

Adjoint-based derivative evaluation methods for flexible multibody systems with rotorcraft applications

Komahan Boopathy and Graeme J. Kennedy Georgia Tech

Motivation

Modeling Flexiblity

- ► Advanced lightweight materials enable more flexible aerospace structures
- Essential to model inertial loads and flexibility

Motivation

Modeling Flexiblity

- Advanced lightweight materials enable more flexible aerospace structures
- Essential to model inertial loads and flexibility

Our Goal

- Aero/elastic/dynamic rotorcraft simulations
- High-fidelity gradient-based optimization
- Parallel scalability is critical

Motivation

Modeling Flexiblity

- Advanced lightweight materials enable more flexible aerospace structures
- Essential to model inertial loads and flexibility

Our Goa

- ► Aero/elastic/dynamic rotorcraft simulations
- High-fidelity gradient-based optimization
- Parallel scalability is critical

Current Focus

- Analysis and adjoint derivative capabilities for flexible multibody systems
- Enhance Toolkit for the Analysis of Composite Structures (TACS)
- TACS interfaces with FUN3D via FUNtoFEM

Some Dynamic Simulations in TACS

Equations of Motion $R(\ddot{q}, \dot{q}, q, x, t) = 0$

Dynamics, Kinematics and Constraints

- ▶ Implicit function of state and design variables
- Leads to a descriptor system of Differential-Algebraic Equations (DAEs)
- Example: $R = M\ddot{q} + C\dot{q} + Kq \mathcal{F}(t) = 0$

Equations of Motion $R(\ddot{q}, \dot{q}, q, x, t) = 0$

Dynamics, Kinematics and Constraints

- ▶ Implicit function of state and design variables
- Leads to a descriptor system of Differential-Algebraic Equations (DAEs)
- Example: $R = M\ddot{q} + C\dot{q} + Kq \mathcal{F}(t) = 0$

State Vector

- position variables
- rotational parametrization
- Lagrange multipliers

Equations of Motion $R(\ddot{q}, \dot{q}, q, x, t) = 0$

Dynamics, Kinematics and Constraints

- ► Implicit function of state and design variables
- Leads to a descriptor system of Differential-Algebraic Equations (DAEs)
- Example: $R = M\ddot{q} + C\dot{q} + Kq \mathcal{F}(t) = 0$

State Vector

- position variables
- rotational parametrization
- Lagrange multipliers

Natural vs. State-Space Form

We solve as second-order equations

- No state-space conversions
- Simpler adjoint developments
- Preserve the physical meaning of quantities

Solving the Coupled Flexible Multibody System

Time Marching Schemes

TACS supports different time integration schemes

- Backward Difference Formulas (BDF)
- 2. Adams-Bashforth-Moulton (ABM)
- 3. Diagonally Implicit Runge-Kutta (DIRK)
- 4. Newmark

Solving the Coupled Flexible Multibody System

Time Marching Schemes

TACS supports different time integration schemes

- 1. Backward Difference Formulas (BDF
- 2. Adams-Bashforth-Moulton (ABM)
- 3. Diagonally Implicit Runge-Kutta (DIRK)
- 4. Newmark

Key issues

- Multistep methods are not self-starting
- Multistage methods require more computations

multi-step-stage.pdf

Solving the Coupled Flexible Multibody System

Time Marching Schemes

TACS supports different time integration schemes

- 1. Backward Difference Formulas (BDF
- 2. Adams-Bashforth-Moulton (ABM)
- 3. Diagonally Implicit Runge-Kutta (DIRK)
- 4. Newmark

Key issues

- Multistep methods are not self-starting
- Multistage methods require more computations

Forward Solution Mode

- ► March from the initial conditions q₀, q̇₀
- Find state variables $\ddot{q}_k, \dot{q}_k, q_k$
- Newton's method based on linearization of governing equations

multi-step-stage.pdf

Time Marching: Matrix Structure

Banded lower triangular system solve to for state updates

$\frac{\partial \mathbf{R}_k}{\partial \ddot{\mathbf{q}}_k}$]	$\left[\begin{array}{c} \Delta \ddot{\mathbf{q}}_k \end{array} \right]$		R_k	
$\frac{\partial S_k}{\partial \ddot{q}_k}$	$rac{\partial \mathbf{S}_k}{\partial \dot{\mathbf{q}}_k}$								$\Delta \dot{\mathbf{q}}_k$		S _k	
$\frac{\partial T_k}{\partial \ddot{q}_k}$	$rac{\partial T_k}{\partial \dot{q}_k}$	$rac{\partial T_k}{\partial q_k}$							$\Delta \mathbf{q}_k$		T_k	
$\frac{\partial R_{k+1}}{\partial \ddot{q}_k}$	$\frac{\partial R_{k+1}}{\partial \dot{q}_k}$	$\frac{\partial R_{k+1}}{\partial q_k}$	$\frac{\partial R_{k+1}}{\partial \ddot{q}_{k+1}}$						$\Delta \ddot{\mathbf{q}}_{k+1}$		R_{k+1}	
$\frac{\partial \mathbf{S}_{k+1}}{\partial \ddot{\mathbf{q}}_k}$	$rac{\partial S_{k+1}}{\partial \dot{q}_k}$	$\frac{\partial S_{k+1}}{\partial q_k}$	$\frac{\partial S_{k+1}}{\partial \ddot{q}_{k+1}}$	$\frac{\partial S_{k+1}}{\partial \dot{q}_{k+1}}$					$\Delta\dot{\mathbf{q}}_{k+1}$	= -	S_{k+1}	
$\frac{\partial T_{k+1}}{\partial \ddot{q}_k}$	$\frac{\partial \mathbf{T}_{k+1}}{\partial \dot{\mathbf{q}}_k}$	$\frac{\partial \mathbf{T}_{k+1}}{\partial \mathbf{q}_k}$	$\frac{\partial T_{k+1}}{\partial \ddot{q}_{k+1}}$	$rac{\partial T_{k+1}}{\partial \dot{q}_{k+1}}$	$\frac{\partial \mathbf{T}_{k+1}}{\partial \mathbf{q}_{k+1}}$				$\Delta \mathbf{q}_{k+1}$		T_{k+1}	
$\frac{\partial \mathbf{R}_{k+2}}{\partial \ddot{\mathbf{q}}_k}$	$\frac{\partial R_{k+2}}{\partial \dot{q}_k}$	$\frac{\partial R_{k+2}}{\partial q_k}$	$\frac{\partial R_{k+2}}{\partial \ddot{q}_{k+1}}$	$\frac{\partial R_{k+2}}{\partial \dot{q}_{k+1}}$	$\frac{\partial R_{k+2}}{\partial q_{k+1}}$	$\frac{\partial R_{k+2}}{\partial \ddot{q}_{k+2}}$			$\Delta \ddot{\mathbf{q}}_{k+2}$		R_{k+2}	
$\frac{\partial S_{k+2}}{\partial \ddot{q}_k}$	$rac{\partial S_{k+2}}{\partial \dot{q}_k}$	$\frac{\partial S_{k+2}}{\partial q_k}$	$rac{\partial \mathbf{S}_{k+2}}{\partial \ddot{\mathbf{q}}_{k+1}}$	$rac{\partial \mathbf{S}_{k+2}}{\partial \dot{\mathbf{q}}_{k+1}}$	$\frac{\partial S_{k+2}}{\partial q_{k+1}}$	$\frac{\partial S_{k+2}}{\partial \ddot{q}_{k+2}}$	$rac{\partial \mathbf{S}_{k+2}}{\partial \dot{\mathbf{q}}_{k+2}}$				S _{k+2}	
$\frac{\partial T_{k+2}}{\partial \ddot{q}_k}$	$rac{\partial T_{k+2}}{\partial \dot{q}_k}$	$\frac{\partial \mathbf{T}_{k+2}}{\partial \mathbf{q}_k}$	$\frac{\partial T_{k+2}}{\partial \ddot{q}_{k+1}}$	$\frac{\partial T_{k+2}}{\partial \dot{q}_{k+1}}$	$\frac{\partial T_{k+2}}{\partial q_{k+1}}$	$\frac{\partial \mathbf{T}_{k+2}}{\partial \ddot{\mathbf{q}}_{k+2}}$	$\frac{\partial T_{k+2}}{\partial \dot{q}_{k+2}}$	$\frac{\partial T_{k+2}}{\partial q_{k+2}} \rfloor$	Δq_{k+2}		T_{k+2}	

