Gabarito da Primeira Avaliação à Distância

```
1. (1,0) Escrever as seguintes funções em notação O: n^3 + n \log n; n - 5; \log^2 n; n^8 + 8n!; (n + 1)^n; 7; \sqrt{n}; \log n. Resposta: O(n^3) O(n) O(\log^2 n) O(n!) O(n!) O(n^n) O(1) O(\sqrt{n}) O(1)
```

- 2. (2,0) Para cada item abaixo, responda "certo" ou "errado", justificando em ambos os casos.
 - a. Se a complexidade de melhor caso de um algoritmo for O(f), então o número de passos que o algoritmo efetua no pior caso é $\Omega(f)$.

Resposta: Errado. Sendo a complexidade de melhor caso de um algoritmo $\Theta(g)$, g = O(f) e $f \neq O(g)$ então a complexidade de melhor caso deste algoritmo será $\Omega(g)$ e não $\Omega(f)$.

- b. Se a complexidade de pior caso de um algoritmo for $\Theta(f)$, então o número de passos que o algoritmo efetua, qualquer que seja a entrada é O(f).
 - Resposta: Certo. Se a complexidade de pior caso de um algoritmo for $\Omega(f)$, então o número de passos que o algoritmo efetua, qualquer que seja a entrada, é limitado superiormente por O(f).
- c. Se um limite inferior para um problema P é n^3 , então todo algoritmo para P tem complexidade de pior caso $\Omega(n^3)$.
 - Resposta: Certo. Pela definição de limite inferior, se n^3 é um limite inferior para P, então qualquer algoritmo para P, ótimo ou não, tem complexidade de pior caso $\Omega(n^3)$.
- d. Se dois algoritmos A_1 e A_2 têm complexidades de pior caso $O(n^2)$ e $O(n^3)$, respectivamente, então A_2 não é ótimo.

Resposta: Um algoritmo ótimo tem a menor complexidade de pior caso possível. Como A_2 tem complexidade de pior caso maior que A_1 , então A_2 não pode ser ótimo.

3. (1,5) Escreva um algoritmo recursivo para encontrar os dois maiores elementos de uma lista com n elementos, baseado no seguinte princípio: divide-se a lista ao meio e encontra-se recursivamente os dois maiores elementos das duas metades; a seguir combina-se as duas soluções parciais na solução final.

Resposta:

```
\begin{split} &\text{função } dois\_maiores(i,j) \\ &\text{se } i = j \text{ então} \\ &\text{retornar } (V[i],V[i]) \\ &\text{senão} \\ &\text{se } j = i+1 \text{ então} \\ &\text{retornar } (MAX(V[i],V[j]),MIN(V[i],V[j])) \\ &\text{senão} \\ &meio = (i+j)/2 \\ &(maior1,segMaior1) = dois\_maiores(i,meio) \\ &(maior2,segMaior2) = dois\_maiores(meio+1,j) \\ &\text{aux1:= } MAX(maior1,maior2) \\ &\text{aux2:= } MAX(MIN(maior1,maior2),MAX(segMaior1,segMaior2)) \\ &\text{retornar } (\text{aux1,aux2}) \end{split}
```

4. (1,5) Dentre as estrutura de dados estudadas (levando em conta inclusive se estão ou não ordenadas), indique qual(is) apresenta(m) a menor e maior complexidade(s), respectivamente, para cada operação abaixo. Justifique:

Estruturas de dados estudadas	Complexidade para busca de um elemento
Lista sequencial não ordenada	O(n)
Lista sequencial ordenada	$O(\log n)$
Lista encadeada ordenada	O(n)
Lista encadeada não ordenada	O(n)

Estruturas de dados estudadas	Complexidade para remoção de um elemento
Lista sequencial não ordenada	O(n)
Lista sequencial ordenada	O(n)
Lista encadeada ordenada	O(1)
Lista encadeada não ordenada	O(1)

(a) Busca de um elemento

Resposta: Lista sequencial ordenada. Neste caso, podemos usar busca binária, e o pior caso da busca terá tempo $O(\log n)$. Todas as demais estruturas, no pior caso, necessitarão de um tempo O(n).

(b) Remoção de um elemento (desconsiderando a necessidade de uma busca prévia)

Resposta: Listas encadeadas ordenada e não ordenada. Nestas estruturas, basta alterar os ponteiros vizinhos ao nestas estruturas, basta estrutur

5. (1,5) Seja V um vetor com n posições. Escreva um algoritmo que construa uma lista encadeada L, com nó cabeça, a partir de V de forma que os elementos de L sejam os de V, em ordem inversa. Por exemplo, se V contiver os elementos 1 7 3 5 8, nesta ordem, a lista L deverá conter os elementos 8 5 3 7 1, nesta ordem.

Resposta: Seja V o vetor com n elementos, indexado de 1 a n.

6. (1,5) Sejam L_1 e L_2 duas listas ordenadas, simplesmente encadeadas com nó-cabeça. Apresentar um algoritmo que construa uma lista ordenada contendo os elementos que pertencem exclusivamente a L_2 .

Resposta:

```
Algoritmo:
ocupar(ptlista3)
                                       \% ponteiro para a nova lista L_3
ptlista3 \uparrow .prox := \lambda
                                                 \% ponteiro para a lista L_1
pont1 := ptlista1 \uparrow .prox
pont2 := ptlista2 \uparrow .prox
                                                 \% ponteiro para a lista L_2
ptaux := ptlista3
enquanto pont1 \neq \lambda e pont2 \neq \lambda faça
       se pont1 \uparrow .info = pont2 \uparrow .info então
              pont1 := pont1 \uparrow .prox
              pont2 := pont2 \uparrow .prox
       senão
              se pont1 \uparrow .info < pont2 \uparrow .info então
                     pont1 := pont1 \uparrow .prox
                                        \% o elemento pertence exclusivamente a L_2
              senão
                     incluir\_no(pont2, ptaux)
enquanto pont2 \neq \lambda faça
```

 $incluir_no(pont2, ptoww)$.CompCEDERJ.com.br

```
procedimento incluir\_no(pont2, ptaux)
ocupar(pt)
pt \uparrow .info := pont2 \uparrow .info
pt \uparrow .prox := \lambda
ptaux \uparrow .prox := pt
ptaux := pt
pont2 := pont2 \uparrow .prox
```

7. (1,0) Seja $1,2,\ldots,n$ uma seqüência de elementos que serão inseridos e posteriormente retirados de uma pilha P uma vez cada. A ordem de inclusão dos elementos na pilha é $1,2,\ldots,n$, enquanto a ordem de remoção depende das operações realizadas. Por exemplo, com n=3, a seqüência de operações

"incluir em P, incluir em P, retirar de P, incluir em P, retirar de P, retirar de P"

produzirá a permutação 2,3,1 a partir da entrada 1,2,3. Representando por I,R, respectivamente, as operações de inserção e remoção da pilha, a permutação 2,3,1 pode ser denotada por IIRIRR. De um modo geral, uma permutação é chamada admissível quando ela puder ser obtida mediante uma sucessão de inclusões e remoções em uma pilha a partir da permutação $1,2,\ldots,n$. Assim, por exemplo, a permutação 2,3,1 é admissível. Pede-se:

- (i) Determinar a permutação correspondente a IIRIRRIR, n=4. Resposta: 2 3 1 4.
- (ii) Dê um exemplo de permutação não admissível.Resposta: 4 1 2 3. Após a remoção do elemento 4 (pri

Resposta: 4 1 2 3. Após a remoção do elemento 4 (primeiro a ser removido), o elemento 3 encontra-se no topo da pilha, sendo portanto impossível retirar o elemento 1 na proxima remoção.