LIS 490: Introduction to Data Science

Professor: Victoria Stodden

Theme

- Use the computer expressively to conduct statistical analysis of data
- Use existing software rather than build routines from the ground up.
- Focus on methods and aspects of computing to conduct statistical analysis, less on the computational aspects of statistical methods
- Discussion: cybernetics and data science (Week1 Readings and Alan Kay video)

Data Science

- Statistical Thinking in the context of computing with data
- Data Technologies Data Scientist's work includes interfacing and working closely with the original data and those who own it

What Are Data?

Numbers

• Example: Traffic on I-80

 $\Theta \Theta \Theta$

Occ1,Flow1,Occ2,Flow2,Occ3,Flow3 0.01,14,0.0186,27,0.0137,17 0.0133,18,0.025,39,0.0187,25

0.0088,12,0.018,30,0.0095,11 0.0115,16,0.0203,33,0.0217,19 0.0069,8,0.0178,25,0.0123,13 0.0077,11,0.0151,24,0.0092,13 0.0049,7,0.0153,22,0.0192,19 0.007,10,0.0194,33,0.0156,17 0.0082,12,0.0146,26,0.0166,13 0.0074,11,0.0207,30,0.018,14 0.0071,10,0.0135,22,0.0074,11

0.0069,10,0.012,17,0.0147,12 0.0011,2,0.0078,13,0.0118,10 0.0038,5,0.0116,18,0.0202,11 0.0063,8,0.0115,15,0.0214,17 0.0034,5,0.0137,20,0.0153,13 0.0043,5,0.0094,16,0.019,18 0.0038,5,0.0111,18,0.0131,13

flow-occ-table.txt

Dates, Times, Locations

• Example: Flight information

	Year	Month	Dayof	Month 1	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArr	Time	
1	2007	1		2	2	1051	1025	1401		1340	
2	2007	1		2	2	1950	1935	2255		2245	
3	2007	1		2	2	742	735	1047		1050	
4	2007	1		2	2	1122	1055	1735		1705	
5	2007	1		2	2	1142	1105	1400		1335	
6	2007	1		2	2	2024	2005	2242		2235	
	Uniqu	ieCarr	ier Fl	lightNur	m TailNum	ActualE	lapsedTime	CRSElapse	edTime	AirTime	ArrDelay
1			WN	1719			130		135	121	21
2			WN	189	6 N464		125		130	112	10
3			WN	229	6 N462		125		135	116	-3
4			WN	2459	9 N405		253		250	239	30
5			WN	62	2 N632SW		78		90	69	25
6			WN	175	2 N455		78		90	70	7
			min	113	2 11433		10		שפ	70	
0	DepDe	elay O				axiIn Ta		lled Cand			
1	DepDe	elay 0		Dest D		axiIn Ta: 3	xiOut Cance 6	lled Cand			
	DepDe		rigin	Dest D	istance T		xiOut Cance	_			
1	DepDe	26	rigin OAK	Dest D	istance To 889	3	xiOut Cance 6	_			
1 2	DepDe	26 15	rigin OAK OAK	Dest D ABQ ABQ	istance To 889 889	3 7	xiOut Cance 6 6	_			
1 2 3	DepDe	26 15 7	rigin OAK OAK OAK	Dest D ABQ ABQ ABQ	istance To 889 889 889	3 7 3	xiOut Cance 6 6 6	_			Diverted 0 0
1 2 3 4	DepDe	26 15 7 27	OAK OAK OAK OAK	Dest D ABQ ABQ ABQ BNA	istance To 889 889 889 1959	3 7 3 5	xiOut Cance 6 6 6 9	_			Diverted 0 0 0
1 2 3 4 5		26 15 7 27 37 19	OAK OAK OAK OAK OAK OAK	Dest D ABQ ABQ ABQ BNA BOI BOI	889 889 889 889 1959 511 511	3 7 3 5 3 3	xiOut Cance 6 6 6 9 6 5	0 0 0 0 0	cellati	onCode I	Diverted 0 0 0 0
1 2 3 4 5		26 15 7 27 37 19	OAK OAK OAK OAK OAK OAK	Dest D ABQ ABQ ABQ BNA BOI BOI	889 889 889 889 1959 511 511	3 7 3 5 3 3	xiOut Cance 6 6 6 9	0 0 0 0 0	cellati	onCode I	Diverted 0 0 0 0
1 2 3 4 5		26 15 7 27 37 19	rigin OAK OAK OAK OAK OAK OAK	Dest D ABQ ABQ ABQ BNA BOI BOI	889 889 889 889 1959 511 511	3 7 3 5 3 3	xiOut Cance 6 6 6 9 6 5	0 0 0 0 0	cellati	onCode I	Diverted 0 0 0 0
1 2 3 4 5 6		26 15 7 27 37 19	rigin OAK OAK OAK OAK OAK OAK ay Wed	Dest D ABQ ABQ ABQ BNA BOI BOI	889 889 889 889 1959 511 511	3 7 3 5 3 3	xiOut Cance 6 6 6 9 6 5	0 0 0 0 0	cellati	onCode I	Diverted 0 0 0 0
1 2 3 4 5 6		26 15 7 27 37 19 ierDel	rigin OAK OAK OAK OAK OAK OAK ay Wed	Dest D ABQ ABQ ABQ BNA BOI BOI	889 889 889 889 1959 511 511	3 7 3 5 3 3	xiOut Cance 6 6 6 9 6 5	0 0 0 0 0	cellati	onCode I	Diverted 0 0 0 0
1 2 3 4 5 6		26 15 7 27 37 19 ierDel	rigin OAK OAK OAK OAK OAK OAK ay Wed 21 0	Dest D ABQ ABQ ABQ BNA BOI BOI	184ance To 889 889 889 1959 511 511 lay NASDe 0 0	3 7 3 5 3 3 lay Secur 0 0	xiOut Cance 6 6 6 9 6 5 rityDelay L 0 0	0 0 0 0 0	cellati aftDela	onCode I	Diverted 0 0 0 0
1 2 3 4 5 6 1 2 3 4		26 15 7 27 37 19 ierDel	rigin OAK OAK OAK OAK OAK OAK 21 0 0	Dest D ABQ ABQ ABQ BNA BOI BOI	1840nce To 889 889 889 1959 511 511 lay NASDe 0 0 0	3 7 3 5 3 3 lay Secur 0 0	xiOut Cance 6 6 6 9 6 5 rityDelay L 0 0	0 0 0 0 0	cellati aftDela	onCode I	Diverted 0 0 0 0

Dates, Times, Locations

• Example: Traffic fatalities

Text

Example: SPAM or HAM?

Text

Example: Online dating

Text

Example: Have ingredients changed over time?

Meta-data

```
<?xml version="1.0" standalone="yes"?>
<kml creator="thd Thu Dec 6 16:24:55 2007" xmlns="http://earth.google.com/kml/2.0">
<Document>
 <name> at </name>
<Folder>
<name>Waypoints</name>
 <Placemark>
   <name>Black Gap Shelter</name>
   <Point><coordinates>-84.19880,34.61756,0.0</coordinates></Point>
   <description><![CDATA[Waypoint: BlackGap <br> Additional <a href="http://www.cs.utk.edu/~dunigan/at/m.php?wpt=BlackGap">information</a> ]]></description>
   <styleUrl>#waypoint</styleUrl>
 </Placemark>
 <Placemark>
   <name>Springer Mountain Shelter</name>
   <Point><coordinates>-84.19306,34.62915,0.0</coordinates></Point>
   <description><![CDATA[Waypoint: Springer <br> Additional <a href="http://www.cs.utk.edu/~dunigan/at/m.php?wpt=Springer">information</a> ]]></description>
   <styleUrl>#waypoint</styleUrl>
 </Placemark>
```


Images, video, or audio

Example: Radiohead "House of Cards" video

http://code.google.com/creative/radiohead/

Lidar and GeoVideo used to create 3-dimensional images without lights or cameras.

"I liked the idea of making a video of human beings and real life and time without using any cameras, just lasers, so there are just mathematical points – and how strangely emotional it ended up being." - Yorke

Statistical Thinking and the Data Analysis Life Cycle

- Research Question / Hypothesis
- Data ACQUISITION Input/output, regular expressions
- Data CLEANING verification, manipulation
- Data ORGANIZATION data frames, data bases, XML
- Data ANALYSIS fit and assess statistical models, conduct exploratory data analysis
- Data SIMULATED simulation studies to understand behavior of data
- Data REPORTING report findings, update hypotheses

Statistical Concepts

- Numeracy
 - Variability, patterns, comparisons
- Graphics
 - Elements and principles of graphing
- Computationally intensive methods, e.g.,
 - Classification and Regression trees, multi-dimensional scaling, nearest neighbor
- Simulation tools
 - Monte Carlo, bootstrap, cross-validation

Computing Concepts

- Programming concepts
 - flow control, trees, recursion
- Regular expressions and text manipulation
- Relational databases
- Random number generation
- Representation of information in the computer
- Event handling

Software

- R statistical software
- (if time) Python scripting for statistical applications
- Unix shell commands
- SQL structured query language for relational databases
- XML Extensible Markup Language (and HTML)

Grading

Homework	40%	Weekly - due in/by class (I'll drop your lowest homework grade)
Midterm	30%	Closed notes (Oct 11)
Final	30%	Closed notes (Dec 6)

Note: Participation in class may help your grade

Academic Integrity

The Academic Integrity Policy is available at

http://admin.illinois.edu/policy/code/ article1 part4 1-401.html

Free to discuss course matters with instructor, TA, and fellow students

- DO NOT SHARE CODE
- If you are uncertain as to whether something may be a violation of the code, ask the instructor

Academic Integrity

Writing a program is like writing a paper – your code should be your original work.

A violation will result in at least one of the following:

- 0 on the assignment
- F for the course grade
- Report to the Office of Judicial Affairs

http://www.youtube.com/watch?v=8nTFjVm9sTQ