# Day 7: High Performance Computing CMT106

David W. Walker

Professor of High Performance Computing
Cardiff University

http://www.cardiff.ac.uk/people/view/118172-walker-david

#### Day 7

- 9:30 10:30am: Lecture on dynamic and static load balancing techniques: orthogonal recursive bisection, hierarchical recursive bisection, block cyclic data decompositions.
- 10:30 10:50am: Break.
- 10:50am 11:40pm: Lecture on cellular automaton model of catalytic converter.
- 11:40 1:10pm: Lunch break.
- 1:10 3:00pm: Self study, do the questions on the worksheet.
- 3:00-4:30pm: Review of the worksheet questions.
- 4:30 5:00pm: Review module, structure of the exam.

#### Topics Covered on Days 1-4

- *Day 1:* Introduction to parallelism; motivation; types of parallelism; Top500 list; classification of machines; SPMD programs; memory models; shared and distributed memory; OpenMP; example of summing numbers.
- *Day 2*: Interconnection networks; network metrics; classification of parallel algorithms; speedup and efficiency.
- *Day 3*: Scalable algorithms; Amdahl's law; sending and receiving messages; programming with MPI; collective communication; integration example.
- Day 4: Regular computations and simple examples the wave equation and Laplace's equation.

#### Topics Covered on Days 5-7

- *Day 5*: Programming GPUs with CUDA; CUDA device memory architecture; simple programming examples.
- *Day 6*: Dynamic communication and the molecular dynamics example; irregular computations; the WaTor simulation.
- Day 7: Load balancing strategies; block-cyclic data distribution, surface catalysis model.

#### Dynamic Load Imbalance

- In dealing with dynamic load imbalance the following two approaches are important:
- Use of a dynamic load balancer so that the distribution of the ocean among the processes changes as the fish and shark system evolves. When dealing with grids some form of *recursive bisection* is often used.
- Use of a *cyclic*, or *scattered*, data distribution. The parts of the grid assigned to one process do not form a contiguous block but are scattered in a regular way over the whole domain. The aim in this case is to achieve statistical load balance.

#### Orthogonal Recursive Bisection

- Orthogonal Recursive Bisection (ORB) first divides the domain orthogonal to the x-direction so there are equal numbers of items in each of the two subdomains.
- Then each of these 2 subdomains is independently divided orthogonal to the y-direction, to give 4 subdomains each with approximately the same number of items in each
- This process of bisection continues, alternating between the x and y directions, until there is one subdomain for each process.

#### Example of ORB 1



ORB is not used when the items are distributed uniformly over the domain - in this case the subdomains would come out about the same size and shape.

#### Example of ORB 2



If the items are distributed unevenly over the domain, ORB can give rise to a variety of different shaped process subdomains.

#### Notes on ORB

Using a dynamic load balance scheme such as ORB adds to the complexity of the software, particularly in deciding which boundary data must be communicated with which processes.

#### Hierarchical Recursive Bisection

- HRB is a variation of ORB in which we first make all the cuts in one direction, and then all the cuts in the second direction, rather than alternating directions.
- HRB allows the data distribution to be adjusted over just one direction, rather than both.
- ORB and HRB can easily be extended to 3 or more dimensions.

### Example of HRB



#### Cyclic Data Distributions

- In a cyclic data distribution the data assigned to each process is scattered in a regular way over the domain of the problem.
- The figure on the next slide shows how a grid might be cyclically distributed over a 4x4 mesh of processes.
- The cyclic distribution is a simple way to improve load balance but can result in more communication as it increases the amount of boundary data in a process.

| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |

#### Cyclic Data Distributions

Consider a one-dimensional cyclic data distribution of an array, such as:

This is known as a cyclic[1] data distribution, and can be regarded as mapping a global index, m, to a process location, p, and a local index, i.

#### Cyclic[1] Data Mappings

• The global index, m, maps to a process location, p, and a local index, i.

$$m \rightarrow (p,i)$$

where p and i are given by:

$$p = m \pmod{N}$$

$$i = floor(m/N)$$

and N is the number of processes. The inverse mapping is:

$$m = iN + p$$

#### Cyclic[k] Data Mappings

- •If we arrange array entries in groups of size k and cyclically distribute these we get a cyclic[k] data distribution.
- •For example, the following shows a cyclic[2] data distribution.



http://users.cs.cf.ac.uk/David.W.Walker/PHP/CyclicTable.php

Number of processes, N = 5Block size, k = 3First global index, m = 0Final global index, m = 19

#### Cyclic[k] Example

m is the global index B is the global block index p is the process number b is the local block index i is the local index within the block j is the local index in the process j = kb + iwhere k is the block size

#### Cyclic[k] Data Mappings 2

Global index m is mapped to process location p, local block index b, and local index i within the block, as follows:

$$p = B \pmod{N}$$

$$b = floor(B/N)$$

$$i = m \pmod{k}$$

where B=floor(m/k) is the global block index. The inverse mapping is:

$$m=(bN+p)k+i$$

### Communication and Load Imbalance Tradeoff

- A block cyclic data distribution can be used to improve load balance when data is distributed inhomogeneously across the problem domain.
- However, a smaller block size results in more boundary data and hence gives rise to increased communication.
- There is, therefore, a tradeoff between load imbalance and communication cost.
- It is important to choose the correct block size so that the total overhead is minimised.

#### Example

- Assume that the amount of communication associated with a block is proportional to its perimeter.
- Suppose we have a 2-D block cyclic distribution with block size k<sub>1</sub> by k<sub>2</sub>.
- Now we reduce the block size by a factor of 2 in each direction, so each block in the original data distribution is split into 4 blocks, each of size k<sub>1</sub>/2 by k<sub>2</sub>/2.

#### Example (continued)



- The perimeter of the original block is  $2(k_1+k_2)$ .
- After it is split into 4 smaller blocks the total perimeter of these blocks is  $4(k_1+k_2)$ .
- So, for a 2D problem, we expect the communication cost to double when the block size is halved in each direction

### Multi-Dimensional Data Distributions

- Multi-dimensional arrays are distributed by applying the desired data distribution separately to each array index.
- Thus, for a two-dimensional data distribution the global index (m,n) is mapped so that m→ (p,i) and n→ (q,j), where (p,q) is location on a PxQ process mesh, and (i,j) is the index into the local 2D array.
- Different data distributions can be applied over each array dimension.

### Multi-Dimensional Data Distributions 2

• For a 2D (cyclic[1],cyclic[1]) data distribution we would have:

$$m \rightarrow (p,i) = (m \pmod{P}, floor(m/P))$$
  
 $n \rightarrow (q,j) = (n \pmod{Q}, floor(n/Q))$ 

| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |

#### (cyclic[k<sub>r</sub>],cyclic[k<sub>c</sub>]) Example

- Take  $(k_r,k_c) = (3,4)$  and (P,Q) = (5,4). Then where is element (m,n) = (18,22)?
- Rows: m = 18,  $k_r = 3$ , P = 5  $B_r = 18/3 = 6$ , p = B(mod P) = 1,  $b_r = B/P = 1$ ,  $i_r = m(\text{mod } k_r) = 0$
- Columns: n = 22,  $k_c = 4$ , Q = 4  $B_c = 22/4 = 5$ , q = B(mod Q) = 1,  $b_c = B/Q = 1$ ,  $i_c = n(mod k_c) = 2$

#### Position of (18,22)



- Each green rectangle is a 3x4 block
- Position in process mesh is (p,q) = (1,1)
- Local block position is  $(b_r, b_c) = (1,1)$

#### Layout of Global Blocks: Matrix View

|          |    | $\mathrm{B}_{\mathrm{c}}$ |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----------|----|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| <u>p</u> | ,q | 0                         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |
|          | 0  | 0,0                       | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 |
|          | 1  | 1,0                       | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 |
|          | 2  | 2,0                       | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 |
|          | 3  | 0,0                       | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 |
|          | 4  | 1,0                       | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 |
| $B_{r}$  | 5  | 2,0                       | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 |
|          | 6  | 0,0                       | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 |
|          | 7  | 1,0                       | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 |
|          | 8  | 2,0                       | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 |
|          | 9  | 0,0                       | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 | 0,0 | 0,1 | 0,2 | 0,3 |
|          | 10 | 1,0                       | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 | 1,0 | 1,1 | 1,2 | 1,3 |
|          | 11 | 2,0                       | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 | 2,0 | 2,1 | 2,2 | 2,3 |

### Layout of Global Blocks: Process Memory View

| $B_r,B_c$ | 0    |      |      |       |      |      | 1 q 2 |       |      |      |       |       |      |      | 3     |       |  |  |  |
|-----------|------|------|------|-------|------|------|-------|-------|------|------|-------|-------|------|------|-------|-------|--|--|--|
|           | 0,0  | 0,4  | 0,8  | 0,12  | 0,1  | 0,5  | 0,9   | 0,13  | 0,2  | 0,6  | 0,10  | 0,14  | 0,3  | 0,7  | 0,11  | 0,15  |  |  |  |
| 0         | 3,0  | 3,4  | 3,8  | 3,12  | 3,1  | 3,5  | 3,9   | 3,13  | 3,2  | 3,6  | 3,10  | 3,14  | 3,3  | 3,7  | 3,11  | 3,15  |  |  |  |
| U         | 6,0  | 6,4  | 6,8  | 6,12  | 6,1  | 6,5  | 6,9   | 6,13  | 6,2  | 6,6  | 6,10  | 6,14  | 6,3  | 6,7  | 6,11  | 6,15  |  |  |  |
|           | 9,0  | 9,4  | 9,8  | 9,12  | 9,1  | 9,5  | 9,9   | 9,13  | 9,2  | 9,6  | 9,10  | 9,14  | 9,3  | 9,7  | 9,11  | 9,15  |  |  |  |
|           | 1,0  | 1,4  | 1,8  | 1,12  | 1,1  | 1,5  | 1,9   | 1,13  | 1,2  | 1,6  | 1,10  | 1,14  | 1,3  | 1,7  | 1,11  | 1,15  |  |  |  |
| n 1       | 4,0  | 4,4  | 4,8  | 4,12  | 4,1  | 4,5  | 4,9   | 4,13  | 4,2  | 4,6  | 4,10  | 4,14  | 4,3  | 4,7  | 4,11  | 4,15  |  |  |  |
| p 1       | 7,0  | 7,4  | 7,8  | 7,12  | 7,1  | 7,5  | 7,9   | 7,13  | 7,2  | 7,6  | 7,10  | 7,14  | 7,3  | 7,7  | 7,11  | 7,15  |  |  |  |
|           | 10,0 | 10,4 | 10,8 | 10,12 | 10,1 | 10,5 | 10,9  | 10,13 | 10,2 | 10,6 | 10,10 | 10,14 | 10,3 | 10,7 | 10,11 | 10,15 |  |  |  |
|           | 2,0  | 2,4  | 2,8  | 2,12  | 2,1  | 2,5  | 2,9   | 2,13  | 2,2  | 2,6  | 2,10  | 2,14  | 2,3  | 2,7  | 2,11  | 2,15  |  |  |  |
| 2         | 5,0  | 5,4  | 5,8  | 5,12  | 5,1  | 5,5  | 5,9   | 5,13  | 5,2  | 5,6  | 5,10  | 5,14  | 5,3  | 5,7  | 5,11  | 5,15  |  |  |  |
|           | 8,0  | 8,4  | 8,8  | 8,12  | 8,1  | 8,5  | 8,9   | 8,13  | 8,2  | 8,6  | 8,10  | 8,14  | 8,3  | 8,7  | 8,11  | 8,15  |  |  |  |
|           | 11,0 | 11,4 | 11,8 | 11,12 | 11,1 | 11,5 | 11,9  | 11,13 | 11,2 | 11,6 | 11,10 | 11,14 | 11,3 | 11,7 | 11,11 | 11,15 |  |  |  |

## Load Balancing Issues in a Parallel Cellular Automata Application

- This looks at an application that uses a cyclic data distribution to achieve static load balance.
- As in WaTor, data inconsistency in how updates are performed is an issue

#### CA for Surface Reactions

 A cellular automaton is used to model the reaction of carbon monoxide and oxygen to form carbon dioxide

$$CO + O \longleftrightarrow CO_2$$

• Reactions take place on surface of a crystal which serves as a catalyst.

#### The Problem Domain

- The problem domain is a periodic square lattice representing the crystal surface.
- CO and  $O_2$  are adsorbed onto the crystal surface from the gas phase.
- Parameter y is the fraction of CO and 1-y is the fraction of  $O_2$ .

#### Interaction Rules

- Choose a lattice site at random and attempt to place a CO or an O<sub>2</sub> there with probabilities y and 1-y, respectively.
- If site is occupied then the CO or O<sub>2</sub> bounces off, and a new trial begins.
- O<sub>2</sub> disassociates so we have to find 2 adjacent sites for these.
- The following rules determine what happens next.

#### Interaction Rules for CO

- 1. CO adsorbed
- 2. Check 4 neighbors for O
- 3. CO and O react
- 4. CO<sub>2</sub> desorbs



oxygen

CO

#### Interaction Rules for O

- 1. O<sub>2</sub> adsorbed
- 2. O<sub>2</sub> disassociates
- 3. Check 6 neighbors for CO
- 4. O and CO react
- 5. CO<sub>2</sub> desorbs



oxygen

CO

 $O_2$ 

#### Parallel Version of Code

- As simulation evolves the distribution of molecules may become very uneven.
- This results in load imbalance.
- Use a 2-D block cyclic data distribution for the lattice.
- This will give statistical load balance, but smaller block sizes will result in more communication.

#### Steady State Reaction

For  $y_1 < y < y_2$  we get a steady state.

$$y_1\approx 0.39$$

$$y_2 \approx 0.53$$



# CO Poisoning: $y > y_2$



# Oxygen Poisoning: y < y<sub>1</sub>



#### Main Issues

- MPI used user-defined datatypes were important in performing communication.
- There is a trade-off between load imbalance and communication.
- A block-cyclic data distribution is used.
- Performance can be modelled.

### Block-Cyclic Data Distribution

Block-cyclic data distribution improves load balance by scattering processes over the lattice in a regular way.

Block size is  $k_r \times k_c$ 

| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |
| (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) | (0,0) | (0,1) | (0,2) | (0,3) |
| (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) | (1,0) | (1,1) | (1,2) | (1,3) |
| (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) | (2,0) | (2,1) | (2,2) | (2,3) |
| (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) | (3,0) | (3,1) | (3,2) | (3,3) |

## Parallel Implementation

- Processes need to communicate their boundary data to neighboring processes.
- Sites within two sites from the boundary must be communicated.
- Each process can generate random numbers independently.

### A Communication Strategy

- Do a left shift: send leftmost 2 columns left while receiving from the right.
- Do a right shift: send rightmost 2 columns right while receiving from the left.
- Similarly for up shifts and down shifts.
- After these 4 shifts have been done each process can update all its lattice sites.

### Communication Shifts

- 1. Left shift.
- 2. Right shift.
- 3. Up shift.
- 4. Down shift.



### **Update Conflicts**

- Two adjacent processes can concurrently update the same lattice site close to their common boundary.
- This is an *update conflict*.
- Avoid conflicts by never updating adjacent areas in processes concurrently.
- Use sub-partitioning to do this.

# Sub-partitioning

- First each process updates A, then B, C, and D.
- Before updating a sub-partition communication is needed to ensure each process has all the data to update its points.
- After updating a sub-partition the data is sent back to the process it came from.



# Communication Before Update



#### Load Imbalance

2x2 process mesh used.

Load imbalance is smaller for smaller block sizes.

Load imbalance is large as CO poisoning occurs.



#### Maximum Work Load

Maximum work load is similar for different block size, except after step 700.

Not much work available at this time.

Load imbalance not very important!



#### Communication Time

512x512 lattice, y = 0.53

For given problem communication is smaller for more processes - less data per process.

Smaller blocks require more communication.



#### Performance Model

- Amount of communication and computation both depend linearly on problem size.
- Speed-up is independent of problem size



# Self Speed-Up

As expected, speed-up is independent of problem size (except at 8!)



## Scaled Speed-Up

Fixed problem size per process



### Summary

- It turns out that load imbalance is not very important in this problem.
- Load imbalance will be important in cellular automata with more complex geometries.
- Easy to modify code for other CA problems.
- Speed-up independent of problem size.