

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1 2 3 4 5 6

FIG. 1

1 2 3 4 5

FIG. 2

1 2 3 4 5 6

FIG. 3

FIG. 4

FIG. 5

**FDCPmix proliferation inhibition by
INPROL: direct effect *in vitro***

FIG. 6

INPROL affects dynamic of CFU-S proliferation inhibition

FIG. 7

FIG. 8

INPROL injected *in vivo* protects mice from the lethal double 5FU treatment

Survival of lethally irradiated mice after treatment with INPROL

FIG. 9

**Cell regeneration in BMLTC - L1210 cultures
after combined AraC plus Inprol treatment**

FIG. 10A

FIG. 1OB

**30 days radioprotection by the bone marrow cells
after preincubation with (B) or without (A) INPROL**

FIG. 11

**Marrow repopulating ability of BDF1
mice cells after incubation with INPROL**

FIG. 12

**Pre-B progenitors number in Lymphoid Long Term Culture
after preincubation with or without INPROL**

FIG. 13

**INPROL improves the repopulating ability
(LTC-IC number) of leukemic peripheral blood cells**

FIG. 14

FIG. 15A

Analysis: Channel A

Peak No.	Time	Type	Height(μ Y)	Area(μ Y-sec)	Area%
1	4.383	N1	3945	95125	0.119
2	5.080	N2	28639	330889	0.413
3	5.216	N3	49084	531867	0.665
4	7.980	N1	399424	1110511	1.389
5	8.100	Err	1203320	2882013	3.605
6	8.241	N3	443249	1506159	1.884
7	8.386	N4	481563	2185702	2.734
8	8.533	N5	412886	1826165	2.284
9	8.701	N6	321500	842122	1.053
10	8.745	N7	404661	1610380	2.014
11	8.995	N8	435765	2489721	3.114
12	9.316	N9	517790	4801831	6.007

FIG. 15B

1 2 3

FIG. 15C

FIG. 16A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Val	Leu	Ser	Pro	Ala	Asp	Lys	Thr	Asn	Val	Lys	Ala	Ala	Trp	Gly	Lys	Val	Gly	Ala	His	
GTC	CTG	TCT	CCC	GAC	AAG	ACC	AAC	GTC	AAG	CCC	GCC	GCC	TGG	GCT	AAG	GTC	GCC	GCG	CAC	
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	
Ala	Gly	Glu	Tyr	Gly	Ala	Glu	Ala	Leu	Glu	Arg	Met	Phe	Leu	Ser	Phe	Pro	Thr	Thr	Lys	
GCT	GGC	GAG	GAT	GCT	GGC	GAC	GGC	CTG	GAC	AGG	AIG	TTC	CIG	TCC	TTC	CCC	ACC	ACC	AAC	
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
Thr	Tyr	Phe	Pro	His	Pro	Asp	Leu	Ser	His	Gly	Ser	Ala	Gln	Val	Lys	Gly	His	Gly	Lys	
ACC	TAC	TTC	CCC	CAC	TTC	GAC	CAC	ACC	CAC	GCC	TCT	CCC	CAC	GTC	AAC	GCC	CAC	GCC	AAC	
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	
Lys	Val	Ala	Asp	Ala	Leu	Thr	Asn	Ala	Val	Ala	His	Val	Asp	Asp	Met	Pro	Asn	Ala	Leu	
AAG	GTC	CCC	GAC	GCC	CAC	ACC	AAC	GCC	GTC	GIG	GCC	CAC	GTC	GAC	AIG	CCC	AAC	GCC	CTC	
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	
Ser	Ala	Leu	Ser	Asp	Leu	His	Ala	His	Lys	Leu	Arg	Val	Asp	Pro	Val	Asn	Phe	Lys	Leu	
TCC	GCC	CAC	TIG	CAC	CCC	CAC	AAG	CIT	CCC	GIG	GAC	CCC	GTC	AAC	TTC	AAG	CTC			
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	
Leu	Ser	His	Cys	Leu	Leu	Val	Thr	Leu	Ala	Ala	His	Leu	Pro	Ala	Glu	Phe	Thr	Pro	Ala	
CIA	ACC	CAC	TGC	TGC	TGC	TGC	ACC	CAC	GCC	GCC	GCC	CAC	CAC	CAC	CCC	CCC	GAG	TTC	ACC	
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141
Val	His	Ala	Ser	Leu	Asp	Lys	Phe	Leu	Ala	Ser	Val	Ser	Thr	Val	Leu	Thr	Ser	Lys	Tyr	Arg
GIG	CAC	CCC	TCC	CAC	TCC	CAC	AAG	TTC	CIG	TCC	GTI	TCT	GTC	ACC	GTC	CAC	TCC	AAA	TAC	CTC

FIG. 16B

FIG. 16C

10	20	30	40	50
1 V-LSPADKIN	VKAAGKVGAA	HA-GEYGAEA	LE-RMFLSFP	TTKTYFPHF-
1 VHLLTPEEKS	VTLAWGKV--	-NVDEVGGEA	LG-RLLVVYP	WTQRFEEFESFG
1 V-LSGGEDKSN	IKAAWGKIGG	HG-AEYGAEA	LE-RMFASEFP	TTKTYFPHF-
1 VHLLTDAEKAA	VSCLWGKVNS	D---EVGGEA	L-GRLLVVYP	WTQRYFDSFG
1 V-LSAADKAN	VKAAGKVGAA	QA-GAHLGAE	LE-RMFLGFP	TTKTYFPHF-
1 VHLSAAEKEA	VLGLWGKVNV	D---EVGGEA	L-GRLLVVYP	WTQRFEEFESFG
60	70	80	90	100
51 DLSH-----G	SAQVKGHGKK	VADALTIN---	AVAHVDDMPN	ALS--ALSDL
51 DLSTPDAVMG	NPKVKAHGKK	VLGA---FSD	GLAHLDDNLKG	TFA---TLSEL
51 DVSH-----G	SAQVKGHGKK	VADALAS---	AAGHLDLPG	ALS--ALSDL
51 DLSSASAIMG	NAKVKAHGKK	V---ITAFND	GLNHDDSLKG	TEASL--SEL
51 NLSH-----G	SDQVKAHGQK	VADALTQ---	AVGHLDDLPG	ALS--ALSDL
51 DLSNADAVMG	NPKVKAHGKK	V---LQSFSID	GLKHLDDNLKG	TFAKL--SEL
110	120	130	140	150
101 HAHKLRVDPV	NFKLLSHCLL	VTLLA AHLPAE	FTPAVHASLD	-KFLASVSTV
101 HCDKLHVDPE	NFRLLGNVLL	CVLAHHFGKE	FTPPVQAAQYQ	-KVVGVANA
101 HAHKLRVDPV	NFKLLSHCLL	VTLLASHHPAD	FTPAVHASLD	-KFLASVSTV
101 HCDKLHVDPE	NFRLLGNMIV	IVLGHHLGKD	FTPAAQAAF-	QKVGAVATA
101 HAHKLRVDPV	NFKLLSHCLL	VTLLAHHPDD	FNPSVHASLD	-KFLANVSTV
101 HCDQLHVDPE	NFRLLGNVIV	VVLARRLGHD	FNPDVQAAF-	QKVGAVANA
160	170	180	190	200
151 LTSKYR...
151 LAHKYH...	200
151 LTSKYR...	200
151 LAHKYH...	200
151 LTSKYR...	200
151 LAHKYH...	200
hHemA . pep				
hHemB . pep				
mHemA . pep				
mHemB . pep				
pHemA . pep				
pHemB . pep				

FIG. 17A

Analysis Channel A

Peak No.	Time	Type	Height(μY)	Area (μY-sec)	Area %
1	48.200	N	1677	20438	1.515
2	52.076	N1	7625	116393	8.631
3	52.510	N2	32010	881490	65.369
4	53.660	N3	10066	330153	24.483
Total Area				1348474	99.998

FIG. 17B

Analysis Channel A

Peak No.	Time	Type	Height(μY)	Area (μY-sec)	Area %
1	47.110	N1	1727	24840	0.204
2	47.723	N2	75067	1738939	14.321
3	49.153	N3	188795	6206410	51.114
4	52.250	N1	81476	3046748	25.092
5	52.115	N2	13195	202166	1.664
6	53.613	N3	19211	914954	7.535
	65.753	N	818	8066	0.066
Total Area				12142123	99.996

FIG. 18

FIG. 19A

FIG. 19B

FIG. 20

Comparison of Inprol and Hemoglobin Chains in FDPCmix Assay

FIG. 21

FIG. 22A

FIG. 22B

FIG. 22C

FIG. 23