Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Вопрос по выбору по курсу общей физики на тему:
«Униполярные двигатели»

Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будут рассмотрены принципы работы униполярных машин, их преимущества и недостатки, а также приведены примеры их использования в промышленности.

На примере простейшей униполярной машины, вращающегося вокруг своей оси симметрии магнитного диска, будет проведена проверка закона электромагнитной индукции Фарадея.

2 Теоретические сведения

2.1 Электромагнитная индукция

Открытие электромагнитной индукции Фарадеем в 1831 г. было одним из наиболее фундаментальных открытий в электродинамике Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединим с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется — в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. То же самое происходит, если повернуть магнит на 180°, не меняя направления движения катушки. Магнит можно заменить другой катушкой с током или электромагнитом. Вообще, при движении катушки в постоянном магнитном поле в ней (за исключением некоторых специальных случаев, которые выяснятся ниже) возбуждается электрический ток, прекращающийся, когда катушка останавливается. Этот ток называется индукционным током, а самое явление — электромагнитной индукцией. В частности, когда катушка равномерно вращается в постоянном магнитном поле, индукционный ток периодически меняет свою силу и направление.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим сначала простейший случай, когда два параллельных провода AB и CD помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное к читателю (рис. 1). Слева провода AB и CD замкнуты, справа — разомкнуты.

Вдоль проводов может свободно скользить проводящий мостик BC. Когда мостик движется вправо со скоростью v, вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд e в магнитном поле действует сила Лоренца $\vec{F} = (e/c)[\vec{v}, \vec{B}]$. На положительный ион она действует вниз, на отрицательный электрон — вверх. В результате электроны начнут перемещаться по мостику вверх, т. е. по нему потечет электрический ток, на-

правленный вниз. Это и есть индукционный ток. Перераспределившиеся заряды создадут электрическое поле, которое возбудит токи и в остальных участках кон-

тура ABCD . На рис. 1 эти токи изображены сплошными стрелками.

Сила Лоренца F в описанном опыте играет роль сторонней силы, возбуждающей электрический ток. Соответствующая напряженность стороннего поля равна

$$ec{E}^{ ext{ctop}} = rac{ec{F}}{e} = rac{1}{c} [ec{v}, ec{B}]$$

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается $\mathcal{E}^{\text{инд}}$. В рассматриваемом случае $\mathcal{E}^{\text{инд}} = -(v/c)Bl$, где l – длина мостика. Знак минус поставлен потому, что стороннее поле $(1/c)[\vec{v},\vec{B}]$ направлено против положительного обхода контура, определяемого вектором \vec{B} по правило правого винта. На рис. 1 приращение площади контура ABCD в единицу времени, или скорость скорости приращения этой площади. Поэтому величина vBl равна $d\Phi/dt$, т.е. скорости приращения магнитного потока, пронизывающего площадь контура ABCD. Таким образом,

$$\mathscr{E}^{\text{инд}} = -\frac{1}{c} \frac{d\Phi}{dt} \tag{1}$$

Результат (1) справедлив и в том случае, когда однородное магнитное поле В направлено под любым углом к плоскости контура ABCD. Действительно, представим вектор \vec{B} в виде $\vec{B}_t + \vec{B}_n$, где \vec{B}_t — тангенциальная, а \vec{B}_n — нормальная к плоскости контура слагающие этого вектора. Вектор \vec{B}_t вносит в стороннее поле слагаемое (1/c)[\vec{v} , \vec{B}_t], перпендикулярное к мостику. Оно вызывает лишь перераспределение электрических зарядов поперек мостика, но тока не дает. Ток вызывается только нормальной слагающей \vec{B}_n , а потому инд определяется прежней формулой (1).

Теперь не составляет труда распространить формулу (1) на случай любого замкнутого провода, движущегося произвольным образом в постоянном неоднородном магнитном поле. Для этого надо мысленно разбить провод на бесконечно малые участки и рассмотреть движение каждого из них. При бесконечно малом перемещении каждого из таких участков магнитное поле, в котором он движется, можно считать однородным. Поэтому электродвижущая сила, действующая между концами участка, может быть представлена выражением (1). Путем суммирования таких выражений получится формула того же вида, в которой, однако, под $\mathcal{E}^{\text{инд}}$ следует понимать полную электродвижущую силу, действующую в замкнутом проводе, а под $d\Phi/dt$ — скорость изменения магнитного потока через любую поверхность, натянутую на контур провода.

Формула (1) выражает основной закон электромагнитной индукции. Она показывает, что при движении замкнутого провода в магнитном поле в нем возбуждается электродвижущая сила, пропорциональная скорости приращения магнитного потока, пронизывающего контур провода.

К формуле (1) можно прийти также с помощью закона сохранения энергии, как это впервые сделал Гельмгольц.

Рассмотрим, следуя Гельмгольцу, замкнутый виток провода, в который включен гальванический элемент с электродвижущей силой Виток движется в постоянном магнитном поле (вообще говоря, неоднородном). За время dt амперовы силы

совершают над витком работу $(I/c)d\Phi$. Кроме того, в витке выделяется джоулево тепло RI^2dt . Сумма этих величин должна равняться работе гальванического элемента $\mathscr{E}Idt$, т.е.

$$\frac{1}{c}Id\Phi + I^2Rdt = \mathcal{E}Idt \tag{2}$$

Отсюда

$$I = \frac{\mathscr{E} - (1/c)d\Phi/dt}{R} \tag{3}$$

Таким образом, в движущемся витке ток определяется не только электродвижущей силой гальванического элемента. К ней добавляется слагаемое $-(1/c)d\Phi/dt$. Это слагаемое и есть электродвижущая сила индукции.

Заметим, что уравнению сохранения энергии (1) можно также удовлетворить, положив I=0. Какое из двух решений выбрать: решение I=0 или решение (3) — на это закон сохранения энергии не дает никаких указаний. Следовательно, без привлечения дополнительных соображений он не позволяет предсказать явление электромагнитной индукции. Нужно как-то исключить решение I=0. С этой целью, как это сделал Гельмгольц, в виток и включен гальванический элемент с электродвижущей силой $\mathscr E$. То обстоятельство, что добавочная электродвижущая сила $-(1/c)d\Phi/dt$, появляющаяся при движении проводника, не зависит от $\mathscr E$, делает правдоподобным заключение, что и при отсутствии гальванического элемента в движущемся витке должна возникнуть такая же электродвижущая сила. Можно обойтись и без введения гальванического элемента, если предположить, что при движении проводника должен возникать индукционный ток. Тогда закон сохранения энергии позволяет определить силу этого тока, а следовательно, и электродвижущую силу индукции. В этом истинный смысл и содержание рассуждения Гельмгольца.

Индукционные токи могут возникать и в неподвижных проводниках. Действительно, возьмем замкнутый провод и постоянный магнит. При движении провода возникает индукционный ток. Что произойдет, если, оставляя провод неподвижным, двигать магнит? Покой и движение — понятия относительные. Явление индукционного тока должно зависеть только от относительного движения провода и магнита. Отсюда следует, что при движении магнита будет возбуждаться такой же индукционный ток, что и при соответствующем движении провода. Опыт подтверждает это заключение. Возьмем прежнюю катушку, соединенную с гальванометром, и будем приближать к ней магнит. Стрелка гальванометра отклонится в катушке возбудился электрический ток. При удалении магнита стрелка отклоняется в противоположную сторону, т.е. индукционный ток меняет направление. То же самое происходит, если магнит повернуть к катушке другим полюсом, не меняя направления его движения. Если магнит вращать, то индукционный ток в катушке будет периодически менять свое направление. Когда магнит останавливается, индукционный ток в катушке прекращается. Вместо магнита можно взять электромагнит или другую катушку, по которой течет ток, возбуждающий магнитное поле. При их движении в неподвижной катушке возбуждается электрический ток.

В описанных опытах с движением магнита менялся магнитный поток, пронизывающий неподвижную катушку. Но такое же изменение магнитного потока можно получить и без движения магнита. Достаточно поместить катушку в переменное

магнитное поле. Последнее можно подобрать так, чтобы в месте нахождения катушки оно в точности совпадало с магнитным полем движущегося магнита. От такой замены объективные физические условия, в которых находится катушка, не изменятся. Поэтому естественно ожидать, что не изменится и индукционный ток, возбуждаемый в катушке. Опыт подтверждает и это заключение. Возьмем две неподвижные катушки, одна из которых помещена внутри другой. Если через одну из катушек пропускать переменный ток, то в другой катушке появляется индукционный электрический ток. Таким образом, для возбуждения индукционного тока существенно изменение магнитного потока через контур проводника, а не способ, каким это изменение достигается.

Вот другая демонстрация, подтверждающая это заключение. На подковообразный магнит надевается проволочная катушка, соединенная с гальванометром (рис. 2). Если полюсы магнита замкнуть железным якорем, то изменится магнитный поток через катушку. В ней возникает индукционный ток, и стрелка гальванометра отклоняется.

Рис. 2

2.2 Правило Ленца

Формула (1) определяет не только величину, но и направление индукционного тока.

Рис. 3

Действительно, возьмем в магнитном поле замкнутый проволочный виток, положительное направление обхода которого составляет с направлением поля правовинтовую систему (на рис. 3 магнитное поле направлено к читателю). Допустим, что магнитный поток Ф возрастает. Тогда, согласно формуле (1), величина инд будет отрицательна, а потому индукционный ток в витке потечет в отрицательном направлении. Такой ток, ослабляя внешнее магнитное поле, будет препятствовать возрастанию магнитного потока. Пусть теперь магнитный поток Ф убывает.

Тогда величина $\mathcal{E}^{\text{инд}}$ станет положительной, а индукционный ток в витке потечет в положительном направлении и будет препятствовать убыванию магнитного поля и магнитного потока. Таким образом, индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

2.3 Максвелловская трактовка явления электромагнитной индукции

Когда проводник движется в постоянном магнитном поле, индукционный ток вызывается магнитной составляющей силы Лоренца (e/c)[\vec{v} , \vec{B}]. Какая же сила возбуждает индукционный ток в неподвижном проводнике, находящемся в переменном магнитном поле? Ответ был дан Максвеллом. Согласно Максвеллу, всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле. Последнее и является причиной возникновения индукционного тока в проводнике. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности \vec{E} этого поля по любому неподвижному замкнутому контуру s определяется выражением

$$\oint_{s} (\vec{E}d\vec{s}) = -\frac{1}{c} \frac{\partial \Phi}{\partial t},\tag{4}$$

где Φ — магнитный поток, пронизывающий контур s. Мы использовали для обозначения скорости изменения магнитного потока знак частной, а не полной производной. Этим мы хотим подчеркнуть, что контур s должен быть неподвижным.

Между максвелловым и фарадеевым пониманием явления электромагнитной индукции имеется существенное различие. Согласно Фарадею, электромагнитная индукция состоит в возбуждении электрического тока. Для ее наблюдения необходимо наличие замкнутого проводника. Максвелл, напротив, видит сущность электромагнитной индукции прежде всего в возбуждении электрического поля, а не тока. Электромагнитная индукция может наблюдаться и тогда, когда в пространстве вообще нет никаких проводников. Появление индукционного тока в замкнутом проводнике при внесении последнего в переменное магнитное поле есть лишь одно из проявлений электрического поля \vec{E} , возникшего в результате изменения поля магнитного. Но поле \vec{E} может производить и другие действия, например поляризовать диэлектрик, вызвать пробой конденсатора, ускорять и тормозить заряженные частицы и т.п. Оно может вызвать электрический ток и в незамкнутом проводнике, как показывает, например, следующий опыт.

Возьмем две катушки, расположенные близко одна от другой приблизительно так, чтобы ось одной катушки была продолжением оси другой. Концы первой катушки присоединим к звуковому генератору, т.е. прибору, который может возбуждать переменные токи с частотами, лежащими в звуковом диапазоне. Концы второй катушки соединим с горизонтальными пластинами электронного осциллографа. Когда в первой катушке течет переменный ток, луч осциллографа отклоняется, хотя цепь второй катушки разомкнута. Луч бегает вверх и вниз, и на экране видна светлая вертикальная полоска, переходящая в синусоиду после включения горизонтальной развертки. Это доказывает, что между горизонтальными пластинами осциллографа появилось переменное электрическое поле. Пластины оказались заряженными, причем их заряды периодически меняются во времени, а во второй катушке текут переменные индукционные токи, несмотря на то, что цепь разомкнута.

Максвеллова формулировка закона индукции более общая, чем формулировка Фарадея. Она принадлежит к числу наиболее важных обобщений электродинамики. Математически закон индукции в понимании Максвелла выражается формулой (4), где s — произвольный математический замкнутый контур, который может быть проведен и в диэлектрике, а не обязательно в проводнике, как было у Фарадея. Магнитный поток Φ определяется интегралом

$$\Phi = \oint_{S} \vec{B} d\vec{S} \tag{5}$$

взятым по произвольной поверхности S, натянутой на контур s. Поэтому формулу (4) можно представить в виде

$$\oint_{S} (\vec{E}d\vec{s}) = -\frac{1}{c} \frac{\partial}{\partial t} \int_{S} \vec{B}d\vec{S} = -\frac{1}{c} \int_{S} \frac{\partial \vec{B}}{\partial t} d\vec{S} \tag{6}$$

Уравнение (6) может быть преобразовано в дифференциальную форму

$$\operatorname{rot}\vec{E} = -\frac{1}{c}\frac{\partial\vec{B}}{\partial t} \tag{7}$$

Это — дифференциальная форма закона электромагнитной индукции.

В электростатике источниками электрического поля являются неподвижные электрические заряды. Для такого поля интеграл $\oint \vec{E} d\vec{s}$ обращается в нуль по любому замкнутому контуру. По этой причине одно только электростатическое поле не может обеспечить непрерывное течение электричества вдоль замкнутых проводов. Напротив, электрическое поле, возбуждаемое магнитным полем, меняющимся во времени, — не потенциальное, а вихревое. Ротор такого поля и его циркуляция, вообще говоря, отличны от нуля. Благодаря этому вихревое поле без каких бы то ни было добавочных сил может вызвать непрерывное течение электричества по замкнутым проводам. Это течение и наблюдается в виде индукционных токов.

2.4 Нерелятивистское преобразование полей B и H при переходе от одной инерциальной системы к другой

Пусть заряженная частица в системе отсчета S движется со скоростью \vec{v} в полях \vec{E} и \vec{B} . Тогда на нее действует сила

$$\vec{F} = q \left(\vec{E} + \frac{1}{c} [\vec{v}, \vec{B}] \right)$$

Перейдем в систему отсчета S', движущуюся со скоростью \vec{v} , в которой частица покоится. В этом системе не частицу действует только сила со стороны электрического поля:

$$\vec{F}' = q\vec{E}'$$

В нерелятивистском пределе сила есть инвариант, то есть $\vec{F} = \vec{F}'$. Отсюда следует первый закон преобразования:

$$\vec{E}' = \vec{E} + \frac{1}{c} [\vec{v}, \vec{B}] \tag{8}$$

Обратный переход от системы отсчета S' к системе S получается изменением знака скорости:

$$\vec{E} = \vec{E}' - \frac{1}{c} [\vec{v}, \vec{B}'] \tag{9}$$

Из закона Био-Савара следует, что магнитное поле заряда, движущегося со скоростью \boldsymbol{v} , равно

$$\vec{B} = \frac{1}{c} [\vec{v}, \vec{E}'], \vec{E}' = \frac{q\vec{r}}{r^3}$$

Рассмотрим систему покоящихся (в системе отсчета S') заряженных частиц. Они создают электростатическое поле

$$ec{E}' = \sum_k rac{q_k}{r_k^3} ec{r}_k = \sum_k ec{E}_k'$$

Перейдем в систему отсчета S, движущуюся со скорости \vec{v} . Тогда каждый из зарядов системы создает магнитное поле $\vec{B}_k = \frac{1}{c} [\vec{v}, \vec{E}_k']$, а все вместе они создают поле

$$\vec{B} = \frac{1}{c} [\vec{v}, \vec{E}']$$

Таким образом , в системе отсчета, в которой заряды движутся, возникает магнитное поле. Если в собственной системе зарядов присутствует магнитное поле \vec{B}' (создаваемое, например, собственным магнитным моментом частицы), то суммарное магнитное поле дается формулой

$$\vec{B} = \vec{B}' + \frac{1}{c} [\vec{v}, \vec{E}'] \tag{10}$$

Обратный переход от системы S к системе S' получается изменение знака скорости:

$$\vec{B}' = \vec{B} - \frac{1}{c} [\vec{v}, \vec{E}] \tag{11}$$

2.5 Униполярная машина

В своем принципе униполярная машина состоит из вращающегося вокруг своей оси цилиндрического постоянного магнита. Если при помощи скользящих контактов A и B присоединиться проводник к оси и к боковой поверхности вращающегося магнита (рис. 4) напряженность электромагнитного поля и плотность тока в каждой точке пространства будут постоянными во времени.

Применим закон индукции к какому-либо контуру, проходящему по внешнему проводу AVB и по магниту, например к контуру COAVBC. В момент времени $t+\Delta t$ материальные точки, находившиеся в момент t на этом контуре, сместятся на расстояние $\vec{u}dt$ и займут положение C'OAVBC. Обозначим эти потоки соответственно через Ψ и Ψ' , так что $d\Psi = \Psi - \Psi'$. Однако контур C'OAVBC в отличие от контура COAVBC не замкнут, так что, строго говоря, понятие потока Ψ' через этот незамкнутый контур не является определенным.

Из (6) следует, что в рассмотренном случае под $d\Psi/dt$ надо понимать величину

$$\frac{d\Psi}{dt} = \oint \vec{B}[\vec{u}, d\vec{s}],$$

причем интеграл должен быть взят по замкнутому контуру COAVBC. Так как $\vec{u}d\vec{s} \neq 0$ только на участке CO этого контура, то

$$d\Psi = \int\limits_{C}^{O} ec{B}[ec{u}dt, dec{s}]$$

Легко убедится, что это выражение для $d\Psi$ с точностью до величин второго порядка относительно dt равно потоку индукции через бесконечно малый круговой сектор COC'. Поэтому при вычислении $d\Psi$ из соотношения $d\Psi = \Psi' - \Psi$ под Ψ' можно понимать поток через замкнутый контур C'OAVBCC', получающийся замыканием деформированного движением контура C'OAVBC отрезком CC' траектории, описанной точкой C' разрыва контура.

ЭДС индукции $\mathscr{E}^{\text{инд}}$ в контуре COAVBC равна

$$\mathscr{E}^{ ext{\tiny MHZ}} = -rac{1}{c}rac{d\Psi}{dt} = -rac{1}{c}\int\limits_{C}^{O}ec{B}[ec{u},dec{s}]$$

Подобным же образом можно вычислить $\mathcal{E}^{\text{инд}}$ для любого другого замкнутого контура. Для каждого фиксированного в пространстве контура величина $\mathcal{E}^{\text{инд}}$ имеет постоянное, не меняющееся во времени значение. При вычислении токов, возбуждаемых в магните и во внешнем проводнике этими ЭДС индукции, уже не нужно больше учитывать вращение магнита; влияние этого вращения полностью учитывается значением $\mathcal{E}^{\text{инд}}$.

Рассмотрим равномерно вращающийся цилиндрический магнит, к которому никакие проводники не присоединены и в котором поэтому токи не циркулируют. Отсутствие токов означает, что направленная по радиусу r цилиндра лоренцева сила $e[\vec{u}/c,\vec{B}]$ компенсируется внутри магнита радиальным электрическим полем \vec{E} , т.е. что внутри магнита

$$\vec{E} = -\left[\frac{\vec{u}}{c}, \vec{B}\right]$$

Будем считать вектор \vec{B} в магните постоянным и направленным по оси вращения, получаем

$$E_r = -\frac{u}{c}B = -\frac{\omega r}{c}B,$$

где ω означает угловую скорость вращения магнита. Таким образом, между цилиндрической поверхностью магнита и его осью устанавливается разность потенциалов

$$\varphi_{\text{ось}} - \varphi_{\text{пов}} = \int_{r=0}^{r=a} E_r dr = -\frac{\omega a^2}{2c} B, \qquad (12)$$

где a — означает радиус магнита.

В чем причина возникновения в изолированном вращающемся магните радиального электрического поля? Частично это поле обусловливается перераспределением электронов проводимости в магните под воздействием лоренцевой силы

 $e[\vec{u}/c,\vec{B}]$. Однако основная часть электрического поля, возникающего при движении магнита, имеет число релятивистское происхождение и связана с тем обстоятельством, что согласно теории относительности, движение магнита намагниченной среды возбуждает электрическое поле. Это видно, например, из формулы (8).

2.6 Практическое использование униполярных машин

Основной проблемой первых униполярных машин являлась проблема токасъема, т.е. создания скользящих контактов, которые выдерживали длительную эксплуатацию, большие токи и незначительно влияли на вращение ротора. Это проблема была решена сравнительно недавно благодаря использованию новых жидкометаллических сплавов, обладающих низкими температурами плавления и вязкостью при высокой электрической проводимости.

В униполярной машине и токи и поля постоянны, поэтому вихревых токов нет, потому как ротор, так и статор выполняются сплошными, что гарантирует долгое время службы.

Униполярная машина — это, грубо говоря, машина с обмоткой из одного витка. Потому она и дает относительно низкое напряжение — не более сотен вольт. Сила тока здесь достигает сотен тысяч ампер, и при этом он строго постоянен, практически лишен пульсаций. В этом есть свои плюсы и минусы. Плюс — в том, что можно получить ток такой силы. Минус — ток низкого напряжения невозможно передавать на большие расстояния. Потому униполярные генераторы ставятся там, где такая передача не требуется, например, электролитические производства.

Также униполярные машины могут быть использованы в металлургической и химической промышленности, в частности для получения электролизом алюминия, меди и других металлов; для питания дуговых печей и электромагнитных насосов, перекачивающих жидкий металл; получения хлора и т.д. Электромагнитные насосы применяются, например, с целью обеспечения циркуляции теплоносителя в атомных реакторах. Другой важной областью применения мощных униполярных генераторов являются экспериментальные установки ядерной физики, главным образом для питания обмоток электромагнитов.

3 Оборудование

В работе используется неодимовый диск диаметром 25 мм с зенковкой 4.5/7.5 мм, инструмент Dremel Model 800 Cordless Rotary Tool с диапазоном скорости вращения от 5000 до 35000 об/мин и мультиметр 26044 8. Магнитная индукция диска равна \boldsymbol{B} :

$$B = (1, 24 \pm 0, 02)$$
 Тл

Радиус диска *a*:

$$a = (12, 5 \pm 0, 2)$$
 mm

4 Результаты измерений и обработка результатов

Снимем зависимость разности потенциалов от скорости вращения диска

$\omega \cdot 10^3,$ об/мин	$\Delta arphi$, мВ		
5	15	17	15
8	28	27	23
12	42	38	40
16	50	55	51
21	66	65	67
23	75	74	72
26	85	80	82

Таблица 1. Зависимость разности потенциалов $\varphi_{\text{ось}}$ – $\varphi_{\text{пов}}$ от угловой скорости вращения диска ω

По полученным данным построим зависимость разности потенциалов $\varphi_{\text{ось}}$ – $\varphi_{\text{пов}}$ от угловой скорости вращения диска ω

Рис. 5. Зависимость разности потенциалов $\varphi_{\text{ось}}$ – $\varphi_{\text{пов}}$ от угловой скорости вращения диска ω

Коэффициент наклона графика равен:

$$k = (3, 2 \pm 0, 2) \ 10^{-6} \ \mathrm{B} \cdot \mathrm{M}$$
ин

По формуле (12) рассчитаем теоретическое значение $k^{\text{теор}}$

$$k^{\text{теор}} = 3, 3 \cdot 10^{-6} \text{ B} \cdot \text{мин}$$

5 Обсуждение результатов и выводы

В работе было подробно рассмотрены явление электромагнитной индукции и нерелятивистское преобразование полей. Объяснены принципы работы униполярный машин, их плюсы и минусы, а также приведены примеры их практического использования.

Была собрана простейшая униполярная машина (рис. 4) и исследована зависимость разности потенциалов $\varphi_{\text{ось}} - \varphi_{\text{пов}}$ от угловой скорости вращения диска ω (рис. 5). Коэффициент наклона графика в пределах погрешности сошелся с теоретическим значением, что может являться подтверждением закона электромагнитной индукции.