Functional Analysis

Ivan Zhytkevych

October 9, 2023

Contents

1	Lecture 1: Metric Spaces and Convergence	1
2	Completation of Metric Space	10
3	Baire Theorem	11
4	Continuous Mappings of Metric Spaces, Lipschitz Continuity	12
5	Contraction mapping	14
6	Lecture 1: Cover and Compact Spaces	16
7	Lecture 3	19
8	Linear Spaces 8.1 Normed vector spaces	22 24

1 Lecture 1: Metric Spaces and Convergence

Definition 1. X is a set. Function $d: X \times X \to [0, \infty]$ is called a metric if three of the conditions are met:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- $2. \ d(x,y) = d(y,x)$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ triangle inequality

(X,d) – is a metric space.

Example (1. Discrete space). X — arbitrary.

$$d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

Example (2. Real numbers). $X = \mathbb{R}, d(x, y) = |x - y|$

Example.
$$X = \mathbb{R}^n = \{x = (x_1, \dots, x_n) \mid x_i \in \mathbb{R}, 1 \le i \le n\} \ d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

 $d_1(x, y) = \sum_{i=1}^n |x_i - y_i| - \text{metric on } \mathbb{R}^n$

Proof.
$$d_1(x,z) = \sum_{i=1}^n |x_i - z_i| \le \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) = d_1(x,y) + d_1(y,z)$$

Example. $d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$ – metric on \mathbb{R}^n

Proof.
$$d_{\infty}(x,y) = 0 \Leftrightarrow \forall i x_i = y_i \Leftrightarrow x = y$$

$$d_{\infty}(x,z) = \max_{1 \le i \le n} |x_i - y_i| \le d_{\infty}(x,y) + d_{\infty}(y,z)$$

$$|x_i - z_i| \le |x_i - y_i| + |y_i - z_i| \le d_{\infty}(x, y) + d_{\infty}(y, z)$$

Example. $1 \le p \le \infty$

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right) \frac{1}{p}$$
 — metric on \mathbb{R}^n

$$0 \le p \le 1 : d_p(x,y) = \sum_{i=1}^n |x_i - y_i|^p$$
 metric on \mathbb{R}^n

Example. C[a,b] – a set of all continuous functions $f:[a,b] \to \mathbb{R}$

$$d(f,g) = \sup_{a < t < b} |f(t) - g(t)|$$
 — metric on $C[a,b]$

Example. $C_b(\mathbb{R})$ — a set of all continuous and bounded functions $f: \mathbb{R} \to \mathbb{R}$.

$$d(f,g) = \sup_{t \in R} |f(t) - g(t)|$$

Example. (X,d) — metric space; $Y \subset X$

$$d(y_1, y_2), \quad y_1, y_2 \in Y$$

$$(Y,d)$$
 — subspace X

Definition 2. (X,d) – metric space, $(x_n:n\geq 1)$ – sequence of elements X. $(x_n,n\geq 1)$ converges to $x\in X$ if $\lim_{n\to\infty}d(x_n,x)=0$.

$$(\forall \varepsilon > 0 \ \exists N \ \forall n \ge N \ d(x_n, x) < \varepsilon)$$

$$x = \lim_{n \to \infty} x_n$$

Theorem 1. In metric space sequence that converges has only ONE limit.

Proof. Let
$$\lim_{n\to\infty} x_n = x$$
, $\lim_{n\to\infty} x_n = y$

$$d(x,y) \le d(x,x_n) + d(x_n,y) \to 0$$

$$\Rightarrow d(x,y) = 0 \to x = y.$$

 $(X, d_x), (Y, d_y)$ — metric spaces. $f: X \to Y$

Definition 3. f – continuous in point $x_0 \in X$, if

$$x_n \to x_0 \text{ in } X \Rightarrow f(x_n) \to f(x_0) \text{ in } Y$$

Definition 4. f continuous on X if f is continuous in every point $x_0 \in X$.

Exercise

f is continuous in point $x_0 \in X$ if and only if

$$\forall \varepsilon > 0 \; \exists \delta > 0 : d_x(x, x_0) < \varepsilon \Rightarrow d_y(f(x), f(x_0)) < \varepsilon$$

Definition 5. $f: X \to Y$ homogeneous (гомеоморфізм) if f is bijective, continuous and f^{-1} is continuous.

Definition 6. $f: X \to Y$ isometric if $d_y(f(x), f(x')) = d_x(x, x')$ (isometrie is always continuous)

 $x \in X, r > 0$

Definition 7. Open ball $\mathbf{B}(x,r) = \{y \in X : d(y,x) < r\}$

Definition 8. Closed ball $\overline{B}(x,r) = \{y \in X : d(y,x) \le r\}$

$$x_n \to x \Leftrightarrow \forall \varepsilon > 0 : \exists N \ \forall n \ge N : x_n \in \mathbf{B}(x, \varepsilon)$$

Definition: $A \subset X$. Point x tangent to the set A, if $\forall \varepsilon > 0$

$$\mathbf{B}(x,\varepsilon)\cap A\neq\varnothing$$

Example: $X = \mathbb{R}$. A = (a, b) a and b tangent to A

![[Drawing 2023-09-05 20.44.54.excalidraw]]

2.

$$\overline{A} = \{x \in X : x \text{ дотична до } A\}$$

closed set A

Theorem 2 1. $A \subset \overline{A}$ 2. $\overline{\overline{A}} = \overline{A}$ 3. $A \subset B \Rightarrow \overline{A} \subset \overline{B}$ 4. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Proof: 1. $x \in A \Rightarrow B(x,\varepsilon) \cap A \neq \emptyset$ as does not contain x 3. $xinn\overline{A} => B(x,\varepsilon) \cup A \neq \emptyset \Rightarrow B(x,\varepsilon) \cup B \neq \emptyset \Rightarrow x \in \overline{B}$ 2. $\overline{A} \subset \overline{\overline{A}}$ need to show that $\overline{\overline{A}} \subset \overline{A}$ $x \in \overline{\overline{A}}$, $\varepsilon > 0$ $B(x,\varepsilon) \cap \overline{A} \neq \emptyset$ exists such a point that $y \in B(x,\varepsilon) \cap \overline{A}$![[Drawing 2023-09-05 20.52.53.excalidraw]] show that $B(y,\varepsilon-d(x,y)) \subset B(x,\varepsilon)$ $z \in B(y,\varepsilon-d(x,y))$. $d(z,y) < \varepsilon$) -d(x,y) $\varepsilon > d(z,y) + d(y,x) \geq d(z,x) \Rightarrow z \in B(x,\varepsilon)$ $B(y,\varepsilon-d(x,y)) \cap A \neq \emptyset \Rightarrow B(x,\varepsilon) \cap A \neq \emptyset$ $x \in \overline{A}$

 $4. \ a \subset A \cup B \Rightarrow \overline{A} \subset \overline{A \cup B}; \ \overline{B} \subset \overline{A \cup B}$

 $\overline{A} \cup \overline{B} \subset \overline{A \cup B} \text{ Let } x \in \overline{A \cup B} \ x \notin \overline{A}, \ x \notin \overline{B} \Rightarrow \varepsilon_1 > 0 : B(x, \varepsilon_1) \cap A = \emptyset \Rightarrow \varepsilon_2 > 0 : B(x, \varepsilon_2) \cap B = \emptyset$

$$\varepsilon = \min(\varepsilon_1, \varepsilon_2) \ B(x, \varepsilon), \cap (A \cup B) = \varnothing \ \overline{A \cup B} = \overline{A} \cup \overline{B} -$$

Theorem 3 $x \in \overline{A} \Leftrightarrow$ in set A there is a sequence $(x_n : n \ge 1)$ that converges to x

Proof: (\Rightarrow) Let $x \in \overline{A} \ \forall \varepsilon > 0 \ B(x,\varepsilon) \cap A \neq \emptyset$, $\varepsilon_n \frac{1}{n} \ \forall n \ge 1$ there is a point $x_n \in A \cap B(x,\frac{1}{n})$ $0 \le d(x,x_n) < \frac{1}{n} \to 0 \lim_{n \to \infty} x_n = x$

$$(<=)$$
 let $\lim_{n\to\infty} x_n = x$, $x_n \in A$

$$\forall \varepsilon > 0 \; \exists N \; \forall n > N \; d(x_n, x) < \varepsilon$$

$$x_n \in B(x,\varepsilon) \cap A$$

 $x \in \overline{A}$

Definition 1. A is dense in a set B if $B \subset \overline{A}$ 2. A is dense everywhere if $\overline{A} = X$ 3. Metric space (X, d) separable if there is a countable everywhere dense set in it.

Examples: 1. \mathbb{R} separable space. $\overline{\mathbb{Q}} = \mathbb{R}$ 2. \mathbb{R}^n separable related to any metric $d_p, 0 3. <math>X, d$ – discrete. $B(x, \varepsilon) = \{y : d(x, y) < \varepsilon\} = x \ B(x, \varepsilon) \cap A \ne \varnothing \Leftrightarrow x \in A$ $\overline{A} = A$ The only everywhere dense set is X. 4. $C[a, b] : d(f, g) = \sup_{t \in [a, b]} |f(t) - g(t)|$ by theorem of Weierstrasse $\forall f \in C[a, b] \ \forall \varepsilon > 0$ there is a polynomial $P(t) = a_0 + a_1 t + \cdots + a_d t^d$: $\sup_{t \in [a, b]} |f(t) - P(t)| < \varepsilon$ *Countable everywhere dense set is a set of polynomials with rational coefficients.* 5. $C_b(\mathbb{R}), d(f, g) = \sup_{t \in \mathbb{R}} |f(t) - g(t)|$ — not separable metric set. ![[Drawing 2023-09-05 21.43.21.excalidraw]] $A \subset \mathbb{Z}$

$$f_A(n) = \begin{cases} 1 & n \in A \\ 0 & n \in \mathbb{Z} \backslash A \end{cases}$$

$$A \neq A'; n \in A \setminus A' \text{ or } n \in A' \setminus A \ d(f_A, f_{A'}) = 1 \ B\left(f_A, \frac{1}{2}\right) \cap B(f_{A'}, \frac{1}{2}) = \emptyset$$

In space $C_b(\mathbb{R})$ exists continual family of open balls that do not intersect by pairs.

