FEDERAL REPUBLIC OF GERMANY

Priority Certificate for the filing of a Patent Application

File Reference:

10 2004 014 280.7

Filing date:

22 March 2004

Applicant/Proprietor:

Degussa AG, 40474 Düsseldorf/DE

Title:

Process for preparing optically active amino acids

using a whole-cell catalyst

IPC:

C 12 P, C 12 N

The attached documents are a correct and accurate reproduction of the original submission for this application.

Munich, 25 February 2005

German Patent and Trademark Office

The President

pp

[seal of the German Patent and Trademark Office]

[signature]
Dzierzon

Process for preparing optically active amino acids using a whole-cell catalyst

The invention describes a process for preparing optically active $L-\alpha$ -amino acids. In particular the present invention describes a process for preparing compounds of the general formula (I)

(I),

10

15

in which R is alkyl, in particular a space-filling branched alkyl group which exhibits a tertiary C atom and which possesses 5-10 C atoms, for example tertbutyl, and substituted alkyl, or salts which are derived therefrom.

Optically active L-lpha-amino acids are used for preparing a number of valuable compounds. For example, these compounds function as intermediates in the production 20 of pharmaceuticals. L-tert-Leucine, which can be found as a structural element in a number of pharmaceutical active compounds and is consequently required as an intermediate synthesizing the corresponding for pharmaceutical active compounds, is a particularly 25 valuable representative of this product A. S. Bommarius et al., (J. Mol. Cat. B: Enzymatic 1998, 5, 1-11) provides examples of uses of L-tertleucine as a building block for pharmaceutical active compounds.

30

Using a leucine dehydrogenase and a formate dehydrogenase from Candida boidinii to enzymically reduce 2-ketocarboxylic acids while regenerating cofactor in situ constitutes an industrially

established method for preparing optically active L-lpha-amino acids. In particular, this route is suitable for preparing the non-proteinogenic amino acid L-tertleucine, which is produced on the ton scale using this biocatalytic method. The method is described in detail 5 in the literature (EP0692538; U. Kragl, D. Vasic-Racki, C. Wandrey, Bioprocess Engineering 1996, 14, 291-297; A. S. Bommarius, M. Schwarm, K. Drauz, J. Mol. Cat. B: Enzymatic 1998, 5, 1-11; G. Krix, A. S.: Bommarius, 10 K. Kottenhahn, M. Schwarm, M.-R. Kula, J. Biotechnol. 29-39, A. Liese, C. Wandrey, 53, K. Seelbach, C. Wandrey, Industrial Biotransformations, Wiley-VCH, Weinheim, 2000, p. 125f. A. S. Bommarius, K. Drauz, W. Hummel, M. -R. Kula, C. Wandrey, Biocatalysis 1994, 10, 37-47. In addition, 15 a general review is provided in A. S. Bommarius in: Enzyme Catalysis in Organic Synthesis (Eds.: K. Drauz and H. Waldmann), Volume 2, 2nd edition, Wiley-VCH, Weinheim, 2003, chapter 15.3, p. 1047f.). 20

Scheme 1. Preparation of L-tert-leucine using isolated enzymes and added cofactor (taking as an example an NAD+-dependent amino acid dehydrogenase and a formate

dehydrogenase for regenerating cofactor)

Typical quantities of NAD+ cofactor which are used, and which have to be added, are described, for example, in 5 EP0692538 and are in the range from of 0.0008 equivalents to 0.02 equivalents. In addition, G. Krix et al. (J. Biotechnol. 1997, 53, 29-39) describe the preparation of (S)-neopentylglycine in industrial batch sizes using an $\mathrm{NAD}^{\scriptscriptstyle +}$ cofactor quantity of 0.003 10 equivalents. Typical substrate concentrations EP0692538 are 100-250 mM. A. Liese et al. (Industrial Biotransformations, Wiley-VCH, Weinheim, p. 125f.) describe the preparation of L-tert-leucine using a substrate concentration of 0.5 M and with a yield of 74%. G. Krix et al. (J. Biotechnol. 1997, 53, 15 29-39) also describe the performance of reductive aminations using isolated leucine dehydrogenase and formate dehydrogenase enzymes at substrate concentrations of from 0.5 to 1 M.

20

The high turnovers and outstanding enantioselectivities, which are > 99% ee and consequently help to meet the strict quality demands placed on pharmaceutical intermediates, are advantageous features of this method. It is also possible to operate at high substrate concentrations, something which is an important aspect particularly from the industrial point of view.

However, a disadvantage of the previous method is, in the first place, the requirement for isolated enzymes. These latter are used, in particular, in purified form, with this being accompanied by an increase in the share of the costs due to the biocatalyst. Because of the high enzyme costs resulting from this, it is necessary to recycle the enzymes many times in order to obtain a favorable process economy, in particular low enzyme costs. In addition to the long running times of these

recycling procedures, which are advantageously carried out continuously, the relatively small reaction volumes per batch which result from this are disadvantageous.

5 Another disadvantage is the requirement for cofactor which is added in the reaction. While these cofactors are added catalytically in orders of size of approx. 0.001 equivalents, they nevertheless represent, because of their high price, a considerable cost factor even at catalytic quantities.

A process in which the necessity of using isolated enzymes and of adding cofactor is dispensed with, or the addition of cofactor is kept to a minimum, and the 15 synthesis nevertheless proceeds with a high turnover high enantioselectivity and high volumetric productivity, would therefore be desirable. it would be possible to lower enzyme costs considerably and cofactor save on costs, and 20 consequently increase the economy of the process.

Soda et al. describe the use of a whole-cell catalyst, comprising a leucine dehydrogenase and a bacterial formate dehydrogenase, in the reductive amination of, inter alia, branched-chain α -ketocarboxylic acids such 25 as L-tert-leucine (Appl. Environm. Microbiology 1997, 63, 4651-4656). This publication explicitly points out that the enzymes which are required in the reductive amination can be used in the form of a whole-cell 30 catalyst, in particular E. coli, as live or resting cells, which comprises these enzymes. However, preference were to be given to taking advantage of the intracellular pool of NAD^+ in E.coli, for the purpose avoiding having to add the NAD+, concentration of product would then be restricted to 35 about 0.3 M. This is not adequate for industrial applications.

The object of the present invention was therefore to specify another process for preparing L- α -amino acids which operates enzymically and which can be carried out advantageously on an industrial scale. The process should, in particular, be superior to the processes of the prior art with the abovedescribed aspects and should make it possible to produce the desired products advantageously from the point of view of process economics (in particular space-time yield).

10

15

20

25

30

These objects, and other objects which are not specified in more detail but which ensue from the prior art in an obvious manner, are achieved by a process having the features of the present claim 1. Claims 2 to 9 are directed preferred embodiments of the present process.

Said object is achieved, in a manner which is extremely elegant and surprising but nonetheless advantageous for that, by, in a process for preparing enantiomerically enriched $L\text{-}\alpha\text{-amino}$ acids or their salts by reacting the corresponding 2-ketocarboxylic acid with an ammonium ion donor in the presence of a whole-cell catalyst which comprises a cloned gene encoding a cofactordependent amino acid dehydrogenase and a cloned gene encoding an enzyme which regenerates the cofactor, metering, at a total input of substrate per reaction volume of \geq 500 mM, the addition of the substrate such that the stationary concentration of 2-ketocarboxylic acid is less than 500 mM and the external addition of cofactor, based on the total input of substrate, corresponds to < 0.0001 equivalents.

Surprisingly, it is possible, for example by using the whole-cell catalyst while at the same time metering in the substrate, to dispense with any addition of the expensive cofactor or, by means of making a minimal external addition (< 0.0001 equivalents), to keep its concentration in a low range, with this helping to save

on process input costs. By contrast, without this metering technology and when initially introducing substrate quantities per reaction volumes of > 500 mM, the reductive amination using the whole-cell catalyst only succeeds when relatively large quantities of the NAD+ cofactor are added. In the absence of the latter, the concentration only proceeds unsatisfactorily (see comparative example "synthesis example 1", substrate quantity per reaction volumes 900 mM - final turnover 25%). It is consequently only by using the process according to the invention (see synthesis examples 2 to 4) that it is possible to be able to almost completely dispense with the external addition of the cofactor even when carrying out the synthesis with relatively high total turnover quantities per reaction volumes and consequently under which make sense from the point of process economics.

In a preferred embodiment, the expensive cofactor is therefore only added in quantities which are such that a concentration of preferably < 0.00005 equivalents, extremely preferably < 0.00001 equivalents, based on the substrate, is maintained. Very particular preference is given to an embodiment in which no cofactor is added externally to the reaction mixture. In this case, therefore, no addition of the cofactors (e.g. NAD(H)) need take place at all, something which it was not possible to deduce in an obvious manner from the prior art.

30

35

10

15

Within the context of the reaction under consideration, the skilled person is free to choose the genes which encode a cofactor-dependent amino acid dehydrogenase and an enzyme which regenerates the cofactor, which genes are to be expressed by the whole-cell catalyst, as host organism. He will lean toward enzymes which are known from the prior art.

With regard to the amino acid dehydrogenase, suitable enzymes are, in particular, those which are selected from the group consisting of leucine dehydrogenases (US5854035) and phenylalanine dehydrogenases acid dehydrogenases which Amino 5 (US5416019). proved to be suitable are, in particular, the leucine dehydrogenases, with the leucine dehydrogenases Bacillus strains, and, in this case, in particular, from Bacillus sphaericus, Bacillus cereus (Seq. stearothermophilus Bacillus 10 No. 5) and particularly suitable. Cofactor-regenerating enzymes taken into consideration are those can be group consisting of formate from the selected malate dehydrogenases (EP1295937), dehydrogenases (PCT/EP/03/08631), lactate dehydrogenases and glucose 15 dehydrogenases (the latter in A. Bommarius in: Enzyme Catalysis in Organic Synthesis (eds.: K. Drauz H. Waldmann), Volume III, Wiley-VCH, Weinheim, chapter 15.3). The use of a formate dehydrogenase from or mutants resulting therefrom boidinii Candida 20 (EP1295937; Seq. ID No. 7), while employing a formatecontaining component as substrate, has proved to be very particularly preferred.

In this connection, a whole-cell catalyst which comprises a leucine dehydrogenase and a formate dehydrogenase from *Candida boidinii* or mutants derived therefrom is particularly suitable.

The substrate spectrum which is converted by the wholecell catalyst differs depending on the amino acid
dehydrogenase which is employed. While the leucine
dehydrogenase is more suitable for linear and branched
aliphatically substituted 2-ketocarboxylic acids, the
phenylalanine dehydrogenase is preferably used for
aromatic substituted substrates. With regard to the use
of leucine dehydrogenase in the whole-cell catalyst, it
is preferably possible to employ and convert substrates

of the general formula (II) possessing an aliphatic radical ${\tt R}$

5

10

Substrates which possess bulky aliphatic radicals as R are particularly suitable. These R radicals are primarily those selected from the group consisting of 1-adamantyl, neopentyl and tert-butyl. For this reason, preference is given to a process in which use is made of 2-ketocarboxylic acids, or salts resulting therefrom, which yield amino acids of the general formula (I)

15

20

25

30

in which R is alkyl, in particular a space-filling branched alkyl group which exhibits a tertiary C atom and possesses 5-10 C atoms, for example tert-butyl, and substituted alkyls.

In principle, the skilled person is free to choose the manner in which he carries out the process according to the invention. In this connection, he will lean toward processes which are known from the prior art. These processes can be continuous or discontinuous. It is advantageous to meter the addition of the substrate in accordance with a fed batch process [see, for example, synthesis examples 2 and 4] or by continuously adding it [see, for example, synthesis example, synthesis example 3]. In both

process variants, the substrate is added such that the stationary concentration of substrate is less than 500 mM.

It has turned out to be advantageous to use the 2-keto-carboxylic acid employed as substrate at a maximum stationary concentration of less than 450 mM, and very particularly preferably of less than 400 mM, during the reaction.

10

15

20

25

In the fed batch process, the substrate is added in portions, after given units of time and preferably as a substrate solution. The number of the substrate portions which are added is preferably between 3 and 15, very preferably between 5 and 9. The concentration of the added substrate solution should preferably be set high enough to achieve a total input of substrate per reaction volume which is as high as possible. Synthesis examples 2 and 4 provide examples of this fed batch process variant. In the case of the continuous process variant, the substrate is added continuously over a given period of time, preferably at a constant metering rate, with the substrate preferably being added in the form of a substrate solution. Synthesis example 3 provides an example of this continuous process variant.

