2000

Plate

Discrete mathematics - Question 2

What does it mean for a partial order to be well founded?

[3 marks]

Given two well ordered, partially ordered sets (A, \leq_A) and (B, \leq_B) , define the *lexicographic order* on $A \times B$ and show that it is well founded. [5 marks]

Two elements x and y of a partially ordered set are said to be *separated* if for all $k \ge 1$ there is a sequence of elements $z_1, z_2, \ldots z_k$ with $x < z_1 < z_2 < \ldots < z_k < y$.

Give an example of a well founded, partially ordered set that contains infinitely many pairs of separated elements. [5 marks]

Prove that no well ordered, partially ordered set has every pair of elements separated.

[7 marks]

Answer

Every infinite descending sequence of elements is ultimately constant.

 $(a_1, b_1) \le (a_2, b_2) \Leftrightarrow (a_1 <_A a_2) \lor ((a_1 = a_2) \land (b_1 \le_B b_2)).$ Bookwork.

N×N with the lexicographic order: (1,1) is separated from (2,1) which is separated from (3,1) and so on. Take any pair of elements x and y. Wlog x < y. x and y are separated, so find z_1 with $x < z_1 < y$. Now x and z_1 are separated, so find z_2 with $x < z_2 < z_1$. Hence form an infinite descending sequence.