Midterm Economic Modelling and Simulation

Instructions

- There is one and only one correct answer per question
- Fill out the answers sheet: only that sheet will be graded
- You will need to return the question sheets, but whatever you write on it will be disregarded
- All questions are worth the same
- Correct answers are worth +1
- Wrong answers are worth -1
- If you are unsure about an answer, leave it blank and it will be worth zero
- For the sake of readability, the semicolon; has been used to combine several lines of code into a single one, when appropriate

Questions

- 1. How would you measure the accuracy of a classification problem (e.g. diagnosing a disease) when using logistic regression?
- a) Dividing the true positives by the true negatives
- b) Dividing the true positives by the false positives
- c) Dividing the sum of the true positives and the true negatives by the total number of cases
- d) Dividing the sum of the false positives and the true negatives by the sum of the true negatives
- 2. Choose the right import statement of the 'car_crashes' dataset from the seaborn package:
- a) import seaborn as sns; df = sns.load_dataset('car_crashes')
- b) from seaborn import car_crashes
- c) import seaborn as pd; car_crashes = sns.get_dataset_names('pandas')
- d) import diamonds from seaborn

We will now work with a dataset called diamonds. It contains properties of diamonds such as the depth, the price, the color, etc. of a collection of diamonds.

- 3. In order to get the column names of the 'diamonds' dataset, the proper command is:
- a) diamonds.columns
- b) diamonds.names
- c) diamonds.values
- d) diamonds[columns]

Below you can find a sample of the diamonds dataset:

- 4. Which command would subset the dataset 'diamonds' when the price is lower than 300:
- a) diamonds.query("price > 300")
- b) diamonds.query("cut == Ideal")
- c) diamonds.query("price == 300")
- d) diamonds.query("price < 300")
- 5. Now we decided to look at the price statistics when the cut variable equals Ideal using the following filter: diamonds.query("cut == 'Ideal'")['price'].describe(). Based on the output, which is the median price when cut is 'Ideal'?

```
carat
                     cut color clarity
                                         depth
                                                 table
                                                        price
                                                                          у
                                                                                z
        0.23
                              Ε
                                    SI2
                                                  55.0
                                                           326
0
                   Ideal
                                           61.5
                                                                3.95
                                                                      3.98
                                                                             2.43
1
        0.21
                 Premium
                              Ε
                                    SI1
                                           59.8
                                                  61.0
                                                           326
                                                                3.89
                                                                       3.84
                                                                             2.31
2
        0.23
                              Е
                                    VS1
                                           56.9
                                                  65.0
                                                           327
                                                                4.05
                                                                       4.07
                                                                             2.31
                    Good
3
                              Ι
                                    VS2
        0.29
                 Premium
                                           62.4
                                                  58.0
                                                           334
                                                                4.20
                                                                       4.23
                                                                             2.63
4
                                    SI2
                                                           335
        0.31
                    Good
                              J
                                           63.3
                                                  58.0
                                                                4.34
                                                                       4.35
                                                                             2.75
53935
        0.72
                   Ideal
                              D
                                    SI1
                                           60.8
                                                  57.0
                                                          2757
                                                                5.75
                                                                       5.76
                                                                             3.50
        0.72
                                    SI1
                                           63.1
                                                                5.69
                                                                       5.75
53936
                    Good
                              D
                                                  55.0
                                                          2757
                                                                             3.61
                                                                             3.56
                                    SI1
53937
        0.70
                              D
                                           62.8
                                                                5.66
                                                                       5.68
              Very Good
                                                  60.0
                                                          2757
53938
        0.86
                 Premium
                                    SI2
                                           61.0
                                                  58.0
                                                          2757
                                                                6.15
                                                                       6.12
                                                                             3.74
53939
        0.75
                   Ideal
                              D
                                    SI2
                                           62.2
                                                  55.0
                                                          2757
                                                                5.83
                                                                       5.87
                                                                             3.64
[53940 rows x 10 columns]
Index(['carat', 'cut', 'color', 'clarity', 'depth', 'table', 'price', 'x', 'y',
       'z'],
      dtype='object')
```

