

PCT/IL2004/000461

מדינת ישראל
STATE OF ISRAEL

REC'D 07 JUL 2004
WIPO PCT

BEST AVAILABLE COPY

Ministry of Justice
Patent Office

משרד המשפטים
לשכת הפטנטים

This is to certify that
annexed hereto is a true
copy of the documents as
originally deposited with
the patent application
particulars of which are
specified on the first page
of the annex.

זאת לתעודה כי
רצופים בזה העתקים
נכוניים של המסמכים
שהופקו לכתיליה
עם הבקשה לפטנט
לפי הפרטים הרשומים
בעמוד הראשון של
הנספח.

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

This 01 JUN 2004

רשם הפטנטים

Commissioner of Patents

נתאזר
Certified

מספר : Number	תאריך : Date
156263	הקדמת/נדחתה Ante/Post-dated
02-06-2003	

16033 /bc/03

בקשה לפטנט
Application for Patent

אני, (שם, המבקש, מענו ולגבי גוף מאוגד - מקום התאגדותו)

I (Name and address of applicant, and in case of body corporate - place of incorporation)

HADASIT Medical Research Services & Development Ltd.
P.O. Box 12000, Jerusalem 91120

הזשית שרותי מחקר רפואי ופתוח בע"מ
חברה ישראלית בערבות מוגבל, ת.ד. 12000, ירושלים 91120

Inventors:

Yaqoub Ashhab, Ph.D
Boaz Nachmias
Dina Ben-Yehuda, MD

Owner, by virtue of

the Law

הדין

מציאים :

דר. יעקב אשhab
מר בועז נחמיאס
פרופ' דינה בן יהודה
בעל אמצעאה מכח

שם הוא
(בעברית)
(באנגלית)

inanvention the title of which is

פפטידים הנגזרים מיליון, תכשיiri וokaneות המבילים אותן ושימושיהם

(English)

LIVIN-DERIVED PEPTIDES, COMPOSITIONS AND USES THEREOF

hereby apply for a patent to be granted to me in respect thereof.

מבקש בזאת כי ניתן עלייה פטנט

בקשת חלוקה - Application of Division		בקשת פטנט נוסף - Application for Patent Addition		דרישת דין קדימה Priority Claim			
מבקש פטנט from Application	מספר/ No.	לבקשת/פטנט to Patent/App.	מספר/ No.	מספר/סימן Number/Mark	תאריך Date	מדינת האגיז Convention Country	
מספר/ No.	תאריך/ Dated	מספר/ No.	תאריך/ Dated				
• ייפוי כח : כלל/ פרט/ P.O.A.: general/ individual -attached/to be filed later filled in case 130336							
המען למסירת מסמכים בישראל Address for Service in Israel LUZZATTO & LUZZATTO P.O. Box 5352 Beer-Sheva 84152							
ЛОЦАТО АТ ЛОЦАТО T.D. 5352 БАРШЕВ 84152							
התימה המבקשת Signature of Applicant לוצאו את לוצאטו ב"כ המבקשת LUZZATTO & LUZZATTO ATTORNEYS FOR APPLICANTS				2003 This	שנת 2 Of	יוני June	היום בחודש Of the year 2003
							לשימוש הלשכה For Office Use

טופס זה, כשהוא מוטבע בחותם לשכת הפטנטים ומושלם במספר ובתאריך ההגשת, הינו אישור להגשת הבקשה שפרטיה רשומים לעיל.
This form, impressed with the Seal of the Patent Office and indicating the number and date of filling, certifies the filing of the application
the particulars of which are set out above.

Delete whatever is inapplicable

• מחק את המיותר

16033/03

פפטידים הנגזרים מליבין, תבשiri רוקחות המכילים אותן ו שימושיהם

LIVIN-DERIVED PEPTIDES, COMPOSITIONS AND USES THEREOF

Field of the Invention

The present invention relates to the field of programmed cell death. More specifically, the present invention refers to peptides that display proapoptotic properties.

Background of the Invention

All publications mentioned throughout this application are fully incorporated herein by reference, including all references cited therein.

Apoptosis is an active mechanism of cell death controlling the development and homeostasis of multicellular organisms. Tight regulation is required to ensure a delicate balance of life and death. Indeed, loss of apoptosis regulation results in a wide variety of diseases. Excess apoptosis might result in neurodegenerative disorders [Mattson, M. P. (2000) *Nat. Rev. Mol. Cell Biol.*, 1: 120-129], reperfusion injury after ischemic episodes [Rathmell, J. C. and Thompson, C. B. (2002) *Cell*, 109 Suppl: S97-107], and immunodeficiency [Reed, C. J. (2000) *Semin. Hematol.*, 37: 9-16]. On the other hand, lack of apoptosis is involved in cancer [LaCasse, E. C. et al. (1998) *Oncogene*, 17: 3247-3259], and autoimmune disorders [Rathmell, J.C. and Thompson, C.B. (2002) *id ibid*]. Several gene families are involved in the negative regulation of apoptosis, including the Inhibitor of Apoptosis Proteins (IAP). The IAP family, discovered during the last five years, play a key role in apoptosis regulation and has become increasingly prominent in the field of cancer [Salvesen, G. S. and Duckett, C. S. (2002) *Nat. Rev. Mol. Cell Biol.*, 3: 401-410]. So far, eight human IAPs have been identified: c-IAP1, c-IAP2, NAIP, Survivin, XIAP, Bruce, ILP-2, and Livin. These proteins contain one or more repeats of a highly conserved 70 amino acids domain termed the baculovirus IAP repeat (BIR), located at the amino-terminal. With the exception of NIAP and Survivin, human IAPs contain a conserved sequence termed RING finger at the carboxy-terminal. IAPs can block apoptosis mainly through their ability to bind and inhibit specific caspases [Stennicke, H. R. et al. (2000) *Biochem. J.*, 350 Pt 2:

563-568]. Initially, the molecular interaction between IAPs and caspases was thought to be mediated through the BIR domain [Takahashi, R. et al. (1998) *J. Biol. Chem.*, 273: 7787-7790]. However recent crystallographic resolution studies revealed that conserved amino acids in the linker region between BIR1 and BIR2 of XIAP, are the most critical for its interaction with caspases 3 and 7. Surprisingly, the BIR2 domain itself has almost no direct contact with caspases 3 and 7 [Chai, J. et al. (2001) *Cell*, 104: 769-780; Huang, Y. et al. (2001) *Cell*, 104: 781-790; Riedl, S. J. et al. (2001) *Cell*, 104: 791-800]. The linker region preceding BIR2 can inhibit caspases through its ability to sterically hinder the substrate access. Yet, this region alone is not sufficient, and the BIR domain is required to either align or stabilize the structure. The BIR domain has also a regulatory function, as molecules such as SMAC/Diablo, and HtrA2 that inhibit IAPs function, bind to this region [Hegde, R. (2002) *J. Biol. Chem.*, 277: 432-438]. Several reports showed that many proteins containing a RING domain have E3-ubiquitin ligase activity. This activity is important in mediating the transfer of ubiquitin both to heterologous substrates as well as to the protein itself, thus targeting them to intracellular degradation [Suzuki, Y. et al. (2001) *J. Biol. Chem.*, 276: 27058-27063; Yang, Y. et al. (2000) *Science*, 288: 874-877]. Indeed, several IAPs were shown to mediate RING-dependent ubiquitylation of caspases as well as to themselves [Jesenberger, V. (2002) *Nat. Rev. Mol. Cell Biol.*, 3: 112-121]. Yet, the full potential of this function in apoptosis regulation remains unclear.

The essential role that IAPs play in the apoptotic process suggests that their activity must be tightly regulated. Indeed, it was reported that IAPs are regulated at the transcriptional/posttranscriptional levels as well as by interaction with inhibitory proteins [Vucic, D. et al. (2002) *J. Biol. Chem.*, 277: 12275-12279]. Another important mechanism to negatively regulate IAPs is the ability of certain caspases, such as caspases 3 and 7 to specifically cleave these anti-apoptotic proteins [Ikeda, H. et al. (1997) *Immunity*, 6: 199-208]. Among the IAP family, XIAP and cIAP1 were shown to undergo a site-specific

cleavage that is mediated by caspases [Deveraux, Q. L. *et al.* (1999) *Embo J.*, **18**: 5242-5251].

The present inventors and other groups have reported a novel IAP member, which was designated Livin/ML-IAP/KIAP [Vucic, D. *et al.* (2000) *Curr. Biol.*, **10**: 1359-1366; Lin, J. H. *et al.* (2000) *Biochem. Biophys. Res. Commun.*, **279**: 820-831; Kasof, G. M. (2001) *J. Biol. Chem.*, **276**: 3238-3246; Ashhab, Y. *et al.* (2001) *FEBS Lett.*, **495**: 56-60]. Livin contains a single BIR domain at the N-terminus and a carboxy-terminal RING domain. The inventors have previously demonstrated that Livin encodes two splicing variants, termed Livin α and β [Ashhab, Y. *et al.* (2001) *id ibid*]. These two proteins are highly similar, except for 18 amino acids located between the BIR and the RING domains, which are present in the α but not in the β isoform.

In the present invention, the inventors demonstrate that Livin undergoes site-specific cleavage by effector caspases 3 and 7, producing a large C-terminal subunit containing both the BIR and RING domains. Moreover, both Livin α and β undergo this cleavage, thus generating Livin-derived peptides α and β .

Unexpectedly, the inventors have found that the two Livin-derived peptides have pro-apoptotic properties. Thus, the present invention provides said pro-apoptotic peptides, compositions and uses thereof. In addition, the present invention provides methods utilizing these Livin-derived peptides.

These and other objects of the present invention will become apparent as the description proceeds.

Summary of the Invention

Little is known about the anti-apoptotic effect of Livin and virtually nothing is known about its regulatory mechanism. In the present invention, the inventors

demonstrate that Livin undergoes site-specific cleavage by effector caspases 3 and 7, which results in a large C-terminal subunit containing both the BIR and RING domains. Interestingly, this subunit does not only lose its original anti-apoptotic function, but rather it acts, in a paradoxical fashion, as a pro-apoptotic factor that inflicts more cell death.

Thus, in a first aspect, the present invention provides a livin-derived peptide. Said peptide is either p30-Livin α or p28-Livin β , as defined herein, wherein said p30-Livin α peptide comprises the sequence substantially as defined in SEQ. ID. NO.1, or functional analogues, derivatives or fragments thereof, and p28-Livin β peptide comprises the sequence substantially as defined in SEQ. ID. NO.2, or functional analogues, derivatives or fragments thereof.

The present invention relates, in a second aspect, to a pharmaceutical composition for inducing apoptosis, or programmed cell death, comprising as active ingredient a livin-derived peptide. Preferably, said apoptosis is induced by a treatment or agent selected from any one of etoposide, anti-CD95/Fas, TNF α and staurosporine.

The present invention also refers to the use of the above-described pharmaceutical composition as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents.

In another aspect, the present invention refers to the use of a livin-derived peptide, as defined by the invention, for the induction of apoptosis or programmed cell death. Preferably, the peptide of the invention is to be used in the induction of programmed cell death of malignant cells.

In a further aspect, the present invention relates to the use of a livin-derived peptide as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents, wherein said peptide comprises a sequence as defined in

any one of SEQ. ID. NO.1 or SEQ. ID. NO.2. Preferably, said death-inducing treatments or agents are selected from any one of etoposide, anti-CD95/Fas, TNF α and staurosporine.

In a yet further aspect, the invention provides a method for the preparation of a pharmaceutical composition for the induction of apoptosis, wherein said method involves admixing any one of the peptides as defined by SEQ. ID. NO.1 or SEQ. ID. NO.2, with a pharmaceutically acceptable adjuvant, carrier or diluent, and optionally with at least one additional active agent.

In an even further aspect, the present invention provides a method of enhancing the sensitivity of cells to death-inducing treatments or agents, wherein said method comprises the steps of:

- (a) Introducing a livin-derived peptide comprising a sequence essentially as defined in any one of SEQ. ID. NO.1 or SEQ. ID. NO.2 into a cell; and
- (b) Treating said cell with death-inducing agents or treatments.

Finally, the present invention refers to the use of the pharmaceutical composition as defined by the invention for the treatment of cancerous cells.

The invention will be further described on the hand of the following figures, which are illustrative only and do not limit the scope of the invention which is defined by the appended claims.

Brief Description of the Figures**Figure 1 Cleavage of endogenous Livin during staurosporine-induced apoptosis.**

MeWo cells were plated 24 h. prior to staurosporine (1 μ M) exposure. At the indicated times cells were lysed, normalized for total protein and analyzed by western blot.

- (a) Western blot using monoclonal anti-Livin Ab, that detects both full length Livin and as well as the cleavage products.
- (b) Western blot using anti-PARP antibody. The ratio between full-length PARP and its cleavage fragment (p89) serves as a marker of apoptosis. +/- refer to the presence or absence of staurosporine treatment. PARP cleavage fragment (p89) was detected more strongly than full length PARP, probably due to a higher affinity of the antibody.

Figure 2 Livin cleavage is a ubiquitous phenomenon.

Livin α or β were stably transfected into different cell lines, and treated with various apoptotic stimuli. Livin cleavage was detected in Jurkat T-cell leukemia/Lymphoma cells treated with: (a) etoposide 2.5 μ g/ml, or (b) staurosporine 0.5 μ M, and in 721.221 EBV-transformed B cell line treated with: (c) etoposide 5 μ g/ml (d) staurosporine 0.5 μ M.

Figure 3 Livin cleavage is caspase mediated.

- (a) Jurkat cells transfected with either Livin α or β were incubated for 1 hour in the presence or absence of 20 mM or 200 mM ZVAD-FMK, a pan-caspase inhibitor, prior to treatment with staurosporine (0.5 μ M) to induce apoptosis.
- (b) MCF-7, a breast cancer cell line null for caspase 3, was stably transfected with Livin α or β and treated with staurosporine (2 μ M) for 12 hours to induce apoptosis. Livin was detected using anti-Livin antibody.

Figure 4 Effector but not initiator caspases cleave Livin *in vitro*.

6xHis-Livin α and β were generated in bacteria and purified on a nickel column.

- (a) Recombinant Livin β was incubated for 30 minutes at 37°C with: no caspase (-), caspase 3 (60U), caspase 6 (3U), caspase 7 (0.75 U), caspase 8 (90U) or caspase 9 (2U). Caspases 3 and 8 units are defined differently than caspases 6, 7 and 9. Using an appropriate colorimetric substrate, similar activity was achieved with caspases 3 and 7.
- (b) Recombinant Livin α was incubated with either no caspase (-), or caspases 6 and 7, at the indicated amounts. The samples were then resolved on gel and analyzed using anti-Livin antibody (Ab). Unspecific bands that resulted from the purification were also detected.

Figure 5 Livin is cleaved at aspartic acid 52.

- (a) Schematic of the full-length Livin α and β , showing the BIR and RING domains, and the 18 amino acids difference between the two isoforms (black box). The mutation sites D52 and D238 are marked by arrows.
- (b) cDNAs encoding full-length Livin α and β or mutants Livin D52E and D238E were translated *in vitro* in reticulocyte lysate. The products of the translation reactions were incubated for 30 min. with caspase 3 (60U), caspase 6 (2U), caspase 7 (1U), and caspase 9 (1U). Reactions were then resolved on gel and analyzed with anti-Livin antibodies.

Figure 6 Cleavage of Livin eliminates its anti-apoptotic effect and produces a pro-apoptotic subunit.

- (a) 721.221 cells stably expressing either Livin α , or p30 Livin β , and wild type 721.221 cells, were treated with 0.1 μ g/ml anti-CD95/Fas antibody for 18 hours. Nuclear morphology was visualized using acridine orange staining and used for determining apoptosis rate. Apoptotic cells were scored when the nuclei displayed chromatin condensation and/or nuclear fragmentation.

- (b) Western blot analysis confirming the expression of the appropriate proteins.
- (c) 293T cells were transiently transfected with the indicated plasmids. 24 hours post-transfection cells were harvested and analyzed by flow cytometry. Apoptosis of GFP-positive cells was analyzed by Annexin-V/PI stain.
- (d) Western blot analysis of transiently transfected 293T cells 24 hours post-transfection.

Figure 7 Post-vaccination metastatic melanoma cell line over-expresses Livin, rendering the cells resistant to chemotherapy.

- (a) Melanoma cell lines were lysed, normalized for total protein and analyzed for Livin, XIAP and Survivin expression.
- (b) Melanoma cell lines LB33 Mel A1 and B1 were treated with etoposide (15 µg/ml). Apoptosis rate was determined by nuclear morphology, as described.
- (c) Western blot analysis of the Melanoma cell line LB33 Mel A1 and B1 for Livin.
- (d) Western blot analysis of the Melanoma cell line LB33 Mel A1 and B1 for PARP cleavage as a marker of apoptosis.

Figure 8 Livin expression in primary melanoma cells mediates etoposide resistance.

- (a) Livin, XIAP and Survivin expression was determined in 19 primary cultures of melanoma cells derived from patient's tumors (numbers indicate patient's code). (b) 6 samples were selected according to the level of Livin expression (high: 5556, 55112, moderate: 5524, 55164, or undetectable: 5530, 5533). These samples were treated with Etoposide (20 µg/ml). Apoptosis rate was determined by nuclear morphology, as described. The data shown are representative of three independent experiments, which were also confirmed by flow cytometry, using Sub-G1 assay.
- (c) Three samples that represent the different levels of Livin expression were lysed and western blot analysis was performed using anti-Livin Ab.

Detailed Description of the Invention

The following terms used throughout this specification are defined herein:

- p30-Livin α : Livin α -derived peptide, cleavage product, which may also be synthetically produced, having the following amino acid sequence
(SEQ. ID. NO.1)

GQILGQLRPLTEEEEEEAGATLSRGPAFPGMGSEELRLASFYDWPLTAEVPPPELLAA
AGFHTGHQDKVRCFFCYGGLQSWKRGDDPWT EHAKWFPSCQFLLRSKGRDFVHSVQE
THSQLLGSDWPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQE PGGVSPA EAQR
AWWVLEPPGARDVEAQLRLQEERTCKVCLDRAVSIVFVPCGHLVCAECAPGLQLCPI
CRAPVRSRVRTFLS

- p28-Livin β : Livin β -derived peptide, cleavage product, which may also be synthetically produced, having the following amino acid sequence
(SEQ. ID. NO.2)

GQILGQLRPLTEEEEEEAGATLSRGPAFPGMGSEELRLASFYDWPLTAEVPPPELLAA
AGFHTGHQDKVRCFFCYGGLQSWKRGDDPWT EHAKWFPSCQFLLRSKGRDFVHSVQE
THSQLLGSDWPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQE PGARDVEAQLR
RLQEERTCKVCLDRAVSIVFVPCGHLVCAECAPGLQLCPI CRAPVRSRVRTFLS

Livin, a new member of the IAP family, was recently described by the inventors and by other groups [Vucic, D., et al, (2000) *id ibid*; Ashhab Y., et al. (2001) *id ibid*]. Originally, it was shown that Livin has two isoforms, Livin α (SEQ. ID. NO.3) and Livin β (SEQ. ID. NO.4), with different anti-apoptotic properties and tissue distribution patterns [Ashhab Y., et al. (2001) *id ibid*]. In the present invention, the inventors demonstrate, for the first time, that following apoptotic stimuli, both Livin isoforms α and β undergo a specific proteolytic cleavage that trims the 52 amino acids at the N-terminus of Livin. A C-terminal Livin subunit is thus produced, of approximately 30 and 28 kDa, respectively, containing the full BIR and RING domains. As shown in Example 1 and Figure 1, Livin cleavage appeared early after the apoptotic stimuli and before significant levels of apoptosis were detected, suggesting Livin cleavage is an early key regulator that controls the progression of apoptosis.

Thus, in a first aspect, the present invention provides a livin-derived peptide. Said peptide is either p30-Livin α or p28-Livin β , as defined herein, wherein said p30-Livin α peptide comprises the sequence substantially as defined in SEQ. ID. NO.1, or functional analogues, derivatives or fragments thereof, and p28-Livin β peptide comprises the sequence substantially as defined in SEQ. ID. NO.2, or functional analogues, derivatives or fragments thereof.

In contrast to general peptidases, caspases cleave their targets at specific sites after aspartic acid. Therefore, caspase-mediated cleavage of several cellular proteins serves as a mechanism to produce subunits with modulated or new functions rather than totally abolishing their effect. The presence of the intact BIR and RING domains in the C-terminal subunits of Livin for a relatively long time after the induction of apoptosis indicates an apoptosis-regulatory function of these subunits. Indeed, the experiments performed with 721.221 cells (Example 5, Figure 6) which stably expressed the cleaved subunit of Livin α , p30-Livin α , revealed that it not only loses its anti-apoptotic effect, but also gained significant pro-apoptotic activity. In spite of repeated attempts, the inventors were unable to generate 721.221 cells that stably expressed p28-Livin β . However, transient transfection experiments revealed that both Livin subunits have proapoptotic activity in 293T cells (Example 5, Fig. 6). The p28-Livin β subunit showed a slightly more potent pro-apoptotic effect in these cells. It is possible that in 721.221 cells this activity of p28-Livin β precluded the generation of stable clones. Further experiments are required to determine the specific differences in pro-apoptotic activity between the two Livin isoforms.

Thus, the present invention provides a Livin-derived, pro-apoptotic peptide. This peptide may be the cleavage product of Livin α , which is herein designated p30-Livin α . Alternatively, the peptide is the cleavage product of Livin β , which is herein designated p28-Livin β .

In a second aspect the present invention relates to a pharmaceutical composition for inducing apoptosis, or programmed cell death, comprising as active ingredient a livin-derived peptide, wherein said livin-derived peptide comprises the sequence substantially as defined in any one of SEQ. ID. NO.1 or SEQ. ID. NO.2, or functional analogues, derivatives or fragments thereof. Preferably, said apoptosis is induced by a treatment or agent selected from any one of etoposide, anti-CD95/Fas, TNF α and staurosporin. Preferably, the composition of the invention is for inducing programmed cell death in malignant cells.

The preparation of pharmaceutical compositions is well known in the art and has been described in many articles and textbooks, see e.g., Gennaro A. R. ed. (1990) *Remington's Pharmaceutical Sciences*, Mack Publishing Company, Easton, Pennsylvania, and especially pages 1521-1712 therein.

In another aspect, the present invention refers to the use of a livin-derived peptide, as defined by the invention, for the induction of apoptosis or programmed cell death. Preferably, the peptide of the invention is to be used in the induction of programmed cell death of malignant cells.

In contrast to other IAP family members like XIAP and cIAP1, the present invention shows the first example of an IAP cleavage product that acts as a pro-apoptotic factor despite bearing a BIR domain. A possible explanation for this unique behavior is that an additional, as yet undetermined, motif at the first 52 amino acids of Livin can modulate the anti-apoptotic effect of the BIR domain. The absence of this motif might enhance the E3-ubiquitin ligase activity of the RING domain that in turn targets other anti-apoptotic proteins to proteasome-mediated degradation. The subunit might also act as a pseudo-substrate, hindering the activity of other IAP family members. These possibilities are currently being explored.

In a further aspect, the present invention relates to the use of the livin-derived peptide of the invention as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents. Preferably, said death-inducing treatments or agents are selected from any one of etoposide, anti-CD95/Fas TNF α and staurosporin, which are preferably used in malignant cells.

In a yet further aspect, the present invention refers to the use of the pharmaceutical composition of the invention as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents.

In an even further aspect, the invention provides a method for the preparation of a pharmaceutical composition for the induction of apoptosis, wherein said method involves admixing any one of the peptides as defined by the invention with a pharmaceutically acceptable adjuvant, carrier or diluent, and optionally with at least one additional active agent.

Alternatively, the present invention provides a method of enhancing the sensitivity of cells to death-inducing treatments or agents, wherein said method comprises the steps of:

- (a) Introducing a livin-derived peptide as defined by the invention into a cell; and
- (b) Treating said cell with death-inducing agents or treatments.

Preferably, said cells to be treated by this method are malignant cells.

In the context of the present invention, malignant cells refers to cells that are malignant or otherwise derived from solid as well as non-solid tumors.

In the present invention the inventors demonstrate the important role of the endogenous Livin in chemoresistance of melanoma cells. Primary cultures of melanoma cells were tested for the expression of Livin, XIAP and Survivin. XIAP and Survivin were widely expressed in most of the melanoma samples

tested. On the other hand, Livin was expressed at variable levels, in 10 out of the 27 melanoma samples. Direct correlation between resistance to etoposide-induced apoptosis and Livin expression was observed *in vitro*. In contrast, expression of XIAP and Survivin did not correlate with drug-resistance. The ability of exogenously-expressed Livin β to inhibit etoposide-induced apoptosis was previously demonstrated by the inventors [Ashhab, Y. *et al.* (2001) *id ibid*]. Similar experiments showed the ability of exogenous Livin β to protect Jurkat against various other hemotherapeutic agents including Daunorubicin, Fludarabine and Cytosine arabinoside (unpublished data). The clinical data of the patients from whom the cell lines were established, support the *in vitro* correlation between chemotherapy resistance and Livin expression. Five out of the 7 patients who did not respond to chemotherapy had intermediate to high levels of Livin expression, whereas among the responding patients only 1 out of 8 expressed Livin, at a low level. These differences between responders and non-responders were found to be statistically significant.