Representation of Functionals

Objective Function

Functionals that are an integral in time and dependent on the state and design variables:

$$f(\mathsf{x}) = \int_0^T F(\ddot{\mathsf{q}}, \dot{\mathsf{q}}, \mathsf{q}, \mathsf{x}, t) \ dt \approx \sum_{k=0}^N h \mathsf{F}_k(\ddot{\mathsf{q}}, \dot{\mathsf{q}}, \mathsf{q}, \mathsf{x}, t_k)$$

- Aggregation functionals such as p-norm and Kreisselmeier-Steinhauser (KS) provide smooth approximations
- Maximum value of the quantity of interest over the time interval [0, T]
- Other possibilities for functionals exist too

Adjoint Derivatives

Formation of the Lagrangian

Introduce λ_k , ψ_k and ϕ_k as the adjoint variables:

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T R_k + \sum_{k=0}^{N} \psi_k^T S_k + \sum_{k=0}^{N} \phi_k^T T_k$$

- \blacktriangleright Find adjoint variables $\lambda,\,\psi$ and ϕ
- ► Use $\frac{\partial \mathcal{L}}{\partial \ddot{q}_k}$, $\frac{\partial \mathcal{L}}{\partial \dot{q}_k}$, $\frac{\partial \mathcal{L}}{\partial q_k} = 0$
- Linear solve for each functional

Total Derivative

$$\frac{df(x)}{dx} = \sum_{k=0}^{N} h \frac{\partial F_k}{\partial x} + \sum_{k=0}^{N} h \lambda_k^T \frac{\partial R_k}{\partial x} + \sum_{k=0}^{N} \psi_k^T \frac{\partial S_k}{\partial x} + \sum_{k=0}^{N} \phi_k^T \frac{\partial T_k}{\partial x}$$

Discrete Adjoint: Matrix Structure

Banded upper triangular system with transposed Jacobian to solve for adjoint variables

$$\begin{bmatrix} \frac{\partial R_k^T}{\partial \ddot{q}_k} & \frac{\partial S_k^T}{\partial \ddot{q}_k} & \frac{\partial T_k^T}{\partial \ddot{q}_k} & \frac{\partial R_{k+1}^T}{\partial \ddot{q}_k} & \frac{\partial T_{k+1}^T}{\partial \ddot{q}_k} & \frac{\partial R_{k+2}^T}{\partial \ddot{q}_k} & \frac{\partial S_{k+2}^T}{\partial \ddot{q}_k} & \frac{\partial T_{k+2}^T}{\partial \ddot{q}_k} \\ \frac{\partial S_k^T}{\partial \dot{q}_k} & \frac{\partial T_k^T}{\partial \dot{q}_k} & \frac{\partial R_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial S_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial T_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial R_{k+2}^T}{\partial \dot{q}_k} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_k} & \frac{\partial T_{k+2}^T}{\partial \ddot{q}_k} \\ \frac{\partial T_k^T}{\partial \dot{q}_k} & \frac{\partial R_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial S_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial T_{k+1}^T}{\partial \dot{q}_k} & \frac{\partial R_{k+2}^T}{\partial \dot{q}_k} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_k} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_k} \\ \frac{\partial R_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial R_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial S_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial R_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial S_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial R_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial F_{k+1}^T}{\partial \dot{q}_{k+1}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial S_{k+2}^T}{\partial \dot{q}_{k+1}} & \frac{\partial T_{k+2}^T}{\partial \dot{q}_{k+1}} \\ \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} \\ \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} \\ \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} \\ \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} \\ \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{q}_{k+2}} & \frac{\partial F_{k+2}^T}{\partial \dot{$$

Time Marching: Newmark Beta Gamma (NBG)

- ▶ Linear single step method
- ightharpoonup eta and γ are the coefficients of Newmark scheme
- ightharpoonup Second time derivative of states, \ddot{q}_k , are the primary unknowns

Time Marching: Newmark Beta Gamma (NBG)

- ► Linear single step method
- \triangleright β and γ are the coefficients of Newmark scheme
- \triangleright Second time derivative of states, \ddot{q}_k , are the primary unknowns

