AMIMON LTD

WHDI TRANSMITTER MODULE

Model: AMN11310

13 August 2008

Report No.: SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

(This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:				
Kent KiM				
Kent Kim	Leslie Bai			
Test Engineer	Engineering Reviewer			

EMC Test Repo

2 of 92

Page

SIEMIC ACREDITATION DETAILS: A2LA: 2742.01

ACCREDITED LABORATORY

A2LA has accredited

SIEMIC LABORATORIES

San Jose, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

Communique Communique Communique Communique Composition Compositio

Presented this 11th day of July 2008.

President
For the Accreditation Council
Certificate Number 2742.01
Valid to September 30, 2010

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial# Issue Date 13 August 2008 Page

SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200729-0

SIEMIC Laboratories

San Jose, CA

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999. Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2005-05-19)

SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Serial# Issue Date 13 August 2008 Page

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

December 20, 2007

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose

3 & 10 meter site

Date of Renewal: December 20, 2007

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Serial# Issue Date 13 August 2008

OUR FILE: 46405-4842 Submission No: 126429

Page

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

Industry Industrie Canada Canada

May 23rd, 2008

Siemie Inc. 2206 Ringwood Ave. San Jose CA 95131 USA

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your record.

- Your primary code is: 4842
- The company number associated to the site(s) located at the above address is: 4842A
- The table below is a summary of the changes made to the unique site registration number(s):

New Site	Obsolete Site	Description of Site	Expiry Date
Number	Number		(YYYY-MM-DD)
4842A-1	4842-1	3m Chamber	2010-05-23

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ie.ge.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification bureau@ic.gc.c Please reference our file and submission number above for all correspondence.

Yours sincerely,

S. Prouly

Test & Measurement Specialist Certification and Engineering Bureau 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 8S2

6 of 92

Page

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

Voluntary Control Council for Interference by Information Technology Equipment 7F NOA Bidg, 2-3-5, Azabudai, Minato-Ku, Tekyo, Japan, 105-0341 Technology, Japan, 105-0341 Fac-161-3-5575-3137 http://www.voci.or.jp

February 12, 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site, www.vcci.or.jp

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@voci.or.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@vcci.or.jp

Their address, phone and fax number are absolutly same as L. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me. Thank you very much.

Best Regards,

Naoko Hori (Ms.) VGCI hori®veci.or.jp

Enclosure

Page 7 of 92

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

RFT

Certificate

This is to certify that the Quality Management System

SIEMIC, Inc.

2206 Ringwood Avenue San Jose, California 95131 U.S.A.

has been authorized to carry out Japan Specified Radio Equipment test by order and under supervision of RF Technologies Co., Ltd. according to Notification No.88 of Radio Law.

An assessment of the laboratory was conducted according to the "Procedure and Conditions for Appointments of 2,4GHz Band Low power data communications system that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025 by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kazuyuki Sarashina

Auditor

RF Technologies Co., Ltd.

Audit Date September 27th, 2005 Touhibiro (kegami

President

RF Technologies Co., Ltd.

Issued Date October 5th, 2005

This Certificate is valid until September 26th 2006 or next schedule audit.

No:006 Registered Certification Body RF Technologies Co., Ltd. 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Serial# Issue Date 13 August 2008 Page

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

시험기관지정서 Certificate

of Designated Testing Laborator

지정변호(No.) : KR0032

시험기관명 : (주)현대고정인증기술원

(Name of Lab.) (Hundi Calibration & Certification Technologies Co., Ltd.)

: 경기도 이천시 부발음 아미리 산136-1

(137-1, Ami-ri, Buhol-eap, Ichem-si, Kangai-Do, Korea) (Address)

2206 Ringwood Avenue San Jose, CA, USA.

시험문야 및 범위 : 유선(Telecommunication Part)

무선(Radio Communication Part) (Area & Category)

> 전자와장매(EMI): 미국지사 포함 전자파내성(EMS) : 미국지사 포함

전기안전(Safety) 전자파름수울(SAR)

위 기관을 정보통신기기시험기관지정및관리등에관한규칙에 의해 정보통신기기시험기관으로 지정합니다.

