5.6 Surface Integrals

Surface Area

Definition. Surface Area Given a C^1 surface $S \in \mathbb{R}^3$, we approximate S with infinitesimal elements parallelograms and assign it to an **element of area**

$$dA = ||dx \times dy||$$

Let $G: R \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ be parameterization of S, and fix some $(u_0, v_0) \in \mathbb{R}^2$ and apply infinitesimal translation du and dv to (u_0, v_0) to get corresponding vectors

$$G(u, v + dv) - G(u, v) = \frac{\partial G}{\partial v} dv$$
 $G(u + du, v) - G(u, v) = \frac{\partial G}{\partial u} du$

Note that magnitude of cross product of two vectors is the area of the parallelogram, so then

$$dA = \left| \left| \frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} \right| \right| du dv = ||\vec{n}|| du dv$$

where \vec{n} is the normal to the tangent plane. The surface area of surface S is given by just integrating over the area element

$$A(S) = \iint_{S} dA = \iint_{R} \left| \left| \frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} \right| \right| du dv$$

Let $G:(u,v)\mapsto (x,y,z)$ so that $\frac{\partial G}{\partial u}=(x_u,y_u,z_u)$ and $\frac{\partial G}{\partial v}=(x_v,y_v,z_v)$ so then

$$\left| \left| \frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} \right| \right| = \left| \left| y_u z_v - z_u y_v, z_u x_v - x_u z_v, x_u y_v - y_u x_v \right| \right|$$

If we have instead given S as graph of C^1 function we can re-parameterize z = f(x, y) with G(u, v) = (u, v, f(u, v)) in which case

$$\frac{\partial G}{\partial u} = (1, 0, f_u) \quad \frac{\partial G}{\partial v} = (0, 1, f_v) \quad \frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} = (-\frac{\partial f}{\partial u}, -\frac{\partial f}{\partial v}, 1)$$
$$\left| \left| \frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} \right| \right| = \sqrt{\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2 + 1}$$

Surface Integrals over Vector Fields

Definition. Orientation of surface An orientation of a surface S is a consistent choice of normal vector to the surface. A paramterization determines an orientation of the surface

$$\frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} = \hat{n} dA$$

where \hat{n} is a unit normal vector and indicates positive orientation. Hence we can reverse orientation by exchanging roles of u and v. For S which bounds a 3-manifold, S has **Stoke's Orientation** if the normal vector of S points outwards with respect to the space it bounds. Although not all surface has orientation, such as the Mobius strip.

Definition. Surface Integral Given a vector field $F : \mathbb{R}^3 \to \mathbb{R}^3$ and a surface S, we want to compute the flux of the vector field through the surface, where flux represents the amount of force/fluid passing through S. The vector field travelling in direction \hat{n} is given by $F \cdot \hat{n}$ and so the surface integral is given by

$$\iint_{S} F \cdot \hat{n} dA$$

where $F \cdot \hat{n}$ is the vector field projected onto the normal of the surface. Given parameterization $G: R \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ then

$$flux = \iint_S F \cdot \hat{n} dA = \iint_R F(G(u, v)) \cdot \left[\frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v} \right] du dv$$

note that

$$\hat{n}dA = \frac{\vec{n}}{||\vec{n}||}||\vec{n}||dudv = \left[\frac{\partial G}{\partial u} \times \frac{\partial G}{\partial v}\right]dudv$$

5.7 Divergence Theorem

Theorem. Divergence Theorem The outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface. Let $R \subseteq \mathbb{R}^3$ be a regular region with piecewise smooth boundary ∂R . If $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a C^1 vector field and ∂R is positively oriented with respect to R then

$$\iint_{\partial R} F \cdot \hat{n} dA = \iiint_{R} div F dV$$

Remark. A result that relates the flux of vector field through a surface to the behavior of the vector field inside the surface.

Theorem. Stokes' Theorem Let S be a smooth surface with piecewise smooth (geometric, not topological) boundary ∂S , endowed with Stokes' Orientation. If $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a C^1 vector field in a neighborhood of S, then

$$\int_{\partial S} F \cdot dx = \iint_{S} (curl F) \cdot \hat{n} dA$$

Note ∂S has stoke's orientation if $n \times t$ points into S, where n is the orientation of S and t is the tangent vector of a parameterization of ∂S . Or that t points counterclockwise when the surface normal n points toward the viewer.

1. If S is just a region (surface) in xy-plane, then $\hat{n} = (0,0,1)$ and so

$$\int_{\partial S} F \cdot dx = \iint_{S} (curl F) \cdot \hat{n} dA = \iint_{S} \left[\frac{\partial F_{2}}{\partial x_{1}} - \frac{\partial F_{1}}{\partial x_{2}} \right] dA$$

Hence, Stokes' Theorem in the xy-plane is just Green's theorem

2. If $\partial S = \emptyset$ (S is closed surface) then

$$\iint_{S} \nabla \times F \cdot dx = 0$$

3. If S_1 and S_2 are 2 surfaces with a common boundary C, where C is oriented in such a way that S_1 and S_2 has Stoke's Orientatino then

$$\iint_{S_1} \nabla \times F \cdot dx = \iint_{S_2} \nabla \times F \cdot dx$$