The results shown in Example 6 strongly correlate Livin expression with chemotherapy resistance, i.e., having an anti-apoptotic effect. Hence, the pro-apoptotic effect of the Livin-derived peptides, which is the subject of the present invention, was a completely unexpected finding. Thus, the peptides of the invention display great potential as agents for the induction of apoptosis, or programmed cell death, in target cells. Particularly, the peptides, as well as analogs thereof, and the compositions comprised thereof, may be used in the treatment of cancer. The introduction of peptides p30-Livin α or p28-Livin β , either alone or in combination, into cells is likely to direct them to the programmed cell death pathway. Alternatively, it might act to enhance the sensitivity of the cells to death-inducing agents or treatments. Appropriate cells for such treatment are cells derived from melanoma, lymphoma, T-cell leukemia, epithelial cells, human embryonic kidney cells (like the 293 HEK cell line) or the 721.221 cell line.

Hence, in a last aspect, the present invention refers to the use of the pharmaceutical composition as defined by the invention for the treatment of cancer.

As used herein to describe the present invention, "cancer", "tumor" and "malignancy" all relate equivalently to a hyperplasia of a tissue or organ. If the tissue is a part of the lymphatic or immune systems, malignant cells may include non-solid tumors of circulating cells. Malignancies of other tissues or organs may produce solid tumors. In general, the peptide of the present invention as well as the composition and the methods of the present invention may be used in the treatment of non-solid and solid tumors,

In summary, Livin is able to interfere with the apoptotic process immediately at the starting point. It can inhibit initiator caspase 9 [Kasof, G.M. and Gomes, B.C. (2001) *J Biol Chem*, 276: 3238-3246], but it cannot be cleaved by caspases 9 or 8. Once a sufficient apoptotic signal is received, the situation changes and effector caspases such as 3, 6 and 7, become activated and the cell is committed to apoptosis. Caspases 3 and 7 are also inhibited by Livin [Kasof, G.M. and Gomes, B.C. (2001) *id ibid*], but at the same time, as shown by the present inventors, they are able to cleave Livin, and convert it from an anti-apoptotic to a pro-apoptotic agent. Taken together, these results demonstrate the versatile nature of Livin in the apoptotic cascade.

Disclosed and described, it is to be understood that this invention is not limited to the particular examples, process steps, and materials disclosed herein as such process steps and materials may vary somewhat. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only and not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof.

It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The following examples are representative of techniques employed by the inventors in carrying out aspects of the present invention. It should be appreciated that while these techniques are exemplary of preferred embodiments for the practice of the invention, those of skill in the art, in light of the present disclosure, will recognize that numerous modifications can be made without departing from the spirit and intended scope of the invention.

Examples

Experimental Procedures

Cells and apoptosis induction

The Jurkat human T cell leukemia/lymphoma cell line, and 721.221 EBV-transformed B cell line were grown in RPMI 1640. MCF-7 human breast carcinoma cells, 293T human embryonic kidney cells, and the melanoma cell lines LB33 Mel A1 and B1 (a generous gift from Coulie PG), 1259-mel, 1074-mel, 1106-mel and 1612-mel [Porgador, A. *et al.* (1997) *Proc. Natl. Acad. Sci. USA*, **94**: 13140-13145] were grown in DMEM. Media were supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin, 1mM L-glutamine. Primary melanoma cells were derived and maintained as described [Lotem, M. *et al.* (2002) *Br J Cancer*, **86**: 1534-1539]. To induce apoptosis, cells were treated with anti-CD95 antibody, clone DX2 (R&D Systems, MN, USA),

staurosporine, a protein kinase C inhibitor, and the Topoisomerase II-inhibitor etoposide (Sigma, USA).

Western blot analysis and antibodies

Whole cell lysates were prepared using lysis buffer (Tris-HCl 20 mM, EDTA 2 mM, β-2-Mercaptoethanol 6 mM, NP-40 1%, SDS 0.1%). Protease inhibitors included: PMSF 1 mM, Protease inhibitor cocktail (Sigma) diluted 1:10, and Complete inhibitor cocktail (Roche, Germany) diluted 1:25. About 0.25-1x10⁶ cells were lysed in a total volume of 100 µl, incubated at 4°C for 20 min. with vigorous vortexing. Protein content was assessed by Bradford assay (Bio-Rad, Germany), according to the manufacturer's instructions. Samples were resolved on a 10% Bis-Tris pre-cast gel, following the manufacturer's instructions (Invitrogen, USA). After transferring the gel to a PVDF membrane (Millipore, MA USA), the membrane was exposed to the antibodies in blocking solution (PBS 1% Casein, 0.05% Tween 20) for 1 hour, followed by three 5-minute washes with PBS. The monoclonal antibody against Livin (clone:88C570) was purchased from Imgenex, and diluted 1:3000 in blocking solution. Survivin 6E4 monoclonal antibody was used according to the manufacturer's recommendation. For these antibodies, Envision-HRP (DAKO, Denmark) was used as a secondary antibody for Enhanced Chemiluminescence (ECL) reaction. Polyclonal antibodies against either PARP or XIAP (Cell signaling, MA, USA) were diluted according to the manufacturer's recommendation. Anti-rabbit IgG HRP-linked antibody (Cell signaling, MA, USA) was used as a secondary antibody. ECL reaction was performed by mixing solution A: 6 ml Tris 100 mM pH=8.5, 3.3 µl H2O2 30%, with solution B: 6 ml Tris 100 mM pH=8.5, 60 µl Luminol 250 mM (Sigma), 26.6 µl p-Coumeric acid 90 mM (Sigma), for 1 min in the dark.

Plasmid constructs and cell transfection

The retroviral vector pLXSN (Clontech, CA USA) that contains the cDNA of either Livin α or β splicing variants were prepared as previously described

(21). Cells were infected with the packaged particles, and were placed under selection using G418 (Sigma).

Transfection with the pIRES2-EGFP plasmid (QIAGEN, Germany) encoding p30-Livin α or p28-Livin β , and as positive controls, the full length wild type cDNA of either Livin α or β was done either by electroporation, in 721.221 cells [Mandelboim, O. et al. (1996) *J. Exp. Med.*, 184: 913-922], or using PolyFect (QIAGEN), in human embryonic kidney 293T cells, according to manufacturer's instructions. Since pIRES2-EGFP contains an internal ribosome entry site, it permits both the gene of interest and the EGFP gene to be translated from a single bicistronic mRNA. Thus, cells transfected with this plasmid may be monitored for transfection by the absence or presence of the GFP signal.

Site-directed mutagenesis

Site-directed mutagenesis of pL-Livin α -SN or pL-Livin β -SN was performed using a PCR-based megaprimer method [Brons-Poulsen, J. et al. (1998) *Mol. Cell Probes*, 12: 345-348]. The forward and the reverse flanking primers were the following: EcoRI-Start 5'-GGGGAATTCTGGTCAGAGCCAGTGTC-3' (SEQ. ID. NO.5) and BamHI-Stop 5'-GGGGGATCCGGAGCCCACTCTGCA-3' (SEQ. ID. NO.6). The restriction sites used for subcloning are underlined. To generate a megaprimer that will introduce either the mutation D52E or D238E, the forward mutated primers D52E(F) 5'-CGTGGAaGGCAGATCCT-3' (SEQ. ID. NO.7), and D238E(F) CCAGGGAaGTaGAGGCGCA (SEQ. ID. NO.8) were used respectively. Each of these forward primers was used with BamHI-Stop primer to generate the megaprimer with the mutated bases (lower case). In the primer D238E(F), an additional nonsense change was introduced at the third base of valine codon in order to abolish the restriction site for BstXI, which will be used as a selection marker. The PCR product was purified with QIAquik column (QIAGEN). 300 ng of the purified megaprimer was then used as reverse primer with forward flanking primer EcoRI-Start.

To construct the cleavage fragment p30-Livin α and p28-Livin β , the forward primer EcoRI-start-53 5'-
GGGGAATTCAGTGTTCCTCCATGGGGCAGATCCTGGGCCA-3' (SEQ. ID. NO. 9) (beginning of the translation in italics) was used with the primer BamHI-Stop. The Pwo DNA polymerase (Roche), which has proof-reading activity, was used for all cloning experiments. The PCR products were purified as above, then digested with the indicated restriction enzymes. The fragments were subcloned in the appropriate vector. In addition to using the absence of the restriction site for BstXI, as a selection marker, the introduction of the desired change was confirmed by sequencing each plasmid in both directions.

In vitro transcription and translation

The wild type cDNA of Livin α and β as well as the mutated cDNA D52 \square E or D238 \square E, were cloned in pCR2.1-plasmid (Invitrogen, USA). Plasmid DNA was in vitro transcribed and translated using the TNT T7 transcription-translation-coupled reticulocyte lysate system (Promega, USA). Each reaction contained 1 μ g of plasmid DNA in a final volume of 50 μ l. The reaction components and the conditions were according to the instructions of the manufacturer. The detection of the translated product was made by Western blot using anti-Livin antibody.

Production of 6xHis-recombinant Livin

For production of recombinant Livin, full-length cDNA of either α or β variants were cloned in frame with the N-terminally 6xHis-tag in the plasmid pQE30 (QIAGEN). The primers were Livin-Exp-F 5'-TGTTGGATCCATGGGACCTAAAGACA-3' (SEQ. ID. NO.10) and Livin-Exp-R 5'-GGCAAAGCTTCTAGGACAGGAAGGTGC-3' (SEQ. ID. NO.11), which have the underlined BamHI and HindIII restriction sites, respectively. The plasmids were introduced into *Escherichia coli* strain BL21(DE3). The 6xHis-tagged proteins were prepared from the soluble fraction upon induction with

1mM isopropyl-1-thio- β -D-galactopyranoside at 37°C for 3h. The recombinant proteins were purified on a Nickel column (Pharmacia). Coomassie blue staining analysis following SDS-PAGE revealed >90% intact protein.

Apoptosis assays

Nuclear morphology was visualized using acridin orange (Sigma) staining as described [Loo, D. T. et al. (1998) *Methods Cell Biol.*, 57: 251-264]. Apoptotic cells were scored when the nuclei displayed chromatin condensation and/or nuclear fragmentation. The percentage of apoptotic to viable cells was counted by fluorescence microscopy and 500 cells were scored for each sample. Flow cytometry analysis of the apoptotic cells was done using two different methods. In the Sub-G1 assay the cells were harvested, washed with PBS and fixed using 100% methanol. Following an overnight incubation at -20°C, cells were rehydrated with PBS for 30 minutes on ice, and then resuspended in PBS with RNase A (50 µg/ml) and stained with Propidium Iodide (PI) (Sigma) at a final concentration of 5 µg/ml. Flow cytometry analysis was performed in FL2 histogram. Cells transfected with a GFP-containing plasmid were analyzed using Annexin-V-Cy5 and PI stained according to the manufacturer instructions (MBL, Japan). In stably transfected cultures with a rate of GFP-positive cells higher than 95%, all cells were analyzed for apoptosis. In transiently transfected cells, GFP expression was first analyzed (FL-1), and only GFP-positive cells were analyzed for Annexin-V-Cy5 stain (FL-4), and PI stain (FL-3).

Caspase inhibitors and in vitro caspase assay

Cells were incubated with caspase inhibitors for 1-2 hour prior to treatment with the apoptotic stimuli. Pan caspase inhibitor Z-VAD-FMK (R&D systems, MN USA), specific caspase 3 inhibitor Z-DQMD-FMK at 60 µM, and caspase 6 inhibitor VEID-CHO at 60 µM, were used (Calbiochem, CA, USA). Recombinant caspases were purchased from Calbiochem and incubated for 30 min. at 37°C with recombinant Livin. According to the manufacturer, the

units, of each recombinant caspase are defined differently. Caspase 3 and 8 units are defined as the amount of enzyme that will release 1 pmol of pNA from either DEVD-pNA or Ac-IETD-pNA, respectively, per minute at 30°C. Caspase 6, 7 and 9 units are defined as the amount of enzyme that will release 1 nmol of pNA from either, Ac-VEID-pNA, Ac-DEVD-pNA, or LEHD-pNA, respectively, per hour at 37°C. Caspase 3 and 7 activity was calibrated using a caspase activity assay (Calbiochem, CA USA). Caspase 9 activity was assessed using caspase-9 colorimetric substrate LEHD-pNA (Biovision, CA, USA). Recombinant Granzyme B (Biomol, PA, USA) activity was confirmed with Granzyme B activity assay kit (Biomol), using Ac-IEPD-pNA.

General Methods of Molecular Biology

A number of methods of the molecular biology art are not detailed herein, as they are well known to the person of skill in the art. Such methods include PCR cloning, expression of cDNAs, analysis of recombinant proteins or peptides, transformation of bacterial and yeast cells, transfection of mammalian cells, and the like. Textbooks describing such methods are, e.g., Sambrook *et al.* (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Laboratory, ISBN: 0879693096; F. M. Ausubel (1988) *Current Protocols in Molecular Biology*, ISBN: 047150338X, John Wiley & Sons, Inc. Furthermore, a number of immunological techniques are not in each instance described herein in detail, as they are well known to the person of skill in the art. See, e.g., Harlow and Lane (1988) *Antibodies: a laboratory manual*. Cold Spring Harbor Laboratory.

Example 1

Livin is cleaved during the apoptotic process

Upon the induction of apoptosis in MeWo, a melanoma cell line that express high levels of Livin, a specific cleavage of both Livin isoforms was observed. Full length Livin α and Livin β were detected as approximately a 39 and 37

kDa proteins, respectively. Treatment with staurosporine produced, in a time-dependent manner, detectable fragments of 30 kD and 28 kD, termed p30-Livin α and p28-Livin β , respectively (Fig. 1a). No cleavage was detected after 12 hours without treatment. This difference in molecular weight represents the difference between full length Livin α (39 kDa) and Livin β (37 kDa), and suggests a common cleavage site for both isoforms. Concomitantly with the appearance of the cleavage fragments, a marked depletion of the full length of both Livin isoforms was observed (Fig. 1a). The smaller fragment of approximately 10 kDa, could not be detected due to the use of a monoclonal antibody that is specific to an epitope located on the large detectable fragments. PARP (poly ADP ribose polymerase) is a nuclear protein involved in DNA repair predominantly in response to environmental stress. This protein is one of the main targets of caspase 3. Cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis. Following exposure to anti-Livin antibody, the membrane was striped and exposed to PARP antibody that detects full length PARP, as well as the large fragment (89 kDa) and small fragment (24 kDa). A clear correlation between the cleavage of Livin and the cleavage of PARP as a marker of caspase 3 activity and apoptosis was noted (Fig 1b). A decrease in PARP was observed after 12 hours of treatment, probably due to protein degradation, as a consequence of a high rate of apoptosis.

To further explore the cleavage of each isoform, retroviral infection to establish a Jurkat T-cell Leukemia/Lymphoma cell line and an EBV-transformed B cell line 721.221, expressing high, stable levels of either Livin α or β were used. In their previous work, the inventors showed that both Livin isoforms can protect against anti-CD95/Fas antibody-induced apoptosis [Ashhab, Y. *et al.* (2001) *id ibid*]. Notably, testing other chemotherapeutic agents revealed different anti-apoptotic properties of Livin isoforms. While only Livin α can protect from staurosporine-induced apoptosis, Livin β can only block etoposide-induced apoptosis. A panel of these three drugs: etoposide, staurosporine, and anti-

CD95/Fas ligand was thus used to induce apoptosis in the transfected Jurkat and 721.221 cells. Consistently, both Livin isoforms were cleaved by etoposide- and staurosporine-induced apoptosis, as shown in Figure 2. Similar results were observed when cells were treated with anti-CD95/Fas antibody (data not shown). The correlation between the timing of the cleavage and apoptosis rate was further investigated. Notably, cleavage was observed as soon as 2 hours after the treatment with etoposide, while using Annexin-V stain, only minor levels of apoptosis were detected (data not shown). Thus, suggesting that Livin cleavage is an early event during the apoptotic process.

