Duale Hochschule Baden-Württemberg

Logik und Algebra

2. Übungsblatt

- 1. Aufgabe: In einem sozialen Medium mit einigen Teilnehmerinnen und Teilnehmern definiere das Prädikat F(x,y) die Aussage x folgt y. Beschreiben Sie die folgenden Aussagen formal und bestimmen Sie alle Implikationen zwischen den folgenden Aussagen:
 - (a) Es gibt eine Person, dem niemand folgt.
 - (b) Die Aussage "Jeder hat eine Person, der sie oder er nicht folgt." ist falsch.
 - (c) Alle haben keine Follower.
 - (d) Jeder hat (mind. eine(n)) Follower.
 - (e) Es gibt jemanden, der niemand folgt.
 - (f) Es gibt eine Person, die einer anderen Person folgt.
- 2. Aufgabe: Beweisen Sie die beiden Aussagen
 - (a) $\forall x : \forall y : P(x,y) \Rightarrow \forall y : \forall x : P(x,y)$
 - (b) $\exists x : \exists y : P(x,y) \Rightarrow \exists y : \exists x : P(x,y)$
 - (c) $\exists x : \forall y : P(x,y) \Rightarrow \forall y : \exists x : P(x,y)$

tabellarisch unter Angabe der verwendeten Axiome.

3. Aufgabe: Zeigen Sie die Folgerung $\neg \forall x: P(x) \Rightarrow \exists x: \neg P(x)$ zunächst visuell, einzugeben als

$$\frac{-(!\mathtt{x}.\mathtt{P}(\mathtt{x})) -> \mathtt{False}}{?\mathtt{x}.(\mathtt{P}(\mathtt{x}) -> \mathtt{False})}\,,$$

und anschließend tabellarisch unter Angabe der verwendeten Axiome.

- 4. Aufgabe: Beweisen Sie oder widerlegen Sie die folgenden Aussagen:
 - (a) Ist p eine Primzahl, so ist $6p^2 + 36p + 1$ auch eine Primzahl.
 - (b) Die Differenz zweier aufeinander folgender Quadratzahlen ist ungerade.
 - (c) Die Zahl 100! hat genau 24 Nullen am Ende.
- 5. Aufgabe: Zeigen Sie den Beweis durch Widerspruch $\neg(A \land \neg B) \Leftrightarrow A \to B$ visuell

$$\frac{\texttt{A}->\texttt{B}}{(\texttt{A}\&(\texttt{B}->\texttt{False}))->\texttt{False}} \qquad \qquad \frac{(\texttt{A}\&(\texttt{B}->\texttt{False}))->\texttt{False}}{\texttt{A}->\texttt{B}}$$

und formulieren Sie daraus den schriftlichen Beweis für die Äquivalenz der Beweistechnik.

Lösen Sie zusätzlich die restlichen Aufgaben der Lektion 6 auf http://incredible.pm/.

Lösung 1. Übungsblatt

Lösung 1: Die formalisierten Aussagen, deren Negation und sprachliche Beschreibung lauten:

- (a) $S \leftrightarrow \neg N$. Dies entspricht $(S \land \neg N) \lor (\neg S \land N)$, und die Negation lautet $(\neg S \lor N) \land (S \lor \neg N) = (S \land N) \lor (\neg S \land \neg N)$: Genau dann wenn das Programm gespeichert ist, fehlt das Netzteil.
- **(b)** $\neg S \to L$. Dies entspricht $S \lor L$, und die Negation lautet $\neg S \land \neg L$: Das Programm ist nicht gespeichert und der Laptopakku ist nicht fast leer.
- (c) $N \to L \land \neg S$. Dies entspricht $\neg N \lor (L \land \neg S)$, und die Negation lautet $N \land (\neg L \lor S)$: Das Netzteil fehlt und dabei gilt der Laptopakku ist nicht fast leer oder das Programm ist gespeichert.
- (d) $(S \wedge \neg N) \vee (\neg S \wedge L)$. Die Negation lautet $(\neg S \vee N) \wedge (S \vee \neg L) = (S \wedge N) \vee (\neg S \wedge \neg L)$: Entweder das Programm ist gespeichert und das Netzteil fehlt, oder das Programm ist nicht gespeichert und der Laptopakku ist nicht fast leer.

Lösung 2: Die Aussagen dafür, dass Emma, Sascha, Ralf oder Nicki dabei sind, seien E, S, R und N. Dann lauten die Aussagen:

$$(1) \neg S \rightarrow \neg E \;, \quad (2) \neg R \rightarrow \neg S \;, \quad (3) \; R \rightarrow N \;, \quad (4) \; S \wedge N \rightarrow \neg R \;, \quad (5) \; \neg E \wedge \neg S \rightarrow \neg N \;$$

- 1. Gilt S, so folgt aus (2) R und aus (3) N. Damit soll wegen (4) dann aber $\neg R$ folgen, das ist ein Widerspruch!
- 2. Gilt $\neg S$, so folgt aus (1) $\neg E$. Somit folgt aus (5) $\neg N$ und aus (3) $\neg R$. Damit soll wegen (2) dann aber $\neg S$ folgen, damit ist Peter ziemlich alleine.

Peter wird in dieser Gruppe nur alleine lernen können und sollte sich unbedingt eine andere Lerngruppe suchen.

Lösung 3: Die Wahrheitstabellen lauten:

				(a)		(b)		(c)
A	B	$\mid C \mid$	$B \to C$	$A \to (B \to C)$	$A \rightarrow B$	$(A \to B) \to C$	$C \to A$	$(A \to B) \to (C \to A)$
f	f	f	W	W	W	f	W	W
f	f	w	W	W	W	W	f	f
f	W	f	f	W	W	f	W	W
f	W	w	W	W	W	W	f	f
W	f	f	W	W	f	W	w	W
W	f	w	W	W	f	W	w	W
W	W	f	f	f	W	f	w	W
W	W	w	W	W	W	W	W	W

Lösung 4: Zu zeigen ist $(A \land (\neg B \rightarrow \neg A)) \rightarrow B$:

(a) Mit einer Wahrheitstabelle:

	A	$\mid B \mid$	$\neg B \rightarrow \neg A$	$A \wedge (\neg B \to \neg A)$	$(A \land (\neg B \to \neg A)) \to B$
	f	f	w	f	W
	f	W	w	f	w
	W	f	f	f	W
_	W	W	W	W	W

(b) Mit logischen Äquivalenzen:

$$\begin{array}{lll} (A \wedge (\neg B \to \neg A)) \to B &=& \neg (A \wedge (B \vee \neg A)) \vee B & \text{Hinweis} \\ &=& (\neg A \vee (\neg B \wedge A)) \vee B & \text{de Morgan} \\ &=& ((\neg A \vee \neg B) \wedge (\neg A \vee A)) \vee B & \text{Distributivit\"at} \\ &=& ((\neg A \vee \neg B) \wedge \mathbf{w}) \vee B & \text{Tautologie} \\ &=& (\neg A \vee \neg B) \vee B & \text{Neutralit\"at} \\ &=& \neg A \vee (\neg B \vee B) & \text{Assoziativit\"at} \\ &=& \neg A \vee \mathbf{w} & \text{Tautologie} \\ &=& \mathbf{w} & \text{Ausl\"oschung} \end{array}$$

(c) Visueller Beweis: Gegeben ist $A \wedge ((B \rightarrow \bot) \rightarrow (A \rightarrow \bot))$ und zu zeigen ist B.

(d) Tabellarischer Beweis: Gegeben ist $A \wedge ((B \to \bot) \to (A \to \bot))$ und zu zeigen ist B.

Schritt	Aussage	Begründung
1	$A \wedge ((B \to \bot) \to (A \to \bot))$	Prämisse
2	A	KL 1
3	$(B \to \bot) \to (A \to \bot)$	KR 1
4	$B \lor (B \to \bot)$	TND
5.1	В	Annahme
5.1.1	В	Ziel trivial erfüllt
5.2	$B o oldsymbol{\perp}$	Annnahme
5.2.1	A o ot	IE 3 5.2
5.2.2		IE 2 5.2.1
5.2.3	В	F 5.2.2
5	В	D 4 [5.1 5.1.1] [5.2 5.2.3]

Lösung 5: Gegeben ist $(A \rightarrow B) \rightarrow A$ und zu zeigen ist A.

- 1. Aus Regel TND folgt A oder $A \rightarrow \bot$.
- 2. Für diese Disjunktion wird für Regel D in beiden Fällen gezeigt, dass dann A gilt:
 - (a) Im ersten Fall A erfüllt die Annahme schon die gewünschte Konklusion.
 - (b) Der zweite Fall ist $A \to \bot$,
 - i. hier kann mit Regel II die Aussage $A \rightarrow B$ gezeigt werden.
 - A. Sei A gegeben,
 - B. so folgt aus $A \to \bot$ mit IE die Aussage \bot .
 - C. Mit Regel F kann B gefolgert werden.
 - ii. Mit Regel IE folgt aus $A \to B$ und Prämisse $(A \to B) \to A$ mit IE die gewünschte Aussage A.
- 3. Damit ist die Konklusion A gezeigt, q.e.d. .