Wydział: WFiIS	Imię i nazwisko 1. Axel Zuziak 2. Marcin Węgla		Rok II	Grupa B	Zespół 03
LABOLATORIUM TECHNIK JĄDROWYCH	Temat: Statyst	Nr ćwiczenia 1+9			
Data wykonania: 04.03.2015	Data oddania: 18.03.2015	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	OCENA:

1 Wstęp teoretyczny

2 Aparatura i wykonanie ćwiczenia

- Neutronowy miernik wodoru
- Wzmacniacz impulsowy
- Zasilacz wysokiego napięcia
- Analizator amplitudy
- Przelicznik

Ćwiczenie rozpoczęto od zapoznania się z aparaturą pomiarową. Przed przystąpieniem do wykonywania pomiarów zmierzono wszystkie wymiary geometryczne zarówno próbek wzorcowych: W1, W2, ...W7 jak i tych, dla których wyznaczano gęstość wodoru: P1, P2, ...P7. Zanotowano wagi poszczególnych próbek. Wykonano pomiary przy pomocy neutronowego miernika wodoru dla wszystkich próbek.

3 Wyniki pomiarów i obliczenia.

3.1 Wyznaczenie objętości i gęstości badanych próbek.

Przy pomocy linijki zmierzono wymiary geometryczne badanych próbek. Wyniki pomiarów i obliczeń przedstawiono w tabeli ??.

Tabela 1: Wymiary geometryczne próbek wzorcowych.

Próbka	Waga [g]	Objętość $[\mathrm{cm}^3]$	Zawartość H [%]
W7	298,4	346,40	15,1
W6	436,25	361,28	8,89
W5	414,5	345,58	8,08
W4	478,44	338,70	6,42
W3	538,28	346,40	5,45
W2	434,46	337,72	2,05
W1	766,3	361,28	0

Tabela 2: Wymiary geometryczne badanych próbek

Próbka	Waga [g]	Objętość V [cm ³]	$\mathrm{U}(\mathrm{V})~\mathrm{[cm^3]}$
P1	181,31	331,89	10,14
P2	371,6	345,58	10,46
P3	511,34	345,58	10,46
P4	590,2	310,37	9,78
P5	593,58	338,70	10,30
P6	416,6	346,40	10,40
P7	439,47	361,28	10,67

3.2 Cechowanie neutronowego miernika wodoru

Do otrzymanych wyników (tabela ??) dopasowano prostą metodą regresji korzystając z programu Gnuplot:

$$J = a_0 + a_1 \rho_H \tag{1}$$

Otrzymano wartości:

$$a_1 = 430112 \pm 1,451 \cdot 10^4$$

$$a_0 = 9487, 86 \pm 1273$$

Zatem otrzymana krzywa cechowania przyjmuje postać:

$$J = 430112\rho_H + 94,87,86$$

Rysunek 1: Krzywa cechowania neutronowego miernika wodoru

Literatura

- [1] http://nucleardata.nuclear.lu.se/toi/
- [2] B. Dziunikowski, S.J. Kalita Ćwiczenia laboratoryjne z jądrowych metod pomiarowcyh, Wydawnictwa AGH, Kraków 1995
- [3] Mariusz Przybycień *Tablice Statystyczne*, dostęp on-line http://home.agh.edu.pl/~mariuszp/wfiis_stat/tablice_ps_wir.pdf