Defentiel et of Ist ander & Ist Digree

Mote: Every deftal ef of Ist ander and Det defree can be solved by either exact or integrating factor.

Exact Dytal eti- A deltal et of the form

11 du + N dy = 0

15 1. t. b. exact if 2m = 2m = 2m

 ξ_{γ} h: f(x,y) = c

=> df = 0

=) $\frac{24}{2x} dx + \frac{24}{2y} dy = 0$

Comparing with 17 dn + Ndy = 0

$$M = \frac{2f}{2N}, \quad M = \frac{2f}{2y}$$

$$\frac{2M}{2y} = \frac{2^2f}{2y^2N}, \quad \frac{2M}{2N} = \frac{2^2f}{2^2}$$

$$\frac{3M}{2y} = \frac{2^2f}{2^2}$$

$$\frac{3M}{2y^2N} = \frac{2^2f}{2^2}$$

$$\frac{3M}{2y^2N} = \frac{2^2f}{2^2}$$

$$\frac{2^{NT}}{2y^2N} = \frac{2^{NT}}{2^2}$$

$$\frac{2^{NT}}{2y^2N} = \frac{2^{NT}}{2^2}$$

The sequenced of his

I the sequence of the second of the sequence of the sequ

Ex: Solve
$$(x^2+y^2)$$
 du $+2xydy=0$

SML:- Company with 5^M du $+Ndy=0$
 $SI = x^2+y^2$, $V = 2xy$
 $\frac{711}{7y} = 2y$, $\frac{7N}{7X} = 2y$
 $\frac{7N}{7y} = \frac{7N}{7X}$
 $\frac{7}{7y} = \frac{7N}{7X}$

or
$$\int (x^2 + y^2) dx + \int 2xy dy = c$$

=) $\frac{x^3}{3} + y^2x + 2x \frac{y^2}{2} = c$
=) $\frac{x^3}{3} + y^2x + (xy^2) = c$
=) $\frac{x^3}{3} + y^2x = combact$

E:
$$SDLE (N+2y+3) dx + (2x+y+4) dy = 0$$
 $SDLE : Comparing with r1 dx + rdy = 0$
 $r1 = x+2y+3$, $r = 2x+y+4$
 $\frac{2rr}{2y} = 2$, $\frac{2r}{2x} = 2$

. : & " (is execti. The required non is $\int (\chi + 2\chi + 3) dx + \int (\chi + 4) d\chi = contact$ =1 = Complant .: JL 4°@ The general et of The depre et is seforts an2+26ny +6y2+2gn+2fy+C=0 hypersole sef-hit

(1) coeff of n2= cueftery $\Delta = 0$ (Pair of st. lines) (ii) 1 coeft of my =0 (cizele) Where 140 (10 a = 1 11= abc +2fgl -af2 (Comic) 1 二 0 1 - 5g2 - ch2 = | a & g h b f g + c 22-05-0 h2-95<0 L 2- a 6> U Panalda Ellipa Hyperhna

Intégrating facte! Sometime the gener DE is not an exact Jeen we multiplying some fun of x & y to make it exect is called intégrating factor (IF).

Pup I:- 4. He guien DE +7 dn + Ndy = 0 is homogenes

Jhen IF = $\frac{1}{111111}$ fromided M17 + MY \neq 0

Go: Solve (x^2+y^2) du -xy dy =0 SN_{4} ... $N = x^2+y^2$, N = -xy

デーマン デーーン :: 4 ① is NA am excet.

Frulty Lying in eq. (1) by
$$\frac{1}{x^2}$$

$$\frac{1}{x^2+y^2/x} + (-ny/y)$$

$$IF = \frac{1}{x^3}$$

Frulty Lying in eq. (1) by $\frac{1}{x^3}$

$$\frac{1}{x^3} (x^2+y^2) dx - \frac{y}{x^2} dy = 0$$

If $x = y = 0$

If $x = y = 0$

$$\left(\frac{1}{x} + \frac{y^2}{x^3}\right) dx + 0 = Contact$$

 $Log x - \frac{y^2}{2x^2} = c$

Rop II! - 26 the deftal egh ride + Ndy is of the form f1(ny) y dn + f2(ny) x dy=0 Then If = \frac{1}{\gamma 1 \tau - Ny} fractided \tau - Ny \neq 0 E. Solve. (x2x2+xx+1) ydn + (x2x2-nx11) xdy =0 $(\chi^{2})^{2} + \chi^{2} + \chi^{2}$ r1-(x2x2+x7+1)7 SNh: H= (n 2 - n)+1) x (varify) clearly 3/1 7 3/X .. et C is hot an exact.

which is of the form fi(ny) you + fr(nx) ndy. ルタ (2 7) $\frac{1}{x^2y^2}$ Multiplying in et (i) 5> This

(メナナナン) du + (x-1/2)-4 i. Ih requid not is 「(ソナ 」、ナ 」、) かん + 5- - dy = Com YX+lugy- - - ly>=C

11 dn + N dy = 0 Rup III: $\frac{1}{6}\left(\frac{2N}{2N}-\frac{2N}{2N}\right)$ is a fri of x nay tra) $Jkm \int f(\pi) d\pi$ If = e

Pupli: - NIdu + Ndy = 0 4 / (3/4 - 3/4) is a fu of y nong try) Then - Still dy $\widehat{1F} - e$ or る ナイ (ラス - シャイ) is a for of y nay try) Jhu If = (1+14) dy

Bo:
$$(x^2+y^2+x)$$
 dn $+xy$ $dy=0$ — (y^2+y^2+x) dn $+xy$ $dy=0$ — (y^2+y^2+x) $dy=0$ — (y^2+x) $dy=0$ — $(y$

i hauthbyje in er (i) by x .: (x3+ x2x+x2)dx + 727 4500 :. The sepurid non is (n3+y3x+n3)1x = contah x4 + 2x2 + 33 = c

OR: Let
$$\Sigma F = n^{k}y^{k}$$

$$\therefore \chi^{k}y^{k} (\chi^{2}+y^{2}+\chi) d\chi + \chi^{k}y^{k}\eta y dy = 0$$

$$\uparrow^{1} = \chi^{k+2}y^{k} + \chi^{k}y^{k+2} + \chi^{k+1}y^{k}$$

$$\uparrow^{2} = \chi^{k+1}y^{k+1}$$

$$\uparrow^{2} = \chi^{k+1}y^{k+1}$$

-,
$$q^* G$$
 is exact
$$\frac{2N^2}{2N^2} = \frac{2N}{2N}$$

$$K \times \frac{h+12}{2^{h+1}} + (h+12) \times \frac{h}{2^{h+1}} \times \frac{h+1}{2^{h+1}} \times \frac{h+$$

$$k = 0$$

$$\therefore h = 1$$

$$\therefore \Gamma = \chi' \gamma'$$

$$\boxed{\Gamma + = \chi}$$

: K+2 = L+1

Porp V: - 4 the after et 17 du + Hdy = 0 is of the form ndy B (my du + hn dy) + n 1/2 (m, y du + h, ndy)=0 レストーース Kh-1-B If = x Y Y -1-B. =) Km-1-4= Ky my-1-2, ----(2)

=)
$$km - 1 - x = k_1 m_1 - 1 - x_1 - 2$$

 $kn - 1 - \beta = k_1 n_1 - 1 - \beta_1 - 3$
Ship e_1^* (2) $(x - 3)$
 $k = ? k_1 = ?$

Pup VI. (Method by Inspection)

Co:
$$\chi dy - \gamma dx = n^2 \gamma dy$$

OR $(\chi - \chi^2 \gamma) dy - \gamma dx = 0$

Coi. $\chi dy - \gamma dx = \chi^2 dy$

$$= \int d \left(\frac{\gamma}{\lambda} \right) = \gamma d$$

$$2 \text{depet} \qquad \frac{\lambda}{\lambda} = \frac{\lambda^2}{\lambda} + C$$

$$= \int \frac{\lambda}{\lambda} - \frac{\lambda^2}{\lambda} = C$$

MNE: