Topology of Metric Spaces MCQ

Sixth Semester B.Sc.Mathematics Elective Course

School of Distance Education Calicut University

1.	A set with same alg	gebraic structure is c	alled		
	(a) Set	(b) Space	(c) Properset	(d) Topology	
2.	Let (X, τ) be a top respectively.	ological space and le	et $A, B \subseteq X$. Then	what will be ϕ^o and X^o	
	(a) X and ϕ	(b) ϕ and X	(c) X and X	(d) ϕ and ϕ	
3.	Topology is derived topos is –	l from two greek wo	ords topos and logos	s, where the meaning of	
	(a) Study	(b) Geometry	(c) Surface	(d) None of these	
4.	If A and B are two what will be $A \cap B$		cal space, (X, τ) and	they are disjoint. Then	
	(a) ϕ	(b) $A \cup B$	(c) X	(d) None of these	
5.	In a topological spa	ace (X, τ) , the memb	ers of τ are called		
	(a) Open sets		(b) Closed sets		
	(c) Topology memb	ers	(d) None of the abo	ove	
6.	Let (X, τ) be a top	ological space and A	$\subset X$ then exterior of	of A is	
	(a) $X - A$	(b) $(X - A)^c$	(c) $(X - A)^o$	(d) X	
7.	In a topological spa	ace (X, τ) , the subcla	asses ϕ and X are		
	(a) always open	(b) always closed	(c) connected	(d) None of these	
8.	Let (R, τ) be a usua then	l topological space ar	and $A, B \subseteq R$, where A	A = (2,3) and $B = (4,5)$	
	(a) A and B are sep	erated	(b) A and B may b	e seperated	
	(c) A and B are sep	perated	(d) None of these		
9.	What will be the va	alue of \bar{A} in terms of	boundary of A , $b(A$)?	
	(a) $\bar{A} = A \cap b(A)$	(b) $\bar{A} = A \cup b(A)$	(c) $\bar{A} = A - b(A)$	(d) None	
10.	A is open if and on	$ly if A \cap b(A) = -?$			
	(a) ϕ	(b) ϕ^c	(c) <i>X</i>	(d) A	
11.	A is closed if and or	nly if (in terms of $b($	A))		
	(a) $b(A) \subseteq A^c$	(b) $b(A) \supseteq A^c$	(c) $b(A) \subseteq A$	(d) $b(A) \supseteq A$	
12.	A is open if and on	$ly if A \cap b(A) = -?$			
	(a) ϕ	(b) ϕ^c	(c) X	(d) A	

13. What is the relation between A, B and $A \cap B$					
	(a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$		(b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$	}	
	(c) $A \cap B \neq \bar{A} \cup \bar{B}$		(d) None of the ab	ove	
14.	Let X be a non-encalled	apty set and $\mathbb R$ be s	set of real numbers	then $d: X \times X \to \mathbb{R}$ is	
	(a) Metric	(b) Metric Space	(c) Connected set	(d) Closed	
15.	If a topological spa	ce admits no nontri	vial partition into op	en sets, then it s called.	
	(a) Connected	(b) Bounded	(c) Separable	(d) Closed	
16.	The diameter of a s	subset A of a metric	space (X, d) is		
	(a) $\sup\{d(x,y)/(x,$	$y) \in A$	(b) $\inf\{d(x,y)/(x,y)\}$	$y) \in A$	
	(c) $\operatorname{Max}\{d(x,y)/(x,y)\in A\}$		(d) None of the above		
17.	An oriented surface	e, and it can be emb	edded without self-ir	ntersection into \mathbb{R}^3 .	
	(a) Kleinbottle	(b) Torus	(c) Fractal	(d) Knot	
18.	A discrete topologic	cal space with at lea	ast 2 points is		
	(a) Connected	(b) Bounded	(c) Compact	(d) Closed	
19.	A Hausdorff space	which is totally disc	onnected.		
	(a) Discrete topolog	gical space	(b) Indiscrete topo	logical space	
	(c) finite set		(d) None of the ab	ove	
20.	Every sequence of p	points has a converg	ent subsequence in.		
	(a) Real metric spa	ce	(b) Compact metri	c space	
	(c) Discrete topolog	gical space	(d) None of the ab	ove	
21.	Let X be any infinite topological space and τ be the family consisting of ϕ and complement of finite subset of X. Then tau is called				
	(a) Co-finite topolo	gy	(b) Co-complement	topology	
	(c) No solution		(d) None of the ab	ove	
22.		ll real continuous fu $$ defined on [a		[a, b] is a subset of the set	
	(a) Bounded function	ons	(b) Closed function	ns	
	(c) Unbounded fund	ctions	(d) separable funct	ions	
23.	Let X be any set and $\tau = X, \phi$. Then τ is called				
	(a) Co-finite topology		(b) Co-complement topology		
	(c) Indiscrete topol	ogy	(d) None of the abo	ove	

