- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

3.1.5 Basic properties of expectations-examples

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

3.1.5 Basic properties of expectations-examples

3.1.5 Basic properties of expectations-examples

$$E(\sum_{i=1}^{n} c_i \xi_i + b) = \sum_{i=1}^{n} c_i E \xi_i + b.$$

3.1.5 Basic properties of expectations-examples

$$E(\sum_{i=1}^{n} c_i \xi_i + b) = \sum_{i=1}^{n} c_i E \xi_i + b.$$

 \bullet ξ_1, \cdots, ξ_n indept. and expectations exist \Longrightarrow

$$E(\xi_1\cdots\xi_n)=E\xi_1\cdots E\xi_n.$$

3.1.5 Basic properties of expectations-examples

- \bullet $E\xi_1, \cdots, E\xi_n$ exist \Longrightarrow

$$E(\sum_{i=1}^{n} c_i \xi_i + b) = \sum_{i=1}^{n} c_i E \xi_i + b.$$

 \bullet ξ_1, \dots, ξ_n indept. and expectations exist \Longrightarrow

$$E(\xi_1\cdots\xi_n)=E\xi_1\cdots E\xi_n.$$

Example

Suppose that

$$P(\xi=m) = \frac{\binom{M}{m} \binom{N-M}{n-m}}{\binom{N}{n}}, \quad m=0,1,\cdots,n.$$

$$(n \le M \le N)$$
. Find $E\xi$.

Solution. Design a sampling without replacement.

Solution. Design a sampling without replacement. Let ξ_i be the number of defective goods in the *i*-th draw. Then $\xi \stackrel{d}{=} \sum_{i=1}^n \xi_i$.

Solution. Design a sampling without replacement. Let ξ_i be the number of defective goods in the i-th draw. Then $\xi \stackrel{d}{=} \sum_{i=1}^n \xi_i$. It is known that $P(\xi_i = 1) = M/N$, so $E\xi_i = M/N$.

Solution. Design a sampling without replacement. Let ξ_i be the number of defective goods in the i-th draw. Then $\xi \stackrel{d}{=} \sum_{i=1}^n \xi_i$. It is known that $P(\xi_i = 1) = M/N$, so $E\xi_i = M/N$. Hence

$$E\xi = E\left[\sum_{i=1}^{n} \xi_i\right] = \sum_{i=1}^{n} E\xi_i = \frac{nM}{N}.$$

Example

Suppose that ξ_1, \dots, ξ_n are independent identically distributed positive random variables with a common density function f(x). Show for any $1 \le k \le n$,

$$E\frac{\xi_1 + \dots + \xi_k}{\xi_1 + \dots + \xi_n} = \frac{k}{n}.$$

Proof.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

Proof.Notice that $\frac{\xi_k}{\xi_1+\cdots+\xi_n}$ is positive and

$$E\frac{\xi_k}{\xi_1 + \dots + \xi_n}$$

$$= \int_0^\infty \dots \int_0^\infty \frac{x_k}{x_1 + \dots + x_n} f(x_1) \dots f(x_n) dx_1 \dots dx_n$$

Proof.Notice that $\frac{\xi_k}{\xi_1 + \dots + \xi_n}$ is positive and

$$E\frac{\xi_k}{\xi_1 + \dots + \xi_n}$$

$$= \int_0^\infty \dots \int_0^\infty \frac{x_k}{x_1 + \dots + x_n} f(x_1) \dots f(x_n) dx_1 \dots dx_n$$

$$= \int_0^\infty \dots \int_0^\infty \frac{y_1}{y_1 + \dots + y_n} f(y_1) \dots f(y_n) dy_1 \dots dy_n$$

Proof.Notice that $\frac{\xi_k}{\xi_1 + \cdots + \xi_n}$ is positive and

$$E\frac{\xi_k}{\xi_1 + \dots + \xi_n}$$

$$= \int_0^\infty \dots \int_0^\infty \frac{x_k}{x_1 + \dots + x_n} f(x_1) \dots f(x_n) dx_1 \dots dx_n$$

$$= \int_0^\infty \dots \int_0^\infty \frac{y_1}{y_1 + \dots + y_n} f(y_1) \dots f(y_n) dy_1 \dots dy_n$$

$$= E\frac{\xi_1}{\xi_1 + \dots + \xi_n}.$$

- 3.1 Mathematical expectation
 3.1.5 Basic properties of expectations
 - On the other hand,

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_n}{\xi_1 + \dots + \xi_n}$$

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

On the other hand,

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_n}{\xi_1 + \dots + \xi_n}$$

$$= E\frac{\xi_1 + \dots + \xi_n}{\xi_1 + \dots + \xi_n} = 1.$$

- 3.1 Mathematical expectation
 3.1.5 Basic properties of expectations
 - On the other hand,

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_n}{\xi_1 + \dots + \xi_n}$$

$$= E\frac{\xi_1 + \dots + \xi_n}{\xi_1 + \dots + \xi_n} = 1.$$

It follows that

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} = \dots = E\frac{\xi_n}{\xi_1 + \dots + \xi_n} = \frac{1}{n}.$$

On the other hand,

3.1.5 Basic properties of expectations

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_n}{\xi_1 + \dots + \xi_n}$$

$$= E\frac{\xi_1 + \dots + \xi_n}{\xi_1 + \dots + \xi_n} = 1.$$

It follows that

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} = \dots = E\frac{\xi_n}{\xi_1 + \dots + \xi_n} = \frac{1}{n}.$$

Hence

$$E\frac{\xi_1 + \dots + \xi_k}{\xi_1 + \dots + \xi_n}$$

On the other hand,

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_n}{\xi_1 + \dots + \xi_n}$$

$$= E\frac{\xi_1 + \dots + \xi_n}{\xi_1 + \dots + \xi_n} = 1.$$

It follows that

$$E\frac{\xi_1}{\xi_1 + \dots + \xi_n} = \dots = E\frac{\xi_n}{\xi_1 + \dots + \xi_n} = \frac{1}{n}.$$

Hence

$$E\frac{\xi_1 + \dots + \xi_k}{\xi_1 + \dots + \xi_n}$$

$$= E\frac{\xi_1}{\xi_1 + \dots + \xi_n} + \dots + E\frac{\xi_k}{\xi_1 + \dots + \xi_n} = \frac{k}{n}.$$

Example

A grove of 52 trees is arranged in a circular fashion. If a total of 15 chipmunks (花栗鼠) live in these tress, show that there is a group of 7 consecutive trees that together house at least 3 chipmunks.

Example

A grove of 52 trees is arranged in a circular fashion. If a total of 15 chipmunks (花栗鼠) live in these tress, show that there is a group of 7 consecutive trees that together house at least 3 chipmunks.

解: 给定树j,记它连同它旁边按顺时针方向排列的6颗构成一个邻域 U_j , 生活在 U_j 中的chipmunks个数记为 Y_j .

Example

A grove of 52 trees is arranged in a circular fashion. If a total of 15 chipmunks (花栗鼠) live in these tress, show that there is a group of 7 consecutive trees that together house at least 3 chipmunks.

解: 给定树j,记它连同它旁边按顺时针方向排列的6颗构成一个邻域 U_j , 生活在 U_j 中的chipmunks个数记为 Y_j . 我们只要证明 $EY_j > 2 \ \forall j$, 就说明了存在一个树,使得至少有3个chipmunks生活在此树的邻域中.

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

事实上, 如果 $Y_j \le 2 \ \forall j$, 那么 $\sum_{j=1}^{52} Y_j \le 2 * 52$.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

事实上, 如果 $Y_j \leq 2 \,\forall j$, 那么 $\sum_{j=1}^{52} Y_j \leq 2 * 52$. 从而

$$E\left[\sum_{j=1}^{52} Y_j\right] \le 2 * 52.$$

3.1 Mathematical expectation

3.1.5 Basic properties of expectations

事实上, 如果 $Y_j \leq 2 \,\forall j$, 那么 $\sum_{j=1}^{52} Y_j \leq 2 * 52$. 从而

$$E\left[\sum_{j=1}^{52} Y_j\right] \le 2 * 52.$$

这与

$$\sum_{j=1}^{52} EY_j > 2 * 52$$

矛盾.

下面求 EY_i .

3.1.5 Basic properties of expectations

$$\diamondsuit \ X_i = \begin{cases} 1, & \text{if chipmunk i live in } U_j, \\ 0, & \text{otherwise.} \end{cases}$$

则
$$Y_j = \sum_{i=1}^{15} X_i$$
.

下面求 EY_j .

则
$$Y_j = \sum_{i=1}^{15} X_i$$
. 因为

$$EX_i = P(X_i = 1) = \frac{7}{52}.$$

下面求 EY_i .

$$\diamondsuit \ X_i = \begin{cases} 1, & \text{if chipmunk i live in } U_j, \\ 0, & \text{otherwise.} \end{cases}$$

则
$$Y_j = \sum_{i=1}^{15} X_i$$
. 因为

$$EX_i = P(X_i = 1) = \frac{7}{52}.$$

所以
$$EY_j = \sum_{i=1}^{15} EX_i = \frac{105}{52} > 2.$$

Example

Make a census on some kind of disease in a community with large population. Now check blood for N citizens in two ways: (1) each person each time, so need check N times. (2) check the mixture of bloods of a group of k people. If the outcome reports no virus, that means all these k people are not of this disease; while if the outcome reports virus, then each person from this group is checked again, so k people need check k+1 times in this way. Which way may decrease the number of checks?

Solution. Consider the second way. Denote by ξ the number of times each person needs check in a group of k people in the second way. Then

$$\xi = \begin{cases} 1/k, & \text{none of } k \text{ people is sick} \\ (k+1)/k, & \text{at least one of } k \text{ people is sick}. \end{cases}$$

So

Solution. Consider the second way. Denote by ξ the number of times each person needs check in a group of k people in the second way. Then

$$\xi = \begin{cases} 1/k, & \text{none of } k \text{ people is sick} \\ (k+1)/k, & \text{at least one of } k \text{ people is sick}. \end{cases}$$

So
$$P(\xi = \frac{1}{k}) = (1-p)^k$$
, $P(\xi = 1 + \frac{1}{k}) = 1 - (1-p)^k$.

Solution. Consider the second way. Denote by ξ the number of times each person needs check in a group of k people in the second way. Then

$$\xi = \begin{cases} 1/k, & \text{none of } k \text{ people is sick} \\ (k+1)/k, & \text{at least one of } k \text{ people is sick}. \end{cases}$$

So
$$P(\xi = \frac{1}{k}) = (1-p)^k$$
, $P(\xi = 1 + \frac{1}{k}) = 1 - (1-p)^k$. Hence
$$E\xi = \frac{1}{k}(1-p)^k + (1+\frac{1}{k})(1-(1-p)^k)$$

$$= 1 - (1-p)^k + \frac{1}{k}.$$

Properties of expectations (continue)

Corollary

Suppose
$$|\xi| \le \eta$$
, $E\eta < \infty$. Then $E\xi$ exists and $|E\xi| \le E|\xi| \le E\eta$.

Proof. For M>0, let $\xi_M=|\xi|$ if $|\xi|\leq M$, and 0 if $|\xi|>M$. Then $0\leq \xi_M\leq M$. By Property 1, $0\leq E\xi_M\leq M$.

Proof. For M>0, let $\xi_M=|\xi|$ if $|\xi|\leq M$, and 0 if $|\xi|>M$. Then $0\leq \xi_M\leq M$. By Property 1, $0\leq E\xi_M\leq M$. So $E\xi_M$, $E\eta$ exist, and $\xi_M\leq \eta$. It follows that

$$\int_{-M}^{M} |x| dF_{\xi}(x) = E\xi_M \le E\eta$$

by Property 4.

Proof. For M>0, let $\xi_M=|\xi|$ if $|\xi|\leq M$, and 0 if $|\xi|>M$. Then $0\leq \xi_M\leq M$. By Property 1, $0\leq E\xi_M\leq M$. So $E\xi_M$, $E\eta$ exist, and $\xi_M\leq \eta$. It follows that

$$\int_{-M}^{M} |x| dF_{\xi}(x) = E\xi_M \le E\eta$$

by Property 4. Hence $E|\xi| = \int_{-\infty}^{\infty} |x| dF_{\xi}(x) \leq E\eta < \infty$.

Proof. For M>0, let $\xi_M=|\xi|$ if $|\xi|\leq M$, and 0 if $|\xi|>M$. Then $0\leq \xi_M\leq M$. By Property 1, $0\leq E\xi_M\leq M$. So $E\xi_M$, $E\eta$ exist, and $\xi_M\leq \eta$. It follows that

$$\int_{-M}^{M} |x| dF_{\xi}(x) = E\xi_M \le E\eta$$

by Property 4. Hence $E|\xi|=\int_{-\infty}^{\infty}|x|dF_{\xi}(x)\leq E\eta<\infty$. Finally, since $-|\xi|\leq \xi\leq |\xi|$, by Property 4 we have $-E|\xi|\leq E\xi\leq E|\xi|$. The proof is completed.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

Corollary

Let p > 1. If $E|\xi|^p$ exists, then $E|\xi|$ exists.

Corollary

Let p > 1. If $E|\xi|^p$ exists, then $E|\xi|$ exists.

Proof. Since $|\xi| \le 1 + |\xi|^p$, $E|\xi| \le 1 + E|\xi|^p$.

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations
 - **1** Markov inequality: If $E|\xi|$ exists, then

$$P(|\xi| \ge \epsilon) \le \frac{E|\xi|}{\epsilon}, \ \forall \epsilon > 0.$$

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations
 - **1** Markov inequality: If $E|\xi|$ exists, then

$$P(|\xi| \ge \epsilon) \le \frac{E|\xi|}{\epsilon}, \ \forall \epsilon > 0.$$

1 Markov inequality: If $E|\xi|$ exists, then

$$P(|\xi| \ge \epsilon) \le \frac{E|\xi|}{\epsilon}, \ \forall \epsilon > 0.$$

In fact, let

$$\eta = \begin{cases} 1, & \text{if } |\xi| \ge \epsilon, \\ 0, & \text{for otherwise.} \end{cases} \quad \text{Then } \eta \le \frac{|\xi|}{\epsilon}.$$

By Property 4, we have

$$P(|\xi| \ge \epsilon) = E\eta \le E\left[\frac{|\xi|}{\epsilon}\right] = \frac{E|\xi|}{\epsilon}.$$

Andrey Andreyevich Markov (June 1856 – July 1922)

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

1 $P(\xi = 0) = 1$ if and only if $E|\xi| = 0$.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

1 $P(\xi = 0) = 1$ if and only if $E|\xi| = 0$.

1
$$P(\xi = 0) = 1$$
 if and only if $E|\xi| = 0$.

In fact, the "only if" part is obvious. For the "if" part, by Property 5 we have

$$P(|\xi| \ge \epsilon) = 0$$
 for all $\epsilon > 0$.

So
$$P(|\xi| > 0) = 0$$
.

Convergence theorems

(*Monotone convergence theorem*). If $0 \le \xi_n(\omega) \nearrow \xi(\omega)$, then

$$\lim_{n \to \infty} E\xi_n = E\xi. \tag{*}$$

If $0 \le \xi_n(\omega) \searrow 0$, and $E\xi_n$ s are finite, then

$$\lim_{n\to\infty} E\xi_n = 0.$$

Convergence theorems

(*Monotone convergence theorem*). If $0 \le \xi_n(\omega) \nearrow \xi(\omega)$, then

$$\lim_{n \to \infty} E\xi_n = E\xi. \tag{*}$$

If $0 \le \xi_n(\omega) \searrow 0$, and $E\xi_n$ s are finite, then

$$\lim_{n\to\infty} E\xi_n = 0.$$

(Dominated convergence theorem). If $\xi_n(\omega) \to \xi(\omega)$, $|\xi_n| \le \eta$ and $E\eta < \infty$, then (*) holds.

Convergence theorems

(Monotone convergence theorem). If $0 \le \xi_n(\omega) \nearrow \xi(\omega)$, then

$$\lim_{n \to \infty} E\xi_n = E\xi. \tag{*}$$

If $0 \le \xi_n(\omega) \searrow 0$, and $E\xi_n$ s are finite, then

$$\lim_{n \to \infty} E\xi_n = 0.$$

- **(** *(Dominated convergence theorem)*. If $\xi_n(\omega) \to \xi(\omega)$, $|\xi_n| \le \eta$ and $E\eta < \infty$, then (*) holds.
- **9** (Bounded convergence theorem). If $\xi_n(\omega) \to \xi(\omega)$ and $|\xi_n| \leq M < \infty$, then (*) holds.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

证明: 先证明有界收敛定理.

首先, 已知 $|\xi_n| \le M$, $|\xi| \le M$. 由性质1, $E\xi_n$, $E\xi$ 存在, 并且 $|E\xi_n - E\xi| \le E|\xi_n - \xi|$.

证明: 先证明有界收敛定理.

首先, 已知 $|\xi_n| \le M$, $|\xi| \le M$. 由性质1, $E\xi_n$, $E\xi$ 存在, 并且 $|E\xi_n - E\xi| \le E|\xi_n - \xi|$. 对任给的 $\epsilon > 0$, 记 $A_n = \{|\xi_n - \xi| > \epsilon\}$. 在 A_n^c 上有 $|\xi_n - \xi| \le \epsilon$. 而在 A_n 上有 $|\xi_n - \xi| \le 2M$.

证明: 先证明有界收敛定理.

首先, 已知 $|\xi_n| \le M$, $|\xi| \le M$. 由性质1, $E\xi_n$, $E\xi$ 存在, 并且 $|E\xi_n - E\xi| \le E|\xi_n - \xi|$. 对任给的 $\epsilon > 0$, 记 $A_n = \{|\xi_n - \xi| > \epsilon\}$. 在 A_n^c 上有 $|\xi_n - \xi| \le \epsilon$. 而在 A_n 上有 $|\xi_n - \xi| \le 2M$. 所以

$$|\xi_n - \xi| \le \epsilon + 2MI_{A_n}.$$

因此

$$|E\xi_n - E\xi| \le E|\xi_n - \xi| \le \epsilon + 2MP(A_n).$$

另一方面, 由于
$$\xi_n(\omega) \to \xi(\omega)$$
, 所以 $\lim_{n\to\infty} A_n = \emptyset$.

另一方面, 由于
$$\xi_n(\omega) \to \xi(\omega)$$
, 所以 $\lim_{n\to\infty} A_n = \emptyset$. 由概率的连续性得
$$\lim_{n\to\infty} P(A_n) = P(\lim_{n\to\infty} A_n) = 0.$$

另一方面, 由于 $\xi_n(\omega) \to \xi(\omega)$, 所以 $\lim_{n\to\infty} A_n = \emptyset$. 由概率的连续性得

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n) = 0.$$

所以

$$\limsup_{n \to \infty} |E\xi_n - E\xi| \le \limsup_{n \to \infty} E|\xi_n - \xi| \le \epsilon.$$

由 $\epsilon > 0$ 的任意性得

$$\lim_{n \to \infty} |E\xi_n - E\xi| = \lim_{n \to \infty} E|\xi_n - \xi| = 0.$$

现在证明单调收敛定理. 设
$$0 \le \xi_n(\omega) \nearrow \xi(\omega)$$
. 对任意的 $M > 0$, $\phi \eta_n = \xi_n I\{|\xi_n| \le M\}$. 则 $\eta_n \le \xi_n$, $\eta \le \xi$, $\eta_n(\omega) \to \eta(\omega)$, $\forall \omega$

并且 $0 \le \eta_n \le M$. 由有界收敛定理和数学期望的单调性知,

$$\lim_{n \to \infty} E\xi_n \ge \lim_{n \to \infty} E\eta_n = E\eta = \int_0^M x dF_{\xi}(x).$$

 $\diamondsuit M \to \infty$ 得

$$\lim_{n\to\infty} E\xi_n \ge E\xi.$$

如果 $E\xi = \infty$, 则结论已经得证.

现在证明单调收敛定理. 设 $0 \le \xi_n(\omega) \nearrow \xi(\omega)$. 对任意的M > 0, $\phi \eta_n = \xi_n I\{|\xi_n| \le M\}$, $\eta = \xi I\{|\xi| \le M\}$. 则 $\eta_n \le \xi_n$, $\eta \le \xi$,

$$\eta_n(\omega) \to \eta(\omega), \ \forall \omega$$

并且 $0 \le \eta_n \le M$. 由有界收敛定理和数学期望的单调性知,

$$\lim_{n \to \infty} E\xi_n \ge \lim_{n \to \infty} E\eta_n = E\eta = \int_0^M x dF_{\xi}(x).$$

 $\diamondsuit M \to \infty$ 得

$$\lim_{n\to\infty} E\xi_n \ge E\xi.$$

如果 $E\xi = \infty$, 则结论已经得证. 如果 $E\xi < \infty$, 则由于 $\xi_n \leq \xi$, 由单调性 得 $E\xi_n \leq E\xi$. 所以

$$\lim_{n\to\infty} E\xi_n = E\xi.$$

下设
$$0 \le \xi_n(\omega) \setminus 0$$
, $E\xi_n$ 存在, 这时

$$0 \le \xi_1 - \xi_n \nearrow \xi_1.$$

所以

$$E(\xi_1 - \xi_n) \to E\xi_1.$$

所以

$$E\xi_n \to 0.$$

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

最后证明控制收敛定理. 记

$$\eta_n = \sup_{m \ge n} |\xi_m - \xi|.$$

则
$$0 \le \eta_n(\omega) \searrow 0$$
.

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

最后证明控制收敛定理. 记

$$\eta_n = \sup_{m \ge n} |\xi_m - \xi|.$$

则
$$0 \le \eta_n(\omega) \setminus 0$$
. 另一方面, 由于 $0 \le \eta_n \le 2\eta$, 所以 $0 \le E\eta_n \le 2E\eta < \infty$.

最后证明控制收敛定理. 记

$$\eta_n = \sup_{m \ge n} |\xi_m - \xi|.$$

则 $0 \le \eta_n(\omega) \setminus 0$. 另一方面, 由于 $0 \le \eta_n \le 2\eta$, 所以 $0 \le E\eta_n \le 2E\eta < \infty$. 由单调收敛定理.

$$E\eta_n \to 0$$
.

而

$$|E\xi_n - E\xi| \le E|\xi_n - \xi| \le E\eta_n.$$

因此

$$\lim_{n\to\infty} E\xi_n = E\xi.$$

The proofs of the Basic properties of expectations

Basic properties of expectations of discrete random variables Property 1 (Absolute integrability): Suppose ξ is a discrete random variable. Then $E\xi$ is finite if and only if $E|\xi| < \infty$. Further

$$E\xi = E\xi^{+} - E\xi^{-}, \quad E|\xi| = E\xi^{+} + E\xi^{-}.$$

Property 2 (*Linearity*): Suppose ξ and η are discrete random variables. If $E\xi$ and $E\eta$ exist, then

$$E(a\xi + b\eta) = aE\xi + bE\eta.$$

Property 3 (*Monotonicity*): Suppose ξ and η are discrete random variables. If $\xi \leq \eta$ and the expectations of ξ and η exits, then $E\xi \leq E\eta$.

Property 4 (Modulus inequality): Suppose ξ and η are discrete random variables. If $|\xi| \leq \eta$ and the expectation $E\eta$ exists, then $E\xi$ exists and $|E\xi| \leq E|\xi| \leq E\eta$.

Property 4 (Modulus inequality): Suppose ξ and η are discrete random variables. If $|\xi| \leq \eta$ and the expectation $E\eta$ exists, then $E\xi$ exists and $|E\xi| \leq E|\xi| \leq E\eta$. Proof. Write $\xi = \sum_i x_i I_{A_i}$, $\eta = \sum_j y_j I_{B_j}$, where $x_i, y_j \geq 0$. Property 4 (Modulus inequality): Suppose ξ and η are discrete random variables. If $|\xi| \leq \eta$ and the expectation $E\eta$ exists, then $E\xi$ exists and $|E\xi| \leq E|\xi| \leq E\eta$.

Proof. Write $\xi = \sum_i x_i I_{A_i}$, $\eta = \sum_j y_j I_{B_j}$, where $x_i, y_j \geq 0$. Then

$$\eta = \sum_{i,j} y_j I_{A_i B_j}, |\xi| = \sum_{i,j} |x_i| I_{A_i B_j}.$$

So on the event A_iB_j , $y_j \ge |x_i|$.

Property 4 (Modulus inequality): Suppose ξ and η are discrete random variables. If $|\xi| \leq \eta$ and the expectation $E\eta$ exists, then $E\xi$ exists and $|E\xi| \leq E|\xi| \leq E\eta$.

Proof. Write $\xi = \sum_i x_i I_{A_i}$, $\eta = \sum_j y_j I_{B_j}$, where $x_i, y_j \geq 0$. Then

$$\eta = \sum_{i,j} y_j I_{A_i B_j}, |\xi| = \sum_{i,j} |x_i| I_{A_i B_j}.$$

So on the event A_iB_j , $y_j \ge |x_i|$. Therefore, $y_jI_{A_iB_j} \ge |x_i|I_{A_iB_j}$. By Property 3, $y_jP(A_iB_j) \ge |x_i|P(A_iB_j)$.

SO

$$\infty > E\eta = \sum_{j} y_j P(B_j) = \sum_{i,j} y_j P(A_i B_j)$$
$$\geq \sum_{i,j} |x_i| P(A_i B_j) = \sum_{i} |x_i| P(A_i).$$

Hence $E\xi$ exists and

$$|E\xi| = |\sum_{i} x_i P(A_i)| \le \sum_{i} |x_i| P(A_i)$$
$$= E|\xi| \le E\eta < \infty.$$

Corollary

Suppose ξ and η are discrete random variables, $a \leq \xi \leq b$. Then $E\xi$ exists and

$$a \le E\xi \le b$$
.

3.1 Mathematical expectation
3.1.5 Basic properties of expectations

Properties of Mathematical expectation for general random variables

For a random variable ξ . Define

$$\xi^{(m)} = \frac{k}{2^m} \quad \text{if} \quad \frac{k}{2^m} < \xi \le \frac{k+1}{2^m}.$$

Then

- If $\xi \geq 0$, then $0 \leq \xi_m \nearrow \xi$ and $0 \leq \xi \xi^{(m)} \leq \frac{1}{2^m}$.
- In general, $|\xi \xi^{(m)}| \leq \frac{1}{2^m}$.

Theorem

 $E\xi$ exists if and only if $E\xi^{(m)}$ exists for one m (and then all m). Furthermore,

$$E\xi = \lim_{m \to \infty} E\xi^{(m)}$$
$$\left| E\xi - E\xi^{(m)} \right| \le \frac{1}{2^m}.$$

Suppose ξ has cdf F(x). Write $x_{m,k} = \frac{k}{2m}$. Then

$$\xi^{(m)} = \sum_{k=-\infty}^{\infty} x_{m,k} I\{x_{m,k} < \xi \le x_{m,k+1}\},$$

$$E|\xi^{(m)}| = \sum_{k=-\infty}^{\infty} |x_{m,k}| P(x_{m,k} < \xi \le x_{m,k+1})$$

$$= \sum_{k=-\infty}^{\infty} |x_{m,k}| \Delta F(x_{m,k})$$

$$= \sum_{k=-\infty}^{\infty} \int_{x_{m,k} < x \le x_{m,k+1}} |x_{m,k}| dF(x),$$

where $\Delta F(x_{m,k}) = F(x_{m,k+1}) - F(x_{m,k})$.

For
$$x_{m,k} < x \le x_{m,k+1}$$
, we have $\left| |x_{m,k}| - |x| \right| \le \frac{1}{2^m}$. So,

$$\int_{-\infty}^{\infty} |x| dF(x) - \frac{1}{2^m}$$

$$\leq \sum_{k=-\infty}^{\infty} |x_{m,k}| \Delta F(x_{m,k})$$

$$= \sum_{k=-\infty}^{\infty} \int_{x_{m,k} < x \leq x_{m,k+1}} |x_{m,k}| dF(x)$$

$$\leq \int_{-\infty}^{\infty} |x| dF(x) + \frac{1}{2^m}.$$

So, $E\xi$ exists if and only if $E\xi^{(m)}$ exits.

Similarly,

$$E\xi^{(m)} = \sum_{k=-\infty}^{\infty} x_{m,k} P(x_{m,k} < \xi \le x_{m,k+1})$$
$$= \sum_{k=0}^{\infty} x_{m,k} \Delta F(x_{m,k})$$

and

$$\int_{-\infty}^{\infty} x dF(x) - \frac{1}{2^m} \le E\xi^{(m)} \le \int_{-\infty}^{\infty} x dF(x) + \frac{1}{2^m}.$$

The proof is completed.

- 3.1 Mathematical expectation
 - 3.1.5 Basic properties of expectations

• (*Positivity*). If $0 \le \xi$, then

$$E\xi \geq 0$$
.

If
$$a \leq \xi \leq b$$
, then

$$a \le E\xi \le b$$
.

3.1 Mathematical expectation

3.1.5 Basic properties of expectations

Proof. Assume $0 \le \xi$, then $0 \le \xi^{(m)}$.

3.1 Mathematical expectation

3.1.5 Basic properties of expectations

Proof. Assume $0 \le \xi$, then $0 \le \xi^{(m)}$. When $E\xi^{(m)} = \infty$, $E\xi = +\infty \ge 0$.

Proof. Assume $0 \le \xi$, then $0 \le \xi^{(m)}$. When $E\xi^{(m)} = \infty$, $E\xi = +\infty \ge 0$. When $E\xi^{(m)} < \infty$, then $E\xi$ is finite, and $0 < E\xi^{(m)} \nearrow E\xi$.

Proof. Assume $0 \le \xi$, then $0 \le \xi^{(m)}$. When $E\xi^{(m)} = \infty$, $E\xi = +\infty \ge 0$. When $E\xi^{(m)} < \infty$, then $E\xi$ is finite, and

$$0 \le E\xi^{(m)} \nearrow E\xi.$$

Assume $a \leq \xi \leq b$, then $a - \frac{1}{2^m} \leq \xi^{(m)} \leq b$. So, $E\xi^{(m)}$ exists and

$$a - \frac{1}{2^m} \le E\xi^{(m)} \le b.$$

Letting $m \to \infty$ yields $a \le E\xi \le b$.

2 (*Linearity*). $E\xi$ and $E\eta$ exist \Longrightarrow

$$E(a\xi + b\eta) = aE\xi + bE\eta.$$

Proof of Property (2). Note $|X - X^{(m)}| \leq \frac{1}{2^m}$. So

$$\begin{aligned} & \left| (a\xi + b\eta)^{(m)} - (a\xi^{(m)} + b\eta^{(m)}) \right| \\ & \leq \left| (a\xi + b\eta)^{(m)} - (a\xi + b\eta) \right| + \left| (a\xi^{(m)} + b\eta^{(m)}) - (a\xi + b\eta) \right| \\ & \leq \left| (a\xi + b\eta)^{(m)} - (a\xi + b\eta) \right| + |a| \cdot |\xi^{(m)} - \xi| + |b| \cdot |\eta^{(m)} - \eta| \\ & \leq \frac{1 + |a| + |b|}{2^m}. \end{aligned}$$

Proof of Property (2). Note $|X - X^{(m)}| \leq \frac{1}{2^m}$. So

$$\begin{aligned} & \left| (a\xi + b\eta)^{(m)} - (a\xi^{(m)} + b\eta^{(m)}) \right| \\ & \leq \left| (a\xi + b\eta)^{(m)} - (a\xi + b\eta) \right| + \left| (a\xi^{(m)} + b\eta^{(m)}) - (a\xi + b\eta) \right| \\ & \leq \left| (a\xi + b\eta)^{(m)} - (a\xi + b\eta) \right| + |a| \cdot |\xi^{(m)} - \xi| + |b| \cdot |\eta^{(m)} - \eta| \\ & \leq \frac{1 + |a| + |b|}{2^m}. \end{aligned}$$

It follows that

$$\left| E \left[(a\xi + b\eta)^{(m)} \right] - (aE\xi^{(m)} + bE\eta^{(m)}) \right| \le \frac{1 + |a| + |b|}{2^m}.$$

Taking the limit $m \to \infty$ completes the proof.

§ Suppose that ξ and η are independent, and expectations $E\xi$ and $E\eta$ exists. Then

$$E\xi\eta = E\xi E\eta.$$

§ Suppose that ξ and η are independent, and expectations $E\xi$ and $E\eta$ exists. Then

$$E\xi\eta = E\xi E\eta.$$

§ Suppose that ξ and η are independent, and expectations $E\xi$ and $E\eta$ exists. Then

$$E\xi\eta = E\xi E\eta.$$

Proof. Write

$$x_i = \frac{i}{2^m}.$$

The possible values of $\xi^{(m)}\eta^{(m)}$ are those x_ix_j s.

$$3.1.5$$
 Basic properties of expectations

$$E(\xi^{(m)}\eta^{(m)}) = \sum_{l} z_{l} P(\xi^{(m)}\eta^{(m)} = z_{l})$$

$$= \sum_{l} z_{l} \sum_{i,j:x_{i}x_{j}=z_{l}} P(\xi^{(m)} = x_{i}, \eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} x_{i}x_{j} P(\xi^{(m)} = x_{i}, \eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} x_{i}x_{j} P(\xi^{(m)} = x_{i}) P(\eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} x_{i} P(\xi^{(m)} = x_{i}) \sum_{j=-\infty}^{\infty} x_{j} P(\eta^{(m)} = x_{j}) = E\xi^{(m)} E\eta^{(m)}.$$

Similarly,

$$\sum_{l} |z_{l}| P(\xi^{(m)} \eta^{(m)} = z_{l})$$

$$= \sum_{l} |z_{l}| \sum_{i,j:x_{i}x_{j}=z_{l}} P(\xi^{(m)} = x_{i}, \eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} |x_{i}x_{j}| P(\xi^{(m)} = x_{i}, \eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} |x_{i}x_{j}| P(\xi^{(m)} = x_{i}) P(\eta^{(m)} = x_{j})$$

$$= \sum_{i=-\infty}^{\infty} |x_{i}| P(\xi^{(m)} = x_{i}) \sum_{j=-\infty}^{\infty} |x_{j}| P(\eta^{(m)} = x_{j}) < \infty.$$

So, $E(\xi^{(m)}\eta^{(m)})$ exists and

$$E(\xi^{(m)}\eta^{(m)}) = E\xi^{(m)}E\eta^{(m)} \to E\xi E\eta.$$

3.1.5 Basic properties of expectations On the other hand,

$$|(\xi\eta)^{(m)} - \xi\eta| \le \frac{1}{2^m},$$

$$\xi^{(m)}\eta^{(m)} - \xi\eta = (\xi^{(m)} - \xi)\eta^{(m)} + \xi(\eta^{(m)} - \eta)$$
$$= (\xi^{(m)} - \xi)\eta^{(m)} + \xi^{(m)}(\eta^{(m)} - \eta)$$
$$+ (\xi - \xi^{(m)})(\eta^{(m)} - \eta),$$

$$\left|\xi^{(m)}\eta^{(m)} - \xi\eta\right| \le \frac{1}{2^m} |\eta^{(m)}| + \frac{1}{2^m} |\xi^{(m)}| + \frac{1}{2^m} \frac{1}{2^m}.$$

3.1.5 Basic properties of expectations On the other hand,

$$|(\xi \eta)^{(m)} - \xi \eta| \le \frac{1}{2^m},$$

$$\xi^{(m)}\eta^{(m)} - \xi\eta = (\xi^{(m)} - \xi)\eta^{(m)} + \xi(\eta^{(m)} - \eta)$$

$$= (\xi^{(m)} - \xi)\eta^{(m)} + \xi^{(m)}(\eta^{(m)} - \eta)$$

$$+ (\xi - \xi^{(m)})(\eta^{(m)} - \eta),$$

$$\left|\xi^{(m)}\eta^{(m)} - \xi\eta\right| \le \frac{1}{2^m} |\eta^{(m)}| + \frac{1}{2^m} |\xi^{(m)}| + \frac{1}{2^m} \frac{1}{2^m}.$$

It follows that

$$|\xi^{(m)}\eta^{(m)} - (\xi\eta)^{(m)}| \le \frac{1}{2^m}|\eta^{(m)}| + \frac{1}{2^m}|\xi^{(m)}| + \frac{2}{2^m}.$$

Note that $\xi^{(m)}\eta^{(m)}$, $(\xi\eta)^{(m)}$, $|\eta^{(m)}|$, $|\xi^{(m)}|$ are discrete random variables, and $E[\xi^{(m)}\eta^{(m)}]$, $E[|\eta^{(m)}|]$, $E[|\xi^{(m)}|]$ exist. So $E[(\xi\eta)^{(m)}]$ exists and

$$|E[\xi^{(m)}\eta^{(m)}] - E[(\xi\eta)^{(m)}]|$$

$$\leq \frac{1}{2^m}E[|\eta^{(m)}|] + \frac{1}{2^m}E[|\xi^{(m)}|] + \frac{2}{2^m}$$

$$\leq \frac{1}{2^m}E[|\eta|] + \frac{1}{2^m}E[|\xi|] + \frac{4}{2^m} \to 0.$$

Hence, $E[\xi \eta]$ exists and

$$E[\xi\eta] = \lim_{m \to \infty} E[(\xi\eta)^{(m)}]$$

$$= \lim_{m \to \infty} E[\xi^{(m)}\eta^{(m)}]$$

$$= \lim_{m \to \infty} E[\xi^{(m)}]E[\eta^{(m)}]$$

$$= E[\xi]E[\eta].\square$$