SOLUTIONS SHEET 2

YANNIS BÄHNI

Exercise 1. Recall, that \mathcal{Z} is also called *finite complement topology* (see [Lee11, p. 45]).

(i) We have already showed that (\mathbb{C}, \mathbb{Z}) is not a Hausdorff space (see sheet 1 exercise 3), hence not compact. Therefore it is enough to show that any open cover of (\mathbb{C}, \mathbb{Z}) has a finite subcover.

Lemma 0.1. $(\mathbb{C}, \mathcal{Z})$ is quasi-compact.

Proof. Let $(U_{\alpha})_{\alpha \in A}$ be an open cover of $(\mathbb{C}, \mathcal{Z})$, i.e.

$$\mathbb{C} = \bigcup_{\alpha \in A} U_{\alpha} \quad \text{and} \quad \forall \alpha \in A : U_{\alpha} \in \mathcal{Z}.$$
 (1)

We can explicitly construct a finite subcover. Pick some $\alpha_0 \in A$ such that $U_{\alpha_0} \neq \emptyset$. Since $U_{\alpha_0} \in \mathcal{Z}$, $U_{\alpha_0}^c$ is finite, i.e. $U_{\alpha_0}^c = \{z_1, \dots, z_n\} \subseteq \mathbb{C}$. Thus we can write

$$\mathbb{C} = U_{\alpha_0} \cup U_{\alpha_0}^c = U_{\alpha_0} \cup \{z_1, \dots, z_n\}.$$
 (2)

Since $\mathbb{C} = \bigcup_{\alpha \in A} U_{\alpha}$, we find $\alpha_i \in A$ for i = 1, ..., n such that $z_i \in U_{\alpha_i}$. Hence $(U_{\alpha_{\nu}})_{\nu \in \{0,...,n\}}$ is a finite subcover of $(U_{\alpha})_{\alpha \in A}$. Since the construction was general, we conclude that $(\mathbb{C}, \mathcal{Z})$ is quasi-compact.

(ii) The reasoning is similar to part i).

Lemma 0.2. $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is quasi-compact.

Proof. Let $(U_{\alpha})_{\alpha \in A}$ be an open cover of $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$, i.e.

$$\{z_0\}^c = \bigcup_{\alpha \in A} U_\alpha \quad \text{and} \quad \forall \alpha \in A : U_\alpha \in \{z_0\}^c \cap \mathcal{Z}.$$
 (3)

We can explicitly construct a finite subcover. Pick some $\alpha_0 \in A$ such that $U_{\alpha_0} \neq \emptyset$. Since $U_{\alpha_0} \in \{z_0\}^c \cap \mathcal{Z}$, there exists $V \in \mathcal{Z}$ such that $U_{\alpha_0} = \{z_0\}^c \cap V$. By considering the relative complement

$$U_{\alpha_0}^c = \{z_0\}^c \cap (\{z_0\}^c \cap V)^c = \{z_0\}^c \cap (\{z_0\} \cup V^c) = \{z_0\}^c \cap V^c \subseteq V^c$$
(4)

and using the fact that V^c is finite we conclude that $U^c_{\alpha_0}$ is finite, i.e. $U^c_{\alpha_0} = \{z_1, \ldots, z_n\} \subseteq \{z_0\}^c$. Thus we can write

$$\{z_0\}^c = U_{\alpha_0} \cup U_{\alpha_0}^c = U_{\alpha_0} \cup \{z_1, \dots, z_n\}.$$
 (5)

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

Since $\{z_0\}^c = \bigcup_{\alpha \in A} U_\alpha$, we find $\alpha_i \in A$ for $i = 1, \ldots, n$ such that $z_i \in U_{\alpha_i}$. Hence $(U_{\alpha_\nu})_{\nu \in \{0,\ldots,n\}}$ is a finite subcover of $(U_\alpha)_{\alpha \in A}$. Since the construction was general, we conclude that $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is quasi-compact.

Lemma 0.3. $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is not Hausdorff.

Proof. Towards a contradiction assume that $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is Hausdorff. Thus for $p, q \in \{z_0\}^c$ there exists open neighbourhoods U and V of p and q respectively such that $U \cap V = \emptyset$. From the latter it follows that $U \subseteq V^c$. Since V is open we find $W_1 \in \mathcal{Z}$ such that $V = \{z_0\}^c \cap W_1$. Hence taking relative complements yields

$$V^c = \{z_0\}^c \cap (\{z_0\}^c \cap W_1)^c = \{z_0\}^c \cap W_1^c \subseteq W_1^c$$

So V^c is finite and therefore also U. Since U is open we have that there exists $W_2 \in \mathcal{Z}$ such that $U = \{z_0\}^c \cap W_2$. Taking again relative complements yields

$$U^c = \{z_0\}^c \cap (\{z_0\}^c \cap W_2)^c = \{z_0\}^c \cap W_2^c \subseteq W_2^c$$

So U^c is also finite. Therefore the decomposition $\{z_0\}^c = U \cup U^c$ implies that $\{z_0\}^c$ is finite. Contradiction, since $|\{z_0\}^c| \ge |\mathbb{R}| = \mathfrak{c}$, which is clearly not finite.

Therefore by lemma 0.2 we conclude that $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is quasi-compact, but from lemma 0.3 follows that $(\{z_0\}^c, \{z_0\}^c \cap \mathcal{Z})$ is not compact.

(iii) By $(\{z_0\}^c)^c = \{z_0\}$ which is finite immediately follows $\{z_0\}^c \in \mathcal{Z}$. But $\{z_0\}^c = \mathbb{C} \setminus \{z_0\}$ is clearly not finite, thus $\{z_0\} \notin \mathcal{Z}$, hence $\{z_0\}^c$ cannot be closed.

Exercise 2. Let $G \subseteq \mathbb{C}$ be non-empty and open. We show the equivalences (i) \Leftrightarrow (ii) and (ii) \Leftrightarrow (iii). This is due to the fact that I am aware of the latter equivalence by considering [Lee11, p. 86] and the first one by [Lee11, p. 90] and the fact that every open connected subset of \mathbb{R}^n is path-connected. However, working out detailed and appropriate proofs is still alot of work.

Assume that (i) holds. Proof by contradiction. Let $G = G_1 \cup G_2$ for some open sets $G_1, G_2 \subseteq \mathbb{C}$ with $G_1 \cap G_2 = \emptyset$ and $G_1, G_2 \neq G$. Evidently $G_1, G_2 \neq \emptyset$ and thus we find $p \in G \cap G_1$, $q \in G \cap G_2$. Let $\gamma : [a,b] \to G$ be a path joining p and q, i.e. $\gamma(a) = p$ and $\gamma(b) = q$. Since γ is continuous, $G \cap G_1$ and $G \cap G_2$ are relatively open in G we have that $\gamma^{-1}(G \cap G_1)$ and $\gamma^{-1}(G \cap G_2)$ are open in [a,b]. Furthermore, since $a \in \gamma^{-1}(G \cap G_1)$ and $b \in \gamma^{-1}(G \cap G_2)$ we have that both preimages are non-empty. By

$$\gamma^{-1}(G \cap G_1) \cup \gamma^{-1}(G \cap G_2) = \gamma^{-1}((G \cap G_1) \cup (G \cap G_2)) = \gamma^{-1}(G) = [a, b]$$

and

$$\gamma^{-1}(G \cap G_1) \cap \gamma^{-1}(G \cap G_2) = \gamma^{-1}((G \cap G_1) \cap (G \cap G_2)) = \gamma^{-1}(\emptyset) = \emptyset$$

we have that $\gamma^{-1}(G \cap G_1)$ and $\gamma^{-1}(G \cap G_2)$ disconnect [a, b] which is impossible since a real interval is always connected (see [Lee11, p. 89]).

Now assume that (ii) holds. Let $z_0 \in G$. Since joinability by paths in G is an equivalence relation (let us denote it simply by \sim) define

$$G_1 := [z_0]_{\sim}. \tag{6}$$

Lemma 0.4. G_1 is open.

