Fortgeschrittenenpraktikum der Fakultät Physik

Versuch 23: Quanten Analogien

Luca Dietrich (luca.dietrich@tu-dortmund.de) Cihad Gözsüz (cihad.goezsuez@tu-dortmund.de)

Durchführung: 03.05.2021 Abgabe: 21.07.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	3
2	The	eorie	3
	2.1	Das Wasserstoffatom	3
	2.2	Das Wasserstoffmolekül	5
	2.3	Der 1-dim Festkörper	6
	2.4	Analogie zum Wasserstoffatom und -molekül	7
		2.4.1 Wasserstoffatom	7
		2.4.2 Wasserstoffmolekül	S
	2.5	Analogie zum 1-dim Festkörpers	8
3	Aufl	bau und Durchführung	9
	3.1	Der Aufbau	S
	3.2	Vorbereitende Experimente	11
	3.3	Das Wasserstoffatom	11
	3.4	Das Wasserstoffmolekül	12
	3.5	Der 1-dim Festkörper	12
4	Aus	wertung	13
	4.1	Eichung der Messanlage	13
	4.2	Das Wasserstoffatom	15
		4.2.1 Druckamplitude	17
		4.2.2 Aufspaltung der Peaks	19
		4.2.3 Druckamplitude mit der 9 mm Blende	21
	4.3	Das Wasserstoffmolekül	21
		4.3.1 Änderung des Frequenzspektrums in Abhängigkeit des Blenden-	
		durchmessers	21
		4.3.2 Winkelverteilung mit der $20mm$ Blende	23
	4.4	Zylinderketten als Modell für eindimensionale Festkörper	25
		4.4.1 Der Übergung von einem Molekül zum Festkörper	25
		4.4.2 Blenden verschiedener Durchmesser zwischen den Zylindern in der	
		Resonatorkette	26
		4.4.3 Modifikation der Resonatorkette	28
5	Disk	kussion	29
Li	literatur		

1 Zielsetzung

Ziel des Versuchs ist es quantenmechanische Strukturen wie das Wasserstoffatom, Wasserstoffmolekül und die Bandstruktur in eindimensionalen Festkörpern mit Hilfe von Analogien in der Akustik zu untersuchen und die Gemeinsamkeiten und Grenzen dieser Analogien zu untersuchen. Dazu werden akustische Experimente mit Hohlraumresonatoren und Zylindern aus Aluminium durchgeführt.

2 Theorie

Für die quantenmechanischen Modellen können Analogien mit Hilfe der Akustik geschaffen werden, im Folgenden werden die quantenmechanischen Grundlagen für die einzelnen Modelle erläutert und die Gemeinsamkeiten und Unterschiede zu den akustischen Experimenten benannt und begründet.

2.1 Das Wasserstoffatom

Das Wasserstoffatom ist das simpelste Atom. Es besteht aus einem Proton im Kern und einem Elektron in der Hülle. Die zeitunabhängige Schrödingergleichung für dieses System lautet:

$$\hat{H}\,\varPsi(\vec{r}) = -\frac{\hbar^2}{2m}\triangle\,\varPsi(\vec{r}) - \frac{e^2}{4\pi\epsilon_0 r}\,\varPsi(\vec{r}) = E\,\varPsi(\vec{r}) \eqno(1)$$

Dabei ist $\Psi(\vec{r})$ ist die Wellenfunktion, E die Gesamtenergie und \hat{H} der Hamiltonoperator. Für ein Elektron im Wasserstoffatom lautet \hat{H} :

$$\hat{H} = -\frac{\hat{p}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r} \tag{2}$$

Hierbei ist \hat{p} der Impulsopertaor, \hbar das gekürzte planksche Wirkungsquantum, m die Masse des Elektrons, e die Elementarladung und ϵ_0 die elektrische Feldkonstante. Aufgrund der Kugelsymmteire des Systemes werden Kugelkoordinaten verwendet, dort lautet der Laplace-Operator \triangle :

$$\triangle = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} = \triangle_r + \frac{1}{r^2} \triangle_{\theta, \varphi}$$
(3)

Um die Schrödingergleichung zu lösen wird die Wellenfunktion Ψ mit dem Seperationsansatz in einen Radialteil R_{nl} und einen Winkelanteil Φ_{lm} aufgeteilt:

$$\Psi_{nlm}(\vec{r}) = R_{nl}(r)\,\Phi_{lm}(\theta,\varphi) \tag{4}$$

Für das Wasserstoffatom gibt es 3 Quantenzahlen namens n,l,m. Dabei ist n die Hauptquantenzahl, l die Nebenquantenzahl und m die Magnetquantenzahl. Für die Quantenzahlen gilt

$$n \in \mathbb{N}$$
$$l \in \mathbb{N}_0$$
$$m \in \mathbb{Z}$$

und

$$l < n$$
$$|m| \le l.$$

Mit dem Seperationsansatz entstehen zwei entkoppelte Differentialgleichungen. Für dieses Experiment ist jedoch nur die Lösung des Winkelanteils interessant, da nur dieser in dem akustischen Modell modelliert werden kann. Dies führt für den Radialanteil und Winkelanteil zu folgender Differentialgleichung:

$$ER_{nl}(r) = \left(-\frac{\hbar^2}{2mr}\frac{\partial^2}{\partial r^2}r - \frac{\hbar^2}{2mr^2}l(l+1) - \frac{e^2}{r}\right)R_{nl}(r) \eqno(5)$$

$$-l(l+1)\Phi_{lm} = \triangle_{\theta,\varphi}\,\Phi_{lm}(\theta,\varphi) \tag{6}$$

