(19)日本国特許庁(JP)

(12)公表特許公報 (A)

(11)特許出願公表番号

特表 2 0 0 2 - 5 1 8 3 8 6 (P 2 0 0 2 - 5 1 8 3 8 6 A) (43)公表日 平成14年6月25日(2002.6.25)

(51) Int. C1. 7 C 0 7 D 401/0 413/0 417/0 473/0	4 4	F I C O 7 D 401/0 413/0 417/0 473/0	10000 04 04
(21) 出願番号 (86) (22) 出願日 (85) 翻訳文提出日 (86) 国際出願番号 (87) 国際公開日 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	審査請求 未請求 予備審查 特願2000-554721 (P2000-554721) 平成11年6月16日 (1999. 6. 16) 平成12年12月6日 (2000. 12. 6) PCT/US99/13521 W099/65896 平成11年12月23日 (1999. 12. 23) 60/089, 846 平成10年6月19日 (1998. 6. 19) 米国 (US)	E請求 有 (71)出願人 イーEINT アンラント (72)発明者 ビンディ	(全33頁) ーライ・リリー・アンド・カンパニー LI LILLY AND COMPA メ メリカ合衆国46285インディアナ州 イ ディアナポリス市、リリー・コーポレイ ・センター レセント・パトリック・ロッコ メリカ合衆国46250インディアナ州イン ィアナポリス、ヘイワード・プレイス4
			最終頁に続く

(54) 【発明の名称】ヘテロアリール化合物の製造

(57)【要約】

本発明は、4-ヘテロアリール-1, 2, 3, 6-テトラヒドロビリジン類および4-ヘテロアリールピペリジンの 製造方法を提供する。

【特許請求の範囲】

【請求項1】 式1:

【化1】

(式中、 R^1 は C_1 - C_4 アルキルまたは窒素保護基であり、 R^2 は水素または C_1 - C_6 アルキルである)

のヘテロアリールー1, 2, 3, 6-テトラヒドロピリジンの製造方法であって

式 I I:

【化2】

(式中、ハライドはクロロ、ブロモまたはヨードである)

のヘテロアリールハライドを、適当な反応媒体中で、パラジウム触媒、ヘキサ (C₁-C₆アルキル) ジスズおよび塩化リチウムの存在下に、式 I I I:

【化3】

のトリフレートと反応させることを含む方法。

【請求項2】 ハライドがクロロである請求項1に記載の方法。

【請求項3】 式I のヘテロアリールー1, 2, 3, 6 ーテトラヒドロピリジンを還元して、式IV:

【化4】

のヘテロアリールピペリジンを得ることを更に含む請求項1また2に記載の方法

【請求項4】 R¹が窒素保護基である場合、窒素保護基の除去を更に含む 請求項1~3のいずれかに記載の方法。

【請求項5】 パラジウム触媒がテトラキス (トリフェニルホスフィン) - パラジウム (0) である請求項1~4のいずれかに記載の方法。

【請求項 6 】 へキサ(C_1-C_6 アルキル)ジスズがヘキサメチルジスズである請求項 $1\sim 5$ のいずれかに記載の方法。

【請求項7】 適当な反応媒体がジオキサンである請求項 $1\sim6$ のいずれかに記載の方法。

【請求項8】 R^1 が窒素保護基である請求項 $1\sim7$ のいずれかに記載の方法。

【請求項9】 窒素保護基がtertーブトキシカルボニルである請求項8に記載の方法。

【発明の詳細な説明】

[0001]

4ーアリールピペリジン類および4ーアリールー1, 2, 3, 6ーテトラヒドロピリジン類はさまざまな薬理学的活性を示すことが知られている。ピペリジニルインドール類およびテトラヒドロピペリジニルインドール類はセロトニン5ーHT₁様受容体のアゴニストであり(Baker等、米国特許第5, 298, 520号)、 $5-HT_1$ 、 $5-HT_1$ Aおよび $5-HT_2$ 受容体に親和性を有することが知られている(Taylor等,Molecular Pharmacology, 34, 42-53 (1988))。或るピペリジニルベングチオフェン類はセロトニン $5-HT_2$ アンタゴニストであることが知られている(Watanabe等、Journol of Heterocyclic Chemistry, 30, 445 (1993))。さらに、或る4ーアリールー1、2、3、6ーテトラヒドロピリジン類および4ーアリールピペリジン類は、セロトニン再取り込の阻害剤であることがAudia等により教示されている(WO97/47302)。

[0002]

この種の分子は、適当なアリールの基質を4ーピペリドンまたはピペリドンエノレート誘導体とカップリングさせることにより一般に得られる。そのようなカップリングのペアには、4ーピペリドンとのアリールアニオン、またはパラジウム触媒存在下でのエノールトリフレートとのアリールボロン酸が含まれる。これらの方法は多くの誘導体を提供するが、ヘテロアリール部分に対する連結点が窒素原子に隣接する場合にはこれらの化合物を製造することは困難であるか、または不可能であった。本発明はこれらのヘテロアリールー1, 2, 3, 6ーテトラヒドロピリジン類およびヘテロアリールピペリジン類の製造方法を提供する。

[0003]

本発明は、式 I:

[145]

(式中、 R^1 は C_1 - C_4 アルキルまたは窒素保護基であり、そして R^2 は水素または C_1 - C_6 アルキルである)

のヘテロアリールー1, 2, 3, 6ーテトラヒドロピリジンの製造方法を提供し、その方法は、式II:

【化6】

のヘテロアリールハライドを、式 I I I:

【化7】

III

のトリフレートと、適当な反応媒体中でパラジウム触媒、ヘキサ(C₁-C₆アルキル)ジスズおよび塩化リチウムの存在下に反応させることを含む。

[0004]

本発明は、式 I V:

【化8】

のヘテロアリールピペリジンの製造方法をも提供し、その方法は、式 I:

【化9】

のヘテロアリールー1, 2, 3, 6 ーテトラヒドロピリジンを還元することを含む(式中 R^1 は C_1 ー C_4 アルキルまたは窒素保護基であり、そして R^2 は水素または C_1 ー C_6 アルキルである)。

[0005]

本発明は、R¹が窒素保護基である式 I および式 I Vの化合物を脱保護して、対応する 2級アミンを得ることを更に含む方法をも提供する。

[0006]

本発明は、以下の式:

【化10】

(式中、ハライドはクロロ、ブロモまたはヨードであり; R^1 は C_1 - C_4 アルキルまたは窒素保護基であり;そして R^2 は水素または C_1 - C_6 アルキルである)によって一般的に示される変換に有用である。本発明の方法は、適当な溶媒中で、パラジウム触媒、ヘキサ(C_1 - C_4 アルキル)ジスズおよび塩化リチウムの存在下に、適当なヘテロアリールハライド(II) を適当なトリフレート(III)と反応させることによって行う。反応が完了したら、生じたテトラヒドロピリジン(I)を標準的な抽出および濾過により単離する。所望なら、そのテトラヒドロピリジン生成物を、適宜クロマトグラフィーまたは再結晶によって更に精製してもよい。反応物を混合する順序および方法は重要でなく、便宜的に変更してもよい。

[0007]

本発明の方法を用いる反応は、選択した反応媒体の還流温度で好ましくは行う。便利であるか又は望ましいなら、反応を還流温度以下で行ってもよい。当業者は温度が低下するに応じて、反応速度は典型的には小さくなることを理解するであろう。

[0008]

本発明の方法に有用なヘテロアリールハライド(II)のヘテロアリール部分は、ハライド原子を有する sp^2 混成炭素原子に隣接した、少くとも 1 個の sp^2 混成窒素原子を含むヘテロ環式の環として特徴づけられる。 sp^2 混成炭素原子は、 sp^2 混成軌道を用いて、それが結合する 3 個の原子と結合を形成する原子である。同様に、 sp^2 混成窒素原子は、 sp^2 混成軌道を用いて、それが結合する 2 個の原子と結合を形成する原子である。これらの sp^2 混成軌道は 1 つの 2 s 電子及び 2 つの 2 p 電子の混成から生じる(March,Advanced Organic Chemis

try, 第3版, 6-9 頁, John Wiley and Sons, New York, NY)。

[0009]

そのヘテロ環式の環は、孤立した環であってもよく、他の環系に融合していてもよい。そのヘテロ環式の環は、必要な反応性が存在し、置換基が反応を妨害しない限り、置換されていてもよい。本発明の方法に有用な基質であるヘテロアリール部分には、ピラゾールー3ーイル、イミダゾールー2ーイル、イミダゾールー4ーイル、ピリジンー2ーイル、ピリミジンー4ーイル、ピリミジンー6ーイル、ピリダジンー3ーイル、ペングチアゾールー2ーイル、ベンズオキサゾールー2ーイル、ベングイソチアゾールー3ーイル、ベングインキサゾールー3ーイル、キノリンー2ーイル、インキノリンー1ーイル、インキノリンー3ーイル、キナゾリンー2ーイル、オナゾリンー4ーイル、シンノリンー3ーイル、フタラジンー1ーイル、プリンー2ーイル、プリンー6ーイル、プリンー8ーイル、キノキサリンー2ーイル、プテリジンー2ーイル、プテリジンー7ーイル等が含まれる

[0010]

ヘテロアリールハライド(II)のハライド部分は、クロロ、ブロモ、ヨードから選択する。ハライドがクロロであるヘテロアリールハライドが好ましい。ヘテロアリールハライド(II)は商業的に入手できるか、当業者に周知の技術により製造し得る。

[0011]

前述のように、トリフレート試薬は式 I I I:

【化11】

III

(式中、 R^1 は C_1 - C_4 アルキルまたは窒素保護基であり、;そして R^2 は水素または C_1 - C_6 アルキルである)

の化合物である。窒素保護基は、第2級窒素原子による妨害なしに反応を進行させることを可能にし、その後除去してその第2級アミンを再生させるこれらの部分である。本発明の方法に有用な窒素保護基は当業者に周知である(Greene、Protectire Groups in Organic Chemistry、第2版、Wiley Interscience、New York(1991))。好ましい保護基はフェノキシカルボニルおよび C_1-C_4 アルコキシカルボニル基、特にter-ブトキシカルボニルである。その必要なトリフレートを、対応するピペリジンー4ーオンのエノレートを、適当なトリフレート化試薬、好ましくは $N-フェニルトリフルオロメタンスルホンアミドと反応させることにより製造する。エノレートは、対応するピペリジンー4ーオンの適当な塩基による処理によって、または対応する1、2、3、4ーテトラヒドロピリジンー4ーオンへの水素化物還元剤または<math>C_1-C_4$ アルキルグリニヤ試薬等の水核試薬の共役付加によって製造し得る。これらのピペリジンー4ーオンおよび1、2、3、4ーテトラヒドロピリジンー4ーオンは商業的に入手

[0012]

ヘテロアリールハライド(II) およびトリフレート(III) は、典型的にはおよそ等モル量を加え、このモル比が好ましい。当業者は、必要な場合または望ましい場合、他の試薬に対していずれかの試薬のモル過剰を用いてもよいことを理解するであろう。

し得るか、または当業者に周知の方法により製造し得る。

[0013]

本発明の方法のためのパラジウム触媒は、トリス (ジベンジリデンアセトン)

ジパラジウム(0)、テトラキス(トリフェニルホスフィン)パラジウム(0)、およびテトラキス(メチルジフェニルホスフィン)ーパラジウム(0)等のパラジウム(0)触媒でなければならない。パラジウム(0)触媒がリガンドに対して錯化する場合、少くとも1つまたは複数のリガンドは所望なら不溶性の固体支持体に結合していてもよい。好ましくはパラジウム触媒はテトラキス(トリフェニルホスフィン)パラジウム(0)である。パラジウム触媒は、基質の量に基いて約2~約25モルパーセント存在してもよい。約5~約10モル%の範囲のパラジウム触媒量が好ましく、約5モル%は本発明の方法に最も好ましい。

[0014]

本発明の方法に用いるヘキサ(C_1-C_6 アルキル)ジスズは、基質に対して少くとも約1 モル当量の該試薬が存在する限り重要ではない。好ましい量およびジスズ試薬は基質と約等モル量であり、好ましいジスズ試薬はヘキサメチルジスズである。そのジスズ試薬は商業的に入手可能か、または当業者に周知の方法により製造し得る。

[0015]

本発明の方法に用いる塩化リチウムは基質に対して過剰に用いる。基質に対して約2~約10倍モル過剰の塩化リチウムを用い得る。約2~約5のモル過剰が好ましく、約3倍のモル過剰が最も好ましい。本発明の方法に用いる塩化リチウムは無水であるべきである。ここで無水とは塩化リチウムが本発明の方法を促進するため水を含まないことを意味する。

[0016]

本発明の方法に有用な反応媒体は、十分量の基質を溶解し反応が進行することができねばならない。本発明の方法の反応媒体として有用な有機溶媒には、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテルおよびメチルtertーブチルエーテル等のエーテルを含む。好ましい溶媒はジオキサンである。ジオキサンは無水であることが好ましく、ここで無水とはジオキサンが水を含まず、本発明の方法が進行できることを意味する。反応媒体を本発明の方法での使用前に脱酸素することも好ましい。脱酸素は、窒素またはアルゴン等の不活性ガスを反応媒体にバブリングすることにより達成し

得る。反応媒体は窒素で脱酸素することが好ましい。

[0017]

本発明の方法は、選択した反応媒体における個々の基質の溶解性に依存して、約0.05~約1モル濃度の基質という大きい濃度範囲で行い得る。十分量の基質が反応媒体に可溶で反応が進行する限り、反応は基質のスラリーで行ってもよい。好ましくは該方法は約0.4~1モル濃度で行う。約0.4~約0.8モル濃度が好ましい。

[0018]

 R^1 が窒素保護基である式 I の 1 , 2 , 3 , 6 ーテトラヒドロピリジンは対応する第 2 級アミンの製造のための有用な中間体である。脱保護工程は当業者に周知の方法により行い得る。例えば、tert- ブトキシカルボニル基をトリフルオロ酢酸での処理により除去し得る。従って、本発明の方法は、 R^1 が窒素保護基である式 I の化合物を脱保護して対応する 2 級アミンを得ることを更に含む。

[0019]

式 I の中間体 1, 2, 3, 6 ーテトラヒドロピリジンを用いて、炭素上のパラジウムのような貴金属触媒上での水素化により式 I Vの対応するピペリジンを製造し得る。ヘテロアリール部分がブロモ基で置換されている場合、炭素上の硫化白金、酸化白金、または炭素上の硫化白金の酸化白金との混合触媒系等の水素化触媒を用いて、テトラヒドロピリジニル2 重結合の還元の間のブロモ置換基の水素化分解を防止する。水素化の溶媒はメタノールまたはエタノール等の低級アルコール、テトラヒドロフラン、またはテトラヒドロフランおよび酢酸エチルの混合溶媒系よりなり得る。水素化は、20~80p.s.i.、好ましくは50~60p.s.i.の初期水素圧、好ましくは周囲温度~40℃で1時間~3日間行い得る。具体的な基質に依存して反応を完結させるために水素の更なる添加が必要かも知れない。触媒を濾過により除去した後、減圧下に反応溶媒を濃縮することにより、この方法で製造したピペリジンを単離する。回収された生成物を次の工程に直接用いてもよいし、クロマトグラフィーにより若しくは適当な溶媒からの再結晶により更に精製してもよい。

[0020]

水素化に対する代替として、1, 2, 3, 6-テトラヒドロピリジンを、所望ならトリエチルシランで処理することにより、対応するピペリジンに変換してもよい。1, 2, 3, 6-テトラヒドロピリシンをトリフルオロ酢酸に溶解し、それに過剰の、1. $1 \sim 10$. 0 当量のトリエチルシランを加える。反応混合物をおよそ周囲温度で約 $1 \sim$ 約48時間攪拌し、その時点で反応混合物を減圧下に濃縮する。残渣を次に2 N水酸化ナトリウムまたはカリウムで処理し、その混合物をジクロロメタンまたはジエチルエーテル等の水と混和しない溶媒で抽出する。得られたピペリジンを、必要または望ましい場合、標準的方法により精製してもよい。 R^1 が窒素保護基である得られたピペリジンは上述のように除去して、対応する第2 級アミンを得てもよい。当業者は、必要および望みに応じて、2 重結合の還元前、またはその後に脱保護を行い得ることを理解するであろう。従って、本発明は、1, 2, 3, 6-テトラヒドロピリジン2 重結合を還元して、対応するピペリジンを製造し、そして R^1 が窒素保護基である場合には脱保護することを更に含む方法をも提供する。

[0021]

本発明の方法を、以下の製造例および実施例により説明する。それらは本発明の範囲を限定することを意図するものではない。

[0022]

製造例I

1-フェノキシカルボニル-2-メチル-1, 2, 3, 4-テトラヒドロピペリジン-4-オン

30mLのテトラヒドロフラン中の1.5g(13.7mMol)の4-メトキシピリジンおよび4.6mL(13.7mMol)のメチルマグネシウムクロライドの溶液を-23℃まで冷却し、その時点で1.72mL(13.7mMol)のフェニルクロロホルメートを加えた。反応混合物を20分間攪拌し、次に10%塩酸中に注ぎ込み、室温で10分間攪拌した。この混合物を次にジェチルエーテルでよく抽出した。エーテル抽出物を一緒にし、塩化ナトリウム飽和水溶液で洗浄し、硫酸ナトリウムで乾燥し、減圧下に濃縮した。残渣をフラッシュシリカゲルクロマトグラフィーにかけ、9:1へキサン:酢酸エチルで溶出させた

。生成物を含む画分を一緒にし、減圧下に濃縮し、標記化合物 1.54g (49%)を白色固体として得た。

[0023]

製造例II

1, 2-ジメチルピペリジン-4-オン

<u>エチル3-(N-メチルアミノ)ブタノエート</u>

479.2mL(0.958mole)のメチルアミン(テトラヒドロフラン中2M)の溶液を99.44gのエチルクロトネートに攪拌しながら添加した。 室温で5日攪拌後、反応混合物を減圧下に濃縮してテトラヒドロフランを除いた。 残留物を蒸留して2分画で所望の生成物91.25g(72%)を得た。

 $MS (FD) : m/e = 145 (M^{+})$

元素分析(C7H15NO2として計算)

理論値; C, 57. 90; H, 10. 41; N, 9. 65

測定値: C, 57.61; H, 10.66; N, 9.88

[0024]

エチル3 - (N-メチル-N- (2-エトキシカルボニルエタ-1-イル) アミノ) ブタノエート

54.4g(0.374mole)のエチル3-(N-メチルアミノ)ブタノエートおよび100g(0.999mole)のアクリル酸エチルの混合物を110℃で攪拌しながら18時間加熱した。反応混合物を室温まで冷却し、次に減圧下に蒸留して、6.17g(67.1%)の所望の化合物を得た。

沸点=93~100℃ (0. 12mmHg)

 $MS (FD) : m/e = 2.4.5 (M^{+})$

元素分析(C12H23NO4として計算)

理論値; C, 58. 75; H, 9. 45; N, 5. 71

測定値: C, 59.02; H, 9.65; N, 6.00

[0025]

環化/脱カルボキシル化

· 150mLのベンゼン中の43.0g(0.175モル)のエチル3-(N-

メチルーNー(2ーエトキシカルボニルエター1ーイル)アミノ)ブタノエートの溶液を、100mLのベンゼン中の5.6g(0.14mole)の水素化ナトリウム(鉱油中の60%分散液)の攪拌した懸濁液に室温で滴下した。このゼラチン状混合物に、さらに250mLのベンゼンおよび3.5g(0.088mole)の水素化ナトリウム(鉱油中の60%分散液)を加え、混合物を還流温度で2時間加熱した。次に反応混合物を室温まで冷却し、濃塩酸の添加により酸性化した。相分離を行い、有機層を100mLの5N塩酸で3回抽出した。一緒にした水層を室温で18時間静置し、次に4時間還流温度で加熱した。反応混合物を0℃に冷却し、50%NaOH水溶液で塩基化(pH約14)した。混合物を200mLのジクロロメタンで4回抽出した。一緒にした有機抽出物を硫酸ナトリウムで乾燥し、次に減圧下に濃縮して、22.2gの褐色の油を得た。この残存の油をシリカゲルクロマトグラフィーに付し、痕跡量の水酸化アンモニウムを含むジクロロメタン中の5%メタノールで溶出させた。生成物を含むことが示された画分を一緒にし、減圧下に濃縮し、18.7gの油を得た。この油を分別蒸留し、10.2g(46%)の標記化合物を得た。

 $MS (FD) : m/e = 1 2 7 (M^+)$

元素分析(C7H13NOとして計算)

理論値: C, 66.10; H, 10.30; N, 11.01

測定値: C, 65.80; H, 10.44; N, 11.04

[0026]

製造例III

1-tert-ブトキシカルボニル-4-ピペリドン

0℃のジオキサン/水中の9.0g(61.5mMol)の4ーピペリドン塩酸塩一水和物の溶液を炭酸ナトリウム水溶液および14.4g(68mMol)の2,2ージメチルプロパン酸無水物(BOC無水物)で連続的に処理した。得られたスラリーを室温で18時間激しく攪拌した。次に反応生成物を減圧下に濃縮し、残渣を酢酸エチルで稀釈した。この混合物を1.5Mの硫酸水素ナトリウム水溶液で、pHが約2になる迄処理した。層分離を行い、有機層を塩化ナトリウム飽和水溶液で洗滌し、硫酸ナトリウムで乾燥し、減圧下で濃縮し、9.8g

(80%)の標記化合物を黄褐色固体として得た。

元素分析(C10H17NO3として計算)

理論値: C, 60.28; H, 8.60; N, 7.03

測定値: C, 60.12; H, 8.54; N, 7.11

 $MS (m/e) : 199 (M^{+})$

[0027]

製造例IV

1-フェノキシカルボニル-2-メチル-4-トリフルオロメタンスルホニルオキシ-1, 2, 3, 6-テトラヒドロピリジン

テトラヒドロフラン中の11.47g(49.8mMol)の1-フェノキシカルボニルー2ーメチルー1,2,3,4ーテトラヒトドロピペリジンー4ーオンの溶液を-23℃まで冷却し、その時点で54.8mL(54.8mMol)のLーセレクトライド(テトラヒドロフラン中1.0M)を添加ロートから滴下した。反応混合物を2時間攪拌し、次にテトラヒドロフラン中の18.69g(52.3mMol)のNーフェニルトリフルオロメタンスルホンイミドを滴下し、得られた混合物を室温で18時間攪拌した。反応混合物を次に減圧下に濃縮し、残渣をジエチルエーテルに溶解した。エーテル抽出物を一緒にし、塩化ナトリウム飽和水溶液で洗滌し、硫酸マグネシウムで乾燥し、減圧下に濃縮した。残渣をフラッシュシリカゲルクロマトグラフィーにかけ、9:1~キサン:酢酸エチルで溶出した。生成物を含む画分を一緒にし、減圧下に濃縮し、9.46g(52%)の標記化合物を黄色油として得た。

[0028]

実施例1

4-(+) リンー 2- イル) -1 , 2 , 3 , 6- テトラヒドロピリジン 1- tert - ブトキシカルボニル- 4-(+) リンー 2- イル) - 1 , 2 , 3 , 6 - テトラヒドロピリジン

ジオキサン中の0.800g(4.9mMo1)の2-クロロキノリン、<math>1.62g(4.9mMo1)の1-tert-ブトキシ-4-トリフルオロメタンスルホニルオキシ-1, <math>2,3,6-テトラヒドロピリジン、<math>1.75g(4.9m)

Mol)のヘキサメチルジスズ、0.622g(14.7mMol)の無水塩化リチウムおよび0.283g(0.24mMol)のテトラキス(トリフェニルホスフィン)パラジウム(0)の混合物を還流温度で約16時間攪拌した。反応混合物を室温まで冷却し、次にフッ化カリウム飽和水溶液に注ぎ入れた。次にその混合物を酢酸エチルで稀釈し、約2時間攪拌した。層分離を行い、有機層を塩化ナトリウム飽和水溶液で洗滌し、硫酸マグネシウムで乾燥し、減圧下に濃縮した。残渣をフラッシュシリカゲルクロマトグラフィーにかけ、約6%の酢酸エチルを含むヘキサンで溶出した。生成物を含む画分を一緒にし、減圧下に濃縮し、0.632gの所望の化合物をうすい黄色の油として得た。

[0029]

脱保護

0.632g(2.0mMol)の1-tert-ブトキシカルボニルー4-(キノリン-2-イル)-1,2,3,6-テトラヒドロピリジン、5mLのトリフルオロ酢酸、1滴のチオフェノール、および5mLのジクロロメタンの混合物を室温で約5時間攪拌した。反応混合物を減圧下に濃縮し、残渣を酢酸エチルと2N水酸化ナトリウム間に分配した。相分離を行い、有機層を塩化ナトリウム飽和水溶液で洗滌し、硫酸ナトリウムで乾燥し、減圧下に濃縮し、0.268g(63%)の標記化合物を淡黄色のワックスとして得た。

一部を分析のためシュウ酸塩に変換した。

MS (FD) : $m/e = 210 (M^{+})$

元素分析 (C₁₄H₁₄N₂・C₂H₂O₄として計算)

理論值: C, 63.99; H, 5.37; N, 9.33

測定值: C, 64.13; H, 5.60; N, 9.57

[0030]

実施例2

 $1 - \text{tert} - \vec{\mathcal{I}}$ トキシカルボニルー 4 - (ピリジン - 2 - 4) - 1 , 2 , 3 , 6 ーテトラヒドロピリジン

0. 52g(4.6mMol)の2-クロロピリジンおよび1.53g(4.6mMol)の1-tert-ブトキシー4-トリフルオロメタンスルホニルオキシ

-1, 2, 3, 6 - テトラヒドロピリジンで出発して、実施例1に記載したのと実質的に同じ方法で0.59g(49%)の標記化合物を製造した。

[0031]

実施例3

 $1-\underline{\text{tert}}$ ープトキシカルボニルー4- (ピリミジンー2-イル) -1, 2, 3, 6-テトラヒドロピリジン

0.175g(1.5mMol)の2-クロロピリミジンおよび0.559g(1.7mMol)の1-tert-ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、0.128g(32%)の標記化合物を灰色がかった白色固体として製造した。

融点=82~84℃

元素分析(C14H19N3O2として計算)

理論値: C, 64.35; H, 7.33; N, 16.08

測定値: C, 64.53; H, 7.29; N, 16.23

[0032]

実施例4

 $1 - \underline{\text{tert}} - \overline{\text{J}} + \overline{\text{Fin}} + \overline{\text{Jin}} - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - 3 - 4 - (6 - \overline{\text{Jin}} + \overline{\text{Jin}}) - (6 - \overline$

0.226g(1.2mMol)の6-フェニルー3ークロロピリダジンおよび0.413g(1.25mMol)の $1-\underline{tert}$ -ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、0.200g(50%)の標記化合物を灰色がかった白色固体として製造した。

融点=152~154℃

元素分析(C₂₀H₂₃N₃O₂として計算)

理論値: C, 71.19; H, 6.87; N, 12.45

測定值: C, 71.27; H, 6.65; N, 12.39

[0033]

実施例5

0.250g(1.3mMol)の2-クロロー6-メトキシキノリンおよび 0.472g(1.4mMol)の1-tert-ブトキシー4ートリフルオロメタ ンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質 的に実施例1に記載の方法により0.162g(37%)の標記化合物をワック ス状固体として製造した。

融点=85~87℃

元素分析(C20H24N2O3として計算)

理論値: C, 70.57; H, 7.11; N, 8.23

測定値: C, 70.30; H, 7.22; N, 8.17

[0034]

実施例6

 $1-\underline{\text{tert}}$ ーブトキシカルボニルー 4- (ベンズイミダゾールー 2- イル) -1 , 2 , 3 , 6- テトラヒドロピリジン 0 . 2 5 水和物

0.203g(1.3mMol)の2-クロロベンズイミダゾールおよび0.466g(1.4mMol)の1-tert-ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により0.042g(11%)の標記化合物をワックス状固体として製造した。

融点=215~216℃

元素分析(C₁₇H₂₁N₃O₂・0.25H₂Oとして計算)

理論値: C, 67.19; H, 7.13; N, 13.83

測定值: C, 66.85; H, 7.13; N, 13.24

[0035]

実施例7

 $1 - \underline{\text{tert}} - \overline{\text{J}}$ トキシカルボニルー $4 - (1 - \text{tert} - \overline{\text{J}}$ トキシカルボニルベンズイミダゾールー 2 - 4 ル $(1 - \text{tert} - \overline{\text{J}}$ トラヒドロピリジン 0 . 25 水和

物

0.380g(1.5 mMol)の1-tert-ブトキシカルボニルー2-クロロベンズイミダゾールおよび0.524g(1.6 mMol)の1-tert-ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により0.159g(27%)の標記化合物を製造した。

融点=92~93℃

元素分析(C₂₂H₂₉N₃O₄・0.25H₂Oとして計算)

理論値: C, 65.41; H, 7.36; N, 10.40

測定値: C, 65. 49; H, 7. 24; N, 10. 96

[0036]

実施例8

1 - tert-ブトキシカルボニルー4- (キノキサリン-2-イル) -1, 2, 3, 6-テトラヒドロピリジン

0.264g(1.6 mMo1)の2ークロロキノキサリンおよび0.587g(1.8 mMo1)の $1-\underline{\text{tert}}$ ープトキシー4ートリフルオロメタンスルホニルオキシー1,2,3,6ーテトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、0.369g(74%)の標記化合物をうすいオレンジ色のワックス状固体として製造した。

融点=93~95℃

元素分析(C18H21N3O2として計算)

理論值: C, 69.43; H, 6.80; N, 13.49

測定値: C, 69.57; H, 6.74; N, 13.56

[0037]

実施例 9

 $1 - \text{tert} - \vec{j}$ トキシカルボニルー4 - (ベンゾオキサゾールー<math>2 - 4ル) -1, 2, 3, 6 -テトラヒドロピリジン

0. 204g(1. 3mMol)の2-クロロベンゾオキサゾールおよび0. 487g(1. 47mMol)の1-tert-プトキシー4-トリフルオロメタン

スルホニルオキシー1, 2, 3, 6ーテトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により0.196g(49%)の標記化合物を白色固体として製造した。

融点=129~132℃

元素分析(C₁₇H₂₀N₃O₃として計算)

理論値: C, 67.98; H, 6.71; N, 9.33

測定値: C, 67. 79; H, 6. 70; N, 9. 62

[0038]

実施例10

1-tert-ブトキシカルボニルー4-(ベンゾチアゾールー2-イル)-1, 2, 3, 6-テトラヒドロピリジン

0.214g(1.3 mMol)の2-クロロベンゾチアゾールおよび0.462g(1.39 mMol)の $1-\underline{\text{tert}}$ -ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法によって0.232g(58%)の標記化合物を灰色がかった白色固体として製造した。

融点=105~107℃

元素分析(C₁₇H₂₀N₃O₂Sとして計算)

理論値: C, 64.53; H, 6.37; N, 8.85

測定値: C, 64.37; H, 6.24; N, 8.67

[0039]

実施例11

1-tert-ブトキシカルボニルー4-(4-クロロベンゾチアゾールー2-イル) -1, 2, 3, 6-テトラヒドロピリジン

2. 0g(10 mMo 1) の 2, 4-ジクロロベンゾチアゾールおよび <math>3. 5 8g(10.8 mMo 1) の 1-tert-ブトキシー <math>4-トリフルオロメタンスル ホニルオキシー 1, 2, 3, 6-テトラヒドロピリジンで出発して、実質的に実

施例 1 に記載の方法により、2. 16g (63%) の所望の化合物を淡黄色ワックス状固体として製造した。

融点=98~101℃

元素分析 (C₁₇H₁₉N₂O₂S C l として計算)

理論値: C, 58.20; H, 5.46; N, 7.98

測定値: C, 58.43; H, 5.55; N, 8.01

[0040]

脱保護

0.805g(2.3 mMol)の $1-\underline{tert}$ -ブトキシカルボニルー4-(4-2)-クロロベンゾチアゾールー2ーイル)-1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により0.497g(86%)の標記化合物を灰色がかった白色固体として製造した。

融点=112~114℃

MS (FD) : $m/e = 250 (M^{+})$

元素分析 (C₁₂H₁₁N₂SClとして計算)

理論値: C, 57.48; H, 4.42; N, 11.17

測定値: C, 57.78; H, 4.48; N, 11.04

[0041]

実施例12

 $1 - \text{tert} - \vec{j} + \hat{j} +$

2. 0g(10 mMo 1) の2, 6-ジクロロベンゾチアゾールおよび3. 9 1g(11.8 mMo 1) の $1-\underline{\text{tert}}-$ ブトキシー4-トリフルオロメタンスルホニルオキシー1, 2, 3, 6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により1. 77g(51%) の所望の化合物をワックス状固体として製造した。

元素分析(Cı7Hı9N2O2SClとして計算)

理論値: C, 58.20; H, 5.46; N, 7.98

測定値: C, 57. 90; H, 5. 48; N, 8. 01

[0042]

脱保護

0. 408g (1. 2 mMol) $01 - \text{tert} - \vec{J} + \hat{J} + \hat{J}$

融点=125℃

 $MS (FD) : m/e = 250 (M^{+})$

元素分析 (C₁₂H₁₁N₂SC₁として計算)

理論値: C, 57.48; H, 4.42; N, 11.17

測定値: C, 57.19; H, 4.63; N, 11.01

[0043]

実施例13

 $1 - \underline{\text{tert}} - \overline{\text{v}}$ トキシカルボニルー $4 - (4 - \overline{\text{y}} + \overline{\text{v}} +$

0.227g(1.2mMo1) の2-クロロー4-メチルベンゾチアゾールおよび0.409g(1.3mMo1) の1-tertーブトキシー4-トリフルオロメタンスルホニルオキシー1, 2, 3, 6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法によって0.254g(64%) の標記化合物を灰色がかった白色のワックス状固体として製造した。

元素分析(C₁₈H₂₂N₂O₂Sとして計算)

理論値: C, 65.43; H, 6.71; N, 8.48

測定值: C, 65.68; H, 6.57; N, 8.57

[0044]

実施例14

1 - tert - ブトキシカルボニルー $4 - (4 - \lambda)$ トキシベンゾチアゾールー $2 - \lambda$ ル) - 1, 2, 3, $6 - \tau$ トラヒドロピリジン

0.231g(1.2mMol)の2-クロロー4ーメトキシベンゾチアゾールおよび0.403g(1.2mMol)の1-tert-ブトキシー4ートリフルオロメタンスルホニルオキシー1,2,3,6ーテトラヒドロピリジンで出発して、実質的に実施例1に記載の方法によって0.191g(48%)の標記化合物を灰色がかった白色固体として製造した。

元素分析(C₁₈H₂₂N₂O₃Sとして計算)

理論値: C, 62.40; H, 6.40; N, 8.09

測定値: C, 62.23; H, 6.25; N, 8.06

[0045]

実施例15

1-tert-ブトキシカルボニルー4ー(5-ニトロベンゾチアゾールー2ーイル)-1,2,3,6-テトラヒドロピリジン半水和物

0.130g(0.6mMol)の2-クロロー5ーニトロベンゾチアゾールおよび0.211g(0.64mMol)の1-tertーブトキシー4ートリフルオロメタンスルホニルオキシー1,2,3,6ーテトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により0.031g(14%)の標記化合物を淡黄色のワックス状固体として製造した。

元素分析(C₁₇H₁₉N₃O₄S・0.5H₂Oとして計算)

理論値: C, 55.12; H, 5.44; N, 11.34

測定値: C, 55.36; H, 5.31; N, 11.07

[0046]

実施例16

 $1 - \underline{\text{tert}} - \vec{\text{z}} + \hat{\text{z}} + \hat{\text{z}$

0.256g(1.7mMol)の6-クロロプリンおよび0.579g(1.7mMol)の1-tert-ブトキシー4-トリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、0.097g(回収した出発物質をベースにして21%)の標記化合物を淡褐色の泡状物として製造した。

融点=84℃

元素分析(C15H19N5O2として計算)

理論値: C, 59.79; H, 6.35; N, 23.24

測定値: C, 59.54; H, 6.30; N, 23.41

[0047]

実施例17

4-(6-クロロベンゾチアゾール-2-イル)ピペリジン

1-tert-ブトキシカルボニル-4-(6-クロロベンゾチアゾール-2-イル) ピペリジン

20mLメタノール中の0.939g(2.7mMol)の1ーtertーブトキシカルボニルー4ー(6ークロロベンゾチアゾールー2ーイル)ー1,2,3,6ーテトラヒヒドロピリジンおよび触媒量の酸化白金の混合物を室温で約1気圧の水素下で約3時間攪拌した。反応混合物を減圧下に濃縮し、残渣を最小容量の酢酸エチルに溶解した。この混合物をシリカゲルのベッドに通し、酢酸エチルおよびヘキサンの1:1混合物で溶出した。濾液を減圧下に濃縮して、0.663g(70%)の所望の化合物を淡褐色油として得た。

