Aplicação de Algoritmos de *Machine Learning* na previsão de cotação do *Bitcoin*

Rodrigo de Souza Oliveira¹, Álvaro Viebrantz ¹

MBA em Big Data – Fatec – Serviço Nacional de Aprendizagem Industrial (SENAI) Av. XV de Novembro, 303, Porto - CEP: 78020-300 - Cuiabá–MT

rddsouzaoliveira@gmail.com, emaildoalvaro@gmail.com

Abstract. With the evolution of technology and the creation of several tools for analysis of data, a subject that has become very relevant is the application of these advanced Machine Learning techniques to understand the behavior of assets and subsidize the financial information market for decision making. The objective of this work was to apply Machine Learning models, with the goal of analyze and understand the behavior of bitcoin to forecast its future value and use it as a tool to assist in investment strategies. For this, data was collected on the bitcoin quotation through the API of a crypto exchange, in a historical series created since December 2017. The results show that the models were able to understand and forecast bitcoin price fluctuations, highlighting Multilayer Perceptron model. This work paved the way for a range of possibilities for future work to better understand model architectures available that can generalize the behavior of bitcoin over time and to the development of a tool that automates decision making to operate in the Bitcoin market automatically.

Resumo. Com a evolução da tecnologia e a criação de diversas ferramentas de análise de dados, um assunto que vem se tornando muito relevante é a aplicação dessas técnicas avançadas de Machine Learning para entender o comportamento dos ativos e subsidiar o mercado financeiro de informações para tomada de decisão. Este trabalho teve como objetivo aplicar modelos de Machine Learning, com a função de analisar e entender o comportamento do bitcoin para projetar seu valor futuro e utilizá-lo como ferramenta para auxiliar nas estratégiasde investimentos. Para isso, foram coletados dados sobre a cotação do bitcoin, através da API de uma corretora, em uma série histórica criada desde dezembro de 2017. Os resultados evidenciam que os modelos foram capazes de entender e projetar as oscilações do preço do bitcoin, com destaque para o Multilayer Perceptron. Este trabalho abriu caminho para uma gama de possibilidades de futuros trabalhos para melhor entender as arquiteturas de modelos disponíveis que consigam generalizar o comportamento do bitcoin ao longo do tempo e o desenvolvimento de ferramenta que automatiza a tomada de decisões para operar no mercado de Bitcoin de forma automática.

1. Introdução

Investimento é a aplicação de algum recurso, com a expectativa de algum gannho futuro. A incerteza do ganho, ou um possível prejuízo, caracteria o risco do investimeto. No contexto de aplicação financeira, pode-se caracterizar o investimento como a aplicação de

dinheiro que não gere custos, tenha expectativa de lucro futuro e que não exija esforços relevantes ¹.

Diversos estudos, já consolidados, trazem que a diversificação do portfólio de investimentos se demonstra como uma eficiente forma para redução dos riscos, conforme trazido em [Oda et al. 1998]. A diversificação de investimentos é uma técnica que visa a diluição dos riscos e a maximização dos ganhos [Pactual 2017].

Aliado à sua popularização nos últimos anos, o Bitcoin se tornou uma alternativa para os investidores comporem suas carteiras de investimentos e despertou-se a necessidade de melhor entender seu comportamento. Porém, a oscilação e a incerteza do futuro do Bitcoin, gera muita insegurança, principalmente entre os investidores mais conservadores [Oliveira 2020].

Como a tecnologia e as novas ferramentas de análise de dados, podem contribuir para transformar o bitcoin como uma alternativa de investimento, minimizando-se os riscos das operações?

A evolução da tecnologia proporcionou o surgimento de novas ferramentas de análise de dados. Estas ferramentas podem contribuir para transformar o bitcoin como uma alternativa de investimento, pois, através do entendimento de seu comportamento, possibilitam a minimização dos riscos das operações com a moeda.

O Objetivo deste trabalho foi implementar e testar modelos capazes de analisar dados históricos das cotações do Bitcoin, para identificar o comportamento do preço do Bitcoin e projetar as cotações futuras.

Os modelos desenvolvidos tiveram como ideia, possibilitar que o investidor tenha uma ferramenta técnica para auxiliar no processo de tomada de decisões sobre as estratégias que investimentos que serão adotadas.

Justifica-se o desenvolvimento deste trabalho, pela importância que o Bitcoin conquistou no mercado financeiro nos últimos anos, pelo desafio na aplicação de técnicas extremamente avançadas para análise de dados com a finalidade de prever o valor futuro do ativo, que é um dos grandes desafios dos cientistas de dados.

A estrutura deste trabalho está organizada da seguinte forma: A Metodologia (Capítulo2), onde será abordado os principais passos para coleta de dados, análise exploratória e o desenvolvimento do modelo, A Revisão de Literatura (Capítulo 3), onde serão apresentados os conceitos acerca do Bitcoin, Machine Learning e sobre as Redes Neurais Artificiais, A Apresentação da Pesquisa (Capítulo 4) e Discussão de Resultados (Capítulo 5), onde abordará sobre os resultados obtidos em cada etapa do desenvolvimento do modelo e o resultado da previsão realizada e por último, as Considerações Finais (Capítulo 6), onde se conclui sobre as aplicações do modelo e recomendações de futuros estudos.

2. Metodologia

A finalidade dessa pesquisa tem natureza aplicada e abordagem qualitativa e quantitativa para realizar estudo de caráter descritivo.

¹Detalhes em Blog Rico. O Que é Investimento e Por Que Poupança é Ruim. Recuperado em 3 de outubro de 2020, de https://blog.rico.com.vc/o-que-e-investimento

Foi realizado um levantamento bibliográfico sobre os temas abordados neste artigo, através da coleta de informações em livros, revistas, sites e outros artigos.

Para a coleta e análise dos dados utilizou-se um Macbook Pro 2018 com memória RAM de 16GB, processador Intel i7 de 2.2Ghz, vídeo Radeon Pro 555x de 4Gb e um Flash Storage de 251Gb, além de sistema operacional MacOS Catalina, com acesso à internet.

Utilizou-se como linguagem de programação o R [R Core Team 2020] para todas as etapas de análises apresentadas neste artigo e o Latex [Goossens et al. 1993] para escrita. Como banco de dados, utilizou-se o Microsoft SQL Server, hospedado na nuvem Azure.

2.1. Coleta dos dados

A coleta dos dados se iniciou em dezembro de 2017, através da API REST da corretora de cyptomoedas Bitfinex. Estruturou-se uma rotina em linguagem R, dentro de uma máquina virtual no ambiente Google Cloud Plataform (GCP), que acessava a API e armazenava os dados em um banco de dados SQL Server, num período de 10 em 10 segundos.

A rotina, consultava dois grupos de informações, fornecidos pela API: "*Ticker*"e "*Orderbook*". O primeiro grupo, trazia informações sobre a cotação no momento da consulta e trazia os seguintes campos:

- Valor atual de venda
- Valor atual de compra
- Último valor negociado
- Menor valor negociado das últimas 24h
- Maior valor negociado nas últimas 24h
- Volume total negociado nas últimas 24h

O segundo grupo, trazia o "livro de ordens", que era a listagem de todas as ordens de compra e venda na corretora, vigentes no momento da consulta. Essa consulta retornava milhares de linhas e para reduzir o espaço de armazenamento, optou-se por resumir as informações antes de salvar no banco de dados. Os dados resumidos traziam as seguintes informações tanto das ordens de compra, quanto das ordens de venda:

- Mínimo
- 1o Quartil
- Mediana
- 3o Quartil
- Máximo

2.2. Análise exploratória

Com os dados já estruturados e armazenados num banco de dados, o próximo passo foi realizar uma análise exploratória no conjunto de dados.

Como o tempo de resposta da API pode variar, analisou-se os intervalos entre cada consulta efetivamente realizada. Após essa análise, foram realizadas algumas tratativas nos dados para se chegar ao *dataset* final.

2.3. Modelos

Neste trabalho foram utilizados os modelos de Regressão Linear Random Forest e *Multi Layer Perceptron* (MLP), considerando como base de treinamento os dados compreendidos entre novembro de 2017 até dezembro de 2019 e para validação os dados entre janeiro e março de 2020.

O modelo MLP form treinado utilizando o pacote Keras [Chollet 2015], que cria uma camada para execução do ambiente Tensorflow [Abadi et al. 2015].

