

R-1949-AF July 1977

Geometric Performance of Pseudoranging Navigation Satellite Systems: A Computer Program

Jeannine V. Lamar, L. N. Rowell, J. J. Mate

A Project AIR FORCE report prepared for the United States Air Force

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

The research reported here was sponsored by the Directorate of Operational Requirements, Deputy Chief of Staff/Research and Development, Hq. USAF under Contract F49620-77-C-0023. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

Reports of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
		3. RECIPIENT'S CATALOG NUMBER
R-1949-AF		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Geometric Performance of Pseudoran	ging Navigation	Interim
Satellite Systems: A Computer Program		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(*)
J. V. Lamar, L. N. Rowell, J. J. M	late	F49620-77-C-0023
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
The Rand Corporation 1700 Main Street		
Santa Monica, Ca. 90406		
Project AIR FORCE Office (AF/RDQA)		12. REPORT DATE July 1977
Directorate of Operational Require Hq USAF, Washington, D.C. 20330	ements	13. NUMBER OF PAGES 92
14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASS1FIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release; D	istribution Unlin	mited
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)
No re	estrictions	Mileson School
Early Section (State		Miles Edward
18. SUPPLEMENTARY NOTES		Contractor Contractor
19. KEY WORDS (Continue on reverse side if necessary an	d identify by black number	
Computer Programs		
Navigation Satellites		
NAVSTAR Global Positioning System		
Position (Location)		
20. ABSTRACT (Continue on reverse side if necessary and	I Identify by block number)	
see re	verse side	

/ Spingland School

CONTRACTOR OF THE PROPERTY OF

Describes a computer program designed to analyze many aspects of the geometric performance of pseudoranging navigation satellite (navsat) systems for users either on earth or in earth orbit. A navsat system includes a fleet of satellites, each with an accurate clock that transmits ephemeris, time, and other signals. These signals can be received by relatively small, inexpensive equipment, thus enabling the user to compute his position and time accurately. The NAVSTAR/Global Positioning System (GPS) is such a system, and its overall user accuracy can be broken down into two components which, when multiplied together yield an estimate of the user's position and/or time accuracy. These two components are analyzed in this report; the first depends on the relative geometry among the navsats being employed and the user's location, and the second involves a determination of system errors. This report was performed as part of a Project AIR FORCE study entitled "Space Warfare Issues," and should be of use to military and civilian defense analysts responsible for the design, use, and survivability of CPS and other U.S. space-related systems. Refs. (Hx)

Geometric Performance of Pseudoranging
Navigation Satellite Systems:
A Computer Program.

Jeannine V./Lamar, L. N./Rowell/J. J./Mate

A Project AIR FORCE report prepared for the United States Air Force

15) F49624-77-C-0423

296 600

PREFACE

This report describes a computer program designed to analyze many aspects of the geometric performance of pseudoranging navigation satellite (navsat) systems for users either on earth or in earth orbit. A navsat system includes a fleet of satellites, each with an accurate clock, which transmits emphemeris, time, and other signals. These signals can be received by relatively small, inexpensive equipment, thus enabling the user to compute his position and time accurately. The NAVSTAR/Global Positioning System (GPS) currently under development is such a system. The overall user accuracy of such a system can be broken into two components which, when multiplied together, yield an estimate of the user's position and/or time accuracy. The first component, addressed in this report, depends on the relative geometry among the navsats being employed and the user's location. The second involves "system" errors, such as the accuracy of the ephemeris data of the navsats, propagation effects, clock accuracies, etc. Convenient computer analysis of the geometric performance aspect is important in addressing questions of alternative orbital configurations for the navsats and the degradation of performance due to failure or destruction of some or many of them.

The impetus for this research came from Lieutenant Colonel Frank A. Paparozzi, Directorate of Space, Hq USAF (AF/RDSA), who requested an analysis of the utility and feasibility of NAVSTAR/GPS navigation support to high-altitude satellites, for which GPS was not designed.

The research of formed as a part of a Project AIR FORCE (formerly Project study entitled "Space Warfare Issues." It should be of use to military and civilian defense analysts responsible for the design, use, and survivability of GPS and other U.S. space-related systems. Additional Project AIR FORCE research is in progress to analyze GPS Phase III design features needed to support high-altitude space navigation and user equipment, as well as performance, applications, utility, survivability, and alternatives.

^{*}Ideally, pseudoranging is a one-way measurement of the true range plus the user's unknown time offset with respect to a master reference.

SUMMARY

This report presents a discussion of pseudoranging navigation satellite (navsat) systems (such as the NAVSTAR/Global Positioning System (GPS) satellite system), of Geometric Dilution of Precision (GDOP), and other geometry-related performance parameters, and a computer program which computes them. Included are satellite selection algorithms which were developed to minimize the computational effort required to obtain the best (or nearly best) set of four required satellites for computing the GDOP for either a satellite-based or earth-based user.

A computer program for earth-based users, developed by the Aerospace Corporation, was acquired and extensively modified. Subject to certain constraints, the original program computed the number of navigation satellites within view of a user at any location, selected the set of four of those within view which would minimize navigation errors, and computed the various values of GDOP--namely, the three-dimensional position error, the horizontal position error, the altitude error, and the time error.

At Rand, the program was modified, extended to accommodate users in any earth orbit, and optimized. Further, facilities were added to give the user convenient and powerful input and output control. In short, the program described here is a flexible "production" program.

In addition to the computation of navigation satellite coverage available to any user and the optimum values of GDOP, the Rand program also includes a feature which permits the variation of the navsat antenna beamwidth and determines the effect of this variation on navigational accuracy for satellite users. There are no restrictions on the shape or size of the orbits of either the navigation satellites or the user satellite.

The computer program is written in FORTRAN IV and has been implemented on an IBM 370/158 computer at Rand. Included in this report are: a program listing, an explanation of the variables, a discussion of the operation of the program, and sample results.

ACKNOWLEDGMENTS

The authors wish to acknowledge the cooperation and assistance of A. Bogen and Paul Jorgenson of the Aerospace Corporation, and of Major Gaylord Green and Captain D. A. Flattery of the Space and Missile Systems Organization (SAMSO/YE). Also appreciated are the reviews of this report and helpful suggestions by Mario Juncosa and Richard Frick of The Rand Corporation.

NTIS	White Section D
DDC	Buff Section 🗆
UNANMOUNG	SED 🗆
JUSTIFICATI	ON
BY	
DISTRIBUTIO	M/AVAN ABILITY CODES
DISTRIBUTIO	M/AVAILABILITY CODES
DISTRIBUTIO	

CONTENTS

PREFACE	iii
SUMMARY	v
ACKNOWLEDGMENTS	vii
I. INTRODUCTION	1
II. DISCUSSION	7
Navigation Satellite Deployments. User Locations. Navigation Satellite Visibility. User Position Accuracy. Satellite Selection.	7 7 8 8 12
III. COMPUTER PROGRAM OPERATION	15
Table 1: Explanation of Variables in Main Program Table 2: Explanation of Variables and Calling Sequences of Subroutines	19 23
Table 4: Computing Costs (IBM 370/158 Computer)	28
IV. PROGRAM INPUT AND OUTPUT	31
Table 5: Example Data Set for Case I	32 37 44
APPENDIX A: NAVSAT SELECTION ALGORITHMS FOR A SATELLITE USER	56
APPENDIX B: PROGRAM LISTING	64
REFERENCES	92

I. INTRODUCTION

Pseudoranging navigation satellite systems transmit one-way signals of their ephemeris, time (based on highly accurate and stable onboard clocks that are periodically calibrated by ground command), and other signals that allow a user with fairly simple, lightweight equipment to accurately determine his position, velocity, and time. Such a system, called the NAVSTAR/Global Positioning System (GPS), is being developed by the military services at the Air Force Systems Command Space and Missile Systems Organization. The GPS will eventually consist of 24 satellites with the following configuration: three orbit planes inclined 63 deg and separated by 120 deg in longitude; eight satellites uniformly distributed in each plane in circular orbits at about 10,900 n mi altitude (12 hr period). (See Fig. 1.) The system is being designed to provide continuous global navigation to terrestrial or nearearth users with accuracies on the order of tens of feet. With modifications, the system could provide high-altitude satellites (above 8000 n mi) with real time navigation support. This navigation support could effect future satellite designs and operations, tracking, telemetry, command and control, and many other space applications.

This report documents a computer program which simulates the orbital motion of a system of pseudoranging navigation satellites (navsats) and the motion of earth-based users or a satellite-based user. The program computes the number of navigational satellites within view of the user and the Geometric Dilution of Precision (GDOP) values which are dependent primarily on the user/satellite geometry.

The position accuracy provided by such systems can be conveniently divided into two multiplicative factors—GDOP and other "system" errors. The "system" errors depend on the accuracy of the ephemeris data and time transmitted by the navigation satellites, ionospheric and atmospheric effects, and various mechanization, electronic, and processing

^{*}The GPS Joint Program Office is considering alternative orbital configurations.

^{**}Ballistic missiles can be treated as satellites with orbital perigees less than earth radius.

Fig. 1 — Typical configuration of GPS satellites and GPS users

errors in the navigation satellite and user equipments. Since the GDOP factors depend predominantly on the user/navigation satellite geometries, they can be analyzed independently of system errors, which depend on cost, technology, and effort. This allows separate analyses of alternative orbital configurations, user motion, and the loss of some of the navigation satellites by interference or negation.

The original computer program was based on the analyses contained in Ref. 1 and was designed with GPS in mind. Both the referenced report and the original computer program were written by A. Bogen of the Aerospace Corporation. The original program was designed to compute the number of NAVSTAR/GPS satellites available to an earth-based user (or users) and the various GDOP values at specified times. It was written so that the set of navigational satellites can be changed simply by changing the initial orbital elements of each satellite. Satellite motion is assumed to be Keplerian, i.e., all perturbing forces are neglected. Both satellite coverage and GDOP values could be determined for a single earth-based user located at any latitude and longitude or on a global basis, which involved an assumed uniform distribution of earth-based users.

At Rand, the original program has been extensively modified and extended to permit the simulation of a satellite-based user and any orbital configuration of navsats. There are no restrictions on a satellite user's orbit. It can be circular or elliptical and can be entirely above or below the altitude of the navsats, or both above and below (e.g., highly elliptic orbits).

The modifications to the original program to accommodate a satellite user include algorithms which remove unneeded navigation satellites that are in view of the satellite user in order to decrease the amount of computation.

A user position fix requires a determination of four unknowns: three components of position plus time, thus requiring pseudoranging information from at least four navigation satellites. ** Since the GDOP

^{*}Some combinations of satellite user orbit and navsat orbit configuration are more expensive to run than others; this will be explained later.

^{***}The inclusion of an explicit time calculation reduces the accuracy and stability requirements for the user's clock, thereby making the user equipment simpler, smaller, lighter, more rugged, and cheaper.

values vary primarily with the relative geometry of the user and the navigation satellites, one objective is to select that combination of four navsats, from all those in view of the user, which will yield the minimum (or near minimum) values of GDOP.

The original computer program contained an algorithm which quickly selected the best combination of four GPS satellites from a maximum number of 11 that an earth-based user could see with a masking angle of 5 deg. * (See Fig. 2.) The first of the four satellites is the one nearest the user's zenith and the remaining satellites in view are used three at a time to determine the best combination of four. This is an efficient algorithm that results in the selection of the four navsats which will yield the smallest GDOP almost all of the time. * For 11 satellites in view, the maximum that GPS would provide to a terrestrial user, 120 combinations of three are possible after the first satellite has been selected, and there are 330 different combinations of four.

For a satellite-based user, assuming sufficient GPS signal strength in all directions, the masking angle depends only on the user's altitude and the dimensions assumed for the earth and atmosphere. Therefore, as the user's altitude increases, so will the number of satellites in view. For a user above about $8000~\rm n$ mi altitude, about 21 of the 24 GPS satellites would be in view if the satellites were uniformly distributed. In this case, after selecting the first satellite, 1330 different combinations of three satellites are possible, and there are 7315 different combinations of four.

By considering the geometry of the satellite user relative to that of the satellites in view, it is usually possible to eliminate about half

The Selection of the Second

If the 24 GPS satellites were uniformly distributed on the spherical surface 10,900 n mi above the earth, then the expected number in view of a user with a 5 deg masking angle would be eight. However, since GPS satellites are not uniformly distributed, the maximum number in view can be 11.

^{**}Occasionally, there may be a navsat with a slightly larger zenith angle that would result in a different selection of the other three navsats and a smaller GDOP. A switch is provided in the program to bypass the algorithm and consider all combinations of four navsats in view, but is far more expensive to use.

Fig. 2 — User on earth

of them from further consideration. Thus, the original program was not only modified to include a satellite user but also contains an algorithm for such a user that eliminates navigation satellites in view which would not yield small GDOP values. Versions of this algorithm could be used in satellite user equipment.

In general, it is assumed that the antenna beamwidth and radiated power of the navigation satellite are adequate to assure that a satellite user in line-of-sight of a navigation satellite can receive pseudoranging information. However, the Rand program assumes the user satellite has an omni-directional antenna but permits the variation of the antenna beamwidths of the navsats and can be used to assess the resulting effect on satellite user coverage and GDOP values.

The Rand program is written in FORTRAN IV, and is implemented on an IBM 370/158 computer. It consists of a main routine, 12 subroutines, one function subprogram, and one set of block data. An external subroutine which inverts a symmetric matrix is required. There are three types of output: Case I--user on a satellite; Case II--terrestrial user at specified latitude and longitude; and Case III--terrestrial users on a net of latitude and longitude points and overall global performance.

Section II discusses the GDOP calculations and the Rand computer program in general terms. Section III describes the computer program in considerable detail, and Section IV illustrates the more convenient and powerful input and output features that were added to the original program.

II. DISCUSSION

NAVIGATION SATELLITE DEPLOYMENTS

The Rand computer program, which was partly written with GPS Phase III in mind, will accommodate up to a total of 36 navsats in any orbital arrangement. One additional satellite can be a user.

Current plans for the fully operational GPS Phase III call for 24 satellites deployed in 12-hr (about 10,900 n mi altitude) circular orbits inclined 63 deg to the earth's equatorial plane. The 24 satellites will be uniformly distributed in three orbit planes with ascending nodes separated by a longitude of 120 deg. (Alternative orbital configurations are being considered by the GPS Joint Program Office.) The eight satellites in each plane will be separated by 45 deg, and the phasing of the satellites between planes will be chosen to provide optimum navigation geometry. This system will be referred to frequently in the following text and the example solutions shown later are based on this system of navigational satellites.

USER LOCATIONS

Earth-based users can be located at any earth latitude and longitude. The program will compute the GDOP values for a single user, or for multiple users on a global basis. Currently, the program will accommodate only one satellite-borne user. There are no restrictions on the orbital elements of any of the navsats or the satellite user.

NAVIGATION SATELLITE VISIBILITY

In Ref. 1, it is stated that the number of GPS satellites that would be visible to an earth-based user would never be less than 6 nor greater than 11 if the masking angle (elevation angle of the user's line of sight) is 5 deg. Larger masking angles result in fewer satellites being visible to the user and therefore would probably decrease the accuracy in determining the user's position. Although smaller masking angles would, in general, increase the number of satellites visible, atmospheric effects could result in large errors in the pseudoranging

information that the user receives from GPS satellites near the user's horizon due to propagation errors.

For a satellite user, the masking angle required to avoid large atmospheric propagation effects changes rapidly with the user's altitude so that the number of GPS or other navigation satellites in view increases. In fact, a satellite user above about 8000 n mi altitude would, on the average, see 22 of the 24 GPS satellites. At this altitude, only two satellites, on the average, would be obscured from the user's view by the earth plus 200 n mi of atmosphere above the earth. This increase in the number of GPS satellites visible to a satellite user as a function of the user's altitude is shown in Fig. 3.

USER POSITION ACCURACY*

A user of a pseudoranging navsat system needs measurements from four satellites in order to determine his position (three components) and time. The redundancy afforded by having more than four satellites available permits a choice of the one set of four which will yield small values of GDOP. These values depend on both the pseudorange measurement errors (system errors) and the relative positions of the four GPS satellites selected.

The geometric relationships between the user's position, the positions of the four navigation satellites, and the four pseudorange measurements are given by Ref. 1:

$$\sum_{i=1}^{3} (X_{ij} - U_{j})^{2} = (r_{i} - b)^{2}, \qquad (1)$$

where i = 1, 2, 3, 4 and is the index of each of the four equations,

j = 1, 2, 3 and is the index for each of three orthogonal directions centered at the user,

X_{ij} = the jth component of the position of the ith navsat,

 U_{i} = the jth component of the position of the user,

 r_i^{J} = the pseudorange measurement from the user to the i^{th} navsat, and

b = the user's clock bias in units of distance.

^{*}These formulations are partly based on information from Paul Jorgenson of the Aerospace Corporation.

Fig. 3 — The average number of GPS satellites visible to satellite users versus user altitude

The information needed to solve for the four unknowns, \mathbf{U}_{j} and \mathbf{b} , are the pseudorange measurements, \mathbf{r}_{i} , and the components of the positions of the four navsats, \mathbf{X}_{i} . If

- $\mathbf{C}_{\mathbf{m}}$ = the covariance matrix of the errors in the pseudorange measurements, and
- C = the covariance matrix of the resulting errors in the navigation parameters (three components of user position and user clock bias),

then it can be shown that

$$C_{v} = G^{-1} C_{m} G^{-T} ,$$

where G is a 4 x 4 matrix of the coefficients of the unknowns in the equations obtained by linearizing Eq. (1) about U and b, and is a function of only the direction cosines of the unit vectors from the user to the four navsats and the user's clock bias.

There are some small geometric effects contained in $C_{\overline{m}}$ (for example, the effect of elevation angle on ionospheric modeling errors); these effects will be even less for a satellite user. Thus, a good approximation of the geometric performance can be obtained by assuming that $C_{\overline{m}}$ is an identity matrix. This means that the ranging errors from each navsat are assumed to be unity, random, and uncorrelated. Hence, to a good approximation,

$$C_{v} = (G^{T}G)^{-1}$$
,

and depends only on the *direction* from the user to the four navsats and is in no way dependent on the *distances* between the user and the satellites, as long as there is sufficient signal strength.

The various GDOP values can be obtained from the appropriate elements of the matrix $^{\rm C}_{
m V}$, i.e., the diagonal elements. If $^{\rm C}_{
m V}$ is expressed as

$$C_{v} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix},$$

an overall measure of geometric effect, GDOP, is obtained from the square root of the trace of the matrix.

GDOP =
$$\begin{bmatrix} a_{11} + a_{22} + a_{33} + a_{44} \end{bmatrix}^{1/2}$$
,

where a_{11} , a_{22} , a_{33} relate to errors in position (x, y, z), and a_{44} to the user's time bias. This factor includes all four unknowns (three dimensions of position and time) and is the conventional measure of overall performance. The other DOP values are:

PDOP =
$$\begin{bmatrix} a_{11} + a_{22} + a_{33} \end{bmatrix}^{1/2}$$
,
HDOP = $\begin{bmatrix} a_{11} + a_{22} \end{bmatrix}^{1/2}$,
VDOP = $\begin{bmatrix} a_{33} \end{bmatrix}^{1/2}$,
TDOP = $\begin{bmatrix} a_{44} \end{bmatrix}^{1/2}$,
MDOP = Max $\begin{bmatrix} a_{11} \\ 11 \end{bmatrix}^{1/2}$,

where PDOP, HDOP, VDOP, TDOP, and MDOP are the multiplying DOP factors that apply for the three-dimensional position error, the horizontal position error, the altitude error, the time error, and the larger component of the horizontal position error, respectively.

Because the effects of system errors (those independent of geometry) are multiplied by the DOP factors, it is desirable to select the four navsats of those available that will yield minimum DOP values (generally, PDOP).

The results of many computer runs and analytic approximations show that there is almost total correlation between PDOP and the volume of the tetrahedron formed by lines connecting the tips of the four unit vectors from the user toward the four navsats.** Usually (but rarely

The origin of the x, y, z coordinate system (a right-handed system) is at the user's position. The z axis is in the direction of the user's vertical; the x axis points north and the y axis points east in a plane normal to the z direction.

^{**}For example, PDOP can be shown to be inversely proportional to six times the volume of the tetrahedron and directly proportional to the trace of a complicated 3 x 3 matrix. (2)

not), the larger this volume, the smaller the PDOP values. The amount of computational time required to compute this volume is much less than the computation of PDOP itself, which involves a matrix inversion. Thus, the program was designed to first compute the volumes of the tetrahedrons associated with the different combinations of four navsats, identify the combination of four which yields the largest tetrahedron volume, and then use that combination to compute the DOP values. Another advantage of computing the tetrahedron volume as a prelude to computing the DOPs is that the time rate of change of the volume, and consequently an estimate of the time rate of change of PDOP, can easily be obtained; (1) however, this is not implemented in the program.

SATELLITE SELECTION

An earth-based user of a 24-satellite GPS system will see a maximum of 11 of the 24 satellites if his masking angle is as low as 5 deg. If it is assumed that 11 satellites are in view, and the one closest to the user's zenith is chosen as one of the four satellites required, there are 120 combinations if the remaining 10 satellites are taken three at a time. This is not a large number of combinations to be investigated, so the original program did not include an algorithm which would reduce the number of combinations to be examined. There is an option in the present program which allows the satellites to be combined four at a time, without the zenith restriction, but still using the tetrahedron volume.

In the case of a high-altitude satellite user of the baseline GPS configuration, 22 of the 24 satellites may be visible at any time. If this occurs, there are 1330 combinations to be investigated, and there is an option in the program which allows all combinations of four to be examined. An algorithm was developed to eliminate from the calculations those satellites which have unfavorable relative locations. This option usually cuts the execution time for the program by about a factor of 10. In general, about half of the satellites in view can be eliminated. The algorithm is derived in Appendix A.

Figure 4 is a plot of PDOP for a satellite user in a highly elliptic orbit versus time and altitude, and the variation of the parameter

Fig. 4 — Comparison of PDOPs using various satellite selection criteria

value for C, as described in Appendix A. If the user satellite is in a low earth orbit (less than 300 n mi) or above the GPS altitude, the DOPs will, in general, be the same for all of the satellite selection options. However, as the satellite user's altitude approaches the altitude of the navsats from beneath, the zenith selection option plus small values of C will not yield the minimum DOPs because the algorithm may eliminate some navsats which should be retained. This is caused by the fact that the algorithm retains only those navsats that are in a band determined by C which is normal to a line from the earth's center to the satellite user, rather than those in a band normal to the vector from the user to the zenith satellite. However, for all user altitudes, the use of all navsats in view, taken four at a time, will yield minimum DOPs (based on using the tetrahedron volume). If the navsats' orbital configuration involves elliptic orbits or more than one circular orbit "shell," there are cases where all navsats taken four at a time must be used or extreme care exercised in selecting a parameter value for C. See Appendix A for details.

