

Laboratório de Inteligência Artificial

Árvore de Decisão

Tatiane Nogueira Rios Ricardo Araújo Rios

Árvores de decisão

Algoritmos mais estudados: ID3, ASSISTANT, C4.5, CART

Arvores de decisão

Representação

- Classificação de instâncias percorrendo os nós-folha a partir da raiz da árvore
- Cada nó da árvore especifica um teste de algum atributo da instância 0
- Cada aresta a partir deste nó corresponde a um possível valor para o atributo

Exemplo

começar pela raiz, seguindo cada teste até que a folha Para classificar (dizer se é possível jogar tênis), basta seja alcançada.

Arvores de decisão

- Quando utilizar árvores de decisão?
- Instâncias representadas por pares atributo-valor Ex: Temperatura = quente
- A situação mais fácil é quando tem-se um conjunto pequeno de valores para os atributos 0
- valores reais para os atributos. Ex: Temperatura = 25 Extensões dos algoritmos básicos permitem utilizar 0

- Uma árvore de decisão corresponde à uma disjunção de conjuntos de restrições nos valores dos atributos
- Cada caminho corresponde a uma conjunção
- √ (Tempo = nublado)

(Tempo=ensolarado ∧ umidade = normal)

√ (Tempo = chuva ∧ vento = fraco)

Árvores de decisão

- Quando utilizar árvores de decisão?
- 2. O problema apresenta descrições disjuntas

Ex: (Tempo = ensolarado / umidade = normal)

∨ (Tempo = nublado)

Árvores de decisão

Ex: A umidade pode ser um fator conhecido somente para alguns exemplos

Algoritmo de aprendizado (AD)

O melhor atributo é escolhido como a raiz da árvore

Começando a construir a árvore: qual atributo deve ser

testado na raiz da árvore?

A maioria utiliza abordagem top-down e busca gulosa

Algoritmo de aprendizado (AD)

no espaço de possíveis árvores de decisão

- Cálculo do ganho de informação (information gain) de cada atributo
- Medição de quão bem um dado atributo separa o conjunto de exemplos de acordo com o objetivo da classificação
- Medida utilizada para selecionar entre os melhores atributos candidatos à medida que a árvore cresce 0

- homogeneidade do conjunto de exemplos Entropia: caracteriza a pureza ou
- Quanto menor a entropia, mais previsível e organizado é o conjunto de dados

Algoritmo ID3

Valores obtidos pelo cálculo da entropia:

- A entropia é 0 se todos elementos pertencem à mesma classe
- A entropia é 1 quando a coleção contém número igual de exemplos da mesma classe (balanceamento)
- Se a coleção contém número diferente de exemplos da mesma classe, a entropia varia entre 0 e 1

Quanto menor a entropia, menos bits são necessários

para codificar a mensagem

Propriedade da Termodinâmica usada para determinar a

Algoritmo ID3

Entropia

quantidade de energia útil de um sistema

Teoria da Informação para calcular o número de bits

0

necessários para codificar uma mensagem

Como calcular a entropia para um conjunto booleano (duas classes)

- Seja um conjunto de exemplo S
- Proporção de exemplos positivos
- Proporção de exemplos negativos
- A entropia dessa classificação boole $arphi^{(-)}_{\sim}$ é:

Entropia(S) =
$$-p_{(+)} \log_2 p_{(+)} - p_{(-)} \log_2 p_{(-)}$$

Calcule a entropia desse conjunto de exemplos de treinamento.

					_		_		_				_	
jogar_tênis	não	não	sim	sim	sim	não	sim	não	sim	sim	sim	sim	sim	não
vento	fraco	forte	fraco	fraco	fraco	forte	forte	fraco	fraco	fraco	forte	forte	fraco	forte
umidade	alta	alta	alta	alta	normal	normal	normal	alta	normal	normal	normal	alta	normal	alta
temperatura	quente	quente	quente	moderada	fria	fria	fria	moderada	fria	moderada	moderada	moderada	quente	moderada
tempo	ensolarado	ensolarado	nublado	chuva	chuva	chuva	nublado	ensolarado	ensolarado	chuva	ensolarado	nublado	nublado	chuva
 dia	D1	D2	D3	D4	DS	9Q	D7	8G	6Q	D10	D11	D12	D13	D14

Como calcular o ganho de informação

- O ganho de informação deve ser calculado para cada atributo do conjunto de atributos da coleção S
- O atributo que resultar no maior ganho de informação é selecionado como atributo de teste
- O ganho na informação refere-se à redução esperada na entropia à medida que os exemplos são particionados

Algoritmo ID3

Como calcular o ganho de informação de um atributo

- Seja um conjunto de exemplo S
 Seja o atributo A
- Seja Valores(A) o conjunto de todos os valores possíveis de A
- Seja Sv o subconjunto de S para o qual o atributo A tem valor v

$$Ganho(S, A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Como calcular o ganho de informação de um atributo

$$Ganho(S,A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$
Entropia da coleção S

cada valor presente no

Ganho(S, A)
$$\equiv$$
 Entropia (S) $-\sum_{v \in Valores(A)} \frac{|Sv|}{|S|}$ Entropias de cada valor presente no atributo de aprincipa de la coleção S

Algoritmo ID3

Ex: Considere a tabela atributo-valor apresentada no slide 24. Qual o ganho de informação do atributo vento? (cont.)

Ex: Considere a tabela atributo-valor apresentada no

atributo

slide 24. Qual o ganho de informação do atributo

9 exemplos são da classe sim (positivos);

5 são da classe não (negativos)

Atributo vento, com valores forte e fraco

vento?

Coleção S com 14 exemplos

- negativos tem vento=fraco [6+,2-] e o resto tem vento=forte ([3+,3-]). Portanto, para distribuição de S = [9+,5-] tem-se: Suponha que 6 dos exemplos positivos e dois exemplos
- Distribuição de Sfraco = [6+,2-]
- Distribuição de Sforte = [3+,3-]

 Como calcular o ganho de informação de um atributo (cont.)

$$Ganho(S,Vento) \equiv Entropia(S) - \sum_{v \in \{paso,lons\}} \frac{|Sv|}{|S|} Entropia(Sv)$$

$$Ganho(S, Vento) \equiv Entropia(S) - \left(\frac{8}{14}\right) Entropia(Sfraco) - \left(\frac{6}{14}\right) Entropia(Sforte)$$

Ganho (S, Vento) = 0.940 -
$$\left(\frac{8}{14}\right)$$
 0.811 - $\left(\frac{6}{14}\right)$ 1.00

 $Ganhd(S.Vento) \equiv 0.048$

Algoritmo ID3

$$(\mathcal{C}(G_{anho}(S, Vento)) \equiv Entropia(S) - \sum_{v \in (frace, forts)} \frac{|Sv|}{|S|} Entropia(Sv)$$

$$Ganho(S, Vento) \equiv Entropia(S) - \left(\frac{8}{14}\right) Entropia(Sfraco) - \left(\frac{6}{14}\right) Entropia(Sforte)$$

$$Ganho(S, Vento) \equiv 0.940 - \left(\frac{8}{14}\right) 0.8y$$

$$Ganha(S, Vento) \equiv 0.048$$

$$-6/8 \log_2 6/8 - 2/8 \log_2 2/8$$

$$-3/6 \log_2 3/6 - 3/6 \log_2 3/6$$

Construindo uma árvore de decisão

dia	tempo	temperatura	umidade	vento	jogar_tênis
D1	ensolarado	quente	alta	fraco	não
D2	ensolarado	quente	alta	forte	não
D3	nublado	quente	alta	fraco	sim
D4	chuva	moderada	alta	fraco	sim
DS	chuva	fria	normal	fraco	sim
9G	chuva	fria	normal	forte	não
D7	nublado	fria	normal	forte	sim
D8	ensolarado	moderada	alta	fraco	não
60	ensolarado	fria	normal	fraco	sim
D10	chuva	moderada	normal	fraco	sim
D11	ensolarado	moderada	normal	forte	sim
D12	nublado	moderada	alta	forte	sim
D13	nublado	quente	normal	fraco	sim
D14	chuva	moderada	alta	forte	não

2. Qual o ganho de informação do atributo A2 em relação

a esse conjunto de treinamento?

