Finding Functional Modules within Metabolic Networks

Marko Budinich, Jérémie Bourdon & Damien Eveillard

Context of Metabolic Modeling in Systems Biology

Figure 13

Schematic representation of the parameterization of photoautotroph physiology employed in marine ecosystem models: (a) Monod-type, (b) Droop/Caperon-type with individual quota for each element, carbon (Q_c), nitrogen (Q_N), and phosphorus (Q_P), (c) schematic concept for a model of algal physiology that resolves key biochemical components of an algal cell, including carbohydrates (CH), lipids (LIP), amino acids (AA), nucleic acids (NUC), and proteins (PR). Abbreviations: DIC, dissolved inorganic carbon; DIN, dissolved inorganic nitrogen; DIP, dissolved inorganic phosphorus. Figure inspired by Reynolds (2006), Pahlow & Oschlies (2009), Klausmeier et al. (2004), Shuter (1979), and others.

Physiology ++

Functional Genomic

Follows MJ, Dutkiewicz S (2011). Modeling diverse communities of marine microbes. Ann Rev Mar Sci 3: 427–451.

Metabolic Network Definition

Structure and function

- Chemical reactions of a cell/organism
- Conversion of nutrients into cellular biomass and energy
- Represented as bipartite graph, hypergraph, or stoichiometric matrix

$$\begin{array}{c} r_1 & r_2 \\ FPN & -1 & 0 \\ H_2O & 1 & -3 \\ GTP & 1 & -1 \\ P_1 & 0 & 2 \\ AFP & 0 & 1 \end{array}$$

Metabolic Network Definition

Flux Balance Analysis

FBA extensions

opt :=
$$\max\{v_{\text{Biomass}}: Sv = 0, l \le v \le u\}$$

- Great interest to study dependencies between fluxes through pair of reactions:
- But remains complicated to investigate genome-wide models
- One optimal solution is not realistic

Decomposing the solution space is hard

BioSystems 99 (2010) 210-214

Contents lists available at ScienceDirect

BioSystems

A note on the complexity of finding and enumerating elementary modes

Vicente Acuña a,b,*, Alberto Marchetti-Spaccamela c, Marie-France Sagot a,b, Leen Stougie d,e

^a Université de Lyon, F-69000 Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France

^b INRIA Rhône-Alpes, 655 avenue de l'Europe, 38330 Montbonnot Saint-Martin, France

^c Universitá di Roma "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy

^d Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands

^e Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098SJ Amsterdam, The Netherlands

FVA insights

- Deeper analysis that study all the flux realizing the optimal objective
- Not a single optimal flux vector, but set of optimal solutions : optimal flux space

$$P_{opt} := \max\{v : Sv = 0, l \le v \le u, v_{Biomass} = opt\}$$

Flux Variability

 For a given objective (e.g. biomass production), upper and lower bounds of all steady state reaction fluxes can be determined

Blocked

Alternative

Excluded

Deeper analysis of Optimal Flux Space

$$P_{opt} := \max\{v : Sv = 0, l \le v \le u, v_{Biomass} = opt\}$$

- This space is similar to the feasible flux space:
 - Vertices: optimal pathways
 - Linealities: reversible cycles
 - Rays: irreversible cycles

Application of «standard » polyhedra description, but focused on Optimal Flux Space

Deeper analysis of Optimal Flux Space

Within this space, correlated reactions are grouped into flux modules

Flux modules decompose the network and provide an comprehensive understanding of the whole flux space

Mathematical Biology

- One assumes the flux in r1 as fixed to 1
- Then fluxes on r13, r14 and r15 are fixed
- {r2, r4, r3} {r5, r6, r7, r8, r9} and {r10, r11, r12} are modules

Müller AC, Bockmayr A (2013). Flux modules in metabolic networks. J Math Biol.

Application on E. coli

Using iAF1290 model, one calculates modules when the bacteria grows on glucose and aerobic condition

Modules	Number of Rxns	Description	
Not in module	2290		
Module MO1	38	Nucleotide Salvage Pathways	
Module MO2	3	Membrane Lipid Metabolism	
Module MO3	12	Membrane Transport	
Module MO4	3	Alanine, Aspartate, Valine, Leucine and	
Module MO5	14	Respiration / Electron transfer reactions	
Module MO6	5	Glycolisis/ gluconeogenesis	
Module MO7	3	Cofactor and Prosthetic Group Biosynthesis	
Module MO8	11	Exchange reactions	
Module MO9	2	Glucose Intake	

Illustration on Module MO4

Reactions (boxes) and metabolites (ellipses) respectively cyan and red for amino acids and carbohydrates

Application on E. coli (2)

Aerobic Module	Number of Rxns	Anaerobic Module	Number of Rxns	Description
Not in module	2290	Not in module	2312	-
Module MO1	38	Module MA1	35	Nucleotide Salvage Pathways
Module MO2	3	Module MA2	3	Membrane Lipid Metabolism
Module MO3	12	Module MA3	12	Membrane Transport
Module MO4	3	Module MA4	3	Alanine, Aspartate, Valine, Leucine and Isoleucine pathways
Module MO5	14	Module MA5	3	Respiration / Electron transfer reactions
Module MO6	5	Module MA6	5	Glycolisis/ gluconeogenesis
Module MO7	3	Module MA7	3	Cofactor and Prosthetic Group Biosynthesis
Module MO8	11	-	-	Exchange reactions
Module MO9	2	Module MA9	2	Glucose Intake
- -	-	Module MA10	3	Alternate Carbon metabolism

MO5 & MA5

... and so what?

topics of Marko's PhD

Modeling a microbial community

Soup or minestrone?

Soup or minestrone?

Flux Balance?

Metabolic Modules

Take home message

- Similar quantitative solutions for both assumptions
- BUT different modules :: different optimal solution space
- « Soup » is good for prediction, but « Minestrone » is necessary to understand
- No soup in real life
- Need for a new « multi-objective » paradigm for modeling microbial community

Take Home Messages 2

- Network decomposition based on the Flux Balance paradigm: very sensitive to the objective
- Reducing the metabolic network by considering modules?
- Towards a general Methodology:: transient behavior of metabolic network by connecting modules (probabilistic modeling)