Matematica Discreta II -2021-Teórico del final diciembre

Para aprobar el teórico hay que obtener 40% del puntaje EN CADA pregunta.

- (1) Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x=z, denotandola por $d_f(x,z)$, y definimos $b_k(x)=d_{f_k}(x,t)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $b_k(x) \leq b_{k+1}(x)$.
- (2) Sea C un código lineal de longitud n sobre el alfabeto \mathbb{Z}_3 (es decir, no es binario)

En este caso "lineal" es que C es un subespacio vectorial de \mathbb{Z}_3^n . y la distancia de Hamming en vez de ser $d_H(v, w) = \#\{BITS \text{ distintos } \}$ entre v y w es $d_H(v, w) = \#\{\text{COORDENADAS distintas entre } v$ y w, pero el peso de Hamming sigue definido igual que antes, pero $d_H(v, w) = |v - w|.$

a) Probar que si H es matriz de chequeo de C entonces:

 $\delta(C) = Min\{j : \exists \text{ un conjunto de } j \text{ columnas LD de } H\}$

(LD es "linealmente dependiente")

- b) En clase probamos que en el caso de códigos binarios, la parte a) implicaba que si una matriz de chequeo no tiene la columna 0 ni columnas repetidas, entonces el código corrije al menos un error pues $\delta \geq 3$. Dar un ejemplo que muestre que este teorema NO es cierto en nuestro caso y escriba como sería el teorema correcto en ese caso.
- (3) 4SAT es como 3SAT pero se pide que haya exactamente 4 literales en cada disjunción. Reducir polinomialmente 4SAT a 4-COLOR probando que, dada una expresión booleana B en CNF con 4 literales por disjunción y variables $x_i, i = 1, 2, ..., n$, entonces existe $b \in \mathbb{Z}_2^n$ tal que B(b) = 1 si y solo si $\chi(G) = 4$, donde G es el grafo creado a partir de B de la siguiente forma:

Si $B = D_1 \wedge D_2 \wedge \wedge D_m$, con disjunciones $D_j = \ell_{1,j} \vee \ell_{2,j} \vee \ell_{3,j} \vee \ell_{4,j}$ donde $\ell_{k,j}$ son literales, G es:

vértices:

 $\{s,t,r\} \cup \{v_{\ell} : \ell \text{ es un literal}\} \cup \{e_{k,j}, a_{k,j} : k=1,...,4, j=1,...,m\}$

lados: la union de los siguientes conjuntos:

- (a) $\{st, sr, tr\}$
- (b) $\{tv_{\ell}, rv_{\ell} : \ell \text{ es un literal}\}$
- (c) $\{e_{k,j}a_{k,j}: k=1,...,4, j=1,2,....,m\}$
- (d) $\{e_{k,j}s,e_{k,j}r,e_{k,j}v_{\ell_{k,j}}:k=1,...,4,j=1,2,...,m\}$ (e) Para cada j=1,2,...,m, un $K_{4,j}$ que es el completo K_4 formado por los $a_{k,j}$, k = 1, 2, 3, 4.

(la prueba es similar a la de 3COLOR es NP completo, pero se agrega un vértice especial r, algunos lados y vértices mas y en vez de triangulos hay K_4 's).