SoRec: Social Recommendation Using Probabilistic Matrix Factorization

Recommender Systems with Social Regularization

Hao Ma, Haixuan Yang, Dengyong Zhou, Chao Liu, Michael R. Lyu, Irwin King

2023.01.31

Table of Contents

01	Introduction
02	Related Work
03	Social Recommendation Framework
04	Experimental Analysis of SoRec
05	Social Regularization
06	Experimental Analysis of SoReg
07	Conclusion and Future Work
08	Implementation

Recommender System

Nowadays, many recommender systems are based on Collaborative Filtering, which
predicts interests of a user based on similar users or items

Inherent weaknesses of collaborative filtering

- (1) Due to sparsity of the user-item rating matrix, memory-based collaborative filtering method fail to find similar users
- (2) Almost all of collaborative filtering methods cannot handle users who have never rated any items
- (3) In reality, people are influenced by friends and companies

Importance of social interaction

- Traditional recommender systems assume that users are i.i.d. (independent and identically distributed), so it ignores the social interactions between users
- One paper showed that people prefer friend's recommendation than model's
- Another paper which researched on social network found out people who chat with each other are more likely to share interests

Social Recommendation

- Proposed a new method that fuse a user's social network graph with user-item matrix which is called "Social Recommendation"
- The paper connect two different data by sharing user latent feature space

Contribution

- (1) Proposed a successful extended method of PMF using social network information
- (2) Shows good performance on users that have few or no ratings
- (3) Scales linearly with the number of observations and can be applied to large datasets

02 Related Work

PMF

- Popular method for matrix factorization
- Models the user-item matrix as a product of two lower-rank user and movie matrices
- The latent factors and observed ratings
 are modeled as Gaussian random variables to
 estimate the uncertainty in the latent factors and ratings

02 Related Work

Trust-aware collaborative filtering method

- Takes into account the trust between users when making recommendations
- Bedi et al. proposed *Trust based recommender system for semantic web*
- However, this method is memory-based model which uses similarity function,
 not latent factor
- Our model uses probabilistic factor analysis and can deal with missing value

Problem Definition - Toy Example

- (a) Social network graph: User 1~6 and 8 edges
- (b) User-Item Matrix: matrix used in matrix factorization (MF)

(a) Social Network Graph

	i_1	i_2	i ₃	i ₄	i ₅	i ₆	i,	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

$$U = \begin{bmatrix} 1.55 & 1.22 & 0.37 & 0.81 & 0.62 & -0.01 \\ 0.36 & 0.91 & 1.21 & 0.39 & 1.10 & 0.25 \\ 0.59 & 0.20 & 0.14 & 0.83 & 0.27 & 1.51 \\ 0.39 & 1.33 & -0.43 & 0.70 & -0.90 & 0.68 \\ 1.05 & 0.11 & 0.17 & 1.18 & 1.81 & 0.40 \end{bmatrix}$$

$$V = \begin{bmatrix} 1.00 & -0.05 & -0.24 & 0.26 & 1.28 & 0.54 & -0.31 & 0.52 \\ 0.19 & -0.86 & -0.72 & 0.05 & 0.68 & 0.02 & -0.61 & 0.70 \\ 0.49 & 0.09 & -0.05 & -0.62 & 0.12 & 0.08 & 0.02 & 1.60 \\ -0.40 & 0.70 & 0.27 & -0.27 & 0.99 & 0.44 & 0.39 & 0.74 \\ 1.49 & -1.00 & 0.06 & 0.05 & 0.23 & 0.01 & -0.36 & 0.80 \end{bmatrix}$$

(c) 5 dimensions latent feature space

Social Recommendation

- *m* users, *n* movies, /-dimension
- U : shared user latent feature space (I * m)
- V : item latent feature space (l * n)
- Z: factor matrix in the social matrix graph (I * m)
- R: target rating(preference) matrix
- C : social network matrix

Figure 2: Graphical Model for Social Recommendation

Social Network Matrix Factorization

- Bayes' rule for parameter estimation:

$$\underbrace{P(\theta \mid D)}_{posterior} = \frac{P(D \mid \theta) \ P(\theta)}{P(D)} \quad \propto \underbrace{P(\theta)}_{prior} \underbrace{P(D \mid \theta)}_{likelihood}$$

- **posterior distribution**: out belief about how likely each value of parameter Θ is given D
- **prior distribution**: initial belief about how likely each value of parameter Θ might be
- **likelihood**: how likely each observation D is for a fixed parameter Θ

Figure 2: Graphical Model for Social Recommen-

- Social Network Matrix Factorization
 - Bayes' rule for parameter estimation:

$$\underbrace{P(\theta \mid D)}_{posterior} = \frac{P(D \mid \theta) \ P(\theta)}{P(D)} \quad \propto \underbrace{P(\theta)}_{prior} \underbrace{P(D \mid \theta)}_{likelihood}$$

- For our model, U and Z will be parameters, C and σ is given dataset

$$p(U, Z|C, \sigma_C^2, \sigma_U^2, \sigma_Z^2)$$

$$\propto \frac{p(C|U, Z, \sigma_C^2)}{p(U|\sigma_U^2)p(Z|\sigma_Z^2)}$$

Social Network Matrix Factorization

The conditional distribution over the observed social network relationships as:

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}, \quad (1)$$

Cik how much a user i trusts or knows user k in a social network

 $\mathcal{N}(x|\mu,\sigma^2)$ probability density function of the Gaussian distribution with mean μ and variance σ 2

 I_{ik}^{C} indicator function that is equal to 1 if user i trusts user k, otherwise 0

 $g(x) = 1/(1 + \exp(-x))$ logistic function that make $U_i^T Z_k$ within the range [0,1]

Social Network Matrix Factorization

- We also place zero-mean spherical Gaussian priors on user and factor feature vectors:

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \qquad p(Z|\sigma_Z^2) = \prod_{k=1}^m \mathcal{N}(Z_k|0, \sigma_Z^2 \mathbf{I}).$$
 (2)

 $\mathcal{N}(x|\mu,\sigma^2)$ probability density function of the Gaussian distribution with mean μ and variance σ 2

Figure 2: Graphical Model for Social Recommer

Social Network Matrix Factorization

Hence, through a simple Bayesian inference, we have:

$$p(U, Z|C, \sigma_C^2, \sigma_U^2, \sigma_Z^2)$$

$$\propto p(C|U, Z, \sigma_C^2) p(U|\sigma_U^2) p(Z|\sigma_Z^2)$$

$$= \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

$$\times \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \times \prod_{k=1}^m \mathcal{N}(Z_k|0, \sigma_Z^2 \mathbf{I}). \tag{3}$$

Social Network Matrix Factorization

- We employ term cik* which incorporates local authority and local hub value
- cik value decreases if user i trust lots of users
- cik value increases if user k is trusted by lots of users

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N} \left[\left(c_{ik}^* | g(U_i^T Z_k), \sigma_C^2 \right) \right]^{I_{ik}^C},$$

$$c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i) + d^-(v_k)}} \times c_{ik}, \tag{4}$$

d+(vi) represents the outdegree of node vi, while d-(vk) indicates the indegree of node vk

Figure 2: C

User-Item Matrix Factorization

- For our model, U and V will be parameters, R and σ is given dataset

$$p(U, V|R, \sigma_R^2, \sigma_U^2, \sigma_V^2)$$

$$\propto \frac{p(R|U, V, \sigma_R^2) p(U|\sigma_U^2) p(Z|\sigma_V^2)}{p(Z|\sigma_V^2)}$$

User-Item Matrix Factorization

- Define the conditional distribution over the observed ratings as:

$$p(R|U,V,\sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(r_{ij}|g(U_i^T V_j),\sigma_R^2\right)\right]^{I_{ij}^R}, \quad (5)$$

 r_{ij} rating of user i for movie j

User-Item Matrix Factorization

We also place zero-mean spherical Gaussian priors on user and movie feature vectors:

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \qquad p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I}).$$
 (6)

