Лабораторна робота №4 Моделювання неперервних випадкових величин

Мета роботи – ознайомитися з методом оберненої функції імітації неперервних випадкових величин; побудувати імітаційну модель отримання системи неперервних випадкових величин (CHBB).

Короткі теоретичні відомості

Для імітації випадкових величин повинні бути задані функція розподілу або щільність ймовірностей. Нагадаємо, що *випадковою величиною* називається змінна величина, яка в залежності від результату випробування випадково приймає одне значення із множини можливих значень. Випадкова величина, яка може приймати всі значення з деякого проміжку, називається *неперервною випадковою величиною*.

Нехай X — неперервна випадкова величина з можливими значеннями з деякого інтервалу (a, b) та x — дійсне число. Під виразом X < x розуміємо подію «випадкова величина X прийняла значення, менше за x». Ймовірність цієї події P(X < x) є деяка функція змінної x:

$$F(x) = P(X < x) \tag{4.1}$$

 Φ ункцією розподілу (інтегральною) неперервної випадкової величини X називається функція F(x), яка дорівнює ймовірності того, що X прийняла значення менше за x (4.1).

Властивості, якими володіє функція F(x):

- 1. $0 \le F(x) \le 1$. Ця властивість слідує з того, що F(x) є ймовірність.
- 2. F(x) неспадна функція, тобто якщо $x_1 < x_2$, то $F(x_1) \le F(x_2)$.
- 3. Ймовірність попадання випадкової величини X в півінтервал [a, b) дорівнює різниці між значеннями функції розподілу в правому та лівому кінцях інтервалу (a, b):

$$P(a \le X \le b) = F(b) - F(a) \tag{4.2}$$

- 4. Ймовірність того, що неперервна випадкова величина X прийме будь-яке наперед задане значення, дорівнює нулю: $P(X=x_I)=0$.
- 5. Ймовірності попадання неперервної випадкової величини в інтервал, сегмент або півінтервал з одними й тими самими кінцями однакові.
- 6. Якщо можливі значення випадкової величини X належать інтервалу (a, b), то: 1) F(x)=0 при $x \le a$; 2) F(x)=1 при $x \ge b$.

Щільністю ймовірностей неперервної випадкової величини X називається функція f(x), що дорівнює похідній функції розподілу: f(x) = F'(x).

Теорема. Ймовірність попадання неперервної випадкової величини X в інтервал (a, b) дорівнює визначеному інтегралу від її щільності ймовірностей, яка взята в межах від a до b:

$$P(a < X < b) = \int_{a}^{b} f(x)dx. \tag{4.3}$$

Замінюючи в формулі (4.3) a на $-\infty$ та b на x, отримаємо:

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(x)dx. \tag{4.4}$$

Формула (4.4) дає можливість відшукати функцію розподілу F(x) за її щільністю ймовірностей.

Метод оберненої функції

Цей метод використовує рівномірно розподілену на інтервалі [0; 1] випадкову величину ξ . Нехай потрібно отримати процедуру імітації неперервної випадкової величини X.

Tеорема. Нехай F(x) — функція розподілу випадкової величини X, а ξ — випадкова величина, яка рівномірно розподілена на інтервалі [0; 1]. Тоді випадкова величина X, що отримана як розв'язок рівняння:

$$X = F^{-1}(\xi), \tag{4.5}$$

буде мати функцію розподілу F(x), де F^{-1} — функція, обернена по відношенню до F. Геометрична інтерпретація цієї теореми представлена на рис. 4.1.

Рис. 4.1. Функція розподілу F(x) неперервної випадкової величини X

3 рисунку 4.1 видно, що, якщо взяти на осі ординат випадкове число ξ та знайти те значення випадкової величини X, при якому $F(x) = \xi$ (див. стрілку на рис.4.1), то отримана випадкова величина X буде мати функцію розподілу F(x).

Таким чином, кожен раз, коли необхідно отримати деяке значення випадкової величини X із заданою функцією розподілу F(x), поступають наступним чином: отримують випадкову величину $\xi \in [0; 1]$ та в якості випадкової величини беруть X, що обчислюється із (4.5).

Метод оберненої функції імітації випадкових величин із заданим законом розподілу має обмежену сферу застосування в практиці моделювання. Це пояснюється наступними обставинами: для багатьох законів розподілу неможливо отримати обернену функцію в явному вигляді; навіть для випадку, коли обернена функція існує в явному вигляді, формули для обчислення значень випадкових величин є громіздкими, що різко збільшує затрати машинного часу.

Зразок розв'язання задачі

3adaчa. Неперервна випадкова величина X задана функцією розподілу ймовірностей:

$$\mathcal{F}(\infty) = \begin{cases} 0. \infty = 1 \\ \ln^2 \infty. \infty = 1. e \end{cases} \tag{4.6}$$

- 1) Методом оберненої функції знайти функцію вигляду $X=F^{-l}(\xi)$. Отримати значення СНВВ та на їх основі побудувати графік функції розподілу F(x) неперервної випадкової величини X.
- 2) Знайти ймовірність того, що неперервна випадкова величина X прийме значення, яке належить інтервалу [2; 2,5].

Розв'язування.

Використовуючи метод оберненої функції, знайдемо формулу, за якою отримаємо СНВВ.

Прирівняємо значення функції розподілу до випадкової величини ξ :

$$\xi = \ln^3 x$$

Розв'язуємо це рівняння відносно x:

$$\xi = (\ln x)^3 \Rightarrow \ln x = \sqrt[3]{\xi}$$

звідки

$$x = e^{\sqrt[3]{\xi}}. (4.7)$$

За допомогою генератора ПВЧ отримаємо значення ξ на проміжку (0; 1): 0,85; 0,15; 0,5; 0,35; ... і т.д. Отримані значення впорядкуємо за зростанням та занесемо до таблиці 4.1. Значення випадкової величини X отримано за формулою (4.7).

Таблиця 4.1

ζ	X
0	1,00
0,05	1,45
0,1	1,59
0,15	1,70
0,2	1,79
0,25	1,88
0,3	1,95
0,35	2,02
0,4	2,09
0,45	2,15
0,5	2,21
0,55	2,27
0,6	2,32
0,65	2,38
0,7	2,43
0,75	2,48
0,8	2,53
0,85	2,58
0,9	2,63
0,95	2,67
1	2,72

На основі отриманих значень СНВВ (табл.4.1), будуємо графік функції розподілу F(x) неперервної випадкової величини X.

Рис. 4.2. Графік функції розподілу F(x) неперервної випадкової величини X

Для того щоб побудувати графік функції розподілу необхідно:

взяти значення випадкової величини ξ з проміжку [0; 1] на осі ординат та, підставляючи його у формулу (4.7), отримати значення випадкової величини X (див. стрілку на рис.4.2).

Таким чином, кожен раз, коли необхідно отримати деяке значення випадкової величини X із заданою функцією розподілу F(x), поступають так: отримують випадкову величину $\xi \in [0; 1]$ та в якості випадкової величини беруть X, що обчислюється за формулою (4.7).

Знайдемо ймовірність того, що в результаті експерименту X прийме значення, яке належить інтервалу [2; 2,5].

Відповідно до формули (4.2) обчислюємо шукану ймовірність:

$$P(2 < X < 2.5) = F(2.5) - F(2) = \ln^3 2.5 - \ln^3 2 = 0.44$$
.

Завдання на роботу

- 1. Відповідно до варіанту завдання (згідно з номером списку студентів) з табл. 4.2 знайти функцію вигляду $X=F^{-l}(\xi)$, використовуючи метод оберненої функції,
- 2. Побудувати імітаційну модель отримання системи неперервних випадкових величин, що мають рівномірний розподіл на проміжку [0; 1] (використати генератор ПВЧ).
- 3. На основі отриманих значень СНВВ, в створеній програмі, побудувати графік функції розподілу F(x) неперервної випадкової величини X за методом оберненої функції.
- 4. Знайти ймовірність того, що неперервна випадкова величина X прийме значення, яке належить інтервалу [a;b].

Таблиця 4.2.

№	Zawawa
варіанта	Задача
1.	$F(x) = tgx; a = 0; b = \frac{\pi}{8}$
2.	$F(x) = \frac{\sin x}{2}; a = 0; b = \frac{\pi}{4}$
3.	$F(x) = \sin x; a = 0; b = \frac{\pi}{4}$
4.	$F(x) = \ln 4x$; $a = 0.3$; $b = 0.6$
5.	F(x) = 2x + 1; $a = -0.4$; $b = -0.2$
6.	F(x) = tg2x; $a = 0.1$; $b = 0.35$
7.	$F(x) = \sin 3x$; $a = 0.1$; $b = 0.5$
8.	$F(x) = x^3$; $a = 0.5$; $b = 0.9$
9.	$F(x) = \frac{1}{x}$; $a = -3$; $b = -1$
10.	$F(x) = \sin 2x$; $a = 0.2$; $b = 0.4$
11.	$F(x) = \sin\frac{x}{2}; a = \frac{\pi}{4}; b = \frac{\pi}{3}$
12.	$F(x) = x^3$; $a = 0.3$; $b = 0.5$
13.	$F(x) = e^{3x+1}$; $a = 0.6$; $b = 0.9$
14.	$F(x) = e^{2x}$; $a = -0.9$; $b = -0.8$
15.	F(x) = tgx; $a = 0.2$; $b = 0.8$
16.	$F(x) = x^2$; $a = 0.2$; $b = 0.8$
17.	$F(x) = x^2 - 1$; $a = 1,1$; $b = 1,4$
18.	$F(x) = 5 \ln x$; $a = 1$; $b = 1,2$
19.	$F(x) = \frac{1}{x}$; $a = -4$; $b = -2$
20.	$F(x) = e^{5x}$; $a = 0,2$; $b = 0,4$
21.	$F(x) = 10^x$; $a = -0.8$; $b = -0.3$
22.	F(x) = 2 + 3x; $a = -0.5$; $b = -0.3$
23.	$F(x) = 1 + \ln x$; $a = 0.5$; $b = 0.9$
24.	F(x) = 2x - 3; $a = 1,6$; $b = 1,9$
25.	$F(x) = \ln x - 1$; $a = 0.4$; $b = 0.7$
26.	$F(x) = \sqrt{x}$; $a = 0.2$; $b = 0.8$
27.	$F(x) = x^3 + 3$; $a = -1.5$; $b = -1.3$

28.	$F(x) = \sin\frac{x}{2}; a = \frac{\pi}{8}; b = \frac{\pi}{4}$