

Introduction to Computer Operating System

Objectives

- What an operating system is.
- A brief history of operating systems.
- Goals of operating systems.
- Operating system functions.
- Type of operating systems

What is Hardware?

 Hardware refers to the physical components of a computer system that can be touched and seen.

Examples:

- CPU (Central Processing Unit) The brain of the computer.
- RAM (Random Access Memory) Stores data temporarily for quick access.
- Storage Devices Hard drives, SSDs.
- Input/Output Devices Keyboards, monitors, printers.

What is Software?

Software consists of the **programs and applications** that run on a computer and tell the hardware what to do.

Types of Software:

- System Software Manages hardware and provides basic functions (e.g., OS).
- 2. Application Software Helps users perform tasks (e.g., MS Office, games).
- Programming Software Tools to create other software (e.g., compilers, IDEs).

Example:

An antivirus program, a word processor, or a mobile app.

Relationship Between Software and Hardware

- Software relies on hardware to perform tasks;
 without hardware, software cannot operate.
- Hardware requires software to be useful; without software, hardware is just an inert collection of parts.

What is an Operating System (OS)?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- A set of programs that coordinates all activities among computer hardware resources.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
 - Use the computer hardware in an efficient manner.

Operating System history

- Early History: The 1940s and 1950s
- Operating systems evolved through several phases
 - 1940s
 - Early computers did not include operating systems
 - 1950s
 - Executed one job at a time
 - Included technologies to smooth job-to-job transitions
 - Single-stream batch-processing systems
 - Programs and data submitted consecutively on tape

■ 1960s

- Still batch-processing systems
- Process multiple jobs at once
 - Multiprogramming
- One job could use processor while other jobs used peripheral devices
- Advanced operating systems developed to service multiple interactive users

1964

IBM announced System/360 family of computers

- The 1970s
- Primarily multimode timesharing systems
 - Supported batch processing, timesharing and real-time applications
- US Department of Defense develops TCP/IP
 - Standard communications protocol
 - Widely used in military and university settings
 - Security problems
 - Growing volumes of information passed over vulnerable communications lines.

■ 1980s

- Decade of personal computers and workstations
- Computing distributed to sites at which it was needed
- Personal computers proved relatively easy to learn and use
 - Graphical user interfaces (GUI)
- Transferring information between computers via networks became more economical and practical

- The 1980s (con't)
- Client/server computing model became widespread
 - Clients request various services
 - Servers perform requested services

- The 1990s
- Operating systems became increasingly user friendly
 - GUI features pioneered by Apple widely used and improved
 - "Plug-and-play" capabilities built into operating systems
 - Enable users to add and remove hardware components dynamically
 - No need to manually reconfigure operating system

- 2000 and Beyond
- Middleware
 - Links two separate applications
 - Often over a network and between incompatible machines
 - Particularly important for Web services
 - Simplifies communication across multiple architectures
- Web services
 - Encompass set of related standards
 - Ready-to-use pieces of software on the Internet
- Cloud Computing

What are the main functions of an operating system?

- Start up the computer
- Administrator security
- Control network
- Access the web
- Monitor performance and provide housekeeping services
- Schedule jobs and configure devices
- Manage memory
- manage programs
- Provide user interface

Where is the operating system located?

- Operating System resides on ROM chip in handhelds devices like PDA, Mobile Phone.
- Operating System resides on hard disk in most computer cases.

- What is booting?
 - a process of starting or restarting a computer.

Cold Boot

Process of turning on a computer after it has been powered off completely.

Warm boot

Process of restarting a computer that is already powered on.

Booting

Aspect	Cold Boot	Warm Boot
Power State	Fully powers off, then back on	Remains powered on
System Reset	Complete hardware reset	Partial reset (software level)
Speed	Slower (full initialization)	Faster (partial initialization)
Common Usage	First start of the day, hardware issues	Software updates, minor resets
Example	Turning on a powered- off computer	Clicking "Restart" in the OS

- How does a personal computer booting up?
- Step 1
 - 1. Power supply sends signal to components in system unit
 - 2. The processor accessed BIOS to start computer

- Step 3
 - BIOS checks components such as mouse, keyboard connectors and expansion cards

- Step 4
 - Results of Power-On Self-Test (POST) are compared to data in the CMOS chip

- Step 5
 - BIOS looks for system files in different drives (A, C, D,...) and then...
 - Drive that contains operating system is called boot drive.

