

Computer Science Presentation

$\boldsymbol{\mu}$ - recursive functions

Philip Geissler

Carl-Zeiss Grammar School

Jena, 17th of November

Kai Rodeck

Structure

- 1. Computability
- 2. μ recursive functions
 - Explanation of terms
 - Initial functions
 - recursion / composition / μ -operator
- 3. Examples for primitive and μ recursion functions

Theory of Computability

Definition of computability

A function $f(x_1, x_2, \dots, x_n)$ is computable if there exists an algoritm $A(x_1, x_2, \dots, x_n)$ following given rules, that solves f in its domain and gives no output otherwise.

$$(x_1, x_2, \dots, x_n) \in D_f \Longrightarrow A(x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n)$$

 $(x_1, x_2, \dots, x_n) \notin D_f \Longrightarrow A(x_1, x_2, \dots, x_n) =$ **ENDLESS LOOP**

Theories of computability

- turing machines
- LOOP-programs (incomplete)
- GOTO-programs
- WHILE-programs
- λ -calculus
- primitive recursive functions (incomplete)
- μ -recursive functions

Building-Block functions

Constant function

$$N(X_0, x_1, x_2, \cdots, x_n)$$
:
 $N(x_1, x_2, \cdots, x_n) = const.$

Successor function

$$S(x_1)$$
:
 $S(x_1) = x_1 + 1$

Projection function

$$P_m^n(x_1, x_2, \dots, x_n)$$
:
 $P_m^n(x_1, x_2, \dots, x_m, \dots, x_n) = x_m$

Composition function

$$C(x_{1}, x_{2}, \dots, x_{n}):$$

$$f_{n} = f_{n}(x_{1}, x_{2}, \dots, x_{n})$$

$$f_{m,k} = f_{m,k}(x_{1}, x_{2}, \dots, x_{m})$$

$$C = f_{n} \circ (f_{m,1}, f_{m,2}, \dots, f_{m,n})$$

$$C = f_{n}(f_{m,1}(x_{1,1}, x_{1,2}, \dots, x_{1,m}), \dots, f_{m,n}(x_{n,1}, x_{n,2}, \dots, x_{n,m}))$$

Primitive recursion function

$$R(X_0, x_1, x_2, \dots, x_n): X_0 = 0 \Longrightarrow R(X_0, x_1, x_2, \dots, x_n) = f(y_1, \dots, y_m) X_0 \neq 0 \Longrightarrow R(X_0, x_1, x_2, \dots, x_n) = g(R(X_0 - 1, x_1, \dots, x_n), z_1, \dots, z_l)$$

μ minimisation function

$$\mu(X_0, x_1, x_2, \dots, x_n): 0 = f(z, y_1, y_2, \dots, y_n) \land 0 < f(i, y_1, y_2, \dots, y_n) \iff z = \mu(f(Y_0, y_1, y_2, \dots, y_n), x_1, x_2, \dots, x_n)$$

Bibliography

[Overall] URL: https://goo.gl/XudPdL

[Access Date] December 8, 2017

[Picture] URL: https://goo.gl/gRrDGH

[Overall] URL: https://goo.gl/yWvinS

[Overall] URL: https://goo.gl/awUSfB

[Overall] URL: https://goo.gl/xRPCiU

[Overall] URL: https://goo.gl/K4LKQB

[Overall] U.Schöning, Theoretische Informatik kurz gefasst, 2008, Spektrum