Produit scalaire algébrique

Définition (Produit scalaire). Dans un repère <u>orthonormé</u>, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors on appelle **produit scalaire de** \vec{u} et \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre</u> défini par $\vec{u} \cdot \vec{v} = xx' + yy'$

produit scalaire de \vec{u} et \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre</u> défini par $\vec{u} \cdot \vec{v} = xx' + yy'$ **Exemple**. Le produit scalaire de $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ est $\vec{u} \cdot \vec{v} = (2) \times (-3) + (3) \times (-5) = -21$

Attention le produit scalaire · n'est <u>pas une multiplication</u> ×. \vec{u} et \vec{v} sont des *vecteurs* et <u>pas des nombres</u>.

Exemple.
$$\binom{5}{-1} \cdot \binom{3}{-2} = (5) \times (3) + (-1) \times (-2) = 15 + 2 = 17$$

Hypothèses. Soit $\vec{u}, \vec{v}, \vec{w}$ trois vecteurs du plan, et k un réel.

Propriété. Le produit scalaire est commutatif. $\vec{u} \cdot \vec{v} = \vec{v}$

Exemple.
$$\binom{-4}{3} \cdot \binom{2,5}{-1} = (-4)(2,5) + (3)(-1) = -13$$
 $\binom{2,5}{-1} \cdot \binom{-4}{3} = (2,5)(-4) + (-1)(3) = -13$

Propriété. Le produit scalaire · est distributif sur +. $(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$

Exemple.
$$\left(\binom{1}{0} + \binom{3}{-2} \right) \cdot \binom{2}{3} = \binom{1}{0} \cdot \binom{2}{3} + \binom{3}{-2} \cdot \binom{2}{3} = 2 + 0 + 6 - 6 = 2$$

Propriété. Dans un produit scalaire, les constantes peuvent être sorties devant

$$\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$$

Exemple.
$$\binom{5}{-1} \cdot 5 \binom{3}{-2} = 5 \left(\binom{5}{-1} \cdot \binom{3}{-2} \right) = 5 \times \left((5)(3) + (-1)(-2) \right) = 5(17) = 85$$

Rappel. La **norme** (ou **longueur**) d'un vecteur $\vec{u} = {x \choose y}$, est définie par $||\vec{u}|| = \sqrt{x^2 + y^2}$

Propriété. Le carré scalaire est égal au carré de la norme. $\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$

Exemple. $\binom{4}{-3} \cdot \binom{4}{-3} = (4)(4) + (-3)(-3) = 25$. Aussi $\left\| \binom{4}{-3} \right\|^2 = \sqrt{(4)^2 + (-3)^2}^2 = (4)^2 + (-3)^2 = 25$

Attention: $\|\vec{u}\|$ est un nombre donc $\|\vec{u}\|^2 = \|\vec{u}\| \times \|\vec{u}\|$. Mais dans $\vec{u} \cdot \vec{u}$ il s'agit du produit scalaire et pas \times .

Corollaire. La norme d'un vecteur est la racine de son carré scalaire. $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2}$

Propriété. 1ère identité remarquable vectorielle. $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$

Propriété. 2ème identité remarquable vectorielle. $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$

Preuve.
$$\left\| \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} x - x' \\ y - y' \end{pmatrix} \right\|^2 = (x - x')^2 + (y - y')^2 = x^2 + y^2 + x'^2 + y'^2 - 2xx' - 2yy'$$

Propriété. Dans un repère orthonormé, deux vecteurs sont orthogonaux ssi leur produit scalaire est nul.

$$\vec{u} \text{ et } \vec{v} \text{ orthogonaux} \Leftrightarrow \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow xx' + yy' = 0.$$

Exemple. Montrer que $\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ sont orthogonaux.

 $\vec{u} \cdot \vec{v} = (2) \times (-3) + (-3) \times (-2) = -6 + 6 = 0$ donc les vecteurs \vec{u} et \vec{v} sont orthogonaux.

 $||\vec{u}|| = 5$

Propriété. Soit A, B deux points distincts. Soit M un point.

