CS 4300: Compiler Theory

Chapter 4 Syntax Analysis

Dr. Xuejun Liang

Outlines (Sections)

- 1. Introduction
- 2. Context-Free Grammars
- 3. Writing a Grammar
- 4. Top-Down Parsing
- Bottom-Up Parsing
- 6. Introduction to LR Parsing: Simple LR
- 7. More Powerful LR Parsers
- 8. Using Ambiguous Grammars
- 9. Parser Generators

Quick Review of Last Lecture

- Top-Down Parsing
 - Using FIRST and FOLLOW in a Recursive-Descent Parser
 - Non-Recursive Predictive Parsing: Table-Driven Parsing
 - Constructing an LL(1) Predictive Parsing Table
 - Predictive Parsing (Driver) Program
 - Panic Mode Recovery
 - Phrase-Level Recovery
- Bottom-Up Parsing
 - Shift-Reduce Parsing
 - Handles

Shift-Reduce Parsing

Stack Implementation of Shift-Reduce Parsing

Conflicts

- Shift-reduce and reduce-reduce conflicts are caused by
 - The limitations of the LR parsing method (even when the grammar is unambiguous)
 - Ambiguity of the grammar

Shift-Reduce Parsing: Shift-Reduce Conflicts

Action Stack Input **\$...** shift or reduce? \dots if E then S else...\$ Ambiguous grammar: $S \rightarrow \text{if } E \text{ then } S$ | if E then S else Sother Resolve in favor of shift, so else matches closest if

Shift-Reduce Parsing: Reduce-Reduce Conflicts

	Stack	Input	Action
	\$	aa\$	shift
	\$ <u>a</u>	a\$	reduce $A \to \mathbf{a} \ \underline{\text{or}} \ B \to \mathbf{a}$?
Grammar:			
$C \rightarrow A B$			
$A \rightarrow \mathbf{a}$			
$B \rightarrow \mathbf{a}$			
Resolve in favor			
of reducing $A \to \mathbf{a}$,			
therwise we're stuck!			

6. LR Parsing: Simple LR

• LR(k) parsing

- From left to right scanning of the input
- Rightmost derivation in reverse
- k lookahead symbols, only consider k=0, or 1

Why LR Parsers

- Can recognize virtually all programming language constructs
- the most general nonbacktracking shift-reduce parsing method
- Can detect a syntactic error as soon as possible
- Powerful than LL parsing methods

LR(0) Items of a Grammar

- An LR(0) item of a grammar G is a production of G with a at some position of the right-hand side
- Thus, a production

$$A \rightarrow X Y Z$$

has four items:

$$[A \rightarrow \bullet X Y Z]$$

$$[A \rightarrow X \bullet Y Z]$$

$$[A \rightarrow X Y \bullet Z]$$

$$[A \rightarrow X Y Z \bullet]$$

• Note that production $A \to \varepsilon$ has one item $[A \to \bullet]$

The *closure* Operation for LR(0) Items

- 1. Start with closure(I) = I
- 2. If $[A \rightarrow \alpha \bullet B\beta] \in closure(I)$ then for each production $B \rightarrow \gamma$ in the grammar, add the item $[B \rightarrow \bullet \gamma]$ to closure(I) if not already in closure(I)
- Repeat 2 until no new items can be added

The *closure* Operation Example

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E)$

 $F \rightarrow id$

$$closure(\{[E' \rightarrow \bullet E]\}) = \{ [E' \rightarrow \bullet E] \}$$

$$\{ [E' \rightarrow \bullet E] \}$$

$$\{ [E' \rightarrow \bullet E] \}$$

$$\{ [E \rightarrow \bullet E + T] \}$$

$$[E \rightarrow \bullet E + T] \}$$

$$[E \rightarrow \bullet T]$$

$$[E \rightarrow \bullet T] \}$$

$$[T \rightarrow \bullet T * F]$$

$$[T \rightarrow \bullet F] \}$$

$$[T \rightarrow \bullet F] \}$$

$$[F \rightarrow \bullet (E)]$$

$$E \rightarrow E + T \mid T$$

The *goto* Operation for LR(0) Items

- 1. For each item $[A \rightarrow \alpha \bullet X\beta] \in I$, add the set of items *closure*($\{[A \rightarrow \alpha X \bullet \beta]\}$) to *goto*(I,X) if not already there
- Repeat step 1 until no more items can be added to goto(I,X)
- Intuitively, the **goto** function is used to define the transitions in the LR(0) automaton for a grammar.
- The states of the automaton correspond to sets of items, and goto(I, X) specifies the transition from the state for I under input X.

The *goto* Operation Example 1

```
Suppose
                                              Then goto(I, E)
                                              = closure(\{[E' \rightarrow E \bullet, E \rightarrow E \bullet + T]\})
J = \{ [E' \rightarrow \bullet E] \}
                                              =\{ [E' \rightarrow E \bullet], [E \rightarrow E \bullet + T] \}
          [E \rightarrow \bullet E + T]
          [E \rightarrow \bullet T]
          [T \rightarrow \bullet T * F]
                                                                    Grammar:
          [T \rightarrow \bullet F]
                                                                   E \rightarrow E + T \mid T
          [F \rightarrow \bullet (E)]
                                                                    T \rightarrow T * F \mid F
          [F \rightarrow \bullet id]
                                                                   F \rightarrow (E)
                                                                    F \rightarrow id
```

The *goto* Operation Example 2

```
Suppose I = \{ [E' \rightarrow E \bullet], [E \rightarrow E \bullet + T] \}
Then goto(I,+) = closure(\{[E \rightarrow E + \bullet T]\}) = \{[E \rightarrow E + \bullet T]\}
                                                                                     [T \rightarrow \bullet T * F]
                                                                                     [T \rightarrow \bullet F]
                                                                                     [F \rightarrow \bullet (E)]
                      Grammar:
                                                                                     [F \rightarrow \bullet id]
                      E \rightarrow E + T \mid T
                      T \rightarrow T * F \mid F
                      F \rightarrow (E)
                      F \rightarrow id
```

Constructing the Canonical LR(0) Collection of a Grammar

- 1. The grammar is augmented with a new start symbol S' and production $S' \rightarrow S$
- 2. Initially, set $C = \{ closure(\{[S' \rightarrow \bullet S]\}) \}$ (this is the start state of the DFA)
- 3. For each set of items $I \in C$ and each grammar symbol $X \in (N \cup T)$ such that $goto(I,X) \notin C$ and $goto(I,X) \neq \emptyset$, add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

LR(0) Automaton for

Grammar:

$$E \to E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E)$$

 $F \rightarrow id$

Use of the LR(0) Automaton

The following Figure shows the actions of a shiftreduce parser on input id * id, using the LR(0) automaton shown on previous slide.

					_ ^I 5
LINE	STACK	Symbols	Input	ACTION	$F \rightarrow id$
(1)	0	\$	id * id \$	shift to 5	_ _
(2)	0.5	\$ id	* id \$	reduce by $F \to id$	$T \to F$
(3)	03	F	* id \$	reduce by $T \to F$	l ₂
(4)	0 2	\$T	* id \$	shift to 7	$E \to T$
(5)	027	T*	id \$	shift to 5	I ₁₀
(6)	0275	T*id	\$	reduce by $F \to id$	$T \rightarrow T * F$
(7)	0 2 7 10	T * F	\$	reduce by $T \to T * F$	
(8)	0 2	\$T	\$	reduce by $E \to T$	
(9)	01	\$E	\$	accept	_

$$T \to F \cdot$$

$$E \xrightarrow{\mathsf{I}_2} T \cdot$$

$$\mathsf{T} \to T * F \cdot$$

LR(k) Parsers: Use a DFA for Shift/Reduce Decisions

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:	if a handle is on top of the stack				
$S \to C$				I	
$C \rightarrow A B$		Stack	Symbols	Input	Action
$A \rightarrow \mathbf{a}$		0	\$	aa\$	shift to 3
		0.3	\$a	a\$	reduce $A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$		0 2	\$A	a\$	shift to 5
)	0 2 5	\$Aa	\$	reduce $B \rightarrow \mathbf{a}$
$ $ State I_0 :	$goto(I_0,\mathbf{a})$	024	\$AB	\$	reduce $C \rightarrow AB$
$\begin{array}{c c} State I_0: \\ S \rightarrow {}^{\bullet}C \end{array}$	$ \begin{array}{c} $	0 1	\$C	\$	$\operatorname{accept} (S \to C)$
$\begin{bmatrix} C \to \bullet A & B \\ A \to \bullet \mathbf{a} \end{bmatrix}$	$A \rightarrow \mathbf{a}^{\bullet}$				
$ A \rightarrow \bullet a $					

The states of the DFA are used to determine if a handle is on top of the stack

Grammar:

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

 $S \rightarrow C$

$$B \rightarrow \mathbf{a}$$

State I_0 :	$goto(I_0,A)$
$S \to {}^{\bullet}C$	$\int State I_2$:
$C \rightarrow {}^{\bullet}A B$	$C \to A \cdot B$
$A \rightarrow {}^{\bullet}a$	$B \rightarrow {}^{\bullet}a$

Stack	Symbols	Input	Action
0	\$	aa\$	shift to 3
0 3	\$ a	a\$	reduce $A \rightarrow \mathbf{a}$
0 2	\$ A	a\$	shift to 5
0 2 5	\$Aa	\$	reduce $B \rightarrow \mathbf{a}$
0 2 4	\$AB	\$	reduce $C \rightarrow AB$
0 1	\$C	\$	$\operatorname{accept} (S \to C)$

The states of the DFA are used to determine if a handle is on top of the stack

Gr	ar	nmar:	
<i>S</i> -	\rightarrow	C	

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

to 3
$e A \rightarrow a$
to 5
$e B \rightarrow a$
e $C \rightarrow AB$
ot $(S \to C)$

State I_2 :	go	$to(I_2,\mathbf{a})$	
$C \to A \cdot B$	>	State I ₅ :	
$B \rightarrow {}^{\bullet}a$		$B \rightarrow \mathbf{a}^{\bullet}$	

The states of the DFA are used to determine Grammar: if a handle is on top of the stack

<i>S</i> -	$\rightarrow C$	
C -	$\rightarrow A B$	
<i>A</i> -	\rightarrow a	
\boldsymbol{D}	\ 0	

Stack	Symbols	Input	Action
0	\$	aa\$	shift to 3
0.3	\$a	a\$	reduce $A \rightarrow \mathbf{a}$
0 2	\$A	a\$	shift to 5
0 2 5	\$Aa	\$	reduce $B \rightarrow \mathbf{a}$
024	\$AB	\$	reduce $C \rightarrow AB$
0 1	\$C	\$	$\operatorname{accept} (S \to C)$

The states of the DFA are used to determine Grammar: if a handle is on top of the stack

$S \to C$	
$C \rightarrow A B$	
$A \rightarrow \mathbf{a}$	
$R \rightarrow a$	

Stack	Symbols	Input	Action
0	\$	aa\$	shift to 3
0 3	\$a	a\$	reduce $A \rightarrow \mathbf{a}$
0 2	\$A	a\$	shift to 5
0 2 5	\$Aa	\$	reduce $B \rightarrow \mathbf{a}$
024	\$AB	\$	reduce $C \rightarrow AB$
7 ₀₁	\$C	\$	$\operatorname{accept}(S \to C)$

The states of the DFA are used to determine if a handle is on top of the stack

$$S \to C$$

$$C \rightarrow A B$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{a}$$

Stack	Symbols	Input	Action
0	\$	aa\$	shift to 3
0 3	\$ a	a\$	reduce $A \rightarrow \mathbf{a}$
0 2	\$ A	a\$	shift to 5
0 2 5	\$Aa	\$	reduce $B \rightarrow \mathbf{a}$
0 2 4	\$AB	\$	reduce $C \rightarrow AB$
0 1	\$C	\$	$\operatorname{accept} (S \to C)$

Model of an LR Parser

