Formulário

Antenas e Guias de Onda

Revisões

$$Z_{IN} = \frac{Z_0^2}{Z_I}$$

$$\beta = \frac{2\pi}{\lambda}$$

$$\Gamma_0 = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$VSWR = \frac{E_{max}}{E_{min}} = \frac{1+\rho}{1-\rho}$$

Parâmetros S e T

$$\begin{bmatrix} v_1^{ref} \\ v_1^{ref} \\ v_2^{ref} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} v_1^{inc} \\ v_2^{inc} \end{bmatrix}$$

$$\begin{bmatrix} v_1^{inc} \\ v_1^{ref} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} v_2^{ref} \\ v_2^{inc} \end{bmatrix}$$

$$\begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{S_{21}} & -\frac{S_{22}}{S_{21}} \\ \frac{S_{11}}{S_{21}} & S_{12} - \frac{S_{11}S_{22}}{S_{21}} \end{bmatrix}$$

$$\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} \frac{T_{21}}{T_{11}} & T_{22} - \frac{T_{21}T_{12}}{T_{11}} \\ \frac{1}{T_{11}} & -\frac{T_{12}}{T_{11}} \end{bmatrix}$$

Amplificadores

$$\rho_{IN} = S_{11} + \frac{S_{12}S_{21}\rho_L}{1 - S_{22}\rho_L}$$

$$\rho_{OUT} = S_{22} + \frac{S_{12}S_{21}\rho_S}{1 - S_{11}\rho_S}$$

$$G_T = \frac{P_L}{P_{AVS}} = \frac{1 - |\Gamma_s|^2}{|1 - \Gamma_{IN}\Gamma_s|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

$$G_A = \frac{P_{AVL}}{P_{AVS}} = \frac{1 - |\Gamma_s|^2}{|1 - S_{11}\Gamma_s|^2} |S_{21}|^2 \frac{1}{1 - |\Gamma_{OUT}|^2}$$

$$G_P = \frac{P_L}{P_{IN}} = \frac{1}{1 - |\Gamma_{IN}|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

$$G_{TU} = \frac{1 - |\Gamma_s|^2}{|1 - S_{11}\Gamma_s|^2} |S_{21}|^2 \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}$$

$$G_{TU,max} = \frac{1}{|1 - S_{11}|^2} |S_{21}|^2 \frac{1}{|1 - S_{22}|^2}$$

$$G_T = \frac{P_L}{P_{AVS}} = \frac{P_{AVL}}{P_{AVS}} \frac{P_L}{P_{AVL}} = G_A L_L$$

$$G_T = \frac{P_L}{P_{AVS}} = \frac{P_{IN}}{P_{AVS}} \frac{P_L}{P_{IN}} = L_S G_P$$

Estabilidade

$$|\Gamma_S| < 1 \land |\Gamma_L| < 1 \land |\Gamma_{IN}| < 1 \land |\Gamma_{OUT}| < 1$$

Filters

$$L = \frac{g_k Z_0}{2\pi f_c}$$

$$C = \frac{g_k}{2\pi Z_0 f_c}$$

Transformada de Richards

$$\omega_c = tan(\beta l)$$

$$Z = jg_k \omega_c \Rightarrow Z = jZ_0 \tan(\beta l)$$
 $\wedge Z_0 = g_k$

$$Y = jg_k\omega_c \Rightarrow Y = \frac{j\tan(\beta l)}{Z_0} \qquad \qquad \wedge Z_0 = \frac{1}{g_k}$$

Maximum Flat (3dB)

								l en	1		
g11										1.0000	
810									1.0000	0.3129	
68								1.0000	0.3473	0.9080	
88							1.0000	0.3902	1.0000	1.4142	
87						1.0000	0.4450	1.1111	1.5321	1.7820	
98					1.0000	0.5176	1.2470	1.6629	.8794	.9754	
82				1.0000	0.6180	1.4142	1.8019	1.9615	2.0000	1.9754	
84			1.0000	0.7654	1.6180	1.9318	2.0000	1.9615	1.8794	1.7820	
83		1.0000	1.0000	1.8478	2.0000	1.9318	1.8019	1.6629	1.5321	1.4142	
82	1.0000	1.4142	2.0000	1.8478	1.6180	1.4142	1.2470	1.1111	1.0000	0.9080	
g_1	2.0000	1.4142	1.0000	0.7654	0.6180	0.5176	0.4450	0.3902	0.3473	0 0.3129	
Z	-	7	33	4	5	9	7	∞	6	10	

Equal Ripple (3dB)

Koroda

$n^2 = 1 + \frac{Z_2}{Z_1}$ Frequency Transformations

$$\Delta = \frac{\omega_2 - \omega_1}{\omega_0}$$

Stepped Impedance

Bobine
$$\rightarrow \beta l = \frac{LZ_0}{Z_{high}}$$

Condensador
$$\rightarrow \beta l = \frac{CZ_{low}}{Z_0}$$

Guias de Onda

$$E_z = 0$$
 $H_z = 0$ Modos TEM

$$E_z = 0$$
 $H_z \neq 0$ Modos TE ou H

$$E_z \neq 0$$
 $H_z = 0$ Modos TM ou E

$$E_z \neq 0$$
 $H_z = 0$ Modos I'M ou I
 $E_z \neq 0$ $H_z \neq 0$ Modos Híbridos

$$\begin{array}{c|c} \epsilon_0 & 8.854187817 \times 10^{-12} F \cdot m^{-1} \\ \mu_0 & 4\pi \times 10^{-7} H \cdot m^{-1} \end{array}$$

$$k_{-}^{2} = k^{2} - \beta^{2}$$

 $\eta = 120\pi \rightarrow$ Impedância Característica do ar

Retangulares

O modo TM não se propaga se n=0 ou m=0 $\lambda_0 \to \text{Comprimento}$ de onda em meio livre $\lambda_{0c} \to \text{Comprimento}$ de onda de corte no meio $k=\omega\sqrt{\mu\epsilon}=\frac{2\pi}{\lambda}$

$$f_{c_{mn}} = \frac{v}{2} \sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}$$
$$\lambda_{c_{mn}} = \frac{2}{\sqrt{\left(\frac{n}{y_1}\right)^2 + \left(\frac{m}{z_1}\right)^2}}$$

$$\beta = \sqrt{k^2 - k_c^2} = \sqrt{k^2 - \left(\frac{n}{y_1}\right)^2 - \left(\frac{m}{z_1}\right)^2}$$

$$k_c^2 = \left(\frac{n}{y_1}\right)^2 - \left(\frac{m}{z_1}\right)^2$$

$$\gamma = \alpha_d + j\beta = \sqrt{k_c^2 - k^2}$$

$$\gamma = \sqrt{\left(\frac{n}{y_1}\right)^2 - \left(\frac{m}{z_1}\right)^2 - \omega^2 \mu \epsilon} = \sqrt{k_c^2 - \beta_0^2}$$

$$v_p = \frac{\omega}{\beta} = \frac{v_0}{\sqrt{1 - \left(\frac{n\lambda_0}{2y_1}\right)^2 - \left(\frac{m\lambda_0}{2z_1}\right)^2}} = \frac{v_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0_0}}\right)^2}}$$

$$Z_{TE} = \frac{k\eta}{\beta}$$
 e se $f > f_c, Z_{TE} = \frac{Z_d}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$

$$v = \frac{c}{\sqrt{\epsilon_r}}$$

$$\lambda = \frac{\lambda_0}{\sqrt{\epsilon_r}}$$

Cilíndrico

 $n \to \text{ordem da função de Bessel}$

 $k \to {\rm raiz}$ da ordem n
 da função de Bessel

 $k' \rightarrow {\rm raiz}$ da ordem
n da derivada da função de Ressel

 $a \rightarrow \text{raio do guia de onda}$

 $p_{nm} \rightarrow {\rm raiz}$ de ordem m
 da função de Bessel de ordem n

 $p'_{nm} \to {\rm raiz}$ de ordem m
 da derivada da função de Bessel de ordem n

Os modos TE e TM obrigam a $m \neq 0$

Modo TE_{nm}

$$k_{c_{nm}} = \frac{p'_{nm}}{a}$$

$$\beta_{nm} = \sqrt{k^2 - k^c} = \sqrt{k^2 - \left(\frac{p'_{nm}}{r}\right)^2}$$

$$f_{c_{nm}} = \frac{k_c}{2\pi\sqrt{\mu\epsilon}} = \frac{p'_{nm}}{2\pi a\sqrt{\mu\epsilon}}$$