[0048]

脱保護

0.663g(1.9mMol)の1-tert-ブトキシカルボニル-4-(6-クロロベンゾチアゾール-2-イル)ピペリジンで出発して、実質的に実施例14に記載の方法により0.263g(55%)の標記化合物を灰色がかった白色の固体として製造した。

融点=115~117℃

 $MS (FD) : m/e = 252 (M^{+})$

[0049]

実施例18

 $1 - \frac{\text{tert}}{\text{tert}} - \vec{y}$ トキシカルボニルー $2 - \vec{y}$ チルベンゾチアゾールー $2 - \vec{q}$ ルー 1 、 2 、 3 、 6 ーテトラヒドロピリジン

1. 30g(6. 58mMol)の2-クロロー4, 5-ジメチルベンゾチア

ゾールおよび 2. 28g(6. $58\,\mathrm{mMo\,I}$)の $1-\mathrm{tert}$ ーブトキシー $4-\mathrm{FJ}$ フルオロメタンスルホニルオキシー 1, 2, 3, $6-\mathrm{F}$ トラヒドロピリジンで出発して、実質的に実施例 1 に記載の方法により、 1. 0 g(4 3 %)の標記化合物を油状半固体として製造した。

[0050]

実施例19

 $1 - \text{tert} - \vec{y} + \hat{z} +$

1.00g(5.06mMol)の2-クロロー5,6-ジメチルベンゾチア. ゾールおよび1.74g(5.06mMol)の1-tert-ブトキシー4ートリフルオロメタンスルホニルオキシー1,2,3,6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、0.89g(49%)の標記化合物を油状半固体として製造した。

MS (イオンスプレー): m/e=360.5 (M^{+})

[0051]

実施例20

 $1 - \underline{\text{tert}} - \vec{\text{y}} + \hat{\text{y}} + \hat{\text{y}$

1. 50g (7. 30mMol) の2-クロロー4, 6-ジフルオロベンゾチアゾールおよび2. 52g (7. 30mMol) の1-tertーブトキシー4ートリフルオロメタンスルホニルオキシー1, 2, 3, 6-テトラヒドロピリジンで出発して、実質的に実施例1に記載の方法により、1. 49g (56%) の標記化合物を油状半固体として製造した。

MS (1) + (

[0052]

本発明の方法により利用できる化合物は薬理学的に活性な化合物の製造のための有用な中間体である。本発明の方法により利用できる化合物のあるものはセロトニン再取り込みの阻害剤である。セロトニンの再取り込みを阻害する化合物の

有効性はパロキセチン結合アッセイにより測定されており、その有用性はWong 等,<u>Neuropsychopharmacology</u>,<u>8</u>、23-33(1993)により示されてい る。ラットの大脳皮質からのシナプトソーム調製品を、断頭により殺した100 ~ 150 gのSprague-Dawleyラットの脳から調製した。その大脳皮質を0. 3 2 Mシュクロースおよび 2 0 μ Mグルコースを含む 9 容量の媒体中でホモジナ イズした。その調製品を50容量の冷反応媒体(50μM塩化ナトリウム、50 μ M塩化カリウム、pH7. 4) 中でホモジナイズし、50, 000gで10分 間遠心分離することにより、遠心後再懸濁した。その方法を2回繰返し、第2洗 浄および第3洗浄の間に37℃で10分間インキュベートした。得られたペレッ トを使用するまで-70℃で貯蔵した。³H-パロキセチンの5-HT取り込み 部位への結合を、適当な薬剤濃度、0.1 n M ³H - パロキセチンおよび大脳皮 質膜(50μgタンパク質/試験管)を含む2mlの反応媒体中で行った。試料 は37℃で30分間インキュベートした;1 μ Mのフルオキセチンを含む試料を 用いて³Hーパロキセチンの非特異的結合を測定した。インキュベーション後、 0.05%のポリエチイミンに使用前1時間浸漬したWhatman GF/Bフィル ターで濾過した。約4mlの冷トリス緩衝液(pH7.4)を加え、アスピレー トし、試験管を更に3回すすぐことにより細胞ハーベスターを用いた。フィルタ ーを次に10mlのシンチレーション液を含むシンチレーションバイアル中に置 き、放射能を液体シンチレーション分光光度法により測定した。

本発明の方法により利用できるある化合物をこのアッセイで試験し、セロトニン再取り込みの阻害剤であることを見出した。実施例12の化合物は、20.9 n Molの K_1 を有することを見出した。

[0053]

すぐ上に記載した薬理学的活性は、本発明の方法により得られる化合物の薬学 的有用性に対する機構的基礎を提供する。多くの医薬的有用性を以下に記載する

[0054]

セロトニンの再取り込みを阻害する薬剤の投与によって多くの生理学的および 治療的な利益が得られることが現在知られている。フルオキセチンがリーダーで ある種類の薬剤による抑うつの処置は、多分過去10年間の最大の医学的ブレークスルーとなった。多くの変形がある抑うつは、過去におけるよりも一層一般大衆に明らかとなっている。抑うつは非常にダメージを与える障害であり、人口の驚くほと大きい割合を苦しめる障害であると現在認められている。自殺は抑うつの最も極端な症状であるが、何百万人のもの人が、それほどは苦しまないが、苦痛と部分的または完全な無力に生き、彼らの苦痛によってその家族も同様に苦しめる。フルオキセチンの導入は抑うつの治療におけるブレークスルーとなり、抑うつは僅か10年前よりずっと容易に診断および治療される見込みがある。デュロキセチンは抑うつの治療のため臨床試験されており、その目的のための市販薬剤となる見込みがある。

[0055]

抑うつはしばしば他の病気および状態を伴い、そのような他の状態により引き起される。例えば、抑うつはパーキンソン病、HIV、アルツハイマー病、アナボリックステロイドの乱用に伴う。抑うつはいずれの物質の乱用にも伴い得、頭の傷、精神遅滞または卒中との組合せから、または組合せにおいて生ずる行動問題に伴い得る。そのすべての変形の抑うつは本発明の補助的治療方法および組成物による治療の好ましい標的である。

[0056]

強迫観念病は、非常に様々な程度および症状で現れ、必要のない儀式的行為を 行う犠牲者の調節不可能な衝動により一般的に結び付けられる。合理的必要性ま たは理由付けを越えて、獲得し、命令し、清める等の行為がその病気の外的特徴 である。ひどく苦しんでいる患者はその病気により要求される儀式を行なう以外 何もすることができない。フルオキセチンは強迫観念病の治療用に米国および他 の国で承認されおり、有効であることが見出されている。

[0057]

肥満は米国においてしばしば起る状態である。フルオキセチンは肥満者が体重を失わせるのを可能にし、循環および心臓の状態そしてまた一般的安寧およびエネルギーに対して利益を生じる。

[0058]

多くの場合、ここに述べる病気はInternational Classification of Diseases、9版(ICD)、またはDiagnostic and Statistical Manual of Mental Disorders、改訂3版、American Psychiatric Association (DSM) 刊、に分類されている。そのような場合、ICDまたDSMのコードナンバーを読者の便宜のため以下に提供する

抑うつ、ICD 296.2および296.3, DSM 296、294.80、293.82、293.83、310.10、318.00、317.00

片頭痛

痛み、特にニューロパシー的痛み

過食症, ICD 307.51、 DSM 307.51

月経前症候群または後期黄体期症候群、DSM 307.90

アルコール中毒、 ICD 305.0、DSM 305.00および303.90

タバコ乱用、 ICD 305.1、DSM305.10および292.00

パニック異常症、 ICD 300.01、DSM 300.01および300.21

不安、 ICD 300.02、DSM 300.00

外傷後症候群、 DSM 309.89

記憶喪失、

DSM 294.00

老齢痴呆、

I C D 290

社会恐怖、

I C D 300. 23, D S M 300. 23

注意不足活動亢進症、 ICD 314.0

破壊的行動障害、

I C D 312

衝動調節障害、 ICD 312、 DSM312.39および312.34

境界人格障害、 ICD 301.83、 DSM 301.83

慢性疲労症候群

早漏、 DSM 302.75

勃起困難、 DSM 302.72

神経性食欲不振、 ICD 307.1、 DSM 307.10

睡眠障害、 ICD 307.4

自閉症

無言症

トリコチロマニー

【国際調査報告】

	INTERNATIONAL SEARCH REPOR	1	PCT/US99/1352				
A. CLAS	SSIFICATION OF SUBJECT MATTER						
IPC(6): CO7D 401.04 US CL: 546/167, 260, 153, 273.4, 271.7, 270.1; 544/333, 238, 284, 264 According to International Patent Classification (IPC) or to both unitonal classification and IPC							
Minimum de	ocumentation searched (classification system follows	d by classification sy	mbole)				
·							
аиои	Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched NONE						
Electronic data have consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, APS							
c. Doc	uments considered to be relevant		· · · · · · · · · · · · · · · · · · ·				
Category*	Cltation of document, with indication, where ap	propriate, of the rele	vent passages	Rolevant to alaim No.			
A	WUSTROW et al. Coupling of aryl Reduced pyridine Derivative. Synthes pages 993-995.	boronic Acid w is. November 1	ith a partially 991, No. 11,	1-2			
			;				
				•			
		•					
Farther documents are listed in the continuation of Box C. See patent family asnox.							
	coni categories of cited denuments:	"I" later donum	est problemed after the last to conflict with the soul	rentional filing date or priorky leating has sited to understand			
₩ 🗢	be of particular relevence	eus bitterbr	or theory underlying the	tovascion			
	document which may durow doubts on priority claim(s) or which is when the document is taken close when the document is taken close		ovel or commus he consider cument is taken close	red to izralve sa investiva stop			
*0° 40	cument referring to as one disclosure, use, cutifician or cuting	considered econ bined w	or to a basson spilled in the invention of investing the investing the investing in the investing investing in the investing investing in the investing in the investing in the investing in the investing investing in the investing investing investing in the investing i	e alaimed invention example be step when the document is a documents, such econtination be art			
7' 60	7' document published prior to the informational filing date but letter than "A" document member of the same patent fundy						
	Date of the actual completion of the international search Date of mailing of the international search report						
09 AUQU	IST 1999	10 SEP 1999					
Name and mailing address of the ISAUS Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231		JANE PAN WILLER NCE JOL					
	Facsimile No. (703) 303-3230 Telephone No. (703) 308-0196						
Form PCT/ISA/210 (second sheet)(July 1992)+							

INTERNATIONAL	SEARCH REPORT	International application No. PCT/US99/13521			
Box I Observations where certain a	faima were found unsearchable (Continuation	on of item 1 of first shoot)			
This international report has not been esti	ublished in respect of certain claims under Article	17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject	t matter not required to be reacted by this Au	tkority, namely:			
2. Claims Nos.: because they relate to parts of an extent that no meaningful	the international application that do not comply international search can be carried out, specific	with the prescribed requirements to such cally:			
	aims and are not drafted in accordance with the se-				
	Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
The interactional Sectoring Authority	found multiple inventions in this international a	pplication, as follows:			
1. As all required additional sea claims.	reb foes were timely paid by the applicant, this in	ternalional search report covers all searchable			
2. As all searchable claims coul of any additional fee.	d be searched without effort justifying an addition	onal fee, this Authority did not invite payment			
3. As only some of the required only those claims for which	additional scarch loss were timely paid by the ap	pplicant, this international search report covers			

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.:

The additional search foos were accompanied by the applicant's protest. No protest accompanied the payment of additional search foes.

Porto PCT/ISA/210 (continuation of first sheet(1))(July 1992)+

Remark on Protest

フロントページの続き

(81)指定国 EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), OA(BF, BJ , CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP(GH, GM, K E, LS, MW, SD, SL, SZ, UG, ZW), E A(AM, AZ, BY, KG, KZ, MD, RU, TJ , TM), AE, AL, AM, AT, AU, AZ, BA , BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, G E, GH, GM, HR, HU, ID, IL, IN, IS , JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, M N, MW, MX, NO, NZ, PL, PT, RO, RU, , SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, Z A, ZW

(72)発明者 ダニエル・ジェイムズ・コーク アメリカ合衆国46254インディアナ州イン ディアナポリス、ブラックリー・コート 6032番

F ターム(参考) 4C063 AA01 BB01 CC14 CC52 CC62 DD12 EE05