COMP4211 Project Report

Kaggle Competition: TMDB Box Office Prediction

Ng Chi Him

20420921

chngax@connect.ust.hk

Introduction

For the course project, I have participated in a Kaggle competition titled TMDB Box Office Prediction. The objective is to predict the ticket sales number of movies based on dataset provided by The Movie Database. To tackle this regression problem, I have experimented with three machine learning methods - Feedforward Linear Regression, Neural Network, and Random Forest.

Computing Environment

Software

Python 3.6 and Jupyter Notebook is used for development. PyTorch was used to build and train the neural network while Scikit-Learn was used to execute Linear Regression and Random Forest algorithms.

Hardware

CPU: Intel i7-6820HQ (Skylake, 2.7Ghz 4 Core 8 Threads)

RAM: 16GB

GPU: NVIDIA RTX 2070 (8GB RAM)

Dataset and Pre-processing

The dataset contains 3000 rows of training data with ground truth and 4398 rows of testing data with input fields only for generating submissions. There are 21 input fields in total, such as budget, genre, popularity, etc.

Excluded Fields

Some fields do not seem to have correlation to the output, such as homepage url and imdb id. Also, as text mining is not in the project scope, long text fields such as overview, title and tagline will be excluded. Fields with content that are too sparse will be excluded as well, such as cast and crew, in order to save processing time in later stages. Please refer to source code for exact list of excluded fields.

One-hot encoding

For categorical fields such as genre and language, they cannot be processed by the proposed learning methods. Therefore, one-hot encoding is used to transform them to vector form, where binary values are assigned to denote whether the category is active for data entry.

After processing, which consumed around 15 minutes of computation, the input size grew to 20082 fields, all in numeric form.

Train-Validation splitting

All data will be shuffled and split into training set (80%) and calidation set (20%) at the beginning of each implementation for the validation stage. The whole set will be used to train the final model for submission in the testing stage.

NaN Values

All NaN (no-a-number) values will be replaced by 0 before feeding into our models.

Scoring Method

Root-Mean-Squared-Logarithmic-Error (RMSLE) is used as the loss function or the scoring function whenever possible. For Random Forest, Mean-Squared-Error (MSE) is used as criterion is the RMSLE is not available as an option.

All "Score" or "Loss" stated in results below are RMSLE.

Linear Regression

As the simplest solution, Linear Regression was not expected to perform well and used as base line only.

Validation Result

Training set score: 0.03461

Validation set score: 7.020

Testing Result

In order to save submission quota limited by Kaggle (10 per day), testing output was not generated and submitted as the validation score is signification worse than other models.

Feedforward Neural Network

Design

The neural network has 5 fully-connected layers, with SELU and Dropout between each layer.

```
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in features=20082, out features=8192),
            nn.SELU(),
            nn.Dropout (p=0.5),
            nn.Linear(in features=8192, out features=4096),
            nn.SELU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=2048),
            nn.SELU(),
            nn.Dropout (p=0.5),
            nn.Linear(in_features=2048, out_features=1024),
            nn.SELU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=1024, out_features=1),
        self.loss_func = nn.MSELoss()
```

Experiment: SELU vs ELU vs ReLU

Different activation layers are tested with configuration below:

Optimizer: Adam, Learning rate: 1e-4 (default 1e-3 was not able to converge)

Beta1: 0.9, Beta2: 0.999 (0.99 for SELU as suggested by original paper [1])

Batch size: 32, Epochs: 15

	SELU	ELU	ReLU
Train Loss	3.2239	3.2567	3.2486
Val. Loss	3.3807	3.4054	3.3972
Time Used	1m41s	1m40s	1m40s

SELU Loss Graph

Model_loss

Red: Val., Blue: Train

ELU Loss Graph

Model_loss

Red: Val., Blue: Train

ReLU Loss Graph

Model_loss

Red: Val., Blue: Train

SELU was selected for the final model as it gave the lowest loss.

Hyperparameter Tuning

Different learning rates are tested with configuration below:

Activation: SELU
Optimizer: Adam

Beta1: 0.9, Beta2: 0.99

Batch size: 32, Epochs: 15

	7e-3	1e-4	3e-4	2e-4	2.5e-4
Train Loss	13.9386	3.2662	3.2815	3.2492	3.2748
Val. Loss	13.7864	3.2689	3.2906	3.2524	3.2598
Time Used	1m44s	1m43s	1m39s	1m40s	1m41s

7e-3 Loss Graph

Model_loss

Red: Val., Blue: Train

1e-4 Loss Graph

Model_loss

Red: Val., Blue: Train

3e-4 Loss Graph

Model_loss

2e-4 Loss Graph

Model_loss

2.5e-4 Loss Graph

Model_loss

2e-4 was selected for the final model.

Final Model

Activation: SELU

Optimizer: Adam, Learning rate: 2e-4

Beta1: 0.9, Beta2: 0.99

Batch size: 32, Epochs: 30

Model_loss

Training Loss: 3.232

Time Consumed: 4m16s

Kaggle Score: 2.82902

Random Forest

Hypermeter Tuning

Different numbers of estimators were tested with configuration below:

```
criterion='mse',
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto',
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False
```

	25	50	75	100	125
Train Score	1.8348	1.8338	1.8524	1.8512	1.8624
Val Score	2.128	2.0845	2.0818	2.0776	2.1096

125 was selected for the final model as there seems to be diminishing of return.

Final Model

Configuration:

```
forest = RandomForestRegressor(
   n_estimators=125,
   criterion='mse',
   max_depth=None,
   min_samples_split=2,
   min_samples_leaf=1,
   min weight fraction leaf=0.0,
   max_features='auto',
   max_leaf_nodes=None,
   min_impurity_decrease=0.0,
   min_impurity_split=None,
   bootstrap=True,
   oob score=False,
   n_jobs=None,
   random_state=None,
   verbose=0,
   warm_start=False
```

Train Score: 1.8320

Kaggle Score: 2.33075

Kaggle Team Proof

References

[1] Klambauer, Günter, et al. "Self-normalizing neural networks." *Advances in neural information processing systems*. 2017.