$2^{\underline{a}}$ Avaliação de Cálculo Numérico

Nome:			
Nome.			

1) O número y de bactérias por unidade de volume existente em uma cultura após x horas é dado na tabela abaixo:

\overline{x}	0	1	2	3	4
y	3, 2	4, 7	6, 5	9, 2	13, 2

- a) ajuste esses dados por uma curva do tipo $y = ae^{bx}$.
- b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 200?

Resp:
$$y = 3{,}2389e^{0{,}3506x}$$
 e $x = 11{,}76h$.

2) Baseado nos valores: x=1,5; 1,6; 1,7; 1,8; 1,9; 2,0, obtenha uma aproximação para $\cos(1,75)$ usando um polinômio de interpolação de grau 3. Estime o erro cometido.

Resp:
$$P_3(1,75) = -0,1783$$
 e $|E(1,75)| \le 8,87 \times 10^{-7}$.

3) Use um método de Simpson para calcular uma aproximação de $\int_0^{1,2} (x^2+1)e^{3x}dx$ com 7 pontos. Estime o erro cometido.

Resp:
$$\int_0^{1,2} (x^2 + 1)e^{3x} dx \approx 22,4055 \text{ e } |E| \le 0,4961.$$

$$y' = x\cos(y)$$
 , $y(0) = 0$, $0 \le x \le 0.8$.

Resp: $y_1 = 0,02$; $y_2 = 0,08$; $y_3 = 0,1793$; $y_4 = 0,3159$.

$2^{\underline{a}}$ Avaliação de Cálculo Numérico

Nome:			
Nome.			

1) O número y de bactérias por unidade de volume existente em uma cultura após x horas é dado na tabela abaixo:

\overline{x}	1	2	3	4	5
y	3, 2	4, 7	6, 5	9, 2	12, 1

- a) ajuste esses dados por uma curva do tipo $y = ae^{bx}$.
- b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 200?

Resp:
$$y = 2,3619e^{0,3332x}$$
 e $x = 13,33$ h.

2) Baseado nos valores: x=1,5; 1,6; 1,7; 1,8; 1,9; 2,0, obtenha uma aproximação para ${\rm sen}(1,75)$ usando um polinômio de interpolação de grau 3. Estime o erro cometido.

Resp:
$$P_3(1,75) = 0,9840 e |E| \le 2,3 \times 10^{-6}$$
.

3) Use um método de Simpson para calcular uma aproximação de $\int_0^{1,2} (x^3 - x)e^{2x} dx$ com 7 pontos. Estime o erro cometido.

Resp:
$$\int_0^{1,2} (x^3 - x)e^{2x} dx \approx -0.3182 \text{ e } |E| \le 0.0394.$$

$$y'=x^2y^3 \quad , \ y(1)=2 \quad , \ 1\leq x\leq 1,8 \ .$$
 Resp: $y_1=5,84$; $y_2=917,9264$; $y_3=1,5021\times 10^{14}$; $y_4=3\times 10^{70}.$

2^a Avaliação de Cálculo Numérico

Nome:			
Nome.			

1) O número y de bactérias por unidade de volume existente em uma cultura após x horas é dado na tabela abaixo:

x	2	3	4	5	6
y	3, 2	4, 7	6, 5	9, 2	14, 2

- a) ajuste esses dados por uma curva do tipo $y = ae^{bx}$.
- b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 200?

Resp:
$$y = 1,5377e^{0,3652x}$$
 e $x = 13,33$ h.

2) Baseado nos valores: x=1,5; 1,6; 1,7; 1,8; 1,9; 2,0, obtenha uma aproximação para $\sqrt{1,75}$ usando um polinômio de interpolação de grau 3. Estime o erro cometido.

Resp:
$$P_3(1,75) = 1,3229 \text{ e } |E| \le 4,24 \times 10^{-7}$$
.

3) Use um método de Simpson para calcular uma aproximação de $\int_0^{1,2} (x^2-4x)e^{4x}dx$ com 7 pontos. Estime o erro cometido.

Resp:
$$\int_0^{1,2} (x^2-4x)e^{4x}dx \approx -0,86,9636$$
 e $|E_{1/3S}| \leq 1,3969$, $|E_{3/8S}| \leq 3,1430$.

$$y' = 2x \operatorname{sen}(3y)$$
 , $y(2) = 1$, $2 \le x \le 2, 8$.

Resp: $y_1 = 0,9844$; $y_2 = 0,9430$; $y_3 = 0,8460$; $y_4 = 0,7008$.

$2^{\underline{a}}$ Avaliação de Cálculo Numérico

Nome:			
Nome.			

1) O número y de bactérias por unidade de volume existente em uma cultura após x horas é dado na tabela abaixo:

\overline{x}	3	4	5	6	7
y	3, 2	4, 7	6, 5	9, 2	14, 2

- a) ajuste esses dados por uma curva do tipo $y = ax^b$.
- b) Quantas horas seriam necessárias para que o número de bactérias por unidade de volume ultrapasse 200?

Resp:
$$y = 0,4569x^{1,7073}$$
 e $x = 35,23$ h.

2) Baseado nos valores: x=1,5; 1,6; 1,7; 1,8; 1,9; 2,0, obtenha uma aproximação para $f(x)=xe^x$, no ponto x=1,75, usando um polinômio de interpolação de grau 3. Estime o erro cometido.

Resp:
$$P_3(1,75) = 10,0707$$
 e $|E| \le 1,73 \times 10^{-4}$.

3) Use um método de Simpson para calcular uma aproximação de $\int_0^{1,2} \ln(1+2x) \ dx$ com 7 pontos. Estime o erro cometido.

Resp:
$$\int_0^{1,2} \ln(1+2x) \ dx \approx 0,8803 \ e \ |E| \le 1,024 \times 10^{-3}$$
.

$$y' = -2x^2 + 3y$$
 , $y(0) = 2$, $0 \le x \le 0, 8$.

Resp: $y_1 = 3,56$; $y_2 = 6,3$; $y_3 = 11,0988$; $y_4 = 19,5206$.