Lab 4 Preparation

Lab 4 - Part I

Create a D latch out of NAND gates.

Lab 4 - Part I

Then, create a D flip-flop out of D latches.

Lab 4 - Part II

- Enhance the ALU from last week:
 - More operations (e.g. multiplication, shifting)
 - Memory (aka registers)

Lab 4 - Part II

- New operations:
 - Left shift
 - Logical right shift
 - Multiplication
- All of these are supplied through the collection of components in Logisim.

Logic vs. Arithmetic Shift

- Arithmetic right shifts replicate the sign bit instead of using zero to fill in the mostsignificant bit(s).
 - Needed if dealing with signed numbers (e.g., 2's complement notation)
- Logical right shifts fill in missing bits with zeroes.
- Example: Shift 10010000 right by 3 bits
 - Arithmetic \rightarrow 11110010
 - <u>■ Logical</u> → 00010010

Shifter Components

- Can be found under Arithmetic > Shifter.
 - You can change the shift type in Properties.
 - More details can be found at:
 - http://www.cburch.com/logisim/docs/2.3.o/libs/arith/shifter.html
- Logic Shift (left or right)

Lab 4 - Part II

- Note: ALU output is now stored in a set of flip-flops called a register.
 - 8 bits (flip-flops) long
 - Compoment found in Memory > Register.
 - You can change the Number of flip-flops in Properties > Data bits.

Lab 4 - Part III

- Make a shifter unit, for a single bit.
 - See diagram below.

Lab 4 - Part III

- Connect 8 shifter units together.
- Note:
 - Load n is active-low, loads all bits from LoadVal into ShifterBit units when clk goes high.
 - reset is asynchronous (doesn't wait for clk signal).
 - ShiftRight tells you when to shift, ASR tells you what kind of shift to do.

Why is Shift Important?

What is the sum of 01101101 and 01101101?

Remember what happens here!

- Try the following:
 - 00110 logic shift right by 1 bit
 - 00110 logic shift left by 1 bit

A logic shift right of A by N bits results in: $A*2^N$ A shift left of A by N bits results in: $A/2^N$

Load register

- N-bit number = N D-flipflops synchronized to the same clock signal
- You can load a register's value (all bits at once), by feeding signals into each flip-flop:
 - In this example: a 4-bit load register.

