## **Lecture 5: Sequences & Series I**

September 10, 2019

# What is a Sequence?

A sequence is a set of numbers written in some order

$$a_1, a_2, a_3, ..., a_{n-1}, a_n$$

An infinite sequence can be thought of as a function whose domain is the set of positive integers  $i \in \mathbb{I}$  such that

$$a_i = f(i)$$

#### **Examples:**

Give the first four terms of the following sequences

- (a)  $a_n = \frac{n}{n+1}$
- (b)  $a_n = 2 + (.1)^n$
- (c)  $a_n = (-1)^{n+1} \frac{n^2}{3n-1}$
- (d)  $a_n = 4$



# **Limits of Sequences**

A sequence  $\{a_n\}$  has the limit

$$\lim_{n\to\infty}\{a_n\}=L$$

if for all  $\epsilon > 0$  there exits a positive N such that  $|a_n - L| < \epsilon$  whenever n > N. If the limit exists then the sequence converges, otherwise the sequence diverges.

### **Examples:**

If possible, find the limit of the following sequences:

- (a)  $\{\frac{n}{2n+1}\}$
- (b)  $\left\{\frac{(-1)^n n^2}{1+n^3}\right\}$
- (c)  $\{(1+\frac{c}{n})^n\}$



### What is a Series?

If we add all the terms of a sequence