EE 473/538 Linear IC Design (HW 1) January 21, 2022

Kevin Egedy

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that $V_{DD} = 3$ V where necessary. All device dimensions are effective values and in microns.

Table 2.1	Level 1	SPICE	models	for N	MOS	and	PMOS	devices.
-----------	---------	-------	--------	-------	-----	-----	-------------	----------

NMOS Model			
$\begin{aligned} \text{LEVEL} &= 1\\ \text{NSUB} &= 9\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.45 \end{aligned}$	VTO = 0.7 LD = 0.08e-6 PB = 0.9 MJSW = 0.2	$\begin{aligned} & \text{GAMMA} = 0.45 \\ & \text{UO} = 350 \\ & \text{CJ} = 0.56\text{e}{-3} \\ & \text{CGDO} = 0.4\text{e}{-9} \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.9 \\ & \text{LAMBDA} = 0.1 \\ & \text{CJSW} = 0.35\text{e}{-11} \\ & \text{JS} = 1.0\text{e}{-8} \end{aligned}$
PMOS Model			
$\label{eq:LEVEL} \begin{split} \text{LEVEL} &= 1\\ \text{NSUB} &= 5\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.5 \end{split}$	$VTO = -0.8 \\ LD = 0.09e-6 \\ PB = 0.9 \\ MJSW = 0.3$	$\begin{aligned} & \text{GAMMA} = 0.4 \\ & \text{UO} = 100 \\ & \text{CJ} = 0.94 \\ & \text{e-3} \\ & \text{CGDO} = 0.3 \\ & \text{e-9} \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.8 \\ & \text{LAMBDA} = 0.2 \\ & \text{CJSW} = 0.32\text{e}{-11} \\ & \text{JS} = 0.5\text{e}{-8} \end{aligned}$

3.1. For the circuit of Fig. 3.13, calculate the small-signal voltage gain if $(W/L)_1 = 50/0.5$, $(W/L)_2 = 10/0.5$, and $I_{D1} = I_{D2} = 0.5$ mA. What is the gain if M_2 is implemented as a diode-connected PMOS device (Fig. 3.16)?

Figure 3.13 CS stage with diode-connected load.

Figure 3.16 CS stage with diodeconnected PMOS device.

- **3.2.** In the circuit of Fig. 3.18, assume that $(W/L)_1 = 50/0.5$, $(W/L)_2 = 50/2$, and $I_{D1} = I_{D2} = 0.5$ mA when both devices are in saturation. Recall that $\lambda \propto 1/L$.
 - (a) Calculate the small-signal voltage gain.
 - (b) Calculate the maximum output voltage swing while both devices are saturated.

Figure 3.18 CS stage with current-source load

- **3.3.** In the circuit of Fig. 3.4(a), assume that $(W/L)_1 = 50/0.5$, $R_D = 2 \text{ k}\Omega$, and $\lambda = 0$.
 - (a) What is the small-signal gain if M_1 is in saturation and $I_D = 1$ mA?
 - (b) What input voltage places M_1 at the edge of the triode region? What is the small-signal gain under this condition?
 - (c) What input voltage drives M_1 into the triode region by 50 mV? What is the small-signal gain under this condition?

Figure 3.4 (a) Common-source stage, (b) input-output characteristic, (c) equivalent circuit in the deep triode region, and (d) small-signal model for the saturation region.

3.20. Assuming all MOSFETs are in saturation, calculate the small-signal voltage gain of each circuit in Fig. 3.83 $(\lambda \neq 0, \gamma = 0).$

- 3.27. A source follower can operate as a level shifter. Suppose the circuit of Fig. 3.37(b) is designed to shift the

 - voltage level by 1 V, i.e., $V_{in} V_{out} = 1$ V. (a) Calculate the dimensions of M_1 and M_2 if $I_{D1} = I_{D2} = 0.5$ mA, $V_{GS2} V_{GS1} = 0.5$ V, and $\lambda = \gamma = 0$. (b) Repeat part (a) if $\gamma = 0.45$ V⁻¹ and $V_{in} = 2.5$ V. What is the minimum input voltage for which M_2 remains saturated?

Figure 3.37 Source follower using (a) an ideal current source, and (b) an NMOS transistor as a current source.

3.32. In the circuit shown in Fig. 3.86, prove that

$$\frac{V_{out1}}{V_{out2}} = \frac{-R_D}{R_S} \tag{3.148}$$

where V_{out1} and V_{out2} are small-signal quantities and λ , $\gamma > 0$.

Figure 3.86

3.34. Calculate the voltage gain of a source follower using the lemma $A_v = -G_m R_{out}$. Assume that the circuit drives a load resistance of R_L and λ , $\gamma > 0$.