Nome____

Informatica teledidattica 2019/2020 Scritto di ALGEBRA del 07/05/2020

L'esame ha la durata di due ore. Rispondere negli spazi predisposti e giustificare le risposte in modo chiaro ed esauriente. Risposte non giustificate non saranno accreditate.

Esercizio 1.

(a) Si calcoli il massimo comune divisore dei numeri 3522 e 321 e per esso si scriva un'identità di Bézout.

(b) Risolvere il seguente sistema di congruenze:

$$\begin{cases} X^{43} \equiv 43Y \pmod{7} \\ (XY)^{43} \equiv 4 \pmod{7} \end{cases}.$$

(c) Dimostrare che per ogni intero n il numero $n^{49}+3n^{38}+4n^{15}+3n^3+4n^2+6n$ è multiplo di 7.

Esercizio 2.

(a) Discutere la compatibilità e il tipo di infinità delle eventuali soluzioni del seguente sistema lineare reale, k essendo un parametro reale.

$$\begin{cases} 2x + y + kz = 3\\ kx + 4y = 4\\ 4x + 8y = 12 \end{cases}.$$

(b) Siano U e V spazi vettoriali con basi (u_1,u_2) e (v_1,v_2,v_3) , rispettivamente. Sia $f:U\to V$ l'aplicazione lineare tale che $f(u_1)=v_1-v_2$ e $f(u_2)=2v_1+3v_3$. Esibire un vettore v di V che non è immagine di alcun vettore di U (detto altrimenti: un vettore v la cui controimmagine sia vuota).

 $(\mathbf{c})~$ Calcolare una base di autovettori per l'endomorfismo di \mathbb{R}^3 definito da

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x + y + z \\ 0 \\ x + y + z \end{pmatrix}.$$

Esercizio 3.

(a) Siano $\sigma, \tau \in S_9$ le permutazioni

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 9 & 8 & 6 & 5 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 1 & 9 & 2 & 4 & 7 & 8 & 6 \end{pmatrix}.$$

Si calcoli l'ordine di $\sigma^{-1}\tau\sigma$.

(b) Determinare il minimo intero $n \geq 2$ tale che il gruppo simmetrico S_n contenga un elemento di ordine 77.

(c) Sia $G = GL_2(\mathbb{Z}_3)$ il gruppo delle matrici invertibili di ordine 2 sul campo \mathbb{Z}_3 dove l'operazione di gruppo è l'usuale moltiplicazione righe per colonne. Dopo aver verificato che le seguenti matrici sono in G se ne calcoli l'ordine.

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$