All known cells are suitable for use as the whole-cell catalyst which comprises an amino acid dehydrogenase 30 and an enzyme which is capable of regenerating the cofactor. Microorganisms which may be mentioned in this regard are organisms such as yeasts, such as Hansenula polymorpha, Pichia Saccharomyces sp., cerevisiae. prokaryotes, such as E.coli and Bacillus subtilis, or 35 eukaryotes, such as mammalian cells, insect cells or plant cells. The methods for cloning are well-known to the skilled person (Sambrook, J.; Fritsch, E. F. and Maniatis, T. (1989), Molecular cloning: a laboratory

5

10

manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). Preference is given to using E.coli strains for this purpose. Those which are very particularly preferred are: E.coli XL1 Blue, NM 522, JM101, JM109, JM105, RR1, DH5 α , TOP 10-, HB101, BL21 codon plus, BL21 (DE3) codon plus, BL21, BL21 (DE3), MM294. Plasmids which can preferably be used to clone the gene construct containing the nucleic acid according to the invention into the host organism are likewise known to the skilled person (see also PCT/EP03/07148; see below).

Suitable plasmids or vectors are, in principle, all the versions which are available to the skilled person for this purpose. These plasmids and vectors can be found,

- for example, in Studier and coworkers (Studier, W. F.; Rosenberg A. H.; Dunn J. J.; Dubendroff J. W.; (1990), Use of the T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185, 61-89) or the brochures provided by the companies Novagen, Promega,
- 20 New England Biolabs, Clontech or Gibco BRL. preferred plasmids and vectors can be found Glover, D. M. (1985), DNA cloning: a practical approach, Vol. I-III, IRL Press Ltd., Oxford; and Denhardt, D. T. (eds) Rodriguez, R. L. (1988),
- Vectors: a survey of molecular cloning vectors and their uses, 179-204, Butterworth, Stoneham; Goeddel, D. V. (1990), Systems for heterologous gene expression, Methods Enzymol. 185, 3-7; Sambrook, J.; Fritsch, E. F. and Maniatis, T. (1989), Molecular
- cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York. Plasmids which can very preferably be used to clone the gene constructs containing the nucleic acid sequences under consideration into the host organism are, or are based
- on: pUC18/19 (Roche Biochemicals), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals), pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene or pET (Novagen).

10

In another embodiment of the process according to the invention, before it is used, the whole-cell catalyst is preferably pretreated such that the permeability of the cell membrane for the substrates and products is increased as compared with the intact system. In this connection, particular preference is given to a process in which the whole-cell catalyst is, for example, pretreated by being frozen and/or by being treated with toluene. The essential features of the process according to the invention are shown in scheme 2.

The substrates can be employed at an extraordinarily high concentration when using the present process, as has also been described in the prior art when using the 15 individual enzymes. In the present case, advantageous to employ the 2-ketocarboxylic acid at a concentration of greater than 500 mM. Ιt preferred to introduce the substrate into the reaction at concentrations of greater than 800 mM, preferably 20 greater than 900 mM and very particularly preferably greater than 1000 mM. However, in the case of this embodiment, it is essential to add cofactor to the reaction mixture in order to achieve corresponding turnover rates.

If, however, it is wished, despite a high space-time 25 yield being demanded, to use the whole-cell catalyst such that it does not become necessary to add the expensive cofactor externally, or only necessary to make an extremely small external addition of less than 30 0.0001 equivalents, the skilled person can then surprisingly achieve this by the metering, accordance with the invention, of the substrate.

In the case of the present reaction, the procedure is preferably that the whole-cell catalyst and the ammonium ion donor are initially introduced in water. Any compound which is suitable to the skilled person for this purpose can be used as the ammonium ion donor.

In particular, these ammonium ion donors are compounds which are selected from the group consisting of typical ammonium salts. Very particular preference is given to using ammonium formate when a formate dehydrogenase is selected as the cofactor regeneration system. The reaction can be depicted very clearly by means of the following scheme 2.

10

5

Scheme 2. Principle of the reaction in the whole-cell catalyst process according to the invention (taking as an example an NAD⁺-dependent amino acid dehydrogenase and a formate dehydrogenase for regenerating cofactor)

15

20

If other dehydrogenases are used instead of the leucine dehydrogenase, the conditions under which the enzyme in question functions optimally can be found in the prior art. The reader is referred to US5416019 and Galkin et al. (Appl. Environ. Microbiol. 1997, 63, 4651) with regard to using a phenylalanine dehydrogenase.

With regard to the cofactor-regenerating enzymes and the conditions to be established, reference can be made to EP1295937 (formate dehydrogenase), PCT/EP/03/08631 (malate dehydrogenase) and Enzyme Catalysis in Organic Synthesis (Eds.: K. Drauz and H. Waldmann), Volume III, Wiley-VCH, Weinheim, 2002 (glucose dehydrogenase), and to the literature cited therein.

10

15

20

25

30

The reaction mixture is worked up using methods known to the skilled person. In the batch process, the biomass can be readily separated from the product by means of filtration or centrifugation. The amino acid which is obtained can then be isolated using customary methods (ion exchange chromatography, crystallization).

However, the present process can also be carried out continuously. For this, the reaction is carried out in what is termed an enzyme-membrane reactor in which high molecular weight substances, i.e. the biomass. retained behind an ultrafiltration membrane and low molecular weight substances, such as amino acids which have been produced, are able to pass through the membrane. A procedure of this nature has already been described several times in the prior art (Wandrey et al. year-book 1998, in Verfahrenstechnik Chemieingenieurwesen [Process technology and chemical engineering], VDI, p. 151ff; Kragl et al., Angew. Chem. 1996, 6, 684).

The process, which is presented here, for preparing amino acids, which are, in particular, bulky, can very readily be established on a commercial scale on account its advantages. The surprising fact that the addition, which is necessary in the case of the reaction under consideration, of a cofactor can be dispensed with in the process according invention, as well as the advantages arising from the fact that the whole-cell catalysts are easy to manage, constitute the non-obvious superiority of the present invention over the methods of the prior art.

Furthermore, it can be regarded as being surprising that the influence of undesirable metabolic/physiological functions is of no importance when using the whole-cell catalyst. Both aspects help, in an extraordinarily comprehensive manner, to lower the

process costs entailed in preparing the L- α -amino acids.

It is furthermore surprising that, despite permeabilization of the cell wall and the possibility, associated therewith, of the cofactor present in the cells escaping, a negative impairment of the reaction which might be expected, for example as a result of the turnover being decreased, is not observed.

10

Within the context of the invention, optically enriched (enantiomerically enriched, enantiomer enriched, enantiomerically pure) compounds are understood as meaning the presence of one optical antipode at > 50

15 mol% when mixed with the other.

The whole-cell catalyst is understood as meaning a microorganism which comprises cloned genes which encode enzymes which are at least able to catalyze two consecutive steps in the transformation of an organochemical compound. In this regard, and with regard to the general preparation methods (matching the enzyme expression with regard to the turnover rates), the reader is referred to EP1216304.

25

30

3.5

20

According to the invention, alkyl is understood as meaning a (C_1-C_{18}) -alkyl radical. This encompasses arbitrarily branched radicals of linear and includes, in particular, methyl, ethyl, nature. Ιt 1-n-butyl, 1-propyl, 2-propyl, 2-n-buty1, 1-2-isobutyl, 1- or 2-sec-butyl, tert-butyl, etc. radicals can be substituted once or more than once by (C₁-C₈)-heteroalkyl radicals or radicals such as OH, SH, Hal and NH_2 . Heteroalkyl radicals are understood as meaning, in particular, an alkyl radical as described above which possesses from 1 to 8 C atoms and which contains heteroatoms, such as O, S or N in its chain or

which is bonded, by way of these heteroatoms, to the molecule under consideration.

External addition of cofactor means that this quantity of cofactor is added artificially to the reaction mixture. This quantity is to be seen as being in addition to the quantity of cofactor which is already inherently introduced into the reaction mixture by the whole-cell catalyst.

10

It goes without saying that the 2-ketocarboxylic acid which is used in the reaction is present in the reaction mixture in dissociated form. This form can be obtained either by using the ketocarboxylic acid and adjusting the pH correspondingly or by adding the salts of the ketocarboxylic acids. Both forms are included here analogously and in accordance with the invention.

The term total substrate concentration stands for the total input of substrate per reaction volume.

Figures:

Fig. 1 - pAM3.25 (Seq. ID No. 9):

5 Construction of pJOE4580.2

The plasmid pJOE4580.2 was formed from the published plasmid pJOE3075 (T. Stumpp, B. Wilms J. Altenbuchner (2000) Biospektrum 1/2000: 33-36) bv 10 removing the malE gene by cutting with the restriction endonucleases NdeI/HindIII and replacing it with two oligonucleotides which once again complemented the NdeI and HindIII cleavage sites and, in addition to this, carried an NheI, an AatII and a PstI cleavage site. A 15 SmaI fragment from the plasmid pJOE773 (J. Altenbuchner, P. Viell, I. Pelletier (1992)Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216: 457-466), fragment carries the E.coli lacZalpha gene, was inserted into the NheI cleavage site after filling 20 using Klenow polymerase and dNTPs. When harboring this plasmid, E. coli JM109 gives blue colonies on LB plates containing X-Gal and IPTG. This plasmid was named pJOE4580.2. The FDH sequence (Seq. ID No. 7) was cloned into this plasmid. The resulting plasmid was named 25 pAM3.25.

Fig. 2 - pAM5.22

30 Construction of pJOE4580.2

The plasmid pJOE4580.2 was formed from the published plasmid pJOE3075 (T. Stumpp, B. Wilms and J. Altenbuchner (2000) Biospektrum 1/2000: 33-36) by removing the malE gene by cutting with the restriction endonucleases NdeI/HindIII and replacing it with two oligonucleotides which once again complemented the NdeI and HindIII cleavage sites and, in addition to this,

carried an NheI, an AatII and a PstI cleavage site. A SmaI fragment from the plasmid pJOE773 (J. Altenbuchner, P. Viell, I. Pelletier (1992) Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216: 457-466), which fragment 5 carries the E.coli lacZalpha gene, was inserted into the NheI cleavage site after filling using Klenow polymerase and dNTPs. When harboring this plasmid, E. coli JM109 gives blue colonies on LB plates containing X-Gal and IPTG. This plasmid was named pJOE4580.2. The 10 LeuDH sequence (Seq. ID No. 5) was inserted into this plasmid. The new plasmid is named pAM5.22.

Fig. 3 - pAM8.21

15

Construction of pHWG640.12 (Seq. ID No. 11)

Plasmid pHWG640.12 has not previously been published and its construction is therefore described as follows. This plasmid pHWG640.12 is constructed proceeding from 20 the published plasmid pAW229 in a manner which readily reworkable. Plasmid pAW229 is a pACYC184 derivative which contains a rhamnose promoter. Proceeding from pAW229 (B. Wilms, A. Wiese, C. Syldatk, R. Mattes, J. Altenbuchner (2001) J. Biotechnol 86: 19-25 30), the hyuC gene was excised from the plasmid with NdeI/HindIII and replaced with a PCR fragment which was cut same restriction enzymes and which with the contains the E. coli K12 sfcA (malic enzyme) gene. The resulting plasmid was designated pHWG640.12. The LeuDH 30 sequence was inserted into this plasmid. plasmid is named pAM8.21.

Fig. 4 - pAM10.1 (Seq. ID No. 10)

35

The scfA gene (Seq. ID No. 11) was deleted from plasmid pAM8.21. The new plasmid is named pAM10.1.

Fig. 5

Biocatalyst with depiction of the course of the specific activity of leucine dehydrogenase (LeuDH) and formate dehydrogenase (FDH), and of the optical density, in dependence on the induction time; for a detailed description of the fermentation conditions, see experimental section.

Experimental examples

10

5

Preparing the whole-cell catalyst

Gene amplification and cloning

In order to clone the formate dehydrogenase (FDH, fdh3 15 from Candida boidinii, mutant with lower sensitivity to oxidation) and leucine dehydrogenase (Bacillus cereus LeuDH) for the whole-cell catalysis of the conversion of trimethylpyruvate into tert-leucine regeneration of cofactor, the genes for the two enzymes 20 were first of all amplified by PCR from chromosomal DNA obtained from the abovementioned strains. oligonucleotides employed are listed in Table 1 while the composition of the PCR mixtures is given in Table 2 and the PCR program is given in Table 3. 25

Oligo-	5'-3' sequence		Seq. ID
nucleotide			No.
s3713	AAA AAA CTT AAG AAG GAG ATA TAC	LeuDH	1
	ATA TGA CAT TAG AAA TCT TCG AA	forward	
s3714	AAA AAA CTG CAG TTA GCG ACG GCT	LeuDH	2
	AAT AAT AT	reverse	
s3723	AAA AAA <u>CAT ATG</u> AAG ATT GTC TTA	FDH	3
	GTT CTT	forward	
s3716	AAA AAA GAC GTC TTA TTT CTT ATC	FDH	4
	GTG TTT ACC	reverse	

The oligonucleotides were used to append cleavage sites for restriction endonucleases to the genes. These are BfrI in the case of s3713, PstI in the case of s3714, NdeI in the case of s3723 and AatII in the case of s3716 (see underlined regions).

