Segment trees and interval trees Lekcija 11

Sergio Cabello sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani

Includes slides by Antoine Vigneron

Outline

- segment trees
 - stabbing queries
 - windowing problem
 - rectangle intersection
 - Klee's measure problem
- interval trees
 - improvement for some problems
- higher dimension

Data structure for stabbing queries

- orthogonal range searching: data is points, queries are rectangles
- stabbing problem: data is rectangles, queries are points
- in one dimension
 - data: a set of n intervals
 - query: report the k intervals that contain a query point q
- ▶ in \mathbb{R}^d
 - data: a set of *n* isothetic (axis-parallel) boxes
 - query: report the k boxes that contain a query point q

Motivation

 in graphics and databases, objects are often stored according to their bounding box

- query: which objects does point x belong to?
- first find objects whose bounding boxes contain x
- then perform screening

Data structure for windowing queries

- windowing queries
 - data: a set of n disjoint segments in \mathbb{R}^2
 - query: report the *k* segments that intersect a query rectangle *R*.
- motivation: zoom in maps

Rectangle intersection

- input: a set B of n isothetic boxes in \mathbb{R}^2
- output: all the intersecting pairs in B²

• output: $(b_1, b_3), (b_2, b_3), (b_2, b_4), (b_3, b_4)$

- ▶ input: a set B of n isothetic boxes
- output: the area/volume of the union

- well understood in $\mathbb{R}^2 \Rightarrow O(n \log n)$ time
- ▶ the union can have complexity $\Theta(n^2)$. Example?
- ▶ poorly understood in \mathbb{R}^d for d > 2

Segment tree

- a data structure to store intervals, or segments
- allows to answer stabbing queries
 - in \mathbb{R}^2 : report the segments that intersect a query vertical line I
 - in ℝ: report the segments that intersect a query point

- query time: $O(\log n + k)$
- space usage: $O(n \log n)$
- preprocessing time: $O(n \log n)$

Notations

- ▶ let $S = (s_1, s_2, ... s_n)$ be a set of segments in \mathbb{R}
- let E be the set of the x-coordinates of the endpoints of the segments of S
- we assume general position, that is: |E| = 2n
- first sort E in increasing order
- $E = \{e_1 < e_2 < \cdots < e_{2n}\}$

Atomic intervals

- ▶ *E* splits \mathbb{R} into 2n + 1 atomic intervals:
 - $[-\infty, e_1]$
 - $[e_i, e_{i+1}]$ for $i \in \{1, 2, \dots 2n 1\}$
 - $[e_{2n}, \infty]$
- these are the leaves of the segment tree

Internal nodes

- ▶ the segment tree T is a balanced binary tree
- each internal node u with children v and v' is associated with an interval $I_u = I_v \cup I_v'$
- ▶ an elementary interval is an interval associated with a node of T (it can be an atomic interval)

Example

Partitioning a segment

- ▶ let $s \in S$ be a segment whose endpoints have x-coordinates e_i and e_i
- $ightharpoonup [e_i, e_j]$ is split into several elementary intervals
- they are chosen as close as possible to the root
- ► *s* is stored in each node associated with these elementary intervals

Canonical subsets

- each node u is associated with a canonical subset S(u) of segments
- ▶ let $e_i < e_j$ be the *x*-coordinates of the endpoints of $s \in S$
- ▶ then s is stored in S(u) iff $I_u \subset [e_i, e_j]$ and $I_{parent(u)} \not\subset [e_i, e_j]$
- ightharpoonup standard segment tree: S(u) is stored as a list pointed from u
- we can also add more structure/data/pointers from u
- useful for multi-level data structures
- we will use it

Example

Answering a stabbing query

Answering a stabbing query

```
Algorithm ReportStabbing(u, x_l)
Input: root u of T, x-coordinate of I
Output: segments in S that cross I
1. if \mu == NUII
2.
       then return
3.
    output S(u) traversing the list pointed from u
4. if x_l \in I_{l,left}
5.
       then ReportStabbing(u.left, x_l)
6. if x_l \in I_{u.right}
7.
       then ReportStabbing(u.right, x_l)
```

• it clearly takes $O(k + \log n)$ time

Inserting a segment

Insertion in a segment tree

```
Algorithm Insert(u,s)
Input: root u of \mathcal{T}, segment s. Endpoints of s have x-coordinates x^- < x^+

1. if I_u \subset [x^-, x^+]

2. then insert s into the list storing S(u)

3. else

4. if [x^-, x^+] \cap I_{u.left} \neq \emptyset

5. then Insert(u.left, s)

6. if [x^-, x^+] \cap I_{u.right} \neq \emptyset

7. then Insert(u.right, s)
```

Main Property

Lemma

A segment s is stored at most twice at each level of \mathcal{T} .

Dokaz.

- by contradiction
- ▶ if s stored at more than 2 nodes at level i
- \blacktriangleright let u be the leftmost such node, u' be the rightmost
- let v be another node at level i containing s

- then $I_{v.parent} \subset [x^-, x^+]$
- so s cannot be stored at v

Analysis

- lemma of previous slide implies
 - each segment stored in $O(\log n)$ nodes
 - space usage: $O(n \log n)$
- ▶ insertion in O(log n) time
 - · at most four nodes are visited at each level
- ▶ actually space usage is $\Theta(n \log n)$ (example?)
- query time: $O(k + \log n)$
- preprocessing
 - sort endpoints: $\Theta(n \log n)$ time
 - build empty segment tree over these endpoints: O(n) time
 - insert n segments into T: $O(n \log n)$ time
 - overall: $\Theta(n \log n)$ preprocessing time

Rectangle intersection

- ▶ input: a set B of n isothetic boxes in \mathbb{R}^2
- output: all the intersecting pairs in B^2
- using segment trees, we give an $O(n \log n + k)$ time algorithm, where k is the number of intersecting pairs
- this is optimal. Why?
- note: faster than our line segment intersection algorithm
- ▶ space usage: $\Theta(n \log n)$ due to segment trees
- space usage is suboptimal

Two kinds of intersections

overlap

- ▶ intersecting edges
- reduces to intersection reporting for isothetic segments
- done as exercise (first homework)

inclusion

we can find them using stabbing queries

Reporting overlaps

- equivalent to reporting intersecting edges
- plane sweep approach
- ▶ sweep line status: BBST containing the horizontal line segments that intersect the sweep line, by increasing *y*—coordinates
- each time a vertical line segment is encountered, report intersection by range searching in the BBST
- preprocessing time: $O(n \log n)$ for sorting endpoints
- running time: $O(k + n \log n)$

Reporting inclusions

- also using plane sweep: sweep a horizontal line from top to bottom
- sweep line status: the boxes that intersect the sweep line I, in a segment tree with respect to x-coordinates
 - the endpoints are the x-coordinates of the horizontal edges of the boxes
 - at a given time, only rectangles that intersect I are in the segment tree
 - we can perform insertion and deletions in a segment tree in O(log n) time
- each time a vertex of a box is encountered, perform a stabbing query in the segment tree

Remarks

- at each step a box intersection can be reported several times
- in addition there can be overlap and vertex stabbing a box at the same time

▶ to obtain each intersecting pair only once, make some simple checks. How?

Stabbing queries for boxes

- ▶ in \mathbb{R}^d , a set B of n boxes
- for a query point q find all the boxes that contain it
- we use a multi-level data structure, with a segment tree in each level
- inductive definition, induction on d
- first, we store B in a segment tree T with respect to x_1 -coordinate
- for each node u of \mathcal{T} , associate a (d-1)-dimensional multi-level segment tree for the segments S(u), with respect to $(x_2, x_3 \dots x_d)$

Performing queries

- search for q in T using x_1 —coordinate
- for all nodes in the search path, query recursively the (d-1)-dimensional multi-level segment tree
- there are log n such queries
- by induction on d, it follows that
 - query time: $O(k + \log^d n)$
 - space usage: $O(n \log^d n)$
 - preprocessing time : $O(n \log^d n)$
- can be slightly improved...