III. COMPUTER PROGRAM OPERATION

The first card of the input contains the switch for choosing the case desired (LOC: LOC = 1, satellite user; LOC = 2, earth-based user: LOC = 3, global calculations); the number of navsats (NJL); and the switch for choosing the navsat selection technique (ISCMP: ISCMP = 0, zenith; ISCMP = 1, all satellites, four at a time).

There are three types of calculations performed by the program: in Case I, the user is on a satellite; in Case II, the user is stationed at a specific latitude and longitude on the earth's surface; and, in Case III, a group of users are located at a set of latitudes and longitudes which form a net over the whole surface or a hemisphere of the earth.

Along with each of the three cases, there is a choice of the navsat selection technique to be used. In Case I, when the user is on a satellite, one choice is to use the navsat which is most nearly above or below the user as one of the four satellites in the calculation of the volume of the tetrahedron (zenith or nadir mode); the other choice is to use all of the navsats in view, taken four at a time. In Cases II and III, one choice is to use the navsat most nearly overhead of the earth-based user as one of the four satellites in all calculations of the volume, and the other choice is all of the satellites in view taken four at a time.

In all cases, the basic input to the program is the number of navsats and their orbital elements: eccentricity, argument of perigee, right ascension, inclination, initial true anomaly (at t = 0), and period. On the input cards, NJL is the number of satellites in the navsat system. P(N,K) is the array into which the orbital elements are read, where N is the identification number of the navsat, and K = 1 to 5 is the index on the first five orbital elements. The index K is held constant and the orbital element for that index is read in for all navsats (i.e., all eccentricities, then all arguments of perigee, etc.). The final inputs for the navsats are their periods, which are read into the array PER(N). After these inputs, navsat user related data is read in, which varies by case.

For Case I, NJL + 1 is the number of the user satellite. The first satellite user data card of a Case I input contains the eccentricity, argument of perigee, right ascension, inclination, and initial true anomaly of the user satellite at t = 0. The second card contains the period of the user, the antenna beamwidth half-angle of the navsats relative to a vector from the navsat to the center of the earth (AIN), and a numerical value (C) used in the calculation of the width of the band on the spherical surface containing the navsats, where the satellites for consideration in the "DOP" calculations will be sought (see Appendix A). The third card contains the time increment, in minutes, at which the calculations are desired (INC), and the total number of these time increments, plus one (ITF). * For each run, the first page of output contains the orbital elements and all other input values. The subsequent output for Case I is the user altitude, VDOP, HDOP, MDOP, TDOP, PDOP, and GDOP at the chosen time increments, plus the identification numbers of the four navsats used and all others in view. If there are less than four satellites in view, there will be no print line for that time step--it is merely skipped and the program continues.

The first navsat user data card for a Case II run contains the latitude (ATL), longitude (ONGL), and masking angle of the user (ELEVAT, see Fig. 2). The second card contains the time increment, in minutes, at which the calculations are desired (INC) and the total number of these time increments required, plus one (ITF). The output for Case II is identical to Case I--except that the altitude is always zero.

In Case III, the users are located at a set of latitudes and longitudes which form a net over the surface of the earth. The prime objective of this Case is average overall system performance for earth users over a period of time, with a secondary objective of providing a "snapshot" of the DOPs at specified time steps at each longitude and latitude intersection specified. For overall performance, global statistics are calculated for a uniform distribution of users over the surface of the earth or in the northern hemisphere, and for a full

^{*}The "plus one" accounts for the "zero" time point.

^{**}A uniform distribution of users is approximated by the DOPs of users at a given latitude by the cosine of that latitude.

orbital period or a symmetrical part thereof. The total time input must assure this condition if overall performance for earth users is the objective.

The net of users can be chosen in various combinations. Basically, the calculations can be done at 10 deg steps in both longitude and latitude, covering the whole surface or the earth; or at 10 deg steps of longitude and 5 deg steps of latitude for covering the northern hemisphere. In addition, increments of these basic steps can be chosen so that the calculations will be performed at every 20 or every 30 deg, etc., of longitude and at every 20 or every 30 deg., etc., or at every 5 or every 15 deg, etc., of latitude. Global statistics calculations averaged over time are output at the completion of the calculations, but a "snapshot" of the DOPs at each longitude and latitude selected are available at any time point.

The first navsat user card for a Case III input contains the latitude step size (LATDEG) and the masking angle of the users (ELEVAT). The second card contains the latitude increment (LATIC) and the longitude increment (LONIC). If LATIC = 3 and LATDEG = 5, then calculations will be made at 0, 15, 30 deg, etc., in latitude. If LONIC = 2, then calculations will be made at 0, 20, 40, deg., etc., in longitude. The second card also contains the time increment, in minutes, at which the calculations are desired (INC) and the total number of these time increments, plus one, required to complete a full orbital period or to reach a condition of symmetry (ITF), if overall performance is the objective. The final two variables on the second navsat user card are concerned with the "snapshot" request. If IPFREQ = 0, no "snapshot" calculations are made; if it is greater than 0, then ITIME is set to an interger and "snapshot" calculations will be made and printed. For example, if the user has chosen INC = 10 and ITIME = 5, then "snapshot" output will occur at time = 0, 50, 100, etc. If the "snapshot" calculations are requested, the user will always get output at time = 0.

Since the program is quite costly for global calculations, the computation time step should be small enough to *insure* a representative global distribution. The size of the time step will depend on the navsat orbital configuration. Output for the average overall global

performance are elevation distribution, latitude elevation distribution, accumulative global distribution of DOPs, maximum and minimum number of satellites seen at the latitudes and longitudes of the net, the probability of seeing exactly N satellites, and the probability of seeing N or more satellites both by latitude and on an average (weighted by the cosine of latitude) global basis.

Table 1 (pages 19-22) contains an explanation of the variables in the MAIN program, and Table 2 (pages 23-27) contains an explanation of the variables in the subroutines *and* in their calling sequences. Table 3 (pages 28-29) shows the manner in which the input cards are set up. Appendix B provides a listing of the entire program.

A few timed runs were made. Table 4 (page 30) shows a comparison of some of the computing parameters.

The program has been dimensioned to accommodate a total of 36 navsats. In Case I, this means 36 navsats and one satellite user. Cases II and III are limited to a maximum of 36 navsats. All cases can evoke the option of using all navsats in view, taken four at a time, but, in Case III and in Case I (for high-altitude satellite users), the run time would be prohibitive. If less than 36 satellites are to be used, the dimensions of matrix KXX(I,4) (in MAIN, and in subroutines TAAT and TALL) should be reduced to cut down core storage. The index I is calculated from the formula

$$I = \frac{n!}{r! (n-r)!},$$

where n = number of navsats and <math>r = 4.

For Case I, the calculations become less accurate as the altitude of a user above the navsats increases. The subroutine which inverts the DOP matrix is in double precision in order to alleviate some of this problem. However, above a ratio of satellite user altitude to navsat altitude of about 20, the matrix becomes sufficiently ill-conditioned that errors begin to occur in the DOPs.

Table 1 EXPLANATION OF VARIABLES IN MAIN PROGRAM

A. USER ON SATELLITE

FORTRAN	Equations	Explanation
RF(IV)	R a	Vector from the center of the earth to a navsat (where N is the
RMX(N, IV)		"identification number" of the navsat and "IV" is the index of the components of the vector)
R(IV)		
UPV(IV)	104	Vector from the center of the earth to a user satellite (where
RMX(IP, IV)		"IV" is as above)
UTS	ū	Vector from a user satellite to a navsat
AR	R	Length of vector R
AP	Ъ	Length of vector P
А		$\cos^{-1}(r/R)$, $r = earth radius$
В		$\cos^{-1}(r/P)$
PHI	0	$\cos^{-1}(r/R) + \cos^{-1}(r/P)$
THETN	θ	$\cos^{-1}(\overline{R} \cdot \overline{P}/RP)$
AU	. n	Length of the vector $\overline{\overline{\mathrm{U}}}$
BETAN	8 u	$\cos^{-1}(-\overline{\mathbf{u}}\cdot\overline{\mathbf{p}}/\mathrm{UP})$
AIWID	ಶ	Navsat antenna beamwidth half-angle (input) relative to a vector from the navsat to the center of the earth
ВИІВТН		$\pi - (\theta_n + \beta_n)$

 $^{\mathcal{Q}}\mathrm{An}$ overscore denotes a vector.

Table 1 (continued)

FORTRAN	Equations	Explanation
USUV(IINT(N),IV) U(IV)	e ₁ , e ₂ , e ₃ , e ₄	Unit vectors from a user toward 4 navsats (where IINT(N) contains the "identification number" of the satellites which have not been eliminated and "IV" as above)
THETT	$^{ m H}_{ m D}$	If $P > R$ $\theta_T = cos^{-1}$ (R/P) If $P \le R$ and B (of the navsat closest to zenith or nadir) > $\pi/2$; $\theta_T = 109.5^{\circ} - sin^{-1}$ (P sin 19.5°/R) ^b
		If P < R and B (of the navsat closest to zenith or nadir) < $\pi/2$; $\theta_{\rm T}$ = 70.5 - \sin^{-1} (P \sin 19.5°/R) ^b
DELONE	δ1	If $\sin^2 \theta_T > C \delta_1 = \sin^{-1} (C/\sin \theta_T)$ If $\sin^2 \theta_T \le C \delta_1 = \theta_T$
DELTWO	°2 2	If $\sin^2 \theta_T > C \delta_2 = \delta_1$ If $\sin^2 \theta_T \leq C \delta_2 = \cos^{-1} (1 - 2C) - \theta_T$

 b See Appendix A.

Note

After the calculations for eliminating satellites which are not to be considered in the set for navigational purposes, the ones to be used are located as follows:

As I is incremented from 2 to the number of satellites to be included in the navigational calculations, the "identification numbers" of those satellites are stored in IOS. (1) SOI

10S(1) always contains the "identification number" of the satellite which is closest to zenith or nadir.

- Company

Table 1 (continued)

USER ON GROUND

FORTRAN	Explanation
R, RMX	Vector from the center of the earth to a navsat
UPV	Vector from the center of the earth to a user
STN	Vector from a navsat to a user
SE	Elevation (masking) angle of a satellite
UTS	Vector from a user to a navsat (-STN)
nsn	Unit vector (of UTS)
NSTO	Total number of navsats in view
NSPL(L)	Total number of navsats in view at each latitude
CL(L)	Total number of latitudes when there are four or more navsats in view
2	Vector in the polar direction \overline{z} (origin at the earth's center)
YE	Vector in the eastward direction (origin at the user)
NX	Vector in the northward direction (origin at the user)
G(NSGD(N),I)	Direction cosines (where NSGD(N) contains the "identification numbers" of the four selected navsats and $I=1,4$)
SIGT	Dimensioned at 6, contains the dilution of precision (DOP) parameters
CDOP(L,K,IDOP)	Storage for DOPs for each time step; L = latitude index, K = longitude index, LDOP = DOPs index
PIB(IX)	Elevation distributionthe probability that the satellite in view will have specified elevation angles; IX = elevation angle index

 $^{^{\}mathcal{C}}$ This portion of the program is explained in Ref. 1.

Table 1 (continued)

FORTRAN	Explanation
CAGX(LA,LC)	Latitude elevation distribution-the probability that any navsat in view will have an elevation angle greater than or equal to those specified; LA = latitude index, LC = elevation range index
GLEB(IC)	Accumulative elevation distributionthe probability that the elevation angle to a navsat is greater than or equal to those listed; IC = elevation range index
QSR(IQSR)	Range into which the printed variable falls; IQSR = 1, 36 in steps of .2
SKEGX(LK, IQSR, JDOP)	Dilution of precision parameters for overall global performance; LK = latitude index, IQSR (see above), JDOP = DOPs index
MAX(IL, IK)	Maximum number of navsats seen at the intersections of latitudes and longitudes; IL = latitude index, IK = longitude index
MIN(IL, IK)	Minimum number of navsats seen at the intersections of latitudes and longitudes; IL = latitude index, IK = longitude index
OBLAT(IL,N)	<pre>Probability (in percent) of seeing exactly N navsats; IL = latitude index, N = number of navsats</pre>
ACLAT(IL,N)	Probability (in percent) of seeing N or more navsats; IL = latitude index, N = number of navsats
OBDIS(N)	On a global basis, the probability (in percent) that exactly N navsats will be seen (as above)
ACTOT(N)	On a global basis, the probability (in percent) that N or more navsats will be seen (as above)

Table 2

EXPLANATION OF VARIABLES AND CALLING SEQUENCES OF SUBROUTINES

The subroutine call with the variable names in its argument list, as it appears in MAIN, is shown first. The subroutine name, with the variable names in its argument list and an accompanying explanation, appears second.

ORBINI(N)

ORBINI(1) I, satellite number P(I,2)=P(I,2)*C(1)Argument of periapsis x 0.01745 Calculated only Right ascension of the node x 0.01745 to change units P(I,3)=P(I,3)*C(1)from degrees P(I,4)=P(I,4)*C(1)Inclination x 0.01745 to radians P(I,5)=P(I,5)*C(1)Initial true anomaly x 0.01745 $P(1,9)=\sin i$ i, inclination $P(1,10) = \cos i$ $P(I,11)=\sin \Omega$ Ω , right ascension of node $P(I,12)=\cos \Omega$ P(I,21)=a, orbit semi-major axis in feet SAA=earth synchronous satellite radius in feet P(I,23)=ratio of synchronous radius to orbit semi-major axis $P(I,6)=a(1-e^2)$ e, eccentricity $P(I,7) = \sqrt{\mu/[a(1-e^2)]} \mu$, gravitational constant

POINT(LONG, LAT, TID, UPV)

 $P(I,8) = \sqrt{\mu/[a^2(1-e^2)]}$

POINT(ALO,ALA,TIM,VEC) ALO, longitude

ALA, latitude

TIM, time in days

VEC, vector from the center of the earth to

a user at a specific latitude and

longitude

EW=long(rad)+2π(time) SN=lat(rad)

Table 2 (continued)

VEC(1)=(radius of the earth at the equator)(cos lat)(cos long)
VEC(2)=(radius of the earth at the equator)(cos lat)(sin long)
VEC(3)=(radius of the earth at the equator)(sin lat)

COVNAV(G, NSGD, 4 SIGT)

COVNAV(G, ID, NAT, SIG)

G, direction cosine matrix

ID, index of the navsats which were chosen
as the "best" four

NAT, the number of them (always four)

SIG, dilution of precision parameters returned to MAIN

This subroutine is the only one which requires a local system subroutine—a matrix inversion. This subroutine calculates $[G^TG]^{-1}$ and returns the values in SIG(1-6), which are the DOPs.

TRMATX(TRANS, I)

TRMATX(TR, I)

TR, 3×3 coordinate transformation matrix

I, satellite number

 $TR(1,1)=\cos \Omega \cos u - \sin \Omega \cos i \sin u$ $TR(1,2)=-\cos \Omega \sin u - \sin \Omega \cos i \cos u$

u, argument of latitude

 $TR(1,3)=\sin \Omega \sin i$

 $TR(2,1)=\sin \Omega \cos u + \cos \Omega \cos i \sin u$

 $TR(2,2) = -\sin \Omega \sin u + \cos \Omega \cos i \cos u$

 $TR(2,3) = -\cos \Omega \sin i$

 $TR(3,1)=\sin i \sin u$

 $TR(3,2)=\sin i \cos u$

 $TR(3,3)=\cos i$

MATMUL(TRANS,Q,R)

MATMUL(TRANS, QEL, VEL)

Table 2 (continued)

MATMUL (TRANS, QC, AC)

MATMUL(T, V, O)

T, 3 x 3 coordinate transformation matrix

V, vector to be transformed

0, vector returned

VOLUME (USUV, ISIC, VOLUM)

VOLUME (UVEC, IDSAT, VOL)

UVEC, unit vector from the user to each

navsat in view

IDSAT, index of the navsat

VOL, volume of the tetrahedron formed by

the set of four satellites used

ORBIT(N, TID, PER, RF, VE, AA)

ORBIT(I,T,PER,R,VEL,AC)

N, I, satellite number

TID, T, time in days

PER, period of a satellite

RF, R, vector to a satellite from the center

of the earth

VE. VEL, velocity

not used

AA, AC, acceleration due to gravity

at present

This subroutine iterates for the eccentric anomaly and computes the true anomaly. If time = 0, the following is computed:

V(I)=OP(I,5)=v, true anomaly

SINE= $[\sqrt{1-e^2} \sin v]/[1 + e \cos v]$, sin E

E(I)=E, arcsin E, eccentric anomaly

BIGT(I)=time from perigee for satellite

If time > 0, E(I) is obtained by iterating, then the following is computed:

SINV= $[\sqrt{1-e^2} \sin E]/[1 - e \cos E] = \sin v$

V(I)=arcsin v, true anomaly

U(I)=V(I)+OP(I,2), v + argument of periapsis = <math>v + w = u, argument of latitude

Table 2 (continued)

 $\begin{aligned} & \text{OP}(\text{I},13) = \cos \, u \\ & \text{OP}(\text{I},14) = \sin \, u \\ & \text{OP}(\text{I},15) = \text{latitude} \\ & \text{OP}(\text{I},18) = \text{u, argument of latitude} \\ & \text{Q}(1) = [\text{a}(1-\text{e}^2)/[1+\text{e}\cos\, v]] \\ & \text{Q}(2) = 0 \\ & \text{Q}(3) = 0 \\ & \text{QEL}(1) = \text{e}\sin\, v\,\sqrt{\mu}/\sqrt{\text{a}(1-\text{e}^2)} \\ & \text{QEL}(2) = \sqrt{\mu}/\sqrt{\text{a}(1-\text{e}^2)} \\ & \text{QEL}(3) = 0 \\ & \text{QC}(1) = (1+\text{e}\cos\, v)^2\, \mu/[\text{a}^2(1-\text{e}^2)^2] \\ & \text{QC}(2) = 0 \\ & \text{QC}(3) = 0 \\ & \text{OP}(\text{I},24) = \text{earth rotation} \\ & \text{OP}(\text{I},16) = \text{longitude of the satellite} \end{aligned}$

TAAT (NSS, KCOM, KXX)

TAAT (MAX, MXX, MATRIX)

MAX, 1 less than the number of navsats to be examined for use

MXX, the number of combinations of those navsats

MATRIX, contains indices of the navsats to be examined, three at a time

This subroutine sets up the sequence of navsats which are to be examined, using either the one above or below the user as one of the four in each calculation of the tetrahedron volume.

TALL(KOT, KCOM, KXX)

TALL(MAX, MXX, MATRIX)

MAX, the number of navsats to be examined for use

MXX, the number of combinations of those navsats

Table 2 (continued)

MATRIX, contains indices of the navsats to be examined, four at a time

This subroutine sets up the sequence of navsats which are to be examined, using all satellites taken four at a time.

BLOCK DATA

Contains various parameter values used in the program, although not all of them are used in the current version.

VECTOR(V1,1,V2,V3)

This subroutine performs vector additions, subtractions, and cross products.

UNIVEC(U,UV)

This subroutine calculates unit vectors.

DOT(V1, V2)

This function subprogram calculates dot products.

Table 3
INPUT CARD SETUP

All Cases; Case Type, and Navsat System Description

Card		Variable		
Number	rormat	Names	Explanation	Units
1	1015	T0C	LOC, case type	
		NJL	NJL, number of navsats (maximum of 36)	
		ISCMP	Navsat combination switch ("zenith"/nadir plus 3 others, ISCMP =	
		*	0, or all combinations of 4, ISCMP = 1)	
2, etc.	12F6.0	$P(N,1)^{\alpha}$	Eccentricity	deg
	12F6.0	P(N,2)	Argument of perigee	deg
	12F6.0	P(N,3)	Right ascension	deg
	12F6.0	P(N,4)	Inclination	deg
	12F6.0	P(N,5)	Initial true anomaly	deg
п	12F6.0	PER(N)	Period	hr

then the second orbital element for all satellites is read in, etc. If there are more than 12 satellites, the next cards in sequence contain the rest of that element until NJL is reached. From here on, the cards ^aN is the number of the navsat; the first orbital element for all navsats is read in (eccentricity), differ depending on case.

Case I, Satellite User

900	hr	min	
-1,K) NJL+1, number of the user satellite; K = 1, 5, indices of	PER, period of the user satellite AIN. antenna half heamwidth for the naysats	C, numerical constant for navsat selection b INC, time step ITF, total number of time steps, plus 1	
P(NJL+1,K)	PER(NJL+1)	C INC ITF	
12F6.0 P(NJL+	7F10.0	1015	
n+1	n+2	n+3	-

bSee Appendix A.

Table 3 (continued)

Case II, User at Specified Latitude and Longitude

Card	Format	Variable Names	Explanation	Units
1+1	7F10.0	ATL	ATL, latitude	geb
n+2	1015	ONGL ELEVAT INC	ONGL, longitude ELEVAT, masking angle above horizontal INC, time increment per step	deg deg min
		ITF	ITF, total number of time steps, plus l	

Case III, Global Calculations

 deg	deg			min			
LATDEG, latitude step (10 or 5 only) $^{\circ}$	ELEVAT, masking angle above horizontal	LATIC, latitude increment	LONIC, longitude increment	INC, time increment per step	ITF, total number of time steps, plus l	IPFREQ, "DOP" print flag	ITIME, print increments for DOP
LATDEG	ELEVAT	LATIC	LONIC	INC	ITF	IPFREQ	ITIME
7F10.0		1015					
n+1		n+2					

The basic longitude step is always 10 deg. LATDEG = 10 is for northern and southern hemisphere coverage; LATDEG = 5 is for northern hemisphere coverage.

Table 4
COMPUTING COSTS (IBM 370/158 COMPUTER)

Case I, Satellite User

Number of Navsats	Choice a	Number of Time Steps	CPU Time	Amount of Core (bytes)	Costs b
24	A11	48	223	300 K	27.24
24	Zenith/nadir	48	21	300 K	2.68
36	A11	57	348	722 K	42.70
36	Zenith/nadir	120	67	300 K	8.31

Case II, Single Earth-Based User

24	A11	144	25	300 K	3.91
24	Zenith	144	21	300 K	2.69

Case III, Global Net of Earth-Based Users

		T	1	T	
24	Zenith	5	1228	300 K	149.29
				1	

 $^{^{\}alpha}$ "All" refers to using all navsats in view, 4 at a time, in all calculations; zenith/nadir refers to using the navsat most directly above or below as one of the 4 in all calculations.