$$f_c = \frac{v}{2\pi} \frac{k'nm}{a}$$
$$\lambda_c = \frac{2\pi a}{k'nm}$$
$$Z_{TE} = \frac{\eta k}{\beta}$$

k	$J_0'(x)$	J_1 '(x)	J_2 '(x)	J_3 '(x)	$J_4'(x)$	J_5 '(x)
1	3.8317	1.8412	3.0542	4.2012	5.3175	6.4156
1 2	7.0156	5.3314	6.7061	8.0152	9.2824	10.5199
3	10.1735	8.5363	9.9695	11.3459	12.6819	13.9872
4	13.3237	11.7060	13.1704	14.5858	15.9641	17.3128
5	16.4706	14.8636	16.3475	17.7887	19.1960	20.5755

Modo TM

$$\begin{array}{l} k_{cm} = \frac{p_{nm}}{a} \\ \beta_{nm} = \sqrt{k^2 - k^c} = \sqrt{k^2 - \left(\frac{p'_{nm}}{r}\right)^2} \\ f_{c_{nm}} = \frac{k_c}{2\pi\sqrt{\mu\epsilon}} = \frac{p_{nm}}{2\pi a\sqrt{\mu\epsilon}} \\ f_{c} = \frac{v}{2\pi} \frac{k_{nm}}{a} \\ \lambda_c = \frac{2\pi a}{k_{nm}} \\ Z_{TM} = \frac{\eta\beta}{k} \\ \frac{k \mid J_0(\mathbf{x}) \quad J_1(\mathbf{x}) \quad J_2(\mathbf{x}) \quad J_3(\mathbf{x}) \quad J_4(\mathbf{x}) \quad J_5(\mathbf{x})}{1 \mid 2.4048 \quad 3.8317 \quad 5.1356 \quad 6.3802 \quad 7.5883 \quad 8.7115} \\ 2 \quad 5.5201 \quad 7.0156 \quad 8.4172 \quad 9.7610 \quad 11.0647 \quad 12.3366 \\ 3 \quad 8.6537 \quad 10.1735 \quad 11.6198 \quad 13.0152 \quad 14.3725 \quad 15.7002 \\ 4 \quad 11.7915 \quad 13.3237 \quad 14.7960 \quad 16.2235 \quad 17.6160 \quad 18.9801 \\ 5 \quad 14.9309 \quad 16.4706 \quad 17.9598 \quad 19.4094 \quad 20.8269 \quad 22.2178 \end{array}$$

Perdas

$$\begin{split} & \text{Dielétrico} \to \alpha_d = \omega\epsilon \tan(\delta) \\ & \alpha_{d_{mn}} = \frac{\omega \tan(\delta)}{2c\sqrt{1-\left(\frac{fc_{mn}}{f}\right)^2}} = \frac{\omega\sqrt{\mu\epsilon}\tan(\delta)}{2\beta} = \\ & \frac{k^2\tan(\delta)}{2\beta} \\ & \text{Não há propagação}\left(f < f_c\right) : \\ & \alpha = \frac{2\pi}{\lambda}\sqrt{\left(\frac{\lambda}{\lambda_c}\right)^2 - 1} \end{split}$$

Há propagação
$$(f > f_c)$$
:
$$\alpha_d = \frac{\pi \tan(\delta)}{\lambda \sqrt{1 - \frac{\lambda}{\lambda_c}}}$$

$$\alpha_c = \frac{Re[Z_c]}{Z_d y_1} \frac{1 + 2 \frac{y_1}{x_1} \left(\frac{\lambda}{\lambda_c}\right)^2}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$$

$$P_{max} = \frac{E^2 y_1 z_1}{4 Z_T E}$$

$$R_S = \frac{1}{\sigma \delta} = \sqrt{\frac{\omega \mu}{2\sigma}} \rightarrow \text{Efeito de Skin}$$

Propagação $(f > f_c)$

Tropagação
$$(j > j_c)$$

$$\gamma = \pm \sqrt{\left(\frac{p'_{nm}}{a}\right)^2 - \omega^2 \mu \epsilon}$$

$$f_c = \frac{1}{2\pi \sqrt{\mu \epsilon}} \frac{p'_{nm}}{a}$$

$$\lambda_{0c} = \frac{2\pi a}{p'_{nm}}$$

$$\beta = \sqrt{\omega^2 \mu \epsilon - \left(\frac{p'_{nm}}{a}\right)^2}$$

$$\lambda_g = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}$$

$$v_p = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{0c}}\right)^2}}, \quad v_0 = \frac{1}{\sqrt{\mu \epsilon}}$$

Fibras

$$\begin{split} &\sin(\theta_2) = \left(\frac{\mu_1}{\mu_2}\right) \sin(\theta_2) \\ &\theta_1 = \theta_c \Rightarrow \theta_2 = 90^\circ \\ &\sin(\theta_c) = \frac{n_2}{n_1} \\ &\sin[\theta_{i_{max}}] = \frac{\sqrt{n_1^2 - n_2^2}}{n_0} \\ &\operatorname{Fractional Difference} \to \Delta = \frac{n_1 - n_2}{n_1} \\ &\operatorname{Guide light effective} \Rightarrow \Delta << 1 \\ &NA = n_1 \sqrt{2\Delta} \\ &\theta \operatorname{close to } \theta_{critical} \Rightarrow \operatorname{Higher order modes} \\ &\theta \operatorname{ larger than } \theta_{critical} \Rightarrow \operatorname{Lower order modes} \\ \end{split}$$

 $v = \frac{2\pi d}{\lambda} \sqrt{\mu_1^2 - \mu_2^2} = \frac{2\pi d}{\lambda} NA$

$$M = \frac{V^2}{2}$$
 Velocidade de Fase $\rightarrow v_f = \frac{\omega}{k} = \frac{c}{n}$ Velocidade de Grupo $\rightarrow v_g = \frac{d\omega}{dk} = \frac{c}{m}$ $m = n - \lambda_0 \frac{dn}{d\lambda_0}$

Antenas

$$\begin{split} & \text{Diretividade} \to D(\theta, \Phi) = \frac{U(\theta, \Phi)}{U_0} \\ & \text{Na direção de máximo} \to D(\theta, \Phi) = 4\pi \frac{U_{max}}{P_{rad}} \\ & G(\theta, \Phi) = \frac{U(\theta, \Phi)}{U_0} = 4\pi \frac{U_{max}}{P_{in}} \\ & \text{Densidade de uma antena isotrópica sem perdas:} \\ & U_0 = \frac{P_{rad}}{4\pi} = \frac{P_{in}}{4\pi} \\ & U(\theta, \Phi) = R^2 S_{rad} = R^2 \frac{1}{2} \frac{|E_\theta|^2}{\eta} \\ & G(\theta, \Phi) = e_t D(\theta, \Phi) \\ & \rho = \frac{P_{rad}}{P_{IN}} \end{split}$$

Potência

$$\begin{split} P_{in} &= P_{rad} + P_D \\ P_D &= P_{ref} + P_c + P_d \\ P_{ref} &\to \text{Potência refletida por desaptação} \\ P_c &\to \text{Potência dissipada nas paredes} \\ \text{condutoras da antena} \\ P_d &\to \text{Potência dissipada no dielétrico} \end{split}$$

Eficiência

eficiência
$$\rightarrow e_t = \frac{P_{rad}}{P_{in}} = e_r e_c e_d$$

Eficiência de Radiação $\rightarrow e_{cd} = e_c e_d$
 $S_{rad} = \frac{1}{2}(E \times H^*)$
 $e_r = \frac{P_{tran}}{P_{in}} = (1 - |\rho|^2)$

Impedância

$$Z_A = R_A + jX_A \Rightarrow R_A = R_r + R_p$$

Efeito de Skin $\rightarrow \delta = \sqrt{\frac{2}{\omega \mu \sigma}}$

Effective Area

Ellective Area
$$A_e = \frac{P_T}{S_i} = S_{isotropica} = \frac{P_{rad1}}{4\pi r^2}$$
 $S_1 = D_1 \frac{P_{rad1}}{4\pi r^2}$
 $S_i o Densidade de Potência$
 $A_e = \frac{\lambda^2}{4\pi} G$

Transmissão

$$\begin{aligned} &P_{rad} = e_{t1}P_{in} \\ &G_1 = e_{t1}D_1 \\ &P_T = A_{e2}S_1 = A_{e2}G_1\frac{P_{in}}{4\pi r^2} \\ &|E_\theta| = \frac{\eta I\Delta Z}{2\pi R\lambda}\sin(\theta) \end{aligned}$$

Fórmula de Friis

$$P_T = A_{e2} \frac{P_{in}}{4\pi r^2} G_1 = P_{in} \left(\frac{\lambda}{4\pi r}\right)^2 G_t G_r$$
$$\left(\frac{\lambda}{4\pi r}\right)^2 \to \text{Perdas em espaço livre}$$

Radar

$$\begin{split} P_{ref} &= S_i \sigma \\ P &= A_e S_A = P_t \sigma G^2 \frac{1}{4\pi} \left(\frac{\lambda}{4\pi r^2} \right)^2 \end{split}$$

Antenas Filiformes
$$H_{\Phi} = j \frac{\beta I \Delta z}{4\pi r} e^{-j\beta r} \sin(\theta)$$

$$E_{\theta} = j \eta \frac{\beta I \Delta z}{4\pi r} e^{-j\beta r} \sin(\theta)$$

Dipolo

$$\begin{split} P &= P_{rad} + jQ = \eta \frac{\pi}{3} \left(\frac{I\Delta z}{\lambda} \right)^2 \left[1 - j \frac{1}{(\beta r)^3} \right] \\ \eta &= \sqrt{\frac{\mu}{\epsilon}} \end{split}$$

Em campo distante $(f >> \lambda)$, Q é desprezável

Resistência de Radiação $\rightarrow R_r = \eta \frac{2\pi}{3} \left(\frac{\Delta z}{\lambda}\right)^2$

$$U(\theta, \Phi) = r^2 S = r^2 \frac{1}{2} \left(\frac{|E|^2}{\eta} \right)$$

$$U(\theta) = r^2 S_{rad} = \frac{\eta}{2} \left(\frac{\beta I \Delta z}{4\pi} \right)^2 \sin^2(\theta)$$

$$D(\theta, \Phi) = 4\pi \frac{U(\theta, \Phi)}{P_{rad}}$$

$$A_e = \frac{\lambda^2}{4} D$$

Num dipolo curto, U_{max} , P_{rad} e R_r passa para

$$\dot{U}(\theta) = R^2 S_{rad}(\theta, \Phi, R)$$

$$S_{rad} = \frac{\eta |I_0|^2}{8\pi^2 R^2} \left[\frac{\cos(\frac{pi}{2}\cos(\theta))}{\sin(\theta)} \right]^2$$

$$U_n(\theta, \Phi) = \left(\frac{\cos(\frac{pi}{2}\cos(\theta))}{\sin(\theta)} \right)^2$$

Monopolo

$$\begin{array}{l} E_2^{mono} = E_2^{di} \Rightarrow S_\theta^{mono} = S_\theta^{di} \Rightarrow U_\theta^{mono} = \\ U_\theta^{di}, se\theta \leq \frac{\pi}{2} \\ P_{rad}^{mono} = \frac{1}{2} P_{rad}^{di} \\ D^{mono} = 2 D^{di} \\ |E_g| = \frac{\eta I_0}{2\pi R} \end{array}$$

Antenas Microstrip

$$\begin{split} W &= \frac{1}{2f_r \cdot \sqrt{\epsilon_0 \mu_0}} \sqrt{\frac{2}{\epsilon_r + 1}} \\ \epsilon_{reff} &= \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2 \cdot \sqrt{1 + \frac{12d}{W}}} \\ \Delta L &= \\ 0.412d \cdot \left(\epsilon_{reff} + 0.3\right) \frac{\frac{W}{d} + 0.264}{\left(\epsilon_{reff} - 0.258\right)\left(\frac{W}{d} + 0.8\right)} \\ L &= \frac{1}{2f_r \sqrt{\epsilon_{reff}} \cdot \sqrt{\epsilon_0 \mu_0}} - 2\Delta L \\ Z_a &= 90 \frac{\epsilon_r^2}{\epsilon_r - 1} \left(\frac{L}{W}\right)^2 \end{split}$$

Agregados de Antenas

$$\begin{split} \phi &= \beta d \cos(\theta) + \alpha \\ E_{\theta T} &= \\ j \eta \frac{I_0 e^{-j\beta R}}{2\pi R} \left[\frac{\cos\left(\frac{pi}{2}\cos(\theta)\right)}{\sin(\theta)} \right] \left[2\cos\left(\frac{\beta d \cos(\theta) + \alpha}{2}\right) \right] \end{split}$$

$$FA = \frac{\sin(N\frac{\phi}{2})}{\sin(\frac{\phi}{2})}$$

Pedro Martins (martinspedro@ua.pt)