PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-234457

(43)Date of publication of application: 20.08.2002

(51)Int.CI.

B62D 6/00 B62D 5/04 // B62D101:00 B62D119:00

(21)Application number : 2001-034053

(71)Applicant: NSK LTD

(22)Date of filing:

09.02.2001

(72)Inventor: SAKAGUCHI TORU

ENDO SHUJI

(54) CONTROLLING DEVICE FOR ELECTRIC POWER STEERING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a controlling device for an electric power steering device comparing a motor electric current estimated value found by computing with an actual motor electric current value for monitoring an operating condition of a driving system. SOLUTION: A motor electric current command value Ir (s) as a control target value of a motor output is inputted to a feed-forward compensator 51 to be inputted to a control object (motor) 50 via an adder 52 and an addition element 53. A motor electric current value Id(s) of the control object 50 can be computed according to a predetermined computing equation on the basis of the motor electric current command value Ir(s). The computed motor electric current value Id(s) is used as a motor electric current estimated value led(s) to be compared with the motor electric current value Id(s) (actual electric current value i), and when a difference e between them exceeds a previously set value, it is determined that a failure occurs in the driving system.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.

3.In the drawings, any words are not translated.

[Claim(s)]

[Claim 1] The control unit of the electric power-steering equipment which controls the output of the motor which gives the steering auxiliary force to a steering mechanism based on the steering torque generated in a steering shaft at least, and the detected vehicle speed characterized by providing the following. A motor current instruction value operation means to calculate the motor current instruction value which is a control-objectives value of a motor output based on the detected steering torque and the detected vehicle speed. A motor current estimate operation means to calculate the estimate of motor current based on the aforementioned motor current instruction value. Motor current detection means. A surveillance means to detect failure of a drive system based on the difference of the motor current estimate by which the operation was carried out [aforementioned], and the detected motor current value.

[Claim 2] The aforementioned surveillance means is the control unit of the electric power-steering equipment according to claim 1 characterized by being a surveillance means to judge with failure of a drive system when the difference of the calculated motor current estimate and the detected motor current value is over the predetermined allowed value set up beforehand.

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] This invention relates to the control unit of electric power-steering equipment.

[0002]

[Description of the Prior Art] The electric power-steering equipment for vehicles detects the steering torque and the vehicle speed which are generated in a steering shaft by operation of a steering handle, drives a motor based on the detecting signal, and assists the control force of a steering handle. Although control of such electromotive power-steering equipment is performed by the electronic control circuit, the outline of the control calculates the size of the steering torque detected by the torque sensor, and the current supplied to a motor based on the vehicle speed detected by the vehicle speed sensor, and controls the current supplied to a motor based on the result of an operation.

[0003] Namely, when a steering handle is operated and steering torque has occurred, an electronic control circuit The steering auxiliary force in which it is big when the detected vehicle speed is zero or a low speed is supplied. According to the control force and the vehicle speed of a steering handle, the motor current instruction value which is a control-objectives value of a motor output is calculated so that the steering auxiliary force in which it is small when the detected vehicle speed is quick may be supplied. By performing current feedback control so that the difference of the motor current instruction value which is this result of an operation, and the actual-current value which actually flows on a motor may become zero, the optimal steering auxiliary force according to the run state can be given.

[0004]

[Problem(s) to be Solved by the Invention] However, with the control unit of the above-mentioned conventional electric power-steering equipment, it is the motor current instruction value Ir. A motorised circuit is normal, and since steering torque and the vehicle speed are made into a parameter and the rotational speed of a motor is not taken into consideration by the operation, ****** may also make an incorrect **** judgment on it, if abnormal current is flowing on the motor.

[0005] That is, as shown in $\underline{drawing\ 8}$, since the counter-electromotive force according to the rotational speed of a motor occurs, the actual-current value i which flows to a DC motor has the property which will decrease if rotational speed becomes high.

[0006] On the other hand, it is the motor current instruction value Ir. Since the rotational speed of a motor is not taken into consideration, if it is determined based on steering torque and the vehicle speed, and the influence of the counter-electromotive force generated by rotation of a motor in current feedback control is not compensated, it is the motor current instruction value Ir. A difference with the actual-current value i of a motor becomes large, and un-arranging [which makes an incorrect intermediary judgment to abnormal current flowing on the motor] arises. [0007] Moreover, if battery voltage and the property constant of a motor are changed, the control characteristic gets worse and it is the motor current instruction value Ir. A difference with the actual-current value i of a motor becomes large, and un-arranging [which makes an incorrect intermediary judgment to abnormal current flowing on the motor] arises.

[0008] this invention aims at canceling above-mentioned un-arranging.

[0009]

[Means for Solving the Problem] This invention is what solves the above-mentioned technical problem. invention of a claim 1 In the control unit of the electric power-steering equipment which controls the output of the motor which gives the steering auxiliary force to a steering mechanism based on the steering torque generated in a steering shaft at least, and the detected vehicle speed The detected steering torque and a motor current instruction value operation means to calculate the motor current instruction value which is a control-objectives value of a

motor output based on the detected vehicle speed, A motor current estimate operation means to calculate the estimate of motor current based on the aforementioned motor current instruction value, It is the control unit of the electric power-steering equipment characterized by having a motor current detection means and a surveillance means to detect failure of a drive system based on the difference of the motor current estimate by which the operation was carried out [aforementioned], and the detected motor current value.

[0010] And the aforementioned surveillance means is a surveillance means to judge with failure of a drive system, when the difference of the calculated motor current estimate and the detected motor current value is over the predetermined allowed value set up beforehand.

[0011]

[Embodiments of the Invention] Hereafter, the gestalt of implementation of this invention is explained. Drawing 1 is drawing explaining the outline of the composition of the electric power-steering equipment suitable for carrying out this invention, and the shaft 2 of the steering handle 1 is combined with the tie rod 8 of a steering wheel through the slowdown gear 4, universal joints 5a and 5b, and the pinion rack mechanism 7. The motor 10 with which the torque sensor 3 which detects the steering torque of the steering handle 1 is formed in the shaft 2, and a control force is assisted has combined with the shaft 2 through a clutch 9 and the slowdown gear 4.

[0012] As for the electronic control circuit 13 which controls power-steering equipment, power is supplied through an ignition key 11 from a battery 14. An electronic control circuit 13 is based on the vehicle speed detected by the steering torque detected by the torque sensor 3, and the vehicle speed sensor 12, and is the motor current instruction value Ir. Motor current instruction value Ir calculated and calculated (henceforth a current instruction value) The current control value E which it is based and is supplied to a motor 10 is controlled.

[0013] A clutch 9 is controlled by the electronic control circuit 13. When the clutch 9 is combined by the normal operating state and it is judged as failure of power-steering equipment by the electronic control circuit 13, a power supply is separated from OFF at the time of intermediary

[0014] <u>Drawing 2</u> is the block diagram having shown the composition of an electronic control circuit 13. In this example, although an electronic control circuit 13 mainly consists of CPUs, it has shown the function performed by the program in the interior of the CPU here. For example, a phase compensator 21 does not show the phase compensator 21 as independent hardware, and shows the phase compensation function performed by CPU. In addition, it cannot be overemphasized that an electronic control circuit 13 is not constituted from a CPU, but these functional elements can be constituted from hardware (electronic circuitry) which became independent, respectively.