Windowing queries

- ▶ in \mathbb{R}^d , a set S of n disjont segments
- ▶ for a query axis-aligned rectangle R, find all the segments intersecting R
- three types of segments intersect R:
 - segments with one endpoint inside R
 - segments that intersect vertical side of R
 - segments that intersect horizontal side of R
- first type: range tree over the endpoints of the segments
- second type: multi-level data structure with segment tree
 - store S in a segment tree T with respect to x-coordinate
 - for each node u of T, store the segments S(u) sorted by their intersection with vertical line in BST

Windowing queries

- for segments of the second type:
 - a query visits $O(\log n)$ nodes of the main tree
 - · the canonical subsets of those nodes are disjoint
 - in each node we spend O(log n) time, plus time to report segments (1d range-tree)
 - each segment is reported once, because disjointness
- each segment reported at most twice: filter them
- For *n* disjoint segments:
 - preprocessing: $O(n \log^2 n)$ time
 - query: $O(k + \log^2 n)$ time
- where did we use that the segments are disjoint?

- ▶ in \mathbb{R}^2 , a set *S* of *n* axis-parallel rectangles
- compute area of the union
- ▶ solution using $O(n \log n)$ time
- sweep a vertical line ℓ from left to right
 - keep the length of $\ell \cap (\bigcup S)$
 - events: length changes when rectangles start or stop intersecting ℓ
 - relevant values: distance between consecutive events and the length
 - we compute the area to the left of ℓ , updating it at each event
- use segment trees to maintain the length
 - http://www.cgl.uwaterloo.ca/~krmoule/courses/cs760m/klee

- we need to maintain the length of union of intervals under insertion and deletion of intervals
- make a segment tree (we know all endpoints in advance)
- at each node u we store
 - list of S(u) (actually its cardinality is enough)
 - length(u): the length of l_u covered by segments stored below u
 - note that length(u) only depends on subtree rooted at u
 - this allows quick updates
- length(root) is the real length we want
- ▶ insertion or deletion of interval takes $O(\log n)$ time
 - if $S(u) \neq \emptyset$, then $length(u) = length(I_u)$
 - else, length(u) = length(u.left) + length(u.right)

- in \mathbb{R}^3 best known algorithm in $O(n^{3/2})$ time
- only lower bound: $\Omega(n \log n)$
- in \mathbb{R}^3 , recent progress for unit boxes

Interval trees

- interval trees allow to perform stabbing queries in one dimension
 - query time: $O(k + \log n)$
 - preprocessing time: $O(n \log n)$
 - space: O(n)
- based on different approach

Preliminary

- \blacktriangleright let x_{med} be the median of E
 - S_I : segments of S that are completely to the left of x_{med}
 - S_{med} : segments of S that contain x_{med}
 - S_r : segments of S that are completely to the right of x_{med}

Data structure

- recursive data structure
- ▶ left child of the root: interval tree storing S₁
- right child of the root: interval tree storing S_r
- \triangleright at the root of the interval tree, we store S_{med} in two lists
 - M_L is sorted according to the coordinate of the left endpoint (in increasing order)
 - M_R is sorted according to the coordinate of the right endpoint (in decreasing order)

Example

Interval tree on s_3 and s_5

Interval tree on s_2 and s_7

Stabbing queries

- query: x_q , find the intervals that contain x_q
- if $x_a < x_{med}$ then
 - Scan M_l in increasing order, and report segments that are stabbed. When x_q becomes smaller than the x-coordinate of the current left endpoint, stop.
 - recurse on S_I
- if $x_a > x_{med}$
 - analogous, but on the right side

Analysis

- query time
 - size of the subtree divided by at least two at each level
 - scanning through M_I or M_r : proportional to the number of reported intervals
 - conclusion: $O(k + \log n)$ time
- ▶ space usage: O(n) (each segment is stored in two lists, and the tree is balanced)
- ▶ preprocessing time: easy to do it in $O(n \log n)$ time
- pseudocode