Analisi e traduzione di insiemi ereditariamente finiti

github.com/nrizzo

12 maggio 2018

1 Introduzione e descrizione del problema

Definizione 1. Sia HF_n la successione di insiemi così definita:

$$\begin{cases} \mathsf{HF}_0 := \emptyset, \\ \mathsf{HF}_{n+1} := \mathcal{P}(\mathsf{HF}_n), & n \in \mathbb{N}. \end{cases}$$

Allora sia $HF = \bigcup_{n \in \mathbb{N}} HF_n$.

Definizione 2. Definiamo $\mathbb{N}_A \colon \mathsf{HF} \to \mathbb{N}$ tale che

$$\mathbb{N}_A(x) = \sum_{y \in x} 2^{\mathbb{N}_A(y)}.$$

Definizione 3. Definiamo una variante di \mathbb{N}_A , il cui dominio contiene almeno HF, tale che

$$\mathbb{R}_A(x) = \sum_{y \in x} 2^{-\mathbb{R}_A(y)}.$$

I valori di \mathbb{R}_A si estendono ai numeri reali.

Definizione 4. Dato $h_n \in HF$, definiamo il sistema corrispondente di insiemi ereditariamente finiti come l'unione ricorsiva delle componenti di h_n .

Esempio. Dato $n = 10 = 1010_2$, il corrispondente insieme ereditariamente finito è h_n ; segue una possibile procedura per determinare il sistema corrispondente di insiemi ereditariamente finiti.

$$\begin{cases} x_{10} = \{x_1, x_3\} & \rightarrow \begin{cases} x_{10} = \{x_1, x_3\} \\ x_1 = \{x_0\} \\ x_3 = \{x_1, x_0\} \end{cases} & \rightarrow \begin{cases} x_{10} = \{x_1, x_3\} \\ x_1 = \{x_0\} \\ x_3 = \{x_1, x_0\} \\ x_0 = \{\} \end{cases}$$

Problema 1. Dato $n \in \mathbb{N}$ (a cui corrisponde $h_n \in \mathsf{HF}$), si calcoli il sistema corrispondente di insiemi ereditariamente finiti.

Problema 2. Dato $n \in \mathbb{N}$ (a cui corrisponde $h_n \in \mathsf{HF}$) e $k \in \mathbb{N}$, risolto il problema 1, si calcoli $\mathbb{R}_A(h_n)$ preciso fino a k cifre binarie dopo la virgola.