

Mathématiques et Calculs 1 : Contrôle continu n°1 14 Octobre 2013

L1: Licence Sciences et Technologies, mention Mathématiques, Informatique et Applications

Correction succincte (Noté sur 24)

Exercice 1

- 1) In passant à la forme conjuguée, on obtient $a = \frac{4}{1+\sqrt{3}i} = 1 \sqrt{3}i$.
- 2) 1.5 (0.5 pour le module, 0.5 l'argument, 0.5 la forme trigo.) $a = 2(\frac{1}{2} \frac{\sqrt{3}}{2}i) = 2e^{-i\pi/3}$. 3) 1.5 (1 pour la forme trigo, 0.5 la forme algèbrique.) $a^4 = 16e^{-i4\pi/3} = 16(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)$.

Exercice 2 5

- 1) $0.5 \omega + \frac{1}{\omega} = e^{i2\pi/5} + e^{-i2\pi/5} = 2\cos(2\pi/5).$
- 2) 1 C'est la somme des racines 5 ièmes de l'unité, donc $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
- 3) 1.5 En remplaçant dans l'équation, et en mettant $\frac{1}{\omega^2}$ en facteur, on a

$$\left(\omega+\frac{1}{\omega}\right)^2+\left(\omega+\frac{1}{\omega}\right)-1=\omega^2+\frac{1}{\omega^2}+2+\omega+\frac{1}{\omega}-1=\frac{1}{\omega^2}\left(1+\omega+\omega^2+\omega^3+\omega^4\right)=0\;,$$

par la question précédente.

4) $\boxed{2}$ (0.5 pour résoudre $x^2 + x - 1 = 0$, 0.5 pour le bon signe du cosinus, 1 pour le sinus.) On résout $x^2 + x - 1 = 0$, ce qui donne $x = \frac{-1 \pm \sqrt{5}}{2}$. Comme $\cos(\frac{2\pi}{5}) > 0$, on déduit que

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4}, \quad \text{et } \sin\left(\frac{\pi}{5}\right) = \frac{\sqrt{5-\sqrt{5}}}{2\sqrt{2}},$$

par la formule $\cos(2\alpha) = 1 - 2\sin^2(\alpha)$, le sinus de $\pi/5$ étant > 0.

Exercice 3

 (E_1) 2 (1 pour la méthode, 1 pour le calcul) On cherche z sous la forme z=a+ib. Cela conduit au système suivant :

$$\begin{cases} a^2 - b^2 = -2, \\ 2ab = 1, \\ a^2 + b^2 = \sqrt{5}. \end{cases}$$

On en déduit que les solutions sont

$$\left\{ Z_1 = \sqrt{\frac{\sqrt{5}-2}{2}} + i\sqrt{\frac{\sqrt{5}+2}{2}}; Z_2 = -\sqrt{\frac{\sqrt{5}-2}{2}} - i\sqrt{\frac{\sqrt{5}+2}{2}} \right\}.$$

 (E_2) 2 (1 pour la méthode, 1 pour le calcul) On calcule le discriminant :

$$\Delta = -2 + i .$$

On a calculé les racines de Δ à la question précédente. On en déduit que les solutions sont :

$$\left\{ \frac{-1+Z_1}{2}; \frac{-1+Z_2}{2} \right\}.$$

1) a)
$$u_n = \frac{-3\left(1 - \frac{4}{3n^2}\right)}{1 + \frac{1}{n^2}} \to -3$$
 0.5

b)
$$v_n = \frac{n^2}{\log n} \cdot \frac{1 + \frac{(-1)^n}{n^2}}{1 - \frac{2}{\log n}} \to +\infty$$
 1

c)
$$w_n = \frac{\sqrt{n}}{2^n} \cdot \frac{1 - \frac{2}{\sqrt{n}}}{1 + \frac{n^3}{2^n}} \to 0$$
 0.5

2) a)
$$f(x) = x^3 + 3\log(x) \xrightarrow[x \to 0_+]{} -\infty$$
 0.5

b)
$$\lim_{x \to 0_+} g(x) = \lim_{y \to +\infty} \frac{\frac{1}{y^2} + \frac{1}{y}}{e^{-y}} = \lim_{y \to +\infty} \left(\frac{1+y}{y^2}\right) e^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y}\right) \frac{e^y}{y} = +\infty$$

3) 1.5 (0.5 s'ils comprennent que cela revient à chercher la limite en zéro, 0.5 s'ils écrivent que $\lim_{x\to 0} \frac{\sin x}{x} = 1$ et 0.5 s'ils parviennent à trouver $\lim_{x\to 0} h(x)$)

Oui, h est prolongeable par continuité en zéro, car

$$h(x) = \frac{\sin x}{x} \cdot \frac{1 + x \frac{x}{\sin x}}{1 + \sqrt{x}} \xrightarrow[x \to 0]{} 1.$$

4) 1 (0.5 pour le calcul de la somme et 0.5 pour la limite) $S_n = \frac{3}{4} \left(1 - \left(\frac{-1}{3} \right)^{n+1} \right) \rightarrow \frac{3}{4}$.

Exercice 5 5

1) 1 (0.5 pour la continuité et 0.5 pour la croissance)

Les fonctions $x \mapsto x - 1$ et exp sont continues et croissantes sur \mathbb{R} , donc il en est de même de f.

- 2) 0.5 Pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n) \geqslant u_n$.
- 3) Comme $\lim u_n = l$ et comme f est continue en l, on a f(l) = l 0.5. De plus, avec la propriété admise, on a nécessairement l = 1 0.5.

Rq: S'ils passent de $\lim u_n = l$ à $\lim f(u_n) = f(l)$ sans mentionner la continuité de f, alors ne pas mettre le demi-point correspondant. Aussi, s'ils n'utilisent pas la fonction f, mais retrouvent $\lim u_{n+1} = \lim e^{u_n-1} = e^{l-1}$ par composition des limites (en détaillant les étapes), alors mettre ce demi-point.

- 4) Montrons par récurrence que pour tout $n \in \mathbb{N}$, la propriété (P_n) : " $0 \le u_n \le 1$ " est vraie.
 - * Initialisation : $u_0 = 1/2$ donc (P_0) est vraie.
 - * **Hérédité**: Soit $n \in \mathbb{N}$ tel que (P_n) est vraie, i.e. $0 \le u_n \le 1$. Comme f est croissante, il vient $f(0) \le f(u_n) \le f(1)$, c'est-à-dire $e^{-1} \le u_{n+1} \le 1$ donc $0 \le u_{n+1} \le 1$ donc (P_{n+1}) est vraie.
 - **★ Conclusion :** Le principe de récurrence assure que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$. (0.5 si la récurrence est bien rédigée et 0.5 si le raisonnement est correct)
 - La suite (u_n) est croissante majorée donc converge $\boxed{0.5}$. Avec 3), on obtient $\lim u_n = 1$ $\boxed{0.5}$.
- 5) Supposons par l'absurde que (u_n) converge vers un nombre l. Comme elle est croissante, on a pour tout $n \in \mathbb{N}$, $u_n \geqslant u_0$. En passant à la limite, il vient $l \geqslant u_0 > 1$ ce qui contredit 3). Ainsi, (u_n) diverge et comme elle est croissante, on a nécessairement $\lim u_n = +\infty$.