Import libraries

```
In [1]: import pandas as pd # Data Manupulation
   import matplotlib.pyplot as plt # Plots
   import seaborn as sns # Plots
   import warnings # Ignore Warnings
   import shap # Feature importances
In [2]: warnings.filterwarnings("ignore") # Ignore Warnings
```

Load Data

```
In [4]: df=pd.read_csv("insurence_clear.csv")
```

Drop Columns

```
In [5]: df=df.drop(["Unnamed: 0"],axis="columns")
```

Split Inputs and Outputs

```
In [6]:
    def load_inputs_outputs():
        return df.drop(["charges"],axis="columns"),df.charges.values

X,y=load_inputs_outputs()
```

Split data

Data preprocessing

Note Decision trees do not require normalization of their inputs; and since XGBoost is essentially an ensemble algorithm comprised of decision trees, it does not require normalization for the inputs either.

We will only perform One Hot Encoding transformation for categorical variable.

```
In [10]:
    class Preprocessing_OHE():
        def __init__(self,X_data):
            self.X_data=X_data

        def binary(self):
        self.X_data["sex"]=self.X_data["sex"].apply(lambda x: 1 if x == "male" else 0)
        self.X_data["smoker"]=self.X_data["smoker"].apply(lambda x: 1 if x == "yes" else 0)
        return self.X_data
```

```
def multinomial(self):
    return pd.get_dummies(self.X_data,columns=["region"])
```

Preprocessing Training Data

```
In [11]: X_train_preprocessing=Preprocessing_OHE(X_train)
X_train_ohe=X_train_preprocesing.binary()
X_train_ohe=X_train_preprocesing.multinomial()
```

```
In [12]: X_train_ohe.head()
```

Out[12]:		age	sex	bmi	children	smoker	region_northeast	region_northwest	region_southeast	region_southwest
	1046	59	1	37.400	0	0	0	0	0	1
	682	55	0	26.980	0	0	0	1	0	0
	1037	58	0	41.910	0	0	0	0	1	0
	490	41	1	28.405	1	0	0	1	0	0
	20	20	0	20.020	2	0	0	0	4	0

Preprocessing Testing Data

```
In [13]: X_test_preprocessing=Preprocessing_OHE(X_test)
X_test_ohe=X_test_preprocesing.binary()
X_test_ohe=X_test_preprocesing.multinomial()
```

```
In [14]: X_test_ohe.head()
```

ut[14]:		age	sex	bmi	children	smoker	region_northeast	region_northwest	region_southeast	region_southwest
	764	56	0	33.82	2	0	0	1	0	0
	887	51	1	37.00	0	0	0	0	0	1
	890	54	0	23.00	3	0	0	0	0	1
	1293	19	0	32.49	0	1	0	1	0	0
	259	22	0	27.10	0	0	0	0	0	1

XGBOOST

Train Model

```
In [17]: xgb_reg.fit(X_train_ohe,Y_train)
```

```
In [18]:
              sklearn.model selection import cross val score
              sklearn.metrics import r2_score,mean_squared_error
In [19]:
               Evaluete():
             def __init__(self,X_data,y_true):
                 self.X data=X data
                 self.y_true=y_true
                 self.model=xgb reg
                 self.predict=self.model.predict(self.X_data
             def mse(self):
                 return mean_squared_error(self.y_true,self.predict)
             def r2(self):
                 return r2_score(self.y_true,self.predict)
             def cv score(self):
                 return cross_val_score(self.model,self.X_data,self.y_true,cv=10).mean()
In [20]:
        mse xgb train=Evaluete(X train ohe,Y train).mse(
        mse_xgb_test=Evaluete(X_test_ohe,Y_test).mse()
         r2_xgb_train=Evaluete(X_train_ohe,Y_train).r2()
         r2_xgb_test=Evaluete(X_test_ohe,Y_test).r2()
         cv_xgb=Evaluete(X_test_ohe,Y_test).cv_score()
       Evaluation Dataframe
In [21]:
        df evaluate=pd.DataFrame({
                                      MSE train ":mse xgb train.flatten()
                                      SE test":mse_xgb_test.flatten(),
                                      R2 train":r2 xgb train.flatten(),
                                      R2 test":r2 xgb test.flatten(),
                                      '":cv_xgb})
In [22]:
        df_evaluate
             MSE train
                       MSE test R2 train R2 test
        0 1.998535e+06 2.514030e+06 0.985183 0.981887 0.979176
In [39]:
        sorted_idx = xgb_reg.feature_importances_.argsort()
         sorted idx=sorted idx.flatten(
In [23]:
        explainer = shap.TreeExplainer(xgb_reg
         shap_values = explainer.shap_values(X_test_ohe)
```

Plot Importance

```
In [29]:
             plot importance();
             sns.set_style(style="whitegrid")
             shap.summary_plot(shap_values, X_test_ohe, plot_type="bar")
                    plt.show
```

```
In [30]:
                   name
                  plot importance
                    smoker
                        age
                        bmi
                    children
                        sex
           region_southwest
            region southeast
            region_northwest
            region_northeast
                                                                                            8000
```

In [31]: shap.summary plot(shap values,

1000

2000

3000

4000

mean(|SHAP value|) (average impact on model output magnitude)

5000

6000

7000

We observe that the smoker variable has great weight when it comes to predictions. Followed by BMI and age. The children variable has negligible weight just like the user's region.

But they complement the predictions. Since the difference between algorithms and humans. It is we humans base our predictions on features of stronger variables. On the other hand, computers base their estimates on strong variables that are not so important. But that complement the value to predict giving closer results. That only using only the most significant variables.

```
In [32]:
        y_pred=xgb_reg.predict(X_test_ohe
        y_pred=y_pred.flatten(
In [33]:
        df test=pd.DataFrame(
                                         y_pred
```

```
fig,(ax)=plt.subplots(1,1,figsize=(20,8))
sns.scatterplot(data=df_test,x="y_true",y="y_pred",hue="smoker",palette="Set2")
sns.lineplot(data=df_test,x="y_true",y="y_true",color="c")
```

```
In [35]: if __name__ == "__main__":
    main()
```


In [60]: df_test.query("smoker==0").sample(n=10,random_state=42)

Out[60]:

	y_true	y_pred	smoker
435	8342.908750	8693.538086	0
629	5116.500400	5577.990234	0
332	5028.146600	5741.529297	0
987	11067.917387	10184.244141	0
744	12029.286700	11362.739258	0
875	9487.644200	10311.553711	0
370	9432.925300	9477.511719	0
282	3732.625100	3691.402588	0
348	6610.109700	7017.916992	0
1055	10450.755883	9851.967773	0

In [36]: df_test.query("smoker==1").sample(n=10, random_state=42

Out[36]:

	y_true	y_pred	smoker
1302	37465.34375	36863.539062	1
1127	17179.52200	20383.900391	1
1235	15817.98570	17926.035156	1
1128	42856.83800	42489.253906	1
1293	36898.73308	35210.808594	1
1122	33750.29180	35163.371094	1
1242	19798.05455	23922.166016	1
1283	33907.54800	35239.062500	1
1228	36021.01120	36820.976562	1
1078	34303.16720	35872.996094	1

As we can see, the predictions are very close to the original value. This indicates that the model is very reliable and generalizes very well. eL XGBOOST is quite a powerful algorithm, capable of giving interesting results in a short period of time. No wonder he is the winner of several Kaggle competitions.

Save Model

```
In [37]: import joblib
In [38]: joblib.dump(xgb_reg,"xgb_insurence.pkl") # Save Model
Out[38]: ['xgb_insurence.pkl']
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js