REMARKS

In the Office Action dated April 22, 2005, claims 49, 54-59, 64-69, 74-79 and 84-88 were examined with the result that all claims were rejected. The Examiner made the rejection final. In response, Applicant has filed a Request for Continuing Examination (RCE) together with the following remarks. Reconsideration of this application is requested.

In the Office Action, claims 49 and 54-58 were provisionally rejected under the Doctrine of Obviousness Type Double Patenting as being unpatentable over claims 12-22 of copending Application No. 10/669,990. Although the conflicting claims are not identical, the Examiner indicated that the compound in the co-pending application '990 and the compound defined by claim 49 in the present application '103 are homologs of each other since the presently claimed compounds have one additional methyl group at the 26 and 27 carbon positions of the side chain. In addition, the claims in application '990 also are directed toward various cancerous diseases. Therefore, the Examiner concludes that since homologs are known to have similar properties, the presently claimed methods would have been obvious to one of ordinary skill in the art. Applicant, however, disagrees with the Examiner's conclusion for the following reasons.

The biological activities of the presently claimed 26,27-dihomo compound can be found in the specification as filed in Tables 3 and 4 on page 28 thereof. First, with regard to the calcemic activity data in Table 4, these data indicate that the 26,27-dihomo compound claimed herein is significantly more active than 1α ,25-dihydroxyvitamin D_3 in both intestinal calcium transport as well as bone calcium mobilization (serum calcium). This is evidenced by the fact that at a dosage of 32 pmol, the claimed 26,27-dihomo compound has calcium transport and serum calcium values higher than 1α ,25-dihydroxyvitamin D_3 which was administered at a dosage of 260 pmols. Thus, even though 1α ,25-dihydroxyvitamin D_3 was administered at almost 10 times the dose of the 26,27-dihomo compound, the natural hormone still had calcium transport and serum calcium values that were less than the claimed 26,27-dihomo compound. Therefore, it

can be stated that the 26,27-dihomo compound claimed herein has significant and very potent calcemic activity that is greater than 1α ,25-dihydroxyvitamin D₃.

With regard to cell differentiation activity, Applicant refers the Examiner to Table 3 on page 28 of the present patent application wherein the cell differentiation activity and vitamin D receptor (VDR) binding data is presented. Table 3 illustrates that although the 26,27-dihomo compound claimed herein has less binding activity than 1α ,25-dihydroxyvitamin D_3 , it is more active in HL-60 cell differentiation activity. This latter activity is evidenced by the fact that a significantly lower concentration of the 26,27-dihomo compound is needed to obtain the ED₅₀ value. Applicant refers the Examiner to the discussion at page 28, lines 15-27. As a result of these data, it can be concluded that due to its significantly greater cell differentiation activity, a lower dosage of the 26,27-dihomo compound is necessary for obtaining the same activity as 1α ,25-dihydroxyvitamin D_3 .

The following chart summarizes the above biological activities for the 26,27-dihomo compound of claim 49:

	-	Bone Ca	
	Intestinal	Mobilization	
Compound	Ca Transport	(Serum Ca)	Cell Differentiation
$20(S)-1\alpha,25$ -dihydroxy-2-	significantly	significantly	Significantly
methylene-26,27-dihomo-	greater*	greater*	greater*
19-norvitamin D ₃	(Table 4)	(Table 4)	(Table 3)

^{*}As compared to the natural hormone $1\alpha,25$ -dihydroxyvitamin D_3 .

The homolog disclosed in the '990 application is 2-methylene-19-nor-20(S)- 1α ,25-dihydroxyvitamin D₃ (sometimes referred to as 2MD). The calcemic activity for compound 2MD is set forth in Table 1 on page 24 of the present patent application '103. Also, the VDR binding activity for 2MD is illustrated in Figure 1 while the cell differentiation activity of 2MD is illustrated in Figure 2 of the present '103 application. In addition, the calcemic and cell differentiation activity of 2MD is also set forth in U.S.

Application No. 10/780,103 Amendment Dated July 21, 2005 Reply to Office Action of April 22, 2005

Patent 5,843,928. The '928 patent summarizes the calcemic activity of 2MD beginning at column 15, line 63 and continuing through column 16, line 11 as follows:

"Surprisingly, however, the 2-methylene substitutions produced highly selective analogs with their primary action on bone. When given for 7 days in a chronic mode, the most potent compound tested was the 2-methylene-19-nor-20S-1,25-(OH)₂D₃ (Table 1). When given at 130 pmol/day, its activity on bone calcium mobilization (serum calcium) was of the order of at least 10 and possible 100-1,000 times more than that of the native hormone. Under identical conditions, twice the dose of 1,25-(OH)₂D₃ gave a serum calcium value of 13.8 mg/100 ml of serum calcium at the 130 pmol dose. When give at 260 pmol/day, it produced the astounding value of 14 mg/100 ml of serum calcium at the expense of bone. To show its selectivity, this compound produced no significant change in intestinal calcium transport at either the 130 or 260 pmol dose, while 1,25-(OH)₂D₃ produced the expected elevation of intestinal calcium transport at the only dose tested, i.e. 260 pmol/day.

These results illustrate that ...the 20S-2-methylene derivatives of 19-nor-1,25- $(OH)_2D_3$ are selective for the mobilization of calcium from bone."

Thus, it can be concluded from the above quotation and the data contained in Table 1 at page 24 of the present patent application '103 that the 2MD compound has little, if any, intestinal calcium transport activity but very potent bone calcium mobilization activity at the doses tested.

With regard to competitive binding activity, the 2MD analog "bound equally well to the porcine receptor (as the natural hormone $1\alpha,25$ -dihydroxyvitamin D₃). See Figure 1 and the description at page 23, lines 1-2 of the present patent application '103.

With regard to cell differentiation activity, Figure 2 of the present patent application '103 illustrates that the analog 2MD is more potent in inducing differentiation of HL-60 cells to the monocyte, as compared to $1\alpha,25$ -dihydroxyvitamin D₃. This is clearly evidenced by the fact that at the same concentration, a higher percent

differentiation value is obtained for the 2MD analog as compared to $1\alpha,25$ -dihydroxyvitamin D_3 . Thus, it can be concluded that the analog 2MD is more active than $1\alpha,25$ -dihydroxyvitamin D_3 in inducing differentiation of HL-60 cells to the monocyte.

The following chart summarizes and compares the biological activities of the analog 2MD with the presently claimed 26,27-dihomo compound:

		Bone Ca	
	Intestinal	Mobilization	
Compound	Ca Transport	(Serum Ca)	Cell Differentiation
20(S)-1α,25-	significantly	significantly	Significantly
dihydroxy-2-	greater*	greater*	greater*
methylene-26,27-	(Table 4)	(Table 4)	(Table 3)
dihomo-			
19-norvitamin D ₃			
20(S)-2-methylene-19-	"no significant	"at least 10 and	"extremely potent"*
nor-1α,25-	change"*	possibly 100-1000	(page 23, lines 21-
dihydroxyvitamin D ₃	(page 23,	times" more active*	22)
(2MD)	lines 11-14)	(page 23, lines 6-11)	(Fig. 2)
	(Table 1)	(Table 1)	

^{*}As compared to the natural hormone $1\alpha,25$ -dihydroxyvitamin D_3 .

The comparison in the above chart demonstrates that the analog 2MD has little, if any, intestinal calcium transport activity, extremely high bone calcium mobilization activity, and extremely high cell differentiation activity, when compared to 1α ,25-dihydroxyvitamin D_3 . In contrast, the presently claimed 26,27-dihomo compound has intestinal calcium transport activity that is significantly greater than 1α ,25-dihydroxyvitamin D_3 , bone calcium mobilization activity that is significantly greater than 1α ,25-dihydroxyvitamin D_3 , and cell differentiation activity that is also higher than 1α ,25-dihydroxyvitamin D_3 . Thus, the presently claimed 26,27-dihomo compound has significantly different calcium transport activity than the analog 2MD. Clearly, such activities would not be predicted based upon the structural similarity of the two compounds. One skilled in the art would have predicted that the compounds should have

Application No. 10/780,103 Amendment Dated July 21, 2005 Reply to Office Action of April 22, 2005

approximately the same intestinal calcium transport activity due to their structural similarity, but instead, it is clear that the presently claimed 26,27-dihomo compound has much higher intestinal calcium transport activity than the analog 2MD. As a result, Applicant believes these properties are unexpected and provide a basis for unobviousness over the 2MD analog.

Accordingly, Applicant believes the Examiner should withdraw the obviousness type double patent rejection based on the analog 2MD.

In the Office Action, the Examiner also rejected claims 49, 54-59, 64-69, 74-79 and 84-88 under 35 USC §112, first paragraph, because the Examiner alleges that the specification is not enabling for the method of use of all the claims. The Examiner states that the claims are too broad in that they are drawn to a method of treating too many cancerous diseases, and believes there is not enough guidance presented in the disclosure on how to use the invention successfully for the treatments of "so many cancerous diseases" with the result that undue experimentation would be required of one skilled in the art. Applicant, however, disagrees for the following reasons.

First of all, the Examiner states that the claims encompass "cancerous diseases, including leukemia, colon cancer, breast cancer, prostate cancer, etc." and are thus too broad. However, Applicant would like to point out that in the Amendment dated January 5, 2005, Applicant amended independent claims 49, 59, 69 and 79 to limit the term "cancerous disease" by inserting a Markush grouping defining the cancerous diseases as leukemia, colon cancer, breast cancer, or prostate cancer. Thus, each of the independent claims are now limited to only four types of cancers. Thus, the independent claims do not purport to encompass all cancerous diseases. The amendment referred to above clearly limits the independent claims to leukemia, colon cancer, breast cancer or prostate cancer.

There is a clear relationship between the ability of vitamin D compounds to differentiate cells and these four cancer therapies. The ability of vitamin D compounds to differentiate cells has long been used to predict efficacy against certain cancers such as leukemia, colon cancer, breast cancer and prostate cancer. Numerous patents can be cited

Application No. 10/780,103 Amendment Dated July 21, 2005 Reply to Office Action of April 22, 2005

by Applicant in support of that proposition. In addition, Applicant includes two articles which evidence a clear relationship between vitamin D compounds, their ability to differentiate cells, and as a result, their potential use in various cancer therapies. The first article is Van Leeuwen et al, "Vitamin D: Cancer and Differentiation", Vitamin D, 2nd Edition, Volume 2, Chapter 89, pages 1571-1597 (Elsevier Academic Press, 2005). The second article is written by Jane Higdon, and is entitled "Vitamin D" and was published by the Micronutrient Information Center of The Linus Pauling Institute. It is available on the website http://lpi.oregonstate.edu/infocenter/vitamins/vitaminD. Both of these articles demonstrate that those skilled in the art recognize the cell differentiation activity of vitamin D analogs is predictive of the potential use of that analog in the treatment of leukemia, colon cancer, breast cancer and prostate cancer. As a result, Applicant believes those skilled in the art would not be required to perform "undue experimentation" in connection with the uses set forth in the independent claims.

The cell differentiation data for each of the claimed compounds is set forth in Tables 3 and 5. These data clearly evidence the potential use of these compounds against leukemia, colon cancer, breast cancer and/or prostate cancer. Thus, Applicant believes the Examiner should withdraw the §112, first paragraph rejection of the claims.

An effort has been made to place this application in condition for allowance and such action is earnestly requested.

Respectfully submitted,

ANDRUS, SCEALES, STARKE & SAWALL, LLP

 $\mathbf{B}\mathbf{y}$

Thomas M. Wozny

Reg. No. 28,922 (414) 271-7590

Andrus, Sceales, Starke & Sawall, LLP 100 East Wisconsin Avenue, Suite 1100 Milwaukee, Wisconsin 53202

Micronutrient Information Center

Information Center Home

LPI Home

Nutrient Index

Disease Index

Function

Deficiency

The RDA

Disease Prevention

Sources

Safety

The LPI Recommendation

References

Glossary

Printer-friendly Version

VITAMIN D

Vitamin D is a fat-soluble vitamin that is essential for maintaining normal calcium metabolism (1). Vitamin D3 (cholecalciferol) can be synthesized by humans in the skin upon exposure to ultraviolet-B (UVB) radiation from sunlight, or it can be obtained from the diet. Plants synthesize vitamin D2 (ergocalciferol), which also has vitamin D activity in humans. When exposure to UVB radiation is insufficient for the <u>synthesis</u> of adequate amounts of vitamin D3 in the skin, adequate intake of vitamin D from the diet is essential for health.

Function

Activation of Vitamin D

Vitamin D itself is biologically inactive, and it must be metabolized to its biologically active forms. After it is consumed in the diet or synthesized in the skin, vitamin D enters the circulation and is transported to the liver. In the liver, vitamin D is hydroxylated to form 25-hydroxyvitamin D [25(OH)D], the major circulating form of vitamin D. Increased exposure to sunlight or increased intake of vitamin D increases serum levels of 25(OH)D, making the serum 25(OH)D concentration a useful indicator of vitamin D nutritional status. In the kidney and other tissues, the 25(OH)D3-1-hydroxylase enzyme catalyzes a second hydroxylation of 25(OH)D, resulting in the formation of 1alpha,25-dihydroxyvitamin D [1,25(OH)2D]—the most potent form of vitamin D. Most of the physiological effects of vitamin D in the body are related to the activity of 1,25(OH)2D (2).

Mechanisms of Action

Many of the biological effects of 1,25(OH)2D are mediated through a nuclear transcription factor known as the vitamin D receptor (VDR) (3). Upon entering the nucleus of a cell, 1,25(OH)2D associates with the VDR and promotes its association with the retinoic acid X receptor (RXR). In the presence of 1,25(OH)2D the VDR/RXR complex binds small sequences of DNA known as vitamin D response elements (VDREs), and initiates a cascade of molecular interactions that modulate the transcription of specific genes. More than 50 genes in tissues throughout the body are known to be regulated by 1,25(OH)2D (4). Some physiological responses to 1,25(OH)2D occur too rapidly to be acting through gene transcription, suggesting that their may be also be a receptor for 1,25(OH)2D on the outer membrane of cells (5).

Calcium Balance

Maintenance of serum calcium levels within a narrow range is vital for normal functioning of the nervous system, as well as for bone growth, and maintenance of bone density. Vitamin D is essential for the efficient utilization of calcium by the body (1). The parathyroid glands sense serum calcium levels, and secrete parathyroid hormone (PTH) if calcium levels drop too low (diagram). Elevations in PTH increase the activity of 25 (OH)D3-1-hydroxylase enzyme in the kidney, resulting in increased production of 1,25 (OH)2D. Increasing 1,25(OH)2D production results in changes in gene expression that normalize serum calcium by 1) increasing the intestinal absorption of dietary calcium, 2) increasing the reabsorption of calcium filtered by the kidneys and 3) mobilizing calcium from bone when there is insufficient dietary calcium to maintain normal serum calcium levels. Parathyroid hormone and 1,25(OH)2D are required for the latter two effects (5a).

Cell Differentiation

Cells that are dividing rapidly are said to be proliferating. Differentiation results in the specialization of cells for specific functions. In general, differentiation of cells leads to a decrease in proliferation. While cellular proliferation is essential for growth and wound healing, uncontrolled proliferation of cells with certain <u>mutations</u> may lead to diseases like cancer. The active form of vitamin D, 1,25(OH)2D, inhibits proliferation and stimulates the differentiation of cells (1).

Immunity

Vitamin D in the form of 1,25(OH)2D is a potent immune system modulator. The VDR is expressed by most cells of the immune system, including T cells and antigen-presenting cells, such as dendritic cells and macrophages (6). Macrophages also produce the 25(OH) D3-1-hydroxylase enzyme that converts 25(OH)D to 1,25(OH)2D (7). There is considerable scientific evidence that 1,25(OH)2D has a variety of effects on immune system function that may enhance innate immunity and inhibit the development of autoimmunity (8).

Insulin Secretion

The VDR is expressed by <u>insulin</u> secreting cells of the <u>pancreas</u>, and the results of animal studies suggest that 1,25(OH)2D plays a role in insulin secretion under conditions of increased insulin demand (9). Limited data in humans suggests that insufficient vitamin D levels may have an adverse effect on insulin secretion and <u>glucose tolerance</u> in type 2 <u>diabetes</u> (noninsulin-dependent diabetes mellitus; NIDDM) (10-12).

Blood Pressure Regulation

The renin-angiotensin system plays an important role in the regulation of blood pressure (13). Renin is an enzyme that catalyzes the cleavage (splitting) of a small peptide (Angiotensin I) from a larger protein (angiotensinogen) produced in the liver. Angiotensin converting enzyme (ACE) catalyzes the cleavage of angiotensin I to form angiotensin II, a peptide that can increase blood pressure by inducing the constriction of small arteries and increasing sodium and water retention. The rate of angiotensin II synthesis is dependent on renin (14). Recent research in mice lacking the gene encoding the VDR, indicates that 1,25(OH)2D decreases the expression of the gene encoding renin through its interaction with the VDR (15). Since inappropriate activation of the renin-angiotensin system is thought to play a role in some forms of human hypertension, adequate vitamin D levels may be important for decreasing the risk of high blood pressure.

Deficiency

In vitamin D deficiency, calcium absorption cannot be increased enough to satisfy the body's calcium needs (2). Consequently, PTH production by the <u>parathyroid glands</u> is increased and calcium is mobilized from the skeleton to maintain normal serum calcium levels—a condition known as secondary <u>hyperparathyroidism</u>. Although it has long been known that severe vitamin D deficiency has serious consequences for bone health, recent research suggests that less obvious states of vitamin D deficiency are common and increase the risk of osteoporosis and other health problems (16, 17).

Severe Vitamin D Deficiency

Rickets

In infants and children, severe vitamin D deficiency results in the failure of bone to mineralize. Rapidly growing bones are most severely affected by rickets. The growth plates of bones continue to enlarge, but in the absence of adequate mineralization, weight-bearing limbs (arms and legs) become bowed. In infants, rickets may result in delayed closure of the fontanelles (soft spots) in the skull, and the rib cage may become deformed due to the pulling action of the diaphragm. In severe cases, low serum calcium levels (hypocalcemia) may cause seizures. Although <u>fortification</u> of foods has led to complacency regarding vitamin D deficiency, nutritional rickets is still being reported in cities throughout the world (18, 19).

Osteomalacia

Although adult bones are no longer growing, they are in a constant state of turnover. In adults with severe vitamin D deficiency, the <u>collagenous bone matrix</u> is preserved but bone mineral is progressively lost, resulting in bone pain and osteomalacia (soft bones).

Muscle Weakness and Pain

Vitamin D deficiency causes muscle weakness and pain in children and adults. Muscle pain and weakness was a prominent symptom of vitamin D deficiency in a study of Arab and Danish Moslem women living in Denmark (20). In a cross-sectional study of 150 consecutive patients referred to a clinic in Minnesota for the evaluation of persistent, nonspecific musculoskeletal pain, 93% had serum 25(OH)D levels indicative of vitamin D deficiency (21). A randomized controlled trial found that supplementation of elderly women with 800 IU/day of vitamin D and 1,200 mg/day of calcium for three months increased muscle strength and decreased the risk of falling by almost 50% compared to supplementation with calcium alone (22).

Risk Factors for Vitamin D Deficiency

• Excusively breast fed infants: Infants who are exclusively breast fed and do not receive vitamin D supplementation are at high risk of vitamin D deficiency, particularly if they have dark skin and/or receive little sun exposure (19). Human milk generally provides 25 IU of vitamin D per liter, which is not enough for an infant if it is the sole source of vitamin D. Older infants and toddlers exclusively fed milk substitutes and weaning foods that are not vitamin D fortified are also at risk of vitamin D deficiency (18). The American Academy of Pediatrics recommends that all infants that are not consuming at least 500 ml (16 ounces) of vitamin D fortified formula or milk be given a vitamin D supplement of 200 IU/day

<u>(19)</u>.

- Dark skin: People with dark skin synthesize less vitamin D on exposure to sunlight than those with light skin (1). The risk of vitamin D deficiency is particularly high in dark-skinned people who live far from the equator. In the U.S., 42% of African American women between 15 and 49 years of age were vitamin D deficient compared to 4% of White women (23).
- Aging: The elderly have reduced capacity to synthesize vitamin D in the skin when exposed to UVB radiation, and are more likely to stay indoors or use sunscreen. Institutionalized adults are at extremely high risk of vitamin D deficiency without supplementation (24, 25).
- Covering all exposed skin or using sunscreen whenever outside: Osteomalacia has been documented in women who cover all of their skin whenever they are outside for religious or cultural regions (26, 27). The application of sunscreen with an SPF factor of 8 reduces production of vitamin D by 95% (1).
- Fat malabsorption syndromes: Cystic fibrosis and cholestatic liver disease impair the absorption of dietary vitamin D (28).
- Inflammatory bowel disease: People with inflammatory bowel disease like <u>Crohn's disease</u> appear to be at increased risk of vitamin D deficiency, especially those who have had small bowel resections (29).
- Obesity: Obesity increases the risk of vitamin D deficiency (30). Once vitamin D is synthesized in the skin or ingested, it is deposited in body fat stores, making it less bioavailable to people with large stores of body fat.

Assessing Vitamin D Nutritional Status

Growing awareness that vitamin D insufficiency has serious health consequences beyond rickets and osteomalacia highlights the need for accurate assessment of vitamin D nutritional status. Although there is general agreement that the serum 25(OH)D level is the best indicator of vitamin D deficiency and sufficiency, the cutoff values have not been clearly defined (17). While laboratory reference ranges for serum 25(OH)D levels are often based on average values from populations of healthy individuals, recent research suggests that health-based cutoff values aimed at preventing secondary hyperparathyroidism and bone loss should be considerably higher. In general, serum 25 (OH)D values less than 20-25 nmol/L indicate severe deficiency associated with rickets and osteomalacia (16, 18). Although 50 nmol/L has been suggested as the low end of the normal range (31), more recent research suggests that PTH levels (32, 33) and calcium absorption (34) are not optimized until serum 25(OH)D levels reach approximately 80 nmol/L. Thus, at least one vitamin D expert has argued that serum 25(OH)D values less than 80 nmol/L should be considered deficient (16), while another suggests that a healthy serum 25(OH)D value is between 75 nmol/L and 125 nmol/L (35). Data from supplementation studies indicates that vitamin D intakes of at least 800-1,000 IU/day are required by adults living in temperate latitudes to achieve serum 25(OH)D levels of at least 80 nmol/L (36, 37).

The Adequate Intake (AI)

In 1997, the Food and Nutrition Board of the Institute of Medicine felt that the issue of sunlight exposure confounded the existing data on vitamin D requirements, making it impossible to calculate an <u>RDA</u> (28). Instead, the Food and Nutrition Board set adequate intake levels (<u>AI</u>) that assume no vitamin D is being synthesized in the skin through exposure to sunlight. The AI values established in 1997 (see table below) reflect vitamin D intakes likely to maintain serum 25(OH)D levels of at least 37.5 nmol/L, which many experts now feel is too low (2, 16, 17).

Adequate Intake (AI) for Vitamin D			
Life Stage	Age	Males mcg/day (IU/day)	Females mcg/day (IU/day)
Infants	0-6 months	5 mcg (200 IU)	5 mcg (200 IU)
Infants	7-12 months	5 mcg (200 IU)	5 mcg (200 IU)
Children	1-3 years	5 mcg (200 IU)	5 mcg (200 IU)
Children	4-8 years	5 mcg (200 IU)	5 mcg (200 IU)
Children	9-13 years	5 mcg (200 IU)	5 mcg (200 IU)
Adolescents	14-18 years	5 mcg (200 IU)	5 mcg (200 IU)
Adults	19-50 years	5 mcg (200 IU)	5 mcg (200 IU)
Adults	51-70 years	10 mcg (400 IU)	10 mcg (400 IU)
Adults	71 years and older	15 mcg (600 IU)	15 mcg (600 IU)
Pregnancy	all ages	-	5 mcg (200 IU)
Breastfeeding	all ages	-	5 mcg (200 IU)

Disease Prevention

Osteoporosis

Although <u>osteoporosis</u> is a multifactorial disease, vitamin D insufficiency can be an important contributing factor. Without sufficient vitamin D, calcium absorption cannot be maximized and the resulting elevation in PTH secretion by the <u>parathyroid glands</u> results in increased bone <u>resorption</u>, which may lead to osteoporotic fracture (38). A <u>prospective cohort study</u> that followed more than 72,000 postmenopausal women in the U.S. for 18 years found that those who consumed at least 600 IU/day of vitamin D from diet and supplements had a risk of osteoporotic hip fracture that was 37% lower than women who consumed less than 140 IU/day (39). The results of most clinical trials suggest that vitamin D supplementation can slow bone density losses or decrease the risk of osteoporotic fracture in men and women who are unlikely to be getting enough vitamin D.

