FMI, Info, Anul II, 2017-2018 Programare logică

Seminar 1 Recapitulare logica propozițională

Teorie pentru S1.1: Amintim tabelele de adevăr pentru conectorii propoziționali:

p	$\neg \mathbf{p}$	p	q	$\mathbf{p} ightarrow \mathbf{q}$	 p	q	$\mathbf{p} \wedge \mathbf{q}$	p	q	$\mathbf{p}\vee\mathbf{q}$	p	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
0	1	0	0	1	0	0	0	0	0	0	0	0	1
1	0	0	1	1	0	1	0	0	1	1	0	1	0
		1	0	0	1	0	0	1	0	1	1	0	0
		1	1	1	1	1	1	1	1	1	1	1	1

Putem să arătăm că o formulă φ este tautologie (validă, universal adevărată) folosind **metoda tabelului de adevăr**. Dacă v_1, \ldots, v_n sunt variabilele propoziționale care apar în φ , atunci cele 2^n evaluări posibile (i.e, o evaluarea este o funcție $e: \{v_1, \ldots, v_n\} \to \{0, 1\}$) e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Dacă pe coloana lui φ obținem doar valoarea 1, atunci φ este tautologie.

Teorie pentru S1.2: Axiomele calculului propozițional sunt următoarele:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

unde φ , ψ și χ sunt formule. În plus, avem următoarea **regulă de deducție**:

MP (modus ponens)
$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

O Γ-demonstrație este o secvență de formule $\varphi_1, \ldots, \varphi_n$ astfel încât, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- φ_i este axiomă sau $\varphi_i \in \Gamma$,
- φ_i se obţine din formulele anterioare prin MP.

O formulă φ este Γ-**teoremă** dacă există o Γ-demonstrație $\varphi_1, \ldots, \varphi_n$ astfel încât $\varphi_n = \varphi$. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este Γ-teoremă.

Teorema 1 (Teorema deducției). $\Gamma \vdash \varphi \rightarrow \psi \Leftrightarrow \Gamma \cup \{\varphi\} \vdash \psi$.

Teorie pentru S1.3: Amintim următoarele definiții:

- Un literal este o variabilă sau negația unei variabile.
- O formă normală disjunctivă (FND) este o disjuncție de conjuncții de literali

$$(l_1 \wedge \ldots \wedge l_n) \vee \ldots \vee (l'_1 \wedge \ldots \wedge l'_m).$$

• O formă normală conjunctivă (FNC) este o conjuncție de disjuncții de literali

$$(l_1 \vee \ldots \vee l_n) \wedge \ldots \wedge (l'_1 \vee \ldots \vee l'_m).$$

Pentru orice formulă φ există θ_1 în FND şi θ_2 în FNC echivalente cu φ .

Metoda transformărilor sintactice succesive. Putem aduce o formulă în FND şi/sau în FND folosind următoarele transformări:

• înlocuirea implicațiilor și echivalențelor

$$\begin{array}{ccc} \varphi \rightarrow \psi & \sim & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \sim & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

• regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \sim \quad \neg\varphi \land \neg\psi$$

$$\neg(\varphi \land \psi) \quad \sim \quad \neg\varphi \lor \neg\psi$$

• principiului dublei negații

$$\neg\neg\psi \quad \sim \quad \psi$$

• distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \sim \quad (\varphi \lor \psi) \land (\varphi \lor \chi)
(\psi \land \chi) \lor \varphi \quad \sim \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

absorbţia

$$\begin{array}{ccc} \varphi \wedge (\varphi \vee \psi) & \sim & \varphi \\ \varphi \vee (\varphi \wedge \psi) & \sim & \varphi \end{array}$$

Metoda funcției booleene asociate unei formule. Fie φ o formulă, v_1, \ldots, v_n variabilele care apar în φ și e_1, \ldots, e_{2^n} evaluările posibile. Tabelul asociat lui φ definește funcția booleană $F_{\varphi}: \{0,1\}^n \to \{0,1\}$:

v_1	v_2		v_n	φ	x_1	x_2		x_n	$F_{\varphi}(x_1,\ldots,x_n)$
÷	÷	:	÷	÷	i i	:	:	:	:
$e_k(v_1)$	$e_k(v_2)$		$e_k(v_n)$	$f_{e_k}(\varphi)$	$e_k(v_1)$	$e_k(v_2)$		$e_k(v_n)$	$f_{e_k}(\varphi)$
÷	:	:	:	:	:	:	:	:	:

Dacă luăm disjuncția cazurilor în care avem 1 în tabelul de adevăr al funcției booleene obținem o formulă în FND.

Teorie pentru S1.4: O clauză este o mulțime finită de literali, i.e $C = \{L_1, \ldots, L_n\}$ unde L_1, \ldots, L_n sunt literali. O clauză $C = \{L_1, \ldots, L_n\}$ este satisfiabilă dacă $L_1 \vee \ldots \vee L_n$ este satisfiabilă. Clauza vidă $\square = \{\}$ nu este satisfiabilă. O mulțime de clauze $S = \{C_1, \ldots, C_m\}$ este satisfiabilă dacă există o evaluare $e : Var \rightarrow \{0,1\}$ astfel încât $e(C_i) = 1$ oricare $i \in \{1,\ldots,m\}$.

$$\begin{array}{rcl} & clauz = & disjuncție de literali \\ mulțime de clauze & = & FNC \end{array}$$

Regula rezoluției:

$$Rez \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde
$$\{p, \neg p\} \cap C_1 = \emptyset$$
 și $\{p, \neg p\} \cap C_2 = \emptyset$.

Fie $\mathcal S$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal S$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal S$ sau rezultă din clauze anterioare prin rezoluție. Dacă există o derivare prin rezoluție care se termină cu \square , atunci mulțimea inițială de clauze este nesatisfiabilă.

(S1.1) Arătați că următoarea formulă în logica propozițională este o tautologie:

$$(v_1 \lor v_2 \to v_3) \leftrightarrow (v_1 \to v_3) \land (v_2 \to v_3)$$

(S1.2) Fie φ și ψ formule în logica propozițională. Să se arate sintactic că

$$\vdash \varphi \to (\neg \varphi \to \psi).$$

- (S1.3) Fie $\varphi := (p \leftrightarrow \neg q) \to p$ o formulă în logica propozițională. Să se aducă φ la cele două forme normale, folosind, pe rând:
 - (i) metoda transformărilor sintactice succesive,
 - (ii) metoda funcției booleene corespunzătoare formulei φ .
- (S1.4) Să se arate folosind rezoluția că umătoarea formulă este nesatisfiabilă:

$$\varphi := (\neg v_1 \lor \neg v_2) \land ((v_3 \to \neg v_2) \lor v_1) \land (v_1 \to v_2) \land (v_2 \land v_3)$$

(S1.5) [opțional] Fie L un limbaj pentru logica propozițională, cu un vocabular alcătuit din următoarea mulțime de variabile propoziționale $V = \{v_0, v_1, ..., v_n\}$. Să se găsească mulțimea modelelor următoarei formule propoziționale:

$$\Gamma := (\bigvee_{1 \le i < j \le n} (v_i \wedge v_j)) \leftrightarrow (\bigwedge_{1 \le i \le n} (\bigvee_{j \ne i} v_j))$$