User-Item Matrix Factorization

Hence, similar to Social Network MF, through a simple Bayesian inference, we have:

$$p(U, V|R, \sigma_R^2, \sigma_U^2, \sigma_V^2)$$

$$\propto p(R|U, V, \sigma_R^2) p(U|\sigma_U^2) p(Z|\sigma_V^2)$$

$$= \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(r_{ij}|g(U_i^T V_j), \sigma_R^2\right)\right]^{I_{ij}^R}$$

$$\times \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \times \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I}). \tag{7}$$

- Matrix Factorization for Social Recommendation
 - However, calculating is difficult because of the *exp* function in the Gaussians
 - The log of the posterior distribution for social recommendation:

$$\mathcal{N}(X|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2}\right)$$

$$\ln p(U, V, Z | C, R, \sigma_C^2, \sigma_R^2, \sigma_U^2, \sigma_V^2, \sigma_Z^2) =$$

$$-\frac{1}{2\sigma_R^2} \sum_{i=1}^m \sum_{j=1}^n I_{ij}^R (r_{ij} - g(U_i^T V_j))^2$$

$$-\frac{1}{2\sigma_C^2} \sum_{i=1}^m \sum_{k=1}^m I_{ik}^C (c_{ik}^* - g(U_i^T Z_k))^2$$

$$-\frac{1}{2\sigma_U^2} \sum_{i=1}^m U_i^T U_i - \frac{1}{2\sigma_V^2} \sum_{j=1}^n V_j^T V_j - \frac{1}{2\sigma_Z^2} \sum_{k=1}^m Z_k^T Z_k$$

$$-\frac{1}{2} \left(\left(\sum_{i=1}^m \sum_{j=1}^n I_{ij}^R \right) \ln \sigma_R^2 + \left(\sum_{i=1}^m \sum_{k=1}^m I_{ik}^C \right) \ln \sigma_C^2 \right)$$

$$-\frac{1}{2} \left(m \ln \sigma_U^2 + n \ln \sigma_V^2 + m \ln \sigma_Z^2 \right) + \mathcal{C}, \tag{8}$$

Matrix Factorization for Social Recommendation

 Maximizing this log-posterior over hyper parameters kept fixed is equivalent to minimizing the following objective functions:

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2},$$
(9)

where
$$\lambda_C = \sigma_R^2/\sigma_C^2$$
, $\lambda_U = \sigma_R^2/\sigma_U^2$, $\lambda_V = \sigma_R^2/\sigma_V^2$, $\lambda_Z = \sigma_R^2/\sigma_Z^2$

Matrix Factorization for Social Recommendation

- Gradient descent in Ui, Vi and Zk
- For experiment, we set $\lambda_U = \lambda_V = \lambda_Z$.

$$\frac{\partial \mathcal{L}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) V_{j}$$

$$+ \lambda_{C} \sum_{j=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) Z_{k} + \lambda_{U} U_{i},$$

$$\frac{\partial \mathcal{L}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) U_{i} + \lambda_{V} V_{j},$$

$$\frac{\partial \mathcal{L}}{\partial Z_{k}} = \lambda_{C} \sum_{i=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) U_{i} + \lambda_{Z} Z_{k}, (10)$$

Complexity Analysis

- ρ(rho) means number of nonzero entries in matrices
- For $rac{\partial \mathcal{L}}{\partial U}$, the complexity is $O(
 ho_R l +
 ho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial V}$, the complexity is $O(\rho_R l)$
- For $\frac{\partial \mathcal{L}}{\partial Z}$, the complexity is $O(\rho_C l)$
- For the computational complexity of evaluating the objective function is $\,O(
 ho_R l +
 ho_C l)$
- In general, the complexity of the method is linear with the observations

Description of Epinions Dataset

- Knowledge sharing and review site that was established in 1999
- 40,163 users who rated 139,529 items with total 664,824 ratings
- 18,826 users, which is almost half of the population, submitted less that 5 reviews
- In Epinions, the user can trust or block users
- The total number of issued trust statements is 487,183

Metrics

- Mean Absolute Error

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \widehat{r}_{i,j}|}{N}$$

Comparison

- The parameter settings of our approach are $\lambda C = 10$, $\lambda U = \lambda V = \lambda Z = 0.001$

Table 2: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data	Dimensionality $= 5$				Dimensionality = 10			
	MMMF	PMF	CPMF	SoRec	MMMF	PMF	CPMF	SoRec
99%	1.0008	0.9971	0.9842	0.9018	0.9916	0.9885	0.9746	0.8932
80%	1.0371	1.0277	0.9998	0.9321	1.0275	1.0182	0.9923	0.9240
50%	1.1147	1.0972	1.0747	0.9838	1.1012	1.0857	1.0632	0.9751
20%	1.2532	1.2397	1.1981	1.1069	1.2413	1.2276	1.1864	1.0944

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} \underbrace{\lambda_{C}}_{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2}, \tag{9}$$

Impact of Parameter λC

- The method achieves the best performance when $\lambda C \in [10, 20]$

Figure 4: Impact of Parameter λ_C

Performance of Different Users

- Group all the users with 10 classes by their number of ratings
- 10 classes: "= 0","1 5", "6 10", "11 20", "21 40", "41 80", "81 160", "160 320", "320 640", and "> 640"

(a) Performance Comparison on Different User Rating Scales (99% as Training Data)

(g) Performance Comparison on Different User Rating Scales (20% as Training Data)

(b) Distribution of Testing Data (99% as Training Data)

(h) Distribution of Testing Data (20% as Training Data)

Efficiency Analysis

- On a normal PC with Intel Pentium D CPU, 1 Giga bytes memory
- When using 20% data as training data -> less than 5 minutes to train
- When using 99% data as training data -> less than 20 minutes to train
- The computational complexity is linear with the number of data

Problem Definition

Figure 2: Graphical Model for Social Recommendation

SoReg

$$\min_{U,V} \mathcal{L}_{2}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \|U_{i} - U_{f}\|_{F}^{2}
+ \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}.$$
(11)

Problem Definition

- Original Matrix Factorization lost function:

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2,$$
 (4)

Adding social regularization term instead of making new latent factor:

$$\min_{U,V} \mathcal{L}_{1}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2} \qquad \min_{U,V} \mathcal{L}_{2}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \|U_{i} - \frac{1}{|\mathcal{F}^{+}(i)|} \sum_{f \in \mathcal{F}^{+}(i)} U_{f}\|_{F}^{2} + \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}, \qquad (5)$$

Model 1: Average-based Regularization

$$\min_{U,V} \mathcal{L}_{2}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f) \|U_{i} - U_{f}\|_{F}^{2}
+ \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}.$$
(11)

Model 2: Individual-based Regularization

- Model 1: Average-based Regularization
 - Suggested from intuition that people is likely to have the average tastes of friends,
 a new social regularization term:

$$\frac{\alpha}{2} \sum_{i=1}^{m} \|U_i - \frac{1}{|\mathcal{F}^+(i)|} \sum_{f \in \mathcal{F}^+(i)} U_f \|_F^2$$
 (6)

$$\mathcal{F}^+(i)$$
 user i's friend list

$$\frac{1}{|\mathcal{F}^+(i)|} \sum_{f \in \mathcal{F}^+(i)} U_f$$
 average taste of all the friends in friend list

- Model 1: Average-based Regularization
 - However, some friends may have totally different interest
 - A more realistic model should treat friends differently based on how similar they are:

$$\frac{\alpha}{2} \sum_{i=1}^{m} \|U_i - \frac{\sum_{f \in \mathcal{F}^+(i)} Sim(i, f) \times U_f}{\sum_{f \in \mathcal{F}^+(i)} Sim(i, f)} \|_F^2, \tag{7}$$

Sim(i,f) the similarity function, bigger the similar

- Model 2: Individual-based Regularization
 - Model 2 tackle each friend individually:

$$\frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \|U_i - U_f\|_F^2, \tag{10}$$

$$\mathcal{F}^+(i)$$
 user i's friend list

Sim(i,f) the similarity function, bigger the similar

05 Social Regularization

Similarity Function

Vector Space Similarity (VSS):

$$Sim(i, f) = \frac{\sum_{j \in I(i) \cap I(f)} R_{ij} \cdot R_{fj}}{\sqrt{\sum_{j \in I(i) \cap I(f)} R_{ij}^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} R_{fj}^2}}, \quad (13)$$

