# Álgebra Multilineal y Geometría Proyectiva

# Contenidos

| 1 | Álg | ebra multilineal                     |
|---|-----|--------------------------------------|
|   | 1.1 | Formas Cuadráticas                   |
|   |     | Teorema de Sylvester                 |
|   |     | Teorema Método convergencia-pivote   |
|   | 1.2 | Espacio dual                         |
|   |     | Tensores                             |
|   | 1.4 | Dimensión y bases de $T_p^q(E)$      |
|   |     | Teorema (base de $T_n^q(E)$ )        |
|   | 1.5 | Recordatorio de permutaciones        |
|   | 1.6 | Tensores simétricos y antisimétricos |

# 1 Álgebra multilineal

# 1.1 Formas Cuadráticas

### Definición 1.1.1

Sea E un k-ev. Diremos que una aplicación

$$\phi \colon E \times E \to k$$
$$(u, v) \mapsto \phi(u, v)$$

es una forma bilineal simétrica si

- $\phi(u_1 + u_2, v) = \phi(u_1, v) + \phi(u_2, v)$

 $\forall u, v, u_1, u_2 \in E \text{ y } \forall \lambda \in k.$ 

### Definición 1.1.2

Sea  $\phi$  una forma bilineal simétrica sobre un k-ev. E. Diremos que la aplicación

$$q \colon E \to k$$
  
 $u \mapsto q(u) = \phi(u, u)$ 

es la forma cuadrática asociada a  $\phi$ .

**Observación 1.1.3** Se cumple que  $q(\lambda u) = \lambda^2 q(u)$ 

**Lema 1.1.4** Sea  $\phi$  una forma bilieal simétrica sobre un k-ev. E con  $carE \neq 2$  y sea q la forma cuadrática asociada a  $\phi$ , entonces

$$\phi(u, v) = \frac{1}{2}(q(u + v) - q(u) - q(v))$$

#### Demostración

$$q(u+v) - q(u) - q(v) = \phi(u+v, u+v) - \phi(u, u) - \phi(v, v) =$$

$$= \phi(u, u) + \phi(u, v) + \phi(v, u) + \phi(v, v) - \phi(u, u) - \phi(v, v) = 2\phi(u, v)$$

#### Definición 1.1.5

Sea  $\phi$  una forma bilineal simétrica/cuadrática sobre un k-ev. E y sea  $B = \{u_1, \dots, u_n\}$  una base. La matriz de  $\phi$  en base B es

$$M_B(\phi) = (a_{ij}) = (\phi(u_i, u_j))$$

**Observación 1.1.6** La matriz  $M_B(\phi)$  es simétrica

### Definición 1.1.7

Sea E un k-ev. y sea  $\phi \colon E \times E \to k$  una forma bilineal simétrica.

 $\bullet$  Diremos que  $\phi$  es definida positiva si

$$\phi(x,x) > 0, \quad \forall x \in E \quad x \neq \vec{0}$$

• Diremos que  $\phi$  es definida negativa si

$$\phi(x,x) < 0, \quad \forall x \in E \quad x \neq \vec{0}$$

• Diremos que  $\phi$  es no definida en cualquier otro caso.

**Observación 1.1.8** Si  $\phi$  es una forma bilineal simétrica y definida positiva entonces define un producto escalar sobre E.

#### Definición 1.1.9

Dada una matriz cuadrada A (dim n) definimos

$$A_k = (a_{ij}), \quad 1 \le i, j \le k \quad y \quad \delta_k(A) = |A_k|$$

**Teorema** de Sylvester (1.1.10)

Sea E un k-ev. de dimension n y sea  $\phi \colon E \times E \to k$  una forma bilineal simétrica, entonces

$$\phi$$
 es definida positiva  $\iff \delta_k(M_B(\phi)) > 0 \quad \forall 1 \le k \le n \quad \forall B$  base de  $E$ 

### Demostración

Como  $\phi$  es definida positiva, define un producto escalar sobre E. Si tomamos una base B cualquiera, mediante Gramm-Schmidt podemos construir una base ortogonal  $B_2$  $\{v_1, \cdots, v_n\}$ . Por tanto

$$i \neq j \implies \phi(v_i, v_j) = 0, \quad \phi(v_i, v_i) > 0 \quad 1 \leq i, j \leq n$$

Llamamos  $\phi(v_i, v_i) = \lambda_i > 0$ . Por tanto

$$M_{B_2}(\phi) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \implies |M_{B_2}(\phi)| = \prod_{i=1}^n \lambda_i > 0$$

Entonces, como  $M_B(\phi) = S_{B,B_2}^T M_{B_2}(\phi) S_{B_2,B}$ 

$$|M_B(\phi)| = |S_{B_2,B}|^2 |M_{B_2}(\phi)| > 0$$

Por lo tanto, la matriz de un producto escalar tiene determinante positivo independientemente de la base tomada. Observamos que  $\phi$  también define un producto escalar en el subespacio vectorial  $\langle v_1, \cdots, v_k \rangle$  cuando lo restringimos a este. Por lo que hemos visto antes se tiene que

$$|M_B(\phi)_k| = \delta_k(M_B(\phi)) > 0 \quad \forall 1 \le k \le n.$$

Tenemos que  $\delta_k(M_B(\phi)) > 0 \quad \forall 1 \leq k \leq n$ . Aplicamos la siguiente variación de Gramm-Schmidt. Tomamos la base  $B=\{u_1,\cdots,u_n\}$  Y hacemos la siguiente construcción:

$$\begin{cases} v_1 = u_1 \\ v_2 = \alpha_{2,1}u_1 + u_2 \\ v_3 = \alpha_{3,1}u_1 + \alpha_{3,2}u_2 + u_3 \\ \vdots \\ v_n = \alpha_{n,1}u_1 + \dots + \alpha_{n,n-1}u_{n-1} + u_n \end{cases}$$

$$\alpha_{i,j} \text{ son tales que } \phi(v_k, u_i) = 0 \quad \underset{1 \le i \le k-1}{\overset{2 \le k \le n}{\underset{1 \le i \le k-1}{\sum k \le k}}}$$
ropiedades de  $\{v_1, \dots, v_n\}$ 

Propiedades de  $\{v_1, \cdots, v_n\}$ 

- $\forall k, \langle v_1, \dots, v_k \rangle = \langle u_1, \dots, u_k \rangle$  En particular,  $B_2 = \{v_1, \dots, v_n\}$  es base de E.
- $\phi(v_k, v_i) = 0 \ \forall 1 \leq i \leq k-1 \ \text{porque} \ v_i \in \langle u_1, \cdots, u_i \rangle \ \text{y hemos tomado los} \ \alpha \ \text{de manera}$ que  $\phi(v_k, u_i) = 0 \implies B_2$  es base ortogonal
- La matriz  $S_{B_2B}$

$$S_{B_2B} = \begin{pmatrix} 1 & \alpha_{2,1} & \cdots & \alpha_{n,1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha_{n,n-1} \\ 0 & \cdots & 0 & 1 \end{pmatrix} \implies |S_{B_2B}| = 1 \text{ y } \delta_k(S_{B_2B}) = 1$$

Finalmente, tenemos

Finalmente,  $\forall x \in E$ 

$$\phi(x,x) = \phi\left(\sum_{i=1}^{k} x_i v_i, \sum_{i=1}^{k} x_i v_i\right) = \sum_{i=1}^{k} x_i^2 \phi(v_i, v_i) > 0 \text{ si } x \neq \vec{0}$$

QED

**Teorema** Método convergencia-pivote (1.1.11)

Dada una forma bilineal simétrica  $\phi$ , queremos encontrar una base de E,  $B_2$ , en la cual  $M_{B_2}(\phi)$  sea una matriz diagonal. Partimos de una base B i de  $M_B(\phi)$ . El procesos es: operación con filas a las dos matrices y luego la misma operación pero en la columnas de la primera matriz únicamente (véase ejemplo).

$$(M_B(\phi)|Id) \stackrel{\text{op. filas}}{\sim} (S_1 M_B(\phi)|S_1) \underset{\text{en columnas}}{\overset{\text{misma op.}}{\sim}} (S_1 M_b(\phi) S_1^T |S_1) \sim \cdots \sim \\ \sim (S_r \dots S_1 M_B(\phi) S_1^T \dots S_r^T |S_r \dots S_1)$$

Donde la matriz de la izquierda es  ${\cal M}_{B_2}$  y es diagonal.

### **Ejemplo** 1.1.12

$$q_{\phi}(x,y,z) = 2x^2 + 2y^2 - 4xy - 2yz;$$
  $A = M_B(\phi) = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 0 \end{pmatrix}$ 

$$\begin{pmatrix} 2 & -2 & 0 & 1 & 0 & 0 \\ -2 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{fila}} \begin{pmatrix} 2 & -2 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{columna}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{fila}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{columna}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{columna}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -2 & -1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{columna}} \begin{pmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & -2 & -1 & 1 & 1 & 1 \\ 0 & 0 & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix} \xrightarrow{\text{columna}} \begin{pmatrix} 2 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$$

Entonces, en base B, los vectores de  $B_2$  son:

• 
$$v_1 = (1, 0, 0); \quad \phi(v_1, v_1) = 2$$

• 
$$v_2 = (1, 1, 1); \quad \phi(v_2, v_2) = -2$$

• 
$$v_3 = (\frac{-1}{2}, \frac{-1}{2}, \frac{1}{2}); \quad \phi(v_3, v_3) = \frac{1}{2}$$

 $Y \phi(v_i, v_j) = 0, i \neq j.$ 

# 1.2 Espacio dual

# Definición 1.2.1

Sea E un k-ev. Definimos el espacio Dual de E como  $E^* = \{\phi : E \to k \text{ lineales}\}$  (también es un k-espacio vectorial)

**Observación 1.2.2** Para definir  $E^*$  tenemos que usar bases de E.

### Definición 1.2.3

Si  $B = \{u_1, \dots, u_n\}$  es una base de E (k-ev.) definimos

$$u_i^* \colon E \to k$$
  
 $u_j \mapsto u_i^*(u_j) = \delta_{ij}$ 

Y llamaremos base dual de B a  $B^* = \{u_1^*, \dots, u_n^*\}$  (que efectivamente es una base de  $E^*$ ).

**Observación 1.2.4** En particular si  $w \in E$  y  $w = \sum_{i=1}^{n} a_i u_i^*$ , se cumple que:

$$w(u_j) = \sum_{i=1}^n a_i u_i^*(u_j) = a_j \implies w = \sum_{i=1}^n w(u_i) u_i^*$$

# Proposición 1.2.5 (cambios de base)

Sean  $B_1$  y  $B_2$  bases de E (k-ev. de dim = n) y sean  $B_1^*$  y  $B_2^*$  las bases duales de  $B_1$  y  $B_2$ . Si  $S_{B_1B_2}$  es la matriz de cambio de base de  $B_1$  a  $B_2$ , entonces:

$$S_{B_1^*B_2^*} = (S_{B_1B_2}^{-1})^T = (S_{B_2B_1})^T$$

# Proposición 1.2.6 (aplicaciones lineales)

Sean E y F k-ev. y sea  $\phi \colon E \to F$  una aplicación lineal, entonces  $\phi$  induce la aplicación lineal siguiente:

$$\phi^* \colon F^* \to E^*$$
$$w \mapsto \phi^*(w) = w \circ \phi$$

**Observación 1.2.7** Si E y F son de dimensión finita,  $\phi$  admite expresión matricial (en coordenadas). En particular  $B_1$  base de E  $\Rightarrow$   $\phi$  viene dada por  $M_{B_1,B_2}(\phi)$  y

$$B_1^*$$
 base de  $E^*$ 
 $B_2^*$  base de  $F^*$ 
 $\Longrightarrow \phi^*$  viene dada por  $M_{B_2^*, B_1^*}(\phi^*) = (M_{B_1, B_2}(\phi))^T$ .

# Proposición 1.2.8 (espacio bidual)

Dado E k-ev. podemos definir  $E^*, E^{**}, \cdots$ . En particular tenemos que  $E^{**}$  es canónicamente isomorfo a E mediante el isomorfismo

$$\phi \colon E \to E^{**}$$
$$u \mapsto \phi(u)$$

donde

$$\phi(u) \colon E^* \to k$$
$$w \mapsto (\phi(u))(w) = w(u)$$

**Observación 1.2.9** Como este isomorfismo es canónico (no depende de las bases),  $E \cong E^{**}$  y no distinguimos entre E y  $E^{**}$ 

### 1.3 Tensores

### Definición 1.3.1

Sean  $E_1, \dots, E_r$  k-ev. Diremos que  $f: E_1 \times \dots \times E_r \to k$  es un tensor (o una aplicación multilineal) si  $\forall i = 1, \dots, r$  y  $\forall v_j \in E_j \ (i \neq j)$  se cumple que

$$\phi_i \colon E_i \to k$$

$$v \mapsto \phi(u) = f(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_r)$$

es una aplicación lineal.

#### Definición 1.3.2

Sea E un k-ev. Llamaremos tensor de tipo (p,q) (o tensor p veces covariante y q veces contravariante) (o tensor p-covariante y q-contravariante) a un tensor

$$f \colon \overbrace{E \times \cdots \times E}^{p} \times \overbrace{E^{*} \times \cdots \times E^{*}}^{q} \to k$$
$$(v_{1}, \cdots, v_{p}, w_{1}, \cdots, w_{q}) \mapsto f(v_{1}, \cdots, v_{p}, w_{1}, \cdots, w_{q})$$

**Observación 1.3.3** Al conjunto de tensores de este tipo se le denota como  $T_p^q(E)$ .

**Observación 1.3.4** Por convenio  $T_0(E) = T^0(E) = T_0(E) = k$ .

# Ejemplo 1.3.5

Sea E un k-ev.

- $T_1(E) = T_1^0(E) = E^*$
- $T^1(E) = T_0^1 = E^{**} \ (\cong E)$
- $T_2(E) = T_2^0(E) = \{\text{formas bilineales de } E \text{ en } k\}$

# Proposición 1.3.6

 $T_p^q(E) = T_q^p(E^\ast)$  (cambiando el orden)

# Proposición 1.3.7

 $T_p^q(E)$ tiene estructura de k-espacio vectorial. Si  $f,g\in T_p^q(E)$  y  $\alpha,\beta\in k$ 

$$\alpha f + \beta g \colon \underbrace{E \times \cdots E}^{p} \times \underbrace{E^{*} \times \cdots \times E^{*}}^{q} \to k$$
$$(v_{1}, \cdots, v_{p}, w_{1}, \cdots, w_{q}) \mapsto (\alpha f + \beta g)(v_{1}, \cdots, v_{p}, w_{1}, \cdots, w_{q})$$

donde

$$(\alpha f + \beta g)(v_1, \dots, v_p, w_1, \dots, w_q) = \alpha f(v_1, \dots, v_p, w_1, \dots, w_q) + \beta g(v_1, \dots, v_p, w_1, \dots, w_q).$$

# Definición 1.3.8 (producto tensorial)

Dados  $f \in T_p^q(E)$  y  $g \in T_{p'}^{q'}(E)$ , definimos el producto tensorial de f y g como

$$f \otimes g \colon \overbrace{E \times \cdots \times E}^{p+p'} \times \overbrace{E^* \times \cdots \times E^*}^{q+q'} \to k$$

$$(v_1, \dots, v_p, \overline{v_1}, \dots \overline{v_{p'}}, w_1, \dots, w_q, \overline{w_1}, \dots, \overline{w_{q'}}) \mapsto f(v_1, \dots, v_p, w_1, \dots, w_p) +$$

$$g(\overline{v_1}, \dots, \overline{v_{p'}}, \overline{w_1}, \dots, \overline{w_{q'}})$$

**Observación 1.3.9** Si f y g son tensores, entonces  $f \otimes g$  también lo es. Además  $f \otimes g \in T^{q+q'}_{p+p'}(E)$ .

# Proposición 1.3.10

Sean  $f \in T_p^q(E), g \in T_{p'}^{q'} \text{ y } h \in T_{p''}^{q''}(E).$ 

- $\otimes$  **NO** es abeliano. En general  $f \otimes g \neq g \otimes f$ .
- $\bullet \ \otimes$ es asociativo.  $(f \otimes g) \otimes h = f \otimes (g \otimes h)$ . Denotado por  $f \otimes g \otimes h$
- $\vec{0} \otimes f = f \otimes \vec{0} = \vec{0}$
- $f \otimes (g+h) = f \otimes g + f \otimes h$   $((f+g) \otimes h = f \otimes h + g \otimes h)$
- $\alpha \in k$ .  $(\alpha f) \otimes g = \alpha (f \otimes g) = f \otimes (\alpha g)$

# **Ejemplo 1.3.11**

Sea  $E = \mathbb{R}^3$ ,  $B = \{e_1, e_2, e_3\}$ ,  $B^* = \{e_1^*, e_2^*, e_3^*\}$ . Y consideramps el producto tensorial de los tensores  $e_1^*$  y  $e_2^*$  sobre los vectores  $v_1 = (x_1, y_1, z_1)$  y  $v_2 = (x_2, y_2, z_2)$ .

$$\begin{cases}
(e_1^* \otimes e_2^*)(v_1, v_2) = e_1^*(v_1)e_2^*(v_2) = x_1 y_2 \\
(e_2^* \otimes e_1^*)(v_1, v_2) = e_2^*(v_1)e_1^*(v_2^*)?y_1 x_2
\end{cases} \implies e_1^* \otimes e_2^* \neq e_2^* \otimes e_1^*$$

# **Ejemplo 1.3.12**

Sea  $E = \mathbb{R}^2$ ,  $B = \{e_1, e_2\}$ ,  $B^* = \{e_1^*, e_2^*\}$ , entonces

$$e_1 \otimes e_2 \in T^2(E) \qquad \begin{cases} (e_1 \otimes e_2) = (e_1^{**} \otimes e_2^{**})(e_1^{**}, e_1^{**}) = e_1(e_1)e_2(e_1) = 0\\ (e_1 \otimes e_2)(e_1^{**}, e_2^{**}) = 1\\ (e_1 \otimes e_2)(e_2^{**}, e_1^{**}) = 0\\ (e_1 \otimes e_2)(e_2^{**}, e_2^{**}) = 0 \end{cases}$$

