

Working with public gene expression data

Alexey Sergushichev

Outline

- Exploring gene expression datasets
- Simple analysis methods
- Working with public datasets

Gene Expression Omnibus: the most common repository of gene expression

You can search GEO for datasets

- ✓ Go to GEO datasets:
 https://www.ncbi.nlm.nih.gov/gds
- Search for "macrophages LPS"

LPS-stimulated (and IFNg)

Result close view

Bone marrow derived macrophages

- Interferon-γ and lipopolysaccharide treatment effect on bone marrow derived
- macrophages

Analysis of bone marrow derived **macrophages** (BMDM) treated with interferon-γ (IFN-γ), lipopolysaccharide (**LPS**) or both. IFN-γ and **LPS** stimulate BMDM production of reactive oxygen species (ROS) in immune defense response. Results provide insight into regulatory factors for ROS production in BMDM.

Organism: Mus musculus

Type: Expression profiling by array, count, 4 protocol sets

Platform: GPL1261 Series: GSE53986 16 Samples

Download data: CEL, CHP

DataSet Accession: GDS5196 ID: 5196

PubMed Similar studies GEO Profiles Analyze DataSet

Affymetrix Mouse Genome 430 2.0

GSE identifier

GEO search options

GEO profiles for searching by individual genes

- Search for Acod1

GDS is a curated **GSE**

Click on any GDS ID on previous screen

Both GDS and GSE IDs can be used in Phantasus

GeneQuery: expression-based phenotype searching engine

- Go to http://ctlab.itmo.ru/genequery/searcher/
- https://artyomovlab.wustl.edu/genequery/searcher/

Searching for datasets in GeneQuery

- Paste top 250 genes up-regulated on LPS
- Query species <- mouse</p>
- Database species <- mouse</p>

GeneQuery: results page

GeneQuery-DE

- Similar to genequery, but the modules are based on differential expression
- Early experimental version
- (Don't) go to https://ctlab.itmo.ru/genequery-de/searcher/
- Paste LPS signature genes

GeneQuery-DE results

						Dif
#	Experiment title	Module	log ₁₀ (adj.p _{value})	Overlap	GSE	exprs
1	NRROS negatively regulates ROS in phagocytes during host defense and autoimmunity	up in 'treatment.LPS' compared to 'treatment.Untreated'	-130.48	114/200	GSE53986	•
2	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.Silica.LPS' compared to 'treatment.control'	-110.17	99/200	GSE44294	•
4	Host cell gene expression in Human respiratory syncytial virus (HRSV) infected mouse macrophage cells at 4, 24 hours post infection	up in 'time.24.hp i' compared to 'time.0.hp i'	-108.57	101/200	GSE31378	•
3	Host cells infected by various types of viruses	up in 'time.24.hpi' compared to 'time.0.hpi'	-108.57	101/200	GSE31524	•
6	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.LPS' compared to 'treatment.control'	-108.24	98/200	GSE44294	•
5	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.SPI0.LPS' compared to 'treatment.SPI0'	-108.24	98/200	GSE44294	•
8	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.Silica.LPS' compared to 'treatment.SPIO'	-106.32	97/200	GSE44294	•
7	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.LPS' compared to 'treatment.Silica'	-106.32	97/200	GSE44294	•
10	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.Silica.LPS' compared to 'treatment.Silica'	-106.32	97/200	GSE44294	•
9	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles	up in 'treatment.LPS' compared to 'treatment.SPIO'	-106.32	97/200	GSE44294	•
11	IM001: Influenza A/VN/1203/04 infection of C57BI/6 mouse model -	up in 'treatment.Influenza.A/VN/1203/04.infected.with.10*3.PFU' compared to 'treatment.Time.matched.mock' on 'time.2.day' background	-105.57	94/200	GSE33263	•

RNA-seq data deposition is not as standardized as microarrays

- Different protocols: 3', full-length, 5'
- Different quantification methods:
 - alignment: expectation minimization vs counting
 - alignment-free quantification
 - ...

ARCHS4 project

Table 1 Comparison of processed RNA-seq resources										
RNA-seq resource	ARCHS4	Recount	Toil Recompute	RNAseqDB	Expression Atlas					
Human samples	84,863	61,350	19,931	>17,000	NA					
Mouse samples	103,083	0	0	0	NA					
Total samples	187,946	61,350	19,931	> 17,000	118,209 ^a					
Cost per sample	< \$0.01	\$0.73	\$1.30	NA	NA					

Let's look at GSE110749 in GEO

Series GSE110749

Query DataSets for GSE110749

Status Public on Apr 21, 2018

Title Dimethyl itaconate inhibits secondary wave of NF-kB signaling in

macrophage activation

Organism Mus musculus

Experiment type Expression profiling by high throughput sequencing

Summary Natural metabolite itaconate and its membrane permeable derivative

dimethyl itaconate (DI) selectively inhibit a subset of cytokines during macrophage activation (e.g. IL-1β, IL-6, IL-12 but not TNF-a). Selectivity of DI action stems from the inhibitory effects of secondary, but not primary,

wave of NF-κB signaling.

Overall design Bone marrow-derived macrophages (BMDMs) from C57BL/6 mice were

stimulated with LPS + IFNg for indicated timepoints. Some samples were

treated with dimethyl itaconate for 12h prior to LPS stimulation.

Contributor(s) Bambouskova M, Lampropoulou V, Sergushichev A, Artyomov MN

Citation(s) Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A et al.

> Electrophilic properties of itaconate and derivatives regulate the IκΒζ-ATF3 inflammatory axis. Nature 2018 Apr;556(7702):501-504. PMID: 29670287

Submission date Feb 16, 2018 Last update date Nov 30, 2018 Contact name Maxim N. Artvomov

E-mail martyomov@pathology.wustl.edu Organization name Washington University in St.Louis

Department Immunology&Pathology

Street address 660 S. Euclid Avenue, Campus Box 8118

City St.Louis State/province MO ZIP/Postal code 63110 Country USA

GPL17021 Illumina HiSeg 2500 (Mus musculus) Platforms (1) GSM3015930 Ctrl Ohrs rep1 Samples (20) ∃ Less... GSM3015931 Ctrl Ohrs rep2 GSM3015932 Ctrl 1hrs rep1 GSM3015933 Ctrl 1hrs rep2 GSM3015934 Ctrl 2hrs rep1 GSM3015935 Ctrl 2hrs rep2 GSM3015936 Ctrl 4hrs rep1 GSM3015937 Ctrl 4hrs rep2 GSM3015938 Ctrl 6hrs rep1 GSM3015939 Ctrl 6hrs rep2 GSM3015940 DI Ohrs rep1 GSM3015941 DI Ohrs rep2 GSM3015942 DI 1hrs rep1 GSM3015943 DI_1hrs_rep2 GSM3015944 DI 2hrs rep1 GSM3015945 DI_2hrs_rep2 GSM3015946 DI 4hrs rep1 GSM3015947 DI 4hrs rep2

GSM3015948 DI 6hrs rep1

GSM3015949 DI 6hrs rep2

Open GSE110749 in Phantasus

Search for markers (e.g., Acod1, Nos2, Tnf, Il6, Il12b)

What should be done after loading data?

What should be done after loading data?

- Check log-scale or linear
- Filter probes and genes
- Checking for outliers with k-means, PCA and markers

Let's look again at GSE110749 in GEO

Series GSE110749 Query DataSets for GSE110749 Status Public on Apr 21, 2018 Title Dimethyl itaconate inhibits secondary wave of NF-kB signaling in macrophage activation Organism Mus musculus Expression profiling by high throughput sequencing Experiment type Summary Natural metabolite itaconate and its membrane permeable derivative dimethyl itaconate (DI) selectively inhibit a subset of cytokines during macrophage activation (e.g. IL-1β, IL-6, IL-12 but not TNF-a). Selectivity of DI action stems from the inhibitory effects of secondary, but not primary, wave of NF-kB signaling. Overall design Bone marrow-derived macrophages (BMDMs) from C57BL/6 mice were stimulated with LPS + IFNg for indicated timepoints. Some samples were treated with dimethyl itaconate for 12h prior to LPS stimulation. Contributor(s) Bambouskova M, Lampropoulou V, Sergushichev A, Artyomov MN Citation(s) Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature 2018 Apr; 556(7702): 501-504. PMID: 29670287 Submission date Feb 16, 2018 Last update date Nov 30, 2018 Contact name Maxim N. Artvomov E-mail martyomov@pathology.wustl.edu Organization name Washington University in St.Louis Department Immunology&Pathology Street address 660 S. Euclid Avenue, Campus Box 8118 City St.Louis State/province MO ZIP/Postal code 63110 USA Country

Some datasets aren't processed in ARCHS4 but authors-provided table can be in supplemental

Working with text expression table

- Download counts file from GEO and unpack, or download GSE110749_counts.txt from Google Drive
- Open in Excel/Calc
- Add "treatment" line manually
- Save in text format as GSE110749_counts_ann.txt
 - or as XLSX file GSE110749_counts_ann.xlsx

•	titlo	Ctrl Ohrs ron1	Ctrl Ohrs ron2	Ctrl 1hrs ron1	Ctrl 1hrs ron2	Ctrl 2brs rop1	Ctrl 2hrs ron2 C	trl 4brs ron1	Ctrl Abre ron?	Ctrl 6brs ron1	trl 6brs ron2	DL Obre rep1 [N Obre ron2	DI 1brs ron1
	treatment	Ctrl	Ctrl Cor	Ctrl	Ctrl	Ctrl	Ctrl C	trl 522	Ctrl	Ctrl	Ctrl I	DI C)	DI . [
1	ENSMUSC00000000000000000000000000000000000	023	637	305	4.73	326	570	522	612	347	4.75	463	714	355
4	ENSMUSG000000000003	20	26	13	30	6	10	0	0	0	0	6	27	0
6	ENSMUSG00000000037	5	1	2	0	0	0	0		0	0	0	0	0
7	ENSMUSG00000000049	0	0	0	0	0	0	0	0	0	0	0	0	0
8	ENSMUSG00000000056	435	316	119	212	54	105	12	23	39	60	188	168	163
9	ENSMUSG00000000058	148	142	82	186	60	95	31	49	40	36	122	214	110
10	ENSMUSG00000000078	12109	8717	27631	52634	24103	51526	22181	24186	18669	20819	3523	8595	21196
11	ENSMUSG00000000085	83	68	16	30	13	15	16	16	14	19	62	49	28
12	ENSMUSG00000000088	1277	1069	586	824	384	938	523	722	379	495	730	526	413

Open the table in Phantasus

Need Ensembl to Gene symbol mapping

Annotating rows

- Going back to Phantasus
- ▼ Tools/Annotate/Annotate rows/From database

Differential expression with DESeq2

- RNA-seq specific
- Should be applied for raw counts

Summary

- Datasets can be found:
 - in papers,
 - using GEO datasets,
 - using GEO profiles,
 - using GeneQuery
 - ...
- RNA-seq analysis can require some manual work

Alternatives for Phantasus

- **♥** GEO2R
- GENE-E (deprecated)
- Morpheus
- GENE Pattern
- shinyGEO (https://gdancik.github.io/shinyGEO)
- ✓ GeoDiver (https://www.geodiver.co.uk)
- Degust (<u>http://degust.erc.monash.edu/</u>)
- iDep (<u>http://bioinformatics.sdstate.edu/idep/</u>)
- **②** ...

Feedback

- Bug reports, feature requests and success stories for Phantasus are very welcome!
- ✓ <u>alsergbox@gmail.com</u>
- https://github.com/ctlab/phantasus/issues
- Cite us as: Zenkova D, Kamenev V, Sablina R, Artyomov M, Sergushichev A. phantasus: Visual and interactive gene expression analysis. https://ctlab.itmo.ru/phantasus doi: 10.18129/B9.bioc.phantasus