Приклад. $\mathfrak E$ данні про споживання електроенергії жителями міста за дев'ять місяців

місяць	об'єм споживання електроенергії жителями міста	знаки відхилень
січень	4.5	-
лютий	5.2	+
березень	5.3	+
квітень	6.7	+
травень	6.1	-
червень	6.4	+
липень	5.8	-
серпень	5.0	-
вересень	5.3	-

Далі будуємо по отриманим данним знаків відхилення ряд їх розподілу:

Вид тенденції	Довжина сприятливої тенденціїї, d_i	Частота, c_i
	0	2
- + -	1	1
-++-	2	0
-+++-	3	1

Розрахуємо середню довжину сприятливої тенденції

$$\overline{d} = \frac{\sum c_i d_i}{\sum C_i} = \frac{0 \cdot 2 + 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 1}{2 + 1 + 0 + 1}.$$

Інтенсивність переривання сриятливої тенденциї (λ) така:

$$\lambda = \frac{1}{d} = \frac{1}{1} = 1.$$

Ймовірність спостереження сприятливої тенденції буде такою:

Період збереження сприятливої тенденції	t	λ	$-\lambda t$	ймовірність сприятливої тенденциї, $e^{-\lambda t}$
жовтень	1	1	-1	0.368
листопад	2	1	-2	0.135
грудень	3	1	-3	0.049

Отримали, що ймовірність зростання споживання електро
енергії жителями міста в жовтні в порівнянні з вереснем дорівню
є $0.368\,$

Оцінка точності прогнозу

Оцінка точності прогнозу є важливим етапом прогнозування. Для оцінки точності прогнозу використовується різниця між прогнозним значенням \hat{y}_t^* і фактичним y_t значенням показника. Цей підхід можна використовувати в таких випадках:

- період випередження відомий і відомі фактичні значення прогнозного показника:
- будується ретроспективний прогноз, тобто розраховуються прогнозні значення показника для періоду часу, для якого є фактичні значення.

В цьому випадку інформация ділиться на дві частини в співвідношенні 2/3 до 1/3. Перша частина значень рівнів використовується для визначення параметрів моделі прогнозу. Друга частина інформації служить для розрахунку оцінок прогнозу.

Розглянемо деякі показники точності прогнозу:

1. Абсолютна похибка прогнозу

Вона визначається якрізниця між емпіричними і прогнозними значеннями показника за формулою:

$$\Delta a = y_t - \hat{y_t^*},$$

де y_t - фактичні значення показника,

 \hat{y}_t^* - прогнозні значенния показника.

2. Відносна похибка прогнозу

Вона розраховується двома способами:

$$\Delta b = \frac{\Delta a}{y_t} = \frac{(y_t - \hat{y}_t^*)}{y_t} \cdot 100\% \text{ i}$$

$$\Delta b = \frac{\Delta}{\hat{y}_t} = \frac{(y_t - y_t^*)}{\hat{y}_t} \cdot 100\%$$

Зазначимо, щоабсолютна і відносна похибки прогнозу ϵ оцінкою точності одиничного прогнозу, що не да ϵ можливості говорити про їх важливість в оцінці всієї прогнозної моделі.

3. Тому на практиці інколи визначають не похибку прогнозу, а коефіцієнт якості прогнозу за формулою:

$$K = rac{C}{C+H}$$
, де

C - кількість прогнозів, співпавших з фактичними значеннями,

H - не співпавших.

Якщо K=1, то це означає, що всі значення прогнозних і вактичних значень співпадають і модель на 100% описує явище.

4. Середній показник точності прогнозу

Цей показник розраховується так:

$$\overline{\Delta} = \frac{\sum_{i=1}^{n} \Delta t}{n} = \frac{\sum_{i=1}^{n} |y_t - \hat{y}_t|}{n},$$

де n - довжина частини або всього ряду, на якому зрівнюються прогнозні і фактичні рівні. Показник показує узагальнену характеристику відхилень фактичних і прогнозних значень показника.

5. Середня квадратична похибка прогнозу

Вона розраховується таким чином:

$$\delta = \sqrt{\frac{\sum_{t=1}^{n} (y_t - \hat{y}_t^t)^2}{n}}$$

Між середньою абсолютною і середньою квадратичною похибками прогнозу інує таке співвідношення:

$$\delta = 1.25\overline{\Delta}$$
.

Недоліком двох останніх параметрів є їхня суттєва залежність від масштабу виміру рівнів.

6. Середня похибка впроксимації

Щоб звільнитися від масштабу вікористовують середню похибку апроксимації

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{(y_t - \hat{y}_t^t)}{y_t} 100\%.$$

Інтерпритація оцінки точності прогнозу за цим показником представлена в таблиці:

MAPE	Інтерпритація точності			
< 10	висока			
$10 \div 20$	добра			
$20 \div 50$	задовільна			
> 10	незадовільна			

7. Коефіціент невідповідності

Цей показник був запропонований Г.Тейлом і має декілька модифікацій:

$$KH_1 = \sqrt{\frac{\sum (\hat{y}_t^* - y_t)^2}{\sum_{t=1}^n y_t^2}}, KH_2 = \sqrt{\frac{\sum_{t=1}^n (\hat{y}_t^* - y_t)^2}{\sum_{t=1}^n (y_t - \overline{y}_t)^2}},$$

де \overline{y} - середній рівень елементів ряду.