ETH Yield Gap Analysis

Michiel van Dijk & Tom Morley

27 February 2017

What's new since last time

- ► A more flexible translog function allowing for interactions between inputs
- Control function approach to incorporate a feedback loop between nitrogen and yield
- numerical methods to find optimum nitrogen use
- GYGA environmental control variables

Yield gap framework

Figure 1

Data

- ► Two (now three) LSMS-ISA surveys 2011 and 2013 (and as of last week 2015)
- ▶ But due to a mistake in recording production in 2011 we only analyse 2013
- Yield defined as production/plot size => different from FAOSTAT/GYGA

Summary statistics

Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Max
N	2,420	26.62	54.51	1.00	692.30
lab	2,420	173.90	306.90	1.00	2,763.00
area	2,420	0.19	0.35	0.0004	8.12
slope	2,413	12.64	10.32	1.00	84.70
elevation	2,413	1,799.00	405.70	371	2,909
SOC	2,420	7.90	2.21	1.87	17.10
rain_wq	2,420	762.40	97.66	704	1,135
GGD	2,420	7,179.00	827.30	4,922.00	10,392.00
Al	2,420	7,169.00	2,398.00	2,041.00	12,854.00
TS	2,420	1,097.00	340.90	538	2,279
yesN	2,420	0.37	0.48	0	1
irrig	2,401	0.05	0.22	0	1
impr	2,404	0.24	0.42	0	1
extension	2,406	0.34	0.47	0	1
title	2,219	0.50	0.50	0	1

Methodology

- ▶ Three stage estimation approach
- ► First stage Tobit model to avoid feedback loop/confounding
- Second stage stochastic frontiers estimation (bootstrapping SEs -> nonlinear function)
- Third stage policy variables

LSMS-ISA and GYGA

Data issues

- How to solve missing yield potential data?
 - Average values are too low, maximum is too high.
- ► To calculate feasible yield gap information is needed on the use of inputs when costs are zero:
 - Level of nitrogen when yield diminishes (per region)
 - Use of labour and capital at this point
- Information on nitrogen/fertilizer use can be taken from experimental plot data => input from agronomy colleagues required.
- Use of labour and capital demand assumptions (e.g. 50% increase in labour)

Stochastic frontier analysis

parameter	Basic	GYGA	Basic + r	GYGA + r
(Intercept)	7.46 (1.29)**	7.11 (1.42)**	8.00 (1.28)**	7.75 (1.41)**
log(N)	0.16 (0.17)	0.15 (0.17)	0.07 (0.06)	0.07 (0.06)
log(lab)	0.16 (0.05)**	0.15 (0.05)**	0.15 (0.05)**	0.15 (0.05)**
$I(log(N)^2)$	0.02 (0.02)	0.02 (0.02)	0.03 (0.01)**	0.03 (0.01)**
I(log(lab)^2)	0.01 (0.01)	0.01 (0.01)*	0.01 (0.01)*	0.01 (0.01)*
log(slope)	-0.22 (0.03)**	-0.23 (0.03)**	-0.20 (0.03)**	-0.21 (0.03)**
elevation	-0.00 (0.00)**	-0.00 (0.00)	-0.00 (0.00)**	-0.00 (0.00)*
log(area)	-0.22 (0.02)**	-0.22 (0.02)**	-0.22 (0.02)**	-0.22 (0.02)**
SOC	0.03 (0.01)**	0.03 (0.01)**	0.03 (0.01)**	0.03 (0.01)**
log(rain_wq)	-0.14 (0.19)	-0.22 (0.21)	-0.18 (0.19)	-0.28 (0.21)
noN	0.27 (0.31)	0.25 (0.31)	NA	NA
irrig	-0.33 (0.09)**	-0.31 (0.09)**	-0.34 (0.09)**	-0.33 (0.09)**
impr	0.37 (0.06)**	0.38 (0.06)**	0.35 (0.06)**	0.35 (0.06)**
crop_count2	0.46 (0.04)**	0.47 (0.04)**	0.46 (0.04)**	0.47 (0.04)**
phdum_gt70	-0.21 (0.09)*	-0.23 (0.10)*	-0.22 (0.09)**	-0.24 (0.10)**
phdum55_2_70	-0.06 (0.07)	-0.07 (0.07)	-0.08 (0.07)	-0.09 (0.07)
log(N):log(lab)	-0.03 (0.01)**	-0.03 (0.01)**	-0.03 (0.01)**	-0.02 (0.01)**
GGD	NA	0.00 (0.00)*	NA	0.00 (0.00)*
Al	NA	0.00 (0.00)	NA	0.00 (0.00)
TS	NA	-0.00 (0.00)	NA	-0.00 (0.00)
rd	NA	NA	-0.08 (0.03)*	-0.08 (0.03)**
sigmaSq	1.94 (0.10)**	1.94 (0.10)**	1.92 (0.10)**	1.91 (0.10)**
gamma	0.81 (0.02)**	0.81 (0.02)**	0.81 (0.02)**	0.81 (0.02)**

Yield gap estimations

Table 3: Relative yield gap

Zone	TEYG	EYG	FYG	TYG	YG
AMHARA	13	6	12	69	100
BENSHANGULGUMUZ	7	4	19	70	100
DIRE DAWA	10	7	39	44	100
GAMBELLA	10	10	26	54	100
HARARI	13	3	58	26	100
OROMIYA	8	3	17	72	100
SNNP	9	5	18	68	100
SOMALI	5	3	24	68	100
TIGRAY	11	19	12	57	100
Total	9	5	18	68	100

Closing the yield gap

Explaining the TEYG

Next steps

- Calculate elasticities of second stage variables to get a better interpretation
- Slight experimentation with
- ► Think about how to link policies to yield gaps
- finish writing paper
- ▶ Third wave of data???? but time constraints