First time derivative of states:

$$\dot{\mathbf{q}}_k = \dot{\mathbf{q}}_{k-1} + (1 - \gamma)h\ddot{\mathbf{q}}_{k-1} + \gamma h\ddot{\mathbf{q}}_k + \mathcal{O}(h^p)$$

State variables:

$$q_k = q_{k-1} + h\dot{q}_{k-1} + \frac{1-2\beta}{2}h^2\ddot{q}_{k-1} + \beta h^2\ddot{q}_k + \mathcal{O}(h^p)$$

Time Marching: Newmark Beta Gamma (NBG)

- Linear single step method
- \triangleright β and γ are the coefficients of Newmark scheme
- \triangleright Second time derivative of states, \ddot{q}_k , are the primary unknowns

First time derivative of states:

$$\dot{\mathbf{q}}_k = \dot{\mathbf{q}}_{k-1} + (1-\gamma)h\ddot{\mathbf{q}}_{k-1} + \gamma h\ddot{\mathbf{q}}_k + \mathcal{O}(h^p)$$

State variables:

$$\mathsf{q}_k = \mathsf{q}_{k-1} + h \dot{\mathsf{q}}_{k-1} + rac{1-2eta}{2} h^2 \ddot{\mathsf{q}}_{k-1} + eta h^2 \ddot{\mathsf{q}}_k + \mathcal{O}(h^p)$$

▶ Solve implicit system each step $\left[\frac{\partial \mathsf{R}_k}{\partial \ddot{\mathsf{q}}} + \gamma h \frac{\partial \mathsf{R}_k}{\partial \dot{\mathsf{q}}} + \beta h^2 \frac{\partial \mathsf{R}_k}{\partial \mathsf{q}}\right] \Delta \ddot{\mathsf{q}}_k = -\mathsf{R}_k$

Formation of the Lagrangian

- ► S and T are the state approximation equations
- ► The residual R and the function F have same mathematical form
- The Lagrangian is a linear combination of equations

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathbf{R}_k + \sum_{k=0}^{N} \boldsymbol{\psi}_k^T \mathbf{S}_k + \sum_{k=0}^{N} \boldsymbol{\phi}_k^T \mathbf{T}_k$$

Formation of the Lagrangian

- ► S and T are the state approximation equations
- ► The residual R and the function F have same mathematical form
- ► The Lagrangian is a linear combination of equations

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathbf{R}_k + \sum_{k=0}^{N} \psi_k^T \mathbf{S}_k + \sum_{k=0}^{N} \phi_k^T \mathbf{T}_k$$

Find the adjoint variables

- Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$
- Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$
- Solve for λ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

Total derivative

- ► S and T are the state approximation equations
- ► The residual R and the function F have same mathematical form
- ► The Lagrangian is a linear combination of equations

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T R_k + \sum_{k=0}^{N} \psi_k^T S_k + \sum_{k=0}^{N} \phi_k^T T_k$$

Find the adjoint variables

- Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$
- Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$
- ► Solve for λ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \sum_{k=0}^{N} h \frac{\partial F_k}{\partial \mathbf{x}} + \sum_{k=0}^{N} h \lambda_k^T \frac{\partial R_k}{\partial \mathbf{x}} + \sum_{k=0}^{N} \psi_k^T \frac{\partial S_k}{\partial \mathbf{x}} + \sum_{k=0}^{N} \psi_k^T \frac{\partial T_k}{\partial \mathbf{x}}$$

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathsf{R}_k + \sum_{k=0}^{N} \psi_k^T \mathsf{S}_k + \sum_{k=0}^{N} \phi_k^T \mathsf{T}_k$$

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} \phi_k &= \phi_{k+1} \\ &+ h \left[\frac{\partial \mathbf{R}_{k+1}}{\partial \mathbf{q}_{k+1}} \right]^T \lambda_{k+1} \\ &+ h \left\{ \frac{\partial F_{k+1}}{\partial \mathbf{q}_{k+1}} \right\}^T \end{split}$$

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^{\mathsf{T}} \mathsf{R}_k + \sum_{k=0}^{N} \psi_k^{\mathsf{T}} \mathsf{S}_k + \sum_{k=0}^{N} \phi_k^{\mathsf{T}} \mathsf{T}_k$$

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} \phi_k &= \phi_{k+1} \\ &+ h \left[\frac{\partial \mathbf{R}_{k+1}}{\partial \mathbf{q}_{k+1}} \right]^T \lambda_{k+1} \\ &+ h \left\{ \frac{\partial F_{k+1}}{\partial \mathbf{q}_{k+1}} \right\}^T \end{split}$$

Four q_k

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T R_k + \sum_{k=0}^{N} \psi_k^T S_k + \sum_{k=0}^{N} \phi_k^T T_k$$

$$\begin{matrix} q_{k+1} \\ q_k \end{matrix} \qquad \begin{matrix} q_{k+1} \\ q_k \end{matrix} \qquad q_k \end{matrix} \qquad \begin{matrix} q_{k+1} \\ q_k \end{matrix} \qquad \begin{matrix} q_{k+1} \\ q_k \end{matrix} \qquad q_k \end{matrix} \qquad \begin{matrix} q_{k+$$

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} \phi_k &= \phi_{k+1} \\ &+ h \left[\frac{\partial \mathsf{R}_{k+1}}{\partial \mathsf{q}_{k+1}} \right]^T \lambda_{k+1} \\ &+ h \left\{ \frac{\partial F_{k+1}}{\partial \mathsf{q}_{k+1}} \right\}^T \end{split}$$

Four q_k

$$\frac{\partial \mathsf{T}_k}{\partial \mathsf{q}_k} = -\mathsf{I},$$

$$\frac{\partial T_{k+1}}{\partial a_k} = I$$

$$\frac{\partial R_{k+1}}{\partial q_{k+1}} \rightarrow \text{stiffness matrix,}$$

$$\frac{\partial F_{k+1}}{\partial g_{k+1}} \rightarrow \text{depends on the function}$$

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathbf{R}_k + \sum_{k=0}^{N} \psi_k^T \mathbf{S}_k + \sum_{k=0}^{N} \phi_k^T \mathbf{T}_k$$

Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{\mathbf{q}}_k = \mathbf{0}$

$$\begin{split} \psi_k &= \psi_{k+1} \\ &+ h \phi_{k+1} \\ &+ h \left[\frac{\partial R_{k+1}}{\partial \dot{q}_{k+1}} + h \frac{\partial R_{k+1}}{\partial q_{k+1}} \right]^T \lambda_{k+1} \\ &+ h \left\{ \frac{\partial F_{k+1}}{\partial \dot{q}_{k+1}} + h \frac{\partial F_{k+1}}{\partial q_{k+1}} \right\}^T \end{split}$$

