There goes your PIN

Exploiting Smartphone Sensor Fusion Under Single and Cross User Setting

Hackers could guess your PIN using its sensor data

 Researchers at NTU found a vulnerability inside 6 basic sensors on smartphones.

- Accelerometer
- Gyroscope
- Magnetometer
- Proximity Meter
- Barometer
- Ambient light sensor

Improvements compared to previous work

- Not the first time hackers are trying to take advantage of those sensors...
- From 74% to 99.5% success rate of 50 chosen password in a single try
- (New) Random password, 83.7% success rate in 20 tries.
- (New) Cross User Scenario
 - Recovering PIN from a new user.
 - Reducing user interaction to Min.

How is it done? Why has it improved so much?

- Powerful Machine Learning Algorithms
 - Multi-layer perceptron (MLP)
 - A limited memory Broyden Fletcher Goldfarb Shanno (L-BFGS)

- Zero-permission Sensors
 - Exploited by an attacker, without the knowledge of the user
 - Relatively easy to gain a lot of data
- Different Approaches used

Let's go into details

Assume we have a 4 digit PIN right now...

1. The first approach uses the complete data stream and associates it to the combination of keys during the training phrase. 10000 combinations.

- 2. The second approach identifies single digit individually by first splitting the data into parts corresponding to the individual presses. 10 digits.
 - More flexible, no need to change amount of data when digits increase
 - Difficulty in right timing

Let's go into details

- Body Position, Holding type, Speed, Left or Right Hand...

These physical factors affect the weights of each sensor

- Created a two dimensional array to do classification algorithm
 - MLP
 - L-BFGS

Result

- Individual Sensor Success
 - Accelerometer (63%)
 - Ambient light sensor not listed
 - Barometer (low sampling frequency)

- Sensor Fusion

- Acc & Gyroscope Combo is the best!
- 74.1%
- Null (Redundancy & Noises)

Cross-User Exploitation

- Inclusive cross-user exploitation
- Exclusive cross-user exploitation

Training Testing	A	B	C	ABC
\overline{A}	70.1%			79.6%
\boldsymbol{B}		16.7%		30.0%
C			17.9%	20.5%

Training Testing	AB	BC	CA
A	8.	6.1%	
B			6.7%
C	5.3%		

Ways to avoid being attacked

- Use password with longer digits.
- Use Figure Unlock, Face ID, Touch ID.
- Use non-standard numerical keyboard.
- Multi-factor Authentication.

- Do not use common combinations.
- Try not to use the same password

What should have also be done

- iOS and Android should restrict use of their sensors to App developers...
 - iOS 11 improvements
 - Auto Lock
 - Face ID
 - 2FA
- Users should be able to give permission to only trusted Apps.

The sensor problem goes way beyond just a PIN combination...

Location, Behavior, other important private information...

Work Cited

Berend, David, et al. "There Goes Your PIN: Exploiting Smartphone Sensor Fusion Under Single and Cross User Setting." Open Access, 5 Dec. 2017, pp. 1–19, eprint.iacr.org/2017/1169.

NTU Study Finds That Hackers Could Guess Your Phone PIN Using Its Sensor Data. Edited by Lester Kok, 26 Dec. 2017, media.ntu.edu.sg/NewsReleases/Pages/newsdetail.aspx?news=e57faffc-24ea-4034-9181-f5fea9850690.

Thanks for listening!!

Any Questions?

Ziheng Xu 704756821