DIALOG(R) File 351:Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv.

012249366 **Image available**
WPI Acc No: 1999-055473/ 199905

XRPX Acc No: N99-041999

Electrification method for photoreceptor in image forming apparatus - involves electrifying photoreceptor by electrification brush, only when surface density of electrification promotion particle coated on photoreceptor attains specific value

Patent Assignee: CANON KK (CANO)

Inventor: CHIGONO Y; HIRABAYASHI J; ISHIYAMA H; NAGASE Y

Number of Countries: 002 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 10307457 A 19981117 JP 9873531 A 19980305 199905 B
US 6081681 A 20000627 US 9835108 A 19980305 200036

Priority Applications (No Type Date): JP 9767423 A 19970305 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 10307457 A 14 G03G-015/02 US 6081681 A G03G-015/02 Abstract (Basic): JP 10307457 A

The method involves applying voltage to an electrification brush (2) for electrifying a photoreceptor (1), contacting it at the nip (n). The electrification brush is rotated relative to the speed of the photoreceptor. The photoreceptor is electrified, only when the surface

density of electrification promotion particle (m) coated on it by a coater (8) is 102pieces/mm2.

ADVANTAGE - Offers uniform electrification. Improves durability.

			•
·			

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-307457

(43)公開日 平成10年(1998)11月17日

(51) Int.Cl.5

截別記号

FΙ

G 0 3 G 15/02

101

G 0 3 G 15/02

101

15/24

15/24

審査請求 未請求 請求項の数21 FD (全 14 頁)

(21)出願番号

特願平10-73531

(22)出願日

平成10年(1998) 3月5日

(31) 優先権主張番号 特顯平9-67423

(32)優先日

平9 (1997) 3月5日

(33)優先権主張国

日本(JP)

(71)出源人 000001007

キヤノン株式会社

東京都大田区下丸子3丁月30番2号

(72)発明者 永瀬 幸雄

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 石山 晴美

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 児野 康則

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 高梨 幸雄

最終頁に続く

(54) 【発明の名称】 帯電方法、帯電装置及び画像形成装置

(57)【要約】

【課題】 接触帯電装置において、被帯電体と帯電部材 の接触不足の問題を改善し、帯電均一性を向上させるこ と、接触帯電部材の性能によらず、より帯電均一性に優 れ日つ長期に渡り安定した直接注入帯電を実現する、即 ち、低印加電圧でオゾンレスの直接注入帯電を簡易な構 成で実現すること、またこれにより、オゾン生成物によ る障害、帯電不良による障害等のない、簡易な構成、低 コストな画像形成装置を得ること。

【解決手段】 電圧が印加され、被帯電体1とニップ部 n を形成する可撓性の帯電部材2により被帯電体面を帯 電する帯電装置であり、帯電部材表面は被帯電体面に対 して速度差を持って移動し、少なくとも帯電部材1と被 帯電体2とのニップ部 n に導電性を有する帯電促進粒子 mが10°個 mm°以上存在した状態で被帯電体の帯 電が実行されること。

【特許請求の範囲】

【請求項1】 電圧が印加され、被帯電体とニップ部を 形成する可提性の帯電部材により被帯電体面を帯電する 帯電方法であり。

帯電部材表面は被帯電体面に対して速度差を持って移動 1

少なくとも帯電部材と被帯電体とのニップ部に導電性を 有する帯電促進粒子が10°個、mm²以上存在した状態で被帯電体の帯電が実行されることを特徴とする帯電 方法。

【請求項2】 前記帯電促進粒子の主な粒径は20 nm ~5 mmの範囲であることを特徴とする請求項1 に記載の帯電方法。

【請求項3】 前記帯電促進粒子の粒子抵抗が1×10 □ (Ω · c m) 以下であることを特徴とする請求項1ま たは2に記載の帯電装置。

【請求項4】 前記帯電促進粒子の粒子抵抗が1×10 中(Ω+cm)以下であることを特徴とする請求項1ま たは2に記載の帯電方法。

【請求項5】 前記被帯電体の最表面層の体積抵抗が1 210日 (Ω+em) 以下であることを特徴とする請求 項1から4の何れか1つに記載の帯電方法。

【請求項6】 前記帯電促進粒子を供給する手段を持つ ことを特徴とする請求項1から5の何れか1つに記載の 帯電方法。

【請求項7】 前記帯電部材が、導電性繊維のファーブラシ部を有し、該ファーブラシ部を被帯電体に接触させたファーブラン接触帯電部材であることを特徴とする請求項1から6の何れか1つに記載の帯電方法。

【請求項8】 前記帯電部材が、磁性粒子を磁気拘束させた磁気ブラン部を有し、該磁気ブラン部を被帯電体に接触させた磁気ブラン接触帯電部材であることを特徴とする請求項1から6の何れか1つに記載の帯電方法。

【請求項9】 電圧が印加され、被帯電体とニップ部を 形成する可撓性の帯電部材により被帯電体面を帯電する 帯電装置であり。

帯電部材表面は被帯電体面に対して速度差を持って移動 し、

少なくとも帯電部材と被帯電体とのニップ部に導電性を 有する帯電促進粒子が10% 個/mm² 以上存在した状態で被帯電体の帯電が実行されることを特徴とする帯電 装置

【請求項10】 前記帯電促進粒子の主な粒径は20 n m~5 μ mの範囲であることを特徴とする請求項9に記載の帯電装置。

【請求項11】 前記帯電促進粒子の粒子抵抗が 1×1 0^{14} ($\Omega \cdot c$ m) 以下であることを特徴とする請求項9または10に記載の帯電装置。

【請求項12】 前記帯電促進粒子の粒子抵抗が1×1 0□ (Ω · c m) 以下であることを特徴とする請求項9 または10に記載の帯電装置。

【請求項13】 前記被帯電体の最表面層の体積抵抗が 1×10¹⁴ (Ω·cm)以下であることを特徴とする請求項9から12の何れか1つに記載の帯電装置。

【請求項14】 前記帯電促進粒子を供給する手段を持つことを特徴とする請求項9から13の何れか1つに記載の帯電装置。

【請求項15】 前記帯電部材が、導電性繊維のファーブラシ部を有し、該ファーブラシ部を被帯電体に接触させたファーブラシ接触帯電部材であることを特徴とする請求項9から15の何れか1つに記載の帯電装置。

【請求項16】 前記帯電部材が、磁性粒子を磁気拘束 させた磁気ブラシ部を有し、該磁気ブラシ部を被帯電体 に接触させた磁気ブラシ接触帯電部材であることを特徴 とする請求項9から15の何れか1つに記載の帯電装 業

【請求項17】 像担持体に該像担持体を帯電する工程 を含む作像プロセスを適用して画像形成を実行する画像 形成装置であり、

前記像担持体を構電する工程手段が請求項9から1629 何れか1つに記載の帯電装置であることを特徴とする画 像形成装置。

【請求項18】 像担持体と、該像担持体を帯電する帯電手段と、像担持体の帯電面に静電潜像を形成する画像情報書き込み手段と、その静電潜像をトナーによって可視化する現像手段と、そのトナー像を記録媒体に転写する転写手段を有し、前記現像手段がトナー像を記録媒体に転写した後に像担持体上に残留したトナーを回収するクリーニング手段を兼ね、像担持体は繰り返して作像に供する画像形成装置であり、

前記像担持体を帯電する帯電手段が請求項9から16の 何れか1つに記載の帯電装置であることを特徴とする画 像形成装置。

【請求項19】 像担持体の帯電面に静電潜像を形成する画像情報書き込み手段が像露光手段であることを特徴とする請求項17または18に記載の画像形成装置、

【請求項20】 前記帯電促進粒子は像露光波長帯域において光吸収の影響が少ないことを特徴とする請求項19に記載の画像形成装置。

【請求項21】 前記像担持体は感光体であり、該感光体の最表面層の体積抵抗が $1\times10^\circ$ ($\Omega\cdot c$ m)以上 1×10^{14} ($\Omega\cdot c$ m)以下であることを特徴とする請求項17から20の何れか1つに記載の画像形成装置。

[0001]

【発明の詳細な説明】

【発明の属する技術分野】本発明は被帯電体の帯電装置 に関する、より詳しくは、電圧が印加され、被帯電体と ニップ部を形成する可操性の帯電部材により被帯電体面 を帯電する接触帯電方式の帯電方法と帯電装置に関す る。 【0002】また、該帯電装置を像担持体の帯電処理手段として備えた画像形成装置に関する。

[0003]

【従来の技術】従来、例えば、電子写真装置(複写機・ プリンタ等)や静電記録装置等の画像形成装置におい て、電子写真感光体・静電記録誘電体等の像担持体(被 帯電体)を所要の極性・電位に一様に帯電処理(除電処 理も含む)する帯電装置としてはコロナ帯電器(コロナ 放電器)がよく使用されていた。

【0004】コロナ帯電器は非接触型の帯電装置であり、ワイヤ電板等の放電電極と該放電電極を囲むシールド電極を備え、放電開口部を被帯電体である像担持体に対向させて非接触に配設し、放電電極とシールド電極に高圧を印加することにより生じる放電電流(コロナシャワー)に像担持体面をきらすことで像担持体面を所定に帯電させるものである。

【0005】 連時は、中低速機種の画像形成装置にあっては、係担持体等の被帯電体の帯電装置として、コロナ帯電器に比べて低オゾン・低電力等の利点があることから接触帯電装置が多く提案され、また実用化されている。

【0006】接触帯電装置は、像担持体等の被帯電体に、ローラ型(帯電ローラ)、ファーブラシ型、磁気ブラシ型、ブレード型等の導電性の帯電部材(接触帯電部材・接触帯電器)を接触させ、この接触帯電部材に所定の帯電バイアスを印加して被帯電体面を所定の極性・電位に帯電させぶものである。

【0007】接触帯電の帯電機構(帯電のメカニズム、 帯電原理)には、①放電帯電機構と②直接注入帯電機構 の2種類の帯電機構が混在しており、どちらが支配的で あるかにより各々の特性が現れる。

【0008】00. 放電帯電機構

接触帯電部材と被帯電体との微小間隙に生じる放電現象により被帯電体表面がコ帯電する機構である。

【0009】放電帯電機構は接触帯電部材と被帯電体に一定の放電しきい値を有するため、帯電電位より大きな電圧を接触帯電部材に印加する必要がある。また、コロナ帯電器に比べれば発生量は格段に少ないけれども放電生成物を生じることが原理的に避けられないため、オゾンなど活性イオンによる弊害は避けられない。

【0010】②、直接注入帯電機構

接触帯電部材から被帯電体に直接に電荷が注入されることで被帯電体表面が帯電する系である。直接帯電、あるいは注荷注入帯電とも称される。より詳しくは、中抵抗の接触帯電部材が被帯電体表面に接触して、放電現象を介さずに、つまり放電を基本的に用いないで被帯電体表面に直接電荷注入を行うものである。よって、接触帯電部材への印加電圧が放電関値以下の印加電圧であっても、被帯電体を印加電圧相当の電位に帯電することができる。

【0011】この帯電系はイオンの発生を伴わないため 放電生成物による弊害は生じない。しかし、直接注入帯 電であるため、接触帯電部材の被帯電体への接触性が帯 電性に大きく効いてくる。そこで接触帯電部材はより密 に構成し、また被帯電体との速度差を多く持ち、より高 い頻度で被帯電体に接触する構成をとる必要がある。

【0012】A)ローラ帯電

接触帯電装置は、接触帯電部材として導電ローラ(帯電 17ーラ)を用いたローラ帯電方式が帯電の安定性という 点で好ましく、広く用いられている。

【0013】このローラ帯電はその帯電機構は前記Φの 放電帯電機構が支配的である。

【0014】帯電ローラは、導電あるいは中抵抗のゴム 材あるいは発泡体を用いて作成される。さらにこれらを 積層して所望の特性を得たものもある。

【0015】帯電ローラは被帯電体(以下、感光体と記す)との一定の接触状態を得るために弾性を持たせているが、そのため摩擦抵抗が大きく、多くの場合、感光体に従動あるいは若干の速度差をもって駆動される、従って、直接注入帯電しようとしても、絶対的帯電能力の低下や接触性の不足やローラ状のムラや感光体の付着物による帯電ムラは避けられないため、従来のローラ帯電ではその帯電機構は放電帯電機構が支配的である。

【0016】図9は接触帯電における帯電効率例を表わしたグラフである。横軸に接触帯電部材に印加したバイアス、縦軸にはその時得られた感光体帯電電位を表わすものである。ローラ帯電の場合の帯電特性はAで表わされる。即ち凡そ-500Vの放電関値を過ぎてから帯電が始まる。従って、-500Vに帯電する場合は-1000Vの直流電圧を印加するか、あるいは、-500V直流の帯電電圧に加えて、放電関値以上の電位差を常に持つようにピーク間電圧1200Vの交流電圧を印加して感光体電位を帯電電位に収束させる方法が一般的である。

【0017】より具体的に説明すると、厚さ25元mの 〇PC感光体に対して帯電ローラを加圧当接させた場合 には、約640V以上の電圧を印加すれば感光体の表面 電位が上昇し始め、それ以降は印加電圧に対して傾き1 で線形に感光体表面電位が増加する。この閾値電圧を帯 電開始電圧Vthと定義する。

【0018】つまり、電子写真に必要とされる感光体表面電位V dを得るためには帯電ローラにはV d+V thという必要とされる以上のDC電圧が必要となる。このようにしてDC電圧のみを接触帯電部材に印加して帯電を行なう方法を「DC帯電方式」と称する。

【0019】しかし、DC帯電においては環境変動等によって接触帯電部材の抵抗値が変動するため、また、感光体が削れることによって膜厚が変化するとVthが変動するため、感光体の電位を所望の値にすることが難しかった。

【0020】このため、更なる帯電の均一化を図るために特開昭63 149669号公報に開示されるように、所望のVilに相当するDC電圧に2×Vih以上のセーク問電圧を持つAC成分を重量した電圧を接触帯電部材に印加する「ACによる電位のならし効果を目的としたものであり、被帯電体の電位はAC電圧のピークの中央であるViに収束し、環境等の外乱には影響されることはない。【0021】ところが、このような接触帯電装置においても、その本質的な帯電機構は、接触帯電部材から感光体への放電現象を用いているため、先に述べたように接触帯電部材に印加する電圧は感光体表面電位以上の値が必要とされ、微量のオゾンは発生する。

【0022】また、帯電均一化のためにAC帯電を行なった場合にはさらなるオゾンの発生、AC電圧の電界による接触帯電部材と感光体の振動騒音(AC帯電音)の発生、また、放電による感光体表面の劣化等が顕著になり、新たな問題点となっていた。

【0023】F)ファーブラシ帯電

ファーブラシ帯電は、接触帯電部材として導電性繊維の ブラシ部を有する部材(ファーブラシ帯電器)を用い、 その導電性繊維ブラシ部を被帯電体としての感光体に接 触させ、所定の帯電バイアスを印加して感光体面を所定 の極性・電位に帯電させるものである。

【0024】このファーブラシ帯電もその帯電機構は前記のの放電帯電機構が支配的である。

【0025】ファーブラシ帯電器は固定タイプとロールタイプが実用化されている。中抵抗の繊維を基布に折り込みバイル状に形成したものを電極に接着したものが固定タイプで、ロールタイプはバイルを芯金に巻き付けて形成する。繊維密度としては100本/mm²程度のものが比較的容易に得られるが、直接注入帯電により十分均一な帯電を行うには感光体に対し機械構成としては困難なほどに速度差を持たせる必要があり、現実的ではない。

【0026】このファーブラシ帯電の直流電圧印加時の帯電特性は図9のBに示される特性をとる。従って、ファーブラシ帯電の場合も、固定タイプ、ロールタイプどちらも多くは、高い帯電バイアスを印加し放電現像を用いて帯電を行っている

【0027】() 磁気ブラシ帯電

磁気ブラシ帯電は、接触帯電部材として導電性磁性粒子をマグネットロール等で磁気拘束してブラシ状に形成した磁気ブラシ部を有する部材(磁気ブラシ帯電器)を用い、その磁気ブラシ部を被帯電体としての感光体に接触させ、所定の帯電バイアスを印加して感光体面を所定の極性・電位に帯電させるものである。

【0028】この磁気ブラシ帯電の場合はその帯電機構 は前記型の直接注入帯電機構が支配的である。 【0029】磁気ブラシ部を構成させる導電性磁性粒子 として粒径5~50μmのものを用い、感光体と十分速 度差を設けることで、均一に直接注入帯電を可能にする。

【0030】図9の帯電特性グラフのCにあるように、 印加バイアスとほぼ比例した帯電電位を得ることが可能 になる。

【0031】しかしながら、機器構成が複雑であること、磁気ブラシ部を構成している導電性磁性粒子が脱落して感光体に付着する等他の弊害もある。

【0032】特開平6-3921号公報等には感光体表面にあるトラップ準位または電荷注入層の導電粒子等の電荷保持部材に電荷を注入して接触注入帯電を行なう方法が提案されている。放電現象を用いないため、帯電に必要とされる電圧は所望する感光体表面電位分のみであり、オゾンの発生もない。さらに、AC電圧を印加しないので、帯電音の発生もなく、ローラ帯電方式と比べると、オゾンレス、低電力の優れた帯電方式である。

【0033】D)トナーリサイクルプロセス(クリーナーレスシステム)

転写方式の画像形成装置においては、転写後の感光体 (像担持体)に残存する転写残トナーはクリーナー(ク リーニング装置)によって感光体面から除去されて廃ト ナーとなるが、この廃トナーは環境保護の面からも出な いことが望ましい。そこでクリーナーをなくし、転写後 の感光体上の転写残トナーは現像装置によって「現像同 時クリーニング」で感光体上から除去し現像装置に回収 ・再用する装置構成にしたトナーリサイクルプロセスの 画像形成装置も出現している。

【0034】現像同時クリーニングとは、転写後に感光体上に残留したトナーを次工程以降の現像時、即ち引き続き感光体を帯電し、端光して潜像を形成し、該潜像の現像時にかぶり取りバイアス(現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差Vback)によって回収する方法である。この方法によれば、転写残トナーは現像装置に回収されて次工程以後に再用されるため、廃トナーをなくし、メンテナンスに手を煩わせることも少なくすることができる。またクリーナーレスであることでスペース面での利点も大きく、画像形成装置を大幅に小型化できるようになる。

【0035】E)接触帯電部材に対する粉末塗布接触帯電装置について、帯電ムラを防止し安定した均一帯電を行なうために、接触帯電部材に被帯電体面との接触面に粉末を塗布する構成が特公平7-99442号公報に開示されているが、接触帯電部材(帯電ローラ)が被帯電体(感光体)に従動回転(速度差駆動なし)であり、スコロトロン等のコロナ帯電器と比べるとオゾン生成物の発生は格段に少なくなっているものの、帯電原理は前述のローラ帯電の場合と同様に以前として放電帯電機構を主としている。特に、より安定した帯電均一性を

得るためにはDC電圧にAC電圧を重畳した電圧を印加するために、放電によるオゾン生成物の発生はより多くなってしまう。よって、長期に装置を使用した場合や、クリーナーレスの画像形成装置を長期に使用した場合において、オゾン生成物による画像流れ等の弊害が現れやまい。

【0036】また、特開平5-150539号公報には、接触帯電を用いた画像形成方法において、長時間画像形成を繰り返すうちにトナー粒子やシリカ微粒子が帯電手段の表面に付着することによる帯電阻害を防止するために、現像剤中に、少なくとも顕画粒子と、顕画粒子より小さい平均粒径を有する導電性粒子を含有することが開示されている。しかし、この接触帯電は放電帯電機構によるもので、直接注入帯電機構ではなく、放電帯電による前述の問題がある。

[0037]

【発明が解決しようとする課題】上記の従来の技術の項に記載したように、接触帯電において、接触帯電部材として帯電ローラやファーブラシを用いた簡易な構成で直接注入帯電をすることが難しく、画像形成装置にあっては絶対的帯電不良による画像のかぶり(反転現像の場合には白地部が現像される)や帯電ムラなどが生じる。

【 0 0 3 8 】接触帯電部材の被帯電体面との接触面に粉末を塗布し、接触帯電部材が従動で、放電帯電機構を主とする接触帯電装置構成では、長期に装置を使用した場合や、クリーナーレスの画像形成装置を長期に使用した場合に、オゾニ生成物が蓄積することにより画像流れが生じやすくなる。

【00099】2リーナーレスの画像形成装置においては、転写残トナーが帯電部において帯電不良を引き起こしてしまう。

【0040】接触帯電においては、被帯電体と帯電部材 との接触が十分におこなわれる必要が有るため、接触に 係わる次のような問題点があった。

【0041】a)接触帯電部材としてファーブラシ(帯電ブラシ)を用いた場合、帯電ブラシの毛先が図9に示すように分かれ、被帯電体表面に接触できないところができ、被帯電体表面を均一に帯電することができない。図9において、1は被帯電体(例えば感光体)、2は帯電ブラシ、2aは帯電ブラシの電極部、2bは停電性繊維のファーブラシ部、S1は帯電バイアス印加電源である

【0042】b)接触帯電部材として磁気ブラシを用いた場合、接触性を向上させるために帯電磁性粒子を小さくしていくと、磁性粒子が被帯電体表面に付着する欠点があり、帯電磁性粒子を大きくして磁気拘束力を十分に与えると、磁性粒子と被帯電体体の接触機会が少なくなり注入帯電能力が低下する。

【()()(15) 接触性を向上させるために補助的な導 電性磁性微粒子を帯電部材に混入させる方法も考案され ているが、長期的に見て磁性微粒子が被帯電体に付着して消費され、帯電性が低下することが指摘されている。 【0044】そこで本発明は、接触帯電において、被帯電体と帯電部材の接触不足の問題を改善し、帯電均一性を向上させることを目的とする。また接触帯電部材の性能によらず、即ち接触帯電部材としてファーブラシや帯電ローラ等の簡易な部材を用いた場合でも、より帯電均一性に優れ且つ長期に渡り安定した直接注入帯電を実現する、即ち、低印加電圧でオゾンレスの直接注入帯電を簡易な構成で実現することを目的とする。

【0045】またこれにより、オゾン生成物による障害、帯電不良による障害等のない、簡易な構成、低コストな画像形成装置を得ることを目的とする。

[0046]

【課題を解決するための手段】本発明は下記の構成を特徴とする、帯電方法、帯電装置及び画像形成装置である。

【0047】(1)電圧が印加され、被帯電体とニップ 部を形成する可撓性の帯電部材により被帯電体面を帯電 する帯電方法であり、帯電部材表面は被帯電体面に対し て速度差を持って移動し、少なくとも帯電部材と被帯電 体とのニップ部に導電性を有する帯電促進粒子が10 個/mm/以上存在した状態で被帯電体の帯電が実行さ れることを特徴とする帯電方法、

【0048】(2)前記帯電促進粒子の主な粒径は20 mm~5 mmの範囲であることを特徴とする(1)に記 限の帯電方法。

【0049】(3)前記帯電促進粒子の粒子抵抗が1~ 10¹²(Ω・cm)以下であることを特徴とする(1) または(2)に記載の帯電装置。

【0050】(4)前記帯電促進粒子の粒子抵抗が1×101°(Ω・cm)以下であることを特徴とする(1)または(2)に記載の帯電方法。

【0051】(5)前記被帯電体の最表面層の体積抵抗が1×10¹⁴(Ω·cm)以下であることを特徴とする(1)から(4)の何れか1つに記載の帯電方法。

【0052】(6)前記帯電促進粒子を供給する手段を持つことを特徴とする(1)から(5)の何れか1つに記載の帯電方法。

【0053】(7)前記帯電部材が、導電性繊維のファーブラシ部を有し、該ファーブラシ部を被帯電体に接触させたファーブラシ接触帯電部材であることを特徴とする(1)から(6)の何れか1つに記載の帯電方法。

【0054】(8)前記帯電部材が、磁性粒子を磁気拘束させた磁気ブラシ部を有し、該磁気ブラシ部を被帯電体に接触させた磁気ブラシ接触帯電部材であることを特徴とする(1)から(6)の何れか1つに記載の帯電方法

【0055】(9)電圧が印加され、被帯電体とニップ 部を形成する可撓性の帯電部材により被帯電体面を帯電 する帯電装置であり、帯電部材表面は被帯電体面に対して速度差を持って移動し、少なくとも帯電部材と被帯電体とのニップ部に導電性を有する帯電促進粒子が10²個 mm²以上存在した状態で被帯電体の帯電が実行されることを特徴とする帯電装置。

【0056】(10)前記帯電促進粒子の主な粒径は2 0mm〜5ヵmの範囲であることを特徴とする(9)に 記載の帯電装置

【0057】(11)前記帯電促進粒子の粒子抵抗が1 ・101(Ω·cm)以下であることを特徴とする (9)または(10)に記載の帯電装置。

【0058】(12)前記帯電促進粒子の粒子抵抗が1・10¹⁵(Ω·cm)以下であることを特徴とする(9)または(10)に記載の帯電装置。

【0059】 (13) 前記被帯電体の最表面層の体積抵抗が1+10 $(\Omega+cm)$ 以下であることを特徴とする (9) から (12) の何れか1つに記載の帯電装置。 【0060】 (14) 前記帯電促進粒子を供給する手段を持つことを特徴とする (9) から (13) の何れか1つに記載の帯電装置。

【0061】・15)前記帯電部材が、導電性繊維のファーブラシ部を有し、該ファーブラシ部を被帯電体に接触させたファーブラシ接触帯電部材であることを特徴とする(9)から(15)の何れか1つに記載の帯電装置

【0062】(16)前記帯電部材が、磁性粒子を磁気 拘束させた磁気ブラシ部を有し、該磁気ブラシ部を被帯 電体に接触させた磁気ブラシ接触帯電部材であることを 特徴とする(9)から(15)の何れか1つに記載の帯 電装置。

【0063】(17) 像担持体に該像担持体を帯電する 工程を含む作像プロセスを適用して画像形成を実行する 画像形成装置であり、前記像担持体を帯電する工程手段 が(9)から(16)の何れか1つに記載の帯電装置で あることを特徴とする画像形成装置、

【0064】(18) 像担持体と、該像担持体を帯電する帯電手段と、像担持体の帯電面に静電潜像を形成する画像情報書き込み手段と、その静電潜像を下ナーによって可視化する現像手段と、その下ナー像を記録媒体に転写する転写手段を有し、前記現像手段が下ナー像を記録媒体に転写した後に像担持体上に残留した下ナーを回収するクリーニング手段を兼ね、像担持体は繰り返して作儀に供する画像形成装置であり、前記像担持体を帯電する帯電手段が(9)から(16)の何れか1つに記載の帯電装置であることを特徴とする画像形成装置。

【0065】(19) 像担持体の帯電面に静電潜像を形成する画像情報書き込み手段が像露光手段であることを特徴とする(17)または(18)に記載の画像形成装置。

【0066】(20)前記帯電促進粒子は像露光波長帯

域において光吸収の影響が少ないことを特徴とする(1 り)に記載の画像形成装置。

【0067】 (21) 前記像担持体は感光体であり、該感光体の最表面層の体積抵抗が 1×10^9 ($\Omega\cdot cm$)以上 1×10^{14} ($\Omega\cdot cm$)以下であることを特徴とする(17)から(20)の何れか1つに記載の画像形成装置。

【0068】〈作 用〉即ち本発明は、被帯電体と可挽性の接触帯電部材とのニップ部に導電性を有する帯電促進粒子を102個/mm²以上の密度で存在させた状態で、かつ帯電部材は被帯電体に速度差を持たせて移動させて被帯電体の接触帯電を行なわせる。

【0069】帯電促進粒子の存在により被帯電体と接触 帯電部材とのニップ部において接触帯電部材は被帯電体 と速度差をもって接触できると同時に、帯電促進粒子を 介して密に被帯電体に接触して、つまり接触帯電部材と 被帯電体のニップ部に存在する帯電促進粒子が被帯電体 表面を隙間なく摺擦することで被帯電体に電荷を直接注 人できるのである。

【0070】即ち接触帯電部材による被帯電体の帯電は 帯電促進粒子の存在により、帯電部材の接触不足の問題 が改善され、帯電均一性が飛躍的に向上することになり、直接注入帯電が支配的となる。帯電均一性は帯電促 進粒子の存在密度によりほぼ決まるため、帯電部材の性 能によらず常に均一な帯電が可能となった。

【0071】従って、従来のファーブラシ帯電やローラ 帯電等では得られなかった高い帯電効率が得られ、印加 した電圧とほぼ同等の電位を被帯電体に与えることがで きる。

【0072】かくして、接触帯電部材として比較的に構成が簡単なファーブラシ等を用いた場合でも、該接触帯電部材に対する帯電に必要な印加バイアスは被帯電体に必要な電位相当の電圧で十分であり、放電現象を用いない安定かつ安全な帯電方式を実現することができる。

【0073】つまり、接触帯電装置において、接触帯電部材として帯電ローラ等の簡易な部材を用いた場合でも、より帯電均一性に優れ且つ長期に渡り安定した直接注入帯電を実現する、即ち、低印加電圧でオゾンレスの直接注入帯電を簡易な構成で実現することができる。

【0074】またこれにより、均一な帯電性を与えることが出来、オゾン生成物による障害、帯電不良による障害等のない、簡易な構成、低コストな画像形成装置を得ることができる。

【0075】導電粒子である帯電促進粒子を供給する手段を持つことにより、装置を長期に使用した場合においても帯電を安定して行なうことが出来る。

【0076】導電粒子である帯電促進粒子の抵抗値が $1-10^{13}$ ($\Omega \cdot cm$)以下で、より好ましくは $1-10^{16}$ ($\Omega \cdot cm$)以下であることにより、直接注入帯電において均一でかつ安定した帯電が可能となる。

【0077】浮電粒子である帯電促進粒子の粒径が20 nm~5µmの範囲であることにより、画像形成装置において露光を阻害しない良好な画像が得られる装置を提供できる。

【0078】被帯電体の最表面層の体積抵抗が 1×10 日(Ω - c m:以下であること、さらに被帯電体が電子写真感光体であり、該電子写真感光体の最表面層の体積抵抗が $1\times10^{\circ}$ (Ω - c m)以上 $1\times10^{\circ}$ (Ω - c m)以下であることにより、プロセススピードの速い装置においても、十分な帯電性を与えることが出来る。【0079】

【発明の実施の形態】

実施形態例1 (図1~図5)

図1は本発明に従う接触帯電装置を具備した画像形成装置の一例の概略構成模型図である。本例の画像形成装置は、転写方式電子写真プロセス利用、プロセスカートリッジ着脱方式のレーザービームプリンタである。

【0080】 11)本例プリンタの全体的概略構成 1は像担持体(被帯電体)としての回転ドラム型の電子 写真感光体である。本例は直径30mmの負帯電のOP C感光体であり、矢ボの時計方向に100mm/sec のプロセススピード(周速度)をもって回転駆動される

【0081】2は感光体1に当接させた可撓性の接触帯電部材としてのロール状の帯電ブラシ(ファーブラシ帯電器)であり、感光体1と3mm幅の帯電ニップ部nを形成して接し、帯電ニップ部nにおいて感光体1の移動方向と逆方向に移動する矢示の時計方向に500rpmで回転駆動される。即ち接触帯電部材としての帯電ブラシ2は感光体1に周速差を持って接触し感光体1を摺擦する。そして帯電バイアスの加電源S1から-700VのDC帯電バイアスが印加されていて、回転感光体1の外周面がほぼ一680Vに一様に直接帯電される。

【0082】この回転感光体1の帯電面に対してレーザーダイオード・ボリゴンミラー等を含むレーザービームスキャナ2から出力される目的の画像情報の時系列電気ディジタル画素信号に対応して強度変調されたレーザービームによる走査露光しがなされ、回転感光体1の周面に対して目的の画像情報に対応した静電潜像が形成される。

【0083】この静電潜像は本例の場合は磁性一成分絶縁トナー(ネガトナー)しを用いた反転現像装置4によりトナー像として現像される。

【① 084】 1 a はマグネット4 b を内包させた、現像 利担持搬送部村として直径 1 6 m m の非磁性現像スリープである。この現像スリーブ 4 a は感光体 1 に対して 3 〇 0 n m の離間距離をあけて対向配設し、感光体 1 との 対向部である現像部(現像領域部) a にて感光体 1 の回 転方向と順方向に感光体 1 と等速で回転させた。

【0085】この回転現像スリーブ4ヵに規制プレード

1 c で現像剤(トナー)もが薄層にコートされる、現像剤は規制プレード4 c で回転現像スリーブ4 a に対する層厚が規制され、また電荷付与される。回転現像スリーブ4 a の回転により、感光体1とスリーブ4 a の対向部である現像部 a に搬送される。またスリーブ4 a には現像バイアス印加電源S2より現像バイアス電圧が印加される。現像バイアス電圧は、一500 VのD C 電圧と、周波数1800 H z、ビーク間電圧1600 Vの矩形のA C 電圧を重量したものを用い、現像スリーブ4 a と感光体1の間で1成分ジャンピング現像を行なわせた。

【0086】現像剤(トナー) tは、公知の結着樹脂、磁性体粒子、電荷制御剤を混合し、混練、粉砕、分級の各行程を経て作成されたものである。本例において、トナーナの重量平均粒径(D4)は7μmである。

【0087】一方、不図示の給紙部から記録媒体としての転写材Pが供給されて、回転感光体1と、これに所定の押圧力で当接させた接触転写手段としての、中抵抗の転写ローラ5との圧接ニップ部(転写部)りに所定のタイミングにて導入される。転写ローラ5には転写バイアス印加電源S3から所定の転写バイアス電圧が印加される。本例では転写ローラ5として抵抗値5×10°Ωのものを用い、+2000VのDC電圧を印加して転写を行なった。

【0088】転写部りに導入された転写材Pはこの転写部りを挟持搬送されて、その表面側に回転感光体1の表面に形成担持されているトナー画像が順次に静電気力と押し圧力にて転写されていく。

【0089】トナー画像の転写を受けた転写材Pは感光体1の面から分離されて熱定着方式等の定着装置6へ導入されてトナー画像の定着を受け、画像形成物(ブリント、コピー)として装置外へ排出される。

【0090】また転写材Pに対するトナー画像転写後の 感光体1面はクリーニング装置7により残留トナー等の 付着汚染物の除去を受けて清掃され繰り返して作像に供 される。

【0091】8は感光休1面に対する帯電促進粒子塗布 装置であり、クリーニング装置7と帯電ブラシ2との間 位置において感光体1面に所定量の帯電促進粒子(帯電 補助粒子)mを塗布する。この装置8により感光体1面 に塗布された帯電促進粒子mは感光休1の回転に伴い感 光体1と接触帯電部材としての帯電ブラシ2とのニッケ 部である帯電部nに持ち運ばれて帯電部nに帯電促進粒 子mが存在した状態で帯電ブラシ2による感光体1の接 触帯電処理がなされる。

【0092】本例のプリンタは、感光体1、帯電ブラシ2、現像装置4、クリーニング装置7、帯電促進粒子塗布装置8の5つのプロセス機器をカートリッジFCに包含させてプリンタ本体に対して一括して着脱交換自在のカートリッジ方式の装置である。プロセスカートリッジ

化するプロセス機器の組み合わせ等は上記に限られるものではなく任意である。9・9はプロセスカートリッジ PCの着脱案内・保持部材である。なお、本発明のおいて画像形成装置はカートリッジ方式の装置に限られるものではない。

【0093】(2)感光体1

本例の負帯電のOPで感光体1は、図2に層構成模型図を示したように、φ30mmのアルミニウム製のドラム基体(アルミ基体)11上に下記の第1~第4の4層の機能層12~15を下から順に設けたものである。

【0094】第1層12:下引き層であり、アルミニウムドラムの欠陥等をならずため、またレーザ露光の反射によるモアレの発生を防止するために設けられている厚き約20μmの薄電層である。

【0095】第2層13:正電荷注入防止層であり、アルミ基体11から注入された正電荷が感光体表面に帯電された負電荷を打ち消すのを防止する役割を果たし、アミラン樹脂と×トキシメチル化ナイロンによって 10° 公。m保度に抵抗調整された厚さ約 1μ mの中抵抗層である

【0096】第3層14:電荷発生層であり、ジスアゾ系の顔料を樹脂に分散した厚さ約0.3 μmの層であり、レーザ露光を受けることによって正負の電荷対を発生させる。

【0097】第4層15:電荷輸送層であり、ポリカーボネート樹脂にヒドラゾンを分散したものであり、平型半導体である。従って、感光体表面に帯電された負電荷はこの層を移動することはできず、電荷発生層で発生した正電荷のみを感光体表面に輸送することができる。

【0098】(3)帯電ブラシ2

本例で用いた接触帯電部材としての可撓性部材である帯 電ブラシ2はロール状のものである。

【0099】これは、ユニチカ(株)製の導電製レーヨン繊維REC Bをパイル地にしたテープ2bを直径6mmの金属製の芯金2aにスパイラル状に巻き付けて外径14mmのパールプラシとしたもので、300デニール 50フィウメント、1平方ミリメートル当り155本の密度で、ブラシの抵抗値は印加電圧1~1000Vにおいて1×105のである(金属製の直径す30mmのドラムにニッフ幅3mmで当接させ、100Vの電圧を印加したときに流れる電流値から換算したもの)。

【0100】帯電ブラシ 2の抵抗値は、感光体1上にピンホール等の欠落が生じた場合にも、この部分に過大なリーク電流が流れ込んで帯電ニップが帯電不良になる画像不良を防止するために 10^4 Ω 以上であり、感光体表面に十分に電荷注入させるために 10^7 Ω 以下である必要がある。

【 0 1 0 1 】 また、帯電ブラシの材質としては、ユニチカ (株) 製のREC - B以外にも、REC - C、REC - M 1、REC - M 1 0、さらに東レ (株) 製のSA-

7、日本蚕毛(株)製のサンダーロン、カネボウ製のベルトロン、クラレ(株)製のクラカーボ、レーヨンにカーボンを分散したもの、三菱レーヨン(株)製のローバル等が考えられるが、環境安定性の点でユニチカ(株)製のREC-B、REC-C、REC-M1、REC-M1 Oが望ましい。

【0102】本例では、帯電ブラシ2が感光体表面の移動方向と逆方向に移動するように、回転数500rpmで回転駆動しているが、回転数はこれに限るものではなく、帯電ブラシ2と感光体1の帯電ニップ部nの太さ、ブラシの毛の密度、感光体の表面抵抗、プロセススピード(感光体周速)等の条件が変れば、最適な帯電ブラシの回転数も変化する。

【0103】また、感光体表面の移動方向と同じ方向に移動することも可能であるが、直接注入帯電の帯電性は感光体1の周速と帯電ブラシ2の周速の比に依存するため、逆方向と同じ周速比を得るには順方向では帯電ブラシ2の回転数が逆方向の時に比べて大きくなるので、帯電ブラシ2を逆方向に移動させる方が回転数の点で有利である。

【0104】ここで記述した周速比は

周速比(%)=(帯電ブラシ周速--感光体周速) 感光 体周速×100

である(帯電ブラシ周速はニップ部において帯電部材表 面が感光体表面と同じ方向に移動するとき正の値である)。

【0105】(4)帯電促進粒子mと直接注入帯電直接注入帯電直接注入帯電は、中抵抗の接触帯電部材で、放電現象を介きずに感光体表面に直接電荷注入を行なうものである。よって、接触帯電部材への印加電圧が放電関値以下の印加電圧であっても、被帯電体としての感光体を印加電圧相当の電位に帯電することが出来る。この場合の印加DC電圧と感光体表面電位の関係を図3に示す

【0106】しかしながら、感光体の表面と帯電部材との接触が十分におこなわれる必要が有るため、既に説明したように接触帯電部材として帯電ブラシを用いた場合、帯電ブラシの毛先が図りに示すように分かれ感光体表面に接触できないところができ、感光体表面を均一に帯電することができないという問題点があった。

【0107】そこで本例では図1に示すように被帯電体としての感光体1の表面に帯電促進粒子mを塗布する装置8を設け、感光体表面に帯電促進粒子mを10・個ごmm²以上塗布することで、上記の接触不良の問題を解決することが可能になった。帯電促進粒子塗布装置8は、粉体粒子を塗布する一般的な手段、例えば塗布ローラー8a上に一度均一に塗布した後、感光体上に接触または電界で飛翔させること等により塗布する構成を用いることができる。

【0108】図4に帯電促進粒子mが感光体上に存在したときに、帯電部材(この場合はファーブラシの先端

部)の接触機会を改善しているモデル図を示す。

【0109】この帯電促進粒子mをどれぐらいの密度で 感光体1上に塗布することで均一帯電性の効果が得られ るかを、人間の視覚特性を考慮した考察と、それに基づ く実験より求めた値が本発明の帯電促進粒子塗布密度範 囲である。

【0110】即ち、レーザービームプリンタの記録解像度は近年300dpiから600dpiと高解像度化が進んでいるが、帯電時は少なくともこの記録解像度よりは均一な接触帯電が必要なことは言うまでもない。

【①111】また人間の日の視覚特性に関して、図5の特性グラフのように、空間周波数が10(cycles~mm)以上では、画像上の識別諧調数が限りなく1に近づいていく、すなわち濃度ムラを識別できなくなる。【①112】この特性を積極的に利用すると、感光体1上に帯電促進粒子mを付着させた場合、少なくとも感光体1上で10(cyclesmm)以上の密度で帯電促進粒子mを存在させ、この粒子mを基に直接注入帯電を行えば良いことになる。

【0113】たとえ粒子mの存在しないところに帯電不良が発生したとしても、その帯電不良によって発生する 画像上の濃度ムラは、人間の視覚特性を越えた空間周波 数領域に発生するため、画像上なんら問題は無いことに なる。

【0114】表1に帯電促進粒子mの塗布密度を変えたとさに、画像上に濃度ムラとしての帯電不良が認知されるかどうかの結果を示す

[0115]

【表1】

表-1

塗布量 (個/mm2)	帯電性改善 の効果	画像客観評価
0	効果なし	С
10 ¹	効果有り	С
10 ²	効果有り	В
10 ³	効果有り	A
10 ⁴	効果有り	A
10 ⁵	効果有り	A

A:画像不良はまったく認知されない B:画像不良はほとんど認知されない C:画像不良は認知される

帯電促進粒子mの塗布密度は、光学あるいは電子顕微鏡 による観察から、感光体上の塗布密度を測定した。

【 0 1 1 6 】表1から分かるように、帯電促進粒子面を わずかにでも塗布すれば(例えば 1 0 個。´m m ·)、帯 電ムラ発生の抑制に効果が認められるが、画像上の濃度 ムラが人間にとって許容可能かどうかと言う点において はまだ不十分である。

【0117】ところがその塗布量を10°個。mm²以上すると、画像の客観評価において急激に好ましい結果が得られるようになる。

【0118】さらに塗布量を10°個/mm²以上増加させていくことにより、帯電不良に起因する画像上の問題点は皆無となる。

【0119】直接注入帯電方式による帯電では、放電帯電方式とは根本的に異なり、帯電部材が感光体に確実に接触する事で帯電が行われている訳であるが、たとえ帯電促進粒子mが感光体1上に塗布したとしても、接触できない部分は必ず存在する。ところが本発明の人間の視覚特性を積極的に利用した帯電促進粒子塗布を行うことで、実用上この問題点を解決することが可能となった。

【() 1 2 ()】また、粒子mの塗布量の上限値は、粒子mが感光体1上に1層均一に塗布されるまでであり、それ

以上塗布されても効果が向上するわけではなく逆に、露 光光源を適ったり、散乱させたりという弊害が生じる。 【0121】掌布密度上限値は粒子mの粒径によっても 変わってくるために、一概にはいえないが、強いて記述 するならば、粒子mが感光体1上に1層均一に塗布され る量が上限である。

【0122】帯電促進粒子の量は、5×10⁸ 個/mm を超えると、該粒子の感光体1へ脱落が著しく増加し、粒子自体の光透過性を問わず、感光体1への露光量不足が生じる。5×10⁸ 個/mm 以下では脱落する粒子量も低く抑えられ該悪影響を改善できる。該介在量範囲において感光体1上に脱落した粒子の存在量を測ると10⁸ ~10⁸ 個/mm であったことから、作像上弊害がない該存在量としては10⁸ 個/mm 以下が望まれる。

【0123】該介在量及び感光体1上の該存在量の測定 方法について述べる。該介在量は帯電部材(ブラシ)2 と感光体1の帯電ニップ部 n を直接測ることが望ましい が、ここでは帯電ニップ部 n に到達する直前の感光体表 面の粒子量をもって該介在量とした。具体的には、帯電 バイアスを印加しない状態で感光体1及び帯電部材2の 回転を停止し、感光体1及び帯電部材2の表面をビデオ マイクロスコープ(OLYMPUS製OVM1000 N)及びデジタルスチルレコーダ(DELTIS製SR

3100)で撮影した。帯電部材2については、帯電部材2を感光体1に当接するのと同じ条件でスライドガラスに当接し、スライドガラスの背面からビデオマイクロスコープにて該接触面を1000倍の対物レンズで10箇所以上撮影した。得られたデジタル画像から個々の粒子を領域分離するため、ある関値を持って2値化処理し、粒子の存在する領域の数を所望の画像処理ソフトを用いて計測した。また、感光体1上の該存在量についても感光体1上を同様のビデオマイクロスコープにて撮影し同様の処理を行い計測した。

【0124】さらに、本発明で使用する帯電部材この例ではファーブラシは、もちろん極力ブラシ密度の高い物を使用することが好ましいが、本例で用いたブラシ密度程度の物を用いれば十分である。なぜならば、前述したように直接注入帯電の帯電ボイントを決定しているのは、主には帯電部材では無く帯電促進粒子mの途布密度に依存しているため、帯電部材の選択の範囲はかなり余裕が有る等の効果がある。

【0125】また使用する帯電促進粒子mは露光の妨げにならないように非磁性であることが好ましい。

【0126】また、以下のような粒径や特性のものを使用することが好ましい。

【0127】4例では、帯電促進粒子mとして比抵抗が 10 Ω+cm。三次凝集体を含めた平均粒径3μmの 募電性酸化亜鉛粒子を用いたが、粒子mの材料として は、他の金属酸化物などの導電性無機粒子や有機物との 混合物など各種導電粒子が使用可能である。

【0128】粒子抵抗は粒子を介した電荷の授受を行うため比抵抗としては10¹²Ω・cm以下が望まして、さらには、10¹⁰Ω・cm以下がより望ましい。抵抗測定は、錠剤法により測定し正規化して求めた。低面積2.26cm²の円筒内に凡そ0.5gの粉体試料を入れ上下電極に15kgの加圧を行うと同時に100Vの電圧を印加し抵抗値を計測、その後正規化して比抵抗を算出した。

【0129】また、粒径は良好な帯電均一性を得るために50μm以下において効果が現れるが、人の視覚特性を考慮すると、約5μm以下の細かい粒子を用いることで、帯電時に発生する帯電不良部分の画像への影響を、視覚的に認識されにくい状態が得られる。

【0130】本発明において、粒子が凝集体として構成されている場合の粒径は、その凝集体としての平均粒径として定義した。粒径の測定には、光学あるいは電子顕微鏡による観察から、100個以上抽出し、水平方向最大弦長を盛って体積粒度分布を算出しその50%平均粒径をもって決定した。

【0131】以上述べたように帯電促進粒子面は、一次 粒子の状態で存在するばかりでなく二次粒子の凝集した 状態で存在することもなんら問題はない。どのような凝 集状態であれ、凝集体として帯電促進粒子としての機能 が実現できればその形態は重要ではなく、重要なのほそ の粒子密度である。

【0132】〈実施形態例2〉(図6)

図6は本例の画像形成装置の概略構成図である。本例の 画像形成装置は上述の実施形態例のプリンタ(図1)に おいて、クリーニング装置 7 をなくしてクリーナーレス システムとし、また帯電促進粒子塗布装置 8 をなくし、 その代わりに現像装置 4 の現像剤(トナー)上に帯電促 進粒子mを外添することで、現像装置 4 に感光体 1 に対 する帯電促進粒子供給・塗布手段兼ねさせたものであ

【0133】トナートは公知の結着樹脂、磁性体粒子、電荷制御剤を混合し、混練、粉砕、分級の各行程を経て作成し、更に前述の帯電促進粒子mを外添剤としてトナーに添加し作成されたものである。トナートの重量平均粒径(D4)は7μmであり、これに対し帯電促進粒子mとしての導電性酸化亜鉛粒子の粒径は3μmであった。帯電促進粒子mの粒径を10nm以上トナー粒径以下に構成することで、トナートの流動化剤として機能させることが可能になる。

【0134】トナートに対する帯電促進粒子m配合量は、一般には、トナー100重量部に対して0.01~20重量部の範囲で設定される。

【0135】クリーナーレスシステムの場合は、転写材 Pに対するトナー像転写後の回転感光体1面に残留の転 写残トナーはクリーナーで除去されることなく、感光体 1の回転にともない帯電部nを経由して現像部aに至り、現像装置口において現像同時クリーニング(回収)される(トナーリサイクルプロセス)。

【 0 1 3 6 】 現像同時クリーニングは前述したように、 転写後に感光体 1 上に残留したトナーを引き続く画像形成工程の現像時、即ち引き続き感光体を帯電し、露光して治像を形成り、その潜像の現像時において、現像装置のかぶり取りバイアス、即ち現像装置に印加する直流電圧と感光体の表面電位間の電位差であるかぶり取り電位差としまって回収するものである。本実施例におけるアリンタのように反転現像の場合では、この現像同時クリーニングは、感光体の暗部電位から現像スリーブにトナーを回収する電界と、現像スリーブから感光体の明部電位へ、トナーを付着させる電界の作用でなされる。

【 0 1 3 7 】 現像装置 4 の現像剤 t に混入させた帯電促進粒子 m は、現像装置 4 による感光体 1 側の静電潜像のトナー現像時にトナーとともに適当量が感光体 1 側に移行する。

【0138】感光体1上のトナー画像は転写部りにおいて転写バイアスの影響で記録媒体である転写材P側に引かれて積極的に転移するが、感光体1上の帯電促進粒子mは導電性であることで転写材P側には積極的には転移せず、感光体1上に実質的に付着保持されて残留する。【0139】でしてクリーニング装置はないので、転写後の感光体1面に破存の転写残トナーおよび上記の残存帯電促進粒子mは感光体1と接触帯電部材である帯電ブラシ2のニッフ部である帯電部πに感光体1面の移動でそのまま持ち運ばれる。したがって、感光体1と帯電ブラシ2とのニップ部πにこの帯電促進粒子mが存在した状態で感光体1の接触帯電が行なわれる。

【0140】帯電部nを通過した転写残トナー及び帯電 促進粒子m、また帯電ブラシ2に付着・混入した転写残 トナー及び帯電促進粒子mは帯電ブラシ2から徐々に感 光体1上に吐き出されて、感光体1面の移動とともに現 像部aに至り、現像装置4において現像同時クリーニング(回収)される。

【の141】また、クリーナーレスシステムの画像形成 装置の場合は、装置が稼働されることで、現像装置4の 現像剤まに混入させてある帯電促進粒子mが現像部aで 感光体1面に17行し該像担持面の移動により転写部bを 経て帯電部れに持ち運ばれて帯電部れに新しい粒子mが 逐次に供給され続けるため、帯電部れにおて帯電促進粒 子面が脱落等で減少したり、該粒子mが劣化するなどし ても、帯電性の低下が生じることが防止されて良好な帯 電性が安定して維持される。感光体に塗布された帯電促 進粒子がクリーニング装置により除去されることが無く なったために、感光体表面になり、少量の促進粒子mを下 サーキに外添するだけで、帯電性を飛躍的に向上するこ とが可能になった。

【0142】また、当然ながら転写残トナーも再利用されることになり、トナーの有効利用が可能になる。

【0143】なお、印字初期においては帯電ブラシ2と 感光体1の接触部nには帯電促進粒子が供給されないの で接触部nには適当量の帯電促進粒子を予め介在させて おくを可とする。

【0144】〈実施形態例3〉(図7)

本例は実施形態例1、2において、被帯電体としての感光体1として、表面層の抵抗制御を行なったものを用いた。

【0145】本例では、被帯電体表面に電荷注入層を設け、被帯電体表面の抵抗を調節することで更に安定して 均一に帯電を行う。

【0146】図7は、本例で使用した、表面に電荷注入層を設けた感光体1の層構成模型図である。即ち該感光体1は前述図2の層構成の感光体1、即ちアルミ基体1上に下引き層12、正電荷注入防止層13、電荷発生層14、電荷輸送層15の順に重ねて塗工された一般的な有機感光体1にさらに電荷注入層16を塗布することにより、帯電性能を向上したものである。

【0147】感光体1の表面層である電荷注人層16 は、バインダーとしての光硬化型のアクリル樹脂などの 硬化性樹脂に、導電性粒子(導電フィラー)として超微 粒導電電粒子であるSnO₂ 等を分散することにより抵 抗値を下げてある。

【0148】具体的には、アンチモンをドービングし、 低抵抗化した粒径約0.03 u mのS n O。粒子を樹脂 に対して70重量%分散した材料の塗工層である。

【0149】このようにして調合した塗工液をディッピング塗工により、厚き 1μ m塗工してある。そのため、 $1\times10^{19}\Omega$ ・cm程度の抵抗値となる。導電粒子を分散しない場合には $1\times10^{15}\Omega$ ・cm程度であった。なおこの測定は温度25%、湿度40%の環境で測定した。

【0150】このような表面抵抗値の感光体を用いることにより、より良好な帯電性を得ることが出来る。

【0151】電荷注入層16として重要な点は、表層の抵抗にある。電荷の直接注入による帯電方式においては、被帯電体側の抵抗を下げることでより効率良く電荷の授受が行えるようになる。一方、感光体として用いる場合には静電潜像を一定時間保持する必要があるため、電荷注入層16の体積抵抗値としては1×102×1。1014(Ω・cm)の範囲が適当である。

【0152】また本構成のように電荷注入層16を用いていない場合でも、例えば電荷輸送層15が上記抵抗範囲に或る場合は同等の効果が得られる。

【0153】さらに、表層の体積抵抗が約10½Ωcmであるアモルファスシリコン感光体等を用いても同様な効果が得られる。

【0154】表面層の抵抗制御を行なった感光体1を用いることにより、静電潜像を維持するとともに、プロセススピードの速い装置においても、十分な帯電性を与え、直接注入帯電を優位に実現することができる。

【0155】 その他。

1)被帯電休1や接触帯電部材2に対する帯電促進粒子供給・塗布手段4は実施形態例に限られるものではなく、その他、例えば、帯電促進粒子mを含ませた発泡体あるいはファーブラシを被帯電休1や接触帯電部材2に出接させて配設する手段構成とするなど任意である。

【①156】2)可撓性の接触帯電部材2はフェルト、 布などの材質・形状のものも使用可能である、また、こ れらを積層し、より適切な弾性と導電性を得ることも可 能である。帯電ローラであってもよい。

【0157】3)接触帯電部材2や現像スリーブ4ヵに 対する印加帯電バイアスあるいは印加現像バイアスは直 流電圧に交番電圧(交流電圧)を重畳してもよい。

【0158】交番電圧の波形としては、正弦波、矩形波、三角波等適宜使用可能である。また、直流電源を周期的にオンニオフすることによって形成された矩形波であっても良い。このように交番電圧の波形としては周期的にその電圧値が変化するようなバイアスが使用できる。

【0159】1)静電潜像形成のための画像露光手段としては、実施形態例の様にデジタル的な潜像を形成するレーザー走査露光手段に限定されるものではなく、通常のアナログ的な画像露光やLEDなどの他の発光素子でも構わないし、蛍光維等の発光素子と液晶シャッター等の組み合わせによるものなど、画像情報に対応した静電潜像を形成できるものであるなら構わない。

【 0 1 6 0 】 感光体 1 は静電記録誘電体等であっても良い。この場合は、該誘電体面を所定の極性・電位に一様に一次帯電した後、除電針ヘッド、電子銃等の除電手段で選択的に除電して目的の静電潜像を書き込み形成する。

【0161】5)実施形態例では現像装置4は、磁性の 現像剤を用いた1成分非接触型現像装置であるが、2成 分現像剤や、非磁性の現像剤を用いる非接触型現像装置 でも構わない。1成分又は2成分の接触型現像装置であ ってもよい。

【①162】6)感光体1からトナー画像の転写を受ける記録媒体は転写ドラム等の中間転写体であってもよい。

【0163】7)トナー粒度の測定方法の1例を述べる。測定装置としては、コールターカウンターTA-2型(コールター社製)を用い、個数平均分布、体積平均分布を出力するインターフェイス(日科機製)及びCX1バーソナルコンピュータ(キヤノン製)を接続し、

電解液は一級塩化ナトリウムを用いて1%NaC1水溶液を調製する。

【0164】測定法としては、前記電解水溶液100~150m1中に分散剤として界面活性剤、好ましくは、アルキルベンゼンスルホン酸塩0.1~5m1加え、更に測定試料を0.5~50mg加える。

【0165】試料を懸濁した電解液は、超音波分散器で約1~3分間分散処理を行い、前記コールターカウンターTA-2型により、アパーチャーとして100μアパーチャーを用いて2~40μmの粒子の粒度分布を測定して、体積平均分布を求める。これらの求めた体積平均分布より体積平均粒径を得る。

[0166]

【発明の効果】以上説明したように本発明によれば、接触帯電装置において、被帯電体と帯電部材の接触不足の問題を改善し、帯電均一性を向上させることが可能となった。また接触帯電部材の性能によらず、即ち接触帯電部材としてファーブラシや帯電ローラ等の簡易な部材を用いた場合でも、より帯電均一性に優れ且つ長期に渡り安定した直接注入帯電を実現する、即ち、低印加電圧でオゾンレスの注入帯電を簡易な構成で実現することが可能となった。

【0167】またこれにより、オゾン生成物による障害、帯電不良による障害等のない、簡易な構成、低コストな画像形成装置を得ることが可能となった。

【図面の簡単な説明】

- 【図1】実施形態例1の画像形成装置の概略構成図
- 【図2】感光体の層構成模型図
- 【図3】直接注入帯電の帯電特性を示すグラフ
- 【図4】帯電促進粒子が存在する場合における帯電ブラシの感光体との接触状態のモデル図
- 【図5】 人間の目の視覚特性を説明する図
- 【図6】実施形態例2の画像形成装置の概略構成図
- 【図7】実施形態例3の画像形成装置において用いた感 光体の層構成模型図

【図8】帯電ブラシの感光体との接触状態 (ブラシの毛 先の分かれ部分がある状態) の模型図

【図9】ローラ帯電、ファーブラシ帯電、磁気ブラシ帯 電の各場合の帯電特性グラフ

【符号の説明】

- 1 感光体(像担持体、被带電体)
- 2 帯電ブラシ (接触帯電部材)
- 2a 芯金
- 2b ブラシパイル
- 1 現像装置
- 8 带電促進粒子塗布装置
- m 带電促進粒子
- P 転写材

フロントページの続き

(72)発明者 平林 純 東京都大田区下丸子3丁目30番2号 キヤ アン株式会社内