Föreläsning 12: PID-design och regulatorstrukturer

- ► Repetition
- ▶ PID-design, forts.
- Inre återföring
- Kaskadreglering
- Framkoppling

Lärandemål:

- Välja och dimensionera P/PI/PID-regulatorer så att önskade specifikationer uppfylls.
- ► Förstå och förklara alternativa designprinciper och regulatorstrukturer, såsom störningsframkoppling, kaskadreglering och tillståndsåterkoppling.

Repetition – flytta en punkt i Nyquistdiagrammet

En vanlig teknik att dimensionera PID-regulatorer är att specificera en punkt på kretsöverföringens frekvenskurva. På detta sätt kan två parametrar bestämmas i regulatorn:

- 1. Specificera en punkt för kretsöverföringen, $L(i\omega_0)$
- 2. Bestäm parametrarna i regulatorn genom villkoren

$$|F(i\omega_0)| = |L(i\omega_0)|/|G(i\omega_0)|$$
 (beloppsvillkor) arg $F(i\omega_0) = \arg L(i\omega_0) - \arg G(i\omega_0)$ (fasvillkor)

Exempel: PI- och PD-design

Specifikationerna ges av skärfrekvensen ω_c och fasmarginalen φ_m , dvs

$$|L(i\omega_c)|=1$$
 arg $L(i\omega_c)=-180^\circ+arphi_m$

▶ Integralverkan önskas, fasförlust runt vald ω_c tolereras \Rightarrow välj PI:

$$F(s) = K_p \frac{1 + T_i s}{T_i s}$$

- 1. Fasvillkor ger T_i
- **2.** Beloppsvillkor ger K_p
- ▶ Höjning av fasen vid önskad ω_c behövs \Rightarrow välj PD:

$$F(s) = K_p(1 + \frac{sT_d}{1 + sT_f}) = K_p \frac{1 + \tau_d s}{1 + \tau_d s/b} \ (b > 1)$$

- 1. Fasvillkor ger b och τ_d
- 2. Beloppsvillkor ger K_p

Repetition – designexempel

Vi skall studera dimensioneringen av ett positionsservo:

Processmodell:

$$G(s) = \frac{3}{s(1+0.015s+0.0001s^2)} = \frac{3 \cdot 10^4}{s(s^2+150s+10^4)}$$

Designkrav:

- 1. Börvärdesföljning: rampfel ≤ 0.5 mm vid insignalramp 30 mm/s
- 2. Laststörning: positionsfel ≤ 0.5 mm vid stegstörning på 15 enheter
- **3.** Stabilitet: fasmarginal $\varphi_m \geq 45^\circ$
- **4.** Snabbhet: $\omega_c = 70$. Stabilitet: $\varphi_m = 60^\circ$

- 1. Försök först med P-reglering:
 - Krav 1 ger $K_p \ge 20$ (slutvärdessatsen)
 - ▶ Krav 2 ger $K_p \ge 30$ (slutvärdessatsen)
 - P-regulator med $K_p = 30$ ger för liten fasmarginal $\varphi_m = 21.5^{\circ}$
- 2. Sänk förstärkningen för att ge önskad fasmarginal:
 - ightharpoonup Välj $arphi_m=55^\circ$ för att ge 10° marginal för ett lagfilter i nästa steg
 - ▶ Detta ger $\omega_c = 39$ och $K_p = 40/3$
 - lacktriangle Denna P-regulator ger önskad $arphi_m$ men krav 1 och 2 ej uppfyllda
- **3.** Höj förstärkning för låga frekvenser med lag-filter ($\omega_c=39,\ \varphi_m=45^\circ$):
 - ightharpoonup Välj a = 30/(40/3) = 2.25
 - lacktriangle Tillåt fasförlust på max 10° vid $\omega_c=39$, vilket ger $1/T=\omega_c/3=39/3=13$
 - ► Regulatorn är nu $F(s) = \frac{40}{3} \cdot 2.25 \cdot \frac{1+s/13}{1+2.25 \cdot s/13}$
- 4. Öka snabbheten genom att kräva $\omega_c=70$ och öka samtidigt fasmarginalen till $\varphi_m=60^\circ$:
 - Fasen behöver lyftas c:a 40° , vilket ger b = 4.6
 - Max faslyft vid ω_c ger $T = \sqrt{b}/\omega_c = 0.031$
 - ▶ Justera förstärkningen så att $|L(i\omega_c)| = 1$ (faktor 1/1.06)
 - ► Regulatorn är nu $F(s) = \frac{1}{1.06} \frac{40}{3} \cdot 2.25 \cdot \frac{1+s/13}{1+2.25 \cdot s/13} \cdot \frac{1+0.03s}{1+0.03s/4.6}$

PID-design

Det finns flera alternativa metoder att dimensionera t ex PID-regulatorer:

- ► Kompensering eller modifiering av kretsöverföringen
- Flytta en punkt i Nyquistdiagrammet
- Ziegler-Nichols svängningsmetod
- Lambda-metoden (vanlig i processindustrin)
- Polplacering (inlämningsuppgift 3)
- Optimering enligt olika kriterier, som uttrycker designkompromisserna i frekvensplanet

Experiment i sluten loop

Ziegler-Nichols svängningsmetod:

- 1. Kör processen återkopplat med en P-regulator där förstärkningen sätts så lågt att systemet är stabilt.
- 2. Öka förstärkningen tills systemet kommer i självsvängning med konstant amplitud. Notera regulatorns förstärkning K_0 och svängningarnas periodtid T_0 .
- 3. Ställ in regulatorparametrarna enligt tabell.

