CH402 Chemical Engineering Process Design

Class Notes L7

Heat Exchanger Theory

Agenda for Today's Class

design and cost factors (slides 3-7)

heat transfer and LMTD (slides 8-11)

resistance to heat transfer (slides 12-18)

pressure drop (slides 19-21)

Basic "shell-and-tube" design

notice the triangular pattern or "pitch" of the tubes

4 tube-side "passes"

shell-side baffle plates

notice the square pattern or "pitch" of the tubes

What cost factors are most important?

Heat transfer area and material

p. 682

Figure 14-18

Purchased cost of fixed-tube-sheet heat exchangers with 0.019-m ($\frac{3}{4}$ -in.) OD \times 0.025-m (1-in.) square pitch and 4.88- or 6.10-m (16- or 20-ft) bundles and carbon-steel shell operating at 1035 kPa (150 psia)

carbon steel, 100 m²: \$10,200 in Jan 2002

3/4-in tubes, 1-inch square-pitch fixed tube sheet, 4.88 m or 6.10 m in length at 150 psia

What if we change design to 1.5-inch tubes, 4 m in length, 500 psia, stainless 316L, in Jan 2025?

1.5-in tubes, multiply by 1.37, figure 14-21: \$13,974

4-m length, multiply by 1.07, figure 14-22: \$14,952

500 psia, multiply by 1.39, figure 14-23: \$20,784

Stainless 316L, multiply by 2.2, table 14-8: \$45,724

Jan 2025, multiply by 772.9/356.9, CEPCI: \$99,019 // ANS

Apply correction factors.

Summary of cost factors and Adjustments

All cost charts located on pages 680 – 692 Very Important!

Basic shell-and-tube heat exchangers, Figures 14-18 and 14-19, page 682

0.019-m x 4.88-m, fixed-tube-sheet, Figure 14-18, p. 682

0.019-m x 4.88-m, floating-head, Figure 14-19, p. 682

Adjustments

Tube diameter, Figure 14-21, p. 683

Tube length, Figure 14-22, p. 684

Pressure, Figure 14-23, p. 684

Material, Table 14-8 and Figure 14-24, p. 685

Agenda for Today's Class

design and cost factors (slides 3-7)

heat transfer and LMTD (slides 8-11)

resistance to heat transfer (slides 12-18)

pressure drop (slides 19-21)

FE Reference Manual – pp. 215-216

FEE Manual, pp. 215-216; recommend review of entire heat transfer section, pp. 204-219; very well written.

Heat Exchangers

The rate of heat transfer associated with either stream in a heat exchanger in which incompressible fluid or ideal gas with constant specific heats flows is

$$\dot{Q} = \dot{m}c_p \big(T_{\rm exit} - T_{\rm inlet} \big)$$

 c_p = specific heat (at constant pressure)

 $\dot{m} = \text{mass flow rate}$

The rate of heat transfer in a heat exchanger is

$$\dot{Q} = UAF\Delta T_{lm}$$

 $A = \text{any convenient reference area (m}^2)$

F = correction factor for log mean temperature difference for more complex heat exchangers (shell and tube arrangements with several tube or shell passes or cross-flow exchangers with mixed and unmixed flow); otherwise F = 1.

U = overall heat-transfer coefficient based on area A and the log mean temperature difference [W/(m²•K)]

 $\Delta T_{lm} = \log \text{ mean temperature difference (K)}$

Overall Heat-Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers

$$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{R_{fi}}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi k L} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}$$

 A_i = inside area of tubes (m²)

 A_o = outside area of tubes (m²)

 D_i = inside diameter of tubes (m)

 D_o = outside diameter of tubes (m)

 h_i = convection heat-transfer coefficient for inside of tubes [W/(m²•K)]

 $h_o = \text{convection heat-transfer coefficient for outside of tubes}$ $[W/(m^2 \cdot K)]$

k = thermal conductivity of tube material [W/(m•K)]

 R_i = fouling factor for inside of tube [(m²•K)/W]

 R_{fo} = fouling factor for outside of tube [(m²•K)/W]

A is calculated from the geometry

$$A = \pi \cdot D \cdot L \cdot N_{t}$$

Log Mean Temperature Difference (LMTD)

