UG

适用于上海先楫半导体 HPM6E00 系列高性能微控制器

HPM6E00_FUII_PORT

目录

641H H-34		_
第一章 ト	HPM6E00_FUII_PORT 简介	. 5
第二章	硬件电路	. 7
2.1 ₽	电路模块介绍········	. 7
	2.1.1 系统架构	. 7
	2.1.2 电源	. 7
	2.1.3 树莓派扩展 10 接口	. 7
	2.1.4 DEBUG 接口·····	. 8
	2.1.5 USB 接口······	. 8
	2.1.6 JTAG 接口······	-
	2.1.7 按键	
	2.1.8 LED	
	2.1.9 CAN 接口 ······	
	2.1.10 EtherCAT 端口······	. 9
	2.1.11 TSN 端口······	10
	2.1.12 SPI LCD 屏 ······	
	2.1.13 B00T 拨码开关设置	10
	软件开发套件 ······	
	简介	
3.2 ±	环境以及依赖·······	11
3.3 7	开发工具······	11
3.4 s	dk_env/Segger Embedded Studio For RISC-V 使用快速指南	11
	版本信息······	
第四章 5	免责声明	23

HPM6E00

HPM6E00_FUII_PORT

表格目录

表	1:	主要器件位号对应器件功能名称	6
表	2:	P1连接器列表	8
表	3:	JTAG接口	9
表	4:	启动配置表1	0
表	5:	版本信息2	2

目录

图片目录

冬	1:	顶层器件位置图	5
冬	2:	底层器件位置图	5
冬	3:	HPM6E00_FUII_P0RT硬件设计框图	. 7
冬	4:	设备管理器中查看端口号	. 8
冬	5:	安装 FTDI 驱动	. 11
冬	6:	查看 Windows 设备管理器	. 12
冬	7:	sdk_env创建工程方式	. 12
冬	8:	打开 sdk prompt	. 13
冬	9:	构建目标板工程	. 14
冬		构建目标板 flash_xip 工程	
冬	11:	generate_project 帮助	. 15
冬	12:	Segger Embedded Studio dynamic_mac_switch 工程	. 15
冬		Segger Embedded Studio 打开dynamic_mac_switch 工程	
冬	14:	Segger Embedded Studio 编译 dynamic_mac_switch 工程	. 16
冬		Segger Embedded Studio 修改GDB server配置	
冬		Segger Embedded Studio 调试 dynamic_mac_switch 工程	
冬		Segger Embedded Studio 配置串口	
冬		Segger Embedded Studio 连接串口	
冬		Segger Embedded Studio 打开串口	
冬	20:	Segger Embedded Studio 运行 dynamic_mac_switch	. 19
冬		start_gui 工具	
冬	22:	GUI project generator工具操作界面	. 21
冬	23.	dynamic mac switch 丁程	21

第一章 HPM6E00_FUII_PORT简介

HPM6E00_FUII_PORT板的顶层器件位置如图 1所示,底层器件位置如图 2所示。表 1给出了器件位置对应器件的名称。

图 1: 顶层器件位置图

图 2: 底层器件位置图

序号	名称	序号	名称
1	RJ45	2	百兆网口变压器
3	EtherCAT PHY	4	RJ45
5	百兆网口变压器	6	EtherCAT PHY
7	RJ45	8	百兆网口变压器

PM6E00_	_FUII_PORT			第一章 简介

9	EtherCAT PHY	10	超级电容器
11	拨码开关	12	JTAG DEBUG接口
13	树莓派接口	14	SPI LCD屏
15	HPM6E801VM1	16	NorFlash
17	TSN PHY	18	千兆网口变压器
19	RJ45	20	TSN PHY
21	千兆网口变压器	22	RJ45
23	TSN PHY	24	千兆网口变压器
25	RJ45	26	CAN芯片
27	CAN7接口	28	CAN芯片
29	CAN6接口	30	CAN芯片
31	CAN5接口	32	CAN芯片
33	CAN4接口	34	CAN芯片
35	CAN3接口	36	CAN芯片
37	CAN2接口	38	CAN芯片
39	CAN1接口	40	CAN芯片
41	CAN0接口	42	用户按键
43	用户按键	44	用户按键
45	用户按键	46	WAKEUP 按键
47	RESET按键	48	BOOT 拨码开关
49	USB Type-C 接口	50	USB Type-C DEBUG 接口
51	LCD屏接口		

表 1: 主要器件位号对应器件功能名称

第二章 硬件电路

HPM6E00_FUII_PORT电源输入由Debug Type-C接口或者USB Type-C提供,供电不能超过 5.5V,防止过压导致 板上器件损坏。I/O 接口是 3.3V 电平,如外接其他设备,需确保电平匹配,如不匹配可能导致不能正常工作或损坏芯片。