Regulator	K_p	T_i	T_d
Р	$0.5K_{0}$	-	_
PI	$0.5K_0$ $0.45K_0$	$T_0/1.2$	-
PID	$0.6K_{0}$	$T_0/2$	$T_0/8$

En förutsättning för att metoden skall fungera är att L(s) har en negativ fasvridning på minst 180° för någon frekvens.

Lambda-metoden

Används för att ställa in PI-regulatorer för att åstadkomma en given överföringsfunktion från r till y:

$$G_{ry}pprox rac{e^{-s au_d}}{1+\lambda s}$$

baserat på en approximativ processmodell.

Processmodell	K	T_i
$G_p = rac{\mathit{Ke}^{-s au_d}}{1+s au}$	$\frac{\tau}{K(\lambda + \tau_d)}$	au
$G_p = rac{Ke^{-s au_d}}{s}$	$\frac{T_i}{K(\lambda+\tau_d)^2}$	$2\lambda + \tau_d$

 λ väljs vanligen i intervallet $0.5\tau - 3\tau$.

Metoden är populär (och väldigt användbar!) i processindustrin: man behöver bara trimma regulatorn med en parameter som dessutom är lätt att relatera till.

Exempel på regulatorinställning

Process:

$$G(s) = \frac{1}{(s+1)^2} e^{-0.1s}$$

PID - summering

P-regulator

- + Enkel
- Dålig statisk nogrannhet, d v s om r konstant så blir i regel $y \neq r$ (kan förbättras med börvärdesfaktor $e = k_r r y$)

PI-regulator

- + God statisk nogrannhet, d v s om r konstant blir i regel y = r
- + Långsamma processtörningar regleras bort väl
- Försämrade stabilitetsmarginaler (I-verkan medför ökad negativ fasvridning)

D-verkan

- + Förbättrad stabilitet
- + Snabbare reglering möjlig
- Ökad känslighet för mätstörningar

OBS1: en ren D-verkan $K_d \frac{de}{dt}$ kan i praktiken inte realiseras eftersom det kräver oändliga styrsignaler.

OBS2: Vid börvärdesändring kan D-verkan orsaka alltför häftiga styrsignalförändringar.

För att undvika detta kan man låta D-delen endast verka på y:

$$u(t) = K_p(r(t) - y(t)) + K_i \int_0^t (r(\tau) - y(\tau)) d\tau - K_d \frac{d}{dt} y(t)$$

Alternativa regulatorstrukturer

Det finns många sätt att "bygga" ett reglersystem, förutom den enkla, återkopplade kretsen som vi studerat hittills. Här är några exempel:

- ► Inre återföring:
 - ► En intern mätsignal är tillgänglig och kan användas för en "inre" återkoppling
 - ▶ Ett typiskt exempel på detta är hastighetssignalen i en motordrift
- Kaskadreglering:
 - Används ofta då man har tillgång till en extra mätning, som ligger "närmare" styrsignalen än den slutliga utsignalen
 - Genom att sluta en inre reglerloop, som är snabbare än den yttre, kan man förbättra prestanda
 - ▶ Ett exempel är reglering av dubbeltanken i labben!
- Framkoppling:
 - Återkoppling bygger på att observerade (mätta) felaktigheter korrigeras
 - Om en störning mäts, så finns möjlighet att kompensera denna "i förväg"
 - ▶ Denna s.k. framkoppling används oftast tillsammans med återkoppling

Kaskadreglering

Om en process består av delsystem i serie (kaskad) med möjlighet att mäta mellan delsystemen använder man dessa mätningar för en intern återkoppling.

 \Rightarrow Snabbare system totalt.

Om man kan ha en hög förstärkning i den inre loopen så kan man vid designen av den yttre bortse från den inre återkopplingen.

Framkoppling (av störsignaler)

Mätning av en störning utnyttjas för att bättre kompensera bort effekterna av störningen, t ex mätning av utomhustemperatur vid reglering av inomhustemperatur.

Vi ser att störningen v kompenseras bort fullständigt om

$$F_{FF}G_1 + G_v = 0 \quad \Leftrightarrow \quad F_{FF} = -\frac{G_v}{G_1}$$

Problem:

- 1. Ej för stora modellfel.
- **2.** F_{FF} stabil \Rightarrow nollställena till $G_1 \in VHP$.
- 3. F_{FF} kausal \Leftrightarrow dödtid hos $G_v \ge$ dödtid hos G_1 .
- **4.** F_{FF} proper \Leftrightarrow grad(nämnare) \geq grad(täljare).
- (1) Gör en försiktig kompensering. (2-4) Sträva efter att minimera påverkan i det frekvensområde där de huvudsakliga störningarna är. Är störningarna lågfrekventa ger ofta $F_{FF} = -G_V(0)/G_1(0)$ ändå en markant förbättring.