Perfect Suika Game on a Tree

Input file: standard input
Output file: standard output

Time limit: 5 seconds

Memory limit: 1024 megabytes

You are given a tree T with N vertices, labeled from 1 to N. The i-th edge connects the vertices u_i and v_i .

Each vertex is assigned a positive integer called its **level**. Initially, the level of vertex v = 1, 2, ..., N is A_v .

We consider the following problem on tree T:

Determine whether it is possible to transform the tree T into a tree consisting of only a single vertex by performing the following operation exactly N-1 times:

• Select an edge whose endpoints have the same level and contract it. Let l be the common level of the two endpoints; then, the new vertex resulting from the contraction will have level l+1.

You are given Q queries to process. In the *i*-th query, you are given the edge number e_i . After swapping the levels of the vertices u_{e_i} and v_{e_i} in the tree T (this swap also affects all subsequent queries), output the answer to the problem described above.

Input

The input is given in the following format:

- All input values are integers.
- $2 < N < 2 \times 10^5$.
- $1 < u_i, v_i < N$.
- $1 \le A_i \le N$.
- $1 \le Q \le 2 \times 10^5$.
- $1 \le e_i \le N 1$.
- The given graph is a tree.

Output

Output Q lines. For the i-th query, after swapping the levels of vertices u_{e_i} and v_{e_i} , output Yes if it is possible to transform T into a single-vertex tree using the operations described above; otherwise, output No.

Examples

standard input	standard output
4	Yes
1 2	No
1 3	No
1 4	Yes
1 1 2 3	
4	
1	
2	
3	
1	
20	No
1 2	No
1 3	No
2 4	No
1 5	Yes
2 6	No
5 7	No
4 8	No
3 9	Yes
6 10	No
	NO
7 11	
11 12	
12 13	
13 14	
14 15	
15 16	
16 17	
17 18	
18 19	
19 20	
4 4 7 3 8 2 8 6 4 2 3 3 4 5 6 5 4 3 3 6	
10	
8	
19	
5	
9	
19	
10	
19	
19	
10	
19	

Note

In the first query in the first example, after swapping the levels of vertices $u_1 = 1$ and $v_1 = 2$, the levels of vertices 1, 2, 3, 4 become 1, 1, 2, 3 respectively. In this case, it is possible to perform the operations (selecting suitable edges) such that the tree becomes a single vertex with level 4. Therefore, the output is Yes. You may also find the following figure helpful.

Рис. 1: Illustration of the first query in the first testcase

In the second query, after swapping the levels of vertices $u_2 = 1$ and $v_2 = 3$, the levels of vertices 1, 2, 3, 4 become 2, 1, 1, 3 respectively. In this case, no operation can be performed at all, and it is impossible to transform the tree into a single vertex. Therefore, the output is No.