- 21 When implementing linear regression of some dependent variable y on the set of independent variables  $\mathbf{x} = (x_1, ..., x_r)$ , where r is the number of predictors, which of the following statements will be true?
  - a)  $\beta_0, \beta_1, ..., \beta_r$  are the regression coefficients.
  - b) Linear regression is about determining the **best predicted weights** by using the **method of ordinary least squares**.
  - **C)** E is the random interval
  - d) Both a and b

ANSWER: d) BOTH a and b

22)

What indicates that you have a **perfect fit** in linear regression?

- a) The value  $R^2 < 1$ , which corresponds to SSR = 0
- b) The value  $R^2 = 0$ , which corresponds to SSR = 1
- c) The value  $R^2 > 0$ , which corresponds to SSR = 1
- d) The value  $R^2 = 1$ , which corresponds to SSR = 0

ASNWER: d) The value  $R^2 = 1$ , which corresponds to SSR = 0.

23)

In simple linear regression, the value of **what** shows the point where the estimated regression line crosses the y axis?

- a) Y
- b) B0
- c) B1
- d) F

ANSWER: a) Y

Check out these four linear regression plots:



Which one represents an underfitted model?

- a)The bottom-left plot
- b) The top-right plot
- c) The bottom-right plot
- d) The top-left plot

**ANSWER** : d)The top-left plot

25)

There are five basic steps when you're implementing linear regression:

- a. Check the results of model fitting to know whether the model is satisfactory.
- **b.** Provide data to work with, and eventually do appropriate transformations.
- **c.** Apply the model for predictions.
- **d.** Import the packages and classes that you need.
- e. Create a regression model and fit it with existing data.

However, those steps are currently listed in the wrong order. What's the correct order?

- a) e, c, a, b, d
- b) e, d, b, a, c
- c) d, e, c, b, a
- d) d, b, e, a, c

ANSWER: b) d, b, e, a, c

- 26) Which of the following are optional parameters to LinearRegression in scikit-learn?
  - a) Fit
  - b) fit intercept
  - c) normalize
  - d) copy X
  - e) n\_jobs
  - f) reshape

ANSWER: f) RESHAPE

- 27) While working with scikit-learn, in which type of regression do you need to transform the array of inputs to include nonlinear terms such as  $x^2$ ?
- a)Multiple linear regression
- b) Simple linear regression
- c) Polynomial regression

ANSWER: c) POLYNOMIAL REGRESSION

- 28) You should choose statsmodels over scikit-learn when:
- a) You want graphical representations of your data.
- b) You're working with nonlinear terms.
- c) You need more detailed results.
- d) You need to include optional parameters.

**ANSWER:** d) You need to include optional parameters.

| comprehensi   | is a fundamental package for scientific computing with Python. It offers we mathematical functions, random number generators, linear algebra routines, Fourier and more. It provides a high-level syntax that makes it accessible and productive. |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Pandas     |                                                                                                                                                                                                                                                   |
| b) Numpy      |                                                                                                                                                                                                                                                   |
| c) Statsmode  | 51                                                                                                                                                                                                                                                |
| d) scipy      |                                                                                                                                                                                                                                                   |
| ANSWER :      | b) NUMPY                                                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                                                   |
| interface for | is a Python data visualization library based on Matplotlib. It provides a high-level drawing attractive and informative statistical graphics that allow you to explore and our data. It integrates closely with pandas data structures.           |
|               | a) Bokeh                                                                                                                                                                                                                                          |
|               | b) Seaborn                                                                                                                                                                                                                                        |
|               | c) Matplotlib<br>d) Dash                                                                                                                                                                                                                          |
|               | a) SEABORN                                                                                                                                                                                                                                        |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                   |