Proof. Let $z_1 \in G_1$. Since G is open we find $\varepsilon > 0$ such that $B_{\varepsilon}(z_1) \subseteq G$. $B_{\varepsilon}(z_1)$ is evidently path connected (consider just straight lines joining different points). Since $z_1 \in G_1$, we have that there is a path joining z_0 and z_1 . By concatenating paths, there is a path from z_0 to every point in $B_{\varepsilon}(z_1)$ and thus $B_{\varepsilon}(z_1) \subseteq G_1$.

Lemma 0.5. The relative complement G_1^c in G is open.

Proof. Let $z_1 \in G_1^c$. Again we find $\varepsilon > 0$ such that $B_{\varepsilon}(z_1) \subseteq G$ by the openness of G. Towards a contradiction assume that $B_{\varepsilon}(z_1) \cap G_1 \neq \emptyset$. Hence we find $z_2 \in B_{\varepsilon}(z_1) \cap G_1$. This means, that there is a path joining z_0 and z_2 . But since $B_{\varepsilon}(z_1)$ is path connected there would be a path joining z_1 and z_0 which yields a contradiction. Hence $B_{\varepsilon}(z_1) \subseteq G_1^c$. \square Since evidently $G = G_1 \cup G_1^c$ and by lemma 0.4 and 0.5 G_1 , G_1^c are open and clearly disjoint, (ii) implies that either $G_1 = G$ or $G_1^c = G$. The latter is impossible since $z_0 \notin G_1^c$. Hence we conclude that $G = G_1$. Thus G is a single equivalence class under joinability by paths, hence path-connected.

Next we show that (ii) \Rightarrow (iii). To be completely rigorous, we state the following lemma which can be found as an exercise in [Lee11, p. 50].

Lemma 0.6. Let (X, \mathcal{T}) be a topological space and $S \subseteq X$. Then $B \subseteq S$ is closed in S if and only if $B = S \cap A$ for some closed set A in X.

Proof. Assume $B \subseteq S$ is closed in S. Hence the relative complement B^c is open in S. Therefore we have $B^c = S \cap U$ for some open set U in X. Thus

$$B = (S \cap U)^{c} = S \cap (S \cap U)^{c} = S \cap (S^{c} \cup U^{c}) = (S \cap S^{c}) \cup (S \cap U^{c}) = S \cap U^{c}.$$

But since U is open in X we have that U^c is closed in X. Conversly assume that $B = S \cap A$ for some closed set A in X. Taking relative complements yields

$$B^c = (S \cap A)^c = S \cap (S \cap A)^c = S \cap A^c$$

and since A is closed in X we have that A^c is open in X which means B^c is open in S. \square Now assume that (ii) holds. Let $U \subseteq G$ be a non-empty, open and relatively closed (with respect to G) subset. Since U is relatively closed, by lemma 0.6 there exists a closed set $A \subseteq \mathbb{C}$ such that $U = G \cap A$. Observe, that by

$$U^c = G \cap (G \cap A)^c = G \cap (G^c \cup A^c) = G \cap A^c$$

 U^c is open in $\mathbb C$ since G and A^c are open in $\mathbb C$. Clearly, $G=U\cup U^c$ and $U\cap U^c=\varnothing$. Therefore (ii) implies that either U=G or $U^c=G$ where the latter is impossible since by assumption $U\neq\varnothing$. Hence we conclude that U=G.

Finally we show (iii) \Rightarrow (ii). This is equivalent to showing that not (ii) implies not (iii). So we have $G = G_1 \cup G_2$ for some open disjoint sets $G_1, G_2 \subseteq \mathbb{C}$ where $G_1, G_2 \neq G$. Now clearly $\emptyset \subsetneq G_1 \subsetneq G$, G_1 is open and G_1 is relatively closed in G since

$$G \cap G_2^c = (G_1 \cup G_2) \cap G_2^c = G_1 \cap G_2^c = G_1$$

since G_2^c is closed and $G_1 \cap G_2 = \emptyset$.