Dabei ist $\triangle_{\theta,\varphi}$ der Winkelanteil des Laplace operators \triangle in Kugelkoordinaten. Der Term mit l(l+1) kommt in der Herleit ung dadurch zustande, dass $-\hbar^2 \triangle_{\theta,\varphi} = \hat{L}^2$ entspricht, wobei \hat{L} der Drehimpulsoperator ist. Für \hat{L}^2 gilt folgende Eigenwert gleichung:

$$\hat{L}^2 |\psi\rangle = \hbar^2 l(l+1) |\psi\rangle \tag{7}$$

Die Eigenwertgleichung (6) kann mit Hilfe der Kugelflächenfunktionen $Y_{lm}(\theta,\varphi)$ gelöst werden und diese ergeben sich zu:

$$Y_{lm}(\theta,\varphi) = \frac{1}{\sqrt{2\pi}} N_{lm} P_{lm}(\cos\theta) e^{im\varphi}$$
(8)

Hierbei bezeichnet P_{lm} die zugeordneten Legendrepolynome

$$P_{lm}(x) = \frac{(-1)^m}{2^l l!} \left(1 - x^2\right)^{\frac{m}{2}} \frac{d^{l+m}}{dx^{l+m}} \left(x^2 - 1\right)^l \tag{9}$$

und N_{lm} den Normierungsfaktor

$$N_{lm} = \sqrt{\frac{2l+1}{2} \cdot \frac{(l-m)!}{(l+m)!}}.$$
 (10)

Die Eigenenergiewerte des Wasserstoffatoms betragen:

$$E_n = -\frac{e^2}{8\pi\epsilon_0 a_0} \cdot \frac{1}{n^2} \tag{11}$$

Dabei bezeichnet $a_0 = \frac{4\pi\epsilon_0\hbar^2}{me^2}$ den Bohrschen Radius. In Gleichung (11) ist auffällig, dass die Eigenenergiewerte beim Wasserstoffatom eine Entartung in m aufzeigen, die durch die sphärische Symmetrie resultiert. Diese Entartung kann durch ein anlegen eines äußeren Magnetfeldes aufgehoben werden. Durch die Felder wird die Symmetrie gebrochen. Dieser Effekt wird Zeemanneffekt genannt. Die Entartung in l ist jedoch ein Resultat aus dem $\frac{1}{r}$ - Potential. Zusätzlich führt die Berücksichtigung von Spin und relativistischen Beiträgen zu weiteren Aufspaltungen, diese wurden hierbei jedoch nicht berücksichtigt.

2.2 Das Wasserstoffmolekül

Das Wasserstoffmolekül H_2 besteht aus 2 Wasserstoffatomen und ist damit das einfachste neutrale Molekül. Es besteht also aus 2 positiven Protonen und 2 Elektronen. Dieses Problem ist jedoch nicht analytisch lösbar. Jedoch existieren Näherungen, um die Wellenfunktion des Systems zu approximieren. Die zu lösende Schrödingergleichung lautet:

$$E\Psi(1,2) = \left(\hat{H}_1 + \hat{H}_2 - \frac{e^2}{r_{a2}} - \frac{e^2}{r_{b1}} - \frac{e^2}{r_{12}} - \frac{e^2}{R_{ab}}\right)\Psi(1,2) \tag{12}$$

Hierbei sind $\hat{H}_{1,2}$ die Hamiltonoperatoren der einzelnen Wasserstoffatome, und die anderen Variablen beschreiben die Abstände der Elektronen 1 und 2 zu den Kernen a und b aus Abbildung 1.

Abbildung 1: Schematische Skizze des Wasserstoffmoleküls.

Da die Elektronen Fermionen sind unterliegen sie dem *Pauli-Verbot* und dies muss auch die Wellenfunktion erfüllen. Also muss die Gesamtwellenfunktion antisymmetrisch sein. Die Gesamtwellenfunktion $\Psi(1,2)$ besteht aus einer Ortswellenfunktion $\tilde{\Psi}(1,2)$ und einer Spinwellenfunktion S(1,2):

$$\Psi(1,2) = \tilde{\Psi}(1,2) \cdot S(1,2) \tag{13}$$

Dadurch muss die Spinwellenfunktion antisymmetrisch sein, falls die Ortswellenfunktion symmetrisch ist und vice versa. Dadurch ergeben sich 4 mögliche Wellenfunktionen:

$$\varPsi_{t1}(r_1,r_2) = \uparrow_1 \uparrow_2 (\varPsi_a(r_1)\varPsi_b(r_2) - \varPsi_a(r_2)\varPsi_b(r_1)) \tag{14}$$

