Chapter 2 Notes

Computer Science

2 Representing and Manipulating Information

2.1 Information Storage

Example (page 34):

2.1.1 Hexadecimal and Binary

Convert to binary: 0x173A4C

0001 0111 0011 1010 0100 1100

How Hexadecimal works:

Bit representation of each digit:

1:0001 7:0111 3:0011 A:1010 4:0100 C:1100

Each digit in Hexadecimal numbers are grouped into 8 byte parts. When counting bytes you start from the end and group by 4. How binary works:

$$1_{128}1_{64}0_{32}0_{16}$$
 $0_{8}0_{4}1_{2}0_{1} - every \ 8 \ digits \ is \ 1 \ byte$

The next value is the current value x 2. Add the subscripts to get the value.

2.1.2 Words

Virtual addresses can range from $0: 2_w - 1$. They have access to at most 2_w bytes.

2.1.3 Data Sizes

C declaration	32-bit	64-bit
char	1	1
short int	2	2
int	4	4
long int	4	8
long long int	8	8
char* int	4	8
float int	4	4
double	8	8

Sizes (bytes) of different Data Types in C

Computer memory can be read in two different ways. big endian and little endian. Big endian will have to **most significant** byte in the **smallest** memory address. Little endian will have to **least significant** byte in the **smallest** memory address.

Hex value 0x01234567 at address 0x100:

$Big\ Endian$							
	0x100	0x101	0x102	0x103			
	01	23	45	67			
$\begin{array}{ccc} Little \ Endian \\ \texttt{0x100} & \texttt{0x101} & \texttt{0x102} & \texttt{0x103} \end{array}$							
	67	45	23	01			

Which endian a computer uses usually doesn't matter except when they transfer information over a network. Code written for network applications must follow specific conventions for the program to work.

2.1.7 Introduction to Boolean Algebra