Ch-7 Motion

- 1. Change in position of an object with respect to a fixed position with time is called motion.
 - a. Uniform Motion the object covers equal distances in equal intervals of time. E.g., car travelling 2 km in 2 min, 2 km in next 2 min.
 - b. Non-Uniform Motion the object covers unequal distances in equal intervals of time. E.g., car moving in a crowded street.
 - c. Motion along a straight line
 - i. The actual path traversed by a body is its distance (scalar).
 - ii. The shortest straight distance between the initial and final positions of a body is its displacement (vector).
 - d. Motion along a circular path
 - i. Then moving in a circular path with uniform speed, it is called as uniform circular motion. Here, direction changes continuously.
 - ii. $V = \frac{2\pi r}{t}$.
- 2. Distance travelled by an object in unit time is speed (scalar).
 - a. Usually, objects are in non-uniform motion, hence, we calculate average speed.
 - b. Avg. speed = $\frac{\text{total distance travelled (s)}}{\text{total time taken (t)}}.$
 - c. SI unit m / s OR m s⁻¹
- 3. Speed of an object travelling in a definite direction is velocity (vector). It can be uniform or variable.
 - a. When the speed is variable, average velocity is calculated. b. Avg. vel. = $\frac{total\ distance\ tranvelled\ (s)}{total\ time\ taken\ (t)}.$

 - c. SI unit m / s OR m s⁻¹
- 4. Rate of change of velocity with time is acceleration (vector).
 - a. $a = \frac{v u}{t}$.
 - b. SI unit $-m/s^2$ OR $m s^{-2}$.
 - c. Uniform Acceleration velocity of an object increases or decreases by equal amounts in equal intervals of time.
 - d. Non-Uniform Acceleration velocity of an object increases or decreases by unequal amounts in equal intervals of time.
- 5. Pictorial or geometrical representation between 2 quantities on 2 axes is its graphical representation.
 - a. Distance-Time graphs
 - i. Time is taken on the x-axis and distance travelled on the y-axis.
 - ii. Speed of object = slope of graph.
 - iii. For uniform speed, slope is inclined straight line, BUT, for non-uniform speed, slope is a curved line.
 - iv. For stationary object, slope is a straight line parallel to time axis.
 - b. Velocity-Time graphs
 - i. Time is taken on the x-axis and velocity on the y-axis.
 - ii. Acceleration of body = slope of graph.

- iii. Distance / displacement = area under the curve.
- iv. For uniform acceleration, slope is a straight line, BUT, for non-uniform acceleration, slope is a curved line.

6. Equation of Motion –

- a. Velocity-Time relation : v = u + at.
- b. Velocity-Time relation : $s = ut + \frac{1}{2}at^2$.
- c. Position-Velocity relation : $v^2 = u^2 + 2as$.

Distance-Time Graphs

1. For a body at rest. Speed = 0.

2. For a body moving with uniform speed.

3. For accelerated motion. Slope is increasing.

Velocity-Time Graphs

1. When a body moving with a uniform velocity. Acceleration = 0.

4. For decelerated (speeding down) motion. Slope is decreasing.

2. When a body starts from rest and moves with uniform acceleration. Slope = acceleration.

3. When a body is moving with uniform acceleration and its initial velocity is not zero.

4. When a body is moving with increasing acceleration. Slope increases with time.

5. When a body is moving with decreasing acceleration. Slope decreases with time.

6. When a body is moving with a uniform retardation and its initial velocity is not zero. Graph has a negative slope.

