Немного про блочные шифры

ОПР(Блочный шифр)

Блочный шифр это криптосистема $(\{0,1\}^n,\{0,1\}^k,\{0,1\}^n,E,D)$ где:

- $\mathcal{M} = \{0, 1\}^n$
- $\mathcal{K} = \{0, 1\}^k$
- $C = \{0, 1\}^n$
- n длина блока
- k длина ключа

Идея применять к маленьким кусочкам открытого текста сложные функции(которые нужно задать таблицей)

Затем перемешаем эти блоки(например с помощью линейного преобразования либо другая простая функция). Действуем этой функцией на весь большой блок открытого текста

Итеративная схема блочного шифра

Есть

- $f: \{0,1\}^n > \to \{0,1\}^n$ сложное, локальное преобразование
- $g:\{0,1\}^n> ** \{0,1\}^n$ простое, глобальное преобразование
- $h:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ берёт че-то и ключ и возращает че-то другое
- $h_k = h(_,k)$ т.е в преобразование закладываем ключ k

По итогу получаем формулу для криптограммы

$$c=(h_k\circ f\circ g)^r(m)$$

• г - это число раундов

Конструкция фейстеля

Открытый текст разобъем его на 2 части(n - длина открытого текста - четное число)

 $m = L_0 R_0$, где:

• $L_0, R_0 \in \{0, 1\}^{\frac{n}{2}}$

теперь преобразовываем эти полублоки

$$\forall i = \{1, \cdots, r\}:$$

- $L_i = R_{i-1}$
- $\bullet \ R_i = L_{i-1} \bigoplus f(R_{i-1}, k_i)$
 - $-k_{i}$ раундовый ключ, как-то получается из основного ключа

Проделываем процедуру и в конце получаем L_r, R_r .

Формула для криптограмы с:

$$c = R_r L_r$$

Как расшифровывать криптограмму с?

пусть $c = u_0 v_0$

$$\forall i \in \{1, \cdots, r\}$$

- $u_i = v_{i-1}$
- $\bullet \ v_i = u_{i-1} \bigoplus f(v_{i-1}, k_{r+1-i})$

Проделываем процедуру и получаем v_r, u_r

Тогда формула для открытого текста это

$$m = v_r u_r$$

Д-ВО

С помощью индукции по і нужно показать, что:

- $\bullet \ u_i = R_{r-i}$
- $v_i = Lr i$

Б.И

$$i=0: \begin{cases} u_0=R_r\\ v_0=L_r \end{cases}$$

Ш.И от $(i-1) \rightarrow i$

ullet по опр конструкции Фейстеля $L_i=R_{i-1}$

$$\begin{split} u_i &= v_{i-1} = [\Pi.\mathtt{M}] = L_{r-i+1} = R_{r-i} \\ v_i &= u_{i-1} \bigoplus f(v_{i-1}, k_{r+1-i}) \end{split}$$

• по П.И:

$$\begin{array}{l} -\ u_{i-1} = R_{r-i+1} = \\ -\ v_{i-1} = L_{r-i+1} = R_{r-i} \end{array}$$

подставим

$$v_i = R_{i-i+1} \bigoplus f(R_{r-i}, k_{r+1-i})$$

из
$$R_i = L_{i-1} \bigoplus f(R_{i-1}, k_i) \Rightarrow$$

$$L_{i-1} = R_i \bigoplus f(R_{i-1}, k_i) \Rightarrow$$

По итогу получаем, что

$$L_{r-i} = R_{r-i+1} + (R_{r-i}, k_{r-i+1})$$

Конструкция расшифрования такая же как и шифрования, кроме порядка ключей

- При шифровании ключи используются по возрастанию
- При расшифровании ключи используются по убыванию

Нам не важно какую функцию f использовать, т.к не имеет значение её обратимость \to можем выбрать сколь угодно сложную функцию

DES(Data Encryption Standard)

Блочный шифр это конструкция, которая позволяет реализовать ШПЗ на большом алфавите

- Блок 64 бит
 - это длина буквы в алфавите(в битах)
- Ключ 56 бит

Устройство ключа

Рис. 1: alt text

- биты с 1 по 7, с 9 по 15, с 17 по 23 ... с 57 по 63 были ключевыми(зеленые)
- 8,16,24, ..., 64 биты были проверками на нечетность(сумма іого байта должна быть 1 по модулю 2) (желтые)

Построение раундовых ключей

Берётся 56 битов ключа и сначала пеереставляется 2 блока $(0, D_0)$ по 28 бит

Надо ли запоминать это разбиение на 2 таблицы

Заметь, что здесь пропущены биты проверки на нечетность

Это просто перестановка битов. Записаны они в порядке номеров, но читать их нужно по строкам. C_0 отдельно от D_0 изготавливаем $\forall n \in \{1, \cdots, 16\}$:

- $\bullet \ C_n = \ll_{\alpha} C_{n-1}$
- $D_n = \ll_{\alpha} D_{n-1}$

Рис. 2: разбиение на (C_0, D_0)

где
$$\alpha = \begin{cases} 1, \text{ при } n = 1, 2, 9, 16 \\ 2, \text{иначе} \end{cases}$$

Затем из каждой пары (C_n,D_n) изготавливается ключ $K_n.\ K_n$ - это следующие 48 бит строки $(C_n||D_n)$

• $(C_n||D_n)$ - сцепленные строки

По итогу получаем 16 48-битных цепочек $K_1, \cdots, K_1 6$, изготовленных из ключа К

Шифрование

- На входе берётся открытый текст $m \in \{0,1\}^{64}$
- На выходе выдаётся криптограмма $c \in \{0,1\}^{64}$
- 1. в качестве m' = P(m) начальная перестановка
- 2. $L_0R_0 =$ m' (разбили m' на 2 полублока)

$$3. \ \forall n \in 1, \cdots, 16: \begin{cases} L_n = R_{n-1} \\ R_n = L_{n-1} \bigoplus f(R_{n-1}, k_n) \end{cases}$$

- ullet k_n получен на предыдущем этапе
- 4. $c = P^{-1}(R_{16}L_{16})$
- ullet это в чистом виде конструкция фейстеля, но с добавленными двумя перестановками P и P^{-1}
- Добавление в начале и в конце двух перестановок не нарушает свойства конструкции фейстеля обратимости.

Чтобы расшифровать нужно сначала получить $R_{16}L_{16}=P(c)$

Затем проделать ту же процедуру расшифрования, что и в конструкции Фейстеля Затем получаем $m=P^{-1}(m')$

опишем р

р - это перестановка, а значит задаётся таблицей 8 на 8.

• можно заполнить только последний правый столбик, дальше строить строчки, прибавляя к числам по 8

опишем f

$$f: \{0, 1\}^{32} \times \{0, 1\}^{48} \to \{0, 1\}^{32}$$

 $f(x,y) = z$

Рис. 3: таблица для изготовления ключа ${\cal K}_n$

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Рис. 4: перестановка р

Таблица 2. Функция расширения Е

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

- 1. происходит раздувание. $x \to x'$ по правилу
- \bullet видим, что (32,1), (4,5), (8,9), (12,13), (16,17), (20,21), (24,25), (28,29) биты используются дважды
- 2. $t = x' \bigoplus y$
- 3. $t_1t_2\cdots t_8=t$ (разбили на 8 кусочков, каждый по 6 бит)
- 4. $\alpha_1, \alpha_2, \dots \alpha_6 = t_i (i \in \{1, \dots, 8\})$
 - $\alpha_1 \alpha_6 \in \{0, 1, 2, 3\}$
 - $\bullet \ \alpha_2,\alpha_3,\alpha_4,\alpha_5 \in 0,\cdots,15$
- 5. $r_i = S_i(\alpha_1\alpha_6,\alpha_2\alpha_3\alpha_4\alpha_5)$
 - ullet имеется 8 таблиц значений S_i для каждого t
 - •
 - •
 - 1. каждая строка таблицы это перестановка
 - 2. S нелинейная от аргументов
 - 3. изменение одного бита входа ведёт к изменению не менее 2 битов выхода
 - 4. $\forall x: S(x)$ и $S(x \bigoplus 001100)$ эти строки отличаются не менее чем в 2 битах.
- 6. на выходе $z = q(r_1, r_2, \cdots, r_8)$
 - q перестановка, задаваемая таблицей
 - •

Достоинства

- 1. Первый опубликованный
- 2. Зашита конструкция фейстеля \Rightarrow не нужно изготавливать дополнительное расшифровывающее устройство
- 3. Быстрый т.к всего 16 раундов

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	S_1
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10	
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	S_2
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15	
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9	
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	S_3
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7	
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12	
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15	
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	S_4
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4	
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14	

Рис. 5: таблицы \boldsymbol{S}_i

0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9	
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6	S_5
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14	
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3	
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11	
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8	S_6
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6	
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13	
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1	
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6	S_7
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2	
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12	
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7	
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2	S_8
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8	
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11	

Рис. 6: таблицы S_i

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Рис. 7: q - перестановка, задаваемая таблицей

Недостатки

- 1. Очень много битовых операций
- 2. Слишком короткий ключ
- 3. Чтобы бороться с коротким ключом, то используется тройной DES