106349 - Advanced probability

Nick Crawford

November 15, 2018

Abstract

1 Introduction. Summary of course through an example. Branching process

We have an individual that gives a birth to a random number of offsprings – random variable X. X define a distribution, i.e., $P: \mathbb{Z}^+ \to [0,1]$, i.e., $P(X=k) \in [0,1]$, and $\sum_{k=0}^{\infty} P(X=k) = 1$.

Definition 1.1. $f_X(\theta) = \sum_{k=0}^{\infty} \theta^k P(X=k)$ – moment-generating function.

The series is absolutely convergent for $\theta \in [-1, 1]$ since k sums to 1. For $\theta \in (-1, 1)$, f_x is analytic, thus we can differentiate it term-by-term:

$$f_X'(\theta) = \sum_{k>1} \theta^{k-1} P(X=k)$$

Since, f_X is analytic, knowing it means knowing P(X = k) and vice versa. Note that $f_X(0) = P(X = 0)$ and $f_X(1) = 1$. Also

$$f_X'(1) = \sum_{k>0}^{\infty} kP(X=k) = \mathbb{E}X = \mu$$

$$\lim_{\theta \to 1} \frac{f_X(1) - f_X(\theta)}{1 - \theta} = \lim_{\theta \to 1} \frac{1 - f_X(\theta)}{1 - \theta}$$

Note also that f_X is convex, since second derivative is positive.

Size of n^{th} generation Let $\left(X_r^{(n)}\right)_{n,r=1^{\infty}}$, where n is generation and r is offspring number (index) in n^{th} generation.

Assume $X_r^{(n)}$ are i.i.d. (independent, identically distributed) random variables. Identically distributed means

$$P(X_n^r = k) = P(X = k)$$

Independence means

$$P(\forall i < J X_{r_i}^{n_i} = k) = \prod_{i=1}^{J} P(X_{r_i}^{n_i} = k)$$

Define $z_1 = X_1^1$. $z_2 = \sum_{r=1}^{z_1} X_r^2$ an so on:

$$z_{n+1} = \sum_{r=1}^{z_n} X_r^n$$

We want to study asymptotics of z_n . Given U and V taking values in \mathbb{Z}^+ ,

$$\mathbb{E}[U|V=k] = \sum_{i=0}^{\infty} jP(U=j|V=k)$$

, where

$$P(U = j | V = k) = \frac{P(U = j, V = k)}{P(V = k)}$$

If U, V are independent, P(U=j|V=k)=P(U=j) and thus $\mathbb{E}[U|V=k]=\mathbb{E}U$.

Definition 1.2. Define random variable $\mathbb{E}[U|V]$ such that

$$\mathbb{E}[U|V] = \mathbb{E}[U|V = k]$$

if V = k.

Definition 1.3 (Tower property).

$$\mathbb{E}\big[\mathbb{E}[U|V]\big] = \mathbb{E}U$$

Define

$$f_n = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \theta^k P(z_n = k) = \mathbb{E}\theta^{z_n}$$

Theorem 1.1.

$$f_{n+1}(\theta) = f_n(f_X(\theta))$$

or

$$f_n(\theta) = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}(\theta))$$

Proof. Use tower property with $U^{z_{n+1}}$ and $V = \theta^{z_n}$. By tower property

$$\mathbb{E}[\theta^{z_{n+1}}] = \mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big]$$

$$\mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big] = \sum_{k=0}^{\infty} P(z_n = k) \mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n} = k]$$

What is $\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}=k]$?

$$\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}=k] = \mathbb{E}\left[\theta^{\sum_{j=1}^k X_j^{n+1}}|\theta^{z_n}=k\right] \stackrel{\text{independence}}{=} \mathbb{E}\left[\theta^{\sum_{j=1}^z X_j^{n+1}}\right] \stackrel{\text{independence}}{=} \prod_{j=1}^k \mathbb{E}\left[\theta^{X_j^{n+1}}\right] \stackrel{\text{i.d.}}{=} (f_X(\theta))^k$$

Thus

$$\mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big] = \sum_{k=0}^{\infty} P(z_n = k)(f_X(\theta))^k = f_n(f(\theta))$$

Also we can say

$$\mathbb{E}[\theta^{z_{n+1}}|z_n] = (f_X(\theta))^{z_n}$$

Study of z_n What is $\pi_n = P(z_n = 0) = f_n(0) = f(\pi_{n-1})$, probability that population is extinguished. Since $z_{n-1} = 0 \Rightarrow z_n = 0$, i.e. π_n is non-decreasing.

Let $P(z_n = 0 \text{ for some n}) = \pi$.

We hope that $\{z_n = 0\}$ such that

$$\bigcup_{n} \{z_n = 0\} = \{z_n = 0 \text{ for some n}\}\$$

i.e., $\pi = \lim_{n \to \infty} \pi_n$. We call π the extinction probability.

Theorem 1.2. If $\mu = \mathbb{E} > 1$ then π is a unique root of $\pi = f(\pi)$ and $\pi \in [0,1)$. If $\mu \leq 1, \pi = 1$.

If we look at $f(\pi)$ and π , they intersect in 1, and they can intersect in two points since f(x) is convex. There is second intersection iff $f'(1) = \mu > 1$.

Construction of X_n^r Construct set Ω , $f_{n,r}: \Omega \to \mathbb{Z}^+$ and \mathcal{F} a collection of subsets of Ω with $P: \mathcal{F} \to [0,1]$. Let $\Omega = \mathbb{Z}^+ \times \mathbb{Z}^+$, $\mathcal{F} = \{0,1\}^{\Omega}$.

The problem is when we have infinitely number of variables.

Example Example of not well-behaved triple (Ω, \mathcal{F}, P) . $\Omega = \mathbb{N}$. Now $\mathcal{F} = \{C \subset \mathbb{N} : C \text{ has density}\}$.

C has density means

$$\frac{|C \cap \mathbb{N}|}{n} \stackrel{n \to \infty}{\to} \rho(C)$$

However, for $C(m) = \{1, 2, \dots, m\}, \forall m \quad \rho(c_m), \text{ and }$

$$\rho\Big(\bigcup C_m\Big) = 1$$

Thus $(\mathbb{N}, \mathcal{F}, \rho)$ is not a good probability space, since it doesn't fulfills this $\pi_n \to \pi$ property. Note we can define other probabilities on naturals, for example

$$P(\{i\}) = 2^{-i}$$

Asymptotics of z_i Assuming $\pi \in (0,1)$, what is behavior of z_n ?

Definition 1.4. z_n is a Markov chain if

$$P(z_{n+1} = j | z_i = k_i \quad \forall i \le n) = P(z_{n+1} = j | z_n = k_n)$$

We can use to compute expectation:

$$\mathbb{E}[z_{n+1}|z_i = k_i \quad \forall i < n] = E[z_{n+1}|z_n = k_n]$$

Then, since $E\left[\sum_{i=1}^{J} X_i^n\right] = J\mu$

$$E[z_{n+1}|z_n] = \mu z_n$$

Let $M_n = \frac{z_n}{u^n}$ then $\mathbb{E}[M_n] = 1$. Also

$$\mathbb{E}[M_{n+1}|z_0,\ldots,z_n]=M_n$$

This is a definition of martingale with respect to z_0, \ldots, z_n .

Let (Ω, \mathcal{F}, P) we say S happens almost surely (a.s.) if

$$P(\{w \in \Omega : S \text{ is true for w}\}) = 1$$

Theorem 1.3 (Martingale convergence theorem). If M_n is a positive martingale then $\lim_{n\to\infty} M_N = M_\infty$ exists a.s. and

• $\mu \leq 1$. $M_{\infty} = 0$ a.s. That means $\mathbb{E}M_{\infty} = 0$ but $\mathbb{E}M_{=}1$, i.e.,

$$\mathbb{E}\Big[\liminf_{n\to\infty} M_n\Big] < [\liminf_{n\to\infty} \mathbb{E}[M_n]$$

• $\mu > 1$. If $M_{\infty} > 0$ with positive probability then $z_n \sim \mu^n M_{\infty}$.

Lemma 1.1 (Fatou's lemma).

$$\mathbb{E}\Big[\liminf_{n\to\infty} M_n\Big] \le \liminf_{n\to\infty} \mathbb{E}[M_n]$$

Theorem 1.4.

$$\mathbb{E}[M_{\infty}] = 1 \iff \mu > 1 \quad \text{ and } \mathbb{E}[X \log(X)] < \infty$$

2 Overview of measure theory

Notation

- S is a set.
- \mathcal{A} is algebra of subsets of S
 - 1. $S \in \mathcal{A}$
 - 2.

$$E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$$

, where $E^C = S \setminus E$

3.

$$E_1, E_2 \in \mathcal{A} \Rightarrow E_1 \cup E_2 \in \mathcal{A}$$

meaning

$$E_1, E_2 \in \mathcal{A} \Rightarrow E_1 \cap E_2 \in \mathcal{A}$$

- \mathcal{F} is a σ -algebra if the last item works for countable union.
- $E\Delta F = E \setminus F \cup F \setminus E$

Definition 2.1. A measurable space is a pair $\{S, \mathcal{F}\}$.

