IMPORTING THE DEPENDENCIES

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans

DATA COLLECTION AND ANALYSIS

loading the data from csv file to Pandas Dataframe
customer_data = pd.read_csv('/content/Mall_Customers.csv')

first 5 rows in dataframe
customer_data.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

finding the number of rows and columns
customer_data.shape

(200, 5)

getting some information about the dataset
customer_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object

2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

customer_data.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

checkinhg for missing values
customer_data.isnull().sum()

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

CHOOSING THE ANNUAL INCOME COLUMN AND SPENDING SCORE COLUMN - ONLY RELEVANT ATTRIBUTES

X = customer_data.iloc[:,[3,4]].values
print(X)

[[15 39] [15 81] [16 6] [16 77] [17 40]

[17 76]

[18 6] [18 94]

[19 3]

[19 72]

[19 14] [19 99] 20 **1**5] 20 77] 20 13] 79] 20 [21 35] 66] 21 [23 29] [23 98] [24 35] 24 73] [25 5] [25 73] [28 14] 28 82] 28 32] 28 61] [29 31] 29 87] 30 4] 30 73] 33 4] 33 92] 33 14] 33 81] 17] [34 34 73] 37 26] 37 75] [38 35] 38 92] 39 36] 39 61] 39 28] 39 65] [40 55] 40 47] 40 42] 40 42] [42 52] 42 60] [43 54] [43 60] [43 45] 43 41] 50] [44

CHOOSING THE NUMBER OF CLUSTERS

[44

46]

WCSS - WITHIN CLUSTER SUM OF SQUARES

```
# FINDING WCSS VALUE FOR DIFFERENT NUMBER OF CLUSTERS
```

```
wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init='k-means++',random_state=42)
    kmeans.fit(X)

    wcss.append(kmeans.inertia_)

# Plot an Elbow graph

sns.set()
plt.plot(range(1,11),wcss)
plt.title('The Elbow Point Graph')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


OPTIMUM NUMBER OF CLUSTERS = 5 as significant drop occurs at x=5

Training the Clustering Model

VISUALIZING ALL THE CLUSTERS

```
5 Clusters - 0,1,2,3,4

# PLOTTING ALL THE CLUSTERS AND THEIR CENTROIDS

plt.figure(figsize=(8,8))
plt.scatter(X[Y==0,0], X[Y==0,1],s=50,c='green',label='Cluster 1')
plt.scatter(X[Y==1,0], X[Y==1,1],s=50,c='red',label='Cluster 2')
plt.scatter(X[Y==2,0], X[Y==2,1],s=50,c='yellow',label='Cluster 3')
plt.scatter(X[Y==3,0], X[Y==3,1],s=50,c='violet',label='Cluster 4')
plt.scatter(X[Y==4,0], X[Y==4,1],s=50,c='blue',label='Cluster 5')

# plot the centroids
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100,c='cyan',label='plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('SpendingScore')
plt.show()
```


✓ 0s completed at 4:58 PM

×