Exercise 1 OLS estimate

Q1: Calculate the correlation between Y and X.

-0.179

Q2: Calculate the coefficients on this regression

The intercept is 22075.1066

The coefficient of age is -180.1765

Q3: Calculate the standard errors

1. Using the standard formulas of the OLS.

Standard error of intercept: 357.83

Standard error of coefficient of age is 6.97

2. Using bootstrap with 49 and 499 replications respectively. Comment on the difference between the two strategies.

Bootstrap with 49:

Standard error of intercept: 6.941

Standard error of coefficient of age: 0.135

Bootstrap with 499:

Standard error of intercept: 7.9674

Standard error of coefficient of age: 0.157

Bootstrap with 499 replications seems more accurate

Exercise 2 Detrend Data

Q1: Create a categorical variable ag, which bins the age variables into the following groups:

Q2: Plot the wage of each age group across years. Is there a trend?

There is a trend. The mean of wage increases over year.

Q3: After including a time fixed effect, how do the estimated coefficients change?

The estimated coefficient of age changes from -182.4896 to -186.8793

Exercise 3 Numerical Optimization

Q1: Exclude all individuals who are inactive.

> nead(ma_2007)										
	V1	idind	idmen	year	empstat	respondent	profession			
1:	1 114000100012	24010001	1400010001240100	2007	Unemployed			Male	49	0
2:	2 114000100012	24010002	1400010001240100	2007	Employed	0	52	Female	49	22744
3:	4 114000100116	57010001	1400010011670100	2007	Employed	1	21	Male	40	1243
4:	8 114000100205	4010001	1400010020540100	2007	Employed	1	22	Male	57	0
5:	9 114000100205	4010002	1400010020540100	2007	Unemployed	0	NA	Female	54	0
6:	12 114000100575	3010001	1400010057530100	2007	Retired	1	NA	Male	71	0

Q2: Write a function that returns the likelihood of the probit of being employed.

the loglikelihood is -6582.155

Q3: Optimize the model and interpret the coefficients. You can use pre-programmed optimization packages.

The intercept is 3.8292; the coefficient of age is -0.0679. The coefficient -0.0679 means that an increase of age leads to a decrease in the probability of being employed.

Q4: Can you estimate the same model including wages as a determinant of labor market participation?

Explain.

We can't. The R turns a warning message that algorithm did not converge.

Exercise 4 Discrete choice

Q1: Exclude all individuals who are inactive.

	V1						profession				
1:	3 112	0001006663010001	1200010066630100	2005	Employed	1		Male	32	50659	
2:	4 112	0001006663010002	1200010066630100	2005	Employed	0	45	Female	28	19231	
3:	5 112	0001008245010001	1200010082450100	2005	Retired	1		Female	90	0	
4:	6 112	0001008644010001	1200010086440100	2005	Employed	1	34	Male	37	31511	
5:	7 112	0001008644010002	1200010086440100	2005	Employed	0	42	Female	35	24873	
6:	8 112	0001010299010001	1200010102990100	2005	Employed	1	55	Female	41	30080	

Q2: Write and optimize the probit, logit, and the linear probability models.

See the code from line 204 to 269

Q3: Interpret and compare the estimated coefficients. How significant are they?

Probit: intercept: 3.57238; coefficient of age: -0.06359

Logit: intercept: 7.0307; coefficient of age: -0.1241

LPM: intercept: 1.5661; coefficient of age: -0.0201

For probit and logit coefficient, the negative sign means that an increase of age leads to a decrease in the probability of being employed. Their differences are not very large.

For LPM, the -0.0201 means that one unit increase of age leads to 0.0201 decrease of probability of being employed. Unlike probit and logit, the number of LPM coefficient -0.0201 has exact meaning.

For significance:

Probit: t-statistics: -260.078

Logit: t-statistics: -224.173

LPM: t-statistics: -358.72

All three are significant at 1% level.

Exercise 5 Marginal Effects

Q1: Compute the marginal effect of the previous probit and logit models.

Probit: -0.01569

Logit: -0.01224

Q2: Construct the standard errors of the marginal effects.

Probit: 0.000023164698

Logit: 0.00002717307