(a) $\begin{pmatrix} 2 & 0 & -1 & -1 \\ 3 & 1 & 2 & 5 \\ -4 & 0 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & -1 & -1 \\ k_z = 2k_2 - 3k_1 & 0 & 2 & 7 & 13 \\ 0 & 0 & 2 & 9 \end{pmatrix} \leftarrow REF!$

Note: This is different $R_2 = 2 < 3$, 1, 2, 5 > -3 < 2, 0, -1, -1 > 1 looking than the = < 6, 2, 4, 10 > -< 6, 0, -3, -3 > 1 in-Class examples, but = < 0, 2, 7, 13 > 1 it's a valid way to

Zero an entry without fractions.

(b)
$$\begin{pmatrix} 1 & 0 & 0 & -3/4 \\ 0 & 1 & 0 & 33/4 \\ 0 & 0 & 1 & -1/2 \end{pmatrix}$$

(c)
$$2x_1 - x_3 = -1$$

 $3x_1 + x_2 + 2x_3 = 5$
 $-4x_1 + 4x_3 = 11$

(d) yes. By (b), it has a unique Solution: $\vec{X} = \langle -3/4, 33/4, -1/2 \rangle$.

(e) There is only one solution, so no parametric vector form!

(f) False. A is now-equivalent to exactly one RREF matrix,

mand any other so since (b) doesn't equal (0100)

matrix! this is false.

1

3. (a) B is
$$3x2$$
, so BC exists \iff C is 2xm CB doesn't exist \iff C not nx3.

So, let
$$C = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = 2x 4 : BC exists (3x4)$$

CB doesn't.

(b) Let D be a nonzero, non-identity matrix which is
$$2\times3$$
, e.g.
$$D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
Then $BD = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \\ -2 & -4 & -6 \end{pmatrix}$
8 $DB = \begin{pmatrix} -5 & -2 \\ -8 & -5 \end{pmatrix}$

(c) Any example that isn't
$$2 \times m$$
 or $n \times 3$ will work, e.g. $E = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

(d). This one is harder.:)
$$\rightarrow$$
 For FB=2x2 to hold, F must be 2x3. Let $F = \begin{pmatrix} a & b & c \\ d & e & g \end{pmatrix}$. Then want: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$FB = \begin{pmatrix} a & b & c \\ d & e & g \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} a - 2c & -b \\ d - 2g & -e \end{pmatrix},$$

So we have
$$a-2c=1$$
, $-b=0$ Hence: $a=1+2c$ Will Walc: $b=0$ $c=free$ $d=2g$

Ex: Let $c=1$ 8 $g=3$. Then

Ex: Let
$$C = 1 & g = 3$$
. Then
$$C = \begin{pmatrix} 3 & 6 & 1 \\ 6 & 0 & 3 \end{pmatrix} & FB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad g = Fnee$$

3(d) Cont'd.

Note: $F = 2x3 \implies BF = \frac{3}{6} = \frac{3$

is not the identity. (F is what we'd call a "pseudo inverse")

(e) write $\vec{w} = (a,b,c)$. Then $\vec{v} \cdot \vec{w} = 7$ (=> 20+6-3c =

This is a plane in 123, so anything on that plane will work. Easy method: Let 2 vars = 0 & solve for 3rd, e.g. if a=0=b, then $-3c=7 <=> c=\frac{7}{3}$. So <0, 0, $-\frac{7}{3}$ works.

if) Anything not a Scalar multiple of <2,1,-37, e.g. <1,2,37.

(g) Anything that is a scalar multiple of CZ, 1,-37, e.g. <0,0,07.

(h), [v, o, k3 always Linearly dependent b/c o in there, so e.g. <1,1,17.

4. Before going, we put A into REF:

-6+10 3h+4h

-4+ h

$$\begin{pmatrix}
-1 & -2 & -3 \\
8 & 9 \\
R_2 = R_2 + 7R_1 \\
R_3 = R_3 + hR_1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & -2 & -3 \\
-6 & -12 \\
-5 - 2h & -6 -3h
\end{pmatrix}$$

$$\begin{pmatrix}
R_2 = R_2 / -6 \\
R_1 = -R_1
\end{pmatrix}$$

$$\begin{pmatrix}
R_2 = R_2 / -6 \\
R_1 = -R_1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 2 \\
0 & 6 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 3 \\$$

(a) $A\hat{x} = 0$ has only the trivial solution when the augmented matrix (1 2 3 : 6) has a solution but no free variables.

(i) (ii) Ans:

(i) Is always true; (ii) => $h-4\neq0$, Hence, $A\vec{x}=\vec{0}$ has only trivial solution when $h\neq4$.

(b) $A\vec{x} = \vec{0}$ has nontrivial solutions when $h-4=0 \Rightarrow h=4$.

- (c) {zi, Cz, c3, u3 never L.I. b/c 4 vectors 7 3 components
 per vector.
- (d) See (c).
- (e) see (c) & (d).
- (f) see (c), (d), (e).