Measurement of $\sin(2\beta)$ in the decay $B^0_d \longrightarrow J/\Psi K^0_s$

Johannes Mayer, Patrick Fahner, Thomas Nikodem

LHCb, Physikalisches Institut Heidelberg University

B2CC meeting 08/08/2013

Outline

- 1 Theoretical introduction
- 2 nominal Fit
 - Strategy
 - Mass fit
 - Decay time fit
- 3 Systematic studies
 - Fit Bias due to fit method sFit
 - Tagging calibration
 - Time acceptance
 - Correlation mass ↔ decay time
 - Time resolution
- 4 Conclusion

Decay $B_d^0 \longrightarrow J/\Psi K_s^0$ and $B_d^0 - \bar{B}_d^0$ -Mixing

Measurement of $\mathcal{CP}\text{-}\mathsf{Asymmetry}\ \mathcal{A_{CP}}$ due to interference between direct decay and decay after mixing

Time-dependent asymmetry

$$\mathcal{A}_{J/\Psi K_s^0}(t) = \frac{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) - \Gamma(B_d^0 \to J/\Psi K_s^0)}{\Gamma(\bar{B}_d^0 \to J/\Psi K_s^0) + \Gamma(B_d^0 \to J/\Psi K_s^0)} \tag{1}$$

$$= S_{J/\Psi K_s^0} \sin(\Delta m_d t) - C_{J/\Psi K_s^0} \cos(\Delta m_d t)$$
 (2)

sine - term

- interference between direct decay and decay after mixing
- $S_{J/\Psi K_s^0} = \sin(2\beta)$

cosine - term

- interference between decay amplitudes or CPV in mixing
- here: $C_{J/\Psi K_s^0} \approx 0$

Basis of our work

Basis: 2011 LHCb analysis (LHCb-ANA-2012-016)

- data collected 2011
- $\sqrt{s} = 7 \text{TeV}$
- $1.025 \, {\rm fb}^{-1}$
- result: $S_{J/\Psi K_2^0} = 0.72 \pm 0.06 \text{(stat.)} \pm 0.04 \text{(syst.)}$
- world average: $S_{J/\Psi K_c^0} = 0.679 \pm 0.020$

Our data:

- only 2012 data
- $\sqrt{s} = 8 \text{TeV}$
- $\approx 2 \mathrm{fb}^{-1}$
- separation into long (Johannes) and downstream (Patrick) tracks

Cuts

- in general taken from 2011 analysis
- Change in track χ^2 in stripping: $\frac{\chi^2_{\rm track}}{{\rm nDoF}} < 3$ (2011: < 4)
- analysis on stripping line BetaSBd2JpsiKsDetachedLine and HLT2 line Hlt2DiMuonDetachedJPsiDecision
- New in 2012: Ghost probability. We choose ghost prob < 0.5 for π and μ tracks. But issues for Downstream $\pi \to \text{don't}$ use ghost probability of Downstream π .

Comparison $2011 \leftrightarrow 2012$

	2011	long	downstream
candidates	50186	21183	62184
signal	26775	17003	42907
tagged signal	8600	5116	12626
$\epsilon_{\sf tag}$	$(32.65 \pm 0.31)\%$	$(30.09 \pm 0.57)\%$	$(29.43 \pm 0.85)\%$
$\epsilon_{\it eff} = \epsilon_{\it tag} \mathcal{D}^2$	$(2.38 \pm 0.27)\%$	$(1.78 \pm xxx)\%$	$(1.80 \pm 0.15)\%$

Used tagging: FlavourTagging v13r0 2013-06-13 (only OST)

Fit strategy

- Unbinned Maximum Likelihood Fit
- sFit
- total decay time p.d.f.

$$\mathcal{P}_{meas} = \underbrace{\epsilon(t)}_{\text{=1, later more}} \mathcal{P}_{sig}(t') \otimes \mathcal{R}(t - t')$$
 (3)

 neglect decay time acceptance, examination of systematic effect later

Mean decay time resolution

- hardly any effect on $S_{J/\Psi K_s^0}$ expected
- Resolution model

$$\mathcal{R}(t) = \sum_{i=1}^{3} \frac{f_i}{2\pi\sigma_i} e^{-\frac{t^2}{2\sigma^2}}$$
 (4)

- Use prescaled trigger line
- apply all cuts except lifetime cut
- Perform sFit with reonstructed J/Ψ mass as discriminating variable
- fit only negative decay times (unphysical, explainable only with resolution effects) (→ approximation, but sufficient for our purpose)

Mean decay time resolution

Long Tracks Decay Time Resolution 10 proper decay time time [ps] **Pull Distribution**

Johannes Mayer, Patrick Fahner, Thomas Nikodem

Downstream Tracks

Mean decay time resolution Fit results

Parameter		long tracks	downstream tracks	
σ_1	(ps)	0.117 ± 0.016	0.480±0.070	
σ_2	(ps)	0.061 ± 0.037	0.0932 ± 0.0034	
σ_{3}	(ps)	0.037 ± 0.003	0.04396 ± 0.00094	
f_1		0.054 ± 0.032	0.00329 ± 0.00099	
f_2		0.294 ± 0.138	0.257 ± 0.027	
$\sigma_{\it eff}$	(ps)	0.052 ± 0.012	0.0665 ± 0.0013	

Mass fit

Parameterisation

Signal

$$\mathcal{P}_{m;S}(m; \vec{\lambda}_{m;S}) = f_{S,m} \mathcal{G}(m; m_{B_d^0}, \sigma_{m,1}) + (1 - f_{S,m}) \mathcal{G}(m; m_{B_d^0}, \sigma_{m,2})$$
 (5)

Background

$$\mathcal{P}_{m;B}(m;\vec{\lambda}_{m;B}) = e^{-\alpha_m m} / \mathcal{N}_{m;B}$$
 (6)

Total mass p.d.f.

$$\mathcal{P}_{m}(m; \vec{\lambda}_{m}) = f_{sig}\mathcal{P}_{m;S}(m; \vec{\lambda}_{m;S}) + (1 - f_{sig})\mathcal{P}_{m;B}(m; \vec{\lambda}_{m;B}) \quad (7$$

Mass fit

Decay time fit

probability density function used in fit

$$\mathcal{P}_{\text{meas}}(t,d,\omega) \propto e^{-t/\tau} \left\{ 1 - d\mu(1-2\omega) - d\Delta p_0 - \left[d(1-2\omega) - \mu(1-d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right\}$$
(8)

- d: tagging decision
- $\blacksquare \ \mu = A_P = \frac{R_{\bar{B}_d^0} R_{B_d^0}}{R_{\bar{B}_d^0} + R_{B_d^0}} \ \text{production asymmetry}$
- lacksquare ω : calibrated mistag probability

$$\omega(\eta^{OS}) = p_1(\eta^{OS} - \langle \eta^{OS} \rangle) + p_0 \tag{9}$$

 p_0, p_1 : calibration parameters η^{OS} : predicted mistag probability

- $lack \Delta p_0$: tagging calibration asymmetry
- lacktriangle Δm_d : mixing frequency

Fit results

- floating parameters: $S_{J/\Psi K_s^0}$, τ , Δm_d
- constrained parameters: $\mu = -0.015 \pm 0.013$, $p_0 = 0.382 \pm 0.003$, $p_1 = 0.981 \pm 0.024$, $\Delta p_0 = 0.0045 \pm 0.0053$
- fixed parameters: $\langle \eta^{OS} \rangle = 0.382$, resolution parameters

Fit results

Fit results

Note: Both results of $S_{J/\Psi K_c^0}$ are blinded with the same string.

Parameter	long	downstream
$S_{J/\Psi K_s^0}$ (blinded)	0.610 ± 0.078	0.535 ± 0.063
$S_{J/\Psi K_s^0}(2011)$	$xxx\pm0.11$	$xxx\pm0.08$
$ au_{eff}$	$1.355 {\pm} 0.021$	1.498 ± 0.017
Δm_d	0.60 ± 0.05	0.47±0.03
$\Delta m_d(2011)$	$0.58{\pm}0.15$	$0.50 {\pm} 0.04$

Note: $\tau_{\it eff}$ not compatible to PDG value due to neglect of time acceptance in fit (systematic study later)

Question: Why is Δm_d that much higher in the long track sample?

- Fit Bias due to fit method sFit
- Tagging calibration
- Time acceptance
- Correlation mass ↔ decay time
- Time resolution

Generate Toy MC with

- 6700 (long) resp. 20000 events (downstream)
- $S_{J/\Psi K_c^0} = 0.72$
- all other parameters derived from data fit
- $S_{J/\Psi K_c^0}$, τ , Δm_d floating

Fit Bias

Fit Bias

Results of the toys:

Long Tracks

$$\mu_{S_{J/\Psi K_s^0}} = 0.7266 \pm 0.0005$$
 $\sigma_{S_{J/\Psi K_s^0}} = 0.0754 \pm 0.0003$
 $\mu_{\rm pull} = 0.083 \pm 0.007$
 $\sigma_{\rm pull} = 0.947 \pm 0.005$

Downstream Tracks

$$\begin{array}{l} \mu_{\mathcal{S}_{J/\Psi \mathcal{K}_s^0}} = 0.7234 \pm 0.0004 \\ \sigma_{\mathcal{S}_{J/\Psi \mathcal{K}_s^0}} = 0.0584 \pm 0.0003 \\ \mu_{\mathrm{pull}} = 0.052 \pm 0.007 \\ \sigma_{\mathrm{pull}} = 0.941 \pm 0.005 \end{array}$$

Multiply mean μ_{pull} of pull distribution with statistical uncertainty of nominal fit (long: $\sigma_{\text{data}} = 0.078$, down: $\sigma_{\text{data}} = 0.063$).

Long Tracks

$$\delta S_{I/\Psi K^0}^{\text{Fit}} = 0.0066 \ (8.5\%)$$

Downstream Tracks

$$\delta S_{J/\Psi K_c^0}^{\text{Fit}} = 0.0033 \ (5.2\%)$$

(in Brackets: systematic error relative to systematic)

Fit Bias - origins

major contribution to bias: too little statistics

- lacktriangleright too small pull width due to background (o overestimation of fit error)
- lacksquare σ_{pull} doesn't change with higher statistics

Tagging calibration

Vary Tagging calibration parameters $p_0, p_1 \pm$ their systematic uncertainties

- I in the nominal fit (gives first impression of size of effect)
- 2 in the generation of Toy MC, but fit with original values

Note: Systematic studies on used tagging calibration hasn't finished yet \longrightarrow no official value. Use systematic errors of 2011 (to get a feeling for size of effect, need to be redone with final calibration):

$$\delta \textit{p}_{0}^{\textit{stat.}} = 0.0076, \qquad \delta \textit{p}_{1}^{\textit{stat.}} = 0.0012$$

Choose highest difference from nominal fit bias toy as estimate for the systematic uncertainty

- Long tracks: $\delta S_{J/\Psi K_c^0}^{\text{TagCalib}} = 0.0320 (41.0\%)$
- Downstream tracks: $\delta S_{J/\Psi K_c^0}^{\mathsf{TagCalib}} = 0.0331 \ (52.5\%)$

Time acceptance

Note: just a cross-check, no in-depth analysis

Determination of an acceptance function

- no separation between B_d^0 and $\overline{B_d^0}$ ⇒ simple exponential decay
- neglect lifetime cut (t > 0.3ps)
- contributions to acceptance:
 - turn-on-effect
 - decreasing acceptance for higher lifetimes due to VELO geometry

Time acceptance

Fit p.d.f

$$\mathcal{P}_{acc}(t) \propto \underbrace{e^{-t/ au}}_{ ext{exp. decay}} \cdot \underbrace{\frac{2}{\pi} \arctan[t \cdot \exp(at+b)]}_{ ext{turn-on-effect}} \cdot \underbrace{\frac{(1+eta t)}_{ ext{higher lifetimes}}}_{ ext{higher lifetimes}}$$

Note: au will be constrained to the PDG value $au=1.519\pm0.007\mathrm{ps}.$

Time acceptance

Time acceptance

Time acceptance

Table : Fit results for exponential decay fit with acceptance function. au was constrained to the PDG value $au=1.519\pm0.007\mathrm{ps}$

parameter	long	downstream
$\overline{\tau}$	1.518 ± 0.007	1.519 ± 0.007
а	153 ± 36	47.9 ± 5.6
Ь	-31.44 ± 7.7	$-8.4{\pm}1.1$
β	-0.057 ± 0.007	-0.0090±0.0076

Time acceptance

Toy MC Study

- generate with acceptance function
- use parameters mentioned above
- fit without acceptance function
- \blacksquare compare mean of $S_{J/\Psi K_s^0}$ distribution with corresponding mean of fit bias toy

Assignment of systematic error due to neglect of any time acceptance:

Long Tracks

$$\delta S_{J/\Psi K_s^0}^{\mathrm{Acc}} = 0.0003 \ (0.4\%)$$

Downstream Tracks

$$\delta S_{J/\Psi K_s^0}^{\text{Acc}} = 0.0008 \ (1.3\%)$$

Correlation mass \leftrightarrow decay time

Fit reconstructed B_d^0 -mass in different time bins. Fix mass parameters to the ones obtained in 1 bin and fit $S_{J/\Psi K_s^0}$ in the whole sample.

Bin	time range of mass fit	long	down
1	$t \in [0.3, 0.7] \text{ps}$	0.614 ± 0.078	0.532 ± 0.063
2	$t \in [0.7, 1.5] \mathrm{ps}$	0.608 ± 0.078	$0.536 {\pm} 0.063$
3	$t \in [1.5, 3] \mathrm{ps}$	0.609 ± 0.079	$0.536 {\pm} 0.063$
4	$t \in [3, 14] \mathrm{ps}$	0.609 ± 0.078	$0.535 {\pm} 0.062$
	inal fit	0.610 ± 0.078	0.534 ± 0.063
$\delta S_{J/2}^{\sf ma}$	ΨK_s^0	0.0020 (2.6%)	0.0018 (2.9%)

Resolution

Vary σ_i of resolution $\pm 20\%$, fit with these parameters and compare $S_{J/\Psi K_s^0}$

	long	down
+20%	0.6100 ± 0.0782	0.5351 ± 0.0626
-20%	$0.6095 {\pm} 0.0782$	$0.5345{\pm}0.0625$
nominal fit	0.6098 ± 0.0782	0.5347 ± 0.0626
$\delta \mathcal{S}_{J/\Psi K_s^0}^{ ext{resolution}}$	0.0003 (0.4%)	0.0004 (0.6%)

Summary

effect	long		downstream	
fit method	0.0066	(8.5%)	0.0033	(5.2%)
tagging calibration	0.0320	(42.0%)	0.0331	(52.5%)
time acceptance	0.0003	(0.4%)	0.0008	(1.3%)
$mass \leftrightarrow decay \ time$	0.0020	(2.6%)	0.0018	(2.9%)
resolution	0.0003	(0.4%)	0.0004	(0.6%)
total	0.0328	(42.1%)	0.0333	(52.9%)
statistic uncertainty	0.0782		0.0626	

Conclusion

$$S_{J/\Psi K_s^0} = 0.610 \pm 0.074 \text{(stat.)} \pm 0.033 \text{(syst.)}$$

$$S_{J/\Psi K_s^0} = 0.535 \pm 0.059 (\text{stat.}) \pm 0.033 (\text{syst.})$$

Both results are blinded with the same string. Statistical errors are corrected with σ_{pull} of fit bias toy.

Conclusion

Comparison with other results

	$S_{J/\Psi K_s^0}$
long tracks (blinded)	$0.610\pm0.074\pm0.033$
downstream tracks (blinded)	$0.565{\pm}0.059{\pm}0.033$
combined	xxx±0.046±0.033
2011 analysis	$0.72\pm0.06\pm0.04$
world average	0.679 ± 0.020
BaBar (most precise)	$0.687 \pm 0.028 \pm 0.012$

BACKUP

LHCb-detector

Tracks

- Long Tracks: VELO + T Stations (Johannes)
- Downstream Tracks: TT + T Stations (Patrick)

Decay time fit

derivation of probability density function

$$\mathcal{P}^{true}(B_d^0/\ \overline{B_d^0}) \propto \underbrace{\left(1\mp\mu
ight)}_{ ext{asymmetric production}} \underbrace{e^{-t/ au}\left[1\mp S_{J/\Psi \mathcal{K}_s^0}\sin(\Delta m_d t)
ight]}_{ ext{theoretical decay time distribution}}$$
 (10)

Imperfect tagging:

$$\mathcal{P}^{meas}(B_d^0) \propto (1 - \omega_{B_d^0}) \mathcal{P}^{true}(B_d^0) + \omega_{\overline{B_d^0}} \mathcal{P}^{true}(\overline{B_d^0})$$
 (11)

$$\mathcal{P}^{meas}(\overline{B_d^0}) \propto (1 - \omega_{\overline{B_d^0}}) \mathcal{P}^{true}(\overline{B_d^0}) + \omega_{B_d^0} \mathcal{P}^{true}(B_d^0)$$
 (12)

Combination of all effects and defining

$$\Delta p_0 = \omega_{B_d^0} - \omega_{\overline{B_d^0}} \tag{13}$$

$$\omega_{B_d^0/\overline{B_d^0}} = \omega \pm \frac{\Delta p_0}{2} \tag{14}$$

leads to...

Decay time fit

probability density function used in fit

$$\mathcal{P}_{\text{meas}}(t,d,\omega) \propto e^{-t/\tau} \left\{ 1 - d\mu(1-2\omega) - d\Delta p_0 - \left[d(1-2\omega) - \mu(1-d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right\}$$

$$\tag{15}$$

- d: tagging decision
- $\blacksquare \ \mu = A_P = \frac{R_{\bar{B}_d^0} R_{B_d^0}}{R_{\bar{B}_d^0} + R_{B_d^0}} \text{ production asymmetry}$
- lacksquare ω : calibrated mistag probability

$$\omega(\eta^{OS}) = p_1(\eta^{OS} - \langle \eta^{OS} \rangle) + p_0 \tag{16}$$

 p_0, p_1 : calibration parameters η^{OS} : predicted mistag probability

- $lack \Delta p_0$: tagging calibration asymmetry
- $lacktriangledown \Delta m_d$: mixing frequency