**Observación 1.3.13** a Si E es un k-ev de dimensión n y  $B = \{e_1, \dots, e_n\}$ 

$$\underbrace{(\underline{e_{i_1}^* \otimes \cdots \otimes e_{i_p}^*}}_{I=\{i_1,\cdots,i_p\}} \otimes \underbrace{e_{j_1} \otimes \cdots \otimes e_{j_2}}_{J=\{j_1,\cdots j_q\}}) \underbrace{(\underline{e_{l_1},\cdots,e_{l_p}}}_{L=\{l_1,\cdots,l_p\}}, \underbrace{e_{m_1}^*,\cdots,e_{m_q}^*}_{M=\{m_1,\cdots,m_q\}}) = \begin{cases} 1 & \text{Si } I=L \text{ y } J=M \\ 0 & \text{en otro caso} \end{cases}$$

**Observación 1.3.14** Sean  $f, g \in T_p^q(E)$  entonces

$$f = g \iff {}^{\forall e_{i_1}, \dots, e_{i_p} \in B} {}^{\forall e_{i_1}, \dots, e_{i_p}^* \in B^*} f(e_{i_1}, \dots, e_{j_q}^*) = g(e_{i_1}, \dots, e_{j_q}^*)$$

# **1.4** Dimensión y bases de $T_n^q(E)$

Recordemos que  $T_p^q(E)$  es un k-ev.

**Teorema** (base de  $T_p^q(E)$ ) (1.4.1)

Sea E un k-ev. de dimensión n y sea  $B = \{e_1, \dots, e_n\}$ , entonces

- i)  $\dim_k T_p^q(E) = n^{p+q}$
- ii) Una base de  $T_p^q(E)$  es

$$B_p^q = \left\{ e_{i_1}^* \otimes \cdots \otimes e_{i_p}^* \otimes e_{j_1} \otimes \cdots \otimes e_{j_q} |_{j_1, \cdots, j_1 \in \{1, \cdots, n\}}^{i_1, \cdots, i_p \in \{1, \cdots, n\}} \right\}$$

iii) Si  $f \in T_p^q(E)$ , las coordenadas de f en la base  $B_p^q$  son

$$f_{B_p^q} = (f(e_{i_1}, \cdots, e_{i_p}, e_{j_1}^*, \cdots, e_{j_q}^*))$$

# Demostración

i) Es consecuencia directa de ii

ii) Primero veamos que  $B_p^q$  es li. Sea

$$w = \sum \alpha_{IJ}(e_{i_1}^* \otimes \cdots \otimes e_{i_p}^* \otimes e_{j_1} \otimes \cdots \otimes e_{j_q}) = 0$$

Sean  $I_0$ ,  $J_0$  dos conjuntos de índices cualesquiera, entonces

$$0 = w(e_{i_1}, \cdots, e_{i_p}, e_{j_1}^*, \cdots, e_{j_q}^*) = \alpha_{I_0 J_0}$$

(Por la 1.3.13). Veamos ahora que  $B_p^q$  es generadora. Sea  $f \in T_p^q(E)$ , definimos  $g \in T_p^q(E)$  como

$$g = \sum_{\forall I,J} (f(e_{i_1}, \cdots, e_{i_p}, e_{j_1}^*, \cdots, e_{j_q}^*) (e_{i_1}^* \otimes \cdots \otimes e_{i_p}^* \otimes e_{j_1} \otimes \cdots \otimes e_{j_q}))$$

Demostrando ahora que f = g quedan provados ii y iii. Tenemos ahora que

$$g(e_{i_1^0},\cdots,e_{i_p^0},e_{j_1^0}^*,\cdots,e_{j_q^0}^*)=f(e_{i_1^0},\cdots,e_{i_p^0},e_{j_1^0}^*,\cdots,e_{j_q^0}^*)$$

Por la 1.3.13 y queda demostrado el teorema.

### Ejemplo 1.4.2

Sea  $E = \mathbb{R}^n$ ,  $B = \{e_1, \dots, e_n\}$  y  $B^* = \{e_1^* \dots e_n^*\}$ 

• Sea  $u \in \mathbb{R}^n$ 

$$u = u(e_1^*) + \dots + u(e_n^*)$$
  $(B_0^1 = B)$ 

• Sea  $w \in T_1^0(E) (= E^*)$ 

$$w = w(e_1)e_1^* + \dots + w(e_n)e_n^* \qquad (B_1^0 = B^*)$$

• Sea n = 3 y sea  $f \in T_2(E)$ 

$$B_2^0 = \{e_1^* \otimes e_1^*, e_1^* \otimes e_2^*, \dots e_3^* \otimes e_3^*\}$$

$$f = f(e_1, e_1)e_1^* \otimes e_1^* + f(e_1, e_2)e_1^* \otimes e_2^* + \dots + f(e_3, e_3)e_3^* \otimes e_3^*$$

# Proposición 1.4.3 (cambio de base)

Sea E un k-ev. de dimensión n y sean  $B = \{e_1, \dots, e_n\}$  y  $\overline{B} = \{u_1, \dots, u_n\}$ . Sea  $S = (s_j^i)$  la matriz de cambio de base de  $\overline{B}$  a B y sea  $T = (t_j^i)$  su inversa. De manera que tenemos esta relación:

Sea  $f \in T_p^q(E)$  y sean

$$f_B = (\alpha_{IJ})_{I,J} = \left( f(e_{i_1}, \dots, e_{i_p}, e_{j_1}^*, \dots, e_{j_q}^*) \right)_{I,J}$$
$$f_{\overline{B}} = (\overline{\alpha}_{IJ})_{I,J} = \left( f(u_{i_1}, \dots, u_{i_p}, u_{j_1}^*, \dots, u_{j_q}^*) \right)_{I,J}$$

Entonces,  $\forall I, J$ 

$$\overline{\alpha}_{IJ} = f(u_{i_1}, \cdots, u_{i_p}, u_{j_1}^*, \cdots, u_{j_q}^*) = \sum_{\forall L, M} s_{i_1}^{l_1} \cdots s_{i_p}^{l_p} t_{m_1}^{j_1} \cdots t_{m_q}^{j_q} f(e_{i_1}, \cdots, e_{i_p}, e_{j_1}^*, \cdots, e_{j_q}^*)$$

# Ejemplo 1.4.4

•  $f \in T^1(E) = E^{**} = E$  por lo tanto f = u y  $u_B = (x_1, \dots, u_n) \atop u_{\overline{B}} = (\overline{x}_1, \dots, \overline{x}_n)$ , entonces

$$\begin{pmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_n \end{pmatrix} = T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

•  $f \in T_1(E) = E^*$  por lo tanto f = w y  $\underset{w_{\overline{B}} = (\overline{x}_1, \dots, \overline{x}_n)}{w_B = (\overline{x}_1, \dots, \overline{x}_n)}$ , entonces

$$\begin{pmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_n \end{pmatrix} = S^t \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

•  $f \in T_2(E)$  por lo tanto f es una forma bilineal y  $\frac{f_B = A \in M_{n,n}(k)}{f_B = \overline{A} \in M_{n,n}(k)}$ , entonces

$$\overline{A} = S^t A S$$

# 1.5 Recordatorio de permutaciones

- Denotaremos como  $x_n = \{1, \dots, n\}$
- Denotaremos como  $S_n = \{\sigma : x_n \to x_n \text{ bilineales}\}$
- $\#\mathcal{S}_n = n!$
- $S_n$  es un grupo por composición. Además denotaremos  $s_1s_2=s_1\circ s_2$
- Fijada  $s_0 \in \mathcal{S}_n$ , la aplicación

$$\phi \colon \mathcal{S}_n \to \mathcal{S}_n$$
$$s \mapsto s_0 s$$

es biyectiva.

- Sea  $s \in \mathcal{S}_n$ , denotaremos s de las siguientes maneras
  - $s = \begin{pmatrix} 1 & 2 & \cdots & n \\ s(1) & s(2) & \cdots & s(n) \end{pmatrix}$
  - Si s es cíclica la denotaremos como s=(1,3,7,5). En este caso, s(1)=3, s(3)=7, s(7)=5 y s(5)=1, para el resto de valores s(i)=i.
- $\bullet$ Llamaremos trasposición a una permutación del tipo s=(i,j) con  $i\neq j$
- $\forall s \in \mathcal{S}_n$ , s se puede expresar como composición (o producto) de trasposiciones. Además, la paridad del número de trasposiciones se mantiene, es decir

$$s = t_1 \cdots t_p = l_1 \cdots l_q \implies p \equiv q \mod 2$$

• Sea  $s \in \mathcal{S}_n$  y sea  $s = t_1 \cdots t_p$  una descomposición de s en trasposiciones. Entonces, definimos el signo de s como  $\varepsilon(s) = (-1)^p$ .

# 1.6 Tensores simétricos y antisimétricos

### Definición 1.6.1

Sea E un k-ev. de dimensión n, sea  $f \in T_p(E)$  y  $s \in \mathcal{S}_p$ , entonces, definimos  $(\underline{s}f) \in T_p(E)$  como

$$(\underline{s}f)(v_1,\cdots,v_p)=f(v_{s(1)},\cdots,v_{s(p)})$$

# Ejemplo 1.6.2

Sea  $E = \mathbb{R}^4$ ,  $B = \{e_1, e_2, e_3, e_4\}$ ,  $f = e_1^* \otimes e_2^* \otimes e_3^* \in T_3(E)$  y  $s = (1, 2, 3) \in \mathcal{S}_3$ , entonces

$$(sf)(v_1, v_2, v_3) = f(v_2, v_3, v_1)$$

# Proposición 1.6.3

Sea E un k-ev. de dimensión n, sean  $w_1, \ldots, w_p \in T_1(E) = E^*$ , y  $s \in \mathcal{S}_p$   $(t = s^{-1})$ . Entonces

$$\underline{s}(w_1 \otimes \cdots \otimes w_p) = w_{t(1)} \otimes \cdots \otimes w_{t(p)}$$

# Demostración

Sean  $u_1, \ldots, u_n \in E$  (obsérvese que  $w_1 \otimes \cdots \otimes w_p \in T_p(E)$ )

$$\underline{s}(w_1 \otimes \cdots \otimes w_p)(u_1, \dots, u_p) = (w_1 \otimes \cdots \otimes w_p)(u_{s(1)}, \dots, u_{s(p)}) = w_1(u_{s(1)}) \cdot w_2(u_{s(2)}) \cdots w_p(u_{s(p)})$$

Dado que  $s(i) = j \iff i = t(j), w_i(u_{s_i}) = w_i(u_j) = w_{t(j)(u_j)}$ . Con lo que podemos reordenar el último producto como

$$w_{t(1)}(u_1) \cdot w_{t(2)}(u_2) \cdots w_{t(p)}(u_p) = w_{t(1)} \otimes \cdots \otimes w_{t(p)}(u_1, \dots, u_p)$$

# Ejemplo 1.6.4

Sea  $E = \mathbb{R}^3$ ,  $B = \{e_1, e_2, e_3\}$ ,  $B^* = \{e_1^*, e_2^*, e_3^*\}$  para los dos siguientes ejemplos.

En el primero fijamos  $(1,2) = s \in \mathcal{S}_2$ . Entonces  $s = (1,2) = s^{-1} = t$  y para los siguientes elementos de  $T_2(E)$  se cumple:

$$f_1 = e_1^* \otimes e_2^* \qquad \underline{s} f_1 = e_2^* \otimes e_1^*$$

$$f_2 = e_1^* \otimes e_1^* \qquad \underline{s} f_2 = e_1^* \otimes e_1^*$$

$$f_3 = e_2^* \otimes e_3^* \qquad \underline{s}f_3 = e_3^* \otimes e_2^*$$

En el segundo fijamos  $(1,2,3)=s\in (S)_3$ . Entonces  $t=s^{-1}=(1,3,2)$ , es decir, que t(1)=3,t(2)=1,t(3)=2, y para el siguiente elemento de  $T_3(E)$  se cumple:

$$f = e_1^* \otimes e_2^* \otimes e_3^*$$
  $\underline{s}f = e_3^* \otimes e_1^* \otimes e_2^*$ 

**Observación 1.6.5** Sea  $f_i \in T_p(E)$ . Entonces  $\underline{s}(\sum \alpha_i f_i) = \sum \alpha_i(\underline{s}f_i)$ . Por tanto, la proposición anterior sirve para  $\forall f \in T_p(E)$ .

### Ejemplo 1.6.6

Con las mismas hipótesis que en el primer caso del ejemplo 1.6.4 se cumple:

$$f = 3e_1^* \otimes e_2^* + 5e_1^* \otimes e_1^* + 5e_2^* \otimes e_3^* \qquad \underline{s}f = 3e_2^* \otimes e_1^* + 5e_1^* \otimes e_1^* + 5e_3^* \otimes e_2^*$$

# Definición 1.6.7

Sea E un k - ev. de dim n. Sea  $f \in T_p(E)$ .

- 1. f es simétrica  $\iff \forall s \in \mathcal{S}_p \quad \underline{s}f = f$
- 2. f es antisimétrica  $\iff \forall s \in \mathcal{S}_p \quad \underline{s}f = \varepsilon(s)f$
- 3.  $S_p(E) = \{ f \in T_p(E) \mid f \text{ simétrica} \} \subseteq T_p(E)$  $A_p(E) = \{ f \in T_p(E) \mid f \text{ antisimétrica} \} \subseteq T_p(E)$

**Observación 1.6.8**  $S_p(E), A_p(E) \subseteq T_p(E)$  son s.e-v. (ver observación 1.6.5).

# Ejemplo 1.6.9

Para los dos ejemplos, se<br/>a $E=\mathbb{R}^3,$ sean B y  $B^*$ bases de <br/> E y de  $E^*$  correspondientemente.

1. Definimos  $f = e_1^* \otimes e_2^* \in T_2(E)$  y  $s = (1, 2) \in (S)_2$ . Entonces  $S_2 = \{ \mathrm{Id}, s \}$  y  $\varepsilon(\mathrm{Id}) = 1$ ,  $\varepsilon(s) = -1$ .

$$\frac{\operatorname{Id}(f) = f = \varepsilon(\operatorname{Id}) \cdot f}{\underline{s}(f) = e_2^* \otimes e_1^* \neq f, \, \underline{s}(f) \neq -f} \right\} \implies \begin{cases} f \notin S_2(E) \\ f \notin A_2(E) \end{cases}$$

- 2. Como anteriormente,  $S_2 = \{ Id, s = (1, 2) \}.$ 
  - Para  $f = e_1^* \otimes e_2^* + e_2^* \otimes e_1^*$ ,

$$\frac{\underline{\mathrm{Id}}(f) = f}{\underline{s}(f) = e_2^* \otimes e_1^* + e_1^* \otimes e_2^* = f} \right\} \implies f \in S_2(E)$$

• Para  $f = e_1^* \otimes e_2^* - e_2^* \otimes e_1^*$ ,

$$\frac{\operatorname{Id}(f) = f = \varepsilon(\operatorname{Id})f}{\underline{s}(f) = e_2^* \otimes e_1^* - e_1^* \otimes e_2^* = -f = \varepsilon(s)f} \right\} \implies f \in A_2(E)$$

#### Observación 1.6.10

- $\varepsilon(s) = (-1)^n$  si  $\varepsilon(s) = t_1, \dots, t_n$ , donde  $t_1, \dots, t_n$  son transposiciones.
- $\varepsilon(s_1s_2) = \varepsilon(s_1)\varepsilon(s_2)$ .
- $s \in \mathcal{S}_p$ . Definimos  $A \in \mathbb{R}^{p \times p}$ , donde  $A_{i,j} = 1$  si i = s(j) y  $A_{i,j} = 0$  en otro caso. Entonces det  $A = \varepsilon(s)$ .

### Proposición 1.6.11

Sea E un k-e.v. de dimensión n, sea  $f \in T_p(E)$ .

1. Podemos caracterizar los tensores simétricos como:

f simétrica 
$$\iff \forall u_1, \dots, u_p \in E, \ \forall i, j \quad f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) = f(u_1, \dots, u_j, \dots, u_i, \dots, u_p)$$

2. Podemos caracterizar los tensores antisimétricos como:

f antisimétrica 
$$\iff \forall u_1, \dots, u_p \in E, \ \forall i < j \quad f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) =$$

$$-f(u_1, \dots, u_j, \dots, u_i, \dots, u_p)$$

$$\iff \forall u_1, \dots, u_p \in E, \ \forall i < j \text{ si } u_i = u_j \text{ entonces } f(u_1, \dots, u_p) = 0.$$

### Demostración

La implicación directa es una consecuencia de la definición de simetría.
 En el caso de la implicación conversa se cumple:

$$\forall t \text{ transposición } \underline{t}f = f \implies \forall t_1, \dots, t_m \text{ transposiciones } \underline{t_1, \dots, t_m}f = \underline{t_1}(\underline{t_2}(\dots(\underline{t_m}f)\dots)) = f$$

Finalmente,

$$\forall s \in \mathcal{S}_p \quad s = t_1 \cdots t_m \implies \forall s \in \mathcal{S}_p \quad \underline{s}f = f \implies \text{f es simétrica.}$$

2. Veamos primero que la tercera condición implica la segunda.

$$\forall u_1, \dots, u_p \in E, \forall i < j \quad 0 = f(u_1, \dots, u_i + u_j, \dots, u_i + u_j, \dots, u_p) = f(u_1, \dots, u_i, \dots, u_i, \dots, u_p) + f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) + f(u_1, \dots, u_j, \dots, u_j, \dots, u_p) = f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) + f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) \Longrightarrow f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) = -f(u_1, \dots, u_i, \dots, u_i, \dots, u_p)$$

Veamos ahora que la segunda condición implica la primera. Suponiendo cierta la segunda condición se cumple:

$$\underline{t}f = -f \implies \underline{t_1 \cdots t_m} f = (-1)^m f = \varepsilon (t_1 \cdots t_m) f$$

Y entonces:

$$\forall s \in \mathcal{S}_p \quad s = t_1 \cdots t_m \ y \ \varepsilon(s) = (-1)^m \implies \forall s \in \mathcal{S}_p \quad \underline{s}f = \varepsilon(s)f \implies f \in A_p(E)$$

Y, finalmente, que la primera implica la tercera. Por ser f antisimétrica,

$$\forall u_1, \dots, u_p \in E, \ \forall i < j \quad f(u_1, \dots, u_i, \dots, u_j, \dots, u_p) = -f(u_1, \dots, u_j, \dots, u_i, \dots, u_p)$$

Si  $u_i = u_j$ , entonces  $f(u_1, \ldots, u_p) = 0$ .