САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ГЕНЕТИКИ И БИОТЕХНОЛОГИИ

Васильев Артем Викторович Выпускная квалификационная работа

"Эволюционные особенности структуры гена Nxf1 (nuclear export factor) у животных"

Научный руководитель: к.б.н., доцент, кафедра генетики и биотехнологии, Голубкова Елена Валерьевна

Рецензент:

заведующая лабораторией, ведущий научный сотрудник, лаборатория эволюционной геномики и палеогеномики, ЗИН, к.б.н., с.н.с., Абрамсон Наталья Иосифовна

Оглавление

Введение

Для большинства генов высших эукариот характерна мозаичная структура, в составе которой выделяют кодирующие участки экзоны и некодирующие - интроны. В процессе созревания транскрипта интроны, как правило, вырезаются сплайсингом, и из ядра выходят мРНК, лишенные интронных последовательностей. Однако альтернативный сплайсинг позволяет получать несколько различных зрелых мРНК из одной пре-мРНК, что значительно расширяет протеом без увеличения числа генов.

Особый интерес представляют транскрипты, сохраняющие интрон (intron retention (IR)): в таких первичных транскриптах интрон, обычно несущий преждевременный стоп-кодон, остается невырезанным, образуя устойчивую вторичную структуру, которая препятствует распознаванию факторами нонсенс-опосредованного распада (NMD) и впоследствии обеспечивает синтез укороченного, но функционально значимого белка [1].

Однако, несмотря на наличие специфического механизма, среди различных групп, эволюционно далеких друг от друга, описаны случаи существования транскриптов с сохраненным интроном. Отдельно можно выделить модельный объект Drosophila melanogaster и человека, для которых известно семейство генов Nxf (nuclear export factor), в котором нас заинтересовал ген Nxf1. Данный ген кодирует белок, являющийся основным транспортером мРНК из ядра в цитоплазму.

У гена *Nxf1* (nuclear export factor 1), кодирующего основной транспортер мРНК из ядра в цитоплазму, существует так называемая "консервативная кассета", которая включает два коротких экзона (110 и 37 нуклеотидов в каноническом варианте) и "кассетный" интрон между ними. Названия сформулированы нашей научной группой. Эта структура сохраняется также и у представителей других филогенетических групп: благодаря образованию специфической вторичной структуры или наличию в последовательности интрона специфических последовательностей, например конститутивного транспортного элемента (СТЕ), транскрипт, содержащий преждевременный стоп-кодон, избегает NMD и кодирует укороченную форму белка.

Анализ подобных транскриптов показал, что консервативные элементы "кассеты" Nxf1 специфичны для разных клад организмов, а интрон-содержащие транскрипты формируют уникальные вторичные структуры, что подчеркивает эволюционную и функциональную значимость интронов.

Научная новизна работы заключается в сравнительном анализе структуры гена Nxf1 у представителей различных филогенетических групп, данных по которым ранее не было, с целью выявления закономерностей эволюции нуклеотидной и белковой последовательности гена Nxf1. В бакалаврской работе было показано, что "консервативная кассета" сохраняет свойства внутри артропод, особенно внутри семейства Drosophilidae, однако вопрос о степени консервативности и специфике структурных элементов у более широкого круга организмов остается открытым. Помимо сравнительного анализа последовательностей, важной частью исследования является по-

строение вторичных структур интрон-содержащих транскриптов и выявление консервативных мотивов внутри интрона, способствующих его сохранению и избеганию нонсенс-опосредованного распада.

Цель работы

Изучить структуру гена *Nxf1* у представителей разных филогенетических групп животных для выявления эволюционных закономерностей и особенностей "кассетной" структуры, а также проанализировать вторичные структуры интрон-содержащих транскриптов.

Задачи

- 1. Найти нуклеотидные и аминокислотные последовательности гена Nxf1 у различных групп животных.
- 2. Произвести поиск "консервативной каасеты" в нуклеотидной последовательности гена у найденных организмов.
- 3. Выполнить анализ структуры, сравнить полученные последовательности между собой.
- 4. Выявить и охарактеризовать консервативные участки "кассетного" интрона и прилегающих экзонов у видов из исследуемых таксонов.
- Провести анализ вторичной структуры интрон-содержащих транскриптов и оценить консервативные мотивы внутри интрона, потенциально способствующие его сохранению.

Обзор литературы

Механизмы усложнения организации генома

Увеличение разнообразия транскриптома и протеома у эукариот во многом достигается не только за счет классического эксцизионного сплайсинга, но и за счет ряда альтернативных механизмов обработки пре-мРНК. В частности, альтернативный сплайсинг позволяет из одного транскрипта формировать несколько зрелых мРНК, отличающихся включением или исключением отдельных экзонов и участков [1, 2].

Одним из ключевых вариантов такого процесса является удержание интронов (intron retention, IR), когда интрон не удаляется и остается в составе зрелой мРНК. Часто подобное сохранение интрона приводит к появлению в получившемся транскрипте преждевременных стоп-кодонов (РТС), что запускает нонсенс-опосредованный распад (NMD). Тем не менее в ряде случаев внутри интрона могут находиться определенные последовательности (например, СТЕ) или может формироваться устойчивая вторичная структура, препятствующая связыванию факторов NMD и позволяющая таким транскриптам не подвергаться деградации, а кодировать укороченные, но функционально активные белки [3—5].

Кроме IR, альтернативный сплайсинг включает пропуск экзонов, использование альтернативных сайтов на 5'- и 3'-концах и кассетное включение/исключение блоков экзонов. В совокупности эти механизмы значительно расширяют репертуар возможных транскриптов без необходимости увеличения числа генов. Например, у многих многоклеточных организмов до 95% генов подвергаются хотя бы одному типу альтернативного сплайсинга [1]. Для разных организмов продемонстрирована консервативность наличия транскрипта с сохраненным интроном, что подчеркивает эволюционную значимость интронов [3].

Таким образом, именно через комбинирование альтернативных способов сплайсинга, особенно удержания интронов, эукариоты получают мощный инструмент транскрипционной и белковой вариативности, что способствует адаптации и усложнению биологических процессов.

Значимость интронов

Традиционно интроны воспринимались лишь как "ненужные" вставки, но современные исследования убедительно показывают, что их функции выходят далеко за рамки простой "пустоты". Во-первых, наличие интронных последовательностей может значительно усиливать уровень экспрессии генов. Эксперименты на клеточных системах SV40, дрожжах Saccharomyces cerevisiae и млекопитающих демонстрируют, что удаление ключевых интронов приводит к резкому снижению эффективности транскрипции и трансляции [2, 6].

Во-вторых, интроны влияют на чувствительность мРНК к нонсенс-опосредованному распаду. Если интрон попадает в 5'- или 3'-UTR, его присутствие может менять архитектуру сплайсосомного комплекса, корректируя доступность РТС и, соответ-

ственно, баланс между сохранением транскрипта и его деградацией через NMD [4, 5].

Третья важная роль интронов заключается в транспорте мРНК из ядра в цитоплазму. Долгое время считалось, что только полностью сплайсированные транскрипты эффективно экспортируются, однако при помощи FISH было показано, что РНК с сохраненными интронами также могут накапливаться в цитоплазме и функционировать там [4, 7]. Это потребовало пересмотра классических представлений об экспорте мРНК.

