Množice in števila

Rešitve

Peter Andolšek Oktober 2024

1. Logika

Naloga 1.1 S pravilnostno tabelo si ogledamo vse možne kombinacije in pogledamo, če sta leva in desna stran izraza logično enakovredni.

(a)
$$\neg(\neg A) = A$$

A	$\neg A$	$\neg(\neg A)$
1	0	1
0	1	0

(b)
$$\neg (A \land B) = \neg A \land \neg B$$

A	B	$A \wedge B$	$\neg(A \land B)$	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

(c)
$$A \implies B = \neg B \implies \neg A$$

A	B	$A \Longrightarrow B$	$\neg A$	$\neg B$	$\neg B \implies \neg A$
1	1	1	0	0	1
1	0	0	0	1	0
0	1	1	1	0	1
0	0	1	1	1	1

2. Množice

Naloga 2.1

* Sedaj nalogo rešimo še s formalnih zapisom, kjer uporabimo definicije unije in preseka:

$$\mathcal{A} \cup \mathcal{B} = \{ e \mid e \in \mathcal{A} \lor e \in \mathcal{A} \}$$

$$(\mathcal{A} \cup \mathcal{B}) \cap \mathcal{C} = \{ e \mid e \in (\mathcal{A} \cup \mathcal{B}) \land e \in \mathcal{C} \} =$$

$$= \{ e \mid (e \in \mathcal{A} \lor e \in \mathcal{B}) \land e \in \mathcal{C} \} =$$

$$= \{ e \mid (e \in \mathcal{A} \land e \in \mathcal{C}) \lor (e \in \mathcal{B} \land e \in \mathcal{C}) \} =$$

$$= \{ e \mid e \in (\mathcal{A} \cap \mathcal{C}) \lor e \in (\mathcal{B} \cap \mathcal{C}) \} =$$

$$= (\mathcal{A} \cap \mathcal{C}) \cup (\mathcal{B} \cap \mathcal{C})$$

Pri tem smo uporabili distributivnost $(A \vee B) \wedge C = (A \wedge C) \vee (B \wedge C)$, kar lahko dokažemo s pravilnostno tabelo.

Naloga 2.2 *

$$\mathcal{B} = \{(x,y) \mid (x,y) \in \mathbb{R}^2, (x-x_0)^2 + (y-y_0)^2 < r^2\}$$

3. Števila

Naloga 3.1

$$\pi = 4\sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1}$$