CMSC 330: Organization of Programming Languages

Lambda Calculus and Types

Introduction

- We've seen that several language conveniences aren't strictly necessary
 - Multi-argument functions: use currying or tuples
 - Loops: use recursion
 - Side-effects: we don't need them either
- Goal: come up with a "core" language that's as small as possible and still Turing-complete
 - This will give a way of illustrating important language features and algorithms
- One solution (there are others) is lambda calculus

CMSC 330 2

Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Lambda Calculus (λ-calculus)

- Proposed in 1930s by Alonzo Church and Stephen Cole Kleene
- A formal system designed to investigate functions and recursion, and for exploration of foundations of mathematics
- Now used as a tool for investigating computability.
 - It's also the basis of functional programming languages such as Lisp, Scheme, ML, OCaml, Haskell...

CMSC 330 CMSC 330

Lambda Calculus

· A lambda calculus expression is defined as

```
e \rightarrow x
| \lambda x.e
| e e
```

- λx.e is like (fun x -> e) in OCaml
- That's it! Higher-order functions is all there is

CMSC 330 5

Three Conveniences

- Syntactic sugar for local declarations
 - let x = e1 in e2 is short for $(\lambda x.e2)$ e1
- The scope of λ extends as far to the right as possible
 - $-\lambda x$. λy .x y is λx . $(\lambda y$.(x y))
- · Function application is left-associative
 - -xyzis(xy)z
 - Same rule as OCaml

CMSC 330 6

Semantics of Function Application

- All we've got are functions, so all we can do is call them
- To evaluate (λx.e1) e2, evaluate e1 with x bound to e2
- This application is called beta-reduction, and the rule describing it is:

$$(\lambda x.e1) e2 \rightarrow e1[x/e2]$$

- e1[x/e2] means e1 where occurrences of x are replaced by e2
 - This is slightly different than the environments we saw for Ocaml- do substitutions to replace formals with actuals, instead of using the environment to map formals to actuals
- Reductions are allowed to occur anywhere in a term

Beta reduction examples

- $(\lambda x.x) z \rightarrow$
- $(\lambda x.y) z \rightarrow$
- $(\lambda x.x y) z \rightarrow$
- $(\lambda x.x y) (\lambda z.z) \rightarrow$
- $(\lambda x.\lambda y.x y) z \rightarrow$
 - Equivalent OCaml code:

$$(\text{fun } x \rightarrow (\text{fun } y \rightarrow (x y))) z \rightarrow \text{fun } y \rightarrow (z y)$$

• $(\lambda x.\lambda y.x y) (\lambda z.z z) x \rightarrow$

Static Scoping

- Lambda calculus uses static scoping
- Consider the following
 - $-(\lambda x.x(\lambda x.x))z \rightarrow ?$
 - The rightmost "x" refers to the second binding (the inner "x" hides or shadows the outer "x").
 - This is a function that takes its argument and applies it to the identity function
- This function is "the same" as (λx.x (λy.y))
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

CMSC 330

9

Static Scoping (cont'd)

- How about the following?
 - $-(\lambda x.\lambda y.x\ y)\ y \rightarrow ?$
 - When we replace y inside, we don't want it to be "captured" by the inner binding of y
 - I.e., $(\lambda x.\lambda y.x y) y \neq \lambda y.y y$
- This function is "the same" as (λx.λz.x z)

CMSC 330 10

Beta-Reduction, Again

- Whenever we do a step of beta reduction (using the rule (λx.e1) e2 → e1[x/e2]), alpha-convert variables as necessary
- Examples:
 - $-(\lambda x.x (\lambda x.x)) z = (\lambda x.x (\lambda y.y)) z \rightarrow z (\lambda y.y)$
 - $-(\lambda x.\lambda y.x y) y = (\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$

Encodings

- It turns out that this language is Turing complete
- That means we can encode any computation we want in it, if we're sufficiently clever.

CMSC 330 11 CMSC 330 12

Encoding Booleans

 Booleans and conditionals can be encoded or represented, using only the lambda calculus, as follows:

```
true = \lambda x.\lambda y.x
false = \lambda x.\lambda y.y
if a then b else c = a b c
```

- Examples:
 - if true then b else c \rightarrow
 - if false then b else c \rightarrow

CMSC 330 13

Booleans (cont.)

