Artificial Intelligence

Dr. Panem Charanarur

Thinking Machines

 Are there tasks which cannot easily be automated? If so, what are the limitations?

 How do computers abilities compare to that of humans?

What is an AI?

Computers versus humans

- A computer can do some things better than a human can
 - Adding a thousand four-digit numbers
 - Drawing complex, 3D images
 - Store and retrieve massive amounts of data

 However, there are things humans can do much better.

Thinking Machines

A computer would have difficulty identifying the cat, or matching it to another picture of a cat.

Computer or human?

- Which of the following occupations could (or should) be performed by computers?
 - Postman
 - Bookstore clerk
 - Librarian
 - Doctor
 - Lawyer
 - Judge
 - Professor

Thinking Machines

Artificial intelligence (AI)

The study of computer systems that attempt to model and apply the intelligence of the human mind

For example, writing a program to pick out objects in a picture

First things first...

- Of course, first we have to understand why we use the term "intelligence" in regard to humans.
 - What defines "intelligence"?
 - Why is it that we assume humans are intelligent?
 - Are monkeys intelligent? Dogs? Ants? Pine trees?

Early History

- In 1950 English mathematician Alan Turing wrote a landmark paper titled "Computing Machinery and Intelligence" that asked the question: "Can machines think?"
- Further work came out of a 1956 workshop at Dartmouth sponsored by John McCarthy. In the proposal for that workshop, he coined the phrase a "study of artificial intelligence"

Can Machines Think?

- So Turing asked: "Can machines think?" He felt that such machines would eventually be constructed.
- But he also realized a bigger problem. <u>How</u> would we know if we've succeeded?

The Turing Test

Turing test

A test to empirically determine whether a computer has achieved intelligence

Figure 13.2

In a Turing test, the interrogator must determine which respondent is the computer and which is the human

The Turing Test

- •Passing the Turing Test does not truly show that the machine was thinking. It simply shows that it generated behavior consistent with thinking.
- •weak equivalence: the two systems (human and computer) are equivalent in results (output), but they do not necessarily arrive at those results in the same way
- •Strong equivalence: the two systems use the same internal processes to produce results

The Turing Test

Loebner prize

The first formal instantiation of the Turing test, held annually

Chatbots

A program designed to carry on a conversation with a human user

Knowledge Representation

- We want to compare the way that computers and humans work to see if we can better understand why each have their (computational) strengths.
 - Processing Models
 - Knowledge Representation
 - Reasoning

INTRODUCTION TO Machine Learning

Machine Learning (ML)

- ML is a branch of artificial intelligence:
 - Uses computing based systems to make sense out of data
 - Extracting patterns, fitting data to functions, classifying data, etc
 - ML systems can learn and improve
 - With historical data, time and experience
 - Bridges theoretical computer science and real noise data.

ML in real-life

Big Data

- Widespread use of personal computers and wireless communication leads to "big data"
- We are both producers and consumers of data
- Data is not random, it has structure, e.g., customer behavior
- We need "big theory" to extract that structure from data for
 - (a) Understanding the process
 - (b) Making predictions for the future

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:
 - People who bought "Blink" also bought "Outliers" (www.amazon.com)
- Build a model that is a good and useful approximation to the data.

Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- •

What is Machine Learning?

- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms
 to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Machine Learning as a Process

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

ISSUES:

- ➤ Asking the wrong question
- ➤ Trying to solve the wrong problem
- ➤ Not having enough data
- ➤ Not having the right data
- ➤ Having too much data
- ➤ Hiring the wrong people
- ➤ Using the wrong tools
- ➤ Not having the right model
- ➤ Not having the right yardstick

Challenges

- ➤ Not enough training data.
- ➤ Poor Quality of data.
- >Irrelevant features.
- ➤ Nonrepresentative training data.
- ➤ Overfitting and Underfitting.