Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

May 30, 2023

Lehrstuhl Informatik 2 Fakultät für Informatik

Worum geht es?

- wir lernen den Dijkstra-Algorithmus für kürzeste Pfade kennen
- mittels priority queues kann Dijkstra effizient implementiert werden
- wir lernen einen exakten Algorithmus für das Travelling Salesman-Problem kennen

Das kürzeste-Pfade-Problem

- gegeben ist ein gewichteter Graph G, c
- das bedeutet, daß $c: E(G) \to \mathbb{Q}_{>0}$

["Kosten" oder "Länge" einer Kante]

- ferner sind zwei Knoten s, t gegeben
- das Ziel ist, einen kürzesten Pfad von s nach t zu finden
- die Länge des Pfades $p = (v_0, ..., v_\ell)$ ist dabei definiert als

$$c(p) = \sum_{i=1}^{\ell} c(v_{i-1}v_i)$$

Der Dijkstra-Algorithmus

- der Dijkstra-Algorithmus basiert auf dem Paradigma der dynamischen Programmierung
- der Algorithmus baut aus Lösungen kleinerer Teilprobleme die Lösungen immer größerer Teilprobleme zusammen, bis schließlich das Gesamtproblem gelöst ist
- im Fall des kürzesten-Pfade-Problems liegt die Beobachtung zugrunde, daß ein kürzester Pfad von s nach t aus kürzesten Teilpfaden besteht

Algorithmus Dijkstra

- **1.** Für alle $v \in V(G)$ setze $\delta(v) = \infty$ und $p(v) = \emptyset$.
- **2.** Setze $\delta(s) = 0$, $\rho(s) = s$, $S = \emptyset$ und $U = \{s\}$
- 3. Solange $U \neq \emptyset$
- 4. finde $u \in U$ mit $\delta(u) = \min_{v \in U} \delta(v)$
- 5. entferne u aus U und füge u zu S hinzu
- **6.** für alle $w \in \partial u \setminus S$
- **7.** füge w zu U hinzu
- 8. falls $\delta(w) > \delta(u) + c(uw)$
- 9. setze $\delta(w) = \delta(u) + c(uw)$ und $\rho(w) = u$
- **10.** Gib p, δ aus

- in jeder Iteration der Hauptschleife wird der Abstand eines Knotens von s bestimmt
- die Abstände der Nachbarn werden ggf. verringert

- in jeder Iteration der Hauptschleife wird der Abstand eines Knotens von s bestimmt
- die Abstände der Nachbarn werden ggf. verringert

- in jeder Iteration der Hauptschleife wird der Abstand eines Knotens von s bestimmt
- die Abstände der Nachbarn werden ggf. verringert

- in jeder Iteration der Hauptschleife wird der Abstand eines Knotens von s bestimmt
- die Abstände der Nachbarn werden ggf. verringert

- in jeder Iteration der Hauptschleife wird der Abstand eines Knotens von *s* bestimmt
- die Abstände der Nachbarn werden ggf. verringert

Satz

Angenommen G, c ist ein zusammenhängender gewichteter Graph, $s \in V(G)$ und δ, p ist die Ausgabe von Dijkstra.

- die Laufzeit beträgt $O(|V|^2)$
- für jeden Knoten $v \in V(G)$ ist $\delta(v)$ der gewichtete Abstand von s nach v und

$$v, p(v), \ldots, p^{\ell}(v) \text{ mit } \ell = \min_{j \ge 0} p^{j}(v) = s$$

ist ein kürzester Pfad

Beweis: Laufzeit

- die Hauptschleife wird |V| mal durchlaufen
- die Berechnung von u benötigt Zeit O(|V|)
- \blacksquare anschließend werden die O(|V|) Nachbarn von u bearbeitet

Beweis: Korrektheit

■ nach dem ersten Durchlauf der Hauptschleife gilt

$$U = \partial s$$

$$S = \{s\}$$

$$\delta(s) = 0$$

$$\delta(v) = c(sv) \quad (v \in \partial s)$$

Beweis: Korrektheit (fortgesetzt)

- wir beweisen, daß forthin die folgenden drei Bedingungen erfüllt bleiben:
 - (i) $U = \partial S \setminus S$
 - (ii) für alle $v \in S$ ist $\delta(v)$ der Abstand von s nach v und

$$v, p(v), \dots, p^{\ell}(v)$$
 mit $\ell = \min_{j \ge 0} p^{j}(v) = s$

ist ein entsprechender kürzester Pfad

(iii) für alle $v \in U$ ist $\delta(v)$ der Abstand von s nach v in $G[S \cup \{v\}]$ und

$$v, p(v), \dots, p^{\ell}(v) \text{ mit } \ell = \min_{j \ge 0} p^{j}(v) = s$$

ein entsprechender Pfad.

Beweis: Korrektheit (fortgesetzt)

- dazu führen wir Induktion nach der Anzahl der Iterationen der Hauptschleife
- für die erste Iteration ist nichts zu zeigen
- betrachte nun den nächsten Knoten u
- dieser erfüllt $\delta(u) = \min_{v \in U} \delta(v)$
- aus der Induktionsannahme und der Konstruktion in Schritten 5–10 folgt die Aussage (i) unmittelbar

Beweis: Korrektheit (fortgesetzt)

- zu Aussage (ii): nach Induktion ist $P = u, p(u), ..., p^{\ell}(u)$ mit ℓ minimal, so daß $p^{\ell}(u) = s$, ein kürzester Pfad von s nach u in $G[S \cup \{u\}]$
- \blacksquare angenommen es gäbe in G einen kürzeren Pfad Q von s nach u
- sei z der erste Knoten von Q, der nicht in $S \cup \{u\}$ liegt
- dann gilt $\delta(z) \geq \delta(u)$
- aus der Wahl von z und der Induktionsannahme folgt also

$$c(Q) \ge \delta(z) \ge \delta(u) = c(P)$$

Widerspruch zur Annahme

Beweis: Korrektheit (fortgesetzt)

- die Aussage (iii) folgt aus der Aussage (ii) und der Tatsache, daß für $w \in S$ ein kürzester Pfad von s nach w in G auch ein kürzester Pfad von s nach w in G[S] ist
- da für einen zusammenhängenden Graphen jeder Knoten in U und in der Folge in S eingefügt wird, folgt die Behauptung

Implementierung mit priority queues

- \blacksquare in Anwendungen treten häufig dünne Graphen mit $o(|V(G)|^2)$ Kanten auf
- nicht selten ist sogar |E(G)| = O(|V(G)|)
- für dünne Graphen ist Dijkstra relativ langsam
- zeitkritisch ist die Berechnung des Minimums in Schritt 4

Erinnerung: min priority queues

- wir haben priority queues bereits im Zusammenhang mit Heapsort kennengelernt
- Operationen: Insert, ExtractMin, DecreaseKey
- \blacksquare jede der Operationen hat Laufzeit $O(\log n)$
- dies sind genau die Operationen, die wir für Dijkstra benötigen!

Korollar

Unter Verwendung einer min-priority-queue hat Dijkstra eine Laufzeit von

$$O(|E(G)|\log|V(G)|)$$

Bemerkung

Eine noch bessere Laufzeit kann mit einer ausgefeilten Datenstruktur, den Fibonacci-Heaps, erzielt werden. Man kommt dann auf $O(|V(G)|\log|V(G)|+|E(G)|)$.

Travelling salesman

- \blacksquare gegeben ist ein gewichteter vollständiger Graph G, w auf n Knoten
- Ziel: eine kürzeste Tour, die jeden Knoten genau einmal besucht
- eine Tour ist eine bijektive Abbildung $\sigma: [n] \to V(G)$
- die Knoten werden also in der Reihenfolge $\sigma(1), \sigma(2), \ldots, \sigma(n), \sigma(1)$ besucht
- die Länge einer Tour ist

$$w(\sigma) = w(\{\sigma(1), \sigma(n)\}) + \sum_{i=1}^{n-1} w(\{\sigma(i), \sigma(\{i+1\})\}).$$

keine Dreiecksungleichung!

[NP-schwer]

Kürzstes Pfade

Travelling salesman

- derzeit ist kein effizienter Algorithmus für TSP bekannt
- "naiver" Algorithmus: alle Permutationen durchprobieren...
- Laufzeit:

$$\Omega(n!) = \Omega((n/e)^n) = \Omega(n^{n+o(n)}).$$

polynomieller Platzbedarf!

A. Coja-Oghlan| May 30, 2023

Bellmann-Held-Karp-Algorithmus

- Prinzip dynamische Programmierung
- wähle einen beliebigen Startknoten $s \in V(G)$
- baue eine Tabelle auf mit einem Eintrag für jede Teilmenge $U \subseteq V(G) \setminus \{s\}$ und jeden Knoten $u \neq s$, $u \notin U$
- Eintrag T(u, U) ist die Länge eines kürzesten Pfades, der in s startet, alle Knoten aus U besucht und in u endet
- die Länge einer optimalen TSP-Tour kann leicht bestimmt werden, wenn die Tabelle bekannt ist

Lemma

Für alle $s \in V(G)$, $\emptyset \neq U \subseteq V(G) \setminus \{s\}$, $u \in V(G) \setminus \{s\} \cup U$ gilt

$$T(u,U) = \min_{v \in U} T(v,U \setminus \{v\}) + w(\{u,v\}), \qquad T(u,\varnothing) = w(\{s,u\}).$$

Beweis

Sei v der letzte Knoten aus U, der auf einem kürzesten Pfad von s durch alle Knoten aus U nach u liegt. Dann ist die Länge dieses Pfades genau $w(\{u,v\}) + T(v,U \setminus \{v\})$.

BHK(G, w)

- 1. Wähle einen Startknoten s.
- **2.** Für alle $u \in V(G) \setminus \{s\}$ setze $T(u, \emptyset) = w(\{s, u\})$.
- 3. Für N = 1, ..., n-2
- **4.** für alle $u \in V(G) \setminus \{s\}$
- 5. für alle Teilmengen $U \subseteq V(G) \setminus \{u, s\}$ mit |U| = N
- 6. setze

$$T(u,U) = \min_{v \in U} T(v,U \setminus \{v\}) + w(\{u,v\}).$$

7. Gib $\min_{u \in V(G) \setminus \{s\}} T(u, V(G) \setminus \{u, s\}) + w(\{u, s\})$ aus.

Satz

BHK berechnet in Zeit $O(2^{n+o(n)})$ die Länge einer optimalen TSP-Tour.

Beweis

- Korrektheit folgt aus dem Lemma
- Laufzeit wird dominiert durch die Schleifen (3)–(6)
- dort wird über alle Teilmengen $U \subseteq V(G) \setminus \{s\}$ iteriert
- \blacksquare die Zahl dieser Teilmengen ist $O(2^n)$
- **•** für jede Teilmenge wird wiederum über $O(n^2)$ Knoten u, v iteriert

Zusammenfassung

- Dijkstra berechnet kürzeste gewichtete Pfade
- wichtig ist dabei, daß die Gewichte nicht negativ sind! (Warum?)
- die "naive" Laufzeit ist quadratisch
- mit min priority queues läßt sich die Laufzeit deutlich verbessern
- der Algorithmus BHK für TSP