[0015] Hereafter, the function and operation of an electronic control circuit 13 are explained. In

order to raise the stability of a steering system by the phase compensator 21, phase compensation of the steering torque signal inputted from the torque sensor 3 is carried out, and it is inputted into the current instruction value computing element 22. Moreover, the vehicle speed detected by the vehicle speed sensor 12 is also inputted into the current instruction value computing element 22.

[0016] The current instruction value computing element 22 is the current instruction value Ir which is a control-objectives value of the current supplied to a motor 10 by predetermined operation expression based on the parameter of the inputted torque signal, a vehicle speed signal and the motor angular-velocity estimate omega, and others. It calculates.

[0017] 30 is a control section and is the current instruction value Ir. It considers as an input signal, the current control value E is acquired, and the motor which is a controlled system is driven. For the conventional control section, the actual-current value i which consists of a comparator, a derivative compensation machine, a proportionality computing element, and an integration-operator machine, and actually flows on a motor is the motor current instruction value Ir. Current feedback control is made into the control section to which, as for a control section 30, line intermediary **** performs robust control in this invention so that it may be in agreement. About this, it will explain in detail later.

[0018] The current control value E outputted from a control section 30 is supplied to the motorised circuit 41, and drives a motor 10. The actual-current value i of a motor 10 is detected by the motor current detector 42, and is fed back to a control section 30.

[0019] An example of the composition of the motorised circuit 41 is shown in <u>drawing 3</u>. The motorised circuit 41 consists of FET gate drive circuit 45 grade which carries out the opening-and-closing drive of the gates, such as the transducer 44 and FET1 which carry out separation conversion of the current control value E inputted from the control section 30 at a PWM signal (PDM signal) and the direction signal of current - FET4, and it. In addition, the pressure-up power supply 46 is FET1 and FET2. It is the power supply which drives a high side side.

[0020] A PWM signal is FET (field-effect transistor) switching element FET1 carried out - FET2 H bridge connection. It is the signal which drives the gate and the duty ratio (time [to carry out ON/OFF of the gate of FET] ratio) of a PWM signal is determined by the absolute value of the current control value E calculated in the control section 30.

[0021] The direction signal of current is a signal which shows the direction of the current supplied to a motor, and is a signal determined by the sign (positive/negative) of the current control value E calculated by the control section 30.

[0022] FET1 FET2 It is the switching element with which ON/OFF of the gate is carried out based on the duty ratio of said PWM signal, and is a switching element for controlling the size of the current which flows on a motor. Moreover, FET3 FET4 It is the switching element with

which it is based on said direction signal of current, and the gate is turned on or turned off (another side is set to being turned off when one side is ON), and is the switching element which switches the direction of the current which flows on a motor, i.e., a motor rotation direction. [0023] FET3 When it is in switch-on, current is FET1, a motor 10, FET3, and resistance R1. It passes, and it flows and the current of the right direction flows on a motor 10. Moreover, FET4 When it is in switch-on, current is FET2, a motor 10, FET4, and resistance R2. It passes, and it flows and the current of the negative direction flows on a motor 10.

[0024] The motor current detector 42 is resistance R1. The size of the right direction current is detected based on the voltage drop in ends, and it is resistance R2. The size of the negative direction current is detected based on the voltage drop in ends. The detected motor actual-current value i is fed back and inputted into a control section 30 (refer to drawing 2). [0025] When a steering handle is operated and steering torque has occurred, the electronic control circuit explained above When the vehicle speed by which the detected steering torque was large and was detected is zero or a low speed, it is the current instruction value Ir. It sets up greatly. When the detected steering torque is small and the detected vehicle speed is quick, it is the current instruction value Ir. Since it sets up small, the optimal steering auxiliary force according to the run state can be given.

[0026] Next, although the control section 30 of this invention is explained, the composition of 30f of the conventional current feedback control sections is first explained before it.

[0027] Drawing 4 is the block diagram having shown the composition of the conventional feedback control system by the transfer function, in ****** and 23, a proportional element (Kp) and 26 show an integral element (Kt/s), 27 shows an adder, and a comparator and 24 are constituted [30f of feedback control sections] for a derivative element (KDs) and 25 by the above circuit element. Moreover, 29 shows the motor which is a controlled system, 29a is a proportionality constant (K) and 29b is a motor element (the internal resistance of a motor and s of the inductance of a motor and R are the Laplacian operators, and L shows a motor element by 1/(Ls+R)).

[0028] Moreover, by <u>drawing 4</u>, although counter-electromotive force Ke omega is impressed to the input side of a controlled system through the adder 28, this is what showed in equivalent the influence of the counter-electromotive force generated by rotation of a motor, and it is shown that the counter-electromotive force generated by rotation of a motor appears in the current control value of an input side. In addition, Ke The counter-electromotive-force constant of a motor and omega are the angular velocity of a motor, and omegaa. The angular acceleration of a motor is shown.

[0029] At this control system, it is the current instruction value Ir. It considers as an input signal, the actual-current value i which actually flows on the motor which is a controlled system is fed back to this, both differential value, proportionality value, and integration value of a difference

of a signal are added, and the current control value E is acquired. And the motor which is a controlled system is driven with this current control value.

[0030] However, in the conventional feedback control system, there is a possibility of losing the stability of a system to change of change of battery voltage, a temperature change, etc. [0031] Then, in this invention, by constituting from a robust control system which replaces a control section 30 with the above-mentioned conventional feedback control system, and shows it to <u>drawing 5</u>, the response characteristic of a control system is maintained and change elements, such as change of battery voltage and a temperature change, secured the stability of a system also for *******.

[0032] <u>Drawing 5</u> is the block diagram having shown the composition of a robust control system by the transfer function. 50 shows the motor which is a controlled system and is a about the inductance L, the internal resistance R of a motor, and the Laplacian operator of a motor. A motor element is expressed with 1/(Ls+R) when it carries out.

[0033] 51 is the current instruction value Ir. (s) Receiving motor current value Id (s) It is a feedforward compensator for defining a response characteristic. It is Ln here. The design value of the inductance of a motor, and Rn The design value of the internal resistance of a motor, and T2 A time constant and s It is the Laplacian operator.

[0034] 52 -- output [of the feedforward compensator 51] r (s) Output da of the adder 56 which it ****** with the adder adding the output of the filter 57 mentioned later, and is mentioned later (s) pass a filter 57 -- it feeds back to an adder 52 -- having -- controller output r (s) It is added. A changed part which a controlled system 50 has by this, and a changed part of the counter-electromotive force generated by rotation of a motor are compensated.

[0035] The counter-electromotive force Ke omega which is an addition element and is generated by rotation of a motor in the input side of a controlled system is added to the output of an adder 52, and 53 is the motor current value Id. (s) Appearing is shown and it is the motor current value Id. (s) The appearing influence of counter-electromotive force Ke omega is shown in equivalence. It is Ke here. The counter-electromotive-force constant of a motor and omega show the angular velocity of a motor. The output of the addition element 53 is the current control value E which specifies the current supplied to a motor.

[0036] 55 is the circuit element which shows the reverse property of the motor property for which it wishes, is adopting and designing the mathematical model of the electrical property except the term of counter-electromotive force from the purpose which prevents the influence of the counter-electromotive force of a motor in this example, and is Ln and Rn. They are the design value of the inductance of a motor, the design value of the internal resistance of a motor, and s, respectively. It is the Laplacian operator.

[0037] 56 is an adder and calculates the difference of the output of circuit element 55, and the output of an adder 52, i.e., the difference of the motor control property in controller output

criteria for which it wishes, and the actual control characteristic. The output da of an adder 56 (s) is expressed with the following formulas (1).

[Equation 1]

[0038]

$$da(s) = (Ln s + Rn) \cdot Id(s) - \left(\frac{Ls + R}{K} \cdot Id(s) + Ke \omega\right)$$

$$= \left((Ln + \frac{L}{K})s + (Rn - \frac{R}{K})\right) \cdot Id(s) - Ke \omega$$

[0039] A formula (1) shows that the output da of an adder 56 (s) is the sum of the changed part and counter-electromotive force of a controlled system. Here, L and R are the inductance of the motor of a controlled system, the internal resistance of a motor, Ln, and Rn, respectively. They are the design value of the inductance of a motor, the design value of the internal resistance of a motor, and s, respectively. Counter-electromotive force and K of the Laplacian operator and Ke omega are constants.

[0040] 57 is the filter which stabilizes operation of the control system which feeds back the output da of an adder 56 (s), and the property is Q (s). It is expressed. Filter shape Q [in / $\frac{drawing 5}{drawing 5}$ / the primary low pass filter is used in this example, and] (s) =1/(T1s+1) is filter shape Q (s) expressed with the transfer function. An example is shown. Here, it is T1. A time constant and s It is the Laplacian operator.

[0041] Property Q (s) By feeding back the output of the filter 57 which it has, it is constituted so that it may suppress with change and counter-electromotive force of a controlled system and may be made in agreement with the property of the defined mathematical model. Hereafter, this is explained.

[0042] When the output of a filter 57 is fed back, it is the motor current value Id. (s) It is expressed with the following formulas (2).

[0043]

[Equation 2]

$$Id(s) = \frac{Pn(s)(1+\Delta(s))}{1+Q(s)\Delta(s)}r(s) + \frac{Pn(s)(1-Q(s))(1+\Delta(s))}{1+Q(s)\Delta(s)} \cdot Ke \omega$$

[0044] Pn in a formula (2) (s) It is the mathematical model of a motor property. Moreover, delta (s) is defined by the following formulas (3). here -- delta (s) the difference of a mathematical model and an actual property -- multiplication -- it is a part for the perturbation when expressing using the-like perturbation model

[0045]

[Equation 3]

$$\Delta(s) = \frac{\frac{L}{K} s + \frac{R}{K}}{Ln s + Rn} - 1 \qquad (3)$$

[0046] Property [of a filter] Q (s) In approximation, in the case of 1, it can express with the following approximations (4) and a formula (2) is the motor current value Id. (s) It can ask. [0047]

[Equation 4]

[0048] Output [of a feedforward compensator] r (s) Current instruction value Ir (s) Property (Lns+Rn)/(T2s+1) of a feedforward compensator can be expressed with the formula (5) of the following which carried out multiplication. Here, it is T2. A time constant and s It is the Laplacian operator.

[0049]

[Equation 5]

$$r(s) = \left(\frac{\ln s + Rn}{T2 s + 1}\right) \Gamma r(s) \qquad (5)$$

[0050] Therefore, motor current value Id (s) The shown aforementioned approximation (4) is r (s) of an approximation (4). It can express with the following formulas (6) by substituting a formula (5). motor current value Id (s) the shown approximation (6) -- property Q (s) Cut off frequency 1 / 2 pi-T 2 of the filter which it has ***** -- it is materialized [0051]

[Equation 6]

$$Id(s) = \left(\frac{\operatorname{Ln} s + \operatorname{Rn}}{\operatorname{T2} s + 1}\right) \left(\frac{1}{\operatorname{Ln} s + \operatorname{Rn}}\right) Ir(s) = \frac{1}{\operatorname{T2} s + 1} Ir(s)$$

[0052] on the other hand -- multiplication -- there is a minimum gain theorem shown in the following formulas (7) as sufficient condition for the control system which receives the-like perturbation being stable

[0053]

[Equation 7]

[0054] Here, it is T (s). In a complementary sensitivity function, i.e., $\underline{drawing \ 5}$, when a controlled system and its mathematical model are in agreement, they are Ln =L, Rn =R, and the transfer characteristics at the time of K= 1. this example -- T (s) =Q (s) it is -- since -- the following formulas (8) are satisfied -- as -- property Q (s) Time constant T1 of the filter 57 which it has It determines.

[0055]

[Equation 8]

$$|Q(\mathbf{g}) \cdot \Delta(\mathbf{g})| < 1 \quad \cdots \quad (8)$$

[0056] delta defined by the above-mentioned formula (3) by this example in consideration of the range of fluctuation of the inductance L of the motor expected, internal resistance R, and a constant K (s) It is property Q (s) so that the range may be defined and the above-mentioned formula (8) may be filled in all the ranges of delta (s). Time constant T1 of the filter 57 which it has Robust stability is securable if it sets.

[0057] The control system which is shown in $\underline{drawing 5}$ according to the above examination is property [of a filter 57] Q (s). With a cut off frequency [below] (1 / 2 pi-T 2), it can express with the equivalent block diagram further shown in (a) of $\underline{drawing 6}$, as shown in the equivalent block diagram further shown in (b) of $\underline{drawing 6}$, it can simplify, and it can express. That is, the reverse property of a mathematical model is given to the molecule of the property formula of the feedforward compensator 51 of $\underline{drawing 5}$, and it is the time constant T1 of the aforementioned filter to a denominator. Large time constant T2 By giving, it is a time constant T2. The response characteristic defined is realizable.

[0058] Moreover, change by the counter-electromotive force generated by rotation of a motor is compensated by constituting a control system as mentioned above.

[0059] As <u>drawing 6</u> showed the speed of responsibility, it is property Q (s). Time constant T1 of a filter Large time constant T2 It can set up in the arbitrary ranges to define and practically sufficient response characteristic can be realized.

[0060] Furthermore, unlike the conventional current feedback control system, it is [as opposed to / battery voltage, resistance between motor terminals, and change of motor torque / as the formula (2) showed] property Q (s). The cut off frequency of a filter has the important advantage that safety is also securable as a design performance is maintained and the formula (6) showed. [0061] Next, detection of failure of the drive system of electric power-steering equipment is explained. If neither the influence of counter-electromotive force nor change of a controlled system is fully previously compensated as explained in Object of the Invention, it is the motor current instruction value Ir. A difference with the actual-current value i of a motor becomes

large.

[0062] For this reason, it is the motor current instruction value Ir simply. When the actual-current value i of a motor is compared and the difference exceeds the set point, although the drive system is operating normally, by having judged that failure occurred in the drive system, there is a possibility of making an incorrect intermediary judgment to it being generating of failure.

[0063] Then, in this invention, failure of a drive system is detected by the method explained below to the robust control system explained previously. It can calculate the estimate Ied of current (s) which therefore flows on a motor, and (motor current estimate being told hereafter) to the following formulas (9) since motor current is controlled to be expressed to a formula (6) that it explained previously therefore when the drive system is not out of order. When a drive system breaks down, a formula (6) stops materializing.

[0064]

[Equation 9]

$$Ied(s) = \frac{1}{T2 s + 1} Ir (s) \qquad (9)$$

[0065] And as shown in the following formulas (10), when the absolute value of the difference e of the motor current estimate Ied (s) and the motor current value Id (s) exceeded the set point ER set up beforehand, it was made to judge that failure occurred in the drive system.

[0066]

[Equation 10]

$$e = | Ied(s) - Id(s) |$$
 (10)

[0067] The composition of the failure Monitoring Department is explained with reference to drawing 5. The computing element 61 with which set to drawing 5, and the failure Monitoring Department 60 calculates and presumes motor current estimate Ied (s) to be, Consisting of comparators 62, a computing element 61 is the motor current instruction value Ir. (s) It is based, and motor current estimate Ied (s) is calculated and presumed. When a comparator 62 compares the motor current estimate Ied (s) and the motor current value Id (s) which were presumed and the difference e exceeds the predetermined allowed value ER, the error signal which shows that failure occurred is outputted to a drive system.

[0068] The motor current estimate Ied (s) is the same as motor current estimate in case the drive system calculated by the aforementioned approximation (9) is in a normal state as described above, and the actual-current value i which detected the actual current which flows on a motor by the motor current detector 42 (refer to <u>drawing 2</u>) is specifically used for the motor current value Id (s) and a (actual-current value).

[0069] <u>Drawing 7</u> is a flow chart explaining surveillance operation of the failure Monitoring Department 60 performed by CPU of a control section 30. In addition, surveillance operation explained below extracts a sampled value repeatedly at intervals of a predetermined time, and processing of an operation, judgment, etc. is performed.

[0070] First, motor current instruction value Ir from the current instruction value computing element 22 (refer to <u>drawing 2</u>) Motor current instruction value Ir read and (Step P1) read It is based and the motor current estimate Ied is calculated (Step P2). Next, the motor current detector 42 (refer to <u>drawing 2</u>) detects the motor actual-current value i (Step P3).

[0071] It judges whether the absolute value e of the difference of the motor current estimate Ied and the motor actual-current value i is over the predetermined allowed value ER (Step P4), and a counter is reset when it is not over the allowed value (step P5). Moreover, when it is over the allowed value, only 1 increments a counter (Step P6).

[0072] When the counted value of a counter judges whether it is over the default value set up beforehand (Step P7) and is not over default value, it judges that it is normal and returns to main routine. Moreover, when it is over default value, the shift preparations to the failure manipulation routine which judges it as generating of failure, sets a failure flag as 1, and an alarm display and others do not illustrate are made (Step P8), and it returns to main routine. [0073] In addition, the default value used for the judgment of the counted value of the above-mentioned counter It is a value for carrying out counting of the number of times judged as the absolute value of the difference of the above-mentioned motor current estimate Ied and the above-mentioned motor actual-current value i having exceeded the allowed value, and judging generating of failure. When the number of times which carried out counting exceeds multiple times, for example, 10 times, an experiment shall determine suitably with the value for judging it as generating of failure.

[0074] Since according to the failure Monitoring Department which explained above a robust control system compensates change of the counter-electromotive force and the controlled system which are generated on a motor in case the motor current estimate Ied is compared with the motor actual-current value i, although a bird clapper does not have unusually the difference of motor current estimate and a motor actual-current value greatly and the drive system is operating normally, there is no possibility of making an incorrect intermediary judgment to it being generating of failure.

[0075] In addition, with the gestalt of the above-mentioned implementation, although the transfer function has shown the component of a control section, if concrete circuitry is circuit element with the property shown by the transfer function, proper circuit element can be used for it.

[0076]

[Effect of the Invention] As explained above the control unit of the electric power-steering

equipment of this invention It is based on the current instruction value inputted into a control system, and the motor current value which is an output. The difference of the motor control property (design property of a motor) in controller output criteria for which it wishes, and an actual motor control property is calculated. the difference -- an amendment, even if it changes property constants, such as a torque constant of the resistance between terminals of battery voltage or a motor, and a motor, according to the cause of change and others of the environment of temperature and others, since it feeds back like The motor control property for which it wishes can be maintained, and the stability of a control system is not lost.

[0077] And since a robust control system compensates change of the counter-electromotive force and the controlled system which are generated on a motor in case the estimate of motor current and the actual-current value of a motor which were calculated according to an operation are compared at the failure Monitoring Department A bird clapper does not have unusually the difference of motor current estimate and a motor actual-current value greatly, although the drive system is operating normally, a possibility of making an incorrect intermediary judgment to it being generating of failure disappears, and the operating state of a drive system can always be supervised correctly.

[Brief Description of the Drawings]

[Drawing 1] Drawing explaining the outline of the composition of electromotive power-steering equipment.

[Drawing 2] The block diagram of the electronic control circuit of this invention.

[Drawing 3] The block diagram showing an example of the composition of a motorised circuit.

[Drawing 4] The block diagram having shown the conventional current feedback control system by the transfer function.

[Drawing 5] The block diagram having shown the composition of the control system of this invention by the transfer function.

[Drawing 6] The block diagram having shown the equal circuit of the control system of this invention by the transfer function.

[Drawing 7] The flow chart explaining surveillance operation of the failure Monitoring Department performed by the control section.

[Drawing 8] Drawing explaining the relation between a motor current instruction value and a motor actual-current value to the rotational speed of a motor in the control unit of conventional electric power-steering equipment.

