

CAT 2 (SMA 2101) - 2024 October

Calculus 2 (Jomo Kenyatta University of Agriculture and Technology)

Scan to open on Studocu

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

SMA 2101 CALCULUS I

(CAT 2)

TIME: 1 HOUR

1. Find $\frac{dy}{dx}$ given

(a)
$$y(x) = (x+x^2)^5(1+x^3)^2$$

(a)
$$y(x) = (x+x^2)^5(1+x^3)^2$$
 (b) $y(x) = \frac{(1-x^2)^3}{(4+5x+6x^2)^2}$ (c) $y(x) = [x+(x+x^2)^{-3}]^{-5}$

(c)
$$y(x) = [x + (x + x^2)^{-3}]^{-5}$$

(d)
$$y(x) = (\sqrt{x} + 1)\sin(\sqrt{x + \sqrt{x}})$$
 (e) $xy^3 - yx^2 = \sqrt{y}$ (f) $\cos(x + y) = \sin(x)\sin(y)$

(e)
$$xy^3 - yx^2 = \sqrt{y}$$

(f)
$$\cos(x+y) = \sin(x)\sin(y)$$

(g)
$$xy = 6e^{2x-3y}$$

(g)
$$xy = 6e^{2x-3y}$$
 (h) $y(x) = \tan(2 + \sqrt{\sin(2x)})$

2. Given
$$G(x) = f(h(x))$$
, $h(1) = 4$, $f'(4) = 3$ and $h'(1) = -6$. Find $G'(1)$.

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

SMA 2101 CALCULUS I

(CAT 2)

TIME: 1 HOUR

1. Find $\frac{dy}{dx}$ given

(a)
$$y(x) = (x+x^2)^5(1+x^3)$$

(a)
$$y(x) = (x+x^2)^5 (1+x^3)^2$$
 (b) $y(x) = \frac{(1-x^2)^3}{(4+5x+6x^2)^2}$ (c) $y(x) = [x+(x+x^2)^{-3}]^{-5}$

(c)
$$y(x) = [x + (x + x^2)^{-3}]^{-5}$$

(d)
$$y(x) = (\sqrt{x} + 1)\sin(\sqrt{x + \sqrt{x}})$$
 (e) $xy^3 - yx^2 = \sqrt{y}$ (f) $\cos(x + y) = \sin(x)\sin(y)$

(e)
$$xy^3 - yx^2 = \sqrt{y}$$

(f)
$$\cos(x+y) = \sin(x)\sin(y)$$

(g)
$$xy = 6e^{2x-3y}$$

(g)
$$xy = 6e^{2x-3y}$$
 (h) $y(x) = \tan\left(2 + \sqrt{\sin(2x)}\right)$

2. Given
$$G(x) = f(h(x))$$
, $h(1) = 4$, $f'(4) = 3$ and $h'(1) = -6$. Find $G'(1)$.

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

SMA 2101 CALCULUS I

(CAT 2)

TIME: 1 HOUR

1. Find $\frac{dy}{dx}$ given

(a)
$$y(x) = (x+x^2)^5(1+x^3)^2$$

(a)
$$y(x) = (x+x^2)^5(1+x^3)^2$$
 (b) $y(x) = \frac{(1-x^2)^3}{(4+5x+6x^2)^2}$ (c) $y(x) = [x+(x+x^2)^{-3}]^{-5}$

(c)
$$y(x) = [x + (x + x^2)^{-3}]^{-5}$$

(d)
$$y(x) = (\sqrt{x} + 1)\sin(\sqrt{x + \sqrt{x}})$$
 (e) $xy^3 - yx^2 = \sqrt{y}$ (f) $\cos(x + y) = \sin(x)\sin(y)$

(e)
$$xy^3 - yx^2 = \sqrt{y}$$

(f)
$$cos(x + y) = sin(x) sin(y)$$

(g)
$$xy = 6e^{2x-3y}$$

(g)
$$xy = 6e^{2x-3y}$$
 (h) $y(x) = \tan\left(2 + \sqrt{\sin(2x)}\right)$

2. Given
$$G(x) = f(h(x))$$
, $h(1) = 4$, $f'(4) = 3$ and $h'(1) = -6$. Find $G'(1)$.