Predicting Cancer Phenotypes based on Somatic Genomic Alterations via Genomic Impact Transformer

Yifeng Tao¹, Chunhui Cai², William W. Cohen^{1*}, Xinghua Lu^{2*}

¹Carnegie Mellon University

²University of Pittsburgh

Background

- Cancers are mainly caused by somatic genomic alterations (SGAs)
 - Driver SGAs → causal to tumor development
 - Passenger SGAs → neutral mutations

Challenges

Driver SGA detection

- Solution 1: frequency
- Solution 2: conserved domain of protein
- Problem: downstream effect of SGAs
- SGA/tumor representation
 - Solution: a higher dimensional one-hot/sparse vector
 - o Problem: little information/knowledge

Genomic Impact Transformer (GIT)

- GIT: encoder-decoder architecture
- Mimic cellular signaling process
- Driver SGA detection
 - o Problem: downstream effect of SGAs
 - Solution: supervised by gene expressions
- SGA/tumor representation
 - o Problem: little information/knowledge
 - Solution: gene/tumor embedding

Genomic Impact Transformer (GIT)

Encoder: Attention

Encoder: Attention

$$\alpha_1, \alpha_2, ..., \alpha_m = \text{Function}_{\text{Attention}}(\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_m)$$

$$\alpha_g = \sum_{j=1}^h \alpha_{g,j} = \alpha_{g,1} + \alpha_{g,2} + \dots + \alpha_{g,h}, g = 1, 2, \dots, m$$

$$\alpha_{1,j},\alpha_{2,j},...,\alpha_{m,j}=\operatorname{softmax}(\beta_{1,j},\beta_{2,j},...,\beta_{m,j})$$
 h heads

$$eta_{g,j} = oldsymbol{ heta}_j^{\intercal} \cdot anh(W_0 \cdot \mathbf{e}_g), \ g = 1, 2, ..., m$$

Decoder: MLP

$$\hat{y} = \sigma(W_2 \cdot \text{ReLU}(W_1 \cdot \text{ReLU}(\mathbf{e}_t) + b_1) + b_2)$$

Pre-training Gene Embedding: Gene2Vec

○Co-occurrence pattern

$$\Pr\left(c \in \text{Context}(g) \mid g\right) = \frac{\exp\left(\mathbf{e}_g^{\mathsf{T}} \mathbf{v}_c\right)}{\sum_{c' \in \mathcal{G}} \exp\left(\mathbf{e}_g^{\mathsf{T}} \mathbf{v}_{c'}\right)}$$

Performance

Predicting gene expression using SGAs

Gene Embedding

Gene Embedding

○NN accuracy: functional similar genes → closer in embedding space

NN accuracy =
$$\mathbb{E}_{\mathbf{e}_c \in \text{NN}(\mathbf{e}_q)} \left[\mathbb{1} \left(\text{GO}(g) \cap \text{GO}(c) \neq \emptyset \right) \right]$$

Candidate Drivers via Attention

Tumor Embedding

Common cellular signaling process across cancer types

Application - Survival Analysis

Application – Drug Response

Summary

- Biological-inspired neural network to mimic cellular signaling
- Distinguish drivers from passengers with supervision of expression
- Gene embedding: informative of gene functions
- Tumor embedding: transferable to other phenotype prediction tasks
- Gene2Vec: speed up training and alleviate overfitting

Acknowledgements

- oLu Lab
 - o Xinghua Lu
 - o Chunhui Cai
 - Yifan Xue
 - o Michael Q. Ding
- Cohen Lab
 - o William W. Cohen
- ∘ Funding
 - \circ NIH
 - o Pennsylvania Department of Health