Figure 1: Excerpt from diamonds dataset

```
21551.000000
count
mean
          3457.541970
          3808.401172
std
           326.000000
min
25%
           878.000000
50%
          1810.000000
          4678.500000
75%
         18806.000000
max
Name: price, dtype: float64
```

Figure 2: Output of the describe() command

- a) 3456.5
- b) 326.0
- c) 1810.0
- d) 4678.5
- 6. We want to understand how many diamonds have color E, how many have color J, and so on. Which command achieves this?
- a) diamonds.color.value_counts()
- b) diamonds.value_counts().color
- c) diamonds.color_values()
- d) diamonds.value_counts(color)
- 7. Based on the summary statistic of Question 5, where would the value corresponding to the 30th percentile be?
- a) Below than 326
- b) Between 326.0 and 878.0
- c) Between 4678.5 and 18806.0
- d) Between 878.0 and 1810.0
- 8. Now we want to subset the dataset by the 2 first indexes. The command would be:
- a) diamonds.loc[0:2]
- b) diamonds.query("0:2")
- c) diamonds.iloc[0:2]
- d) diamonds 0:2
- 9. Create a column named volume based on the dimensions x, y and z of the diamonds:
- a) diamonds["volume"] = diamonds["x"] ** diamonds["y"] ** diamonds['z']
- b) diamonds["volume"] = product(diamonds["x"] * diamonds["y"] * diamonds['z'])
- c) diamonds.volume = diamonds["x"] + diamonds["y"] + diamonds['z']
- d) diamonds = diamonds.assign(volume = lambda df: df.x * df.y * df.z)
- 10. Obtain a descriptive analysis of the price column that includes the number of elements, quantiles, etc:
- a) diamonds.price.stats()
- b) diamonds.price.describe()
- c) diamonds['price'].analyse()
- d) diamonds.price
- 11. Below is one row extracted from the diamonds dataset. What would be the result of the sum of columns x and y for this row?
 - a) NaN
 - b) 3.95
 - c) 0
 - d) 6.38

Figure 3: One row

12. Which of the following charts display a histogram of the price variable?

Figure 4: Output of the describe() command

- a) the left one
- b) the one in the center
- c) the right one
- d) none
- 13. Based on the above histogram, which is the most frequent price range?
 - a) Between 7500 and 10000
 - b) Between 17500 and 20000
 - c) Between 5000 and 7500
 - d) Between 0 and 2500
- 14. Which of the following best defines the term "Least Squares" in the context of statistical modeling?
 - a) A method for minimizing the sum of squared differences between observed and predicted values
 - b) A technique used to maximize the variance between data points
- c) A statistical approach focused on maximizing the absolute differences between observed and predicted values
- d) A method that prioritizes minimizing the maximum deviation between observed and predicted values
- 15. Choose the right definition of the LeastSquares function that returns the intercept and slope after getting as arguments an x and y vectors:
 - a)

```
def LeastSquares(xs, ys):
    mean_x = np.mean(xs)
    mean_y = np.mean(ys)
    cov = np.dot(xs - mean_x, ys - mean_y) / len(xs)
    slope = cov
    inter = mean_y - slope * mean_x
    return inter, slope
```

```
b)
def LeastSquares(xs, ys):
      mean x = np.mean(xs)
      var_x = np.var(xs)
      mean_y = np.mean(ys)
      inter = mean x / mean y
      slope = mean_x - var_x
      return inter, slope
      c)
def LeastSquares(xs, ys):
      mean x = np.mean(xs)
      var_x = np.var(xs)
      mean_y = np.mean(ys)
      cov = np.dot(xs - mean_x, ys - mean_y) / len(xs)
      slope = cov / var_x
      inter = mean_y - slope * mean_x
      return inter, slope
```