Os modelos de Regressão Linear e Random Forest, foram treinados através do framework *Tidymodels* [Kuhn and Wickham 2020], ustilizando como motor de treinamento os pacotes *glmmet* [Friedman et al. 2010] e *randomForest* [Liaw and Wiener 2002]

3. Revisão de Literatura

Neste tópico serão apresentados os principais conceitos abordados no estudo, contextualizando o Bitcoin, os tipos de aprendizados de máquina e os principais pontos que envolvem as redes neurais artificiais.

3.1. Bitcoin

O Bitcoin consiste em uma rede estruturada ponto-a-ponto, constituída por diversos computadores que assumem o mesmo papel de validadores das transações que são realizadas entre eles [Nakamoto 2019].

Todas as transações que são realizadas pela rede do Bitcoin, são criptografadas, dificultando sua rastreabilidade.

De acordo com [Shawn 2017], o Bitcoin foi a primeira moeda digital a resolver o problema do gasto duplo, utilizando uma solução descentralizada para armazenamento dos registros das transações.

Outra característica da moeda é que não existe nenhum governo ou instituição que regulamenta suas transações e seu preço. Esses fatores ajudaram a contribuir para a popularização do Bitcoin nos últimos anos e consequentemente a sua valorização, saindo de centavos de dólares em 2009 para cerca de 7 mil em 2018, conforme imagem abaixo.

Atualmente, estima-se mais de 375 milhões de dólares sejam comercializados em bitcoin em apenas um dia.

3.2. Machine Learning

Segundo [Kelleher et al. 2020], Machine Learning pode ser definido como a automação de processos que extraem padrões dos dados. Compreende um conjunto de técnicas computacionais que têm a característica de "aprender" com os dados.

De acordo com [Tanaka 2018], existem três tipos de algoritmos de *Machine Learning*:

- **Supervisionado**: Quando se diz ao algoritmo o que é cada entrada (rótulo) e ele aprende quais são as características que influenciam a entrada a ser o que ela é.
- Não supervisionado: Quando não se diz ao algoritmo o que é cada entrada, ou seja, os dados não são rotulados. O algoritmo classifica as entradas conforme suas características semelhantes.

Figura 1. Preço Histórico do Bitcoin Fonte: https://www.coindesk.com/price/bitcoin

• **Por reforço**: Define-se um sistema de recompensas e punições aos possíveis resultados para que o algoritmo possa ponderar as escolhas a serem feitas.

3.3. Redes Neurais Artificiais

Redes Neurais Artificiais (RNAs), São modelos matemáticos, compostos por unidades de processamentos simples, que calculam determinadas funções matemáticas. Uma rede neural artificial é um modelo de computação inspirado na forma como a estrutura do cérebro dos mamíferos processa informação [De Souto et al. 2003].

As unidades de processamento, também chamadas de nós ou neurônios, são dispostas em uma ou várias camadas e interligadas por conexões. As conexões estãoligadas a pesos, que ponderam os valores recebidos por cada neurônio.

O conhecimento sobre o problema em consideração está guardado dentro dos exemplos que têm que estar obrigatoriamente disponíveis. O algoritmo de aprendizagem generaliza esses dados e memoriza o conhecimento dentro dos parâmetros adaptáveis da rede, os pesos [Rauber 2005].

A camada que recebe os dados é chamada de camada de entrada, a camada de saída é responsável por traduzir o resultado da RNA e quaisquer outras são denominadas de camadas ocultas, ou intermediárias, vide Figura 2 abaixo. Em cada uma das camadas é aplicada uma função de ativação. Durante a fase de treinamento, a RNA "aprende" ajustandose os pesos [Bishop 1996].

Figura 2. Exemplo de uma Rede Neural Artificial de 2 camadas com 4 entradas e 2 saídas

Fonte: https://cerebromente.org.br/n05/tecnologia/rna.htm, consulta em 02 de outubro de 2020

3.3.1. Multilayer Perceptron

A *Multilayer Perceptron* (MLP), ou Perceptron de Múltiplas Camadas em tradução direta, é um tipo de Rede Neural artificial que possui mais de uma camada de neurônios, interligados em alimentação direta. Uma introdução às Redes Neurais e Perceptrons pode ser vista em [Bailer-Jones et al. 2001], mais detalhes sobre a MLP em [Sarle 1994] e sobre a alimentação direta em [Bishop et al. 1995].

