Value Iteration, for estimating $\pi \approx \pi_*$ Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation

Initialize V(s), for all $s \in \mathcal{S}$, arbitrarily except that V(terminal) = 0Loop: $\Lambda \leftarrow 0$

Loop for each
$$s \in S$$
:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \max_{a} \sum_{s' \in P} p(s', r | s, a) [r + \gamma V(s')]$

$$| V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$| \Delta \leftarrow \max(\Delta, |v - V(s)|)$$
until $\Delta < \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{arg\,max}_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma V(s')]$