Polímeros

POLÍMEROS

São compostos naturais ou sintéticos de alta massa molecular, isto é, são macromoléculas formadas pela união de moléculas menores denominadas monômeros.

Exemplos de polímeros naturais

- Celulose $(C_6H_{10}O_5)_n$ em que n varia de 1500 a 3000
- Proteína
- Borracha natural (C₅H₈)_n

Exemplos de polímeros sintéticos

- · Plásticos (polietileno, polipropileno, etc.)
- Tecidos (náilon, poliéster, etc.)
- Fibras (PVC, acrílico, teflon)

Existem dois tipos de polimerização: por **adição** e por **condensação**.

1. POLÍMERO POR ADIÇÃO

Quando a reação de polimerização forma o polímero como único produto, isto é, não libera ${\rm H_2O}$ ou outro produto. a) Polietileno

$$n \text{ H}_2\text{C} = \text{CH}_2 \xrightarrow{\text{cat.}} (-\text{CH}_2 - \text{CH}_2 -)_n$$

Aplicação em brinquedos, sacos plásticos, etc. b) PVC ⇒ Policloreto de Vinila

$$n \quad H_2C = C - H \quad \xrightarrow{\text{cat.}} \quad \left(-CH_2 - C - \right)_n$$

Cloreto de vinila

Aplicação em tubulações, discos, etc.

c) Teflon

$$n ext{ } ext{F}_2 ext{C} = ext{CF}_2 \quad \frac{\text{cat.}}{\Delta} \quad \left(- ext{CF}_2 - ext{CF}_2 - \right)_n$$

Tetrafluoreteno

Aplicação em revestimentos antiaderentes.

d) Borracha

$$\begin{array}{ccc}
n & H_2C = C - CH = CH_2 & \longrightarrow \\
& & CH_3
\end{array}$$

2-metil-1,3-butadieno (isopropeno)

Borracha

Aplicação: elastômero natural

Para melhorar sua qualidade, a borracha é submetida ao processo de vulcanização, que consiste num aquecimento da borracha com 5 a 8% de enxofre. O enxofre quebra as duplas ligações e liga a molécula do polímero às suas vizinhas, tornando o conjunto mais resistente.

2. COPOLÍMEROS

O polímero é obtido a partir de dois monômeros diferentes.

Exemplo

$$x \text{ CH}_2 = \text{CH} + y \text{ CH}_2 = \text{CH} - \text{CH} = \text{CH}_2$$
 cat.

1,3-butadieno

Estireno

Borracha

3. POLÍMERO POR CONDENSAÇÃO

São polímeros obtidos pela reação de dois monômeros com eliminação de uma substância mais simples (H₂O) (HCl) (NH₃), etc.

a) Náilon

Náilon = poliamida

b) Dácron (poliéster)

EXERCÍCIOS DE APLICAÇÃO

01 (UNICAMP-SP) Estou com fome - reclama Chuá - Vou fritar um ovo.

Ao ver Chuá pegar uma frigideira, Naná diz: - Esta não! Pegue a outra que não precisa usar óleo. Se quiser um pouco para dar um gostinho tudo bem, mas nesta frigideira o ovo não gruda. Essa história começou em 1938, quando um pesquisador de uma grande empresa química estava estudando o uso de gases para refrigeração. Ao pegar um cilindro contendo o gás tetrafluoreteno, verificou que o manômetro indicava que o mesmo estava vazio. No entanto, o "peso" do cilindro dizia que o gás continuava lá. Abriu toda a válvula e nada de gás. O sujeito poderia ter dito: "Que droga!", descartando o cilindro. Resolveu, contudo, abrir o cilindro e verificou que continha um pó cuja massa correspondia à do gás que havia sido colocado lá dentro.

- a) Como se chama esse tipo de reação que aconteceu com o gás dentro do cilindro? Escreva a equação química que representa essa reação.
- b) Cite uma propriedade da substância formada no cilindro que permite o seu uso em frigideiras.
- c) Se os átomos de flúor do tetrafluoreteno fossem substituídos por átomos de hidrogênio e essa nova substância reagisse semelhantemente à considerada no item a, que composto seria formado? Escreva apenas o nome.

02 (VUNESP-SP) Acetileno pode sofrer reações de adição do tipo:

A polimerização do acetato de vinila forma o PVA, de fórmula estrutural mostrada acima.

- a) Escreva a fórmula estrutural do produto de adição do $HC\ell$ ao acetileno.
- b) Escreva a fórmula estrutural da unidade básica do polímero formado pelo cloreto de vinila (PVC).

(UFRJ-RJ) Um dos maiores problemas ambientais da atualidade é o do lixo urbano e, em especial, do lixo plástico. Dentre os plásticos encontrados no lixo podemos citar o polietileno (sacos e garrafas) e o politereftalato de etileno, conhecido como PET (garrafas de refrigerantes).

A síntese do polietileno se dá pela reação de polimerização do eteno, segundo a equação:

$$n H_2 C = CH_2 \xrightarrow{\text{catalisador}} \left\{ CH_2 - CH_2 \right\}_{\text{n}}$$
(monômero) (polímero)

Já o PET é um poliéster formado por unidades condensadas de dois monômeros, um diálcool e um diácido, conforme a estrutura a seguir.

$$+\overset{O}{\leftarrow}\overset{O}{\leftarrow}\overset{O}{\leftarrow}\overset{O}{\leftarrow}\overset{O}{\leftarrow}-C-O-CH_2-CH_2-O+\underset{n}{\leftarrow}$$
PET

Um dos processos de reciclagem das garrafas de PET é a decomposição do polímero em seus monômeros por intermédio de uma reação de hidrólise.

Com base na estrutura do PET, escreva as fórmulas estruturais dos seus monômeros.

04 (PUC-SP) Polímeros são macromoléculas formadas por repetição de unidades iguais, os monômeros.

A grande evolução da manufatura dos polímeros, bem como a diversificação das suas aplicações caracterizam o século XX como o século do plástico.

A seguir, estão representados alguns polímeros conhecidos:

$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ N & - & C & - & (CH_2)_4 & - & C & - & N & - & (CH_2)_6 & - & N \\ \vdots & & & & & \vdots & & \vdots & & \vdots \\ H & & & & & H & & & H \end{bmatrix}$$

II)
$$-CF_2 - CF_2 + CF_2 - CF_2 + CF_2 - CF$$

III)
$$-CH_2 - CH_2 - CH_2 + CH_2 - CH_2 + CH_2 - CH_2$$

$$\begin{array}{c|c} \text{IV)} \\ -\text{CH}_2 - \text{CH} & -\text{CH}_2 - \text{CH} & -\text{CH}_2 - \text{CH} - \\ \hline \text{Cl} & \text{Cl} & \text{Cl} \end{array}$$

Assinale a alternativa que relaciona as estruturas e seus respectivos nomes:

I	II	III	IV	V
a) polieti- leno	poliéster	policloreto de vinila (PVC)	poliamida (náilon)	politetra fluoretileno (teflon)
b) poliéster	polietileno	poliamida (náilon)	politetra fluoretileno (teflon)	policloreto de vinila (PVC)
c) poliamida (náilon)	politetra fluoretileno (teflon)	polietileno	policloreto de vinila (PVC)	poliéster
d) poliéster	politetra fluoretileno (teflon)	polietileno	policloreto de vinila (PVC)	poliamida (náilon)
e) poliamida (náilon)	policloreto de vinila (PVC)	poliéster	polietileno	politetra fluoretileno (teflon)

05 (PUCCAMP-SP) A baquelite ainda é bastante utilizada em utensílios domésticos e materiais elétricos. É polímero de condensação, formado pela reação de fenol com formaldeído, ocorrendo "eliminação" de uma substância composta.

$$\begin{array}{c|c} OH & OH & OH & OH \\ \hline \\ + C + \\ \hline \\ H & H \end{array} \\ \longrightarrow \dots \\ \begin{array}{c|c} OH & OH \\ \hline \\ H_2 \\ \hline \\ \end{array} \\ \begin{array}{c|c} Produto \\ de \\ eliminação \\ \end{array}$$

O produto de eliminação, indicado na equação acima, é

- a) o etanol.
- b) o gás carbônico.
- c) a água.
- d) o próprio fenol.
- e) o próprio formaldeído.

06 (VUNESP-SP) Estão representados a seguir fragmentos dos polímeros náilon e dexon, ambos usados como fios de suturas cirúrgicas.

O O O O
$$\parallel$$
 \parallel \parallel \parallel \parallel \cdots $C - (CH2)4 - C - NH - (CH2)6 \cdots Náilon$

$$\begin{array}{c|cccc}
O & O & O \\
\parallel & \parallel & \parallel \\
\cdots CH_2 - C - O - CH_2 - C - O - CH_2 - C - O \cdots
\end{array}$$
Dexon

- a) Identifique os grupos funcionais dos dois polímeros.
- b) O dexon sofre hidrólise no corpo humano, sendo integralmente absorvido no período de algumas semanas. Neste processo, a cadeia polimérica é rompida, gerando um único produto, que apresenta duas funções orgânicas. Escreva a fórmula estrutural do produto e identifique essas funções.
- 07 (FUVEST-SP) Cianeto de vinila pode ser produzido como está equacionado abaixo.

Analogamente, o ácido acético pode se adicionar ao acetileno, produzindo um composto insaturado. A polimerização deste último produz o polímero poliacetato de vinila.

$$HC \equiv CH + HCN \rightarrow C = C$$
 $H = CN$
 $H = CN$
 $H = CN$
 $H = CN$

- a) Escreva a fórmula estrutural do produto de adição do ácido acético ao acetileno.
- b) Dê a fórmula estrutural da unidade que se repete na cadeia do poliacetato de vinila.

08 (VUNESP-SP) Polivinilpirrolidona, polímero presente em sprays destinados a embelezar os cabelos, tem a seguinte estrutura:

O monômero que se utiliza na síntese deve ser:

c)
$$O$$
 $CH = CH_2$

- 09 (VUNESP-SP) O drácon, um polímero utilizado em fitas magnéticas, é sintetizado pela reação entre o ácido 1,4-benzenodióico e o 1,2-etanodiol, com eliminação de água.
- a) Escreva a equação que representa a reação de uma molécula do diácido com uma molécula do diol. Utilize fórmulas estruturais.
- b) A que função orgânica pertence o drácon?
- 10 (UnB-DF) Considere os compostos abaixo e julgue os itens.

- (1) O composto I reage com Br₂ na presença de FeBr₃ para formar principalmente o 3-bromo-1-metoxibenzeno.
- (2) O composto II reage com $C\ell_2$ na presença de luz para formar uma mistura de 1-cloro-2-metilbenzeno e 1-cloro-4-metilben- zeno.
- (3) O composto III pode ser obtido através da desidratação do etanol.
- (4) O composto IV é usado como matéria-prima para a obtenção do poliestireno.
- (5) Os compostos III e IV são hidrocarbonetos insaturados.

11 (UNEMAT-MT) Baquelite é um produto resultante da reação entre fenol e formaldeído, em condições apropriadas, podendo apresentar a seguinte estrutura:

A formação da baquelite envolve uma reação de:

- a) esterificação.
- b) adição.
- c) hidrólise.
- d) polimerização.
- e) oxidação.

12 (FUVEST-SP) Os poliésteres são polímeros fabricados por condensação de dois monômeros diferentes, em sucessivas reações de esterificação.

Dentre os pares de monômeros abaixo,

I)
$$\bigcirc$$
 C - OH e OH - CH₂ - CH₃

II)
$$HO - C - C - C - C - CH_2 - CH_3$$

III)
$$\bigcirc$$
 C - OH e HO - CH₂ - CH₃ - OH

$$^{\mathrm{IV})}$$
HO $-\overset{\mathrm{O}}{\mathrm{C}}\overset{\mathrm{O}}{-}\overset{\mathrm{O}}{\mathrm{C}}$ – OH e HO $-$ CH $_2$ – CH $_3$ – OH

poliésteres podem ser formados

- a) por todos os pares.
- b) apenas pelos pares II, III e IV.
- c) apenas pelos pares I e IV.
- d) apenas pelo par IV.
- e) apenas pelos pares II e III.

13 (UFF-RJ) Uma porção de molécula do plástico poliestireno é representada por:

Qual o monômero que por polimerização dá origem a esse plástico?

d)
$$\bigcirc$$
 CH = CH₂

b)
$$C = CH$$

14 (FUVEST-SP) Qual das moléculas representadas abaixo tem estrutura adequada à polimerização, formando macromoléculas?

$$\begin{array}{ccc}
 & & & & & & H \\
 & & & & & C & = C \\
 & & & & & H \\
 & & & & & H
\end{array}$$

15 (ITA-SP) São dadas as estruturas poliméricas abaixo:

I) ...
$$- CH_2 - CH = CH - CH_2 - ...$$

III)...
$$- CH_2 - C = CH - (CH_2)_2 - C = CH - CH_2 - ...$$

$$CH_3 \qquad CH_3$$

$$IV)... - NH - (CH_2)_6 - NH - C - (CH_2)_4 - C - ...$$

$$0$$
O

Qual das afirmações seguintes está certa?

- a) I resulta da polimerização do etileno.
- b) Il não se altera quando fervido com solução aquosa de ácido clorídrico.
- c) III é um polímero natural.
- d) IV é fabricado a partir de 1,6-diaminoexano e ácido butanodióico.
- e) V é o acetato de polivinila
- 16 (UnB-DF) A molécula do náilon 66 pode ser obtida por meio da reação de polimerização por condensação entre o ácido adípico e a hexametilenodiamina, cujas estruturas moleculares são apresentadas a seguir.

Com base nas estruturas apresentadas, julgue os itens que se seguem.

- (1) O número de átomos de carbono que constituem as moléculas de ácido adípico e de hexametilenodiamina relacionase com o nome dado ao polímero obtido na condensação; náilon 66.
- (2) A reação de polimerização para a formação do náilon 66 libera água.
- (3) O ácido adípico é um ácido dicarboxílico.

17 (FEI-SP) A cada dia que passa, os polímeros sintéticos vêm adquirindo importância cada vez maior no cotidiano do homem moderno. Entre esses materiais, destacam-se os copolímeros, produzidos a partir de mais de um monômero, por meio de reação de adição ou de condensação. Qual das alternativas abaixo representa o exemplo de um copolímero de condensação termofixo (termoendurecível)?

c) ...
$$A-B-A-B-A-B-A-B... + H_2O$$

e) ...
$$B-B-B-B-B-B-B-B... + H_2O$$

- 18 (ITA-SP) Nas afirmações abaixo, macromoléculas são relacionadas com o processo conhecido com vulcanização. Assinale a opção que contém a afirmação correta.
- a) O elastômero obtido a partir de buta-1,3-dieno e estireno (vinil- benzeno) não se presta à vulcanização.
- b) A desvulcanização ou reciclagem de pneus se baseia na ação do ácido sulfúrico concentrado, em presença de oxigênio e em temperatura elevada, sobre a borracha vulcanizada.
- c) Na vulcanização, os polímeros recebem uma carga de calcário e piche que os torna resistentes ao calor sem perda de elasticidade.
- d) Os polímeros vulcanizados só serão elásticos se a concentração de agente vulcanizante não for excessiva.
- e) Do butadieno-1,3 obtém-se um polímero que, enquanto não for vulcanizado, será termofixo.
- 19 (Unip-SP) Lexan é um plástico transparente como o vidro e tão resistente quanto o aço. É empregado na fabricação de janelas à prova de bala e visores dos capacetes de astronautas. O lexan apresenta a estrutura:

$$...-O \longrightarrow \begin{matrix} CH_3 & O & CH_3 & O \\ I & \bigcirc & -C-O \longrightarrow \begin{matrix} CH_3 & O & CH_3 & O \\ I & \bigcirc & -C-O \longrightarrow \begin{matrix} CH_3 & O & O \\ I & \bigcirc & -C-O \longrightarrow \begin{matrix} CH_3 & O & O \\ I & \bigcirc & -C-O \longrightarrow \begin{matrix} CH_3 & O & O \\ I & \bigcirc & -C-O \longrightarrow \begin{matrix} CH_3 & O & O & O \end{matrix} \end{matrix}$$

Pode-se afirmar que o Lexan é:

- a) uma poliamida
- b) um poliéster
- c) um policarbonato
- d) uma policetona
- e) um poliéter

20 (FUVEST-SP) Abaixo estão representadas fórmulas estruturais dos polímeros naturais cautchu e guta-percha:

$$\begin{pmatrix}
H_{3}C & H \\
C = C \\
H_{2}C
\end{pmatrix}$$

$$\begin{pmatrix}
H_{3}C & CH_{2} \\
C = C \\
H
\end{pmatrix}$$

$$\begin{pmatrix}
H_{3}C & CH_{2} \\
C = C \\
H
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
2.500 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
2.500 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1$$

Cautchu

Guta-percha

Qual das alternativas abaixo indica o monômero e o tipo de isomeria desses polímeros?

