Equilibrium Strategy Profiles (For JLEO Revision)

First, need to get timing clear for evolution of state variable. Take state variable to be q_{st} .

- q_{s1} : beginning of the world (or, $Q_{s0} \mu = q_{s1}$)
- $Q_{s1} = q_{s1} + R_{p1} + R_{c1}$ - $q_{s2} = Q_{s1} - \mu$

Strategies (this is for the most interesting state variable, but could write it out for the other five)

- For patron: function of q_{st}
- For c: function of $q_{st} + R_{pt}$
- For s: function of $Q_{st} = q_{st} + R_{pt} + R_{ct}$
- For g: not a function of q_{st} at all

According to Mailath and Samuelson (2006) p. 177.

- The strategy profile σ is a stationary Markov strategy if for any two expost histories \tilde{h}^t and \tilde{h}^τ (of equal or different lengths) terminating in the same state, $\sigma\left(\tilde{h}^t\right) = \sigma\left(\tilde{h}^\tau\right)$.
- The strategy profile σ is a stationary Markov equilibrium if σ is a stationary Markov strategy profile and a subgame-perfect equilibrium.

We have six state variables, so $s = (q_s, q_g, l_s, l_g, w_s, w_g)$.

- Strategies are a function of all six state variables
 - We can restrict attention to relevant ranges of the state variables. CAN I CHANGE PROP 1 PARTS 1 AND 2 TO BE INITIAL VALUES OF STATE VARIABLES? If so, then these conditions and what is necessary in each period to make the game continue.

- Strategies for the patron and c are also how much to invest in each of the six state variables. Some can be ruled out by preference assumptions:
 - c dislikes war, so will never invest in w_s or w_g . It would also not want to make the government lose, so won't invest in l_g either.
 - Because the patron's preferences are aligned with the secessionists and against the government, it never invests in w_g or l_s .

This leaves four state varibles in which the patron may invest: q_s , q_g , l_g and w_s . Three in which c may invest: q_s , q_g , l_s .

- Also, Gov't / Secessionists: Choose unilateral, simultaneous best responses depending on magnitudes of Q_{i1} , L_{i1} and ω_{i1}
 - Game only continues if (SQ,SQ) or (Cede, Cede) was played

Assumptions

- $Q_{s0} \geq L_{s0} \Rightarrow q_{s1} + \mu \geq l_{s1}$
- $Q_{g0} \ge L_{g0} \Rightarrow q_{g1} \ge l_{g1}$

Period 1

- 1. Patron would like $Q_{s1} \geq L_{s1}$ to prevent c from incentivizing secessionists to Cede
 - Equivalent to $q_{s1} + R_{p1} \ge l_{s1} + R_{c1} / Q_{s0} + \mu + R_{p1} \ge L_{s0} + R_{c1} / R_{p1} \ge R_{c1} (Q_{s0} \mu L_{s0})$
 - $-R_{c1} \leq \frac{\beta}{1-\delta} \Rightarrow R_{p1} \geq \frac{\beta}{1-\delta} (Q_{s0} \mu L_{s0})$ allows the patron to ensure the original inequality
 - Initial assumption means $R_{p1} \ge \frac{\beta}{1-\delta} + \mu$ is a tighter condition
 - Since patron is willing to pay up to $R_{p1} = \frac{\alpha}{1-\delta}$, when $\frac{\alpha}{1-\delta} \geq \frac{\beta}{1-\delta} + \mu$, it will invest $R_{p1} = \frac{\beta}{1-\delta} (Q_{s0} \mu L_{s0})$ to augment q_{s1} if this is greater than 0. Else, $R_{p1} = 0$.
 - (a) If $R_{p1} + (Q_{s0} \mu L_{s0}) \ge \frac{\beta}{1-\delta}$, $R_{c1} = 0$. (SQ,SQ) is played and game contin-
 - (b) If instead $R_{p1} + (Q_{s0} \mu L_{s0}) < \frac{\beta}{1-\delta}$ (i.e. assumption doesn't hold), $R_{c1} = l_{s1} (q_{s1} + R_{p1}) + \varepsilon$ to augment l_{s1} . Note optimal R_{p1} in this case is 0.

- * (SQ,Cede) is played and game ends
- 2. Patron would like $L_{g1} > Q_{g1}$ to achieve recognition directly. Must invest to augment l_{g1}
 - Equivalent to $l_{g1} + R_{p1} > q_{g1} + R_{c1} / L_{g0} + R_{p1} > Q_{g0} + R_{c1} / R_{p1} > R_{c1} + (Q_{g0} L_{g0})$
 - $-R_{c1} \leq \frac{\nu}{1-\delta} \Rightarrow R_{p1} > \frac{\nu}{1-\delta} + (Q_{g0} L_{g0})$ allows the patron to ensure the original inequality
 - Since patron is willing to pay up to $R_{p1} = \frac{\lambda + \mu + \beta}{1 \delta}$, when $\frac{\lambda + \mu + \beta}{1 \delta} \leq \frac{\nu}{1 \delta}$, patron will invest 0 in l_{g1} . $R_{c1} = 0$ as well.
 - If instead assumption 4 did not hold and $R_{p1} > \frac{\nu}{1-\delta} + (Q_{g0} L_{g0})$, it will invest this amount to augment l_{g1} . Again, $R_{c1} = 0$. (Cede, SQ) is played and game ends.
- 3. Patron might want to instigate fighting to have a p_{1s} probability of achieving recognition indirectly. If $\frac{\lambda p_{1s} \alpha(1-p_{1s}) + \mu + \beta}{1-\delta}$ is positive, invest in w_{s1} to change ω_{s1} . Will not invest when the quantity is non-positive. Inequality is $\omega_{s1} > Q_{s1}$
 - $\omega_{s1} = -\zeta_s(1-\delta) + W_{s1}p_{1s} + L_{s1}(1-p_{1s}) > Q_{s1}$
 - $-\zeta_s(1-\delta) + (W_{s0} + R_{p1})p_{1s} + L_{s0}(1-p_{1s}) > Q_{s0} \mu + R_{c1}$
 - $R_{p1}p_{1s} > R_{c1} \mu + Q_{s0} (-\zeta_s(1-\delta) + W_{s0}p_{1s} + L_{s0}(1-p_{1s}))$
 - $R_{c1} \leq \frac{\nu p_{1s} \beta(1-p_{1s})}{1-\delta}$, so if $R_{p1}p_{1s} > \frac{\nu p_{1s} \beta(1-p_{1s})}{1-\delta} \mu + Q_{s0} (-\zeta_s(1-\delta) + W_{s0}p_{1s} + L_{s0}(1-p_{1s}))$, $R_{c1} = 0$ and (SQ,Fight) is played in third stage. Outcome depends on war lottery.
 - Patron will spend at most $\frac{\lambda p_{1s} \alpha(1-p_{1s}) + \mu + \beta}{1-\delta} \mu$
 - So need

$$p_{1s} \left[\frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \right] < \frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu$$

$$\le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu + Q_{s0} - \left(-\zeta_s(1 - \delta) + W_{s0}p_{1s} + L_{s0}(1 - p_{1s}) \right) \quad (1)$$

4. Patron could also invest in q_g to counter investment by c in government's payoffs. But this would only been needed if c had incentive to invest in g playing Fight, and we've ruled that out.

Now generalize profiles for all t

- 1. Patron would like $Q_{st} \geq L_{st}$ to prevent c from incentivizing secessionists to Cede
 - Equivalent to $q_{st} + R_{pt} \ge l_{st} + R_{ct} / Q_{s,t-1} + \mu + R_{pt} \ge L_{s,t-1} + R_{ct} / R_{pt} \ge R_{ct} (Q_{s,t-1} \mu L_{s,t-1})$

- $-R_{ct} \leq \frac{\beta}{1-\delta} \Rightarrow R_{pt} \geq \frac{\beta}{1-\delta} (Q_{s,t-1} \mu L_{s,t-1})$ allows the patron to ensure the original inequality
- Assumption 1 combined with equilibrium play (equivalently, if $L_{s,t-1} > Q_{s,t-1}$, the game would have ended before the start of period t) means $R_{pt} \ge \frac{\beta}{1-\delta} + \mu$ is a tighter condition
- Since patron is willing to pay up to $R_{pt} = \frac{\alpha}{1-\delta}$, when $\frac{\alpha}{1-\delta} \ge \frac{\beta}{1-\delta} + \mu$, it will invest $R_{pt} = \frac{\beta}{1-\delta} (Q_{s,t-1} \mu L_{s,t-1})$ to augment q_{st} if this is greater than 0. Else, $R_{pt} = 0$.
 - (a) If $R_{pt} + (Q_{s,t-1} \mu L_{s,t-1}) \ge \frac{\beta}{1-\delta}$, $R_{ct} = 0$. (SQ,SQ) is played and game continues.
 - (b) If instead $R_{pt} + (Q_{s,t-1} \mu L_{s,t-1}) < \frac{\beta}{1-\delta}$ (i.e. assumption 3 doesn't hold), $R_{ct} = l_{st} (q_{st} + R_{pt}) + \varepsilon$ where ε is small to augment l_{st} . Note optimal R_{pt} in this case is 0.
 - * (SQ,Cede) is played and game ends
- 2. Patron would like $L_{gt} > Q_{gt}$ to achieve recognition directly. Must invest to augment l_{gt}
 - Equivalent to $l_{gt} + R_{pt} > q_{gt} + R_{ct} / L_{g,t-1} + R_{pt} > Q_{g,t-1} + R_{ct} / R_{pt} > R_{ct} + (Q_{g,t-1} L_{g,t-1})$
 - $-R_{ct} \leq \frac{\nu}{1-\delta} \Rightarrow R_{pt} > \frac{\nu}{1-\delta} + (Q_{g,t-1} L_{g,t-1})$ allows the patron to ensure the original inequality
 - Since patron is willing to pay up to $R_{pt} = \frac{\lambda + \mu + \beta}{1 \delta} \mu$, when $\frac{\lambda + \mu + \beta}{1 \delta} \mu \leq \frac{\nu}{1 \delta}$, patron will invest 0 in l_{gt} . $R_{ct} = 0$ as well.
 - If instead assumption 4 did not hold and $R_{pt} > \frac{\nu}{1-\delta} + (Q_{g,t-1} L_{g,t-1})$, patron will invest this amount to augment l_{gt} . Again, $R_{ct} = 0$. (Cede, SQ) is played and game ends.
- 3. Patron might want to instigate fighting to have a p_{1s} probability of achieving recognition indirectly. If $\frac{\lambda p_{1s} \alpha(1-p_{1s}) + \mu + \beta}{1-\delta} \mu$ is positive, invest in w_{st} to change ω_{st} . Will not invest when the quantity is non-positive. Inequality is $\omega_{st} > Q_{st}$
 - $\omega_{st} = -\zeta_s(1-\delta) + W_{st}p_{1s} + L_{st}(1-p_{1s}) > Q_{st}$
 - $-\zeta_s(1-\delta) + (W_{s,t-1} + R_{pt})p_{1s} + L_{s,t-1}(1-p_{1s}) > Q_{s,t-1} \mu + R_{ct}$
 - $R_{pt}p_{1s} > R_{ct} \mu + Q_{s,t-1} (-\zeta_s(1-\delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1-p_{1s}))$
 - $R_{ct} \leq \frac{\nu p_{1s} \beta(1 p_{1s})}{1 \delta}$, so if $R_{pt}p_{1s} > \frac{\nu p_{1s} \beta(1 p_{1s})}{1 \delta} \mu + Q_{s,t-1} (-\zeta_s(1 \delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1 p_{1s})) + Q_{s,t-1}(1 \delta) + Q$
 - Patron will spend at most $\frac{\lambda p_{1s} \alpha(1-p_{1s}) + \mu + \beta}{1-\delta} \mu$

- So need

$$p_{1s} \left[\frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \right] < \frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu$$

$$\le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu + Q_{s,t-1} - \left(-\zeta_s(1 - \delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1 - p_{1s}) \right)$$
(2)

4. Patron could also invest in q_g to counter investment by c in government's payoffs. But this would only been needed if c had incentive to invest in g playing Fight, and we've ruled that out.

Prose version of equilibrium strategy profiles:

In period t, the patron invests $R_{pt} = \max \left\{ \frac{\beta}{1-\delta} - (Q_{s,t-1} - \mu - L_{s,t-1}), 0 \right\}$ to augment the status quo payoffs of the secessionists, q_{st} . Player c then chooses $R_{ct} = 0$ so that playing status quo is a best response for both inside players. (SQ,SQ) is played in the third stage and the game continues to period t+1.

If instead $R_{pt} < \frac{\beta}{1-\delta} - (Q_{s,t-1} - \mu - L_{s,t-1})$ (i.e. assumption 3 doesn't hold), player c will invest $R_{ct} = l_{st} - (q_{st} + R_{pt}) + \varepsilon$, for ε small, to augment l_{st} . In this case, status quo remains a best response for the government but cede becomes the best response for the secessionists. The game ends with the secessionist territory being reunited.

- 1. Patron would like $L_{gt} > Q_{gt}$ to achieve recognition directly. Must invest to augment l_{gt}
 - Equivalent to $l_{gt} + R_{pt} > q_{gt} + R_{ct} / L_{g,t-1} + R_{pt} > Q_{g,t-1} + R_{ct} / R_{pt} > R_{ct} + (Q_{g,t-1} L_{g,t-1})$
 - $-R_{ct} \leq \frac{\nu}{1-\delta} \Rightarrow R_{pt} > \frac{\nu}{1-\delta} + (Q_{g,t-1} L_{g,t-1})$ allows the patron to ensure the original inequality
 - Since patron is willing to pay up to $R_{pt} = \frac{\lambda + \mu + \beta}{1 \delta} \mu$, when $\frac{\lambda + \mu + \beta}{1 \delta} \mu \leq \frac{\nu}{1 \delta}$, patron will invest 0 in l_{qt} . $R_{ct} = 0$ as well.
 - If instead assumption 4 did not hold and $R_{pt} > \frac{\nu}{1-\delta} + (Q_{g,t-1} L_{g,t-1})$, patron will invest this amount to augment l_{gt} . Again, $R_{ct} = 0$. (Cede, SQ) is played and game ends.
- 2. Patron might want to instigate fighting to have a p_{1s} probability of achieving recognition indirectly. If $\frac{\lambda p_{1s} \alpha(1-p_{1s}) + \mu + \beta}{1-\delta} \mu$ is positive, invest in w_{st} to change ω_{st} . Will not invest when the quantity is non-positive. Inequality is $\omega_{st} > Q_{st}$
 - $\omega_{st} = -\zeta_s(1-\delta) + W_{st}p_{1s} + L_{st}(1-p_{1s}) > Q_{st}$
 - $-\zeta_s(1-\delta) + (W_{s,t-1} + R_{pt})p_{1s} + L_{s,t-1}(1-p_{1s}) > Q_{s,t-1} \mu + R_{ct}$
 - $R_{pt}p_{1s} > R_{ct} \mu + Q_{s,t-1} (-\zeta_s(1-\delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1-p_{1s}))$
 - $R_{ct} \leq \frac{\nu p_{1s} \beta(1-p_{1s})}{1-\delta}$, so if $R_{pt}p_{1s} > \frac{\nu p_{1s} \beta(1-p_{1s})}{1-\delta} \mu + Q_{s,t-1} (-\zeta_s(1-\delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1-p_{1s}))$ $R_{ct} = 0$ and (SQ,Fight) is played in third stage. Outcome depends on war lottery.
 - - So need

$$p_{1s} \left[\frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \right] < \frac{\lambda p_{1s} - \alpha(1 - p_{1s}) + \mu + \beta}{1 - \delta} - \mu \le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu$$

$$\le \frac{\nu p_{1s} - \beta(1 - p_{1s})}{1 - \delta} - \mu + Q_{s,t-1} - \left(-\zeta_s(1 - \delta) + W_{s,t-1}p_{1s} + L_{s,t-1}(1 - p_{1s}) \right)$$
(3)

3.	Patron could also invest in q_g to counter investment by c in government's payoffs. But this would only been needed if c had incentive to invest in g playing Fight, and we've ruled that out.