Linguagens Formais e Autômatos

Aula 11 - Linguagens não regulares

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 4 Seção 4.1
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.4

- Até agora vimos que: linguagens regulares são aquelas reconhecidas por autômatos finitos
 - Não foi feita nenhuma definição do que é uma linguagem regular
 - Um ser humano, ao olhar para uma linguagem, dificilmente consegue dizer se é ou não regular
 - Na verdade, não existe tal definição
- Mas existe uma distinção
 - Linguagens regulares vs não-regulares
 - A linha divisória é o fato de que
 - Autômatos finitos não conseguem contar

- Linguagens que exigem um contador
 - Ex: comentários dentro de comentários, escopos aninhados em uma linguagem, parêntesis aninhados, etc
 - Ex:
 - (1+2*(3-5+(7*7))-6)
 - É preciso contar quantos parêntesis são abertos e quantos são fechados
- Tente imaginar um autômato que reconheça tais cadeias
 - Estados são a "memória" do autômato

 Para reconhecer infinitos níveis de parêntesis aninhados, seriam necessários infinitos estados

- Outros exemplos:
 - $\circ \{0^n 1^n | n \ge 0\}$
 - {w|w tem número igual de 0s e 1s}
 - (ww/ w seja uma cadeia sobre qualquer alfabeto)
- Mas veja esse exemplo:
 - {w|w tem um número igual de ocorrências de 01 e 10 como subcadeias}
 - Aparentemente, precisa contar
 - Mas essa linguagem é regular! (faça depois como exercício a prova, se duvidar)
- Formalmente:
 - Lema do bombeamento para linguagens regulares
 - Permite definir exatamente quais linguagens não são regulares

Formalmente:

- Se A é uma linguagem regular, então existe um número p (o comprimento de bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:
 - Para cada $i \ge 0$, $xy^iz \in A$
 - |y| > 0
 - |xy| ≤ p

• Informalmente:

 Toda cadeia da linguagem contém uma parte que pode ser repetida um número qualquer de vezes (bombeada), com a cadeia resultante permanecendo na linguagem

- Essa repetição ou bombeamento é a característica que faz com que seja sempre possível definir um número finito de estados para um autômato que reconheça a linguagem
- Uso do lema do bombeamento:
 - Provar que B não é regular
 - Contradição: suponha que B seja regular
 - 1. Encontre um p de forma que todas as cadeias de comprimento p ou maiores possam ser bombeadas
 - 2. Encontre uma cadeia s em B que tenha comprimento p ou mais, mas que não possa ser bombeada
 - 3. Demonstre que s n\u00e3o pode ser bombeada considerando todas as maneiras de dividir s em x,y e z, conforme o lema

- Ex: $\{0^n1^n|n\geq 0\}$
 - 1. Seja p o comprimento de bombeamento
 - \circ 2. Escolha s = 0^p1^p
 - s é maior que p (conforme o lema)
 - Portanto, o lema diz que s pode ser dividida em 3 partes, s=xyz, onde para qualquer i ≥ 0, xyⁱz está em B
 - Ou seja, deve ser possível "bombear" y
 - 3. Mas é impossível!!
 - Primeira possibilidade: Suponha que y contém apenas 0s
 - Ex: s = 000111, x=0, y=00, z=111
 - Sempre que bombearmos y, teremos como resposta uma cadeia que não pertence à linguagem
 - Pois teremos como resultado mais 0s do que 1s

- Ex: $\{0^n1^n|n\geq 0\}$
 - 3. Mas é impossível!! (continuação)
 - Segunda possibilidade: Suponha que y contém apenas 1s
 - Ex: s = 000111, x=000, y=11, z=1
 - Sempre que bombearmos y, teremos como resposta uma cadeia que não pertence à linguagem
 - Pois teremos como resultado mais 1s do que 0s
 - Terceira possibilidade: y contém 0s e 1s
 - Ex: s = 000111, x=00, y=01, z=11
 - Sempre que bombearmos y, teremos como resposta uma cadeia que não pertence à linguagem
 - Pois teremos como resultado a presença de 0s e 1s alternados

- Ex: $\{0^n1^n|n\geq 0\}$
 - Ou seja, é impossível existir uma divisão de s de acordo com o lema do bombeamento
 - Isso é uma contradição!
- Ou seja, se não fizemos nada de errado, a suposição de que B é regular é falsa
 - Portanto, B não é regular

- O "truque" é encontrar o s
- Requer um pouco de pensamento criativo
- Tentativa e erro
- Busca pela "essência" da não-regularidade de B
- Conhecimento das restrições do lema
 - \circ (|y| > 0, |xy| \leq p, etc)

- Ok, descobri que uma linguagem não é regular
 - Como resolver o problema?
 - Como obter uma implementação?
- Bom, se o problema é que um autômato finito não consegue contar...
 - ... basta adicionar um contador!
- Essa é exatamente a solução
 - Mais poder aos autômatos
 - Classe maior de linguagens
 - Mais detalhes nas próximas aulas!

Fim

Aula 11 - Linguagens não regulares