# Variance Stabilizing Transformations for image-based compound profiling features

LEonard Wafula

August 31, 2017

#### Introduction

- □ Proxy biological method for distinguishing compounds using a range of features extracted from image-based assays
   □ The features provide information on

   i. intracellular biomarkers: texture, intensity, spatial distribution ...
   ii. cells: shape, geometry, quantity .. .
   □ Why
   i. describe & predict a compound's mechanism of action
   ii. preferentially identify highly specific compounds having desirable
- iii. early detection of undesired compound effects on cells + cellular activity: toxicity

effect(s) on a given biological target

#### .. introduction

0

It's all good, but .... Most of these features often

- are highly correlated: need to limit features used for analysis
- have non-normal distributions: mean-variance relationship present
  - multivariate classification methods hugely depend on variance



# Aim of the analysis

#### To assess the:

- I. effect of glog transformation on separation of treatment replicates from non-replicates
- II. effect of glog transformation on proportion of actively-called treatments
- III. performance of a glog transformation on treatments separation when applied at cell- or well-level
- $\clubsuit$  Treatment: a compound at a given concentration (a compound can have 4 or 5 concentration levels  $1\,\mu\text{M}$  (microMolar),  $3\,\mu\text{M},\,3.34\,\mu\text{M},\,9\,\mu\text{M}$  and  $11.1\,\mu\text{M})$

# Data, the glog transformation and data pre-processing

#### <u>Data</u>

- ♦ cancer cell lines: Liver & Colon
- $\diamondsuit$  3 batches @ 18 plates



- ♦ Number of cells
- a. plate: btwn 134909 & 281177  $(152679 \text{ & } 330117) \text{ in } 1^{st}(2^{nd})$
- b. well: 73 & 1812 (95 & 2120) in  $1^{st}(2^{nd})$
- ♦ 311 compounds including control
- ♦ total of 1253 treatments
- ♦ 462 features extracted from each cell

# ..Data, the glog transformation and data pre-processing

## Glog transformation

→ formula

$$z = \mathsf{Log}(y - \alpha + \sqrt{(y - \alpha)^2 + \lambda})$$

- r where
  - $\alpha$ : feature mean across controls
  - ullet  $\lambda$ : transformation parameter

## Data pre-processing

- Aggregation calculating mean for each feature per well
- Normalization -

 $\frac{\mathsf{feature}_{value} - \mathsf{mean.feature}_{DMSO}}{\mathsf{pooled.SD.feature}_{across.plates}}$ 

- Feature selection
  - MRMR [1]: identify set of features with low pairwise correlation & high reproducibility among replicates.
    - AUC value for btwn 2-75 features
    - optimal feature: maximizes separation of treatment replicates within 1 std error of AUC
- Arr Active calling: treatments with  $\geq 50\%$  active replicates

# Methodology

- ⋆ Hotelling's T<sup>2</sup> method
- measures difference in 2 multivariate means
- → formula

$$T^{2} = \frac{(\bar{\mathbf{X}}_{1} - \bar{\mathbf{X}}_{2}) \cdot (\bar{\mathbf{X}}_{1} - \bar{\mathbf{X}}_{2})}{S_{p}(\frac{1}{n_{1}} + \frac{1}{n_{2}})}$$

normality assumptions for optimal results

#### \* AUC method

#### 2-steps involved in AUC-calculation



→ separation btwn distributions guantified [ROC curve + AUC]

## Results: EDA

★ DMSO control replicated across 1512 wells

## ★ Implications

- $\star$  For calculation of Hotelling's  $\mathsf{T}^2$ , a limited number of selected features was used to maximize its power
- $\star$  10 highest ranked features from MRMR used to calculate T<sup>2</sup>

# Results: Transformations effects on treatments separation

## Prologue

- $\diamond$  Only glog transformations [ $\lambda$  =0.1 &, 0.5 25 at 0.5 interval]
- ♦ Each transformed compared to its corresponding untransformed data defined by overlapping actively-called treatments
- $\diamond$  Improved separation: +ve shifts distribution (and/or higher) of T<sup>2</sup> (AUC) for transformed compared to untransformed means
- $\diamond 1^{st}$  cell line

# Transformations effects on treatments separation - $T^2$

\* very high [very different] + very low [highly similar] values present

\* others led to no improvements (e.g  $\lambda=10$ )

Distribution of log(T2) 2.0 0.0 12 log(T2 value)

\* some led to slight but non-significant improvements



# Transformations effects on treatments separation - AUC



- high AUC b4-transformation
- $\bullet$  some (e.g  $\lambda=5.5)$  separated slightly poorer
- others (e.g  $\lambda=0.1$ ) led to marginal increases
- differences were minimal & non-significant



- ♦ In both methods, minimal & non-significant differences were observed
- ♦ Why?

## 1. Transformation effect on features distributions ( $\lambda = 10.5$ )



## 2. Differentiating ability of features selected (before transformation)



## Conclusion

 $\sim$  Transformations did not improve treatments separation beyond what was seen pre-transformation

## Acknowledgement

## **Supervisors**

- Prof. Dr. Ziv SHKEDY
- Prof. Dr. Nolen Joy PERUALILA
- Dr. Marjolein CRABBE
- Dr. Steffen JAENSCH







## References



H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy," *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 27, no. 8, pp. 1226–1238, 2005.