M appartient au cercle de diamètre [AB] ssi $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ ssi ABM est rectangle en *M* (quand $M \neq A, B$)

L'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

Exemple. Si A = (5; 4) et B = (1; 2), donner une équation du cercle de diamètre [AB] On note C ce cercle. Soit M = (x; y) un point du plan.

$$M \in C \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \Leftrightarrow \begin{pmatrix} 5 - x \\ 4 - y \end{pmatrix} \cdot \begin{pmatrix} 1 - x \\ 2 - y \end{pmatrix} = 0 \Leftrightarrow (5 - x)(1 - x) + (4 - y)(2 - y) = 0$$

$$M \in C \Leftrightarrow 5 - 5x - x + x^2 + 8 - 4y - 2y + y^2 = 0 \Leftrightarrow x^2 + y^2 - 6x - 6y + 13 = 0$$

Propriété. Etant donné deux points A et B et leur milieu I, on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$

Exemple. Soit

Rappel. \vec{u} est un vecteur directeur de la droite (AB) ssi \vec{u} est colinéaire à \overrightarrow{AB} ssi $\det(\vec{u}; \overrightarrow{AB}) = 0$

Propriété. <u>Un</u> vecteur directeur d'une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{-b}{a}$.

Définition. \vec{u} est un **vecteur normal à la droite** (AB) ssi \vec{u} est orthogonal à \overrightarrow{AB} ssi $\vec{u} \cdot \overrightarrow{AB} = 0$

Propriété. Un vecteur normal à une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{a}{b}$.

Exemple. Déterminer une équation de la droite (d) de vecteur normal $\vec{n} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et passant par A = (1; 0). Soit M = (x; y) un point du plan.

$$M \in (d) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow \binom{x-1}{y-0} \cdot \binom{2}{-3} = 0 \Leftrightarrow (x-1)(2) + (y)(-3) = 0 \Leftrightarrow 2x - 3y - 2 = 0$$

Rappels

Vocabulaire. Un vecteur est unitaire ssi il est de norme 1, autrement dit s'il est de longueur 1.

Remarque. On peut rendre un vecteur unitaire en le divisant par sa norme. $\frac{\vec{u}}{\|\vec{u}\|}$ est toujours de norme 1.

Définition. L'angle géométrique entre deux <u>vecteurs non nuls</u> \vec{u} et \vec{v} noté $(\vec{u}; \vec{v})$ est défini comme la longueur, le long du cercle \mathcal{C} de centre \mathcal{O} de rayon 1, de l'arc le plus court possible entre \mathcal{A} et \mathcal{B} , les points de \mathcal{C} tels que $\frac{\vec{u}}{\|\vec{u}\|} = \overrightarrow{OA}$ et $\frac{\vec{v}}{\|v\|} = \overrightarrow{OB}$.

Idée. $(\overrightarrow{u}; \overrightarrow{v})$ correspond à l'angle saillant que l'on mesure directement au rapporteur entre \overrightarrow{u} et \overrightarrow{v} si on les fait partir d'un même point.

Remarque. $(\overrightarrow{u}; \overrightarrow{v})$ est toujours un <u>nombre</u> dans l'intervalle $[0; \pi]$

Définition. Deux vecteurs non nuls sont **orthogonaux**, s'ils forment un angle géométrique valant $\frac{\pi}{2}$ (droit).

Propriété. Deux vecteurs sont orthogonaux ssi leur produit scalaire est nul $\vec{u} \cdot \vec{v} = 0$

Définition. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle géométrique valant 0 ou π .

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi il existe un réel k tel que $\vec{u} = k\vec{v}$.

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi $\det(\vec{u}; \vec{v}) = \vec{0}$

Définition. Un **repère** $R = (0; \vec{i}; \vec{j})$ désigne la donnée d'un point 0 et de vecteurs \vec{i} et \vec{j} non colinéaires.

Propriété. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un vecteur \vec{u} . Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\vec{u} = x\vec{\imath} + y\vec{\jmath}$.

Définition. x et y sont les coordonnées du <u>vecteur</u> \vec{u} dans le repère \vec{R} . On note $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_{R}$

Propriété. Soit un point M. Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$.

Définition. x et y sont les coordonnées du <u>point</u> M <u>dans le repère</u> R. On note $M = (x; y)_R$

Remarque. Quand on change de repère R, les coordonnées d'un vecteur ou d'un point changent. Cependant, la plupart des formules vectorielles restent valables, si on les écrit dans un <u>même</u> repère R.

Définition. On note $\mathbf{R_0} = \left((0;0); \binom{1}{0}; \binom{0}{1}\right)$ le repère canonique.

Il sert de référence pour les repères orthonormés.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Exemples. Ici on considère R_0 comme le repère de référence.

Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0).

 R_4 n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Propriété. Les longueurs et angles géométriques ne changent pas si on change de repère orthonormé

Produit scalaire géométrique

Théorème. Loi des cosinus, ou formule d'Al-Kashi

Dans un triangle ABC quelconque, on a, par exemple :

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC})$$

En posant a=BC, b=AC, c=AB, $\alpha=\widehat{BAC}$, on peut écrire :

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

Exemple. Soit un triangle *ABC* tel que AB = 8, AC = 4 et $\widehat{BAC} = 50^{\circ}$.

