插值法:

拉格朗日插值:

● 拉格朗日插值:
两点一次:
$$L_1(x) = \frac{x-x_1}{x_0-x_1} y_0 + \frac{x-x_0}{x_1-x_0} y_1$$
 三点二次: $L_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2$ 插值余项:

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=1}^n (x - x_i)$$

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x-x_i)$$
 当 $n=1$ 时, $R_1(x) = \frac{1}{2} f^{(n)}(\xi)(x-x_0)(x-x_1)$, $\xi \in [x_0,x_1]$ 当 $n=2$ 时,抛物插值余项为

$$R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \xi \in [x_0, x_2]$$

• 牛顿法插值:
$$N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

\mathcal{X}_{i}	$f(x_i)$	一阶差商	二阶差商	三阶差商
x_0	$f(x_0)$			
x_1	$f(x_1)$	$f[x_0,x_1]$		
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
X_3	$f(x_3)$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$

$$f[x, x_0, ..., x_n] \omega_{n+1}(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x)$$

$$\left\{ f\left[x_{0}, x_{1}, \dots, x_{j}\right] = \frac{f^{(j)}(\zeta)}{j!} \right\}$$

Hermite 插值: 先求牛顿+再满足导数 两点三次:

X	x_0	X_1
f(x)	${\cal Y}_0$	\mathcal{Y}_1
f'(x)	m_0	m_1

$$f[x_0, x_0] = f'(x_0)$$
 $f[x_0, x_0, \dots, x_0] = \frac{f^{(k)}(x_0)}{k!}$

X_i	$f(x_i)$	一阶差商	二阶差商	三阶差商
x_0	$f(x_0)$			
x_0	$f(x_0)$	$f[x_0,x_0]$)	
$-x_1$	$f(x_1)$	$f[x_0, x_1]$	$f[x_0, x_0, x_1]$	
x_1	$f(x_1)$	$f[x_1,x_1]$	$f[x_0, x_1, x_1]$	$f[x_0, x_0, x_1, x_1]$

 $f\left[x_{0},x_{0}\right]=f'(x_{0}) \qquad f\left[x_{0},x_{0},\cdots,x_{0}\right]=\frac{f^{(k)}(x_{0})}{k!} \qquad$ 插值余项 $\frac{\text{ 福值余项}}{R_{3}(x)=\frac{f^{(4)}(\xi)}{4!}(x-x_{k})^{2}(x-x_{k+1})^{2}}, \quad \xi\in(x_{k},x_{k+1}),$

三点三次

X	x_0	x_1	x_2
f(x)	${\cal Y}_0$	\mathcal{Y}_1	${\mathcal Y}_2$
f'(x)		m_1	

$$H_3(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$
$$+ k(x - x_0)(x - x_1)(x - x_2)$$

函数逼近

$$\begin{bmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & \cdots & (\varphi_0, \varphi_m) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) & \cdots & (\varphi_1, \varphi_m) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\varphi_m, \varphi_0) & (\varphi_m, \varphi_1) & \cdots & (\varphi_m, \varphi_m) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} (\varphi_0, y) \\ (\varphi_1, y) \\ \vdots \\ (\varphi_m, y) \end{bmatrix}$$

$$(f, g) = \begin{cases} \sum_{i=1}^{N} \omega(x_i) f(x_i) g(x_i) & \text{Exrem} \\ \int_a^b \rho(x) f(x) g(x) dx & \text{Exrem} \\ \end{bmatrix}$$

$$(f,g) = \begin{cases} \sum_{i=1}^{N} \omega(x_i) f(x_i) g(x_i) & \textbf{B散型} \\ \int_{a}^{b} \rho(x) f(x) g(x) dx & \textbf{连续型} \end{cases}$$

$$\delta^{2} = (\varphi^{*} - y, \varphi^{*} - y) = \sum_{i=0}^{N} \omega(x_{i}) [\varphi^{*}(x_{i}) - y_{i}]^{2}$$