Exercise 3. The proof is given as a sequence of lemmata.

Lemma 0.7. The mapping h is well-defined, i.e. $h(\mathbb{H}) \subseteq \mathbb{E}$.

Proof. Let $z \in \mathbb{H}$. Then Im(z) > 0 and thus

$$\left| \frac{z-i}{z+i} \right|^2 = \frac{(z-i)(\overline{z}+i)}{(z+i)(\overline{z}-i)}$$

$$= \frac{|z|^2 + i(z-\overline{z}) + 1}{|z|^2 + i(\overline{z}-z) + 1}$$

$$= \frac{|z|^2 - 2\operatorname{Im}(z) + 1}{|z|^2 + 2\operatorname{Im}(z) + 1}$$

$$\leq \frac{|z|^2 - 2\operatorname{Im}(z) + 1}{|z|^2 + 1}$$

$$= 1 - \frac{2\operatorname{Im}(z)}{|z|^2 + 1}$$

$$< 1.$$

Lemma 0.8. The mapping h is invertible with inverse

$$h^{-1}: \mathbb{E} \to \mathbb{H}, w \mapsto i\frac{1+w}{1-w}.$$
 (7)

Proof. Let $z \in \mathbb{H}$. Then we have

$$1 + h(z) = \frac{2z}{z+i}$$
 and $1 - h(z) = \frac{2i}{z+i}$. (8)

Therefore

$$\frac{1+h(z)}{1-h(z)} = \frac{z}{i} \qquad \Leftrightarrow \qquad z = i\frac{1+h(z)}{1-h(z)}. \tag{9}$$

This quotient is well-defined since $h(z) \neq 1$ for $z \in \mathbb{H}$. Thus consider the mapping

$$g: \mathbb{E} \to \mathbb{C}, w \mapsto i \frac{1+w}{1-w}.$$

Now let $w \in \mathbb{E}$. Then

$$\operatorname{Im}\left(i\frac{1+w}{1-w}\right) = \frac{1}{2i} \left[i\frac{1+w}{1-w} + i\frac{1+\overline{w}}{1-\overline{w}}\right]$$
$$= \frac{1-|w|^2}{1-(w+\overline{w})+|w|^2}$$
$$= \frac{1-|w|^2}{1-2\operatorname{Re}(w)+|w|^2}$$

$$\geq \frac{1 - |w|^2}{(1 + |w|)^2}$$

$$= \frac{1 - |w|}{1 + |w|}$$

$$> 0$$

since $|\text{Re}(w)| \leq |w| < 1$. Hence $g(\mathbb{E}) \subseteq \mathbb{H}$. Furthermore, for $z \in \mathbb{H}$ and $w \in \mathbb{E}$ we have

$$g(h(z)) = i\frac{1 + (z - i)/(z + i)}{1 - (z - i)/(z + i)} = z$$
 and $h(g(w)) = \frac{(1 + w)/(1 - w) - 1}{(1 + w)/(1 - w) + 1} = w$.

Thus $g \circ h = \mathrm{id}_{\mathbb{H}}$ and $h \circ g = \mathrm{id}_{\mathbb{E}}$ which implies that g and h are bijective and inverse to each other, thus $g = h^{-1}$.

Lemma 0.9. It holds that $h \in \mathcal{O}(\mathbb{H})$ and $h^{-1} \in \mathcal{O}(\mathbb{E})$.

Proof. h as well as h^{-1} are well-defined rational functions, hence holomorphic in their respective domains.

By lemma 0.7, 0.8 and 0.9 we conclude that the Cayley-map is biholomorphic.

Exercise 4. In both cases we use that a function $f: D \to \mathbb{C}$, where $D \subseteq \mathbb{C}$ is non-empty and open, is complex-differentiable in $c \in D$ if and only if f is real-differentiable in c and the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x}(c) = \frac{\partial v}{\partial y}(c) \qquad \text{and} \qquad \frac{\partial u}{\partial y}(c) = -\frac{\partial v}{\partial x}(c)$$

holds, where f = u + iv (see [RS02, p. 47]). Furthermore, there is a usefull sufficiency criterion (see [RS02, p. 48]).

