RESUMEN DESCRIPTIVA

https://wpd.ugr.es/~bioestad/bioestadistica/tema-1/

TABLA DISTRIBUCION DE FRECUENCIAS VARIABLE CUANTITATIVA

I_i	X _i	n _i	f_i	N _i	F_i	$a_i = \mathbf{e}_i - \mathbf{e}_{i-1}$	$h_i = n_i / a_i$
(e ₀ , e ₁]	X ₁	n ₁	f ₁	N ₁	F ₁	$a_1 = \mathbf{e}_1 - \mathbf{e}_0$	h ₁
(e ₁ , e ₂]	X ₂	n ₂	f ₂	N ₂	F ₂	$a_2 = e_2 - e_1$	h ₂
(e ₂ , e ₃]	X ₃	n ₃	f ₃	N ₃	F ₃	$a_3 = e_3 - e_2$	h ₃
	•						•
•	•			•	•		
$(e_{k-1}, e_k]$	X _k	n _k	f _k	$N_k = n$	F _k = 1	$a_k = e_k - e_{k-1}$	h _k
		n	1				

Marca de clase (x_i): Punto medio del intervalo $x_i = \frac{e_{i-1} + e_i}{2}$

Amplitud del intervalo: Diferencia entre los extremos del intervalo

Densidad de frecuencia: $h_i = \frac{n_i}{a}$

Medidas de Posición

- MEDIA
- MEDIANA: cuantiles
- MODA

Medidas de Posición

MEDIA

$$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \sum_{i=1}^{k} f_i x_i$$

Medidas de Posición: cuantiles: MEDIANA

- MEDIANA (n/2): CUANTILES: Percentiles, Deciles, Cuartiles ...
- Cálculo para variables continuas: De igual forma que la mediana pero usamos αn en vez de n/2 (equivalentemente α por 1/2)
- El intervalo que contiene a $C(\alpha)$ será aquel $(I_{i-1}-I_i]$ cuyo $N_i>\alpha n$, o equivalentemente, aquel x_i cuyo $F_i>\alpha$.
- La expresión para el cálculo sería:

$$C(\alpha) = I_{i-1} + \frac{\alpha \cdot n - N_{i-1}}{n_i} a_i$$

Medidas de posición: Cuantil variable discreta

- Cálculo para variables discretas: El cálculo se realiza Igual que para la mediana pero cambiando n/2 por α n (equivalentemente ½ por α)
- Conociendo el valor de α , el cuantil $C(\alpha)$ será aquel x_i cuyo $N_i > \alpha n$, o equivalentemente, aquel x_i cuyo $F_i > \alpha$.
- **Ejemplo**: Estamos estudiando el número de reclamaciones en una tienda. Queremos obtener el C(0.75).

reclamaciones

				/5
x_i	n_i	f_i	N_i	(%)
0	4	0,4	4	$min \qquad C(0.75)$
1	3	0,3	7	,
2	2	0,2	9	$\alpha n = 0.75 \ x \ 10 = 7.5$
3	1	0,1	10	
Sumas	n=10	1		Por lo que el cuantil de orden 0.75 será 2

Medidas de posición variable cuantitativa continua

- **Ejemplo:** Queremos obtener el peso máximo del 15% de los alumnos que menos pesan, esto es, el C(0.15).
- El intervalo que lo contiene en este ejemplo es (60-75] pues su N_i >0.15n=10.95

I_{i-1} _ Ii	n_i	N_i	x_i	a_i
50-60	5	5	55	10
60-75	25	30	67,5	15
75-90	29	59	82,5	15
90-100	14	73	95	10
Sumas	n=73			

$$C(0.15) = I_{i-1} + \frac{\alpha n(0.15 \times 73 = 10.95) - N_{i-1}}{n_i} \cdot a_i = 60 + \frac{10.95 - 5}{25} \cdot 15 = 60 + 3.57 = 63.57 \ kg$$

MODA para variable cuantitative continua

AMPLITUD DEL INTERVALO CONSTANTE

Se elige el intervalo con mayor ni

$$Mo = e_{i-1} + rac{n_i - n_{i-1}}{(n_i - n_{i+1}) + (n_i - n_{i-1})} imes a_i$$

AMPLITUD DEL INTERVALO VARIA o no es homogénea Se elige el intervalo con <u>la mayor densidad de frecuencia</u> **hi = ni/ai**

$$M_o = e_{i-1} + rac{rac{n_i}{a_i} - rac{n_{i-1}}{a_{i-1}}}{\left(rac{n_i}{a_i} + rac{n_{i+1}}{a_{i+1}}
ight) - \left(rac{n_i}{a_i} - rac{n_{i-1}}{a_{i-1}}
ight)} imes a_i \hspace{1cm} Mo = I_{i-1} + rac{h_i - h_{i-1}}{(h_i - h_{i-1}) + (h_i - h_{i+1})} a_i$$

Medidas de Dispersión

Medidas de Dispersión Absolutas. Dependen de la unidad de medida de los datos

Rango o Recorrido:
$$R = x_n - x_1$$

Recorrido Intercuartílico:
$$R_I = Q_3 - Q_1$$

Varianza:
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^k n_i \left(x_i - \overline{x} \right)^2 = \frac{1}{n} \sum_{i=1}^k n_i x_i^2 - \overline{x}^2$$

Desviación típica:
$$\sigma = +\sqrt{\sigma^2}$$

Medidas de Dispersión Relativas. No dependen de la unidad de medida de los datos. Permiten la comparación entre distintas poblaciones

Coeficiente de variación de Pearson: $\text{CV} = \frac{\sigma}{x}$

Ejemplo

Ejemplo: Un estudio sobre los ingresos de 50 individuos que trabajan en una determinada empresa muestra los siguientes resultados. Se pide calcular la varianza y desviación típica:

Sueldos	X _i	n i	n _i x _i	$n_i x_i^2$
(600 -700]	650	10	6500	4225000
(700- 800]	750	15	11250	8437500
(800- 900]	850	15	12750	10837500
(900- 1000]	950	5	4750	4512500
(1000-1200]	1100	5	5500	6050000
		50	40750	34062500

$$\bar{x} = \frac{\sum_{i=1}^{k} n_i x_i}{n} = \frac{40750}{50} = 815$$

$$\sigma^2 = \frac{\sum_{i=1}^{k} n_i x_i^2}{n} - \bar{x}^2$$

$$= \frac{34062500}{50} - (815)^2 = 17025$$

$$\sigma = +\sqrt{17025} \cong 130.48$$

$$\text{CV} = \frac{\sigma}{\bar{x}} = \frac{130,48}{815} = 0,1601$$