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathbf{R}_k + \sum_{k=0}^{N} \psi_k^T \mathbf{S}_k + \sum_{k=0}^{N} \phi_k^T \mathbf{T}_k$$

Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$

$$\begin{split} \psi_k &= \psi_{k+1} \\ &+ h \phi_{k+1} \\ &+ h \left[\frac{\partial \mathbf{R}_{k+1}}{\partial \dot{\mathbf{q}}_{k+1}} + h \frac{\partial \mathbf{R}_{k+1}}{\partial \mathbf{q}_{k+1}} \right]^T \lambda_{k+1} \\ &+ h \left\{ \frac{\partial F_{k+1}}{\partial \dot{\mathbf{q}}_{k+1}} + h \frac{\partial F_{k+1}}{\partial \mathbf{q}_{k+1}} \right\}^T \end{split}$$

Seven \dot{q}_k

$$\frac{\partial S_k}{\partial q_k} = -I \text{ and } \frac{\partial S_{k+1}}{\partial q_k} = I$$

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T R_k + \sum_{k=0}^{N} \psi_k^T S_k + \sum_{k=0}^{N} \phi_k^T T_k$$

$$\begin{array}{c} R_k \\ \ddot{q}_k \\ \ddot{q}_k \\ \ddot{q}_k \\ \end{matrix}$$

$$\begin{array}{c} \ddot{q}_{k+1} \\ \ddot{q}_k \\ \end{matrix}$$

Solve for
$$\lambda_k$$
 using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\begin{split} & \left[\frac{\partial \mathsf{R}_k}{\partial \bar{\mathsf{q}}_k} + \gamma h \frac{\partial \mathsf{R}_k}{\partial \bar{\mathsf{q}}_k} + \beta h^2 \frac{\partial \mathsf{R}_k}{\partial \mathsf{q}_k} \right]^T \lambda_k = \\ & - \left\{ \frac{\partial F_k}{\partial \bar{\mathsf{q}}_k} + \gamma h \frac{\partial F_k}{\partial \bar{\mathsf{q}}_k} + \beta h^2 \frac{\partial F_k}{\partial \mathsf{q}_k} \right\}^T \\ & - \frac{1}{h} \left\{ \gamma h \psi_k + \beta h^2 \phi_k \right\} \\ & - \left[(1 - \gamma) h \frac{\partial \mathsf{R}_{k+1}}{\partial \bar{\mathsf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial \mathsf{R}_{k+1}}{\partial \mathsf{q}_{k+1}} \right]^T \lambda_{k+1} \\ & - \left\{ (1 - \gamma) h \frac{\partial F_{k+1}}{\partial \bar{\mathsf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial F_{k+1}}{\partial \mathsf{q}_{k+1}} \right\}^T \\ & - \frac{1}{h} \left\{ (1 - \gamma) h \psi_{k+1} + \frac{1 - 2\beta}{2} h^2 \phi_{k+1} \right\} \end{split}$$

Solve for λ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\begin{split} & \left[\frac{\partial \mathsf{R}_k}{\partial \ddot{\mathsf{q}}_k} + \gamma h \frac{\partial \mathsf{R}_k}{\partial \dot{\mathsf{q}}_k} + \beta h^2 \frac{\partial \mathsf{R}_k}{\partial \mathsf{q}_k} \right]^T \lambda_k = \\ & - \left\{ \frac{\partial F_k}{\partial \ddot{\mathsf{q}}_k} + \gamma h \frac{\partial F_k}{\partial \dot{\mathsf{q}}_k} + \beta h^2 \frac{\partial F_k}{\partial \mathsf{q}_k} \right\}^T \\ & - \frac{1}{h} \left\{ \gamma h \psi_k + \beta h^2 \phi_k \right\} \\ & - \left[(1 - \gamma) h \frac{\partial \mathsf{R}_{k+1}}{\partial \dot{\mathsf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial \mathsf{R}_{k+1}}{\partial \mathsf{q}_{k+1}} \right]^T \lambda_{k+1} \\ & - \left\{ (1 - \gamma) h \frac{\partial F_{k+1}}{\partial \dot{\mathsf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial F_{k+1}}{\partial \mathsf{q}_{k+1}} \right\}^T \\ & - \frac{1}{h} \left\{ (1 - \gamma) h \psi_{k+1} + \frac{1 - 2\beta}{2} h^2 \phi_{k+1} \right\} \end{split}$$

Fourteen (\ddot{q}_k)

Coefficients from Newmark scheme

$$\mathcal{L} = \sum_{k=0}^{N} h F_k + \sum_{k=0}^{N} h \lambda_k^T \mathbf{R}_k + \sum_{k=0}^{N} \boldsymbol{\psi}_k^T \mathbf{S}_k + \sum_{k=0}^{N} \boldsymbol{\phi}_k^T \mathbf{T}_k$$

Solve for λ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\begin{split} & \left[\frac{\partial \mathbf{R}_k}{\partial \ddot{\mathbf{q}}_k} + \gamma h \frac{\partial \mathbf{R}_k}{\partial \dot{\mathbf{q}}_k} + \beta h^2 \frac{\partial \mathbf{R}_k}{\partial \mathbf{q}_k} \right]^T \lambda_k = \\ & - \left\{ \frac{\partial F_k}{\partial \ddot{\mathbf{q}}_k} + \gamma h \frac{\partial F_k}{\partial \dot{\mathbf{q}}_k} + \beta h^2 \frac{\partial F_k}{\partial \mathbf{q}_k} \right\}^T \\ & - \frac{1}{h} \left\{ \gamma h \psi_k + \beta h^2 \phi_k \right\} \\ & - \left[(1 - \gamma) h \frac{\partial \mathbf{R}_{k+1}}{\partial \dot{\mathbf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial \mathbf{R}_{k+1}}{\partial \mathbf{q}_{k+1}} \right]^T \lambda_{k+1} \\ & - \left\{ (1 - \gamma) h \frac{\partial F_{k+1}}{\partial \dot{\mathbf{q}}_{k+1}} + \frac{1 - 2\beta}{2} h^2 \frac{\partial F_{k+1}}{\partial \mathbf{q}_{k+1}} \right\}^T \\ & - \frac{1}{h} \left\{ (1 - \gamma) h \psi_{k+1} + \frac{1 - 2\beta}{2} h^2 \phi_{k+1} \right\} \end{split}$$