Table 2: PCR mixtures, polymerase, buffer and MgCl $_2$ originate from the company Biomaster; the plasmid DNA starting concentration was 50 $\mu g/ml$

Component	For FDH	Mixture for FDH	for LeuDH	Mixture for LeuDH
Plasmid DNA		2 μ1	pLeu2	2 μl
from strain			plasmid	
FDH-C235/C262A			DNA	
10× buffer		10 μl		10 μl
50 mM MgCl2		3 µl		3 µl
100% DMSO		10 μl		10 μ1
10 mM dNTPs		2 μ1		2 μ1
33 mM oligo 1	S3723	1 μ1	s3713	1 μ1
33 mM oligo 2	s3716	1 μl	s3714	1 μ1
Taq polymerase		1 μl		1 μ1
Deionized H2O		70 µl		70 µl

Table 3: PCR program: steps 2 to 4 were repeated 30 times

Step)	T, t for FDH	T, t for LeuDH	
		amplification	amplification	
1.	Denaturation of the DNA	94°C, 5 min	94°C, 5 min	
2.	Oligo annealing	50°C, 1 min	51°C, 1 min	
3.	DNA elongation	72°C, 1: 30 min	72°C, 1:30 min	
4.	Denaturation of the dsDNA	92°C, 1 min	92°C, 1 min	
5.	DNA elongation	72°C, 7 min	72°C, 7 min	

After the gene amplification, the PCR fragments were purified using the "DNA PCR and gel band purification kit" supplied by the company GFX and ligated into the L-rhamnose-inducible vectors pJOE4580.2 (pBR322 derivative; Fig. 1) and, respectively, pHWG640.12 (pACYC184 derivative; Fig. 3; Seq. ID No. 11) using the restriction endonucleases mentioned below.

In general, restriction mixtures were prepared using approx. 50 μg of DNA/ml in the 10 μl standard mixture. 1 μ l of the first enzyme, and 1 μ l of 15 the concentrated enzyme buffer, were also added. mixtures were adjusted to the final volume using deionized H2O. The DNA to be inserted was incubated with the restriction enzymes separately from plasmid DNA. After the restriction with the first 20 enzyme, there then followed a precipitation step in which the DNA was precipitated with isopropanol and washed with ethanol and then dried and taken up in 8 μ l of TE 10.01. In each case 1 μl of the second enzyme and $1~\mu l$ of the second $10\times$ enzyme buffer were added to 25 these mixtures, which were incubated once again at 37°C 1.5 h. The vector pAM10.1 was prepared from pAM8.21, this was also followed by a treatment with

5

Klenow polymerase. The DNA was then separated into its fragments using a 1% agarose gel (Seakem agarose containing 0.4 μ g of ethidium bromide/ml) and the correct bands were excised with a scalpel for further use. The DNA was eluted, in accordance with the instructions, from the small gel blocks using the "EASY PURE gel purification kit" supplied by the company Biozym and taken up in 15 μ l TE 10.01.

For the ligation of vector and insert, the mixtures 10 were selected such that the insert DNA was present at approximately twice the concentration of the target vector. In this case, too, the DNA concentration was 50 μ g/ml. The final volume of the ligation approx. 15 mixtures was 10 μ l, with the mixtures also containing 1 μl of ligase and 1 μl of 10x concentrated ligase buffer (both from ROCHE) in addition to vector/insert mixture. The incubation took place overnight at 4°C. The mixtures ligation 20 transformed into E.coli K12 JM109, with this bacterium then being selected on LB agar containing antibiotics (100 μg of ampicillin/ml (pAM3.25 [Seq. $_{
m ID}$ No. 9], pAM5.22) or 25 µg chloramphenicol/ml (pAM8.21, pAM10.1 [Seq. ID No. 10]), and clones were checked for the 25 expected plasmid after the plasmids had been isolated.

Since LeuDH (Seq. ID No. 6) was initially to be coupled to malic enzyme (Seq. ID No. 12), the LeuDH gene was first of all inserted into pJOE4625.1, which already contained the gene for malic enzyme (sfcA) (Fig. 2). 30 The LeuDH gene was then inserted into pHGW640.12 (Fig. 3), a pACYC184 derivative which also contained a rhamnose promoter and an sfcA gene, which latter was then deleted. The subcloning of the LeuDH gene from 35 plasmid pAM5.22 (Fig. 2) into the target pAM10.1 (Fig. 4) was necessary in order to construct a two-plasmid system which requires two resistance markers for selection.

Table 4: Cloning results

Gene/vector	Cloned into	Restriction	New	Fig.
	plasmid	with	designation	·
FDH	pJOE4580.2	NdeI, AatII	pAM3.25	1
PCR fragment				
LeuDH	pJ0E4625.1	BfrI, PstI	pAM5.22	2
PCR fragment				
LeuDH from	pHWG640.12	BfrI, BamHI	pAM8.21	3
pAM5.22				
pAM8.21	Without sfcA	MunI, PstI	pAM10.1	4
	gene			

Fermenting the whole-cell catalyst

5

After HPLC analysis had shown that the FDH/LeuDH combination (E.coli JM109/pAM3.25/pAM10.1) better results in converting trimethylpyruvate into tert-leucine than a comparative model system (malic 10 enzyme/LeuDH on pAM5.22) in miniature-scale (1 ml) experiments in a thermoshaker, plasmids pAM3.25 and pAM10.1 were transformed into E.coli BW3110 since this strain is more suitable for fermentations. intention was to use high cell density fermentation to prepare a sufficiently large biomass for all the 15 following investigations using the model system. fermentation was carried out without any antibiotic, with the preliminary cultures having been grown in the presence of antibiotic, at 30°C in a 30 l fermenter 20 containing a final volume of 8 1. For this, the cells were initially grown at 30°C as a batch culture up to an OD600 = 50 and until the glucose had been completely consumed (approx. 22h). Gene expression was induced by adding rhamnose, which had been sterilized 25 by filtration, to a final concentration of 0.2%, while fed batch culture was started by automatically adding nutrient solution and minerals (feed I and feed II). Samples, whose OD and enzyme activities were

determined, using the respective activity tests in the latter case, were taken every two hours from the induction onward. The course of the OD, and of the activities, until fermentation was terminated are plotted against the time in Figure 5.

The fermentation was terminated 22h after the rhamnose induction since, despite increasing cell density, activity of the FDH had stagnated and the cause of this 10 was presumably plasmid loss or a reaction medium which was too acidic. The latter became apparent in the whole-cell reactions, in which the pH fell markedly $(\Delta pHmax = 0.8)$, as compared with a previously pHregulated solution, when the moist biomass was added. The activities of the two enzymes reached $0.565~\mathrm{U/mg}$ of 15 total protein in the case of the LeuDH and 0.123 U/mg of total protein in the case of the FDH. The volume activities, based on the fermentation medium, 32.77 U/ml for the LeuDH and 7.14 U/ml for the FDH. After the medium had been removed in a separator, the 20 cell yield was 1.4 kg of moist biomass. The cells were stored temporarily at -20°C until being used as wholecell catalyst.

25 Fermentation media

Preliminary culture:

 $2 \times 200 \text{ ml}$

Preliminary culture medium:

 $cNa2SO4 \times 10H2O = 2 q/1$

c(NH4)2SO4 = 2.675 g/1

cNH4C1 = 0.5 g/1

cK2HPO4 = 14.625 g/1

 $cNaH2PO4 \times 2H2O = 3.6 g/1$

autoclave in 90% by vol. H20

cglucose = 10 g/l, final
concentration

(stock solution in H2O)

autoclave separately

5

1M MgSO4 solution, 2 ml/l TES, 3 ml/l Thiamine stock solution (10 g/l in H2O), 1 ml/l

Batch culture: Add inoculum (380 ml in which Cx = 12 g/l) containing glucose, MgSO4, TES and thiamine in an inoculation flask to the autoclaved batch medium

Batch medium (quantity taken for 8 1):

 $Na2SO4 \times 10H2O$ 16 g (NH4)2SO4 21.4 g NH4Cl 4 g K2HPO4 117 q $NaH2PO4 \times 2H2O$ 28.8 g (NH4) 2H-citrate 8. g dissolve in 7.5 l of H2O and sterilize in a 30 1 fermenter Glucose monohydrate 220 g dissolve in 500 ml of H2O and autoclave (25 g/1)1M MgSO4 solution 16 ml TES 24 ml Thiamine solution (10 g/l) 8 ml (sterilize the thiamine by filtration, autoclave the remainder) pH 7.2, using H3PO4 and NH3

Fed batch feed:

	I. G	lucose monohydrate	e 2750 g in 3.5	1 of H2O
		autoclave		
5		MgSO₄ × 7H2O autoclave	98.5 g in 0.1	5 1 of H2O
		TES solution	0.5 1	
		autoclave		
4.0		Thiamine	2.5 g in 0.5 1	l of H2O
10		sterilize by fil		
		then combine in	a feed flask	
	II. (1	NH4)2HPO4 autoclave	396 g in 1 l c	of H2O, pH 7
15	Ecoda -			
13	reeas .	I and II are added	l using two separate	pumps
	pH:	7.2 (titrated wi	th H3PO4 and NH3)	
	pO_2 :	approx. 50 kPa	(regulated by the	e rotational
20		speed of the agi		
		• <u>-</u>		
	Trace e	element		
		on (TES):	G=G10 07700	
	SOIUCIC) (1E5):	CaCl2 × 2H2O	0.5 g
25			ZnSO4 × 7H2O	0.18 g
			MnSO4×H2O	0.1 g
30			Di-Na-EDTA	20.1 g
			FeC13 × 6H2O	16.7 g
			CuSO4 × 5H2O	0.16 g
35			CoC12 × 6H2O	0.18 g
			H2O to 1 1	

Preparing L-tert-leucine using a whole-cell catalyst at 900 mM without metering (comparative example = synthesis example 1)

50 ml of an 0.9 M solution of trimethylpyruvic acid (pH 5 7.0, adjusted with 32% ammonia), which also contains 1 mM magnesium chloride and 1% (v/v) toluene, are added 5.85 g of the biocatalyst (E.coli JM105 3.25_10.1) biomass) and 7.95 g of ammonium formate (2.8 mol equivalents). The pH is adjusted to pH 7.0 at 10 the beginning of the reaction and not regulated any further after that, resulting in the pH rising during the reaction. The reaction temperature is 30°C. After a reaction time of 8 h, a conversion of 24.6% 15 measured, with it not being possible to increase this conversion any further even after an additional 15 h of stirring.

Preparing L-tert-leucine using a whole-cell catalyst at 20 approx. 0.9 M and employing fed batch metering (synthesis example 2)

23.84 g of ammonium formate (corresponding to equivalents based on the total substrate quantity employed) and 17.55 g of the biocatalyst (E.coli JM105 25 (pAM 3.25_10.1) biomass) are initially weighed into a three-neck flask, after which 28.50 ml deionized water and 150 ul οf 1M solution а of chloride magnesium (corresponding to concentration based on the final volume) are added. 30 When the reaction temperature of 30°C has been reached, the reaction is started by adding 7.50 ml of a 1.8 ${\rm M}$ solution of trimethylpyruvic acid (pH 7.0, adjusted with 32% ammonia). The pH is then adjusted to 7.0 by adding 32% ammonia. After that, in each case 7.50 ml of 35 a 1.8 M solution of trimethylpyruvic acid (pH 7.0, adjusted with 32% ammonia) are firstly metered in twice after which different volumes of a 1.8 M solution of

5

10

trimethylpyruvic acid (pH 7.0, adjusted with 32% ammonia) are metered in five times, with all the additions taking place at defined time intervals. The time intervals, and the quantities which are in each case metered in, are given in the following metering The final volume is 150 ml and the concentration οf added substrate is 0.86 M, corresponding to a volumetric quantity of trimethylpyruvic acid of 112.5 g/l. A complete conversion (> 98% in accordance with HPLC) is observed after a reaction time of 24 h.

Metering table	Substrate solution	Substrate solution
Time (h)	ml (1.8 M)	ml (0.9 M)
0	7.5	0
0.5	7.5	0
1	7.5	0
2.5	0	15
4	0	17.5
5.5	0	20
6.5	0	22.5
7	0	24
Total volume of		
metered-in		
substrate solution	22.5	99

Preparing L-tert-leucine using a whole-cell catalyst at 15 1 M and employing continuous metering (synthesis example 3)

26.48 g of ammonium formate (corresponding to 2.8 equivalents based on the total quantity of substrate 20 employed), 150 µl of a 1 M solution of magnesium chloride (corresponding to a 1 mM concentration based on the final volume) and 19.49 g of the biocatalyst (E.coli JM105 (pAM3.25_10.1) biomass) are initially weighed into a 250 l three-neck flask, after which

30 ml of deionized water are added. The pH is then adjusted to 7.0 by adding 32% ammonia. After the reaction temperature of 30°C has been reached, a total of 120 ml of a 1.25 M solution of trimethylpyruvic acid 5 7.0, adjusted with 32% ammonia) are continuously at a flow rate of 0.2 ml/min over a period of 10 hours. The final volume is 150 ml and the total concentration of substrate employed is corresponding to a volumetric quantity 10 trimethylpyruvic acid of 130.1 g/l. A conversion of 96% (in accordance with HPLC) is observed after a reaction time of 27 h.

