CS 4102: Algorithms
Spring 2020

Lecture 3: Divide and Conquer

Co-instructors: Robbie Hott and Tom Horton (These are slides for Horton's section)

Warm up

Simplify:

$$(1 + a + a^2 + a^3 + a^4 + \dots + a^L)(a - 1) = ?$$

$$(a + a^{2} + a^{3} + a^{4} + a^{5} + \dots + a^{L} + a^{L+1}) + (-a - a^{2} - a^{3} - a^{4} - a^{5} - \dots - a^{L} - 1) = a^{L+1} - 1$$

$$\sum_{i=0}^{L} a^i = \frac{a^{L+1} - 1}{a - 1}$$

Finite Geometric Series

Finite Geometric Series

Today's Keywords

- Divide and Conquer
- Recurrences
- Merge Sort
- Karatsuba
- Tree Method

CLRS Readings

• Chapter 4

Homeworks

- HW1 due Thursday, January 30 at 11pm
 - Start early!
 - Written (use Latex!) Submit BOTH pdf and zip!
 - Asymptotic notation
 - Recurrences
 - Divide and Conquer

Homework Help Algorithm

- Algorithm: How to ask a question about homework (efficiently)
 - 1. Check to see if your question is already on piazza
 - 2. If it's not on piazza, ask on piazza
 - 3. Look for other questions you know the answer to, and provide answers to any that you see
 - 4. TA office hours
 - Instructor office hours
 - 6. Email, set up a meeting

Office Hours

Divide and Conquer*

• Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the subproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

Merge together solutions to subproblems

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$-T(n) = D(n) + \sum T(s) + C(n)$$

Recurrence Solving Techniques

Tree get a picture of recursion

? Guess/Check

guess and use induction to prove

"Cookbook" MAGIC!

Substitution substitute in to simplify

Merge Sort

• Divide:

- Break n-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:

```
-2 sorted lists (L_1, L_2)
```

-1 output list (L_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}): If L_1[0] \leq L_2[0]: L_{out}.\text{append}(L_1.\text{pop()}) Else: L_{out}.\text{append}(L_2.\text{pop()}) L_{out}.\text{append}(L_1) L_{out}.\text{append}(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: 0 comparisons
- Conquer: recurse on 2 small subproblems, size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Recurrence Solving Techniques

"Cookbook"

Substitution

Tree method

Multiplication

Want to multiply large numbers together

4102 $\times 1819$ *n*-digit numbers

- What makes a "good" algorithm?
- How do we measure input size?
- What do we "count" for run time?

"Schoolbook" Method

Can we do How many total better? 4 1 0 2 multiplications? *n*-digit numbers $\times 1819$ *n* mults 36918 What about cost of additions? *n* mults 4 1 0 2 n levels $\Theta(n^2)$ 32816 n mults $\Rightarrow \Theta(n^2)$ +4102n mults)

7461538

Divide and Conquer

1. Break into smaller subproblems

a b =
$$10^{\frac{n}{2}}$$
 a + b
 \times c d = $10^{\frac{n}{2}}$ c + d

$$10^{n} (a \times c) +$$

$$10^{\frac{n}{2}} (a \times d + b \times c) +$$

$$(b \times d)$$

Divide and Conquer Multiplication

Divide:

— Break n-digit numbers into four numbers of n/2 digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, ad, bc, bd
- If n = 1: (i.e. one digit each)
 - Compute *ac*, *ad*, *bc*, *bd* directly (base case)

Combine:

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

3. Use asymptotic notation to simplify

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n \sum_{i=0}^{\log_2 n} 2^i$$

$$\frac{4}{2} \cdot 5n$$

$$\frac{16}{4} \cdot 5n$$
:

$$2^{\log_2 n} \cdot 5n$$

3. Use asymptotic notation to simplify

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n \sum_{i=0}^{\log_2 n} 2^i$$

$$T(n) = 5n \frac{2^{\log_2 n + 1} - 1}{2 - 1}$$

$$T(n) = 5n(2n-1) = \Theta(n^2)$$

1. Break into smaller subproblems

a b =
$$10\frac{n}{2}$$
 a + b
$$\times c d = 10\frac{n}{2}c + d$$

$$10^{n}(a \times c) +$$

$$10\frac{n}{2}(a \times d + b \times c) +$$

$$(b \times d)$$

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Can't avoid these

This can be re-written in terms of the others

$$(a+b)(c+d) =$$

$$ac + ad + bc + bd$$

$$ad + bc = (a+b)(c+d) - ac - bd$$

Iwo

multiplications

One "new" multiplication

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}((a+b)(c+d) - ac - bd) + bd$$

Recursively solve

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

• Divide:

– Break n-digit numbers into four numbers of $^{n}/_{2}$ digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, bd, (a + b)(c + d)
- If n = 1:
 - Compute ac, bd, (a + b)(c + d) directly (base case)

Combine:

$$-10^{n}(ac) + 10^{\frac{n}{2}}((a+b)(c+d) - ac - bd) + bd$$

a b c d

Karatsuba Algorithm

- 1. Recursively compute: ac, bd, (a + b)(c + d)
- 2. (ad + bc) = (a + b)(c + d) ac bd
- 3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$

Pseudocode

1.
$$x \leftarrow \text{Karatsuba}(a, c)$$

2.
$$y \leftarrow \text{Karatsuba}(b, d)$$

3.
$$z \leftarrow \text{Karatsuba}(a+b,c+d) - x - y$$

4. Return
$$10^n x + 10^{n/2} z + y$$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$8n \cdot 1$$

$$8n \cdot \frac{3}{2}$$

$$8n \cdot \frac{9}{4}$$

$$8n \cdot \frac{3^{\log_2 n}}{2^{\log_2 n}}$$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{(^{3}/_{2})^{\log_{2} n+1} - 1}{^{3}/_{2} - 1}$$

Math, math, and more math...(on board, see lecture supplement)

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{(^{3}/_{2})^{\log_{2} n+1} - 1}{^{3}/_{2} - 1}$$

Math, math, and more math...(on board, see lecture supplement)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3})$$

 $\approx \Theta(n^{1.585})$

Recurrence Solving Techniques

Tree

(induction)

"Cookbook"

Substitution

Induction (review)

Goal: $\forall k \in \mathbb{N}, P(k) \text{ holds}$

Base case(s): P(1) holds

Technically, called strong induction

Hypothesis: $\forall x \leq x_0, P(x)$ holds

Inductive step: show $P(x_0) \Rightarrow P(x_0 + 1)$

Guess and Check Intuition

- Show: $T(n) \in O(g(n))$
- Consider: $g_*(n) = c \cdot g(n)$ for some constant c, i.e. pick $g_*(n) \in O(g(n))$
- Goal: show $\exists n_0$ such that $\forall n > n_0$, $T(n) \leq g_*(n)$
 - (definition of big-O)
- **Technique:** Induction
 - Base cases:
 - show $T(1) \le g_*(1)$, $T(2) \le g_*(2)$, ... for a small number of cases (may need additional base cases)
 - Hypothesis:
 - $\forall n \leq x_0, T(n) \leq g_*(n)$
 - Inductive step:
 - Show $T(x_0 + 1) \le g_*(x_0 + 1)$

Need to ensure that in inductive step, can either appeal to a <u>base</u> case or to the inductive hypothesis

Karatsuba Guess and Check (Loose)

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal: $T(n) \le 3000 \, n^{1.6} = O(n^{1.6})$

Base cases: $T(1) = 8 \le 3000$

 $T(2) = 3(8) + 16 = 40 \le 3000 \cdot 2^{1.6}$

... up to some small k

Hypothesis: $\forall n \leq x_0, T(n) \leq 3000n^{1.6}$

Inductive step: Show that $T(x_0 + 1) \le 3000(x_0 + 1)^{1.6}$

Karatsuba Guess and Check (Loose)

Karatsuba Guess and Check (Loose)