meristematic zone represent the phase of elongation. Increased vacuolation, cell enlargement and new cell wall deposition are the characteristics of the cells in this phase. Further away from the apex, i.e., more proximal to the phase of elongation, lies the portion of axis which is undergoing the phase of maturation. The cells of this zone, attain their maximal size in terms of wall thickening and protoplasmic modifications. Most of the tissues and cell types you have studied in Chapter 6 represent this phase.

15.1.4 Growth Rates

The increased growth per unit time is termed as growth rate. Thus, rate of growth can be expressed mathematically. An organism, or a part of the organism can produce more cells in a variety of ways.

Figure 15.4 Diagrammatic representation of : (a) Arithmetic (b) Geometric growth and (c) Stages during embryo development showing geometric and arithmeatic phases

The growth rate shows an increase that may be arithmetic or geometrical (Figure 15.4).

In arithmetic growth, following mitotic cell division, only one daughter cell continues to divide while the other differentiates and matures. The simplest expression of arithmetic growth is exemplified by a root elongating at a constant rate. Look at Figure 15.5. On plotting the length of the organ against time, a linear curve is obtained. Mathematically, it is expressed as

 $L_t = L_0 + rt$

 L_t = length at time 't'

 L_0 = length at time 'zero'

r = growth rate / elongation per unit time.

Let us now see what happens in geometrical growth. In most systems, the initial growth is slow (lag phase), and it increases rapidly thereafter – at an exponential rate (log or exponential phase). Here, both the progeny cells following mitotic cell division retain the ability to divide and continue to do so. However, with limited nutrient supply, the growth slows down leading to a stationary phase. If we plot the parameter of growth against time, we get a typical sigmoid or S-curve (Figure 15.6). A sigmoid curve is a characteristic of living organism growing in a natural environment. It is typical for all cells, tissues and organs of a plant. Can you think of more similar examples? What kind of a curve can you expect in a tree showing seasonal activities?

The exponential growth can be expressed as

$$W_1 = W_0 e^{rt}$$

W₁ = final size (weight, height, number etc.)

 $\mathbf{W}_{\scriptscriptstyle{0}}$ = initial size at the beginning of the period

r = growth rate

t = time of growth

e = base of natural logarithms

Here, r is the relative growth rate and is also the measure of the ability of the plant to produce new plant material, referred to as efficiency index. Hence, the final size of W_1 depends on the initial size, W_0 .

Figure 15.5 Constant linear growth, a plot of length L against time t

Figure 15.6 An idealised sigmoid growth curve typical of cells in culture, and many higher plants and plant organs

Figure 15.7 Diagrammatic comparison of absolute and relative growth rates. Both leaves A and B have increased their area by 5 cm^2 in a given time to produce A^1 , B^1 leaves.

Quantitative comparisons between the growth of living system can also be made in two ways: (i) measurement and the comparison of total growth per unit time is called the absolute growth rate. (ii) The growth of the given system per unit time expressed on a common basis, e.g., per unit initial parameter is called the relative growth rate. In Figure 15.7 two leaves, A and B, are drawn that are of different sizes but shows absolute increase in area in the given time to give leaves, A¹ and B¹. However, one of them shows much higher relative growth rate. Which one and why?

15.1.5 Conditions for Growth

Why do you not try to write down what you think are necessary conditions for growth? This list may have water, oxygen and nutrients as very essential elements for growth. The plant cells grow in size by cell enlargement which in turn requires water. Turgidity of cells helps in extension growth. Thus, plant growth and further development is intimately linked to the water status of the plant. Water also provides the medium for enzymatic activities needed for growth. Oxygen helps in releasing metabolic energy essential for growth activities. Nutrients (macro and micro essential elements) are required by plants for the synthesis of protoplasm and act as source of energy.

In addition, every plant organism has an optimum temperature range best suited for its growth. Any deviation from this range could be detrimental to its survival. Environmental signals such as light and gravity also affect certain phases/stages of growth.

15.2 DIFFERENTIATION, DEDIFFERENTIATION AND REDIFFERENTIATION

The cells derived from root apical and shoot-apical meristems and cambium differentiate and mature to perform specific functions. This act leading to maturation is termed as **differentiation**. During differentiation, cells undergo few to major structural changes both in their cell walls and protoplasm. For example, to form a tracheary element, the cells would lose their protoplasm. They also develop a very strong, elastic, lignocellulosic secondary cell walls, to carry water to long distances even under extreme tension. Try to correlate the various anatomical features you encounter in plants to the functions they perform.

Plants show another interesting phenomenon. The living differentiated cells, that by now have lost the capacity to divide can regain the capacity of division under certain conditions. This phenomenon is termed as **dedifferentiation**. For example, formation of meristems – interfascicular cambium and cork cambium from fully differentiated parenchyma cells. While doing so, such meristems/tissues are able to divide and produce cells that once again lose the capacity to divide but mature to perform specific functions, i.e., get **redifferentiated**. List some of the tissues in a woody dicotyledenous plant that are the products of redifferentiation. How would you describe a tumour? What would you call the parenchyma cells that are made to divide under controlled laboratory conditions during plant tissue culture?

Recall, in Section 15.1.1, we have mentioned that the growth in plants is open, i.e., it can be indeterminate or determinate. Now, we may say that even differentiation in plants is open, because cells/tissues arising out of the same meristem have different structures at maturity. The final structure at maturity of a cell/tissue is also determined by the location of the cell within. For example, cells positioned away from root apical meristems differentiate as root-cap cells, while those pushed to the periphery mature as epidermis. Can you add a few more examples of open differentiation correlating the position of a cell to its position in an organ?

15.3 DEVELOPMENT

Development is a term that includes all changes that an organism goes through during its life cycle from germination of the seed to senescence. Diagrammatic representation of the sequence of processes which constitute the development of a cell of a higher plant is given in Figure 15.8. It is also applicable to tissues/organs.

Figure 15.8 Sequence of the developmental process in a plant cell

Plants follow different pathways in response to environment or phases of life to form different kinds of structures. This ability is called **plasticity**, e.g., heterophylly in cotton, coriander and larkspur. In such plants, the leaves of the juvenile plant are different in shape from those in mature plants. On the other hand, difference in shapes of leaves produced in air and those produced in water in buttercup also represent the heterophyllous development due to environment (Figure 15.9). This phenomenon of heterophylly is an example of plasticity.

Figure 15.9 Heterophylly in (a) larkspur and (b) buttercup

Thus, growth, differentiation and development are very closely related events in the life of a plant. Broadly, development is considered as the sum of growth and differentiation. Development in plants (i.e., both growth and differentiation) is under the control of intrinsic and extrinsic factors. The former includes both intracellular (genetic) or intercellular factors (chemicals such as plant growth regulators) while the latter includes light, temperature, water, oxygen, nutrition, etc.

15.4 PLANT GROWTH REGULATORS

15.4.1 Characteristics

The plant growth regulators (PGRs) are small, simple molecules of diverse chemical composition. They could be indole compounds (indole-3-acetic acid, IAA); adenine derivatives (N⁶-furfurylamino purine, kinetin), derivatives of carotenoids (abscisic acid, ABA); terpenes (gibberellic acid, GA₃) or gases (ethylene, C_2H_4). Plant growth regulators are variously described as plant growth substances, plant hormones or phytohormones in literature.

The PGRs can be broadly divided into two groups based on their functions in a living plant body. One group of PGRs are involved in growth promoting activities, such as cell division, cell enlargement, pattern formation, tropic growth, flowering, fruiting and seed formation. These are also called plant growth promoters, e.g., auxins, gibberellins and cytokinins. The PGRs of the other group play an important role in plant responses to wounds and stresses of biotic and abiotic origin. They are also involved in various growth inhibiting activities such as dormancy and abscission. The PGR abscisic acid belongs to this group. The gaseous PGR, ethylene, could fit either of the groups, but it is largely an inhibitor of growth activities.

15.4.2 The Discovery of Plant Growth Regulators

Interestingly, the discovery of each of the five major groups of PGRs have been accidental. All this started with the observation of Charles Darwin and his son Francis Darwin when they observed that the coleoptiles of canary grass responded to unilateral illumination by growing towards the light source (phototropism). After a series of experiments, it was concluded that the tip of coleoptile was the site of transmittable influence that caused the bending of the entire coleoptile (Figure 15.10). Auxin was isolated by F.W. Went from tips of coleoptiles of oat seedlings.

Figure 15.10 Experiment used to demonstrate that tip of the coleoptile is the source of auxin. Arrows indicate direction of light

The 'bakane' (foolish seedling) disease of rice seedlings, was caused by a fungal pathogen *Gibberella fujikuroi*. E. Kurosawa reported the appearance of symptoms of the disease in uninfected rice seedlings when they were treated with sterile filtrates of the fungus. The active substances were later identified as gibberellic acid.

F. Skoog and his co-workers observed that from the internodal segments of tobacco stems the callus (a mass of undifferentiated cells) proliferated only if, in addition to auxins the nutrients medium was supplemented with one of the following: extracts of vascular tissues, yeast extract, coconut milk or DNA. Skoog and Miller, later identified and crystallised the cytokinesis promoting active substance that they termed kinetin.

During mid-1960s, three independent researches reported the purification and chemical characterisation of three different kinds of inhibitors: inhibitor-B, abscission II and dormin. Later all the three were proved to be chemically identical. It was named abscisic acid (ABA).

Cousins confirmed the release of a volatile substance from ripened oranges that hastened the ripening of stored unripened bananas. Later this volatile substance was identified as ethylene, a gaseous PGR.

Let us study some of the physiological effects of these five categories of PGRs in the next section.

15.4.3 Physiological Effects of Plant Growth Regulators

15.4.3.1 Auxins

Auxins (from Greek 'auxein': to grow) was first isolated from human urine. The term 'auxin' is applied to the indole-3-acetic acid (IAA), and to other natural and synthetic compounds having certain growth regulating properties. They are generally produced by the growing apices of the stems and roots, from where they migrate to the regions of their action. Auxins like IAA and indole butyric acid (IBA) have been isolated from plants. NAA (naphthalene acetic acid) and 2, 4-D (2, 4-dichlorophenoxyacetic) are synthetic auxins. All these auxins have been used extensively in agricultural and horticultural practices.

They help to initiate rooting in stem cuttings, an application widely used for plant propagation. Auxins promote flowering e.g. in pineapples. They help to prevent fruit and leaf drop at early stages but promote the abscission of older mature leaves and fruits.

In most higher plants, the growing apical bud inhibits the growth of the lateral (axillary) buds, a phenomenon called **apical dominance**. Removal of shoot tips (decapitation) usually results in the growth of lateral buds (Figure 15.11). It is widely applied in tea plantations, hedge-making. Can you explain why?

Auxins also induce parthenocarpy, e.g., in tomatoes. They are widely used as herbicides. 2, 4-D, widely used to kill dicotyledonous weeds, does not affect mature monocotyledonous plants. It is used to prepare weed-free lawns by gardeners. Auxin also controls xylem differentiation and helps in cell division.

15.4.3.2 Gibberellins

Gibberellins are another kind of promotery PGR. There are more than 100 gibberellins reported from widely different organisms such as fungi and higher plants. They are denoted as GA_1 , GA_2 , GA_3 and so on. However, Gibberellic acid (GA_3) was one of the first gibberellins to be discovered and remains the most intensively studied form. All GAs are acidic. They produce a wide range of

Figure 15.11 Apical dominance in plants:

(a) A plant with apical bud intact
(b) A plant with apical bud removed
Note the growth of lateral buds into branches after decapitation.

physiological responses in the plants. Their ability to cause an increase in length of axis is used to increase the length of grapes stalks. Gibberellins, cause fruits like apple to elongate and improve its shape. They also delay senescence. Thus, the fruits can be left on the tree longer so as to extend the market period. GA_3 is used to speed up the malting process in brewing industry.

Sugarcane stores carbohydrate as sugar in their stems. Spraying sugarcane crop with gibberellins increases the length of the stem, thus increasing the yield by as much as 20 tonnes per acre.

Spraying juvenile conifers with GAs hastens the maturity period, thus leading to early seed production. Gibberellins also promotes bolting (internode elongation just prior to flowering) in beet, cabbages and many plants with rosette habit.

15.4.3.3 Cytokinins

Cytokinins have specific effects on cytokinesis, and were discovered as kinetin (a modified form of adenine, a purine) from the autoclaved herring sperm DNA. Kinetin does not occur naturally in plants. Search for natural substances with cytokinin-like activities led to the isolation of zeatin from corn-kernels and coconut milk. Since the discovery of zeatin, several naturally occurring cytokinins, and some synthetic compounds with cell division promoting activity, have been identified. Natural cytokinins are synthesised in regions where rapid cell division occurs, for example, root apices, developing shoot buds, young fruits etc. It helps to produce new

leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot formation. Cytokinins help overcome the apical dominance. They promote nutrient mobilisation which helps in the delay of leaf senescence.

15.4.3.4 Ethylene

Ethylene is a simple gaseous PGR. It is synthesised in large amounts by tissues undergoing senescence and ripening fruits. Influences of ethylene on plants include horizontal growth of seedlings, swelling of the axis and apical hook formation in dicot seedlings. Ethylene promotes senescence and abscission of plant organs especially of leaves and flowers. Ethylene is highly effective in fruit ripening. It enhances the respiration rate during ripening of the fruits. This rise in rate of respiration is called respiratory climactic.

Ethylene breaks seed and bud dormancy, initiates germination in peanut seeds, sprouting of potato tubers. Ethylene promotes rapid internode/petiole elongation in deep water rice plants. It helps leaves/upper parts of the shoot to remain above water. Ethylene also promotes root growth and root hair formation, thus helping the plants to increase their absorption surface.

Ethylene is used to initiate flowering and for synchronising fruit-set in pineapples. It also induces flowering in mango. Since ethylene regulates so many physiological processes, it is one of the most widely used PGR in agriculture. The most widely used compound as source of ethylene is ethephon. Ethephon in an aqueous solution is readily absorbed and transported within the plant and releases ethylene slowly. Ethephon hastens fruit ripening in tomatoes and apples and accelerates abscission in flowers and fruits (thinning of cotton, cherry, walnut). It promotes female flowers in cucumbers thereby increasing the yield.

15.4.3.5 Abscisic acid

As mentioned earlier, abscisic acid **(ABA)** was discovered for its role in regulating abscission and dormancy. But like other PGRs, it also has other wide ranging effects on plant growth and development. It acts as a general plant growth inhibitor and an inhibitor of plant metabolism. ABA inhibits seed germination. ABA stimulates the closure of stomata in the epidermis and increases the tolerance of plants to various kinds of stresses. Therefore, it is also called the stress hormone. ABA plays an important role in seed development, maturation and dormancy. By inducing dormancy, ABA helps seeds to withstand desiccation and other factors unfavourable for growth. In most situations, ABA acts as an antagonist to GAs.

We may summarise that for any and every phase of growth, differentiation and development of plants, one or the other PGR has some role to play. Such roles could be complimentary or antagonistic. These could be individualistic or synergistic.

Similarly, there are a number of events in the life of a plant where more than one PGR interact to affect that event, e.g., dormancy in seeds/buds, abscission, senescence, apical dominance, etc.

Remember, the role of PGR is of only one kind of intrinsic control. Along with genomic control and extrinsic factors, they play an important role in plant growth and development. Many of the extrinsic factors such as temperature and light, control plant growth and development via PGR. Some of such events could be: vernalisation, flowering, dormancy, seed germination, plant movements, etc.

We shall discuss briefly the role of light and temperature (both of them, the extrinsic factors) on initiation of flowering.

15.5 Photoperiodism

It has been observed that some plants require a periodic exposure to light to induce flowering. It is also seen that such plants are able to measure the duration of exposure to light. For example, some plants require the exposure to light for a period exceeding a well defined critical duration, while others must be exposed to light for a period less than this critical duration before the flowering is initiated in them. The former group of plants are called **long day plants** while the latter ones are termed **short day plants**. The critical duration is different for different plants. There are many plants, however, where there is no such correlation between exposure to light duration and induction of flowering response; such plants are called **day-neutral plants** (Figure 15.12). It is now also

Figure 15.12 Photoperiodism: Long day, short day and day neutral plants

known that not only the duration of light period but that the duration of dark period is also of equal importance. Hence, it can be said that flowering in certain plants depends not only on a combination of light and dark exposures but also their relative durations. This response of plants to periods of day/night is termed **photoperiodism**. It is also interesting to note that while shoot apices modify themselves into flowering apices prior to flowering, they (i.e., shoot apices of plants) by themselves cannot percieve photoperiods. The site of perception of light/dark duration are the leaves. It has been hypothesised that there is a hormonal substance(s) that is responsible for flowering. This hormonal substance migrates from leaves to shoot apices for inducing flowering only when the plants are exposed to the necessary inductive photoperiod.

15.6 VERNALISATION

There are plants for which flowering is either quantitatively or qualitatively dependent on exposure to low temperature. This phenomenon is termed **vernalisation**. It prevents precocious reproductive development late in the growing season, and enables the plant to have sufficient time to reach maturity. Vernalisation refers specially to the promotion of flowering by a period of low temperature. Some important food plants, wheat, barley, rye have two kinds of varieties: winter and spring varieties. The 'spring' variety are normally planted in the spring and come to flower and produce grain before the end of the growing season. Winter varieties, however, if planted in spring would normally fail to flower or produce mature grain within a span of a flowering season. Hence, they are planted in autumn. They germinate, and over winter come out as small seedlings, resume growth in the spring, and are harvested usually around mid-summer.

Another example of vernalisation is seen in biennial plants. Biennials are monocarpic plants that normally flower and die in the second season. Sugarbeet, cabbages, carrots are some of the common biennials. Subjecting the growing of a biennial plant to a cold treatment stimulates a subsequent photoperiodic flowering response.

SUMMARY

Growth is one of the most conspicuous events in any living organism. It is an irreversible increase expressed in parameters such as size, area, length, height, volume, cell number etc. It conspicuously involves increased protoplasmic material. In plants, meristems are the sites of growth. Root and shoot apical meristems sometimes alongwith intercalary meristem, contribute to the elongation growth of

plant axes. Growth is indeterminate in higher plants. Following cell division in root and shoot apical meristem cells, the growth could be arithmetic or geometrical. Growth may not be and generally is not sustained at a high rate throughout the life of cell/tissue/organ/organism. One can define three principle phases of growth – the lag, the log and the senescent phase. When a cell loses the capacity to divide, it leads to differentiation. Differentiation results in development of structures that is commensurate with the function the cells finally has to perform. General principles for differentiation for cell, tissues and organs are similar. A differentiated cell may dedifferentiate and then redifferentiate. Since differentiation in plants is open, the development could also be flexible, i.e., the development is the sum of growth and differentiation. Plant exhibit plasticity in development.

Plant growth and development are under the control of both intrinsic and extrinsic factors. Intercellular intrinsic factors are the chemical substances, called plant growth regulators (PGR). There are diverse groups of PGRs in plants, principally belonging to five groups: auxins, gibberellins, cytokinins, abscisic acid and ethylene. These PGRs are synthesised in various parts of the plant; they control different differentiation and developmental events. Any PGR has diverse physiological effects on plants. Diverse PGRs also manifest similar effects. PGRs may act synergistically or antagonistically. Plant growth and development is also affected by light, temperature, nutrition, oxygen status, gravity and such external factors.

Flowering in some plants is induced only when exposed to certain duration of photoperiod. Depending on the nature of photoperiod requirements, the plants are called short day plants, long day plants and day-neutral plants. Certain plants also need to be exposed to low temperature so as to hasten flowering later in life. This treatement is known as vernalisation.

EXERCISES

- 1. Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate.
- 2. Why is not any one parameter good enough to demonstrate growth throughout the life of a flowering plant?
- 3. Describe briefly:
 - (a) Arithmetic growth
 - (b) Geometric growth
 - (c) Sigmoid growth curve
 - (d) Absolute and relative growth rates
- List five main groups of natural plant growth regulators. Write a note on discovery, physiological functions and agricultural/horticultural applications of any one of them.

5. What do you understand by photoperiodism and vernalisation? Describe their significance.

- 6. Why is abscisic acid also known as stress hormone?
- 7. 'Both growth and differentiation in higher plants are *open*'. Comment.
- 8. 'Both a short day plant and a long day plant can produce can flower simultaneously in a given place'. Explain.
- 9. Which one of the plant growth regulators would you use if you are asked to:
 - (a) induce rooting in a twig
 - (b) quickly ripen a fruit
 - (c) delay leaf senescence
 - (d) induce growth in axillary buds
 - (e) 'bolt' a rosette plant
 - (f) induce immediate stomatal closure in leaves.
- 10. Would a defoliated plant respond to photoperiodic cycle? Why?
- 11. What would be expected to happen if:
 - (a) GA₃ is applied to rice seedlings
 - (b) dividing cells stop differentiating
 - (c) a rotten fruit gets mixed with unripe fruits
 - (d) you forget to add cytokinin to the culture medium.

UNIT 5

HUMAN PHYSIOLOGY

Chapter 16

Digestion and Absorption

Chapter 17

Breathing and Exchange of Gases

Chapter 18

Body Fluids and Circulation

Chapter 19

Excretory Products and their Elimination

Chapter 20

Locomotion and Movement

Chapter 21

Neural Control and Coordination

Chapter 22

Chemical Coordination and Integration

The reductionist approach to study of life forms resulted in increasing use of physico-chemical concepts and techniques. Majority of these studies employed either surviving tissue model or straightaway cellfree systems. An explosion of knowledge resulted in molecular biology. Molecular physiology became almost synonymous with biochemistry and biophysics. However, it is now being increasingly realised that neither a purely organismic app<mark>roach nor a purely reductionistic</mark> molecular approach would reveal the truth about biological processes or living phenomena. Systems biology makes us believe that all living phenomena are emergent properties due to interaction among components of the system under study. Regulatory network of molecules, supra molecular assemblies, cells, tissues, organisms and indeed, populations and communities, each create emergent properties. In the chapters under this unit, major human physiological processes like digestion, exchange of gases, blood circulation, locomotion and movement are described in cellular and molecular terms. The last two chapters point to the coordination and regulation of body events at the organismic level.

