Introduction to hierarchical (mixed-effects) models part II

FW 891

Click here to view presentation online

Christopher Cahill 27 September 2023

Purpose

- Another look at how we specify a joint posterior for hierarchical models (maths)
 - Demonstrate the importance of conditional independence
- Demonstrate a hierarchical binomial survival model for quail stocking survival

$$egin{aligned} y_i \stackrel{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \stackrel{iid}{\sim} p(heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

$$egin{aligned} y_i \stackrel{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \stackrel{iid}{\sim} p(heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

• y_i is observed data

$$egin{aligned} y_i \stackrel{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \stackrel{iid}{\sim} p(heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

- y_i is observed data
- $\theta = (\theta_1, \dots, \theta_n)$ and ϕ are parameters

$$egin{aligned} y_i \stackrel{ind}{\sim} p\left(y \mid heta_i
ight) \ heta_i \stackrel{iid}{\sim} p(heta \mid \phi) \ \phi \sim p(\phi) \end{aligned}$$

- y_i is observed data
- $\theta = (\theta_1, \dots, \theta_n)$ and ϕ are parameters
- Only ϕ has a prior that is set (assumed)

Mathematical support puppies

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y)$$

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y)$$

Apply Bayes rule

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi)p(\theta, \phi)$$

Apply Bayes rule

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi)p(\theta, \phi) = p(y \mid \theta)p(\theta \mid \phi)p(\phi)$$

- Apply Bayes rule
- We can also break this joint distribution down into a conditional distribution of θ given ϕ

 The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi)p(\theta, \phi) = p(y \mid \theta)p(\theta \mid \phi)p(\phi)$$

- Apply Bayes rule
- We can also break this joint distribution down into a conditional distribution of θ given ϕ
 - Do this using conditional probability rules

• The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

The joint posterior distribution of interest in hierarchical models is

$$p(\theta, \phi \mid y) \propto p(y \mid \theta, \phi) p(\theta, \phi) = p(y \mid \theta) p(\theta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of θ :

The joint posterior distribution of interest in hierarchical models is

$$p(heta, \phi \mid y) \propto p(y \mid heta, \phi) p(heta, \phi) = p(y \mid heta) p(heta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of θ :

$$p(heta \mid y) = \int p(heta, \phi \mid y) d\phi$$

The joint posterior distribution of interest in hierarchical models is

$$p(heta, \phi \mid y) \propto p(y \mid heta, \phi) p(heta, \phi) = p(y \mid heta) p(heta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of θ :

$$p(heta \mid y) = \int p(heta, \phi \mid y) d\phi$$

• Or instead the marginal distribution of ϕ :

$$p(\phi \mid y) = \int p(heta, \phi \mid y) d heta$$

The joint posterior distribution of interest in hierarchical models is

$$p(heta, \phi \mid y) \propto p(y \mid heta, \phi) p(heta, \phi) = p(y \mid heta) p(heta \mid \phi) p(\phi)$$

• We may also care about the marginal posterior of θ :

$$p(heta \mid y) = \int p(heta, \phi \mid y) d\phi$$

• Or instead the marginal distribution of ϕ :

$$p(\phi \mid y) = \int p(heta, \phi \mid y) d heta$$

• $p(unknowns|knowns) \propto \text{ assumptions you make}$

Survival of stocked quail chicks

Survival of stocked quail chicks $\stackrel{\leftarrow}{\leftarrow}$

- Juvenile quail have relatively high mortality rates
- Managers want to conduct an management experiment where chicks are released into 100x100m pennedenclosures to determine chick survival in their region
 - Released between 6 and 20 chicks in on 11 farms
 - Go back one month later and see how many survive

The hierarchical fluff chicken survival model —

$$egin{aligned} Y_i & \stackrel{ind}{\sim} \mathrm{Bin}(n_i, heta_i) \ heta_i & \stackrel{iid}{\sim} \mathrm{Be}(lpha, eta) \ lpha, eta & \sim p(lpha, eta) \end{aligned}$$

