Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has eight (8) pages, including this one, and the scratch paper in page 8.
- Enter your answers in the boxes provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	20	
3	15	
4	20	
5	20	
6	15	
7	10	
Total	100	

Problem 1 (5 pts). Evaluate the integral $\int t^2 e^t dt$.

Problem 2 (5 pts). Evaluate the integral $\int (x-3)\sqrt{x^2-6x+5}\,dx$.

Problem 3 (5 pts). Evaluate the integral $\int \frac{1}{x^3 e^{1/x}} dx$.

Problem 4 (5 pts). Evaluate the integral $\int \frac{x^3+1}{(x+1)^2(x^2+4)} dx$.

Problem 5 (5 pts). Evaluate the following integral, or indicate if it is divergent: $\int_0^\infty \frac{x \tan^{-1} x}{(1+x^2)^{3/2}} dx.$

Problem 6 (5 pts). Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = 2 - x around the line x = 1.

Problem 7 (5 pts). Find the volume of the solid obtained by rotating the region bounded by $y = e^{-x}$, y = 1/e, and x = 0 around the line y = 0.

Problem 8 (5 pts). Find the general term of the sequence $\left\{3, 2, \frac{5}{3}, \frac{3}{2}, \frac{7}{5}, \frac{4}{3}, \dots\right\}$, and compute its limit.

Problem 9 (5 pts—all or nothing). Compute the limit of the sequence $\left\{\frac{n^2 + 5n + 2}{\sqrt{n^4 + 1}}\right\}_{n=1}^{\infty}$

Problem 10 (5 pts—all or nothing). Compute the limit of the sequence $\{\tan(\pi - 1/n)\}_{n=1}^{\infty}$

Problem 11 (5 pts—all or nothing). Compute $\lim_{n\to\infty} \left(1-\frac{2}{n}\right)^n$

Problem 12 (8 pts). Study the convergence of the series $\sum_{n=2}^{\infty} \frac{3^n + 4^n}{5^n}$. If convergent, evaluate the sum.

Problem 13 (5 pts). Classify the series $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n^{2/3}}$ as absolutely convergent, conditionally convergent, or divergent.

Problem 14 (7 pts). Classify the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{e^n}$ as absolutely convergent, conditionally convergent, or divergent.

Problem 15 (8 pts). Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$.

Problem 16 (7 pts). Express the function $f(x) = \frac{2x}{x^3 + 8}$ as a power series.

Problem 17 (10 pts). Express the function $f(x) = \frac{1}{\sqrt{2x - x^2}}$ as a Taylor series expanded about a = 1. [Hint: complete the square first, and then use the Taylor expression for $(1 + x)^r$.]

Scratch paper

MATH 142 Final Exam. Spring 2012 Page 8/8

Scratch paper