Departamento de Estadística y Matemáticas Facultad de Ciencias Económicas Estadística II Parcial I

Nombre:	Cédula:

1. (2 puntos) Supongamos que la Facultad de Ciencias Económicas quiere evaluar el rendimiento académico de los estudiantes de Economía y Administración de Empresas. Para ello, decide seleccionar una muestra aleatoria de estudiantes, para aplicarles un examen estandarizado, obteniendo los siguientes resultados.

79.68	83.98	77.48	78.19	76.22	78.83	82.69	84.98	73.04	90.88
78.16	87.49	79.72	70.81	82.11	84.82	80.45	68.06	76.88	82.8
77.48	80.41	86.97	82.03	74.41	76.18	76.16	77.36	89.45	

- a) (1 punto) Basados en la información muestral encontrada, podría concluirse que la desviación estándar de los puntajes de todos los estudiantes de Economía y Administración de Empresas es de 5.45 puntos?
- b) (1 punto) Basados en el resultado del inciso anterior, calcule la probabilidad de que la diferencia absoluta entre la media real y muestral del puntaje del examen estandarizado sea mayor a 0.47.
- 2. (2 puntos) Suponga que una empresa que fabrica botellas ha comprado una nueva máquina para manufacturar botellas de plástico para luego venderlas alguna empresa de gaseosas, y con ello generar ganancias.

Suponga que la función de distribución de probabilidad de costos (en millones de pesos) de la empresa, sigue una distribución Weibull de la forma por

$$f(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$$
 para $x > 0$

Si se toma una muestra aleatoria X_1, X_2, \dots, X_{40} , entonces

- a) (1 punto) Calcule la función de distribución de probabilidad para el estadístico de orden asociado a la mediana.
- b) (1 punto) Calcule la probabilidad de que el estadístico de orden asociado a la mediana sea mayor a la media (esperanza matemática) del estadístico de orden, si asumimos que $\alpha = 2$ y $\beta = 48$.
- 3. (1 punto) Suponga que luego de muchos meses de análisis realizados por el grupo de microeconomía aplicada, han logrado culminar el proyecto concluyendo que usar vallas publicitarias incrementa la rentabilidad promedio de las empresas en menos de 5 millones de pesos al mes.

Para probar si dicho hallazgo está apoyada por información muestral, un grupo de estudiantes ha decidido realizar un medición en diferentes meses de la rentabilidad que registran dos empresas de alimentos con estructura y trayectoria similares, que usan o no vallas publicitarias, respectivamente, encontrando los siguientes resultados (en millones de pesos).

Empresa 1 (Usa vallas publicitarias)

ſ	7.035	10.702	3.835	20.191	14.714	10.415	14.847	12.024	16.168	6.098
	13.565	3.956	9.392	12.213	9.23	12.54	5.724	13.293	13.394	16.265
	12.875	10.874								

Empresa 2 (No usa vallas publicitarias)

17.894	14.114	16.895	11.629	23.671	8.814	9.771	15.281	15.952	11.196
1.795	9.757	10.375	12.487	9.588	20.072	8.561	9.747	12.481	13.022
26.265	8.099	10.944	18.289	22.148	23.439	22.344	8.066	18.327	

Basados en la información muestral, calcule la probabilidad de que la diferencia absoluta entre la proporción de meses en los cuales las empresas vende más 9.91 millones de pesos, sea mayor al $10\,\%$