Jian Li

1. ① if n=1, the board is 2x2.

It is sure that 3-gnomon can cover the board no matter which square deleted.

Dassume 27.2° can be covered as required. Let's Prove 2ⁿ⁺¹, 2ⁿ⁺¹ can also be covered.

2ⁿ⁺¹·2ⁿ⁺¹ board is the combination of 4 2ⁿ·2ⁿ boards. put a 3 segnamon in the center of 2ⁿ⁺¹·2ⁿ⁺¹ as above. The square to + be deleted is the one in shadow.

By doing this, each of the 4 2?2" boards deleted one square. Thus each of them can be covered as required according to assumption. So 2ⁿ⁺¹, 2ⁿ⁺¹ can be covered is proved.

2. in other files attached.

3. a.
$$f(n) = n^2 + f(\lceil \frac{3}{7}n \rceil)$$
.
 $a=1$, $b=\frac{7}{3}$, $c=2$
 $P = \frac{\log 1}{\log \frac{7}{3}} = 0$.
So $P < C$, $T(n) = \Theta(n^2)$

b.
$$g(n) = \lceil \sqrt{n} \rceil + 5g(L_{1}^{4}n_{1}) + pg(L_{5}^{1}n_{1})$$

solve $5(\frac{4}{7})^{p} + 10 \times (\frac{1}{5})^{p} = 1$
using Motlab $p = 3.02 > \frac{1}{2}$
so $T(n) = \Theta(n^{3.02})$.

$$\Theta 5n^{-5}+4n^{-4} \sim \Theta(n^{-4})$$

(3) 50 +
$$\frac{\log n^2}{n}$$
 ~ (1) ($n^{-1} \log n$)

$$\bigoplus n \sqrt{n}$$
 $\sim \bigoplus (n^{\frac{3}{2}})$

$$(0.2)^{\circ}$$
 \sim $(0.2)^{\circ}$

$$\sqrt{n!} = \sqrt{n^n e^{-n} (2\pi n)^{\frac{1}{2}}} = (n^n e^{-n} (2\pi n)^{\frac{1}{2}})^{\frac{1}{2}}$$

$$= n^{\frac{n}{2}} e^{-\frac{n}{2}} (2\pi n)^{\frac{1}{4}}$$

the decreasing order of growth is:

$$\sqrt{n!} > 10n^{6} + 5^{n} > 1.2^{n} > n^{2} \log n^{2} + n \log n$$

$$> n \sqrt{n} > (094^{n} > n^{0.2})$$

$$> \log(n + \log n) > 50 + \frac{\log n^{2}}{n}$$

$$> 5n^{-5} + 4n^{-4} > 0.2^{n}$$

$$5.1 c=3 p=8 c=\frac{5}{7}$$

$$P = log_8^3$$
 $Q = log_8^2 \sqrt{2}$ so $P > C$.
 $T(N) = \Theta(n^{log_8^3})$.

2.
$$Q=6$$
 $b=4$ $C=1.3$.
 $P=109_{4}b \approx 1.292 < C$

$$T(n) = (H)(n^{1.3})$$

3.
$$\frac{A=5}{5}$$
 $\frac{b=2}{5}$ formula: $5(\frac{1}{3})^{p}+2(\frac{1}{4})^{p}=1$. $C=3$

(3)
$$\int \Pi! \qquad (\Pi) \begin{pmatrix} \frac{2n+1}{4}e^{-\frac{\Lambda}{2}} \end{pmatrix} \sim (\Pi) \begin{pmatrix} \frac{n}{2} \end{pmatrix} \qquad (\Pi) \begin{pmatrix} \frac{n}{2} \end{pmatrix}$$

4. formula:
$$2(\frac{1}{5})^{p} + 4(\frac{1}{3})^{p} = 1$$
, $C = \frac{3}{2}$.
if $p = \frac{3}{2}$, $2 \times (\frac{1}{5})^{\frac{3}{6}} + 4 \times (\frac{1}{3})^{\frac{1}{6}} \approx 0.94 < 1$.

$$T(n) = H(n^{\frac{3}{2}}).$$

formula:
$$3(\frac{1}{5})^p + 2x(\frac{1}{4})^p + (\frac{1}{3})^p = 1$$
using mathab: $p = 1.256$
According to Akara - Bazzi, $T(n) \in (H)(n^{125})$

