Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor

Ben Safvati

References:

- A. Ramasubramaniam and D. Naveh, Phys. Rev. B, 2013, 87, 195201
- Caleb's Paper: Quantum Imaging of Single-Atom Spin-Splitting in a Monolayer Semiconductor

Introduction: Dilute Magnetic Semiconductors

Introduction: DMSs for Spintronics

Nearly incompatible technologies in present-day computers:

semiconductors: processing

ferromagnets: data storage

ferromagnetic semiconductors: integration on a single chip?

single-chip computers for embedded applications: cell phones, intelligent appliances, security

Transition Metal Dichalcogenide DMSs

- Existing monolayer exfoliation technology (nanoelectronics)
- Direct band gap ~2 eV suitable for semiconductor technology (shrinking transistors)
- Idea: substitute Mo⁴⁺ with Mn⁴⁺, extra 3d valence electron acts to break spin degeneracy, emergent magnetism.

Outline of Paper

- Use Density Functional Theory (DFT) to calculate magnetic ground state properties and exchange coupling constants.
- Map DFT parameters to Heisenberg model, use statistical methods (Monte Carlo) to approximate thermal properties of the material.
- Conclusions: room temp. Ferromagnetism emerges from short-ranged double-exchange interactions in Mn/MoS₂ for dopant concentrations around 10-15%.

Predictions of DFT

 Basic idea: calculate many-body ground state electronic density from effective single-electron theory, only depends on material crystal structure.

- Comparison of standard model (PBE) with hybrid DFT (HSE).
 - PBE has been shown to predict excessive delocalization of d orbital wavefunctions, leads to inaccurate interaction parameters.
 - HSE corrects for self-interaction errors in standard DFT, improvement of DFT predictions.
- HSE predictions for MoS₂ band gap agree more closely with experiment.

Predictions of DFT: Spin Density

Predictions of DFT: Electronic Density of States

- Mn substitution breaks spin degeneracy, in-gap defect states emerge.
- The two DFT theories have relative shift in energies, leads to half-metallic behavior for PBE model.

Double-exchange Mechanism

Estimating Magnetic Interaction Parameters

Parameterize interaction with DFT predictions

Supercell	Configuration	Δ_{AFM-FM} (eV)		ΔE_{FM} (eV)	
		PBE	HSE	PBE	HSE
4 × 4	1 st n.n.	0.18	0.22	0.0	0.0
	2^{nd} n.n.	0.06	0.07	0.37	0.66
	3^{rd} n.n	0.03	-0.00	0.43	0.65
6×6	1^{st} n.n.	0.17			
8×8	1^{st} n.n.	0.17			

Heisenberg Model

$$H = -J\sum_{i,j} \vec{S}_i \cdot \vec{S}_j$$

Monte Carlo Simulation

- Mean-field theory inaccurately predicts magnetic ordering temperature, need to account for spatial disorder.
- Randomized simulation of Mn spins on triangular lattice, estimate percolation threshold.
- Critical temperature for ferromagnetism for Mn concentrations ~15%.