[Description of Notations]

3 Torque Sensor

10 Motor

11 Ignition Key

- 12 Vehicle Speed Sensor
- 13 Electronic Control Circuit
- 21 Phase Compensator
- 22 Current Instruction Value Computing Element
- 30 Control Section
- 41 Motorised Circuit
- **42 Motor Current Detector**
- 50 Controlled System (Motor)
- 51 Feedforward Compensator
- 52 Adder
- 53 Addition Element
- 55 Motor Reverse Property Circuit Element
- 56 Adder
- 57 Filter
- 60 Failure Monitoring Department
- 61 Computing Element
- 62 Comparator

[Drawing 4]

[Drawing 6]

(b)

[Drawing 7]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-234457 (P2002-234457A)

(43)公開日 平成14年8月20日(2002.8.20)

(51) Int.Cl. ⁷	酸別記号	FΙ	デーマコート [*] (参考)
B62D 6/00		B62D 6	3 D O 3 2
5/04		5	5/04 3 D O 3 3
// B 6 2 D 101:00		101: 00	
119:00		119: 00	
		審査請求	未請求 請求項の数2 OL (全 10 頁)
(21)出顧番号	特願2001-34053(P2001-34053)	(71)出顧人	000004204 日本精工株式会社
(22)出顧日	平成13年2月9日(2001.2.9)		東京都品川区大崎1丁目6番3号
(22) (AISH C)		(72)発明者	群馬県前橋市島羽町78番地 日本精工株式
		(CO) WANT TO	会社内 遠藤 修司
		(72)発明者	選擇 [李刊] 群馬県前橋市島羽町78番地 日本精工株式 会社内
		(74)代理人	100092299
			弁理士 貞重 和生 (外1名)
			最終頁に続く

(54) 【発明の名称】 電動パワーステアリング装置の制御装置

(57)【要約】

【課題】 演算により求めたモータ電流推定値とモータ 実電流値とを比較することにより駆動系の動作状態を監 視するようにした電動パワーステアリング装置の制御装 置を提供する。

【解決手段】 モータ出力の制御目標値であるモータ電流指令値 Ir (s) はフィードフォワード補償器51に入力され、加算器52、加算要素53を経て制御対象(モータ)50に入力される。制御対象50のモータ電流値 Id(s)はモータ電流指令値 Ir (s) に基づいて所定の演算式により演算することができる。演算したモータ電流値 Id(s)をモータ電流推定値 Ied(s)とし、モータ電流推定値 Ied(s)とモータ電流値 Id(s)(実電流値i)とを比較し、その差eが予め設定した設定値を越えたとき、駆動系に故障が発生したと判断する。

【特許請求の範囲】

【請求項1】 少なくともステアリングシヤフトに発生する操舵トルクと検出された車速に基づいてステアリング機構に操舵補助力を与えるモータの出力を制御する電動パワーステアリング装置の制御装置において、

検出された操舵トルクと検出された車速に基づいてモー 夕出力の制御目標値であるモータ電流指令値を演算する モータ電流指令値演算手段と、

前記モータ電流指令値に基づいてモータ電流の推定値を 演算するモータ電流推定値演算手段と、

モータ電流検出手段と、

前記演算されたモータ電流推定値と検出されたモータ電流値との差に基づいて駆動系の故障を検知する監視手段とを備えたことを特徴とする電動パワーステアリング装置の制御装置。

【請求項2】 前記監視手段は、演算されたモータ電流 推定値と検出されたモータ電流値との差が予め設定され た所定の許容値を越えているとき、駆動系の故障と判定 する監視手段であることを特徴とする請求項1記載の電 動パワーステアリング装置の制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、電動パワーステアリング装置の制御装置に関する。

[0002]

【従来の技術】車両用の電動パワーステアリング装置は、操向ハンドルの操作によりステアリングシヤフトに発生する操舵トルクと車速を検出し、その検出信号に基づいてモータを駆動して操向ハンドルの操舵力を補助するものである。このような電動式パワーステアリング装置の制御は電子制御回路で実行されるが、その制御の概要は、トルクセンサで検出された操舵トルクと車速センサで検出された車速に基づいてモータに供給する電流を大きさを演算し、その演算結果に基づいてモータに供給する電流を制御する。

【0003】即ち、電子制御回路は、操向ハンドルが操作されて操舵トルクが発生しているときに、検出された車速が零あるいは低速の場合は大きな操舵補助力を供給し、検出された車速が速い場合は小さな操舵補助力を供給するように操向ハンドルの操舵力と車速に応じてモータ出力の制御目標値であるモータ電流指令値を演算し、この演算結果であるモータ電流指令値と実際にモータに流れる実電流値の差が零になるように電流フィードバック制御を行なうことで、走行状態に応じた最適の操舵補助力を与えることができる。

[0004]

【発明が解決しようとする課題】しかしながら、上記した従来の電動パワーステアリング装置の制御装置では、モータ電流指令値 Ir の演算には、操舵トルクと車速とをパラメータとし、モータの回転速度が考慮されていな

いため、モータ駆動回路が正常であつてもモータに異常 電流が流れていると誤つた判断をする場合がある。

【0005】即ち、図8に示すように、直流モータに流れる実電流値iはモータの回転速度に応じた逆起電力が発生するため、回転速度が高くなると減少する特性を有している。

【0006】一方、モータ電流指令値Ir は操舵トルクと車速に基づいて決定され、モータの回転速度は考慮されないから、電流フィードバック制御でモータの回転により発生する逆起電力の影響が補償されないと、モータ電流指令値Ir とモータの実電流値iとの差が大きくなり、モータに異常電流が流れていると誤つて判断してしまう不都合が生じる。

【0007】また、バッテリ電圧、モータの特性定数が変動すると、制御特性が悪化してモータ電流指令値 I r とモータの実電流値 i との差が大きくなり、モータに異常電流が流れていると誤つて判断してしまう不都合が生じる。

【0008】本発明は、上記した不都合を解消することを目的とする。

[0009]

【課題を解決するための手段】この発明は上記課題を解決するもので、請求項1の発明は、少なくともステアリングシヤフトに発生する操舵トルクと検出された車速に基づいてステアリング機構に操舵補助力を与えるモータの出力を制御する電動パワーステアリング装置の制御装置において、検出された操舵トルクと検出された車速に基づいてモータ出力の制御目標値であるモータ電流指令値を演算するモータ電流指令値に基づいてモータ電流の推定値を演算するモータ電流推定値演算手段と、モータ電流検出手段と、前記演算されたモータ電流推定値と検出されたモータ電流値との差に基づいて駆動系の故障を検知する監視手段とを備えたことを特徴とする電動パワーステアリング装置の制御装置である。

【0010】そして、前記監視手段は、演算されたモータ電流推定値と検出されたモータ電流値との差が予め設定された所定の許容値を越えているとき、駆動系の故障と判定する監視手段である。

[0011]

【発明の実施の形態】以下、この発明の実施の形態について説明する。図1は、この発明を実施するに適した電動パワーステアリング装置の構成の概略を説明する図で、操向ハンドル1の軸2は減速ギア4、ユニバーサルジョイント5a、5b、ビニオンラツク機構7を経て操向車輪のタイロツド8に結合されている。軸2には操向ハンドル1の操舵トルクを検出するトルクセンサ3が設けられており、また、操舵力を補助するモータ10がクラツチ9、減速ギア4を介して軸2に結合している。

【0012】パワーステアリング装置を制御する電子制

御回路13は、バッテリ14からイグニッションキー11を経て電力が供給される。電子制御回路13は、トルクセンサ3で検出された操舵トルクと車速センサ12で検出された車速に基づいてモータ電流指令値Irを演算し、演算されたモータ電流指令値(以下、電流指令値という)Irに基づいてモータ10に供給する電流制御値Eを制御する。

