HW#5 Solution

#1

	- HW#5
	$\overline{HI} \mathcal{D} \overline{E[X_{u}]} = \overline{E[X_{u}]} = \overline{E[X_{u}]} = \overline{E[X_{u}]} \times \overline{A}$
	$= \frac{1}{N} E[\overline{z_{i=1}} \times_{i}]$
	= LENELX-]
	$=E[X_{i}]$
	In is an unbiased estimator of E[Xi].
	$\Theta E[S_n] = E[\frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X}_n)^2]$
	$= E\left[\frac{1}{N}\sum_{i=1}^{N}\left(x_{i}^{2}-2x_{i}\overline{x}_{n}+\overline{x}_{n}^{2}\right)\right]$
	$= E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - 2\frac{X_{n}}{n}\sum_{i=1}^{n}X_{i}^{2} + \frac{1}{n}\cdot nX_{n}^{2}\right]$
	$= E\left[\frac{1}{N}\sum_{i=1}^{N}X_{i}^{2} - 2X_{n}^{2} + X_{n}^{2}\right]$
	$= E[X_i^2] - E[X_n^2]$
	$= V_{\alpha Y}(X_{7}) - (E[X_{7}])^{2} - V_{\alpha Y}(X_{n}) - (E[X_{n}])^{2}$
	= Var(X-)-(E[X-]) - + Var(X-)+ (E[X-])
	$= Var(x_i) - \frac{1}{n} Var(x_i)$
·	$=\frac{n-1}{n} \operatorname{Var}(x_i) \neq \operatorname{Var}(x_i)$
	So So is not an unbased estimator of Van(Xi).

Suppose that a random sample of size n, X_1, X_2, \ldots, X_n , has been taken and that the observations are assumed to come from a Weibull distribution. The likelihood function derived by using the pdf given by Equation (5.47) can be shown to be

$$L(\alpha, \beta) = \frac{\beta^n}{\alpha^{\beta n}} \left[\prod_{i=1}^n X_i^{(\beta-1)} \right] \exp \left[-\sum_{i=1}^n \left(\frac{X_i}{\alpha} \right)^{\beta} \right]$$
(9.8)

The maximum-likelihood estimates are those values of $\widehat{\alpha}$ and $\widehat{\beta}$ that maximize $L(\alpha, \beta)$ or, equivalently, maximize $\ln L(\alpha, \beta)$, denoted by $l(\alpha, \beta)$. The maximum value of $l(\alpha, \beta)$ is obtained by taking the partial derivatives $\partial l(\alpha, \beta)/\partial \alpha$ and $\partial l(\alpha, \beta)/\partial \beta$, setting each to zero, and solving the resulting equations, which, after substitution, become

$$f(\beta) = 0 \tag{9.9}$$

and

$$\alpha = \left(\frac{1}{n} \sum_{i=1}^{n} X_i^{\beta}\right)^{1/\beta} \tag{9.10}$$

where

$$f(\beta) = \frac{n}{\beta} + \sum_{i=1}^{n} \ln X_i - \frac{n \sum_{i=1}^{n} X_i^{\beta} \ln X_i}{\sum_{i=1}^{n} X_i^{\beta}}$$
(9.11)

The maximum-likelihood estimates, $\widehat{\alpha}$ and $\widehat{\beta}$, are the solutions of Equations (9.9) and (9.10). First, $\widehat{\beta}$ is found via the iterative procedure explained below. Then $\widehat{\alpha}$ is found from Equation (9.10), with $\beta = \widehat{\beta}$.

Equation (9.9) is nonlinear, so it is necessary to use a numerical-analysis technique to solve it. In Table 9.3, a suggested iterative method for computing $\hat{\beta}$ is given as

$$\widehat{\beta}_{j} = \widehat{\beta}_{j-1} - \frac{f(\widehat{\beta}_{j-1})}{f'(\widehat{\beta}_{j-1})}$$
(9.12)

Equation (9.12) employs Newton's method in reaching $\widehat{\beta}$, where $\widehat{\beta}_j$ is the *j*th iteration, beginning with an initial estimate for $\widehat{\beta}_0$, given in Table 9.3, as follows:

$$\widehat{\beta}_0 = \frac{\bar{X}}{S} \tag{9.13}$$

If the initial estimate, $\widehat{\beta}_0$, is sufficiently close to the solution $\widehat{\beta}$, then $\widehat{\beta}_j$ approaches $\widehat{\beta}$ as $j \to \infty$. In Newton's method, $\widehat{\beta}$ is approached through increments of size $f(\widehat{\beta}_{j-1})/f'(\widehat{\beta}_{j-1})$. Equation (9.11)

j	\widehat{eta}_{j}	$\sum_{i=1}^{20} X_i^{\widehat{\beta}j}$	$\sum_{i=1}^{20} X_i^{\widehat{\beta}} j \ln X_i$	$\sum_{i=1}^{20} X_i^{\widehat{\beta}} j(\ln X_i)^2$	$f(\widehat{eta}_{j})$	$f'(\widehat{eta}_j)$	$\widehat{\beta}_{j+1}$
0	2.539	1359.088	2442.221	4488.722	1.473	-4.577	2.861
1	2.861	2432.557	4425.376	8208.658	.141	-3.742	2.899
2	2.899	2605.816	4746.920	8813.966	.002	-3.660	2.899
3	2.899	2607.844	4750.684	8821.054	.000	-3.699	2.899

 $\widehat{\beta}=2.899$

 $\widehat{\alpha}=5.366$

#4

0.34

0.64

0.94

(b)