$$\varPsi_{t2}(r_1,r_2) = \downarrow_1 \downarrow_2 (\varPsi_a(r_1)\varPsi_b(r_2) - \varPsi_a(r_2)\varPsi_b(r_1)) \tag{15}$$

$$\varPsi_{t3}(r_1,r_2) = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 + \uparrow_2 \downarrow_1 \right) \left(\varPsi_a(r_1) \varPsi_b(r_2) - \varPsi_a(r_2) \varPsi_b(r_1) \right) \tag{16}$$

$$\varPsi_s(r_1,r_2) = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \uparrow_2 \downarrow_1 \right) \left(\varPsi_a(r_1) \varPsi_b(r_2) + \varPsi_a(r_2) \varPsi_b(r_1) \right) \tag{17}$$

Hierbei bezeichnet \uparrow_i und \downarrow_i den jeweiligen Spin des jeweiligen Elektrons und r_i bezeichnet die position im Raum des Elektrons. Dabei bilden die Ψ_t Wellenfunktionen das Triplett mit antisymmetrischer Ortswellenfunktion und symmetrischer Spinwellenfunktion, dies wird als Orthowasserstoff bezeichnet. Ψ_s ist das Singulett mit antisymmetrischer Spinwellenfunktion und symmetrischer Ortswellenfunktion und wird als Parawasserstoff bezeichnet. Beim Wasserstoffmolekül gibt es bindende und anti-bindende Zustände, diese werden durch den Phasenunterschied $\Delta \varphi$ definiert. Nur bei einer Überlappung mit einem geraden Zustand, wirkt das Resultat bindend und bei einem Phasenunterschied von $\Delta \varphi = \pi$ wird dieser Zustand als ungerade bezeichnet und wirkt antibindend.

2.3 Der 1-dim Festkörper

Beim Festkörper kommt es durch das Pauli-Prinzip, das beschreibt dass 2 Fermionen wie Elektronen sich nicht gleichzeitig im selben Zustand befinden dürfen, im Gegensatz zum Wasserstoffatom nicht zu scharfen Spektrallinien sondern zu Energiebändern, die aus den erlaubten Zonen bestehen. Zwischen den Energiebändern gibt es Bandlücken, die aus den verbotenen Zonen bestehen. Um einen Festkörper zu modellieren werden Kastenpotentiale mit periodischen Randbedingungen verwendet. Dadurch ergibt sich in der Dispersionsrelation $E(\vec{k})$ in erster Näherung eine Proportionalität zu k^2 . Die Dispersionsrelation beträgt:

$$E(k) = \frac{\hbar^2 k^2}{2m} \tag{18}$$

In einem eindimensionalen Festkörper wird ein Elektron in einem periodischen Potential U(x) betrachtet. Das Potential und die Wellenfunktion in eine Fourierreihe entwickelt ergibt dann:

$$U(x) = \sum_{i} U_G \cdot e^{iGx} \tag{19}$$

$$U(x) = \sum_{G} U_G \cdot e^{iGx}$$

$$\Psi(x) = \sum_{k} C_k \cdot e^{ikx}$$

$$(19)$$

Aus den periodischen Randbedingungen ergibt sich dann $k = \frac{2\pi}{L}n$. Dies eingesetzt in die Schrödingergleichung ergibt dann:

$$E\Psi(x) = \left(-\frac{\hbar^2}{2m}\Delta + U(x)\right)\Psi(x) \tag{21}$$

Für ein Elektron ergibt sich dann folgende Gleichung:

$$\left(\frac{\hbar^2 k^2}{2m} - E\right) C_k + \sum_G U_G C_{k-G} = 0 \tag{22}$$

Die Darstellung der Dispersionsrelation muss jedoch auf ein reduziertes Zonenschema mit Wellenvektor beschränkt auf $-\frac{\pi}{a} \leq k \leq \frac{\pi}{a}$ eingegrenzt werden. Das vollständige Zonenschemaergibt sich durch periodisches aneinander Reihen dieser Dispersionsrelation vom reduzierten Zonenschema. Die Zone, die das reduzierte Zonenschema umfasst, wird auch als die *erste Brillouin-Zone* bezeichnet.

Jedoch sind Festkörper in der Realität nicht zu 100% reine Kristalle und besitzen oft Defekte. Diese Defekte werden häufig durch Fehlstellen oder Fremdatome in der Kristallstruktur ausgelöst und müssen durch veränderte Potentialtöpfe modelliert werden.

2.4 Analogie zum Wasserstoffatom und -molekül

Im Folgenden werden die Analogien zwischen akustischen Experimenten und dem Modell des Wasserstoffatom und Wasserstoffmolekül dargestellt.

2.4.1 Wasserstoffatom

Für einen Kugelresonator gilt im klassischen Fall die Helmholtzgleichung mit

$$\frac{\partial^2 p(\vec{r}, t)}{\partial t^2} = \frac{\triangle p(\vec{r}, t)}{\rho \kappa},\tag{23}$$

wobei $p(\vec{r},t)$ der Druck ist an der Stelle \vec{r} zur Zeit t, ρ und κ sind dabei die Dichte und die Kompressibilität des Mediums bzw. der Luft. Ähnlich wie im quantenmechanischen Modell lässt sich die Zeitentwicklung von der räumlichen Entwicklung seperarieren, dafür wird folgender Ansatz verwendet:

$$p(\vec{r},t) = p(\vec{r}) \cdot \cos(\omega t) \tag{24}$$

Durch Einsetzen von $\frac{1}{c^2} = \rho \kappa$, wobei c die Schallgeschwindigkeit ist, ergibt sich die stationäre Druckverteilung mit dem Laplaceoperator \triangle aus Gleichung (3) in Kugelkoordinaten:

$$-\frac{\omega^2}{c^2}p(\vec{r}) = \triangle p(\vec{r}) = \left(\triangle_r + \frac{1}{r^2} \triangle_{\theta,\varphi}\right)p(\vec{r}) \tag{25}$$

Äquivalent wie in Kapitel 2.1 kann dieses Problem durch Seperation mit $p(r,\theta,\varphi) = \Psi_{lm}(\theta,\varphi) \cdot R(r)$ in einen Radial- und Winkelanteil seperiert werden und es entstehen 2 unabhängige Gleichungen:

$$-l(l+1)\Psi_{lm}(\theta,\varphi) = \triangle_{\theta,\varphi}\Psi_{lm}(\theta,\varphi)$$
(26)

$$\frac{\omega^2}{c^2}R(r) = \left(-\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{r^2}\right)R(r)$$
 (27)

Abbildung 2: Schematischer Aufbau des Kugelresonators. [Anleitung]

Ohne den Zwischenring wird durch die Stellung von Mikrofon und Lautsprecher und die Symmetrie derer nur die m=0 Moden angeregt. Durch Einsetzen eines Zwischenrings wie in Abbildung 2 wird die Symmetrie gebrochen und es werden nun auch die $m\neq 0$ Moden angeregt. Dadurch wird die Entartung in m teilweise aufgehoben. Dabei sind durch den Zwischenring nur noch die jeweiligen +m- und -m-Moden entartet. Die Kugelflächenfunktionen sind nun durch die Zwischenringe eigentlich auch keine exakte

Lösungen mehr, aber sie sind immernoch näherungsweise eine Lösung des Systems. Im Allgemeinen ergeben die Messungen mit dem Mikrofon in der Analogie auch nur das Betragsquadrat $|\Psi|^2$ der Wellenfunktion und nicht die Wellenfunktion Ψ an sich.

2.4.2 Wasserstoffmolekül

Für das Wasserstoffmolekül werden zwei Kugelresonatorüber eine kreisförmige Blende mit einander verbunden. Genau wie im Wasserstoffmolekül sind die Wellenfunktionen der einzelnen Elektronen bzw. den einzelnen Kugelresonatoren miteinander gekoppelt und verbunden. Die dabei entstehenden Orbitale überlappen dann in den verbundenen Resonatoren. Genau wie beim Wasserstoffmolekül gibt es bindende und anti-bindende Zustände, diese werden auch über den Phasenunterschied $\Delta \varphi$ definiert wie im Ende von Abschnitt 2.2 beschrieben.

2.5 Analogie zum 1-dim Festkörpers

Beim akustischen Analogon werden Aluminiumzylinder mit Irisblenden zu einer linearen Kette gereiht. Für einen zylindrischen Hohlraumresonator ist die Dispersionsrelation linear abhängig zur Wellenzahl κ , im Festkörper ist eine quadratischer Zusammenhang vorhanden. Resonanzen entstehen, wenn die Länge des Zylinders einem Vielfachen der Wellenlänge des Schalls entspricht. Die einzelnen Röhren werden mit Blenden aneinander gereiht, dadurch beeinflussen sich die einzelnen Resonatoren gegenseitig. Die Strecke von einer Blende zur nächsten entspricht im akustischen Analogon der ersten Brillouin-Zone. Der Durchmesser der Öffnungen der eingesetzten Blenden entspricht dann der Kopplungsstärke der einzelnen Resonatoren und jede Schallwelle wird beim Durchlaufen der Blende gestreut. Defekte stören die Periodizität in einem reellen Festkörper, im Akustikexperiment werden die Störungen durch einzelne Zylinder in der Kette simuliert, die entweder kürzer oder länger sind als die anderen. Dadurch entstehen Störungen in der Resonatorkette und diese können als Defekte bezeichnet werden.

3 Aufbau und Durchführung

Im Folgenden wird der Aufbau und die Durchführung des Versuchs beschrieben.

3.1 Der Aufbau

Die Materialien für den Versuch sind in Abbildung 3 zu sehen. Für den Versuch stehen in einem Baukasten kugelförmige Hohlraumresonatoren als Halbkugeln mit Lautsprecher und Mikrofon jeweils in einer der beiden Hälften zur Verfügung. Außerdem gibt es 2 weitere Halbkugeln mit einem Loch und dazugehörige Blenden mit den Durchmessern von $d = \{10, 13, 16\}$ mm. Zusätzlich sind in einem Baukasten zylinderförmige Hohlraumresonatoren mit den Längen von $l = \{12.5, 50, 75\}$ mm und Blenden mit den Durchmessern von $d = \{10, 13, 16\}$ mm vorhanden. Diese Bauteile können auf eine Schiene aufgebracht werden, wo dann auch ein Lautsprecher und ein Mikrofon als Enden vorhanden sind. Die

Messung kann einerseits über einen Computer mit der Software namens SpectrumSLC durchgeführt werden. Dabei bietet die Schnittstelle mit dem Computer ein Audiosignal an den Lautsprecher und kann die Signale des Mikrofons empfangen und verarbeiten. Eine andere Variante ist die Messung mit Hilfe eines Oszilloskops. Die Schaltung ist in Abbildung 4 skizziert. Dafür wird der Lautsprecher an der Steuerelektronik an Speaker Out und das Mikrofon an Micro Input angeschlossen. Ein Sinusgenerator wird einerseits mit Channel 1 vom Oszilloskop verbunden als auch in Sine Input der Steuerelektronik. Channel 2 wird an den Anschluss namens AC Monitor in der Steuerelektronik angeschlossen. In der Steuerelektronik ist ein Frequenz-Amplitude-Konverter vorhanden, damit die Frequenzen am Oszilloskop untersucht werden können. Mit Hilfe der sweep-Funktion des Sinusgenerators können dann die Daten zeitlich mit der Frequenz am Oszilloskop verarbeitet werden. Am PC können die Daten direkt gespeichert werden und am Oszilloskop können durch Anschließen eines USB-Sticks die Bilder gespeichert werden.

Abbildung 3: Hohlraumresonatoren und Aluminiumzylinder. [Anleitung]

Abbildung 4: Skizze der Schaltung des Versuchs. [Anleitung]

3.2 Vorbereitende Experimente

Bevor mit den richtigen Experimenten angefangen werden kann, muss die Versuchstechnik getestet werden. Dafür werden die Zylinder mit einer Länge von 50 mm benötigt. Es wird nun zuerst ein Zylinder zwischen Lautsprecher und Mikrofon gestellt und ein Frequenzspektrum von 100 Hz bis 12 kHz mit dem Oszilloskop aufgenommen und dokumentiert. Danach wird ein Zylinder an die Kette angehangen und dasselbe Spektrum aufgenommen. Dies wird bis zum 12. Zylinder durchgeführt. Danach wird dieselbe Messung mit dem Computer durchgeführt. Die Frequenzspektren sollten jeweils keine signifikanten Unterschiede zwischen der Messung mit dem Oszilloskopund dem Computer aufweisen. Zum Schluss wird ein Frequenzspektrum eines einzelnen 75 mm Zylinders mit Oszilloskop und Computer aufgenommen und verglichen.

3.3 Das Wasserstoffatom

Für das Wasserstoffatom wird das Frequenzspektrum eines kugelförimgen Hohlraumresonators mit dem Computer aufgenommen. Die beiden Kugelhälften werden zu einer Kugel zusammengefügt und das Mikrofon und der Lautsprecher sind im Inneren mit einem Winkel von $\alpha=180^\circ$ ausgerichtet. Das Frequenzspektrum wird in 5 Hz Schritten und einer Schrittdauer von 5 ms aufgenommen.

Im Anschluss wird wieder das Oszilloskop verwendet und es wird mit einem Sinusgenerator der Frequenzbereich von 100 Hz bis 10 kHz durchlaufen. Dabei sollte die Frequenz, Amplitude und Phasenverschiebung beobachtet werden. Die auftreteten Resonanzfre-

quenzen und ihre Ordnung werden dokumentiert.

Im Folgenden wird wieder der Computer verwendet. Ziel ist es für mindestens 4 Resonanzfrequenzen die Druckamplitude als Funktion des Drehwinkels α zu bestimmen. Dafür wird wieder ein Frequenzbereich von 100 Hz bis 10 kHz durchlaufen mit 5 Hz Schritten und einer Schrittdauer von 5 ms. Dabei wird nach jeder Messung der Winkel α zwischen Mikrofon und Lautsprecher durch Rotation der oberen Kugelhälfte zwischen 0° und 180° in 5° Schritten varriert.

Anschließend werden die Peaks mit verscheidenen Zwischenringen zwischen den Kugelhälften aufgespalten. Dafür wird zuerst zwischen den Kugelhälften jeweils ein Zwischenring mit gesetzt und die Resonanzfrequenz bei ca. 2,3 kHz mit $\alpha=180^\circ$ vermessen. Dafür wird mit dem PC ein hochaufgelöstes Frequenzspektrum zwischen 1,8 kHz und 2,6 kHz mit 1 Hz Schritten und einer Schrittdauer von 5 ms aufgenommen. Diese Messung wird für jeden Zwischenring mit jeweils verscheidenem Durchmesser wiederholt. In diesem Experiment werden Zwischenringe mit den Durchmessern von $d=\{3,6,9\}$ mm verwendet.

