IN THE CLAIMS

Please cancel claims 1-3 and 33-61 without prejudice.

Please amend claims 4, 15, 19, 21, 22, 23, 27, 29, 30, 31, 32 as follows:

(Thrice Amended) A compound having the formula: oror

Or
$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{1}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{10}$$

$$R_{10}$$

$$R_{11}$$

$$R_{12}$$

$$R_{11}$$

$$R_{12}$$

$$R_{11}$$

$$R_{12}$$

$$R_{11}$$

$$R_{12}$$

$$R_{12}$$

$$R_{12}$$

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO₂, or a pharmaceutically acceptable salt;

R₃ represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

3

idr.

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thicketa, HO-N=, NC-N=, $(R_7R_8)N-N=$, $R_{17}O-N=$, $R_{17}N=$, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z'', Z''', and Z'''' are all carbon, and] R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an ON_7 , methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, mitro, OR_7 , SR_7 , NR_7R_8 or $(CF)_nCF_3$, and exist only if the Z, Z', Z", Z"", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

R, represents hydrogen or a lower alkyl having 1-6 carbons;

R_s represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

C'h

Yi Y

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thioketone;

 R_{17} represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR_7 and SR_7 substituted alkenes), R_9 , alkyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkenes), alkyl amines (including halogen, acyl, OR_7 and SR_7 substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR_7 and SR_7 substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

79/2

15. (Twice Amended) A pharmaceutical composition comprising in a pharmaceutically acceptable vehicle suitable for enteral, parenteral, or topical administration, one or more compounds having the formula:

. . . .

$$\begin{array}{c} R_{1} \\ (CH_{2})n \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{6} \\ R_{7} \\ R_{7} \\ R_{8} \\ R_{9} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{6} \\ R_{7} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{6} \\ R_{7} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{5} \\ R_{6} \\ R_{5} \\ R_{$$

6

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO₂, or a pharmaceutically acceptable salt;

R₃ represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, $(R_7R_8)N-N=$, $R_{17}O-N=$, $R_{17}N=$, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

7

) p

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z'', Z''', and Z''''' are all carbon, and] R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or $(CF)_nCF_3$, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

R, represents hydrogen or a lower alkyl having 1-6 carbons;

R₈ represents hydrogen or a lower alky having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 14 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol or thioketone;

 R_{17} represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR_7 and SR_7 substituted alkenes), R_9 , alkyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkenes), alkyl amines

(including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR, and SR, substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, SONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt; but is not O or S if attached by a double bond to another such Z or lf attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

19. (Twice Amended) A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising causing said process to be conducted in the presence of at least one compound having the formula:

OT

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

10

....

H3

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_{13}
 R_{12}
 R_{10}

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO₂, or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N_3 :

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thicketo, HO-N=, NC-N=, $(R_7R_8)N-N=$, $R_{17}O-N=$, $R_{17}N=$, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen, a lower alkyl having 1-4 carbona, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z,

1/3 1/3 Z', Z", Z"', and Z"" are all carbon, and] R' and R" represent H, C_1-C_4 alkoxy or C_1-C_4 acyloxy or R' and R" taken together form an Oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or $(CF)_nCF_3$, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

R, represents hydrogen or a lower alkyl having 1-6 carbons;

 R_{B} represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR, and SR, substituted alkyls); substituted alkenes);

X is COOH, tetrazole, PO3H, SO3H, CHO, CH2OH, CONH, COSH, COOR, COSR, COSR, CONHR, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH2OH, COHN2, COOR9, or COOW where W is a pharmaceutically acceptable

salt when X originates from a C in the 2 or 6 position on the

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and the dashed li

the dashed lines in the second and seventh structures shown depict optional double bonds.

wherein said process is the in vivo modulation of lipid metabolism, in vivo modulation of skin-related processes, in vivo modulation of autoimmune diseases, in vivo modulation of fatty acid metabolism, in vivo modulation of malignant cell development, or in vivo modulation of premalignant lesions[, or in vivo modulation of programmed cell death].

J

wherein said process is the in vivo enhancement of programmed cell death.

9

wherein said process is the *in vivo* inhibition of programmed cell death.

W W

27. (Twice Amended) A method for modulating a process mediated by one or more Retinoid X Receptors, said method comprising administering to a mammalian subject an amount, effective to modulate said process mediated by said one or more

or or or

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO₂, or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N_7

at

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thicketo, HO-N=, NC-N=, (R_7R_8) N-N=, R_{17} O-N=, R_{17} N=, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or OF_1 , CF_3 , but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z_7 , Z'', Z''', and Z'''' are all carbon, and R'' and R''' represent H_7 , OH_7 , C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R''' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or $(CF)_nCF_3$, and exist only if the Z, Z', Z", Z'", or Z'" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

 R_7 represents hydrogen or a lower alkyl having 1-6 carbons; R_8 represents hydrogen or a lower alkyl having 1-6 carbons;

Conth

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

R₁₁ represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

 R_{17} represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR_7 and SR_7 substituted alkenes), R_9 , alkyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkenes), alkyl amines (including halogen, acyl, OR_7 and SR_7 substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR_7 and SR_7 substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

(Twice Amended) A method for treating a mammalian aubject requiring Retinoid X Receptor therapy comprising administering to such subject a pharmaceutically effective amount of one or more compounds having the formula:

