

AGENDA

Click-Through Rate Prediction

Challenges in CTR Training

HugeCTR Introduction

CLICK-THROUGH RATE PREDICTION

WHAT IS CTR

Wikipedia:

"Click-through rate (CTR) is the ratio of users who click on a specific link to the number of total users who view a page, email, or advertisement."

Relatives:

Data Mining, Learning to Rank, NLP, CV

Search Advertising

Recommend based on input query && advs && user information

Recommended Ads

Recommend based on advs && user information

Content Recommendation: UGC

Content Recommendation: PGC

犯罪现场

古天乐持枪扫街

宝莱坞机器人 2.0

速度与激情:特 陈情令之生魂 别行动

我的

长安道·幕后

小小的愿望

功夫联盟

SEARCH ADVERTISING DISTRIBUTION SYSTEM

SEARCH ADVERTISING DISTRIBUTION SYSTEM

TWO STAGES RANKING

Query

Stage 1: Matching/Recall

Query+Top k

Stage 2: Ranking

Result

- Collaborative Filtering: user/item based
- Topic Model: LSA / LDA ..
- Content Model

- CTR
- RDTM
- PCR

CTR INFERENCE WORKFLOW

CTR TRAINING WORKFLOW

Parameter Server Based

MODEL

Without DNN: Logistic Regression / Factor Machine

With DNN: Embedding+MLP / Wide Deep Learning / DeepFM / DCN / DIN / DIEN

CHALLENGES IN CTR TRAINING

EMBEDDING + MLP

Standard Network

Large Embedding table: E_MEM = GBs to TBs

Small FC layers:

FC_MEM = #Layers * 100s * 100s (Suppose 5*500*500*4B = 5MB

CPU

- ► 100 Nodes, connected with Ethernet (1.25-1.8GB/s)
- Each forward/backward exchange whole the dense model ~10MB per node: 5.6ms*
- Compute time = ~2ms (BS=2000)
- Overall time = compute + data exchange = 7.6ms

^{*} Suppose 1.8GB/s Ethernet and CPU with 6TFlops per node

CPU

- ► 100 Nodes, connected with Ethernet (1.25-1.8GB/s)
- Each forward/backward exchange whole the dense model ~10MB per node: 5.6ms
- Compute time = ~2ms (BS=2000)
- Overall time = compute + data exchange = 7.6ms

Bottle Neck is Network

Single GPU Node

- Single Node
 - Within GPU server: model exchange is >83x faster (0.067ms)
 - Compute Time: 6ms (batchsize=2x10^5)
 - ► Total Time = 6ms (1.26x 100 CPU Nodes)

Single GPU Node

- Single Node
 - Within GPU server: model exchange is >83x faster (0.067ms)
 - Compute Time: 6ms (batchsize=2x10^5)
 - ► Total Time = 6ms (1.26x 100 CPU Nodes)

Bottle Neck is Compute

Multi GPU Nodes

Multi Node

- Within GPU server: model exchange is 27.8x faster than CPU
- Compute Time: 6ms/#Node (batchsize=2x10^5/#Node)
- Total Time = 6ms/#Node + 0.2ms (linear scale if Nodes < 10)</p>

CHALLENGES FOR GPU SOLUTION

Streaming Training: Dynamic Hashtable Insertion

Very big hashtable (GBs~TBs)

Large data I/O for data reading

Very shallow networks (3~20 layers)

Not a typical DNN training can be handled by current frameworks like pytorch TensorFlow

CHALLENGES FOR GPU SOLUTION

Challenges:

- Streaming Training: Dynamic
 Hashtable Insertion
- Very big hashtable (GBs~TBs)
- Large data I/O for data reading
- Very shallow networks (3~20 layers)

HugeCTR:

- Flexible GPU Hashtable
- Multi-Node training
- Efficient Three Stage Pipeline

HUGECTR INTRODUCTION

WHAT IS HUGECTR

HugeCTR is a high efficiency GPU framework designed for Click-Through-Rate (CTR) estimating training.

Key Features in 2.0:

- GPU Hashtable and dynamic insertion
- Multi-node training and enabling very large embedding
- Mixed precision training

HOW HUGECTR HELP

- 1. Prototype: Showing performance and possibility on GPUs. (v1.0)
- 2. Reference Design: Developers and NV can work together to modify HugeCTR according to the specific requirements (v2.0 current stage)
- 3. Framework: Developers can train their model easily on HugeCTR (v3.0)

NETWORK SUPPORTED

Embedding + MLP

Multi slot embedding: Sum / Mean

Layers: Concat / Fully Connected / Relu / BatchNorm / elu

Optimizer: Adam/ Momentum SGD/ Nesterov

Loss: CrossEngtropy/ BinaryCrossEntropy

^{*} Supporting multiple labels and each label will have a unique weight

NETWORK SUPPORTED

Sparse Model

PERFORMANCE

Good Scalability

NCCL 2.0

Three stages pipeline:

- reading from file
- host to device data transaction (inter / intra nodes)
- GPU training

*MLP Layers: 12 / MLP Output: 1024 / Embedding Vector: 64 / Table Number: 1

PERFORMANCE

TensorFlow

44x Speedup to CPU TF and same loss curve

Embedding Vector: 64/ Layers: 4 / MLP Output: 200 / Table Number: 1

PERFORMANCE

Pytorch DLRM

HugeCTR	slot_num	embedding_vec	num_layers	output of MLP
	64	64	4	512

GPUs	Batchsize	HugeCTR Time (s per 200iters)	DLRM (200iters)	Speedup
1	40960	13.5	17.7	131%
2	40960	10.3	19.4	188%
4	40960	6.3	17.3	275%
8	40960	4.3	33.8	786%
1	4096	1.6	4.5	281%
2	4096	1.34	6.5	485%
4	4096	0.9	8.4	933%
8	4096	0.75	13.7	1827%

Embedding Vector: 64 / Layers: 4 / MLP Output: 512 / Table number: 64

SYSTEM

A Simplified Framework For Ranking or Retrieval

Weight initialization: generate a file with initialized weight according to the name in config file

\$ huge_ctr --init config.json

Training:

\$ huge_ctr --train config.json

All the network, solver and dataset is configured under config.json

Config.json

Configuration file is in json format, and has four parts:

Solver

Optimizer

Data

Network

```
"solver": {
    "lr_policy": "fixed",
    "display": 200,
    "max_iter": 50000,
    "gpu": [[0],[0]],
    "batchsize": 40960,
    "snapshot": 10000,
    "snapshot_prefix": "./",
    "eval_interval": 1000,
    "eval_batches": 100,
    "model_file": "./criteo.model"
},
```

```
"optimizer": {
    "type": "Adam",
    "adam_hparam": {
        "alpha": 0.005,
        "beta1": 0.9,
        "beta2": 0.999,
        "epsilon": 0.000001
    }
},
```

```
"data": {
    "source": "./file_list.txt",
    "eval_source": "./file_list_test.txt",
    "max_feature_num_per_sample": 100,
    "label_dim": 1,
    "slot_num": 1
},
```

```
"type": "SparseEmbeddingHash",
"sparse embedding hparam": {
 "vocabulary size": 1603616,
 "load factor": 0.75,
 "slot num":10,
 "embedding vec size": 64,
"bottom": "sparse embedding1",
"bottom": "concat1",
 "num output": 200
"bottom": "fc1",
```

Dataset

Dataset contains two kinds of files:

- File list: includes the number of files and file name list with text format.
 A file name could be either of a relative address or absolute address. The file names are separated with '\n'
- 2. Data files: includes a bunch of files with binary format.

Data File

Training Set Format (RAW data with header):

Header:

```
typedef struct DataSetHeader_{
  long long number_of_records; //the number of samples in this data file
  long long label_dim; //dimension of label
  long long slot_num; //the number of slots in each sample
  long long reserved; //reserved for future use
} DataSetHeader;
```

ROADMAP

RESOURCES

源码:

https://github.com/NVIDIA/HugeCTR

公众号文章:

https://mp.weixin.qq.com/s/Oieuhvt2vzFEfKklTHiuOg

KEY CONTRIBUTORS

Fan Yu Hashtable

Xiaoying Jia Mixed Precision

Yong Wang Algorithm Advisor

Minseok Lee Multi-Node

Ryan Jeng Competitive Study

David Wu Embedding

Joey Wang Project Management

沟通

与来自 NVIDIA 和其他业界领先 组织的技术专家互动。

学习

通过百余场讲座、动手实验和研究海**报获**取宝贵见解和实践培训。

发现

了解 **GPU** 技术如何**为**深度学习 等重要**领**域带来重大突破,描**绘** 最新 AI 世界**观**。

创新

共同探索改变世界的**颠**覆性**创**新, 定**义**未来。

立即注册,**扫码立享 75** 折邀**请优**惠**购**票 或使用我的**优**惠邀**请码**:NVZEHUANW 前往 www.nvidia.cn/gtc/ 完成报名

扫码注册,经典课程+全新主题, AI实践经验升级

CUDA PYTHON

探讨如何使用 Numba(即时,专用类型的 Python 函数编译器)在 NVIDIA 大规模并行运算的 GPU 上加速 Python 应用程序。

您将学习如何:

- 使用 Numba 从NumPy ufuncs 编译 CUDA 内核
- 使用 Numba 创建和启动自定义 CUDA 内核
- 应用关键的GPU内存管理技术

完成本课程后,您将能够使用Numba编译并启动 CUDA 内核,以加速 NVIDIA GPU上的 Python 应用程序。

zehuanw@nvidia.com

NVIDIA.