COMS E6232 - Problem Set #2

Alex Wong (asw2181) - asw2181@columbia.edu $\label{eq:march3} {\rm March}\ 3,\ 2017$

COMS E6232

Problem 1

a. Consider an instance where we have two items x and y where $s_x = \epsilon$, $v_x = 2\epsilon$, $s_y = B$, $v_y = B$, and $\epsilon << 1$. The v_i/s_i ratio of item x is 2 and item y is 1. Thus, the Greedy algorithm will always pick item x regardless of how large B is and regardless how small ϵ is. So as B gets larger and/or ϵ gets smaller, the approximation ratio of the algorithm will always increase, thus showing that the approximation ratio of Greedy is not bounded by any constant.

b. **Theorem 1b** The Modified Greedy algorithm achieves approximation ratio 2.

Proof: Let OPT be the optimal solution that has maximum value where $v(OPT) = \sum_{i \in OPT} v_i$ subject to $\sum_{i \in OPT} s_i \leq B$. We first assume that the items are ordered in a non-increasing fashion according to the ratio v_i/s_i . Let's call the first item that does not fit in the knapsack using the Greedy algorithm as item m. We know that item m's v_i/s_i ratio \geq items m+1, ..., n's v_i/s_i ratio. Thus, if we are able to fit some fraction of item m so that it fills up to the capacity of the knapsack, that solution will be \geq OPT. We can define the fraction of item m that fits into the knapsack as α where $\alpha = (B - \sum_{i=1}^{m-1} v_i)/s_m$. Thus, $OPT \leq (\sum_{i=1}^{m-1} v_i) + \alpha v_m$. Since α is some fraction ≤ 1 , we can also say that:

$$OPT \le (\sum_{i=1}^{m-1} v_i) + \alpha v_m \le (\sum_{i=1}^{m-1} v_i) + v_m$$

From the inequality above, $\sum_{i=1}^{m-1} v_i$ or v_m must be at least OPT/2, showing that the Modified Greedy algorithm will always get a solution at least OPT/2, thus achieving an approximation ratio 2.

COMS E6232

Problem 2

a. We know that the lower bound for OPT is $max(max_i(p_i), \frac{\sum p_i}{m})$ where i = 1, ..., n.

For m = 2 machines and 5 jobs with processing times 3,3,2,2,2, the LPT algorithm will schedule 3,2,2 on m_1 and 3,2 on m_2 , giving a makespan of 7. For OPT, we know that a lower bound is $\max = \max(3, 12/2) = 6$. We can achieve OPT by scheduling 3,3 on one machine and 2,2,2 on the other machine.

For m=3 machines and 7 jobs with processing times 5,5,4,4,3,3,3, the LPT algorithm will schedule 5,3,3 on m_1 , 5,3 on m_2 , and 4,4 on m_3 , giving a makespan of 11. For OPT, the lower bound is max(5,27/3)=9. We can achieve OPT by scheduling 5,4 on one machine, 5,4 on another machine, and 3,3,3 on the remaining machine.

- b. Since $p_n > OPT/3$, then $3p_n > OPT$, showing that no machine can process more than 2 jobs or else it would be > OPT, which would contradict OPT being the optimal solution. From this, we know that $n \leq 2m$, thus the largest m jobs will first get scheduled on each of the m machines and the rest of the n-m jobs will be assigned to the machine that has the least load at the point of assignment, thus showing that the LPT schedule is optimal.
- 3. Lemma 2.3 Let G[U] be the subgraph of G induced by the subset U, M be a minimum-cost perfect matching in G[U], and P^* be a minimum-cost path from s to t that visits every node exactly once. Consider the nodes of U in the order that they appear on the path P^* and let u_i be the i-th node of U in this ordering: i = 1, ..., |U|. Color red the edges of P^* on the subpath from u_1 to $u_2, ...$, from u_{2k-1} to u_{2k} , where |U| = 2k. Color blue the other edges of P^* . Then, $\operatorname{cost}(\operatorname{red} \operatorname{edges}) \geq \operatorname{cost}(M)$.

Proof: We can prove this by contradiction. Suppose cost(red edges) < cost(M). We know that red edges are essentially a perfect matching on set U. If cost(red edges) < cost(M), then M is not a minimum-cost perfect matching on set U, proving that cost(red edges) < cost(M) can not be true. Thus, $cost(red edges) \ge cost(M)$.

4. Lemma 2.4 $cost(T) + cost(blue edges) \ge 2 \cdot cost(M)$.

Proof: We first see that $T \cup$ (blue edges of P^*) creates a connected Eulerian multigraph. We know this to be true because every vertex has an even degree. A Eulerian multigraph is essentially a multigraph that contains an Eulerian tour. Within a Eulerian tour, we know that we can create two disjoint perfect matchings of U and the sum of their costs \leq cost of the Eulerian tour due to triangle inequality. We also know that both of the disjoint perfect matchings can not have a cost \leq cost (M) or else

COMS E6232 3

M can't be a minimum-cost perfect matching on U. Thus,

$$2 \cdot cost(M) \le cost(2 \ disjoint \ perfect \ matchings) \le cost(T) + cost(blue \ edges)$$

$$cost(T) + cost(blue\ edges) \ge 2 \cdot cost(M)$$

5. **Theorem 2.5** The variant of Christofides' algorithm achieves an approximation factor of 5/3 for the s-t path metric TSP problem.

Proof: Combining our conclusions from Lemma 2.3 and 2.4, we can say that:

$$cost(T) + cost(blue\ edges) + cost(red\ edges) \ge 3 \cdot cost(M)$$
 (1)

We also know that $cost(blue\ edges) + cost(red\ edges) = P^* = OPT$ and from Lemma 2.1 that $cost(T) \leq OPT$. Thus, we can modify equation 1 to be:

$$cost(T) + OPT \ge 3 \cdot cost(M)$$
$$2 \cdot OPT \ge 3 \cdot cost(M)$$
$$cost(M) \le 2/3 \ OPT \tag{2}$$

Adding cost(T) to both sides of equation 2 and using Lemma 2.1 that $cost(T) \leq OPT$, we finally get:

$$cost(T) + cost(M) \le cost(T) + 2/3 \ OPT$$

 $cost(T) + cost(M) \le OPT + 2/3 \ OPT$
 $cost(T) + cost(M) \le 5/3 \ OPT$

Thus showing that the cost of the path computed by the variant of Christofides' algorithm is at most 5/3 times the cost of the optimal path.

COMS E6232 4

6.

COMS E6232 5