Preparing L-tert-leucine using a whole-cell catalyst at 700 mM and employing fed batch metering

2.55 g of sodium formate (corresponds to 2.5 mol/l based on final volume) are initially added to a conically shaped 100 ml reaction flask belonging to a 20 STAT Titrino 718, after which 15 μl of a 1 M solution of MgCl₂ (corresponds to a final concentration of 1 mM) and 4.5 ml of a 1 M solution of TMP (pH 7, adjusted with 25% ammonia), and also 1.5% by vol. of toluene (based on the final volume), are added. The volume is made up to 15 ml with deionized H₂O. The reaction temperature of 30°C is kept stable, and controlled, by a closed-loop water circuit. 1 g of the biocatalyst moist biomass is resuspended in the substrate mixture and the pH is adjusted to 6.9 to 7 with 25% ammonia.

30

35

After pH 7.5 has been reached, 4.5 ml of the 1 M TMP solution (pH 7) are added repeatedly. In this connection, the pH falls by approx. Δ pH = 0.3. As soon as pH 7.5 is reached, 4.5 ml of 1 M TMP solution are added once again. The addition of said volume of TMP is repeated 10× until the pH does not fall any further when TMP is added. In addition, 4 ml of a 4 M solution of sodium formate (corresponds, without taking any

reaction into consideration, to a concentration of 973 mM in the medium) are added in connection with the eighth addition of TMP. The final volume is 64 ml, with a volumetric final concentration (without taking the reaction into consideration) of trimethylpyruvic acid of 774 mM (100.6 g/l). Sodium formate is present in solution at a final concentration of 836 mM. HPLC showed that 92% of the trimethylpyruvic acid had been converted after only 6h.

10

5

The concentrations of the two substrates at the different addition points are listed in Table 5 below

different addition points are listed in Table 5 below				
Time	Concentration	Concentration	Second	
[t in min]	of trimethyl-	of sodium	addition of	
	pyruvic acid	formate	sodium formate	
	[mM]	[mM]		
0	300	2500		
45	461.54	1923.08		
60	562.5	1562.5		
75	631.58	1315.79		
90	681.82	1136.36		
105	720	1000		
120	750	892.86		
135	774.19	806.45		
150	736.36	972.73	x	
180	756.30	899.16		
210	773.44	835.94		

Patent claims:

- 1. A process for preparing enantiomerically enriched $L-\alpha$ -amino acids or their salts by reacting the 5 corresponding 2-ketocarboxylic acid with ammonium ion donor in the presence of a whole-cell catalyst which comprises a cloned gene encoding a cofactor-dependent amino acid dehydrogenase and a cloned gene encoding an enzyme which regenerates 10 the cofactor, at a total input of substrate per reaction volume of \geq 500 mM, with the addition of substrate being metered such stationary concentration of 2-ketocarboxylic acid is less than 500 mM and the external addition of cofactor, based on the total input of substrate, 15 corresponds to < 0.0001 equivalents.
- The process as claimed in claim 1, characterized in that
 no cofactor is added to the reaction mixture.
- The process as claimed in claim 1 and/or 2, characterized in that use is made of 2-ketocarboxylic acids which yield amino acids of the general formula (I)

in which R is alkyl, in particular a space-filling branched alkyl group which exhibits a tertiary C atom and possesses 5-10 C atoms, for example tertbutyl, and substituted alkyls.

10

- 4. The process as claimed in one or more of the preceding claims, characterized in that the substrate is metered in in accordance with a fed batch process.
 - 5. The process as claimed in one or more of the preceding claims, characterized in that the 2-ketocarboxylic acid is kept at a maximum stationary concentration of less than 450 mM, very preferably of less than 400 mM.
- 6. The process as claimed in one or more of the preceding claims, characterized in that before it is used, the whole-cell catalyst is pretreated such that the permeability of the cell membrane for the substrate and products is increased as compared with the intact system.

Abstract:

The present invention relates to a process for preparing, in particular, enantiomerically enriched $L-\alpha$ -amino acids, in particular those of the general formula (I).

(I)

10 In this connection, the process according to the invention uses 2-ketocarboxylic acids which are converted into the desired products using a whole-cell catalyst which comprises an amino acid dehydrogenase and a cofactor-regenerating enzyme.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5


```
SEQUENCE LISTING
      <110> Degussa AG
  5
     <120> Process for preparing optically active amino acids using a whole-
      cell catalyst
     <130> 040055 AM
10
    <160> 12
     <170> PatentIn version 3.1
     <210> 1
15
     <211> 47
     <212> DNA
     <213> Artificial
     <220>
20
     <223> Primer
     <400> 1
     aaaaaactta agaaggagat atacatatga cattagaaat cttcgaa
                                                                          47
25
     <210> 2
     <211> 32
     <212> DNA
     <213> Artificial
30
     <220>
     <223> Primer
     <400> 2
35
     aaaaaactgc agttagcgac ggctaataat at
                                                                          32
     <210> 3
     <211> 30
40
     <212> DNA
     <213> Artificial
     <220>
     <223> Primer
45
     <400> 3
     aaaaaacata tgaagattgt cttagttctt
                                                                          30
50
     <210>
           4
     <211>
           32
     <212> DNA
     <213> Artificial
55
     <220>
     <223> Primer
     <400> 4
     aaaaaagacg tcttatttct tatcgtgttt ac
                                                                         32
```

5	<21 <21 <21 <21	.1> .2>	5 1120 DNA Baci	llus	cer	eus											
10	<22 <22 <22 <22	1>	CDS (20)	(1	120)												
15	<40 tta		5 Igga	gata	taca	t at Me 1	g ac t Th	a tt r Le	a ga u Gl	a at u Il 5	c tt e Ph	c ga .e Gl	a ta u Ty	c tt r Le	a ga u Gl 10	a aaa u Lys	52
20	tat Tyr	gat Asp	tat Tyr	gag Glu 15	caa Gln	gta Val	gta Val	ttt Phe	tgt Cys 20	caa Gln	gat Asp	aaa Lys	gaa Glu	tct Ser 25	ggt Gly	tta Leu	100
25	aaa Lys	gca Ala	att Ile 30	att Ile	gca Ala	att Ile	cat His	gat Asp 35	aca Thr	aca Thr	ctt Leu	gga Gly	ccg Pro 40	gct Ala	ctt Leu	ggt Gly	148
	gga Gly	aca Thr 45	aga Arg	atg Met	tgg Trp	aca Thr	tat Tyr 50	gat Asp	tct Ser	gaa Glu	gaa Glu	gcg Ala 55	gcg Ala	att Ile	gaa Glu	gat Asp	196
30	gca Ala 60	ttg Leu	cgt Arg	ctt Leu	gca Ala	aaa Lys 65	GJA aaa	atg Met	aca Thr	tac Tyr	aaa Lys 70	aac Asn	gca Ala	gca Ala	gct Ala	ggt Gly 75	244
35	tta Leu	aac Asn	tta Leu	ggt Gly	ggt Gly 80	gcg Ala	aaa Lys	aca Thr	gta Val	att Ile 85	atc Ile	ggt Gly	gat Asp	cct Pro	cgt Arg 90	aaa Lys	292
40	gat Asp	aag Lys	agc Ser	gaa Glu 95	gca Ala	atg Met	ttc Phe	cgt Arg	gca Ala 100	cta Leu	gga Gly	cgt Arg	tat Tyr	atc Ile 105	caa Gln	gga Gly	340
45	Leu	Asn	Gly	cgt Arg	Tyr	Ile	Thr	Ala	Glu	Asp	gtt Val	ggt Gly	aca Thr 120	aca Thr	gta Val	gat Asp	388
40	gat Asp	atg Met 125	gat Asp	att Ile	atc Ile	cat His	gaa Glu 130	gaa Glu	act Thr	gac Asp	ttt Phe	gta Val 135	aca Thr	ggt Gly	atc Ile	tca Ser	436
50	cca Pro 140	tca Ser	ttc Phe	ggt Gly	tct Ser	tct Ser 145	ggt Gly	aac Asn	cca Pro	tct Ser	ccg Pro 150	gta Val	act Thr	gca Ala	tac Tyr	ggt Gly 155	484
55	gtt Val	tac Tyr	cgt Arg	ggt Gly	atg Met 160	aaa Lys	gca Ala	gct Ala	gca Ala	aaa Lys 165	gaa Glu	gct Ala	ttc Phe	ggt Gly	act Thr 170	gac Asp	532
	aat Asn	tta Leu	gaa Glu	gga Gly	aaa Lys	gta Val	att Ile	gct Ala	gtt Val	caa Gln	ggc Gly	gtt Val	ggt Gly	aac Asn	gta Val	gca Ala	580

				175					180					185			
5	tat Tyr	cac His	cta Leu 190	tgc Cys	aaa Lys	cat His	tta Leu	cac His 195	gct Ala	gaa Glu	gga Gly	gca Ala	aaa Lys 200	tta Leu	att Ile	gtt Val	628
10	aca Thr	gat Asp 205	att Ile	aat Asn	aaa Lys	gaa Glu	gct Ala 210	gta Val	caa Gln	cgt Arg	gct Ala	gta Val 215	gaa Glu	gaa Glu	ttc Phe	ggt Gly	676
	gca Ala 220	tca Ser	gca Ala	gtt Val	gaa Glu	cca Pro 225	aat Asn	gaa Glu	att Ile	tac Tyr	ggt Gly 230	gtt Val	gaa Glu	tgc Cys	gat Asp	att Ile 235	724
15	tac Tyr	gca Ala	cca Pro	tgt Cys	gca Ala 240	cta Leu	ggc Gly	gca Ala	aca Thr	gtt Val 245	aat Asn	gat Asp	gaa Glu	act Thr	att Ile 250	cca Pro	772
20	caa Gln	ctt Leu	aaa Lys	gca Ala 255	aaa Lys	gta Val	atc Ile	gca Ala	ggt Gly 260	tct Ser	gcg Ala	aat Asn	aac Asn	caa Gln 265	tta Leu	aaa Lys	820
25	gaa Glu	gat Asp	cgt Arg 270	cat His	ggt Gly	gac Asp	atc Ile	att Ile 275	cat His	gaa Glu	atg Met	ggt Gly	att Ile 280	gta Val	tac Tyr	gca Ala	868
30	cca Pro	gat Asp 285	tat Tyr	gta Val	att Ile	aat Asn	gca Ala 290	ggt Gly	ggc Gly	gta Val	att Ile	aac Asn 295	gta Val	gca Ala	gac Asp	gaa Glu	916
	tta Leu 300	tat Tyr	gga Gly	tac Tyr	aat Asn	aga Arg 305	gaa Glu	cgt Arg	gca Ala	cta Leu	aaa Lys 310	cgt Arg	gtt Val	gag Glu	tct Ser	att Ile 315	964
35	tat Tyr	gac Asp	acg Thr	att Ile	gca Ala 320	aaa Lys	gta Val	atc Ile	gaa Glu	att Ile 325	tca Ser	aaa Lys	cgc Arg	gat Asp	ggc Gly 330	ata Ile	1012
40	gca Ala	act Thr	tat Tyr	gta Val 335	gcg Ala	gca Ala	gat Asp	cgt Arg	cta Leu 340	gct Ala	gaa Glu	gag Glu	cgc Arg	att Ile 345	gca Ala	agc Ser	1060
45	ttg Leu	aag Lys	aat Asn 350	tct Ser	cgt Arg	agc Ser	act Thr	tac Tyr 355	tta Leu	cgc Arg	aac Asn	ggt Gly	cac His 360	gat Asp	att Ile	att Ile	1108
50	agc Ser	-	_	taa													1120
55	<210 <211 <212 <213	> 3 > P	66 RT	lus	cere	us											
	<400	> 6															

Met Thr Leu Glu Ile Phe Glu Tyr Leu Glu Lys Tyr Asp Tyr Glu Gln

	1				5					10)				15	5
5	Va	l Va	al Ph	ne Cy 20	s Gl	n As	p Ly	rs Gl	u Se 25		y Le	u Ly	s Al	a Il 30		e Ala
10	Il	e Hi	s As	p Th	r Th	r Le	u Gl	у Pr 40	o Al	a Le	eu Gl	y Gl	y Th 45		g Me	t Trp
	Th	т Ту 50	r As	p Se	r Gl	u Glı	a Al 55	a Al	a Il	e Gl	u As	p Ala 60	a Le	u Ar	g Le	u Ala
15	Ly: 65	s Gl	y Me	t Th	r Ty:	r Lys 70	s Ası	n Al	a Ala	a Al	a Gl _i 75	y Let	ı Ası	n Lei	u Gl	y Gly 80
20	Ala	a Ly	s Th:	r Val	l Ile 85	∋ Ile	e Gly	y Asl	p Pro	90	g Lys	s Asp) Lys	s Sei	Glu 95	ı Ala
25	Met	: Phe	∋ Aro	g Ala 100	ı Leu	ı Gly	Arg	д Туі	105	e Gli	n Gly	r Leu	ı Asr	110		J Tyr
30	Ile	Thi	Ala 115	a Glu	Asp	Val	Gly	7 Thr 120	Thr	· Val	Asp) Asp	Met 125) Ile	: Ile
2 =	His	Glu 130	ı Glu	Thr	Asp	Phe	Val 135	Thr	Gly	Ile	e Ser	Pro 140	Ser	Phe	Gly	Ser
35	Ser 145	Gly	Asn	Pro	Ser	Pro 150	Val	Thr	Ala	Tyr	Gly 155	Val	Tyr	Arg	Gly	Met 160
40	Lys	Ala	Ala	Ala	Lys 165	Glu	Ala	Phe	Gly	Thr 170	Asp	Asn	Leu	Glu	Gly 175	Lys
45	Val	Ile	Ala	Val 180	Gln	Gly	Val	Gly	Asn 185	Val	Ala	Tyr	His	Leu 190	Cys	Lys
50	His	Leu	His 195	Ala	Glu	Gly	Ala	Lys 200	Leu	Ile	Val	Thr	Asp 205	Ile	Asn	Lys
	Glu	Ala 210	Val	Gln	Arg	Ala	Val 215	Glu	Glu	Phe	Gly	Ala 220	Ser	Ala	Val	Glu
55	Pro .	Asn	Glu	Ile	Tyr	Gly ' 230	Val	Glu	Cys	Asp	Ile 235	Tyr .	Ala	Pro	Cys	Ala 240

	Leu	ı Gl	y Al	a Tł	ır V	al A 45	sn A	sp	Glu	Thi	25		co G	ln I	Jeu	Ly	s Al 25	.a Ly 5	s	
5	Val	Il€	e Al	a Gl 26	y Se 50	er A	la A	sn i	Asn	Glr 265	ı Le	u Ly	s G	lu A	/sp	Arg 270		s Gl	У	
10	Asp	Ile	27.	е Ні 5	s G	lu Me	et G	ly :	Ile 280	Val	. Ту:	r Al	a Pı		.sp 85	Туг	. Va	l I10	е	
15	Asn	Ala 290	ı Gly	y Gl	y Va	al I]	.e As	sn V 95	/al	Ala	. As <u>r</u>	o Gl	u L∈ 30		yr	Gly	ту	r Ası	n	
20	Arg 305	Glu	Arç	J Al	a Le	u Ly 31	s Ai	rg V	al,	Glu	Ser	7 Il 31	е Ту 5	r A	sp	Thr	II.	∋ Ala 320		
20	Lys	Val	Ile	e Gli	u Il 32	e Se 5	r Ly	rs A	rg	Asp	Gly 330	Il.	e Al	a T	hr	Tyr	Va:	l Ala	L	
25	Ala	Asp	Arg	Let 34(ı Al	a Gl	u Gl	u A	rg	Ile 345	Ala	Sei	. Le	u Ly		Asn 350	Sei	Arg		
30	Ser	Thr	Туr 355	Lei	ı Arç	g Ası	n Gl	у Н: З(is 1	Asp	Ile	Ile	e Sei	r Ar 36		Arg				
35	<210 <211 <212 <213	> 1 > [7 1095 DNA Candi	ida	boid	linij	-													
40	<220: <221: <222: <223:	> C > (DS 1).	.(10	95)															
45	<400 atg a Met I 1	aag	att	gtc Val	tta Leu 5	gtt Val	ctt Leu	ta Ty	t g r A	sp /	gct Ala 10	ggt Gly	aag Lys	ca Hi:	c g s A	la .	gct Ala 15	gat Asp		48
50	gaa g Glu G	gaa Glu	aaa Lys	tta Leu 20	tat Tyr	ggt Gly	tct Ser	ac Th	t g r G 2	lu A	aat Asn	aaa Lys	tta Leu	ggt Gl	= a 7 I. 3	le i	gct Ala	aat Asn		96
55	tgg t Trp L		aaa Lys 35	gat Asp	caa Gln	ggt Gly	cat His	gaa Gli 40	a c u L	ta a eu I	att . :le '	act Thr	act Thr	tct Ser 45	ga As	at a sp 1	aaa Lys	gaa Glu		144
	ggt g Gly G 5	_ u	aca Thr	agt Ser	gaa Glu	ttg Leu	gat Asp 55	aaa Lys	a ca s H:	at a is I	itc d	cca Pro	gat Asp	gct Ala	ga As	at a sp 1	att Ile	atc Ile		192

	ato Ile 65	acc Thr	act Thr	cat Pro	tto Phe	cat His	cct Pro	gct Ala	t tai	t ato	c ac e Th	t aag	g gaa s Gl	a ag	a ct g Le	t gac u Asp 80	240
5	aag Lys	gct Ala	aag Lys	aac Asn	tta Leu 85	aaa Lys	ı tta Leu	gto Val	c gtt L Val	gto L Val	c gc L Ala	t ggt a Gly	t gti y Val	ggt LGl	t tc y Se: 95	t gat r Asp	288
10	cac His	att	gat Asp	tta Leu 100	Asp	tat Tyr	att Ile	aat Asr	caa Glr 105	1 Thi	a ggt	t aag Y Lys	g aaa s Lys	a ato 110	e Sei	a gtc Val	336
15	ctg Leu	gaa Glu	gtt Val 115	Thr	ggt Gly	tct Ser	aat Asn	gtt Val 120	. Val	tct Ser	gtt Val	gct LAla	gaa Glu 125	His	gtt Val	gtc Val	384
20	atg Met	acc Thr 130	atg Met	ctt Leu	gtc Val	ttg Leu	gtt Val 135	aga Arg	aat Asn	tto Phe	gtt Val	cca Pro 140) Ala	cat His	gaa Glu	caa Gln	432
	att Ile 145	att Ile	aac Asn	cac His	gat Asp	tgg Trp 150	gag Glu	gtt Val	gct Ala	gct Ala	ato Ile 155	: Ala	aag Lys	gat Asp	gct Ala	tac Tyr 160	480
25	gat Asp	atc Ile	gaa Glu	ggt Gly	aaa Lys 165	act Thr	atc Ile	gct Ala	acc Thr	att Ile 170	ggt Gly	gct Ala	ggt Gly	aga Arg	att Ile 175	ggt Gly	528
30	tac Tyr	aga Arg	gtc Val	ttg Leu 180	gaa Glu	aga Arg	tta Leu	ctc Leu	cca Pro 185	ttt Phe	aat Asn	cca Pro	aaa Lys	gaa Glu 190	tta Leu	tta Leu	576
35	tac Tyr	tac Tyr	gat Asp 195	tat Tyr	caa Gln	gct Ala	tta Leu	cca Pro 200	aaa Lys	gaa Glu	gct Ala	gaa Glu	gaa Glu 205	aaa Lys	gtt Val	ggt Gly	624
40	gct Ala	aga Arg 210	aga Arg	gtt Val	gaa Glu	aat Asn	att Ile 215	gaa Glu	gaa Glu	tta Leu	gtt Val	gct Ala 220	caa Gln	gct Ala	gat Asp	atc Ile	672
	225	Thr	Val	Asn	Ala	Pro 230		His	Ala	Gly	Thr 235	Lys	Gly	Leu	Ile	Asn 240	720
45	aag Lys	gaa Glu	tta Leu	tta Leu	tct Ser 245	aaa Lys	ttt Phe	aaa Lys	aaa Lys	ggt Gly 250	gct Ala	tgg Trp	tta Leu	gtc Val	aat Asn 255	acc Thr	768
50	gca Ala	aga Arg	GIY .	gct Ala 260	att Ile	gct Ala	gtt Val	Ala	gaa Glu 265	gat Asp	gtt Val	gca Ala	gca Ala	gct Ala 270	tta Leu	gaa Glu	816
55	tct (GTA	caa Gln : 275	tta Leu .	aga Arg	ggt Gly	Tyr (ggt Gly 280	ggt Gly	gat Asp	gtt Val	${ t Trp}$	ttc Phe 285	cca Pro	caa Gln	cca Pro	864
	gct o	cca Pro : 290	aag (Lys <i>1</i>	gat Asp 1	cac (His :	Pro '	tgg a Trp 2 295	aga Arg	gat Asp	atg Met	Arg	aat Asn 300	aaa Lys	tat Tyr	ggt Gly	gct Ala	912

5	ggt aat go Gly Asn Al 305	cc atg act co la Met Thr Pr 31	o His Ty:	c tct gg r Ser Gl	t act act y Thr Thr 315	tta gac g Leu Asp A	ct caa 960 la Gln 320
	aca aga ta Thr Arg Ty	ac gct gaa gg yr Ala Glu Gl 325	t act aaa y Thr Lys	a aat at s Asn Il 33	e Leu Glu	Ser Phe P	tt acc 1008 he Thr 35
10	ggt aaa tt Gly Lys Ph	et gat tac ag ne Asp Tyr Ar 340	a cca caa g Pro Glr	gat at 1 Asp Il 345	t atc tta e Ile Leu	tta aat g Leu Asn G 350	gt gaa 1056 ly Glu
15	tac gtt ac Tyr Val Th 35	t aaa gct ta r Lys Ala Ty 5	c ggt aaa r Gly Lys 360	His As	t aag aaa p Lys Lys	taa	1095
20	<210> 8 <211> 364 <212> PRT <213> Cand		i				
25	<400> 8						
	Met Lys Ile 1	e Val Leu Val 5	Leu Tyr	Asp Ala	Gly Lys	His Ala Al 15	
30	Glu Glu Lys	s Leu Tyr Gly 20	Ser Thr	Glu Asn 25	Lys Leu	Gly Ile Al 30	a Asn
35	Trp Leu Lys 35	s Asp Gln Gly	His Glu 40	Leu Ile		Ser Asp Ly 45	s Glu
40	Gly Glu Thr 50	s Ser Glu Leu	Asp Lys 55	His Ile	Pro Asp 2	Ala Asp Ile	e Ile
4 =	Ile Thr Thr 65	Pro Phe His 70	Pro Ala	Tyr Ile	Thr Lys (Glu Arg Lev	1 Asp 80
45	Lys Ala Lys	Asn Leu Lys 85	Leu Val	Val Val 90	Ala Gly V	al Gly Ser 95	Asp
50	His Ile Asp	Leu Asp Tyr 100	Ile Asn	Gln Thr 105	Gly Lys L	ys Ile Ser 110	· Val
55		Thr Gly Ser	Asn Val	Val Ser		lu His Val 25	Val
	Met Thr Met	Leu Val Leu	Val Arg 1	Asn Phe	Val Pro A 140	la His Glu	Gln

5	11: 14:	e I:	le A	sn H	is <i>P</i>	4sp	Trp 150	G1	u Va	al A	la	Ala	11e 155		a Ly	s As	p Al	a Tyr 160
	Ası	p II	le G	lu G	ly I 1	ys .65	Thr	· Il	e Al	a Tl		Ile 170		/ Ala	ı Gly	y Ar	g Ile 175	e Gly
10	Туз	c Ar	ng Va	al Lo 18	eu G 30	lu	Arg	Le	u Le	u Pi 18	0 35	Phe	Asn	ı Prc	. Lys	5 Gl: 190		ı Leu
15	Туг	ту	r As	sp Ty 95	r G	ln	Ala	Let	u Pr 20	о Ly 0	rs (Glu	Ala	Glu	Glu 205		3 Val	Gly
20	Ala	Ar 21	g Ar 0	g Va	al G	lu	Asn	Ile 215	e Gli	u Gl	u I	Leu	Val	Ala 220	Gln	Ala	ı Asp	Ile
25	Val 225	Th	r Va	l As	n A	la :	Pro 230	Leu	ı Hiş	s Al	a (Gly	Thr 235	Lys	Gly	Leu	Ile	Asn 240
	Lys	Glı	u Le	u Le	u Se 24	er 1 15	Lys	Phe	: Lys	Ly:	s G 2	Sly 250	Ala	Trp	Leu	Val	Asn 255	Thr
30	Ala	Arg	g G1:	y Al 26	a Il O	.e <i>I</i>	Ala	Val	Ala	. Glu 265	1 A	sp	Val	Ala	Ala	Ala 270	Leu	Glu
35	Ser	Gly	7 Gli 275	ı Lei	ı Ar	g G	Sly	Tyr	Gly 280	Gly	7 A	sp '	Val	Trp	Phe 285	Pro	Gln	Pro
40	Ala	Pro 290	Lys	s As <u>r</u>) Hi	s P	ro :	Trp 295	Arg	Asp	Me	et Z	Arg	Asn 300	Lys	Tyr	Gly	Ala
45	Gly 305	Asn	Ala	Met	Th	r P	ro 1 10	His	Tyr	Ser	G]	ly 1	Thr 315	Thr :	Leu	Asp	Ala	Gln 320
	Thr	Arg	Tyr	Ala	Gl: 325	ı G:	ly T	Thr	Lys	Asn	I1 33	le I 30	Leu (Glu :	Ser		Phe 335	Thr
50	Gly 1	Lys	Phe	Asp 340	Туг	. Ai	rg F	ro,	Gln	Asp 345	Ιl	e I	le I	Leu I		Asn 350	Gly (Glu .
55	Tyr V	Val	Thr 355	Lys	Ala	. Ту	yr G		Lys 360	His	As	рL	ys I	ıys				
	<210>	, c	,															

60

<211> 5686 <212> DNA <213> Artificial 5 <220> <223> Plasmid pAM3.25 <400> tatgaagatt gtcttagttc tttatgatgc tggtaagcac gctgctgatg aagaaaaatt 10 atatggttct actgaaaata aattaggtat tgctaattgg ttaaaagatc aaggtcatga 120 actaattact acttetgata aagaaggtga aacaagtgaa ttggataaac atateecaga 180 15 tgctgatatt atcatcacca ctcctttcca tcctgcttat atcactaagg aaagacttga 240 caaggctaag aacttaaaat tagtcgttgt cgctggtgtt ggttctgatc acattgattt 300 agattatatt aatcaaacag gtaagaaaat ctcagtcctg gaagttacag gttctaatgt 20 360 tgtctctgtt gctgaacacg ttgtcatgac catgcttgtc ttggttagaa atttcgttcc 420 agcacatgaa caaattatta accacgattg ggaggttgct gctatcgcta aggatgctta 480 25 cgatatcgaa ggtaaaacta tcgctaccat tggtgctggt agaattggtt acagagtctt 540 ggaaagatta ctcccattta atccaaaaga attattatac tacgattatc aagctttacc 600 aaaagaagct gaagaaaaag ttggtgctag aagagttgaa aatattgaag aattagttgc 30 660 tcaagctgat atcgttacag ttaatgctcc attacacgca ggtacaaaag gtttaattaa 720 taaggaatta ttatctaaat ttaaaaaagg tgcttggtta gtcaataccg caagaggtgc 780 35 tattgctgtt gctgaagatg ttgcagcagc tttagaatct ggtcaattaa gaggttacgg 840 tggtgatgtt tggttcccac aaccagctcc aaaggatcac ccatggagag atatgagaaa 900 taaatatggt gctggtaatg ccatgactcc tcactactct ggtactactt tagacgctca 40 960 aacaagatac gctgaaggta ctaaaaatat tttggaatca ttctttaccg gtaaatttga 1020 ttacagacca caagatatta tcttattaaa tggtgaatac gttactaaag cttacggtaa 1080 acacgataag aaataagacg tcaagcttgg ctgttttggc ggatgagaga agattttcag 45 1140 cctgatacag attaaatcag aacgcagaag cggtctgata aaacagaatt tgcctggcgg 1200 cagtagcgcg gtggtcccac ctgaccccat gccgaactca gaagtgaaac gccgtagcgc 50 1260 cgatggtagt gtggggtctc cccatgcgag agtagggaac tgccaggcat caaataaaac 1320 gaaaggetea gtegaaagae tgggeettte gttttatetg ttgtttgteg gtgaaegete 1380 55 tcctgagtag gacaaatccg ccgggagcgg atttgaacgt tgcgaagcaa cggcccggag 1440 ggtggcgggc aggacgcccg ccataaactg ccaggcatca aattaagcag aaggccatcc 1500 tgacggatgg cctttttgcg tttctacaaa ctcttttgtt tatttttcta aatacattca 1560

	aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg	1620
5	aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc	1680
,	cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg	1740
	ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt	1800
10	cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta	1860
	ttatcccgtg ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat	1920
15	gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat gacagtaaga	1980
	gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt acttctgaca	2040
	acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga tcatgtaact	2100
20	cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc	2160
	acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga actacttact	2220
25	ctagettece ggcaacaatt aatagaetgg atggaggegg ataaagttge aggaecaett	2280
	ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc cggtgagcgt	2340
	gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg tatcgtagtt	2400
30	atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata	2460
	ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag	2520
35	attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct ttttgataat	2580
	ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga ccccgtagaa	2640
	aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca	2700
40	aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactcttttt	2760
	ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg	2820
45	tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc	2880
	ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga	2940
	cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc	3000
50	agettggage gaacgaceta caccgaactg agatacetae agegtgaget atgagaaage	3060
	gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca	3120
55	ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg	3180
	tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta	3240
	tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg gccttttgct	3300

	cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac cgcctttgag	3360
	tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt gagcgaggaa	3420
5	gcggaagagc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc	3480
	atatatggtg cacteteagt acaatetget etgatgeege atagttaage eagtatacae	3540
10	tecgetateg etaegtgaet gggteatgge tgegeeeega caeeegeeaa caeeegetga	3600
	cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc	3660
	cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga ggcagctgcg	3720
15	gtaaagetea teagegtggt egtgaagega tteacagatg tetgeetgtt cateegegte	3780
	cagetegttg agttteteea gaagegttaa tgtetggett etgataaage gggeeatgtt	3840
20	aagggcggtt ttttcctgtt tggtcacttg atgcctccgt gtaaggggga atttctgttc	3900
	atgggggtaa tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat	3960
	gaacatgccc ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg	4020
25	gaccagagaa aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt	4080
	ccacagggta gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct	4140
30	gacttccgcg tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct	4200
	caggtegeag aegttttgea geageagteg etteaegtte getegegtat eggtgattea	4260
	ttctgctaac cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg	4320
35	atcatgegea ecegtggeea ggaeecaaeg etgeeegaga tgegeegegt geggetgetg	4380
	gagatggcgg acgcgatgga tatgttctgc caagggttgg tttgcgcatt cacagttctc	4440
40	cgcaagaatt gattggctcc aattcttgga gtggtgaatc cgttagcgag gtgccgccgg	4500
	cttccattca ggtcgaggtg gcccggctcc atgcaccgcg acgcaacgcg gggaggcaga	4560
	caaggtatag ggcggcgcct acaatccatg ccaacccgtt ccatgtgctc gccgaggcgg	4620
45	cataaatcgc cgtgacgatc agcggtccag tgatcgaagt taggctggta agagccgcga	4680
	gegateettg aagetgteee tgatggtegt catetacetg eetggacage atggeetgea	4740
50	acgcgggcat cccgatgccg ccggaagcga gaagaatcat aatggggaag gccatccagc	4800
	ctcgcgtcgc gaacgccagc aagacgtagc ccagcgcgtc ggccgccatg ccggcgataa	4860
	tggcctgctt ctcgccgaaa cgtttggtgg cgggaccagt gacgaaggct tgagcgaggg	4920
55	cgtgcaagat teegaatace geaagegaea ggeegateat egtegegete eagegaaage	4980
	ggtcctcgcc gaaaatgacc cagagcgctg ccggcacctg tcctacgagt tgcatgataa	5040
	agaagacagt cataagtgeg gegaegatag teatgeeeeg egeeeacegg aaggagetga	5100

	ctgggttgaa ggctctcaag ggcatcggtc gacgctctcc cttatgcgac tcctgcatta	5160
5	ggaagcagcc cagtagtagg ttgaggccgt tgagcaccgc cgccgcaagg aatggtgcat	5220
	gctcgatggc tacgagggca gacagtaagt ggatttacca taatccctta attgtacgca	5280
	ccgctaaaac gcgttcagcg cgatcacggc agcagacagg taaaaatggc aacaaaccac	5340
10	cctaaaaact gcgcgatcgc gcctgataaa ttttaaccgt atgaatacct atgcaaccag	5400
	agggtacagg ccacattacc cccacttaat ccactgaagc tgccattttt catggtttca	5460
15	ccatcccagc gaagggccat gcatgcatcg aaattaatac gacgaaatta atacgactca	5520
	ctatagggca attgcgatca ccacaattca gcaaattgtg aacatcatca cgttcatctt	5580
	tecetggttg ceaatggeee atttteetgt cagtaacgag aaggtegega atteaggege	5640
20	tttttagact ggtcgtaatg aacaattctt aagaaggaga tataca	5686
25	<210> 10 <211> 5106 <212> DNA <213> Artificial	
30	<220> <223> Plasmid pAM10.1	
	<400> 10 gaaggagata tacatatgac attagaaata bhaa	
	gaaggagata tacatatgac attagaaatc ttcgaatact tagaaaaata tgattatgag	60
35	caagtagtat tttgtcaaga taaagaatct ggtttaaaag caattattgc aattcatgat	120
	acaacacttg gaccggctct tggtggaaca agaatgtgga catatgattc tgaagaagcg	180
40	gcgattgaag atgcattgcg tcttgcaaaa gggatgacat acaaaaacgc agcagctggt	240
	ttaaacttag gtggtgcgaa aacagtaatt atcggtgatc ctcgtaaaga taagagcgaa	300
	gcaatgttcc gtgcactagg acgttatatc caaggactaa acggacgtta cattacagct	360
45	gaagatgttg gtacaacagt agatgatatg gatattatcc atgaagaaac tgactttgta	420
	acaggtatet caccateatt eggttettet ggtaacecat eteeggtaac tgeataeggt	480
ΕO	gtttaccgtg gtatgaaagc agctgcaaaa gaagctttcg gtactgacaa tttagaagga	540
50	aaagtaattg ctgttcaagg cgttggtaac gtagcatatc acctatgcaa acatttacac	600
	gctgaaggag caaaattaat tgttacagat attaataaag aagctgtaca acgtgctgta	660
55	gaagaattcg gtgcatcagc agttgaacca aatgaaattt acggtgttga atgcgatatt	720
	tacgcaccat gtgcactagg cgcaacagtt aatgatgaaa ctattccaca acttaaagca	780
	adagtaatcg caggttctgc gaataaccaa ttaaaagaag atcgtcatgg tgacatcatt	840

	catgaaatgg gtattgtata cgcaccagat tatgtaatta atgcaggtgg cgtaattaac	900
	gtagcagacg aattatatgg atacaataga gaacgtgcac taaaacgtgt tgagtctatt	960
5	tatgacacga ttgcaaaagt aatcgaaatt tcaaaacgcg atggcatagc aacttatgta	1020
	geggeagate gtetagetga agagegeatt geaagettga agaatteteg tageaettae	1080
10	ttacgcaacg gtcacgatat tattagccgt cgctaacgcg tttgcggttg gcaaaatggc	1140
	gcagcagcaa ggcgtggcgg tgaaaacctc tgccgaagcc ctgcaacagg ccattgacga	1200
	taatttctgg caagccgaat accgcgacta ccgccgtacc tccatctaaa agcttatcga	1260
15	tgataagctg tcaaacatga gaattacaac ttatatcgta tggggctgac ttcaggtgct	1320
	acatttgaag agataaattg cactgaaatc tagaaatatt ttatctgatt aataagatga	1380
20	tettettgag ategttttgg tetgegegta atetettget etgaaaaega aaaaaeegee	1440
	ttgcagggcg gtttttcgaa ggttctctga gctaccaact ctttgaaccg aggtaactgg	1500
	cttggaggag cgcagtcacc aaaacttgtc ctttcagttt agccttaacc ggcgcatgac	1560
25	ttcaagacta actcctctaa atcaattacc agtggctgct gccagtggtg cttttgcatg	1620
	tctttccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cggactgaac	1680
30	ggggggttcg tgcatacagt ccagcttgga gcgaactgcc tacccggaac tgagtgtcag	1740
	gcgtggaatg agacaaacgc ggccataaca gcggaatgac accggtaaac cgaaaggcag	1800
2.5	gaacaggaga gcgcacgagg gagccgccag gggaaacgcc tggtatcttt atagtcctgt	1860
35	cgggtttcgc caccactgat ttgagcgtca gatttcgtga tgcttgtcag gggggcggag	1920
	cctatggaaa aacggctttg ccgcggccct ctcacttccc tgttaagtat cttcctggca	1980
40	tettecagga aateteegee eegttegtaa geeattteeg etegeegeag tegaaegaee	2040
	gagcgtagcg agtcagtgag cgaggaagcg gaatatatcc tgtatcacat attctgctga	2100
4.5	cgcaccggtg cagecttttt teteetgeea catgaageae tteaetgaea eeeteateag	2160
45	tgccaacata gtaagccagt atacactccg ctagcgctga tgtccggcgg tgcttttgcc	2220
	gttacgcacc accccgtcag tagctgaaca ggagggacag ctgatagaaa cagaagccac	2280
50	tggagcacct caaaaacacc atcatacact aaatcagtaa gttggcagca tcacccgacg	2340
	cactttgcgc cgaataaata cctgtgacgg aagatcactt cgcagaataa ataaatcctg	2400
	gtgtccctgt tgataccggg aagccctggg ccaacttttg gcgaaaatga gacgttgatc	2460
.55	ggcacgtaag aggttccaac tttcaccata atgaaataag atcactaccg ggcgtatttt	2520
	ttgagttatc gagattttca ggagctaagg aagctaaaat ggagaaaaaa atcactggat	2580
	ataccaccgt tgatatatcc caatggcatc gtaaagaaca ttttgaggca tttcagtcag	2640