- ullet Y_i is number of chicks alive at end of month
- n_i is number of chicks released at start of month
- θ_i is chick survival at farm i
- ullet lpha and eta are the parameters of the Beta distribution

The hierarchical fluff chicken survival model —

$$egin{aligned} Y_i & \stackrel{ind}{\sim} \mathrm{Bin}(n_i, heta_i) \ heta_i & \stackrel{iid}{\sim} \mathrm{Be}(lpha, eta) \ lpha, eta & \sim p(lpha, eta) \end{aligned}$$

Also note that ϕ from previous slides is now $\phi=(\alpha,\beta)$

Priors for α and β

- The interpretation of these parameters
 - α is successes
 - β is failures
- A more useful parameterization in our case is
 - Beta expectation: $\mu = rac{lpha}{lpha + eta}$
 - Beta sample size: $\eta = \alpha + \beta$
- Easier to put priors on μ , η than α , β so we will take advantage of this

Go to the R and Stan code

The quail data and prior information

- The quail data
 - Not a ton of data
- The R script
- The Stan model

Prior information

 Bios note that the available literature indicates survival for transplanted baby quail ranges between 0.05 and 0.45

The TODO list

- 1. Reparameterize the beta distribution to estimate on mean θ_{μ} and sample size η .
 - Note α and β will then be derived parameters
- 2. Develop a prior for mean survival that places approximately 95% of its probability mass in the range 0.05 to 0.45, and a prior that is somewhat diffuse for η but which has most probability mass at low values
- 3. Develop a hierarchical model for average chick survival and farm (i.e., group) specific survival estimates given the available data
- 4. Plot the marginal distribution of α and β to help put the miserable integral symbols into perspective
- 5. Do a prior sensitivity test to your informative prior from (1)
- 6. What is the probability that survival from farm two is less than average? Similarly, what is the probability that survival from farm two is less than survival from farm 6?
- 7. If we went to a new farm in the region and wanted to release chicks, what would our best guess be for chick survival at this farm?

Extensions

The basic structure of a hierarchical model is

$$y \sim p(y \mid \theta) \quad \theta \sim p(\theta \mid \phi) \quad \phi \sim p(\phi)$$

We can extend this to more than one level

$$y \sim p(y \mid heta) \quad heta \sim p(heta \mid \phi) \quad \phi \sim p(\phi \mid \psi) \quad \psi \sim p(\psi)$$

Remember conditional independence structure

$$p(\theta, \phi, \psi \mid y) \propto p(y \mid \theta)p(\theta \mid \phi)p(\phi \mid \psi)p(\psi)$$

Summary and outlook

- Specifically tried to talk about hierarchical models in a different (mathier) way than what we did last time
 - Did this to highlight how conditional independence plays a key role in our ability to build these models
- Built a hierarchical survival model for ditch chickens
 - ullet This included deriving an informative prior for $heta_{\mu}$
- Began to play a bit more with output from hierarchical models to generate useful quantities for management
 - Probability of chick survival at a new farm not included in the original study
- Next time, Poisson GLMM

References

- Berliner, L. M. 1996, Hierarchical Bayesian time series models", Maximum Entropy and Bayesian Methods, 15-22.
- Gelman and Hill 2007. Data analysis using regression and multilevel models
- Royle and Dorazio 2008. Hierarchical modeling and inference in ecology.
- Kery and Schaub. 2012. Bayesian Population Analysis using WinBUGS. Chapter 3
- McElreath 2023. Statistical Rethinking. Second Edition, Chapters 2 and 9.
- Punt et al. 2011. Among-stock comparisons for improving stock assessments of data-poor stocks: the "Robin Hood" approach. ICES Journal of Marine Sci.
- Jarad Niemi lecture on a very similar model from which my example is based heavily https://www.youtube.com/watch?v=nNQdvXfW73E