	Monômero	Isomeria	
a)	propeno	geométrica	
b)	1,3-butadieno	óptica	
c)	2-metil-1,3-butadieno	geométrica	
d)	1,3-butadieno	funcional	
e)	pentano	óptica	

21 (AMAN-AM) Considerando os tipos de polímeros abaixo:

I. polímero de adição

II. polímero de condensação

III. copolímero de adição

IV. copolímero de condensação

podemos afirmar que o polímero poliacrilonitrilo (orlon) e o náilon são, respectivamente:

- a) ambos do tipo I.
- b) II e III.
- c) I e IV.
- d) II e IV.
- e) ambos do tipo III.

22 (FUVEST-SP) Completa-se adequadamente a tabela acima se A, B e C forem, respectivamente:

Fórmula do monômero	Nome do polímero	Usos	
$H_2C = CH_2$	A	Sacos plásticos	
В	Poli (cloreto de vinila)	Capas de chuva	
$H_2C = CH$ I CN	Poliacrilonitrila	С	

- a) polietileno, H₃C CH₂Cℓ e tubulações.
- b) polietileno, $H_2C = CHC\ell$ e roupas.
- c) poliestireno, $H_2C = CHC\ell$ e tomadas elétricas.
- d) poliestireno, C₆HS CH CH₂ e roupas.
- e) polipropileno, H₃C CH₂Cℓ e tomadas elétricas.

23 (FUVEST-SP) O monômero utilizado na preparação do poliestireno é o estireno:

O poliestireno expandido, conhecido como isopor, é fabricado polimerizando-se o monômero misturado com pequena quantidade de um outro líquido. Formam-se pequenas esferas de poliestireno que aprisionam esse outro líquido. O posterior aquecimento das esferas a 90 °C, sob pressão ambiente, provoca o amolecimento do poliestireno e a vaporização total do líquido aprisionado, formando-se, então, uma espuma de poliestireno (isopor).

Considerando que o líquido de expansão não deve ser polimerizável e deve ter ponto de ebulição adequado, dentre as substâncias abaixo,

	Substância	Temperatura de ebulição (°C), à pressão ambiente
1	CH ₃ (CH ₂) ₃ CH ₃	36
П	$NC - CH = CH_2$	77
Ш	H ₃ C — CH ₃	138

é correto utilizar, como líquido de expansão, apenas:

- a) I
- b) II
- c) III
- d) I ou II
- e) I ou III
- 24 (Unisinos-RS) Polímeros (do grego poli, "muitas", meros, "partes") são compostos naturais ou artificiais formados por macromoléculas que, por sua vez, são constituídas por unidades estruturais repetitivas, denominadas _______. Assim, entre outros exemplos, podemos citar que o amido é um polímero originado a partir da glicose, que o polietileno se obtém do etileno, que a borracha natural, extraída da espécie vegetal *hevea brasiliensis* (seringueira), tem como unidade o _______ e que o polipropileno é resultado da polimerização do _______. As lacunas são preenchidas, correta e respectivamente, por:
- a) elastômeros, estireno e propeno.
- b) monômeros, isopreno e propeno.
- c) anômeros, cloropreno e neopreno.
- d) monômeros, propeno e isopreno.
- e) elastômeros, eritreno e isopreno.

25 (UnB-DF) Os compostos orgânicos estão presentes na maioria dos materiais de uso diário. Analise as fórmulas de alguns desses compostos, apresentados na tabela abaixo.

Substância	Fórmula	Aplicação
fenol	OH OH	anti-séptico
formaldeíco	C = O	fabricação de polímeros
ácido acético	CH ₃ — COOH	tempero de alimentos (vinagre)
anilina	NH ₂	corante
náilon-66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	confecção de fibras têxteis

Julgue os itens a seguir.

- (1) O fenol é um álcool pouco solúvel em água.
- (2) O formaldeído é um aldeído cujo nome oficial é metanal.
- (3) O ácido acético possui ponto de ebulição menor do que álcoois de massa molecular correspondente.
- (4) A anilina é uma base mais fraca do que a amônia.
- (5) O náilon 66 é uma poliamina.

26 (UFU-MG) As duas questões seguintes referem-se a uma fibra sintética conhecida como dácron. A estrutura de uma seção de sua molécula pode ser representada por:

$$-000 - C00 - CH_2CH_2 - 000 - CH_2CH_2 - ...$$

O drácon é um(a):

- a) poliálcool.
- b) poliamida.
- c) poliéter.
- d) poliéster.
- e) poliolefina.

27 O drácon é um polímero obtido pela reação de condensação entre o ácido tereftálico (dicarboxílico) e o:

- a) etano.
- b) eteno (etileno).
- c) etanol (álcool etílico).
- d) etanodiol (glicol).
- e) propanotriol (glicerol).

28 (Unip-SP) Um polímero de grande importância, usado em fitas magnéticas para gravação e em balões meteorológicos, é obtido pela reação:

A proposição correta é:

- a) um dos monômeros é o ácido benzóico.
- b) um dos monômeros é um dialdeído.
- c) o polímero é obtido por uma reação de polimerização por adição.
- d) o polímero é um poliéster.
- e) o polímero é um poliéter.
- 29 (...) Plásticos foram descobertos no século passado, mas o primeiro completamente sintético a ser comercializado foi o baquelite, inventado em 1910. (...) Foi em 1922 que o alemão Hermann Staudinger descobriu que substâncias como a borracha eram formadas por cadeias de moléculas, chamadas por ele de macromoléculas. Estava descoberto o polímero (...). (Texto extraído do jornal Folha de S. Paulo).

Assinale a alternativa que relaciona polímeros que contenham halogênios em sua estrutura:

- a) polietileno e polipropileno.
- b) náilon e drácon.
- c) baquelite e borracha.
- d) PVC e teflon.
- e) amido e proteínas.
- 30 (UnB-DF) A borracha natural é um polímero resultante da polimerização do isopreno.

$$CH_3$$
 $CH_2 = C - CH = CH_2$
Isopreno

Julgue os itens.

