

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent C07D 213/36, 213	3/40, 213/60	(11		l) International Publication Number:	WO 91/04965
C07D 417/12, 239 C07D 241/12, 231 A01N 43/40, 43/3 A01N 43/78	1/10, 277/08	A1	(4:	3) International Publication Date:	18 April 1991 (18.04.91)
(21) International Applica (22) International Filing I				(74) Agents: YOKOYAMA, Yoshimi Ltd., 2-1, Ohtemachi 2-chome (JP).	et al.; Nippon Soda Co., , Chiyoda-ku, Tokyo 100
(30) Priority data: 1/259966 1/336231 2/56611 2/115246 2/196258 (71) Applicant (for all de SODA CO., LTL Chiyoda-ku, Tokyo	6 October 1989 (06.10.89 27 December 1989 (27.12 9 March 1990 (09.03.90) 2 May 1990 (02.05.90) 26 July 1990 (26.07.90) esignated States except US): 0. [JP/JP]; 2-1, Ohtemachi 0 100 (JP).	ž.89) NIPPO	JP JP JP JP	(81) Designated States: AT, AT (Euro (European patent), BF (OAP) patent), BR, CA, CF (OAPI patent), BR, CA, CF (OAPI patent), DE (European patent), DE, DES (European patent), FI, FF (OAPI patent), GB, GB (European patent), KR, LK, LU MC, MG, ML (OAPI patent), NL, NL (European patent), NO, pean patent), SN (OAPI patent) TG (OAPI patent), US,	I patent), BG, BJ (OAPI patent), CG (OAPI patent), CM (OAPI patent), DE, K (European patent), ES, R (European patent), GA pean patent), HU, IT (Eu, LU (European patent), MR (OAPI patent), MW, O, RO, SD, SE, SE (European patent)
[JP/JP]; SUZUK] [JP/JP]; YAMAD [JP/JP]; TAKAK] [JP/JP]: Odawara	(for US only): ISHIMITSU I, Junji [JP/JP]; OHISHI, A, Tomio [JP/JP]; HATANO USA, Nobuo [JP/JP]; MIT Research Center, Nippon S nagimachi, Takada, Odawara	Haruh O, Reng SUI, J Soda C	nto pei un lo.,	Published With international search report	

(54) Title: AMINE DERIVATIVES

$$R_{1}-X-N$$

$$R_{2}$$

$$R_{3}$$

$$R_{3}$$

$$R_{3}$$

(57) Abstract

The present invention relates to a compound having formula (I) which has an excellent insecticidal activity, wherein R_1 represents an optionally substituted 5-6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl; X represents an optionally substituted C_{1-3} alkylene or alkylidene; R_2 represents a hydrogen, a carbamoyl, a mono or di C_{1-5} alkyl carbamoyl, a thiocarbamoyl, a mono or di C_{1-5} alkylthiocarbamoyl, a sulfamoyl, a mono or di C_{1-5} alkyl-sulfamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl, an optionally substituted C_{3-8} cycloalkenyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl; C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl; C_{3-8} cyc

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

АT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	17	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
œ	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CM	Cameroon ·	LI	Liechtenstein	รบ	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU	Luxembourg	TG	Togo
			_	us	United States of America

DESCRIPTION

Amine Derivatives

Technical Field:

The present invention relates to new amine derivatives, the processes for the production thereof and insecticides containing the said derivatives as effective compounds.

Background art:

A large number of chemicals, for example, organophosphorus insecticides such as parathion and malathion and carbamate insecticides such as carbaryl and methomyl, have been developed and put to practical use by research and development on insecticides over many years. These insecticedes have played a very great role for the improvement of agricultural production. However, in recent years some of these insecticides are regulated on their use because of problems such as environmental pollution due to residue or accumulation, or cause infestitation of resistant insect pests as a result of long-term use. Therefore, it is demanded to develop new chemicals which have excellent insecticidal characteristics over various types of insect pests including these resistant insect pests and which can be used safely.

The following compound is known as the analogous compound of this invention, which has no insecticidal activity.

(Boll. Chim. Farm., 1979 118(11)661-666)

Further, the following compound is described in USP 4918088, which has insecticidal activities.

The compound however shows no insecticidal activity against lepidopterous insects and green rice leafhopper which are more serious pests on crops, though it shows the activity against cotton aphid.

The purpose of this invention is to provide agricultural chemicals which can be advantageously synthesized industrially, have certain effects and are applicable safely.

The compound of this invention has high insecticidal activity against both lepidopterous and hemipterous insects.

Disclosure of Invention:

The present invention relates to a compound having the formula

$$\begin{array}{c|c}
R_1 & & \\
R_1 & & \\
R_2 & & \\
R_2 & & \\
\end{array}$$
(1)

wherein R_1 represents an optionally substituted 5 - 6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl;

x represents an optionally substituted c_{1-3} alkylene or alkylidene;

 R_2 represents a hydrogen, a carbamoyl, a mono or di C_{1-5} alkyl carbamoyl, a thiocarbamoyl, a mono or di C_{1-5} alkylthiocarbamoyl, a sulfamoyl, a mono or di C_{1-5}

WO 91/04965 PCT/JP90/01282

3

alkylsulfamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl, an optionally substituted aryl or $-Y-R_5$;

Y represents 0, $S(0)_n$, CO, CS or CO_2 ; n represents 0,1 or 2;

 R_5 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted aryl;

 R_3 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl or an optionally substituted C_{3-8} cycloalkenyl; R_4 represents a cyano or a nitro; and Z represents CH or N; or its salt.

Best Mode for Carrying Out the Invention:

The compounds of this invention can be prepared in accordance with the following reaction schemes:

(1) Preparation Method 1:

where r^1 and r^2 represent a C_{1-5} alkyl; and R_1 , R_2 , R_3 , R_4 and X are as defined above.

The reaction is carried out in an inactive organic solvent, preferably in an aromatic hydrocarbon solvent such as xylene, toluene or benzene, in the presence of acidic catalyst such as p-toluenesulfonic acid, if necessary, under reflux.

(2) Preparation method 2:

where r^3 represents a C_{1-5} alkyl:

and R_1 , R_2 , R_3 and X are as defined above. This reaction is carried out in an inactive organic solvent, preferably in an alcohol such as methanol, ethanol, between room temperature and the boiling point of the used solvent.

(3) Preparation Method 3:

$$\begin{array}{c}
CN \\
N \\
R_1-X-NH
\end{array}
+ R_2-Hal \longrightarrow \begin{array}{c}
CN \\
N \\
R_1-X-N
\end{array}$$

$$\begin{array}{c}
R_2 \\
(I''')
\end{array}$$

$$\begin{array}{c}
(V)
\end{array}$$

where Hal represents a halogen; and R_1 , R_2 , R_3 and X are as defined above.

This reaction is carried out in an inactive organic solvent, preferably DMF, THF, benzene acetonitrile, acetone, methylethylketone, in the presence of acid accepter such as potassium carbonate, NaH, triethylamine, between room temparature and the boiling point of the used solvent.

(4) Preparation Method 4:

$$\begin{array}{c} CN \\ N \\ R_2^{-NH} \end{array} + \begin{array}{c} R_1^{-X-Hal} \\ R_1^{-X-Hal} \end{array} \longrightarrow \begin{array}{c} CN \\ N \\ R_1^{-X-N} \\ R_2 \end{array}$$
(VI) (VII) (VII)

where R_1 , R_2 , R_3 , X and Hal are as defined above. reaction is carried out in the same manner as that of Preparation Method 3.

(5) Preparation Method 5:

where R_1 , R_2 , R_3 and X are as defined above. This reaction is carried out in an inactive organic solvent, preferably acetonitrile, carbon tetrachloride, dichloroethane, in the presence of nitration reagent such as nitronium tetrafluoroborate, between -20°C and the boiling point of the used solvent.

After the reaction is completed, an usual after-treatment gives the intended compound. The structure of the compounds of this invention was determined by such means as IR, NMR, MASS, etc. When $\rm R_2$ is hydrogen in a compound of this invention, tautomers represented by

can exist.

The syn - aniti isomers, when Z represents N, and the cis-trans isomers, when Z represents CH, as represented by,

can also exist.

The ratio varies depending on e.g. conditions of instrumental analysis.

The following examples illustrate the present invention.

Example 1 : 2-(2-chloro-5-pyridylmethylamino)-1-nitro-1-butene:

In 50ml of toluene, 4.2g of 2-chloro-5-pyridylmethylamine, 3.5g of 1-nitro-2-butanone and 0.1g of p-toluene sulfonic acid were mixed and the mixture was refluxed for 2 hours. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 4.1g of compound No. 368. m.p. 95-98°C Example 2: 2-(2-chloro-5-pyridylmethylamino)-1-cyano-1-propene:

$$C1$$
 CH_2NH_2 + CH_3COCH_2CN $C1$ CH_2NH CH_3

1.4g of 2-chloro-5-pyridylmethylamine and 0.8g of 1-cyano-2-propanone were mixed and the mixture was stirred at room temperature over night. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 1.7g of compound No. 528.

m.p. 95-98°C

Example 3:

N-cyano-N'-(2-chloro-5-pyridylmethyl)-N'-methylacetamidine:

In 20ml of ethanol, 1.6g of N-methyl-2-cloro-5-pyridylmethylamine and 1.2g of ethyl-N-cyanoacetamidine were mixed and the mixture was stirred at room temperature over night. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 1.8g of compound No. 22. m.p. 101-103°C

Example 4:

N-cyano-N'-(2-chloro-5-pyridylmethyl)-N'-ethylacetamidine:

0.7g of sodium hydride (purity 60%) was added to the solution of 3.0g of N-cyano-N'-(2-chloro-5-pyridylmethyl)acetamidine in 20ml of N.N-dimthylformamide at ice bath temperature. After stirring it at the same temperature for 1 hour, 2.7g of ethyl iodide was added to the mixture, followed by stirring for 5 hours at room temperature. The reaction mixture was then poured into ice-water, extracted with ethyl acetate, dried over anhydrous magnesium sulfate and concentrated under reduced pressre. The residue obtained was purified by column chromatography on silica gel to afford 1.6g of compound No. 51. m.p. 100-101°C

Example 5:

N-cyano-N-(2-chloro-5-pyridylmethyl)-N'-methylacetamidine:

$$CH_3NH$$
 CH_3
 CH_2CH_2
 CH_2
 CH_3
 C

0.6g of sodium hydride (purity 60%) was added to the solution of 20ml N-cyano-N'-methylacetamidine in dimethylformamide at ice bath temperature. After stirring it at 2.2g of 2-chloro-5temperature for 1 hour, the same pyridylmethylchlride was added to the mixture, followed by stirring The reaction mixture was then for 5 hours at room temperature. poured into ice-water, extrated with ethyl acetate, dried over

anhydrous magnesium sulfate and concentrated under reduced pressre.

The residue obtained was purified by column chromatography on silica gel to afford 1.5g of compound No.22 m.p. 101-103°C

Reference Example:

N-(2-chloro-5-pyridylmethyl)-N-methylacetamidine hydrochloride:

To 40ml of ethanol was added 5.1g of N-(2-chloro-5-pyridylmethyl)-N-Methylamine and then 4g of ethyl acetimidate hydrochloride at 0°C. After stirring for an hour, the reaction mixture was allowed to warm to room temperature and stirred over night. The solvent was then distilled off. The obtained white residue was washed with diethyl ether to afford 7.3g of the title compound m.p. 192-197°C Example 6:

N-(2-chloro-5-pyridylmethyl)-N-methyl-N'-nitroacetamidine:

To a suspension of 1g of N-(2-chloro-5-pyridylmethyl)-N-methylamidine hydrochloride in 10ml of dry acetonitrile was added dropwise 0.7g of DBU under nitrogen at room temperature. After stirring for 30 minutes, the solution was added dropwise to a suspension of 0.6g of nitronium tetrafluoroborate in 5ml of dry acetonitrile under nitrogen on cooling with ice-water and let stir for 4 hours. After which time, the mixture was poured into ice-water, then extracted several time with chloroform. The combined chloroform layer was dried over magnesium sulfate, filtered and

distilled off. The crude oil was purified by column chromatgraphy on silica gel to afford 0,3g of compound No. 236.

N 25 1.5808

Typical examples of this invention including those described above are listed in Table 1.

Table 1

Compound Na		Physical Properties				
	RıX	R 2	R 3	Z	R ₄	() m.p.℃
1	C & N CII2 -	II	11	N	CN	(123-126)
2	"	"	CH ₃	"	"	(141-143)
3	"	"	Cli₂C ℓ	"	"	(124-126)
4	"	"	CII₂F	" .	"	(151-152)
5	"	"	CF₃	"	"	(112-114)
6	"	"	C2ll5	"	"	(120-122)
7	"	"	C3117 (11)	"	"	(100-101)
8	"	"		"	"	(193. 5-195)
9	"	"	C4 II 10 (1)	"	"	
10	"	"	CH ₂ OCH ₃	"	"	(128-128.5)
11	"	"	CII₂SCH₃	"	"	(116-118)

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.°C
12	C e N CII2 -	H	CII2COOC2II5	N	CN	25.5 n _D 1.5608
13	"	"	CII2CII2COOC2H5	"	"	
14	"	"	CH2NIICH3	"	"	
15	"	"	CII ₂ N(CII ₃) ₂	"	"	
16	"	"	CII2CII2CII2C &	"	"	(114-115)
17	"	"	CII2 C L	"	"	(190-191)
18	"	"	Cli₂CN	"	"	(106-108)
19	"	"	CII2 CII2 CN	"	"	
20	"	"	NCN C ₂ II ₄ NCII ₂ 7 NL C C	"	"	(187-189)
21	"	Cll3	11	, "	"	n _D 1.5918
22	"	"	CH₃	"	"	(101-103)
23	"	"	"	"	"	(161-162) IIC & salt
24	"	"	CH₂C L	"	"	26. 5 n D 1. 5921
25	"	"	CH₂F	"	"	(79- 80)
26	"	"	CF 7	"	"	* 1

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
27	CL N CII2-	Cll3	C₂II₅	N	CN	27 n _D 1.5742
28	"	"	C3 ll7 (n)	"	" ,	(97-100)
29	"	"	\prec	."	"	24. 5 n D 1. 5829
30	"	"	C4lln(t)	"	"	
31	"	"	CII2OCII3	"	"	n b 1.5803
32	. "	"	CII ₂ SCII ₃	"	"	n _D 1.6070
33	"	"	CII2COOC2II5	"	"	n _D 1.5604
34	"	"	CII2CII2COOC2II5	"	"	24. 5 N D 1. 5605
35	"	"	CII2 NHCII3	"	"	n _D 1.5861
36	"	"	CH ₂ N(CH ₃) ₂	"	"	n _D 1.5577
37	"	"	CH₂CH₂C £	<i>,</i> ,	"	
38	"	"	CH2CH2CH2C L	. //	<i>,</i> ,	25. 5 N D 1. 5830
39	"	"	—(II)	"	"	
40	"	"	- CII ₂ -	"	"	
41	"	"	CII2-C &	"	"	25. 5 n _D 1. 6040

No	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
42	C & N CII2-	CII3	CH=CII2	N	CN	25
43	"		CII₂CN	<i>11</i>	"	n _D 1.5913
44	"	"	CH₂CH₂CN	"	"	(112-114)
45	"	"	CII=CII	"	"	
46	"	"	NCN -C ₂ H ₄ NCII ₂ NC _R 1 CH ₃	"	. "	(224-226)
47	"	CIIF ₂	11	"	"	
48	"	"	CII3	"	"	24.5 N D 1.5423
49	"	. "	C2II5	"	"	
50	"	C ₂ ll ₅	Н	"	"	(101-103)
51	"	"	CII3	"	"	(100-101)
52	"	"	C ₂ II ₅	"	"	
53	"	C ₃ H ₇ (i)	Н	"	"	(205-207)
54	"	"	CH ₃	"	"	
55	"	"	C ₂ H ₅	"	"	
56	"	-<	11	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
57	C e N CII2-		Cll3	N	CN	n _D 1.5825
58	"	"	C2ll5	"	"	
59	"	CII2OCII3	Н	"	"	*
60	"	"	CII3	"	"	25. 5 N D 1.5711
61	"	CII₂SCIIa	Н	"	"	
62	"	"	CH₃	"	"	n p 1.5828
63	"	Cll ₂ COOC ₂ II ₅	Н	"	"	
64	"	"	CII3	"	"	n _D 1.5475
65	"	CII ₂	II	"	"	
66	"	"	CII ₃	"	"	n D 1.5928
67	"	CII ₂ S	Н	"	" "	
68	"	"	CII3	"	"	n _D 1.6155
69	"	CII2	II	"	"	
70	"	<i>"</i>	CII ₃	"	"	n _D 1.6093
71	"	CIIz C &	II	"	"	

Na	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
72	C & N CH2	CIIz C &	CH₃	N	CN	(112-114)
73	"	CII2CII=CII2	11	"	"	11 D 1.5841
74	"	"	CII a	"	"	n _D 1.5809
75	"	CII2C=CII	п	"	"	
76	"	"	CII₃	"	"	25. 5 n _D 1. 5730
77	"	CII 2 CN	Н	"	"	
78	"	"	CH₃	"	"	(127-128)
79	"	CII ₃ 0	н	"	"	<u>.</u>
80	"	"	CH ₃	"	"	(124-127)
81	"	-CII ₂	11	"	"	
82	"	"	C∏₃	"	"	n _D 1.6045
83	"	-CH ₂ S C &	Н	"	"	
84	"	"	CHs	"	"	^{25. 5} n _D 1.6092
85	"	CH2CH2 N	. н	"	"	

1 7

No.	R ₁ X	R ₂	Rз	Z	R4	() m.p.℃
86	C & N CII2	CII2CII2 N	CII3	N	CN	25. 5 n _D 1.5910
87	"	CII₂CII₂← C ℓ	11	"	"	
88	"	"	CII₃	, ,,	"	n _D 1.6162
89	"	$\overline{}$	11	"	"	
90	"	"	Cll ₃	"	"	(115-117)
91	"	OCH₃	11	"	"	
92	"	"	CH3	"	<i>"</i>	(110-112)
93	"	СНО	11	"	"	
94	"	"	Clls	",	"	
95	"	COCII3	11	"	"	25. 5 n p 1. 5475
96	"	"	Cll ₃	"	"	(84- 86)
97	"	SO₂CII₃	Н	"	, ,,	(160-163)
98	"	"	Clla	"	, ,,	
99	"	co-<	11	"	"	
100	" .	"	CII 3	"	"	(112-114)

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
101	C & N CH2-	COOC₂Hs	Н .	N	CN	
102	"	"	CII3	"	"	n _D 1.5540
103	"	CONH ₂	II	"	"	;
104	"	"	CH₃	"	"	
105	"	CON CII3	Н	"	"	
106	"	"	Cl1 ₃	"	"	(89- 91)
107	"	CONHCH₃	H	"	"	
108	"	"	CII3	"	"	
109	"	CSNIICII₃	H	"	"	
110	. "	"	CH₃	"	"	
111	Br N CH ₂	II	CH₃	"	"	
112	"	CII₃	"	"	"	
113	F CH ₂	11	"	"	"	
114	"	CII3	"	"	"	
115	CII ₃ CII ₂ -	Н	"	"	"	(83- 85)

No.	R ₁ X	R 2	R 3	Z	R ₄	() m. p. ℃
116	CII3 N CII2-	Clla	CH3	N	CN	(76- 78)
117	C & 3C N CII2-	11	,,	"	"	
118	"	CII3	"	"	"	(145-147)
119	F ₃ C N CII ₂ -	11	"	"	"	
120	"	Cil₃	"	"	"	n _D 1.5202
121	F ₃ CO N CII ₂ -	Н	"	"	"	
122	. "	Cil₃	"	"	"	
123	CII30 N CII2-	И	"	"	"	
124	"	CII3	"	"	"	n b 1.5580
125	F ₂ HCO N CII ₂ -	11	"	"	"	_
126	"	СНз	"	"	"	
127	CII30 N CII2-	11	"	"	. "	
128	"	СНз	"	"	"	
129	CII3S N CII2-	Н	"	"	"	(162-163)
130	"	CH3	"	"	"	(105-107)

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
131	CH ₃ SO ₂ N CH ₂ -	11	CH₃	N	CN	
132	"	CII₃	"	"	"	(138-139)
133	O CH2-	11	"	"	"	25
134	"	CIIa	"	"	"	пъ 1.5841
135	NC N CII2-	11	"	"	"	
136	"	CH₃	"	"	"	(107-109)
137	O ₂ N N CII ₂ -	II	"	"	"	
138	"	CH ₃	"	"	"	
139	C & CH ₂ -	H	"	"	"	
140	<i>"</i>	CH ₃	"	"	"	
141	C & N CII ₂ -	Н	"	"	"	
142	"	CII3	"	"	"	
143	CII3 N N CH2-	II	"	"	"	(122-124)
144	"	CII ₃	"	"	"	(110-113)

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.°C
145	N CH₂-	11	CH ₃	N	CN	(6 6- 68)
146	"	CH3	"	. "	"	^{24.5} п _р 1.5790
147	Ce N CII2-	II	"	"	"	
148	"	Cll ₃	"	. "		(94- 96)
149	CII3 N CII2-	Н	"	: //	"	(130-132)
150	"	Cll ₃	"	"	"	n D 1.5612
151	C P CII2-	H	"	<i>"</i>	"	(96- 99)
152	"	CH3	"	"	" .	25. 5 N D 1.5800
153	N CII ₂ -	11	"	"	"	
154	"	CII3	"	"	"	
155	CII ₃ CII ₂ -	11	"	<i>"</i>	<i>"</i>	

WO 91/04965 PCT/JP90/01282

2 2

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
156	N CH ₂ -	CH₃	CH₃	N	CN	
157	N CII₂-	II	"	"	"	
158	"	CH3	"	"	"	
159	CII3 - CII2-	II	"	"	"	
160	"	Cll3	"	"	"	
161	N=N CII₂-	Н	"	"	"	
162	"	CII₃	"	"	"	
163	$C \ell \stackrel{\sim}{\underset{N=N}{\longleftarrow}} CH_2 -$	Н	"	"	"	(115-117)
164	"	CH ₃	"	"	"	n _D 1.5717
165	CII3 N N CII2-	П	"	"	"	(104-106)
166	Cll₃ ″	CII.3	"	"	"	

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
167	N CII2 -	H	CII₃	N	CN	
168	"	CII3	"	<i>"</i>	"	
169	N Cll ₂ -	11	"	"	"	(112-114)
170	"	СН₃	"	"	"	n D 1.5413
171	C & S CII2 -	Н	"	"	<i>"</i>	(122-124)
172	"	СН₃	"	"	"	(143-144)
173	"	"	C2H5	"	"	n D 1.5575
174	"	C2ll5	CH3	"	"	(63- 70)
175	CH ₂ CH ₂	11	"	"	"	(149-151)
176	"	Cll3	"	"	"	
177	N CH2-	11	Н	"	"	(179-183)
178	"	ClI₃	"	"		n _D 1.5952

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
179	CII2CII2-	H	СИз	N	CN	
180	"	Cll3	"	"	"	
181	C & N CH2 CH2 -	II	"	"	"	
182	"	CH ₃	"	"	"	
183	CII ₂ CII ₂ -	11	"	"	"	
184	"	CH3	"	"	"	
185	C e N CII2 CII2 -	II	"	"	"	
186	"	CII3	"	"	"	-
187	CH3 CH3 CH-	Н	"	"	"	
188	"	CII3	"	"	"	(106-109)
189	N CII ₂ -	11	CII3	"	"	(90- 92)

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.°C
190	N CII2-	CII3	CH₃	N	CN	(102-103)
191	C L	II	"	"	"	
192	"	CII3	"	"	,,,	
193	CII ₂ -	II	Н	<i>"</i> .	"	
194	"	"	СНз	"	"	(127-129)
195	<i>"</i>	"	CII₂C <i>ℓ</i>	<i>,,</i> .	. //	
196	"	"	CH ₂ F	. ,,	"	
197	"	"	C ₂ II ₅	"	"	
198	"	"	\langle	"	· //	
199	"	"	CH2 SCII₃	"	. ,,	·
200	"	"	CII2OCII3	"	"	

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.°C
201	CII2-	И	C ₃ H ₇ (11)	N	CN	^{25. 5} n _D 1.5528
202	"	CII ₃	II	"	"	
203	"	"	CH3	"	"	^{25.5} n _D 1.5798
204	"	, ,,,	CII₂C <i>L</i>	"	"	
205	"	"	CH₂F	"	"	
206	"	II	C ₂ II ₅	<i>"</i> .	"	n _D 1.5657
207	<i>"</i>	"	\prec	"	"	
208	"	"	CII₂ SCII₃	"	"	
209	"	"	CII2OCIIa	"	"	
210	"	"	C ₃ H ₇ (i)	"	"	
211	"	"	Callo(t)	"	"	

.

.

•

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
212	CII ₂ -	C ₂ II ₅	Ħ	N	CN	
213	"	"	Cłl₃	"	"	^{24. 5} п _р 1. 5665
214	"	"	CII₂C <i>L</i>	"	"	
215	"	"	C ₂ II ₅	"	"	
216	"	C ₃ ₇ (i)	Н	"	// ·	
217	"	"	СН₃	"	,,	
218	"	"	C₂H₅	"	"	
219	"	COCII₃	11	"	<i>"</i>	
220	"	"	CII ₃	"	"	
221	"	SO ₂ CH ₃	II	"	"	
222	"	"	CII3	"	"	
	•					

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
223	C & N CII2-	Н	H	N	NO ₂	
224	"	"	CII 3	"	"	
225	"	"	CII₂C £	"	"	
226	"	"	CH₂F	"	"	
227	"	"	C2II5	"	"	
228	"	"	\prec	"	"	
229	"	"	CII2SCII3	"	"	
230	"	"	Cll ₂ OCII ₃	"	"	
231	"	"	C ₃ H ₇ (i)	"	"	
232	"	"	Callo(t)	"	"	
233	"	"	CII=CII ₂	"	"	
234	"	"	CII ₂ -	"	"	

,

•

•

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
235	C & N CII2-	CH3	Н	N :	NO ₂	
236	"	"	СНз	"	"	n D 1.5808
237	"	"	CII₂C ℓ	"	<i>"</i>	
238	"	"	CH₂F	"	<i>II</i>	*
239	"	"	C ₂ II ₅	ij.	. "	
240	"	"	$\overline{}$	"	"	
241	"	"	CII2 SCII3	"	"	
242	"	"	Cll ₂ OCll ₃	"	"	
243	"	"	C3117 (n)	"	"	
244	"	"	C4IIa(f)	"	.11	
245	"	"	CH=CH ₂	"	"	
246	"	"	CII ₂ -	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
247	C & N CII2-	C2ll5	II	N	NO ₂	
248	"	"	CII3	"	"	
249	"	"	C2ll5	"	"	
250	"	C ₃ ll ₇ (i)	Ił	"	"	
251	"	"	СН₃	"	"	
252	"	"	C2H5	"	"	
253	"		н	"	"	
254	"	"	Cll ₃	"	"	
255	"	"	C ₂ II ₅	"	"	·
256	"	COCII₃	II	"	"	
257	"	"	CII₃	"	"	
258	"	SO ₂ CII ₃	Н	"	"	
259	"	"	CII₃	"	"	

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.°C
260	Br N CH2-	II	CII a	N	NO ₂	
261	. "	СН₃	"	"	"	
262	F N CII2	II	''	"	"	
263	"	CH₃	"	"	"	
264	CH ₂ -	Н	"	"	"	
265	"	CH3	"	"	"	
266	C & 3 C N CH2-	Н	"	"	"	
267	"	CII ₃	"	"	"	
268	F ₃ C N CH ₂ -	Н	"	"	"	·
269	"	CIIa	<i>"</i>	"	"	
270	F ₃ CO N CH ₂ -	II	"	"	"	
271	,,	CII3	"	. "	"	

No.	RıX	R ₂	R ₃	Z	R ₄	`() m.p.℃
272	CH ₃ O N CH ₂ -	11	CII₃	N	NO ₂	
273	"	CH ₃	<i>"</i>	"	"	
274	F ₂ HCO N CH ₂ -	Н	"	"	` //	
275	"	Cll3	"	"	"	
276	CII30 N CII2-	II	"	· <i>"</i>	"	
277	"	CH3	"	"	"	
278	CII3S N CII2-	H	"	"	."	
279	"	CH ₃	"	"	"	
280	CII ₃ SO ₂ N CII ₂ -	н	"	"	"	
281	"	СНз	"	"	"	
282	O CH2-	II	"	"	"	
283	, .	CH ₃	"	"	"	

No.	RıX	R 2	R ₃	Z	R ₄	() m.p. ℃
284	NC N CII2-	11	CH₃	N	NO ₂	
285	"	CII₃	"	"	"	·
286	0 ₂ N N CII ₂	H	"	"	"	
287	"	Cll3	"	"	"	
288	C & CII ₂ -	н	"	" .	"	
289	"	СН₃	"	"	<i>ii</i> .	
290	C & N CII3	11	"	"	<i>"</i>	
291	"	CII3	"	<i>"</i>	"	
292	CII3 N N CII2-	11	"	"	"	
293	"	CH ₃	"	"	"	

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
294	CII2-	11	CH3	N	NO ₂	
295	"	CIIa	"	"	"	
296	C & N CII2-	H	"	"	"	
297	"	CII3	<i>"</i>	"	"	
298	CII3 N CII2-	11	"	"	"	
299	"	CII3	"	"	"	
300	C P CII2-	II	"	"	, ,,	
301	"	CH ₃	"	"	"	
302	N CII2-	Н	"	"	"	
303	"	СНз	"	"	"	
304	CII3 CII2-	Ħ	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	[] m.p.℃
305	N CII ₂ -	CII3	CH3	N	NO ₂	
306	N CH ₂ -	11	"	"	"	
307	"	CII3	"	<i>y</i> .	"	
308	CH ₃ -(N) CH ₂ -	Н	"	"	"	
309	"	СНз	<i>"</i>	. ,,	"	
310	N=N CH ₂ -	Н	"	."	"	
311	"	Cll₃	"	"	"	
312	$C \ell \xrightarrow{N=N} CII_2 -$	Н	"	"	<i>II</i> .	
313	"	CII₃	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
314	N CII2 -	н	CH3	N	NO ₂	
315	"	CII3	"	"	"	
316	CII3 S CII2-	11	<i>"</i>	"	"	
317	"	CII3	"	"	"	
318	C & S CH2-	И	"	"	"	
319	"	CH₃	"	"	"	
320	"	"	C ₂ II ₅	"	"	
321	"	C ₂ II ₅	CII3	"	"	
322	CL S CII2 -	И	"	"	"	
323	"	CII₃	"	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
324	CII2CII2-	Н	CHs	N	NO ₂	·
325	. "	CH₃	"	"	"	
326	C P N CII2 CII2 -	11	"	<i>"</i>	"	
327	"	CII3	"	"	"	
328	CII2CH2-	11	"	"	. "	
329	"	CII3	"	"	"	
330	C & N CII2 CII2 -	Н	"	"	"	
331	" CH3	CH3	"	."	"	-
332	C e N CH-	11	"	"	"	
333	"	CH₃	"	"	"	
334	N CH ₂	Н	"	"	"	
335	"	CII3	"	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m. p. ℃
336	CII ₂ -	li	Н	N	NO ₂	
337	"		СН₃	"	"	
338	"	"	C ₂ II ₅	"	"	
339	"	"	CII₂C ℓ	"	"	
340	"	"	CII ₂ F	"	"	
341	"	"		"	"	
342	"	"	CII ₂ SCII ₃	"	"	
343	"	"	CH2OCH3	"	"	

344 CII ₂ - CII ₃ H N NO ₂ 345 " " CH ₃ " "	
345 " " CH ₉ " "	1
040	
346 " " CH ₂ C & " "	
347 " CH ₂ F " "	
348 " " C ₂ II ₅ " "	
349 " " " " "	
350 " " CII ₂ SCH ₃ " "	
351 " " CII ₂ 0CH ₃ " "	
352 " " C ₃ ll ₇ (i) " "	
353 " " C ₄ II ₈ (t) " "	

WO 91/04965

4 0

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m. p. ℃
354	CII ₂ -	C ₂ II ₅	H	N	NO ₂	
355	"	"	CII3	"	"	
356	"	"	CII₂C ℓ	"	"	
357	"	"	C ₂ II ₅	"	"	
358	"	C ₃ II ₇ (i)	H	"	"	
359	"	"	CII ₃	"	"	
360	"	"	C2ll5	"	"	
361	"	COCII3	II	"	"	·
362	"	"	CH₃	"	"	
363	"	SO₂CII₃	Н	"	"	
364	"	"	CH3	"	"	
			<u> </u>			

4 1

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
365	C & N CII ₂ -	И	Н	CH	NO ₂	(116-118)
366	"	"	CHs	"	"	(133-135)
367	"	"	CH₂C ℓ	"	"	·
368	"	"	C2H5	"	"	(95- 98)
369	"	"	Call ₇ (i)	"	"	(150-152)
370	"	"	C4117(t)	"	"	
371	"	"	Cli=Cil ₂	"	<i>"</i>	
372	"	"	CII=CHCII3	"	"	
373	"	"	CH₂CN	"	"	
374	<i>"</i>	"	CII ₂ NO ₂	"		
375	"	"	CH2COOC2H5	"	"	

No.	RıX	R2	Rз	Z	R ₄	() m.p.℃
376	C & N CII2-	Н	-(H)	CH	NO ₂	
377	"	. "	\prec	"	"	
378	"	"	CII ₂	"	"	
379	"	"	CII=CII—	"	"	
380	"	CH3	Н	"	"	
381	"	"	CII 3	"	"	(79- 82)
382	"	"	CII₂C L	"	"	
383	"	"	C2ll5	"	"	(101-104)
384	"	"	C ₃ H ₇ (i)	"	"	
385	"	"	C4117 (t)	"	"	
386	"	"	CH=CII₂	"	"	
387	"	"	CH=CHCH3	"	"	

•

.

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
388	C & N	CH₃	CH₂CN	CH	NO ₂	
389	"	"	CH ₂ NO ₂	"	"	
390	"	. "	Cll ₂ COOC ₂ ll ₅	"	"	- 00
391	"	"	√II	"	. //	
392	"	"		"	. "	
393	."	"	CII ₂	"	,,	
394	"	"	CII=CII—	"	"	
395	"	C2II5	Н	"	"	
396	"	"	Clls	"	"	
397	"	" .	C₂H₅	"	"	·
398	"	C ₃ H ₇ (i)	Н	"	"	-
399	"	"	CH₃	"	"	

4 4

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.°C
400	C & N CII2-	C3117(i)	C₂H5	CH	NO ₂	
401	"	$\overline{}$	11	"	"	
402	"	, "	Cll ₃	"	"	
403	"	"	C ₂ II ₅	"	"	
404	"	CII ₂ CH=CII ₂	II	"	"	
405	"	"	CH₃	"	"	
406	"	"	C ₂ ll ₅	"	"	
407	"	-	Н	"	"	
408	"	"	CII3	"	"	
409	"	, "	C ₂ II ₅	"	"	
410	"	CIIO	11	"	"	
411	"	"	CH3	"	"	

د

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.°C
412	C & N	СНО	C ₂ ll ₅	СН	NO ₂	
413	"	COCH3	11	"	"	
414	"	"	Cll ₃	"	"	·
415	<i>"</i>	"	C2ll5	"	'n	
416	"	SO ₂ CH ₃	H	"	<i>"</i>	
417	"	"	CII ₃	"	"	
418	"	"	C2H5	. "	' //	
419	"	COOC ₂ II ₅	11	"	. <i>"</i>	
420	"	"	CII3	"	. "	
421	"	"	C ₂ H ₅	"	"	
422	"	0C2H5	11	"	<i>ii</i>	
423	"	"	CH₃	"	<i>"</i>	
424	"	"	C ₂ H ₅	"	"	<i>y</i>
425	"	CII2C=CII	Н	"	"	
426	"	"	CII3	"	"	
427	, "	"	C ₂ H ₅	"	"	

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
428	B1 CH2-	Н	СН3	СН	NO ₂	
429	"	CII ₃	"	"	"	
430	F N CH2-	H	"	"	"	
431	"	CII₃	"	"	"	
432	CII ₃ CII ₂ -	II	"	"	"	
433	"	CH₃	"	. ,,	"	
434	C & 3 C N CII2-	Н	"	, ,,	"	
435	"	СНз	"	"	"	
436	F ₃ C N CII ₂ -	II	"	"	"	
437	"	CII3	"	"	"	
438	F ₃ CO N CII ₂ -	II	''	"	"	
439	"	Clls	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
440	CII30 N CII2-	11	CIIs	СН	NO ₂	
441	"	CII3	"	"	"	
442	F ₂ IICO N CH ₂ -	11	"	"	<i>"</i> .	
443	"	CII₃	"	"	"	
444	CH ₃ O N CH₂-	Н	"	<i>"</i>	"	
445	"	СН₃	"	"	"	
446	CII.3 S N CII.2-	II	"	"	<i>"</i>	·
447	"	CII3	"	"	"	-
448	CH ₃ SO ₂ N CH ₂ -	II	"	"	"	
449	"	Cll3	"	"	"	
450	O N CH2-	Ħ	"	"	<i>"</i>	
451	"	CIIa	"	.#	"	

Na	RıX	R ₂	R ₃	Z	R ₄	() m. p. ℃
452	NC N CII2-	II .	CⅡ₃	CH	NO ₂	
453	"	CH ₃	"	"	"	
454	O ₂ N CH ₂ -	II	"	"	"	
455	"	CH₃	"	"	"	
456	C & CII2-	Н	"	"	"	
457	"	CH3	. "	"	"	
458	C & N CH ₃	II	"	"	"	
459	"	CH3	"	"	"	
460	CH ₃ N CH ₂ -	H	"	<i>"</i>	"	
461	"	CII3	"	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
462	CII2-	н	CIIs	CII	NO ₂	
463	"	CII3	"	"	"	
464	Ce N CII2-	11	<i>"</i>	"	"	
465	"	CII3	"	"	"	
466	CII3 N CII2-	Н	"	"	<i>"</i>	
467	"	CH₃	"	"	,, ·	
468	C P CH2-	II	"	"	"	
469	"	CH3	"	."	"	
470	N CII2-	II	"	"	"	
471	"	CII3	"	"	" .	
472	$ \begin{array}{c} N \\ CII_2 \end{array} $		"	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
473	CH ₃ CH ₂ -	Cll₃	Cll3	CII	NO ₂	
474	N CII ₂ -	11	"	"	"	
475	"	СН₃	"	"	"	
476	CII3-(N-)-CII2-	Н	"	"	"	
477	"	CII ₃	"	"	"	
478	N=N CH ₂ -	И	"	"	"	
479	"	СНз	"	"	. ,,	
480	$C \ell \stackrel{\checkmark}{\underset{N=N}{\checkmark}} CII_2-$	11	"	"	"	
481	"	CH₃	<i>"</i>	"	"	
482	N CII2-	Н	"	"	"	
483		CII₃	"	"	"	

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
484	N CH2 -	И	CII ₃	СН	NO ₂	
485	"	CH₃	"	"	"	·
486	C & S CH2 -	H	"	"	"	·
487	"	Clla	"	"	<i>"</i>	
488	"	"	C ₂ ll ₅	"	"	
489	"	C2li5	CH ₃	<i>"</i>	"	
490	CH2CII2-	II	"	"	"	
491		CH ₃	"	"	"	
492	C & N CH2 CH2 -	11	. "	"	"	
493	"	CII3	"	"	"	
494	CH ₂ CH ₂ -	11	"	"	,,	
495	"	CH3	"	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
496	C L N CII2 CII2 -	Н	CII₃	CH	NO ₂	
497	<i>"</i>	CH3	"	"	"	
498	CH3 CH- CH-	н	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	
499	"	CH₃	"	"	"	
500	N CII2	II	"	<i>"</i>	"	
501	"	CH3	"	"	II.	

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
502	CII ₂ -	Н	н	СН	NO ₂	
503	"	"	Cll3	"	"	
504	"	"	CH₂C <i>L</i>	"	"	
505	"	"	C2ll5	"	"	
506	"	"	C ₃ H ₇ (i)	"	"	
507	"	"	C₄H₃(t)	"	"	
508	"	CH ₃	II	"	"	
509	"	"	CHs	"	"	
510	"	"	CH₂C <i>L</i>	"	"	
511	"	"	C ₂ ll ₅	"	"	
512	"	"	\langle	"	"	

5 4

No.	R ₁ X	R 2	R 3	Z	R ₄	() m.p.℃
513	CII2-	СН₃	C3H7(i)	СН	NO ₂	
514	"	"	C₄ll⊕(t)	"	"	
515	"	C2ll5	Н	"	<i>"</i>	
516	"	"	CH₃	"	"	
517	"	"	C2H5	"	"	
518	"		И	"	"	
519	"	"	CII3	"	<i>"</i>	
520	"	"	C ₂ ₅	"	"	
521	"	СОСН₃	H	"	"	
522	<i>"</i>	"	СНз	"	"	
523	"	"	C ₂ H ₅	"	, ,,,	
524	"	SO₂CII₃	11	"	"	
525	"	"	Cll₃	"	"	
526	"	. "	C2H5	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
527	C & N CII2-	II	н	CH	CN	
528	"	"	CH₃	"	"	(95- 98)
529	"	"	CH₂C <i>L</i>	"	, ,	
530	"	"	C2ll5	"	jj.	. :
531	"	"	C ₃ ll ₇ (i)	"	"	
532	"	"	C₁II₀(t)	"	" .	
533	"	"	CH=CH ₂	"	"	
534	"	"	CII=CHCII3	"	"	-
535	"	"	CII₂CN	"	, ,,	
536	"	"	CH ₂ NO ₂	"	//	
537	"	"	CII2COOC2II5	"	"	

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
538	C & N CH2-	Н	-{H}	CII	CN	
539	"	"		"	"	
540	"	"	CII ₂	"	"	
541	"	"	CII=CII-	"	"	
542	"	CII₃	Н	"	"	
543	"	"	СН₃	"	"	гь 1.5941
544	"	"	CH₂C <i>ℓ</i>	"	"	
545	"	"	C ₂ H ₅	"	"	
546	"	"	C ₃ II ₇ (i)	"	"	
547	"	"	C₄llg(t)	"	"	
548	"	"	CII=CII₂	"	"	
549	"	"	CII=CIICII3	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
550	C & N CH2-	Cll3	CII₂ CN	СН	CN	
551	"	"	CH ₂ NO ₂	"	"	
552	"	"	CII2COOC2H5	"	"	
553	"	"	-(11)	"	"	
554	"	"		"	"	
555	"	".	Cll ₂	"	. ,,	
556	"	"	CII=CH-	. #	"	
557	"	C ₂ H ₅	11	"	"	
558	"	"	Cll₃	"	"	
559	"	"	C2ll5	"	"	
560	"	C ₃ ll ₇ (i)	11	"	"	
561	"	"	CII3	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
562	C & N CII2-	C₃H₁(i)	C₂H₅	СН	CN	
563	"	\prec	H	"	"	
564	"	"	CH ₃	"	"	
505	"	"	C2ll5	"	"	
566	<i>"</i>	CH2CH=CH2	Н	"	"	
567	"	"	CH₃	"	"	
568	"	"	C2H5	"	"	
569	"		Н	"	"	·
570	"	. "	CH3	"	"	
571	"	"	C ₂ H ₅	"	"	
572	<i>"</i>	CHO	H	"	"	
573	"	"	СНз	ir	"	

Na	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
574	C & N CH2-	CIIO	C2ll5	СН	CN	
575	"	COCH₃	11	"	"	
576	"	"	СН₃	"	"	
577	"	"	C ₂ II ₅	"	"	
578	"	SO ₂ CH ₃	Н	"	"	
579	"	"	CII3	"	"	·
580	"	"	C2H5	"	"	
581	"	COOC₂H₅	Н	"	"	
582	"	"	CII3	"	"	
583	<i>"</i>	"	C2lls	"	"	
584	"	0C2H5	11	"	"	
585	"	"	CH₃	"	"	
586	"	"	C ₂ ll ₅	"	"	·
587	"	CII2C=CII	11	"	"	
588	"	"	CH₃	"	"	
589	"	"	C ₂ H ₅	"	"	

No.	RiX	R ₂	R ₃	Z	R ₄	() m.p.℃
590	Br CH ₂ -	H	CII ₃	Cil	CN	
591	"	CII3	"	"	"	
592	F N CH2-	Н	"	"	"	
593	"	CII₃	"	"	"	
594	CII ₃ CII ₂ -	II	<i>"</i>	"	"	
595	"	СН₃	"	"	"	
596	C & 3C N CH2-	· H	"	"	"	
597	"	СН₃	"	"	"	
598	F ₃ C N CH ₂ -	11	"	".	"	
599	"	CII3	"	"	"	
600	F ₃ CO N CII ₂ -	11	"	"	"	
601	"	Cll ₃	. "	<i>"</i>	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
602	CH ₃ O N CH ₂ -	11	Clls	CH	CN	
603	"	CII ₃	"	"	"	
604	F ₂ HCO N CH ₂ -	. 11	"	"	"	
605	"	CH ₃	"	"	"	
606	CH ₃ O N CH ₂ -	II	"	"	. ,,	
607	"	Cil₃	"	"	"	
608	CII. S N CII. 2-	· II .	"	"	"	
609	, ,,	CII3	"	"	"	
610	CH ₂ -	Н	"	"	<i>"</i>	
611	"	CH3	"	"	"	
612	O N CH2-	н	"	"	"	
613	"	CH3	"	"	,, .	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
614	NC N CII₂-	н	CII₃	СН	CN	
615	"	· CII3	. ,,	"	"	
616	O ₂ N N CH ₂ -	Н	,,	"	"	
617	"	CII3	"	"	"	
618	C & CII2-	Н	"	"	"	
619	"	СН₃	"	"	"	
620	C & CH ₃	Н	"	"	"	·
621	"	CII₃	"	"	"	
622	CII3 N CH2-	11	"	"	"	
623	"	CII.3	"	"	"	

No.	R ₁ X	R ₂	R₃	Z	R ₄	() m.p.℃
624	CH ₂ -	н	CHa	СН	CN	
625	"	Clla	"	"	"	
626	C & N CII2-	11	"	"	"	
627	"	CII ₃	"	"	"	
628	CH₃ N CH₂-	Н	"	"	<i>,,</i> ·	
629	"	CH3	"	"	"	
630	C P CII2-	II	"	"	"	
631	"	СНз	"	<i>"</i>	,, ,,	
632	N CII₂-	11	"	"	<i>"</i>	
633	"	Cll₃	"	"	<i>"</i>	·
634	N CH ₂ -	11	"	"	"	,

No.	R ₁ X	R 2	Rз	Z	R ₄	() m.p.℃
635	CH ₂ -	CH ₃	CH ₃	CH	CN	
636	(N → CH₂-	Н	"		"	
637	"	Cll3	"		"	
638	CH3 N CII2-	Н	"	"	l	
639	"	СН₃	"	"	"	
640	N=N CH ₂ -	Н .	<i>"</i>	"	"	
641	"	Cll ₃	"	"	"	
642	$C \ell \stackrel{\checkmark}{\underset{N=N}{\longleftarrow}} CH_2 -$	H	"	"	"	
643	"	Cll3	"	"	"	

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m. p. °C
644	N CII2 -	Н	CH₃	СН	CN	
645	"	СН₃	"	"	"	·
646	N CH2 -	11	"	<i>"</i>	"	
647	"	CII3	"	"	.11	
648	C & S CH2-	Н	, ,,,	"	"	
649	"	CH ₃	"	"	"	•
650	"	"	C ₂ ll ₅	"	"	
651	<i>"</i>	C2 II5	ClIs	"	"	

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
652	CII2CII2-	11	CH ₃	CH	CN	
653	"	Cll3	"	"	"	
654	C & N CII2 CII2 -	II	"	"	"	
655	"	CII3	"	"	"	
656	CH ₂ CH ₂ -	И	"	"	"	
657	"	CH₃	"	"	"	
658	C e N CH2 CH2 -	Н	"	"	"	
659	∕/ CH₃	CII ₃	"	"	"	
660	C e N CH-	н	"	"	"	
661	"	CII3	"	"	"	
662	N CII2	II	"	"	"	
663	"	CH ₃	"	"	"	-

Na	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
664	CII ₂ -	11	Н	CII	CN	
665	<i>"</i>	"	СН₃	"	"	
666	"	"	CH₂C ℓ	<i>"</i>	"	
667	"	"	C2115	"	"	
668	"	"	C₃H₁(i)	"	" .	
669	"	"	C ₄ H _p (t)	"	"	*
670		СН₃	Н	"	·"·	
671	"	"	CH₃	"	"	
672	"	"	CH₂C ℓ	"	<i>"</i>	
673	"	"	C₂H₅	"	, "	
674	"	"		"	11.	

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
675	CII ₂ -	СН₃	C ₃ H ₇ (i)	CII	CN	
676	"	"	C4Ho(t)	"	"	
677	"	C2ll5	II	"	"	
678	"	"	CH₃	"	"	
679	"	"	C₂H₅	"	"	
680	"	<	Н	"	"	
681	"	"	CII3	"	"	
682	"	"	C2H5	"	"	
683	"	COCH ₃	Н	"	"	
684	"	"	CII₃	"	"	
685	"	"	C2ll5	"	"	
686	"	SO ₂ CII ₃	н	"	"	

6 9

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.℃
687	CH ₂ -	SO₂CH₃	CH ₃	CH	CN	
688	"	"	C ₂ H ₅	"	"	

WO 91/04965 PCT/JP90/01282

70

high insecticidal compounds of this invention exhibit The of insect pests such as various species activities against cutworms, diamondback moth, aphids, leafhoppers and planthoppers. the control effects ofdecrease of the In recent years organophosphorus and carbamate insecticides, which is caused by the development of resistance to these insecticides, has become serious In such situations, the development of new insecticides which is effective on the resistant pests has been desired. superior insecticidal this invention possess compounds of activities against not only susceptible strains but also resistant ones.

The insecticides covered by this invention contain as active ingredients one or more types of the compounds as expressed by the general formula (1). These active ingredients, may be used asproduced but normally they are used in any of the forms which ordinary agricultural chemicals can take, namely wettable powder, dust, emulsifiable concentrate, suspension concentrates, smoking chemicals, fumigant, granule, or other formulations. For additives and carriers are used soybean flour, wheat flour or other vegetable flours, diatomaceous earth, apatite, gypsum, talc, pyrophyllite, clay or other fine mineral powders, when solid formulations are intended.

When liquid formulations are intended, then for solvents are used kerosene, mineral oil, petroleum, solvent naphtha, xylene, cyclohexane, cyclohexanone, dimethylformamide, dimethylsulfoxide, alcohol, acetone, water, etc. A surface active agent may, if necessary, be added in order to give a homogeneous and suitable formulation. The wettable powders, emulsifiable concentrates,

suspension concentrates, etc. thus obtained are diluted with water into suspensions or emulsions of a prescribed concentration, before they are actually sprayed on plants in the field. In the case of dusts or granules, they are directly applied without further processing.

It goes without saying that the compound(s) of this invention is effective even alone, but it can be used by mixing with various types of insecticides, acaricides and fungicides.

Typical examples of acaricides and insecticides which can be used by mixing with the compounds of this invention are described below:

Acaricides (fungicides):

bromopropylate, chlorobenzilate, chloropropylate, proclonol, dicofol, dinobuton, binapacryl, chlordimeform, amitraz, propargite, PPPS, benzoximate, hexythiazox, fenbutatin oxide, polynactine, chinomethionat, thioquinox, chlorfenson, tetradifon, phenproxide, avermectins, clofentezine, flubenzimine, fenazaquin, pyridaben, fenproximate, chlorfenethol, thiophanate-methyl, benomyl, thiram, iprobenfos, edifenfos, fthalide, probenazole, isoprothiolane, chorothalonil, captan, polyoxin-B, blasticidin-S, kasugamycin, validamycin, tricyclazole, pyroquilon, phenazine oxide, mepronil, hymexazole, metalaxyl, iprodione, flutolanil, pencycuron, triflumizole, diclomezine, tecloftalam, vinclozolin, procymidone, fenarimal, pyrifenox, prochloraz, bitertanol, triadimefon, fenpropimorph, triforine, metalaxyl, oxycarboxin, pefrazoate, diclomedine, fluazinam, oxadixyl, ethoquinolac, TPTH, propamocarb, fosetyl, dihydrostreptomycin, anilazine, dithianon, diethofencarb. Organophosphorus-type and carbamate-type insecticides(acaridides):

72

diazinon, chlorpyrifos, oxydeprofos, fenitrothion, fenthion, dimethoate, formothion, malathion, phenthoate, vamidothion, trichlorfon, thiometon, phosmet, menazon, dichlorvos, acephate, dialifos, parathion-methyl, oxydemeton-methyl, ethion, methomyl, fenobucarb, BPMC, pyraclofos, aldicarb, propoxur, carbosulfan carbofuran, salithion, cartap, monocrotophos, benfuracarb, metolcarb, carbaryl, pirimicarb, ethiofencarb, fenoxycarb,

Pyrethroide-type insecticides (acaricides):

permethrin, cypermethrin, deltamethrin, fenvalerate, fenpropathrin, pyrethrins, allethrin, tetramethrin, resmethrin, parthrin, dimethrin, proparthrin, bifenthrin, prothrin, fluvalinate, cyfluthrin, cyhalothrin, flucythrinate, ethofenprox, cycloprothrin, tralomethrin, silaneophan.

Benzoylphenylurea-type and other types insecticides:

diflubenzuron, chlorfluazuron, triflumuron, teflubenzuron, buprofezin, pyriproxyfen, flufenoxuron, Machine oil.

Same examples of the formulations are given below. The carriers, surface-active agents, etc. that are added, however, are not limited to these Examples.

Example 7: Emulsifiable concentrate

The compound of this invention 10 parts
Alkylphenyl polyoxyethylene 5 parts
Dimethyl formamide 50 parts
Xylene 35 parts

These components are mixed and dissolved and, for use in spraying, the liquid mixture is water-diluted into an emulsion.

Example 8 : Wettable powder

The compound of this invention 20 parts
Higher alcohol sulfuric ester 5 parts
Diatomaceous earth 70 parts
Silica 5 parts

These components are mixed and ground to fine powder, which for use in spraying, are water-diluted into a suspension.

Example 9 : Dust

The compound of this invention 5 parts
Talc 94.7 parts
Silica 0.3 parts

These are mixed and ground and used as-ground in spraying.

Example 10 : Granule

The compound of this invention 5 parts

Clay 73 parts

Bentonite 20 parats

Sodium dioctylsulfosuccinate 1 part

Sodium phosphate 1 part

The above compounds are granulated, and applied as it is when used.

Industrial applicability:

The tests below show the insecticidal activity of the compounds of this invention.

Test 1 Efficacy for cotton aphid

30 to 50 insects of cotton aphid per plot were inoculated using a small brush on cucumber leaves which were seeded in pots, 10cm in diameter, and 10 days old after germination. A day later, wounded insect pests were removed, and a chemical solution, which was prepared in the way that the emulsifiable concentrate described in Example 7 of the above example of insecticide was diluted with water to 125 ppm of compound concentration according to the prescription, was sprayed. The pots were placed in a thermostatic room at temperature of 25°C and humidity of 65%. The number of survival pests was counted 7 days later and the control efficacy was calculated by comparing with that of untreated plot. The results are shown in Table 2.

Table 2

Table	
	Control Efficacy (7 days later)
Compound No.	125 ppm
1	100 %
2	100
3	100
4	100
6	100
8	100
10	100
16	100
20	100
21	100
22	100
23	100
24	100
25	100
27	100
29	100
31	100
32	100
33	100
38	100
44	100
48	100
50	100
51	100
53	100
57	100
60	100
62	100
64	100
66	100
68	100
70	100
. 72	100

Compound No.	Control Efficacy
73	100
74	100
78	100
80	100
82	100
84	100
86	100
88	100
92	100
96 .	100
100	100
102	100
115	100
116	100
120	100
124	100
130	100
132	100
136	100
144	100
145	100
146	100
148	100
149	100
150	100
151	100
152	100
163	100
164	100
169	100
170	100
171	100
172	100
173	100
174	100

?

•

c

Compound No.		Control Efficacy
177		100
178		100
188		100
189		100
190		100
194		100
203		100
206		100
213		100
236		100
366		100
368		100
381		100
383		100
543		100
Comparative compound	Α	27
n	В	100

Comparative compound A:

Comparative compound B:

78

Test 2 Efficacy for green rice leafhopper

Rice seedlings of 7 days old after germination were immersed in a chemical solution, which was prepared in the way that the emulsifiable concentrate described in Example 7 of the above example of insecticide was diluted with water to 125 ppm of compound concentration according to prescription, for 30 seconds. After dried in air, the treated seedlings were placed in test tubes and 10 insects of 3rd-instar larvae of green rice leafhopper resistant to the organophosphorus and carbamate insecticides were inoculated. The tubes were covered with gauze, and placed in a thermostatic room at temperature of 25°C and humidity of 65%. The mortality was checked 5 days later.

The results are shown in Table 3.

