Algorithmik I

Mitschrift

17. Februar 2011

Inhaltsverzeichnis

1 Elementares über Graphen

1

1 Elementares über Graphen

Definition 1.1 Ein ungerichteter Graph ist ein Paar G = (V, E), mit V, E Mengen. V heißt Menge von Knoten, E heißt Menge von Kanten. Außerdem gibt es eine Funktion $i: E \to \mathcal{P}(V)$ mit $\mathcal{P}(V) = 2^V$ (Potenzmenge) und $0 < i(e) \le 2$. i gibt die Endpunkte einer Kante an.

Ist $i(e) = \{u, v\}$, so heißen u, v Endpunkte von e. Ist $i(e_1) = i(e_2)$, so heißen e_1, e_2 parallel. Ist |i(e)| = 1, so heißt e Schleife.

Der Grad eines Knotens v, grad(v), ist die Anzahl der Kanten, für die v Endpunkt ist, wobei Schleifen doppelt gezählt werden. Ist grad(v) = 0, so heißt v isoliert.

Ein Graph heißt endlich, wenn V und E endlich sind.

Beispiel

Beispiel Unendliche Graphen

unendlich viele Kanten

Bemerkung In einem endlichen Graph ist die Anzahl der Knoten mit ungeradem Gradgerade.

Beweis Sei $V = \{v_1, \ldots, v_n\}$, dann ist $\sum_{i=1}^n \operatorname{grad}(v_i) = 2|E|$. Denn: starten wir mit $G = (V, \emptyset)$ und fügen die Kanten nacheinander ein, dann erhöht das Einfügen den Grad beider beteiligten Knoten um jeweils 1. Handelt es sich bei der Kante um eine Schleife, wir der Grad des Knotens um 2 erhöht.

Seien o.E. $v_1 \dots v_j$ mit geradem Grad und $v_{j+1} \dots v_n$ mit ungeradem Grad. $\sum_{l=1}^{j} grad(v_l)$ ist eine gerade Zahl. Über alle Knoten summiert ergibt sich auch eine gerade Zahl 2|E|.

$$2|E| = \sum_{i=1}^{n} grad(v_i) = \underbrace{\sum_{i=1}^{j} grad(v_i)}_{gerade} + \underbrace{\sum_{i=j+1}^{n} \underbrace{grad(v_i)}_{aerade}}_{aerade}$$

Damit $\sum_{i=j+1}^{n} grad(v_i)$ gerade ist, muss die Anzahl dieser ungeraden Knoten gerade sein.

Definition 1.2 Sei G = (V, E) ein Graph. Sind v_1, v_2 die Endpunkte von e, so heißen v_1, v_2 benachbart. Ein Weg in G ist eine Folge von Kanten e_1, e_2, \ldots , so dass gilt:

- 1. $\forall i$ gilt: e_i, e_{i+1} haben einen gemeinsamen Endpunkt.
- 2. ist e_i keine Schleife und weder erste noch letzte Kante, so hat e_i einen Knoten mit e_{i-1} gemeinsam und den anderen mit e_{i+1} .

Beispiel

Definition 1.3 Ein Weg wird auch dargestellt:

$$v_1 \stackrel{e_1}{-} v_2 \stackrel{e_2}{-} v_2 \stackrel{e_3}{-} v_3 \stackrel{\cdots}{-} \cdots \stackrel{e_{n-1}}{-} v_n$$

In diesem Weg entspricht e_2 einer Schleife an v_2 . Ist dieser abgebildete Weg endlich, so heißen v_1 Anfangspunkt und v_n Endpunkt. Die Länge eines Weges ist gleich der Anzahl der Kanten, die er enthält.

Ein Kreis (Zyklus) ist ein Weg, dessen Anfangspunkt und Endpunkt gleich sind. Ein Weg heißt einfach, wenn jeder Knoten höchstens einmal vorkommt. Ein Kreis der Länge $\neq 2$ heißt einfach, wenn jeder Knoten außer Anfangs- und Endpunkt höchstens einmal vorkommt.

Definition 1.4 Ein Graph G=(V,E) heißt zusammenhängend, wenn es zwischen je zwei Knoten in V einen Weg gibt, der sie verbindet, d.h. einer der Knoten ist Anfangspunkt und einer ist Endpunkt.

Es gibt für jeden Knoten v der Menge V einen Weg zu v der Länge 0.