Example 2

Livin cleavage is caspase-mediated

It has been previously shown that a large group of proteins undergo specific cleavage by caspases during the apoptotic process. To determine whether Livin cleavage is also mediated by caspases, a pan caspase inhibitor zVAD-FMK was used. Pre-incubation of Jurkat cells with zVAD-FMK prior to treatment with etoposide significantly diminished the cleavage of Livin, in a dose-dependent manner, indicating that this is a caspase-dependent event (Fig. 3a).

The three main effector caspase are caspase 3, 6 and 7. To test whether these caspases cleave Livin *in vivo*, Jurkat cells were pre-incubated with specific inhibitors for either caspase 3 or 6, prior to treatment with etoposide. Caspase 3 inhibitor but not caspase 6 inhibitor was able to diminish the cleavage (data not shown).

A specific inhibitor of caspase 7 has not yet been described. Thus, the MCF-7 cell line, a breast cancer cell line that lacks caspase 3 but expresses caspase 7 was used. MCF-7 cells were transfected with both Livin isoforms, since endogenous Livin was not detected. Upon induction of apoptosis using staurosporine, a clear cleavage of both isoforms, associated with a decline in

the full-length protein, was observed (Fig 3b), demonstrating that other caspases, aside from caspase 3 are able to cleave Livin *in vivo*.

Example 3

Effector but not initiator caspases cleave Livin *in vitro*

The above results demonstrate for the first time that Livin α and β can be cleaved following the induction of apoptosis. To investigate directly which caspases are able to cleave Livin, recombinant Livin was generated in bacteria. Purified Livin α and β were incubated with either of the recombinant active effector caspases 3, 6, 7 or with the initiator caspases 8 or 9. As shown in Fig 4a effector caspases 3, 7, and relatively high concentrations of caspase 6, but not the initiator caspases 8 and 9 cleaved Livin β . The most efficient cleavage was observed when caspase 7 was used, resulting in the complete cleavage of the recombinant Livin β (Fig. 4a). Similar results were obtained when recombinant Livin α was used (data not shown). The different in the amount of units, results from a different definition of caspase 3 and 8 units versus caspase 6, 7 and 9 units. In Fig. 4a similar activity of caspase 3 and 7 was achieved using an appropriate colorimetric substrate. In contrast to the marked efficiency of caspase 7, Caspase 6 was not able to cleave Livin at low concentrations (Fig. 4b). Treatment of recombinant Livin α and β with caspase 8 had no effect even when 90 units of this enzyme were used, while incubation with high concentration of caspase 9 resulted in a weak cleavage, suggesting that caspase 9 might cleave Livin at very low affinity. Incubation of Livin α and β with Granzyme B, a caspase like protease with a broad spectrum of substrates including effector caspase 3, did not produce any detectable cleavage fragment (data not shown).

Example 4

Mapping the cleavage site

The observed molecular weight of the cleaved fragments suggests that Livin cleavage site reside somewhere near the amino-terminal or at the carboxy-

terminal of the protein, after the 18 amino acids, which distinguish between α and β isoforms. Amino acid sequence analysis for candidate tetrapeptides that can be potential caspase substrates at both regions, revealed the presence of two possible sites DHVD52G at the N-terminal and GARD238V at the C-terminal (Fig. 5a). The sequence located around aspartic acid 52 showed a high degree of similarity with the consensus substrate sequence for caspase 3 and 7 [Stennicke, H. R. *et al.* (2000) *id ibid.*; Thornberry, N.A. *et al.* (1997) *J. Biol. Chem.*, 272: 17907-17911]. Constructs of both Livin isoforms were then prepared, in which either aspartic acid-52 or aspartic acid-238 was replaced by glutamic acid, termed Livin D52E and Livin D238E, respectively. Livin constructs carrying these mutations and the wild type sequence were translated in vitro and incubated with purified active caspases. Livin D238E α and β underwent cleavage similar to the wild-type protein by caspase 3 and 7, whereas Livin D238E α and β were not cleaved under these conditions (Fig. 5b). Although caspase 6 at relatively high concentration was able to cleave recombinant Livin produced in bacteria, it did not cleave any of the Livin isoforms that were translated in eukaryotic in vitro system.

Example 5

Livin cleavage produce a pro-apoptotic subunit

721.221 cells can be easily transfected with various constructs [Mandelboim O. *et al.* (1996) *id ibid*]. The functional relevance of Livin cleavage was therefore tested by generating 721.221 cells stably transfected with either full-length Livin α , and β , as well as the C-terminal cleavage subunits, which were cloned in pIRES-EGFP plasmid. The inventors' previous work showed that Livin α is able to protect from apoptosis induced by anti-CD95/Fas antibody in Jurkat cells [Ashhab, Y. *et al.* (2001) *id ibid*]. Similarly, 721.221 cells expressing Livin α showed a lower rate of apoptosis, following anti-CD95/Fas treatment, as compared with wild type 721.221 cells (Fig 6a). Surprisingly, following anti-CD95/Fas treatment, cells expressing p30-Livin α showed a much higher rate of apoptosis in comparison with wild type 721.221 cells (Fig 6a), thus,

indicating that the cleavage of Livin not only eliminates its anti-apoptotic activity, but also produces a subunit with a marked pro-apoptotic effect. The existence of the proteins in the transfected cells was verified by western blot analysis (Fig. 6b). Two attempts to generate 721.221 cells that stably express p28-Livin β did not produce stable clones, although Green Fluorescent Protein (GFP)-positive cells appeared early during the course of G418 selection. A possible explanation might be a strong pro-apoptotic activity of this subunit that lead to an early death of the 721.221 cells. Transient transfection was therefore used to assay for p28-Livin β function and to further confirm the above results. pIRES-EGFP plasmids that contain either full-length Livin α or β , as well as p30-Livin α , p28-Livin β , and no insert were transiently transfected to 293T cells. Cells were harvested 24 hours post-transfection. Apoptosis was determined by Annexin V/PI stain using flow cytometry, in order to analyze only GFP-positive cells. A significantly higher rate of spontaneous apoptosis was seen in the cells transfected with either p30-Livin α or p28-Livin β in comparison to cells transfected with the full-length proteins, or an empty vector (Fig. 6c). In addition, while a marked increase in GFP-positive cells was observed in cells transfected with the full-length cDNAs or the empty vector, cells transfected with cDNAs that encode for the subunits showed a much lower rate of GFP-positive cells. The existence of the proteins in the transfected cells was verified by western blot analysis (Fig. 6d).

Example 6

Resistance to chemotherapy is in direct correlation with livin expression in primary culture melanoma cells

The strong expression lines, and its ability to protect from chemotherapy in these cell lines [Vucic, D. *et al.* (2000) *id ibid*; Ashhab, Y. (2001) *id ibid*] prompted us to further explore the clinical significance of Livin expression and its cleavage in melanoma. Several melanoma cell lines were initially examined for the expression of Livin, XIAP and Survivin. Cell lines termed 1259-mel, 1074-mel, 1106-mel and 1612-mel were derived from patients after treatment,

and showed a uniform expression of Livin, XIAP and Survivin (Fig. 7a). LB33 A1 and B1, two metastatic melanoma cell lines were derived from the same patient before and after vaccination with autologous melanoma cells (16, 28). The primary Mel A1 expressed the HLA class I molecules: A24, A28, B13, B44, Cw6, Cw7. The patient was vaccinated repeatedly with autologous melanoma cells and achieved remission. Four years later she relapsed, another cell line was generated, designated Mel B1. These cells showed no expression of the original HLA class I molecules except from A24. Strikingly, the expression of Livin was detected only in Mel B1 and not in Mel A1, while both cell lines expressed XIAP and Survivin (Fig. 7a). Furthermore, Mel B1 cells expressing high levels of Livin were completely resistant to etoposide, while Mel A1 rapidly underwent apoptosis, as determined by nuclear morphology (Fig. 7b). To further confirm these results, at the indicated times following treatment cells were harvested, total protein was normalized, and western blot analysis was performed, using anti-Livin antibody. In accordance with the results above, a marked Livin cleavage was not detected due to very low rate of apoptosis in Mel B1 (Fig. 7c). The membrane was then stripped and exposed to anti-PARP Antibody. PARP was detected in all samples, confirming similar protein content. Notably, a marked cleavage of PARP, as a marker of apoptosis, was only detected in Mel A1 (Fig. 7d).

Primary cultures of 27 melanoma patients were next analyzed for Livin, XIAP and Survivin expression. The protein content of whole cell extract was normalized by Bradford assay, and western blot analysis was performed. Livin protein was detected in 10 out of the 27 samples. XIAP and Survivin, on the other hand, were detected in almost all tested samples. Among the samples positive for Livin, a marked difference in the levels of Livin was observed. In Figure 8a that represents a panel of 19 patients, melanoma samples 55182, 5556 and 55112 showed relatively high levels of both Livin isoforms, while others such as 5524 expressed only moderate levels. In contrast a uniform expression of XIAP and Survivin was found.

In order to determine whether Livin expression renders the melanoma cells resistant to chemotherapy, six melanoma samples were selected, according to their Livin expression. Samples 5556 and 55112, express high levels of Livin expression, 5524 and 55164 express intermediate levels whereas no expression was observed in samples 5530 and 5533 (Fig. 8a). Cells were plated in 6-well plates 24 hours prior to exposure to etoposide (15 μ g/ml). After 24 and 48 hours, cells were harvested. The percent of apoptosis was determined in each sample by nuclear morphology (Fig. 8b). Remarkably, a direct correlation was observed between the rate of apoptosis and Livin expression level. Samples with high livin expression, 5556 and 55112, were completely resistant to etoposide at the indicated concentrations and times, while moderate resistance (15-25%) was observed in samples 5524 and 55164. Finally, melanoma samples 5533 and 5530 showed a marked apoptosis rate, reaching up to 55%. Interestingly, XIAP and Survivin expression was not in correlation with resistance to etoposide.

In order to demonstrate the relevance of Livin cleavage in primary melanoma, three samples: 55112 and 5524 expressing high and moderate levels of Livin respectively, and 5530 with no detectable Livin were lysed, normalized for total protein, and analyzed by western blot analysis (Fig. 8c). As was observed in the above experiments, the cleavage of Livin was in correlation with the apoptosis rate. Sample 55112, which was completely resistant to etoposide, showed no cleavage of Livin, sample 5524 showed moderate cleavage, appearing only 48 hours after treatment, and no Livin was detected in the melanoma sample 5530 (Fig. 8c).

The clinical data regarding these 27 patients revealed that 15 patients received chemotherapy either as the only treatment or prior to vaccination. Seven patients had disease progression while on chemotherapy, 5 of which had intermediate (5574, 5524) or high expression (55182, 55112, 5556) of Livin.

Among the 8 chemo-responsive patients, 1 patient had low level of Livin (5584) the other 7 had no Livin expression ($p=0.02$, Fischer exact test). 17 patients died, 8 of these had intermediate to high levels of Livin (median survival 22.5+16 months), one patient is alive with disease. Among the 9 patients with no evidence of disease (median time of follow-up 36+21 months), 7 were Livin negative. Though the number of patients studied is relatively small, the correlation between Livin expression and response to chemotherapy is statistically significant. Further research will clarify the role of Livin, and its interactions with other apoptosis regulators, in the chemoresistance phenotype of melanoma.

SEQUENCE LISTING

<110> Hadasit Ltd.

<120> Livin-derived peptides, compositions and uses thereof

<130> Ashhab - Livin peptides

<140>

<141>

<160> 11

<170> PatentIn Ver. 2.1

<210> 1

<211> 246

<212> PRT

<213> Homo sapiens

<400> 1

Gly Gln Ile Leu Gly Gln Leu Arg Pro Leu Thr Glu Glu Glu Glu
1 5 10 15

Glu Gly Ala Gly Ala Thr Leu Ser Arg Gly Pro Ala Phe Pro Gly Met
20 25 30

Gly Ser Glu Glu Leu Arg Leu Ala Ser Phe Tyr Asp Trp Pro Leu Thr
35 40 = 45

Ala Glu Val Pro Pro Glu Leu Leu Ala Ala Gly Phe Phe His Thr
50 55 60

Gly His Gln Asp Lys Val Arg Cys Phe Phe Cys Tyr Gly Gly Leu Gln
65 70 75 80

Ser Trp Lys Arg Gly Asp Asp Pro Trp Thr Glu His Ala Lys Trp Phe
85 90 95

Pro Ser Cys Gln Phe Leu Leu Arg Ser Lys Gly Arg Asp Phe Val His
100 105 110

Ser Val Gln Glu Thr His Ser Gln Leu Leu Gly Ser Trp Asp Pro Trp
115 120 125

Glu Glu Pro Glu Asp Ala Ala Pro Val Ala Pro Ser Val Pro Ala Ser
130 135 140

Gly Tyr Pro Glu Leu Pro Thr Pro Arg Arg Glu Val Gln Ser Glu Ser
145 150 155 160

Ala Gln Glu Pro Gly Gly Val Ser Pro Ala Glu Ala Gln Arg Ala Trp
165 170 175

Trp Val Leu Glu Pro Pro Gly Ala Arg Asp Val Glu Ala Gln Leu Arg
180 185 190

Arg Leu Gln Glu Glu Arg Thr Cys Lys Val Cys Leu Asp Arg Ala Val
195 200 205

Ser Ile Val Phe Val Pro Cys Gly His Leu Val Cys Ala Glu Cys Ala
 210 215 220

Pro Gly Leu Gln Leu Cys Pro Ile Cys Arg Ala Pro Val Arg Ser Arg
 225 230 235 240

Val Arg Thr Phe Leu Ser
 245

<210> 2

<211> 228

<212> PRT

<213> Homo sapiens

<400> 2

Gly Gln Ile Leu Gly Gln Leu Arg Pro Leu Thr Glu Glu Glu Glu
 1 5 10 15

Glu Gly Ala Gly Ala Thr Leu Ser Arg Gly Pro Ala Phe Pro Gly Met
 20 25 30

Gly Ser Glu Glu Leu Arg Leu Ala Ser Phe Tyr Asp Trp Pro Leu Thr
 35 40 45

Ala Glu Val Pro Pro Glu Leu Leu Ala Ala Gly Phe Phe His Thr
 50 55 60

Gly His Gln Asp Lys Val Arg Cys Phe Phe Cys Tyr Gly Gly Leu Gln
 65 70 75 80

Ser Trp Lys Arg Gly Asp Asp Pro Trp Thr Glu His Ala Lys Trp Phe
 85 90 95

Pro Ser Cys Gln Phe Leu Leu Arg Ser Lys Gly Arg Asp Phe Val His
 100 105 110

Ser Val Gln Glu Thr His Ser Gln Leu Leu Gly Ser Trp Asp Pro Trp
 115 120 125

Glu Glu Pro Glu Asp Ala Ala Pro Val Ala Pro Ser Val Pro Ala Ser
 130 135 140

Gly Tyr Pro Glu Leu Pro Thr Pro Arg Arg Glu Val Gln Ser Glu Ser
 145 150 155 160

Ala Gln Glu Pro Gly Ala Arg Asp Val Glu Ala Gln Leu Arg Arg Leu
 165 170 175

Gln Glu Glu Arg Thr Cys Lys Val Cys Leu Asp Arg Ala Val Ser Ile
 180 185 190

Val Phe Val Pro Cys Gly His Leu Val Cys Ala Glu Cys Ala Pro Gly
 195 200 205

Leu Gln Leu Cys Pro Ile Cys Arg Ala Pro Val Arg Ser Arg Val Arg
 210 215 220

Thr Phe Leu Ser
 225

<210> 3
<211> 298
<212> PRT
<213> Homo sapiens

<400> 3

Met Gly Pro Lys Asp Ser Ala Lys Cys Leu His Arg Gly Pro Gln Pro
1 5 10 15

Ser His Trp Ala Ala Gly Asp Gly Pro Thr Gln Glu Arg Cys Gly Pro
20 25 30

Arg Ser Leu Gly Ser Pro Val Leu Gly Leu Asp Thr Cys Arg Ala Trp
35 40 45

Asp His Val Asp Gly Gln Ile Leu Gly Gln Leu Arg Pro Leu Thr Glu
50 55 60

Glu Glu Glu Glu Gly Ala Gly Ala Thr Leu Ser Arg Gly Pro Ala
65 70 75 80

Phe Pro Gly Met Gly Ser Glu Glu Leu Arg Leu Ala Ser Phe Tyr Asp
85 90 95

Trp Pro Leu Thr Ala Glu Val Pro Pro Glu Leu Leu Ala Ala Gly
100 105 110

Phe Phe His Thr Gly His Gln Asp Lys Val Arg Cys Phe Phe Cys Tyr
115 120 = 125

Gly Gly Leu Gln Ser Trp Lys Arg Gly Asp Asp Pro Trp Thr Glu His
130 135 140

Ala Lys Trp Phe Pro Ser Cys Gln Phe Leu Leu Arg Ser Lys Gly Arg
145 150 155 160

Asp Phe Val His Ser Val Gln Glu Thr His Ser Gln Leu Leu Gly Ser
165 170 175

Trp Asp Pro Trp Glu Glu Pro Glu Asp Ala Ala Pro Val Ala Pro Ser
180 185 190

Val Pro Ala Ser Gly Tyr Pro Glu Leu Pro Thr Pro Arg Arg Glu Val
195 200 205

Gln Ser Glu Ser Ala Gln Glu Pro Gly Gly Val Ser Pro Ala Glu Ala
210 215 220

Gln Arg Ala Trp Trp Val Leu Glu Pro Pro Gly Ala Arg Asp Val Glu
225 230 235 240

Ala Gln Leu Arg Arg Leu Gln Glu Glu Arg Thr Cys Lys Val Cys Leu
245 250 255

Asp Arg Ala Val Ser Ile Val Phe Val Pro Cys Gly His Leu Val Cys
260 265 270

Ala Glu Cys Ala Pro Gly Leu Gln Leu Cys Pro Ile Cys Arg Ala Pro
275 280 285

Val Arg Ser Arg Val Arg Thr Phe Leu Ser
 290 295

<210> 4
 <211> 280
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Gly Pro Lys Asp Ser Ala Lys Cys Leu His Arg Gly Pro Gln Pro
 1 5 10 15

Ser His Trp Ala Ala Gly Asp Gly Pro Thr Gln Glu Arg Cys Gly Pro
 20 25 30

Arg Ser Leu Gly Ser Pro Val Leu Gly Leu Asp Thr Cys Arg Ala Trp
 35 40 45

Asp His Val Asp Gly Gln Ile Leu Gly Gln Leu Arg Pro Leu Thr Glu
 50 55 60

Glu Glu Glu Glu Glu Gly Ala Gly Ala Thr Leu Ser Arg Gly Pro Ala
 65 70 75 80

Phe Pro Gly Met Gly Ser Glu Glu Leu Arg Leu Ala Ser Phe Tyr Asp
 85 90 95

Trp Pro Leu Thr Ala Glu Val Pro Pro Glu Leu Leu Ala Ala Ala Gly
 100 105 = 110

Phe Phe His Thr Gly His Gln Asp Lys Val Arg Cys Phe Phe Cys Tyr
 115 120 125

Gly Gly Leu Gln Ser Trp Lys Arg Gly Asp Asp Pro Trp Thr Glu His
 130 135 140

Ala Lys Trp Phe Pro Ser Cys Gln Phe Leu Leu Arg Ser Lys Gly Arg
 145 150 155 160

Asp Phe Val His Ser Val Gln Glu Thr His Ser Gln Leu Leu Gly Ser
 165 170 175

Trp Asp Pro Trp Glu Glu Pro Glu Asp Ala Ala Pro Val Ala Pro Ser
 180 185 190

Val Pro Ala Ser Gly Tyr Pro Glu Leu Pro Thr Pro Arg Arg Glu Val
 195 200 205

Gln Ser Glu Ser Ala Gln Glu Pro Gly Ala Arg Asp Val Glu Ala Gln
 210 215 220

Leu Arg Arg Leu Gln Glu Glu Arg Thr Cys Lys Val Cys Leu Asp Arg
 225 230 235 240

Ala Val Ser Ile Val Phe Val Pro Cys Gly His Leu Val Cys Ala Glu
 245 250 255

Cys Ala Pro Gly Leu Gln Leu Cys Pro Ile Cys Arg Ala Pro Val Arg
 260 265 270

Ser Arg Val Arg Thr Phe Leu Ser
275 280

<210> 5
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer for
site-directed mutagenesis

<400> 5
gggaaattctt ggtcagagcc agtgttc

27

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:primer for
site-directed mutagenesis

<400> 6
gggggatccg gagcccactc tgca

24

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:megaprimer to
introduce mutation D52E

<400> 7
cgttgaaggc cagatcct

18

<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:megaprimer to
introduce mutation D238E

<400> 8
ccagggaaagt agagggcgca

19

<210> 9
<211> 41
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer to
construct cleavage fragment

<400> 9

gggaaattca gtgttccctc catggggcag atcctgggcc a

41

<210> 10

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Livin-Exp-F

<400> 10

tgttggatcc atgggaccta aagaca

26

<210> 11

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Livin-Exp-R

<400> 11

ggcaaagctt ctaggacagg aaggtgc

=

27

Claims:

1. A livin-derived pro-apoptotic peptide.
2. A peptide as defined in claim 1, selected from any one of p30-Livin α and p28-Livin β .
3. A peptide as defined in any one of claims 1 or 2, wherein said p30-Livin α peptide comprises the sequence substantially as defined in SEQ. ID. NO.1, or functional analogues, derivatives or fragments thereof.
4. A peptide as defined in any one of claims 1 or 2, wherein said p28-Livin β peptide comprises the sequence substantially as defined in SEQ. ID. NO.2, or functional analogues, derivatives or fragments thereof.
5. A livin-derived peptide selected from any one of p30-Livin α and p28-Livin β .
6. A peptide as defined in claim 5, wherein said p30-Livin α peptide comprises the sequence substantially as defined in SEQ. ID. NO.1, or functional analogues, derivatives or fragments thereof.
7. A peptide as defined in claim 5, wherein said p28-Livin β peptide comprises the sequence substantially as defined in SEQ. ID. NO.2, or functional analogues, derivatives or fragments thereof.
8. A peptide as defined in claim 5, wherein said p30-Livin α has the amino acid sequence as defined in SEQ. ID.NO.1.
9. A peptide as defined in claim 5, wherein said p28-Livin β has the amino acid sequence as defined in SEQ. ID.NO.2.

10. A pharmaceutical composition for inducing apoptosis, comprising as active ingredient at least one peptide as defined in any one of claims 1 to 9.
11. A pharmaceutical composition as defined in claim 10, wherein said apoptosis is induced by a treatment or agent selected from any one of etoposide, anti-CD95/Fas, TNF α and staurosporine.
12. A pharmaceutical composition as defined in claim 10, for inducing programmed cell death.
13. A pharmaceutical composition as defined in claim 12, for inducing programmed cell death of malignant cells.
14. Use of a peptide as defined in any one of claims 1 to 9, as an agent for the induction of apoptosis.
15. Use of a peptide as defined in any one of claims 1 to 9, as an agent for the induction of programmed cell death.
16. Use of a peptide as defined in any one of claims 1 to 9, as an agent for the induction of programmed cell death in malignant cells.
17. Use of a peptide as defined in any one of claims 1 to 9, as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents.
18. The use as defined in claim 17, wherein said cells are malignant cells.
19. Use of a pharmaceutical composition as defined in any one of claims 10 to 13, as an agent for enhancing the sensitivity of cells to death-inducing treatments or agents.

20. The use as defined in any one of claims 17 to 19, wherein said death-inducing treatments or agents are selected from any one of etoposide, anti-CD95/Fas, TNF α and staurosporine.
21. The use as defined in any one of claims 17 to 20, wherein said cells are malignant cells.
22. Method of preparation of a pharmaceutical composition for the induction of apoptosis, comprising the step of admixing any one of the peptides as defined in claims 1 to 9, with a pharmaceutically acceptable adjuvant, carrier or diluent, and optionally with at least one additional active agent.
23. Method of enhancing the sensitivity of cells to death-inducing treatments or agents, comprising the steps of:
 - (a) Introducing a livin-derived peptide as defined in any one of claims 1 to 9 into a cell; and
 - (b) Treating said cell with death-inducing agents or treatments.
24. The method as defined in claim 23, wherein said cells are malignant cells.
25. Use of the pharmaceutical composition as defined in any one of claims 10 to 13 for the treatment of cancer.

לוֹצָאַטּוֹ אֶת לוֹצָאַטּוֹ
LUZZATTO & LUZZATTO
עו"י:

By:

Fig. 1

16033/03

HADASIT medical research services &
development company Ltd.

Eight Sheets of Drawings
Sheet No. 2

Fig. 2

16033/03

HADASIT medical research services &
development company Ltd.

Eight Sheets of Drawings
Sheet No. 3

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.