Zum Schluss wird nur der Zwischenring mit 9 mm Durchmesser und der Computer verwendet. Dazu wird wie im vorherigen Absatz ein hochaufgelöstes Frequenzspektrum zwischen 1,8 kHz und 2,6 kHz mit den selben Schrittweiten und -dauern aufgenommen nur für verschiedene Winkel α . Dafür wird wieder nach jeder Messung der Winkel α zwischen 0° und 180° in 5° Schritten varriert.

3.4 Das Wasserstoffmolekül

Für das Wasserstoffmolekül wird zwischen den Kugelhälften mit Mirkorfon und Lautsprecher 2 Hälften mit einem Loch gesetzt, sodass 2 Kugelresonatoren entstehen, die durch eine Öffnung verbunden sind. Im Anschluss wird jeweils mit dem Computer ein hochaufgelöstes Frequenzspektrum zwischen $2,2\,\mathrm{kHz}$ und $2,5\,\mathrm{kHz}$ mit $1\,\mathrm{Hz}$ Schritten und einer Schrittdauer von $7,5\,\mathrm{ms}$ aufgenommen. Dies wird für verschiedene Blenden mit unterschiedlichen Durchmessern zwischen den Kugelresonatoren wiederholt. Im Experiment sind Blenden mit den Durchmessern von $d = \{10, 13, 16\}\,\mathrm{mm}$ vorhanden.

Danach wird nur die 16 mm Blende und der Computer verwendet. Jetzt wird wieder ein hochaufgelöstes Frequenzspektrum zwischen 2,2 kHz und 2,5 kHz mit 1 Hz Schritten und einer Schrittdauer von 7,5 ms aufgenommen und dies wird für jeden Winkel α in 5° Schritten zwischen 0° und 180° wiederholt.

3.5 Der 1-dim Festkörper

Der 1 dimensionale Festkörper wird in diesem Experiment durch eine Resonatorkette aus Aluminiumzylindern und Irisblenden simuliert. Am Anfang und Ende befindet sich der Lautsprecher und das Mikrofon. Zur Verfügung stehen Zylinder der Längen $l = \{12.5, 50, 75\}$ mm und Irisblenden mit den Durchmessern von $d = \{10, 13, 16\}$ mm.

In diesem Teil des Experiment werden mit dem Computer immer Frequenzspektren von 100 Hz bis 12 kHz und 5 Hz Schritten mit einer Schrittdauer von 50 ms aufgenommen.

Zu Beginn werden 2 Zylinder mit 50 mm Länge und einer 16 mm Blende dazwischen zu einer Kette zusammengefügt und das Frequenzspektrum wird aufgenommen. Nach der Messung wird die Kette um einen Zylinder und eine Blende mit der selben Länge und Durchmesser ergäntzt und dieselbe Messung wiederholt. Dies wird wiederholt bis zu einer Länge von 10 Zylindern.

Dieses Experiment wird nun wiederholt mit einer Kette aus jeweils 2, 4 und 10 Zylindern. Der einzige Unterschied ist nun, dass dies mit Blenden mit 13 mm und 10 mm Durchmesser jeweils durchgeführt wird.

Im Anschluss werden wieder Blenden mit 16 mm Durchmesser verwendet. In der Kette aus 10 Zylindern wird nun einer der 50 mm Zylinder durch einen Zylinder mit 75 mm ausgetauscht und das selbe Frequenzspektrum gemessen. Danach wird der 75 mm Zylinder durch 3 Zylinder mit 12,5 mm Länge, die zusammen dann einen 37,5 mm langen Zylinder ergeben, ausgetauscht und wieder das Frequenzspektrum aufgenommen. Dann werden diese 3 Zylinder durch einen 50 mm und einen 12,5 mm Zylinder ersetzt, die dann zusammen einen 62,5 mm langen Zylinder ergeben und wieder wird das Frequenzspektrum aufgenommen.

Nun wird eine Kette aus 10 Zylindern zusammengebaut, bei denen jeweils abwechselnd ein 50 mm Zylinder und ein 75 mm Zylinder eingebaut wird mit einer 16 mm Blenden immer dazwischen. Wieder wird das Frequenzspektrum aufgenommen.

Zum Schluss wird eine Kette aus 8 Zylindern mit einer Länge von 50 mm zusammengebaut. Dabei besitzt jede Blende zwischenden Zylindern abwechselndeinen Durch messer von 13 mm und 16 mm. Dann wird das Frequenzspektrum aufgenommen.

4 Auswertung

4.1 Eichung der Messanlage

Für die Eichung der Messanlagen wurden Messungen der Frequenzspektren von verschiedenen Ketten aus Zylinderresonatoren aufgenommen. Die Messung wurde sowohl mit dem Oszilloskop als auch mit dem Computer aufgenommen. Die Ergenisse sind in der Abbildung 5 dargestellt.

Abbildung 5: Gemessene Frequenzspektren der Zylinder-Resonatoren mit unterschiedlicher Länge. Die Messung am Oszillator ist links angegeben und die Messung am Computer rechts.

Die Messungen mit dem Oszilloskop zeigen den selben Verlauf wie die Messungen mit dem Computer. Es ist bei allen Messungen das charakteristische Spektrum eines Festkörpers ersichtlich. Die einzelnen Peaks geben die Resonanzen wieder der Zylinderkette. Wie erwartet, nimmt auch die Amplitude mit steigender Frequenz ab. Somit bestätigen die Messungen insgesamt die Erwartungen und die Eichung war damit erfolgreich. Es ist zu erwähnen, dass die Messung des einzelnen Zylinders ersichtlich nur unsauber gelungen

ist. Hier sind die Resonanzen des Zylinders nicht eindeutig erkennbar. Für die weiteren Messungen sind jedoch scharfe Peaks an den Resonanzfrequenzen zu erkennen. Hieran anschließend, wurde das Spektrum eines Zylinders der Länge 75 mm aufgenommen. Das Spektrum ist in der Abbildung 6 zu sehen.

Abbildung 6: Das Frequenzspektrum eines 75 mm langen Zylinder-Resonators.

An diesem Spektrum sind periodisch auftretende Resonanzen ersichtlich. Die Resonanzen des 75 mm Zylinders müssen an den Frequenzen auftreten, die ca. $\frac{2}{3}$ der Resonanzfrequenzen des 50 mm Zylinders entsprechen. Dies folgt aus der größeren Länge des Zylidners. Die stehende Welle des 75 mm Zylinders hat die 1.5-fache Wellenlänge der stehenden Welle des 50 mm Zylinders. Die Frequenz ist umgekehrt proportional zur Wellenlänge und damit folgt der Faktor $\frac{2}{3}$.

4.2 Das Wasserstoffatom

Das Frequenzspektrum des Kugelresonators bei einer Ausrichtung von $\theta=180^\circ$ wurde mit dem Computer aufgenommen und in der Abbildung 7 grafisch dargestellt. Die beschrifteten Resonanzen werden in der folgenden Analyse für die Berechnung der Druckamplitude verwendet.

Agilent Technologies

Mon May 03 18:37:11 2021

(b) Messung am Oszilloskop

Abbildung 7: Das Frequenzspektrum eines kugelförmigen Hohlraumresonators bei einer Ausrichtung von $\theta=180^\circ$ in dem Bereich $0.1\,\mathrm{kHz}$ bis $10\,\mathrm{kHz}$.

4.2.1 Druckamplitude

Für die Berechnung der Druckamplitude mithilfe der gemessenen Werte wird der Ausrichtungswinkel θ folgendermaßen in den Polarwinkel φ umgerechnet:

$$\varphi=\arccos(\frac{1}{2}\cos(\theta)-\frac{1}{2}).$$

Diese Umrechnung folgt aus einer Analyse mit Drehmatrizen [1]. Die in Abbildung 7 beschrifteten Resonanzfrequenzen (also $2.3\,\mathrm{Hz}$, $3.67\,\mathrm{Hz}$, $6.18\,\mathrm{Hz}$ und $7.38\,\mathrm{Hz}$) werden nur in Abhängigkeit der Auslenkung in 10° -Schritten erneut gemessen. Die Messung wird in Abhängigkeit des Polarwinkels in Abbildung 8 aufgetragen. In der selben Abbildung befindet sich der theoretisch erwartete Verlauf bzw. die entsprechenden Legendrepolynome.

Abbildung 8: Amplitudenmessung an den Resonanzfrequenzen in Abhängigkeit vom Azimutwinkel ϕ neben der passenden Legendrepolynome.

4.2.2 Aufspaltung der Peaks

In diesem Abschnitt werden die Frequenzspektren um die Resonanz bei 2.3 kHz bei einer Ausrichtung von $\theta=0^\circ$ aufgenommen mit Blenden verschiedener Dicke aufgenommen. Das Ergebnis sind in den Abbildungen 9 dargestellt. Die Resonanz spaltet sich in zwei Peaks auf, da die Kugelsymmetrie des Resonators durch die Blenden gebrochen wird. Der Abstand der Peaks ist ungefähr proportional zur Dicke der Blenden.

(e) Abstand in Abhängigkeit von der Blendendicke.

Abbildung 9: Aufspaltung des Peaks bei $2.3\,\mathrm{kHz}$ nachdem verschiedene Ringe die Kugelsymmetrie brechen.

4.2.3 Druckamplitude mit der 9 mm Blende

Die Druckamplitude wurde um die Frequenz 2.25 kHz und in der Abbildung 10 aufgezeichnet. Die zugehörigen Legendrepolynome sind ebenfalls in der Abbildung zu sehen. Der Vergleich liefert die Quantenzahlen l=2 und m=0. Es ergibt sich das 3D-Orbital eines Wasserstoffatoms.

Abbildung 10: Gemessene Druckamplitude der 2.25 kHz Resonanz mit der 9 mm Blende mit den zugehörigen Legendrepolynomen.

