AUA CS108, Statistics, Fall 2020 Lecture 13

Michael Poghosyan

25 Sep 2020

Contents

Q-Q Plots

Now, if q_{α} is the α -quantile of some Distribution, and X is a r.v. from that Distribution, then

$$\mathbb{P}(X \leq q_{\alpha}) \geq \alpha$$
 and $\mathbb{P}(X \geq q_{\alpha}) \geq 1 - \alpha$.

Now, if q_{α} is the α -quantile of some Distribution, and X is a r.v. from that Distribution, then

$$\mathbb{P}(X \leq q_{\alpha}) \geq \alpha$$
 and $\mathbb{P}(X \geq q_{\alpha}) \geq 1 - \alpha$.

Note: Here we are taking inequalities, and not, say, $\mathbb{P}(X \leq q_{\alpha}) = \alpha$, since, in the Discrete r.v. case, we can have no q_{α} with exact equality. Say, if $X \sim Bernoulli(0.2)$, and $\alpha = 0.4$, then no q_{α} exists with $\mathbb{P}(X \leq q_{\alpha}) = \alpha$.

Now, if q_{α} is the α -quantile of some Distribution, and X is a r.v. from that Distribution, then

$$\mathbb{P}(X \leq q_{\alpha}) \geq \alpha$$
 and $\mathbb{P}(X \geq q_{\alpha}) \geq 1 - \alpha$.

Note: Here we are taking inequalities, and not, say, $\mathbb{P}(X \leq q_{\alpha}) = \alpha$, since, in the Discrete r.v. case, we can have no q_{α} with exact equality. Say, if $X \sim Bernoulli(0.2)$, and $\alpha = 0.4$, then no q_{α} exists with $\mathbb{P}(X \leq q_{\alpha}) = \alpha$.

Note: If $\alpha = 0.5$, we call $q_{\alpha} = q_{0.5}$ to be the Median of the Distribution.

Now, if q_{α} is the α -quantile of some Distribution, and X is a r.v. from that Distribution, then

$$\mathbb{P}(X \leq q_{\alpha}) \geq \alpha$$
 and $\mathbb{P}(X \geq q_{\alpha}) \geq 1 - \alpha$.

Note: Here we are taking inequalities, and not, say, $\mathbb{P}(X \leq q_{\alpha}) = \alpha$, since, in the Discrete r.v. case, we can have no q_{α} with exact equality. Say, if $X \sim Bernoulli(0.2)$, and $\alpha = 0.4$, then no q_{α} exists with $\mathbb{P}(X \leq q_{\alpha}) = \alpha$.

Note: If $\alpha=0.5$, we call $q_{\alpha}=q_{0.5}$ to be the **Median of the Distribution**. So if we consider a Continuous r.v. and draw the PDF of that r.v., then the Median is the (leftmost) point dividing the area under the PDF curve into 50%-50% portions.

Next, we consider three important statistical problems: Check visually if

Next, we consider three important statistical problems: Check visually if

two given Datasets (possibly, of different sizes) are from the same Distribution;

Next, we consider three important statistical problems: Check visually if

- two given Datasets (possibly, of different sizes) are from the same Distribution;
- a given Dataset comes from a given Distribution;

Next, we consider three important statistical problems: Check visually if

- two given Datasets (possibly, of different sizes) are from the same Distribution;
- a given Dataset comes from a given Distribution;
- given two theoretical Distributions, check if one of them is a shifted-scaled version of the other one, or check if one has fatter tails than the other one

Now, assume we have two Datasets, not necessarily of the same size:

 $x: x_1, x_2, ..., x_n$ and $y: y_1, y_2, ..., y_m$

Now, assume we have two Datasets, not necessarily of the same size:

$$x: x_1, x_2, ..., x_n$$
 and $y: y_1, y_2, ..., y_m$

Question: Are x and y coming from the same Distribution?

Now, assume we have two Datasets, not necessarily of the same size:

$$x: x_1, x_2, ..., x_n$$
 and $y: y_1, y_2, ..., y_m$

Question: Are x and y coming from the same Distribution?

Q-Q Plot helps to answer to this question visually.

Now, assume we have two Datasets, not necessarily of the same size:

$$x: x_1, x_2, ..., x_n$$
 and $y: y_1, y_2, ..., y_m$

Question: Are x and y coming from the same Distribution?

Q-Q Plot helps to answer to this question visually. To draw the Q-Q Plot for Datasets, we take some levels of quantiles, say, for some k,

$$\alpha = \frac{1}{k}, \frac{2}{k}, ..., \frac{k-1}{k}$$

and then draw the points $(q_{\alpha}^{x}, q_{\alpha}^{y})$.

Now, assume we have two Datasets, not necessarily of the same size:

$$x: x_1, x_2, ..., x_n$$
 and $y: y_1, y_2, ..., y_m$

Question: Are x and y coming from the same Distribution?

Q-Q Plot helps to answer to this question visually. To draw the Q-Q Plot for Datasets, we take some levels of quantiles, say, for some k,

$$\alpha = \frac{1}{k}, \frac{2}{k}, \dots, \frac{k-1}{k}$$

and then draw the points $(q_{\alpha}^{x}, q_{\alpha}^{y})$.

Idea: If x and y are coming from the same Distribution, then the Quantiles of x and y need to be approximately the same, $q_{\alpha}^{x} \approx q_{\alpha}^{y}$, so geometrically, the points $(q_{\alpha}^{x}, q_{\alpha}^{y})$ need to be close to the bisector line.

Example, Q-Q Plots, Data vs Data

```
x <- rnorm(1000)
y <- runif(200)
qqplot(x,y)
abline(0,1, col="red")</pre>
```


Example, Q-Q Plots, Data vs Data

```
x <- rnorm(1000)
y <- rnorm(500)
qqplot(x,y)
abline(0,1, col="red")</pre>
```


Example, Q-Q Plot by Hands, Data vs Data

Example: Assume

$$x: -1, 2, 1, 2, 3, 2, 1$$
 $y: 0, 3, 4, 1, 1, 1, 1, 2$

Draw the Q-Q Plot for x and y.