Chapter 9 Section 3

TOPICS

- USE THE INTEGRAL TEST TO DETERMINE WHETHER AN INFINITE SERIES CONVERGES OR DIVERGES
- USE PROPERTIES OF p-SERIES AND HARMONIC SERIES

TEXT READING ASSIGNMENT FOR 9.3

PAGE 617,618,619,620

TEXT HOMEWORK EXCERCISES FOR 9.3

PAGE 620 # 3,9,13,15 PAGE 621 #21,23,31,33,35 PAGE 622 #59,60,61,65,67,69

• USE THE INTEGRAL TEST TO DETERMINE WHETHER AN INFINITE SERIES CONVERGES OR DIVERGES

Theorem If f is a positive, continuous and decreasing function on $[1, \infty)$ and $a_n = f(n)$ then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\int_{1}^{\infty} f(x) dx$ converges.

Remark This theorem tells us both <u>necessary and sufficient</u> conditions for $\sum_{n=1}^{\infty} a_n$ to converge.

Remark This theorem does not tell us the sum of the series.

Remark You must be sure to check each of the conditions of this theorem before you apply it.

Worked Example 9.3.1

To apply the integral test use the steps below.

- 1) Verify f is positive and continuous on $[1, \infty)$.
- 2) Verify f is decreasing on $[1, \infty)$ (show either $a_n \ge a_{n-1}$ is equivalent to a true statement or f'(x) < 0 on $[1, \infty)$).
- 3) Evaluate the improper integral $\int_{1}^{\infty} f(x)dx$ as in section 8.8.
- 4) Either $\int_{1}^{\infty} f(x)dx$ and $\sum_{n=1}^{\infty} a_n$ both converge or both diverge.

Remark Convergence not affected by any finite number of terms. If you have a series that start at a number different than 1, it is still perfectly plausible to apply the integral test.

Student Exercise: Apply the integral test to determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ converges or diverges.

Student Exercise Solution 9.3.2

The idea behind the integral test can be summarized by a picture. Let's prove if $\int_{1}^{\infty} f(x)dx$ converges then $\sum_{n=1}^{\infty} a_n$ converges. To prove the covers, see text page 617.

The area of the rectangles are $1 \cdot f(2)$, $1 \cdot f(3)$, $1 \cdot f(4)$, $1 \cdot f(5)$, K, $1 \cdot f(n)$, K. Since $a_n = f(n)$ we have an area inequality $\sum_{n=2}^{\infty} a_n \le \int_{-1}^{\infty} f(x) dx$. If $\int_{-1}^{\infty} f(x) dx$ converges to L then $\sum_{n=1}^{\infty} a_n \le L - a_1 = L - f(1)$.

In homework problem 59, you are asked to show the remainder $R_N = \sum_{n=1}^{\infty} a_n - S_N$ satisfies $0 \le R_N \le \int_N^{\infty} f(x) dx$. Use the picture above as your guide.

In exercise 60, you are asked to prove $\sum_{n=1}^{N} a_n \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{N} a_n + \int_{N}^{\infty} f(x) dx$. Simply replace R_N by $\sum_{n=1}^{\infty} a_n - S_N$ in the inequality in problem 59; $0 \le R_N \le \int_{N}^{\infty} f(x) dx$.

Worked Example 9.3.3

Worked Example 9.3.4

• USE PROPERTIES OF p-SERIES AND HARMONIC SERIES

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ with p > 0 occurs so often, it has its own name it is called the *p-series*. A special case is when p = 1, in which case we get $\sum_{n=1}^{\infty} \frac{1}{n}$ called the *harmonic series*.

Using the integral test, we get the following results.

Theorem The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + L$

- 1) Converges if p > 1
- 2) Diverges if 0

Remark The proof is a straight forward application of the integral test. See page 619 for details.

Student Exercise: Which of the following *p*-series converge?

- a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$
- b) $\sum_{n=1}^{\infty} \frac{1}{n^{1.01}}$
- c) The harmonic series

Student Exercise Solution 9.3.5