# **CSE 344**

Lectures 9: Relational Algebra

### Announcements

- Homework 2 due tonight!
- Homework 3 is posted, due next Thursday!
- Webquiz 3 due tomorrow night!
- Reminder about Discussion Board
  - Post your question on HW/WQ here
  - Feel free to answer your friends' questions and discuss concepts (no solution please ©)
  - You can set alert to get email notification
- Today's lecture: 2.4 and 5.1-5.2

### Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
  - Declaring the schema for our data (CREATE TABLE)
  - Inserting data one row at a time or in bulk (INSERT/.import)
  - Modifying the schema and updating the data (ALTER/UPDATE)
  - Querying the data (SELECT)
  - Tuning queries (CREATE INDEX)
- Next step: More knowledge of how DBMSs work
  - Relational algebra and query execution
  - Client-server architecture

# Relational Algebra

# Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

#### Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

# Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection □
- Cartesian product ×, join ⋈
- Rename p
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ



# Why learn RA?

SQL incorporates RA at its center

 When DBMS processes a query, it is translated into an RA expression internally and is used by the query optimizer

Why Algebra?

# Why learn RA?

- Why Algebra?
  - Has both Operators and Atomic Operands
  - -(x+y) \* (z 3)
  - Similarly,

```
\pi_{zip} (\sigma_{disease='heart'}(Patient))
```

### Union and Difference

 $R1 \cup R2$ R1 - R2

### For set operations, R1 and R2

- must have identical schemas
- their attributes must have the same order, i.e. R1(A, B) and R2(B, A) is not allowed

### What about Intersection?

Can you derive R1 

R2 using

union/minus?



$$R2 - (R2 - R1)$$

$$R1 - (R1 - R2)$$

### What about Intersection?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

# Union, Difference, Intersection over Bags

 $R1 \cup R2$ 

R1 - R2

 $R1 \cap R2$ 

R1 R2

A 1 1 What do they mean over bags?

How many 1's in

- R1 ∪ R2: 5
- R1 R2: 1
- R2 R1: 0
- •R1 ∩ R2: 2

### Selection

Returns all tuples which satisfy a condition

 $\sigma_{c}(R)$ 

What does Selection
Correspond to in SQL?
Ans: WHERE clause

- Examples
  - $-\sigma_{\text{Salary} > 40000}$  (Employee)
  - $-\sigma_{\text{name} = \text{"Smith"}}$  (Employee)
- The condition c can be =, <, ≤, >, ≥, <>

### **Employee**

| SSN     | Name  | Salary |
|---------|-------|--------|
| 1234545 | John  | 200000 |
| 5423341 | Smith | 600000 |
| 4352342 | Fred  | 500000 |

### $\sigma_{\text{Salary} > 40000}$ (Employee)

| SSN     | Name  | Salary |
|---------|-------|--------|
| 5423341 | Smith | 600000 |
| 4352342 | Fred  | 500000 |

# Projection

Eliminates columns

$$\Pi_{A1,...,An}(R)$$

What does Projection
Correspond to in SQL?
Ans: SELECT clause

- Example: project social-security number and names:
  - $-\Pi_{SSN, Name}$  (Employee)
  - Answer(SSN, Name)

Different semantics over sets or bags! Why?

#### **Employee**

| SSN     | Name | Salary |
|---------|------|--------|
| 1234545 | John | 20000  |
| 5423341 | John | 60000  |
| 4352342 | John | 20000  |

 $\Pi_{Name,Salary}$  (Employee)

| Name | Salary |
|------|--------|
| John | 20000  |
| John | 60000  |
| John | 20000  |

| Name | Salary |
|------|--------|
| John | 20000  |
| John | 60000  |

Bag semantics

Set semantics

Which is more efficient? Ans: Bag

Checking and removing duplicates is expensive

# Composing RA Operators

#### **Patient**

| no | name | zip   | disease |
|----|------|-------|---------|
| 1  | p1   | 98125 | flu     |
| 2  | p2   | 98125 | heart   |
| 3  | р3   | 98120 | lung    |
| 4  | p4   | 98120 | heart   |

 $\pi_{zip,disease}(Patient)$ 

| zip   | disease |
|-------|---------|
| 98125 | flu     |
| 98125 | heart   |
| 98120 | lung    |
| 98120 | heart   |

$$\sigma_{disease='heart'}(Patient)$$

| no | name | zip   | disease |
|----|------|-------|---------|
| 2  | p2   | 98125 | heart   |
| 4  | p4   | 98120 | heart   |

$$\pi_{zip} (\sigma_{disease='heart'}(Patient))$$

| zip   |
|-------|
| 98120 |
| 98125 |

# Cartesian/Cross Product

Each tuple in R1 with each tuple in R2

 Rare in practice; mainly used to express joins

# Cross-Product Example

#### **Employee**

| Name | SSN      |
|------|----------|
| John | 99999999 |
| Tony | 77777777 |

#### **Dependent**

| EmpSSN   | DepName |
|----------|---------|
| 99999999 | Emily   |
| 77777777 | Joe     |

#### **Employee** Dependent

| Name | SSN      | EmpSSN   | DepName |
|------|----------|----------|---------|
| John | 99999999 | 99999999 | Emily   |
| John | 99999999 | 77777777 | Joe     |
| Tony | 77777777 | 99999999 | Emily   |
| Tony | 77777777 | 77777777 | Joe     |

Disambiguate attributes if necessary Employee.EmpSSN Dependent.EmpSSN

# Renaming

Changes the schema, not the instance

- Example:
  - $-\rho_{N,S}(Employee) \rightarrow Answer(N,S)$
  - Given R(A, B)
    - $\rho_{S}(R)$ : Renamed relation S(A, B)
    - $\rho_{S(X,Y)}(R)$  or  $S = \rho_{X,Y}(R)$ : Renamed relation S(X, Y)
    - Sometimes written as  $S = \rho_{A->X, B->Y}(R)$

Not really used by systems, but needed on paper

### **Natural Join**

• Meaning:  $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$ 

#### Where:

- Selection σ checks equality of all common attributes
- Projection eliminates duplicate common attributes

# Natural Join Example

R

| Α | В |
|---|---|
| Х | Υ |
| X | Z |
| Υ | Z |
| Z | V |

S

| В | С |
|---|---|
| Z | U |
| V | W |
| Z | V |

 $R \bowtie S =$ 

$$\Pi_{ABC}(\sigma_{R.B=S.B}(R \times S))$$

| Α | В | С |
|---|---|---|
| Χ | Z | U |
| X | Z | V |
| Υ | Z | U |
| Υ | Z | V |
| Z | V | W |

# Natural Join Example 2

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |

#### Voters V

| name | age | zip   |
|------|-----|-------|
| p1   | 54  | 98125 |
| p2   | 20  | 98120 |

#### $P \bowtie V$

| age | zip   | disease | name |
|-----|-------|---------|------|
| 54  | 98125 | heart   | p1   |
| 20  | 98120 | flu     | p2   |

### **Natural Join**

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of T = R ⋈ S?
- Ans: T(A, B, C, D, E)
- Given R(A, B, C), S(D, E), what is R  $\bowtie$  S?
- Ans: R X S

- Given R(A, B), S(A, B), what is  $R \bowtie S$ ?
- Ans: R ∩ S

### Theta Join

A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here  $\theta$  can be any condition
- For our voters/disease example:

# Equijoin

• A theta join where  $\theta$  is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

 This is by far the most used variant of join in practice

# Equijoin Example

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |

#### Voters V

| name | age | zip   |
|------|-----|-------|
| p1   | 54  | 98125 |
| p2   | 20  | 98120 |

| age | P.zip | disease | name | V.zip |
|-----|-------|---------|------|-------|
| 54  | 98125 | heart   | p1   | 98125 |
| 20  | 98120 | flu     | p2   | 98120 |

# Join Summary

- Theta-join:  $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$ 
  - Join of R and S with a join condition  $\theta$
  - Cross-product followed by selection  $\theta$
- Equijoin:  $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$ 
  - Join condition  $\theta$  consists only of equalities
  - Projection  $\pi_A$  drops all redundant attributes
- Natural join:  $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$ 
  - Equijoin
  - Equality on all fields with same name in R and in S

### So Which Join Is It?

 When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

### More Joins

#### Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes

#### Variants

- Left outer join
- Right outer join
- Full outer join

# Outer Join Example

#### AnonPatient P

| age | zip   | disease |
|-----|-------|---------|
| 54  | 98125 | heart   |
| 20  | 98120 | flu     |
| 33  | 98120 | lung    |

P 💢 V

#### AnnonJob J

| job     | age | zip   |
|---------|-----|-------|
| lawyer  | 54  | 98125 |
| cashier | 20  | 98120 |

| age | zip   | disease | job     |
|-----|-------|---------|---------|
| 54  | 98125 | heart   | lawyer  |
| 20  | 98120 | flu     | cashier |
| 33  | 98120 | lung    | null    |

# Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10  $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply})$  ( $\sigma_{\text{psize}>10}$  (Part))

Q3: Name of supplier of red parts or parts with size greater than 10  $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \ (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \ (\text{Part}) \ ) \ )$ 

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and z.city = 'Seattle'

SELECT DISTINCT x.name, z.name Product(pid, name, price) FROM Product x, Purchase y, Customer z Purchase(pid, cid, store) WHERE x.pid = y.pid and y.cid = z.cid and Customer(cid, name, city) x.price > 100 and z.city = 'Seattle' x.name,z.name price>100 and city='Seattle' cid=cid pid=pid Customer **Purchase Product** 35

Can you optimize this query plan?

**Product** 

pid=pid



### An Equivalent Expression



# Extended RA: Operators on Bags

- Duplicate elimination  $\delta$
- Grouping γ
- Sorting τ

#### Logical Query Plan

**SELECT** city, count(\*)

**FROM** sales

**GROUP BY city** 

HAVING sum(price) > 100



T1, T2, T3 = temporary tables

sales(product, city, price)

# Typical Plan for Block (1/2)



# Typical Plan For Block (2/2)

having<sub>condition</sub>  $\gamma$  fields, sum/count/min/max(fields)  $\pi$  fields selection condition join condition CSE 344 - Winter 2014

#### How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```

#### How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q-
                             Correlation!
WHERE Q.sstate = 'WA'
  and not exists
    (SELECT *
    FROM Supply P
    WHERE P.sno = Q.sno
        and P.price > 100)
```

#### How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```



CSE 344 - Winte

#### How about Subqueries?

**Un-nesting** 

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA')
EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and Q.sno not in
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

#### How about Subqueries?

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA')
EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)



# From Logical Plans to Physical Plans

#### Example

```
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Seattle'
and x.sstate = 'WA'
```

Give a relational algebra expression for this query

## Relational Algebra

$$\pi_{\text{sname}}(\sigma_{\text{scity= 'Seattle'} \land \text{sstate= 'WA'} \land \text{pno=2}}(\text{Supplier}))$$

## Relational Algebra

Relational algebra expression is also called the "logical query plan"



# Physical Query Plan 1



A physical query plan is a logical query plan annotated with physical implementation details

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

## Physical Query Plan 2



Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

# Physical Query Plan 3

```
(On the fly) (d) \pi_{\text{sname}}
 (On the fly)
             o scity= 'Seattle' ∧sstate= 'WA'
                  (b)
                                    (Index nested loop)
                         sid = sid
(Use index)
                                       Supplier
             Supply
```

(Index lookup on pno ) (Index lookup on sid)

Assume: clustered

CSE 344 - Winter 2014 Doesn't matter if clustered or not

#### Physical Data Independence

- Means that applications are insulated from changes in physical storage details
  - E.g., can add/remove indexes without changing apps
  - Can do other physical tunings for performance
- SQL and relational algebra facilitate physical data independence because both languages are "set-at-a-time": Relations as input and output