【0013】クラツチ9は電子制御回路13により制御される。クラツチ9は通常の動作状態では結合しており、電子制御回路13によりパワーステアリング装置の故障と判断された時、及び電源がOFFとなつている時に切離される。

【0014】図2は、電子制御回路13の構成を示したブロツク図である。この実施例では電子制御回路13は主としてCPUから構成されるが、ここではそのCPU内部においてプログラムで実行される機能を示してある。例えば、位相補償器21は独立したハードウエアとしての位相補償器21を示すものではなく、CPUで実行される位相補償機能を示す。なお、電子制御回路13をCPUで構成せず、これらの機能要素をそれぞれ独立したハードウエア(電子回路)で構成できることは言うまでもない。

【0015】以下、電子制御回路13の機能と動作を説明する。トルクセンサ3から入力された操舵トルク信号は、位相補償器21で操舵系の安定を高めるために位相補償され、電流指令値演算器22に入力される。また、車速センサ12で検出された車速も電流指令値演算器22に入力される。

【0016】電流指令値演算器22は、入力されたトルク信号、車速信号、及びモータ角速度推定値ω、その他のパラメータに基づいて所定の演算式によりモータ10に供給する電流の制御目標値である電流指令値Ir を演算する。

【0017】30は制御部で、電流指令値 Ir を入力信 号として電流制御値Eを得て制御対象であるモータを駆 動する。従来の制御部は、例えば比較器、微分補償器、 比例演算器及び積分演算器から構成され、モータに実際 に流れる実電流値iがモータ電流指令値Ir に一致する ように電流フィードバック制御を行つていたが、この発 明では、制御部30はロバスト制御を行う制御部として いる。これについては後で詳細に説明することにする。 【0018】制御部30から出力される電流制御値Eは モータ駆動回路41に供給され、モータ10を駆動す る。モータ10の実電流値iはモータ電流検出回路42 により検出され、制御部30にフィードバックされる。 【0019】図3にモータ駆動回路41の構成の一例を 示す。モータ駆動回路41は制御部30から入力された 電流制御値EをPWM信号(パルス幅変調信号)と電流 方向信号とに分離変換する変換部44、FET1 ~FE T4、及びそれ等のゲートを開閉駆動するFETゲート 駆動回路45等からなる。なお、昇圧電源46はFET 1、FET2のハイサイド側を駆動する電源である。

【0020】PWM信号は、Hブリツジ接続されたFET(電界効果トランジスタ)スイツチング素子FET1~FET2のゲートを駆動する信号で、制御部30において演算された電流制御値Eの絶対値によりPWM信号のデユーティ比(FETのゲートをON/OFFする時間比)が決定される。

【0021】電流方向信号は、モータに供給する電流の 方向を指示する信号で、制御部30で演算された電流制 御値Eの符号(正負)により決定される信号である。

【0022】FET1とFET2は前記したPWM信号のデユーテイ比に基づいてゲートがON/OFFされるスイツチング素子で、モータに流れる電流の大きさを制御するためのスイツチング素子である。また、FET3とFET4は前記した電流方向信号に基づいてゲートがON或いはOFFされる(一方がONの時、他方はOFFとなる)スイツチング素子で、モータに流れる電流の方向、即ちモータの回転方向を切り換えるスイツチング素子である。

【0023】FET3 が導通状態にあるときは、電流はFET1、モータ10、FET3、抵抗R1 を経て流れ、モータ10に正方向の電流が流れる。また、FET4 が導通状態にあるときは、電流はFET2、モータ10、FET4、抵抗R2 を経て流れ、モータ10に負方向の電流が流れる。

【0024】モータ電流検出回路42は、抵抗R1の両端における電圧降下に基づいて正方向電流の大きさを検出し、また、抵抗R2の両端における電圧降下に基づいて負方向電流の大きさを検出する。検出されたモータ実電流値iは制御部30にフィードバックして入力される(図2参照)。

【0025】以上説明した電子制御回路は、操向ハンドルが操作されて操舵トルクが発生しているときに、検出された操舵トルクが大きく、また検出された車速が零あるいは低速の場合は電流指令値Irを大きく設定し、検出された操舵トルクが小さく、また検出された車速が速い場合は電流指令値Irを小さく設定するから、走行状態に応じた最適の操舵補助力を与えることができる。

【0026】次に、この発明の制御部30について説明するが、その前に、まず、従来の電流フィードバック制御部30fの構成を説明する。

【0027】図4は従来のフィードバック制御系の構成を伝達関数で示したブロツク図であつて、23は比較器、24は微分要素(KDs)、25は比例要素(Kp)、26は積分要素(Kt/s)、27は加算器を示

し、フィードバック制御部30fは以上の回路要素により構成される。また、29は制御対象であるモータを示しており、29aは比例定数(K)、29bはモータ要素(Lはモータのインダクタンス、Rはモータの内部抵

抗、sはラプラス演算子で、1/(Ls +R)でモータ 要素を示す)である。

【0028】また、図4では、加算器28を介して制御対象の入力側に逆起電力Ke ωが印加されているが、これはモータの回転により発生する逆起電力の影響を等価的に示したもので、モータの回転により発生する逆起電力が入力側の電流制御値に現れることを示している。なお、Ke はモータの逆起電力定数、ωはモータの角速度、ωa はモータの角加速度を示す。

【0029】この制御系では、電流指令値 Ir を入力信号とし、これに制御対象であるモータに実際に流れる実電流値 i をフィードバックして、両者の差の信号の微分値、比例値、及び積分値を加算して電流制御値Eを得る。そしてこの電流制御値により制御対象であるモータを駆動している。

【0030】しかしながら、従来のフィードバック制御系では、バッテリ電圧の変動や温度変化などの変動に対してシステムの安定性を失うおそれがある。

【0031】そこで、この発明では、制御部30を、上記した従来のフィードバック制御系に代えて図5に示すロバスト制御系で構成することにより、制御系の応答特性を維持し、バッテリ電圧の変動や温度変化などの変動要素があつてもシステムの安定性を確保するようにした。

【0032】図5は、ロバスト制御系の構成を伝達関数で示したブロツク図である。50は制御対象であるモータを示しており、モータのインダクタンスし、モータの内部抵抗R、ラプラス演算子をsとすると、モータ要素は1/(Ls+R)で表される。

【0033】51は電流指令値 Ir (s) に対するモータ 電流値 Id (s) の応答特性を定義するためのフィードフ ォワード補償器である。ここでLn はモータのインダク タンスの設計値、Rn はモータの内部抵抗の設計値、T 2 は時定数、s はラプラス演算子である。

【0034】52はフィードフォワード補償器51の出力r(s)と後述するフイルタ57の出力とを加算する加算器であつて、後述する加算器56の出力da(s)がフイルタ57を経て加算器52にフィードバックされて、制御器出力r(s)に加算される。これにより制御対象50のもつ変動分とモータの回転により発生する逆起電力の変動分が補償される。