2.1 电路模块介绍

2.1.1 系统架构

HPM6E00 FUII PORT系统架构如图 3所示。

图 3: HPM6E00_FUII_PORT硬件设计框图

2.1.2 电源

HPM6E00_FUII_PORT具有两种供电方式,可以选择Debug USB Type-C 或 USBO OTG Type-C接口来为整板供电。

2.1.3 树莓派扩展 10 接口

HPM6E00_FUII_PORT板载一排扩展 IO, 即排针 P1。接口机械尺寸与RASPBERRY-PI兼容。接口信号列表如

0

引脚名	功能名	连接器编号		功能名	引脚名
	3. 3V	1	2	5. 0V	
PF22	SDA1	3	4	5. 0V	
PF23	SCL1	5	6	GND	
	GP107	7	8	TXD	PF16
	GND	9	10	RXD	PF17
	GP100	11	12	GP101	PF19

PY0	GP102	13	14	GND	
PY1	GP103	15	16	GP104	PF24
	3. 3V	17	18	GP105	PF31
PY7	MOSI	19	20	GND	
PY6	MISO	21	22	GP106	PA22
PY4	SCLK	23	24	CE0	PY5
	GND	25	26	CE1	
PY3	SDA0	27	28	SCL0	PY2
	GP1021	29	30	GND	
	GP1022	31	32	GP1026	
PZ0	GP1023	33	34	GND	
PZ1	GP1024	35	36	GP1027	PZ3
PZ2	GP1025	37	38	GP1028	PZ4
	GND	39	40	GP1029	PZ5

表 2: P1连接器列表

注: P1机械尺寸和管脚功能与RASPBERRY-PI兼容,用户如果想驱动RASPBERRY-PI扩展板时请先查看扩展板与P1管脚功能是否能够匹配,确认功能无误后就可以开启自己的DIY之旅了。

2.1.4 DEBUG接口

J3是 HPM6E00_FUII_PORT 板上的 USB转Uart接口,连接器类型是 Type-C,通过U9 CH340E芯片连接MCU Uart0接口。注意:使用该接口时需要安装CH340驱动,安装完成后连接到PC时在设备管理器中可以看到端口号,如图 4所示:

图 4: 设备管理器中查看端口号

2.1.5 USB 接口

J2 是 HPM6E00_FUII_PORT板上的 USB0 接口,连接器类型是 Type-C。支持 USB 2.0 OTG。同时支持USB串行启动和ISP,即通过USB给芯片下载bin文件,下载工具通过官网获取。

2.1.6 JTAG接口

HPM6E00_FUII_PORT提供20Pin牛角插座JTAG接口(CN1)连接芯片的DEBUG口, 引脚分布如表 3所示。

功能	物理管脚		功能
VREF	1	2	VREF
TRST	3	4	GND
TDI	5	6	GND
TMS	7	8	GND
TCK	9	10	GND
NC	11	12	GND
TD0	13	14	GND
NC	15	16	GND
NC	17	18	GND
NC	19	20	GND

表 3: JTAG接口

2.1.7 按键

HPM6E00_FUII_PORT板载六个按键,2个拨码开关。SW3为RESET 按键,SW3为WAKEUP 按键,SW4、SW5、SW6、SW7均为USER 按键,SW6为B00T拨码开关,SW1为ETHERCAT直驱输入数字10拨码开关。

USER KEY连接主控PE2、PE5、PE6、PE7,默认上拉,用户可以使用该按键做功能实现。RESET 用于芯片硬件复位,拉低有效。WAKEUP按键用于唤醒芯片,该按键连接到芯片的wakeup管脚,专用于芯片唤醒,默认下拉,高电平有效。即芯片通过程序休眠后,按住按键,保持高电平一段时间(24M 8个clk)后唤醒。更多WAKEUP的使用请参考HPM6E00用户手册。

2.1.8 LED

HPM6E00_FUII_PORT 板载 LED 功能如下。其中, LED19为电源指示灯, LED22、LED23为USER 灯, LED24、LED25、LED26、LED27、LED28、LED29、LED30、LED31为CAN工作状态指示灯, LED6、LED7、LED8、LED9、LED10、LED11、LED12、LED13、LED14、LED15、LED16、LED17、LED18为EtherCAT直驱输出指示灯。

2.1.9 CAN 接口

J5、J6、J7、J8、J9、J10、J11、J12 是 HPM6E00_FUII_PORT板上的 CAN 接口,该接口使用3.81间距接插件,方便用户使用CAN 功能,其中CAN芯片选用TJA1042T/3。

2.1.10 EtherCAT 端口

HPM6E00_FUII_PORT提供三个 EtherCAT 端口,其中PO为输入端口, HPM6E00_FUII_PORT 使用 3颗 PHY芯片(JL1111)通过MII接口连接MCU,支持百兆,提供EtherCAT功能。同时,EtherCAT部分,搭载一颗I2C接口EEPROM,用于存储EtherCAT信息。

