# Digital Image Processing Using MATLAB

Malay S. Bhatt
Department of Computer Engineering
Faculty of Technology
Dharmsinh Desai University
Nadiad

### **IMAGE RESTORATION**

The main objective of restoration is to improve the quality of a digital image which has been degraded due to Various phenomena like:

- Motion
- Improper focusing of Camera during image acquisition.
- Atmospheric turbulence
- Noise

### Enhancement versus Restoration

- Both processes try to improve an image in some predefined sense
- Image enhancement is largely a subjective process, while image restoration is for the most part an objective process

### **Enhancement:**

- (1)Manipulating an image in order to take advantage of the psychophysics of the human visual system.
- (2) Techniques are usually "heuristic."
- (3)Example: Contrast stretching, histogram equalization.

### · Restoration:

- (1)A process that attempts to reconstruct or recover an image that has been degraded by using some prior knowledge of the degradation phenomenon.
- (2)Involves modeling the degradation process and applying the inverse process to recover the original image.
- (3)A criterion for "goodness" is required that will recover the image in an optimal fashion with respect to that criterion.
- (4) Example: removal of blur by applying a deblurring function.











2-D Convolution (Spatial)

Rotate the convolution kernel 180 degrees about its center element.

$$\Rightarrow p = rot90(H)$$

$$H = \begin{bmatrix} 8 & 1 & 6 & & 6 & 7 & 2 & & \\ 3 & 5 & 7 & & 1 & 5 & 9 & \\ 4 & 9 & 2 \end{bmatrix}$$

$$\Rightarrow q = rot90(p)$$

$$2 & 9 & 4 & \\ 7 & 5 & 3 & \\ 6 & 1 & 8 & \\ \end{bmatrix}$$



### 2-D Convolution (Spatial)

Multiply each weight in the rotated convolution kernel by the pixel of A underneath.

Sum the individual products from step 3.

1 · 2 + 8 · 9 + 15 · 4 + 7 · 7 + 14 · 5 + 16 · 3 + 13 · 6 + 20 · 1 + 22 · 8 = 575

### Noise Sources

- > The principal sources of noise in digital images arise during **image** acquisition and/or transmission
- Image acquisitione.g., light levels, sensor temperature, etc.
- Transmission
   e.g., lightning or other atmospheric disturbance in wireless network

# Noise probability density functions Noises are taken as random variables Random variables Probability density function (PDF)



# Noise Probability Distribution (Salt & Pepper Noise)

The PDF of (bipolar) impulse noise is given by

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

if b > a, gray-level b will appear as a light dot, while level a will appear like a dark dot.

If either  $P_a$  or  $P_b$  is zero, the impulse noise is called *unipolar* 

## Salt & Pepper Noise

- > a = imread('C:\lake2.bmp');
- $\triangleright$ a = double(a);
- $\triangleright$  a = mat2gray(a);
- ➤ imhist(a);
- > b = imnoise(a, 'Salt & Pepper');
- ➤ figure,imshow (b);
- ➤ figure, imhist(b)

```
Implementation: Salt & Pepper

function i= saltpepper(img1,a,b)
  [m,n]=size(img1);
  img1=mat2gray(double(img1));
  r= rand(m,n);
  x=find(r <=a);
  img1(x)=0;
  x=find(r >a & r <=(a+b));
  img1(x)=255;
  figure,imhist(img1);
  figure,imshow(img1);
  imwrite(img1,'C:\board_salt.tif');
  return i;</pre>
```





```
Test for noise behavior

a1=(imread('Fig0503 (original_pattern).tif'));
[m,n]=size(a1);
z=uint8(randi([10,40],m,n));

noizy_a=double(a1)+ double(z);
noisy=imhist(mat2gray(noizy_a));
original=imhist((a1));
```

```
Test for noise behavior

figure(1), bar(0:255,noisy)
figure(2), bar(0:255,original)
figure (3)
subplot(211)
imshow(a1)
title('original image')
subplot(212)
imshow(mat2gray(noizy_a))
title('noisy image-uniform noise')
```











Noise Probability Distribution (Exponential Noise)

The PDF of exponential noise is given by

$$p(z) = \begin{cases} ae^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < a \end{cases}$$

The mean and variance of this density are given by

$$\overline{z} = 1/a$$

$$\sigma^2 = 1/a^2$$



# Noise Probability Distribution (Rayleigh Noise)

The PDF of Rayleigh noise is given by

$$p(z) = \begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b} & \text{for } z \ge a\\ 0 & \text{for } z < a \end{cases}$$

The mean and variance of this density are given by

$$\overline{z} = a + \sqrt{\pi b/4}$$

$$\sigma^2 = \frac{b(4-\pi)}{4}$$

# Gaussian Noise (Normal Noise)

• The pdf of a Gaussian random variable z is given by:

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(z-\mu)^2}{2\sigma^2})$$

where z represents (noise) gray value,  $\mu$  is the mean, and  $\sigma$  is its standard deviation. The squared standard deviation  $\sigma^2$  is usually referred to as variance.



```
clc;
clear;
img2=imread('D:\Image Processing\IP_sttp\lena_gray_256.tif');
imshow(img2);
img2=double(img2);
img2 = mat2gray(img2);
r = imnoise(img2, 'Gaussian', 20/256, 0.0001);
imshow(r);
imhist(r);
```





# Estimation of noise parameters Random noise with unknown PDFs Case 1: imaging system is available Capture images of "flat" environment Case 2: noisy images available Take a strip from constant area Draw the histogram and observe it Measure the mean and variance



## Estimation of Noise Parameters

Consider a subimage denoted by S, and let  $p_s(z_i)$ , i = 0, 1, ..., L-1, denote the probability estimates of the intensities of the pixels in S. The mean and variance of the pixels in S:

$$\overline{z} = \sum_{i=0}^{L-1} z_i p_s(z_i)$$

and

$$\sigma^2 = \sum_{i=0}^{L-1} (z_i - \overline{z})^2 p_s(z_i)$$



# Spatial filters for de-noising additive noise

- Skills similar to image enhancement
- Mean filters
- Order-statistics filters
- Adaptive filters

















