

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 3

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Adder, Subtractor, Overflow - 3

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Adder, Subtractor, Overflow 3
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- Logic Circuits for:
 - Increment
 - Two's Complement
 - Subtractor
 - Adder / Subtractor

Increment Logic Circuit

Increment Logic Circuit

Increment Logic Circuit

Incrementer Logic Circuit

Add 1 to input number

 Less logic resources than ripple carry adder

ADDER, SUBTRACTOR, OVERFLOW - 3 Two's Complement Subtractor

- Subtract one four bit number $(b_3b_2b_1b_0)$ from another $(a_3a_2a_1a_0)$
- Take two's complement of $b_3b_2b_1b_0$:
 - ► Invert $b_3b_2b_1b_0$
 - ► Add one to it
- Add above number to a₃a₂a₁a₀
 yielding result

ADDER, SUBTRACTOR, OVERFLOW - 3 Two's Complement Subtractor

- Subtract one four bit number $(b_3b_2b_1b_0)$ from another $(a_3a_2a_1a_0)$
- Take two's complement of $b_3b_2b_1b_0$:
 - ► Invert $b_3b_2b_1b_0$
 - Add one to it
- Add above number to a₃a₂a₁a₀
 yielding result

ADDER, SUBTRACTOR, OVERFLOW - 3 Two's Complement Subtractor

- Subtract one four bit number $(b_3b_2b_1b_0)$ from another $(a_3a_2a_1a_0)$
- Take two's complement of $b_3b_2b_1b_0$:
 - ► Invert $b_3b_2b_1b_0$
 - ► Add one to it
- Add above number to a₃a₂a₁a₀
 yielding result

Two's Complement Subtractor

- Subtract one four bit number $(b_3b_2b_1b_0)$ from another $(a_3a_2a_1a_0)$
- Take two's complement of $b_3b_2b_1b_0$:
 - ► Invert $b_3b_2b_1b_0$
 - Add one to it
- Add above number to a₃a₂a₁a₀
 yielding result

ADDER, SUBTRACTOR, OVERFLOW - 3 Two's Complement Adder / Subtractor

XOR as Controlled Inverter

Truth table:

inv	a	y
0	0	0
0	1	1
1	0	1
1	1	0

Symbol:

- When inv = 0, y = a
- When inv = 1, $y = \overline{a}$

PES

Two's Complement Adder / Subtractor

XOR as Controlled Inverter

Truth table:

inv	а	y
0	0	0
0	1	1
1	0	1
1	1	0

Symbol:

- When inv = 0, y = a
- When inv = 1, $y = \overline{a}$

• Subtraction when $\overline{add}/sub = 1$

Think About It

- Above logic circuit increments only when inc = 1
- Construct a logic circit which always increments (so no inc input)
- Construct a decrementer logic circuit