Assignment I - Spatial Autocorrelation

DA3480 - Spatial Data Analytics

Department of Decision Sciences University of Moratuwa

Assignment Briefing

You need to submit an analysis report containing 500-1000 words and appropriate figures (or snapshots) to answer the following general questions and the specific questions raised in the steps. The analysis report should follow the following outline.

- Title: Exploring Spatial Autocorrelation and Moran's Index Analysis of <hotel review scores>
- Author Name and Index No.
- Introduction: Refer to the "HotelLocation_ColomboGT300Reviews.csv" file and describe the characteristics of the dataset.
- Objectives :
 - Determining if there is evidence of spatial autocorrelation or dispersion in the review scores of the hotels.
 - ► Calculating Moran's index as a measure of spatial autocorrelation.
 - Providing a data-driven recommendation for the stake holders on the spatial dependency of the review scores.

Assignment Briefing

- Before Analysis Setup :
 - ▶ What is the purpose of setting a seed for randomization?
- ② Creating Distance-Band Weights:
 - ► How do you reproject the provided dataset to UTM projection?
 - ► What are the steps for creating a weights matrix in GeoDa?
- Inference :
 - ► How do you perform randomization with a specified number of permutations?
 - ▶ What is the purpose of setting the number of permutations?
 - What does the reference distribution for the statistic depict, and how is it represented?
 - ► How can you use the distribution to draw conclusions about the analysis?
- Moran Scatter Plot Options :
 - ▶ What options can be accessed by right-clicking on the Moran scatter plot?
 - ► What steps are involved in computing a standardized version of the Review Score and its spatial lag?

Steps to Follow

Random Seed

Follow these steps before you start the analysis :

- Open GeoDa and go to **File** -> **Preferences** menu.
- In the menu, locate "Set Seed for Randomization"
 - ► Click on "Specify Seed..." box in the options menu.
 - ► A dialog box will appear, displaying the default seed value (usually 123456789).
 - ► Enter your index number without the English letter as the specified seed value (e.g. the holder of the index number 123456A should enter 123456 only)
 - ► Specify the number of CPU cores you want to use (e.g., 6) in the provided field

Creating distance-band weights

- Use "HotelLocation_ColomboGT300Reviews.csv" and QGIS to generate a point data set.
- Use QGIS to reproject the provided dataset to UTM projection. Save the reprojected file as "indexno_hotellocations.shp"
- Import the reprojected ".shp" file to GeoDa
- Create the weights matrix following the steps below

Creating distance-band weights

e

Click on the **Create** button and specify a file name, indexno_weights (the GWT file extension is added automatically), the new weights and their summary properties are listed in the **Weights Manager**Visit **Tools** -> **Weights Manager**and take a print-screen of the table (you need to include this on your analysis report).

Distance Metric

Answer the following questions regarding the Distance Metric

- Why do you choose Euclidean distance when creating the Distance Metric?
- What is the critical distance for your point data?
- What is the meaning of "critical distance"?
- Explain the importance of the "threshold value"?

Create the Moran's index using the Review Score as the spatial variable.

Interpretation

Open the Moran's index scatter plot. The plot shows a linear fit through the point cloud. The slope of this line corresponds to Moran's I. Answer the following questions.

- What can you tell about the shape of the point cloud?
- Identify locations in the map (or, in any other open view) associated with each of the four types of spatial autocorrelation. What interpretations can you make using the available information?

Inference

Right click on the scatter plot and select **Randomization** and 999 number of permutations in the side panel. The permutation value corresponds to the M in the expression for the pseudo p-value.

(make sure that the tick mark for "Use Specified Seed" is kept)

9

The result of the permutation operation is a reference distribution for the statistic, depicted as a histogram. The green line shows the value of the statistic for the actual data.

What information can you draw from the distribution?

Moran scatter plot options and Attribute Table

Right-click on the plot to bring up the available options. Save Results and View.

Verify the results by using the **Table** -> **Calculator** option to compute a standardized version of the Review Score and its spatial lag.

- Add a new variable called the standardized review score M_ST
- Make the variable constant as the review score
- Use the Univariate tab and the STANDARDIZED (Z) operator.

For the spatial lag, add M_LAG as the new variable and use the Spatial Lag tab, with the weights file created at the beginning and the previously standardized variable M_ST . Add a new variable called the standardized lag R_LAG to the data table.

Include the print screen of the final table in your analysis report.