SSY098 - Image Analysis

Lecture 7 - Robust Model Fitting

Torsten Sattler (slides adapted from Olof Enqvist)

Jan. 20	Introduction, Linear classifiers and filtering	
Jan. 23	Filtering, gradients, scale	1 ab 1
Jan. 27	Local features	Lab 1
Jan. 30	Learning a classifier	
Feb. 3	Convolutional neural networks	Lab 2
Feb. 6	More convolutional neural networks	
Feb. 10	Robust model fitting and RANSAC	Lab 3
Feb. 13	Image registration	Lau 5
Feb. 17	Camera Geometry	1 ab 4
Feb. 20	More camera geometry	Lab 4
Feb. 24	Generative neural networks	
Feb. 27	Generative neural networks	
Mar. 2	TBA	
Mar. 9	TBA	

Convolutional Neural Networks

Fully Convolutional Neural Networks

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	0	0	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	О	0	0	0	0	0
0	0	0	0	0	0	0

 $w = \frac{1}{5}$

0	1	0
1	1	1
0	1	0

	<u> </u>					
0	0	0	Ο	0	0	0
0	0	0	0	0	0	0
O	0	5	10	5	0	0
О	0	10	10	5	0	0
О	0	5	5	0	0	0
О	0	0	0	О	0	0
0	0	0	0	0	0	0

stride

0	2	

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	0	0	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	О
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	О	0	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2		

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	0	0	O	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2	8	

Dilated Convolutions

Preventing overfitting: Dropout

Low-level features: corners, edges, ...

Transfer Learning

Today

Jan. 20	Introduction, Linear classifiers and filtering		
Jan. 23	. 23 Filtering, gradients, scale		
Jan. 27	an. 27 Local features		
Jan. 30	Learning a classifier		
Feb. 3	Feb. 3 Convolutional neural networks		
Feb. 6	More convolutional neural networks		
Feb. 10	Robust model fitting and RANSAC	Lab 3	
Feb. 13	Image registration		
Feb. 17	Camera Geometry	Lab 4	
Feb. 20	More camera geometry		
Feb. 24	Generative neural networks		
Feb. 27	Generative neural networks		
Mar. 2	TBA		
Mar. 9	TBA		

Today

- Model Fitting Basics
- Robust Model Fitting
- RANdom SAmple Consensus (RANSAC)

Model Fitting Basics

SIFT Features

Image Stitching

Image Stitching

Estimate a transformation

3D Point Set Registration

3D Point Set Registration

Find a consistent transformation

More in lecture 10

Measurements

Measurements

Model: Points on a line: $y_i = kx_i + m$

Measurements

Model: Points on a line: $y_i =$

$$y_i = kx_i + m$$

(explicit line representation)

Measurements

Model: Points on a line:

$$y_i = kx_i + m$$

(explicit line representation)

Good formulation:

$$ax_i + by_i + c = 0$$

(implicit line representation)

normal:

Model: Points on a line:

$$y_i = kx_i + m$$

(explicit line representation)

Good formulation:

$$ax_i + by_i + c = 0$$

(implicit line representation)

Measurements - Models - Parameters

normal:

Model: Points on a line:

$$y_i = kx_i + m$$

(explicit line representation)

Good formulation:

$$ax_i + by_i + c = 0$$

(implicit line representation)

Measurements - Models - Parameters

Measurements

Model: Points on a line:

$$y_i = kx_i + m$$

(explicit line representation)

Good formulation:

$$ax_i + by_i + c = 0$$

(implicit line representation)

Model fitting: Estimate a, b and c from measurements

$$\theta = (a, b, c)$$

Line Fitting

Two measurements - exact solution

Line Fitting

X

X

X

Two measurements - exact solution

More than two?

Line Fitting

Two measurements - exact solution

More than two?

Residuals

$$\int_{\mathbb{X}} r_3(\theta)$$
 $\int_{\mathbb{X}} r_1(\theta)$
 $\int_{\mathbb{X}} r_2(\theta)$

$$r_i(\theta) = |ax + by + c|$$
 such that $a^2 + b^2 = 1$

Model Fitting Problem

$$\theta = (a, b, c) \longrightarrow r_1(\theta), r_2(\theta), r_3(\theta), r_4(\theta), \dots, r_n(\theta)$$

Which parameters best explain the residuals?

