Скелет на документ

Тодор Дуков

Съдържание

1	Примерна глава	2
	1.1 Примерна секция	. 2
2	Друга примерна глава	4
	2.1 Примерна секция	4
	2.2 Друга примерна секция	4

Глава 1

Примерна глава

1.1 Примерна секция

Нека като за начало да дадем една аксиома.

Аксиома 1.1.1 (Логическа аксиома). Съществува множество т.е. $(\exists x)(x=x)$

Сега нека дадем и една дефиниция.

Дефиниция 1.1.2 (Наредена двойка). Ако x u y ca множества, то наредена двойка на x u y ще наричаме множеството $\{\{x\}, \{x,y\}\}$ u ще го бележим c $\langle x, y \rangle$.

Твърдение 1.1.3.
$$(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$

Доказателство. Ще докажем твърдението с индукция по $n \in \mathbb{N}$.

База: При n=0 се получава, че $0=\frac{0(0+1)}{2}$ \checkmark

$$\text{MC:} \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) \stackrel{\text{ИII}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Лема 1.1.4 (за покачването). *Езикът е L регулярен. Тогава* ($\exists p \in \mathbb{N} \ \forall \alpha \in \Sigma^* \ \exists x, y, z \in \Sigma^*, xyz = \alpha, |xy| \leq p, |y| \geq 1 \ \forall i \in \mathbb{N})(xy^iz \in L).$

Следователно съществува ДКА $\mathcal{A}=\langle Q, \Sigma, s, \delta, F \rangle$, такъв че $\mathcal{L}(\mathcal{A})=L$.

Нека p=|Q| и нека q_1,\ldots,q_p са състоянията от Q. Нека $\alpha\in L$ е такава, че $|\alpha|=n$, където $n\geq p$.

Ще разбием α на $\alpha_1,\ldots,\alpha_n\in \Sigma$ (т.е. $\alpha=\alpha_1\ldots\alpha_n$). Знаем, че съществуват $q_{i_0}=s,\ldots,q_{i_n}\in Q$, такива че $(\forall j\in\{1,\ldots,n\})(\delta(q_{i_{j-1}},\alpha_j)=q_{i_j})$. Нека разгледаме думата $\alpha_1\ldots\alpha_p$. За нея знаем, че по време на четенето на думата автоматът минава през p+1 състояния. Следователно по принципът на Дирихле съществуват $t_1,t_2\in\{1,\ldots,p\}$, където $t_1< t_2$, такива че $q_{i_{t_1}}=q_{i_{t_2}}$.

Нека $x=\alpha_1\dots\alpha_{t_1},\ y=\alpha_{t_1+1}\dots\alpha_{t_2},\ z=\alpha_{t_2+1}\dots\alpha_n$. Сигурни сме, че $|xy|\leq p$, защото $t_2\leq p$ и че $|y|\geq 1$ понеже $t_1\neq t_2$. Знаем, че $\delta^*(q_{i_1},y)=q_{i_{t_2}}$.

Твърдение 1.1.5. $(\forall i \in \mathbb{N})(\delta^*(q_{i_{t_1}}, y^i) = q_{i_{t_2}}).$

Доказателство. Ще докажем твърдението с индукция по $i \in \mathbb{N}$.

База:
$$\delta^*(q_{i_{t_1}}, \epsilon) = q_{i_{t_1}} = q_{i_{t_2}} \checkmark$$

$$\text{MC: } \delta^*(q_{i_{t_1}}, y^{i+1}) \stackrel{\text{Деф}}{=} \delta(\delta^*(q_{i_{t_1}}, y^i), y) \stackrel{\text{ИП}}{=} \delta(q_{i_{t_2}}, y) = \delta(q_{i_{t_1}}, y) = q_{i_{t_2}} \quad \Box$$

Знаем, че $\alpha = xyz \in L$. Тъй като $xyz = \alpha$, имаме че $\delta^*(s,xyz) \in F$. От тук следва, че $\delta^*(\delta^*(s,xy),z) \in F$, следователно $\delta^*(\delta^*(\delta^*(s,x),y),z) \in F$. $\delta^*(s,x) = q_{i_1} \Rightarrow \delta^*(\delta^*(q_{i_1},y),z) \in F$. От доказаното твърдение имаме, че $(\forall i \in \mathbb{N})(\delta^*(q_{i_1},y^i) = q_{i_2} = q_{i_1})$. Освен това знаем, че $\delta^*(q_{i_2},z) \in F$. Следователно $(\forall i \in \mathbb{N})(\delta^*(\delta^*(q_{i_1},y^i),z) \in F)$. От тук можем да заключим, че $(\forall i \in \mathbb{N})(\delta^*(\delta^*(s,x),y^i),z) \in F)$ и вървейки в обратната посока (обединяването на всички δ^*) получаваме, че $(\forall i \in \mathbb{N})(\delta^*(s,xy^iz) \in F)$, с което доказахме лемата.

3абележка (Примерна забележка). $(\forall x)(\varnothing \subseteq x)$

Глава 2

Друга примерна глава

2.1 Примерна секция

Това е просто случаен текст, който си губиш времето да четеш.

2.2 Друга примерна секция

Това е просто случаен текст, който си губиш времето да четеш.