 $j \in I(i) \cap I(f)$ item j from subset of items which user I and f both rated

 R_{ij} rating user i gave item j

05 Social Regularization

Similarity Function

- Pearson Correlation Coefficient (PCC):

$$Sim(i,f) = \frac{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i) \cdot (R_{fj} - \overline{R}_f)}{\sqrt{\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i)^2} \cdot \sqrt{\sum_{j \in I(i) \cap I(f)} (R_{fj} - \overline{R}_f)^2}}$$
(14)

 $j \in I(i) \cap I(f)$ item j from subset of items which user I and f both rated

 \overline{R}_i the average rate of user i

06 Experimental Analysis of SoReg

Comparisons

- SR2 with PCC similarity function showed best result

Table 5: Performance Comparisons (Dimensionality = 10)

Table 5. 1 erior mance Comparisons (Dimensionality = 10)											
Dataset	Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	SR1 _{vss}	$SR1_{pcc}$	$SR2_{vss}$	$SR2_{pcc}$
Douban	80%	MAE Improve	0.6809 18.59%	0.6288 11.85%	0.5732 $3.30%$	0.5693 2.63%	0.5643 1.77%	0.5579	0.5576	0.5548	0.5543
		RMSE Improve	0.8480 17.59%	0.7898 11.52%	0.7225 $3.28%$	0.7200 2.94%	0.7144 2.18%	0.7026	0.7022	0.6992	0.6988
	60%	MAE Improve	0.6823 18.02%	0.6300 11.22%	$0.5768 \\ 3.03\%$	0.5737 2.51%	0.5698 1.84%	0.5627	0.5623	0.5597	0.5593
		RMSE Improve	0.8505 17.20%	0.7926 11.15%	0.7351 4.20%	0.7290 3.40%	0.7207 2.29%	0.7081	0.7078	0.7046	0.7042
	40%	MAE Improve	0.6854 17.06%	0.6317 10.00%	$0.5899 \\ 3.63\%$	0.5868 3.12%	0.5767 1.42%	0.5706	0.5702	0.5690	0.5685
		RMSE Improve	0.8567 16.83%	0.7971 10.61%	0.7482 $4.77%$	0.7411 3.86%	0.7295 2.33%	0.7172	0.7169	0.7129	0.7125
Epinions	90%	MAE Improve	0.9134 9.61%	0.9768 15.48%	0.8712 $5.23%$	0.8651 4.57%	0.8367 1.33%	0.8290	0.8287	0.8258	0.8256
		RMSE Improve	1.1688 8.12%	1.2375 13.22%	1.1621 7.59%	1.1544 6.97%	1.1094 3.20%	1.0792	1.0790	1.0744	1.0739
	80%	MAE Improve	0.9285 9.07%	0.9913 $14.83%$	0.8951 5.68%	0.8886 4.99%	0.8537 1.10%	0.8493	0.8491	0.8447	0.8443
		RMSE Improve	1.1817 7.30%	1.2584 12.95%	1.1832 7.42%	1.1760 6.85%	1.1256 2.68%	1.1016	1.1013	1.0958	1.0954

06 Experimental Analysis of SoReg

- Impact of Similarity Functions
 - Setting similarities to all the same value or random were worse than using functions

Table 6: Similarity Analysis (Dimensionality = 10)

						-
Dataset	Training	Metrics	SR2 Sim=1	SR2 Sim=Ran	$\mathrm{SR2}_{\mathrm{vss}}$	$\mathrm{SR2}_{\mathrm{pcc}}$
Douban	80%	MAE	0.5579	0.5592	0.5548	0.5543
	8070	RMSE	0.7034	0.7047	0.6992	0.6988
	60%	MAE	0.5631	0.5643	0.5597	0.5593
	0076	RMSE	0.7083	0.7098	0.7046	0.7042
	40%	MAE	0.5724	0.5737	0.5690	0.5685
		RMSE	0.7195	0.7209	0.7129	0.7125
	90%	MAE	0.8324	0.8345	0.8258	0.8256
Epinions	3070	RMSE	1.0794	1.0809	1.0744	1.0739
Epinions	80%	MAE	0.8511	0.8530	0.8447	0.8443
		RMSE	1.1002	1.1018	1.0958	1.0954