2.1.11 TSN 端口

HPM6E00_FUII_PORT提供三个 TSN 端口, HPM6E00_FUII_PORT 使用3颗PHY(YT8531C)芯片通过RGMII接口与MCU相连,各端口支持1000/100/10M。

2.1.12 SPI LCD屏

HPM6E00_FUII_PORT板载SPI LCD屏(J4),支持172x320像素。屏幕与板子通过8pin FPC线连接,或者,通过12PIN 屏幕排线直接焊接到板子上。默认为FPC线连接。

2.1.13 BOOT 拨码开关设置

芯片默认是通过 拨码开关设置对应 BOOT_MODE[1:0]=[PAO3:PAO2] 引脚选择启动模式,配置如表 4所示。

拨码开关 [1:0]		启动模式	说明	
0FF	0FF	XPI NOR FLASH 启动 从连接在 XPI0上的串行 NOR		
			FLASH 启动(芯片内部自带FLASH)	
0FF	ON	在系统编程(ISP)/串行启动	从 UARTO/USBO 上烧写固件, OTP. 或 从UARTO/USBO启动	
ON	0FF	在系统编程(ISP)/串行启动	从 UARTO/USBO 上烧写固件,0TP. 或 从UARTO/USBO启动	
ON	ON	保留模式	保留模式	

表 4: 启动配置表

第三章 软件开发套件

3.1 简介

HPM SDK(HPM 软件开发套件,以下简称 SDK)是基于 BSD 3-Clause 许可证,针对 HPM 出品的系列SoC 底层驱动软件包,提供了 SoC 上所集成 IP 模块底层驱动代码,集成多种中间件与 RTOS。

3.2 环境以及依赖

- 使用 sdk_env 工具。
- 手工搭建 SDK 开发环境, 具体参考请参考 SDK 目录下 README. md 文件。

3.3 开发工具

SDK 支持第三方 IDE 开发,如 Segger Embedded Studio For RISC-V,该 IDE 可以在Segger 官网下载下载最新版本。先楫半导体为开发者购买了商业的license,用户可以通过邮件的方式,在Segger官网申请license。

3.4 sdk_env/Segger Embedded Studio For RISC-V 使用快速指南

- 1. 下载安装 Segger Embedded Studio, 版本号为 8.10
- 2. 下载最新版本 sdk_env_vx. x. x. zip 压缩包后解压(本文 sdk_env_v1. 6. 0 为例) 注:解压目标路径中只可包含英文字母以及下划线,不可包含空格、中文等字符。
- 3. 运行 sdk_env_v1.6.0\tools\FTDI_InstallDriver.exe 以安装可用于调试的 FT2232 驱动。

图 5: 安装 FTDI 驱动

HPM6E00_FUII_PORT

正确安装驱动后,使用 USB Type-C 线缆将 HPM6E00_FUII_PORT上的 J3 连接到 PC 后,在 Windows 设备管理器中应能看到一个 USB Serial Port 以及一个 Dual RS232-HS (Interface 0), 如图 6所示:

图 6: 查看 Windows 设备管理器

1. sdk_env目录下有两种创建工程的方式,即命令行工具和GUI Project Generator工具,用户可根据自己的喜好选择适合自己的方式。

图 7: sdk_env创建工程方式

以命令行工具为例,双击打开 sdk_env_v1. 6. 0下 start_cmd. cmd, 该脚本将打开一个 Windows command 12 / 23

prompt (以下将此 Windows cmd prompt 简称为 sdk prompt),如果之前步骤配置正确,将会看到8 所示

图 8: 打开 sdk prompt

- 2. 在 sdk prompt 中切换路径至 SDK 具体的一个示例程序,以 tsn_dynamic_mac_switch 为例。
 > cd SDK\sdk_env_v1.6.0\hpm_apps\customer\full_port\software\apps\tsn_simplest_switch
- 3. 运行以下命令进行支持目标板查询。
 - > generate_project -list
- 4. 确认目标板名称后(以 HPM6E00_FUII_PORT为例)可以通过运行以下命令进行工程构建,若构建成功,将看到如下类似提示。
 - $> {\tt generate_project -x F:\SDK\sdk_env_v1.\,6.\,0\hpm_apps\boards -b hpm6e00_full_port}$

图 9: 构建目标板工程

注: generate_project 可以生成多种工程类型,如:flash_xip(链接完成后的应用程序将会在flash 地址空间原地执行),debug(链接完成后的应用程序将会在片上sram中执行,掉电后程序不能保存)等。

