Algorithmes de clustering

 $\bullet \bullet \bullet$

Projet Sciences des Réseaux - ENSEEIHT Années 2024-2025 - Semestre 8

Plan

- Le problème Mathis
- Algorithmes de clustering Ambre
- Démonstration + Visualisation des résultats -Ambre/Mathis
- Remise en question Capucine
- Autres pistes Capucine/Ambre

Le problème

Le problème initial

- Ce projet vise à construire des clusters d'utilisateurs qui serviront à pointer les faisceaux d'une constellation de satellites à orbites basses.
- Données fournies : la carte des demandes (CSV file)

Hypothèses et contraintes

- Clusters de 90km de diamètre
- Débits max (1 Gbps, 2 Gbps et 4 Gbps)

Algorithmes de clustering

Algorithme Ball-Tree

- Utilisation d'une structure de données arborescente pour séparer les points
- Clustering en fonction des séparations

Propriétés de l'algorithme

- Algorithme récursif (séparation récursive des points pour former des sous-arbres)
- Priorité aux points les plus densément entourés
- Si un point n'est pas encore clusterisé, on essaie de former un cluster à partir de ses voisins

Algorithme Ball-Tree - Etat de l'art

- Ivan Šimeček and Ivan Šimeček -> A parallel algorithm for approximating the silhouette using a ball tree <u>lien</u>
- Xinye Chen and Stefan Güttel -> Fast and explainable clustering based on sorting
 - 2028780 data points to cluster with ball tree <u>lien</u>

Algorithme DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- Regroupe les points en cluster s'ils sont suffisamment proches et nombreux
- Tri des points selon 3 catégories (core, border, noise), puis création des clusters / agrégation

Propriétés de l'algorithme

- Traitement des points dans l'ordre du fichier fourni
- Agrégation par propagation (exploration des proches voisins)

Algorithme DBSCAN - Etat de l'art

- Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu -> A density-based algorithm for discovering clusters in large spatial databases with noise <u>lien</u>

 Ahmad M. Bakr, Naia M. Ghanem, Mohamed A. Ismail -> Efficient incremental density-based algorithm for clustering large datasets <u>lien</u>

Démonstration + Visualisation des résultats

Algorithme Ball Tree

Débit	Nb de clusters	Nb d'utilisateurs par cluster
1 Gbps	40408	2.18
2 Gbps	24482	3.59
4 Gbps	18788	4.68

Algorithme Ball Tree - 1 Gbps

Algorithme Ball Tree - 2 Gbps

Algorithme Ball Tree - 4 Gbps

Algorithme DBSCAN

Débit	Nb de clusters	Nb d'utilisateurs par cluster
1 Gbps	46979	1.87
2 Gbps	44802	1.96
4 Gbps	44652	1.97

Algorithme DBSCAN - 1 Gbps

Algorithme DBSCAN - 2 Gbps

Algorithme de Ball Tree - 4 Gbps

Conclusion des algorithmes

Conclusion des algorithmes

Ball Tree

- Bonne rapidité
- Nombre de clusters largement inférieur à DBSCAN

DBSCAN

- Variation très faible du nombre de clusters lorsque le débit maximal autorisé change
- Points de bruits sont considérés comme des clusters individuels

Remise en question

Remise en question

Faut-il vraiment chercher à minimiser le nombre de clusters ?

- Perte de redondance
- Perte de ressources / qualité de service
- Moins bonne adaptabilité

Mais

- Réduction du nombre de satellites nécessaires
- Utilisation la plus efficace possible de la taille des clusters

Autres pistes

Algorithme K-Means

- Algorithme des K plus proches voisins
- Très connu
- Clustering uniquement par la distance
- Peu adapté au problème : l'algorithme prends en paramètre le nombre de clusters souhaités, or c'est l'objectif du projet

Algorithme de Sweep

- Balayage des points en partant d'un centre arbitraire (méthode de balayage variable)
- Ajout des points à un cluster si les contraintes sont respectées (distance minimale)

Propriétés de l'algorithme

- Algorithme itératif
- Insensible aux formes "anormales" ≠
 k-means

Algorithme Sweep Line - Etat de l'art

 Krista Rizman Žalik, Borut Žalik -> A sweep-line algorithm for spatial clustering <u>lien</u>

Krista Rizman Žalik, Borut Žalik, Niko Lukac -> Sweep-Hyperplane Clustering
 Algorithm Using Dynamic Model <u>lien</u>

