Raven3: 28nm RISC-V Vector Processor with On-Chip DC/DC Convertors

Brian Zimmer¹, Yunsup Lee¹, Alberto Puggelli¹, Jaehwa Kwak¹, Ruzica Jevtic¹, Ben Keller¹, Stevo Bailey¹, Milovan Blagojevic^{1,2}, Pi-Feng Chiu¹, Hanh-Phuc Le¹, Po-Hung Chen¹, Nicholas Sutardja¹, Rimas Avizienis¹, Andrew Waterman¹, Brian Richards¹, Philippe Flatresse², Elad Alon¹, Krste Asanović¹, and Borivoje Nikolić¹

¹University of California, Berkeley, USA ²STMicroelectronics, Crolles, France

6/30/2015, RISC-V Workshop

Motivation

 Dynamic voltage and frequency scaling (DVFS) maximizes energy efficiency

- Off-chip conversion
 - **X** Slow mode transitions
 - X Limited voltage domains
 - Costly off-chip components

- On-chip conversion
 - ✓ Fast transitions
 - Many domains
 - ✓ No off-chip components

Project Goals

Energyefficient

- Fine-grained DVFS
- High conversion efficiency

low-cost

- Entirely on-chip converter
- Low area overhead

processor

- Runs Linux
- Realistic digital load

Integrated Voltage Regulators

Method	Efficiency (0.5V output)	Off-chip components	Area overhead
Linear regulator (eg. Toprak-Deniz ISSCC2014)	<50%		
Buck converter (eg. Kurd ISSCC2014)	?%-90%		
Interleaved switched- capacitor (eg. Kim ISSCC2015 ¹ , Clerc ISSCC2015 ²)	40%-65% ¹ 65%-82% ²		
Simultaneous switched-capacitor with adaptive clock (Proposed)	85%		

Proposed Solution

 Switch all converters simultaneously to avoid charge sharing

Traditional Interleaving

Simultaneous Switching

Clock frequency adapts to track the voltage ripple

Chip Architecture

Floorplan

- ST 28nm FDSOI
- Die area: 2.37mm²
- Core area: 1.19mm²
- Converter area:
 0.19mm² (16%)
- MOS+MOM (to M3) density: 11fF/μm²

8T SRAM macros

24 Switched-Cap

RISC-V Scalar+Vector Processor
Adaptive clock generator 7

Reconfigurable SC Converters

Four output voltages, single unit cell

Simple lower bound control

Simultaneous switching

Self-Adjusting Clock Generator

- Replica tracks critical path with voltage ripple
- Controller quantizes clock edge

Test setup

 Host: Zedboard (ARM+FPGA, network accessible)

Motherboard: Programmable supplies

Daughterboard: Chip-on-board

Vout Measurements

Fast converter mode transitions enable extremely fine-grain DVFS algorithms

GFLOPS/W

- Double-precision matrix-multiplication used as energy-efficiency metric
- GFLOPS/W inverse of energy/operation

28nm FDSOI offers high energy efficiency and 4 converter modes cover wide operating range

Conclusion

Energy-efficient 28nm processor featuring:

1. Fine-grained and wide-range DVFS

- 20ns transitions
- 1V to 0.45V

2. Entirely on-chip voltage conversion

Simultaneous switched-capacitor

3. High efficiency

80% across wide voltage range

4. Extreme energy efficiency

26 GFLOPS/W with on-chip conversion

Acknowledgements

- Funding: BWRC members, ASPIRE members, DARPA PERFECT Award Number HR0011-12-2-0016, Intel ARO, AMD, GRC, Marie Curie FP7, NSF GRFP, NVIDIA Fellowship
- Fabrication donation by STMicroelectronics.
- Tom Burd, James Dunn, Olivier Thomas, and Andrei Vladimirescu