【0035】53は加算要素で、制御対象の入力側にモータの回転により発生する逆起電力Ke ωが加算器52の出力に加算されてモータ電流値 Id (s) に現れるごとを示し、モータ電流値 Id (s) に現れる逆起電力Ke ωの影響を等値的に示したものである。ここでKe はモータの逆起電力定数、ωはモータの角速度を示す。加算要素53の出力はモータに供給する電流を規定する電流制御値Eである。

【0036】55は希望するモータ特性の逆特性を示す 回路要素で、この実施例ではモータの逆起電力の影響を 防ぐ目的から逆起電力の項を除いた電気的特性の数学モ デルを採用して設計しており、Ln、Rn はそれぞれモ ータのインダクタンスの設計値、モータの内部抵抗の設 計値、s はラプラス演算子である。

【0037】56は加算器で、回路要素55の出力と加算器52の出力との差、即ち、制御器出力基準における希望するモータ制御特性と実際の制御特性の差を演算するものである。加算器56の出力da(s)は以下の式

(1)で表される。

[0038]

【数1】

$$da(s) = (Ln s + Rn) \cdot Id(s) - \left(\frac{Ls + R}{K} Id(s) + Ke \omega\right)$$

$$= \left((Ln + \frac{L}{K}) s + (Rn - \frac{R}{K})\right) \cdot Id(s) - Ke \omega$$

【0039】式(1)より、加算器56の出力 da(s)は制御対象の変動分と逆起電力の和であることが分かる。ここで、L、Rはそれぞれ制御対象のモータのインダクタンス、モータの内部抵抗、Ln、Rn はそれぞれモータのインダクタンスの設計値、モータの内部抵抗の設計値、s はラプラス演算子、Ke ωは逆起電力、Kは定数である。

【0040】57は加算器56の出力da(s)をフィード バックする制御系の動作を安定させるフイルタで、その 特性はQ(s)で表される。この実施例では一次のローパ スフイルタを用いており、図5におけるフイルタ特性Q (s) = 1/(T1s+1)は、伝達関数で表されたフィル 夕特性Q(s) の一例を示している。ここで、T1 は時定数、s はラブラス演算子である。

【0041】特性Q(s) をもつフイルタ57の出力をフィードバックすることにより、制御対象の変動と逆起電力と抑制し、定義した数学モデルの特性と一致させるように構成されている。以下、これについて説明する。

【0042】フイルタ57の出力をフィードバックした場合、モータ電流値 Id (s) は以下の式(2)で表される。

【0043】 【数2】

Id (s) =
$$\frac{Pn (s) (1+\Delta(s))}{1+Q(s) \Delta(s)} r(s) + \frac{Pn (s) (1-Q(s))(1+\Delta(s))}{1+Q(s) \Delta(s)} \cdot \text{Ke } \omega$$

【0044】式(2)における、Pn(s)はモータ特性 の数学モデルである。また、Δ(s)は、以下の式(3) 【0045】 で定義される。ここで、 $\Delta(s)$ は数学モデルと実際の特 件との差を乗法的摂動モデルを用いて表したときの摂動

$$\Delta(s) = \frac{\frac{L}{K}}{\frac{L}{K}} s + \frac{R}{K} - 1 \qquad (3)$$

【0046】フイルタの特性Q(s) が近似的に1の場合 【0047】 は、式(2)は以下の近似式(4)で表わすことがで き、モータ電流値 I d (s) を求めることができる。

Id (s)
$$\rightleftharpoons$$
 Pn (s) r(s) $\rightleftharpoons \frac{1}{\operatorname{Ln} s + \operatorname{Rn}} r(s)$ (4)

【0048】フィードフォワード補償器の出力r(s) は、電流指令値 Ir (s) にフィードフォワード補償器の 特性 (Lns+Rn) / (T2s+1) を乗算した以下の式 (5) で表すことができる。ここで、T2 は時定数、s

$$r(s) = \left(\frac{\operatorname{Ln} s + \operatorname{Rn}}{\operatorname{T2} s + 1}\right) \operatorname{Ir}(s) \qquad (5)$$

【0050】従つて、モータ電流値 I d(s)を示す前記 近似式(4)は、近似式(4)のr(s)に式(5)を代 入することにより以下の式(6)で表すことができる。 モータ電流値 Id(s)を示す近似式(6)は、特性Q

(s) を持つフイルタのカットオフ周波数1/2π·T2 までは成立する。

[0051]

$$Id (s) = \left(\frac{Ln s + Rn}{T2 s + 1}\right) \left(\frac{1}{Ln s + Rn}\right) Ir (s) = \frac{1}{T2 s + 1} Ir (s)$$

【0052】一方、乗法的摂動を受ける制御系が安定で ある為の十分条件として、以下の式(7)に示す最小ゲ イン定理がある。

ルが一致しているときの相補感度関数、即ち、図5にお いてLn = L、Rn = R、K = 1のときの伝達特性であ

【0055】

【0056】この実施例では、予想されるモータのイン ダクタンスL、内部抵抗R、及び定数Kの変動幅を考慮 して上記式 (3) で定義される $\Delta(s)$ の範囲を定め、 Δ (s)の全範囲において上記式(8)が満たされるように 特性Q(s) を持つフイルタ57の時定数T1 を定めれ ば、ロバスト安定性を確保することができる。

フイルタ57の特性Q(s)のカットオフ周波数以下(1 /2π·T2) であれば、更に図6の(a) に示す等価 ブロック図で表すことができ、更に図6の(b)に示す 等価ブロック図のように簡略化して表すことができる。 即ち、図5のフィードフォワード補償器51の特性式の 分子に数学モデルの逆特性を与え、分母に前記フイルタ の時定数T1 よりも大きい時定数T2 を与えることによ

【0057】以上の検討によれば、図5に示す制御系は

り、時定数T2 で定義される応答特性を実現することが できる。

【0058】また、以上のように制御系を構成すること により、モータの回転により発生する逆起電力による変 動が補償される。

【0059】応答性の速さについては、図6で示したよ うに、特性Q(s) のフイルタの時定数T1 よりも大きい 時定数T2 で定める任意の範囲で設定することができ、 実用上十分な応答特性を実現することができる。

【0060】更に、従来の電流フィードバック制御系と は異なり、式(2)で示したようにバッテリ電圧、モー タ端子間抵抗、モータトルクの変動に対し、特性Q(s) のフイルタのカットオフ周波数までは設計性能を維持 し、且つ式(6)で示したように安全性も確保できると いう重要な利点を有する。

【0061】次に、電動パワーステアリング装置の駆動 系の故障の検出について説明する。先に、発明が解決し ようとする課題において説明したとおり、逆起電力の影 響や制御対象の変動が十分に補償されないと、モータ電 流指令値Ir とモータの実電流値iとの差が大きくな

【0062】このため、単純にモータ電流指令値 Ir と モータの実電流値 i とを比較してその差が設定値を越え たとき、駆動系に故障が発生したと判断したのでは、駆 動系が正常に動作しているにも関わらず、故障の発生で あると誤つて判断してしまうおそれがある。

