

Non-Excludable Bilateral Trade Between Groups

Yixuan (Even) Xu **Tsinghua University**

Hanrui Zhang
Simons Laufer
Mathematical
Sciences Institute

Vincent Conitzer
Carnegie Mellon
University

Bilateral Trade

Buyer

Private **value**: $v \sim F$

Seller

Private **cost**: $c \sim G$

Public information: F, G

Mechanism Design

- Based on interactions with the players, a mechanism decides:
 - Whether they should **trade** *x*
 - The **payment** of the buyer *p*
 - The **receipt** of the seller r
- Key difficulty: truthfulness
- **Revelation principle**: WLOG, **interactions** can be viewed as a sealed **bid** *b* from the buyer and a sealed **ask** *a* from the seller.

Mechanism Design

- Based on the players' bid b and ask a, a mechanism decides:
 - Whether they should **trade** x(a, b)
 - The **payment** of the buyer p(a, b)
 - The **receipt** of the seller r(a, b)
- **Utilities** of the players:
 - Buyer: $u_b(a,b) = v \cdot x(a,b) p(a,b)$ (Obtained value payment)
 - Seller: $u_s(a, b) = r(a, b) c \cdot x(a, b)$ (Receipt production cost)

Desiderata

• Incentive compatible (IC): players bid/ask truthfully

• Individually rational (IR): players' utilities are non-negative

• Budget balanced (BB): buyer's payment ≥ seller's receipt

• Efficient: a trade happens whenever v > c

Myerson and Satterthwaite

• A seminal impossibility by Myerson and Satterthwaite (1983):

• It is impossible to achieve all of {IC, IR, BB, Efficient} in bilateral trade, i.e, *efficient bilateral trade cannot be implemented in a feasible way*.

Bypassing Myerson and Satterthwaite

Bilateral Trade Between Groups

Non-Excludability

- Non-Excludability: the mechanism guarantees
 - The players share the same allocation
 - The **buyers share** the same **payment**
 - The **sellers share** the same **receipt**
- Based on the players' bids b and asks a, a mechanism decides:
 - Whether **all** the players should **trade** x(a, b)
 - The **payment shared** by the buyers p(a, b)
 - The **receipt shared** by the sellers r(a, b)

The Whole Picture

$$x \cdot v_1 - p$$

$$r - x \cdot c_1$$

$$c_1 \sim G$$

$$x \cdot v_2 - p$$

$$r-x\cdot c_2$$

$$c_2 \sim G$$

$$x \cdot v_n - p$$

$$c_n \sim G$$

Desiderata

• Incentive compatible (IC): players bid/ask truthfully

• Individually rational (IR): players' utilities are non-negative

• Budget balanced (BB): buyer's payment ≥ seller's receipt

• Efficient: a trade happens whenever v > c

Desiderata

• Incentive compatible (IC): players bid/ask truthfully

• Individually rational (IR): groups' utilities are non-negative

• Budget balanced (BB): buyer's payment ≥ seller's receipt

• Efficient (in the limit): as $n \to \infty$, GFT/FB $\to 1$

Our Results in a Nutshell

• A **dichotomy** in the possibility of trading efficiently.

- In expectation:
 - If the buyers value the item (strictly) more than the sellers:
 - A mechanism achieving all desiderata in the limit is given
 - If the sellers value the item (weakly) more than the buyers:
 - No mechanisms can achieve all desiderata in the limit

Why Two Cases?

• Consider the **first best (FB)** in both cases.

- Lemma 4.1.
 - If $E_{v \sim F}[v] > E_{c \sim G}[c]$, then $FB = \Omega(n)$.
 - If $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, then $FB = O(\sqrt{n})$.
- Lemma 4.1 naturally divides the problem into two cases.
 - When the sellers value item more, even FB goes to zero (per agent).
 - It is only possible to gain much when the buyers value item more.

Deterministic Mechanisms

• **Deterministic Mechanisms:** allocation $x(b, a) \in \{0,1\}$

- Our results for deterministic mechanisms:
 - A characterization of IC mechanisms (Theorem 4.1, 4.2)
 - A positive result when $E_{v\sim F}[v] > E_{c\sim G}[c]$ (Theorem 4.3)
 - A negative result when $E_{v\sim F}[v] \leq E_{c\sim G}[c]$ (Theorem 4.4)

Characterization of IC Mechanisms

- **Theorem 4.1.** Allocation x(b, a) can be implemented by an **IC** deterministic mechanism **if and only if:**
 - (a). For any \boldsymbol{a} , there is $\boldsymbol{\tau_a}$ and a monotone Boolean function $\boldsymbol{f_a}$, such that $\boldsymbol{x}(\boldsymbol{b},\boldsymbol{a}) = \boldsymbol{f_a}(\mathbf{1}[b_1 \geq \tau_a],\mathbf{1}[b_2 \geq \tau_a],...,\mathbf{1}[b_n \geq \tau_a])$
 - (b). For any \boldsymbol{b} , there is $\boldsymbol{\theta_b}$ and a monotone Boolean function $\boldsymbol{g_b}$, such that $x(\boldsymbol{b}, \boldsymbol{a}) = g_{\boldsymbol{b}}(\mathbf{1}[a_1 \leq \theta_{\boldsymbol{b}}], \mathbf{1}[a_2 \leq \theta_{\boldsymbol{b}}], ..., \mathbf{1}[a_n \leq \theta_{\boldsymbol{b}}])$
- A mechanism should decide in a voting-like way.

Characterization of IC Mechanisms

- **Theorem 4.1.** Allocation x(b, a) can be implemented by an **IC** deterministic mechanism **if and only if:**
 - (a). For any \boldsymbol{a} , there is $\boldsymbol{\tau_a}$ and a monotone Boolean function $\boldsymbol{f_a}$, such that $\boldsymbol{x}(\boldsymbol{b},\boldsymbol{a}) = \boldsymbol{f_a}(\mathbf{1}[b_1 \geq \boldsymbol{\tau_a}],\mathbf{1}[b_2 \geq \boldsymbol{\tau_a}],...,\mathbf{1}[b_n \geq \boldsymbol{\tau_a}])$
 - (b). For any \boldsymbol{b} , there is $\boldsymbol{\theta_b}$ and a monotone Boolean function $\boldsymbol{g_b}$, such that $x(\boldsymbol{b}, \boldsymbol{a}) = g_{\boldsymbol{b}}(\mathbf{1}[a_1 \leq \theta_{\boldsymbol{b}}], \mathbf{1}[a_2 \leq \theta_{\boldsymbol{b}}], ..., \mathbf{1}[a_n \leq \theta_{\boldsymbol{b}}])$
- **Theorem 4.2.** Allocation x(b, a) can be implemented by an **IC** and **SBB** deterministic mechanism if and only if:
 - There is τ and a monotone Boolean function f, such that $x(\boldsymbol{b},\boldsymbol{a}) = f(\mathbf{1}[b_1 \geq \tau], ..., \mathbf{1}[b_n \geq \tau], \mathbf{1}[a_1 \leq \tau], ..., \mathbf{1}[a_n \leq \tau])$

Buyers Value More: Positive Result

Algorithm 1:

- Always trade at price $\frac{1}{2}(E_{v\sim F}[v] + E_{c\sim G}[c])$
- $x(\mathbf{b}, \mathbf{a}) = 1, p(\mathbf{b}, \mathbf{a}) = r(\mathbf{b}, \mathbf{a}) = \frac{1}{2} (E_{v \sim F}[v] + E_{c \sim G}[c])$
- **Theorem 4.3.** Algorithm 1 is **IC** and **SBB**. When $E_{v\sim F}[v] > E_{c\sim G}[c]$, w.p. $1-e^{-\Omega(n)}$, it is **IR**, and its **efficiency** is $1-e^{-\Omega(n)}$.
 - Informally, Algorithm 1 achieves all desiderata in the limit.

Sellers Value More: Negative Result

• Theorem 4.4. When $E_{v\sim F}[v] \leq E_{c\sim G}[c]$, no deterministic IC mechanisms can be efficient in the limit.

- Recall that in this case, $FB = O(\sqrt{n})$ (Lemma 4.1)
 - There is no much to lose in the first place
 - Additively, Algorithm 1's loss is still o(n)

Randomized Mechanisms

- Randomized Mechanisms: allocation $x(b, a) \in [0,1]$
- We consider **smooth** randomized mechanisms
 - x(b, a) is twice continuously differentiable
- Our results for **smooth** randomized mechanisms:
 - A characterization of IC mechanisms (Theorem 5.1)
 - A positive result when $E_{v\sim F}[v] > E_{c\sim G}[c]$ (Same as deterministic)
 - A negative result when $E_{v \sim F}[v] \leq E_{c \sim G}[c]$ (Theorem 5.2)

Summary of Contributions

- We generalize bilateral trade to the multiplayer **setting**
 - This allows more positive results, bypassing Myerson & Satterthwaite
- We thoroughly study the new setting theoretically
 - We characterize the set of IC (truthful) mechanisms
 - We give an efficient mechanism when buyers value item more
 - We show impossibility of efficiency when sellers value item more
- We conduct **experiments** to show effect of our mechanism