REPUBLIQUE ISLAMIQUE DE MAURITANIE

Ministère de l'Enseignement Fondamental et Secondaire

Direction des Examens et des Concours

Service des Examens

Honneur Fraternité Justice Série : Sciences de la nature Durée : 4H Coefficient : 7

Exercice 1

1 Les ions peroxodisulfate $S_2Q_8^{2^-}$ oxydent lentement les ions iodures I^- . Etablir l'équation de cette réaction.

On donne $E_{1,1/2} = 0,54V$ et $E_{s,0^2/s0^2} = 2V$

2 A la date t=0 et à une température constante, on mélange, un volume V_1 =50mL d'une solution S_1 de peroxodisulfate d'ammonium $(NH_4)_2S_2O_8$ de concentration molaire C_1 =5.10⁻²mol/L et un volume V_2 =50mL d'une solution S_2 d'iodure de potassium **KI** de concentration molaire C_2 =16.10⁻²mol/L.

A une date t, on prélève du mélange réactionnel un volume V=10mL qu'on lui ajoute de l'eau glacée et on dose la quantité de diiode I_2 formée par une solution de thiosulfate de sodium $Na_2S_2O_3$ selon la réaction rapide d'équation : $2S_2O_3^{2^m} + I_2 \rightarrow S_4O_6^{2^m} + 2I^m$

- 2.1 Calculer les concentrations molaires initiales $\left[\mathbf{S}_{2}\mathbf{O}_{8}^{2^{-}}\right]_{0}$ des ions peroxodisulfate et $\left[\mathbf{I}^{-}\right]_{0}$ des ions iodures dans le mélange réactionnel.
- 2.2 Préciser en le justifiant le réactif limitant.
- 3 Les résultats du dosage ont permis de tracer la courbe régissant les variations de la concentration des ions iodures au cours du temps.
- 3.1 Déterminer la concentration restante [1], des ions iodures.
- 3.2 Définir la vitesse instantanée de disparition des ions iodures. Déterminer graphiquement sa valeur à la date t=15min. En déduire la vitesse de formation du diiode à cette date.

4 On refait l'expérience précédente avec une solution d'iodure de potassium de même volume $V_2=50 \text{mL}$ mais de concentration molaire $C'_2=18.10^{-2} \text{mol/L}$. Représenter sur le même graphe l'allure des courbes donnant les variations des concentrations des ions iodures au cours du temps dans les deux expériences. Indiquer clairement les valeurs respectives $[I^{\bullet}]_{01}$ et $[I^{\bullet}]_{02}$ des concentrations initiales et les valeurs $[I^{\bullet}]_{r_1}$ et $[I^{\bullet}]_{r_2}$ des concentrations restantes pour les deux expériences 1 et 2.

Exercice 2

- 1 On considère les composés suivants :
- A: éthanol; B: butan-2-ol; C: acide éthanoïque; D: propanal; E: éthylamine;
- F: N-éthylpropanamide; G: éthanoate d'éthyle
- 1.1 Donner les formules semi-développées de ces composés.
- 1.2 Préciser les deux composés dont la réaction permet d'obtenir G. Ecrire l'équation de cette réaction.
- 1.3 Quel composé H faut-il faire réagir avec le composé E pour obtenir F et de l'eau ? préciser la fonction de H et de F.
- 2 Etude du composé B:
- 2.1 On considère un alcène dont l'hydratation donne uniquement le composé B. donner la formule semi-développée de cet alcène ainsi que son nom.

- 2.2 Cet alcène possède deux configurations différentes. Représenter et nommer ces deux stéréoisomères.
- 2.3 L'oxydation ménagée avec du dichromate de potassium $(Cr_2O_7^{2-} + 2K^+)$ du composé B conduit à un composé organique unique X, qui donne un précipité jaune avec la 2,4-dinitrophénylhydrazine (DNPH) mais ne réagit pas avec le réactif de Schiff.
- 2.3.1 Identifier le composé X en donnant sa formule semi-développée et son nom.
- 2.3.2 Ecrire les équations électroniques correspondantes en déduire l'équation bilan.

Exercice 3

1 Un solide S, supposé ponctuel de masse $\,$ m=200g glisse le long de la ligne de plus grande pente d'un plan incliné d'un angle α par rapport à la verticale. On donne : cos \square =0,4 ; sin α =0,91 ; g=10m/s²

On abandonne le solide S sans vitesse initiale à t=0 au point A(voir fig).

- 1.1 En supposant les frottements négligeables, calculer :
- 1.1.1 L'accélération a du solide S.
- 1.1.2 La vitesse V_B du solide S au point B sachant que la distance AB=2m.
- 1.1.3 Le temps mis par le solide S pour parcourir la distance AB.
- 1.2 On considère que les frottements ne sont pas négligeables et équivalent à une force constante \vec{f} parallèle à la ligne de plus grande pente et de sens contraire au déplacement. La vitesse du solide atteint au point B la valeur $V_B=3m/s$.
- 1.2.1 Calculer le travail de $\vec{\mathbf{f}}$
- 1.2.2 Déduire l'intensité de $\vec{\mathbf{f}}$
- 1.2.3 Calculer l'intensité de la réaction du plan incliné sur S.
- 2 Le solide S aborde la piste BCO avec une vitesse $V_B=3m/s$. (voir fig).La portion BC est curviligne et CO est horizontale.

La différence de niveau séparant les plans horizontaux passant par B et O est h= 0,35m.

Au point O, le solide S quitte la piste pour arriver au sol au point P situé à une hauteur h'=OE=1m en dessous du plan passant par O.

- 2.1 Calculer la vitesse de S au point O sachant que les frottements sont négligeables sur la piste BCO.
- 2.2 Déterminer l'équation de la trajectoire du mouvement de chute de S dans le repère $(0; \vec{i}; \vec{j})$
- 2.3 Calculer la vitesse de S à son arrivée en P.

Exercice 4

On réalise l'expérience d'Young à l'aide d'une fente éclairée F équidistante de deux autres fentes F_1 et F_2 parallèles à F, percées dans un écran P. La distance entre F_1 et F_2 est a=1,5mm. Un écran E parallèle à P est placé à la distance D=2,4m de P(voir fig) .

- 1 La fente F est d'abord éclairée par une lumière monochromatique de longueur d'onde λ =0.5 μ m.
- 1.1 Qu'observe-t-on sur l'écran dans la région commune aux deux faisceaux ?
- 1.2 Rappeler l'expression de la différence de marche δ au point M d'abscisse x=OM sur l'écran E. Calculer sa valeur pour x=6mm.
- 1.2 Déterminer la valeur de l'interfrange i et préciser la nature des franges dont les milieux sont situés aux points d'abscisses respectives $x_1=3,2mm$ et $x_2=4,4mm$.
- 2 La fente F est maintenant éclairée en lumière blanche.
- 2.1 Qu'observe-t-on sur l'écran E dans la région commune aux deux faisceaux ?
- 2.2 Quelles sont les longueurs d'onde des radiations appartenant au spectre visible pour lesquelles une frange obscure se forme sur l'écran E à la distance x=6mm de la frange centrale brillante ? On donne pour le spectre visible $0.4 \text{ Im} \le \lambda \le 0.8 \text{ Im}$