Reversible Addition to Carbonyls: pH-Dependence

Hydride reducing agents and organometallic reagents are both examples of *excellent*, strong nucleophiles. What happens if we treat a carbonyl compound with a *weaker* nucleophile?

Acid catalysts make an *electrophile more electrophilic;* base catalysts make a *nucleophile more nucleophilic.*

Reversible Addition to Carbonyls: Acidic Conditions

Provide complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c} O \\ \hline \\ H_2O, \ H^+ \ cat. \\ \hline \\ OH \end{array}$$

Why is the hydration of an aldehyde or ketone reversible?

Reversible Addition to Carbonyls: Hydration Equilibria

Explain the observed ranking of equilibrium constants for carbonyl hydration:

The following compound has two carbonyl groups. Which one will become hydrated under aqueous conditions? Explain why $K_{rel} = 0.8$, i.e. significantly larger than for most unsubstituted ketones such as acetone (above).

$$H_3C$$
 O
 CH_3
 H_2O

Reversible Addition to Carbonyls: Basic Conditions

Provide complete curved-arrow mechanisms for the following reactions:

$$\begin{array}{c} O \\ \hline \\ NaOH \\ \hline \\ H_2O \\ \end{array} \begin{array}{c} OH \\ \hline \\ OH \\ \end{array} \text{ a vicinal diol}$$

Going Backward: Oxidation of Alcohols

Provide curved-arrow mechanisms for each of the following oxidation reactions.

Reversible Addition to Carbonyls: Hemiacetals

Provide a complete curved-arrow mechanism for each of the following reactions:

HO
$$\frac{0}{H}$$
 $\frac{OH^{-}(cat.)}{OH}$ a *cyclic* hemiacetal

Monosaccharides (glucose, fructose, etc.) all exist naturally as hemiacetals; we'll discuss more later...

Reversible Addition to Carbonyls: Acetals

Provide a complete curved-arrow mechanism for each of the following reactions:

Reversible Addition to Carbonyls: Acetals as Protecting Groups

How would you carry out the following synthetic transformations?

$$0 \\ H$$

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

Reversible Addition to Carbonyls: Imines, Iminium Ions, and Enamines

Provide a complete curved-arrow mechanism for each of the following reactions.

$$\begin{array}{c|c} O & & & \\ \hline & NH & & \\ \hline & pH \sim 5 & & \\ \end{array}$$
 an enamine

Why pH 5?

Reversible Addition to Carbonyls: Hydrolysis of Acetals, Iminium Ions, & Enamines

The hydrolysis of acetals & imines is simply the reverse of their formation! Provide a complete curved-arrow mechanism for each of the following reactions.

$$\begin{array}{c|c} & & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$$

$$H$$
 H
 H
 H
 H

The Wittig Reaction: Synthesizing Alkenes from Carbonyls

The Wittig reaction is a remarkably useful synthesis of alkenes. First, an alkyl halide is used to form a **phosphonium ylide.** Provide a curved-arrow mechanism.

Then the phosphonium ylide is added to an aldehyde or ketone to yield a new carbon-carbon **double** bond! Provide a mechanism.

^{**} The Wittig reaction tends to give cis alkenes when there is a choice. **

The Wittig Reaction in Synthesis

How would you carry out the following transformation?

"Removing" a Carbonyl Group from Aldehydes & Ketones

What reagents could you use to carry out the following transformations?

** The Wolff-Kishner & Clemmensen reactions only work on carbonyl groups at the ketone oxidation level! **