



| Рабочий прот                     | гокол и отчет по<br>й работе № 2.04 |
|----------------------------------|-------------------------------------|
| Преподаватель Коробков М.П.      | Отчет принят                        |
| Студент Романов Артём Максимович | Работа<br>выполнена                 |
| Группа _ Р3110                   | К работе<br>допущен                 |

### 1. Цель работы.

- 1. Определить коэффициент внутреннего трения касторового масла методом Стокса.
- 2. Проверить справедливость формулы Стокса для шариков разного диаметра

### 2. Объект исследования.

Коэффициент внутреннего трения, полученный методом Стокса.

## 3. Метод экспериментального исследования.

- 1. Многократные прямые измерения
- 2. Косвенные измерения

## 4. Рабочие формулы и исходные данные.

$$F=\eta rac{dv}{dx} \Delta S$$
 — определение коэффициента вязкости  $\eta$ 

 $F=6\pi nvr$ — закон Стокса (на шарик, движущийся в безграничной жидкости с малой скоростью v, действует сила сопротивления среды

 $k=rac{1}{1+rac{2.4r}{R}}$  - (k- поправочный коэффициент) с учётом влияния стенок цилиндра на движение шарика

$$mg = 
ho Vg$$
 – сила тяжести

$$F_A = 
ho_0 V g$$
 – сила Архимеда

$$6\pi nvr/k = Vg(\rho - \rho_0)$$
  $V = 4/3(\pi r^3)$ 

$$v = l/t$$
 — скорость падения шарика

 $r = \alpha \underline{d}/2$  – средний радиус шарика

$$\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} - \text{относительная погрешность скорости шарика}$$

$$\frac{\Delta r}{r} = \frac{\Delta d}{d}$$
 — относительная погрешность среднего радиуса шарика

Таким образом, формула коэффициента вязкости  $\eta$  сводится к измерению скорости v падения шарика в жидкости и его радиуса r:

$$\eta = \frac{2r^2(\rho - \rho_0)}{9}gk$$

# 5. Параметры установки

| $(R \pm \Delta R)c$ м                            | 2,95 ± 0,05        |
|--------------------------------------------------|--------------------|
| $(\rho \pm \Delta \rho)$ κ $\Gamma/M^3$          | $7.8 \pm 0.1$      |
| $(\rho_0 \pm \Delta \rho_0) \kappa 2/M^3$        | $0.96 \pm 0.04$    |
| $(\alpha \pm \Delta \alpha)$ мм / $\partial e$ л | $0,266 \pm 0,0001$ |
| $(l \pm \Delta l)$ cm                            | 10,02 ± 0,05       |

# 6. Схема установки



Рис. 3. Схема установки





# 7. Результаты прямых измерений и их обработки

POMANOB APTEM MAKCUMOBUY P3110

| $(R \pm \Delta R) c_M$                      | 2,95±0,05    |
|---------------------------------------------|--------------|
| $(\rho \pm \Delta \rho) \kappa r / m^3$     | 7,8 ±0,1     |
| $(\rho_0 \pm \Delta \rho_0) \kappa r / M^3$ | 0,96 ± 0,04  |
| $(\alpha \pm \Delta \alpha)$ мм / дел       | 0,266±0,001  |
| $(l \pm \Delta l)$ CM                       | 10,02 ± 0,05 |

| Первый шарик Бо N опыта                                    | 1              | 2     | 3    | 4    | 5    |  |  |
|------------------------------------------------------------|----------------|-------|------|------|------|--|--|
| <b>х</b> <sub>2</sub> дел                                  | 7,62           | 7,45  | 7,51 | 7,44 | 4,63 |  |  |
| <i>x</i> <sub>1</sub> дел                                  | 0,17           | 0,02  | 0,03 | 0,04 | 0,19 |  |  |
| <i>d</i> дел                                               | 7,45           | 7,43  | 7,48 | 7,4  | 7,44 |  |  |
| $\left( \overline{d} \pm \Delta \overline{d}  \right)$ дел | 4,44 ± 0,04    |       |      |      |      |  |  |
| $(r \pm \Delta r)_{\text{MM}}$                             | 0,98 ± 0,004   |       |      |      |      |  |  |
| $(t \pm \Delta t) c$                                       | 7,5 ± 0,005    |       |      |      |      |  |  |
| $(v \pm \Delta v) \ \mathcal{M} / c$                       | 0,013 ± 0,0006 |       |      |      |      |  |  |
| $(\eta \pm \Delta \eta) \Pi a \cdot c$                     | 1,01           | +0,05 |      |      |      |  |  |

| Первый шарик                                         | CPEAHUU        |        |      |      |      |  |  |
|------------------------------------------------------|----------------|--------|------|------|------|--|--|
| N опыта                                              | 1              | 2      | 3    | 4    | 5    |  |  |
| $x_2$ дел                                            | 6,69           | 6,76   | 6,7  | 6,71 | 6,59 |  |  |
| <i>x</i> <sub>1</sub> дел                            | 0,49           | 0,89   | 0,76 | 0,82 | 0,4  |  |  |
| d дел                                                | 5,9            | 5,87   | 5,94 | 5,89 | 5,89 |  |  |
| $\left( \overline{d}\pm\Delta\overline{d} ight)$ дел | 5,898±0,03     |        |      |      |      |  |  |
| $(r \pm \Delta r)_{\text{MM}}$                       | 0,484±0,04     |        |      |      |      |  |  |
| $(t \pm \Delta t) c$                                 | 11,69±0,005    |        |      |      |      |  |  |
| $(v \pm \Delta v) \ m / c$                           | 0,008 ± 0,0004 |        |      |      |      |  |  |
| $(\eta \pm \Delta \eta) \Pi a \cdot c$               | 1,00:          | 7+0,0: | 5    |      |      |  |  |

| Первый шарик М                                       | ANEHLKUL       | 1    |      |      |      |  |  |
|------------------------------------------------------|----------------|------|------|------|------|--|--|
| N опыта                                              | 1              | 2    | 3    | 4    | 5    |  |  |
| <b>х</b> <sub>2</sub> дел                            | 5,56           | 5,61 | 5,64 | 5,56 | 5,64 |  |  |
| $x_1$ дел                                            | 2,01           | 2,92 | 2,01 | 1,86 | 2    |  |  |
| <i>d</i> дел                                         | 3,55           | 2,69 | 3,63 | 3,7  | 3,64 |  |  |
| $\left( \overline{d}\pm\Delta\overline{d} ight)$ дел | 3,442±0,04     |      |      |      |      |  |  |
| $(r \pm \Delta r)_{MM}$                              | 0,454 ± 0,04   |      |      |      |      |  |  |
| $(t \pm \Delta t) c$                                 | 29, 47 ± 0,005 |      |      |      |      |  |  |
| $(v \pm \Delta v) \ m / c$                           | 0,003 ± 0,000£ |      |      |      |      |  |  |
| $(\eta \pm \Delta \eta) \Pi a \cdot c$               | 0,88 ± 0,27    |      |      |      |      |  |  |

15.12. 20 hd

### 8. Расчет результатов косвенных измерений

Ниже приведены вычисления для первой таблицы (большого шарика)

- 1) Найдём значения диаметра для каждого шарика в делениях шкалы микроскопа  $d=x_2-x_1$   $d=x_2-x_1=7,62-0,17=7,45$  и усредним их для каждого шарика
- 2) По среднему значению диаметра вычислим средний радиус шарика

$$r = \frac{\alpha \underline{d}}{2} = \frac{0,226 * 7,44}{2} = 0,98$$

3) Вычисляем скорость падения шариков по формуле v=l/t

$$v = \frac{l}{t} = \frac{10,02}{7,5} = 0,013$$

4) Вычислим по формуле  $\eta = \frac{2}{9} \frac{r^2(\rho - \rho_0)}{v} g k$  значение коэффициента вязкости и его погрешность

$$\eta = \frac{2}{9} \frac{r^2(\rho - \rho_0)}{v} gk = \frac{2}{9} \frac{0.98^2(7800 - 960)}{0.013} * 9.8 * 0.93 = 1.01$$

$$k = \frac{1}{1 + \frac{2.4r}{R}} = \frac{1}{1 + \frac{2.4*0.98}{2.95}} = 0.93$$

Аналогично с шариком среднего и маленького размеров.

Полученные данные приведены в таблицах выше.

## 9. Расчет погрешностей измерений

Относительная погрешность среднего радиуса шарика верна по формуле  $\frac{\Delta r}{r} = \frac{\Delta d}{d}$ 

Найдём Да

$$\Delta d = K_s \sqrt{\frac{\Sigma_i \left(d_i - \underline{d}\right)^2}{N(N-1)}} = 2,78 \sqrt{\frac{(7,45 - 7,44)^2 + \dots + (7,44 - 7,44)^2}{5(5-1)}} = 0,036$$
 дел

Найдём относительную погрешность измерения скорости для каждого шарика по формуле  $\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}$   $\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} = \sqrt{\left(\frac{0.05}{10.02}\right)^2 + \left(\frac{0.005}{7.5}\right)^2} = 0.05$ 

Найдём относительную погрешность измерения коэффициента вязкости по формуле

$$\frac{\Delta\eta}{\eta} = \left[ \left( 2\frac{\Delta r}{r} \right)^2 + \left( \frac{\Delta v}{v} \right)^2 + \left( \frac{\Delta g}{g} \right)^2 + \frac{(\Delta \rho)^2 + \left( \Delta \rho_0 \right)^2}{\left( \rho - \rho_0 \right)^2} \right]^{\frac{1}{2}} = 0,0533$$
 - для большого шарика

$$\frac{\Delta\eta}{\eta} = \left[ \left( 2\frac{\Delta r}{r} \right)^2 + \left( \frac{\Delta v}{v} \right)^2 + \left( \frac{\Delta g}{g} \right)^2 + \frac{(\Delta\rho)^2 + \left( \Delta\rho_0 \right)^2}{\left( \rho - \rho_0 \right)^2} \right]^{\frac{1}{2}} = 0,0535$$
 - для среднего шарика

$$\frac{\varDelta\eta}{\eta} = \left[ \left( 2\frac{\varDelta r}{r} \right)^2 + \left( \frac{\varDelta v}{v} \right)^2 + \left( \frac{\varDelta g}{g} \right)^2 + \frac{(\varDelta \rho)^2 + \left( \varDelta \rho_0 \right)^2}{\left( \rho - \rho_0 \right)^2} \right]^{\frac{1}{2}} = 0,03106$$
 - для маленького шарика

## 10. Окончательные результаты

Значения коэффициентов вязкости, полученные для каждого шарика и их погрешности:

большой шарик 
$$\eta = (1,01\pm0,05)~\Pi a*c \qquad \varepsilon_{\eta} = 5,33\%$$
 средний шарик 
$$\eta = (1,007\pm0,05)~\Pi a*c \qquad \varepsilon_{\eta} = 5,35\%$$
 маленький шарик 
$$\eta = (0,88\pm0,27)~\Pi a*c \qquad \varepsilon_{\eta} = 3,11\%$$

## 11. Выводы и анализ результатов работы.

В данной лабораторной работе я определял коэффициент внутреннего трения касторового масла метод Стокса и проверял справедливость формулы для шариков разного диаметра. Из полученных значений можно сделать вывод, что размер шарика влияет на результат, но незначительно.