第七节 强子的命名规则

一、强相互作用的基本自由度——六味夸克(费米子,各三色)和胶子(八种颜色)

夸克味 道	同位旋	同位旋 三分量	奇异数 (S)	粲数 (C)	底数 (B)	顶数 (T)	电荷 (Q)	重子数 (b)	组分质 量
u	1/2	1/2	0	0	0	0	2/3	1/3	~310
d	1/2	-1/2	0	0	0	0	-1/3	1/3	~310
s	0	0	-1	0	0	0	-1/3	1/3	~500
С	0	0	0	1	0	0	2/3	1/3	~1600
b	0	0	0	0	-1	0	-1/3	1/3	~4600
t	0	0	0	0	0	1	2/3	1/3	175000

它们全都满足Gell-Mann-Okubo关系

$$Q = I_3 + \frac{1}{2}(b + S + C + B + T)$$

夸克自旋为1/2; 胶子自旋为1,质量为0。 夸克和胶子都携带色荷(夸克属颜色SU(3) 的基础表示,胶子属伴随表示。 根据量子色动力学,夸克和胶子都可能构成束缚态——颜色单态的强子。

二、正反夸克构成的色单态强子体统——介子

1. 夸克模型允许的介子量子数

正如u, d, s 组成的强子可以用味道SU(3)对称性描述,考虑c,b夸克后,则味道对称性可以扩充到SU(5) (当然这个对称性已经很难称为对称性,因为这5 味夸克的质量相差好几个数量级,但强子分类可以按照SU(5) 味道对称性的不可约表示进行);

约定:同一个味道超多重态的自旋、宇称、C变换因子相同,也就是说同一个超多重态中的粒子具有相同的 J^{PC}

因此暂时忘掉夸克的味道,介子是由正反夸克组成的。

夸克是自旋为1/2的费米子,正反夸克的总自旋只能为0,1;如果正反夸克间的轨道角动量为L,则根据

$$P = (-)^{L+1}, \quad C = (-)^{L+S}$$

正反夸克系统的可能的 J^{PC} 为,

LS	0	1
0	0_{-+}	1
1	1 ⁺⁻	0^{++} 1^{++} 2^{++}
2	2^{-+}	1 2 3
3	3 ⁺⁻	2 ⁺⁺ 3 ⁺⁺ 4 ⁺⁺

说明:

- 1. 如果介子态也是G宇称的本证态,则也有相应的G宇称;
- 2. 如果介子确实是由夸克构成的,那么轨道角动量为零的态应该是能量最低的态,即赝标介子和矢量介子是介子的基态。
- 3. 试验上发现的粒子的质量关系定型满足上述的特征。这也是对介子是由正反费米子组成的系统的重要支持。
- 4. 不同的轨道角动量可以给出相同的介子的自旋宇称量子数,说明介子态中可能有混合。通过衰变分波可以帮助确定介子态的轨道角动量。

2. 介子的命名规则

a) 普通介子 (S=C=B=0)

普通介子也是G变换的本征态,有确定的G宇称,

$$P = (-)^{L+1}, C = (-)^{L+S}, G = (-)^{I}C$$

J^{PC}	0-+	1	0++	1+-
$J^{r_{\phi}}$	0+	1	0++	1+-
	2^{-+}	2	1 ⁺⁺	3 ⁺⁻
	4-+	3	2**	5 ⁺⁻
$^{2S+1}L_{J}$	$^{1}(S,D,\cdots)_{J}$	$^{3}(S,D,\cdots)_{J}$	$^{3}(P,F,\cdots)_{J}$	$^{1}(P,F,\cdots)_{J}$
$\overline{ud}, (u\overline{u} - d\overline{d}), d\overline{u}$ $(I = 1)$	π	ρ	$a_{0,1,2}$	b
$(u\overline{u} + d\overline{d}), s\overline{s}$ $(I = 0)$	η,η'	ω,ϕ	$f_{0,1,2},f'$	$h_{0,1},h'$
$c\overline{c}(I=0)$	$oldsymbol{\eta}_c$	ψ	$\chi_{c0,1,2}$	h_c
$b\overline{b}(I=0)$	η_b	Ψ	$\chi_{b0,1,2}$	$h_{\!_{b}}$

b) S, C, B不为零的介子

命名的基本规则是:介子的味道数(S,C,B)和介子的电荷符号相同。 具体如下:

$$S = +1: K^+, K^0, K^{*+}, K^{*0};$$
 (包含一个反奇异夸克)

$$S = -1: K^-, \overline{K}^0, K^{*-}, \overline{K}^{*0};$$
 (包含一个奇异夸克)

$$C = +1: D^+, D^0, D^{*+}, D^{*0};$$
 (包含一个粲夸克)

$$C = -1: D^-, \overline{D}^0, D^{*-}, \overline{D}^{*0};$$
 (包含一个反粲夸克)

$$B = +1: B^+, B^0, B^{*+}, B^{*0};$$
 (包含一个反底夸克)

$$B = -1: B^-, \overline{B}^0, B^{*-}, \overline{B}^{*0};$$
 (包含一个奇异夸克)

$$C = +1, S = +1: D_s^+(c\overline{s}), D_s^{*+}(c\overline{s});$$

$$C = -1, S = -1: D_s^{-}(\bar{c}s), D_s^{*-}(\bar{c}s);$$

$$B = +1, C = +1: B_c^+(c\overline{b}), D_s^{*+}(c\overline{b});$$

$$B = -1, C = -1: B_c^{-}(\bar{c}b), B_c^{*-}(\bar{c}b);$$

三、重子的命名规则

 $N\Delta\Lambda\Sigma\Xi\Omega$ 的符号,已经用了三十多年了。规则是:

- a) 对于由三个u/d 夸克组成的重子, S=1/2的态为N, S=3/2的态为 Δ ;
- b) 对于由两个u/d 夸克组成的重子,I=0的态命名为 Λ ,I=1的态命名为 Σ ,并用第三个夸克 (c,b) 的符号作为下标,如

$$\Lambda_c(udc), \Lambda_b(udb), \Sigma_c^{++}(uuc), \Sigma_b^{+}(uub)$$

c) 对于由一个u/d 夸克组成的重子,命名为 E (I=1/2)。如果第二、三个夸克为c,b,则用下标表示如

$$\Xi_c^+(usc), \Xi_{cc}^{++}(ucc), \Xi_b^0(usb)$$

d) 对于没有u/d夸克的重子,用 Ω 标志,并用下标表示c, b夸克,如

$$\Omega_c^0(ssc), \Omega_b^-(ssb), \Omega_{cc}^+(scc), \Omega_{ccc}^{++}(ccc)$$

四、奇特态

关于奇特态,没有特别严格的定义。一般来说,如果一个强子态的量子数不能通过正反夸克或三个夸克系统来描述,就称为奇特态。从这个意义上讲,奇特态应该是针对夸克模型而言的。

比如如下量子数不能由正反夸克构成: $0^{-},0^{+-},1^{-+},2^{+-},3^{-+},...$

现有实验已发现的大量介子中,还没有一个属于奇特态,这是对介子由一对正反夸克所组成的观点的又一重要支持.

正反玻色子可以组成量子数

$$J^{PC} = 1^{-+}, 2^{+-}, 3^{-+}, \cdots$$

如果具有这种量子数的介子存在,那么它们可能是四夸克态(两个正反夸克对)或混杂态(一个正反夸克对和一个价胶子)或胶球(胶子构成的束缚态)。

在高能物理的研究中,探寻奇特态存在的实验迹象一直是人们密切注视的问题.

五、胶球

胶子是QCD的基本自由度,胶子携带色荷,所以胶子也应该形成束缚态——胶球。如果实验上能够确认胶球的存在,则是对QCD正确性的重要支持。

考察由两个胶子组成的胶球,由于考虑了色SU(3)对称性后8种胶子是全同粒子,它们满足玻色统计.由于胶球必须是色SU(3)单态,在色空间是对称的,因此在时空性质上也必须是对称的.这样要求

$$L + S = even$$

由于胶子的自旋为1,两胶子系统的总自旋为0,1,2。 两个全同玻色子构成的系统的字称和C字称为

$$P = (-)^{L}, C = (-)^{L+S}$$

所以两胶子系统的可能的 J^{PC} 为

LS	0		1		2
0	O_{++}				2 ⁺⁺
1		0-+	1-+	2^{-+}	
2	2*+				0++ 1++ 2++ 3++ 4++
3		2-+	3-+	4-+	

由于胶子是规范粒子,它的质量为零,根据杨振宁定理,两个胶子构成的系统的总角动量不能为一,这样两个胶子构成的胶球的量子数只能是:

$$J^{PC} = 0^{++}, 0^{-+}, 2^{++}, 2^{-+}, \cdots$$

三个胶子组成的胶球则可以取各种可能的量子数。

目前试验上也发现了一些胶球的候选者。但从试验上确定胶球态目前还有很大难度,原因是胶球和普通介子态有混合,理论上对胶球的性质(质量、衰变)以及其和普通介子的混合机制还很有限,还没有关于胶球存在的决定性判据。理论上对胶球质量谱的研究主要来自格点QCD的数值模拟计算,目前最新的淬火近似下的胶球质量谱的格点QCD预言如下:

J^{PC}	$r_0 M_G$	$M_G({ m MeV})$
0++	4.16(11)(4)	1710(50)(80)
2++	5.83(5)(6)	2390(30)(120)
$^{0-+}$	6.25(6)(6)	2560(35)(120)
1+-	7.27(4)(7)	2980(30)(140)
2-+	7.42(7)(7)	3040(40)(150)
3+-	8.79(3)(9)	3600(40)(170)
3++	8.94(6)(9)	3670(50)(180)
1	9.34(4)(9)	3830(40)(190)
2	9.77(4)(10)	4010(45)(200)
3	10.25(4))(10)	4200(45)(200)
2+-	10.32(7)(10)	4230(50)(200)
0+-	11.66(7)(12)	4780(60)(230)

