Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Grafos

Un grafo es una estructura algebraica que consiste en un conjunto de **vértices** y un conjunto de **aristas**

Los vértices son entidades abstractas

Las aristas conectan pares de vértices entre si

Un grafo G es un par G=(V,E) donde:

- -V es el conjunto de vértices
- $-\ E$ es el conjunto de aristas

Conceptos básicos de grafos

© 2014 Blai Bonet

Ejemplo: grafo

© 2014 Blai Bonet

Grafos dirigidos y no dirigidos

Clases importantes de grafos:

- Grafo dirigido: las aristas son de la forma $x \to y$
- **Grafo no dirigido:** las aristas son de la forma x-y

© 2014 Blai Bonet

Grafos simples y multigrafos

Una arista entre dos vértices x y y es un **bucle** si x=y

Dos aristas son **paralelas** si conectan el mismo par de vértices (en la misma dirección)

Un **grafo simple** es un grafo sin bucles y sin aristas paralelas

Un multigrafo es un grafo con bucles o aristas paralelas

Ejemplos: grafos dirigidos y no dirigidos

© 2014 Blai Bonet

Ejemplos: multigrafo

Grafos simples

Sea G = (V, E) un grafo simple

Si G es dirigido, entonces $E \subseteq (V \times V) \setminus \{(x, x) : x \in V\}$

Si G es no es dirigido, entonces $E \subseteq \binom{V}{2}$

© 2014 Blai Bonet

Ejemplo: caminos

Camino $\langle a, b, c, d \rangle$

Caminos

Sea G = (V, E) un grafo

Un **camino** es una sucesión de vértices $\langle x_1, x_2, \dots, x_n \rangle$ tal que:

- Si G es dirigido, $(x_i, x_{i+1}) \in E$ para todo $1 \le i < n$
- Si G es no dirigido, $\{x_i, x_{i+1}\} \in E$ para todo $1 \le i < n$

Un camino es simple si no repite vértice

Si $\langle x_1, x_2, \dots, x_n \rangle$ es un camino, x_1 y x_n estan **conectados**

La sucesión $\langle x \rangle$, para $x \in V$, es un camino

© 2014 Blai Bonet

Ciclos

Sea G = (V, E) un grafo

Un **ciclo** es un camino $\langle x_1, x_2, \dots, x_n \rangle$ tal que:

– el primer y último vértice son iguales; i.e. $x_1 = x_n$

Un ciclo $\langle x_1, x_2, \dots, x_n \rangle$ es **simple** ssi $x_i = x_j \implies \{i, j\} = \{1, n\}$

Si $\langle x_1, x_2, \dots, x_n \rangle$ es un ciclo, entonces los siguientes:

- $-\langle x_2, x_3, \dots, x_{n-1}, x_1, x_2 \rangle$
- $-\langle x_3, x_4, \dots, x_{n-1}, x_1, x_2, x_3 \rangle$
- . . .

son el **mismo** ciclo

© 2014 Blai Bonet

Ejemplo: ciclos

Ciclo simple

© 2014 Blai Bonet

Ejemplo: grafos bipartitos

Grafos bipartitos

Un grafo no dirigido G=(V,E) es **bipartito** ssi V se descompone en dos partes disjuntas $V=V_1\cup V_2$ (con $V_1\cap V_2=\emptyset$) tal que:

– Si $\{x,y\}$ es una arista, entonces $x\in V_1$ y $y\in V_2$

© 2014 Blai Bonet

Ejemplo: grafos bipartitos

© 2014 Blai Bonet

Grafos bipartitos

Teorema

Un grafo G=(V,E) es bipartito ssi no contiene un ciclo de longitud impar

© 2014 Blai Bonet

Arboles y forestas

Un árbol G=(V,E) es un grafo no dirigido que es conexo y no tiene ciclos

Una **foresta o bosque** es un grafo compuesto por árboles desconectados

Grafo conexo

Un grafo G=(V,E) no dirigido es ${\bf conexo}$ ssi todo par de vértices están conectados

Si G=(V,E) es un grafo dirigido, el grafo no dirigido **subyacente** es G'=(V,E') donde:

$$- E' = \{ \{x, y\} : (x, y) \in E \}$$

Un grafo G=(V,E) dirigido es conexo si el grafo no dirigdo subyacente es conexo

© 2014 Blai Bonet

Ejemplo: Arboles

© 2014 Blai Bonet © 2014 Blai Bonet

Caracterización de Arboles

Teorema

Sea G = (V, E) un grafo no dirigido. Los siguientes son equivalentes:

- 1. G es un árbol
- 2. Todo par de vértices están conectados por un único camino simple
- 3. G es conexo pero se desconecta al remover cualquier arista
- 4. *G* es conexo y |E| = |V| 1
- 5. G es acíclico y |E| = |V| 1
- 6. G es acíclico pero si cualquier arista se añade aparece un ciclo

© 2014 Blai Bonet

Caracterización de Arboles

 $2 \Rightarrow 3$: Claramente G es conexo

Si se remueve la arista (u, v), u queda desconectado de v puesto que existe un único camino de u a v en G

Caracterización de Arboles

 $1 \Rightarrow 2$: Como todo árbol es conexo, G es conexo

Sea u y v dos vértices y suponga que existen dos caminos p_1 y p_2 distintos de u a v

Sea w el primer vértice tal que el sucesor x de w en p_1 es distinto al sucesor y de w en p_2

Sea z el primer vértice para el cual p_1 y p_2 convergen

El subcamino p' de p_1 de w a z seguido del subcamino p'' de p_2 de z a w forma un ciclo en G y por lo tanto no es un árbol (contradicción)

© 2014 Blai Bonet

Caracterización de Arboles

 $3\Rightarrow 4$: Veamos por inducción en n=|V| que |E|=|V|-1

Un grafo que satisface (3) con n=2 vértices tiene una sola arista

Suponga que G tiene $n\geq 3$ vértices y que todo grafo que satisface (3) con a lo sumo n-1 vértices tiene |V|-1 aristas

Sea (u,v) una arista en el grafo y remuevala para obtener dos grafos desconectados G_1 y G_2 . Ambos grafos satisfacen (3) y por hipótesis inductiva:

$$|E_1| = |V_1| - 1$$

 $|E_2| = |V_2| - 1$

Claramente, $|E| = |E_1| + |E_2| + 1 = |V_1| + |V_2| - 1 = |V| - 1$

Caracterización de Arboles

 $4\Rightarrow 5$: Suponga que G es conexo y |E|=|V|-1. Debemos mostrar que G es acíclico. Suponga que G tiene un ciclo (v_0,v_1,v_2,\ldots,v_k) , con $v_0=v_k$, y asuma que es un ciclo simple

Sea $G_k = (V_k, E_k)$ el subgrafo formado por el ciclo con $|V_k| = |E_k| = k$

Si $k=|V_k|<|V|$, existe un vértice $v_{k+1}\in V\setminus V_k$ que es adyacente a algún vértice v_i en V_k ya que G es conexo

Sea
$$G_{k+1} = (V_{k+1}, E_{k+1})$$
 con $V_{k+1} = V_k \cup \{v_{k+1}\}$ y $E_{k+1} = E_k \cup \{(v_i, v_{k+1})\}$, y $|V_{k+1}| = |E_{k+1}| = k+1$

Continue de la misma forma hasta obtener un subgrafo $G_n=(V_n,E_n)$ con $|V_n|=|E_n|=n=|V|$

Esto es una contradicción ya que |E| = |V| - 1

© 2014 Blai Bonet

Caracterización de Arboles

 $6\Rightarrow 1$: Suponga que G es acíclico y al añadir cualquier arista se crea un ciclo

Sea u y v dos vértices no adyacentes. Al añadir (u,v) se crea un ciclo. Dicho ciclo debe involucrar a u y v. Por lo tanto, u esta conectado con v en G

Es decir, G es conexo y por la tanto es un árbol

© 2014 Blai Bonet

Caracterización de Arboles

 $5\Rightarrow 6$: Suponga que G es acíclico y |E|=|V|-1. Debemos mostrar que si añadimos cualquier arista a G se crea un ciclo

Sea k el número de componentes conexas en G. Cada una de las k componentes es un árbol ya que es conexa y acíclica

Como $(1) \Rightarrow (5)$, si sumamos el número de aristas en cada componentes, obtenemos |E| = |V| - k y por lo tanto k = 1

Es decir, solo hay una componente conexa y G es un árbol

Si añadimos la arista (u,v), se crea un ciclo de u a v ya que G contiene un camino de u a v por ser un árbol

© 2014 Blai Bonet