Why Do We Have Residuals?

Measurements are not exact.
They are affected by Gaussian noise!

Carl Friedrich Gauss

Why Do We Have Residuals?

Measurements are not exact.
They are affected by Gaussian noise!

Best thing to do: Least squares!

$$\min_{\theta} \sum r_i(\theta)^2$$

Carl Friedrich Gauss

Assumption: Zero-mean, isotropic Gaussian noise on residuals

$$p(r_i(\theta)) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{r_i(\theta)^2}{2\sigma^2}}$$

Assumption: Zero-mean, isotropic Gaussian noise on residuals

$$p(r_i(\theta)) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{r_i(\theta)^2}{2\sigma^2}}$$

• Maximum Likelihood Estimate: $\max_{\theta} \prod_{i} p(r_i(\theta))$

Assumption: Zero-mean, isotropic Gaussian noise on residuals

$$p(r_i(\theta)) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{r_i(\theta)^2}{2\sigma^2}}$$

- Maximum Likelihood Estimate: $\max_{\theta} \prod_{i} p(r_i(\theta))$
- Minimizing negative log-likelihood: $\min_{\theta} \sum_{i} \log(p(r_i(\theta)))$

• Assumption: Zero-mean, isotropic Gaussian noise on residuals

$$p(r_i(\theta)) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{r_i(\theta)^2}{2\sigma^2}}$$

- Maximum Likelihood Estimate: $\max_{\theta} \prod_{i} p(r_i(\theta))$
- Minimizing negative log-likelihood: $\min_{\theta} \sum_{i} \log(p(r_i(\theta)))$
- Equivalent to least-squares fitting: $\min_{\theta} \sum_{i} r_i(\theta)^2$

Outliers

Rare unexpected measurements that don't fit this model.

Outliers in Image Analysis

Frequent expected measurements that don't give useful information.

Outliers in Image Analysis

Are We Doing Something Wrong?

Robust Model Fitting

Least-Squares Fitting

Least-Squares Fitting

Rare unexpected measurements that don't fit Gaussian noise model.

Why Do We Have Residuals?

There are all kinds of noise!
Use robust loss functions!

Peter Huber

Robust Loss Functions

Cauchy distribution:
$$p(x) = \frac{1}{\pi(1+x^2)}$$

Robust Loss Functions

Minimizing Robust Loss Functions

Replace

$$\min_{\theta} \sum_{i} r_i(\theta)^2$$

with

$$\min_{\theta} \sum_{i} f(|r_i(\theta)|)$$

Minimizing Robust Loss Functions

Replace

$$\min_{\theta} \sum_{i} r_i(\theta)^2$$

with

$$\min_{\theta} \sum_{i} f(|r_i(\theta)|)$$
robust loss function

Least Absolute Residual

Least Absolute Residual

Least Absolute Residual

$$\min_{\theta} \sum |r_i(\theta)|$$

Huber Loss

$$\min_{\theta} \sum_{i} h(r_i(\theta)^2) \text{ with } h(x) = \begin{cases} x & \text{if } x < \delta \\ 2\delta\sqrt{x} - \delta^2 & \text{if } x \ge \delta \end{cases}$$

Minimizing Number of Outliers

Outlier count

How to Minimize?

1D example:

RANdom SAmple Consensus (RANSAC)

RANdom SAmple Consensus - RANSAC

Line fitting example

```
× × ×
```

RANdom SAmple Consensus - RANSAC

Line fitting example

 \times \times \times \times

RANdom SAmple Consensus - RANSAC

Line fitting example

× ×

X

Line fitting example

Line fitting example

Line fitting example

Best loss so far = 4 outliers

X

X

×

Line fitting example Best loss so far = 4 outliers X X

Line fitting example

Best loss so far = 4 outliers

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (= #inliers) of model

If more inliers than previous best model

update best model

Return: Model with most inliers

• Let's assume we know the **inlier ratio** ε (fraction of inliers)

- Let's assume we know the **inlier ratio** ε (fraction of inliers)
- Probability of picking an inlier randomly: ε

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: ε^n

- Let's assume we know the **inlier ratio** ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: ε^n
- Probability of non-all inlier sample (≥ 1 outlier): $(1-\epsilon^n)$

