1. Seien $\mathbb K$ ein Körper, V ein $\mathbb K$ -Vektorraum, und $T:A\to A$ eine lineare Abbildung. Zeige, dass das characteristische Polynom von T wohl-definiert ist, das heißt, dass es unabhängig von der Wahl der Basis ist.

$$T_{B'}^{B'} = id_{B'}^{B} T_{B}^{B} id_{B'}^{B'}$$

Need to show:

$$\det (\chi I - T_{B'}) = \det (\chi I - T_{B})$$

Use
$$id_{\mathcal{B}}$$
, $id_{\mathcal{B}}' = I$ and try to factor.

3.	Für eine beliebige invertierbare $n \times n$ -Matrix A , drücke das charakteristische Po
	lynom von A^{-1} mit Hilfe des charakteristischen Polynoms von A aus.

start from
$$\det (zI - A^{-1})$$

Try factoring z and A^{-1} out from above (uhy can you do this?)

so that you get to an expression which antains

4. Sei $\mathbb K$ ein Körper. Zeige, dass für beliebigen Martrizen $A,B\in M_{n\times n}(\mathbb K)$

$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$
 gilt.

$$det M = AB$$
 and $N = BA$

that

$$\sum_{i} m_{i} = \sum_{i} m_{i}$$

5. Sei A eine nilpotente $n \times n$ -Matrix, das heisst eine, für die ein $m \ge 1$ existiert mit $A^m = O_{n \times n}$. Zeige, dass der einzige mögliche Eigenwert von A gleich 0 ist. Wann genau ist 0 ein Eigenwert von A?

$$A^{m} = 0 \qquad A^{m} = 0$$

$$A^{m} = 0 \qquad A^{m-1} (A, \lambda) = 0$$

$$A^{m} \vee = A^{m-1} (A \vee) =$$

 $A^{m} = 0 \Rightarrow A^{m}_{V} = 0$ $A^{m}_{V} = A^{m-1}(AV) = A^{m-1}\lambda_{V} = \lambda^{m}_{V}$ $\lambda^{m}_{V} = \lambda^{m}_{V} = \lambda^{m}_{V}$ make inductive argument

6. Eine komplexe Zahl z wird als n-ten Wurzel der Einheit bezeichnet, wenn $z^n-1=0$ ist, und ist eine primitive n-ten Wurzel der Einheit, wenn zusätzlich

$$z^m - 1 \neq 0$$
, für alle $1 \leq m < n$

gilt. Das *n*-te *Kreisteilungspolynom*, $\Phi_n(z)$, ist das jenige ganzzahlige Polynom größten Grades mit Leitkoeffizient 1, das $z^n - 1$ teilt, jedoch zu allen $z^d - 1$ mit $1 \le d < n$ teilerfremd ist.

- (a) Gib die Zerlegung von z^n-1 in Kreisteilungspolynome.
- (b) Zeige, dass die Wurzeln von $\Phi_n(z)$ genau die primitive n-ten Wurzeln der Einheit sind.
- (c) Zeige, dass, wenn n>1 ist, die Zahl $\zeta_n=e^{2\pi i/n}$ eine primitive Wurzel der Einheit ist.
- (d) Gib die Zerlegung in Linearfaktoren von $\Phi_n(z)$ in $\mathbb{C}[z]$.

We know that the
$$n^{th}$$
 mosts of unity are those of the form $e^{2\pi i \frac{k}{n}}$.

The pramitive roots of unity one then there e 2 which satisfy a cortain andition.

Hint:
$$e^{2\pi i \frac{2}{5}}$$
 is a primitive 5th root of unity but $e^{2\pi i \frac{6}{15}} = e^{2\pi i \frac{2}{5}}$ is not a primitive 15th root of unity.

at this point, try to see how
the cyclotomic polynomial is a product
of the primitive moots of
unity. Convince yourself that is
indeed true.

nn-1 can be written as the product of cortain cyclotomic polynomials.
Which ones?

Hint: think about the divisors of m. Try to group the mosts together in some way.

(a) Falls
$$v \in V$$
 ein Eigenvektor von $F \circ G$ zum Eigenwert λ ist und $G(v) \neq 0$, dann ist $G(v)$ ein Eigenvektor von $G \circ F$ zum Eigenwert λ .

7. Seien V ein K-Vektorraum und $F, G \in \text{End}(V)$. Zeige:

- dann ist G(v) ein Eigenvektor von $G \circ F$ zum Eigenwert λ . (b) Ist V endlichdimensional, so haben $F \circ G$ und $G \circ F$ die gleichen Eigenwerte.
- (c) Gib ein Gegenbeispiel zu (b) an, falls V nicht endlichdimensional ist.

We know
$$F \circ G(Y) = A Y$$

$$G_{\circ}(F_{\circ}G_{(\gamma)}) = G_{\circ}(A_{\gamma})$$

$$G_{\sigma} \circ (F \circ G_{\sigma}(\gamma)) = G_{\sigma} \circ (A_{\sigma} \gamma)$$

b use (a)

check corefully for
$$Gr(v) = 0$$
:)

$$C \quad \text{Hint:} \quad (\alpha_1, \alpha_2, \ldots) \rightarrow (0, \alpha_1, \alpha_2, \ldots)$$

$$Hint: (\alpha_1, \alpha_2, \dots) \rightarrow (0, \alpha_1, \alpha_2, \dots)$$

$$(\gamma_1, \gamma_2, \dots) \rightarrow (\gamma_2, \gamma_3, \gamma_4, \dots)$$