The German Tank Problem

The German Tank Problem

Some statistics for today... :)

The problem

The problem

In WW2 allied forces wanted to estimate German tank forces.

The problem

In WW2 allied forces wanted to estimate German tank forces. Wikipedia compares for June 1940:

Statistical	Intelligence	Real
159	1,000	122

▶ Serial numbers on tanks: 1, 2, ..., N.

- ▶ Serial numbers on tanks: 1, 2, ..., N.
- ▶ Observe: $1 \le a_1 < a_2 < \ldots < a_k \le N$.

- ► Serial numbers on tanks: 1,2,..., N.
- ▶ Observe: $1 \le a_1 < a_2 < \ldots < a_k \le N$.
- ► Goal: Estimate N.

Let $m = \max_{1 \le i \le k} a_i$.

Let
$$m = \max_{1 \le i \le k} a_i$$
.

$$\mathcal{L}(N; m) = \begin{cases} 0, & m > n; \\ \frac{\binom{m-1}{k-1}}{\binom{N}{k}}, & \text{otherwise.} \end{cases}$$

Let $m = \max_{1 \le i \le k} a_i$.

$$\mathcal{L}(N; m) = \begin{cases} 0, & m > n; \\ \frac{\binom{m-1}{k-1}}{\binom{N}{k}}, & \text{otherwise.} \end{cases}$$

Thus $\hat{N}_{mle} = m$.

Let $m = \max_{1 \le i \le k} a_i$.

$$\mathcal{L}(N; m) = \begin{cases} 0, & m > n; \\ \frac{\binom{m-1}{k-1}}{\binom{N}{k}}, & \text{otherwise.} \end{cases}$$

Thus $\hat{N}_{mle} = m$. Obviously biased: too low for small k.

 $\hat{N} = \text{maximum observed} + \text{average gap}$

$$\hat{N} = ext{maximum observed} + ext{average gap}$$
 $= m + rac{m}{k} - 1$

$$\hat{\mathcal{N}} = \mathsf{maximum}$$
 observed $+$ average gap $= m + rac{m}{k} - 1$

$$\hat{N}$$
 in between k and $N(1+\frac{1}{k})-1$

$$\hat{\mathcal{N}} = \mathsf{maximum}$$
 observed $+$ average gap $= m + rac{m}{k} - 1$

$$\hat{N}$$
 in between k and $N(1+\frac{1}{k})-1$

Example: 6 29 8 45. m = 45.

$$\hat{\mathcal{N}} = \mathsf{maximum}$$
 observed $+$ average gap $= m + rac{m}{k} - 1$

$$\hat{N}$$
 in between k and $N(1+\frac{1}{k})-1$

Example: 6 29 8 45.
$$m = 45$$
. $\hat{N} = 45 + 45/4 - 1 = 45 + 11 - 1 = 55$

$$\hat{\mathcal{N}} = \mathsf{maximum}$$
 observed $+$ average gap $= m + rac{m}{k} - 1$

$$\hat{N}$$
 in between k and $N(1+\frac{1}{k})-1$

Example: 6 29 8 45.
$$m = 45$$
. $\hat{N} = 45 + 45/4 - 1 = 45 + 11 - 1 = 55$ (N was 50).

N = 100

Thanks!	
There is much more to the problem.	

Thanks!

There is much more to the problem.

Slides and R code at github.com/uberwach