

# IO设备访问方式

## 本章内容

- ◆ I/O管理概述: I/O设备概念, I/O设备访问方式,端口,总线, I/O地址,轮询,中断,DMA。
- ◆ I/0应用接口: I/0设备类型,块设备,字符设备,网 络设备,时钟与定时器。
- ◆ I/O内核子系统: I/O调度概念, 高速缓存与缓冲区, 设备分配与回收, 假脱机技术(SPOOLing), 出错处理,请求I/O的处理流程。

#### Overview

- ◆ The two main jobs of a computer:
  - I/O (Input/Output)
  - processing
- ◆ The control of devices connneted to the computer is a major concern of operating-system designers.
- ◆ I/O设备技术出现两个相矛盾的趋势:
  - ▶ 硬件和软件接口日益增长的标准化。
  - I/0设备日益增长的多样性。
- ◆操作系统内核设计成使用设备驱动程序模块的结构。
- ◆ 设备驱动程序为I/0子系统提供了统一接口。

#### I/O硬件

- ◆ I/0系统的组成:
  - PC BUS I/O系统
  - 主机I/0系统
- ◆ Common concepts
  - □ Port 端口
  - 📙 Bus (daisy chain or shared direct access) 总线
  - I Controller (host adapter) 控制器
- ◆ I/O instructions control devices (PC) I/O指令控制设 备
- ◆ Devices have addresses, used by 设备的寻址方式
  - Ⅰ Direct I/O instructions(\_pc I/O Port address) 直接I/O指 ◆

#### A Typical PC Bus Structure



### Mainframe Systems 大型机(主机)系统

◆ 这类计算机以存储器为中心,CPU和各种通道都与存储器相连。



# 个人计算机(PC)中的设备I/O端口地址

| I/O address range (hexadecimal) | device                    |
|---------------------------------|---------------------------|
| 000-00F                         | DMA controller            |
| 020–021                         | interrupt controller      |
| 040–043                         | timer                     |
| 200–20F                         | game controller           |
| 2F8-2FF                         | serial port (secondary)   |
| 320–32F                         | hard-disk controller      |
| 378–37F                         | parallel port             |
| 3D0-3DF                         | graphics controller       |
| 3F0-3F7                         | diskette-drive controller |
| 3F8-3FF                         | serial port (primary)     |

# I/O 方式

- ◆轮询
- ◆中断
- ◆ DMA
- ◆通道

# 轮询 Polling

- ◆ 主机与控制器之间的交互过程
  - 1. 主机不断地读取尤位,直到该位被清除(这个过程称 为轮询,亦称忙等待-busy waiting)
  - 2. 主机设置命令寄存器中的*写*位并向数据输出寄存器中 写入一个字节。
  - 3. 主机设置命令就绪位
  - 4. 当控制器注意到命令*就绪*位已被设置,则设置**忙**位。
  - 5. 控制器读取命令寄存器,并看到写入命令。它从数据 输出寄存器中读取一个字节,并向设备执行I/O操作。
  - 6. 控制器清除命令**就绪**位,清除状态寄存器的**故障**位以 表示设备I/0成功,清除**忙**位以表示完成。

## 中断Interrupts

- ◆ CPU硬件有一条中断请求线(interrupt-request line, IRL),由 I/O设备触发
  - 设备控制器通过中断请求线发送信号而引起中断,CPU捕获中断并派遣到中断处理程序,中断处理程序通过处理设备来清除中断。
- ◆ 两种中断请求
  - 非屏蔽中断:主要用来处理如不可恢复内存错误等事件
  - 可屏蔽中断:由CPU在执行关键的不可中断的指令序列前加以屏蔽
- ◆ 中断向量
- ◆ 中断优先级:能够使CPU延迟处理低优先级中断而不屏蔽所有中断,这也可以让高优先级中断抢占低优先级中断处理。
- ◆ 中断的用途
  - 中断机制用于处理各种异常,如被零除,访问一个受保护的或不存在的内存地址
  - ▶ 系统调用的实现需要用到中断(软中断)
  - 中断也可以用来管理内核的控制流

# 中断驱动的I/O循环



### **Interrupt vectors in Linux**

| Vector range                             | Use                                                                                            |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
|                                          |                                                                                                |  |  |  |
| 20-31                                    | Intel-reserved                                                                                 |  |  |  |
|                                          |                                                                                                |  |  |  |
|                                          |                                                                                                |  |  |  |
| 129-238 External interrupts (IRQs)       |                                                                                                |  |  |  |
| 239                                      | Local APIC timer interrupt                                                                     |  |  |  |
| 240<br>models)                           | Local APIC thermal interrupt (introduced in the Pentium 4                                      |  |  |  |
| 241-250 Reserved by Linux for future use |                                                                                                |  |  |  |
| 251-253 Interprocessor interrupts        |                                                                                                |  |  |  |
| 254<br>detects an erro                   | Local APIC error interrupt (generated when the local APIC oneous condition)                    |  |  |  |
| 255<br>an interrupt w                    | Local APIC spurious interrupt (generated if the CPU masks while the hardware device raises it) |  |  |  |

#### **Intel Pentium Processor Event-Vector Table**

| vector number | description                            |
|---------------|----------------------------------------|
| 0             | divide error                           |
| 1             | debug exception                        |
| 2             | null interrupt                         |
| 3             | breakpoint                             |
| 4             | INTO-detected overflow                 |
| 5             | bound range exception                  |
| 6             | invalid opcode                         |
| 7             | device not available                   |
| 8             | double fault                           |
| 9             | coprocessor segment overrun (reserved) |
| 10            | invalid task state segment             |
| 11            | segment not present                    |
| 12            | stack fault                            |
| 13            | general protection                     |
| 14            | page fault                             |
| 15            | (Intel reserved, do not use)           |
| 16            | floating-point error                   |
| 17            | alignment check                        |
| 18            | machine check                          |
| 19–31         | (Intel reserved, do not use)           |
| 32–255        | maskable interrupts                    |

# An example of IRQ assignment to I/O devices

| 中 | 断 | 向 | 量 |  |
|---|---|---|---|--|
| _ |   |   |   |  |

| IRQ | INT | Hardware device                     |
|-----|-----|-------------------------------------|
| 0   | 32  | Timer                               |
| 1   | 33  | Keyboard                            |
| 2   | 34  | PIC cascading                       |
| 3   | 35  | Second serial port                  |
| 4   | 36  | First serial port                   |
| 6   | 38  | Floppy disk                         |
| 8   | 40  | System clock                        |
| 10  | 42  | Network interface                   |
| 11  | 43  | USB port, sound card                |
| 12  | 44  | PS/2 mouse                          |
| 13  | 45  | Mathematical coprocessor            |
| 14  | 46  | EIDE disk controller's first chain  |
| 15  | 47  | EIDE disk controller's second chain |

## Direct Memory Access直接内存存取

- ◆用来避免处理大量数据移动时按字节来 向控制器送入数据的问题
- ◆需要DMA控制器
- ◆绕过CPU直接在内存与I/O设备之间进行 数据传输

#### 通过六步来完成DMA传输



## 应用程序I/O接口Application I/O Interface

- ◆I/0系统调用--实现统一的I/0接口
- ◆I/0系统调用封装了设备通用类型行为。如块设备 I/0系统调用包括磁盘、磁带、光盘等一系列块设备的read、write、seek。
- ◆具体的I/0差别被内核模块(称设备驱动程序)所 封装。
- ◆设备驱动程序的作用是为内核I/0子系统隐藏设备 控制器之间的差异

#### Fig A Kernel I/O Structure



