Department of Mathematics, IIT Madras

MA1102 Se

Series & Matrices

Assignment-3 Ma

Matrix Operations

- 1. Show that given any $n \in \mathbb{N}$ there exist matrices $A, B \in \mathbb{R}^{n \times n}$ such that $AB \neq BA$.
- 2. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Compute A^n .
- 3. Let $A \in \mathbb{F}^{m \times n}$; $B \in \mathbb{F}^{n \times k}$; A_1, \dots, A_m be the rows of $A; B_1, \dots, B_k$ be the columns of B. Show that
 - (a) A_1B, \ldots, A_mB are the rows of AB.
- (b) AB_1, \ldots, AB_k are the columns of AB.
- 4. Solve the following system by Gaussian elimination

- 5. Let $A \in \mathbb{F}^{m \times n}$ have columns A_1, \ldots, A_n . Let $b \in \mathbb{F}^m$. Show the following:
 - (a) The equation Ax = 0 has a non-zero solution iff A_1, \ldots, A_n are linearly dependent.
 - (b) The equation Ax = b has at least one solution iff $b \in \text{span}\{A_1, \dots, A_n\}$.
 - (c) The equation Ax = b has at most one solution iff A_1, \ldots, A_n are linearly independent.
 - (d) The equation Ax = b has a unique solution iff rank A = rank[A|b] = number of unknowns.
- 6. Check if the system is consistent. If so, determine the solution set.

(a)
$$x_1 - x_2 + 2x_3 - 3x_4 = 7$$
, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 - 5x_2 + x_3 = -2$, $3x_1 - x_2 - x_3 + 2x_4 = -2$.

(b)
$$x_1 - x_2 + 2x_3 - 3x_4 = 7$$
, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 - 5x_2 + x_3 = -2$, $3x_1 - x_2 - x_3 + 2x_4 = -2$.

7. Using Gaussian elimination determine the values of $k \in \mathbb{R}$ so that the system of linear equations

$$x + y - z = 1$$
, $2x + 3y + kz = 3$, $x + ky + 3z = 2$

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

- 8. Determine linear independence of $\{(1,2,2,1), (1,3,2,1), (4,1,2,2), (5,2,4,3)\}$ in $\mathbb{C}^{1\times 4}$.
- 9. Let $u, v, w \in \mathbb{F}^{n \times 1}$. Show that $\{u, v, w\}$ is linearly independent iff $\{u+v, v+w, w+u\}$ is linearly independent.
- 10. Find a basis for the subspace $\{(a, b, c) : 2a + 3b 4c = 0\}$ of $\mathbb{R}^{1 \times 4}$.
- 11. Let $A \in \mathbb{R}^{3\times 3}$ satisfy $A(a,b,c)^t = (a+b,2a-b-c,a+b+c)^t$. Determine A and also its rank and nullity.
- 12. Determine a basis of the subspace $\{(a, b, c, d, e) : a = c = e, b + d = 0\}$ of $\mathbb{R}^{1 \times 5}$.
- 13. Let $A \in \mathbb{F}^{m \times n}$ have rank r. Give reasons for the following:
 - (a) $rank(A) \le min\{m, n\}.$
 - (b) If n > m, then there exist $x, y \in \mathbb{F}^{n \times 1}$ such that $x \neq y$ and Ax = Ay.
 - (c) If n < m, then there exists $y \in \mathbb{F}^{m \times 1}$ such that for no $x \in \mathbb{F}^{n \times 1}$, Ax = y.
 - (d) If n = m, then as a map, A is one-one iff A is onto.
- 14. Convert the following matrices into their row echelon and row reduced echelon forms. Then determine their rank and nullity.

(a)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 7 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 5 & 2 & -3 & 1 & 7 \\ 1 & -3 & 2 & -2 & 11 \\ 3 & 8 & -7 & 5 & 8 \end{bmatrix}$$