Trigonometría:

Teorema de Pitágoras
$c^2 = a^2 + b^2$

Fórmula general

Ley de cosenos y senos

$$a = \sqrt{b^2 + c^2 - 2bc \cos A}$$

$$b = \sqrt{a^2 + c^2 - 2ac \cos B}$$

$$c = \sqrt{a^2 + b^2 - 2ab \cos C}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Valores de las funciones de ángulos importantes

θ	sen θ	cosθ	tanθ	$\cot \theta$	$\sec \theta$	csc θ
0°	0	1	0	œ	1	oo
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3	$\frac{2\sqrt{3}}{3}$	2
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\sqrt{3}}{2}$	1/2	√3	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	1	0	œ	0	8	1

Geometría en el espacio:

Distancia entre dos puntos	Ecuación de la esfera	Punto medio		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}$	$P_{m}\left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2},\frac{z_{1}+z_{2}}{2}\right)$		

Vectores:					
Vector en representación de posición: $A = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle = \langle x, y, z \rangle$ Magnitud de un vector: $ A = \sqrt{x^2 + y^2 + z^2}$	Distancia de un punto P a una recta que pasa por los puntos Q y R: $d = \frac{ a \times b }{ b }$ Donde: $a = \overrightarrow{QR}$ y $b = \overrightarrow{QP}$				
Traslación de un vector a un punto: $A(P) = (x + a_1, y + a_2, z + a_3) = Q$	Distancia de un punto P a un plano que contiene a los puntos Q, R y S: $d = \frac{ a \cdot (b \times c) }{ a \times b }$ Donde: $a = \overrightarrow{QR}$, $b = \overrightarrow{QS}$ y $c = \overrightarrow{QP}$				
Un vector en términos de vectores unitarios (\mathbb{R}^2): $A = a_1 i + a_2 j$ Donde: i = < 1,0 > j = < 0,1 >	Un vector en términos de vectores unitarios: $A = a_1i + a_2j + a_3k$ Donde: i = < 1,0,0 > j = < 0,1,0 > k = < 0,0,1 >				
Vector en términos de coseno y seno (R ²): $A = A \left(\frac{a_1}{ A } i + \frac{a_2}{ A } j \right) = A \left(\cos \theta i + \sin \theta j \right)$	Un vector en términos de cosenos directores (R ³): $A = A \left(\frac{a_1}{ A } i + \frac{a_2}{ A } j + \frac{a_3}{ A } k \right)$ $A = A \left(Cos \alpha i + Cos \beta j + Cos \gamma k \right)$				
$\cos \theta = \frac{a_1}{ A }, \sin \theta = \frac{a_2}{ A }$ Vector unitario (R ²): $U_A = \frac{a_1}{ A }i + \frac{a_2}{ A }j$ $U_A = \cos \theta i + \sin \theta j$	Donde: $Cos \alpha = \frac{a_1}{ A }, Cos \beta = \frac{a_2}{ A }, Cos \gamma = \frac{a_3}{ A }$ Vector unitario (R ³): $U_A = \frac{a_1}{ A }i + \frac{a_2}{ A }j + \frac{a_3}{ A }k$				
Producto punto:	T: : L7 Para				

$$A \cdot B = a_1b_1 + a_2b_2 + a_3b_3 = |A| \cdot |B| \cdot Cos \theta$$

Angulo entre vectores:
$$\theta = Cos^{-1} \frac{A \cdot B}{|A| \cdot |B|}$$

Para $A \cdot B = 0$, los vectores son perpendiculares

Provección de A sobre B

$$|P /_B| = \frac{A \cdot B}{|B|} = |A| \cos \theta$$
 $\overrightarrow{P} /_B = \frac{A \cdot B}{|B|^2} \cdot \overrightarrow{B}$

Proyección escalar

Provección vectorial

Producto cruz: $A \times B = \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ $A \times B = 0$ los vectores son paralelos

Área de un paralelogramo $|A \times B|$

Triple producto escalar o volumen de un paralelepípedo

 $|A \cdot (B \times C)| = |A| \cdot |B \times C| \cdot \cos \theta = V = Ah$

Línea recta y planos:

$L = r(t) = r_0 + t \cdot v$	
Dadas un nunto vi un viactor dina	منذ

Dados un punto y un vector dirección

Ecuación del Plano: Dado un punto $P(x_0, y_0, z_0)$ y el vector normal al plano $N = \langle a, b, c \rangle$ $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

Coordenadas cilíndricas y esféricas (en radianes)

De coordenadas cilíndricas a rectangulares
$x = r \cos \theta$, $y = r \operatorname{Sen} \theta$, $z = z$
De coordenadas rectangulares a cilíndricas (r, θ, z)

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$, $z = z$

De coordenadas esféricas a rectangulares $x = \rho \ Sen \varphi \ Cos \theta$, $y = \rho \ Sen \varphi \ Sen \theta$, $z = \rho \ Cos \varphi$

De coordenadas rectangulares a esféricas (ρ, θ, φ)

$$\rho^2 = x^2 + y^2 + z^2$$
, $\tan \theta = \frac{y}{x}$, $\cos \varphi = \frac{z}{\rho}$

De coordenadas cilíndricas a esféricas: $\rho^2 = r^2 + z^2$, $\theta = \theta$, $\tan \phi = \frac{r}{r}$

Función vectorial

Tiro Parabólico: $r(t) = v_0 t \cos \theta i + \left(v_0 t \sin \theta - \frac{gt^2}{2}\right) j$

Vector tangente = vector velocidad r'(t) = f'(t)i + g'(t)j + h'(t)k = v(t)

Rapidez o velocidad instantánea:

Vector aceleración:

$$a(t) = r''(t) = f''(t)i + g''(t)j + h''(t)k = v'(t)$$

Curvatura:

$$k = \frac{|T'|}{|r'|} = \frac{|T'|}{v}$$

Componente tangencial de la aceleración:

$$k = \frac{|T'|}{|r'|} = \frac{|T'|}{v} \qquad \qquad a_T = v' = \frac{v \cdot a}{|v|} = \frac{r'(t) \cdot r''(t)}{|r'(t)|}$$

Componente normal de la aceleración:

$$a_N = kv^2 = \frac{|r'(t) \times r''(t)|}{|r'(t)|}$$

Vector tangente unitario:

$$T(t) = \frac{r'(t)}{|r'(t)|}$$

Vector normal unitario:

$$N(t) = \frac{T'(t)}{|T'(t)|}$$

Vector binormal

$$B(t) = T(t) \times N(t)$$

Integral de una función vectorial

$$\int r(t) dt = \left(\int f(t) dt \right) i + \left(\int g(t) dt \right) j + \left(\int h(t) dt \right) k$$

Longitud de arco

$$l = \int_{a}^{b} |r'(t)| dt = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

GRAFICAS DE SUPERFICIES CUADRATICAS

Ecuación **Paraboloide**

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Las trazas horizontales son elipses si $a \neq b$, si a=b las trazas horizontales son círculos. Las trazas verticales son parábolas. La variable a la potencia uno indica el eje. Se ilustra el caso donde c > 0.

Si z es negativo el paraboloide abre hacia los valores negativos de z

Superficie

Ecuación Paraboloide hiperbólico

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Las trazas horizontales son hipérbolas. Las trazas verticales son parábolas. Se ilustra el caso donde

c < 0

Elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Todas las trazas son elipses si a ≠ b ≠ c, si dos coeficientes generan círculos para el plano de coordenada que incluya a las variables involucradas, si los coeficientes son iguales el elipsoide es una esfera.

Cono
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Las trazas horizontales son elipses si a \neq b, si a=b las trazas horizontales son círculos. Las trazas verticales en los planos x=k y y=k son hipérbolas si k \neq 0, pero son pares de rectas secantes si k=0

Hiperboloide de una hoja

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Si a≠b las trazas
horizontales son elipses,
si a=b las trazas
horizontales son
círculos. Las trazas
verticales son
hipérbolas. El eje de
simetría corresponde a
la variable cuyo
coeficiente es negativo

Hiperboloide de dos hojas

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Las trazas horizontales en z=k si a≠b son elipses, si a=b las trazas son círculos para k>c o k<-c. Los dos signos menos indican dos hojas.

Funciones de varias variables

Teorema de Clairaut:

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Funciones de dos variables

Diferencial dz o diferencial total

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Incremento de z

$$\Delta z = f(x_2, y_2) - f(x_1, y_1)$$

Funciones de tres variables

Diferencial dw o diferencial total

$$dw = \frac{\partial w}{\partial x}dx + \frac{\partial w}{\partial y}dy + \frac{\partial w}{\partial z}dz$$

Incremento de w

$$\Delta z = f(x_2, y_2, z_2) - f(x_1, y_1, z_1)$$

Regla de la cadena con dos variables y un parámetro

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Regla de la cadena con tres variables y un parámetro $\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dy}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dy}{dt}$

Regla de la cadena con dos variables y dos parámetros

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Regla de la cadena con tres variables y dos parámetros

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$
$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$$

Derivación implícita

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Derivación implícita

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Funciones de dos variables	Funciones de tres variables				
Vector gradiente	Vector gradiente				
$\nabla f = \langle f_x, f_y \rangle = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j$	$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z} k$				
La máxima razón de cambio $ abla f(x,y) $	La máxima razón de cambio $\left abla f(x,y,z) \right $				
Derivada direccional: Máxima razón de cambio en dirección del vector $U = \langle a,b \rangle$	Derivada direccional: Máxima razón de cambio en dirección del vector $U = \langle a,b,c \rangle$				
$D_u f(x, y) = f_x(x, y)a + f_y(x, y)b = \nabla f(x, y) \cdot U$	$D_u f(x, y, z) = \nabla f(x, y, z) \cdot U$				
Ecuación del plano tangente a la superficie $z = f(x, y)$, en el punto $P(x_0, y_0, z_0)$ es: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$	Ecuación del plano tangente a la superficie de nivel $f(x,y,z)=k$ en $P(x_0,y_0,z_0)$ con vector normal $\nabla F(x_0,y_0,z_0)$ es: $F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+$				
	$F_z(x_0, y_0, z_0)(z - z_0) = 0$				

Criterio de la segunda derivada para máximos y mínimos:

$$D = f_{xx} \cdot f_{yy} - (f_{xy})^2$$

- a) Si D > 0 y $f_{xx} > 0$, f(a,b) es un mínimo local.
- b) Si D > 0 y $f_{xx} < 0$, f(a,b) es un máximo local.
- c) Si D < 0, f(a,b) ni es un mínimo local ni máximo (punto de ensilladura).

Teorema de Fubini:

Si f es continua en el rectángulo

 $R = \{(x, y) | a \le x \le b, c \le y \le d\}$, entonces:

$$\iint\limits_R f(x,y)dA = \int_a^b \int_c^d f(x,y)dydx = \int_c^d \int_a^b f(x,y)dxdy$$

