Logical Constraints

Given the optimization problem:

Max
$$z = f(x_1, x_2, ..., x_n)$$

s.t.
$$g_1(x_1, x_2, ..., x_n) \ge 0$$
 (1)
 $g_2(x_1, x_2, ..., x_n) \ge 0$ (2)
...

Only a given "combination" of the constraints must be imposed.

Only One Constraint

Only one of the two constraints (1) and (2) must be imposed.

- * Let L_1 and L_2 be the "inferior limits" of functions g_1 and g_2 , respectively (f. i., M, with M very large positive number).
- * Let t_1 and t_2 be two *binary* variables such that: $t_k = 0$ if constraint (k) is imposed, $t_k = 1$ otherwise (k = 1, 2);
- * Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)

$$g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$$
 (2a)

and impose the additional constraints:

$$t_1 + t_2 = 1$$
, with t_1, t_2 binary variables $(t_1, t_2 \in \{0,1\})$

Not Both Constraints

Or only (1), or only (2), or none of the two constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)

$$g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$$
 (2a)

and impose the additional constraints:

$$t_1 + t_2 \ge 1,$$

with $t_1, t_2 \in \{0,1\}$

Not Only One Constraint

Or both (1) and (2), or none of the two constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge tL_1$$
 (1b)

$$g_2(x_1, x_2, ..., x_n) \ge tL_2$$
 (2b)

with
$$t \in \{0,1\}$$

At Least One Constraint

Or only (1), or only (2), or both constraints must be imposed.

* Replace constraints (1) and (2) with:

$$g_1(x_1, x_2, ..., x_n) \ge t_1 L_1$$
 (1a)

$$g_2(x_1, x_2, ..., x_n) \ge t_2 L_2$$
 (2a)

with
$$t_1 + t_2 \le 1$$
, $t_1, t_2 \in \{0,1\}$

Minimum Production Lots

- Production of *n* items.
- M_j minimum "lot" of item j (j = 1,...,n) (minimum quantity to be produced).
- x_i = quantity of item j to be produced.
- At least a quantity M_j of item j is produced $(x_j \ge M_j)$ or item j is not produced $(x_j = 0), j = 1,..., n$.
- * Let t_i be a binary variable such that:

$$t_j = 0$$
 if $(x_j = 0)$, and $t_j = 1$ if $(x_j \ge M_j)$.

• Impose the following constraints (j = 1,...,n):

$$x_j \geq M_j t_j ; x_j \leq G t_j ; t_j \in \{0,1\}$$

with G very large positive number.

Minimum Production Lots

- Production of *n* items.
- M_j minimum "lot" of item j (j = 1,...,n) (minimum quantity to be produced).
- x_i = quantity of item j to be produced.
- * Let t_i be a binary variable such that:

$$t_j = 0$$
 if $(x_j = 0)$, and $t_j = 1$ if $(x_j \ge M_j)$.

• Impose the following constraints (j = 1,...,n):

$$x_j \ge M_j t_j$$
; $x_j \le G t_j$; $t_j \in \{0,1\}$ with G very large positive number.

- If $t_j = 0$: $x_j \le 0$ and $x_j \ge 0$, hence: $x_j = 0$;
- If $t_j = 1$: $x_j \le G$ and $x_j \ge M_j$, hence: $x_j \ge M_j$

Fixed Production Cost

- Production Problem concerning *n* items.
- The cost of item j (j = 1,...,n) is given by:
 - 0, if item j is not produced $(x_j = 0)$
 - $F_j + p_j x_j$ if item j is produced $(x_j > 0)$

- F_j = fixed cost (machine)
- p_j = unit production cost
- discontinuity at the origin (not algebraic function)

Fixed Production Cost (2)

$$y_{j} = \begin{cases} 1 & \text{if } x_{j} > 0 \\ 0 & \text{if } x_{j} = 0 \end{cases}$$

$$(j = 1, ..., n)$$

$$\mathbf{Min} \ \Sigma_{j=1,n} \ (F_j \ y_j + p_j \ x_j)$$

$$\begin{array}{ccc}
Ax & \geq & b \\
x & \geq & 0 \\
y & \in & \{0,1\}
\end{array}$$

Logical constraints (if ...)

Variables x and y must be connected through linear constraints

Fixed Production Cost (3)

$$y_{j} = \begin{cases} 1 & \text{if } x_{j} > 0 \\ 0 & \text{if } x_{j} = 0 \end{cases} \Rightarrow \begin{cases} x_{j} \leq My_{j} & (j = 1, ..., n) \\ \cos M >> 1 & (\cong +\infty) \end{cases}$$

- Satisfaction of the constraint:
 - if $x_j > 0$ y_j must be = 1 $(x_j \le M)$
 - if $x_j = 0$ y_j can be = 0 or $1 (0 \le 0 \text{ or } 0 \le M)$

or

- if $y_j = 0$ x_j must be = 0 ($x_j \le 0$) (since $x_j \ge 0$)
- if $y_j = 1$ x_j can be = 0 or > 0 $(x_j \le M)$
- The constraint imposes only a part of the logical relation

Fixed Production Cost (4)

Min
$$\Sigma_{j=1,n} (F_j y_j + p_j x_j)$$

 $Ax \geq b$
 $x_j \leq My_j$
 $x_j \geq 0, y_j \in \{0, 1\} \quad (j = 1, ..., n)$

MILP Model (Mixed Integer Linear Programming)

- It is not necessary to impose also the other part of the logical relation:
- a solution with $x_j = 0$ and $y_j = 1$ cannot be optimal (an alternative feasible solution with a smaller cost exists)

Fixed Production Cost (4)

Min
$$\Sigma_{j=1,n} (F_j y_j + p_j x_j)$$

 $Ax \geq b$
 $x_j \leq My_j$
 $x_j \geq 0, y_j \in \{0, 1\} \quad (j = 1, ..., n)$

MILP Model (Mixed Integer Linear Programming)

- It is not necessary to impose also the other part of the logical relation:
- a solution with $x_j = 0$ and $y_j = 1$ cannot be optimal (an alternative feasible solution with a smaller cost exists: $x_i = 0$, $y_i = 0$)

Discrete Variables

* Variable x must have a value among k (with k > 1) given different values:

$$x \in S = \{s_1, s_2, ..., s_k\}$$

* Let t_h (h = 1, 2, ..., k) be a binary variable such that:

$$t_h = 1$$
 if $(x = s_h)$, and $t_h = 0$ if $(x \neq s_h)$.

*
$$\mathbf{x} = \sum_{h=1,k} \mathbf{s}_h t_h$$

with
$$\sum_{h=1,k} t_h = 1$$

and
$$t_h \in \{0, 1\}$$
 $(h = 1, ..., k)$

Discrete Variables (2)

* Example

$$x \in S = \{0.2, 0.4, ..., 2.0\} \quad (k = 10)$$

• $t_h \in \{0, 1\}$ with h = 1, 2, ..., 10

•
$$x = 0.2 t_1 + 0.4 t_2 + 0.6 t_3 + ... + 2.0 t_1$$

with

$$\Sigma_{h=1,10} t_h = 1$$

* Alternative technique:

$$x = 0.2 y$$
 with $y \ge 1$, $y \le 10$, y integer

* x integer variable with $x \ge 0$, $x \le k$

* Introduce (k + 1) binary variables t_h , with h = 0, ..., k $(t_h = 1 \text{ if } \mathbf{x} = h, \text{ and } t_h = 0 \text{ otherwise})$

$$\mathbf{x} = \sum_{h=0,k} h t_h$$

$$\sum_{h=0,k} t_h = 1$$
 with $t_h \in \{0,1\}$ $h = 0, ..., k$

• x integer variable with $x \ge 0$, $x \le k$

Alternative technique (binary expression of an integer): introduce q binary variables t_h , with h = 1, ..., q

$$x = \sum_{h=1, q} 2^{h-1} t_h = t_1 + 2 t_2 + 4 t_3 + \dots + 2^{q-1} t_q$$

$$\sum_{h=1, q} 2^{h-1} t_h \leq x \qquad t_h \in \{0, 1\} \ h = 1, \dots, q \ (**)$$

$$q = \begin{bmatrix} z \end{bmatrix} \quad \text{with} \quad z = \log_2 (k+1)$$

• Example: x integer variable with $0 \le x \le 27$

•
$$z = log_2 (27 + 1), q = [z] = 5$$

•
$$x = t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 16 t_5$$

• We must impose the constraint:

$$t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 16 t_5 \le 27$$
 (**)
(for $t_1 = t_2 = t_3 = t_4 = t_5 = 1$, we should have: $x = 31$)

- Example, Alternative Transformation:
- x integer variable with $0 \le x \le 27$, q = 5

•
$$x = t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 12 t_5$$

We have not to impose the constraint:

$$t_1 + 2 t_2 + 4 t_3 + 8 t_4 + 12 t_5 \le 27$$
 (**)
(for $t_1 = t_2 = t_3 = t_4 = t_5 = 1$, we have: $x = 27$)

• x integer variable with $x \ge b$, $x \le k$ with $b \ne 0$

introduce q binary variables t_h , with h = 1, ..., q

$$x = \sum_{h=1, q} 2^{h-1} t_h + b$$
, $q = \lceil z \rceil, z = \log_2 (k-b+1)$

$$\sum_{h=1, q} 2^{h-1} t_h \leq x-b \qquad t_h \in \{0, 1\} \ h=1, ..., q \ (**)$$

Example: $5 \le x \le 8$, q = 2, $x = 5 + t_1 + 2 t_2$

Knapsack Problem (KP01)

Given:

```
n items, P_j "profit" of item j, j = 1, ..., n (P_j > 0), W_j "weight" of item j, j = 1, ..., n (W_j > 0), one container ("knapsack") with "capacity" C:
```

determine a subset of the *n* items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity *C*.

KP01 is NP-Hard

Knapsack Problem (KP01)

Determine a subset of items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity *C*.

We assume:

$$n \geq 2$$
 $P_{j} > 0,$
 $j = 1, ..., n$
 $W_{j} > 0, W_{j} \leq C,$
 $j = 1, ..., n$
 $\sum_{j=1, n} W_{j} > C$

Polynomial Problems

A *Polynomial Problem* can be solved *in the worst case* through *an algorithm* whose *computing time* grows according to a *polynomial function* of the *size* of the problem.

• Examples:

given an array A_j of n elements (j = 1, ..., n):

- Determine the minimum value of the n elements:
 O(n) time.
- Sort the *n* elements according to non-decreasing (or non-increasing) values: O(n log n) time.

Particular Cases of KP01

a) Constant Profits:

$$P_j = K \qquad (j = 1, ..., n)$$

- 1) Sort the n items according to non-decreasing values of the weights W_i : $(O(n \log n) \text{ time})$;
- 2) Insert the items until the first item s is found such that:

$$\sum_{j=1,s} W_j > C \quad \text{(items } s, s+1, ..., n \text{ are not inserted):}$$

$$O(n) \text{ time.}$$

Global computing time: $O(n \log n) + O(n)$: $O(n \log n)$

Particular Cases of KP01

b) Constant Weights:

$$W_j = K (j = 1, ..., n)$$

- 1) Sort the n items according to non-increasing values of the profits P_i : $(O(n \log n) \text{ time})$;
- 2) Insert the items until the first item s is found such that:

$$\sum_{j=1,s} W_j > C \quad \text{(items } s, s+1, ..., n \text{ are not inserted):}$$

$$O(n) \text{ time.}$$

Global computing time: $O(n \log n) + O(n)$: $O(n \log n)$

Mathematical Model KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases} \quad (j = 1, ..., n)$$

$$\sum_{j=1, n} P_j x_j$$

$$\sum_{j=1, n} W_j x_j \leq C$$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n)$$
or
$$0 \leq x_j \leq 1 \quad integer \quad (j = 1, ..., n)$$

ILP Model (Binary Linear Programming Model)

There exist items j with $P_j < 0$ and $W_j < 0$

Let
$$N = \{j: P_j > 0 \text{ and } W_j > 0, j = 1, ..., n\};$$

Let $R = \{j: P_j < 0 \text{ and } W_j < 0, j = 1, ..., n\}.$
Set $y_j = x_j$, $P'_j = P_j$, $W'_j = W_j$ $j \in N$
Set $y_j = 1 - x_j$, $P'_j = -P_j$, $W'_j = -W_j$ $(x_j = 1 - y_j)$ $j \in R$
 $Z = \sum_{j=1,n} P_j x_j = \sum_{j \in N} P_j y_j + \sum_{j \in R} P_j (1 - y_j) = \sum_{j \in N} P'_j y_j + \sum_{j \in R} P'_j y_j + \sum_{j \in R} P_j = \sum_{j=1,n} P'_j y_j + a$
where $a = \sum_{j \in R} P_j$

There exist items j with $P_j < 0$ and $W_j < 0$

Let
$$N = \{j: P_j > 0 \text{ and } W_j > 0, j = 1, ..., n\};$$

Let $R = \{j: P_j < 0 \text{ and } W_j < 0, j = 1, ..., n\}.$
Set $y_j = x_j, P'_j = P_j, W'_j = W_j$ $j \in N$
Set $y_j = 1 - x_j, P'_j = -P_j, W'_j = -W_j (x_j = 1 - y_j) \ j \in R$
 $Z = \sum_{j=1,n} W_j x_j = \sum_{j=1,n} P'_j y_j + a \text{ where } a = \sum_{j \in R} P_j$
 $\sum_{j=1,n} W_j x_j = \sum_{j=1,n} W'_j y_j + b \text{ where } b = \sum_{j \in R} W_j$

There exist items j with $P_j < 0$ and $W_j < 0$

$$\sum_{j=1, n} P'_{j} y_{j} + a$$

$$\sum_{j=1, n} W'_{j} y_{j} \leq C' \text{ (where } C' = C - b)$$

$$y_{j} \in \{0, 1\} \qquad (j = 1, ..., n)$$

$$x_j = y_j$$
 $j \in \mathbb{N}$; $x_j = 1 - y_j$ $j \in \mathbb{R}$