MA 562 - Introduction to Differential Geometry and Topology

Introduction to Smooth Manifolds by John M. Lee

Student: Ralph Razzouk

Homework 13

Problem 16-4

Suppose M is an oriented compact smooth manifold with boundary. Show that there does not exist a retraction of M onto its boundary. [Hint: if the retraction is smooth, consider an orientation form on ∂M .]

Solution. Suppose, for contradiction, that there exists a smooth retraction $r: M \to \partial M$. Let ω be a volume form on M such that $\operatorname{supp}(\omega)$ is compact. By the properties of an orientation form, ω is a top-dimensional form on M. Define $\eta = r^*\omega$, the pullback of ω by the retraction r. Note that η is a top-dimensional form on ∂M . Since r(x) = x for all $x \in \partial M$, we have $\eta = \omega|_{\partial M}$. Now, consider the integral $\int_{\partial M} \eta$. By the pullback property and the definition of r, we have

$$\int_{\partial M} \eta = \int_{\partial M} r^* \omega$$
$$= \int_{M} (r_* \eta)$$
$$= \int_{M} 0.$$

However, this contradicts the fact that ω is a volume form and thus has a non-zero integral over M. Therefore, no such smooth retraction can exist.

Problem 16-5

Suppose M and N are oriented, compact, connected, smooth manifolds, and $F,G:M\to N$ are homotopic diffeomorphisms. Show that F and G are either both orientation-preserving or both orientation-reversing. [Hint: use Theorem 6.29 and Stokes's theorem on $M\times I$.]

Solution. Let $H: M \times I \to N$ be a homotopy between F and G, where I = [0,1]. Consider the map $\det(dH): M \times I \to \mathbb{R}$. By Theorem 6.29, $\det(dH)$ is continuous. Define

$$\alpha(t) = \int_{M} \det(\mathrm{d}H_t) \; \mathrm{d}V_M,$$

where $H_t(x) = H(x,t)$ and dV_M is the volume form on M. By Stokes's theorem and the fact that M is compact, $\alpha(t)$ is constant for all $t \in I$.

- At t = 0, $\alpha(0) = \int_M \det(dF) dV_M$, the sign of which determines whether F preserves or reverses orientation.
- At t = 1, $\alpha(1) = \int_M \det(dG) dV_M$, the sign of which determines the orientation of G.

Since $\alpha(t)$ is constant, $\det(dF)$ and $\det(dG)$ must have the same sign.

Therefore, F and G are either both orientation-preserving or both orientation-reversing.

Problem 16-6

The Hairy Ball Theorem: There exists a nowhere-vanishing vector field on \mathbb{S}^n if and only if n is odd. ("You cannot comb the hair on a ball.") Prove this by showing that the following are equivalent:

- (a) There exists a nowhere-vanishing vector field on \mathbb{S}^n .
- (b) There exists a continuous map $V: \mathbb{S}^n \to \mathbb{S}^n$ satisfying $V(x) \perp x$ (with respect to the Euclidean

dot product on \mathbb{R}^{n+1}) for all $x \in \mathbb{S}^n$.

- (c) The antipodal map $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is homotopic to $\mathrm{Id}_{\mathbb{S}^n}$.
- (d) The antipodal map $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is orientation-preserving.
- (e) n is odd.

[Hint: use Problems 9-4, 15-3, and 16-5.]

Solution. The equivalence follows from several key observations:

• (a) \Longrightarrow (b): Suppose there exists a nowhere-vanishing vector field V on \mathbb{S}^n . Then for each $x \in \mathbb{S}^n$, we have $V(x) \neq 0$. Define a map

$$V': \mathbb{S}^n \to \mathbb{S}^n,$$

$$x \mapsto V'(x) = \frac{V(x)}{|V(x)|}.$$

Then V'(x) is a unit vector for all $x \in \mathbb{S}^n$, and since V(x) is tangent to \mathbb{S}^n at x, we have $V'(x) \perp x$ for all $x \in \mathbb{S}^n$.

• (b) \Longrightarrow (c): Suppose there exists a continuous map $V: \mathbb{S}^n \to \mathbb{S}^n$ satisfying $V(x) \perp x$ for all $x \in \mathbb{S}^n$. Define a homotopy

$$H: \mathbb{S}^n \times [0,1] \to \mathbb{S}^n,$$

 $(x,t) \mapsto H(x,t) = \cos(\pi t)x + \sin(\pi t)V(x).$

Then H(x,0) = x and $H(x,1) = -x = \alpha(x)$ for all $x \in \mathbb{S}^n$. Moreover, since $V(x) \perp x$, we have |H(x,t)| = 1 for all $(x,t) \in \mathbb{S}^n \times [0,1]$, so H is a homotopy between $\mathrm{Id}_{\mathbb{S}}^n$ and α .

- (c) \Longrightarrow (d): Suppose α is homotopic to $\mathrm{Id}_{\mathbb{S}}^n$. Then the induced maps on homology groups are equal, *i.e.* $\alpha_* = \mathrm{Id}_{H_n(\mathbb{S}^n)}$. Since $H_n(\mathbb{S}^n) \cong \mathbb{Z}$, this means that α_* acts as multiplication by some integer k on $H_n(\mathbb{S}^n)$. Since α is a homeomorphism, it must be that $k = \pm 1$. If k = 1, then α is orientation-preserving.
- (d) \implies (e): Suppose α is orientation-preserving. Then the induced map on the top homology group is multiplication by 1. In particular, this means that the degree of α is 1. Since the degree of α is also equal to $(-1)^{n+1}$, we must have n odd.
- (e) \Longrightarrow (a): Assume n is odd. We will construct a nowhere-vanishing vector field on \mathbb{S}^n . Define $V: \mathbb{S}^n \to \mathbb{R}^{n+1}$ by

$$V(x_1, \ldots, x_{n+1}) = (-x_2, x_1, -x_3, x_2, \ldots, (-1)^{n+1}x_n, x_{n-1}, (-1)^{n+2}x_{n+1}).$$

We need to verify two properties:

- -V(x) is tangent to \mathbb{S}^n at x.
- $-V(x) \neq 0$ for all $x \in \mathbb{S}^n$.

The first property follows from the construction. For the second, note that the coordinates of V(x) have different signs, ensuring a non-zero vector.

Thus, when n is odd, a nowhere-vanishing vector field exists on \mathbb{S}^n .

Therefore, we have showed that the statements are equivalent.