Lab5. Diabetes Classification using Logistic Regression

SURIYA

225229140

STEP 1: UNDERSTAND DATA

In [1]: import pandas as pd

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
5	5	116	74	0	0	25.6	0.201
6	3	78	50	32	88	31.0	0.248
7	10	115	0	0	0	35.3	0.134
8	2	197	70	45	543	30.5	0.158
9	8	125	96	0	0	0.0	0.232
10	4	110	92	0	0	37.6	0.191
11	10	168	74	0	0	38.0	0.537
12	10	139	80	0	0	27.1	1.441
13	1	189	60	23	846	30.1	0.398
14	5	166	72	19	175	25.8	0.587
15	7	100	0	0	0	30.0	0.484
16	0	118	84	47	230	45.8	0.551
17	7	107	74	0	0	29.6	0.254
18	1	103	30	38	83	43.3	0.183
19	1	115	70	30	96	34.6	0.529
20	3	126	88	41	235	39.3	0.704
21	8	99	84	0	0	35.4	0.388
22	7	196	90	0	0	39.8	0.451
23	9	119	80	35	0	29.0	0.263
24	11	143	94	33	146	36.6	0.254
25	10	125	70	26	115	31.1	0.205
26	7	147	76	0	0	39.4	0.257
27	1	97	66	15	140	23.2	0.487
28	13	145	82	19	110	22.2	0.245
29	5	117	92	0	0	34.1	0.337
738	2	99	60	17	160	36.6	0.453
739	1	102	74	0	0	39.5	0.293

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
740	11	120	80	37	150	42.3	0.785
741	3	102	44	20	94	30.8	0.400
742	1	109	58	18	116	28.5	0.219
743	9	140	94	0	0	32.7	0.734
744	13	153	88	37	140	40.6	1.174
745	12	100	84	33	105	30.0	0.488
746	1	147	94	41	0	49.3	0.358
747	1	81	74	41	57	46.3	1.096
748	3	187	70	22	200	36.4	0.408
749	6	162	62	0	0	24.3	0.178
750	4	136	70	0	0	31.2	1.182
751	1	121	78	39	74	39.0	0.261
752	3	108	62	24	0	26.0	0.223
753	0	181	88	44	510	43.3	0.222
754	8	154	78	32	0	32.4	0.443
755	1	128	88	39	110	36.5	1.057
756	7	137	90	41	0	32.0	0.391
757	0	123	72	0	0	36.3	0.258
758	1	106	76	0	0	37.5	0.197
759	6	190	92	0	0	35.5	0.278
760	2	88	58	26	16	28.4	0.766
761	9	170	74	31	0	44.0	0.403
762	9	89	62	0	0	22.5	0.142
763	10	101	76	48	180	32.9	0.171
764	2	122	70	27	0	36.8	0.340
765	5	121	72	23	112	26.2	0.245
766	1	126	60	0	0	30.1	0.349
767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

In [4]: data.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	£
0	6	148	72	35	0	33.6	0.627	
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	

In [5]: data.shape

Out[5]: (768, 9)

In [6]: data.columns

In [7]: data.dtypes

Out[7]: Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 Age int64 Outcome int64 dtype: object

In [8]:	data.info				
	749	0.1/0	שכ	Т	
	750	1.182	22	1	
	751	0.261	28	0	
	752	0.223	25	0	
	753	0.222	26	1	
	754	0.443	45	1	
	755	1.057	37	1	
	756	0.391	39	0	
	757	0.258	52	1	
	758	0.197	26	0	
	759	0.278	66	1	
	760	0.766	22	0	
	761	0.403	43	1	
	762	0.142	33	0	
	763	0.171	63	0	
	764	0.340	27	0	
	765	0.245	30	0	
	766	0.349	47	1	
	767	0.315	23	0	

```
In [11]: data.Glucose.value_counts()
Out[11]: 100
                  17
          99
                  17
          129
                  14
          125
                  14
          111
                  14
          106
                  14
          95
                  13
          108
                  13
          105
                  13
          102
                  13
          112
                  13
          122
                  12
          109
                  12
          107
                  11
          117
                  11
          90
                  11
          120
                  11
          114
                  11
          124
                  11
          128
                  11
          119
                  11
          115
                  10
          84
                  10
          91
                   9
          92
                   9
          123
                   9
          146
                   9
          126
                   9
                   9
          103
                   9
          101
                  . .
          75
                   2
          76
                   2
          77
                   2
                   2
          170
          195
                   2
          57
                   2
          174
                   2
          175
                   2
          188
                   2
          153
                   2
          159
                   2
          62
                   1
          72
                   1
          56
                   1
          44
                   1
          65
                   1
          61
                   1
          198
                   1
          67
                   1
          190
                   1
          149
                   1
          191
                   1
          186
                   1
```

STEP 2: BUKID REGRESSION MODEL

```
In [23]: X=data[['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin','BMI','
In [24]: y=data[['Outcome']]
In [25]: from sklearn.model_selection import train_test_split
In [26]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=42
```

In [27]: X_train

Out[27]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction
357	13	129	0	30	0	39.9	0.569
73	4	129	86	20	270	35.1	0.231
352	3	61	82	28	0	34.4	0.243
497	2	81	72	15	76	30.1	0.547
145	0	102	75	23	0	0.0	0.572
514	3	99	54	19	86	25.6	0.154
291	0	107	62	30	74	36.6	0.757
132	3	170	64	37	225	34.5	0.356
559	11	85	74	0	0	30.1	0.300
631	0	102	78	40	90	34.5	0.238
719	5	97	76	27	0	35.6	0.378
395	2	127	58	24	275	27.7	1.600
41	7	133	84	0	0	40.2	0.696
637	2	94	76	18	66	31.6	0.649
108	3	83	58	31	18	34.3	0.336
481	0	123	88	37	0	35.2	0.197
56	7	187	68	39	304	37.7	0.254
323	13	152	90	33	29	26.8	0.731
685	2	129	74	26	205	33.2	0.591
758	1	106	76	0	0	37.5	0.197
572	3	111	58	31	44	29.5	0.430
529	0	111	65	0	0	24.6	0.660
24	11	143	94	33	146	36.6	0.254
465	0	124	56	13	105	21.8	0.452
247	0	165	90	33	680	52.3	0.427
443	8	108	70	0	0	30.5	0.955
351	4	137	84	0	0	31.2	0.252
327	10	179	70	0	0	35.1	0.200
110	3	171	72	33	135	33.3	0.199
82	7	83	78	26	71	29.3	0.767
21	8	99	84	0	0	35.4	0.388
313	3	113	50	10	85	29.5	0.626
459	9	134	74	33	60	25.9	0.460

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
160	4	151	90	38	0	29.7	0.294
276	7	106	60	24	0	26.5	0.296
191	9	123	70	44	94	33.1	0.374
385	1	119	54	13	50	22.3	0.205
413	1	143	74	22	61	26.2	0.256
491	2	89	90	30	0	33.5	0.292
343	5	122	86	0	0	34.7	0.290
308	0	128	68	19	180	30.5	1.391
661	1	199	76	43	0	42.9	1.394
130	4	173	70	14	168	29.7	0.361
663	9	145	80	46	130	37.9	0.637
99	1	122	90	51	220	49.7	0.325
372	0	84	64	22	66	35.8	0.545
87	2	100	68	25	71	38.5	0.324
458	10	148	84	48	237	37.6	1.001
330	8	118	72	19	0	23.1	1.476
214	9	112	82	32	175	34.2	0.260
466	0	74	52	10	36	27.8	0.269
121	6	111	64	39	0	34.2	0.260
614	11	138	74	26	144	36.1	0.557
20	3	126	88	41	235	39.3	0.704
700	2	122	76	27	200	35.9	0.483
71	5	139	64	35	140	28.6	0.411
106	1	96	122	0	0	22.4	0.207
270	10	101	86	37	0	45.6	1.136
435	0	141	0	0	0	42.4	0.205
102	0	125	96	0	0	22.5	0.262

576 rows × 8 columns

In [28]: X_test

Out[28]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction
668	6	98	58	33	190	34.0	0.430
324	2	112	75	32	0	35.7	0.148
624	2	108	64	0	0	30.8	0.158
690	8	107	80	0	0	24.6	0.856
473	7	136	90	0	0	29.9	0.210
204	6	103	72	32	190	37.7	0.324
97	1	71	48	18	76	20.4	0.323
336	0	117	0	0	0	33.8	0.932
568	4	154	72	29	126	31.3	0.338
148	5	147	78	0	0	33.7	0.218
667	10	111	70	27	0	27.5	0.141
212	7	179	95	31	0	34.2	0.164
199	4	148	60	27	318	30.9	0.150
265	5	96	74	18	67	33.6	0.997
760	2	88	58	26	16	28.4	0.766
356	1	125	50	40	167	33.3	0.962
501	3	84	72	32	0	37.2	0.267
457	5	86	68	28	71	30.2	0.364
604	4	183	0	0	0	28.4	0.212
213	0	140	65	26	130	42.6	0.431
636	5	104	74	0	0	28.8	0.153
544	1	88	78	29	76	32.0	0.365
86	13	106	72	54	0	36.6	0.178
208	1	96	64	27	87	33.2	0.289
281	10	129	76	28	122	35.9	0.280
209	7	184	84	33	0	35.5	0.355
581	6	109	60	27	0	25.0	0.206
639	1	100	74	12	46	19.5	0.149
328	2	102	86	36	120	45.5	0.127
431	3	89	74	16	85	30.4	0.551
718	1	108	60	46	178	35.5	0.415
90	1	80	55	0	0	19.1	0.258
377	1	87	60	37	75	37.2	0.509

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
235	4	171	72	0	0	43.6	0.479
158	2	88	74	19	53	29.0	0.229
69	4	146	85	27	100	28.9	0.189
260	3	191	68	15	130	30.9	0.299
131	9	122	56	0	0	33.3	1.114
44	7	159	64	0	0	27.4	0.294
70	2	100	66	20	90	32.9	0.867
264	4	123	62	0	0	32.0	0.226
673	3	123	100	35	240	57.3	0.880
286	5	155	84	44	545	38.7	0.619
640	0	102	86	17	105	29.3	0.695
135	2	125	60	20	140	33.8	0.088
745	12	100	84	33	105	30.0	0.488
165	6	104	74	18	156	29.9	0.722
164	0	131	88	0	0	31.6	0.743
28	13	145	82	19	110	22.2	0.245
608	0	152	82	39	272	41.5	0.270
583	8	100	76	0	0	38.7	0.190
746	1	147	94	41	0	49.3	0.358
292	2	128	78	37	182	43.3	1.224
136	0	100	70	26	50	30.8	0.597
432	1	80	74	11	60	30.0	0.527
554	1	84	64	23	115	36.9	0.471
319	6	194	78	0	0	23.5	0.129
594	6	123	72	45	230	33.6	0.733
6	3	78	50	32	88	31.0	0.248
615	3	106	72	0	0	25.8	0.207

192 rows × 8 columns

In [30]: from sklearn import linear_model

```
logr = linear model.LogisticRegression()
In [31]:
         logr.fit(X,y)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3 64\lib\site-pac
         kages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector y
         was passed when a 1d array was expected. Please change the shape of y to (n sam
         ples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
Out[31]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept scaling=1, max iter=100, multi class='ovr', n jobs=1,
                   penalty='12', random_state=None, solver='liblinear', tol=0.0001,
                   verbose=0, warm_start=False)
In [32]: | y_pred=logr.predict(X_test)
         y_pred
Out[32]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
                0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0], dtype=int64)
```

STEP 3: PREDICT ON A NEW SAMPLE

COMPUTE CLASSIFICATION METRICS

localhost:8888/notebooks/lab 5.ipynb#225229117

0.6086956521739131

```
In [42]: #AUC SCORES

from sklearn.metrics import roc_auc_score
print(roc_auc_score(y_test,y_pred))
```

0.7311770943796395

```
In [48]: from sklearn import metrics
    from sklearn.linear_model import LogisticRegression
```

```
In [49]: #ACCURACY

model = LogisticRegression(random_state=0, solver='lbfgs',multi_class='multinomia
model.fit(X_train,y_train)
prediction=model.predict(X_test)
print('The accuracy of the Logistic Regression is', metrics.accuracy_score(predict)
```

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-pac kages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_sam ples,), for example using ravel().

y = column_or_1d(y, warn=True)

The accuracy of the Logistic Regression is 0.729166666666666666

STEP 4: UNDERSTAND CORRELATION

```
In [50]: from sklearn.metrics import confusion_matrix
  cfm=confusion_matrix(y_test,y_pred)
  cfm
```

```
In [53]: import seaborn as sns
    sns.heatmap(cfm, annot=True)
```

Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x199262bd668>

STEP 5: NORMALIZATION USING MINMAXSCALAR AND REBUILD LOR

```
In [52]: | from sklearn.preprocessing import MinMaxScaler
         mm=MinMaxScaler()
         mm X train=mm.fit transform(X train)
         mm_X_train
Out[52]: array([[0.76470588, 0.64824121, 0.
                                                   , ..., 0.59463487, 0.20964987,
                 0.38333333],
                [0.23529412, 0.64824121, 0.70491803, ..., 0.52309985, 0.06532878,
                 0.03333333],
                [0.17647059, 0.30653266, 0.67213115, ..., 0.51266766, 0.0704526]
                 0.41666667],
                [0.58823529, 0.50753769, 0.70491803, ..., 0.67958271, 0.45175064,
                 0.28333333],
                           , 0.70854271, 0. , ..., 0.6318927 , 0.05422716,
                [0.
                 0.13333333],
                           , 0.6281407 , 0.78688525, ..., 0.33532042, 0.07856533,
                [0.
                 0.
                           ]])
```

```
mm X test=mm.transform(X test)
In [54]:
         mm_X_test
Out[54]: array([[0.35294118, 0.49246231, 0.47540984, ..., 0.50670641, 0.15029889,
                 0.36666667],
                [0.11764706, 0.56281407, 0.6147541, ..., 0.53204173, 0.02988898,
                [0.11764706, 0.54271357, 0.52459016, ..., 0.45901639, 0.03415884,
                 0.
                           ١,
                [0.35294118, 0.61809045, 0.59016393, ..., 0.50074516, 0.27967549,
                 0.21666667],
                [0.17647059, 0.3919598, 0.40983607, ..., 0.46199702, 0.07258753,
                 0.08333333],
                [0.17647059, 0.53266332, 0.59016393, ..., 0.38450075, 0.05508113,
                 0.1
                           11)
In [55]: | mm lor=LogisticRegression()
         mm_lor=mm_lor.fit(mm_X_train,y_train)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-pac
         kages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector v
         was passed when a 1d array was expected. Please change the shape of y to (n_sam
         ples, ), for example using ravel().
           y = column or 1d(y, warn=True)
         mm_y_pred=mm_lor.predict(mm_X_test)
In [56]:
         mm y pred
Out[56]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,
                0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
                0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], dtype=int64)
In [67]:
         print('The accuracy of the Logistic Regression is', metrics.accuracy_score(y_test
         The accuracy of the Logistic Regression is 0.7239583333333334
In [60]:
         print(precision_score(y_test,mm_y_pred))
         0.6538461538461539
         print(recall_score(y_test,mm_y_pred))
In [61]:
         0.4927536231884058
```

```
In [62]: mm_auc=print(roc_auc_score(y_test,mm_y_pred))
    mm_auc
```

0.6732060798868859

STEP 6 :NORMALIZATION USING STANDARDSCALAR AND REBUILD LOR

```
In [63]: | from sklearn.preprocessing import StandardScaler
         ss=StandardScaler()
         ss X train=ss.fit transform(X train)
         ss_X_train
Out[63]: array([[ 2.80346794, 0.25977903, -3.78077929, ..., 1.03974028,
                  0.29608546, 0.96352088],
                [ 0.07832678, 0.25977903, 0.89724451, ..., 0.40945373,
                 -0.70087555, -0.86295593],
                [-0.22446668, -1.85825286, 0.67966201, ..., 0.31753694,
                 -0.66548048, 1.13747105],
                [ 1.89508755, -0.61235174, 0.89724451, ..., 1.78820556,
                  1.96850229, 0.44167036],
                [-1.13284707, 0.63354937, -3.78077929, ..., 1.36801453,
                 -0.77756486, -0.34110542],
                [-1.13284707, 0.13518892, 1.44120077, ..., -1.24504846,
                 -0.6094383 , -1.03690611]])
In [64]: | ss X test=ss.transform(X test)
         ss_X_test
Out[64]: array([[ 0.6839137 , -0.70579433, -0.625833 , ..., 0.26501306,
                 -0.11390738, 0.87654579],
                [-0.52726014, -0.26972894, 0.29889263, ..., 0.48823955,
                 -0.94569142, -1.03690611],
                [-0.52726014, -0.39431905, -0.29945925, ..., -0.15517797,
                 -0.91619553, -1.03690611],
                [0.6839137, 0.07289387, 0.13570575, ..., 0.21248918,
                  0.77981801, 0.09377001],
                [-0.22446668, -1.32874488, -1.06099801, ..., -0.12891603,
                 -0.65073254, -0.60203068],
                [-0.22446668, -0.45661411, 0.13570575, ..., -0.81172646,
                 -0.77166568, -0.51505559]])
In [65]: | ss lor=LogisticRegression()
         ss_lor.fit(ss_X_train,y_train)
         ss y pred=ss lor.predict(ss X test)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3 64\lib\site-pac
         kages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector y
```

was passed when a 1d array was expected. Please change the shape of y to (n_sam

ples,), for example using ravel().
y = column_or_1d(y, warn=True)

```
In [66]:
         print('The accuracy of the Logistic Regression is', metrics.accuracy_score(y_test
         The accuracy of the Logistic Regression is 0.729166666666666666
In [68]:
         print(precision_score(y_test,ss_y_pred))
         0.6164383561643836
In [69]: | print(recall_score(y_test,ss_y_pred))
         0.6521739130434783
In [70]:
         auc_ss=print(roc_auc_score(y_test,ss_y_pred))
         auc_ss
         0.7122658183103571
In [71]:
         pred_prob1=mm_lor.predict_proba(mm_X_test)
         STEP 7:PLOT ROC CURVE
In [72]: from sklearn.metrics import roc_curve
         fpr1, tpr1, thresh1 = roc curve(y test, pred prob1[:,1], pos label=1)
         import matplotlib.pyplot as plt
In [73]:
         plt.plot(fpr1,tpr1,linestyle='--',color='orange',label='MinMaxScaler values')
Out[73]: [<matplotlib.lines.Line2D at 0x199264c00b8>]
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                      0.2
              0.0
                                       0.6
                                               0.8
                                                       1.0
```

STEP 8:COMPARISION WITH KNN CLASSIFER

from sklearn.neighbors import KNeighborsClassifier

In [74]:

```
knn=KNeighborsClassifier(n neighbors=4)
         knn=knn.fit(X_train,y_train)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-pac
         kages\ipykernel launcher.py:3: DataConversionWarning: A column-vector y was pas
         sed when a 1d array was expected. Please change the shape of y to (n samples,
         ), for example using ravel().
           This is separate from the ipykernel package so we can avoid doing imports unt
         il
In [75]:
         knn_y_pred=knn.predict(X_test)
In [76]: from sklearn.preprocessing import MinMaxScaler
         m=MinMaxScaler()
         m_X_train=m.fit_transform(X_train)
         m X train
Out[76]: array([[0.76470588, 0.64824121, 0.
                                                   , ..., 0.59463487, 0.20964987,
                 0.38333333],
                [0.23529412, 0.64824121, 0.70491803, ..., 0.52309985, 0.06532878,
                 0.03333333],
                [0.17647059, 0.30653266, 0.67213115, ..., 0.51266766, 0.0704526 ,
                 0.41666667],
                [0.58823529, 0.50753769, 0.70491803, ..., 0.67958271, 0.45175064,
                 0.28333333],
                           , 0.70854271, 0. , ..., 0.6318927 , 0.05422716,
                [0.
                 0.13333333],
                            , 0.6281407 , 0.78688525, ..., 0.33532042, 0.07856533,
                [0.
                 0.
                           11)
In [77]:
         m X test=m.transform(X test)
         m X test
Out[77]: array([[0.35294118, 0.49246231, 0.47540984, ..., 0.50670641, 0.15029889,
                 0.36666667],
                [0.11764706, 0.56281407, 0.6147541, ..., 0.53204173, 0.02988898,
                [0.11764706, 0.54271357, 0.52459016, ..., 0.45901639, 0.03415884,
                 0.
                           ],
                [0.35294118, 0.61809045, 0.59016393, ..., 0.50074516, 0.27967549,
                 0.21666667],
                [0.17647059, 0.3919598, 0.40983607, ..., 0.46199702, 0.07258753,
                 0.08333333],
                [0.17647059, 0.53266332, 0.59016393, ..., 0.38450075, 0.05508113,
                 0.1
                           11)
```

```
In [78]: | m knn=KNeighborsClassifier()
         m_knn=m_knn.fit(m_X_train,y_train)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3 64\lib\site-pac
         kages\ipykernel_launcher.py:2: DataConversionWarning: A column-vector y was pas
         sed when a 1d array was expected. Please change the shape of y to (n samples,
         ), for example using ravel().
In [79]: | m_y_pred=m_knn.predict(m_X_test)
         m_y_pred
Out[79]: array([0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
                0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0,
                0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,
                0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
                0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], dtype=int64)
In [80]: print('The accuracy of the Logistic Regression is', metrics.accuracy score(y test
         The accuracy of the Logistic Regression is 0.677083333333333334
In [81]: | print(precision score(y test,m y pred))
         0.5522388059701493
In [82]: | print(recall_score(y_test,m_y_pred))
         0.5362318840579711
In [83]:
         knn_auc=print(roc_auc_score(y_test,m_y_pred))
         knn auc
         0.6461647225167905
In [84]: | pred prob2=m knn.predict proba(m X test)
```

STEP 9: UPDRATE ROC CURVE

```
In [85]: from sklearn.metrics import roc_curve
fpr2,tpr2,thresh2=roc_curve(y_test,pred_prob2[:,1],pos_label=1)
```

```
In [86]: plt.plot(fpr1,tpr1,linestyle='--',color='orange',label='MinMaxScaler values')
    plt.plot(fpr2,tpr2,linestyle='--',color='brown',label='KNN Classifier')
    plt.title('ROC Curve')
    plt.legend(loc='best')
    plt.savefig('ROC',dpi=300)
    plt.show()
```


STEP 10: REGULARIZATION

```
from sklearn.linear model import LogisticRegressionCV
In [87]:
         model1=LogisticRegressionCV(Cs=10,cv=4,penalty='l1',solver='liblinear')
         model2=LogisticRegressionCV(Cs=10,cv=4,penalty='12')
In [88]:
         model1.fit(mm_X_train,y_train)
         model2.fit(mm_X_train,y_train)
         C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3 64\lib\site-pac
         kages\sklearn\utils\validation.py:578: DataConversionWarning: A column-vector y
         was passed when a 1d array was expected. Please change the shape of y to (n_sam
         ples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
Out[88]: LogisticRegressionCV(Cs=10, class weight=None, cv=4, dual=False,
                    fit_intercept=True, intercept_scaling=1.0, max_iter=100,
                    multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
                    refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)
         rg y pred1 = model1.predict(mm X test)
In [89]:
         rg_y_pred2 = model2.predict(mm_X_test)
```

STEP 11: UPDATE ROC CURVE

```
In [92]: pred_prb7 = model1.predict_proba(mm_X_test)
    pred_prb8 = model2.predict_proba(mm_X_test)
    fpr,tbr,threshold = roc_curve(y_test, pred_prob1[:,1],pos_label=1)
    fpr1,tbr1,threshold1 = roc_curve(y_test, pred_prob2[:,1],pos_label=1)
    fpr2,tbr2,threshold2= roc_curve(y_test, pred_prb7[:,1],pos_label=1)
    fpr3,tbr3,threshold3 = roc_curve(y_test, pred_prb8[:,1],pos_label=1)
```

```
In [93]: plt.plot(fpr, tbr, linestyle='-', color='brown', label='LogisticRegression')
    plt.plot(fpr1, tbr1, linestyle='-', color='red', label='KNN')
    plt.plot(fpr3, tbr3, linestyle='-', color='midnightblue', label='12')
    plt.plot(fpr2, tbr2, linestyle='-', color='black', label='11')
    plt.annotate(xy=[0.5,0.3],s= auc_ss)
    plt.annotate(xy=[0.5,0.2],s= knn_auc)
    plt.annotate(xy=[0.5,0.1],s= l1_auc)
    plt.annotate(xy=[0.7,0],s= l2_auc)
    plt.title('Receiver Operating Characteristic')
    plt.legend(loc = 'best')
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


In []: