Topics in Social Data Science

Week 3

Artificial Neural Networks 2

Backpropagation, regularization, vanishing gradients

Overview of today + tomorrow

- Watch 3BLUE1BROWN's chapter 3+4 on Neural Networks
- Read (or at least familiarize yourself with)
 Michael Nielsen's book up to and including
 Chapter 4
- My lecture (backprop, regul., vanishing grad.)
- Exercises in Python

Quick recap...

(1) The model

(2) Its performance

$$C(\mathbf{W}) = \frac{1}{N} \sum_{i} (\tilde{y}_i - y_i)^2$$

$$= (0.96 - 1)^2$$

$$+ (0.10 - 0)^2$$

$$+ (0.04 - 0)^2$$

$$+ \dots$$

$$+ (0.70 - 1)^2$$

$$+ (0.02 - 0)^2$$

$$+ (0.99 - 1)^2$$

Find the gradients win.

Backpropagation

... this week

(3) The cost function gradient in W

(4) Updating W

$$\mathbf{W} = \mathbf{W}^{\mathbf{old}} + r \left(-\nabla C(\mathbf{W}^{\mathbf{old}}) \right)$$

(5) Repeat 3 and 4

r is usually called the *learning rate*

Backpropagation

THE algorithm for computing the analytical gradient of the cost function

$$h\left(g\left(x\right)\right)$$

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

$$h\left(g\left(x\right)\right)$$

$$x \longrightarrow g \longrightarrow h$$

$$*$$

$$\frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{dx}$$

$$f\left(h\left(g\left(x\right)\right)\right)$$

$$x \longrightarrow g \longrightarrow h \longrightarrow f$$

$$\frac{df}{dx} = ?$$

$$f\left(h\left(g\left(x\right)\right)\right)$$

$$x \longrightarrow g \longrightarrow h \longrightarrow f$$

$$*$$

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dx}$$

$$f\left(h\left(g\left(x\right)\right)\right)$$

$$x \longrightarrow g \longrightarrow h \longrightarrow f$$

$$*$$

Chain rule says:

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dx}$$

$$\sigma \left(w_{0,1} + \sigma(w_{0,0} + x_0 w_{1,0} + x_1 w_{2,0}) w_{1,1} + \sigma(w_{3,0} + x_0 w_{4,0} + x_1 w_{5,0}) w_{2,1} + \sigma(w_{6,0} + x_0 w_{7,0} + x_1 w_{8,0}) w_{3,1} \right) = \sigma \left(f(x) \right)$$

3Blue1Brown Chain Rule video

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

$$x_0 = 1$$

$$x_1 = 1.1$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

$$x_0 = 1$$

$$x_1 = 1.1$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$1$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

$$x \xrightarrow{1} m \xrightarrow{-1} g \xrightarrow{0.37} h \xrightarrow{1.37} f \xrightarrow{0.73}$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to x:

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm} \frac{dm}{dx}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$
$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to h:

$$\frac{df}{dh}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to h:

$$\frac{df}{dh}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to g:

$$\frac{df}{dg} = \frac{df}{dh} \frac{dh}{dg}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to g:

$$\frac{df}{dg} = \frac{df}{dh} \frac{dh}{dg}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$
$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to m:

$$\frac{df}{dm} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to m:

$$\frac{df}{dm} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

$$m(z) = -z$$

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

$$x_0 = 1$$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule from f to x:

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm} \frac{dm}{dx}$$

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

Model:

m(z) = -z

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

-.20

.20

Data:

 $x_0 = 1$

$$x_1 = 1.1$$

-.53

Chain rule:

 $\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm} \frac{dm}{dx}$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Model derivatives:

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

$x \xrightarrow{1} m \xrightarrow{-1} g \xrightarrow{0.57} h \xrightarrow{1.57} f \xrightarrow{0.75}$

-.53

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Sigmoid derivative:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Model:

m(z) = -z

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

 $x_0 = 1$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule:

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm} \frac{dm}{dx}$$

Model derivatives:

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

$\begin{array}{c} & 1 \\ & \sigma \\ \hline 0.20 \\ \end{array}$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Sigmoid derivative:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Model:

m(z) = -z

$$g(z) = \exp(z)$$

$$h(z) = z + 1$$

$$f(z) = \frac{1}{z}$$

Data:

 $x_0 = 1$

$$x_1 = 1.1$$

Q: How does a small nudge in x influence f(h(g(m(x))))?

