

Thomas Sean Weatherby

Theo III: 1. Introduktion - spezielle Relativitätstheorie

Ladung

Einstiegsaufabe:

- Warum wurde Relativitätstheorie entwickelt?
 - Was kann nur damit beschrieben?
 - Warum unterscheidet es sich von der Physik, die ihr bisher begegnet habt?
- Warum ist es wichtig es im Studium zu begegnen?
- Warum sollten Schülerinnen dazu etwas lernen?

Die berühmteste Formel der Welt

$$E = mc^2$$

- Masse ist "gespeicherte" Energie.
- "c²" als (extremer) Wechselkurs
 - $c^2 \approx 9 \cdot 10^{16} \,\mathrm{m^2 s^{-2}} \Rightarrow$ winzige Masse \rightarrow gewaltige Energie
- Wichtig für:
 - Kernprozesse im Stern
 - Kernkraft & -medizin (PET)
 - Atombomben
 - Teilchenbeschleuniger
- Physik-Hook:
 - SR macht Energie-Impuls-Bilanz konsistent
 - Ruheenergie (in Ruhesystem) ist $E_0 = mc^2$
- Aufgabe für Schülerinnen: "Wie schwer ist ein Joule?"

GPS – nur mit Relativitätstheorie

- GPS braucht Relativität –
 Satelliten "gehen" anders
 als Boden-Uhren; ohne
 Korrektur driftet die
 Position schnell weg.
- Alltagseffekt: Navi,
 Flugrouten, usw. – präzise
 nur mit Relativitätstheorie
- Takeaway: Relativität ist Lebensrelevant – sie steckt in jenem Handy.

Sci-Fi erklären, als Motivation

- 1) Star Trek: Materie-Antimaterie-Antrieb (Warp)
- Was stimmt: Annihilation setzt nach $E = mc^2$ sehr viel Energie frei.
- Physik-Realität (SR): Selbst mit beliebig viel Energie bleibt v < c; c ist Obergrenze.
 - "Warp" erfordert extra Annahmen (Raumkrümmung/GR-Fiktion), nicht nur Antriebskraft.
- Klassentaugliche Frage: Wie viel Energie liefert 1 g Antimaterie?
- **2) Zwillingsparadoxon:** Ein Zwilling fliegt nahe c, kommt jünger zurück. Viel Zeit vergeht am Startpunkt. z.B. Planet of the Apes (1968)
- Was stimmt: Zeitdilatation bewegte Uhren gehen langsamer.
- Physik-Realität (SR): Keine echte "Paradoxe". Ergebnis: Reisende Person ist jünger exakt vorhersagbar über den Lorentzfaktor.
- Klassentaugliche Frage: Alterungsunterschiede bestimmen. (mit Geschwindigkeit, Dauer usw.)
- 3) Star Wars: Millennium Falcon & "Lichtstreifen" beim Beschleunigen
- Was stimmt (so halb): Bei sehr hohen v gibt es relativistische Aberration: Licht "staut" sich nach vorn; Doppler-Shift macht vorn blauer, hinten röter.
- Physik-Realität (SR): Man sähe keine weißen Striche; eher eine vorne konzentrierte, blauverschobene Helligkeit.
- Klassentaugliche Frage: Wie ändert sich der Sternenhimmel bei $v \to c$?

Spezielle Relativitätstheorie im Kerncurriculum

Niveau	Inhalte (Kernpunkte)
GK	 Relativitätspostulate Relativitätsprinzip (Gleichberechtigung gleichförmig bewegter Inertialsysteme; Galilei-Trafo als Kontrast) Konstanz der Lichtgeschwindigkeit, Bezug: Michelson–Morley Zeitdilatation & Längenkontraktion Einstein-Synchronisation experimentelle Nachweise Minkowski-Diagramme zur Veranschaulichung relativistische Massenzunahme
LK	 Lorentztransformation & Geschwindigkeitsaddition Herleitung der relativistischen Massenzunahme aus Grundprinzipien

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Wer bin ich?

- Tom (Thomas Weatherby)
 - weatherby@physik.uni-frankfurt.de
 - Büro in Raum 02,215
- Bachelor in England
 - Physik mit Nebenfach Didaktik
- Master in München
 - "Applied and Engineering Physics" (Laser und Nano-Physik)
- Doktor in Frankfurt
 - Betreuer Prof. Thomas Wilhelm
 - E-Lehre in der 8. Klasse in England
- Gesamtschullehrer in Nord-England
 - Naturwissenschaften und Deutsch

GOETHE UNIVERSITÄT

Gruppentheorie – Kurzgesagt

