Méthodes de Monte-Carlo EISC-211

Xavier Gendre & Jérôme Morio

ISAE & ONERA

2018-2019

Très rapide aperçu des chaînes de Markov

But : Algorithme de Metropolis-Hastings

Définition

Chaîne de Markov $(X_t, t \ge 1)$

- Système dynamique aléatoire
- ► Innovation indépendante du passé

$$X_{t+1} = F(X_t, U_t), (U_t)$$
 i.i.d.

Utilité

Modélisation de nombreux systèmes physiques

- L'évolution future ne dépend que de l'état actuel du système et pas de comment il y est arrivé
- Marchés financiers, séquences d'ADN, évolution de population, réseaux de communication, formation de cristaux, ...

Algorithmes probabilistes

- Algorithmique
- Optimisation : recuit simulé
- Page Rank
- **▶** Simulation

Propriété de Markov

Définition

Un processus $(X_t, t \ge 1)$ satisfait la propriété de Markov si le futur est indépendant du passé conditionnellement au présent, i.e., si

$$\mathbb{P}(X_{t+1} = x_{t+1} \mid X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_0 = x_0)$$
$$= \mathbb{P}(X_{t+1} = x_{t+1} \mid X_t = x_t)$$

Analogie déterministe :

$$\dot{x}(t) = F(x(t))$$
 et non $\dot{x}(t) = F(x(s), s \le t)$

Théorème

 $(X_t, t \ge 1)$ satisfait la propriété de Markov si et seulement on peut écrire

$$X_{t+1} = F(X_t, U_t), (U_t)$$
 i.i.d.

Propriété de Markov

Matrice de transition

La dynamique d'un processus de Markov (X_t) est donc caractérisée par la matrice de transition :

$$P = (p_{xy})_{x,y \in \mathfrak{X}}$$
 avec $p_{xy} = \mathbb{P}(X_1 = y \mid X_0 = x)$

Convergence à l'équilibre

Rappel

 (X_t) est une suite de variables aléatoires : elle peut donc converger en loi.

Théorème

Si

$$\forall x, y \in \mathfrak{X} : \pi_x p_{xy} = \pi_y p_{yx}$$

alors
$$X_t \xrightarrow[t \to +\infty]{L} \pi$$
, i.e., $\mathbb{P}(X_t = x) \xrightarrow[t \to +\infty]{L} \pi_x$ pour tout $x \in \mathfrak{X}$.

Le cas i.i.d.

Cas particulier

Si $p_{xy}=p_y$, i.e., l'état suivant ne dépend pas de la position courante, alors (X_t) est i.i.d. distribuée selon $p=(p_x)_{x\in\mathfrak{X}}$.

- ► Loi des grands nombres
- Théorème central limite
- ► IIDMC

Ces deux résultats restent vrais dans le cas général!

► IIDMC → MCMC

Théorèmes de convergence

Théorème ergodique

Si
$$X_t \xrightarrow[t \to +\infty]{L} f + (...)$$
, alors

$$\Phi_T = \frac{1}{T} \sum_{t=1}^{T} \phi(X_t) \xrightarrow[T \to +\infty]{p.s.} \mathbb{E}_f(\phi(X_1)) = \int \phi f.$$

Théorème central limite

Si $X_t \xrightarrow{L} f + (\dots)$, alors

$$\sqrt{T} \left(\Phi_T - \int \phi f \right) \xrightarrow[T \to +\infty]{L} N_f$$

où N_f suit une loi normale centrée de variance

$$\mathbb{V}\mathrm{ar}_f(\phi(X_1)) + 2\sum_{t \geq 2} \mathbb{C}\mathrm{ov}_\pi(\phi(X_1), \phi(X_t))$$

Remarque

Cas i.i.d. $\Rightarrow \mathbb{C}ov_{\pi}(\phi(X_1), \phi(X_t)) = 0$

Théorèmes de convergence

Remarque

- $ightharpoonup (X_t)$ i.i.d. $\Rightarrow (\phi(X_t))$ i.i.d.
- $ightharpoonup (X_t) \ \mathsf{MC} \not\Rightarrow (\phi(X_t)) \ \mathsf{MC} \, !$

Résumé

En résumé:

Si $\pi_x p_{xy} = \pi_y p_{yx}(\star)$, alors on a la loi des grands nombres et le TCL.

Algorithme de Metropolis-Hastings

- ▶ Etant donné une distribution (densité) cible π , construction systématique d'une chaîne de Markov (P) qui satisfait (\star)
- Applications inombrables : biologie, physique, chimie, finances, fiabilité, traitement du signal, optimisation, EDP, vision par ordinateur, . . .
- ► Très souvent la seule méthode disponible
- (A des défauts)