

ELEKTROTEHNIČKI FAKULTET UNIVERZITETA U BEOGRADU

KATEDRA ZA SIGNALE I SISTEME

http://automatika.etf.rs

Predmet: Signali i sistemi

DRUGI DOMAĆI ZADATAK 2021/2022 Furijeova transformacija

Student sa rednim brojem indeksa BBBB/GGGG radi ovaj zadatak sa vrednostima

$$P = mod(BBBB+GGGG, 4),$$
 $Q = mod(B+B+B+B+G+G+G+G, 4)$

gde mod(a,b) označava a po modulu b.

Npr. za studenta sa rednim brojem indeksa 251/2020, parametri su:

$$P = 3, Q = 0$$

Pre početka rešavanja, u izveštaju **navesti konkretne vrednosti parametara** P i Q za koje je rađen zadatak. Zadatak dalje raditi samo za usvojene vrednosti parametara, odnosno samo za konkretnu varijantu signala $y_1(t)$ i $y_2(t)$, koja odgovaraju vrednostima usvojenih parametara. Varijante signala i sistema su date na kraju ovog dokumenta.

Raspored grupa i termini odbrane ovog domaćeg zadatka biće objavljeni u posebnom dokumentu na web stranici http://automatika.etf.rs i na MS Teams grupi predmeta.

Zadatak 1. Furijeova transformacija

Razmatra se FDM (Frequency Division Multiplex) sistem za nezavisan paralelni prenos dva signala kroz zajednički kanal veze, opisan blok-dijagramom na slici:

Niskopropusni filtri su označeni sa NF, propusnik opsega sa PO. Signal $y_1(t)$ prenosi se u osnovnom opsegu učestanosti, a signal $y_2(t)$ se pomera u opseg narednog frekvencijskog kanala, tj. amplitudski se moduliše nosiocem učestanosti f_c . Kanal veze se može modelovati niskopropusnim filtrom propusnog opsega f_k . Pretpostaviti da su svi filtri idealni.

- (a) Ukratko opisati funkciju svih filtara datih u blok dijagramu.
- (b) Predložiti i obrazložiti izbor učestanosti nosioca f_c pri amplitudskoj modulaciji drugog signala, kaoi i zbor graničnih učestanosti svih filtara.
- (c) Analitički odrediti spektre i skicirati amplitudske karakteristike originalnih signala $y_1(t)$ i $y_2(t)$.
- (d) Skicirati amplitudske karakteristike spektar asledećih signala:
 - amplitudski modulisanog signala $y_2^m(t)$,
 - transmisionog signala $y_T(t)$ (na ulazu u kanal veze) i prijemnog signala $y_R(t)$ (na izlazu iz kanala veze),
 - filtracijom dobijenog signala $y_2^b(t)$ i njemu odgovarajućeg signala dobijenog demodulacijom $y_2^d(t)$,
 - finalno rekonstruisanih signala $y_1^r(t)$ i $y_2^r(t)$.
- (e) Obrazložiti kako očekujemo da izgleda vremenski oblik finalno rekonstruisanih signala $y_1^r(t)$ i $y_2^r(t)$.

Napomena: Za grafičke prikaze u svim tačkama zadatka odrediti dovoljno široke granice prikazivanja, u zavisnosti od relevantnih karakteristika signala i sistema. Obrazložiti izbor.