1.24

1.54

1.84

Histograms of the interarrival-time data in Table 6.7: (a) $\triangle b$ =0.005 (b) $\triangle b$ =0.075 (c) $\triangle b$ =0.100

EXAMPLE 6.6. For the exponential distribution, $\theta = \beta$ ($\beta > 0$) and $f_{\beta}(x) = (1/\beta)e^{-x/\beta}$ for $x \ge 0$. The likelihood function is

$$L(\beta) = \left(\frac{1}{\beta} e^{-X_1/\beta}\right) \left(\frac{1}{\beta} e^{-X_2/\beta}\right) \cdot \cdot \cdot \left(\frac{1}{\beta} e^{-X_n/\beta}\right)$$
$$= \beta^{-n} \exp\left(-\frac{1}{\beta} \sum_{i=1}^{n} X_i\right)$$

and we seek the value of β that maximizes $L(\beta)$ over all $\beta > 0$. This task is more easily accomplished if, instead of working directly with $L(\beta)$, we work with its logarithm. Thus, we define the *log-likelihood function* as

$$l(\beta) = \ln L(\beta) = -n \ln \beta - \frac{1}{\beta} \sum_{i=1}^{n} X_i$$

Since the logarithm function is strictly increasing, maximizing $L(\beta)$ is equivalent to maximizing $l(\beta)$, which is much easier; that is, $\hat{\beta}$ maximizes $L(\beta)$ if and only if $\hat{\beta}$ maximizes $l(\beta)$. Standard differential calculus can be used to maximize $l(\beta)$ by setting its derivative to zero and solving for β . That is,

$$\frac{dl}{d\beta} = \frac{-n}{\beta} + \frac{1}{\beta^2} \sum_{i=1}^{n} X_i$$

which equals zero if and only if $\beta = \sum_{i=1}^{n} X_i/n = \overline{X}(n)$. To make sure that $\beta = \overline{X}(n)$ is a maximizer of $l(\beta)$ (as opposed to a minimizer or an inflection point), a sufficient (but not necessary) condition is that $d^2l/d\beta^2$, evaluated at $\beta = \overline{X}(n)$, be negative. But

$$\frac{d^2l}{d\beta^2} = \frac{n}{\beta^2} - \frac{2}{\beta^3} \sum_{i=1}^n X_i$$

which is easily seen to be negative when $\beta = \overline{X}(n)$ since the X_i 's are positive. Thus, the MLE of β is $\hat{\beta} = \overline{X}(n)$. Notice that the MLE is quite natural here, since β is the mean of the hypothesized distribution and the MLE is the *sample* mean. For the data of Example 6.4, $\hat{\beta} = \overline{X}(219) = 0.399$.

EXAMPLE 6.15. We now use a chi-square test to compare the n=219 interarrival times of Table 6.7 with the fitted exponential distribution having distribution function $\hat{F}(x)=1-e^{-x/0.399}$ for $x\geq 0$. If we form, say, k=20 intervals with $p_j=1/k=0.05$ for $j=1,2,\ldots,20$, then $np_j=(219)(0.05)=10.950$, so that this satisfies the guidelines that the intervals be chosen with equal p_j 's and $np_j\geq 5$. In this case, it is easy to find the a_j 's, since \hat{F} can be inverted. That is, we set $a_0=0$ and $a_{20}=\infty$, and

TABLE 6.12 A chi-square goodness-of-fit test for the interarrival-time data

j	Interval	N_{j}	np_j	$\frac{(N_j - np_j)^2}{np_j}$
1	[0, 0.020)	8	10.950	0.795
2	[0.020, 0.042)	11	10.950	0.000
2 3 4 5	[0.042, 0.065)	14	10.950	0.850
4	[0.065, 0.089)	14	10.950	0.850
5	[0.089, 0.115)	16	10.950	2.329
6	[0.115, 0.142)	10	10.950	0.082
6 7	[0.142, 0.172)	7	10.950	1.425
8	[0.172, 0.204)	5	10.950	3.233
9	[0.204, 0.239)	13	10.950	0.384
10	[0.239, 0.277)	12	10.950	0.101
11	[0.277, 0.319)	7	10.950	1.425
12	[0.319, 0.366)	7	10.950	1.425
13	[0.366, 0.419)	12	10.950	0.101
14	[0.419, 0.480)	10	10.950	0.082
15	[0.480, 0.553)	20	10.950	7.480
16	[0.553, 0.642)	9	10.950	0.347
17	[0.642, 0.757)	11	10.950	0.000
18	[0.757, 0.919)	9	10.950	0.347
19	[0.919, 1.195)	14	10.950	0.850
20	[1.195, ∞)	10	10.950	0.082
20	[1.172, -7	170		$\chi^2 = 22.188$

for $j=1, 2, \ldots, 19$ we want a_j to satisfy $\hat{F}(a_j)=j/20$; this is equivalent to setting $a_j=-0.399\ln{(1-j/20)}$ for $j=1, 2, \ldots, 19$ since $a_j=\hat{F}^{-1}(j/20)$. (For continuous distributions such as the normal, gamma, and beta, the inverse of the distribution function does not have a simple closed form. In these cases, however, F^{-1} can be evaluated by numerical methods; consult the references given in Table 6.11.) The computations for the test are given in Table 6.12, and the value of the test statistic is $\chi^2=22.188$. Referring to Table T.2, we see that $\chi^2_{19,0.90}=27.204$, which is not exceeded by χ^2 , so we would not reject H_0 at the $\alpha=0.10$ level. (Note that we would also not reject H_0 for certain larger values of α such as 0.25.) Thus, this test gives us no reason to conclude that our data are poorly fitted by the $\exp(0.399)$ distribution.