 $[^]b\mathrm{Cost}$ in Machine Units--a direct measure of computing cost used at Rand, which accounts for core, CPU time, and input/output resources used for a given run; currently, a Machine Unit (MU) costs about \$1.25.

IV. PROGRAM INPUT AND OUTPUT

Table 5 (pages 32-36) is a listing of the input data set for a Case I run (using the navsat most nearly above or below the user in all calculations) and its resulting output. This run treats the user satellite as a very high apogee ballistic missile. Table 6 (pages 37-43) is a listing of the input data set for a Case II run (using all navsats in view, taken four at a time) and its resulting output.

Table 7 (pages 44-55) is a listing of the input data set for a global distribution of earth-based users with its output.

Table 5

EXAMPLE: DATA SET FOR CASE I ("ZENITH/NADIR" SATELLITE USED)

INPUT

CASE NO. OF SATELLITES SWITCH		ECCENTRICITY		ARGUMENT OF PERIGEE		RIGHT ASCENSION		INCLINATION		INITIAL TRUE ANOMALY		PERIOD OF NAVSATS	USER PARAMETERS	PERIOD OF USER BEAM C	INCREMENT TOTAL TIME
	0	0	0	0	120	240	63	63	150	345	12	12			
	0	0	0	0	120	240	63	63	105	300	12	12			
	0	0	0	0	120	240	63	63	9	255	12	12			
	0	0	0	0	120	240	63	63	15	210	12	12			
	0	0	0	0	0	240	63	63	315	165	12	12			
	0	0	0	0	C	240	63	63	270	120	12	12			
	0	0	0	0	0	240	63	63	225	15	12	12			
	0	0	0	0	Ö	240	63	63	180	30	12	12	9.16		
	0	0	0	0	0	120	63	63	135				1.21	•	
	0	C	0	0	0	120	63	63	06	285	12	12	47.5144	180.	
24	0	0	0	0	0	120	63	63	45	240	12	12	1.24		100
-	0	0	0	0	C	120	63	63	0	195	12	12	.81632 1	11.0529	10 1

Table 5 (Continued)

ORBITAL ELEMENTS

					a	
	ECC	ARGP	RASC	INC	ANCM	PER
1	0.0	0.0	0.0	63.00	0.0	12.00
2	0.0	0.0	0.0	63.00	45.00	12.00
3	0.0	0.0	0.0	63.00	90.00	12.00
4	0.0	0.0	0.0	63.00	135.00	12.00
5	0.0	0.0	0.0	63.00	180.00	12.00
6	0.0	0.0	0.0	63.00	225.00	12.00
7	0.0	0.0	0.0	63.00	270.00	12.00
В	0.0	0.0	0.0	63.00	315.00	12.00
9	0.0	0.0	120.00	63.00	15.00	12.00
10	0.0	0.0	120.00	63.00	60.00	12.00
11	0.0	0.0	120.00	63.00	105.00	12.00
12	G. 0	0.0	120.00	63.00	150.00	12.00
13	0.0	0.0	120.00	63.00	195.00	12.00
14	0.0	0.0	120.00	63.00	240.00	12.00
15	0.0	0.0	120.00	63.00	285.00	12.00
16	0.0	0.0	120.00	63.00	330.00	12.00
17	0.0	0.0	240.00	63.00	30.00	12.00
18	0.0	0.0	240.00	63.00	75.00	12.00
19	0.0	0.0	240.00	63.00	120.00	12.00
20	0.0	0.0	240.00	63.00	165.00	12.00
21	0.0	0.0	240.00	63.00	210.00	12.00
22	0.0	0.0	240.00	63.00	255.00	12.00
23	0.0	0.0	240.00	63.00	300.00	12.00
24	0.0	0.0	240.00	63.00	345.00	12.00

USER SATELLITE ORBITAL ELEMENTS

25 0.82 11.24 47.50 144.21 69.76 11.05

TOTAL TIME (MIN) = 990
TIME INCREMENT (MIN) = 10
BEAMWIDTH ANGLE (DEG) = 180.00
FRACTION OF NAVSAT SPHERICAL AREA = 0.340

THE SATELLITE MOST NEARLY ABOVE OR BELOW IS USED AS ONE OF THE FOUR IN ALL CALCULATIONS OF THE VOLUME OF THE TETRAHEDRON

^aDuring final preparation of this report, the authors were informed by the NAVSTAR/GPS Joint Program Office that the planned orbital configuration for GPS had been changed. Users who wish to simulate the currently planned configuration should interchange the anomalies of satellites 9 through 16 with those of satellites 17 through 24, shown above. No other changes are required.

			19	19																						
			14	14																						
			6	6													54	54								
			-	7						54			54			54	23	23		23				23		23
		23	•	9		18	11	11	17	22	54	54	23	54	54	23	22	22		16	23	21	21	21	23	22
		20	2	5	18	11	11	=	=	11	22	23	50	07	22	22	21	12	12	6	12	91	16	50	50	50
		1	4	4	13	9	9	9	10	==	11	10	2	2	7	1	Ξ	==	10	0	91	01	10	16	10	16
	SEN	9	7	7	9	2	2	2	2	2	2	2	4	4	6	0	6	6	5	4	3	0	6	10	10	10
	CHOSEN	4	-	7	2	4	4	4	4	4	4	4	3	3	4	4	4	4	4	3	3	3	3	3	3	3
		14	23	23	23	23	23	23	54	23	23	22	22	22	01	13	10	10	23	17	10	23	23	0	0	3
		2	œ	00	12	12	71	77	23	12	11	=	11	7.7	S	2	2	2	2	10	4	4	4	4	4	4
	SATELLITES	n	3	3	01	01	10	01	12	10	10	5	6	5	8	3	3	3	3	7	7	2	7	7	2	2
_	SA	12	11	11	16	21	15	15	19	15	50	50	50	18	18	18	18	19	1 9	61	1	11	11	11	11	2
(Continued	•	97	60	*	35	0	51	40	4	4	06	2	19	P	60	99	39	36	45	22	53	16	52	13	34	5
nti	9009	1.726	1.709	1.734	2.339	2.240	2.375	2.564	2.574	3.214	3.790	4.619	190.5	5.900	5.809	5.956	6.139	6.636	1.464	8.122	9.153	8.616	8.414	8.373	8.334	9.045
00	Ū																Ť									
6		-	8	00	97	81	19	80	25	8	33	1.	82	70	13	96	01	88	16	88	40	25	52	58	30	=
Table	PDOG	1.647	1.628	1.650	2.226	2.078	2.167	2.308	2.352	2.808	3.287	3.847	4.178	4.848	4.713	4.196	4.910	5.288	5.891	6.388	7.164	6.757	6.625	6.528	6.480	7.011
	_												•				•						•			
		9	7	33	9	2.	12	9	00	3	18	19	99	11	50	33	35	60	33	5	11	2	33	+3	.5	*
	T00P	0.516	0.521	0.533	0.116	0.837	0.972	1.116	1.048	1.563	1.887	2.557	2.856	3.377	3.395	3.533	3.685	6000.	4.583	5.015	5.697	5.345	5.283	5.243	5.242	5.114
	_	0	0	Ü	0							.,			(6)		(41	•	4			٠,				•
		5	10	15	p	10	2	9	7.0	5	8	.3	=	4	8	83	5	35	-	1	4	3	00	1,	80	20
	400A	1.165	1.061	1.042	1.048	0.901	3.404	996.0	1.307	1.145	1.548	1.143	1.171	1.224	1.298	1.228	1.229	1.392	1.347	1.307	1.384	1.563	1.550	164.1	1.408	1.402
						•	.,	Ü																		
	•	53	3.5	38	4	3.1	61	4	2.3	40	23	34	+2	35	82	13	20	66	30	*	69	02	19	45	23	38
	HD OH	1.423	1.339	1.338	1.394	1.231	1.219	1.254	1.627	1.404	1.823	1.534	1.545	1.635	1.678	1.673	1. 702	1.799	1.630	1.848	1.859	1.970	1961	1.942	1.923	1.938
	4	53	56	19	36	1.	36	37	86	32	35	97	85	49	8	46	90	13	00	15	18	40	28	32	88	38
	VDOD	0.829	0.926	196.0	1.136	1.674	1.792	1.937	1.698	2.432	2.735	3.526	3.882	4.564	4.404	4.494	4.000	4.973	2.600	6.115	6.918	494-9	6.328	6.232	6.188	6.738
	î		2.	3.	;		3.	7.			2.	.5	:		2.		7.	:		6	1.	.0	7.		.0	. 8
	2	1894	3612	5173.	6584.	1879.	9063.	10157.	11170	12109.	12932	13795	14551.	15256	15912.	16521	17047.	17611.	18094.	18539.	18947.	19320.	15951	19960.	20230.	20468
	ME(MN) ALT (NM)							-	-	1	-	1	-	-	-	-	~	7	-	-	1	-	1	-	2	2
	ì	10	20	30	0,	20	09	10	80	20	001	011	120	130	041	150	160	110	180	190	200	210	220	230	540	250
	E .										-	-	-	-	-	1	~	7	-	-	2	2	2	2	2	2

			20	20	20	20					19	19	19	61												
			16	16	16	19	13	22			16	16	16	9	20							61	20			
		22	15	15	15	16	16	21	22		15	15	15	15	61	21					61	11	18			
		20	6	0	6	15	15	61	21	19	4	14	14	7	18	18	18				-	89	80			
	SEN	16	3	6	4	6	5	15	61	16	ထ	٥	00	3	15	15	15	18	14	7	7	7	7	18	18	18
	S E	3	~	~	2	7	7	~	15	15	7	7	7	-	14	14	7	4	7	7	-	-	~	-	-	-
	SATELLITES CHOSEN	6	22	22	22	22	22	16	16	21	21	21	77	77	17	20	50	50	20	20	50	20	61	19	19	2
	11	4	4	4	3	3	3	8	~	3	3	~	3	20	8	80	70	00	10	18	9	18	11	11	1 17	11
	TEL	2	2	2	~	~	~	-	~	-	~	-	-	7	2	7	7	7	00	œ	α	-	~	7	1	-
	SA	18	1	9	9	9	11	54	9	9	9	9	2	54	5	2	54	54	4	2	23	4	22	22	9	5
(Continued	GD0P	9.928	10.603	10.01	10.603	10.246	9.308	9.286	9.858	156.6	9.848	10.080	10.038	9.453	9.296	8.981	9.485	016.6	916.8	7.563	7.906	7.705	086.9	6.137	6.189	5.491
Table 5	9009	7.675	8.165	8.210	8.162	7.895	1.1 43	7.164	7.5%	7.662	7.581	7.755	1.704	7.294	7.194	996.9	7.364	1.717	7.010	5.930	007-9	950.9	5.524	4.913	9.000	4.812
	TOUP	6.297	6.763	6.817	6.768	6.531	5.921	806.5	6.282	6.349	6.285	0.452	6.436	6.012	5.887	5.670	5.979	6.217	2.606	4.694	906.4	4.761	4.267	3.679	3.639	3.398
	4004	1.521	1.467	1.508	1.677	1.676	1.648	1.595	1.514	1.482	1.473	11.411	1.512	1.696	1.104	1.516	1.346	1.382	1.365	1.393	1.449	1.610	1.290	1.219	1.206	1.203
	40 OH	1.996	5.005	2.042	2.115	2.101	2.080	2.064	5.049	2.047	2.025	2.033	2.046	2,123	2.109	2.072	1.539	1.928	1.893	1.906	1.936	1.971	1.781	1.716	1.664	1.61/
	VDOP	7.411	7.915	7.952	7.883	7.611	6.875	6.860	7.315	7.383	7.306	1.484	7.427	6.979	6.878	6.049	7.104	7.473	6.149	5.615	5.890	5.728	5.229	4.602	4.122	4.532
	ALT (NH)	20674.	20848.	20991.	21103.	21184.	21236.	21257.	21247.	21200.	21138.	21038.	20907.	20745.	20551.	20326.	20069.	19778.	19454.	19095.	18701.	18270.	17801.	11243.	16744.	16151.
	E (MN)	260	210	280	290	300	310	320	330	340	350	360	370	380	390	400	410	450	430	044	450	694	4 70	094	064	200

22

	-
	ned,
	11.10
0	100
	-
	ple

								1 23	1 23		91 0	11 16	11		
								11 18	11 18		9 10	9 11	16		
			54	8 24	11		11 11	7	=	=			10		
z	8 18	18	19		00	17		10	10	10	ø	30	30		
SEI	a	20	00	9	9	20	10	6	6	6	9	9	1		
CH	7	~	7	-	-	9	00	00	00	80	2	2	0	=	
SATELLITES CHOSEN	19	19	18	18	54	54	54	54	54	23	23	23	54	11	
=	7 17 19	1 17	7 17 18	7 17 18	7 18	1 16	18	11	17	17	11 17	11	22	4	
TEL	1	1	1	7	1	1	9	9	9	9	11	01	2	-	
SA	22	22	3	3	21	4	4	21	20	7	2	7	14	0	
4	4.759	0 4 - 4	1.3	9/1	3.126	190	2.912	2.398	2.073	2.157	1.959	1.748	1.681	1.723	
GDOP	4.1	4.4	3.873	3.378	3.1	2.681	2.9	2.3	2.0	2.1	1.5	-:	1.6	1.1	
۵	19	16	16	27	16	98	03	35	99	94	32	25	86	45	
P D0 P	3.919	3.691	3.297	2.927	2.716	2.385	2.603	2.235	1.958	2.046	1.832	1.657	1.598	1.645	
۵.	00	89	32	18	9,	52	92	02	61	83	95	99	21	12	
TDOP	2.700	2.468	2.032	1.687	1.546	1.225	1.305	0.870	0.679	0.683	0.695	0.556	0.521	0.512	*
•	*0	90	20	٠,	55	83	41	35	0	91	1.	1.5	91	66	ZER
MDOM	1.204	1.205	1.102	1.109	0.955	0.980	1.014	1.135	1.088	916.0	0.841	156.0	0.816	1.099	HING
•	*	11	10	5/	5	90	35	68	3 C	99	82	*1	0	91	PROC
HDOH	1.574	1.537	1.507	1.419	1.339	1.306	1.335	1.389	1.330	1.256	1.178	1.214	1.140	1.376	DE A
•	66	99	33	92	53	95	4	00	90	51	33	88	50	25	LT11U
VDOV	3.589	3.356	2.933	2.526	2.363	1.995	2.234	1.750	1.430	1.615	1.403	1.128	1.120	0.902	N, A
_															F RU
T.	15514.	14629.	14093.	13303.	12453.	11541.	10558.	.9656	8347.	7095.	5733.	4228.	2576.	184.	0 NO1
U AL								_	-	0	-	0	_	_	NAT
TIME (4N) ALTENM	510	520	530	240	550	260	5 70	580	290	9009	019	950	630	640	TERMINATION OF RUN, ALTITUDE APPROCHING ZERJ*

 * Satellite user calculations terminate when and if the orbit intersects the earth's surface.

Table 6

EXAMPLE: DATA SET FOR CASE II (ALL SATELLITES, FOUR AT A TIME)

INPUT

HOMETT CHIMAN GO ON GOAC	CASE NO. OF SAIELLIES SWITCH	ECCENTRICITY		ARGUMENT OF PERIGEE		RIGHT ASCENSION		INCLINATION		INITIAL TRUE ANOMALY		PERIOD OF NAVSATS	LATITUDE LONGITUDE ELEVATION	INCREMENT TOTAL TIME
	0	0	0	0	120	240	63	63	150	345	12	12		
	0	0	0	0	120	240	63	63	105	300	12	12		
	0	0	0	0	120	240	63	63	9	255	12	12		
	0	0	0	0	120	240	63	63	15	210	12	12		
	0	0	0	0	0	240	63	63	315	165	12	12		
	0	0	0	0	o	240	63	63	270	120	12	12		
	0	0	0	0	0	240	63	63	225	15	12	12		
	0	0	0	0	0	240	63	63	180	30	12	12		
	0	C	0	0	0	120	63	63	135	330	12	12	5.	
		0												
4														11
,	0 0	•	C	0	2	120	63	63	0	66	12	12	.0	6 12

Table 6 (Continued)

ORBITAL ELEMENTS

	ECC	ARGP	RASC	INC	ANOM	PER
1	0.0	0.0	0.0	63.00	0.0	12.00
2	0.0	0.0	0.0	63.00	45.00	12.00
3	0.0	0.0	0.0	63.00	90.00	12.00
4	0.0	0.0	0.0	63.00	135.00	12.00
5	0.0	0.0	0.0	63.00	180.00	12.00
6	0.0	0.0	0.0	63.00	225.00	12.00
7	0.0	0.0	0.0	63.00	270.00	12.00
8	0.0	0.0	0.0	63.00	315.00	12.00
7	0.0	0.0	120.00	63.00	15.00	12.00
10	0.0	0.0	120.00	63.00	60.00	12.00
11	0.0	0.0	120.00	63.00	105.00	12.00
12	0.0	0.0	120.00	63.00	150.00	12.00
13	0.0	0.0	120.00	63.00	195.00	12.00
14	0.0	0.0	120.00	63.00	240.00	12.00
15	0.0	0.0	120.00	63.00	285.00	12.00
16	0.0	0.0	120.00	63.00	330.00	12.00
17	0.0	0.0	240.00	63.00	30.00	12.00
18	0.0	0.0	240.00	63.00	75.00	12.00
19	0.0	0.0	243.00	63.00	120.00	12.00
20	0.0	0.0	240.00	63.00	165.00	12.00
21	0.0	0.0	243.00	63.00	210.00	12.00
22	0.0	0.0	240.00	63.00	255.00	12.00
23	0.0	0.0	240.00	63.00	300.00	12.00
24	0.0	0.0	240.00	63.00	345.00	12.00

USER LOCATION ON EARTH
LATITUDE = 0.0 DEGREES
LUNGITUDE = 0.0 DEGREES
MASKING ANGLE = 5.00 DEGREES

TOTAL TIME(MIN) = 720 TIME INCREMENT(MIN) = 6

ALL SATELLITES, TAKEN FOUR AT A TIME, ARE USED IN THE CALCULATIONS OF THE VOLUME OF THE TETRAHEDRON

											•	•	•												•	•	
						6	•	0	•	6	14 19	14 19	8 19		0		•	6	. 6	0	0	0	0	0	14 18	14 19	
		19	14	14	19	13 19	13 19	14 19	14 19	14 19	13 1	13 1	14 18	14 19	61 41	14 19	14 19	14 19	14 19	18 20	18 20	18 20	18 20	18 20	13 1	13 1	
	Z	8 1	8 1	8 1	141	8	8 1	8 1	8 1	8	7 7	2 1	13 1	13 1	1 2	1 1	1 1	7 1	1 1	13 1	13 1	13 1	13 1	13 1	8	8	
	CHOSEN	2	2	2	8 1	2	2	2	2	7	-	_	1	1 1	_	_	-	_	_	8 1	9	8 1	8 1	8 1	_	-	
	S	50	20	50	50	50	20	50	50	50	20	50	70	50	50	50	20	50	20	61	13	61	61	19	50	20	
	1	14 5	51	19	13 2	18	18 2	18	8 1	18	18 2	18	1 2	10 2	18 2	18 2	18 2	18 2	18 2	14 1	14 1	14 1	1 4 1	14 1	17 2	17 2	
	SATELLITES	13	13	13	2]	14	14	13	13	13	8	~	2	~	13	13	13 1	13 1	13	~	7	_	7	7	~	_	
	SA	-	-	-	-	~	~	-	-	-	1	00	8	10	80	80	20	80	00	-	-	-	-	-	61	18	
(pan		2	3	6	2	*	-	-	2	9	0	5	89	0	~		4	_	0	_	2	2	2	0			
Table 6 (Continued	GDDP	3.035	2.943	2.929	2.905	2.234	2.291	2.381	2.445	2.546	2.400	2.465	2.408	2.660	2.197	2.903	3.074	3.331	3.710	3.751	3.372	3.115	2.945	2-840	2.423	2.418	
(Co	G	•	2	2	2	7	2	~	7	2	7	~	~	~	2	2		•			. e	•	~	2	7	2	
g el	α.	53	*	49	6.	99	13	99	56	2.2	53	13	6	30	9	37	88	91	*	*	25	92	91	35	99	69	
Tab	000	2.129	2.664	2.664	5.649	2.058	2.113	2.166	2,226	2.327	2.223	2.273	2.249	2.430	2.546	2.637	2.788	3.016	3.354	3.3%	3.055	2.826	2.676	2.585	2.265	2.259	
	a.	28	51	11	1.195	10	92	88	02	33	40	55	09	82	09	14	96	14	99	66	28	11	30	11	29	62	
	1000	1.32	1.251	1.217	=	0.870	0.845	0.988	1.002	1.033	0.304	0.955	0.860	1.082	1.160	1.214	1.296	1.414	1.586	1.599	1.428	1.311	1.230	1.177	0.859	0.862	
																•											
	<u>a</u>	.554	.513	.495	.437	1.082	1.118	0.921	3.875	0.878	0.895	969.0	0.958	0.912	0.945	0.985	1.034	1.093	1.168	1.010	0.972	0.940	9.914	0.893	168.0	1.017	
	4001	-	=	-:	1.4	-	=	0	3.	0.	0.	0	0	0	0.9	0.0	-:	-	3	-	0	0	0	0	0	7:	
	40 OH	. 843	1.810	1.796	1.744	1.318	1.343	1.251	1.22.1	1.216	1.181	1.105	1.317	1.204	1.237	1.277	1.336	1.419	1.536	1.420	1.324	1.266	1.225	1.200	1.267	1.274	
	유	÷	-	-:	-:	-	-	-	-:	-	-:	÷	÷	-:	-	-:	-	÷	-	-	-	-:	-	-	-	-	
		~		m			_		_		_					~	_	~			_	_	_	_	_		
	VDUP	.012	1.954	1.968	. 594	1.581	1.631	1.768	1.858	1.984	1.883	1.939	1.824	2.108	2.225	2.307	2.447	2.662	2.981	3.082	2.751	2.527	2.379	2.290	1.878	1.066	
	>	2	-	-	-	-	-	-	-	-	7	-	-	2	2	7	2	2	2	3	7	2	7	7	-	-	
	-		.0	.0		.0	.0					. 0	.0		.0		.0		.0	.0	0.	.0			.0		
	ALT (NH)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ALT																										
	2 F	C	•	12	18	54	30	36	25	4 9	54	09	90	12	18	84	0	95	102	108	114	120	126	132	138	144	
	T I ME (MN)															-			-	1	7	1	1	-	-	14	
	-																										

