Weak Edge k-Metric Dimension

Lovro Verk in Matevž Kusterle

December 2023

1 Definicije

Definicija 1 Naj bo $S \subseteq V(G)$ in $a, b \in V(G) \cup E(G)$. Definiramo $\Delta_S(a, b)$ kot vsoto razlik razdalj od a in b do vsakega vozljišča S. Torej je

$$\Delta_S(a,b) = \sum_{s \in S} |d(s,a) - d(s,b)|$$

.

Definicija 2 Šibka k-metrična dimenzija na povezavah grafa G wedim $_k(G)$, je velikost/moč/kardinalno število najmanjše podmnožice S grafa G, tako da za vsak par povezav $e, f \in E(G)$ velja $\Delta_S(e, f) \geq k$.

Definicija 3 Naj bo S takšna podmnožica V(G), da zanjo velja: $\forall x, y \in V(G)$ obstaja vsaj k različnih vozlišč $v_1, v_2, \ldots, v_k \in S$, tako da $d_G(x, v_i) \neq d_G(y, v_i) \forall i = 1, \ldots, k$. Potem je S **k-razrešitvena množica** za graf G.

Definicija 4 $\kappa'(G)$ je največje naravno število k, za katerega graf G vsebuje k-razrešitveno množico S.

2 Problem

Za več vrst različnih grafov morava ugotoviti šibko k-metrično dimenzijo na povezavah in κ' , ter pri tem določiti največjo možno vrednost k. Iz dobljenih rezultatov bo potrebno razbrati formule za dimenzije posameznih vrst grafov. Kasneje pa bova poiskala grafe, za katere se šibka k-metrična dimenzija na povezavah razlikuje od navadne šibke k-metrične dimenzije na povezavah.

3 Načrt dela

Najprej bova implementirala sledeče:

- funkcijo, ki sprejme graf G in vrednost k, ter vrne šibko k-metrično dimenzijo na povezavah grafa
- funkcijo, ki določi največjo vrednost k grafa G
- funkcijo, ki sprejme graf G in vrednost k, ter vrne šibko k-metrično dimenzijo grafa, da bomo primerjali dimenzije
- funkcijo, ki sprejme graf G in vrne njegovo κ' vrednost

Potem pa bova te funkcije testitirala na pripravljenih grafih in skušala priti do predvidenih ciljev naloge.

4 Predlagani zaključki

Trenutno za κ' še nimava dokončnih rezultatov, ampak se zdi, da bodo za naslednje družine grafov rezultati sledeči:

- poti: n-3
- cikli: $2 * \lceil (n-4)/2 \rceil$
- polni grafi: 0
- dvodelni polni grafi: 0