

Energiesysteme

6. Semester – Dr. A Fuchs, Dr. T Demiray

Autoren: Luca Loop

https://github.com/Luca-ET/EnSys.git

1	Energie- und Elektrizitätswirtschaft	1	1.2	Schweizer Strom-Mix	1
	1.1 Energien	1	1.3	Investitions- und Kostenrechnung	2

1 Energie- und Elektrizitätswirtschaft

1.1 Energien

1.1.1 Potentielle Energie W_{pot}

$W_{\rm pot} =$	$m \cdot g \cdot h \qquad g = 9.81 \frac{m}{s^2}$	
$[W_{pot}]$	Potentielle Energie	Ws = Nm = J
[m]	Masse	kg
[g]	Erdbeschleunigung	$\frac{m}{s^2}$
[<i>h</i>]	Höhenunterschied	m

1.1.2 Kinetsche Energie Wkin

$W_{\rm kin} =$	$\frac{1}{2} \cdot m \cdot v^2$	
$[W_{\rm kin}]$	Kinetische Energie	Ws = Nm = J
[<i>m</i>]	Masse	kg
[<i>v</i>]	Geschwindigkeit	m/s

1.1.3 Feder Energie W_E

$W_{\rm F} =$	$\frac{1}{2} \cdot F \cdot s$	
$[W_{\mathrm{F}}]$	Federenergie	Ws = Nm = J
[F]	Kraft	$N = kg \cdot m/s^2$
[<i>s</i>]	Verschiebung (Auslenkung)	m

1.1.4 Kondensator Energie W_C.

$W_{\rm C} =$	$\frac{1}{2} \cdot C \cdot U^2$	
$[W_{\rm C}]$	Kondensatorenergie	Ws = Nm = J
[<i>C</i>]	Kapazität	$F = \frac{As}{V}$
$\lceil U \rceil$	Spannung	V

1.1.5 Induktivität Energie $W_{\rm L}$

$W_{\rm L} =$	$\frac{1}{2} \cdot L \cdot I^2$	
$[W_{\rm L}]$	Induktivitätsenergie	Ws = Nm = J
[L]	Induktivität	$H = \frac{Vs}{A}$
[I]	Stromstärke	A

1.1.6 Batterie Energie W_{bat}

$W_{\rm bat} =$	$\frac{1}{2} \cdot Q \cdot U$	
$[W_{\rm bat}]$	Batterieenergie	Ws = Nm = J
[Q]	Elektrische Ladung	C = As
[U]	Spannung	V

1.1.7 Thermische Energie W_{therm}

$W_{\text{therm}} =$		
$[W_{ m therm}]$	Thermische Energie	Ws = Nm = J
[m]	Masse	kg
[c]	Spezifische Wärmekapazität	$\frac{J}{kg \cdot K}$
$[\vartheta_1]$	Anfangstemperatur	$^{\circ}C$ oder K
$[\vartheta_2]$	Endtemperatur	°C oder K

1.1.8 Rotations Energie $W_{\rm rot}$

$W_{\rm rot} = \frac{1}{2} \cdot J \cdot \omega^2 = 1$	$2 \cdot J \cdot \pi^2 \cdot f^2 = \frac{J \cdot \pi^2 \cdot n^2}{1800}$
$\omega = 2 \cdot \pi \cdot f$ $f = \frac{1}{2}$	$n = f \cdot 60$

$[W_{\rm rot}]$	Rotationsenergie	Ws = Nm = J
[J]	Trägheitsmoment	$kg \cdot m^2$
$[\omega]$ $[f]$	Winkelgeschwindigkeit	<u>rad</u>
[f]	Frequenz, Umdrehungen pro Sekunde	$\frac{1}{s} = \frac{U}{\text{sek}}$
[n]	Umdrehungen pro Minute	$\frac{1}{\min} = \frac{U}{\min}$

[*n*]

Massenträgheitsmoment J					
Körper		Trägheitsmoment			
Vollzylinder	r m	$\frac{mr^2}{2}$			
Hohlzylinder	r_a	$\frac{m(r_a^2+r_i^2)}{2}$			
Kugel	ry/ m	$\frac{2}{5}mr^2$			
Quader		$\frac{m(a^2+b^2)}{12}$			

1.2 Schweizer Strom-Mix

38.1%	Kernkraft	
32.3%	Speicherkraftwerke	
24.2%	Laufkraftwerke	
5.4%	konventionell-thermische Kraftwe	erke
1.52 %	Kehrichtverbrennungsanlagen	
0.29 %	Biomasse	
0.19 %	Abwasserreinigungsanlagen	
0.13 %	Photovoltaik	
0.06 %	Windkraft	

1.3 Investitions- und Kostenrechnung 1.3.1 Annuitätsfaktor A $(1+i)^n \cdot i$ $\overline{(1+i)^n-1}$ [A]Annuitätsfaktor Zinsen [i][*n*] Anzahl Jahre Laufzeit 1.3.2 Kapitalkosten K_K $K_{\rm K} = A \cdot I$ CHF oder € $[K_{\rm K}]$ Kapitalkosten Annuitätsfaktor [A]Investitionen [I]CHF oder € 1.3.3 Unterhaltskosten K_U $K_{\mathrm{U}} = p_{\mathrm{U}} \cdot I$ $[K_{\mathrm{U}}]$ Unterhaltskosten Unterhaltskosten-Prozentsatz $[p_{\mathrm{U}}]$ Investitionen CHF oder € 1.3.4 Fix-Kosten K_{Fix} $K_{\text{Fix}} = K_{\text{K}} + K_{\text{U}} = (A + p_{\text{U}}) \cdot I$ $[K_{Fix}]$ Fix-Kosten CHF oder € 1.3.5 Erlös oder Deckungsbeitrag E $E = t_{\rm VL} \cdot C \cdot P$ Erlös [E]CHF oder € $[t_{\rm VL}]$ Volllaststunden $\frac{\text{CHF}}{\text{MWh}}$ oder $\frac{\textbf{€}}{\text{MWh}}$ [*C*] Grenzkosten $W = \frac{Nm}{s} = \frac{J}{s}$ [P]Leistung 1.3.6 Ergebnis (Gewinn oder Verlust) G $G = E - K_{\text{Fix}} - K_{\text{Var}}$ 1.3.7 Variable Kosten K_V Ergebnis CHF oder € [E]Erlös CHF oder €

Fix-Kosten

Variable Kosten

 $[K_{\text{Fix}}]$

 $[K_{\mathrm{Var}}]$

CHF oder €

CHF oder €