Package 'dualtrees'

October 24, 2019

300000 2 1, 2017
Title Decimated and Undecimated 2D complex dual-tree wavelet transform
Version 0.0.1
Description What the package does (one paragraph).
Depends R (>= 3.5.0)
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1

R topics documented:

Index

lossom	
oys	
2q	
ecimate	
tewt	
oles	
ltcwt	4
nake_square	4
ny_conv	
ear_sym_b	
ear_sym_b_bp	
eriod_bc	
ut_in_mirror	(
2c	
shift_b	
shift_b_bp	
hift1	
psample	

2 boys

blossom

Two meteorologists in front of cherry blossoms

Description

A very beautiful image.

Usage

blossom

Format

A 512x512 matrix of gray-scale values

Source

real life

Examples

```
image(blossom, col=gray.colors(32,0,1))
```

boys

Two stromchasers in the sun

Description

Another classic image.

Usage

boys

Format

A 256x256 matrix of gray-scale values

Source

real life

Examples

```
image(boys, col=gray.colors(32,0,1))
```

c2q

c2q

Transform six fields of complex coefficients back into four trees.

Description

This function takes the six directional complex daughter wavelet coefficients and re-constructs the three combinations of high- and low passes from the four trees (ab, ba, aa, bb).

Usage

```
c2q(comp)
```

Arguments

comp

complex array of dimnesions nx, ny, 6

Value

a list of low- and high-pass components from the four trees, names LoaHia, LobHib, etc.

Examples

```
c2q( comp )
```

decimate

delete every second row of a matrix

Description

delete every second row of a matrix

Usage

```
decimate(mat, odd = FALSE, dec = TRUE)
```

dtcwt

The 2D forward dualtree complex wavelet transform

Description

This function performs the dualtree complex wavelet analysis, either with or withour decimation

```
dtcwt(mat, fb1 = near_sym_b, fb2 = qshift_b, J = NULL, dec = TRUE,
  mode = NULL, verbose = TRUE, boundaries = "periodic")
```

4 make_square

Arguments	5
-----------	---

mat	the real matrix we wish to transform
fb1	A list of analysis filter coefficients for the first level. Currently only near_sym_b and near_sym_b_bp are implemented $$
fb2	A list of analysis filter coefficients for all following levels. Currently only qshift_b and qshift_b_bp are implemented
J	number of levels for the decomposition. Defaults to log2($min(Nx,Ny)$) in the decimated case and log2($min(Nx,Ny)$) - 3 otherwise
dec	whether or not the decimated transform is desired
mode	how to perform the convolutions, either "direct" or "FFT"

holes

insert holes into a filter?

Description

insert holes into a filter?

Usage

```
holes(fil, second = TRUE)
```

idtcwt

The 2D inverse dualtree complex wavelet transform

Description

The 2D inverse dualtree complex wavelet transform

Usage

```
idtcwt(pyr, fb1 = near_sym_b, fb2 = qshift_b, mode = "direct",
  verbose = TRUE, boundaries = "periodic")
```

make_square

Padded boundary conditions

Description

Padded boundary conditions

```
make_square(picture, N, Ny = N, value = min(picture, na.rm = TRUE))
```

my_conv 5

my_conv

Convolve the columns of a matrix in a varitey of ways

Description

This function convolves the columns of a matrix mat with a filter fil.

Usage

```
my_conv(mat, fil, dec = TRUE, mode = "direct", odd = FALSE,
boundaries = "periodic")
```

Arguments

mat a matrix
fil the filter to convolve the columns with

Examples

```
require( fields )
data( lennon )
my_conv( lennon, c(-1,1) )
```

near_sym_b

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

put_in_mirror

near_sym_b_bp

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

period_bc

Periodic boundary conditions

Description

Periodic boundary conditions

Usage

```
period_bc(x, N, Ny = N)
```

put_in_mirror

Reflective boundary conditions

Description

Reflective boundary conditions

```
put_in_mirror(x, N, Ny = N)
```

q2c

q2c

Transform data from the four trees to six fields of complex coefficients.

Description

This function takes the four combinations of high- and low passes from the four trees (ab, ba, aa, bb) and re-arranges them into the six directional complex daughter wavelets.

Usage

q2c(q)

Arguments

q

a list of wavelet coefficients named LoaHia, LobHib, HiaLoa, ...

Value

```
a complex array of size nx, ny, 6
```

Examples

```
q2c( q )
```

qshift_b

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

8 upsample

qshift_b_bp

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

shift1

shift a matrix forward or backward by one row

Description

shift a matrix forward or backward by one row

Usage

```
shift1(x, forward = TRUE)
```

upsample

add rows with zeroes to a matrix

Description

add rows with zeroes to a matrix

```
upsample(mat, odd = TRUE)
```

Index

```
*Topic convolution,
     my_conv, 5
*Topic datasets
     blossom, 2
     boys, 2
     near\_sym\_b, 5
     near_sym_b_bp, 6
     qshift_b, 7
     {\tt qshift\_b\_bp, \textcolor{red}{8}}
*Topic drudenfuss
     c2q, 3
     q2c, 7
*Topic wavelets
     my_conv, 5
blossom, 2
boys, 2
c2q, 3
decimate, 3
dtcwt, 3
holes, 4
idtcwt, 4
make_square, 4
my_conv, 5
near_sym_b, 5
{\tt near\_sym\_b\_bp, \color{red} 6}
period_bc, 6
put_in_mirror, 6
q2c, 7
qshift_b, 7
{\tt qshift\_b\_bp, \textcolor{red}{8}}
shift1, 8
```

upsample, 8