(X,d) $A \subset X$ $\overline{A} = \{x \in X : \forall \varepsilon > 0 B(x,\varepsilon) \cap A \neq \emptyset\}$ Let x $in\overline{A}, y \neq x$. $\varepsilon < d(x,y) \Rightarrow B(X,\varepsilon)$ does not contain y. if for any $\varepsilon > 0$ $B(X,\varepsilon) \cap A$ finite then:

$$\exists \delta > 0 : B(X, \delta) \cap A = \{x\}$$

in this case point x is called isolated point of the set A

If $x \in \overline{A}$ and is not isolated, then x is called гранична

x is гранична to the set $A \Leftrightarrow \forall \varepsilon : B(X, \varepsilon) \cap A$ infinite

Example: 1. X is discrete. $B(X,1) = \{x\} \overline{A} = A$ is filled with only isolated points 2. $X = \mathbb{R}$. A = (a,b). $\overline{A} = [a,b]$ is composed out of cluster points.

Definition A set A of metric space X is closed if $\overline{A} = A$.

Example: 1. X, \varnothing are closed. 2. $\overline{B}(x,r)$ closed

$$\overline{\overline{B}(x,r)} \subset \overline{B}(x,r)$$

Let $y \notin \overline{B}(x,r)$ d(x,y) > r. $\varepsilon = d(x,y) - r$ If $z \in B(y,\varepsilon)$, then $d(y,z) < \varepsilon d(z,x) \le d(x,y) - d(z,y) > d(x,y) - \varepsilon = r$ $z \notin \overline{B}(x,r)$. $B(y,\varepsilon) \cap \overline{B}(x,r) = \emptyset$ and $y \notin \overline{\overline{B}(x,r)}$.

3. \overline{A} closed $(\overline{\overline{A}} = \overline{A})$ 4. \overline{A} – smallest closed set the contains A. (if B is closed and $A \subset B$ then $\overline{A} \subset B$)

Theorem 1. Intersection of any arbitrary closed sets is a closed set 2. Union of finite number of closed sets is a closed set

Proof: 1. Consider $(A_i)_{i \in I}$ — closed sets

$$A = \bigcap_{i \in I} A_i$$

$$\forall i \in I : \overline{A_i} = A_i$$

 $A \subset A_i \ \overline{A} \subset \overline{A_i} = A_i \ \overline{A} \subset \bigcap_{i \in I} A_i = A \subset \overline{A} \Rightarrow \overline{A} = A \text{ and } A \text{ is closed. 2. If } A \text{ and } B \text{ are closed,}$ then $\overline{A \cup B} = \overline{A} \cup \overline{B} = A \cup B$

Example: $X = \mathbb{R}$. $A_n = [0, 1 - \frac{1}{n}]$ $n \ge 1$

$$\bigcup_{n=1}^{\infty} A_n = [0,1)$$

Definition 1. Point $x \in X$ is inner for the set A if

$$\exists \varepsilon > 0 : B(x, \varepsilon) \subset A$$

2. $A^o = \{x \in X : x \text{ inner for } A\}$ — ***interior*** 3. A is open if $A = A^o$

Example: 1. B(x,r) is an open set. $y \in B(x,r), d(x,y) < r$. $\varepsilon = r - d(x,y)$. if $z \in B(y,\varepsilon)$ then $d(y,z) < \varepsilon$

$$d(z,x) \le d(x,y) + d(y,z) < d(x,y) + \varepsilon = r$$

2. $X = \mathbb{R}$. A = [a, b], a < b $a < x < b \Rightarrow x \in A^o$ $A^o = (a, b)$ 3. X, \emptyset are open.

Theorem For any arbitrary set $A \subset X$ it is true that

$$X \setminus A^o = \overline{X \setminus} A$$

Proof

$$x \in X \setminus A^o \Rightarrow x \not\in A^o \Leftrightarrow \forall \varepsilon > 0 \ B(x,\varepsilon) \not\subset A \Leftrightarrow \forall \varepsilon > 0 B(x,\varepsilon) \cap (X \setminus A) \neq \varnothing \Leftrightarrow X \in \overline{X \setminus A} \}$$

Consequences 1. $A^o \subset A$, $(X \setminus A^o = \overline{X \setminus A} \subset X \setminus A)$ 2. $A \subset B \Rightarrow A^o \subset B^o$ 3. $(A^o)^o = A^o$ 4. $(A \cap B)^o = A^o \cap B^o$ 5. A is open $\Leftrightarrow X \setminus A$ is closed $(A^o = A \Leftrightarrow X \setminus A^o = X \setminus A = \overline{X \setminus A})$ 6. Union of arbitrary family of open sets is an open set. 7. Intersection of finite number of open sets is an open set

Example 1. X — discrete space. All the sets are open. 2. $X = \mathbb{R}$. Set is open \Leftrightarrow a set is a union of intervals sequence (open intervals)

X: d – metric on X. A set of all open sets is called a topology of the space X.

$$\lim_{n \to \infty} x_n = x \Leftrightarrow \forall \varepsilon > 0\varepsilon \ \exists N \forall n \ge N x_n \in B(x, \varepsilon)$$

 $\Leftrightarrow \forall$ open set U that contains $x, \exists N \ \forall n \geq N \ x_n \in U$

Theorem $d_1: d_2$ — metric on X. d_1 and d_2 define the same topology on X if and only if the convergence on these metrics is the same (in other words $d_1(x_n, x) \to 0 \Leftrightarrow d_2(x_n, x) \to 0$)

Proof: 1. Let the open sets relatively d_1 and d_2 coincide. Let $d_1(x_n, x) \to 0$

 $\forall \varepsilon > 0 : B_{d_2}(x, \varepsilon)$ open relatively $d_2 \Rightarrow B_{d_2}(x, \varepsilon)$ open relatively d_1

$$\Rightarrow \exists \delta > 0 : B_{d_1}(x,\delta) \subset B_{d_2}(x,\varepsilon)$$

$$\exists N : \forall n \ge N : d_1(x_n, x) < \delta \Rightarrow d_2(x_n, x) < \varepsilon$$

2. Let the convergence in d_1 and d_2 be equivalent. Consider the set $A \subset X$ exists that is open relatively to d_1 and not open relatively to d_2 . $\exists x \in A$: x not inner for A relatively d_2 .

$$\forall n \ge 1 : B_{d_2}\left(x, \frac{1}{n}\right) \not\subset A. \quad \forall n \ge 1 \exists x_n \not\in A$$

 $d_2(x_n, x) < \frac{1}{n} d_2(x_n, x) \to \exists A \exists N \forall n \geq N$ $x_n \in A$. *Contradiction.*

Definition Two metrics: d_1 and d_2 on a set X are equivalent if they define the same topology (define the same convergent sequences).

Exercise: On \mathbb{R}^n all the metrics $d_p, 0 are equivalent.$

Topology of subspace

(X,d) — metric space, $Y \subset X$. $(Y,d|_{Y\times Y})$ — subspace

$$y \in Y, r > 0.$$
 $B_Y(y, r) = \{y' \in Y : d(y, y') < r\} = Y \cap B_X(y, r)$

$$A \subset Y \ \overline{A}_Y = \{ y \in Y : \forall \varepsilon > 0 \ B(y, \varepsilon) \cap A \neq \emptyset \} = Y \cap \overline{A}_X$$

 $A \subset Y$ is closed relatively to Y if and only if $A = Y \cap F$ where F is closed in X.

 $A \subset Y$ is open relatively to Y if and only if $A = Y \cap G$ where G is open in X.

Definition A sequence $(x_{n\geq 1}^{\infty})$ in metric space (X,d) is fundamental (Cauchy sequence) if

$$d(x_n, x_m) \to 0 \ n, m \to \infty$$

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m \ge N \ d(x_n, x_m) < \varepsilon$$

Corollary Convergent sequence in fundamental.

Proof: Let
$$x_n \to x$$
, $n \to \infty \Rightarrow d(x_n, x) \to 0$, $n \to \infty \ \forall \varepsilon > 0 \ \exists N \ \forall n \ge N \ d(x_n, x) < \frac{\varepsilon}{2}$

If
$$n, m \ge N$$
 then $d(x_n, x_m) \le d(x_n, x) + d(x_m, x) < \varepsilon$

Definition: (X, d) — full, if in X any fundamental sequence is convergent.

Example: 1.
$$X = \mathbb{R}, d(x,y) = |x-y|$$
 — full metric space 2. $X = \mathbb{R}^n, d_2(x,y) = \mathbb{R}^n$

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2 \text{ Let } (x^{(k)})_{k \ge 1} \text{ fundamental sequence in } (\mathbb{R}^n, d_2) \ x^{(k)} = \left(x_1^{(k)}, \dots, x_n^{(k)}\right)}$$

$$0 \leftarrow d_2(x^{(k)}, x^{(m)}) = \sqrt{\sum_{i=1}^n (x_i^{(k)} - x_i^{(m)})^2} \ge \left| x_i^{(k)} - x_i^{(m)} \right|, \quad k, m \to \infty$$

 $(x_i^{(k)})_{k\geq 1}$ — fundamental in \mathbb{R} .

$$\exists \lim_{k \to \infty} x_i^{(k)} = x_i, \quad 1 \le i \le n \quad x = (x_1, \dots, x_n) \ d_2(x^{(k)}, x) = \sqrt{\sum_{i=1}^n \underbrace{(x_i^{(k)} - x_i)}^2}_{0} \to_{k \to \infty} 0$$

Exercise: $\forall p \in (0, \infty] \ (\mathbb{R}^n, d_p)$ — full space

3. X = C[a, b]

$$d(f,g) = \sup_{a \le t \le b} |f(t) - g(t)|$$

(C[a,b],d) — full metric space Let $(f_n)_{n\geq 1}$ fundamental sequence in that full metric space $0\leftarrow d(f_n,f_m)=\sup_{a\leq t\leq b}|f_n(t)-f_m(t)|\geq \geq |f_n(t)-f_m(t)|$ fixed t $(f_n(t))_{n\geq 1}$ — fundamental sequence in \mathbb{R} $\exists \lim_{n\to\infty} f_n(t)=:f(t)$ $f:[a,b]\to\mathbb{R}$

$$\forall \varepsilon > 0 \quad \exists N \quad \forall n, m \ge N \quad \forall t \in [a, b] \quad |f_n(t) - f_m(t)| \le \varepsilon \ m \to \infty$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists N \forall n \ge N \ \underbrace{\forall t |f_n(t) - f(t)| \le \varepsilon}_{d(f_n, f) \le \varepsilon}$$

Lets show that f is continuous by t $t_0 \in [a, b]$. Need to prove that $\forall \varepsilon > 0 \exists \delta > 0 : |t - t_0| < \delta \Rightarrow |f(t) - f(t_0)| < \varepsilon$

$$\exists N : \forall n \ge N : \sup_{S} |f_n(s) - f(s)| < \frac{\varepsilon}{3}$$
$$|f_N(t) - f_N(t_0)| < \frac{\varepsilon}{3} \text{ if } |t - t_0| < \delta$$

$$|f(t) - f(t_0)| \le |f_N(t) - f(t)| + |f_N(t_0) - f(t_0)| + |f_{N(t)} - f_N(t_0)| < \varepsilon$$

Example. $\mathbb{R}, d_1(x, y) = |e^x - e^y|, d(x, y) = |x - y|$

metrics d_1 and d are equivalent.