4.3 Das Wasserstoffmolekül

4.3.1 Änderung des Frequenzspektrums in Abhängigkeit des Blendendurchmessers

Ein Wasserstoffmolekülion ist anhand zwei gekoppelter Kugelresonatoren modelliert. Die folgenden Messungen wurden mit Blenden verschiedener Durchmesser zwischen den Kugelresonatoren aufgenommen. Das Frequenzspektrum dieses gekoppelten Resonators wurde für die Blenden mit $5\,mm$, $10\,mm$, $15\,mm$ und $20\,mm$ Durchmesser gemessen und in der Abbildung 11 visualisiert.

Abbildung 11: Frequenzspektren des gekoppelten Resonators in Abhängigkeit der verschiedenen Blendendurchmesser.

Abbildung 12: Resonanzfrequenzen des gekoppelten Resonators in Abhängigkeit der verschiedenen Blendendurchmesser

4.3.2 Winkelverteilung mit der $20\,mm$ Blende

Die Winkelverteilung der drei Peaks aus Abschnitt 4.3.1 wurden in 10° Schritten aufgenommen und in der Abbildung 13 wiedergegeben.

Die Verteilungen der ersten beiden Peaks weisen keine erkennbare Struktur auf und können aus diesem Grund nicht identifiziert werden. Die Verteilung des dritten Peak jedoch deckt exakt die Form der Legendrepolynomen $P_0(\cos(\phi))$. Damit liegt nahe, dass der dritte Peak den anti-bindenden Zustand mit m=1 zeigt.

(a) Peak 1

(b) Peak 2

Abbildung 13: Winkelverteilung des gekoppelten Resonators bei einem Blendendurchmesser von $20\,mm$ mit passenden Legendrepolynomen.

4.4 Zylinderketten als Modell für eindimensionale Festkörper

4.4.1 Der Übergung von einem Molekül zum Festkörper

In diesem Abschnitt wurden die Frequenzspektren von Zylinderketten mit einer wachsenden Anzahl an Zylindern gemessen. Die Ergebnisse für Ketten mit 2,4,6 und 10 Zylindern und einem Blendendurchmesser von $16\,mm$ sind in der Abbildung 14 angegeben. In der Festkörperphysik beschreiben Bänder die dicht beieinander liegende Resonanzfrequenzen der Elektronen in einem Festkörper. Diese entsprechen den Schwingungen welche sich nur wenig von den Eigenschwingungen der anderen Elektronen unterscheiden. In dem betrachteten Modell werden diese Schwinungen durch Schallwellen dargestellt. In der Abbildung 14 sind deutlich Bänder zu erkennen, welche auch unabhängig von der Anzahl der Zylinder sind. Die Bänder selbst werden durch verschiedene stehende Schallwellen im Zylinder erzeugt. Die stehende Welle kann beschrieben werden durch

$$\varPsi(x) = A \cdot \sin(k_x x), \ k_x = \frac{2\pi n_x}{L}$$

wobei A die Amplitude angibt und $n_x \in \mathbb{N}$ ist. Das L gibt die Länge der Zylinder an. Die Abbildung 14 zeigt, dass die Amplitude der Resonanzfrequenzen mit steigender Frequenz abnimmt. Dies kann damit erklärt werden, dass höhere Frequenzen höhere Energien benötigen. Damit sinkt die Amplitude aufgrund der Energieerhaltung.

Abbildung 14: Die Frequenzspektren der Zylinderketten verschiedener Länge bei einem Irisdurchmesser von $16\,\mathrm{mm}$

4.4.2 Blenden verschiedener Durchmesser zwischen den Zylindern in der Resonatorkette

Das Frequenzspektrum der Resonatorkette mit 2,4 und 10 Zylindern wurden erneut aufgenommen wobei dieses Mal der Durchmesser der Blenden variiert wurde. Die der Vergleich der Frequenzspektren mit verschiedene Blendendurchmesser ist für die Kette aus 10 Zylindern in der Abbildung 15 gezeigt.

Es ist zunächst zu bemerken, dass die Abstände der Peaks für größere Durchmesser vergrößern. Dies liegt an der veränderten Kopplung zwischen den einzelnen Resonatoren. Des Weiteren haben die Peaks der ersten Ordnungen für Blenden mit größerem Durchmesser eine höhere Amplitude. Die somit werden die Peaks erster Ordnungen durch kleinere Blendendurchmesser unterdrückt.

Abbildung 15: Vergleich zwischen den Frequenzspektren der Zylinderketten mit verschiedenen Irisdurchmesser.

4.4.3 Modifikation der Resonatorkette

(c) $75\,\mathrm{mm}$ Zylinder als Defekt

Abbildung 16: Auswirkungen eines Defekts in der Resonatorkette auf das Frequenzspektrum. Die rechten Plots zeigen den Zoom auf das zweite Band.

Abbildung 17: Vergleich zwischen dem Frequenzspektrum der Resonatorkette mit abwechselnder Zylinderlänge und dem Spektrum der einzelnen Zylinder.

5 Diskussion

Literatur

[1] Versuchsanleitung - Quantenanalogie (QA). Technische Universität Dresden. Nov. 2018.