Nachklausur zur Experimentalphysik 2

Prof. Dr. T. Hugel Sommersemester 2013 24. September 2013

Zugelassene Hilfsmittel:

- 1 beidseitig hand- oder computerbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (4 Punkte)

Nennen Sie die alle 4 zeitabhängigen Maxwell-Gleichungen (Formel) und beschreiben Sie den Inhalt von zweien mit eigenen Worten.

Lösung

Faradaysches Induktionsgesetz Elektrische Wirbelfelder werden durch magnetische Flussänderung induziert:

$$\oint \vec{E} \, \mathrm{d}\vec{s} = -\frac{\mathrm{d}}{\mathrm{d}t} \Phi_{\mathrm{mag}} \quad \vec{\nabla} \times \vec{E} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$$

Ampère-Maxwellsches Induktionsgesetz Magnetische Wirbelfelder werden durch stationäre Ströme oder elektrische Flussänderung erzeugt:

$$\oint \vec{B} \, d\vec{s} = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{dt} \phi_{el} \quad \vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{d\vec{E}}{dt}$$

Gaußscher Satz für elektrische Felder Ladungen sind Quellen und Senken des elektrischen Feldes.

$$\oint \vec{E} \, \mathrm{d}\vec{A} = \frac{Q}{\epsilon_0} \quad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

Gaußscher Satz für magnetische Felder Es existieren keine magnetischen Monopole. Magnetische Feldlinien sind immer geschlossen.

$$\oint \vec{B} \, \mathrm{d}\vec{A} = 0 \quad \vec{\nabla} \cdot \vec{B} = 0$$

Aufgabe 2 (4 Punkte)

Betrachten Sie Erde und Mond als geladene Kugeln, die beide die gleiche entgegengesetzte Oberflächenladungsdichte haben. Die Größe der Erde (Erdradius $r_{\rm E}=6371{\rm km}$, Erdmasse $m_{\rm E}=5,9736\cdot10^{24}{\rm kg}$) und des Mondes (Mondradius $r_{\rm M}=1773{\rm km}$, Mondmasse $m_{\rm M}=7,35\cdot10^{22}{\rm kg}$) und ihr mittlerer Abstand (Abstand Erde-Mond $r_{EM}=384400{\rm km}$) seien wie in der Wirklichkeit. Die Ladung der Erde ist positiv, die des Mondes negativ.

- (a) Wie groß müssen die Gesamtladungen auf der Erde und dem Mond sein, damit die Anziehungskraft zwischen den beiden Körpern genauso stark ist wie die Gravitation?
- (b) Könnte man das gesamte Sonnensystem mithilfe geladener Körper und elektrostatischer Kräfte als alleinig auftretende Kräfte nachbauen? Begründen Sie ihre Antwort.

Lösung

(a) Mond und Erde haben die gleiche konstante Oberflächenladungsdichte, also gilt

$$Q_{\mathrm{M}} = -Q_{\mathrm{E}} \frac{r_{\mathrm{M}}^2}{r_{\mathrm{E}}^2}$$

[1]

Die Coulomb-Kraft berechnet sich zu

$$F_{\rm C} = \frac{1}{4\pi\epsilon_0} \frac{Q_{\rm M}Q_{\rm E}}{r_{\rm EM}^2} = -\frac{1}{4\pi\epsilon_0} \frac{Q_{\rm E}^2}{r_{\rm EM}^2} \frac{r_{\rm M}^2}{r_{\rm E}^2}$$
(1)

Die Gravitationskraft berechnet sich zu $F_G=-(\gamma m_{\rm M} m_{\rm E})/r_{\rm EM}^2$. Die Bedingung $F_C=F_G$ formuliert sich zu

$$-\frac{1}{4\pi\epsilon_0} \frac{Q_{\rm E}^2}{r_{\rm EM}^2} \frac{r_{\rm M}^2}{r_{\rm E}^2} = -\frac{(\gamma m_{\rm M} m_{\rm E})}{r_{\rm EM}^2}$$

[1]

Durch Umstellen erhält man

$$|Q_{\rm E}| = 2 \frac{r_{\rm E}}{r_{\rm M}} \sqrt{m_{\rm E} \pi \epsilon_0 \gamma_{\rm M}} = 2,05 \cdot 10^{14} {\rm C}$$

Unter Verwendung der Gleichung (1) erhält man

$$|Q_{\rm M}| = -2\frac{r_{\rm M}}{r_{\rm E}}\sqrt{\pi\epsilon_0\gamma m_{\rm E}m_{\rm M}} = -1,59\cdot 10^{13}{\rm C}$$

[1]

(b) Dies ist nicht möglich. Im Gegensatz zur Coulomb-Wechselwirkung wirkt die Gravitation immer anziehend. Daher wird spätestens beim Hinzufügen des dritten Körpers des Sonnensystems eine Abweichung zum realen Sonnensystem festzustellen sein.

Aufgabe 3 (4 Punkte)

Betrachte ein kartesisches Koordinatensystem im dreidimensionalen Raum. Auf der z-Achse befinde sich eine unendlich ausgedehnte, unendlich dünne Linienladung mit Ladung λ pro Längeneinheit.

- (a) Berechnen Sie das \vec{E} -Feld in Zylinderkoordinaten mit dem Satz von Gauss.
- (b) Berechnen Sie das Potenzial $\Phi_b(r)$, so dass für den Radius R_0 gilt $\Phi_b(R_0) = 0$.

Lösung

(a) Die Ladungsverteilung ist rotationssymmetrisch um die z-Achse. Deshalb eignen sich Zylinderkoordinaten. Wegen der unendlichen Ausdehnung besteht ebenfalls eine Translationsinvarianz in z-Richtung. Daher kann das \vec{E} -Feld weder von z noch von ϕ abhängen. Außerdem folgt aus der Rotationssymmetrie, dass nur eine Komponente in \vec{e}_r

$$\vec{E}(r,\phi,z) = E_r(r)\vec{e}_r$$

Der Satz von Gauss

$$\oint \epsilon_0 \vec{E} \, \mathrm{d}\vec{f} = \int \varrho \, \mathrm{d}v$$

[1]

Als Integrationsfläche wird ein Zylinder der Länge L_0 und dem Radius r um die z-Achse gewählt. Die beiden Stirnflächen tragen nichts zum Oberflächenintegral bei, da das \vec{E} -Feld parallel zu ihnen verläuft.

$$2\pi\epsilon_0 L_0 r E_r(r) = \lambda L_0$$

Damit ergibt sich das \vec{E} -Feld zu

$$\vec{E} = E_r(r)\vec{e}_r = \frac{\lambda}{2\pi\epsilon_0 r}\vec{e}_r$$

[1]

(b) Durch Integration des \vec{E} -Feldes erhält man das Potenzial:

$$\Phi(r_2) - \Phi(r_1) = -\int_{r_1}^{r_2} \vec{E} \, d\vec{s}$$

$$\Phi(r) - \Phi(R_0) = \Phi(r) = -\int_{R_0}^{r} \frac{\lambda}{2\pi\epsilon_0 r'} \, dr'$$

$$\Phi(r) = -\frac{\lambda}{2\pi\epsilon_0} \left[\ln r'\right]_{R_0}^{r}$$

$$= -\frac{\lambda}{2\pi\epsilon_0} (\ln r - \ln R_0)$$

$$= -\frac{\lambda}{2\pi\epsilon_0} \ln \frac{r}{R_0}$$

Also

$$\Phi(r) = \frac{\lambda}{2\pi\epsilon_0} \ln \frac{R_0}{r}$$

Aufgabe 4 (5 Punkte)

Ein Massenspektrometer wird dazu benutzt, um das Uran-Isotop 235 U ($m=3,92\cdot 10^{-25}{\rm kg})$ won den angeren Isotopen zu trennen. Dazu werden in einer Ionenquelle Uran-Ionenen mit der Ladung 3, $204\cdot 10^{-19}{\rm C}$ erzeugt. Nach der Beschleunigung der Ionen durch eine Potenzialdifferenz $U=100{\rm kV}$ treten sie in ein homogenes Magnetfeld ein, in dem die auf eine Kreisbahn mit Radius 1m abgelenkt werden. Nach dem sie auf dieser Bahn einen Winkel von 180° durchlaufen haben, werden die Ionen in einem Kollektor gesammelt.

- (a) Wie groß ist das Magnetfeld \vec{B} und in welche Richtung zeigt es?
- (b) Die Maschine soll pro Stunde 100mg der gewünschten Ionen abtrennen. Wie groß muss dafür der elektrische Strom der gewünschten Ionen im Strahl sein?
- (c) Welche Energie wird dabei während einer Stunde im Kollektor deponiert?

Lösung

(a) Für die Energien muss gelten

$$0.5mv^2 = qU$$

also

$$v^2 = (2qU)/m$$

Für die Kräfte muss gelten

$$(mv^2)/r = qvB$$

also

$$B = (mv)/(qr)$$

damit also

$$B = \sqrt{\frac{2Um}{qr^2}} = 0,495T$$

Die Richtung von \vec{B} ist senkrecht aus der Papierebene hinaus.

[2]

(b) Sei N die Anzahl der Ionen pro Sekunde. Dann ist I=qN und die Masse der gesammelten Ionen ist

$$M = mN = 1 \cdot 10^{-4} \cdot 3600^{-1} \text{s}^{-1} = 2,78 \cdot 10^{-8} \text{kg/s}$$

folglich I = qN = qM/m = 0,0227A oder $7,09 \cdot 10^{16}$ Ionen/s.

[2]

(c) Jedes Ion deponiert die Energie qU im Kollektor, damit ist die gesamte Energie in der Δt

$$E = Nq\Delta t = IUt = 8,172 \cdot 10^6 \text{J} = 1951 \text{kcal} = 5,1 \cdot 10^{25} \text{eV}$$

[1]

Aufgabe 5 (7 Punkte)

- (a) Zwei Kondensatoren werden in Reihe geschaltet. Geben Sie deren Gesamtkapazität an.
- (b) Jetzt wird der zweite Kondensator durch einen Widerstand und eine Spule ersetzt (siehe Abbildung). Die angegebene Schaltung ist an eine sinusförmige Spannung U(t) mit der Amplitude U_0 und der Kreisfrequenz ω angeschlossen.

Wie groß sind Real- und Imaginärteil der gesamten Impedanz der Schaltung? Das Problem lässt sich in zwei Zwischenschritten lösen.

(c) Geben Sie für die Werte $U_0=1,2{\rm V},\omega=9,42\cdot 10^4{\rm s}^{-1},C=0,22{\rm nF},R=68{\rm k}\Omega$ und $L=0,47{\rm H}$ den durch C fließenden Strom I_C über seine Amplitude und Phase bezüglich der Spannung U(t) an.

Lösung

(a) Die Gesamtkapazität zweier serieller Kondensatoren ist:

$$\frac{1}{C_{Ges}} = \frac{1}{C_1} + \frac{1}{C_2}$$

[1]

(b) Es gilt

$$\begin{split} Z &= -i\frac{1}{\omega C} + \left(\frac{1}{R} + \frac{1}{i\omega L}\right)^{-1} = -i\frac{1}{\omega C} + \frac{i\omega LR}{i\omega L + R} \\ &= -i\frac{1}{\omega C} + \frac{i\omega LR}{i\omega L + R}\frac{R - i\omega L}{R - i\omega L} = -i\frac{1}{\omega C} + \frac{\omega^2 L^2 R + i\omega LR^2}{\omega^2 L^2 + R^2} \\ \operatorname{Re}(Z) &= \frac{\omega^2 L^2 R}{\underline{\omega^2 L^2 + R^2}} = \frac{R}{1 + (R/\omega L)^2} \\ \operatorname{Im}(Z) &= -\frac{1}{\omega C} + \frac{\omega LR^2}{\omega^2 L^2 + R^2} = -\frac{1}{\omega C} + \frac{\omega L}{(R/\omega L)^2 + 1} \end{split}$$

[3]

(c) Es gilt $\omega L = 9,42 \cdot 10^4 \text{s}^{-1} \cdot 0,47 \text{H} = 44274 \Omega$, also gilt

$$Re(Z) = \frac{68 \cdot 10^{3} \Omega}{1 + (68 \cdot 10^{3} \Omega/44274\Omega)^{2}} = 20, 24 \cdot 10^{3} \Omega$$

$$Im(Z) = -\frac{1}{9, 42 \cdot 10^{4} s^{-1} \cdot 0, 22 \cdot 10^{-9} F} + \frac{44274 \Omega}{(44274\Omega/68 \cdot 10^{3} \Omega)^{2} + 1}$$

$$= -17, 16 \cdot 10^{3} \Omega$$

[1]

Und es folgt

$$|I_C| = \frac{U_0}{|Z|} = \frac{U_0}{\sqrt{\text{Re}^2(Z) + \text{Im}^2(Z)}} = \frac{1,2\text{V}}{\sqrt{(20,24 \cdot 10^3 \Omega)^2 + (-17,16 \cdot 10^3 \Omega)^2}}$$
$$= 4,52 \cdot 10^{-5} \text{A} = 45,2\mu\text{A}$$

[1]

Es gilt des weiteren

$$\begin{split} Z &= |Z| \exp(i\varphi_Z) \\ \varphi_Z &= \arctan \frac{\operatorname{Im}(Z)}{\operatorname{Re}(Z)} = \arctan \frac{-17, 6 \cdot 10^3 \Omega}{20, 24 \cdot 10^3 \Omega} = -40, 3^\circ \\ I_C &= |I_C| \exp(i(\omega t + \varphi)) = \frac{U_0(t)}{Z} = \frac{U_0 \exp(i\omega t)}{|Z| \exp(i\varphi_Z)} = |I_C| \exp(i(\omega t - \varphi_Z)) \end{split}$$

Also $\varphi = -\varphi_Z = 40, 3^{\circ}$.

Aufgabe 6 (4 Punkte)

Es sei $r^2 = x^2 + y^2 + z^2$ und es soll das elektrische Feld $\vec{E} = \alpha(zx, zy, z^2 - 2r^2)$ erzeugt werden.

Bestimmen Sie durch Anwendung der Maxwell-Gleichungen die zur Erzeugung notwenigen Felder durch ϱ (Ladungsdichte), \vec{B} und \vec{j} (Stromdichte).

Hinweis: Die Rotation ist gegeben durch

$$\operatorname{rot} \vec{E} = \begin{pmatrix} \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \\ \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \\ \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \end{pmatrix}$$

Lösung

Es gilt

$$\vec{\nabla} \cdot \vec{E} = \frac{\varrho}{\varepsilon_0}$$

$$\vec{\nabla} \cdot \vec{E} = \alpha(z + z + 2z - 4z) = 0$$
[1]

also $\varrho = 0$. Des weiteren gilt

$$\operatorname{rot} \vec{E} = -\frac{\mathrm{d}\vec{B}}{\mathrm{d}t}$$
$$\operatorname{rot} \vec{E} = \alpha(-4y - y, x + 4x, 0) = 5\alpha(-y, x, 0)$$

also $\vec{B} = 5\alpha(y, -x, 0) \cdot t + c, c \in \mathbb{R}.$ Als letz
tes gilt

[1,5]

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j}$$
$$\operatorname{rot} \vec{B} = 5\alpha t (0, 0, -1 - 1)$$

also $\vec{j} = -10\alpha t \mu_0^{-1}(0, 0, 1)$.

[1,5]

Aufgabe 7 (4 Punkte)

Eine ebene elektromagnetische Welle mit der Frequenz ω bewege sich im Vakuum in positiver z-Richtung. Sie sei linear in y-Richtung polarisiert. Bei z=0 habe die Welle zum Zeitpunkt t=0 die maximale Amplitude E_0 .

- (a) Geben Sie eine Gleichung für $\vec{E}(x,y,z,t)$ der Welle an.
- (b) Wie lautet das \vec{B} -Feld $\vec{B}(x, y, z, t)$ der Welle?
- (c) Berechnen Sie den Poynting-Vektor $\vec{S}(x, y, z, t)$ der Welle.
- (d) Berechnen Sie die Intensität der Welle.

Lösung

(a) $E_x = 0, E_y = E_0 \cos(\omega t - (\omega/c)z), E_z = 0.$

[1]

(b) Es ist

$$\vec{B} = \frac{1}{c} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}$$

also $B_x = -(E_0/c)\cos(\omega t - (\omega/c)z), B_y = 0, B_z = 0.$

[1]

(c) Es gilt

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

also $S_x = 0, S_y = 0, S_z = \mu_0^{-1}(E_x B_y - E_y B_x) = \mu_0^{-1} c^{-1} E_0^2 \cos^2(\omega t - (\omega/c)z).$

[1]

(d) Die zeitliche Mitteilung über \cos^2 liefert ½. Daher gilt

$$I = \langle S \rangle = \frac{1}{2\mu_0 c} E_0^2 = \frac{1}{2} \epsilon_0 c E_0^2$$

[1]

Aufgabe 8 (4 Punkte)

- (a) Nennen Sie 2 Sachen die sich nicht ändern, wenn ich von einem Inertialsystem in ein anderes relativ dazu konstant und geradlinig bewegtes Inertialsystem übergehe.
- (b) Was bedeutet es, zu sagen (in Formeln), dass zwei Raumzeit-Ereignisse A und B seien zeitlich separiert, örtlich separiert oder lichtmäßig separiert?
- (c) Sei Σ das Referenz-Inertialsystem und in dem man Ereignis A vor dem Ereignis B beobachtet. Seien die beiden Ereignisse durch ein Zeitintervall Δt_{AB} und einen Abstand Δx_{AB} getrennt. Was sind die Bedingungen an Δt_{AB} und Δx_{AB} , so dass das Ereignis A vor dem Ereignis B beobachtet wird, ganz unabhängig von der Wahl des Inertialsystems?

Lösung

- (a) Die Gesetze der Physik
 - Ausdehnungen senkrecht zur Bewegungsrichtung
 - Der verallgemeinerte Abstand zweier Ereignisse
 - Die Lichtgeschwindigkeit

(b) Zwei Ereignisse werden örtlich separiert genannt, wenn $|\Delta x_{AB}| > c|\Delta t_{AB}|$. Zwei Ereignisse heißen zeitlich getrennt, wenn $|\Delta x_{AB}| < c|\Delta t_{AB}|$. Zwei Ereignisse heißen lichtmäßig separiert, wenn $|x_{AB}| = c|\Delta t_{AB}|$.

[2]

(c) Die beiden Ereignisse müssen zeitlich separiert sein, also $c^2 \Delta t_{AB}^2 - \Delta x_{AB}^2 > 0$