Supplementation of postmenopausal women in the U.S. with 500 mg/day of calcium and either 100 IU/day or 700 IU/day of vitamin D for two years slowed bone density losses at the hip only in the group taking 700 IU/day (40). Daily supplementation of elderly men and women with 500 mg/day of calcium and 700 IU/day of vitamin D for three years reduced bone density losses at the hip and spine and reduced the frequency of nonvertebral fractures (41). When the calcium and vitamin D supplements were discontinued, the bone density benefits were lost within 2 years (42). In Denmark, supplementation of elderly women with 400 IU/day of vitamin D for two years increased bone density at the hip (43).

An annual injection of 150,000-300,000 IU of vitamin D2 (ergocalciferol) for four years decreased the incidence of fracture in elderly Finnish women (44), and oral supplementation with 800 IU/day of vitamin D and 1,200 mg/day of calcium for three years decreased the incidence of hip fracture in elderly French women (45). Oral

supplementation of elderly adults in the U.K. with 100,000 IU of vitamin D once every four months (equivalent to about 800 IU/day) for five years reduced the risk of osteoporotic fracture by 33% compared to placebo (46). However, oral supplementation with 400 IU/day of vitamin D for more than 3 years did not affect the incidence of fracture in a study of elderly Dutch men and women (47). Overall, the evidence to date suggests that vitamin D supplements of about 800 IU/day may be helpful in reducing bone loss and fracture rates in the elderly. In order for vitamin D supplementation to be effective in preserving bone health, adequate calcium (1,000 to 1,200 mg/day) should also be consumed.

Cancer

Two characteristics of cancer cells are their lack of differentiation (specialization) and their rapid growth or proliferation. Many <u>malignant</u> tumors have been found to contain vitamin D receptors (VDR), including breast, lung, skin (melanoma), colon, and bone. Biologically active forms of vitamin D, such as 1,25(OH)2D and its <u>analogs</u>, have been found to induce cell differentiation and/or inhibit proliferation of a number of cancerous and noncancerous cell types maintained in cell culture (48).

Colorectal Cancer

The geographic distribution of colon cancer is similar to the historic geographic distribution of rickets, providing circumstantial evidence that decreased sunlight exposure and diminished vitamin D nutritional status may be related to an increased risk of colon cancer. However, prospective cohort studies have not generally found total vitamin D intake to be associated with significant reductions in colorectal cancer when other risk factors are taken into account (49-52). One five-year study of more than 120,000 people found that men with the highest vitamin D intakes had a risk of colorectal cancer that was 29% lower than men with the lowest vitamin D intakes (53). Vitamin D intake was not significantly associated with colorectal cancer risk in women. Serum 25(OH)D level, which reflects vitamin D intake and vitamin D synthesis, was inversely associated with the risk of potentially precancerous colorectal polyps (54) and indices of colonic epithelial cell proliferation, (55) which are considered biomarkers for colon cancer risk.

Breast Cancer

Although breast cancer mortality follows a similar geographic distribution to that of colon cancer (56, 57), direct evidence of an association between vitamin D nutritional status and breast cancer risk is limited.. A prospective study of women who participated in the first National Health and Nutrition Examination Survey (NHANES I) found that several measures of sunlight exposure and dietary vitamin D intake were associated with a reduced risk of breast cancer 20 years later (58). More recently, a 16-year study of more than 88,000 women found that higher intakes of vitamin D were associated with significantly lower breast cancer risk in premenopausal women but not postmenopausal women (59).

Prostate Cancer

<u>Epidemiological studies</u> show correlations between risk factors for <u>prostate</u> cancer and conditions that can result in decreased vitamin D levels (48). Increased age is associated with an increased risk of prostate cancer, as well as with decreased sun exposure and decreased capacity to synthesize vitamin D. The incidence of prostate cancer is higher in African American men than in White American men, and the high melanin content of

dark skin is known to reduce the efficiency of vitamin D synthesis. Geographically, mortality from prostate cancer is inversely associated with the availability of sunlight. Recent findings that prostate cells in culture can synthesize the 25(OH)D3-1-hydroxylase enzyme and that, unlike the renal enzyme, its synthesis is not influenced by PTH or calcium levels also provide support for the idea that increasing 25(OH)D levels may be useful in preventing prostate cancer (60). In contrast, prospective studies have not generally found significant relationships between serum 25(OH)D levels and subsequent risk of developing prostate cancer (61-64). Although a prospective study of Finnish men found that low serum 25(OH)D levels were associated with earlier and more aggressive prostate cancer development (65), another prospective study of men from Finland, Norway and Sweden found a U-shaped relationship between serum 25(OH)D levels and prostate cancer risk. In that study serum 25(OH)D concentrations of 19 nmol/L or lower and 80 nmol/L or higher were associated with higher prostate cancer risk (66). Further research is needed to determine the nature of the relationship between vitamin D nutritional status and prostate cancer risk.

Autoimmune Diseases

Insulin-dependent diabetes mellitus (IDDM), multiple sclerosis (MS), and rheumatoid arthritis (RA) are each examples of autoimmune disease. Autoimmune diseases occur when the body mounts an immune response to its own tissue, rather than a foreign pathogen. In IDDM, insulin producing beta-cells of the pancreas are the target of the inappropriate immune response. In MS, the targets are the myelin producing cells of the central nervous system, and in RA, the targets are the collagen producing cells of the joints (67). Autoimmune responses are mediated by immune cells called T cells. The biologically active form of vitamin D, 1,25(OH)2D, has been found to modulate T cell responses, such that the autoimmune responses are diminished. Treatment with 1,25(OH) 2D has beneficial effects in animal models of IDDM, MS, and RA. epidemiological studies have found that the prevalence of IDDM, MS, and RA increases as latitude increases, suggesting that lower exposure to UVB radiation and associated decreases in vitamin D synthesis may play a role in the pathology of these diseases. The results of several prospective cohort studies also suggest that adequate vitamin D intake may decrease the risk of autoimmune diseases. A prospective cohort study of children born in Finland during the year 1966 and followed for thirty years found that those who received vitamin D supplementation in the first year of life had a significantly lower risk of developing IDDM, while children suspected of developing rickets (severe vitamin D deficiency) during the first year of life had a significantly higher risk of developing IDDM (68). Vitamin D supplement use was associated with a significant reduction in the risk of developing MS in two large cohorts of women followed for at least ten years (69). Similarly, postmenopausal women with the highest total vitamin D intakes were at significantly lower risk of developing RA after eleven years of follow up than those with the lowest intakes (70). Evidence from animal models and epidemiological studies suggests that maintaining sufficient vitamin D levels may help decrease the risk of several autoimmune diseases.

Hypertension (High Blood Pressure)

The results of epidemiological and clinical studies suggest an inverse relationship between serum 1,25(OH)2D levels and blood pressure, which may be explained by recent findings that 1,25(OH)2D decreases the expression of the gene encoding renin (see Function). Data from epidemiological studies suggest that conditions that decrease vitamin D synthesis in the skin, such as having dark skin and living in temperate latitudes, are associated with increased prevalence of hypertension (71). A controlled clinical trial

in 18 hypertensive men and women living in the Netherlands found that exposure to UVB radiation three times weekly for six weeks during the winter increased serum 25(OH)D levels and significantly decreased 24-hour ambulatory systolic and diastolic blood pressure measurements by an average of 6 mm Hg (72). In randomized controlled trials of vitamin D supplementation, a combination of 1,600 IU/day of vitamin D and 800 mg/day of calcium for eight weeks significantly decreased systolic blood pressure in elderly women by 9% compared to calcium alone (73), but supplementation with 400 IU/day or a single dose of 100,000 IU of vitamin D did not significantly lower blood pressure in elderly men and women over the next two months (74, 75). At present, data from controlled clinical trials are too limited to determine whether vitamin D supplementation will be effective in lowering blood pressure or preventing hypertension.

Sources

Sunlight

Sunlight exposure provides most people with their entire vitamin D requirement. Children and young adults who spend a short time outside two or three times a week will generally synthesize all the vitamin D they need. The elderly have diminished capacity to synthesize vitamin D from sunlight exposure and frequently use sunscreen or protective clothing in order to prevent skin cancer and sun damage. The application of sunscreen with an SPF factor of 8 reduces production of vitamin D by 95%. In latitudes around 40 degrees north or 40 degrees south (Boston is 42 degrees north), there is insufficient UVB radiation available for vitamin D synthesis from November to early March. Ten degrees farther north or south (Edmonton, Canada) this "vitamin D winter" extends from mid October to mid March. According to Dr. Michael Holick, as little as 5-10 minutes of sun exposure on arms and legs or face and arms three times weekly between 11:00 am and 2:00 pm during the spring, summer, and fall at 42 degrees latitude should provide a light-skinned individual with adequate vitamin D and allow for storage of any excess for use during the winter with minimal risk of skin damage (35).

Food sources

Vitamin D is found naturally in very few foods. Foods containing vitamin D include some fatty fish (mackerel, salmon, sardines), fish liver oils, and eggs from hens that have been fed vitamin D. In the U.S., milk and infant formula are fortified with vitamin D so that they contain 400 IU (10 mcg) per quart. However, other dairy products such as cheese and yogurt are not always fortified with vitamin D. Some cereals and breads are also fortified with vitamin D. Recently, orange juice fortified with vitamin D has been made available in the U.S. Accurate estimates of average dietary intakes of vitamin D are difficult because of the high variability of the vitamin D content of fortified foods (28). Vitamin D contents of some vitamin D-rich foods are listed in the table below in both international units (IU) and micrograms (mcg). For more information on the nutrient content of foods you eat frequently, search the USDA food composition database.

Food	Serving	Vitamin D (IU)	Vitamin D (mcg)
Pink salmon, canned	3 ounces	530	13.3
Sardines, canned	3 ounces	231	5.8
Mackerel, canned	3 ounces	214	5.4
Quaker Nutrition for Women			

Instant Oatmeal	1 packet	140	3.5
Cow's milk, fortified with vitamin D	8 ounces	100	2.5
Orange juice, fortified with vitamin D	8 ounces	100	2.5
Cereal, fortified	1 serving (usually 1 cup)	40-50	1.0-1.3
Egg yolk	1 medium	25	0.63

Supplements

Most vitamin D supplements available without a prescription contain cholecalciferol (vitamin D3). Multivitamin supplements for children generally provide 200 IU (5 mcg) and multivitamin supplements for adults generally provide 400 IU (10 mcg) of vitamin D. Single ingredient vitamin D supplements may provide 400-1,000 IU of vitamin D, but 400 IU is the most commonly available dose. A number of calcium supplements may also provide vitamin D.

Safety

Toxicity

Vitamin D toxicity (hypervitaminosis D) induces abnormally high <u>serum</u> calcium levels (hypercalcemia), which could result in bone loss, kidney stones, and calcification of organs like the heart and kidneys if untreated over a long period of time. When the Food and Nutrition Board of the Institute of Medicine established the tolerable upper intake level (UL) for vitamin D, published studies that adequately documented the lowest intake levels of vitamin D that induced hypercalcemia were very limited. Because the consequences of hypercalcemia are severe, the Food and Nutrition Board established a very conservative UL of 2,000 IU/day (50 mcg/day) for children and adults (see table below) (28). Research published since 1997 suggests that the UL for adults is likely overly conservative and that vitamin D toxicity is very unlikely in healthy people at intake levels lower than 10,000 IU/day (36, 76, 77). Vitamin D toxicity has not been observed to result from sun exposure. Certain medical conditions can increase the risk of hypercalcemia in response to vitamin D, including primary hyperparathyroidism, sarcoidosis, tuberculosis, and lymphoma (36). People with these conditions may develop hypercalcemia in response to any increase in vitamin D nutrition and should consult a qualified health care provider regarding any increase in vitamin D intake.

Tolerable Upper Intake Level (UL) for Vitamin D	
Age Group	mcg/day (IU/day)
Infants 0-12 months	25 mcg (1000 IU)
Children 1-18 years	50 mcg (2000 IU)
Adults 19 years and older	50 mcg (2000 IU)

Drug interactions

The following medications increase the metabolism of vitamin D and may decrease <u>serum</u> 25(OH)D levels: phenytoin (Dilantin), fosphenytoin (Cerebyx), phenobarbitol (Luminal), carbamazepine (Tegretol), and rifampin (Rimactane). The following medications should not be taken at the same time as vitamin D because they can decrease the intestinal absorption of vitamin D: cholestyramine (Questran), colestipol (Colestid), orlistat (Xenical), mineral oil, and the fat substitute Olestra. The oral anti-fungal medication, ketoconazole, inhibits the 25(OH)D3-1-hydroxylase enzyme and has been found to reduce serum levels of 1,25(OH)D in healthy men . The induction of hypercalcemia by toxic levels of vitamin D may precipitate cardiac <u>arrhythmia</u> in patients on digitalis (Digoxin) (78, 79).

The Linus Pauling Institute Recommendation

The Linus Pauling Institute recommends that generally healthy adults take a multivitamin supplement that supplies 400 IU (10 mcg) of vitamin D daily. Additionally, at least 10-15 minutes of sun exposure on the arms and legs or face and arms at least three times weekly between 11:00 am and 2:00 pm during the spring, summer, and fall may help residents of temperate latitudes (much of the U.S.) avoid vitamin D deficiency at the end of winter.

Older adults (65 years and older) and people with minimal sun exposure

In addition to the 400 IU (10 mcg) of vitamin D provided by a multivitamin supplement, people over the age of 65 and people who get minimal sun exposure throughout the year should take an additional vitamin D supplement of 400 day (10 mcg/day) to provide a total of 800 IU/day (20 mcg/day).

References

Written by: Jane Higdon, Ph.D. Linus Pauling Institute Oregon State University

Reviewed by:
Hector F. DeLuca, Ph.D.
Steenbock Research Professor and Chairman
Department of Biochemistry
University of Wisconsin-Madison

Last updated 03/03/2004 Copyright 2000-2004 Linus Pauling Institute

Disclaimer

The Linus Pauling Institute Micronutrient Information Center provides scientific information on health aspects of micronutrients and phytochemicals for the general public. The information is made available with the understanding that the author and publisher are not providing medical, psychological, or nutritional counseling services on this site. The information should not be used in place of a

consultation with a competent health care or nutrition professional.

The information on micronutrients and phytochemicals contained on this Web site does not cover all possible uses, actions, precautions, side effects, and interactions. It is not intended as medical advice for individual problems. Liability for individual actions or omissions based upon the contents of this site is expressly disclaimed.

Top Information Center Home LPI Home Nutrient Index Disease Index

Vitamin D

Second Edition

VOLUME II

Editor-in-Chief

DAVID FELDMAN

Division of Endocrinology, Gerontology, and Metabolism Stanford University School of Medicine Stanford, California 94305

Associate Editors

J. WESLEY PIKE

Department of Biochemistry University of Wisconsin-Madison Madison, Wisconsin 53706

FRANCIS H. GLORIEUX

Genetics Unit, Shriners Hospital for Children
Departments of Surgery, Pediatrics and Human Genetics,
McGill University, Montréal, Québec, Canada H3G 1A6

Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper. @

Copyright © 2005, Elsevier Inc. All rights reserved. Except Chapter 22. Chapter 22 is in the public domain.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data APPLICATION SUBMITTED

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

ISBN: 0-12-252687-2 Two Volume Set ISBN: 0-12-252689-9 Volume 1 ISBN: 0-12-252690-2 Volume 2

For all information on all Elsevier/Academic Press publications visit our Web site at www.books.elsevier.com

PRINTED IN THE UNITED STATES OF AMERICA
04 05 06 07 08 09 9 8 7 6 5 4 3 2 1

Vitamin D: Cancer and Differentiation

JOHANNES P. T. M. VAN LEEUWEN AND HUIBERT A. P. POLS Department of Internal Medicine, Erasmus MC, 3000 DR Rotterdam, The Netherlands

- I. Introduction
- II. Vitamin D and Cancer
- III. Vitamin D Effects on Tumor Cells
- IV. Combination Therapy

- V. Resistance and Vitamin D Metabolism
- VI. Stimulation of Proliferation
- VII. Conclusions
 - References

I. INTRODUCTION

The seco-steroid hormone 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] is the most potent natural metabolite of vitamin D₃ and is an important regulator of calcium homeostasis and bone metabolism via actions in intestine, bone, kidney, and parathyroid glands. 1,25-(OH)₂D₃ exerts its effects via an intracellular receptor that is a member of the steroid hormone receptor family (see Chapters 11-20 and 22 in this book). Throughout the last decades, it has become evident that the vitamin D receptor (VDR) is not limited to cells and tissues involved in regulation of calcium and bone metabolism but is also present in a wide variety of other cells and tissues including cancer cells of various origins. This led to a vast series of studies on the role of vitamin D in tumor cell growth regulation, treatment of cancer, and development of potent synthetic vitamin D analogs. Various specialized chapters will discuss in detail the effect of vitamin D on specific cancers (Chapters 89–97) and development and actions of vitamin D analogs (Chapters 80-88). In this chapter we aim to give an overview of the history and current stage and developments on vitamin D and cancer, regulation of tumor cells, possible mechanisms, and clinical applications.

II. VITAMIN D AND CANCER

A. Vitamin D Receptor

As exemplified in Table I, the VDR has also been demonstrated in a broad range of tumors and malignant cell types. For colon and breast cancer cells, an inverse relationship between VDR level and degree of differentiation has been described by some investigators [1,2]. VDR level is increased in ovarian carcinoma compared to normal ovarian tissue [3]. For colorectal cancer it was shown that VDR expression is associated with a more favorable prognosis in colorectal cancer [4]. A VDR immunoreactivity score showed an increase in

breast carcinoma specimens compared to normal breast tissue but no clear relation with proliferative status could be assessed [5]. A later study by the same group showed that VDR expression is not a prognostic factor for breast cancer, but the strong VDR immunoreactivity in the breast cancer specimens supports the evidence for it to be a target for intervention [6]. Also in other studies no associations between VDR and clinical and biochemical parameters of breast cancer were found [7–12].

Albeit that the association studies on VDR expression and predictive and/or prognostic characteristics for cancer are so far not conclusive, the widespread distribution of the VDR in malignant cells indicates that regulation of cancer cell function might be a new target in the action of 1,25-(OH)₂D₃ and provides a biological basis for the epidemiological observations discussed in the next paragraph.

A recent observation put the VDR in relation to cancer in a whole new perspective. It was shown that VDR can function as a receptor for the secondary bile acid lithocholic acid. This compound is hepatotoxic and a potential enteric carcinogenic. Interestingly, both binding of lithocholic acid and vitamin D to the VDR results in induction of CYP3A, the enzyme that detoxifies lithocholic acid in the liver and intestine [13,14]: (see also Chapter 53). It is postulated that vitamin D and lithocholic acid, by binding to the VDR, activate a feed-forward catabolic pathway that increases CYP3A expression leading to detoxification of carcinogenic bile acids. A relation between the presence of VDR and carcinogenesis was recently also shown for the skin. Absence of VDR increased the sensitivity for chemically induced tumorigenesis [15].

B. Epidemiology

In 1980 an epidemiological study based on indirect evidence suggested a relationship between vitamin D and cancer. This was derived from analyses of death

TABLE I VDR in Tumors and Malignant Cell Types

Myeloid leukemia Basal cell carcinoma Myeloma Breast carcinoma Osteogenic sarcoma Bladder cancer Ovarian carcinoma Cervical carcinoma Neuroblastoma Colonic adenocarcinoma Colorectal carcinoma Non-Hodgkin's lymphoma Pancreatic carcinoma Gall bladder carcinoma Parathyroid adenoma Glioma cells Pituitary adenoma Kaposi sarcoma Prostate carcinoma Lung carcinoma Renal cell carcinoma Lymphocytic leukemia Malignant B-cell progenitors Squamous cell carcinoma Transitional cell bladder Malignant melanoma carcinoma Uterine carcinosarcoma Medullary thyroid carcinoma

rates from colon cancer, which tended to increase with increasing latitude and decreasing sunlight [16]. Later more direct evidence about a relation between vitamin D and colon cancer came from the inverse relationship between levels of serum 25-hydroxyvitamin D₃ [a 1,25-(OH)₂D₃ precursor] and incidence of colonic cancer [17,18]. In addition, a similar relationship between sunlight exposure, vitamin D, and the risk for fatal breast and prostate cancer has been suggested [19-23] (see Chapter 90). The relationship between sunlight exposure and cancer, especially with respect to vitamin D, has been carefully reviewed by Studzinski and Moore [24]. The dual relationship between sunlight and cancer is of interest and remains the subject of continuing studies [25-27]. A relationship between skin type and prostate cancer has been described [28-30] and recently an article on the skin, sunlight, vitamin D, and cancer has been presented from an evolutionary perspective [31].

The relationship between cancer, diet, and calcium intake and vitamin D has been addressed in several studies [32–37] (see Chapter 91). A Canadian study noted similar vitamin D intakes in breast cancer patients and control subjects [38]. Moreover, in a mouse model, no relationship was found between dietary intake of a wide range of doses of calcium or vitamin D and carcinogen-induced skin tumors [39]. A large Finish epidemiological study showed an association of low serum 25-hydroxy-vitamin D₃ with prostate cancer [40,41]. A study on intake of micronutrients suggested that vitamin D and calcium might interact with antioxidants like vitamin C and E in reducing colorectal cancer risk [42]. It is clear that sunlight exposure, vitamin D intake, and other

dietary components such as calcium and fat should be considered as possibly interacting with one another when the relationship between vitamin D and cancer risk is assessed. The data on VDR as bile acid sensor and its postulated role in detoxification provide a direct biological basis for the relation between increased colon cancer and high-fat diets [43] and that colon cancer occurs in areas with higher prevalence of rickets [36]. In addition, mice lacking VDR have been reported to have a higher proliferation rate in the colon [44,45]. A survey of mutations in the VDR in osteosarcomas, several other sarcomas, nonsmall cell lung cancers, and a large number of cell lines representing many tumor types did not show that mutations or rearrangements in the VDR gene play a role in these cancers [46]. Aspects on sunlight and the epidemiology of vitamin D and calcium will be further discussed in greater detail in Chapters 90 and 91, respectively.

In the VDR gene several polymorphisms have been identified and studied in relation to various endpoints (discussed in Chapter 68). Throughout the last years, an increasing number of studies have studied the association of polymorphisms in the VDR and cancer. The first study showed an association between polymorphisms at the 3' end of the VDR gene and prostate cancer [47]. This was shortly followed by a study showing an association of prostate cancer with variations in the 3' poly-A stretch in the VDR gene [48]. Interestingly, the Odds Ratio for the VDR polymorphism was about twofold that of the one for the CAG repeat in the androgen receptor. This was followed by several others studies also showing associations of polymorphisms in the 3' region of the VDR gene and prostate cancer, [49-55] albeit other studies couldn't confirm this [56–60]. For breast cancer both presence [61–66] and absence of association [67] with polymorphisms in the VDR gene have been reported. Also for colon cancer both presence [68,69] and absence [70] of an association with VDR polymorphisms have been reported. No association was reported with basal cell carcinoma [71]. A single study reported an association with the aggressive renal cell carcinoma [72], malignant melanoma [73], and another study on rectal cancer reported a correlation between VDR gene polymorphisms and erbB-2/HER-2 expression [74]. It should be concluded that so far the studies on VDR gene polymorphisms and cancer are far from conclusive. A major reason might be the limited size of most of the studies. More association studies on VDR gene polymorphisms and specific cancers are needed, which should be followed by a meta-analysis to definitively assess whether there is an association and if so, what is the size of the effect. Also, for studies on VDR gene polymorphisms, it is important to take into account the

THE STATE OF THE S

impact of environmental factors. Diet, vitamin D intake, and sun exposure may modify the association of polymorphism and cancer risk. Interaction between vitamin D and calcium intake and cancer was also found in some of the VDR gene polymorphism studies [68,75-77]. Some studies reported decreased risk of prostate cancer [75] and colorectal adenomas [76] in those subjects with lower vitamin D levels and a particular VDR gene polymorphism. However, results of these studies are unusual in light of the fact that higher calcium and vitamin D intake are generally associated with a modestly reduced risk of colorectal neoplasia. Finally, most importantly it should be realized that except for the FokI translational start site polymorphism, all polymorphisms analyzed so far are anonymous, and functionality or linkage with functional polymorphisms should be proven. The 3' polymorphisms have been shown to be in linkage with 3'-UTR polymorphisms. but no relation with VDR mRNA stability could be proven [78]. Detailed discussion of possible functional consequences of VDR gene polymorphisms and impact of vitamin D levels is beyond the scope of this chapter but will be addressed in Chapter 67.

C. Growth and Development

In addition to the epidemiological studies and demonstration of vitamin D receptor in tumor cells, since the early 1980s there has also been an increasing amount of cell biological data supporting a role for vitamin D in cancer. Multiple studies have shown that at high concentrations (10-9-10-7 M) 1,25-(OH)₂D₃ inhibits the growth of tumor cells in vitro. It was demonstrated as early as 1981 that 1,25-(OH)₂D₃ inhibits the growth of malignant melanoma cells and stimulates the differentiation of immature mouse myeloid leukemia cells in culture [79-81]. 1,25-(OH)₂D₃ also induces differentiation of normal bone marrow cells (see Chapter 96). Immature bone marrow cells of the monocyte-macrophage lineage are believed to be the precursors of osteoclasts, and 1,25-(OH)₂D₃ induces differentiation of immature myeloid cells toward monocytes-macrophages and also stimulates the activation and fusion of some macrophages (discussed in Chapter 38). From these results, it has been postulated that 1,25-(OH)₂D₃ stimulates differentiation and fusion of osteoclast progenitors into osteoclasts [82-84]. Also, in the intestine, 1,25-(OH)₂D₃ has important effects on cellular proliferation and differentiation [85]. Thus, via stimulation of the differentiation inducing capacity of bone and interstitial cells, 1,25-(OH)₂D₃ may play an important role in the regulation of calcium and bone metabolism. These in vitro findings were followed by

the *in vivo* observation that 1,25-(OH)₂D₃ prolongs the survival time of mice inoculated with myeloid leukemia cells [86]. As shown in Table II, over the years 1,25-(OH)₂D₃ has been shown to have beneficial effects in several other *in vivo* animal models of various types of cancers [87–109].

An important aspect and limitation of the treatment of cancer with 1,25-(OH)₂D₃ was revealed by this limited set of clinical trials (see section II.D); to achieve growth inhibition, high doses are needed (confirming the *in vitro* data), which can cause the side effect of hypercalcemia. This has prompted the development of analogs of 1,25-(OH)₂D₃ in order to dissociate the antiproliferative effect from the calcemic and bone metabolism effects (see Chapters 80–88) [110,111]. Although the precise mechanism is not completely understood, at the moment several 1,25-(OH)₂D₃ analogs are available that seem to fulfill these criteria. In Table III the *in vivo* animal studies using 1,25-(OH)₂D₃ analogs on various cancer types are summarized [97,103,104,106–109,112–129].

D. Clinical Studies

Considering the calcemic actions of 1,25-(OH)₂D₃ up to this point in time only a few clinical trials of vitamin D compounds in cancer have been performed. Alfacalcidol $(1\alpha$ -hydroxyvitamin D₃; 1α -(OH)D₃), which is converted to 1,25-(OH)₂D₃ in vivo, caused a beneficial response in low-grade non-Hodgkin's lymphoma patients [130,131]. Also, with alfacalcidol, transient improvement in peripheral blood counts was seen in patients with myelodysplasia; however, half of the patients developed hypercalcemia [132]. Another study reported a sustained hematological response in six myelodysplasia patients treated with high doses of alfacalcidol [133]. These patients were restricted in their dietary calcium intake; nevertheless, four patients developed hypercalcemia due to increased bone resorption. With respect to treatment of cutaneous T-cell lymphoma with a combination of 1.25-(OH)₂D₃ and retinoids, contrasting results have been obtained. It has been suggested that the variability was due to differences in phenotype of the various lymphomas [134-138]. A study on early recurrent prostate cancer showed that daily treatment with 1,25-(OH)₂D₃ slowed the rise in prostate-specific antigen, but treatment coincided with hypercalcemic affects [139]. Using a regime of weekly treatment with high-dose calcitriol was found to be safe, but didn't result in a significant reduction in prostate-specific antigen (PSA) in prostate cancer cells [140]. Two studies were specifically designed to examine the route of application and calcemic response in patients with advanced malignancies [141,142].

TABLE II In Vivo Effects of 1,25-(OH)₂D₃ and 1α-(OH)D₃ in Animal Models of Cancer^a

Tumor	Model	Effect	Refs.
Adenocarcinoma	CAC-8 cells injected in nude mice	Reduction in tumor volume	[107]
Breast	NMU- and DMBA-induced breast cancer in rats	Tumor suppression	[93,96]
Colon	Human colon cell line implanted into nude mice; DMH-induced colon cancer in rats; APCmin mice	Tumor suppression; reduction of the incidence of colon adenocarcinomas; decrease in polyp number and tumor load	[90,92,95,371]
Kaposi sarcoma	KS Y-1 cells implanted in nude mice	Tumor growth retardation	į̇̀105]
Leydig tumor	Leydig cell tumor implanted into rats	Tumor suppression	[97]
Lung	Implantation of lewis lung carcinoma into mice	Reduction of the number of metastases (without suppression of primary tumor); tumor suppression; increased antitumor immunity	[87,99,101,102]
Melanoma	Human melanoma cells implanted into nude mice	Tumor suppression	[90]
Osteosarcoma	Human osteosarcoma cells implanted into nude mice	Tumor suppression	[98]
Prostate	Dunning MAT LyLu rat prostate model; LNCaP xenografts in nude mice; PAIII tumors in Lobund-Wistar rats	Reduction in lung metastasis; tumor suppression	[103,104,106,108,109]
etinoblastoma	Retinoblastoma cell line implanted into nude mice; transgenic mice with retinoblastoma	Tumor suppression	[91,94]
/alker carcinoma	Walker carcinoma cells injected in rats	Tumor suppression	[100]
kin .	DMBA/TPA-induced skin tumors in mice	Inhibition of tumor formation	[88,89]

The dosage, duration of treatment, diet, and effects on serum/urinary calcium vary among the studies. NMU, Nitrosomethylurea; DMBA, 7,12-dimethylbenz[a]anthracene; DMH, 1,2-dimethylydrazine dihydrochloride; TPA, 12-O-tetradecanoylphorbol-13-acetate.

Clinical trials using vitamin D analogs have been initiated over the last years. However, these were mostly limited clinical trials focusing on small groups of patients for whom regular treatment has failed. Only data from a few studies has been published. The analog calcipotriol (MC903) has been used for topical treatment of advanced breast cancer; however, several of the patients still developed hypercalcemia [143]. More recent studies have been published on advanced breast cancer [144] and pancreatic cancer [145] but the clinical results were limited. In a single case of Kaposi sarcoma and topical application of calcipotriol (Daivonex/Dovonex/MC903), good success in tumor regression was reported [105]. In Chapter 97 the current clinical status of 1,25-(OH)₂D₃ and its analogs as therapeutic agents for cancer will be discussed in greater detail.

E. Angiogenesis and Metastasis

For the tumor suppressive activity of vitamin D₃ compounds in vivo, besides growth inhibition, two

additional actions may be involved. First, angiogenesis is an essential requirement for the growth of solid tumors. Compounds that inhibit angiogenesis might therefore contribute to antitumor therapy. Antiangiogenic drugs may cause inhibition of tumor progression, stabilization of tumor growth, tumor regression, and prevention of metastasis. Antiangiogenic effects may play a role in the tumor suppressive activity of vitamin D₃ compounds. Two studies reported an antiangiogenic effect of 1,25-(OH)₂D₃ and the analog 22-oxacalcitriol using different experimental model systems [115.146]. In addition, it was shown that 1,25-(OH)₂D₃ inhibits angiogenesis induced by the human papilloma virus type 16 (HPV16)- or HPV18-containing cell lines HeLa. Skv-e2, and Skv-el2 when intradermally injected into immunosuppressed mice [147]. Also, with the nonvirus-transformed human cell lines T47-D (breast carcinoma) and A431 (vulva carcinoma), similar results were obtained [148]. In these studies the mice were treated for 5 days with 1,25-(OH)₂D₃ prior to the injection of tumor cells. The effect of 1,25-(OH)₂D₃ on angiogenesis may be due to inhibition of tumor cell proliferation, resulting in fewer angiogenic cells.

TABLE III In Vivo Effects 1,25-(OH)₂D₃ Analogs in Animal Models for Cancer^a

Analog	Model	Antitumor effect	Refs.
1,25-(OH)D ₂	Retinoblastoma	Tumor suppression	[128]
1,25-(OH)D ₅	Breast	Tumor suppression	[129]
CB966	Breast	Tumor suppression	[114]
CB1093	Prostate	Tumor suppression	[108]
	•	No effect on angiogenesis	
DD-003	Colon	Tumor suppression	[120]
EB1089	Adenocarcinoma	Tumor suppression	[107]
EB1089	Breast	Tumor suppression	[114,116,125,316]
EB1089	Colon	Tumor suppression	[124]
EB1089	Hepatocellular carcinoma	Inhibition of tumor incidence	[372]
EB1089	Leydig cell tumor	Tumor suppression	[97]
EB1089	Prostate	Tumor suppression	
		Reduction lung metastases	[104,106,108,109,126,127]
		No effect on angiogenesis	
KH1060	Prostate	Tumor suppression	[109]
LG190119	Prostate	Tumor suppression	[106]
OCT	Breast	Tumor suppression	[113,118]
OCT	Breast	Tumor suppression	[115]
OCT	Breast	Tumor suppression	[118]
OCT	Colon	Decreased tumor incidence	[121]
MC903 .	Breast	Tumor suppression	[117]
Ro 23-7553	Prostate	Tumor suppression	[122]
Ro 23-7553	Leukemia	Increased survival	[112]
Ro 24-5531	Breast	Decreased tumor incidence	[119]
Ro 24-5531	Colon	Decreased tumor incidence	[123]
Ro-25-6760	Prostate	Tumor suppression	[103]
ko-26-9114	Colon	Decrease in polyp number and tumor load	[371]
lo-26-9114	Prostate	Tumor suppression	[109]

^αMC903, 1,24-dihydroxy-22-ene-24-cyclopropyl-vitamin D₃; CB966, 24a,26a,27a-tri-homo-1α,25-dihydroxyvitamin D₃; CB1093, 20-epi-22(S)-ethoxy-23yne-24a, 26a,27a-trihomo-1α,25-dihydroxyvitamin D₃; DD-003,22(S)-24-homo-26,26,26,27,27,27-hexafluoro-1α,22,25-trihydroxyvitamin D₃; EB1089, 22,24-diene-24a,26a,27a-trihomo-1α,25-dihydroxyvitamin D₃; OCT, 22-Oxacalcitriol; Ro 23-7553, 1,25-dihydroxy-16-ene-23-yne-vitamin D₃; Ro 24-5531, 1,25-dihydroxy-16-ene-23-yne-26,27-hexafluorovitamin D₃. Ro 26-9114, 1α,25-(OH)₂-16-ene-19-mor-24-oxo-D₃.

However, inhibition of angiogenesis could also be observed when the tumor cells were treated *in vitro* with 1,25-(OH)₂D₃ and, after cell washing, were injected into mice [148]. Under these conditions both control and 1,25-(OH)₂D₃-treated mice were injected with similar numbers of cells. Therefore, these data indicate that 1,25-(OH)₂D₃ inhibits the release of angiogenic factors (vascular endothelium growth factor, transforming growth factor-α, basic fibroblast growth factor, epidermal growth factor, etc.) or stimulates antiangiogenic factors. 1,25-(OH)₂D₃ treatment caused a reduction in the angiogenic signaling

molecule, angiopoietin-2 in squamous cell carcinoma and radiation-induced fibrosarcoma-1 cells [149]. In retinoblastomas in mice, 1,25-(OH)₂D₃ has also been shown to reduce angiogenesis [150]. A recent study by Oades *et al.*, however, showed that the 1,25-(OH)₂D₃ analogs EB1089 and CB1093 inhibited tumor growth in two prostate animal models but did not inhibit angiogenesis in a rat aorta assay [108]. Whether this indicates that vitamin D affects angiogenesis in a tumor situation and not in a nonmalignant condition is not clear. This may resemble the effects of endostatin, which inhibits pathological but not normal

vascularization [151,152]. In support of this is the finding that 1,25-(OH)₂D₃ and its analogs EB1089, Ro-25-6760, and ILX23-7553 potently inhibit growth of endothelial cells derived from tumors, but are less potent against normal aortic or yolk sac endothelial cells [149]. Finally, an interesting observation is degly-cosylated vitamin D-binding protein (DBP-maf) has also been reported to inhibit angiogenesis [153,154] and to inhibit growth of pancreatic tumor in nude mice [154]. Whether 1,25-(OH)₂D₃ may interfere with DBP-maf in tumor growth inhibition and antiangiogenesis remains to be established. Interaction with another factor, interleukin-12, in the inhibition of angiogenesis has been reported [155].

The second mechanism of antitumor activity, which may be related to angiogenesis, is metastasis. Metastasis is the primary cause of the fatal outcome of cancer diseases. A study by Mork Hansen et al. indicated that 1.25-(OH)₂D₃ may be effective in reducing the invasiveness of breast cancer cells [156]. They showed that 1,25-(OH)₂D₃ inhibited the invasion and migration of a metastatic human breast cancer cell line (MDA-MB-231) using the Boyden chamber invasion assay. In support of this, it was shown that 1,25-(OH)₂D₃, KH1060, EB1089, and CB1093 inhibited secretion of tissue-type and urokinase plasminogen activator and increased plasminogen activator inhibitor 1 in the MDA-MB-231 metastatic breast cancer cells [157]. In an in vivo study, it was shown that 1,25-(OH)₂D₃ reduces metastasis to the lung of subcutaneously implanted Lewis lung carcinoma cells [101]. In two animal models of prostate cancer, 1,25-(OH)₂D₃ and the analogs EB1089 and RO25-6760 inhibited lung metastases [103,104]. In these models, the tumors were implanted subcutaneously and therefore, in contrast to the model of direct tumor cell injection in the left ventricle [158], no bone metastases occurred. However, a fact to be considered in relation to metastasis is that bone is the most frequentsite of metastasis of advanced breast and prostate cancer. There are some indications from clinical studies that bone metastases develop preferentially in areas with high bone turnover [159,160]. In contrast, agents that inhibit bone resorption have been reported to reduce the incidence of skeletal metastasis [161]. As 1,25-(OH)₂D₃ may stimulate bone turnover, treatment of cancer with 1,25-(OH)₂D₃ might theoretically increase the risk of skeletal metastases. This aspect of 1,25-(OH)₂D₃ therapy certainly needs further study. In this aspect, the use of vitamin D3 analogs with reduced calcemic activity or treatment with vitamin D₃ in combination with other compounds to reduce bone turnover (see Section IV) may be helpful. The data obtained so far on angiogenesis and metastasis indicate that these two processes are part of the spectrum of mechanisms by which vitamin D_3 exerts its anticancer activity.

F. Parathyroid Hormone-Related Peptide

1,25-(OH)₂D₃ and parathyroid hormone (PTH) mutually regulate synthesis and secretion of one another. Production and secretion of PTH are inhibited by 1,25-(OH)₂D₃ via a transcriptional effect, and a vitamin D responsive element (VDRE) in the promoter of the PTH gene has been identified [162,163] (see Chapter 30). Parathyroid hormone-related peptide (PTHrP) was initially isolated from several carcinomas and is responsible for the humoral hypercalcemia of malignancy syndrome [164]. Although originally identified in carcinomas, PTHrP has also been identified in normal cells (see Chapter 43).

In normal human mammary epithelial cells, 1,25-(OH)₂D₃ did not affect basal but inhibited growth factor-stimulated PTHrP expression via an effect on transcription [165]. In normal keratinocytes 1,25-(OH)₂D₃ had no effect on PTHrP secretion in basal culture conditions [166], but did inhibit growth factor-stimulated PTHrP production as well [167]. Likewise, 1,25-(OH)₂D₃, as well as the analogs 22-oxacalcitriol and MC903, inhibited PTHrP secretion in immortalized human keratinocytes (HPK1A), but this inhibition was less in the more malignant ras-transfected clone HPK1A-ras [168,169]. 1,25-(OH)₂D₃ and the analogs EB1089 and 22-oxacalcitriol inhibit the PTHrP gene transcription in and release from the squamous cancer cell line NCI H520 [170]. In addition, in the human T-cell lymphotrophic virus type I (HTLV-I)-transfected T-cell line MT-2, 1,25-(OH)₂D₃ and 22-oxacalcitriol did inhibit PTHrP gene expression and PTHrP secretion [171]. In rat H-500 Leydig tumor cells [172], and PC-3 prostate cancer cells 1,25-(OH)₂D₃ inhibited PTHrP secretion. It was suggested that this might play a role in the growth inhibition by vitamin D as PTHrP stimulates prostate cancer growth, tumor invasion, and metastasis [173-175]. In vivo observations comparable to these in vitro observations have also been made. When these H-500 Leydig tumor cells were implanted in Fisher rats, treatment with 1,25-(OH)₂D₃ and the analog EB1089 resulted in reduced levels of tumor PTHrP mRNA and PTHrP serum levels [97]. EB1089 also reduced serum levels of PTHrP in nude mice implanted with squamous cancer cells [176]. In Fisher rats implanted with the Walker carcinoma, 1.25-(OH)₂D₃ caused a decrease in serum PTHrP, but the ratio of PTHrP levels and tumor weight was similar in rats receiving vehicle or 1,25-(OH)₂D₃. The data point to an indirect effect on PTHrP via growth inhibition. However, the PTHrP mRNA levels appeared to be decreased by 1,25-(OH)₂D₃ [100]. In nude mice bearing the FA-6 cell line of a pancreas carcinoma lymph node metastasis, 22-oxacalcitriol inhibits PTHrP gene expression, which is related to inhibition of

tumor-induced hypercalcemia [177]. Together, the overall picture that emerges from these studies is that an important additional anticancer effect of vitamin D₃ and analogs could be the inhibition of the humoral hypercalcemia of malignancy.

In contrast to these inhibitory effects in human tumor cells and tumor models, a stimulatory effect of 1,25-(OH)₂D₃ and EB1089 on PTHrP gene transcription and PTHrP production by a canine oral squamous carcinoma cell line (Sec 2/88) has been observed [178,179]. Also in an *in vivo* model of canine adenocarcinoma CAC-8 implanted in nude mice, stimulation of PTHrP by 1,25-(OH)₂D₃ and EB1089 was observed [179]. These data indicate that the effect of vitamin D and analogs on canine tumors differs from that on human tumors.

III. VITAMIN D EFFECTS ON TUMOR CELLS

A. Cell Cycle

It has now been well established that vitamin D inhibits growth of cells by interfering with the cell cycle. Proliferating cells progress through the cell cycle, which comprises the G₀/G₁ phase (most differentiated, nondividing cells are in the G₁ phase), the S phase in which new DNA is synthesized, and the G₂ phase, which is followed by mitosis (M phase) whereon the cells reenter the G_0/G_1 phase. In most of the cells studied so far, treatment with 1,25-(OH)₂D₃ and its analogs results in a blockade at a specific checkpoint, i.e., the restriction point (R), in the G₁ phase limiting the transition of G₁ to S and reducing the number of cells in S phase. Some studies also have examined the effect on the G₂ phase, but these results are somewhat more diverse. In general it can be concluded that blocking the transition from the G₀/G₁ phase to the S phase plays an important role in the growth inhibitory effect of 1,25-(OH)₂D₃.

In the regulation of the cell cycle, numerous genes and proteins have been described. It is beyond the scope of this chapter to discuss in detail the regulation of all of the genes/proteins by vitamin D. In Fig. 1, an overview is given of the interacting genes/proteins that are involved in intracellular signaling and regulating the cell cycle. These genes and proteins are part of the cascade of events on which vitamin D exerts its effects. The components shown to be regulated by vitamin D are indicated. Figure 1 is a compilation of data present so far; it is important to realize that probably not all genes/proteins are affected by vitamin D in all tumor cells. However, in this way one gets an overview of the broad range of effects of vitamin D on intracellular signaling pathways involved in regulation of (tumor) cell

growth. More details on the regulation of the cell cycle will be discussed in several other chapters, especially Chapter 92.

Besides its effects on cell cycle regulation, vitamin D has recently been implicated to be involved in control of genomic stability [180]. 1,25-(OH)₂D₃ has been reported to inhibit hepatic chromosomal aberrations and DNA strand breaks [181]. This is supported by the finding that 1,25-(OH)₂D₃ and EB1089 stimulated the expression of GADD45, which stimulates DNA repair [182] and might be coupled to release of p53 from Mdm2 (see Fig. 1).

1. (ONCO)GENES AND TUMOR SUPPRESSOR GENES

Oncogenes and tumor suppressor genes generally are involved in control of the cell cycle and apoptosis (see Chapter 92). One of the most widely studied oncogenes in relation to vitamin D is c-myc. C-Myc suppresses expression of cell cycle/growth arrest genes gas 1, p15, p21, p27, and gadd34, -45, and -153 [183]. C-Myc has been postulated to play an early role in the following cascade of events in G₁: cyclins activate cyclin-dependent kinases (CDKs), which in turn can phosphorylate the retinoblastoma tumor suppressor gene product (p110RB), resulting in transition from G₁ to S phase (see Fig. 1). In HL-60 cells, breast cancer cells, and several other cell types, 1,25-(OH)₂D₃ has been reported to decrease *c-myc* oncogene expression [184–189]. Analysis of HL-60 sublines showed a relation between reduction of c-myc expression and inhibition of proliferation [190]. Similar observations were made for neuroblastoma cells treated with 1,25-(OH)₂D₃, EB1089, and KH10560 [191]. We did not observe a 1,25-(OH)₂D₃induced change in c-myc expression in MCF-7 and ZR-75.1 breast cancer cells while they were both growth inhibited [192], and a similar observation has been made for the colon-adenocarcinoma CaCo-2 cell line [193].

Nontransformed embryonic fibroblasts are growth inhibited by 1,25-(OH)₂D₃, whereas e-myc is not changed or is even increased [194,195]. In the MG-63 osteosarcoma cell line, 1,25-(OH)₂D₃ has been shown to enhance c-myc expression [196], whereas we observed growth inhibition by 1,25-(OH)₂D₃ [197]. These data show that regulation of c-myc expression may be part of growth inhibition by vitamin D, but that this is not generally applicable to all cells. 1,25-(OH)₂D₃ has also been reported to regulate expression of other oncogenes, like c-myb, c-fos, c-fms, c-fra1, c-jun, junD, c-Ki-ras, N-ras, c-src [189,198-203]; however, these data are rather limited. Nevertheless, it is clear that 1,25-(OH)₂D₃ has effects on the expression of various oncogenes. The data so far are not conclusive with respect to which genes are crucial in the growth inhibitory action of 1,25-(OH)₂D₃. This can be attributed to the fact that these (proto)oncogenes encode for transcription factors,

growth factor receptors, or components or intracellular signaling cascades. The effects of these may differ between cells dependent on presence or absence of additional cell type specific conditions. Therefore, their postulated role is often complex. For example, increased *c-myc* expression can be related to induction of apoptosis but also to stimulation of cell cycle progression.

In contrast to the oncogenes, the effect of 1,25-(OH)₂D₃ on the retinoblastoma tumor suppressor gene is much clearer. This may be related to the fact that, in contrast to oncogenes, retinoblastoma and p53 take well-defined positions in the control of cell cycle and DNA repair (see Fig. 1). The p110RB retinoblastoma gene product can either be phosphorylated or dephosphorylated. In the phosphorylated form, it can activate several transcription factors and cause transition to S phase and DNA synthesis. In human chronic myelogenous leukemia cells [204], breast cancer cells [205], and HL-60 cells [206,207], 1,25-(OH)₂D₃ caused a dephosphorylation of p110RB, which is related to growth inhibition and cell cycle arrest in Go/G1 and also in G2 [207]. In leukemic cells, 1,25-(OH)₂D₃ also caused a reduction in the cellular level of p110RB [204,206]. In nontransformed keratinocytes, 1,25-(OH)₂D₃ induced dephosphorylation of p110RB as well [208]. The other major tumor suppressor gene is p53. For leukemic U937 cells, it was reported that presence of p53 is important for 1,25-(OH)₂D₃-induced differentiation [209]. In rat glioma cells, 1,25-(OH)₂D₃ induces expression of p53 [210]. However, 1,25-(OH)₂D₃-can inhibit-cell growth and induce differentiation in cancer cells with defective p53 [211] and also p53-independent induction of apoptosis by EB1089 has been demonstrated [212]. These latter observations might be explained by the fact that vitamin D also interferes at levels in the cascade of cell cycle control down-stream of p53 (see Fig. 1). Recently, an additional interesting relationship between tumor suppressor genes and vitamin D has recently been shown for the Wilms' tumor suppressor gene WT1. This zinc-finger containing

transcription factor induces transcription of the VDR gene [213].

Several interesting additional genes and vitamin D targets in cancer treatment should be mentioned. First in 1994 Chen and DeLuca isolated and characterized a vitamin D-induced gene in HL-60 cells [214]. This protein, vitamin D-up-regulated protein (VDUP1), is a thioredoxin-binding protein-2 [215]. Thioredoxin has several roles in processes such as proliferation or apoptosis. It also promotes DNA binding of transcription factors such as NF-kB, AP-1, p53, and PEBP2. In addition, overexpression of thioredoxin suppresses the degradation of IKB and the transactivation of NF-KB, whereas overexpression of nuclear-targeted thioredoxin exhibits the enhancement of NF-kB-dependent transactivation [216]. However, it is only in more recent studies that a relationship between VDUP1 and cancer has been established. The expression of VDUP1 was found to correlate with malignant status of colorectal and gastric cancers [217]. 5-fluorouracil, which is widely used for treatment of colon cancer, induces VDUP1 expression in the SW620 colon cancer cell line [218]. In smooth muscle cells and cardiomyocytes VDUP1 inhibits proliferation and is involved in induction of apoptosis [219,220]. An association with vitamin D effects on cancer is made by two recent studies showing induction of VDUP1 by 1,25-(OH)₂D₃ in tumor cells and that VDUP1 induces cell cycle arrest [221,222]. Moreover, interaction with histone deacetylase (HDAC; see Fig. 1), promyelocytic leukemia zinc-finger (PLZF) was demonstrated. Interestingly and further complicating the story, PLZF inhibits 1,25-(OH)₂D₃ induced differentiation of U937 leukemic cells by binding to the VDR and inhibiting gene transcription [223,224]. Interestingly, the gene, DRH1, was cloned from hepatocellular carcinoma, and its expression was strongly reduced in cancer tissue compared to normal liver [225]. DRH1 has a 41% homology with VDUP1. Whether this points to a new family of cancer genes remains to be established, but it certainly opens new venues for intervening in cancer cell growth.

FIGURE 1 Schematic representation summarizing the intracellular pathways and signaling pathways involved regulation of the cell cycle shown to be regulated by 1,25-(OH)₂D₃ and 1,25-(OH)₂D₃ analogs in regulating cell proliferation. Targets shown to be affected by 1,25-(OH)₂D₃ and/or its analogs are indicated in the bold boxes and ovals. Bold arrows and fine dotted lines indicate stimulation and inhibition, respectively. Coarse dotted lines indicate processing to the proteasome. p indicates phosphorylation. The effects on these cellular targets are not demonstrated in all types of cancer cells but this diagram is aimed to give an overview of demonstrated targets and potential targets. NOTE: Dependent on the site of phosphorylation proteins can either be destabilized or degraded or be stabilized and activated. For example: phosphorylation of p21 at T145 by AKT leads to degradation while phosphorylation of S146 by AKT leads to increased stability. Abbreviation used: AKT (PKB), Protein kinase B; Bad, BCL2-antagonist of cell death; Bcl2, B-cell leukemia/lymphoma 2; Cdk, Cyclindependent kinase; CKS-1, Cyclin kinase subunit 1; DG, Diacylglycerol; E2F, Transcription factor; ERK, Extracellular-signal regulated kinase; FHKR (AFX/FOX), Forkhead family of transcription factors; GSK-3, Glycogen synthase kinase-3; HDAC, Histone deacetylase; IKK, I-kB kinase; IP3, Inositol 1,4,5-trisphosphate; Mdm2, Mouse double minute 2; MEK, Raf-1-MAPK/ERK kinase; PDK1, Phosphatidylinositol dependent kinase 1; PI3-K, Phosphatidyli inositol 3 kinase; PIP2, Phosphatidylinositol (4,5)-phosphate; PIP3, Phosphatidylinositol (3,4,5) phosphate; PIF3, Phosphatidylinositol (3,4,5) phosphate; PTFN, Phosphatase and tensin homologue; SHIP 1 and 2, Src homology 2 (SH2) containing phosphatases 1 and 2; SKP2, Ubiquitin ligase; VDR, Vitamin D receptor.

Second, an additional therapeutic target for vitamin D compounds might be regulation of enzymes involved in estrogen and androgen synthesis and metabolism [226-229]. Third, telomerase activity provides a mechanism for unlimited cell division. In HL-60 cells, 1,25-(OH)₂D₃ inhibits telomerase activity [230]. Fourth, the homeobox genes may prove to be a major target for vitamin D action in cancer, but this possibility remains to be elucidated. In a differential expression screen using the human U937 leukemic cells, the HoxA10 gene was shown to be regulated by 1,25-(OH)₂D₃ [231].

It is to be expected that as a result of the increasing application of large scale microarray gene expression analyses, a vast number of new cell cycle and vitamin D regulated genes will be identified and add to the unraveling and understanding of vitamin D control of cancer cell proliferation [232–235].

B. Apoptosis

A block in the cell cycle preventing transition into S phase may cause cells to go either into apoptosis or to enter a specific differentiation pathway (see Chapter 93). What exactly determines the decision of apoptosis or differentiation remains to be elucidated. It is suggested that early G₁ phase may be the point at which switching between cell cycle progression and induction of apoptosis occurs [236,237].

Induction of apoptosis, an orderly and characteristic sequence of biochemical, molecular, and structural changes resulting in the death of the cell [238], is a mechanism by which 1,25-(OH)₂D₃ inhibits tumor cell growth and may contribute to tumor suppression and explain the reduction in tumor volume found in various in vivo animal studies (see Section II.C).

1,25-(OH)₂D₃ has been shown to regulate expression of apoptosis genes and to induce apoptosis of cancer cells of various origins. For example, 1,25-(OH)₂D₃ and the analog Ro 25-6760 cause a cell cycle block in HT-29 human colon cancer cells, resulting in growth inhibition and induction of apoptosis [239]. The bcl-2 oncogene decreases the rate of programmed cell death [240,241]. However, protection of HL-60 cells against apoptosis occurred despite down-regulation of bcl-2 gene expression [242]. In several breast cancer cell lines (MCF-7, BT-474, MDA-MB-231) 1,25-(OH)₂D₃ and the analogs KH1060 and EB1089 decreased bcl-2 expression [211,243]. The analog CB1093 reduced bcl-2 expression in MCF-7 cells associated with the induction of apoptosis [244]. However, only in MCF-7 cells has this change in bcl-2 expression been accompanied by apoptosis. Effects on other genes/proteins have also been reported [245], and microarray gene

expression analyses and differential screening will also definitively reveal additional vitamin D targets in regulating apoptosis [246].

A central role for apoptosis in the action of 1,25-(OH)₂D₃ is unclear because growth inhibition of several other breast cancer cells appeared to be independent of apoptosis [211]. Also, MCF-7 cells that showed growth inhibition by 1,25-(OH)₂D₃ could, after removal of the hormone, again be stimulated to grow, implying transient growth inhibition and not cell death [247]. Stable transfection of leukemic U937 cells with the wild-type p53 tumor suppressor gene resulted in a reduced growth rate and produced cells that can undergo either apoptosis or maturation. In these cells 1,25-(OH)₂D₃ protects against p53-induced apoptosis and enhances p53-induced maturation [209]. In two independent studies with HL-60 cells, 1,25-(OH)₂D₃ was found either to protect against or to have no effects on apoptosis [242,248]. Vitamin D protection against apoptosis was also detected in human U937 leukemic cells treated tumor necrosis factor α [249]. Absence of a vitamin D effect on apoptosis might be explained by the expression of the antiapoptotic protein BAG-1 p50 isoform. This protein has been shown to bind to the VDR and block vitamin D-induced transcription [250]. The presence of additional interacting factors might also be important for the eventual effect on apoptosis as in the study with HL-60 cells, which in the presence but not the absence of 9-cis-retinoic acid, 1,25-(OH)₂D₃ did induce apoptosis [248]. The role of vitamin D interaction with other factors will be discussed in more detail in Section IV. In summary, the data obtained so far show that 1,25-(OH)₂D₃-induced growth inhibition can be related to apoptosis in some cases, but that growth inhibition is frequently observed to be independent of apoptosis. Possibly in these latter cases, induction of differentiation is more prominent. The factor that decides whether cells undergo apoptosis or differentiation is unclear but is probably dependent on cell cycle stage, presence of other factors, and levels of expression of oncogenes and tumor suppressor genes. An interesting phenomenom to be studied concerning vitamin D and apoptosis is calbindin 28K. Calbindin 28K is a wellknown vitamin D-induced protein that has recently been shown to inhibit apoptosis [251]. It is tempting to speculate that calbindin 28K plays a role in the decision whether vitamin D induces cells to differentiate or to go into apoptosis or that it is involved when 1,25-(OH)₂D₃ protects against apoptosis (see Chapter 42).

C. Differentiation

In addition to proliferation and apoptosis, the third major cellular process is differentiation. As described

above for the classic actions of 1,25-(OH)₂D₃ related to calcium homeostasis, effects on cell differentiation and proliferation are involved. The coupling between proliferation and differentiation has been most widely studied for cells of the hematopoietic system (Chapter 96) and keratinocytes (Chapter 35). In general, 1,25-(OH)₂D₃ inhibits proliferation and induces differentiation along the monocyte-macrophage lineage. Rapidly proliferating and poorly differentiated keratinocytes can be induced to differentiate by 1,25-(OH)2D3. A further relationship between the vitamin D₃ system and differentiation is demonstrated by the fact that in poorly differentiated keratinocytes 1,25-(OH)₂D₃ production and vitamin D receptor levels are high, whereas after induction of differentiation these levels decrease [252], and in melanoma cells 1,25-(OH)₂D₃ stimulates melanin production [253]. Effects on differentiation have also been reported for other cell types. Inhibition of prostate cancer cell proliferation is paralleled by an increased production of prostate specific antigen [254-257]. In the BT-20 breast cancer cells 1,25-(OH)₂D₃ induced morphological changes indicative for differentiation [258]. In several breast cancer cell lines, the stimulation of differentiation has been established by determining lipid production by the cells [211]. In this study, Elstner et al. demonstrated an uncoupling between effects on proliferation and differentiation. In two breast cancer cell lines, 1,25-(OH)₂D₃ and various analogs induced differentiation even though the cells were resistant to cell cycle and antiproliferative effects. This finding, together with data obtained with human myelogenous leukemia cells, [204] suggests a dissociation between the cellular vitamin D₃ pathways involved in regulation of differentiation and proliferation (see also Section V). For a HL-60 subclone, a similar observation was made [190], and in another HL-60 subclone the induction of differentiation was found to precede the Go/G1 cell cycle block. In contrast to the above-mentioned observations on stimulation of differentiation, 1,25-(OH)₂D₃ inhibits erythroid differentiation of the erythroleukemia cell line K562 [186], and 1,25-(OH)₂D₃ inhibits Activin A-induced differentiation of murine erythroleukemic F5-5 cells [259]. Although precise relationships among growth inhibition, cell cycle effects, and apoptosis are unclear, it can be concluded that an important effect of vitamin D₃ on both normal and malignant cells is induction of differentiation.

D. Growth Factors and Growth Factor Receptors

Besides regulation of cell cycle-related oncogenes and tumor suppressor genes, interaction with tumoror stroma-derived growth factors is important for

growth inhibition. Stimulation of breast cancer cell proliferation by coculture with fibroblasts is inhibited by 1,25-(OH)₂D₃ [260]. A good candidate to interact with the 1,25-(OH)₂D₃ action is transforming growth factor-β (TGFβ). TGFβ is involved in cell cycle control and apoptosis [261,262]. $TGF\beta$ can interfere with the cascade of events in the GI phase described above and inhibit the ability of cells to enter S phase when the factor is present during the GI phase. TGFB has been shown to suppress c-myc, cyclin A, cyclin E, and cdk2 and cdk4 expression [262]. In line with this, TGFB has been reported to inhibit phosphorylation of p110RB [263]. Vitamin D₃ compounds induce dephosphorylation of the retinoblastoma gene product, and vitamin D₃ growth inhibition of MCF-7 breast cancer cells is inhibited by a TGF\$\beta\$ neutralizing antibody [264]. 1,25-(OH)₂D₃ and several analogs stimulated the expression of TGFB mRNA and secretion of active and latent TGFβ₁ by the breast cancer cell line BT-20 [154]. 1,25-(OH)₂D₃ enhanced TGβ₁ gene expression in human keratinocytes [265] and the secretion of TGFβ in murine keratinocytes [266]. In both studies, antibodies against TGF\$ inhibited the growth inhibitory effect of vitamin D₃. Further evidence for a vitamin D₃-TGFβ interaction is that bone matrix of vitamin D-deficient rats contains substantially less TGF\$\beta\$ than controls [267]. Therefore, on the basis of these consistent findings, TGFB is a likely candidate to play a role in the 1,25-(OH)₂D₃-induced growth inhibition [268].

Interactions with the insulin-like growth factor (IGF) system have also been described. IGFs are potent growth stimulators of various cells, and their effect is regulated via a series of IGF binding proteins (IGFBPs). 1,25-(OH)₂D₃ and the analog EB1089 inhibit the IGF-Istimulated growth of MCF-7 breast cancer cells [269]. In prostate cancer cell lines, 1,25-(OH)₂D₃ induced expression of IGFBP6 but not IGFBP4 [270]. In human osteosarcoma cell lines, 1,25-(OH)₂D₃ and the analog $1\alpha\hbox{-dihydroxy-}16\hbox{-ene-}23\hbox{-yne-}26,\!27\hbox{-hexafluorochole-}$ calciferol potently stimulated the expression and secretion of IGFBP3 [271-273]. In one study an association has been made between increased IGFBP3 levels and 1,25-(OH)₂D₃ growth inhibition [271]. Recent observations that antisense oligonucleotides to IGFBP3 prevented growth inhibition of prostate cancer cells by 1,25-(OH)₂D₃ [235] provided further evidence for an interplay between 1,25-(OH)₂D₃ and IGFBP3. Interestingly, in the human osteosarcoma cell line MG-63, 1,25-(OH)₂D₃ and TGFβ synergistically increased IGF-BP-3 secretion [273]. An example of growth factor receptor regulation by 1,25-(OH)2D3 concerns the epidermal growth factor (EGF) receptor. This receptor is down-regulated in T47-D breast cancer cells and up-regulated in BT-20 breast cancer cells. Nevertheless, 1,25-(OH)₂D₃ inhibits the growth of both

cell lines [274,275]. These data provide evidence that interactions with growth factors are only part of the $1,25-(OH)_2D_3$ action on tumor cells.

As described above, it is clear that 1,25-(OH)₂D₃ has effects on the expression of various oncogenes and tumor suppressor genes and that multiple interactions with various growth factors exist. However, the data on these aspects, separately as well as in combination, are still too limited to define a distinct mechanism of action for the 1,25-(OH)₂D₃ anticancer effects. However, with respect to growth inhibition, at this time two models of action can be postulated. In the first one, 1,25-(OH)₂D₃ directly interferes with a crucial gene(s) involved in the control of the cell cycle. In this case, in view of the general pattern of the genes involved in cell cycle control, this mechanism of action will be similar in all types of cancer cells. However, the effect on cell cycle genes will be dependent on the presence or absence of additional growth factors. This will determine, depending on which growth factors are present, the differences in 1,25-(OH)₂D₃ action between cancer types of different origin but also within cancer types of similar origin. The second model is based on an indirect effect of 1,25-(OH)₂D₃ on cell cycle progression and tumor growth. In this case 1,25-(OH)₂D₃ may either inhibit or potentiate the effect of growth stimulatory or inhibitory factors, respectively, via, for example, effects on growth factor production, growth factor binding protein levels, or receptor regulation. It is also conceivable that a combination of both models forms the basis of 1,25-(OH)₂D₃ regulation of tumor cell growth.

IV. COMBINATION THERAPY

The data obtained with 1,25-(OH)₂D₃ and its analogs on growth inhibition and stimulation of differentiation offer promise for their use as an endocrine anticancer treatment. Single agent treatment with low calcemic 1,25-(OH)₂D₃ analogs could be useful; however, combination therapy with other tumor effective drugs may provide an even more beneficial effect. Up to now several in vitro and in vivo studies have focused on possible future combination therapies with 1,25-(OH)₂D₃ and 1,25-(OH)₂D₃ analogs.

For breast cancer cells the combination of the presently most widely-used endocrine therapy, the antiestrogen tamoxifen, with 1,25-(OH)₂D₃ and 1,25-(OH)₂D₃ analogs resulted in a greater growth inhibition of MCF-7 and ZR-75-1 cells than treatment with either compound alone [118,192,247]. In combination with tamoxifen, the cells were more sensitive to the antiproliferative action of 1,25(OH)₂D₃ and the analogs;

that is, the EC₅₀ values of the vitamin D₃ compounds in the presence of tamoxifen were lower than those in the absence of tamoxifen. Studies with MCF-7 cells suggested a synergistic effect of 1,25(OH)₂D₃ and tamoxifen on apoptosis [276]. In addition, in in vivo breast cancer models a synergistic effect of the tamoxifen-1,25(OH)₂D₃ analogs combination was observed [118,119]. Additional data on the interaction between the estrogen/antiestrogen system and vitamin D comes from studies showing the presence of an estrogen responsive element in the VDR promoter and regulation of VDR by estradiol in breast cancer cells [277]. This is intriguing that the stimulator of breast cancer cell growth induces the expression of the receptor for a growth inhibitor. VDR up-regulation in breast cancer cells and increased transcriptional activity was mimicked by the phytoestrogens resveratrol and genistein and blocked by tamoxifen [278]. In colon cancer also, VDR up-regulation by estradiol has been reported. However, in colon it was hypothesized to contribute to the protective effect of estradiol on chemicallyinduced colon carcinogenesis [279].

These important and complex interactions between the vitamin D and estrogen endocrine system in the regulation of cancer (cells) are promising and warrant further detailed analyses, e.g. regarding tissue(cancer)specific effects. In addition, the estrogen endocrine system may regulate the metabolism of 1,25-(OH)₂D₃ in cancer cells and thereby affect its action (see Section V). Interaction with another sex steroid, testosterone, has been described for ovarian cancer. Vitamin D inhibits dihydrotestosterone (DHT) and DHT stimulation of ovarian cancer cells [280]. Intriguingly, also here the growth stimulator and growth inhibitor mutually upregulate each others receptors. Also, in prostate cancer cells, it has been shown that 1,25-(OH)₂D₃, while inhibiting androgen stimulated growth, up-regulates the androgen receptor [281].

Interaction with another steroid in regulating cancer cells had already been reported in 1983. The synthetic glucocorticoid, dexamethasone, and 1,25-(OH)₂D₃ synergistically induced differentiation of murine myeloid leukemia cells [282]. This was supported by in vitro and in vivo data showing that dexamethasone enhanced the effect of vitamin D on growth inhibition, cell cycle arrest, and apoptosis of squamous carcinoma cells [283,284]. A possible mechanism is the up-regulation of VDR by dexamethasone [283]. An interesting aspect of this combination is not only the direct interaction at cancer cell level, but also in the control of the calcemic action of 1,25-(OH)₂D₃. Glucocorticoids inhibit intestinal calcium absorption and increase renal calcium excretion and in this way it may limit the hypercalcemic action of 1,25-(OH)₂D₃ [285].

Combination of vitamin D₃ and retinoids has been examined in various systems. A combination of retinoic acid and 1,25-(OH)₂D₃ resulted in a more profound inhibition of both T47-D breast cancer cells [286] and LA-N-5 human neuroblastoma cells [287]. 9-cis-Retinoic acid augmented 1,25-(OH)₂D₃-induced growth inhibition and differentiation of HL-60 cells [288]. Besides growth inhibition and differentiation effects, the combination of 1,25-(OH)₂D₃ and various isomers of retinoic acid were more potent in reducing angiogenesis than either compound alone [146–148]. The background of the interaction between retinoids and 1,25-(OH)₂D₃ may be attributed to heterodimer formation of the respective receptors [289].

For several cytokines, interactions with 1,25-(OH)₂D₃ have been described. Interferon-y and 1,25-(OH)₂D₃ synergistically inhibited the proliferation and stimulated the differentiation of HL-60, WEHI-3, and U937 myeloid leukemia cells [290-293]. Treatment of LLC-LN7 tumor cells with 1,25-(OH)₂D₃ with IFN-γ synergistically reduced tumor granulocyte-macrophage colonystimulating factor (GM-CSF) secretion and a blockage in the capacity of the tumor cells to induce granulocytemacrophage-suppressor cells [99]. In the mouse myeloid leukemia cell line MI interleukin-4 enhanced 1,25(OH)₂ D₃-induced differentiation [189,294,295]. Also with interleukin-1ß, interleukin-3, interleukin-6, and interleukin-12 interactions with 1,25-(OH)₂D₃ have been reported [296-298]. 1,25-(OH)₂D₃ and tumor necrosis factor synergistically induced growth inhibition and differentiation of HL-60 [299]. For MCF-7 cells an interaction between 1,25-(OH)₂D₃ and tumor necrosis factor has also been reported [298,300]. In the presence of GM-CSF, lower concentrations of 1,25(OH), D₃ could be used to achieve a similar antiproliferative effect in MCF-7 cells [301] and to induce differentiation of U937 myeloid leukemic cells [302]. Other factors shown to interact with 1,25-(OH)₂D₃ are butyrate [303-305], melatonin [306], EGF [307], and the factors described in Section III.C.

Furthermore, combinations of vitamin D₃ compounds with cytotoxic drugs, antioxidants, and radiation have been studied. *In vivo* adriamycin and *in vitro* carboplatin, cisplatin, and doxorubicin interacted synergistically with 1,25-(OH)₂D₃ to inhibit breast cancer cell growth [113,308–311]. In a carcinogen-induced rat mammary tumor model, treatment with 1α-(OH)D₃ and 5-fluorouracil, however, did not result in enhanced antitumor effects [96]. Recently, interactions with a plant-derived polyphenolic antioxidant, carnosic acid were demonstrated in the differentiation of HL-60 cells, which was related to a decrease in the intracellular levels of reactive oxygen species [312,313]. Also interaction with radiation therapy in breast cancer has been described [314–316].

The data on combinations of 1,25-(OH)₂D₃ and 1,25-(OH)₂D₃ analogs with various other anticancer compounds are promising and merit further analyses. The development of effective combination therapies may result in better response rates and lower required dosages, thereby reducing the risk of negative side effects.

V. RESISTANCE AND VITAMIN D METABOLISM

Classic vitamin D resistance concerns the disease hereditary vitamin D-resistant rickets, which is characterized by the presence of a nonfunctional VDR and consequently aberrations in calcium and bone metabolism (see Chapter 72). For cancer cells, the presence of a functional VDR is also a prerequisite for a growth regulatory response, and a relationship between VDR level and growth inhibition has been suggested for osteosarcoma, colon carcinoma, breast cancer, prostate cancer cells, and rat glioma [1,2,108,129,205,210,317-321]. Cell lines established from DMBA-induced breast tumors in VDR knockout mice are insensitive to growth arrest and apoptosis by 1,25-(OH)₂D₃, EB1089 and CB1093 [322]. Albeit that VDR is a prerequisite for tumor cell growth regulation, the presence of the VDR is not always coupled to a growth inhibitory response of 1,25(OH)₂D₃. Results from studies with transformed fibroblasts [194], myelogenous leukemia cells [190,204,323], transformed keratinocytes [187], and various breast cancer cell lines [211,324] demonstrated a lack of growth inhibition by 1,25(OH)₂D₃ even in the presence of VDR. In this situation, the designation "resistant" is based on the lack of growth inhibition, even though, as discussed earlier in Section III.C, some of these cells are still capable of being induced to differentiate [204,211]. This points to a specific defect in the growth inhibitory pathway. In the resistant MCF-7 cells, this defect is not located at a very common site in the growth inhibitory pathway of the cell because the growth could still be inhibited with the antiestrogen tamoxifen [324]. For myelogenous leukemia cells, similar observations have been made [325].

For VDR-independent resistance to growth inhibition, the underlying mechanism(s) is unknown. For the resistant MCF-7 clone, this is not related to up-regulation of the P-glycoprotein [324]. Interestingly, these vitamin D-resistant MCF-7 clones can be sensitized to 1,25(OH)₂D by activation of protein kinase C, resulting in induction of apoptosis and transcriptional activation, suggesting that alterations in phosphorylation may affect vitamin D sensitivity [326]. An interesting growth

inhibition resistant MCF-7 cell clone was described by Hansen et al. This clone was not growth inhibited while VDR was still present and 24-hydroxylase could still be induced [327]. Other examples of vitamin D resistance are HL60 cells that have been cultured for four years in the presence of 1,25-(OH)₂D₃ and resulted in clones that are resistant to differentiation inducing and growth inhibition. They became not only resistant to 1,25(OH)₂D but also to 5-beta-D-arabinocytosine, suggesting a common metabolic pathway being responsible [328]. Whether this relates to the up-regulation of the multidrug resistance proteins is not clear. In the resistant leukemia JMRD₃ cell line, altered regulation and DNA-binding activity of junD as part of the AP-1 complex has been reported [200]. Resistance to growth inhibition in the presence of VDR has also been linked to disruption of the VDR-RXR complex [329] and increased RXR degradation [330]. In addition, other factors, like the acute myeloid leukemia translocation products (e.g. PLZF) may contribute to resistance to vitamin D by sequestering the VDR [223,224].

The 1,25(OH)₂D₃ sensitive and resistant cell clones provide interesting models to examine the molecular mechanisms of 1,25(OH)₂D₃-induced growth inhibition. For example, lack of p21 results in no cell cycle block [331] and no apoptosis was detected with a mutated p53 [211]. Finally, the recent identification of cellular proteins that are involved in the vitamin D resistance in new world primates might add to the understanding of tumor cell resistance to vitamin D [332,333] (see Chapter 21).

At this time, the major mechanism for vitamin D resistance or reduced sensitivity in VDR containing tumor and cancer cells is 1,25-(OH)₂D₃ catabolism via the C24-hydroxylation pathway. An inverse relationship between cellular metabolism of 1,25-(OH)₂D₃ via 24-hydroxylation and growth inhibition of prostate cancer cells has been suggested [318]. The latter observation is intriguing, the more so as an inverse relationship between VDR level and induction of 24-hydroxylase (CYP24) activity was reported. In general, there may exist a direct relationship between VDR level and induction of 24-hydroxylase activity [319,334]. An important role in the control of 1,25-(OH)₂D₃ action on cancer cells was provided by studies with the 1,25-(OH)₂D₃-resistant prostate cancer cell line DU145. It was shown that 1,25-(OH)₂D₃ did inhibit the growth of these cells when it was combined with the 24-hydroxylase inhibitor Liazorole [335]. Inhibition of 24hydroxylase activity in HL-60 cells also altered the effect of 1,25-(OH)₂D₃ and 20-epi analogs [336]. The action of the analog EB1089 was also limited by hydroxylation at the C24 position [337]. However, it was

suggested that the increased potency of EB1089 is at least partly due to resistance to 24-hydroxylation [234]. Alternatively, 24-hydroxylation of the analog KH1060 has been implicated as one of the mechanisms to explain the potency of this analog. The 24-hydroxylated metabolites of this analog are very stable and are biologically active [338,339]. It has been shown that the naturally occurring 24-hydroxylated metabolite of vitamin D₃, 24R,25-(OH)₂D₃, also has a preventive effect on chemically-induced colon cancer [340].

Interaction between the estrogen system and 24-hydroxylase is also of importance. Recent data have shown that the phytoestrogen genistein inhibits 24-hydroxylase activity in prostate cancer cells and thereby increases the responsiveness to 1,25-(OH)₂D₃ [341]. A role for 24-hydroxylase as oncogene is suggested by data showing amplification of the CYP24 locus on chromosome 20q13.2 [342].

In contrast to degradation of 1,25-(OH)₂D₃ by 24-hydroxylase in cancer cells, recently it has become clear that tumor cells contain 1α-hydroxylase activity and thereby are able to generate 1,25-(OH)₂D₃. Expression of 1α-hydroxylase has been demonstrated in colorectal cancer [343-345]. It was postulated that in early stages tumor cells respond by up-regulating 1α-hydroxylase activity to counteract neoplastic growth while at later stages of tumor development this is lost [343]. Also in prostate cancer [346] and inflammatory myofibroblastic tumor [347] 1α-hydroxylase has been detected, albeit in the latter case the tumor contains large numbers of macrophages. It can be anticipated that in the coming years investigation of the expression of both 24-hydroxylase, 1α-hydroxylase in tumors will add to the understanding of vitamin D in the initiation and progression of cancer.

VI. STIMULATION OF PROLIFERATION

Over the years a limited number of studies have demonstrated that, in contrast to growth inhibition, 1,25-(OH)₂D₃ can also stimulate tumor cell growth and tumor development. In several cells 1,25-(OH)₂D₃ has been reported to have a biphasic effect, that is, at lower concentrations (<10⁻⁹ M) it stimulates proliferation and at higher concentrations (10⁻⁹ to 10⁻⁷ M) it inhibits proliferation. However, clear growth stimulation can sometimes be observed not only at low concentrations but also at the concentrations generally found to inhibit tumor cell proliferation and tumor development. 1,25-(OH)₂D₃ has been shown to stimulate the growth of a human medullary thyroid carcinoma cell line [348]. Not only cancer cells but also several normal cells, for example, human monocytes [349], smooth muscle

cells [350], and alveolar type II cells [351], are stimulated to grow by $1,25-(OH)_2D_3$.

Skin is another organ in which different effects of 1,25-(OH)₂D₃ have been observed. In vivo studies demonstrated that 1,25-(OH)₂D₃ and analogs stimulate keratinocyte proliferation in normal mice [352-355] and enhance anchorage-independent growth of preneoplastic epidermal cells [356]. In contrast, other studies showed 1,25-(OH)₂D₃ inhibition of proliferation of mouse and human keratinocytes [357,358], and 1,25-(OH)₂D₃ is also effective in the treatment of the hyperproliferative disorder psoriasis [359]. Moreover, in vivo studies demonstrated that, depending on the carcinogen, 1,25-(OH)₂D₃ can either reduce [88] or enhance the induction and development of skin tumors in mice [360,361]. In addition, 1,25-(OH)₂D₃ enhances the chemically-induced transformation of BALB 3T3 cells and hamster embryo cells [362,363]. 1,25-(OH)₂D₃ also enhanced 12-O-tetradecanoylphorbol-13-acetateinduced tumorigenic transformation of mouse epidermal JB6 Cl41.5a cells [364,365].

Another example comes from research on osteosarcoma cells. In 1986 it was shown that 1,25-(OH)₂D₃ stimulated the growth of tumors in athymic mice inoculated with the ROS 17/2.8 osteosarcoma cell line [366]. Earlier the same group reported growth stimulation in vitro of these osteosarcoma cells at low concentrations of 1,25(OH)₂D₃, but growth inhibition by 10⁻⁸ M [317]. They speculated that this discrepancy resulted from limited in vivo availability of 1,25-(OH)₂D₃ for the tumor cells, resulting in concentrations shown to be growth stimulatory in vitro. However, in other experiments with nude mice, the availability of 1,25-(OH)₂D₃ did not seem to be a factor, as growth inhibition was observed

FIGURE 2 Effect of 1,25-(OH)₂D₃ on proliferation of the osteosarcoma cell lines ROS 17/2.8 and MG-63. Effects on proliferation were examined as described by van den Bemd *et al.* [197].

(see Table II). In particular, in nude mice implanted with human osteosarcoma cells (MG-63), growth inhibition and tumor suppression by 1,25-(OH)₂D₃ were observed [98]. In two different in vitro studies, growth inhibition of MG-63 and growth stimulation of ROS 17/2.8 cells was reported [367,368]. For smooth muscle cells, it has been demonstrated, for example, that growth inhibition or stimulation can depend on the presence of additional growth factors in the culture medium [350]. We followed up on this concept by comparing the effects of 1,25-(OH)₂D₃ and analogs on the growth and osteoblastic characteristics of the two osteosarcoma cell lines under identical culture conditions. At concentrations 10^{-10} to 10^{-7} M, 1,25-(OH)₂D₃ caused an increase in cell proliferation by 100% in ROS 17/2.8 cells, whereas the proliferation of MG-63 cells was inhibited (Fig. 2) [197]. In contrast, in both cell lines 1,25(OH)₂D₃ stimulated osteoblastic differentiation characteristics such as production of osteocalcin and alkaline phosphatase activity [197,367]. Analyses with another steroid hormone demonstrated that glucocorticoids inhibited the growth of both osteosarcoma cell lines [369,370]. These data indicate specific differences between these cell lines, especially with respect to the 1,25-(OH)₂D₃ growth regulatory mechanisms.

Taken together, the data on growth stimulation and tumor development, although detected in only a minority of cancer cells, demonstrate that treatment with 1,25-(OH)₂D₃ or analogs may not always cause growth inhibition and tumor size reduction. It is therefore of utmost importance to identify the mechanism(s) by which 1,25-(OH)₂D₃ exerts its inhibitory and stimulatory effects on cell growth. This may provide tools to assess whether treatment of a particular tumor will be beneficial. Moreover, purely from a mechanistic point of view, the presence of growth-stimulated and growth-inhibited cells, like the 1,25-(OH)₂D₃ sensitive and resistant cells, may provide tools to examine the 1,25-(OH)₂D₃ mechanism of growth regulation.

VII. CONCLUSIONS

The data obtained so far, on (1) the distribution of the VDR in a broad range of tumors and (2) the inhibition of cancer cell growth, angiogenesis, metastasis, and PTHrP synthesis by 1,25-(OH)₂D₃, all hold promise for the development of treatment strategies based on vitamin D₃ use in a wide range of cancers. Moreover, combination of vitamin D compounds with other antitumor drugs, hormones, or growth factors is an important additional therapeutic option. Throughout the last years data have accumulated on the cellular targets and mechanism of action of 1,25-(OH)₂D₃-induced cancer

growth inhibition. The clinical application is enhanced by the development of 1,25-(OH)₂D₃ analogs with potent growth inhibitory actions and reduced hypercalcemic activity. At the moment more clinical studies are needed in order to firmly establish whether 1,25(OH)₂D₃ and especially vitamin D₃ analogs have therapeutic potential. In the meantime it is crucial to further our understanding of the mechanism(s) by which 1,25(OH)₂D₃ exerts its effects on tumor cell growth so that these drugs may be employed more effectively.

References

- Shabahang M, Buras RR, Davoodi F, Schumaker LM, Nauta RJ, Evans SR 1993 1,25-dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res 53:3712-3718.
- Buras RR, Schumaker LM, Davoodi F, Brenner RV, Shabahang M, Nauta RJ, Evans SR 1994 Vitamin D receptors in breast cancer cells. Breast Cancer Res Treat 31:191-202.
- Villena-Heinsen C, Meyberg R, Axt-Fliedner R, Reitnauer K, Reichrath J, Friedrich M 2002 Immunohistochemical analysis of 1,25-dihydroxyvitamin D3 receptors, estrogen, and progesterone receptors and Ki-67 in ovarian carcinoma. Anticancer Res 22:2261–2267.
- Evans SR, Nolla J, Hanfelt J, Shabahang M, Nauta RJ, Shchepotin IB 1998 Vitamin D receptor expression as a predictive marker of biological behavior in human colorectal cancer. Clin Cancer Res 4:1591–1595.
- Friedrich M, Rafi L, Tilgen W, Schmidt W, Reichrath J 1998 Expression of 1,25-dihydroxy vitamin D3 receptor in breast carcinoma. J Histochem Cytochem 46:1335-1337.
- Friedrich M, Villena-Heinsen C, Tilgen W, Schmidt W, Reichrat J, Axt-Fliedner R 2002 Vitamin D receptor (VDR) expression is not a prognostic factor in breast cancer. Anticancer Res 22:1919-1924.
- Eisman JA, Suva LJ, Sher E, Pearce PJ, Funder JW, Martin TJ 1981 Frequency of 1,25-dihydroxyvitamin D3 receptor in human breast cancer. Cancer Res 41:5121-5124.
- Freake HC, Abeyasekera G, Iwasaki J, Marcocci C, MacIntyre I, McClelland RA, Skilton RA, Easton DF, Coombes RC 1984 Measurement of 1,25-dihydroxyvitamin D3 receptors in breast cancer and their relationship to biochemical and clinical indices. Cancer Res 44:1677-1681.
- Eisman JA, Suva LJ, Martin TJ 1986 Significance of 1,25dihydroxyvitamin D3 receptor in primary breast cancers. Cancer Res 46:5406-5408.
- Berger U, Wilson P, McClelland RA, Colston K, Haussler MR, Pike JW, Coombes RC 1987 Immunocytochemical detection of 1,25-dihydroxyvitamin D3 receptor in breast cancer. Cancer Res 47:6793-6799.
- Berger U, McClelland RA, Wilson P, Greene GL, Haussler MR, Pike JW, Colston K, Easton D, Coombes RC 1991 Immunocytochemical determination of estrogen receptor, progesterone receptor, and 1,25-dihydroxyvitamin D3 receptor in breast cancer and relationship to prognosis. Cancer Res 51:239-244.
- Goode EL, Dunning AM, Kuschel B, Healey CS, Day NE, Ponder BA, Easton DF, Pharoah PP 2002 Effect of germ-line

- genetic variation on breast cancer survival in a population-based study. Cancer Res 62:3052-3057.
- Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ 2002 Vitamin D receptor as an intestinal bile acid sensor. Science 296: 1313-1316.
- 14. Thompson PD, Jurutka PW, Whitfield GK, Myskowski SM, Eichhorst KR, Dominguez CE, Haussler CA, Haussler MR 2002 Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem Biophys Res Commun 299:730-738.
- Zinser GM, Sundberg JP, Welsh J 2002 Vitamin D(3) receptor ablation sensitizes skin to chemically-induced tumorigenesis. Carcinogenesis 23:2103-2109.
- Garland CF, Garland FC 1980 Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol 9:227-231.
- Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED 1989 Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2:1176-1178.
- Garland CF, Garland FC, Gorham ED 1991 Can colon cancer incidence and death rates be reduced with calcium and vitamin D? Am J Clin Nutr 54:193S-201S.
- Garland FC, Garland CF, Gorham ED, Young JF 1990 Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med 19:614-622.
- Schwartz GG, Hulka BS 1990 Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res 10:1307-1311.
- Gorham ED, Garland FC, Garland CF 1990 Sunlight and breast cancer incidence in the USSR. Int J Epidemiol 19:820-824.
- Hanchette CL, Schwartz GG 1992 Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer 70:2861-2869.
- Ainsleigh HG 1993 Beneficial effects of sun exposure on cancer mortality. Prev Med 22:132-140.
- 24. Studzinski GP, Moore DC 1995 Sunlight—can it prevent as well as cause cancer? Cancer Res 55:4014-4022.
- Grant WB 2002 An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar ultraviolet-B radiation. Cancer 94:1867–1875.
- de Gruijl FR, Longstreth J, Norval M, Cullen AP, Slaper H, Kripke ML, Takizawa Y, van der Leun JC 2003 Health effects from stratospheric ozone depletion and interactions with climate change. Photochem Photobiol Sci 2:16-28.
- Albert MR, Ostheimer KG 2003 The evolution of current medical and popular attitudes toward ultraviolet light exposure: Part 2. J Am Acad Dermatol 48:909-918.
- Luscombe CJ, French ME, Liu S, Saxby MF, Jones PW, Fryer AA, Strange RC 2001 Outcome in prostate cancer associations with skin type and polymorphism in pigmentation-related genes. Carcinogenesis 22:1343-1347.
- Luscombe CJ, French ME, Liu S, Saxby MF, Jones PW, Fryer AA, Strange RC 2001 Prostate cancer risk: associations with ultraviolet radiation, tyrosinase and melanocortin-1 receptor genotypes. Br J Cancer 85:1504-1509.
- 30. Bodiwala D, Luscombe CJ, French ME, Liu S, Saxby MF, Jones PW, Ramachandran S, Fryer AA, Strange RC 2003 Susceptibility to prostate cancer: studies on interactions between UVR exposure and skin type. Carcinogenesis 24:711-717.
- Jablonski NG, Chaplin G 2002 Skin deep. Sci Am 287:74-81.

- Jacobson EA, James KA, Newmark HL, Carroll KK 1989
 Effects of dietary fat, calcium, and vitamin D on growth and mammary tumorigenesis induced by 7,12-dimethylbenz(a)-anthracene in female Sprague-Dawley rats. Cancer Res 49:6300-6303.
- Barger-Lux MJ, Heaney RP 1994 The role of calcium intake in preventing bone fragility, hypertension, and certain cancers. J Nutr 124:1406S-1411S.
- 34. Newmark HL 1994 Vitamin D adequacy: a possible relationship to breast cancer. Adv Exp Med Biol 364:109-114.
- Kleibeuker JH, van der MR, de Vries EG 1995 Calcium and vitamin D: possible protective agents against colorectal cancer? Eur J Cancer 31A:1081-1084.
- Garland CF, Garland FC, Gorham ED 1999 Calcium and vitamin D. Their potential roles in colon and breast cancer prevention. Ann NY Acad Sci 889:107-119.
- 37. McCullough ML, Robertson AS, Rodriguez C, Jacobs EJ, Chao A, Carolyn J, Calle EE, Willett WC, Thun MJ 2003 Calcium, vitamin D, dairy products, and risk of colorectal cancer in the cancer prevention study II nutrition cohort (United States). Cancer Causes Control 14:1-12.
- Simard A, Vobecky J, Vobecky JS 1991 Vitamin D deficiency and cancer of the breast: an unprovocative ecological hypothesis. Can J Public Health 82:300-303.
- Pence BC, Richard BC, Lawlis RS, Kuratko CN 1991 Effects of dietary calcium and vitamin D3 on tumor promotion in mouse skin. Nutr Cancer 16:171-181.
- Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P 2000 Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 11:847–852.
- Tuohimaa P, Lyakhovich A, Aksenov N, Pennanen P, Syvala H, Lou YR, Ahonen M, Hasan T, Pasanen P, Blauer M, Manninen T, Miettinen S, Vilja P, Ylikomi T 2001 Vitamin D and prostate cancer. J Steroid Biochem Mol Biol 76:125-134.
- La Vecchia C, Braga C, Negri E, Franceschi S, Russo A, Conti E, Falcini F, Giacosa A, Montella M, Decarli A 1997 Intake of selected micronutrients and risk of colorectal cancer. Int J Cancer 73:525-530.
- Lipkin M, Reddy B, Newmark H, Lamprecht SA 1999 Dietary factors in human colorectal cancer. Annu Rev Nutr 19:545-586.
- Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ 2000 Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507-515.
- 45. Kallay E, Pietschmann P, Toyokuni S, Bajna E, Hahn P, Mazzucco K, Bieglmayer C, Kato S, Cross HS 2001 Characterization of a vitamin D receptor knockout mouse as a model of colorectal hyperproliferation and DNA damage. Carcinogenesis 22:1429-1435.
- Miller CW, Morosetti R, Campbell MJ, Mendoza S, Koeffler HP 1997 Integrity of the 1,25-dihydroxyvitamin D3 receptor in bone, lung, and other cancers. Mol Carcinog 19:254-257.
- Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL, Bell DA 1996 Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 56:4108-4110.
- Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA 1997 Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 89:166-170.
- 49. Ingles SA, Coetzee GA, Ross RK, Henderson BE, Kolonel LN, Crocitto L, Wang W, Haile RW 1998 Association of prostate

- cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 58:1620-1623.
- Correa-Cerro L, Berthon P, Haussler J, Bochum S, Drelon E, Mangin P, Fournier G, Paiss T, Cussenot O, Vogel W 1999 Vitamin D receptor polymorphisms as markers in prostate cancer. Hum Genet 105:281-287.
- 51. Habuchi T, Suzuki T, Sasaki R, Wang L, Sato K, Satoh S, Akao T, Tsuchiya N, Shimoda N, Wada Y, Koizumi A, Chihara J, Ogawa O, Kato T 2000 Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res 60:305-308.
- 52. Hamasaki T, Inatomi H, Katoh T, Ikuyama T, Matsumoto T 2001 Clinical and pathological significance of vitamin D receptor gene polymorphism for prostate cancer which is associated with a higher mortality in Japanese. Endocr J 48:543-549.
- Hamasaki T, Inatomi H, Katoh T, Ikuyama T, Matsumoto T 2002 Significance of vitamin D receptor gene polymorphism for risk and disease severity of prostate cancer and benign prostatic hyperplasia in Japanese. Urol Int 68:226-231.
- 54. Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J, Lopes C 2002 The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population. J Hum Genet 47:413-418.
- Xu Y, Shibata A, McNeal JE, Stamey TA, Feldman D, Peehl DM 2003 Vitamin D receptor start codon polymorphism (fokl) and prostate cancer progression. Cancer Epidemiol Biomarkers Prev 12:23-27.
- Watanabe M, Fukutome K, Murata M, Uemura H, Kubota Y, Kawamura J, Yatani R 1999 Significance of vitamin D receptor gene polymorphism for prostate cancer risk in Japanese. Anticancer Res 19:4511-4514.
- Blazer DG III, Umbach DM, Bostick RM, Taylor JA 2000 Vitamin D receptor polymorphisms and prostate cancer. Mol Carcinog 27:18-23.
- Gsur A, Madersbacher S, Haidinger G, Schatzl G, Marberger M, Vutuc C, Micksche M 2002 Vitamin D receptor gene polymorphism and prostate cancer risk. Prostate 51:30-34.
- Suzuki K, Matsui H, Ohtake N, Nakata S, Takei T, Koike H, Nakazato H, Okugi H, Hasumi M, Fukabori Y, Kurokawa K, Yamanaka H 2003 Vitamin D receptor gene polymorphism in familial prostate cancer in a Japanese population. Int J Urol 10:261-266.
- Tayeb MT, Clark C, Haites NE, Sharp L, Murray GI, McLeod HL 2003 CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. Br J Cancer 88:928-932.
- Curran JE, Vaughan T, Lea RA, Weinstein SR, Morrison NA, Griffiths LR 1999 Association of a vitamin D receptor polymorphism with sporadic breast cancer development. Int J Cancer 83:723-726.
- Lundin AC, Soderkvist P, Eriksson B, Bergman-Jungestrom M, Wingren S 1999 Association of breast cancer progression with a vitamin D receptor gene polymorphism. South-East Sweden Breast Cancer Group. Cancer Res 59:2332-2334.
- Ingles SA, Garcia DG, Wang W, Nieters A, Henderson BE, Kolonel LN, Haile RW, Coetzee GA 2000 Vitamin D receptor genotype and breast cancer in Latinas (United States). Cancer Causes Control 11:25-30.
- 64. Bretherton-Watt D, Given-Wilson R, Mansi JL, Thomas V, Carter N, Colston KW 2001 Vitamin D receptor gene polymorphisms are associated with breast cancer risk in a UK Caucasian population. Br J Cancer 85:171-175.

- 65. Hou MF, Tien YC, Lin GT, Chen CJ, Liu CS, Lin SY, Huang TJ 2002 Association of vitamin D receptor gene polymorphism with sporadic breast cancer in Taiwanese patients. Breast Cancer Res Treat 74:1-7.
- Schondorf T, Eisberg C, Wassmer G, Warm M, Becker M, Rein DT, Gohring UJ 2003 Association of the vitamin D receptor genotype with bone metastases in breast cancer patients. Oncology 64:154-159.
- 67. Dunning AM, McBride S, Gregory J, Durocher F, Foster NA, Healey CS, Smith N, Pharoah PD, Luben RN, Easton DF, Ponder BA 1999 No association between androgen or vitamin D receptor gene polymorphisms and risk of breast cancer. Carcinogenesis 20:2131-2135.
- Ingles SA, Wang J, Coetzee GA, Lee ER, Frankl HD, Haile RW 2001 Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States). Cancer Causes Control 12:607-614.
- Slatter ML, Yakumo K, Hoffman M, Neuhausen S 2001 Variants of the VDR gene and risk of colon cancer (United States). Cancer Causes Control 12:359

 –364.
- Peters U, McGlynn KA, Chatterjee N, Gunter E, Garcia-Closas M, Rothman N, Sinha R 2001 Vitamin D, calcium, and vitamin D receptor polymorphism in colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10:1267-1274.
- Ramachandran S, Fryer AA, Smith AG, Lear JT, Bowers B, Hartland AJ, Whiteside JR, Jones PW, Strange RC 2001 Basal cell carcinomas: association of allelic variants with a high-risk subgroup of patients with the multiple presentation phenotype. Pharmacogenetics 11:247-254.
- Ikuyama T, Hamasaki T, Inatomi H, Katoh T, Muratani T, Matsumoto T 2002 Association of vitamin D receptor gene polymorphism with renal cell carcinoma in Japanese. Endocr J 49:433-438.
- 73. Hutchinson PE, Osborne JE, Lear JT, Smith AG, Bowers PW, Morris PN, Jones PW, York C, Strange RC, Fryer AA 2000 Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin Cancer Res 6:498-504.
- Speer G, Dworak O, Cseh K, Bori Z, Salamon D, Torok I, Winkler G, Vargha P, Nagy Z, Takacs I, Kucsera M, Lakatos P 2000 Vitamin D receptor gene BsmI polymorphism correlates with erbB-2/HER-2 expression in human rectal cancer. Oncology 58:242-247.
- 75. Ma J, Stampfer MJ, Gann PH, Hough HL, Giovannucci E, Kelsey KT, Hennekens CH, Hunter DJ 1998 Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev 7:385-390.
- Kim HS, Newcomb PA, Ulrich CM, Keener CL, Bigler J, Farin FM, Bostick RM, Potter JD 2001 Vitamin D receptor polymorphism and the risk of colorectal adenomas: evidence of interaction with dietary vitamin D and calcium. Cancer Epidemiol Biomarkers Prev 10:869-874.
- Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA 2003 Vitamin D receptor start codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese. Carcinogenesis 24:1091-1095.
- Durrin LK, Haile RW, Ingles SA, Coetzee GA 1999 Vitamin D receptor 3'-untranslated region polymorphisms: lack of effect on mRNA stability. Biochim Biophys Acta 1453:311-320.
- Colston K, Colston MJ, Feldman D 1981 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 108: 1083-1086.

- Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T 1981 Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 78:4990-4994.
- Miyaura C, Abe E, Kuribayashi T, Tanaka H, Konno K, Nishii Y, Suda T 1981 1 alpha,25-dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 102:937-943.
- Suda T, Miyaura C, Abe E, Kuroki T 1986 Modulation of cell differentiation, immune responses and tumor promotion by vitamin D compounds. In: Peck WA (eds). Elsevier, Amsterdam pp. 1–48.
- Suda T, Takahashi N, Abe E 1992 Role of vitamin D in bone resorption. J Cell Biochem 49:53-58.
- Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N 1995 Modulation of osteoclast differentiation by local factors. Bone 17:87S-91S.
- 85. Wu JC, Smith MW, Lawson DE 1992 Time dependency of 1,25(OH)2D3 induction of calbindin mRNA and calbindin expression in chick enterocytes during their differentiation along the crypt-villus axis. Differentiation 51:195-200.
- 86. Honma Y, Hozumi M, Abe E, Konno K, Fukushima M, Hata S, Nishii Y, DeLuca HF, Suda T 1983 1 alpha,25-dihydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc Natl Acad Sci USA 80:201-204.
- Sato T, Takusagawa K, Asoo N, Konno K 1982 Antitumor effect of 1 alpha-hydroxyvitamin D3. Tohoku J Exp Med 138:445–446.
- Wood AW, Chang RL, Huang MT, Uskokovic M, Conney AH 1983 1 alpha, 25-dihydroxyvitamin D3 inhibits phorbol esterdependent chemical carcinogenesis in mouse skin. Biochem Biophys Res Commun 116:605-611.
- Chida K, Hashiba H, Fukushima M, Suda T, Kuroki T 1985
 Inhibition of tumor promotion in mouse skin by 1 alpha,
 25-dihydroxyvitamin D3. Cancer Res 45:5426-5430.
- Eisman JA, Barkla DH, Tutton PJ 1987 Suppression of in vivo growth of human cancer solid tumor xenografts by 1,25-dihydroxyvitamin D3. Cancer Res 47:21-25.
- Cohen SM, Saulenas AM, Sullivan CR, Albert DM 1988
 Further studies of the effect of vitamin D on retinoblastoma.
 Inhibition with 1,25-dihydroxycholecalciferol. Arch Ophthalmol 106:541-543.
- Eisman JA, Koga M, Sutherland RL, Barkla DH, Tutton PJ 1989 1,25-dihydroxyvitamin D3 and the regulation of human cancer cell replication. Proc Soc Exp Biol Med 191: 221-226.
- Colston KW, Berger U, Coombes RC 1989 Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1:188-191.
- Albert DM, Marcus DM, Gallo JP, O'Brien JM 1992 The antineoplastic effect of vitamin D in transgenic mice with retinoblastoma. Invest Ophthalmol Vis Sci 33:2354-2364.
- Belleli A, Shany S, Levy J, Guberman R, Lamprecht SA 1992 A protective role of 1,25-dihydroxyvitamin D3 in chemically-induced rat colon carcinogenesis. Carcinogenesis 13:2293-2298.
- 96. Iino Y, Yoshida M, Sugamata N, Maemura M, Ohwada S, Yokoe T, Ishikita T, Horiuchi R, Morishita Y 1992 1 alpha-hydroxyvitamin D3, hypercalcemia, and growth suppression of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumors. Breast Cancer Res Treat 22:133-140.
- Haq M, Kremer R, Goltzman D, Rabbani SA 1993 A vitamin D analog (EB1089) inhibits parathyroid hormonerelated peptide production and prevents the development of

- malignancy-associated hypercalcemia in vivo. J Clin Invest 91:2416-2422.
- Tsuchiya H, Morishita H, Tomita K, Ueda Y, Tanaka M 1993
 Differentiating and antitumor activities of 1 alpha,25-dihydroxyvitamin D3 in vitro and 1 alpha-hydroxyvitamin D3 in vivo on human osteosarcoma. J Orthop Res 11:122-130.
- Young MR, Halpin J, Hussain R, Lozano Y, Djordjevic A, Devata S, Matthews JP, Wright MA 1993 Inhibition of tumor production of granulocyte-macrophage colony-stimulating factor by 1 alpha, 25-dihydroxyvitamin D3 reduces tumor motility and metastasis. Invasion Metastasis 13:169-177.
- 100. Cohen-Solal ME, Bouizar Z, Denne MA, Graulet AM, Gueris J, Bracq S, Jullienne A, De Vernejoul MC 1995 1,25 dihydroxyvitamin D and dexamethasone decrease in vivo Walker carcinoma growth, but not parathyroid hormone-related protein secretion. Horm Metab Res 27:403-407.
- 101. Young MR, Ihm J, Lozano Y, Wright MA, Prechel MM 1995 Treating tumor-bearing mice with vitamin D3 diminishes tumor-induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence. Cancer Immunol Immunother 41:37-45.
- 102. Young MR, Lozano Y, Ihm J, Wright MA, Prechel MM 1996 Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Lett 104:153-161.
- 103. Getzenberg RH, Light BW, Lapco PE, Konety BR, Nangia AK, Acierno JS, Dhir R, Shurin Z, Day RS, Trump DL, Johnson CS 1997 Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system. Urology 50:999-1006.
- 104. Lokeshwar BL, Schwartz GG, Selzer MG, Burnstein KL, Zhuang SH, Block NL, Binderup L 1999 Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol Biomarkers Prev 8:241-248.
- Masood R, Nagpal S, Zheng T, Cai J, Tulpule A, Smith DL, Gill PS 2000 Kaposi sarcoma is a therapeutic target for vitamin D(3) receptor agonist. Blood 96:3188-3194.
- 106. Polek TC, Murthy S, Blutt SE, Boehm MF, Zou A, Weigel NL, Allegretto EA 2001 Novel nonsecosteroidal vitamin D receptor modulator inhibits the growth of LNCaP xenograft tumors in athymic mice without increased serum calcium. Prostate 49:224-233.
- Kunakornsawat S, Rosol TJ, Capen CC, Reddy GS, Binderup L, Inpanbutr N 2002 Effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its analogs (EB1089 and analog V) on canine adenocarcinoma (CAC-8) in nude mice. Biol Pharm Bull 25:642-647.
- 108. Oades GM, Dredge K, Kirby RS, Colston KW 2002 Vitamin D receptor-dependent antitumor effects of 1,25-dihydroxy-vitamin D3 and two synthetic analogs in three in vivo models of prostate cancer. BJU Int 90:607-616.
- Vegesna V, O'Kelly J, Said J, Uskokovic M, Binderup L, Koeffle HP 2003 Ability of potent vitamin D3 analogs to inhibit growth of prostate cancer cells in vivo. Anticancer Res 23:283-289.
- Pols HA, Birkenhager JC, van Leeuwen JP 1994 Vitamin D analogs: from molecule to clinical application. Clin Endocrinol (Oxf) 40:285-292.
- Bouillon R, Okamura WH, Norman AW 1995 Structurefunction relationships in the vitamin D endocrine system. Endocr Rev 16:200-257.
- Zhou JY, Norman AW, Chen DL, Sun GW, Uskokovic M, Koeffler HP 1990 1,25-dihydroxy-16-ene-23-yne-vitamin D3

- prolongs survival time of leukemic mice. Proc Natl Acad Sci USA 87:3929-3932.
- 113. Abe J, Nakano T, Nishii Y, Matsumoto T, Ogata E, Ikeda K 1991 A novel vitamin D3 analog, 22-oxa-1,25-dihydroxyvitamin D3, inhibits the growth of human breast cancer in vitro and in vivo without causing hypercalcemia. Endocrinology 129:832-837.
- 114. Colston K, Mackay AG, Chandler S, Binderup L, Coombes RC 1991 Novel vitamin D analogs suppress tumour growth in vivo. In: Norman AW, Bouillon R, Thomasset M, (eds) Vitamin D: Gene regulation, structure-function analysis and clinical application. De Gruyter: pp.465–466.
- 115. Oikawa T, Yoshida Y, Shimamura M, Ashino-Fuse H, Iwaguchi T, Tominaga T 1991 Antitumor effect of 22-oxa-1 alpha,25-dihydroxyvitamin D3, a potent angiogenesis inhibitor, on rat mammary tumors induced by 7,12-dimethylbenz[a]anthracene. Anticancer Drugs 2:475-480.
- 116. Colston KW, Chander SK, Mackay AG, Coombes RC 1992 Effects of synthetic vitamin D analogs on breast cancer cell proliferation in vivo and in vitro. Biochem Pharmacol 44:693-702.
- 117. Colston KW, Mackay AG, James SY, Binderup L, Chander S, Coombes RC 1992 EB1089: a new vitamin D analog that inhibits the growth of breast cancer cells in vivo and in vivo. Biochem Pharmacol 44:2273-2280.
- 118. Abe-Hashimoto J, Kikuchi T, Matsumoto T, Nishii Y, Ogata E, Ikeda K 1993 Antitumor effect of 22-oxa-calcitriol, a non-calcemic analog of calcitriol, in athymic mice implanted with human breast carcinoma and its synergism with tamoxifen. Cancer Res 53:2534-2537.
- 119. Anzano MA, Smith JM, Uskokovic MR, Peer CW, Mullen LT, Letterio JJ, Welsh MC, Shrader MW, Logsdon DL, Driver CL, 1994 1 alpha,25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24-5531), a new deltanoid (vitamin D analog) for prevention of breast cancer in the rat. Cancer Res 54:1653-1656.
- 120. Tanaka Y, Wu AY, Ikekawa N, Iseki K, Kawai M, Kobayashi Y 1994 Inhibition of HT-29 human colon cancer growth under the renal capsule of severe combined immunodeficient mice by an analog of 1,25-dihydroxyvitamin D3, DD-003. Cancer Res 54:5148-5153.
- 121. Otoshi T, Iwata H, Kitano M, Nishizawa Y, Morii H, Yano Y, Otani S, Fukushima S 1995 Inhibition of intestinal tumor development in rat multi-organ carcinogenesis and aberrant crypt foci in rat colon carcinogenesis by 22-oxa-calcitriol, a synthetic analog of 1 alpha, 25-dihydroxyvitamin D3. Carcinogenesis 16:2091-2097.
- 122. Schwartz GG, Hill CC, Oeler TA, Becich MJ, Bahnson RR 1995 1,25-dihydroxy-16-ene-23-yne-vitamin D3 and prostate cancer cell proliferation *in vivo*. Urology 46:365–369.
- 123. Wali RK, Bissonnette M, Khare S, Hart J, Sitrin MD, Brasitus TA 1995 1 alpha,25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol, a noncalcemic analog of 1 alpha,25-dihydroxyvitamin D3, inhibits azoxymethane-induced colonic tumorigenesis. Cancer Res 55:3050-3054.
- 124. Akhter J, Chen X, Bowrey P, Bolton EJ, Morris DL 1997 Vitamin D3 analog, EB1089, inhibits growth of subcutaneous xenografts of the human colon cancer cell line, LoVo, in a nude mouse model. Dis Colon Rectum 40:317-321.
- VanWeelden K, Flanagan L, Binderup L, Tenniswood M, Welsh J 1998 Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin D3 analog, EB1089. Endocrinology 139:2102-2110.
- Nickerson T, Huynh H 1999 Vitamin D analog EB1089induced prostate regression is associated with increased gene

- expression of insulin-like growth factor binding proteins. J Endocrinol 160:223-229.
- 127. Blutt SE, Polek TC, Stewart LV, Kattan MW, Weigel NL 2000 A calcitriol analog, EB1089, inhibits the growth of LNCaP tumors in nude mice. Cancer Res 60:779-782.
- 128. Dawson DG, Gleiser J, Zimbric ML, Darjatmoko SR, Lindstrom MJ, Strugnell SA, Albert DM 2003 Toxicity and dose-response studies of 1-alpha hydroxyvitamin D2 in LH-beta-tag transgenic mice. Ophthalmology 110:835-839.
- 129. Mehta RG, Hussain EA, Mehta RR, Das Gupta TK 2003 Chemoprevention of mammary carcinogenesis by lalphahydroxyvitamin D5, a synthetic analog of vitamin D. Mutat Res 523-524:253-264.
- Cunningham D, Gilchrist NL, Cowan RA, Forrest GJ, McArdle CS, Soukop M 1985 Alfacalcidol as a modulator of growth of low grade non-Hodgkin's lymphomas. Br Med J (Clin Res Ed) 291:1153-1155.
- Raina V, Cunningham D, Gilchrist N, Soukop M 1991 Alfacalcidol is a nontoxic, effective treatment of follicular, small-cleaved cell lymphoma. Br J Cancer 63:463-465.
- 132. Koeffler HP, Hirji K, Itri L 1985 1,25-dihydroxyvitamin D3: in vivo and in vitro effects on human preleukemic and leukemic cells. Cancer Treat Rep 69:1399-1407.
- 133. Kelsey SM, Newland AC, Cunningham J, Makin HL, Coldwell RD, Mills MJ, Grant IR 1992 Sustained hematological response to high-dose oral alfacalcidol in patients with myelodysplastic syndromes. Lancet 340:316-317.
- French LE, Ramelet AA, Saurat JH 1994 Remission of cutaneous T-cell lymphoma with combined calcitriol and acitretin. Lancet 344:686-687.
- 135. Majewski S, Skopinska M, Bollag W, Jablonska S 1994 Combination of isotretinoin and calcitriol for precancerous and cancerous skin lesions. Lancet 344:1510-1511.
- Thomsen K 1995 Cutaneous T-cell lymphoma and calcitriol and isotretinoin treatment. Lancet 345:1583.
- French LE, Saurat JH 1995 Treatment of cutaneous T-cell lymphoma by retinoids and calcitriol. Lancet 346:376.
- Bagot M 1995 Treatment of cutaneous T-cell lymphoma by retinoids and calcitriol. Lancet 346:376-377.
- Gross C, Stamey T, Hancock S, Feldman D 1998 Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J Urol 159:2035–2039.
- 140. Beer TM, Lemmon D, Lowe BA, Henner WD 2003 Highdose weekly oral calcitriol in patients with a rising PSA after prostatectomy or radiation for prostate carcinoma. Cancer 97:1217-1224.
- Smith DC, Johnson CS, Freeman CC, Muindi J, Wilson JW, Trump DL 1999 A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res 5:1339-1345.
- 142. Beer TM, Munar M, Henner WD 2001 A phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer 91:2431-2439.
- 143. Bower M, Colston KW, Stein RC, Hedley A, Gazet JC, Ford HT, Combes RC 1991 Topical calcipotriol treatment in advanced breast cancer. Lancet 337:701-702.
- 144. Gulliford T, English J, Colston KW, Menday P, Moller S, Coombes RC 1998 A phase I study of the vitamin D analog EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer 78:6-13.
- 145. Evans TR, Colston KW, Lofts FJ, Cunningham D, Anthoney DA, Gogas H, de Bono JS, Hamberg KJ, Skov T, Mansi JL 2002 A phase II trial of the vitamin D analog

- Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br J Cancer 86:680-685.
- 146. Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W 1993 Inhibition of tumor cell-induced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett 75:35-39.
- Bollag W, Majewski S, Jablonska S 1994 Cancer combination chemotherapy with retinoids: experimental rationale. Leukemia 8:1453-1457.
- 148. Majewski S, Marczak M, Szmurlo A, Jablonska S, Bollag W 1995 Retinoids, interferon alpha, 1,25-dihydroxyvitamin D3 and their combination inhibit angiogenesis induced by non-HPV-harboring tumor cell lines. RAR alpha mediates the antiangiogenic effect of retinoids. Cancer Lett 89:117-124.
- 149. Bernardi RJ, Johnson CS, Modzelewski RA, Trump DL 2002 Antiproliferative effects of 1alpha,25-dihydroxyvitamin D(3) and vitamin D analogs on tumor-derived endothelial cells. Endocrinology 143:2508-2514.
- 150. Shokravi MT, Marcus DM, Alroy J, Egan K, Saornil MA, Albert DM 1995 Vitamin D inhibits angiogenesis in transgenic murine retinoblastoma. Invest Ophthalmol Vis Sci 36:83-87.
- 151. Ding I, Sun JZ, Fenton B, Liu WM, Kimsely P, Okunieff P, Min W 2001 Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCa-4 murine mammary carcinomas. Cancer Res 61:526-531.
- 152. Marneros AG, Olsen BR 2001 The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol 20:337-345.
- 153. Kanda S, Mochizuki Y, Miyata Y, Kanetake H, Yamamoto N 2002 Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis. J Natl Cancer Inst 94:1311-1319.
- 154. Kisker O, Onizuka S, Becker CM, Fannon M, Flynn E, D'Amato R, Zetter B, Folkman J, Ray R, Swamy N, Pirie-Shepherd S 2003 Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia 5:32-40.
- 155. Nowicka D, Zagozdzon R, Majewski S, Marczak M, Jablonska S, Bollag W 1998 Calcitriol enhances antineoplastic and antiangiogenic effects of interleukin-12. Arch Dermatol Res 290:696-700.
- 156. Hansen CM, Frandsen TL, Brunner N, Binderup L 1994 1 alpha,25-dihydroxyvitamin D3 inhibits the invasive potential of human breast cancer cells in vitro. Clin Exp Metastasis 12:195-202.
- 157. Koli K, Keski-Oja J 2000 1alpha,25-dihydroxyvitamin D3 and its analogs down-regulate cell invasion-associated proteases in cultured malignant cells. Cell Growth Differ 11:221–229.
- 158. Arguello F, Baggs RB, Frantz CN 1988 A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876-6881.
- 159. Agha FP, Norman A, Hirschl S, Klein R 1976 Paget's disease. Coexistence with metastatic carcinoma. N Y State J Med 76:734-735.
- Orr W, Varani J, Gondex MK, Ward PA, Mundy GR 1979
 Chemotactic responses of tumor cells to products of resorbing bone. Science 203:176-179.
- Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T 1995 Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551-3557.
- Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM 1986 Regulation by vitamin D metabolites of

- parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 78:1296-1301.
- 163. Mackey SL, Heymont JL, Kronenberg HM, Demay MB 1996 Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid x receptor. Mol Endocrinol 10:298-305.
- Moseley JM, Gillespie MT 1995 Parathyroid hormonerelated protein. Crit Rev Clin Lab Sci 32:299

 –343.
- 165. Sebag M, Henderson J, Goltzman D, Kremer R 1994 Regulation of parathyroid hormone-related peptide production in normal human mammary epithelial cells in vitro. Am J Physiol 267:C723-C730.
- 166. Werkmeister JR, Merryman JI, McCauley LK, Horton JE, Capen CC, Rosol TJ 1993 Parathyroid hormone-related protein production by normal human keratinocytes in vitro. Exp Cell Res 208:68-74.
- 167. Kremer R, Karaplis AC, Henderson J, Gulliver W, Banville D, Hendy GN, Goltzman D 1991 Regulation of parathyroid hormone-like peptide in cultured normal human keratinocytes. Effect of growth factors and 1,25 dihydroxyvitamin D3 on gene expression and secretion. J Clin Invest 87:884-893.
- Henderson J, Sebag M, Rhim J, Goltzman D, Kremer R 1991
 Dysregulation of parathyroid hormone-like peptide expression and secretion in a keratinocyte model of tumor progression. Cancer Res 51:6521-6528.
- 169. Yu J, Papavasiliou V, Rhim J, Goltzman D, Kremer R 1995 Vitamin D analogs: new therapeutic agents for the treatment of squamous cancer and its associated hypercalcemia. Anticancer Drugs 6:101-108.
- 170. Falzon M 1997 The noncalcemic vitamin D analogs EB1089 and 22-oxacalcitriol interact with the vitamin D receptor and suppress parathyroid hormone-related peptide gene expression. Mol Cell Endocrinol 127:99-108.
- 171. Inoue D, Matsumoto T, Ogata E, Ikeda K 1993 22-oxacal-citriol, a noncalcemic analog of calcitriol, suppresses both cell proliferation and parathyroid hormone-related peptide gene expression in human T-cell lymphotrophic virus, type I-infected T-cells. J Biol Chem 268:16730-16736.
- 172. Liu B, Goltzman D, Rabbani SA 1993 Regulation of parathyroid hormone-related peptide production in vitro by the rat hypercalcemic Leydig cell tumor H-500. Endocrinology 132:1658–1664.
- Tovar SV, Falzon M 2002 Regulation of PTH-related protein gene expression by vitamin D in PC-3 prostate cancer cells. Mol Cell Endocrinol 190:115-124.
- 174. Shen X, Falzon M 2003 Parathyroid hormone-related protein up-regulates integrin expression via an intracrine pathway in PC-3 prostate cancer cells. Regul Pept 113:17-29.
- 175. Shen X, Falzon M 2003 PTH-related protein modulates PC-3 prostate cancer cell adhesion and integrin subunit profile. Mol Cell Endocrinol 199:165-177.
- 176. El Abdaimi K, Papavasiliou V, Rabbani SA, Rhim JS, Goltzman D, Kremer R 1999 Reversal of hypercalcemia with the vitamin D analog EB1089 in a human model of squamous cancer. Cancer Res 59:3325-3328.
- 177. Endo K, Ichikawa F, Uchiyama Y, Katsumata K, Ohkawa H, Kumaki K, Ogata E, Ikeda K 1994 Evidence for the uptake of a vitamin D analog (OCT) by a human carcinoma and its effect of suppressing the transcription of parathyroid hormone-related peptide gene in vivo. J Biol Chem 269:32693-32699.
- 178. Merryman JI, Capen CC, McCauley LK, Werkmeister JR, Suter MM, Rosol TJ 1993 Regulation of parathyroid

- hormone-related protein production by a squamous carcinoma cell line *in vitro*. Lab Invest 69:347-354.
- 179. Kunakornsawat S, Rosol TJ, Capen CC, Middleton RP, Hannah SS, Inpanbutr N 2001 Effects of 1,25(OH)2D3, EB1089, and analog V on PTHrP production, PTHrP mRNA expression and cell growth in SCC 2/88. Anticancer Res 21:3355-3363.
- Chatterjee M 2001 Vitamin D and genomic stability. Mutat Res 475:69–87.
- 181. Saha BK, Bishayee A, Kanjilal NB, Chatterjee M 2001 1Alpha,25-dihydroxyvitamin D3 inhibits hepatic chromosomal aberrations, DNA strand breaks and specific DNA adducts during rat hepatocarcinogenesis. Cell Mol Life Sci 58:1141-1149.
- 182. Akutsu N, Lin R, Bastien Y, Bestawros A, Enepekides DJ, Black MJ, White JH 2001 Regulation of gene expression by 1alpha,25-dihydroxyvitamin D3 and its analog EB1089 under growth-inhibitory conditions in squamous carcinoma cells. Mol Endocrinol 15:1127-1139.
- Gartel AL, Shchors K 2003 Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283:17-21.
- 184. Karmali R, Bhalla AK, Farrow SM, Williams MM, Lal S, Lydyard PM, O'Riordan JL 1989 Early regulation of c-myc mRNA by 1,25-dihydroxyvitamin D3 in human myelomonocytic U937 cells. J Mol Endocrinol 3:43-48.
- 185. Koizumi T, Nakao Y, Kawanishi M, Maeda S, Sugiyama T, Fujita T 1989 Suppression of c-myc mRNA expression by steroid hormones in HTLV-I-infected T-cell line, KH-2. Int J Cancer 44:701-706.
- 186. Moore DC, Carter DL, Studzinski GP 1992 Inhibition by 1,25 dihydroxyvitamin D3 of c-myc down-regulation and DNA fragmentation in cytosine arabinoside-induced erythroid differentiation of K562 cells. J Cell Physiol 151:539-548.
- Sebag M, Henderson J, Rhim J, Kremer R 1992 Relative resistance to 1,25-dihydroxyvitamin D3 in a keratinocyte model of tumor progression. J Biol Chem 267:12162-12167.
- 188. Saunders DE, Christensen C, Wappler NL, Schultz JF, Lawrence WD, Malviya VK, Malone JM, Deppe G 1993 Inhibition of c-myc in breast and ovarian carcinoma cells by 1,25-dihydroxyvitamin D3, retinoic acid and dexamethasone. Anticancer Drugs 4:201-208.
- 189. Kasukabe T, Okabe-Kado J, Hozumi M, Honma Y 1994 Inhibition by interleukin 4 of leukemia inhibitory factor-, interleukin 6-, and dexamethasone-induced differentiation of mouse myeloid leukemia cells: role of c-myc and junB protooncogenes. Cancer Res 54:592-597.
- 190. Taoka T, Collins ED, Irino S, Norman AW 1993 1,25(OH)2-vitamin D3 mediated changes in mRNA for c-myc and 1,25(OH)2D3 receptor in HL-60 cells and related subclones. Mol Cell Endocrinol 95:51-57.
- Stio M, Celli A, Treves C 2001 Synergistic antiproliferative effects of vitamin D derivatives and 9-cis retinoic acid in SH-SY5Y human neuroblastoma cells. J Steroid Biochem Mol Biol 77:213-222.
- 192. Vink-van Wijngaarden T, Pols HA, Buurman CJ, van den Bemd GJ, Dorssers LC, Birkenhager JC, van Leeuwen JP 1994 Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogs and tamoxifen. Cancer Res 54:5711-5717.
- 193. Hulla W, Kallay E, Krugluger W, Peterlik M, Cross HS 1995 Growth control of human colon-adenocarcinoma-derived Caco-2 cells by vitamin-D compounds and extracellular

- calcium in vitro: relation to c-myc-oncogene and vitamin-D-receptor expression. Int J Cancer 62:711-716.
- 194. Trydal T, Lillehaug JR, Aksnes L, Aarskog D 1992 Regulation of cell growth, c-myc mRNA, and 1,25-(OH)2 vitamin D3 receptor in C3H/10T1/2 mouse embryo fibroblasts by calcipotriol and 1,25-(OH)2 vitamin D3. Acta Endocrinol (Copenh) 126:75-79.
- 195. Paatero GI, Trydal T, Karlstedt KA, Aarskog D, Lillehaug JR 1994 Time-course study of 1,25-(OH)2-vitamin D3 induction of homologous receptor and c-myc in nontransformed and transformed C3H/10T1/2 cell clones. Int J Biochem 26:367-374.
- 196. Mahonen A, Pirskanen A, Maenpaa PH 1991 Homologous and heterologous regulation of 1,25-dihydroxyvitamin D-3 receptor mRNA levels in human osteosarcoma cells. Biochim Biophys Acta 1088:111-118.
- 197. van den Bemd GJ, Pols HA, Birkenhager JC, Kleinekoort WM, van Leeuwen JP 1995 Differential effects of 1,25-dihydroxy-vitamin D3-analogs on osteoblast-like cells and on in vitro bone resorption. J Steroid Biochem Mol Biol 55:337–346.
- 198. Brelvi ZS, Christakos S, Studzinski GP 1986 Expression of monocyte-specific oncogenes c-fos and c-fms in HL60 cells treated with vitamin D3 analogs correlates with inhibition of DNA synthesis and reduced calmodulin concentration. Lab Invest 55:269-275.
- 199. Huh N, Satoh M, Nose K, Abe E, Suda T, Rajewsky MF, Kuroki T 1987 1 alpha,25-dihydroxyvitamin D3 induces anchorage-independent growth and c-Ki-ras expression of BALB/3T3 and NIH/3T3 cells. Jpn J Cancer Res 78:99-102.
- Lasky SR, Iwata K, Rosmarin AG, Caprio DG, Maizel AL 1995 Differential regulation of JunD by dihydroxycholecalciferol in human chronic myelogenous leukemia cells. J Biol Chem 270:19676–19679.
- 201. Khare S, Bolt MJ, Wali RK, Skarosi SF, Roy HK, Niedziela S, Scaglione-Sewell B, Aquino B, Abraham C, Sitrin MD, Brasitus TA, Bissonnette M 1997 1,25 dihydroxyvitamin D3 stimulates phospholipase C-gamma in rat colonocytes: role of c-Src in PLC-gamma activation. J Clin Invest 99:1831-1841.
- 202. Khare S, Bissonnette M, Wali R, Skarosi S, Boss GR, von Lintig FC, Scaglione-Sewell B, Sitrin MD, Brasitus TA 1999 1,25-dihydroxyvitamin D3 but not TPA activates PLD in Caco-2 cells via pp60(c-src) and RhoA. Am J Physiol 276:G1005-G1015.
- 203. Johansen C, Kragballe K, Henningsen J, Westergaard M, Kristiansen K, Iversen L 2003 lalpha, 25-dihydroxyvitamin D3 stimulates activator protein 1 DNA-binding activity by a phosphatidylinositol 3-kinase/RäyMEK/extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1-dependent increase in c-Fos, Fra1, and c-Jun expression in human keratinocytes. J Invest Dermatol 120:561-570.
- Lasky SR, Posner MR, Iwata K, Santos-Moore A, Yen A, Samuel V, Clark J, Maizel AL 1994 Characterization of a vitamin D3-resistant human chronic myelogenous leukemia cell line. Blood 84:4283-4294.
- Fan FS, Yu WC 1995 1,25-dihydroxyvitamin D3 suppresses cell growth, DNA synthesis, and phosphorylation of retinoblastoma protein in a breast cancer cell line. Cancer Invest 13:280-286.
- 206. Yen A, Chandler S, Forbes ME, Fung YK, T'Ang A, Pearson R 1992 Coupled down-regulation of the RB retinoblastoma and c-myc genes antecedes cell differentiation: possible role of RB as a "status quo" gene. Eur J Cell Biol 57:210-221.
- Yen A, Varvayanis S 1994 Late dephosphorylation of the RB protein in G2 during the process of induced cell differentiation. Exp Cell Res 214:250-257.

- Kobayashi T, Hashimoto K, Yoshikawa K 1993 Growth inhibition of human keratinocytes by 1,25-dihydroxyvitamin D3 is linked to dephosphorylation of retinoblastoma gene product. Biochem Biophys Res Commun 196:487–493.
- 209. Ehinger M, Bergh G, Olofsson T, Baldetorp B, Olsson I, Gullberg U 1996 Expression of the p53 tumor suppressor gene induces differentiation and promotes induction of differentiation by 1,25-dihydroxycholecalciferol in leukemic U-937 cells. Blood 87:1064-1074.
- 210. Davoust N, Wion D, Chevalier G, Garabedian M, Brachet P, Couez D 1998 Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone. J Neurosci Res 52:210-219.
- 211. Elstner E, Linker-Israeli M, Said J, Umiel T, de Vos S, Shintaku IP, Heber D, Binderup L, Uskokovic M, Koeffler HP 1995 20-epi-vitamin D3 analogs: a novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cell lines. Cancer Res 55:2822-2830.
- 212. Pepper C, Thomas A, Hoy T, Milligan D, Bentley P, Fegan C 2003 The vitamin D3 analog EB1089 induces apoptosis via a p53-independent mechanism involving p38 MAP kinase activation and suppression of ERK activity in B-cell chronic lymphocytic leukemia cells in vitro. Blood 101:2454-2460.
- Lee TH, Pelletier J 2001 Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter. Physiol Genomics 7:187-200.
- Chen KS, DeLuca HF 1994 Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1219:26-32.
- 215. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J 1999 Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 274:21645-21650.
- Nishiyama A, Masutani H, Nakamura H, Nishinaka Y, Yodoi J 2001 Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 52:29-33.
- 217. Ikarashi M, Takahashi Y, Ishii Y, Nagata T, Asai S, Ishikawa K 2002 Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease. Anticancer Res 22:4045-4048.
- 218. Takahashi Y, Nagata T, Ishii Y, Ikarashi M, Ishikawa K, Asai S 2002 Up-regulation of vitamin D3 up-regulated protein 1 gene in response to 5-fluorouracil in colon carcinoma SW620. Oncol Rep 9:75-79.
- 219. Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT 2002 Vitamin D3 up-regulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res 91:689-695.
- 220. Wang Y, De 'Keulenaer GW, Lee RT 2002 Vitamin D(3) up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin. J Biol Chem 277:26496-26500.
- 221. Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, Yang Y, Lee KN, Choi I 2003 VDUP1 up-regulated by TGF-beta1 and 1,25-dihydroxyvitamin D(3) inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22:4035-4046.
- 222. Song H, Cho D, Jeon JH, Han SH, Hur DY, Kim YS, Choi I 2003 Vitamin D(3) up-regulating protein 1 (VDUP1) antisense DNA regulates tumorigenicity and melanogenesis of murine melanoma cells via regulating the expression of fas ligand and reactive oxygen species. Immunol Lett 86:235-247.

- 223. Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP 2001 The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor. Blood 98:3290-3300.
- 224. Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M 2002 AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor. Cancer Res 62:7050-7058.
- 225. Yamamoto Y, Sakamoto M, Fujii G, Kanetaka K, Asaka M, Hirohashi S 2001 Cloning and characterization of a novel gene, DRH1, down-regulated in advanced human hepatocellular carcinoma. Clin Cancer Res 7:297–303.
- 226. Jakob F, Homann D, Adamski J 1995 Expression and regulation of aromatase and 17 beta-hydroxysteroid dehydrogenase type 4 in human THP 1 leukemia cells. J Steroid Biochem Mol Biol 55:555-563.
- 227. Hughes SV, Robinson E, Bland R, Lewis HM, Stewart PM, Hewison M 1997 1,25-dihydroxyvitamin D3 regulates estrogen metabolism in cultured keratinocytes. Endocrinology 138:3711-3718.
- 228. Hughes PJ, Twist LE, Durham J, Choudhry MA, Drayson M, Chandraratna R, Michell RH, Kirk CJ, Brown G 2001 Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and lalpha, 25-dihydroxyvitamin D3. Biochem J 355:361–371.
- 229. Enjuanes A, Garcia-Giralt N, Supervia A, Nogues X, Mellibovsky L, Carbonell J, Grinberg D, Balcells S, Diez-Perez A 2003 Regulation of CYP19 gene expression in primary human osteoblasts: effects of vitamin D and other treatments. Eur J Endocrinol 148:519-526.
- 230. Reichman TW, Albanell J, Wang X, Moore MA, Studzinski GP 1997 Down-regulation of telomerase activity in HL60 cells by differentiating agents is accompanied by increased expression of telomerase-associated protein. J Cell Biochem 67:13-23.
- 231. Rots NY, Liu M, Anderson EC, Freedman LP 1998 A differential screen for ligand-regulated genes: identification of HoxA10 as a target of vitamin D3 induction in myeloid leukemic cells. Mol Cell Biol 18:1911-1918.
- 232. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J Jr, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO 1999 The transcriptional program in the tesponse of human fibroblasts to serum. Science 283:83-87.
- 233. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D 2002 Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977-2000.
- 234. Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K, Sotiropoulou G, Diamandis EP, Hudson TJ, White JH 2002 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol 16:1243-1256.
- Krishnan AV, Peehl DM, Feldman D 2003 Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression. J Cell Biochem 88:363-371.
- 236. Walker PR, Kwast-Welfeld J, Gourdeau H, Leblanc J, Neugebauer W, Sikorska M 1993 Relationship between apoptosis and the cell cycle in lymphocytes: roles of protein kinase C, tyrosine phosphorylation, and AP1. Exp Cell Res 207:142-151.

- Denmeade SR, Lin XS, Isaacs JT 1996 Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251-265.
- 238. Kerr JF, Wyllie AH, Currie AR 1972 Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257.
- 239. Evans SR, Soldatenkov V, Shchepotin EB, Bogrash E, Shchepotin IB 1999 Novel 19-nor-hexafluoride vitamin D3 analog (Ro 25-6760) inhibits human colon cancer in vitro via apoptosis. Int J Oncol 14:979–985.
- Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ 1990 Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334-336.
- Korsmeyer SJ, McDonnell TJ, Nunez G, Hockenbery D, Young R 1990 Bcl-2: B cell life, death, and neoplasia. Curr Top Microbiol Immunol 166:203-207.
- 242. Xu HM, Tepper CG, Jones JB, Fernandez CE, Studzinski GP 1993 1,25-dihydroxyvitamin D3 protects HL60 cells against apoptosis but down-regulates the expression of the bcl-2 gene. Exp Cell Res 209:367-374.
- 243. James SY, Mackay AG, Colston KW 1995 Vitamin D derivatives in combination with 9-cis retinoic acid promote active cell death in breast cancer cells. J Mol Endocrinol 14:391-394.
- 244. Danielsson C, Torma H, Vahlquist A, Carlberg C 1999 Positive and negative interaction of 1,25-dihydroxyvitamin D3 and the retinoid CD437 in the induction of human melanoma cell apoptosis. Int J Cancer 81:467-470.
- 245. Guzey M, Kitada S, Reed JC 2002 Apoptosis induction by Ialpha, 25-dihydroxyvitamin D3 in prostate cancer. Mol Cancer Ther 1:667-677.
- 246. Baudet C, Perret E, Delpech B, Kaghad M, Brachet P, Wion D, Caput D 1998 Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ 5:116-125.
- 247. Vink-van Wijngaarden T, Pols HA, Buurman CJ, Birkenhager JC, van Leeuwen JP 1994 Combined effects of 1,25-dihydroxyvitamin D3 and tamoxifen on the growth of MCF-7 and ZR-75-1 human breast cancer cells. Breast Cancer Res Treat 29:161-168.
- 248. Wallington LA, Bunce CM, Durham J, Brown G 1995 Particular combinations of signals, by retinoic acid and 1 alpha, 25 dihydroxyvitamin D3, promote apoptosis of HL60 cells. Leukemia 9:1185–1190.
- 249. Wu YL, Jiang XR, Lillington DM, Allen PD, Newland AC, Kelsey SM 1998 1,25-dihydroxyvitamin D3 protects human leukemic cells from tumor necrosis factor-induced apoptosis via inactivation of cytosolic phospholipase A2. Cancer Res 58:633-640.
- 250. Witcher M, Yang X, Pater A, Tang SC 2001 BAG-1 p50 isoform interacts with the vitamin D receptor and its cellular overexpression inhibits the vitamin D pathway. Exp Cell Res 265:167-173.
- Christakos S, Barletta F, Huening M, Dhawan P, Liu Y, Porta A, Peng X 2003 Vitamin D target proteins: function and regulation. J Cell Biochem 88:238-244.
- 252. Bikle DD, Pillai S 1993 Vitamin D, calcium, and epidermal differentiation. Endocr Rev 14:3-19.
- 253. Hosoi J, Abe E, Suda T, Kuroki T 1985 Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res 45:1474-1478.
- 254. van Leeuwen JP, van Steenbrugge GJ, Veldscholte J, van den Bemd GJ, Oomen MHA, Pols HA, Birkenhager JC 1994 Growth regulation of three sublines of the human prostatic

- carcinoma line LNCaP by an interrelated action of 1,25-dihydroxyvitamin D3 and androgens. In: Norman AW, Bouillon R, Thomasset M, (eds) Vitamin D, pluripotent steroid hormone: Structural studies, molecular endocrinology and clinical application. de Gruyter: 510-511.
- 255. Esquenet M, Swinnen JV, Heyns W, Verhoeven G 1996 Control of LNCaP proliferation and differentiation: actions and interactions of androgens, 1alpha,25-dihydroxycholecalciferol, all-trans retinoic acid, 9-cis retinoic acid, and phenylacetate. Prostate 28:182-194.
- 256. Zhao XY, Ly LH, Peehl DM, Feldman D 1997 1alpha, 25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Endocrinology 138: 3290-3298.
- 257. Hedlund TE, Moffatt KA, Uskokovic MR, Miller GJ 1997 Three synthetic vitamin D analogs induce prostate-specific acid phosphatase and prostate-specific antigen while inhibiting the growth of human prostate cancer cells in a vitamin D receptor-dependent fashion. Clin Cancer Res 3:1331-1338.
- 258. Frappart L, Falette N, Lefebvre MF, Bremond A, Vauzelle Π, Saez S 1989 In vitro study of effects of 1,25 dihydroxyvitamin D3 on the morphology of human breast cancer cell line BT.20. Differentiation 40:63-69.
- 259. Nagasaki T, Hino M, Inaba M, Nishizawa Y, Morii H, Otani S 1997 Inhibition by 1alpha,25-dihydroxyvitamin D3 of activin A-induced differentiation of murine erythroleukemic F5-5 cells. Arch Biochem Biophys 343:181-187.
- Lefebvre MF, Guillot C, Crepin M, Saez S 1995 Influence of tumor-derived fibroblasts and 1,25-dihydroxyvitamin D3 on growth of breast cancer cell lines. Breast Cancer Res Treat 33:189-197.
- 261. Rotello RJ, Lieberman RC, Purchio AF, Gerschenson LE 1991 Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc Natl Acad Sci USA 88:3412-3415.
- 262. Alexandrow MG, Moses HL 1995 Transforming growth factor beta 1 inhibits mouse keratinocytes late in G1 independent of effects on gene transcription. Cancer Res 55;3928–3932.
- Laiho M, Decaprio JA, Ludlow JW, Livingston DM, Massague J 1990 Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 62:175-185.
- Simboli-Campbell M, Welsh J 1995 1,25-dihydroxyvitamin D3 1995 Coordinate regulator of active cell death and proliferation in MCF-7 breast cancer cells. In: Tenniswood M, Michna H, (eds) Apoptosis in hormone dependent cancers. Springer-Verlag, pp. 181-200.
- Kim HJ, Abdelkader N, Katz M, McLane JA 1992 1,25-dihydroxyvitamin D3 enhances antiproliferative effect and transcription of TGF-beta1 on human keratinocytes in culture. J Cell Physiol 151:579-587.
- 266. Koli K, Keski-Oja J 1993 Vitamin D3 and calcipotriol enhance the secretion of transforming growth factor-beta 1 and -beta 2 in cultured murine keratinocytes. Growth Factors 8:153-163.
- 267. Finkelman RD, Linkhart TA, Mohan S, Lau KH, Baylink DJ, Bell NH 1991 Vitamin D deficiency causes a selective reduction in deposition of transforming growth factor beta in rat bone: possible mechanism for impaired osteoinduction. Proc Natl Acad Sci USA 88:3657-3660.
- 268. Yang L, Yang J, Venkateswarlu S, Ko T, Brattain MG 2001 Autocrine TGFbeta signaling mediates vitamin D3 analoginduced growth inhibition in breast cells. J Cell Physiol 188:383-393.
- 269. Vink-van Wijngaarden T, Pols HA, Buurman CJ, Birkenhager JC, van Leeuwen JP 1996 Inhibition of insulin- and

- insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analog EB1089. Eur J Cancer 32A:842-848.
- Drivdahl RH, Loop SM, Andress DL, Ostenson RC 1995 IGF-binding proteins in human prostate tumor cells: expression and regulation by 1,25-dihydroxyvitamin D3. Prostate 26:72-79.
- 271. Velez-Yanguas MC, Kalebic T, Maggi M, Kappel CC, Letterio J, Uskokovic M, Helman LJ 1996 1 alpha, 25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24-5531) modulation of insulin-like growth factor-binding protein-3 and induction of differentiation and growth arrest in a human osteosarcoma cell line. J Clin Endocrinol Metab 81:93-99.
- Moriwake T, Tanaka H, Kanzaki S, Higuchi J, Seino Y 1992

 1,25-dihydroxyvitamin D3 stimulates the secretion of insulin-like growth factor binding protein 3 (IGFBP-3) by cultured human osteosarcoma cells. Endocrinology 130:1071-1073.
- 273. Nakao Y, Hilliker S, Baylink DJ, Mohan S 1994 Studies on the regulation of insulin-like growth factor binding protein 3 secretion in human osteosarcoma cells in vitro. J Bone Miner Res 9:865-872.
- Koga M, Eisman JA, Sutherland RL 1988 Regulation of epidermal growth factor receptor levels by 1,25-dihydroxyvitamin D3 in human breast cancer cells. Cancer Res 48:2734-2739.
- 275. Falette N, Frappart L, Lefebvre MF, Saez S 1989 Increased epidermal growth factor receptor level in breast cancer cells treated by 1,25-dihydroxyvitamin D3. Mol Cell Endocrinol 63:189-198.
- Welsh J 1994 Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem Cell Biol 72:537-545.
- 277. Byrne IM, Flanagan L, Tenniswood MP, Welsh J 2000 Identification of a hormone-responsive promoter immediately upstream of exon 1c in the human vitamin D receptor gene. Endocrinology 141:2829-2836.
- 278. Wietzke JA, Welsh J 2003 Phytoestrogen regulation of a vitamin D3 receptor promoter and 1,25-dihydroxyvitamin D3 actions in human breast cancer cells. J Steroid Biochem Mol Biol 84:149-157.
- 279. Smirnoff P, Liel Y, Gnainsky J, Shany S, Schwartz B 1999. The protective effect of estrogen against chemically-induced murine colon carcinogenesis is associated with decreased CpG island methylation and increased mRNA and protein expression of the colonic vitamin D receptor. Oncol Res 11:255-264.
- 280. Ahonen MH, Zhuang YH, Aine R, Ylikomi T, Tuohimaa P 2000 Androgen receptor and vitamin D receptor in human ovarian cancer: growth stimulation and inhibition by ligands. Int J Cancer 86:40-46.
- 281. Zhao XY, Ly LH, Peehl DM, Feldman D 1999 Induction of androgen receptor by 1alpha,25-dihydroxyvitamin D3 and 9-cis retinoic acid in LNCaP human prostate cancer cells. Endocrinology 140:1205-1212.
- 282. Miyaura C, Abe E, Honma Y, Hozumi M, Nishii Y, Suda T 1983 Cooperative effect of 1 alpha,25-dihydroxyvitamin D3 and dexamethasone in inducing differentiation of mouse myeloid leukemia cells. Arch Biochem Biophys 227: 379-385.
- 283. Yu WD, McElwain MC, Modzelewski RA, Russell DM, Smith DC, Trump DL, Johnson CS 1998 Enhancement of 1,25-dihydroxyvitamin D3-mediated antitumor activity with dexamethasone. J Natl Cancer Inst 90:134-141.

- 284. Bernardi RJ, Trump DL, Yu WD, Mcguire TF, Hershberger PA, Johnson CS 2001 Combination of 1alpha,25-dihydroxyvitamin D(3) with dexamethasone enhances cell cycle arrest and apoptosis: role of nuclear receptor cross-talk and Erk/Akt signaling. Clin Cancer Res 7:4164-4173.
- Ziegler R, Kasperk C 1998 Glucocorticoid-induced osteoporosis: prevention and treatment. Steroids 63:344–348.
- 286. Koga M, Sutherland RL 1991 Retinoic acid acts synergistically with 1,25-dihydroxyvitamin D3 or antioestrogen to inhibit T-47D human breast cancer cell proliferation. J Steroid Biochem Mol Biol 39:455-460.
- 287. Moore TB, Sidell N, Chow VJ, Medzoyan RH, Huang II, Yamashiro JM, Wada RK 1995 Differentiating effects of 1,25-dihydroxycholecalciferol (D3) on LA-N-5 human neuroblastoma cells and its synergy with retinoic acid. J Pediatr Hematol Oncol 17:311-317.
- 288. Bunce CM, Wallington LA, Harrison P, Williams GR, Brown G 1995 Treatment of HL60 cells with various combinations of retinoids and 1 alpha,25 dihydroxyvitamin D3 results in differentiation towards neutrophils or monocytes or a failure to differentiate and apoptosis. Leukemia 9:410-418.
- 289. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM 1992 Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3 signalling. Nature 355:446-449.
- 290. Matsui T, Takahashi R, Mihara K, Nakagawa T, Koizumi T, Nakao Y, Sugiyama T, Fujita T 1985 Cooperative regulation of c-myc expression in differentiation of human promyelocytic leukemia induced by recombinant gamma-interferon and 1,25-dihydroxyvitamin D3. Cancer Res 45: 4366-4371.
- Morel PA, Manolagas SC, Provvedini DM, Wegmann DR, Chiller JM 1986 Interferon gamma-induced IA expression in WEHI-3 cells is enhanced by the presence of 1,25-dihydroxyvitamin D3. J Immunol 136:2181-2186.
- 292. Kelsey SM, Makin HL, MacEy MG, Newland AC 1990 Gamma interferon augments functional and phenotypic characteristics of vitamin D3-induced monocytoid differentiation in the U937 human leukaemic cell line. Leuk Res 14:1027–1033.
- 293. Kelsey SM, Coldwell RD, Makin HL, Syndercombe-Court, Newland AC 1994 Neopterin release by myeloid leukemic cells can be synergistically augmented by 1,25-dihydroxyvitamin D3 in combination with gamma interferon or granulocyte-macrophage colony stimulating factor. J Steroid Biochem Mol Biol 48:95-99.
- 294. Kasukabe T, Okabe-Kado J, Honma Y, Hozumi M 1991 Interleukin-4 inhibits the differentiation of mouse myeloid leukemia M1 cells induced by dexamethasone, D-factor/leukemia inhibitory factor and interleukin-6, but not by 1 alpha,25-dihydroxyvitamin D3. FEBS Lett 291:181-184.
- 295. Kasukabe T, Okabe-Kado J, Honma Y, Hozumi M 1992 Interleukin 4 potentiates the antiproliferative effect of 1 alpha, 25-dihydroxyvitamin D3 on mouse monocytic leukemia cells but antagonizes the antiproliferative effects of interferon alpha, beta and interleukin 6. Leuk Res 16:1191-1196.
- 296. Hassan HT, Tsiriyotis C, Maurer HR, Spandidos DA 1992 Recombinant human interleukin-3 opposes the effects of vitamins A and D on HL-60 human myeloid leukaemia cells. Anticancer Res 12:821-825.
- 297. Prechel MM, Lozano Y, Wright MA, Ihm J, Young MR 1996 Immune modulation by interleukin-12 in tumor-bearing mice receiving vitamin D3 treatments to block induction of immunosuppressive granulocyte/macrophage progenitor cells, Cancer Immunol Immunother 42:213-220.

- 298. Koren R, Rocker D, Kotestiano O, Liberman UA, Ravid A 2000 Synergistic anticancer activity of 1,25-dihydroxyvitamin D(3) and immune cytokines: the involvement of reactive oxygen species. J Steroid Biochem Mol Biol 73:105-112.
- 299. Katakami Y, Nakao Y, Katakami N, Koizumi T, Ogawa R, Yamada H, Takai Y, Fujita T 1988 Cooperative effects of tumor necrosis factor-alpha and 1,25-dihydroxyvitamin D3 on growth inhibition, differentiation, and c-myc reduction in human promyelocytic leukemia cell line HL-60. Biochem Biophys Res Commun 152:1151-1157.
- Rocker D, Ravid A, Liberman UA, Garach-Jehoshua O, Koren R 1994 1,25-dihydroxyvitamin D3 potentiates the cytotoxic effect of TNF on human breast cancer cells. Mol Cell Endocrinol 106:157-162.
- 301. Hassan HT, Eliopoulos A, Maurer HR, Spandidos DA 1992 Recombinant human GM-CSF enhances the antiproliferative activity of vitamin D in MCF-7 human breast cancer clonogenic cells. Eur J Cancer 28A:1588-1589.
- Kelsey SM, Makin HL, Newland AC 1992 Functional significance of induction of differentiation in human myeloid leukaemic blasts by 1,25-dihydroxyvitamin D3 and GM-CSF. Leuk Res 16:427-434.
- 303. Rashid SF, Moore JS, Walker E, Driver PM, Engel J, Edwards CE, Brown G, Uskokovic MR, Campbell MJ 2001 Synergistic growth inhibition of prostate cancer cells by 1 alpha,25 dihydroxyvitamin D(3) and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene 20:1860-1872.
- 304. Gaschott T, Werz O, Steinmeyer A, Steinhilber D, Stein J 2001 Butyrate-induced differentiation of Caco-2 cells is mediated by vitamin D receptor. Biochem Biophys Res Commun 288:690-696.
- Gaschott T, Wachtershauser A, Steinhilber D, Stein J 2001 1,25-dihydroxycholecalciferol enhances butyrate-induced p21(Waf1/Cip1) expression. Biochem Biophys Res Commun 283:80–85.
- 306. Bizzarri M, Cucina A, Valente MG, Tagliaferri F, Borrelli V, Stipa F, Cavallaro A 2003 Melatonin and vitamin D(3) increase TGF-beta(1) release and induce growth inhibition in breast cancer cell cultures. J Surg Res 110:332-337.
- 307. Tong WM, Kallay E, Hofer H, Hulla W, Manhardt T, Peterlik M, Cross HS 1998 Growth regulation of human colon cancer cells by epidermal growth factor and 1,25-dihydroxyvitamin D3 is mediated by mutual modulation of receptor expression. Eur J Cancer 34:2119–2125.
- 308. Cho YL, Christensen C, Saunders DE, Lawrence WD, Deppe G, Malviya VK, Malone JM 1991 Combined effects of 1,25-dihydroxyvitamin D3 and platinum drugs on the growth of MCF-7 cells. Cancer Res 51:2848-2853.
- 309. Ravid A, Rocker D, Machlenkin A, Rotem C, Hochman A, Kessler-Icekson G, Liberman UA, Koren R 1999 1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res 59:862-867.
- 310. Sundaram S, Chaudhry M, Reardon D, Gupta M, Gewirtz DA 2000 The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells. Breast Cancer Res Treat 63:1-10.
- 311. Chaudhry M, Sundaram S, Gennings C, Carter H, Gewirtz DA 2001 The vitamin D3 analog, ILX-23-7553, enhances the response to adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemother Pharmacol 47:429-436.
- Danilenko M, Wang X, Studzinski GP 2001 Carnosic acid and promotion of monocytic differentiation of HL60-G cells initiated by other agents. J Natl Cancer Inst 93:1224-1233.

- 313. Danilenko M, Wang Q, Wang X, Levy J, Sharoni Y, Studzinski GP 2003 Carnosic acid potentiates the antioxidant and prodifferentiation effects of lalpha,25-dihydroxy-vitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res 63:1325-1332.
- 314. Gewirtz DA, Gupta MS, Sundaram S 2002 Vitamin D3 and vitamin D3 analogs as an adjunct to cancer chemotherapy and radiotherapy. Curr Med Chem Anti Canc Agents 2:683–690.
- 315. Polar MK, Gennings C, Park M, Gupta MS, Gewirtz DA 2003 Effect of the vitamin D(3) analog ILX 23-7553 on apoptosis and sensitivity to fractionated radiation in breast tumor cells and normal human fibroblasts. Cancer Chemother Pharmacol 51:415-421.
- 316. Sundaram S, Sea A, Feldman S, Strawbridge R, Hoopes PJ, Demidenko E, Binderup L, Gewirtz DA 2003 The combination of a potent vitamin D(3) analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clin Cancer Res 9:2350-2356.
- 317. Dokoh S, Donaldson CA, Haussler MR 1984 Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: correlation with the 1,25-dihydroxyvitamin D3 receptor. Cancer Res 44:2103-2109.
- 318. Miller GJ, Stapleton GE, Hedlund TE, Moffat KA 1995 Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1alpha,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin Cancer Res 1:997-1003.
- 319. Hedlund TE, Moffatt KA, Miller GJ 1996 Stable expression of the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA-1: evidence that the antiproliferative effects of 1 alpha, 25-dihydroxyvitamin D3 are mediated exclusively through the genomic signaling pathway. Endocrinology 137:1554-1561.
- 320. Jensen SS, Madsen MW, Lukas J, Bartek J, Binderup L 2002 Sensitivity to growth suppression by 1alpha,25-dihydroxyvitamin D(3) among MCF-7 clones correlates with Vitamin D receptor protein induction. J Steroid Biochem Mol Biol 81:123-133.
- 321. Tokumoto M, Tsuruya K, Fukuda K, Kanai H, Kuroki S, Hirakata H, Iida M 2003 Parathyroid cell growth in patients with advanced secondary hyperparathyroidism: vitamin D receptor and cyclin-dependent kinase inhibitors, p21 and p27. Nephrol Dial Transplant 18(Suppl. 3):III9-III12.
- Zinser GM, McEleney K, Welsh J 2003 Characterization of mammary tumor cell lines from wild type and vitamin D(3) receptor knockout mice. Mol Cell Endocrinol 200:67-80.
- 323. Xu HM, Kolla SS, Goldenberg NA, Studzinski GP 1992 Resistance to 1,25-dihydroxyvitamin D3 of a deoxycytidine kinase-deficient variant of human leukemia HL60 cells. Exp Cell Res 203:244-250.
- 324. Narvaez CJ, VanWeelden K, Byrne I, Welsh J 1996 Characterization of a vitamin D3-resistant MCF-7 cell line. Endocrinology 137:400-409.
- 325. Iwata K, Kouttab N, Ogata H, Morgan JW, Maizel AL, Lasky SR 1996 Differential regulation of vitamin D receptors in clonal populations of a chronic myelogenous leukemia cell line. Exp Cell Res 225:143-150.
- 326. Narvaez CJ, Byrne BM, Romu S, Valrance M, Welsh J 2003 Induction of apoptosis by 1,25-dihydroxyvitamin D(3) in MCF-7 Vitamin D(3)—resistant variant can be sensitized by TPA. J Steroid Biochem Mol Biol 84:199–209.
- Hansen CM, Rohde L, Madsen MW, Hansen D, Colston KW, Pirianov G, Holm PK, Binderup L 2001 MCF-7/VD(R): a new vitamin D resistant cell line. J Cell Biochem 82:422–436.

- 328. Wajchmann HJ, Rathod B, Song S, Xu H, Wang X, Uskokovic MR, Studzinski GP 1996 Loss of deoxcytidine kinase expression and tetraploidization of HL60 cells following long-term culture in 1,25-dihydroxyvitamin D3. Exp Cell Res 224:312-322.
- Solomon C, Sebag M, White JH, Rhim J, Kremer R 1998
 Disruption of vitamin D receptor-retinoid X receptor heterodimer formation following ras transformation of human keratinocytes. J Biol Chem 273:17573-17578.
- 330. Prufer K, Schroder C, Hegyi K, Barsony J 2002 Degradation of RXRs influences sensitivity of rat osteosarcoma cells to the antiproliferative effects of calcitriol. Mol Endocrinol 16:961-976.
- 331. Zhuang SH, Burnstein KL 1998 Antiproliferative effect of 1alpha,25-dihydroxyvitamin D3 in human prostate cancer cell line LNCaP involves reduction of cyclin-dependent kinase 2 activity and persistent G1 accumulation. Endocrinology 139:1197-1207.
- Chen H, Hu B, Allegretto EA, Adams JS 2000 The vitamin D response element-binding protein. A novel dominant-negative regulator of vitamin D-directed transactivation. J Biol Chem 275:35557-35564.
- 333. Chen H, Hewison M, Hu B, Adams JS 2003 Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 100:6109-6114.
- 334. Chen TL, Hauschka PV, Feldman D 1986 Dexamethasone increases 1,25-dihydroxyvitamin D3 receptor levels and augments bioresponses in rat osteoblast-like cells. Endocrinology 118:1119-1126.
- 335. Ly LH, Zhao XY, Holloway L, Feldman D 1999 Liarozole acts synergistically with 1alpha,25-dihydroxyvitamin D3 to inhibit growth of DU 145 human prostate cancer cells by blocking 24-hydroxylase activity. Endocrinology 140:2071-2076.
- 336. Campbell MJ, Drayson MT, Durham J, Wallington L, Siu-Caldera ML, Reddy GS, Brown G 1999 Metabolism of 1alpha,25(OH)2D3 and its 20-epi analog integrates clonal expansion, maturation, and apoptosis during HL-60 cell differentiation, Mol Cell Endocrinol 149:169-183.
- Quack M, Mork HC, Binderup E, Kissmeyer AM, Carlberg C
 1998 Metabolism of the vitamin D3 analog EB1089 alters receptor complex formation and reduces promoter selectivity. Br J Pharmacol 125:607-614.
- 338. Dilworth FJ, Williams GR, Kissmeyer AM, Nielsen JL, Binderup E, Calverley MJ, Makin HL, Jones G 1997 The vitamin D analog, KH1060, is rapidly degraded both in vivo and in vitro via several pathways: principal metabolites generated retain significant biological activity. Endocrinology 138:5485-5496.
- 339. van den Bemd GC, Dilworth FJ, Makin HL, Prahl JM, DeLuca HF, Jones G, Pols HA, van Leeuwen JP 2000 Contribution of several metabolites of the vitamin D analog 20-epi-22-oxa-24a,26a,27a-tri-homo-1,25-(OH)(2) vitamin D(3) (KH 1060) to the overall biological activity of KH1060 by a shared mechanism of action. Biochem Pharmacol 59:621-627.
- 340. Taniyama T, Wanibuchi H, Salim EI, Yano Y, Otani S, Nishizawa Y, Morii H, Fukushima S 2000 Chemopreventive effect of 24R,25-dihydroxyvitamin D(3) in N, N'-dimethylhydrazine-induced rat colon carcinogenesis. Carcinogenesis 21:173-178.
- Farhan H, Wahala K, Cross HS 2003 Genistein inhibits Vitamin D hydroxylases CYP24 and CYP27B1 expression in prostate cells. J Steroid Biochem Mol Biol 84:423

 –429.
- Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D 2000 Quantitative

- mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25:144-146.
- 343. Cross HS, Bareis P, Hofer H, Bischof MG, Bajna E, Kriwanek S, Bonner E, Peterlik M 2001 25-Hydroxyvitamin D(3)-1alpha-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids 66:287-292.
- 344. Bareis P, Kallay E, Bischof MG, Bises G, Hofer H, Potzi C, Manhardt T, Bland R, Cross HS 2002 Clonal differences in expression of 25-hydroxyvitamin D(3)-1alpha-hydroxylase, of 25-hydroxyvitamin D(3)-24-hydroxylase, and of the vitamin D receptor in human colon carcinoma cells: effects of epidermal growth factor and 1alpha,25-dihydroxyvitamin D(3). Exp Cell Res 276:320-327.
- 345. Holt PR, Arber N, Halmos B, Forde K, Kissileff H, McGlynn KA, Moss SF, Kurihara N, Fan K, Yang K, Lipkin M 2002 Colonic epithelial cell proliferation decreases with increasing levels of serum 25-hydroxyvitamin D. Cancer Epidemiol Biomarkers Prev 11:113-119.
- 346. Chen TC, Wang L, Whitlatch LW, Flanagan JN, Holick MF 2003 Prostatic 25-hydroxyvitamin D-1alpha-hydroxylase and its implication in prostate cancer. J Cell Biochem 88: 315-322.
- Ogose A, Kawashima H, Morita O, Hotta T, Umezu H, Endo N 2003 Increase in serum 1,25-dihydroxyvitamin D and hypercalcemia in a patient with inflammatory myofibroblastic tumor. J Clin Pathol 56:310-312.
- Baier R, Grauer A, Lazaretti-Castro M, Ziegler R, Raue F 1994 Differential effects of 1,25-dihydroxyvitamin D3 on cell proliferation and calcitonin gene expression. Endocrinology 135:2006-2011.
- 349. Ohta M, Okabe T, Ozawa K, Urabe A, Takaku F 1985 1 alpha,25-dihydroxyvitamin D3 (calcitriol) stimulates proliferation of human circulating monocytes in vitro. FEBS Lett 185:9-13.
- Mitsuhashi T, Morris RC Jr, Ives HE 1991 1,25-dihydroxyvitamin D3 modulates growth of vascular smooth muscle cells. J Clin Invest 87:1889–1895.
- Edelson JD, Chan S, Jassal D, Post M, Tanswell AK 1994
 Vitamin D stimulates DNA synthesis in alveolar type-II cells.
 Biochim Biophys Acta 1221:159-166.
- 352. Lutzow-Holm C, De Angelis P, Grosvik H, Clausen OP 1993 1,25-dihydroxyvitamin D3 and the vitamin D analog KH1060 induce hyperproliferation in normal mouse epidermis. A BrdUrd/DNA flow cytometric study. Exp Dermatol 2:113-120.
- 353. Gniadecki R 1994 A vitamin D analog KH 1060 activates the protein kinase C-c-fos signaling pathway to stimulate epidermal proliferation in murine skin. J Endocrinol 143: 521-525.
- 354. Gniadecki R, Serup J 1995 Stimulation of epidermal proliferation in mice with 1 alpha, 25-dihydroxyvitamin D3 and receptor-active 20-EPI analogs of 1 alpha, 25-dihydroxyvitamin D3. Biochem Pharmacol 49:621-624.
- 355. Gniadecki R, Gniadecka M, Serup J 1995 The effects of KH 1060, a potent 20-epi analog of the vitamin D3 hormone, on hairless mouse skin in vivo. Br J Dermatol 132:841-852.
- 356. Hosoi J, Abe E, Suda T, Colburn NH, Kuroki T 1986 Induction of anchorage-independent growth of JB6 mouse epidermal cells by 1 alpha,25-dihydroxyvitamin D3. Cancer Res 46:5582-5586.
- 357. Kitano Y, Ikeda N, Okano M 1991 Suppression of proliferation of human epidermal keratinocytes by 1,25-dihydroxyvitamin D3. Analysis of its effect on psoriatic lesion and of

- its mechanism using human keratinocytes in culture. Eur J Clin Invest 21:53-58.
- Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T 1983 Regulation of terminal differentiation of cultured mouse epidermal cells by 1 alpha,25-dihydroxyvitamin D3. Endocrinology 113:1950-1957.
- Kragballe K 1992 Vitamin D3 and skin diseases. Arch Dermatol Res 284 (Suppl. 1):S30-S36.
- Kuroki T, Sasaki K, Chida K, Abe E, Suda T 1983 1 alpha,
 25-dihydroxyvitamin D3 markedly enhances chemicallyinduced transformation in BALB 3T3 cells. Gann 74:611-614.
- 361. Sasaki K, Chida K, Hashiba H, Kamata N, Abe E, Suda T, Kuroki T 1986 Enhancement by 1 alpha,25-dihydroxy-vitamin D3 of chemically induced transformation of BALB 3T3 cells without induction of ornithine decarboxylase or activation of protein kinase C1. Cancer Res 46:604-610.
- 362. Jones CA, Callaham MF, Huberman E 1984 Enhancement of chemical carcinogen-induced cell transformation in hamster embryo cells by 1 alpha,25-dihydroxycholecalciferol, the biologically active metabolite of vitamin D3. Carcinogenesis 5:1155-1159.
- 363. Wood AW, Chang RL, Huang MT, Baggiolini E, Partridge JJ, Uskokovic M, Conney AH 1985 Stimulatory effect of 1 alpha, 25-dihydroxyvitamin D3 on the formation of skin tumors in mice treated chronically with 7,12-dimethylbenz[a]anthracene. Biochem Biophys Res Commun 130: 924-931.
- Chang PL, Prince CW 1993 1 alpha, 25-dihydroxyvitamin D3 enhances 12-O-tetradecanoylphorbol-13-acetate-induced tumorigenic transformation and osteopontin expression in mouse JB6 epidermal cells. Cancer Res 53:2217-2220.
- 365. Chang PL, Lee TF, Garretson K, Prince CW 1997 Calcitriol enhancement of TPA-induced tumorigenic transformation is mediated through vitamin D receptor-dependent and -independent pathways. Clin Exp Metastasis 15:580-592.
- 366. Yamaoka K, Marion SL, Gallegos A, Haussler MR 1986 1,25-dihydroxyvitamin D3 enhances the growth of tumors in athymic mice inoculated with receptor rich osteosarcoma cells. Biochem Biophys Res Commun 139:1292-1298.
- 367. Franceschi RT, James WM, Zerlauth G 1985 1 alpha, 25-dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line. J Cell Physiol 123:401-409.
- Gronowicz G, Egan JJ, Rodan GA 1986 The effect of 1,25dihydroxyvitamin D3 on the cytoskeleton of rat calvaria and rat osteosarcoma (ROS 17/2.8) osteoblastic cells. J Bone Miner Res 1:441-455.
- Hodge BO, Kream BE 1988 Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells. Endocrinology 122:2127-2133.
- 370. Abbadia Z, Amiral J, Trzeciak MC, Delmas PD, Clezardin P 1993 The growth-supportive effect of thrombospondin (TSP1) and the expression of TSP1 by human MG-63 osteoblastic cells are both inhibited by dexamethasone. FEBS Lett 335:161-166.
- 371. Huerta S, Irwin RW, Heber D, Go VL, Moatamed F, Huerta S, Ou C, Harris DM 2003 Intestinal polyp formation in the Apemin mouse: effects of levels of dietary calcium and altered vitamin D homeostasis. Dig Dis Sci 48:870-876.
- 372. Sahpazidou D, Stravoravdi P, Toliou T, Geromichalos G, Zafiriou G, Natsis K, Gigis P 2003 Significant experimental decrease of the hepatocellular carcinoma incidence in C3H/Sy mice after long-term administration of EB1089, a vitamin D analog. Oncol Res 13:261-268.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

documents submitted by the applicant.
Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.