

PANIMALAR ENGINEERING COLLEGE

An Autonomous Institution

[JAISAKTHI EDUCATIONAL TRUST]

Approved by AICTE | Affiliated to Anna University | Recognized by UGC All Eligible UG Programs are Accredited by NBA

Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai- 600 123

TECHDIVATHON

Empower, Innovate, Elevate: Code the Future Together

Domain: VLSI

Problem Statements:

S. No	Title	Problem Statement	Description
1	Design of Energy- Efficient Multipliers for IoT Applications	Develop low-power multipliers optimized for IoT devices to enhance battery life while maintaining computation accuracy.	These multipliers will process arithmetic operations critical for IoT sensors with minimal power consumption, enabling long-term deployment in energy-constrained environments.
2	High-Speed Memory Interface for AI Workloads	Create a VLSI architecture for high-speed DRAM controllers to support the bandwidth requirements of modern AI applications.	Focuses on bridging the gap between memory and processors by providing low-latency data transfers for smooth execution of real-time AI models in high-performance systems.
3	3D ICs for Compact Chip Design	Design a 3D Integrated Circuit (IC) architecture that minimizes interconnect delays and improves performance.	By stacking circuits vertically, 3D ICs reduce physical footprint and signal travel distances, enhancing speed, reducing power consumption, and enabling compact yet powerful devices.
4	Low-Power ASICs for Mobile Devices	Develop application-specific integrated circuits (ASICs) optimized for ultra-low power consumption.	These ASICs will handle specialized functions like image processing or signal decoding with minimal energy usage, ensuring efficiency in high-performance mobile devices.
5	Fault-Tolerant Logic Circuits for Space Applications	Design VLSI circuits with fault- tolerant capabilities to withstand high-radiation environments in space missions.	Incorporates redundancy and error- correction mechanisms to maintain functionality, ensuring reliability in harsh space environments for critical systems.
6	High-Performance Analog-to-Digital Converters (ADCs)	Create ADCs for high-speed data acquisition systems used in medical imaging and communication systems.	Ensures high precision and rapid processing by seamlessly converting analog signals to digital formats for applications like ultrasound and high-speed networks.
7	RF Circuits for 5G Communication	Design energy-efficient RF front-end modules to support	Amplify, filter, and process signals in the millimeter-wave range, essential for

		high-frequency bands in 5G	high-speed, low-latency wireless
		networks.	communication in 5G networks.
0	N		
8	Non-Volatile Memory	Develop low-power non-	Ensures reliable data storage and quick
	Design for Edge	volatile memory (NVM)	retrieval with minimal power
	Computing	architectures for edge devices	consumption, enabling real-time
		handling real-time data	analytics in IoT and edge devices.
		processing.	
9	Mixed-Signal ICs for	Create integrated circuits that	Facilitates monitoring and processing of
	Biomedical Applications	combine analog and digital	biological signals with high accuracy,
		components for medical	supporting advanced technologies like
		implants and wearable devices.	pacemakers and health trackers.
10	Chip Design for	Build VLSI designs supporting	Leverages quantum cryptographic
	Quantum	secure quantum key distribution	principles to ensure secure
	Cryptography	for cryptographic systems.	communication and resilience against
			computational attacks.
11	CAD Tool for Power	Develop software tools that	Provides simulation, analysis, and
	Optimization in VLSI	automate power analysis and	optimization features to minimize power
	Circuits	optimization in large-scale IC	consumption and ensure efficient chip
	Circuits	designs.	performance.
12	AI-Powered Logic	Create AI-driven tools to	Accelerates synthesis processes,
12	Synthesis Tools	simplify logic synthesis and	optimizes logic gate configurations, and
	Synthesis 100is	optimize gate-level designs for	reduces resource utilization in complex
		improved performance.	VLSI projects through AI.
13	Thermal Analysis	Develop software solutions for	1 0 0
13			Predicts heat dissipation patterns,
	Software for High-	simulating and analyzing	enabling the design of thermally
	Density Chips	thermal behavior in densely	optimized chips to prevent overheating
1.4	T 1. C' 1. ' C	packed VLSI chips.	in high-performance systems.
14	Fault Simulation for	Design fault simulation tools to	Simulates faults in circuit designs,
	Digital Circuits	predict and mitigate errors in	allowing engineers to identify
		VLSI circuits under varying	vulnerabilities and implement corrective
		operational conditions.	measures before fabrication.
15	Timing Analysis for	Build software for accurate	Optimizes signal timings to prevent
	High-Speed ICs	timing analysis of VLSI circuits	delays and ensures smooth operation in
		to ensure high-speed	high-frequency integrated circuits.
		performance.	
16	Automated Placement	Develop advanced algorithms	Automates the arrangement of circuit
	and Routing	for placement and routing that	components and connections, improving
	Algorithms	optimize area and minimize	chip performance and reducing design
		interconnect delays.	time.
17	VLSI Design	Create tools to verify digital	Validates the logical correctness of
	Verification Using	designs using formal	VLSI designs, eliminating errors and
	Formal Methods	verification techniques to	enhancing reliability through formal
		ensure correctness.	methods.
18	Low-Power Design	Develop a software framework	Streamlines the implementation of
	Automation	for automating low-power VLSI	power-saving techniques, helping
	Framework	design processes, including	designers achieve energy-efficient chip
		clock and power gating.	designs.
19	Open-Source FPGA	Build user-friendly tools for	Provides intuitive interfaces and robust
	Programming Tools	programming and testing open-	features for designing, testing, and
	_ 10010	source FPGA platforms.	deploying FPGA-based systems,
		parecia or planomis.	accelerating development.
20	Hardware Security	Design software solutions to	Detects vulnerabilities, simulates threats,
20	Software for VLSI	analyze and enhance hardware	and implements safeguards to protect
		security against side-channel	chips from unauthorized access and
	Chips		<u> </u>
		attacks.	manipulation.

21	Smart Sensors for	Develop VLSI hardware	Combines hardware for signal
	Real-Time Data	integrated with software	acquisition with software for immediate
	Processing	algorithms for real-time	data processing, enabling intelligent
	_	analytics in IoT applications.	responses in IoT ecosystems.
22	Chip-to-Cloud	Design VLSI hardware and	Ensures encryption and secure
	Security Solutions	supporting software for secure	authentication mechanisms for seamless
	-	data transfer between chips and	and protected communication between
		cloud platforms.	devices and cloud servers.
23	Edge AI Chips with	Create hybrid architectures	Performs machine learning
	On-Device Learning	combining VLSI hardware and	computations locally, reducing reliance
		ML software for edge AI	on cloud connectivity and enabling real-
		devices.	time decision-making.
24	Self-Healing VLSI	Design circuits capable of	Employs hardware redundancy and
	Circuits	detecting and self-correcting	intelligent software to autonomously
		faults using integrated software	resolve errors, ensuring uninterrupted
		algorithms.	operation.
25	AI-Driven EDA	Develop an AI-enhanced	Integrates AI for synthesis, placement,
	Toolchain	electronic design automation	routing, and verification tasks, providing
		toolchain for VLSI hardware-	a comprehensive environment for
		software co-design.	efficient VLSI design.

Reviewer's Digital Signature

Reviewer's Name:			
Position :			
Organization :			
Date:			

Digital Signature: