Espaces de configuration de variétés compactes

Najib Idrissi

Séminaire de physique mathématique et topologie algébrique, LAREMA 21 novembre 2017

But

Étudier les espaces de configuration des variétés :

$$\operatorname{Conf}_k(M) := \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

1

But

Étudier les espaces de configuration des variétés :

$$Conf_k(M) := \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Idée

Utiliser la « formalité des opérades E_n » : résultats pour $\mathrm{Conf}_k(\mathbb{R}^n)$

1

Modèles

On se place dans le cadre des modèles rationnels/réels :

$$A\simeq\Omega^*(M)$$
 « formes sur M » (de Rham, polynomiales par morceaux...)

où A est une CDGA « explicite »

algèbre différentielle graduée commutative

Modèles

On se place dans le cadre des modèles rationnels/réels :

$$\mathsf{A} \simeq \Omega^*(\mathsf{M})$$
 « formes sur M » (de Rham, polynomiales par morceaux...)

où A est une CDGA « explicite »

algèbre différentielle graduée commutative

M simplement connexe \implies A contient tout le type d'homotopie rationnel/réel de M

Modèles

On se place dans le cadre des modèles rationnels/réels :

$$\mathsf{A} \simeq \Omega^*(\mathsf{M})$$
 « formes sur M » (de Rham, polynomiales par morceaux...)

M simplement connexe \implies A contient tout le type d'homotopie rationnel/réel de M

On cherche une CDGA $\simeq \Omega^*(\operatorname{Conf}_k(M))$ construite à partir de A

Formalité de $\operatorname{Conf}_k(\mathbb{R}^n)$

 $\operatorname{Conf}_{k}(\mathbb{R}^{n})$ est un espace «formel» sur \mathbb{Q} :

$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$$

 \implies détermine entièrement son type d'homotopie $/\mathbb{Q}$

Formalité de $\operatorname{Conf}_k(\mathbb{R}^n)$

 $\operatorname{Conf}_k(\mathbb{R}^n)$ est un espace «formel » sur \mathbb{Q} :

$$H^*(\operatorname{Conf}_R(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_R(\mathbb{R}^n))$$

 \implies détermine entièrement son type d'homotopie $/\mathbb{Q}$

Théorème (Arnold 1969, Cohen 1976)

- $H^*(\operatorname{Conf}_R(\mathbb{R}^n)) = S(\omega_{ij})_{1 \le i \ne j \le k}/I$
- $\cdot \deg \omega_{ii} = n 1$
- $\cdot I = \left(\omega_{ji} = \pm \omega_{ij}, \ \omega_{ij}^2 = 0, \ \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0\right)$

CDGA à dualité de Poincaré (A, ε) (exemple : $A = H^*(M)$)

· A: CDGA connexe de type fini;

CDGA à dualité de Poincaré (A, ε) (exemple : $A = H^*(M)$)

- · A: CDGA connexe de type fini;
- $\varepsilon: A^n \to \mathbb{k}$ t.q. $\varepsilon \circ d = 0$;

CDGA à dualité de Poincaré (A, ε) (exemple : $A = H^*(M)$)

- · A: CDGA connexe de type fini;
- $\varepsilon: A^n \to \mathbb{k}$ t.q. $\varepsilon \circ d = 0$;
- t.q. $A^k \otimes A^{n-k} \to \mathbbm{k}$, $a \otimes b \mapsto \varepsilon(ab)$ est non-dégénéré

CDGA à dualité de Poincaré (A, ε) (exemple : $A = H^*(M)$)

- · A : CDGA connexe de type fini;
- $\varepsilon: A^n \to \mathbb{k}$ t.q. $\varepsilon \circ d = 0$;
- t.q. $A^k \otimes A^{n-k} \to \mathbb{k}$, $a \otimes b \mapsto \varepsilon(ab)$ est non-dégénéré

Théorème (Lambrechts-Stanley 2008)

Toute variété simplement connexe admet un tel modèle

$$\Omega^*(M) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \exists A$$

$$\downarrow_{\exists \varepsilon}$$

CDGA à dualité de Poincaré (A, ε) (exemple : $A = H^*(M)$)

- · A: CDGA connexe de type fini;
- $\varepsilon: A^n \to \mathbb{k}$ t.q. $\varepsilon \circ d = 0$;
- t.q. $A^k \otimes A^{n-k} \to \mathbb{k}$, $a \otimes b \mapsto \varepsilon(ab)$ est non-dégénéré

Théorème (Lambrechts-Stanley 2008)

Toute variété simplement connexe admet un tel modèle

$$\Omega^*(M) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \exists A$$

$$\downarrow_{\exists \varepsilon}$$

Remarque

D'après un résultat de Longoni–Salvatore (2005), $\exists L \simeq L'$ non simplement connexe t.q. $\mathrm{Conf}_k(L) \not\simeq \mathrm{Conf}_k(L') \ \forall k \geq 2$.

$$G_A(k)$$
 modèle conjectural de $\mathrm{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\longrightarrow := \{x_i = x_j\}$

 $G_A(k)$ modèle conjectural de $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ • « Générateurs » : $A^{\otimes k} \otimes S(\omega_{ii})_{1 < i \neq i < k}$ $\hookrightarrow := \{x_i = x_j\}$

5

$$G_A(k)$$
 modèle conjectural de $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_j\}$

- « Générateurs » : $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Relations d'Arnold:
 - $p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}$.

$$(\omega_{ji} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0)$$

$$(p_i^*(a) := 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$$

$$\mathsf{G}_{\mathsf{A}}(k)$$
 modèle conjectural de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{ imes k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

- « Générateurs » : $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$
- · Relations:
 - Relations d'Arnold; $(\omega_{ji} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0)$ $p_i^*(a) \cdot \omega_{ij} = p_i^*(a) \cdot \omega_{ij}$. $(p_i^*(a) := 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$
- · $d \omega_{ij} = (p_i^* \cdot p_i^*)(\Delta_A) \rightarrow \text{tue le dual de } [\Delta_{ij}].$

$$G_A(k)$$
 modèle conjectural de $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Rightarrow := \{x_i = x_i\}$

- « Générateurs » : $A^{\otimes k} \otimes S(\omega_{ii})_{1 \leq i \neq i \leq k}$
- · Relations:
 - Relations d'Arnold; $(\omega_{ji} = \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0)$ $p_i^*(a) \cdot \omega_{ij} = p_i^*(a) \cdot \omega_{ij}$. $(p_i^*(a) := 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$
- · $d \omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A) \rightarrow \text{tue le dual de } [\Delta_{ij}].$

Théorème (Lambrechts-Stanley)

$$\dim_{\mathbb{Q}} H^{i}(\operatorname{Conf}_{R}(M)) = \dim_{\mathbb{Q}} H^{i}(G_{A}(R))$$

$$\mathbf{G}_{\!A}(k) = (\mathsf{A}^{\otimes k} \otimes \mathsf{S}(\,\omega_{ij})_{1 \leq i < j \leq k}/\mathsf{relations}\,,\; d\,\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_{\!A}))$$

$$\mathbf{G}_{\!A}(0) = \mathbb{Q} \to \text{ mod\`ele de } \mathrm{Conf}_0(\mathit{M}) = \{\varnothing\} \quad \checkmark$$

$$G_A(k) = (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k} / \text{relations}, \ d\omega_{ij} = (p_i^* \cdot p_i^*)(\Delta_A))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} o \mathsf{mod\`ele} \ \mathsf{de} \ \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(1) = \mathsf{A} o \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(k) = (\mathsf{A}^{\otimes k} \otimes \mathsf{S}(\omega_{ij})_{1 \leq i < j \leq k} / \mathsf{relations} \,, \, d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_{\mathsf{A}}))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(1) = \mathsf{A} o \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(2) = \left(\frac{\mathsf{A} \otimes \mathsf{A} \otimes 1 \ \oplus \ \mathsf{A} \otimes \mathsf{A} \otimes \omega_{12}}{1 \otimes \mathsf{a} \otimes \omega_{12} \equiv \mathsf{a} \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{\mathsf{A}} \otimes 1\right)$$

$$\mathsf{G}_{\mathsf{A}}(k) = (\mathsf{A}^{\otimes k} \otimes \mathsf{S}(\,\omega_{ij})_{1 \leq i < j \leq k} / \mathsf{relations} \,, \, d\,\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_{\mathsf{A}}))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(1) = \mathsf{A} o \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$G_{A}(2) = \left(\frac{A \otimes A \otimes 1 \oplus A \otimes A \otimes \omega_{12}}{1 \otimes a \otimes \omega_{12} \equiv a \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{A} \otimes 1\right)$$
$$\cong (A \otimes A \otimes 1 \oplus A \otimes_{A} A \otimes \omega_{12}, d\omega_{12} = \Delta_{A} \otimes 1)$$

$$G_A(k) = (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k} / \text{relations}, \ d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_{\mathsf{A}}(1) = \mathsf{A} o \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$\begin{split} \mathsf{G}_{\mathsf{A}}(2) &= \left(\frac{\mathsf{A} \otimes \mathsf{A} \otimes 1 \ \oplus \ \mathsf{A} \otimes \mathsf{A} \otimes \omega_{12}}{1 \otimes \mathsf{a} \otimes \omega_{12} \equiv \mathsf{a} \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{\mathsf{A}} \otimes 1\right) \\ &\cong \left(\mathsf{A} \otimes \mathsf{A} \otimes 1 \ \oplus \ \mathsf{A} \otimes_{\mathsf{A}} \mathsf{A} \otimes \omega_{12}, \ d\omega_{12} = \Delta_{\mathsf{A}} \otimes 1\right) \\ &\cong \left(\mathsf{A} \otimes \mathsf{A} \otimes 1 \ \oplus \ \mathsf{A} \otimes \omega_{12}, \ d\omega_{12} = \Delta_{\mathsf{A}} \otimes 1\right) \end{split}$$

$$G_A(k) = (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k} / \text{relations}, \ d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A))$$

$$\mathsf{G}_\mathsf{A}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_\mathsf{A}(1) = \mathsf{A} o \mathsf{mod\`ele} \ \mathsf{de} \ \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$G_{A}(2) = \left(\frac{A \otimes A \otimes 1 \oplus A \otimes A \otimes \omega_{12}}{1 \otimes a \otimes \omega_{12} \equiv a \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{A} \otimes 1\right)$$

$$\cong (A \otimes A \otimes 1 \oplus A \otimes_{A} A \otimes \omega_{12}, d\omega_{12} = \Delta_{A} \otimes 1)$$

$$\cong (A \otimes A \otimes 1 \oplus A \otimes \omega_{12}, d\omega_{12} = \Delta_{A} \otimes 1)$$

$$= \operatorname{cone}(A \xrightarrow{\cdot \Delta_{A}} A^{\otimes 2})$$

$$G_A(k) = (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k} / \text{relations}, \ d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A))$$

$$\mathsf{G}_{\mathsf{A}}(0) = \mathbb{Q} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_0(\mathsf{M}) = \{\varnothing\} \quad \checkmark$$

$$\mathsf{G}_\mathsf{A}(1) = \mathsf{A} \to \mathsf{mod\`ele} \; \mathsf{de} \; \mathsf{Conf}_1(\mathsf{M}) = \mathsf{M} \quad \checkmark$$

$$G_{A}(2) = \left(\frac{A \otimes A \otimes 1 \oplus A \otimes A \otimes \omega_{12}}{1 \otimes a \otimes \omega_{12} \equiv a \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_{A} \otimes 1\right)$$

$$\cong (A \otimes A \otimes 1 \oplus A \otimes_{A} A \otimes \omega_{12}, d\omega_{12} = \Delta_{A} \otimes 1)$$

$$\cong (A \otimes A \otimes 1 \oplus A \otimes \omega_{12}, d\omega_{12} = \Delta_{A} \otimes 1)$$

$$= \operatorname{cone}(A \xrightarrow{\cdot \Delta_{A}} A^{\otimes 2})$$

$$\xrightarrow{\sim} A^{\otimes 2}/(\Delta_{A})$$

1969 [Arnold, Cohen]
$$H^*(\operatorname{Conf}_R(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$$

1969 [Arnold, Cohen]
$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = \mathsf{G}_{H^*(\mathbb{D}^n)}(k)$$

1978 [Cohen & Taylor] $E^2 = \mathsf{G}_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$ 1978 [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :

```
1969 [Arnold, Cohen] H^*(\operatorname{Conf}_R(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)

1978 [Cohen & Taylor] E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_R(M))

~1994 Pour les variétés complexes projectives lisses (\implies Kähler):

• [Kříž] G_{H^*(M)}(k) modèle de \operatorname{Conf}_R(M)
```

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$
- 1978 [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler):
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen–Taylor s'effondre

Historique de G_A

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$
- **1978** [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen-Taylor s'effondre
- **2004** [Lambrechts & Stanley] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si M est 2-connexe

Historique de G_A

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$
- **1978** [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen-Taylor s'effondre
- **2004** [Lambrechts & Stanley] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si M est 2-connexe
- ~2004 [Félix & Thomas, Berceanu & Markl & Papadima] $G_{H^*(M)}^{\vee}(k) \cong$ page E^2 de la SS de Bendersky–Gitler $\implies H^*(M^{\times k}, \bigcup_{i \neq j} \Delta_{ij})$

Historique de G_A

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- **1978** [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen-Taylor s'effondre
- **2004** [Lambrechts & Stanley] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si M est 2-connexe
- ~2004 [Félix & Thomas, Berceanu & Markl & Papadima] $G_{H^*(M)}^{\vee}(k) \cong$ page E^2 de la SS de Bendersky–Gitler $\implies H^*(M^{\times k}, \bigcup_{i \neq j} \Delta_{ij})$
 - **2008** [Lambrechts & Stanley] $H^*(G_A(k)) \cong_{\Sigma_k-gVect} H^*(Conf_k(M))$

- **1969** [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$
- **1978** [Cohen & Taylor] $E^2 = G_{H^*(M)}(k) \implies H^*(\operatorname{Conf}_k(M))$
- ~1994 Pour les variétés complexes projectives lisses (⇒ Kähler) :
 - [Kříž] $G_{H^*(M)}(k)$ modèle de $Conf_k(M)$
 - [Totaro] La SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts & Stanley] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si M est 2-connexe
- ~2004 [Félix & Thomas, Berceanu & Markl & Papadima] $G_{H^*(M)}^{\vee}(k) \cong$ page E^2 de la SS de Bendersky–Gitler $\implies H^*(M^{\times k}, \bigcup_{i \neq j} \Delta_{ij})$
 - **2008** [Lambrechts & Stanley] $H^*(G_A(k)) \cong_{\Sigma_k-gVect} H^*(Conf_k(M))$
 - **2015** [Cordova Bulens] $A^{\otimes 2}/(\Delta_A)$ modèle de $\mathrm{Conf}_2(M)$ si $\dim M = 2m$

Première partie du théorème

Théorème

Soit M une variété lisse, compacte, sans bord, simplement connexe, de dimension ≥ 4 . Alors $G_A(k)$ est un modèle sur \mathbb{R} de $\operatorname{Conf}_R(M)$ pour tout $k \geq 0$.

Première partie du théorème

Théorème

Soit M une variété lisse, compacte, sans bord, simplement connexe, de dimension ≥ 4 . Alors $G_A(k)$ est un modèle sur \mathbb{R} de $\operatorname{Conf}_k(M)$ pour tout $k \geq 0$.

Corollaire

Le type d'homotopie réel de $\mathrm{Conf}_{k}(M)$ ne dépend que du type d'homotopie réel de M :

$$M \simeq_{\mathbb{R}} N \implies \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N).$$

Idée de la preuve

Idée

Étudier $\{\operatorname{Conf}_k(M)\}_{k\geq 0}$: plus de structure

Idée de la preuve

Idée

Étudier $\{\operatorname{Conf}_k(M)\}_{k\geq 0}$: plus de structure \to module sur une opérade

Idée de la preuve

Idée

Étudier $\{\operatorname{Conf}_k(M)\}_{k\geq 0}$: plus de structure \to module sur une opérade

Compactification de Fulton–MacPherson $\operatorname{Conf}_k(M) \overset{\sim}{\hookrightarrow} \operatorname{\mathsf{FM}}_M(k)$

Animation #1

Animation #2

Animation #3

Compactification de $\operatorname{Conf}_k(\mathbb{R}^n)$

On a aussi $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{FM}_n(k)$

Compactification de $\operatorname{Conf}_k(\mathbb{R}^n)$

On a aussi $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / \operatorname{Aff}(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{FM}_n(k)$

(+ normalisation parce que \mathbb{R}^n n'est pas compact)

Opérades

 $\mathsf{FM}_n = \{\mathsf{FM}_n(k)\}_{k \geq 0}$ est une opérade : on peut « composer » les configurations

$$\mathsf{FM}_{\mathbb{R}^n}(k) \times \mathsf{FM}_{\mathbb{R}^n}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathbb{R}^n}(k+l-1), \quad 1 \leq i \leq k$$

Opérades

 $\mathsf{FM}_n = \{\mathsf{FM}_n(k)\}_{k \geq 0}$ est une opérade : on peut « composer » les configurations

$$\mathsf{FM}_{\mathbb{R}^n}(k) \times \mathsf{FM}_{\mathbb{R}^n}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathbb{R}^n}(k+l-1), \quad 1 \leq i \leq k$$

Remarque

Faiblement équivalent à l'opérade des petits disques/cubes.

Modules sur les opérades

M parallélisée \Longrightarrow $FM_M = \{FM_M(k)\}_{k\geq 0}$ est un FM_n -module à droite : on peut insérer une configuration infinitésimale dans une configuration de M

$$\mathsf{FM}_{\mathsf{M}}(k) \times \mathsf{FM}_{\mathbb{R}^n}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathsf{M}}(k+l-1), \quad 1 \leq i \leq k$$

Cohomologie de FM_n et coaction sur G_A

 $H^*(FM_n)$ hérite d'une structure de coopérade de Hopf

Cohomologie de FM_n et coaction sur G_A

 $H^*(\mathbf{FM}_n)$ hérite d'une structure de coopérade de Hopf On peut réécrire

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Cohomologie de FM_n et coaction sur G_A

 $H^*(FM_n)$ hérite d'une structure de coopérade de Hopf On peut réécrire

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Proposition

$$\chi(M)=0 \implies {\sf G}_{A}=\{{\sf G}_{A}(k)\}_{k\geq 0} \mbox{ est un } H^*({\sf FM}_n)\mbox{-comodule de Hopf à droite}$$

Motivation

On cherche à remplir ce diagramme :

$$G_A(k) \stackrel{\sim}{\leftarrow} ? \stackrel{\sim}{\rightarrow} \Omega^*(FM_M(k))$$

Motivation

On cherche à remplir ce diagramme :

$$G_A(k) \stackrel{\sim}{\leftarrow} ? \stackrel{\sim}{\rightarrow} \Omega^*(FM_M(k))$$

Si c'est vrai, on peut s'attendre à pouvoir remplir celui-là :

Motivation

On cherche à remplir ce diagramme :

$$G_A(k) \stackrel{\sim}{\leftarrow} ? \stackrel{\sim}{\rightarrow} \Omega^*(FM_M(k))$$

Si c'est vrai, on peut s'attendre à pouvoir remplir celui-là :

Déjà connu : formalité de l'opérade des petits disques

Complexes de graphes de Kontsevich

[Kontsevich] Coopérade de Hopf $Graphs_n = \{Graphs_n(k)\}_{k \geq 0}$

Complexes de graphes de Kontsevich

[Kontsevich] Coopérade de Hopf $Graphs_n = \{Graphs_n(k)\}_{k \geq 0}$

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

Version complète du théorème

Idée

Construire $Graphs_R$ qui est à $Graphs_n$ ce que G_A est à $H^*(FM_n)$

Version complète du théorème

Idée

Construire $Graphs_R$ qui est à $Graphs_n$ ce que G_A est à $H^*(FM_n)$

Théorème (Version complète, cas sans bord)

 M : variété compacte sans bord, simplement connexe, lisse, $\dim \mathit{M} \geq 4$

† Si
$$\chi({\rm M})=0$$
 † Si M est parallélisée

Maintenant $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Maintenant $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

 \cdot $(B_{\partial}\,, arepsilon_{\partial})$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M} N$

Maintenant $\partial M \neq \emptyset \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_\partial\,, arepsilon_\partial)$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M})$
- B: CDGA connexe de t.f.; (modèle M)

Maintenant
$$\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$$
 (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}\,, \varepsilon_{\partial})$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M} N$
- B : CDGA connexe de t.f.; (modèle M)
- $\lambda:B woheadrightarrow B_{\partial}:$ morphisme surjectif; (modèle $\partial M \hookrightarrow M$)

Maintenant $\partial M \neq \emptyset \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_{\partial}\,, arepsilon_{\partial})$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M})$
- B : CDGA connexe de t.f.;
- $\lambda: B \to B_{\partial}$: morphisme surjectif; (modèle $\partial M \hookrightarrow M$)
- \cdot $\varepsilon: B^n o \mathbb{R}$ t.g. $\varepsilon(dy) = \varepsilon_\partial(\lambda(y))$; (modèle $f_{M}(-)$ & Stokes)

(modèle M)

Maintenant $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_\partial\,, arepsilon_\partial)$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M})$
- B : CDGA connexe de t.f.;

 $(\text{modèle }\partial M\hookrightarrow M)$

(modèle M)

- $\lambda : B \rightarrow B_{\partial}$: morphisme surjectif;
- $\cdot \ arepsilon : \mathit{B}^n o \mathbb{R} \ \mathrm{t.q.} \ arepsilon(\mathit{dy}) = arepsilon_{\partial}(\lambda(y)) \, ;$ (modèle $\int_{\mathbb{M}} (-) \, \& \, \mathrm{Stokes})$
- soit $K:=\ker\lambda$, alors $\theta:B\to K^\vee[-n],\,b\mapsto\varepsilon(b\cdot-)$ est un quasi-iso surjectif.

Maintenant $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ (si M est orientée)

Paire à dualité de Poincaré-Lefschetz $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_\partial\,, arepsilon_\partial)$ CDGA à dualité de Poincaré de dim. n-1; (modèle $\partial M, \int_{\partial M})$
- B: CDGA connexe de t.f.;
- $\lambda: B \to B_{\partial}$: morphisme surjectif; (modèle $\partial M \hookrightarrow M$)
- \cdot $\varepsilon: B^n o \mathbb{R}$ t.q. $\varepsilon(dy) = \varepsilon_\partial(\lambda(y))$; (modèle $\int_{\mathbb{M}} (-) \, \& \, \mathrm{Stokes})$
- soit $K := \ker \lambda$, alors $\theta : B \to K^{\vee}[-n]$, $b \mapsto \varepsilon(b \cdot -)$ est un quasi-iso surjectif. $(\kappa \simeq \Omega^*(M, \partial M))$

Dans ce cas, $A := B / \ker \theta$ est un modèle de M, et $\theta : A \xrightarrow{\cong} K^{\vee}[-n]$

(modèle M)

Exemple

Si $M = N \setminus \{*\}$ avec N compacte sans bord,

Exemple

Si $M = N \setminus \{*\}$ avec N compacte sans bord, soit P un modèle à DP de N, on pose :

$$B = (P \oplus \mathbb{R} \mathsf{v}_{n-1}, d\mathsf{v} = \mathrm{vol}_P) \twoheadrightarrow B_{\partial} = \mathsf{H}^*(\mathsf{S}^{n-1}) = (\mathbb{R} \oplus \mathbb{R} \mathsf{v}_{n-1}, d = 0)$$

Exemple

Si $M = N \setminus \{*\}$ avec N compacte sans bord, soit P un modèle à DP de N, on pose :

$$B=(P\oplus \mathbb{R} v_{n-1}, dv=\mathrm{vol}_P) \twoheadrightarrow B_\partial=H^*(S^{n-1})=(\mathbb{R}\oplus \mathbb{R} v_{n-1}, d=0)$$

Proposition

Si M et ∂M sont simplement connexes et $\dim M \geq 7$, alors $(M, \partial M)$ admet un modèle à DPL.

Exemple

Si $M=N\setminus \{*\}$ avec N compacte sans bord, soit P un modèle à DP de N, on pose :

$$B=(P\oplus \mathbb{R} v_{n-1}, dv=\mathrm{vol}_P) \twoheadrightarrow B_\partial=H^*(S^{n-1})=(\mathbb{R}\oplus \mathbb{R} v_{n-1}, d=0)$$

Proposition

Si M et ∂M sont simplement connexes et $\dim M \geq 7$, alors $(M, \partial M)$ admet un modèle à DPL.