Fourteen (\ddot{q}_k)

Coefficients from Newmark scheme

$$\frac{df(x)}{dx} = \frac{\partial \mathcal{L}}{\partial x} = \sum_{k=0}^{N} h \frac{\partial F_k}{\partial x} + \sum_{k=0}^{N} h \lambda_k^T \frac{\partial R_k}{\partial x} + \sum_{k=0}^{N} \psi_k^T \frac{\partial S_k}{\partial x} + \sum_{k=0}^{N} \psi_k^T \frac{\partial T_k}{\partial x}$$

Complex-Step Verification of Newmark Adjoint

Complex-Step Verification of Newmark Adjoint

- ► Complex-step verification $\frac{\mathrm{d}f}{\mathrm{d}x_i} = \frac{\mathrm{Im}f(x+h\mathrm{e}_i)}{h}$
- ▶ Punched plate simulation run for 1000 time steps

Complex-Step Verification of Newmark Adjoint

- ► Complex-step verification $\frac{df}{dx_i} = \frac{\text{Im}f(x+he_i)}{h}$
- Punched plate simulation run for 1000 time steps
- $dh = 10^{-4}$, 10^{-8} , 10^{-12} , and 10^{-16}
- ► Functionals:
 - structural mass [1]
 - compliance [2]
 - ► KS von Mises failure [3, 4]
 - ► IE von Mises failure [5 12]
- ► Thickness design variables

Time Marching: Diagonally Implicit Runge-Kutta (DIRK)

Remarks

- Linear multi-stage method
- Primary unknowns are \(\bar{q}_{ki}\)
- Not coupled like IRK

Butcher's Tableau

Stage	β_1	β_2		β_s	
1 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	α_{22}	0	0	$\begin{array}{c c} \tau_1 \\ \tau_2 \end{array}$
s	α_{s1}	α_{s2}	·	$0 \\ \alpha_{ss}$	$ au_s$

Time Marching: Diagonally Implicit Runge-Kutta (DIRK)

Stage Approximation Equations

$$\begin{array}{l} \dot{\mathbf{u}}_{ki} = \dot{\mathbf{q}}_{k-1} + h \sum_{j=1}^{i} \alpha_{ij} \ddot{\mathbf{u}}_{kj} \\ \mathbf{u}_{ki} = \mathbf{q}_{k-1} + h \sum_{j=1}^{i} \alpha_{ij} \dot{\mathbf{u}}_{kj} \end{array}$$

Stage Vectors

Domark

- ► Linear multi-stage method
- Primary unknowns are \u00e4ki
- ► Not coupled like IRK

Butcher's Tableau

Stage			β_s	
1	α_{11}			τ-
2	α_{21}	α_{22}		Τ:
S	α_{s1}	α_{s2}	α_{ss}	τ

Time Marching: Diagonally Implicit Runge-Kutta (DIRK)

Stage Approximation Equations

$$\dot{\mathbf{u}}_{ki} = \dot{\mathbf{q}}_{k-1} + h \sum_{j=1}^{i} \alpha_{ij} \ddot{\mathbf{u}}_{kj}$$

$$\mathbf{u}_{ki} = \mathbf{q}_{k-1} + h \sum_{i=1}^{i} \alpha_{ij} \dot{\mathbf{u}}_{kj}$$

State Approximation Equations

$$\begin{aligned} \ddot{\mathbf{q}}_k &= \sum_{i=1}^s \beta_i \ddot{\mathbf{u}}_{ki} \\ \dot{\mathbf{q}}_k &= \dot{\mathbf{q}}_{k-1} + h \sum_{i=1}^s \beta_i \ddot{\mathbf{u}}_{ki} \\ \mathbf{q}_k &= \mathbf{q}_{k-1} + h \sum_{i=1}^s \beta_i \dot{\mathbf{u}}_{ki} \end{aligned}$$

Romarko

- ► Linear multi-stage method
- Primary unknowns are \(\vec{q}_{ki} \)
- ► Not coupled like IRK

Stage Vectors

State Vectors

Butcher's Tableau

Stage			β_s	
1	α_{11}			τ_1
2	α_{21}	α_{22}		
S	α_{s1}	α_{s2}	α_{ss}	τ_s

Time Marching: Diagonally Implicit Runge-Kutta (DIRK)

Stage Approximation Equations

$$\dot{\mathbf{u}}_{ki} = \dot{\mathbf{q}}_{k-1} + h \sum_{j=1}^{i} \alpha_{ij} \ddot{\mathbf{u}}_{kj}$$

$$\mathbf{u}_{ki} = \mathbf{q}_{k-1} + h \sum_{j=1}^{i} \alpha_{ij} \dot{\mathbf{u}}_{kj}$$

State Approximation Equations

$$\begin{aligned} \ddot{\mathbf{q}}_k &= \sum_{i=1}^s \beta_i \ddot{\mathbf{u}}_{ki} \\ \dot{\mathbf{q}}_k &= \dot{\mathbf{q}}_{k-1} + h \sum_{i=1}^s \beta_i \ddot{\mathbf{u}}_{ki} \\ \mathbf{q}_k &= \mathbf{q}_{k-1} + h \sum_{i=1}^s \beta_i \dot{\mathbf{u}}_{ki} \end{aligned}$$

Linearization of $R_{ki}(\ddot{q}_{ki}, \dot{q}_{ki}, q_{ki}, t_{ki})$

$$\left[\frac{\partial R_{\mathit{ki}}}{\partial \ddot{u}} + h\alpha_{\mathit{ii}}\frac{\partial R_{\mathit{ki}}}{\partial \dot{u}} + h^2\alpha_{\mathit{ii}}^2\frac{\partial R_{\mathit{ki}}}{\partial u}\right]\Delta \ddot{u}_{\mathit{ki}} = -R_{\mathit{ki}}$$

Remarks

- ► Linear multi-stage method
- Primary unknowns are \(\vec{q}_{ki} \)
- ► Not coupled like IRK

