Name	p. [IIT Kanpur
Taille	· _		,		1	CS771 Intro to ML Quiz
Roll	No.:	•	Dep	t.:		Date: October 3, 2018
Instr	ructi	ons:				Total: 40 marks
1.		ease write your name, roll				
Section	on 1	(20 problems: $20 \times 2 = 40$	marks). Write yo	ur answers pred	cisely and con	cisely in the provided space.
1.	Consider learning a regression model with N training examples $\{x_n, y_n\}_{n=1}^N$. Write down a regularized loss function that is robust against outlier examples and also gives a sparse regression weight vector.					
		1 Yn-WJan +				
2.	Suppose you've learned a linear SVM model $w \in \mathbb{R}^D$ and $b \in \mathbb{R}$. How'd you use it to compute the <i>probability</i> of a test input x 's label y being 1? Clearly write down the expression to compute this probability.					
		milar to ligistic		CONTRACTOR OF THE PARTY OF THE		
	Consider a generative classification model for binary classification. Assume both classes to be modeled by Gaussians with equal covariances. For a point x_* exactly at the middle of the line joining their means, would the following be true: $p(y = 1 x_*) = p(y = -1 x_*) = 0.5$? Briefly justify your answer.					
	7	s, because P(y=	K X*) × P	(y=k)P(x	(y=k) =	Being in the middle will only mate this term marginal matters
4.	State whether the following statement is true or false: Training error of one-nearest neighbor can never be more than that of three-nearest neighbors. You also need to briefly justify your answer.					
	Ye	s, because traini	ng error of	7-44	zero.	
	prob	bility distributions for the	e likelihood $p(y_n)$ required but clear	(x_n) and the range (x_n) mention the	parameters of	$\lambda_d w_d^2$. What would be the this model? The exact form of these distributions.
		$P(y_n w,x_n) = H(x_n)$				
6.						≥ 0 , for all vectors $z \in \mathbb{R}^N$.
		$Z^T X X^T Z = (X^T Z)^T$	$z)'(\chi^T z) =$	5'5 %0	where	
7.		of I agrange multipliers of	positive example	S - Suin or Da	161 miles minis	$\{(w^{\top}x_n + b)\}\$, show that the pliers of negative examples.
		Taking deriv. wird	b, we ge	Zang	n-U ¬ r	$\frac{2}{1!}y_{n=1} = \frac{2}{n!}y_{n=1}$

8. In a generative classification model with class-conditional distributions $p(x|y=k) = \mathcal{N}(x|\mu_k, \Sigma_k)$ and class-marginals $p(y=k) = \pi_k$, k = 1, ..., K, what's the marginal distribution p(x) of the inputs? $P(x) = \sum_{k=1}^{K} P(x, y=k) = \sum_{k=1}^{K} P(y=k) P(x|y=k) = \sum_{k=1}^{K} \pi_k N(x) \mu_k, \Sigma_k$

Nam	e.			CS771 Intro to ML			
Itali	C.	_		Quiz			
Roll	No.:	Dept.:		Date: October 3, 2018			
9.	Consider 4 training examples $\{(0,0),(1$ will Perceptron take to converge on the	is data? Briefly justif	y your ansv	ver.			
	Data is linearly	y NOT Seperabl	le. Pera	converge:			
10.	Write down the loss function for a K	K class prototype clas	sification n	nodel, given N training examples			
	$\{(x_n, y_n)\}_{n=1}^N$. The unknown parameter	ers in the loss function	are the me	eans μ_1, \dots, μ_K of the K classes.			
	· Many ways to write it. Just $\angle (\mu_1,,\mu_R) =$	Elike K-means,	with kno	oun labels, also use any of the me to K-means loss func.)			
11.	Would solving SVM using SGD give the	he same solution as Pe	erceptron?	If yes, why? If no, why not?			
	No because SVM's lo						
	Do de la	/ Men CAM	malmi	zes the margin Perceptorer			
	Perception's loss function: (Also SVM maximizes the margin, Perception) Why might you want to solve linear regression using gradient descent instead of in closed form?						
12.	Because Closed form &	egression using gradier	ced 0×1	pensive mother			
		solution soque	40 01				
12	Suppose we know that the weight vector	or w of a linear/logist	ic regression	n model is close to a known vector			
13.	w_0 . How would you use this informati	ion (1) As a regularize	er, (2) As a	prior distribution?			
	Regularizar 11W-Well2	or IIW-Woll,					
	Regularizer / W-Wo 2 Prior ! N(W)Wo,	x'I) or lap	lacepric	or with mean wo.			
14.	Consider the landmark based approach	ch for getting explicit	teatures from	om a kernel k. Given IV training			
	inputs x_1, \ldots, x_N , what will be the land	rumark based leadure	7 C	D M			
	$\psi(\alpha_n) = [k(\alpha_n, \alpha_i).$						
15.	Consider a regularized model with loss	function $\sum_{n=1}^{N} \ell(y_n, w)$	$ x^{ op}x_n) + \lambda u $	$ v ^2$. What happens to the training			
10.	1 - 1 is not to (1) a reary yeary	emall value and (2) a	very very	arge value?			
	1) Training error Will &	become very ver	y small	(overAt on training data)			
	(2) Training error wi	11 become very v	ery large	Too much regularitation			
16.	2 Training error wi Rank gradient descent (GD), stochasti	ic gradient descent (SC	GD), and m	ini-batch gradient descent (MGD)			
	in terms of per-iteration cost. Briefly	justify your ranking.					
	1 SGD (2) M	GD 3 (JD I	one possibili			
	CASTETT	SI	OWEST	1			
	A possible vector $w \in \mathbb{R}^4$ with $ w _1 =$						
17.	A possible vector $w \in \mathbb{R}^+$ with $ w _1 =$	$= 0.5, w _0 - 2, \text{ and}$	Zd=1 wd -	() () () () () () () () () ()			
18.	SGD update for ridge regression $\sum_{n=1}^{N}$	$ y_n - \boldsymbol{w}^{T} \boldsymbol{x}_n ^2 + \lambda \boldsymbol{w} ^2$	² : W	= W talt (An-M Ju) Tuym			
	Mark all options (by encircling them in (2) Kernelized SVM is slower than ker standard K-means, (4) Training SVM	nelized Perceptron at with RBF kernel is n	test time, (ive than with quadratic kernel.			
20.	Mark all options (by encircling them in $p(y = 1 x, w) = \frac{1}{1 + \exp(w^T x)}$: Can't the same solution regardless of initialization.	solve for w in closed for	orm, (2) Ca	in't be kernelized; (3) GD will give			
	the same soldion refurences of mattain	(a) comment b					

. ...