

datasheet

PRODUCT SPECIFICATION

1/13" CMOS VGA (640x480) image sensor with OmniPixel3-HS™ technology

Confilion (10)

Copyright © 2010 OmniVision Technologies, Inc. All rights reserved.

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.

Trademark Information

OmniVision and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. OmniPixel3-HS and VarioPixel are trademarks of OmniVision Technologies, Inc.

All other trademarks used herein are the property of their respective owners.

CMOS VGA (640 x 480) image sensor with OmniPixel3-HS™ technology

datasheet (CSP3)
PRODUCT SPECIFICATION

version 2.11 june 2010

To learn more about OmniVision Technologies, visit www.ovt.com.

OmniVision Technologies is publicly traded on NASDAQ under the symbol OVTI.

applications

- cellular phones
- toys
- PC multimedia
- digital still cameras

ordering information

- OV07690-A20A (color, lead-free) 20-pin CSP3
- OV07191-A20A (b&w, lead-free)
 20-pin CSP3

features

- ultra low power and low cost
- automatic image control functions: automatic exposure control (AEC), automatic white balance (AWB) and automatic black level calibration (ABLC)
- programmable controls for frame rate, AEC/AGC, mirror and flip, scaling and windowing
- image quality controls: color saturation, hue, gamma, sharpness (edge enhancement), lens correction, defective pixel canceling, and noise canceling
- support for output formats: RAW RGB, RGB565, CCIR656 and YCbCr422
- support for video or snapshot operations

- support for images sizes: VGA, scaling CIF and sub-sampling QVGA and scaling QCIF
- support for horizontal and vertical sub-sampling
- standard serial SCCB interface
- digital video port (DVP) parallel output interface
- on-chip phase lock loop (PLL)
- programmable I/O drive capability
- support for black sun cancellation
- built-in 1.5V regulator for sensor core power
- suitable for module size of 4.5 mm x 4.5mm

key specifications

active array size: 640 x 480

power supply:

analog: 2.6 ~ 3.0V I/O: 1.7 ~ 3.0V

power requirements:

active: 100 mW standby: 20 µA

temperature range:

operating: -30°C to 70°C (see **table 8-2**) stable image: 0°C to 50°C (see **table 8-2**)

 output formats (8-bit): YUV 422 / YCbCr422, RGB565, CCIR656, raw RGB data

■ lens size: 1/13"

lens chief ray angle: 25° (see figure 10-2)

■ input clock frequency: 6 ~ 27 MHz

S/N ratio: 38 dB

■ dynamic range: 66 dB

maximum image transfer rate:

VGA (640x480): 30 fps for VGA QVGA (320x240): 60 fps for QVGA

sensitivity: 960 mV/(Lux-sec)

shutter: rolling shutter

scan mode: progressive

■ maximum exposure interval: 511 x t_{ROW}

gamma correction: programmable

pixel size: 1.75 μm x 1.75 μm

■ well capacity: 5.7 Ke⁻

dark current: 4.7 mV/sec @ 60°C

fixed pattern noise (FPN): 0.7 e⁻

Image area: 1148 μm x 861 μm

package dimensions: 2467 μm x 2917 μm

table of contents

1 signal descriptions	1-:
2 system level description	2-3
2.1 overview	2-1
2.2 architecture	2-1
2.3 I/O control	2-3
2.4 format and frame rate	2-3
2.5 SCCB interface	2-3
2.6 power up sequence	2-4
2.7 standby and sleep	2-4
2.8 DOVDD power requirements	2-4
3 block level description	3-:
3.1 pixel array structure	3-1
4 image sensor core digital functions	4-:
4.1 mirror and flip	4-1
4.2 image windowing	4-2
4.3 test pattern	4-3
4.4 AEC/AGC algorithms	4-3
4.4.1 overview	4-3
4.5 black level calibration	4-3
4.6 digital gain	4-3
JII.	
2	

5 image sensor processor digital functions	5-1
5.1 ISP_TOP	5-1
5.2 ISP DCW, border cutting	5-1
5.3 auto white balance (AWB)	5-1
5.4 gamma	5-1
5.5 lens correction (LENC)	5-1
5.6 black level correction (BLC)	5-2
5.7 color interpolation (CIP), DNS and sharpen	5-2
5.8 color matrix (CMX)	5-2
5.9 UV adjust (UV_ADJ)	5-2
5.10 special digital effect (SDE)	5-2
5.11 ISP system control	5-2
5.12 format description	5-3
6 image sensor output interface digital functions	6-1
6.1 digital video port (DVP)	6-1
6.1.1 overview	6-1
6.1.2 VGA timing	6-1
7 register tables	7-1
8 operating specifications	8-1
8.1 absolute maximum ratings	8-1
8.2 functional temperature	8-1
8.3 DC characteristics	8-2
8.4 AC characteristics	8-3
9 mechanical specifications	9-1
9.1 physical specifications	9-1
9.2 IR reflow specifications	9-2
10 optical specifications	10-1
10.1 sensor array center	10-1
10.2 lens chief ray angle (CRA)	10-2

list of figures

figure 1-1	pın diagram	1-2
figure 2-1	OV7690/OV7191 block diagram	2-2
figure 2-2	reference design schematic	2-2
figure 3-1	sensor array region color filter layout	3-1
figure 4-1	mirror and flip samples	4-1
figure 4-2	image windowing	4-2
figure 4-3	test pattern	4-3
figure 6-1	VGA timing diagram	6-1
figure 6-2	QVGA timing diagram	6-1
figure 9-1	package specifications	9-1
figure 9-2	IR reflow ramp rate requirements	9-2
figure 10-1	sensor array center	10-1
figure 10-2	chief ray angle (CRA)	10-2

list of tables

table 1-1	signal descriptions	1-1
table 2-1	driving capability and direction control for I/O pins	2-3
table 2-2	format and frame rate	2-3
table 2-3	SCCB support speeds	2-3
table 2-4	DOVDD power requirements	2-4
table 4-1	mirror and flip function control	4-1
table 4-2	flip ON and flip OFF control settings	4-1
table 4-3	image windowing control functions	4-2
table 4-4	test pattern selection control	4-3
table 5-1	format control register list	5-3
table 7-1	system control registers	7-1
table 8-1	absolute maximum ratings	8-1
table 8-2	functional temperature	8-1
table 8-3	DC characteristics (-30°C < TA < 70 °C)	8-2
table 8-4	AC characteristics (TA = 25° C, VDD-A = 2.8 V, VDD-IO = 1.8 V)	8-3
table 8-5	timing characteristics	8-3
table 9-1	package dimensions	9-1
table 9-2	reflow conditions	9-2
table 10-1	CRA versus image height plot	10-2

Collina

signal descriptions

table 1-1 lists the signal descriptions and their corresponding pin numbers for the OV7690/OV7191 image sensor. The package information is shown in section 9.

