UTN – Final	SISTEMAS OPERATIVOS	14/07/2014
CIII IIII	SISTEM SOLEMINIC	1 1/0//=01

Nombre y Apellido: Profesor:

TEORÍA			PRÁCTICA			NOTA		
1	2	3	4	5	1	2	3	

TEORÍA: Indique la veracidad de las siguientes preguntas. Justifique

- Una función recursiva podría arrojar un error de "memoria insuficiente" aún sin realizar solicitudes de memoria dinámica.
- 2. La técnica de memoria de Buffering de E/S facilita el trabajo de los algoritmos de reemplazo de páginas.
- 3. Una incorrecta configuración del planificador de largo plazo podría generar thrashing (sobrepaginación)
- 4. Si wait (s) está implementada como una syscall para operar sobre un semáforo, entonces al ser ejecutada por un ULT con un valor de S menor a 1, todo el proceso se bloqueará.
- 5. La estrategia de Detección y Recupero de deadlocks implica menor overhead que la estrategia de Denegación de recurso mediante el algoritmo del banquero

<u>PRÁCTICA:</u> Resuelva los siguientes ejercicios *justificando* las conclusiones obtenidas.

Ejercicio 1

Peter tiene dos volúmenes en su disco rígido; el primero se encuentra formateado con FAT16, con clusters de 8 KiB, y el segundo con UFS, con inodos que poseen: 10 ptrs directos, 2 ptrs indirectos simples, 1 ptr indirecto doble y 1 ptr indirecto triple (el tamaño puntero es de 8 bytes) y bloques de 2 KiB. Luego de tener problemas de espacio en su primera partición comenzó a pasar sus archivos a la partición con UFS. El primer archivo a "mover", se encuentra comprimido y su tamaño es de 1 MiB. Al moverlo se va descomprimiendo, alcanzando en la segunda partición el doble del tamaño inicial.

Considerando que la tabla FAT y la tabla de inodos se encuentran en memoria:

- a) Calcule la cantidad de accesos a clusters, a bloques de datos y bloques de punteros (según corresponda) necesarios para realizar las operación de mover el archivo
- b) Indique, en cada uno de los filesystems, qué modificaciones sufrieron las estructuras administrativas al realizar dicha operación

Ejercicio 2

Sea un sistema con paginación por demanda, memoria virtual y algoritmos de reemplazo LRU (asignación variable y alcance global), suponga que se encuentran ejecutando tres procesos, cuyas tablas de páginas son las siguientes:

Proceso 1						
Pag	Frame	P	M	T		
0	0	1	1	9		
1	2	1	0	3		
2	-	0	-	-		
3	-	0	-	-		

Proceso 2						
Pag	Frame	P	M	T		
0	4	1	0	1		
1	8	1	0	5		
2	-	0	-	-		
3	5	1	1	7		

Proceso 3						
Pag	Frame	P	M	Т		
0	3	1	0	8		
1	7	1	1	2		
2	-	0	-	-		
3	6	1	0	9		

Dadas las siguientes referencias a memoria: P1 - Escritura Pág 2, P2 Lectura Página 0, P1 - Lectura Página 3, P3 - Lectura Página 2, P1 - Escritura Pág 1

Indique por cada referencia:

- Si pudo ser atendida
- Los posibles accesos a disco implicados en la operación y su detalle
- En caso de page fault, indicar el frame elegido para cargar dicha página
- El nuevo estado de la tabla de páginas que haya estado involucrada en esa referencia

Nota: En el sistema los frames del 0 al 8 están dedicados a páginas de procesos (el resto pertenecen al SO). La letra 'T' en la tabla corresponde al último instante de tiempo de referencia.

Ejercicio 3

A continuación se muestra la ejecución de 4 procesos utilizando el algoritmo VRR(Virtual Round Robin) con Q = 3. Teniendo en cuenta que inicialmente la cola de listos se encuentra: A-B-C y que en el instante 7 llega el proceso D, halle los errores de planificación cometidos justificando adecuadamente en cada caso.

Condiciones de aprobación: 3 preguntas correctamente respondidas y 1,5 ejercicios correctamente resueltos.