Exercise 1. Let A be a local domain, with function field K and residue field κ .

- (i) Consider the map $\varphi \colon \operatorname{Spec} K \to \operatorname{Spec} A$ sending the point of $\operatorname{Spec} K$ to the closed point of $\operatorname{Spec} A$. Is φ induced by a morphism of ringed spaces?
- (ii) Assume that A is the localisation of \mathbb{Z} at a prime number. Is the morphism φ of (i) induced by a morphism of schemes?
- (iii) Assume that dim A = 1. Consider the natural ring morphism $m: A \to K \times \kappa$. Is m^{\sharp} a bijection? a homeomorphism?

Exercise 2. Let X be a scheme, and U an open subset of the underlying topological space. Show that $(U, \mathcal{O}_X|_U)$ is a scheme.

Exercise 3. Let k be a field.

- (i) (Hilbert's Nullstellensatz) Let L be a finitely generated k-algebra. If L is a field, show that it is a finite field extension of k. (You may use Noether's normalisation Lemma: Let A a non-zero finitely generated k-algebra. Then there are $x_1, \ldots, x_n \in A$ such that A is integral over $k[x_1, \ldots, x_n]$.)
- (ii) Let A be a finitely generated k-algebra. Show that a point of $\mathfrak{p} \in \operatorname{Spec} A$ is closed if and only if its residue field $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is a finite extension of k.

Exercise 4. Let $f: A \to B$ be ring morphism such that

- for all $b \in B$ there exists $n \in \mathbb{N}$ such that $b^n \in \operatorname{im} f$.
- ker f consists of nilpotent elements.

Show that $f^{\sharp} \colon \operatorname{Spec} B \to \operatorname{Spec} A$ is a homeomorphism.