

Spectral Unmixing-based Mapping of Arctic Plant Species using an Unmanned Aerial Vehicle Spectral Library and a Worldview-3 Satellite Image

Junyoung Yang¹, Yoo Kyung Lee², Junhwa Chi³

¹Yonsei University, Seoul, Republic of Korea ²Korea Polar Research Institute, Incheon, Republic of Korea ³Pukyung University, Busan, Republic of Korea

Presenter: jyyang@yonsei.ac.kr

CONTENTS

1. INTRODUCTION

2. DATA & RESEARCH METHODS

3. RESULT

4. CONCLUSION

Arctic Vegetation Ecosystem

ARCTIC WARMING MORE THAN DOUBLE THE GLOBAL AVERAGE SINCE 2000

Arctic Vegetation Shifts caused by Climate Change (2050's Scenario)

- In the <u>2050's scenario</u> (<u>Pearson et al. 20213</u>), at least half of the Arctic vegetation would be redistributed to a different physiognomic class by 2050 due to the global warming
- However, our study aims to understand the shift at species level to determine how individual species are affected by climate change, aiding in biodiversity tracking, ecosystem monitoring, and the development of conversation strategies for specific species.

Vegetation class	Code	Area (km²
Rush/grass, forb, cryptogam tundra	G1	137,781
Graminoid, prostrate dwarf-shrub, forb tundra	G2	427,376
Non-tussock-sedge, dwarf-shrub, moss tundra	G3	566,190
Tussock-sedge, dwarf-shrub, moss tundra	G4	335,462
Prostrate dwarf-shrub, herb tundra	P1	396,536
Prostrate/hemiprostrate dwarf-shrub tundra	P2	138,551
Erect dwarf-shrub tundra	S1	687,224
Low-shrub tundra	S2	611,307
Tree-cover mosaic	T1	200,536
Tree cover	T2	204,363

Problems and Strategies

Mapping Arctic plant species remains challenging due to:

- (1) The difficulty in acquiring data from the Arctic region -> Remote Sensing
- (2) Mixed pixel issue caused by low spatial resolution in large-scale remote sensing imagery -> Spectral Unmixing

[The example of the mixed pixel]

 Remote sensing with the spectral unmixing method is an ideal strategy to address limited data acquisition and the mixed pixel issue

Spectral Unmixing

Spectral unmixing decomposes a mixed pixel into individual spectral signals at the sub-pixel level with two steps:

- (1) identifying a pure spectral signal, called 'endmember'
- (2) estimating the relative abundances of each class from the mixed pixel using endmembers as references

Research objectives

- collecting hyperspectral information for Arctic plant species and developing a spectral library using an UAV
- estimating class-specific abundances (Abundance maps) from a mixed pixel of the satellite image using the UAVbased spectral library and the spectral unmixing solution

INTRODUCTION METHOD RESULT CONCLUSION

Study Area

- The study area is located in Adventdalen, Svalbard, Norway (78°09'55" N and 16°00'42" E)
- Annual mean surface temperature; 6 °C, Precipitation; 190 mm

Data Acquisition - UAV spectral measurement

[Hyperspectral and high-resolution RGB cameras on DJI PRO 600]

[Summer field study in 2022. July]

Data Acquisition - Worldview-3 Satellite Imagery

Worldview-3 is a commercial Earth observation satellite operated by DigitalGlobe

- includes 8 VNIR spectral bands with central wavelengths at 425, 480, 545, 605, 660, 725, 832.5, and 950 nm
- offers high spatial resolution with 1.24 m in the VNIR range

[The Worldview-3 satellite]

[Worldview-3 imagery with study area]

Data Summary

INTRODUCTION

- A description of the UAV hyperspectral image and the Worldview-3 image used in the study
- The UAV high-resolution RGB was used for validation purposes and identifying ground truth

	UAV hyperspectral	Worldview-3 multispectral	UAV high-resolution RGB (validation purpose)
Spectral range	VNIR (400 – 1000 nm)	VNIR (400 – 1000 nm)	RGB; Red, Green, Blue
Spectral bands	137 bands (after binning)	8 bands	3 bands
Spatial resolution	0.4 m	1.24 m	0.06 m
Date of acquisition	2022-07-07	2021-08-08	2022-07-07
Reflectance Normalization	using an empirical line method with three calibration targets (5%, 50% and 95% of gray scale steps)	using the radiometric calibration tool and the FLAASH module within the ENVI 5.6.1 software	_

Research Flow

INTRODUCTION

Labeled Datasets and the UAV Vegetation Map

[The pixels associated with the classes were identified and labeled the high-resolution RGB imagery and field surveys (visual inspection)]

[The architecture of a one-dimensional convolutional neural network (1D-CNN) used in this study]

[Table for class description investigated in the study]

Class ID	Class name	Train	Test
V1	Cassiope tetragona (dead)	1000	250
V2	Cassiope tetragona (healthy) & Dyras octopetala	1000	250
V3	Equisetum arvense & Salix Polaris	1000	250
V4	Luzula confusa	1000	250
V5	Soil	1000	250
V6	Moss (dry region)	1000	250
V7	Moss (wet region)	680	170
V8	Salix polaris & moss	1000	250
	Total	7680	1920

- A spectral library was developed using the mean spectrum per class of the labeled datasets and used for unmixing a Worldview-3 image.
- The dataset was split into two datasets to train and test machinelearning classifier, and 1D-CNN classifier was used to create vegetation map for validation purposes.

Machine Learning-based Classification (UAV Vegetation Map)

Classification of the UAV hyperspectral image using a 1D-CNN classifier, which was used as the ground truth

[Statistical accuracy for quantitative evaluation]

ID	1D-CNN Classifier						
	Overall accuracy: 0.980						
	Precision	Recall	F1-score				
V1	0.969	1.000	0.984				
V2	0.963	0.924	0.943				
V3	0.977	1.000	0.988				
V4	0.996	0.996	0.996				
V5	1.000	0.992	0.996				
V6	1.000	0.992	0.996				
V7	0.994	0.994	0.994				
V8	0.944	0.944	0.944				

[Comparison of image classification results for qualitative evaluation] (Left: Vegetation map, Right: True color image)

UAV Spectral Library

- Developed a spectral library for Arctic plant species using labeled dataset acquired the UAV-hyperspectral image
- Converted the UAV spectral library (137 bands) into a resampled spectral library (8 bands) using linear interpolation for spectral compatibility with the satellite image

Unmixing Results (1) - Qualitative Evaluation

Unmixing Results (2) - Qualitative Evaluation

Unmixing Results (3) - Qualitative Evaluation

Unmixing Results (4) - Qualitative Evaluation

INTRODUCTION METHOD RESULT CONCLUSION

Unmixing Results - Statistical Evaluation

• Comparison of classification results for a UAV hyperspectral region (30 x 30 pixels, Ground truth) and spectral unmixing results for a WorldView-3 single pixel. The validation of spectral unmixing was performed using a total of eight regions.

[Average fractional abundances of the ground truth and the spectral unmixing results]

Fractional	Class								
Abundance (Average)	V1	V2	V3	V4	V5	V6	V7	V8	Total
Vegetation map (Ground truth)	0.26	0.12	0.15	0.09	0.02	0.04	0.14	0.19	1.00
Spectral unmixing (Worldview-3)	0.44	0.13	0.13	0.05	0.01	0.00	0.13	0.11	1.00

[Statistical evaluation using coefficient of determination (R²) and root mean square error (RMSE)]

Summary & Future plans

- In this study, we effectively estimated class-specific abundances of Arctic plant species using Worldview-3 imagery combined with a UAV spectral library, demonstrating the potential for large-scale mapping of Arctic vegetation.
- We plan to further validate our approach by including a broader range of Arctic plant species and various study sites.
- We further aim to create more detailed and accurate maps using a ground-based spectral library (J. Yang et al., 2023)
- In future studies, I aim to apply these methodologies to Lunar and Mars exploration for surface mapping.

Thank you for your attention!

ACKNOWLEDGEMENT

This work was supported by Korea Polar Research Institute (KOPRI) granted by the Ministry of Ocean and Fisheries (KOPRI PE22450).