Project2:

1. theoretical WC: O(n) = |n/4| + n + 1

These are the cases usually happen at when n < 100; when n is large enough, it is almost unlikely to get into this case. In this case, our algorithm will first call QCOUNT on every four elements in the array($\lfloor n/4 \rfloor$) and if no set with score 4 is found, then it will utilize the brute force technique to use n+1 QCOUNT calls to generate the result.

2. theoretical expected WC for given number of runs:

a. For n > 100, for 100 runs, the theoretical expected WC may be close to $\lfloor n/4 \rfloor + (\lceil \lfloor n/4 \rfloor/8 \rceil - 1) / 2 + \lfloor n/4 \rfloor/2 + \lceil \lfloor n/4 \rfloor/8 \rceil + a (a = n % 4); with the increase of the number of runs, this WC can get bigger as in some extreme case, it will run into <math>\lfloor n/4 \rfloor + 3(\lfloor n/4 \rfloor - 1)/4 + a (a = n % 4)$ (In this case, all 4 elements group get score 2 and all start with 01/10) query calls.

b. For n <= 100, no matter the number of runs, the theoretical expected WC is always $| \mathbf{n/4} | + \mathbf{n+1}$ query calls as it is a fixed number.

3. theoretical AVG:

let
$$x = \lfloor n/4 \rfloor$$

AVG(n) = $x + (\lceil x/8 \rceil - 1) / 2 + x/2 + \lceil x/8 \rceil$ when $n \ge 100$
AVG(2000) = 2000/4 + ($\lceil 62.5 \rceil - 1$)/2 + 250 + $\lceil 500/8 \rceil$
= 500 + 31+ 250 + 63 = 844 (calls)

Assume the 0 and 1 in the array is evenly distributed, when n = 2000, the distribution will be similar to the following table:

1111 0000		Score 4 (62.5 groups)
1110 0001 1101 0010 1011 0100 0111 1000	 . 	Score 2 (250 groups)
0011 0101 1001 1010 1100 0110		Score 0 (187.5 groups)

We first call QCOUNT on every four elements in the array, which takes $\lfloor n/4 \rfloor$ query calls. Then we take $(\lceil x/8 \rceil - 1) / 2$ calls to process the data in score 4 groups. After that, we combine score 4 and score 2 to generate a new myarray[],

and take x/2 to process the data in score 2 groups. However, in half of the cases, we could not get the result right away, so we need one extra query call for these groups to generate the results, which takes $\lceil x/8 \rceil$ query calls.

4. observed WC and AVG for given number of runs:

Observed AVG= 843.71

Observed WC = 894

The difference between observed output and theoretical output is because the data is not perfectly distributed and the actual distribution may vary.

yifanj6@andromeda-2 16:10:09 ~/CS165/project2

```
s ./main
                        avg=
n=
     20,
          max=
                  26.
                               26.00
n=
   200,
          max=
                 251.
                        avg=
                               84.64
n= 2000,
          max=
                 894.
                        avg= 843.74
     17,
                  22,
                        avg=
                              22.00
n=
          max=
                               23.00
n=
     18,
          max=
                  23,
                        avg=
    19,
                        avg= 24.00
                  24,
n=
          max=
```