Исследование одного алгоритма метода главных компонент

Салова Яна Алексеевна, гр.20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., профессор Ермаков М.С. Рецензент: Старший научный сотрудник, Петербургское отделение математического института РАН, лаборатория статистических методов В.Н.Солев

Санкт-Петербург, 2024

Введение

Мотивация

- Одной из ключевых задач в методе главных компонент является нахождение наибольшего собственного числа и соответствующего собственного вектора.
- Она используется во многих приложениях.
- Позволяет выделить направление максимальной дисперсии данных, что способствует их лучшему пониманию и упрощению структуры.

Введение

Цель дипломной работы

 Исследовать алгоритм нахождения наибольшего собственного числа и соответсвующего собственного вектора.

Задачи дипломной работы

- Знакомство с алгоритмом и написание программы его моделирования.
- Анализ сходимости алгоритма и доказательство его состоятельности.
- Исследование свойств алгоритма в зависимости от размерности и от значения второго собственного числа.

Математическая постановка задачи

Рассматриваемый алгоритм является вариантом метода стохастического градиента для решения следующей экстремальной задачи:

Задача нахождения наибольшего собственного вектора

Дана ковариационная матрица $A \in \mathbb{R}^{n \times n}$. Необходимо найти вектор $\mathbf{x} \in \mathbb{R}^n$ единичной нормы, который максимизирует функцию

$$\lambda = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|,$$

где λ — наибольшее собственное значение матрицы A, а \mathbf{x} — соответствующий собственный вектор.

Новый алгоритм

Концепция

- $oldsymbol{0}$ Моделируем случайный вектор $oldsymbol{u}_1$, равномерно распределённый на сфере.
- ② Моделируем вектор ${\bf u}_2$, ортогональный ${\bf u}_1$, и ищем наибольшее собственное число λ и собственный вектор ${\bf v}$ в подпространстве, образованном ${\bf u}_1$ и ${\bf u}_2$.
- ① Повторяем предыдущий шаг, моделируя новые ортогональные векторы и обновляя ${f v}$ и λ , пока не выполнится критерий остановки.

Состоятельность алгоритма

Предложение

С ростом числа итераций последовательность приближений сходится по вероятности к наибольшему собственному числу λ_{\max} и соответствующему ему уникальному собственному вектору матрицы ${m A}$.

Моделирование для матрицы 3×3

Рис.: Ошибка вычисления собственного числа

Моделирование для матрицы 3×3 .

График показывает погрешности

$$\hat{\lambda}_{ik} = (\lambda - \lambda_k), \ k \in [1, 100], \ i \in [10, 100],$$

где λ — истинное значение, λ_k — средние значения по k запускам алгоритма для разных i.

Моделирование для матрицы 6×6

Рис.: Ошибка вычисления собственного числа

Моделирование для матрицы 6×6 .

График показывает погрешности

$$\hat{\lambda}_{ik} = (\lambda - \lambda_k), \ k \in [1, 100], \ i \in [10, 100],$$

где λ — истинное значение, λ_k — средние значения по k запускам алгоритма для разных i.

Моделирование для матрицы 11×11

Рис.: Ошибка вычисления собственного числа

Моделирование для матрицы 11×11 .

График показывает погрешности

$$\hat{\lambda}_{ik} = (\lambda - \lambda_k), \ k \in [1, 100], \ i \in [10, 100],$$

где λ — истинное значение, λ_k — средние значения по k запускам алгоритма для разных i.

Моделирование для матрицы 20 imes 20

Рис.: Ошибка вычисления собственного числа

Моделирование для матрицы 20×20 .

График показывает погрешности

$$\hat{\lambda}_{ik} = (\lambda - \lambda_k), \ k \in [1, 100], \ i \in [10, 100],$$

где λ — истинное значение, λ_k — средние значения по k запускам алгоритма для разных i.

Моделирование для матрицы 3×3 .

Рис.: Влияние значений вторых собственных чисел

Моделирование для матрицы 6×6 .

Рис.: Влияние значений вторых собственных чисел

Моделирование для матрицы 11×11 .

Рис.: Влияние значений вторых собственных чисел

Моделирование для матрицы 20×20 .

Рис.: Влияние значений вторых собственных чисел

Количество итераций

Количество итераций k для достижения точности ε :

$$k \approx \left\lceil \frac{\log(\varepsilon/\delta_0)}{\log\left(\left|\frac{\lambda_2}{\lambda_1}\right|\right)} \right\rceil,$$

где:

- δ_0 начальная ошибка,
- ullet $\left| \frac{\lambda_2}{\lambda_1} \right|$ отношение двух наибольших собственных чисел матрицы ${f A}$.

Заключение

- Разработан и реализован новый простой алгоритм для поиска наибольшего собственного числа и соответствующего собственного вектора.
- Исследованы его сходимость, вычислительная сложность и количество необходимых итераций.
- Проведено моделирование работы алгоритма на различных наборах данных

Дальнейшее развитие алгоритма видится в его расширении на высокие размерности и в значительном улучшении скорости сходимости посредством метода Монте-Карло.