Geometry of Space, Time and Other Things The Mathematics of Fiber Bundles

Linas Vepstas

June 2019

Introduction

Fiber Bundles

- Central to physics: classical mechanics, electrodynamics, quantum field theory, gravitation, superconductivity.
- It was not always that way!
- Unified (pseudo-)Riemannian Geometry (i.e. Gravitation) with Symplectic Geometry (classical mechanics) with Electrodynamcis with Yang-Mills theory with Superconductivity with Fermions (QFT)
- A single, unified framework for (almost) all of the fundamental theories of physics.
- And that is the topic today.

Forumlas and Intuition

Zen Koans

- There will will be a lot of equations today
- More than several semesters worth ...
- Notation is KEY: commonplace, widespread notation
- What does those formulas MEAN? Intuitively ??
- Interpretation of poetry, jokes of Zen koans
- Inutition alone is FAULTY. Formulas are PRECISE!
- Equations are tie-breakers for intuitive ideas
- Creativity and imagination are KEY
- It will be dizzying

Tee-shirt Equations

Before fiber bundles, it was a hot mess:

Classical mechanics was Hamilton's equations

$$\dot{p} = -\frac{dH}{dq}$$
 $\dot{q} = \frac{dH}{dp}$

Electrodynamics was Maxwell's equations

$$\vec{\nabla} \cdot \vec{E} = 4\pi \rho \quad \vec{\nabla} \times \vec{B} = 4\pi \vec{j} \quad \vec{\nabla} \cdot \vec{B} = 0 \quad \vec{\nabla} \times \vec{E} = 0$$

Gravitation was Einstein's equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R - \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}$$

Superconductivity was the Ginzberg-Landau equations

$$\mathscr{L} = \alpha \left| \phi \right|^2 + \beta \left| \phi \right|^4 + \frac{1}{2m} \left| \left(-i\hbar \vec{\nabla} - 2e\vec{A} \right) \phi \right|^2 + \frac{\left| \vec{B} \right|^2}{2}$$

Standard Model = Yang-Mills + Higgs + Fermions

Intuitive Modern Geometry

Outline

- Manifold M as gluing of \mathbb{R}^n coordinate charts
- (Integrable) vector fields as hair/fur that can be combed
- Tangent vector space T_pM
- Back to basics: Vector spaces; notation: en as basis vector
- A frame field as $e_n(p)$ varying from point to point p.
- Frame fields can twist around, rotate, swirl.
- The rotation matrix A. The connection $A_i = \Gamma_{ij}^{\ \ \ \ \ \ \ }$ aka Christoffel symbol
- Rotations & rotation matrices in 3D
- Curvature as total rotation after walking a loop.
- Parallel transport
- Geodesics

Charts and Manifolds

An atlas is:

- A collection of regions U_{α}
- A collection of charts $\varphi_{\alpha}:U_{\alpha}\to\mathbb{R}^n$
- A collection of "transition functions" $\varphi_{lphaeta}=\varphi_{eta}\circ \varphi_{lpha}^{-1}$

Vector Fields

A vector field is:

- A collection of vectors \vec{v}_p
- One for each point $p \in U_{\alpha}$
- Smooth, differentiable, integrable

Tangent vector spaces

The tangent vector space T_pM is:

- A point $p \in U_{\alpha}$ (that is, a point in $p \in M$)
- The collection of ALL possible vectors $\vec{v}_p \in T_p M$

Tangent bundles - Fiber bundles

- The tangent bundle TM is the set of all T_pM for all $p \in M$
- The sphere bundle SM is a set of spheres S_pM , one for each $p \in M$
- The circle bundle is a set of circles, one for one for each $p \in M$
- The fiber bundle E is a set of fibers F, one for one for each p∈ M

Fiber Bundles

Properties of Fiber bundles

- Locally, they are trivial products $U_{\alpha} \times F$ of a chart U_{α} and a fiber F
- Neighboring fibers need to be glued (soldered) together; the connection!
- Works best when fibers have some natural symmetry
- A group G that moves you up and down a fiber F

Horizontal and Vertical Bundles

Gluing together neighboring fibers allows:

- Movement (horizontally) from fiber to fiber
- While carrying a coordinate frame (parallel transport)
- Closed paths in horizontal (base) space typically DON'T close on the bundle!
- That is, curvature!

