

Universidad de Granada

Algoritmos Evolutivos Híbridos

Manuel Lozano

Email: lozano@decsai.ugr.es

Técnicas de Soft Computing para Aprendizaje y Optimización

Departamento de Ciencias de la Computación e Inteligencia Artificial

Metaheuristics

- Simulated annealing
- Tabu search
- Evolutionary algorithms (EAs)
- Particle swarm optimization (PSO)
- Ant colony optimization (ACO)
- Estimation of distribution algorithms (EDAs)
- Scatter search
- Path relinking
- Greedy randomized adaptive search procedure (GRASP)
- Iterated local search (ILS)
- Guided local search
- Variable neighborhood search (VNS)

Hybrid Metaheuristics

Search algorithms that do not purely follow the concepts of one single classical MH.

They attempt to obtain the best from **a set of MHs** that perform together and complement each other to produce a profitable **synergy from their combination**.

Talbi E-G. A taxonomy of hybrid metaheuristics. J. Heuristics 2002;8(5): 541–65.

C. Blum, J. Puchinger, G. Raidl and A. Roli. Hybrid metaheuristics in combinatorial optimization: a survey. Applied Soft Computing, 11(6):4135–4151, 2011.

Hybrid Evolutionary Algorithms

Grosan C, Abraham A. Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews. In: Grosan C, Abraham A, Ishibuchi H, editors. Hybrid evolutionary algorithms. Berlin, Heidelberg: Springer; 2007. p. 1–17.

Algoritmos Meméticos

Algoritmos Meméticos

Algoritmos Meméticos con Intensidad de BL Adaptable

<u>D. Molina</u>, <u>M. Lozano</u>, <u>C. García-Martínez</u>, <u>F. Herrera</u>, **Memetic Algorithms for Continuous Optimization Based on Local Search Chains**. *Evolutionary Computation*, 18(1), 2010, 27–63.

Figure 3: Example of LS chain. p_{i+1} is the final parameter value reached by the LS algorithm when it started with a value of p_i . p_0 is the default value for the strategy parameter

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 6, DECEMBER 2012

797

Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated Annealing: Taxonomy, Comparison, and Synergy Test

Francisco J. Rodriguez, Carlos García-Martínez, and Manuel Lozano

Fig. 1: Number of publications and citations per year for HMs-EA/SA (Web of Science)

Fig. 2: Comparison between publications considering HMs-EA/SA and hybrid algorithms combining EAs and other metaheuristics (Web of Science)

Hybrid MHs based on EAs and Simulated Annealing. Taxonomía

TABLE I TAXONOMY FOR HMS-EA/SA

General Categories		HM-EA/SA Categories	Instances		
3		Multiple EAs and SAs	DCHCSA		
Collaborative	Teamwork	Multiple SAs	SSSA [23], CSA [35], ESA [36], GAMSA [37]		
	Relay	EA then SA	HHSAGA [38], SAGA [39]		
		SA then EA	GA-PSA		
		MA with SA as local search	AGA [40], GASAHA [31], IGA-SA [41], GSAAL [42], GSAA [24]		
		SA-based EA selection	HGA-BTS [43], GESA [44], HGA-BS[45]		
Integrative	TeamWork	SA-based EA mutation and crossover	SAGACIA [46], ARSAGA [47], GSAAIA [48], HGA-SAM/R [49]		
		SA-based EA replacement	PRSA [50], PGSA [25], GSA [51], NPOSA [52], MPGSAA [26], GSA-MLE [53]		
3	Relay	EA-based SA component	SALGeS [54] GAMSA [37]		

Hybrid MHs based on EAs and SA Resultados

Fig. 13: Average rankings of the HMs-EA/SA versions

Hybrid MHs based on EAs and Simulated Annealing. Test de Sinergia

HMs	Single	Com	Comp. on Results			Comp. on Time		
	Metah.	R^+	R ⁻	Diff	R^+	R ⁻	Diff	
	SA	0	378	75_5	64	314	(<u>240</u>)	
	CGGA	0	378	89-78	321	57	+	
CSA	CSSGA	100	278	8—8	358	20	+	
	CHC	0	378		309	69	+	
	SA	0	378	8 <u>—</u> 8	24	354	-	
	CGGA	0	278	· ·	262	116	\sim	
ARSAGA	CSSGA	16	362	33 33	60	318	_	
	CHC	0	378	13 <u>—</u> 27	277	101	+	
	SA	0	378	8 - 8	38	340	-	
	CGGA	0	378	89_0	298	80	+	
GESA	CSSGA	4	374	St - 15	378	0	+	
	CHC	0	378	· -	301	77	+	
	SA	0	378	89 83	27	351	-	
	CGGA	10	368	-	288	90	+	
PRSA	CSSGA	0	378	· ·	279	99	+	
	CHC	1	377	89 88	277	101	+	
	SA	0.5	377.5	9 - 3	48	330	No.	
	CGGA	33.5	344.5	_	329	49	+	
SSSA	CSSGA	378	0	+	378	0	+	
	CHC	1	377	9 - 3	367	11	+	
	SA	8	370	753	116	262	~	
	CGGA	88	290	28 33	378	0	+	
HHSAGA	CSSGA	377	1	+	378	0	+	
	CHC	46	332		378	0	+	

	SA	7.5	370.5	0.04	68	310	15.50
	CGGA	0	378	-	359.5	18.5	+
GA-PSA AGA	CSSGA	158.5	219.5	\sim	210	168	\sim
	CHC	52.5	325.5	556	355	23	+
	SA	30.5	347.5	<u> </u>	81	297	
	CGGA	237.5	140.5	\sim	339	39	+
	CSSGA	378	0	+	323	55	+
	CHC	129.5	248.5	~	345	33	+
DCHCSA	SA	206.5	171.5	~	32	346	_
	CGGA	330.5	47.5	+	276	102	+
	CSSGA	378	0	+	306	72	+
	CHC	328.5	49.5	+	325	53	+
	SA	287.5	90.5	+	27	352	-
SALGeS	CGGA	374.5	3.5	+	174	204	\sim
	CSSGA	378	0	+	192	186	\sim
	CHC	343.5	34.5	+	160	218	\sim
GAMSA	SA	277.5	101.5	+	27	351	15-5
	CGGA	352.5	25.5	+	188	190	\sim
	CSSGA	378	0	+	214	164	\sim
	CHC	333.5	44.5	+	199	179	\sim

Metaheurístics Specializing in I&D

Some MHs show certain **specialization** in intensification or diversification.

- Diversification refers to the ability to visit many and different regions of the search space
- **Intensification** refers to the ability to obtain high quality solutions within those regions.

Hybrid MHs with search algorithms specializing in I&D: They combine this type of algorithms with the objective of compensating each other and put together their

complementary behaviors (exploration and exploitation).

EAs Specializing in I&D

The flexibility offered by the EA paradigm allows **specialized** models to be obtained with the aim of providing intensification and/or diversification

HMH-EA_{I&D} Hybrid MHs with EAs specializing in I&D.

M. Lozano, C. García-Martínez. Hybrid Metaheuristics with Evolutionary Algorithms Specializing in Intensification and Diversification: Overview and Progress Report. Computers & Operations Research 37 (2010) 481 - 497

Binary-Coded Local GA

C. García-Martínez, M. Lozano. Evaluating a Local Genetic Algorithm as Context-Independent Local Search Operator for Metaheuristics. Soft Computing 14:10 (2010) 1117-1139.

Evolutionary ILS-Perturbation

