Delaunay triangulations on hyperbolic surfaces

Iordan Iordanov Monique Teillaud

Astonishing Workshop 25 September 2017 Nancy, France

Outline

- 1 Introduction
 - 1.1 Motivation
 - 1.2 | The Bolza Surface
 - 1.3 | Background from [BTV, SoCG'16]
- 2 | Implementation
 - 2.1 | Data Structure
 - 2.2 Incremental Insertion
 - 2.3 Results
- 3 | Future work

Outline

1 Introduction

- 1.1 Motivation
- 1.2 | The Bolza Surface
- 1.3 | Background from [BTV, SoCG'16]
- 2 | Implementation
 - 2.1 Data Structure
 - 2.2 Incremental Insertion
 - 2.3 Results
- 3 | Future work

Periodic triangulations in the Euclidean plane

Periodic triangulations in the hyperbolic plane

Applications

[Sausset, Tarjus, Viot]

[Chossat, Faye, Faugeras]

[Balazs, Voros]

$Beautiful\ groups$

- Fuchsian groups
- finitely presented groups
- triangle groups
- . . .

State of the art

Closed Euclidean manifolds

- Algorithms 2D [Mazón, Recio], 3D [Dolbilin, Huson], dD [Caroli, Teillaud, DCG'16]
- Software (square/cubic flat torus)

2D [Kruithof], 3D [Caroli, Teillaud]

Closed hyperbolic manifolds

- Algorithms
- Software (Bolza surface)

2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG'16]

[lordanov, Teillaud, SoCG'17]

Poincaré model of the hyperbolic plane \mathbb{H}^2

Hyperbolic translations

Hyperbolic translations

What is it?

- Closed, compact, orientable surface of genus 2.
- Constant negative curvature → locally hyperbolic metric.
- The most symmetric of all genus-2 surfaces.

Fuchsian group \mathcal{G} with finite presentation

$$\mathcal{G} = \left\langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$$

 \mathcal{G} contains only translations (and 1) Bolza surface

$$\mathcal{M} = \mathbb{H}^2/\mathcal{G}$$

with projection map $\pi_{\mathcal{M}}: \mathbb{H}^2 \to \mathcal{M}$

Fuchsian group \mathcal{G} with finite presentation

$$\mathcal{G} = \left\langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} \right\rangle$$

 \mathcal{G} contains only translations (and 1)

Bolza surface

$$\mathcal{M} = \mathbb{H}^2/\mathcal{G}$$

with projection map $\pi_{\mathcal{M}}: \mathbb{H}^2 \to \mathcal{M}$

$$\mathcal{A} = \left[a, \overline{b}, c, \overline{d}, \overline{a}, b, \overline{c}, d \right] = \left[g_0, g_1, ..., g_7 \right]$$

$$g_k = \begin{bmatrix} \alpha & \beta_k \\ \overline{\beta}_k & \overline{\alpha} \end{bmatrix}, \quad g_k(z) = \frac{\alpha z + \beta_k}{\overline{\beta}_k z + \overline{\alpha}}, \quad \alpha = 1 + \sqrt{2}, \quad \beta_k = e^{ik\pi/4} \sqrt{2\alpha}$$

Hyperbolic octagon

Hyperbolic octagon

Fundamental domain $\mathcal{D}_{\mathcal{O}} = \mathsf{Dirichlet}$ region of \mathcal{O}

Hyperbolic octagon

"Original" domain \mathcal{D} : contains exactly one point of each orbit

Criterion

Systole sys $(\mathcal{M}) =$ minimum length of a non-contractible loop on \mathcal{M}

Criterion

Systole sys (
$$\mathcal{M}$$
) = minimum length of a non-contractible loop on \mathcal{M}

$$\pi_{\mathcal{M}}\big(\,DT_{\mathbb{H}}\,(\mathcal{G}S)\,\big)$$

Criterion

Systole sys (
$$\mathcal{M}$$
) = minimum length of a non-contractible loop on \mathcal{M}

S set of points in \mathbb{H}^2 $\delta_S = \qquad \qquad \text{diameter of largest disks in } \mathbb{H}^2$ $\qquad \qquad \text{not containing any point of } \mathcal{G}S$

$$\delta_{\mathcal{S}} < rac{1}{2} \, \mathrm{sys} \left(\mathcal{M}
ight)$$

$$\implies \pi_{\mathcal{M}}(DT_{\mathbb{H}}(\mathcal{G}S)) = DT_{\mathcal{M}}(S)$$
 is a simplicial complex

→ The usual incremental algorithm can be used

[Bowyer]

How can we satisfy $\delta_S < \frac{1}{2} \operatorname{sys}(\mathcal{M})$?

Two ways:

- Covering spaces
 - effect: increase the systole
 - take copies of the fundamental domain with input points
 - \blacksquare 32 < number of sheets \le 128
 - new: 34 < number of sheets

[Ebbens, 2017]

How can we satisfy $\delta_S < \frac{1}{2} \operatorname{sys}(\mathcal{M})$?

Two ways:

- 1 Covering spaces
 - effect: increase the systole
 - take copies of the fundamental domain with input points
 - 32 < number of sheets < 128
 - new: 34 < number of sheets

[Ebbens, 2017]

- 2 Dummy points
 - effect: artificially satisfy the condition in the 1-cover
 - set of points given for the Bolza surface
 - more appealing computationally

How can we satisfy $\delta_S < \frac{1}{2} \operatorname{sys}(\mathcal{M})$?

Two ways:

- Covering spaces
 - effect: increase the systole
 - take copies of the fundamental domain with input points
 - 32 < number of sheets < 128
 - new: 34 < number of sheets

[Ebbens, 2017]

- 2 Dummy points
 - effect: artificially satisfy the condition in the 1-cover
 - set of points given for the Bolza surface
 - more appealing computationally

We adopt the second approach.

14 / 30

Systole on the octagon

Set of dummy points

Set of dummy points vs. criterion

Delaunay triangulation of the dummy points

Delaunay triangulation of the Bolza surface

Algorithm:

- 1 initialize with dummy points
- 2 insert points in S
- 3 remove dummy points

Outline

- 1 Introduction
 - 1.1 Motivation
 - 1.2 The Bolza Surface
 - 1.3 | Background from [BTV, SoCG'16]

2 | Implementation

- 2.1 Data Structure
- 2.2 Incremental Insertion
- 2.3 Results
- 3 | Future work

Notation

 $g(O), g \in \mathcal{G}$, denoted as g

$$\mathcal{D}_g = g(\mathcal{D}_O), \; g \in \mathcal{G}$$

$$\mathcal{N} = \{ g \in \mathcal{G} \mid \mathcal{D}_g \cap \mathcal{D}_O \neq \emptyset \}$$

$$\mathcal{D}_{\mathcal{N}} = \bigcup_{g \in \mathcal{N}} \mathcal{D}_g$$

Property of $DT_{\mathbb{H}}(\mathcal{GS})$

 $S \subset \mathcal{D}$ input point set s.t. criterion $\delta_S < \frac{1}{2} \operatorname{sys} (\mathcal{M})$ holds

 σ face of $DT_{\mathbb{H}}\left(\mathcal{GS}\right)$ with at least one vertex in \mathcal{D}

 $\longrightarrow \sigma$ is contained in $\mathcal{D}_{\mathcal{N}}$

Property of $DT_{\mathbb{H}}(\mathcal{GS})$

 $S \subset \mathcal{D}$ input point set s.t. criterion $\delta_S < \frac{1}{2} \operatorname{sys} (\mathcal{M})$ holds

 σ face of $DT_{\mathbb{H}}(\mathcal{GS})$ with at least one vertex in \mathcal{D}

 $\longrightarrow \sigma$ is contained in $\mathcal{D}_{\mathcal{N}}$

Canonical representative of a face

Each face of $DT_{\mathcal{M}}\left(S\right)$ has infinitely many pre-images in $DT_{\mathbb{H}}\left(\mathcal{G}S\right)$

Canonical representative of a face

at least one pre-image with at least one vertex in $\ensuremath{\mathcal{D}}$

Canonical representative of a face

Case: face with 3 vertices in $\ensuremath{\mathcal{D}}$

Case: face with 3 vertices in $\ensuremath{\mathcal{D}}$

Case: face with 3 vertices in \mathcal{D}

Case: face with 2 vertices in ${\cal D}$

Case: face with 2 vertices in ${\cal D}$

Case: face with 2 vertices in $\ensuremath{\mathcal{D}}$

Case: face with 1 vertex in $\ensuremath{\mathcal{D}}$

Case: face with 1 vertex in $\ensuremath{\mathcal{D}}$

CGAL Triangulations

Face of $DT_{\mathcal{M}}(S)$

Face of $DT_{\mathcal{M}}(S)$

Point Insertion

"hole" = topological disk

Point Insertion

"hole" = topological disk

Point Insertion

Computations on translations

Dehn's algorithm (slightly modified)

Predicates

$$Orientation(p,q,r) = \operatorname{sign} egin{bmatrix} p_x & p_y & 1 \ q_x & q_y & 1 \ r_x & r_y & 1 \end{bmatrix}$$

InCircle
$$(p, q, r, s)$$
 = sign
$$\begin{vmatrix} p_x & p_y & p_x^2 + p_y^2 & 1 \\ q_x & q_y & q_x^2 + q_y^2 & 1 \\ r_x & r_y & r_x^2 + r_y^2 & 1 \\ s_x & s_y & s_x^2 + s_y^2 & 1 \end{vmatrix}$$

Predicates

Suppose that the points in S are rational.

Input of the predicates can be images of these points under $\nu \in \mathcal{N}$.

$$g_k(z) = \frac{\alpha z + e^{ik\pi/4}\sqrt{2\alpha}}{e^{-ik\pi/4}\sqrt{2\alpha}z + \alpha}, \quad \alpha = 1 + \sqrt{2}, \quad k = 0, 1, ..., 7$$

- the *Orientation* predicate has algebraic degree at most 20
- the InCircle predicate has algebraic degree at most 72

Point coordinates represented with CORE::Expr

→ (filtered) exact evaluation of predicates

Demo

Time to see the code in action!

Experiments

Fully dynamic implementation

- 1 million random points
 - CGAL Euclidean DT (double)
 - CGAL Euclidean DT (CORE::Expr)
 - Hyperbolic periodic DT (CORE::Expr)

 ~ 1 sec.

 ~ 13 sec.

 ~ 34 sec.

Coria lorio 1

Experiments

Fully dynamic implementation

1 million random points

- CGA Euclidean DT (double)
- Euclidean DT (CORE::Expr)
- Hyperbolic periodic DT (CORE::Expr)

 ~ 1 sec.

 ~ 13 sec.

 ~ 34 sec.

Predicates

- 0.76% calls to predicates involving translations in \mathcal{N}
- responsible for 36% of total time spent in predicates

Dummy points can be removed after insertion of 17–72 random points.

Outline

- 1 Introduction
 - 1.1 Motivation
 - 1.2 The Bolza Surface
 - 1.3 | Background from [BTV, SoCG'16]
- 2 | Implementation
 - 2.1 Data Structure
 - 2.2 Incremental Insertion
 - 2.3 Results
- 3 | Future work

Future work

The goal is to

generalize

Future work

What:

- Algorithm for more general genus-2 surfaces
- Algorithm for surfaces of higher genus

How:

■ Pants decomposition & F-N coordinates

[Maskit, 2001]

Octagonal fundamental domain

[Aigon-Dupuy et al., 2005]

Future work

Issues:

- Surface representation
- Fundamental domain Dirichlet or not?
- Generalize property of Delaunay triangles
- Condition on something else rather than the systole?
- Canonical representative
- Choice of dummy points

[IT17]

The End

Thank you!

Source code and Maple sheets available online:

https://members.loria.fr/Monique.Teillaud/DT_Bolza_SoCG17/

