# Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA

Orazio P. Attanasio, Costas Meghir & Ana Santiago

December 9, 2015

## Central Questions

- Analyze the impact of monetary incentives on education choices in rural Mexico.
- Discuss the design of effective policies.

## Methodological Point

- Structural estimation methods can be combined with experimental data to give better answers.
- Experimental data provides more variation than observational data
- Structural methods help
  - lacktriangleright interpret experimental results (mechanisms) ightarrow external validity
  - General Equilibrium effects
  - Evaluation of counterfactuals/ policy experiments
- Todd and Wolpin (2006)

## Outline

- PROGRESA and data
- Impact of the program
- Model and Estimation
- Results and Simulations
- Conclusion

## Overview of PROGRESA

- Started in 1997.
- Key provision: 'Eligible' mothers were given grants to keep their children in school.
- A household is eligible for the grant if it is deemed 'poor'.
- 506 low-income rural localities in Mexico were selected.
- 186 of these were randomized out of the program forming the control group to receive program later.
- Grants increasing with grades; higher for girls than for boys in secondary.

## Grant Structure

TABLE 1
The PROGRESA grants

| PROGRESA bimonthly monetary benefits |                   |                   |                   |                   |  |
|--------------------------------------|-------------------|-------------------|-------------------|-------------------|--|
| Type of benefit                      | 1998 1st semester | 1998 2nd semester | 1999 1st semester | 1999 2nd semester |  |
| Nutrition support                    | 190               | 200               | 230               | 250               |  |
| Primary school                       |                   |                   |                   |                   |  |
| 3                                    | 130               | 140               | 150               | 160               |  |
| 4                                    | 150               | 160               | 180               | 190               |  |
| 5                                    | 190               | 200               | 230               | 250               |  |
| 6                                    | 260               | 270               | 300               | 330               |  |
| Secondary school                     |                   |                   |                   |                   |  |
| First year                           |                   |                   |                   |                   |  |
| Boys                                 | 380               | 400               | 440               | 480               |  |
| Girls                                | 400               | 410               | 470               | 500               |  |
| Second year                          |                   |                   |                   |                   |  |
| Boys                                 | 400               | 400               | 470               | 500               |  |
| Girls                                | 440               | 470               | 520               | 560               |  |
| Third year                           |                   |                   |                   |                   |  |
| Boys                                 | 420               | 440               | 490               | 530               |  |
| Girls                                | 480               | 510               | 570               | 610               |  |
| Maximum support                      | 1170              | 1250              | 1390              | 1500              |  |

#### Data

- Baseline survey for all households in 1997.
- Program implemented first for school year 1998/99.
- Surveys conducted in October 1998, March 1999 and November 1999 for all households.
- This paper mainly uses data from October 1998 and also from baseline survey.
- Only look at boys.

# Average impact: Treatment - Control

TABLE 2 Experimental results October 1998

| Difference estimates of the impact of PROGRESA on boys school enrolment |                                                |                      |                         |                            |
|-------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------------------|----------------------------|
| Age group                                                               | Enrolment rates in control villages (eligible) | Impact on<br>Poor 97 | Impact on<br>Poor 97–98 | Impact on.<br>non-eligible |
| 10                                                                      | 0.951                                          | 0-0047               | 0.0026                  | 0.0213                     |
|                                                                         |                                                | (0.013)              | (0.011)                 | (0.021)                    |
| 11                                                                      | 0.926                                          | 0-0287               | 0.0217                  | -0.0195                    |
|                                                                         |                                                | (0.016)              | (0.015)                 | (0.019)                    |
| 12                                                                      | 0.826                                          | 0.0613               | 0.0572                  | 0.0353                     |
|                                                                         |                                                | (0.024)              | (0.022)                 | (0.043)                    |
| 13                                                                      | 0.780                                          | 0.0476               | 0.0447                  | 0.0588                     |
|                                                                         |                                                | (0.030)              | (0.027)                 | (0.060)                    |
| 14                                                                      | 0.584                                          | 0.1416               | 0.1330                  | 0.0672                     |
|                                                                         |                                                | (0.039)              | (0.035)                 | (0.061)                    |
| 15                                                                      | 0.455                                          | 0.0620               | 0.0484                  | 0.1347                     |
|                                                                         |                                                | (0.042)              | (0.039)                 | (0.063)                    |
| 16                                                                      | 0.292                                          | 0.0304               | 0.0355                  | 0.1063                     |
|                                                                         |                                                | (0.038)              | (0.036)                 | (0.067)                    |
| 12-15                                                                   | 0.629                                          | 0.0655               | 0.0720                  | 0.0668                     |
|                                                                         |                                                | (0.027)              | (0.024)                 | (0.022)                    |
| 10-16                                                                   | 0.708                                          | 0.0502               | 0.0456                  | 0.0810                     |
|                                                                         |                                                | (0.018)              | (0.015)                 | (0.026)                    |

