# Special Topics in Logic and Security 1 Dataflow Analysis

Paul Irofti and Ioana Leuștean

Master Year II, Sem. I, 2023-2024

# What is Static Analysis?

Static analysis involves the analysis of program properties without executing them.

Properties examples: type analysis, null pointers, unused assignments, code vulnerabilities (e.g. buffer overflow), etc.

# Control Flow Graphs (CFG)

```
x = 10;
y = 1;
if (x < y) z = x;
    else z = y;
print z
```



# Control Flow Graphs (CFG)

x = 10; y = 1; if (x < y) z = x; else z=y; print z We label each of the graph's nodes.



# Example: determining live variables

https://cs420.epfl.ch/c/06\_dataflow-analysis.html

A variable is active (live) at a given point in the program's execution if it is possible for the current variable value to be read before it is overwritten.

For a node n from the CFG we will denote with  $v_n$  the set of variables that are live before the execution of n.

With that

$$v_n = \left(\bigcup\{v_i \mid i \text{ succesor of } n\} \setminus \textit{Written}(n)\right) \cup \textit{Read}(n)$$

#### where

- Written(n) is the set of variables that are redefined in n,
- Read(n) is the set of variables that are read in n.

# Example: determining live variables

Taking into account the above identified condition, in each node we obtain a set of constraints:

x = 10

$$v_{1} = v_{2} \setminus \{x\}$$
 $v_{2} = v_{3} \setminus \{y\}$ 
 $v_{3} = v_{4} \cup v_{5} \cup \{x, y\}$ 
 $v_{4} = (v_{6} \setminus \{z\}) \cup \{x\}$ 
 $v_{5} = (v_{6} \setminus \{z\}) \cup \{y\}$ 
 $v_{6} = \{z\}$ 
 $v_{6} = \{z\}$ 
 $v_{7} = v_{1} \cup v_{2} \cup v_{3} \cup v_{4} \cup v_{5} \cup$ 

# Example: determining live variables

Solving the system we obtain the solution:

$$\begin{array}{rcl}
 v_1 & = & \emptyset \\
 v_2 & = & \{x\} \\
 v_3 & = & \{x, y\} \\
 v_4 & = & \{x\} \\
 v_5 & = & \{y\} \\
 v_6 & = & \{z\} 
 \end{array}$$



### CFG - remarks

- In the problem analysis from above, we associated a set of variables to each of the node from the control flow graph that represent the solution of a system of equations from  $\mathcal{P}(\mathit{Var})$ , where  $\mathit{Var}$  is the set of variables from the entire program.
- In general, the analysis of problems from this class leads to a set of equations
  of latice L. Is there a generic method for solving such a system of equations?

### **POSET**

#### Definition (partial order)

Let A be a set. A binary relation R  $A \times A$  is a **partial order** if:

- reflexive:  $(x, x) \in R$  for any  $x \in A$
- antisymmetric:  $(x, y) \in R$  and  $(y, x) \in R \implies x = y, \forall x, y \in A$
- transitive:  $(x, y) \in R$  and  $(y, z) \in R \implies (x, z) \in R, \forall x, y, z \in A$

#### Definition (POSET)

A partially ordered set (**poset**) is a pair (A, R), where A is a set and R is a partial order on A.

# Key poset elements

#### Definition (infinimum and supremum)

Let A be a poset and  $X \subseteq A$ . The element  $a \in A$  is called:

- lower bound for X if  $a < x \forall x \in X$
- upper bound for X if  $x \le a \ \forall x \in X$
- **infimum** for X if a is the greatest lower bound; we denote  $a = \inf X$
- **supremum** for *X* if *a* is the lowest upper bound; we denote  $a = \sup X$

#### Definition (top and bottom)

Let  $(A, \leq)$  be a poset. An element  $e \in A$  is called:

- minimal element if  $a \le e \implies a = e$  (more than one)
- the least (**bottom**, minimum) element if  $e \le a \ \forall a \in A$  (unique)
- ullet maximal element if  $e \leq a \implies a = e$  (more than one)
- the greatest (**top**, maximum) element if  $a \le e \ \forall a \in A$  (unique)

# Complete Partial Order (CPO)

#### Definition (chain)

A partial order is called total if any two elements are comparable. A totally ordered set (or a **chain**) is a pair  $(A, \leq)$  where A is a set and  $\leq$  is a total order on A.

#### Definition (CPO)

A complete partial order (CPO) is a poset  $(C, \leq, \perp)$  such that C has a bottom element  $\perp$  and  $\sup X$  exists for any chain  $X \subseteq C$ .

#### Lattice

#### Definition

A poset  $(L, \leq)$  is a **lattice** if  $\exists \sup\{x_1, x_2\}, \inf\{x_1, x_2\} \quad \forall x_1, x_2 \in L$ .

The infimum and the supremum become operations on L:

$$\forall: L \times L \to L, \quad x_1 \vee x_2 := \sup\{x_1, x_2\}$$
  
 
$$\land: L \times L \to L, \quad x_1 \wedge x_2 := \inf\{x_1, x_2\}$$

#### Proposition

The following identities hold:

- associativity:  $(x \lor y) \lor z = x \lor (y \lor z), \qquad (x \land y) \land z = x \land (y \land z),$
- commutativity:  $x \lor y = y \lor x$ ,  $x \land y = y \land x$ ,
- absorption:  $x \lor (x \land y) = x$ ,  $x \land (x \lor y) = x$ .

#### Definition (complete)

A lattice  $(L, \leq, \vee, \wedge)$  is complete if  $\inf X$  and  $\sup X$  exist for any  $X \subseteq L$ .

# Monotony

#### Definition (monotone)

Given two posets  $(A, \leq_A)$  and  $(B, \leq_B)$ , we say that a function  $f: A \to B$  is monotone (increasing) if  $a_1 \leq_A a_2 \implies f(a_1) \leq_B f(a_2), \forall a_1, a_2 \in A$ .

#### Definition (continous)

Given two CPOs  $(A, \leq_A)$  and  $(B, \leq_B)$  we say that a function  $f: A \to B$  is continuous if  $f(\sup\{a_n \mid n \in \mathbb{N}\}) = \sup\{f(a_n) \mid n \in \mathbb{N}\}$  for any chain  $\{a_n \mid n \in \mathbb{N}\}$  from A.

#### Remark

Continuity implies monotony.

### Fixed Point

#### Definition (fixed point)

An element  $a \in A$  is a fixed point of  $f: A \to A$  if f(a) = a.

#### Theorem (Fixed point theorem for complete lattices (Knaster-Tarski))

If  $(L, \leq)$  is a complete lattice and  $F: L \to L$  is a monotone (increasing) function, then  $a = \inf\{x \in L | F(x) \leq x\}$  is the least fixed point of F.

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in N\}$  is the least fixed point of F.

Note that a exists since the sequence  $F^0(\bot) = \bot \le F(\bot) \le F^2(\bot) \le \cdots \le F^n(\bot)$  is a chain.

Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

$$F(a) = F(\sup\{F^{n}(\bot) \mid n \in \mathbb{N}\})$$

$$= \sup\{F(F^{n}(\bot)) \mid n \in \mathbb{N}\}$$

$$= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\}$$

$$= \sup\{F^{n}(\bot) \mid n \in \mathbb{N}\} = a$$
(continuity)

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

i) a is a fixed point

$$\begin{split} F(\mathbf{a}) &= F(\sup\{F^n(\bot) \mid n \in \mathbb{N}\}) \\ &= \sup\{F(F^n(\bot)) \mid n \in \mathbb{N}\} \\ &= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\} \\ &= \sup\{F^n(\bot) \mid n \in \mathbb{N}\} = \mathbf{a} \end{split}$$
 (continuity)

ii) a is the least fixed point

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

$$\begin{split} F(a) &= F(\sup\{F^n(\bot) \mid n \in \mathbb{N}\}) \\ &= \sup\{F(F^n(\bot)) \mid n \in \mathbb{N}\} \\ &= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\} \\ &= \sup\{F^n(\bot) \mid n \in \mathbb{N}\} = a \end{split}$$
 (continuity)

- ii) a is the least fixed point
  - **1** Assume b is another fixed point, i.e. F(b) = b.

### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

$$\begin{split} F(a) &= F(\sup\{F^n(\bot) \mid n \in \mathbb{N}\}) \\ &= \sup\{F(F^n(\bot)) \mid n \in \mathbb{N}\} \\ &= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\} \\ &= \sup\{F^n(\bot) \mid n \in \mathbb{N}\} = a \end{split}$$
 (continuity)

- ii) a is the least fixed point
  - **1** Assume b is another fixed point, i.e. F(b) = b.
  - **2** We prove by induction on  $n \ge 1$  that  $F^n(\bot) \le b$ .

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

$$\begin{split} F(a) &= F(\sup\{F^n(\bot) \mid n \in \mathbb{N}\}) \\ &= \sup\{F(F^n(\bot)) \mid n \in \mathbb{N}\} \\ &= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\} \\ &= \sup\{F^n(\bot) \mid n \in \mathbb{N}\} = a \end{split}$$
 (continuity)

- ii) a is the least fixed point
  - **1** Assume b is another fixed point, i.e. F(b) = b.
  - **2** We prove by induction on  $n \ge 1$  that  $F^n(\bot) \le b$ .
  - **3** For n = 0,  $F^0(\bot) = \bot \le b$  because  $\bot$  is the first element.

#### Theorem (Fixed point theorem for CPOs (Kleene))

If  $(C, \leq, \perp)$  is a CPO and  $F: C \to C$  is a continuous function, then  $a = \sup\{F^n(\perp) | n \in \mathbb{N}\}$  is the least fixed point of F.

$$\begin{split} F(a) &= F(\sup\{F^n(\bot) \mid n \in \mathbb{N}\}) \\ &= \sup\{F(F^n(\bot)) \mid n \in \mathbb{N}\} \\ &= \sup\{F^{n+1}(\bot) \mid n \in \mathbb{N}\} \\ &= \sup\{F^n(\bot) \mid n \in \mathbb{N}\} = a \end{split}$$
 (continuity)

- ii) a is the least fixed point
  - **1** Assume b is another fixed point, i.e. F(b) = b.
  - **2** We prove by induction on  $n \ge 1$  that  $F^n(\bot) \le b$ .
  - **3** For n = 0,  $F^0(\bot) = \bot \le b$  because  $\bot$  is the first element.
  - **4** If  $F^n(\bot) \le b$ , then  $F^{n+1}(\bot) \le F(b)$  because F is increasing. Since F(b) = b we get  $F^{n+1}(\bot) \le b$ .

#### **Theorem**

#### **Theorem**

If  $(L, \leq)$  is a complete lattice and  $F: L \to L$  is a monotone (increasing) function, then  $a = \inf\{x \in L | F(x) \leq x\}$  is the least fixed point of F.

#### **Theorem**

- i) a is a fixed point

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \implies F(a) \le a$

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \Longrightarrow F(a) \leq a$
  - **3** It follows that  $F(a) \in X \implies a \le F(a)$

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \Longrightarrow F(a) \leq a$
  - **3** It follows that  $F(a) \in X \implies a \le F(a)$
  - **4** We proved that  $F(a) \le a$  and  $a \le F(a)$ , so F(a) = a.

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \Longrightarrow F(a) \leq a$
  - **3** It follows that  $F(a) \in X \implies a \le F(a)$
  - 4 We proved that  $F(a) \le a$  and  $a \le F(a)$ , so F(a) = a.
- ii) a is the least fixed point

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \Longrightarrow F(a) \leq a$
  - **3** It follows that  $F(a) \in X \implies a \le F(a)$
  - 4 We proved that  $F(a) \le a$  and  $a \le F(a)$ , so F(a) = a.
- ii) a is the least fixed point
  - **1** assume b is another fixed point, i.e. F(b) = b

#### **Theorem**

- i) a is a fixed point

  - **2** Consequently F(a) is a lower bound for  $X \Longrightarrow F(a) \leq a$
  - **3** It follows that  $F(a) \in X \implies a \le F(a)$
  - 4 We proved that  $F(a) \le a$  and  $a \le F(a)$ , so F(a) = a.
- ii) a is the least fixed point
  - **1** assume b is another fixed point, i.e. F(b) = b
  - 2 then  $b \in X$ , so  $a \le b$ .

### The Product Lattice

#### Definition

We define the pointwise order relationship:

$$(x_1,\ldots,x_n) \leq (y_1,\ldots,y_n) \iff x_i \leq y_i, \ \forall i \in \{1,\ldots,n\}$$

#### **Theorem**

If  $L_1, L_2, \ldots, L_n$  are lattices then so is the product

$$L_1 \times L_2 \times \cdots \times L_n = \{(x_1, x_2, \dots, x_n) \mid x_i \in L_i\}$$

where the lattice order  $\leq$  is defined pointwise.

#### Remark

Let L be a lattice and  $n \ge 1$ , note that  $(L^n, \le)$  is a lattice. More so, if L is a complete lattice then  $L^n$  is also a complete lattice.

# **Equation Systems in Complete Lattices**

Let L be a complete lattice and  $n \ge 1$  and  $F_1, \dots, F_n : L^n \to L$  a set of monotone functions. We want to solve the equation system:

$$x_1 = F_1(x_1, \dots, x_n)$$

$$x_2 = F_2(x_1, \dots, x_n)$$

$$\dots$$

$$x_n = F_n(x_1, \dots, x_n)$$
with  $x_1, \dots, x_n \in L$ .

#### Definition

Denote the function  $F: L^n \to L^n$  to be

$$F(x_1,...,x_n) = (F_1(x_1,...,x_n), F_2(x_1,...,x_n),...,F_n(x_1,...,x_n))$$

and observe that the system can be rewritten as

$$F(x_1,\ldots,x_n)=(x_1,\ldots,x_n)$$

The equation system can be solved using the Fixed Point Theorem!

# Determining live variables

It results that, in order to solve the system:

$$v_1 = v_2 \setminus \{x\} 
 v_2 = v_3 \setminus \{y\} 
 v_3 = v_4 \cup v_5 \cup \{x, y\} 
 v_4 = (v_6 \setminus \{z\}) \cup \{x\} 
 v_5 = (v_6 \setminus \{z\}) \cup \{y\} 
 v_6 = \{z\}$$

we need to find the solution to the equation (where  $v_i$  is denoted as  $x_i$ ):

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_4 \cup x_5 \cup \{x, y\}, (x_6 \setminus \{z\}) \cup \{x\}, (x_6 \setminus \{z\}) \cup \{y\}, \{z\})$$
 in the complete lattice  $(\mathcal{P}(Var), \subset, \emptyset, Var)$ .

### Fixed Point Theorem Solution

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_3 \setminus \{y\}, (x_6 \setminus \{z\}) \cup \{x\}, (x_6 \setminus \{z\}) \cup \{y\}, \{z\})$$

#### Determining the least fixed-point:

|                         | <i>x</i> <sub>1</sub> | $x_2$        | <i>x</i> <sub>3</sub>                                    |              | <i>X</i> <sub>5</sub> |              |
|-------------------------|-----------------------|--------------|----------------------------------------------------------|--------------|-----------------------|--------------|
|                         | Ø                     | Ø            | Ø                                                        | Ø            | Ø                     | Ø            |
| $F(\perp)$              | Ø                     | Ø            | $\{x,y\}$                                                | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> } |
| $\mathit{F}^{2}(\perp)$ | Ø                     | { <i>x</i> } | $\{x,y\}$                                                | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> } |
| $\mathit{F}^{3}(\perp)$ | Ø                     | { <i>x</i> } | $\begin{cases} x, y \\ \{x, y\} \\ \{x, y\} \end{cases}$ | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> } |

where 
$$\bot = (\emptyset, \dots, \emptyset)$$

## IMP and live variables

Let the set of the variables successor to the node n be:

$$Join(v_n) = \bigcup \{v_i \mid i \text{ succesor of } n\}$$

Then, the general formulation for live variables in node k is:

$$v_n = Join(v_n) \setminus Written(n) \cup Read(n)$$

Particular formulations for IMP instructions:

- Expressions (E) E x + 3, (x > 7)
- Instruction blocks
  - Assignment x = E;  $v_n = Join(v_n) \setminus \{x\} \cup Var(E)$  Conditional if (E)  $v_n = Join(v_n) \cup Var(E)$  Loops while (E)  $v_n = Join(v_n) \cup Var(E)$  Output print E;  $v_n = Join(v_n) \cup Var(E)$

where Var(E) represents the set of variables present in expression E.

# Control Flow Graphs (CFG)

```
sum = 0;
i = 1;
while (i < 11) {
    sum = sum + i;
    i = i + 1;
}
print sum
print i</pre>
```



# Control Flow Graphs (CFG)



# Control Flow Graphs (CFG)

```
\begin{array}{lll} v_1 & = & \emptyset \\ v_2 & = & \{sum\} \\ v_3 & = & \{i, sum\} \\ v_4 & = & \{i, sum\} \\ v_5 & = & \{i, sum\} \\ v_6 & = & \{i, sum\} \\ v_7 & = & \{i\} \end{array}
```



## Solving with the Fixed Point Theorem

$$F(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (x_2 \setminus \{sum\}, x_3 \setminus \{i\}, x_4 \cup x_6 \cup \{i\}, (x_5 \setminus \{sum\}) \cup \{i, sum\}, x_3 \setminus \{i\}) \cup \{i\}, x_7 \cup \{sum\}, \{i\})$$

#### Determining the least fixed-point:

|              | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $X_4$        | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> | X7           |
|--------------|-------|-------|-----------------------|--------------|-----------------------|-----------------------|--------------|
|              | Ø     | Ø     | Ø                     | Ø            | Ø                     | Ø                     | Ø            |
| $F(\perp)$   | Ø     | Ø     | Ø                     | Ø            | Ø                     | {sum}                 | { <i>i</i> } |
| $F^2(\perp)$ | Ø     | Ø     | $\{sum, i\}$          | $\{sum, i\}$ | Ø                     | {sum}                 | { <i>i</i> } |
| $F^3(\perp)$ | Ø     | {sum} | $\{sum, i\}$          | $\{sum, i\}$ | $\{sum, i\}$          | {sum}                 | $\{i\}$      |

where 
$$\bot = (\emptyset, \ldots, \emptyset)$$

#### Exercise

Perform liveness analysis for the following program:

```
x = 42;
while (x > 1) {
    y = x / 2;
    if (y > 3)
        x = x - y;
    z = x - 4;
    if (z > 0)
        x = x / 2;
    z = z - 1;
}
print x
```

### Algorithms for determining the Ifp

In order to obtain the least-fixed point (Ifp) we use the following chain until we converge:

$$\mathbf{F}^0(\perp) = \perp \leq \mathbf{F}(\perp) \leq \mathbf{F}^2(\perp) \leq \cdots \leq \mathbf{F}^n(\perp) \leq \cdots$$

Which can be formalized in pseudo-code as:

#### **Algorithm 1:** NaiveLFP

- 1  $\mathbf{x} = (\bot, \bot, \ldots, \bot);$
- 2 while  $\underline{x \neq F(x)}$  do
- x = F(x);
- 4 return x;

**Complexity:** depends on the height of lattice  $L^n$  and the evaluation cost of F(x).

**Convergence:** requires *n* iterations.

## Algorithms for determining the Ifp

Algorithm 1 does not profit from the lattice structure:

- recomputes the inputs that were not changed in the former iteration
- does not take into consideration the inputs that were already computed in the current iteration

In the first example we had:

$$F(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_4 \cup x_5 \cup \{x, y\}, (x_6 \setminus \{z\}) \cup \{x\}, (x_6 \setminus \{z\}) \cup \{y\}, \{z\})$$

and the fixed-point is computed in 6 iterations

|                         | $x_1$ | $x_2$        | <i>x</i> <sub>3</sub> | $x_4$        | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> |
|-------------------------|-------|--------------|-----------------------|--------------|-----------------------|-----------------------|
|                         | Ø     | Ø            | Ø                     | Ø            | Ø                     | Ø                     |
|                         | Ø     |              | Ø                     | Ø            | Ø                     | { <i>z</i> }          |
| $\mathit{F}^{2}(\perp)$ | Ø     | Ø            | Ø                     | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |
| $F^3(\perp)$            | Ø     | Ø            | $\{x,y\}$             | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |
| $\mathit{F}^{4}(\perp)$ | Ø     | { <i>x</i> } | $\{x,y\}$             | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |
| $F^5(\perp)$            | Ø     | { <i>x</i> } | $\{x,y\}$             | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |

## Comparisson of Ifp algorithms

$$F(\mathbf{x}) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_4 \cup x_5 \cup \{x, y\}, (x_6 \setminus \{z\}) \cup \{x\}, (x_6 \setminus \{z\}) \cup \{y\}, \{z\})$$

Ideally, an efficient algorithm would reduce the number of iterations:

|                         | $x_1$ | $x_2$        | <i>X</i> <sub>3</sub> | $x_4$        | $x_5$        | <i>x</i> <sub>6</sub> |
|-------------------------|-------|--------------|-----------------------|--------------|--------------|-----------------------|
|                         | Ø     | Ø            | Ø                     | Ø            | Ø            | Ø                     |
| $F(\perp)$              | Ø     | Ø            | Ø                     | Ø            | Ø            | { <i>z</i> }          |
| $\mathit{F}^{2}(\perp)$ | Ø     | Ø            | Ø                     | { <i>x</i> } | { <i>y</i> } | { <i>z</i> }          |
| $\mathit{F}^{3}(\perp)$ | Ø     | Ø            | $\{x,y\}$             | { <i>x</i> } | { <i>y</i> } | { <i>z</i> }          |
| $	extstyle F^4(ot)$     | Ø     | { <i>x</i> } | $\{x,y\}$             |              |              |                       |
| $F^5(\perp)$            | Ø     | { <i>x</i> } | $\{x,y\}$             | $  \{x\}$    | { <i>y</i> } | $  \{z\}$             |

#### versus

|                         | $x_1$ | $x_2$        | <i>x</i> <sub>3</sub>                                              | $x_4$        | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> |
|-------------------------|-------|--------------|--------------------------------------------------------------------|--------------|-----------------------|-----------------------|
|                         |       | Ø            | Ø                                                                  | Ø            | Ø                     | Ø                     |
|                         | Ø     | Ø            | $\{x,y\}$                                                          | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |
| $\mathit{F}^{2}(\perp)$ | Ø     | { <i>x</i> } | $\{x,y\}$                                                          | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |
| $F^3(\perp)$            | Ø     | { <i>x</i> } | $   \begin{cases}     x, y \\     x, y \\     x, y   \end{cases} $ | { <i>x</i> } | { <i>y</i> }          | { <i>z</i> }          |

#### Round Robin Ifp

Gauss-Seidel-like component-wise updates:

- computes  $x_i$  based on  $x_{j < i}$  from the current iteration
- Ifp is attained even though the outer iteration may provide a different output than the outer iteration in Alg. 1

### Algorithm 2: RoundRobinLFP

```
1 (x_1, x_2, ..., x_n) = (\bot, \bot, ..., \bot);

2 while (x_1, x_2, ..., x_n) \neq F(x_1, x_2, ..., x_n) do

3  for \underline{i \in 1 \to n} do

4  \underline{\qquad \qquad } x_i = F_i(x_1, x_2, ..., x_n);

5 return (x_1, x_2, ..., x_n);
```

**Complexity:** depends on the height of lattice  $L^n$  and the cost of evaluating  $F_i(x)$ .

**Convergence:** requires at most *n* iterations.

## Chaotic Ifp

Stochastic component wise updates:

- the order of operations is not important in Alg. 2
- computes  $x_i$  based on the  $x_j$ 's from the current iteration; in no particular order
- Alg. 2 still recomputes the unchanged inputs from the former iteration
- the constraints need to be applied until convergence

#### Algorithm 3: ChaoticLFP

```
1 (x_1, x_2, ..., x_n) = (\bot, \bot, ..., \bot);

2 while (x_1, x_2, ..., x_n) \neq F(x_1, x_2, ..., x_n) do

3 i = random(1 \rightarrow n);

4 x_i = F_i(x_1, x_2, ..., x_n);

5 return (x_1, x_2, ..., x_n);
```

**Complexity:** first, it depends on how *i* is chosen at each iteartion, then it depends on the height of lattice  $L^n$  and then on the cost of evaluating  $F_i(\mathbf{x})$ .

**Convergence:** the algorithm is not guaranteed to stop, but if it does the result is correct.

## SimpleWorkList Ifp

Define the map  $dep: Nodes \rightarrow 2^{Nodes}$ , where dep(v) is the set of nodes whose information depends on the information of node v.

```
Algorithm 4: SimpleWorkListLFP
```

```
1 (x_1, x_2, \dots, x_n) = (\bot, \bot, \dots, \bot);

2 W = \{v_1, v_2, \dots, v_n\};

3 while \underline{W \neq \emptyset} do

4 v_i = W.removeNext();

5 y = F_i(x_1, x_2, \dots, x_n);

6 if \underline{y \neq x_i} then

7 x_i = y;

8 for \underline{v_i \in dep(v_i)} do

9 W.add(v_j);

10 return (x_1, x_2, \dots, x_n);
```

The functions removeNext() and add() choose a random node from W and add a node in W, respectively.

#### SimpleWorkList Ifp

#### **Properties**

- computes only the particular constraints for the current node
- does not recompute the inputs unchanged during the former iteration
- computes  $x_i$  based on the  $x_j$ 's from the current iteration; in no particular order
- constraints are applied until convergence
- each iteration has the same effect as the Alg. 3 iteration

**Complexity:** depends on the number of nodes n, the lattice height h, and the cost of evaluating  $\mathbf{F}_i(\mathbf{x})$ .

**Convergence:** a single iteration either decreases the work volume in W or climbs up the lattice; the algorithm stops in finite time because the lattice height is finite and the iterations stop when W is void.