Midterm 1 Version 1 Solution

March 19, 2020

Question 1

a. $S_1 = \{aa, bb, cc, aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc, \dots \}$ So, $S_1 \cap S_2 = \{aaa, aab, aac, bba, bbb, bbc, cca, ccb, ccc\}$

b. See below						
	p	q	$\mid r \mid$	$\neg r$	$(p \lor q)$	$(p \lor q) \Rightarrow \neg r$
	Т	Τ	Т	F	Т	F
	\overline{T}	F	F	Т	Т	Т
	F	Т	F	Т	Т	Т
	F	F	Т	F	F	Т
	T	Т	F	Τ	Т	T
	Т	F	Т	F	Т	Т
	F	Т	Т	F	Т	Т
	F	F	F	Τ	F	F

c. Negation: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \neg P(x, y) \land \neg Q(x, y)$.

Let
$$x = \underline{\hspace{1cm}}$$
, and $y \in \mathbb{N}$.

We will prove that predicate P and Q are not true.

Question 2

- a. $\exists x \in P, Student(x) \land Attends(x)$
- b. $\forall x \in P, \exists y \in P, Student(y) \land Attends(y) \land Loves(x, y)$
- c. $\forall x \in P$, $Student(x) \wedge Attends(x) \Rightarrow Loves(x, x)$
- d. $\forall x_1, x_2 \in P, \ x_1 \neq x_2 \land Loves(x_1, x_2) \Rightarrow (Attends(x_1) \land \neg Attends(x_2)) \lor (\neg Attends(x_2) \land Attends(x_1))$

Correct Solution:

 $\forall x_1, x_2 \in P, \ x_1 \neq x_2 \land Loves(x_1, x_2) \land Loves(x_1, x_2) \Rightarrow \neg Attends(x_1) \lor \neg Attends(x_2)$

Question 3

Question 4