	ttgctcaatg tacctataac cagaccgttc agctggatat tacggccttt ttaaagaccg	2700
5	taaagaaaaa taagcacaag ttttatccgg cctttattca cattcttgcc cgcctgatga	2760
	atgeteatee ggaatteegt atggeaatga aagaeggtga getggtgata tgggatagtg	2820
	ttcacccttg ttacaccgtt ttccatgagc aaactgaaac gttttcatcg ctctggagtg	2880
10	sa space of the control of the contr	
	gtgaaaacct ggcctatttc cctaaagggt ttattgagaa tatgtttttc gtctcagcca	
15		
	cccccgtttt caccatgggc aaatattata cgcaaggcga caaggtgctg atgccgctgg	3120
2.0	cgattcaggt tcatcatgcc gtctgtgatg gcttccatgt cggcagaatg cttaatgaat	3180
20	tacaacagta ctgcgatgag tggcagggcg gggcgtaatt tttttaaggc agttattggt	3240
	gcccttaaac gcctggtgct acgcctgaat aagtgataat aagcggatga atggcagaaa	3300
25	ttcgaaagca aattcgaccc ggtcgtcggt tcagggcagg gtcgttaaat agccgcttat	3360
	gtctattgct ggtttaccgg tttattgact accggaagca gtgtgaccgt gtgcttctca	3420
3.0	aatgeetgag geeagtttge teaggetete eeegtggagg taataattga egatatgate	3480
30	atttattctg cctcccagag cctgataaaa acggttagcg cttcgttaat acagatgtag	3540
	gtgttccaca gggtagccag cagcatcctg cgatgcagat ccggaacata atggtgcagg	3600
35	gcgcttgttt cggcgtgggt atggtggcag gccccgtggc cgggggactg ttgggcgctg	3660
	ccggcacctg tcctacgagt tgcatgataa agaagacagt cataagtgcg gcgacgatag	3720
40	tcatgccccg cgcccaccgg aaggagctac cggacagcgg tgcggactgt tgtaactcag	3780
40	aataagaaat gaggccgctc atggcgttga ctctcagtca tagtatcgtg gtatcaccgg	3840
	ttggttccac tctctgttgc gggcaacttc agcagcacgt aggggacttc cgcgtttcca	3900
45	gactttacga aacacggaaa ccgaagacca ttcatgttgt tgctcaggtc gcagacgttt	3960
	tgcagcagca gtcgcttcac gttcgctcgc gtatcggtga ttcattctgc taaccagtaa	4020
50	ggcaaccccg ccagcctagc cgggtcctca acgacaggag cacgatcatg cgcacccgtg	4080
30	gccaggaccc aacgctgccc gagatgcgcc gcgtgcggct gctggagatg gcggacgcga	4140
	tggatatgtt ctgccaaggg ttggtttgcg cattcacagt tctccgcaag aattgattgg	4200
55	ctccaattct tggagtggtg aatccgttag cgaggtgccg ccggcttcca ttcaggtcga	4260
	ggtggcccgg ctccatgcac cgcgacgcaa cgcggggagg cagacaaggt atagggcggc	4320
	gcctacaatc catgccaacc cgttccatgt gctcgccgag gcggcataaa tcgccgtgac	4380

	gatcageggt ccagtgateg aagttagget ggtaagagee gegagegate ettgaagetg	4440
	tecetgatgg tegteateta eetgeetgga cageatggee tgeaaegegg geatecegat	4500
5	gccgccggaa gcgagaagaa tcataatggg gaaggccatc cagcctcgcg tcgcgaacgc	4560
	cagcaagacg tagcccagcg cgtcggccgc catgccggcg ataatggcct gcttctcgcc	4620
10	gaaacgtttg gtggcgggac cagtgacgaa ggcttgagcg agggcgtgca agattccgaa	4680
	taccgcaagc gacaggccga tcatcgtcgc gctccagcga aagcggtcct cgccgaaaat	4740
	gacccagage getgeeggea eetgteetae gagttgeatg ataaagaaga cagteataag	4800
15	tgcggcgacg atagtcatgc cccgcgccca ccggaaggag ctgactgggt tgaaggctct	4860
	caagggcatc ggtcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag	4920
20	taggttgagg cegttgagca eegeegeege aaggaatggt geatgeateg atcaccacaa	4980
- •	ttcagcaaat tgtgaacatc atcacgttca tctttccctg gttgccaatg gcccattttc	5040
	ctgtcagtaa cgagaaggtc gcgaattcag gcgcttttta gactggtcgt aatgaacaat	5100
25	tcttaa	5106
30 35	<210> 11 <211> 5597 <212> DNA <213> Unknown <220> <223> Plasmid	
40	<220> <221> CDS <222> (25)(1749) <223> scfA - malic enzyme gene	
45	<pre><400> 11 aattcttaag aaggagatat acat atg gat att caa aaa aga gtg agt gac</pre>	51
50	atg gaa cca aaa aca aaa aaa cag cgt tcg ctt tat atc cct tac gct Met Glu Pro Lys Thr Lys Lys Gln Arg Ser Leu Tyr Ile Pro Tyr Ala 10 15 20 25	99
	ggc cct gta ctg ctg gaa ttt ccg ttg ttg aat aaa ggc agt gcc ttc Gly Pro Val Leu Leu Glu Phe Pro Leu Leu Asn Lys Gly Ser Ala Phe 30 35 40	147
55	agc atg gaa gaa cgc cgt aac ttc aac ctg ctg ggg tta ctg ccg gaa Ser Met Glu Glu Arg Arg Asn Phe Asn Leu Leu Gly Leu Leu Pro Glu 45 50 55	195
	gtg gtc gaa acc atc gaa gaa caa gcg gaa cga gca tgg atc cag tat	243

	Val	. Va]	Glu 60	Thr	`Ile	: Glu	Glu	Gln 65	Ala	Glu	ı Arg	r Ala	70) Ile	e Glr	Tyr	
5	cag Gln	gga Gly 75	ttc Phe	: aaa : Lys	acc Thr	gaa Glu	atc Ile 80	gac Asp	aaa Lys	cac His	atc Ile	tac Tyr 85	ctg Leu	cgt Arg	aac Asn	atc Ile	291
10	cag Gln 90	gac	act Thr	aac Asn	gaa Glu	acc Thr 95	ctc Leu	ttc Phe	tac Tyr	cgt Arg	ctg Leu 100	. Val	aac Asn	aat Asn	cat His	ctt Leu 105	339
15	gat Asp	gag Glu	atg Met	atg Met	cct Pro 110	Val	att Ile	tat Tyr	acc Thr	cca Pro 115	Thr	gtc Val	ggc	gca Ala	gcc Ala 120	tgt Cys	387
	gag Glu	cgt Arg	ttt Phe	tct Ser 125	Glu	atc Ile	tac Tyr	cgc Arg	cgt Arg 130	tca Ser	cgc Arg	ggc Gly	gtg Val	ttt Phe 135	Ile	tct Ser	435
20	tac Tyr	cag Gln	aac Asn 140	Arg	cac His	aat Asn	atg Met	gac Asp 145	gat Asp	att Ile	ctg Leu	caa Gln	aac Asn 150	Val	ccg Pro	aac Asn	483
25	cat His	aat Asn 155	att Ile	aaa Lys	gtg Val	att Ile	gtg Val 160	gtg Val	act Thr	gac Asp	ggt Gly	gaa Glu 165	cgc Arg	att Ile	ctg Leu	GJA aaa	531
30	ctt Leu 170	ggt Gly	gac Asp	cag Gln	ggc	atc Ile 175	ggc Gly	Gl ^y ggg	atg Met	ggc Gly	att Ile 180	ccg Pro	atc Ile	ggt Gly	aaa Lys	ctg Leu 185	579
35	tcg Ser	ctc Leu	tat Tyr	acc Thr	gcc Ala 190	tgt Cys	ggc Gly	ggc Gly	atc Ile	agc Ser 195	ccg Pro	gcg Ala	tat Tyr	acc Thr	ctt Leu 200	ccg Pro	627
	gtg Val	gtg Val	ctg Leu	gat Asp 205	gtc Val	gga Gly	acg Thr	aac Asn	aac Asn 210	caa Gln	cag Gln	ctg Leu	ctt Leu	aac Asn 215	gat Asp	ccg Pro	675
40	ctg Leu	tat Tyr	Met	Gly	Trp	cgt Arg	Asn	ccg Pro 225	Arg	Ile	act Thr	Asp	Asp	gaa Glu	tac Tyr	tat Tyr	723
45	gaa Glu	ttc Phe 235	gtt Val	gat Asp	gaa Glu	ttt Phe	atc Ile 240	cag Gln	gct Ala	gtg Val	aaa Lys	caa Gln 245	cgc Arg	tgg Trp	cca Pro	gac Asp	771
50	gtg Val 250	ctg Leu	ttg Leu	cag Gln	ttt Phe	gaa Glu 255	gac Asp	ttt Phe	gct Ala	caa Gln	aaa Lys 260	aat Asn	gcg Ala	atg Met	ccg Pro	tta Leu 265	819
55	ctt Leu	aac Asn	cgc Arg	tat Tyr	cgc Arg 270	aat Asn	gaa Glu	att Ile	tgt Cys	tct Ser 275	ttt Phe	aac Asn	gat Asp	gac Asp	att Ile 280	cag Gln	867
	ggc Gly	act Thr	gcg Ala	gcg Ala 285	gta Val	aca Thr	gtc Val	Gly	aca Thr 290	ctg Leu	atc Ile	gca Ala	gca Ala	agc Ser 295	cgc Arg	gcg Ala	915

	gc Al	a gg a Gl	y Gl 30	y Gl	g tt n Le	a age u Se:	c gag c Glu	g aaa 1 Ly: 30!	s Ly	a at s Il	c gt e Va	c tt l Ph	c ct ne Le 31	eu Gl	jc go .y Al	ca gg .a Gly	t 963 Y
	tc. Se:	a gc r Al 31	a Gl	a tg y Cy	c gg s Gl	c att y Ile	gcc Ala 320	ı Glı	a at	g at t Il	c at e Il	c to e Se 32	r Gl	ig ac .n Th	c ca r Gl	ıg cgo n Arg	2 1011
10	gaa Glu 330	r GT	a tt y Le	a ag u Se	c gaq r Glı	g gaa u Glu 335	ı Ala	gcg Ala	g cgg	g ca g Gli	g aaa n Ly: 340	s Va	c tt 1 Ph	t at e Me	g gt t Va	c gat 1 Asp 345	
15	arg Arg	c tt g Ph	t gg e Gl	c ttg y Le	g cto 1 Leu 350	ı Thr	gac Asp	aag Lys	g ato Met	g ccg Pro 35!	o Ası	c ct n Le	g ct u Le	g cc u Pr	t tt o Ph 36	c caç e Gln 0	1107
20	1111	. ry	з ге	1 Va. 365	L GIR	ı Lys	Arg	Glu	370	ı Leı)	ı Ser	As	p Tr	P As	p Th	c gac r Asp	
	ago Ser	gat Asp	gto Val 380	гьег	y tca 1 Ser	ctg Leu	ctg Leu	gat Asp 385	gtg Val	g gtg . Val	g cgc Arg	aa J Ası	t gta n Vai	l Ly:	a cca s Pro	a gat o Asp	1203
25	att Ile	Leu 395	r TTE	e Gly	gtc Val	tca Ser	gga Gly 400	cag Gln	acc Thr	. Gl ^A : aaa	rctg Leu	r ttt Phe 405	Th:	g gaa r Glu	a gaq ı Glı	g atc ı Ile	1251
30	atc Ile 410	cgt Arg	gag Glu	atg Met	cat His	aaa Lys 415	cac His	tgt Cys	ccg Pro	cgt Arg	ccg Pro 420	Il∈	gtg Val	g ato Met	ccg Pro	teu 425	1299
35	tct Ser	aac Asn	ccg Pro	acg Thr	tca Ser 430	cgc Arg	gtg Val	gaa Glu	gcc Ala	aca Thr 435	ccg Pro	cag Gln	gac Asp	att Ile	ato 11e 440	gcc Ala	1347
40	tgg Trp	acc Thr	gaa Glu	ggt Gly 445	aac Asn	gcg Ala	ctg Leu	gtc Val	gcc Ala 450	acg Thr	ggc Gly	agc Ser	ccg Pro	ttt Phe 455	Asn	cca Pro	1395
	gtg Val	gta Val	tgg Trp 460	aaa Lys	gat Asp	aaa Lys	Ile	tac Tyr 465	cct Pro	atc Ile	gcc Ala	cag Gln	tgt Cys 470	aac Asn	aac Asn	gcc Ala	1443
45	ttt Phe	att Ile 475	ttc Phe	ccg Pro	ggc Gly	atc Ile	ggc Gly: 480	ctg Leu	ggt Gly	gtt Val	att Ile	gct Ala 485	tcc Ser	Gly	gcg Ala	tca Ser	1491
50	cgt Arg 490	atc Ile	acc Thr	gat Asp	gag Glu	atg Met 495	ctg (Leu 1	atg Met	tcg Ser	gca Ala	agt Ser 500	gaa Glu	acg Thr	ctg Leu	gcg Ala	cag Gln 505	1539
55	tat Tyr	tca Ser	cca Pro	ttg Leu	gtg Val 510	ctg Leu	aac (Asn (ggc Gly	Glu	ggt Gly 515	atg Met	gta Val	ctg Leu	ccg Pro	gaa Glu 520	ctg Leu	1587
	aaa Lys	gat Asp	att Ile	cag Gln 525	aaa Lys	gtc : Val :	cc o Ser <i>P</i>	arg A	gca Ala 530	att Ile	gcg Ala	ttt Phe	gcg Ala	gtt Val 535	ggc Gly	aaa Lys	1635