table 1-1 signal descriptions

pin number	signal name	pin type	description	default I/O status
A1	PWDN	input	power down (active high with internal pull-down resistor)	input
A2	AVDD	power	analog power	
A3	VREF2	reference	internal analog reference	
A4	VREF1	reference	internal analog reference	
B1	SDA	I/O	SCCB data	
B2	SCL	input	SCCB input clock	
В3	DATA0	I/O	digital video port (DVP) bit[0]	output
B4	DATA1	I/O	digital video port (DVP) bit[1]	output
C1	HREF	I/O	horizontal reference output	output
C2	VSYNC	I/O	vertical sync output	output
C3	AGND/GND	ground	ground for circuit	
C4	DATA2	I/O	digital video port (DVP) bit[2]	output
D1	PCLK	I/O	pixel clock output	output
D2	XVCLK	input	system input clock	input
D3	DATA5	I/O	digital video port (DVP) bit[5]	output
D4	DATA3	I/O	digital video port (DVP) bit[3]	
E1	DATA7	I/O	digital video port (DVP) bit[7]	
E2	DATA6	I/O	digital video port (DVP) bit[6]	
E3	DATA4	I/O	digital video port (DVP) bit[4]	
E4	DOVDDa	power	power for I/O circuit	

a. for different DOVDDs, register 0x49[3:0] must be set according to the settings in section 2.8, DOVDD power requirements.

figure 1-1 pin diagram

top view

Collina

2 system level description

2.1 overview

The OV7690 (color) and OV7191 (b&w) image sensors are low voltage, high-performance 1/13-inch VGA CMOS image sensors that provide the full functionality of a single chip VGA (640x480) camera using OmniPixel3-HS™ technology in a small footprint package. They provide full-frame, sub-sampled, and windowed images in CIF or QCIF formats via the control of the Serial Camera Control Bus (SCCB) interface.

The OV7690/OV7191 has an image array capable of operating at up to 30 frames per second (fps) in VGA resolution with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, gamma, white balance, color saturation, hue control, defective pixel canceling, noise canceling, etc., are programmable through the SCCB interface. In addition, Omnivision image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable, color image.

2.2 architecture

The OV7690/OV7191 sensor core generates streaming pixel data at a constant frame rate indicated by HREF, VSYNC, and PCLK.

The timing generator outputs signals to access the rows of the image array, precharging and sampling the rows of the sensor array in series. In the time between pre-charging and sampling a row, the charge in the pixels decreases with the time exposed to the incident light. This is known as exposure time.

The exposure time is controlled by adjusting the time interval between precharging and sampling. After the data of the pixels in the row has been sampled, it is processed through analog circuitry to correct the offset and multiply the data with corresponding gain. Following analog processing is the ADC which outputs 10-bit data for each pixel in the array.

OV7690/OV7191 image output interface image sensor core image sensor processor column sample/hold row select digital gain DSP DATA[7:0] gain control control register bank SCCB slave timing generator and system control logic PLL VSYNC HREF PCLK

figure 2-1 OV7690/OV7191 block diagram

figure 2-2 reference design schematic

2.3 I/O control

The OV7690/OV7191 I/O pin direction and driving capability can be easily adjusted. table 2-1 lists the driving capability and direction control registers of the I/O pins.

table 2-1 driving capability and direction control for I/O pins

function	register	description
output drive capability control	0x0E	Bit[1:0]: digital video port output drive capability 00: 1x 01: 2x 10: 3x 11: 4x

2.4 format and frame rate

table 2-2 format and frame rate

format	resolution	frame rate	scaling method	pixel clock (YUV/RAW)
VGA	640x480	30 fps	full	24/12 MHz
CIF	352x288	30 fps	scaling down from VGA	24/12 MHz
QVGA	320x240	60 fps	sub sampling from VGA	24/12 MHz
QCIF	176x144	60 fps	scaling down from QVGA	24/12 MHz
any size		30 fps	windowing	24/12 MHz

2.5 SCCB interface

The Serial Camera Control Bus (SCCB) interface controls the image sensor operation. Refer to the OmniVision Technologies Serial Camera Control Bus (SCCB) Specification for detailed usage of the serial control port.

The OV7690/OV7191 SCCB supported clock rate is dependent on the input clock (XVCLK). table 2-3 details the supported speeds.

table 2-3 SCCB support speeds

input clock (XVCLK)	SCCB clock
15 ≤ XVCLK ≤ 27 MHz	400 Kbps
10 <u><</u> XVCLK < 15 MHz	300 Kbps
6 ≤ XVCLK < 10 MHz	150 Kbps

2.6 power up sequence

Powering up the OV7690/OV7191 sensor does not require a special power supply sequence. The sensor includes an on-chip initial power-up reset feature. It will reset the whole chip during power up.

2.7 standby and sleep

Two suspend modes are available for the OV7690/OV7191:

- · hardware standby
- SCCB software sleep

To initiate hardware standby mode, the PWDN pin must be tied to high. When this occurs, the OV7690/OV7191 internal device clock is halted and all internal counters are reset and registers are maintained.

Executing a software power-down through the SCCB interface suspends internal circuit activity but does not halt the device clock. All register content is maintained in standby mode.

2.8 DOVDD power requirements

The OV7690/OV7191 requires two power supplies, AVDD and DOVDD. For different DOVDDs, register 0x49[3:0] must be set to the settings shown in table 2-4.

table 2-4 DOVDD power requirements

	DOVDD	0x49[3:0]
	1.7 ~ 2.0V	4'hC
	2.1 ~ 2.5V	4'h4
	2.6 ~ 3.0V	4'hD
Control		

3 block level description

3.1 pixel array structure

The OV7690/OV7191 sensor has an image array of 656 columns by 492 rows (322,752 pixels). **figure 3-1** shows a cross-section of the image sensor array.

The color filters are arranged in a Bayer pattern. The primary color BG/GR array is arranged in line-alternating fashion. Of the 322,572 pixels, 307,200 (640x480) are active pixels and can be output. The other pixels are used for black level calibration and interpolation.

The sensor array design is based on a field integration read-out system with line-by-line transfer and an electronic shutter with a synchronous pixel read-out scheme.

figure 3-1 sensor array region color filter layout

image sensor core digital functions

4.1 mirror and flip

The OV7690/OV7191 provides Mirror and Flip read-out modes, which respectively reverse the sensor data read-out order horizontally and vertically (see figure 4-1).

figure 4-1 mirror and flip samples

7690 DS 4 1

table 4-1 mirror and flip function control

function	register	description
mirror	0x0C	Bit[6]: mirror ON/OFF select 0: mirror OFF 1: mirror ON
flip	0x0C	Bit[7]: flip ON/OFF select (see table 4-2) 0: flip OFF 1: flip ON

flip ON and flip OFF control settings

function	subsampling OFF 0x12[6] = 0	subsampling ON 0x12[6] = 1
flip ON	0x22[5:4] = 2'b00	0x22[5:4] = 2'b10
flip OFF	0x22[5:4] = 2'b00	0x22[5:4] = 2'b01

4.2 image windowing

An image windowing area is defined by four parameters, horizontal start (HS), horizontal width (HW), vertical start (VS), and vertical height (VH). By properly setting the parameters, any portion within the sense array size can be windowed as a visible area. This windowing is achieved by simply masking the pixels outside the windowing window; thus, it will not affect original timings. It will also not conflict with the flip and mirror functions.

figure 4-2 image windowing

table 4-3 image windowing control functions

function	register	description	
horizontal start	0x17		
vertical start	0x19		
horizontal width	{0x18[7:0], 0x16[6]}		
vertical height	0x1A		

4.3 test pattern

For testing purposes, the OV7690/OV7191 offers one type of test pattern, color bar.

figure 4-3 test pattern

table 4-4 test pattern selection control

function	register	description			
color bar	0x0C	Bit[0]: color bar enable 0: color bar OFF 1: color bar enable			

4.4 AEC/AGC algorithms

4.4.1 overview

The Auto Exposure Control (AEC) and Auto Gain Control (AGC) allows the image sensor to adjust the image brightness to a desired range by setting the proper exposure time and gain applied to the image. Besides automatic control, exposure time and gain can be set manually from external control.

4.5 black level calibration

The pixel array contains several optically shielded (black) lines. These lines are used to provide the data for black level calibration.

4.6 digital gain

After black level subtraction, multiplication may apply to all pixel values based on an optional digital gain. By default, the sensor will use analog gain up to its maximum before applying digital gain to the pixels.

5 image sensor processor digital functions

5.1 ISP_TOP

The ISP_TOP includes all module enable signals, buffer power down control, top level control signals as well as ISP modules that require control bytes (WBC, UV_AVG, and YUV444to422).

- WBC: White Black pixel Canceling is used to detect and remove defect pixels.
- VarioPixel: This module is used to do pixel 2:1 sub sample in horizontal view. There are various ways to use
 VarioPixel function such as give out the average of 2 pixels, give out the first pixel and drop the second, or give out
 the second and drop the first.
- UV_AVG: The U and V average module is used to smooth chrominance to let color image looks better around edge.
- YUV444to422: This module is used to convert YUV444 to YUV422. This module has two options: average mode and drop mode.

5.2 ISP DCW, border cutting

This part includes the size registers for ISP input windowing, ISP output windowing, and Scaling input windowing. The ISP input windowing is designed to support digital zoom. The ISP output windowing and Scaling input windowing are both for cutting some border pixels or border lines which are not good enough due to algorithm limitation.

5.3 auto white balance (AWB)

The main purpose of the Auto White Balance (AWB) function is to automatically correct the white balance of the image. There are two main functions AWB: AWB_Stat and AWB_Gain.

- · AWB_Stat is used to automatically generate digital gains for different light sources
- · AWB_Gain is used to apply the AWB_Stat gains on RAW data to remove unrealistic color

5.4 gamma

The main purpose of the Gamma (GMA) function is to compensate for the non-linear characteristics of the sensor. GMA converts the pixel values according to the Gamma curve to compensate the sensor output under different light strengths. The non-linear gamma curve is approximately constructed with different linear functions.

5.5 lens correction (LENC)

The main purpose of the Lens Correction (LENC) function is to compensate for lens imperfection. According to the radius of each pixel to the lens, the module calculates a gain for the pixel, correcting each pixel with its gain calculated to compensate for the light distribution due to lens curvature.

5.6 black level correction (BLC)

Black Level Correction (BLC) is used to adjust black level situations.

5.7 color interpolation (CIP), DNS and sharpen

The color interpolation (CIP) functions include de-noising of raw images, RAW to RGB interpolation, and edge enhancement. CIP functions work in both manual and auto modes.

5.8 color matrix (CMX)

The main purpose of the Color Matrix (CMX) function is to convert images from the RGB domain to YUV domain. For different color temperatures, the parameters in the transmitting function will be changed.

5.9 UV adjust (UV ADJ)

UV adjust (UV_ADJ) is used to reduce chrominance values in low light conditions to improve image quality. The higher AGC gain is, the lower the chrominance values. UV_ADJ has an automatic and manual mode.

5.10 special digital effect (SDE)

The Special Digital Effects (SDE) functions include hue/saturation control, brightness, contrast, etc. Use SDE_CTRL to add some special effects to the image. Calculate the new U and V from Hue Cos, Hue Sin, and parameter signs. Saturate U and V using the Sat_u and Sat_v registers. Calculate Y using Y offset, Y gain, and Ybright or set the Y value. SDE supports negative, black/white, sepia, greenish, blueish, reddish and other image effects which combine the effects already listed.

5.11 ISP system control

System control registers include clock and gated controls. Individual modules are clock gated by setting registers 0x80 and 0x81.

5.12 format description

Format control converts internal data format into the desirable output format including YUV, RGB and RAW.

format control register list table 5-1

register address	register name	function
0x12	REG12	Bit[7]: System register reset 0: No change 1: Resets system Bit[6]: Subsampled (skip) mode enable 0: Subsample disabled 1: Subsample enable Bit[5]: ITU656 protocol ON/OFF selection Bit[4]: Reserved Bit[3:2]: RGB output format control 00: Reserved 01: RGB565 1x: Reserved Bit[1:0]: Output format control 00: YUV x1: Bayer RAW 10: RGB
0x82	REG82	Bit[7:5]: Reserved Bit[4]: RBLUE_P 0: Internal rblue is the same as ISP port 1: Inverse rblue inside ISP Bit[3]: BAR_EN Bit[2]: BAR_OPT_EN 0: Color bar data is from vertical counter 1: Color bar data is constant Bit[1:0]: OUT_SEL 00: Raw from WBC 01: Raw from CIP 1x: YUV422

6 image sensor output interface digital functions

6.1 digital video port (DVP)

6.1.1 overview

The Digital Video Port (DVP) provides 10-bit parallel data output in all formats supported, and extended features including HSYNC mode and test pattern output.

6.1.2 VGA timing

figure 6-1 VGA timing diagram

figure 6-2 QVGA timing diagram

 $\textbf{note 1} \quad \text{for YUV/RGB, } t_P = 2 \times t_{PCLK} \text{ (only to be used with YUV/RGB)}$

7690_DS_6_2

7 register tables

The following tables provide descriptions of the device control registers contained in the OV7690/OV7191. For all register enable/disable bits, enable = 1 and DISABLE = 0. The device slave addresses are 0x42 for write and 0x43 for read.

system control registers (sheet 1 of 16) table 7-1

address	register name	default value	R/W	description		
0x00	GAIN	0x00	RW	AGC Gain Control 10 bits (REG15 [1:0] as MSB 2 bits) REG15 [1:0]: digital gain Bit[7:0]: Analog gain Range: 1x to 128x Gain = (Bit[9]+1) × (Bit[8]+1) × (Bit[7]+1) × (Bit[6]+1) × (Bit[5]+1) × (Bit[4]+1) × (1+Bit[3:0]/16)		
0x01	BGAIN	0x40	RW	AWB Blue Gain Control Range: 0 to 4x([00] to [FF])		
0x02	RGAIN	0x40	RW	AWB Red Gain Control Range: 0 to 4x([00] to [FF])		
0x03	GGAIN	0x40	RW	AWB Green Gain Control Range: 0 to 4x([00] to [FF])		
0x04	YAVG	-	R	Frame Average Level Automatically updated based on chip output format		
0x05	BAVG	-	R	B Pixel Average (ISP) Automatically updated based on chip output format		
0x06	RAVG	_	R	R Pixel Average (ISP) Automatically updated based on chip output format		
0x07	GAVG	_	R	G Pixel Average (ISP) Automatically updated based on chip output format		
0x08~ 0x09	RSVD	-	-	Reserved		
0x0A	PIDH	0x76	R	Product ID Number MSB (Read only)		
0x0B	PIDL	0x90	R	Product ID Number LSB (Read only)		

table 7-1 system control registers (sheet 2 of 16)

	table / I	system controllegisters (sheet 2 or 10)					
	address		default value	R/W	description		
	0x0C	REG0C	0x00	RW	Bit[7]: Vertical flip Bit[6]: Horizontal mirror Bit[5]: BR swap when in RGB format Bit[4]: YU/YV swap when in YUV format Bit[3]: Reverse order of data bus Bit[2]: Clock output pin status 0: Data pin (D[7:0]) tri-state 1: Data pin (D[7:0]) output state Bit[1]: Data output pin status selection 0: VSYNC, HREF, and PCLK tri-state 1: VSYNC, HREF, and PCLK output state Bit[0]: Enable color bar (overlay)		
	0x0D	REG0D	0x44	RW	Bit[7]: Reserved Bit[6:4]: VS start point Bit[3]: Reserved Bit[2:0]: VS width		
	0x0E	REG0E	0x00	RW	Bit[7:4]: Reserved Bit[3]: Sleep mode enable 0: Normal mode 1: Sleep mode Bit[2]: Output data range selection 0: Full range 1: Data from [10] to [F0] (8 MSBs) Bit[1:0]: Output drive current select 00: 1x 01: 2x 10: 3x 11: 4x		
	0x0F	AECH	0x00	RW	Automatic Exposure Control MSBs (see register AECL (0x10) for LSBs)		
SUMM	0x10	AECL	0x00	RW	Automatic Exposure Control LSBs (see register AECH (0x0F) for MSBs) AEC[15:0]: Exposure time TEX = t _{LINE} × AEC[15:0] Note: The maximum exposure time is 1 frame period even if TEX is longer than 1 frame period.		

system control registers (sheet 3 of 16) table 7-1

address	register name	default value	R/W	description	n
0x11	CLKRC	0x00	RW	Bit[7]: Bit[6]: Bit[5:0]:	Reserved Use external clock directly (no clock pre-scale available) Internal clock pre-scalar F(internal clock) = F(input clock)/(Bit[5:0]+1) Range: [0 0000] to [1 1111]
0x12	REG12	0x11	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3:2]:	System register reset 0: No change 1: Resets system Subsampled (skip) mode enable 0: Subsample disabled 1: Subsample enable ITU656 protocol ON/OFF selection Select sensor original raw data output RGB output format control 00: Reserved 01: RGB565 1x: Not valid Output format control 00: YUV 01: Bayer RAW 10: RGB 11: Bayer RAW
0x13	REG13	0xE5	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]:	Enable fast AGC/AEC algorithm AEC - step size limit 0: Step size limited to vertical blank 1: Unlimited step size (current AEC value) Banding filter ON/OFF Enable AEC below banding value Sub-line level exposure ON/OFF selection AGC auto/manual control selection AWB auto/manual control selection Exposure auto/manual control selection

table 7-1 system control registers (sheet 4 of 16)

	able /-I	system controllegisters (sneet 4 or 16)				
	address	register name	default value	R/W	description	า
	0x14	REG14	0x30	RW	Bit[7]: Bit[6:4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]:	Reserved Automatic gain ceiling Maximum AGC value 000: 2x 001: 4x 010: 8x 011: 16x 100: 32x 101: 64x 110: 128x Reserved Drop VSYNC output of corrupt frame Reserved Manually set banding 0: 60 Hz 1: 50 Hz
Conni	0x15	REG15	0x00	RW	Bit[3:2]:	Auto frame rate control on/off selection Auto frame rate max rate control 000: No reduction of frame rate 001: Max reduction to 1/2 frame rate 010: Max reduction to 1/3 frame rate 011: Max reduction to 1/4 frame rate 100: Max reduction to 1/8 frame rate 100: Max reduction to 1/8 frame rate Auto frame rate active point control 00: Add frame when AGC reaches 1 × (1 + 15/16) gain 01: Add frame when AGC reaches 2 × (1 + 15/16) gain 10: Add frame when AGC reaches 4 × (1 + 15/16) gain 11: Add frame when AGC reaches 8 × (1 + 15/16) gain Digital gain 00: No digital gain 01: 2x 11: 4x

system control registers (sheet 5 of 16) table 7-1

	,					
address	register name	default value	R/W	description		
0x16	REG16	0x08	RW	Bit[7]: Reserved Bit[6]: Horizontal sensor size[0] (see register HSIZE[7:0] (0x18) for MSBs) Bit[5]: Roff1 Vertical window start line adjustment Bit[4]: Hoff1 Horizontal window start line adjustment Bit[3:0]: Reserved		
0x17	HSTART	0x69	RW	Horizontal Window Start Point Control		
0x18	HSIZE	0xA0	RW	Horizontal Sensor Size[8:1] (see REG16 [0] (0x16) for LSB) Actual horizontal size = 2 × { HSIZE [7:0], REG16 [6]}		
0x19	VSTART	0x0E	RW	Vertical Window Start Line Control		
0x1A	VSIZE	0xF0	RW	Vertical Sensor Size 8 bits Actual vertical size = 2 × VSIZE [7:0]		
0x1B	SHFT	0x17	RW	Pixel Shift		
0x1C	MIDH	0x7F	R	Manufacturer ID Byte – High		
0x1D	MIDL	0xA2	R	Manufacturer ID Byte – Low		
0x1E~ 0x1F	RSVD	_	_	Reserved		
0x20	REG20	0x00	RW	Bit[7]: MSB of banding filter maximum step for 50 Hz light source (4 LSBs are in AECGM[7:4] (0x21)) Bit[6]: MSB of banding filter maximum step for 60 Hz light source (4 LSBs are in AECGM[3:0] (0x21)) Bit[5:0]: Manual banding counter		
0x21	AECGM	0x44	RW	Bit[7:4]: Banding filter maximum step for 50 Hz light source (see register REG20[7] (0x20) for MSB) Bit[3:0]: Banding filter maximum step for 60 Hz light source (see register REG20[6] (0x20) for MSB)		

table 7-1 system control registers (sheet 6 of 16)

	address	register name	default value	R/W	description	n
	0x22	REG22	0x00	RW	Bit[7]: Bit[6:0]:	Optical black output selection 0: Disable 1: Enable Reserved
	0x23	RSVD	-	_	Reserved	
	0x24	WPT	0x78	RW	AGC/AEC - (Upper Lim	Stable Operating Region it)
	0x25	BPT	0x68	RW	AGC/AEC - Stable Operating Region (Lower Limit)	
		Š	(O)			Fast Mode Operating Region High nibble of upper limit of fas
	0x26	VPT	0xD4	RW	Bit[3:0]:	mode control zone High nibble of lower limit of fas mode control zone
_	0x27	REG27	0x00	RW	Bit[7]: Bit[6:4]: Bit[3]: Bit[2:0]:	Dark sun enable (digital part) Vertical window position adjustment (when center average is used) Reserved Horizontal window position adjustment (when center average is used)
	0x28	REG28	0x00	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]:	Output negative data HREF changes to HSYNC HSYNC reverse HREF reverse Reserved VSYNC option 0: VSYNC active on falling edge of PCLK 1: VSYNC active on rising edge of PCLK
Es.					Bit[1]: Bit[0]:	VSYNC negative Reserved

system control registers (sheet 7 of 16) table 7-1

address	register name	default value	R/W	description
0x29	PLL	0xA2	RW	Bit[7:6]: PLL divider 00: /1 01: /2 10: /3 11: /4 Bit[5:4]: PLL output control 00: Bypass PLL 01: 4x 10: 6x 11: 8x Bit[3]: Reset PLL Bit[2:1]: Y_AVERAGE selection options 00: Use ISP output as data source 01: Use sensor output as data source Bit[0]: Reserved
0x2A	EXHCL	0x30	RW	Bit[7]: Contrast center auto adjustment 0: Manual mode by setting REGD5[7:0] 1: Auto mode Bit[6:4]: Dummy pixel insert in horizontal direction 3 MSBs (see register EXHCH (0x2B) for LSBs) Bit[3:0]: Dummy line 4 MSBs (see register DM_LN (0x2C) for LSBs)
0x2B	EXHCH	0x0B	RW	Dummy Pixel Insert in Horizontal Direction 8 LSBs (see register EXHCL [6:4] (0x2A) for MSBs)
0x2C	DM_LN	0x00	RW	Dummy Line 8 LSBs (see register EXHCL[3:0] (0x2A) for MSBs)
0x2D	ADVFL	0x00	RW	Dummy Line Insert in Vertical direction LSBs (1 bit equals 1 line) (see register ADVFH (0x2E) for MSBs)
0x2E	ADVFH	0x00	RW	Dummy Line Insert in Vertical Direction MSBs (1 bit equals 1 line) (see register ADVFL (0x2D) for LSBs)
0x2F~ 0x37	RSVD	-	-	Reserved

table 7-1 system control registers (sheet 8 of 16)

		3/300111001101100	5.010.0 (0.101	,		
	address	register name	default value	R/W	descriptio	n
	0x38	4MSBs(Strobe) 4LSBs(ADC)	0x10	RW	Note:	Reserved Stream OFF control VSYNC Y HREF PCLK 0xx: f f f f 100: k k k f 101: k k k k 11x: hz hz hz hz f stand for free running hz stand for high impedance Reserved
	0x39~ 0x3D	RSVD	(O)	-	Reserved	
	0x3E	REG3E	0x20	RW	Bit[7]: Bit[6]: Bit[5]: Bit[4]:	Reserved PCLK output gated 0: PCLK always output 1: PCLK output qualified by HREF Reserved PCLK output selection 0: For RAW format 1: For YUV format, PCLK will be double than PCLK in RAW format
	70					Reserved
	0x3F	REG3F	0x44	RW	Bit[7]: Bit[6]: Bit[5:0]:	Reserved Reverse PCLK 0: HREF goes high at PCLK rising edge 1: HREF goes high at PCLK falling edge Reserved
	0x40~ 0x47	RSVD	-	-	Reserved	
K U	0x48	ANA1	0x40	RW	Bit[7:0]:	Reserved
SUM	0x49	PWC0	0x0D	RW	Bit[7:5]: Bit[4]: Bit[3:0]:	Reserved Debug only (should not be changed from default) DOVDD voltage range configuration 0100: 2.1 ~ 2.5V 1100: 1.7 ~ 2.0V 1101: 2.6 ~ 3.0V Others: Not used
	0x4A~ 0x4F	RSVD	-	_	Reserved	

system control registers (sheet 9 of 16) table 7-1

		l		
address	register name	default value	R/W	description
0x50	BD50ST	0x9A	RW	50 Hz Banding AEC 8 Bits
0x51	BD60ST	0x80	RW	60 Hz Banding AEC 8 Bits
0x52~ 0x59	RSVD	_	_	Reserved
0x5A	UV_CTR0	0x01	RW	Slope of UV Curve
0x5B	UV_CTR1	0xFF	RW	Bit[7:6]: UV adjustment gain high threshold control 2 LSBs (see register UV_CTR2[7:5] (0x5C) for 3 MSBs) Bit[5:0]: Y intercept point of UV curve
0x5C	UV_CTR2	0x1F	RW	Bit[7:5]: UV adjustment gain high threshold control 3 MSBs (see register UV_CTR1[7:6] (0x5B) for 2 LSBs) Bit[4:0]: Manual UV adjustment
0x5D	UV_CTR3	0x00	RW	Bit[7:4]: UV adjustment gain low threshold control Bit[3:2]: Reserved Bit[1]: Center average selection 0: Choose whole image average value to system 1: Choose center 1/4 average value to system Bit[0]: Reserved
0x5E~ 0x61	RSVD	_	_	Reserved
0x62	REG62	00	RW	Bit[7] Reserved Bit[6] Bit shift test pattern output enable 0: Disable 1: Enable Bit[5:4]: Bit shift test pattern mode options 00: Not valid 01: Not valid 10: Test pattern mode 1 11: Test pattern mode 2 Bit[3:0]: Reserved
0x63~ 0x67	RSVD	_	_	Reserved
0x68	BLC8	0x80	RW	Bit[7:4]: Reserved Bit[3:0]: BLC target offset

table 7-1 system control registers (sheet 10 of 16)

'	lable /-I	system control registers (sheet 10 or 10)				
	address	register name	default value	R/W	description	١
	0x69~ 0x6A	RSVD	_	_	Reserved	
_	0x6B	BLCOUT	-	R	Read-out Bl	LC Values
-	0x6C~ 0x6E	RSVD	_	_	Reserved	
-	0x6F	REG6F	0x43	RW	Bit[7]: Bit[6:0]:	Reset enable/disable when sensor working mode changes 0: Sensor not reset timing when mode changes 1: Sensor timing will reset when mode changes Reserved
-	0x70~ 0x7F	RSVD	-	-	Reserved	
-		110			Bit[7]:	VarioPixel enable 0: Disable 1: Enable
					Bit[6]:	Color interpolation enable 0: Disable 1: Enable
					Bit[5]:	Black pixel correction enable Disable Enable
					Bit[4]:	White pixel correction enable 0: Disable
	0x80	REG80	0x7E	RW	Bit[3]:	Gamma enable 0: Disable
					Bit[2]:	 Enable AWB gain enable Disable
C d					Bit[1]:	 Enable AWB enable Disable Enable
SIMI					Bit[0]:	 Enable Lens correction enable Disable Enable

system control registers (sheet $11\ {
m of}\ 16$) table 7-1

a diduca		default	DAM	de explication	
address	register name	value	R/W	description	
				Bit[7:6]: Reserved Bit[5]: Special Digital Effects (SDE enable 0: Disable 1: Enable Bit[4]: UV adjust enable	≣)
0x81	REG81	0x41	RW	0: Disable 1: Enable Bit[3]: Vertical scaling enable 0: Disable	
0.01	KEGOT	0.441	KVV	1: Enable Bit[2]: Horizontal scaling enable 0: Disable 1: Enable	
				Bit[1]: UV average enable 0: Disable 1: Enable Bit[0]: Color matrix enable	
		\(\doldress \)	0.	0: Disable 1: Enable	
				Bit[7:5]: Reserved Bit[4]: RBLUE_P 0: Internal rblue is the sa as ISP port 1: Inverse rblue inside IS	
0x82	REG82	0x00	RW	Bit[3]: ISP color bar Bit[2]: Color bar options enable 0: Color bar data is from vertical counter 1: Color bar data is cons	
<u> </u>				Bit[1:0]: Output options 00: Raw from WBC 01: Raw from CIP 10: YUV422 11: YUV422	
0x83~ 0x84	RSVD	-	-	Reserved	
0x85	LCC0	0x00	RW	Bit[7:5]: Reserved Bit[4]: LENC bias enable Bit[3]: VSKIP Bit[2]: HSKIP Bit[1:0]: Reserved	
0x86	LCC1	0x00	RW	Bit[7:0]: Radius of the circular section where no compensation ap	
0x87	LCC2	0x00	RW	Bit[7:0]: X coordinate of lens correct center relative to array cen	

table 7-1 system control registers (sheet 12 of 16)

