9^{th} Maths - Chapter 7

This is Problem-5 from Exercise 7.1

- 1. Line l is the bisector of an angle $\angle A$ and B is a point on line l. BP = BQ are perpendiculars from B to the arms of $\angle A$.
 - (a) $\triangle APB \cong \triangle AQB$
 - (b) BP = BQ or B is equidistant from the arms of $\angle A$

Figure 1: l bisecting $\angle A$

Construction:

The input parameters for the construction are shown in Table

Symbol	Value	Description
θ	30°	$\angle BAQ = \angle BAP$
a	7	Length of AB
c	6	Length of AQ
\mathbf{e}_1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Basis vector

Table 1: values and descriptions.

Let
$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\mathbf{B} = a\mathbf{e_1}$, $\mathbf{Q} = \begin{pmatrix} c\cos\theta \\ c\sin\theta \end{pmatrix}$, and $\mathbf{P} = \begin{pmatrix} c\cos\theta \\ -c\sin\theta \end{pmatrix}$.

Solution:

Given:

$$\angle BAQ = \angle BAP$$
 (line 'l' bisects $\angle A$) (1)

$$\angle AQB = \angle APB$$
 (Both angles are 90°)

To Prove:

1. $\triangle APB \cong \triangle AQB$

2. BP = BQ or B is equidistant from the arms of $\angle A$

Proof:

In $\triangle APB$ and $\triangle AQB$

$$\angle BAQ = \angle BAP$$
 (line 'l' bisects $\angle A$) (3)

$$\angle AQB = \angle APB$$
 (Both angles are 90°) (4)

$$AB = AB$$
 (common side for both triangles) (5)

Therefore, by Angle-Angle-Side (A-A-S) congruence rule, $\triangle APB \cong \triangle AQB$. Now we have to prove BP = BQ

$$\|\mathbf{B} - \mathbf{P}\| = \sqrt{(\mathbf{B} - \mathbf{P})^{\top} (\mathbf{B} - \mathbf{P})}$$
(6)

$$(\mathbf{B} - \mathbf{P}) = \begin{pmatrix} 7 \\ 0 \end{pmatrix} - \begin{pmatrix} 6\cos\theta \\ -6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 7 - 6\cos\theta \\ -6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 7 - 5.19 \\ -3 \end{pmatrix} \implies \begin{pmatrix} 1.81 \\ -3 \end{pmatrix}$$
 (7)

$$(\mathbf{B} - \mathbf{P})^{\top} = \begin{pmatrix} 7 - 6\cos\theta & -6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 1.81 & -3 \end{pmatrix}$$
 (8)

$$(\mathbf{B} - \mathbf{P})^{\top} (\mathbf{B} - \mathbf{P}) = \begin{pmatrix} 1.81 & -3 \end{pmatrix} \begin{pmatrix} 1.81 \\ -3 \end{pmatrix} \implies 12.27$$
(9)

$$\|\mathbf{B} - \mathbf{P}\| = \sqrt{12.27} = 3.5 \tag{10}$$

$$SimilarlyNow, \|\mathbf{B} - \mathbf{Q}\| = \sqrt{(\mathbf{B} - \mathbf{Q})^{\top} (\mathbf{B} - \mathbf{Q})}$$
 (11)

$$(\mathbf{B} - \mathbf{Q}) = \begin{pmatrix} 7 \\ 0 \end{pmatrix} - \begin{pmatrix} 6\cos\theta \\ 6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 7 - 6\cos\theta \\ 6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 7 - 5.19 \\ 3 \end{pmatrix} \implies \begin{pmatrix} 1.81 \\ 3 \end{pmatrix}$$
 (12)

$$(\mathbf{B} - \mathbf{Q})^{\top} = \begin{pmatrix} 7 - 6\cos\theta & 6\sin\theta \end{pmatrix} \implies \begin{pmatrix} 1.81 & 3 \end{pmatrix}$$
 (13)

$$(\mathbf{B} - \mathbf{Q})^{\top} ((\mathbf{B} - \mathbf{Q}) = \begin{pmatrix} 1.81 & 3 \end{pmatrix} \begin{pmatrix} 1.81 \\ 3 \end{pmatrix} \implies 12.27$$
 (14)

$$\|\mathbf{B} - \mathbf{Q}\| = \sqrt{12.27} = 3.5\tag{15}$$

$$\|\mathbf{B} - \mathbf{P}\| = \|\mathbf{B} - \mathbf{Q}\| \tag{16}$$

Therefore, BP = BQ or B is equidistant from the arms of $\angle A$ is proved

Figure 2: python graph plot