- (1) O nome oficial do isopreno é 2-metil-1,3-butadieno.
- (2) Numa reação de polimerização, a molécula que se une à outra, formando a cadeia, é denominada monômero.
- (3) O isopreno apresenta isomeria cis, trans.
- (4) A hidrogenação completa do isopreno produz o n-pentano.
- 31 (UEL-PR) Náilon e borracha sintética podem ser citados como exemplos de:
- a) hidratos de carbono.
- b) proteínas.
- c) lipídios.
- d) polímeros.
- e) enzimas.

32 (Unicap-PE) Associe cada classe de composto orgânico à sua aplicação.

I. Hidrocarboneto () Combustível
II. Sal orgânico () Detergente
III. Poliamida () Tecidos
IV. Aromático clorado () Pesticida
V. Éster () Aromatizante

Os números na segunda coluna, lidos de cima para baixo, são:

- a) I, II, III, IV, V
- b) V, I, III, IV, II
- c) III, I, II, V, IV
- d) IV, I, III, V, II
- e) II, V, I, IV, III

33 (Fatec-SP) Polimerização por condensação ocorre quando, no processo de formação das macromoléculas, há eliminação de moléculas pequenas. Um exemplo desse tipo de polimerização é a produção de poliéster:

Também pode resultar em polimerização por condensação a interação, em condições adequadas, do seguinte par de substâncias:

a)
$$\langle \bigcirc \rangle$$
 — COOH e $CH_3 - CH_2 - OH$

b)
$$\langle \bigcirc \rangle$$
 - CH = CH₂ e CH₃ - CH₂ - OH

c) HOOC —
$$CH_2$$
 — CH_2 — $COOH$ e H_2N — CH_2 — CH_2 — NH_2

d)
$$HOOC - CH_2 - CH_2 - COOH$$
 e $CH_3 - O - CH_2 - CH_2 - O - CH_3$

e)
$$H_2C = CH - CH_3$$
 e $H_2C = C - CH_3$
 CH_3

34 (Fatec-SP) A estrutura de polímero "orlon", utilizado em materiais têxteis, pode ser representada da seguinte forma:

A partir dessa estrutura, e sabendo-se que o "orlon" é um polímero obtido por adição, pode-se concluir que o monômero que forma tal polímero é:

- a) $CH_3 CH_2 CN$
- b) CN CH = CH CN
- c) $CH_3 CN CH_3$
- d) $CH_3 CH = CN$
- e) $CH_2 = CH CN$

35 (UFPI-PI) O PVC (policloreto de vinila), cuja estrutura parcial é dada abaixo, é um dos principais plásticos utilizados na fabricação de tubulações hidráulicas. Escolha a alternativa que apresenta a estrutura do material de partida para a produção do PVC.

36 (UFPI-PI) Os polímeros (plásticos, borrachas etc.), relacionados na coluna II, são produzidos a partir da polimerização dos monômeros listados na coluna I.

Ordenando a coluna I com a coluna II, de modo a determinar o monômero que origina seu respectivo polímero, identifique a sequência correta.

- a) a-4, b-2, c-1 e d-3
- b) a-1, b-4, c-2 e d-3
- c) a-3, b-4, c-1 e d-2
- d) a-3, b-4, c-2 e d-1
- e) a-1, b-4, c-3 e d-1
- **37 (UFPI-PI)** As poliamidas são polímeros de condensação e são materiais sintéticos utilizados na fabricação de membranas de dessalinizadores de águas. Abaixo está a representação parcial de uma poliamida.

Entre as alternativas abaixo, identifique aquela que apresenta os reagentes necessários para a obtenção da poliamida representada.

- a) éster e etilenoglicol
- b) ácido dicarboxílico e etilenoglicol
- c) éster e amina primária
- d) cloreto de ácido e éster
- e) ácido dicarboxílico e diamina primária

38 (Unic-MT) As interações entre as unidades monoméricas como parte formadora da cadeia polimérica do náilon são representadas abaixo:

Identifique a opção correspondente ao tipo de interação que ocorre entre as unidades monoméricas do náilon (linhas pontilhadas):

- a) ligação covalente polar
- b) ligação iônica
- c) forças de Van der Waals
- d) ligação covalente dativa
- e) pontes de hidrogênio

39 Dos compostos a seguir, quais poderão polimerizar-se? Quais seriam as equações correspondentes?

- a) $CF_2 = CF_2$
- b) CH₃ CH₃

c)
$$CH_2 = C < CH_3$$
 CH_3

40 (UFSM-RS) Analisando as representações de polímeros sintéticos

$$\begin{bmatrix} CN \\ | \\ -CH - CH_2 \end{bmatrix}_n$$

$$H_{2} \downarrow_{n} \qquad \qquad - (CH_{2})_{5} - C - N \downarrow \\ \downarrow \\ H \downarrow_{n} \qquad \qquad \boxed{2}$$

$$\left\{ \begin{array}{c}
O \\
O \\
C \\
O
\end{array} \right\}_{n}$$
3

identifique a alternativa correta.

- a) 1 e 2 são poliamidas, polímeros de condensação.
- b) 1 e 3 são polivinilas, polímeros de adição.
- c) 2 e 3 são poliésteres, polímeros de condensação.
- d) 1 é um polivinil, polímero de adição.
- e) 3 é uma poliamida, polímero de condensação.

41 (UFC-CE) Determinadas substâncias macromoleculares, usadas na fabricação de fibras têxteis, fios, membranas de dessalinizadores de águas etc., são obtidas através de reação de condensação (com eliminação de H2O sob aquecimento e pressão) de dois compostos (monômeros). Uma dessas macromoléculas, identificada pelo nome de Nomex, tem a estrutura mostrada abaixo:

$$\begin{array}{c|c} & & & & \\ & &$$

Nomex

Identifique a alternativa que indica corretamente os tipos de compostos necessários para a obtenção do Nomex.

