	Математичес	ский анализ III
Конспек	г основан на лекциях	Константина Петровича Кохас

Оглавление

1	Многомерный анализ				
	1.1	Сведения из линейной алгебры	2		
	1.2	Дифференцируемость и дифференциал отображений	6		
	1.3	Теоремы Лагранжа для отображений	12		
	1.4	Формула Тейлора	13		
	1.5	Диффеоморфизмы			
	1.6	Относительный экстремум	29		
2	Фун	Функциональные последовательности и ряды			
	2.1	Сходимость фукнциональных последовательностей	32		
	2.2	Сходимость функциональных рядов	38		
	2.3	Степенные ряды	43		
	2.4	Ряды тейлора	48		
	2.5	Суммирование по Чезаро	49		
3	Кри	Криволинейные интегралы			
	3.1				
	3.2	Потенциальные векторные поля	53		
	3.3	Локально потенциальные векторные поля	55		
	3.4	Интеграл локально потенциального поля по непрерывному пути	56		
	3.5	Гомотопия	59		
4	Teo	еория меры			
	4.1	Системы множеств	61		
	4.2	Объём	62		
	4.3	Mepa	64		
	4.4	О стандартном продолжении меры	66		
	4.5	Мера Лебега	67		

Глава 1

Многомерный анализ

1.1 Сведения из линейной алгебры

Определение. $L(\mathbb{R}^m,\mathbb{R}^n)$ — пространство линейных отображений из \mathbb{R}^m в \mathbb{R}^n

Определение. Элементы $L(\mathbb{R}^m, \mathbb{R}^n)$ называются операторами

Определение. *Нормой* на множестве X называется отображение $\| \ \| : X \to \mathbb{R}$, удовлетворяющее свойствам

- i) $||x|| \ge 0$, $||x|| = 0 \iff x = 0$
- ii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- iii) $||x + y|| \le ||x|| + ||y||$

Определение. *Нормированным пространством* называется пара $(X, \| \ \|)$

Замечание. Отображение, задаваемое формулой $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$ является метрикой. Поэтому все нормированные пространства сразу можно считать и метрическими.

Теорема 1.1.1. (Об эквивалентности норм в конечномерных пространствах) Пусть V — конечномерное линейное пространство, а $\| \ \|_1$ и $\| \ \|_2$ — нормы на V. Тогда

$$\exists c, C > 0: c \|\mathbf{x}\|_1 \le \|\mathbf{x}\|_2 \le C \|\mathbf{x}\|_1$$

Доказательство. Пусть $||x|| = ||c_1e_1 + c_2e_2 + \ldots + c_ne_n|| \stackrel{def}{=} \sqrt{\sum_{i=1}^n c_i^2}$.

i) || || — норма.

$$\cdot \sqrt{\sum_{i=1}^{n} c_i^2} \geqslant 0$$
 — очевидно

$$\cdot \sqrt{\sum_{i=1}^n (lpha c_i)^2} = lpha \sqrt{\sum_{i=1}^n c_i^2}$$
 — очевидно

$$\cdot \sqrt{\sum_{i=1}^n (c_i+b_i)^2} \leqslant \sqrt{\sum_{i=1}^n c_i^2} + \sqrt{\sum_{i=1}^n b_i^2}$$
 — неравенство Минковского

іі) Проверим теперь, что все нормы на V эквивалентны $\| \ \|$.

$$||x_1e_1 + \ldots + x_ne_n||_1 \leq \sum_{i=1}^n ||x_ie_i||_1 = \sum_{i=1}^n |x_i| ||e_i||_1 \leq_{\text{KEIII}} \sqrt{\sum_{i=1}^n |x_i|^2} \sqrt{\sum_{i=1}^n ||e_i||_1^2} = c\sqrt{\sum_{i=1}^n |x_i|^2}$$

тогда

$$|\|\mathbf{x}\|_1 - \|\mathbf{y}\|_1| \le \|\mathbf{x} - \mathbf{y}\|_1 \le c \|\mathbf{x} - \mathbf{y}\|$$

Поэтому $\| \ \|_1$ — непрерывное отображение $\mathbb{R}^m \to \mathbb{R}$. Раз так, найдем максимум и минимум этого отображения на сфере (компакт, поэтому максимум и минимум реализуются). Пусть

$$c_1 := \min_{\mathbf{x} \in S^n} \|\mathbf{x}\|_1$$
$$c_2 := \max_{\mathbf{x} \in S^n} \|\mathbf{x}\|_1$$

Ни c_1 , ни c_2 не равны нулю (потому что норма равна нулю только на нулевом векторе, который сфере не принадлежит). Тогда

$$\|\mathbf{x}\|_{1} = \left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\|_{1} \|\mathbf{x}\| \geqslant c_{1} \|\mathbf{x}\|$$
$$\|\mathbf{x}\|_{1} = \left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\|_{1} \|\mathbf{x}\| \leqslant c_{2} \|\mathbf{x}\|$$

что и доказывает утверждение теоремы.

Определение. Нормой оператора называется отображение $\| \ \| : L(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}$

$$\|\mathcal{A}\| \stackrel{def}{=} \sup_{\mathbf{x} \in S^m} \|\mathcal{A}\mathbf{x}\|_{\mathbb{R}^n}$$

Замечание. $\sup_{\|x\|=1} Ax = \sup_{\|x\| \leqslant 1} Ax$

Теорема 1.1.2. (Пространство линейных операторов) $\| \ \| : L(\mathbb{R}^m, \mathbb{R}^n) \to \mathbb{R}$ — действительно норма.

Доказательство.

$$\|\mathcal{A}(x_1e_1 + \ldots + x_ne_n)\| \le \sum_{i=1}^n |\mathbf{x}| \|\mathcal{A}e_i\| \le_{\text{KBIII}} \|\mathbf{x}\| \sum_{i=1}^n \|\mathcal{A}e_i\|$$

Поэтому супремум конечен для всех элементов $L(\mathbb{R}^m, \mathbb{R}^n)$, то есть отображение определено корректно. Проверим свойства нормы:

i) $\|A\| = 0 \iff \forall \mathbf{x} \in S^n \ A\mathbf{x} = 0 \iff A = 0$. Неотрицательность очевидна.

ii)
$$\|\alpha A\| = \sup_{\mathbf{x} \in S^n} \|\alpha A\mathbf{x}\| = \sup_{\mathbf{x} \in S^n} |\alpha| \|A\mathbf{x}\| = \alpha \|A\|$$

iii)
$$\|\mathcal{A} + \mathcal{B}\| = \sup_{\mathbf{x} \in S^n} \mathcal{A}\mathbf{x} + \mathcal{B}\mathbf{x} \le \sup_{\mathbf{x} \in S^n} \mathcal{A}\mathbf{x} + \sup_{\mathbf{x} \in S^n} \mathcal{B}\mathbf{x}$$

Теорема 1.1.3. (Липшицевость линейных опрераторов) $A \in L(\mathbb{R}^m, \mathbb{R}^n) \Longrightarrow A$ — липшицево

Доказательство.

$$\|\mathcal{A}\mathbf{x} - \mathcal{A}\mathbf{y}\| = \|\mathcal{A}(\mathbf{x} - \mathbf{y})\| = \left\|\mathcal{A}\left(\frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|}\right)\right\| \|\mathbf{x} - \mathbf{y}\| \le \|\mathcal{A}\| \|\mathbf{x} - \mathbf{y}\|$$

Теорема 1.1.4. (О произведении линейных операторов) $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^n)$, $\mathcal{B} \in L(\mathbb{R}^n, \mathbb{R}^l)$, тогда $\mathcal{B} \mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^l)$, причем $\|\mathcal{B} \mathcal{A}\| \leq \|\mathcal{B}\| \|\mathcal{A}\|$ Доказательство.

$$\|\mathcal{B}\mathcal{A}\| = \sup_{\mathbf{x} \in S^n} \mathcal{B}(\mathcal{A}\mathbf{x})$$

$$= \sup_{\mathbf{x} \in S^n} \left(\|\mathcal{A}\mathbf{x}\| \cdot \mathcal{B}\left(\frac{\mathcal{A}\mathbf{x}}{\|\mathcal{A}\mathbf{x}\|}\right) \right)$$

$$\leq \sup_{\mathbf{x} \in S^n} \|\mathcal{A}\mathbf{x}\| \cdot \sup_{\mathbf{x} \in S^n} \mathcal{B}\left(\frac{\mathcal{A}\mathbf{x}}{\|\mathcal{A}\mathbf{x}\|}\right)$$

$$\leq \|\mathcal{A}\| \|\mathcal{B}\|$$

Определение. Ω_m — пространство обратимых линейных операторов на \mathbb{R}^m

Лемма 1.1.5. (Критерий обратимости линейного оператора) $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^n)$ обратим тогда и только тогда, когда m=n и $\mathrm{Ker}(\mathcal{A})=0$

Доказательство. Линейная алгебра.

Лемма 1.1.6. (Об условиях, эквивалентных обратимости оператора) $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^m)$ обратим $\iff \exists c > 0 \ \forall \mathbf{x} \ \|\mathcal{A}\mathbf{x}\| \geqslant c \ \|\mathbf{x}\|,$ причем $\|\mathcal{A}^{-1}\| \leqslant \frac{1}{c}$ Доказательство.

$$\left\|\mathcal{A}^{-1}\mathbf{y}\right\| \leqslant \left\|\mathcal{A}^{-1}\right\| \|\mathbf{y}\| \Longrightarrow \|\mathbf{y}\| = \|\mathcal{A}\mathbf{x}\| \geqslant \frac{1}{\|\mathcal{A}^{-1}\|} \|\mathbf{x}\|$$

Теорема 1.1.7. (Об обратимости оператора, близкого к обратимому) $\mathcal{A} \in \Omega_m, \, \mathcal{B} \in L(\mathbb{R}^m, \mathbb{R}^m), \, \|\mathcal{A} - \mathcal{B}\| < \frac{1}{\|\mathcal{A}^{-1}\|}, \,$ тогда

i) $\mathcal{B} \in \Omega_m$

ii)
$$\|\mathcal{B}^{-1}\| \le \frac{1}{\|\mathcal{A}^{-1}\|^{-1} - \|\mathcal{A} - \mathcal{B}\|}$$

$$\text{iii)} \ \left\|\mathcal{A}^{-1}-\mathcal{B}^{-1}\right\| \leqslant \frac{\left\|\mathcal{A}^{-1}\right\|}{\left\|\mathcal{A}^{-1}\right\|^{-1}-\left\|\mathcal{A}-\mathcal{B}\right\|}\left\|\mathcal{A}-\mathcal{B}\right\|$$

Доказательство.

i, ii)

$$\|\mathcal{B}\mathbf{x}\| \ge \|\mathcal{A}\mathbf{x}\| - \|(\mathcal{A} - \mathcal{B})\mathbf{x}\| \ge \left(\frac{1}{\|\mathcal{A}^{-1}\|} - \|\mathcal{A} - \mathcal{B}\|\right)\|\mathbf{x}\|$$

первое неравенство — неравенство треугольника, а второе выполнено потому, что

$$\|\mathbf{x}\| = \|\mathcal{A}\mathcal{A}^{-1}\mathbf{x}\| \le \|\mathcal{A}\| \|\mathcal{A}^{-1}\mathbf{x}\|$$

Далее по лемме получаем обратимость ${\mathfrak B}$ и оценку на его норму.

iii)

$$\begin{aligned} \mathcal{A}^{-1} - \mathcal{B}^{-1} &= \mathcal{A}^{-1} (\mathcal{B} - \mathcal{A}) \mathcal{B}^{-1} \\ \left\| \mathcal{A}^{-1} - \mathcal{B}^{-1} \right\| &\leq \left\| \mathcal{A}^{-1} \right\| \left\| \mathcal{B} - \mathcal{A} \right\| \left\| \mathcal{B}^{-1} \right\| \leq_{i)} \frac{\left\| \mathcal{A}^{-1} \right\|}{\left\| \mathcal{A}^{-1} \right\|^{-1} - \left\| \mathcal{A} - \mathcal{B} \right\|} \left\| \mathcal{A} - \mathcal{B} \right\| \end{aligned}$$

Следствие 1.1.8. Множество Ω_m открыто в метрической топологии $\langle L(\mathbb{R}^m,\mathbb{R}^m), \| \ \| \rangle$

1.2 Дифференцируемость и дифференциал отображений

Определение. Непустое множество $\Omega \subseteq \mathbb{R}^m$ называется *областью*, если оно открыто и связно.

Определение. Отображение $f: \Omega \to \mathbb{R}^n$, Ω — область в \mathbb{R}^m называется $\partial u \phi \phi e p e n u u p y e n ы в точке <math>\mathbf{x} \in \Omega$, если существуют $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^n)$, $r: \Omega \to \mathbb{R}^n$, такие что

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + A\mathbf{h} + r(\mathbf{h})$$

Где $r(\mathbf{h})$ удовлетворяет уловию

$$\lim_{\mathbf{h}\to 0} \frac{\|r(\mathbf{h})\|}{\|\mathbf{h}\|} = 0$$

или, что то же самое

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + A\mathbf{h} + \alpha(\mathbf{h}) \|\mathbf{h}\|$$

Где $\alpha(\mathbf{h})$ бесконечно малое, то есть

$$\lim_{\mathbf{h}\to 0}\alpha(\mathbf{h})=0$$

или, что то же самое

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - \mathcal{A}\mathbf{h}\|}{\|\mathbf{h}\|} = 0$$

Замечание. Функции α , r из определения дифференцируемости зависят не только от **h**, но и от **x**.

Определение. Оператор $A \in L(\mathbb{R}^m, \mathbb{R}^n)$ из определения дифференцируемости будем называть $\partial u \phi \phi$ еренциалом f в точке x и обозначать $d_x f = A$.

Замечание. Отображение $\mathbf{x} \mapsto \mathrm{d}_{\mathbf{x}} f$, действующее из \mathbb{R}^m в $L(\mathbb{R}^m, \mathbb{R}^n)$ называют $\partial u \phi$ -ференциалом f .

Определение. Матрицу, соответствующую производному оператору называют матрицей Якоби отображения f в точке \mathbf{x} .

Теорема 1.2.1. (Единственность производной)

 $f: \Omega \to \mathbb{R}^n$, **x** $\in \Omega$, f дифференцируема в **x**, тогда существует единственный производный оператор f в точке **x**.

Доказательство. Проверим, что для любого $\mathbf{z} \in \mathbb{R}^m$ $\mathcal{A}\mathbf{z}$ задано однозначно. Пусть $\mathbf{h} = t\mathbf{z}$ при $t \in \mathbb{R}$:

$$f(\mathbf{x} + t\mathbf{z}) = f(\mathbf{x}) + \mathcal{A}(t\mathbf{z}) + \alpha(t\mathbf{z}) ||t\mathbf{z}||, t\mathbf{z} \to 0$$

Это эквивалентно

$$f(\mathbf{x} + t\mathbf{z}) = f(\mathbf{x}) + tA\mathbf{z} + t\alpha(t), t \to 0$$

Так как $\|\mathbf{z}\|$ — константа. Тогда

$$A\mathbf{z} = \frac{f(\mathbf{x} + t\mathbf{z}) - f(\mathbf{x})}{t} - \alpha(t), \ t \to 0 \Longleftrightarrow$$

$$A\mathbf{z} = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{z}) - f(\mathbf{x})}{t}$$

Утверждение 1.2.2. (Производный оператор линейного отображения) Пусть $\mathcal{A} \in L(\mathbb{R}^m, \mathbb{R}^n)$, тогда \mathcal{A} дифференцируемо в каждой точке и $\mathrm{d}_{\mathbf{x}}\mathcal{A} = \mathcal{A}$ Доказательство.

$$\mathcal{A}(\mathbf{x} + \mathbf{h}) - \mathcal{A}(\mathbf{x}) = \mathcal{A}(\mathbf{x} + \mathbf{h} - \mathbf{x}) = \mathcal{A}(\mathbf{h})$$

Утверждение 1.2.3. (Линейность производного оператора)

Пусть f, $g: \Omega \to \mathbb{R}^n$, $\Omega \subseteq \mathbb{R}^m$, дифференцируемы в \mathbf{x} . Тогда отображение $\alpha f + \beta g$ дифференцируемо в точке \mathbf{x} , причем $\mathbf{d}_{\mathbf{x}}(\alpha f + \beta g) = \alpha \mathbf{d}_{\mathbf{x}} f + \beta \mathbf{d}_{\mathbf{x}} g$

Доказательство.

$$(\alpha f + \beta g)(\mathbf{x} + \mathbf{h}) - (\alpha f + \beta g)(\mathbf{x})$$

$$= [(\alpha f)(\mathbf{x} + \mathbf{h}) - (\alpha f)(\mathbf{x})] + [(\beta g)(\mathbf{x} + \mathbf{h}) - (\beta g)(\mathbf{x})]$$

$$= [\mathbf{d}_{\mathbf{x}} f + o] + [\mathbf{d}_{\mathbf{x}} g + o] = \mathbf{d}_{\mathbf{x}} f + \mathbf{d}_{\mathbf{x}} g + o$$

Теорема 1.2.4. (Дифференцируемость композиции)

Пусть $f:\Omega\to\Omega_1,\,g:\Omega_1\to\mathbb{R}^k,\,\Omega\subseteq\mathbb{R}^m,\,\Omega_1\subseteq\mathbb{R}^n$ дифференцируемы в **x**, тогда $F=g\circ f$ дифференцируема в **x**, причем $\mathrm{d}_{\mathbf{x}}F=\mathrm{d}_{f(\mathbf{x})}g\cdot\mathrm{d}_{\mathbf{x}}f$

Доказательство.

$$g(f(\mathbf{x} + \mathbf{h})) = g(f(\mathbf{x}) + [\mathbf{d}_{\mathbf{x}} f] \mathbf{h} + r(\mathbf{h}))$$

$$= \{ \mathbf{v} = [\mathbf{d}_{\mathbf{x}} f] \mathbf{h} + r(\mathbf{h}) \}$$

$$= g(f(\mathbf{x}) + \mathbf{v}) = g(f(\mathbf{x})) + [\mathbf{d}_{f(\mathbf{x})} g] \mathbf{v} + \widetilde{r}(\mathbf{v})$$

$$= g(f(\mathbf{x})) + [\mathbf{d}_{f(\mathbf{x})} g] [\mathbf{d}_{\mathbf{x}} f] \mathbf{h} + [\mathbf{d}_{f(\mathbf{x})} g] r(\mathbf{h}) + \widetilde{r}(\mathbf{v})$$

Осталось показать, что $[d_{f(\mathbf{x})}g]r(\mathbf{h}) + \widetilde{r}(\mathbf{v}) = o(||\mathbf{h}||).$

$$\left\| \left[\mathbf{d}_{f(\mathbf{x})} g \right] r(\mathbf{h}) + \widetilde{r}(\mathbf{v}) \right\| \leq \left\| \left[\mathbf{d}_{f(\mathbf{x})} g \right] \frac{r(\mathbf{h})}{\|r(\mathbf{h})\|} \|r(\mathbf{h})\| + \widetilde{\alpha}(\|\mathbf{v}\|) \|\mathbf{v}\| \right\|$$

Обозначим $\mathbf{w} = \frac{r(\mathbf{h})}{\|r(\mathbf{h})\|}$, причем $\|\mathbf{w}\| = 1$. Из определения нормы оператора получаем

$$\left\| [\mathbf{d}_{f(\mathbf{x})} g] \mathbf{w} \right\| \leq \left\| \mathbf{d}_{f(\mathbf{x})} g \right\|$$

Кроме того, $\|\mathbf{v}\| \le \|\mathbf{d}_{\mathbf{x}} f \| \mathbf{h} + \alpha(\|\mathbf{h}\|) \|\mathbf{h}\|$. Окончательно получаем

$$\left\|\left[\mathrm{d}_{f(\mathbf{x})}g\right]r(\mathbf{h})+\widetilde{r}(\mathbf{v})\right\|\leqslant\left\|\mathrm{d}_{f(\mathbf{x})}g\right\|\|r(\mathbf{h})\|+\widetilde{\alpha}(\|\mathrm{d}_{\mathbf{x}}f\|\cdot\|\mathbf{h}\|+\alpha(\|\mathbf{h}\|)\cdot\|\mathbf{h}\|)\|\mathbf{v}\|\leqslant\beta(\|\mathbf{h}\|)\|\mathbf{h}\|$$
 Для некоторой $\beta(t)\underset{t\to 0}{\longrightarrow} 0.$

Определение. Пусть $\Omega \subseteq \mathbb{R}^m$, $f: \Omega \to \mathbb{R}^n$, $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ — стандартный базис \mathbb{R}^n , тогда отображения

$$f_i(x) \stackrel{def}{=} \langle f(x), \mathbf{u}_i \rangle$$

где $f_i \colon \Omega \to \mathbb{R}$, называются коор ∂ инатными функциями.

Теорема 1.2.5. (Дифференцируемость координатных функций) Пусть $\Omega \subseteq \mathbb{R}^m$, $f: \Omega \to \mathbb{R}^n$, $\mathbf{x} \in \Omega$, тогда

f дифференцируемо в $\mathbf{x} \Longleftrightarrow \forall i \ f_i$ дифференцируемо в \mathbf{x}

причем

$$\mathbf{d}_{\mathbf{x}}f = \begin{pmatrix} \mathbf{d}_{\mathbf{x}}f_1 \\ \vdots \\ \mathbf{d}_{\mathbf{x}}f_n \end{pmatrix}$$

Доказательство.

 \leftarrow

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x}) \mathbf{u}_i = \sum_{i=1}^{n} g_i(f_i(\mathbf{x}))$$

где $g_i(t) = t\mathbf{u}_i$ — линейно, то есть дифференцируемо. Тогда f дифференцируемо как сумма композиций дифференцируемых функций.

 $\implies f_i$ дифференцируемы как композиции f и соответствующей проекции (проекция линейна, то есть дифференцируема).

Определение. Пусть $f:\Omega\to\mathbb{R}^n$, $\Omega\in\mathbb{R}^m$ — область, тогда производной по направлению $\mathbf{u}\in\mathbb{R}^n$ в точке \mathbf{x} называется

$$D_{\mathbf{u}}f(\mathbf{x}) \stackrel{def}{=} \lim_{\substack{t \to 0 \\ \mathbf{x} + t\mathbf{u} \in \Omega}} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t}$$

если он существует.

Определение. Пусть $f: \Omega \to \mathbb{R}^n$, $\Omega \in \mathbb{R}^m$, $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ — стандартный базис \mathbb{R}^m , тогда *частной производной f по k -й переменной* называется

$$\frac{\partial f}{\partial x_k}(\mathbf{x}) \stackrel{\text{def}}{=} f_k' \stackrel{\text{def}}{=} D_k f(\mathbf{x}) \stackrel{\text{def}}{=} D_{\mathbf{u}_k} f(\mathbf{x})$$

Утверждение 1.2.6. Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n, \mathbf{x} \in \Omega, \mathbf{u} \in \mathbb{R}^m$. Тогда

$$\exists D_{\mathbf{u}} f(\mathbf{x}) = [d_{\mathbf{x}} f] \mathbf{u}$$

Доказательство. Для любых $t \in \mathbb{R}$, $\mathbf{x} + t\mathbf{u} \in \Omega$ имеем

$$\frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t} = \frac{[\mathbf{d}_{\mathbf{x}} f](t\mathbf{u}) + r(t\mathbf{u})}{t}$$
$$= [\mathbf{d}_{\mathbf{x}} f]\mathbf{u} + \frac{r(t\mathbf{u})}{t} \le [\mathbf{d}_{\mathbf{x}} f]\mathbf{u} + \frac{\alpha(\mathbf{u}) \|t\mathbf{u}\|}{t} = [\mathbf{d}_{\mathbf{x}} f]\mathbf{u} + \alpha(\mathbf{u}) \|\mathbf{u}\|$$

Теорема 1.2.7. (Вид матрицы Якоби) Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n, \mathbf{x} \in \Omega$, тогда

$$\mathbf{d}_{\mathbf{x}}f = \begin{pmatrix} D_1 f_1(\mathbf{x}) & D_2 f_1(\mathbf{x}) & \cdots & D_m f_1(\mathbf{x}) \\ D_1 f_2(\mathbf{x}) & D_2 f_2(\mathbf{x}) & \cdots & D_m f_2(\mathbf{x}) \\ \vdots & \vdots & \cdots & \vdots \\ D_1 f_n(\mathbf{x}) & D_2 f_n(\mathbf{x}) & \cdots & D_m f_n(\mathbf{x}) \end{pmatrix}$$

Доказательство. Пусть (\mathbf{e}_i) — базис \mathbb{R}^m , $(\tilde{\mathbf{e}}_i)$ — базис \mathbb{R}^n , тогда

$$\begin{split} [\mathbf{d}_{\mathbf{x}}f\,]_{i,j} &= \langle [\mathbf{d}_{\mathbf{x}}f\,]\mathbf{e}_i, \tilde{\mathbf{e}}_j \rangle = \left\langle \frac{[\mathbf{d}_{\mathbf{x}}f\,](t\,\mathbf{e}_i)}{t}, \tilde{\mathbf{e}}_j \right\rangle = \left\langle \lim_{t \to 0} \frac{f(\mathbf{x} + t\,\mathbf{e}_i) - f(\mathbf{x})}{t}, \tilde{\mathbf{e}}_j \right\rangle \\ &= \lim_{t \to 0} \left\langle \frac{f(\mathbf{x} + t\,\mathbf{e}_i) - f(\mathbf{x})}{t}, \tilde{\mathbf{e}}_j \right\rangle = \lim_{t \to 0} \frac{f_j(\mathbf{x} + t\,\mathbf{e}_i) - f_j(\mathbf{x})}{t} = D_i f_j(\mathbf{x}) \end{split}$$

Утверждение 1.2.8. Пусть $f: \mathbb{R}^m \to \mathbb{R}$, $\mathbf{u} \in \mathbb{R}^m$. Тогда

$$D_{\mathbf{u}}f(\mathbf{x}) = \langle \operatorname{grad} f(\mathbf{x}), \mathbf{u} \rangle$$

Доказательство.

$$D_{\mathbf{u}}f(\mathbf{x}) = [d_{\mathbf{x}}f]\mathbf{u} = [\operatorname{grad} f(\mathbf{x})]\mathbf{u} = \langle \operatorname{grad} f(\mathbf{x}), \mathbf{u} \rangle$$

Утверждение 1.2.9. (Необходимое условие дифференцируемости)

Если f дифференцируемо в \mathbf{x} , то существуют все частные производные в точке \mathbf{x} , причем матрица Якоби f в точке \mathbf{x} совпадает с матрицей, составленной из матриц якоби f_i в точке \mathbf{x} :

$$d_{\mathbf{x}}f = \left(\frac{\partial f}{\partial \mathbf{x}_{1}}(\mathbf{x}), \dots, \frac{\partial f}{\partial \mathbf{x}_{m}}(\mathbf{x})\right)$$

Доказательство. Подставим в определение дифференцируемости $\mathbf{h} = t\mathbf{e}_k$:

$$f(\mathbf{x} + t\mathbf{e}_k) = f(\mathbf{x}) + [\mathbf{d}_{\mathbf{x}}f](t\mathbf{e}_k) + \alpha(\mathbf{h}) \|\mathbf{h}\|$$

= $f(\mathbf{x}) + t[\mathbf{d}_{\mathbf{x}}f]\mathbf{e}_k + \alpha(\mathbf{h}) \|\mathbf{h}\|$

Отсюда по определению частной производной получаем

$$\frac{\partial f}{\partial x_k}(\mathbf{x}) \stackrel{def}{=} \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_k) - f(\mathbf{x})}{t} = [\mathbf{d}_{\mathbf{x}} f] \mathbf{e}_k$$

Теорема 1.2.10. (Достаточное условие дифференцируемости)

Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}$, $\mathbf{a} \in \Omega$, $B(\mathbf{a}) \subseteq \Omega$, $B(\mathbf{a})$ существуют все частные производные, причем они непрерывны в точке \mathbf{a} . Тогда f дифференцируемо в точке \mathbf{a} .

Доказательство. Докажем теорему для случая m=2. Схема, примененная в доказательстве тривиально обобщается на произвольные m.

$$\begin{split} f(\mathbf{x}_1, \mathbf{x}_2) - f(\mathbf{a}_1, \mathbf{a}_2) &= (f(\mathbf{x}_1, \mathbf{x}_2) - f(\mathbf{a}_1, \mathbf{x}_2)) + (f(\mathbf{a}_1, \mathbf{x}_2) - f(\mathbf{a}_1, \mathbf{a}_2)) \\ &\stackrel{\text{Лагранж}}{=} f'_{\mathbf{x}_1}(\tilde{\mathbf{x}}_1, \mathbf{x}_2)(\mathbf{x}_1 - \mathbf{a}_1) + f'_{\mathbf{x}_2}(\mathbf{x}_1, \tilde{\mathbf{x}}_2)(\mathbf{x}_2 - \mathbf{a}_2) \\ &= f'_{\mathbf{x}_1}(\mathbf{a}_1, \mathbf{a}_2)(\mathbf{x}_1 - \mathbf{a}_1) + f'_{\mathbf{x}_2}(\mathbf{a}_1, \mathbf{a}_2)(\mathbf{x}_2 - \mathbf{a}_2) \\ &+ \underbrace{\left[\underbrace{(f'_{\mathbf{x}_1}(\tilde{\mathbf{x}}_1, \mathbf{x}_2) - f'_{\mathbf{x}_1}(\mathbf{a}_1, \mathbf{a}_2))}_{\to 0 \text{ по непрерывности}} \underbrace{\frac{\mathbf{x}_1 - \mathbf{a}_1}{\|\mathbf{x} - \mathbf{a}\|} + \underbrace{(f'_{\mathbf{x}_2}(\mathbf{x}_1, \tilde{\mathbf{x}}_2) - f'_{\mathbf{x}_2}(\mathbf{a}_1, \mathbf{a}_2))}_{\to 0 \text{ по непрерывности}} \underbrace{\frac{\mathbf{x}_2 - \mathbf{a}_2}{\|\mathbf{x} - \mathbf{a}\|}}_{\to 0 \text{ по непрерывности}} \underbrace{\|\mathbf{x} - \mathbf{a}\|}_{\to 0 \text{ по непрерывности}} \end{split}$$

Теорема 1.2.11. Пусть $f,g:\Omega\subseteq\mathbb{R}^m\to\mathbb{R}^n$, $\lambda:\Omega\to\mathbb{R}$, $\mathbf{a}\in\Omega,f,g,\lambda$ дифференцируемы в \mathbf{a} . Тогда λf , $\langle f,g\rangle$ дифференцируемы в \mathbf{a} , причем

- $[d_a(\lambda f)]h = [d_a\lambda]h \cdot f(a) + \lambda(a) \cdot [d_af]h$
- $[d_{\mathbf{a}}\langle f, g \rangle] \mathbf{h} = \langle [d_{\mathbf{a}}f] \mathbf{h}, g(\mathbf{a}) \rangle + \langle f(\mathbf{a}), [d_{\mathbf{a}}g] \mathbf{h} \rangle$

Доказательство.

• Докажем покоординатно:

$$(\lambda f_i)(\mathbf{a} + \mathbf{h}) - (\lambda f_i)(\mathbf{a})$$

$$= \lambda(\mathbf{a} + \mathbf{h}) \cdot f_i(\mathbf{a} + \mathbf{h}) - (\lambda f_i)(\mathbf{a})$$

$$= (\lambda(\mathbf{a}) + d_{\mathbf{a}}\lambda \mathbf{h} + \alpha(\mathbf{h}) ||\mathbf{h}||) \cdot (f_i(\mathbf{a}) + d_{\mathbf{a}}f_i\mathbf{h} + \beta(\mathbf{h}) ||\mathbf{h}||) - (\lambda f_i)(\mathbf{a})$$

$$= [d_{\mathbf{a}}\lambda] \cdot f_i(\mathbf{a}) + \lambda(\mathbf{a}) \cdot [d_{\mathbf{a}}f_i]\mathbf{h} + o(\mathbf{h})$$

$$[\mathbf{d}_{\mathbf{a}}\langle f, g \rangle] \mathbf{h} = \mathbf{d}_{\mathbf{a}} \left[\sum_{i=1}^{n} f_{i} \cdot g_{i} \right] \mathbf{h} = \sum_{i=1}^{n} \mathbf{d}_{\mathbf{a}} [f_{i} \cdot g_{i}] \mathbf{h} = \sum_{i=1}^{n} ([\mathbf{d}_{\mathbf{a}} f_{i}] \mathbf{h} \cdot g_{i}(\mathbf{a}) + f_{i}(\mathbf{a}) \cdot [\mathbf{d}_{\mathbf{a}} g_{i}] \mathbf{h})$$

$$= \sum_{i=1}^{n} ([\mathbf{d}_{\mathbf{a}} f_{i}] \mathbf{h} \cdot g_{i}(\mathbf{a})) + \sum_{i=1}^{n} (f_{i}(\mathbf{a}) \cdot [\mathbf{d}_{\mathbf{a}} g_{i}] \mathbf{h}) = \langle [\mathbf{d}_{\mathbf{a}} f] \mathbf{h}, g(\mathbf{a}) \rangle + \langle f(\mathbf{a}), [\mathbf{d}_{\mathbf{a}} g_{i}] \mathbf{h} \rangle$$

Определение. Пусть $f:\Omega\subseteq\mathbb{R}^m\to\mathbb{R},\ \mathbf{x}\in\Omega.$ Тогда *градиентом* φ в точке \mathbf{x} наывается вектор

$$\operatorname{grad} f(\mathbf{x}) \stackrel{def}{=} \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_m}(\mathbf{x}) \end{pmatrix}$$

Теорема 1.2.12. (Экстремальное свойство градиента)

Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}, \mathbf{x} \in \Omega, f$ дифференцируемо в \mathbf{x} , grad $f(\mathbf{x}) \neq 0$ Тогда

$$1 = \frac{\operatorname{grad} f(\mathbf{x})}{\|\operatorname{grad} f(\mathbf{x})\|}$$

— направление наибольшего возрастания f , то есть

$$\forall \mathbf{h} \in \mathbb{R}^m, ||\mathbf{h}|| = 1 \Longrightarrow D_{\mathbf{h}} f(\mathbf{x}) \leq D_{\mathbf{l}} f(\mathbf{x})$$

Доказательство.

$$D_{\mathbf{h}}f(\mathbf{x}) = [d_{\mathbf{x}}f]\mathbf{h} = [\operatorname{grad} f(\mathbf{x})]\mathbf{h} = \langle \operatorname{grad} f(\mathbf{x}), \mathbf{h} \rangle \leq \|\operatorname{grad} f(\mathbf{x})\| \|\mathbf{h}\| = \|\operatorname{grad} f(\mathbf{x})\|$$

11

1.3 Теоремы Лагранжа для отображений

Теорема 1.3.1. (Лагранжа для векторнозначных функций) Пусть $f \in C([a,b],\mathbb{R}^n)$, дифференцируемо на (a,b). Тогда

$$\exists c \in (a,b) \colon \ \|f(b) - f(a)\| \le \left\|f'(c)\right\| |b - a|$$

Доказательство. При f(a) = f(b) утверждение тривиально. Положим $\varphi(x) = \langle f(b) - f(a), f(t) - f(a) \rangle$. Тогда

$$\varphi(a) = 0, \varphi(b) = \langle f(b) - f(a), f(b) - f(a) \rangle = ||f(b) - f(a)||^2$$

Применим теорему Лагранжа для φ :

$$\exists c \in (a,b) \colon \|f(b) - f(a)\|^2 = \varphi(b) - \varphi(a) \underset{\text{Narpah}_{\mathbb{K}}}{=} \varphi'(c)|b - a| = \langle f(b) - f(a), f'(c) \rangle \cdot |b - a|$$

$$\leqslant \|f(b) - f(a)\| \cdot \|f'(c)\| |b - a| \Longrightarrow \|f(b) - f(a)\| \leqslant \|f'(c)\| |b - a|$$

Теорема 1.3.2. (Лагранжа для отображений)

Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$, дифференцируемо на Ω , $[\mathbf{a}, \mathbf{b}] \subseteq \Omega$, тогда

$$||f(\mathbf{b}) - f(\mathbf{a})|| \le \sup_{\mathbf{x} \in [\mathbf{a}, \mathbf{b}]} ||\mathbf{d}_{\mathbf{x}} f|| \cdot ||\mathbf{b} - \mathbf{a}||$$

Доказательство. $g = f(\mathbf{a} + t(\mathbf{b} - \mathbf{a}))$ для $t \in [0, 1]$ — дифференцируемо как композиция дифференцируемых функций. По предыдущей теореме

$$\begin{split} \exists t_0 \in (0,1) \colon & \|g(1) - g(0)\| \leqslant \left\| g'(t_0) \right\| = \left\| f'(\mathbf{a} + t_0(\mathbf{b} - \mathbf{a})) \cdot (\mathbf{b} - \mathbf{a}) \right\| \\ \leqslant & \left\| f'(\mathbf{a} + t(\mathbf{b} - \mathbf{a})) \right\| \|\mathbf{b} - \mathbf{a}\| \leqslant \sup_{\mathbf{x} \in [\mathbf{a}, \mathbf{b}]} \|\mathbf{d}_{\mathbf{x}} f\| \cdot \|\mathbf{b} - \mathbf{a}\| \end{split}$$

12

1.4 Формула Тейлора

Определение. Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$, Ω — область, $i_1, \ldots, i_k \in \{1, 2, \ldots, m\}$. Определим частные производные высшего порядка по индукции:

$$D_{i_1,...,i_k}f \stackrel{def}{=} D_{i_k}(D_{i_1,...,i_{k-1}}f)$$

Теорема 1.4.1. (О независимости ч.п. от порядка дифференцирования) Пусть $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}, \ \Omega$ — область, $(x_0, y_0) \in \Omega, \ \exists B((x_0, y_0), r) \subseteq \Omega, \$ причем в $B((x_0, y_0), r)$ существуют $D_{12}f$ и $D_{21}f$, непрерывные в точке (x_0, y_0) . Тогда $D_{12}f(x_0, y_0) = D_{21}f(x_0, y_0)$

Доказательство.

$$\alpha(h) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$

Тогда $\alpha(0) = 0$:

$$\begin{split} \alpha(h) &= \alpha(h) - \alpha(0) \underset{\text{Лагранж}}{=} \alpha'(\tilde{h})h = [f_x'(x_0 + \tilde{h}, y_0 + k) - f_x'(x_0 + \tilde{h}, y_0)]h \\ &= f_{xy}''(x_0 + \tilde{h}, y_0 + \tilde{k})hk \end{split}$$

Аналогично введем $\beta(k)$:

$$\beta(k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$

Тогда

$$\beta(k) = \beta(k) - \beta(0) = \beta'(\bar{k})k = [f'_{y}(x_0 + h, y_0 + \bar{k}) - f'_{y}(x_0, y_0 + \bar{k})]k$$
$$= f''_{yx}(x_0 + \bar{h}, y_0 + \bar{k})hk$$

Заметим, что $\alpha(h) = \beta(k)$. Осталось перейти к пределу при $(h,k) \to (0,0)$ и воспользоваться непрерывностью частных производных в точке (x_0,y_0) .

Следствие 1.4.2. Пусть $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$, $i_1, \ldots, i_k \in \{1, 2, \ldots, m\}$, $\mathbf{x} \in \Omega$, $\exists B(\mathbf{x}, r) \subseteq \Omega$, причем в $B(\mathbf{x}, r)$ для любой перестановки индексов $\pi \in S_k$ существуют и непрерывны в \mathbf{x} частные производные $D_{i_{\pi_1}, \ldots, i_{\pi_k}} f$. Тогда все они совпадают в точке \mathbf{x} .

Доказательство. Доказательство сводится к координатным функциям, поэтому считаем, что n=1. Предыдущая теорема дает возможность менять местами пары индексов. Осталось заметить, что группа перестановок порождается транспозициями.

Определение. Множество функций $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$, у которых все частные производные порядка не более r существуют и непрерывны на Ω , будем обозначать $C^r(\Omega)$ **Определение.** Пусть $k_1, k_2, \dots, k_m \in \mathbb{N}_0$, тогда набор $k = (k_1, k_2, \dots, k_m)$ будем называть *мультииндексом*. Используются обозначения $|k| = k_1 + \dots + k_m$,

$$\frac{\partial^k}{\partial x^k} f \stackrel{def}{=} \frac{\partial^{|k|}}{\partial x_1^{k_1} \dots \partial x_m^{k_m}} f$$

Лемма 1.4.3. (Полиномиальная формула)

$$(a_1 + \ldots + a_m)^r = \sum_{n_1 = 1}^m \sum_{n_2 = 1}^m \ldots \sum_{n_r = 1}^m a_{n_1} a_{n_2} \ldots a_{n_r} = \sum_{|k| = r} \frac{r!}{k_1! \ldots k_m!} a_1^{k_1} a_2^{k_2} \ldots a_m^{k_m}$$

Доказательство. Первое равенство очевидно по правилам раскрытия скобок. Докажем второе равенство индукцией по r.

- Для r = 1 утверждение очевидно.
- Переход:

$$\begin{split} &(a_1+\ldots+a_m)^{r+1}=(a_1+\ldots+a_m)\cdot(a_1+\ldots+a_m)^r\\ &=(a_1+\ldots+a_m)\cdot\sum_{|k|=r}\frac{r!}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}\\ &=\sum_{|k|=r}\frac{r!}{k_1!\ldots k_m!}a_1^{k_1+1}a_2^{k_2}\ldots a_m^{k_m}+\ldots+\sum_{|k|=r}\frac{r!}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m+1}\\ &=[\text{переобозначим }k_i=k_i+1\text{ B }i\text{-}\text{й сумме}]\\ &=\sum_{|k|=r+1}\frac{r!\cdot k_1}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}+\ldots+\sum_{|k|=r+1}\frac{r!\cdot k_m}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}\\ &=[\text{добавим все пропущенные слагаемые c }k_i=0]\\ &=\sum_{|k|=r+1}\frac{r!\cdot k_1}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}+\ldots+\sum_{|k|=r+1}\frac{r!\cdot k_m}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}\\ &=\sum_{|k|=r+1}\frac{r!\cdot (k_1+k_2\ldots+k_m)}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}\\ &=\sum_{|k|=r+1}\frac{(r+1)!}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m}\\ &=\sum_{|k|=r+1}\frac{(r+1)!}{k_1!\ldots k_m!}a_1^{k_1}a_2^{k_2}\ldots a_m^{k_m} \end{split}$$

Лемма 1.4.4. (О дифференцировании сдвига)

 $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}, \ \Omega$ — область, $f \in C^r(\Omega), \ \mathbf{a} \in \Omega, \ \mathbf{h} \in \mathbb{R}^m, \ \forall t \in [-1,1] \ \mathbf{a} + t\mathbf{h} \in \Omega$, тогда для отображения $\varphi(t) = f(\mathbf{a} + t\mathbf{h})$ и для $k \le r$ выполнено

$$\varphi^{(k)}(0) = \sum_{|j|=k} \frac{k!}{j!} \mathbf{h}^j \frac{\partial^j f}{\partial x^j}(\mathbf{a})$$

Доказательство. Для доказательства этого факта достаточно показать, что

$$\varphi^{(k)}(t) = \left(\frac{\partial}{\partial x_1}\mathbf{h}_1 + \ldots + \frac{\partial}{\partial x_m}\mathbf{h}_m\right)^k \cdot f(\mathbf{a} + t\mathbf{h})$$

Докажем по индукции:

- Для k = 0 утверждение очевидно.
- Переход:

$$\varphi^{(k)}(t) = (\varphi^{(k-1)}(t))' = \left(\left(\frac{\partial}{\partial x_1} \mathbf{h}_1 + \dots + \frac{\partial}{\partial x_m} \mathbf{h}_m \right)^{k-1} f(\mathbf{a} + t\mathbf{h}) \right)'$$

$$= \left(\frac{\partial}{\partial x_1} \mathbf{h}_1 + \dots + \frac{\partial}{\partial x_m} \mathbf{h}_m \right) \cdot \left(\frac{\partial}{\partial x_1} \mathbf{h}_1 + \dots + \frac{\partial}{\partial x_m} \mathbf{h}_m \right)^{k-1} f(\mathbf{a} + t\mathbf{h})$$

$$= \left(\frac{\partial}{\partial x_1} \mathbf{h}_1 + \dots + \frac{\partial}{\partial x_m} \mathbf{h}_m \right)^k f(\mathbf{a} + t\mathbf{h})$$

Теорема 1.4.5. (Формула Тейлора в форме Лагранжа)

 $f:\Omega\subseteq\mathbb{R}^m\to\mathbb{R},\,f\in C^{r+1}(\Omega),\,\Omega$ — область, $\mathbf{a}\in\Omega,\,\mathbf{x}\in B(\mathbf{x},r)\subseteq\Omega,$ тогда

$$\exists \theta \in (0,1) \colon f(\mathbf{x}) = \sum_{|k| \le r} \frac{1}{k!} \frac{\partial^k f}{\partial x^k} (\mathbf{a}) (\mathbf{x} - \mathbf{a})^k + \sum_{|k| = r+1} \frac{1}{k!} \frac{\partial^k f}{\partial x^k} (\mathbf{a} + \theta (\mathbf{x} - \mathbf{a})) (\mathbf{x} - \mathbf{a})^k$$

Доказательство. Пусть $\varphi(t) = f(\mathbf{a} + t\mathbf{h})$ для $\mathbf{x} = \mathbf{a} + \mathbf{h}$, $\mathbf{h} = \mathbf{x} - \mathbf{a}$. Выпишем формулу Тейлора в форме Лагранжа для φ :

$$\varphi(1) = \sum_{k=0}^{r} \frac{\varphi^{(k)}(0)}{k!} + \frac{\varphi^{(r+1)}(\theta)}{(r+1)!}$$

Пользуясь леммой о дифференцировании сдвига, получаем искомое равенство.

