Time Series Forecasting Report - Coded Project

Table of Contents

Problem Statement - TSF Project	2
Rose Dataset:	
Define the problem and perform Exploratory Data Analysis	
Data Pre-processing	7
Model Building - Original Data	
Check for Stationarity	.15
Model Building - Stationary Data	.17
Actionable Insights & Recommendations	.24
Sparkling Dataset:	.26
Define the problem and perform Exploratory Data Analysis of sparkling dataset	.26
Model Building - Original Data	.31
Check for stationarity of the whole Time Series data	.38
Model Building - Stationary Data	.39
Build an Automated version of an ARMA model for which the best parameters are selected in accordance with the lowest Akaike Information Criteria (AIC).	.40
Actionable Insights & Recommendations	.44

Table of Figures

1. Plotting the Rose dataset	5
2. the Boxplot in Rose dataset on yearly basis	5
3. Visualize data distribution	5
4. Describe the rose dataset	6
5. Plot a monthplot of the give Time Series	6
6. Perform decomposition	7
7. Train - Test plot	9
8. Linear Regression on test data	10
9. Moving Average	10
10. Alpha =0.995 Simple Exponential Smoothing predictions on Test Set	12
11. Alpha=0.1,Beta=0.1,DoubleExponentialSmoothing predictions on Test Set	13
12. Alpha=0.1016,Beta=0.0007,Gamma=1.223,TripleExponentialSmoothing predictions on Test	Set
	14
13. Alpha=0.1,Beta=1.0,Gamma=0.2,TripleExponentialSmoothing predictions on Test Set	15
14. Rose - Auto SARIMA Model	
15. ROSE : 12 Months Forecast using TES Model	24
16.ROSE : 12 Months Forecast	24
17. Plotting the timeseries - Sparkling dataset	27
18. Boxplot on sparkling dataset – yearly	27
19. Distribution of sprakling dataset	28
20. Plot a monthplot of the give Time Series	29
21. Seasonal decompose - multiplicative method	29
22. Seasonal decompose - additive method	30
23. Plotting the train-test dataset	31
24. Linear Regression - sparkling dataset	32
25. Plotting on the train - moving average	33
26. Plotting on the train-test - moving average	33
27. Alpha =0.995 Simple Exponential Smoothing predictions on Test Set	34
28. Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing predictions on Test Set	35
29. Alpha=0.0757,Beta=0.0648,Gamma=0.3765,TripleExponentialSmoothing predictions on Test	t
Set	36
30. Alpha=0.9,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing predictions on Test Set	37
31. Sparkling : 12 Months Forecast using TES Model	45
32. Sparkling : 12 Months Forecast	45

Problem Statement - TSF Project

Context

As an analyst at ABC Estate Wines, we are presented with historical data encompassing the sales of different types of wines throughout the 20th century. These datasets originate from the same company but represent sales figures for distinct wine varieties. Our objective is to delve into the data, analyze trends, patterns, and factors influencing wine sales over the course of the century. By leveraging data analytics and forecasting techniques, we aim to gain actionable insights that can inform strategic decision-making and optimize sales strategies for the future.

Objective

The primary objective of this project is to analyze and forecast wine sales trends for the 20th century based on historical data provided by ABC Estate Wines. We aim to equip ABC Estate Wines with the necessary insights and foresight to enhance sales performance, capitalize on emerging market opportunities, and maintain a competitive edge in the wine industry.

Rose Dataset:

Define the problem and perform Exploratory Data Analysis

- Read the data as an appropriate time series data - Plot the data - Perform EDA - Perform Decomposition

Head of top 5 series in the Rose dataset

Tail of the last 5 series in the Rose dataset

Plotting the Rose dataset

1. Plotting the Rose dataset

Visualize the Boxplot in Rose dataset on yearly basis

2. the Boxplot in Rose dataset on yearly basis

. Visualize data distribution

3. Visualize data distribution

```
Rose
count 185.000000
        90.394595
mean
        39.175344
std
        28.000000
min
25%
        63.000000
50%
        86.000000
75%
       112.000000
max
       267.000000
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-01 to 1995-07-01
Data columns (total 1 columns):
     Column Non-Null Count Dtype
     Rose
             185 non-null
                             float64
dtypes: float64(1)
memory usage: 2.9 KB
None
```

4. Describe the rose dataset

Rose 2 dtype: int64

There are two missing values in the dataset.

5. Plot a monthplot of the give Time Series

A decreasing Trend could be observed with a multiplicative seasonality present. The Null values could be observed as a break in the plot for the observed timestamps.

Data Pre-processing

- Missing value treatment - Visualize the processed data - Train-test split

6. Perform decomposition

Train- test split dataset

(130, 1) (57, 1)

Train dataset contains 130 rows and test dataset contains 57 rows.

```
Last few rows of Training Data
            Rose
YearMonth
1990-06-01
           76.0
1990-07-01 78.0
1990-08-01 70.0
1990-09-01 83.0
1990-10-01 65.0
First few rows of Test Data
             Rose
YearMonth
1990-11-01 110.0
1990-12-01 132.0
1991-01-01 54.0
1991-02-01 55.0
1991-03-01 66.0
Last few rows of Test Data
            Rose
YearMonth
1995-03-01 45.0
1995-04-01 52.0
1995-05-01 28.0
1995-06-01 40.0
1995-07-01 62.0
```


7. Train - Test plot

Model Building - Original Data

• Build forecasting models - Linear regression - Simple Average - Moving Average - Exponential Models (Single, Double, Triple) - Check the performance of the models built

Model 1: Linear Regression

Model 1. Lii	ieai Re	gression
First few r		Training Data
YearMonth		
1980-01-01	112.0	1
1980-02-01	118.0	2
1980-03-01	129.0	3
1980-04-01	99.0	4
1980-05-01	116.0	5
Last few ro	ws of T	raining Data
	Rose	time
YearMonth		
1990-06-01	76.0	126
1990-07-01	78.0	127
1990-08-01	70.0	128
1990-09-01	83.0	129
1990-10-01	65.0	130
First few r	ows of	Test Data
	Rose	time
YearMonth		
1990-11-01		
1990-12-01		
1991-01-01		
1991-02-01		
1991-03-01	66.0	135
Last few ro	ws of T	est Data
	Rose	time
YearMonth		
1995-03-01		
1995-04-01	52.0	184
1995-05-01		
1995-06-01	40.0	186
1995-07-01	62.0	187

8. Linear Regression on test data

For RegressionOnTime forecast on the Test Data, RMSE is 17.36

Out[297]:		Test RMSE
	RegressionOnTime	17.357497

Method 2: Moving Average (MA)

Out[299]:		Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
	YearMonth					
	1980-01-01	112.0	NaN	NaN	NaN	NaN
	1980-02-01	118.0	115.0	NaN	NaN	NaN
	1980-03-01	129.0	123.5	NaN	NaN	NaN
	1980-04-01	99.0	114.0	114.5	NaN	NaN
	1980-05-01	116.0	107.5	115.5	NaN	NaN

9. Moving Average

RMSE Calculation as below,

For 2 point Moving Average Model forecast on the Training Data, RMSE is 11.802
For 4 point Moving Average Model forecast on the Training Data, RMSE is 15.374
For 6 point Moving Average Model forecast on the Training Data, RMSE is 15.868
For 9 point Moving Average Model forecast on the Training Data, RMSE is 16.347

Out[304]:		Test RMSE
	RegressionOnTime	17.357497
	2pointTrailingMovingAverage	11.801775
	4 point Trailing Moving Average	15.373563
	6pointTrailingMovingAverage	15.868241
	9 point Trailing Moving Average	16.346517

Method 3: Simple Exponential Smoothing

10. Alpha =0.995 Simple Exponential Smoothing predictions on Test Set

Model Evaluation for α = 0.995 : Simple Exponential Smoothing

or Alpha =0.995 Simple Exponential Smoothing Model forecast on the Test Data, RMSE is 29.250

Out[313]:		Test RMSE
	RegressionOnTime	17.357497
	2 point Trailing Moving Average	11.801775
	4pointTrailingMovingAverage	15.373563
	6pointTrailingMovingAverage	15.868241
	9pointTrailingMovingAverage	16.346517
	Alpha=0.995, SimpleExponential Smoothing	29.250243

Method 4: Double Exponential Smoothing (Holt's Model)
Train dataset

18]:	Alpha Values	Beta Values	Train RMSE	Test RMSE
(0.1	0.1	34.25	17.68
	0.1	0.2	33.16	29.59
:	0.1	0.3	32.85	30.26
;	0.1	0.4	32.95	39.64
	0.1	0.5	33.36	49.70
98	1.0	0.6	52.02	264.82
96	1.0	0.7	54.70	331.59
97	1.0	0.8	57.58	406.47
98	1.0	0.9	60.69	491.21
99	1.0	1.0	64.09	587.86
10	0 rows × 4 colu	mns		

Test dataset

Out[319]:

	Alpha Values	Beta Values	Train RMSE	Test RMSE
0	0.1	0.1	34.25	17.68
16	0.2	0.7	40.35	17.74
23	0.3	0.4	37.29	18.34
36	0.4	0.7	40.74	18.99
33	0.4	0.4	37.99	19.15

 $11.\ Alpha=0.1, Beta=0.1, Double Exponential Smoothing\ predictions\ on\ Test\ Set$

Out[321]:

	Test RMSE
RegressionOnTime	17.357497
2pointTrailingMovingAverage	11.801775
4pointTrailingMovingAverage	15.373563
6pointTrailingMovingAverage	15.868241
9pointTrailingMovingAverage	16.346517
Alpha=0.995, Simple Exponential Smoothing	29.250243
${\bf Alpha=0.3, Beta=0.3, Double Exponential Smoothing}$	17.680000

Method 5: Triple Exponential Smoothing (Holt - Winter's Model)

Out[326]:		Rose	auto_predict
	YearMonth		
	1990-11-01	110.0	86.341086
	1990-12-01	132.0	118.068900
	1991-01-01	54.0	51.939367
	1991-02-01	55.0	58.209268
	1991-03-01	66.0	63.101160

 $12.\ Alpha=0.1016, Beta=0.0007, Gamma=1.223, Triple Exponential Smoothing \ predictions \ on \ Test \ Set$

For Alpha=0.1016,Beta=0.0007,Gamma=1.223, Triple Exponential Smoothing Model forecast on the Test Data, RMSE is 9.338

Out[329]:		Test RMSE
	RegressionOnTime	17.357497
	2pointTrailingMovingAverage	11.801775
	4pointTrailingMovingAverage	15.373563
	6pointTrailingMovingAverage	15.868241
	9pointTrailingMovingAverage	16.346517
	Alpha=0.995, SimpleExponential Smoothing	29.250243
	Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	17.680000
	Alpha=0.1016.Beta=0.0007.Gamma=1.223.TripleExponentialSmoothing	9.337808

Out[332]:		Alpha Values	Beta Values	Gamma Values	Train RMSE	Test RMSE
	91	0.1	1.0	0.2	23.14	9.13
	4	0.1	0.1	0.5	22.42	9.20
	5	0.1	0.1	0.6	23.40	9.27
	3	0.1	0.1	0.4	21.55	9.28
	106	0.2	0.1	0.7	25.62	9.32

 $13.\ Alpha=0.1, Beta=1.0, Gamma=0.2, Triple Exponential Smoothing \ predictions \ on \ Test \ Set$

Out[334]:		Test RMSE
	RegressionOnTime	17.357497
	2pointTrailingMovingAverage	11.801775
	4pointTrailingMovingAverage	15.373563
	6pointTrailingMovingAverage	15.868241
	9pointTrailingMovingAverage	16.346517
	Alpha=0.995, SimpleExponential Smoothing	29.250243
	Alpha=0.3,Beta=0.3,DoubleExponentialSmoothing	17.680000
	Alpha = 0.1016, Beta = 0.0007, Gamma = 1.223, Triple Exponential Smoothing	9.337808
	Alpha=0.1,Beta=1.0,Gamma=0.2,TripleExponentialSmoothing	9.130000

Check for Stationarity

- Check for stationarity - Make the data stationary (if needed)

We see that at 5% significant level the Time Series is non-stationary.Let us take a difference of order 1 and check whether the Time Series is stationary or not.

We see that at α = 0.05 the Time Series is indeed stationary.

Model Building - Stationary Data

• Generate ACF & PACF Plot and find the AR, MA values. - Build different ARIMA models - Auto ARIMA - Manual ARIMA - Build different SARIMA models - Auto SARIMA - Manual SARIMA - Check the performance of the models built

Build an Automated version of an ARMA model for which the best parameters are selected in accordance with the lowest Akaike Information Criteria (AIC).

Some parameter combinations for the Model...

Model: (0, 0, 1)

Model: (0, 0, 2)

Model: (1, 0, 0)

Model: (1, 0, 1)

Model: (1, 0, 2)

Model: (2, 0, 0)

Model: (2, 0, 2)

		-	-	` '
Out[344]:		param	AIC	
	5	(1, 0, 2)	1272.008961	
	8	(2, 0, 2)	1272.230529	
	7	(2, 0, 1)	1272.784560	
	4	(1, 0, 1)	1273.969672	
	3	(1, 0, 0)	1282.884243	
	6	(2, 0, 0)	1283.462128	
	1	(0, 0, 1)	1287.093068	
	2	(0, 0, 2)	1288.116816	
	0	(0, 0, 0)	1306.288690	

c۸	рΤ	MA	v	D ~	sul	+-
$\searrow \Delta$	κт	$M\Delta$	X	КΘ	SIII	+ <

=======	=======	========		========	========	=======	
Dep. Varia	ble:	Ro	ose No.	Observations:		130	
Model:		ARIMA(1, 0,	2) Log	Likelihood		-631.004	
Date:	Fi	ri, 13 Sep 20	924 AIC			1272.009	
Time:		20:38	:16 BIC			1286.347	
Sample:		01-01-19	980 HQIC			1277.835	
		- 10-01-19	990				
Covariance	Type:		opg				
=======				========		=======	
	coef	std err	Z	P> z	[0.025	0.975]	
const	104.6906	31.457	3.328	0.001	43.036	166.345	
ar.L1	0.9886	0.024	41.384	0.000	0.942	1.035	
ma.L1	-0.6983	0.089	-7.839	0.000	-0.873	-0.524	
ma.L2	-0.1894	0.091	-2.090	0.037	-0.367	-0.012	
sigma2	955.1353	99.717	9.578	0.000	759.694	1150.576	
Ljung-Box	(L1) (0):	========	0.05	Jarque-Bera	:======= (JB):	62	 .77
Prob(Q):	, , , ,		0.82	Prob(JB):	(0	.00
	lasticity (H)	:	0.32	Skew:		1	.01
	wo-sided):		0.00	Kurtosis:		5	.74

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

For Auto-ARIMA Model forecast accuracy_score on the Test Data, RMSE is 38.675

Setting the seasonality as 12 to estimate parametrs using auto SARIMA model.

```
Examples of some parameter combinations for Model...
Model: (0, 1, 1)(0, 1, 1, 12)
Model: (0, 1, 2)(0, 1, 2, 12)
Model: (1, 1, 0)(1, 1, 0, 12)
Model: (1, 1, 1)(1, 1, 1, 12)
Model: (1, 1, 2)(1, 1, 2, 12)
Model: (2, 1, 0)(2, 1, 0, 12)
Model: (2, 1, 1)(2, 1, 1, 12)
Model: (2, 1, 2)(2, 1, 2, 12)
SARIMA(0, 1, 0)x(0, 1, 0, 12)7 - AIC:1152.8944112896427
SARIMA(0, 1, 0)x(0, 1, 1, 12)7 - AIC:946.5255706383725
SARIMA(0, 1, 0)x(0, 1, 2, 12)7 - AIC:827.4161882799052
SARIMA(0, 1, 0)x(1, 1, 0, 12)7 - AIC:963.3074810361367
SARIMA(0, 1, 0)x(1, 1, 1, 12)7 - AIC:955.90241535815
SARIMA(0, 1, 0)x(1, 1, 2, 12)7 - AIC:829.2186210967307
SARIMA(0, 1, 0)x(2, 1, 0, 12)7 - AIC:839.1329917213063
SARIMA(0, 1, 0)x(2, 1, 1, 12)7 - AIC:834.4921533619314
SARIMA(0, 1, 0)x(2, 1, 2, 12)7 - AIC:824.3830509688956
SARIMA(0, 1, 1)x(0, 1, 0, 12)7 - AIC:1096.7564633976488
SARIMA(0, 1, 1)x(0, 1, 1, 12)7 - AIC:899.1279003224759
SARIMA(0, 1, 1)x(0, 1, 2, 12)7 - AIC:775.3675849137794
SARIMA(0, 1, 1)x(1, 1, 0, 12)7 - AIC:928.1728057664981
SARIMA(0, 1, 1)x(1, 1, 1, 12)7 - AIC:913.2749250995581
SARIMA(0, 1, 1)x(1, 1, 2, 12)7 - AIC:777.1680791501379
SARIMA(0, 1, 1)x(2, 1, 0, 12)7 - AIC:794.878534195182
SARIMA(0, 1, 1)x(2, 1, 1, 12)7 - AIC:788.3653415950496
SARIMA(0, 1, 1)x(2, 1, 2, 12)7 - AIC:767.3752584863522
SARIMA(0, 1, 2)x(0, 1, 0, 12)7 - AIC:1081.5930721187483
SARIMA(0, 1, 2)x(0, 1, 1, 12)7 - AIC:888.1453938346057
SARIMA(0, 1, 2)x(0, 1, 2, 12)7 - AIC:768.4215063916055
SARIMA(0, 1, 2)x(1, 1, 0, 12)7 - AIC:925.1239001312563
SARIMA(0, 1, 2)x(1, 1, 1, 12)7 - AIC:898.8756745213946
SARIMA(0, 1, 2)x(1, 1, 2, 12)7 - AIC:770.2181164945283
SARIMA(0, 1, 2)x(2, 1, 0, 12)7 - AIC:795.8587520859533
SARIMA(0, 1, 2)x(2, 1, 1, 12)7 - AIC:789.6477608525199
SARIMA(0, 1, 2)x(2, 1, 2, 12)7 - AIC:759.854456337735
SARIMA(1, 1, 0)x(0, 1, 0, 12)7 - AIC:1146.5245639869129
SARIMA(1, 1, 0)x(0, 1, 1, 12)7 - AIC:936.1793735397487
SARIMA(1, 1, 0)x(0, 1, 2, 12)7 - AIC:811.6876559416335
SARIMA(1, 1, 0)x(1, 1, 0, 12)7 - AIC:944.9341691555421
SARIMA(1, 1, 0)x(1, 1, 1, 12)7 - AIC:946.6249192435952
SARIMA(1, 1, 0)x(1, 1, 2, 12)7 - AIC:813.0825861131768
SARIMA(1, 1, 0)x(2, 1, 0, 12)7 - AIC:809.341284916012
```

```
SARIMA(1, 1, 0)x(2, 1, 1, 12)7 - AIC:806.8254045230403
SARIMA(1, 1, 0)x(2, 1, 2, 12)7 - AIC:808.4299128187591
SARIMA(1, 1, 1)x(0, 1, 0, 12)7 - AIC:1093.5988179239696
SARIMA(1, 1, 1)x(0, 1, 1, 12)7 - AIC:897.7667931010029
SARIMA(1, 1, 1)x(0, 1, 2, 12)7 - AIC:776.6744753192086
SARIMA(1, 1, 1)x(1, 1, 0, 12)7 - AIC:916.9084995137714
SARIMA(1, 1, 1)x(1, 1, 1, 12)7 - AIC:910.8884983743482
SARIMA(1, 1, 1)x(1, 1, 2, 12)7 - AIC:778.512074478587
SARIMA(1, 1, 1)x(2, 1, 0, 12)7 - AIC:784.2808874065543
SARIMA(1, 1, 1)x(2, 1, 1, 12)7 - AIC:776.709647706393
SARIMA(1, 1, 1)x(2, 1, 2, 12)7 - AIC:768.9979136123605
SARIMA(1, 1, 2)x(0, 1, 0, 12)7 - AIC:1079.4524066139743
SARIMA(1, 1, 2)x(0, 1, 1, 12)7 - AIC:890.1378220931629
SARIMA(1, 1, 2)x(0, 1, 2, 12)7 - AIC:770.3906403523735
SARIMA(1, 1, 2)x(1, 1, 0, 12)7 - AIC:918.4763772990403
SARIMA(1, 1, 2)x(1, 1, 1, 12)7 - AIC:900.8377043226517
SARIMA(1, 1, 2)x(1, 1, 2, 12)7 - AIC:772.1781817850084
SARIMA(1, 1, 2)x(2, 1, 0, 12)7 - AIC:786.2709969925108
SARIMA(1, 1, 2)x(2, 1, 1, 12)7 - AIC:778.5728925206383
SARIMA(1, 1, 2)x(2, 1, 2, 12)7 - AIC:761.8340847942384
SARIMA(2, 1, 0)x(0, 1, 0, 12)7 - AIC:1115.6453843716572
SARIMA(2, 1, 0)x(0, 1, 1, 12)7 - AIC:931.975620270612
SARIMA(2, 1, 0)x(0, 1, 2, 12)7 - AIC:810.2393911009702
SARIMA(2, 1, 0)x(1, 1, 0, 12)7 - AIC:932.6053635140116
SARIMA(2, 1, 0)x(1, 1, 1, 12)7 - AIC:934.5783634759562
SARIMA(2, 1, 0)x(1, 1, 2, 12)7 - AIC:811.7123326713876
SARIMA(2, 1, 0)x(2, 1, 0, 12)7 - AIC:797.2689249311138
SARIMA(2, 1, 0)x(2, 1, 1, 12)7 - AIC:791.6332001791104
SARIMA(2, 1, 0)x(2, 1, 2, 12)7 - AIC:793.3001859578382
SARIMA(2, 1, 1)x(0, 1, 0, 12)7 - AIC:1090.142414920315
SARIMA(2, 1, 1)x(0, 1, 1, 12)7 - AIC:898.7844234538268
SARIMA(2, 1, 1)x(0, 1, 2, 12)7 - AIC:778.6275923519522
SARIMA(2, 1, 1)x(1, 1, 0, 12)7 - AIC:909.896906649278
SARIMA(2, 1, 1)x(1, 1, 1, 12)7 - AIC:911.8731618382475
SARIMA(2, 1, 1)x(1, 1, 2, 12)7 - AIC:780.4623774343154
SARIMA(2, 1, 1)x(2, 1, 0, 12)7 - AIC:777.2798270113633
SARIMA(2, 1, 1)x(2, 1, 1, 12)7 - AIC:769.0961329445562
SARIMA(2, 1, 1)x(2, 1, 2, 12)7 - AIC:770.8360215597357
SARIMA(2, 1, 2)x(0, 1, 0, 12)7 - AIC:1082.4796249535534
SARIMA(2, 1, 2)x(0, 1, 1, 12)7 - AIC:888.4121912955013
SARIMA(2, 1, 2)x(0, 1, 2, 12)7 - AIC:768.8907825473697
SARIMA(2, 1, 2)x(1, 1, 0, 12)7 - AIC:908.7507874392862
SARIMA(2, 1, 2)x(1, 1, 1, 12)7 - AIC:898.9034728197205
SARIMA(2, 1, 2)x(1, 1, 2, 12)7 - AIC:772.7278700485623
```

SARIMA(2, 1, 2)x(2, 1, 0, 12)7 - AIC:779.1656800773759 SARIMA(2, 1, 2)x(2, 1, 1, 12)7 - AIC:768.7498409183947 SARIMA(2, 1, 2)x(2, 1, 2, 12)7 - AIC:763.8208489210297

Out[354]:		param	seasonal	AIC	;
	26	(0, 1, 2)	(2, 1, 2, 12)	759.854456	5
	53	(1, 1, 2)	(2, 1, 2, 12)	761.834085	5
	80	(2, 1, 2)	(2, 1, 2, 12)	763.820849	9
	17	(0, 1, 1)	(2, 1, 2, 12)	767.375258	3
	20	(0, 1, 2)	(0, 1, 2, 12)	768.421506	6
			SAR	IMAX Results	
	=====			========	====
ep. Variable				,	No.
lodel:		SARIMAX(0), 1, 2)x(2,		
ate:			Fri, 13		AIC
ime:					BIC
Sample:				- 130	HQIC
Covariance Ty	pe:			opg	
	•	=======			
	co	ef std	lerr	z P>	z [0
a.L1	-0.93	328 0).191 -4.	878 0.0	00 -1.
a.L2	-0.09	23 0).126 -0.	733 0.4	63 -0.3
	0.03			197 0.8	
	-0.04			427 0.1	
	-0.72		.294 -2.		
	-0.06			331 0.7	
0	194.39 			205 0.0	00 103.79 ======
ng-Box (L1					 Bera (JB):
ob(Q):			0.	82 Prob(JB):
teroskedast	-		0.		
ob(H) (two-	sided)	:	0.	84 Kurtosi	s:

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Actionable Insights & Recommendations

• Conclude with the key takeaways (actionable insights and recommendations) for the business

Based on the results, Triple exponential smoorthing has lower RMSE of 9.130000 (Alpha=0.1,Beta=1.0,Gamma=0.2,TripleExponentialSmoothing).

For Triple Exponential Smoothing Model forecast on the Entire Data, RMSE is 6.725

15. ROSE: 12 Months Forecast using TES Model

16.ROSE: 12 Months Forecast

```
Out[393]: count
                   12.000000
          mean
                   36.636415
          std
                   13.181135
          min
                   23.202954
          25%
                   26.670772
          50%
                   30.381838
          75%
                   44.319365
                   66.279325
          max
          dtype: float64
```

There is a declining trend in the forecasted dataset, and the maximum sales forecast is expected to be 66 units.

Sparkling Dataset:

Define the problem and perform Exploratory Data Analysis of sparkling dataset

 Read the data as an appropriate time series data - Plot the data - Perform EDA - Perform Decomposition

Top 5 of the head in the sparkling series

Out[181]:		YearMonth	Sparkling
	0	1980-01	1686
	1	1980-02	1591
	2	1980-03	2304
	3	1980-04	1712
	4	1980-05	1471

Last 5 of the tail in the sparkling series

Out[182]:		YearMonth	Sparkling
	182	1995-03	1897
	183	1995-04	1862
	184	1995-05	1670
	185	1995-06	1688
	186	1995-07	2031

Adding the time stamp to the data frame

Out[184]:		YearMonth	Sparkling	Time_Stamp
	0	1980-01	1686	1980-01-31
	1	1980-02	1591	1980-02-29
	2	1980-03	2304	1980-03-31
	3	1980-04	1712	1980-04-30
	4	1980-05	1471	1980-05-31

Out[186]:		Sparkling	Out[187]:		Sparkling
	Time_Stamp			Time_Stamp	
	1980-01-31	1686		1995-03-31	1897
	1980-02-29	1591		1995-04-30	1862
	1980-03-31	2304		1995-05-31	1670
	1980-04-30	1712		1995-06-30	1688
	1980-05-31	1471		1995-07-31	2031

17. Plotting the timeseries - Sparkling dataset

18. Boxplot on sparkling dataset – yearly

19. Distribution of sprakling dataset

Describe on the sparkling dataset

```
Sparkling
        187.000000
count
       2402.417112
mean
       1295.111540
std
min
       1070.000000
25%
       1605.000000
50%
       1874.000000
75%
       2549.000000
max
       7242.000000
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31
Data columns (total 1 columns):
     Column
                Non-Null Count Dtype
     Sparkling 187 non-null
                                int64
dtypes: int64(1)
memory usage: 2.9 KB
None
Sparkling
```

```
dtype: int64
```

There are 0 null values found in the sparkling dataset.

20. Plot a monthplot of the give Time Series.

21. Seasonal decompose - multiplicative method

22. Seasonal decompose - additive method

Train – test split

(130, 1)

(57, 1)

There are 130 data in the training dataset and 57 data in the test dataset.

Fi	f Tunining Data
First few rows o	r Iraining Data rkling
Time Stamp	LKIIIIB
	1686
1980-02-29	1591
1980-03-31	2304
1980-04-30	1712
1980-05-31	1471
Last few rows of	Training Data
	rkling
Time Stamp	KIIIIB
	1457
1990-07-31	1899
	1605
	2424
1990-10-31	3116
First few rows o	
	rkling
Time_Stamp	
	4286
	6047
1991-01-31	1902
	2049
1991-03-31	1874
Last few rows of	
Spa	rkling
Time_Stamp	
1995-03-31	1897
1995-04-30	1862
1995-05-31	1670
1995-06-30	1688
1995-07-31	2031

23. Plotting the train-test dataset

Model Building - Original Data

Build forecasting models - Linear regression - Simple Average - Moving Average Exponential Models (Single, Double, Triple) - Check the performance of the models built

Model 1: Linear Regression

'	Todot 1. Lincar 1	log/ 000	1011
	First few rows of	f Traini rkling	
	Time Stamp		
	1980-01-31	1686	1
	1980-02-29	1591	2
	1980-03-31	2304	3
	1980-04-30	1712	4
	1980-05-31	1471	5
	Last few rows of	Trainin	ng Data
	Spar	rkling	time
	Time_Stamp		
	1990-06-30	1457	126
	1990-07-31	1899	127
	1990-08-31	1605	128
	1990-09-30	2424	129
	1990-10-31	3116	130
	First few rows of	f Test [Data
	Spar	rkling	time
	Time_Stamp		
	1990-11-30	4286	
		6047	
	1991-01-31		133
	1991-02-28	2049	134
	1991-03-31	1874	135
	Last few rows of		
		rkling	time
	Time_Stamp		
	1995-03-31	1897	
		1862	
	1995-05-31	1670	185
		1688	
	1995-07-31	2031	187

24. Linear Regression - sparkling dataset

Model Evaluation

For RegressionOnTime forecast on the Test Data, RMSE is 1392.44

Out[208]:		Test RMSE
	RegressionOnTime	1392.438305

Method 2: Moving Average (MA)

Out[210]:		Sparkling	Trailing_2	Trailing_4	Trailing_6	Trailing_9
	Time_Stamp					
	1980-01-31	1686	NaN	NaN	NaN	NaN
	1980-02-29	1591	1638.5	NaN	NaN	NaN
	1980-03-31	2304	1947.5	NaN	NaN	NaN
	1980-04-30	1712	2008.0	1823.25	NaN	NaN
	1980-05-31	1471	1591.5	1769.50	NaN	NaN

25. Plotting on the train - moving average

26. Plotting on the train-test - moving average

For 2 point Moving Average Model forecast on the Training Data, RMSE is 811.179
For 4 point Moving Average Model forecast on the Training Data, RMSE is 1184.213
For 6 point Moving Average Model forecast on the Training Data, RMSE is 1337.201
For 9 point Moving Average Model forecast on the Training Data, RMSE is 1422.653

Out[215]:

Test RMSE

RegressionOnTime	1392.438305
2pointTrailingMovingAverage	811.178937
4pointTrailingMovingAverage	1184.213295
6pointTrailingMovingAverage	1337.200524
9pointTrailingMovingAverage	1422.653281

Method 3: Simple Exponential Smoothing

Out[221]:		Sparkling	predict
	Time_Stamp		
	1990-11-30	4286	2465.235699
	1990-12-31	6047	2465.235699
	1991-01-31	1902	2465.235699
	1991-02-28	2049	2465.235699
	1991-03-31	1874	2465.235699

27. Alpha =0.995 Simple Exponential Smoothing predictions on Test Set

For Alpha = 0.995 Simple Exponential Smoothing Model forecast on the Test Data, RMSE is 1362.429

Out[224]:		Test RMSE
	RegressionOnTime	1392.438305
	2pointTrailingMovingAverage	811.178937
	4pointTrailingMovingAverage	1184.213295
	6pointTrailingMovingAverage	1337.200524
	9pointTrailingMovingAverage	1422.653281
	Alpha=0.995, Simple Exponential Smoothing	1362.428949

Method 4: Double Exponential Smoothing (Holt's Model)

Out[230]:		Alpha Values	Beta Values	Train RMSE	Test RMSE
	30	0.4	0.1	1402.99	1369.14
	21	0.3	0.2	1479.94	1516.79
	15	0.2	0.6	1798.09	1540.32
	40	0.5	0.1	1396.30	1585.87
	22	0.3	0.3	1567.52	1597.85

28. Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing predictions on Test Set

Out[232]:		Test RMSE
	RegressionOnTime	1392.438305
	2pointTrailingMovingAverage	811.178937
	4pointTrailingMovingAverage	1184.213295
	6pointTrailingMovingAverage	1337.200524
	9pointTrailingMovingAverage	1422.653281
	Alpha=0.995, SimpleExponential Smoothing	1362.428949
	Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing	1369.140000

Method 5: Triple Exponential Smoothing (Holt - Winter's Model)

Out[237]: Sparkling auto_predict

Time_Stamp		
1990-11-30	4286	4327.597955
1990-12-31	6047	6208.850701
1991-01-31	1902	1621.603392
1991-02-28	2049	1379.864103
1991-03-31	1874	1791.912187

29. Alpha=0.0757,Beta=0.0648,Gamma=0.3765,TripleExponentialSmoothing predictions on Test Set

For Alpha=0.0757,Beta=0.0648,Gamma=0.3765, Triple Exponential Smoothing Model forecast on the Test Data, RMSE is 381.656

Out[240]: Test RMSE

RegressionOnTime	1392.438305
2pointTrailingMovingAverage	811.178937
4pointTrailingMovingAverage	1184.213295
6pointTrailingMovingAverage	1337.200524
9pointTrailingMovingAverage	1422.653281
Alpha=0.995, Simple Exponential Smoothing	1362.428949
Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing	1369.140000
Alpha=0.0757,Beta=0.0648,Gamma=0.3765,TripleExponentialSmoothing	381.656471

Out[243]:		Alpha Values	Beta Values	Gamma Values	Train RMSE	Test RMSE
	801	0.9	0.1	0.2	463.62	342.32
	500	0.6	0.1	0.1	410.03	345.28
	611	0.7	0.2	0.2	443.17	356.77
	901	1.0	0.1	0.2	487.03	380.68
	128	0.2	0.3	0.9	481.09	385.72

 $30.\ Alpha=0.9, Beta=0.1, Gamma=0.2, Triple Exponential Smoothing\ predictions\ on\ Test\ Set$

Out[245]:		
Out[243].		Test RMSE
	RegressionOnTime	1392.438305
	2pointTrailingMovingAverage	811.178937
	4pointTrailingMovingAverage	1184.213295
	6pointTrailingMovingAverage	1337.200524
	9pointTrailingMovingAverage	1422.653281
	Alpha=0.995, SimpleExponential Smoothing	1362.428949
	Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing	1369.140000
	Alpha=0.0757,Beta=0.0648,Gamma=0.3765,TripleExponentialSmoothing	381.656471
	Alpha=0.9,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing	342.320000

Check for stationarity of the whole Time Series data

Test Statistic -1.360497
p-value 0.601061
#Lags Used 11.000000
Number of Observations Used 175.000000
Critical Value (1%) -3.468280
Critical Value (5%) -2.878202
Critical Value (10%) -2.575653
dtype: float64

Critical Value (5%)

dtype: float64

Critical Value (10%)

We see that at 5% significant level the Time Series is non-stationary.Let us take a difference of order 1 and check whether the Time Series is stationary or not.

