

F I G. 1

F I G. 2

F I G. 3

ADDED AMOUNT OF DIFFUSING AGENT (mass%)	0	1	3	5	10	15
LIGHT FLUX (%)	100	100	100	100	90	80

F I G. 4

F I G. 5

F I G. 6

F I G. 7

F I G. 8

F I G. 9

F I G. 10

	PHOSPHOR PREPARATION CONDITIONS	N CONDITIONS	PHOSPHOR	PHOSPHOR PARTICLES	LIGHT EMITTING DEVICE EVALUATION RESULTS	DE EVALUAT	ON RESULTS
	SINTERING CONDITIONS PULVERIZATION STATE OF THE (TEMPERATURE X TINE) TIME PARTICLES	PULVERIZATION TIME	STATE OF THE PARTICLES	AVERAGE PARTICLE DIAMETER D50(μm)	LUMINOUS EFFICIENCY COATING (RELATIVE VALUE)	COAT ING PROPERTY	DI SPERSION PROPERTY
EXAMPIE 1	1400°C × 3h	SHORT	SECONDARY PARTICLES	7.5	1.20	0	0
EXAMPIE 2	1350°C × 3h	SHORT	SECONDARY PARTICLES	5.7	1.10	0	0
EXAMPIE 3	1400°C × 4h	SHORT	SECONDARY PARTICLES	7.5	1. 25	0	0
EXAMPIE 4	1350°C × 4h	SHORT	SECONDARY PARTICLES	5.7	1.15	0	0
COMPARATIVE EXAMPLE 1	1450°C × 3h	LONG	PRIMARY PARTICLES	15	1.30	×	×
COMPARATIVE EXAMPIE 2	1400°C × 1h	FONG	PRIMARY PARTICLES	10	1. 20	×	×
COMPARATIVE EXAMPLE 3	1350°C × 1h	LONG	PRIMARY PARTICLES	2	1.00	0	0

F I G. 11

	PARTICLE SIZE DISTRIBUTION OF PHOSHOR	STRIBUTION OF	OPTIMAL BLENDING RATIO OF	LUMINOUS EFFICIENCY OF LIGHT
	NUMBER OF PEAKS PARTICLE DIAMETER	PARTICLE DIAMETER RANGE	PHOSPHOR FOR 5000K (mass%)	EMILLING DEVICE (RELATIVE VALUE)
EXAMPLE 5		2 PEAKS 5~10μm+1~3μm	7	1.00
EXAMPLE 6	2 PEAKS	7~15µm+1~3µm	8	1.10
COMPARATIVE EXAMPLE 4	1 PEAK	5~10µm	10	1.00
COMPARATIVE EXAMPLE 5	1 PEAK	7~15µm	11	1.10
COMPARATIVE EXAMPLE 6	1 PEAK	1~7µm	8	0.80

F I G. 12

FIG. 13

FIG. 14

FIG. 15

ARRANGEMENT	COMBINATION EXAMPLE 1	COMBINATION EXAMPLE 1 COMBINATION EXAMPLE 2 COMBINATION EXAMPLE 3 COMBINATION EXAMPLE 4	COMBINATION EXAMPLE 3	COMBINATION EXAMPLE 4
LENS	ENGINEERING PLASTIC (100 TO 130°C)	ACRYLIC RESIN (120°C)	POLYPROPYLENE (110°C)	
ADHESIVE AGENT (THIRD INSULATING LAYER)	THERMOSETTING RESIN			
REFLECTOR	ENGINEERING PLASTIC (100 TO 130°C)	GLASS EPOXY RESIN	ALUMINUM	ALUMINUM NITRIDE
(SECOND INSULATING LAYER)	THERMOSETTING RESIN			
CONDUCTIVE PATTERN	Au/Ni/Gu			
ADHESIVE AGENT (FIRST INSULATING LAYER)	THERMOSETTING RESIN			
SUBSTRATE	ALUMINUM	GLASS EPOXY RESIN	ALUMINUM NITRIDE	
ГЕО	GaN-BASED LED			
DIE BONDING	Ag PASTE (150°C)	Au/Sn	Au	

F 1 G 1 6