Теорема 1.4.6. (Формула Тейлора в форме Пеано)

 $f:\Omega\subseteq\mathbb{R}^m\to\mathbb{R},\,f\in C^{r+1}(\Omega),\,\Omega$ — область, $\mathbf{a}\in\Omega,\,\mathbf{x}\in B(\mathbf{x},r)\subseteq\Omega,$ тогда

$$\exists \theta \in (0,1) \colon f(\mathbf{x}) = \sum_{|k| \le r} \frac{1}{k!} \frac{\partial^k f}{\partial x^k} (\mathbf{a}) (\mathbf{x} - \mathbf{a})^k + o(\|\mathbf{x} - \mathbf{a}\|^r)$$

Доказательство. Достаточно показать, что

$$\sum_{|k|=r+1} \frac{1}{k!} \frac{\partial^k f}{\partial x^k} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a})) (\mathbf{x} - \mathbf{a})^k = o(\|\mathbf{x} - \mathbf{a}\|^r)$$

Проверим это:

$$\sum_{|k|=r+1} \frac{1}{k!} \frac{\partial^{k} f}{\partial x^{k}} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a})) \frac{(\mathbf{x} - \mathbf{a})^{k}}{\|\mathbf{x} - \mathbf{a}\|^{r}} = \sum_{|k|=r+1} \frac{1}{k!} \frac{\partial^{k} f}{\partial x^{k}} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a})) \frac{(\mathbf{x}_{1} - \mathbf{a}_{1})^{k_{1}} \dots (\mathbf{x}_{m} - \mathbf{a}_{m})^{k_{m}}}{\|\mathbf{x} - \mathbf{a}\|^{r}}$$

$$= \sum_{|k|=r+1} \frac{1}{k!} \frac{\partial^{k} f}{\partial x^{k}} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a})) \frac{(\mathbf{x}_{1} - \mathbf{a}_{1})^{k_{1}}}{\|\mathbf{x} - \mathbf{a}\|^{k_{1}}} \dots \frac{(\mathbf{x}_{m} - \mathbf{a}_{m})^{k_{m}}}{\|\mathbf{x} - \mathbf{a}\|^{k_{m}}} \|\mathbf{x} - \mathbf{a}\|$$

Все дроби вида

$$\frac{(\mathbf{x}_i - \mathbf{a}_i)^{k_i}}{\|\mathbf{x} - \mathbf{a}\|^{k_i}}$$

меньше единицы, выражения вида

$$\frac{1}{k!} \frac{\partial^k f}{\partial x^k} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a}))$$

постоянны. Поэтому

$$\sum_{|k|=r+1} \frac{1}{k!} \frac{\partial^{k} f}{\partial x^{k}} (\mathbf{a} + \theta(\mathbf{x} - \mathbf{a})) \frac{(\mathbf{x}_{1} - \mathbf{a}_{1})^{k_{1}}}{\|\mathbf{x} - \mathbf{a}\|^{k_{1}}} \dots \frac{(\mathbf{x}_{m} - \mathbf{a}_{m})^{k_{m}}}{\|\mathbf{x} - \mathbf{a}\|} \|\mathbf{x} - \mathbf{a}\| \to 0$$

При $\|\mathbf{x} - \mathbf{a}\| \to 0$.

1.5 Диффеоморфизмы

Определение. Областью называют открытое связное множество.

Определение. Топологические пространства X, Y гомеомор ϕ ны, если существует обратимое и в обе стороны непрерывное $f: X \to Y$. f называют гомеомор ϕ измом.

Определение. $\Delta u \phi \phi e o mop \phi u s mom гладких многообразий <math>M,N$ называется обратимое и в обе стороны гладкое отображение $f:M\to N$.

Определение. Пусть \mathbb{O} — область в \mathbb{R}^m . Тогда отображение $f: \mathbb{O} \to \mathbb{R}^m$ называется $\partial u \phi \phi e o mop \phi u s mom , если оно обратимо и в обе стороны дифференцируемо.$

Лемма 1.5.1. (О почти локальной инъективности)

Пусть $f: \mathbb{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\mathbf{x}_0 \in \mathbb{O}$, f дифференцируемо в \mathbf{x}_0 , $\det f'(\mathbf{x}_0) \neq 0$, тогда $\exists c, \delta > 0$ такие, что $\forall \mathbf{h} \colon \|\mathbf{h}\| < \delta \ \|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)\| \geqslant c \|\mathbf{h}\|$

Доказательство.

$$\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)\| = \|f'(\mathbf{x}_0)\mathbf{h} + \alpha(\mathbf{h})\|\mathbf{h}\|\| \ge \|f'(\mathbf{x}_0)\mathbf{h}\| - \|\alpha(\mathbf{h})\|\mathbf{h}\|\| \ge \frac{c}{2}\|\mathbf{h}\|$$

Последнее неравенство выполнено по следующим причинам:

- $||f'(\mathbf{x}_0)\mathbf{h}|| \ge c ||\mathbf{h}||$, так как $f'(\mathbf{x}_0)$ обратим
- $\|\alpha(\mathbf{h})\|\mathbf{h}\|\| \leqslant \frac{c}{2}\|\mathbf{h}\|$ при достаточно малых \mathbf{h} , так как $\alpha(\mathbf{h})$ бесконечно малое.

Теорема 1.5.2. (О сохранении области)

Пусть $f: \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^m$, $\forall \mathbf{x} \in \mathcal{O} \det f'(\mathbf{x}) \neq \mathbf{0}$, тогда f открыто.

Доказательство. Достаточно рассмотреть случай, когда \emptyset открыто. Тогда нужно показать, что $f(\emptyset)$ открыто. Зафиксируем $\mathbf{x}_0 \in \emptyset$ и $\mathbf{y}_0 = f(\mathbf{x}_0) \in f(\emptyset)$. По лемме о почти локальной инъективности имеем $c, \delta > 0$ такие, что

$$\forall \mathbf{h} \in \overline{B(0, \delta)} \| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) \| \ge c \| \mathbf{h} \|$$

Положим

$$r = \frac{1}{2}\operatorname{dist}(\mathbf{y}_0, f(S(\mathbf{x}_0, \delta)))$$

Поскольку f непрерывно, а сфера — компакт, имеем, что $f(S(\mathbf{x}_0, \delta))$ — компакт. В свою очередь, ρ является метрикой, то есть непрерывно. Тогда ρ достигает минимума, то есть r реализуется, а значит, не равно нулю (см. оценку выше). Раз r > 0, то $B(\mathbf{y}_0, r)$ — полноправный шар, проверим, что он входит в образ f целиком, что и закончит доказательство. Пусть $\mathbf{y} \in B(\mathbf{y}_0, r)$. Положим $g(\mathbf{x}) = \|f(\mathbf{x}) - \mathbf{y}\|$ на $\overline{B(\mathbf{x}_0, \delta)}$; g непрерывно, поэтому достигает минимума. Попробуем этот минимум найти:

• Рассмотрим поведение $g(\mathbf{x})$ на $S(\mathbf{x}_0, \delta)$:

$$g(\mathbf{x}) = ||f(\mathbf{x}) - \mathbf{y}|| \ge ||f(\mathbf{x}) - \mathbf{y}_0|| - ||\mathbf{y}_0 - \mathbf{y}|| \ge 2r - r = r$$

•
$$g(\mathbf{x}_0) = ||\mathbf{y}_0 - \mathbf{y}|| < r$$
, так как $\mathbf{y} \in B(\mathbf{y}_0, r)$

Тогда понятно, что минимум достигается не на границе. Раз так, он достигается во внутренности. Отображение $l: \mathbf{x} \mapsto g^2(\mathbf{x})$ достигает минимума в той же точке, что и g, при этом $l'(\mathbf{x}) = f'(\mathbf{x})(f(\mathbf{x}) - \mathbf{y})$. Из невырожденности производного оператора следует, что $f(\mathbf{x}) = \mathbf{y}$, что и требовалось.

Рис. 1.1: Теорема о сохранении области

Следствие 1.5.3. Пусть $f: \mathcal{O} \subseteq \mathbb{R}^m \to \mathbb{R}^{l \leqslant m}, \ \forall \mathbf{x} \in \mathcal{O} \ \ \mathrm{rank} \ f'(\mathbf{x}) = l, \ \mathrm{тогда} \ f \ \ \mathrm{открыто}.$

Доказательство. Построим оторбражение $\tilde{f}: \mathfrak{O} \to \mathbb{R}^m$ следующим образом:

$$ilde{f_i} = f_i, \ 1 \leqslant i \leqslant l$$
 $ilde{f_i} = x_i, \$ иначе

Производный оператор тогда будет выглядеть так:

$$\tilde{f}' = \begin{pmatrix} & f' & \\ 0 & \cdots & 1 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

Где первая сверху единица стоит на l+1-м месте. Тогда отображение \tilde{f} тоже дифференцируемо, и его производный оператор невырожден. Применяя предыдущую

теорему, получаем, что $\tilde{f}(A)$ открыто, если множество A открыто. Тогда f(A) тоже открыто.

Теорема 1.5.4. (О гладкости обратного отображения)

Пусть $\mathcal{O} \subseteq \mathbb{R}^m$ — область, $T \in C^r(\mathcal{O}, \mathbb{R}^m)$, $r \in \mathbb{N} \cup \{+\infty\}$, $\forall \mathbf{x} \in \mathcal{O} \det T'(\mathbf{x}) \neq 0$, T обратимо, тогда $T^{-1} \in C^r$ и $(T^{-1})'(\mathbf{y}_0) = (T'(\mathbf{x}_0))^{-1}$, при $\mathbf{y}_0 = T(\mathbf{x}_0)$.

Доказательство. Докажем теорему по индукции. В качестве базы рассмотрим случай r=1. Обозначим $S=T^{-1}$, $S\colon T(\mathfrak{O})\to\mathbb{R}^m$ непрерывно, так как по теореме о сохранении области T открыто. Зафиксируем $\mathbf{y}_0=T(\mathbf{x}_0)$ и проверим дифференцируемость S в точке \mathbf{y}_0 .

• По теореме о почти локальной инъективности имеем

$$\exists c, \delta > 0: \ \forall \mathbf{x} \in B(\mathbf{x}_0, \delta) \ \|T(\mathbf{x}) - T(\mathbf{x}_0)\| \ge c \|\mathbf{x} - \mathbf{x}_0\|$$

• Воспользуемся дифференцируемостью Т:

$$T(\mathbf{x}) - T(\mathbf{x}_0) = A(\mathbf{x} - \mathbf{x}_0) + \alpha(\mathbf{x} - \mathbf{x}_0) \|\mathbf{x} - \mathbf{x}_0\|$$

Здесь $A = T'(\mathbf{x}_0)$. Положим $\mathbf{y} = T(\mathbf{x})$:

$$y - y_0 = A(S(y) - S(y_0)) + \alpha(S(y) - S(y_0)) ||S(y) - S(y_0)||$$

Перепишем это равенство в виде, похожем на определение дифференцируемости S:

$$S(\mathbf{y}) - S(\mathbf{y}_0) = A^{-1}(\mathbf{y} - \mathbf{y}_0) + A^{-1}\alpha(S(\mathbf{y}) - S(\mathbf{y}_0)) \|S(\mathbf{y}) - S(\mathbf{y}_0)\|$$

Если мы поймем, что $\beta(\mathbf{y}-\mathbf{y}_0) = A^{-1}\alpha(S(\mathbf{y})-S(\mathbf{y}_0)) \|S(\mathbf{y})-S(\mathbf{y}_0)\|$ — бесконечно малое при $\mathbf{y} \to \mathbf{y}_0$, то мы получим определение дифференцируемости S в точке \mathbf{y}_0 . Проверим это:

$$\beta(\mathbf{y} - \mathbf{y}_0) \leq \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \|\mathbf{x} - \mathbf{x}_0\|$$

$$\leq \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \frac{1}{c} \|T(\mathbf{x}) - T(\mathbf{x}_0)\|$$

$$= \|A^{-1}\| \|\alpha(S(\mathbf{y}) - S(\mathbf{y}_0))\| \cdot \frac{1}{c} \|\mathbf{y} - \mathbf{y}_0\|$$

S непрерывно, поэтому $\|\alpha(S(\mathbf{y})-S(\mathbf{y}_0))\| \xrightarrow{\mathbf{y}-\mathbf{y}_0} 0$, тогда $\beta(\mathbf{y}-\mathbf{y}_0) \xrightarrow{\mathbf{y}-\mathbf{y}_0} 0$.

Теперь нужно доказать непрерывность S'. Из доказанного уже известно, что $S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1}$:

$$\mathbf{y} \mapsto S(\mathbf{y}) = T^{-1}(\mathbf{y}) = \mathbf{x} \mapsto T'(\mathbf{x}) \mapsto (T'(\mathbf{x}))^{-1} = S'(\mathbf{y})$$

Эту схему можно переписать в привычном виде:

$$S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1} = (T'(S(\mathbf{y})))^{-1}$$

Таким образом получаем, что S' — композиция непрерывных отображений, то есть непрерывно (в частности, отображение $GL(\mathbb{R}^m) \ni A \mapsto A^{-1}$ непрерывно). Таким образом, база доказана.

Для доказательства индукционного перехода нужно показать только гладкость S. Пусть $T \in C^n$, $S \in C^n$, покажем, что тогда если вдруг $T \in C^{n+1}$, то и $S \in C^{n+1}$. Для этого достаточно, чтобы $S' \in C^n$:

$$S'(\mathbf{y}) = (T'(\mathbf{x}))^{-1} = (T'(S(\mathbf{y})))^{-1}$$

 $S \in C^n$ по предположению индукции, $T' \in C^n$ потому, что $T \in C^{n+1}$, обращение матрицы — вообще класса C^∞ , то есть переход доказан.

Лемма 1.5.5. (О приближении оботражения его линеаризацией) Пусть $f \in C^1(\mathcal{O}, \mathbb{R}^m)$, $\mathbf{x}_0 \in \mathcal{O}$, тогда $\forall \mathbf{h}$

$$\left\| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0) \mathbf{h} \right\| \leq M \|\mathbf{h}\|$$

где

$$M = \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\|$$

Доказательство. Положим $F(\mathbf{x}) = f(\mathbf{x}) - f'(\mathbf{x}_0)(\mathbf{x})$, тогда $F'(\mathbf{x}) = f'(\mathbf{x}) - f'(\mathbf{x}_0)$. Применим теорему Лагранжа к F:

$$\begin{aligned} \left\| f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0) \mathbf{h} \right\| &= \left\| F(\mathbf{x}_0 + \mathbf{h}) - F(\mathbf{x}_0) \right\| \leqslant \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| F'(\mathbf{z}) \right\| \cdot \left\| \mathbf{h} \right\| \\ &= \sup_{\mathbf{z} \in [\mathbf{x}_0, \mathbf{x}_0 + \mathbf{h}]} \left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\| \cdot \left\| \mathbf{h} \right\| \end{aligned}$$

Теорема 1.5.6. (О локальной обратимости)

Пусть $f \in C^1(\mathcal{O}, \mathbb{R}^m)$, $\mathbf{x}_0 \in \mathcal{O}$, $\det f'(\mathbf{x}_0) \neq 0$, тогда $\exists U(\mathbf{x}_0)$ такая, что $f \big|_U$ — диффеоморфизм.

Доказательство. Если мы докажем, что f обратимо в некоторой окрестности $U(\mathbf{x}_0)$, то по теореме о гладкости обратного отображения мы получим требуемое (невырожденность определителя в окрестности \mathbf{x}_0 следует из его непрерывности и того, что $\det f'(\mathbf{x}_0) \neq 0$). Для начала заметим. что из невырожденности оператора в точке \mathbf{x}_0 следует, что

$$\exists c > 0: \ \left\| f'(\mathbf{x}_0) \mathbf{h} \right\| \geqslant c \left\| \mathbf{h} \right\|$$

Попробуем построить окрестность. Пусть она будет содержать точки такие, что одновременно выполнены условия:

- $||f'(\mathbf{x}) f'(\mathbf{x}_0)|| \le \frac{c}{4}$. Эти точки есть вблизи \mathbf{x}_0 по теореме о непрерывно дифференцируемых отображениях.
- $\det f'(\mathbf{x}) \neq 0$. Такие точки есть из непрерывности \det .

Проверим, что в этой окрестности f не склеивает точки, что и будет означать его обратимость; пусть $\mathbf{y} = \mathbf{x} + \mathbf{h}$, тогда:

$$f(y) - f(x) = (f(y+h) - f(x) - f'(x)h) + (f'(x) - f'(x_0))h + f'(x_0)h$$

$$||f(\mathbf{y}) - f(\mathbf{x})|| \ge \underbrace{||f'(\mathbf{x}_0)|| ||\mathbf{h}||}_{\geqslant c||\mathbf{h}||} - \underbrace{||f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - f'(\mathbf{x})\mathbf{h}||}_{\leqslant M||\mathbf{h}|| \leqslant \frac{c}{2}||\mathbf{h}||} - \underbrace{||f'(\mathbf{x}) - f'(\mathbf{x}_0)|| \cdot ||\mathbf{h}||}_{\leqslant \frac{c}{4}||\mathbf{h}||}$$

$$\ge \frac{c}{4} ||\mathbf{h}||$$

Где $M \|\mathbf{h}\| \le \frac{c}{2} \|\mathbf{h}\|$ потому, что:

$$M \|\mathbf{h}\| = \|\mathbf{h}\| \sup \left\| f'(\mathbf{z}) - f'(\mathbf{x}) \right\| \leq \sup \left(\underbrace{\left\| f'(\mathbf{z}) - f'(\mathbf{x}_0) \right\|}_{\leq \frac{c}{4}} + \underbrace{\left\| f(\mathbf{x}_0) - f(\mathbf{x}) \right\|}_{\leq \frac{c}{4}} \right) \leq \frac{c}{2}$$

Теорема 1.5.7. (О неявном отображении)

Пусть $\mathbb O$ открыто, $f: \mathbb O \subseteq \mathbb R^{m+n} \to \mathbb R^n$, $(\mathbf x \in \mathbb R^m, \mathbf y \in \mathbb R^n) \underset{f}{\mapsto} f(\mathbf x, \mathbf y)$, $f \in C^r$,

 $(\mathbf{a},\mathbf{b})\in \mathcal{O}\colon\ f(\mathbf{a},\mathbf{b})=\mathbf{0},\,\det f_{\mathbf{y}}'(\mathbf{a},\mathbf{b})
eq 0,$ тогда

- $\exists U(\mathbf{a}), \exists U(\mathbf{b}), \exists ! \varphi \colon U(\mathbf{a}) \to U(\mathbf{b}) \in C^r$ такое, что $\forall \mathbf{x} \in U(\mathbf{a}) \ f(\mathbf{x}, \varphi(\mathbf{x})) = \mathbf{0}$
- $\varphi'(\mathbf{x}) = -(f_{\mathbf{y}}'(\mathbf{x}, \varphi(\mathbf{x})))^{-1} \cdot f_{\mathbf{x}}'(\mathbf{x}, \varphi(\mathbf{x}))$

Доказательство.

• Подготовим несколько объектов, полезных для доказательства. Положим

$$T: \mathcal{O} \to \mathbb{R}^{m+n}$$
$$(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}, f(\mathbf{x}, \mathbf{y}))$$

Производный оператор этого отображения в блочном виде выглядит следующим образом:

$$T' = \begin{pmatrix} E & \mathbf{0} \\ f_x' & f_y' \end{pmatrix}$$

Он обратим, так как $\det T' = 1 \cdot \det f_y' \neq 0$. Тогда по теореме о локальной обратимости $\exists U(\mathbf{a},\mathbf{b})\colon T\big|_U$ — диффеоморфизм. Без ограничения общности будем считать, что $U = \tilde{P} \times Q$, где $\tilde{P} \subset \mathbb{R}^m$, $Q \subset \mathbb{R}^n$ открыты и $\mathbf{a} \in \tilde{P}$, $\mathbf{b} \in Q$. Будем обозначать $S = T^{-1}$ и V = T(U) — открыто в \mathbb{R}^{m+n} так как T — диффеоморфизм. Заметим, что T не меняет первую координату, то есть S тоже её не меняет, а значит, имеет вид $S(\mathbf{x},\mathbf{y}) = (\mathbf{x},H(\mathbf{x},\mathbf{y}))$, где $H(\mathbf{x},\mathbf{y}) \in C^r$, так как $S \in C^r$.

• Пусть $P = (\mathbb{R}^m \times \mathbf{0}_n) \cap V$ — открытое в \mathbb{R}^m множество (само множество из \mathbb{R}^{m+n} , но нулевые координаты отбросим, см. рисунок). Предъявим требуемое отображение:

$$\varphi(\mathbf{x}) = H(\mathbf{x}, \mathbf{0})$$

• Проверим, что φ подходит: $f \in C^r$, так как $H \in C^r$. Проверим $f(\mathbf{x}, \varphi(\mathbf{x})) = 0$ и единственность:

$$(\mathbf{x}, f(\mathbf{x}, \varphi(\mathbf{x}))) = T(\mathbf{x}, \varphi(\mathbf{x})) = T(\mathbf{x}, H(\mathbf{x}, \mathbf{0})) = T(S(\mathbf{x}, \mathbf{0})) = (\mathbf{x}, \mathbf{0})$$

С другой стороны, если $f(\mathbf{x}, \mathbf{y}) = \mathbf{0}$, то:

$$(x,y) = S(T(x,y)) = S(x,f(x,y)) = S(x,0) = H(x,0)$$

То есть y = H(x, 0), из чего следует, что φ единственно.

• Проверим второй пункт теоремы, вычислив производный оператор φ :

$$f(\mathbf{x}, \varphi(\mathbf{x})) = \mathbf{0} \Longrightarrow (f_x' \ f_y') \cdot \begin{pmatrix} E \\ \varphi' \end{pmatrix} = \mathbf{0}$$

Откуда получаем:

$$f_x' + f_y' \cdot \varphi' = \mathbf{0} \Longrightarrow \varphi' = -(f_y')^{-1} f_x'$$

Рис. 1.2: Теорема о неявном отображении

Определение. $M \subseteq \mathbb{R}^m$ называют k-мерным многообразием в \mathbb{R}^m , если оно локально гомеоморфно \mathbb{R}^k . Иными словами, $\forall \mathbf{x} \in M \ \exists U(\mathbf{x}) \ \exists \varphi$ — гомеоморфизм: $U(\mathbf{x}) \underset{\varphi}{\simeq} \mathbb{R}^k$.

Определение. k-мерное многообразие $M \subseteq \mathbb{R}^m$ называют *простым*, если оно гомеоморфно \mathbb{R}^k . Иными словами, в предыдущем определении можно выбрать $U(\mathbf{x}) = M$.

Определение. Пара $\langle U(\mathbf{x}), \varphi \rangle$ из определения называется *картой*, или *параметризацией* многообразия в точке \mathbf{x} . Набор карт, который покрывает все M, называется *атласом*.

Определение. Простое k-мерное многобразие M называют C^r -гладким, если $\varphi \in C^r$ — параметризация M и $\forall \mathbf{x} \in \mathcal{O}$ rank $\varphi'(\mathbf{x}) = k$.

Теорема 1.5.8. (О задании гладкого многообразия системой уравнений) Пусть $M \subseteq \mathbb{R}^m$, $1 \le k < m$, $r \in \mathbb{N} \cup \{+\infty\}$, тогда $\forall \mathbf{p} \in M$ эквивалентны утверждения:

- $\exists U(\mathbf{p}) \subseteq \mathbb{R}^m$ открытое такое, что $M \cap U$ простое k-мерное C^r -гладкое многообразие.
- $\exists \tilde{U}(\mathbf{p}) \subseteq \mathbb{R}^m$ открытое такое, что $M \cap \tilde{U}$ можно задать системой C^r -гладких уравнений, иначе говоря: $\exists f_1, \dots, f_{m-k} \colon \tilde{U} \to \mathbb{R} \in C^r$ такие, что $\mathbf{x} \in M \cap \tilde{U} \iff \forall i \ f_i(\mathbf{x}) = 0$, причем $\{ \operatorname{grad} f_i(\mathbf{p}) \}$ линейно независим.

Доказательство.

⇒ Пусть имеется параметризация $\varphi: \emptyset \subseteq \mathbb{R}^k \to \mathbb{R}^m \in C^r$, которая задает $M \cap U(\mathbf{p})$. Зафиксируем точку $t_0 = \varphi(\mathbf{p})$. Параметризация C^r гладкая, поэтому rank $\varphi' = k$. Будем считать, что ранг реализуется на первых k строках. Рассмотрим проекцию $L: \mathbf{x} \mapsto (\mathbf{x}_1, \dots, \mathbf{x}_k)$. Из того, что первые k столбцов φ' линейно независимы, имеем невырожденность производного оператора отображения $L \circ \varphi$. Тогда по теореме о локальной обратимости $\exists W(t_0): (L \circ \varphi)\big|_W$ — диффеоморфизм. Обозначим $V = (L \circ \varphi)(W)$. Тогда (см. рисунок) удобно интерпретировать $\varphi(W)$ как график отображения, заданного на $V: H: V \to \mathbb{R}^{m-k}$. Положим $\psi = (L \circ \varphi)^{-1}$, $\psi \in C^r$ по теореме о гладкости обратного отображения. Тогда вернемся к интерпретации графиком и посмотрим на точку $\mathbf{x} \in V:$

$$(\mathbf{x}, H(\mathbf{x})) = \varphi(\psi(\mathbf{x}))$$

Тогда $H \in C^r$ как композиция C^r -гладких отображений. φ гомеоморфизм, поэтому $\varphi(W)$ открыто в M. Тогда $\exists \tilde{U}$ открытое в \mathbb{R}^m такое, что $\varphi(W) = M \cap \tilde{U}$. Рассмотрим теперь набор функций:

$$f_i : \tilde{U} \to \mathbb{R}$$

 $\mathbf{x} \mapsto H_i(L(\mathbf{x})) - x_{k+i}$

для $i = 1 \dots m - k$. Тогда

$$\forall i = 1 \dots m-k \ f_i(\mathbf{x}) = 0 \iff f(\mathbf{x}) = \mathbf{0} \iff H(L(\mathbf{x}))-\mathbf{x} = \mathbf{0} \iff H(L(\mathbf{x})) = \mathbf{x} \iff \mathbf{x} \in M \cap \tilde{U}$$

Осталось показать, что $\{ \operatorname{grad} f_i(\mathbf{p}) \}$ линейно независим. Для этого просто выпишем этот набор:

$$\operatorname{grad} f_i(\mathbf{p}) = \left(\frac{\partial H_i}{\partial \mathbf{x}_1} \quad \cdots \quad \frac{\partial H_i}{\partial \mathbf{x}_k} \quad 0 \quad \cdots \quad -1_{k+i} \quad \cdots \quad 0 \right)$$

Очевидно, он линейно независим.

 \longleftarrow Пусть теперь имеется система уравнений f_i . Составим из f_i отображение $f: \mathbb{R}^m \to \mathbb{R}^{m-k}$. Поскольку набор градиентов линейно независим (будем считать, что ранг реализуется на последних m-k столбцах), можно применить теорему о неявном отображении: $\exists P(\mathbf{p}_1, \dots, \mathbf{p}_k), Q(\mathbf{p}_{k+1}, \dots, \mathbf{p}_m)$ и $\exists H: P \to Q$ такое, что

$$\forall (\mathbf{x}_1,\ldots,\mathbf{x}_k) \in P \ (\mathbf{x}_1,\ldots,\mathbf{x}_k,H(\mathbf{x}_1,\ldots,\mathbf{x}_k))$$
 — решение уравнения $f=\mathbf{0}$

Построим теперь искомую параметризацию:

$$\varphi: P \to \mathbb{R}^m$$
$$\mathbf{u} \mapsto (\mathbf{u}, H(\mathbf{u}))$$

Понятно, что φ подходит в качестве параметризации $M \cap (P \times Q)$.

Рис. 1.3: Теорема о задании гладкого многообразия системой уравнений

Следствие 1.5.9. (О двух параметризациях)

Пусть $M \longrightarrow k$ -мерное простое C^r -гладкое многообразие, $\mathbf{p} \in M$, причем $C^r \ni \varphi_1 \colon \mathcal{O}_1 \subseteq \mathbb{R}^k \to U \cap M$, $C^r \ni \varphi_2 \colon \mathcal{O}_2 \subseteq \mathbb{R}^k \to U \cap M$ — параметризации $U(\mathbf{p}) \cap M$. Тогда φ_1 и φ_2 отличаются на диффеоморфизм, а именно, $\exists \psi \colon \mathcal{O}_1 \to \mathcal{O}_2$ — диффеоморфизм, причем $\varphi_1 = \varphi_2 \circ \psi$.

Доказательство. Будем считать, что невырожденность производных операторов параметризаций реализуется на первых k строках. Пусть L — проекция из доказательства предыдущей теоремы. Тогда, как и в предыдущей теореме, отображения $L \circ \varphi_1$, $L \circ \varphi_2$, и им обратные существуют и гладкие. Тогда заметим, что L обратимо (по крайней мере там, где обратимо $L \circ \varphi_1$). Положим тогда $\psi = (L \circ \varphi_2)^{-1} \circ (L \circ \varphi_1)$. В таком случае нетрудно видеть, что

$$\varphi_1 = \varphi_2 \circ (L \circ \varphi_2)^{-1} \circ (L \circ \varphi_1) = \varphi_2 \circ (\varphi_2^{-1} \circ L^{-1}) \circ (L \circ \varphi_1) = \varphi_1$$

 ψ обратим, потому что $\psi^{-1}=(L\circ\varphi_1)^{-1}\circ(L\circ\varphi_2)$. Гладкость ψ и ψ^{-1} следует из гладкости составных частей ψ .

Рис. 1.4: Теорема о двух параметризациях

Определение. Пусть $M — C^r$ -гладкое k-мерное многообразие в \mathbb{R}^m , $\mathbf{p} \in M$, $\varphi \colon \mathcal{O} \subseteq \mathbb{R}^k \to \mathbb{R}^m$ — параметризация окрестности $U(\mathbf{p})$, причем $\varphi(\mathbf{a}) = \mathbf{p}$. Тогда касательным пространством к M в точке \mathbf{p} называется $T_{\mathbf{p}}(M) = \operatorname{Im} \varphi'(\mathbf{a})$.

Теорема 1.5.10. (О корректности определения касательного пространства) Касательное пространство не зависит от выбора параметризации.

Доказательство. Пусть φ_1 и φ_2 — две параметризации $U(\mathbf{p})$. В таком случае по теореме о двух параметризациях $\exists C^r \ni \psi \colon \mathcal{O}_1 \to \mathcal{O}_2$ такое, что $\varphi_1 = \varphi_2 \circ \psi$. В таком случае, поскольку ψ — диффеоморфизм, то есть имеет невырожденный производный оператор в \mathbf{a} , имеем $\operatorname{Im} \psi'(\mathbf{a}) = \mathbb{R}^k$. Тогда:

$$\operatorname{Im} \varphi_1'(\mathbf{a}) = \operatorname{Im} \varphi_2'(\mathbf{a}) \circ \psi'(\mathbf{a}) = \varphi_2'(\mathbf{a})(\mathbb{R}^k) = \operatorname{Im} \varphi_2'(\mathbf{a})$$

Теорема 1.5.11. (О касательном пространстве к гладкому пути) Пусть M — гладкое многообразие. Тогда $\mathbf{v} \in T_{\mathbf{p}}(M) \iff \exists$ гладкий путь $\gamma \colon [-1,1] \to \mathbb{R}^m \colon \gamma([-1,1]) \subseteq M$ такой, что $\gamma(0) = \mathbf{p}$ и $\gamma'(0) = \mathbf{v}$.

Доказательство.

- Подготовим среду для доказательства. Зафиксируем $C^r \ni \varphi \colon 0 \subseteq \mathbb{R}^k \to M$ параметризация M в какой-нибуль окрестности (не умаляя общности, во всем M). Вспомним в очередной раз отображение $L \colon \mathbb{R}^m \to \mathbb{R}^k$ проекцию первых k координат. Копируя рассуждения предыдущих теорем, приходим к выводу, что $L \circ \varphi$ и $\psi = (L \circ \varphi)^{-1}$ лежат в классе C^r .
- \Longrightarrow Пусть имеется вектор $\mathbf{v} \in T_{\mathbf{p}}(M)$, построим путь, проходящий через точку \mathbf{p} со скоростью \mathbf{v} . Пусть $\mathbf{p} = \varphi(t_0)$, положим $u = (\varphi'(t_0))^{-1}(\mathbf{v})$. По смыслу это та скорость, с которой нужно двигаться в \mathbb{O} , чтобы получить скорость \mathbf{v} в $\varphi(\mathbb{O})$ (то есть "прообраз скорости"). Построим сам путь:

$$\gamma(s) = \varphi(t_0 + su)$$

Проверим его свойства:

$$\gamma(0) = \varphi(t_0) = \mathbf{p}$$

$$\gamma'(s)\big|_{s=0} = (\varphi'(t_0 + su) \cdot u)\big|_{s=0}$$

$$= \varphi'(t_0) \cdot u = (\varphi'(t_0) \cdot (\varphi'(t_0)^{-1})(\mathbf{v})) = \mathbf{v}$$

 \leftarrow Пусть теперь имеется гладкий путь $\gamma \colon [-1,1] \to M$ такой, что $\gamma(0) = \mathbf{p}$ и $\gamma'(0) = \mathbf{v}$. Поймем, почему вектор \mathbf{v} лежит в $T_{\mathbf{p}}(M)$. Для этого воспользуемся подготовленным арсеналом и пустим путь "по кругу":

$$\gamma(s) = \varphi(\psi(L(\gamma(s))))$$

Проще всего понять это соотношение, внимательно посмотрев на картинку. Корректность же следует из свойств используемых отображений, в частности потому, что L обратимо (на том же множестве, где обратимо $L \circ \varphi$). Теперь:

$$\gamma'(0) = \varphi'(\psi(L(\gamma(0))) \cdot (\ldots) = \varphi'(\psi(L(\mathbf{p}))) \cdot (\ldots) = \varphi'(t_0) \cdot (\ldots) \in T_{\mathbf{p}}(M)$$

Рис. 1.5: Теорема о касательном пространстве к гладкому пути

Теорема 1.5.12. (О касательном пространстве к графику функции) Афинное касательное пространство к графику $C^r \ni f: 0 \subseteq \mathbb{R}^m \to \mathbb{R}$ в точке $\mathbf{p} = (\mathbf{x}_0, f(\mathbf{x}_0))$ задается уравнением

$$y - f(\mathbf{x}_0) = f'_{\mathbf{x}_1}(\mathbf{x}_0)(\mathbf{x}^1 - \mathbf{x}_0^1) + \dots + f'_{\mathbf{x}_m}(\mathbf{x}_0)(\mathbf{x}^m - \mathbf{x}_0^m)$$

Доказательство. Для доказательства построим параметризацию:

$$\varphi(\mathbf{x}) = (\mathbf{x}, f(\mathbf{x})) \in C^r$$

Далее вычислим образ производного оператора $\varphi'(\mathbf{x}_0)$:

$$\varphi'(\mathbf{x}_0) = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ f'_{x_1}(\mathbf{x}_0) & f'_{x_2}(\mathbf{x}_0) & f'_{x_3}(\mathbf{x}_0) & \cdots & f'_{x_m}(\mathbf{x}_0) \end{pmatrix}$$

Ранг этой матрицы максимален и равен m. Рассмотрим образы стандартных базисных векторов:

$$\varphi'(\mathbf{x}_0)\mathbf{u}_k = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ f'_{\mathbf{x}_k}(\mathbf{x}_0) \end{pmatrix}$$

Их m штук и они линейно независимы, поэтому составляют базис образа оператора. Тогда нетрудно понять, что касательное пространство задается уравнением

$$y = f'_{\mathbf{x}_1}(\mathbf{x}_0)\mathbf{x}^1 + \ldots + f'_{\mathbf{x}_m}(\mathbf{x}_0)\mathbf{x}^m$$

Тогда после сдвига на $(\mathbf{x}_0, f(\mathbf{x}_0))$ получаем нужное афинное кп.

Теорема 1.5.13. (О касательном пространстве к поверхности уровня) Афинное касательное пространство к поверхности уровня функции $f: \mathbb{R}^3 \to \mathbb{R}$ задается уравнением

$$f_x'(x_0)(x - x_0) + f_y'(y_0)(y - y_0) + f_z'(z_0)(z - z_0) = 0$$

Доказательство. Поступим аналогично предыдущей теореме. Поверхность уровня задается уравнением:

$$f(x, y, z) = C$$

Предполагая, что $f_z'(x_0,y_0,z_0)\neq 0$, применим теорему о неявном отображении и получим z=z(x,y) в некоторой окрестности (x_0,y_0) . Тогда рассмотрим параметризацию:

$$\varphi(x,y) = (x,y,z(x,y))$$

Вычислим проиводный оператор:

$$\varphi'(x_0, y_0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ z'_x(x_0, y_0) & z'_y(x_0, y_0) \end{pmatrix}$$

На базисных векторах оператор принимает значения

$$\varphi'(x_0, y_0) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ z_x'(x_0, y_0) \end{pmatrix} \quad \varphi'(x_0, y_0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ z_y'(x_0, y_0) \end{pmatrix}$$

которые, очевидно, линейно независимы. Эти два вектора удовлетворяют уравнению

$$f_x' \cdot x + f_y' \cdot y + f_z' \cdot z = 0$$

потому, что

$$f'_{x} \cdot 1 + f'_{y} \cdot 0 + f'_{z} \cdot z'_{x} = f(x, y, z(x, y))'_{x} = C'_{x} = 0$$

$$f'_{x} \cdot 0 + f'_{y} \cdot 1 + f'_{z} \cdot z'_{y} = f(x, y, z(x, y))'_{y} = C'_{y} = 0$$

Значит, из соображений размерности, это уравнение и задает касательное пространство. Осталось только сместить его, чтобы получить афинное.

1.6 Относительный экстремум

Определение. Пусть $f: E \subseteq \mathbb{R}^{m+n} \to \mathbb{R}, \ \phi: E \to \mathbb{R}^n, \ M_\phi = \{ \mathbf{x} \in E \mid \phi(\mathbf{x}) = \mathbf{0} \}, \ \mathbf{x}_0 \in E, \ \phi(\mathbf{x}_0) = \mathbf{0}$ называется точкой локального *относительного* экстремума, если x_0 — точка локального экстремума $f \Big|_{M_\phi}$.

Теорема 1.6.1. (Необходимое условие относительного экстремума) Пусть $C^1 \ni f : E \subseteq \mathbb{R}^{m+n} \to \mathbb{R}, \ C^1 \ni \phi : E \to \mathbb{R}^n, \ \mathbf{a} \in E, \ \phi(\mathbf{a}) = \mathbf{0}, \ \mathrm{rank} \ \phi'(\mathbf{a}) = n, \ \mathbf{a}$ точка локального экстремума, тогда $\exists \lambda \in \mathbb{R}^n$:

$$\begin{cases} f'(\mathbf{a}) - \lambda \cdot \phi'(\mathbf{a}) = 0 \\ \phi(\mathbf{a}) = \mathbf{0} \end{cases}$$

Доказательство. Будем обозначать ($\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$) $\in \mathbb{R}^{m+n}$ Пусть ранг производного оператора $\phi'(\mathbf{a})$ реализуется на последних n столбцах. Тогда

$$\det\left(\frac{\partial \phi_i}{\partial \mathbf{x}_{m+j}}(\mathbf{a})\right)_{\substack{i=1..n\\i=1,n}} \neq 0$$

Тогда можно применить теорему о неявном отображении:

$$\exists U(\mathbf{a}_{x}), U(\mathbf{a}_{y}) \ \exists C^{r} \ni \varphi : U(\mathbf{a}_{x}) \rightarrow U(\mathbf{a}_{y}) : \phi(\mathbf{x}, \varphi(\mathbf{x})) = \mathbf{0}$$

Рассмотрим функцию $g(\mathbf{x}) = f(\mathbf{x}, \varphi(\mathbf{x}))$. Тогда $\mathbf{a}_x = (\mathbf{a}_1, \dots, \mathbf{a}_m)$ является точкой обычного локального экстремума для функции g. Далее будут использованы не совсем обычные, но понятные обозначения для частных производных. Выпишем необходимое условие экстремума:

$$f'_{\mathbf{x}}(\mathbf{a}_{x}, \varphi(\mathbf{a}_{x})) + f'_{\mathbf{y}}(\mathbf{a}_{x}, \varphi(\mathbf{a}_{x})) \cdot \varphi'(\mathbf{a}_{x}) = \underbrace{f'_{\mathbf{x}}(\mathbf{a})}_{1 \times m} + \underbrace{f'_{\mathbf{y}}(\mathbf{a})}_{1 \times m} \cdot \underbrace{\varphi'(\mathbf{a}_{x})}_{n \times m} = 0$$

Кроме того, нам известно, что $\phi(x, \varphi(x)) = 0$, тогда:

$$\underbrace{\phi_{\mathbf{x}}'(\mathbf{a})}_{n \times m} + \underbrace{\phi_{\mathbf{y}}'(\mathbf{a})}_{n \times n} \cdot \underbrace{\varphi_{\mathbf{x}}'(\mathbf{a}_{x})}_{n \times m} = \mathbf{0} \Longrightarrow \forall \lambda \in \mathbb{R}^{n} \ \lambda \cdot \phi_{\mathbf{x}}'(\mathbf{a}) + \lambda \cdot \phi_{\mathbf{y}}'(\mathbf{a}) \cdot \varphi_{\mathbf{x}}'(\mathbf{a}_{x}) = 0$$

Вычтем из первого равенства второе:

$$(f_{\mathbf{x}}' - \lambda \cdot \phi_{\mathbf{x}}') + (f_{\mathbf{y}}' - \lambda \cdot \phi_{\mathbf{y}}')\varphi_{\mathbf{x}}' = 0$$

и положим

$$\lambda = f_{\mathbf{y}}'(\mathbf{a}) \cdot (\phi_{\mathbf{y}}'(\mathbf{a}))^{-1}$$

Убедимся в том, что λ подходит:

$$\begin{split} f_{\mathbf{x}}' - \lambda \cdot \phi_{\mathbf{x}}' &= f_{\mathbf{x}}' - f_{\mathbf{y}}' \cdot (\phi_{\mathbf{y}}')^{-1} \cdot \phi_{\mathbf{x}}' = f_{\mathbf{x}}' - f_{\mathbf{y}}' \cdot (\phi_{\mathbf{y}}')^{-1} \cdot (-\phi_{\mathbf{y}}' \cdot \varphi_{\mathbf{x}}') = f_{\mathbf{x}}' + f_{\mathbf{y}}' \cdot \varphi_{\mathbf{x}}' = 0 \\ f_{\mathbf{y}}' - \lambda \cdot \phi_{\mathbf{y}}' &= f_{\mathbf{y}}' - f_{\mathbf{y}}' \cdot (\phi_{\mathbf{y}}')^{-1} \cdot \phi_{\mathbf{y}}' = 0 \end{split}$$

Определение. В терминах последней теоремы отображение

$$G = f - \lambda \phi$$

называется функцией Лагранжа.

Теорема 1.6.2. (Достаточное условие относительного экстремума)

Пусть $C^1 \ni f: E \subseteq \mathbb{R}^{m+n} \to \mathbb{R}, C^1 \ni \phi: E \to \mathbb{R}^n, \mathbf{a} \in E, \phi(\mathbf{a}) = 0$, rank $\phi'(\mathbf{a}) = n$, выполнено необходимое условие относительного экстремума, то есть $\exists \lambda \in \mathbb{R}^n$:

$$\begin{cases} f'(\mathbf{a}) - \lambda \cdot \phi'(\mathbf{a}) = 0 \\ \phi(\mathbf{a}) = 0 \end{cases}$$

кроме того, пусть $\mathbf{h}=(\mathbf{h}_x\in\mathbb{R}^m,\mathbf{h}_y\in\mathbb{R}^n)$. Тогда, так как rank $\phi'(\mathbf{a})=n$, то по \mathbf{h}_x можно однозначно восстановить \mathbf{h}_y такой, что $\phi'(\mathbf{a})\mathbf{h}=0$. Тогда рассмотрим квадратичную форму

$$Q(\mathbf{h}_x) = d_{\mathbf{a}}^2 G(\mathbf{h}_x, \mathbf{h}_y)$$

Где $G = f - \lambda \cdot \phi$ — функция Лагранжа. В зависимости от определенности Q можно сделать вывод о наличии экстремума в точке \mathbf{a} :

- Q положительно определена \Longrightarrow **a** точка относительного локального минимума.
- Q отрицательно определена \Longrightarrow **a** точка относительного локального максимума.
- Q неопределена \Longrightarrow **a** не точка экстремума.
- В остальных случаях требуется более детальное исследование.

Лемма 1.6.3. Пусть A — матрица $m \times m$. Тогда

- *A^TA* симметрична
- $\langle A\mathbf{x}, A\mathbf{x} \rangle = \langle A^T A\mathbf{x}, \mathbf{x} \rangle$
- У $A^{T}A$ все собственные числа неотрицательны.

Доказательство.

• Помним, что $(A^T)^T = A$ и $(AB)^T = B^T A^T$

$$(A^T A)^T = A^T (A^T)^T = A^T A$$

•

$$\langle A\mathbf{x}, A\mathbf{x} \rangle = \sum_{i=1}^{m} (A\mathbf{x})_{i}^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} a_{ij} \mathbf{x}_{j} \right)^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} a_{ij} \mathbf{x}_{j} \right) \cdot \left(\sum_{k=1}^{m} a_{ik} \mathbf{x}_{k} \right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\sum_{k=1}^{m} a_{ij} a_{ik} \mathbf{x}_{k} \right) \mathbf{x}_{j} = \sum_{i=1}^{m} \sum_{j=1}^{m} (A^{T} A \mathbf{x})_{j} \mathbf{x}_{j}$$

$$= \langle A^{T} A \mathbf{x}, \mathbf{x} \rangle$$

$$\lambda ||\mathbf{x}||^2 = \langle \lambda \mathbf{x}, \mathbf{x} \rangle = \langle A^T A \mathbf{x}, \mathbf{x} \rangle = \langle A \mathbf{x}, A \mathbf{x} \rangle = ||A \mathbf{x}||^2 \geqslant 0$$

Теорема 1.6.4. (Вычисление нормы линейного опреатора) Пусть $A \in Lin(\mathbb{R}^m, \mathbb{R}^n)$, S — множество собственных чисел A^TA . Тогда

$$||A|| = \max_{\lambda \in S} \sqrt{\lambda}$$

Доказательство.

• Вычислим для начала максимум $f(\mathbf{x}) = \langle A\mathbf{x}, \mathbf{x} \rangle \colon \mathbb{R}^m \to \mathbb{R}$ на сфере $\mathbf{x}_1^2 + \ldots + \mathbf{x}_m^2 = 1$, где A — симметричная матрица.

$$\begin{cases} f(\mathbf{x}) = \sum a_{ij} \mathbf{x}_i \mathbf{x}_j \\ \mathbf{x}_1^2 + \dots + \mathbf{x}_m^2 - 1 = 0 \end{cases}$$

Тогда функция Лагранжа имеет вид

$$G = \sum a_{ij} \mathbf{x}_i \mathbf{x}_j - \lambda \cdot \left(\sum_i \mathbf{x}_i^2 - 1 \right)$$

Продифференцируем её:

$$G_{\mathbf{x}_k}' = 2\sum a_{kj}\mathbf{x}_j - 2\lambda\mathbf{x}_k$$

Здесь мы воспользовались симметричностью матрицы. Решим систему уравнений $G' = \mathbf{0}$:

$$\begin{cases} A\mathbf{x} - \lambda \mathbf{x} = 0 \\ \mathbf{x}_1^2 + \dots + \mathbf{x}_m^2 = 1 \end{cases}$$

Решениями этой системы могут быть пары из собственных векторов \mathbf{x} и собственных чисел λ (причем все собственные числа попадут в пару). Вычислим f в собственных векторах матрицы A.

$$f(\mathbf{x}) = \langle A\mathbf{x}, \mathbf{x} \rangle = \langle \lambda \mathbf{x}, \mathbf{x} \rangle = \lambda ||\mathbf{x}|| = \lambda$$

• Докажем утверждение теоремы.

$$\|A\|^2 = \max_{\mathbf{x} \in S^{m-1}} \|A\mathbf{x}\|^2 = \max_{\mathbf{x} \in S^{m-1}} \langle A\mathbf{x}, A\mathbf{x} \rangle = \max_{\mathbf{x} \in S^{m-1}} \langle (A^T A)\mathbf{x}, \mathbf{x} \rangle = \max_{\lambda \in \sigma A^T A} \lambda$$

По предыдущей лемме $A^{T}A$ симмметрична, тогда:

$$\max_{x \in S^{m-1}} \langle A^T A \mathbf{x}, \mathbf{x} \rangle = \max_{\lambda \in \sigma A^T A} \lambda$$

Но тогда, так как $\lambda \ge 0$, имеем:

$$||A|| = \max_{\lambda \in \sigma A^T A} \sqrt{\lambda}$$

Глава 2

Функциональные последовательности и ряды

2.1 Сходимость фукнциональных последовательностей

Замечание. Здесь и далее запись вида $f \to \bot$ будет означать, что f сходится. Знак \bot используется, если не важно (или не известно), к чему сходится f.

Определение. $f_n: E \to \mathbb{R}$ сходится поточечно к $f: E \to \mathbb{R}$ на E, если

$$\forall x_0 \in E \ f_n(x_0) \to f(x_0)$$

иными словами, раскрывая определение сходимости последовательности:

$$\forall x_0 \in E \ [\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \ |f_n(x_0) - f(x_0)| < \varepsilon]$$

Обозначение: $f_n \to f$.

Примеры. ТВО

Определение. $f_n: E \to \mathbb{R}$ сходится равномерно к $f: E \to \mathbb{R}$ на E, если

$$\sup_{\mathbf{x}\in F}|f_n(\mathbf{x})-f(\mathbf{x})|\xrightarrow[n\to+\infty]{}0$$

или, раскрывая описание супремума

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ [\forall x \in E \ |f_n(x) - f(x)| < \varepsilon]$$

Обозначение: $f_n \rightrightarrows f$.

Замечание. Из равномерной сходимости очевидным образом следует поточечная:

$$f_n \rightrightarrows f \Longrightarrow f_n \to f$$

Про сходимость мы значем очень многое для случая метрических пространств. А нельзя ли переформулировать новые определения так, чтобы они оказались обычной сходимостью, просто в хитром метрическом пространстве?

Предложение. (Метрическое пространство ограниченных функций) Положим

$$\mathcal{F} \stackrel{def}{=} \{ X \to \mathbb{R} \mid f$$
 ограничено $\}$

На этом множестве тривиально задается структура линейного пространства:

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

Оказывается, можно ввести **метрику** на \mathcal{F} , сходимость по которой есть равномерная сходимость. Для $f,g\in\mathcal{F}$ положим

$$\rho(f,g) \stackrel{def}{=} \sup_{x \in X} |f(x) - g(x)|$$

Проверим, что это — метрика на $\mathcal F$

- i) Неотрицательность очевидна. Равенство нулю может выполнится только для равных функций.
- іі) Симметричность очевидна.
- ііі) Проверим неравенство треугольника. Применим техническое описание супремума для $\rho(f_1, f_2)$:

$$\forall \varepsilon > 0 \ \exists x \colon \sup_{y \in X} |f_1(y) - f_2(y)| - \varepsilon \leqslant |f_1(x) - f_2(x)|$$

Далее

$$\begin{aligned} \forall \varepsilon > 0 \ \exists x \colon & \sup_{y \in X} |f_1(y) - f_2(y)| - \varepsilon \leqslant |f_1(x) - f_2(x)| \leqslant |f_1(x) - f_3(x)| + |f_3(x) - f_2(x)| \\ \leqslant & \sup_{y \in X} |f_1(y) - f_3(y)| + \sup_{y \in X} |f_2(y) - f_3(y)| \\ &= \rho(f_1, f_3) + \rho(f_2, f_3) \end{aligned}$$

Получаем

$$\forall \varepsilon > 0 \ \rho(f_1, f_2) - \varepsilon \leq \rho(f_1, f_3) + \rho(f_2, f_3)$$

Откуда непосредственно следует

$$\rho(f_1, f_2) \leq \rho(f_1, f_3) + \rho(f_2, f_3)$$

Осталось только понять, что теперь означает сходимость по этой метрике. Пусть (f_n) — последовательность в \mathcal{F} , сходящаяся к f по метрике ρ :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \ \rho(f_n, f) < \varepsilon$$

Раскроем значение ρ :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ [\forall x \in X \ |f_n(x) - f(x)| < \varepsilon]$$

А это — обычное определение равномерной сходимости!

Подобную конструкцию, по всей видимости, не получится ввести для поточечной сходимости. Зато, можно построить хаусдорфово топологическое пространство, в котором сходимость будет означать поточечную сходимость.

Предложение. (Топологическое пространство ограниченных функций) Введем на \mathcal{F} топологию, порожденную следующими множествами:

$$U_{\varepsilon}(f)_{x_1,\dots,x_n} \stackrel{def}{=} \{ g : X \to \mathbb{R} \mid \forall i \ |g(x_i) - f(x_i)| < \varepsilon \}$$

Поймем теперь, что означает сходимость в этом топологическом пространстве:

$$f_n \to f \iff \forall U_{\varepsilon}(f)_{x_1,\dots,x_n} \exists N \in \mathbb{N}: \ \forall n > N \ f_n \in U_{\varepsilon}(f)_{x_1,\dots,x_n}$$

Что означает

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ \forall i \ |f_n(x_i) - f(x_i)| < \varepsilon$$

Что как раз и есть поточечная сходимость! Просто запись вида

$$[\forall x_0 \in X \ \forall \varepsilon > 0] \ \exists N \in \mathbb{N}: \ \forall n > N \ |f_n(x_0) - f(x_0)| < \varepsilon$$

В этом пространстве обретает вид

$$[\forall U_{\varepsilon}(f)_{x_0}] \exists N \in \mathbb{N}: \forall n > N |f_n(x_0) - f(x_0)| < \varepsilon$$

Теорема 2.1.1. (Критерий Больцано-Коши равномерной сходимости)

$$f_n \rightrightarrows f \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n, m > N \ [\forall x \ |f_n(x) - f_m(x)| < \varepsilon]$$

Доказательство.

 \implies Обычное свойство всех последовательностей, сходящихся по метрике (если все f_n и f лежат в \mathcal{F}). Общее доказательство такое:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 \iff Зафиксируем x. Тогда $f_n(x)$ — обычная фундаментальная вещественная последовательность. Тогда, так как \mathbb{R} — полное, получаем

$$\forall x \exists \lim_{n \to +\infty} f_n(x) =: f(x)$$

Покажем, что $f_n \rightrightarrows f$. Посмотрим на фундаментальность f_n :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n, m > N \ [\forall x | f_n(x) - f_m(x) | < \varepsilon]$$

и перейдем к пределу $m \to +\infty$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \ [\forall x | f_n(x) - f(x) | < \varepsilon]$$

Что и есть определение равномерной сходимости.

Примеры. ТВD

Теорема 2.1.2. (Стокс-Зейдель)

Пусть $f_n, f: X \to \mathbb{R}, X$ — топологическое пространство, f_n непрерывны в $c \in E$, и $f_n \rightrightarrows f$ на X. Тогда f непрерывна в c.

Доказательство. Для любых п выполнено

$$|f(x)-f(y)| \le |f(x)-f_n(x)| + |f_n(x)-f_n(y)| + |f_n(y)-f(y)|$$

Воспользуемся равномерной сходимостью: выберем n таким, чтобы

$$|f(x) - f_n(x)| < \varepsilon$$

$$|f_n(y) - f(y)| < \varepsilon$$

Теперь воспользуемся непрерывностью f_n : выберем такую окрестность U(c), чтобы $\forall x, y \in U(c)$

$$|f_n(x) - f_n(y)| < \varepsilon$$

Тогда

$$|f(x)-f(y)| < 3\varepsilon$$

что и означает непрерывность f в точке c.

Определение. Будем говорить, что f_n сходится локально равномерно к f на X, если

$$\forall x \in X \; \exists U(x) \colon f_n \rightrightarrows f \;$$
на $U(x)$

Замечание. Для выполнения условия теоремы Стокса-Зейделя достаточно равномерной сходимости на некоторой окрестности c.

Замечание. Для того, чтобы f было непрерывным на X, достаточно, чтобы f_n локально равномерно на X сходилось к f.

Теорема 2.1.3. (О предельном переходе под знаком интеграла) Пусть $f_n \in C([a,b]), f_n \rightrightarrows f$ на [a,b]. Тогда

$$\int_{a}^{b} f_{n} \xrightarrow[n \to +\infty]{} \int_{a}^{b} f$$

иначе говоря, коммутативна следующая схема:

$$\begin{array}{ccc}
f_n & & \downarrow f \\
\downarrow \int & & \downarrow \int \\
\int_a^b f_n & \stackrel{n \to +\infty}{---} & \int_a^b f
\end{array}$$

Доказательство. f непрерывна на [a,b] по теореме Стокса-Зейделя, поэтому интеграл имеет смысл. Тогда

$$\left| \int_a^b f_n - \int_a^b f \right| \le \int_a^b |f_n - f| \le \max_{x \in [a,b]} |f_n(x) - f(x)| \cdot |b - a|$$

Из равномерной сходимости имеем:

$$\max_{x \in [a,b]} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0$$

тогда

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \max_{x \in [a,b]} |f_{n}(x) - f(x)| \cdot |b - a| \xrightarrow[n \to +\infty]{} 0$$

Теорема 2.1.4. (Правило Лейбница)

 $f:[x_1,x_2] imes[y_1,y_2] o\mathbb{R},\,\exists f_y',f_y',f$ непрерывны. Пусть

$$\phi(y) = \int_{x_1}^{x_2} f(x, y) dx$$

Тогда ϕ дифференцируемо на $[y_1, y_2]$ и

$$\phi'(y) = \int_{x_1}^{x_2} f_y'(x, y) dx$$

Доказательство.

$$\frac{\phi(y + \frac{1}{n}) - \phi(y)}{\frac{1}{n}} = \frac{1}{n} \int_{x_1}^{x_2} \left(f\left(x, y + \frac{1}{n}\right) - f(x, y) \right) dx = \int_{x_1}^{x_2} f_y'\left(x, y + \frac{\theta}{n}\right) dx$$

Обозначим

$$g_n(x,y) = f_y'\left(x, y + \frac{\theta}{n}\right)$$

 $f_y^{\,\prime}$ непрерывно на компакте, поэтому равномерно непрерывна на нём. Воспользуемся этим:

$$\forall \varepsilon \; \exists \delta \; \forall n \colon \frac{1}{n} < \delta \; \forall x \; \left| f_y' \left(x, y + \frac{1}{n} \right) - f_y'(x, y) \right| < \varepsilon$$

Отсюда получаем по определению

$$g_n(x,y) \rightrightarrows f'_y(x,y)$$
 на $[x_1,x_2]$

Воспользуемся теоремой о предельном переходе под знаком интеграла:

$$\int_{x_1}^{x_2} g_n(x,y) \xrightarrow[n \to +\infty]{} \int_{x_1}^{x_2} f_y'(x,y) dx$$

Понятно, что вместо последовательности $\frac{1}{n}$ можно рассматривать любую последовательность h_n , сходящуюся к 0. То есть

$$\phi'(y) = \lim_{n \to +\infty} \frac{\phi(y + h_n) - \phi(y)}{h_n} = \int_{x_1}^{x_2} f_y'(x, y) dx$$

Теорема 2.1.5. (О предельном переходе под знаком производной) $f_n \in C^1(\langle a,b\rangle), f_n \to f$ поточечно на $\langle a,b\rangle, f'_n \rightrightarrows \varphi$ на $\langle a,b\rangle$. Тогда

•
$$f \in C^1(\langle a, b \rangle)$$

•
$$f' = \varphi$$

иначе говоря, коммутативна следующая схема:

$$\begin{array}{ccc}
f_n \xrightarrow{n \to +\infty} f \\
\downarrow^{d} & \downarrow^{d} \\
\downarrow^{d} & \downarrow^{d}
\end{cases}$$

$$f'_n \Longrightarrow \varphi$$

Доказательство. Пусть $x_0, x_1 \in \langle a, b \rangle$, тогда $f_n' \rightrightarrows \varphi$ на $[x_0, x_1]$. Тогда по теореме о предельном переходе под знаком интеграла:

$$\int_{x_0}^{x_1} f_n' \xrightarrow[n \to +\infty]{} \int_{x_0}^{x_1} \varphi$$

Откуда

$$f(x_1) - f(x_0) \underset{n \to +\infty}{\longleftarrow} f_n(x_1) - f_n(x_0) \xrightarrow[n \to +\infty]{} \int_{x_0}^{x_1} \varphi$$

То есть

$$\int_{x_0}^{x_1} \varphi = f(x_1) - f(x_0)$$

Тогда f — первообразная φ . φ непрерывна по теореме Стокса-Зейделя. Получаем, что $f \in C^1(\langle a,b\rangle)$ и $f'=\varphi$.

2.2 Сходимость функциональных рядов

Определение. Пусть $u_n\colon E\to\mathbb{R}$, тогда функциональным рядом будем называть $\sum_{n=1}^{+\infty}u_n(x).$

Определение. Функциональный ряд $\sum_{n=1}^{+\infty} u_n(x)$ сходится поточечно на E, если $S_N(x) \to S(x)$.

Определение. Функциональный ряд $\sum_{n=1}^{+\infty} u_n(x)$ *сходится равномерно* на E, если $S_N(x) \rightrightarrows S(x)$.

Замечание. Из равномерной сходимости следует поточечная.

Лемма 2.2.1. (Об остатке функционального ряда)

$$\sum_{n=1}^{+\infty} u_n(x) \rightrightarrows 0 \Longleftrightarrow R_N(x) \rightrightarrows 0$$

Доказательство.
$$\sup_{x \in E} |R_{N+1}(x)| = \sup_{x \in E} |S(x) - S_N(x)| \xrightarrow[N \to +\infty]{} 0$$

Лемма 2.2.2. (Необходимое условие равномерной сходимости ряда)

$$\sum_{n=1}^{+\infty} u_n(x) \rightrightarrows \bot \Longrightarrow u_n(x) \rightrightarrows 0$$

Доказательство.

$$\sup_{x \in E} |u_N(x)| = \sup_{x \in E} |R_N(x) - R_{N+1}(x)| \le \sup_{x \in E} |R_N(x)| + \sup_{x \in E} |R_{N+1}(x)| \xrightarrow[N \to +\infty]{} 0$$

Теорема 2.2.3. (Признак Вейерштрасса равномерной сходимости)

$$u_n \colon E \to \mathbb{R}, \ \exists c_n \colon \forall n, x \ |u_n(x)| \leqslant c_n, \sum_{n=1}^{+\infty} c_n \to \bot, \ \text{тогда} \sum_{n=1}^{+\infty} u_n(x) \rightrightarrows \bot.$$

Доказательство.

$$\sum_{n=1}^{+\infty} u_n(x) \rightrightarrows \bot \iff R_N(x) \rightrightarrows 0 \iff \sup_{x \in E} |R_N(x)| \xrightarrow[N \to +\infty]{} 0$$

$$\iff \sup_{x \in E} \left| \sum_{n=N}^{+\infty} u_n(x) \right| \leqslant \sup_{x \in E} \left| \sum_{n=N}^{+\infty} c_n \right| = \left| \sum_{n=N}^{+\infty} c_n \right| \xrightarrow[N \to +\infty]{} 0$$

Теорема 2.2.4. (Критерий Больцано-Коши сходимости функционального ряда)

$$\sum_{n=1}^{+\infty} u_n \rightrightarrows S(x) \iff \forall \varepsilon \ \exists N: \ \forall m, n > N \ \sup_{x \in E} |S_n(x) - S_m(x)| < \varepsilon$$

Доказательство. Это обычный критерий Больцано-Коши для $S_N(x) \rightrightarrows S(x)$

Теорема 2.2.5. (Стокс-Зейдель)

$$u_n \colon E \to \mathbb{R}, u_n$$
 непрерывны в $x_0 \in E, \sum_{n=1}^{+\infty} u_n(x) \rightrightarrows S(x)$, тогда $S(x)$ непрерывна в x_0 .

Доказательство. $\forall N \ S_N(x)$ непрерывна в x_0 как конечная сумма непрерывных функций. Тогда по теореме Стокса-Зейделя для функциональных последовательностей $S_N(x) \rightrightarrows S(x)$, $S_N(x)$ непрерывны в $x_0 \Longrightarrow S(x)$ непрерывна в x_0 .

Теорема 2.2.6. (Интегрирование функциональных рядов)

$$u_n \in C([a,b]), \sum_{n=1}^{+\infty} u_n(x) \rightrightarrows S(x)$$
 на $[a,b]$, тогда

$$\int_{a}^{b} S(x) dx = \sum_{n=1}^{+\infty} \int_{a}^{b} u_n(x) dx$$

иначе говоря:

$$\int_{a}^{b} \sum_{n=1}^{+\infty} u_{n}(x) \, dx = \sum_{n=1}^{+\infty} \int_{a}^{b} u_{n}(x) \, dx$$

Доказательство. $S \in C([a,b])$ по теореме Стокса-Зейделя, поэтому интеграл имеет смысл. Применим аналогичную теорему для функциональных последовательностей к $S_N(x) \rightrightarrows S(x)$:

$$\int_{a}^{b} S_{N}(x) dx \xrightarrow[N \to +\infty]{} \int_{a}^{b} S(x) dx$$

в левой части интеграл и сумму можно переставлять местами (так как сумма конечная). Поэтому

$$\sum_{n=1}^{N} \int_{a}^{b} u_{n}(x) dx = \int_{a}^{b} S_{N}(x) dx \xrightarrow[N \to +\infty]{} \int_{a}^{b} S(x) dx$$

Слева стоят частичные суммы обычного числового ряда. Поэтому по определению сходимости чисового ряда имеем:

$$\sum_{n=1}^{+\infty} \int_{a}^{b} u_n(x) dx = \int_{a}^{b} S(x) dx$$

Теорема 2.2.7. (Дифференцирование функциональных рядов)

$$u_n \in C^1(\langle a,b \rangle), \sum_{n=1}^{+\infty} u_n(x) \to S(x), \sum_{n=1}^{+\infty} u_n'(x) \rightrightarrows \varphi(x)$$
 на $\langle a,b \rangle$, тогда $S \in C^1(\langle a,b \rangle)$, причем $S'(x) = \varphi(x)$.

Доказательство. Введем функциональную последовательность: $S_N(x) \to S(x)$. Поскольку $S_N(x)$ — конечные суммы непрерывно дифференцируемых функций, $S_N(x) \in C^1(\langle a,b\rangle)$, причем $S_N'(x) \rightrightarrows \varphi(x)$ на $\langle a,b\rangle$. Тогда по аналогичной теореме для функциональных последовательностей получаем требуемое.

Теорема 2.2.8. (О предельном переходе в функциональных рядах)

 $u_n \colon E \to \mathbb{R}, \ x_0$ — предельная точка $E, \ \forall n \ \exists a_n = \lim_{x \to x_0} u_n(x) \in \mathbb{R}, \ \sum_{n=1}^{+\infty} u_n(x) \rightrightarrows \bot$ на E.

