Source:

https://github.com/akosmrlj/FEniCS_tutorial/blob/master/CahnHilliard/CahnHilliard.ipynb

PeriodicBoundary() needs two functions:

- 1. inside() defines what points are on Γ_{inside} . (These points are ignored during mapping)
- 2. map() describes the mapping from Γ_{mapped} to Γ_{inside} .

Interface:

The interface between Γ_{inside} and Γ_{mapped} should be excluded from Γ_{inside} .

In 2-D, this interface consists of the two points (0,1) and (1,0).

Mapping:

The three regions of Γ_{mapped} are then mapped according to:

- 1. Point (1,1) is mapped to (0,0)
- 2. Edge (x=1) is mapped to edge (x=0)
- 3. Edge (y=1) is mapped to edge (y=0)

```
def map(self, x, y):
if near(x[0], 1) and near(x[1], 1):
    y[0] = x[0] - 1.
    y[1] = x[1] - 1.
elif near(x[0], 1):
    y[0] = x[0] - 1.
    y[1] = x[1]
else: # near(x[1], 1)
v[0] = x[0]
```


Similar logic to 2D case applies in 3D, except that:

- 1. The interface between Γ_{inside} and Γ_{mapped} consists of edges, not points.
- 2. The mapping from $\Gamma_{\text{mapped to }}\Gamma_{\text{inside}}$ is of course different.

Interface

The interface between Γ_{inside} and Γ_{mapped} , marked in blue, consists of 6 edges:

- 1. x=1, z=0
- 2. y=1, z=0
- 3. y=1, x=0
- 4. z=1, x=0
- 5. z=1, y=0
- 6. x=1, y=0

As in 2D, these edges are excluded from Γ_{inside} .

Mapping

The mapping logic from $\Gamma_{\text{mapped to}}$ Γ_{inside} is then straightforward, accounting for each possible location in Γ_{mapped} .

The point (1,1,1)

The edge x=1, y=1

The edge x=1, z=1

The edge y=1, z=1

The face x=1

The face y=1

The face z=1