SBML Model Report

Model name: "Smallbone2013 - Colon Crypt cycle - Version 3"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Kieran Smallbone² at December first 2011 at no o' clock in the morning. and last time modified at February 28th 2014 at 4:52 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	9	function definitions	0
global parameters	20	unit definitions	6
rules	6	initial assignments	0

Model Notes

Smallbone2013 - Colon Crypt cycle - Version 3

This model is described in the article: A mathematical model of the colon crypt capturing compositional dynamic interactions between cell typesKieran Smallbone, Bernard M. CorfeInt J Exp Pathol. 2014 Feb;95(1):1-7.

¹EMBL-EBI, viji@ebi.ac.uk

 $^{^2}$ University of Manchester, kieran.smallbone@manchester.ac.uk

Abstract:

Models of the development and early progression of colorectal cancer are based upon understanding the cycle of stem cell turnover, proliferation, differentiation and death. Existing crypt compartmental models feature a linear pathway of cell types, with little regulatory mechanism. Previous work has shown that there are perturbations in the enteroendocrine cell population of macroscopically normal crypts, a compartment not included in existing models. We show that existing models do not adequately recapitulate the dynamics of cell fate pathways in the crypt. We report the progressive development, iterative testing and fitting of a developed compartmental model with additional cell types, and which includes feedback mechanisms and cross-regulatory mechanisms between cell types. The fitting of the model to existing data sets suggests a need to invoke cross-talk between cell types as a feature of colon crypt cycle models.

This model is hosted on BioModels Database and identifiedby: MODEL1306190003.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of eight unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name cell

Definition item

2.2 Unit time

Name day

Definition 86400 s

2.3 Unit volume

Definition dimensionless

2.4 Unit per_day

Name per day

Definition $(86400 \text{ s})^{-1}$

2.5 Unit cell

Name cell

Definition item

2.6 Unit cell_per_day

Name cell per_day

Definition item $\cdot (86400 \text{ s})^{-1}$

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	crypt		3	1	dimensionless	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one dimensionless.

Name crypt

4 Species

This model contains four species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
NO	N0	compartment	item · dimensionless ⁻¹	В	
N1	N1	compartment	item . dimensionless ⁻¹		
N2	N2	compartment	item · dimensionless ⁻¹		
N3	N3	compartment	item · dimensionless ⁻¹		

5 Parameters

This model contains 20 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
d0			0.020	$(86400 \text{ s})^{-1}$	
d1			0.548	$(86400 \text{ s})^{-1}$	
d2			1.889	$(86400 \text{ s})^{-1}$	
T	cellularity		0.000	item	
K	capacity		106.090	item	
r0			1.999	$(86400 \text{ s})^{-1}$	\square
fO	N0 division rate		0.000	item $\cdot (86400 \text{ s})^{-1}$	
p00			0.000	dimensionless	\Box
p01			0.631	dimensionless	\square
r1			10.586	$(86400 \text{ s})^{-1}$	\square
f1	N1 division rate		0.000	item $\cdot (86400 \text{ s})^{-1}$	
p11			0.000	dimensionless	
p12			0.805	dimensionless	
p03			0.000	dimensionless	
q03			0.935	dimensionless	
K03			0.784	item	
d3			0.168	$(86400 \text{ s})^{-1}$	
KOX			0.154	item	\square
K1X			15.365	item	
K2X			2.704	item	\square

6 Rules

This is an overview of six rules.

6.1 Rule T

Rule T is an assignment rule for parameter T:

$$T = [N0] + [N1] + [N2] + [N3]$$
 (1)

Derived unit item

6.2 Rule f0

Rule f0 is an assignment rule for parameter f0:

$$f0 = r0 \cdot [N0] \cdot \left(1 - \frac{T}{K}\right) \tag{2}$$

6.3 Rule p00

Rule p00 is an assignment rule for parameter p00:

$$p00 = 1 - p01 - p03 \tag{3}$$

6.4 Rule f1

Rule f1 is an assignment rule for parameter f1:

$$f1 = r1 \cdot [N1] \cdot \left(1 - \frac{T}{K}\right) \tag{4}$$

6.5 Rule p11

Rule p11 is an assignment rule for parameter p11:

$$p11 = 1 - p12 \tag{5}$$

6.6 Rule p03

Rule p03 is an assignment rule for parameter p03:

$$p03 = \frac{q03 \cdot K03}{[N3] + K03} \tag{6}$$

Derived unit dimensionless

7 Reactions

This model contains nine reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	ROX	N0 death	$N0 \xrightarrow{N3, N0, N3} \emptyset$	
2	RO1	N0 differentiation to N1	$N0 \longrightarrow N0 + N1$	
3	ROO	N0 renewal	$N0 \longrightarrow 2 N0$	
4	R1X	N1 death	$N1 \xrightarrow{N3, N1, N3} \emptyset$	
5	R12	N1 differentiation	$N1 \longrightarrow N1 + N2$	
6	R11	N1 renewal	$N1 \longrightarrow 2N1$	
7	R2X	N2 death	$N2 \xrightarrow{N3, N2, N3} \emptyset$	
8	R03	N0 differentiation to N3	$N0 \longrightarrow N0 + N3$	
9	R3X	N3 death	$N3 \xrightarrow{N3} \emptyset$	

7.1 Reaction ROX

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name N0 death

Reaction equation

$$N0 \xrightarrow{N3, N0, N3} \emptyset \tag{7}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
NO	N0	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
NЗ	N3	
NO	N0	
N3	N3	

Kinetic Law

Derived unit $(86400 \text{ s})^{-1} \cdot \text{item}$

$$v_1 = \frac{d0 \cdot [N0] \cdot K0X}{[N3] + K0X}$$
 (8)

7.2 Reaction R01

This is an irreversible reaction of one reactant forming two products.

Name N0 differentiation to N1

Reaction equation

$$N0 \longrightarrow N0 + N1$$
 (9)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
NO	N0	

Products

Table 9: Properties of each product.

Id	Name	SBO
NO	N0	
N1	N1	

Kinetic Law

Derived unit item $\cdot (86400 \text{ s})^{-1}$

$$v_2 = p01 \cdot f0 \tag{10}$$

7.3 Reaction R00

This is an irreversible reaction of one reactant forming one product.

Name N0 renewal

Reaction equation

$$N0 \longrightarrow 2N0$$
 (11)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
NO	N0	

Product

Table 11: Properties of each product.

Id	Name	SBO
NO	N0	

Id	Name	SBO

Kinetic Law

Derived unit item $\cdot (86400 \text{ s})^{-1}$

$$v_3 = p00 \cdot f0 \tag{12}$$

7.4 Reaction R1X

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name N1 death

Reaction equation

$$N1 \xrightarrow{N3, N1, N3} \emptyset \tag{13}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
N1	N1	

Modifiers

Table 13: Properties of each modifier.

	_	
Id	Name	SBO
N3	N3	
N1	N1	
NЗ	N3	

Kinetic Law

Derived unit $(86400 \text{ s})^{-1} \cdot \text{item}$

$$v_4 = \frac{d1 \cdot [N1] \cdot K1X}{[N3] + K1X} \tag{14}$$

7.5 Reaction R12

This is an irreversible reaction of one reactant forming two products.

Name N1 differentiation

Reaction equation

$$N1 \longrightarrow N1 + N2$$
 (15)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
N1	N1	

Products

Table 15: Properties of each product.

Id	Name	SBO
N1	N1	
N2	N2	

Kinetic Law

Derived unit item $\cdot (86400 \text{ s})^{-1}$

$$v_5 = p12 \cdot f1 \tag{16}$$

7.6 Reaction R11

This is an irreversible reaction of one reactant forming one product.

Name N1 renewal

Reaction equation

$$N1 \longrightarrow 2N1$$
 (17)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
N1	N1	

Product

Table 17: Properties of each product.

Id	Name	SBO
N1	N1	

Kinetic Law

Derived unit item $\cdot (86400 \text{ s})^{-1}$

$$v_6 = p11 \cdot f1 \tag{18}$$

7.7 Reaction R2X

This is an irreversible reaction of one reactant forming no product influenced by three modifiers.

Name N2 death

Reaction equation

$$N2 \xrightarrow{N3, N2, N3} \emptyset \tag{19}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
N2	N2	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
N3	N3	

Id	Name	SBO
N2	N2	
NЗ	N3	

Kinetic Law

Derived unit $(86400 \text{ s})^{-1} \cdot \text{item}$

$$v_7 = \frac{d2 \cdot [N2] \cdot K2X}{[N3] + K2X} \tag{20}$$

7.8 Reaction R03

This is an irreversible reaction of one reactant forming two products.

Name N0 differentiation to N3

Reaction equation

$$N0 \longrightarrow N0 + N3$$
 (21)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
NO	N0	

Products

Table 21: Properties of each product.

Id	Name	SBO
NO	N0	
N3	N3	

Kinetic Law

Derived unit item $\cdot (86400 \text{ s})^{-1}$

$$v_8 = p03 \cdot f0 \tag{22}$$

7.9 Reaction R3X

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name N3 death

Reaction equation

$$N3 \xrightarrow{N3} \emptyset$$
 (23)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
N3	N3	

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
N3	N3	

Kinetic Law

Derived unit $(86400 \text{ s})^{-1} \cdot \text{item}$

$$v_9 = d3 \cdot [N3] \tag{24}$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species NO

Name N0

Initial amount 1.71589842441293 item

This species takes part in eight reactions (as a reactant in ROX, RO1, RO0, RO3 and as a product in RO1, RO0, RO3 and as a modifier in ROX).

$$\frac{\mathrm{d}}{\mathrm{d}t}N0 = v_2 + 2v_3 + v_8 - v_1 - v_2 - v_3 - v_8 \tag{25}$$

8.2 Species N1

Name N1

Initial amount 26.8036712557471 item

This species takes part in seven reactions (as a reactant in R1X, R12, R11 and as a product in R01, R12, R11 and as a modifier in R1X).

$$\frac{\mathrm{d}}{\mathrm{d}t}N1 = v_2 + v_5 + 2v_6 - v_4 - v_5 - v_6 \tag{26}$$

8.3 Species N2

Name N2

Initial amount 44.6167755224769 item

This species takes part in three reactions (as a reactant in R2X and as a product in R12 and as a modifier in R2X).

$$\frac{\mathrm{d}}{\mathrm{d}t} N2 = v_5 - v_7 \tag{27}$$

8.4 Species N3

Name N3

Initial amount 1.53646349229917 item

This species takes part in nine reactions (as a reactant in R3X and as a product in R03 and as a modifier in R0X, R0X, R1X, R1X, R2X, R2X, R3X).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{N3} = v_8 - v_9 \tag{28}$$

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany