LECTURE 04

Relational and Relational Algebra

What is Relational Algebra?

- It is a language in which we can ask questions (query) of a database.
- Basic premise is that <u>tables are sets</u> (mathematical) and so our query language should manipulate sets with ease.
- Traditional Set Operations:
 - union, intersection, Cartesian product, set difference.

- Extended Set Operations:
 - selection, projection, join, quotient.

Relational Database Operators

Relational algebra

 Defines theoretical way of manipulating table contents using relational operators.

 Use of relational algebra operators on existing tables (relations) produces new relations.

- 1) UNION
- 2) INTERSECT
- 3) DIFFERENCE
- 4) PRODUCT
- 5) SELECT
- 6) PROJECT
- 7) JOIN
- 8) DIVIDE

Union (∪):

- Combines all rows from two tables, excluding duplicate rows.
- Tables must have the same attribute characteristics.

Intersect (∩):

Yields only the rows that appear in both tables

Figure 1

UNION

UNION

	P_CODE	P_DESCRIPT	PRICE
•	123456	Flashlight	\$5.26
	123457	Lamp	\$25.15
	123458	Box Fan	\$10.99
	213345	9v battery	\$1.92
	254467	100W bulb	\$1.47
	311452	Powerdrill	\$34.99
	345678	Microwave	\$160.00
	345679	Dishwasher	\$500.00

Difference (-):

 Yields all rows in one table not found in the other table — that is, it subtracts one table from the other.

Product (x):

- Yields all possible pairs of rows from two tables
 - Also known as the Cartesian product.

Figure 4

PRODUCT

	P_CODE	P_DESCRIPT	PRICE	STORE	AISLE	SHELF
•	123456	Flashlight	\$5.26	23	W	5
	123456	Flashlight	\$5.26	24	K	9
	123456	Flashlight	\$5.26	25	Z	6
	123457	Lamp	\$25.15	23	W	5
	123457	Lamp	\$25.15	24	K	9
	123457	Lamp	\$25.15	25	Z	6
	123458	Box Fan	\$10.99	23	W	5
	123458	Box Fan	\$10.99	24	K	9
	123458	Box Fan	\$10.99	25	Z	6
	213345	9v battery	\$1.92	23	W	5
	213345	9v battery	\$1.92	24	K	9
	213345	9v battery	\$1.92	25	Z	6
	311452	Powerdrill	\$34.99	23	W	5
	311452	Powerdrill	\$34.99	24	K	9
	311452	Powerdrill	\$34.99	25	Z	6
	254467	100VV bulb	\$1.47	23	W	5
	254467	100VV bulb	\$1.47	24	K	9
	254467	100VV bulb	\$1.47	25	Z	6

Select (σ):

- Yields values for all rows found in a table.
- Can be used to list either all row values or it can yield only those row values that match a specified criterion.
- Yields a horizontal subset of a table.

Project (π):

- Yields all values for selected attributes.
- Yields a vertical subset of a table.

Join (⋈):

 Allows information to be combined from two or more tables.

 Real power behind the relational database, allowing the use of independent tables linked by common attributes.

FIGURE

Two tables that will be used in join illustrations

Figure 7

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE
•	1132445	√Valker	32145	231
	1217782	Adares	32145	125
	1312243	Rakowski	34129	167
	1321242	Rodriguez	37134	125
	1542311	Smithson	37134	421
	1657399	Vanloo	32145	231

Table name: AGENT

	AGENT_CODE	AGENT_PHONE
•	125	6152439887
	167	6153426778
	231	6152431124
	333	9041234445

Natural Join (⋈):

- Links tables by selecting only rows with common values in their common attribute(s).
- Result of a three-stage process:
 - PRODUCT of the tables is created.
 - SELECT is performed on Step 1 output to yield only the rows for which the AGENT_CODE values are equal
 - Common column(s) are called join column(s)
 - PROJECT is performed on Step 2 results to yield a single copy of each attribute, thereby eliminating duplicate columns

Figure 8

Natural join, Step 1: PRODUCT

	CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
•	1132445	√Valker	32145	231	125	6152439887
	1132445	√Valker	32145	231	167	6153426778
	1132445	√Valker	32145	231	231	6152431124
	1132445	√Valker	32145	231	333	9041234445
	1217782	Adares	32145	125	125	6152439887
	1217782	Adares	32145	125	167	6153426778
	1217782	Adares	32145	125	231	6152431124
	1217782	Adares	32145	125	333	9041234445
	1312243	Rakowski	34129	167	125	6152439887
	1312243	Rakowski	34129	167	167	6153426778
	1312243	Rakowski	34129	167	231	6152431124
	1312243	Rakowski	34129	167	333	9041234445
	1321242	Rodriguez	37134	125	125	6152439887
	1321242	Rodriguez	37134	125	167	6153426778
	1321242	Rodriguez	37134	125	231	6152431124
	1321242	Rodriguez	37134	125	333	9041234445
	1542311	Smithson	37134	421	125	6152439887
	1542311	Smithson	37134	421	167	6153426778
	1542311	Smithson	37134	421	231	6152431124
	1542311	Smithson	37134	421	333	9041234445
	1657399	Vanloo	32145	231	125	6152439887
	1657399	Vanloo	32145	231	167	6153426778
	1657399	Vanloo	32145	231	231	6152431124
	1657399	Vanloo	32145	231	333	9041234445

Figure 9

Natural join, Step 2: SELECT

	CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
•	1217782	Adares	32145	125	125	6152439887
	1321242	Rodriguez	37134	125	125	6152439887
	1312243	Rakowski	34129	167	167	6153426778
	1132445	Walker	32145	231	231	6152431124
	1657399	Vanloo	32145	231	231	6152431124

Natural join, Step 3: PROJECT

	CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
•	1217782	Adares	32145	125	6152439887
	1321242	Rodriguez	37134	125	6152439887
	1312243	Rakowski	34129	167	6153426778
	1132445	√Valker	32145	231	6152431124
	1657399	Vanloo	32145	231	6152431124

Figure 10

Natural Join:

- Final outcome yields table that:
 - Does not include unmatched pairs.
 - Provides only copies of matches

- If no match is made between the table rows?
 - The new table does not include the unmatched row.

Natural Join (continued):

The column on which the join was made that is, AGENT_CODE - occurs only once in the new table.

- If the same AGENT_CODE were to occur several times in the AGENT table,
 - A customer would be listed for each match.

Equijoin (⋈_A):

- Links tables on the basis of an equality condition that compares specified columns of each table.
- Outcome does not eliminate duplicate columns.
- Condition or criterion to join tables must be explicitly defined.
- Takes its name from the equality comparison operator
 (=) used in the condition.

Theta join (⋈θ):

If any other comparison operator is used.

- Outer join (⋈ outer left or ⋈ right outer join or ⋈ full outer join):
 - Matched pairs are retained and any unmatched values in other table are left null.
 - In outer join for tables CUSTOMER and AGENT, two scenarios are possible:
 - Left outer join
 - Yields all rows in CUSTOMER table, including those that do not have a matching value in the AGENT table
 - Right outer join
 - Yields all rows in AGENT table, including those that do not have matching values in the CUSTOMER table

Left outer join

Figure 11

	CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
•	1217782	Adares	32145	125	6152439887
	1321242	Rodriguez	37134	125	6152439887
	1312243	Rakowski	34129	167	6153426778
	1132445	√Valker	32145	231	6152431124
	1657399	Vanloo	32145	231	6152431124
	1542311	Smithson	37134	421	

Right outer join

Figure 12

	CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
•	1217782	Adares	32145	125	6152439887
	1321242	Rodriguez	37134	125	6152439887
	1312243	Rakowski	34129	167	6153426778
	1132445	√Valker	32145	231	6152431124
	1657399	Vanloo	32145	231	6152431124
				333	9041234445

DIVIDE (÷):

 Requires the use of one single-column table and one two-column table.

Suppose we have two relations R and S with the following schemas and tuples:

$$R(A, B) = \{ (1, 2), (2, 4), (3, 6), (4, 8) \}$$

 $S(B) = \{ 2, 4 \}$

DIVIDE (÷):

- To compute the divide operation R ÷ S, we need to find all tuples in R that are related to all tuples in S. In this case, we need to find tuples in R that have the values 2 and 4 in the B attribute.
- □ The resulting relation has only one attribute (A), which is the attribute of R that is not in S.

$$R(A,) = \{ (1,), (2,) \}$$

The Data Dictionary and System Catalog

Data dictionary

- Provides detailed accounting of all tables found within the user/designer-created database.
- Contains (at least) all the attribute names and characteristics for each table in the system.
- Contains metadata—data about data.
- Sometimes described as "the database designer's database" because it records the design decisions about tables and their structures.

A Sample Data Dictionary

TABLE NAME	ATTRIBUTE NAME	CONTENTS	ТҮРЕ	FORMAT	RANGE	REQUIRED	PK OR FK	FK REFERENCED TABLE
CUSTOMER	CUS_CODE	Customer account code	CHAR(5)	99999	10000-99999	Y	PK	
	CUS LNAME	Customer last name	VCCHAR(20)	Xxxxxxxx		Y		
	CUS_FNAME	Customer first name	VCHAR(20	Xxxxxxxx		Y		
	CUS_INITIAL	Customer initial	CHAR(1)	X	100-999		FK	AGENT
	CUS_RENEW_DATE	Customer insurance renewal date	DATE	dd-mmm-yyyy				
	AGENT_CODE	Agent code	CHAR(3)	999				
AGENT	AGENT CODE	Agent code	CHAR(3)	999		Y	PK	1
	AGENT_AREACODE	Agent area code	CHAR(3)	999		Y		
	AGENT_PHONE	Agent telephone number	CHAR(8)	999-9999	0.00- 9,999,999.99	Y		
	AGENT_LNAME	Agent last name	VCHAR(20)	Xxxxxxxx		Y		
	AGENT_YTD_SLS	Agent year-to-date sales	NUMBER(9,2)	9,999,999.99		Y		

FK = Foreign key PK = Primary key

CHAR = Fixed character length data (1-255 characters)VARCHAR = Variable character length data (1-2,000 characters)

NUMBER = Numeric data (NUMBER(9,2) is used to specify numbers with two decimal places and up to nine digits, including the decimal places. Some RDBMSs permit the use of a MONEY or CURRENCY data type.)

Note: Telephone area codes are always composed of digits 0–9. Because area codes are not used arithmetically, they are most efficiently stored as character data. Also, the area codes are always composed of three digits. Therefore, the area code data type is defined as CHAR(3). On the other hand, names do not conform to some standard length. Therefore, the customer first names are defined as VARCHAR(20), thus indicating that up to 20 characters may be used to store the names. Character data are shown as left-justified.

The Data Dictionary and System Catalog (continued)

- System catalog
 - Contains metadata.
 - Detailed system data dictionary that describes all objects within the database.
 - Terms "system catalog" and "data dictionary" are often used interchangeably.
 - Can be queried just like any user/designer-created table.

Relationships within the Relational Database

- 1:M relationship:
 - Relational modeling ideal.
 - Should be the norm in any relational database design.
- 1:1 relationship:
 - Should be rare in any relational database design
- M:N relationships:
 - Cannot be implemented as such in the relational model
 - M:N relationships can be changed into two 1:M relationships

The 1:M Relationship

Relational database norm.

Found in any database environment.

The 1:M Relationship (continued)

The 1:M Relationship (continued)

The 1:M Relationship (continued)

The 1:1 Relationship

- One entity can be related to only one other entity, and vice versa.
- Sometimes means that entity components were not defined properly.
- Could indicate that two entities actually belong in the same table.
- As rare as 1:1 relationships should be, certain conditions absolutely require their use.

The M:N Relationship

 Can be implemented by breaking it up to produce a set of 1:M relationships.

 Can avoid problems inherent to M:N relationship by creating a composite entity or bridge entity.

Figure 22 Sample Student Enroll- ment Data						
STUDENT'S LAST NAME	SELECTED CLASSES					
Bowser	Accounting 1, ACCT-211, code 10014 Intro to Microcomputing, CIS-220, code 10018 Intro to Statistics, QM-261, code 10021					
Smithson	Accounting 1, ACCT-211, code 10014 Intro to Microcomputing, CIS-220, code 10018 Intro to Statistics, QM-261, code 10021					

Figure 23

The M:N relationship between STUDENT and CLASS

Table name: STUDENT Primary key: STU_NUM

Foreign key: none

Database name: Ch03_CollegeTry

	STU_NUM	STU_LNAME	CLASS_CODE
Þ	321452	Bowser	10014
	321452	Bowser	10018
	321452	Bowser	10021
	324257	Smithson	10014
	324257	Smithson	10018
	324257	Smithson	10021

Table name: CLASS

Primary key: CLASS_CODE Foreign key: STU_NUM

	CLASS_CODE	STU_NUM	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
•	10014	321452	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
	10014	324257	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
	10018	321452	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
	10018	324257	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
	10021	321452	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114
	10021	324257	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

- Implementation of a composite entity.
- Yields required M:N to 1:M conversion.
- Composite entity table must contain at least the primary keys of original tables.
- Linking table contains multiple occurrences of the foreign key values.
- Additional attributes may be assigned as needed.

Exercise

Question One:

 Write the example SQL statements for all the Relational algebra that we have discussed in this lecture.

Question Two:

 Find other relational algebra and with example write the SQL statement for each of the relational algebra you found.

END!!!