Note: standard errors in parentheses are clustered at the locality level.

# Average impact: Diff-in-diff

TABLE A1
Difference in difference estimates—August 1997 to October 1998

| The impact of PROGRESA on boys school enrolment |                      |                         |                           |  |
|-------------------------------------------------|----------------------|-------------------------|---------------------------|--|
| Age group                                       | Impact on<br>Poor 97 | Impact on<br>Poor 97–98 | Impact on<br>non-eligible |  |
| 10                                              | 0.0291               | -0.0007                 | 0.0723                    |  |
|                                                 | (0.027)              | (0.026)                 | (0.060)                   |  |
| 11                                              | 0.0240               | 0-0176                  | -0.0111                   |  |
|                                                 | (0.016)              | (0.014)                 | (0.019)                   |  |
| 12                                              | 0.0478               | 0.0420                  | 0.0194                    |  |
|                                                 | (0.021)              | (0.020)                 | (0.043)                   |  |
| 13                                              | 0.0391               | 0.0396                  | 0.0411                    |  |
|                                                 | (0.028)              | (0.025)                 | (0.049)                   |  |
| 14                                              | 0.0838               | 0.0731                  | -0.0460                   |  |
|                                                 | (0.032)              | (0.027)                 | (0.051)                   |  |
| 15                                              | 0.0963               | 0.0816                  | 0.0617                    |  |
|                                                 | (0.035)              | (0.033)                 | (0.062)                   |  |
| 16                                              | 0.0350               | 0.0472                  | 0.0517                    |  |
|                                                 | (0.036)              | (0.030)                 | (0.059)                   |  |
| 12–15                                           | 0.056                | 0.043                   | 0.015                     |  |
|                                                 | (0.019)              | (0.012)                 | (0.023)                   |  |
| 10–16                                           | 0.048                | 0.053                   | 0.006                     |  |
|                                                 | (0.013)              | (0.012)                 | (0.032)                   |  |

Note: Standard errors in parentheses are clustered at the locality level.

## The ideal experiment

- Conditional grant can have differential benefit from other subsidies.
- The available variation only identifies effect of existence of grant.
- No variation in grant, conditional on class BUT variation in ages within class.
- Model (assume something) about behavior (conditional on age) in order to use this variation.

#### Overview

- Dynamic model
  - Opportunity cost of work
  - ► Habit formation/ State dependence
- Estimated using cross sectional data

#### Overview

- Child chooses to go to school or work → (random) instantaneous utility.
- If work, get a wage.
- Habits → initial condition will matter.
- Possibility of going to school until age 17 → terminal value.
- Time invariant heterogeneity between children.
- Uncertainty about graduating a grade.
- Anticipation effects no evidence.

#### Utility from schooling:

$$u_{it}^{s} = Y_{it}^{s} + \alpha g_{it}$$

$$Y_{it}^{s} = \mu_{i}^{s} + a^{s'} z_{it} + b^{s} \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^{p} x_{it}^{p} + \mathbb{I}(s_{it} = 1) \beta^{s} x_{it}^{s} + \epsilon_{it}^{s}$$

- z<sub>it</sub> : household taste shifter subsumes income
- mu<sup>s</sup><sub>i</sub>: heterogeneity
- ed<sub>it</sub>: 'habit' variable
- $\epsilon_{it}^s$ : extreme value, iid across i and t

Utility from work:

$$u_{it}^{w} = Y_{it}^{w} + \delta w_{it}$$
  

$$Y_{it}^{w} = \mu_{i}^{w} + a^{w'} z_{it} + b^{w} \operatorname{ed}_{it} + \epsilon_{it}^{w}$$

- $\delta$  : differential impact of  $g_{it}$
- $w_{it}$ : (potential) earnings

#### Summarizing,

$$u_{it}^{s} = \alpha g_{it} + \mu_{i}^{s} + a^{s'} z_{it} + b^{s} \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^{p} x_{it}^{p} + \mathbb{I}(s_{it} = 1) \beta^{s} x_{it}^{s} + \epsilon_{it}^{s}$$

$$u_{it}^{w} = \delta w_{it} + \mu_{i}^{w} + a^{w'} z_{it} + b^{w} \operatorname{ed}_{it} + \epsilon_{it}^{w}$$

#### Summarizing,

$$u_{it}^{s} = \alpha g_{it} + \mu_{i}^{s} + a^{s\prime} z_{it} + b^{s} \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^{p} x_{it}^{p} + \mathbb{I}(s_{it} = 1) \beta^{s} x_{it}^{s} + \epsilon_{it}^{s}$$

$$u_{it}^{w} = \delta w_{it} + \mu_{i}^{w} + a^{w\prime} z_{it} + b^{w} \operatorname{ed}_{it} + \epsilon_{it}^{w}$$

ullet Observe schooling choice  $\Longrightarrow$  only the difference between parameters is identified.

$$\begin{aligned} u_{it}^s &= \alpha g_{it} + \mu_i^s + a^{s\prime} z_{it} + b^s \mathrm{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^p x_{it}^p + \mathbb{I}(s_{it} = 1) \beta^s x_{it}^s + \epsilon_{it}^s \\ u_{it}^w &= \delta w_{it} + \mu_i^w + a^{w\prime} z_{it} + b^w \mathrm{ed}_{it} + \epsilon_{it}^w \end{aligned}$$

#### Therefore, WLOG

$$u_{it}^{s} = \gamma \delta g_{it} + \mu_{i} + a' z_{it} + b \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^{p} x_{it}^{p} + \mathbb{I}(s_{it} = 1) \beta^{s} x_{it}^{s} + \epsilon_{it}$$

$$u_{it}^{w} = \delta w_{it}$$

$$u_{it}^s = \gamma \delta g_{it} + \mu_i + a' z_{it} + b \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^p x_{it}^p + \mathbb{I}(s_{it} = 1) \beta^s x_{it}^s + \epsilon_{it}$$

$$u_{it}^w = \delta w_{it}$$

- parameters are differences
- ullet  $\epsilon_{it}$ : logistic distribution (difference between two extreme value)
- $\bullet$   $\gamma$  : impact of grant proportional to impact of wage
- $\mu_i$ : discrete random variable, estimated

$$u_{it}^s = \gamma \delta g_{it} + \mu_i + a' z_{it} + b \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^p x_{it}^p + \mathbb{I}(s_{it} = 1) \beta^s x_{it}^s + \epsilon_{it}$$

$$u_{it}^w = \delta w_{it}$$

- parameters are differences
- $\bullet$   $\epsilon_{it}$ : logistic distribution (difference between two extreme value)
- ullet  $\gamma$  : impact of grant proportional to impact of wage
- $\mu_i$ : discrete random variable, estimated
- Add Dummy for eligibility

$$u_{it}^s = \gamma \delta g_{it} + \mu_i + a' z_{it} + b \operatorname{ed}_{it} + \mathbb{I}(p_{it} = 1) \beta^p x_{it}^p + \mathbb{I}(s_{it} = 1) \beta^s x_{it}^s + \epsilon_{it}$$
$$u_{it}^w = \delta w_{it}$$

- parameters are differences
- $\bullet$   $\epsilon_{it}$ : logistic distribution (difference between two extreme value)
- ullet  $\gamma$  : impact of grant proportional to impact of wage
- $\mu_i$ : discrete random variable, estimated
- Add Dummy for eligibility
- Add Dummy for treatment+ineligible

# Aside: Income pooling

Consider static model

$$U^{s} = \beta^{s} Y + \theta^{s} g$$
  

$$U^{w} = \beta^{w} Y + \theta^{w} w - \alpha$$

- $\beta^{s} = \theta^{s}$  and  $\beta^{w} = \theta^{w}$  : Income pooling
- Alternative estimation strategies:
  - Assume  $\beta^s = \theta^s$  and  $\beta^w = \theta^w$  no variation in g
  - Assume  $\theta^s = \theta^w$  no variation in g
  - Use variation in g

#### Terminal Value function

- At age 18, could measure returns to education but limited data.
- So,

$$V(\mathsf{ed}_{i,18}) = \frac{\alpha_1}{1 + \mathsf{exp}(-\alpha_2 \mathsf{ed}_{i,18})}$$

where  $\alpha_1, \alpha_2 > 0$ .

