$$g_1 = \sqrt{-2 \ln u_0} \cdot \sin(2\pi u_1) \quad u_1 \sim U, \quad u_2 \sim U$$

 $g_2 = \sqrt{-2 \ln u_0} \cdot \cos(2\pi u_1)$

Algorithm:

Tuputs: $u_0, u_1 \sim U$ $f = \int -2 \ln(u_0)$ $g_0 = f \cdot \sin(\tau u_0)$ $g_1 = f \cdot \cos(\tau u_1)$

Implementation:

Injuty: 00: uniqued (47 downto 0)
01: unsigned (15 downto 0)

	a = taus(); b = taus();						
	u0 = concat(a,b[31:16]); u1 = b[15:0];						
05: 06:	Evaluate e = -2ln(u0)						
07:							
10:	<pre>exp_e = LeadingZeroDetector(u0)+1; x_e = u0 << exp_e;</pre>						
	# Approximate -ln(x_e) where x_e = [1,2) # Degree-2 piecewise polynomial						
14: 15:	<pre>y_e = ((C2_e[x_e_B]*x_e)+C1_e[x_e_B])*x_e_B +C0_e[x_e_B];</pre>						
	<pre># Range Reconstruction ln2 = ln(2);</pre>						
	e' = exp_e*ln2;						
21:	Evaluate f = sqrt(e)						
	# Range Reduction						
26:	<pre>exp_f = 5-LeadingZeroDetector(e); x_f' = e >> exp_f;</pre>						
28:	<pre>x_f = if(exp_f[0], x_f'>>1, x_f'); # Approximate sqrt(x_f) where x_f = [1,4)</pre>						
30:	# Degree-1 piecewise polynomial y_f = Cl_f[x_f_B]*X_f_B+CO_f[x_f_B];						
32:	# Range Reconstruction						
34: 35: 36:	exp_f' = if(exp_f[0], exp_f+1>>1, exp>>1); f = y_f << exp_f';						
37: 38:	Evaluate g0=sin(2*pi*u1) g1=cos(2*pi*u1)						
	# Range Reduction						
42:	<pre>quad = u1[15:14]; x_g_a = u1[13:0]; x_g_b = (1-2^-14)-u1[13:0];</pre>						
44:	# Approximate cos(x_g_a*pi/2) and cos(x_g_b*pi/2)						
46:	# where x_g_a, x_g_b = [0,1-2^-14] # Degree-1 piecewise polynomial						
49:	y_g_a = C1_g[x_g_a_B]*x_g_a_B+C0_g[x_g_a_B]; y_g_b = C1_g[x_g_b_B]*x_g_b_B+C0_g[x_g_b_B];						
	# Range Reconstruction						
	switch(seg) case 0: g0 = y_g_b; g1 = y_g_a; case 1: g0 = y_g_a; g1 = -y_g_b;						
55: 56:	case 2: g0 = -y_g_b; g1 = -y_b_a;						
57:							
	x0 = f*g0; x1 = f*g1;						

Symbol	Range	1 :	Ŧ	Symbol	Range	I	Ŧ
· U.	0; 1-2-48	0 4	8.	Con Da	0;1	0	18
U	0 :1-216	0 1	6	Cag	0;~16	1	18
				Cog	0:05	0	19
expe	1;49	6 C		Cof Dof	1;2	0	19
ı i	[1;2]	0 4	.7	Cle			15
Xe Ln2	ln(E)	0 3	32	Cle			23
e'	ln(z). [1;49]	6	2P	CO.			30
e		7 8	24				
لا		0 3	27	t		4	13
				$e \times P_f$	-25;5	6	0
30 g1	-1;1	1 1	5	74		1	16
130 /g6		0 1	(C	Xo X		5	11

PP-Tobles

f	Segments	Degree	$ C_s $
COZ(511×)	128	1	C90 C81
ln (x)	256	2	Cle Cie COe
Sgrt	2.64	1	CO, C1, DO,
/			1 1 7

$$\begin{array}{l}
\chi_{c} = (\chi_{eB}, \chi_{eA}; noll) \\
\chi_{e} = \widetilde{C}_{2} \times e_{A} = -2^{10} \cdot \chi_{eA} \cdot C_{2} \\
\widetilde{C}_{2} = -2^{10} \cdot C_{2} \quad \widetilde{C}_{1} = 2^{10} \cdot C_{A} \quad C_{0} = 2^{10} \cdot C_{0} \\
\chi_{1} = \widetilde{C}_{1} - \chi_{2} = 2^{10} \cdot (C_{1} - \chi_{eA} \cdot C_{2}) \\
\chi_{e} = \widetilde{C}_{0} + \widetilde{C}_{1} \chi_{eA} + \widetilde{C}_{1} \chi_{eA} = 2^{10} \cdot (C_{0} + C_{1} \chi_{eA} + C_{2} \chi_{eA}^{2}) \\
= 2^{10} \cdot (C_{0} + 2^{10} \cdot C_{1} \cdot \chi_{eA} + 2^{10} \cdot C_{2} \chi_{eA}^{2}) \\
= \widetilde{C}_{0} + \chi_{eA} \cdot (\widetilde{C}_{1} + \chi_{eA} \cdot \widetilde{C}_{2}) \\
= \widetilde{C}_{0} + \chi_{eA} \cdot (\widetilde{C}_{1} + \chi_{eA} \cdot \widetilde{C}_{2}) \\
\chi_{eA} \cdot \widetilde{C}_{2} \\
= \frac{10}{27} \times \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \frac{10}{27} \times \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{0} + \chi_{eA} \cdot (\widetilde{C}_{1} + \chi_{eA} \cdot \widetilde{C}_{2}) \\
\chi_{eA} \cdot \widetilde{C}_{2} \\
= \frac{10}{27} \times \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{3} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{4} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{1} \cdot \widetilde{C}_{2} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{4} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{2} \cdot \widetilde{C}_{3} \cdot \widetilde{C}_{4} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{4} \cdot \widetilde{C}_{5} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{4} \cdot \widetilde{C}_{5} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{4} \cdot \widetilde{C}_{5} \\
= \widetilde{C}_{3} \cdot \widetilde{C}_{5} \cdot \widetilde{C}_{5} \\
= \widetilde{C}_{5} \cdot \widetilde{C}_{5} \cdot \widetilde{C}_{5} \\
= \widetilde$$