数值积分

代数精度:对 m 次成立, m+1 次不成立//具有 4 个求积节点的插值型求积公式, 至少有 3 次代数精度

余项: 插值型求积公式的余项为: $R[f] = I - I_n = \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) dx$ 式中 ξ 与变量x 有关, $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$

牛顿-柯特斯公式: 等距节点插值, 插值系数固定

梯形公式:

$$\int_a^b f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

 $\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a)+f(b)]$ $R[f] = \int_{a}^{b} \frac{f''(\xi_{x})}{2!} (x-a)(x-b)dx \qquad \Leftrightarrow x = a+th, h = b-a$ $= -\frac{1}{12} h^{3} f''(\xi), \quad \xi \in [a,b], h = \frac{b-a}{1}$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

辛普森公式:
$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a)+4f(\frac{a+b}{2})+f(b)]$$
 代数精度 = 3
$$R[f] = -\frac{1}{90}h^{5}f^{(4)}(\xi), \quad \xi \in (a,b), h = \frac{b-a}{2}$$

辛普森 3/8:
$$1/8$$
 3/8 3/8 $1/8$ $R[f] = -\frac{3}{80}h^5f^{(4)}(\xi)$

$$R[f] = -\frac{3}{80}h^5f^{(4)}(\xi)$$

复化求积公式: 梯形
$$\frac{h}{2} \left\lceil f(a) + 2 \sum_{k=1}^{n-1} f(x_k) + f(b) \right\rceil = T_n = -\frac{h^2}{12} (b-a) f''(\xi), \ \xi \in (a,b)$$

复化 Simpson:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} [f(a) + 4\sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}) + 2\sum_{k=1}^{n-1} f(x_k) + f(b)] = S_n \qquad R[f] = -\frac{b-a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi)$$

$$R[f] = -\frac{b-a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi)$$

已知截断误差,求不同算法所需节点

龙贝格算法: 要会算过程

•
$$T_1$$

• T_2 S_1
• T_4 S_2 C_1
• T_8 S_4 C_2 R_1
• T_{16} S_8 C_4 R_2
• T_{32} S_{16} C_8 R_4 .
• T_{32} S_{16} C_8 R_4 .

高斯积分:通过确定积分点,提高精度。N+1 个积分点 2n+1 个代数精度

高斯积分的求解过程: 高斯积分插值余项 要知道求积分的过程

$$R[f] = \int_{a}^{b} [f(x) - H(x)] dx$$

$$= \int_{a}^{b} \frac{f^{(2n+2)}(\xi_{x})}{(2n+2)!} \omega^{2}(x) dx$$

$$= \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega^{2}(x) dx,$$

线性方程组的解法

高斯消去法: 如果 A 为 n 阶非奇异矩阵,则可通过高斯消去法(及交换两行的初等变换)将方程组 AX=b 化为三 角形方程组,要保证矩阵 A 得顺序主子式都不等于 0

Doolittle 分解: LU 分解 (L 单位下三角, U 一般上三角) Ax=b;LUx=b,----LY=b/ Ux=Y

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & \\ l_{21} & 1 & & \\ \vdots & \dots & & \\ l_{n1} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & \dots & u_{1n} \\ & \cdots & \vdots \\ & & \vdots \\ & & u_{nn} \end{bmatrix}$$

2-范数: $\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ p-范数: $\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$

矩阵的范数:

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (行范数)

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$
 (列范数)

$$||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$$
 (谱范数 /2-范数)

误差放大因子:

B有误差

常用条件数

常用矩阵范数:

对方阵 $A \in R^{n \times n}$ 以及 $\bar{x} \in R^n$ 有 $||A\bar{x}||_2 \le ||A||_F \cdot ||\bar{x}||_2$

$$\iiint cond (A)_2 = \frac{\max |\lambda|}{\min |\lambda|}$$

解线性方程组的迭代法:

雅可比矩阵迭代:

$$\vec{x}^{(k+1)} = -D^{-1}(L+U)\vec{x}^{(k)} + D^{-1}\vec{b}$$

特别的, 若 A 对称:

迭代的判断条件: ρ (B) < 1 求 B 矩阵的特征值

$$\bar{x}^{(k+1)} = \underbrace{-(D+L)^{-1}U\bar{x}^{(k)} + \underbrace{(D+L)^{-1}}_{\bar{f}}\bar{b}}$$

合适迭代一定收敛: 严格对角矩阵两种方法均收敛 让对角矩阵上的数, 主对角元素的绝对值大干该行其余元素的 绝对值之和

从松弛法的角度看迭代:

0 < ω < 1 | 低松弛法

定理 设 $_A$ 可逆,且 $_{a_i} \neq 0$,松弛法从任意 $_{ar{x}}$ $^{\scriptscriptstyle (0)}$ 出发对

Gauss - Seidel 法 某个ω收敛⇔ρ(Hω)<1。

ω>1 超松弛法

非线性方程与方程组的数值解法

 $\frac{b-a}{2^k} < \varepsilon \implies k > \frac{\left[\ln(b-a) - \ln \varepsilon\right]}{\ln 2}$ 二分法: 给定精度求二分步数:

迭代法的局部收敛性:

定理 设 x^* 为方程 $x = \varphi(x)$ 的根, $\varphi'(x)$ 在 x^* 的邻近连续,

且 $|\varphi'(x^*)| < 1$ 则迭代过程 $x_{k+1} = \varphi(x_k)$ 具有局部收敛性。

定理 设 x^* 为 $x = \varphi(x)$ 的不动点,若 $\varphi \in C^p(R(x^*)), p \ge 2$; $\varphi'(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$, $\mathbf{H} \varphi^{(p)}(x^*) \neq 0$, $\mathbf{M} x_{k+1} = \varphi(x_k) \mathbf{\tilde{E}}$ $R(x^*)$ 内 p 阶收敛。

牛顿法的迭代原理:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

$$x_k - \lambda \frac{f(x_k)}{f'(x_k)} \quad (k = 0, 1, 2, \dots)$$

改进牛顿: 牛顿下山法 $x_k - \lambda \frac{f(x_k)}{f'(x_k)}$ $(k = 0, 1, 2, \cdots)$ 当入 = 1 代入效果不好时,入将减半计算。

重根加速收敛: 已知重根个数:
$$\frac{-}{\varphi}(x) = x - \frac{mf(x)}{f'(x)}$$

'求重根的方法'

常微分方程数值解

显性欧拉法: 这里的 f(x,y)就是 y'的表达式

隐性欧拉法:

$$y_{n+1} = y_n + h f(x_n, y_n)$$
 $(n = 0, ..., N-1)$

$$y_{n+1} = y_n + h f(x_{n+1}, y_{n+1}) \quad (n = 0, ..., N-1)$$

改进欧拉法: 先用显示求 y(n+1)预测, 然后代入改进的梯形公式:

Step 1: 先用显式欧拉公式作预测,算出 $\overline{y}_{n+1} = y_n + h f(x_n, y_n)$

Step 2: 再将 v, 代入隐式梯形公式的右边作校正, 得到

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})]$$

局部截断误差和方法的阶

$$T_{n+1} = y(x_{n+1}) - y_{n+1}$$

= $y(x_{n+1}) - y(x_n) - h\varphi(x_n, y(x_n), y(x_{n+1}), h)$

二阶泰勒展开法:

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + O(h^3)$$

求解局部误差的方法: y(xn+1)要在 xn 处用泰勒展开,准确展开,查分解用差分公式展开。 四阶经典龙格-库塔法

$$\begin{cases} y_{n+1} &= y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 &= f(x_n, y_n) \\ K_2 &= f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 &= f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) \\ K_4 &= f(x_n + h, y_n + hK_3) \end{cases}$$

收敛性与稳定性: