Randomized Algorithms

Dr. Navjot Singh Design and Analysis of Algorithms

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to algorithms. MIT press, 2009
- Dr. David Kauchak, Pomona College
- Prof. David Plaisted, The University of North Carolina at Chapel Hill

• The output as well as the running time are functions only of the input.

The output or the running time are functions of the input and random bits chosen.

Why use randomness?

- Avoid worst-case behavior: randomness can (probabilistically) guarantee average case behavior
- Efficient approximate solutions to intractable problems

Randomized Las Vegas Algorithms:

- Output is always correct
- Running time is a random variable

Example: Randomized Quick Sort

Randomized Monte Carlo Algorithms:

- Output may be incorrect with some probability
- Running time is deterministic.

Example: Randomized algorithm for approximate median

Quick Sort

How long does it take?

Well...it depends on what pivots you pick.

O(i) work when i elements remaining.

QuickSort(S)

```
QuickSort(S) { If (|S|>1) Pick and remove an element x from S; (S_{< x}, S_{> x}) \leftarrow \text{Partition}(S, x); return( Concatenate(QuickSort(S_{< x}), x, QuickSort(S_{> x})) }
```

QuickSort(S)

When the input S is stored in an array A

- Average case running time: O(n log n)
- Worst case running time: O(n²)
- Distribution sensitive: Time taken depends upon the initial permutation of A.

What leads to a good time?

Pivots closer to the middle would be better.

Cut in half is ideal.

 $O(\log n)$ levels.

O(i) work when i elements remaining. -- O(n) per level

Randomized QuickSort(S)

When the input S is stored in an array A


```
QuickSort(A,l,r) { If (l < r) an element selected randomly uniformly from A[l..r]; i \leftarrow \text{Partition}(A,l,r,x); QuickSort(A,l,i-1); QuickSort(A,l,i-1);
```

- Distribution insensitive: Time taken does <u>not depend</u> on initial permutation of A.
- Time taken depends upon the random choices of pivot elements.
 - For a given input, Expected(average) running time: O(n log n)
 - Worst case running time: O(n²)

Common Quicksort Implementations

- A common strategy in practice is the "median of three" rule.
- Choose three elements (either at random or from specific spots). Take the median of those for your pivot
- Guarantees you don't have the worst possible pivot.
- Only a small constant number of extra steps beyond the fixed pivot (find the median of three numbers is just a few comparisons).