1º Fase da II Olimpíada GEPEMAC/IFCE de Matemática

01. Vinte soldados, numerados de 1 a 20, formaram um círculo em ordem numérica no sentido horário, todos voltados para o centro. Eles começaram a contar em voz alta no sentido horário; o primeiro soldado chamou o número 1, o segundo chamou o número 2, e cada soldado subsequente chamou um número que era um a mais do que o número chamado pelo soldado à sua direita. Qual era o número do soldado que chamou o número 2024?

(A) 14 (B) 12 (C) 10 (D) 6 (E) 4

RESPOSTA: E

02. Cláudio começou a montar uma tabela de números de cima para baixo, da seguinte maneira:

0	3	1
4	1	3
4	7	5
12	9	11
20	23	21

(3ª linha)

(4ª linha)

(5ª linha)

Nela, cada número é a soma de todos os números na linha anterior, exceto o número que está logo acima dele. Por exemplo, na segunda linha, 4 = 3 + 1 e, na quarta linha, 9 = 4 + 5. Qual é o número da linha em que a soma dos números ultrapassa 2024?

(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

RESPOSTA: B

03. O resultado de $\sqrt{200001^2 + 199999 + 200004}$ é igual a:

(A)200005 (B) 200004 (C) 200003 (D)200002 (E) 20002

RESPOSTA: D

04. Na Figura 1, cada compartimento contém o produto dos números nos dois compartimentos diretamente abaixo dele.

Quantos valores diferentes de n existem para que se obtenha 720 no quadrado superior da Figura 2, colocando inteiros positivos nos quadrados inferiores, conforme o raciocínio usado na Figura 1?

(A) 1 (B) 4 (C) 5 (D) 6 (E) 8

RESPOSTA: D

05. Se a e b são inteiros positivos, então o menor valor de b de modo que $48b = a^3$ é (A) 1 (B) 6 (C) 12 (D) 24 (E) 36

RESPOSTA: E

06. Resolvendo a expressão $(3 - 3/4) \cdot (3 - 3/5) \cdot (3 - 3/6) \cdot \dots \cdot (3 - 3/27)$ obtemos, (A) 3^{12} (B) 3^{13} (C) 3^{20} (D) 3^{22} (E) 3^{23}

RESPOSTA: D

07. Se a e b são reais tais que 1/a + 1/b = 1/(a+b), então a/b + b/a é igual a (A) -2 (B) -1 (C) 1 (D) 2 (E) 3

RESPOSTA: B

08. Duas cidades, A e B, situam-se à margem de uma rodovia retilínea. Dois amigos, Vincenzo e Trotta, vão fazer o trajeto entre as cidades. Vincenzo vai de A para B e Trotta vai de B para A. Ambos partem no mesmo instante, em sentidos opostos e com velocidades constantes. Quando se cruzam, a distância percorrida por Vincenzo é igual à distância percorrida por Trotta mais um

sétimo da distância entre as cidades A e B. Sabe-se que Vincenzo gastou 9 minutos desde o momento em que cruzou com Trotta até chegar a B e que Trotta demorou x minutos para ir de B até A. Qual é o valor de x?

(A) 16 (B) 21 (C) 28 (D) 30 (E) 32

RESPOSTA: C

09. No quadrilátero ABCD da figura abaixo, AD = DC, AC = BC, $\angle ADC = 100\,0$, $\angle BAD = 90\,0$ e $\angle ACB = x$ (medida em graus).

Podemos afirmar que x =

(A) 30° (B) 40° (C) 60° (D) 70° (E) 80°

RESPOSTA: E

10. Na figura, AB = BD = 5, $\angle ABD$ = 90° e DC = 3AD.

O comprimento de BC é igual a

(A)15 (B) 20 (C)25 (D)30 (E) 35

RESPOSTA: C

11. Quantas números inteiros positivos de dois dígitos são exatamente quatro vezes a soma de seus dígitos?

RESPOSTA: B

12. Quantos números inteiros positivos de 4 dígitos pertencentes ao conjunto {0,1,2,3} são divisíveis por 9?

RESPOSTA: E

13. Considere um conjunto formado por todos os números inteiros de 3 dígitos cuja soma dos dígitos seja 5. Qual é a probabilidade de que um número escolhido aleatoriamente desse conjunto seja primo?

RESPOSTA: D

14. Seja ABCD um retângulo de papel com AB = 12 e BC = 24. Se dobrarmos a folha de papel ao longo da diagonal AC, haverá uma região sobreposta como destacado na figura abaixo.

A área desta região sobreposta é igual a

(A)180 (B) 90 (C) 45 (D) 30 (E) 24

RESPOSTA: B

15. A figura mostra um triângulo ABC. Q e M são pontos sobre o lado BC e P é um ponto sobre o lado AC

Se BM = MC e AQ // PM, então área(ΔPQC)/área($\blacksquare ABQP$) é igual a (A) 2 (B) 3/2 (C) 1 (D) 1/2 (E) 1/3

RESPOSTA: C

16. Um número inteiro positivo x é divisível pelos números 2,3,4,5,8 e 9, mas deixa um resto de 5 quando dividido por 7. O menor valor possível de x é

(A) 410 (B) 720 (C) 504 (D) 540 (E) 360

RESPOSTA: B

17. Os inteiros "abcd" e "dcba", compostos de 4 dígitos distintos, satisfazem:

$$9 \times abcd = dcba$$

O digito b é igual a

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

RESPOSTA: A

18. ABCDEF é um hexágono regular. O número de triângulos equiláteros contidos no plano do hexágono que podem ser determinados com pelo menos dois vértices do hexágono é

(A)16 (B) 20 (C) 24 (D) 26 (E) 30

RESPOSTA: D

19. A figura mostra um papel triangular ABC com $AB \perp BC$ e um segmento DE traçado de modo que BE = 2cm e BD = 3 cm.

Sabendo que, quando o papel é dobrado ao longo do segmento DE, o vértice B coincide com o ponto M, que é o ponto médio de AC, qual é o comprimento do lado AB?

(A) 2V13 (B) 5V13/2 (C) 8/13 (D) 16/13 (E) 48/13

RESPOSTA: E

20. Uma quadrupla (a,b,c,d) de inteiros positivos é **balanceada** se a media, mediana e moda de a,b,c,d são iguais. Quantas quadruplas balanceada (a,b,c,d) de inteiros positivos existem tais que $a \le b \le c \le d$ e a + b + c + d = 44?

(A) 12 (B) 11 (C) 10 (D) 2 (E) 1

RESPOSTA: B

APOIO

