MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo I - Dados Estruturados e Não Estruturados

Problemas típicos em bases de dados: Dados redundantes e desbalanceados

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Conteúdo:

- 1. Dados Não-estruturados
- 2. Dados Estruturados
- 3. Problemas típicos em bases de dados
 - A. Informações faltantes
 - B. Pontos "fora da curva" (outliers)
 - C. Informações errôneas
 - D. Dados redundantes
 - E. Dados desbalanceados

Referências:

- Salvador García, Julián Luengo, Francisco Herrera. Data Processing in Data Mining, 2015.
- Hadley Wickham, Tidy Data. Journal of Statistical Software, v.59, n.10, 2014.
- Katti Faceli; Ana Carolina Lorena; João Gama; André C.P.L.F. Carvalho. Inteligência Artificial: uma abordagem de aprendizado de máquina, 2011.

Referência complementar:

• PRATI, Ronaldo C.; BATISTA, Gustavo EAPA; SILVA, Diego F. Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowledge and Information Systems, v. 45, n. 1, p. 247-270, 2015.

D. Dados redundantes

Bases de dados que contém informações repetidas ou atributos irrelevantes para obter as respostas que se espera da análise.

A redundância pode atrapalhar no projeto de modelos de aprendizado e estatísticos pois a quantidade de exemplos pode influenciar no viés do modelo.

Redundância em bases de dados estruturadas:

- · Registros duplicados
- Atributos com valores iguais em todas as observacoes

Vamos carregar uma base de dados para mostrar exemplos

```
In [6]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

data = pd.read_csv("./dados/TACTD_01-D_Redund.csv")
data
```

Out[6]:

	Name	Sex	Year of Birth	Country of Birth	Religion	City	Profession
0	Eugenio Ewell	М	1968	USA	Christian	New Orleans	Nurse
1	Ivo Izidro	М	1988	Mexico	Christian	Acapulco	Nurse
2	Lindsey Lever	М	1965	USA	Christian	New Orleans	Nurse
3	Desiree Dardar	F	1995	USA	Christian	New Orleans	Nurse
4	Mariann Mulero	F	1973	USA	Christian	New Orleans	Nurse
95	Paityn Hale	М	1963	Peru	Christian	Arequipa	Nurse
96	Petra Cruz	F	1976	Mexico	Christian	Acapulco	Nurse
97	Margaret Keith	F	1970	USA	Christian	New Orleans	Nurse
98	Diego Colque	М	1958	Peru	Christian	Arequipa	Nurse
99	Raelynn Murphy	F	1962	USA	Christian	New Orleans	Nurse

100 rows × 7 columns

Linhas/registros duplicados

O tipo mais comum de dados redundantes são as linhas ou registros duplicados, ou seja, aquelas que possuem todos os valores de atributos iguais.

	<pre>data[data.duplicated()]</pre>										
t[2]:		Name	Sex	Year of Birth	Country of Birth	Religion	City	Profession			
	33	Apolonia Abler	F	1967	Canada	Christian	Vancouver	Nurse			
	51	Carlos Cobre	М	1983	Brazil	Christian	São Paulo	Nurse			
	61	Apolonia Abler	F	1967	Canada	Christian	Vancouver	Nurse			
	68	Ricardo Rima	М	1977	Peru	Christian	Arequipa	Nurse			

A consulta acima mostra apenas as linhas "extra", ou seja, as duplicadas encontradas após a ocorrência da primeira linha original.

Assim, ao consultar por um dos nomes que temos acima duplicados, veremos que há duas linhas para ele, sendo a duplicada considerada a linha 51.

In [3]:	data[data['Name']=='Carlos Cobre']										
Out[3]:		Name	Sex	Year of Birth	Country of Birth	Religion	City	Profession			
	13	Carlos Cobre	М	1983	Brazil	Christian	São Paulo	Nurse			
	51	Carlos Cobre	М	1983	Brazil	Christian	São Paulo	Nurse			

Felizmente, temos uma funcão pronta para remover duplicatas de dataframes, drop_duplicates(), na qual podemos manter a primeira ocorrência da linha duplicada: first, a última: last, ou remover todas as que aparecem duplicadas: False.

```
In [9]:
           d_ndup = data.drop_duplicates(keep='first')
           d_ndup[d_ndup['Name']=='Carlos Cobre']
 Out[9]:
                                                                         City
                                Year of Birth Country of Birth
                                                           Religion
                                                                             Profession
            13 Carlos Cobre
                                       1983
                                                     Brazil
                                                           Christian
                                                                    São Paulo
                                                                                  Nurse
           d ndup[d ndup['Name'] == 'Ricardo Rima']
In [10]:
Out[10]:
                           Sex Year of Birth Country of Birth Religion
                                                                        City
                                                                             Profession
                     Name
            18 Ricardo Rima
                             М
                                       1977
                                                      Peru
                                                            Christian Arequipa
                                                                                 Nurse
```

Atributos duplicados

Nesse caso temos redundância de um dos atributos, o que pode não representar um problema.

Notamos que, apesar de ter o mesmo nome, sexo e ano de nascimento, as duas pessoas nasceram em países diferentes e portanto não há redundância ou dados duplicados a remover.

Atributos irrelevantes

Investigando os atributos Profession e Religion, mostrando seus histogramas, notamos que todas as linhas tem o mesmo valor para esses atributos.

Apesar do valor informativo, ao construir modelos computacionais, por exemplo classificadores, esses atributos representam um aumento na dimensionalidade sem contribuir para a tarefa principal, classificação.

Redundância em dados não-estruturados

Muito comum pois os dados binários ou textuais possuem diversos elementos repetidos, que poderiam ser agrupados ou então desconsiderados. Exemplos incluem:

- o fundo de imagens e documentos
- timbre em documentos e cartas
- tipos de palavras em textos: artigos, conjunções, etc.

E. Dados Desbalanceados

Vamos estudar o problema de dados desbalanceados utilizando o conjunto de dados de natalidade em uma maternidade.

Num histograma mostrado anteriormente para o sexo dos bebês, vimos que a base de dados possui uma contagem muito mais alta do sexo Feminino do que do sexo Masculino.

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7faa280da400>


```
In [17]:
          data.loc[data['Sex'] == 'P', 'Sex'] = np.nan
          data['Sex'].hist()
Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x7faa2803d670>
           50
           40
           30
          20
          10
          data[data['Sex'].isnull()]
In [18]:
Out[18]:
              Sex Weight Gestational age Month Year
             NaN
                    3600
                                   36
                                            2017
```

Calculando o desbalanceamento nesse atributo:

Nesse caso temos um desbalanceamento de aproximadamente 1:3

Ao inferir modelos temos que tratar a amostra relativa ao Sexo Feminino e ao Sexo Masculino de forma a controlar por essa diferença.

Em alguns métodos de aprendizado, por exemplo, a quantidade de dados é levada em consideração e pode trazer um peso maior para a categoria chamada de *majoritária*, nesse caso o sexo Feminino.

```
In [ ]:
```