16. Übungsblatt

Aufgabe 1: Eine geladene Linie

a) Die drei dimensionale Linienladungsdichte ρ lautet:

$$\rho(\vec{r}) = \sigma \cdot \delta(x) \cdot \delta(y) \cdot \Theta\left(z + \frac{a}{2}\right) \cdot \Theta\left(\frac{a}{2} - z\right) \qquad \text{mit σ als Linienladungsdichte $\sigma = \frac{Q}{a}$}$$

Aufgabe 2: Ladungsverteilung und Multipolmomente

a)
$$\rho(\vec{r}) = q \cdot \delta(x)\delta(y) \cdot (\delta(z+a) + \delta(z-a) - 2\delta(z))$$
b)
$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathbb{R}^3} \frac{\rho(r)}{|\vec{r} - \vec{r}'|} d^3r' = \frac{1}{4\pi\epsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{q \cdot \delta(x')\delta(y') \cdot (\delta(z'+a) + \delta(z'-a) - 2\delta(z'))}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} dx' dy' dz'$$

$$= \frac{q}{4\pi\epsilon_0} \int_{-\infty}^{\infty} \frac{\delta(z'+a) + \delta(z'-a) - 2\delta(z')}{\sqrt{x^2 + y^2 + (z-z')^2}} dz'$$

$$= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{x^2 + y^2 + (z-a)^2}} + \frac{1}{\sqrt{x^2 + y^2 + (z+a)^2}} - \frac{2}{\sqrt{x^2 + y^2 + z^2}} \right]$$

$$r := \sqrt{x^2 + y^2} \Rightarrow = \frac{q}{4\pi\epsilon_0} \frac{1}{r} \left[\frac{1}{\sqrt{1 + \left(\frac{z-a}{r}\right)^2}} + \frac{1}{\sqrt{1 + \left(\frac{z+a}{r}\right)^2}} - \frac{2}{\sqrt{1 + \left(\frac{z}{r}\right)^2}} \right]$$

$$Taylor \Rightarrow = \frac{q}{4\pi\epsilon_0} \frac{1}{r} * \left[1 + \frac{1}{2} \left(\frac{z-a}{r} \right)^2 + \frac{3}{8} \left(\frac{z-a}{r} \right)^4 + \cdots + 1 + \frac{1}{2} \left(\frac{z+a}{r} \right)^2 + \frac{3}{8} \left(\frac{z+a}{r} \right)^4 + \cdots - 2 - \frac{2}{2} \left(\frac{z}{r} \right)^2 - \frac{6}{8} \left(\frac{z}{r} \right)^4 + \cdots \right]$$

$$= \frac{q}{4\pi\epsilon_0} \left[\frac{1 + 1 - 2}{4\pi\epsilon_0} + \frac{(z-a)^2 + (z+a)^2 - 2z^2}{2r^3} + \frac{3(z-a)^4 + 3(z+a)^4 - 6z^4}{8r^5} + \cdots \right]$$

$$= \frac{qa^2}{4\pi\epsilon_0} \left(\frac{1 + 1 - 2}{a^3} + \frac{(z-a)^2 + (z+a)^2 - 2z^2}{a^7} + \frac{3(z-a)^4 + 3(z+a)^4 - 6z^4}{4r^5} + \cdots \right]$$

$$= \frac{qa^2}{4\pi\epsilon_0} \left(\frac{1 + 1 - 2}{a^3} + \frac{(z-a)^2 + (z+a)^2 - 2z^2}{a^7} + \frac{3(z-a)^4 + 3(z+a)^4 - 6z^4}{4r^5} + \cdots \right]$$

Das erste nicht-verschwindene Moment lautet somit

$$\phi(r) = \frac{q}{4\pi\epsilon_0} \frac{a^2}{r^3}$$

Aufgabe 3: Spiegelladungen

Zum Erfüllen der Randbedingung setzen 3 weitere Ladungen in das System, die gegenüberliegende Ladung ist gleichnamig. Die Ladungen im 2. und im 4. Quadranten sind jedoch negativ geladen. Die Anordnung sieht dann wie folgt aus:

Durch die Multipolentwicklung können wir das elektrische Potential im Raum ermitteln:

