Name: Nguyen Thi Cam Hoang

Date: June 24th, 2017

Student ID: 20165327

Final project

The analysis need the data of trading date in the period of 6 years from 2003-09-10 to 2009-09-09. To get the data frame with the trading date, I downloaded the daily stock price data from the link: https://wrds-web.wharton.upenn.edu/wrds/ds/crsp/stock_a/dsf.cfm?navGroupHeader=Annual%20Update&navGroup=Stock%20%2F%20Security%20Files.

 To get the list of trading date annually, I use Python for convenience, one more thing can be noticed here is that all the stocks were trading in the

same days within the analysis period

No	Period	Number of trading days
1	2003-09-10 – End of 2003	79
2	2004	252
3	2005	252
4	2006	251
5	2007	251
6	2008	253
7	Begin of 2009 - 2009-09-09	173
	Total	1511

Information of stock for analysis:

No	Ticker	Stock Market	Company name
1	WHR	N	WHIRLPOOL CORP
2	MOT	IN	MOTOROLA INC
3	AMAT	0	APPLIED MATERIALS INC
4	QCOM	Q	QUALCOMM INC

To compute the liquidity variables, these steps were performed:

- Step 1: Create BuySellIndicators (Previous assignment).
- Step 2: Compute some parameters for each day. There are 17 parameters in total (Question 1). Then concatenate everyday data into one.
- **Step 3**: Perform analysis (Question 2).

Because **Step 1** is already mentioned in the previous assignment, I will only point out how I perform **Step 2** and **3**.

Question 1

It would be easier to get the data with all necessary variables before computing the parameters.

```
∃data mediate1;
 set BuySellIndicators;
 DV = size*price; *problem b;
 y = BuySellLR*size - lag(BuySellLR)*lag(size); *problem b;
 z = BuySellLR*size*price - lag(BuySellLR)*lag(size)*lag(price); *problem b;
 r = log(price) - log(lag(price)); *problem c;
 delta pt = price-lag(price); *problem d;
 delta pt1 = lag(price) -lag2(price); *problem d;
 A = abs(r)/(price*size); *problem e;
 wes Dollar = (abs(price-midpoint))*2; *problem f;
 wes Dollar SW = wes Dollar*size; *problem f;
 wres_Dollar_SW = wes_Dollar_SW/midpoint; *problem f;
 res = es/midpoint; *problem f;
 lag_y = lag(y); *problem g;
 lag z = lag(z); *problem g;
 run:
```

- a) For each day d (from 2003-09-10 to 2009-09-09), identify the last closing price.
- This can be done by using **last**.

```
/*problem a*/

data mediate2 (keep=date sym_root p_d m_d);
set BuySellIndicators;
by sym_root;
if last.sym_root;
rename price = p_d; *problem a;
rename midpoint = m_d; *problem a;
run;
```

b) Compute daily share trading volume Vd and dollar trading volume DVd. Further, define two order imbalances yt and zt at each time t and compute daily order imbalances (yd and zd).

```
/*problem b, c, e*/

proc means noprint data=mediate1 mean std;
var size DV y z A;
output out= mediate3
mean(size) = V_d
mean(DV) = DV_d
mean(y) = y_d
mean(z) = z_d
std(r) = sigma_d
mean(A) = A_d
;
run;
```

- Problem b, c and e can be solved by using proc means in sas.
- c) Compute the intra-day volatility of return series which is the standard deviation of return series rt.
- Mentioned in b
- d) Compute the Roll's implicit spread measures.

```
/*problem d*/

proc corr noprint data=mediate1 outp=mediate4 cov; *or outs;
var delta_pt delta_pt1;
run;

data mediate4(keep=s_d);
set mediate4;
where _NAME_ in ('delta_pt1') and _TYPE_ in ('COV');
s_d = sqrt(-delta_pt)/2;
run;
```

- To compute covariance, we can using proc corr in sas.
- Then, select the right number by accessing the row and column and compute s_d parameter.
- To plot s_d, we can use proc gplot:

```
/*problem d*/
title1 'Rolls Implicit Spread Measure (WHR)';
footnote1 ' ';
  /* Define symbol characteristics */
symbol1 color=vibg interpol=spline;

  /* Generate plot of two variables */
∃proc gplot data=whr;
plot s_d*date;
run;
quit;
```

- e) Compute the daily Amihud' measure from intra-day data.
- Mentioned in b
- f) Compute the daily volume(size) weighted average of e_ective spread (esa) and relative e_ective spread (resa). Plot.

```
/*problem f*/

proc sql;
create table effectivespread
as select
sum(size) as sumsize,
sum(wes_Dollar_SW) as waes_Dollar_SW,
sum(wres_Dollar_SW) as wares_Dollar_SW
from mediate1;
quit;

data mediate5 (keep= es_d res_d);
set effectivespread;
es_d = waes_Dollar_SW/sumsize;
res_d = wares_Dollar_SW/sumsize;
run;
```