- d) None are correct
- 16. The above function is applied to the 'carat' and 'price' columns in order to find a correlation between them: inter, slope = LeastSquares(diamonds.carat, diamonds.price). Based on the above estimated intercept & slope for the columns carat and price, select that command that builds a column called fit_carat that contains the model fit for price for the data points in the dataset:

```
a) diamonds["fit_carat"] = inter * diamonds['carat'] * slope
b) diamonds["fit_carat"] = inter * diamonds['carat'] + slope
c) diamonds["fit_carat"] = inter + slope * diamonds['carat']
```

- d) diamonds["fit_carat"] = inter + slope + diamonds['carat']
- 17. Which of the following is correct?
 - a) The residuals are the differences between the observed values and the mean of the dependent variable.
- b) The residuals are the sum of the observed values and the predicted values
- c) The residuals of a linear model are the differences between the observed values and the values predicted
- d) The residuals are the differences between the predicted values and the mean of the independent variable.
- 18. Now we want to define a function that is capable to estimate the residuals of the linear fit. Select the correct definition:

```
    a) def Residuals(xs, ys, inter, slope):
        xs = np.asarray(xs)
        ys = np.asarray(ys)
        res = ys - (inter + slope * xs)
    b) def Residuals(xs, inter, slope):
        xs = np.asarray(xs)
        res = (inter + slope * xs)
        return res
```

- d) None is correct
- 19. Select the correct code-snippet that would allow to draw a scatterplot that includes price in the y-axis, and carat in the x-axis; plotting both the actual dataset and the fits:

```
    a) plt.scatter(x="carat", y="price", data=diamonds, color="blue", label="carat")
    plt.scatter(x="carat", y="fit_carat", data=diamonds, color="cyan", marker="s")
    plt.xlabel("carat")
    plt.ylabel("price")
    plt.legend()
```

- b) plt.scatter(x="price", y="carat", data=diamonds, color="blue", label="carat")
 plt.scatter(x="fit_carat", y="carat", data=diamonds, color="cyan", marker="s")
 plt.xlabel("carat")
 plt.ylabel("price")
 plt.legend()
- plt.line(x="price", y="cut", data=diamonds, color="blue", label="carat")
 plt.line(x="fit_carat", y="cut", data=diamonds, color="cyan", marker="s")
 plt.xlabel("carat")
 plt.ylabel("price")
 plt.legend()
- d) None is correct
- 20. What function would you use to store the above plt object as a .png figure?
 - a) plt.storefig(f"{directory}/scatter.png")
 - b) df.savefig(f"{directory}/scatter.png")
 - c) plt.storefig()
 - d) plt.savefig(f"{directory}/scatter.png")
- 21. Choose which is the correct definition of an outlier in the data: (B)
 - a) An outlier is any value in a dataset that is larger than the mean, indicating a superior significance in the analysis.
 - b) An outlier is an observation that significantly deviates from the overall pattern of a dataset, often falling far outside the expected range of values.
 - c) An outlier is an observation that perfectly fits the trend of a dataset, contributing to the overall consistency of the data.
 - d) An outlier is the most common value in a dataset, representing the typical or average observation.
- 22. The following command obtains the 10 largest price numbers of the diamonds dataset when cut variable equals to Ideal: diamonds.query("cut == 'Ideal'").nlargest(10, 'price').loc[:, 'price']). Would you say, based on the figure below, that there is an outlier?
 - a) No, because all the values are above 18000, meaning there is no deviation from the reference
 - b) No, because the values are in the 18000-20000 range
 - c) Yes, because the first value is one magnitude order larger than the others
 - d) Yes, because the last value is significantly lower than the first one

0	199999
27747	18806
27746	18804
27741	18791
27738	18787
27735	18780
27734	18779
27732	18768
27730	18760
27728	18757

Figure 5: Output

23. The variance is a summary statistic used to:

- a) Describe the central tendency of the distribution.
- b) Describe the median of the distribution.
- c) Describe the errors of a distribution.
- d) Describe the variability of a distribution.
- 24. What's the correct formula of the mean statistic?

• a)
$$\bar{x} = \frac{1}{n-1} \sum_{i=1}^{n} x_i$$

• b)
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n-1} x_i$$

• c)
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• d)
$$\bar{x} = \frac{1}{n} \sum_{i=0}^{n} y_i$$

25. The standard deviation can be conceived as: (B)

- a) The mean of the absolute differences from the mean.
- b) The squared root of the variance.
- c) The triple power of the variance.
- d) The mean divided by the population size.

In the following questions we will be using the dataset mpg from the seaborn package. Here is a sample:

- 26. We want to create a binary variable where cars originated in usa are encoded as 1 and cars originated elsewhere are encoded as 0. This variable will be called is_usa. The correct command is:
- a) mpg['is_usa'] = (mpg.origin == 'usa') * 1
- b) mpg['is_usa'] = 'usa' * 1
- c) mpg['is_usa'] = 'usa' * 0
- d) mpg['is_usa'] = (mpg.origin = 'usa') not in 'country'
- 27. Select the plot that shows the distribution of 'horsepower' for each 'cylinder':

mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino
27.0	4	140.0	86.0	2790	15.6	82	usa	ford mustang gl
44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup
32.0	4	135.0	84.0	2295	11.6	82	usa	dodge rampage
28.0	4	120.0	79.0	2625	18.6	82	usa	ford ranger
31.0	4	119.0	82.0	2720	19.4	82	usa	chevy s-10

Figure 6: mpg dataset

- a) Left
- b) Center
- c) Right
- d) None is correct
- 28. Based on the above charts, what type of *approximate* statistical relationship appears to be the one between the variable horsepower and cylinder?
 - a) Linearly decreasing: horsepower decreases with the numbers of cylinders since they are less efficient in distributing the power.
 - b) Normally distributed: horsepower reaches its peak at 80 cylinders.
 - c) Non-linearly growing: horsepower increases with the number of cylinders.
 - d) Non-linearly growing: horsepower decreases from 50 to 225 as the number of cylinder increases.
- 29. Is there a linear relationship between 'mpg' & 'horsepower' based on the charts?
 - a) Yes, data follows a perfect linear trend.
 - b) No, data seems to follow a non-linear declining trend.
 - c) No, data follows an exponential uptrend.
 - d) Yes, since there is a constant decline on the miles per gallon as the horsepower increases.
- 30. What distinguishes multiple linear regression from simple linear regression?
 - a) Multiple linear regression is always more accurate than simple linear regression.

- b) Simple linear regression can handle categorical variables, while multiple linear regression cannot.
- c) Multiple linear regression does not work with small datasets.
- d) Multiple linear regression involves more than one independent variable, while simple linear regression involves only one.
- 31. Now we want to study the impact of the variables horsepower and acceleration on the miles per galloon mpg. What formula would you use?
 - a) acceleration ~ mpg + horsepower
 - b) horsepower ~ mpg + acceleration
 - c) mpg ~ horsepower + acceleration
 - d) y ~ mpg + horsepower + acceleration
- 32. We have fitted the above model with the smf.ols function from the statsmodel package. Choose the correct statement that defines the formula for the multiple linear regression:

```
Intercept 52.559325
horsepower -0.187966
acceleration -0.609772
dtype: float64
```

Figure 7: Results from OLS

- a) f(horsepower, acceleration) = 52,55*inter + 0,18·horsepower + 0,6·acceleration
- b) $f(mpg, acceleration) = -52,55 + 0,18 \cdot mpg + 0,6 \cdot acceleration$
- c) f(horsepower, acceleration) = 52,55 + 0,18 horsepower + 0,6 acceleration
- d) f(horsepower, acceleration) = 52,55 0,18·horsepower 0,6·acceleration
- 33. Select the correct statement to interpret the formula that evaluates the influence of 'horsepower' and 'acceleration' over 'mpg'.
 - a) For every one-unit increase in acceleration, while also increasing horsepower, the predicted mpg is expected to decrease by 0.6 units.
 - b) For every one-unit increase in acceleration, holding horsepower constant, the predicted mpg is expected to decrease by 0.6 units.
 - c) For every one-unit increase in horsepower, holding acceleration constant the predicted mpg is expected to increase by 0.18 units.
 - d) For every one-unit increase in the intercept, the horsepower causes mpg to increase by 52.559 units.
- 34. Which statistical descriptor would you use to evaluate whether one particular regressor in a multiple regression model is significant?
 - a) R-squared
 - b) p-value
 - c) AIC
 - d) Standard Error

After training the model we have obtained the statistical summary shown in the figure to evaluate its goodness.

35. Assuming a significance level of 0.05, select the correct statement regarding the coefficient of each variable:

		OLS Regres	sion Resul	ts				
Dep. Variable:		mpg		R-squared:		0.630		
Model:		0LS	Adj. R-squared:		0.628			
Method:	ι	east Squares	F-statistic:		331.7			
Date:	Tue,	27 Feb 2024	Prob (F-statistic):		8.67e-85			
Time:		18:20:39	Log-Likelihood:		-1166.1			
No. Observations	::	392	AIC:	AIC:		2338.		
Df Residuals:		389	BIC:		2350.			
Df Model:		2						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
Intercept	52.5593	2.587	20.316	0.000	47.473	57.646		
horsepower	-0.1880	0.009	-21.788	0.000	-0.205	-0.171		
acceleration 	-0.6098	0.120	-5.066	0.000	-0.846			
mnibus:		31.573	Durbin-W			0.984		
rob(Omnibus):		0.000	Jarque-B	Jarque-Bera (JB):		37.488		
kew:		0.685	Prob(JB)			7.24e-09		
urtosis:		3.647	Cond. No			1.21e+03		

Figure 8: MLR results summary

- a) Both variables have a large p-value and thus their coefficient is assumed to be 0.
- b) horsepower has a low p-value while acceleration has a large p-value, therefore only horsepower
 can be considered significant.
- c) Both variables have a low p-value and therefore their coefficients are both significant.
- d) horsepower has a high p-value while acceleration has a low p-value, therefore only acceleration
 can be considered.
- 36. What does R-squared (coefficient of determination) measure in the context of a linear regression model?
 - a) The proportion of the variance in the dependent variable explained by the independent variable(s).
 - b) The accuracy of the model in predicting future observations.
 - c) The percentage of datapoints correctly predicted by the model.
 - d) The relation between the dependent variables.
- 37. Based on the R-squared of the fitted model, which of the following statements is correct?
- a) The R-squared value indicates that our model captures 0.63% of the relationship between variables
- b) The R-squared value indicates that our model captures 63% of the relationship between variables
- c) The R-squared value indicates that our model is significant with 63% condifence
- d) The R-squared value indicates that our model captures 63% of the variables that are relevant
- 38. When we add meaningful, independent features to a multiple linear regression:
 - a) The residuals start to capture the non-linear trend underlying the model
 - b) The performance of the model decreases initially, and then increases

- c) The heteroskedasticity of the residuals starts to increase
- d) The performance of the model usually improves, at least for a few additional features

We suspect that the relationship of mpg with horsepower does not follow a linear relationship but rather non-linear one.

- 39. Create a variable named 'horsepower2' that captures this quadratic behavior. The correct command is:
 - a) mpg['horsepower2'] = np.sqrt(['horsepower'])
 - b) mpg = mpg.assign(horsepower2 = mpg.horsepower ** 2)
 - c) mpg = mpg.assign(horsepower2 = mpg.horsepower x 2)
 - d) mpg['horsepower2'] ** 2
- 40. Which would be the new formula of the regression also considering this quadratic term?
 - a) mpg ~ horsepower * horsepower2 + acceleration
 - b) mpg ~ mpg + horsepower + horsepower2
 - c) mpg + horsepower2 ~ mpg + acceleration
 - d) mpg ~ horsepower + horsepower2 + acceleration

After training this modified (quadratic) version of the model we have obtained the statistical summary to evaluate its goodness.

