BPC Problem Set 1

Secret Code: 20

9/5/2020

```
In [1]: | import numpy as np
import matplotlib.pyplot as plt
```

Problem A1

Problem A2

```
In [3]: N type(a)
Out[3]: list
```

Problem A3

Problem A4

```
In [5]: N c = [x/2 for x in b]
print(c)
[1.5, 2.5707963267948966, 1.185, 202.7143967463675]
```

Problem A5

Problem A6

Problem A7

```
In [8]: ▶ len(d)
Out[8]: 61
```

Problem A8

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 7

Problem A9

1]

Plot of Primes By Order They Occur

Plot of Log base 10 Primes By Order They Occur

```
In [11]: N logprimes = [np.log10(x) for x in myprimes]
plt.plot(logprimes)
plt.xticks(np.arange(0, 20, 1))
plt.ylabel("$Log_{10}(myprimes)$")
plt.xlabel("Index of Prime Number")
plt.title("Plot of $Log_{10}$(Prime) by Order of Occurance")
print("", end="")
```


Problem A10

Problem A11

```
In [13]: N plt.plot(V, P)
    plt.title("Plot of Pressure as a Function of Volume for 1mol of Gas at 300K")
    plt.ylabel("Pressure (Pa)")
    plt.xlabel("Volume ($m^3$)")
    print("", end="")
```


Problem B2

Flip Ten Coins Once

Flip Ten Coins 100 Times

Flip 1,000 Coins 10,000 Times

Compare Standard Deviations

According to textbook, standard deviations for binomial distribution = sqrt(Ntot * Pa * Pb) as we see below, the standard deviation increases with the sqrt of Ntot. The predicted value of std. dev for the 10-flip trial is sqrt(10*0.5*0.5) = 1.5811 and for the 1000-flip trials sqrt(1000*0.5*0.5) = 15.811. The approximation values below improve with more trials as the sampling approaches a perfect binomial distribution!

Standard Deviation for 10-Flip Trials: 1.5433405327405874 Standard Deviation for 1000-Flip Trials: 15.872882712034384

Compare Sharpness of Distributions

As expected, the 1000 flip trial is much sharper than the 10 flip trials as it is less likely for outliers to make a significant impact on the spread of the data over so many more trials.

Problem B3

To fit the binomial distributions over the sample data we need to multiply its values by Ntot in order to convert the probability values for each point in x converted to Nh values as P(i;N) * Ntot = Nh,i(expected) for each point along the distribution.

Plot Binomial Distribution For 10-Flip Trials

Plot Binomial Distribution For 1000-Flip Trials

```
In [21]: N range_2 = np.arange(0,1001, 1)
    output_2 = [binomial(x, 1000) for x in range_2]

plt.hist(thousand_count_array, bins = new_bins, align="left")
    plt.plot([x * 10000 for x in output_2], 'red') #use scale factor of 10000 fo
    plt.xticks(np.arange(0, 1100, 100))
    plt.xlabel("$N_H$")
    plt.ylabel("P($N_H$;N) * 10,000")
    plt.title("Binomial Distribution For 1000 Coin Flips")
    print("", end="")
```


Problem B4

The probability of enountering someone you know on the plane is: 8.88888888 4958025e-10