PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2020

Interrogación 9 MAT1107 - Introducción al Cálculo

(1) Usando la definición de límite, demuestre que

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + n + 1} = \frac{1}{2}.$$

(3 puntos)

Solución. Sea $\varepsilon > 0$.

Primero,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| = \frac{n+1}{2(2n^2 + n + 1)} \quad (0.5 \text{puntos})$$
$$= \frac{1}{n} \cdot \frac{1 + \frac{1}{n}}{2(2 + \frac{1}{n} + \frac{1}{n^2})}.$$

Notamos que, para $n \geq 1$,

$$\frac{1+\frac{1}{n}}{2+\frac{1}{n}+\frac{1}{n^2}} \le \frac{2}{2+\frac{1}{n}+\frac{1}{n^2}} \le 1.$$

Luego,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| \leq \frac{1}{n}. \quad (1\text{punto})$$

Sea $n_0 \ge 1$ tal que $\frac{1}{n_0} < \varepsilon$. (1 punto)

Luego, si $n \geq n_0$,

$$\left| \frac{n^2}{2n^2 + n + 1} - \frac{1}{2} \right| \le \frac{1}{n} \le \frac{1}{n_0} < \varepsilon. \quad (0.5 \text{puntos})$$

Obs: -0.3 puntos por no declarar explícitamente $\varepsilon > 0$.

(2) Considere la sucesión dada por

$$a_1 = 1,$$
 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \quad n \ge 1.$

- (a) Demuestre que $a_n > 0$ para todo $n \ge 1$. (0.5 puntos)
- (b) Demuestre que $a_n \ge \sqrt{2}$ para todo $n \ge 2$. (1 punto)
- (c) Demuestre que $a_n \leq 2$ para todo $n \geq 1$. (1.5 puntos)

Solución.

- (a) La afirmación es verdadera para n = 1. Si $a_n > 0$, entonces el lado derecho en la definición de a_{n+1} es claramente positivo. (**Puntaje: 0 o 0.5 puntos**)
- (b) Sea $n \ge 2$. Como $a_{n-1} > 0$, podemos usar la desigualdad PA-PM:

$$2a_n = a_{n-1} + \frac{2}{a_{n-1}} \ge 2\sqrt{a_{n-1}} \cdot \sqrt{\frac{2}{a_{n-1}}} = 2\sqrt{2}.$$

Esto demuestra lo pedido. (Puntaje: por avance)

(c) La afirmación es evidentemente verdadera para n=1 y n=2. Supongamos que $a_k \leq 2$ para algún $k \geq 2$. Luego,

$$a_{k+1} \leq \frac{1}{2} \left(2 + \frac{2}{a_n} \right) \quad (\textbf{0.5puntos})$$

 $\leq \frac{1}{2} \left(2 + \frac{2}{\sqrt{2}} \right), \quad (\textbf{0.5puntos})$

gracias a la parte (b). Luego,

$$a_{k+1} \le 1 + \frac{1}{\sqrt{2}} \le 2.$$
 (0.5puntos)

La afirmación queda demostrada por inducción.

Obs: -0.2 puntos por no plantear el caso n=2 y -0.2 puntos por no plantear la hipótesis de inducción.