Тогда $\sum_{n=1}^{+\infty} a_n$ сходится, причем $\sum_{n=1}^{+\infty} a_n = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$. Иначе говоря:

$$\sum_{n=1}^{+\infty} \lim_{x \to x_0} u_n(x) = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$$

Доказательство. Обозначим $S_N^a = \sum_{n=1}^{+\infty} a_n$. Проверим критерий Больцано-Коши

для
$$\sum_{n=1}^{+\infty} a_n$$
:

$$|S_{n+p}^a - S_n^a| \le |S_{n+p}^a - S_{n+p}(x)| + |S_{n+p}(x) - S_n(x)| + |S_n(x) - S_n^a|$$

Поскольку S_{n+p}^a и $S_{n+p}(x)$ просто конечные суммы, в них спокойно можно переставлять предел и сумму. Поэтому найдется такая окрестность точки x_0 , что $|S_{n+p}^a - S_{n+p}(x)| < \varepsilon$. Аналогично поступим с третьим слагаемым. Из критерия Больцано-Коши получаем такое N, что для $\forall n,m>N$ $|S_{n+p}(x)-S_n(x)|<\varepsilon$. Таким образом имеем:

$$|S_{n+p}^a - S_n^a| < 3\varepsilon$$

Мы доказали сходимость ряда a_n . Проверим второе утверждение теоремы. Положим

$$\tilde{u}(x) = \begin{cases} u_n(x), & x \neq x_0 \\ a_n, & x = x_0 \end{cases}$$

Все u_n , очевидно, непрерывны в x_0 . Если мы проверим, что $\sum_{n=1}^{+\infty} \tilde{u}_n(x) \rightrightarrows \tilde{S}(x)$ на $E \cup \{x_0\}$, то по теореме Стокса-Зейделя \tilde{S} будет непрерывной, что означает

$$\lim_{x \to x_0} \tilde{S}(x) = \tilde{S}(x_0) = \sum_{n=1}^{+\infty} a_n$$

в левой части x_0 никогда не подставляется в \tilde{S} , поэтому

$$\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \tilde{S}(x) = \tilde{S}(x_0) = \sum_{n=1}^{+\infty} a_n$$

Осталось проверить, что $\sum_{n=1}^{+\infty} \tilde{u}_n(x) \rightrightarrows \tilde{S}(x)$ на $E \cup \{x_0\}$.

$$\sup_{x \in E \cup \{x_0\}} \left| \sum_{n=N}^{+\infty} \tilde{u}_n(x) \right| \leq \sup_{x \in E} \left| \sum_{n=N}^{+\infty} u_n(x) \right| + \sup_{x \in \{x_0\}} \left| \sum_{n=N}^{+\infty} a_n \right| \xrightarrow[N \to +\infty]{} 0$$

Теорема 2.2.9. (О предельном переходе в функциональных последовательностях) $f_n \colon E \subseteq X \to \mathbb{R}, X$ — метрическое пространство, x_0 — предельная точка $E, f_n \rightrightarrows f, f_n(x) \xrightarrow[x \to x_0]{} A_n$. Тогда $\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$, причем $f(x) \xrightarrow[x \to x_0]{} A$. Иначе говоря, коммутативна следующая схема:

$$f_n(x) \Longrightarrow f(x)
\downarrow_{x \to x_0} \qquad \downarrow_{x \to x_0}
f_n(x_0) \xrightarrow{n \to +\infty} f(x_0)$$

или

$$\lim_{x \to x_0} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$$

Доказательство. Введем обозначения: $u_1 = f_1, u_2 = f_2 - f_1, \ldots, a_k = A_k - A_{k-1}$. Тогда $\sum_{k=1}^n u_k = f_n$, то есть $\sum_{n=1}^{+\infty} u_n \rightrightarrows S(x)$ на E, причем $u_k(x) \xrightarrow[x \to x_0]{} a_k$. Пользуясь аналогичной теоремой для функциональных рядов, получаем, что

$$\lim_{n \to +\infty} \lim_{x \to x_0} f_n(x) = A = \lim_{n \to +\infty} A_n = \lim_{n \to +\infty} \sum_{k=1}^n a_k = \sum_{k=1}^{+\infty} a_k$$

— сходится. Кроме того имеем, что

$$\sum_{k=1}^{+\infty} a_k = \lim_{x \to x_0} \sum_{k=1}^{+\infty} u_k(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \lim_{n \to +\infty} f_n(x)$$

Teopema 2.2.10. (Признак Дирихле)

Пусть $a_n, b_n: X \to \mathbb{R}$, причем

•
$$\exists C_a : \forall N \forall x \in X \left| \sum_{i=1}^N a_n(x) \right| \leq C_a$$

• $b_n \rightrightarrows 0$, $\forall x \in X$ b_n монотонна по n.

Тогда
$$\sum_{i=1}^{+\infty} a_n(x) b_n(x) \rightrightarrows \bot$$

Доказательство. Воспользуемся преобразованием Абеля:

$$\sum_{N \le k \le M} a_k b_k = A_N b_M - A_{N-1} b_N + \sum_{k=N}^{M-1} (b_k - b_{k+1}) A_k$$

тогда

$$\begin{split} \left| \sum_{k=N}^{M} a_k(x) b_k(x) \right| & \leq |A_N b_M| + |A_{N-1} b_N| + \left| \sum_{k=N}^{M-1} (b_k - b_{k+1}) A_k \right| \\ & \leq C_a \cdot |b_M| + C_a \cdot |b_N| + C_a \cdot \sum_{k=N}^{M-1} |b_k - b_{k+1}| \end{split}$$

Все слагаемые в сумме одного знака. Считая, что $b_k - b_{k+1} \geqslant 0$, имеем:

$$\begin{split} \left| \sum_{k=N}^{M} a_k(x) b_k(x) \right| &\leq C_a \cdot |b_M| + C_a \cdot |b_N| + C_a \cdot \sum_{k=N}^{M-1} (b_k - b_{k+1}) \\ &\leq C_a \cdot (|b_M| + |b_N| + |b_M| + |b_N|) \xrightarrow[N,M \to +\infty]{} 0 \end{split}$$

Теорема 2.2.11. (Признак Абеля)

Пусть $a_n, b_n: X \to \mathbb{R}$, причем

•
$$\sum_{n=1}^{+\infty} a_n(x) \rightrightarrows \bot$$

• $\exists C_b \colon \forall N \, \forall x \in X \, |b_n(x)| \leq C_b, \forall x \in X \, b_n(x)$ монотонна по n.

Тогда
$$\sum_{i=1}^{+\infty} a_n(x) b_n(x) \rightrightarrows \bot$$

Доказательство. Применим критерий Коши к ряду a_n :

$$\forall \varepsilon \exists N : \forall n > N \ \forall p \geqslant 1 \ \forall x \in X \ |A_{n,p}(x)| = \left| \sum_{i=n+1}^{n+p} a_n(x) \right| < \varepsilon$$

Воспользуемся преобразованием Абеля:

$$\begin{split} \left| \sum_{k=n+1}^{n+p} a_k b_k \right| &\leq |b_{n+p}(x) A_{n,p}(x)| + \left| \sum_{k=n+1}^{n+p-1} (b_{k+1}(x) - b_k(x)) A_{n,k}(x) \right| \\ &\leq C \varepsilon + \varepsilon \sum_{k=n+1}^{n+p-1} |b_{k+1}(x) - b_k(x)| \leq C \varepsilon + \varepsilon |b_{n+p}(x)| + \varepsilon |b_n(x)| \\ &\leq C \varepsilon + 2 C_b \varepsilon \end{split}$$

Здесь мы воспользовались монотонностью и ограниченностью b_n .

2.3 Степенные ряды

Определение. Степенным рядом называется формальный ряд вида $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$, где $z,z_0\in\mathbb{C}$.

Теорема 2.3.1. (О круге сходимости степенного ряда)

Пусть $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ — степенной ряд. Тогда верно одно из трёх:

- Ряд сходится только при $z=z_0$
- Ряд сходится при любых z
- $\exists \ 0 < R < +\infty$ такое, что ряд сходится при $|z-z_0| < R$, и расходится при $|z-z_0| > R$. Поведение на границе не известно.

Доказательство. Изучим ряд на абсолютную сходимость, полуьзуясь признаком Коши: рассмотрим величину $\lim_{n \to +\infty} \sqrt[n]{|a_n(z-z_0)^n|} = |z-z_0| \lim_{n \to +\infty} \sqrt[n]{|a_n|}$:

- $\overline{\lim}_{n\to+\infty} \sqrt[n]{|a_n|} = +\infty$, тогда ряд сходится, очевидно, только при $z=z_0$.
- $\overline{\lim}_{n\to+\infty} \sqrt[n]{|a_n|} = 0$, тогда ряд сходится для любых z.
- $\overline{\lim}_{n\to+\infty} \sqrt[n]{|a_n|} \in (0,+\infty)$, тогда
 - а) при $|z-z_0|< \frac{1}{\displaystyle \varlimsup_{n \to +\infty} \sqrt[n]{|a_n|}}$ ряд сходится.
 - b) при $|z-z_0|>rac{1}{\displaystyle \varlimsup_{n
 ightarrow +\infty} \sqrt[n]{|a_n|}}$ ряд расходится.

Следствие 2.3.2. (Формула Адамара)

Радиус сходимости степенного ряда можно вычислить по формуле

$$R = \frac{1}{\overline{\lim_{n \to +\infty} \sqrt[n]{|a_n|}}}$$

Следствие 2.3.3. (О множестве сходимости степенного ряда)

Множеством сходимости степенного ряда является $B(z_0,R) \cup \Gamma$, где $\Gamma \subseteq \operatorname{Cl} B(z_0,R)$, а R — радиус сходимости ряда.

Теорема 2.3.4. (О равномерной сходимости и непрерывности степенного ряда)

Пусть
$$\sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
 — степенной ряд, причем $0 < R \le +\infty$. Тогда

• $\forall \ 0 < r < R$ ряд сходится равномерно на $\overline{B(z_0,r)}$.

•
$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \in C(B(z_0, R)).$$

Доказательство.

- Применим признак Вейерштрасса: $|a_n(z-z_0)^n| \le |a_n| \cdot r^n$. Ряд $\sum_{n=0}^{+\infty} |a_n| \cdot r^n$ сходится абсолютно, потому что исходный ряд сходится при $z=z_0+r$.
- Слагаемое непрерывно, есть равномерная сходимость на $\overline{B(z_0,r)} \Longrightarrow$ во всех точках $B(z_0,R)$ сумма непрерывна.

Лемма 2.3.5. $w,w_0\in\mathbb{C}, |w|, |w_0|\leqslant r.$ Тогда $|w^n-w_0^n|\leqslant nr^{n-1}|w-w_0|$

Доказательство.

$$|w^n - w_0^n| = |w - w_0| \cdot |w^{n-1} + w^{n-2}w_0 + \ldots + w_0^{n-1}| \le |w - w_0| \cdot ||w|^{n-1} + \ldots + |w_0|^{n-1}| \le |w - w_0| nr^{n-1}$$

Лемма 2.3.6. Степенные ряды $\sum_{n=0}^{+\infty} a_n x^n$ и $\sum_{n=0}^{+\infty} a_n x^{n+1}$ имеют одинаковый радиус сходимости.

Доказательство. Пусть $S_N(x) = \sum_{n=0}^{+\infty} a_n x^n$, $\widetilde{S}_N(x) = \sum_{n=0}^{+\infty} a_n x^{n+1}$, тогда $\widetilde{S}_N(x) = x S_N(x) \Longrightarrow \lim_{N \to +\infty} \widetilde{S}_N(x) = x \lim_{N \to +\infty} S_N(x)$ — существуют на одном и том же множестве.

Теорема 2.3.7. (О дифференцировании степенного ряда)

Пусть
$$f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
 — степенной ряд, причем $0 < R \leqslant +\infty$, и $\varphi(z) = \sum_{n=1}^{+\infty} n a_n (z-z_0)^{n-1}$. Тогда

- φ имеет тот же радиус сходимости, что и f .
- f дифференцируемо на $B(z_0,R)$, причем $f'(z)=\varphi(z)$

Доказательство.

• Найдем радиус сходимости \hat{R} ряда φ по формуле Адамара и пользуясь последней леммой:

$$\hat{R} = \frac{1}{\overline{\lim_{n \to +\infty}} \sqrt[n]{|n \cdot a_n|}} = \frac{1}{\overline{\lim_{n \to +\infty}} \sqrt[n]{n} \cdot \sqrt[n]{|a_n|}} = R$$

• Рассмотрим точку $a \in B(z_0,R)$ и покажем, что в этой точке существует производная ряда, причем она равна тому, что ожидается. Сузим круг до $B(z_0,r)$, где $r=\frac{R+|a-z_0|}{2}$. Положим $f(z)=\sum_{n=0}^{+\infty}a_n(z-z_0)^n$:

$$\frac{f(z)-f(a)}{z-a} = \sum_{n=1}^{+\infty} a_n \cdot \frac{(z-z_0)^n - (a-z_0)^n}{(z-z_0) - (a-z_0)}$$

Пусть $w = z - z_0 : |w| < r$, $w_0 = a - z_0 : |w_0| < r$. Тогда

$$\sum_{n=0}^{+\infty} a_n \cdot \frac{(z-z_0)^n - (a-z_0)^n}{(z-z_0) - (a-z_0)} = \sum_{n=0}^{+\infty} a_n \cdot \frac{w^n - w_0^n}{w - w_0} \le \sum_{n=0}^{+\infty} |a_n| \cdot nr^{n-1}$$

Последний рад сходится по первому пукнту теоремы. Тогда по признаку Вейерштрасса ряд $\sum_{n=1}^{+\infty} a_n \cdot \frac{(z-z_0)^n - (a-z_0)^n}{(z-z_0) - (a-z_0)}$ сходится равномерно. Зная это, воспользуемся теоремой о предельном переходе в сумме:

$$f'(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = \lim_{z \to a} \sum_{n=1}^{+\infty} \frac{(z - z_0)^n + (a - z_0)^n}{z - a}$$
$$= \sum_{n=1}^{+\infty} \lim_{z \to a} \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} a_n n(z - z_0)^{n-1}$$

Следствие 2.3.8. $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n \in C^\infty(B(z_0,R))$, причем все производные — почленные.

Следствие 2.3.9. (О почленном интегрировании степенного ряда)

Пусть
$$f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$
 где $a_n, x, x_0 \in \mathbb{R}, x \in B(x_0, R)$, тогда

- $\sum_{n=0}^{+\infty} a_n \cdot \frac{(x-x_0)^{n+1}}{n+1}$ имеет тот же радиус сходимости, что и f.
- Выполняется равенство

$$\int_{x_0}^{x} \sum_{n=0}^{+\infty} a_n (x - x_0)^n dx = \sum_{n=0}^{+\infty} \int_{x_0}^{x} a_n (x - x_0)^n dx$$

Определение. Экпонентой называется функция $\exp: \mathbb{C} \to \mathbb{C}$ такая, что $z \mapsto \sum_{n=0}^{+\infty} \frac{z^n}{n!}$

Теорема 2.3.10. (Свойства экспоненты)

- Радиус сходимости равен +∞
- $\exp(0) = 1$
- $\overline{\exp}(z) = \exp(z)$
- $\exp'(z) = \exp(z)$
- $\lim_{z \to 0} \frac{\exp(z) 1}{z} = 1$
- $\exp(z+w) = \exp(z) + \exp(w)$

Доказательство. Докажем последние два утверждения. Остальные очевидны.

•
$$\lim_{z \to z_0} \frac{e^z - 1}{z - z_0} = \lim_{z \to z_0} \frac{e^z - e^0}{z - z_0} = (e^z)' \Big|_0 = 1$$

 $\exp(z+w) = \sum_{n=0}^{+\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^n \binom{n}{k} z^k w^{n-k} \right)$ $= \sum_{n=0}^{+\infty} \sum_{k=0}^n \frac{z^k}{k!} \cdot \frac{w^{n-k}}{(n-k)!} = \left(\sum_{n=0}^{+\infty} \frac{z^n}{n!} \right) \cdot \left(\sum_{n=0}^{+\infty} \frac{w^n}{n!} \right) = \exp(z) \exp(w)$

Теорема 2.3.11. (Метод Абеля)

Пусть
$$\sum_{n=0}^{+\infty} c_n$$
 — сходящийся ряд. Положим $f(x) = \sum_{n=0}^{+\infty} c_n x^n$ при $|x| < 1$. Тогда $\sum_{n=0}^{+\infty} c_n = \lim_{x \to 1_-} f(x)$

Доказательство. Для начала отметим, что f задана корректно: при 0 < x < 1 ряд сходится равномерно по признаку Абеля. Так как f — ряд, то область его сходимости симметрична, то есть для отрицательных x f тоже задана корректно. Раз f — равномерно сходящийся ряд, причем $c_n x^n$ непрерывны, то по теореме Стокса-Зейделя f непрерывна. Раз так, имеем

$$\lim_{x \to 1_{-}} = f(1) = \sum_{n=0}^{+\infty} c_n$$

Теорема 2.3.12. (Формула Григори-Лейбница)

$$1 - \frac{1}{3} + \frac{1}{5} - \dots = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

Доказательство. Положим $f(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$, тогда $f'(x) = 1 - x^2 + x^4 - \dots = \frac{1}{1+x^2} = \arctan' x$. Тогда $f(x) = c + \arctan x$. Подставляя x = 0 убеждаемся, что c = 0. Получаем $\lim_{x \to 1_-} f(x) = \lim_{x \to 1_-} \arctan x = \frac{\pi}{4}$.

Следствие 2.3.13. (О сходимости произведения рядов)

Пусть
$$\sum_{n=0}^{+\infty}a_n=A$$
, $\sum_{n=0}^{+\infty}b_n=B$, $c_n=a_0b_n+a_1b_{n-1}+\ldots+a_nb_0$, тогда ряд $\sum_{n=0}^{+\infty}c_n$ сходится, причем $AB=\sum_{n=0}^{+\infty}c_n$.

Доказательство. Положим
$$f(x)=\sum_{n=0}^{+\infty}a_nx^n,$$
 $g(x)=\sum_{n=0}^{+\infty}b_nx^n,$ $h(x)=\sum_{n=0}^{+\infty}a_nx^n,$

 $x \in [0,1]$. при x < 1 ряды сходятся абсолютно (вспомним теорему о круге сходимости: в ней мы доказывали абсолютную сходимость), поэтому по старой теореме о произведении рядов f(x)g(x) = h(x). Осталось совершить предельный переход в этом равентсве, чтобы получить требуемое.

2.4 Ряды тейлора

Определение. $f: \mathbb{R} \to \mathbb{R}$ разложима в степенной ряд в точке x_0 , если

$$\exists U(x_0) \ \exists \sum_{n=0}^{+\infty} a_n (x - x_0)^n \colon \ \forall x \in U(x_0) \ f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

Теорема 2.4.1. (Единственность разложения в ряд)

f разложима в степенной ряд в $x_0 \Longrightarrow$ этот ряд единственный.

 Δ оказательства этого непосредственно вычислим a_i .

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots$$

Поэтому $f(x) \in C^{\infty}(U(x_0))$. Значит, можно дифференцировать. Подставим $x = x_0$: $a_0 = f(x_0)$. Этим мы однозначно определили a_0 . Рассмотрим

$$f'(x) = a_1 + 2a_2(x - x_0) + \dots$$

Подставим $x = x_0$: $a_1 = f'(x_0)$. Продолжая в том же духе, однозначно определим все a_i .

Определение. Рядом Тейлора $f \in C^{\infty}(U(x_0))$ в точке x_0 называется формальный ряд $\sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$

Теорема 2.4.2. (Разложение бинома в ряд Тейлора)

Пусть $\sigma \in \mathbb{R}$, |x| < 1, тогда

$$(1+x)^{\sigma} = \sum_{n=0}^{+\infty} {\sigma \choose n} x^n$$

Доказательство. Изучим ряд на абсолютную сходимость по признаку Даламбера:

$$\overline{\lim_{n \to +\infty}} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \left| \frac{x(\sigma - n)}{n+1} \right| = |x| < 1$$

Значит, при |x|<1 ряд сходится абсолютно. Раз ряд степенной, то на круге сходимости он сходится и равномерно. Пусть $S(x)=\sum_{n=0}^{+\infty}\binom{\sigma}{n}x^n$. Заметим, что

$$S'(x)(1+x) = \sigma S(x)$$

Теперь положим $f(x) = \frac{S(x)}{(1+x)^{\sigma}}$. Достаточно показать, что f(x) = 1 при |x| < 1. Изучим производную f:

$$f'(x) = \frac{S'(x)(1+x)^{\sigma} + S(x)\sigma(1+x)^{\sigma-1}}{(1+x)^{2\sigma}} = \frac{S'(x)}{(1+x)^{\sigma}} + \frac{\sigma S(x)}{(1+x)^{\sigma-1}} = 0$$

Осталось проверить f(x) = 1 в каком-нибудь x:

$$f(0) = \frac{1}{1} = 1$$

Замечание. Пусть |t| < 1, $m \in \mathbb{N}$. Тогда

$$\sum_{n=m}^{+\infty} n(n-1) \dots (n-m+1) \cdot t^{n-m} = \frac{m!}{(1-t)^{m+1}}$$

Теорема 2.4.3. (Критерий разложимости в ряд Тейлора)

Пусть $f \in C^{\infty}([x_0-h,x_0+h])$. Тогда f разложима в ряд Тейлора в $U(x_0) \Longleftrightarrow \exists \delta, C,A$: $\forall n \ \forall |x-x_0| < \delta \ |f^{(n)}(x)| < CA^n n!$

Доказательство.

(⇐) Оценим остаток в форме Лагранжа:

$$f(x) = T_n f(x_0) + \frac{f^{(n)}(\tilde{x})}{n!} (x - x_0)^n$$

$$\left| \frac{f^{(n)}(\tilde{x})}{n!} (x - x_0)^n \right| \le \frac{CA^n n!}{n!} |x - x_0|^n$$

Чтобы остаток стремился к нулю, нужно, чтобы $A|x-x_0|<1$, откуда получаем $U(x_0)\colon |x-x_0|<\min(\delta,\frac{1}{A}).$ Поскольку теперь остаток ряда стремится к нулю, то $\forall x\in U(x_0)$ $T_nf(x)\to f(x)$, что и требовалось доказать.

 (\Longrightarrow) Пусть $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ в $U(x_0)$. Ряд сходится, поэтому для (произвольного) $x = x_1 \neq x_0$ имеем

$$\exists C_1 \colon \left| \frac{f^{(n)}(x_0)}{n!} (x_1 - x_0)^n \right| \le C_1 \Longrightarrow |f^{(n)}(x_0)| \le C_1 n! \frac{1}{|x_1 - x_0|^n}$$

Положим $B_n = \frac{1}{|x_1 - x_0|^n}$. Проанализируем m-ю производную f:

$$|f^{(m)}(x)| \leq \sum_{n=m}^{+\infty} \left| \frac{f^{(n)}(x_0)}{(n-m)!} (x - x_0)^{n-m} \right| \leq \sum_{n=m}^{+\infty} \left| C_1 \frac{B^n n!}{(n-m)!} (x - x_0)^{n-m} \right|$$

$$= B^m C_1 \sum_{n=m}^{+\infty} n(n-1) \dots (n-m+1) \cdot |B(x - x_0)|^{n-m}$$

$$= C_1 B^m \frac{m!}{(1 - |B(x - x_0)|)^{m+1}} \leq \frac{C_1 m! B^m}{\frac{1}{2^{m+1}}} = C_1 m! B^m 2^{m+1} = (2C_1) m! (2B)^m$$

2.5 Суммирование по Чезаро

Теорема 2.5.1. (Коши о перманентности метода средних арифметических)

$$\sum_{n=1}^{+\infty} a_n = S \Longrightarrow \sum_{n=1}^{+\infty} a_n = S$$

49

Доказательство. Обозначим $\sigma_n = \frac{1}{n+1}(S_0 + \ldots + S_n)$. По определению

$$\forall \varepsilon > 0 \ \exists N_1: \ \forall N > N_1 \ |S_N - S| < \varepsilon$$

Далее:

$$|\sigma_{N} - S| = \left| \frac{1}{N+1} \sum_{n=0}^{N} (S_{n} - S) \right| \leq \frac{1}{N+1} \sum_{n=0}^{N} |S_{n} - S| = \underbrace{\frac{1}{N+1} \sum_{n=0}^{N_{1}} |S_{n} - S|}_{=\frac{c}{N+1} \to 0} + \underbrace{\frac{1}{N+1} \sum_{n=N_{1}+1}^{N} |S_{n} - S|}_{<\varepsilon} \xrightarrow[N \to +\infty]{} 0$$

Глава 3

Криволинейные интегралы

3.1 Интеграл по кусочно-гладкому пути

Определение. Пусть $E \subseteq \mathbb{R}^m$ открыто, тогда $V : E \to \mathbb{R}^m$ будем называть *векторным полем*. По умолчанию $V \in C(E)$.

