

Universidade Federal de Rondônia Departamento de Matemática e Estatística Bacharelado em Estatística

Edimar Jossivana Macedo Douglas Vinícius

Relatório do Trabalho de Análise de Sobrevivência

Edimar Jossivana Macedo Douglas Vinícius

Relatório do Trabalho de Análise de Sobrevivência

Relatório apresentado à Disciplina de Análise de Sobrevivência do Curso de Bacharelado em Estatística, da Universidade Federal de Rondônia - UNIR, para obtenção de aprovação.

Orientador: Prof. Dr.

Ji-Paraná 2019

Sumário

Lista de Figuras										
		2								
1	Introdução	3								
2	Descrição do Banco de Dados									
3		5								
	3.1 Carregar os dados	5								
	3.2 Estimador de Kaplan-Meier	5								
	3.3 Modelo de Riscos Proporcionais de Cox	8								
4	4 Resultados e Discusões									
5	Considerações Finais	12								

Lista de Figuras

1. Introdução

Iniciando...rsrsrs

2. Descrição do Banco de Dados

3.

3.1 Carregar os dados

Esse primeiro bloco de código carrega os pacotes necessários, juntamente com o veteran conjunto de dados do survivalpacote que contém dados de um estudo randomizado de dois tratamentos para câncer de pulmão.

```
library(survival)
library(ranger)
library(ggplot2)
library(dplyr)
library(ggfortify)
#-----
data(veteran)
head(veteran)
##
     trt celltype time status karno diagtime age prior
## 1
       1 squamous
                     72
                             1
                                   60
                                             7
                                                 69
                                                        0
                                                       10
## 2
                                   70
                                                 64
       1 squamous
                   411
                              1
                                              5
## 3
       1 squamous
                    228
                              1
                                   60
                                              3
                                                 38
                                                        0
                    126
                                                 63
                                                       10
       1 squamous
                              1
## 5
       1 squamous
                    118
                                   70
                                             11
                                                 65
                                                       10
                              1
                                   20
                                                        0
## 6
       1 squamous
                     10
```

3.2 Estimador de Kaplan-Meier

```
# Kaplan Meier Survival Curve
km <- with(veteran, Surv(time, status))</pre>
head(km,80)
                                                                              144
##
    [1]
          72
               411
                    228
                          126
                                118
                                       10
                                             82
                                                 110
                                                       314
                                                             100+
                                                                    42
                                                                           8
                                                                                     25+
                                                                                           11
##
   [16]
          30
               384
                      4
                           54
                                 13
                                      123+
                                            97+ 153
                                                        59
                                                             117
                                                                    16
                                                                        151
                                                                               22
                                                                                     56
                                                                                           21
                     20
                                      287
                                                                                           10
   [31]
          18
               139
                           31
                                 52
                                             18
                                                  51
                                                       122
                                                              27
                                                                    54
                                                                           7
                                                                               63
                                                                                    392
   [46]
           8
                92
                     35
                          117
                                132
                                       12
                                           162
                                                   3
                                                        95
                                                             177
                                                                  162
                                                                        216
                                                                              553
                                                                                           12
## [61] 260
               200
                    156
                          182+
                                143
                                      105
                                           103
                                                 250
                                                       100
                                                             999
                                                                  112
                                                                         87+ 231+ 242
                    587
                          389
                                 33
## [76] 111
              1
```

```
km_fit <- survfit(Surv(time, status) ~ 1, data=veteran)</pre>
summary(km_fit, times = c(1,30,60,90*(1:10)))
## Call: survfit(formula = Surv(time, status) ~ 1, data = veteran)
##
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
                     2
##
      1
            137
                           0.985 0.0102
                                              0.96552
                                                            1.0000
           97
                  39
                        0.700 0.0392
                                              0.62774
                                                            0.7816
```