Alfonso Corti (1822 – 1888)

Alfonso Corn, Italian anatomist, was born in 1822. Corti began his scientific career studying the cardiovascular systems of reptiles. Later, he turned his attention to the mammalian auditory system. In 1851, he published a paper describing a structure located on the basilar membrane of the cochlea containing hair cells that convert sound vibrations into nerve impulses, the organ of Corti. He died in the year 1888.

Chapter 16 Digestion and Absorption

- 16.1 Digestive System
- 16.2 Digestion of Food
- 16.3 Absorption of Digested Products
- 16.4 Disorders of Digestive System

Food is one of the basic requirements of all living organisms. The major components of our food are carbohydrates, proteins and fats. Vitamins and minerals are also required in small quantities. Food provides energy and organic materials for growth and repair of tissues. The water we take in, plays an important role in metabolic processes and also prevents dehydration of the body. Biomacromolecules in food cannot be utilised by our body in their original form. They have to be broken down and converted into simple substances in the digestive system. This process of conversion of complex food substances to simple absorbable forms is called **digestion** and is carried out by our digestive system by mechanical and biochemical methods. General organisation of the human digestive system is shown in Figure 16.1.

16.1 DIGESTIVE SYSTEM

The human digestive system consists of the alimentary canal and the associated glands.

16.1.1 Alimentary Canal

The alimentary canal begins with an anterior opening – the mouth, and it opens out posteriorly through the anus. The mouth leads to the buccal cavity or oral cavity. The oral cavity has a number of teeth and a muscular tongue. Each tooth is embedded in a socket of jaw bone (Figure 16.2). This type of attachment is called **thecodont**. Majority of mammals including human being forms two sets of teeth during their life, a set of

Figure 16.1 The human digestive system

temporary milk or deciduous teeth replaced by a set of permanent or adult teeth. This type of dentition is called **diphyodont**. An adult human has 32 permanent teeth which are of four different types (Heterodont dentition), namely, incisors (I), canine (C), premolars (PM) and molars (M). Arrangement of teeth in each half of the upper and lower jaw in the order I, C, PM, M is represented by a dental formula which in human is $\frac{2123}{2123}$. The hard chewing surface of the teeth, made up of enamel, helps in the mastication of food. The tongue is a freely movable muscular organ attached to the floor of the oral cavity by the frenulum. The upper surface of the tongue has small projections called papillae, some of which bear taste buds.

The oral cavity leads into a short pharynx which serves as a common passage for food and air. The oesophagus and the trachea (wind pipe)

open into the pharynx. A cartilaginous flap called epiglottis prevents the entry of food into the glottis - opening of the wind pipe during swallowing. The oesophagus is a thin, long tube which extends posteriorly passing through the neck, thorax and diaphragm and leads to a 'J' shaped bag like structure called stomach. A muscular sphincter (gastro-oesophageal) regulates the opening of oesophagus into the stomach. The stomach, located in the upper left portion of the abdominal cavity, has three major parts - a **cardiac** portion into which the oesophagus opens, a fundic region and a **pyloric** portion which opens into the first part of small intestine (Figure 16.3). Small intestine is distinguishable into three regions, a 'C' shaped duodenum, a long coiled middle portion jejunum and a highly coiled ileum. The opening of the stomach into the duodenum is guarded by the pyloric sphincter. Ileum opens into the large intestine. It consists of caecum, colon and rectum. Caecum is a small blind sac which hosts some symbiotic micro-organisms. A narrow finger-like tubular projection, the vermiform appendix which is a vestigial organ, arises from the caecum. The caecum opens into the colon. The colon is divided into three parts – an ascending, a transverse and a descending part. The descending part opens into the rectum which opens out through the anus.

The wall of alimentary canal from oesophagus to rectum possesses four layers (Figure 16.4) namely serosa, muscularis, sub-mucosa and mucosa. Serosa is the outermost layer and is made up of a thin mesothelium (epithelium of visceral organs) with some connective tissues. Muscularis is formed by smooth muscles usually arranged into an inner circular and an outer longitudinal layer. An oblique muscle layer may be present in some regions. The submucosal layer is formed of loose connective

Figure 16.2 Arrangement of different types of teeth in the jaws on one side and the sockets on the other side

Figure 16.3 Anatomical regions of human stomach

Figure 16.4 Diagrammatic representation of transverse section of gut

Figure 16.5 A section of small intestinal mucosa showing villi

tissues containing nerves, blood and lymph vessels. In duodenum, glands are also present in sub-mucosa. The innermost layer lining the lumen of the alimentary canal is the mucosa. This layer forms irregular folds (rugae) in the stomach and small finger-like foldings called villi in the small intestine (Figure 16.5). The cells lining the villi produce numerous microscopic projections called microvilli giving a brush border appearance. These modifications increase the surface area enormously. Villi are supplied with a network of capillaries and a large lymph vessel called the lacteal. Mucosal epithelium has goblet cells which secrete mucus that help in lubrication. Mucosa also forms glands in the stomach (gastric glands) and crypts in between the bases of villi in the intestine (crypts of Lieberkuhn). All the four layers show modifications in different parts of the alimentary canal.

16.1.2 Digestive Glands

The digestive glands associated with the alimentary canal include the salivary glands, the liver and the pancreas.

Saliva is mainly produced by three pairs of salivary glands, the parotids (cheek), the sub-maxillary/sub-mandibular (lower jaw) and the sub-linguals (below the tongue). These glands situated just outside the buccal cavity secrete salivary juice into the buccal cavity.

Liver is the largest gland of the body weighing about 1.2 to 1.5 kg in an adult human. It is situated in the abdominal cavity, just below the diaphragm and has two lobes. The hepatic lobules are the structural and functional units of liver containing hepatic cells arranged in the form of cords. Each lobule is covered by a thin connective tissue sheath called the Glisson's capsule. The bile secreted by the hepatic cells passes through the hepatic ducts and is stored and concentrated in a thin muscular sac called the gall bladder. The duct of gall bladder (cystic duct) along with the hepatic duct from the liver forms the common bile duct (Figure 16.6).

Figure 16.6 The duct systems of liver, gall bladder and pancreas

The bile duct and the pancreatic duct open together into the duodenum as the common hepato-pancreatic duct which is guarded by a sphincter called the sphincter of Oddi.

The pancreas is a compound (both exocrine and endocrine) elongated organ situated between the limbs of the 'U' shaped duodenum. The exocrine portion secretes an alkaline pancreatic juice containing enzymes and the endocrine portion secretes hormones, insulin and glucagon.

16.2 DIGESTION OF FOOD

The process of digestion is accomplished by mechanical and chemical processes.

The buccal cavity performs two major functions, mastication of food and facilitation of swallowing. The teeth and the tongue with the help of

saliva masticate and mix up the food thoroughly. Mucus in saliva helps in lubricating and adhering the masticated food particles into a **bolus**. The bolus is then conveyed into the pharynx and then into the oesophagus by swallowing or **deglutition**. The bolus further passes down through the oesophagus by successive waves of muscular contractions called peristalsis. The gastro-oesophageal sphincter controls the passage of food into the stomach. The saliva secreted into the oral cavity contains electrolytes (Na⁺, K⁺, Cl⁻, HCO₃) and enzymes, salivary amylase and lysozyme. The chemical process of digestion is initiated in the oral cavity by the hydrolytic action of the carbohydrate splitting enzyme, the salivary amylase. About 30 per cent of starch is hydrolysed here by this enzyme (optimum pH 6.8) into a disaccharide – maltose. Lysozyme present in saliva acts as an antibacterial agent that prevents infections.

The mucosa of stomach has gastric glands. Gastric glands have three major types of cells namely -

- (i) mucus neck cells which secrete mucus;
- (ii) peptic or chief cells which secrete the proenzyme pepsinogen; and
- (iii) parietal or oxyntic cells which secrete HCl and intrinsic factor (factor essential for absorption of vitamin B_{12}).

The stomach stores the food for 4-5 hours. The food mixes thoroughly with the acidic gastric juice of the stomach by the churning movements of its muscular wall and is called the **chyme**. The proenzyme pepsinogen, on exposure to hydrochloric acid gets converted into the active enzyme pepsin, the proteolytic enzyme of the stomach. Pepsin converts proteins into proteoses and peptones (peptides). The mucus and bicarbonates present in the gastric juice play an important role in lubrication and protection of the mucosal epithelium from excoriation by the highly concentrated hydrochloric acid. HCl provides the acidic pH (pH 1.8) optimal for pepsins. Rennin is a proteolytic enzyme found in gastric juice of infants which helps in the digestion of milk proteins. Small amounts of lipases are also secreted by gastric glands.

Various types of movements are generated by the muscularis layer of the small intestine. These movements help in a thorough mixing up of the food with various secretions in the intestine and thereby facilitate digestion. The bile, pancreatic juice and the intestinal juice are the secretions released into the small intestine. Pancreatic juice and bile are released through the hepato-pancreatic duct. The pancreatic juice contains inactive enzymes – trypsinogen, chymotrypsinogen, procarboxypeptidases, amylases, lipases and nucleases. Trypsinogen is activated by an enzyme, enterokinase, secreted by the intestinal mucosa

into active trypsin, which in turn activates the other enzymes in the pancreatic juice. The bile released into the duodenum contains bile pigments (bilirubin and bili-verdin), bile salts, cholesterol and phospholipids but no enzymes. Bile helps in emulsification of fats, i.e., breaking down of the fats into very small micelles. Bile also activates lipases.

The intestinal mucosal epithelium has **goblet cells** which secrete mucus. The secretions of the brush border cells of the mucosa alongwith the secretions of the goblet cells constitute the intestinal juice or **succus entericus**. This juice contains a variety of enzymes like disaccharidases (e.g., maltase), dipeptidases, lipases, nucleosidases, etc. The mucus alongwith the bicarbonates from the pancreas protects the intestinal mucosa from acid as well as provide an alkaline medium (pH 7.8) for enzymatic activities. Sub-mucosal glands (Brunner's glands) also help in this.

Proteins, proteoses and peptones (partially hydrolysed proteins) in the chyme reaching the intestine are acted upon by the proteolytic enzymes of pancreatic juice as given below:

$$\begin{array}{c} \text{Proteins} \\ \text{Peptones} \\ \text{Proteoses} \end{array} \xrightarrow{\text{Tryps in/Chymotrypsin}} \text{Dipeptides} \\ \end{array}$$

Carbohydrates in the chyme are hydrolysed by pancreatic amylase into disaccharides.

Polysaccharides (starch)
$$\xrightarrow{\text{Amylase}}$$
 Disaccharides

Fats are broken down by lipases with the help of bile into di-and monoglycerides.

$$Fats \xrightarrow{Lipases} Diglycerides \xrightarrow{} Monoglycerides$$

Nucleases in the pancreatic juice acts on nucleic acids to form nucleotides and nucleosides

$$Nucleic\ acids \xrightarrow{\quad Nucleases \quad} Nu\ cleotides \xrightarrow{\quad Nucleo\ sides \quad}$$

The enzymes in the succus entericus act on the end products of the above reactions to form the respective simple absorbable forms. These final steps in digestion occur very close to the mucosal epithelial cells of the intestine.

```
\begin{array}{c} \text{Dipeptides} \xrightarrow{\quad \text{Dipeptidases} \quad} \text{Amino acids} \\ \text{Maltose} \xrightarrow{\quad \text{Maltase} \quad} \text{Glucose} + \text{Glucose} \\ \text{Lactose} \xrightarrow{\quad \text{Lactase} \quad} \text{Glucose} + \text{Galactose} \\ \text{Sucrose} \xrightarrow{\quad \text{Sucrase} \quad} \text{Glucose} + \text{Fructose} \\ \text{Nucleotides} \xrightarrow{\quad \text{Nucleotidases} \quad} \text{Nucleosides} \xrightarrow{\quad \text{Nucleosidases} \quad} \text{Sugars} + \text{Bases} \\ \text{Diand Monoglycerides} \xrightarrow{\quad \text{Lipases} \quad} \text{Fatty acids} + \text{Glycerol} \end{array}
```

The breakdown of biomacromolecules mentioned above occurs in the duodenum region of the small intestine. The simple substances thus formed are absorbed in the jejunum and ileum regions of the small intestine. The undigested and unabsorbed substances are passed on to the large intestine.

No significant digestive activity occurs in the large intestine. The functions of large intestine are:

- (i) absorption of some water, minerals and certain drugs;
- (ii) secretion of mucus which helps in adhering the waste (undigested) particles together and lubricating it for an easy passage.

The undigested, unabsorbed substances called faeces enters into the caecum of the large intestine through ileo-caecal valve, which prevents the back flow of the faecal matter. It is temporarily stored in the rectum till defaecation.

The activities of the gastro-intestinal tract are under neural and hormonal control for proper coordination of different parts. The sight, smell and/or the presence of food in the oral cavity can stimulate the secretion of saliva. Gastric and intestinal secretions are also, similarly, stimulated by neural signals. The muscular activities of different parts of the alimentary canal can also be moderated by neural mechanisms, both local and through CNS. Hormonal control of the secretion of digestive juices is carried out by local hormones produced by the gastric and intestinal mucosa.

16.3 Absorption of Digested Products

Absorption is the process by which the end products of digestion pass through the intestinal mucosa into the blood or lymph. It is carried out by passive, active or facilitated transport mechanisms. Small amounts of monosaccharides like glucose, amino acids and some electrolytes like chloride ions are generally absorbed by simple diffusion. The passage of these substances into the blood depends upon the concentration gradients. However, some substances like glucose and amino acids are absorbed with the help of carrier proteins. This mechanism is called the facilitated transport.

Transport of water depends upon the osmotic gradient. Active transport occurs against the concentration gradient and hence requires energy. Various nutrients like amino acids, monosaccharides like glucose, electrolytes like Na⁺ are absorbed into the blood by this mechanism.

Fatty acids and glycerol being insoluble, cannot be absorbed into the blood. They are first incorporated into small droplets called micelles which move into the intestinal mucosa. They are re-formed into very small protein coated fat globules called the chylomicrons which are transported into the lymph vessels (lacteals) in the villi. These lymph vessels ultimately release the absorbed substances into the blood stream.

Absorption of substances takes place in different parts of the alimentary canal, like mouth, stomach, small intestine and large intestine. However, maximum absorption occurs in the small intestine. A summary of absorption (sites of absorption and substances absorbed) is given in Table 16.1.

Table 16.1 The Summary of Absorption in Different Parts of Digestive System

Mouth	Stomach	Small Intestine	Large Intestine
Certain drugs coming in contact with the mucosa of mouth and lower side of the tongue are absorbed into the blood capillaries lining them.	Absorption of water, simple sugars, and alcohol etc. takes place.	Principal organ for absorption of nutrients. The digestion is completed here and the final products of digestion such as glucose, fructose, fatty acids, glycerol and amino acids are absorbed through the mucosa into the blood stream and lymph.	Absorption of water, some minerals and drugs takes place.

The absorbed substances finally reach the tissues which utilise them for their activities. This process is called assimilation.

The digestive wastes, solidified into coherent faeces in the rectum initiate a neural reflex causing an urge or desire for its removal. The egestion of faeces to the outside through the anal opening (defaecation) is a voluntary process and is carried out by a mass peristaltic movement.

16.4 DISORDERS OF DIGESTIVE SYSTEM

The inflammation of the intestinal tract is the most common ailment due to bacterial or viral infections. The infections are also caused by the parasites of the intestine like tapeworm, roundworm, threadworm, hookworm, pin worm, etc.

Jaundice: The liver is affected, skin and eyes turn yellow due to the deposit of bile pigments.

Vomiting: It is the ejection of stomach contents through the mouth. This reflex action is controlled by the vomit centre in the medulla. A feeling of nausea precedes vomiting.

Diarrhoea: The abnormal frequency of bowel movement and increased liquidity of the faecal discharge is known as diarrhoea. It reduces the absorption of food.

Constipation: In constipation, the faeces are retained within the rectum as the bowel movements occur irregularly.

Indigestion: In this condition, the food is not properly digested leading to a feeling of fullness. The causes of indigestion are inadequate enzyme secretion, anxiety, food poisoning, over eating, and spicy food.

SUMMARY

The digestive system of humans consists of an alimentary canal and associated digestive glands. The alimentary canal consists of the mouth, buccal cavity, pharynx, oesophagus, stomach, small intestine, large intestine, rectum and the anus. The accessory digestive glands include the salivary glands, the liver (with gall bladder) and the pancreas. Inside the mouth the teeth masticates the food, the tongue tastes the food and manipulates it for proper mastication by mixing with the saliva. Saliva contains a starch digestive enzyme, salivary amylase that digests the starch and converts it into maltose (disaccharide). The food then passes into the pharynx and enters the oesophagus in the form of bolus, which is further carried down through the oesophagus by peristalsis into the stomach. In stomach mainly protein digestion takes place. Absorption of simple sugars, alcohol and medicines also takes place in the stomach.

The chyme (food) enters into the duodenum portion of the small intestine and is acted on by the pancreatic juice, bile and finally by the enzymes in the succus entericus, so that the digestion of carbohydrates, proteins and fats is completed. The food then enters into the jejunum and ileum portions of the small intestine. Carbohydrates are digested and converted into monosaccharides like glucose. Proteins are finally broken down into amino acids. The fats are converted to fatty acids and glycerol. The digested end products are absorbed into the body through the epithelial lining of the intestinal villi. The undigested food (faeces) enters into the caecum of the large intestine through ileo-caecal valve, which prevents the back flow of the faecal matter. Most of the water is absorbed in the large intestine. The undigested food becomes semi-solid in nature and then enters into the rectum, anal canal and is finally egested out through the anus.

EXERCISES

- 1. Choose the correct answer among the following:
 - (a) Gastric juice contains
 - (i) pepsin, lipase and rennin
 - (ii) trypsin, lipase and rennin
 - (iii) trypsin, pepsin and lipase
 - (iv) trypsin, pepsin and renin
 - (b) Succus entericus is the name given to
 - (i) a junction between ileum and large intestine
 - (ii) intestinal juice
 - (iii) swelling in the gut
 - (iv) appendix
- 2. Match column I with column II

Column I	Column II		
(a) Bilirubin and biliverdin	(i)	Parotid	
(b) Hydrolysis of starch	(ii)	Bile	
(c) Digestion of fat	(iii)	Lipases	
(d) Salivary gland	(iv)	Amylases	

- 3. Answer briefly:
 - (a) Why are villi present in the intestine and not in the stomach?
 - (b) How does pepsinogen change into its active form?
 - (c) What are the basic layers of the wall of alimentary canal?
 - (d) How does bile help in the digestion of fats?
- 4. State the role of pancreatic juice in digestion of proteins.
- 5. Describe the process of digestion of protein in stomach.
- 6. Give the dental formula of human beings.
- 7. Bile juice contains no digestive enzymes, yet it is important for digestion. Why?
- 8. Describe the digestive role of chymotrypsin. Which two other digestive enzymes of the same category are secreted by its source gland?
- 9. How are polysaccharides and disaccharides digested?
- 10. What would happen if HCl were not secreted in the stomach?
- 11. How does butter in your food get digested and absorbed in the body?
- 12. Discuss the main steps in the digestion of proteins as the food passes through different parts of the alimentary canal.
- 13. Explain the term the codont and diphyodont.
- 14. Name different types of teeth and their number in an adult human.
- 15. What are the functions of liver?

CHAPTER 17

Breathing and Exchange of Gases

- 17.1 Respiratory
 Organs
- 17.2 Mechanism of Breathing
- 17.3 Exchange of Gases
- 17.4 Transport of Gases
- 17.5 Regulation of Respiration
- 17.6 Disorders of Respiratory System

As you have read earlier, oxygen (O_2) is utilised by the organisms to indirectly break down nutrient molecules like glucose and to derive energy for performing various activities. Carbon dioxide (CO_2) which is harmful is also released during the above catabolic reactions. It is, therefore, evident that O_2 has to be continuously provided to the cells and CO_2 produced by the cells have to be released out. This process of exchange of O_2 from the atmosphere with CO_2 produced by the cells is called **breathing**, commonly known as **respiration**. Place your hands on your chest; you can feel the chest moving up and down. You know that it is due to breathing. How do we breathe? The respiratory organs and the mechanism of breathing are described in the following sections of this chapter.

17.1 RESPIRATORY ORGANS

Mechanisms of breathing vary among different groups of animals depending mainly on their habitats and levels of organisation. Lower invertebrates like sponges, coelenterates, flatworms, etc., exchange $\rm O_2$ with $\rm CO_2$ by simple diffusion over their entire body surface. Earthworms use their moist cuticle and insects have a network of tubes (tracheal tubes) to transport atmospheric air within the body. Special vascularised structures called **gills** are used by most of the aquatic arthropods and molluscs whereas vascularised bags called **lungs** are used by the terrestrial forms for the exchange of gases. Among vertebrates, fishes use gills whereas reptiles, birds and mammals respire through lungs. Amphibians like frogs can respire through their moist skin also. Mammals have a well developed respiratory system.

17.1.1 Human Respiratory System

We have a pair of external nostrils opening out above the upper lips. It leads to a nasal chamber through the nasal passage. The nasal chamber opens into the pharynx, a portion of which is the common passage for food and air. The pharynx opens through the larynx region into the trachea. Larynx is a cartilaginous box which helps in sound production and hence called the **sound box**. During swallowing glottis can be covered by a thin elastic cartilaginous flap called epiglottis to prevent the entry of food into the larynx. Trachea is a straight tube extending up to the mid-thoracic cavity, which divides at the level of 5th thoracic vertebra into a right and left primary bronchi. Each bronchi undergoes repeated divisions to form the secondary and tertiary bronchi and bronchioles ending up in very thin terminal bronchioles. The tracheae, primary, secondary and tertiary bronchi, and initial bronchioles are supported by incomplete cartilaginous rings. Each terminal bronchiole gives rise to a number of very thin, irregular-walled and vascularised bag-like structures called alveoli. The branching network of bronchi, bronchioles and alveoli comprise the lungs (Figure 17.1). We have two lungs which are covered by a double layered pleura, with pleural fluid between them. It reduces friction on the lung-surface. The outer pleural membrane is in close contact with the thoracic

Figure 17.1 Diagrammatic view of human respiratory system (Sectional view of the left lung is also shown)

lining whereas the inner pleural membrane is in contact with the lung surface. The part starting with the external nostrils up to the terminal bronchioles constitute the conducting part whereas the alveoli and their ducts form the respiratory or exchange part of the respiratory system. The conducting part transports the atmospheric air to the alveoli, clears it from foreign particles, humidifies and also brings the air to body temperature. Exchange part is the site of actual diffusion of O_2 and CO_2 between blood and atmospheric air.

The lungs are situated in the thoracic chamber which is anatomically an air-tight chamber. The thoracic chamber is formed dorsally by the vertebral column, ventrally by the sternum, laterally by the ribs and on the lower side by the dome-shaped diaphragm. The anatomical setup of lungs in thorax is such that any change in the volume of the thoracic cavity will be reflected in the lung (pulmonary) cavity. Such an arrangement is essential for breathing, as we cannot directly alter the pulmonary volume.

Respiration involves the following steps:

- (i) Breathing or pulmonary ventilation by which atmospheric air is drawn in and CO_2 rich alveolar air is released out.
- (ii) Diffusion of gases (O₂ and CO₂) across alveolar membrane.
- (iii) Transport of gases by the blood.
- (iv) Diffusion of O₂ and CO₂ between blood and tissues.
- (v) Utilisation of O_2 by the cells for catabolic reactions and resultant release of CO_2 (cellular respiration as dealt in the Chapter 14).

17.2 MECHANISM OF BREATHING

Breathing involves two stages: **inspiration** during which atmospheric air is drawn in and **expiration** by which the alveolar air is released out. The movement of air into and out of the lungs is carried out by creating a pressure gradient between the lungs and the atmosphere. Inspiration can occur if the pressure within the lungs (intra-pulmonary pressure) is less than the atmospheric pressure, i.e., there is a negative pressure in the lungs with respect to atmospheric pressure. Similarly, expiration takes place when the intra-pulmonary pressure is higher than the atmospheric pressure. The diaphragm and a specialised set of muscles – external and internal intercostals between the ribs, help in generation of such gradients. Inspiration is initiated by the contraction of diaphragm which increases the volume of thoracic chamber in the antero-posterior axis. The contraction of external inter-costal muscles lifts up the ribs and the

sternum causing an increase in the volume of the thoracic chamber in the dorso-ventral axis. The overall increase in the thoracic volume causes a similar increase in pulmonary volume. An increase in pulmonary volume decreases the intra-pulmonary pressure to less than the atmospheric pressure which forces the air from outside to move into the lungs, i.e., inspiration (Figure 17.2a). Relaxation of the diaphragm and the inter-costal muscles returns the diaphragm and sternum to their normal positions and reduce the thoracic volume and thereby the pulmonary volume. This leads to an increase in intra-pulmonary pressure to slightly above the atmospheric pressure causing the expulsion of air from the lungs, i.e., expiration (Figure 17.2b). We have the ability to increase the strength of inspiration and expiration with the help of additional muscles in the abdomen. On an average, a healthy human breathes 12-16 times/minute. The volume of air involved in breathing movements can be estimated by using a spirometer which helps in clinical assessment of pulmonary functions.

17.2.1 Respiratory Volumes and Capacities

Tidal Volume (TV): Volume of air inspired or expired during a normal respiration. It is approx. 500 mL., i.e., a healthy man can inspire or expire approximately 6000 to 8000 mL of air per minute.

Inspiratory Reserve Volume (IRV): Additional volume of air, a person can inspire by a forcible inspiration. This averages 2500 mL to 3000 mL.

Expiratory Reserve Volume (ERV): Additional volume of air, a person can expire by a forcible expiration. This averages 1000 mL to 1100 mL.

Figure 17.2 Mechanism of breathing showing : (a) inspiration (b) expiration

Residual Volume (RV): Volume of air remaining in the lungs even after a forcible expiration. This averages 1100 mL to 1200 mL.

By adding up a few respiratory volumes described above, one can derive various pulmonary capacities, which can be used in clinical diagnosis.

Inspiratory Capacity (IC): Total volume of air a person can inspire after a normal expiration. This includes tidal volume and inspiratory reserve volume (TV+IRV).

Expiratory Capacity (EC): Total volume of air a person can expire after a normal inspiration. This includes tidal volume and expiratory reserve volume (TV+ERV).

Functional Residual Capacity (FRC): Volume of air that will remain in the lungs after a normal expiration. This includes ERV+RV.

Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration. This includes ERV, TV and IRV or the maximum volume of air a person can breathe out after a forced inspiration.

Total Lung Capacity: Total volume of air accommodated in the lungs at the end of a forced inspiration. This includes RV, ERV, TV and IRV or vital capacity + residual volume.

17.3 Exchange of Gases

Alveoli are the primary sites of exchange of gases. Exchange of gases also occur between blood and tissues. O_2 and CO_2 are exchanged in these sites by simple diffusion mainly based on pressure/concentration gradient. Solubility of the gases as well as the thickness of the membranes involved in diffusion are also some important factors that can affect the rate of diffusion.

Pressure contributed by an individual gas in a mixture of gases is called partial pressure and is represented as pO_2 for oxygen and pCO_2 for carbon dioxide. Partial pressures of these two gases in the atmospheric air and the two sites of diffusion are given in Table 17.1 and in Figure 17.3. The data given in the table clearly indicates a concentration gradient for oxygen from alveoli to blood and blood to tissues. Similarly,

TABLE 17.1 Partial Pressures (in mm Hg) of Oxygen and Carbon dioxide at Different Parts Involved in Diffusion in Comparison to those in Atmosphere

Respiratory Gas	Atmospheric Air	Alveoli	Blood (Deoxygenated)	Blood (Oxygenated)	Tissues
O_2	159	104	40	95	40
CO_2	0.3	40	45	40	45

Figure 17.3 Diagrammatic representation of exchange of gases at the alveolus and the body tissues with blood and transport of oxygen and carbon dioxide

a gradient is present for CO₂ in the opposite direction, i.e., from tissues to blood and blood to alveoli. As the solubility of CO₂ is 20-25 times higher than that of O_2 , the amount of CO₂ that can diffuse through the diffusion membrane per unit difference in partial pressure is much higher compared to that of O₂. The diffusion membrane is made up of three major layers (Figure 17.4) namely, the thin squamous epithelium of alveoli, the endothelium of alveolar capillaries and the basement substance in between them. However, its total thickness is much less than a millimetre. Therefore, all the factors in our body are favourable for diffusion of O2 from alveoli to tissues and that of CO₂ from tissues to alveoli.

Figure 17.4 A Diagram of a section of an alveolus with a pulmonary capillary.

17.4 Transport of Gases

Blood is the medium of transport for O_2 and CO_2 . About 97 per cent of O_2 is transported by RBCs in the blood. The remaining 3 per cent of O_2 is carried in a dissolved state through the plasma. Nearly 20-25 per cent of CO_2 is transported by RBCs whereas 70 per cent of it is carried as bicarbonate. About 7 per cent of CO_2 is carried in a dissolved state through plasma.

17.4.1 Transport of Oxygen

Haemoglobin is a red coloured iron containing pigment present in the RBCs. O_2 can bind with haemoglobin in a reversible manner to form **oxyhaemoglobin**. Each haemoglobin molecule can carry a maximum of four molecules of O_2 . Binding of oxygen with haemoglobin is primarily related to partial pressure of O_2 . Partial pressure of O_2 , hydrogen ion concentration and temperature are the other factors which can interfere with this binding. A sigmoid curve is obtained when percentage saturation

Figure 17.5 Oxygen dissociation curve

of haemoglobin with O₂ is plotted against the pO₂. This curve is called the Oxygen dissociation curve (Figure 17.5) and is highly useful in studying the effect of factors like pCO₂, H⁺ concentration, etc., on binding of O₂ with haemoglobin. In the alveoli, where there is high pO₂, low pCO₂, lesser H⁺ concentration and lower temperature, the factors are all favourable for the formation of oxyhaemoglobin, whereas in the tissues, where low pO₂, high pCO₂, high H⁺ concentration and higher temperature exist, the conditions are favourable for dissociation of oxygen from the oxyhaemoglobin. This clearly indicates that O2 gets bound to haemoglobin in the lung surface and gets dissociated at the tissues. Every 100 ml of oxygenated blood can deliver around 5 ml of O₂ to the tissues under normal physiological conditions.

17.4.2 Transport of Carbon dioxide

 $\mathrm{CO_2}$ is carried by haemoglobin as **carbamino-haemoglobin** (about 20-25 per cent). This binding is related to the partial pressure of $\mathrm{CO_2}$. $\mathrm{pO_2}$ is a major factor which could affect this binding. When $\mathrm{pCO_2}$ is high and $\mathrm{pO_2}$ is low as in the tissues, more binding of carbon dioxide occurs whereas, when the $\mathrm{pCO_2}$ is low and $\mathrm{pO_2}$ is high as in the alveoli, dissociation

of CO_2 from carbamino-haemoglobin takes place, i.e., CO_2 which is bound to haemoglobin from the tissues is delivered at the alveoli. RBCs contain a very high concentration of the enzyme, carbonic anhydrase and minute quantities of the same is present in the plasma too. This enzyme facilitates the following reaction in both directions.

$$CO_2 + H_2O \xrightarrow{\begin{subarray}{c} Carbonic \\ anhydrase \end{subarray}} H_2CO_3 \xrightarrow{\begin{subarray}{c} Carbonic \\ anhydrase \end{subarray}} HCO_3^- + H^+$$

At the tissue site where partial pressure of CO_2 is high due to catabolism, CO_2 diffuses into blood (RBCs and plasma) and forms HCO_3^- and H^+ . At the alveolar site where pCO_2 is low, the reaction proceeds in the opposite direction leading to the formation of CO_2 and H_2O . Thus, CO_2 trapped as bicarbonate at the tissue level and transported to the alveoli is released out as CO_2 (Figure 17.4). Every 100 ml of deoxygenated blood delivers approximately 4 ml of CO_2 to the alveoli.

17.5 REGULATION OF RESPIRATION

Human beings have a significant ability to maintain and moderate the respiratory rhythm to suit the demands of the body tissues. This is done by the neural system. A specialised centre present in the medulla region of the brain called respiratory rhythm centre is primarily responsible for this regulation. Another centre present in the pons region of the brain called pneumotaxic centre can moderate the functions of the respiratory rhythm centre. Neural signal from this centre can reduce the duration of inspiration and thereby alter the respiratory rate. A chemosensitive area is situated adjacent to the rhythm centre which is highly sensitive to CO_o and hydrogen ions. Increase in these substances can activate this centre, which in turn can signal the rhythm centre to make necessary adjustments in the respiratory process by which these substances can be eliminated. Receptors associated with aortic arch and carotid artery also can recognise changes in CO₂ and H+ concentration and send necessary signals to the rhythm centre for remedial actions. The role of oxygen in the regulation of respiratory rhythm is quite insignificant.

17.6 DISORDERS OF RESPIRATORY SYSTEM

Asthma is a difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles.

Emphysema is a chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased. One of the major causes of this is cigarette smoking.

Occupational Respiratory Disorders: In certain industries, especially those involving grinding or stone-breaking, so much dust is produced that the defense mechanism of the body cannot fully cope with the situation. Long exposure can give rise to inflammation leading to fibrosis (proliferation of fibrous tissues) and thus causing serious lung damage. Workers in such industries should wear protective masks.

SUMMARY

Cells utilise oxygen for metabolism and produce energy along with substances like carbon dioxide which is harmful. Animals have evolved different mechanisms for the transport of oxygen to the cells and for the removal of carbon dioxide from there. We have a well developed respiratory system comprising two lungs and associated air passages to perform this function.

The first step in respiration is breathing by which atmospheric air is taken in (inspiration) and the alveolar air is released out (expiration). Exchange of O_2 and CO_2 between deoxygenated blood and alveoli, transport of these gases throughout the body by blood, exchange of O_2 and CO_2 between the oxygenated blood and tissues and utilisation of O_2 by the cells (cellular respiration) are the other steps involved.

Inspiration and expiration are carried out by creating pressure gradients between the atmosphere and the alveoli with the help of specialised muscles – intercostals and diaphragm. Volumes of air involved in these activities can be estimated with the help of spirometer and are of clinical significance.

Exchange of O_2 and CO_2 at the alveoli and tissues occur by diffusion. Rate of diffusion is dependent on the partial pressure gradients of O_2 (p O_2) and CO_2 (p CO_2), their solubility as well as the thickness of the diffusion surface. These factors in our body facilitate diffusion of O_2 from the alveoli to the deoxygenated blood as well as from the oxygenated blood to the tissues. The factors are favourable for the diffusion of CO_2 in the opposite direction, i.e., from tissues to alveoli.

Oxygen is transported mainly as oxyhaemoglobin. In the alveoli where pO_2 is higher, O_2 gets bound to haemoglobin which is easily dissociated at the tissues where pO_2 is low and pCO_2 and H^+ concentration are high. Nearly 70 per cent of carbon dioxide is transported as bicarbonate (HCO $_3$) with the help of the enzyme carbonic anhydrase. 20-25 per cent of carbon dioxide is carried by haemoglobin as carbamino-haemoglobin. In the tissues where pCO_2 is high, it gets bound to blood whereas in the alveoli where pCO_2 is low and pO_2 is high, it gets removed from the blood.

Respiratory rhythm is maintained by the respiratory centre in the medulla region of brain. A pneumotaxic centre in the pons region of the brain and a chemosensitive area in the medulla can alter respiratory mechanism.

EXERCISES

- 1. Define vital capacity. What is its significance?
- 2. State the volume of air remaining in the lungs after a normal breathing.
- 3. Diffusion of gases occurs in the alveolar region only and not in the other parts of respiratory system. Why?
- 4. What are the major transport mechanisms for ${\rm CO_2}$? Explain.
- 5. What will be the pO_2 and pCO_2 in the atmospheric air compared to those in the alveolar air ?
 - (i) pO₂ lesser, pCO₂ higher
 - (ii) pO₂ higher, pCO₂ lesser
 - (iii) pO₂ higher, pCO₂ higher
 - (iv) pO₂ lesser, pCO₂ lesser
- 6. Explain the process of inspiration under normal conditions.
- 7. How is respiration regulated?
- 8. What is the effect of pCO₂ on oxygen transport?
- 9. What happens to the respiratory process in a man going up a hill?
- 10. What is the site of gaseous exchange in an insect?
- 11. Define oxygen dissociation curve. Can you suggest any reason for its sigmoidal pattern?
- 12. Have you heard about hypoxia? Try to gather information about it, and discuss with your friends.
- 13. Distinguish between
 - (a) IRV and ERV
 - (b) Inspiratory capacity and Expiratory capacity.
 - (c) Vital capacity and Total lung capacity.
- 14. What is Tidal volume? Find out the Tidal volume (approximate value) for a healthy human in an hour.