Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $3 \ / \ 3 \ / \ 3$

Выполнила: студентка 119 группы Голубкова М. С.

> Преподаватель: Сковорода Н. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	7
Отладка программы, тестирование функций	8
Анализ допущенных ошибок	9

Постановка задачи

В данном задании требовалось реализовать численный метод, позволяющий вычислить площадь плоской фигуры, ограниченный тремя кривыми, с точностью $\varepsilon=0.001$. В этом варианте интегралы вычислялись методом Симпсона (методом парабол), вершины фигуры, абсциссы которых являлись границами интегрирования, вычислялись методом Ньютона (методом касательных). Отрезок, на котором применялся метод нахождения корней, был вычислен аналитически.

Математическое обоснование

Сначала было определено необходимое значение ε_2 . Так как искомый интеграл выражается через алгебраическую сумму трёх других интегралов, то их допустимые погрешности складываются при получении точности результата. Соответственно точности в 0.001 мало, интегралы будут вычисляться с точностью $\varepsilon_2=0.0001$

Вычисление ε_1 происходит автоматически в функции main. Оно реализуется через цикл while, ε_1 подбирается так, чтобы максимальная погрешность вычисляемого интеграла не достигала 0.0005. Тогда максимальная погрешность результата не достигнет 0.0015, что удовлетворяет условию задания. Выбор функции для вычисления интегралов был сделан вручную, для f_3 вычислялся самый маленький ε_1 .

Отрезок $[\varepsilon_1, 3]$ для поиска корней был найден методом подбора, но выбор был обоснован:

$$(f_1(\varepsilon_1)-f_2(\varepsilon_1))>0;\ (f_1(3)-f_2(3))<0\ (f_2(\varepsilon_1)-f_3(\varepsilon_1))<0;\ (f_2(3)-f_3(3))>0\ (f_1(\varepsilon_1)-f_3(\varepsilon_1))<0;\ (f_1(3)-f_3(3))>0$$

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Кривые	x	y
1 и 2	2.539455	3.078909
2 и 3	1.366025	0.732051
1 и 3	0.265474	3.766842

Таблица 1: Координаты точек пересечения

Результаты можно представить не только в текстовом виде, но и проиллюстрировать графиком (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Полный список функций модуля на языке Си и описание их работы:

• F

Принимает на вход указатели на две функции вида $double\ f(double\ x)$ и число типа double.

Возвращает значение разности этих функций в данной точке, тип double.

• root

Принимает на вход указатели на две функции вида $double\ f(double\ x)$ и $double\ g(double\ x)$, два числа типа double - границы отрезка, точность вычислений типа double и указатели на производные $double\ ff(double\ x)$ и $double\ gg(double\ x)$.

Вычисляет методом касательных значение уравнения f(x) = g(y) на отрезке [a, b] с точностью ε_1 .

Возвращает решение уравнения, тип - double.

integral

Принимает на вход указатель на функцию вида $double\ f(double\ x)$, два числа типа $double\ -$ границы интегрирования и точность вычислений типа double.

Вычисляет интеграл функции f методом Симпсона на отрезке [a, b] с точностью ε_1 .

Возвращает значение определённого интеграла, тип - double.

testroot

Не принимает арументы.

Сначала считывает два целых числа - номера функций, сохраняет указатели на них и их производные, затем считтывает отрезок для поиска корня и точность вычислений. С этими параметрами и вызывается функция root, значение найденного корня сразу выводится.

Ничего не возвращает.

• testintegral

Не принимает аргументы.

Сначала считывает одно целое число - номер функции, сохраняет указатель на неё, затем считывает пределы интегрирования и точность вычислений. С этими параметрами и вызывается функция integral, его значение сразу выводится.

Ничего не возвращает.

• main

Главная функция, в которой начинается работа программы.

Может принимать встроенные аргументы.

Вызывает гоот для нахождения точек пересечения кривых, вызывает integral для нахождения определённых интегралов трёх прямых на отрезках, определённых с помооью гоот, считает площадь данной плоской фигуры. выполняет некоторые команды при помощи своих аргументов.

Модуль на языке Ассемблера представляет собой 6 функций - 3 функции и их производные. Каждая функция получает на вход число типа double, вычисляет значения в этих точках и возвращает их же.

Сборка программы (Маке-файл)

```
CC1=gcc
CC2=nasm
F1=-f elf32
F2=-c -m32
F3=-m32
all: 6.0 6hw.0
$(CC1) 6.0 6hw.0 $(F3)
6.0: 6.asm
$(CC2) $(F1) 6.asm
6hw.0: 6hw.c
$(CC1) 6hw.c $(F2)
clean:
rm *.0
```

Отладка программы, тестирование функций

Для тестирования функций root и integral при запуске программы необходимо написать соответственно ./a.out test root и ./a.out test integral.

• Тестирование root.

Тест 1:

$$\frac{1}{x}=e^{-x}+3$$
 на [0.1, 4] при $arepsilon_1=0.01$

Tecr 2

$$2*x-2=rac{1}{x}$$
 на [1, 3] при $arepsilon_1=0.00001$

Tect 3:

$$2*x-2=e^{-x}+3$$
 на [-1, 5] при $arepsilon_1=0.001$

Тест	prog	Wolfram
1	0.26	0.26
2	1.36603	1.36603
3	2.539	2.539

Таблица 2: Результаты тестов root

• Тестирование integral.

Тест 1:

$$f=\frac{1}{x}$$
на [2, 4] при $\varepsilon_1=0.001$

Tect 2:

$$f = 2 * x - 2$$
 на [-3, 2] при $\varepsilon_1 = 0.01$

Тест 3:

$$f = e^{-x} + 3$$
 на $[0, \, 5]$ при $\varepsilon_1 = 0.00001$

Тест	prog	Wolfram
1	0.693	0.693
2	-15.00	-15.00
3	15.99328	15.99328

Таблица 3: Результаты тестов integral

Анализ допущенных ошибок

Все ошибки, допущенные при работе над этим заданием, произошли по невнимательности и были своевременно устранены.

Так, например, при реализации формулы Симпсона для вычисления определённого интеграла внутри цикла во время прибавления к суммам очередного значения функции был потерян знак "+"в конструкции "+=". Ошибка была обнаружена не так оперативно, как хотелось бы, но всё же была устранена.