A Figura 3 esquematiza uma MLP com duas camadas ocultas:

Figura 3. Exemplo de uma MLP com duas camadas ocultas

3.4. Regressão Linear Múltipla

Modelos de regressão linear, assumem que existem uma relação linear entre uma variável y (também chamada de variável dependente) e p variáveis independentes (ou preditoras) [Rodrigues 2012]. O modelo de regressão linear múltipla é definido conforme abaixo:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i, i = 1, \dots, n$$
 (1)

em que

- y_i é o valor da variável dependente na observação $i, i = 1, \dots, n;$
- x_{ip} é o valor da *i*-ésima observação da *p*-ésima variável independente;
- β_p são os coeficientes da regressão;
- ε_i é o erro aleatório na *i*-ésima observação.

Os coeficientes β_j representam a média esperada na variável resposta Y, quando a variável X_j sofre um acréscimo unitário, enquanto todas as outras X_k , $k \neq j$ são mantidas constantes.

O coeficiente β_0 corresponde ao intercepto do plano de regressão. Se o modelo incluir $X_j=0$, então β_0 será a média de Y nesse ponto. Caso contrário, não existe interpretação prática para β_0

3.5. Random Forests

Os Random Forests (ou floresta aleatório em tradução direta) é um algoritmo de aprendizado de máquina, proposto por [Breiman 2001], que consiste na geração de diversas árvores de decisão, baseadas em seleções aleatórias e variáveis. Após, é realizada uma "votação" entre os modelos e a decisão mais votada é a resposta do algoritmo.

É dado pelo modelo:

$$h(\mathbf{x}, \Theta_k), k = 1, \cdots, p$$
 (2)

em que Θ_k são vetores aleatórios iid e cada árvore, vota para a classe mais popular da entrada \mathbf{x} .

4. Discussão dos resultados

A proposta deste artigo é a criação de modelos que consiga entender o comportamento do preço do Bitcoin e fazer projeções para auxiliar a tomada de decisões de compra e venda, com o intuito de otimizar os resultados dos *trades*.

O primeiro passo para o desenvolvimento deste modelo foi a coleta de dados, através da API da corretora *Bitfinex*, e que armazenava o preço do Bitcoin, entre outras informações, a cada dez segundos.

Na tabela 1 é possível verificar algumas estatísticas acerca do conjunto de dados.

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
AIL	3278	6384	7797	7917	9442	19891
AQ1	3561	6890	8217	8456	9877	20542
AMD	3706	7838	8889	9357	11202	22125
AQ3	3874	8442	10762	11031	12926	25195
ASL	4219	9371	13501	14550	19359	36100
BIL	0	1783	4111	4511	7300	10475
BQ1	1001	4350	6108	6110	7863	13026
BMD	2822	5448	6979	6917	8528	16156
BQ3	3067	5977	7412	7437	9097	18124
BSL	3278	6384	7797	7916	9441	19890

Tabela 1. Sumarização dos dados

Tabela 1. Sumarização dos dados

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
BAMOUNT	789.5	3785.3	9342.7	141543.1	129697.3	835193.2
AAMOUNT	923.5	4961.4	7571.0	7961.8	10788.1	20640.8
Bid	3278	6384	7797	7916	9441	19890
Ask	3278	6384	7797	7918	9442	800000
Last	3278	6384	7797	7916	9442	19891
Low	0	6252	7502	7644	9183	18734
High	0	6519	8049	8169	9725	19891
Volume	0	7102	13983	23613	31641	213851
datetime	2017-11-22 22	2018-06-25 11	2019-02-11 10	2019-01-31 06	2019-09-06 16	2020-09-29 02

Fonte: Dados do estudo

Apresenta-se na Figura 4 abaixo, a variação do preço do Bitcoin, desde o início da coleta dos dados até o momento da elaboração deste estudo. Pode-se perceber que no final do ano de 2018, o preço do Bitcoin atingiu seu pico máximo, chegando a quase 20 mil dólares. Após um longo período de queda, no primeiro semestre do ano de 2019, o preço aumentou consideravelmente, chegando a cerca de 13 mil dólares.

Figura 4. Evolução do preço do Bitcoin, extraído da API da *Bitfinex*Fonte: Dados do estudo

Outro ponto relevante que se observa, é um grande gap entre os meses de abril e outubro de 2020. Esse fato se deu, por problemas na aplicação que consome os dados. Por isso, serão descartados os registros superiores ao mês de abril/2020.

O próximo passo foi fazer uma análise das informações que foram coletadas. Durante o processo de estruturação do programa que iria fazer a coleta dos dados, observouse que as vezes a API apresentava oscilações de performance, ou seja, demorando muitopara retornar o resultado da solicitação.

Verificou-se então a diferença entre cada período coletado. Verifica-se, Tabela 2 que existem sete registros com diferença superior a um dia.

Tabela 2. Lag entre os registros

	Data Final	Data Inicial	Diferença	
1	2020-09-29 02:24:54	2020-04-11 02:26:54	4103:58:00.27338	
2	2018-12-29 16:01:59	2018-12-14 10:53:04	365:08:55.01703	
3	2020-04-08 20:43:17	2020-04-04 04:09:28	112:33:48.94099	
4	2019-01-01 21:07:53	2018-12-29 17:28:01	75:39:51.56921	
5	2020-04-01 02:25:02	2020-03-29 21:13:41	53:11:21.09238	
6	2020-04-11 02:25:10	2020-04-09 02:46:24	47:38:46.28917	
7	2020-03-29 20:34:06	2020-03-28 14:00:28	30:33:37.74005	
8	2020-04-03 02:25:00	2020-04-02 03:52:29	22:32:30.92597	
9	2020-04-04 02:24:55	2020-04-03 05:42:33	20:42:22.44385	
10	2019-01-07 14:15:12	2019-01-07 07:00:10	07:15:01.36821	

Fonte: Dados do estudo

Essa primeira análise, subsidiou a decisão de que, apesar dos dados serem coletados a cada dez segundos, o modelo confeccionado analisará o período de um dia, ou seja, o modelo irá projetar, com base nas informações atuais, o preço do bitcoin no práximo dia.

Com isso, o terceiro passo adotado foi filtrar os dados, obedecendo o período de um dia. Com isso, o gráfico do preço histório ficou Figura 5 abaixo.

Figura 5. Evolução do preço do Bitcoin, após filtros

Fonte: Dados do estudo

Após, prosseguiu-se com a geração das bases de treinamento e teste. Utilizou-se como base de treinamento o período compreendido entre 01/11/2017 e 31/12/2019 e

como base de testes o período entre 01/01/2020 a 31/03/2020. Normalizou-se as variáveis para todas ficarem compreendidas no intervalo entre menos um e um.

Executou-se os modelos de Regressão (*lr*) e *Random Forests* (*rf*), removendo as variáveis autocorrelacionadas e para o MLP (*nn*), utilizou-se todas as variáveis na camada de entrada, considerando 16 camadas ocultas com 32 neurônios cada e 100 épocas para o treinamento.

Na Figura 6 abaixo, é possível observar o comparativo entre o preço previsto (no eixo x) e o preço real (no eixo y), dos modelos aplicados na base de testes. Para facilitar a interpretação, foi desenhada uma linha tracejada vermelha, onde se lê que quanto mais próximos os pontos estiverem desta linha, mais preciso será o modelo.

Figura 6. Evolução do preço do Bitcoin, após filtros Fonte: Dados do estudo

Na figura 7, pode-se analisar os valores previstos (em vermelho) e reais (em azul) através do tempo. Detaca-se o modelo de Regressão Linear (lr) que não conseguir prever muito bem os valores em meados do mês de março, enquanto os modelos Random Forest (rf) e MLP (nn) conseguiram ser mais aderentes nas previsões realizadas.

Já na tabela 3, são apresentadas as métricas *Root Mean Squared Error* (rmse), R^2 (rsq) e *Mean Absolute Error* (mae). Para o rmse e mae, quanto menor os valores observados, melhor o desenpenho do modelo e para o R^2 , quanto maior, melhor.

Com isso, pode-se observar que, confirmando a tendência observada nas Figuras 6 e 7, o modelo de Regressão Linear Múltipla, apresentou a pior performance os três, quando o modelo *Multilayer Perceptron*, apresentou ou melhores resultados.

Figura 7. Evolução do preço do Bitcoin, após filtros

Fonte: Dados do estudo

Tabela 3. Métricas dos modelos

	lr	nn	rf
rmse	642.854	302.027	381.754
rsq	0.864	0.963	0.928
mae	360.761	214.231	213.004

Fonte: Dados do estudo

5. Considerações finais

O Objetivo deste trabalho foi implementar e testar modelos capazes de analisar dados históricos das cotações do Bitcoin, para identificar o comportamento do preço e projetar as cotações futuras.

Construiu-se então três modelos (Regressão Linear Múltipla, *Random Forest* e *Multilayer Perceptron*), para auxiliar na tomada de decisões e estratégias de investimentos em Bitcoin.

Os resultados mostram que, o modelo *Multilayer Perceptron* conseguiu se ajustar às variações do preço da moeda de forma mais eficiente que os demais, tornando uma ferramenta viável para auxiliar na definição de estratégia de investimento.

Outro ponto a ser destacado é que, devido à variação do cenário econômico e outros quesitos que influenciam o mercado de cryptomoedas, a constante avaliação e otimização do modelo, com uso de novos dados, é indispensável para se mantenha uma

ferramenta útil para tomada de decisões.

É recomendável que, caso o valor do Bitcoin se estabilize nos próximos meses, um novo modelo deva ser construído para que se alcance melhores resultados, inclusive com a aplicação de outras técnicas. Este modelo deve ser abordado em estudos futuros.

Além disso, para que se coloque em prática o conhecimento gerado pelo modelo, é importante o desenvolvimento de uma ferramenta que automatize o processo de tomada de decisões de compra e venda, com base nas projeções geradas pelo modelo. Esta ferramenta será confeccionada em estudos futuros.

Referências

- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
- Bailer-Jones, C. A., Gupta, R., and Singh, H. P. (2001). An introduction to artificial neural networks. *arXiv* preprint astro-ph/0102224.
- Bishop, C. M. (1996). Neural networks: a pattern recognition perspective.
- Bishop, C. M. et al. (1995). *Neural networks for pattern recognition*. Oxford university press.
- Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
- Chollet, F. (2015). keras. https://github.com/fchollet/keras.
- De Souto, M., Lorena, A., Delbem, A., and de Carvalho, A. (2003). Técnicas de aprendizado de máquina para problemas de biologia molecular. *Sociedade Brasileira de Computação*, 1(2).
- Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software*, 33(1):1–22.
- Goossens, M., Mittelbach, F., and Samarin, A. (1993). *The LaTeX Companion*. Addison-Wesley, Reading, Massachusetts.
- Kelleher, J. D., Mac Namee, B., and D'arcy, A. (2020). Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. MIT press.
- Kuhn, M. and Wickham, H. (2020). *Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles*.
- Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. *R News*, 2(3):18–22.
- Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot.
- Oda, A. L., Senger, M. C. M., and Chára, A. N. (1998). Um estudo sobre diversificação na bolsa de valores de são paulo. *XXII Encontro da Associação Nacional de Pós-Graduação em Administração (ENANAP)*.
- Oliveira, J. J. (2020). *Bitcoin é investimento de risco, mas dá para ganhar sem cair em golpes*. Acesso em 28 de setembro de 2020.
- Pactual, B. (2017). *Diversificação de investimentos: o que é e quais as suas vantagens*. Acesso em 28 de setembro de 2020.
- R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

- Rauber, T. W. (2005). Redes neurais artificiais. *Universidade Federal do Espírito Santo*, page 29.
- Rodrigues, S. C. A. (2012). *Modelo de regressão linear e suas aplicações*. PhD thesis, Universidade da Beira Interior.
- Sarle, W. S. (1994). Neural networks and statistical models.
- Shawn, R. (2017). Blockchain Key Terms, Explained. Acesso em 28 de setembro de 2020.
- Tanaka, M. (2018). *3 tipos de aprendizado caracterizam o Machine Learning*. Acesso em 28 de setembro de 2020.