- a) diácido e diálcool
- b) diéster e diálcool
- c) di-haleto e diéster
- d) diácido e diamina
- e) bisfenol e diamina
- 42 (PUCCAMP-SP) O polimetilacrilato, substância transparente e semelhante ao vidro, é obtido pela reação:

Nesse processo ocorre reação de:

- a) oxirredução.
- b) adição.
- c) substituição.
- d) eliminação.
- e) condensação.

43 (U. São Judas-SP) Atualmente as resinas de última geração são: kevlar e nomex.

Kevlar: é usada na fabricação de chassis de carros de corrida e em coletes à prova de balas.

Nomex: é usada nos macacões das equipes de Fórmula I e Fórmula Mundial.

O nomex queima somente se atingir 1.000 $^{\circ}$ C por mais de 8 segundos. Ele é obtido pela reação entre os monômeros do cloreto de ácido metaftálico e monômeros de metabenzenodiamina.

$$\begin{pmatrix}
0 \\
C \\
C
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
N \\
H
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
C
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
N \\
H
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
N \\
N \\
H
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
N \\$$

Polímero de nomex

Polímero de kevlar

Pode-se afirmar que os polímeros pertencem à função orgânica:

- a) poliéster.
- b) poliamida.
- c) poliamina.
- d) poliálcool.
- e) polialeto.

44 (ITA-SP) Considere as seguintes afirmações:

- I. A reação da borracha natural com enxofre é denominada vulcanização.
- II. Polímeros termoplásticos amolecem quando são aquecidos.
- III. Polímeros termofixos apresentam alto ponto de fusão.
- IV. Os homopolímeros polipropileno e politetrafluoretileno são sintetizados por meio de reações de adição.
- V. Mesas de madeira, camisetas de algodão e folhas de papel contêm materiais poliméricos.

Das afirmações feitas, estão corretas:

- a) apenas I, II, IV e V.
- b) apenas I, II e V.
- c) apenas III, IV e V.
- d) apenas IV e V.
- e) todas.
- 45 (UFSCar-SP) A borracha é um polímero formado pela condensação do monômero 2-metil-1,3-butadieno, sendo o processo representado pela equação genérica

$$n H_{2}C = C - CH = CH_{2} \longrightarrow \left(H_{2}C - C = CH - CH_{2} \right) \qquad (n > 2.000)$$

$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow CH_{3}$$

- a) Que tipo de isomeria o polímero formado pode apresentar? Justifique.
- b) Sabe-se que, em presença do oxidante O₃, a borracha é atacada quimicamente, tornando-se quebradiça. Com base em seus conhecimentos sobre ligações químicas em compostos orgânicos, justifique esse fato.
- **46 (FMTM-MG)** O propeno é um dos produtos do refino do petróleo. Quando polimerizado, forma o polipropileno, um polímero de grande aplicação industrial. A ráfia sintética utilizada na fabricação de sacos para condicionamento de cereais é obtida a partir do polipropileno. Quanto às características do monômero e/ou do polímero citados, é correto afirmar que:
- a) para ocorrer a polimerização por meio de uma reação de adição, é necessário que o monômero possua pelo menos uma insaturação.
- b) o propeno é um hidrocarboneto alifático saturado.
- c) o polipropileno é um copolímero.
- d) se durante a formação do polipropileno forem injetados gases quentes, aquele se expande, originando o isopor.
- e) a unidade de repetição do polipropileno é

$$\begin{array}{c|c}
- CH = C \\
 & CH_{3}
\end{array}$$

47 (PUCCAMP-SP) Hoje são conhecidos numerosos polímeros orgânicos com propriedades condutoras de eletricidade. O desenvolvimento tecnológico desse tipo de material é de grande interesse, pois podem vir a ser substitutos de metais nos fios condutores. Poliparafenileno é um exemplo. Tal polímero:

- I. é formado por macromoléculas.
- II. deve, sob tensão elétrica, apresentar movimentação dirigida de partículas eletricamente carregadas.
- III. deve ser formado por íons positivos e negativos.

Dessas afirmações, somente:

- a) I é correta.
- b) II é correta.
- c) III é correta.
- d) I e II são corretas.
- e) II e III são corretas.
- 48 (Fatec-SP) A unidade de repetição de um polímero de condensação é assim representada.

Dentre os monômeros, cujas estruturas são dadas a seguir

I.
$$H_2N - CH_2 - CH - (CH_2)_4 - NH_2$$

|

 CH_2OH

II.
$$H_2N - (CH_2)_6 - NH_2$$

III.
$$\frac{O}{C}$$
C $-(CH_2)_4$ $-C$ C C C

III.
$$\frac{O}{Cl}C - (CH_2)_4 - C = \frac{O}{Cl}$$

IV. $\frac{O}{Cl}C - CH_2 - CH_2 - CH - CH_2 - C = \frac{O}{Cl}$

COOH

pode-se afirmar que originaram o polímero, os monômeros representados como:

- a) I e II
- b) I e III
- c) I e IV
- d) II e III
- e) II e IV

49 **(VUNESP-SP)** Certos utensílios de uso hospitalar, feitos com polímeros sintéticos, devem ser destruídos por incineração em temperaturas elevadas.

É essencial que o polímero, escolhido para a confecção desses utensílios, produza a menor poluição possível quando os utensílios são incinerados.

Com base nesse critério, dentre os polímeros de fórmulas gerais, podem ser empregados na confecção desses utensílios hospitalares:

$$\frac{\left\{\begin{array}{c} \mathsf{CH}_2 - \mathsf{CH}_2 \right\}_n}{\mathsf{Polietileno}} \left\{\begin{array}{c} \mathsf{CH}_2 - \mathsf{CH} \\ \mathsf{CH}_3 \end{array}\right\}_n \left\{\begin{array}{c} \mathsf{CH}_2 - \mathsf{CH} \\ \mathsf{C} \mathsf{C} \end{array}\right\}_n \\
\xrightarrow{\mathsf{Polipropileno}} \left\{\begin{array}{c} \mathsf{PVC} \end{array}\right\}_{n}$$

- a) o polietileno, apenas.
- b) o polipropileno, apenas.
- c) o PVC, apenas.
- d) o polietileno e o polipropileno, apenas.
- e) o polipropileno e o PVC, apenas.
- **50 (FUVEST-SP)** Em uma indústria, um operário misturou, inadvertidamente, polietileno (PE), poli (cloreto de vinila) (PVC) e poliestireno (PS), limpos e moídos. Para recuperar cada um desses polímeros utilizou o seguinte método de separação: jogou a mistura em um tanque contendo água (densidade = 1,00 g/cm³) separando, então, a fração que flutuou (fração A) daquela que foi ao fundo (fração B). A seguir, recolheu a fração B, secou-a e a jogou em outro tanque contendo solução salina (densidade = 1,10 g/cm³), separando o material que flutuou (fração C) daquele que afundou (fração D).

As frações A, C e D eram, respectivamente:

- a) PE, PS e PVC.
- b) PS, PE e PVC.
- c) PVC, PS e PE.
- d) PS, PVC e PE.
- e) PE, PVC e PS.

51 (UNICAMP-SP) Para se ter uma ideia do que significa a presença de polímeros sintéticos na nossa vida, não é preciso muito esforço: imagine o interior de um automóvel sem polímeros, olhe para sua roupa, para seus sapatos, para o armário do banheiro. A demanda por polímeros é tão alta que, em países mais desenvolvidos, o seu consumo chega a 150 kg por ano por habitante.

Em alguns polímeros sintéticos, uma propriedade bastante desejável é a sua resistência à tração. Essa resistência ocorre, principalmente, quando átomos de cadeias poliméricas distintas se atraem. O náilon, que é uma poliamida, e o polietileno, representados a seguir, são exemplos de polímeros.

$$[-NH - (CH_2)_6 - NH - CO - (CH_2)_4 - CO -]_n$$
 náilon $[-CH_2 - CH_2 -]_n$ polietileno

- a) Admitindo-se que as cadeias desses polímeros são lineares, qual dos dois é mais resistente à tração? Justifique.
- b) Desenhe os fragmentos de duas cadeias poliméricas do polímero que você escolheu no item a, identificando o principal tipo de interação existente entre elas que implica a alta resistência à tração.
- **52 (FUVEST-SP)** Uma indústria utiliza etileno e benzeno como matérias-primas e sintetiza estireno (fenileteno) como produto, segundo a rota esquematizada abaixo:
- II. etileno + HC ℓ \longrightarrow cloroetano

 II. cloroetano + benzeno $\xrightarrow{\text{A}\ell C\ell_3}$ etilbenzeno + HC ℓ III. etilbenzeno $\xrightarrow{\text{catalisador}}$ estireno + H $_2$
- a) Escreva as equações químicas que representam duas das transformações acima usando fórmulas estruturais.
- b) No fluxograma abaixo, qual a matéria-prima X mais provável da indústria A e qual pode ser o produto Y da indústria C?

53 (FUVEST-SP) Ao cozinhar alimentos que contêm proteínas, forma-se acrilamida (amida de ácido acrílico), substância suspeita de ser cancerígena.

Estudando vários aminoácidos, presentes nas proteínas, como o α-aminogrupo marcado com nitrogênio-15, verificou-se que apenas um deles originava a acrilamida e que este último composto não possuía nitrogênio-15. Dados:

- a) Dê a fórmula estrutural da acrilamida.
- b) Em função dos experimentos com nitrogênio-15, qual destes aminoácidos, a asparagina ou o ácido glutâmico, seria responsável pela formação da acrilamida? Justifique.
- c) Acrilamida é usada industrialmente para produzir poliacrilamida. Represente um segmento da cadeia desse polímero.

54 (FUVEST-SP) Aqueles polímeros, cujas moléculas se ordenam paralelamente umas às outras, são cristalinos, fundindo em uma temperatura definida, sem decomposição. A temperatura de fusão de polímeros depende, dentre outros fatores, de interações moleculares, devidas a forças de dispersão, ligações de hidrogênio etc., geradas por dipolos induzidos ou dipolos permanentes.

Abaixo são dadas as estruturas moleculares de alguns polímeros.

Poli(ácido 3-aminobutanóico)

Baquelita (fragmento da estrutura tridimensional)

Cada um desses polímeros foi submetido, separadamente, a aquecimento progressivo. Um deles fundiu-se a 160 °C, outro a 330 °C e o terceiro não se fundiu, mas se decompôs.

Considerando as interações moleculares, dentre os três polímeros citados:

- a) qual deles se fundiu a 160 °C? Justifique.
- b) qual deles se fundiu a 330 °C? Justifique.
- c) qual deles não se fundiu? Justifique.
- 55 (Unicamp-SP) Os polímeros são formados pela união de um grande número de unidades básicas, denominadas monômeros. Um dos polímeros mais utilizados é o polietileno, que é produzido a partir da reação de polimerização do gás etileno, que se pode indicar como:

$$j CH_2 = CH_2 (g) \longrightarrow (-CH_2 - CH_2 -)_j (s)$$

sendo i um valor médio.

Para a fabricação de um balde, foram utilizados 280 g de polietileno com j = 10.000.

- a) Calcule o volume de etileno, a 25 °C e 1 bar, necessário para produzir o referido balde. Considere que o gás seja ideal.
- b) Se um balde de mesma massa e praticamente de mesmo tamanho fosse produzido a partir de polietileno com j = 20.000, o volume de etileno utilizado seria maior? Justifique sua resposta.

