Fodiations in asymptotically flat 3-milds 14/09/2015. Gerhard Hmiken het (L', h, -+++). hereitin 4- mfld. idolated opportating system; Stars, black Color, ...
- Can be isolated from the rest of the universe. Einstein fied epalmy. (*) Rur - IRhur = SaTur. JMJnv = 0 & Conseration of every. Physics: "weath every condition": TMV XMX >0 VX timelibe (M^3, g, k) (M^3, g, k) g induced metwo. g= h 1 TM3 K - Second fudament g spacelike: q'is Reinemmient. Auch. N'is mt at 90° to hyertypue ors you wild expect > Feature of problem.

(I)

Gaus-egnis. het fe, e, e, e, t be en v.n. frame for g. &= N future directed mint Rishe + Kiekin - Kin kje. 1 595,152 5 3. Rin = Rin T Rioko T Kieken - (trk) Kin.

> R = R + 2 Roo + 1kl² - (trk)². R = 16 Too + 1k12 - (rh)2 > 1k12 - (rh)2. Wedle engy endr.

I let "Mazismel" > It (rh)=0.]

hypersurpue". thep If (M3, g, k) c > (L4, h) is a massimal hypersurface and (L'h) & smisfies the weal every condition, R(9) ≥0 on @ M3 Massimal hyperkulaces: (+k)=0. (why is this a good orsomption?) Spr $M^3 = graph \cdot n \in (\mathbb{R}^{3,1}, \Upsilon)$, $\Upsilon = (-1, 1)$. $\frac{\int N}{\int 1-1Dn|^2} = \frac{(D_n, \Delta)}{\int 1-1Dn|^2} = \frac{(D_n, \Delta)}{(D_n)^2}$

This is space like if 1 Dul < 1. $g_{ij} = \left\langle \frac{\partial F}{\partial n^{i}}, \frac{\partial F}{\partial n^{j}} \right\rangle, F: \mathbb{R}^{3,3} \longrightarrow \mathbb{R}^{3,3} \longrightarrow (n, n(n))$ = Sii - DiMDin. H = div (N) = Di (Din) - In Din Din Din = 0 quisiliner elliptie egt, numpuly elliptie = 1 Int 3-3 known: (I) Dirichlet problem can be solved for bely duta 4 on de CM3 4 14(n)-4(s) 1 < [n-y]. (Borthik-Simon) (I) If $M^3 \subset \mathbb{R}^{3,4}$, $M^3 = \operatorname{graph} n_1 \cdot n : \mathbb{R}^3 \to \mathbb{R}$, 1Dn | < 4. $H(graph n) = 0 \Rightarrow M^3 = Spreekike plane in <math>\mathbb{R}^{3,1}$ ("Bern Stein th", chang-Yan). (IT) R. Ruthili If (Lt, h, -+++) hus a timethe finction $t: L^h \to \mathbb{R}$ with reasonable behaving, asymptotic to Hinshowshi Space in appropriate way; then, for Y to at spacelike D, II wassimul surface in (Lyh) with the to now specialishe to 3

Ruch on (): Some love web + open publin Te, dus smuhnen needed in (II). the, (I) if H= c fo, the publis. Q. perharbations of Schnotzechild -> due true in at inducted let the pidnet. Schuntzchuld in (III). Andy asymptocally flat 3- whole with run-neg R/9)≥0. Life (Asymp. Mur): M3/cput ~ R3/BRO(21). (possibly disjoint miner of finitely mans) together with 2: 13/cpet > P3/bpo(n). A.t. Yij(n) = Sij + Pij with Pij = O (Tree) v= |n1. 17P) = 0 (1/2+11+6) 1 5d5k. Emyl (eg k=Z). Amh should'ur respur Gii = Sii, lucarus gii Newtonian potentral. So, is a fate substitute for Newtoni You report decay ~ \frac{1}{\sqrt{2}+E}. is hypric coording. Examples (I)(123 S) (II) spacelike tehnurt-child yij = Si; (1+ m) m>0. 1 ds2 = - (1 - 2m) dx2 + (1 - 2m) 1 dx2 + 2 d \(\Omega\). (4)

