

Chapitre 10 : La couche application

Notions de base sur les réseaux

Cisco Networking Academy® Mind Wide Open™

Objectifs du chapitre 10

- Expliquer comment la couche application, la couche session et la couche présentation collaborent pour fournir des services réseau aux applications des utilisateurs finaux
- Décrire comment les protocoles de couche application courants interagissent avec les applications des utilisateurs finaux
- Décrire de façon détaillée les protocoles de couche application courants qui fournissent des services Internet aux utilisateurs finaux, y compris les services WWW et de messagerie
- Décrire les protocoles de couche application qui fournissent des services d'adressage IP, notamment les protocoles DNS et DHCP
- Décrire les caractéristiques et le fonctionnement des protocoles courants de couche application qui permettent l'utilisation des services de partage de fichiers, notamment FTP et le protocole SMB
- Expliquer comment les données sont acheminées sur le réseau, de l'ouverture d'une application à leur réception

- 10.1 Les protocoles de couche application
- 10.2 Les protocoles et services de couche application bien connus
- 10.3 Le message entendu dans le monde entier
- 10.4 Résumé

Application, session et présentation Révision des modèles OSI et TCP/IP

Les principaux parallèles se retrouvent dans les couches transport et réseau.

Couches Application, présentation et session

La couche Application:

- La couche application est la plus proche de l'utilisateur final
- •Les protocoles de couche application sont utilisés pour échanger des données entre les programmes s'exécutant sur les hôtes source et de destination.

La couche présentation remplit trois fonctions principales :

- Codage et conversion des données de la couche application
- Compression des données
- Chiffrement des données pour la transmission et déchiffrement de celles reçues par le périphérique de destination.

La couche session

- Crée et gère les communications entre les applications source et de destination
- Gère l'échange d'informations pour entamer les dialogues et les maintenir actifs, et redémarrer les sessions

Protocoles de couche application TCP/IP

DNS (Domain Name Service) : utilisé pour traduire les adresses Internet en adresses IP

Telnet : protocole d'émulation de terminal utilisé pour fournir l'accès distant aux serveurs et aux périphériques réseau

BOOTP (Bootstrap) : précurseur du protocole DHCP utilisé pour obtenir des informations d'adresse IP pendant le démarrage

DHCP (Dynamic Host control protocol): utilisé pour attribuer une adresse IP, un masque de sous-réseau, une passerelle par défaut et un serveur DNS à un hôte

HTTP (Hypertext Transfer Protocol) : utilisé pour transférer les fichiers qui constituent les pages du Web

Application, session et présentation Protocoles de couche application TCP/IP

FTP (File Transfer Protocol) : utilisé pour le transfert interactif de fichiers entre les systèmes

TFTP (Trivial File Transfer Protocol): utilisé pour le transfert de fichiers simple et sans connexion

SMTP (Simple Mail Transfer Protocol) : utilisé pour transférer les e-mails et les pièces jointes

POP (Post Office Protocol) : utilisé par les clients de messagerie pour récupérer des e-mails sur un serveur de messagerie

IMAP (Internet Message Access Protocol) : un autre protocole pour la récupération des e-mails

Interaction des protocoles d'application avec les applications des utilisateurs finaux

Réseaux peer-to-peer (P2P)

Les deux périphériques sont considérés comme étant égaux dans la communication

Mise en réseau Peer-to-Peer

Les rôles de client et de serveur sont définis en fonction de chaque requête.

Applications peer-to-peer (P2P)

Client et serveur dans la même communication

Applications peer to peer

Client et serveur dans la même communication

Les deux clients simultanément

- Commencent un message
- Reçoivent un message

Ils peuvent tous deux démarrer une communication et sont considérés comme égaux dans cet échange.

Interaction des protocoles d'application avec les applications des utilisateurs finaux

Applications P2P courantes

- Avec les applications P2P, chaque ordinateur du réseau exécutant l'application peut faire office de client ou de serveur pour les autres ordinateurs du réseau qui l'utilisent aussi
- Voici quelques applications P2P courantes :
 - eDonkey
 - eMule
 - Shareaza
 - BitTorrent
 - Bitcoin
 - LionShare
- Certaines applications P2P sont basées sur le protocole Gnutella qui permet aux utilisateurs de partager des fichiers de leur disque dur avec des tiers

Modèle client/serveur

Les ressources sont stockées sur le serveur.

Un client est une combinaison de matériel/logiciel à laquelle les utilisateurs font directement appel.

Les ressources sont stockées sur le serveur.

Un client est une combinaison de matériel/logiciel à laquelle les utilisateurs font directement appel.

Révision des protocoles de couche application

Les trois protocoles de couche application suivants sont impliqués dans les tâches professionnelles ou personnelles quotidiennes :

- HTTP (HyperText Transfer Protocol)
 - Navigation sur le Web
- SMTP (Simple Mail Transfer Protocol)
 - Permet aux utilisateurs d'envoyer des e-mails
- POP (Post Office Protocol)
 - Permet aux utilisateurs de recevoir des e-mails

Les protocoles de couche application courants HTTP et HTML

Exemple

URL: http://www.cisco.com/index.html

- Le navigateur commence par interpréter les trois parties de l'adresse URL :
 - 1. http (protocole ou schéma)
 - 2. www.cisco.com (nom du serveur)
 - 3. index.html (nom du fichier demandé)
- Le navigateur fait appel à un serveur de noms pour convertir www.cisco.com en adresse numérique
- Selon les règles du protocole HTTP, envoie une requête GET au serveur et demande le fichier index.html
- Le serveur envoie le code HTML de cette page Web
- Le navigateur déchiffre le code HTML et met la page en forme

Les protocoles de couche application courants HTTP et HTTPS

- Développé pour publier et récupérer des pages HTML
- Utilisé pour le transfert de données
- Constitue un protocole de demande/réponse
- Trois types de messages courants : GET, POST et PUT
- GET est une requête client pour demander des données
- POST et PUT servent à envoyer des messages qui téléchargent (upload) des données sur le serveur Web

Les protocoles de couche application courants SMTP, POP et IMAP

Les clients envoient des e-mails à un serveur à l'aide du protocole SMTP et reçoivent des e-mails à l'aide du protocole POP3.

- Utilisent généralement une application appelée agent de messagerie (client de messagerie)
- Permettent l'envoi des messages
- Placent les messages reçus dans la boîte aux lettres du client
- SMTP Envoi d'un e-mail depuis un client ou un serveur
- POP Réception des e-mails depuis un serveur de messagerie
- IMAP Internet Message Access Protocol
- Le client de messagerie fournit les fonctionnalités des deux protocoles dans une même application.

SMTP, POP et IMAP

Les protocoles de couche application courants SMTP, POP et IMAP (suite)

L'agent de transfert des messages (MTA) gère le traitement des e-mails entre les serveurs et les clients.

SMTP (Simple Mail Transfer Protocol)

- Transfert du courrier
- Le message doit avoir le format correct
- Les processus SMTP doivent être exécutés à la fois sur le client et sur le serveur
- L'en-tête de message doit comporter une adresse e-mail du destinataire au format correct et un expéditeur
- Utilise le port 25

Les protocoles de couche application courants SMTP, POP et IMAP (suite)

Serveur de messagerie – MDA

L'agent de remise des messages (MDA) gère la remise des e-mails entre les serveurs et les clients

POP (Post Office Protocol)

- Permet à une station de travail de récupérer le courrier depuis un serveur de messagerie
- Le courrier est téléchargé depuis le serveur vers le client, puis supprimé du serveur
- Utilise le port 110
- Le protocole POP3 convient à un FAI puisqu'il lui évite d'avoir à gérer de grandes quantités de stockage sur ses serveurs de messagerie.

SMTP, POP et IMAP (suite)

SMTP (Simple Mail Transfer Protocol)

Transfère le courrier avec fiabilité et efficacité

POP (Post Office Protocol)

- Permet à une station de travail de récupérer le courrier depuis un serveur de messagerie
- Avec POP, le courrier est téléchargé depuis le serveur vers le client, puis supprimé du serveur
- POP3 permet le stockage du courrier

IMAP (Internet Message Access Protocol)

- Autre protocole qui permet de récupérer des messages électroniques
- Contrairement au protocole POP, lorsque l'utilisateur se connecte à un serveur IMAP, ce sont des copies des messages qui sont envoyées à l'application cliente
- Les messages originaux sont conservés sur le serveur jusqu'à ce qu'ils soient supprimés manuellement

Fournir des services d'adressage IP DNS (domain name service)

Étape 1 de la résolution des adresses DNS

Un nom compréhensible par l'utilisateur est converti par le protocole DNS pour donner son adresse de périphérique réseau numérique.

Étape 2 de la résolution des adresses DNS

Fournir des services d'adressage IP DNS (domain name service)

Étape 3 de la résolution des adresses DNS

Étape 4 de la résolution des adresses DNS

Le numéro est renvoyé au client pour être utilisé dans les requêtes adressées au serveur.

Fournir des services d'adressage IP Format du message DNS

- Le serveur DNS stocke différents types d'enregistrements de ressource utilisés pour résoudre les noms.
- Ces enregistrements contiennent le nom, l'adresse et le type d'enregistrement.
- Les types d'enregistrements sont les suivants :
 - A : une adresse de périphérique final
 - NS : un serveur de noms faisant autorité
 - CNAME: le nom canonique (ou nom de domaine complet) d'un alias; utilisé lorsque plusieurs services comportent une adresse réseau unique, mais que chaque service a sa propre entrée dans le DNS
 - MX : enregistrement MX (Mail eXchanger) ; associe un nom de domaine à une liste de serveurs de messagerie
- Le serveur ne peut pas résoudre le nom en utilisant ses enregistrements stockés ; il contacte d'autres serveurs
- Le serveur stocke temporairement l'adresse numérique qui correspond au nom dans la mémoire cache
- Dans Windows, ipconfig /displaydns affiche toutes les entrées DNS mises en cache

Fournir des services d'adressage IP Hiérarchie DNS

Exemples de domaines de premier niveau :

.au: Australie

.co: Colombie

.com: entreprise

ou industrie

.jp: Japon

.org : organismeà but non lucratif

Une hiérarchie de serveurs DNS contient les enregistrements de ressources qui associent les noms aux adresses.

Fournir des services d'adressage IP nslookup

- nslookup est un utilitaire du système d'exploitation qui permet à l'utilisateur d'interroger manuellement les serveurs de noms pour résoudre un nom d'hôte donné
- Cet utilitaire permet de résoudre les problèmes de résolution des noms et de vérifier l'état actuel des serveurs de noms

```
C:\Documents and Settings>nslookup
                dns-sj.cisco.com
 ddress: 171.79.168.183
 www.cisco.com
        dns-sj.cisco.com
Address: 171.70.168.183
Name: www.cisco.com
Address: 198.133.219.25
  cisco.netacad.net
        dns-sj.cisco.com
         171.70.168.183
Non-authoritative answer:
        cisco.netacad.net
Address: 128,107,229,50
```

Fournir des services d'adressage IP DHCP (Dynamic Host Configuration Protocol)

- Le protocole DHCP permet à un hôte d'obtenir une adresse IP dynamiquement
- Le serveur DHCP est contacté et l'adresse est demandée; celle-ci est choisie dans une plage d'adresses appelée pool et « louée » à l'hôte pour une certaine durée
- Le protocole DHCP est utilisé pour les hôtes à usage général (par exemple les périphériques des utilisateurs) et les adresses statiques sont utilisées pour les périphériques réseau (par exemple les passerelles, les commutateurs, les serveurs et les imprimantes)

Fournir des services d'adressage IP Fonctionnement du protocole DHCP

Fournir des services de partage de fichiers

FTP (File Transfer Protocol)

Processus de FTP

En fonction des commandes envoyées via la connexion de contrôle, les données peuvent être téléchargées depuis le serveur ou depuis le client.

- Le protocole FTP permet de transférer des données entre un client et un serveur
- Le client FTP est une application qui s'exécute sur un ordinateur et qui est utilisée pour envoyer (push) et récupérer (pull) des données à partir d'un serveur en exécutant le démon FTP (FTPd)
- Pour transférer correctement les données, le protocole FTP nécessite deux connexions entre le client et le serveur, une pour les commandes et les réponses, l'autre pour le transfert de fichiers

Fournir des services de partage de fichiers

Le protocole SMB (Server Message Block)

- Les clients
 établissent une
 connexion à long
 terme avec les
 serveurs
- Une fois la connexion établie, l'utilisateur peut accéder aux ressources du serveur comme si elles étaient situées sur l'hôte client, en local

SMB est un protocole client-serveur et requête-réponse. Les serveurs peuvent mettre leurs ressources à la disposition des clients sur le réseau.

Presentation_ID © 2000 Glado Gyaloma, mil. 1903 draka 1906/990. Golfmannia Glado

Le protocole SMB (Server Message Block)

Partage de fichiers SMB

Un fichier peut être copié d'un ordinateur à l'autre à l'aide de l'Explorateur Windows via le protocole SMB.

L'Internet des objets

Le message voyage à travers un réseau

Le message voyage à travers un réseau

Le message voyage à travers un réseau

Transmission des données au périphérique final

Transmission des données via l'interréseau

Transmission des données à la bonne application

Sur le périphérique final, le numéro du port du service dirige les données vers la conversation adéquate.

La couche application **Résumé**

- Les applications sont des programmes informatiques avec lesquels les utilisateurs interagissent et qui lancent le processus de transfert de données à la demande des utilisateurs.
- Les services sont des programmes s'exécutant en tâche de fond qui assurent la connexion entre la couche application et les couches inférieures du modèle de réseau.
- Les protocoles fournissent une structure de règles et de processus convenus grâce auxquels les services s'exécutant sur un périphérique particulier peuvent envoyer et recevoir des données de divers périphériques réseau.

La couche application **Résumé**

- Le protocole HTTP prend en charge l'envoi de pages Web vers les périphériques finaux
- Les protocoles SMTP, POP et IMAP prennent en charge l'envoi et la réception des e-mails
- Les protocoles SMB et FTP permettent aux utilisateurs de partager des fichiers
- Les applications P2P simplifient le partage de contenus multimédias pour les clients
- Le DNS convertit en adresses numériques utilisables par le réseau les noms humainement compréhensibles et utilisés pour faire référence aux ressources réseau
- Tous ces éléments collaborent au niveau de la couche application
- La couche application permet aux utilisateurs de travailler et de jouer sur Internet

Cisco | Networking Academy® | Mind Wide Open™