Определение. (Интеграл векторного поля по кусочно-гладкому пути) Пусть V - векторное поле, $\gamma: [a,b] \to E$ — кусочно-гладкий путь, тогда интегралом векторного поля по этому пути называется

$$I(V,\gamma) \stackrel{def}{=} \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt$$

Замечание. Предыдущее определение можно переписать в нескольких эквивалентных формах:

$$I(V,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \int_{a}^{b} \sum_{i=1}^{m} V_{i}(\gamma(t)) \gamma'(t) dt$$

$$= \int_{a}^{b} \sum_{i=1}^{m} V_{i}(x(t)) x'_{i}(t) dt$$

$$= \int_{a}^{b} \sum_{i=1}^{m} V_{i} dx_{i}$$

Определение. Пусть $\gamma_1 \colon [a,b] \to \mathbb{R}^m$, $\gamma_2 \colon [c,d] \to \mathbb{R}^m$ — пути, $\gamma_1(b) = \gamma_2(c)$, тогда определим *произведение путей* $\gamma = \gamma_1 \gamma_2 \colon [a,d] \to \mathbb{R}^m$ следующим образом:

$$\gamma(t) = \begin{cases} \gamma_1(t), t \in [a, b] \\ \gamma_2(t - b + c), t \in [b, b + d - c] \end{cases}$$

Определение. Обратным путем называется путь $\gamma^{-1}: t \mapsto \gamma(a+b-t)$.

Теорема 3.1.1. (О свойствах интеграла по кусочно-гладкому пути)

- 1. Линейность по полю: $I(\alpha U + \beta V, \gamma) = \alpha I(U, \gamma) + \beta I(V, \gamma)$ для любых полей U, V, любого к-г пути γ и любых $\alpha, \beta \in \mathbb{R}$.
- 2. Аддитивность при дроблении пути: $\gamma: [a, b] \to \mathbb{R}^m$, a < c < b, тогда $I(v, \gamma) = I(V, \gamma \big|_{[a, c]}) + I(V, \gamma \big|_{[c, b]})$.
- 3. Замена параметра: пусть $\varphi: [p,q] \to [a,b]$ сюрьекция, причем $\varphi(p) = a$, $\varphi(q) = b$, $\varphi \in C^1$, тогда $I(V,\gamma) = I(V,\gamma \circ \varphi)$.
- 4. Интеграл произведения путей: $I(V, \gamma_1 \gamma_2) = I(V, \gamma_1) + I(V, \gamma_2)$.
- 5. $I(V, \gamma) = -I(V, \gamma^{-1})$.
- 6. $|I(V,\gamma)| \leq \max_{x \in \gamma[a,b]} ||V(x)|| \cdot l(\gamma)$.

Доказательство.

3.

$$I(V,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle = \int_{p}^{q} \langle V(\gamma(\varphi(s))), \gamma'(\varphi(s)) \rangle \varphi'(s) ds$$
$$= \int_{p}^{q} \langle V((\gamma \circ \varphi)(s)), (\gamma \circ \varphi)'(s) \rangle ds = I(V, \gamma \circ \varphi)$$

Поскольку любые две параметризации гладкого многообразия отличаются на диффеоморфизм, интеграл зависит только от носителя пути.

5.

$$I(V, \gamma^{-1}) = \int_{a}^{b} \langle V(\gamma(a+b-t)), \gamma'(a+b-t) \rangle \cdot (-1) dt$$

$$= \int_{a}^{b} \langle V(\gamma(\tau)), \gamma'(\tau) \rangle d\tau = I(V, \gamma)$$

6.

$$|I(V,\gamma)| \le \int_a^b \left| \langle V(\gamma), \gamma' \rangle \right| \le \int_a^b \|V(\gamma)\| \cdot \|\gamma'\| \le \max_{\gamma} \|V(\gamma)\| \cdot \int_a^b \|\gamma'\|$$

3.2 Потенциальные векторные поля

Определение. Пусть \emptyset — область в \mathbb{R}^m , $V: \emptyset \to \mathbb{R}^m \in C$, тогда поле V называется *потенциальным*, если оно является градиентом какого-то отображения, то есть $\exists f \in C^1(\emptyset, \mathbb{R}) \colon V = \operatorname{grad} f$.

Замечание. Пусть f_1, f_2 — отображения из определения потенциальности поля V. Тогда $f_1 - f_2 = c \in \mathbb{R}$.

Теорема 3.2.1. (Обобщенная формула Ньютона-Лейбница)

Пусть $V: \mathbb{O} \to \mathbb{R}^m$ — потенциальное поле с потенциалом $f, \gamma: [a,b] \to \mathbb{O}$ — кусочногладкий путь, $A = \gamma(a), B = \gamma(b)$. Тогда

$$I(V,\gamma) = f(B) - f(A)$$

Доказательство. Докажем теорему для гладкого (не кусочно) пути. Тогда кусочно-гладкий путь разобъем на гладкие пути и посчитаем интеграл как сумму интегралов по этим путям. Сумма будет телескопической, получится заявленная формула. Пусть $\varphi(t) = f(\gamma(t))$. Тогда

$$\varphi'(t) = f'(\gamma(t)) \cdot \gamma'(t) = V(\gamma(t)) \cdot \gamma'(t) = \langle V(\gamma(t)), \gamma'(t) \rangle$$

То есть φ — первообразная подынтегрального выражения. Тогда работает обычная формула Ньютона-Лейбница.

Определение. Интеграл векторного поля *не зависит от пути* в \mathbb{O} , если $\forall A, B \ \forall \gamma_1, \gamma_2$ кусочно-гладких путей из A в B $I(V, \gamma_1) = I(V, \gamma_2)$.

Лемма 3.2.2. Пусть \circlearrowleft — область, $A \in \circlearrowleft$, тогда $\forall \mathbf{x} \in \circlearrowleft \exists \gamma_{\mathbf{x}} : A \leadsto \mathbf{x}$ — кусочногладкий.

Доказательство. Пусть $M_A = \{ \mathbf{x} \in \mathcal{O} \mid \exists \gamma_{\mathbf{x}} \}$, где $\gamma_{\mathbf{x}}$ — путь из формулировки. Тогда M_A открыто. Действительно, пусть $\mathbf{x} \in \mathcal{O} : \exists \gamma_{\mathbf{x}}$. Тогда, поскольку \mathcal{O} открыто, $\exists U(\mathbf{x}) \subseteq \mathcal{O}$. Но тогда $\forall \mathbf{y} \in U(\mathbf{x}) \; \exists \gamma_{\mathbf{y}}$, получаемый произведением пути $\gamma_{\mathbf{x}}$ и прямого пути из \mathbf{x} в \mathbf{y} .

Рассмотрим теперь множество $\mathcal{O}\setminus M_A$: оно тоже открыто, так как если до точки \mathbf{x} нет пути, то и до ближайших точек его тоже нет, иначе можно было бы достроить путь и до \mathbf{x} .

Получается, мы разбили 0 на два открытых непересекающихся множества. Поскольку 0 связно, одно из них должно оказаться пустым. M_A не пустое, потому что совершенно очевидно, что $A \in M_A$. Поэтому $M_A = 0$, что и требовалось.

Теорема 3.2.3. (Характеризация потенциальных векторных полей в терминах интегралов)

 $V: \mathcal{O} \to \mathbb{R}^m, \mathcal{O}$ — область в \mathbb{R}^m . Эквивалентны утверждения:

- 1. V потенциальное
- 2. $I(V, \gamma)$ не зависит от пути

3. \forall кусочно-гладкой петли γ *I*(*V*, γ) = 0

Доказательство.

- $1 \Longrightarrow 2\,$ см. обобщенную теорему Ньютона-Лейбница.
- $2\Longrightarrow 3$ Пусть A точка на петле γ_0 и γ постоянный путь в точке A. Тогда

$$I(V, \gamma_0) \stackrel{(2)}{=} I(V, \gamma) = 0$$

 $3\Longrightarrow 2$ Пусть $\gamma_1,\,\gamma_2$ — пути из A в B. Тогда рассмотрим кусочно-гладкую петлю $\gamma_0=\gamma_1\gamma_2^{-1}$. Имеем:

$$0 = I(V, \gamma_0) = I(V, \gamma_1 \gamma_2^{-1}) = I(V, \gamma_1) + I(V, \gamma_2^{-1}) = I(V, \gamma_1) - I(V, \gamma_2)$$

 $2\Longrightarrow 1$ Построим потанциал. Зафиксируем точку $A\in \mathcal{O}$. Для каждой точки $\mathbf{x}\in \mathcal{O}$ зафиксируем кусочно-гладкий путь $\gamma_{\mathbf{x}}\colon A\leadsto \mathbf{x}$ (см. лемму). Проверим, что $f(\mathbf{x})=I(V,\gamma_{\mathbf{x}})$ — потанциал V. Для этого докажем, что $f'_{\mathbf{x}_1}(\mathbf{x})=V_1(\mathbf{x})$ (число 1 здесь не играет никакой роли). Рассмотрим путь $\gamma_0\colon t\mapsto \mathbf{x}+th\mathbf{u}_1$ для $t\in [0,1]$, где \mathbf{u}_1 — стандартный базисный вектор. Тогда путь $\gamma_{\mathbf{x}}\gamma_0\colon A\leadsto \mathbf{x}+h\mathbf{u}_1$ — тоже кусочно-гладкий. Из аддитивности интеграла по пути имеем:

$$f(\mathbf{x} + h\mathbf{u}_1) - f(\mathbf{x}) = I(V, \gamma_{\mathbf{x}}\gamma_0) - I(V, \gamma_{\mathbf{x}}) = I(V, \gamma_0)$$

Здесь мы воспользовались (2) в первом переходе, позволив себе считать $f(\mathbf{x} + h\mathbf{u}_1)$ не через $\gamma_{\mathbf{x}+h\mathbf{u}_1}$, а через $\gamma_{\mathbf{x}}\gamma_0$. Далее

$$I(V,\gamma_0) = \int_0^1 \sum_{i=1}^m V_i \, d\mathbf{x}_i = \int_0^1 V_1(\mathbf{x}_1 + th, \mathbf{x}_2, \dots, \mathbf{x}_m) h \, dt$$
$$= V_1(\mathbf{x}_1 + \theta h, \mathbf{x}_2, \dots, \mathbf{x}_m) h \cdot |1 - 0|$$

Тогда

$$\frac{f(\mathbf{x} + h\mathbf{u}_1) - f(\mathbf{x})}{h} = V_1(\mathbf{x}_1 + \theta h, \mathbf{x}_2, \dots, \mathbf{x}_m) \xrightarrow[h \to 0]{\text{Henpep.}} V_1(\mathbf{x}_1, \dots, \mathbf{x}_m)$$

Рис. 3.1: Теорема о характеризации потенциальных векторных полей

3.3 Локально потенциальные векторные поля

Лемма 3.3.1. $V: \mathcal{O} \to \mathbb{R}^m$ — гладкое потенциальное векторное поле. Тогда $\forall \mathbf{x} \in \mathcal{O} \ \forall k, j \ \frac{\partial V_k}{\partial \mathbf{x}_i}(\mathbf{x}) = \frac{\partial V_j}{\partial \mathbf{x}_k}(\mathbf{x})$

Определение. Пользуемся теоремой о независимотсти частных производных от порядка дифференцирования:

$$\frac{\partial V_k}{\partial \mathbf{x}_i} = \frac{\partial f}{\partial \mathbf{x}_k \mathbf{x}_i} = \frac{\partial f}{\partial \mathbf{x}_i \mathbf{x}_k} = \frac{\partial V_j}{\partial \kappa_k}$$

Теорема 3.3.2. (Лемма Пуанкаре)

Пусть $\mathbb{O} \subseteq \mathbb{R}^m$ — выпуклая область, $V: \mathbb{O} \to \mathbb{R}^m \in C^1$, $\frac{\partial V_k}{\partial \mathbf{x}_j}(\mathbf{x}) = \frac{\partial V_j}{\partial \mathbf{x}_k}(\mathbf{x})$, тогда V потенциально.

Доказательство. Зафиксируем точку $A \in \mathcal{O}$. Положим

$$\gamma_{\mathbf{x}} \colon [0,1] \to \mathbb{R}^m$$

 $t \mapsto A + t(\mathbf{x} - A) \in \mathcal{O}$

Проверим, что $f(\mathbf{x}) = I(V, \gamma_{\mathbf{x}})$ — потанциал V. Поскольку $V \in C^1$, можно использовать правило Лейбница:

$$f(\mathbf{x}) = \int_{0}^{1} \sum_{i=1}^{m} V_{i}(A + t(\mathbf{x} - A)) \cdot (\mathbf{x}_{i} - A_{i}) dt$$

$$\frac{\partial f}{\partial \mathbf{x}_{j}}(\mathbf{x}) = \int_{0}^{1} \left(V_{j}(A + t(\mathbf{x} - A)) \cdot 1 + \sum_{i=1}^{m} \frac{\partial V_{i}}{\partial \mathbf{x}_{j}} (A + t(\mathbf{x} - A)) \cdot t \cdot (\mathbf{x}_{i} - A_{i}) \right) dt$$

$$= \int_{0}^{1} \left(V_{j}(A + t(\mathbf{x} - A)) \cdot 1 + \sum_{i=1}^{m} \frac{\partial V_{j}}{\partial \mathbf{x}_{i}} (A + t(\mathbf{x} - A)) \cdot t \cdot (\mathbf{x}_{i} - A_{i}) \right) dt$$

$$= \int_0^1 \left(t \cdot V_j (A + t(\mathbf{x} - A)) \right)_t' = t \cdot V_j (A + t(\mathbf{x} - A)) \Big|_0^1 = V_j(\mathbf{x})$$

Определение. Поле $V: \mathcal{O} \to \mathbb{R}^m$ называется *локально потенциальным*, если оно потенциально в некоторой окрестности любой точки.

Следствие 3.3.3. (Лемма Пуанкаре)

Пусть \mathbb{O} открыто в \mathbb{R}^m , $V \in C^1(\mathbb{O})$, $\frac{\partial V_k}{\partial \mathbf{x}_j}(\mathbf{x}) = \frac{\partial V_j}{\partial \mathbf{x}_k}(\mathbf{x})$, тогда V локально потенциально.

3.4 Интеграл локально потенциального поля по непрерывному пути

Лемма 3.4.1. (О гусенице)

Пусть $\mathcal{O} \subseteq \mathbb{R}^m$ — область, для всех **x** задана окрестность $U(\mathbf{x}), \, \gamma \colon [a,b] \to \mathcal{O} \in C(\mathcal{O}),$ тогда существует такое дробление пути $a=t_0 < t_1 < \ldots < t_n = b$ и такие шары $B_k = B_k(\mathbf{x}_k, r_k) \subseteq U(\mathbf{x}_k),$ что $\forall k \text{ Im } \gamma \big|_{[t_k-1,t_k]} \subseteq B_k.$

Доказательство. Зафиксируем за каждой точкой $c \in [a, b]$ шар $B_c = B(\gamma(c), r_c)$ такой, чтобы $B_c \subseteq U(\gamma(c))$. Теперь вычислим для всех точек величины:

$$\widetilde{\alpha}_{c} = \inf_{\alpha \in [a,b]} \{ \alpha \mid \operatorname{Im} \gamma \big|_{[\alpha,c]} \subseteq B_{c} \}$$

$$\widetilde{\beta}_{c} = \sup_{\beta \in [a,b]} \{ \beta \mid \operatorname{Im} \gamma \big|_{[c,\beta]} \subseteq B_{c} \}$$

Далее сузим $(\widetilde{\alpha}_c, \widetilde{\beta}_c)$:

$$\widetilde{\alpha}_c < \alpha_c < c < \beta_c < \widetilde{\beta}_c$$

Теперь $\forall c \operatorname{Im} \gamma \big|_{(\alpha_c,\beta_c)} \subseteq B_c$. Кроме того:

$$[a,b] \subseteq \bigcup_{c \in [a,b]} (\alpha_c,\beta_c) \Longrightarrow \exists c_i \colon [a,b] \subseteq \bigcup_{i=1}^n (\alpha_{c_i},\beta_{c_i})$$

Далее для краткости вместо c_i будет использоваться просто i. Уберем из покрытия множества, которые можно покрыть другими множествами (это можно следать, поскольку покрытие конечное). Теперь на каждом интервале (α_i, β_i) есть точка d_i , не принадлежащая ни одному интервалу, кроме i-го. Выберем t_1 так, чтобы оно лежало сразу в 1 и 2 множествах. Тогда $a=t_0 < d_1 < t_1$, и

$$d_1 \in [t_0, t_1] \subseteq (\alpha_1, \beta_1) \Longrightarrow \operatorname{Im} \gamma \Big|_{[t_0, t_1]} \subseteq B_1$$

Продолжая аналогичный процесс далее, получаем нужное дробление пути.

Рис. 3.2: Теорема о гусенице

Определение. Объект из последней теоремы, для которого окрестности $U(\mathbf{x})$ соответствуют окрестностям, на которых V локально потенциально, будем называть V-гусеницей.

Определение. Пути $\gamma_1, \gamma_2 \colon [a,b] \to \emptyset \in C(\emptyset)$ будем называть *похожими*, если у них есть общая V-гусеница. При этом ограничение идем именно на гусеницу, то есть наборы t_k могут быть разными.

Лемма 3.4.2. Пусть V — локально потенциальное векторное поле, γ_1, γ_2 — похожие кусочно-гладкие пути, $\gamma_1(a) = \gamma_2(a)$, $\gamma_1(b) = \gamma_2(b)$, тогда $I(V, \gamma_1) = I(V, \gamma_2)$.

Доказательство. Пусть Г — общая V-гусеница путей, f_k потенциал в B_k . Подгоняя константы, следаем потенциалы одинаковыми на стыках шаров:

$$f_k = f_{k+1}$$
 на $B_k \cap B_{k+1}$

Теперь посчитаем ингеграл по γ_1 :

$$I(V,\gamma_1) = \sum_{k=1}^n I\left(V,\gamma\big|_{[t_{k-1},t_k]}\right) = \sum_{k=1}^n f_k(\gamma(t_k)) - f_{k-1}(\gamma(t_{k-1})) = f_n(\gamma(b)) - f_0(\gamma(a))$$

Аналогично вычисляем второй интеграл: получится такая же формула.

Лемма 3.4.3. Пусть B открыто, $A \subseteq B$ — компакт. Тогда $\exists \delta > 0$: $U(A, \delta) \subseteq B$, где $U(A, \delta) \stackrel{def}{=} \{ x \mid \rho(x, A) < \delta \}$

Доказательство. Пусть

$$r = \operatorname{dist}(A, \operatorname{Fr}(B)) = \inf_{\substack{a \in A \\ b \in \operatorname{Fr}(B)}} \rho(a, b)$$

Инфимум реализуется, так как dist вычисляется на прямом произведении компактов (т.е. на компакте). Поэтому r > 0 (иначе A зашло бы на границу B, чего быть не может, т.к. $A \subseteq B$ и B открыто). Выберем $\delta = \frac{r}{2}$.

Лемма 3.4.4. (О трёх путях)

 $C([a,b])\ni \gamma\colon [a,b] \to 0\subseteq \mathbb{R}^m, 0$ — область, тогда $\exists \delta>0$: Если $\gamma_1,\gamma_2\colon [a,b] \to 0\colon \ \forall t\in [a,b]\ |\gamma(t)-\gamma_1(t)|<\delta,\ |\gamma(t)-\gamma_2(t)|<\delta,\$ тогда γ,γ_1,γ_2 похожи друг на друга.

Доказательство. Множества $\gamma([t_{k-1}, t_k])$ компакты, B_k открыты, поэтому

$$\forall k \ \exists \delta_k \colon \ U(\gamma([t_{k-1}, t_k]), \delta_k) \subseteq B_k$$

Выберем тогда $\delta = \min \delta_k$. В таком случае все три пути окажутся в δ -окрестности по условию, то есть будут заключены в шары B_k .

Определение. (Интеграл локально потенциального поля по непрерывному пути) Пусть γ — непрерывный путь, γ' — любой кусочно-гладкий путь, удовлетворяющий предыдущей лемме. тогда положим $I(V,\gamma) = I(V,\gamma')$

Лемма 3.4.5. (О корректности определения интеграла по непрерывному пути)

Доказательство.

- Если таких путей γ' найдется несколько, то интегралы по ним совпадут по лемме об интегралах по похожим путям.
- Такой путь γ' всегда найдется. Для доказательства предъявим такой путь. Из соображений равномерной непрерывности,

$$\delta > 0 \Longrightarrow \exists \alpha > 0: \ \forall t, t': |t - t'| < \alpha \ \left\| \gamma(t) - \gamma(t') \right\| < \frac{\delta}{2}$$

Тогда разобъём [a,b] на отрезки длины α и построим кусочно-линейный путь $\widetilde{\gamma}$; проверим условие похожести:

$$\begin{aligned} \|\gamma(t) - \widetilde{\gamma}(t)\| &\leq \|\gamma(t) - \gamma(t_{i-1})\| + \|\gamma(t_{i-1}) - \widetilde{\gamma}(t)\| \\ &\leq \|\gamma(t) - \gamma(t_{i-1})\| + \|\gamma(t_i) - \gamma(t_{i-1})\| \leq \delta \end{aligned}$$

Рис. 3.3: Лемма о корректности определения интеграла по непрерывному пути

3.5 Гомотопия

Определение. Рассмотрим два пути $\gamma_0, \gamma_1 \colon [a,b] \to \emptyset$. Гомотопией путей γ_0, γ_1 называется отображение $\Gamma \colon [a,b] \times [0,1] \to \emptyset \in C$, такое, что $\Gamma(t,0) = \gamma_0(t)$ и $\Gamma(t,1) = \gamma_1(t)$.

Определение. Гомотопия наывается *связанной*, если $\gamma_0(a) = \gamma_1(a)$ и $\gamma_0(b) = \gamma_1(b)$.

Определение. Гомотопия называется *петельной*, если $\forall u \in [0,1] \ \Gamma(a,u) = \Gamma(b,u)$.

Лемма 3.5.1. Локально постоянное отображение связного компакта постоянно на нём.