Stage Vectors

State Vectors

Butcher's Tablea

Stage			β_s	
1	α_{11}			τ-
2	α_{21}	α_{22}		Τ2
S	α_{s1}	α_{s2}	α_{ss}	τ_s

$$\mathcal{L} = \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} F_{ki} + \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} \lambda_{ki}^{T} \mathbf{R}_{ki} + \sum_{k=0}^{N} \psi_{k}^{T} \mathbf{S}_{k} + \sum_{k=0}^{N} \phi_{k}^{T} \mathbf{T}_{k}$$

$$\mathcal{L} = \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} F_{ki} + \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} \lambda_{ki}^{T} \mathbf{R}_{ki} + \sum_{k=0}^{N} \psi_{k}^{T} \mathbf{S}_{k} + \sum_{k=0}^{N} \phi_{k}^{T} \mathbf{T}_{k}$$

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} \phi_k &= \phi_{k+1} \\ &+ \sum_{i=1}^s h \beta_i \frac{\partial \mathbf{R}_{k+1,i}}{\partial \mathbf{u}_{k+1,i}}^T \lambda_{k+1,i} \\ &+ \sum_{i=1}^s h \beta_i \frac{\partial F_{k+1,i}}{\partial \mathbf{u}_{k+1,i}}^T \end{split}$$

$$\mathcal{L} = \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} F_{ki} + \sum_{k=0}^{N} h \sum_{i=1}^{s} \beta_{i} \lambda_{ki}^{T} R_{ki} + \sum_{k=0}^{N} \psi_{k}^{T} S_{k} + \sum_{k=0}^{N} \phi_{k}^{T} T_{k}$$

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} \phi_k &= \phi_{k+1} \\ &+ \sum_{i=1}^s h \beta_i \frac{\partial R_{k+1,i}}{\partial u_{k+1,i}}^T \lambda_{k+1,i} \\ &+ \sum_{i=1}^s h \beta_i \frac{\partial F_{k+1,i}}{\partial u_{k+1,i}}^T \end{split}$$

- \triangleright (q_k)
- Number of terms: 2[T]+s[R]+s[F]
- Storage requirements: maximum number of stages

Lagrangian

Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$

$$\begin{split} & \psi_{k} = \psi_{k+1} \\ & + \sum_{i=1}^{s} h \beta_{i} \phi_{k+1} \\ & + \sum_{i=1}^{s} h \beta_{i} \left[\frac{\partial \mathbf{R}_{k+1,i}}{\partial \dot{\mathbf{u}}_{k+1,i}} + h \sum_{j=1}^{i} \alpha_{ij} \frac{\partial \mathbf{R}_{k+1,i}}{\partial \mathbf{u}_{k+1,i}} \right]^{T} \lambda_{k+1,i} \\ & + \sum_{i=1}^{s} h \beta_{i} \left\{ \frac{\partial F_{k+1,i}}{\partial \dot{\mathbf{u}}_{k+1,i}} + h \sum_{j=1}^{i} \alpha_{ij} \frac{\partial F_{k+1,i}}{\partial \mathbf{u}_{k+1,i}} \right\}^{T} \end{split}$$

- $ightharpoonup (\dot{q}_k)$ is the primal variable for ψ_k
- Number of terms:
- 2[S]+s[T]+2s[R]+2s[F]
- Storage requirements:
 - ightharpoonup s state vectors $\ddot{\mathbf{u}}_{ki}, \dot{\mathbf{u}}_{ki}, \mathbf{u}_{ki}$
 - adjoint vectors $\lambda_{ki}, \psi_k, \phi_k \in [1, s, s]$

Lagrangian

Solve for λ_{ki} using $\partial \mathcal{L}/\partial \ddot{\mathbf{u}}_{ki}$

$$\begin{split} \beta_{i} & \left[\frac{\partial \mathsf{R}_{ki}}{\partial \ddot{\mathsf{u}}_{ki}} + h \alpha_{ii} \frac{\partial \mathsf{R}_{ki}}{\partial \dot{\mathsf{u}}_{ki}} + h^{2} \alpha_{ii}^{2} \frac{\partial \mathsf{R}_{ki}}{\partial \mathsf{u}_{ki}} \right]^{T} \lambda_{ki} = \\ & - \beta_{i} \left\{ \frac{\partial F_{ki}}{\partial \ddot{\mathsf{u}}_{ki}} + h^{2} \alpha_{ii}^{2} \frac{\partial F_{ki}}{\partial \dot{\mathsf{u}}_{ki}} + h^{2} \alpha_{ii}^{2} \frac{\partial F_{ki}}{\partial \mathsf{u}_{ki}} \right\}^{T} \\ & - \sum_{j=i+1}^{s} \beta_{j} \left[h \alpha_{ji} \frac{\partial \mathsf{R}_{kj}}{\partial \dot{\mathsf{u}}_{kj}} + h^{2} \sum_{p=i}^{j} \alpha_{jp} \alpha_{pi} \frac{\partial \mathsf{R}_{kj}}{\partial \mathsf{u}_{kj}} \right]^{T} \lambda_{kj} \\ & - \sum_{j=i+1}^{s} \beta_{j} \left\{ h \alpha_{ji} \frac{\partial F_{kj}}{\partial \dot{\mathsf{u}}_{kj}} + h^{2} \sum_{p=i}^{j} \alpha_{jp} \alpha_{pi} \frac{\partial F_{kj}}{\partial \mathsf{u}_{kj}} \right\}^{T} \\ & - \beta_{i} \psi_{k} - \sum_{j=i}^{s} \beta_{j} h \alpha_{ji} \phi_{k} \end{split}$$

- ightharpoonup is the primal variable for λ_{ki}
- [s-i+1,1,2(s-i)+1,2(s-i)+1]
 - Storage requirements:
 - state vectors $\ddot{\mathbf{u}}_{ki}$, $\dot{\mathbf{u}}_{ki}$, $\mathbf{u}_{ki} \in [s, s, s]$ adjoint vectors λ_{ki} , ψ_k , $\phi_k \in [s, 1, 1]$

Complex-Step Verification of DIRK Adjoint

DIRK Orders 2, 3 and 4

- ► Complex-step verification $\frac{df}{dx_i} = \frac{\text{Im}f(x+he_i)}{h}$
- $hlightarrow dh = 10^{-4}$, 10^{-8} , 10^{-12} , and 10^{-16}
- Simulation run for 1000 time steps
- Functionals:
 - structural mass [1]
 - compliance [2]
 - KS von Mises failure [3, 4]
 - ► IE von Mises failure [5 12]
- Thickness design variables

More Time Marching Methods...

