سیر مطالعاتی من برای ارائه پایان نامه کارشناسی ارشد

محسن مهراني - استاد راهنما: دكتر سامان مقيمي عراقي

١ مطالعه مقاله شماره [١]:

در این مقاله مدلی را مشاهده کردیم که به کمک مدل KM یک شبکه نورونی کامل را توصیف کرده است. این شبکه شامل نورونهای مهاری است که روشن شدن هر کدوم از آنها باعث مهار شدن نورونهای همسایه می شود. معادله تحول اختلاف پتانسیل هر کدام از نورونها با محیط بیرونش از رابطه زیر داده می شود g:g ضریب اتصال هر جفت نورون، S:g ما تریس اتصال، S:g زمان تاخیر میان زدن تیزه و تحریک آن، S:g یک پتانسیل تحریکی و خارجی):

$$v_i = a_i - v_i - gN \sum_{n|t_n < t} S_{i,l(n)} \delta(t - t_n - t_d)$$
(1)

پارامتر نظم سیستم را به کمک میدان (E) تعریف کرده است اما پارامتر نظم را انحراف از معیار آن در طول زمان معرفی کرده است.

$$\ddot{E} + 2\alpha \dot{E} + \alpha^2 E = 2\alpha N \sum_{n|tn < t} \delta(t - t_n - t_d) \tag{Y}$$

$$\sigma^2 = \langle E^2 \rangle_t - \langle E \rangle_t^2 \tag{(7)}$$

در طول زمان میدان E و σ را رصد کرده است و دیدهاست که میدان خاموش و روشن می شود و انحراف از معیار آن مقدار خوبی مثبت است چنان که این خاموش و روشن ها را با معنا نشان می دهد. حال ادعای این مقاله است که این خاموش و روشن شدن ها الگویی آشوبناک دارند و ادعا کرده است که به اندازه متناهی سامانه نیز وابسته نیست.

سه الات:

(۱) مدل Kuramoto به قرار زیر است. چطور معادله ۱ به آن تبدیل می شود. دلتای یاد شده در معادله ۱ دلتای دیراک است؟ یا دلتایی که بیشینه آن عدد یک است؟

$$\frac{d\theta_i}{dt} = \omega_i + \sum_{j=1}^{N} a_{ij} \sin(\theta_j - \theta_i), \qquad i = 1 \dots N$$
 (*)

- t_n (۲) چیست
- (۳) اگر قرار باشد جمعی که در رابطه ۱ نوشته ایم روی تمام زمانهای از ازل تا t باشد پس آیا هر نورون حافظه ای از کل رخدادهای گذشته دارد؟ حتی از لحظاتی که قبل از تیزه زدن ها وجود دارند؟
 - % میدان E به چه معناست؟ چطور تعریف کردیم؟ آیا مشخصه ای از کل سیستم است (۴)

مراجع

[1] Luccioli, Stefano and Politi, Antonio. Irregular collective behavior of heterogeneous neural networks. *Phys. Rev. Lett.*, 105:158104, Oct 2010. 1