the farmer		2000	
Total Contract		2011	
*	1		
	Ī	ĵ	
	•		
,	1		
T. L. T.		1	

																		-	2	2					
													19	19	19	19	17	13	11	1,4	18	54	54	54	54
	6	61	19	19	19				19	19	19	19	11	11	11	11	14	30	14	13	13	18	18	18	18
	13	13	11	11	11	61	61	18	11	11	11	17	13	13	13	13	13	1	13	12	00	13	13	13	13
E S	۵	80	13	13	13	13	13	13	13	13	13	13	12	12	17	8	17	9	12	~	1	80	89	80	o
SATELLITES CHOSEN	-	-	8	80	80	70	20	α	-	-	1	~	-	~	-	9	7	18	-	11	9	-	~	~	7
ES	17	11	14	14	*	11	11	11	14	14	14	77	14	14	4	14	19	54	51	19	54	14	4	14	14
5	14	14 17	7	-	-	14 17	14 17	4	8	80	00	00	70	80	89	12	89	11	00	18	4	12	12	12	12
TEL.	~	7	-	-	-	1	1	-	•	9	•	9	9	9	9	1	9	14	9	20	12	9	•	9	9
SA	9	18	18	18	18	18	18	18	18	18	18	18	10	18	18	18	18	12	18	•	11	11	11	11	11
	3	9	8	*	9	2	0	2	6	89	1	80	-	25	9	3	-	5	11	2	5	4	6	8	4
GDOP	2.503	2.536	2.558	2.454	2.393	2.745	2.819	2.902	2.469	2.338	2.257	2.218	2.217	2.252	2.326	2.363	2.371	2.295	2.287	2.262	2.443	2.344	2.269	2.233	2.234
Ū											•			•											
۵.	13	34	35	35	15	3	*	40	80	20	80	43	7	4	43	\$	*	14	38	97	15	19	16	28	65
PDOP	2.313	2.334	2.335	2.235	2.175	2.439	2.564	2.640	2.280	2.156	2.080	2.043	2.041	2.074	2.143	2.146	2.194	2.147	2.138	2-126	2.251	2.161	2.091	2.058	2.059
۵	55	36	1.044	1.014	66	1.137	11	1.206	64	03	116	40	40	18	90	68	0.900	11	11	14	64	10	81	89	19
1000	0.955	0.992	1.0	1.0	0.999	:	1.171	1.2	676.0	0.903	0.876	0.864	0.864	0.878	0.905	0.989	6.0	0.811	0.811	0.174	646.0	0.907	0.881	0.868	0.867
<u>a</u>	64	37	151	33	32	40	1.292	16	0.8	64	1.013	95	36	101	35	11	1.034	0.917	11	151	65	1.034	04	89	06
4000	0.949	186.0	156.0	0.933	0.932	1.184	1.2	1.416	1.108	1.049	1.0	966.0	166.0	1.007	1.035	176.0	1.0	0.5	116.0	0.957	0.959	1.0	1.004	0.989	0.60
9	1.261	1.286	1.280	1.206	1.307	1.509	1.605	1.720	1.384	1.325	1.280	1.267	1.262	1.270	1.293	1.267	1.284	1.107	1.231	1.212	1.231	1.270	1.249	1.241	1.245
HD 0H	-	-	-	-	-	-	-	:	-	-	-	-	-	-	-	-	-	-	-	-	-	1:	-	-	:
9	1.939	146.	.954	. 620	1.738	. 992	1.999	2.003	1.812	107.	1.034	1.602	1.604	1.639	.709	.731	.119	.783	1.748	141	. 885	.749	119.	.642	1.640
VOGP	:	-	-	:	-	:	-	2.0	-	:	-	-	-	-	-	-	-	-	-	.;	-	-	:	-	:
Ĩ,		0	0		0		0	0	0	0	0	0	0	·	0	0	0	0	0	0	0	0		0	
5																									
4																									
ž	150	156	162	164	174	183	186	192	193	507	210	216	222	228	234	240	546	252	258	597	270	276	282	288	567
TIME(MN) ALT (NM)																									

1	90)	
	nne	
	COL	
,	_	
,	9	
	e	
	ap	
•		

HE (NN)	THECHN) ALT (NM)	VDOV	HDOP	4004	TDOP	PDOP	GDOP	SA	TEL	SATELLITES		CHOSEN	EN			
300		1.672	1.264	1.006	0.880	2.096	2.213	7	•	12	1,4	~	20	13	9	54
336	•	1.741	1.299	1.042	0.907	2.172	2.354	11	9	12	14	~	80	13	18	54
312	•	1.855	1.353	1.101	0.953	2.296	2.486	11	9	12	14	~	80	13	18	54
318	•	1.947	1.373	1.115	0.971	2.342	2.573	11	9	7	18	~	00	12	13	54
324	•	1.989	1.351	1.071	0.949	2.404	2.585	11	9	9 14	18	~	80	12	13	54
330	•	2.033	1.336	1.033	0.926	2.433	2.603	11	9	14	18	~	ъ	12	13	54
336	••	2.082	1.330	666.0	006.0	2.471	2.630	11	9	14	18	~	12	13	54	
345	•	1.781	1.386	1.056	1.036	2.257	2.483	11	9	=	13	7	12	9	54	
348	•	1.903	1.391	1.093	1.068	2.357	2.588	11	٥	=	13	~	12	18	54	
354	•	1.919	1.331	1.005	1.005	2.335	2.543	11	•	13	18	~	==	12	54	
360	.0	2.431	1.255	1.001	1.174	2.736	2.977	1	==	13	24 1	17 12		18		
366	•	1.919	1.331	1.005	1.005	2.335	2.542	12	8	11	54	~	13	11	18	
372	•	1.903	1.391	1.093	1.069	2.357	2.588	12	æ	10	54	11 /		13	11	
378	•	1.782	1.386	1.056	1.037	2.257	2.484	12	80	18	54	7 11		13	11	
384	•	2.082	1.330	6.999	006.0	2.471	2.630	12	80	=	23	~	13	11	54	
390	•	2.033	1.336	1.032	0.926	2.433	2.603	12	80	=	23	٠	-	13	11	54
396	•	1.989	1.351	1.071	6*6*0	5.404	2.585	12	ю	=	23	•	-	13	11	54
405	•	1.947	1.373	1.114	0.971	2.342	2.573	12	æ	=	23	•	-	13	11	54
408	•	1.855	1.354	1.101	0.953	2.2%	2.486	15	20	11	23	•	-	=	13	54
414	•	1.742	1.299	1.042	0.907	2.172	2.354	12	70	11	23	•	-	=	13	54
450	•	1.672	1.264	1.006	0.880	2.096	2.273	12	80	11	23	٠	-	=	13	54
456	•	1.640	1.245	0.990	0.867	5.059	2.234	12	0	11	23	•	-	Ξ	13	54
432	•	1.642	1.240	686.0	999.0	2.058	2.233	12	80	11	23	٠	-	Ξ	13	54
438	•	1.677	1.249	1.004	0.880	2.091	2.269	12	89	11	23	•	~	=	13	54
444	.0	1.748	1.270	1.034	906.0	2.161	2.343	12	О	11	23	•	~	Ξ	13	54

		24	54	54																					
	54	23	23	10	24	24	54	24	54													24	54		
	=	11	17	30	23	12	11	17	17	54	54	54	54				54	24	54	54	54	23	23	54	54
	00	13	13	-	11	10	10 12	12	10 12	10 12	10 12	12	12	54	54	24	12	10 12	10 12	10	10	10	=	=	=
SEA	1	7	12	e	12	00	10	10	10	10	10	10	10 12	10	10	10	10	10	10	•	9	9	•	5	0
9	9	12	~	=	-	•	7	1	7	1	-	1	~	9	9	9	9	9	9	5	2	2	2	9	•
SATELLITES CHOSEN	23	=	01	23	01	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	12	12	23	23
=======================================	11	10	80	17	æ	11	œ	00	œ	90	20	00	ø	12	7 12	12	~	~	1	12	12	6	6	01	10
TEL	13	00	9	13	9	~	9	9	•	9	٥	9	•	~	1	-	2	2	5	-	1	1	1	1	-
SA	12	•	1	12	11	=	Ξ	11	1.	11	=	7	1	Ξ	1	Ξ	=	11	11	11	1.1	11	10	2	2
	m	25	25	5	=	33	9	25	21	20	25	8	6	33	6	9	3	4	80	35	93	80	2.5	7	5
GDOP	2.443	2.262	2.287	2.295	2.371	2.363	2.326	2.252	2.217	2.218	2.257	2.338	2.469	2.003	2.819	2.146	2,393	2.454	2.558	2.535	2.503	2.418	2.422	2.841	2.945
																1									
۵	25	97	38	74	16	3	43	14	41	43	09	26	9	04	49	66	15	35	35	*	13	65	69	88	51
9 DO 9	2.252	2.126	2.138	2.147	2.194	2.146	2.143	2.074	2.041	2.043	2.080	2.156	2.280	2.640	2.564	2.499	2.175	2.235	2.335	2.334	2.313	2.259	2.265	2.585	2.675
۵	676.0	9.174	0.811	0.411	006.0	696.0	506.0	0.878	591	0.864	0.876	0.903	9.949	1.206	1.171	37	66	1.014	1.044	26	55	0.862	0.859	1.177	1.230
T00P	6.0	0.1	9.	0	6.0	6.0	0.9	0.8	0.865	9.0	0.8	0.9	3.9	1.2	:	1.137	666.0			0.992	0.955	9.0	.0	:	1.2
4	0.959	156.0	116.0	0.917	1.034	0.971	1.035	1.007	966.0	966.0	1.013	1.049	1.108	915-1	1.292	1.184	0.933	0.933	156.0	0.937	656.0	1.017	168.0	0.893	0.914
4004	0	0	0	0	:	0	-	:	0	0	-	-	-	1.	1:	=	0.0	0	0	0	0	:	0	0.6	0
9	1.232	1.212	1.231	1.187	1.284	1.267	1.293	1.270	1.262	1.267	1.200	1.325	1.384	1.720	1.605	1.509	1.307	1.206	1.279	1.286	1.261	1.274	1.267	1.200	1.225
ноон	-	-	-	:	-	-:	-	-:	-	-	-	-	:	-	-	:	:	-	-	-	-	-	-	-	-
VDOP	1.885	1.747	1.748	1.789	1.179	1.731	1.709	1.639	1.005	1.602	1.033	1.701	1.812	2.003	2.000	1.992	1.738	1.428	1.953	1.947	1.939	1.866	1.671	2.290	2.379
>	-:	-:	-:	-:	-:	-:	-		;	÷	÷	-	÷	7.	2.	÷	-	-	-	-	-	-	-	2.	4
ž	0	· c	0	0	0	0	0	0	0	·	0	0	0	0	0	0	0	0	0		0	0	0	0	0
E																									
•																									
2	450	450	204	460	414	483	486	765	6.54	504	210	516	522	528	534	240	946	255	558	564	570	516	585	588	294
TIME(MN) ALT(NM)																									
-																									

Table 6 (Continued)

77
~
-0
-
-
-
-57
750
2.3
-
- 52
-
5.3
-
-
50
-
17.1
·
-
-
-

	54	4	4	3	3	8	23	23	54	23 24	23 24	23 24	3	3	23		. +	,			
	11 2	11 24	11 24	10 23	10 23	10 23	10 2	10 2	23 2	11 2	10 2	7 01	10 23	10 23	10 2	10 24	10 24	2	23	3	0
Z	9 1	6 1	9 1	7 1	1 1	1 1	1 1	1 1	10 2	10 1	5 1	1 4	1 9	1 9	6 1	9	1 9	10 23	6 2	6 23	9 10
HOS	9	•	9	2	2	2	2	2	5 1	5 1	4	2	4	4	4	4	4	9	4	4	4
SATELLITES CHOSEN										0											
T E	0 23	3 23	23	52 1	1 24	1 24	1 24	1 24	9 11	~	9 11	11 6	1 24	1 24	1 24	1 23	1 23	4 24	24	24	3 24
7	7 10	7 10	7 10	11 6	11 6	11 6	9 11	9 11	1	4	~	7	11 6	11 6	11 6	9 11	11 6	4	01 6	01 6	9 23
ATE	5	2	2	9					9				5			2	5	5	5	5	5
O)	un.	41	u,	•	•	9	•	9	•	0	9	9	41	5	2	21	u	41	41	un	u
<u>a</u>	15	17	20	=	32	15	40	86	19	0.8	69	00	45	45	81	7	34	90	62	43	35
GDOP	3.115	3.371	3.750	3.111	3.332	3.075	2.904	2.798	2.661	2.408	2.465	2.400	2.545	2.445	2.381	2.291	2.234	2.906	2.929	2.943	3.035
۵	56	24	93	24	11	68	38	9	31	64	13	23	27	27	99	13	28	64	49	63	53
PDOP	2.826	3.054	3,393	3.354	3.017	2.789	2.638	2.546	2.431	2.249	2.273	2.223	2.327	2.227	2.166	2.113	2.058	2.649	2.664	2.663	2.129
	=	8	86	25	4	90	4	0	23	0.0	55	40	32	20	88	25	2	56	11	21	8
TDOP	1.311	1.428	1.598	1.587	1.414	1.296	1.214	1.160	1.083	0.860	0.955	0.904	1.032	1.002	0.988	0.885	0.810	1.195	1.217	1.251	1.328
								_		J	•	J				•					
	0	-	0	5	3	4	5	5	7	89	91	2	20	2	=	0	71	1	5	3	4
MDOM	0.940	174.0	1.010	1.169	1.093	1.034	0.985	0.945	0.912	0.958	0.096	0.895	0.878	0.875	126.0	1.118	1.082	1.437	1.495	1.513	1.554
1	0	0	-	-	-	-	0	0	0	0	0	0	0	0	0	-	-	-	_	-	-
	0	o	0	٥	6	9	30	-	o	1	2	-	2	1	-	4	æ	4	9	0	3
ноон	1.266	1.320	1.420	1.530	614.1	1.336	1.278	1.237	1.208	1.317	1.105	1.181	1.215	1.22.7	1.251	1.344	1.318	1.744	1.796	1.810	1.843
I	-	-	-	7	-	-	-	7	-	7	-	-	-	-	-	-	-	-	-	-	-
	-	0	_	2	2	00	80	5	,	*	6	+	4	20	6	-	-	4	6	4	2
VDOP	2.527	2.150	3.081	2.982	2.662	2.448	2.308	2.225	2.109	1.824	1.939	1.884	1.984	1.058	1.769	1.631	1.581	1.994	696.1	1.954	2.012
>	2	2	3	7	2	2	2	2	2	-	-	-		-	7	7	-	-	-	-	2
Į.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0.
5																					
4											_					_					_
3	9009	909	219	618	429	633	636	642	649	654	660	999	672	674	684	9	969	732	108	714	720
TIME (MN) ALT (NM)																					

Table 7

EXAMPLE: DATA SET FOR CASE III ("ZENITH" SATELLITE USED IN ALL CALCULATIONS)*

INPUT

CASE NO. OF SATELLITES SWITCH		ECCENTRICITY		ARGUMENT OF PERIGEE		RIGHT ASCENSION		INCLINATION		INITIAL TRUE ANOMALY		PERIOD OF NAVSATS	LATITUDE STEP LONGITUDE STEP	LATINC LONGING INC TOTAL TIME	"DOP" FLAG PRINGINT
	0	0	0	0	120	240	63	63	150	345	12	12			
	0	0	0	0	120	240	63	63	105	300	12	12			
	0	0	0	0	120	240	63	63	9	255	12	12			
	0	0	0	0	120	240	63	63	15	210	12	12			
	0	0	0	0	0	240	63	63	315	165	12	12			
	0	0	0	0	0	240	63	63	270	120	15	12			
	0	0	0	0	0	240	63	63	225	15	12	12			
	0	0	0	0	0	240	63	63	180	30	12	15		0	
	0	0	0	0	0	120	63	63	135	330	12	15		0	
		0												2	
54	0	0	0	0	0	120	63	63	45	240	12	12	5.	1 250	
		0													

There *
This example is contrived only to show what the global calculations output would look like.
are only two time points in this run--0 and 250 minutes. No "snapshot" calculations were made.

The second second

Table 7 (Continued)

ORBITAL ELEMENTS

	ECC	ARGP	RASC	INC	ANOM	PER
1	0.0	0.0	0.0	63.00	0.0	12.00
2	0.0	0.0	0.0	63.00	45.00	12.00
3	0.0	0.0	0.0	63.00	90.00	12.00
4	0.0	0.0	0.0	63.00	135.00	12.00
5	0.0	0.0	0.0	63.00	180.00	12.00
6	0.0	0.0	0.0	63.00	225.00	12.00
7	0.0	0.0	0.0	63.00	270.00	12.00
U	0.0	0.0	0.0	63.00	315.00	12.00
9	0.0	0.0	120.00	63.00	15.00	12.00
10	0.0	0.0	120.00	63.00	60.00	12.00
11	0.0	0.0	120.00	63.00	105.00	12.00
12	0.0	0.0	120.00	63.00	150.00	12.00
13	0.0	0.0	120.00	63.00	195.00	12.00
14	0.0	0.0	120.00	63.00	240.00	12.00
15	0.0	0.0	120.00	63.00	285.00	12.00
16	0.0	0.0	120.00	63.00	330.00	12.00
17	0.0	0.0	240.00	63.00	30.00	12.00
18	0.0	0.0	240.00	63.00	75.00	12.00
19	0.0	0.0	240.00	63.00	120.00	12.00
20	0.0	0.0	240.00	63.00	165.00	12.00
21	0.0	0.0	240.00	63.00	210.00	12.00
22	0.0	0.0	240.00	63.00	255.00	12.00
23	0.0	0.0	240.00	63.00	300.00	12.00
24	0.0	0.0	240.00	63.00	345.00	12.00

GLOBAL DISTRIBUTION CALCULATIONS

MASKING ANGLE = 5.00 DEGREES
LATITUDE STEP = 5.00 DEGREES
LATITUDE INCREMENT = 1
LONGITUDE INCREMENT = 1

DILUTION OF PRECISION PARAMETERS PRINTED AT TIME INCREMENT OF

TOTAL TIME(MIN) = 250 TIME INCREMENT(MIN) = 250

THE SATELLITE MOST NEARLY OVERHEAD IS USED AS ONE OF THE FOUR IN ALL CALCULATIONS OF THE VOLUME OF THE TETRAHEDRON

IN VIEW WILL HAVE ELEVATION ANGLES AS LISTED SLEVATION DISTRIBUTION - PROBABILITY THAT THE SATELLITE

	85-90	0.2
	80-85	0.9
	15-80	1.3
	51-0.	2.2
	1 01-5	2.6
	9 -9-0	3.5
	9-9-5	1.4
	0-55 5	6.2
	5-50 5	4.9
ANGLE	0-45 4	6.8
VATION	9-40 4	8.2
ELEVATION ANGLE	10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90	10.3 9.8 9.2 9.1 7.8 8.2 6.8 6.4 6.2 4.7 3.5 2.6 2.2 1.3 0.9 0.2
	5-30 3	9.1
	0-25 2	9.2
	5-20 2	8.6
	0-15 1	10.3
	5-10 1	10.3
	9-0	0.0
		PORO

0.2

LATITUDE ELEVATION DISTRIBUTION PROBABILITY THAT ANY SATELLITE IN VIEW WILL HAVE AN ELEVATION ANGLE GREATER THAN OR EQUAL TO THOSE LISTED

		0.00
	0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	2	1.00 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.095 0.095 0.095 0.095 0.095 0.095 0.095
	10	1.00 1.00 0.88 0.88 0.53 0.53 0.15 0.10 0.00 0.00 0.00
	15	11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
	20	1.00 0.68 0.68 0.68 0.60 0.41 0.31 0.25 0.19 0.19 0.00
	52	11.00 0.40 0.70 0.70 0.70 0.70 0.70 0.70 0
	30	11.00 0.40 0.40 0.70 0.61 0.53 0.38 0.38 0.30 0.12 0.07 0.07
	35	1.00 0.90 0.90 0.69 0.69 0.69 0.26 0.26 0.18 0.18 0.05 0.05
	0,4	1.00 1.00 0.66 0.65 0.65 0.65 0.65 0.27 0.21 0.15 0.15 0.06
	45	11.00 0.64 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
JOE	20	11.00 0.81 0.05 0.05 0.05 0.31 0.31 0.02 0.02 0.03 0.03 0.03
LATITUDE	55	11.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	09	11.00 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0
	69	11.00 0.04 0.04 0.05 0.05 0.02 0.02 0.05 0.05 0.05 0.05
	10	1.00 0.45 0.05 0.22 0.22 0.05 0.05 0.05
	75	11.00 0.42 0.42 0.42 0.42 0.42 0.43 0.23 0.23 0.10 0.00 0.00 0.00
	80	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	85	1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	06	0.00 0.00
	ANGLE	0 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

ACCUMULATIVE ELEVATION DISTRIBUTION POOBABILITY THAT THE ELEVATION ANGLE IS GREATER THAN OR EQUAL TO THOSE LISTED

		80	0.0
		75	0.0
		07	0.1
		0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0.1
		09	0.1
21.5		55	0.2
יזר רוי		20	0.5
		, 54	0.3
	ELEVATION ANGLE	40	0.3
	VATION	35	4.0
	ELE	30	0.5
		52	9.0
11000		20	1.0
		15	0.8
		10	6.0
		5	1.0
		0	1.0
			ORTH 1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0

a religion of the

0.0

85

Table 7 (Continued)
DILUTION OF PRECISION - ACCUMULATIVE LATITUDE DISTRIBUTION
PROBABILITY THAT ALTITUDE DOP WILL BE GREATER THAN NUMBER LISTED