Backwards Difference Formulas

Adams-Bashforth-Moulton

Highlevel Operations: Forward, Reverse and Total

Highlevel Operations: Forward, Reverse and Total

- ▶ Simulation on a *flexible plate* using *BDF* method
- ▶ Time taken for distributed operations on two problem sizes

Highlevel Operations: Forward, Reverse and Total

- Simulation on a flexible plate using BDF method
- ▶ Time taken for distributed operations on two problem sizes
 - forward analysis: nonlinear solution
 - adjoint-derivative computations: adjoint linear system, total-derivative computations
 - ► Total simulation time
 - ▶ Ideal expected scaling

Forward Mode Operations

192,000 DOF

2 million DOF

- Assembly operations for assembling the matrices and residuals
- ► Factorization of the linearized system at each Newton iteration
- ► Applying the factorization to solve for Newton update
- Total state variable solution time
- Ideal expected scaling

Reverse Mode Operations

- Assembly operations for setting up the transposed matrices and right-hand-side
- Factorization of the adjoint linear system
- Applying the factorization to solve for adjoint variables
- Matrix-vector products in computing the total derivative
- ► Total adjoint mode time
- Ideal expected scaling

- Percentage of time taken
- ► Matrix factorizations are the most expensive operation

Descriptor & Natural Form of Governing Equations

Descriptor & Natural Form of Governing Equations

Time Dependent Discrete Adjoint

- Multistep and multistage time marching: BDF, DIRK, ABM, Newmark
- Mathematical formulation, numerical verification, geometric interpretation of terms

Descriptor & Natural Form of Governing Equations

Time Dependent Discrete Adjoint

- Multistep and multistage time marching: BDF, DIRK, ABM, Newmark
- Mathematical formulation, numerical verification, geometric interpretation of terms

Multibody Dynamics

Simulations with key components for building complex and high-fidelity models

Descriptor & Natural Form of Governing Equations

Time Dependent Discrete Adjoint

- Multistep and multistage time marching: BDF, DIRK, ABM, Newmark
- Mathematical formulation, numerical verification, geometric interpretation of terms

Multibody Dynamics

▶ Simulations with key components for building complex and high-fidelity models

Parallel Scalability

Upto 2 million degrees of freedom with overall good scalability

Any Questions?

Time Marching: Backwards Difference Formula (BDF)

State Approximation Equations S_k and T_k

$$\dot{q}_k = \frac{1}{h} \sum_{i=0}^{p} \alpha_i q_{k-i} + \mathcal{O}(h^p)$$

$$\ddot{\mathbf{q}}_k = \frac{1}{h^2} \sum_{i=0}^{2p} \beta_i \mathbf{q}_{k-i} + \mathcal{O}(h^p)$$

Linearization of $R_k(\ddot{q}_k, \dot{q}_k, q_k, t_k)$

$$\left[\frac{\beta_0}{\hbar^2}\frac{\partial R}{\partial \ddot{q}} + \frac{\alpha_0}{\hbar}\frac{\partial R}{\partial \dot{q}} + \frac{\partial R}{\partial q}\right]\Delta q_k = -R_k$$

Iterative Updates $\rightarrow ||R_k|| \le \epsilon$

$$\begin{aligned} \mathbf{q}_k^{n+1} &= \mathbf{q}_k^n + \Delta \mathbf{q}_k^n \\ \dot{\mathbf{q}}_k^{n+1} &= \dot{\mathbf{q}}_k^n + \frac{\alpha_0}{h} \Delta \mathbf{q}_k^n \\ \ddot{\mathbf{q}}_k^{n+1} &= \ddot{\mathbf{q}}_k^n + \frac{\beta_0}{L^2} \Delta \mathbf{q}_k^n \end{aligned}$$

Linear Combination of State Vectors

- Linear multistep method
- Differentiates the interpolating polynomial
- Primary unknowns are q_k

Discrete Adjoint: Backwards Difference Formula (BDF)

Linear Combination of Equations R, S, T and F

Solve for ϕ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\frac{\partial \mathsf{T}_k}{\partial \ddot{\mathsf{g}}_k}^T \phi_k = 0 \implies \phi_k = 0$$

Discrete Adjoint: Backwards Difference Formula (BDF)

Linear Combination of Equations R, S, T and F

Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$

$$\frac{\partial S_k}{\partial \dot{q}_k}^T \psi_k = 0 \implies \psi_k = 0$$

Discrete Adjoint: Backwards Difference Formula (BDF)

Linear Combination of Equations

Solve for λ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\begin{split} & \left[\frac{\beta_0}{h^2} \frac{\partial \mathbf{R}_k}{\partial \ddot{\mathbf{q}}} + \frac{\alpha_0}{h} \frac{\partial \mathbf{R}_k}{\partial \dot{\mathbf{q}}} + \frac{\partial \mathbf{R}_k}{\partial \mathbf{q}} \right]^T \lambda_k = \\ & - \left\{ \frac{\beta_0}{h^2} \frac{\partial F_k}{\partial \ddot{\mathbf{q}}} + \frac{\alpha_0}{h} \frac{\partial F_k}{\partial \dot{\mathbf{q}}} + \frac{\partial F_k}{\partial \mathbf{q}} \right\} \\ & - \sum_{i=1}^p \frac{\alpha_i}{h} \frac{\partial \mathbf{R}_{k+i}}{\partial \dot{\mathbf{q}}_{k+i}}^T \lambda_{k+i} - \sum_{i=1}^{2p} \frac{\beta_i}{h^2} \frac{\partial \mathbf{R}_{k+i}}{\partial \ddot{\mathbf{q}}_{k+i}}^T \lambda_{k+i} \\ & - \sum_{i=1}^p \frac{\alpha_i}{h} \frac{\partial F_{k+i}}{\partial \dot{\mathbf{q}}_{k+i}} - \sum_{i=1}^{2p} \frac{\beta_i}{h^2} \frac{\partial F_{k+i}}{\partial \ddot{\mathbf{q}}_{k+i}} \end{split}$$

Complex-Step Verification of BDF Adjoint

Backwards Difference Formula: Orders 1, 2 and 3

- Perturbation step sizes 10^{-4} , 10^{-8} , 10^{-12} , and 10^{-16}
- ▶ 1000 time steps
- Functionals:
 - structural mass [1]
 - compliance [2]
 - the KS aggregate of the von Mises failure criterion [3, 4]
- ightharpoonup the induced exponential aggregate of the von Mises failure criterion [5-12]
- Thickness design variables

