Notes for Vector Calculus

Zhao Wenchuan

November 10, 2021

Contents

1 Differentiation		ferentiation	2
	1.1	Infintesimal	2
	1.2	Differentiable Mapping	3
	1.3	Directional Derivatives	5
	1.4	s	6

Chapter 1.

Differentiation

§1.1 Infintesimal

Definition 1.1.1. Let $f, g : \mathbb{R}^m \to \mathbb{R}^n$, and let $\mathbf{p} \in \mathbb{R}^m$.

Then f is a *little-o* of g as $\mathbf{x} \to \mathbf{p}$, i.e.,

$$f(\mathbf{x}) = o(g(\mathbf{x})) \text{ as } \mathbf{x} \to \mathbf{p},$$

iff for any $\varepsilon \in \mathbb{R}_{>0}$, there exists a neighbourhood of U of \mathbf{p} such that for any $\mathbf{x} \in U$, $||f(\mathbf{x})|| \le \varepsilon ||g(\mathbf{x})||$. Equivalently, that is,

$$\lim_{\mathbf{x} o \mathbf{p}} rac{f(\mathbf{x})}{\|g(\mathbf{x})\|_{\mathbb{R}^n}} = \mathbf{0}_{\mathbb{R}^n}.$$

Note 1.1.1. In the case that $f(\mathbf{x}) = o(g(\mathbf{x}))$ as $\mathbf{x} \to \mathbf{0}_{\mathbb{R}^m}$, I will simply write $f(\mathbf{x}) = o(g(\mathbf{x}))$.

Lemma 1.1.1.

$$o(f(\mathbf{x})) + o(g(\mathbf{x})) = o(\|f(\mathbf{x})\|_{\mathbb{R}^n} + \|g(\mathbf{x})\|_{\mathbb{R}^n}).$$

Proof. By Definition 1.1.1, for any $\varepsilon \in \mathbb{R}_{>0}$, there exists a neighbourhood of U of \mathbf{p} such that for any $\mathbf{x} \in U$,

$$||o(f(\mathbf{x}))||_{\mathbb{R}^n} \le \varepsilon ||f(\mathbf{x})||.$$

Then, there exists some $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that

$$o(f(\mathbf{x})) = \varepsilon || f(\mathbf{x}) || \mathbf{u} \text{ and } o(g(\mathbf{x})) = \varepsilon || g(\mathbf{x}) || \mathbf{v}.$$

...

By Definition 1.1.1, now we have

$$o(f(\mathbf{x})) + o(g(\mathbf{x}))$$

§1.2 Differentiable Mapping

Definition 1.2.1. Let $f: \mathbb{R}^m \to \mathbb{R}^n$, and let $\mathbf{p} \in \mathbb{R}^m$.

f is differentiable at **p** iff there exists a unique linear map $\phi : \mathbb{R}^m \to \mathbb{R}^n$, such that for any $\mathbf{t} \in \mathbb{R}^m$,

$$\lim_{\mathbf{t}\to\mathbf{0}_{\mathbb{R}^n}}\frac{f(\mathbf{p}+\mathbf{t})-f(\mathbf{p})-\phi(\mathbf{t})}{\|\mathbf{t}\|_{\mathbb{R}^m}}=\mathbf{0}_{\mathbb{R}^n}$$

Note 1.2.1. Rigorously, the uniqueness of ϕ is deduced by the reset of the definition.

There exists an $\alpha: \mathbb{R}^m \to \mathbb{R}^n$ with $\lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} \alpha(\mathbf{t}) = \mathbf{0}_{\mathbb{R}^n}$, such that there exists an open subset $U \subseteq \mathbb{R}^m$ with $\mathbf{p} \in U$, such that for those $\mathbf{t} \in \mathbb{R}^n$ with $\mathbf{p} + \mathbf{t} \in U$,

$$\frac{f(\mathbf{p} + \mathbf{t}) - f(\mathbf{p}) - \phi(\mathbf{t})}{\|\mathbf{t}\|_{\mathbb{R}^m}} = \alpha(\mathbf{t}).$$

Assume Definition 1.2.1 holds for a linear mapping λ also, then, similarly, there exists a $\beta: \mathbb{R}^m \to \mathbb{R}^n$ with $\lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} \beta(\mathbf{t}) = \mathbf{0}_{\mathbb{R}^n}$, such that there exists an open subset $U' \subseteq \mathbb{R}^m$ with $\mathbf{p} \in U'$, such that for those $\mathbf{t} \in \mathbb{R}^n$ with $\mathbf{p} + \mathbf{t} \in U'$,

$$\frac{f(\mathbf{p} + \mathbf{t}) - f(\mathbf{p}) - \lambda(\mathbf{t})}{\|\mathbf{t}\|_{\mathbb{R}^m}} = \beta(\mathbf{t}).$$

Let $\gamma = \phi - \lambda$. As ϕ and $-\lambda$ are both linear, then

$$\frac{\gamma(\mathbf{t})}{\|\mathbf{t}\|_{\mathbb{R}^n}} = \alpha(\mathbf{t}) - \beta(\mathbf{t}) \iff \lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} \gamma(\hat{\mathbf{t}}) = \lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} (\alpha(\mathbf{t}) - \beta(\mathbf{t}))$$
$$\iff \gamma(\hat{\mathbf{t}}) = \mathbf{0}_{\mathbb{R}^n}.$$

As **t** is arbitrarily given in $U \cap U'$, and $U \cap U'$ is open in \mathbb{R}^m , the set

$$\left\{ \hat{\mathbf{t}} = \frac{\mathbf{t}}{\|\mathbf{t}\|} : \mathbf{t} \in U \cap U' - \mathbf{p} \right\}$$

gives the all possible directions in \mathbb{R}^m . And as $\gamma(s\hat{\mathbf{t}}) = \mathbf{0}_{\mathbb{R}^n}$, for all $s \in \mathbb{R}$, $\gamma(\mathbf{t}) = \mathbf{0}_{\mathbb{R}^n}$ constantly. This implies $\phi = \lambda$.

Lemma 1.2.1. With the condition in Definition 1.2.1, if f is differentiable at \mathbf{p} , then f is continuous at \mathbf{p} .

Proof. As f is differentiable at \mathbf{p} , by Definition 1.2.1,

$$\lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^n}} \frac{f(\mathbf{p} + \mathbf{t}) - f(\mathbf{p}) - \phi(\mathbf{t})}{\|\mathbf{t}\|_{\mathbb{R}^m}} = \mathbf{0}_{\mathbb{R}^n}$$

for a unique $\phi: \mathbb{R}^m \to \mathbb{R}^n$ (Note 1.2.1). Then there exists an $\alpha: \mathbb{R}^m \to \mathbb{R}^n$ with $\lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} \alpha(\mathbf{t}) = \mathbf{0}_{\mathbb{R}^n}$ such that there exists an open subset $U \subseteq \mathbb{R}^m$ with $\mathbf{p} \in U$ such that for any $\mathbf{t} \in \mathbb{R}^m$ with $\mathbf{p} + \mathbf{t} \in U$,

$$f(\mathbf{p} + \mathbf{t}) - \phi(\mathbf{t}) = \alpha(\mathbf{t}) \|\mathbf{t}\|_{\mathbb{R}^m} + f(\mathbf{p}).$$

Then, we have

$$\lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} (f(\mathbf{p} + \mathbf{t}) - \phi(\mathbf{t})) = \lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} (\alpha(\mathbf{t}) \|\mathbf{t}\|_{\mathbb{R}^m} + f(\mathbf{p}))$$

$$\iff \lim_{\mathbf{t} \to \mathbf{0}_{\mathbb{R}^m}} f(\mathbf{p} + \mathbf{t}) = f(\mathbf{p}).$$

This, implies f is continuous at \mathbf{p} .

Lemma 1.2.2. With the condition in Definition 1.2.1, f is differentiable at \mathbf{p} , iff for any $g: \mathbb{R} \to \mathbb{R}^m$ with g differentiable at 0 and $g(0) = \mathbf{p}$, $f \circ g$ is differentiable at 0.

Proof.

Definition 1.3.1. Let $f: \mathbb{R}^m \to \mathbb{R}^n$, let $\mathbf{u} \in \mathbb{R}^m \setminus \{\mathbf{0}_{\mathbb{R}^m}\}$, and let $\mathbf{p} \in \mathbb{R}^m$. The directional derivative of f along \mathbf{u} at \mathbf{p} is defined as

$$\nabla_{\mathbf{u}} f(\mathbf{p}) := \lim_{t \to 0} \frac{f(\mathbf{p} + t\mathbf{u}) - f(\mathbf{p})}{t},$$

if the limit exists in \mathbb{R}^n .

Lemma 1.3.1. With the conditions in Definition 1.3.1, if $\nabla_{\mathbf{u}} f(\mathbf{p})$ exists at \mathbf{p} , then there exists open subset $U \subseteq \mathbb{R}^m$ with $\mathbf{p} \in U$ such that f is relative continuous on $U \cap \{\mathbf{p} + t\mathbf{u} : t \in \mathbb{R}\}$.

Proof. Let U be an open subset of \mathbb{R}^m .

Let $g: \mathbb{R} \to \mathbb{R}^m$ be defined as

$$g(t) = \mathbf{p} + t\mathbf{u}.$$

Then f is relative continuous on $U \cap \{\mathbf{p} + t\mathbf{u}\}$ iff $f \upharpoonright_{g[\mathbb{R}]}$ is continuous on $U \cap g[\mathbb{R}]$.

Let $h = f \circ g$, then

$$\nabla_{\mathbf{u}} f(\mathbf{p}) = \lim_{t \to 0} \frac{h(t) - h(0)}{t} = \mathbf{v} \in \mathbb{R}^n.$$

Then, there exists an $\alpha: \mathbb{R} \to \mathbb{R}^n$ with $\lim_{t\to 0} \alpha(t) = \mathbf{0}_{\mathbb{R}^n}$, such that

$$h(t) = t\mathbf{v} + t\alpha(t) + h(0).$$

Then we have

$$\lim_{t \to 0} h(t) = \lim_{t \to 0} \left(t \mathbf{v} + t \alpha(t) + h(0) \right)$$

$$\iff \lim_{t \to 0} h(t) = h(0).$$

Thus, h is continuous at 0.

As composition of mappings is associative, we have

$$h = f \circ g \iff h \circ g^{-1} = f \circ g \circ g^{-1}$$
$$\iff h \circ g^{-1} = f \circ (g \circ g^{-1})$$

As g is bijective, $g \circ g^{-1}$ is an identity map on $g[\mathbb{R}]$. Thus, we have

$$h \circ g^{-1} = f \upharpoonright_{q[\mathbb{R}]}$$
.

As h and g^{-1} are continuous, so is $f \upharpoonright_{g[\mathbb{R}]}$. Thus f is relative continuous on $U \cap \{\mathbf{p} + t\mathbf{u} : t \in \mathbb{R}\}$.

Lemma 1.3.2. With the conditions in Definition 1.3.1, let $s \in \mathbb{R} \setminus \{0\}$, then

$$\nabla_{s\mathbf{u}} f(\mathbf{p}) = s \nabla_{\mathbf{u}} f(\mathbf{p})$$

if $\nabla_{\mathbf{u}} f(\mathbf{p})$ exists in \mathbb{R}^n .

Proof. By Definition 1.3.1,

$$\nabla_{s\mathbf{u}}f(\mathbf{p}) = s\lim_{ts\to 0} \frac{f(\mathbf{p} + ts\mathbf{u}) - f(\mathbf{p})}{ts} = s\nabla f(\mathbf{p}).$$

 $\S 1.4 \text{ s}$