Ethernet Switching

Ethernet Frames

Ethernet: Operates in both data link and physical layer

: Family of networking technologies defined in the

IEEE 802.2 and 802.3 standards

Physical + MAC → 802.3 LLC → 802.2

802 LAN/MAN Standards: (1) LLC Sublayer (TEEE 802.2)
(2) MAC Sublayer
(TEEE 802.3,802.11,802.15)

Responsibilities of MAC. Data encapsulation Accessing the media

Encapsulation

(1) Ethernet Frame

(2) Ethernet Addressing

(3) Ethernet Error detection

Ethernet Frame Fields

Frame size: 69 (min) - 1518 (max) bytes

[extra 18 byte is called preamble field]

< 64 bytes frame: collision fragment / runt frame > 1500 bytes frame: jumbo / baby giant frame

If frame is <64 or >1500, it is dropped (invalid)

* Jumbo frames are usually supported by most Fast

Ethernet / Gigabit Ethernet switches and NICs.

	64-1518 bytes				
Preamble/ SFD	Destination MAC	Source MAC	Type / length	Data	FCS
8 bytes 6 bytes 6 bytes 2 bytes 75-1500 4 bytes					

Ethernet MAC address

- 48-bit address expressed using 12 hexadecimal digits (1 byte = 8 bits) -> (6 bytes = 48 bits)
- 6 bytes in length
- Consists of two parts: OUI and Vendor-Assigned

 3 bytes = 24 bits = 6 hexa) former

 1 atter

Frame Processing

- (1) Device forwards a message to Ethernet network [Ethernet header = Source MAC + Destination MAC]
- (2) NIC receives an Ethernet frame Examines destination MAC and checks if it matches physical MAC stored in RAM

if check != match:
Frame Discard()
else:

Frame Passes ()

* In ethernet, different MAC addresses are used for unicast, broadcast & multicast communications while in Upper_OSI_layers: De-encapsulation() break

ARP: process used to determine destination MAC address associated with an IRVY address

ND: process used to determine destination MAC address associated with an IRG address

Broad cast: FF-FF-FF-FF-FF MAC address

Multiast : 01-00-5E -xx-xx-xx

Switch fundamentals

- Ethernet switch uses MAC addresses for forwarding decisions
- When a switch is turned on, the MAC address table is empty

MAC - CAM C content Addressable Memory)

Switch learning and forwarding

Learning: examine the source MAC address forwarding: find the destination MAC address Filtering: chosen dest. MAC address frame being filtered and forwarded out a single port

Duplex and Bandwidth

Full-duplex: Both ends of the connection can send and receive simultaneously

Half-duplex: Only one connection end can send at a time

Duplex mismatch: One port full-duplex, another half-duplex

Solution: (1) both ports full-duplex (2) enable auto negotiation

Auto -MDIX

Automatic medium-dependent interface crossover

- Configures the interfaces accordingly

- Cisco IOS 12.2 (18) SE or later

- interface configuration command: auto maix