M3 = R3/0 , 2 ands telymp. Mary refleich symm. $||f||_{C^{1}} ||f||_{C^{1}} ||f||_{C^{1}}$ State black tale, extrin y Matic Stor. (III) $4i^{2} \int_{i}^{i} \left(1 + \sum_{k=1}^{N} \frac{m_{i}}{|n_{i}n_{i}|}\right)^{k}$, (k|q) = 0, $n \in \mathbb{N}^{3}$. Since yij in (II) campos heplen egt. M3=1231821,...,2) m m nn (I) Oblhoen). Let (M3,9) cloud (yet, no holy). -AgG+ & RgG = 47 Sp. Poems. Alm

G- confind Grears function. If y in lo. Com la schod with. 02 G on M3 18 pos. A.t. 4(9) ~ 1 dy(P,q) + A + O (dy(Po,q), ven Po. then comider: 9(p)= G'(p).g(p), 49e M3.15/04. and $R(\tilde{g}) \equiv 0$. und condinates ner la and y - An q; (4) = So; + 2A. + l.o. anymphotically flat. Revisit (I), (II): (I). (F) Steregraphine. Schnotchido J. → (M3,9) = (8xs1, 9nor). "wormhole"

In Schunzchild, gij = Sij (1+ m) ; m>0. unuss " of the system (M3,9). If you tale timelike gooderics and carricler keple what, In, in plays the rule of west. Since R(g)=0 => no motter, S. this is "nuss" without having mother. In general, ADM (M3,9) asymptotically flat MADIN = $\frac{1}{16\pi}$ $\int_{\infty}^{\infty} (g_{ij,i} - g_{ii,j}) \gamma^{i} d\tau$. Chech: man = m in Schnortchild. NO A in the "mass" of g as defined alone. Ronhere wass the (schoen-Yang 79, With) in (13,9) lus (R19) 20; asymp. flut => m 40m (M3,9) > 0. $"=" (M^3,9) = (R^3,8).$ Solt of Yanaha Arthur (Schoen 1984). Com to this sends implijen A>0, From her in: Sindry such asymptomially flat Boufelds by sinding 2 - hyper sourpeus. Change of rubation. (N,8) 3-wfld, asymp for. $F: M^2 \longrightarrow (N^3, \overline{9}).$

Notation: g= g| m², si = (dF) dni / dni / g. 2nd F.F., A= Shis in a from Se, ez, v). - Mis $\sqrt{x} = \frac{3^{\frac{1}{4}}F}{3n^{\frac{1}{4}}m^{\frac{1}{4}}} - 977^{\frac{1}{4}} \frac{3}{3n^{\frac{1}{4}}} + 977^{\frac{1}{4}} \frac{3}{3n^{\frac{1}{4}}} \frac{3}{3n^{\frac{1}{4}}} \frac{3}{3n^{\frac{1}{4}}}$ Mi= (\(\nabla_{e_i} \tau, e_j \rangle = - \langle \nabla_{e_i} e_{j_j} \(\nabla \rangle \). Dis = his gil DF + Tor Dri vor (interpret another missing):

Eigenrelin w. r.t. g D, 22 (interpret another missing): H= giller; = M+Dz = 1A12 = . 12+12 = hilling. Rine = Rine + hinhie-hiehin. Rin = Rin - Riono. + Hhin -hiehin. Craws & lodani: $R = \overline{R} - 2\overline{R}_{00} + H^2 - |A|^2.$

Vi hin - Vihin = Rojik.] Codarri ly 5.

Now winder families, ie., F: M" x [0,T) > (N",9).

(8)

Aps & moves in normal direction with speed of. $\partial_t F(\mathbf{r},t) = F(\mathbf{r},t) \cdot \gamma(\mathbf{r},t) \cdot , \mathbf{r} \in M^3, te(\mathbf{r},T).$ Then: (1). 2 9ii = 24. hij, . 2+9ii = -2+hij. at (dyn) = Hf(dyn). (I). 9+1 = - Df (III) Duhij = -V, V, + + f(hjehij - Rvivi). (IV). dH = d (9"hi:) = -Af - f(1Al2+ Roo) = Lstab f. Subility sporting Ruh. Main tollus. Ones yn lem fin, drove. formed speed f: men hum, inne wen when, etr. By Af idage: (5) hand undinuts when the pEM3. and. hand courts fof men F(p, to). (=>0=9(6) This (p)= The (F(p, to)) but not onborder p, t= to.).) 2+911 = d+ (3:F, dniF) = (dni (+f.v), 2F) + (hiF, dni (+v)g = 2fhij.

(四)・〈グ,ひきえ, ひき〈グ, みからち〉, くみび, か〉まひ、

(q)

 \Rightarrow $\langle \partial_t v^i, \partial_{ni} F \rangle = -\langle v, \partial_{ni} (t \cdot v) \rangle = -\nabla_i f$. (III) $\partial_t h_{ij} = \partial_t \left(\frac{\partial^2 F}{\partial n^i \partial n^i} - \overline{T}_{pr}^r \frac{\partial F^{\beta}}{\partial n^i} \frac{\partial F^{\gamma}}{\partial n^i} \right) > = \cdots$ Noti: Dif T >> Cumpre term. Corolly but For Mac ((not), 9) by a Rufuer, nd let f not got syn by a gon. speed for a variable. $F: N^{n} \times (-1, 1) \rightarrow (N^{n+1}, \overline{9})$ $M^{n} \subset (N^{n+1}, \overline{9})$ then, (I) & (Mil, t) = Sun fH dy. &= frier variable (II) 82 (IMª 1°, f) = S At f - E2 (IAI2 + Roo) + f2H2 dp. In paricular, of Mois a minimal surface (H=0), the DE 82 (IMM, +) If with spt f eput. (1A12 + Ricoo) & S 1878 dp. and b), if Mo is a critical pt of area wiret Some evelued volume (w. v.t. to any fixed ref. inface) ie, M_0 is a unitial pt of $\int_{M_0}^{\infty} d\mu + \int_{\infty}^{\infty} vol(M_t) = :I(t)$ $\in \mathcal{C}(-\xi,\xi)$ 3. S(I(x), 7), to = SHFan. + 2 fram = 0. Yf. (H=-1 come enfac).

 $0 \le S^2(I(t), t)|_{t=0}$ $\forall t^{m} \text{ teapty vlume}$. $S^* \text{ fd} p = 0$. Sphle: => 0 5. S. - 1. f. + - \$ (1A12 + Row) + H2 f2 dyn + 15 m. fragn => Smy 12(1A12+Roo) ops - Smy 10812 op 4 with. and $\int f du = 0$ Komb. The families (I) 2 (II) we railed for jur a send yelly littled speed f. So, shilty is a grabifical un all buch apply speed A. Land f = - St - f(IAP+Roo). Examples: (I). Take 5°'C 5"x TR (CIRMI). IR. to "folully scooling". IA12=0, Rod 20. Lerus f - - 1 , kent = { curt }. >> weathy table as a min. Inform. => Smotherly bable or. r.t. bush mor another confine.

(I). S'C S''' (C M''L) Et would as a mind sufer, - stable as wealthy stable us a CMC. worknie. $\lambda_0(-\Delta)=0$, $\lambda_1(-\Delta)=M$ (II) $g = {\left(1 + \frac{m}{2v}\right)}^{2}$. Exame @ compute there $H = \frac{2}{\sqrt{3}} \left(\frac{1 - \frac{m}{3}}{\sqrt{2}} \right)$ (b) Resp = $\frac{m}{\sqrt{3}} \left(\frac{\sqrt{3} \sqrt{4}}{\sqrt{2}} \right)$, N = 0. Compute. en eigenvolve, og herub. on. f. mt. $S \neq d\mu = 0$. $O \in \mathcal{I}_1 \approx \frac{6m}{\sqrt{3}}$ as $r \to \infty$. 3> strictly stable if m>0 on core subur. Ruch. Symbility for minimal troping a clark are about proximing volume. Fe, no need to carried only If dep =0. But for Conc, thin is a must.