A: Propagate gradients backwards using the chain rule!

Chain rule:

$$\frac{df}{dx} = \frac{df}{dh} \frac{dh}{dg} \frac{dg}{dm} \frac{dm}{dx}$$

Model derivatives:

$$m'(z) = -1$$

$$g'(z) = \exp(z)$$

$$h'(z) = 1$$

$$f'(z) = -\frac{1}{z^2}$$

$\begin{array}{c} 1 \\ \hline 0.73 \\ \hline 0.20 \end{array}$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Sigmoid derivative:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

As a computational graph:

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

As a computational graph:

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:
$$\begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

As a computational graph:

Forward pass

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

$$\mathbf{x} = \begin{vmatrix} 4 \\ -2 \\ 1 \end{vmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

As a computational graph:

Forward pass

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

As a computational graph:

Backward pass

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:
$$\mathbf{x} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

$$C'(\tilde{y}, y) = 2(\tilde{y} - y)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:

$$\mathbf{x} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

$$C'(\tilde{y}, y) = 2(\tilde{y} - y)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:

$$\mathbf{x} = \begin{bmatrix} -4 \\ -2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

$$\sigma'(x) = \sigma(x) (1 - \sigma(x))$$

$$C'(\tilde{y}, y) = 2 (\tilde{y} - y)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data: $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

The + gate is like a function:
$$y = \sum_{i=0}^{N} z_{n}$$

$$\sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$$

$$C'(\tilde{y}, y) = 2\left(\tilde{y} - y\right)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data: $\begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Backward pass

As a computational graph:

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

The + gate is like a function:
$$y = \sum_{i=0}^{N} z_{n}$$

$$\sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$$

$$C'(\tilde{y}, y) = 2\left(\tilde{y} - y\right)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data: $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

Each branch is a function:
$$y = wx$$

$$\sigma'(x) = \sigma(x) (1 - \sigma(x))$$

$$C'(\tilde{y}, y) = 2 (\tilde{y} - y)$$

Weights:

$$\mathbf{b} = \left[-2 \right]$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data: $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

As a computational graph:

Backward pass

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

Each branch is a function:
$$y = wx$$

$$\sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$$

$$C'(\tilde{y}, y) = 2\left(\tilde{y} - y\right)$$

Weights:

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data: $\mathbf{x} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Backward pass

As a computational graph:

Model:

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$C(\tilde{y}, y) = (\tilde{y} - y)^2$$

Model derivatives:

Each branch is a function:
$$y = wx$$

$$\sigma'(x) = \sigma(x) \left(1 - \sigma(x) \right)$$

$$C'(\tilde{y}, y) = 2 \left(\tilde{y} - y \right)$$

$$\mathbf{b} = \begin{bmatrix} -2 \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Model:

$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = z(\mathbf{x})$ $\sigma(x) = \frac{1}{1 + \exp(-x)}$ $C(\tilde{y}, y) = (\tilde{y} - y)^2$

Model derivatives:

Each branch is a function:
$$y = wx$$

$$\sigma'(x) = \sigma(x) (1 - \sigma(x))$$

$$C'(\tilde{y}, y) = 2 (\tilde{y} - y)$$

As a computational graph:

Backward pass

Weights:

$$\mathbf{b} = \left[-2 \right]$$

$$\mathbf{W} = \begin{bmatrix} -1 & 0.5 & 10 \end{bmatrix}$$

Data:
$$\mathbf{x} = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \end{bmatrix}$$

Backpropagation – in the computer

				H		9		age over ning data
w_0	-0.08	+0.02	-0.02	+0.11	-0.05	-0.14	•••	-0.08
w_1	-0.11	+0.11	+0.07	+0.02	+0.09	+0.05		
w_2	-0.07	-0.04	-0.01	+0.02	+0.13	-0.15		
•	:	•	•	•		:	•••	
$w_{13,001}$	+0.13	+0.08	-0.06	-0.09	-0.02	+0.04		

https://www.youtube.com/watch?v=llg3gGewQ5U

Regularization

Tricks to avoid overfitting

Regularization – underfitting and overfitting

Regularization – underfitting and overfitting

Regularization – how does regularization reduce overfitting?

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

L-norm regularization: "Introduce a cost for large weights"

C = Loss + Regularization term

L-norm regularization: "Introduce a cost for large weights"

$$C = Loss + Regularization term$$

L1:
$$C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l}||$$
 L2: $C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l^2}||$

L-norm regularization: "Introduce a cost for large weights"

$$C = Loss + Regularization term$$

L1:
$$C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l}||$$
 L2: $C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l^2}||$

Dropout:

"In each SGD step, randomly ignore a fraction *p* of neurons"

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

- Can select p in wide range. Typical is 0.2 0.8, dependent on size of ANN
- Can apply only in specific layers. It is typical to only do dropout in a designated "dropout layer" somewhere close to output.

L-norm regularization: "Introduce a cost for large weights"

$$C = Loss + Regularization term$$

L1:
$$C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l}||$$
 L2: $C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l^2}||$

Data augmentation

"Shear, shift, scale and/or rotate input data"

Dropout:

"In each SGD step, randomly ignore a fraction *p* of neurons"

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

- Can select p in wide range. Typical is 0.2 0.8, dependent on size of ANN
- Can apply only in specific layers. It is typical to only do dropout in a designated "dropout layer" somewhere close to output.

L-norm regularization: "Introduce a cost for large weights"

C = Loss + Regularization term

L1:
$$C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l}||$$
 L2: $C = Loss + \lambda \sum_{l=1}^{L} ||\mathbf{W_l^2}||$

Data augmentation

"Shear, shift, scale and/or rotate input data"

Early stopping

"Stop training when performance on validation dataset starts worsening"

Dropout:

"In each SGD step, randomly ignore a fraction *p* of neurons"

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

- Can select p in wide range. Typical is 0.2 0.8, dependent on size of ANN
- Can apply only in specific layers. It is typical to only do dropout in a designated "dropout layer" somewhere close to output.

A quick word on:
The Vanishing Gradient Problem

Problem:

- Gradients closer and closer to the input tend to get smaller and smaller
- Leads to smaller weight updates near input and larger weight updates near output
- Bad because layers near input take part in recognizing "simple" patterns, which are important to learning

Problem:

- Gradients closer and closer to the input tend to get smaller and smaller
- Leads to smaller weight updates near input and larger weight updates near output
- Bad because layers near input take part in recognizing "simple" patterns, which are important to learning

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Problem:

- Gradients closer and closer to the input tend to get smaller and smaller
- Leads to smaller weight updates near input and larger weight updates near output
- Bad because layers near input take part in recognizing "simple" patterns, which are important to learning

Solution:

- Use an activation function without small gradient for high values
- Candidate activation function: ReLU

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Problem:

- Gradients closer and closer to the input tend to get smaller and smaller
- Leads to smaller weight updates near input and larger weight updates near output
- Bad because layers near input take part in recognizing "simple" patterns, which are important to learning

Solution:

- Use an activation function without small gradient for high values
- Candidate activation function: ReLU

Problems with ReLU:

Exploding gradients!

Solution:

• Batch normalization, gradient clipping, weight regularization

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Problem:

- Gradients closer and closer to the input tend to get smaller and smaller
- Leads to smaller weight updates near input and larger weight updates near output
- Bad because layers near input take part in recognizing "simple" patterns, which are important to learning

Solution:

- Use an activation function without small gradient for high values
- Candidate activation function: ReLU

Problems with ReLU:

Exploding gradients!

Solution:

• Batch normalization, gradient clipping, weight regularization

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

