Tutorium zu Computer-Engineering im SS19 Termin 4

Jakob Otto

HAW Hamburg

23. April 2019

Ablauf

Praktikum

- ▶ Was ist zu tun?
- ► Was braucht ihr?
- Beispielcode
- ▶ Tipps

Aufgabenzettel

Was ist zu tun?

- DAC verstehen!
- Sinus/Sägezahnsignale ausgeben
- verschiedene Frequenzen darstellen
- verschiedene Amplituden darstellen

Beispielcode

Wie kommt ihr an Samples?!

Für die Lookup-tables braucht ihr Samples.

- volle Periode des Signals berechnen
- Samples in einem Array hard-coden
- \bullet Am besten ohne Offset speichern \to Signal sollte um 0-pkt laufen.
- erst beim nutzen geeignet umformen.

Berechnungsbeispiel

Berechnung der Schrittweite

Zum Darstellen verschiedener Frequenzen benötigt ihr verschiedene Schrittweiten.

- ullet kleine Schrittweite o kleine Frequenz
- ullet große Schrittweite o große Frequenz

Berechnung:

```
delta_{freq} = ((((ANZ\_SAMPLES) * FREQ) << frac) / TIMER\_FREQ)
frac = fractional Anteil des Q-Formats
```


Schrittweite

Für höchste genauigkeit Q-Format nutzen!

Schrittweite

Für höchste genauigkeit Q-Format nutzen!

Bei 360 samples brauchen wir 9 Integer-bits \rightarrow 29 = 512

Qu9.23 ist also sinnvolles Format

