

NHẬP MÔN CÔNG NGHỆ THÔNG TIN ĐỒ ÁN MÔN HỌC – ĐỀ 2

DAMH-02: NHẬN DẠNG CHỮ SỐ VIẾT TAY

I. Thông tin chung

Mã số bài tập: DAMH-02-TGMT

Thời lượng dự kiến: 5 tuần

Deadline nộp bài: TBA

Hình thức: Đồ án theo nhóm

Hình thức nộp bài:

GV phụ trách: Phạm Minh Hoàng

Thông tin liên lạc với GV: pmhoang@fit.hcmus.edu.vn

II. Chuẩn đầu ra cần đạt

Đồ án này nhằm mục tiêu đạt được các chuẩn đầu ra sau:

- G1.2: Tham gia thảo luận, tranh luận theo nhóm trên chủ đề môn học.
- G1.3: Phân tích, tổng hợp và viết tài liệu kỹ thuật theo mẫu cho trước theo cá nhân hoặc cộng tác nhóm.
- G2.1: Biết, hiểu thuật ngữ tiếng Anh thuộc các ngành và chuyên ngành.
- G7.6: Xây dựng một ứng dụng đơn giản, ứng dụng kiến thức ngành Thị giác máy tính.

III. Mô tả đồ án

1. Nội dung chính

Xây dựng một ứng dụng nhận diện chữ số viết tay đơn giản.

2. Mục tiêu đồ án

Sinh viên thực hiện đồ án sẽ nắm được các kiến thức

• Các bước của bài toán nhận dạng ảnh (TGMT).

- Các bước xây dựng phần mềm (CNPM).
- Một số công cụ hỗ trợ làm việc trên môi trường Internet (MMT).

Sinh viên thực hiện đồ án sẽ rèn luyện các kĩ năng

- Lập kế hoạch, làm việc nhóm, tổ chức và quản lí nhóm
- Tìm hiểu và viết báo cáo
- Đọc hiểu tiếng Anh và các tài liệu chuyên ngành

3. Nội dung chi tiết của đồ án

Sinh viên được cung cấp đoạn code xử lý dữ liệu đơn giản. Hãy thực hiện những yêu cầu sau:

- 1. Cài đặt thành công môi trường lập trình: ngôn ngữ Python, công cụ lập trình Anaconda, thư viện máy học và xử lý ảnh Scikit-learn.
- 2. Chuẩn bị dữ liệu bao gồm: tập huấn luyện, tập kiểm thử, load và show dữ liệu
- 3. Cài đặt một số thuật toán rút trích đặc trưng đơn giản: vector hóa ảnh, downsampling, histogram
- 4. Cài đặt các bộ phân lớp: KNN, mẫu trung bình
- 5. Chạy thử nghiệm trên tập dữ liệu, lập báo cáo kết quả

IV. Các yêu cầu & quy định chi tiết cho đồ án

- ❖ Các kết quả cần đạt được
- Báo cáo tìm hiểu.
- Project plan. Kế hoạch thực hiện.
- Sản phẩm

V. Cách đánh giá

Việc đánh giá đồ án của sinh viên được dựa trên các phần như sau:

- Bản kế hoạch thực hiện đồ án
- Báo cáo quy trình tiến độ thực hiện và các kết quả đạt được từng tuần (theo kế hoạch trên).
- Báo cáo quy trình thực hiện và các kết quả đạt được cuối cùng.
- Demo minh hoa.

VI. Tài liệu tham khảo

- Mastering Machine Learning with scikit-learn
- Scikit-learn Cookbook
- http://yann.lecun.com/exdb/mnist/

VII. Yêu cầu mỗi tuần

- Tuần 1: Cài đặt thành công môi trường lập trình, thư viện, chuẩn bị dữ liệu (load và show được dữ liệu)
- Tuần 2: Cài đặt ít nhất rút trích đặc trưng bằng vector hóa ảnh
- Tuần 3: Cài đặt ít nhất rút trích đặc trưng bằng downsampling, histogram
- Tuần 4: Cài đặt bộ phân lớp kNN, mẫu trung bình
- Tuần 5: Chạy thử nghiệm trên tập kiểm thử, lập báo cáo kết quả

VIII. Hướng dẫn thực hành

Chuẩn bị dữ liệu. Download tập dữ liệu MNIST tại http://yann.lecun.com/exdb/mnist/.

Lưu các file đã download trong thư mục data cùng đường dẫn file mã nguồn python.

Copy đoạn code load và show ảnh và chạy thử

```
matplotlib.pyplot as plt
      t numpy as np
  port gzip
def load_mnist(path, kind='train'):
    labels_path = os.path.join(path, '%s-labels-idx1-ubyte.gz' % kind)
images_path = os.path.join(path, '%s-images-idx3-ubyte.gz' % kind)
    with gzip.open(labels_path, 'rb') as lbpath:
         1bpath.read(8)
         buffer = lbpath.read()
labels = np.frombuffer(buffer, dtype=np.uint8)
     with gzip.open(images_path, 'rb') as imgpath:
         imgpath.read(16)
         buffer = imgpath.read()
images = np.frombuffer(buffer, dtype=np.uint8).reshape(len(labels), 28, 28).astype(np.float64)
    return images, labels
X_train, y_train = load_mnist('data/', kind='train')
print('Rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1]))
fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, sharey=True,)
ax = ax.flatten()
for i in range(10):
    img = X_train[y_train == i][0]
ax[i].imshow(img, cmap='Greys', interpolation='nearest')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()
```