	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.361	0.194	0.111	0.028	0.029	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0	0.0	0.0	0.0
	5	1.000				1.000	1.000	0.931	0.389	36	690		410										0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10	1.000			1.000			0.931				690 0	690-0	0.042	0.014	710.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	0000	00001	0000-1	00001	1.000		0.986			0.278	181.0		===		.+			0.0				0.0								0.0			
	20	000	000	0000-				0.958													0.0									0.0		0	0.0	0
	52	0000	000	0000-1				116.0	178	528					160.0	•					0.0			0		0	0	0	0				0.0	
	30	0000	0000	.000			000.	0.889	. 722				-								0.0					0		0.	0.		0	0		0
	35	1.000 1	0000	1.000 1	1.000.1	1 .000 1		0.861			528	472	133		22	0.167		0	0.0	0	0		_	0	0		0	_	0	0.0	0		0.0	
	0+	000.	000	000				7 446 0			200		306		153	7			0.0		0		0	_		_			0	0		0.0	0.0	0.0
	45	0000	0000	.000		.000		3 446.0		0.167														0.0							0.0			
- noe	65	0000	0000	.000	1.000.1	1.000 1		0.889			0.0																				0.0			
LATITUDE	55	000	0000	.000	000		216		111		0	0	0	0	0.0	0		0		0	0	0	0	0		0	0	0	0.	0				0
	09	.000.	-	_		1.000 1			0.250 0	167	240		0.045 0																		0.0			
	99	1.000 1	1.000 1	1.000.1	000		000		319								0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
	10	.000		200				1.000 0		0	0 4	0	0.0	0	0	0	0	0	0.0	0	0	0	0	0	0.0	0	0	0	0	0	0.0	0	0.0	0
	75	.000	.000	-	-			0000	.556	319	690	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	80	1.000 1	000	.000	.000	1.000 1	1 000 1		708 0	0.417 0	.250 0.																							
	85	.000		.000				0 000	1.000	. 736 0	.306 0	0 690.	0 690.	0 690 .	0 690 *	0 690.	0 690.	0 0.	0 0.	0 0.	0 0.	0 0.	0 0.	0	0	0 0.	0 0.	0 0.	0 0.	0 0.	0	0 0.	0	0
	06	.000	.000	1 000.	.0001	. 000	_	1 000	1.000	0 005.0	0 0.0	0.0	0 0.0	0 0.0	0.0	0 0.0	0.0	0 0.0	0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MUM	0.0	9	_	-	-	4																					5.8			6.4			
	ž	000	0	c	-	-	-		2	2	2	2	2	3	3	3	3	3	4	4	4	4	5	5	2	5	5	2	9	9	9	9	9	-

Table 7 (Continued)

DILUTION OF PRECISION - ACCUMULATIVE LATITUDE DISTRIBUTION PROBABILITY THAT PUSITION DOP IN HURIZONTAL PLANE WILL BE GREATER THAN NUMBER LISTED

								LAT	LATITUDE										
90 85 80 75 70 6	80 75 70	15 70	02		0	99	09	25	20	45	04	35	30	52	20	15	10	2	0
.1 000.1 000.1 000.1 000.1 000	1.000.1 000.1 000.1 000.1	1.000.1.000.1.000.1	1.000.1	1.000.1	-:	-	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000 1.000 1.000 1.000 1.000 1.	1.000 1.000 1.000 1.000 1.000 1.	1.000 1.000 1.000 1.000 1	1.000 1.000 1	1.000 1.000 1	1.000	-4 -	0000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1 000 1 000 1 000 1 000 1 000 1 000	1 000 1 000 1 000 1 000 1	1.000 1.000 1.000 1.	1.000 1.000 1	1.000 1.000 1	1.000	: -	000	1.000	1.000	1.000	1.000	1.000	1.000	000	1.000	1.000	1.000	1.000	1.000
000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000	1.000 1.000	1.000		1.300	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000	1.000 1.000	1.000 1.000	1.000	1.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
000 1.000 1.000 0.917 0.986 1.000	1.000 1.000 0.917 0.986 1.000	1.000 0.917 0.986 1.000	0.986 1.000	0.986 1.000	1.000	1.0	000	1.000	1.000	0.986	0.944		1.000	0.986	0.972	0.958	0.944	972	1.000
003 0.389 0.250 0.319 0.444 0.431 0.	0.389 0.250 0.319 0.444 0.431 0.	0.250 0.319 0.444 0.431 0.	0.444 0.431 0.	0.444 0.431 0.	0.431 0.	9.0	214	0.542		199-0	9.694		0.764	0.542	7740	0.319	0.208	0.278	0.250
500 0.236 0.042 0.0 0.0 0.0 0.0	0.236 0.042 0.0 0.0 0.0 0.0	0.042 0.0 0.0 0.0	0.0	0.0	0.00	0.0	9 4	0.014	0.0	0.139	0.278	0-194	0.111	0.125	0-125	0-056	0.014	0.03	0.028
0 0.0 0.028 0.0 0.0 0.0 0.0	0.0 0.028 0.0 0.0 0.0 0.0	0.028 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0			0.0		0.069	0.153		0.028		0.028	0.014	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.014			0.0		0.014	0.014	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	•	_	0.0		0.0			0.0		0-0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
								0.0		0.0			0.0		000	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0		0.0	0.0	0	0.0	0.0	000	0	0		0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0	0	0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0	_	0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0	0	_	0.0	o	0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0	0.0		0.0		0.0			0.0		0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0 0	0.0		0.0		0.0			0.0		0.0		0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0	0.0		0.0	0.0	0.0			0.0		0.0		0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	·	0	_	0.0		0.0			0.0	0.0	0.0		0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	·	0	0	0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0	o	0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0 0	·	0	0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0 0	0	0	0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0 0	0.0		0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 7 (Continued)

DILUTION OF PRECISION - ACCUMULATIVE LATITUDE DISTRIBUTION PROBABILITY THAT LARGER COMPONENT OF PUSITION OUP WILL BE GREATER THAN NUMBER LISTED

LATITUDE

0	1.000	•	1.000		1.300	969.0	0.250	0.056	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1.000	1.000	1. 300	1.000	1.333	0.597	0.208	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	1.000	1.000	1.000	1.000	1.000	0.486	0.125	0.042	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	1.000	1.000	1.000	1.000	1.000	0.556	0.194	0.056	0.014	0.014	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	1.000	1.000	1.000	1.000	1.000	0.611	0.347	0.153	0.056	0.028	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
52	-	-	-	-:	-	·	o	·	o	ö	o	·	ċ	·	·	0	·	·	•	·	ċ	ċ	o.	•	ċ	•	ċ	ö	·	0	•	ò	ċ	0.0	·	·
30	1.000	1.000	1.000	1.000	1.000	0.806	0.583	0.125	0.083	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	1.000	1.000	1.000	1.000	1.000	0.806	0.556	0.250	0.097	0.056	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	-:	-	-	-		·	·	o	·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0
45	1.000	1.000	1.000	1.000	1.000	0.764	0.514	0.222	0.083	0.042	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	1.000	1.000	1.000	1.000	1.000	0.667	0.389	0.111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55	-	-	-	-	-	o	0	o	0	0	o	0	o	0	o	o	0	o	o	o	0	o	0	o	o	o	o	o	o	o	0	0	o	0.0	0	0
09	1.000	1.000	1.000	1.000	1.000	0. 344	0.333	0.167	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
99	1.000	1.000	1.000	1.000	1.000	0.875	0.292	0.328	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	1.000	1.000	1.000	1.000	1.000	199.0	0.083	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	1.000	1.000	1.000	1.000	000	119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0
80	-	-	-	-:	÷	0	0	·	0	o	·	·	ċ	·	·	·	·	·	·	ċ	o	ċ	·	o.	·	ċ	·	o	·	0	o	o	o	0.0	o	·
85	1.000	1.000	1.000	1.000	1.000	0.653	0.319	0.264	0.125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
06	000	000	000	000	000	000	000	833	278	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0	0
NON	0.0	0.2	3.4	9.0	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	5.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	0.4	4.2	4.4	4.6	4.8	2.0	2.5	5.4	5.6	5.8	6.9	2.5	4.9	9.9	6.8	1.0

PROBABILITY THAT TIME DOP WILL BE GREATER THAN NUMBER LISTED

Table 7 (Continued)

	0	1.000	1.000	0.917	0.417	0.250	0.056	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	5	1.000	1.000	917	361	208	26	0.0								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0
	10	1.000	1-000	0.917	0.375	0.278	0.139	0-056	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	1.000	1.000	0.944	0.500	0.375	0.236			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	20	1.000	1.000		0.722			0.208										0.0			0.0						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	52	1.000	1.000		178	245	0.417				0.0		0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	30	1.000	1.000	0.917	199.0	165.0	0.514	0.333	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	35	1.000	1.000	0.889			0.542		410	0		0																				0.0		
	04	1.000	1.000	0.931	0.639	528	200		60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	45	1.000	1.000	0.972	0.625	0.181	0.167	0.125	0.083	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LATITUDE	20	1.000	1.000	0.931	0.639	0.042	0.014											0.0					0.0									0.0		
LATI	55	1.000	1.000	0.875	0.583	0.083	0.083	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	09	1.000	1.000	0.833	0.542	0.250	0.194	4 0.042	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	9	1.000	1.000	0.833	0.545	0.250	0.125	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70	1.000	1.000	0.903	969.0		0.056				0.0					0.0					0.0			0.0								0.0		0.0
	15	1.000	1.000	0.931	0.722	0.292	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	80	1.000	-	0.972	0.136	0.347	0.042	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	85	1.000	1.000	1.000	1.000	0.611	0.319	0.069	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	06	1.000	1.000	1.000	1.000	1.000	1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MUM	0.2																																

Table 7 (Continued)

DILUTION OF PRECISION - ACCUMULATIVE LATITUDE DISTRIBUTION
PROBABILITY THAT THREE DIMENSIONAL POSITION DOP WILL BE GREATER THAN NUMBER LISTED

	0	1.000	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.639	0.417	0.278	0.056	0.028	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	1.000	1.000	1.000		1.000	1.000	1.000	1.000	1.000	1.000	986.0	0.625	0.417	0.236	0.056	0.024	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10	1.000		000	000	0000-1	1.000	000-1	1.000	0000-1	000-1	1.000	769.0	7440	0.264	0.167						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	000		000		000.	0000	0000		000		00001	199.0				0.208	0.139	0.125	.083	0.0	0.	0.0	0.0	0.0	0.0	0.	0.	0.0	0.	0.	0.0	0.0		0.0		
	50	0000			000	000	.000	.000	.000	.000		.000	0.819												0.0		0	0	0	0		0	0	0.0	0	0.0	0
	52	.000	1 000	000	000	0000	000.	.000	.000	.000	1.000 1	1.000.1	0.903							~					0.0												
	30	1 0000		000	000	-	~	1 0000	.000	.000 1			177				0.528 0				0.097 0		96		0.0										0.0		
	35	.000	-	• -	٠.	-	-	.000	7	.000			0.875 0					0.431 0	0						0.0												
	04	1.000 1	-	٠-	•	-	1 0000	.000 1	~	1.000.1	_	1.000 1													0.0												
	45	.000		• -	•	-	.000	1 0000	1 0000																0.0		0	0	0	0	0	0			0.0		
ш	20		-	4	•	_	.000	-	~	-	_				14															0						0	0
LATITUDE	2		-	-	٠.	_	-	1.000	1.000		1.000	0.972	0.917		•	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0						0.0	
LAT	55	1.000	1,000	-	:	-	1.000	1.000	1.000	1.000	1.000	0.917	0.778	0.292	0.083	0.014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	09	1.000	1 000	1	1.00	1.000	1.000	1.000	1.000	1.000	1.000	0.917	0.778	0.347	0.222	0.056	04	2	0.042	0.042	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0
	59	1.000	000	000	000	000-1	1.000	1.300	1.000	1.000	1.000	3.944	991.0	0.347	0.194	0.014	0.014	0.014	410.0	410	0	0	0	0	0	0	0	0	0	0	0.0	0	0	0.0	0.0	0.0	0.0
	02	1.000	000	000	000-1	1.000	1.000	1.000	1.000	000.1	1.000	1.000	0.889	744.0	0.264	\$10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	1.000	000		200	0000-1	1.000	00001	1.000	1.000	0000-1	000-1	9.944	56	29	0	0	0	0	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0
	90	1.000	000				00001	0000-1																													0.0
	85	000	000			0000	0000	1.000	1.000	0000	1.000	000	000	000	192	959	125	6 9	690	690	690	690	_	_	0.0	_	_	_	0	_	0	_	_	_	_	0	0
	06	1.000.1				1.000	1.000.1	1.000.1		1.0001															0.0												
	NUM	0.0					1.0	1.2	1.4	1.6	1.8	2.0													4.6					2.6		0					0

Contraction of the same was

Table 7 (Continued)

DILUTION OF PRECISION - ACCUMULATIVE LATITUDE DISTRIBUTION
PPORABILITY THAT FOUR DIMENSIONAL POSITION DOP WILL BE GREATER THAN NUMBER LISTED

	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	946.0	0.639	0.361	0.306	0.194	0.056	0.028	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	1.000	00001	000-1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.972	0.625	0.417					0.0																0.0	
	10	1.000		1.000	000-1	000-1	000-1	1.000	1.000												~	4													0.0	0
	15	1.000				1.000		1.000				_	-										0	0	0	0	0	0		0	0	0	0	0.0		0.0
	20	0000			_	1 000.																			0.0										0.0	0 0.
	52	1.000 1	1-000 1	1 0000	1.000	1.000.1	_	_	_	_	_	_							319	164	690	0	0	0		0	0	0	0	0	J	0	0	0		0
	30	1.000 1															0.556 0	0.500	0.431 0		0.167 0			99				0.0			0	0.	0.	0	0 0.	0 0.
	35	1 000		-	-	.000	-	-	-	-	_			0.178 0											0 0 0						0	0 0.	0	0.0	0	0 0.
	40	.000	-	-	-	.000	_	_	_	_	_	-					0.500 0								0.0							0.0	0	0		
	45	1.000 1	-	-	-	.000	-	-	-									0	0		•					0	0		0	0	0	0	0 0.	0 0.	0 0.	0 0.
JOE	20	1 000		_	-	-	-																		0 00										0.0	
LATITUDE	55	1.000 1	-	-	-	.000	-	_					164	262			4																		0.0	
	09	1 000	000	000	-	000	000	1 000		-	000				250	208	950	240								0	0	_	0	0	0			0	0	0
	9	.1000	-	000 1.	-	_	-	÷	000					~		~		.+							0.0										0 0	0 0
	02	1.000 1.		-	-	.0000	-	-	-	-					_																				0 0	0 0
	51	.000		-	-	-	_	000			-					208 0.	0 0																	0 0	0.0	0 0
	00	0000	-	-	-	-	-	-	-	-	:	-	•		·	ċ	0	0	0	0	0	0	0	0		0	O	0	0	0	0	0	0	·	0.0	0.0
	2		-	-	-	-	-	-	-	_			•	Ö	o	o	ċ	o	0	ċ	·	0	ò	ċ	o	o	o	0	0	o	o	o	0	0	0	0
	0	000 1.000				-	÷	-	.:	-	_	-	:	00 1.0	00 00	00 00	00 0.319	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	90	1.000	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.000	1.000	1.0	1.0	1.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NO.	0.0	3.4	9.0	0.8	1.0	1.2	1.4	1.6	1.0	5.0	2.2	5.4	2.6	2.0	3.0	3.2	3.4	3.6	3.0	4.0	4.2	4.4	4.6	4.8	2.0	5.2	5.4	9.6	5.8	0.9	2.9	4.9	9.9	9.9	1.0

- marian

Table 7 (Continued)

DILUTION OF PRECISION PARAMETERS - ACCUMULATIVE GLOBAL DISTRIBUTION

ON OF PRECI	OF PRECISION PARAMETERS -		ACCUMULATIVE	GLOBAL DI	GLOBAL DISTRIBUTION	
NUMBER	VDOP	Ф ООН	MDOP	T00P	PDOP	G00P
0.0		1.0000	1.0000		1.0000	1.0000
0.2		1.0000	1.0000		1.0000	1.0000
4.0	•	1.0000	1.0000	•	1.0000	1.0000
9.0		1.0000	1.0000		1.0000	1.0000
8.0	1.0000	1.0000	1.0000		1.0000	1.0000
1.0		1.0000	0.6939		1.0000	1.0000
1.2		0.9771	0.3307		1.0000	1.0000
	2	0.4643	0.1174	0.2360	1.0000	1.0000
1.6		0.2297	0.0353		1.0000	000001
1.8		0.0194	0.0173		1.0000	1.0000
2.0	4.	0. 3234	0.0039		0.9879	0000-1
2.2		0.0039	0.0		0.8051	0.9786
5.4		0.0	0.0		0.5258	0.7897
2.6		0.0	0.0		0.3519	0.5281
2.8	7	0.0	0.0		0.2430	0.3888
3.0		0.0	0.0		0.1997	0.3005
3.2	0	0.0	0.0		0.1529	0.2236
3.4		0.0	0.0		0.1043	0-1913
3.6		0.0	0.0		0.0740	0.1697
3.8	.003	0.0	0.0		0.0262	0.1186
0.4		0.0	0.0		0.0084	0.0769
4.2		0.0	0.0		0.0059	0.0385
4.4		0.0	0.0		0.0	9800.0
4.6		0.0	0.0		0.0	0.0059
8.4		0.0	0.0		0.0	0-0
2.0		0.0	0.0		0.0	0.0
5.2		0.0	0.0		0.0	0.0
5.4		0.0	0.0		0.0	0.0
		0.0	0.0		0.0	0.0
		0.0	0.0		0.0	0.0
		0.0	0.0		0.0	0.0
6.2	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0		0.0	0.0
9.9		0.0	0.0		0.0	0.0
		0.0	0.0		0.0	0.0
		0.0	0.0		0.0	0.0

Table 7 (Continued)

:					NUMBER OF	S	LITES			•			:	;		
141	0	-	7	n	*	•	•	-	ю	-	01	:	71	£1	<u>.</u>	5
a	PROBABILITY	IN PE	PERCENT	OF SEEING	NG EXACTLY	z	SATELLITE	ES								
93.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.00	0.0	0.0				
. 65	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	93.06	10.04	000				
75.	000	000				000	0.0	000	8.33	73.61	16.67	1.39				
70.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.11	72.22	11.11	5.56				
65.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.44	62.50	18.06	0.0				
.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.56	55.56	13.89	0.0				
. 20					•			0.0	50.56	65.89	5.56	0 0				
45.	0.0	000	000				2.1	16.67	30.56	38.89	2.78					
40.	0.0	0.0	0.0	0.0	0.0	0.0	19.44	16.67	29.17	27.78	96.9	0.0				
35.	0.0	0.0	0.0	0.0	0.0	0.0	22.22	18.06	26.39	30.56	1.39	1.39				
30.	0.0	0.0	0.0	0.0	0.0	0.0	26.39	18.06	23.61	30.56	1.39	0.0				
25.	0.0	0.0	0.0	0.0	0.0	0.0	27.78	13.89	26.39	31.94	0.0	0.0				
20.	0.0	0.0	0.0	0.0	0.0	0.0	56.39	15.28	56.39	27.78	4.17	0.0				
15.	0.0	0.0	0.0	0.0	0.0	0.0	19.44	20.83	19.44	36-11	4.17	0.0				
10.	0.0	0.0	0.0	0.0	0.0	•	12.50	16.67	40.28	30.56	0.0	0				
	0.0			000		000		11 11	20.00	27 72	00.00	•				
			-	7	:	July		3								
.06	100.001	100.00	100.00	100.00	100.00		100.00	100.00	100.00	100.00	0.0	0.0				
85.	00.001	00.00	-	100.00	100.00			100.00		100.00	76.9	0.0				
	00.001	00.00	00.00	000	00.00	00.00	00.00	100-00	100	91.67	18.06	0.0				
70.	100.001	00.00		00.001	100.00	100.00		100-00	100.00	88.89	16.67	5.56				
.59	100.001	100.00		100.00	100.00	100.00		100.00	100.00	80.56	18.06	0.0				
.09	100.001	100.00		100.00	_	100.00		100.00	100.00	44.69	13.89	0.0				
55.	100.001	100.00	-	100.00	~	100.00		100-00	100.00	44.69	5.56	0-0				
20.	100.001	100.00	_	100.00	100.00			100.001	93.06	51.39	5.56	0.0				
45.	100.001	100.00	-	100.00	-		100.00	86.49	12.22	41.67	2.76	0.0				
0	100.001	00.00		100.00	_		100-00	80.56	63.89	34.72	96.9	0.0				
35.	100.001	00.00		100.00	100.00		100.00	11.18	21.66	33.33	2.18	1.39				
	00.00	00.00		000		00.00	00.00	73.01	50 23	31.94	1.09					
20.	100.001	100-00		100	• -	100.00	100-00	73.61	58.33	31.94	4.17					
15.	100.001	00.00		100-00	100-00	100-00	100-00	80.56	59.72	40-28	4-17	0.0				
10.	100.001	100.00	100.00	100.00	00	100.00	100.00	87.50	70.83	30.56	0.0	0.0				
5.	100.001	100.00	100.	100.00	00	100.00	100.00	100.00	79.17	37.50	5.56	0.0				
•0	100.001	100.00	-	100.00	100.00	100.00	100.00	100.00	88.89	38.89	11.11	0.0				
DY A GLOBAL	AL BASIS THE	PRO	BABILITY	(IN PERCENT)	CENT) T	THAT EXA	EXACTLY N	SATELLITES	TES WILL	L BE SEEN	Z					
80 00		0	•		0		12 13	12 06	30 05	30 05	2 47	90				
	2			•	•		71.71	4								
ON A GLOBAL	AL SASIS THE		PROBABILITY	(IN PER	(IN PERCENT) THAT	HAT N O	N OR MORE	SATELLITES	TES WILL	L BE SEE	Z					
PR.78	100.001	100.00		100.00	100.00 100.00 100.00 100.00 100.00	100.00	100.00	87.88	14.93	44.88	26.5	0.28				

Table 7 (Continued)

