Federated Learning with Partial Model Personalization

ICML 2022

Krishna Pillutla

Kshitiz Malik

Abdelrahman Mohamed

Mike Rabbat

Maziar Sanjabi

Lin Xiao

Personalized federated learning

Model on client $i = (u, v_i)$

Objective:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n F_i(u, v_i)$$

u: shared parameters

 v_i : personal parameters

Our contributions

1. Theory: Analysis of 2 popular optimization algos

Objective:
$$\min_{u, v_1, \dots, v_n} \frac{1}{n} \sum_{i=1}^n F_i(u, v_i)$$

2. Extensive experiments: text, vision, and speech settings

u: shared parameters

 v_i : personal parameters

Personalized

Personalized output layer

Arivazhagan et al. (2019) Collins et al. ICML (2021)

Combined predictions

$$F_i(u, v_i) = \mathbb{E}_{(X,Y) \sim p_i} \left(\phi_g(X; u) + \phi_l(X; v_i) - Y \right)^2$$

Agarwal et al. (2020)

Personalized adapters

Optimization

- Server samples m clients and broadcast global model u
- Local updates on client i: $(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)$
- Aggregate updates to global part of the model:

$$u^+ = \frac{1}{m} \sum_i u_i^+$$

Alternating update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

Collins et al. ICML (2021) Singhal et al. NeurIPS (2021)

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i^+)$$

** Simultaneous update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$$

Liang et al. (2019) Arivazhagan et al. (2019)

Optimization

- Server samples *m* clients and broadcast global model *u*
- Local updates on client i: $(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)$
- Aggregate updates to global part of the model:

$$u^+ = \frac{1}{m} \sum_i u_i^+$$

Alternating update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

Collins et al. ICML (2021) Singhal et al. NeurIPS (2021)

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i^+)$$

Simultaneous update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$$

Liang et al. (2019) Arivazhagan et al. (2019)

Optimization

ullet Server samples m clients and broadcast global model u

- Local updates on client i: $(u_i^+, v_i^+) = \text{LocalUpdate}_i(u, v_i)$
- Aggregate updates to global part of the model:

$$u^+ = \frac{1}{m} \sum_i u_i^+$$

Alternating update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

Collins et al. ICML (2021) Singhal et al. NeurIPS (2021)

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i^+)$$

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$$

Liang et al. (2019) Arivazhagan et al. (2019)

Contribution 1: Theory

Theorem [*P.*, Malik, Mohamed, Rabbat, Sanjabi, Xiao]

For smooth, nonconvex functions and client sampling, we have the rates:

Alternating update: $\frac{\sigma_1^2}{\sqrt{t}}$

Simultaneous update: $\frac{\sigma_2^2}{\sqrt{t}}$

where $\sigma_1^2 < \sigma_2^2$ under typical scenarios

Alternating update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i^+)$$

Simultaneous update

$$v_i^+ = v_i - \gamma \nabla_v F_i(u, v_i)$$

$$u_i^+ = u - \gamma \nabla_u F_i(u, v_i)$$

Experimentally, small but consistent trend of alternating > simultaneous

Contribution 1: Theory

Key technical challenge: Dependent random variables in alternating update algorithm due to random sampling of clients

Methodology: Developed technique of virtual full participation

y-axis shows error: lower is better

Next word prediction

y-axis shows error: lower is better

Next word prediction

y-axis shows error: lower is better

y-axis shows error: lower is better

Federated Learning with Partial Model Personalization

Paper: arXiv:2204.03809

Code: https://github.com/krishnap25/FL_partial_personalization