 (\mathbb{R}, d_1) is not complete. $x_n = -n, n \ge 1$

$$d_1(x_n, x_m) = |e^{x_n} - e^{x_m}| = |e^{-n} - e^{-m}| \to 0, \quad n, m \to \infty$$
$$d_1(x_n, x) = |e^{x_n} - e^x| = |e^{-n} - e^x| \to e^x$$

 e^e set mutually unambiguous correspondence between \mathbb{R} and $(0,\infty)$

Example. $C[a, b], d_1(f, g) = \int_a^b |f(t) - g(t)| dt$

 $(C[a, b], d_1)$ is not complete metric space.

$$f_n(t) = \begin{cases} 1 & t \ge c \\ 0 & t \le c - \frac{1}{n} \end{cases}$$
 linear on $[c - \frac{1}{n}, c]$

$$d_1(f_n, f_m) = \int_a^b |f_n(t) - f_m(t)| dt \le \int_{c - \frac{1}{n}}^c 2dt = \frac{2}{n} \to_{n, m \to \infty} 0$$

If $d_1(f_n, f) \to 0$, $n \to \infty$, then $f(t) = \begin{cases} 1 & t \le c \\ 0 & t < c \end{cases}$ which cannot be true for continuous f.

Example.

$$l^2 = \{x = (x_1, \dots \mid \sum_{i=1}^{\infty} x_i^2 < \infty\}$$

$$d(x,y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

 (l^2, d) — complete metric space

 $(x^{(k)})_{k\geq 1}$ — fundamental sequence in l^2

$$x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots)$$
$$d(x^{(k)}, x^{(m)}) = \sqrt{\sum_{i=1}^{\infty} (x_i^{(k)} - x_i^{(m)})^2} \to 0, \quad n, m \to \infty$$

Let's freeze the number of n.

$$\begin{aligned} \left|x_{n}^{(k)}-x_{n}^{(m)}\right| &\leq \sqrt{\sum_{i=1}^{\infty}\left(x_{i}^{(k)}-x_{i}^{(m)}\right)^{2}} = d(x^{(k)},x^{(m)}) \rightarrow 0 \ k,m \rightarrow \infty \\ &\exists \lim_{k \rightarrow \infty} x_{n}^{(k)} := x_{n} \\ &\varepsilon > 0 : \exists N : \forall k,m \geq \mathbb{N} : d(x^{(k)},x^{(m)}) \leq \varepsilon \\ &\sum_{i=1}^{\infty}\left(x_{i}^{(k)}-x_{i}^{(m)}\right)^{2} \leq \varepsilon^{2}, \ k,m \geq N \\ &\sum_{i=1}^{M}\left(x_{i}^{(k)}-\underbrace{x_{i}^{(m)}}_{x_{i},\text{within }m \rightarrow \infty}\right)^{2} \leq \varepsilon^{2}, \ k,m \geq N, M \geq 1 \\ &\sum_{i=1}^{M}\left(x_{i}^{(k)}-x_{i}\right)^{2} \leq \varepsilon^{2}, \ k \geq N, M \geq 1 \\ &\sum_{i=1}^{\infty}\left(x_{i}^{(k)}-x_{i}\right)^{2} \leq \varepsilon^{2} \\ &\Rightarrow \begin{cases} \sum_{i=1}^{\infty}x_{i}^{2} < \infty, \ x \in l^{2} \\ d(x^{(k)},x) \leq \varepsilon, \ k \geq N \end{cases} \end{aligned}$$

Corollary 1. 1. Closed subspace of a complete space is complete.

2. Complete subspace of a metric space is closed.

Proof. 1. (X, d) is complete. Y — closed subset of X. $(x_n)_{n\geq 1}$ — fundamental in $Y \Rightarrow (x_n)_{n\geq 1}$ — fundamental in $X \Rightarrow (x_n)_{n\geq 1}$ converges to $x \in X \Rightarrow x \in Y$ and $(x_n)_{n\geq 1}$ is convergent in Y.

2. Let Y — a subspace of space X, Y is complete.

 $y \in \overline{Y} \Rightarrow$ exists sequence $(y_n)_n$ in Y that converges to $y \Rightarrow (y_n)$ fundamental $\Rightarrow (y_n)$ converges in $Y \Rightarrow y \in Y$.

Theorem 2 (about nested balls). (X, d) metric space. X is complete if and only if any arbitrary sequence of nested closed balls which have $R \to 0$ has non-empty intersection.

Proof. (
$$\Rightarrow$$
) Let X is a complete. $B_n = \overline{B}(X_n, r_n), B_1 \supset B_2 \supset B_3 \ldots, r_n \to 0$

$$d(x_n, x_m) \le^{n \le m} r_n \to 0, \quad n \to \infty$$

$$\exists \lim_{n \to \infty} x_n := x$$

$$n \ge N \Rightarrow x_n \in B_N, \ n \ge N \Rightarrow x \in B_N$$

$$\bigcap_{n=1}^{\infty} B_n \neq \emptyset$$

(⇐)

Let $(x_n)_{n\geq 1}$ — fundamental in X

$$\exists n_1 \ \forall n, m \ge n_1 : d(x_n, x_m) \le \frac{1}{2}$$
$$\exists n_2 \ge n_1 : \forall n_1, m \ge n_2 : d(x_n, x_m) \le \frac{1}{4}$$

. .

$$1 \le n_1 < n_2 < n_3 \dots : \forall n, m \ge n_k : d(x_n, x_m) \le \frac{1}{2^k}$$
$$d(x_{n_k}, x_{n_{k+1}}) \le 2^{-k}$$

$$B_k = \overline{B}(x_{n_k}, 2^{-k+1})$$

Let's show that $B_{k+1} \subset B_k$

$$y \in B_{k+1} : d(y, x_{n_{k+1}}) \le 2_{-k}$$

$$d(y, x_{n_k}) \le d(y, x_{n_{k+1}}) + d(x_{n_{k+1}}, x_{n_k}) \le 2^{-k+1}$$
$$\exists x \in \cap_{k \ge 1} B_k$$
$$d(x_{n_k}, x) \le 2^{-k+1} \to 0$$

$$x_{n_k} \to x, \ k \to \infty$$

$$\varepsilon > 0. \quad \exists N : \forall n, m \ge N : d(x_n, x_m) < \frac{\varepsilon}{2}$$

$$\exists n_k \ge N : d(x_{n_k}, x) \le \frac{\varepsilon}{2}$$

if $n \geq N$ then $d(x_n, x) \leq \varepsilon$

2 Completation of Metric Space

Definition 9. Complete metric space (\hat{X}, \hat{d}) is a complitation of metric space (X, d) if X is isometric to dense everywhere subset of X.

Theorem 3. For any arbitrary metric space X its completation exists and only one with the precision to isometrie.

Proof. (Oneness)

$$(\hat{X}, \hat{d})$$
 and (\tilde{X}, \tilde{d}) — a completion (X, d) .

$$f: X \to \hat{X}$$
 isometrie between X and $f(x), \overline{f(X)} = \hat{X}$

$$g: X \to \tilde{X}$$
 isometrie between X and $g(x), \overline{g(X)} = \tilde{X}$

$$\hat{x} \in \hat{X}$$
. $\hat{x} = \lim_{n \to \infty} f(x_n)$.

$$(f(x_n))$$
 convergent \Rightarrow fundamental \Rightarrow (x_n) fundamental \Rightarrow $(g(x_n))$ fundamental in \tilde{X}

$$\varphi(\hat{x}) = \lim_{n \to \infty} g(x_n)$$

Further need to show that φ is isometric

(Existence)

S(X) set of all fundamental sequences in X.

$$s \in S(X) \Rightarrow s = (x_1, x_2, \ldots), \quad d(x_n, x_m) \to n, m \to \infty$$

$$S \sim S' \Leftrightarrow \lim_{n \to \infty} d(x_n, x_m) \to, n, m \to \infty$$

$$|d(x_n m x'_n) - d(x_m, x'_m)| \le d(x_n, x_m) + d(x'_n, x'_m) \to 0 \ n, m \to \infty$$

 $d(x_n, mx'_n)$ — fundamental in \mathbb{R} .