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC}) = 64 + 16 - 2 \times 8 \times 4 \times \cos(50^\circ) \approx 38,86$$
 et donc $BC \approx 6,23$

Corollaire (Al-Kashi vectoriel). Pour
$$\vec{u}$$
 et \vec{v} non nuls, $\|\vec{v} - \vec{u}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos(\widehat{\vec{u}}; \widehat{\vec{v}})$

Rappel. Produit scalaire (algébrique). Si
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère orthonormé : $\vec{u} \cdot \vec{v} = xx' + yy'$

Rappel. (2ème identité remarquable). Pour tous
$$\vec{u}$$
 et \vec{v} , $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$

Propriété. **Produit scalaire (géométrique)**. Soit \vec{u} et \vec{v} non nuls dans un repère orthonormé. Alors : $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u}; \vec{v})$

Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors le produit scalaire s'écrit $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$

Exemple. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que $||\overrightarrow{AB}|| = AB = 2$ et $||\overrightarrow{AC}|| = AC = 3$ et $||\overrightarrow{BAC}|| = 30^\circ$.

Leur produit scalaire vaut $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{BAC}) = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

Corollaires. Soit \vec{u} , \vec{v} deux vecteurs non nuls. On a $-\|\vec{u}\|\|\vec{v}\| \le \vec{u} \cdot \vec{v} \le \|\vec{u}\|\|\vec{v}\|$ puisque $-1 \le \cos(.) \le 1$

- \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow (\hat{\vec{u}}; \vec{v}) = \frac{\pi}{2} \Leftrightarrow \cos(\hat{\vec{u}}; \vec{v}) = 0 \Leftrightarrow \vec{u} \cdot \vec{v} = 0$
- \vec{u} et \vec{v} sont colinéaires de même sens $\Leftrightarrow (\vec{u}; \vec{v}) = 0 \Leftrightarrow \cos(\vec{u}; \vec{v}) = 1 \Leftrightarrow \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}||$
- \vec{u} et \vec{v} sont colinéaires de sens opposé $\Leftrightarrow (\vec{u}; \vec{v}) = \pi \Leftrightarrow \cos(\vec{u}; \vec{v}) = -1 \Leftrightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \|\vec{v}\|$

Propriété (Interprétation géométrique). Soit trois points A, B, C (ou deux vecteurs \vec{u}, \vec{v} qu'on fait partir d'un même point A). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur (AB).

Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon.

Exemple.

Propriété. Le produit scalaire est invariant par changement de repère <u>orthonormé</u> (Car les longueurs et angles géométriques le sont). Ainsi, dans <u>tout</u> repère <u>orthonormé</u> R, $\vec{u} \cdot \vec{v} = x_R x_R' + y_R y_R'$

Corollaire. Dans <u>tout</u> repère <u>orthonormé</u> $R = (0; \vec{\iota}; \vec{\jmath})$,

Les coordonnées d'un vecteur \vec{v} dans R peuvent s'obtenir en calculant $x_{\vec{v}} = \vec{v} \cdot \vec{\iota}$ et $y_{\vec{v}} = \vec{v} \cdot \vec{\iota}$.

Les coordonnées d'un point M dans R peuvent s'obtenir en calculant $x_M = \overrightarrow{OM} \cdot \vec{\iota}$ et $y_M = \overrightarrow{OM} \cdot \vec{\jmath}$.

Exemple.

Méthode. Pour déterminer la composante d'un vecteur \vec{v} dans une direction donnée, on « projette » sur un vecteur directeur *unitaire* \vec{u} dans la direction souhaitée. (On calcule $\vec{v} \cdot \vec{u}$)

Exemple. Une piste de ski est représentée par une droite qui descend avec une pente de 45°.

La piste est donc dirigée par le vecteur unitaire $\vec{u} = \begin{pmatrix} \cos(-45^\circ) \\ \sin(-45^\circ) \end{pmatrix}$. Un skieur de 70 kg, subit son poids

comme une force \vec{F} d'environ 700 N vers le bas, donc $\vec{F} = \begin{pmatrix} 0 \\ -700 \end{pmatrix}$. La composante du poids du skieur le long de la piste est donc $\vec{F} \cdot \vec{u} = (-700)(\sin(-45^\circ)) = 700\sin(45^\circ) \approx 500$ N.