Отчет по лабораторной работе №8

Модель конкуренции двух фирм - вариант 69

Любимов Дмитрий Андреевич НФИбд 01-20

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	Теоретические сведения	6
	Задача	9
4	Выводы	16
Сі	писок литературы	17

Список иллюстраций

3.1	График для случая 1 Julia	12
3.2	График для случая 2 Julia	13
3.3	График для случая 1 OpenModelica	14
3.4	График для случая 2 OpenModelica	15

1 Цель работы

Изучить модель конкуренции

2 Задание

- 1. Изучить модель конкуренции двух фирм
- 2. Построить графики изменения оборотных средств в двух случаях в Julia и OpenModelica.

3 Выполнение лабораторной работы

Теоретические сведения

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - М оборотные средства предприятия
 - au длительность производственного цикла
 - р рыночная цена товара
- \widetilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
 - δ доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукции
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\widetilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены р равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \widetilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} \left(\frac{p}{p_{cr}} - 1\right) - M^2 \left(\frac{\delta}{\tau \widetilde{p}}\right)^2 \frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию $dM/dt=0 \label{eq:dm}$

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\widetilde{p}}{p_{cr}}\widetilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\widetilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1 - \frac{\widetilde{p}}{p_{cr}})\widetilde{p}, \widetilde{M_{-}} = k\widetilde{p}\frac{\tau}{\delta(p_{cr} - \widetilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Задача

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a1}{c1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$

$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$

$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

также введена нормировка $t = c_1 \Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение

себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - (\frac{b}{c_1} + 0.00069)M_1M_2 - \frac{a1}{c1}M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$M_0^1 = 7.5 M_0^2 = 6.5$$
 $p_{cr} = 40 N = 45 q = 1$
 $\tau_1 = 20 \tau_2 = 25$
 $\tilde{p}_1 = 15.5 \, \tilde{p}_2 = 9$

Решение в Julia

using Plots using Differential Equations

$$p_{cr} = 40$$
 $N = 45$
 $q = 1$

```
tau1 = 20
tau2 = 25
p1 = 15.5
p2 = 9
d = 0.00069
a1 = p_{cr}/(tau1*tau1*p1*p1*N*q)
a2 = p_{cr}/(tau2*tau2*p2*p2*N*q)
b = p_cr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q)
c1 = (p\_cr-p1)/(tau1*p1*N*q)
c2 = (p \text{ cr-p2})/(tau2*p2*N*q)
M1 = 7.5
M2 = 6.5
t = collect(LinRange(0, 20, 500))
tspan = (0, 20)
function syst(dy, y, p, t)
   dy[1] = y[1] - (b/c1)*y[1]*y[2] - (a1/c1)*y[1]*y[1]
   dy[2] = (c2/c1)*y[2] - (b/c1)*y[1]*y[2] - (a2/c1)*y[2]*y[2]
end
prob = ODEProblem(syst, [M1, M2], tspan)
sol = solve(prob, saveat=t)
plot(sol)
```

```
\begin{split} & save fig("01.png") \\ & dy[1] = y[1] - (b/c1+d)*y[1]*y[2] - (a1/c1)*y[1]*y[1] \\ & dy[2] = (c2/c1)*y[2] - (b/c1)*y[1]*y[2] - (a2/c1)*y[2]*y[2] \\ & end \\ & prob = ODEProblem(syst, [M1, M2], tspan) \\ & sol = solve(prob, saveat=t) \end{split}
```

plot(sol)

savefig("02.png")

Рис. 3.1: График для случая 1 Julia

Рис. 3.2: График для случая 2 Julia

Решение в OpenModelica

```
model pr8
```

```
parameter Real p_cr = 40; parameter Real N = 45; parameter Real q = 1; parameter Real tau1 = 20; parameter Real tau2 = 25; parameter Real p1 = 15.5; parameter Real p2 = 9; <math display="block">parameter Real d = 0.00069; parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q); parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q); parameter Real b = p_cr/(tau1*tau1*p1*p1*tau2*tau2*p2*p2*N*q);
```

$$\begin{array}{l} {\rm parameter\ Real\ c1} = (p_cr-p1)/(tau1*p1*N*q); \\ {\rm parameter\ Real\ c2} = (p_cr-p2)/(tau2*p2*N*q); \\ {\rm Real\ M1_1(start=7.5);} \\ {\rm Real\ M2_1(start=6.5);} \\ {\rm Real\ M1_2(start=7.5);} \\ {\rm Real\ M2_2(start=6.5);} \\ {\rm Real\ M2_2(start=6.5);} \end{array}$$

equation

$$\begin{split} & \operatorname{der}(M1_1) = M1_1 - (b/c1)*M1_1*M2_1 - (a1/c1)*M1_1*M1_1; \\ & \operatorname{der}(M2_1) = (c2/c1)*M2_1 - (b/c1)*M1_1*M2_1 - (a2/c1)*M2_1*M2_1; \end{split}$$

equation

$$\begin{split} & \operatorname{der}(M1_2) = M1_2 - (b/c1+d)*M1_2*M2_2 - (a1/c1)*M1_2*M1_2; \\ & \operatorname{der}(M2_2) = (c2/c1)*M2_2 - (b/c1)*M1_2*M2_2 - (a2/c1)*M2_2*M2_2; \end{split}$$

end pr8;

Рис. 3.3: График для случая 1 OpenModelica

Рис. 3.4: График для случая 2 OpenModelica

4 Выводы

В ходе выполнения лабораторной работы я изучил модель конкуренции и построил графики в Julia и OpenModelica.

Список литературы

- 1. Математические модели конкурентной среды
- 2. Разработка математических моделей конкурентных процессов