Time Marching: Adams Bashforth Moulton (ABM)

State Approximation Equations S_k and T_k

$$\begin{split} \dot{\mathbf{q}}_k &= \dot{\mathbf{q}}_{k-1} + \sum_{i=0}^{p-1} h \alpha_i \ddot{\mathbf{q}}_{k-i} + \mathcal{O}(h^p) \\ \mathbf{q}_k &= \mathbf{q}_{k-1} + \sum_{i=0}^{p-1} h \alpha_i \dot{\mathbf{q}}_{k-i} + \mathcal{O}(h^p) \end{split}$$

Linearization of $R_k(\ddot{q}_k, \dot{q}_k, q_k, t_k)$

$$\left[\frac{\partial \mathsf{R}_k}{\partial \ddot{\mathsf{q}}} + \hbar \alpha_0 \frac{\partial \mathsf{R}_k}{\partial \dot{\mathsf{q}}} + \hbar^2 \alpha_0^2 \frac{\partial \mathsf{R}_k}{\partial \mathsf{q}}\right] \Delta \ddot{\mathsf{q}}_k = -\mathsf{R}_k$$

Iterative Updates $\rightarrow ||R_k|| \le \epsilon$

$$\begin{split} \ddot{\mathbf{q}}_k^{n+1} &= \ddot{\mathbf{q}}_k^n + \Delta \ddot{\mathbf{q}}_k^n \\ \dot{\mathbf{q}}_k^{n+1} &= \dot{\mathbf{q}}_k^n + h \alpha_0 \Delta \ddot{\mathbf{q}}_k^n \\ \mathbf{q}_k^{n+1} &= \mathbf{q}_k^n + h^2 \alpha_0^2 \Delta \ddot{\mathbf{q}}_k^n \end{split}$$

Linear Combination of State Vectors

Adams–Moulton Coefficients α_i

p∖i	0	1	2
1	1		
2	1/2 5/12	1/2 8/12	
3	5/12	8/12	-1/12

- Linear multistep method
- Integrates the interpolating polynomial
- Primary unknowns are q_k

Discrete Adjoint: Adams-Bashforth-Moulton (ABM)

Linear Combination of Equations R, S, T and F

Solve for ϕ_k using $\partial \mathcal{L}/\partial q_k = 0$

$$\phi_k = \phi_{k+1} + h \left[\frac{\partial R_{k+1}}{\partial q_{k+1}} \right]^T \lambda_{k+1} + h \left\{ \frac{\partial F_{k+1}}{\partial q_{k+1}} \right\}^T$$

Discrete Adjoint: Adams-Bashforth-Moulton (ABM)

Linear Combination of Equations R, S, T and F

Solve for ψ_k using $\partial \mathcal{L}/\partial \dot{q}_k = 0$

$$\begin{split} \boldsymbol{\psi_k} &= \boldsymbol{\psi_{k+1}} + h\alpha_0 \boldsymbol{\phi_{k+1}} + h \left[\frac{\partial R_{k+1}}{\partial \dot{q}_{k+1}} + h\alpha_0 \frac{\partial R_{k+1}}{\partial q_{k+1}} \right]^T \lambda_{k+1} + h \left\{ \frac{\partial F_{k+1}}{\partial \dot{q}_{k+1}} + h\alpha_0 \frac{\partial F_{k+1}}{\partial q_{k+1}} \right\}^T \\ &+ h \sum_{i=1}^{p-1} \alpha_i \boldsymbol{\phi_{k+i}} + h \sum_{i=1}^{p-1} \left[h\alpha_i \frac{\partial R_{k+i}}{\partial q_{k+i}} \right]^T \lambda_{k+i} + h \sum_{i=1}^{p-1} \left\{ h\alpha_i \frac{\partial F_{k+i}}{\partial q_{k+i}} \right\}^T \end{split}$$

Discrete Adjoint: Adams-Bashforth-Moulton (ABM)

Linear Combination of Equations

Solve for λ_k using $\partial \mathcal{L}/\partial \ddot{q}_k = 0$

$$\begin{split} & \left[\frac{\partial R_k}{\partial \ddot{\mathbf{q}}_k} + h \alpha_0 \frac{\partial R_k}{\partial \dot{\mathbf{q}}_k} + h^2 \alpha_0^2 \frac{\partial R_k}{\partial \mathbf{q}_k} \right]^T \lambda_k = \\ & - \left\{ \frac{\partial F_k}{\partial \ddot{\mathbf{q}}_k} + h \alpha_0 \frac{\partial F_k}{\partial \dot{\mathbf{q}}_k} + h^2 \alpha_0^2 \frac{\partial F_k}{\partial \mathbf{q}_k} \right\}^T \\ & - \frac{1}{h} \left\{ h \alpha_0 \psi_k + h^2 \alpha_0^2 \phi_k \right\} \\ & - \sum_{i=1}^{p-1} \left[h \alpha_i \frac{\partial R_{k+i}}{\partial \dot{\mathbf{q}}_{k+i}} + h \alpha_0 h \alpha_i \frac{\partial R_{k+i}}{\partial \mathbf{q}_{k+i}} \right]^T \lambda_{k+i} \\ & - \sum_{i=1}^{p-1} \left\{ h \alpha_i \frac{\partial F_{k+i}}{\partial \dot{\mathbf{q}}_{k+i}} + h \alpha_0 h \alpha_i \frac{\partial F_{k+i}}{\partial \mathbf{q}_{k+i}} \right\}^T \\ & - \frac{1}{h} \sum_{i=1}^{p-1} \left\{ h \alpha_i \psi_{k+i} + h \alpha_0 h \alpha_i \phi_{k+i} \right\} \end{split}$$

Complex-Step Verification of ABM Adjoint

ABM Orders 1 and 2

- ightharpoonup Perturbation step sizes 10^{-4} , 10^{-8} , 10^{-12} , and 10^{-16}
- ▶ 1000 time steps
 - Functionals:
 - structural mass [1]
 - compliance [2]
 - ▶ the KS aggregate of the von Mises failure criterion [3, 4]
- \blacktriangleright the induced exponential aggregate of the von Mises failure criterion [5-12] \blacktriangleright Thickness design variables
- I hickness design variable