- Let's assume we know the **inlier ratio** ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: ε^n
- Probability of non-all inlier sample (≥ 1 outlier): $(1-\epsilon^n)$
- Probability of not picking all-inlier sample in k iterations: $(1-\epsilon^n)^k$

• Terminate if $(1-\epsilon^n)^k < \eta$

- Terminate if $(1-\varepsilon^n)^k < \eta$
- In practice: Compute maximum number iterations k_{max}

- Terminate if $(1-\varepsilon^n)^k < \eta$
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{k_{max}} = \eta$

- Terminate if $(1-\epsilon^n)^k < \eta$
- In practice: Compute maximum number iterations kmax
 - Find k_{max} such that $(1-\epsilon^n)^{k_{max}} = \eta$
 - \Leftrightarrow $k_{max} ln(1-\epsilon^n) = ln(\eta)$

- Terminate if $(1-\epsilon^n)^k < \eta$
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{k_{max}} = \eta$

$$\Leftrightarrow$$
 $k_{max} ln(1-\epsilon^n) = ln(\eta)$

$$\Leftrightarrow$$
 $k_{max} = ln(\eta) / ln(1-\epsilon^n)$

- Terminate if $(1-\epsilon^n)^k < \eta$
- In practice: Compute maximum number iterations kmax
 - Find k_{max} such that $(1-\epsilon^n)^{k_{max}} = \eta$

$$\Leftrightarrow$$
 $k_{max} ln(1-\epsilon^n) = ln(\eta)$

$$\iff$$
 $k_{max} = ln(\eta) / ln(1-\epsilon^n)$

• Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$

- Terminate if $(1-\epsilon^n)^k < \eta$
- In practice: Compute maximum number iterations kmax
 - Find k_{max} such that $(1-\epsilon^n)^{k_{max}} = \eta$

$$\iff$$
 $k_{max} ln(1-\epsilon^n) = ln(\eta)$

$$\iff$$
 $k_{max} = ln(\eta) / ln(1-\epsilon^n)$

- Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$
- How do we know inlier ratio ε ?

• Probability of picking n inlier randomly: ε^n

- Probability of picking n inlier randomly: ε^n
- Maximize ε^n by minimizing $n \to minimal$ solver

- Probability of picking n inlier randomly: ε^n
- Maximize ε^n by minimizing $n \rightarrow$ minimal solver

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

• Example: Line fitting (n = 2)

Example: Line fitting (n = 2)

$$ax_{i} + by_{i} + c = 0$$

$$\begin{pmatrix} x \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \times \begin{pmatrix} \hat{x} \\ \hat{y} \\ 1 \end{pmatrix}$$

Lab 3: Create minimal solver for affine transformation

$$\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Lab 3: Create minimal solver for affine transformation

$$\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

 Hint: Write affine transformation as linear system in the parameters of the affine transformation, solve the system

$$\mathbf{A} \begin{pmatrix} a_{11} \\ a_{12} \\ a_{21} \\ a_{22} \\ t_x \\ t_y \end{pmatrix} = \mathbf{b}$$

RANSAC in Practice

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (= #inliers) of model If more inliers than previous best model local optimization

update best model, η

Refine best model via least squares on inliers

Return: refined best model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

RANSAC in Practice

While probability of missing correct model >n

Estimate model from *n* random data points

Estimate support (= #inliers) of model If more inliers than previous best model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

local optimization [Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012]

update best model, η

Refine best model via least squares on inliers

Return: refined best model

Lessons Learned

- Main lessons from this lecture
 - What is model fitting?
 - Impact of outliers on least-squares estimates
 - Robust cost functions and their relation to probability distributions
 - RANSAC: Why? How?
 - What are minimal solvers?
- Next lecture: Image Registration

Next Lecture

Jan. 20	Introduction, Linear classifiers and filtering	
Jan. 23	Filtering, gradients, scale	- Lab 1
Jan. 27	Local features	
Jan. 30	Learning a classifier	Lab 2
Feb. 3	Convolutional neural networks	
Feb. 6	More convolutional neural networks	
Feb. 10	Robust model fitting and RANSAC	Lab 3
Feb. 13	Image registration	
Feb. 17	Camera Geometry	Lab 4
Feb. 20	More camera geometry	
Feb. 24	Generative neural networks	
Feb. 27	Generative neural networks	
Mar. 2	TBA	
Mar. 9	TBA	