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO₂, or a pharmaceutically acceptable salt;

R, represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N_i

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

N. S.

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, $(R_7R_8)N-N=$, $R_{17}O-N=$, $R_{17}N=$, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6] R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z', Z'', and Z''' are all carbon, and R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_6 or $(CF)_nCF_3$, and exist only if the Z, Z, Z", Z", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

a frage

R, represents hydrogen or a lower alkyl having 1-6 carbons;

R₈ represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

76

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR, and SR, substituted alkyls); substituted alkenes);

X is COOH, tethazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

30. (Twice Amended) A method for increasing plasma concentrations of high density lipoprotein in a mammalian subject comprising administering to such subject a pharmaceutically effective amount of one or more compounds having the formula:

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 \mbox{R}_{3} represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

D'5

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, $(R_7R_8)N-N=$, $R_{17}O-N=$, $R_{17}N=$, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z', Z'', and Z'''' are all carbon, and] R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or $(CF)_nCF_3$, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X:

cirlla

 R_7 represents hydrogen or a lower alkyl having 1-6 carbons; R_8 represents hydrogen or a lower alkyl having 1-6 carbons;

3

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone.

 R_{17} represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR_7 and SR_7 substituted alkenes), R_9 , alkyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR_7 and SR_7 substituted alkenes), alkyl amines (including halogen, acyl, OR_7 and SR_7 substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR_7 and SR_7 substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

s le contd 31. (Twice Amended) A method for determining the presence of one or more Retinoid X Receptors comprising combining a compound as set forth below with a sample containing one or more unknown receptors and determining whether said compound binds to any receptor in said sample, said compound having the formula:

$$\begin{array}{c|c} R_1 & R_2 & R' & R' \\ \hline (CH_2)n & & & \\ R_3 & & & \\ \hline (CH_2)n & & & \\ (CH_2)n & & & \\ \hline (CH_2)n & & & \\ (CH_2)n & & & \\ \hline (CH_2)n$$

b b confid

: 7:01

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alky or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thioketo, HO-N=, NC-N=, (R_7R_8) N-N=, R_{17} O-N=, R_{17} N=, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z', Z'', and Z''' are all carbon, and] R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or

C6

15 D3

 $(CF)_n CF_3$, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

R, represents hydrogen or a lower alkyl having 1-6 carbons;

R₈ represents hydrogen or a lower alkyl having 1-6 carbons;

R₉ represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, a[c]ryl, OR, and SR, substituted alkyls); substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CHO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

Cle Conth

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to

D'S

another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n = 0-3; and

the dashed lines in the second and seventh structures shown depict optional double bonds.

Receptors comprising combining a compound as set forth below with a sample containing one or more said Retinoid X Receptors, allowing said compound to bind with Retinoid X Receptors, and separating out the bound combination of said compound and Retinoid X Receptor, said compound having the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

Cha

wherein

 R_1 and R_2 , each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

The represents C, O, S, N, CHOH, CO, SO, SO_2 , or a pharmaceutically acceptable salt;

 R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where V is C or N;

 R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3 or R_4 exist if Y is S, O, CHOH, CO, SO, or SO_2 ;

R' and R" represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkowy having 1-4 carbon atoms, thiol or thio ether, or amino,

or R' or R" taken together form an oxo (keto), methano, thicketo, HO-N=, NC-N=, (R_7R_8) N-N=, R_{17} O-N=, R_{17} N=, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen,

R'" and R"" represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino,

or R'" and R"" taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen.

 R_5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 , or $(CF)_nCF_3$, but R_5 cannot be hydrogen if [together R_6 , R_{10} , R_{11} , R_{12} and R_{13} are all hydrogen, Z, Z', Z'', and Z''' are all carbon, and] R' and R'' represent H, OH, C_1 - C_4 alkoxy or C_1 - C_4 acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

 R_6 , R_{10} , R_{11} , R_{12} , R_{13} each independently represent hydrogen a lower alkyl having 1-4 carbons, halogen, nitro, OR_7 , SR_7 , NR_7R_8 or

Costal

J. J.

 $(CF)_n CF_3$, and exist only if the Z, Z', Z", Z'", or Z"" from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z", Z'", or Z"" from which it originates is N, and where one of R_6 , R_{10} , R_{11} , R_{12} or R_{13} is X;

R, represents hydrogen or a lower alkyl having 1-6 carbons;

R₈ represents hydrogen or a lower alkyl having 1-6 carbons;

R, represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

 R_{14} represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thicketone;

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR, and SR, substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR, and SR, substituted alkenes), alkyl amines (including halogen, acyl, OR, and SR, substituted alkyls), and alkenyl amines (including halogen, a[c]xyl, OR, and SR, substituted alkyls); substituted alkenes);

X is COOH, tetrazole, PO₃H, SO₃H, CHO, CH₂OH, CONH₂, COSH, COOR₉, COSR₉, CONHR₉, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring, provided, however, that X cannot be COOH, CNO, CH₂OH, COHN₂, COOR₉, or COOW where W is a pharmaceutically acceptable salt when X originates from a C in the 2 or 6 position on the ring;

C 6 and the

Z, Z', Z", Z"' and Z"", each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to