- We already learn how to compute weighted average of effective spread in class.
- For the weighted average of relative effective spread, the computation is similar. The relative effective spread equals the effective spread over midpoint.
- Plot es_d and res_d:

```
title1 'Weighted Average of Effective Spread (WHR)'; title1 'Weighted Average of Relative Effective Spread (V
                                          footnote1 ' ';
  /* Define symbol characteristics */
                                                       /* Define symbol characteristics */
 symbol1 color=vibg interpol=spline;
                                                    __symbol1 color=vibg interpol=spline;
 /* Generate plot of two variables */
                                                       /* Generate plot of two variables */
∃proc gplot data=&ticker name;
                                                     proc gplot data=&ticker_name;
plot es d*date;
                                                      plot res d*date;
 run;
                                                      run;
 quit;
                                                      quit;
```

g) Estimate the two regressions for each stock. Plot.

```
/*problem g*/
□proc reg noprint data=mediate1 outest=mediate6;
 model r = y lag_y;
 run;
∃ data mediate6 (keep=lambda1 d psi1 d);
 set mediate6;
 rename y = lambda1_d;
 rename lag_y = psi1_d;
 run;
□ proc reg noprint data=mediate1 outest=mediate7;
 model r = z lag z;
 run:
∃ data mediate7 (keep=lambda2_d psi2_d);
 set mediate7;
 rename z = lambda2 d;
 rename lag_z = psi2_d;
 run;
```

- Estimate the coefficients can be done by using proc reg.
- We need to use some addition options: noprint (no need picture output), outest (to get value).
- Plot Price Impact Coefficient and Price Reversal Coefficient.

```
title1 'Price Impact Coefficient (WHR, i=1)';
                                                  title1 'Price Reversal Coefficient (WHR, i=1)';
 footnote1 ' ':
                                                  footnote1 ' ';
 /* Define symbol characteristics */
                                                   /* Define symbol characteristics */
 symbol1 color=vibg interpol=spline;
                                                  symbol1 color=vibg interpol=spline;
 /* Generate plot of two variables */
                                                   /* Generate plot of two variables */
∃proc gplot data=whr;
                                                 ∃proc qplot data=whr;
 plot lambda1 d*date;
                                                  plot psi1_d*date;
 run;
                                                   run;
 quit;
                                                   quit;
```

h) Estimate the two time series model for each stock.

```
/*problem h*/

proc arima data=mediate1;
identify var=BuySellLR noprint;
estimate p=1 q=1 method=ml outest=mediate8 noprint;
run;quit;

data mediate8 (keep=rho_d gamma_d);
set mediate8;
where _TYPE_ in ('EST');
rename AR1_1 = rho_d;
rename MA1_1 = gamma_d;
run;
```

- This problem is similar to problem g, we can use **proc arima**.
- The place to put options is slightly different.

Now, we have all variables denoted for everyday. We should merge all variables into one file named estim.

Up to here, we just calculate for only one day. In order to derive all parameters for 6-year period, a loop running over many small chunk of time should be formed. Instead, I replicated the code to perform the computation for each stock during the whole period. Therefore, I have four sas file named **job_whr.sas**, **job_mot.sas**, **job_amat.sas** and **job_qcom.sas**.

Here is how I did looping:

run;

endrsubmit:

- I used macro function, the argument of function is the list of date.

```
libname nbbo '/wrds/nyse/sasdata/tagms/nbbo';
    libname cq '/wrds/nyse/sasdata/taqms/cq';
libname ct '/wrds/nyse/sasdata/taqms/ct';
    libname whr '/home/unist/hnguyen1/final/whr';
    option msglevel=i mprint source;
 /*Function*/
∃ %macro loop(vlist);
 %let count=%sysfunc(countw(&vlist));
 %do i=1 %to &count;
 %let date=%scan(&vlist, &i);
 %let ticker name = WHR;
                                                                            Code for this part is
 /*****Get BuySellIndicators****/
 /*******Compute variables******/
                                                                            explained above.
 *Save data into WRDS folder;
 data whr.estim_&date;
                                                                            Replace with the full list of
 set estim;
                                                                            date. This way is not good
 run;
                                                                            since we need to list all the
 Send:
 %mend:
                                                                            date and may not be efficient
      I called the function for each value in the list of date
                                                                            to deal with longer period.
  /*Begin looping*/
                                                                            However. I have no time to
  %let date_list=20030910 20030911;
                                                                            search for a function dealing
  %loop(&date list);
                                                                            with this in sas.
  /*Get full estimation for the whole period*/
∃data whr.estim_full;
  set whr.estim_:;
```

Merge all single estim into one for further analysis

After getting the job code, I submitted into server by using command line. The downloading process may take 45 minutes for the whole period. This is how the dataset looks like:

		DATE	SYN	I_ROOT		p_d		m_d		V_d		DV_d	y_(d	z_d	sigma_d
1	10S	EP2003	AM/	۱T		20.7		20.705	549	.33310044	115	555.118566	-0.0471	62396	-0.995475904	0.0003633118
2	115	EP2003	AM/	\T		21.07		21.085	522	.29490842	10	808.725288	-0.0174	59486	-0.367474565	0.0006146994
3	125	EP2003	AM/	\T		20.97		20.97	485	.35205455	10	071.727682	0.01765	49776	0.3703572926	0.0002702174
4	15S	EP2003	AM/	\T		20.58		20.565	528	.46683184	110	098.373709	0.00253	52437	0.0503507087	0.0003673603
5	168	EP2003	AM/	ΑT		21.4		21.39	486	5.57672677	10	295.546395		0	0.0070947144	0.0003116159
A_d		s_d		es_	d	res_d		lambda1	d	psi1_d		lambda2_d	ps	si2_d	gamma_d	rho_d
2.4968327	7E-8	0.002525	9286	0.01597	84762	0.000757	6502	1.220117	3E-8	9.890986E	-11	5.912231E-1	0 4.81	9079E-12	2 0.4220937452	0.8728276471
2.9118349	9E-8	0.004338	2974	0.02090	94064	0.001010	6446	2.9292372	2E-8	1.7439117	E-9	1.4238475E	-9 8.49	2653E-11	0.4066927022	0.8588921439
2.3721046	6E-8	0.00165	8087	0.01386	64806	0.000667	7232	3.2851057	7E-8	3.0834808	E-9	1.5776372E	9 1.48	1403E-10	0.3868609739	0.8673254541
2.6761424	4E-8	0.002424	3031	0.01590	07453	0.000756	1053	1.3930256	8-36	2.634344E	-10	6.685052E-1	0 1.27	5216E-11	1 0.4139080437	0.85870954
2.3523027	7E-8	0.001953	7053	0.01544	43082	0.000729	0165	5.6791928	8E-8	2.3031525	E-9	2.6712436E	-9 1.09	0554E-10	0.4001699056	0.8706496892

Result:

WHR

Rolls Implicit Spread Measure (WHR)

Weighted Average of Effective Spread (WHR)

Weighted Average of Relative Effective Spread (WHR)

Price Impact Coefficient (WHR, i=1)

Price Impact Coefficient (WHR, i=2)

Price Reversal Coefficient (WHR, i=1)

Price Reversal Coefficient (WHR, i=2)

MOT

Rolls Implicit Spread Measure (MOT)

Weighted Average of Effective Spread (MOT)

Weighted Average of Relative Effective Spread (MOT)

Price Impact Coefficient (MOT, i=1)

Price Impact Coefficient (MOT, i=2)

Price Reversal Coefficient (MOT, i=1)

Price Reversal Coefficient (MOT, i=2)

AMAT

Rolls Implicit Spread Measure (AMAT)

Weighted Average of Effective Spread (AMAT)

Weighted Average of Relative Effective Spread (AMAT)

Date of quote Price Impact Coefficient (AMAT, i=1)

Price Impact Coefficient (AMAT, i=2)

Price Reversal Coefficient (AMAT, i=1)

Price Reversal Coefficient (AMAT, i=2)

QCOM

Rolls Implicit Spread Measure (QCOM)

Weighted Average of Effective Spread (QCOM)

Weighted Average of Relative Effective Spread (QCOM)

Price Impact Coefficient (QCOM, i=1)

Price Impact Coefficient (QCOM, i=2)

Price Reversal Coefficient (QCOM, i=1)

Price Reversal Coefficient (QCOM, i=2)

Question 2

a) Provide correlation table for variables

```
libname estim 'C:\Users\Hoang\Dropbox\Final\data';
 %let ticker_name = WHR;
∃data &ticker_name;
 set estim.estim_&ticker_name;
 r_d = log(p_d/lag(p_d));
 w d = log(m d/lag(m d));
 lag_y = lag(y_d);
 lag_z = lag(z_d);
 log_dv = log(DV_d);
 log_p = log(p_d);
 run;
∃proc reg data=&ticker name;
 model1: model r_d = y_d lag_y;
model2: model r_d = z_d lag_z;
 model3: model w_d = y_d lag_y;
 model4: model w_d = z_d lag_z;
 model5: model s_d = log_dv sigma_d log_p;
 model6: model es_d = log_dv sigma_d log_p;
 model7: model res_d = log_dv sigma_d log_p;
 run; quit;
```

Result:

WHR

a)

			P	Prob >		Coefficients 10: Rho=0 rvations					
	sigma_d	A_d	s_d	es_d	res_d	lambda1_d	lambda2_d	psi1_d	psi2_d	rho_d	gamma_d
sigma_d	1.00000	0.55264 <.0001 1511	0.72322 <.0001 1498	0.15942 <.0001 1511	0.15757 <.0001 1511	0.33442 <.0001 1511	0.36784 <.0001 1511	0.12031 <.0001 1511	0.21368 <.0001 1511	0.21419 <.0001 1511	0.07018 0.0063 1511
A_d	0.55264 <.0001 1511	1.00000 1511	0.07899 0.0022 1498	-0.02556 0.3208 1511	0.12880 <.0001 1511	0.55431 <.0001 1511	0.77222 <.0001 1511	0.31502 <.0001 1511	0.51093 <.0001 1511	0.28114 <.0001 1511	0.03433 0.1822 1511
s_d	0.72322 <.0001 1498	0.07899 0.0022 1498	1.00000 1498	0.21270 <.0001 1498	0.08812 0.0006 1498	0.20283 <.0001 1498	0.04535 0.0793 1498	0.02832 0.2734 1498	-0.01412 0.5850 1498	0.19685 <.0001 1498	0.04155 0.1079 1498
es_d	0.15942 <.0001 1511	-0.02556 0.3208 1511	0.21270 <.0001 1498	1.00000 1511	0.89035 <.0001 1511	-0.00524 0.8386 1511	-0.05119 0.0467 1511	0.01075 0.6762 1511	-0.01824 0.4787 1511	0.08920 0.0005 1511	0.07630 0.0030 1511
res_d	0.15757 <.0001 1511	0.12880 <.0001 1511	0.08812 0.0006 1498	0.89035 <.0001 1511	1.00000 1511	0.04487 0.0812 1511	0.06730 0.0089 1511	0.04647 0.0709 1511	0.06004 0.0196 1511	0.09990 0.0001 1511	0.08240 0.0013 1511
lambda1_d	0.33442 <.0001 1511	0.55431 <.0001 1511	0.20283 <.0001 1498	-0.00524 0.8386 1511	0.04487 0.0812 1511	1.00000 1511	0.87595 <.0001 1511	0.53949 <.0001 1511	0.57695 <.0001 1511	0.26423 <.0001 1511	0.00452 0.8606 1511
lambda2_d	0.36784 <.0001 1511	0.77222 <.0001 1511	0.04535 0.0793 1498	-0.05119 0.0467 1511	0.06730 0.0089 1511	0.87595 <.0001 1511	1.00000 1511	0.46558 <.0001 1511	0.64256 <.0001 1511	0.24848 <.0001 1511	0.00428 0.8681 1511
psi1_d	0.12031 <.0001 1511	0.31502 <.0001 1511	0.02832 0.2734 1498	0.01075 0.6762 1511	0.04647 0.0709 1511	0.53949 <.0001 1511	0.46558 <.0001 1511	1.00000 1511	0.89824 <.0001 1511	0.17431 <.0001 1511	0.04111 0.1102 1511
psi2_d	0.21368 <.0001 1511	0.51093 <.0001 1511	-0.01412 0.5850 1498	-0.01824 0.4787 1511	0.06004 0.0196 1511	0.57695 <.0001 1511	0.64256 <.0001 1511	0.89824 <.0001 1511	1.00000 1511	0.19056 <.0001 1511	0.03147 0.2215 1511
rho_d AR Factor 1, Parameter 1	0.21419 <.0001 1511	0.28114 <.0001 1511	0.19685 <.0001 1498	0.08920 0.0005 1511	0.09990 0.0001 1511	0.26423 <.0001 1511	0.24848 <.0001 1511	0.17431 <.0001 1511	0.19056 <.0001 1511	1.00000	0.82524 <.0001 1511
gamma_d MA Factor 1, Parameter 1	0.07018 0.0063 1511	0.03433 0.1822 1511	0.04155 0.1079 1498	0.07630 0.0030 1511	0.08240 0.0013 1511	0.00452 0.8606 1511	0.00428 0.8681 1511	0.04111 0.1102 1511	0.03147 0.2215 1511	0.82524 <.0001 1511	1.00000

b) Regression

					ım of		Mean			
Source Model Error Correcte	d Total		2 1494 1496	0.000	58850 53452 53511	0.000	29425 69245	F Vai		Pr > F 0.6539
	Dep	t MSE endent ff Var	Mean	0.0000	02631 03319 79275	R-Squa Adj R-		0.0006 0.0008		
			F	arameter	Estim	ates				
Var	iable	DF		meter imate	St	andard Error	t Val	ue F	Pr > t	ľ
Int y_d lag		1 1 1	-0.000 -0.000 -0.000	00703	0.00	068717 017508 017428	-0 -0 -0	04	0.961 0.968 0.357	Ô
				Mo	del :	3				

			Analysis of Var	riance		
Source		DF	Sum of Squares	Mean Square		Pr > F
Model Error Corrected Tot	tal	2 1494 1496	0.00058564 1.03555 1.03613	0.00029282 0.00069314		0.6555
	Root MSE Dependent Coeff Var	Mean	0.02633 0.00003423 76908	R-Square Adj R-Sq	0.0006	

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]					
Intercept y_d lag v	1 1	-0.00003367 -0.00001200 -0.00015994	0.00068751 0.00017517 0.00017437	-0.05 -0.07 -0.92	0.9609 0.9454 0.3591					

Model 2

Source		DF	Sum of Squares	Mean Square		Pr
Model Error Corrected To	tal	2 1494 1496	0.00052202 1.03458 1.03511	0.00026101 0.00069249		0.686
	Root MSE Dependent Coeff Var	Mean	0.02632 0.00003319 79278	R-Square Adj R-Sq	0.0005 -0.0008	

Parameter Estimates

Variable	DF	Estimate	Error	t Value	$Pr \rightarrow t $
Intercept	1	-0.00002714	0.00068651	-0.04	0.9685
z_d	1	-1.29441E-7	0.00000221	-0.06	0.9533
lag_z	1	-0.00000191	0.00000220	-0.87	0.3861

Model 4 Analysis of Variance

Source		DF	Sum of Squares	Mean Square		Pr > F
Model Error Corrected To	tal	2 1494 1496	0.00051959 1.03561 1.03613	0.00025980 0.00069318		0.6875
	Root MSE Dependent Coeff Var	Mean	0.02633 0.00003423 76910	R-Square Adj R-Sq	0.0005 -0.0008	

Parameter	Esti	mates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.00002762	0.00068685	-0.04	0.9679
z d ·	1	-1.88961E-7	0.00000221	-0.09	0.9320
lao z	1	-0.00000190	0.00000220	-0.86	0.3885

c) Regression

Model 5

Analysis of Varia	ince		
Sum of Squares	Mean Square	F Value	Pr > F
0.01882 0.00545 0.02427	0.00627 0.0000365	1718.40	<.0001

Model Error Corrected Total

Parameter Estimates Parameter Standard

Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.02761	0.00101	-27.41	<.0001
log_dv	1	-0.00085958	0.00011644	-7.38	< .0001
sigma_d	1	19.78960	0.30302	65.31	< .0001
log p	1	0.00825	0.00022387	36.85	< .0001

Model 7

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected T	otal	3 1493 1496	0.00004320 0.00124 0.00128	0.00001440 8.313093E-7	17.32	<.0001
	Root MSE Dependent Coeff Var		0.00091176 0.00062990 144.74785	R-Square Adj R-Sq	0.0336 0.0317	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	0.00029600	0.00048076	0.62	0.5382
log dv	1	0.00016770	0.00005557	3.02	0.0026
sigma d	1	0.82650	0.14460	5.72	< .0001
log p	1	-0.00037801	0.00010683	-3.54	0.0004

Model 6

malvsis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected	Total	3 1493 1496	0.20385 3.06681 3.27065	0.06795 0.00205	33.08	<.0001
	Root MSE Dependent Coeff Var	Mean	0.04532 0.04260 106.38673	R-Square Adj R-Sq	0.0623 0.0604	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	-0.15056	0.02390	-6.30	<.0001
log dv	1	0.00851	0.00276	3.08	0.0021
sigma d	1	62.66714	7.18811	8.72	<.0001
log_p	1	0.02045	0.00531	3.85	0.0001

MOT

Pearson Correlation Coefficients, N = 1511 Prob > r under H0: Rho=0											
	sigma_d	A_d	s_d	es_d	res_d	lambda1_d	lambda2_d	psi1_d	psi2_d	rho_d	gamma_d
sigma_d	1.00000	0.96329 <.0001	0.99622 <.0001	0.73897 <.0001	0.76213 <.0001	0.49265 <.0001	0.33729 <.0001	0.24756 <.0001	0.25603 <.0001	-0.06832 0.0079	0.51760 <.0001
A_d	0.96329 <.0001	1.00000	0.94792 <.0001	0.70831 <.0001	0.74963 <.0001	0.55802 <.0001	0.45741 <.0001	0.25722 <.0001	0.28582 <.0001	-0.00842 0.7435	0.46122 <.0001
s_d	0.99622 <.0001	0.94792 <.0001	1.00000	0.72990 <.0001	0.75166 <.0001	0.48310 <.0001	0.31929 <.0001	0.23522 <.0001	0.24173 <.0001	-0.07708 0.0027	0.52740 <.0001
es_d	0.73897 <.0001	0.70831 <.0001	0.72990 <.0001	1.00000	0.98775 <.0001	0.53934 <.0001	0.34823 <.0001	0.20068 <.0001	0.22946 <.0001	-0.06067 0.0184	0.38564 <.0001
res_d	0.76213 <.0001	0.74963 <.0001	0.75166 <.0001	0.98775 <.0001	1.00000	0.58800 <.0001	0.42537 <.0001	0.21468 <.0001	0.25294 <.0001	-0.00155 0.9521	0.38652 <.0001
lambda1_d	0.49265 <.0001	0.55802 <.0001	0.48310 <.0001	0.53934 <.0001	0.58800 <.0001	1.00000	0.87264 <.0001	0.36452 <.0001	0.42401 <.0001	0.09576 0.0002	0.17465 <.0001
lambda2_d	0.33729 <.0001	0.45741 <.0001	0.31929 <.0001	0.34823 <.0001	0.42537 <.0001	0.87264 <.0001	1.00000	0.27057 <.0001	0.37007 <.0001	0.25772 <.0001	0.07568 0.0032
psi1_d	0.24756 <.0001	0.25722 <.0001	0.23522 <.0001	0.20068 <.0001	0.21468 <.0001	0.36452 <.0001	0.27057 <.0001	1.00000	0.97752 <.0001	0.02650 0.3033	0.12020 <.0001
psi2_d	0.25603 <.0001	0.28582 <.0001	0.24173 <.0001	0.22946 <.0001	0.25294 <.0001	0.42401 <.0001	0.37007 <.0001	0.97752 <.0001	1.00000	0.06359 0.0134	0.10693 <.0001
rho_d AR Factor 1, Parameter 1	-0.06832 0.0079	-0.00842 0.7435	-0.07708 0.0027	-0.06067 0.0184	-0.00155 0.9521	0.09576 0.0002	0.25772 <.0001	0.02650 0.3033	0.06359 0.0134	1.00000	-0.15165 <.0001
gamma_d MA Factor 1, Parameter 1	0.51760 <.0001	0.46122 <.0001	0.52740 <.0001	0.38564 <.0001	0.38652 <.0001	0.17465 <.0001	0.07568 0.0032	0.12020 <.0001	0.10693 <.0001	-0.15165 <.0001	1.00000

b)

MO	$a\epsilon$	21 T
Analysis	ot	Variance

Source		DF	Sum of Squares	Mean Square		Pr > F
Model Error Corrected To	otal	2 1507 1509	0.00059787 2.47184 2.47244	0.00029893 0.00164		0.8334
	Root MSE Dependent	Mean	0.04050 -0.00020388	R-Square Adj R-Sq	0.0002 -0.0011	

D			4 1 -	
Par	amet	er Es	ELIM	ates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	-0.00020037	0.00104	-0.19	0.8476
y_d		-0.00001842	0.00003685	-0.50	0.6172
lag v		-0.00001304	0.00003685	-0.35	0.7235

Model 3

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	1507 1509	0.00079548 2.47165 2.47244	0.00039774 0.00164	0.24	0.7847

Root MSE 0.04050
Dependent Mean Coeff Var -0.00020388
-19864 R-Square Adj R-Sq 0.0003 -0.0010

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	-0.00019852	0.00104	-0.19	0.8490
z_d	1	-0.00000131	0.00000207	-0.64	0.5247
lag z	1	-6.16842E-7	0.00000207	-0.30	0.7654

c)

Model 5

ina	lysi	S	of	Var	iance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	otal	3 1506 1509	27.71636 0.20024 27.91660	9.23879 0.00013296	69483.5	<.0001
	Root MSE Dependent Coeff Var	Mean	0.01153 0.04298 26.82964	R-Square Adj R-Sq	0.9928 0.9928	

Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.02102	0.00348	-6.04	<.0001
log_dv	1	0.00209	0.00063194	3.31	0.0010
sigma_d	1	6.32948	0.01607	393.83	<.0001
log_p	1	0.00065360	0.00120	0.55	0.5851

Model 7

	ŕ	nalysis of Var	iance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr → F
Model Error Corrected Total	3 1506 1509	0.02289 0.01634 0.03923	0.00763 0.00001085	703.17	<.0001
Root I Depen Coeff	dent Mean	0.00329 0.00227 145.25976	R-Square Adj R-Sq	0.5835 0.5826	

Variable	DF	Estimate	Error	t Value	Pr > [t]
Intercept log_dv sigma_d log_p	1 1 1	0.00318 0.00006651 0.18052 -0.00105	0.00099324 0.00018052 0.00459 0.00034193	3.20 0.37 39.32 -3.06	0.0014 0.7126 <.0001 0.0023

Model 2

	DF	Squares	Square		Pr > F
otal	2 1507 1509	0.00059787 2.47184 2.47244			0.8334
	Mean	0.04050 -0.00020388 -19865	R-Square Adj R-Sq	0.0002 -0.0011	
		2 1507 otal 1509 Root MSE Dependent Mean	DF Squares 2 0.00059787 1507 2.47184 1509 2.47244 Root MSE 0.04050 Dependent Mean -0.00020388	DF Squares Square 2 0.00059787 0.00029893 1507 2.47184 0.00164 1509 2.47244 Root MSE 0.04050 R-Square Dependent Mean -0.00020388 Adj R-Sq	DF Squares Square F Value 2 0.00059787 0.00029893 0.18 1507 2.47184 0.00164 1509 2.47244 Root MSE 0.04050 R-Square 0.0002 Dependent Mean -0.00020388 Adj R-Sq -0.0011

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.00020037	0.00104	-0.19	0.8476
y_d	. 1	-0.00001842	0.00003685	-0.50	0.6172
lan v	1	-0.00001304	0.00003685	-0.35	0.7235

Model 4

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	otal	2 1507 1509	0.00547 2.92336 2.92883	0.00273 0.00194	1.41	0.2447
	Root MSE Dependent Coeff Var	Mean	0.04404 -0.00020377 -21615	R-Square Adj R-Sq	0.0019 0.0005	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept y_d	1 1	-0.00019451 -0.00001766	0.00113 0.00004008	-0.17 -0.44	0.8638 0.6596
lag y	1	-0.00006544	0.00004008	-1.63	0.1027

Model 6

-			_
Ana l	ysis	of Var	iance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	3 1506 1509	10.48168 8.94449 19.42617	3.49389 0.00594	588.27	<.0001
De	ot MSE pendent Mean eff Var	0.07707 0.03922 196.50707	R-Square Adj R-Sq	0.5396 0.5386	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	0.00055253	0.02324	0.02	0.9810
log_dv	1	0.00010520	0.00422	0.02	0.9801
sigma_d	1	3.90629	0.10741	36.37	<.0001
loo n	1	0 00431	0 00800	Λ 54	0.5902

AMAT

a)

a j											
Pearson Correlation Coefficients, N = 1511 Prob > r under H0: Rho=0											
	sigma_d	A_d	s_d	es_d	res_d	lambda1_d	lambda2_d	psi1_d	psi2_d	rho_d	gamma_d
sigma_d	1.00000	0.42041 <.0001	0.84607 <.0001	0.34713 <.0001	0.41806 <.0001	0.19222 <.0001	0.20481 <.0001	-0.05606 0.0293	-0.05813 0.0238	-0.25887 <.0001	-0.03499 0.1740
A_d	0.42041 <.0001	1.00000	0.05988 0.0199	0.01892 0.4624	0.51759 <.0001	0.47804 <.0001	0.65707 <.0001	-0.09205 0.0003	-0.04095 0.1115	-0.01203 0.6405	-0.08570 0.0009
s_d	0.84607 <.0001	0.05988 0.0199	1.00000	0.43834 <.0001	0.22653 <.0001	0.06456 0.0121	-0.03788 0.1411	-0.00544 0.8328	-0.04475 0.0821	-0.48952 <.0001	0.12152 <.0001
es_d	0.34713 <.0001	0.01892 0.4624	0.43834 <.0001	1.00000	0.76881 <.0001	-0.09859 0.0001	-0.12057 <.0001	-0.12285 <.0001	-0.11045 <.0001	-0.25913 <.0001	0.01662 0.5186
res_d	0.41806 <.0001	0.51759 <.0001	0.22653 <.0001	0.76881 <.0001	1.00000	0.11099 <.0001	0.22581 <.0001	-0.17324 <.0001	-0.11759 <.0001	0.02169 0.3995	-0.06117 0.0174
lambda1_d	0.19222 <.0001	0.47804 <.0001	0.06456 0.0121	-0.09859 0.0001	0.11099 <.0001	1.00000	0.93771 <.0001	0.17380 <.0001	0.14083 <.0001	-0.13249 <.0001	-0.06376 0.0132
lambda2_d	0.20481 <.0001	0.65707 <.0001	-0.03788 0.1411	-0.12057 <.0001	0.22581 <.0001	0.93771 <.0001	1.00000	0.06838 0.0078	0.07873 0.0022	0.01518 0.5554	-0.10760 <.0001
psi1_d	-0.05606 0.0293	-0.09205 0.0003	-0.00544 0.8328	-0.12285 <.0001	-0.17324 <.0001	0.17380 <.0001	0.06838 0.0078	1.00000	0.95983 <.0001	-0.07503 0.0035	0.03432 0.1824
psi2_d	-0.05813 0.0238	-0.04095 0.1115	-0.04475 0.0821	-0.11045 <.0001	-0.11759 <.0001	0.14083 <.0001	0.07873 0.0022	0.95983 <.0001	1.00000	-0.01242 0.6295	0.01219 0.6360
rho_d AR Factor 1, Parameter 1	-0.25887 <.0001	-0.01203 0.6405	-0.48952 <.0001	-0.25913 <.0001	0.02169 0.3995	-0.13249 <.0001	0.01518 0.5554	-0.07503 0.0035	-0.01242 0.6295	1.00000	0.19340 <.0001
gamma_d MA Factor 1, Parameter 1	-0.03499 0.1740	-0.08570 0.0009	0.12152 <.0001	0.01662 0.5186	-0.06117 0.0174	-0.06376 0.0132	-0.10760 <.0001	0.03432 0.1824	0.01219 0.6360	0.19340 <.0001	1.00000

b)

Model 1

Parameter Estimates

0.00061354 0.00042915 0.00042915 t Value | Pr > |t|

Model 2

t Value

0.00061350 0.00002511 0.00002511 Pr > |t|

0.6786 0.6871 0.4032

		Model					Model Analysis of Va		
		Analysis of Va					Sum of	Mean	
Source	DF	Sum of Squares	Mean Square F Value	Pr > F	Source	DF	Squares		alue Pr > F
Model Error Corrected Total	2 1507 1509	0.00020744 0.86341 0.86361	0.00010372 0.18 0.00057293	0.8344	Model Error Corrected Total	2 1507 1509	0.00053046 0.86308 0.86361	0.00026523 0.00057272	0.46 0.6294
Root MSE Dependent Coeff Var		0.02394 -0.00026374 -9075.65319	R-Square 0.0002 Adj R-Sq -0.0011			MSE ndent Mean f Var	0.02393 -0.00026374 -9073.95529	R-Square 0.000 Adj R-Sq -0.000	
		Parameter Esti	mates				Parameter Esti	mates	
Variable DF		rameter S stimate	tandard Error t Value Pr >	[t]	Variable		arameter S stimate	tandard Error t Value	Pr > [t]
Intercept 1 y_d 1 lag_y 1	0.00	0.0	0061670 -0.42 0.6 0043136 0.26 0.7 0043136 -0.54 0.5	961	Intercept z_d lag_z	1 0.0	0.00000094	0061665 -0.41 0002524 0.43 0002523 -0.85	0.6797 0.6647 0.3965
		Model	3				Model		
		Analysis of Var	iance				Analysis of Var		
Source	DF	Sum of Squares	Mean Square F Value	Pr → F	Source	DF	Sum of Squares	Mean Square F V	alue Pr > F
Model Error Corrected Total	2 1507 1509	0.00019268 0.85459 0.85478	0.00009634 0.17 0.00056708	0.8438	Model Error Corrected Total	2 1507 1509	0.00049818 0.85428 0.85478	0.00024909 0.00056688	0.44 0.6445
Root MSE Dependent Coeff Var	Mean	0.02381 -0.00026366 -9031.85442	R-Square 0.0002 Adj R-Sq -0.0011		Root M Depend Coeff	lent Mean	0.02381 -0.00026366 -9030.23990	R-Square 0.000 Adj R-Sq -0.000	

DF

Intercept z_d lag_z -0.00025425 0.00001011 -0.00002099

c)

-0.00025740 0.00009824 -0.00022770

Variable

Intercept y_d lag_y

	_	Model				
	HI	nalysis of Var	Tance			
Source	DF	Sum of Squares	Me Squa	ean are F	Value	Pr >
Model Error Corrected Total	3 1506 1509	0.00618 0.03042 0.03660	0.00 0.00002		01.98	<.000
Root Deper Coefi	ndent Mean	0.00449 0.01246 36.06113	R-Square Adj R-Sq	0.16 0.16		
	Pa	arameter Estin	nates			
Variable	Parar DF Est	neter St imate	andard Error	t Value	Pr >	t
Intercept log dv			0.00245	-3.64 2.10		003 363
sigma_d log_p	1 13.1	14160	0.82361 0.00102	15.96 3.10	<.0	001 020

QCOM

a)											
Pearson Correlation Coefficients, N = 1511 Prob > r under H0: Rho=0											
	sigma_d	A_d	s_d	es_d	res_d	lambda1_d	lambda2_d	psi1_d	psi2_d	rho_d	gamma_d
sigma_d	1.00000	0.66847 <.0001	0.90961 <.0001	0.36867 <.0001	0.34030 <.0001	0.28946 <.0001	0.27212 <.0001	0.05464 0.0337	0.02792 0.2781	-0.22271 <.0001	0.25107 <.0001
A_d	0.66847 <.0001	1.00000	0.45546 <.0001	0.22710 <.0001	0.29426 <.0001	0.34000 <.0001	0.43168 <.0001	0.00384 0.8814	0.00253 0.9217	-0.39804 <.0001	0.19857 <.0001
s_d	0.90961 <.0001	0.45546 <.0001	1.00000	0.36801 <.0001	0.25428 <.0001	0.34137 <.0001	0.22769 <.0001	0.11947 <.0001	0.06078 0.0181	-0.18439 <.0001	0.38047 <.0001
es_d	0.36867 <.0001	0.22710 <.0001	0.36801 <.0001	1.00000	0.95574 <.0001	0.02212 0.3902	-0.04026 0.1178	-0.00359 0.8890	-0.02888 0.2619	-0.09359 0.0003	0.15658 <.0001
res_d	0.34030 <.0001	0.29426 <.0001	0.25428 <.0001	0.95574 <.0001	1.00000	-0.04220 0.1010	-0.02375 0.3562	-0.06270 0.0148	-0.05979 0.0201	-0.06654 0.0097	0.03399 0.1866
lambda1_d	0.28946 <.0001	0.34000 <.0001	0.34137 <.0001	0.02212 0.3902	-0.04220 0.1010	1.00000	0.93845 <.0001	0.25249 <.0001	0.16881 <.0001	-0.10647 <.0001	0.39217 <.0001
lambda2_d	0.27212 <.0001	0.43168 <.0001	0.22769 <.0001	-0.04026 0.1178	-0.02375 0.3562	0.93845 <.0001	1.00000	0.14282 <.0001	0.09689 0.0002	-0.09491 0.0002	0.25216 <.0001
psi1_d	0.05464 0.0337	0.00384 0.8814	0.11947 <.0001	-0.00359 0.8890	-0.06270 0.0148	0.25249 <.0001	0.14282 <.0001	1.00000	0.97726 <.0001	0.09817 0.0001	0.31494 <.0001
psi2_d	0.02792 0.2781	0.00253 0.9217	0.06078 0.0181	-0.02888 0.2619	-0.05979 0.0201	0.16881 <.0001	0.09689 0.0002	0.97726 <.0001	1.00000	0.11304 <.0001	0.25516 <.0001
rho_d AR Factor 1, Parameter 1	-0.22271 <.0001	-0.39804 <.0001	-0.18439 <.0001	-0.09359 0.0003	-0.06654 0.0097	-0.10647 <.0001	-0.09491 0.0002	0.09817 0.0001	0.11304 <.0001	1.00000	0.36329 <.0001
gamma_d MA Factor 1, Parameter 1	0.25107 <.0001	0.19857 <.0001	0.38047 <.0001	0.15658 <.0001	0.03399 0.1866	0.39217 <.0001	0.25216 <.0001	0.31494 <.0001	0.25516 <.0001	0.36329 <.0001	1.00000

Model 1

		 iance

Source	DF	Sum of Squares			Pr > F
Model Error Corrected Tota	2 1507	0.00020302 1.23764 1.23784	0.00010151 0.00082126	0.12	0.8837
De	oot MSE ependent Mean oeff Var	0.02866 0.00008522 33626	Adj R-Sq	0.0002 -0.0012	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	0.00008138	0.00074054	0.11	0.9125
y_d	1	-0.00037691	0.00122	-0.31	0.7579
lag_y	1	0.00047560	0.00122	0.39	0.6974

Model 3

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square		Pr > F		
Model Error Corrected Tot	2 1507 tal 1509	1.23103	0.00016464 0.00081688		0.8175		
	Root MSE Dependent Mean Coeff Var	0.02858 0.00008540 33468	R-Square Adj R-Sq	0.0003 -0.0011			

Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.00008119	0.00073856	0.11	0.9125
y_d	1	-0.00048972	0.00122	-0.40	0.6881
lag_y	1	0.00059786	0.00122	0.49	0.6240

c)

Model 5

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	tal	3 1506 1509	0.00674 0.00060582 0.00735	0.00225 4.022718E-7	5586.41	<.0001
	Root MSE Dependent Coeff Var	Mean	0.00063425 0.00300 21.14510	R-Square Adj R-Sq	0.9175 0.9174	

Parameter Estimates

Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.01523	0.00048104	-31.66	<.0001
log_dv	1	0.00018926	0.00007004	2.70	0.0070
sigma_d	1	14.56286	0.12426	117.20	<.0001
log_p	1	0.00351	0.00012461	28.18	<.0001

Model 7 Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	otal	3 1506 1509	0.00004515 0.00020955 0.00025469	0.00001505 1.39141E-7	108.15	<.0001
	Root MSE Dependent Coeff Var	Mean	0.00037302 0.00057215 65.19552	R-Square Adj R-Sq	0.1773 0.1756	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept log dv	1	-0.00065828 0.00039777	0.00028291 0.00004119	-2.33 9.66	0.0201 <.0001
sigma_d	į	0.91841 -0.00071262	0.07308	12.57 -9.72	<.0001

Model 2

Source		DF	Sum of Squares	Mean Square		Pr > F
Model Error Corrected Tot	tal	2 1507 1509	0.00020376 1.23764 1.23784	0.00010188 0.00082126		0.8833
	Root MSE Dependent Coeff Var	Mean	0.02866 0.00008522 33626	R-Square Adj R-Sq	0.0002 -0.0012	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	0.00007718	0.00074040	0.10	0.9170
z d	1	-0.00000793	0.00003102	-0.26	0.7982
lao z	1	0.00001329	0.00003102	0.43	0.6684

Model 4

Analysis of Variance								
Source		DF	Sum of Squares	Mean Square		Pr > F		
Model Error Corrected Tot	al	2 1507 1509	0.00032208 1.23104 1.23136	0.00016104 0.00081688		0.8211		
	Root MSE Dependent Coeff Var	Mean	0.02858 0.00008540 33468	R-Square Adj R-Sq	0.0003 -0.0011			

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]	
Intercept	1	0.00007693	0.00073843	0.10	0.9170	
z d	1	-0.00001065	0.00003094	-0.34	0.7306	
lan z	1	0.00001629	0.00003094	0.53	0.5987	

Model 6

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tot	tal	3 1506 1509	0.09827 0.35968 0.45795	0.03276 0.00023883	137.15	<.0001
	Root MSE Dependent Coeff Var	Mean	0.01545 0.02490 62.05661	R-Square Adj R-Sq	0.2146 0.2130	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	-0.12672	0.01172	-10.81	< .0001
log dv	1	0.01709	0.00171	10.01	< .0001
sigma d	1	40.41951	3.02767	13.35	< .0001
loo p	1	-0.00446	0.00304	-1.47	0.1417