

openHPI Course: Blockchain - Revealing the Myth

Scalability:

New Functionalities or New Architecture

Prof. Dr. Christoph Meinel Tatiana Gayvoronskaya

Hasso Plattner Institute University of Potsdam, Germany

New Functionality for Better Scalability of the Bitcoin System

In the last clip we mentioned that **fundamental changes** in the blockchain protocol like modification of block size or block time would ...

- require the acceptance by all miners and all users
- and those who don't accept the changes are "split off" from the system

Indeed, a new cryptocurrency called **Bitcoin Cash (BCH)** was created **through such a split** on August 1, 2017

■ It introduced **8 MB blocks** instead of the existing **1 MB**Another group in the Bitcoin community chose to take a different path in solving the block size problem

 Instead of changing the protocol, they introduced a new functionality called "Segregated Witness" or shortly SegWit

New Functionality for the Bitcoin System Segregated Witness

The **advantage** here is that **users can be updated at any time**, after the **miners** have **accepted** the changes

- Miners and users, who have not yet updated the new functionalities, continue to belong to the same system as the updated users
 - they only see an "extra text" that they do not understand
- However, this does not pose a problem as it does not mean any changes to the fundamental rules
- The focus of the new functionality is a new data structure called Witness
- A part of the transaction is "moved" therein, namely the signature, which otherwise makes up to 70 percent of a transaction

New Functionality for the Bitcoin System Witness

"Witness" still remains part of the transaction, but is not hashed in the transaction ID

- Users who have not yet implemented SegWit think that SegWit transactions do not have a signature (in the ScriptSig) and do not require one (in the ScriptPubKey)
- Updated users understand the instructions in the ScriptPubKey and know that the necessary signature is in the "Witness area"

New Functionality for the Bitcoin System Increasing Block Size

But how the **size of the transaction** is **decreased** if **Witness** still **remains part of the transaction**?

- Block size limit in the Bitcoin system remains unchanged at 1 MB after the SegWit update
- Block size is replaced by "block weight," and the block can have a "weight" of between 2 and 4 MB

Limits to What the Bitcoin System Can Currently Handle

This means, the current full nodes **need more time than before to verify a block**

- This correspondingly increases the block's spread time in the system
- SegWit supporters consider, that the additional verification time and the associated longer propagation time for a block lie within the limits of what the network can currently handle

Ethereum Has Also to Struggle With a Larger Amount of Data

What about the Ethereum system, which has to struggle with a **larger amount of data** than the Bitcoin system?

- In this sense, the account-based Ethereum system has a considerable advantage over the UTXO-based Bitcoin system
- When verifying a transaction, the entire blockchain is no longer searched for an output, which is referenced in the current input
- Instead, the **current state** of the **respective account** (account state) is checked as to whether it has a sufficient balance

Ethereum System Long-Term Scalability Improvement

For a **long-term improvement** in **scalability** of the Ethereum system developers plan to create and introduce an **Ethereum 2.0** within the next years

- Focus is on
 - splitting the entire system into numerous groups and thus
 - dividing the transaction load and
 - allowing parallel calculations
- Entire architecture of the Ethereum system is thereby "rebuilt" and can be displayed in several layers

Ethereum 2.0 Architecture Sharding

Let us take an **example** from Vitalik Buterin on this topic and imagine that the **Ethereum system** is **divided into thousands of islands**

- Each island has its own functionalities and inhabitants (user and smart contract accounts)
- Inhabitants of an island communicate with each other, organize themselves and have their own transaction history
- **Islands** can **interact** with each other

This procedure is called **sharding** and the "islands" are correspondingly called "**shards**"

Ethereum 2.0 Architecture Data and Execution Layers

Shards represent **the two lowest layers** of this new architecture: the **data** and **execution layers**

The transactions and smart contracts are executed and saved for each shard

Source: Hsiao-Wei Wang - Presentation "Ethereum, Serenity"

Ethereum 2.0 Architecture Coordination and Validation Layer

Next layer is used to **coordinate** and **validate** the **data produced in the shards**

- It consists of a new blockchain a so-called beacon chain, which uses a PoS algorithm
- Miners are replaced by validators, which have the possibility to create a block in a shard that has been randomly assigned to them
- For each shard, a group made up of 100 randomly selected validators, authenticate the new block by signing
- Block header is included in the beacon chain block with at least 67 signatures as references to the shard block

Ethereum 2.0 Architecture Top Layer

The current Ethereum blockchain remains available, uses PoW and represents a top layer

 Any Ethereum user who stores 32 Ether in form of a smart contract in the Ethereum top layer can be a

Source: Hsiao-Wei Wang - Presentation "Ethereum, Serenity"

Summary

We have considered various ways to make a blockchain-based system a bit more "efficient"

- Adjusting parameters such as block time and block size
- Introducing additional functionalities that avoid changing the set parameters or
- Completely new architecture that still has a PoW blockchain as its basis

In the next clip we look at a **last scaling option**, that intends to relieve the system, so-called **off-chain approach**

