Shourya Verma

15 Schauenburgstrasse • Dossenheim, Germany 69221

Phone: +49 015223753882

E-Mail: shourya.verma@stud.uni-heidelberg.de; shourya10verma@gmail.com;

Objective

I am highly motivated to pursue a career in artificial intelligence and machine learning-based methods in niche application areas in healthcare. With my academic preparedness at Heidelberg University, and internship experiences, my long-term goal is to blend high-end software development, artificial intelligence, and quantum computation for problems concerning medical imaging, bioinformatics, and life sciences.

Education and Skills

University of Glasgow, United Kingdom

BSc (4-year program)
2:1, Overall B, 7.5/10 GPA

Batch of 2021

BSc in Computing Science and Physics Honors

MSc (2-year program)

Batch of 2023

MSc in Scientific Computing

Heidelberg University, Germany

Specialization: Machine Learning

Application Area: Bioscience

Skills: Python, Scikit-learn, Tensorflow, Pytorch, Keras, HTML, CSS, Java, JavaScript, NodeJS, Android Studio, Django, MongoDB, Dart, Flutter, Docker, Kubernetes.

Research Experience

Master Thesis, Machine learning for Bioimage Analysis

EMBL Heidelberg

Apr-Sep 2023

Working on self-supervised learning methods for panoptic segmentation and domain adaptation in biomedical imaging applications.

Student Assistant, Image Analysis and Learning

IWR Heidelberg

Nov-Apr 2023

Worked on optimizing machine learning algorithm behind UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction) using autoencoder and contrastive-loss based methods.

Research Intern, Intelligent Medical Systems

DKFZ Heidelberg

Apr-Oct 2022

Worked on improving generalizability of machine learning based tissue classification by generating domain invariant representation of hyperspectral image data.

Research Intern, Machine Learning and Database

NHS Golden Jubilee

Jun-Aug 2021

Extracting patient data from clinical letters and storing them into a NOSQL Database. Data predicted mortality and hospitalization risk in patients using deep learning model. This intelligent database assists clinicians to make informed decisions and provide care to patients in a personalized manner.

Course Assistant, Deep Learning

Courserd

Jun-Aug 2021

Course Assistant under Dr Fani Deligianni's supervision, developing MOOC 'Informed Clinical Decision Making using Deep Learning' for <u>Coursera</u>. <u>coursera.org/specializations/clin-decision-deep-learning</u>

Bachelor Thesis, Machine Learning

University of Glasgow

2020-2021

- Machine Learning to Study Hadron Particles
- Machine Learning to Detect Arrhythmia Based on ECG Data Interpretability

Technology Intern, Software Development

Tata Consultancy Services

Jun-Jul 2020

Learned about different roles in software development life cycle and delivery models. Researched on UK and Europe Fintech Start-ups, covering different technological themes and trends in the IT industry.

Student Project, Software Engineering

Obashi Technology

2019-2020

University Team Project on developing a complex AR based software to view dataflow between two machines/nodes using Unity, Android Studio, WAMP. Awarded **best project** by Obashi Technology.

Technology Intern, WebApp Development

IIT Kanpur

Jun-Jul 2019

Worked as a full-stack web app developer on a Journal Name sorting and storing application using MongoDB, NodeJS and JavaScript.

Research Intern, Chemistry of Complex Systems

University of Frankfurt

Jun-Jul 2018

Worked on computational aspects in photo-physics, and calculation of two-photon absorption cross-section of phenylamine dyes.

Research Intern, Biological Sciences

IIT Kanpur

2016-2017

The work involved understanding the effects of nanomaterials on plant growth under environmental stress and biomaterial-based charge storage and supercapacitors. My contributions led to **co-authorship in five published research papers** in peer-reviewed international journals.

Publications and Preprints

https://www.researchgate.net/profile/Shourya-Verma-2/publications

1. Development of a Semi-Automated Database for Adult Congenital Heart Disease Patients.

Verma, S., Deligianni, F., Veldtman, G. et al.

Canadian Journal of Cardiology, 0828-282X

(2022)

2. Development of Interpretable Machine Learning Models to Detect Arrhythmia based on ECG Data. Verma, S.

Arxiv Preprint; Machine Learning (cs.LG)

(2022)

3. Biocharring of natural fibers of insect and plant origin: a green route for the production of 'carbon-based charge storage nanomaterials'.

Dubey, A., Jangir, H., **Verma**, **S**. et al. Mater Renew Sustain Energy **7**, 20

(2018)

4. Nano-pyrite seed dressing: a sustainable design for NPK equivalent rice production.

Das, C.K., Jangir, H., Verma, S. et al.

Nanotechnol. Environ. Eng. 3, 14

(2018)

5. Sequential entrapping of Li and S in a conductivity cage of N-doped reduced graphene oxide supercapacitor derived from silk cocoon: a hybrid Li–S-silk supercapacitor.

Jangir, H., Pandey, M., Verma, S. et al.

Appl Nanosci 8, 379-393

(2018)

6. An eco-friendly, low-power charge storage device from bio-tolerable nano cerium oxide electrodes for bioelectrical and biomedical applications.

Dubey, A., Jangir, H., Verma, S. et al.

Biomed. Phys. Eng. Express 4 025041

(2017)

7. The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite.

Das, C.K., Dubey, A., Verma, S. et al.

RSC Adv. 6, 67029-67038

(2016)

Referees

Dr Fani Deligianni

Fani.Deligianni@glasgow.ac.uk School of Computing Science University of Glasgow

Prof Dr Gruschen Veldtman

gruschen.veldtman@gjnh.scot.nhs.uk National Health Services Scotland Golden Jubilee Hospital, Glasgow