*(Named after Alonzo Church)

Other Boolean operations

```
- not = \lambda x.((x \text{ false}) \text{ true})

• not true → (\lambda x.(x \text{ false}) \text{ true}) \text{ true} \rightarrow ((\text{true false}) \text{ true}) \rightarrow \text{ false}

- and = \lambda x.\lambda y.((x y) \text{ false})

- or = \lambda x.\lambda y.((x \text{ true}) y)
```

Given these operations we can build up a logical inference system

CMSC 330 14

Encoding Pairs

```
(a,b) = \lambda x.if x \text{ then a else b}

fst = \lambda x.x \text{ true} (returns first component)

snd = \lambda x.x \text{ false} (returns second component)
```

Encoding Natural Numbers (Church*)

```
0 = \lambda x.\lambda y.y

1 = \lambda x.\lambda y.x y

2 = \lambda x.\lambda y.x (x y)

i.e., n = \lambda x.\lambda y. < apply x to y n times >
```

```
succ = \lambda z.\lambda x.\lambda y.x (z x y)
iszero = \lambda z.z (\lambda y.false) true
- Recall that this is equivalent to \lambda z.((z (\lambda y.false))) true)
```

CMSC 330 15 CMSC 330 16

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions) we can also encode various arithmetic operations
- Addition
 - M + N = $\lambda x.\lambda y.(M x)((N x) y)$ Equivalently: $+ = \lambda M.\lambda N.\lambda x.\lambda y.(M x)((N x) y)$ • In prefix notation (+ M N)
- Multiplication
 - M * N = $\lambda x.(M(N x))$ Equivalently: * = $\lambda M.\lambda N.\lambda x.(M(N x))$
 - In prefix notation (* M N)

CMSC 330 17

Arithmetic (cont.)

- Prove 1+1=2 $-1+1=\lambda x.\lambda y.(1\ x)((1\ x)\ y)=$ $-\lambda x.\lambda y.((\lambda x.\lambda y.x\ y)\ x)(((\lambda x.\lambda y.x\ y)\ x)\ y)\rightarrow$ $-\lambda x.\lambda y.(\lambda y.x\ y)(((\lambda x.\lambda y.x\ y)\ x)\ y)\rightarrow$ $-\lambda x.\lambda y.(\lambda y.x\ y)((\lambda y.x\ y)\ y)\rightarrow$ $-\lambda x.\lambda y.x\ ((\lambda y.x\ y)\ y)\rightarrow$ $-\lambda x.\lambda y.x\ ((\lambda y.x\ y)\ y)\rightarrow$ many implicit alpha conversions
- With these definitions we can build a theory of arithmetic

CMSC 330 18

Repetition

- Define $D = \lambda x.x x$
- Then

$$DD = (\lambda x.x x) (\lambda x.x x) \rightarrow (\lambda x.x x) (\lambda x.x x) = DD$$

- So D D is an infinite loop
 - In general, self application is how we get repetition

The "Paradoxical" Combinator

 $Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$

Then

$$Y F =$$
 $(\lambda f.(\lambda x.f (x x)) (\lambda x.f (x x))) F \rightarrow$
 $(\lambda x.F (x x)) (\lambda x.F (x x)) \rightarrow$
 $F ((\lambda x.F (x x)) (\lambda x.F (x x)))$
 $= F (Y F)$

• Thus Y F = F (Y F) = F (F (Y F)) = ...

CMSC 330 19 CMSC 330 20

Example

CMSC 330

```
fact = \lambda f. \lambda n.if n = 0 then 1 else n * (f (n-1))
```

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - We'll use Y to make this recursively call fact

```
(Y fact) 1 = (fact (Y fact)) 1

\rightarrow if 1 = 0 then 1 else 1 * ((Y fact) 0)

\rightarrow 1 * ((Y fact) 0)

\rightarrow 1 * (fact (Y fact) 0)

\rightarrow 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

\rightarrow 1 * 1 \rightarrow 1
```

Discussion

21

- Using encodings we can represent pretty much anything we have in a "real" language
 - But programs would be pretty slow if we really implemented things this way
 - In practice, we use richer languages that include builtin primitives
- Lambda calculus shows all the issues with scoping and higher-order functions
- It's useful for understanding how languages work

CMSC 330 22