$$\exists \lim_{n \to \infty} d(x_n, x_n')$$

$$s \sim s, s \sim s' \rightarrow s' \sim s$$

$$s \sim s', s' \sim s'' \Rightarrow s \sim s''$$

 $S(X)/\not = \hat{X}$ a set of equivalence classes

$$\forall s \in S(X)$$
 [S] — equivalence class

$$d([S], [S']) = \lim_{n \to \infty} d(x_n, x'_n)$$

$$s = (x_1, x_2, \ldots), t = (y_1, y_2, \ldots) \quad t \sim s$$

$$s' = (x'_1, x'_2, \ldots), t' = (y'_1, y'_2, \ldots)$$
 $t' \sim s'$

$$|d(x_n, x_n') - d(y_n, y_n')| \le \underbrace{d(x_n, y_n)}_{(t \sim s)} + \underbrace{d(x_n', y_n')}_{t' \sim s'} \to 0$$

$$\hat{d}([S], [S"]) = 0 \Rightarrow \lim_{n \to \infty} d(x_n, x'_n) = 0 \to s \sim s' \Rightarrow [S] = [S']$$

$$f: X \to \hat{X}$$

$$x \in X \to s = (x_1, x_2, \ldots) \Rightarrow f(x) = [S]$$

$$x, y \in X$$
. $\hat{d}(f(x), f(y)) = \lim_{n \to \infty}$

$$\overline{f(x)} = \hat{X}?$$

$$s = (x_1, x_2, \ldots), \varepsilon > 0$$

$$\forall n, m \ge N \ d(x_n, x_m) \le \varepsilon$$

$$\hat{d}([s], f(x_n)) = \lim_{m \to \infty} d(x_n, x_m) \le \varepsilon$$

Completeness (\hat{X}, \hat{d}) . Let $([S^{(k)}])_{k \geq 1}$ fundamental sequence.

$$\forall k \ge 1 : \exists x_k \in X : \hat{d}([S^{(k)}], d(x_k)) \le \frac{1}{k}$$

$$s = (x_1, x_2, \ldots) \in S(X).$$
 $\lim_{k \to \infty} f(x_k) = [S]$

$$[S^{(k)}] \rightarrow [S]$$

3 Baire Theorem

Definition 10. Set A is nowhere dense nowhere if A is not dense in any ball.

Equivalently:

$$int\overline{A} = \emptyset$$

Example. $X = \mathbb{R}$, $A = \{a\}$ is dense nowhere

In a space of isolated points finite sets are nowhere dense.

Theorem 4 (Baire). (X, d) — complete metric space $(X \neq \emptyset)$.

Then X cannot be represented as a countable union of nowhere dense sets.

Proof. Let $X = \bigcup_{n=1}^{\infty} A_n$, every set A_n is nowhere dense set $(int\overline{A} = \emptyset)$.

 $x_0 \in X$. x_0 — not an inner point of the set $\overline{A_1}$.

 $B(x_0, 1)$ contains $x_1 \notin \overline{A_1}$

$$\exists r_1 < \frac{1}{2} : \overline{B}(x_1, r_1) \cap A_1 = \varnothing, \quad \overline{B}(x_1, r_1) \subset B(x_0, 1)$$

$$B(x_1, r_1) \not\subset \overline{A_2}$$

 $B(x_1, r_1)$ contains $x_2 \notin \overline{A_2}$

$$\exists r_2 < \frac{1}{4} : \overline{B}(x_2, r_2) \cap A_2 = \varnothing, \quad \overline{B}(x_2, r_2) \subset B(x_1, r_1)$$

Exists such a sequence of closed balls $\overline{B}(x_n,r_n): r_n < \frac{1}{2^n}, \overline{B}(x_n,r_n) \subset B(x_{n-1},r_{n-1}): \overline{B}(x_n,r_n) \cap A_n = \emptyset$

$$(X,d)$$
 complete $\Rightarrow \bigcap_{n=1}^{\infty} \overline{B}(x_n, r_n) \ni x_*$

$$x_* \notin \bigcup_{n=1}^{\infty} A_n$$
. Contradiction.

Corollary 2. (X, d) is a complete metric space without any isolated points. Then set X is not countable.

Corollary 3. \mathbb{Q} — countable not complete space. There are no equivalent metric d_x that gives us (Q, d_x) as a complete space.

4 Continuous Mappings of Metric Spaces, Lipschitz Continuity

 $(X, d_x), (Y, d_y); f: X \to Y$

Definition 11. f is continuous in a point x_0 if $x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$

Alternatively:

$$\forall \varepsilon > 0 : \exists \delta > 0 : d_x(x, x_0) < \delta \Rightarrow d_y(f(x), f(x_0)) < \varepsilon$$

Definition 12. f is continuous if it is continuous in every point $x \in X$.

Theorem 5 (Continuous Criteria). The following conditions are equivalent:

- 1. $f: X \to Y$ continuous
- 2. \forall open set $U \subset Y$ $\underbrace{\{x \in X : f(x) \in U\}}_{f^{-1}(U)}$ is open in X.
- 3. \forall closed $F \subset Y : f^{-1}(F)$ closed

Proof. (2) \Leftrightarrow (3) F closed \Leftrightarrow U open.

$$X\backslash f^{-1}(F)=f^{-1}(U)$$

$$(1) \Rightarrow (2)$$

Let $f: X \to Y$ is continuous. Want to show that $\forall U \in Y$ is open.

 $x_0 \in f^{-1}(U)$. Need to find such a radius r > 0: $B(x_0, r) \subset f^{-1}(U)$.

$$f(x_0) \in U.\exists \varepsilon > 0 \quad B(f(x_0), \varepsilon) \subset U.$$

$$\exists \delta > 0 : d_x(x, x_0) < \delta \Rightarrow d_y(f(x), f(x_0)) < \varepsilon$$

It means that

$$x \in B(x_0, \delta) \Rightarrow f(x) \in B(f(x_0), \varepsilon) \subset U \Rightarrow x \in f^{-1}(U)$$

$$B(x_0,\delta) \subset f^{-1}(U)$$

$$(2) \Rightarrow (1)$$

$$f: X \to Y ; x_0 \in X$$

 $\forall \varepsilon > 0; U = B(f(x_0), \varepsilon)$ — open set

 $f^{-1}(U)$ — open set. $x_0 \in f^{-1}(U)$

$$\exists \delta > 0 \quad B(x_0, \delta) \subset f^{-1}(U)$$
$$d_x(x, x_0) < \delta \Rightarrow d_y(f(x), f(x_0)) < \varepsilon$$

Corollary 4. X,Y,Z — metric spaces. $f:X\to Y,\ g:Y\to Z$ — continuous. Then $g\circ f:X\to Z$ continuous.

Proof.
$$U \subset Z$$
 — open. $(g, f)^{-1}(U) = \underbrace{f^{-1}(g^{-1}(U))}_{\text{open in } X}$

Definition 13. $f: X \to Y$ is uniformly continuous if

$$\forall \varepsilon > 0 : \exists \delta > 0 : d_x(x_1, x_2) < \delta \Rightarrow d_y(f(x_1), f(x_2)) < \varepsilon$$

Definition 14. $f: X \to Y$ satisfies Lipschitz condition with constant c > 0 if

$$d_y(f(x_1), f(x_2)) \le c \cdot d_x(x_1, x_2)$$

Example. Let $A \subset X$, $A \neq \emptyset$.

$$d(x,A) := \inf_{y \in A} d(x,y)$$

 $d(\cdot, A): X \to \mathbb{R}$ — Lipschitz function with c=1

 $x_1, x_2 \in X, y \in A$.

$$d(x_1, A) \le d(x_1, y) \le d(x_1, x_2) + d(x_2, y)$$
$$d(x, A) - d(x_1, x_2) \le d(x_2, y)$$
$$|d(x, A) - d(x_2, A)| \le d(x_1, x_2)$$

Exercise

$$\{x: d(x,A) = 0\} = \overline{A}$$

5 Contraction mapping

Definition 15. $f: X \to Y$ is a contraction mapping if

$$\exists \alpha \in [0,1) : d(f(x_1), f(x_2)) \le \alpha d(x_1, x_2)$$

For contraction mapping an equation f(x) = x always has a solution.

 $f(x) = x \Rightarrow x$ – fixed point of mapping f.

Theorem 6 (Banach). (X, d) — complete metric space, $f: X \to Y$ — contraction mapping. Then f has only one fixed point.

Proof. (Oneness)

Let the two fixed point exist $x_1, x_2 \in X$.

$$d(x_1, x_2) = d(f(x_1), f(x_2)) \le \alpha d(x_1, x_2) \Rightarrow x_1 = x_2$$

(Existence)

Arbitrary $x_0 \in X$.

$$x_1 = f(x_0),$$

$$x_2 = f(x_1)$$

$$\dots$$

$$x_n = f(f(-f(x_0)))$$

$$x_n = \underbrace{f(f(\dots(f(x_0))\dots))}_n$$

$$d(x_n, x_{n+1}) = d(f(x_{n-1}), f(x_n)) \le \alpha d(x_n, x_{n-1}) \le \alpha^2 d(x_{n-2}, x_n) \le \dots \le \alpha^n d(x_0, x_n)$$

$$d(x_{n+p}, x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p}) \le d(x_0, x_1)(\alpha^n + \alpha^{n+1} + \dots + \alpha^{n+p-1} \le d(x_0, x_1) \frac{\alpha^n}{1 - \alpha}$$

$$\lim_{n \to \infty} \sup_{p \ge 1} d(x_{n+p}, x_n) = 0$$

 (x_n) Cauchy sequence.

$$x_* = \lim_{n \to \infty} x_n$$

$$x_n \to x_*$$

$$\underbrace{f(x_n)}_{x_{n+1}} \to f(x_*)$$

$$\Rightarrow f(x_*) = x_*$$

Corollary 5. f — contraction mapping, $x_0 \in X$; $x_n = f(x_{n-1})$

$$d(x_*, x_n) \le d(x_0, x_1) \frac{\alpha^n}{1 - \alpha}$$

Applications

1. $f:[a,b] \to [a,b]$ continuous.

 $f:[0,1]\to[0,1];$ f(x)=1-x is Lipschitz mapping but not contraction mapping.

If
$$|f'(x)| \le \alpha < 1$$
 then $|f(x_1) - f(x_2)| \le \alpha |x_1 - x_2|$

$$F: [a,b] \to \mathbb{R}: F(a) < 0, F(b) > 0, F'(x) \in [k_1, k_2], 0 < l_1 \le k_2 < \infty$$

Then this function has only one 0. $F(x_*) = 0$, $x_* - ?$

$$f(x) = x - \lambda F(x)$$

 $F(x_*) = 0 \Leftrightarrow x \text{ is fixed for } f$

Need several things:

(a)
$$f : [a, b] \to [a, b]$$

(b)
$$f'(x) = 1 - \lambda F'(x) \in [1 - \lambda k_2, 1 - \lambda k_1]$$

2. Linear equations systems

$$x_i = \sum_{j=1}^n a_{ij} x_j + b_i$$
$$x = Ax + b =: f(x)$$
$$f : \mathbb{R}^n \to \mathbb{R}^n$$

The contraction mapping actually depends on the matrix A and picked metric function. So usually the metric function is picked the way that the mapping is contraction for a specific matrix A.

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$
$$d_{\infty}(f(x), f(y)) = \max_{1 \le i \le n} |\dots| =$$
$$= \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij}(x_j - y_j) \right| \le \left(\max_{i} \sum_{j=1}^{n} |a_{ij}| \right) d_{\infty}(x,y)$$

The mapping f(x) = Ax + b is going to be contraction mapping relative to d_{∞} if

$$\max_{i} \sum_{i=1}^{n} |a_{ij}| < 1$$

 $d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$

$$d_1(f(x), f(y)) = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} (x_j - y_j) \right| \le$$

$$\le \sum_{j=1}^n |x_j - y_j| \sum_{j=1}^n |a_{ij}| \le \left(\max_j \sum_{j=1}^n |a_{ij}| \right) d_1(x, y)$$

If $\max_{j} \sum_{i=1}^{n} |a_{ij}| < 1$ then f(x) = Ax + b is a contraction mapping relative to d_1 .

3.

$$\begin{cases} \frac{\partial y}{\partial x} = f(x, y) \\ y(x_0) = y_0 \end{cases} \Leftrightarrow y(x) = \underbrace{y_0 + \int_{x_0}^x f(t, y(t)) dt}_{F(y)}$$
$$|f(x_1, y_1) - f(x, y_2)| \le L |y_1 - y_2|$$

4. Fredholm equations

$$x(t) = \lambda \int_{a}^{b} K(t, s)x(s)ds + y(t), \quad a \le b$$

K is continuous on $[a, b]^2$, y is continuous on [a, b].

$$f: C[a,b] \to C[a,b]$$

C[a,b] is complete relative to $d(x_1,x_2) = \max_{t} |x_1(t) - x_2(t)|$

$$f(x)(t) = \lambda \int_{a}^{b} K(t, s)x(s)ds + y(t)$$
$$d(f(x_1), f(x_2)) = \max_{t} |f(x_1)(t) - f(x_2)(t)|$$

Let's fix point t... $M = \sup_{(t,s) \in [a,b]^2} |K(t,s)|$

$$|f(x_1)(t) - f(x_2)(t)| = \left| \lambda \int_a^b K(t, s)(x_1(s) - x_2(s)) ds \right| \le |\lambda| \int_a^b M d(x_1, x_2) ds = |\lambda| M(b - a) d(x_1, x_2)$$

 $|\lambda| < \frac{1}{M(b-a)}$ then f is a contraction mapping.

6 Lecture 1: Cover and Compact Spaces

X — a set. $(A_i)_{i \in I}$ subsets of X.

Definition 16. $(A_i)_{i\in I}$ is a cover of the set X if $X = \bigcup_{i\in I} A_i$.

Lemma 1 (Heihe-Borel). From arbitrary open cover of an interval [a, b] on \mathbb{R} we may separate finite subcover.

Proof. By contradiction.

Exists such a sequence of open sets $(G_i)_{i\in I}$ in \mathbb{R} such that

1.
$$[a,b] \subset \bigcup_{i \in I} G_i$$

2. [a, b] is not covered by any finite number of G_i .

$$[a_1, b_1] \subset [a, b], \quad b_1 - a_1 = \frac{b - a}{2}$$

 $[a_1, b_1]$ is not covered by a finite number of G_i .
 $[a, b] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$

$$b_n - a_n = \frac{b - a}{2^n}$$

 $[a_n, b_n]$ is not covered by a finite number of G_i . $x \in \bigcap [a_n, b_n]$

$$\exists i_0 : x \in G_{i_0} \Rightarrow (x - \varepsilon, x + \varepsilon) \in G_{i_0}$$
$$[a_n, b_n] \subset G_{i_0} \Rightarrow \text{contradiction.}$$

Exercise

From arbitrary open cover of the closed rectangular in \mathbb{R}^n we may separate a finite subcover.

Definition 17. Metric space (X, d) is called compact if its any open cover contains finite subcover.

Definition 18. Set A in a metric space (X, d) is compact if A is a compact subspace of (X, d).

Equivalently:

Arbitrary cover of A consisting of open sets of X contains finite subcover.

Definition 19. Set A is relatively compact to X if its closure is compact.

Definition 20. Collection of sets $\{A_i\}_{i\in I}$ has finite intersection property (centred system) if

$$\forall i_1, \ldots, i_n \in I : n \geq 1 : A_{i_1} \cap \ldots \cap A_{i_n} \neq \emptyset$$

Theorem 7. Metric space (X, d) is compact if and only if arbitrary centred collection of closed sets in X has non-empty intersection.

Proof. (\Rightarrow)

Let $\{F_i\}_{i\in I}$ — centred collection of closed sets in compact metric space (X,d).

$$U_i = X \backslash F_i$$
 are open

$$\bigcup_{j=1}^{n} U_{i_j} = (X \setminus F_{i_1}) \cup \ldots \cup (X \setminus F_{i_n}) = X \setminus \underbrace{(F_{i_1} \cap \ldots \cap F_{i_n})}_{\neq \varnothing} \neq X$$

$$X \text{ is compact } \Rightarrow \bigcup_{i \in I} U_i \neq X \Leftrightarrow X \backslash \bigcap_{i \in I} F_i \neq X \Rightarrow \bigcap_{i \in I} F_i \neq \emptyset$$

Corollary 6. If metric space (X, d) is compact and set $A \subset X$ is infinite then A has limit points in X (in other words, $\exists x \in X : \forall r > 0 : B(x, r) \cap A$ is infinite).

Proof. Let A does not have any limit points. Let's show that A is closed.

Let $\exists x \in \overline{A} \backslash A$. x is tangent to $A, x \notin A \Rightarrow \forall r > 0$ $B(x,r) \cap A$ is infinite, which cannot be true.

 $\{x_1, x_2, \ldots\} \subset A$ where all x_n are distinct.

 $F_n = \{x_n, x_{n+1}, \ldots\}$ is closed.

$$F_1, \cap \ldots \cap F_n = F_n \neq \emptyset$$

$$\bigcap F_n = \varnothing.$$

Contradiction.

Corollary 7. In a compact metric space any arbitrary sequence contains convergent subsequence.

Proof. (x_1, x_2, \ldots) — sequence in a compact metric space (X, d).

 $A = \bigcup_{n=1} \{x_n\}$. If A is finite then there exists such a subsequence $x_{n_1} = x_{n_2} = x_{n_3} = \dots$

If A is infinite then A has a limit point x.

$$B(x,1) \ni x_{n_1}; B(x,\frac{1}{2}) \ni x_{n_2} \ (n_2 > n_1); \dots$$

$$d(x_{n_k}, x) < \frac{1}{k} \to 0, \ k \to \infty$$

Corollary 8. Compact metric space is complete (fundamental sequence with convergent subsequence is convergent by itself).

Corollary 9. Compact set in metric space is closed and bounded.

Proof. Let A be compact in X. Consider open balls $\{B(x,1): x \in A\}$.

$$\Rightarrow B(x_1,1) \cap \ldots \cap B(x_n,1) \supset A.$$

Theorem 8. X- compact metric space. Y- arbitrary metric space. $f:X\to Y$ is continuous. Then f(X)- is compact in Y.

Proof. Let $\{V_i\}_{i\in I}$ — open cover f(X).

$$f(X) \subset \bigcup_{i \in I} V_i$$
.

Criteria of continuity: $f^{-1}(V_i)$ is open in X.

$$X = \bigcup_{i \in I} f^{-1}(V_i) \Rightarrow X = f^{-1}(V_{i,1}) \cup \ldots \cup f^{-1}(V_{i,n}) \Rightarrow f(X) \subset V_{i,1} \cup \ldots \cup V_{i,n}$$

Corollary 10. X is compact, $f: X \to \mathbb{R}$ is continuous. Then f is bounded and reaches it's minimal and maximal values.

Proof.
$$f(X)$$
 — compact in $\mathbb{R} \Rightarrow f(X)$ is bounded.
 $\sup f(X) = f(x^*), \quad inff(X) = f(x_*).$

Corollary 11. X compact. $f: X \to Y$ is continuous and bijective. Then f^{-1} is continuous too (f homogeneous).

Proof.

Definition 21 (
$$\varepsilon$$
 grid). $\{x_1, \ldots, x_n\}$ is ε -grid for (X, d) if $\cup B(x_i, \varepsilon) = X$ ($\forall x \in X : \exists i : d(x, x_i) < \varepsilon$.

Definition 22. (X, d) is totally bounded if $\forall \varepsilon > 0 \ (X, d)$ has a finite ε -grid.

Example. in \mathbb{R}^n bounded and totally bounded sets coincide.

Example.
$$l^1 = \{x = (x_1, x_2, ...) \mid \sum_{n=1}^{\infty} |x_n| < \infty\}$$

$$d(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|$$

 $\overline{B}(0,1)$ is not totally bounded set as for $\varepsilon = \frac{1}{2}$ we cannot find a proper ε -grid.

Let such a finite $\frac{1}{2}$ -grid exists.

$$B(x_1, \frac{1}{2}), \dots, B(x_n, \frac{1}{2}).$$

$$e_1 = (1, 0, 0, \dots); e_2 = (0, 1, 0, 0, \dots); \dots$$

$$d(e_k, 0) = 1 \quad e_1, e_2, \dots \in \overline{B}(0, 1)$$

$$e_i, e_j \in B(x_l, \frac{1}{2}) \quad (i \neq j)$$

$$2 = d(e_i, e_j) < 1 - \text{contradiction}.$$

7 Lecture 3

Compact space is totally bounded.

Proof.

$$\varepsilon > 0$$
 $\bigcup_{x \in X} B(x, \varepsilon) = X \Rightarrow B(x_1, \varepsilon) \cup \ldots \cup B(x_n, \varepsilon) = X$

Lemma 2. (Y,) separable metric space. Then out of any open cover of Y we may select a countable cover.

Proof.
$$(U_i)_{i \in I}$$
, $\bigcup_{i \in I} U_i = Y, U_i$ are open. $\{y_1, y_2, \ldots\}$ are everywhere dense. Let $\frac{1}{k} < \frac{\varepsilon}{2}$. $\exists j : d(x, y_j) < \frac{1}{k}$. $x \in \underbrace{B(y_j, \frac{1}{k})}_{A:i} \subset B(x, \varepsilon) \subset U_i$

$$U_i = \bigcup_{(j,k)\in I(i)} \Delta_{jk}$$

$$\bigcup_{i\in I} U_i = \bigcup_{i\in I} \bigcup_{(j,k)\in I(i)} \Delta_{jk} = \Delta_{j_1k_1} \cup \Delta_{j_2k_2} \cup \ldots \subset U_{i_1} \cup U_{i_2} \cup \ldots$$

Theorem 9 (Hausdorf compact criteria). Metric space (X, d) is compact \Leftrightarrow

- 1. (X, d) is complete
- 2. (X, d) is totally bounded

Proof. (\Leftarrow)

Let's prove that arbitrary sequence in X has convergent subsequence.

 $(x_n : n \ge 1)$ — sequence in X.

 $X = B(y_1, \varepsilon) \cup \ldots \cup B(y_m, \varepsilon)$

$$\exists (x_{n_k} : k \ge 1) : x_{n_k} \in B(y_i, \varepsilon)$$
$$d(x_{n_k}, x_{n_m}) < 2\varepsilon$$

$$\begin{split} \varepsilon &= 1 - \text{Exists subsequence } (x_n^{(1)}: n \geq 1): d(x_n^{(1)}, x_k^{(1)}) < 1 \text{ out of sequence } x_n \\ \varepsilon &= \frac{1}{2} - \text{Exists subsequence } (x_n^{(2)}: n \geq 1): d(x_n^{(2)}, x_k^{(2)}) < \frac{1}{2} \text{ out of sequence } x_n^{(1)} \\ \varepsilon &= \frac{1}{4} - \text{Exists subsequence } (x_n^{(3)}: n \geq 1): d(x_n^{(3)}, x_k^{(3)}) < \frac{1}{4} \text{ out of sequence } x_n^{(2)} \end{split}$$

 $z_n = x_n^{(n)}$

 (z_n, z_{n+1}, \ldots) — subsequence of x_n

$$\forall k_{ij} \ge n \quad d(z_k, z_j) = d(x_{r_k}^{(n)}, x_{r_j}^{(n)}) < \frac{1}{2^{n-1}}$$

 $(z_k: k \geq 1)$ fundamental \Rightarrow convergent subsequence.

Totally bounded space is separable. Indeed,

$$X = B(x_1, \frac{1}{n}) \cup \ldots \cup B(x_{k(n)}, \frac{1}{n}); \qquad D_n = \{x_1, x_{k(n)}\}$$

$$D = \bigcup_{n=1}^{\infty} D_n$$
 is a countable set

 $x \in X, \varepsilon > 0, \frac{1}{n} < \varepsilon$. We may find $y \in D_n : d(x, y) < \frac{1}{n} < \varepsilon$

Use Lemma 2.

Let U_1, U_2, U_3, \ldots countable open cover of X. Assume that finite sub cover does not exist. Then $X \setminus / (U_1 \cup U_2 \cup \ldots \cup U_n) \ni x_n \notin (U_1 \cup \ldots \cup U_n)$.

Create a sequence of x_n where each x_i is not included in all of $U_j: j \leq i$.

 $x_{n_k} \to x, \ k \to \infty.$

 $x \in U_N, x_{n_m} \in U_N, m \ge k_0$

Contradiction.

Corollary 12. Metric space is compact \Leftrightarrow arbitrary sequence has convergent subsequence.

Proof. (\Leftarrow) Completeness is fulfilled.

By contradiction. Assume that any sequence has a convergent subsequence. Now let X is not totally bounded.

 $\exists \varepsilon > 0 \ \varepsilon$ -grid does not exist

Pick some x_1 .

$$x_1 \in X$$
.

Open ball around x_1 does not cover all the space. Then pick x_2 that

$$\exists x_2 : d(x_2, x_1) \ge \varepsilon$$

Again, two balls out of x_1, x_2 do not cover all the space X.

$$\exists x_3 : d(x_3, x_2) \ge \varepsilon, d(x_3, x_1) \ge \varepsilon$$

. . .

In result we got such a sequence of x_n that

$$d(x_n, x_k) \ge \varepsilon, n \ne k.$$

 $(x_n : n \ge 1)$ does not have convergent subsequences.

Example. $A \subset \mathbb{R}^n$. A is compact $\Leftrightarrow A$ is closed and bounded.

Example.
$$l^1 = \{x = (x_1, x_2, ...) \mid \sum_{n=1}^{\infty} |x_n| < \infty \}$$

 $A \subset l^1$. A is compact $\Leftrightarrow A$ is closed, and A is bounded, and $\sup_{x \in A} \sum_{n=N}^{\infty} |x_n| \to_{N \to \infty} 0$

Proof.
$$(\Rightarrow) \varepsilon > 0$$
 $A \subset B(y^{(1)}, \varepsilon) \cup \ldots \cup B(y^{(m)}, \varepsilon)$
 $y^{(i)} = (y_1^{(i)}, y_2^{(i)}, \ldots)$

$$\sum_{n=1}^{\infty} |y_n^{(i)}| < \infty$$

$$\exists N : \sum_{n=N}^{\infty} |y_n^{(i)}| < \varepsilon, \quad 1 \le i \le m$$

$$x \in A.d(x, y^{(i)}) < \varepsilon; \quad \sum_{n=1}^{\infty} |x_n - y_n^{(i)}| < \varepsilon$$

$$\sum_{n=N}^{\infty} |x_n| \le \underbrace{\sum_{n=N}^{\infty} |x_n - x_n^{(i)}|}_{<\varepsilon} + \underbrace{\sum_{n=N}^{\infty} |y_n^{(i)}|}_{<\varepsilon} < 2\varepsilon$$

$$\sup_{x \in A} \sum_{n=N}^{\infty} |x_n| < 2\varepsilon$$

 (\Leftarrow) A is complete as it is closed in l^1 .

$$\varepsilon > 0$$
 $\exists N : \sup_{x \in A} \sum_{n=N}^{\infty} |x_n| < \varepsilon$

$$\exists c > 0 : |x_n| < C, x \in A, n \ge 1$$
exists $(y_1^{(i)}, \dots, y_N^{(i)}), 1 \le i \le M$

$$u_l = -c + l\alpha, \quad 0 \le l \le \frac{2c}{\alpha}$$

$$(u_{l_1}, u_{l_2})$$

$$\forall x \in A : \exists i :: \sum_{n=1}^{N} \left| y_n^{(i)} - x_n \right| \varepsilon$$
$$\left(y_1^{(i)}, \dots, y_N^{(i)}, 0, 0, \dots \right)$$
$$\forall x \in A : \exists i : d(X, y^{(i)}) < \varepsilon$$

Example. $C[a, b]; \quad d(f, g) = \sup_{a \le t \le b} |f(t) - g(t)|$

 $A \subset C[a,b]$ is compact $\Leftrightarrow A$ is closed, bounded and

$$\forall \varepsilon > 0 : \exists \delta > 0 : |t - s| \le \varepsilon \Rightarrow \sup_{f \in A} |f(t) - f(s)| \le \varepsilon$$

the last condition is called (одностайна рівномірна неперервність) Used Ascolli-Artsel theorem.

8 Linear Spaces

K — scalars field $(K = \mathbb{R} \text{ or } K = \mathbb{C})$.

Definition 23. Linear space upon field K is called a non-empty set X with operations:

1.
$$+: X \times X \to X \quad ((x,y) \mapsto x+y)$$

$$2. : K \times X \to X \quad ((\alpha, x) \mapsto \alpha \cdot x = \alpha x)$$

that satisfy the axioms:

1.
$$x + y = y + x$$

2.
$$(x+y) + z = x + (y+z)$$

3.
$$\exists 0 \in X : x + 0 = x$$

4.
$$\forall x \in X : \exists (-x) : x + (-x) = 0$$

5.
$$\alpha(\beta x) = (\alpha \beta)x$$

6.
$$1 \cdot x = x$$

7.
$$\alpha(x+y) = \alpha x + \alpha y$$

8.
$$(\alpha + \beta)x = \alpha x + \beta x$$

Example. $L^p(\Omega, \mathcal{F}, \mathbb{P})$ — collection of random variables ξ with $E |\xi|^p < \infty$

Definition 24. Let X be a linear space, $x_1, \ldots, x_n \in X$. Vectors x_1, \ldots, x_n are linearly dependent, if there exist such scalars

$$\alpha_1, \dots, \alpha_n \in K : \sum_{i=1}^n \alpha_i x_i = 0$$

and not every $\alpha_i = 0$.

Definition 25. Vectors x_1, \ldots, x_n are linearly independent if they are not linearly dependent.

Definition 26. Basis of linear space is called maximum linear independent vector system.

Notice: In any arbitrary linear space there exists a basis.

Different basis' have similar cardinality, that is called a dimension of the space. If there is a finite basis (with n elements) then dimX = n and X is finite-dimensional.

Definition 27. $X' \subset X$ — subspace, if $x, y \in X' \Rightarrow x + y \in X', \alpha x \in X'$

X' – subspace of linear space X.

 $x \sim y \Leftrightarrow x - y \in X'$ — equivalence relation.

 $[x] = \{ y \in X : x \sim y \}$

X//X' — a set of all equivalence classes. Let $\xi, \eta \in X//X'$: $\xi = [x], \eta = [y] \Rightarrow \xi + \eta = [x+y]$ $\alpha \xi = [\alpha x]$

 $\dim X//X' \equiv \text{codimension of } X'.$

Proposition

Proposition 1. Let X' — subspace of codimension n. Then $\exists x_1, \ldots, x_n \in X$: arbitrary $x \in X$ is written in the only way:

$$x = \alpha_1 x_1 + \ldots + \alpha_n x_n + y, \quad \alpha_1, \ldots, \alpha_n \in K, y \in X'$$

Proof. ξ_1, \ldots, ξ_n — basis in X//X'.

 $\xi_1 = [x_1]$

If $x \in X$, $\xi = [x]$. $\xi = \alpha_1 \xi_1 + \ldots + \alpha_n \xi_n$

$$[x] = [\alpha_1, x_1 + \dots + \alpha_n x_n] \Rightarrow x - \alpha_1 x_1 - \dots - \alpha_n x_n = \xi$$

Definition 28. X, Y — linear spaces on some field K. $A: X \to Y$. A is a linear operator if $A(x_1 + x_2) = Ax_1 + Ax_2$, $A(\alpha x) = \alpha Ax$

$$\operatorname{Ker} A - \{x \in X : Ax = 0\}$$

$$R(A) = \{Ax : x \in X\}$$

Definition 29. If Y = K then linear operator $f: X \to K$ is called a linear functional.

Proposition 2. 1. If $f: X \to Y$ is not null linear functional, then its kernel Ker f has codimension 1;

2. If $X' \subset X$ — subspace of codimension 1 then there exist a linear functional $f: X \to Y$ for which $X' = \operatorname{Ker} f$

Proof. 1.
$$f(x_0) \neq 0$$
. $x^* = \frac{x_0}{f(x_0)}$. $f(x^*) = \frac{f(x_0)}{f(x_0)} = 1$
Consider $x \in X$. $y = x - f(x)x^*$. $f(y) = f(x) - f(x)f(x^*)$
 $x = \underbrace{f(x)x^*}_{\alpha} + \underbrace{y}_{\in \text{Ker } f} \Rightarrow \dim X / \text{Ker } f = 1$

2.
$$\dim X/X' = 1$$
. $\exists x_1 \in X : x = \alpha x_1 + y$ (the only way) $f(x) := \alpha$. $f: X \to K$

Linearity:
$$x = \alpha x_1 + y$$
; $x' = \alpha' x_1 + y' \Rightarrow \beta x + \gamma x' = (\beta \alpha + \gamma \alpha') x_1 + \beta y + \gamma y'$
 $f(\beta x + \gamma x') = \beta \alpha + \gamma \alpha' = \beta f(x) + \gamma f(x')$
Ker $f = X'$

8.1 Normed vector spaces

Definition 30. Norm on a linear space is called a function $x \mapsto ||x||(||\cdot||: X \to \mathbb{R})$ that satisfies the conditions:

- 1. $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- $2. \|\alpha x\| = |\alpha| \cdot \|x\|$
- 3. $||x + y|| \le ||x|| + ||y||$

If $\|\cdot\|$ — norm on X, then we may define a metric

$$d(x,y) = ||x - y||$$

Definition 31. Normed space $(X, \|\cdot\|)$ that is complete relatively to metric $d(x, y) = \|x - y\|$ is called Banach space.

Example.
$$\mathbb{R}^n, \ 1 \le p < \infty. \ \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Minkovskiy inequiality

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{\frac{1}{p}}$$

Proposition 3. Let X' — a linear subspace of normed space X. Then $\overline{X'}$ is a subspace too

Proof. Let
$$x, y \in \overline{X'}$$
. Then $\exists x_n, y_n \in X' : ||x_n - x|| \to 0, ||y_n - y|| \to 0.$
 $x_n + y_n \in X'.$
 $||(x_n + y_n) - (x + y)|| \le ||x_n - x|| + ||y_n - y|| \to 0$ Then $x + y \in \overline{X'}$.

$$\alpha x_n \in X'$$
. $\|\alpha x_n - \alpha x\| = |\alpha| \|x_n - x\| \to 0$
 $\alpha x \in \overline{X'}$

Definition 32. span $\{x_i : i \in I\}$ — subspace of X. If $\overline{\text{span}\{x_i : i \in I\}} = X$, then the system $\{x_i : i \in I\}$ is called complete.

Example. C[a, b]. A sequence $1, t, t^2, t^3, ...$ is complete.

Lemma 3. Linear normed space $(X, \|\cdot\|)$ is Banach space $\Leftrightarrow \sum_{n=1}^{\infty} \|x_n\| < \infty \Rightarrow \text{ sequence } \sum_{n=1}^{\infty} x_n$ is convergent in X (in other words there exists $\lim_{N\to\infty} \sum_{n=1}^{\infty} x_n$).

Proof. (\Rightarrow)

$$(X, ||||)$$
 is Banach. Let $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

$$S_N = \sum_{n=1}^N x_n$$

$$||S_N - S_{N+p}|| = ||\sum_{n=N+1}^{N+p} x_n|| \le \sum_{n=N+1}^{N+p} ||x_n|| \le \sum_{n=N+1}^{\infty} ||x_n|| \to 0, \ N \to \infty$$

(⇔)

Let $(x_n)_{n\geq 1}$ — fundamental in X. In other words, $||x_n - x_m|| \to 0$, $n, m \to \infty$ $\forall n, m \geq n_k$ $||x_n - x_m|| \leq 2^{-k}$ $(n_1 < n_2 < \ldots)$

$$||x_{n_k} - x_{n_{k+1}}|| \le 2^{-k} \Rightarrow \sum_{k=1}^{\infty} ||x_{n_k} - x_{n_{k+1}}|| \le \sum_{k=1}^{\infty} 2^{-k} = 1$$

$$\sum_{k=1}^{\infty} (x_{n_k} - x_{n_{k+1}}) \text{ convergent (to } y$$

$$y = \lim_{N \to \infty} \left(\sum_{k=1}^{N} (x_{n_k} - x_{n_{k+1}}) \right) = \lim_{N \to \infty} (x_{n_1} - x_{n_2} + x_{n_2} - x_{n_3} + \dots + x_{n_N} - x_{n_{N+1}}) = 0$$

 $= x_{n_1} - \lim_{k \to \infty} x_{n_k}$

X — normed space. X' — closed subspace of X.

X/X' — collection of equivalence classes of the relation $x \sim y \Leftrightarrow x - y \in X'$.

$$\xi \in X/X'$$
. $\|\xi\| := \inf_{x \in \mathcal{E}} \|x\|$

Theorem 10. 1. $\xi \mapsto ||\xi||$ — is a norm on X/X';

2. if X is Banach space then X/X' is Banach too.

Proof. 1.
$$\|\xi\| \ge 0$$
. $\|0\| = ?0$

In factor-space null is X'.

$$||0|| = \inf_{x \in Y'} ||x|| = 0$$

$$||0|| = \inf_{x \in X'} ||x|| = 0$$
Let $||\xi|| = 0 = \inf_{x \in \xi} ||x||$. Exists $x_n \in \xi : ||x_n|| \to 0$.
$$\underbrace{x_n - x_1}_{\in X'} \to x_1 \in X' \Rightarrow \xi = [x_1] = X' = 0$$

2. $\alpha = 0 \Rightarrow \|\alpha \xi\| = |\alpha| dot \|\xi\|$ Let $\alpha \neq 0$. $x \in \xi \Rightarrow \alpha \xi \in \alpha \xi$

$$\|\alpha\xi\| \le \|\alpha x\| = |\alpha| \cdot \|x\| \Rightarrow \|\alpha\xi\| \le |\alpha| \cdot \|\xi\|$$

$$\|\xi\| = \|\frac{1}{\alpha}(\alpha\xi)\| \le \frac{1}{|\alpha|} \|\alpha\xi\| \Rightarrow |\alpha| \|\xi\| \le \|\alpha\xi\|$$

3. $x \in \xi$, $y \in \eta \Rightarrow x + y \in \xi + \eta$ $\|\xi + \eta\| < \|x + y\| < \|x\| + \|y\| \Rightarrow \|\xi + \eta\| < \|\xi\| + \|\eta\|$

Let X — Banach space, X' — closed subspace X.

Enough to show that $\sum_{n=1}^{\infty} \|\xi_n\| < \infty \Rightarrow \sum_{n=1}^{\infty} \xi_n$ is convergent.

$$\|\xi_n\| = \inf_{x \in \xi_n} \|x\|.$$

 $2\|\xi_n\| \ge \|x_n\|$ for some $x_n \in \xi_n$

$$\sum_{n=1}^{\infty} \|x_n\| \le 2\sum_{n=1}^{\infty} \|\xi_n\| < \infty \Rightarrow \text{ sequence } \sum_{n=1}^{\infty} x_n \text{ is convergent.}$$

$$x = \lim_{N \to \infty} \sum_{n=1}^{N} x_n. \ \xi = [x]. \ \|\xi - \sum_{n=1}^{N} \xi_n\| \le \|x - \sum_{n=1}^{N} x_n\| \to 0$$

$$\xi = \lim_{N \to \infty} \sum_{n=1}^{N} \xi_n$$

 $(X, \|\|), (Y, \|\|)$ normed spaces (with different norms) upon field K.

 $A: X \to Y$ — linear operator.

Theorem 11. The following conditions are equivalent:

- 1. A is continuous
- 2. A is continuous in point 0
- 3. A is bounded in a ball with radius 1

$$\sup_{\|x\| \le 1} \|Ax\| < \infty$$

4. $\exists c > 0$: and for any $x : ||Ax|| \le c||x||$

Proof. $(1) \Rightarrow (2)$ is obvious.

$$(2)\Rightarrow(3)$$

A is continuous in $0 \Rightarrow \forall \varepsilon > 0 : \exists \delta > 0 : ||x|| \leq \delta \Rightarrow ||Ax|| \leq \varepsilon$ $||x|| \le 1 \Rightarrow ||\delta x|| \le \delta \Rightarrow ||A\delta x|| \le \varepsilon \Rightarrow ||Ax|| \le \frac{\varepsilon}{\delta}.$

$$\sup_{\|x\| \leq 1} \|Ax\| \leq \frac{\varepsilon}{\delta}$$

$$(3) \Rightarrow (4)$$

$$\sup_{\|x\| \le 1} \|Ax\| =: C < \infty$$

Let
$$x \neq 0$$
. $\left\| \frac{x}{\|x\|} \right\| = 1 \Rightarrow \left\| A \frac{x}{\|x\|} \right\| \le x \Rightarrow \|Ax\| \le c \|x\| \ (A0 = 0)$

$$(4) \Rightarrow (1)$$

$$||Ax - Ay|| = ||A(x - y)|| \le C||x - y||$$

A is continuous.

Definition 33. Let $A: X \to Y$ — linear continuous operator. $||A|| = \sup_{\|x\| \le 1} ||Ax||$ — norm of the operator.

Theorem 12. 1. $\mathcal{L}(X,Y)=\{A:X\to Y\mid A\text{ is linear and continuous}\}$, $\|A\|=\sup_{\|x\|\leq 1}\|Ax\|$ $(\mathcal{L}(X,Y),\|\cdot\|)-\text{normed space}.$

2. If Y is Banach space, then $\mathcal{L}(X,Y)$ is Banach too.

Proof. 2)
$$||A_n - A_m|| \to 0$$
, $n, m \to \infty$
 $||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0$
 $(A_n x : n \ge 1)$ — fundamental in Y
 $\exists \lim_{n \to \infty} A_n x =: Ax$ and $A : X \to Y$ is linear
 $||A_n|| - ||A_m||| \le ||A_n - A_m|| \to 0$, $n, m \to \infty$
 $\exists \lim_{n \to \infty} ||A_n|| : ||A_n||$ are bounded . $||A_n|| \le C$
 $||Ax|| = \lim_{n \to \infty} \underbrace{||A_n x||}_{\le ||A_n|| \cdot ||x|| \le C||X||} \le C||x|| \Rightarrow A$ is continuous

Let $||x|| \le 1$. $\exists N : \forall n, m \ge N : ||A_n - A_m|| \le \varepsilon$ $||A_n x - A x|| = \lim_{m \to \infty} \underbrace{||A_n x - A_m x||}_{\le ||A_n - A_m|| \cdot ||x|| \le \varepsilon} \le \varepsilon$ $||A_n - A|| \le \varepsilon, n \ge N$

 $||A_n - A|| \le \varepsilon, n \ge N$

 $\mathcal{L}(X,K) =: X^*$ — collection of all linear continuous functionals.

 X^* is Banach space (complement to X).

Theorem 13. $f: X \to K$ — linear functional. Then f is continuous \Leftrightarrow Ker f is closed.

Proof. (\Rightarrow)

$$f$$
 — continuous. Ker $f = \{x \in X : f(x) = 0\} = f^{-1}(\{0\})$ closed.

 (\Leftarrow)

Let Ker f is closed. Assume that $f \neq 0$.

Exists $x_0 : f(x_0) = 1$

$$x_0 \not\in \operatorname{Ker} f \Rightarrow \exists \varepsilon > 0 : B(x_0, \varepsilon) \cap \operatorname{Ker} f = \emptyset$$

$$\|y\| \leq \varepsilon. \text{ Let } |f(y)| > 1. \ x_0 - \frac{y}{f(y)} = x$$

$$\|x_0 - x\| = \|\frac{y}{f(y)}\| = \frac{\|y\|}{|f(y)|} < \varepsilon \Rightarrow x \in B(x_0, \varepsilon)$$

$$f(x) = f(x_0 - \frac{y}{f(y)}) = f(x_0) - \frac{f(y)}{f(y)} = 0$$

$$x \text{ belongs to open ball, but } x \text{ belongs to the kernel.}$$

$$\text{If } \|y\| \leq \varepsilon \Rightarrow |f(y)| \leq 1$$

$$x \text{ is arbitrary. } \|\frac{\varepsilon x}{\|x\|}\| = \varepsilon \Rightarrow \left|f(\frac{\varepsilon x}{\|x\|}\right| < 1$$

$$\frac{\varepsilon}{\|x\|} |f(x)| \leq 1 \Leftrightarrow |f(x)| \leq \frac{1}{\varepsilon} \|x\|$$

If $f: X \to K$ linear, then Ker f is either closed or everywhere dense.

$$\operatorname{Ker} f \underbrace{\subset}_{\operatorname{or} =} \overline{\operatorname{Ker} f} \underbrace{\subset}_{\operatorname{or} =} X$$

If we add another vector to kernel then we get whole the space X.

Theorem 14. Let X normed space, Y is a subspace of X. If Y is finite-dimensional then it's closed.

Proof. dim Y = n. Induction by n.

- 1. $n = 0 \Rightarrow Y = \{0\}$ is closed.
- 2. Let the theorem be true for any subspace of dimension n. Let's check for n+1. Y—subspace of dimension n. $\{e_1, e_2, \ldots, e_n\}$ —basis in Y.

 $Z = \operatorname{span}\{e_1, e_2, \dots, e_{n-1}\}$. Z is a subspace of Y. $\dim Z = n-1$. And Z is closed.

 $y = z + te_n, \ z \in Z, t \in K$

 $f: Y \to K, \quad f(z + te_n) = t.$

f is linear, Ker f = Z closed $\Rightarrow f$ is continuous.

 $\exists C > 0 : |f(y)| \le C||y||$

Prove that Y is closed: $y_k \in Y, y_k \to x \in Y$ $y_k = z_k + t_k e_n = z_k + f(y_k)e_n$

$$|t_k - t_m| = |f(y_k - y_m)| \le C||y_k - y_m|| \to_{k,m \to \infty} 0$$

 $(t_k)_{k\geq 1}$ fundamental \Rightarrow is convergent. $t_k \to t$.

$$z_k = y_k - t_k e_n \to x - t e_n \in Z \text{ (as } Z \text{ is closed)}$$

$$x = \underbrace{(x - t e_n)}_{\in Z} + t e_n \in Y$$

Corollary 13.

 $\dim X < \infty \Rightarrow$ all linear functionals are continuous

Corollary 14. dim $X < \infty$, Y is normed, $A: X \to Y$ linear. Then A is continuous.

Proof.
$$\{e_1, \dots, e_n\}$$
 — basis in X . $x = t_1 e_1 + \dots + t_n e_n$. $f_i(x) = t_i, 1 \le i \le n$. $|f_i(x)| \le C ||x||$
$$||Ax|| = ||A(f_1(x)e_1 + \dots + f_n(x)e_n)|| = ||\sum_{i=1}^n f_i(x)Ae_i|| \le \sum_{i=1}^n |f_i(x)| \cdot ||Ae_i|| \le \sum_{i=1}^n C ||x|| \cdot ||Ae_i||$$
$$||Ax|| \le \left(C \sum_{i=1}^n ||Ae_i|| \cdot ||x||\right)$$

Example. $X = C[0,1], ||x|| = \int_0^1 |x(t)| dt$ f(x) = x(0) is linear. If f is continuous, then $|f(x)| \le C||x||$. In other words, $|x(0)| \le C \cdot \int_0^1 |x(0)| dt$.

It's hard to determine such C constant. Then f is not continuous.

Theorem 15 (Hana-Banach, about continuity of linear continuous functional). X — normed space. Y — its subspace. $f_0: Y \to K$ linear continuous functional. Whether we can continue f_0 on whole X while keeping linearity and continuity?

1. Geometric form of Hahn-Banach theorem. $K = \mathbb{R}$, X normed, real. $A \subset X$ is convex if $x, y \in A \Rightarrow tx + (1-t)y \in A$, $\forall t \in [0,1]$ idea picture

X— read normed, A open convex set, M — subspace of X, $M \cap A = \emptyset$. Then exists closed hyperspace H (in other words with codimension 1):

- (a) $M \subset H$
- (b) $H \cap A = \emptyset$

$$\begin{array}{l} \textit{Proof. } C = M + \bigcup_{\lambda > 0} \lambda A = \{y + \lambda a : y \in M, \lambda > 0, a \in A\} \\ -C = \{-y - \lambda a : y \in M, \lambda > 0, a \in A\} = M + \bigcup_{\lambda = 0}^{\infty} -\lambda a \\ C, -C, M \text{ are pairwise disjoint.} \\ x \in M \cap C.x = y + \lambda a \Rightarrow a = \frac{x - y}{\lambda} \in M - \text{impossible} \\ M \cap (-C) = \varnothing \end{array}$$

$$x \in C \cap (-C) \qquad y_1 + \lambda_1 a_1 = y_2 - \lambda_2 a_2$$

$$\lambda_1 a_1 + \lambda_2 a_2 = y_2 - y_1$$

$$\underbrace{\frac{\lambda_1}{\lambda_1 + \lambda_2} a_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} a_2}_{\text{on segment from } a_1 \text{ to } a_2} = \underbrace{\frac{y_2 - y_1}{\lambda_1 + \lambda_2}}_{\text{on segment from } a_1 \text{ to } a_2} = \underbrace{\frac{y_2 - y_1}{\lambda_1 + \lambda_2}}_{\text{on segment from } a_1 \text{ to } a_2}$$

Cases:

1.
$$M \cup C \cup (-C) \neq X$$
 choose $h \notin M \cup C \cup (-C)$
 $M_1 = \{y + th : y \in M, t \in \mathbb{R}\}$
If $M_1 \cap A \neq \emptyset$ then $\exists a \in A : a = y + th. \ t \neq 0.h = -\frac{y}{t} + \left(\frac{1}{t}\right)a$
 $M_1 \cap A \neq \emptyset$

2.
$$M \cap C \cap (-C) = X$$

Let
$$M$$
 codimension > 1 $a \notin M, b \notin \operatorname{span}(M \cup \{a\})$ $a \in C \cup (-C), b \in C \cup (-C)$ $a \in C, b \in (-C)$ $g(t) = ta + (1-t)b, 0 \le t \le 1$ $g(0) = b \notin M, g(1) = a \notin M$ If $0 < t < 1$ and $g(t) \in M$ then $b = \frac{g(t) - ta}{1 - t} \in \operatorname{span}(M \cup \{a\})$ $\forall t : g(t) \in C \cup (-C)$ $g^{-1}(C), g^{-1}(C)$ — are open and not empty. $t^* = \inf\{t > 0 : g(t) \in C\}$ M has codimension 1.

proof is not finished