Lemma 0.10 (Sufficient Criterion for complex Differentiability). If u and v have continuous partial derivatives in D, then f := u + iv is real differentiable in D. If additionally the Cauchy Riemann equations hold for some subset $\hat{D} \subseteq D$, then f is complex differentiable in \hat{D} .

Proof. The first statement follows immediately from the well know fact of multivariable calculus, that the existence and continuity of all partial derivatives is sufficient for differentiability (see [Zor04, p. 457]), by considering $f: D \to \mathbb{R}^2$ defined by

$$f(x,y) = u(x,y) + iv(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$$

whereas the second statement follows from the above discussion.

First we consider the function f. We can decompose f = u + iv where $u, v : \mathbb{C} \to \mathbb{R}$ are defined by

$$u(x+iy) := x^3 y^2$$
 and $v(x+iy) := x^2 y^3$. (10)

Calculating the partial derivatives in c := x + iy = (x, y) yields

$$\frac{\partial u}{\partial x}(x,y) = 3x^2y^2 \qquad \frac{\partial u}{\partial y}(x,y) = 2x^3y \qquad \frac{\partial v}{\partial x}(x,y) = 2xy^3 \qquad \frac{\partial v}{\partial y}(x,y) = 3x^2y^2.$$

We immediately see that all partial derivatives are continuous on \mathbb{R}^2 and thus u and v are (continuously) real differentiable in \mathbb{R}^2 and so is f. Clearly

$$\frac{\partial u}{\partial x}(x,y) = 3x^2y^2 = \frac{\partial v}{\partial y}(x,y) \tag{11}$$

holds for any $x, y \in \mathbb{R}$ and thus for any $c \in \mathbb{C}$. However, for the second equation we get the requirement

$$\frac{\partial u}{\partial y}(x,y) = 2x^3y = -2xy^3 = -\frac{\partial v}{\partial x}(x,y). \tag{12}$$

or equivalently $x^3y = -xy^3$. If x = 0, then the equality holds for any $y \in \mathbb{R}$ and if y = 0 then the equality holds for any $x \in \mathbb{R}$. If $x, y \neq 0$ we get the equality $x^2 = -y^2$ which cannot be true since $y^2 > 0$ would imply $x^2 < 0$. Hence the set in which f is complex differentiable is exactly $\{z \in \mathbb{C} : \text{Re}(z) = 0 \lor \text{Im}(z) = 0\}$.

Now consider the function g. Similar to the previous part we can write g = u + iv where $u, v : \mathbb{C} \to \mathbb{R}$ are defined by

$$u(x+iy) := e^x \cos y$$
 and $v(x+iy) := e^x \sin y$. (13)

Calculating the partial derivatives yields

$$\frac{\partial u}{\partial x}(x,y) = e^x \cos y = u(x+iy)$$

$$\frac{\partial u}{\partial y}(x,y) = -e^x \sin y = -v(x+iy)$$

$$\frac{\partial v}{\partial x}(x,y) = e^x \sin y = v(x+iy)$$

$$\frac{\partial v}{\partial y}(x,y) = e^x \cos y = u(x+iy)$$

which immediately implies that u and v are real differentiable on \mathbb{R}^2 (since again all partial derivatives are continuous on \mathbb{R}^2), hence f is real differentiable, and that the Cauchy-Riemann equations holds on \mathbb{C} . Thus g is holomorphic in \mathbb{C} or *entire*.

REFERENCES

- [Lee11] John M. Lee. Introduction to Topological Manifolds. Second Edition. Springer Science+Business Media, 2011.
- [RS02] R. Remmert and G. Schumacher. Funktionentheorie 1. Springer-Lehrbuch. Springer Berlin Heidelberg, 2002. ISBN: 9783540418559.
- [Zor04] Vladimir A. Zorich. Mathematical Analysis I. Springer-Verlag Berlin Heidelberg, 2004.