption:

"Words in a given neighborhood will tend to share a common topic."

- For each word in a sentence:
 - look in a dictionary for the different definitions
 - look for the definitions of the close words
 - sense is chosen if it maximizes the common words

Word Sense Disambiguation

- WSD problem: find out the most probable meaning
 - Supervised WSD (carried out with the help of a dictionary or a thesaurus)
 - Unsupervised WSD (the different senses of the word are not known).
- Consider the context
 (e.g., get the grammatical category of a word)

22

Illustration of Lesk

- Example with "pine cone"
- Definitions of "pine":
 - pine#1: "kinds of evergreen tree with needle-shaped leaves"
 - pine#2: "waste away through sorrow or illness"
- Definitions of "cone":
 - cone#1: "solid body which narrows to a point"
 - cone#2: "something of this shape whether solid or hollow"
 - cone#3: "fruit of certain evergreen trees"
- The best intersection is:
 - pine#1: "kinds of evergreen tree with needle-shaped leaves"
 - cone#3: "fruit of certain evergreen trees"

Simplified Lesk Algorithm

[Kilgarriff and Rosenzweig, 2000]

≈ 58% precision for Senseval-2 english

25

Full-parsing level

- Parsing provides maximum structural information per sentence
- On the input we get a sentence, on the output we generate a parse tree
- For most of the methods dealing with the text data the information in parse trees is too complex

Limitations of Lesk-based methods

- Sensitive to the exact wording of definitions
 - -> the absence of a word can **drastically** change the results
- Overlaps only among the glosses
 - -> not sufficient vocabulary to fine-grained sense distinctions
- Task more difficult than PoS tagging
- Modern approaches for WSD:
 - Dictionary/knowledge-based (e.g., Lesk)
 - Supervised learning (e.g., ANN, SVM, CRF)
 - Semi-supervised learning (e.g., Yarowsky algorithm)
 - Unsupervised learning -> WSI (I=Inducion)

26

Syntax

- Order of words in the query
 - the woman bought the funny game
 - the funny woman bought the game
- The parsing of a sentence could start
 - by the beginning or
 - by the end or even
 - by the main verb
- To go further -> NLP!

27