Response to Office Action Serial No. 09/765,830 Page 2 of 12

IN THE CLAIMS

- (Currently Amended) A robot apparatus mounted on a robot hub, the robot 1. apparatus comprising:
 - a main robot link fixedly centrally mounted to the robot hub;
- a first robot extension arm rotatably mounted to a first end of the main robot link at a first axis;
- a second robot extension arm rotatably mounted to a second end of the main robot link at a second axis, the first end of the main robot link being lecated on a distal end of the main robot link from fixed in orientation relative to the second end of the main robot link;
 - a first robot blade being mounted to the first robot extension arm;
 - a second robot blade being mounted to the second robot extension arm;
- a hub motor providing controllable rotational motion of the main robot link about the robot hub:
- a first extension motor configured to provide controllable simultaneous extension or retraction of the first robot extension arm and the first robot blade and rotation of the first robot blade about the first axis; and
- a second extension motor configured to provide controllable simultaneous extension or retraction of the second robot extension arm and the second robot blade and rotation of the second robot blade about the second axis.
- (Original) The robot apparatus of claim 1, wherein the hub motor includes a 2. stepper motor.
- (Čancelled)
- (Previously Amended) The robot apparatus of claim 1, wherein the main robot 5. link is a unitary structure.

PAGE 5/15 * RCVD AT 11/25/2003 11:05:08 AM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/2 * DNIS:8729327 * CSID:732 530 9808 * DURATION (mm-ss):03-34

Response to Office Action Serial No. 09/765,830 Page 3 of 12

- (Original) The robot apparatus of claim 1, wherein each of the plurality of hub 6. motor, first extension motor, and second extension motor are independently controllable.
- (Original) The robot apparatus of claim 1, wherein the first robot blade and the 7. second robot blade are each configured to be inserted in a cell.
- (Original) The robot apparatus of claim 1, further comprising a first pulley 8. arrangement that transfers output motion from the first extension motor to simultaneous angular rotation of the first extension arm and angular rotation of the first robot blade.
- (Original) The robot apparatus of claim 8, wherein the first pulley arrangement 9. provides for angular rotation of the first extension arm that occurs at a fixed rate compared to the rate of the angular rotation of the first robot blade.
- (Original) The robot apparatus of claim 8, wherein the first pulley arrangement 10. provides for angular rotation of the first extension arm at a rate that is twice the rate of the angular rotation of the first robot blade.
- (Currently Amended) A robot apparatus mounted on a robot hub, the robot 11. apparatus comprising:

a main robot link fixedly mounted to rotate about the robot hub between a first end and a second end of the main robot link, the first end having a fixed orientation relative to the second end;

a hub motor capable of providing controllable rotational motion to the main robot link about the robot hub;

a first extension hub being rotatably mounted to a first side of the main robot link;

Page 4 of 12

Response to Office Action Serial No. 09/765,830

a second extension hub being rotatably mounted to a second side of the main robot link, the second side being on an opposed side of the robot link from the first side;

- a first extension arm being mounted to the first extension hub;
- a second extension arm being mounted to the second extension hub;
- a first robot blade hub being rotatably mounted to a distal location of the first robot arm from the first extension hub;
- a second robot blade hub being rotatably mounted to a distal location of the second robot arm from the second extension hub;
 - a first robot blade mounted to the first robot blade hub;
 - a second robot blade mounted to the second robot blade hub;
- a first extension motor configured to provide a first controllable simultaneous extension or a first controllable simultaneous retraction of the first <u>robot blade</u> extension arm about the first extension hub and <u>rotation of</u> the first robot blade about the first robot blade hub; and
- a second extension motor configured to provide a second controllable simultaneous extension or a second controllable simultaneous retraction of the second robot blade extension arm about the second extension hub and rotation of the second robot blade about the second robot blade hub.
- 12. (Original) The robot apparatus of claim 11, wherein the second controllable simultaneous extension or the second controllable simultaneous retraction occurs respectively independently of the first controllable simultaneous retraction
- 13. (Original) The robot apparatus of claim 11, wherein the second controllable simultaneous extension or the second controllable simultaneous retraction occurs respectively dependently of said first controllable simultaneous retraction or the first controllable simultaneous extension.

Response to Office Action Serial No. 09/765,830 Page 5 of 12

- 14. (Original) The robot apparatus of claim 11, wherein the robot apparatus is designed to insert the first robot blade or the second robot blade sequentially into a single process cell.
- 15. (Original) The robot apparatus of claim 11, wherein the hub motor includes a stepper motor.

16-17. (Cancelled)

- 18. (Previously Amended) The robot apparatus of claim 11, wherein the main robot link is a unitary structure.
- 19. (Original) The robot apparatus of claim 11, wherein each of the plurality of hub motor, first extension motor, and second extension motor are independently controllable.
- 20. (Original) The robot apparatus of claim 11, wherein the first robot blade and the second robot blade are each configured to be inserted in a cell.
- 21. (Original) The robot apparatus of claim 11, further comprising a first pulley arrangement that transfers output motion from the first extension motor to simultaneous angular rotation of the first extension arm and angular rotation of the second robot blade.
- 22. (Original) The robot apparatus of claim 21, wherein the first pulley arrangement provides for angular rotation of the first extension arm that occurs at a fixed rate compared to the rate of the angular rotation of the first robot blade.

Response to Office Action Serial No. 09/765,830 Page 6 of 12

- 23. (Original) The robot apparatus of claim 21, wherein the first pulley arrangement provides for angular rotation of the first extension arm at a rate that is twice the rate of the angular rotation of the first robot blade.
- 24. (Currently Amended) A method of providing a robot motion to a dual-bladed robot including a main robot linkage [[,]] coupled to a first extension arm at a first axis, and a connected a first robot blade extendably mounted to a first-side of the main robot linkage coupled to the first extension arm at a second axis, and a second extension arm coupled to the main linkage opposite the first extension arm; and a connected second robot blade extendably mounted to a second side of the main robot linkage coupled to the second extension arm at a third axis, the method comprising:
- (a) rotating the main robot link so the first extension arm and the first robot blade are in an initial aligned position with a first process cell, wherein the first extension arm and the first robot blade remain in their retracted positions;
- (b) continuing rotation of the main robot link to insert the first robot blade in the first process cell, wherein the first extension arm and the first robot blade simultaneously extend into respective extended positions.
- 25. (Original) The method of claim 24, wherein an opening of the first process cell is aligned with the dual bladed robot.
- 26. (Original) The method of claim 24, wherein an opening of the first process cell is offset from the dual bladed robot.
- 27. (Previously Presented) The method of claim 24, further comprising inserting the first robot blade in the first process cell after the main robot link, the first extension arm, and the first robot blade are fully rotated into their respective extended positions with the main robot link aligned with the first process cell.

Response to Office Action Serial No. 09/765,830 Page 7 of 12

- (Previously Presented) The method of claim 24, wherein: during step (a) the 28. rotation of the main robot link, the second extension arm and the second robot blade are in an initial aligned position with a second process cell, during step (a) both the second extension arm and the second robot blade remain in their retracted positions; and during step (b) the second extension arm and the second robot blade simultaneously extend into their respective extended positions.
- (Previously Presented) The method of claim 24, further comprising inserting the 29. second robot blade into the second process cell after the main robot link, the second extension arm, and the second robot blade are fully rotated into their respective. extended positions when the main robot link is aligned with the second process cell.