Machine Learning on Graph for Recommendation and more

Yinglong Xia MRS, Meta

About me

Agenda

- 01 **Graph in RecSys**
- O2 Graph sparse nodes in recommendation
- O3 GNN expressiveness: depth, scope, & MoE
- O4 Conclusion &Opportunities

Recommendation system

A recsys is a subclass of information filtering system that provides suggestions for items that are most pertinent to a particular user.

01 Graph in RecSys

Sequence vs Graph

Sparse/noisy input sequence Lightweight

users

results in untrustworthy prediction

ML101: "Garbage in, garbage out" (GIGO)

- RecSys prediction counts on user engagement history
- Cold start users have limited & noisy engagement history, if not unavailable
- How can we enrich user signals by leveraging latent relevance?

bipartite graph

User-item heterogeneous graph

Graph meets LLM in RecSys

- H. Zeng, Y. Xia, et al, LLM-Rec: Personalized Recommendation via Prompting Large Language Models, NAACL 2024
- S. Jiang, Z. Shakeri, Y. Xia, et al, ResPROMPT: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models, NAACL 2024

Description: A group of toys embark on a journey of self-discovery as they learn the true meaning of friendship.

Basic Prompting

Recommendation-Driven Prompting

Engagement-Guided Prompting

Recommendation + Engagement

... this is for

recommendation ...

... this is for recommendation ...

Model Input

The description of an item is as follows: '{description}', paraphrase it

Model Input

The description of an item is as follows: '{description}', what else should I say if I want to recommend it to others?

Model Input

Summarize the commonalities among the following descriptions: '{description}'; '{descriptions of other important neighbors}'

Model Input

The description of an item is as follows: '{description}'. What else should I say if I want to recommend it to others? This content is considered to hold some similar attractive characteristics as the following descriptions: '{descriptions of important neighbors}'

Model Output

A collection of toys go on an adventure to understand the power of companionship.

Model Output

This is a heartwarming story about friendship and self-discovery. It follows a group of toys on an exciting journey as they learn the importance of being there for each other. With its charming characters and captivating plot, this is a must-read for anyone looking for a fun and inspiring adventure.

Model Output

The commonalities among the descriptions are that they all involve journeys, discovery, and comedic elements.

Model Output

This item is a great choice for those looking for an entertaining and heartwarming story about friendship. It follows a group of toys on a journey of self-discovery as they learn the true meaning of friendship. It has a similar feel to classic films such as 'Being John Malkovich', 'Airplane!' and 'Monty Python and the Holy Grail', combining elements of comedy, adventure and fantasy. It's sure to be a hit with viewers of all ages!

Case study: Graph for user interest modeling

Graphs provide advanced modeling and system techniques for holistic user interest understanding and personalized recommendation, which provides interpretability to the output of some SOTA ML models, as well as supporting better user control over recommendations.

Case study: Graph ranking for audience matching

- Graph representation
 - Creator, viewer, media ⇒ heterogeneous nodes
 - Following, engagement, profile matching ⇒ edges
- Graph ranking
 - For a given creator (or a creator's newly shared media), rank the viewers within the neighborhood of the creator
 - Heterogeneous PPR with the creator as a root
 - GCN message passing with rich feature support

Case study: Graph ranking for audience matching (2)

- Personalized PageRank (PPR) helps find related creators for a given viewer (source node) in audience matching
 - $r_s = (1 c) * e_s + c * A * r_s$
 - ⇒ ppr_s(creator) = $(1 c) * e_s + c * \Sigma_{creator' \in path(creator-v-creator')}$ ppr_s(creator') / deg(creator')
 - A: the adjacency matrix
 - s: the source node, say, a given viewer
 - c: damping factor, e.g. 0.85
 - e_s: biased teleportation vector, e.g. [0, 0,,1,..0] where e_s[s]=1
 - r_s: vector of probability showing the relevance of v to source,i.e., ppr[v]
 - deg(creator'): #path
 - What is missing?
 - deg(u) reflects interest match, not the size of connected followers
 - deg(u) does not reflect the "size/status" of a creator i.e. new /casual/power creator
 - Treatment?

Agenda

- 01 Graph in RecSys
- 02 Graph sparse nodes in recommendation
- O3 GNN expressiveness: depth & scope
- O4 Conclusion &Opportunities

Disparity of node degrees in GCN

- Another example: Online advertising
 - Celebrities often enjoy high-quality recommendations
 - Grassroot users often suffer from bad recommendations

J. Kang, Y. Zhu, Y. Xia, J. Luo, and H. Tong, RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network, TheWebConf'22

Disparity of node degrees in GCN

- Illustrative example
 - 2-layer GCN on Amazon-Photo
 - Average loss/accuracy of degree groups
- Observation
 - Low-degree nodes suffer from higher loss and lower accuracy
 - Real-world graph is often long-tailed
 - GCN might be primarily beneficial to a few high-degree nodes

If small-sized creators are what we are interested in, then the GCN framework needs some remedy.

Rawlsian difference principle for GCN

- Given
 - An undirected graph $\mathcal{G}=(A,X)$
 - An *L*-layer GCN with weights **0**
 - \circ A task-specific loss J
- Find: A well-trained GCN that
 - Minimizes the task-specific loss
 - o Achieves a fair allocation of utility for the groups of nodes with the same degree
- Key question:
 - When is the allocation of utility fair?

Understand the loss

- Intuition: Understand why the loss varies after training
- What happens during training?
 - –Extract node representations
 - -Predict the outcomes using the node representations
 - -Calculate the task-specific loss J
 - -Update model weights θ by the gradient $\partial J/\partial \theta \leftarrow$ key component for training
- Question: Is the unfairness caused by the gradient?

Rawlsian difference principle for GCN

- Rawlsian difference principle
 - Equality principle in distributive justice
 - Equality \Rightarrow maximize welfare of worst-off $\operatorname{grc} \min_{\theta} \operatorname{Var}(\{U(\mathcal{D}_i, \theta) | i = 1, \dots, h\})$ s.t. $\theta = \operatorname{argmin} J(\mathcal{D}, Y, \theta)$
- Importance on the gradient

I_i is a degree-free influence of node j

Higher node degree in A, more importance it has on the gradient of the weight matrix.

Rawlsian GCN

- Doubly Stochastic Matrix Computation Normalize the importance of influence matrices to mitigate the node degree-related unfairness, so that each node will have equal importance in updating the weight parameters
 - o Computing the doubly stochastic matrix is nontrivial, so we adopt the Sinkhorn-Knopp
- Rawlsian GCN
 - Gradient is computed using the doubly stochastic matrix, so that all nodes will have equal importance in determining the gradient

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}}_{\text{fair}} = (\mathbf{H}^{(l-1)})^T \hat{\mathbf{A}}_{DS}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$
where $\mathbf{E}^{(l)} = \hat{\mathbf{A}} \mathbf{H}^{(l-1)} \mathbf{W}^{(l)}$.

Experiments

				_		5// US 15 	
Method	Cora-ML		Cite	seer	Coauthor-CS		
	Acc.	Bias	Acc.	Bias	Acc.	Bias	
GCN	80.10 ± 0.812	0.392 ± 0.046	68.60 ± 0.341	0.353 ± 0.040	93.28 ± 0.194	0.075 ± 0.004	
DEMO-Net	61.60 ± 0.687	0.181 ± 0.015	60.26 ± 0.408	0.315 ± 0.022	65.90 ± 0.583	0.164 ± 0.006	
DSGCN	30.26 ± 5.690	8.003 ± 2.766	31.42 ± 3.257	6.887 ± 1.947	44.20 ± 7.155	1.460 ± 0.397	
Tail-GNN	78.54 ± 0.582	0.503 ± 0.284	66.34 ± 0.009	0.655 ± 0.382	92.66 ± 0.196	0.052 ± 0.031	
AdvFair	67.56 ± 2.594	10.01 ± 2.480	50.26 ± 6.277	3.146 ± 2.425	84.82 ± 2.254	12.26 ± 6.797	
REDRESS	75.70 ± 0.620	0.955 ± 0.213	65.80 ± 0.518	0.944 ± 0.077	92.44 ± 0.233	0.028 ± 0.003	
RawlsGCN-Graph (Ours)	76.96 ± 1.098	0.105 ± 0.012	69.34 ± 0.745	0.196 ± 0.013	92.52 ± 0.264	0.043 ± 0.002	
RawlsGCN-Grad (Ours)	79.34 ± 1.247	0.232 ± 0.065	68.81 ± 0.462	0.283 ± 0.047	92.68 ± 0.240	0.058 ± 0.007	

Method	Coauthor-Physics		Amazon-C	Computers	Amazon-Photo		
21,200,200	Acc.	Bias	Acc.	Bias	Acc.	Bias	
GCN	93.96 ± 0.367	0.023 ± 0.001	64.84 ± 0.641	0.353 ± 0.026	79.58 ± 1.507	0.646 ± 0.038	
DEMO-Net	77.50 ± 0.566	0.084 ± 0.010	26.48 ± 3.455	0.456 ± 0.021	39.92 ± 1.242	0.243 ± 0.013	
DSGCN	79.08 ± 1.533	0.262 ± 0.075	27.68 ± 1.663	1.407 ± 0.685	26.76 ± 3.387	0.921 ± 0.805	
Tail-GNN	OOM	OOM	76.24 ± 1.491	1.547 ± 0.670	86.00 ± 2.715	0.471 ± 0.264	
AdvFair	87.44 ± 1.132	0.892 ± 0.502	53.50 ± 5.362	4.395 ± 1.102	75.80 ± 3.563	51.24 ± 39.94	
REDRESS	94.48 ± 0.172	0.019 ± 0.001	80.36 ± 0.206	0.455 ± 0.032	89.00 ± 0.369	0.186 ± 0.030	
RawlsGCN-Graph (Ours)	94.06 ± 0.196	0.016 ± 0.000	80.16 ± 0.859	0.121 ± 0.010	88.58 ± 1.116	0.071 ± 0.006	
RawlsGCN-Grad (Ours)	94.18 ± 0.306	0.021 ± 0.002	74.18 ± 2.530	0.195 ± 0.029	83.70 ± 0.672	0.186 ± 0.068	

Agenda

- 01 Graph in RecSys
- O2 Graph sparse nodes in recommendation
- 03 GNN expressiveness: depth & scope
- O4 Conclusion &Opportunities

3. GNN expressiveness: depth & scope

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, Ren Chen, Decoupling the Depth and Scope of Graph Neural Networks, NeurlPS'21

Recap: Graph Neural Networks

Graph representation learning

Message passing in GNNs

• **Scope**: from what neighbors?

• **Depth**: by how many iterations / layers?

Scalability & Expressivity Challenges

GNN designs by default (on large scale graphs):

Dilemma in deep GNN: scalability-expressivity tradeoff

- **Depth is important**: Experience from general deep learning
- Depth is expensive: Observation from graph message passing
- Depth can cause training challenges: Oversmoothing in GCN

Solution: Don't forget the scope!

Depth-Scope Decoupling

Define *scope* independent of *depth*

- Intuitions
 - Some neighbors are irrelevant

 no need to pass their messages
 - Some neighbors are extra important

 worth passing their messages many times
- Example: Deep (L'-layer) GNN on shallow (L-hop) subgraph

Algorithm: generate embedding for a target node v of the full graph $\mathcal G$

- 1. Extract a subgraph $\mathcal{G}_{[v]}$ around v
- 2. for round i=1 to L':

 Perform message passing along all edges in $\mathcal{G}_{[v]}$
- 3. Take v's embedding from all node embeddings of $\mathcal{G}_{[v]}$

Depth-Scope Decoupling

Alternative view on the input graph

Observed large graph

Union of latent small graphs

Enlarging the GNN design space

Theoretical Justification: Graph Signal Processing Perspective

Oversmoothing of GCN

- Each GCN layer smooths features of direct neighbors
- For u≠v, their scopes are both the full graph G
- Many GCN layers smooths features of the full graph G

Non-smoothing of decoupled-GCN

- GCN layers only smooths the features within $G_{[v]}$
- For $u\neq v$, their scopes can be different $G_{[u]}\neq G_{[v]}$
- Smoothing different set of features produces distinctive embeddings

Theoretical Justification: Function Approximator Perspective

Decoupled-SAGE is more expressive than GraphSAGE

- Consider neighborhood G' & function T for linear comb. of G' features
- GraphSAGE cannot approximate τ well, even if G' is L-hop neighborhood
- Decoupled-SAGE can approximate T where

Scope
$$\mathcal{G}_{[v]} = \mathcal{G}'$$

Depth reduces the error exponentially

Normalized adj. matrix $\begin{bmatrix} 0 & 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/4 & 1/4 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix} \qquad \lim_{\ell \to \infty} \widehat{A}^{\ell} X \qquad \triangle \text{Approximate } \tau$ Neighborhood \mathcal{G}' Markov transition matrix Markov chain convergence theorem

27

Theoretical Justification: Topology Information Perspective

Decoupled-GIN is more expressive than GIN/1-WL

- Challenge for GIN/1-WL: non-isomorphic regular graphs
- Benefit of decoupling: subgraphs of a regular graph may not be regular

Example 3-regular graph where GIN cannot distinguish u and v

Decoupled-GIN can distinguish u and v

3. GNN expressiveness: depth & scope

Evaluation: Setup

Datasets 7 graphs (up to 111M nodes)

inductive & transductive

Backbone models 5 aggregation functions & residue connection

Tasks node classification & link prediction

Training of baselines full batch & GraphSAINT minibatch

Training of proposed $\,$ minibatch of independently constructed $\,G_{[v]}\,$

Practical design: shaDow-GNN (Decoupled GNN on shallow subgraphs)

- Scope: based on 2-hop / PPR (top 200 nodes)
- Depth: 3- / 5-layer

Evaluation: Neighborhood Composition

How many neighbors are \ell hops away from the target node?

- Scope of normal GNN
 - Dominated by distant neighbors
 - Size grows rapidly
- Scope of shaDow-GNN
 - Consists of nearby neighbors
 - Size is small regardless of number of layers (< 200 neighbors)

Evaluation: Baseline Comparisons

- Decoupling improves accuracy at lower computation cost
- Decoupling is a general design principle applicable to various backbones
- Subgraph extraction algorithms are important

Method	Layers	Flickr		Reddit		Yelp		ogbn-arxi	V	ogbn-produ	cts
Wictiod	Layers	Accuracy	Cost	Accuracy	Cost	F1-micro	Cost	Accuracy	Cost	Accuracy	Cost
GCN	3	0.5159 ±0.0017	2E0	0.9532±0.0003	6E1	0.4028 ±0.0019	2E1	0.7170 ±0.0026	1E1	0.7567±0.0018	5E0
GCN	5	0.5217 ± 0.0016	2E2	0.9495 ± 0.0012	1E3	OOM	1E3	0.7186 ± 0.0017	1E3	OOM	9E2
GCN	3	0.5155 ± 0.0027	2E0	0.9523 ± 0.0003	6E1	0.5110 ± 0.0012	2E1	0.7093 ± 0.0003	1E1	0.8003 ±0.0024	5E0
+ GraphSAINT-RW	5	0.5165 ± 0.0026	2E2	0.9523 ± 0.0012	1E3	0.5012 ± 0.0021	1E3	0.7039 ± 0.0020	1E3	0.7992 ± 0.0021	9E2
SHADOW-GCN	3	0.5262 ± 0.0018	(1)	0.9581 ± 0.0004	(1)	0.5255 ± 0.0012	(1)	0.7192 ± 0.0025	(1)	0.7778 ± 0.0030	(1)
+PPR	5	0.5270 ± 0.0024	1E0	0.9583 ± 0.0002	1E0	0.5272 ± 0.0018	2E0	0.7207 ± 0.0030	2E0	0.7844 ± 0.0029	2E0
CronbCACE	3	0.5140 ±0.0014	3E0	0.9653 ± 0.0002	5E1	0.6178±0.0033	2E1	0.7192 ±0.0027	1E1	0.7858 ±0.0013	4E0
GraphSAGE	5	0.5154 ± 0.0052	2E2	0.9626 ± 0.0004	1E3	OOM	2E3	0.7193 ± 0.0037	1E3	OOM	1E3
GraphSAGE	3	0.5176 ± 0.0032	3E0	0.9671 ± 0.0003	5E1	0.6453 ± 0.0011	2E1	0.7107 ± 0.0003	1E1	0.7923 ± 0.0023	4E0
+ GraphSAINT-RW	5	0.5201 ± 0.0032	2E2	0.9670 ± 0.0010	1E3	0.6394 ± 0.0003	2E3	0.7013 ± 0.0021	1E3	0.7964 ± 0.0022	1E3
SHADOW-SAGE	3	0.5288 ± 0.0014	1E0	0.9660 ±0.0003	1E0	0.6493±0.0001	1E0	0.7163±0.0012	1E0	0.7993±0.0012	1E0
+ 2-hop	5	0.5338 ± 0.0038	2E0	0.9661 ± 0.0002	2E0	0.6503 ± 0.0001	2E0	0.7183 ± 0.0012	2E0	0.8014 ± 0.0020	2E0
SHADOW-SAGE	3	0.5344 ± 0.0028	(1)	0.9693 ±0.0002	(1)	0.6512 ± 0.0002	(1)	0.7234 ± 0.0032	(1)	0.7945 ± 0.0021	(1)
+ PPR	5	0.5424 ± 0.0025	2E0	0.9691 ± 0.0003	2E0	0.6502 ± 0.0001	2E0	0.7255 ±0.0013	2E0	0.8043 ± 0.0026	2E0
CAT	3	0.5070±0.0032	2E1	OOM	3E2	OOM	2E2	0.7201±0.0011	1E2	OOM	3E1
GAT	5	0.5164 ± 0.0033	2E2	OOM	2E3	OOM	2E3	OOM	3E3	OOM	2E3
GAT	3	0.5225 ± 0.0053	2E1	0.9671 ± 0.0003	3E2	0.6459 ± 0.0002	2E2	0.6977 ± 0.0003	1E2	0.8027 ± 0.0028	3E1
+ GraphSAINT-RW	5	0.5153 ± 0.0034	2E2	0.9651 ± 0.0024	2E3	0.6478 ± 0.0012	2E3	0.6954 ± 0.0013	3E3	0.7990 ± 0.0072	2E3
SHADOW-GAT	3	0.5383 ±0.0032	(1)	0.9703 ± 0.0010	(1)	0.6549 ±0.0002	(1)	0.7243 ± 0.0011	(1)	0.8014±0.0012	(1)
+ PPR	5	0.5342 ± 0.0023	2E0	0.9710 ± 0.0008	2E0	0.6537 ± 0.0004	2E0	0.7283 ± 0.0027	2E0	0.8094 ± 0.0034	2E 3

Evaluation: Scaling to 100M-Node Graph

OGB Leaderboard comparison

- Higher accuracy
- Orders of magnitude smaller neighborhood size

Memory consumption

- Lowest in both CPU and GPU
- Train & inference the 100M graph on a low-end server

Method	Test accuracy	Val accuracy	Neigh size	
GraphSAGE+incep	0.6707 ± 0.0017	$\begin{array}{c} 0.7032 {\pm} 0.0011 \\ 0.6984 {\pm} 0.0006 \\ 0.6648 {\pm} 0.0020 \end{array}$	4E5	
SIGN-XL	0.6606 ± 0.0019		> 4E5	
SGC	0.6329 ± 0.0019		> 4E5	
SHADOW-GAT ₂₀₀	0.6681±0.0016	0.7019 ± 0.0011	2E2	
SHADOW-GAT ₄₀₀	0.6710 ±0.0015	0.7067 ± 0.0012	3E2	

