Name: Ma	laths Class:	
----------	--------------	--

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics

Preliminary HSC Course
Yearly Exam

September, 2016

Time allowed: 2 hours

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided

Section 1 Multiple Choice

Questions 1-10 10 Marks

Section II Questions 11-18

72 Marks

Total 82 marks

SECTION 1 -- MULTIPLE CHOICE (10 marks)

QUESTION 1

What is the gradient of a line parallel to the line 2x + 3y - 1 = 0?

A. 2

C.
$$\frac{3}{2}$$

B.
$$-2$$
 C. $\frac{3}{2}$ D. $-\frac{2}{3}$

QUESTION 2

The equation of the line above is: A. x - y + 4 = 0 B. x + y - 4 = 0

B.
$$x + y - 4 = 0$$

C.
$$x + y + 4 = 0$$
 D. $x - y - 4 = 0$

D.
$$x - y - 4 = 0$$

QUESTION 3

A function is given by $f(x) = \sqrt{9 - x^2}$. What is its natural domain?

A. x < 3

B.
$$x \leq 3$$

B.
$$x \le 3$$
 C. $-3 \le x \le 3$

D.
$$-9 \le x \le 9$$

QUESTION 4

The function in Question 3 above is:

A. even

B. odd

C. neither

D. cannot be determined

QUESTION 5

What is the minimum value of $x^2 - 4x + 6$?

A. 2

B. 4

C. 6

D. 8

QUESTION 6

If $a^b = 5$, what is the value of $2a^{3b}$?

- A. 30 B. 250 C. 500 D. 1000

QUESTION 7

If $3^{x-4} = 9^{2x}$, then x = ?

- A. $\frac{3}{4}$ B. $\frac{4}{3}$ C. $-\frac{3}{4}$ D. $-\frac{4}{3}$

QUESTION 8

If $2x^2 - 12x + 11$ is expressed in the form $2(x - b)^2 + c$, what is the value of c?

- A. -25 B. -7 C. 2 D. 29

QUESTION 9

 $\frac{\sin(180^{\circ}-\theta)}{\cos(90^{\circ}-\theta)}$ simplifies to:

- A. 1 B. 2 C. $\tan \theta$
- D. $\cot \theta$

QUESTION 10

If a > b, which of the following is <u>always</u> true?

- A. $a^2 > b^2$ B. $\frac{1}{a} < \frac{1}{b}$ C. -a > -b D. $2^a > 2^b$

END OF SECTION 1

SECTION 2

QUESTION 11 (9 marks)

a) Evaluate 13.6 sin 42°15′ correct to 2 significant figures.

1

b) Expand and simplify $(2\sqrt{3}-1)(\sqrt{3}+4)$

2

c) Write the exact value of cosec 60°.

1

d) Simplify $\frac{x-3}{x^2-4x+3}$

1

e) Find the value of x, correct to 1 decimal place.

Not to Scale

f) Solve $(x + 1)^2 = 5$, giving answers correct to 1 decimal place.

2

QUESTION 12 (9 marks) Start a new page.

a) Solve
$$|3x - 6| < 12$$

2

b) Find θ to the nearest degree if $\cos \theta = 0.4$ and $0^{\circ} \le \theta \le 360^{\circ}$.

1

c) Fully simplify $\frac{a+b}{\frac{1}{a}+\frac{1}{b}}$

2

d) Find derivatives of : i) $y = 3x^2 - 4 + 7x$

1

$$ii) \ f(x) = \frac{4}{x^2}$$

 $AD \parallel BC \cdot AC$ and BD intersect at $E \cdot \angle BAD$ and $\angle ABC$ are bisected as shown.

Prove that $\angle BEA = 90^{\circ}$.

QUESTION 13 (9 marks) Start a new page.

a) Factorise
$$x^3 - 27$$
.

b) Simplify
$$\sin \theta (1 + \cot^2 \theta) \tan \theta$$
.

c) Differentiate i)
$$(x^2 + 5)^4$$

ii)
$$x\sqrt{x}$$

d) Find the gradient of the curve
$$y = \frac{2x}{x+3}$$
 when $x = -2$.

e) The solutions of a quadratic equation are
$$x = \frac{1 \mp \sqrt{5}}{2}$$
. Write a quadratic equation with these solutions.

QUESTION 14 (9marks) Start a new page.

a) Find the coordinates of the vertex of the parabola
$$y = (x + 3)^2 + 4$$
.

b) Given
$$(x) = x^2 + \frac{x}{2}$$
, evaluate $f(2) + f'(2)$.

c) Solve for
$$\theta$$
, given $0^{\circ} \le \theta \le 360^{\circ}$:

i)
$$(\sin \theta + 1)(\cos \theta - 1) = 0$$

ii)
$$3tan^2\theta - 1 = 0$$

d) If
$$\cos \theta = -\frac{2}{3}$$
 and $\sin \theta > 0$, find the exact value of $\tan \theta$.

e) Fully factorise
$$x^2 + 8x + 16 - y^2$$
.

QUESTION 15 (9 marks) Start a new page.

In the diagram above, line l cuts the x axis at A(-3,0) and the y axis at B(0,4). D has coordinates (0,6) and point C is on l.

a) Find the gradient of line l.

1

b) Show that line l has equation 4x - 3y + 12 = 0.

1

c) B is the midpoint of AC. Find the coordinates of C.

1

d) Find the perpendicular distance from D to the line $\it l.$

1

e) Find the area of $\triangle BDC$.

- 2
- f) Find the equation of the perpendicular bisector of AB. Leave your answer in general form.

3

QUESTION 16 (9 marks) Start a new page.

a) Find
$$\frac{d}{dr}(\frac{4}{3}\pi r^3)$$

1

- b) Find the point(s) on the curve $y = x^3 3x^2 + 3x$ where the tangent is horizontal.
- 2

Not to Scale

i) Find the area of ΔPQR .

1

ii) Find the length of RP, correct to 1 decimal place.

d)

Ship A leaves port P and sails on a compass bearing of $N50^{\circ}E$. Ship B also leaves port P and sails 20 km on a compass bearing of $S55^{\circ}E$. The two ships are now 37 km apart.

i) Find $\angle APB$.

ii) Find $\angle PAB$ to the nearest minute.

QUESTION 17 (9marks) Start a new page.

- a) The interior angle of a regular polygon is 165°. How many sides does the polygon have?
- b) Find the centre and radius of the circle $x^2 + y^2 4y 1 = 0$.
- c) i) On the same axes, neatly sketch the functions $y = \frac{1}{x+2}$ and y x = 2. Use a ruler, 2 label any asymptotes and all x and y intercepts.
 - ii) Find the points of intersection of the two graphs. Show working.
 - iii) Find the equation of the normal to the curve $y = \frac{1}{x+2}$ at the point where it crosses the y axis.

QUESTION 18 (9 marks) Start a new page.

Rays AC and AE enclose isosceles triangles ABD, BCD and CDE as shown above.

- i) If $\angle A = x$, find $\angle CBD$ in terms of x, giving reasons.
- ii) Hence, find the size of $\angle DEC$. Reasons are <u>not required</u>.
- b) Simplify $\lim_{h\to 0} \frac{3(x+h)^2-3x^2}{h}$. Show full working.
- c) Prove that $\sec \theta \sin \theta \tan \theta = \cos \theta$.
- d) Differentiate $y = x^2(x^3 1)^4$. Leave your answer in fully factored form.

END OF TEST

SOLUTIONS Yoll Ext. Zunit 1. D 2. B 3. C 4. A 5. A 6. B 7. D 8. B 9. A 10. D d) i, y' = 6x+7 (1) a) 9.1 6) 6+8/3-13-4 CO ii) $f(x) = 4x^{-2}$ $f'(x) = -8x^{-3} \notin \mathbb{C}$ = 2+7/3 <--- 0 c) 2/3 ____ e) 22 +2y = 180° (cointerior angles parallel lines) e) cos 6) = 4.6 ~ 0 : x +y = 90°
: LBEA = 90° (angle sum \(\text{BEA} \) x = 4.6 cos 67° (1) = 11.8 (1 dec.) (3) a) $(x-3)(x^2+3x+9)$ fr 2+1 = ±5 = 0 x = -1 ± 55 by sin 0 x cosec 0 x tan 0 = 1.2 or -3.2= SUND × SUND COSO ((dec.) $= \underline{\underline{\underline{\underline{J}}}} = \underline{\underline{\underline{Sec}\,\theta}} \cdot \underline{\underline{0}}$ 12) a) 3x-6<12 or -(3x-6)<12 3x<18 -3x+6<12 c) i) y' = 4(x2+5)3 x 2x x<6 -3x<6 must have x>-2 $= 8 \times \left(n^2 + 5\right)^3$ · solution is -2 < 2 < 6 ii) $y = x^{3/2}$ My 0 = 66° or 29.4° (noth) y' = 3 x 2 c) a+b = a+b x ab or 35x = ab ()

		C

(3)d)y' = 2(x+3) - 1(2x)e) (x+4)2-y2 = (x+4+4) (x+4-4) (15) a) M, = 4/3 When x = -2, M_T = 6 b) use B(0,4) :. y-4=43(x-0) (i) e) a=1, b=-1, c=-1 :. 3y-12=4x :. 4x-3y+12=0 as regd. c) c(3,8)14 a) V(-3,4) h) f(2) = 5f(x) = 2x+2 d) D(0,6) and 4x-3y+12=0 · · f'(2) = 4/2 $\frac{1.5 \cdot p.d.}{\sqrt{4^2 + 3^2}}$:. f(2)+f'(2) = 9/2 = = 6/c C c) i) sin 0 = -1 or cos0 = 1 $B(0,4) \ c(3,8) \Rightarrow BC = \sqrt{9} + 16$ i) = 270°, 0°, 360° $tan^2\theta = \frac{1}{3}$ $tan \theta = \pm \frac{1}{3}$:. αrea ΔBDC = 12 x5 x 1/5 :. 0 = 30°, 150°, 210°, 330° f) Mp(AB) = (-1/2,2) $M_{AB} = \frac{4}{3} \Rightarrow M = -\frac{3}{4}$ d) 2nd quadrant : egn is y-2 = -3 (x+12) : tan 0 = - 15 4y-8=-3x-4/2 :-6x+8y-7=0

		C
		C

		90
		C
		C

c) LHS = Josin 0 × sin 6 (7) c) iii) y = (2+2)-1 $y' = -1(x+2)^{-2} \times 1$ = 1-sin 20 0 COSP = cos²9 When n = 0, y'=m-=-1 · MN = 4 and use (0, /2) = cos 0 = RHS. 1 i. egn. of normal is y-1/2=4(x-0) i.y=4n+2 = 0 $d)y' = 2x(x^{3}-1)^{4} D$ $+ 4(x^{3}-1)^{3} \times 3x^{2} \times 3x^{2}$ (or 8x-2y+1=0) $=2x(x^3-1)^4+12x^4(x-1)$ (18) a) i) LBDA = x (base angles isospeles (AB) : CBD = 2x (exterior angle DABD) $\frac{h}{h \rightarrow 0} = \lim_{h \rightarrow 0} 3\left(x^2 + 2\kappa h + h^2\right) - 3x^2$ $=2x(x^3-1)^3(7x^3-1)$ = lim 3x +6xh+3h2-3x = lin x(6x+3h) 1) method = 6x

(