High Dimensional Clustering and Applications

R-nets

Covering

Packing

Approximate r-net

Approximate r-net

Lift covering

R-nets

Distance matrix

p_1	p_2	 p_n
yes	no	 yes
no	no	 yes
no	yes	 no

Grouping points

Distance matrix

p_1	p_2		p_n
yes	no	•••	yes
no	no	•••	yes
no	yes	•••	no

How do we efficiently build such a matrix?

R-nets

Distance matrix

Imagine one entry

Building the matrix costs as much as a naive algorithm for building the r-net!

Probabilistic polynomial thresholding functions (PTF)

$$Z := \min_{p \in S_i} (dist(p, q_j)) \le r$$

Probabilistic polynomial thresholding functions (PTF)

Distribution of Polynomials

 $Z := \min_{p \in S_i} (dist(p, q_j)) \le r$

Probabilistic polynomial thresholding functions (PTF)

$$Z := \min_{p \in S_i} (dist(p, q_j)) \le r$$

if $Z \le r$ then $F(p_1, p_2, \dots, p_n, q_j) \ge 2 |S_i|$ with some probability if $Z > r + \epsilon d$ then $F(p_1, p_2, \dots, p_n, q_i) \le |S_i|$ with some probability

Leads to improvement of runtime for building the distance matrix

p_1	p_2		p_n
yes	yes	•••	yes
yes	yes	•••	yes
yes	yes	•••	yes

What now?

R-nets

Distance matrix

PTF

Sparsify

Sparsify

Sparsify

Sparsity with high probability

 p_1	p_2		p_n
no	no	•••	yes
no	no	•••	no
no	yes	•••	no

Approximate r-net

R-nets

Distance matrix

PTF

Net & Prune

Net & Prune framework

Net & Prune framework

Net & Prune framework

Decider

Test with value r

R-nets

Distance matrix

PTF

Sparsification

Net & Prune

K-center

K-Center with k=5

r-opt net = 5-center cluster

Solve with the framework by building a decider!

R-nets

Distance matrix

PTF

Sparsification

Net & Prune

K-center