Lembre-se:

1. Qual é a entropia desse conjunto de treinamento?

Exercício

	4	2	9	
the second of th	Entropid(3) = $\sum -p_i \log_2 p_i$	jej.	MS —	$Ganhd(S, A) = Entropid(S) - \sum_{v \in Valore(A)} \frac{ S }{ S } Entropid(Sv)$

Construindo uma árvore de decisão

- Qual deverá ser o nó raiz da árvore?
- Calcular o ganho de informação de cada atributo do conjunto de treinamento (menos o atributo classe)
 - Para cada atributo
- . Ganho(S, tempo) = 0.246
- Ganho(S, umidade) = 0.151

:≓

- Ganho(S, vento) = 0.048
- Ganho(S, temperatura) = 0.029

atributo tempo é o que melhor prediz o atributo classe, De acordo com a medida de ganho de informação, o jogar_tênis, sobre o conjunto de treinamento

Construindo uma árvore de decisão

- atributo classe jogar_tênis=sim, portanto esse nó da árvore Todo exemplo que tem o atributo tempo=nublado tem o se torna folha com a classificação jogar_tênis=sim
- Entretanto, os ramos correspondentes a tempo=ensolarado portanto deverá ser criada uma nova árvore abaixo desses e tempo=chuva ainda tem entropias diferentes de zero,

Qual atributo deverá ser testado aqui ?

Construindo uma árvore de decisão

- O processo de selecionar um novo atributo e particionar o conjunto de treinamento é repetido para cada ramo, agora usando somente o conjunto de exemplos associado ao ramo •
- o Se valores são nominais, atributo é usado uma única
- Se valores podem ser subconjuntos/intervalos, 0

Construindo uma árvore de decisão

- O processo continua para cada novo nó-folha até que duas condições sejam satisfeitas:
- o Todos os atributos já foram incluídos na árvore
- possuem a mesma classe (entropia igual a zero) Os exemplos de treinamento em um nó-folha 0

Construindo uma árvore de decisão

Construindo uma árvore de decisão

tempo temperatura u ensolarado quente		3	umidade alta	vento fraco	jogar_tênis não
ensolarado quente	quente		alta	forte	não
nublado quente	duente		alta	fraco	sim
chuva moderada	moderada		alta	fraco	sim
chuva	fria		normal	fraco	sim
chuva fria	fria		normal	forte	não
nublado fria	fria		normal	forte	sim
ensolarado moderada	moderada		alta	fraco	não
ensolarado fria	fria		normal	fraco	sim
chuva moderada	moderada		normal	fraco	sim
ensolarado moderada	moderada		normal	forte	sim
nublado moderada	moderada		alta	forte	sim
nublado quente	duente		normal	fraco	sim
chuva moderada	moderada		alta	forte	não

{D4, D5, D6, D10, D14}

{D3, D7, D12, D13} [4+,0-]

{D1, D2, D8, D9, D11}

[2+, 3-]

Qual atributo deverá ser testado aqui?

nublado

ensolarado

Construindo uma árvore de decisão

- Sensolarado = {D1, D2, D8, D9, D11}
- Ganho(Sensolarado, umidade) =
- \blacksquare 0.970-(3/5)0.0 (2/5)0.0 = 0.970
- Ganho(Sensolarado, temperatura) =
- \blacksquare 0.970-(2/5)1.0 (2/5)0.0 (1/5)0.0 = 0.570
 - Ganho(Sensolarado, vento) =
- \blacksquare 0.970-(2/5)1.0 (3/5)0.918 = 0.019
- Nesse caso, o maior ganho de informação está no atributo umidade

Construindo uma árvore de decisão

- Faceli et al., Inteligência Artificial Uma Abordagem de Aprendizado de Máquina, LTC, 2015.
 - Smola, A. and Vishwanathan, S.V.N., Introduction to Machine Learning, Cambridge University Press, 2008
- Witten et al., Data Mining Practical Machine Learning Tools and Techniques, 3d edition, Elsevier, 2011.
 - J. Han; M. Kamber. Data Mining: Concepts and Techniques, Morgan Kaufmann, 2000