	##	60	73	22	0.538	0.0427	0.46070	0.6288			
	##	90	62	10	0.464	0.0428	0.38731	0.5560			
	##	180	27	30	0.222	0.0369	0.16066	0.3079			
	##	270	16	9	0.144	0.0319	0.09338	0.2223			
	##	360	10	6	0.090	0.0265	0.05061	0.1602			
	##	450	5	5	0.045	0.0194	0.01931	0.1049			
	##	540	4	1	0.036	0.0175	0.01389	0.0934			
	##	630	2	2	0.018	0.0126	0.00459	0.0707			
	##	720	2	0	0.018	0.0126	0.00459	0.0707			
	##	810	2	0	0.018	0.0126	0.00459	0.0707			
	##	900	2	0	0.018	0.0126	0.00459	0.0707			
<pre>autoplot(km_fit)</pre>											

km_trt_fit <- survfit(Surv(time, status) ~ trt, data=veteran)</pre> autoplot(km_trt_fit)

3.3 Modelo de Riscos Proporcionais de Cox

```
# Fit Cox Model
cox <- coxph(Surv(time, status) ~ trt + celltype + karno</pre>
                                                                         + diagtime + age + price
summary(cox)
## Call:
## coxph(formula = Surv(time, status) ~ trt + celltype + karno +
     diagtime + age + prior, data = vet)
##
   n= 137, number of events= 128
##
##
##
                          coef exp(coef)
                                          se(coef)
                                                        z Pr(>|z|)
## trttest
                    2.946e-01 1.343e+00 2.075e-01 1.419 0.15577
## celltypesmallcell 8.616e-01 2.367e+00 2.753e-01 3.130 0.00175 **
## celltypeadeno 1.196e+00 3.307e+00 3.009e-01 3.975 7.05e-05 ***
8.132e-05 1.000e+00 9.136e-03 0.009 0.99290 -8.706e-03 9.913e-01 9.300e-03 -0.936 0.34920
## age
              7.159e-02 1.074e+00 2.323e-01 0.308 0.75794
## priorYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                   exp(coef) exp(-coef) lower .95 upper .95
## trttest
                     1.3426 0.7448 0.8939 2.0166
## celltypesmallcell 2.3669
                                0.4225 1.3799 4.0597
                   3.3071 0.3024 1.8336 5.9647
## celltypeadeno
                     1.4938 0.6695 0.8583 2.5996
## celltypelarge
                                         0.9573
## karno
                      0.9677
                                 1.0334
                                                    0.9782

      1.0001
      0.9999
      0.9823
      1.0182

      0.9913
      1.0087
      0.9734
      1.0096

      1.0742
      0.9309
      0.6813
      1.6937

## diagtime
## age
## priorYes
##
## Concordance= 0.736 (se = 0.021)
## Likelihood ratio test= 62.1 on 8 df, p=2e-10
## Wald test = 62.37 on 8 df,
                                         p=2e-10
## Score (logrank) test = 66.74 on 8 df, p=2e-11
cox_fit <- survfit(cox)</pre>
#plot(cox_fit, main = "cph model", xlab="Days")
autoplot(cox_fit)
```



```
aa_fit <-aareg(Surv(time, status) ~ trt + celltype +</pre>
                 karno + diagtime + age + prior ,
                 data = vet)
aa_fit
## Call:
## aareg(formula = Surv(time, status) ~ trt + celltype + karno +
##
       diagtime + age + prior, data = vet)
##
##
    n = 137
      75 out of 97 unique event times used
##
##
##
                         slope
                                   coef se(coef)
## Intercept
                     0.083400 3.81e-02 1.09e-02 3.490 4.79e-04
## trttest
                     0.006730 2.49e-03 2.58e-03 0.967 3.34e-01
## celltypesmallcell 0.015000 7.30e-03 3.38e-03 2.160 3.09e-02
                     0.018400 1.03e-02 4.20e-03 2.450 1.42e-02
## celltypeadeno
## celltypelarge
                     -0.001090 -6.21e-04 2.71e-03 -0.229 8.19e-01
## karno
                     -0.001180 -4.37e-04 8.77e-05 -4.980 6.28e-07
## diagtime
                    -0.000243 -4.92e-05 1.64e-04 -0.300 7.65e-01
## age
                    -0.000246 -6.27e-05 1.28e-04 -0.491 6.23e-01
                     0.003300 1.54e-03 2.86e-03 0.539 5.90e-01
## priorYes
##
## Chisq=41.62 on 8 df, p=1.6e-06; test weights=aalen
#summary(aa_fit) # provides a more complete summary of results
autoplot(aa_fit)
```


4. Resultados e Discusões

5. Considerações Finais