For counterflow in tubular heat exchangers

$$\Delta T_{bn} = \frac{(T_{Ho} - T_{Ci}) - (T_{Hi} - T_{Co})}{\ln(\frac{T_{Ho} - T_{Ci}}{T_{Hi} - T_{Co}})}$$

For parallel flow in tubular heat exchangers

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Co}\right) - \left(T_{Hi} - T_{Ci}\right)}{\ln\left(\frac{T_{Ho} - T_{Co}}{T_{Hi} - T_{Ci}}\right)}$$

 $\Delta T_{lm} = \log \text{ mean temperature difference (K)}$

 T_{Hi} = inlet temperature of the hot fluid (K)

 T_{Ho} = outlet temperature of the hot fluid (K)

 T_{Ci} = inlet temperature of the cold fluid (K)

 T_{Co} = outlet temperature of the cold fluid (K)

Log mean temperature difference - example lide 10

Calculate the log mean temperature difference for countercurrent and co-current flow.

FE Reference Manual, page 215

countercurrent (counterflow)

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Ci}\right) - \left(T_{Hi} - T_{Co}\right)}{Ln\left(\left(T_{Ho} - T_{Ci}\right) / \left(T_{Hi} - T_{Co}\right)\right)} = \frac{\left(138 - 68\right) - \left(158 - 108\right)}{Ln\left(\left(138 - 68\right) / \left(158 - 108\right)\right)} = 59.44^{\circ}C$$
 average temperature difference driving force
$$\Delta T_{mean} = \frac{70 + 50}{2} = 60$$

$$\Delta T_{lm} = \frac{\left(T_{Ho} - T_{Co}\right) - \left(T_{Hi} - T_{Ci}\right)}{Ln\left(\left(T_{Ho} - T_{Co}\right) / \left(T_{Hi} - T_{Ci}\right)\right)} = \frac{\left(138 - 108\right) - \left(158 - 68\right)}{Ln\left(\left(138 - 108\right) / \left(158 - 68\right)\right)} = 54.61^{\circ}C$$

Multiple Passes

Use correction factor F; FEE manual defines it on page 215 but does not explain how to calculate it. Used in CHEMCAD.

Figure 14-4. One shell pass and 2 or more tube passes. Figure 14-5. Other contact patterns.

$$R = \frac{T_{Hi} - T_{Ho}}{T_{Co} - T_{Ci}} = \frac{158 - 138}{108 - 68} = 0.5$$

$$P = \frac{T_{Co} - T_{Ci}}{T_{Hi} - T_{Ci}} = \frac{108 - 68}{158 - 68} = 0.44$$

$$(14-9a, p.648)$$

$$F = \frac{(R^2 + 1)^{1/2} \cdot ln\left(\frac{1 - P}{1 - R \cdot P}\right)}{(R - 1) \cdot ln\left(\frac{2 - P \cdot \left[(R + 1) - (R^2 + 1)^{1/2}\right]}{2 - P \cdot \left[(R + 1) + (R^2 + 1)^{1/2}\right]}\right)} = 0.96$$

$$(14-9b)$$

$$\Delta T_{o.m} = F \cdot \Delta T_{o.log\ mean} = .96 \cdot 54.61 = 5\underline{2}.42$$
 °C

Agenda for Today's Class

- design and cost factors (slides 3-7)
- heat transfer and LMTD (slides 8-11)
- resistance to heat transfer (slides 12-18)

pressure drop (slides 19-21)

Thermal Resistances in Series Model

Total resistance = sum of resistances of individual layers

$$R_{\text{tot}} = \frac{1}{U} = \left(\frac{1}{h_{\text{warm}}}\right) + \left(\frac{1}{k_{\text{warm,fouling}}}\right) + \left(\frac{x_{\text{wall}}}{k_{\text{w}}}\right) + \left(\frac{1}{h_{\text{cold,fouling}}}\right) + \left(\frac{1}{h_{\text{cold}}}\right)$$

Different forms for total resistance

"Overall Heat Transfer Coefficient for Concentric Tube and Shell-and-Tube Heat Exchangers"

FEE manual, page 216.

$$\frac{1}{UA} = \frac{1}{h_i \cdot A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi kL} + \frac{R_{fo}}{A_o} + \frac{1}{h_o A_o}$$

$$A = A_i \text{ or } A_o$$

$$A_i = \pi \cdot D_i \cdot L$$
 (inside area)

$$A_o = \pi \cdot D_o \cdot L$$
 (outside area)

FE Reference Manual, page 216 (222/502)

Example:

$$A = A_o$$

$$\frac{1}{U_o} = \frac{A_o}{h_i \cdot A_i} + \frac{A_o R_{fi}}{A_i} + \frac{A_o \ln \left(\frac{D_o}{D_i}\right)}{2\pi kL} + R_{fo} + \frac{1}{h_o}$$

Local Heat Transfer Coefficients for Flow Inside Tubes 15

Needed for problem 14-2 FE Prep: Heat Transfer Section, FE Manual, p. 211

Laminar (viscous) fluid flow inside tubes, Re<2100:

$$\frac{h_{i} \cdot D_{i}}{k} = 1.86 \cdot \left(\frac{D_{i} \cdot G_{i}}{\mu}\right)^{1/3} \cdot \left(\frac{C_{p} \cdot \mu}{k}\right)^{1/3} \cdot \left(\frac{D_{i}}{L}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{1/3} \cdot 14 - 17, \text{ p. 657}$$

FEE Manual, page 210

G = mass velocity in
$$\frac{kg}{m^2 sec}$$
 = velocity × density = v × ρ $\frac{m}{sec}$ $\frac{kg}{m^3}$

Turbulent, fully developed fluid flow inside tubes, Re>10,000, 0.7<Pr<16,7000, and L/D_i>10

$$\frac{h_{i} \cdot D_{i}}{k} = .023 \cdot \left(\frac{D_{i} \cdot G_{i}}{\mu}\right)^{4/5} \cdot \left(\frac{C_{p} \cdot \mu}{k}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{.14} \qquad 14\text{-}18, p. 657}$$

$$\frac{h_{i} \cdot D_{i}}{k} = .023 \cdot \left(\frac{D_{i} \cdot G_{i}}{\mu}\right)^{4/5} \cdot \left(\frac{C_{p} \cdot \mu}{k}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_{w}}\right)^{.14} \qquad \text{FEE Manual, page 211}$$

$$\frac{\text{Nusselt}}{\text{number}} \qquad \frac{\text{Nusselt}}{\text{number}} \qquad \frac{\text{Prandtl}}{\text{number}} \qquad \frac{\text{Sieder-Tate Equation}}{\text{(special case of Dittus-Boelter)}}$$

14-18, p. 657

Sieder-Tate Equation (special case of Dittus-Boelter)

Tube Bank Patterns in Shell-and-Tube Heat Exchangers

Film Coefficients for Flow Outside Banks of Tubes

Shell-side Nusselt number:

$$\begin{aligned} Nu = & \frac{h_o \cdot D_o}{k} = a \cdot Re^m \cdot Pr^{0.34} \cdot F_1 \cdot F_2 \\ v_{max} = & \frac{Eq. \ 14-22, \ p. \ 660}{\rho \cdot N_T \cdot \left(P_T - D_o\right) \cdot L} \\ Eq. \ 14-22c, \ p. \ 661 \end{aligned}$$

$$Re = \frac{D_o \cdot v_{max} \cdot \rho}{\mu} \quad Eq. \ 14-22a \ , \ p. \ 660$$

Table 14-1. Values of a and m for eq. 14-22

Re		banks _T /D _o < 4	Staggered banks (Re>100)		
	а	m	а	m	
10-300	0.742	0.431	1.309	0.360	
300-2×10 ⁵	0.211	0.651	0.273	0.635	
2×10 ⁵ -2×10 ⁶	0.116	0.700	0.124	0.700	

Constants a and m are in Table 14-1 and depend on shell-side Reynolds number:

Calculate F₁:

$$F_1 = \left(\frac{Pr_{\text{bulk}}}{Pr_{\text{wall}}}\right)^{.26} \quad \text{for } Pr < 600$$

Eq. 14-22b, p. 660

Table 14-2. Correction factor F_2 for eq 14-22

Number of tube rows	F ₂ , inline banks (Re>2100)	F ₂ , staggered banks (Re>100)		
3	0.86	0.85		
4	0.90	0.90		
6	0.94	0.95		
8	0.98	0.985		
10+	0.99	0.99		

Look up F₂ Table 14-2

(Not found in FE Manual – inside tubes only)

from Perry's Handbook

TABLE 11-3 Typical Overall Heat-Transfer Coefficients in Tubular Heat Exchangers $U = \text{Btu/}(^{\circ}\text{F} \cdot \text{ft}^2 \cdot \text{h})$

(<u>*</u>	2	22	0 - Dtu/(r·it·ii)	<u>V</u>	2	2 3
Shell side	Tube side	Design U	Includes total dirt	Shell side	Tube side	Design U	Includes total dirt
Liquid-liquid media			Dowtherm vapor	Dowtherm liquid	80-120	.0015	
Aroclor 1248 Cutback asphalt Demineralized water Ethanol amine (MEA or DEA) 10-25% solutions Fuel oil Fuel oil Gasoline Heavy oils Heavy oils Hydrogen-rich reformer stream Kerosene or gas oil Kerosene or jet fuels Jet fuels Water Water Outlean Water Water Heavy oils Heavy oils Water Hydrogen-rich reformer stream Kerosene or gas oil Kerosene or jet fuels Trichlorethylen	Jet fuels Water Water Water or DEA, or MEA solutions Water Oil Water Heavy oils Water Hydrogen-rich reformer stream Water Oil Trichlorethylene Water	100–150 10–20 300–500 140–200 15–25 10–15 60–100 10–40 15–50 90–120 25–50 20–35 40–50 230–300	.01 .001 .003 .007 .008 .003 .004 .005 .002 .005 .005	Dowtherm vapor Gas-plant tar High-boiling hydrocarbons V Low-boiling hydrocarbons A Hydrocarbon vapors (partial condenser) Organic solvents A Organic solvents high NC, A Organic solvents low NC, V Kerosene Kerosene Naphtha Naphtha Stabilizer reflux vapors Steam Steam Steam Sulfur dioxide	Steam Water Water Oil Water Water or brine Water or brine Water or brine Water Oil Water Oil Water Oil Water Oil Water Feed water No. 6 fuel oil No. 2 fuel oil Water	80-120 40-50 20-50 80-200 25-40 100-200 20-60 50-120 30-65 20-30 50-75 20-30 80-120 400-1000 15-25 60-90 150-200	.0055 .003 .003 .004 .003 .003 .003 .004 .005 .005 .005 .005 .005 .0055 .005
Lube oil (low viscosity) Lube oil (high viscosity) Lube oil Naphtha Naphtha	Water Water Oil Water Oil	25–50 40–80 11–20 50–70 25–35	.002 .003 .006 .005	Tall-oil derivatives, vegetable oils (vapor) Water	Water Aromatic vapor-stream azeotrope	20–50 40–80	.004
Organic solvents	Water	50-150	.003	Gas-liquid media			
Organic solvents Organic solvents Tall oil derivatives, vegetable oil, etc. Water	Brine Organic solvents Water Caustic soda solutions (10–30%) Water	35–90 20–60 20–50 100–250 200–250	.003 .002 .004 .003	Air, N ₂ , etc. (compressed) Air, N ₂ , etc., A Water or brine Water or brine Water	Water or brine Water or brine Air, N ₂ (compressed) Air, N ₂ , etc., A Hydrogen containing natural-gas mixtures	40-80 10-50 20-40 5-20 80-125	.005 .005 .005 .005 .005
Wax distillate	Water	15-25	.005		Vaporizers	3	S 5
Wax distillate	Oil	13–23	.005	. 1 1	T	150 000	0017
Condensing vapor-liquid media Alcohol vapor Water 100–200 .002			Anhydrous ammonia Chlorine Chlorine	Steam condensing Steam condensing Light heat-transfer	150-300 150-300 40-60	.0015 .0015 .0015	
Asphalt (450°F.) Dowtherm vapor	Dowtherm vapor Tall oil and derivatives	40–60 60–80	.006 .004	Propane, butane, etc. Water	oil Steam condensing Steam condensing	200–300 250–400	.0015 .0015

NC = noncondensable gas present.

V = vacuum.

A = atmospheric pressure.

Dirt (or fouling factor) units are (h · ft² · °F)/Btu.

To convert British thermal units per hour-square foot-degrees Fahrenheit to joules per square meter-second-kelvins, multiply by 5.6783; to convert hours per square foot-degree Fahrenheit-British thermal units to square meters per second-kelvin-joules, multiply by 0.1761.

See Tables 14-3 to 14.5, pages 661-663 in PTW

Agenda for Today's Class

- design and cost factors (slides 3-7)
- heat transfer and LMTD (slides 8-11)
- resistance to heat transfer (slides 12-18)
- pressure drop (slides 19-21)

Needed for problem 14-2

Pressure Drop – Tube-side

pages 664-665 and footnote on page 665

$$\Delta p_{i} = \frac{2 \cdot \beta_{i} \cdot f_{i} \cdot G_{i}^{2} \cdot L \cdot n_{p}}{\rho_{i} \cdot D_{i} \cdot \Phi_{i}}$$

Eq 14-23, p. 664

$$f_i = \begin{cases} 0.079 Re^{-0.25} & \text{for } Re \leq 2100 \\ 0.046 Re^{-0.20} & \text{for } Re > 2100 \end{cases}$$

Eq 14-23a,b

$$\Phi_{i} = \begin{cases} 1.10 (\mu_{i} / \mu_{w})^{0.25} & \text{for Re} \le 2100 \\ 1.02 (\mu_{i} / \mu_{w})^{0.14} & \text{for Re} > 2100 \end{cases}$$

$$\beta_{i} = \begin{cases} 1 + \frac{F_{e} + F_{c} + F_{R}}{2 \cdot f_{i} \cdot G_{i}^{2} \cdot L / (\rho_{i}^{2} \cdot D_{i} \cdot \Phi_{i})} \\ 1 + \frac{0.51 \cdot K_{1} \cdot n_{p} \cdot \Delta T_{f,i} \cdot (\mu_{i} / \mu_{w})^{0.28}}{(T_{i, in} - T_{i, out}) \cdot Pr^{2/3}} \end{cases}$$

Eq 14-23c,d, p. 665

$$F_e = \frac{(V_1 - V_2)^2}{2}$$
 expansion

see T12.1, pp. 490-491 for V_1 , V_2 , and K_c

$$F_c = \frac{K_c V_2^2}{2}$$
 contraction

$$F_{r} = \frac{0.5V_{2}^{2} \cdot (n_{p} - 1)}{2 \cdot n_{p}}$$
 flow reversal

$$K_1 = (1 - S_i / S_H)^2 + K_c + 0.5 \cdot (n_p - 1) / n_p$$

 $S_i / S_H =$ area ratio (cr-sect, tubes to header)

f_i = fanning friction factor based on average T

 Φ_i = correction factor for nonisothermal flow

 $\mu_{\rm i} = {\rm viscosity}$ at average T

 $\mu_{\rm w}$ = viscosity at wall T

 $n_p = number of tubes$

 G_i = mass velocity, kg/s·m²

L = length

 β_i = correction factor for sudden expansion and contraction

Pressure Drop – Shell-side

$$\Delta p_o = \frac{2 \cdot B_o \cdot f' \cdot N_{tr} \cdot G_s^2}{\rho_o}$$

 $B_o = num.$ of tube crossings

 N_{tr} = num. of tube rows

$$f' = b_o \left(\frac{D_o \cdot G_s}{\mu_o} \right)^{-0.15}$$
 for 2000 < Re < 40000

$$b_{o} = \begin{cases} 0.44 + \frac{0.08 \cdot x_{L}}{(x_{T} - 1)^{(0.43 - 1.13)/x_{L}}} & \text{for inline tubes} \\ \\ 0.23 + \frac{0.11}{(x_{T} - 1)^{1.08}} & \text{for staggered tubes} \end{cases}$$

x_T is "pitch" or center to center distance

x_L is ratio of pitch to outside tube diameter

Questions