This is to certify that the above mentioned laboratory is designated as the testing laboratory in accordance with the Regulations on Designation of Testing Laboratory

for Information and Communication Equipment.

2005년(Year) 7월(Month) 5월(Dates

Director General of Radio Research Daboratory Ministry of Information and Communication Republic of Korea

Page 9 of 92 www siemic con

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Galdensburg, Maryland 20889-

April 17, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bair

Lam pleased to inform you that your laboratory has been recognized by the Ministry of Information and Communication's Radio Research Laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your Informatry is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as fullows:

CAB Name: SIEMIC Laboratories

Identification No.: US0160

Scope:

Coverage	Standards	Dute of Recognition	
Electro Magnetic Interference	RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8(KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interference	April 13, 2006	
Electro Magnetic Susceptibility	HR3. Notice No. 2005-130: Technical Requirements for Electromagnetic Susceptibility 2. Annex 1-7(KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11). RRL Notice No. 2005-132: Conformity Assessment Procedure for Electromagnetic Susceptibility	April 13, 2006	

You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

The names of all recognized CABs will be posted on the NIST website at http://ts.mist.gov/mra. If you have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman.

Group Leader, Standards Coordination and Conformity Group

2 aur

cc: Jogindar Dhillion

Page 10 of 92 www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethersburg, Maryland 20898

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bait

I am pleased to inform you that your laboratory has been recognized by the Chinese Tuipei's Bareau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

BSMI number: SL2-IN-E-1130R (Must be applied to the test reports)

- U.S Identification No: US0160
- Scope of Designation: CNS 13438
- Authorized signatory: Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

2 acts

cc: Jogindar Dhillon

Page 11 of 92 www siemic cor

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gethenburg, Maryland 20898

August 8, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bair

I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipel's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA.

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines:

- Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence.
- The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation.

If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fix at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ta.nist.gov/ntra. We appreciate your continued interest in our international conformity assessment activities.

Sincerely.

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

ce: Jogindar Dhillon

12 ach

SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Serial# Issue Date 13 August 2008

Page

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero

Maxico D.F. a 16 de octubre de 2006.

LESLIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su interción de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuando en idioma ingles y español prelienado de los cuales le pido sea revisado y en su caso corregido, para que si esta de acuerdo poder firmado para mandado con las autoridades Mexicanas para su vista bueno y así podar ejercer dicho acuerdo

Aprovecho este escrito para mencionarie que nuestro intermediano gestor será la empresa Isatel de México. S. A. de C. V., empresa que ha colaborado durante mucho tempo con nosotros en lo refecionado a la evaluación de la conformidad y que quenta con amplia expenencia en la gastoria de la cartificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Me despido de usted enviêndole un cordial saludo y esperando sua comentanos al Acuerdo que nos poupa

Atentamente:

Ing. Fausting Cone Conzález Gerente Teenico del Laboratorio de

Cullanin 11
Hamiltoni Condesa
de tro Masso, CF
5264-0000-con 12 Areas
Fae 5884 5484

> 13 of 92 www.siemic.com

Page

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref 來商檔號: D23/16 V Our Ref 本局檔號: Telephone 電話: (852) 2961 6320 Fax No 副文傳真: (852) 2838 5004

E-mail 電郵地址:

20 July 2005

Mr. Leslie Bai Director of Certification, SIEMIC Laboratories 2206 Ringwood Avenue San Jose, California 95131 USA

Dear Mr. Bai.

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA):

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications:

Scope of recognition (HKTA Specifications):

1001, 1002, 1004, 1006, 1007, 1008

1010, 1015, 1016

1022, 1026, 1027, 1029

1030, 1031, 1032, 1033, 1034, 1035, 1039

1041, 1042, 1043, 1045, 1047, 1048

2001

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA 1411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment", which can be downloaded from OFTA's homepage at http://www.ofta.gov.hk/tec/information-notes.html.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin)

for Director-General of Telecommunications

Office of the Telecommunications Authority 29/F Wu Chung House 213 Queen's Road East Wan Chai Hong Kong

電 訊 管 理 局 香港灣仔皇后大道東 213 號胡忠大廈 29 字樓 http://www.ofta.gov.hk

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	. 3
2	TECHNICAL DETAILS	. 3
3	MODIFICATION	. 3
4	TEST SUMMARY	. 3
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	. 3
ANNE	EX A. TEST INSTRUMENT & METHOD	. 3
ANNE	EX B EUT AND TEST SETUP PHOTOGRAPHS	. 3
ANNE	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	. 3
ANNE	EX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM	. 3

This page has been left blank intentionally.

 Serial#
 \$L07090602-AMN-001(15.247 & R\$\$210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 17 of 92

www.siemic.com

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Amimon Ltd, WHDI Transmitter Module, model: AMN11310 against the current Stipulated Standards. The WHDI Transmitter Module have demonstrated compliance with the FCC 15.247 2008 & RSS-210 Issue 7: 2007.

EUT Information

EUT Description

WHDI™ - Wireless High Definition Interface - sets new standards for quality wireless high-definition video connectivity. It provides a high-quality, uncompressed wireless link which can support delivery of video data at rates equivalent to up to 1.5Gbps (including uncompressed 1080i and 720p). These equivalent data rates can be delivered on a single 20MHz channel in the 5GHz unlicensed band, conforming to worldwide 5GHz spectrum regulations. Range is beyond 100 feet, through walls, and latency is less than one millisecond. WHDI™ enables a wireless video link that offers the same functionality, cost and quality as a wired link. Practically all of the hundreds of millions of wired connections between video sources and displays today are based on delivery of uncompressed video. In order to replace these wired links, the wireless interface needs to be uncompressed as well.

This module is acting as Transmitter or Downlink unit most of the time, It has 4 transmitting Antenna and one receiving antenna.

This will be a PTP operation device.

Model No : AMN11310

Serial No : None Input Power : 3.3 Vdc

Classification

Spread Spectrum System / device

Per Stipulated Test Standard Spatial Multiplexing MIMO System with the antenna's elements are always driven

Test Standard incoherently at each frequency

2 <u>TECHNICAL DETAILS</u>					
Purpose	Compliance testing of WHDI Transmitter Module with stipulated standard				
Applicant / Client	Amimon Ltd				
Manufacturer	Amimon Ltd 2 Maskit St. Herzlia , Israel , 46733				
Laboratory performing the tests	SIEMIC Laboratories				
Test report reference number	SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)				
Date EUT received	28 July 2008				
Standard applied	47 CFR §15.247 (2008) & RSS 210 Annex 8				
Dates of test (from – to)	28 July 2008 - 12 August 2008				
No of Units:	N/A				
Equipment Category:	DTS				
Trade Name:	Amimon Ltd				
Model :	AMN11310				
RF Operating Frequency (ies)	5745~5825MHz				
Number of Channels :	5				
Modulation :	Amimon Proprietary Modulation				
FCC ID:	VQSAMN11310				
IC ID :	7680A-AMN11310				

MODIFICATION 3

NONE

 Serial#
 \$\$L07090602-AMN-001(15.247 & R\$S210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 20 of 92

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Spread Spectrum System / device Spatial Multiplexing MIMO System with the antenna's elements are always driven incoherently at each frequency

Test Results Summary

Test S	Standard	Description	Pass / Fail
CFR 47 Part 15.247: 2008	RSS 210 Issue7: 2007		
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass
15.247(a)(1)	RSS210(A8.1)	Channel Separation	N/A
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass
15.247(a)(2)	RSS210 (A8.2)	6dB Bandwidth	Pass
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	N/A
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	N/A
15.247(b)	RSS210(A8.4)	Output Power	Pass
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	Pass
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	Pass
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A
15.247(g)	RSS210(A8.1)	Hopping Capability	N/A
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	N/A
15.247(i)	RSSGen(5.5)	Maximum Permissible Exposure	Pass
	RSSGen(4.8)	Receiver Spurious Emissions	N/A

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is printed inverted antenna. Antenna gain is 1.9 dBi for 5.8GHz. There is total of 4 Antenna. Spatial Multiplexing MIMO System with the antenna's elements are always driven incoherently at each frequency. The directional antenna gain will be = gain of each antenna = 1.9dBi

PS: The connector is for future option and is not physical connected.

5.2 Conducted Emissions Voltage

Requirement:

	Conducted lin	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature 23°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

Test Date: July 28 ~ August 12 2008

Tested By: Kent Kim

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 23 of 92

Quasi-Peak Limit

Average Limit

120V, 60Hz, Phase Line

Frequency (MHz)	QP Value (dBμV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dB)	Margin (dB)	Line
0.15	49.99	65.97	-15.98	29.14	55.97	-26.82	Phase
0.31	43.73	60.04	-16.32	39.38	50.04	-10.66	Phase
8.36	37.61	60.00	-22.39	28.22	50.00	-21.78	Phase
8.17	38.65	60.00	-21.35	29.32	50.00	-20.68	Phase
8.25	36.50	60.00	-23.50	26.96	50.00	-23.04	Phase
0.41	40.12	57.68	-17.55	37.62	47.68	-10.05	Phase

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 24 of 92

Quasi-Peak Limit

Average Limit

120V, 60Hz, Neutral Line

	120V, 00112, Neutral Enic						
Frequency (MHz)	QP Value (dBμV)	Class B Limit (dB)	Margin (dB)	Avg Value (dBμV)	Class B Limit (dB)	Margin (dB)	Line
0.19	46.15	64.37	-18.22	28.69	54.37	-25.67	Neutral
8.62	37.21	60.00	-22.79	30.12	50.00	-19.88	Neutral
8.51	39.14	60.00	-20.86	31.51	50.00	-18.49	Neutral
0.31	38.33	59.94	-21.61	31.87	49.94	-18.06	Neutral
8.73	34.93	60.00	-25.07	27.75	50.00	-22.25	Neutral
8.41	39.97	60.00	-20.03	32.57	50.00	-17.43	Neutral

5.3 6dB Occupied Bandwidth & 99% Bandwidth

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C

Relative Humidity 50%

Atmospheric Pressure 1019mbar

4 Test Date : July 28 ~ August 12 2008

Tested By: Kent Kim

Requirement(s): 47 CFR §15.247(a)(1)

Procedures: The 6dB bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels. 6 dB

Bandwidth Limit: > 500 kHz.

Frequency (MHz)	Channel	Measured 6dB Bandwidth (MHz)	6 dB Bandwidth min Requirement (MHz)
	Chain 1	15.33	
5745	Chain 2	16.83	
3743	Chain 3	17.33	
	Chain 4	16.00	
	Chain 1	15.08	
5785	Chain 2	15.33	0.5
	Chain 3	15.33	0.5
	Chain 4	15.17	
	Chain 1	15.50	
5825	Chain 2	16.08	
	Chain 3	16.42	
	Chain 4	15.17	

Frequency (MHz)	Channel	Measured 99% Bandwidth (MHz)	99% Bandwidth min Requirement (MHz)
	Chain 1	17.75	
5745	Chain 2	24.33	
5745	Chain 3	23.00	
	Chain 4	17.92	
	Chain 1	18.08	
5785	Chain 2	18.08	N/A
	Chain 3	19.33	IV/A
	Chain 4	17.67	
	Chain 1	17.25	
5825	Chain 2	18.00	
	Chain 3	23.00	
	Chain 4	17.67	

Refer to the attached plots.

6dB Bandwidth ,Low Channel Chain 2

 Serial#
 \$L07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 28 of 92

6dB Bandwidth ,Low Channel Chain 3

6dB Bandwidth ,Low Channel Chain 4

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) lssue Date Page 13 August 2008 29 of 92

6dB Bandwidth, Mid Channel Chain 1

6dB Bandwidth ,Mid Channel Chain 2

 Serial#
 \$\$L07090602-AMN-001(15.247 & R\$S\$210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 30 of 92

6dB Bandwidth ,Mid Channel Chain 3

6dB Bandwidth ,Mid Channel Chain 4

 Serial#
 \$\$L07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 31 of 92

6dB Bandwidth, High Channel Chain 1

6dB Bandwidth ,High Channel Chain 2

 Serial#
 \$\$L07090602-AMN-001(15.247 & R\$S\$210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 32 of 92

6dB Bandwidth , High Channel Chain 3

6dB Bandwidth ,High Channel Chain 4

99% Bandwidth, Low Channel Chain 1 ATTEN 3**0**dB ∠_MKR .5**0**dB 2**0.0**dBm 10dB/ 24.33MHz RL OCCUPIED вы arysahampy apa hof man D 24.33MHz CENTER 5.74549GHz SPAN 50.00MHz ×RB₩ 300kHz ×ŲBW 1.0MHz SWP **50.0**ms

99% Bandwidth ,Low Channel Chain 2

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 34 of 92

 WMM Signific com

99% Bandwidth ,Low Channel Chain 3

99% Bandwidth ,Low Channel Chain 4

99% Bandwidth, Mid Channel Chain 1

99% Bandwidth ,Mid Channel Chain 2

 Serial#
 \$\$L07090602-AMN-001(15.247 & R\$\$S210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 36 of 92

 WMM Signific com

99% Bandwidth ,Mid Channel Chain 3

99% Bandwidth ,Mid Channel Chain 4

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 37 of 92

 WMM Signific com

99% Bandwidth , High Channel Chain 1

99% Bandwidth ,High Channel Chain 2

99% Bandwidth, High Channel Chain 3

99% Bandwidth ,High Channel Chain 4

5.1 Peak Spectral Density

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

4 Test Date : July 28 ~ August 12 2008

Tested By: Kent Kim

Standard Requirement: 47 CFR §15.247(e) & RSS 210 (A8.3)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

Procedures: The Peak Spectral density measurement was taken conducted using a spectrum analyzer.

RBW=3KHz, VBW > RBW, Sweep time to SPAN/RBW (sec)

Test Result:

Frequency (MHz)	Channel	Measured PSD (dBm/3KHz)	Total PSD (dBm/3KHz)	PSD Limit
		(dBill/ortil2)		(dBm/3KHz)
5745	Chain 1	2.17	7.59	8
	Chain 2	-2.17		
	Chain 3	1.50		
	Chain 4	3.17		
5785	Chain 1	1.83	7.77	
	Chain 2	2.00		
	Chain 3	1.50		
	Chain 4	1.67		
5825	Chain 1	0.33	5.89	
	Chain 2	-0.33		
	Chain 3	-3.33		
	Chain 4	1.50		

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 40 of 92

PSD, Low Channel Chain 1 ATTEN 3**0**dB MKR 1.5**0**dB_™ 5.745492GHz D R CENTER 5.745488GHz SPAN ×RB₩ 3.0kHz ×VBW 10kHz ×SWP 333sec

PSD ,Low Channel Chain 2

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 41 of 92

PSD ,Low Channel Chain 3

PSD ,Low Channel Chain 4

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 42 of 92

PSD, Mid Channel Chain 1

PSD ,Mid Channel Chain 2

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 43 of 92

PSD ,Mid Channel Chain 3

PSD ,Mid Channel Chain 4

PSD, High Channel Chain 1

PSD ,High Channel Chain 2

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) lssue Date Page 13 August 2008 45 of 92

PSD ,High Channel Chain 3

PSD ,High Channel Chain 4

5.2 Peak Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

4 Test Date : July 28 ~ August 12 2008

Tested By: Kent Kim

Standard Requirement: 47 CFR §15.247(b) & RSS 210 (A8.4)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi channels. Peak

detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30

dBm. The highest antenna gain that will be used is 1.9 dBi. The directional antenna gain is 7.9dBi.

Test Result:

Frequency (MHz)	Channel	Measured Output Power (dBm)	Total Output Power (dBm)	Output Power Limit
				(dBm)
5745	Chain 1	18.6	25.97	30
	Chain 2	20.8		
	Chain 3	20.1		
	Chain 4	20.0		
5785	Chain 1	17.8	24.45	
	Chain 2	20.4		
	Chain 3	20.2		
	Chain 4	18.8		
5825	Chain 1	18.0	26.58	
	Chain 2	21.1		
	Chain 3	21.8		
	Chain 4	20.5		

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)
Issue Date 13 August 2008
Page 47 of 92
www.siemic.com

ATTEN 20dB VAVG MKR 9.5**0**dBm 5.74566GHz RL 10.0dBm 10dB/ D /-TOTAL 2**0**.8dB∺ DENSITY –54.0dB<mark></mark>m∕Hz R CENTER 5.74549GHz SPAN 50.00MHz 1.0MHz ×ŲBW 3.**0**MHz SWP 5**0.0**ms ×RB₩

Output Power ,Low Channel Chain 2

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)
Issue Date 13 August 2008
Page 48 of 92

Output Power ,Low Channel Chain 3

Output Power ,Low Channel Chain 4

| Serial# | SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) | Issue Date | 13 August 2008 | 49 of 92 | 40 of 92 | 4

Output Power, Mid Channel Chain 1 ATTEN 20dB MKR 9.83dВм 5.78566GHz RL 10.0dBm 10dB/ MFOWAL D 2**0**.4dBm DENSITY -54.3dB_™/Hz CENTER 5.78549GHz SPAN 50.00MHz 1.0MHz ×ŲBW 3.**0**MHz SWP ×RB₩ 50.0ms

Output Power ,Mid Channel Chain 2

Output Power , Mid Channel Chain 3 ATTEN 3**0**dB MKR 8.83dВм 5.78566GHz RL 2**0.0**dBm 10dB/ D CENTER 5.78549GHz SPAN 50.00MHz 1.0MHz ×ŲBW 3.0MHz SWP ×RB₩ 50.0ms

Output Power ,Mid Channel Chain 4

| Serial# | SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) | Issue Date | 13 August 2008 | 51 of 92 | | | |

Output Power, High Channel Chain 1 ATTEN 20dB MKR 9.17dВм RL 10.0dBm 10dB/ 5.82558GHz who we will have the way to the will be the second of the D /XIDTAL 21.1dBm DENSITY CENTER 5.8255@GHz SPAN 50.00MHz 1.0MHz ×ŲBW 3.0MHz SWP ×RB₩ 50.0ms

Output Power ,High Channel Chain 2

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)
Issue Date Page 13 August 2008
52 of 92

Output Power , High Channel Chain 3 ATTEN 20dB MKR 9.5**0**dBm RL 10.0dBm 10dB/ 5.82558GHz D -54.3dB_M∕Hz CENTER 5.8255@GHz SPAN 50.00MHz 1.0MHz ×ŲBW 3.0MHz SWP ×RB₩ 50.0ms

Output Power ,High Channel Chain 4

5.3 Antenna Port Emission & Band Edge

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2 <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the

range 30MHz - 40GHz is ±1.5dB.

3 Environmental Conditions Temperature

Relative Humidity 50%

Atmospheric Pressure 1019mbar

23°C

4 Test Date : July 28 ~ August 12 2008

Tested By: Kent Kim

Standard Requirement : 47 CFR §15.247(d) & RSS 210 (A8.5)

Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output

Test Result:

Serial# SL070906U2-Aviv Issue Date 13 August 2008 Page 54 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 55 of 92

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 56 of 92

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 57 of 92

Low channel chain 3-1

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 58 of 92

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 59 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 60 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL070906U2-Aviv Issue Date 13 August 2008 Page 61 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Serial#
 \$L07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 62 of 92

Mid channel chain 1-3

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 63 of 92

Mid channel chain 2-1

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 64 of 92

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 65 of 92

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 66 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 67 of 92

Mid channel chain 4-1

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 68 of 92

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 69 of 92

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 70 of 92

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 71 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 72 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

START

×RB₩

25.00GHz

×ŲBW

100kHz

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 73 of 92

300kHz

STOP

40.00GHz SWP

3.80sec

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 74 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 75 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

Serial# SL07090602-Awr Issue Date 13 August 2008 Page 76 of 92 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

High channel chain 4-3

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date Page 77 of 92

5.4 Radiated Spurious Emission < 1GHz

1. <u>All possible modes of operation were investigated.</u> Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).

4. Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test date: July 28 ~ August 12 2008

Tested By: Kent Kim

Standard Requirement : 47 CFR §15.247(d) & RSS 210 (A8.5)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit

at the highest output power. The EUT was set to transmit at mid channel. Note that setting the

channel other than mid, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude(dBµV/m) + ACF(dB) + Cable Loss(dB)

Test Result:

 Serial#
 SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)

 Issue Date
 13 August 2008

 Page
 79 of 92

TX MODE

Frequency (MHz)	Quasi- Peak (dBµV/m)	Antenna height (cm)	Turntable position (deg)	Polarity	Limit @ 3 meters (dBµV/m)	Margin (dB)
48.30	26.26	234.00	Н	113.00	40.00	-13.74
880.04	32.56	124.00	V	162.00	46.00	-13.44
845.65	24.67	109.00	Н	238.00	46.00	-21.33
800.02	33.45	140.00	V	100.00	46.00	-12.55
109.84	29.30	352.00	Н	100.00	43.50	-14.20
49.65	24.92	263.00	Н	113.00	40.00	-15.08

Serial# Issue Date Page SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) 13 August 2008 80 of 92

RX MODE

Frequency (MHz)	Quasi- Peak (dBµV/m)	Antenna height (cm)	Turntable position (deg)	Polarity	Corrected Amplitude @ 3m	Limit (dBµV/m)	Margin (dB)
880.06	38.37	115.00	Н	257.00	25.82	46.00	-7.63
800.07	36.59	117.00	Н	101.00	25.18	46.00	-9.41
943.84	26.33	206.00	Н	334.00	26.79	46.00	-19.67
833.63	24.57	159.00	V	296.00	24.84	46.00	-21.43
720.08	33.18	124.00	Н	108.00	23.81	46.00	-12.82
959.45	26.57	149.00	Н	297.00	27.03	46.00	-19.43

5.5 Radiated Spurious Emissions > 1GHz

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz – 40GH is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).

4. Environmental Conditions T

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test date: July 28 ~ August 12 2008

Tested By: Kent Kim

Standard Requirement: 47 CFR §15.247(d) & RSS 210 (A8.5)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonic of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude($dB\mu V/m$) - Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

Test Result:

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) Issue Date 13 August 2008 Page 82 of 92

@ 5745MHz @3 Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247	15.247	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
11.49	50.1	180	155	V	41.7	7.17	32.7	66.27	74	-7.73	Peak
11.49	48.3	89	132	h	41.7	7.17	32.7	64.47	74	-9.53	Peak
11.49	29	180	155	٧	41.7	7.17	32.7	45.17	54	-8.83	Ave
11.49	28.8	89	132	h	41.7	7.17	32.7	44.97	54	-9.03	Ave
17.235	35.5	180	155	V	44.7	10.58	31.56	59.22	74	-14.78	Peak
17.235	34.7	180	155	h	44.7	10.58	31.56	58.42	74	-15.58	Peak
17.235	23.4	180	155	V	44.7	10.58	31.56	47.12	54	-6.88	Ave
17.235	23.7	180	155	h	44.7	10.58	31.56	47.42	54	-6.58	Ave

Emission was scanned up to 40GHz.

@ 5785MHz @3 Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247	15.247	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
11.57	51.4	98	113	٧	41.4	7.415	32.51	67.70	74	-6.295	Peak
11.57	50.5	133	100	h	41.4	7.415	32.51	66.80	74	-7.195	Peak
11.57	35.38	180	155	V	41.4	7.415	32.51	51.68	54	-2.315	Ave
11.57	33.7	180	155	h	41.4	7.415	32.51	50.00	54	-3.995	Ave
17.355	36.5	180	155	V	44.7	10.58	31.56	60.22	74	-13.78	Peak
17.355	41	180	209	h	44.7	10.58	31.56	64.72	74	-9.28	Peak
17.355	23.1	180	155	٧	44.7	10.58	31.56	46.82	54	-7.18	Ave
17.355	27.5	180	155	h	44.7	10.58	31.56	51.22	54	-2.78	Ave

Emission was scanned up to 40GHz.

@ 5825MHz @3 Meter

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247	15.247	
GHz	(dBuV/m)	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
11.65	52.4	237	131	V	41.4	7.415	32.51	68.70	74	-5.295	Peak
11.65	50.3	180	155	h	41.4	7.415	32.51	66.60	74	-7.395	Peak
11.65	36.5	237	131	V	41.4	7.415	32.51	52.80	54	-1.195	Ave
11.65	33.09	180	155	h	41.4	7.415	32.51	49.39	54	-4.605	Ave
17.475	33.55	180	155	٧	44.7	10.58	31.56	57.27	74	-16.73	Peak
17.475	34.5	180	155	h	44.7	10.58	31.56	58.22	74	-15.78	Peak
17.475	23	180	155	V	44.7	10.58	31.56	46.72	54	-7.28	Ave
17.475	22.7	180	155	h	44.7	10.58	31.56	46.42	54	-7.58	Ave

Emission was scanned up to 40GHz.

 Serial#
 \$\$L07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 83 of 92

www.siemic.com

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564E	04/26/2009
EMI Receiver	Rohde & Schwarz	ESIB 40	4/25/2009
R&S LISN	R&S	ESH2-Z5	04/24/2009
CHASE LISN	Chase	MN2050B	04/24/2009
Antenna(1 ~18GHz)	Emco	3115	10/04/2008
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	10/04/2008
Chamber	Lingren	3m	04/18/2009
Pre-Amplifier(1 ~ 26GHz)	HP	8449	04/24/2009
Horn Antenna (18~40GHz)	Com Power	AH-840	03/19/2010
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	03/19/2010*

Note: No calibration required.

^{*} Or Pre-determined used hours, whichever meet first.

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz $\lim_{t \to 0} t = 250 \,\mu\text{V} = 47.96 \,d\text{B}\mu\text{V}$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0. to 360. with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)

And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment.

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Laptop PC	IBM	Serial to USB Cable: 1 meter.

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

Serial# SL07090602-AMN-001(15.247 & RSS210 Annex 8)(AMN11310) lssue Date Page 13 August 2008 91 of 92

Annex C.ii. **EUT OPERATING CONDITIONS**

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was controlled via PC Using manufacturer's program.
Others Testing	TX mode is normal mode with full power.

 Serial#
 \$\$L07090602-AMN-001(15.247 & R\$S210 Annex 8)(AMN11310)\$

 Issue Date
 13 August 2008

 Page
 92 of 92

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment