Ammending the previous conjecture

1 A counterexample to the previous conjecture

(Conjecture 8.3.1)

Suppose the sets $A_1, \ldots A_m$ make up an (n, m, k, λ) -EDF in a group G.

Then for any homomorphism $\phi:G o H$ where H is a group with |H|<|G|

the sets $\phi(A_1), \ldots \phi(A_m)$ satisfy, for some $l \in \mathbb{N}$

$$\sum_{i=1}^m N_i(\delta) = l \qquad orall \delta \in H ackslash e_H$$

where $N_i'(\delta)$ is the number of occurrences of δ as an external difference from the set ϕA_i .

Counterexample 1.1

$$\{0,1,6\},\{2,3,5\}$$
 in \mathbb{Z}_{10} ?

It is an EDF:

$$6-5=1$$
 $2-1=1$ $2-0=2$ $3-1=2$ $6-3=3$ $3-0=3$ $6-2=4$ $5-1=4$ $0-5=5$ $5-0=5$ $1-5=6$ $2-6=6$ $0-3=7$ $3-6=7$ $0-2=8$ $1-3=8$ $1-2=9$ $5-6=9$

Image is: $\{0,1\},\{2,3,0\}$ under the homomorphism $\phi(x)=x\mod 5$

Differences are:

$$0-0=0$$
 $1-0=1$ $2-1=1$ $0-3=2$ $2-0=2$ $3-1=2$ $0-2=3$ $1-3=3$ $3-0=3$ $1-2=4$ $0-1=4$

Note there is 2 occurences of 1 and 4, and 3 occurences of 2 and 3, so this is not an OEDF.

2 Rethinking the conjecture

It was interesting how many of the examples in Post 8 worked however. Could the conjecture hold when the EDF is strong?