Summer School Week3

洪晙宸

Prompting, Instruction Finetuning, and RLHF

From Language Models to Assistants

- Zero-shot and Few-shot In-Context Learning
- Instruction finetuning
- Reinforcement Learning from Human Feedback

GPT: Generative Pretrained Transformer

- GPT: 117M parameters, 4.6GB texts, 12 decoder layers.
- GPT2: 1.5B parameters, 40GB of internet text data. Scrape links posted on Reddit w/ at least 3
 upvotes
 - Zero-Shot learning
- GPT3: 175B parameters, over 600GB data
 - Few-shot learning

Zero vs One vs Few shot

- Zero-Shot: No example provided, ask the model to contineue the sequence
- One-Shot: Given an example, and ask the model to contineue the sequence.
- Few-Shot: Given a few more examples, then ask the model to contineue the sequence

Tips

Compare with traditional finetuning, it doesn't require gradient update to the model

Chain of thoughts

- Some tasks seem too hard for even large LMs to learn through prompting alone. Especially tasks
 involving richer, multi-step reasoning.
- Zero-Shot COT: begin with Let's think step by step...

Instruction Finetuning

Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Instruction Finetuning

- Evaluation: MMLU: New benchmarks for measuring LM performance on 57 diverse knowledge intensive tasks
- A good way to boost small models' performance, like 80M with instruction finetuning can beat
 3B original model.
- limitations:
 - Data is expensive
 - Mismatch between LM objective and human preferences
 - Language modeling penalizes all token-level mistakes equally, but some errors are worse than others.

Reinforcement Learning from Human Feedback

This is why it's called "reinforcement learning": we reinforce good actions, increasing the chance they happen again.

• Giving us the update rule:

$$\theta_{t+1} = \theta_t + \alpha \frac{1}{m} \sum_{t=1}^{n} \theta_t$$

This is **heavily simplified**! There is a *lot* more needed to do RL w/ LMs. **Can you** see any problems with this objective?

Problem with Human Feedback

- Human-in-the-loop is expensive
 - ullet Train an LM $RM\phi$ s to predict human preferences from an annotated dataset, then optimize for $RM\phi$ instead
- Human judgments are noisy and miscalibrated!
 - Ask for pairwise comparisons, which can be more reliable.

Problem with RLHF

- Reward hacking
 - Chatbots are rewarded to produce responses that seem authoritative and helpful, regardless of truth.

Reinforcement Learning from Human Feedback

- Finally, we have everything we need:
 - A pretrained (possibly instruction-finetuned) LM $p^{PT}(s)$
 - A reward model $RM_{\phi}(s)$ that produces scalar rewards for LM outputs, trained on a dataset of human comparisons
 - A method for optimizing LM parameters towards an arbitrary reward function.
- Now to do RLHF:
 - Initialize a copy of the model $p_{ heta}^{RL}(s)$, with parameters heta we would like to optimize
 - Optimize the following reward with RL:

$$R(s) = RM_{\phi}(s) - \beta \log \left(\frac{p_{\theta}^{RL}(s)}{p^{PT}(s)} \right) \quad \text{Pay a price when}$$
$$p_{\theta}^{RL}(s) > p^{PT}(s)$$

This is a penalty which prevents us from diverging too far from the pretrained model. In expectation, it is known as the **Kullback-Leibler (KL)** divergence between $p_{\theta}^{RL}(s)$ and $p^{PT}(s)$.

Natural Language Generation

Natural Language Generation

- Mechine translation
- Digital assistant
- Summarization
- Creative story
- Data to text
- Visual Description

Tips

Categorize by "open ended or not"

- For non-open-ended tasks (e.g., MT), we typically use a encoder-decoder system, where this autoregressive model serves as the decoder, and we'd have another bidirectional encoder for encoding the inputs.
- For open-ended tasks (e.g., story generation), this autoregressive generation model is often the only component.

Decoding: Most likely string

- Greedy Search: Always selects the highest prob word.
- Beam Search: Select from a set of words, perform better than greedy.

Repetition

I'm tired, I'm tired,

Scale doesn't solve this problem: even a 175 billion parameter LM still repeats when we decode for the most likely string.

(Holtzman et

Repetition Solutions

- n-gram detection
 - It'll kill some things we really want to repeat.
- Use a different training objective
 - Unlikelihood objective (Welleck et al., 2020) penalize generation of already-seen tokens
 - Coverage loss (See et al., 2017) Prevents attention mechanism from attending to the same words
- Use a different decoding objective
 - Contrastive decoding (Li et al, 2022) searches for strings x that maximize logprob_largeLM

```
(x) - logprob_smallLM(x).
```

Sampling

- Sample a token from a distribution of tokens.
- It's random so we can get any tokens.
- Limitations: Heavy tailed distribution

Top-k sampling

- Only sample from top k token in probability distribution
- Increase k yields more diverse, but risky outputs
- Decrease k yields more safe, but guneric outputs
- Limitations: can't apply on all senario, may cut off too quick or too slow

Top-p sampling

- The probability distribution we sample are dynamic
- Sample from all tokens in the top p cumulative probability mass
 - so k depends on p, and makes it dynamic

Scaling: Tempture

- You can apply a temperature hyperparameter t to the softmax to rebalance P
- Raise the temperature t > 1: P becomes more uniform
 - More diverse output (probability is spread around vocab)
- Lower the temperature t < 1: P becomes more spiky
 - Less diverse output (probability is concentrated on top words)

Improving: Reranking

- Decode a bunch of sequence
- Rerank these sequences by a score, select the best sequence
 - Reranker can score a variety of properties
 - Can compose multiple scores

Exposure bias

- During training, model's inputs are gold texts from real, human-generated texts. But at generation time, model's inputs are previously-decoded tokens
- Solutions
 - Scheduled sampling: A small percentage to decode a token rather than fold texts, but may lead to strange training objective
 - Dataset Aggregation: Generate sequences from current model, and add these sequences as extra training data
 - Retrieval Augmentation: Learn to retrieve a sequence from an existing corpus of humanwritten prototypes
 - Reinforcement Learning: Cast text generation model as a Markov decision process

Evalutions of NLG

- Content overlap metrics: ROUGE, BLEU, etc.
 - No idea with semantic detection.
- Model-based metrics: BLEURT, MAUVE. etc.
 - Behavior is not interpretable
- Human judgements
 - Inconsistent

Tips

Best judgut is YOU!!! Look at your model generations. Don't just rely on numbers!