1.

(1). gcd(179,17)

q	r1	r2	r	s1	s2	S	t1	t2	t
10	179	17	9	1	0	1	0	1	-10
1	17	9	8	0	1	-1	1	-10	11
1	9	8	1	1	-1	2	-10	11	-21
8	8	1	0	-1	2	-17	11	-21	179
	1	0		2	-17		-21	179	

=> gcd(179,17) = 1, s = 2, t = -21

(2). gcd(229,119)

q	r1	r2	r	s 1	s2	S	t1	t2	t
1	229	119	110	1	0	1	0	1	-1
1	119	110	9	0	1	-1	1	-1	2
12	110	9	2	1	-1	13	-1	2	-25
4	9	2	1	-1	13	-53	2	-25	102
2	2	1	0	13	-53	119	-25	102	-229
	1	0		-53	119		102	-229	

=> gcd(229,119) = 1, s = -53, t = 102

(3). gcd(359,78)

 $q \qquad r1 \qquad r2 \qquad r \qquad s1 \qquad s2 \qquad s \qquad t1 \qquad t2 \qquad t \\$

4 359 78 47 1 0 1 0 1 -4

1 78 47 31 0 1 -1 1 -4 5

1 47 31 16 1 -1 2 -4 5 -9

1 31 16 15 -1 2 -3 5 -9 14

1 16 15 1 2 -3 5 -9 14 -23

15 15 1 0 -3 5 -78 14 -23 359

1 0 5 -78 -23 359

=> gcd(359,78) = 1, s = 5, t = -23

13

(4). gcd(487,157)

157

16

9

3 487 157 16 1 0 1 0 1 -3

0

1

-9

1

-3

28

1 16 13 3 1 -9 10 -3 28 -31

4 13 3 1 -9 10 -49 28 -31 152

3 3 1 0 10 -49 157 -31 152 -487

1 0 -49 157 152 -487

=> gcd(487,157) = 1, s = -49, t = 152

$$\sim$$
 Zn: a x b = 1 (mod n)

(1) α =7, n =31

gcd(31,7)=1=> 有乘法反元素

(2) α =11, n =29

gcd(29,11) = 1 => 有乘法反元素

=> gcd(29,11) = 1,11 的乘法反元素 = 8

(3) α =31, n =199

gcd(199,31) = 1 => 有乘法反元素

q r1 r2 r t1 t2 t

6 199 31 13 0 1 -6

2 31 13 5 1 -6 13

2 13 5 3 -6 13 -32

1 5 3 2 13 -32 45

1 3 2 1 -32 45 -77

2 2 1 0 45 -77 199

1 0 -77 199

=> gcd(199,31) = 1,31 的乘法反元素 = -77 or 122

(4) α =27, n =666

gcd(666,27) = 9

 $\mathsf{q} \qquad \mathsf{r1} \qquad \mathsf{r2} \qquad \mathsf{r} \qquad \mathsf{t1} \qquad \mathsf{t2} \qquad \mathsf{t}$

24 666 27 18 0 1 -24

1 27 18 9 1 -24 25

2 18 9 0 -24 25 -74

9 0 25 -74

=> gcd(666,27) = 9, 27 的乘法反元素不存在

```
3.
```

(1) $4x - 19 \equiv 6 \pmod{29}$

 $4x \equiv 25 \pmod{29}$

gcd(4,29) = 1, 只有一解

q

r1

r2

r

s1

s2

S

t1

t2

t

7

4

29

4

1

0

1

0

0

1

1

0

1

1

4

1

-4

1

-7

25

-7

0

1

-4

-7

25

$$=> 1 = 29 \times 1 + 4 \times (-7)$$

=> 25 = 29 x 25 + 4 x (-175)

=> (29 會消掉)

 $=> x = -175 = 28 \pmod{29}$

=> x = 28 + 29k

(2) $8x + 7 \equiv 4 \pmod{17}$

 $8x \equiv -3 \pmod{17} => 8x \equiv 14 \pmod{17}$

gcd(8,17) = 1,只有一解

q

r1

r2

r

s1

s2

S

t1

t2

t

2

8

17

8

8

1

0

1

0

1

-8

0

1

-2

17

0

1

1

0

-8

1

-2

1

17

-2

$$\Rightarrow$$
 1 = 17 x 1 + 8 x (-2)

1

$$\Rightarrow$$
 14 = 17 x (1 x 14) + 8 x (-2 x 14)

$$=> x = -28 = 6 \pmod{17}$$

(3) $10x - 1 \equiv 4 \pmod{23}$

 $10x \equiv 5 \pmod{23}$

gcd(10,23) = 1, 只有一解

q r1 r2 r s1 s2 s t1 t2 t

2 23 10 3 1 0 1 0 1 -2

3 10 3 1 0 1 -3 1 -2 7

3 3 1 0 1 -3 10 -2 7 -23

1 0 -3 10 7 -23

$$=> 1 = 10 \times 7 + 23 \times (-3)$$

$$=> 5 = 10 \times 35 + 23 \times (-3 \times 5)$$

=> (23 會消掉)

 $=> x = 35 = 12 \pmod{23}$

=> x = 12 + 23k

(4) $7x \equiv 2 \pmod{31}$

gcd(7,31) = 1, 只有一解

4 31 7 3 1 0 1 0 1 -4

2 7 3 1 0 1 -2 1 -4 9

3 3 1 0 1 -2 7 -4 9 -31

1 0 -2 7 9 -31

 \Rightarrow 1 = 7 x 9 + 31 x (-2)

 $=> 2 = 7 \times 18 + 31 \times (-2 \times 2)$

=> (31 會消掉)

 $=> x = 18 \pmod{31}$

=> x = 18 + 31k

(5) {
$$2x \equiv 4 \pmod{7}$$

{ $9x \equiv 5 \pmod{8}$

$$=>\{x \equiv 2 \pmod{7}$$

 $\{x \equiv 5 \pmod{8}\}$

=> Chinese Remainder Theorem

M1
$$\equiv$$
 N1^-1 \equiv 8^-1 (mod 7) \equiv 1,
M2 \equiv N2^-1 \equiv 7^-1 (mod 8) \equiv -1

$$\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R} \times \mathbb{R} \times$$