

An Empirical Analysis of Optimization for Max-Margin NLP

Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick, and Dan Klein {jkk,tberg,klein}@cs.berkeley.edu

Some margin optimizers are better than others... Use this one!

There is substantial variation in the effectiveness of optimization methods for structured max-margin objectives. We investigated the behavior of a range of optimizers (dual and primal margin, likelihood, perceptron, and MIRA) for training high-performance systems for NER, coreference, parsing and summarization.

Symbol Definitions

Weights
 Sum of squared
 subgradients
 Last update for
 each weight
 Number of updates
 Subgradient
 Feature index
 eta
 Learning rate
 delta

AdaGrad Update

preventq[f] = 0

The AdaGrad update with L1 regularization. See the paper for L2.

Observations

82

62

55

48

41

Max-margin generally outperformed MIRA, perceptron, likelihood.

Cutting plane methods learned more slowly.

OPS (Online Primal Subgradient) was easy, robust, and effective.

Decoding dominated time for each iteration + on most tasks. Sparse updates were crucial for OPS on some tasks.

Code Release

See nlp.cs.berkeley.edu for our learning library!

```
function optimize-margin(data, iters):

w[] = 0
q[] = delta
u[] = 0
n = 0
for iter in [1, iters]:
   for (x*, y*) in data:
      y' = argmax (score(x*, y) + L(y, y*))
        (over y in Y(x*))
      g = features(y*) - features(y')
      q += g^2
      n += 1
      for f in (nonzero features in g):
      w[f] = update-active(w[f], g[f], q[f])
      w[f] = n
```

```
function update-active(w, g, q):
    d = |w - g*eta / sqrt(q)| - C*eta / sqrt(q)
    return sign(w - g*eta / sqrt(q)) * max(0, d)

function update-catchup(w, q, t):
    return sign(w)*max(0, |w| - eta*C*t / sqrt(q))

function score(x, y):
    s = 0
    for f in features(x, y):
        w[f] = update-catchup(w[f], q[f], n - u[f])
        u[f] = n
        s += w[f]
    return s
```


Main Loop

Loss augmented decoding, with tracking of the sum of squared subgradients. A range of methods can be implemented by varying L, update-active, and score. For example, the perceptron is: L = 0, score = f dot w, and update-active = w + g

Sparse updates

AdaGrad modifies every weight on every update. A fast way to implement this is to only update weights for nonzero features at first (in the main loop, above), and update other weights the next time they are needed(here).