 Assumption: Only education determines returns, everything else affects education.

#### Value functions

Value from schooling  $(V^s)$  and work  $(V^w)$ 

$$\begin{split} V_{it}^s(\mathsf{ed}_{it}|\Gamma_{it}) &= u_{it}^s + \beta \left\{ p_t^s(\mathsf{ed}_{it}) E \max \left[ V_{it+1}^s(\mathsf{ed}_{it}+1), V_{it+1}^w(\mathsf{ed}_{it}+1) \right] \right. \\ &\left. + (1 - p_t^s(\mathsf{ed}_{it})) E \max \left[ V_{it+1}^s(\mathsf{ed}_{it}), V_{it+1}^w(\mathsf{ed}_{it}) \right] \right\} \\ V_{it}^w(\mathsf{ed}_{it}|\Gamma_{it}) &= u_{it}^w + \beta E \max \left[ V_{it+1}^s(\mathsf{ed}_{it}), V_{it+1}^w(\mathsf{ed}_{it}) \right] \end{split}$$

- $p_t^s(ed_{it})$  calculated from data
- Given this, E over  $\epsilon_{it}$

# Wages

- Need to estimate a child wage equation
  - wage unobserved for school-goers
  - predict future wage for dynamic programming problem
  - GE effects (local)
- Estimate an equation of the following form

$$\mathsf{In}\ \mathsf{w}_{ij} = \mathsf{q}_j + \mathsf{a}_1 \mathsf{age}_i + \mathsf{a}_2 \mathsf{educ}_i + \omega_{ij}$$

Will use point estimates for prediction

## Wages I - endogeneity

#### Education as a regressor

- Selection issue: more able children, higher wage
  - Tobit selection model
- Education choice is a function of wage
  - almost flat relationship between education and wages within village
  - ► Child wage + returns to education mostly through migration

# Wages II - Modeling $q_j$

• Consider the village economy

[labor supply]: 
$$H_k = L_k w_k^{\gamma k}$$
 [production]:  $Q = \left[\delta H_{child}^{\sigma} + (1 - \delta) H_{adult}^{\sigma}\right]^{\frac{1}{\sigma}}$   $\sigma = \frac{\rho - 1}{\rho}, \rho > 0$ 

# Wages II - Modeling $q_j$

In eqilibrium,

$$\ln w_{\textit{child}} = \frac{\rho + \gamma_{\textit{adult}}}{\rho + \gamma_{\textit{child}}} \ln w_{\textit{adult}} - \left[ \frac{1}{\rho + \gamma_{\textit{child}}} \ln \left( \frac{L_{\textit{child}}}{L_{\textit{adult}}} \right) + \kappa \right]$$

- PROGRESA  $\implies \left(\frac{L_{child}}{L_{adult}}\right)$  goes down.
- Identification: assume all parameters are constant across localities, conditional on treatment.
- $w_{adult}$  is a sufficient statistic for  $w_{child}$ .
- Also,  $w_{adult}$  is excluded from the selection equation.

## Estimated Wage Equation

$$\begin{split} \ln w_{ij} &= -0.983 + 0.0605 P_j + 0.883 \ln w_j^{ag} + 0.066 \text{age}_i \\ &\quad + 0.0116 \text{educ}_i - 0.056 \text{Mills}_i + \bar{\omega}_{ijt} \end{split}$$

- Mills insignificant
- Small coefficient on educ
- At individual level: age
- At village level: adult wage ( $\ln w_j^{ag}$ ) and  $P_j$



## Initial Conditions problem

- The issue:  $ed_{it}$  term in utility function, but only observe cross section.
- Specify a reduced form

$$\operatorname{ed}_{it} = h'_i \lambda + \xi \mu_i$$

- $\mu_i$  captures the initial conditions (endogeneity) problem.
- $h_i$  instrument distance to school changes between the two time periods.
- Ordered probit with age dependent thresholds.

#### Estimation

- Estimate 3 specifications:
  - Without dummy for treatment + ineligible
  - With dummy
  - Only control group without variation in grants
- Wage equation estimated separately.
- MLE for the main model

#### Estimation

#### To obtain the log-likelihood function:

- Guess parameters and use data to
- Solve the dynamic programming problem for full state space
  - Initial conditions equation enters value function
- Calculate log-likelihood
  - Value functions enter as latent variables
  - ▶ 3 point support for  $\mu_i$  distribution
  - Logistic distribution allows for parametrization

Maximize likelihood iteratively.

## Results - $\mu_i$

TABLE 3
The distribution of unobserved heterogeneity

|                                   | A       | В       | C            |
|-----------------------------------|---------|---------|--------------|
| Point of Support 1                | -9.706  | -8.327  | -4.290       |
|                                   | 1.041   | 1.101   | 2.46         |
| Point of Support 2                | -14.466 | -13.287 | -17.62       |
|                                   | 1.173   | 1.208   | <i>3.144</i> |
| Point of Support 3                | -5.933  | -4.301  | -0.267       |
| ••                                | 0.850   | 0.941   | 2.45         |
| Probability of 1                  | 0.513   | 0.518   | 0.490        |
| •                                 | 0.024   | 0.023   | 0.032        |
| Probability of 2                  | 0.342   | 0.335   | 0.270        |
| •                                 | 0.022   | 0.021   | 0.017        |
| Probability of 3                  | 0.145   | 0.147   | 0.240        |
| Load factor for initial condition | 0.108   | 0.102   | 0.068        |
|                                   | 0.016   | 0.014   | 0.013        |

Notes: Column A: eligible dummy only; B: eligible dummy and non-eligible in treatment village dummy. C: model estimated on control sample only. Asymptotic standard errors in italics.

TABLE 4
Equation for initial conditions

|                                             | Α       | В       | C        |
|---------------------------------------------|---------|---------|----------|
| Poor                                        | -0.275  | -0.243  | -0.280   |
|                                             | 0.030   | 0.046   | 0.051    |
| Ineligible individual in a PROGRESA village | _       | 0.057   | _        |
|                                             | _       | 0.055   | _        |
| Father's education                          |         |         |          |
| Primary                                     | 0.180   | 0.181   | 0.218    |
| •                                           | 0.025   | 0.025   | 0-04262  |
| Secondary                                   | 0.262   | 0.264   | 0.281    |
| ,                                           | 0.030   | 0.030   | 0.05302  |
| Preparatoria                                | 0.559   | 0.558   | 0.499    |
|                                             | 0.0160  | 0.057   | 0.09107  |
| Mother's education                          |         |         |          |
| Primary                                     | 0.159   | 0.158   | 0.231    |
| ,                                           | 0.026   | 0.026   | 0.04446  |
| Secondary                                   | 0.316   | 0.314   | 0.398    |
| ,                                           | 0.030   | 0.030   | 0.05139  |
| Preparatoria                                | 0.301   | 0.301   | 0.334    |
|                                             | 0.061   | 0.061   | 0.09740  |
| Indigenous                                  | -0.005  | 0.006   | 0.133    |
|                                             | 0.036   | 0.026   | 0.0461   |
| Availability of Primary 1997                | 0.373   | 0.372   | 0.691    |
| ,,                                          | 0.073   | 0.073   | 0.19003  |
| Availability of Secondary 1997              | 0.808   | 0.804   | -0.568   |
| , ,                                         | 0.188   | 0.188   | 0.349    |
| Kilometer to closest secondary school 97    | 0.00004 | 0.00004 | -0.0002  |
|                                             | 0.00024 | 0.00003 | 0.00007  |
| Availability of Primary 1998                | -0.261  | -0.264  | -0.449   |
| ,,                                          | 0.127   | 0.126   | 0.235    |
| Availability of Secondary 1998              | -0.845  | -0.841  | 0.516    |
|                                             | 0.187   | 0.187   | 0.348    |
| Kilometer to closest secondary school 98    | -0.0001 | -0.0001 | 0.00015  |
| your                                        | 0.00003 | 0.00003 | 0-00007  |
| Cost of attending secondary                 | 0.00006 | 0.0001  | -0.00019 |
|                                             | 0.00024 | 0.00024 | 0.00037  |

Notes: As in Table 3. State dummies included. Availability means school in the village.

TABLE 5
Parameter estimates for the education choice model

|                                                   | A          | В          | С        |
|---------------------------------------------------|------------|------------|----------|
| Wage                                              | 0.134      | 0-168      | 0.357    |
|                                                   | 0.043      | 0.045      | 0.100    |
| PROGRESA grant                                    | 3.334      | 2-794      | _        |
| -                                                 | 1.124      | 0.796      | _        |
| Parameter in terminal function $ln(a_1)$          | 5-876      | 5-886      | 6-59     |
|                                                   | 0.115      | 0.113      | 0.175    |
| Parameter in terminal function $ln(a_2)$          | -1.276     | -1-286     | -1.62    |
| 1 27                                              | 0.025      | 0-024      | 0.089    |
| Poor                                              | 0.676      | 0-105      | 0.431    |
|                                                   | 0.154      | 0.215      | 0.274    |
| Ineligible individual in a PROGRESA village       |            | -1-079     |          |
| •                                                 |            | 0.261      |          |
| Father's Education - Default is less than primary |            |            |          |
| Primary                                           | -0.462     | -0-509     | -0.486   |
|                                                   | 0.120      | 0.123      | 0.217    |
| Secondary                                         | -0.746     | -0.803     | -0.959   |
| *                                                 | 0.147      | 0.150      | 0.261    |
| Preparatoria                                      | -1.794     | -1-819     | -2.176   |
|                                                   | 0.323      | 0-328      | 0-558    |
| Mother's Education - Default is less than primary |            |            |          |
| Primary                                           | -0.488     | -0.488     | -0.870   |
| ,                                                 | 0.123      | 0.126      | 0.233    |
| Secondary                                         | -0.624     | -0-613     | -1.119   |
|                                                   | 0.143      | 0.145      | 0.254    |
| Preparatoria                                      | -1.576     | -1-681     | -2.158   |
|                                                   | 0.351      | 0.355      | 0.645    |
| Indigenous                                        | -0.783     | -0.777     | -1.018   |
|                                                   | 0.132      | 0-135      | 0.241    |
| Availability of Primary 1998                      | 3-600      | 3-765      | 3.092    |
|                                                   | 0.285      | 0.295      | 0.499    |
| Availability of Secondary 1998                    | -0.030     | -0.074     | 0.789    |
| * *                                               | 0.193      | 0-197      | 0.425    |
| Kilometer to closest secondary school 98          | 0.0003     | 0-0003     | 0.00078  |
|                                                   | 0.00005    | 0.00005    | 0.00014  |
| Cost of attending secondary                       | 0.007      | 0.007      | 0.013    |
| • •                                               | 0.001      | 0-001      | 0.0033   |
| Age                                               | 2.291      | 2-249      | 2.903    |
| =                                                 | 0.160      | 0-157      | 0.354    |
| Prior years of education                          | -2.785     | -2-896     | -3.621   |
| -                                                 | 0.256      | 0.261      | 0.621    |
| Discount rate                                     | 0.95       | 0.96       | 0.975    |
| Log-Likelihood                                    | -23.403.98 | -23.395-31 | -8862-34 |

18-66

0.0

16-14

0.0

State dummies included *Notes* as in Table 3. LR test: equal effect of grant and wage  $\chi_1^2$ p-value

1



## Simulations - I

- Two scenarios
  - grant (actual)
  - no grant (counterfactual)
    - ★ GE wage
    - ★ unchanged wage
- For full sample and only for control

## Simulations - I



- Age pattern, GE effect
- Only control sample



## Simulations - II



Experiment: Revenue neutral restructuring of grant profile

## Simulations - II



Impact: Almost double of original scheme

## Simulations - II



But: Not appropriate if credit constrained or early age health investments

## Simulations - III



Experiment: Reduce wage by average grant size

## Simulations - III



Experiment: Limit max school distance to 3 km



#### Conclusion

- Study the effect of PROGRESA on school choice.
- Structural modeling helps
  - Grants vs wages
  - General equilibrium
  - Anticipation effect
  - Counterfactuals
- Usefulness of using full variation in data.