07 Conclusion and Future Work

Conclusion

- SoRec incorporated social network graph into latent factor using PMF
- SoReg introduced a new regularization social term

$$\min_{U,V} \mathcal{L}_{2}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) ||U_{i} - U_{f}||_{F}^{2}
+ \lambda_{1} ||U||_{F}^{2} + \lambda_{2} ||V||_{F}^{2}.$$
(11)

Model 2: Individual-based Regularization

07 Conclusion and Future Work

Future Work

- (1) In SoRec, model did not use block relationship in Epinions, but future work may consider this kind of relationship
- (2) SoReg used traditional similarity functions like PCC and VSS but future work may develop a new method to compute similarity
- (3) Papers are considering user similarity but not as much to item similarity

```
model = SoRec(n_users, n_items, social_user)
```

SoRec init

```
class SoBec(torch.nn.Module):
 def __init__(self, n_users, n_items, social_user, n_factors=10, lr=0.01,
               lambda C=10. lambda UVZ=0.001. sparse=False, device=torch.device("cuda")):
    super(SoRec, self).__init__()
    self.n_users = n_users
    self.n_items = n_items
    self.social_user = social_user
    self.n_factors = n_factors
    self.lr = lr
    self.lambda_C = lambda_C
    self.lambda_UVZ = lambda_UVZ
   self.alpha = 0.1
   self.sparse = sparse
    self.device = device
    self.user_embeddings = nn.Embedding(self.n_users, self.n_factors, sparse=self.sparse)
    self.item_embeddings = nn.Embedding(self.n_items, self.n_factors, sparse=self.sparse)
    self.social_embeddings = nn.Embedding(self.n_users, self.n_factors, sparse=self.sparse)
    nn.init.normal (self.user_embeddings.weight, std=0.01)
    nn.init.normal_(self.item_embeddings.weight, std=0.01)
    nn.init.normal_(self.social_embeddings.weight, std=0.01)
    self = self.to(self.device)
    self.loss_list = []
```

Loss Function first part

preds : dot product of U and V

- val : rij

loss : MSE loss

```
\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2}, 

(9)
```

```
# user - item matrix prediction
users_batch = users_batch.long()
items_batch = items_batch.long()
val = val.float().to(device)
preds = model.forward(users_batch, items_batch)
loss = nn.MSELoss(reduction='sum')(preds, val)
```

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2}$$

- Loss Function second part
- $+\frac{\lambda_U}{2}\|U\|_F^2 + \frac{\lambda_V}{2}\|V\|_F^2 + \frac{\lambda_Z}{2}\|Z\|_F^2,\tag{9}$
- social_preds : dot product of U and Z
- social_val : cij
- loss : lambda_C * MSE loss

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N} \left[\left(c_{ik}^* | g(U_i^T Z_k), \sigma_C^2 \right) \right]^{I_{ik}^C}$$
$$c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i) + d^-(v_k)}} \times c_{ik},$$

```
sim_user = torch.tensor(sim_user).long().to(device)
users_batch_2 = torch.tensor(users_batch_2).long().to(device)
social_val = torch.tensor(social_val).float().to(device)
social_preds = model.social_forward(users_batch_2, sim_user)
loss += self.lambda_C * nn.MSELoss(reduction='sum')(social_preds, social_val)
```

Loss Function third part

- lambda_UVZ : default 0.001
- get Frobenius Norm (L2 norm)
 of every latent factor U, V, Z

```
\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2}, 

(9)
```

```
lambda_C=10, lambda_UVZ=0.001,
```

torch.norm(input, p='fro',

SoRec Train loss and MAE

Thank You