Proposition 2.1. If we have $(\mathcal{F}_i)_{i\in I}$, then $\bigcap_{i\in I} \mathcal{F}$ is also a σ -algebra.

Definition 2.2. Let C be a collection of subsets of S. $\sigma(C)$ is a smallest σ -algebra containing C (σ -algebra generated by C). It is easy to construct one

$$I = \{ \mathcal{F} : \mathcal{F} \supset C \}$$

and then

$$\sigma(C) = \bigcap_{\mathcal{F} \in I} \mathcal{F}$$

Definition 2.3. Let $\{S, \mathcal{F}\}$ be a topological space. $\mathcal{B}(X)$ (Borel σ -algebra) is defined as σ -algebra generated by open sets. We denote $\mathcal{B} = \mathcal{B}(\mathbb{R})$.

Exercise

$$\pi(\mathbb{R}) = \{(-\infty, x], x \in \mathbb{R}\}\$$

Show that $\sigma(\pi(\mathbb{R})) = B$

Definition 2.4. Additive set function on a collection of sets \mathcal{F} is

$$\mu: \mathcal{F} \to [0, \infty)$$

$$\forall E, F \in \mathcal{F} E \cap F = \emptyset \quad \mu(E \cup F) = \mu(E) + \mu(F)$$

We say μ is σ -additive if same holds of countable infinite sets

$$\forall \{E_i\}_{i=1}^{\infty} E_i \cap E_j = \emptyset \quad \mu(E \cup F) = \sum_{i=1}^{\infty} \mu(E_i)$$

Definition 2.5. A triple (S, \mathcal{F}, μ) is a measure space if \mathcal{F} is a σ -algebra on S and μ is σ -additive on \mathcal{F} .

Definition 2.6. (S, \mathcal{F}, μ) is finite if $\mu(S) < \infty$

 (S, \mathcal{F}, μ) is σ -finite if

$$\exists \{E_i, \, \mu(E_i) < \infty\}_{i=1}^{\infty} \quad S = \bigcup_{i=1}^{\infty} E_i$$

Definition 2.7. If $\mu(S) = 1$, (S, \mathcal{F}, μ) is probability space.

Definition 2.8. E is null if $\mu(E) = 0$.

Definition 2.9. ϕ is said to be true almost everywhere with respect of μ if

$$\mu(\lbrace X : \phi(X) = \text{False} \rbrace) = 0$$

2.1 Results from measure theory

Definition 2.10. A collection of sets \mathcal{D} is called a π -system if $E, F \in \mathcal{D} \Rightarrow E \cap F \in \mathcal{D}$

Theorem 2.2 (Uniquess). Let \mathcal{D} be a π -system generating a σ -algebra \mathcal{F} . Let μ_1 and μ_2 be two finite measures on \mathcal{F} which agree on \mathcal{D} . Then $\mu_1 = \mu_2$.

Collary 2.1. $(S, \mathcal{F}, P_1), (S, \mathcal{F}, P_2)$ probability spaces, P1 = P2 on π -system \mathcal{D} , then $P_1 = P_2$.

Theorem 2.3 (Carathéodory's extension theorem). Let \mathcal{A} be an algebra of sets. $\mu_0 : \mathcal{A} \to \mathbb{R}^+$ σ -additive set function on \mathcal{A} . Then exists unique extension $\bar{\mu} : \sigma(\mathcal{A}) \to \mathbb{R}^+$ such that $\bar{\mu} = \mu_0$.

Homework Lebesgue on \mathbb{R} . $\mathcal{A} = \{\text{open set}\}\$. If we have

$$O = \bigcup_{i=1}^{\infty} (a_i, b_i)$$

then

$$\mu_0(O) = \sum_{i=1}^{\infty} b_i - a_i$$

Check that μ_0 is well defined and σ -additive.

Lemma 2.1. (S, \mathcal{F}, μ) measure space. $A, B \in \mathcal{F}$, then

$$\mu(A \cup B) \le \mu(A) + \mu(B)$$

$$\mu\left(\bigcup_{i=1}^{\infty} F_i\right) \le \sum_{i=1}^{\infty} \mu(F_i)$$

If $\mu(S) < \infty$

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

From that we get inclusion-exclusion:

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mu(A)_{i} - \sum_{i \neq j} \mu(A_{i} \cap A_{j}) + \dots + (-1)^{n-1} \mu\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Exercise Proof the lemma

Lemma 2.2. If $F_n \subseteq F_{n+1}$ then

$$\mu\left(\bigcup_{i=1}^{\infty} F_i\right) = \lim_{n \to \infty} \mu(F_n)$$

If $\mu(S) < \infty$ and $F_n \supseteq F_{n+1}$ then

$$\mu\left(\bigcap_{i=1}^{\infty} F_i\right) = \lim_{n \to \infty} \mu(F_n)$$

Proof. Assume $\mu(S) < \infty$. Define $F_{\infty} = \bigcup_{i=1}^{\infty} F_i$. Let $G_n = F_n \setminus F_{n+1}$. Then

$$F_{\infty} = \bigcup_{i=1}^{\infty} G_i$$

Meaning

$$\mu(F_{\infty}) = \sum_{i=1}^{\infty} G_i$$

$$\mu(F_n) = \sum_{k=1}^n G_k$$

Since measure is finite, the tail of series tends to 0, thus

$$\mu(F_{\infty}) - \mu(F_n) = \sum_{k=n}^{\infty} G_k \to 0$$

Then we can take complements and get the second statement.

Exercise Proof unconditionally

3 Recasting measure theory as probability

Definition 3.1. A probability space is a (Ω, \mathcal{F}, P) is a measure space such that $P(\Omega) = 1$. We call $\omega \in \Omega$ an outcome. $E \in \mathcal{F}$ is an event. P(E) is probability of the event.

Example Tossing finite or infinite sequence of coins.

Tossing 4 coins

$$\Omega = \{HHHH, HHHT, HHTH, \dots, TTTH, TTTT\}$$

$$\mathcal{F} = 2^{\Omega}$$

$$P(\omega \in \Omega) = \frac{1}{|\Omega|}$$

Tossing infinite number coins

$$\Omega = \left\{0, 1\right\}^{\mathbb{N}}$$

 Ω has a natural topology which is called a product topology. It is coarsest topology such that $\pi_i: \Omega \to \{0,1\}$ $\pi_i(\omega) = \omega_i$ is continuous.

Let $\mathcal{F} = \mathcal{B}(\Omega)$.

Smallest σ -algebra such that

$$\pi_i^{-1}(0) \subset \Omega \in \mathcal{F}$$
 $\pi_i^{-1}(1) \subset \Omega \in \mathcal{F}$

$$\pi_i(\Omega, \mathcal{F}) \to \left(\{0, 1\}, \{0, 1\}^{\{0, 1\}} \right)$$

Natural π -system \mathcal{F}_n smallest σ -algebra making π_1, \ldots, π_n measurable. Note that

Proposition 3.1.

$$\bigcup_n \mathcal{F}_n
eq \mathcal{F}$$

Proof. Define $S_n(\omega) = \sum_{i=1}^n \omega_n$.

$$X_n = \frac{S_n(\omega)}{n}$$

Define

$$Y(\omega) = \limsup X_n(\omega)$$

$$E = \left\{ \omega : Y(\omega) \ge \frac{1}{3} \right\}$$
$$E \in \mathcal{F} \setminus \bigcup_{n} \mathcal{F}_{n}$$

What \mathcal{F}_n looks like? For example, \mathcal{F}_2 has 4 outcomes, deciding only first two tosses.

Note If we take $(\Omega_4, \mathcal{F}^{(4)}, P_4)$, restricting to $(\Omega_3, \mathcal{F}^{(3)}, P_3)$

$$P_4(\{(0,0,0,\omega_4)\}) = P_3(\{(0,0,0)\})$$

Thus we want P_{fair} defined on Ω to fulfill same property:

$$P_{fair}(E) = P_n(\tilde{E})$$

where $E \in \mathcal{F}_n$ and $\tilde{E} \in F^{(n)}$.

Definition 3.2. $E \subset \mathcal{F}$ occurs almost surely (a.s.) if P(E) = 1.