图 10:构建目标板 flash_xip 工程

注: 当调试 flash 目标时,建议把启动配置(具体请参考表 4)拨为在系统编程(ISP)模式,以免 flash 内已烧录的程序对当前调试过程产生影响。

注: 更多 generate_project 使用方法可以通过执行以下命令查看。

> generate project -h

```
F:\SDK\sdk_env_v1.6.0>generate_project -h
generate_project [-f] [-b board] [-x board_search_path] [-a] [-list] [-h]
-f: force clean already existed build directory
-b board: specify board for project generation
-x board_search_path: specify board search path for project generation
-a: generate projects for all supported boards
-list: list all supported boards
-list: list all supported boards
-t type: specify build type
-h: show this text

Here're supported build types:
- release
- debug
- flash_xip
- flash_xip-release
- flash_sdram_xip
- flash_sdram_xip-release
- flash_uf2
- flash_uf2-release
- flash_uf2-release
- flash_sdram_uf2
- flash_sdram_uf2-release
- sec_core_img
- sec_core_img_release

F:\SDK\sdk_env_v1.6.0>
```

图 11: generate_project 帮助

5. 当前目录下将生成名为 HPM6E00_FUII_PORT_build 的目录。该目录下 segger_embedded_studio 的目录中可找到 Segger Embedded Studio 的工程文件dynamic_mac_switch.emProject,双击可打开该工程。

图 12: Segger Embedded Studio dynamic_mac_switch 工程

图 13: Segger Embedded Studio 打开dynamic_mac_switch 工程

6. 使用 Segger Embedded Studio 打开 dynamic_mac_switch 工程即可进行编译。

图 14: Segger Embedded Studio 编译 dynamic_mac_switch 工程

7. 编译完成后右击工程,选择"Options",在左侧栏"Debug"下选择GDB Server,在GDB Server Command Line中修改为如下所示配置。

Note: cmsis_dap.cfg只针对cmsis-dap调试器,其他调试请按照《HPM6E00EVK用户使用手册》中描述修改相应的配置文件。

图 15: Segger Embedded Studio 修改GDB server配置

8. 使用 Segger Embedded Studio 进行 dynamic_mac_switch 调试。

图 16: Segger Embedded Studio 调试 dynamic_mac_switch 工程

9. 在 Segger Embedded Studio 中配置串口。

图 17: Segger Embedded Studio 配置串口

10. 在 Segger Embedded Studio 中连接串口。

图 18: Segger Embedded Studio 连接串口

HPM6E00 FUII PORT

11. 在 Segger Embedded Studio 中打开串口。

图 19: Segger Embedded Studio 打开串口

12. 运行 dynamic_mac_switch。

图 20: Segger Embedded Studio 运行 dynamic_mac_switch

13. sdk_env提供了GUI project generator工具,用户亦可使用该工具生成工程。

SDK > sdk_env_v1.6.0			∨ ひ 在s
名称	修改日期	类型	大小
[™] doc	2024/6/28 8:09	文件夹	
hpm_apps	2024/8/5 13:45	文件夹	
hpm_sdk	2024/8/2 10:05	文件夹	
📙 toolchains	2024/6/28 8:09	文件夹	
La tools	2024/6/28 8:09	文件夹	
CHANGELOG.md	2024/6/12 14:33	Markdown 源文件	3 KB
🗓 cmd_params.yaml	2024/8/5 13:47	Yaml 源文件	1 KB
generate_all_ses_projects.cmd	2024/2/29 20:56	Windows 命令脚本	3 KB
README.md	2024/6/24 21:10	Markdown 源文件	9 KB
README_zh.md	2024/6/24 21:10	Markdown 源文件	8 KB
start_cmd.cmd	2024/2/29 20:56	Windows 命令脚本	6 KB
■ start_gui.exe	2024/2/29 20:56	应用程序	95 KB

图 21: start_gui 工具

- 14. 双击打开start_gui
- 15. 在GUI project generator界面中:
- 1、使能User Board Path
- 2、找到BOARD所在的路径
- 3、在"BOARDS"下拉列表中选"择"hpm6e00_full_port"
- 4、使能User Application Path
- 5、 找到程序所在的路径
- 6、 在 "SAMPLES" 下拉列表中选择 "dynamic_mac_switch"
- 7、点击"Generate Project"按钮,即可生成 flash_xip 类型的 "dynamic_mac_switch",工程
- 8、点击"Open with IDE"即可打开"dynamic_mac_switch"工程

图 22: GUI project generator工具操作界面

图 23: dynamic mac switch 工程

3.5 版本信息

日期	版本	描述
Rev1. 0	2024/08/05	初版发布。

表 5: 版本信息

第四章 免责声明

上海先楫半导体科技有限公司(以下简称:"先楫")保留随时更改、更正、增强、修改先楫半导体产品和/或本文档的权利, 恕不另行通知。用户可在先楫官方网站 https://www.hpmicro.com 获取最新相关信息。

本声明中的信息取代并替换先前版本中声明的信息。