TP N° 1: LÓGICA PROPOSICIONAL

Federico Cristian Pfund

DNI: 40021477

mail: federicopfund@gmail.com

1-Sin usar tabla de verdad pruebe y/o simplifique según corresponda

1.a)

$$(\neg p \lor q) \land (p \land p \land q) \equiv p \land q$$

$$(\neg p \lor q) \land ((p \land p) \land q)) \equiv p \land q$$

$$(\neg p \lor q) \land ((p \land q)) \equiv p \land q$$

$$(\neg p \lor q) \land (p \land q) \equiv p \land q$$

$$((p \land q) \land \neg p) \lor ((p \land q) \land q) \equiv p \land q$$

$$(p \land \neg p) \land q) \lor ((q \land q) \land p) \equiv p \land q$$

$$(F \land q) \lor ((q \land q) \land p) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \equiv p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \lor (p \land q) \Rightarrow p \land q$$

$$(F \land q) \land (p \land q) \Rightarrow p \land q$$

$$(F \land q) \land (p \land q) \Rightarrow p \land q$$

$$(F \land q) \land (p \land q) \Rightarrow (p \land$$

1.b)

$$(p \lor q) \lor \neg (q \lor \neg p) \equiv p$$

$$(p \lor q) \lor (\neg q \land \neg \neg p) \equiv p$$

$$(p \lor q) \lor (\neg q \land p) \equiv p$$

$$(p \lor q) \lor (\neg q \land p) \equiv p$$

$$(p \lor q) \lor (\neg q \land p) \equiv p$$

$$((p \lor q) \land \neg q) \lor ((p \lor q) \land p) \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land \neg q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor p \equiv p$$

$$((p \lor q) \land q) \lor q \rightarrow q$$

$$((p \lor q) \land$$

1.c)

$$[p \lor (q \land r)] \lor (\neg q \land r) \equiv p \lor r$$

$$p \lor [(q \land r) \lor (\neg q \land r)] \equiv p \lor r$$

$$p \lor [r \land (\neg q \lor q)] \equiv p \lor r$$

$$p \lor [r \land T] \equiv p \lor r$$

$$p \lor r \equiv p \lor r$$

$$Ley \ de \ Boole: A + \neg A = 1$$

$$Ley \ de \ Boole: A * 1 = A$$

$$Ley \ de \ Boole: A * 1 = A$$

1.d) $\neg [(\neg q \lor p) \land \neg [\neg p \land (q \land r) \land (p \lor r)]]$ Multiplicamos por ¬ a todos los términos. $\neg(\neg q \lor p) \lor \neg\neg[\neg p \land (q \land r) \land (p \lor r)]$ Ley de Boole ¬¬ A=A $(\neg \neg q \land \neg p) \lor [\neg p \land (q \land r) \land (p \lor r)]$ Ley de Boole ¬¬ A=A $(q \land \neg p) \lor [\neg p \land (q \land r) \land (p \lor r)]$ Ley Asociativa de ∧ $(q \land \neg p) \lor [[\neg p \land (p \lor r)] \land (q \land r)]$ Ley Distributiva \land respecto $\alpha \lor$. $(q \land \neg p) \lor [[(\neg p \land p) \lor (\neg p \land r)] \land (q \land r)]$ Ley de Boole $A*\neg A=0$ O Falso. $(q \land \neg p) \lor [[(F) \lor (\neg p \land r)] \land (q \land r)]$ Ley de Boole A +0=A $(q \land \neg p) \lor [(\neg p \land r) \land (q \land r)]$ Saco factor común r. $(q \land \neg p) \lor [(\neg p \land q) \land r]$ Ley de absorción: A + A.B=A $(q \land \neg p)$ 1.e) $[(p \lor q) \land \neg(\neg p \land q)] \lor [\neg[q \land (r \lor q)] \land (p \lor \neg q)]$ Multiplicamos por ¬. $[(p \lor q) \land (\neg \neg p \lor \neg q)] \lor [\neg q \lor (\neg r \land \neg q)] \land (p \lor \neg q)]$ Eliminación doble $\neg(\neg A) = A$ $[(p \lor q) \land (p \lor \neg q)] \lor [\neg q \lor (\neg r \land \neg q)] \land (p \lor \neg q)]$ Ley de Absorción A+A*B=A $[(p \lor q) \land (p \lor \neg q)] \lor \neg q \land (p \lor \neg q)]$ Ley de Absorción. A(A+B) = A $[(p \lor q) \land (p \lor \neg q)] \lor \neg q$ Sacar factor común p $[p \lor (q \land \neg q)] \lor \neg q$ Ley Boole: $A*\neg A=0$ $[p \lor F] \lor \neg q$ Ley de Boole: A+0=A $p \vee \neg q$ 1.g) $p \to (q \lor r) \equiv (p \to q) \lor (p \to r)$ Eliminación de la Implicación. $(\neg p \lor (q \lor r)) \equiv (\neg p \lor q) \lor (\neg p \lor r)$ Ley Asociativa de V términos. ¬p $(\neg p \lor (q \land r)) \equiv ((\neg p \lor \neg p) \lor (q \lor r))$ Ley de Boole A+A=A $(\neg p \lor (q \land r) \equiv (\neg p \lor (q \land r))$ 1.h) $(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$ Eliminación de la implicación. $(\neg (p \lor q) \lor r) \equiv (\neg p \lor r) \land (\neg q \lor r)$ Negamos el termino izquierdo. ¬ $(\neg p \land \neg q) \lor r) \equiv (\neg p \lor r) \land (\neg q \lor r)$ Distributiva de∨ respecto α ∧.

 $((\neg p \lor r) \land (\neg q \lor r)) \equiv ((\neg p \lor r) \land (\neg q \lor r))$

1.i)
$$p \rightarrow (q \rightarrow p) \equiv \neg p \lor (q \rightarrow p)$$
 Eliminación de la implicación Ambos Términos.
$$(\neg p \lor (\neg q \lor p)) \equiv (\neg p \lor (\neg q \lor p))$$
 Eliminación de la implicación Ambos Términos.
$$[(p \lor q) \land (p \to q) \land (q \to r)] \rightarrow r \equiv T$$
 Eliminación de la implicación.
$$[(p \lor q) \land \neg p) \lor ((p \lor q) \land q) \land (\neg q \lor r)] \rightarrow r \equiv T$$
 Distributiva \lor respecto $a \land .$ Absorción de $A(A + B) = A$ Distributiva \land respecto $a \lor .$ Eliminación de la implicación.
$$[((p \lor q) \land \neg p) \lor (p \land \neg q) \lor q) \land (\neg q \lor r)] \rightarrow r \equiv T$$
 Eliminación de la implicación.
$$[((p \land \neg p) \lor (q \land \neg p) \lor q) \land (\neg q \lor r)] \rightarrow r \equiv T$$
 Eliminación de la implicación.
$$[((q \land \neg p) \lor q) \land (\neg q \lor r)] \rightarrow r \equiv T$$
 Ely de Boole: $A^* \neg A = 0$ Distributiva \lor respecto $a \land .$ Eliminación de la implicación.
$$A+A.B=A$$
 Elimina

 $T \equiv T$

*Leyes de Boole (A+1) *1 =1*

2- Demuestre las equivalencias siguientes comprobando las equivalencias duales (indique en cada paso las leyes del álgebra proposicional que emplea)

2.a)

$$\neg \big((\neg p \land q) \lor (\neg p \land \neg q) \big) \lor (p \land q) \equiv p$$
 Ley de Morgan
$$\big(\neg (\neg p \land q) \land \neg (\neg p \land \neg q) \big) \lor (p \land q) \equiv p$$
 Ley de Morgan y doble negación
$$\big((p \lor \neg q) \land (p \lor q) \big) \lor (p \land q) \equiv p$$
 Ley distributiva
$$p \lor (\neg q \land q) \lor (p \land q) \equiv p$$
 Algebra de Boole: $A * \bar{A} = 0$
$$p \lor (F) \lor (p \land q) \equiv p$$
 Algebra de Boole: $A * A * B = A$
$$p \equiv p$$
 Ley de Absorción $A * A * B = A$
$$p \equiv p$$

2.b)

$$(p \land (p \leftrightarrow q)) \rightarrow q \equiv T$$
 Eliminación de la bicondicional
$$(p \land ((p \rightarrow q) \land (q \rightarrow p)) \rightarrow q \equiv T$$
 Eliminación de la implicación
$$(p) \land ((\neg p \lor q) \land (\neg q \lor p)) \rightarrow q \equiv T$$
 Ley Asociativa respecto del producto
$$(p \land (\neg q \lor p)) \land (\neg p \lor q) \rightarrow q \equiv T$$
 Ley de absorción: $A + A*B = A$ Ley distributiva respecto del producto
$$(p \land \neg p) \lor (p \land q) \rightarrow q \equiv T$$
 Ley distributiva respecto del producto
$$(p \land \neg p) \lor (p \land q) \rightarrow q \equiv T$$
 Algebra de Boole: $A * \bar{A} = 0$ Algebra de Boole: $A * 0 = A$ Eliminación de la implicación
$$(p \land q) \lor q \equiv T$$
 Ley de Morgan Ley de Morgan Ley Asociativa respecto de la suma
$$(\neg p \lor \neg q) \lor q \equiv T$$
 Ley Asociativa respecto de la suma
$$(\neg p \lor \neg q) \lor q \equiv T$$
 Algebra de Boole: $A * \bar{A} = 1$
$$(\neg p \lor \neg q) \lor T \equiv T$$
 Algebra de Boole: $A * \bar{A} = 1$ Algebra de Boole: $A * \bar{A} = 1$

2.c)

$$\neg (p \land q) \rightarrow (\neg p \lor (\neg p \lor q)) \equiv (\neg p \lor q)$$
 Ley de Morgan
$$(\neg p \lor \neg q) \rightarrow (\neg p \lor (\neg p \lor q)) \equiv (\neg p \lor q)$$
 Asociatividad de \lor
$$(\neg p \lor \neg q) \rightarrow ((\neg p \lor \neg p) \lor q) \equiv (\neg p \lor q)$$
 Algebra de Boole: $A + A = A$ Eliminación de la implicación
$$\neg (\neg p \lor \neg q) \lor (\neg p \lor q) \equiv (\neg p \lor q)$$
 Ley de Morgan
$$(\neg p \lor \neg q) \lor (\neg p \lor q) \equiv (\neg p \lor q)$$
 Ley de Morgan
$$(\neg p \lor \neg q) \lor (\neg p \lor q) \equiv (\neg p \lor q)$$
 Ley de Morgan
$$(p \land q) \lor (\neg p \lor q) \equiv (\neg p \lor q)$$
 Eliminación de la doble negación
$$(p \land q) \lor (\neg p \lor q) \equiv (\neg p \lor q)$$
 Ley distributiva respecto de la suma
$$(p \lor (\neg p \lor q)) \land (q \lor (\neg p \lor q)) \equiv (\neg p \lor q)$$
 Asociatividad de \lor Algebra de Boole: $A + \bar{A} = 1$ Algebra de Boole: $A + \bar{A} = 1$

Algebra de Boole: A + A = A

2.d)

$$(\neg p \to (\neg p \to (\neg p \land q))) \equiv p \lor q$$
 Eliminación de la implicación
$$(\neg p \to (\neg p \lor (\neg p \land q))) \equiv p \lor q$$
 Eliminación de la doble negación
$$(\neg p \to (p \lor (\neg p \land q))) \equiv p \lor q$$
 Eliminación de la implicación
$$(\neg \neg p \lor (p \lor (\neg p \land q))) \equiv p \lor q$$
 Eliminación de la doble negación
$$(p \lor (p \lor (\neg p \land q))) \equiv p \lor q$$
 Eliminación de la doble negación
$$(p \lor (p \lor (\neg p \land q))) \equiv p \lor q$$
 Ley distributiva respecto a la suma
$$p \lor ((p \lor \neg p) \land (p \lor q)) \equiv p \lor q$$
 Algebra de Boole: A + Ā = 1
$$p \lor ((T) \land (p \lor q)) \equiv p \lor q$$
 Algebra de Boole: A * 1 = A
$$p \lor (p \lor q) \equiv p \lor q$$
 Algebra de Boole: A + A = A
$$p \lor q \equiv p \lor q$$

 $(\neg p \lor q) \equiv (\neg p \lor q)$

2.e)

$$p \leftrightarrow q \equiv (p \lor q) \to (p \land q)$$

 $((p \to q) \land (q \to p)) \equiv (p \lor q) \to (p \land q)$

Eliminación del bicondicional

 $((\neg p \lor q) \land (\neg q \lor p)) \equiv \neg(p \lor q) \lor (p \land q)$

Eliminación de la implicación

 $((\neg p \lor q) \land (\neg q \lor p)) \equiv (\neg p \land \neg q) \lor (p \land q)$

Ley de Morgan Ley distributiva

$$((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$$
$$((\neg p \land \neg q) \lor (q \land \neg q)) \lor ((\neg p \lor q) \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$$

 $((\neg p \land \neg q) \lor (q \land \neg q)) \lor ((\neg p \lor q) \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$

Algebra de Boole: A * $\bar{A} = 0$

$$((\neg p \land \neg q) \lor (F)) \lor ((\neg p \lor q) \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$$

Algebra de Boole: A + 0 = A

$$\left((\neg p \land \neg q) \lor ((\neg p \lor q) \land p) \right) \equiv (\neg p \land \neg q) \lor (p \land q)$$

Ley distributiva

$$((\neg p \land \neg q) \lor ((\neg p \land p) \lor (q \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$$

Algebra de Boole: $A * \bar{A} = 0$

$$((\neg p \land \neg q) \lor ((F) \lor (q \land p)) \equiv (\neg p \land \neg q) \lor (p \land q)$$

Algebra de Boole: A + 0 = A

 $(\neg p \land \neg q) \lor (q \land p) \equiv (\neg p \land \neg q) \lor (p \land q)$

2.f)

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

Eliminación de la implicación

$$(\neg p \vee r) \wedge (\neg q \vee r) \equiv \neg (p \vee q) \vee r$$

Ley de Morgan

$$(\neg p \lor r) \land (\neg q \lor r) \equiv (\neg p \land \neg q) \lor r$$

Ley distributiva

$$(\neg p \vee r) \wedge (\neg q \vee r) \equiv (\neg p \vee r) \wedge (\neg q \vee r)$$

2.g)

$$\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$$

Eliminación de la implicación

$$\neg \neg p \lor (\neg q \lor r) \equiv \neg q \lor (p \lor r)$$

Eliminación de doble negación

$$p \lor (\neg q \lor r) \equiv \neg q \lor (p \lor r)$$

Asociatividad de la V

$$\neg q \lor (p \lor r) \equiv \neg q \lor (p \lor r)$$

4.a)

p	q	$(p \lor q)$	$(p \land q)$	$(p \lor q) \to (p \land q)$
V	V	V	V	V
V	F	V	F	F
F	V	V	F	F
F	F	F	F	V

4.b)

p	q	$\neg p$	$(q \rightarrow \neg p)$	$(p \leftrightarrow q)$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
V	V	F	F	V	F
V	F	F	V	F	F
F	V	V	V	F	F
F	F	V	V	V	V

4.c)

p	q	$\neg p$	$\neg q$	$(\neg p \leftrightarrow \neg q)$	$(p \leftrightarrow q)$	$(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$
V	V	F	F	V	٧	V
٧	F	F	V	F	F	V
F	V	V	F	F	F	V
F	F	V	V	V	٧	V

4.d)

p	q	$(p \to q)$	$(q \rightarrow p)$	$(p \to q) \to (q \to p)$
V	V	V	V	٧
V	F	F	V	V
F	V	V	F	F
F	F	V	V	V

4.e)

p	q	$\neg p$	$\neg q$	$(p \leftrightarrow q)$	$(p \land q)$	$(\neg p \land \neg q)$	$((p \land q) \lor (\neg p \land \neg q))$	$(p \leftrightarrow q) \leftrightarrow ((p \land q) \lor (\neg p \land \neg q))$
V	٧	F	F	٧	٧	F	V	V
٧	F	F	٧	F	F	F	F	V
F	٧	٧	F	F	F	F	F	V
F	F	٧	٧	٧	F	V	V	V

4.f)

p	q	r	$(q \wedge r)$	$(p \lor q)$	$(p \rightarrow r)$	$(p \lor (q \land r))$	$\neg (p \lor (q \land r))$	$((p \lor q) \land (p \to r))$	$\neg (p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \to r))$
٧	V	٧	٧	V	V	V	F	V	F
٧	٧	F	F	٧	F	V	F	F	V
٧	F	٧	F	V	V	٧	F	V	F
٧	F	F	F	V	F	V	F	F	V
F	٧	٧	V	V	V	V	F	V	F
F	٧	F	F	V	V	F	V	V	V
F	F	٧	F	F	V	F	V	F	F
F	F	F	F	F	V	F	V	F	F

4.g)

p	q	r	$\neg p$	$\neg q$	$(\neg p \leftrightarrow \neg q)$	$(q \leftrightarrow r)$	$(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$
٧	٧	٧	F	F	V	V	٧
٧	٧	F	F	F	V	F	F
٧	F	٧	F	٧	F	F	V
٧	F	F	F	٧	F	V	F
F	>	>	>	F	F	V	F
F	٧	F	٧	F	F	F	V
F	F	٧	V	٧	V	F	F
F	F	F	٧	٧	V	V	V

4.h)

p	q	r	S	$\neg r$	$(q \rightarrow s)$	$(p \rightarrow (q \rightarrow s))$	$(\neg r \lor p)$	$(\neg r \lor p) \land q$	$(p \to (q \to s)) \land (\neg r \lor p) \land q$
V	٧	٧	٧	F	V	V	V	V	V
V	٧	٧	F	F	F	F	V	V	F
V	>	F	٧	>	٧	V	V	V	V
٧	F	٧	٧	F	٧	V	V	F	F
V	٧	F	F	٧	F	F	V	٧	F
V	F	F	٧	٧	V	V	V	F	F
٧	F	F	F	>	٧	V	V	F	F
F	>	٧	٧	F	٧	V	F	F	F
F	>	٧	F	F	F	F	F	F	F
F	>	F	٧	>	٧	V	V	V	V
F	F	٧	٧	F	٧	V	F	F	F
F	>	F	F	>	F	F	V	>	F
F	F	F	٧	٧	V	V	V	F	F
F	F	F	F	V	V	V	V	F	F

4.i)

p	q	r	$\neg r$	$(\neg r \rightarrow p)$	$q \wedge (\neg r \rightarrow p)$
٧	٧	٧	F	V	V
٧	٧	F	٧	V	V
٧	F	٧	F	V	F
٧	F	F	٧	V	F
F	٧	>	F	V	V
F	٧	F	>	F	F
F	F	٧	F	V	F
F	F	F	V	F	F

4.j)

p	q	r	$(p \lor q)$	$(p \lor q) \land r$
٧	٧	٧	٧	V
٧	>	F	٧	F
٧	F	>	٧	V
٧	F	F	>	F
F	٧	٧	V	V
F	٧	F	V	F
F	F	٧	F	F
F	F	F	F	F

5.a) Es una tautología.

p	q	$\neg p$	$\neg q$	$(p \rightarrow q)$	$(\neg q \land (p \to q))$	$\left(\neg q \land (p \to q)\right) \to \neg p$
٧	٧	F	F	V	F	V
٧	F	F	٧	F	F	V
F	٧	٧	F	V	F	V
F	F	٧	٧	V	V	V

5.b) Es una tautología

p	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$((p \to q) \land (q \to r))$	$(p \rightarrow r)$	$((p \to q) \land (q \to r)) \to (p \to r)$
٧	٧	٧	V	V	V	V	V
٧	٧	F	٧	F	F	F	V
٧	F	٧	F	V	F	V	V
٧	F	F	F	V	F	F	V
F	٧	٧	٧	V	٧	V	V
F	٧	F	V	F	F	V	V
F	F	٧	٧	V	٧	٧	V
F	F	F	V	V	V	V	V

5.c) Es una contradicción.

p	q	r	$(q \rightarrow r)$	$\neg (q \rightarrow r)$	$\neg (q \rightarrow r) \land r$	$(p \rightarrow q)$	$\neg (q \to r) \land r \land (p \to q)$
٧	<	<	V	F	F	٧	F
٧	٧	F	F	V	F	V	F
٧	F	٧	٧	F	F	F	F
٧	F	F	>	F	F	F	F
F	>	٧	>	F	F	>	F
F	>	F	F	V	F	>	F
F	F	٧	٧	F	F	V	F
F	F	F	V	F	F	V	F

5.d) Es una tautología.

p	q	r	$(p \lor q)$	$(p \rightarrow r)$	$(q \rightarrow r)$	$(p \lor q) \land (p \to r)$	$(p \lor q) \land (p \to r) \land (q \to r)$	$(p \lor q) \land (p \to r) \land (q \to r) \to r$
V	٧	٧	V	V	V	V	V	V
V	<	F	٧	F	F	F	F	V
V	F	٧	V	٧	V	V	V	V
V	F	F	V	F	V	F	F	V
F	٧	٧	V	V	V	V	V	V
F	٧	F	V	V	F	V	F	V
F	F	٧	F	V	V	F	F	V
F	F	F	F	V	V	F	F	V

5.e) Es una tautología.

p	q	$(p \lor q)$	$p \to (p \lor q)$
٧	٧	٧	V
٧	F	V	V
F	٧	٧	V
F	F	F	V

5.f) Es una contradicción.

	p	q	$\neg p$	$(\neg p \land q)$	$p \wedge (\neg p \wedge q)$
,	<	٧	F	F	F
-	٧	F	F	F	F
	F	٧	٧	V	F
	F	F	٧	F	F

6.a) Negación

p	$\neg p$	$\neg(\neg p)$
٧	F	V
F	٧	F

6.b) Idempotencia

p	$p \wedge p$
<	V
F	F

p	$p \lor p$
٧	V
F	F

6.c) Asociativa

p	q	r	$(p \land q)$	$(q \wedge r)$	$(p \wedge q) \wedge r$	$p \wedge (q \wedge r)$
٧	٧	٧	V	V	V	V
٧	٧	F	V	F	F	F
٧	F	٧	F	F	F	F
٧	F	F	F	F	F	F
F	٧	٧	F	V	F	F
F	٧	F	F	F	F	F
F	F	٧	F	F	F	F
F	F	F	F	F	F	F

6.d) Conmutativa

p	q	$p \wedge q$	$q \wedge p$
٧	٧	V	V
٧	F	F	F
F	٧	F	F
F	F	F	F

6.e) Absorción

p	q	$(p \land q)$	$p \lor (p \land q)$
٧	٧	٧	V
٧	F	F	V
F	٧	F	F
F	F	F	F

- 1		_		
	p	q	$(p \lor q)$	$p \wedge (p \vee q)$
	٧	٧	٧	V
	٧	F	٧	V
	F	٧	٧	F
	F	F	F	F

6.f) Distributiva

p	q	r	$(q \wedge r)$	$(p \lor q)$	$(p \lor r)$	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
V	٧	٧	V	V	V	V	V
٧	٧	F	F	V	V	V	V
٧	F	٧	F	V	V	V	V
٧	F	F	F	٧	V	V	V
F	٧	٧	٧	V	V	V	V
F	٧	F	F	V	F	F	F
F	F	٧	F	F	V	F	F
F	F	F	F	F	F	F	F