Method	CPU RAM	GPU memory	
GraphSAGE+incep	80GB	16GB	
SIGN-XL	>682GB	4GB	
SGC	>137GB	4GB	
SHADOW-GAT	80GB	4GB	

H. Zeng, H. Lyu, D. Hu, Y. Xia, J. Luo, Mixture of Weak and Strong Experts on Graphs, ICLR'24 (to appear)

Mixture of Weak and Strong on Graph

- Mixture-of-Experts (MoE) system has effectively improved model capacity
- Improve model capacity without significant trade-offs in computation overhead and optimization difficulty
- Achieve high expressive power, coming at the cost of minor computation overhead

3. Mixture of weak and strong

A novel mixture-of-experts design to combine a weak MLP expert with a strong GNN expert for decoupling the self-feature and neighbor structure modalities in graphs.

- Weak expert is a light-weight Multi-layer Perceptron (MLP)
- Strong expert is an off-the-shelf GNN

A "confidence" gating mechanism based on the dispersion of the weak expert's prediction logits.

$$L = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \left(C\left(\boldsymbol{p}_{v}\right) \cdot L\left(\boldsymbol{p}_{v}, \boldsymbol{y}_{v}\right) + \left(1 - C\left(\boldsymbol{p}_{v}\right)\right) \cdot L\left(\boldsymbol{p}_{v}', \boldsymbol{y}_{v}\right) \right)$$

$$m{p}_v = exttt{MLP}\left(m{x}_v; m{ heta}
ight) ext{ and } m{p}_v' = exttt{GNN}\left(m{x}_v; m{ heta}'
ight)$$

3. Mixture of weak and strong

Fix GNN weights; Train MLP and Gating Module; Gating module computes MLP's confidence

Fix MLP and Gating module weights; Learn GNN; GNN focuses on nodes that MLP is not confident

3. Mixture of weak and strong

Evaluation

On Penn94, the GNN dominates initially. The MLP gradually learns to specialize on a significant portion of the data. Eventually, the whole graph is clearly split between the two experts

For pokec, the specialization is not so strong. When training progresses, the MLP becomes less confidence when the GNN is optimized better; For different graphs, the two experts will adapt their extent of collaboration by minimizing the confidence-weighted loss.

On both Penn94 and ogbn-arxiv, we observe that the convergence quality of the "strong-strong" variant is much worse. The per-epoch execution time for "strong-strong" is also significantly longer, indicating an even longer overall convergence time than the "weak-strong" model.

Agenda

- 01 Graph in RecSys
- O2 Graph sparse nodes in recommendation
- O3 GNN expressiveness: depth & scope
- O4 Conclusion &Opportunities

Conclusion

- Graph learning is not only a buzzword in academia research, but also finds increasing impacts in industry
- When graph learning meets industry, vanilla models usually need modifications to meet the product needs
- When graph learning meets industry, novel frameworks must be developed to address the challenges in expressity and scalability
- Speaker info: https://research.facebook.com/people/xia-yinglong/
- Open source: https://github.com/facebookresearch/shaDow_GNN

Opportunity

Yinglong Xia yxia@meta.com

At Meta, we're connecting people to what they care about, powering new, meaningful experiences, and advancing the state-of-the-art through open research and accessible tooling. Our research on AI covers a variety of topics, ranging from ranking & recommendation, to user understanding, and to AI platform core technologies. Many well known & emerging AI techniques and tools, such as PyTorch and SparseNN model were born here.

Meta provides opportunities for FTE/STE, summer intern, visiting scholar, and university collaboration. We look forward to the possible collaboration.

Visiting Researcher, Al Mentorship Program, Modern Recommendation Systems

