```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing,svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read_csv(r"C:\Users\pappu\Downloads\fiat500_VehicleSelection_Dataset.csv")
df

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	рор	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','price']]
    df.columns=['age','price']
    df.head(10)
```

Out[3]:

	age	price
0	882	8900
1	1186	8800
2	4658	4200
3	2739	6000
4	3074	5700
5	3623	7900
6	731	10750
7	1521	9190
8	4049	5600
9	3653	6000

```
Untitled - Jupyter Notebook
In [4]: | sns.lmplot(x='age',y='price',data=df)
Out[4]: <seaborn.axisgrid.FacetGrid at 0x22aa1608700>
```



```
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
          # Column Non-Null Count Dtype
                      1538 non-null
                                      int64
              age
              price 1538 non-null
                                      int64
         dtypes: int64(2)
         memory usage: 24.2 KB
In [13]: x=df[['age']]
         y=df['price']
In [14]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [15]: lr=LinearRegression()
In [16]: |lr.fit(x_train,y_train)
Out[16]:
         ▼ LinearRegression
         LinearRegression()
In [17]: lr.score(x_test,y_test)
Out[17]: 0.821255557906873
```

```
In [18]: y_pred=lr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


Ridge Regression

```
In [19]:
    from sklearn.linear_model import Ridge,RidgeCV
    from sklearn.linear_model import Lasso
    from sklearn.preprocessing import StandardScaler
```

```
In [21]: ridgereg=Ridge(alpha=10)
    ridgereg.fit(x_train,y_train)
    train_score_ridge=ridgereg.score(x_train,y_train)
    test_score_ridge=ridgereg.score(x_test,y_test)
    print('\nRidgeModel:')
    print("Train score of Ridge model is {}".format(train_score_ridge))
    print("Test score of Ridge model is {}".format(test_score_ridge))
```

RidgeModel:

Train score of Ridge model is 0.7915522127367757 Test score of Ridge model is 0.8212555579118922

```
In [22]: features=['age']
target=['price']
```

```
In [25]:
         plt.figure(figsize=(10,10))
         plt.plot(features,ridgereg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=7,color='red',label=r'ridgereg.coef_
         plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Re
         plt.xticks(rotation=90)
         plt.legend()
         plt.show()
                1e-9-1.3440614
                                                                                                      ridge; \alpha = 10
                                                                                                      Linear Regression
           -46
           -47
           -48
           -49
           -50
           -51
           -52
```

age

Lasso Regression

```
In [26]: lassoreg=Ridge(alpha=10)
    lassoreg.fit(x_train,y_train)
    train_score_lasso=lassoreg.score(x_train,y_train)
    test_score_lasso=lassoreg.score(x_test,y_test)
    print('\nLassoModel:')
    print("Train score of lasso model is {}".format(train_score_lasso))
    print("Test score of lasso model is {}".format(test_score_lasso))
```

LassoModel:

Train score of lasso model is 0.7915522127367757 Test score of lasso model is 0.8212555579118922

```
In [27]:
         plt.figure(figsize=(10,10))
         plt.plot(features,ridgereg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=7,color='red',label=r'lass
         plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Re
         plt.xticks(rotation=90)
         plt.legend()
         plt.show()
                1e-9-1.3440614
                                                                                                    lasso;\alpha = 10
                                                                                                    Linear Regression
           -46
           -47
           -48
           -49
           -50
           -51
           -52
                                                                  age
In [28]: from sklearn.linear_model import LassoCV
         lasso\_cv=LassoCV(alphas=[0.0001,0.001,0.01,0.1,1,10], random\_state=0).fit(x\_train,y\_train)
         print(lasso_cv.score(x_train,y_train))
         print(lasso_cv.score(x_test,y_test))
         0.7915522127199759
         0.8212555624826794
In [ ]:
```