Report 3

Advay Vyas

September 18, 2025

Contents

Introduction			2
Data processing			2
Load and preprocess data (borrowed from other file) $\ \ldots \ \ldots \ \ldots \ \ldots$	 	 	 2
Support Vector Regression (SVR)			4
Theoretical background	 	 	 4
Implementation	 	 	 4
Bayesian Additive Regression Trees			4
Theoretical background	 	 	 4
Implementation	 	 	 4
Elastic Net / LASSO / Ridge			6
Theoretical background	 	 	 6
Implementation	 	 	 6
Conclusion			6
library(dplyr)			
library(tidyverse) library(ggplot2)			
library(lubridate)			
library(patchwork)			
library(corrplot)			
library(mosaic) library(moderndive)			
library(effectsize)			
library(tidyr)			
library(caret)			
library(purrr)			
library(fastDummies)			
library(GGally)			

Introduction

This week, I plan to use the methods I mentioned last week to estimate the WIS differences. I'll process and prepare the data and then apply several models to try and see which work best.

Data processing

Load and preprocess data (borrowed from other file)

```
df <- readr::read_csv("GBQR_diff_wis.csv", show_col_types = FALSE)

df_season <- df %>%
    filter(season == "2023/24")

cor_matrix = cor(df[, 4:ncol(df_season)])
# corrplot.mixed(cor_matrix, tl.col = "black", tl.pos = "lt", addgrid.col = TRUE, upper="color", lower=corrplot(cor_matrix, tl.col = "black", tl.pos = "lt", addgrid.col = TRUE, type = "upper", method = "ell")
```


Support Vector Regression (SVR)

Theoretical background

Implementation

Bayesian Additive Regression Trees

Theoretical background

Implementation

Feature Importance

BART Variables by Importance


```
pred = predict(bart_fit, newdata = df_season)
bart_predictions = as.data.frame(t(apply(pred, 2, quantile, probs = c(0.025, 0.975))))
colnames(bart_predictions) = c("ci_low", "ci_high")

bart_predictions$estimate = (bart_predictions$ci_low + bart_predictions$ci_high) / 2
bart_predictions$observed = df_season$diff_wis_h3

coverage_95 = mean(
   bart_predictions$observed >= bart_predictions$ci_low & bart_predictions$observed <= bart_predictions$ci_high, na.rm = TRUE
)</pre>
```

Observed vs Predicted with 95% Prediction Intervals

95% coverage = 68.2% (n=173)

Elastic Net / LASSO / Ridge

Theoretical background

Implementation

Conclusion