- Step 6
 - Boot program loads kernel of operating system into RAM from boot drive
 - Operating system in memory takes control of computer

- Step 7
- operating system loads
 configuration information and displays desktop on screen
 - operating system executesprograms in startup folder

- What is a user interface?
- controls how you enter data and instructions and how information displays on screen.

- What is Multitasking?
 - allows a single user to work on two or more applications that reside in memory at same time.

What are other program management features of OS?

Multiuser

Operating System enables two or more users to run a program simultaneously

Multiprocessing

Operating System can support two or more processors running programs at same time

Fault-Tolerant

Continues to operate even if one of its components fails

- What is Memory management?
 - Optimizes the use of random access memory (RAM)
 - allocates or resigns, data and instructions to area of memory while they are being processed
 - monitors contents of memory
 - clears items from memory when processor no longer requires them

- What is virtual memory (VM) management?
 - Operating system allocates portion of hard disk to function like RAM

How does an operating system schedule jobs?

- What is spooling?
- Print jobs sent to buffer instead of directly to printer, where print jobs wait their turn

- How does an operating system monitor performance?
 - Provides a program called performance monitor, that assesses and reports information about various system resources and devices.

- How does an operating system manage files?
 - Includes a program called file manager, such as Windows Explorer.
 - Commands Copy, Rename, Delete, move ...

File System

 A file system is a method and data structure that the operating system uses to organize, store, retrieve, and manage files on storage devices.

Purpose:

- To provide a structured way to store data.
- To enable easy access and retrieval of files.
- To manage the storage efficiently and securely.
- Examples: NTFS, FAT32, ext4, APFS.

Basic Components of a File System

- 1. **Files:** Units of data storage with a name and extension, containing text, programs, media, etc.
- Directories (Folders): Containers for organizing files, can contain subdirectories.
- **Partitions:** Segments of a storage device that a file system can use.
- Metadata: Information about files (size, type, permissions, timestamps)

File System Structure

Directory Structure:

- Organizes files and folders in a hierarchical structure (tree-like).
- Each folder can contain files and subfolders, starting from a root directory.

File Allocation Table (FAT):

 A table that maps out which parts of the disk hold data for each file.

Inodes (Index Nodes):

 Used in UNIX/Linux file systems, inodes store metadata and point to data blocks.

Types of File Systems

Disk-Based File Systems:

- Examples: NTFS, FAT32, ext4, APFS.
- Used in traditional hard drives and SSDs.

Network File Systems:

- Examples: NFS, SMB/CIFS.
- Allows files to be accessed over a network.

Flash-Based File Systems:

- Examples: exFAT (for flash drives), F2FS.
- Optimized for flash storage (USB drives, SD cards).

Key File System Operation

- Creating and Deleting Files: Allocating and freeing up space on storage.
- Reading and Writing: Accessing file contents, modifying, and saving changes.
- File Organization: Moving, renaming, copying files.
- Permissions Management: Defining who can read, write, or execute files.
- Metadata Handling: Keeping track of file information, such as timestamps and access history.

- What are functions of operating system on network?
 - Establish network connection
 - Controlling network traffic
 - Closing network connection

Type of Operating System

- Desktop Operating System

 a program control activities in standalone computer.
- Network Operating System

 a program control activities both on local computer and other computer on network.

Operating System Goals

Users expect certain properties of operating systems

- Efficiency
- Robustness
- Scalability
- Extensibility
- Portability
- Security
- Protection
- Interactivity
- Usability

- Today's operating systems tend to be complex
 - Provide many services
 - Support variety of hardware and software
 - Operating system architectures help manage this complexity