CS 5/7320 Artificial Intelligence

Adversarial Search and Games

AIMA Chapter 5

Slides by Michael Hahsler with figures from the AIMA textbook

Games

- Games typically confront the agent with a competitive (adversarial) environment affected by an opponent (strategic environment).
- We will focus on
 - · two-player zero-sum games with
 - deterministic game mechanics and
 - perfect information (i.e., fully observable environment).
- We call the two players:
 - 1) Max tries to maximize his utility.
 - **Min** tries to minimize Max's utility since it is a zero-sum game.

Definition of a Game

Definition:

 s_0 The initial state (position, board).

Actions(s) Legal moves in state s.

Result(s, a) Transition model.

Terminal(s) Test for terminal states.

Utility(s) Utility for player Max.

- **State space**: a graph defined by the initial state and the transition function containing all reachable states (e.g., chess positions).
- Game tree: a search tree superimposed on the state space. A complete game tree follows every sequence from the current state to the terminal state (the game ends).

Example: Tic-tac-toe

 S_0

Actions(s)

Result(s, a)

Terminal(s)

Utility(s)

Empty board.

Empty squares.

Place symbol (x/o) on empty square.

Did a player win or is the game a draw?

+1 if x wins, -1 if o wins and 0 for a draw.

Utility is only defined for terminal states.

Here player x is Max and player o is Min.

Tic-tac-toe: Partial Game Tree

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The opponent is seen as part of an environment with nondeterministic actions. Non-determinism is the result of the unknown moves by the opponent. We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - a. Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Nondeterministic Actions Recall AND-OR Search from AIMA Chapter 4

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Nondeterministic Actions

Each action consists of the move by the player and all possible (i.e., nondeterministic) responses by the opponent.

Outcome of actions in the environment is nondeterministic = transition model need to describe uncertainty about the opponent's behavior.

Example transition:

$$Results(s_1, a) = \{s_2, s_4, s_5\}$$

i.e., action a in s_1 can lead to one of several states.

AND-OR DFS Search Algorithm

= nested If-then-else statements **function** AND-OR-SEARCH(problem) **returns** a conditional plan, or failure **return** OR-SEARCH(problem, problem.INITIAL, []) **function** OR-SEARCH(problem, state, path) **returns** a conditional plan, or failure if problem.IS-GOAL(state) then return the empty plan **if** IS-CYCLE(path) **then return** failure // don't follow loops my for each action in problem.ACTIONS(state) do // check all possible actions moves $plan \leftarrow AND\text{-SEARCH}(problem, RESULTS(state, action), [state] + path])$ if $plan \neq failure$ then return [action] + planall states that can result from return failure opponent's moves function AND-SEARCH(problem, states, path) returns a conditional plan, or failure for each s_i in states do // check all possible current states $plan_i \leftarrow \text{OR-SEARCH}(problem, s_i, path)$ Go through abandon subtree if a loss is found if $plan_i = failure$ then return failureopponent return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else ... if s_{n-1} then $plan_{n-1}$ else $plan_n$] moves

- And-Or Search searches the whole tree till it finds a subtree that leads only to goal nodes.
- BFS and A* search can also be used to search an AND-OR tree.

Tic-tac-toe: AND-OR Search

We play MAX and decide on our actions (OR). MIN's actions introduce non-determinism (AND).

Minimax Search and Alpha-Beta Pruning

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Idea: Minimax Decision

 Assign each state a minimax value that reflects how much Max prefers the state (= Min dislikes the state).

$$Minimax(s) = \begin{cases} Utility(s) & \text{if } terminal(s) \\ \max_{a \in Actions(s)} Minimax(Result(s, a)) & \text{if } move = Max \\ \min_{a \in Actions(s)} Minimax(Result(s, a)) & \text{if } move = Min \end{cases}$$

- The minimax value is the utility for Max in state s assuming that both players play optimally from s to the end of the game.
- The **optimal decision** for Max is the action that leads to the state with the largest minimax value.

Minimax Search

Minimax Search : Back-up Minimax Values

Minimax Search: Decision


```
function MINIMAX-SEARCH(game, state) returns an action
  player \leftarrow game.To-MovE(state)
  value, move \leftarrow MAX-VALUE(game, state)
  return move
                                                                    conditional plan.
function MAX-VALUE(game, state) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow \text{MAX-VALUE}(game, game. \text{RESULT}(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Approach: Follow tree to each terminal node and back up minimax value.

Note: This is just a generalization of the AND-OR Tree Search and returns first action of the

> Represents **OR Search**

Represents **AND Search**

b: branching factor m: max depth of tree

Issue: Game Tree Size

This traverses the complete game tree using DFS!

Time complexity: $O(b^m)$

- Only feasible for very simple games!
- Example: Tic-tac-toe $b = 9, m = 9 \rightarrow O(9^9) = O(387,420,489)$ b decreases from 9 to 8, 7, ... \rightarrow we get less than O(9!) = O(362,880)
- We need to reduce the search space! → Game tree pruning

Alpha-Beta Pruning

 Idea: Do not search parts of the tree if they do not make a difference to the outcome.

Observations:

- min(3, x, y) can never be more than 3
- $\max(5, \min(3, x, y, ...))$ does not depend on the values of x or y.
- Minimax search applies alternating min and max.
- Approach: maintain for each node bounds for the minimax value [alpha, beta] and prune subtrees that cannot be part of the solution.
 - Alpha is used by Max and means "Minimax(s) is at least alpha."
 - Beta is used by Min and means "Minimax(s) is at most beta."

```
\begin{array}{l} \textbf{function} \ \mathsf{ALPHA}\text{-}\mathsf{BETA}\text{-}\mathsf{SEARCH}(game, state) \ \textbf{returns} \ \text{an action} \\ \mathsf{player} \leftarrow game. \mathsf{TO}\text{-}\mathsf{MOVE}(state) \\ \mathit{value}, \ \mathit{move} \leftarrow \mathsf{MAX}\text{-}\mathsf{VALUE}(game, \ state, -\infty, +\infty) \\ \mathbf{return} \ \mathit{move} \end{array}
```

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null v \leftarrow -\infty for each a in game.ACTIONS(state) do v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a), \alpha, \beta) if v2 > v then v, move \leftarrow v2, a
```

 $\alpha \leftarrow \text{MAX}(\alpha, v)$

if $v \geq \beta$ then return v, move

return v, move

return v, move

```
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null v \leftarrow +\infty for each a in game.ACTIONS(state) do v2, a2 \leftarrow \text{MAX-VALUE}(game, game.\text{RESULT}(state, a), \alpha, \beta) if v2 < v then v, move \leftarrow v2, a \beta \leftarrow \text{MIN}(\beta, v) if v < \alpha then return v, move
```

Notes:

- Pruning can be made more effective by move ordering:
 Check known good moves first to get a good bound early.
- Optimal decision algorithms still scale poorly!

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - a. Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Idea: Cutting off search

Stop search at a node before the terminal node is reached. Use a heuristic evaluation function Eval(s) to approximate the utility for that node/state.

Properties of the evaluation function:

- Fast to compute.
- $Eval(s) \in [Utility(loss), Utility(win)]$
- Correlated with the actual chance of winning (e.g., using features of the state).

Example: A weighted linear function

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

where f_i is a feature of the state (e.g., # of pieces captured in chess).

Heuristic Alpha-Beta Tree Search: Cutting off search

Idea: Forward pruning

Prune moves that appear poor. Poor can be evaluated in several ways:

- Low evaluation value after shallow search.
- Past experience.

Issue: May prune important moves.

Heuristic Alpha-Beta Tree Search: Forward Pruning Example

Methods for Adversarial Games

Exact Methods

- Model as nondeterministic actions: The
 opponent is seen as part of an environment with
 nondeterministic actions. Non-determinism is the
 result of the unknown moves by the opponent.
 We consider all possible moves by the opponent.
- Find optimal decisions: Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.

Heuristic Methods

(game tree is too large)

- Heuristic Alpha-Beta Tree Search:
 - Cut off game tree and use heuristic for utility.
 - b. Forward Pruning: ignore poor moves.
- Monte Carlo Tree search: Estimate utility of a state by simulating complete games and average the utility.

Idea

- Approximate Eval(s) as the average utility of several simulation runs to the terminal state (called playouts).
- Playout policy: How to choose moves during the simulation runs? Example policies:
 - · Random.
 - Heuristics for good moves developed by experts.
 - Learn good moves from self-play (e.g., with deep neural networks).
- Typically used for problems with
 - High branching factor (many possible moves).
 - Unknown or hard to define good evaluation functions.

Pure Monte Carlo Search

Find the next best move.

- Method
 - Simulate N playouts from current state.
 - 2. Select the move with the highest win percentage.
- Converges to optimal play for stochastic games as N increases.
- Do as many playouts as you can given the available time.

Monte Carlo Tree Search

- Plan ahead and build a game tree using simulation.
- Select the starting state for playouts to focus on important parts of the game tree. It is a tradeoff between:

- **a) Exploration**: search from states that currently have few playouts.
- b) Exploitation: more playouts for states that have done well to get more accurate estimates.

Selection using Upper Confidence Bounds applied to Trees (UCT)

Tradeoff constant ($\approx \sqrt{2}$) can be optimizes using experiments

$$UCB1(n) = \frac{U(n)}{N(n)} + C\sqrt{\frac{\log(N(Parent(n)))}{N(n)}}$$

Average utility (=exploitation)

High for nodes with few playouts (=exploration)

U(n) ... total utility of all playouts going through node n N(n) ... number of playouts through n

Policy: Select leaf with highest UCB1 score.

function MONTE-CARLO-TREE-SEARCH(state) returns an action

 $tree \leftarrow NODE(state)$

while IS-TIME-REMAINING() do

 $leaf \leftarrow SELECT(tree)$

Highest UCB1 score

 $child \leftarrow EXPAND(leaf)$

 $result \leftarrow SIMULATE(child)$

BACK-PROPAGATE(result, child)

UCB1 selection favors win percentage more and more.

return the move in ACTIONS(state) whose node has highest number of playouts

Note: the simulation path is not recorded!

Stochastic Games

- Game includes a "random action" r (e.g., dice, dealt cards)
- Add chance nodes that calculate the expected value.

Backgammon

Expectiminimax

- Game includes a "random action" r (e.g., dice, dealt cards)
- For chance nodes we calculate the expected minimax value.

```
Expectiminimax(s) = \begin{cases} Utility(s) & \text{if } terminal(s) \\ \max_{a \in Actions(s)} Expectiminimax(Result(s, a)) & \text{if } move = Max \\ \min_{a \in Actions(s)} Expectiminimax(Result(s, a)) & \text{if } move = Min \\ \sum_{r} P(r)Expectiminimax(Result(s, r)) & \text{if } move = Chance \end{cases}
```

Options:

- Use Minimax algorithm. Issue: Search tree size explodes if the number of "random actions" is large. Think of drawing cards for poker!
- Approximate Expectiminimax with an evaluation function.
- Perform Monte Carlo Tree Search.

Conclusion

Nondeterministic actions:

 The opponent is seen as part of an environment with nondeterministic actions. Non-determinism is the result of the unknown moves by the opponent. All possible moves are considered.

Optimal decisions:

- Minimax search and Alpha-Beta pruning where each player plays optimal to the end of the game.
- Choice nodes and Expectiminimax for stochastic games.

Heuristic Alpha-Beta Tree Search:

- Cut off game tree and use heuristic evaluation function for utility (based on state features).
- Forward Pruning: ignore poor moves.

Monte Carlo Tree search:

- Simulate complete games and calculate proportion of wins.
- Learn playout policy using self-play and deep learning.
- Use modified UCB1 scores to expand the game tree.