24.	If $X = a, b, c$, then how many topologies are possdible from set X .						
	(a) 9 _	(b) 29	(c) 27	(d) 31			
25.	. In a discrete space (X, d) , every subset is						
	(a) Open ball	(b) Bounded set	(c) Open set	(d) Closed ball			
26.	26. Let (X, τ) be a usual topological space, where $X = \{a, b, c\}$. Then which following is not a topology on X .						
	(a) $\tau_1 = \{\phi, X\}$		(b) $\tau_2 = \{\phi, X, a\}$				
	(c) $\tau_3 = \{\phi, X, \{a\}, $	$\{a,b\}\}$	(d) $\tau_4 = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}\}$				
27.	27. Let $\tau = \{B, P(R); B\}$ is interval in form $[0, b)$. Then τ is called						
	(a) Co-finite topolog	gy	(b) Co-complement	topology			
	(c) Indiscrete topolo	ogy	(d) Lowerlimit topo	ology			
28.	On a set X , which is	is weakest topology					
	(a) Co-finite topolo	gy	(b) Co-complement topology				
	(c) Discrete topolog	ÿ	(d) Indiscrete topology				
29.	9. Let (X, τ) be s topological space, where $X = \{a, b, c\}$. Then which of the followi is a topology on X .						
	(a) $\tau_1 = \{\phi, X\}$		(b) $\tau_2 = \{\phi, X, a\}$				
	(c) $\tau_3 = \{\phi, X, \{a\}, $	$\{a,b\}\}$	(d) All of these				
30.	Let $X = \{a, b, c\}$ are of the following is n		b , $\{a, b\}$ be a topo	logy on X . Then which			
	(a) $\{b, c\}$	(b) c	(c) $\{a, c\}$	(d) All of these			
31.	1. Let (X, τ) be a topological space. Then which of the following is a base for topological τ						
	(a) $B = \{\{x\}; x \in A\}$	X }	(b) $\{X\}$				
	(c) $\{X, \phi\}$		(d) None				
32.	In a topological space is called	ce (X, τ) if every ope	n cover has a countal	ble subcover, then (X, τ)			
	(a) Separable space	(b) Countable space	e(c) Lindelof space	(d) Category			
33.	. In a topological space (X, τ) having A is a dense set and B is dense in A, then B is						
	(a) Interior set	(b) Open set	(c) Closed set	(d) Dense set			
34.	In a topological sparset, then C , is	$\operatorname{ce}(X, \tau)$ having D a	s dense set and C is	any set containing dense			
	(a) Interior set	(b) Open set	(c) Compact set	(d) Dense set			

35.	In an indiscrete space, what will be the neighborhood of everypoint					
	(a) X	(b) <i>B</i>	(c) ϕ	(d) None		
36.	Let τ and ϕ are two (a) τ is finer than ϕ	o topologies on set \mathcal{P}_{ϕ}	X. If $\tau \subset \phi$, then (b) τ is coarser than ϕ			
	(c) ϕ is coarser than	n $ au$	(d) $m \neq n$			
37.	Every finite point s	et in a Hausdorff spa	ace S is	ace S is		
	(a) Closed	(b) Open	(c) Hausdorff	(d) Connected		
38.	If X is a Hausdorff	space, then a sequen	nce of points of X			
	(a) Converges to m	ost one point of X	(b) Converges to at	least one point of X		
	(c) Diverges to mos	st one point of X	(d) Diverges to at l	east one point of X		
39.	The ordered square	is connected but no	ot			
	(a) Path	(b) Interval	(c) Path connected	(d) Hausdorff		
40.	A finite Cartesian p	product of a connect	ed space is			
	(a) Closed	(b) Separated	(c) Hausdorff	(d) Connected		
41.	For a singleton set have	$A \subseteq \mathbb{R}$ in real line (\mathbb{R}	\mathbb{R}, d), and the interior	of A denoted by A^0 , we		
	(a) $A^0 = A$	(b) $A^0 = \phi$	(c) $\phi^0 = \phi$	(d) None of these		
42.	Which of the follow	ring is not a topologi	ical property			
	(a) Openness	(b) Closeness	(c) Connectedness	(d) Boundedness		
43.	Let X be the real \mathbb{R}^2	ine, Y be the set of	integers and $A = 1$ t	hen closure of A in Y is		
	(a) <i>X</i>	(b) <i>Y</i>	(c) A	(d) None of these		
44.	Let X be the real line with co-finite topology and $A=(0,1)$, then which of the following is not a limit point of A					
	(a) 0		(b) 1			
	(c) 2		(d) None of the abo	ove		
45.	5. If (X, τ) is a topological space and $B \subset \tau$ is a basis then the sets $U \in B$ are call the					
	(a) Basic closed sets(b) Closed sets		(c) Basic open sets	(d) None of these		
46.	For $n \geq 1$, \mathbb{R} is					
	(a) T_1 space	(b) T_2 space	(c) Hausdorff	(d) None of these		
47.	If (X, τ) is Hausdorff and X is finite. Then τ is the					
	(a) Discrete topology		(b) Co-finite topology			
	(c) Finite topology		(d) All of these			

48.	Let X be a finite topological space. Then X is				
	(a) Closed	(b) Separated	(c) Compact	(d) Connected	
49.					
	(a) $(0,1)$	(b) $[0,1]$	(c) $(1,1)$	(d) $(0,0)$	
50.	The space $[0,1]^{\omega}$ wi	th the product topo	logy is		
	(a) Bounded	(b) Unbounded	(c) Finite	(d) Metrizable	
51.	The set $\mathbb N$ of natura	al numbers equipped	with the discrete to	pology is	
	(a) Bounded	(b) Unbounded	(c) Metrizable	(d) None of these	
52.	A subspace of R is	connected if and onl	y if it is		
	(a) Compact	(b) Pathconnected	(c) Connected	(d) Closed	
53.	A topological space	X is connected if an	nd only if every discr	ete valued map on X is	
	(a) Closed	(b) Constant	(c) Open	(d) Connected	
54.	An infinite set in th	ne finite complement	topology is always		
	(a) Closed	(b) Compact	(c) Open	(d) Connected	
55.	How many topologi	es can be made on a	1-point set		
	(a) Exactly one	(b) Zero	(c) Two	(d) Three	
56.	Let X be a comparing bijection. Then f is		e, Y Hausdorff, f :	$X \to Y$ a continuous	
	(a) Isomorphism	(b) Metrizable	(c) Open	(d) homemorphism	
57. Consider indiscrete space, that is a nonempty set X with $\tau = \{$ for τ is $\beta =$				$= \{\phi, X\}.$ then the basis	
	(a) $\{X\}$	(b) $\{X^c\}$	(c) ϕ	(d) None	
58.	Which one is the smallest possible topology on a set				
	(a) Indiscrete topol	ogy	(b) Discrete topolog	gy	
	(c) Proper set		(d) None of these		
59.	Every element of τ	can be written as a	union of elements of	β if β is	
	(a) Basis τ in X	(b) Boundary of X	(c) Closure of X	(d) Interior of X	
60.	Which of the following is a basis for a topology on R.				
	(a) $(a,b) \subseteq \mathbb{R} : a,b$		(b) (0,1)		
	(c) $[a,b] \subseteq \mathbb{R} : a,b \in$	$\exists \mathbb{R}$	(d) None		

ANSWER KEY

Question No	Answer	Question No	Answer	Question No	Answer
1	b	21	b	41	b
2	b	22	a	42	d
			"	14	u
3	С	23	С	43	С
4	a	24	b	44	d
4	a	24	D	11	l d
5	a	25	c	45	С
6	С	26	d	46	С
		20	u	10	
7	a	27	d	47	a
8	a	28	d	48	С
	a	20	u	10	
9	b	29	d	49	b
10	a	30	d	50	d
		30	4		
11	С	31	a	51	С
12	a	32	С	52	b
		1		1	
13	c	33	d	53	b
14	a	34	d	54	d
		1		1	
15	a	35	a	55	a
16	a	36	b	56	d
		ı	I	ı	
17	b	37	a	57	a
18	a	38	a	58	a
		1		ı	
19	a	39	С	59	a
20	c	40	d	60	a
		1	I	I	1

Prepared by: