Scores:	1_1		6	*7	R	Q	10
DUCTED.	1	€.8	3.3	á	(C)	. 3	111

Name	

Section L___

Mathematics 2602 Midterm 1 Prof. Margalit 2 February 2012

1. Answer the following questions with your clicker, and record your answers on this page.

Clicker #1 Choose the sentence that best completes the statement of the principle of mathematical induction.

Say we have a mathematical statement that depends on an integer n. Suppose:

- The statement is true for $n = n_0$.
- Then the statement is true for all $n \geq n_0$.

A. The statement is true for all n = k.

- (B) Whenever the statement is true for n = k, it is also true for n = k + 1.
- C. If the statement is true for n = k, then it is true for all $n \ge n_0$.
- D. If the statement is true for $n = n_0$, then it is also true for all n = k.

Clicker #2 Choose the phrase that best completes the definition of "f is $\mathcal{O}(g)$."

Let f and g be functions $\mathbb{N} \to [0, \infty)$. We say that f is $\mathcal{O}(g)$ if ______ so that

$$f(n) \le cg(n)$$

for all $n \geq n_0$.

- A. for all natural numbers n_0 , there exists a positive real number c
- B. for all positive real numbers c, there exists a natural number n_0
- C. for all natural numbers n_0 and all positive real numbers c
- D there exists a natural number n_0 and a positive real number c

2. Answer the following questions with your clicker, and record your answers on this page.

Clicker #3 True or false: generating functions are useless because you can always solve the problem in a simpler way.

Clicker #4 Recall that the Fibonacci numbers are defined by the recursion relation

What is F_5 ?

Clicker #5 Which of the following are linear recurrence relations? Select all that apply.

$$\widehat{A} a_n = a_{n-2}$$

$$(B)a_n = -3a_{n-1} + 15a_{n-2}$$

$$C. \ a_n = a_{n-1}a_{n-2}$$

$$D. \ a_n = a_n^2 + a_{n-1}$$

Clicker #6 Put the following orders of complexity in order, from smallest to largest.

A.
$$\mathcal{O}(n^{500,000})$$

B.
$$\mathcal{O}(2^n)$$

$$C. \mathcal{O}(1)$$

$$D. \mathcal{O}(\log n)$$

Clicker #7 Discrete is the opposite of...

$$C.\ in finite$$

Answer the following questions with your clicker, and record your answers on this page.

3. Find a function on the list below that has the same order as each of the following functions.

Clicker #8
$$10^{99}n^{452} + \frac{3^n}{1,000,000} + 15 \log n$$

Clicker #9 $e^n n^e$ $e^n + n^e$

Clicker #10 $3n! + 2^n$
 $\boxed{1: n!}$

$$A.$$
 n^2
 $F.$
 n^e
 $B.$
 n^{452}
 $G.$
 3^n
 $C.$
 2^n
 $H.$
 n^n
 $D.$
 $n \log n$
 $I.$
 $n!$
 $E.$
 $\log n$
 $J.$
 e^n

4. Match each generating function to one of the sequences listed below.

Clicker #11
$$\frac{7}{1+x} = 7 - 7 \times + 7 \times^2 - 7 \times^3 + \dots$$

Clicker #12
$$\frac{x}{(1-x)^2} = 0 + x + 2x^2 + 3x^3 + \dots$$
 [3: n]

Clicker #13
$$\frac{1}{1-5x} = 1 + 5 \times + 5^2 \times^2 + 5^3 \times^3 + \dots$$

A.
 1
 F.

$$n-1$$

 B.
 n
 G.
 $n+2$

 C.
 5^n
 H.
 7^n

 D.
 $(-1)^n 7$
 I.
 7

5. Use induction to prove that $n^3 + 2n$ is divisible by 3 for $n \ge 0$.

Base Case:

For N=0, n³+2n=0 which is divisible by 3

Induction Hypotlesis:

Assume k³+2k is divisible by 3 for some k ≥ 0.

Induction Step:

(k+1)³+2(k+1) = k³+3|²+3k+1+2k+2

= k³+2k+3(k²+k+1)

k³+2k is divisible by 3 by induction hypotlesis

3(k²+k+1) is clearly a multiple of 3

therefore (k+1)³+2(k+1) is divisible by 3.

By the principle of mathematical induction,

n3+2n & divisible by 3 for all h20.

6. Recall that the Fibonacci numbers are defined by the recursion relation

$$F_{n+2} = F_{n+1} + F_n, F_0 = 0, F_1 = 1.$$

Use the strong version of the principle of mathematical induction to show that, for $n \geq 1$, the number of *n*-digit binary strings with no consecutive 1's is F_{n+2} .

As one example, 10001001000001 is a 14-digit binary string with no consecutive 1's.

Let an be the number of n-digit strings with no consecutive 1's. We want to prove an = F_{n+2} for all n > 1. Note $F_2 = 1$, $F_3 = 2$, $F_4 = 3$

Base Cases:

For
$$n=1$$
, the length 1 strings are 0 and 1, so $a_1=2=F_3$.

For n=2, the length 2 strings are 00, 01 and 10, so $az=3=F_4$.

Induction Hypothesis:

Assume ag=Ferz for ISIKK for some KPI.

Induction Step:

A k-digit string can begin either with 0 or 1

Case 1: If the first digit is 0, the remaining digits can be any (k-1)-digit string with no repeated 1's there are any ways for this to happen.

Case 2: If the first digit is 1, the second digit must be 0. After that, the remaining digits can be and (k-2)-digit string with no repeated 1's. There are any ways for this to happen.

So in total an = ax-1 + ax-7.

By the induction hypothesis, $a_{k-1} + a_{k-2} = F_{k+1} + F_{ik} = F_{k+2}$ 90 $a_k = f_{k+2}$

By the principle of mathematical induction, an = First for all no. 1.

7. Consider the recurrence relation given by $a_0=2$ and

$$a_n = 5a_{n-1}$$

for $n \geq 1$. Solve for a_n using generating functions.

$$f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n + ...$$

$$-5xf(x) = -5a_0x - 5a_1x^2 + ... - 5a_{n-1}x^n - ...$$

$$f(x) - 5xf(x) = a_0 + 0x + 0x^2 + ... + 0x^n + ...$$

$$using a_0 = Z,$$

$$f(x)(1-5x) = Z,$$

$$f(x) = \frac{2}{1-5x} = 2 \cdot 1 + 2 \cdot 5x + 2 \cdot 5^2x^2 + ...$$
The corresponding sequence is

the corresponding sequence is
$$a_n = 2.5^n$$

8. Solve the recurrence relation given by $a_0 = 2$, $a_1 = 0$, and

$$a_n = 2a_{n-1} + 3a_{n-2} + 4$$

for $n \geq 2$.

Characteristic polynomial:

$$x^2 - 2x - 3 = 0$$
 $(x - 3)(x + 1) = 0$
 $f_1 = 3$, $f_2 = -1$
 $g_n = C_1 3^n + C_2(-1)^n$

particular solution:

Non-homogeneous part is a constant so let $p_n = b$
 $p_n = 2p_{n-1} + 3p_{n-2} + 4$
 $b = 2b + 3b + 4$
 $4b = -4$
 $b = -1$
 $p_n = -1$

Combine the parts of the solution:

 $a_n = q_n + p_n = C_1 3^n + C_2(-1)^n - 1$
 $a_0 = C_1 3^0 + C_2(-1)^0 - 1 = 2$
 $a_1 = C_1 3^1 + C_2(-1)^1 - 1 = 0$
 $c_1 + c_2 = 3$
 $3c_1 - (c_2 = 1)$
 $3c_1 - (c_3 - c_4) = 1$
 $c_2 = 1$
 $c_4 = 1$

9. Use the definition of "f is $\mathcal{O}(g)$ " in order to verify that

$$n^n \neq \mathcal{O}(n!)$$
.

10. Show that $n \ln n \prec n^2$.

$$\lim_{n\to\infty} \frac{n \ln(n)}{n^2} = \lim_{n\to\infty} \frac{\ln(n)}{n} \stackrel{\text{Uhopital's}}{=} \lim_{n\to\infty} \frac{y_n}{1} = 0$$
So $n \ln(n) < n^2$

Let A and B be natural numbers with A > B. Show that $A^n + B^n \approx A^n$.

$$\lim_{n\to\infty} \frac{A^n + B^n}{A^n} = \lim_{n\to\infty} \frac{A^n}{A^n} + \frac{B^n}{A^n} = \lim_{n\to\infty} 1 + \left(\frac{B}{A}\right)^n = 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n + B^n}{A^n} = \lim_{n\to\infty} \frac{A^n}{A^n} + \frac{B^n}{A^n} = \lim_{n\to\infty} 1 + \left(\frac{B}{A}\right)^n = 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_{n\to\infty} 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_{n\to\infty} \left(\frac{B}{A}\right)^n = 1 + 0$$

$$= \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} \frac{A^n}{A^n} + \lim_{n\to\infty} 1 + \lim_$$