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{d(\vec{r}, \vec{q_i})}$$

$$= \frac{1}{4\pi\epsilon_0} \left[\underbrace{\frac{Q}{\sqrt{(x-a)^2 + (y-b)^2}}}_{\text{Durch Ladung } Q} - \underbrace{\frac{Q}{\sqrt{(x+a)^2 + (y-b)^2}}}_{\text{Spiegelladung im 2. Quadrant}} + \underbrace{\frac{Q}{\sqrt{(x+a)^2 + (y+b)^2}}}_{\text{Spiegelladung im 3. Quadrant}} - \underbrace{\frac{Q}{\sqrt{(x-a)^2 + (y+b)^2}}}_{\text{Spiegelladung im 4. Quadrant}} \right]$$

Die Randbedingung $\phi=0$ auf den Platten ist damit auch erfüllt:

$$\phi\left(\binom{x}{0}\right) = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(x-a)^2 + (0-b)^2}} - \frac{Q}{\sqrt{(x+a)^2 + (0-b)^2}} + \frac{Q}{\sqrt{(x+a)^2 + (0+b)^2}} - \frac{Q}{\sqrt{(x-a)^2 + (0+b)^2}} \right]$$

$$= \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(x-a)^2 + b^2}} - \frac{Q}{\sqrt{(x+a)^2 + b^2}} + \frac{Q}{\sqrt{(x+a)^2 + b^2}} - \frac{Q}{\sqrt{(x-a)^2 + b^2}} \right]$$

$$= 0$$

$$\phi\left(\binom{0}{y}\right) = \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{(0-a)^2 + (y-b)^2}} - \frac{Q}{\sqrt{(0+a)^2 + (y-b)^2}} + \frac{Q}{\sqrt{(0+a)^2 + (y+b)^2}} - \frac{Q}{\sqrt{(0-a)^2 + (y+b)^2}} \right]$$

$$= \frac{1}{4\pi\epsilon_0} \left[\frac{Q}{\sqrt{a^2 + (y-b)^2}} - \frac{Q}{\sqrt{a^2 + (y-b)^2}} + \frac{Q}{\sqrt{a^2 + (y+b)^2}} - \frac{Q}{\sqrt{a^2 + (y+b)^2}} \right]$$

Aufgabe 4: Tankanzeige

a) Zur Berechnung des \vec{E} -Feldes Benutzen wir den Gaußschen Satz

$$\int \vec{E} \cdot \hat{n} dA = \frac{Q_{\text{enq}}}{\epsilon_0 \epsilon_r}$$

und nehmen das Feld mit der Idealisierung des idealen Platenkondensators, dass das \vec{E} -Feld nur radial verläuft

$$\vec{E} \parallel \hat{r} \perp \hat{z}$$
.

Dann ergibt sich für \vec{E} :

$$\begin{split} \int \underbrace{\vec{E}(r) \cdot \hat{n}}_{E(r)} \ dA(r) &= \frac{Q_{\text{enq}}}{\epsilon_r \epsilon_0} \\ E(r) * A(r) &= \frac{Q_{\text{enq}}}{\epsilon_r \epsilon_0} \\ E(r) * 2\pi r^2 &= \frac{Q_{\text{enq}}}{\epsilon_r \epsilon_0} \\ E(r) * l * 2\pi r^2 &= \frac{\sigma_i * l * 2\pi * R_i^2}{\epsilon_r \epsilon_0} \quad \text{mit } \sigma_i \text{ als Flächenladungsdichte des inneren Hohlzylinders} \\ E(r) &= \frac{\sigma_i R_i}{\epsilon_r \epsilon_0 r} &= \frac{Q_i}{2\pi * l * \epsilon_r \epsilon_0 * r} \end{split}$$

Für die Spannung U bilden wir ein Wegintegral über mit den zwei Radien als Grenzen, da es sich um ein konservatives Kraftfeld handelt, ist es wegunabhängig, sodass wir einfach entlang des Radius integrieren können:

$$U = \int_{R_i}^{R_a} E(r)dr$$

$$= \int_{R_i}^{R_a} \frac{Q_i}{2\pi * l * \epsilon_0 \epsilon_r * r} dr$$

$$= \frac{Q}{2\pi * l * \epsilon_r \epsilon_0} \ln\left(\frac{R_a}{R_i}\right)$$

Die Kapazität folgt dann aus der Formel $C = \frac{Q}{U}$:

$$C = \frac{Q}{U} = \frac{Q * 2\pi * l * \epsilon_r \epsilon_0}{Q \ln \left(\frac{R_a}{R_i}\right)}$$
$$= \frac{2\pi * l * \epsilon_r \epsilon_0}{\ln \left(\frac{R_a}{R_i}\right)}$$