## ГУАП

# КАФЕДРА № 42

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕНКОЙ               |                                     |                   |
|------------------------------------------|-------------------------------------|-------------------|
| ПРЕПОДАВАТЕЛЬ                            |                                     |                   |
| ПЕПОДАВАТЕЛЬ                             |                                     |                   |
|                                          |                                     |                   |
| профессор, д-р.т.н.,                     |                                     | В. В. Фомин       |
| профессор должность, уч. степень, звание | подпись, дата                       | инициалы, фамилия |
|                                          |                                     |                   |
|                                          | ЛАБОРАТОРНОЙ РАБ<br>ОД НЕЙРОННЫХ СЕ |                   |
|                                          | Вариант 5                           |                   |
| по курсу: МЕТОЛ                          | Ы ИСКУССТВЕННОГС                    | ИНТЕППЕКТА        |
| по курсу. МЕТОД                          | DI FICICI CO I DETITIOI C           | KILLENDICKIA      |
|                                          |                                     |                   |
|                                          |                                     |                   |

## РАБОТУ ВЫПОЛНИЛ

| СТУДЕНТ ГР. № | 4128 |               | Воробьев В. А.    |
|---------------|------|---------------|-------------------|
| , ,           |      | подпись, дата | инициалы, фамилия |

# СОДЕРЖАНИЕ

| 1 | Вве | дение                    | 3 |
|---|-----|--------------------------|---|
|   |     | Цель лабораторной работы |   |
|   | 1.2 | Задание                  | 3 |
| 2 | Выі | полнение работы          | 4 |
|   | 2.1 | Набор данных             | 4 |
|   | 2.2 | Рабочий процесс          | 4 |
| 3 | Вын | вод                      | ( |

## 1 Введение

## 1.1 Цель лабораторной работы

Изучение основ организация работы с технологической платформой для создания законченных аналитических решений использованием метода нейронных сетей.

#### 1.2 Задание

- 1. Для набора данных выполнить классификацию с помощью метода нейронных сетей.
- 2. Выполнить оценку качества классификации.

#### 2 Выполнение работы

#### 2.1 Набор данных

Hабор данных взят с Kaggle (URI - https://www.kaggle.com/datasets/sudhanshu2198/wheat-variety-classification).

Набор данных включает зерна пшеницы, принадлежащие к трем различным сортам пшеницы: **Кама, Роза и Канадская**, по 70 элементов каждый.

Для построения данных были измерены семь геометрических параметров зерен пшеницы:

- 1) Область размер поверхности зерна пшеницы.
- 2) Периметр общая длина внешней границы зерна.
- 3) Компактность насколько форма зерна близка к идеальной круговой.
- 4) Длина ядра измерение самой длинной оси внутренней части зерна пшеницы.
- 5) Ширина ядра поперечное измерение внутренней части зерна.
- 6) Коэффициент асимметрии отклонение формы зерна от симметричной.
- 7) Длина бороздки ядра протяженность центральной линии или углубления в зерне.

Для каждого этого параметра был сопоставлен сорт пшеницы:

- **Кама** сорт пшеницы, известный своей устойчивостью к болезням и приспособленностью к различным климатическим условиям.
- **Роза** сорт пшеницы, который ценится за качество зерна и применяется для муки высшего сорта.
- Канадская сорт пшеницы с высоким содержанием белка, используемый для производства высококачественной муки.

## 2.2 Рабочий процесс

Целью создания данной системы является проверка гипотезы, что вышеуказанных 7 параметров достаточно для определения сорта пщеницы. Гипотезу будем считать доказанной, если точность составит 95%.

Для создания модели в программе KNIME создаём следующие узлы:

• Excel Reader для считывания файла;

- Number to String для преобразования номера сорта пшеницы в строку.
- String Manipulation для сопоставления номера сорта с его названием.
- Color Manager для цветового разделения на графике;
- Partitioning для разделения данных на обучающие и тестовые (50/50). Дополнительно выбран Linear Sampling, так как набор данных отсортирован по сорту пшеницы;
- RProp MLP Learner для обучения модели;
- MultiLayerPerceptron Predictor непосредственно для предсказания;
- Scorer для вычисления статистики;

На рисунке 1 представлена схема рабочего процесса.



Рисунок 2.1 - Схема в KNIME

Так как количество параметров равно 7, было принято решение увеличить число слоев до 2, а количество нейронов на слое до 20.



Рисунок 2.2 - Настройки узла

На рисунке 3 представлен фрагмент набора данных с вычисленными вероятностями появления классов на основе обученной модели.



Рисунок 2.3 - Вероятность появления классов

В результате обучения нейронной сети построен график распределения ошибки на итерациях, демонстрирующий постепенное обучение модели, минимизирующее ошибку. Этот график представлен на рисунке 4.



Рисунок 2.4 - Процент ошибки на N итерации

Также были получены метрики оценки качества.



Рисунок 2.5 - Матрица сопряженности



Рисунок 2.6 - Метрики оценки качества

Из метрик оценки качества видно, что модель работает безошибочно, за исключением очередного ложноположительного срабатывания сорта Камы на сорте Роза.

Из 104 записей точность составила 99.048%.

#### 3 Вывод

Полученная точность составляет 99.048%. Что является самым высоким среди всех методов. Одно ложноположительное срабатывание можно оправдать маленьким размером выборки и схожестью сорта Камы и Роза. Полученная модель позволяет доказать гипотезу о возможности однозначно определить сорт пшеницы на основе 7 параметров.

В результате выполнения всех лабораторных работ также было выявлено, что для данного набора данных оптимальным решением является метод нейронных сетей и дерево решений.