Table 3

Table 3				
% mortality (5 days later)				
Compound No.	125 ppm			
1	100 %			
2	100			
4	100			
6	100			
8	100			
. 10	100			
16	100			
18	. 100			
20	100			
21	100			
22	100			
23	100			
24	100			
25	100			
27	100			
28	100			
29	100			
31	100			
32	100			
33	100			
35	100			
36	100			
44	100			
48	100			
50	100			
51	100			
53	100			
57	100			
60	100			
62	100			
66	100			
68	100			
72	100			
73	100			

Compound No.	% Mortality
74	100
78	100
82	100
84	100
86	100
88	100
92	· 100
96	100
100	100
102	100
116	100
120	100
124	100
130	100
132	100
136	100
144	100
146	100
148	100
150	100
152	100
164	100
169	100
170	100
171	100
172	100
173	100
174	100
178	100
188	100
190	100
201	100
203	100

3

į

Ę

۶.

Compound No.	% Mortality
213	100
236	100
366	100
368	100
369	100
381	100
Comparative Compound A	0
" В	0
* C	0

Comparative compound A and B: The same as test 1

Compound C:

(malathion)

82

Test 3 Efficacy for rice armyworm

The test compounds were formulated into the wettable powder in the same manner as Example 8. The compounds were diluted with water to 125 ppm. A maize leaf was immersed in the chemical solution for 30 seconds. After air-dried, the treated leaf was placed in a petri dish and five 3rd-instar larvae of rice armyworm were inoculated. The petri dishes were covered with glass lids, and placed in a thermostatic room at 25°C and 65% relative humidity. The mortality was checked 5 days later. Two replications were conducted in the each test. The results are shown in Table 4.

Table 4

	% mortality (5 days later)	
Compound No.	125 ppm	
21	100 %	
22	100	
23	100	
24	100	
25	100	
51	100	
57	100	
88	100	
92	100	
148	100	
172	100	
381	100	
Comparative compound A	0	
" В	0	
" D	40	

Comparative compound A and B: The same as Test 1

Compound D:

$$C1 \xrightarrow{\text{CH}-\text{N(CH}_3)_2}$$

(chlordimeform)

84 Claims

1. A compound having the formula

wherein R₁ represents an optionally substituted 5 - 6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl;

 ${\tt X}$ represents an optionally substituted ${\tt C}_{1-3}$ alkylene or alkylidene;

 R_2 represents a hydrogen, a carbamoyl, a mono or di C_{1-5} alkyl carbamoyl, a thiocarbamoyl, a mono or di C_{1-5} alkylthiocarbamoyl, a sulfamoyl, a mono or di C_{1-5} alkylsulfamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted aryl or $-Y-R_5$;

Y represents O, $S(O)_n$, CO, CS or CO_2 ;

n represents 0,1 or 2;

 R_5 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted aryl;

 R_3 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally

85

substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl or an optionally substituted C_{3-8} cycloalkenyl; R_4 represents a cyano or a nitro; and Z represents CH or N; or its salt.

2. A compound according to claim 1,

wherein R_1 represents a pyridyl, a pyrazyl, a pyrazolyl, a pyridazyl or a thiazolyl, which may be substituted by a C_{1-5} alkyl, a C_{1-5} haloalkyl, a C_{1-5} alkoxy, a C_{1-5} alkylsulfonyl, a cyano, a halogen or a di C_{1-5} alkylamino, respectively, except a non-substituted 2-pyridyl;

 R_2 represents a hydrogen, a mono or di C_{1-5} alkylcarbamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-6} cycloalkyl, an optionally substituted aryl or -Y- R_5 ;

Y represents O, CO, CO₂ or SO₂;

 R_5 represents an optionally substituted C_{1-5} alkyl, or an optionally substituted aryl;

 R_3 represents a hydrogen, an optionally substituted C_{1-5} alkyl or an optionally substituted C_{3-6} cycloalkyl;

Z represents N;

- 3. An insecticidal composition comprising a compound according to claim 1 as an active ingredient.
- 4. An insecticidal composition comprising a compound according to claim 2 as an active ingredient.
- 5. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

$$\begin{array}{c} \text{Or}^1 \\ \text{R}_3^{\text{COCH}}_2^{\text{R}}_4 \text{ or } \text{R}_3 \\ \text{Or}^2 \end{array}$$

wherein r^1 and r^2 are a C_{1-5} alkyl, respectively; and R_1 , R_2 , R_3 , R_4 and X are as defined above.

6. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

wherein r^3 represents a C_{1-5} alkyl; and R_1 , R_2 , R_3 and X are as defined above.

7. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

$$R_2$$
-Hal

wherein Hal represents a halogen atom; and R_1 , R_2 , R_3 and X are as defined above.

8. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

$$R_1 - X - Hal$$

wherein R_1 , R_2 , R_3 , X and Hal are as defind above.

9. A process for the preparation of a compound having the formula

88

which comprises reacting a compound having the formula

with nitration reagent,

wherein R_1 , R_2 , R_3 and X are as defined above.

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP 90/01282

I. CLASS	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶				
According	According to International Patent Classification (IPC) or to both National Classification and IPC				
IPC5: C	IPC5: C 07 D 213/36, 213/40, 213/60, 417/12, 239/26, 237/08 241/12, 231/10, 277/08, A 01 N 43/40, 43/36, 43/48, 43/78				
II. FIELDS	SEARCHED				
		Minimum Documen			
Classificati	on System	с	lassification Symbols		
				•	
IPC5	(C 07 D; A 01 N			
		Documentation Searched other to the Extent that such Documents	than Minimum Documentation are Included in Fields Searched ⁸		
		AND THE PLANTS			
		SIDERED TO BE RELEVANT ⁹ of Document, ¹¹ with indication, where app	muriste, of the relevant passages 12	Relevant to Claim No.13	
Category *				1-9	
A	8 F	0302389 (TAKEDA CHEMICAL	INDUSTRIES, EID.		
	see	the whole document			
			1 1000	1_0	
A	EP, A2, see	0302833 (CIBA-GEIGY AG) the whole document	8 February 1989,	1-9	
A	EP, A1, see	0306696 (CIBA-GEIGY AG) the whole document	15 March 1989,	1-9	
A	EP, A2, see	0303570 (CIBA-GEIGY AG) the whole document	15 February 1989,	1-9	
	·				
* Special categories of cited documents: 10 * Special categories of cited documents: 10 * A document defining the general state of the art which is not considered to be of particular relevance * Considered to be of particular relevance * T' later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention					
"E" ear	"E" earlier document but published on or after the international "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or "O" document referring to an oral disclosure, use, exhibition or "O" document is combined with one or more other such decument is combined with one or more other such and the document is combined with one or more other such and the document is combined with one or more other such as the combined with one or more ot					
other means, such comments of the international filing date but sate than the priority date claimed "A" document member of the same patent family					
IV. CERTIFICATION					
	Date of the Actual Completion of the International Search Date of Mailing of this International Search Report				
12th De	12th December 1990 15. 01. 9;				
Internation	al Searching		Signature of Authorized Officer	· Sinh	
	EUROPEAN PATENT OFFICE miss T. MOHTENSEN				

Form PCT/ISA/210 (second sheet) (January 1985)

II. DOCL	IMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
ategory *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
A	Chemical Abstracts, volume 88, no. 1, 2 January 1978, (Columbus, Ohio, US), Kreutzberger, Alfred: "Antimycotics. VI. Dehydro-N-Mannich bases from cyclic and mixed aliphatic-aromatic amines. ", see page 580, abstract 6816j, & ChemZtg. 1977, 101(9), 400-401	1-9
	~~	
A	Chemical Abstracts, volume 94, no. 13, 30 March 1981, (Columbus, Ohio, US), see page 691, abstract 102861q, & JP, A, 80130950 (B-Alkoxyacrylonitriles, 3-aminoacrylonitriles, and 2-cyanovinyl esters.) 29 March 1979	1-9
		
٠		
	•	·

Form PCT/ISA/210 (extra sheet) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/JP 90/01282

SA

40597

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 01/11/90. The European Patent office is in no way liable for these particulars which are merely given for the purpose of Information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A2- 0302389	08/02/89	JP-A-	2000171	05/01/90	
EP-A2- 0302833	08/02/89	AU-D- JP-A- US-A-	2051088 1070468 4918086	09/03/89 15/03/89 17/04/90	
EP-A1- 0306696	15/03/89	JP-A- US-A-	1070467 4948798	15/03/89 14/08/90	
EP-A2- 0303570	15/02/89	JP-A-	1070469	15/03/89	

For more details about this annex : see Official Journal of the European patent Office, No. 12/82