DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH - Semester – VI(CE/IT) SUBJECT: (CT614)THEORY OF AUTOMATA AND FORMAL LANGUAGES

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

D	xami ate ime	nation : 1 st Sessional : 22-01-2016 : 12:30 P.M. TO 1:45 P.M.	Seat No. Day Max. Marks	: : Friday : 36	
	Q.1 i)	Answer the following: State True /False with justification "Structural induction is more powerful than conventional prinduction".	inciple of Mathem		[12] [02]
C) ()	Give recursive definition of Finite Subsets of the Natural Nu Using proof by contrapositive Prove that for all integers n , in Define Acceptance State for L_1UL_2 , $L_1\cap L_2$ AND L_1 - L_2 . Her languages	$f n^2$ is odd then n	is odd.	[02] [02] [02]
e)	Justify: Set of positive integers (N) is closed under the oper Construct a relation on {1, 2, 3} that satisfies below given p {Reflexive, Not Symmetric, Transitive}			[02] [02]
	2.2	Answer the following: (Any two) Using proof by contradiction Prove that if a, b and c are interested then at least one of a and b is even.	gers and $u^2 + b^2$	$=c^2$, [[12] [06]
) ;)	Write down Principle of Mathematical Induction. Prove that Define length function recursively and using the definition pulled belongs to Σ^* , $ xy = x + y $			[06] [06]
	Q.3 ()	Attempt the following: Consider Language L={awa w belongs to {a,b}*}. 1) Find L ² Language. 2) Construct Deterministic Finite Automata for L ²			[12] [04]
, b)	Find regular expressions for below given language 1)Language of all strings containing the substrings 00 and 1 2) Real Literals in Pascal	1	hanned	[04]
C	:)	Construct a Deterministic Finite Automata (minimum state $L_2=\{x \text{ belongs to } \{0,1\}^* \mid x >=2 \text{ and 2nd symbol from right}\}$		ige [[04]
OR					
a		Attempt the following: Construct Deterministic Finite automata for (1+10+110)*0 Define following terms 1)Deterministic Finite Automata		[[12] [04] [04]
C)	2) The Extended transition function δ^* Construct a Deterministic Finite Automata for below given I L={x belongs to {0,1}* x is a palindrome of length exactly		[[04]