(2,4) Trees

Outline and Reading

- Multi-way search tree
 - Definition
 - Search
- · (2,4) tree
 - Definition
 - Search
 - Insertion
 - Deletion

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of μ_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - · keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node ν between the recursive traversals of the subtrees of ν rooted at children ν_i and ν_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- At each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d-1): the search terminates successfully
 - $k < k_1$: we continue the search in child ν_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d-1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Tree

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4)
 tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- Theorem: A(2,4) tree storing n items has height $O(\log n)$ Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h 1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

- Thus, $h \le \log (n+1)$
- Searching in a (2,4) tree with n items takes $O(\log n)$ time

Height of a (2,4) Tree

Min # of items n:

Max # of items n:

When all internal nodes have 1 key and 2 children $n = 2^{h+1}-1$ $h = O(\log n)$ "perfect" binary tree

When all internal nodes have 3 keys and 4 children

$$n = \sum_{i=0}^{h} 4^{i} = (4^{h+1}-1)/3$$

$$n = (4^{h+1}-1)/3 \qquad h = O(\log_{4} n)$$

$$\Rightarrow \text{ Search } O(\log n)$$

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

Overflow and Split Again

Overflow and Split

- We handle an overflow at a 5-node vwith a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node ν is replaced by nodes ν' and ν''
 - v' is a 3-node with keys k_1 k_2 and children v_1 v_2 v_3
 - ν'' is a 2-node with key k_4 and children ν_4 ν_5
 - key k_3 is inserted into the parent u of v (a new root may be created)
- The overflow may propagate to the parent of node u

Analysis of Insertion

Algorithm insertItem(k, o)

- 1. We search for key k to locate the insertion node v
- 2. We add the new item (k, o) at node v
- 3. while overflow(v)if isRoot(v)create a new empty root above v $v \leftarrow split(v)$

- Let Tbe a (2,4) tree with nitems
 - Tree Thas O(log n) height
 - Step 1 takes O(log n)
 time because we visit
 O(log n) nodes
 - Step 2 takes O(1) time
 - Step 3 takes $O(\log n)$ time because each split takes O(1) time and we perform $O(\log n)$ splits
- Thus, an insertion in a (2,4) tree takes O(log n) time

Deletion

- We reduce deletion of an item to the case where the item is at the node with leaf children
- Otherwise, we replace the item with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter item
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- Deleting an item from a node ν may cause an underflow, where node ν becomes a 1-node with one child and no keys
- To handle an underflow at node ν with parent u, we consider two cases
- Case 1: the adjacent siblings of vare 2-nodes
 - Fusion operation: we merge ν with an adjacent sibling w and move an item from u to the merged node ν'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- To handle an underflow at node vwith parent u, we consider two cases
- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to y
 - After a transfer, no underflow occurs

Analysis of Deletion

- · Let Tbe a (2,4) tree with nitems
 - Tree Thas O(log n) height
- In a deletion operation
 - We visit $O(\log n)$ nodes to locate the node from which to delete the item
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time