Unit II. The Atom: Early Models

Atomic Theory Subatomic Particles Regions of the Atom Back to Notes

PDF for printing.

READING ASSIGNMENT 1: Read Ch. 5 p107-112. Build a time line showing the scientists who contributed to our understanding of the atom and their contributions. You will add to this time line as the unit progresses.

- I. A History of the Atomic Theory- "How Small is Small"
- A. Democritus- Greek-"atomos" (means: indivisible) "All matter is composed of indivisible units."

Atoms of Salt, Water & Iron. The chemical s were conserved in the structure of the atoms

- B. John Dalton- English Physical (1905-1844). See a section of Dalton's book as well as an excerpt of his writings. Dalton's Atomic Theory-
 - 1. All elements are composed of atoms and the atom is the smallest piece of that element
 - 2.All atoms of the same element are the same. These atoms then have the same mass.
 - 3. Atoms of different elements combine in whole number ratios producing compounds.

<u>Law of Definite Proportions</u> (Law of Constant Composition) - All compounds are composed of specific ratios of elements.

- -This was actually coined by Joseph Proust, which Dalton used to develop his theory.
- 4. Chemical reactions occur when atoms are separated, joined or rearranged.

ASSIGNMENT 1. Quiz over Dalton's Atomic Theory

II. Composition of the Atom & Historical Atomic Models

Simplified View of the Subatomic Particles.
A. Electron- negative particles, very small
1. William Crookes (1832-1919)- Cathode Ray Tube- (Crookes Tube)
-cathode rays-
 travel from cathode to anode in straight lines
 heated metals placed in path of rays Deflected by electric & magnetic charges- shows rays are made of negative particles.
2. J.J. Thomson (1856-1940)- 1897 England-Using Crookes Tube
Thomson's experiment lead to identification of the electron.
-measured deflection of electrons in magnetic & electric fields-
-found the <u>ratio of charge to mass</u> (e/m)

-determined the ratio was constant regardless of the gas used.
Thomson's Original Paper Thomson's presentation for the Nobel Prize, 1906
3. R.A. Millikan- 1909- using X-ray induced charged oil droplets
-found the charge and mass of electrons- mass = 0.00055 a.m.u ($1/1837$ amu)
B. Proton- positive particles- more massive than electrons
1. Eugen Goldstein- 1886- Using modified Crookes Tube.
-identified positive stream of charged particles emanating from anode.
2. Wilhelm Wien- 1889- found charge to mass ratio

III. Regions of Atom
A. Nucleus- central dense region containing proton/neutrons.
1. Ernst Rutherford Gold Foil Experiment (1871-1937)- 1911-
-Bombarded gold foil with high velocity alpha particles. Some particles were deflected, scattered, showing a dense region within atoms containing positive region.
An abstract introducing Rutherford's paper on a- particle scattering.
2. Henry Moseley- (1887-1915)- 1913-Moseley's Experiment
-Using an X-ray tube (modified cathode ray tube) to identify the number of protons in varying elements.
a. Atomic Number (Z)- The number of protons found in nucleus
b. Mass Number- The number of protons + neutrons in an atoms

-a.m.u.- atomic mass unit \Rightarrow $^{1}/_{12}$ of Carbon atom \sim 1.67 x 10⁻²⁴ g -written at upper left of chemical symbol.

c. Isotopes- elements with varying number of neutrons

RESOURCE: Isotopes of the Elements. Allows you to search for specific isotopes

-to determine # of neutrons = mass number – atomic number

Mass Spectrometers are tools used to identify isotope concentrations within an elemental sample.

d. Atomic Mass- the average of the known masses of all isotopes and their occurrences in nature.

Calculating Average Atomic Mass

Atomic Mass = $\sum (A_i * m_i)_n$

 A_i = isotopes abundance

 m_i = isotopes mass

n = number of isotopes to averaged.

ASSIGNMENT 2: Calculating Atomic Mass. Take the first quiz. Be sure to print off the results.

Highly recommended link for you to visit.
Timeline of Atomic Theory advancements