Segmentation with DCNN and data augmentation

Common computer vision tasks

One object per class

Classification

Localization

Semantic segmentation

Multiple objects per class

Rabbit, Rabbit, Rabbit, Rabbit, Rabbit, Cat

Detection

Rabbit, Rabbit, Rabbit, Rabbit, Rabbit, Cat

Instance segmentation

Multiple objects per class

Today

One object per class

Classification

Localization

Semantic segmentation

Rabbit, Rabbit, Rabbit, Rabbit, Cat

Detection

Rabbit, Rabbit, Rabbit, Rabbit,

Instance segmentation

Semantic segmentation

Each pixel in the image is labelled with a class

Do not separate objects of the same class

Example: autonomous driving

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Hengshuang Zhao¹ Xiaojuan Qi¹ Xiaoyong Shen¹ Jianping Shi² Jiaya Jia¹ The Chinese University of Hong Kong ²SenseTime Group Limited

Each frame in the video is processed independently at the rate of 30 fps on a 1024*2048 resolution image.

Example: 3D point cloud

Reminder from last lecture: Convolution

In a **convolutional** layer, connections are only made in a **local receptive field**.

$$o_{l,m} = \phi(\sum_{ij} (w_{ij}x_{l+i,m+j} + b_{l,m}))$$

All neurons from the same **feature map** share the **same weights**. The feature maps are the result of the convolution of the input image by the weights of the connections.

Michael Nielsen, http://neuralnetworksanddeeplearning.com/chap6.html

RELU is usually used after convolutions

Reminder from last lecture: pooling layers

Convolutional layers are often used in conjunction with **pooling layers**.

Example: max-pooling 2x2

Semantic segmentation: How?

1. Sliding Window

- Extract Patch
- 2. Classify pixel at the center of the patch
- 3. Repeat for all the pixels

Pros and Cons

- Pros
 - Simple
- Cons
 - Inefficient/Slow
 - Shared features are recomputed for each pixel classification

Semantic segmentation: How?

- 2. Fully convolutional network
 - Design a network that takes one image has input and do the segmentation for you!
 - → 3x3 Convolutions layers
 - → argmax

Problem: Full resolution convolution over the whole network are very expensive

→ Solution: Downsampling then upsampling

Semantic segmentation: How?

- 2. Fully convolutional network
 - Design a network that takes one image has input and do the segmentation for you!

- → 3x3 Convolutions layers
- → 2x2 Max-pooling layers
- → Up-Sampling layer
- → argmax

Downsampling and Upsamplig

Downsampling

- Pooling (Max, Average,...)
- Strided convolutions

Upsampling

- "Unpooling"
- Transposed convolutions

Unpooling

Max-Unpooling

- There should be corresponding pairs of layers (1 max-pooling for each max-unpooling)
- You need to save the indices used in the pooling operation somewhere!

Example: Segnet

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(12), 2481-2495.

Transposed convolution: the stride parameter

The stride of the convolution is the step between chez dot product in the input:

Transposed convolution

- Transposed convolution = inversed strided convolution
- Outputs that overlaps are summed
- Stride here is the ratio between step in input and output.
 Stride = 2 means 1 step in input is two step in output
- Transposed convolution is also called deconvolution (do not use it), upconvolution or backward strided convolution.

Transposed convolution: 1d example

Transposed convolution: 1d example using matrix multiplications, stride=1

Normal convolution

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix} \begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \end{bmatrix}$$

Transposed convolution

$$\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

When stride=1, transposed convolutions are just regular convolutions

Transposed convolution: 1d example using matrix multiplications, stride=2

Normal convolution

$$\begin{bmatrix} x & y & z & 0 & 0 \\ 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Transposed convolution

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \end{bmatrix}$$

Normal convolutions with stride = 2 reduce the size of the output.

Transposed convolutions with stride = 2 increase the size of the output.

Example: fully convolutional

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 3431-3440).

Example: U-net

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention* (pp. 234-241). Springer, Cham.

Example: V-net

Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In *3D Vision (3DV), 2016 Fourth International Conference on* (pp. 565-571). IEEE.

Atrous convolution

- Sampling region is larger
- Keep the number of parameters
- We do not need to reduce the resolution

Atrous spatial pyramid pooling

Example: Deeplab

Convolutional neural network (e.g. vgg-16 or ResNet-101) where max-pooling operations have been replaced with atrous convolutions.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence*, *40*(4), 834-848.

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-Decoder with

Atrous Separable Convolution for Semantic Image Segmentation. arXiv preprint arXiv:1802.02611.

Guidelines

- Most used upsampling nowadays= atrous & transposed convolution
- Gathering information at different resolution is usually a good strategy (e.g. with spatial pyramid pooling, concatenation+1x1 convolution, shortcuts,...)
- Be aware of the size of your network!

Instance segmentation

Each instance of a class is detected separately Labelling is done at pixel level

Rabbit, Rabbit, Rabbit, Rabbit, Rabbit, Cat

Example: car detection

Instance segmentation: How?

- Use Post-processing to segment the objects
- Force the network to separate the object
- Detect the borders as a second output to help separate objects
- Mask R-CNN → next lecture

Solution1: Post-processing

Watershed, edge detection,...

- Problem dependent
- Limited

Solution2: Force the network

Modify the cost function to add penalties to the

boundaries

Higher cost if error

Example for cross-entropy

$$cost = -\sum_{i} Y_{i} \log(\hat{Y}_{i})$$

$$cost = -\sum_{i} w(Y_{i}) \log(\hat{Y}_{i})$$

$$w(Y_i) = \begin{cases} kY_i & \text{If pixel } i \text{ is at less than } l \text{ pixels from a border} \\ Y_i & \text{Otherwise} \end{cases}$$

Example: U-net

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention* (pp. 234-241). Springer, Cham.

Solution 3: Detect the borders as a second output to help separate objects

Fusion = difference + postprocessing

Example: DCAN

Chen, H., Qi, X., Yu, L., & Heng, P. A. (2016). Dcan: Deep contour-aware networks for accurate gland segmentation. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition* (pp. 2487-2496).

Guidelines

- You can mix the strategy! E.g. modifying the cost function + detecting borders + post-processing.
- Be aware of the metaparameters introduced (border width when detecting borders, additional constants in the cost function,...)

Data augmentation: training on transformed data

Why?

- Lack of data
- Desire to takes into account variations not present in the dataset used
- Help to avoid overfitting
- You can easily win 5 to 10% of accuracy

What kind of transformation?

What kind of transformation?

What kind of transformations?

- Lens distortions
- Translations, Stretch, Skew, Shear, perspective, Elastic deformations,...
- Noise addition
- Other changes in lighting or color conditions
- Use of a network that mimic learned deformations

• ...

Example: biomedical images

Guidelines

- Mix the transforms!
- Only introduce transforms you will encounter after training.
- You can introduce specific transforms for specific purpose (biomedical images vs street images,...)