МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра БЖД

ОТЧЕТ

по лабораторной работе № 7

по дисциплине «Безопасность жизнедеятельности»

Тема: Исследование параметров производственного шума и определениеэффективности мероприятий по защите от шума

Студентка гр. 8304	Мельникова О.А.
Студент гр. 8304	Сергеев А.Д.
Студент гр. 8304	Мухин А.А.
Преподаватель	Овдиенко Н.Н.

Санкт-Петербург

Цель работы

Исследование параметров производственного шума на соответствие требованиям санитарных норм и изучение основных принципов по эффективной защите от шума.

Основные теоретические положения

Уровнем звука (дБА) - корректированный уровень звукового давления, измеренный шумомером с помощью характеристики А, в которой снижена чувстивтельность на низких частотах, аналогично снижению чувствительности к звукам этих частот человеческого уха. Этот параметр похволяет ориентировочно оценить, является ли шум на рабочем месте допустимым, не производя спектрального анализа данного шума.

Звукопоглащение — процесс перехода энергии звука тепло. В Звукопоглощающие конструкции принято характеризовать частотной характеристикой диффузного (реверберационного) так называемого коэффициента Последний звукопоглощения. получается усреднением коэфффициентов звукопоглощения (альфа) по разнообразным углам падения.

Увеличение толщины материала приводит к более эффективному поглащению более низких частот за счет увеличения соотношения длины пути звука в материале у длине звуковой волны.

Звукоизоляция — применение твердых материалов для отражения звука. Собственная звукоизоляция или звукоизолирующая способность способность стены Rcoб определяется соотношением Rcoб = $10 \, \text{lg} \, (1/\tau)$, дБ, где τ — коэффициент звукопроводности, равный оношению энергии, прошедший через стену, к энергии падающей.

Наличие щелей и отверстий звукоизоляцию существенно ухудшает, пропуская волны определенной длины без помех.

Акустический экран — это преграда ограниченных размеров с определенной звукоизолирующей способностью, устанавливаемая между источником шума и защищаемым от шума местом. Экраны наиболее эффективны для снижения шума высоких и средних частот и плохо снижают низкочастотный шум.

Эффективность любого мероприятия по шумоглушению Lэ определяется Lэ = L1 - L2, дБ, где L1 — уровень звукового давления в рабочей зоне до проведения мероприятий по шумоглушению, L2 — уровень звукового давления в рабочей зоне после проведения мероприятий по шумоглушению.

В лабораторной работе определяется эффективность снижения шума с помощью: звукоизолирующего кожуха, звукоизолирующего кожуха, облицованного звукопоглощающим материалом, а также звукоизолирующих акустических экранов (изготовленных из ДВП, алюминия, а также стали и алюминия с отверстиями).

Ход работы

Исследование зависимости параметров шумовой помехи:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	55.9	58.6	46.1	36.2	35.4	23.2	23.4	16.6	13.4
Допустимое звуковое давление, Дб	86	72	61	54	49	45	42	40	38

Уровень шумовой помехи в дБА = 38.9, максимально допустимый = 50.

Параметры шума соответствуют предельно допустимым нормам.

График частот фонового шума:

Шум имеет низкочастотный характер.

Исследование зависимости параметров шума от частоты:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	66.4	68.3	60.3	80.2	89	100.5	102.8	91.2	68.1
Звуковое давление с учетом поправки на фон, Дб	10.5	9.7	14.2	44	53.6	77.3	79.4	74.6	54.7
Превышение допустимого звукового давления, Дб	-	-	-	26.2	40	55.5	60.8	51.2	30.1

Уровень шумовой помехи в дБА = 105.6, с учетом поправки на фон = 66.7, превышение допустимого = 55.6.

Параметры шума не соответствуют санитарным нормам, требуется дополнительная защита.

График частот шума источника без защиты:

Шум источника имеет высокочастотный характер.

Исследование средств защиты от шума:

1. Звукоизолирующий кожух №1:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	55.9	65.3	53.9	64.6	85.5	95.6	94.5	87.2	50.2
Звуковое давление с учетом поправки на фон, Дб	0	6.7	7.8	28.4	50.1	72.4	71.1	70.6	36.8
Превышение допустимого звукового давления, Дб	-	-	-	10.6	36.5	50.6	52.5	47.2	12.2

Уровень шумовой помехи в дБA = 98.9, с учетом поправки на фон = 60, превышение допустимого = 48.9.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим кожухом №1:

2. Звукоизолирующий кожух №2:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	56.2	66.2	58.4	68.3	84.1	92.7	84.7	75.4	45.1
Звуковое давление с учетом поправки на фон, Дб	0.3	7.6	12.3	32.1	48.7	69.5	61.3	58.8	31.7
Превышение допустимого звукового давления, Дб	-	-	-	14.3	35.1	47.7	42.7	35.4	7.1

Уровень шумовой помехи в дБА = 93.7, с учетом поправки на фон = 54.8, превышение допустимого = 43.7.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим кожухом №2:

3. Звукоизолирующий экран №1:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	59.7	70.1	60.3	77.3	83.4	97.3	94.5	85.4	53.9
Звуковое давление с учетом поправки на фон, Дб	3.8	11.5	4.2	41.1	48	74.1	71.1	68.8	40.5
Превышение допустимого звукового давления, Дб	-	-	-	23.3	34.4	52.3	52.5	45.4	15.9

Уровень шумовой помехи в дБА =99.8, с учетом поправки на фон = 60.9, превышение допустимого = 49.8.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим экраном №1:

4. Звукоизолирующий экран №2:

Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	64.5	67.5	68.2	79.4	85	98.9	101.9	87.5	61.9
Звуковое давление с учетом поправки на фон, Дб	8.6	8.9	22.1	43.2	49.6	75.7	78.5	70.9	48.5
Превышение допустимого звукового давления, Дб	-	-	7.2	25.4	36	53.9	59.9	47.5	23.9

Уровень шумовой помехи в дБА =104.4, с учетом поправки на фон = 65.5, превышение допустимого = 54.4.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим экраном №2:

5. Звукоизолирующий экран №3:

	э. звук	оизолир	ующии	экран №	٥:				
Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	77.9	73.2	60.2	78.1	84.1	97	94.6	85.3	53.6
Звуковое давление с учетом поправки на фон, Дб	22	14.6	14.1	41.9	48.7	73.8	71.2	68.7	40.2
Превышение допустимого звукового давления, Дб	-	1.2	-	24.1	35.1	52	52.6	45.3	15.6

Уровень шумовой помехи в дБА = 99.6, с учетом поправки на фон = 60.7, превышение допустимого = 49.6.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим экраном №3:

6. Звукоизолирующий экран №4:

	<u>-</u>		J						
Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	57.5	68.3	62.8	78.7	83.8	97.1	99.3	86.3	55.6
Звуковое	1.6	9.7	16.7	42.5	48.4	73.9	71.9	69.7	42.2

давление с									
учетом									
поправки на									
фон, Дб									
Превышение									
допустимого			1.8	24.7	34.8	52.1	53.3	46.3	17.6
звукового	-	_	1.0	24.7	34.0	32.1	JJ.J	40.5	17.0
давления, Дб									

Уровень шумовой помехи в дБА = 100, с учетом поправки на фон = 61.1, превышение допустимого = 50.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим экраном №4:

7. Звукоизолирующий кожух №2 и звукоизолирующий экран №1:

									1
Частота, Гц	31.5	63	125	250	500	1000	2000	4000	8000
Звуковое давление, Дб	58.3	68.2	54.8	60.2	71.9	86.3	83.4	64.5	40.7
Звуковое давление с учетом поправки на фон, Дб	2.4	9.6	8.7	24	36.5	63.1	60	47.9	27.3
Превышение допустимого звукового давления, Дб	-	-	-	6.2	22.9	41.3	41.4	24.5	2.7

Уровень шумовой помехи в дБA = 88.4, с учетом поправки на фон = 49.5, превышение допустимого = 38.4.

Параметры шума не соответствуют санитарным нормам.

График частот шума источника, защищенного звукоизолирующим кожухом №2 и звукоизолирующим экраном №1:

Дополнительное задание:

• Звукопоглащение — энергия звуковых волн переходит во внутреннюю энергию вещества за счет. Звуковые волны вызывают колебания звука в порах вещества, что сопровождается трением в следствии вязкости воздуха и последующим нагреванием.

Эффективность звукопоглащения описывается диффузным коэффициентом альфа, который равен отношению поглащенной энергии к падающей. Он представляет из себя среднее значение нескольких частных случаев, значение каждого из которых зависит от частоты и угла падения звуковой волны.

При увеличении толщины материала повышается поглащение звука на более низкищ частотах вследствие увеличения отношения длины пути звука в материале к длине звуковой волны, сама же длина пути роли не играет. В общем в области средних частот звукопоглащающий материал поглащает до 5 дБ.

Как правило такие материалы используются для минимизации эффекта отражения звука от стен помещения, но также могут быть использованы для предотвращения прохождения звука сквозь преграды.

• Звукоизоляция — энергия звуковых волн отражается от твердого материала обратно к источнику вместо того, чтобы пройти сквозь преграду.

Звукоизолирующая способность определяется отношением 10 * lg(1/t), где t — коэффициент звукопроводности, равный отношению прошедшей сквозь материал энергии к падающей. Эффективность звукоизоляции (как

и любой другой меры защиты от шума) описывается разностью звуковых давлений в помещении до и после ее установки.

Часто используются звукоизолирующие кожухи, закрывающие источник шума. Фактическая звукоизоляция такого кожуха отличается от теоретической в меньшую сторону в следствии повышения внутри него уровня звукового давления из-за отрадения звука от его внутренней поверхности.

• Экранирование — по сути частный случай звукоизоляции. Разница заключается в том, что экран перекрывает только распространение прямого звука и защищает от шума только пространство непосредственно за ним за счет создания своеобразной звуковой тени.

Его эффективность кроме всего прочего зависит от взаимного расположения экрана, источника звука и защищаемой точки, а также формы и размера экрана.

Использование экранов эффективно только для защиты от средне- и высокочастотных шумов, так как низкочастотные звуки огибают экран в следствии дифракции. Также неэффективно использовать экраны в помещениях, где высок уровень звукового давления, создаваемый отраженным звуком.

Целесообразно использовать экраны, например, на открытом пространстве, для защиты жилых домов от шумной автомобильной трассы.

В теории, звукопоглатитель должен лучше всего поглащать короткочастотные шумы, а также минимизировать создание отраженного шума в помещени источника звука. С увеличением толщины слоя звукопоглатителя, он должен все лучше поглащать также средне- и низкочастотные шумы. Его защитные свойства будут улучшаться с увеличением коэффициента альфа (е.g. качества материала). Тем не менее, другие помещения звукопоглатитель защищает не идеально, снижая уровень звукового давления в среднем на 4-5 дБ.

Звукоизолятор должен одинаково хорошо отражать звук любой частоты. С увеличением толщины и коэффициента тау материала его звукоизолирующие свойства повышаются. Наличие любых щелей и отверстий должно сильно ухудшать качество защиты от шума.

Звукоизолирующий экран должен нормально защищать от коротко- и среднечастотных шумов пространство, находящееся непосредственно за ним. Также как и в случае со звукоизолятором, его свойства улучшатся при повышении толщины и коэффициента тау и понижаются при наличии отверстий и щелей. Экран должен показывать менюшую эффективность в случае возникновения отраженного звука.

Следовательно, алюминий проводит звук лучше, чем ДВП. При использовании в качестве звукоизолятора алюминия с отверстиями можно ожидать аномальные усиления шума в области частот определенной длины, связанные с появлением явления дифракции. При использовании же экрана из стали с большим отверстием можно ожидать аномальное усиление шума в области низких частот, так как находясь в звуковой тени микровон будет открыт низковолновому звуку, отраженному от краев помещения больше, чем высокочастотному из-за звукопоглащающих свойств поролона.

Можно сделать вывод, что экран №1 произведен из ДВП, экран №4 из алюминия (хотя из свойства и похожи), экран №3 — из алюминия с отверстиями, а экран №2 — из стали.

Поролон поглощает энергию высокочастотного звука, исходя из этого делаем вывод, что звукопоглощающий кожух — это кожух №2.

При подаче одинакового на всех частотах шума в теории данные экраны должны демонстрировать сдедующий результат:

где красный — уровень шума, черный — стальной экран, оранжевый — алюминевый с отверстиями, голубой — алюминевый, зеленый — из ДВП.

При подаче одинакового на всех частотах шума в теории кожух со звукопоглатителем должен демонстрировать сдедующий результат :

где красный — уровень шума, синий — кожух со звукопоглатителем.

На основании изученных материалов можно предложить следующие новые средства защиты:

- 1. Лучший показатель защиты показал экран из ДВП. Тем не менее, его было обеспечения соответствия санитарным недостаточно ДЛЯ особенно для высоких частот. Предлагается в качестве средства защиты от шума взять более толстый и менее плотный лист ДВП (для того, чтобы еще сильнее улучшить изоляцию) и снабдить его слоем поролона со обращенной источнику стороны, звука. Поролон K впитает сделает помещение высокочастотные волны И 3a перегородкой соответствующим допустимым нормам шума. Также рекомендуется заделать щели.
- 2. Экран из стали с отверстиями показал незначительное превышение нормы в области низких частот, но зато неплохие показатели в области высоких. В качестве средства защиты от шума предлагается взять экран из стали, снабдив комнату с микрофоном толстым слоем поролона для погашения как высоких, так и низких частот. Микрофон при этом желательно отодвинуть как можно дальше от отверстия.
- 3. Несмотря на очевидное снижения уровня шума, ни один из представленных способов защиты не показал больших успехов в защите от шума. В качестве нового средства защиты предлагается скомбинировать звукоотражающие и звукопроводящие свойства нескольких материалов. Для этого необходимо вплотную расположить экраны из разных материалов (поролон, пена, картон, ДВП, алюминий, сталь) в порядке от менее плотного рядом с источником шума к более рядом с микрофоном. Каждый следующий по ходу движения звуковой волны слой будет отражать все больше и больше звука назад, в менее плотные слои, которые будут этот звук поглащать и не давать отражаться от стен.

Выводы

В результате выполнения лабораторной работы исследованы параметры производственного шума на соответствие требованиям санитарных норм и изучены основные принципы по эффективной защите от шума. Ни один из рассмотренных в лабораторной работе вариантов звукоизоляции не смог обеспечить эффективную защиту от шума на средних и высоких частотах. Кроме возможных щелей и погрешностей снятия такой результат (в случае с экранами) может быть связан с тем, что измерение проводилось в закрытом пространстве, стенки которого отражали звук.

В целом защитные кожухи показали себя немного лучше экранов, в особенности на низких частотах. В некоторых случаях экраны даже усиливали шум на низких частотах (показывали отрицательную эффективность). Скорее всего это связано с появлением эффекта дифракции на щелях экранов. Лучший результат был показан комбинированным решением из защитного кожуха №2 и защитного экрана №1.