Functions of negative angles

We already know that the value of a trig function is the same for any pair of coterminal angles. In other words, given the coterminal angles 60° and 420° , we know that

$$\sin 60^{\circ} = \sin 420^{\circ}$$
 $\csc 60^{\circ} = \csc 420^{\circ}$ $\sec 60^{\circ} = \sec 420^{\circ}$ $\tan 60^{\circ} = \tan 420^{\circ}$ $\cot 60^{\circ} = \cot 420^{\circ}$

These are true simply because 60° and 420° are coterminal. What we want to remember is that this applies to negative angles as well. For example, the angle -300° is coterminal with 60° , which means that all six trig functions will have the same value at those angles as well.

$$\sin 60^\circ = \sin 420^\circ = \sin(-300^\circ)$$
 $\csc 60^\circ = \csc 420^\circ = \csc(-300^\circ)$ $\sec 60^\circ = \sec 420^\circ = \sec(-300^\circ)$ $\tan 60^\circ = \tan 420^\circ = \tan(-300^\circ)$ $\cot 60^\circ = \cot 420^\circ = \cot(-300^\circ)$

Example

Find the angle in the interval $[0^{\circ},360^{\circ})$ that's coterminal with -539° .

Let $\theta = -539^\circ$, and let α be the angle that lies in the interval $[0^\circ, 360^\circ)$ and is coterminal with θ . To find α , let's add 360° to $\theta = -539^\circ$ until we get to an angle that lies in the interval $[0^\circ, 360^\circ)$.

$$-539^{\circ} + 360^{\circ} = -179^{\circ}$$

$$-179^{\circ} + 360^{\circ} = 181^{\circ}$$

This is the angle that's coterminal with $\theta = -539^{\circ}$ that also lies in the interval $[0^{\circ},360^{\circ})$.

We weren't very many full rotations away from 360° , but this might not always be the case. If we're further away from $[0^{\circ},360^{\circ})$, we could instead set up the inequality

$$0 \le -539^{\circ} + n(360^{\circ}) < 360^{\circ}$$

where n is the number of full rotations that we are away from the interval $[0^{\circ},360^{\circ})$. The first goal would be to solve for n. We'll add 539° to all three quantities, then divide through by 360° ,

$$539^{\circ} \le n(360^{\circ}) < 899^{\circ}$$

$$\frac{539^{\circ}}{360^{\circ}} \le n < \frac{899^{\circ}}{360^{\circ}}$$

about
$$1.5 \le n < \text{about } 2.5$$

Because n has to be an integer, we know that n can only be 2. To find α , we'll substitute n=2 into $\theta+n(360^\circ)$.

$$\alpha = \theta + 2(360^{\circ})$$

$$\alpha = -539^{\circ} + 2(360^{\circ})$$

$$\alpha = -539^{\circ} + 720^{\circ}$$

$$\alpha = 181^{\circ}$$

This is the more technical way to find the coterminal angle inside $[0^{\circ},360^{\circ})$.

We can follow the same process for radians, except that we'll use $\alpha = \theta + n(2\pi)$ instead of $\alpha = \theta + n(360^{\circ})$.

Example

Find the angle in the interval $[0,2\pi)$ that's coterminal with $-(61/4)\pi$.

Let $\theta = -(61/4)\pi$, and let α be the angle that lies in the interval $[0,2\pi)$ and is coterminal with θ . Then

$$0 \le \alpha < 2\pi$$

$$0 \le \theta + n(2\pi) < 2\pi$$

Substituting $\theta = -(61/4)\pi$ gives

$$0 \le -\frac{61}{4}\pi + n(2\pi) < 2\pi$$

$$\frac{61}{4}\pi \le n(2\pi) < 2\pi + \frac{61}{4}\pi$$

$$\frac{61}{4}\pi \le n(2\pi) < \left(2 + \frac{61}{4}\right)\pi$$

$$\frac{61}{4}\pi \le n(2\pi) < \left[\frac{4(2) + 61}{4}\right]\pi$$

$$\frac{61}{4}\pi \le n(2\pi) < \left(\frac{8+61}{4}\right)\pi$$

$$\frac{61}{4}\pi \le n(2\pi) < \frac{69}{4}\pi$$

Dividing through by 2π ,

$$\frac{\left(\frac{61}{4}\pi\right)}{2\pi} \le n < \frac{\left(\frac{69}{4}\pi\right)}{2\pi}$$

$$\frac{61}{4(2)} \le n < \frac{69}{4(2)}$$

$$\frac{61}{8} \le n < \frac{69}{8}$$

about $7.63 \le n <$ about 8.63

So n = 8, and we can say

$$\alpha = \theta + n(2\pi)$$

$$\alpha = \theta + 8(2\pi)$$

$$\alpha = -\frac{61}{4}\pi + 16\pi$$

$$\alpha = \left(-\frac{61}{4} + 16\right)\pi$$

$$\alpha = \left[\frac{-61 + 4(16)}{4} \right] \pi$$

$$\alpha = \left(\frac{-61 + 64}{4}\right)\pi$$

$$\alpha = \frac{3\pi}{4}$$

We've been looking at finding the coterminal angle within $[0^{\circ},360^{\circ})$ or $[0,2\pi)$. But we can actually look for coterminal angles in any interval.

Example

Find the angle in the interval $(-900^{\circ}, -540^{\circ}]$ that's coterminal with 247°.

The interval $(-900^\circ, -540^\circ]$ is a full 360° rotation. Let $\theta = 247^\circ$, and let α be the angle that's coterminal with θ and lies in the interval $(-900^\circ, -540^\circ]$. In this case, we'll use the general relation $\alpha = \theta + n(360^\circ)$ and solve for the unique integer n such that α lies in that interval.

$$-900^{\circ} < \alpha \le -540^{\circ}$$

$$-900^{\circ} < \theta + n(360^{\circ}) \le -540^{\circ}$$

Substituting $\theta = 247^{\circ}$ gives

$$-900^{\circ} < 247^{\circ} + n(360^{\circ}) \le -540^{\circ}$$

Subtracting 247° and then dividing through by 360°, we get

$$-900^{\circ} - 247^{\circ} < n(360^{\circ}) \le -540^{\circ} - 247^{\circ}$$

$$-1,147^{\circ} < n(360^{\circ}) \le -787^{\circ}$$

$$-\frac{1,147^{\circ}}{360^{\circ}} < n \le -\frac{787^{\circ}}{360^{\circ}}$$

about
$$-3.12 < n \le \text{about } -2.19$$

Therefore, n=-3. To find α , we'll substitute n=-3 into the expression $\theta+n(360^\circ)$.

$$\alpha = \theta + n(360^{\circ})$$

$$\alpha = \theta + (-3)(360^{\circ})$$

$$\alpha = 247^{\circ} + (-3)(360^{\circ})$$

$$\alpha = 247^{\circ} + (-1,080^{\circ})$$

$$\alpha = -833^{\circ}$$

Let's do an example in radians.

Example

Find the angle in the interval $[-\pi, \pi)$ that's coterminal with $(56/3)\pi$.

The interval $[-\pi, \pi)$ is a full 2π rotation. Let $\theta = (56/3)\pi$, and let α be the angle that's coterminal with θ and lies in the interval $[-\pi, \pi)$. We'll use $\alpha = \theta + n(2\pi)$ and solve for the value of n that makes α lie in that interval.

$$-\pi < \alpha < \pi$$

$$-\pi \le \theta + n(2\pi) < \pi$$

Substituting $\theta = (56/3)\pi$ gives

$$-\pi \le \frac{56}{3}\pi + n(2\pi) < \pi$$

Subtracting $(56/3)\pi$ and dividing through by 2π , we get

$$-\pi - \frac{56}{3}\pi \le n(2\pi) < \pi - \frac{56}{3}\pi$$

$$-\left(1 + \frac{56}{3}\right)\pi \le n(2\pi) < \left(1 - \frac{56}{3}\right)\pi$$

$$-\left[\frac{3(1)+56}{3}\right]\pi \le n(2\pi) < \left[\frac{3(1)-56}{3}\right]\pi$$

$$-\left(\frac{3+56}{3}\right)\pi \le n(2\pi) < \left(\frac{3-56}{3}\right)\pi$$

$$-\frac{59}{3}\pi \le n(2\pi) < -\frac{53}{3}\pi$$

$$\frac{\left(-\frac{59}{3}\pi\right)}{2\pi} \le n < \frac{\left(-\frac{53}{3}\pi\right)}{2\pi}$$

$$-\frac{59}{3(2)} \le n < -\frac{53}{3(2)}$$

$$-\frac{59}{6} \le n < -\frac{53}{6}$$

about $-9.83 \le n < \text{about } -8.83$

So n=-9. To find α , we'll substitute n=-9 into $\theta+n(2\pi)$.

$$\alpha = \theta + n(2\pi)$$

$$\alpha = \theta + (-9)(2\pi)$$

$$\alpha = \frac{56}{3}\pi - 18\pi$$

$$\alpha = \left(\frac{56}{3} - 18\right)\pi$$

$$\alpha = \left\lceil \frac{56 + 3(-18)}{3} \right\rceil \pi$$

$$\alpha = \left(\frac{56 - 54}{3}\right)\pi$$

$$\alpha = \frac{2\pi}{3}$$