Кроме регуляции экспрессии и транспорта, интроны участвуют в организации хроматиновой структуры. Концевые последовательности интронов образуют участки с пониженной плотностью нуклеосом, что способствует более четкому разделению экзонов и облегчает процесс транскрипции [8].

Наконец, интроны могут выполнять таксон- и тканеспецифические функции. Так, первый интрон гена *oskar* у Drosophila участвует в локализации мРНК в ооците, а длинные интронные вставки могут снижать "интерференцию Хилла–Робертсона", улучшая кроссинговер в определенных регионах генома [9]. Результаты GWAS показывают, что однонуклеотидные варианты (SNV) в интронных областях часто связаны с предрасположенностью к различным заболеваниям человека [10].

Таким образом, интроны выполняют сложные регуляторные функции — от контроля уровня экспрессии до обеспечения оптимальной архитектуры хроматина и тканеспецифической регуляции транскриптов.

Семейство генов Nxf

Гены Nxf (nuclear export factor) названы по функции их наиболее известного представителя — Nxf1, который обеспечивает экспорт большинства мРНК из ядра в цитоплазму. Распространение этих генов наблюдается у всех эукариот группы Opisthokonta, однако их число и структурные особенности заметно различаются между таксонами. У грибов обычно присутствует единственная копия Nxf, тогда как в геномах растений и некоторых протистов такие гены могут отсутствовать полностью. У животных же часто встречается от двух до пяти паралогов, что свидетельствует об активных дупликационных процессах в эволюции этого семейства [3].

Важнейшим элементом всех генов Nxf является "кассетный" интрон, расположенный между двумя небольшими экзонами (110 и 37 нуклеотидов в каноническом варианте). При альтернативном сплайсинге этот интрон может сохраняться в зрелой мРНК, неся внутри себя преждевременный стоп-кодон, возникающий за счет особенностей размеров упомянутых ранее экзонов. Однако за счет формирования в интроне устойчивой вторичной структуры или наличия определенных транспортных последовательностей, как у млекопитающих, транскрипты избегают NMD и кодируют укороченные, но функционально активные белки [3, 11].

Эволюционные вариации семейства Nxf можно разделить на 3 основные группы:

- Позвоночные. У генов *Nxf1* интрон располагается между 10-м и 11-м экзонами. Вставка содержит несколько консервативных мотивов, включая фрагмент, похожий на СТЕ (constitutive transport element), необходимый для экспорта частично сплайсированных РНК.
- Дрозофилиды. У представителей данного семейства кассетный интрон локализуется между 5-м и 6-м экзонами. В нем отсутствуют длинные гомологичные вставки, но присутствуют два тракта, обогащенные аденином (А) и формирующие прочную вторичную структуру, которая защищает транскрипт от деградации в ядре [3, 12].
- **Нематоды.** У нематод интрон тоже располагается между 5-м и 6-м экзонами, но он гораздо короче и богат тимином (Т). Консервативные гомологи в таком интроне практически отсутствуют.

Эти различия отражают долгую эволюцию семейства Nxf: от сравнительно простой короткой вставки у нематод до сложных СТЕ-подобных мотивов у позвоночных, подчеркивая ключевую роль кассетного интрона в посттранскрипционной регуляции [3, 11].

Структура и функции Nxf1 (гена и белка)

Первоначально ген *Nxf1* (известный как TAP у человека) был охарактеризован как ко-фактор белка Тір герпеса saimiri, отвечающий за экспорт несплайсированных и частично сплайсированных ретровирусных мРНК путем распознавания СТЕструктуры в их последовательностях [13]. У дрозофил этот ген также называют *sbr*. Белок Nxf1 включает несколько функциональных доменов: RBD (домен связывания РНК), четыре лейцин-обогащенных повтора (LRR), NTF2-подобный домен, UBA-подобный домен и сигналы ядерной локализации (NLS) в нетранслируемой области до экзонов. В совокупности эти домены обеспечивают узнавание мРНК и взаимодействие с компонентами ядерного порового комплекса, делая *Nxf1* основным экспортером мРНК [3, 14].

Кассетный интрон, встроенный между сегментами RBD+LRR и NTF2L+UBA, выступает в роли "переключателя". При его сохранении происходит синтез укороченных вариаций белка, обладающих специфической активностью [3, 14].

Кроме классического транспорта мРНК, у Drosophila melanogaster sbr выполняет органо- и тканеспецифические функции. В сперматогенных клетках ген продуцирует укороченную форму sbr, необходимую для нормального сперматогенеза: без нее наблюдается резкое снижение фертильности [15]. В центральной нервной системе sbr участвует в формировании границ между областями мозгового вещества зрительной системы, локализуясь в специфических нейронах и глиальных клетках и регулируя их ядерно-цитоплазматические комплексы [16].

Аналогичные эволюционно значимые особенности кассетного интрона отмечены у Chiroptera (Летучие мыши). Сравнительный анализ показал, что во многих видах этих млекопитающих в интроне Nxf1 появлялись новые вторичные структуры, связанные с тканеспецифической регуляцией экспрессии, что свидетельствует об адаптивной роли этой вставки [17].

Также в моей бакалаврской работе было показано, что структура "консервативной кассеты" является специфической для таксонов более низкого ранга у всех взятых в анализ артропод (89 видов), а интрон-содержащие транскрипты проанализированных дрозофилид (37 видов) формируют специфические вторичные структуры, имеющие А-обогащенные участки.

Таким образом, Nxf1 представляет собой пример многофункционального белка, чья доменная организация и альтернативные формы позволяют выполнять как основную задачу — экспорт мРНК, так и специализированные функции в разных тканях у разных таксонов.

Материалы и методы

В качестве отправной точки был произведен поиск гена Nxf1 внутри веб-сервиса NCBI [18]. Полученные данные были сохранены в текстовом формате и загружены в виде tsv-таблицы с помощью пакета pandas v2.2.3 [19] для языка программирования Python v3.12.6 [20]. Всего был найден 651 организм, содержащий анализируемый ген, большинство из которых относятся к Deuterostomia (Вторичноротые) - 436 видов. Таким образом, в качестве материалов выступали нуклеотидные и белковые последовательности гена Nxf1 из открытых баз данных NCBI [18].

Большинство этапов последующего анализа реализовано в виде отдельных скриптов, разработанных в рамках данной работы, если не указано другое. Для логического разделения на блоки был использован Jupyter Notebook v1.1.1 [21].

По данным из полученной таблицы в разведывательных целях было построено филогенетическое дерево по найденным видам для оценки количества видов в таксонах более низкого ранга. Для глубокого анализа было принято решение сфокусироваться на организмах, относящихся к группе Protostomia (Первичноротые), Cnidaria (Стрекающие), а также на всех группах из Deuterostomia за исключением Mammalia (Млекопитающие).

Для найденных организмов с помощью пакета NCBI E-utilities из BioPython v1.85 [22] и NCBI Datasets Command-Line Interface (CLI) v18.0.2 [23] были загружены нуклеотидные последовательности гена, кодирующих участков и мРНК, а также аминокислотные последовательности белка в формате FASTA и аннотации для гена в GenBank-формате, необходимые для получения нуклеотидных последовательностей экзонов и поиска "консервативной кассеты". Затем были получены и проанализированы интересующие нас участки экзон-интрон-экзонной структуры и созданы файлы со всеми экзонами и "кассетным" интроном для всех организмов, у которых получилось найти "кассету". Данные файлы будут необходимы для последующего анализа.

Учитывая очень маленькие выборки во многих анализируемых группах (например, Cnidaria - 4 вида, Spiralia - 9 видов), было принято решение по увеличению их количества. Для этой цели, учитывая разнообразия полученных генов даже внутри одной таксономической группы, самым эффективным вариантом оказалось использование PSI-BLAST [24]. В качестве запроса (Query), или референса, использовались белковые последовательности тех организмов, у которых была найдена "кассета". Для проведения PSI-BLAST были выбраны настройки по-умолчанию за исключением параметра Organism: поиск проводился внутри таксономической группы, к которой принадлежал референс, также референс был исключен из поиска.

Парсинг результатов BLAST также осуществлялся с помощью пакета BioPython [22] и специально разработанных скриптов. Он включал в себя фильтрацию данных по параметрам процента покрытия (Query Coverage, QC), длине и сходству (Per. Ident) найденных последовательностей (Subject), а также загрузку нуклеотидных и белковых последовательностей, однако реализация отличалась из-за особенностей баз

данных NCBI [18]. Получение "кассеты" было произведено по тому же принципу, но, опять же, с отличиями. Благодаря данному шагу удалось увеличить выборки суммарно на 117 видов. К сожалению, для некоторых таксономических групп увеличение выборки оказалось невозможным в связи с отсутствием у некоторых организмов интересующего нас участка.

Множественные выравнивания осуществлялись с помощью алгоритма MAFFT [25], 10 итераций, остальные настройки по-умолчанию, в программе Unipro UGENE v52.0 [26].

Анализ видов из Deuterostomia изначально шел более благоприятно за счет большого сходства последовательностей, в том числе интронных, и большего количества видов в группах. Для них также были загружены все необходимые файлы и произведен поиск и анализ "консервативной кассеты". Мы решили сосредоточить свое внимание на организмах из Actinopterygii (Лучеперые рыбы), 72 вида, так как данных по ним ранее получено не было. Учитывая большую степень сходства интронных последовательностей, с помощью пакета инструментов МЕМЕ Suite v5.5.8 [27] локально был произведен поиск консервативных мотивов внутри "кассетного" интрона. Найденные мотивы, у которых E-value < 0.05 также локально были проанализированы с помощью Tomtom [28] из того же пакета. Для описанного шага была взята база данных JASPAR2024 CORE (NON-REDUNDANT) DNA.

С помощью инструмента RNAfold v2.7.0 из пакета ViennaRNA [29] были построены вторичные структуры PHK для нуклеотидных последовательностей в двух вариантах (MFE и Centroid), содержащих экзоны и "кассетный" интрон, т.к. мы предполагаем, что избегание интроном сплайсинга может быть опосредовано образованной им специфической вторичной структурой. Учитывая данное предположение, разумным шагом также являлся анализ "силы сайтов сплайсинга", проведенный с помощью MaxEntScan [30]. Также с помощью скриптов цветом были выделены интронные последовательности внутри вторичной структуры и найденный мотив у Actinopterygii, который предположительно является СТЕ (Constitutive Transport Element).

Для Actinopterygii также был проведен филогенетический анализ, включающий построение и визуализацию деревьев. Для данной цели использовались самые популярные и проверенные временем инструменты. Построение деревьев осуществлялось с помощью IQ-TREE v2.4.0 [31], визуализация - с помощью Figtree v1.4.4 [32].

Работа проводилась в виртуальном окружении Mamba v1.5.5 [33], использованные пакеты и примеры анализа в Jupyter Notebooks можно найти в GitHub [34] репозитории автора: https://github.com/ArtemVaska/Diploma.

Для написания ВКР была использована система верстки LaTeX v4.76 [35], таблицы генерировались в веб-сервисе TablesGenerator [36]. Большинство картинок создано с помощью веб-сервиса draw.io [37]. Все шаги анализа проводились на базе операционной системы Linux Ubuntu 22.04 [38].

Результаты

Анализ всех найденных видов

Были проанализированы 413 нуклеотидных и белковых последовательностей гена *Nxf1* у представителей различных филогенетических групп из клад Cnidaria (Стрекающие) и Bilateria (Двусторонне-симметричные). Организмы, относящиеся к Mammalia, в анализ не были взяты в связи с уже имеющимися для них данными.

Для таксономических групп более низкого ранга с небольшим количеством видов в них с помощью PSI-BLAST были увеличены выборки, где это оказалось возможным, результат продемонстрирован на таблице ??.

Таблица 1: Результат увеличения выборки с помощью PSI-BLAST.

Филогенетическая группа	Таксон высокого ранга	Видов до PSI-BLAST	Видов добавлено	Итого видов
Bilateria → Protostomia	Ecdysozoa	56	42	98
Dilateria—1 Totostollia	Spiralia	6	63	69
Cnidaria	Anthozoa	2	12	14

В итоге для 353 видов удалось найти "консервативную кассету" и продолжить дальнейший анализ.

На рисунке ?? отображено распределение исследованных видов по таксонам высокого ранга.

Рис. 1: Количество видов, взятых в анализ, для разных таксономических групп.

Для всех видов, имеющих "консервативную кассету", были построены вторичные структуры для интрон-содержащего транскрипта с выделением цветом "кассетного" интрона (предоставляется по запросу).

Подробный анализ Actinopterygii

Для таксономической группы Actinopterygii проводился более углубленный анализ, так как на текущий момент данных по гену *Nxf1* для них не было. Были взяты все найденные нуклеотидные последовательности гена у представители данной филогенетической группы - 72 вида.

На таблице ?? показана характеристика "консервативной кассеты" исследуемой группы. Результаты по другим группам можно найти в приложении, таблицы ??-??.

Таблица 2: Сводная таблица с характеристикой кассетного интрона для таксономической группы Actinopterygii. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

	Название организма	нукле до сто	ол-во еотидов п-кодона итроне	Дли 1-го эк в кас	кзона	Длиг кассетт интро	ного	Дли 2-го эк в касс	зона
	Chanos chanos		1		-	110	3	568	37
	$Danio\ rerio$		1] :	110	3	580	37
De	$nticeps\ clupeoid$	des	7] :	110	2	2629	37
	$Labrus\ bergylta$		10		:	110	2	2684	37
($Cottoperca\ gobio$	0	16		:	110	2	2388	37
Xiph	ophorus couchi	anus	22		:	110	2	2227	37
La	rimichthys $croc$	cea	22] :	110	2	2340	37
j	Lates calcarifer	,	22] :	110	2	2434	37
No	tothenia coriice	eps	22] :	110	2	2886	37
1	$Betta\ splendens$	3	22		:	110	2	274	37
	oecilia reticulat		22		:	110	2	262	37
T	$Takifugu\ rubripe$	cs	22			110	2	2114	37
S_{ϵ}	alarias fasciatu	ιs	22			110	3	855	37
P	oecilia mexican	a	22			110	2	247	37
S	tegastes partitu	ιs	22			110	2	900	37
(Clupea harengus	s	22			110	3	219	37
Archo	ocentrus centra	rchus	22			110	2	2644	37
	$Esox\ lucius$		22			110	2	2848	37
M	$Ionopterus\ albu$	ιs	22		-	110	2	353	37
Ec	cheneis naucrat	tes	22			110	2	314	37
Par	alichthys olivae	ceus	22		-	110	3	3148	37
Λ	Maylandia zebra	a	22		-	110	2	565	37
$P\epsilon$	arambassis rang	ga	22		-	110	2	2484	37
Se	ander luciopera	ca	22			110	2	494	37
Xiph	ophorus macul	latus	22		-	110	2	231	37
Noth	hobranchius fur	zeri	22		-	110	2	2290	37
Ar	nabas testudine	us	22		-	110	2	2352	37
A can the	ochromis polyae	can thus	22		-	110	2	2797	37
Anar	rrhichthys ocell	latus	22		-	110	2	355	37
Boleoph	nthalmus pectin	irostris	22		-	110	1	702	37
	Sparus aurata		22		-	110	2	361	37
Or	ryzias melastigr	na	22		-	110	2	212	37
	Seriola dumeril		22		:	110	2	2494	37
F	Poecilia formose	a	22		:	110	2	259	37
Ore	$ochromis \ niloti$	icus	22		:	110	2	2580	37
Krypt	$tolebias \ marmo$	ratus	22		:	110	2	2556	37
Xip	$ohophorus\ helle$	erii	22		:	110	2	2240	37
-	Poecilia latipinn		22		:	110	2	261	37
	ndamilia nyere		22		:	110	2	527	37

Hippocampus comes	22	110	2622	37
Oreochromis aureus	22	110	2579	37
Amphiprion ocellaris	22	110	2752	37
Seriola lalandi dorsalis	22	110	2481	37
Austrofundulus limnaeus	22	110	2541	37
Puntigrus tetrazona	25	110	2440	37
Fundulus heteroclitus	25	110	2476	37
Cyprinodon variegatus	28	110	2533	37
Haplochromis burtoni	31	110	2535	37
$A statotilapia\ calliptera$	31	110	2571	37
$Gouania\ will de nowi$	37	110	2616	37
Oryzias latipes	40	110	2331	37
Sphaeramia orbicularis	43	110	2376	37
Pygocentrus nattereri	46	110	2649	37
Astyanax mexicanus	46	110	2791	37
Colossoma macropomum	46	110	2644	37
Ictalurus punctatus	46	110	3166	37
$Tachysurus\ fulvidraco$	46	110	3493	37
Pangasianodon hypophthalmus	46	110	3348	37
Erpetoichthys calabaricus	55	110	3662	37
Perca flavescens	58	110	2378	37
$Mastacembelus\ armatus$	64	110	2371	37
$Salmo\ salar$	67	110	3553	37
Gadus morhua	67	110	3151	37
$Etheostoma\ spectabile$	97	110	2457	37
Scleropages formosus	112	110	3412	37
Myripristis murdjan	112	110	2492	37
Paramormyrops kingsleyae	121	110	2929	37
Carassius auratus	148	110	3854	37
Sinocyclocheilus grahami	148	110	3330	37
Sinocyclocheilus rhinocerous	154	110	3449	37
Sinocyclocheilus anshuiensis	154	110	4202	37
Electrophorus electricus	283	110	2874	37

На рисунках ?? и ?? показано распределение длин части "кассетного" интрона до стоп-кодона и длин "кассетного" интрона, соответственно.

Рис. 2: Распределение длин части кассетного интрона до стоп-кодона у таксономической группы Actinopterygii

Puc. 3: Распределение длин кассетного интрона у таксономической группы Actinopterygii

На картинке ?? представлены результаты оценки "силы сайтов сплайсинга" - "ящики с усами", отображающие распределение MaxEntScan score для таксонов более низкого ранга внутри группы Actinopterygii. Разбиение на подгруппы основано на их удаленности друг от друга. Порядок групп на графике не несет смысловой нагрузки.

Рис. 4: Результаты проведения MaxEntScan для Actinopterygii.

Рисунок ?? демонстрирует результаты, полученные с помощью MEME Suite.

Найденные мотивы присутствуют не у всех видов, взятых в анализ изначально, их количество отображено в столбце Sites. Нас заинтересовал 2-й найденный мотив, так как его начало очень похоже на предложенную авторами статьи 2001 года [39] консенсусную последовательность для СТЕ из рисунка ??.

К сожалению, использование Tomtom для поиска найденных консервативных мотивов из "кассетного" интрона в базе данных мотивов не дало статистически значимых результатов.

	Logo 🛚 🔞	E-value ?	Sites ?	Width ?
1.	- ACCCGACTATGGAACCCTGGATAGCC_ATGACCGGTAAGATCCCACCTG_AAAcccg_GGG	2.1e-827	67	60
2.	ACCTAACCCACCCACACTCACGATTACTC_GCCTG	6.5e-448	68	36
3.	GTGCTTGTGTTGCT_CTCCATGTCAGATCTGTGTATATCACCATATTGGGGGAGAGGGTG	2.8e-508	44	60
4.	EASCSA_I_T_TCCCCTCCCTCATAGCA-CS_TGCCCA_TGGCCA_TGGCCCCT	3.5e-340	46	50
5.	E GEGET GOOD ACT COT GEGET E CACCT CAST E T GAGACC	2.7e-258	46	36

Puc. 5: Результат поиска мотивов внутри кассетного интрона с помощью MEME Suite для таксономической группы Actinopterygii.

Черным прямоугольником выделен участок, похожий на консенсусную последовательность СТЕ (рис. ??) из статьи 2001 года [39].

Рис. 6: Консенсусный конститутивный транспортный элемент [39].

Репрезентация вторичной структуры интрон-содержащего транскрипта с выделенным кассетным интроном и найденным мотивом показана на рисунке ??. Вид для демонстрации был выбран случайно.

Учитывая тот факт, что мотив с интересующим нас участком, был найден у 68 видов, именно для них был проведен последующий анализ.

Рисунок ?? отображает результаты множественного выравнивания, а на рисунке ?? представлено филогенетическое дерево, построенное по результатам этого выравнивания.

Рис. 7: Вторичная структура РНК-транскрипта для $Chanos\ chanos\ us$ Otomorpha, содержащая кассетный интрон.

Рис. 8: Результаты множественного выравнивания для Actinopterygii.

Рис. 9: Филогенетическое дерево для таксономической группы Actinopterygii.

Обсуждение

Анализ всех найденных видов

У всех проанализированных видов размер второго экзона из "консервативной кассеты" равен 37 нуклеотидам, в то время как размер первого экзона варьирует в различных группах. На рисунке ?? показано распределение длины первого экзона из "кассеты" для Protostomia.

Puc. 10: Распределение длины первого экзона из "консервативной кассеты" для Protostomia.

Для Ecdysozoa и Cnidaria первый экзон как правило размером 110 нуклеотидов, но встречаются и исключения. У Spiralia размер этого экзона гораздо больше и чаще всего составляет 239 нуклеотидов. По данному отличию и встречающимся уникальным вариантам размера экзона требуется углубленное исследование.

У Deuterostomia размер первого экзона в абсолютном большинстве случаев (171 из 172 исследованных видов) составляет 110 нуклеотидов, что также характерно и для млекопитающих.

Длина участка внутри интрона до стоп-кодона, как и длина самого интрона, варьирует в более широких пределах в разных группах. Тем не менее внутри отдельных групп, например Lepidosauria (таблица ?? в приложении), наблюдается высокая степень консервативности обоих параметров.

Также встречаются виды, у которых происходит частичная или даже полная трансляция "кассетного" интрона, потому что в нем не встречается преждевременный стоп-кодон. Например, таким видом является давно известный *Caenorhabditis elegans*, у которого преждевременный стоп-кодон встречается в одном из экзонов после "кассетного" интрона. В данном исследовании были найдены еще 2 вида, у которых интрон полностью считывается: Aves - *Vidua chalybeata*, Paraneoptera - *Rhopalosiphum maidis*. Упомянутые виды также требуют тщательного изучения.

Подробный анализ Actinopterygii

Данная группа организмов была исследована более подробно по перечисленным ранее причинам. Внутри группы размеры первого и второго экзона из "консервативной кассеты" для всех исследованных видов составляют 110 и 37 нуклеотидов, соответственно. Длина участка внутри интрона до стоп-кодона у большинства видов составляет 22 нуклеотида (39 из 72 исследованных в работе). Размер "кассетного" интрона варьирует от 1702 до 4202 нуклеотидов (в среднем 2705).

Анализ "сайтов силы сплайсинга" ?? говорит о том, что практически у всех видов данный интрон успешно вырезается сплайсосомой. Учитывая большую выборку видов, взятую для анализа, было принято решение ориентироваться на эмпирическую интерпретацию результатов, которая выглядит следующим образом:

- 0-3: слабый сайт сплайсинга
- 3-6: умеренный сайт сплайсинга
- >6: сильный сайт сплайсинга

Так как у большинства видов значение MaxEntScan score больше или около 6, был сделан вывод, высказанный выше. Соответственно, невырезание сплайсосомой как минимум у данной группы не является причиной альтернативного сплайсинга с сохранением "кассетного" интрона.

В связи с этим и было принято решение о поиске консервативных мотивов внутри "кассетного" интрона. Несмотря на то, что на рисунке ?? представлено 5 найденных мотивов, их количество может быть больше, потому что данное значение мотивов было ограничением запуска MEME Suite. Учитывая высокую степень сходства начала 2-го найденного мотива с консенсусной последовательностью СТЕ из рисунка ??, можно предположить сохранение интрона благодаря этой и возможно другим структурам внутри интрон-содержащего транскрипта (рисунок ??).

Проведенное множественное выравнивание на рисунке ?? говорит о высокой степени консервативности как кодирующих участков (левый и правый крайние части диаграммы под выравниванием), так и некоторых участков внутри интрона (центр диаграммы под выравниванием). Филогенетическое древо (рисунок ??), построенное по результатам выравнивания, несмотря на наличие "кассетного" интрона в последовательности, использованной для его построения, успешно разделяет виды на таксоны более высокого ранга - Otomorpha и Euteleosteomorpha.

Остальные группы, не включенные в подробный анализ, требуют его проведения.

Выводы

По результатам проведенной работы были сформулированы следующие выводы:

- 1. Внутри одной таксономической группы существуют преобладающие значения для характеристик "консервативной кассеты":
 - длина первого и второго экзона;
 - длина "кассетного" интрона;
 - длина участка внутри "кассетного" интрона до стоп-кодона.
- 2. Внутри "кассетного" интрона существуют участки, которые образуют особые структуры при формировании вторичной структуры интрон-содержащего транскрипта, и за счет их наличия возможно сохранение такого транскрипта и последующая трансляция укороченной формы белка.

Приложение

Таблица 3: Сводная таблица с характеристикой кассетного интрона для таксономической группы Ecdysozoa. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона	Длина 1-го экзона	Длина а кассетного	Длина 2-го экзона
организма	в интроне	в кассете	интрона	в кассете
Trichinella spir	_	1	83	417
Priapulus caud		1	110	2114
Galendromus occid		1	110	1491
$Ixodes\ scapula$	ris	1	110	3567
Limulus polyphe		1	110	915
$Parasteatoda\ tepido$		1	110	1725
Cryptotermes sec		1	110	4335
Maniola hypera		1	110	920
Cimex lectular		1	110	4437
Vespa mandari		1	113	379
Zerene ceson	I	1	110	1162
Pararge aeger		1	110	2657
Myzus persice		1	107	772
Halyomorpha h		1	110	7270
Diuraphis nox		1	107	742
Sipha flava	I	1	107	58
$Manduca\ sex$		1	110	1796
$Apis\ laborios$		1	113	1254
Orussus abietis	I	1	113	74
Danaus plexip		1	110	1009
Colletes giga	·	1	113	379
Ostrinia furnac	I	1	110	1946
Vespa crabro		1	113	381
Venturia canes	I	1	113	621
Papilio polyte		1	110	1674
Vespa velutin		1	113	377
Cephus cinct	I	1	113	75
Bombus pyroso	I	1	113	244
Papilio xuthi		1	110	999
Vanessa tamea		1	110	2352
Megalopta gen	alis	1	113	373
Vespula pensylve		1	113	363
Leptopilina heter		1	113	921
Acromyrmex echi		1	113	438
Aphidius gifuer		1	113	240
Polistes fuscar	I	1	113	400
Dirofilaria imm		7	98	248
Odontomachus br		10	113	498
Diploscapter pa	I	10	110	662
Bactrocera dors		13	110	1808
Drosophila meland	ogaster	13	110	1602
Ceratitis capit	_	19	110	2023
ediculus humanus		19	110	631
Aphelenchoides a	-	19	110	441
$Litomosoides\ sigm$		19	110	242
A can tho cheil one model		19	110	225
$Aethina\ tumi$	da	19	110	1729

Lepeophtheirus salmonis 22 110 1555 Anoplophora glabripennis 22 110 3664 Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209 Bursaphelenchus xylophilus 25 110 638	37 37 37 37 37 37
Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37 37 37
Varroa jacobsoni 22 110 3077 Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37 37
Varroa destructor 22 110 3077 Thelazia callipaeda 25 110 209	37
Thelazia callipaeda 25 110 209	
Acyrthosiphon pisum 28 107 68	37
Anisakis simplex 30 219 665	37
Tetranychus urticae 31 122 648	37
Homarus americanus 31 110 9821	37
Bursaphelenchus okinawaensis 37 110 593	37
Globodera pallida 43 113 47	37
Amphibalanus amphitrite 73 110 369	37
Cotesia glomerata 73 116 236	37
Caenorhabditis angaria 79 110 96	37
Onchocerca ochengi 88 110 243	37
Brugia pahangi 91 110 232	37
Ditylenchus destructor 97 307 1167	37
Mesorhabditis belari	37
Melanaphis sacchari 97 110 71	37
Enterobius vermicularis 100 110 195	37
Pristionchus mayeri 103 110 131	37
Cercopithifilaria johnstoni 103 110 238	37
Steinernema carpocapsae 106 110 131	37
Wuchereria bancrofti 106 125 242	37
Parelaphostrongylus tenuis 112 110 228	37 37
Toxocara canis 115 110 228 110 1062	37 37
Necator americanus 136 110 243	37 37
Brugia malayi 139 110 243	37 37
Caenorhabditis auriculariae 145 110 245	37 37
Auanema sp. JU1783 145 110 80	37 37
	37 37
	37 37
	37 37
	37 37
Angiostrongylus cantonensis 181 110 213	
Dictyocaulus viviparus 190 110 832	37 27
Caenorhabditis elegans 193 110 106	37 27
Cooperia oncophora 205 110 215	37 27
Caenorhabditis sp. 36 PRJEB53466 205 110 133 142	37 27
Caenorhabditis nigoni 214 110 142	37
Pristionchus pacificus 214 110 251	37
Trichostrongylus colubriformis 214 110 224	37
Caenorhabditis briggsae 217 110 145	37
Cylicocyclus nassatus 229 110 239	37
Haemonchus contortus 304 110 220	37
Caenorhabditis bovis 316 110 235	37
Nippostrongylus brasiliensis 316 110 235	37
Dracunculus medinensis 334 110 122	37
Mesorhabditis spiculigera 376 110 173	37
Pollicipes pollicipes 436 110 367	37
Rhopalosiphum maidis 1345 107 69	37

Таблица 4: Сводная таблица с характеристикой кассетного интрона для таксономической группы Spiralia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название	Название нук		Дл	ина	Дл	ина	Дл	ина
организма		леотидов оп-кодона	1-го з	экзона	кассе	тного	2-го з	экзона
opramisma		интроне	в ка	ссете	интј	рона	в ка	ссете
Schistosoma haemate		1	l	23	9	65	52	37
Magallana giga:		1		11		15		37
Mya arenaria		1		11	0	173		37
Crassostrea virgin	ica	1		11		16		37
Aplysia californi		1		22		41		37
Gigantopelta aeg		1		11		180		37
Mercenaria mercen		1		11		16		37
Dreissena polymor		1		11		220		37
Ruditapes philippine	-	1		11		16		37
Mactra antiquat		1		11		23		37
Mytilus coruscu		1		11		123		37
Potamilus streckers		1		11		45		37
Saccostrea echina		1		11		15		37
Mytilus edulis	, cu	1		11		13		37
Mytilus trossulu	s	1		11		13		37
Pecten maximus		1		11		50		37
Ostrea edulis		1		11		16		37
Mizuhopecten yesso	oneie	1		11		48		37
Saccostrea cuccull		1		11		170		37
Ylistrum ballota		1		11		46		37
Argopecten irradio		1		11		50		37
Magallana angula		1		11		15		37
Mytilus california		1		11		12		$\frac{37}{37}$
Pinctada imbrica		1		11		41		$\frac{37}{37}$
Haliotis asinina		1		11		23		37
		1		11		$\frac{23}{45}$		37
Sinanodonta woodi		1						$\frac{37}{37}$
Haliotis cracheroe				11		250		
Haliotis rufescen		1		11		250		37
Patella caerulea		1		11		130		37
Patella vulgata		1		11		13		37
Lymnaea stagnal		1		22		27		37
Batillaria attramen		1		11		86		37
Schistosoma turkesta		1		23		90		37
Paragonimus wester		1		23		139		37
Pomacea canalicul		1		56		25		37
Bradybaena simila		1		22		38		37
Elysia crispata		1		22		80		37
Elysia chlorotice		1		22		713		37
Bulinus truncatu		1		22		18		37
Biomphalaria pfeij		1		22		18		37
Biomphalaria glaba		1		22		18		37
Schistosoma guinee		1		23		65		37
Schistosoma curas		1		23		65		37
Schistosoma bov		1		23		65		37
Schistosoma margreb		1		23		65		37
Schistosoma intercal		1		23		65		37
Schistosoma rodha		1		23		67		37
Schistosoma japoni		1		23		84		37
Clonorchis sinens		1		24		60		37
Hydatigera taeniaefo	ormis	1		24	2	37	5	37

Taenia crassiceps	1	242	278	37
Taenia asiatica	1	242	480	37
Heterobilharzia americana	1	239	2163	37
$Trichobilharzia\ szidati$	1	239	1336	37
Trichobilharzia regenti	1	239	996	37
$Opisthorchis\ felineus$	1	242	14603	37
$Rodentolepis\ nana$	1	242	222	37
$Calicophoron\ daubneyi$	1	239	4214	37
Taenia solium	1	242	480	37
Echinococcus granulosus	1	242	521	37
Fasciola hepatica	1	239	2631	37
Fasciola gigantica	1	239	2581	37
$Schistosoma\ mattheei$	1	239	649	37
Fasciolopsis buskii	1	239	1303	37
Dicrocoelium dendriticum	1	239	2612	37
Paragonimus heterotremus	1	239	18219	37
Hymenolepis diminuta	1	242	224	37
Solemya velum	4	110	2071	37
Littorina saxatilis	19	218	6746	37

Таблица 5: Сводная таблица с характеристикой кассетного интрона для таксономической группы Cnidaria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	нун до с	Кол-во клеотидов гоп-кодона интроне	1-го	го экзона кас		етного 2-го		лина экзона ассете
Actinia tenebros	a	10		116		173		37
Dendronephthya gige	antea	10		116		328	;	37
Nematostella vecte	nsis	25		116		991		37
Montipora folios	a	31		116		907	,	37
Pocillopora verruc	osa	34		116		390)	37
Acropora digitife	ra	40		116		670)	37
Acropora millepo	ra	40		116		682	}	37
Acropora murica	ta	40		116		679)	37
Pocillopora damico	rnis	46		116		392	}	37
Pocillopora meanda	rina	46		116		392	}	37
Porites lutea		61		116		711		37
Porites everman	ni	61		116		711		37
Exaiptasia diapha	na	76		86		227	•	37
Xenia sp. Carnegie-	2017	103		116		116	;	37

Таблица 6: Сводная таблица с характеристикой кассетного интрона для таксономической группы Sauropsida. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	нукло	ол-во еотидов п-кодона итроне	Дли 1-го эн в кас	кзона	Дли кассет интро	ного	Дли 2-го эн в кас	кзона
$\overline{Molothrus\ aeneu}$	is	1		1	10	,	745	3'
Taeniopygia gutta	ata	1		1	110	4	143	3'
Lonchura striata		1		1	110	(629	3'
$Gallus \ gallus$		7		1	110	1	616	3'

Cygnus atratus	25	110	1257	37
Haliaeetus leucocephalus	$\frac{25}{25}$	110	1375	37
Phalacrocorax carbo	$\frac{25}{25}$	110	1375 1345	37
Grus americana	$\frac{25}{25}$	110	1659	37
Haliaeetus albicilla	$\frac{25}{25}$	110	1378	37
	25 25	110	1246	37
Oxyura jamaicensis				
Anser cygnoides	25	110	1279	37 37
Ciconia boyciana	25	107	1459	
Anas acuta	25	110	1346	37
Astur gentilis	25	110	1393	37
Aquila chrysaetos chrysaetos	25	110	1375	37
Aythya fuligula	25	110	1227	37
Struthio camelus	64	110	1405	37
Chelonia mydas	79	110	1674	37
Dermochelys coriacea	79	110	1661	37
Caretta caretta	79	110	1656	37
Ammospiza caudacuta	82	110	3942	37
Aphelocoma coerulescens	85	110	3626	37
Gopherus flavomarginatus	142	110	1655	37
Chelonoidis abingdonii	142	110	1645	37
Malaclemys terrapin pileata	142	110	1652	37
Mauremys mutica	142	110	1662	37
Mauremys reevesii	142	110	1661	37
Trachemys scripta elegans	142	110	1661	37
Chrysemys picta bellii	142	110	1662	37
Emys orbicularis	142	110	1650	37
Alligator sinensis	148	110	1497	37
Alligator mississippiensis	148	110	1618	37
Caloenas nicobarica	184	110	1245	37
Rissa tridactyla	205	110	1388	37
Terrapene triunguis	211	110	1662	37
Emydura macquarii macquarii	223	110	1647	37
Catharus ustulatus	241	110	3252	37
Gopherus evgoodei	301	110	1639	37
Strigops habroptila	457	110	1317	37
Neopsephotus bourkii	502	110	1245	37
Melopsittacus undulatus	517	110	1257	37
Apteryx rowi	541	110	1359	37
Apteryx mantelli	541	110	1359	37
Dromaius novaehollandiae	553	110	1365	37
Chroicocephalus ridibundus	562	110	1373	37
Pezoporus wallicus	568	110	1328	37
Pezoporus flaviventris	568	110	1328	37
Rhea pennata	568	110	1348	37
Pezoporus occidentalis	568	110	1319	37
Pelodiscus sinensis	640	110	1643	37
Phaenicophaeus curvirostris	892	110	2155	37
Camarhynchus parvulus	1360	110	2456	37
Vidua chalybeata	1519	110	678	37

Таблица 7: Сводная таблица с характеристикой кассетного интрона для таксономической группы Amphibia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

Название организма	нук до с	, ,		нуклеотидов до стоп-кодона в кассете интрона		етного	2-го	лина экзона ассете
Ambystoma mexica	num	1		110		1034	10	37
Pelobates fuscus	S	1		110	1	242	4	37
Bufo bufo		7		110	1	300	2	37
Bufo gargarizans	S	7		110	1	287	9	37
Hyperolius riggenba	achi	10		110		390	2	37
Rana temporaria	a	10		110	ı	303	6	37
Pseudophryne corrol	oree	19		110	ı	356	1	37
Spea bombifrons	S	25		110		2840		37
Engystomops pustul	losus	25		110	ı	200	4	37
Nanorana parker	i	25		110	ı	303	8	37
Hyla sarda		25		110	ı	302	9	37
Pyxicephalus adspe	rsus	25		110	ı	291	7	37
Ranitomeya imitar	tor	37		110	ı	265	0	37
Xenopus tropical	is	46		110	1	259	6	37
Xenopus laevis		52		110		379	1	37
Geotrypetes seraph	nini	55		110		306	5	37
Rhinatrema bivitta	$_{ m tum}$	103		110		405	3	37
Pleurodeles walt	1	151		110		324	5	37
Microcaecilia unico	olor	187		110		278	4	37

Таблица 8: Сводная таблица с характеристикой кассетного интрона для таксономической группы Lepidosauria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в "кассетном" интроне.

	Название организма	нукле до стоі	л-во отидов 1-кодона троне	Дли 1-го эк в касс	зона	Длин кассетн интро	ного	Длина 2-го экзо в кассет	на
Python bivittatus		1			110	2	2374	 37	
$Note chis\ scutatus$		1		110		2507		37	
$Pseudonaja\ textilis$		1		110		2519		37	
$Anolis\ sagrei$		1		110		4667		37	
Pituophis catenifer annectens		1		110		2420		37	
$Lacerta\ agilis$		1		110		2499		37	
$Candoia\ aspera$			1		110		2293		37
$Sphae rodactylus\ town sendi$			1		110		2825		37
$Tham nophis\ elegans$		1		110		2426		37	
$Aha etulla\ prasina$		1		110		2432		37	
$Gekko\ japonicus$		1		110		2	2924	37	
$Crotalus\ tigris$		1		110		3	3091	37	
$Pogona\ vitticeps$		1		110		2	2746	37	
$Podarcis\ raffonei$		1		110		2	2495	37	
$Protobothrops\ mucrosquamatus$			1		110		3	3264	37
$Varanus\ komodoensis$		1		110		2658		37	
$Pantherophis\ guttatus$		1		110		2411		37	
$Elgaria\ multicarinata\ webbii$		1		110		2800		37	
$Rhineura\ floridana$			1		110		2581		37
Podarcis muralis			1		110		2506		37
$Heteronotia\ binoei$			1			110	9	3002	37

Anolis carolinensis	1	110	4026	37
Erythrolamprus reginae	1	110	2638	37
$Sceloporus\ undulatus$	1	110	2380	37
Eublepharis macularius	1	110	2577	37
Euleptes europaea	1	110	2901	37
Hemicordylus capensis	1	110	2830	37
$Zootoca\ vivipara$	1	110	2516	37

Список литературы

- 1. Organ-specific transcripts as a source of gene multifunctionality: lessons learned from the Drosophila melanogaster sbr (Dm nxf1) gene / L. Mamon [и др.] // Biol. Commun. 2019. Т. 64, № 2. С. 146—157.
- 2. Juneau K., Nislow C., Davis R. W. Introns regulate RNA and protein abundance in yeast // Genetics. 2006. Vol. 174, no. 1. P. 511–518. DOI: 10.1534/genetics.106.058560. URL: https://doi.org/10.1534/genetics.106.058560.
- 3. Mamon L. A., Kliver S. F., Golubkova E. V. Evolutionarily conserved features of the retained intron in alternative transcripts of the nxf1 (nuclear export factor) genes in different organisms // Open J. Genet. 2013. T. 03, № 03. C. 159—170.
- 4. Jo B.-S., Choi S. S. Introns: The Functional Benefits of Introns in Genomes // Genomics & Informatics. 2015. Vol. 13, no. 4. P. 112. DOI: 10.5808/gi.2015.13.4.112. URL: https://doi.org/10.5808/gi.2015.13.4.112.
- 5. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis / M. Kalyna [et al.] // Nucleic Acids Research. 2012. Vol. 40, no. 6. P. 2454–2469. DOI: 10.1093/nar/gkr932. URL: https://doi.org/10.1093/nar/gkr932.
- 6. Splicing as a requirement for biogenesis of functional 16S mRNA of simian virus 40 / P. Gruss [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 1979. Vol. 76, no. 9. P. 4317–4321. DOI: 10.1073/pnas.76.9.4317. URL: https://doi.org/10.1073/pnas.76.9.4317.
- 7. Valencia P., Dias A. P., Reed R. Splicing promotes rapid and efficient mRNA export in mammalian cells // Proceedings of the National Academy of Sciences of the United States of America. 2008. Vol. 105, no. 9. P. 3386–3391. DOI: 10.1073/pnas.0800250105. URL: https://doi.org/10.1073/pnas.0800250105.
- 8. Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure // Nature Structural and Molecular Biology. 2009. Vol. 16, no. 9. P. 990–995. DOI: 10.1038/nsmb.1659. URL: https://doi.org/10.1038/nsmb.1659.
- 9. Comeron J. M., Williford A., Kliman R. M. The Hill-Robertson effect: Evolutionary consequences of weak selection and linkage in finite populations // Heredity. 2008. Vol. 100, no. 1. P. 19–31. DOI: 10.1038/sj.hdy.6801059. URL: https://doi.org/10.1038/sj.hdy.6801059.
- 10. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations / D. Welter [et al.] // Nucleic Acids Research. 2014. Vol. 42, no. D1. P. 1001–1006. DOI: 10.1093/nar/gkt1229.

- 11. Golubkova E., Shidlovskii Y., Schedl P. The evolutionarily conserved family of nuclear export factor (NXF) in Drosophila melanogaster // Drosophila Melanogaster: Life Cycle, Genetics and Development. 2012. P. 63–82. Published December 2015.
- 12. Roy S. W., Gilbert W. The evolution of spliceosomal introns: Patterns, puzzles and progress // Nature Reviews Genetics. 2006. Vol. 7, no. 3. P. 211–221. DOI: 10.1038/nrg1807. URL: https://doi.org/10.1038/nrg1807.
- Retroviral Constitutive Transport Element Evolved from Cellular TAP(NXF1)-Binding Sequences / A. S. Zolotukhin [et al.] // Journal of Virology. 2001. Vol. 75, no. 12. P. 5567–5575. DOI: 10.1128/jvi.75.12.5567-5575.2001.
- 14. Herold A., Klymenko T., Izaurralde E. TAP (NXF1) Belongs to a Multigene Family of Putative RNA Export Factors with a Conserved Modular Architecture // Molecular and Cellular Biology. 2000. Vol. 20, no. 23. P. 8996–9008. DOI: 10.1128/mcb.20.23.8996–9008.2000.
- 15. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility / V. Ginanova [и др.] // Gene. 2016. Февр. Т. 577, № 2. С. 153—160.
- 16. The RNA-binding protein SBR (dm NXF1) is required for the constitution of medulla boundaries in Drosophila melanogaster optic lobes / L. Mamon [и др.] // Cells. 2021. Май. Т. 10, № 5. С. 1144.
- 17. Bondaruk D. D., Golubkova E. V., Mamon L. A. Contribution of the intron retained in the Nxf1 gene transcript to the phylogeny of the order Chiroptera // Ekol. Genet. 2022. Ceht. T. 20, № 2. C. 73—88.
- 18. Database resources of the National Center for Biotechnology Information / E. W. Sayers, E. E. Bolton, J. R. Brister, [et al.] // Nucleic Acids Research. 2022. Vol. 50, no. D1. P. D20–D26. DOI: 10.1093/nar/gkab1112. URL: https://doi.org/10.1093/nar/gkab1112.
- 19. McKinney W. Data Structures for Statistical Computing in Python. 2010.
- 20. Python Software Foundation. Python, Version 3.12. 2023. https://www.python.org/downloads/release/python-3120/.
- 21. Jupyter Notebooks a publishing format for reproducible computational workflows / T. Kluyver [et al.]. 2016. DOI: 10.3233/978-1-61499-649-1-87. URL: https://doi.org/10.3233/978-1-61499-649-1-87.
- 22. Biopython: Freely available Python tools for computational molecular biology and bioinformatics / P. J. A. Cock [et al.] // Bioinformatics. 2009. Vol. 25, no. 11. P. 1422–1423. DOI: 10.1093/bioinformatics/btp163. URL: https://doi.org/10.1093/bioinformatics/btp163.

- 23. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets / N. A. O'Leary [et al.] // Scientific Data. 2024. Vol. 11, no. 1. P. 732. DOI: 10.1038/s41597-024-03571-y. URL: https://doi.org/10.1038/s41597-024-03571-y.
- 24. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs / S. F. Altschul [et al.] // Nucleic Acids Research. 1997. Vol. 25, no. 17. P. 3389–3402. DOI: 10.1093/nar/25.17.3389. URL: https://doi.org/10.1093/nar/25.17.3389.
- 25. Katoh K., Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. Vol. 30, no. 4. P. 772–780. DOI: 10.1093/molbev/mst010. URL: https://doi.org/10.1093/molbev/mst010.
- 26. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] // Bioinformatics. 2012. Vol. 28, no. 8. P. 1166–1167. DOI: 10.1093/bioinformatics/bts091. URL: https://doi.org/10.1093/bioinformatics/bts091.
- 27. The MEME Suite / T. L. Bailey [et al.] // Nucleic Acids Research. 2015. Vol. 43, W1. W39-W49. DOI: 10.1093/nar/gkv416. URL: https://doi.org/10.1093/nar/gkv416.
- 28. Quantifying similarity between motifs / S. Gupta [et al.] // Genome Biology. 2007. Vol. 8, no. 2. R24. DOI: 10.1186/gb-2007-8-2-r24. URL: https://doi.org/10.1186/gb-2007-8-2-r24.
- 29. ViennaRNA Package 2.0 / R. Lorenz [et al.] // Algorithms for Molecular Biology. 2011. Vol. 6, no. 1. P. 26. DOI: 10.1186/1748-7188-6-26. URL: https://doi.org/10.1186/1748-7188-6-26.
- 30. Yeo G., Burge C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals // Bioinformatics. 2004. Vol. 20, no. 3. P. 327–335. DOI: 10.1093/bioinformatics/btg005. URL: https://doi.org/10.1093/bioinformatics/btg005.
- 31. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era / B. Q. Minh [et al.] // Molecular Biology and Evolution. 2020. Vol. 37, no. 5. P. 1530–1534. DOI: 10.1093/molbev/msaa015. URL: https://doi.org/10.1093/molbev/msaa015.
- 32. Rambaut A. FigTree v1.4.4. 2018. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.
- 33. QuantStack, contributors mamba. Mamba: The Fast Cross-Platform Package Manager. 2024. https://github.com/mamba-org/mamba.
- 34. GitHub, Inc. GitHub. 2008. URL: https://github.com.

- 35. Lamport L. LaTeX: A Document Preparation System. 2nd ed. Reading, Massachusetts: Addison-Wesley, 1994.
- 36. TablesGenerator.com. Tables Generator LaTeX Tables Editor. 2025. URL: https://www.tablesgenerator.com.
- 37. diagrams.net. draw.io Online Diagram Software. 2025. URL: https://www.diagrams.net/.
- 38. Canonical Ltd. Ubuntu 22.04 LTS (Jammy Jellyfish). 2022. https://releases.ubuntu.com/22.04/.
- 39. Replication of Human Herpesvirus 6A and 6B Is Associated with Distinct Nuclear Domains / F. Tajima [et al.] // Journal of Virology. 2001. Vol. 75, no. 12. P. 5567–5575. DOI: 10.1128/JVI.75.12.5567–5575.2001. URL: https://doi.org/10.1128/JVI.75.12.5567–5575.2001.

Благодарности

Я хотел бы поблагодарить моего научного руководителя, Голубкову Елену Валерьевну, и моего куратора, Бондарука Дмитрия Денисовича, за постоянную поддержку и помощь в обсуждении результатов работы.

Отдельно я хотел бы поблагодарить Абрамсон Наталью Иосифовну за повторное рецензирование работы моего авторства.

Также хочу выразить благодарность преподавателям программы "Биоинформатика" и кафедры генетики и биотехнологии СПбГУ, и коллективу преподавателей и ассистентов Института Биоинформатики за полученные знания в процессе обучения, с помощью которых стало возможным осуществление данной работы.