MAC0338 - Análise de Algoritmos

Departamento de Ciência da Computação Segundo semestre de 2025

Lista 1

- 1. Lembre-se que lg n denota o logaritmo na base 2 de n. Prove os seguintes itens usando a definição de notação O e escreva explicitamente a escolha de constantes c e n_0 .
 - (a) 3^n não é $O(2^n)$
 - (b) $\log_{10} n \in O(\lg n)$
 - (c) $\lg n \in O(\log_{10} n)$
- 2. Prove os seguintes itens usando a definição de notação O e escreva explicitamente a escolha de constantes c e n_0 .
 - (a) $n^2 + 10n + 20 = O(n^2)$
 - (b) $\lceil n/3 \rceil = O(n)$
 - (c) $\lg n = O(\log_{10} n)$
 - (d) $n = O(2^n)$
 - (e) n/1000 não é O(1)
 - (f) $n^2/2$ não é O(n)
- 3. Prove ou dê um contra-exemplo para as afirmações abaixo:
 - (a) $\lg \sqrt{n} = O(\lg n)$.
 - (b) Se $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$ então $f(n) = \Theta(h(n))$.
 - (c) Se f(n) = O(g(n)) e $g(n) = \Theta(h(n))$ então $f(n) = \Theta(h(n))$.
 - (d) Suponha que $\lg(g(n)) > 0$ e que $f(n) \ge 1$ para todo n suficientemente grande. Neste caso, se f(n) = O(g(n)) então $\lg(f(n)) = O(\lg(g(n)))$.
 - (e) Se $f(n) = \mathcal{O}(g(n))$ então $2^{f(n)} = \mathcal{O}(2^{g(n)})$.
- 4. Prove os seguintes itens. Para o item (a) escreva explicitamente a escolha de constantes c_1 , c_2 e n_0 .

(a)
$$\sum_{k=1}^{n} k^{10} \in \Theta(n^{11})$$
.

(b)
$$\sum_{k=1}^{n} \frac{k}{2^k} \le 2$$
.