Homework Solutions 12.1-12.4

6. (a) In R², the equation x = 4 represents a line parallel to the y-axis. In R³, the equation x = 4 represents the set {(x, y, z) | x = 4}, the set of all points whose x-coordinate is 4. This is the vertical plane that is parallel to the yz-plane and 4 units in front of it.

(b) In \mathbb{R}^3 , the equation y=3 represents a vertical plane that is parallel to the xz-plane and 3 units to the right of it. The equation z=5 represents a horizontal plane parallel to the xy-plane and 5 units above it. The pair of equations y=3, z=5 represents the set of points that are simultaneously on both planes, or in other words, the line of intersection

of the planes y=3, z=5. This line can also be described as the set $\{(x,3,5)\mid x\in\mathbb{R}\}$, which is the set of all points in \mathbb{R}^3 whose x-coordinate may vary but whose y- and z-coordinates are fixed at 3 and 5, respectively. Thus the line is parallel to the x-axis and intersects the yz-plane in the point (0,3,5).

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

$$\begin{split} |PQ| &= \sqrt{(7-3)^2 + [0-(-2)]^2 + [1-(-3)]^2} = \sqrt{16+4+16} = 6 \\ |QR| &= \sqrt{(1-7)^2 + (2-0)^2 + (1-1)^2} = \sqrt{36+4+0} = \sqrt{40} = 2\sqrt{10} \\ |RP| &= \sqrt{(3-1)^2 + (-2-2)^2 + (-3-1)^2} = \sqrt{4+16+16} = 6 \end{split}$$

The longest side is QR, but the Pythagorean Theorem is not satisfied: $|PQ|^2 + |RP|^2 \neq |QR|^2$. Thus PQR is not a right triangle. PQR is isosceles, as two sides have the same length.

9. (a) First we find the distances between points:

$$|AB| = \sqrt{(3-2)^2 + (7-4)^2 + (-2-2)^2} = \sqrt{26}$$

$$|BC| = \sqrt{(1-3)^2 + (3-7)^2 + [3-(-2)]^2} = \sqrt{45} = 3\sqrt{5}$$

$$|AC| = \sqrt{(1-2)^2 + (3-4)^2 + (3-2)^2} = \sqrt{3}$$

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest distance. Since $\sqrt{26} + \sqrt{3} \neq 3\sqrt{5}$, the three points do not lie on a straight line.

(b) First we find the distances between points:

$$|DE| = \sqrt{(1-0)^2 + [-2 - (-5)]^2 + (4-5)^2} = \sqrt{11}$$

$$|EF| = \sqrt{(3-1)^2 + [4 - (-2)]^2 + (2-4)^2} = \sqrt{44} = 2\sqrt{11}$$

$$|DF| = \sqrt{(3-0)^2 + [4 - (-5)]^2 + (2-5)^2} = \sqrt{99} = 3\sqrt{11}$$

Since |DE| + |EF| = |DF|, the three points lie on a straight line.

12.

An equation of the sphere with center (2, -6, 4) and radius 5 is $(x - 2)^2 + [y - (-6)]^2 + (z - 4)^2 = 5^2$ or $(x - 2)^2 + (y + 6)^2 + (z - 4)^2 = 25$. The intersection of this sphere with the xy-plane is the set of points on the sphere whose z-coordinate is 0. Putting z = 0 into the equation, we have $(x - 2)^2 + (y + 6)^2 = 9$, z = 0 which represents a circle in the xy-plane with center (2, -6, 0) and radius 3. To find the intersection with the xz-plane, we set y = 0: $(x - 2)^2 + (z - 4)^2 = -11$. Since no points satisfy this equation, the sphere does not intersect the xz-plane. (Also note that the distance from the center of the sphere to the xz-plane is greater than the radius of the sphere.) To find the intersection with the yz-plane, we set x = 0: $(y + 6)^2 + (z - 4)^2 = 21$, x = 0, a circle in the yz-plane with center (0, -6, 4) and radius $\sqrt{21}$.

15.

Completing squares in the equation $x^2+y^2+z^2-2x-4y+8z=15$ gives

$$(x^2-2x+1)+(y^2-4y+4)+(z^2+8z+16)=15+1+4+16 \implies (x-1)^2+(y-2)^2+(z+4)^2=36$$
, which we recognize as an equation of a sphere with center $(1,2,-4)$ and radius 6 .

- **35.** This describes all points whose x-coordinate is between 0 and 5, that is, 0 < x < 5.
- **36.** For any point on or above the disk in the xy-plane with center the origin and radius 2 we have $x^2 + y^2 \le 4$. Also each point lies on or between the planes z = 0 and z = 8, so the region is described by $x^2 + y^2 \le 4$, $0 \le z \le 8$.

9. $\mathbf{a} = \langle 3 - (-1), 2 - 1 \rangle = \langle 4, 1 \rangle$

13. $\mathbf{a} = \langle 2 - 0, 3 - 3, -1 - 1 \rangle = \langle 2, 0, -2 \rangle$

15. $\langle -1, 4 \rangle + \langle 6, -2 \rangle = \langle -1 + 6, 4 + (-2) \rangle = \langle 5, 2 \rangle$

17. $\langle 3, 0, 1 \rangle + \langle 0, 8, 0 \rangle = \langle 3 + 0, 0 + 8, 1 + 0 \rangle$ = $\langle 3, 8, 1 \rangle$

- 25. The vector $8\mathbf{i} \mathbf{j} + 4\mathbf{k}$ has length $|8\mathbf{i} \mathbf{j} + 4\mathbf{k}| = \sqrt{8^2 + (-1)^2 + 4^2} = \sqrt{81} = 9$, so by Equation 4 the unit vector with the same direction is $\frac{1}{9}(8\mathbf{i} \mathbf{j} + 4\mathbf{k}) = \frac{8}{9}\mathbf{i} \frac{1}{9}\mathbf{j} + \frac{4}{9}\mathbf{k}$.
- **26.** $|\langle -2, 4, 2 \rangle| = \sqrt{(-2)^2 + 4^2 + 2^2} = \sqrt{24} = 2\sqrt{6}$, so a unit vector in the direction of $\langle -2, 4, 2 \rangle$ is $\mathbf{u} = \frac{1}{2\sqrt{6}} \langle -2, 4, 2 \rangle$.

A vector in the same direction but with length 6 is $6\mathbf{u} = \mathbf{6} \cdot \frac{1}{2\sqrt{6}} \langle -2, 4, 2 \rangle = \left\langle -\frac{6}{\sqrt{6}}, \frac{12}{\sqrt{6}}, \frac{6}{\sqrt{6}} \right\rangle$ or $\left\langle -\sqrt{6}, 2\sqrt{6}, \sqrt{6} \right\rangle$.

- 1. (a) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, and the dot product is defined only for vectors, so $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ has no meaning.
 - (b) $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$ is a scalar multiple of a vector, so it does have meaning.
 - (c) Both $|\mathbf{a}|$ and $\mathbf{b} \cdot \mathbf{c}$ are scalars, so $|\mathbf{a}|$ $(\mathbf{b} \cdot \mathbf{c})$ is an ordinary product of real numbers, and has meaning.
 - (d) Both \mathbf{a} and $\mathbf{b} + \mathbf{c}$ are vectors, so the dot product $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$ has meaning.
 - (e) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, but \mathbf{c} is a vector, and so the two quantities cannot be added and $\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$ has no meaning.
 - (f) $|\mathbf{a}|$ is a scalar, and the dot product is defined only for vectors, so $|\mathbf{a}| \cdot (\mathbf{b} + \mathbf{c})$ has no meaning

2.
$$\mathbf{a} \cdot \mathbf{b} = \langle -2, 3 \rangle \cdot \langle 0.7, 1.2 \rangle = (-2)(0.7) + (3)(1.2) = 2.2$$

5.
$$\mathbf{a} \cdot \mathbf{b} = \langle 4, 1, \frac{1}{4} \rangle \cdot \langle 6, -3, -8 \rangle = (4)(6) + (1)(-3) + (\frac{1}{4})(-8) = 19$$

6.
$$\mathbf{a} \cdot \mathbf{b} = \langle p, -p, 2p \rangle \cdot \langle 2q, q, -q \rangle = (p)(2q) + (-p)(q) + (2p)(-q) = 2pq - pq - 2pq = -pq$$

15.
$$|\mathbf{a}| = \sqrt{4^2 + 3^2} = 5$$
, $|\mathbf{b}| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$, and $\mathbf{a} \cdot \mathbf{b} = (4)(2) + (3)(-1) = 5$. From Corollary 6, we have $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{5}{5 \cdot \sqrt{5}} = \frac{1}{\sqrt{5}}$. So the angle between \mathbf{a} and \mathbf{b} is $\theta = \cos^{-1} \left(\frac{1}{\sqrt{5}} \right) \approx 63^{\circ}$.

18.
$$|\mathbf{a}| = \sqrt{4^2 + 0^2 + 2^2} = \sqrt{20}$$
, $|\mathbf{b}| = \sqrt{2^2 + (-1)^2 + 0^2} = \sqrt{5}$, and $\mathbf{a} \cdot \mathbf{b} = (4)(2) + (0)(-1) + (2)(0) = 8$. Then $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{8}{\sqrt{20} \cdot \sqrt{5}} = \frac{4}{5}$ and $\theta = \cos^{-1}(\frac{4}{5}) \approx 37^{\circ}$.

25. $\overrightarrow{QP} = \langle -1, -3, 2 \rangle$, $\overrightarrow{QR} = \langle 4, -2, -1 \rangle$, and $\overrightarrow{QP} \cdot \overrightarrow{QR} = -4 + 6 - 2 = 0$. Thus \overrightarrow{QP} and \overrightarrow{QR} are orthogonal, so the angle of the triangle at vertex Q is a right angle.

2.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 2 & 4 & 6 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 4 & 6 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ 2 & 6 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \mathbf{k}$$

= $[6 - (-4)] \mathbf{i} - [6 - (-2)] \mathbf{j} + (4 - 2) \mathbf{k} = 10 \mathbf{i} - 8 \mathbf{j} + 2 \mathbf{k}$

Now $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \langle 10, -8, 2 \rangle \cdot \langle 1, 1, -1 \rangle = 10 - 8 - 2 = 0$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \langle 10, -8, 2 \rangle \cdot \langle 2, 4, 6 \rangle = 20 - 32 + 12 = 0$, so $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Homework Solutions 12.1-12.4

3.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -2 \\ -1 & 0 & 5 \end{vmatrix} = \begin{vmatrix} 3 & -2 \\ 0 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -2 \\ -1 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} \mathbf{k}$$

= $(15 - 0)\mathbf{i} - (5 - 2)\mathbf{j} + [0 - (-3)]\mathbf{k} = 15\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$

Since
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (15\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}) \cdot (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) = 15 - 9 - 6 = 0$$
, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} .

Since
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (15\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}) \cdot (-\mathbf{i} + 5\mathbf{k}) = -15 + 0 + 15 = 0$$
, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{b} .

5.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ \frac{1}{2} & 1 & \frac{1}{2} \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ 1 & \frac{1}{2} \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & -1 \\ \frac{1}{2} & 1 \end{vmatrix} \mathbf{k}$$
$$= \left[-\frac{1}{2} - (-1) \right] \mathbf{i} - \left[\frac{1}{2} - (-\frac{1}{2}) \right] \mathbf{j} + \left[1 - (-\frac{1}{2}) \right] \mathbf{k} = \frac{1}{2} \mathbf{i} - \mathbf{j} + \frac{3}{2} \mathbf{k}$$

Now
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \left(\frac{1}{2}\,\mathbf{i} - \mathbf{j} + \frac{3}{2}\,\mathbf{k}\right) \cdot (\mathbf{i} - \mathbf{j} - \mathbf{k}) = \frac{1}{2} + 1 - \frac{3}{2} = 0$$
 and

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \left(\frac{1}{2}\mathbf{i} - \mathbf{j} + \frac{3}{2}\mathbf{k}\right) \cdot \left(\frac{1}{2}\mathbf{i} + \mathbf{j} + \frac{1}{2}\mathbf{k}\right) = \frac{1}{4} - 1 + \frac{3}{4} = 0$$
, so $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

- 13. (a) Since $\mathbf{b} \times \mathbf{c}$ is a vector, the dot product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is meaningful and is a scalar.
 - (b) $\mathbf{b} \cdot \mathbf{c}$ is a scalar, so $\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$ is meaningless, as the cross product is defined only for two *vectors*.
 - (c) Since $\mathbf{b} \times \mathbf{c}$ is a vector, the cross product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is meaningful and results in another vector.
 - (d) $\mathbf{b} \cdot \mathbf{c}$ is a scalar, so the dot product $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$ is meaningless, as the dot product is defined only for two vectors.
 - (e) Since $(\mathbf{a} \cdot \mathbf{b})$ and $(\mathbf{c} \cdot \mathbf{d})$ are both scalars, the cross product $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$ is meaningless.
 - (f) $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$ are both vectors, so the dot product $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$ is meaningful and is a scalar.
- 28. The parallelogram is determined by the vectors $\overrightarrow{KL} = \langle 0, 1, 3 \rangle$ and $\overrightarrow{KN} = \langle 2, 5, 0 \rangle$, so the area of parallelogram KLMN is

$$\left| \overrightarrow{KL} \times \overrightarrow{KN} \right| = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 3 \\ 2 & 5 & 0 \end{array} \right| = \left| (-15) \ \mathbf{i} - (-6) \ \mathbf{j} + (-2) \ \mathbf{k} \right| = \left| -15 \ \mathbf{i} + 6 \ \mathbf{j} - 2 \ \mathbf{k} \right| = \sqrt{265} \approx 16.28$$

Homework Solutions 12.1-12.4

29.

(a) Because the plane through P, Q, and R contains the vectors \overrightarrow{PQ} and \overrightarrow{PR} , a vector orthogonal to both of these vectors (such as their cross product) is also orthogonal to the plane. Here $\overrightarrow{PQ} = \langle -3, 1, 2 \rangle$ and $\overrightarrow{PR} = \langle 3, 2, 4 \rangle$, so

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \langle (1)(4) - (2)(2), (2)(3) - (-3)(4), (-3)(2) - (1)(3) \rangle = \langle 0, 18, -9 \rangle$$

Therefore, (0, 18, -9) (or any nonzero scalar multiple thereof, such as (0, 2, -1)) is orthogonal to the plane through P, Q, and R.

(b) Note that the area of the triangle determined by P, Q, and R is equal to half of the area of the parallelogram determined by the three points. From part (a), the area of the parallelogram is

$$\left|\overrightarrow{PQ} \times \overrightarrow{PR}\right| = \left|\langle 0, 18, -9 \rangle\right| = \sqrt{0 + 324 + 81} = \sqrt{405} = 9\sqrt{5}$$
, so the area of the triangle is $\frac{1}{2} \cdot 9\sqrt{5} = \frac{9}{2}\sqrt{5}$.