Degrees of Motion Freedom (DOF):

- 2D 3 DOF 2 translational, 1 rotational
- 3D 6 DOF 3 translational, 3 rotational

Holonomic - move instantaneously in any space of its DOF

<u>Differential Drive:</u>

- · Two motors, one per wheel
 - o Equal speed for straight-line
 - o Equal and opposite direction for turn on the spot
 - o Other combinations circular motion

Circular Path:

v = velocity of wheel on ground $r = wheel \ radius$

 $\omega = angular \ velocity \ of \ wheel$

Straight line: $v_L = v_R$ Turn on spot: $v_L = -v_R$

Period of motion $\Delta t \ through \ angle \ \Delta \theta$: Left wheel distance moved: $v_L \Delta t$ Left wheel radius of arc: $R - \frac{W}{2}$ Right wheel distance moved: $v_R \Delta t$ Right wheel radius of arc: $R + \frac{W}{2}$

Both wheels subtend same angle so:

$$\Delta \theta = \frac{v_L \Delta t}{R - \frac{W}{2}} = \frac{v_R \Delta t}{R + \frac{W}{2}}$$

$$R = \frac{W(v_R + v_L)}{2(v_R - v_L)}$$
 and $\Delta\theta = \frac{(v_R - v_L)\Delta t}{W}$

Circular Path of a Car-Like Tricycle:

- $\Delta \theta = \frac{v\Delta t}{R_d} = \frac{v\Delta t \sin s}{L}$

Motion in 2D:

· Straight line of distance D

$$\circ \begin{pmatrix} x_{new} \\ y_{new} \\ \theta_{new} \end{pmatrix} = \begin{pmatrix} x + D\cos\theta \\ y + D\sin\theta \\ \theta \end{pmatrix}$$

• Pure rotation of angle α

$$\circ \begin{pmatrix} x_{new} \\ y_{new} \\ \theta_{new} \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta + \alpha \end{pmatrix}$$

• Circular Motion - obtain R and $\Delta\theta$ like to the left

$$\circ \begin{pmatrix} x_{new} \\ y_{new} \\ \theta_{new} \end{pmatrix} = \begin{pmatrix} x + Rsin(\theta + \Delta\theta) - sin\theta \\ y - Rcos(\theta + \Delta\theta) - cos\theta \\ \theta + \Delta\theta \end{pmatrix}$$

Uncertainty in Motion (2D):

- e, f, g are zero mean gaussian terms o Model the deviation from ideal path
- Straight line of distance D

$$\begin{pmatrix}
x_{new} \\
y_{new} \\
\theta_{new}
\end{pmatrix} = \begin{pmatrix}
x + (D + e)\cos\theta \\
y + (D + e)\sin\theta \\
\theta + f
\end{pmatrix}$$

• Pure rotation of angle α

$$\circ \begin{pmatrix} x_{new} \\ y_{new} \\ \theta_{new} \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta + \alpha + g \end{pmatrix}$$

Gearing:

- Gear 1 has radius r_1 and torque t_1
 - exerts force $F = \frac{t_1}{r_1}$
 - has velocity $v = r_1 \omega_1$

• has velocity
$$v=r_1\omega_1$$
• Gear 2 has radius r_2 and torque t_2
• $t_2=r_2F=\frac{r_2}{r_1}t_1$
• torque ratio is radius_2 / radius_1
• $\omega_2=\frac{v}{r_2}=\frac{r_1}{r_2}\omega_1$
• angular v ratio is radius_1 / radius_1

$$\omega_2 = \frac{v}{r_2} = \frac{r_1}{r_2} \omega_1$$

angular v ratio is radius_1 / radius_2

Motor Control:

- P reduces error
- I reduces steady-state error
- D can reduce settling time
- · Ziegler-Nichols method
 - o find a k u that shows oscillation (I=D=0)
 - o k_p = 0.6k_u
 - o k_i = 2k_p/Period_u
 - o k_d = k_p*Period_u / 8

Position Based Path Planning:

$$\bullet \begin{pmatrix} d_x \\ d_y \end{pmatrix} = \begin{pmatrix} W_x - x \\ W_y - y \end{pmatrix}$$

• $\begin{pmatrix} d_x \\ d_y \end{pmatrix} = \begin{pmatrix} W_x - x \\ W_y - y \end{pmatrix}$ • Angle between current location and waypoint

$$\circ \ \alpha = \tan^{-1} \left(\frac{d_y}{d_x} \right)$$

- Python at gives range $-\pi \le \alpha \le \pi$
- Angle to rotate:
 - $\circ \ \beta = \alpha \theta$
 - Range check this for more efficient rot
- After rotating, distance to move forward:

$$\circ D = \sqrt{d_x^2 + d_y^2}$$

Types of Sensors:

• Proprioceptive

- o Self-sensing
- o Internal
- Value of measurement depend only on current and previous internal robot states

• Exteroceptive

- Outward-looking
- o Become *aware* of its environment
- Value of measurement depends on state of robot and world around it

Touch Sensors:

- Binary on/off
- When switch closed, current flows, hit 1
- Bump Detection:
 - o Last line of defense
 - o Needs immediate reaction
 - Evasive maneuver
 - Or just stop current motion
 - Can use a ring of touch sensors, determine direction of collision

Sonar Sensors:

- Emit an ultrasonic pulse and time until echo returns
- Max range a few meters
- Can also use a ring of these

Laser Range Sensors:

- Return an array of depth measurements
 - From a scanning beam
- Sub-mm accuracy
- · Normally bulky and expensive

Servoing:

- Robot controls coupled to a sensor reading
 - Updated regularly in a negative feedback loop
 - (closed control loop)
 - Updating frequency needs to be sufficiently high to avoid oscillating Behaviour from feedback loop

$$\circ \ v = -K_p (v_{desired} - v_{actual})$$

- Get v_{actual} from sensors
 - ☐ This is the direct coupling
- Sensors can sometimes produce 'garbage' results
 - ☐ Can remove this e.g. median filtering
 - Can reduce system responsive if using filtering

Some Examples:

- Follow an object to collide
 - \circ $s = K_p \alpha$
- Avoid a collision with an object

$$\circ \ \ s = K_p(\alpha - \sin^{-1}\frac{R}{D})$$

Probabilistic Sensor Modelling:

- Sensor does not report exact truth
- Need to characterize uncertainty of the sensor
 - Then can build a probabilistic model for it to use
 - $\circ p(z_0|x,y)$
 - Probability of measurement being correct given current state of robot and world

Likelihood Functions:

- Probability of measuring Z given that I'm expecting a ground truth value of M
- Narrow Gaussian band around M
 - With a SMALL constant K added to all probabilities
 - Represents a fixed percentage of garbage results
 - More robust

Probabilistic Robotics

23 November 2018 11:37

Classical AI falls down in real world as data obtained from sensors is inaccurate.
-> need to acknowledge uncertainty and model to extract useful info

Sensor Fusion: combining data from many different sources into useful information

Bayesian Probabilistic Inference:

- Measure of subjective belief
- Bayes' Rule

$$\circ P(X|Z) = \frac{P(Z|X)P(X)}{P(Z)}$$

$$\circ posterior = \frac{likelihood * prior}{marginal \ likelihood}$$

- Represent prior and likelihood as gaussian,
 - When multiplied they produce a tighter band
 - i.e. posterior narrowest

Particle Representation:

- Each particle has attributes + weight
- Σ weights = 1
 - normalized
- Pros
 - Simple
 - o Represent and shape distribution
 - Even multi-peak dist.
- If too many particles
 - o Computationally expensive
- Too little
 - o Poor ability to represent shape of distribution

Particle Filtering:

- 1. Motion Prediction based on proprioceptive sensors
 - a. When robot moves
 - Pass particles through a function which update their position based on the deterministic input and a random component
- 2. Measurement Update based on exteroceptive sensors
 - a. Applying Bayes' Rule to each particle

b.
$$w_{i_{new}} = P(z|x_i) * w_i$$

- i. Posterior = likelihood * prior
- ii. Don't need to worry about P(z) as it will be removed in (3)
- 3. Normalisation
- 4. Resampling

Monte Carlo Localisation

23 November 2018

11:38

MCL

- A Bayesian probabilistic filter
- · 'Survival of the fittest'

Continuous Localisation:

- Tracking
- Given good estimate of last position
- Estimate new position after new measurements
- All particles set to start position with equal weight

Global Localisation:

- 'kidnapped robot problem'
- Environment is known
- But position is completely uncertain
- Find the position
- · Particle state set randomly, all have equal weight

Inferring an Estimate:

•
$$\overline{x} = \sum_{i=1}^{N} w_i x_i$$

MCL/Particle Filter:

- 1. Motion Prediction based on proprioceptive sensors
 - a. Watch out for angular-wrap around
- 2. Measurement Update based on exteroceptive sensors
 - a. Likelihood function sonar
 - b. Also can use a Compass Sensor

3. Normalisation

- a. sum of all weights should add to 1 b. $w_{i(new)} = \frac{w_i}{\sum_{i=1}^N w_i}$

4. Resampling

- a. Generate a new set of N particles with equal
- b. But spatial distribution now reflects probability
- c. Cumulative probability distribution
 - i. Generate a random number R= 0 to 1
 - ii. Then duplicate particle whose cumulative probability range covers R
- d. Can skip (3) and resample directly

<u>Likelihood function - Sonar:</u>

- Have particles current state x
- Have wall coordinates $\left(A_x,A_y\right)$ and $\left(B_x,B_y\right)$ Distance between particle and 'infinite wall'

$$\circ \mathbf{m} = \frac{\left(B_{y} - A_{y}\right)\left(A_{x} - x\right) - \left(B_{x} - A_{x}\right)\left(A_{y} - y\right)}{\left(B_{y} - A_{y}\right)\cos\theta - \left(B_{x} - A_{x}\right)\sin\theta}$$

- Have sonar measurement z
 - o Range check m
- $p(z|m) \propto \frac{x + m\cos\theta}{y + m\sin\theta}$ lies within wall boundaries
 - - Get prob of z given m
 - Modelled by gaussian distribution
 - σ_s sonar s. d.
- Add a very small constant K
 - o Constant probability of garbage value, uniformly distributed across range of the sensor
 - Less aggressive in killing off particles which are unlikely
 - Occasional garbage result won't lead to good particles dying off
- If angle between sonar and normal to wall is too great
 - o Might want to ignore as too large an angle can give

$$\circ \beta = \cos^{-1} \left(\frac{\cos\theta (A_y - B_y) + \sin\theta (B_x - A_x)}{\sqrt{(A_y - B_y)^2 + (B_x - A_x)^2}} \right)$$

(2) with a Compass Sensor:

- · Digital Compass estimate rotation without drift
- measure bearing β relative to north
- $P(\beta|\mathbf{x}_i)$?
- Define γ as bearing of x-axis of frame
- $\beta = \gamma \theta$ if β working perfectly

$$P(\beta|x_i) \propto \frac{e^{-(\beta - (\gamma - \theta))^2}}{e^{-2\sigma_c^2}}$$

• Particles far with theta far from right orientation get low weights

Global Localisation via Recognition:

- Learn location beforehand
 - Take many measurements
 - o Characterize this location
 - Form a 'signature'
- · Robot can only recognise previously learnt locations

Measuring a Location:

- · Place robot at target
- Take measurements
- Raw values signature

Place Recognition:

- Take measurements at new position
- Compare against all signatures
 - \circ New sig H_m
 - \circ Saved sig H_i

$$\circ D_i = \sum_j (H_m[j] - H_i[j])^2$$

- - \circ But $D_i > t$
 - t = threshold
 - So not in unknown location
- · Match this new histogram for all locations
- · Once found best matching depth signature
 - o Shift measured to find orientation at this one location

Probabilistic Occupancy Grid Mapping:

- Building a 'map' when we know location
- Occupancy Grid Map Representation:
 - o Square grid of area we'd like to map
 - o Each cell represents probability that it's occupied by an obstacle
 - $P(O_i)$
 - □ Initialise to 0.5
 - □ 1 black occupied
 - 0 white empty
 - $\circ P(E_i) = 1 P(O_i)$

· Update after sonar measurement

- Get reading d
- o Cells further than d likely to be occupied
- o Cells close than d, and in the direction of d, likely to be empty
 - Width of around 10-15 deg free
- Find log odds update U:
 - o If cell within d and width of sonar
 - Add a constant negative value
 - o If around d, and within sonar
 - Add a constant positive value
 - o Assuming cells occupancies are independent of other cells
- · Thresholds to determine if empty or occupied
- Memory intensive
- Subject to drift due to localisation uncertainty

• Bayesian Update of Occupancy

$$P(O_i|Z) = \frac{P(Z|O_i)P(O_i)}{P(Z)}$$

$$P(E_i|Z) = \frac{P(Z|E_i)P(E_i)}{P(Z)}$$

$$\circ P(O_i|Z) + P(E_i|Z) = 1$$

So can normalize

$$\circ \frac{P(O_i|Z)}{P(E_i|Z)} = \frac{P(Z|O_i)P(O_i)}{P(Z)} \frac{P(Z)}{P(Z|E_i)P(E_i)}$$

$$\circ \frac{P(O_i|Z)}{P(E_i|Z)} = \frac{P(Z|O_i)P(O_i)}{P(Z|E_i)P(E_i)}$$

$$\circ$$

$$\circ \frac{P(O_i|Z)}{P(E_i|Z)} = \frac{P(Z|O_i)P(O_i)}{P(Z|E_i)P(E_i)}$$

○ Odd notation:
$$o(A) = \frac{P(A)}{P(\bar{A})}$$

$$\circ o(O_i|Z) = \frac{P(Z|O_i)}{P(Z|E_i)} * o(O_i)$$

$$\circ \ln o(O_i|Z) = \ln \left(\frac{P(Z|O_i)}{P(Z|E_i)} \right) + \ln o(O_i)$$

- Can now update by just adding
- Prob 0.5 = 0 log odds

-	Logs odds	Prob	
	>0	>0.5	
	<0	<0.5	

- Usually cap log odds +-

SLAM

23 November 2018 11:3

When to use SLAM:

- autonomous
- no prior map
- no artificial beacons or GPS
- need to determine robot's location

Incrementally build a map.

consisting of natural scene **features**Data Association - matching features
distinctive

recognisable from different viewpoints

Localise with respect to the map.

Main assumption:

- world is static
- probabilistic estimation to the features
- joint distribution of robot and mapped world
- features are added, so dimension of this distribution will grow
 - o represent as a joint Gaussian
 - Updates made via Extended Kalman Filter
- State Vector and Covariance Matrix
 - o SV robot state is first element
 - o SV additional element for features
 - CM square matrix covariance between all elements

SLAM Process:

- a. Measure a point A
 - i. this has some uncertainty
 - ii. Robot relative position certain
- b. Robot moves to X
 - i. robot position on the grid in uncertain
- c. Robot measures points B and C
 - i. they inherit robots uncertainty
 - ii. plus measurement uncertainty
- d. Robot moves back to starting point
 - i. robot position uncertainty grows more
- e. Robot re-measures A
 - i. mini loop closure
 - ii. Uncertainty for all shrink
- f. Robot re-measures B
 - i. Uncertainty for all shrink

Limitations of Metric SLAM:

Limits to small domains due to:

- computational intensive for large joint PDFs
- bad at large distances
 - growth in uncertainty
- data association hard with large uncertainty

Large Scale SLAM:

- metric/topological approximation of full metric
- Place Recognition perform loop closure
- Map Relaxation optimise a map after loop closure
- Loop closure detection:
 - save invariant signatures at regular intervals
 - compare new measurements vs these saved signatures
 - if loop found
 - add constraint to graph
- Relaxation
 - o pose graph optimisation
 - set of node positions which are maximally probable s.t.
 - metric constraints
 - topological constraints

Planning

05 December 2018 14:23

- Map of environment known
- Plan a path around a set of obstacles to reach a target

<u>Local Planning - Dynamic Window Approach:</u>

- for each possible motion the robot can make in time dt
- calculate cost/benefit on distance from target and obstacles
 - \circ if making that movement for **longer time** au
- choose best and execute for dt, then repeat

DWA for Differential Drive:

- can adjust v_L and v_R up to a max value
- 9 possibilities, either can go up, down or stay same
- Use formulas to calc position of robot for all possibilities

Benefit:

•
$$D_F = \sqrt{(T_x - x)^2 + (T_y - y)^2} - \sqrt{(T_x - x_{new})^2 + (T_y - y_{new})^2}$$

• Benefit: $B = W_B * D_F$

Cost:

- subtracted from benefit
- only closest obstacle considered, found by searching

•
$$C = W_C * \left(D_{safe} - \left(\sqrt{(O_x - x_{new})^2 + (O_y - y_{new})^2} - r_{robot} - r_{obstacle} \right) \right)$$

• $D_{safe} - distance \ to \ stay \ away$

Decision:

- choose path with $\max B C$
- execute motion for dt

Tuning:

- PID same for both
- · Feed-forward and minPWM separately
 - o Feed-forward compensate for weaker motor
 - i.e. if drifting left heavily
 - □ Right stronger than left
 - ◆ Increase left motor FF

Moving in straight line:

- Think of wheel motion
- · Convert distance into revolutions of wheel
- $revs = \frac{aisi}{2\pi r_w}$
- angle to increase: $2\pi * revs$

$$\circ \quad angle = \frac{dist}{r_{vv}}$$

To move forward:

- Increase angle for both wheels
 - increaseMototAngeReferences(motors, [angle, angle])

To move backward:

- · Decrease angle for both wheels
 - \circ increaseMototAngeReferences(motors, [-angle, -angle])

•
$$\begin{bmatrix} \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 & \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{y})^2 \\ \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 (y_i - \bar{y})^2 & \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 \end{bmatrix}$$

Turn on the spot by angle β :

- Think of robot spinning like a wheel
- Radius of robot = half of wheel base = R
- Find distance moved
- \circ D = revs of robot * circumference of turning circle $\circ \ D = \frac{\beta}{2\pi} * 2\pi R = \beta R$ • Translate this into revolutions for the wheel $\cdot \ revs_w = \frac{dist}{2\pi r_w} = \frac{\beta R}{2\pi r_w}$ • Convert this into angle to change wheel by

- $\alpha = 2\pi * revs_w = 2\pi * \frac{\beta R}{2\pi r}$
- $\alpha = \frac{\beta R}{r_w} = \frac{\text{angle to turn robot}}{\text{wheel radius}} * \frac{\text{robot radius}}{\text{wheel radius}}$

Increase for direction we want to go, decrease the opposite To turn right:

- increaseMototAngeReferences(motors, [-angle, angle])
 - increaseMototAngeReferences(motors, [angle, angle])

Investigating Sensors

30 November 2018 15:1

Touch Sensors:

In while loop

- 1. Read touch sensor values
- 2. First if any hit
 - Stop movement
- Else
 - Scan again (top loop)
- 3. If both hit
 - o Turn back, left or right
- Else if left hit
 - o Reverse, turn right
- Else if right hit
 - o Reverse, turn left
- 4. Continue moving forward
 - (maintain speed)

Use time.sleep(x) between different movements

Sonar Sensor:

- 1. Maintain forward distance
 - o 30 cm distance to wall in front
 - o Based on sonar reading, either move forward or backward
 - o If further away from desired value, move quicker
 - o As you get closer, move slower
 - $\circ velocity = -K_p(30 sonar_{dist})$
 - Choose K_p for smooth motion experiment

2. Follow Wall:

- 30cm distance to wall on right (or left)
- o If far away, left should speed up and right slow down
 - Turn right, towards wall
- o If too close, left should slow down and right speed up
 - Turn left, away from wall
- \circ base_v: avg speed to maintain when 30cm from wall
- $\circ \ \textit{error} = -K_p \big(30 sonar_{dist} \big)$
- $\circ left_v = base_v error$
- \circ right_v = base_v + error
 - Change sign for maintain to the left

Probabilistic Motion and Sensing

02 December 2018 13:37

Implementing Motion Prediction:

- Create pre-allocated arrays in Python
 - Size = NUMBER_OF_PARTICLES
- Choose suitable e, f, g values
 - For 2D motion straight angle and pure rotation
 - e and f should give a 'banana' shape at end of line
 - Usually e>f
 - In Python
 - $random.guass(mu, \sigma)$
 - Picks a random number

Sonar Investigation:

- Around 10% garbage results
 - o So median filter over 10
- After about 45 degrees, Sonar fails to give accurate reading
- No real systematic error
- Only useable form around 20cm
 - o Very bad lower than that
 - But systematic error
 - □ Not random
 - Max range ~2m

Implementing calculate_likelihood:

- For all particles
 - $\circ w_i *= calc_likelihood(x, y, \theta)$
- 1. Account for z
 - a. Placement away from center
 - b. Systematic errors
- 2. $c = \cos(\theta)$
 - $s = \sin(\theta)$
 - a. Check for either c or s == 0
 - b. Calculate 'm' for all walls
- 3. Find best m
 - a. Greater than 0
 - b. Smaller than rest
 - c. Fits inside wall boundaries
 - i. sort boundaries first
 - ii. (check for small > larger)
- 4. Case:
 - a. No feasible m return 0
- 5. Read of gaussian function
 - a. Mean = m
 - b. Sd = s.d. of sonar
- 6. Add K
 - a. Return value

Implementing Resampling:

- 1. Cumulative weight array
 - a. cw[0] = w[0]
 - b. for i in range(1, N):

$$cw[i] = cw[i-1] + w[i]$$

- 2. New temp arrays
 - a. For each state variable
 - b. Each of size N
- 3. Select N new particles
 - a. Get random number
 - b. for j in range(N):

if
$$\frac{cw[j] - rand \ge 0}{clone this particle}$$

break

- 4. Overwrite old arrays with temp arrays
- 5. Give all particles equal weights

$$w[i] = 1/N$$

Navigate to Waypoint:

While not at Waypoint (X,Y):

- $X_{diff} = X estimate_x$
- $Y_{diff} = Y esttimate_y$

•
$$dist = \sqrt{X_{diff}^2 + Y_{diff}^2}$$

- $angle_{dest} = atan2(Y_{diff}, X_{diff})$ ○ Returns angle $-\pi \le \theta \le \pi$
- $angle_{rot} = angle_{dest} estimate_{\theta}$
- 1. Rotate
 - a. Update particles angles
 - b. Add $angle_{rot} + error$
 - c. Update $estimate_{\theta}$
- 2. Move forward
 - a. Update particles
- 3. Measurement Update
 - a. Read Sonar
 - b. Calculate likelihood and update weights for all particles
 - c. Normalise
 - d. Resample
- 4. Update estimate of robot position

Place Recognition

02 December 2018 14:55

Circular Scan:

for loop

- take reading
- spin ϕ to left

$$\circ$$
 use $left_{90}\left(\frac{\phi}{\frac{\pi}{2}}\right)$

Compare Signatures:

• sum of differences squares

Make Depth Histograms:

- create array of n bins
- v=floor(depth/bin size)
- histogram[v]+=1

Learn Location:

- perform circular scan
- storing measurements into array(n)
- allocate unique idx to signature

Recognise Location:

- 1. Circular scan
- 2. make depth histograms for measurement and known
- compare these
- find best match
- 3. find rotation ->

Angular Shift:

- shifted = []
 - o init to angle vs depth
- for len(shifted)
 - o compare shifted and predicted
 - o if dist < best_dist
 - update best_dist
 - angle = i * degrees per shift
 - o right shift shifted
- if $angle > \pi$
 - \circ angle $-=2\pi$
- return angle