Dados: constante dos gases, R = 0.082 bar.L.mol⁻¹.K⁻¹; massa molar do etileno, M(C₂H₄) = 28 g/mol

GABARITO

01-

a) A reação recebe o nome de polimerização e pode ser assim representada:

$$n = \begin{pmatrix} F & F & F \\ I & I & I \\ ... & -C & -C & - & ... \\ I & I & F & F \end{pmatrix}$$
Tetrafluoreteno (teflon)

- b) O teflon é resistente a altas temperaturas e pode ser utilizado no revestimento de peças metálicas, tais como panelas e frigideiras.
- c) Polietileno

02-

a)
$$HC = CH + HCl \longrightarrow H_2C = CH$$

Cl

(acetileno) (cloreto de vinila)

b) A reação de polimerização é:

$$n \text{ H}_2 \text{C} = \text{CH} \xrightarrow{\text{Catalisador}} \left[\begin{array}{c} \text{P}_1 \Delta \\ \text{Cl} \end{array} \right] \left[\begin{array}{c} \text{H}_2 \text{C} - \text{CH} \\ \text{Cl} \end{array} \right]_n$$
Cloreto de vinila (monômero) Poli(cloreto de vinila) (polímero)

03-

04- Alternativa C

Poliamida (náilon)
$$\begin{cases}
O & O \\
\parallel & C - (CH_2)_4 - C - N - (CH_2)_6 - N \\
H & H
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CI
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH \\
- CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de vinila (PVC)
$$\begin{cases}
CH_2 - CH_2
\end{cases}$$
Policioreto de v

05- Alternativa C

a) O
$$\parallel$$
 $-C-NH-$ amida

O náilon é uma poliamida.

$$-C-O-CH_2$$
 — éster

O dexon é um poliéster.

Ácido carboxílico Álcool

07-

a)
$$H-C \equiv C-H$$
 + $C-CH_3 \longrightarrow H_2C = C-O-C-CH_3$
b) $C-CH_2 - CH - CH_3$

b)
$$\begin{pmatrix} -CH_2 - CH - \\ I \\ O \\ I \\ C = O \\ I \\ CH_3$$

08- Alternativa A

09-

a)

b) Função éster.

- 10- Corretos: (3), (4) e (5)
- 11- Alternativa D
- 12- Alternativa D
- 13- Alternativa D
- 14- Alternativa D
- 15- Alternativa C

- 16- Corretos (1), (2) e (3)
- 17- Alternativa B
- 18- Alternativa D
- 19- Alternativa C
- 20- Alternativa C
- 21- Alternativa C
- 22- Alternativa B
- 23- Alternativa A
- 24- Alternativa B
- 25- Corretos (2) e (4)
- 26- Alternativa D
- 27- Alternativa D
- 28- Alternativa D
- 29- Alternativa D
- 30- Corretos (1) e (2)
- 31- Alternativa D
- 32- Alternativa A
- 33- Alternativa C
- 34- Alternativa E
- 35- Alternativa A
- 36- Alternativa C
- 37- Alternativa E
- 38- Alternativa E

39-

Só podem polimerizar-se os compostos de (a) e (c).

a)
$$n ext{ CF}_2 = ext{CF}_2 \longrightarrow \cdots + (ext{CF}_2 - ext{CF}_2)_n \cdots$$
 c) $n ext{ CH}_2 = ext{C} < ext{CH}_3 < ext{CH}_3 < ext{CH}_2 = ext{C} < ext{CH}_3 < ext{C$

- 40- Alternativa D
- 41- Alternativa D
- 42- Alternativa B
- 43- Alternativa B
- 44- Alternativa A
- 45-
- a) isomeria cis-trans;
- b) O ozônio "quebra" as moléculas do polímero, pois ataca as ligações duplas.
- 46- Alternativa A
- 47- Alternativa D
- 48- Alternativa B
- 49- Alternativa D
- 50- Alternativa A

51-

a) É o náilon, pois a atração intermolecular que une suas cadeias são do tipo "pontes de hidrogênio".

52-

a) I)
$$CH_2 = CH_2 + HC\ell \longrightarrow CH_3 - CH_2C\ell$$

II)
$$CH_3 - CH_2Cl$$
 + O $AlCl_3$ $CH_2 - CH_3$ + HCl

b)
$$x \in HC \equiv CH$$

$$\begin{cases} 3 HC \equiv CH & \longrightarrow \\ HC \equiv CH + H_2 & \longrightarrow CH_2 = CH_2 \end{cases}$$

53-

a)
$$CH_2 = CH - C$$
 NH_2

b) A asparagina, onde já existe o grupo — CONH₂.

$$\begin{array}{c|c}
O \\
H_2N
\end{array}
C - CH_2 - C - C - C \xrightarrow{O} O \xrightarrow{Calor} O \\
+NH_2$$

$$O \\
OH$$

$$C - CH = CH_2 + CO_2 + *NH_3$$

c)
$$n CH_2 = CH$$
 $\longrightarrow \cdots + CH_2 - CH$ $\longrightarrow \cdots + CH_2 - CH$ $\longrightarrow \cdots + CONH_2$ $\longrightarrow \cdots + CONH_2$ $\longrightarrow \cdots + CONH_2$ $\longrightarrow \cdots + CONH_2$ $\longrightarrow \cdots + CH_2 - CH$ $\longrightarrow \cdots + CONH_2$ $\longrightarrow \cdots + CH_2 - CH$ $\longrightarrow \cdots + CH$

54-

- a) O polipropileno, cujas moléculas se atraem apenas por forças de Van der Waals.
- b) O poli (ácido 3-aminobutanóico), cujas moléculas se atraem por pontes de hidrogênio.
- c) A baquelita, cuja estrutura tridimensional "quebra" (se decompõe), mas não se funde.

55-

- a) 244,36 litros;
- b) Como a massa do polietileno é a mesma que no caso anterior, o volume de etileno será o mesmo à mesma pressão e temperatura, ou seja, 244,36 L.