# **Data-Oriented Programing**



### **Agenda**

- Data Analysis Primer
- Data Mining and Machine Learning in a Nutshell
- Why Programming for Data Analysis is Different
- A brief introduction to Jupyter
- An even briefer introduction to Pandas, NumPy and scikitl-earn



# **Data Analysis Primer**





See From Data Mining to Knowledge Discovery in Databases, Fayyad et al., 1996

# **Step 1: Get some Data**

- Public Data sources
  - Open Data
  - Linked Open Data
- Internal Datasources
  - Knowledge Bases, Dokumentation
  - Managerial, Financial, etc.
  - Sensor Measuerements
  - **–** ...
- People
  - Go and talk to them





### **Step 2: Select the relevant parts**

#### Top-Down approach:

- Formulate the qustion(s) you want to answer
- Break them down into more precise and narrow sub-questions
- Continue until these sub-quesions refer to specific parts of your data
- Use these parts

#### Bottom-Up approach:

- Explore the datasets you currently have
- Think what questions you could answer using this data



**Target Data** 



### Steps 3 & 4: pre-process and transform

- Data from different sources might come in various formats
- Some data might be in need of cleaning
  - Missing values
  - Wrong values
  - Inconsistent representation
  - etc.
- All data needs to be transformed into one consistent representation for further analysis





### Step 5: 'mine'

- Develop models which describe the relevant aspects of the data
  - Beware that models are approximations: "All models are wrong, but some are useful"
- Visualize relevant aspects of the data and their relations

**Patterns** 



### **Step 6: interpret**

- What do the models tell you about your data?
  - How well do the models fit your data?
  - What do the outliers tell you about your data?
- Can you make predictions based on these models?
  - How might the data look in the future?
  - How would certain changes in the data affect the model?
- What are the implications of these interpretations for the source of the data?
  - Do these models actually make sense in the larger context?



Knowledge





Data Mining and Machine Learning in a Nutshell



## **Inductive learning**

- Construct hypothesis h based on samples from unknown function f
- If h agrees with all known samples of f, we call it consistent
- There might be arbitrarily many possible h for any given set of samples. Which one is the best?
- Ockham's razor: maximize a combination of consistency and simplicity



# **Machine learning methods**





### Classification

- Assign one of a set of known labels to a piece of data
- Assignment can be hard or probabilistic



43% Duck: Rabbit: 57%



92% Duck: 8% Rabbit:



Duck: 4% Rabbit: 96%

58% Duck: Rabbit: 42%

3% Duck: Rabbit: 97%

99% Duck: Rabbit: 1%



# Regression

- Fit a known type of function with some free parameters to known data with minimal error
  - e.g. Linear Regression:  $f(x) = a^*x + b$
- Predict unknown aspects of new data

**f**(x)





# **Segmentation**

- Similar to Classification, but without knowing the classes beforehand
- Commonly performed by Clustering





### **Association Rule mining**

- Find strong associations / correlations in the data
- Can be used to predict incomplete data or make suggestions









Why Programming for Data Analysis is Different



### **Software Engineering**

- Long-lived application, designed to be in operation for a long time
- Complex code-base with many files
- Sub-optimal soltions get replaces with better ones and removed from the code
- Code is produced and run once complete
- The Code is the product

## vs Data Analytics Programming

- Short-lived application, often used only one
- Small code-base, often only one source-file
- Everything that produces insight stays in the code
- Code is added and evaluated in small increments
- The Knowledge is the product



A brief introduction to Jupyter



### Jupyter in a nutshell









### **Jupyter Notebook**

- Browser-based development envoronment
- Supports 'Kernels' for various programming languages
- Combines REPL-like evaluation with traditional persistent code files
- Supports block-wise evaluation of code
- Displays various types of outputs, including tables, plots, etc.



### **Jupyter Notebook overview**



### **Jupyter Notebook overview**





An even briefer introduction to Pandas, NumPy and scikit-learn

### Recap: data types in python

Boolean: True

Integer: 5

Float: 5.0

String: "5"

- List: [4.0, 5, "6"]

List of Lists: [[3, "4"], [5.0, 6], ["7", True]]

– What about tables?

– What about matrices?

### **Pandas**

- Python library for data manipulation and analysis
- Implements table-like structure called **DataFrame**
- Many functions for manipulating DataFrames
  - Selecting and Projecting
  - Grouping and Aggregating
  - Slicing and Merging
  - Loading and Storing

**–** ...

### **Pandas in action**

Creating a DataFrame

```
- df = pandas.DataFrame({'column1': [1,2,3], 'column2': [2,4,6]})
```

- Loading a DataFrame from a file
  - df = pandas.read\_csv("titanic.csv")
- Accessing a row
  - df[2]
- Accessing a column
  - df['column1']

|   | column1 | column2 |
|---|---------|---------|
| 0 | 1       | 2       |
| 1 | 2       | 4       |
| 2 | 3       | 6       |

### **Pandas in action**

- Access a range of rows
  - df[2:5]
- Conditional selection
  - df[df['column1']>=2]
- Some statistics
  - df.mean()

### **NumPy**

- Python library for high-level mathematical functions
- Implements ndarray datastructure which is similar in some ways to a list
- ndarrays often also used with more than one dimension (matrix math)
- Many functions for manipulating ndarrays

### **Scikit-learn**

- Python library for machine learning
- Implements various algorithms for
  - Classification
  - Regression
  - Clusering
  - etc.
- Comes with all the required functionality for fitting and evaluating models

### Scikit-learn in action

- Create a new model
  - lm = LinearRegression()
- Fit model to training data
  - lm.fit(independent\_variables, dependent\_variables)
- Predict unknown dependent value
  - lm.predict(independent\_value)