Functional Annotation Lesson 2

Inferring function from homologous matches

- Limitations of ortholog match
 - BLAST+
 - DIAMOND

NCBI PGAP

Prokaryotic Genome Annotation Pipeline

Homology ≠ similarity in function

- No scoring schema provides "biological truth"
- With enough modification gap inclusions, similarity scores, etc. -ANY pair of sequences can be aligned
- Proteins can have similar functions at 30% amino acid identity
- Proteins can have different functions at 95% amino acid identity
- Context of the match is important

Why homology ≠ similarity in function

Punta & Ofran. PLOS Comp Biol. 2008

BLAST+

BLAST (Basic Local Alignment Search Tool) is an algorithm for comparing primary biological sequence information, such as the amino-acid sequences of different proteins or the nucleotides of DNA sequences (Wikipedia)

http://www.hypothesisjournal.com/wp-content/uploads/2011/08/boutros-3-1-fig2.png

Program	Input format	Database
blastn	nucleotide	nucleotide
blastp	protein	protein
blastx	translated nucleotide	protein
tblastn	protein	translated nucleotide
tblastx	translated nucleotide	translated nucleotide
Program	Query Type Subject	t Type Computation
blastn	N — —	– N ~ 1X
blastp	P — — —	— P ~ 1X
blastx	N = -	— P ~ 6X
tblastn	P —	N ~ 6X
tblastx	N	N ~36X

https://open.oregonstate.education/computationalbiology/chapter/command-line-blast/

BLAST+

Query: CTGTCATTTAATGCATTTGATGCCCTGCCTATAT		
-		
Subject: CTGTCATTTAATGCATTTGATCCCGTACCTAGTA		

	Query: CTGTCATTTAATGCATTTGATGCCCTGCCTATAT
4	
	Subject: CTGTCATTTAATGCATTTGATCCCGTACCTAGT

- 1. BLAST splits the user sequence (query) into smaller segments called words.
- 2. These words are then used to search the database in a process called seeding. For each word, a series of identical or similar matches (neighborhood words) are retrieved (no gaps allowed) and given a score. For nucleotides, this score is based on match (reward) and mismatch (penalty) values and substitution matrices for proteins. All matches with scores above the neighborhood threshold (T) are then kept for extension.
- 3. An alignment between the user sequence (query) and database match (subject) is generated.
- 4. Matches are extended in both directions and scored using the match/mismatch/substitution values with gap open and gap extension penalties.

Task	Description
blastn	Traditional blastn search
blastn-short	Optimized for queries <50bp
megablast	Optimized for seqs with high similarity
dc-megablast	Optimized for distant seqs
blastp	Traditional blastp search
blastp-short	Optimized for queries <30aa

Interpreting local alignments

Interpreting local alignments

Type1 alignment: continuous match

Type2 alignment: discontinuous matches in the same subject

Alternative local alignment tools

BLAST (1990)

- Only supports local alignments
- Default e-value 10 high error rate
- For each query sequence, the reference sequences with the best matches are returned
- Requires BLAST formatted database

USEARCH (2010)

- Supports local and global alignments
 - Global alignments make sense for searches where the similarity of the whole sequence is important
 - e.g. 16S rRNA
- USEARCH for top hit(s) at higher identities
- UBLAST, which is slower but sensitive to lower identities
- Reduces search time by returning only a few high-quality matches rather than considering all possible matches

DIAMOND (2015)

- Aligns short sequence reads at approximately 20,000 times the speed of BLAST and has a similar level of sensitivity.
- Constructs a double index to traverse query and reference seeds more quickly
- An 'all mapper' that attempts to determine exhaustively all significant alignments for a given query
- Requires DIAMOND formatted database

Lesson 3

Predicting function using position-sensitive models