-2.878202

-2.575653

We see that at α = 0.05 the Time Series is indeed stationary.

Model Building - Stationary Data

• Generate ACF & PACF Plot and find the AR, MA values. - Build different ARIMA models - Auto ARIMA - Manual ARIMA - Build different SARIMA models - Auto SARIMA - Manual SARIMA - Check the performance of the models built

Plot the Autocorrelation function plots on the whole data.

Build an Automated version of an ARMA model for which the best parameters are selected in accordance with the lowest Akaike Information Criteria (AIC).

Some parameter combinations for the Model...

Model: (0, 0, 1)

Model: (0, 0, 2)

Model: (1, 0, 0)

Model: (1, 0, 1)

Model: (1, 0, 2)

Model: (2, 0, 0)

Model: (2, 0, 1)

Model: (2, 0, 2)

Sort the above AIC values in the ascending order to get the parameters for the minimum AIC value

Out[255]:		param	AIC
	7	(2, 0, 1)	2197.084442
	1	(0, 0, 1)	2204.869799
	6	(2, 0, 0)	2204.880722
	2	(0, 0, 2)	2206.111207
	4	(1, 0, 1)	2206.142158
	5	(1, 0, 2)	2207.163048
	3	(1, 0, 0)	2207.502101
	8	(2, 0, 2)	2208.120889
	0	(0, 0, 0)	2228.483660

SARIMAX Results							
Dep. Vari Model: Date: Time: Sample:	Sa	ARIMA(2, 0, 1) Sat, 14 Sep 2024 16:11:13 01-31-1980 - 10-31-1990			:	130 -1093.542 2197.084 2211.422 2202.910	
const ar.L1 ar.L2 ma.L1	coef 2379.9376	std err 112.866 0.135 0.124 0.152	21.086 8.991 -4.046 -5.349	0.000 0.000 0.000	2158.724 0.947 -0.742 -1.111	2601.151 1.475	
Prob(Q):			0.02 0.90 2.19 0.01	Prob(JB):	(JB):		9.43 0.00 0.96 4.90

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Out[259]:		Test RMSE
	RegressionOnTime	1392.438305
	2pointTrailingMovingAverage	811.178937
	4pointTrailingMovingAverage	1184.213295
	6pointTrailingMovingAverage	1337.200524
	9pointTrailingMovingAverage	1422.653281
	Alpha=0.995, Simple Exponential Smoothing	1362.428949
	Alpha=0.4,Beta=0.1,DoubleExponentialSmoothing	1369.140000
	Alpha=0.0757, Beta=0.0648, Gamma=0.3765, Triple Exponential Smoothing	381.656471
	Alpha=0.9,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing	342.320000
	ARIMA(2,0,1)	1338.139913

For Auto-ARIMA Model forecast accuracy_score on the Test Data, RMSE is 1338.140

SARTINA RESULTS								
Dep. Varia	 able:			У	No.	Observations:		130
Model:	SARI	MAX(1, 1,	2)x(0, 1, 2	, 12)	Log	Likelihood		-669.850
Date:			Sat, 14 Sep	2024	AIC			1351.700
Time:			16:	15:30	BIC			1366.699
Sample:				0	HQIC			1357.749
				- 130				
Covariance	Type:			opg				
=======	.======		=======			.========		
	coet	std err	Z	P	> z	[0.025	0.9/5]	
ar.L1	0 5255	0 225	2 200		017	-0.977	0.004	
ma.L1			-0.862				0.284	
ma.L2			-4.802	_			-0.460	
			-4.231			-0.581		
			-0.077		.938			
	1.649e+05							
Ljung-Box (L1) (Q):			0.01			a (JB):		8.58
Prob(Q):			0.92	Prob(JB):			0.01
Heteroskedasticity (H):			0.83	Skew:				0.50
Prob(H) (two-sided):			0.62	Kurto	sis:			4.14

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 [2] Covariance matrix is singular or near-singular, with condition number 2.03e+26. Standard errors may be unstable.

Predict on the Test Set using this model and evaluate the model.

Out[272]:		Test RMSE
	SARIMA(1, 1, 2)*(0, 1, 2, 12)	440.186889

Actionable Insights & Recommendations

 Conclude with the key takeaways (actionable insights and recommendations) for the business

Based on the results, Triple exponential smoorthing has lower RMSE of 342.320000 Alpha=0.9,Beta=0.1,Gamma=0.2,TripleExponentialSmoothing

For Triple Exponential Smoothing Model forecast on the Entire Data, RMSE is 465.106

31. Sparkling: 12 Months Forecast using TES Model

32. Sparkling: 12 Months Forecast

Out[279]:	count	12.000000
	mean	2308.663554
	std	1096.319790
	min	1229.894929
	25%	1700.977209
	50%	1943.818134
	75%	2550.539170
	max	5222.324482
	dtvne:	float64

The maximum sales forecast is expected to be 5222 units in the starting month of 1996 and the sales will tend to decrease to 1229.89 between the first month and the third month of 1996.