15/09/2015. CMC Burfaus /foliations. - G. Huisteen. $\left(N^{3}, g_{m}\right) = \left(\mathbb{R}^{3} \setminus \{3\}\}\right) g_{m} = \left(1 + \frac{m}{2r}\right)^{4}$ 7Bylo), vyo. $H(3R_{V}(0)) = \frac{2(1-\frac{m}{2v})^{2}}{V(1+\frac{m}{2v})^{3}}$, ampute $|A|^{2} = \frac{2(1-\frac{m}{2v})^{2}}{V^{2}(1+\frac{m}{2v})^{6}}$ $\overline{R}_{00} = \frac{-2m}{r^3} \frac{1}{\left(1 + \frac{m}{2r}\right)^6}$ hstub f = - Ag f - f (IA)2 + Roo). => .on {f: Stelm=0}, 1 (Lstub) = 6m = 482m = 10Bx(0)/3/20 Note that: w= \(\langle \frac{1}{(16\pi)^{3/2}} \left(\langle \pi - \int \mathre{1}^2 d\pi \right) \tag{4r} > 0 Conven my 52 c (M3, g) ((4, h)) $m_{\text{Haw}}(\Sigma^2) := \frac{|\Sigma^2|^2}{(16\pi)^{3/2}} (16\pi - \int_{\Sigma^2} 1 \hat{H}^2 d\mu)$ If $\xi^2 = \partial \Lambda$, $\Omega \subset (M^3, 9)$. maybour $(\xi^2) \iff \text{wassenspy}$. "grin locat" wass.

Use fi in statu lity megnelity, sum over i: l_2 |AP = Roo de 5 Zi=1 ∫ = 1 \text{\$\sigma_{12}\$ |\text{\$\sigma_{1}\$}|^2 deg. = \(\sigma_{i=0}^{3} \int_{pq} \) \[\sigma_{i=0}^{3} \left(\text{en}, \ti)^{2} \dyns. \] (e,e,) busis of TS2. mul N=Co.

Veril = Ven (exiti), {Ti} hours of RB. => [SIAIZ+ Roody 'S Sal Now note: Group equipmes: G= 5,2 + 2, 22. in. li, ez, V= lo. Roo = 510 + 520 + 512 - 512 = 2R - (G-1,72). = \frac{1}{2}\overline{R} - G + \frac{1}{2}\big(H^2 - |A|^2), |A|^2 = |A|^2 + \frac{1}{2}H^2. = 212-G+ + 1-12- 1A12+ 1A12+ 2H2. 1 2R-6 +3 112+ 1 12 an 582. 0 = 1 = 2 R + 2 |A| dp = 5 = + 42 - 3 | H2 gm = 3 (16a - SH2 gm). A

3

tristance of CMC". Sps that (MB, 9) has an asymptorically flat and. Substiging untable cleany anditions on the metric: $q_{ii} = S_{ii} + P_{ij}$, $P_{ij} = O(?)$, $\nabla P_{ij} = O(?)$. Aseme mann = 167 lm. Son (911,i - gii,i) ari do is will alfied and positive (>0). I Rozo, and { [2] } 015150 H(52)=0, 22 smily thy M3/BRO(Po). CUITO: Zo fam smorth faliation. + Uniqueness Ontomets also (need a little une). H. S.T. Yam 1996, Metzger, Qin-Tian, Huany, Eichmeir-Metzger, Bray, Bray-Morgen Doughon. nonobonicity of myn (5.3) isopenmethic property. Nomes: Cederbaum-Nez, Nez ~ 2014. ~ rentre of mass. I clefind lay \$523. speed (asymptomaly) of (50} Muld by Fm. Truce: C. Nevy. Hun Po= SalmiSoh kij vody. (4)

Connents on existence.
(I) Con un implicit from the 4 shirt shility
or com my a flow of F = - (H-h), h= fH op,
Smili for longe constitute M2. Sphons.
(II) Recall: Alla.
Mulle $\Rightarrow \int_{\mathbb{R}^2} (\lambda_1 - \lambda_2)^2 = \frac{1}{2} \int_{\mathbb{R}^2} A ^2 d\mu.$ $= \frac{3}{2} \left(ba - \int_{\mathbb{H}^2} a ^2 + \frac{a_1 + a_2}{ a ^2} \right)$
hoofshap to higher order. \(\int \cdot \frac{\pi_non}{\pi} \rightarrow 0
~ nose greated descripention.
Rowh there are only in the externor region. But we wild like this to go all the wery. (Amblitustice if two how the, then making his to be very large.).
livere Men Canathur flows.
het (Nn+1, g) by a smooth umplete Reim whell Grinn Fo: M" (Nn+1, g), M" = Fo (M") = DDo, Do C Nn+1, with H(M")>0, unt to subve
(IMCF) DIF (P,t) = I-V(P,t) (V outer rum) B

Example: Mo = Sno C (Ren, 8).

Note that:
$$2 + \frac{1}{4} = \frac{1}{4} \cdot V = \frac$$

- A (#) - # (A12 + Roo).

QH =

6

= 1/2 DH - 2/H 12 - H (A)2 + Reo). = . Di (H2 DiH) - H (IAPARicoo). Note: 1A12 > 1 H2 if [Proz.] & Co. 2, H & D. (+2 D. H) - 1 H + Co So, prop. sup H 5. mms. (sup H, Ta). Ex. lug thin truy, as to so.
Comethin gos way. the - I(|A|2 + Ricco)., Am. purles (+ > 0. la singulinties. The (Smockyh (n=2), H. Allhaman (n>3)) At long m. 1+2570, the flow Com be smoothly Pt. Mayo principle for Tij = Hling. The (Gurbarels) If M. C (R", 8), 470, (F,v>>0 She Physid, The My expends to so, becoming road.

(4)

Main motivation for frin flow: The . (Good nonoh muity of Ambing mass). Sps F: M2x [0,T) -> (N3,9) in solt of IMCF, ml $\mathbb{R}(\overline{s}) \geq 0$. \mathbb{A}_{m} , \mathbb{R}_{t} \mathbb M² C (N³ churz, Im)., M². flus fungh.

Concordine splus. Inelead: It M Haw (M2) = . M/2 12. I log H 12 + 1 A 14 Roys.

It = 0, hu um | Vlog H 12 = 1 A 12 = N = 0. locator wides. \(\frac{1}{2} = 12 => molidic. ontside the region, le mide, any trus. 14. Resulles Christodoulon-You: cuputo un 2, H, 2, (4): 2 mHm (M2)= It [1162) 2 (162 - JH2dn)] = 2 fram Han (M2) - M1/2: 121+) 2 la (V, (LV; H) - H(A/ - Roo) + H2 du) = tw Han (Mt) + (Mt) 2 J2 10 hos H12 + 2 |A12 - H2 Rosch = ar dainel & via Graves 9th & Garres Bonnet. 8

Te, this is believing up muchy us a CAC ribation / foliation b. Anh. Explists R(g) >0, Chamelen Fes Schnarzchild, and relates. small whom to large motion. I which for nice ruples we beam is close to Hope to more Penrore-inequality: (67 mapm . 7 16 th m Honer (M2) 7 16 th m Horiza) t large "Mass on the exptnin ins longer Than the mass in the black bule." and 2 > Schmachilel. This does not what! Need weath room of IMCF.

A.t. monohimity is still me. $\Sigma_{2}^{2}, H=0$. 16 m/non > 1 22 $\sum_{i=1}^{2} \frac{1}{16\pi m_{ADM}^{2}} \frac{1}{12}$

There connet be a weal solute in this setting when men (mig) is nonotre for Z, 2. all the man to DBr, r>>1. A Need to allow jumps) > needs to have to fourt This count bupper via a parabelic Stew. So, use a levelset finilation of IMCF:. Sps Mit = Sne No: nalet3, ningland R. $M_0^2 = 2N_0 = {neN}^3$; M(n) = 03)."m(n) is the time when M't passes much scen?" |Vn(n)| fo : M; is regular, V= Dn | |Dn|, H= div(v)= · Di (Nim). Speed of ludset: 17ml. Dinne of speed. $P(MCF) \iff D_i \left(\frac{hi^{i}}{1DnI} \right) = 1DnI.$

Di (Din) = 1 Dul (Sis - Din Din) Di Din. Degenate elliptic Egrafia - degenal of the Need to allow | \tan bell = 6. to sobre the public. Te, allow plateaus. Ro

(IL)

n is a solt of this variational principle → flu surface M2 = D { reNn+1: M(n) <+3. is outrand minimising ie. If Mi= DA and I is a regim. ID se, I'= 25. Shu. $|\Sigma^n \cap E| \ge |M_t^n \cap E|$. out of minimizing explains how and My jup happens. My is then culinum in t Hayo. IM² 1= Moleop 14) if Mo is itself ontend mining. In Harling was - I til dys tom gits replaced and Harling mass jamps rup. Fe, alue to this variational principles

13

luverse llem Canabre Flew- G. Huisteen. 16/09/2015. (N°, 5), snooth Rein 3-mfld, asymp. Aut. Mi= Dr. roc(Nis). Wont to sohe: for Fix (v) = Su 10v/+ v 10n/ dvol., Fr (v) < fr (v) < fr (v) < fr (v) ch. Elliptic repulsiste. (w/T. ellmanen). (hato, R. Moser : p-hormonic). $\int_{\mathbb{R}} \left(\frac{D_{i} n_{E}}{\sqrt{c^{2} + 1D_{mel}^{2}}} \right) = \sqrt{c^{2} + 1D_{mel}^{2}} \cdot i_{e} \quad \mathcal{B}_{E}(p_{0}) \setminus \mathcal{R}_{0},$ $M_{E} = 0 \quad \text{m.} \quad \mathcal{M}_{0}.$ $M_{e} = 0 \quad \text{m.$ · βξ6). ne e c2x (bt \no)., Me≥-E. Sol is buely positive, (Need to cushet a harrier, la cause).

Let $\hat{N}_{\xi} := \frac{N_{\xi}}{\xi} \Rightarrow .$ Di (Dine.) = E / 1+ 1Dael? Geom int. H (graph me) = 8 < Ve 1 2 >1. aproph (\frac{\infty}{\xi} - \frac{\tau}{\xi}) \ mus ly IMCF!!!! Claim: cylindr in limit; (Mill st to Econt in onther wifled), the · If e < Co. Get extinsis indep of 270: · Si Symphin | Vlog H |2 + |A|2 dpdf &C1. ~> take limit to carrye to restical cylinder. Murereen. Ĥ∞>0. (⇔ 10n0/>0). + jump regions .

2

Open: Geroch nonotrinicity- analogue.
Combby. Let $M_0^2 = 2\Omega_0$, $\Omega_0 \subset (N^3, \overline{g})$. $R(\overline{g}) \geq 0$, Ω_0 unimisity and commeted. Thu,
m (m) & mpm (N3, g).
In puticular, of (N3, 9) + (12,8) tum magn >0.
(Another At. of purhave herss the).
Also, I. Zo is a compared of the internet history
then mon > mon (\(\So\) \(\) bamaon 2 \(\So\)
Pume lucy.
H; Bray's replace [\(\Si\) \langle \(\Si\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
Application to Bartonile capacity
Left: het (1,9). her a 3-Rain mfed, opet with
bonday, R(q) > 0. Tun,
cap $(S_{1,9}) := \inf \left\{ M_{APM}(N_{1,9}) : (S_{1,9}) \xrightarrow{jointerc} (N_{1,9}) \right\}$
R(5)20, no minimal trofas in N3/2?
Rules unt
A. A.

 $(\tilde{x},\tilde{q}) \supseteq (\tilde{x},\tilde{q}) \Rightarrow exp_{\beta}(\tilde{x},\tilde{q}) \geq exp_{\beta}(\tilde{x},\tilde{q})$. $cap_{\beta}(2,9) \ge 0$. $t \cdot cap(32,9) > 0$ mlm $(32,9) \hookrightarrow (12,8)$ By The hong thre open. Mean Courte Flow in 3-ruffels. Given $M_0^2 \subset (N_0^3, \overline{q})$, $F: M_0^2 \longrightarrow (N_0^3, \overline{q})$, solve. 2 F(p,t) = H(p,t) = - H(p,t). ~ (f,t) V. outer bond. = 1 5(+), 5 F(pi+). A R(4) = - 2 R(4). R(4)= 12-4+, Trus = 12/4. It 911 = -2 Hhii, 1+ (dp) = -142 (dp) 50; de M2 = - J-H2 du. In Eucliden spin, splins one a houser, to Trus = R/h when BR (0) DMZ. But, if it exist for all there in. a general namifiled, thus, was to minimal hurfue. bean 2+ lant = - 142 dp =>4->0 Do. 2 H = DH + - H (M12 + Rid(N,V)).

(5)

Singulinities s'xR CR3. 11 neelyinch. M2 CM3. covers - M2. noue $M_t^2 \rightarrow \chi \rho \lambda$. So enterelly become a printer. spline. Norty: - No CR3. lune for every, too smill for nedeporch (frame lating solution).

But shighly arms for the neels, you set. strintin cylindr th. (8. hundle, H. 2015). M2 C (N3, 5) porme m.c. and inhedded, Ihm time we the only simplantin, (with precise qualature estimate is in his his more.).
In so be with without doctor will you fee there). t:

Mo. Wort: 2 possihilitim: level set flow.

Pour with brying. havel- ret flow: (char- Gign-hote, Erms- Spruch). $M_t^2 = \left\{ n \in (N, q) : n(n) = t \right\}. \qquad n \mid_{\partial \mathcal{N}_0} = 0.$ $D_i\left(\frac{D_in}{|D_n|}\right) = -\frac{1}{(D_n)}$ in Ω_0 , $M_0^2 = 2\Omega_0$.

Trays (N3, 9). Rog. then for level out the, B. White. n=2: Solt con for t-a.e. A70. Elliptic repulsitation. Mo intend minimes. Di (Ding.) = - 1 , ne = me . => Di (Dine) = - E (Te, 3). MCF in NXIR This is where the analogy this onthe IMCF. Flow with renging: (river Moc (W, g), ushedded with H>0, Fortreties ∃ 0< t,< +2 < --- < +N < Times € ∞. (finitely may my tims). and Fi: Mix [t]., ti] Sortiffy (2 m.c.f., 1.+ Mignetin) is obtained for Mi-1 (6:-1). In wither:

In progress: ('j m/ C. Sinis trati): la let Ri -> 0, into = 2 BRi(0). Claim If maon (N, g) >0 and (N, g) as proprietely asymp. Pat., then. 'M's converge to a MCF. Sult. ont, defined for & E (-00, 400): Me -> spectral infulty, it >- 2. $M_{\uparrow}^2 \rightarrow \text{hin} 2m$, $\psi \rightarrow \infty$. (~ Nonliner Navton potartal"). Know Uniqueness is for the land set flow. Head later finel that it can let be. Scale ut which you do the flow. >0, then cannot to the the hard-set flow. Reall MADM(N3,9)= $\frac{1}{16\pi}$ $\left(9ii; -9ii;\right) v^{i}ds$. ξ -The (I) mann (N, \overline{g}) = miso (N, \overline{g}) = lim sup. (In (N) \overline{g}) = lim sup. (In (N) \overline{g}) = super min order min (I) \overline{g}) = super \overline{g} \overline{g} MHW (P2) = 12/2. (167 - JH2 dp). "william defrait." (10) Consider the Dopenmetric pupile of Johners child. gn= 8(1+ =) " n>0. $[16am, \infty) \rightarrow [0, \infty)$ Area (3 Br), ~> m/2 rol (Br(0) 1 Bry (0)). 5/2. + 1 m.s. + 1.0. profile of 123. 4 m/s) = . 82 (1 - 4 m2 m.) 2 let Mit he solb of MEF in whiting (NB, 9). 2. (Image (1M21) \$-vol (52). = \$\frac{1}{m_{Mom}}(s) \((-\int_{M_{\text{t}}}^2 + 2d\)\)\ \(\frac{1}{M_{\text{t}}} \)\ \(\f Hiller & SH & Shedy's. Mills

when = Mills (162 - SHedyn). 1) to punded . [Myon (My) & moon!"

Time IMCF.

We have (air) & musom loss cappling IMCF to earn M' of Mr. of MCF. By White M's outer minimising. => \$ ([M2]) - vol (si) & Jm Apm ([Mo]) - vol (so). = 1 M3/3/2 + 7 WADM M3/ + 0(1 M3/) 1M2 (M. 20-1M0/3/2) { , o ([M2]) + [m mm] + . W(1) - \$\overline{\mathbb{M}_{t_1}^2\right)} \frac{1}{\mathbb{M}_{ol}^2\right)}. letter ties , get truer isoprimmer deficiel ! Meff IMCF.

12