UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

1^a Prova de MAT 137 - Introdução á Álgebra Linear

Nome: Matrícula:	
1. (30 pontos) Encontre a solução geral do sistema abaixo utilizando o método de Gauss - $\begin{cases} x+2y-3z &= 6\\ 2x-y+4z &= 2\\ 4x+3y-2z &= 14 \end{cases}$	Jordan:

2. Seja A a matriz dada por

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{array} \right]$$

- a) (15 pontos) Calcule o determinante de A usando o **método da expansão de Laplace**.
- b) (15 pontos) Calcule A^{-1} usando o **método da matriz adjunta**.

3. (20 pontos) Determine k, de modo que o sistema abaixo admita solução.

$$\begin{cases} x+y-z = 1\\ 2x + 3y + kz = 3\\ x + ky + 3z = 2 \end{cases}$$

- 4. Verifique se as afirmações seguintes são verdadeiras ou falsas, justificando sua resposta.
 - a) () (5 pontos) Se A e B são matrizes quadradas da mesma ordem então:

$$(A+B)(A-B) = A^2 - B^2$$

- b) () (5 pontos) Se A e B são matrizes inversíveis de mesma ordem, então A^TB^{-1} também é inversível.
- c) () (5 pontos) Sejam A e B matrizes de ordem 4. Sejam C a matriz obtida de A aplicando as operações $L_1 \leftrightarrow L_2, \ L_3 \rightarrow L_3 2L_4, \ L_4 \rightarrow -5L_4$ e D a matriz obtida de B aplicando as operações $L_1 \leftrightarrow L_4, \ L_2 \rightarrow L_2 + \frac{1}{2}L_3, \ L_3 \rightarrow \frac{1}{3}L_3$. Se det C=5 e det D=1, então det(AB)=3.
- d) () (5 pontos) Seja A uma matriz quadrada de ordem n, então $\det(2A) = 2 \det A$.