

明細書

パケット通信装置およびパケット通信方法

5 技術分野

本発明は、パケット通信装置およびパケット通信方法に関し、特に無線回線を介してパケットを高速に通信するパケット通信装置およびパケット通信方法に関する。

10 背景技術

近年、高速パケット通信の技術であるH S D P A (High Speed Downlink Packet Access) が盛んに検討されている。H S D P Aは、基地局装置から移動局装置へ向かう下りの無線回線のパケットを高速に通信する技術であり、3 G P P (3rd Generation Partnership Project) において規格化が進められて15 いる。3 G P Pによる規格化において、H S D P Aは、適応変調方式、H A R Q (Hybrid Automatic Repeat reQuest) 方式などの方法を無線インタフェースに適用することにより、基地局装置から移動局装置への下り無線回線の高速化を実現している。また、H S D P Aでは、移動局装置が下り無線回線の回線品質を基地局装置に報告し、基地局装置が複数の移動局装置へのデータの送信20 順序をスケジューリングしてデータを送信する。

図1は、H S D P Aを適用する場合のユーザプレーンのプロトコル構成を示す図である。同図においては、移動局装置、基地局装置、および基地局装置を統括する制御局装置に実装されるプロトコルが示されている。

図1に示すプロトコルのうち、R L C (Radio Link Control) は、3GPP, 25 TS25.322 "Radio Link Control (RLC) protocol specification", V5.1.0 に記載された選択再送型の再送制御プロトコルであり、移動局装置および制御局装置に実装される。M A C - h s (Medium Access Control used for high speed)

は、HARQ方式やスケジューリングなどの処理を行うプロトコルであり、移動局装置および基地局装置に実装される。また、HS-DSCH_F_P (High Speed-Downlink Shared Channel Frame Protocol) は、基地局装置のMAC-hsと制御局装置のRLCとの間のフレーム制御を行うプロトコルであり、基地局装置および制御局装置に実装される。
5

以下、図2に示すシーケンス図を参照して、制御局装置および移動局装置のRLC間のパケット通信について説明する。

まず、制御局装置から移動局装置への下り方向の通信については、制御局装置のRLCが、連続したシーケンス番号が付与されたAMD-PDU (Acknowledge Mode Data-Protocol Data Unit) と呼ばれるデータパケットを基地局装置を介して移動局装置のRLCへ送信する。このとき、AMD-PDUは、基地局装置のMAC-hsのバッファに一時的に蓄積される。図2では、時刻T₁において、AMD-PDU#0から順にAMD-PDU#127までが基地局装置のバッファに蓄積される。ここで蓄積されるAMD-PDUの数
10 は、送信ウインドウサイズを示すWSN (Window Size Number) に従っており、図2においては、WSNが128となっているため、AMD-PDU#0からAMD-PDU#127が基地局装置のバッファに蓄積される。
15

そして、基地局装置のMAC-hsは、基地局装置から移動局装置への下りデータ伝送レートに応じて、バッファに蓄積されたAMD-PDUをAMD-PDU#0から順に送信する。
20

一方、移動局装置から制御局装置への上り方向の通信については、移動局装置のRLCが、ステータスPDUと呼ばれる受信状態報告用パケットを基地局装置を介して制御局装置のRLCへ送信する。ここで、ステータスPDUは、AMD-PDUが移動局装置のRLCによって受信されたか否かを示す受信
25 確認情報などを含んでいる。したがって、図2に示すように、基地局装置から送信されたAMD-PDU#0が移動局装置に受信されなかった場合、時刻T₂において、AMD-PDU#0が未受信である旨のステータスPDU#1が

基地局装置を介して制御局装置へ送信される。

ステータスPDU#1を受信した制御局装置のRLCは、AMD-PDU#0を再送する。再送されたAMD-PDU#0は、時刻T₃において、再び基地局装置のバッファに蓄積される。

- 5 しかしながら、上記従来のパケット通信においては、再送パケットが基地局装置のバッファに蓄積されるため、この再送パケットが移動局装置に到達するまでに時間を要し、移動局装置は、基地局装置のバッファに蓄積されている再送パケットについて、さらに再送を要求してしまうという問題がある。すなわち、上述の再送されたAMD-PDU#0は、バッファに蓄積されているAM
10 D-PDU#127が送信された後に送信されることになるため、移動局装置は、再送されたAMD-PDU#0を受信するまでの間に、所定のタイミングごとに送信されるステータスPDUによってAMD-PDU#0のさらなる再送を制御局装置に要求してしまう。

- 具体的には、図2の時刻T₂におけるステータスPDU#1の送信後、移動
15 局装置は、所定のタイミング（時刻T₄）でステータスPDU#2を制御局装置へ送信するが、この時刻T₄においてもAMD-PDU#0は受信されていないため、AMD-PDU#0が未受信である旨のステータスPDU#2が基地局装置を介して制御局装置へ送信される。

- そして、制御局装置は、ステータスPDU#2に応じて、時刻T₅において、
20 再びAMD-PDU#0を再送する。ところが、次のステータスPDU#3を制御局装置へ送信する時刻T₆においても、AMD-PDU#0は移動局装置に受信されていないため、その旨のステータスPDU#3が基地局装置を介して制御局装置へ送信される。

- このように複数回に渡って同一のAMD-PDU#0が未受信である旨の
25 ステータスPDUが送信され、その回数が所定の回数（図2では3回）に達すると、制御局装置は、時刻T₇において、移動局装置との接続をリセットするためのリセットPDUを送信する。

そして、AMD-PDU # 0 の再送については、RLC の上位レイヤである TCP (Transmission Control Protocol) が行うことになる。しかし、TCP による再送においては、再送が発生すると、送信側の TCP が大幅なフロー制御を行って、単位時間あたりに送信するデータ量を極端に少なくする。この
5 ため、必要以上にフローが抑制されることがあり、システム全体のスループットが低下することがある。

また、図 2 に示すように、時刻 T_7 において送信されたリセット PDU が移動局装置へ送信されるまでには、バッファ内のすべての AMD-PDU が送信されるまでの時間を要するが、リセット PDU の送信後所定時間が経過すると、
10 制御局装置は、移動局装置からの応答が無いため、時刻 T_8 においてリセット PDU を再送する。そして、リセット PDU についても再送が繰り返されると、制御局装置と移動局装置の接続が切断されてしまうことがある。

発明の開示

15 本発明の目的は、システム全体のスループット低下を抑制しつつ、通信のリセット・切断の発生を防止することである。

本発明の主題は、受信信号を用いて回線品質を測定し、測定した回線品質に応じた送信ウインドウサイズ (WSN) をステータス PDU に設定して、信号送信元へ通知することである。

20 本発明の一形態によれば、パケット通信装置は、無線回線の回線状態を監視する監視手段と、監視された回線状態に応じてパケット送信元の送信ウインドウサイズを決定する決定手段と、決定された送信ウインドウサイズを前記パケット送信元へ送信する送信手段と、を有する構成を採る。

本発明の他の形態によれば、パケット通信方法は、無線回線の回線状態を監
25 視するステップと、監視された回線状態に応じてパケット送信元の送信ウインドウサイズを決定するステップと、決定された送信ウインドウサイズを前記パケット送信元へ送信するステップと、を有する。

図面の簡単な説明

- 図1は、HSDPAにおけるユーザプレーンのプロトコル構成を示す図、
図2は、RLC間のAMD-PDU通信動作の一例を示すシーケンス図、
5 図3は、本発明の一実施の形態に係る移動局装置の構成を示すブロック図、
図4Aは、一実施の形態に係るステータスPDUの送信タイミングの一例を
示す図、
図4Bは、一実施の形態に係るステータスPDUの送信タイミングの他の一
例を示す図、
10 図5は、一実施の形態に係るWSN決定動作を示すフロー図、
図6は、一実施の形態に係るWSN決定のためのテーブルの一例を示す図、
および、
図7は、一実施の形態に係るAMD-PDU再送動作を示すシーケンス図で
ある。

