4.5 LINEAR APPROXIMENT

THE TANGEST LIVE OF A FUNCTION AT SOME POINT (a, f(a)) IS CALLED THE LINEARIZATION OF THE FUNCTION L(K).

$$Y-Y.=m(x-x_1)$$

 $L(x)-f(a)=f(a)(x-a)$
or $L(x)=f(a)+f'(a)(x-a)$

EXAMPLE $\rho.229$ FIND L(x) AT x=2

$$L(x) = f(a) + f'(a)(x-a) \qquad f(z) = 2^3 - 2 \cdot 2 + 3 = 7$$

$$L(x) = f(a) + f'(a)(x-a) \qquad f'(a) = 3x^2 - 2$$

$$L(x) = f(2) + f'(2)(x-2)$$
 $f'(x) = 3x^2 - 2$

$$L(x)=7+10(x-2)$$
 $f'(2)=3\cdot2^2-2=10$

OR
$$L(x) = 10x - 13$$
 $cf(a+.1) = L(a+.1)$?

$$f(x)=x^{2}-2x+3$$

$$= 8.061$$

$$= 8.061$$

$$= 8.061$$

$$= 8.061$$

4.5 CONTINUED - LINEAR APPROXIMATIONS (64)
NOTE: NEAR $(a, f(a))$ $f(x) \approx L(x)$ (APPROXIMATELY EQUAL)
IN OTHER WORDS, NEAR THE POINT OF TANGELLY (a, f(a)), THE FUNCTION f(x) AND THE TANGELT LINE (L(x)) YIELD APPROXIMATELY EQUAL Y VALUES.
THE FARTHER YOU GET FROM (a, f(a)), THE WORSE IS YOUR ESTIMATE. (a, f(a)) LIKE P.230+27-30 EXAMPLE SEE PICTURE P.230
$f(x)=x^{4}$ $Q(=1)$ $dx=-1$ $L(x)=f(a)+f'(a)(x-a)$ $f(1)=1^{4}=1$ $L(x)=f(1)+f'(1)(x-1)$ $f(1)=1^{4}=1$
$L(x) = 4x - 3 \qquad L(1.1) = 4(1.1) - 3 = 1.4$ $L(x) = 4x - 3 \qquad L(1.1) = 4(1.1) - 3 = 1.4$ $But 1.1^4 = 1.4641$ $\Delta = 14641 - 1 = 4641$ $B) \Delta f = 1.4 - 1 = .4$
c) ERROR = $\Delta f - df$ = .46414 = .0641 HOMEWORK P. 230 -> 27-30

EXAMPLE p.230 = 34 5=6x2 ESTIMATE CHANGE IN S. = $12 \times dS = 12 \times dx$ dS = 120. dxFROM p. 230 = 39 EXAMPLE D=10 dC=2 C=TD dD= dC dD= 2 IN. dC=TT dA=ID dD dA= 11/0. = = 10 inches 2 EXAMPLE 14 0ES.9 HOW ACCURATELY SHOULD YOU MEASURE THE SIDE OF A SQUARE TO MAKE SURE AREA IS WITHIN 2%. dA = 25 dA = 25 ds _ ±.02A = 25 ds ±.025°=25d5 d5= ±.025° d5=±.015 HONEWORK P. 230-231-33, 35, 36, 38, 40 OVERHEAD 65 OPTIONAL