Remarque

Également vrai si *M* admet un « *surjective pretty model* », cf. résultats de Cordova Bulens, Lambrechts et Stanley.

Le dg-module G_A « naïf »

Soit (B, B_{∂}) un modèle à DPL et $A = B/\ker\theta \simeq B \implies$ même définition de $G_A(k)$

Le dg-module G_A « naïf »

Soit (B,B_{∂}) un modèle à DPL et $A=B/\ker\theta\simeq B\implies$ même définition de $G_A(k)$

Théorème

$$\dim H^i(\operatorname{Conf}_R(M)) = \dim H^i(G_A(R))$$

Le dg-module G_A « na $\ddot{i}f$ »

Soit (B, B_{∂}) un modèle à DPL et $A = B/\ker\theta \simeq B \implies$ même définition de $G_A(k)$

Théorème

$$\dim H^{i}(\operatorname{Conf}_{k}(M)) = \dim H^{i}(G_{A}(k))$$

Idée de la preuve

On combine:

- · Des techniques de Lambrechts–Stanley pour calculer l'homologie d'espaces du type $M^k\setminus\bigcup_{i\neq j}\Delta_{ij}$;
- Des techniques de Cordova Bulens-Lambrechts-Stanley pour calculer l'homologie de M = N \ X où N est une variété sans bord et X ⊂ N est un sous-polyhèdre.

En général, $\mathbf{G}_A(k)$ n'est pas un modèle de $\mathrm{Conf}_k(M)$.

En général, $G_A(k)$ n'est pas un modèle de $\operatorname{Conf}_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

En général, $G_A(k)$ n'est pas un modèle de $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Alors $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$.

· dans $G_A(2)$: $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12}$.

En général, $G_A(k)$ n'est pas un modèle de $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Alors $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$.

- dans $G_A(2)$: $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12}$.
- · dans $Conf_3(\mathbb{R}^2)$ (Arnold) : $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12} \pm (\eta \otimes \eta)$.

En général, $G_A(k)$ n'est pas un modèle de $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Alors $A = H^*(M) = \mathbb{R} \oplus \mathbb{R} \eta$.

- dans $G_A(2)$: $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12}$.
- · dans $Conf_3(\mathbb{R}^2)$ (Arnold) : $(1 \otimes \eta) \omega_{12} = (\eta \otimes 1) \omega_{12} \pm (\eta \otimes \eta)$.

 \implies on définit un « modèle perturbé » $\tilde{\mathsf{G}}_{\mathsf{A}}(k)$

Proposition

Isomorphisme de dg-modules $G_A(k) \cong \tilde{G}_A(k)$ (mais pas d'algèbre ni de $H^*(FM_n)$ -comodule).

Swiss-Cheese & graphes

M ressemble (localement) à $\mathbb{H}^n \implies$ opérade Swiss-Cheese

Swiss-Cheese & graphes

M ressemble (localement) à $\mathbb{H}^n \implies$ opérade Swiss-Cheese

Swiss-Cheese & graphes

M ressemble (localement) à $\mathbb{H}^n \Longrightarrow \text{opérade Swiss-Cheese}$

Théorème (Willwacher 2015)

Modèle $\mathsf{SGraphs}_n$ de $\mathsf{SFM}_n = \overline{\mathsf{Conf}_{\bullet,\bullet}(\mathbb{H}^n)} \simeq \mathsf{SC}_n$:

Théorème pour les variétés à bord

Avec des techniques similaires :

Théorème

M : variété lisse, compacte, de dimension ≥ 7 , M et ∂M simplement connexes :

En plus : modèle $\operatorname{SGraphs}_{R,R_{\partial}}^{c_{M},\mathbf{z}_{\varphi}^{S}}(k,l)$ de $\operatorname{SFM}_{M}(k,l)$, compatible avec la (co)action de $\operatorname{SGraphs}_{n}/\operatorname{SFM}_{n}$

Merci de votre attention!

Ces diapos, ma thèse: https://operad.fr/