15

発明を実施するための最良の形態

以下、本発明の一実施の形態について、図面を参照して詳細に説明する。

- 図3は、本発明の一実施の形態に係る移動局装置の構成を示すブロック図で
ある。同図に示す移動局装置は、アンテナ100、無線受信部110、RLC
20 (Radio Link Control) 处理部120、ACK生成部130、回線品質測定部
140、CQI (Channel Quality Indicator) 決定部150、WSN (WindowSize
Number) 決定部160、ステータスPDU (Protocol Data Unit) 生成
部170、RLC送信部180、および無線送信部190を有している。なお、
図3に示す移動局装置は、基地局装置を介して制御局装置からAMD-PDU
25 (Acknowledge Mode Data-PDU) を受信しており、移動局装置と基地局装置と
の間においては無線通信が行われているものとする。

アンテナ100は、データパケットであるAMD-PDUを受信するととも

に、受信状態報告用パケットであるステータスPDU、およびAMD-PDUを送信する。

無線受信部110は、アンテナ100を介してAMD-PDUを受信し、所定の無線受信処理（ダウンコンバート、A/D変換など）を行う。

- 5 RLC処理部120は、AMD-PDU中のP_o11フィールドを参照し、P_o11フィールドがステータスPDUの送信要求を示している場合に、ステータスPDUの生成をステータスPDU生成部170に指示する。なお、P_o11フィールドの設定は、制御局装置によって行われており、制御局装置はP_o11フィールドを使用して、例えば所定周期が経過するごとにAMD-PDUによってステータスPDUの送信要求を行う。具体的には、例えば図4Aに示すように、制御局装置は、ステータスPDUの送信を要求しない場合はP_o11フィールドに0を設定し、反対にステータスPDUの送信を要求する場合はP_o11フィールドに1を設定する。これにより、移動局装置は、ステータスPDUを制御局装置へ送信する。
- 15 また、RLC処理部120は、受信されたAMD-PDUのシーケンス番号を検出し、図4Bに示すように、シーケンス番号が不連続となった場合（AMD-PDU#0が受信されずにAMD-PDU#1が受信された場合）、換言すれば、欠落したAMD-PDUがある場合に、その旨を制御局装置へ通知するためのステータスPDUの生成をステータスPDU生成部170に指示する。

ACK生成部130は、無線回線を伝送されたデータが正常に復調されたか否かを示すACK/NACKを生成する。ACK/NACKは、直接の通信相手局である基地局装置から送信されたデータに対する受信判定であり、例えばHARQ方式の再送が行われる場合に誤り検出の結果に応じて生成される。ACK生成部130は、無線回線を伝送されたデータが正常に復調された場合はACKを生成し、反対に無線回線における誤りが多く正常な復調が行われなかつた場合はNACKを生成する。そして、ACK生成部130は、生成したA

ACK/NACKを無線送信部190およびアンテナ100を介して基地局装置へ送信する。

回線品質測定部140は、受信したAMD-PDUから無線回線の回線品質を測定する。具体的には、回線品質測定部140は、例えばAMD-PDUの
5 SIR (Signal to Interference Ratio: 信号波対干渉波比) または受信電力などの回線品質を測定する。

これらのACK生成部130および回線品質測定部140は、基地局装置と移動局装置との間の無線回線の回線状態を監視する監視手段としての役割を担っている。

10 CQI決定部150は、回線品質を直接の通信相手局である基地局装置へ報告するためのCQIを決定する。CQIは、基地局装置から移動局装置へ向かう回線の回線品質を示す指標値であり、基地局装置は、報告されたCQIに基づいて回線状態に適した変調方式などを選択する適応変調を行う。なお、基地局装置が適応変調を行うため、基地局装置から移動局装置への回線の伝送レートは回線状態によって変動する。したがって、AMD-PDUを一時的に蓄積する基地局装置のバッファからAMD-PDUが送出される速度も変動する。
15

WSN決定部160は、ACK/NACKの生成状況および測定された回線品質に応じて、回線状態に適したWSNを決定し、ステータスPDU生成部170へ出力する。具体的には、WSN決定部160は、例えば最近ACK生成部130によって生成されたACK/NACKの割合およびSIRの測定値に応じてWSNを決定する。WSN決定部160は、ACK/NACKの割合およびSIRの測定値に対応するWSNを、例えばテーブルなどから選択することによりWSNを決定する。

このとき、決定されるWSNとしては、上述したP011フィールドが1となる周期（移動局装置からステータスPDUが送信される周期）の間に、基地局装置のバッファから移動局装置へ送信を完了できるAMD-PDUの数程度としても良い。すなわち、1つのステータスPDUによってAMD-PDU

の再送を要求した場合、この再送AMD-PDUは、基地局装置のバッファに蓄積され続けるのではなく、次のステータスPDU送信時までには再送されていることになる。したがって、同一のAMD-PDUに対する再送要求を何度も繰り返すことがない。なお、所定の時間内に基地局装置のバッファから移動 5 局装置へ送信を完了できるAMD-PDUの数は、無線回線の回線状態によって異なっており、回線状態が良好な場合は、比較的多くのAMD-PDUを伝送できるのに対し、回線状態が劣悪な場合は、少数のAMD-PDUのみしか伝送できない。

また、上述したように、ACKは、受信データに誤りが少なく正常に復調された場合に生成されるものであるため、ACKが生成された割合が高ければ、回線状態は良好であると考えられる。一方、NACKは、受信データに誤りが多く正常な復調が行われなかつた場合に生成されるものであるため、NACKが生成された割合が高ければ、回線状態は劣悪であると考えられる。また、AMD-PDUのSIRや受信電力は、無線回線における干渉の大きさを示して 15 おり、回線状態の指標となる。

ステータスPDU生成部170は、RLC処理部120によってステータスPDUの生成を指示されると、所定のフォーマットのステータスPDUを生成する。ステータスPDU生成部170は、欠落したAMD-PDUの再送要求を含めたステータスPDUを生成する。また、ステータスPDU生成部170は、受信したAMD-PDUのP011フィールドに1が設定されていた場合 20 も、過去に再送要求をしたにも拘わらず、また再送されていないAMD-PDUの再送要求を含めたステータスPDUを生成する。すなわち、ステータスPDU生成部170は、すべての未受信AMD-PDUの再送要求を含めたステータスPDUを生成する。

25 また、ステータスPDU生成部170は、WSN決定部160からの指示があった際、WSN決定部160によって決定されたWSNをWSNフィールドに設定し、ステータスPDUを生成する。ステータスPDUが制御局装置へ到

達すると、制御局装置によってWSNフィールドが参照され、送信ウインドウが設定される。したがって、WSN決定部160が決定したWSNが大きければ、制御局装置は送信ウインドウを大きくする一方、WSN決定部160が決定したWSNが小さければ、制御局装置は送信ウインドウを小さくする。

- 5 RLC送信部180は、ステータスPDUおよび送信データにRLC処理を施し、無線送信部190へ出力する。

無線送信部190は、ステータスPDUおよび送信データのPDUに所定の無線送信処理（D/A変換、アップコンバートなど）を行い、アンテナ100を介して送信する。

- 10 次いで、上記のように構成された移動局装置のWSN決定動作について、図5に示すフロー図を参照して説明する。

まず、無線受信部110によって、アンテナ100を介してAMD-PDUが受信されると、回線品質測定部140によって、例えばSIRなどの回線品質が測定され（ST1000）、測定された回線品質の情報は、WSN決定部160へ出力される。また、基地局装置から送信されたデータに対するACK/NACKがACK生成部130によって生成されてHARQ方式の再送制御が行われるとともに、生成されたACK/NACKは、WSN決定部160へ出力される。

そして、WSN決定部160によって、最近生成されたACK/NACKの割合が算出され、再送要求の状況が判定される（ST1100）。すなわち、WSN決定部160によって、例えば所定数のACK/NACKの生成履歴が蓄積され、その生成履歴の中でACK（またはNACK）が占める割合が算出される。ここで、ACKが占める割合が高ければ、受信データの無線回線における誤りが少ないことを意味しており、回線状態が良好であると考えられる。

25 再送状況が判定されると、WSN決定部160によって、例えば図6に示すようなテーブルが参照され、現在の回線状態に応じた送信ウインドウサイズ（すなわち、WSN）が決定される（ST1200）。図6は、5つのACK

／NACKの生成履歴と回線品質測定部140によって測定された回線品質とからWSNを決定するためのテーブルの例である。同図に示すように、5つのACK/NACKの生成履歴が5つともACKであり、かつ回線品質が所定の閾値b以上である場合に、回線状態が最も良好であると判断され、WSNが5最大の150に決定される。反対に、ACK/NACKの生成履歴が5つともNACKであり、かつ回線品質が所定の閾値a未満である場合に、回線状態が最も劣悪であると判断され、WSNが最小の4に決定される。

10 このようにWSNを決定するのは、以下の理由によっている。すなわち、回線状態が良好である場合には、基地局装置から移動局装置への伝送レートが高くなり、基地局装置のバッファからAMD-PDUが送出される速度も速く、制御局装置の送信ウインドウサイズが大きくても基地局装置のバッファにAMD-PDUが多く蓄積されることがない。一方、回線状態が劣悪である場合には、基地局装置から移動局装置への伝送レートが低くなり、AMD-PDUが基地局装置のバッファに留まる時間が長くなる。したがって、回線状態が劣悪である場合には、制御局装置の送信ウインドウサイズを小さくする必要がある。

そして、決定されたWSNが前回決定されたWSNと異なるか否か判定される(ST1300)。前回決定されたWSNと異なる場合は、今回新たに決定されたWSNをステータスPDUに設定するためにステータスPDU生成部20 170へ通知する。そして、RLC処理部120の指示によりステータスPDU生成部170によってステータスPDUが生成される際、そのステータスPDUのWSNフィールドには、WSN決定部160によって決定されたWSNが設定される(ST1400)。

25 このようにして生成されたステータスPDUは、RLC送信部180によつて、RLC処理が行われ、無線送信部190によって、所定の無線送信処理が行われ、アンテナ100を介して送信される。そして、ステータスPDUは、基地局装置を介して制御局装置へ伝送される。

制御局装置は、受信したステータスPDUのWSNフィールドを参照して、送信ウインドウサイズを変更するとともに、ステータスPDUによって再送が要求されているAMD-PDUを再送する。これにより、移動局装置と基地局装置との間の無線回線の回線状態が良好な場合は、制御局装置から基地局装置へ比較的多くのAMD-PDUが送信される一方、移動局装置と基地局装置との間の無線回線の回線状態が劣悪な場合は、制御局装置から基地局装置へ比較的少ないAMD-PDUが送信される。したがって、適応変調により基地局装置から移動局装置への伝送レートが変動しても、基地局装置のバッファには、常に移動局装置と基地局装置との間の無線回線の回線状態に応じた量のAMD-PDUが蓄積されることになり、ステータスPDUの再送要求に応じて再送されたAMD-PDUが基地局装置のバッファに長時間蓄積されたままであることがない。

以下、図7に示すシーケンス図を参照して、AMD-PDUの再送の様子について説明する。図7は、最初に移動局装置がWSNを通知するためのステータスPDU#0を送信する場合の動作について示している。

まず、時刻T₀において、移動局装置のステータスPDU生成部170によって生成されたステータスPDU#0が基地局装置を介して制御局装置へ伝送される。このステータスPDU#0のWSNフィールドには、WSN決定部160によって無線回線の回線状態に応じて決定されたWSNが設定されており、ここでは、その値は4となっている。このWSNは、上述した通り、移動局装置と基地局装置との間の無線回線の回線品質に応じて決定されたものである。

制御局装置は、ステータスPDU#0を受信すると、そのWSNフィールドを参照し、送信ウインドウサイズを4とする。すなわち、AMD-PDU#0～#3の4つのAMD-PDUを同時に送信する。これらのAMD-PDU#0～#3は、時刻T₁において、基地局装置によって受信され、基地局装置のMAC-hsのバッファに一時的に蓄積される。

基地局装置は、バッファに蓄積されたAMD-PDU#0～#3を順次移動局装置へ送信する。このとき、AMD-PDU#0が無線回線上において消失すると、移動局装置には、AMD-PDU#1が最初に受信されることになる。

移動局装置は、RLC処理部120にてシーケンス番号が不連続であること
5 (AMD-PDU#0を受信せずにAMD-PDU#1を受信したこと)を検出し、ステータスPDU生成部170にてAMD-PDU#0の再送を要求するためのステータスPDU#1を生成する。この時点で、無線回線の回線状態が変化しており新たなWSNが決定されていれば、新たなWSNがステータスPDU#1に設定され、前回と同じWSNであれば、ステータスPDU#1の
10 WSNフィールドは使用しない。

ステータスPDU生成部170によって生成されたステータスPDU#1は、時刻T₂において、アンテナ100から基地局装置を介して制御局装置へ伝送される。

制御局装置は、ステータスPDU#1を受信すると、再送が要求されている
15 AMD-PDU#0を再送する。再送されたAMD-PDU#0(以下、区別するために「AMD-PDU#0(再送)」という)は、時刻T₃において、基地局装置によって受信され、バッファに蓄積される。このとき、基地局装置のバッファには、多くともAMD-PDU#2, #3の2つのAMD-PDUが蓄積されているのみであり、基地局装置から移動局装置へAMD-PDU#
20 0(再送)が送信されるまでに要する時間は比較的短くて済む。これは、ステータスPDU#0によって、制御局装置の送信ウインドウサイズが4に設定されており、制御局装置から同時に送信されるAMD-PDUの数が抑制されていたことによっている。

そして、基地局装置は、バッファに蓄積されているAMD-PDU#2, #
25 3を送信した後、時刻T₄において、AMD-PDU#0(再送)を送信する。このAMD-PDU#0(再送)が移動局装置によって受信されるまでに、P
o11フィールドに1が設定された(換言すれば、ステータスPDUの送信を

要求する) AMD-PDUが送信されることがないようにすれば、AMD-PDU#0に対する再送要求は1回のみで済む。

このように、本実施の形態によれば、移動局装置が無線回線の回線状態に応じて送信ウインドウサイズであるWSNを決定し、AMD-PDUの送信元で
5 ある制御局装置に通知するため、制御局装置から再送されたAMD-PDUが移動局装置と制御局装置とを中継する基地局装置のバッファに蓄積され続けることがない。したがって、同一のAMD-PDUに対して過剰な再送要求を行いうことを防止し、システム全体のスループット低下を抑制しつつ、通信のリセット・切断の発生を防止することができる。また、本実施の形態によれば、
10 移動局装置の構成を変更するのみでWSNの最適なサイズを決定することができ、基地局装置および制御局装置など既存の無線通信システムに変更を加える必要がない。

以上説明したように、本発明によれば、システム全体のスループット低下を抑制しつつ、通信のリセット・切断の発生を防止することができる。

15 本明細書は、2003年7月24日出願の特願2003-278885に基づく。この内容はすべてここに含めておく。

産業上の利用可能性

本発明は、システム全体のスループット低下を抑制しつつ、通信のリセット・切断の発生を防止することができ、特に無線回線を介してパケットを高速
20 に通信するパケット通信装置およびパケット通信方法として有用である。

請求の範囲

1. 無線回線の回線状態を監視する監視手段と、
監視された回線状態に応じてパケット送信元の送信ウインドウサイズを決定する決定手段と、
決定された送信ウインドウサイズを前記パケット送信元へ送信する送信手段と、
を有するパケット通信装置。
2. 前記監視手段は、
パケット送信元から無線回線を経由して伝送されるパケットを受信する受信部と、
受信されたパケットの受信品質を測定する測定部と、
を有する請求の範囲第1項記載のパケット通信装置。
3. 前記監視手段は、
無線通信相手局から伝送されるデータに対するACK/NACKを生成するACK生成部、を有し、
ACK/NACKの生成履歴を参照して無線回線の回線状態の良否を判定する請求の範囲第1項記載のパケット通信装置。
4. 前記決定手段は、
前記回線状態が良好である場合に前記送信ウインドウサイズを拡大し、前記回線状態が劣悪である場合に前記送信ウインドウサイズを縮小する請求の範囲第1項記載のパケット通信装置。
5. 前記決定手段は、
回線状態に対応するパケット送信元の送信ウインドウサイズを示すテーブル、を有し、
前記テーブルに従って送信ウインドウサイズを決定する請求の範囲第1項記載のパケット通信装置。

6. 前記決定手段は、

前記パケット送信元が受信状態報告用パケットの送信を要求する周期以内に前記無線回線を伝送可能なパケット数に対応する送信ウインドウサイズを決定する請求の範囲第1項記載のパケット通信装置。

5 7. 前記送信手段は、

決定された送信ウインドウサイズを受信状態報告用パケットの所定のフィールドに設定して送信する請求の範囲第1項記載のパケット通信装置。

8. 前記送信手段は、

前記パケット送信元の要求に従って前記受信状態報告用パケットを送信する請求の範囲第7項記載のパケット通信装置。

9. 請求の範囲第1項記載のパケット通信装置を有する移動局装置。

10. 請求の範囲第1項記載のパケット通信装置を有する基地局装置。

11. 無線回線の回線状態を監視するステップと、

監視された回線状態に応じてパケット送信元の送信ウインドウサイズを決定するステップと、

決定された送信ウインドウサイズを前記パケット送信元へ送信するステップと、

を有するパケット通信方法。

図1

図2

図3

4/7

図4A

図4B

5/7

図5

6/7

NACK/ACK	回線品質	WSN
0/5	~a	100
	a~b	130
	b~	150
1/4	~a	70
	a~b	100
	b~	120
:	:	:
5/0	~a	4
	a~b	8
	b~	20

図6

7/7

図7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/009222

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl' H04L12/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl' H04L12/56Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2000-078195 A (Kabushiki Kaisha Cho-Kosoku Network Computer Gijutsu Kenkyusho), 14 March, 2000 (14.03.00), Fig. 1 (Family: none)	1-11
A	JP 11-331234 A (NEC Corp.), 30 November, 1999 (30.11.99), Fig. 1 (Family: none)	1-11
A	JP 64-020755 A (Nippon Telegraph And Telephone Corp.), 24 January, 1989 (24.01.89), Fig. 1 (Family: none)	1-11

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
06 October, 2004 (06.10.04)Date of mailing of the international search report
26 October, 2004 (26.10.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

国際調査報告

国際出願番号 PCT/JP2004/009222

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl.' H04L12/56

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int. Cl.' H04L12/56

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996年
日本国公開実用新案公報	1971-2004年
日本国登録実用新案公報	1994-2004年
日本国実用新案登録公報	1996-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2000-078195 A (株式会社超高速ネットワーク ・コンピュータ技術研究所)、2000. 03. 14、図1 (ファ ミリー無し)	1~11
A	JP 11-331234 A (日本電気株式会社)、1999. 11. 30、図1 (ファミリー無し)	1~11
A	JP 64-020755 A (日本電信電話株式会社)、198 9. 01. 24、図1 (ファミリー無し)	1~11

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

06. 10. 2004

国際調査報告の発送日

26.10.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

石井 研一

5K

8124

電話番号 03-3581-1101 内線 3555