

SDK6 AN Oustom LCD Driver

Version 1.5

September 17, 2014

Confidentiality Notice:

Copyright © 2014 Ambarella Inc.

The contents of this document are proprietary and confidential information of Ambarella Inc.

The material in this document is for information only. Ambarella assumes no responsibility for errors or omissions and reserves the right to change, without notice, product specifications, operating characteristics, packaging, ordering, etc. Ambarella assumes no liability for damage resulting from the use of information contained in this document. All brands, product names and company names are trademarks of their respective owners.

US

3101 Jay Street Ste. 110 Santa Clara, CA 95054, USA

Phone: +1.408.734.8888 Fax: +1.408.734.0788

Hong Kong

Unit A&B, 18/F, Spectrum Tower 53 Hung To Road Kwun Tong, Kowloon Phone: +85.2.2806.8711

Fax: +85.2.2806.8722

Korea

6 Floor, Hanwon-Bldg. Sunae-Dong, 6-1, Bundang-Gu SeongNam-City, Kyunggi-Do Republic of Korea 463-825 Phone: +031.717.2780

Fax: +031.717.2782

China - Shanghai

9th Floor, Park Center 1088 Fangdian Road, Pudong New District Shanghai 201204, China

Phone: +86.21.6088.0608 Fax: +86.21.6088.0366

Taiwan

Suite C1, No. 1, Li-Hsin Road 1 Science-Based Industrial Park Hsinchu 30078, Taiwan Phone: +886.3.666.8828 Fax: +886.3.666.1282

Japan - Yokohama

Shin-Yokohama Business Center Bldg. 5th Floor 3-2-6 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan Phone: +81.45.548.6150 Fax: +81.45.548.6151

China - Shenzhen

Unit E, 5th Floor No. 2 Finance Base 8 Ke Fa Road Shenzhen, 518057, China Phone: +86.755.3301.0366 Fax: +86.755.3301.0966

I Contents

II	Preface	
1	Overview	
	1.1	Overview: Introduction
	1.2	Overview: Scope of Document
	1.3	Overview: Necessary Resources
2	Custom L	CD Panel Driver API
	2.1	API: Overview
	2.2	API: Background
	2.3	API: List of Functions
3	Example.	
	3.1	Example: Overview
	3.2	Example: Custom LCD Display
Αp	pendix 1	Digital Vout Data Format and Pin Mapping
Αp	pendix 2	Additional Resources
Αp	pendix 3	Important Notice
А р	pendix 4	Revision History

II Preface

This document provides technical details using a set of consistent typographical conventions to help the user differentiate key concepts at a glance.

Conventions include:

Example	Description	
AmbaGuiGen, DirectUSB Save, File > Save Power, Reset, Home	Software names GUI commands and command sequences Computer / Hardware buttons	
Flash_IO_control da, status, enable	Register names and register fields. For example, Flash_IO_control is the register for global control of Flash I/O, and bit 17 (da) is used for DMA acknowledgement.	
GPIO81, CLK_AU	Hardware external pins	
VIL, VIH, VOL, VOH	Hardware pin parameters	
INT_O, RXDATA_I	Hardware pin signals	
amb_performance_t amb_operating_mode_t amb_set_operating_mode()	API details (e.g., functions, structures, and type definitions)	
yes /usr/local/bin make	User entries into software dialogues and GUI windows File names and paths Command line scripting and Code	

Table II-1. Typographical Conventions for Technical Documents.

Additional Ambarella typographical conventions include:

- Acronyms are given in UPPER CASE using the default font (e.g., AHB, ARM11 and DDRIO).
- Names of Ambarella documents and publicly available standards, specifications, and databooks appear in italic type.

1 Overview

1.1 Overview: Introduction

This application note (AN) describes the procedure to create a customized LCD panel driver for an Ambarella development platform with an Ambarella chip and software development kit (SDK). Testing a customized LCD panel driver in the development environment provides the basis to implement a private LCD panel device and test features planned for the final product. The document is laid out as follows:

- Chapter 1 "Overview"
- Chapter 2 "Custom LCD Panel Driver API"
- · Chapter 3 "Example"
- Appendix 1

1.2 Overview: Scope of Document

The APIs and LCD panel driver example in this document are intended to provide an experienced programmer with the background needed to create and implement a custom panel in a final product. It is assumed that the reader of this document has an LCD panel device for testing purposes and already is familiar with the chip, the development board, and the system software. Further the reader should be familiar with the steps and functions to implement a standard LCD panel, which are covered in the Ambarella document "SDK6 API System".

1.3 Overview: Necessary Resources

For using a customized LCD Panel driver, the user requires the following documents:

- The datasheet of the chosen LCD Panel device.
- The DSP library (AmbaDSP) which provides an interface to generate video frame data as the input of the LCD Panel. Please refer to "SDK6 DSP Support Package" for details.
- The System library (AmbaSYS) which provides peripheral drivers that help the user to control the LCD Panel device. Please refer to "SDK6 API System" for details.

The customer should confirm that the LCD Panel device is compatible with the Ambarella chip and the platform libraries before attempting to use the camera platform libraries to translate the Image Sensor datasheet to C language.

Custom LCD Panel Driver API

2.1 API: Overview

This chapter provides the APIs to create a customized LCD panel driver:

(Section 2.2) API: Background

(Section 2.3) API: List of Functions

2.2 API: Background

The APIs in this chapter can help the user to do the following:

- Enable the LCD panel
- Disable the LCD panel
- mode Get vout configuration for the current LCD display mode
- Configure the LCD display mode
- Control backlight
- Set brightness
- Set contrast
- Set color balance

2.3 API: List of Functions

- AmbaLCD_Enable
- AmbaLCD_Disable
- AmbaLCD_GetInfo
- AmbaLCD_Config
- AmbaLCD_SetBacklight
- AmbaLCD_SetBrightness
- AmbaLCD_SetContrast
- AmbaLCD_SetColorBalance

int AmbaLCD_Enable (UINT8 Chan)

Function Description:

This function is used to enable the LCD panel.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number

Table 2-1. Parameters for LCD Panel Driver API AmbaLCD_Enable().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-2. Returns for LCD Panel Driver API AmbaLCD_Enable().

Example:

```
AMBA_LCD_CONFIG_sLcdConfig= {
          .Mode = 0,
          .TvSystem = AMBA_DSP_VOUT_SYSTEM_60HZ
};

/* Initializations of LCD channel 0 */
AmbaLCD_Config(0, &LcdConfig);

/* Enable LCD panel of LCD channel 0 */
AmbaLCD Enable(0);
```

See Also:

AmbaLCD_Disable()

int AmbaLCD_Disable (UINT8 Chan)

Function Description:

This function is used to disable the LCD panel.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number

Table 2-3. Parameters for LCD Panel Driver API AmbaLCD_Disable().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-4. Returns for LCD Panel Driver API AmbaLCD_Disable().

Example:

```
/e().
/* Enable LCD panel of LCD channel 0*
AmbaLCD Enable(0);
/* Disable LCD */
AmbaLCD Disable(0);
```

See Also:

AmbaLCD_Enable()

int AmbaLCD_GetInfo (UINT8 Chan , AMBA_LCD_INFO_s *pInfo)

Function Description:

This function is used to get the vout configuration for the current LCD display mode.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number
AMBA_LCD_ INFO_s	•	Pointer to LCD display mode information. Please refer to Section 2.3.3.1 for more information.

Table 2-5. Parameters for LCD Panel Driver API AmbaLCD_GetInfo().

Returns:

Return	Description
0	Success
- 1	Failure

100 M

Table 2-6. Returns for LCD Panel Driver API AmbaLCD_GetInfo().

Example:

```
AMBA_LCD_INFO_s *pInfo;

/* Get vout configuration */
AmbaLCD GetInfo(0, pInfo);
```

See Also:

None

2.3.3.1 AmbaLCD_GetInfo > AMBA_LCD_INFO_s

Туре	Field	Description
UINT16	Width	Horizontal display resolution of the LCD panel
UINT16	Height	Vertical display resolution of the LCD panel
AMBA_DSP_	FrameRate	Frame rate of the current LCD configuration
FRAME_RATE_s		
AMBA_LCD_AS-	AspectRatio	Aspect ratio of the LCD panel display
PECT_RATIO_s		

Table 2-7. Definition of AMBA_LCD_INFO_s for LCD Panel Driver API AmbaLCD_GetInfo().

2.3.4 AmbaLCD_Config

API Syntax:

int AmbaLCD_Config (UINT8 Chan , AMBA_LCD_MODE_ID_u Mode)

Function Description:

This function is used to configure the default LCD panel display mode.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number
AMBA_LCD_ MODE_ID_u	Mode	Configuration of the LCD display mode. Please refer to Section 2.3.4.1 for definition.

Table 2-8. Parameters for LCD Panel Driver API AmbaLCD_Config().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-9. Returns for LCD Panel Driver API AmbaLCD_Config().

Example:

```
AMBA_LCD_MODE_ID_u LcdMode = { .Data = 0 };

/* LCD Initializations */
AmbaLCD_Config(0, LcdMode);
```

See Also:

None

2.3.4.1 AmbaLCD_Config > AMBA_LCD_MODE_ID_u

Туре	Field	Description
UINT8	Mode:5	LCD input mode
UINT8	FlipHorizontal:1	Flip the display horizontally.
UINT8	FlipVertical:1	Flip the display vertically.
UINT8	Stereoscopic:1	3D display

Table 2-10. Definition of AMBA_LCD_MODE_ID_u for LCD Panel Driver API AmbaLCD_Config().

int AmbaLCD_SetBacklight (UINT8 Chan , INT32 EnableFlag)

Function Description:

This function is used to turn on/off the LCD display backlight.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number
INT32	EnableFlag	0: Backlight Off
		1: Backlight On

Table 2-11. Parameters for LCD Panel Driver API AmbaLCD_SetBacklight().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-12. Returns for LCD Panel Driver API AmbaLCD_SetBacklight().

Example:

```
/* Enable LCD panel of LCD channel 0 */
AmbaLCD_Enable(0);
...
/* Turn on the back light */
AmbaLCD_SetBacklight(0, 1);
```

See Also:

None

int AmbaLCD_SetBrightness (UINT8 Chan, INT32 Offset)

Function Description:

This function is used to adjust the brightness of the LCD display.

Parameters:

Type	Parameter	Description
UINT8	Chan	LCD channel number
INT32	Offset	Offset of the black level

Table 2-13. Parameters for LCD Panel Driver API AmbaLCD SetBrightness().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-14. Returns for LCD Panel Driver API AmbaLCD_SetBrightness().

Example:

AmbalCD_SetBrightness(0, 64);

See Also:

int AmbaLCD_SetContrast (UINT8 Chan, float Gain)

Function Description:

This function is used to adjust the contrast of the LCD display.

Parameters:

Type	Parameter	Description
UINT8	Chan	LCD channel number
float	Gain	Contrast gain value in dB (decibel)

Table 2-15. Parameters for LCD Panel Driver API AmbaLCD SetContrast ().

Returns:

Return	Description
0	Success
- 1	Failure
Table 2-16. Returns for LCD Panel Drive	er API AmbaLCD_SetContrast () .
Example:	() ()
<pre>/* Set 1x contrast gain * AmbaLCD_SetContrast(0, 1.</pre>	
See Also:	
None	
Notic	

Table 2-16. Returns for LCD Panel Driver API AmbaLCD_SetContrast ().

Example:

See Also:

int AmbaLCD_SetColorBalance (UINT8 Chan , AMBA_LCD_COLOR_BALANCE_s *pColorBalance)

Function Description:

This function is used to adjust the color balance of the LCD display.

Parameters:

Туре	Parameter	Description
UINT8	Chan	LCD channel number
AMBA_LCD_ COLOR_ BALANCE s	*pColorBalance	Gains and Offsets of each color channel. Please refer to Section 2.3.8.1 for more information.

Table 2-17. Parameters for LCD Panel Driver API AmbaLCD_SetColorBalance().

Returns:

Return	Description
0	Success
- 1	Failure

Table 2-18. Returns for LCD Panel Driver API AmbaLCD_SetColorBalance().

Example:

```
AMBA_LCD_COLOR_BALANCE_s ColorBalance = {
    .OffsetRed = 64,
    .OffsetGreen = 64,
    .OffsetBlue = 64,
    .GainRed = 1.0,
    .GainGreen = 1.0,
    .GainBlue = 1.0
};

/* Set color balance */
AmbaLCD_SetColorBalance(0, &ColorBalance);
```

See Also:

None

2.3.8.1 AmbaLCD_SetColorBalance > AMBA_LCD_COLOR_BALANCE_s

Туре	Field	Description
INT16	OffsetRed	Offset of color red
INT16	OffsetGreen	Offset of color green
INT16	OffsetBlue	Offset of color blue
float	GainRed	Gain of color red
float	GainGreen	Gain of color green
float	GainBlue	Gain of color blue

Table 2-19. Definition of AMBA_LCD_COLOR_BALANCE_s for LCD Panel Driver API AmbaLCD_SetColorBalance().

3 Example

3.1 Example: Overview

The following example presents a process to apply a custom LCD panel driver. For more details, please refer to "SDK6 API DSP Support Package" and "SDK6 API System".

3.2 Example: Custom LCD Display

In this example, the user assumes that the normal brightness/black level is 0x40(64) and that no rotation or contrast enhancement is performed.

Before using the custom LCD panel driver, the user needs to set up the video mode info of the LCD panel according to the pixel format, timing, and special property of the LCD panel.

An example of the information from the WDF9648W panel is given below:

```
/*-----
 * WDF9648W video mode info
\*-----
static AMBA LCD WDF9648W CONFIG s WdF9648w Config[2]={
 [AMBA LCD WDF9648W 960 480 60HZ] = {
    .Width = 960,
    .Height
               = 480,
    .FrameRate = {
     .Interlace
                  = 0,
      .TimeScale
                  = 60000,
      .NumUnitsInTick = 1001,
    .ScreenMode = AMBA LCD WDF9648W SCREEN MODE WIDE
    /* clock frequency to LCD */
    .DeviceClock = AMBA DSP VOUT PIXEL CLOCK FULL DCLK,
    /* pixel format */
    .OutputMode = AMBA DSP VOUT LCD 1COLOR PER DOT,
    /* even line color order */
    .EvenLineColor = AMBA DSP VOUT LCD COLOR RGB,
    /* odd line color order */
    .OddLineColor = AMBA DSP VOUT LCD COLOR RGB,
    .VideoTiming = {
       .PixelClock
                    = 36000000,
      .PixelRepetition = 1,
      .Htotal = 1144,
      .Vtotal
                     = 525,
       .HsyncColStart = 0,
```

```
.HsyncColEnd = 1,
     .VsyncColStart = 0,
     .VsyncColEnd
                      = 0,
     .VsyncRowStart
                      = 0,
     .VsyncRowEnd
                      = 1,
     .ActiveColStart = 32,
     .ActiveColWidth = 960,
      .ActiveRowStart = 42,
     .ActiveRowHeight = 480
  }
},
[AMBA LCD WDF9648W 960 480 50HZ] = {
  .Width = 960,
  .Height
                = 480,
  .FrameRate = {
    .Interlace
                  = 0,
    .TimeScale
                  = 50,
    .NumUnitsInTick = 1,
  },
                = AMBA LCD WDF9648W SCREEN MODE WIDE,
  .ScreenMode
  /* clock frequency to LCD */
  .DeviceClock = AMBA DSP VOUT PIXEL CLOCK FULL DCLK,
  /* pixel format */
  .OutputMode = AMBA DSP VOUT LCD 1COLOR PER DOT,
  /* even line color order */
  .EvenLineColor = AMBA DSP VOUT LCD COLOR
  /* odd line color order */
  .OddLineColor = AMBA DSP VOUT LCD
  .VideoTiming = {
      .PixelClock
                      = 30030000,
     .PixelRepetition = 1,
     .Htotal
                     = 1144,
     .Vtotal
                      = 525.
     .HsyncColStart = 0,
     .HsyncColEnd
     .VsyncColStart
                      = 0,
     .VsyncColEnd
                      = 0,
     .VsyncRowStart
                      = 0,
                      = 1,
     .VsyncRowEnd
      .ActiveColStart = 32,
     .ActiveColWidth = 960,
     .ActiveRowStart = 42,
     .ActiveRowHeight = 480
 }
}
```

};

Once the user has access to the LCD video mode parameters, the user can use the parameters to make some initializations. Initializations are usually done once after the system is booted. In this case, the user uses mode 0 and 60HZ TV system of the LCD panel WDF9648W, and then uses it to configure LCD channel 0 and set the brightness and contrast.

```
^{\prime \star} Using LCD mode 0 (AMBA LCD WDF9648W 960 480 60HZ) and no rotation ^{\star \prime}
AMBA LCD MODE ID u LcdMode = \{ .Data = \{ \};
AmbaLCD Config(0, LcdMode); /* Initialize LCD panel */
AmbaLCD_SetBrightness(0, 0x40); /* normal brightness */
AmbaLCD_SetContrast(0, 0.0); /* 0.0 dB */
```

After all the programming is done, the user can power-on the LCD device and then turn the LCD backlight

```
AmbaLCD Enable(0);
AmbaLCD SetBacklight(0, 1);
```

a/background cu Now, the user can see the video/image/background color displayed on the LCD panel.

Appendix 1 Digital Vout Data Format and Pin Mapping

Supported Digital Output Modes

Digital Output Modes

- 0 LCD Single color per pixel
- 1 LCD 3 colors per pixel, no dummy clock
- 2 LCD 3 colors per pixel, dummy clock
- 3 LCD 5:6:5 mode
- 4 656 output mode
- 5 601 output mode (16-bit, 4:2:2 YUV)
- 6 601 output mode (24-bit, 4:4:4 YUV or RGB Display 0 only)
- 7 - 601 output mode (8-bit, CbYCrY order)
- 8 Bayer pattern output mode

Other values reserved

Table A1-1. Vout Digital Output Mode.

Figure A1-1. Digital Mode 0/1 (RGB data come from different/same pixel).

Figure A1-2. Digital Mode 2 (RGB data with one dummy clock).

Figure A1-3. Digitnal Mode 3 (RGB565).

Pin Name **VSYNC HSYNC** DE **DCLK** P0 Cb[0] Y[0] Y[0] D0Ρ1 0 0 D1 0 0 Y[2] D2 0 0 Р3 СР[3] Y[3] D3 0 0 Cb[4] Y[4] Y[4] D4 1 0 Cb[5] Y[5] Y[5] D5 0 Y[6] Y[6] D6 Y[7] D7 SAV Pixel (N) & Pixel (N+1) **D8** D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23

Figure A1-4. Digital Mode 4 (BT656 Output mode).

Figure A1-5. Digital Mode 5 (16Bits YUV422).

Figure A1-6. Digital Mode 6 (24Bits RGB).

Figure A1-7. Digital Mode 6 (24Bits YUV).

Figure A1-8. Digital Mode 7 (8Bits CbYCrY).

Appendix 2 Additional Resources

Related resources include:

- SDK6 API DSP Support Package
- SDK6 AmbaKAL
- SDK6 API AmbaFS
- SDK6 API System

Please contact an Ambarella representative for a full list of related resources.

Appendix 3 Important Notice

All Ambarella design specifications, datasheets, drawings, files, and other documents (together and separately, "materials") are provided on an "as is" basis, and Ambarella makes no warranties, expressed, implied, statutory, or otherwise with respect to the materials, and expressly disclaims all implied warranties of noninfringement, merchantability, and fitness for a particular purpose. The information contained herein is believed to be accurate and reliable. However, Ambarella assumes no responsibility for the consequences of use of such information.

Ambarella Incorporated reserves the right to correct, modify, enhance, improve, and otherwise change its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

All products are sold subject to Ambarella's terms and conditions of sale supplied at the time of order acknowledgment. Ambarella warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent Ambarella deems necessary to support this warranty.

Ambarella assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Ambarella components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Ambarella does not warrant or represent that any license, either expressed or implied, is granted under any Ambarella patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Ambarella products or services are used. Information published by Ambarella regarding third-party products or services does not constitute a license from Ambarella to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Ambarella under the patents or other intellectual property of Ambarella.

Reproduction of information from Ambarella documents is not permissible without prior approval from Ambarella.

Ambarella products are not authorized for use in safety-critical applications (such as life support) where a failure of the product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Customers acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Ambarella products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Ambarella. Further, Customers must fully indemnify Ambarella and its representatives against any damages arising out of the use of Ambarella products in such safety-critical applications.

Ambarella products are neither designed nor intended for use in military/aerospace applications or environments. Customers acknowledge and agree that any such use of Ambarella products is solely at the Customer's risk, and they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Appendix 4 Revision History

NOTE: Page numbers for previous drafts may differ from page numbers in the current version.

Date	Comments
29 March 2013	Formatting
1 April 2013	Add Chapter 3 (Example)
12 April 2013	Refine Chapter 3 (Example)
15 April 2013	Formatting for release
15 November 2013	Update in Chapter 2, 3, and add Digital Vout Data Format and Pin Mapping
	in Appendix 1
21 November 2013	udpate Chapter 3 Example
17 December 2013	Update in Chapter 2, Chapter 3, and Appendix 1
28 January 2014	Minor formatting
17 September 2014	Formatted to SDK6
	29 March 2013 1 April 2013 12 April 2013 15 April 2013 15 November 2013 21 November 2013 17 December 2013 28 January 2014

Table A4-1. Revision History.