Definition 3.3 (\limsup and \liminf). Let $\{E_n\}$ be a sequence of events.

$$\limsup E_n = \bigcap_{m} \bigcup_{n \geq m} E_n = \{E_n \text{ occurs infenetely often (i.o.)}\} = \{\omega \in \Omega: \forall m \ \exists n(\omega) > m \quad \omega \in E_n(\omega)\}$$

Alternatively, (Ω, \mathcal{F}) and $\{E_n\}$ there is a natural map

$$I:\Omega \to \left\{0,1\right\}^N$$

$$\omega \mapsto \{1_{E_n}(\omega)\}$$

where

$$1_E(\omega) = \begin{cases} 0 & \omega \notin E \\ 1 & \omega \in E \end{cases}$$

Now

$$\liminf E_n = \bigcup_m \bigcap_{n \geq m} E_n = \{E_n \text{ occurs eventually}\} = \{\omega \in \Omega: \exists m(\omega) \ \forall n \geq m(\omega) \quad \omega \in E_n(\omega)\}$$

Remark Since everything is countable, if $E_n \in \mathcal{F}$, then $\limsup E_n$, $\liminf E_n \in \mathcal{F}$

We can write

$$\left\{\frac{S_n}{n} \to \frac{1}{2}\right\} = \left\{\limsup \frac{S_n}{n} \le \frac{1}{2}\right\} \cap \left\{\liminf \frac{S_n}{n} \ge \frac{1}{2}\right\}$$

Choose $q \in \mathbb{Q}^+$ and take a look at

$$\left\{ \liminf \frac{S_n}{n} > q \right\} = \liminf E_n(q)$$

where $E_n = \left\{ \omega : \frac{S_n}{n} > q \right\}$. In addition

$$\left\{\limsup \frac{S_n}{n} < q\right\} = \liminf F_n(q)$$

where $F_n = \{\omega : \frac{S_n}{n} < q\}$. Therefore $\{\liminf \frac{S_n}{n} > q\} \in \mathcal{F}$. Finally,

$$\left\{\liminf \frac{S_n}{n} \ge \alpha\right\} = \bigcap_{q \le \alpha} \left\{\liminf \frac{S_n}{n} > q\right\}$$

Lemma 3.1 (Fatou's lemma).

$$P\left[\liminf_{n\to\infty} E_n\right] \le \liminf_{n\to\infty} p(E_n)$$

Proof.

$$\liminf_{n \to \infty} E_n = \bigcup_m \bigcap_{n > m} E_n$$

Sets $F_m = \bigcap_{n > m} E_n$ are increasing and $F_n \subseteq E_n$, thus

$$P\left[\liminf_{n\to\infty} E_n\right] = \lim_{n\to\infty} P(F_n) \le \liminf_{n\to\infty} P(E_n)$$

Lemma 3.2 (Fatou's lemma).

$$P\left[\limsup_{n\to\infty} E_n\right] \ge \limsup_{n\to\infty} p(E_n)$$

Proof. Note that $(\limsup E_n)^C = \liminf E_n^C$, thus this is straightforward form previous lemma.

Lemma 3.3 (First Borel-Cantelli lemma). Let $\{E_n\} \subseteq \mathcal{F}$ be a sequence of events s.t. $\sum_n P(E_n) < \infty$, then

$$P(E_n \text{ happens i.o.}) = 0$$

Proof.

$$P(E_n \text{ i.o.}) = P\left(\bigcap_{m} \bigcup_{n \ge m} E_n\right) \le P\left(\bigcup_{n \ge m} E_n\right) \le \sum_{n = m}^{\infty} P(E_n) \stackrel{m \to \infty}{\to} 0$$

Since $P(E_n \text{ i.o.})$ is independent on m, it got to be 0.

Example Fix $\epsilon > 0$. Look at $P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon\right)$.

Claim

$$P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon\right) \le \frac{12}{\epsilon^4} \frac{1}{n^2}$$

By 3.3 $P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon \text{ i.o.}\right) = 0 \text{ thus}$

$$\left\{ \frac{S_n}{n} \to \frac{1}{2} \right\} = \bigcap_{\epsilon > 0} \left\{ \left| \frac{S_n(\omega)}{n} - \frac{1}{2} \right| < \epsilon \text{ eventually} \right\} = 1$$

Definition 3.4. Let (S, \mathcal{F}) , (Ω, \mathcal{B}) be measurable spaces.

$$\phi: S \to \Omega$$

 ϕ is $((\mathcal{F}, \mathcal{B}))$ -measurable if $\forall B \in \mathcal{B} \quad \phi^{-1}(B) \in \mathcal{F}$.

Remark \mathcal{C} is collection of sets in Ω . $\phi^{-1}(\mathcal{C}) = \{\phi^{-1}(C) : C \in \mathcal{C}\}.$

•

$$\phi^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap \phi^{-1}(B_i)$$

•

$$\phi^{-1}\left(\bigcup_{i\in I} B_i\right) = \bigcup \phi^{-1}(B_i)$$

•

$$\phi^{-1}(B^C) = \left[\phi^{-1}(B)\right]^c$$

Lemma 3.4. Let $\sigma(\mathcal{C}) = \mathcal{B}$. ϕ is measurable iff $\phi^{-1}(\mathcal{C}) \subseteq \mathcal{F}$.

Collary 3.1. $\Omega = \mathbb{R}$, $\mathcal{B}(\mathbb{R})$ then ϕ is measurable iff

$$\forall x \, \phi^{-1}((-\infty, x]) \subseteq \mathcal{F}$$

Lemma 3.5. Let (S, \mathcal{F}) , (T, \mathcal{T}) , (Ω, \mathcal{B}) be measurable spaces. Let $\phi_1 : S \to T$ and $\phi_2 T \to \Omega$ measurable. Then $\phi_2 \circ \phi_1$ is measurable.

Proof. Let $B \in \mathcal{B}$. Then $\phi_2^{-1}(B) \in \mathcal{T}$, and thus $\phi_1^{-1}(\phi_2^{-1}(B)) \in \mathcal{F}$, meaning $(\phi_2 \circ \phi_1)^{-1}(B) \in \mathcal{F}$.

Lemma 3.6. $\Omega = \mathbb{R}$. Then $\{\phi | \phi \text{ is } \mathcal{F}, \mathcal{B}\text{-measurable}\}\$ is an algebra over \mathbb{R} .

Proof. Using previous lemma and the fact + is continuous, and thus measurable, we define $\Psi(s) = (\phi_1(s), \phi_2(s))$. Ψ is measurable. Take a look at

$$\Psi^{-1}((-\infty, x_1] \times (-\infty, x_2]) = \{s : \phi_1(s) \in (-\infty, x_1], \ \phi_2(s) \in (-\infty, x_2]\}$$

Notation

$$\phi: (S, \mathcal{F}) \to (\Omega, \mathcal{B})$$

We write $\phi \in \mathcal{F}$ for ϕ is \mathcal{F}, \mathcal{B} measurable.

Constructions preserved by measurability

Proposition 3.2. If $\{\phi_n\}_{n=1}^{\infty}$ measurable maps $(S, \mathcal{F}) \to (\Omega, \mathcal{B})$, then $\liminf \phi_n$, $\limsup \phi_n$, $\inf \phi_n$, \sup_n are also measurable.

Proof. For example, fpr infimum, we need to show that

$$\left\{ s \mid \inf_{n} \phi_n(s) \le c \right\} \in \mathcal{F}$$

or alternatively,

$$\left\{ s \mid \inf_{n} \phi_n(s) > c \right\} \in \mathcal{F}$$

which is just countable intersection:

$$\bigcap_{n} \{s : \phi_n(s) > c\}$$

Same for lim sup, which is just infimum of supremum:

$$\lim\sup\phi_n=\inf_m\left(\sup_{n\geq m}\phi_n\right)$$

Recall

 $S_n = \text{number of 1's until n}$

We can view s_n as a composition of projection and sum:

$$\omega \mapsto (\pi_1(\omega), \dots \pi_n(\omega)) \mapsto \sum_{i=1}^n \pi_i(\omega)$$

Both are continuous (projection from the definition of product topology) and thus measurable, and so is $\frac{S_n}{n}$.

4 Random variables

Definition 4.1. Let (Ω, \mathcal{F}, P) be a probability space. $X : \Omega \to (S, \mathcal{S})$ measurable is called a random variable.

Notation

$$\{\omega:X(\omega)\in A\}=X^{-1}(A)$$

We use notation like $X \in A$.

Basic constructions with random variables

Definition 4.2. Given a probability space (Ω, \mathcal{F}, P) and measurable (S, \mathcal{S}) , X induces measure \mathcal{L}_X on (S, \mathcal{S}) via

$$\mathcal{L}_X(E) = P(X \in E)$$

 \mathcal{L}_X is called marginal distribution of X or law of X.

Proposition 4.1. \mathcal{L}_X is countably additive set function.

If (S, \mathcal{S}) is \mathbb{R}, \mathcal{B} . By uniqueness theorem, \mathcal{L}_X if defined by

$$F_X(x) = \mathcal{L}_X((-\infty, x]) = P(X \in (-\infty, x])$$

Proposition 4.2. $\mathcal{L}_X \mapsto F_X$ is 1-1 and onto.

Proof. Uniqueness:

If μ , ν exists such that

$$\mu((-\infty, x]) = F_X(x) = \nu((-\infty, x])$$

then, since they agree on π -system, and thus are equal by uniqueness theorem.

Existence $\mu((-\infty, x])$ fulfills Carathéodory's extension theorem requirements, thus there exists unique extension.

We assume there exists Lebesgue measure on Borel sets ([0, 1], \mathcal{B} , λ).

Definition 4.3. A coupling of X,Y is (Ω,\mathcal{F},P) and $\tilde{X},\tilde{Y}:\Omega\to\mathbb{R}$ such that $\mu_{\tilde{X}}=\mu_X$ and $\mu_{\tilde{Y}}=\mu_Y$.

Theorem 4.3 (Skorokhod's representation (of a random variable X)). Given μ_X , μ_Y can we construct (Ω, \mathcal{F}, P) and $\tilde{X}, \tilde{Y} : \Omega \to \mathbb{R}$ such that $\mu_{\tilde{X}} = \mu_X$ and $\mu_{\tilde{Y}} = \mu_Y$, i.e., a coupling of X, Y.

Proof. Given increasing, right continuous F such that $F(-\infty) = 0$ and $F(\infty) = 1$. We want to define $X : [0,1] \to \mathbb{R}$ s.t. $F_X = F$.

$$X^{-}(\omega) = \inf \{x : F(x) \ge \omega\}$$

(We could also choose $X^+(\omega) = \inf\{x : F(x) \ge \omega\}$, which is a bit different)

We want to show that

$$\{\omega: X^{-}(\omega) \le x\} = \{\omega \le F(x)\}\$$

 $X^{-}(\omega) \leq x$ means that $F(x) \geq \omega$ (by definition), verifying $\{\omega : X^{-}(\omega) \leq x\} \subseteq \{\omega \leq F(x)\}$

 $F(x) \ge \omega$ means $X^{-}(\omega) \le x$ (since F is increasing), finishing the proof.

Note, that X^+ and X^- disagree only on countable number of points.

 F_X is cumulative distribution function (CDF) or distribution function of X. We ask the question: what are set properties distinguish F_X ?

Proposition 4.4 (Properties of CDF). 1. F_X is non-decreasing

- 2. F_X is right continuous
- 3. $F_X(-\infty) = 0$

Proof. 1. If x < y, $(-\infty, x] \subseteq (-\infty, y]$, thus, from monotonicity of measure $F_X(x) \le F_X(y)$

2. we want to show

$$\lim_{x \downarrow x_0} F(x) = F(x_0)$$

Since if $E_n \downarrow E$, then $\mu(E_n) \to \mu(E)$

We can look on sequence $\{x_n\}$:

$$\omega \in \bigcap_{n} \{X \in (-\infty, x_n)\} \Rightarrow \forall n \quad X(\omega) \le x_n \Rightarrow X(\omega) \le x \Rightarrow \bigcap_{n} \{X \in (-\infty, x_n)\} \subseteq \{X \in (-\infty, x)\}$$

The other direction is obvious.

3. Since

$$\bigcap_{x} X^{-1} ((-\infty, x]) = \emptyset$$

4.1 Independence

 (Ω, \mathcal{F}, P) probability space. Let $\{\mathcal{J}_i\}_{i\in I}$ be a collection of sub- σ -algebras of \mathcal{F} .

Definition 4.4 (Independence of σ -algebras). Say $\{\mathcal{J}_i\}_{i\in I}$ are independent if

$$\forall i_1, \dots i_k \, \forall j \quad G_{ij} \in \mathcal{J}_i \quad P\left(\bigcap_{j=1}^k G_{ij}\right) = \prod_{j=1}^k P(G_{ij})$$

Definition 4.5 (Independence of random variables). Say $\{X_i\}_{i\in I}$ are independent if $\sigma(X_i)$ are independent.

Definition 4.6 (Independence of sets). Say $\{E_i\}_{i\in I}$ are independent if random variables $\mathbb{1}_{E_i}$ are independent.

Connection with elementary probability theory

Lemma 4.1 (Checking independence). Let \mathcal{F}_1 , \mathcal{F}_2 be σ -algebras, \mathcal{A}_1 , \mathcal{A}_2 π -systems such that $\sigma(\mathcal{A}_{\infty}) = \mathcal{F}_i$. Then \mathcal{F}_1 , \mathcal{F}_2 are independent iff

$$\forall A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \quad P(A_1 \cap A_2)P(A_1)P(A_2)$$

Proof. Given $E \in \mathcal{F}$ let $P_E(A) = P(A \cap E)$, a measure on (Ω, \mathcal{F}) . Given $A_1 \in \mathcal{A}_1$ consider $P_{A_1}|_{\mathcal{F}_2}$.

$$\forall A_2 \in A_2 P_{A_1}(A_2) = P(A_1)P(A_2)$$

Thus P_{A_1} and $P(A_2) \times P$ are measures on \mathcal{F}_2 agreeing on \mathcal{A}_2 .

$$\forall A_1 \in A_1, E_2 \in \mathcal{F}_2 \quad P(A_1 \cap E_2) = P(A_1)P(E_2)$$

Next iterate argument argument for \mathcal{F}_1

$$\forall E_2 \in \mathcal{F}_2 P_{E_2} = P(E_2)P$$

By uniqueness

$$\forall E_i \in \mathcal{F}_i \quad P(E_1 \cap E_2) = P(E_1)P(E_2)$$

Collary 4.1. To check X_1, \ldots, X_k are independent random variables it suffices

$$\forall x \in \mathbb{R}^k \quad P(X_i \le x_i) = \prod_{i=1}^k P(X_1 \le x_i)$$

Lemma 4.2 (Second Borel-Cantelli lemma). If $\sum_{i} P(E_i) = \infty$ and $\{E_i\}_{i=1}^{\infty}$ are independent, then

$$P(E_n \text{ i.o.}) = 0$$

Proof.

$$\{E_i \text{ i.o.}\}^C = \{E_i^C \text{ eventually}\}$$

It's enough to show

$$P\left(\bigcap_{i\geq n} E_i^C\right) = 0$$

or, by truncating

$$P\left(\bigcap_{i\geq n}^k E_i^C\right) = 0$$

By independence

$$P\left(\bigcap_{i>n} E_i^C\right) \prod_{i=n}^k P(E_i^C) = \prod_{i=n}^k \left[1 - P(E_i)\right] \le e^{-\sum_{i=n}^k P(E_i)}$$

Since the sum tends to infinity, the exponent tends to 0.

Example Let $\{X_i\}_{i=1}^{\infty}$ be i.i.d. Exp(1) random variables, i.e.

$$P(X_i > x) = e^{-x}$$

We are interested in growth rate of $X_n \leq f(n)$.

If $f(n) = \alpha \log(n)$

$$P(X_n > f(n)) = e^{-f(n)} = n^{-\alpha}$$

Thus, from Lemmas 3.3, 4.2

$$P(X_n \ge \alpha \log(n) \text{ i.o.}) = \begin{cases} 0 & \alpha > 1\\ 1 & \alpha \le 1 \end{cases}$$

Define $L = \limsup_{n \to \infty} \frac{X_n}{\log(n)}$, then

$$P(L \ge 1) = P(X_n \ge \log(n) \text{ i.o.}) = 1$$

Finally, if we look at $E = \bigcup_{k=1}^{\infty} \left\{ L \ge 1 + \frac{1}{k} \right\}$,

$$P(E) \le \sum_{k=1}^{\infty} P\left(L \ge 1 + \frac{1}{k}\right) \le \sum_{k=1}^{\infty} P\left(X_n \ge \left(1 + \frac{1}{2k}\right)\log(n)\right) = 0$$

thus $P(L \le 1) = 1$.

Method of generation of i.i.d. uniform [a,b] variables We write $\omega = \sum_{i=1}^{\infty} \frac{\omega_i}{2^i}$

$$\begin{cases} w^{(1)} = \omega_1 \omega_3 \omega_6 \omega_{10} \omega_{15} \dots \\ w^{(2)} = \omega_2 \omega_5 \omega_9 \omega_{14} \dots \\ w^{(3)} = \omega_4 \omega_8 \omega_{13} \omega_{19} \dots \\ \vdots \end{cases}$$