Unifying Principle

Fiber bundles in Physics

- Circle bundles U(1) Electromagnetism
- Frame bundles GL(n,R) General Relativity (Reimannian geometry)
- Lie groups SU(3) Quarks & Gluons (strong force)
- Lie groups SU(2) Weak force (radioactive decay)
- Tangent bundles Position and Momenta Classical Mechanics (Symplectic geometry)
- Spinor bundles Fermions
- Fischer Information (Kullback-Leibler divergence) Quantum Mechanics

Interlocking tools

All fiber bundles have

- Horizontal and Vertical subspaces
- A connnection one-form (Christoffel symbols)
- Geodesics (shortest paths)
- Parallel transport (carrying around a coordinate frame)
- Curvature two-form (curvature tensor)
- Torsion and Contorsion tensors

.

Some have

- A metric
- Ricci and scalar curvature
- Solder form (canonical one-form)

Back to Basics

Outline

- Groups
- Actions
- Vectors
- Rotations
- Infinitessimal rotations (generators)
- Derivatives

Groups

Examples of Groups:

- Rotation group
- Translation group
- Permutation group

A Group G is a set where:

- Inverses: for all $g \in G$ $\exists g^{-1} \in G$ s.t. $gg^{-1} = e$
- Identity element: $e \in G$ s.t. $\forall g \in G$ $e \cdot g = g$
- Closure: For all $g, h \in G \exists k \in G \text{ s.t. } gh = k$

Group Actions

A group G acting on a set X:

- Notation: $G: X \to X$ with $g: x \mapsto y$ also written as $g \cdot x = y$ or $x \xrightarrow{g} y$
- Identity: $e \cdot x = x$
- Associative: $(g \cdot (h \cdot x)) = (g \cdot h) \cdot x$
- Invertable: $(g^{-1} \cdot (g \cdot x)) = (g^{-1} \cdot g) \cdot x = e \cdot x = x$ (non-dissipative)

Vectors and Bases

A Vector $\vec{v} \in \mathbb{R}^n$ in *n*-dimensional space is:

• A collection of *n* real numbers: $\vec{v} = (v^{(1)}, v^{(2)}, v^{(3)}, \dots, v^{(n)})$

A vector space basis for \mathbb{R}^n is a collection of n vectors $\{\vec{e}_k : 1 \le k \le n\}$:

• Where $e_1 = (1,0,0,\cdots,0)$ and $e_2 = (0,1,0,\cdots,0)$ and $e_3 = (0,0,1,0,\cdots,0)$ and ...

Passive and Active Rotations

- A rotation changes the direction of a vector: $\vec{x}' = R\vec{x}$
 - Body coordinates vs. Space coordinates
- A rotation can be represented by a matrix
 - In 2D:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left[\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{array}\right] \left(\begin{array}{c} x\\ y\end{array}\right)$$

Rotations in N dimensions

A rotation changes the direction of a vector: $\vec{x}' = R\vec{x}$

In n dimensions :

$$\begin{pmatrix} x^{(1)'} \\ x^{(2)'} \\ \vdots \\ x^{(n)'} \end{pmatrix} = \begin{bmatrix} \cos\theta & 0 & \cdots & 0 & -\sin\theta & \cdots & 0 \\ 0 & 1 & & 0 & & & 0 \\ \vdots & & \ddots & & \vdots & & & \\ 0 & & & 1 & 0 & & & \vdots \\ \sin\theta & 0 & \cdots & 0 & \cos\theta & & & & \\ \vdots & & & & & \ddots & 0 \\ 0 & 0 & & \cdots & & 0 & 1 \end{bmatrix} \begin{pmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{pmatrix}$$

Infinitessimal Rotations

An infinitessimal rotation:

$$\vec{x} + \delta \vec{x} = (I + \delta R)\vec{x} = \vec{x} + \delta R \vec{x} = \vec{x} + \left(\frac{dR}{d\theta}\Big|_{\theta=0}\delta\theta\right)\vec{x}$$

• In 2D:

$$\vec{x} = \begin{pmatrix} x' \\ y' \end{pmatrix} = R\vec{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

but:

$$\frac{d\cos\theta}{d\theta}\bigg|_{\theta=0} = 0$$
 and $\frac{d\sin\theta}{d\theta}\bigg|_{\theta=0} = 1$

SO

$$\delta \vec{x} = \delta R \vec{x} = \frac{dR}{d\theta} \bigg|_{\theta=0} \delta \theta \vec{x} = \delta \theta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{x} = \delta \theta L \vec{x}$$

• The matrix *L* is called the "the infinitessimal generator of rotations" AKA "the angular momentum operator".

Partial derivatives

Given a curve $\gamma(t)$ in a manifold M, such that the curve is is tangent to the vector X at $p \in M$, the Lie derivative of a function f on M is:

$$\mathscr{L}_X f(p) = \left. \frac{f(\gamma(t)) - f(\gamma(0))}{t} \right|_{p=\gamma(0)}$$
 and $x=\gamma(0)$

Notation: the vector (field) X is written as

$$X = X^{\mu} \frac{\partial}{\partial x^{\mu}} = X^{\mu} \partial_{\mu} = X^{\mu} e_{\mu}$$

Differential forms

The dual basis: $e^{\mu}\left(e_{v}\right)=e^{\mu}e_{v}=\delta_{v}^{\mu}$ The Kronecker delta: $\delta_{v}^{\mu}=egin{cases} 1 & \text{when } \mu=v \\ 0 & \text{when } \mu\neq v \end{cases}$

Partial deriviatives: $\partial_{\mu} = e_{\mu}$ Differential forms: $dx^{\mu} = e^{\mu}$ They are dual: $dx^{\mu}(\partial_{\nu}) = \delta^{\mu}_{\nu}$

A function that takes a vector and spits out a number ("counting surfaces"):

Examples of differential forms

- The 1-form: df is like the gradient $\vec{\nabla} f$
- "Counting surfaces" are topographic contours (slices of const height)
- The 2-form: $dx \wedge dy$ is like the curl: $\vec{\nabla} \times \vec{v}$
- The 3-form $dx \wedge dy \wedge dz$ is like the volume determinant
- $\det I = \det [e_1, e_2, e_3]$

Wedge products

$$arepsilon = arepsilon_{\mu} dx^{\mu}$$

$$\eta = \eta_{\mu} dx^{\mu}$$

$$\varepsilon \wedge \eta = \varepsilon_{\mu} \eta_{\nu} dx^{\mu} \wedge dx^{\nu}$$

Antisymmetric: $dx \wedge dy = -dy \wedge dx$

Linear: adx + bdx = (a+b) dx

Tensorial: $T_{\mu\nu\cdots\rho} dx^{\mu} \wedge dx^{\nu} \wedge \cdots \wedge dx^{\rho}$

Covariant derivative

Joins neighboring fibers: D = d + A

- Alternate notation: $D^{\mu} = dx^{\mu} + A^{\mu}$ when moving in direction μ
- A is an infinitessimal rotation matrix: $A^{\mu} = [A^{\mu}]_{ij} = \Gamma^{\mu}_{ij}$
- Connection=Christoffel symbols
- Fiber coordinates: index i, j act on the fiber
- Base space coordinates: μ is a direction in the base space.

Curvature

Moving (alternately) in two directions:

- Notation: Field strength 2-form: $F = D \land D = dA + A \land A$
- Notation: Curvature tensor: $R(X,Y) = \nabla_X \nabla_Y \nabla_Y \nabla_X [X,Y]$

Fig 1.2

Torsion

Moving (alternately) in two directions:

- Notation: Torsion form: $\Theta = D\theta = d\theta + A \wedge \theta$
- ... where θ is the solder form: $\theta = \sum_i p_i dq_i$
- Notation: Torsion tensor: $T(X, Y) = \nabla_X Y \nabla_Y X [X, Y]$
- There is one unique torsionless connection: the Levi-Civita connection

Electromagnetism

E&M is (just) a circle bundle!

- Each group element: $g = e^{i\theta}$
- ullet Vector potential: $A_{\mu}=g^{-1}\partial_{\mu}g=\left(ec{A},\phi
 ight)$

• Curvature
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \begin{bmatrix} 0 & E_{x} & E_{y} & E_{z} \\ -E_{x} & 0 & -B_{z} & B_{y} \\ -E_{y} & B_{z} & 0 & B_{x} \\ -E_{z} & -B_{y} & B_{x} & 0 \end{bmatrix}$$

- ...or $\vec{E} = \vec{\nabla} \phi$ and $\vec{B} = \vec{\nabla} \times \vec{A}$
- Choice of gauge == choice of coordinates on the circle!
- Geodesics go "splat" on an electric charge!
- Holonomy is the Bohm-Aharonov effect!

Frame fields (Vierbeins)

A frame field is:

- A collection of basis vectors $\{\vec{e}_k(p)\}$
- One for each point $p \in U_{\alpha}$

Metric Tensor

The metric is (just) a product of vierbeins (frames)

$$g_{\mu
u} = e_{\mu} \cdot e_{
u} = e_{\mu}^a \eta_{ab} e_{
u}^b$$
 where $\eta_{ab} = \left[egin{array}{ccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight]$

Gives the length of a vector:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v^a v^b \eta_{ab}} = \sqrt{(v^{(x)})^2 + (v^{(y)})^2 + (v^{(z)})^2 - (v^{(t)})^2}$$

General Relativity

General Relativity

General Relativity is (just) a frame bundle!

- Each group element: $g \in SO(3,1)$
- Connection: $A_{\mu}=g^{-1}\partial_{\mu}g=\Gamma_{\mu}^{\
 ho\sigma}$
- Curvature: $F = dA + A \wedge A$
- ... that is, curvature $R_{\mu\nu}^{\ \rho\sigma}=\partial_{\mu}A_{\nu}^{
 ho\sigma}-\partial_{\nu}A_{\mu}^{\ \rho\sigma}+rac{1}{2}\left[A_{\mu},A_{\nu}
 ight]^{
 ho\sigma}$
- Choice of gauge == choice of coordinate frame!
- Geodesics go "splat" on a black hole singularity!

Conclusion

Unification of Physics

- Fiber bundles unify all of the fundamental physics theories
- So what is there left to unify?
- Well, why/how *U*(1) × *SU*(2) × *SU*(3) × *SO*(3,1)?
- Kaluza-Klein theory (the 5-sphere)
- Affine Lie groups (string theory)
- Supersymmetry (fermions)

Placeholder

Geometry with Formulas

The hardest part with formulas is (1) there are so many (2) there are many different ways of writing down the *same* equations, using wildly different notation.

- Introduce Lie derivative L_Xf
- Introduce covariant derivative D = d+A Rosetta stone of different notations
- Geodesics as solutions of Hamilton's equations i.e. as linear, first-order diffeq NOT second order!

$$\dot{p} = -\frac{dH}{dq}$$
 $\dot{q} = \frac{dH}{dp}$

where *H*=squared-length-of-curve

- exp as the map that moves along geodesics
- Geodesic completeness

Metric Differential Geometry

- Indroduce metric as inner product of frame fields $g_{\mu\nu}=e_{\mu}\cdot e_{\nu}=e_{\mu}^{\ a}e_{\nu}^{\ b}\eta_{ab}$
- Metric was NOT needed to define curvature, geodesics, parallel transport
- (metric is almost kind-of useless except that its a standard touch-stone for GR)
- Provide (repeat) Einstein eqns.
- Replace frame field by generic fiber bundle
- e.g. U(1) for electromagnetism, SU(n) for yang-mills
- Maxwell's equations are nothing more than Hamilton's eqns on U(1) + Bianchi identites

$$F = dA \quad d*F = 0$$

Yang-Mills/Einstein

$$F = dA + A \wedge A$$
 $D * F = 0$

is the same as

Geodesics

- Maxwell's eqn's have singularities called "electric charges" and geodesics go "splat" on an electric charge
- Swarzschild BH's are just like electric charges: geodesics go splat when they get there.