Winkelfunktionen

Name	Definition	Ableitung	Identitäten
sin	$\frac{GK}{H}$	cos	
cos	$\frac{AK}{H}$	-sin	
tan	$\frac{sin}{cos}$	$\frac{1}{\cos^2} = 1 + \tan^2$	
sin	$\frac{GK}{H}$		

Wichtige Reihen

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Ableitungsregeln

Faktorregel

$$(a \cdot f)' = a \cdot f'$$

Summenregel

$$(f+g)'=f'+g'$$

Produktregel

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{f^2}$$

Kettenregel

$$(f(g))' = f'(g) \cdot g'$$

Ableitung der Umkehrfunktion

$$f'(x_0) \neq 0$$
 und g Umkehrfunktion von f $\implies g'(f(x_0)) = \frac{1}{f'(x_0)}$

Ableitung elementarer Funktionen

$$(e^{a \cdot x})' = a \cdot e^{a \cdot x}$$

$$(ln(f))' = \frac{f'}{x}$$

$$(sinx)' = cosx \wedge (cosx)' = -sinx$$

$$(tanx)' = \frac{1}{cos^2x} \wedge (tanx)' = 1 + tan^2x$$

$$(arctanx)' = \frac{1}{1 + x^2}$$

$$(arccotx)' = -\frac{1}{1 + x^2}$$

$$(arcsinx)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(arccosx)' = -\frac{1}{\sqrt{1 - x^2}}$$