	tubic / I	3/3tem controlle	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.12	·1
	address	register name	default value	R/W	description
	0x88	LCC3	0x00	RW	Bit[7:0]: Y coordinate of lens correction center relative to array center
	0x89	LCC4	0x00	RW	Bit[7:0]: R channel compensation coefficient
	0x8A	LCC5	0x00	RW	Bit[7:0]: G channel compensation coefficient
	0x8B	LCC6	0x00	RW	Bit[7:0]: B channel compensation coefficient
	0x8C~ 0xA2	AWB CTRL	\bigcirc	RW	AWB Control Registers
	0xA3	GAM1	0x10	RW	Gamma Curve 1st Segment Input End Point 0x04 Output Value
	0xA4	GAM2	0x12	RW	Gamma Curve 2nd Segment Input End Point 0x08 Output Value
	0xA5	GAM3	0x35	RW	Gamma Curve 3rd Segment Input End Point 0x10 Output Value
	0xA6	GAM4	0x5A	RW	Gamma Curve 4th Segment Input End Point 0x20 Output Value
	0xA7	GAM5	0x69	RW	Gamma Curve 5th Segment Input End Point 0x28 Output Value
	0xA8	GAM6	0x76	RW	Gamma Curve 6th Segment Input End Point 0x30 Output Value
	0xA9	GAM7	0x80	RW	Gamma Curve 7th Segment Input End Point 0x38 Output Value
~0)	0xAA	GAM8	0x88	RW	Gamma Curve 8th Segment Input End Point 0x40 Output Value
	0xAB	GAM9	0x8F	RW	Gamma Curve 9th Segment Input End Point 0x48 Output Value
TIUL,	0xAC	GAM10	0x96	RW	Gamma Curve 10th Segment Input End Point 0x50 Output Value
5	0xAD	GAM11	0xA3	RW	Gamma Curve 11th Segment Input End Point 0x60 Output Value
	0xAE	GAM12	0xAF	RW	Gamma Curve 12th Segment Input End Point 0x70 Output Value
	0xAF	GAM13	0xC4	RW	Gamma Curve 13th Segment Input End Point 0x90 Output Value
	0xB0	GAM14	0xD7	RW	Gamma Curve 14th Segment Input End Point 0xB0 Output Value
	-				

system control registers (sheet 13 of 16) table 7-1

address	register name	default value	R/W	description
0xB1	GAM15	0xE8	RW	Gamma Curve 15th Segment Input End Point 0xD0 Output Value
0xB2	SLOPE	0x20	RW	Gamma Curve Highest Segment Slope – calculated as follows: SLOPE[7:0] = (0x100 – GAM15[7:0]) × 4/3
0xB3	RSVD	_	-	Reserved
0xB4	REGB4	0x06	RW	Bit[7:6]: Reserved Bit[5]: Sharpening mode 0: Manual 1: Auto Bit[4]: De-noise mode manual 0: Manual 1: Auto Bit[3:0]: EDGE_TH
0xB5	REGB5	0x08	RW	Bit[7:0]: De-noise magnitude (manual mode)
0xB6	REGB6	0x04	RW	Bit[7:5]: Reserved Bit[4:0]: Sharpening magnitude (manual mode)
0xB7	REGB7	0x10	RW	Bit[7:0]: OFFSET
0xB8	REGB8	0x1E	RW	Bit[7:5]: Reserved Bit[4:0]: BASE1
0xB9	REGB9	0x02	RW	Bit[7:5]: Reserved Bit[4:0]: BASE2
0xBA	REGBA	0x09	RW	Bit[7]: Reserved Bit[6]: GAIN_SEL_EN Bit[5:4]: GAIN_SEL 00: GAIN_4X is limited to 8 01: GAIN_4X is limited to 16 10: GAIN_4X is limited to 32 11: GAIN_4X is limited to 64 Bit[3:2]: DNS_TH_SEL Bit[1:0]: EDGE_MT_RANGE
0xBB	REGBB	0x2C	RW	Bit[7:0]: Color matrix coefficient 1
0xBC	REGBC	0x24	RW	Bit[7:0]: Color matrix coefficient 2
0xBD	REGBD	0x08	RW	Bit[7:0]: Color matrix coefficient 3
0xBE	REGBE	0x14	RW	Bit[7:0]: Color matrix coefficient 4
0xBF	REGBF	0x24	RW	Bit[7:0]: Color matrix coefficient 5
0xC0	REGC0	0x38	RW	Bit[7:0]: Color matrix coefficient 6

table 7-1 system control registers (sheet 14 of 16)

	address	register name	default value	R/W	description
	0xC1	REGC1	0x1E	RW	Bit[7]: CMX_BIAS Bit[6]: M_DB Bit[5:0]: M_SIGN
	0xC2	REGC2	0x00	RW	Bit[7:2]: Reserved Bit[1]: VFIRST Bit[0]: UV_CNV_OPT 0: Average mode 1: Drop mode
	0xC3	REGC3	0x80	RW	Bit[7]: WIN_SEL Bit[6]: SCALE_MAN Bit[5]: H_ROUND Bit[4]: H_DROP Bit[3:2]: V_DIV_MAN Bit[1:0]: H_DIV_MAN
	0xC4	REGC4	0x02	RW	Bit[7:3]: Reserved Bit[2:0]: XSC_MAN[10:8]
	0xC5	REGC5	0x00	RW	Bit[7:0]: XSC_MAN[7:0]
	0xC6	REGC6	0x02	RW	Bit[7:3]: Reserved Bit[2:0]: YSC_MAN[10:8]
	0xC7	REGC7	0x00	RW	Bit[7:0]: YSC_MAN[7:0]
	0xC8	REGC8	0x02	RW	Bit[7:2]: Reserved Bit[1:0]: IH[9:8] 2 MSBs of horizontal input size (see register REGC9[7:0] (0xC9) for LSBs)
~ O'C'	0xC9	REGC9	0x80	RW	Bit[7:0]: IH[7:0] 8 LSBs of horizontal input size (see register REGC8[1:0] (0xC8) for MSBs)
Chuly	0xCA	REGCA	0x01	RW	Bit[7:1]: Reserved Bit[0]: IV[8] MSB of vertical input size (see register REGCB[7:0] (0xCB) for LSBs)
9	0xCB	REGCB	0xE0	RW	Bit[7:0]: IV[7:0] 8 LSBs of vertical input size (see register REGCA[0] (0xCA) for MSB)
	0xCC	REGCC	0x02	RW	Bit[1:0]: OH[9:8] 2 MSBs of horizontal output size (see register REGCD[7:0] (0xCD) for LSBs)

system control registers (sheet 15 of 16) table 7-1

address	register name	default value	R/W	description
0xCD	REGCD	0x80	RW	Bit[7:0]: OH[7:0] 8 LSBs of horizontal output size (see register REGCC[7:0] (0xCC) for MSBs)
0xCE	REGCE	0x01	RW	Bit[7:1]: Reserved Bit[0]: OV[8] MSB of vertical output size (see register REGCF[7:0] (0xCF) for LSBs)
0xCF	REGCF	0xE0	RW	Bit[7:0]: OV[7:0] 8 LSBs of vertical output size (see register REGCE[0] (0xCE) for MSB)
0xD0	REGD0	0x48	RW	Boundary Offset Bit[7:4]: WIN_VOFF Bit[3:0]: WIN_HOFF
0xD1	RSVD	- \	V	Reserved
0xD2	REGD2	0x00	RW	SDE_CTRL Bit[7]: FIXY_EN Bit[6]: NEG_EN Bit[5]: GRAY_EN Bit[4]: FIXV_EN Bit[3]: FIXU_EN Bit[2]: CONT_EN Bit[1]: SAT_EN Bit[0]: HUE_EN
0xD3	REGD3	0x00	RW	Bit[7:0]: YBRIGHT
0xD4	REGD4	0x20	RW	Bit[7:0]: YGAIN
0xD5	REGD5	0x00	RW	Bit[7:0]: YOFFSET
0xD6	REGD6	0x80	RW	Bit[7:0]: HUE_COS
0xD7	REGD7	0x00	RW	Bit[7:0]: HUE_SIN
0xD8	REGD8	0x40	RW	Bit[7:0]: SAT_U
0xD9	REGD9	0x40	RW	Bit[7:0]: SAT_V
0xDA	REGDA	0x80	RW	Bit[7:0]: UREG
0xDB	REGDB	0x80	RW	Bit[7:0]: VREG

table 7-1 system control registers (sheet 16 of 16)

tubic 7 I	3y3tem contrott	0 (- /	
address	register name	default value	R/W	descriptio	n
0xDC	REGDC	0x01	RW	Bit[7:6]: Bit[5:0]:	Reserved SgnSet Hue: sgn0=1, sgn1=0, sgn4=sgn5=0 => 0 <theta< 2="" =="" pi="" sgn0="0," sgn1="1," sgn4="sgn5=0"> -pi/2<theta< 0="" =="" sgn0="1," sgn1="0," sgn4="sgn5=1"> pi/2<theta< =="" pi="" sgn0="0," sgn1="1," sgn4="sgn5=1"> -pi<theta< -pi="" 2="" sign2:="" sign3:="" td="" ybrightness<="" ycontrast:="" yoffset=""></theta<></theta<></theta<></theta<>
		XO		Bit[7:5]: Bit[4]:	Reserved FIFO_MAN 0: FIFO auto mode enable 1: FIFO manual mode enable
0xDD	REGDD	0x00	RW	Bit[3:2]:	
				Bit[1:0]:	FIFO_OPT Output speed
0xDE	REGDE	0x10	RW	Bit[7:0]:	FIFO_delay output delay Only works in manual mode
10					L VarioPixel mode for B VarioPixel mode for Gb
0xDF	REGDF	0x11	RW	Bit[3:2]: Bit[1:0]:	VarioPixel mode for Gr VarioPixel mode for R 00: Average mode 01: Select second pixel 1x: Select first pixel
0xE0	REGE0	0x00	RW	Bit[7:0]:	REG_ADDR
0xE1	REGE1	_	R	Bit[7:0]:	REG_DOUT

8 operating specifications

8.1 absolute maximum ratings

table 8-1 absolute maximum ratings

parameter		absolute maximum rating ^a
ambient storage temperature		-40°C to +125°C
cumply voltage (with respect to ground)	V _{DD-A}	4.5V
supply voltage (with respect to ground)	V_{DD-IO}	4.5V
alactra static disabarga (ESD)	human body model	2000V
electro-static discharge (ESD)	machine model	200V
all input/output voltages (with respect to ground)		-0.3V to V _{DD-IO} + 1V
I/O current on any input or output pin		<u>+</u> 200 mA
peak solder temperature (10 second dwell time)		260°C

exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may
result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods
may affect device reliability.

8.2 functional temperature

table 8-2 functional temperature

parameter	range
operating temperature range ^a	-30°C to +70°C
stable image temperature range ^b	0°C to 50°C

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range

b. image quality remains stable throughout this temperature range

8.3 DC characteristics

DC characteristics (-30°C $< T_A < 70$ °C) table 8-3

symbo	ol parameter	min	typ	max	unit
supply	,				
V _{DD-A}	supply voltage (analog)	2.6	2.8	3.0	V
V _{DD-IO}	supply voltage (digital I/O)	1.7	1.8	3.0	V
I _{DD-A}	active (operating) current		16 ^a	19 ^a	mA
I _{DD-IO}	active (operating) current		18 ^a	22 ^a	mA
I _{DDS-SC}	CCB standby current		1.2 ^a	2.2 ^a	mA
I _{DDS-PV}			20 ^a	25 ^a	μΑ
digital	inputs (typical conditions: AVDD = 2.8V,	DOVDD = 1.8V)			
V_{IL}	input voltage LOW			0.54	V
V_{IH}	input voltage HIGH	1.26			V
C _{IN}	input capacitor			10	pF
digital	outputs (standard loading 25 pF)				
V _{OH}	output voltage HIGH	1.62			V
V _{OL}	output voltage LOW			0.18	V
serial	interface inputs				
V_{IL}^{a}	SCL and SDA	-0.5	0	0.54	V
V_{IH}^{a}	SCL and SDA	1.26	1.8	2.3	V
V _{IL} ^a V _{IH} ^a	SCL and SDA				

a. based on DOVDD = 1.8V.

8.4 AC characteristics

AC characteristics ($T_A = 25$ °C, $V_{DD-A} = 2.8$ V, $V_{DD-10} = 1.8$ V) table 8-4

symbol	parameter	min	typ	max	unit
ADC parar	neters				
В	analog bandwidth		30		MHz
DLE	DC differential linearity error		0.5		LSB
ILE	DC integral linearity error		1		LSB
	settling time for software reset			<1	ms
	settling time for resolution mode change	6	7.	<1	ms
	settling time for register setting	1		<300	ms

timing characteristics table 8-5

symbol	parameter	min	typ	max	unit
oscillator a	and clock input				
f _{OSC}	frequency (XVCLK)	6	24	27	MHz
t _r , t _f	clock input rise/fall time			5 (10 ^a)	ns

a. if using the internal PLL

mechanical specifications

9.1 physical specifications

figure 9-1 package specifications

package dimensions table 9-1

parameter	symbol	min	typ	max	unit
package body dimension x	А	2442	2467	2492	μm
package body dimension y	В	2892	2917	2942	μm
package height	С	690	750	810	μm
ball height	C1	100	130	160	μm
package body thickness	C2	575	620	665	μm
thickness of glass surface to wafer	C3	425	445	465	μm
ball diameter	D	220	250	280	μm
total pin count	N		20		
pin count x-axis	N1		4		
pin count y-axis	N2		5		
pins pitch x-axis	J1		500		μm
pins pitch y-axis	J2		500		μm
edge-to-pin center distance analog x	S1	454	484	514	μm
edge-to-pin center distance analog y	S2	426	456	486	μm

9.2 IR reflow specifications

figure 9-2 IR reflow ramp rate requirements

table 9-2 reflow conditions

proprietary to OmniVision Technologies

	condition	exposure
	average ramp-up rate (30°C to 217°C)	less than 3°C per second
- O'	> 100°C	between 330 - 600 seconds
	> 150°C	at least 210 seconds
	> 217°C	at least 30 seconds (30 ~ 120 seconds)
illi	peak temperature	245°C
50	cool-down rate (peak to 50°C)	less than 6°C per second
	time from 30°C to 245°C	no greater than 390 seconds

10 optical specifications

10.1 sensor array center

figure 10-1 sensor array center

note 1 this drawing is not to scale and is for reference only.