5	atg gcg cag cag gca gtg gcg gtg aaa acc tct gcc gaa gcc ctg Met Ala Gln Gln Gln Gly Val Ala Val Lys Thr Ser Ala Glu Ala Leu 540 545 550	1683
	caa cag gcc att gac gat aat ttc tgg caa gcc gaa tac cgc gac tac Gln Gln Ala Ile Asp Asp Asn Phe Trp Gln Ala Glu Tyr Arg Asp Tyr 555 560 565	1731
10	cgc cgt acc tcc atc taa aagcttatcg atgataagct gtcaaacatg Arg Arg Thr Ser Ile 570	1779
15		1839
	gcactgaaat ctagaaatat tttatctgat taataagatg atcttcttga gatcgttttg	1899
	gtctgcgcgt aatctcttgc tctgaaaacg aaaaaaccgc cttgcagggc ggtttttcga	1959
20	aggttetetg agetaceaae tetttgaace gaggtaaetg gettggagga gegeagteae	2019
	caaaacttgt cctttcagtt tagccttaac cggcgcatga cttcaagact aactcctcta	2079
25	aatcaattac cagtggctgc tgccagtggt gcttttgcat gtctttccgg gttggactca	2139
	agacgatagt taccggataa ggcgcagcgg tcggactgaa cggggggttc gtgcatacag	2199
	tccagcttgg agcgaactgc ctacccggaa ctgagtgtca ggcgtggaat gagacaaacg	2259
30	cggccataac agcggaatga caccggtaaa ccgaaaggca ggaacaggag agcgcacgag	2319
	ggagccgcca ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccaccactga	2379
35	tttgagegte agatttegtg atgettgtea ggggggegga geetatggaa aaaeggettt	2439
	gccgcggccc tctcacttcc ctgttaagta tcttcctggc atcttccagg aaatctccgc	2499
	cccgttcgta agccatttcc gctcgccgca gtcgaacgac cgagcgtagc gagtcagtga	2559
40	gcgaggaagc ggaatatatc ctgtatcaca tattctgctg acgcaccggt gcagcctttt	2619
	ttctcctgcc acatgaagca cttcactgac accctcatca gtgccaacat agtaagccag	2679
45	tatacactee getagegetg atgteeggeg gtgettttge egttaegeae cacceegtea	2739
40	gtagetgaae aggagggaea getgatagaa acagaageea etggageaee teaaaaaeae	2799
	catcatacac taaatcagta agttggcagc atcacccgac gcactttgcg ccgaataaat	2859
50	acctgtgacg gaagatcact tcgcagaata aataaatcct ggtgtccctg ttgataccgg	
	gaageeetgg gecaactitt ggegaaaatg agaegttgat eggeaegtaa gaggtteeaa	2919
_	ctttcaccat aatgaaataa gatcactacc gggggtattt th	2979
55		3039
		3099
	ccaatggcat cgtaaagaac attttgaggc atttcagtca gttgctcaat gtacctataa	3159

	ccagaccgtt cagctggata ttacggcctt tttaaagacc gtaaagaaaa ataagcacaa	3219
	gttttatccg gcctttattc acattcttgc ccgcctgatg aatgctcatc cggaattccg	3279
	5 tatggcaatg aaagacggtg agctggtgat atgggatagt gttcaccctt gttacaccgt	3339
	tttccatgag caaactgaaa cgttttcatc gctctggagt gaataccacg acgatttccg	3399
1	gcagtttcta cacatatatt cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt	3459
	ccctaaaggg tttattgaga atatgttttt cgtctcagcc aatccctggg tgagtttcac	3519
	cagttttgat ttaaacgtgg ccaatatgga caacttcttc gcccccgttt tcaccatggg	3579
1	5 caaatattat acgcaaggcg acaaggtgct gatgccgctg gcgattcagg ttcatcatgc	3639
	cgtctgtgat ggcttccatg tcggcagaat gcttaatgaa ttacaacagt actgcgatga	3699
2	gtggcagggc ggggcgtaat ttttttaagg cagttattgg tgcccttaaa cgcctggtgc	3759
	tacgcctgaa taagtgataa taagcggatg aatggcagaa attcgaaagc aaattcgacc	3819
	cggtcgtcgg ttcagggcag ggtcgttaaa tagccgctta tgtctattgc tggtttaccg	3879
25	gtttattgac taccggaagc agtgtgaccg tgtgcttctc aaatgcctga ggccagtttg	3939
	ctcaggctct ccccgtggag gtaataattg acgatatgat catttattct gcctcccaga	3999
30	gcctgataaa aacggttagc gcttcgttaa tacagatgta ggtgttccac agggtagcca	4059
	gcagcatect gegatgeaga teeggaacat aatggtgeag ggegettgtt teggegtggg	4119
	tatggtggca ggccccgtgg ccgggggact gttgggcgct gccggcacct gtcctacgag	4179
35	ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg	4239
	gaaggagcta ccggacagcg gtgcggactg ttgtaactca gaataagaaa tgaggccgct	4299
40	catggcgttg actctcagtc atagtatcgt ggtatcaccg gttggttcca ctctctgttg	4359
	cgggcaactt cagcagcacg taggggactt ccgcgtttcc agactttacg aaacacggaa	4419
	accgaagacc attcatgttg ttgctcaggt cgcagacgtt ttgcagcagc agtcgcttca	4479
45	cgttegeteg egtateggtg atteattetg etaaceagta aggeaaceee geeageetag	4539
	ccgggtcctc aacgacagga gcacgatcat gcgcacccgt ggccaggacc caacgctgcc	4599
50	cgagatgege egegtgegge tgetggagat ggeggaegeg atggatatgt tetgecaagg	4659
	gttggtttgc gcattcacag ttctccgcaa gaattgattg gctccaattc ttggagtggt	4719
	gaatccgtta gcgaggtgcc gccggcttcc attcaggtcg aggtggcccg gctccatgca	4779
55	ccgcgacgca acgcggggag gcagacaagg tatagggcgg cgcctacaat ccatgccaac	4839
	ccgttccatg tgctcgccga ggcggcataa atcgccgtga cgatcagcgg tccagtgatc	1899
	gaagttaggc tggtaagagc cgcgagcgat ccttgaagct gtccctgatg gtcgtcatct	1959

	acctgcctgg acagcatggc ctgcaacgcg ggcatcccga tgccgccgga agcgagaaga
	atcataatgg ggaaggccat ccagcctcgc gtcgcgaacg ccagcaagac gtagcccagc
	gcgtcggccg ccatgccggc gataatggcc tgcttctcgc cgaaacgttt ggtggcggga
	ccagtgacga aggcttgagc gagggcgtgc aagattccga ataccgcaag cgacaggccg
10	
	acctgtccta cgagttgcat gataaagaag acagtcataa gtgcggcgac gatagtcatg
15	CCCCCCCCC acccraage gataataan barra
	tctcccttat gcgactcctg cattaggaag cagcccagta gtaggttgag gccgttgagc
	accgccgccg caaggaatgg tgcatgcatc gatcaccaca attcagcaaa ttgtgaacat
20	catcacgttc atctttccct ggttgccaat ggcccatttt cctgtcagta acgagaaggt
	cgcgaattca ggcgcttttt agactggtcg taatgaac
25	<210> 12 <211> 574 <212> PRT <213> Unknown
30	<220> <223> Plasmid
	<400> 12
35	Met Asp Ile Gln Lys Arg Val Ser Asp Met Glu Pro Lys Thr Lys Lys 1 5 10 15
40	Gln Arg Ser Leu Tyr Ile Pro Tyr Ala Gly Pro Val Leu Leu Glu Phe 20 25 30
45	Pro Leu Leu Asn Lys Gly Ser Ala Phe Ser Met Glu Glu Arg Arg Asn 35 40 45
50	Phe Asn Leu Leu Gly Leu Leu Pro Glu Val Val Glu Thr Ile Glu Glu 50 55 60
	Gln Ala Glu Arg Ala Trp Ile Gln Tyr Gln Gly Phe Lys Thr Glu Ile 70 75 80
55	Asp Lys His Ile Tyr Leu Arg Asn Ile Gln Asp Thr Asn Glu Thr Leu 85 90 95
	Phe Tyr Arg Leu Val Asn Asn His Leu Asp Glu Met Met Pro Val Ile

	10	0	105	110
į	Tyr Thr Pro Th	r Val Gly Al	a Ala Cys Glu Arg 120	Phe Ser Glu Ile Tyr 125
10	Arg Arg Ser Arg 130	g Gly Val Pho 13!	e Ile Ser Tyr Gln 2	Asn Arg His Asn Met 140
15		200	122	lle Lys Val Ile Val 160
	Val Thr Asp Gly	Glu Arg Ile 165	Leu Gly Leu Gly A	sp Gln Gly Ile Gly 175
20	Gly Met Gly Ile 180	Pro Ile Gly	Lys Leu Ser Leu T 185	yr Thr Ala Cys Gly 190
25	Gly Ile Ser Pro 195	Ala Tyr Thr	Leu Pro Val Val Le 200	eu Asp Val Gly Thr 205
30	Asn Asn Gln Gln 210	Leu Leu Asn 215	Asp Pro Leu Tyr Me	et Gly Trp Arg Asn 0
35	Pro Arg Ile Thr 225	Asp Asp Glu 230	Tyr Tyr Glu Phe Va 235	l Asp Glu Phe Ile 240
	Gln Ala Val Lys	Gln Arg Trp : 245	Pro Asp Val Leu Le 250	u Gln Phe Glu Asp 255
40	Phe Ala Gln Lys A 260	Asn Ala Met I	Pro Leu Leu Asn Arç 265	J Tyr Arg Asn Glu 270
45	Ile Cys Ser Phe A	sn Asp Asp I 2	le Gln Gly Thr Ala	Ala Val Thr Val 285
50	Gly Thr Leu Ile A 290	la Ala Ser A 295	rg Ala Ala Gly Gly 300	Gln Leu Ser Glu
55	Lys Lys Ile Val P	ne Leu Gly A	la Gly Ser Ala Gly 315	Cys Gly Ile Ala 320
	Glu Met Ile Ile Se 32	er Gln Thr Gl	n Arg Glu Gly Leu 330	Ser Glu Glu Ala

	Ala Arg Gln Lys Val Phe Met Val Asp Arg Phe Gly Leu Leu Thr Asp 340 345 350
	5 Lys Met Pro Asn Leu Leu Pro Phe Gln Thr Lys Leu Val Gln Lys Arg 355 360 365
1	Glu Asn Leu Ser Asp Trp Asp Thr Asp Ser Asp Val Leu Ser Leu Leu 370 375 380
15	Asp Val Val Arg Asn Val Lys Pro Asp Ile Leu Ile Gly Val Ser Gly 385 390 395 400
20	Gln Thr Gly Leu Phe Thr Glu Glu Ile Ile Arg Glu Met His Lys His 405 410 415
20	Cys Pro Arg Pro Ile Val Met Pro Leu Ser Asn Pro Thr Ser Arg Val 420 425 430
25	Glu Ala Thr Pro Gln Asp Ile Ile Ala Trp Thr Glu Gly Asn Ala Leu 435 440 445
30	Val Ala Thr Gly Ser Pro Phe Asn Pro Val Val Trp Lys Asp Lys Ile 450 455 460
35	Tyr Pro Ile Ala Gln Cys Asn Asn Ala Phe Ile Phe Pro Gly Ile Gly 465 470 475 480
40	Leu Gly Val Ile Ala Ser Gly Ala Ser Arg Ile Thr Asp Glu Met Leu 485 490 495
	Met Ser Ala Ser Glu Thr Leu Ala Gln Tyr Ser Pro Leu Val Leu Asn 500 505 510
45	Gly Glu Gly Met Val Leu Pro Glu Leu Lys Asp Ile Gln Lys Val Ser 515 520 525
50	Arg Ala Ile Ala Phe Ala Val Gly Lys Met Ala Gln Gln Gln Gly Val 530 540
55	Ala Val Lys Thr Ser Ala Glu Ala Leu Gln Gln Ala Ile Asp Asp Asn 550 555 560
	Phe Trp Gln Ala Glu Tyr Arg Asp Tyr Arg Arg Thr Ser Ile 565 570