Excess Risk Decomposition

David Rosenberg

New York University

July 26, 2017

Review: Statistical Learning Theory

Review: Statistical Learning Theory

Statistical Learning Theory Framework

The Spaces

• \mathfrak{X} : input space

• y: output space

A: action space

Decision Function

A decision function produces an action $a \in \mathcal{A}$ for any input $x \in \mathcal{X}$:

$$f: \ \mathcal{X} \rightarrow \mathcal{A}$$
 $x \mapsto f(x)$

Loss Function

A loss function evaluates an action in the context of the output y.

$$\ell: \mathcal{A} \times \mathcal{Y} \rightarrow \mathbf{R}$$
 $(a,y) \mapsto \ell(a,y)$

The Gold Standard: Bayes Decision Function

Definition

The **expected loss** or "risk" of a decision function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(x), y),$$

where the expectation taken is over $(x, y) \sim P_{X \times Y}$.

Definition

A Bayes decision function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$R(f^*) = \inf_{f} \mathbb{E}\ell(f(x), y).$$

• But risk function cannot be computed because we don't know $P_{X \times Y}$.

Empirical Risk Minimization

• Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• Minimizing empirical risk over all functions leads to overfitting.

Constrain to a Hypothesis Space

- Hypothesis space \mathcal{F} , a set of functions mapping $\mathcal{X} \to \mathcal{A}$
 - Example hypothesis spaces?
- ullet Empirical risk minimizer (ERM) in ${\mathfrak F}$ is

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• Risk minimizer in F is

$$f_{\mathfrak{F}} = \underset{f \in \mathfrak{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y).$$

Excess Risk Decomposition

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Figure from Sasha Rakhlin's MLSS Lectures (2012): http://yosinski.com/mlss12/MLSS-2012-Rakhlin-Statistical-Learning-Theory/

Excess Risk

Definition

The excess risk compares the risk of f to the Bayes optimal f^* :

Excess
$$Risk(f) = R(f) - R(f^*)$$

• Can excess risk ever be negative?

Excess Risk Decomposition for ERM

• The excess risk of the ERM \hat{f}_n can be decomposed:

Excess Risk
$$(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

$$= \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}.$$

Approximation Error

Approximation error $R(f_{\mathcal{F}}) - R(f^*)$ is

- ullet a property of the class ${\mathcal F}$
- ullet the penalty for restricting to ${\mathcal F}$ rather than all possible functions

Bigger \mathcal{F} mean smaller approximation error.

Concept check: Is approximation error a random or non-random variable?

Estimation Error

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for using empirical risk rather than true risk

With smaller \mathcal{F} we expect smaller estimation error.

Under typical conditions: 'With infinite training data, estimation error goes to zero."

• [Infinite training data solves the statistical problem, which is not knowing the true risk.]

Concept check: Is estimation error a random or non-random variable?

ERM Overview

- Given a loss function $\ell: \mathcal{A} \times \mathcal{Y} \to \mathbf{R}$.
- Choose hypothesis space \mathcal{F} .
- Use an optimization method to find ERM $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- Data scientist's job:
 - \bullet choose \mathcal{F} to balance between approximation and estimation error.
 - ullet as we get more training data, use a bigger ${\mathcal F}$

ERM in Practice

- We've been cheating a bit by writing "argmin".
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.
- ullet For nice choices of loss functions and classes ${\mathcal F}$, the algorithmic problem can be solved to any desired accuracy
 - But takes time is it worth it?
- For some hypothesis spaces (e.g. neural networks), we don't know how to find $\hat{f}_n \in \mathcal{F}$.

Optimization Error

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

- Can optimization error be negative? Yes!
- But

$$\hat{R}(\tilde{f}_n) - \hat{R}(\hat{f}(n)) \geqslant 0.$$

Error Decomposition in Practice

Excess risk decomposition for function \tilde{f}_n returned by algorithm:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Excess Risk Decomposition: Example

A Simple Classification Problem


```
\mathcal{Y} = \{ \text{blue}, \text{orange} \}
P_{\mathcal{X}} = \text{Uniform}([0, 1]^2)
\mathbb{P}(\text{orange} \mid x_1 > x_2) = .9
\mathbb{P}(\text{orange} \mid x_1 < x_2) = .1
```

Bayes Error Rate = 0.1

Binary Decision Trees on \mathbb{R}^2

• Consider a binary tree on $\{(X_1, X_2) \mid X_1, X_2 \in R\}$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Hypothesis Space: Decision Tree

- ullet $\mathcal{F} = \left\{ \mathsf{all} \ \mathsf{decision} \ \mathsf{tree} \ \mathsf{classifiers} \ \mathsf{on} \ \left[\mathsf{0},\mathsf{1}\right]^2 \right\}$
- $\mathcal{F}_d = \left\{ \text{all decision tree classifiers on } [0,1]^2 \text{ with DEPTH} \leqslant d \right\}$
- We'll consider

$$\mathfrak{F}_2\subset \mathfrak{F}_3\subset \mathfrak{F}_4\cdots\subset \mathfrak{F}_{15}$$

• Bayes error rate = 0.1

Theoretical Best in \mathcal{F}_2

- Risk Minimizer in \mathcal{F}_2 (e.g. assuming **infinite training data**); Risk = P(error) = 0.2
- Approximation Error = 0.2 0.1 = 0.1

Theoretical Best in \mathcal{F}_3

- Risk Minimizer in \mathcal{F}_3 (e.g. assuming infinite training data); Risk = P(error) = 0.15
- Approximation Error = 0.15 0.1 = 0.05

Theoretical Best in \mathcal{F}_4

- Risk Minimizer (e.g. assuming infinite training data); Risk = P(error) = 0.125
- Approximation Error = 0.125 0.1 = 0.025

Decision Tree in \mathcal{F}_3 Estimated From Sample (n = 1024)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.176 \pm .004$$

Estimation Error+Optimization Error =
$$\underbrace{0.176 \pm .004}_{R(\tilde{f})}$$
 - $\underbrace{0.150}_{\min_{f \in \mathcal{F}_3} R(f)}$ = .026 ± .004

David Rosenberg (New York University)

Decision Tree in \mathcal{F}_4 Estimated From Sample (n = 1024)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.144 \pm .005$$

Estimation Error+Optimization Error =
$$\underbrace{0.144 \pm .005}_{R(\tilde{f})}$$
 - $\underbrace{0.125}_{\min_{f \in \mathcal{F}_4} R(f)}$ = .019 ± .005

David Rosenberg (New York University)

Decision Tree in \mathcal{F}_6 Estimated From Sample (n = 1024)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.148 \pm .007$$

Estimation Error+Optimization Error =
$$\underbrace{0.148 \pm .007}_{R(\tilde{f})}$$
 - $\underbrace{0.106}_{\min_{f \in \mathcal{F}_6} R(f)}$ = .042 ± .007

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 1024)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.162 \pm .009$$

Estimation Error+Optimization Error =
$$\underbrace{0.162 \pm .009}_{R(\tilde{f})}$$
 - $\underbrace{0.102}_{\min_{f \in \mathcal{F}_{\mathbf{B}}} R(f)}$ = $.061 \pm .009$

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 2048)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.146 \pm .006$$

Estimation Error+Optimization Error =
$$\underbrace{0.146 \pm .006}_{R(\tilde{f})}$$
 - $\underbrace{0.102}_{\min_{f \in \mathcal{F}_3} R(f)}$ = .045 ± .006

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 8192)

$$R(\tilde{f}) = \mathbb{P}(\text{error}) = 0.121 \pm .002$$

Estimation Error+Optimization Error =
$$\underbrace{0.121 \pm .002}_{R(\tilde{f})}$$
 - $\underbrace{0.102}_{\min_{f \in \mathcal{F}_3} R(f)}$ = .019 ± .002

David Rosenberg (New York University)

Risk Summary

Why do some curves have confidence bands and others not?

Excess Risk Decomposition

Why do some curves have confidence bands and others not?