

ASK QUESTION LOG IN JOIN FOR FREE

Textbook Solutions > Linear Algebra: A Modern Introducti... > Chapter 6: Vector Spaces > Exercise 29

Exercise 29, Linear Algebra: A Modern Introduction, 4th

Edition

NEXT QUESTION

Linear Algebra: A Modern Introduction, 4th Edition, Chapter 6: Vector Spaces

Exercise 29, Page 514

Exercise 29 Answer

Step by step explanation

HIDE ALL

Tip

- D is differential operator.
- D^{-1} is anti-differentiation that is integral.

Explanation

- We will take W = span($e^{2x}\cos x$, $e^{2x}\sin x$) be the subspace of D.
- $\beta = \left\{e^{2x}\cos x \text{ , } e^{2x}\sin x\right\}$ be the basis of W.

- With the help of basis we will find $[D]_{\beta}$.
- By the use of theorem 6.28, we get $[D]_{\beta}^{-1}$.
- With the help of theorem 6.26, we get the desired integral

Step 1 of 2

^

Let , $W = \operatorname{span}(e^{2x}\cos x$, $e^{2x}\sin x)$ be the subspace of D $\beta = \left\{e^{2x}\cos x$, $e^{2x}\sin x\right\}$ is basis of W.

$$D(e^{2x}\cos x) = 2e^{2x}\cos x - e^{2x}\sin x$$

$$D(e^{2x}\sin x) = 2e^{2x}\sin x + e^{2x}\cos x$$

Thus,

$$\begin{split} & \left[\mathsf{D}(e^{2x}\cos x) \right]_{\beta} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \\ & \left[\mathsf{D}(e^{2x}\sin x) \right]_{\beta} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{split}$$

Then,

$$[D]_eta = \left[egin{array}{cc} 2 & 1 \ -1 & 2 \end{array}
ight]$$

By theorem 6.28, linear transformation D is invertible

$$\begin{aligned} [\mathsf{D}^{-1}]_{\beta} &= ([\mathsf{D}]_{\beta})^{-1} \\ &= \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} 2 & -1 \\ 5 & 5 \\ 1 & 2 \\ 5 & 5 \end{bmatrix} \end{aligned}$$

Step 2 of 2

^

$$\left[e^{2x}\cos x - 2e^{2x}\sin x
ight]_{eta}$$
 = $\left[egin{array}{c}1\-2\end{array}
ight]$

Then, By theorem 6.26,

$$\begin{split} \left[\int (e^{2x} \cos x - 2e^{2x} \sin x) dx \right]_{\beta} &= \left[\mathsf{D}^{-1} (e^{2x} \cos x - 2e^{2x} \sin x) \right]_{\beta} \\ &= \left[\mathsf{D}^{-1} \right]_{\beta} \left[(e^{2x} \cos x - 2e^{2x} \sin x) \right]_{\beta} \\ &= \left[\begin{matrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{matrix} \right] \left[\begin{matrix} 1 \\ -2 \end{matrix} \right] \\ &= \left[\begin{matrix} 4 \\ 5 \\ -3 \\ 5 \end{matrix} \right] \end{split}$$

$$\int (e^{2x}\cos x - 2e^{2x}\sin x)dx = \frac{4}{5}e^{2x}\cos -\frac{3}{5}e^{2x}\sin x + C$$

Final Answer

$$\int (e^{2x}\cos x - 2e^{2x}\sin x)dx = \frac{4}{5}e^{2x}\cos -\frac{3}{5}e^{2x}\sin x + C$$

Did you find what you were looking for? 10 **L**

Related books SEE ALL

Related Math questions

- **Exercise 13, Chapter 3 Review** Exercises, Algebra and Trigonometry, 4th Edition Answer
- Exercise 104, Chapter 8 Review Exercises, Intermediate Algebra, 5th **Edition Answer**

Q

Related Linear Algebra questions

- Exercise 39, 3.3 Inverses Exercises, Linear Algebra with Applications, 2nd Edition Answer
- Exercise 38, 6.2 Exercises, Elementary Linear Algebra: A Matrix Approach Elementary Linear...