Доказательство. (нестрогое)

Выберем конечное покрытие K окрестностями, на которых $f: K \to X$ постоянно. Вручную установим равенство f на стыках окрестностей (их конечное число), а значит автоматически и на объединении окрестностей из одной компоненты связности. Поскольку K связно, компонента одна, а значит f постоянно.

Теорема 3.5.2. (Интегралы по связанно гомотопным путям)

V — локально потенциальное поле, γ_0 , γ_1 — связянно гомотопные пути. Тогда $I(V,\gamma_0)=I(V,\gamma_1)$.

Доказательство.

• Пусть Γ — гомотопия путей γ_0 и γ_1 . Введем отображение $\varphi(u) = I(V, \gamma_u)$. Наша цель — показать, что φ локально постоянно на [0,1], или, что то же самое:

$$\forall u_0 \in [0,1] \ \exists U(u_0) \colon \forall u \in U(u_0) \cap [0,1] \ \varphi(u_0) = \varphi(u)$$

В таком случае по предыдущей лемме оно окажется постоянным на [0,1], что и докажет утверждение теоремы.

• Пусть δ взято из леммы о трёх путях. Γ непрерывно на компакте, поэтому равномерно непрерывно на нем:

$$\exists \sigma > 0 \colon \forall u, t \colon \begin{cases} |u - u_0| < \sigma \\ |t - t_0| < \sigma \end{cases} \quad \|\Gamma(t, u) - \Gamma(t_0, u_0)\| < \frac{\delta}{2}$$

Поэтому, в частности,

$$\left\|\gamma_u(t)-\gamma_{u_0}(t)\right\|<\frac{\delta}{2}$$

то есть пути γ_u и γ_{u_0} похожи. Но они не кусочно-гладкие, поэтому похожести недостаточно.

• Придется искать похожие пути. Пользуясь технологией из доказательства леммы о корректности определения интеграла по непрерывному пути, построим пути $\tilde{\gamma}_u$ и $\tilde{\gamma}_{u_0}$ так, чтобы они попадали в $\frac{\delta}{4}$ -окрестность путей γ_u и γ_{u_0} соответственно. Тогда

$$\left\|\widetilde{\gamma}_{u}-\widetilde{\gamma}_{u_{0}}\right\|\leqslant\left\|\widetilde{\gamma}_{u}-\gamma_{u}\right\|+\left\|\gamma_{u}-\gamma_{u_{0}}\right\|+\left\|\gamma_{u_{0}}-\widetilde{\gamma}_{u_{0}}\right\|\leqslant\delta$$

То есть пути $\widetilde{\gamma}_u$ и $\widetilde{\gamma}_{u_0}$ похожи. Но они кусочно-гдадкие, поэтому получается, что:

 $I(V,\gamma_u) \stackrel{\text{def}}{=} I(V,\widetilde{\gamma}_u) \stackrel{\text{похож. К.-г.}}{=} I(V,\widetilde{\gamma}_{u_0}) \stackrel{\text{def}}{=} I(V,\gamma_{u_0})$

Определение. Область называется *односвязной* если любой замкнутый путь в ней гомотопен постоянному.

Теорема 3.5.3. Пусть \mathfrak{O} — односвязная область в \mathbb{R}^m , V — локально потенциальное векторное поле в \mathfrak{O} , тогда V потенциально в \mathfrak{O} .

Доказательство. Область односвязная, значит любая петля в ней гомотопна постоянному пути, то есть интеграл по любой петле равен нулю. Это — критерий потенциальности поля.

Следствие 3.5.4. (Теорема Пуанкаре для односвязной области)

$$\mathbb{O}$$
 — односвязная область, $V \in C^1$, $\frac{\partial V_k}{\partial \mathbf{x}_j}(\mathbf{x}) = \frac{\partial V_j}{\partial \mathbf{x}_k}(\mathbf{x})$, тогда V потенциально.

Теорема 3.5.5. (О резиночке) Область $0 = \mathbb{R}^2 \setminus \mathbf{0}$ не является односвязной.

Доказательство. Рассмотрим петлю:

$$\gamma: [0, 2\pi] \to 0$$

 $t \mapsto (\cos(t), \sin(t))$

И векторное поле $V: \mathcal{O} \to \mathbb{R}^2$:

$$V(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Непосредственной проверкой убеждаемся (*нет*) что $\frac{\partial V_k}{\partial \mathbf{x}_j}(\mathbf{x}) = \frac{\partial V_j}{\partial \mathbf{x}_k}(\mathbf{x})$. Отсюда делаем вывод, что V — локально-потенциально (теорема Пуанкаре). Проинтегрируем по петле:

$$I(V,\gamma) = \int_0^{2\pi} \left(\frac{-\sin(t)}{1} \cdot (-\sin(t)) + \frac{\cos(t)}{1} \cdot \cos(t) \right) dt = 2\pi \neq 0$$

Значит, γ — нестягиваемая петля.

Глава 4

Теория меры

4.1 Системы множеств

Определение. Полукольцом подмножеств множества X называют $\mathcal{P}\subseteq 2^X$, удовлетворяющее условиям

- 1. $\emptyset \in \mathcal{P}$.
- 2. $A, B \in \mathcal{P} \Longrightarrow A \cap B \in \mathcal{P}$.

3.
$$\forall A, B \in \mathcal{P} \exists B_1, \dots, B_k \in \mathcal{P} \colon A \setminus B = \bigsqcup_{i=1}^k B_i$$
.

Определение. Ячейкой в \mathbb{R}^m называется множество вида

$$[\mathbf{a}, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{a}_i \leq \mathbf{x}_i < \mathbf{b}_i \}$$

Теорема 4.1.1. (Свойства полуколец)

- 1. $A \in \mathcal{P} \Rightarrow \bar{A} \in \mathcal{P}$
- 2. $A, A' \in \mathcal{P} \Rightarrow A @ A' \in \mathcal{P}, @ \in \{ \cup, \setminus, \Delta \}$

3.
$$A_1, \ldots, A_n \in \mathcal{P} \Longrightarrow A \setminus \left(\bigcup_{i=1}^n A_i\right) = \bigsqcup_{fin} D_f$$

Определение. *Алгеброй подмножеств* множества X называется множество $\mathcal{A} \in 2^X$ такое, что выполнены аксиомы:

- 1. $X \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \Longrightarrow A \setminus B \in \mathcal{A}$

Теорема 4.1.2. (Свойства алгебр)

- 1. $\emptyset = X \setminus X \in A$
- 2. $A \cap B = A \setminus (A \setminus B) \in A$

3.
$$\overline{A} = X \setminus A \in \mathcal{A}$$

4. $A \cup B \in A$

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

5.
$$A_1, \dots A_n \in \mathcal{A} \Longrightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}, \bigcap_{i=1}^n A_i \in \mathcal{A}$$

6. Алгебра подмножеств является полукольцом подмножеств

Определение. σ -Алгеброй подмножеств множества X называется алгебра подмножеств \mathcal{A} , удовлетворяющая дополнительной аксиоме:

$${A_n} \in \mathcal{A} \Longrightarrow \bigcup_{n=1}^{+\infty} A_n \in \mathcal{A}.$$

Лемма 4.1.3. (О нарезке)

Пусть $A_0, A_1, \ldots, A_n \subseteq X$. Тогда набор множеств

$$B_1 = A_1, B_2 = A_2 \setminus A_1, \dots, B_k = A_k \setminus \left(\bigcup_{i=1}^{k-1} A_i\right), \dots$$

дизъюнктен, причем

$$\bigsqcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$$

Лемма 4.1.4. (О минимальной алгебре)

Пусть \mathcal{P} — полукольцо. Положим \mathcal{A}_0 — система подмножеств, состоящая из всевозможных конечных объединений множеств из \mathcal{P} , а так же из их дополнений. Тогда

- A_0 алгебра подмножеств.
- Для любой алгебры $\mathcal{A}\supseteq \mathcal{P}$ верно, что $\mathcal{A}\supseteq \mathcal{A}_0$

4.2 Объём

Определение. Пусть $\mathcal P$ — полукольцо, $\mu\colon \mathcal P\to\overline{\mathbb R}$ называется конечно-аддитивной, если

- 1. μ принимает не более одного значения из $\{+\infty, -\infty\}$
- 2. $\mu(\emptyset) = 0$
- 3. $A_1,\dots,A_n\in\mathcal{P},A_i\cap A_{j\neq i}=\varnothing$, тогда если оказалось, что $A=\bigsqcup_{i=1}^nA_i\in\mathcal{P}$, то $\mu(A)=\sum_{i=1}^n\mu(A_i)$

Определение. Пусть $\mu \colon \mathcal{P} \to \overline{\mathbb{R}}$ называется объёмом, если

1. μ конечно-аддитивна

2.
$$\mu \ge 0$$

Определение. Объём называется *конечным*, если $\mu(X) < +\infty$.

Определение. Классическим объёмом в \mathbb{R}^m называется объём, заданный на полукольце ячеек в \mathbb{R}^m , вычисляющийся по формуле $\mu([\mathbf{a},\mathbf{b})) = \prod_{k=1}^m (\mathbf{b}_k - \mathbf{a}_k)$.

Лемма 4.2.1. (Монотонность объёма)

Для объёма μ , $A, B \in \mathcal{P}$, $A \subseteq B$ выполено $\mu(A) \leqslant \mu(B)$.

Доказательство.

$$B = A + B \setminus A = A + \bigsqcup D_i \Longrightarrow \mu(B) = \mu(A) + \sum \mu(D_i) \geqslant \mu(A)$$

Теорема 4.2.2. (Свойства объёма)

1. $\forall A$, дизъюнктных $A_1 \dots, A_n \in \mathcal{P}$: $\bigsqcup_{i=1}^n A_i \subseteq A \Longrightarrow \sum_{i=1}^n \mu(A_i) \leqslant \mu(A)$ (усиленная монотонность)

2.
$$\forall A, A_1 \dots, A_n \in \mathcal{P} \colon A \subseteq \bigcup_{i=1}^n A_i \Longrightarrow \mu(A) \leqslant \sum_{i=1}^n \mu(A_i)$$
 (конечная полуаддитивность)

3.
$$A, B, A \setminus B \in \mathcal{P} \Longrightarrow \mu(A \setminus B) \geqslant \mu(A) - \mu(B)$$

Доказательство.

1.

$$A \setminus \bigsqcup_{i=1}^{n} A_{i} = \bigsqcup_{i=1}^{k} D_{i} \Longrightarrow A = \left(\bigsqcup_{i=1}^{n} A_{i}\right) \sqcup \left(\bigsqcup_{i=1}^{k} D_{i}\right)$$
$$\Longrightarrow \mu(A) = \sum_{i=1}^{n} \mu(A_{i}) + \sum_{i=1}^{k} \mu(D_{i}) \geqslant \sum_{i=1}^{n} \mu(A_{i})$$

2. Сейчас будет использован стандартный прием, смысл которого заключается в переходе от простого объединения к дизъюнктному. Пусть $B_k = A \cap A_k$. Тогда $A = \bigcup B_k$. Теперь нарежем B_k :

$$C_k = B_k \setminus \bigcup_{i=1}^{k-1} B_i$$

При k > 1 и $C_1 = B_1$. Набор C_k получился дизъюнктным:

$$A = \bigsqcup_{i=1}^{n} C_i$$

Сами множетсва C_k могут и не быть в \mathcal{P} , но $B_k \in \mathcal{P}$ как пересечения множеств из \mathcal{P} . Из определения C_k имеем, что,

$$C_k = \bigsqcup_{i=1}^{j_k} D_{ki}$$

Тогда можно вычислить объём А:

$$\mu(A) = \sum_{k,i} \mu(D_{ki})$$

Теперь воспользуемся монотонностью объёма: $C_k \subseteq B_k \subseteq A_k$:

$$\sum_{j} D_{kj} \leq \mu(B_k) \leq \mu(A_k)$$

Поэтому

$$\mu(A) = \sum_{k} \sum_{j} D_{kj} \leq \sum_{k} \mu(A_k)$$

3.

(a)
$$B \subseteq A \Longrightarrow \mu(A) = \mu(A \setminus B) + \mu(B) \Longrightarrow \mu(A \setminus B) = \mu(A) - \mu(B)$$

(b)
$$A \setminus B = A \setminus (A \cap B) \Longrightarrow \mu(A \setminus B) = \mu(A) - \mu(A \cap B) \geqslant \mu(A) - \mu(B)$$

4.3 Mepa

Определение. *Мерой* называется объём $\mu\colon \mathcal{P}\to \overline{\mathbb{R}}$, обладающий свойством счётной аддитивности.

Теорема 4.3.1. Пусть $\mu \colon \mathcal{P} \to \overline{\mathbb{R}}$ — объём. Тогда эквивалентны утверждения:

- 1. μ счетно-аддитивен
- 2. μ счетно-полуаддитивен

Доказательство. Импликация $1 \Longrightarrow 2$ доказывается практически так же, как второй пункт предыдущей теоремы (используется нарезка). Докажем $2 \Longrightarrow 1$. Для этого воспользуемся усиленной монотонностью объёма (A_i дизъюнктны):

$$\forall N \ \sum_{i=1}^{N} \mu(A_i) \leq \mu(A)$$

Добавляя к этому посылку:

$$\forall N \sum_{i=1}^{N} \mu(A_i) \leq \mu(A) \leq \sum_{i=1}^{+\infty} \mu(A_i)$$

И переходя к пределу при $N \to +\infty$, получаем требуемое.

Теорема 4.3.2. Пусть \mathcal{A} — алгебра, $\mu \colon \mathcal{A} \to \overline{\mathbb{R}}$ — объём. Тогда эквивалентны утверждения:

1. μ счетно-аддитивно

2.
$$\mu$$
 непрерывно снизу, то есть $A, A_1, A_2 ... \in A : A_1 \subset A_2 \subset ...; A = \bigcup_{i=1}^{+\infty} A_i \Longrightarrow \mu(A) = \lim_{n \to +\infty} \mu(A_i)$

Доказательство.

 $1 \Longrightarrow 2$ Нарежем множетсва:

$$B_1 = A_1, \dots, B_k = A_k \setminus \left(\bigcup_{i=1}^{k-1} A_i\right)$$

Как всегда, B_k дизъюнктны, причем $A = \bigsqcup_{i=1}^{+\infty} B_k$. Тогда, пользуясь счетной аддитивностью, имеем:

$$\mu(A) = \sum_{i=1}^{+\infty} \mu(B_i) = \lim_{N \to +\infty} \sum_{i=1}^{N} \mu(B_i) = \lim_{N \to +\infty} \mu(A_k)$$

 $2 \Longrightarrow 1$ Пусть есть дизъюнктные A_k . Сделаем из них C_k :

$$C_k = \bigsqcup_{i=1}^k A_i$$

Тогда $C_1 \subseteq C_2 \subseteq \dots$ Воспользуемся непрерывностью снизу:

$$\mu(A) = \mu(C) = \lim_{N \to +\infty} \mu(C_k) = \lim_{k \to +\infty} \sum_{i=1}^k \mu(A_k) = \sum_{k=1}^{+\infty} \mu(A_k)$$

Теорема 4.3.3. Пусть \mathcal{A} — алгебра, $\mu \colon \mathcal{A} \to \overline{\mathbb{R}}$ — конечный объём. Тогда эквивалентны утверждения:

- 1. μ счетно-аддитивен
- 2. µ непрерывно сверху

$$A, A_1, A_2 \dots \in A : A_1 \supset A_2 \supset \dots; A = \bigcap_{i=1}^{+\infty} A_i \Longrightarrow \mu(A) = \lim_{n \to +\infty} \mu(A_i)$$

3. μ непрерывно сверху на пустом множестве, то есть при условии, что $A=\varnothing$. Доказательство.

 $1\Longrightarrow 2$ Будем пользоваться непрерывностью снизу, но для этого нужна подготовка:

$$B_1 = A_1 \setminus A, \dots, B_k = A_1 \setminus A_k$$

Тогда $B_1 \subseteq B_2 \subseteq \ldots; B = \bigcup B_k$:

$$\mu(A_1) - \mu(A) = \mu(B) = \lim_{k \to +\infty} \mu(B_k) = \lim_{k \to +\infty} \mu(A_1) - \lim_{k \to +\infty} \mu(A_k)$$

Откуда

$$\mu(A) = \lim_{k \to +\infty} \mu(A_k)$$

 $2 \Longrightarrow 3$ Очевидно.

 $3 \Longrightarrow 1$ Пусть C_k дизъюнктны. Положим

$$A_k = \bigsqcup_{i=k+1}^{+\infty} C_k$$

Тогда $A_1\supseteq A_2\supseteq\ldots;A=\bigcap A_k=\emptyset.$ Вообще говоря, $A_k\notin\mathcal{A}.$ Но в нашем случае

$$A_k = C \setminus \bigsqcup_{i=1}^k C_i \in \mathcal{A}$$

Далее надо как-то воспользоваться непрерывностью сверху:

$$C = A_k \sqcup \left(\bigsqcup_{i=1}^k C_k\right) \Longrightarrow \mu(C) = \mu(A_k) + \sum_{i=1}^k \mu(C_k)$$

Переходя к пределу при $k \to +\infty$, получаем требуемое.

4.4 О стандартном продолжении меры

Определение. Пространством с мерой называется тройка (X, \mathcal{A}, μ) , где $\mathcal{A} - \sigma$ -алгебра, $\mu \colon \mathcal{A} \to \overline{\mathbb{R}}$ — мера.

Определение. $\langle X, \mathcal{A}, \mu \rangle$ называется *полным* (соответственно мера называется *полной*), если $\forall E \in \mathcal{A} \colon \ \mu(E) = 0 \Longrightarrow \forall A \subseteq E \ A \in \mathcal{A} \ \text{и} \ \mu(A) = 0.$

Определение. $\langle X, \mathcal{P}, \mu \rangle$ называется σ -конечным (соответственно мера называется σ -конечной), если $X = \bigcup_{i=1}^{+\infty} B_k$, где $\mu(B_k) < +\infty$.

Теорема 4.4.1. (О стандартном продолжении меры) $(X, \mathcal{P}, \mu_0), \mu_0 \longrightarrow \sigma$ -конечный объём. Тогда $\exists \ \sigma$ -алгебра \mathcal{A} и мера $\mu \colon \mathcal{A} \to \overline{\mathbb{R}}$:

1.
$$\mathcal{P} \subseteq \mathcal{A}$$
, $\mu|_{\mathcal{P}} = \mu_0$

- 2. μ полная
- 3. Если $\mathcal{A}'\supseteq\mathcal{P},\ \mu'\big|_{\mathcal{P}}=\mu_0,\ \mu'$ полная, тогда $\mathcal{A}\subseteq\mathcal{A}'$ и $\mu'\big|_{\mathcal{A}}=\mu$
- 4. Если \mathcal{P}' полукольцо, μ' мера на \mathcal{P}' , $\mathcal{P}\subseteq\mathcal{P}'\subseteq\mathcal{A}$, тогда $\mu'=\mu\big|_{\mathcal{P}'}$

5.
$$\forall A \in \mathcal{A} \ \mu(A) = \inf \left(\sum_{k=1}^{+\infty} \mu_0(P_k) \ \middle| \ A \subseteq \bigcup_{k=1}^{+\infty} P_k, P_k \in \mathcal{P} \right)$$

4.5 Мера Лебега

Теорема 4.5.1. Классический объём в \mathbb{R}^m является σ -конечной мерой.

Определение. *Мерой Лебега* называется стандартное продолжение классического объёма.

Определение. Алгебра, на которой определена мера Лебега, обозначается \mathfrak{M} .

Определение. Измеримыми по Лебегу называются множества $A \in \mathfrak{M}$.

Теорема 4.5.2. (Свойства меры Лебега)

- 1. Объединения и пересечения измеримых множеств измеримы.
- 2. Все открытые и замкнутые множества измеримы.

Лемма 4.5.3. (О структуре открытых множеств)

- 1. $0 \subseteq \mathbb{R}^m$ открыто $\Longrightarrow \exists Q_i$ ячейки в \mathbb{R}^m такие, что $0 = \bigsqcup_i Q_i$, причем можно дополнительно считать, что выполнено что-либо из нижеперечисленного:
 - (а) Ячейки имеют рациональные (двоично-рациональные) координаты
 - (b) $Cl(Q_i) \subseteq \emptyset$
 - (c) *Q_i* кубы
- 2. Пусть E измеримо в \mathbb{R}^m , $\lambda(E)=0$, тогда $\forall \varepsilon>0$ $\exists Q_i$ ячейки в \mathbb{R}^m такие, что $E\subseteq \bigcup_i Q_i$ и $\sum_i \mu(Q_i)<\varepsilon$.

Теорема 4.5.4. (Свойства меры Лебега)

- 3. [Канторово множество ТВD]
- 4. [Пример неизмеримого множества TBD]
- 5. A ограничено, тогда $\lambda(A)$ < +∞
 - A открыто, тогда $\lambda(A) > 0$
 - $\lambda(A)$ = 0 ⇒ У A нет внутренних точек

- 6. A измеримо, тогда $\forall \varepsilon > 0$
 - $\exists G_{\varepsilon}$ открытое такое, что $A \subset G_{\varepsilon}$, $\lambda(G_{\varepsilon} \setminus A) < \varepsilon$
 - $\exists F_{\varepsilon}$ замкнутое такое, что $F_{\varepsilon} \subset A$, $\lambda(A \setminus F_{\varepsilon}) < \varepsilon$

Определение. Пусть $A \subseteq 2^X$, тогда *борелевской оболочкой* множества A называют минимальную по включению σ -алгебру, содержащую A.

Определение. *Борелевской \sigma-алгеброй* называется борелевская оболочка всех открытых множеств.

Следствие 4.5.5. *А* измеримо, тогда \exists борелевские $B,C: B \subset A \subset C$ такие, что $\lambda(C \setminus B) = 0$.

Следствие 4.5.6. *А* измеримо, тогда $A = B \cup \mathfrak{N}$, B — борелевское, $\lambda(\mathfrak{N}) = 0$.

Следствие 4.5.7. (Регулярность меры Лебега) Пусть *А* измеримо, тогда

$$\lambda(A) = \inf_{\substack{G \supset A \\ G \text{ открыто}}} \lambda(G) = \sup_{\substack{F \subset A \\ F \text{ замкнуто}}} \lambda(F) = \sup_{\substack{K \subset A \\ K \text{ компакт}}} \lambda(K)$$

Лемма 4.5.8. Пусть $\langle X', \mathcal{A}', \mu' \rangle$ — пространство с мерой. $\langle X, \mathcal{A}, _ \rangle$ — заготовка для пространства с мерой. $T: X \to X'$ — биекция, $\forall A \in \mathcal{A} \ T(A) \in \mathcal{A}', \ T(\emptyset) = \emptyset$. Положим $\mu(A) = \mu'(T(A))$. Тогда μ — мера на \mathcal{A} .

Лемма 4.5.9. $T: \mathbb{R}^m \to \mathbb{R}^n \in C(\mathbb{R}^m), \ \forall E \in \mathfrak{M} \ \lambda(E) = 0 \Longrightarrow \lambda(T(E)) = 0,$ тогда $\forall A \in \mathfrak{M} \ T(A) \in \mathfrak{M}.$