Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 21) (Extrema exponentialverteilter Zufallsvariablen)

n unabhängige Jobs werden zur Bearbeitung in einem Pararallelrechner auf n freie Knoten verteilt, wobei die Bearbeitungszeit T_i von Job i als exponentialverteilt, $T_i \sim Exp(\lambda_i)$, angenommen wird.

- a) (1 P.) Bestimmen Sie die Verteilungsfunktion der gesamten Bearbeitungszeit $X = \max\{T_1, \ldots, T_n\}$, wenn die Bearbeitung beendet wird, sobald *alle* Jobs vollständig bearbeitet wurden.
- b) (2 P.) Bestimmen Sie die Verteilungsfunktion der gesamten Bearbeitungszeit $Y = \min\{T_1, \dots, T_n\}$, wenn die Bearbeitung beendet wird, sobald *ein* Job vollständig bearbeitet wurde.
 - Wie groß ist die mittlere Bearbeitungszeit $\mathbf{E}(Y)$?
- c) (2 P.) Wie groß ist die mittlere Bearbeitungszeit $\mathbf{E}(X)$ im Spezialfall $\lambda = \lambda_1 = \cdots = \lambda_n$?
- d) (2 P.) Es sei n = 5 und die mittlere Bearbeitungszeit pro Job 20(ms). Mit welcher Wahrscheinlichkeit liegt die Gesamtzeit X (bzw. Y) unter 15(ms)?

Aufg. 22) (3 P.) Es sei $U \sim R(0,1)$ und $X = g(U) = -\frac{1}{\lambda} \ln U, \lambda > 0$.

- a) Welche Dichte hat die zufällige Variable X?
- b) Welche Dichte hat die zufällige Variable \sqrt{X} ?

(Hinweis: Benutzen Sie jeweils die Transformationsformel für Dichtefunktionen!)