MAXIMUM AND MINIMUM NUMBERS SEEN AT EACH LATITUDE & LONGITUDE

MAXIMUM

	***	-			~ .	
L	UN	6	IT	u	DE	۰

		1 1						2												3	3																
							5					0					5					0					5					0					5
LAT	0						0					0					0					0					0					0					0
90.	9	9	9	•	,	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
85.	9	4	9	4	•	4	9	9	4	9	9	4	9	9	9	9	4	9	4	9	4	9	91	0	10	101	01	0	4	9	4	9	4	9	4.	9	9
80.	10	1 01	0	10)	9	9	9	9	9	9	91	01	0	9	91	0	101	01	0	9	9	9	9	9	101	101	10	9	9	9	9	9	9	9	9	9
75.	101	0	9	9	,	91	0	10	111	0	9	9	9	9	9	9	9	91	01	01	C	9	9	9	9	91	101	101	0	9	9	9	9	9	9	91	0
70.	11	0	9	(•	9	9	10	101	0	9	9	9	9	9	9	9	91	01	11	1	9	9	9	9	91	10	101	0	9	9	9	9	9	9	91	11
65.	9	91	10	5	,	91	0	0	9	9	9	91	0	4	4	4	9	10	9	4	101	0	91	0	10	10	91	10	9	9	9	9	9	5	91	101	0
60.	4	9	9	(,	91	0	10	9	9	9	91	0	9	9	9	9	9	9	9	101	101	101	0	9	8	8	9	9	9	9	91	0	9	91	101	10
55.	9	9	9	9	•	91	0	9	9	9	9	91	01	0	9	9	9	9	9	9	d	9	9	9	9	9	91	0	9	9	9	4	9	9	9	9	8
50.	10	9	9	9	•	8	9	9	9	9	9	9	9	9	9	8	8	9	9	9	91	0	9	9	9	8	9	10	9	9	9	8	9	9	91	0	9
45.	9	9	9	9	,	9	8	9	8	8	7	8	8	9	8	9	9	8	8	9	91	0	9	9	9	9	9	9	9	9	9	9	9	9	91	0	9
40.	8	8	d	4	,	9	4	10	8	4	9	9	81	01	0	9	0	d	ø	9	91	0	9	9	8	9	9	4	9	9	9	8	6	9	91	0	9
35.	8	8	8	9	1	11	0	8	9	9	9	9	9	9	4	9	9	9	8	9	9	9	9	8	8	8	9	9	9	8	8	8	8	8	9	9	9
30.	8	9	9	9	•	9	8	9	9	9	9	9	9	81	0	9	9	9	9	8	9	9	9	9	8	8	8	8	6	ø	8	8	0	9	9	4	9
25.	9	9	9	5	,	8	8	8	8	9	9	9	8	8	4	9	9	9	9	9	8	8	9	9	9	8	9	8	9	9	8	8	9	9	9	8	8
20.	8	9	9	9	,	8	8	8	7	9	9	9	7	8	8	9	9	9	8	8	8	9	9	9	9	10	9	9	9	101	0	8	9	9	9	9	8
15.	9	9	9	4	,	8	4	4	8	9	9	9	0	8	U	d	9	4	1	9	9	9	9	91	10	4	9	9	0	9	0	91	0	4	9	9	9
10.	8	8	9	•	3	8	9	9	9	8	3	8	9	9	9	8	9	7	8	8	9	8	8	9	9	9	9	9	8	9	9	9	9	9	8	8	9
5.	10	8	9	8	3	8	9	9	9	8	9	8	9	9	9	8	9	9	9	9	9	8	9	9	8	91	0	8	8	9	0	91	0	9	8	8	9
0.	10	,	d	•	5	8	9	9	10	9	ö	41	0	9	4	9	0	81	01	0	9	8	8	8	9	91	0	9	8	9	Q	9	9	9	8	81	10

MI NI MUM

LUNGITUDE

											1					1					2					2					3					3
						5					0					5					0					5					0					5
LAT	0					0					0					0					0					0					0					0
90.	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
85.	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	4	9	9	9	9	4	4	9	9	9	4	9
80.	9	9	9	9	9	9	9	B	9	9	8	8	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
75.	9	9	9	9	9	8	8	9	9	9	8	9	8	8	9	9	9	8	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
70.	8	d	9	+	8	8	4	4	4	9	4	4	4	ь	8	9	4	4	8	8	9	9	4	9	9	9	4	9	4	4	4	9	4	9	9	9
65.	8	9	9	9	9	8	9	9	8	8	9	9	9	8	9	9	9	9	8	8	8	9	9	8	8	9	9	9	8	9	8	8	9	9	9	8
67.	8	9	9	8	9	8	9	9	8	8	8	9	9	8	9	8	9	9	9	8	8	9	9	8	8	8	9	8	8	6	8	8	4	9	8	8
55.	8	8	9	8	9	9	9	9	8	8	8	9	9	9	9	8	9	8	8	8	9	9	8	8	8	8	8	9	8	8	8	9	9	9	8	8
50.	8	8	7	8	8	9	8	8	7	8	8	8	9	8	8	8	7	8	8	8	9	7	8	8	8	8	9	9	9	8	8	8	7	8	8	8
45.	6	8	7	6	1	7	8	8	1	6	7	В	9	7	1	6	7	8	8	9	6	6	7	8	8	8	6	8	6	8	8	8	6	1	4	7
40.	8	7	6	6	6	8	В	6	6	6	6	8	8	8	6	6	6	7	8	8	7	6	6	7	8	7	7	6	7	7	8	7	6	7	7	7
35.	8	7	6	6	7	7	7	6	6	6	6	8	8	7	7	6	6	7	8	6	7	7	6	7	8	6	7	6	7	6	8	6	7	6	6	9
30.	ö	6	6	1	7	6	7	6	6	6	7	6	7	6	7	7	6	6	7	6	6	7	6	6	8	7	6	6	6	7	8	6	7	6	6	7
25.	9	6	6	7	6	6	8	7	6	7	7	7	8	6	6	7	6	6	8	6	6	6	7	7	8	6	6	6	6	6	8	7	6	6	6	7
23.	7	8	7	6	6	7	8	6	7	7	6	7	8	7	6	6	7	7	8	6	6	6	6	8	8	6	6	6	6	6	8	6	6	6	6	8
15.	8	7	7	6	6	7	8	7	7	7	6	7	8	7	6	6	7	7	8	7	6	6	6	9	7	8	6	6	6	8	7	7	6	6	6	8
10.	8	7	7	7	6	8	8	8	6	6	7	8	9	8	6	7	7	7	8	7	6	6	8	8	8	8	7	6	7	8	8	8	6	6	7	8
5.	8	7	7	ø	8	8	8	1	1	7	7	d	9	6	8	8	1	8		8	7	8	7	7	7	9	8	7	8	1	8	7	8	1	8	9
0.	7	8	8	8	8	8	7	8	8	7	8	7	9	8	8	8	8	9	7	8	8	8	8	8	7	8	8	7	8	7	9	8	8	8	8	9

Appendix A

NAVSAT SELECTION ALGORITHMS FOR A SATELLITE USER

This appendix describes the algorithms used to select, from all of the navsats in view of a satellite user, those most likely to yield small DOP values. These algorithms were developed to reduce computation costs, accomplished by selecting a value for the input parameter C (0 < C < 1), which is the fraction of the area of a sphere with radius equal to the orbital radius of the navsats. If the navsat system orbital configuration involves elliptic orbits, these algorithms cannot be used and C should be set equal to one. Also, computation costs can be reduced further, with little sacrifice in position determination accuracy, if the zenith/nadir satellite selection mode is used to reduce computation time.

If the navsat orbital configuration involves more than one circular orbit altitude (a "multishell" system) and the satellite user is above all of the shells, the algorithm can be used as presented below. If the satellite user is between or below the shells part of the time, the situation is more complex because there are two possible values for $\theta_{\rm T}$ (see below)—one for the "zenith" navsat on the same side of the earth as the user, and one for the "nadir" navsat on the other side of the earth from the user. In this case, suitable values of C can be obtained by careful consideration of the user/navsat system relative geometries. As with elliptic orbit navsats, C can be set equal to one, and the zenith/nadir navsat selection mode can be used to minimize computation time.

The following is a description of the algorithms for use with any satellite user orbit, as long as the navsat system uses a single altitude, circular orbit. The number of navsats considered for use after the zenith/nadir navsat is selected by C; the larger C is, the larger the number of navsats considered. Values of C from 0.4 to 0.6 generally yield good results.

To a second section in

^{*}The algorithms can be used if the satellite user is always above or below all of the navsats and the value of R, which is used in the expression to obtain θ_T , is representative of the navsat orbits. (For example, set R equal to the average of the semimajor axes of the navsat orbits.) This would require a minor modification of the computer program.

The two algorithms derived below, one for the satellite user above the navsats and the other for the satellite user below, use the same criteria for selecting the first navsat of the four to be used for the computation of the DOPs, i.e., the satellite, of those in view of the user, which is closest to the user's zenith or nadir. However, the criteria for selecting the remaining three satellites are not the same for the two algorithms.

SELECTION OF THE FIRST NAVSAT

For convenience of explanation, Fig. A-1 shows the user above the navsats, the spherical surface containing the navsats, and the earth plus 200 n mi of atmosphere (hereafter called earth). Also, the shaded area that is shown will contain the navsats which are retained for the computation of the DOPs, as we will describe later.

At each time point, the angles θ_n and β_n are computed for each user and navsat combination from

$$\theta_{n} = \cos^{-1} \left(\frac{\overline{R} \cdot \overline{P}}{RP} \right)^{*}$$
(A-1)

and

$$\beta_n = \cos^{-1}\left(\frac{-\overline{U} \cdot \overline{P}}{UP}\right)$$
.

If $\theta_n > \phi$, where $\phi = \cos^{-1}\left(\frac{r}{R}\right) + \cos^{-1}\left(\frac{r}{P}\right)$, then the satellite is obscured from the user's view by the earth and is discarded from further consideration until the next step.

If the angle α , which is equal to π - $(\theta_n + \beta_n)$, is greater than the navsat antenna beam half-angle, then the user satellite will not be illuminated by the navsat antenna beam and the navsat will not be used in the calculations.

The angle β_1 , corresponding to the first satellite not obscured by the earth, and the number of the satellite are stored. Subsequent β 's are computed and compared to the β in storage, and the satellite yielding the smallest β is the first of the four navsats used for the computation of DOP values.

 $^{^*}P = |\overline{P}|$ (the length of \overline{P}) and $R = |\overline{R}|$ (the length of \overline{R}).

Fig. A-1 — Satellite user above the navsat altitude

For the axis of the navsat antenna pointing toward the center of the earth, it is clear that any navsat above the plane represented by line A-B in Fig. A-l must have an antenna beam with half-angle greater than 90 deg in order to illuminate the satellite user. If the navsat is below the plane, the antenna beam half-angle required will be less than 90 deg.

SATELLITE USER ABOVE THE NAVSAT SYSTEM

If the remaining three navsats needed for the GDOP computations are on or near the tangent circle A-B (Fig. A-1) and are separated in longitude by 120 deg, then the volume of the tetrahedron formed, as shown in Fig. A-2 (a,b,c,d), will be a near maximum and the corresponding PDOP values will (almost always) be minimum. The probability that the three satellites will be so arranged is small; thus, all of the satellites in a band (similar to a band between two parallels of latitude) containing the tangent circle, and whose width corresponds to the sum of the central angles δ_1 and δ_2 , are retained for the selection of the three remaining satellites. The satellites not in this band are discarded from further consideration until the next time point. The angles δ_1 and δ_2 are obtained from

$$\delta_1 = \sin^{-1}\left(\frac{c}{\sin\theta_T}\right) \quad \text{if } \sin^2\theta_T > c$$
, (A-2)

where $\cos \theta_{\overline{1}} = |\overline{R}| / |\overline{P}|$, and $\delta_2 = \delta_1$; or

$$\delta_1 = \theta_T \quad \text{if } \sin^2 \theta_T \le C$$
, (A-3)

and

$$\delta_2 = \cos^{-1} \left(1 - 2C \right) - \theta_T \quad .$$

The central angle $\theta_T = \cos^{-1}\left(\frac{R}{P}\right)$ is shown in Fig. A-1. The quantity 0 < C < 1 (an input quantity) represents the ratio of the area of

The tangent circle A-B, between a cone with apex at the user's position and the spherical surface containing the navsats, corresponds to the maximum value $\beta_{\rm p}$ can have.

Fig. A-2 — Tetrahedron formed by the ends of unit vectors from a satellite user toward four navsats

the band to the area of the sphere containing the navsats. If the satellites are uniformly distributed, the number of navsats in the band will be the product of C times the total number of navsats. Thus, for $C \approx 0.25$, the number of GPS satellites in the band (on the average) would be 6. Since the navsats are not usually uniformly distributed, $C \approx 0.5$ should ensure that there will be an adequate number of navsats available.

SATELLITE USER BELOW THE NAVSAT SYSTEM ALTITUDE

The characteristics of the algorithm for satellite selection for a satellite user below the navsats, as shown in Fig. A-3, are not readily apparent if it is desirable to reduce the computational effort that results when all satellites in view are taken four at a time. The number of different combinations of four satellites can be large. For example, a user near the altitude of GPS will, on the average, see 22 of the 24 GPS satellites, and the number of different combinations of four will be 7315.

The satellite selection algorithm presented here and used in the program is based on the simplifying assumptions that the first of the four satellites to be used for computing GDOP values is the one nearest the user's zenith (or nadir) and that the other three satellites are in or near a plane which is normal to the vector \overline{P} . The additional program statements required to select the *optimum* orientation of the plane were not used because of singularity problems that could occur when the user is just below the navsat altitude.

Figure A-3 shows the orbit containing the first of the four navsats chosen for the tetrahedron volume computation and the band, on the spherical surface containing the navsats, which will be used to select the other three navsats.

The angles δ_1 and δ_2 are determined as before, except θ_T is now computed from

$$\theta_{T} = \rho + \cos^{-1} \left(\frac{|\overline{P}|}{|\overline{R}|} \cos \rho \right)$$
,

^{*}If obtaining minimum GDOP values is essential, it is recommended that the algorithm be ignored and that all possible combinations of four satellites be examined.

Fig. A-3 — Orientation with satellite user below the navsat altitude

where ρ is the angle between the user's horizontal and a line from the user to the circle represented by the line A-B in Fig. A-3. If the first navsat chosen is on the user's vertical, then it can be shown that the optimum value for ρ is about 19.5 deg. This value of ρ will maximize the volume of the tetrahedron formed by joining the tips of the four unit vectors which point from the user to the four navsats. If the first chosen navsat is above the user's horizontal (as shown in the figure), the angle ρ will be below the user's horizontal—and vice versa.

Figure A-3 shows that the half-angle of the navsat antenna beam, which is directed toward the center of the earth, must be as large as the angle α if the user satellite is to receive ranging information from a navsat located at point A.

Appendix B

PROGRAM LISTING

1.	MAIN	[pages 65-77]
2.	ORBINI(I)	[page 78]
3.	ORBIT(I,T,R,VEL,AC)	[pages 79-80]
4.	TRMATX(TR,I)	[page 81]
5.	MATMUL(T,V,O)	[page 82]
6.	POINT(ALO, ALA, TIM, VEC)	[page 83]
7.	TAAT(MAX,KXX,MATRIX)	[page 84]
8.	VOLUME(OVEC, IDSAT, VOL)	[page 85]
9.	COVNAV(G, ID, NAT, SIG)	[page 86]
10.	BLOCK DATA	[page 87]
11.	VECTOR(V1,I,V2,V3)	[page 88]
12.	DOT(V1,V2)	[page 89]
13.	UNIVEC(V,UV)	[page 90]
14.	TALL(KOT, KXX, MATRIX)	[page 91]

```
COMMON/ORBIS/P(37,25)/CON/C(18)
      DIMENSION AA(3),G(37,4),IOS(37),ISIC(4),KXX(58905,4),NSGD(37),R(3)
     1,RF(3),RMX(37,3),SIGT(6),U(3),UPV(3),USUV(37,3),UTS(3),VE(3),Z(3),
     2 YE(3),XN(3),ISAVE(37),IINT(37),UEL(37),IOUT(37),STN(3)
      DIMENSION QSR(36), CAG(19,18), GLEB(18), PIB(18), ACLAT(19,36),
     1 ACTOT (36), OBLAT (19,36), UBDIS (36), CL (19), MIN (19,36), MAX(19,36),
     2 CAGX(19.18), NSPL(19), SKEG(19.36.6), SKEGX(19.36.6), GLOS(6.36),
     3 CDOP(19,36,6), ISAPP(32), PER(36)
      REAL LAT, LUNG, LATDEG, LADG, LAD
      KTR=48
      IPRINT=0
      Z(1)=0.
      2(2)=0.
      Z(3)=1.E+10
C
    LOC=1; USER ON SATELLITE
C
    LOC=2; USER ON GROUND AT SPECIFIED LATITUDE AND LONGITUDE
    LOC=3: GLOBAL CALCULATIONS
C
      READ (5,175) LOC, NJL, ISCMP
      GO TO (100,110,120), LOC
C
  100 DO 105 K=1,5
      READ (5,180) (P(N,K),N=1,NJL)
  105 CONTINUE
      READ (5,180) (PER(N), N=1, NJL)
      NJM=NJL+1
      READ (5,180) (P(NJM,K),K=1,5)
      READ (5,185) PER(NJM), AIN, CK
      READ (5,175) INC, ITF
      GC TO 155
  110 DO 115 K=1,5
      READ (5,180) (P(N,K), N=1,NJL)
  115 CONTINUE
      READ (5,180) (PER(N), N=1, NJL)
      READ (5,185) ATL, ONGL, ELEVAT
      READ (5,175) INC, ITF
      GO TO 155
C
  120 DO 125 K=1,5
      READ (5,180) (P(N,K),N=1,NJL)
  125 CONTINUE
      READ (5,180) (PER(N),N=1,NJL)
      READ (5,185) LATDEG, ELEVAT
      READ (5,175) LATIC, LONIC, INC, ITF, IPFREQ, ITIME
      DO 135 MA=1,19
      CL(MA)=0.
      NSPL (MA) =0
      DO 130 MB=1.36
      MIN(MA, MB) =30
      MAX(MA, MB) =0
      DO 130 MC=1,6
      SKEGX (MA.MB. MC) = 0.
      CDOP (MA, MB, MC) =0.
  130 SKEG(MA, MB, MC)=0.
      DO 135 MD=1,18
      CAGX (MA.MD) = 0.
```

```
135 CAG(MA, MD) = 0.
      DC 140 MA=1.36
      DO 140 MB=1.6
  140 GLOS (MB. MA) = 0.
      DO 150 MA=1,19
      ACTOT (MA)=0.
      OBDIS(MA)=0.
      DO 145 MD=1,36
      ACLAT (MA,MD) = 0.
  145 OBLAT (MA . MD) = 0.
  150 GLEB(MA)=0.
С
  155 CONTINUE
      WRITE (6.195)
      WRITE (6,190)
      DO 160 IP=1,NJL
      WRITE (6,215) (IP, (P(IP, IV), IV=1,5), PER(IP))
  160 CONTINUE
      IF(LOC.EQ.1) WRITE (6,200)
      IP=NJL+1
      IF(LOC.EQ.1) WRITE (6,215) (IP,(P(IP,IV),IV=1,5),PER(IP))
      IF(LOC.EQ.2) WRITE (6,210) ATL, ONGL, ELEVAT
      IF(LOC.EQ.3) WRITE (6,205) ELEVAT, LATDEG, LATIC, LONIC, ITIME
      ITT=(ITF-1)*INC
      WRITE (6,220) ITT, INC
      IF(LOC.EQ.1) WRITE (6,225) AIN,CK
      IF(LOC.EQ.1.AND.ISCMP.EQ.O) WRITE (6,166)
      IF(LOC.NE.1.AND.ISCMP.EQ.O) WRITE (6,165)
      IF(ISCMP.EQ.1) WRITE (6,170)
   THE FOLLOWING FORMATS HAVE TO DO WITH INPUT
C
  165 FORMAT(1HO,10X, THE SATELLITE MOST NEARLY OVERHEAD IS USED AS ONE
     10F THE FOUR'/,11X, 'IN ALL CALCULATIONS OF THE VOLUME OF THE TETRAH
     2EDRON')
  166 FORMAT(1HO,10X, THE SATELLITE MOST NEARLY ABOVE OR BELOW IS USED A
     IS ONE OF THE FOUR'/, IIX, 'IN ALL CALCULATIONS OF THE VOLUME OF THE
     2TETRAHEDRON')
  170 FORMAT(1HO,10X, ALL SATELLITES, TAKEN FOUR AT A TIME, ARE USED IN'
     1,/,11x, THE CALCULATIONS OF THE VOLUME OF THE TETRAHEDRON')
  175 FURMAT(1015)
  180 FORMAT(12F6.0)
  185 FORMAT(7F10.0)
  190 FORMAT(1H0,22X,' ECC',5X,'ARGP',4X,'RASC',4X,'INC',5X,'ANOM',4X,
     1'PER',//)
  195 FORMAT(1H1,//32X, ORBITAL ELEMENTS')
  200 FORMAT(1HO,10X, USER SATELLITE ORBITAL ELEMENTS'/)
  205 FORMAT(1HO,10X, GLOBAL DISTRIBUTION CALCULATIONS',//,
     1 11X, 'MASKING ANGLE = ',F6.2,' DEGREES',/,
     2 11x, 'LATITUDE STEP = ', F6.2,' DEGREES', /,
     3 11X, LATITUDE INCREMENT = ',13,/,
     4 11x, LONGITUDE INCREMENT = ', 13,/,
     5 11X, DILUTION OF PRECISION PARAMETERS PRINTED AT TIME INCREMENT O
     6F ', 15)
  210 FURMAT(1HO, 10X, USER LOCATION ON EARTH 1/11X.
            'LATITUDE = ',F5.2,' DEGREES'/,11x,'LONGITUDE = ',F5.2,
            ' DEGREES',/, 11x, 'MASKING ANGLE = ',F6.2,' DEGREES')
  215 FORMAT(1H ,15X,13,1X,6F8.2)
```

```
220 FORMAT(1H0,10X, TOTAL TIME(MIN) = ',15,/,11X,
         'TIME INCREMENT(MIN) = ', 13)
  225 FORMAT(1H ,10X, BEAMWIDTH ANGLE(DEG) = ',F6.2,/,11X,
     1 'FRACTION OF NAVSAT SPHERICAL AREA = ',F6.3)
C
C
   SET UP ORBITAL ELEMENTS
      DO 230 N=1.NJL
      P(N,22)=22808.*(PER(N)/24.)**(2./3.)
      CALL ORBINI (N)
  230 CONTINUE
      IF(LOC.EQ. 2. OR.LOC.EQ. 3) GO TO 235
      P(IP,22)=22608.*(PER(IP)/24.)**(2./3.)
      CALL ORBINI (IP)
  235 CONTINUE
      INCA=0
      NSTO=0
      MAXNSS=0
      DO 625 IT=1, ITF
      TID=FLOAT(INCA)/1440.
      INCA=INCA+INC
      NN=IP
      IF(LOC.EQ. 2. OR.LOC.EQ. 3) NN=NJL
      DO 240 N=1.NN
      CALL ORBIT (N, TID, PER, RF, VE, AA)
      DO 240 IV=1,3
      RMX(N,IV)=RF(IV)
  240 CONTINUE
      IF(LOC.EQ.2) GU TO 335
      IF(LOC.EQ.3) GO TO 330
C
C
      DO 245 IV=1.3
      UPV(IV)=RMX(IP,IV)
  245 CONTINUE
      IK=0
      BETAMN=4.000000
      DO 265 N=1 ,NJL
      DO 250 IV=1.3
      R(IV) = RMX(N, IV)
  250 CONTINUE
      CALL VECTOR (R,2,UPV,UTS)
      AR=SQRT(DOT(R,R))
      AP=SQRT(DOT(UPV, UPV))
      A=ARCOS (2.0926144E+07/AR)
      IF(AP.LE.2.0926144E+07) WRITE(6,251)
  251 FORMAT(1H ,/,3X, 'TERMINATION OF RUN, ALTITUDE APPROCHING ZERO')
      IF(AP.LE.2.0926144E+07) STOP
      B=ARCUS(2.0926144E+07/AP)
      PHI = A+B
      DOTRP=DOT(R, UPV)
      THETN=ARCOS(DOTRP/(AR*AP))
      IF(THETN.GE.PHI) GO TO 265
      IK=IK+1
      ISAVE(IK)=N
      AU=SORT(DOT(UTS.UTS))
      DOTUP=DOT(UTS,UPV)
      BETAN=ARCUS(-DOTUP/(AU*AP))
```