FORMULAS FUNDAMENTALES DE DERIVACION

$\frac{d}{dx}[c] = 0 \qquad \qquad 2. \frac{d}{dx}[x] = 1$	3. $\frac{d}{dx}[cx] = c(1) = c$ 4. $\frac{d}{dx}[cut]$	$\begin{bmatrix} u \end{bmatrix} = cu' \qquad \qquad \begin{bmatrix} \frac{d}{dx} [u^n] = n u^{n-1} u' \end{bmatrix}$
6. $\frac{d}{dx} \left[cu^n \right] = (cn)u^{n-1}u' \qquad \frac{d}{dx}$	$\left[(u \pm v) \right] = u' \pm v' \qquad \qquad 8. \frac{d}{dx} [uv] =$	$= uv' + vu' \qquad \qquad 9. \frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$
$\frac{d}{10.} \frac{d}{dx} \sqrt[n]{u^m} = \frac{m \left(u^m\right)^{\frac{1}{n}} u'}{nu}$	11. $\frac{d}{dx}[u] = \frac{u}{ u }u', u \neq 0$	$\frac{d}{dx}\left[u^{\nu}\right] = vu^{\nu-1}u' + u^{\nu}\ln uv'$
$\frac{d}{dx}[\sin u] = (\cos u)u'$	$\int_{14.}^{14.} \frac{d}{dx} [\tan u] = (\sec^2 u) u'$	$\int_{15.} \frac{d}{dx} [\sec u] = (\sec u \cdot \tan u) u'$
$\frac{d}{dx}[\cos u] = (-\sin u)u'$	$\int_{17.} \frac{d}{dx} \left[\cot u \right] = -\left(\csc^2 u \right) u'$	$\int_{18.} \frac{d}{dx} \left[\csc u \right] = -\left(\csc u \cdot \cot u \right) u'$
$\frac{d}{dx}\left[\sin^{-1}u\right] = \frac{u'}{\sqrt{1-u^2}}$	$20. \frac{d}{dx} \left[\tan^{-1} u \right] = \frac{u'}{1 + u^2}$	$\frac{d}{dx} \left[\sec^{-1} u \right] = \frac{u'}{ u \sqrt{u^2 - 1}}$
$\frac{d}{dx}\left[\cos^{-1}u\right] = \frac{-u'}{\sqrt{1-u^2}}$	$\frac{d}{23.}\left[\cot^{-1}u\right] = \frac{-u'}{1+u^2}$	$\frac{d}{dx}\left[\csc^{-1}u\right] = \frac{-u'}{ u \sqrt{u^2 - 1}}$
$\frac{d}{dx} \left[\sinh u \right] = \left(\cosh u \right) u'$		$\frac{d}{dx}\left[\sec hu\right] = -\left(\sec hu \cdot \tanh u\right)u'$
$\frac{d}{dx} \left[\cosh u \right] = \left(\sinh u \right) u'$	$\frac{d}{dx} \left[\coth u \right] = -\left(\csc h^2 u \right) u'$	$\frac{d}{dx}\left[\csc hu\right] = -\left(\csc hu \cdot \coth u\right)u'$
$\frac{d}{dx} \left[e^u \right] = e^u u' \qquad \qquad \frac{d}{dx} \left[\ln \frac{d}{dx} \right]$	$u] = \frac{u'}{u} \qquad \left \frac{d}{dx} \left[\log_a u \right] = \frac{\log_a}{u}$	$\frac{d}{dx} \left[a^u \right] = a^u \cdot \ln a \cdot u'$

FORMULAS FUNDAMENTALES DE INTEGRACION

1. $\int 0 dx = C$ 2. $\int f'(x) dx = f(x)$	$(x) + C \qquad 3. \int (u+v)dx = \int u$	$a dx + \int v dx \qquad 4. \int au dx = a \int u dx, a = const.$				
5. $\int u^m du = \frac{u^{m+1}}{m+1} + C, m \neq -1$	6. $\int \frac{du}{u} = \ln u + C \qquad 7. \int a^u dx$	$u = \frac{a^u}{\ln a} + C a > 0, a \neq 1 \text{8.} \int e^u du = e^u + C$				
9. $\int \sin u du = -\cos u + C \qquad 10. \int \cos u du$	$\int \sin u du = \sin u + C \qquad \text{11.} \int \tan u du = \sin u + C$	$u du = \ln \sec u + C \qquad 12. \int \cot u du = \ln \sin u + C$				
13. $\int \sec u \ du = \ln \sec u + \tan u + C$	14. $\int \csc u \ du = \ln \left \csc u - \cot u \right $	$ \mathbf{t}u + C \qquad 15. \int \mathbf{sec}^2 u du = \mathbf{tan} u + C$				
$16. \int \csc^2 u du = -\cot u + C$	17. $\int \sec u \tan u du = \sec u +$	$C 18. \int \csc u \cot u du = -\csc u + C$				
$19. \int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$	$20. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + \frac{1}{a}$	$-C \qquad 21. \int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} arc \sec \frac{u}{a} + C$				
22. $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left \frac{u - a}{u + a} \right + C$	23. $\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left \frac{a + u}{a - u} \right $	+ C $24. \int \frac{du}{\sqrt{u^2 + a^2}} = \ln(u + \sqrt{u^2 + a^2}) + C$				
$25. \int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left u + \sqrt{u^2 - a^2} \right + C$ $26. \int \sqrt{u^2 + a^2} du = \frac{1}{2} u \sqrt{u^2 + a^2} + \frac{1}{2} a^2 \ln \left(u + \sqrt{u^2 + a^2} \right) + C$						
$27. \int \sqrt{a^2 - u^2} du = \frac{1}{2} u \sqrt{a^2 - u^2} + \frac{1}{2} a^2 \arcsin \frac{u}{a} + C \qquad 28. \int \sqrt{u^2 - a^2} du = \frac{1}{2} u \sqrt{u^2 - a^2} - \frac{1}{2} a^2 \ln \left u + \sqrt{u^2 - a^2} \right + C$						

FUNCIONES E IDENTIDADES TRIGONOMÉTRICAS

TONCIONES E IDENTIDADES TRIGONOMETRICAS									
1. $\sin a = \frac{op}{h}$ 2.	$\cos a = \frac{ad}{h}$	3. ta i	$\mathbf{n} a = \frac{op}{ad}$	4.	cota =	ad op	5. sec <i>a</i>	$=\frac{h}{ad}$	6. $\csc a = \frac{h}{op}$
7. $\tan u = \frac{\sin u}{\cos u}$ 8. $\cot u = \frac{1}{\tan u} = \frac{\cos u}{\sin u}$			9. $\csc u = \frac{1}{\sin u}$ 10. $\sec u = \frac{1}{\cos u}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\csc u = 1 \qquad 14. \ \tan u \cdot \cot u = 1 \qquad _{15.} \ \sec u \cdot \cos u = 1$			$_{15.} \sec u \cdot \cos u = 1$		
16. $2\sin u \cdot \cos u = \sin 2u$				18. $2\cos^2 u - 1 = \cos 2u$ 19. $1 - 2\sin^2 u = \cos 2u$					
$20. \sin^2 u = \frac{1}{2} (1 - \cos 2u)$				21. $\cos^2 u = \frac{1}{2} (1 + \cos 2u)$					
22. $\sin a \cdot \cos b = \frac{1}{2}\sin(a-b) + \frac{1}{2}\sin(a+b)$			23. $\cos a \cdot \cos b = \frac{1}{2}\cos(a-b) + \frac{1}{2}\cos(a+b)$						
24. $\sin a \cdot \sin b = \frac{1}{2}\cos(a-b) - \frac{1}{2}\cos(a+b)$			$25. \ 1 \pm \sin x = 1 \pm \cos \left(\frac{1}{2} \pi - x \right)$						
26. $\sin^2 u + \cos^2 u = 1$ 27. $1 + \tan^2 u = \sec^2 u = 1$				$c^2 u$!		28. 1+c	$\operatorname{ot}^2 u =$	csc ² u

AREA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AREA $A_L = 2\pi r h \qquad A_T = 2\pi r (h + r)$ VOLUMEN $\pi r^2 h$	A _L = #rg	T	$A_{\mathbf{r}} = A_{\mathbf{s}} + A_{\mathbf{B}} + A_{\mathbf{L}}$ VOLUMEN $\frac{\pi h}{3} (\mathbf{R}^2 + \mathbf{r}^2 + \mathbf{r} \mathbf{R})$)A
Prisma		Cilindro	ndro Cono		co cónico	Esfera
AB			100			
Perímetro	a+b+c	2π r Circunferencia	$\approx \pi(R+r)$ $r=\sqrt{r^2+r^2\cos^2t}dt$	41	2 <i>b</i> + 2 <i>l</i>	B+b+21
Área	$\frac{b \cdot h}{2}$ $\frac{b \cdot c \cdot \sin \alpha}{2}$	πr^2	πRr	$D \times d$	$p \times h$	Bbh 2
	Triángulo	Circulo	Elipse	Rombo	Romboide (paralelográmo	
	c a h		r-R	T D	q P	l B h