

回顾

算法复杂性分析过程:

T (N,I)

$$T(N,I) = \sum_{i=1}^{k} t_i e_i(N,I)$$

最坏,最好,平均

$$\widetilde{T}(N)$$

渐进分析

渐近分析的符号

在下面的讨论中,对所有n, $f(n) \ge 0$, $g(n) \ge 0$.

(1) 渐近上界记号 0

 $O(g(n)) = \{ f(n) \mid$ 存在正常数c和 n_0 使得对所有 $n ≥ n_0$ 有: $0 ≤ f(n) ≤ cg(n) \}$

(2) 渐近下界记号 Ω

 $\Omega(g(n)) = \{ f(n) \mid$ 存在正常数c和 n_0 使得对所有 $n \ge n_0$ 有: $0 \le cg(n) \le f(n) \}$

(3) 紧渐近界记号Θ

 $\Theta(g(n)) = \{f(n) \mid$ 存在正常数 c_1, c_2 和 n_0 使得对所有 $n ≥ n_0$ 有: $c_1g(n) ≤ f(n) ≤ c_2g(n) \}$

如果 f(n)是集合 O(g(n))中的一个成员, 我们说f(n) 属于 O(g(n))

渐近分析的符号

$$f(n) = \Theta(g(n))$$

$$\cong$$

$$f(n)=g(n)$$

$$f(n)=O(g(n))$$

$$\cong$$
 $f(n) \leq g(n)$

$$f(n) = \Omega(g(n))$$

更多渐近分析的符号

在下面的讨论中,对所有n, $f(n) \ge 0$, $g(n) \ge 0$.

(4) 非紧上界记号 0

 $o(g(n)) = \{f(n) \mid \text{对于任何正常数} c > 0, 存在正数和 n_0 > 0 使得对所有 n \geq n_0$

有: 0 ≤ f(n) < cg(n) }

等价于 $f(n) / g(n) \rightarrow 0$, as $n \rightarrow \infty$.

(5) 非紧下界记号 ω

 $\omega(g(n)) = \{f(n) \mid \text{对于任何正常数} c > 0, 存在正数和 n_0 > 0 使得对所有 n \geq n_0$

有: $0 \le cg(n) < f(n)$ }

等价于 $f(n) / g(n) \rightarrow \infty$, as $n \rightarrow \infty$.

渐近分析中函数比较

$$f(n) = O(g(n)) \rightarrow a \le b;$$

$$f(n) = \Omega(g(n)) \rightarrow a \ge b;$$

$$f(n) = \Theta(g(n)) \rightarrow a = b;$$

$$f(n) = o(g(n)) \rightarrow a < b;$$

$$f(n) = \omega(g(n)) \rightarrow a > b.$$