

Preliminary datasheet EasyPACK[™] module with CoolSiC[™] Trench MOSFET and PressFIT / NTC / TIM

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 75 \text{ A} / I_{DRM} = 150 \text{ A}$
 - High current density
 - Low switching losses
- Mechanical features
 - Rugged mounting due to integrated mounting clamps
 - Integrated NTC temperature sensor
 - PressFIT contact technology
 - Pre-applied thermal interface material

Potential applications

- Solar applications
- Three-level applications
- DC charger for EV

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

F3L11MR12W2M1HP_B19 EasyPACK[™] module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package
2	MOSFET 3
3	Body diode
4	MOSFET
5	Body diode
6	NTC-Thermistor
7	Characteristics diagrams
8	Circuit diagram
9	Package outlines
10	Module label code
	Revision history
	Disclaimer 23

2

EasyPACK[™] module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	11.5	mm
Creepage distance	d_{Creep}	terminal to terminal	6.3	mm
Clearance	d_{Clear}	terminal to heatsink	10.0	mm
Clearance	d_{Clear}	terminal to terminal	5.0	mm
Comparative tracking index	CTI		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition		Values		
			Min	Тур.	Max.	
Stray inductance module	L _{sCE}			21		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H =25°C, per switch		1.5		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Maximum baseplate operation temperature	T_{BPmax}				125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

Storage and shipment of modules with TIM => see AN 2012-07.

Chapters 2 and 3 describe MOSFET T1/T4 and the corresponding body diode. Chapters 4 and 5 describe MOSFET T2/T3 and the corresponding body diode.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			75	Α
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	65	А

(table continues...)

EasyPACK[™] module

2 MOSFET

Table 3 (continued) Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Repetitive peak drain current	/ _{DRM}	verified by design, t _p limited by T _{vjmax}	150	A
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01	-10/23	V
Gate-source voltage, max. static voltage	V _{GS}		-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Symbol	ol Note or test condition		Note or test condition Values				Unit
			Min.	Тур.	Max.		
R _{DS(on)}	I _D = 75 A	V _{GS} =18 V, T _{vj} =25 °C		10.8	16	mΩ	
		V _{GS} =18 V, T _{vj} =125 °C		17.4			
		V _{GS} =18 V, T _{vj} =175 °C		23.1			
		$V_{\rm GS}$ =15 V, $T_{ m vj}$ =25 °C		12.9			
V _{GS(th)}			3.45	4.3	5.15	V	
Q _G	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V		0.223		μC	
R _{Gint}	T _{vj} =25 °C	T _{vi} =25 °C		2.7		Ω	
C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		6.6		nF	
Coss	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		0.315		nF	
C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		0.021		nF	
E _{OSS}	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V, 7	T _{vj} =25 °C		129		μJ	
I _{DSS}	V _{DS} =1200 V, V _{GS} =-3 V	T _{vj} =25 °C		0.045	300	μΑ	
I _{GSS}	$V_{\rm DS} = 0 \text{ V}, T_{\rm vj} = 25 ^{\circ}\text{C}$	V _{GS} =20 V			400	nA	
	$R_{ m DS(on)}$ $V_{ m GS(th)}$ $Q_{ m G}$ $R_{ m Gint}$ $C_{ m ISS}$ $C_{ m rss}$ $E_{ m OSS}$ $I_{ m DSS}$	$R_{\rm DS(on)}$ $I_{\rm D} = 75~{\rm A}$ $V_{\rm GS(th)}$ $I_{\rm D} = 30~{\rm mA}, V_{\rm DS} = V_{\rm GS}, T_{\rm vj} = 100~{\rm kms}$ pulse at $V_{\rm GS} = +20~{\rm V}$) $V_{\rm DS} = 800~{\rm V}, V_{\rm GS} = -3/18~{\rm V}$ $V_{\rm DS} = 800~{\rm V}, V_{\rm DS} = 800~{\rm V}, V_{\rm DS} = 800~{\rm V}, V_{\rm DS} = 0~{\rm V}$ $V_{\rm CSS}$ $V_{\rm DS} = 100~{\rm kHz}, V_{\rm DS} = 800~{\rm V}, V_{\rm DS} = 1200~{\rm V}, V_{\rm DS} = 1200~{\rm$	$R_{\rm DS(on)} I_{\rm D} = 75 {\rm A} \qquad \qquad \begin{array}{c} V_{\rm GS} = 18 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 18 {\rm V}, T_{\rm Vj} = 125 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 18 {\rm V}, T_{\rm Vj} = 125 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 15 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 15 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 15 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 15 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 100 {\rm KHz}, V_{\rm DS} = 100 {\rm V}, V_{\rm SS} = 100 {\rm ^{\circ}C} \\ \hline V_{\rm GS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 100 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm DS} = 800 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm DS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm DS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 0 {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^{\circ}C}, {\rm ^{\circ}C} \\ \hline V_{\rm SS} = 1200 {\rm ^{\circ}C}, {\rm ^$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{\rm DS(on)} I_{\rm D} = 75 {\rm A} \qquad \qquad V_{\rm GS} = 18 {\rm V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 10.8 \\ V_{\rm GS} = 18 {\rm V}, \qquad T_{\rm Vj} = 125 {\rm ^{\circ}C} \qquad 17.4 \\ V_{\rm GS} = 18 {\rm V}, \qquad T_{\rm Vj} = 175 {\rm ^{\circ}C} \qquad V_{\rm GS} = 18 {\rm V}, \\ T_{\rm Vj} = 175 {\rm ^{\circ}C} \qquad V_{\rm GS} = 15 {\rm ^{\circ}C}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 12.9 \\ V_{\rm GS}(\rm th) \qquad I_{\rm D} = 30 {\rm mA}, V_{\rm DS} = V_{\rm GS}, T_{\rm Vj} = 25 {\rm ^{\circ}C}, (\rm tested after 1ms pulse at V_{\rm GS} = +20 {\rm ^{\circ}V}) \qquad 0.223 \\ Q_{\rm G} \qquad V_{\rm DS} = 800 {\rm ^{\circ}V}, V_{\rm GS} = -3/18 {\rm ^{\circ}V} \qquad 0.223 \\ R_{\rm Gint} \qquad T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 2.7 \\ C_{\rm ISS} \qquad f = 100 {\rm ^{\circ}KHz}, V_{\rm DS} = 800 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.315 \\ C_{\rm CSS} \qquad f = 100 {\rm ^{\circ}KHz}, V_{\rm DS} = 800 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.021 \\ C_{\rm CSS} \qquad f = 100 {\rm ^{\circ}KHz}, V_{\rm DS} = 800 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.021 \\ V_{\rm GS} = 0 {\rm ^{\circ}V} \qquad V_{\rm DS} = 800 {\rm ^{\circ}V}, V_{\rm GS} = -3/18 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.045 \\ I_{\rm DSS} \qquad V_{\rm DS} = 1200 {\rm ^{\circ}V}, V_{\rm GS} = -3/18 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.045 \\ I_{\rm DSS} \qquad V_{\rm DS} = 1200 {\rm ^{\circ}V}, V_{\rm GS} = -3/18 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.045 \\ I_{\rm DSS} \qquad V_{\rm DS} = 1200 {\rm ^{\circ}V}, V_{\rm GS} = -3/18 {\rm ^{\circ}V}, T_{\rm Vj} = 25 {\rm ^{\circ}C} \qquad 0.045 \\ I_{\rm DSS} \qquad I_{\rm DSS} \qquad I_{\rm DSS} \qquad I_{\rm DSS} = 1200 {\rm ^{\circ}V}, I_{\rm DS} = 1200 {\rm ^{\circ}V}, I_{\rm DSS} = 1200 {\rm ^{\circ}V}, I_{\rm DSS} = 1200 {\rm ^{\circ}V}, I_{\rm DSS} = 1200 {\rm ^{\circ}V}, I_{\rm ^{\circ}V} = 1200 {\rm ^{\circ}V}, I_{\rm ^{\circ}V$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

(table continues...)

EasyPACK[™] module

3 Body diode

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-on delay time	t _{d on}	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 4.3 \Omega,$	T _{vj} = 25 °C		34		ns
(inductive load)		$V_{\rm DS}$ = 400 V, $V_{\rm GS}$ = -3/18 V	T _{vj} = 125 °C		34		
			T _{vj} = 175 °C		34		
Rise time (inductive load)	t _r	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 4.3 \Omega,$	T _{vj} = 25 °C		37		ns
		$V_{\rm DS} = 400 \text{V}, V_{\rm GS} = -3/18 \text{V}$	T _{vj} = 125 °C		40		
			T _{vj} = 175 °C		41		
Turn-off delay time (inductive load)	$V_{\rm DS} = 400 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 25 °C		61		ns	
		$V_{\rm DS} = 400 \text{V}, V_{\rm GS} = -3/18 \text{V}$	T _{vj} = 125 °C		66		
			T _{vj} = 175 °C		69		
Fall time (inductive load)		$I_{\rm D}$ = 75 A, $R_{\rm Goff}$ = 2.4 Ω , $V_{\rm DS}$ = 400 V, $V_{\rm GS}$ = -3/18 V	T _{vj} = 25 °C		12.5		ns
			T _{vj} = 125 °C		12.5		
			T _{vj} = 175 °C		12.5		
Turn-on energy loss per	E _{on}	$I_{\rm D} = 75 \text{ A}, V_{\rm DS} = 400 \text{ V},$ $L_{\rm \sigma} = 35 \text{ nH}, V_{\rm GS} = -3/18 \text{ V},$ $R_{\rm Gon} = 4.3 \Omega, \text{ di/dt} = 4.09$	T _{vj} = 25 °C		0.582		mJ
pulse			T _{vj} = 125 °C		0.635		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.659		
Turn-off energy loss per	E _{off}	$I_{\rm D} = 75 \text{ A}, V_{\rm DS} = 400 \text{ V},$	T _{vj} = 25 °C		0.154		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2.4 \Omega, \text{ dv/dt} = 25.6$	T _{vj} = 125 °C		0.155		1
		$k_{Goff} - 2.4 \Omega, dV/dt - 25.6$ $kV/\mu s (T_{vi} = 175 °C)$	T _{vj} = 175 °C		0.155		
Thermal resistance, junction to heat sink	R _{thJH}	1 *	per MOSFET, Valid with IFX pre-applied Thermal Interface Material			0.758	K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

 $T_{\rm vj,op}$ > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

3 Body diode

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward	I _{SD}	$T_{\rm vi} = 175 ^{\circ}\text{C}, V_{\rm GS} = -3 ^{\circ}\text{V}$	T _H = 65 °C	24	Α
current					

EasyPACK[™] module

4 MOSFET

Table 7 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 75 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} =25 °C		4.2	5.35	V
			T _{vj} =125 °C		3.9		
			T _{vj} =175 °C		3.8		

4 MOSFET

Table 8 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	$V_{\rm DSS}$		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			75	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	55	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p limited by T _{vjmax}		150	А
Gate-source voltage, max. transient voltage	V _{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V _{GS}			-7/20	V

Table 9 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 10 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 75 A	V _{GS} =18 V, T _{vj} =25 °C		10.8	16	mΩ
			V _{GS} =18 V, T _{vj} =125 °C		17.4		
			V _{GS} =18 V, T _{vj} =175 °C		23.1		
			V _{GS} =15 V, T _{vj} =25 °C		12.9		
Gate threshold voltage	V _{GS(th)}	I_D = 30 mA, V_{DS} = V_{GS} , T_{vj} = 25 °C, (tested after 1ms pulse at V_{GS} = +20 V)		3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V		0.223		μC	

(table continues...)

F3L11MR12W2M1HP_B19 EasyPACK[™] module

4 MOSFET

(continued) Characteristic values Table 10

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур. Мах.		1
Internal gate resistor	R _{Gint}	T _{vj} =25 °C			2.7		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		6.6		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		0.315		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$			0.021		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V, 7	$_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V, $T_{\rm vj}$ =25 °C		129		μJ
Drain-source leakage current	I _{DSS}	V _{DS} =1200 V, V _{GS} =-3 V	T _{vj} =25 °C		0.045	300	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ =25 °C	V _{GS} =20 V			400	nA
Turn-on delay time (inductive load)	t _{d on}	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 4.3 \Omega,$	T _{vj} = 25 °C		34		ns
		$V_{\rm DS} = 400 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		34		
			T _{vj} = 175 °C		34		
Rise time (inductive load)	t _r	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 4.3 \Omega,$	T _{vj} = 25 °C		43		ns
		$V_{\rm DS} = 400 \text{V}, V_{\rm GS} = -3/18 \text{V}$	T _{vj} = 125 °C		46		
			T _{vj} = 175 °C		47		
Turn-off delay time	$t_{\sf doff}$	$I_{\rm D} = 75 \text{A}, R_{\rm Goff} = 2.4 \Omega,$	T _{vj} = 25 °C		60		ns
(inductive load)		$V_{\rm DS} = 400 \text{V}, V_{\rm GS} = -3/18 \text{V}$	T _{vj} = 125 °C		65		
			T _{vj} = 175 °C		68		
Fall time (inductive load)	t _f	$I_{\rm D} = 75 \text{A}, R_{\rm Goff} = 2.4 \Omega,$	T _{vj} = 25 °C		12.6		ns
		$V_{\rm DS} = 400 \text{V}, V_{\rm GS} = -3/18 \text{V}$	T _{vj} = 125 °C		12.6		
			T _{vj} = 175 °C		12.6		
Turn-on energy loss per	Eon	$I_{\rm D} = 75 \text{A}, V_{\rm DS} = 400 \text{V},$	T _{vj} = 25 °C		0.586		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 4.3 \Omega, \text{ di/dt} = 4.11$	T _{vj} = 125 °C		0.642		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.679		
Turn-off energy loss per pulse	E _{off}	$I_{\rm D} = 75 \text{ A}, V_{\rm DS} = 400 \text{ V},$	T _{vj} = 25 °C		0.168		mJ
		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2.4 \Omega, \text{ dv/dt} = 25.4$	T _{vj} = 125 °C		0.174		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.177		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, Valid with IF Thermal Interface Materi				0.998	K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

EasyPACK[™] module

5 Body diode

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

 $T_{\rm vj,op}$ > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

5 Body diode

Table 11 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit	
DC body diode forward	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 65 °C	24	Α
current					

Table 12 Characteristic values

Parameter	neter Symbol Note or test condition			Values			Unit
				Min.	Тур.	Max.	
Forward voltage V_{SD} $I_{SD} = 75 \text{ A}, V_{GS} = -3 \text{ V}$ $T_{vj} = 25 \text{ °C}$		T _{vj} =25 °C		4.2	5.35	V	
			T _{vj} =125 °C		3.9		1
			T _{vj} =175 °C		3.8		1

6 NTC-Thermistor

Table 13 Characteristic values

Parameter	Symbol	Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC}$ = 100 °C, R_{100} = 493 Ω	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		К
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		К

Note: Specification according to the valid application note.

EasyPACK[™] module

7 Characteristics diagrams

7 Characteristics diagrams

Output characteristic (typical), MOSFET, T1 / T4

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET, T1 / T4

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Drain source on-resistance (typical), MOSFET, T1 / T4

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

Drain source on-resistance (typical), MOSFET, T1 / T4

 $R_{DS(on)} = f(T_{vi})$

 $I_D = 75 A$

EasyPACK[™] module

7 Characteristics diagrams

Output characteristic field (typical), MOSFET, T1 / T4

 $I_D = f(V_{DS})$

Transfer characteristic (typical), MOSFET, T1 / T4

 $I_D = f(V_{GS})$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET, T1 $\!\!\!/$ T4

 $V_{GS(th)} = f(T_{vj})$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET, T1 / T4

 $V_{GS} = f(Q_G)$

 $I_D = 75 A$, $T_{vi} = 25 °C$

EasyPACK[™] module

7 Characteristics diagrams

Capacity characteristic (typical), MOSFET, T1 / T4

 $C = f(V_{DS})$

 $f = 100 \text{ kHz}, T_{vi} = 25 \,^{\circ}\text{C}, V_{GS} = 0 \,^{\circ}\text{V}$

Forward characteristic body diode (typical), MOSFET, T1 / T4

 $I_{SD} = f(V_{SD})$

T_{vj} = 25 °C

Forward voltage of body diode (typical), MOSFET, T1 / T4

 $V_{SD} = f(T_{vj})$

 $I_{SD} = 75 \text{ A}$

Switching losses (typical), MOSFET, T1 / T4

 $E = f(I_D)$

 $R_{Goff} = 2.4 \Omega$, $R_{Gon} = 4.3 \Omega$, $V_{DS} = 400 V$, $V_{GS} = -3/18 V$

EasyPACK[™] module

7 Characteristics diagrams

Switching losses (typical), MOSFET, T1 $\!\!/$ T4

 $E = f(R_G)$

$$V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$$

Switching times (typical), MOSFET, T1 / T4

 $t = f(I_D)$

 R_{Goff} = 2.4 Ω , R_{Gon} = 4.3 Ω , V_{DS} = 400 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET, T1 / T4

 $t = f(R_G)$

$$V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, T_{vj} = 175 \,^{\circ}\text{C}, V_{GS} = -3/18 \text{ V}$$

Current slope (typical), MOSFET, T1 / T4

 $di/dt = f(R_G)$

 $V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$

EasyPACK[™] module

7 Characteristics diagrams

Voltage slope (typical), MOSFET, T1 / T4

$$dv/dt = f(R_G)$$

$$V_{DS}$$
 = 400 V, I_{D} = 75 A, V_{GS} = -3/18 V

Reverse bias safe operating area (RBSOA), MOSFET, T1/T4

$$I_D = f(V_{DS})$$

$$R_{Goff} = 2.4 \Omega, T_{vi} = 175 \, ^{\circ}C, V_{GS} = -3/18 \, V$$

Transient thermal impedance , MOSFET, T1 / T4

$Z_{th} = f(t)$

Output characteristic (typical), MOSFET, T2 / T3

$$I_D = f(V_{DS})$$

EasyPACK[™] module

7 Characteristics diagrams

Output characteristic (typical), MOSFET, T2 / T3

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Drain source on-resistance (typical), MOSFET, T2 / T3

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

Drain source on-resistance (typical), MOSFET, T2 / T3

 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = \mathsf{f}(\mathsf{T}_{\mathsf{v}\mathsf{j}})$

 $I_D = 75 A$

Output characteristic field (typical), MOSFET, T2 / T3

 $I_D = f(V_{DS})$

T_{vi} = 175 °C

EasyPACK[™] module

7 Characteristics diagrams

Transfer characteristic (typical), MOSFET, T2 / T3

$$I_D = f(V_{GS})$$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET, T2 /

$$V_{GS(th)} = f(T_{vj})$$

$$V_{GS} = V_{DS}$$

Gate charge characteristic (typical), MOSFET, T2 / T3

$$V_{GS} = f(Q_G)$$

$$I_D = 75 A$$
, $T_{vj} = 25 °C$

Capacity characteristic (typical), MOSFET, T2 / T3

$$C = f(V_{DS})$$

$$f = 100 \text{ kHz}$$
, $T_{vj} = 25 \,^{\circ}\text{C}$, $V_{GS} = 0 \,^{\circ}\text{V}$

EasyPACK[™] module

7 Characteristics diagrams

Forward characteristic body diode (typical), MOSFET, T2 / T3

 $I_{SD} = f(V_{SD})$ $T_{vj} = 25 \,^{\circ}C$

Forward voltage of body diode (typical), MOSFET, T2 /

$$V_{SD} = f(T_{vj})$$

$$I_{SD} = 75 \text{ A}$$

Switching losses (typical), MOSFET, T2 $\!\!\!/$ T3

 $E = f(I_D)$

$$R_{Goff}$$
 = 2.4 Ω , R_{Gon} = 4.3 Ω , V_{DS} = 400 V, V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T2 / T3

 $E = f(R_G)$

 $V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$

16

EasyPACK[™] module

7 Characteristics diagrams

Switching times (typical), MOSFET, T2 / T3

 $t = f(I_D)$

 R_{Goff} = 2.4 $\Omega,\,R_{Gon}$ = 4.3 $\Omega,\,V_{DS}$ = 400 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET, T2 / T3 $t = f(R_G)$

 $V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, T_{vi} = 175 \text{ °C}, V_{GS} = -3/18 \text{ V}$

Current slope (typical), MOSFET, T2 / T3

 $di/dt = f(R_G)$

 $V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$

Voltage slope (typical), MOSFET, T2 / T3

 $dv/dt = f(R_G)$

 $V_{DS} = 400 \text{ V}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$

EasyPACK[™] module

7 Characteristics diagrams

Reverse bias safe operating area (RBSOA), MOSFET, T2 / T3

 $I_D = f(V_{DS})$

$$R_{Goff} = 2.4 \Omega, T_{vj} = 175 \,^{\circ}\text{C}, V_{GS} = -3/18 \,^{\circ}\text{V}$$

Transient thermal impedance, MOSFET, T2 / T3 $Z_{th} = f(t)$

Temperature characteristic (typical), NTC-Thermistor

R=

f(T _N	тс)				(-)		,		
1	100000		— R _{typ}						
	10000								
R (Ω)	1000-				\				
	100								
	10 -	2	5 50) -	75	100	125	150	175

8 Circuit diagram

8 Circuit diagram

Figure 1

9 Package outlines

9 Package outlines

20

Figure 2

EasyPACK[™] module

10 Module label code

10 Module label code

Code format	Data Matrix		Barcode (Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1 - 5 6 - 11 12 - 19 20 - 21 22 - 23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			#6550549911530

Figure 3

EasyPACK[™] module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2022-02-23	Initial version
0.20	2022-06-01	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-06-01 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABC853-002

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.