The Pumping Lemma for Context Free Languages

Introduction and Motivation

In this lecture we present the *Pumping Lemma* for *Context Free Languages*.

This lemma enables us to prove that some languages are not CFL and hence are not recognizable by any PDA.

The Pumping Lemma

Let A be a context free language. There exists a number p such that for every $w \in A$, if $|w| \ge p$ then w may be divided into **five** parts, w = uvxyz satisfying:

- 1. for each $i \ge 0$, it holds that $uv^i xy^i z \in A$.
- 2. |vy| > 0.
- 3. $|vxy| \leq p$.

Note: Without req. 2 the Theorem is trivial.

Proof Idea

If w is "long enough" (to be precisely defined later) it has a large parse tree which has a "long enough" path α from its root to one of its leaves.

Under these conditions, some variable on α should appear **twice**. This enables pumping of w as demonstrated in the next slide:

Proof Idea

Pumping up

Pumping down

<u>Reminder</u>

Let *T* be a binary tree.

The 0-th level of T has $1 = 2^0$ nodes.

The 1-th level of T has at most $2 = 2^1$ nodes.

• • •

The i-th level of T has at most 2^i nodes.

If T' is a b-ari tree then its i-th level has at most b^i nodes.

The Proof

Let G be a grammar for the language L. Let b be the maximum number of symbols (variables and constants) in the right hand side of a rule of G (assume $b \ge 2$). In any parse tree T, for generating w from G, a node of T may have no more than b children.

If the height of T is h then $|w| \le b^h$.

If the height of T is h then $|w| \le b^h$. Conversely, If $|w| > b^h$ then the height of T is at least h+1. Assume that G has |V| variables. Then we set $p = b^{|V|+1}$.

Conclusion: For any $w \in L$, if $|w| \ge p$, then the height of any parse tree of w is **at least** |V|+1 (because $|w| \ge p = b^{|V|+1} \ge b^{|V|} + 1 > b^{|V|}$).

To see how pumping works let τ be the parse tree of w with a **minimal number of nodes**. The height of the tree τ , is at least |V|+1, so it has a path, α with at least |V|+2 nodes, from its root until some leaf. The path α has at least |V|+1 variables and a single terminal.

Since G has |V| variables and α has at least |V|+1 variables, there exists a variable, Rthat repeats itself among the |V|+1 lowest variables of α , as depicted in the following picture:

Each occurrence of R has a sub-tree

rooted at it:

Let vxy be the word generated by the upper occurrence of R and let

Since both sub-trees are generated by the same variable, each of these sub-trees can be replaced by another. This tree is obtained from τ by substituting the upper sub-tree at the lower occurrence of R.

The word generated is uv^2xy^2z , and since It is generated by a parse tree of Gwe get $uv^2xy^2z \in A$. Additional substitutions of the upper sub-tree at the lower occurrence of R, yield the R conclusion $uv^jxy^iz \in A$ for each i > 0. ν

Substitution of the lower sub-tree at the upper occurrence of R yields this pars tree whose generated word is $uv^0xy^0z = uxz$ Since once again this is a \mathcal{X} legitimate parse tree we get $uxz \in A$.

To see that |vy| > 0, assume that this is the situation. In this case, this tree is a parse tree for w with less nodes then au , in contradiction with the \mathcal{X} choice of τ as a parse tree for w with a minimal number of nodes.

In order to show that $|vxy| \le p$ recall that we chose R so that both its occurrences fall within the bottom |V|+1 nodes of the path α , where α is the longest path of the tree so the height of the red sub-tree is at most |V|+1 and the number of its leaves is at most

Using the Pumping Lemma

Now we use the pumping lemma for CFL to show that the language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not CFL.

Assume towards a contradiction that L is CFL and let p be the pumping constant. Consider $w = a^p b^p c^p$. Obviously $w \in L$.

Using the Pumping Lemma

By the pumping lemma, there exist a partition w = uvxyz where |vy| > 0, $|vxy| \le p$ and for each i, it holds that $uv^i xy^i z \in L$.

Case 1: Both *v* and *y* contain one type of symbol each:

Together they may hold 2 types of symbols, so in uv^2xy^2z , the third symbol appears less often than the other two.

Using the Pumping Lemma

Case 2: Either *v* or *y* contains more than one type of symbol:

In this case, the word uv^2xy^2z has more than three blocks of identical letters: In other words: $uv^2xy^2z \notin a^+b^+c^+$. End of proof.

Discussion

Some weeks ago we started our quest to find out "What can be computed and what cannot?"

So far we identified two classes: RL-s and CFL-s and found some examples which do not belong in neither class

Discussion

This is what we got so far:

Discussion

Moreover: Our most complex example, namely, the language $L = \left\{ a^n b^n c^n \mid n \ge 0 \right\}$ is easily recognizable by your everyday computer, so we did not get so far yet.

Our next attempt to grasp the essence of "What's Computable?" are **Turing Machines**.

Recap

In this lecture we introduced and proved the **Pumping Lemma for CFL-s**

Using this lemma we managed to prove that the fairly simple language $L = \left\{ a^n b^n c^n \mid n \ge 0 \right\}$, is not CFL.

The next step is to define **Turing Machines**.