A Neoplastic Gene Fusion Mimics Trans-Splicing of RNAs in Normal Human Cells

Lisa Strickland

Second Department of Internal Medicine, Tottori University School of Medicine, Tottori 683-8504, Japan

01-01-2004

1 Abstract

A diagnostic-based prognostic measure of an SARS- CoV outbreak in South America will enable health officials to determine the source of a confirmed SARS-CoV outbreak that has affected more than one million individuals worldwide. This team of scientists and clinicians from the Biotropics Center for SARS-Protein Evaluation Collaboration (SCEDEC) at the Ronald Reagan UCLA Medical Center, a department of Pathology at the UCLA Barnes-Jewish Hospital, developed and have published the final findings of the CAR-100 microfluidic assay that demonstrated a positive finding for HCoV-OC43 in isolated populations of SARS-CoV patients and an HCoV-OC228E synthase dehydrogenase (DDH) link with a routine, commercially available Bioethics test. The time-lapse animation above shows the results of the genetic study on the CAR-100 assay, an atypical strain of RNA that is sometimes referred to as a myriad RNA, and the WHSL assay.

T 11	ıc	8			UIC	, r	, 0	u	ıу	, '		111	u	ı	UC	·u	U	y	D.	_1(_11	LUI	50	D	11	OI	11	•	_		4 1	O	11	u	ப	·Ct.	LU		1.	ıa	11.	110	ı	Ju	101	-
cals, Inc., was conducted under the auspices of the Academy of Science of the															e																															
U.S	S.	a	n	d	С	aı	ıa	d	a	(I	US	3/	C	Ρ	o	:)	р	rc	g	ra	m	1,	W	h	ic	h	fυ	ın	de	ed	t	h	Э.	W	or	k	fo	or	v	vh	ic	h	S	cie	en	1-
tis	ts	a	no	10	cli	n	ic	ia	ns	s (a	'n	ea	ırı	n	éx	p	ec	li	te	d	er	nt:	ry	i	nt	О	tl	nе	Ι	a	bo	or	at	O	ry	O	f	M	ic	ro	ob	io	lo	g.	у
to	A	SS	is	t	tŀ	ıe	E	Iе	al	tł	ı.	D:	ire	ec	ti	or	1.	F	lе	se	$^{\mathrm{a}}$	rc	he	ers	s]	ha	ıv	е	de	eta	ai.	le	d	tł	ne	ir	a	ct	iv	rit	iε	S	in	ıt	h	e
fol	lo	w	in	g	aı	rt:	ic	le																																						

1

1.1 Image Analysis

Figure 1: A Close Up Of A Small Bird In A Field