Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Куксенко Кирилл Сергеевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2	рия Индекс Жаккара	2 2 2
3	Pea	лизация	3
4	Рез	ультаты	3
5	Обо	суждение	9
C	¦пиα	сок иллюстраций	
	1	Интервальная выборка X_1	3
	2	Интервальная выборка X_2	4
	3	Частота пересечений подинтервалов с интервалами выбор-	
	4	ки X_1	4 5
	5	Зависимость индекса Жаккара от значения R	6
	6	Объединённая выборка $X_1 \cup R_{opt} X_2$	6
	7	Частота пересечений подинтервалов с интервалами выборки $X_1 \cup R_{opt} X_2$	7
	8	Зависимость частоты пересечения моды с интервалами $X_1 \cup RX_2 \dots \dots \dots \dots$	8
	9	Внутренняя и внешняя оценки В.	9

1 Постановка задачи

Имеется две вещественные выборки $\overline{X_1}, \overline{X_2}$. Необходимо построить из них две интервальные выборки X_1, X_2 и найти такой вещественный коэффициент R, что выборка $X_1 \cup RX_2$ будет наиболее совместной в смысле индекса Жаккара.

2 Теория

2.1 Индекс Жаккара

Индекс Жаккара определяет степень совместности двух интервалов x,y.

$$JK(x,y) = \frac{wid(x \wedge y)}{wid(x \vee y)} \tag{1}$$

Здесь \land , \lor представляют собой операции взятия минимума и максимума по включению в полной арифметике Каухера. Формула 1 легко может быть обобщена на случай интервальной выборки $X = \{x_i\}_{i=1}^n$.

$$JK(X) = \frac{wid(\wedge_{i=1,n}x_i)}{wid(\vee_{i=1,n}x_i)}$$
(2)

Видно, что $JK(X) \in [-1,1]$. Для удобства перенормируем значение JK(X) так, чтобы оно было в интервале [0,1].

$$JK(X) = \frac{1}{2} + \frac{1}{2}JK(X)$$
 (3)

2.2 Нахождение оптимального значения R

Для нахождения оптимального R необходимо сначала найти верхнюю и нижнюю границы $R,\overline{R}.$

$$\underline{R} = \frac{\min_{i=1,n} \underline{x_{1i}}}{\max_{i=1,n} \overline{x_{2i}}} \tag{4}$$

$$\overline{R} = \frac{\max_{i=1,n} \overline{x_{1i}}}{\min_{i=1,n} x_{2i}} \tag{5}$$

Затем оптимальное значение R может быть найдено методом половинного деления.

3 Реализация

Весь код написан на языке Python (версии 3.7.3). Ссылка на GitHub с исходным кодом.

4 Результаты

Данные были взяты из файлов $data/dataset1/+0_5V/+0_5V_0.txt$ и $data/dataset/-0_5V/-0_5V_42.txt$. Обынтерваливание было произведено следующим образом.

$$\mathbf{x}_i = [(x_i - \delta_i) - \varepsilon, (x_i - \delta_i) + \varepsilon], \varepsilon = \frac{100}{2^{14}}$$
(6)

где x_i - точечное значение, δ_i - точечная погрешность. Набор δ_i получен из соответствующих файлов в data/dataset1/ZeroLine.txt

Сначала посмотрим на исходные интервальные выборки X_1, X_2 .

Рис. 1: Интервальная выборка X_1

Рис. 2: Интервальная выборка X_2

Также построим график частоты пересечений подинтервалов для построения моды с исходными интервалами выборок. Сначала для X_1 .

Рис. 3: Частота пересечений подинтервалов с интервалами выборки X_1

Затем для X_2 .

Рис. 4: Частота пересечений подинтервалов с интервалами выборки X_2

Мода для выборки X_1 равна интервалу $\mu_{X_1}=[0.4290,0.4295],$ для выборки X_2 мода равно интервалу $\mu_{X_2}=[-0.4258,-0.4257].$ Посчитаем индекс Жаккара обеих выборок. $JK(X_1)=0.511,JK(X_2)=$

Посчитаем индекс Жаккара обеих выборок. $JK(X_1) = 0.511$, $JK(X_2) = 0.477$. Найдем оптимальное значение R (для наглядности на графике 5 изображён более широкий интервал значений R).

Рис. 5: Зависимость индекса Жаккара от значения R

Оптимальное значение R оказалось равно $R_{opt}=-1.009$ Построим объединённую выборку $X=X_1\cup R_{opt}X_2.$

Рис. 6: Объединённая выборка $X_1 \cup R_{opt} X_2$

Индекс Жаккара полученной выборки равен JK(X) = 0.477.

Построим график частоты пересечений подинтервалов с объединённой выборкой $X_1 \cup R_{opt} X_2.$

Рис. 7: Частота пересечений подинтервалов с интервалами выборки $X_1 \cup R_{opt} X_2$

Мода для объединённой выборки $X_1 \cup R_{opt} X_2$ равна интервалу $\mu_{X_1 \cup R_{opt} X_2} = [0.4281, 0.4289].$

Посмотрим на зависимость частоты пересечений моды $\mu(R)$ с интервалами для объединённой выборки $X_1 \cup RX_2$ в зависимости от значений R.

Рис. 8: Зависимость частоты пересечения моды с интервалами $X_1 \cup RX_2$

Найдём внутреннюю и внешнюю интервальные оценки $\mathbf{R}=[R_{in},R_{out}]$. Для этого введём уровень доверия $\alpha=0.95$ и найдем крайние значений R, удовлетворяющие $JK(R)>JK(R_{opt})*\alpha$ для внутренней оценки и $\mu(R)>\mu(R_{opt})*\alpha$ для внешний. Результаты представлены на рис. 9 (график $\mu(R)$ нормирован так, чтобы $\max_R \mu(R)$ и $\max_R JK(R)$ были равны).

Рис. 9: Внутренняя и внешняя оценки R

В итоге получили следующие оценки: $R_{in} = [-1.0134, -1.0034], R_{out} = [-1.0262, -0.9935].$ Тогда $\mathbf{R} = [[-1.0134, -1.0034], [-1.0262, -0.9935]].$

5 Обсуждение

Из полученных результатов можно заметить следующее. Как видно на рисунке 5 график значений индекса Жаккара в зависимости от параметра R имеет один локальный минимум. Также видно, что индекс Жаккара объединённой выборки $X = X_1 \cup RX_2$ для любого значения R не превосходит значения индексов Жаккара для каждой выборки X_1, X_2 по отдельности, что вполне ожидаемо. Несмотря на это JK(X) не сильно отличается от значений $JK(X_1), JK(X_2)$, скорее всего это связано с тем, что интервалы из X_1 и RX_2 имеют примерно одинаковую длину, что видно на рисунке 6.

На рисунках 5, 8, 9 видно, что индекс Жаккара имеет более "острый"график в окрестности максимума нежели график максимального пересечения моды. Как следствие, для одинакового достаточно большого уровня доверия $\alpha \approx 1.0$ индекс Жаккара даёт более точную оценку оптимального значения R.