Epreuve de rattrapage du 1er semestre Mécanique Des Fluides

Questions de cours (04 pts)

				1
		Vrai	Faux	
1	L'équation d'Euler est la 2 ^{ème} loi de Newton pour un fluide parfait	V		(F)
2	Un Fluide parfait est un fluide visqueux		V	
3	L'équation de Bernoulli peut être exprimée en J/kg	V		(N)
4	L'équation de Bernoulli est valable uniquement sur une ligne de courant	V		(F)
5	Dans l'équation d'Euler, les forces extérieures sont appliquées par le fluide.		V	(3,7)
6	A l'entrée d'un tube de Pitot la vitesse du fluide est nulle	V		(3,7)
7	L'unité de la viscosité dynamique est kg/(m.s)	V		(D)
8	Le débit volumique se conserve pour un fluide compressible.		V	6,1

Exercice 1 (05 pts)

Le réservoir de la figure ci-contre est constitué de plusieurs compartiments contenant de l'eau, un fluide de densité égale à 0,8 et de l'huile de densité 0,9. Une masse de 5 kg de section 0.2 m² ferme le compartiment contenant de l'eau. Ce réservoir est muni d'un tube en U contenant du mercure. P_{atm}=10⁵Pa, et g=10 ms⁻².

Paris Pohe Ma	to (a + a 2 1 a)
5	+ g (0.4-0,2 Lg)
= 10 + 2021	= rlorle (0.7-0.2×08)
o. W	
- 107900	Pa
······································	

2- Calculer la pression au point B

1-Calculer la pression de l'air 1.

$l_8 = l_3$	+.0,6.2g	2. Paica.			***************************************
65)		= 10791	10 + 0.0 X	10×10=	M3 900 Pa.

Nom et Prénom :	Février 2020 / Durée :1h15 SC/Gr :
3- Calculer la pression de l'air 2 Pr = Pr + 0.2 de la la	***************************************
Pr = Vaing ; Pu = Vaing	
Pair_ = 107900 + 0.2×0.9×10	26-109700 Pa.
4- Calculer la hauteur h du mercure dans le tube en U	+ 13/5/g h
h_Panz-Panz 109700-10-	1900 2 1,32 am
5) 00	
5) On prend un réservoir identique ouvert à l'atmosphère avec les différentes données mentionnées sur la figure ci-contre. Est-ce que le fluide de densité d=0,8 débordera dans le compartiment B pour H=0.6	Air 1
On calal la distance a et on la Aa Compare avec H. 0.6 m	Air 2 h
$P_1 = V_2 + \frac{1}{4} \log a$ Fluide d=0.	
a= 0. + = 0.7 = 0, 8Hm > H=	o debordoment
Exercice 2 (07 pts)	
Une plaque OABC rigide de masse négligeable de largeur 40 cm sépare deux réservoirs ouverts à l'atmosphère. Le réservoir 1 contient un fluide de masse volumique 2000kg/m³ sur une hauteur H ₁ de 50 cm. Le réservoir 2 contient de l'eau de masse volumique 1000kg/m³ sur une hauteur H ₂ de 125 cm. On donne g=10 ms ⁻² et on suppose la pression atmosphérique négligeable.	e B Eau
1) Calculer la résultante et la profondeur du centre de poussée des forces de pression qu'exerce le fluide sur la paroi OA de la plaque.	O C
For $P_{G}S_{1} = S_{1} + \frac{M^{2}}{2}$ L $= 10 \times 10 \times \frac{6.5^{2}}{2} \times 0.4 = \frac{3}{2}$	500 N
Hcp, 2 Ho, IGX, LGX, LH,3	Ita - Hi S = LxH
12	7

Nom et Prénom :	Février 2020 / Durée :1h15
For Hy + nga - Foc x Hz = 0	SC/UI
3 7	
	6
a - (H2 - H1)	A
211/4	
$= \frac{3120}{3250\times10} \left(1727 - 0.835\right) = 0.86$)
3×50×10	
······································	************************************
Exercice 3 (04 pts) Une installation hydroélectrique est constituée d'un	Z **
grand réservoir, d'une conduite de section 0.5 m ² et	1 •
d'une turbine située 200 m plus bas que le niveau d'eau du réservoir. On donne : z ₂ =4 m, z ₃ =0 m,	
$p_{\text{atm}} = 10^5 \text{Pa}$, $Q_{\text{v}} = 30 \text{ m}^3/\text{s}$ et $g = 10 \text{ ms}^{-2}$.	
) Calculer la pression au point 2	Z ₂
1-18V1- 193, = P2+18V2- 1232 F	Z ₃
? - Paim, V = a (Grant reservain)	
Turbin	e
P1 = Pam + 35(3,32) - 1 5V22	
· · · · · · · · · · · · · · · · · · ·	(2)
V2 = QV = 30 = 60 m/s	
P. 15 13 110 110 110 100	B
R = lo + lo2 b (luo l) - 1 102 60 = 28	0.000 Ca
Calculer la puissance délivrée par la turbine sachant que son rendem	nent est de 0.78
O La	
9 - 1 V1 - 93, = 3 - 1 V3 - 03,	+ W I late Jahn
13 L P3	YV & O (Grow 10
· · · · · · · · · · · · · · · · · · ·	
M- 3(31-33) - 7 /3	
W-10 (ko-0) - 1 602 2 200 1/ hg	
W= mw= dayw= 6mv	
7 - Wy - Wy = 0.70 x 6 =	4,68 nw