 $\begin{tabular}{ll} \textbf{note 2} as most optical assemblies invert and mirror the image, the chip is \\ typically mounted with pins A1 to A4 oriented down on the PCB. \\ \end{tabular}$

7690_DS_10_1

10.2 lens chief ray angle (CRA)

figure 10-2 chief ray angle (CRA)

table 10-1 CRA versus image height plot (sheet 1 of 2)

	field (%)	image height (mm)	CRA (degrees)				
60	0	0	0				
· King	0.05	0.035	1				
	0.1	0.070	2				
SUM	0.15	0.105	3.1				
	0.2	0.140	4.2				
	0.25	0.175	5.2				
	0.3	0.210	6.4				
	0.35	0.245	7.5				
	0.4	0.280	8.7				
	0.45	0.315	9.9				

CRA versus image height plot (sheet 2 of 2) table 10-1

field (%)	image height (mm)	CRA (degrees)
0.5	0.350	11.2
0.55	0.385	12.4
0.6	0.420	13.7
0.65	0.455	15
0.7	0.490	16.3
0.75	0.525	17.6
0.8	0.560	18.9
0.85	0.595	20.3
0.9	0.630	21.6
0.95	0.665	22.9
1	0.700	24.2

Continu

revision history

version 1.0 02.11.2008

initial release

version 1.01 05.05.2008

- in the features section on page iii, updated the ordering information from OV07690-AL9A (color, lead-free) 20-pin CSP2 changed to: OV07690-AL9A (color, lead-free) 20-pin CSP3
- in the features section on page iii, updated the image area from: 1440μm x 1653μm changed to 1148μm x 861μm
- in the features section on page iii, updated the lens chief ray angle from TBD to 25°
- in chapter 6, section 6.1 on page 6-1, removed table 6-1 VGA timing specifications
- in chapter 6 section 6.1 on page 6-1, added figure 6-2 QVGA timing diagram
- in chapter 7, updated the values of the register tables description on page 7-1 from: "The device slave addresses are 0x60 for write and 0x61 for read" to "The device slave addresses are 0x42 for write and 0x43 for read"
- in chapter 7, updated register 0x12 Bit[3:2]: RGB output format control, 00: GBR4:2:2; changes to Bit[3:2]: RGB output format control, 00: Reserved
- in table 9-1 on page 9-1, changed min, typ, and max for cover glass thickness parameter from "425", "445", and "465" to "390", "400", and "410", respectively
- in table 9-1 on page 9-1, changed min, typ, and max for airgap between cover glass and sensor parameter from "40, "45", and "60" to "37", "41", and "45", respectively

version 2.0 07.10.2008

- changed document from Preliminary Specification to Product Specification
- added throughout the entire document OV7191 product number
- updated ordering information from OV07690-AL9A changed to OV07690-A20A
- added to the ordering information OV07191-A20A
- under the key specifications on page iii, changed power requirements standby: TBD changed to standby: 20 µA
- under the key specifications on page iii, changed well capacity: TBD changed to 5.7 Ke⁻
- under the key specifications on page iii, changed dark current: TBD changed to 4.7 mV/s @ 60°C
- under the key specifications on page iii, changed fixed pattern noise (FPN): from TBD changed to 0.7 e⁻
- under chapter 1 on page 1-1, added a table note to table 1-1: for different DOVDDs, register 0x49[3:0] must be changed according to settings in section 2.8, DOVDD power requirements.
- under chapter 2 on page 2-2, updated figure 2-1 block diagram
- under chapter 2 on page 2-4, added section 2.8: power requirements
- under chapter 4 on page 4-1, added table 4-2 flip ON and flip OFF control settings

- under chapter 5 on page 5-3, changed register 0x12 Bit[6]: Skip model enable changed to Bit[6]: Subsampled (skip) mode enable 0: Subsample disabled 1: Subsample enable
- under chapter 7 on page 7-3, changed register 0x12 Bit[6]: Skip model enable changed to Bit[6]: Subsampled (skip) mode enable 0: subsample disabled 1: subsample enable
- under chapter 7 on page 7-11, reserved register 0x85 Bit[7:5]
- under chapter 7 on page 7-11, register 0x85 Bit[4]: LENC gain enable changed to Bit[4]: LENC Bias
- under chapter 7 on page 7-12, register 0xB4 Bit[5] EDGE_MT_MAN_EN changed to Sharpening mode 0: Manual; 1: Auto
- under chapter 7 on page 7-12, register 0xB4 Bit[4]: DNS_TH_MAN_EN added De-noise mode manual 0: Manual; 1: Auto
- under chapter 7 on page 7-12, register 0xB5 Bit[7:0]: DNS_TH_MAN changed to De-noise magnitude (manual mode)
- under chapter 7 on page 7-13, register 0xB6 Bit[4:0]: EDGE_MT_MAN changed to Bit[4:0]: Sharpening magnitude (manual mode)
- under chapter 8 on page 8-1, replaced table 8-1 with new absolute maximum ratings table
- under chapter 8 on page 8-2, updated table 8-2 DC characteristics from:

symbol	parameter	min	typ	max	unit
supply					
V_{DD-A}	supply voltage (analog)	2.6	2.8	3.0	V
V _{DD-IO}	supply voltage (digital I/O)	1.7	1.8	3.0	V
I _{DD-A}		TBD	TBD	TBD	mA
I _{DD-IO}	active (operating) current	TBD	TBD	TBD	mA
I _{DDS-SCCB}	standby current	TBD	TBD	TBD	mA
I _{DDS-PWDN}	standby current	TBD	TBD	TBD	μΑ

changed to:

	I _{DD-IO}		TBD	TBD	TBD	mA	
	I _{DDS-SCCB}	standby current	TBD	TBD	TBD	mA	
	I _{DDS-PWDN}	Standby Current	TBD	TBD	TBD	μΑ	
	changed to:						
	symbol	parameter	min	typ	max	unit	
Sunny	supply						
	V_{DD-A}	supply voltage (analog)	2.6	2.8	3.0	V	
SU	$V_{\text{DD-IO}}$	supply voltage (digital I/O)	1.7	1.8	3.0	V	
	I_{DD-A}	active (operating) current			16 ^a	mA	
	I _{DD-IO}	active (operating) current			18 ^a	mA	
	I _{DDS-SCCB}	standby current			1.2 ^a	mA	
	I _{DDS-PWDN}	Startaby Sarrollt			20 ^a	μΑ	

under chapter 10 on page 10-1, updated figure 10-1 sensor array center

version 2.1 02.26.2009

added table 2-3 to section 2.5, SCCB interface

version 2.11 06.02.2010

in chapter 7, updated register 0x49 by adding a register bit description

Confilion (10)

OmniVision Technologies, Inc.

UNITED STATES

4275 Burton Drive Santa Clara, CA 95054

tel: + 1 408 567 3000

fax: + 1 408 567 3001

email: salesamerican@ovt.com

UNITED KINGDOM

Hampshire + 44 1256 744 610

FINLAND

Mouhijärvi + 358 3 341 1898

GERMANY

Munich +49 89 63 81 99 88

CHINA

Beijing + 86 10 6580 1690 Shanghai + 86 21 6105 5100 Shenzhen + 86 755 8384 9733 Hong Kong + 852 2403 4011

JAPAN

Tokyo + 81 3 5765 6321

KOREA

Seoul + 82 2 3478 2812

SINGAPORE + 65 6562 8250

TAIWAN

Taipei + 886 2 2657 9800 - ext.#100

website: www.ovt.com