【0063】そこで、この発明では、先に説明したロバ スト制御系に対して、以下に説明する方法により駆動系 の故障を検出する。駆動系が故障していないときには、 先に説明したように式 (6)によつて表わされるよう に、モータ電流が制御されるので、以下の式(9)によ つてモータに流れる電流の推定値 I ed(s) (以下、モー 夕電流推定値という)を演算することができる。 駆動系 が故障したときは、式(6)は成立しなくなる。

[0064]

【数9】

$$I \operatorname{ed}(s) = \frac{1}{T2 \cdot s + 1} \operatorname{Ir}(s) \quad \cdots \quad (9)$$

【0065】そして、以下の式(10)で示すように、 モータ電流推定値 I ed(s)とモータ電流値 Id(s)との差 eの絶対値が予め設定した設定値ERを越えたとき、駆

$$e = | Ied(s) - Id(s) |$$
 •

【0067】図5を参照して故障監視部の構成を説明す る。図5において故障監視部60はモータ電流推定値I ed(s)を演算・推定する演算器61と、比較器62とか ら構成され、演算器61はモータ電流指令値 Ir (s) に 基づいてモータ電流推定値 I ed(s)を演算・推定し、比 較器62は推定したモータ電流推定値 I ed(s)とモータ 電流値 Id(s)とを比較し、その差eが所定の許容値ER を越えた時、駆動系に故障が発生したことを示すエラー 信号を出力する。

【0068】モータ電流推定値 I ed(s)は前記したとお り、前記近似式(9)により演算しした駆動系が正常な 状態のときのモータ電流推定値と同じであり、モータ電 流値 I d(s) (実電流値) は、具体的にはモータに流れる 実電流をモータ電流検出回路42(図2参照)により検 出した実電流値 i を使用する。

【0069】図7は、制御部30のCPUで実行される 故障監視部60の監視動作を説明するフローチャートで ある。なお、以下説明する監視動作は、所定時間間隔で 繰り返しサンプル値を抽出して演算・判断等の処理が実 行されるものである。

【0070】まず、電流指令値演算器22(図2参照) からのモータ電流指令値 Ir を読み込み (ステップP 1)、読み込まれたモータ電流指令値 Ir に基づいてモ ータ電流推定値 I edを演算する(ステップP2)。次 に、モータ電流検出回路42(図2参照)によりモータ 動系に故障が発生したと判断するようにした。

[0066]

【数10】

実電流値iを検出する(ステップP3)。

【0071】モータ電流推定値 I edとモータ実電流値 i との差の絶対値eが所定の許容値ERを越えているか否 かを判定し(ステップP4)、許容値を越えていない場 合はカウンタをリセットする(ステップP5)。また、 許容値を越えている場合はカウンタを1だけインクリメ ントする(ステップP6)。

【0072】カウンタのカウント値が予め設定した規定 値を越えているか否かを判定し(ステップP7)、規定 値を越えていない場合は正常と判断して主ルーチンに戻 る。また、規定値を越えている場合は故障の発生と判断 して故障フラグを1に設定して警告表示、その他の図示 しない故障処理ルーチンへの移行準備を行い (ステップ P8)、主ルーチンに戻る。

【0073】なお、上記したカウンタのカウント値の判 定に使用される規定値は、上記したモータ電流推定値 I edとモータ実電流値 i との差の絶対値が許容値を越えた と判定された回数を計数して故障の発生を判断するため の値であり、計数した回数が複数回、例えば10回を越 えたとき故障の発生と判断するための値で、実験により 適宜決定するものとする。

【0074】以上説明した故障監視部によれば、モータ 電流推定値Iedとモータ実電流値iとを比較する際に、 ロバスト制御系がモータに発生する逆起電力および制御 対象の変動を補償するので、モータ電流推定値とモータ

実電流値との差が異常に大きくなることが無く、駆動系 が正常に動作しているにも関わらず、故障の発生である と誤つて判断してしまうおそれがない。

【0075】なお、上記実施の形態では、制御部の構成 要素を伝達関数で示してあるが、具体的な回路構成は、 伝達関数で示した特性を持つ回路要素であれば適宜の回 路要素を使用することができる。

[0076]

【発明の効果】以上説明したとおり、この発明の電動パワーステアリング装置の制御装置は、制御系に入力される電流指令値と出力であるモータ電流値に基づいて、制御器出力基準における希望するモータ制御特性(モータの設計特性)と実際のモータ制御特性との差を演算し、その差を補正するようにフィードバックするものであるから、バッテリ電圧やモータの端子間抵抗、モータのトルク定数などの特性定数が温度その他の環境の変化その他の原因により変動しても、希望するモータ制御特性を維持することができ、制御系の安定性を失うことがない。

【0077】そして、故障監視部において、演算により 求めたモータ電流の推定値とモータの実電流値とを比較 する際に、ロバスト制御系がモータに発生する逆起電力 および制御対象の変動を補償するので、モータ電流推定 値とモータ実電流値との差が異常に大きくなることは無 く、駆動系が正常に動作しているにも関わらず故障の発 生であると誤つて判断してしまうおそれがなくなり、常 に正確に駆動系の動作状態を監視することができる。

【図面の簡単な説明】

【図1】電動式パワーステアリング装置の構成の概略を説明する図。

【図2】この発明の電子制御回路のブロック図。

【図3】モータ駆動回路の構成の一例を示すブロック図。

【図4】従来の電流フィードバック制御系を伝達関数で示したブロック図。

【図5】この発明の制御系の構成を伝達関数で示したブロック図。

【図6】この発明の制御系の等価回路を伝達関数で示し たブロック図。

【図7】制御部で実行される故障監視部の監視動作を説明するフローチャート。

【図8】従来の電動パワーステアリング装置の制御装置 におけるモータの回転速度に対するモータ電流指令値と モータ実電流値の関係を説明する図。

【符号の説明】

- 3 トルクセンサ
- 10 モータ
- 11 イグニッションキー
- 12 車速センサ
- 13 電子制御回路
- 21 位相補償器
- 22 電流指令値演算器
- 30 制御部
- 41 モータ駆動回路
- 42 モータ電流検出回路
- 50 制御対象(モータ)
- 51 フィードフォワード補償器
- 52 加算器
- 53 加算要素
- 55 モータ逆特性回路要素
- 56 加算器
- 57 フイルタ
- 60 故障監視部
- 61 演算器
- 62 比較器

【図2】 【図8】 .Ir(モータ電流指令値) トルク センサ 位相 補償器 22ع (実電流値) 電流 電流指令値 演算器 モータ 軍動回路 12 -42 モータ回転速度 車速 センサ モータ電流 検出回路 -13

【図4】

【図5】

【図6】

(b)

【図7】

フロントページの続き

Fターム(参考) 3D032 CC38 DA15 DA23 DA64 DB11 DC01 DC02 DC03 DD17 DD18 EC23 3D033 CA13 CA16 CA20 CA28 CA31