and the state of the state of

```
AIWID=AIN/C(2)
    BWIDTH=C(3)-(THETN+BETAN)
    IF(AIWID.LT.BWIDTH) GO TO 265
    BETASV=BETAN
    IF(BETAN.GT.C(5)) BETAN=C(3)-BETAN
255 IF(BETAN.LT.BETAMN) GU TO 260
    GO TO 265
260 ISATNO=N
    BETAMN=BETAN
    BETAS=BETASV
265 CONTINUE
    DO 285 I=1.IK
    IF(ISAVE(I).EQ.ISATNO) GO TO 270
    GO TO 285
270 INDX=I
    DO 275 KI=1, INDX
    KII=KI+1
    IINT(KII)=ISAVE(KI)
275 CONTINUE
    INDX=INDX+1
    DO 280 KI=INDX,IK
    IINT(KI)=ISAVE(KI)
280 CONTINUE
    GO TO 290
285 CONTINUE
290 IINT(1)=ISATNO
    IF(ISCMP.EQ.1) GO TO 335
THE NUMBERS OF THE SATELLITES WHICH FIT CRITERIA FOR USE, PLUS THE
 ONE NEAREST TO OVERHEAD HAVE BEEN CALCULATED
    IOS(1)=IINT(1)
    NSS=1
    DO 295 IV=1,3
    R([V)=RMX(]INT(]), [V]
295 CONTINUE
    CALL VECTOR (R.2, UPV, UTS)
    CALL UNIVEC (UTS.U)
    DO 300 IV=1,3
    USUV(IINT(1),IV)=U(IV)
300 CONTINUE
    DO 325 N=2,IK
    DO 305 IV=1.3
    R(IV) = RMX(IINT(N), IV)
305 CONTINUE
    CALL VECTOR (R.2.UPV.UTS)
    CALL UNIVEC (UTS,U)
    DU 310 IV=1.3
    USUV(IINT(N),IV)=U(IV)
310 CONTINUE
    AR=SQRT(DOT(R,R))
    AP=SQRT(DOT(UPV, UPV))
    IF(AP.GT.AR) THETT=ARCUS(AR/AP)
    IF(AP.LE.AR.AND.BETAS.GT.C(5)) THETT=109.5/C(2)-ARSIN(AP*.33380686
   1/ARI
    IF(AP.LE.AR.AND.BETAS.LE.C(5)) THETT=70.5/C(2)-ARSIN(AP*.33380686/
   1AR)
    DOTRP=DOT(R.UPV)
```

C

C

```
THETN=ARCOS(DOTRP/(AR*AP))
      SINTT=SIN(THETT)
      SINTSQ=SINTT**2
      IF(SINTSQ.GT.CK) GO TO 315
      DELONE=THETT
      ANG=1.-(CK/.5)
      DELTWO=ARCOS (ANG)-THETT
      GO TU 320
  315 CONTINUE
      DELONE = ARS IN (CK/SINTT)
      DELTWO=DELONE
  320 IF(THETN.LT. (THETT-DELONE)) GO TO 325
      IF(THETN.GT.(THETT+DELTWO)) GO TO 325
      NSS=NSS+1
      IOS(NSS) = I INT(N)
  325 CONTINUE
      IF(NSS.LE.4) GO TO 625
      GO TO 335
C
C END OF USER ON SATELLITE
C CALCULATIONS FOR USER ON EARTH AT SPECIFIED LAT AND LONG. AND GLOBAL
C DISTRIBUTIONS FOLLOW
  330 CONTINUE
      LKL=36
      LLL=19
  335 CONTINUE
      IF(LOC.EQ. 2.OR.LOC.EQ.1) LKL=1
      IF(LOC.EQ. 2. OR.LOC.EQ. 1) LLL=1
      DO 500 K=1,LKL,LONIC
      DO 500 L=1,LLL,LATIC
      IF(LOC.EQ.1.AND.ISCMP.EQ.O) GO TO 400
      IF(LOC.EQ. 1. AND. ISCMP.EQ.1) GO TO 375
      LONG=FLOAT (K-1) +10.
      LAT=90.-FLOAT(L-1)*LATDEG
      IF(LOC.EQ. 2) LONG=DNGL
      IF(LOC.EQ.2) LAT=ATL
      CALL POINT (LONG, LAT, TID, UPV)
      NSS=0
      CL(L)=CL(L)+1.
      DO 350 N=1 . NJL
      00 340 IV=1.3
      R(IV)=RMX(N,IV)
  340 CONTINUE
      CALL VECTOR (UPV,2,R,STN)
      SE=-DOT(STN, UPV)/SQRT(DOT(STN, STN)*DOT(UPV, UPV))
      IF(ABS(SE).GE..9999999) SE=SIGN(1.,SE)
      EL=ARSIN(SE) *C(2)
      IF(EL.LT.ELEVAT) GO TO 350
      NSS=NSS+1
      IINT(NSS)=N
      UEL(N) =EL
      CALL VECTOR (R.2, UPV, UTS)
      CALL UNIVEC (UTS,U)
      DO 345 IV=1.3
      USUV(N.IV) =U(IV)
  345 CONTINUE
  350 CONTINUE
```

```
IF(NSS.GE.4) GO TO 355
      IF(NSS.LT.4) GO TO 500
  355 CONTINUE
      NSTO=NSTO+NSS
      NSPL(L)=NSPL(L)+NSS
      NSP=NSS+1
      MAXNSS=MAXO(MAXNSS, NSS)
      HIGH= 0.
      DO 365 NUM=1,NSS
      IX=IINT(NUM)
      AEA=UEL(IX)
      IF (AEA.GT. HIGH) GO TO 360
      IF(AEA.LE.HIGH) GO TO 365
  360 HIGH=AEA
      NN=NUM
  365 CONTINUE
      DO 370 NU= 1 NSS
      IF(NU.EQ.NN) NX=1
      IF(NU.LT.NN) NX=NU+1
      IF(NU.GT.NN) NX=NU
      IOS(NX)=IINT(NU)
  370 CONTINUE
      GO TO 400
 IOS(NSS) HAS THE SATELLITE NEAREST TO OVERHEAD, THEN ALL OTHERS
C WHICH FIT CRITERIA
C NEXT CALCULATIONS ARE CONCERNED WITH FINDING THE COMBINATION OF
C FOUR SATELLITES WHICH HAVE THE GREATEST VALUE OF THE VOLUME OF THE
C TETRAHEDRON FORMED BY THEM
C
  375 CONTINUE
      DO 390 IKN=1.IK
      DO 380 IV=1.3
      R(IV) = RMX(IINT(IKN), IV)
  380 CONTINUE
      CALL VECTOR (R,2,UPV,UTS)
      CALL UNIVEC (UTS,U)
      DO 385 IV≈1,3
      USUV(IINT(IKN),IV)=U(IV)
  385 CONTINUE
  390 CONTINUE
      DO 395 IJK=1, IK
  395 105(IJK)=IINT(IJK)
  400 BOX=-10.
      IF(ISCMP.EQ.1) GO TO 405
      KOT=NSS
      NSS=NSS-1
      CALL TAAT (NSS, KCOM, KXX)
      ISIC(1)=105(1)
      LPN=2
      GO TO 410
  405 KOT=1K
      IF (LOC.EQ.2.DR.LOC.EQ.3) KOT=NSS
      CALL TALL (KOT, KCOM, KXX)
      LPN=1
  410 DU 430 M=1 . KCUM
```

```
DO 415 LPQ=LPN.4
    NUX=KXX(M, LPQ)
    ISIC(LPQ) = IOS(NUX)
415 CONTINUE
    CALL VOLUME (USUV, ISIC, VOLUM)
    IF(VOLUM.GT.BOX) GO TO 420
    IF(VOLUM.LE.BOX) GO TO 430
420 BOX=VOLUM
    DO 425 MC=1.4
    NSGD(MC) = ISIC(MC)
425 CONTINUE
430 CONTINUE
    DO 440 N=1,4
    00 435 IV=1.3
    R(IV)=RMX(NSGD(N), IV)
435 CONTINUE
    CALL VECTOR (R,2,UPV,UTS)
    CALL VECTOR (Z.3,UPV,YE)
    CALL VECTOR (UPV,3,YE,XN)
    AX=SQRT(DOT(XN,XN))
    AY=SQRT(DOT(YE,YE))
    AP=SQRT(DOT(UPV,UPV))
    ALT=AP/6076.116-3444.
    AS=SQRT(DOT(UTS,UTS))
    G(NSGD(N),1)=DOT(XN,UTS)/(AX*AS)
    G(NSGD(N), 2) = DOT(YE, UTS)/(AY*AS)
    G(NSGD(N), 3) = DOT (UPV, UTS)/(AP*AS)
    G(NSGD(N),4)=1.
440 CONTINUE
    CALL COVNAV (G.NSGD, 4, SIGT)
    IF(LOC.EQ.3) GO TO 480
    IF(LOC.EQ. 2) ALT=0.
    DO 445 II=1,4
    IOUT(II) = NSGD(II)
445 CONTINUE
    I L = 1
    LK=4
    DO 455 NN=1.KUT
    ITST=NSGD(IL)
    IF(ITST.EQ.IOS(NN)) GO TO 450
    LK=LK+1
    IOUT(LK) = IOS(NN)
    GO TO 455
450 IL=IL+1
    IF(IL.EQ.5) GO TO 460
455 CONTINUE
460 KOS=NN+1
    DO 465 LK=KOS,KOT
    IOUT(LK)=IOS(LK)
465 CONTINUE
    ITOUT = (IT-1) * INC
    KTR=KTR+2
    IF(KOT.GT.18) KTR=KTR+1
    IF(KTR.GE.50) GO TO 470
    GO TO 475
470 WRITE (6,525)
    KTR=0
475 WRITE (6,530) ITOUT, ALT, (SIGT(KP), KP=1,6), (IOUT(KP), KP=1, KOT)
```

```
C END OF CALCULATION FOR SINGLE USER ON EARTH
      GO TO 625
C
C FOLLOWING CALCULATIONS FOR GLOBAL DISTRIBUTION
  480 DO 485 IDOP=1.6
  485 CDOP(L,K,IDOP)=SIGT(IDOP)
      DO 490 NS=1,6
      KA=MAXO(1, MINO(INT(SIGT(NS)*5.+1.),36))
  490 SKEG(L, KA, NS) = SKEG(L, KA, NS)+1.
      DO 495 NA=1.KOT
      I=IOS(NA)
      ELT=UEL(I)
      KO=MINO(INT(ELT/5.)+1,18)
  495 CAG(L, KO) = CAG(L, KO)+1.
      MAX(L,K) = MAXO(MAX(L,K),KOT)
      MIN(L,K)=MINO(MIN(L,K),KOT)
      OBLAT(L, NSP) = OBLAT(L, NSP)+1.
  500 CONTINUE
      IF (LOC.EQ. 3. AND. IPFREQ.EQ.O) GO TO 625
C
                                          NO INTERMEDIATE PRINT
      IF(IPRINT.EQ.O.AND.IT.EQ.1) GO TO 505
                                          PRINT FIRST TIME STEP
C
      IPRINT=IPRINT+1
      IF (IPRINT. EQ. ITIME) GO TO 505
                                          PRINT EACH TIME STEP REQUESTED
C
      GO TO 625
  505 IPRINT=0
      DO 515 IDOP=1.6
      IF(IDOP.EQ.1) WRITE (6,535) ITIME
      IF(IDOP.EQ.2) WRITE (6,540) ITIME
      IF(IDOP.EQ.3) WRITE (6,545) ITIME
      IF(IDOP.EQ.4) WRITE (6,550) ITIME
      IF(IDOP.EQ.5) WRITE (6,555) ITIME
      IF(IDOP.EQ.6) WRITE (6.560) ITIME
      IF(LATDEG.EQ.10.) WRITE (6,565)
      IF(LATDEG.EQ.5.) WRITE (6,570)
      ICT =- 10
      DO 510 IC=1,36
      ICT=ICT+10
      IF(ICT.LE.90.UR.ICT.GE.190) WRITE (6,575) ICT,(CDOP(IK,IC,IDOP),IK
     1=1,19)
      IF(ICT.EQ.100) WRITE (6.580) (CDOP(IK, IC, IDOP), IK=1, 19)
      IF(ICT.EQ.110) WRITE (6,585) (CDOP(IK, IC, IDOP), IK=1,19)
      IF(ICT.E0.120) WRITE (6,590) (CDOP(IK,IC,IDOP),IK=1,19)
      IF(ICT.EQ.130) WRITE (6,595) (CDOP(IK, IC, IDOP), IK=1,19)
      IF(ICT.EQ.140) WRITE (6,600) (CDOP(IK, IC, IDOP), IK=1,19)
      IF(ICT.EQ.150) WRITE (6,605) (CDOP(IK, IC, IDOP), IK=1,19)
      IF(ICT.E0.160) WRITE (6,610) (CDOP(IK,IC,IDOP),IK=1,19)
      IF(ICT.EQ.170) WRITE (6,615) (CDOP(IK,IC,IDOP),IK=1,19)
      IF(ICT.EQ.180) WRITE (6,620) (CDOP(IK, IC, IDOP), IK=1, 19)
  510 CONTINUE
  515 CONTINUE
      DO 520 ICL=1,19
      DO 520 ICK=1.36
      00 520 ICD=1.6
```

```
520 CDOP(ICL,ICK,ICD)=0.
   THE FOLLOWING FORMATS HAVE TO DO WITH A SPECIFIED TIME STEP REQUEST
C
C
   FOR PRINTING
  525 FORMAT(1H1,/,1X, 'TIME(MN)',1X, 'ALT(NM)',4X, 'VDOP',
     1 5X, 'HDOP', 5X, 'MDOP', 5X, 'TDOP', 5X, 'PDOP', 5X, 'GDOP', 4X,
           'SATELLITES CHOSEN' .//)
  530 FORMAT(1H0, 17, F9.0, 6(F9.3), 1X, 18(1X, 12), /, 72X, 18(1X, 12))
  535 FORMAT(1H1,//,10X,'TIME = ',16,20X,'VDOP - ALTITUDE')
  540 FORMAT(1H1,//,10X, TIME = ',16,20X, HDOP - POSITION ERROR IN HORIZ
     IONTAL PLANE!)
  545 FORMAT(1H1,//,10X, TIME = ',16,20X, MDOP - LARGER COMPONENT OF POS
     1ITION ERROR')
  550 FORMAT(1H1,//,10X, 'TIME = ',16,20X, 'TDOP - TIME')
  555 FORMAT(1H1,//,10X, TIME = ',16,20X, PDOP - THREE DIMENSIONAL POSIT
     110N ERROR!)
  560 FURMAT(1H1,//,10X, TIME = 1,16,20X, GDOP - FOUR DIMENSIONAL POSITI
     10N ERROR')
  565 FORMAT(1H0,52X, LATITUDE',//,9X, 90',3X, 80',3X, 70',3X, 60',
       3X, 50', 3X, 40', 3X, 30', 3X, 20', 3X, 10', 3X, 0', 3X, -10',
        3X, 1-201, 3X, 1-301, 3X, 1-401, 3X, 1-501, 3X, 1-601, 3X, 1-701, 3X, 1-801,
       3X, 1-901,/1
     3
  570 FORMAT(1H0,52X, LATITUDE', //, 9X, ' 90', 3X, ' 85', 3X, ' 80', 3X, ' 75',
       3X, '70', 3X, '65', 3X, '60', 3X, '55', 3X, '50', 3X, '45', 3X, '40',
     2 3X, '35', 3X, '30', 3X, '25', 3X, '20', 3X, '15', 3X, '10', 3X, '5',
             0 . / )
        3X, 1
  575 FORMAT(1H ,2X,13,1X,19F6.2)
  580 FORMAT(1H ,'L',1X,'100',1X,19F6.2)
  585 FORMAT(1H ,'0',1X,'110',1X,19F6.2)
  590 FORMAT(1H ,'N',1X,"120",1X,19F6.2)
  595 FURMAT(1H ,'G',1X,'130',1X,19F6.2)
  600 FORMAT(1H ,'I',1X,'140',1X,19F6.2)
  605 FORMAT(1H ,'T',1X,'150',1X,19F6.2)
  610 FORMAT(1H ,'U',1X,'160',1X,19F6.2)
  615 FORMAT(1H , 'D', 1X, '170', 1X, 19F6.2)
  620 FORMAT(1H ,'E',1X,'180',1X,19F6.2)
  625 CONTINUE
      IF(LOC.EQ.1.OR.LOC.EQ.2) GO TO 920
      MNSSPO=MAXNSS+1
      00 630 LI=1,36
  630 QSR(LI)=FLOAT(LI-1)*.2
      DO 640 IX=1,18
      PIB(IX)=0.
      DO 635 IY=1.19
  635 PIB(IX)=PIB(IX)+CAG(IY,IX)
  640 PIB(IX)=(PIB(IX)/FLDAT(NSTO))*100.
      DO 660 LA=1,19
      IF(CL(LA).EQ.O..OR.NSPL(LA).EQ.O) GO TO 660
      DO 650 N=1,36
      DO 650 I=1.6
      SKEGX(LA,N,I)=0.
      DO 645 J=N,36
  645 SKEGX(LA.N.I)=SKEGX(LA.N.I)+SKEG(LA.J.I)
  650 SKEGX(LA,N,I)=SKEGX(LA,N,I)/CL(LA)
      DC 660 LC=1.18
      CAGX(LA,LC)=0.
```

```
DO 655 1 F= LC.18
655 CAGX(LA, LC) = CAGX(LA, LC) + CAG(LA, LF)
    CAGX(LA, LC)=CAGX(LA, LC)/FLOAT(NSPL(LA))
660 CONTINUE
    WRITE (6,780)
    WRITE (6,785) (PIB(IX), IX=1,18)
    IF(LATDEG.EQ.5.) WRITE (6,795)
    IF(LATDEG. EQ. 10.) WRITE (6,800)
    ICT=-5
    DO 665 LC=1,18
    ICT=ICT+5
    WRITE (6,815) ICT, (CAGX(LA,LC), LA=1,19)
665 CONTINUE
    CVS=0.
    DO 680 LM=1,19
    IF(CL(LM).EQ.O..OR.NSPL(LM).EQ.O) GO TO 680
    CV=COS((90.-FLOAT(LM-1)*LATDEG)*C(1))
    CVS=CVS+CV
    DO 670 IN=1,6
    00 670 II=1,36
670 GLOS(IN, II)=GLOS(IN, II)+SKEGX(LM, II, IN)*CV
    DO 675 LN=1,18
675 GLEB(LN)=GLEB(LN)+CAGX(LM,LN)*CV
680 CONTINUE
    DO 685 LN=1.18
685 GLEB(LN)=GLEB(LN)/CVS
    WRITE (6,805)
    WRITE (6,810) (GLEB(1C), IC=1,18)
    DO 690 IN=1.6
    DO 690 II=1,36
690 GLOS(IN, II )=GLOS(IN, II )/CVS
    DO 695 JDOP=1.6
    IF(JDOP.EQ.1) WRITE (6,830)
    IF(JDOP.EQ.2) WRITE (6,835)
    IF(JDOP.EQ.3) WRITE (6,840)
    IF(JDOP.EQ.4) WRITE (6,845)
    IF(JDOP.EQ.5) WRITE (6,850)
    IF(JDOP. EQ.6) WRITE (6,855)
    IF(LATDEG. EQ.10.) WRITE (6,820)
    IF(LATDEG.EQ.5.) WRITE (6,825)
    DO 695 IQSR=1.36
    WRITE (6,775) QSR(IQSR), (SKEGX(LK, IQSR, JDOP), LK=1,19)
695 CONTINUE
    WRITE (6,860)
    DO 700 IQSR=1.36
    WRITE (6,865) QSR(IQSR), (GLDS(IN, IQSR), IN=1,6)
700 CONTINUE
    WRITE (6,870)
    LADG=90.
    IF(LATDEG. EQ.10.) LAC=-10.
    15 (LAT DEG. EQ.5.) LAD=-5.
    WRITE (6,880)
    DO 705 IL=1,19
    WRITE (6,885) LADG, (MAX(IL, IK), IK=1,36)
    LADG=LADG+LAD
705 CONTINUE
    WRITE (6,875)
    LADG=90.
```

DO 715 IL=1,19 DO 710 IX=1,36 IF(MIN(IL, IX).EQ.30) MIN(IL, IX)=0 710 CONTINUE WRITE (6,885) LADG, (MIN(IL, IK), IK=1,36) LADG=LADG+LAD 715 CONTINUE DO 720 N=1, MNSSPO OBDIS(N)=0. DO 720 L=1.19 IF(CL(L).EQ.O..OR.NSPL(L).EQ.O) GO TO 720 OBLAT(L, N) = (OBLAT(L, N)/CL(L)) *100. 720 CONTINUE DO 730 L=1,19 DO 730 N=1, MNSSPO ACLAT(L.N) =0. DO 725 M=N, MNSSPO 725 ACLAT(L,N) = ACLAT(L,N) + OBLAT(L,M) 730 CONTINUE CO=0. DO 740 L=1,19 IF(CL(L).EQ.O..OR.NSPL(L).EQ.O) GO TO 740 CA=COS((90.-FLOAT(L-1)*LATDEG)*C(1)) CO=CO+CA DO 735 N=1.MNSSPO 735 OBDIS(N)=OBDIS(N)+OBLAT(L,N)*CA 740 CONTINUE DO 745 N=1 . MNSSPO 745 OBDIS(N)=OBDIS(N)/CO DO 750 N=1, MNSSPO ACTOT (N) =0 . DO 750 M=N, MNSSPO 750 ACTOT(N) = ACTOT(N) + OBDIS(M) DO 755 I=1,32 ISAPP(I)=I-1 755 CONTINUE NP=1 MNS=MNSSPO IF (MNSSPO.GT.16) MNS=16 WRITE (6,890) (ISAPP(I), I=1,16) 760 WRITE (6,900) LADG=90. DO 765 IL=1,19 WRITE (6,895) LADG, (OBLAT(IL,N), N=NP, MNS) LADG=LADG+LAD 765 CONTINUE WRITE (6,905) LADG=90. DO 770 IL=1.19 WRITE (6,895) LADG, (ACLAT(IL,N), N=NP, MNS) LADG=LADG+LAD 770 CONTINUE WRITE (6,910) WRITE (6.790) (OBDIS(N), N=NP, MNS) WRITE (6,915) WRITE (6,790) (ACTOT(N), N=NP, MNS) IF(MNSSPO.LT.16) GO TO 920 IF(MNS.GT.16) GU TO 920

```
MNS=MNSSPO
      NP=17
      WRITE (6.890) (ISAPP(I), I=17,32)
      GO TO 160
C
  THE FOLLOWING FORMATS HAVE TO DO WITH A GLOBAL SYSTEM
  775 FORMAT(1H ,F4.1,3X,19F6.3)
  780 FORMAT(1H1,////1X,'ELEVATION DISTRIBUTION - PROBABILITY THAT THE
     1SATELLITE IN VIEW WILL HAVE ELEVATION ANGLES AS LISTED .//,48X,
     2 'ELEVATION ANGLE')
  785 FORMAT(1H0,6X,' 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40
     1-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90*,//,2X,
     2 'PROB', 1X, 18F6.1)
  790 FORMAT(1H0,3X, 'PROB',5X, 16F7.2)
  795 FORMAT(1HO,////,1X,'LATITUDE ELEVATION DISTRIBUTION',/,
          1X, 'PROBABILITY THAT ANY SATELLITE IN VIEW WILL HAVE AN ELEVAT
     210N ANGLE GREATER THAN OR EQUAL TO THOSE LISTED' ,//, 52x.
     3'LATITUDE',/,2X,'ELEV',/,1X,'ANGLE', 1X,'
                                                      90
                                                             85
                                                                   80
                                                                          75
          70
                65
                      60
                             55
                                   50
                                                40
                                                                   25
                                                                          20
                10
                              01./1
          15
                        5
  800 FORMAT(1HO,////.1X, LATITUDE ELEVATION DISTRIBUTION'./.
          1x, PROBABILITY THAT ANY SATELLITE IN VIEW WILL HAVE AN ELEVAT
     210N ANGLE GREATER THAN OR EQUAL TO THOSE LISTED',//,52X,
     3'LATITUDE',/,2X,'ELEV',/,1X,'ANGLE', 1X,'
                                                     90
                                                                   70
                                                                         60
          50
                40
                      30
                             20
                                   10
                                               -10
                                                     -20
                                                                  -40
                                                                        -50
     5 - 60
                            -901,/1
               -70
                      -80
  805 FORMAT(1HO,///,1X,'ACCUMULATIVE ELEVATION DISTRIBUTION',/,
     11x, PROBABILITY THAT THE ELEVATION ANGLE IS GREATER THAN OR EQUAL
     2TO THOSE LISTED',//,48x, 'ELEVATION ANGLE')
  810 FORMAT (1H0,7X,"
                       0
                              5
                                    10
                                           15
                                                 20
                                                        25
                                                              30
                                                                    35
                        55
          45
                 50
                              60
                                    65
                                           70
                                                 75
                                                        80
                                                              85',//, 2X,
     2 'PROB', 1X, 18F6.1)
  815 FORMAT(1H , 13, 4X, 19F6.2)
  820 FORMAT(1H0,52X, LATITUDE', //, 2X, NUM', 5X,
                                        ' 90', 3X, ' 80', 3X, ' 70', 3X, ' 60',
        3X, '50', 3X, '40', 3X, '30', 3X, '20', 3X, '10', 3X, '0', 3X, '-10',
        3X, 1-201, 3X, 1-301, 3X, 1-401, 3X, 1-501, 3X, 1-601, 3X, 1-701, 3X, 1-801,
     3
        3X, 1-901,/1
  825 FORMAT(1H0,52X, LATITUDE, //, 2X, NUM, 5X,
                                        ' 90', 3X, ' 85', 3X, ' 80', 3X, ' 75',
        3X, ' 70', 3X, ' 65', 3X, ' 60', 3X, ' 55', 3X, ' 50', 3X, ' 45', 3X, ' 40',
        3x, ' 35', 3x, ' 30', 3x, ' 25', 3x, ' 20', 3x, ' 15', 3x, ' 10', 3x, '
     3
        3X, ' 0',/1
  830 FORMAT(1H1,///,1X, DILUTION OF PRECISION - ACCUMULATIVE LATITUDE D
     IISTRIBUTION',/,1X, PROBABILITY THAT ALTITUDE DOP WILL BE GREATER T
     2HAN NUMBER LISTED . . //)
  835 FORMAT(1H1,///,1X, DILUTION OF PRECISION - ACCUMULATIVE LATITUDE D
     11STRIBUTION',/,1X, 'PROBABILITY THAT POSITION DOP IN HORIZONTAL PLA
     2NE WILL BE GREATER THAN NUMBER LISTED ,//)
  840 FORMAT(1H1,///,1X, ')ILUTION OF PRECISION - ACCUMULATIVE LATITUDE D
     LISTRIBUTION , / , IX, 'PROBABILITY THAT LARGER COMPONENT OF POSITION D
     20P WILL BE GREATER THAN NUMBER LISTED .//)
  845 FORMAT(1H1,///,1X, DILUTION OF PRECISION - ACCUMULATIVE LATITUDE D
     11STRIBUTION',/,1X, PROBABILITY THAT TIME DOP WILL BE GREATER THAN
     2NUMBER LISTED .//)
  850 FORMAT(1H1,///,1X, DILUTION OF PRECISION - ACCUMULATIVE LATITUDE D
     LISTRIBUTION . . / . IX . . PROBABILITY THAT THREE DIMENSIONAL POSITION DOP
```

- 2 WILL BE GREATER THAN NUMBER LISTED',//)
 855 FORMAT(1H1,///,1X,'DILUTION OF PRECISION ACCUMULATIVE LATITUDE D
 11STRIBUTION',/,1X,'PROBABILITY THAT FOUR DIMENSIONAL POSITION DOP
 2WILL BE GREATER THAN NUMBER LISTED',//)
- 860 FORMAT(1H1,///,1X,'DILUTION OF PRECISION PARAMETERS ACCUMULATIVE 1 GLOBAL DISTRIBUTION',//,8X,'NUMBER',7X,'VDOP',6X,'HDOP',6X, 'HDOP',6X,'TDOP',6X,'PDOP',6X,'GDOP',/)

865 FORMAT(1H ,9X,F3.1,3X,6F10.4)

870 FORMAT(1H1,1X, MAXIMUM AND MINIMUM NUMBERS SEEN AT EACH LATITUDE 1& LONGITUDE)

875 FORMAT(1HO,/,38x,'MINIMUM',//,37x,'LONGITUDE',//,

1 32X,2('1',9X),2('2',9X),2('3',9X),/,22X,3('5',9X,'0',9X),

2 '5' ./ .5X, 'LAT', 4X, 8('0', 9X) ./)

- 880 FORMAT(1H0,/,38X,'MAXIMUM',//,37X,'LONGITUDE',//,
 - 1 32X,2('1',9X),2('2',9X),2('3',9X),/,22X,3('5',9X,'0',9X),
 - 2 '5',/,5X, 'LAT',4X,8('0',9X),/)

885 FORMAT(1H ,3X,F4.0,3X,3612)

890 FORMAT(1H1,40X, NUMBER OF SATELLITES',//,5X, LAT',3X,1617)

895 FORMAT(1H ,3X,F4.0,5X,16F7.2)

- 900 FORMAT(1HO,/,10X, PROBABILITY (IN PERCENT) OF SEEING EXACTLY N SAT 1ELLITES*,/)
- 905 FORMAT(1HO,/,10X, PROBABILITY (IN PERCENT) OF SEEING N OR MORE SAT 1ELLITES ,/)
- 910 FORMAT(1HO,/,1X, 'ON A GLOBAL BASIS THE PROBABILITY (IN PERCENT) TH 1AT EXACTLY N SATELLITES WILL BE SEEN')
- 915 FORMAT(1HO,/,1X, 'ON A GLOBAL BASIS THE PROBABILITY (IN PERCENT) TH 1AT N OR MORE SATELLITES WILL BE SEEN')

920 CONTINUE

END

ORBINI

To the state of the state of the

SUBROUTINE ORBINI(I) COMMON/ORBIS/P(37,25)/CON/C(18) P(I,2)=P(I,2)*C(1) P(I,3)=P(I,3)*C(1)P(1,4)=P(1,4)*C(1) P(1,5)=P(1,5)*C(1) P(1,9)=SIN(P(1,4)) P(1,10)=COS(P(1,4)) P(I,11)=SIN(P(I,3)) P(1,12)=COS(P(1,3)) P(1,21) = P(1,22)*C(6)SAA=22808.*C(6) P(1,23)=(SAA/P(1,21))**1.5 P(I,6)=P(I,21)*(1.-P(I,1)*P(I,1)) P(1,7)=SORT(C(12)/P(1,6)) P(1,8)=C(12)/(P(1,6)*P(1,6)) RETURN END

ORBIT

```
SUBROUTINE ORBIT(I,T,PER,R,VEL,AC)
   COMMON/ORBIS/OP(37,25)/CON/C(18)
   DIMENSION R(3), VEL(3), AC(3), TRANS(3,3),Q(3),QEL(3),QC(3),U(36),
     E(36), BIGT(36), LILT(36), V(36), CV(36), SV(36), PER(36)
   REAL LILT
   IF(T.GT.O.) GO TO 10
   V(1)=OP(1,5)
   SINE = (SQRT(1.-OP(I,1)**2)*SIN(OP(I,5)))/(1.+OP(I,1)*COS(OP(I,5)))
   RAD = \{OP(I, 22) * (1. - OP(I, 1) * * 2)\}/(1. + OP(I, 1) * COS(OP(I, 5))\}
   E(I)=ARSIN(SINE)
   IF(OP(I.1).NE.O.) GO TO 15
   IF(V(I).LT.(C(3)/2.1) E(I)=E(I)
   IF((V(I).GE.(C(3)/2.)).AND.
      (V(I).LE.(3.*C(3)/2.))) E(I)=C(3)-E(I)
   IF(V(I).GT.(3.*C(3)/2.)) E(I)=C(4)+E(I)
   GO TO 20
15 CONTINUE
   IF (RAD.LT. OP(1,22).AND.V(1).LE.C(3)) E(1)=E(1)
   IF(RAD.GT. OP(I,22)) E(I)=C(3)-E(I)
   IF(RAD.LT.OP(1,22).AND.V(1).GT.C(3)) E(1)=C(4)+E(1)
20 CONTINUE
   BIGT(I)=(PER(I)*(E(I)-OP(I,1)*SINE))/(24.*C(4))
   LILT(I)=BIGT(I)
   GO TO 25
10 DEL=.1
   LILT(I)=BIGT(I)+T
   E(1)=0.
35 E(I)=E(I)+DEL
   Y=LILT(I)-(PER(I)*(E(I)-OP(I.1)*SIN(E(I))))/(24.*C(4))
   IF(ABS(Y).LE..00001) GO TO 30
   IF(Y.GT.O.) GO TO 35
   E(I)=E(I)-DEL
   DEL=DEL/10.
   GO TO 35
  CONTINUE
   IF(E(I).GE.C(4)) E(I)=E(I)-C(4)
   SINV=(SQRT(1.-OP(1,1)**2)*SIN(E(I)))/(1.-OP(I,1)*COS(E(I)))
   V(I)=ARSIN(SINV)
   RP=OP(I, 22)*(1.-OP(I,1)*COS(E(I)))
   P=OP(I,22)*(1.-OP(I,1)**2)
   IF(OP(I,1).NE.O.) GO TO 40
   IF(E(I).LT.(C(3)/2.)) V(I)=V(I)
   IF((E(I).GE.(C(3)/2.)).AND.
      (E(I).LE.(3.*C(3)/2.))) V(I)=C(3)-V(I)
   IF(E(I).GT.(3.*C(3)/2.1) V(I)=C(4)+V(I)
   GO TO 25
40 CONTINUE
   IF(RP.LT.P.AND.E(I).LE.C(4)) V(I)=V(I)
   IF(RP.GT.P) V(I)=C(3)-V(I)
   IF(RP.LT.P.AND.E(I).GT.C(4)) V(I)=C(4)+V(I)
25 CONTINUE
   CV(I)=COS(V(I))
   SV(I)=SIN(V(I))
   U(I)=V(I)+OP(I.2)
   OP(1,13) = COS(U(1))
   OP(1.14)=SIN(U(I))
   SPH=OP(I,14)*OP(I,9)
   CPH=SQRT (1.+SPH*SPH)
```

ORBIT

OP(1,15) = ARS IN(SPH) *C(2) OP(I,18)=U(I) F1=1.+OP(I,1)*CV(I) Q(1)=OP(1,6)/F1 Q(2)=0. Q(3)=0. QEL(1)=OP(I,1)*OP(I,7)*SV(I) QEL(2)=0P(1,7)*F1 QEL(3)=0. QC(1) = -OP(1,8)*F1*F1QC(2)=0. QC(3)=0. CALL TRMATX (TRANS, I) CALL MATMUL (TRANS, Q.R) CALL MATMUL (TRANS, QEL, VEL) CALL MATMUL (TRANS,QC,AC)
OP(I,24)=(T- AINT(T+.5))*C(4) OP(1,16) = ATAN2(R(2),R(1))-OP(1,24) OP(1,16)=OP(1,16)*C(2) RETURN END

TRMATX

SUBROUTINE TRMATX(TR,I)
DIMENSION TR(3,3)
COMMON/ORBIS/OP(37,25)/CON/C(18)
TR(1,1)=OP(I,12)*OP(I,13)-OP(I,11)*OP(I,10)*OP(I,14)
TR(1,2)=OP(I,12)*OP(I,14)+OP(I,11)*OP(I,10)*OP(I,13)
TR(1,3)=OP(I,11)*OP(I,9)
TR(2,1)= OP(I,11)*OP(I,13)+OP(I,12)*OP(I,10)*OP(I,14)
TR(2,2)=-OP(I,11)*OP(I,14)+OP(I,12)*OP(I,10)*OP(I,13)
TR(3,3)=-OP(I,12)*OP(I,9)
TR(3,1)=OP(I,9)*OP(I,14)
TR(3,2)= OP(I,9)*OP(I,13)
TR(3,3)=OP(I,10)
TR(1,2)=-1.*TR(1,2)
RETURN
END

MATMUL

SUBROUTINE MATMUL(T, V, 0)
DIMENSION T(3,3), V(3), O(3)
DO 10 I=1,3
O(I)=0.
DO 10 J=1,3
10 O(I)=O(I)+T(I,J)*V(J)
RETURN
END

POINT

SUBROUTINE POINT (ALD, ALA, TIM, VEC)
COMMUN/CON/C(18)
DIMENSION VEC(3)
EW=ALO*C(1)+C(4)*TIM
SN=ALA*C(1)
VEC(1)=C(10)*COS(SN)*COS(EW)
VEC(2)=C(10)*COS(SN)*SIN(EW)
VEC(3)=C(10)*SIN(SN)
RETURN
END

TAAT

SUBROUTINE TAAT (MAX, MXX, MATRIX) DIMENSION MATRIX (58905,4) DO 10 I=1, 58905 DO 10 II=1,4 10 MATRIX(1,11)=0 IF(MAX.LT.3) GO TO 30 MXX=(MAX-2)*(MAX-1)*MAX/6MMM=MAX-1 MMN=MAX MMO=MAX+1 NA=0 DO 25 K=2, MMM K0=K+1 DO 20 L=KO, MMN KT = L + 1DO 15 M=KT, MMO NA=NA+1 MATRIX(NA, 2) =K MATRIX(NA, 3) =L MATRIX(NA, 4) = M 15 CONTINUE 20 CONTINUE 25 CONTINUE 30 RETURN

END

VOLUME

SUBROUTINE VOLUME (UVEC, IDSAT, VOL) DIMENSION UVEC (37,3), 1DSAT (4), ONE (3), TWO (3), THREE (3), FOUR (3) DIMENSION TMF(3), TMT(3), OMT(3), CROSS(3) KA=IDSAT(1) KB=IDSAT(2) KC=IDSAT(3) KD=IDSAT(4) DO 10 N=1,3 ONE(N) = UVEC(KA,N) TWO(N) = UVEC(KB,N) THREE(N)=UVEC(KC,N) 10 FOUR(N)=UVEC(KD,N) CALL VECTOR (TWO, 2, FOUR, TMF) CALL VECTOR (THREE, 2, TWO, TMT) CALL VECTOR (ONE.2.TWO.OMT)
CALL VECTOR (TMT.3.TMF.CROSS) VOL = ABS(DOT(OMT, CROSS)) RETURN END

COVNAV

```
SUBROUTINE COVNAV (G, ID, NAT, SIG)
     DIMENSION ID(37), B(4), SIG(6), G(37,4), IPIVOT(4), INDES(4,2)
     REAL*& TRA(4,4), BBB(1,1), DETERM, FPTMAX
     DATA FPTMA X/27FFFFFFFFFFFF/
     DO 20 I=1.4
     DO 15 J=1, I
     TRA(I, J) = 0.
     DO 10 K=1, NAT
     L=ID(K)
     TRA(I,J) = TRA(I,J) + G(L,I) * G(L,J)
  10 CONTINUE
     TRA(J, I) = TRA(I, J)
  15 CONTINUE
     TRA([, [) = TRA([, [)+1.6-12
  20 CONTINUE
     CALL DMATRI (TRA, 4, 4, 8BB, 1, 0, IPIVOT, INDES, ISING, DETERM)
     IF(ISING.NE.O) STOP
     IF(DETERM.EQ.FPTMAX) GO TO 25
     SIG(1) = DSQRT (TRA(3,3))
     SIG(2)=DSQRT(TRA(1,1)+TRA(2,2))
     SIG(3)=DMAX1(DSQRT(TRA(1,1)),DSQRT(TRA(2,2)))
     SIG(4) = DSQRT (TRA(4,4))
     SIG(5) = DSQRT(TRA(1,1) + TRA(2,2) + TRA(3,3))
     SIG(6) = DSQRT (TRA(1,1) + TRA(2,2) + TRA(3,3) + TRA(4,4))
     RETURN
25
     WRITE(6,30)
     FORMAT(1H ./.3X. DETERMINATE REACHED MAXIMUM VALUE')
30
     STOP
     END
```

BLK DATA

BLOCK DATA COMMON/CON/C(18) DATA C/.01745329252,57.295779513,3.1415926536,6.28318530718, 11.57079630,6076.116,0.,0.,0.,2.0926143504E+07, 27.29211585E-05,1.4076380E+16,365.2563835,92.91 3E+06,0.0167272,23.44436,-77.7303,5280./ END AD-A043 744 RAND CORP SANTA MONICA CALIFORNIA
GEOMETRIC PERFORMANCE OF PSEUDORANGING NAVIGATION...ETC.(U) F/G 17/7 JUL 77 LAMAR, JEANNINE V. ROWELL, L.N. R-1949-AF F49620-77-C-0023 UNCLASSIFIED N/L 2 or 2 END DATE FILMED AD A 043744 DTIC

VECTOR

SUBROUTINE VECTOR(V1,1,V2,V3) DIMENSION V1(3),V2(3),V3(3) GO TO (10,15,20), I

- 10 V3(1)=V1(1)+V2(1) V3(2)=V1(2)+V2(2) V3(3)=V1(3)+V2(3) RETURN
- 15 V3(1)=V1(1)-V2(1) V3(2)=V1(2)-V2(2) V3(3)=V1(3)-V2(3) RETURN
- 20 V3(1)=V1(2)*V2(3)-V1(3)*V2(2) V3(2)=V1(3)*V2(1)-V1(1)*V2(3) V3(3)=V1(1)*V2(2)-V1(2)*V2(1) RETURN END

TOO

FUNCTION DOT(V1, V2)
DIMENSIONV1(3), V2(3)
DOT=V1(1)*V2(1)+V1(2)*V2(2)+V1(3)*V2(3)
RETURN
END

UNIVEC

SUBROUTINE UNIVEC (V,UV)
DIMENSION V(3),UV(3)
DENOM = SQRT (DOT (V,V))
UV(1) = V(1)/DENOM
UV(2) = V(2)/DENOM
UV(3) = V(3)/DENOM
RETURN
END

TALL

SUBROUTINE TALL (MAX, MXX, MATRIX) DIMENSION MATRIX(58905.4) DO 10 I=1.58905 DO 10 II=1,4 10 MATRIX(1.11)=0 IF(MAX.LT.3) GO TO 35 MXX=(MAX-3)+(MAX-2)+(MAX-1)+MAX/24 KK=MAX-3 LL=MAX-2 MM=MAX-1 NN=MAX NA=0 DO 30 K=1.KK KO=K+1 DO 25 L=KO,LL KT=L+1 DO 20 M=KT.MM KP=M+1 DO 15 N=KP , NN NA=NA+1 MATRIX(NA, 1)=K MATRIX(NA, 2) =L MATRIX(NA,3)=M MATRIX(NA, 4) =N 15 CONTINUE 20 CONTINUE 25 CONTINUE 30 CONTINUE 35 RETURN

END

REFERENCES

- 1. Bogen, A. H., Geometric Performance of the Global Positioning System, The Aerospace Corporation for Space and Missile Systems Organization, AFSC, SAMSO-TR-74-169, 21 June 1974.
- Unpublished analysis by J. J. Mate, The Rand Corporation, September 1976.