

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Computing the exponential matrix

Solution of Uncontrolled System

 Consider a dynamical system's linear time-invariant (LTI) model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t)$$

subject to an initial condition

$$\boldsymbol{x}(0) = \boldsymbol{x}_0,$$

where $A \in \mathbb{R}^{n \times n}$

• The solution

$$|\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0|$$

The exponential matrix

• The exponential matrix

$$e^{\mathbf{A}t} = \mathbf{I}_n + t\mathbf{A} + \frac{t^2}{2!}\mathbf{A}^2 + \frac{t^3}{3!}\mathbf{A}^3 + \cdots$$

Note that

$$\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t} = e^{\mathbf{A}t}\mathbf{A}$$

• For more general $\mathbf{x}(t_0) = \mathbf{x}_0$, the solution to $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ subject to $\mathbf{x}(t_0) = \mathbf{x}_0$ is

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}_0$$

The state transition matrix

• The matrix $e^{\mathbf{A}(t-t_0)}$ is often written as

$$e^{\mathbf{A}(t-t_0)} = \mathbf{\Phi}(t,t_0)$$

• It is called the *state transition matrix* because it relates the state at any instant of time t_0 to the state at any other time t as

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0)$$

Computing the exponential matrix

- In the case when the matrix \mathbf{A} is of low dimensions, we can use the formula that results from applying the Laplace transform to the time-invariant system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}_0$
- The Laplace transform of the above matrix differential equation is

$$sX(s) - x_0 = AX(s)$$

Hence

$$\boldsymbol{X}(s) = (s\boldsymbol{I}_n - \boldsymbol{A})^{-1} \boldsymbol{x}_0,$$

The inverse Laplace transform method

- Recall, $\mathcal{L}(e^{at}) = \frac{1}{s-a}$
- Apply the inverse Laplace transform to

$$(s\boldsymbol{I}_n - \boldsymbol{A})^{-1}$$

We obtain

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\left\{ (s\mathbf{I}_n - \mathbf{A})^{-1} \right\}$$

where \mathcal{L}^{-1} denotes the inverse Laplace transform operator

Example

• Use the inverse Laplace method to compute e^{At} for

$$A = \left[\begin{array}{cc} 0 & 3 \\ 2 & 1 \end{array} \right]$$

We have

$$e^{\mathbf{A}t} = \mathcal{L}^{-1}\left(\left[s\mathbf{I}_{2} - \mathbf{A}\right]^{-1}\right)$$

$$= \mathcal{L}^{-1}\left(\left[\begin{array}{cc} s & -3 \\ -2 & s - 1 \end{array}\right]^{-1}\right)$$

$$= \mathcal{L}^{-1}\left(\frac{1}{(s-3)(s+2)}\left[\begin{array}{cc} s - 1 & 3 \\ 2 & s \end{array}\right]\right)$$

Example—contd.

Hence

$$e^{\mathbf{A}t} = \mathcal{L}^{-1} \left(\frac{1}{(s-3)(s+2)} \begin{bmatrix} s-1 & 3 \\ 2 & s \end{bmatrix} \right)$$
$$= \begin{bmatrix} 0.4e^{3t} + 0.6e^{-2t} & 0.6(e^{3t} - e^{-2t}) \\ 0.4(e^{3t} - e^{-2t}) & 0.6e^{3t} + 0.4e^{-2t} \end{bmatrix}$$