Dep. Variable:		mpg	R-square	ed:		0.726		
Model:		OLS	Adj. R-s	quared:		0.724		
Method:	L	east Squares	F-statis	tic:		343.3		
Date:	Tue,	Tue, 27 Feb 2024 Prob		rob (F-statistic):		8.81e-109		
Time:		22:07:23		Log-Likelihood:		-1107.2		
No. Observation	s:	392	AIC:			2222.		
Df Residuals:		388	BIC:			2238.		
Df Model:		3						
Covariance Type	:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
 Intercept	74.5781	2.920	25.537	0.000	68.836	80.320		
horsepower	-0.5338	0.031	-17.468	0.000	-0.594	-0.474		
acceleration	-0.7762	0.105	-7.416	0.000	-0.982	-0.570		
horsepower2	0.0013	0.000	11.667	0.000	0.001	0.002		
Omnibus:		21.792	Durbin-W	atson:		1.146		
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):		34.063		
Skew:		0.396	Prob(JB)		4	4.01e-08		
Kurtosis:		4.207	Cond. No).	2	2.23e+05		

Figure 9: Summary of results for quadratic MLR

- 41. Which of the following statements regarding the newly fitted model is true?
 - a) With the quadratic term the model fits the data better than without it
- b) The quadratic term coefficient can be ignored since the p-value is not significant
- c) horsepower becomes meaningless because its p-value is zero
- d) The overall performance of the model slightly deteriorates

- 42. In the formulation of logistic regression, what is the primary purpose of using odds instead of probabilities?
 - a) To model linear relationships between unbounded independent and dependent variables
 - b) To increase the accuracy of the model in predicting categorical outcomes
 - c) To deal with outliers in data
 - d) To ensure that the output is bounded between 0 and 1
- 43. We now want to build a logistic regression model that takes the weight and the number of cylinders of the car as regressors and predicts whether a car was likely to be have been manufactured in the US (versus in the rest of the world). The command that will create the model is:
- a) model = smf.ols("is_usa ~ weight + cylinders", data=mpg)
- b) model = smf.logit("weight ~ is_usa + cylinders", data=mpg)
- c) model = smf.logit("is_usa ~ weight + cylinders", data=mpg)
- d) model = smf.ols("weight ~ is_usa + cylinders", data=mpg)

Figure 10: Summary of results for logistic regression

We have trained the model and obtained the statistical summary of the attached figure.

- 44. Which of the following can be derived from the results?
 - a) The more cylinders a car has, the less likely it is American
 - b) "The heavier the car, the more likely it is American" is the clearest insight
 - c) The less cylinders a car has, the less likely it is American
 - d) The probability of the car being American increases with the acceleration
- 45. Based on the p-values:
 - a) Only the weight has explanatory power

- b) Both the weight and the cylinders have explanatory power
- c) Only the cylinders have explanatory power
- d) Neither the cylinders or the weight have explanatory power
- 46. Suppose a friend of yours is pregnant and you want to predict whether the baby is a boy or a girl. What model would you use?
 - a) Linear regression
 - b) Logistic regression
 - c) Poisson regression
 - d) Ordinary Least Squares
- 47. Imagine that this friend is interested in understanding whether being a first-time mom plays a significant role in the weight of the baby. What would you tell her?
 - a) It does not play a role if the logistic regression weight ~ birth_order has p-value of zero
 - b) It might play a role, but it could also be conflated with the effect of the age
 - c) It might play a role, but only if the p-value of age is high enough
- d) It does not play a role as long as the regression weight ~ birth_order + age has a low R-squared
- 48. Which of the following is correct?
 - a) If the probability of something happening is 20%, the odds are 2 to 1
 - b) If the probability of something happening is 50%, the odds are 1 to 1
 - c) If the probability of something happening is 25%, the odds are 1 to 4
 - d) If the probability of something happening is 50%, the odds are 5 to 1
- 49. Which of the following is correct?
 - a) A categorical variable ranges from 0 to 1
 - b) A numerical variable ranges from -1 to 1
 - c) A categorical variable takes discrete values
 - d) A numerical variable takes discrete values
- 50. Suppose you want to predict house prices based on features such as square footage, number of bedrooms, and number of bathrooms. What model would you use?
 - a) Poisson regression
 - b) Logistic regression
 - c) Multiple linear regression
 - d) Heteroskedasticity