

CS918: LECTURE 8

Sequence Classification and Part-Of-Speech Tagging

Arkaitz Zubiaga, 29th October, 2018

RECAP: WHAT IS TEXT CLASSIFICATION?

- Having as input:
 - A text document d
 - A set of categories C={c₁, ..., c_m}
- The **text classification** task **outputs**:
 - Predicted class c* that document d belongs to.

$$c^* \in C$$

RECAP: TEXT CLASSIFICATION APPROACHES

- Rule-based classifiers, e.g. if email contains 'viagra' → spam
 - Significant manual effort involved.
- Supervised classification:
 - Given: a hand-labeled set of document-class pairs $(d_1,c_1), (d_2,c_j), ..., (d_m,c_2) \rightarrow \text{classified into C=}\{c_1,...,c_j\}$
 - The classifier learns a model that can classify new documents into C.

RECAP: EVALUATION

- Binary classification (k = 2):
 - Precision, recall and F1 score.
- Multiclass classification (k > 2):
 - Accuracy, ratio of correct predictions, can be problematic when labels are skewed.
 - Better, precision, recall and F1 score per class, then:
 - Micro-averaged evaluation.
 - Macro-averaged evaluation.

RECAP: ERROR ANALYSIS

- Error analysis: can help us find out where our classifier can do better.
- No magic formula for performing error analysis.
 - Look where we are doing wrong, what labels particularly.
 - Do our errors have some common characteristics? Can we infer a new feature from that?
 - Could our classifier be favouring one of the classes (e.g. the majority class)?

LECTURE 8: CONTENTS

- Sequence Classification
- Sequence Classifiers:
 - Hidden Markov Models (HMM).
 - Maximum Entropy Markov Models (MEMM).
 - Conditional Random Fields (CRF).
- Using Sequence Classifiers for Part-of-Speech (POS) Tagging.

- Sometimes, classification of items in a sequence is dependent on other sequence items:
 - Part-of-Speech (POS) tagging: Assigning categories to words, e.g. adjective, noun or verb

Example:

The man saw a cat NN VB DET NN

DET: determiner

NN: noun VB: verb

Why is classification dependent on other sequence items?

In our example, "The man saw a cat":

'saw' can be:

a **noun** (if it refers to the tool for cutting)

a **verb** (if it's simple past of 'see')

we can't classify whether 'saw' is verb or noun by looking at the word alone → need to look at context, the sequence

• The first item, 'the', is easy to classify, it's always a determiner:

- Now 'man' is ambiguous: (1) noun, i.e. male person, or (2) verb, i.e. 'take charge of'? We can look at:
 - $P('man_{NN}')$ vs $P('man_{VB}') \rightarrow$ probability of the word as noun or verb
 - P(NN | DET) vs P(VB | DET) → probability of a noun or a verb to be preceded by a determiner

• Two probabilities to determine POS of a word:

```
[1] P('manNN') vs P('manVB')
& [2] P('manNN' | DET) vs P('manVB' | DET)
```

- Classifiers we have seen so far (NB, MaxEnt, SVM) can handle [1].
 - But they can't handle [2].

• Using training data, we can learn of word category POS, being

preceded by POS_i.

Prepositions can be followed by nouns (.7) or determiners (.3), never by verbs.

Nouns can be followed by verbs, prepositions, or another noun.

Determiners are ALWAYS followed by a noun.

[1] P('manNN') vs P('manVB')

No matter the outcome of [1], we know it's NN thanks to [2].

FINDING THE MOST LIKELY SEQUENCE

- OK, and how do we achieve this?
 - Hidden Markov Models (HMM)
 - Maximum Entropy Markov Models (MEMM)
 - Conditional Random Fields (CRF)
 - Deep Learning:
 - Recurrent Neural Networks (RNN).
 - Long/Short-Term Memory Networks (LSTM).
 - Convolutional Neural Networks (CNN).

- OK, and how do we achieve this?
 - Hidden Markov Models (HMM)
 - Maximum Entropy Markov Models (MEMM)
 - Conditional Random Fields (CRF)
 - Deep Learning:
 - Recurrent Neural Networks (RNN).
 - Long/Short-Term Memory Networks (LSTM).
 - Convolutional Neural Networks (CNN).

HIDDEN MARKOV MODELS

WHAT IS A MARKOV CHAIN?

- A Markov chain:
 - Set of **nodes connected with probabilities**, where weights on all edges leaving a node sum to 1.

MARKOV CHAINS

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{01}a_{02}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
q_0, q_F	a special start state and end (final) state that are not associated with observations

MARKOV CHAINS

• In a First order Markov Chain, the probability of a particular state depends ONLY on the previous state.

Markov Assumption:
$$P(q_i|q_1...q_{i-1}) \approx P(q_i|q_{i-1})$$

Remember: Lecture 3 on language models, Markov assumption:
 P(library | I found two pounds in the) ≈ P(library | the)

WHAT IS A HIDDEN MARKOV MODEL (HMM)?

$Q = q_1 q_2 \dots q_N$	a set of N states					
$Q = q_1 q_2 \dots q_N$ $A = a_{11} a_{12} \dots a_{n1} \dots a_{nn}$	a transition probability matrix A , each a_{ij} reference resenting the probability of moving from state to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$					
$O = o_1 o_2 \dots o_T$	a sequence of T observations , each one drawn from a vocabulary $V = v_1, v_2,, v_V$					
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i					
q_0,q_F	a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state					

HMM: TWO KINDS OF PROBABILITIES

- Transition probabilities: pairwise probabilities of tags being preceded/followed by another tag.
 - e.g. determiner likely followed by noun or adjective.
- Emission probabilities: probability for a particular tag to be a particular word, e.g. verb is very likely to be "is".

TRANSITION PROBABILITIES: EXAMPLE

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

EMISSION PROBABILITIES: EXAMPLE

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

TWO IMPORTANT ASSUMPTIONS IN HMM

 Again, the Markov assumption, i.e. dependence only on the previous state.

Markov Assumption:
$$P(q_i|q_1...q_{i-1}) \approx P(q_i|q_{i-1})$$

• There must be a dependency between sequence items, e.g.:

• Weather (dependency): this morning's weather may determine the probability of this afternoon's weather.

 Independent events: my laptop having been broken doesn't determine the probability of my next laptop breaking.

OPTIMISING WITH BEAM SEARCH

- Beam search: only consider top β options for each word.
 - Here β = 2:

LIMITATIONS OF HMM

- Limitations of HMM:
 - Models dependencies between each state and only its corresponding observation.
 - Learns joint distribution of states and observations P(Y, X), but not the conditional probability P(Y|X).

HMM IMPLEMENTATIONS

 NLTK HMM: http://www.nltk.org/modules/nltk/tag/hmm.html

hmmlearn:
 https://github.com/hmmlearn/hmmlearn

 Scikit HMM: http://scikit-learn.sourceforge.net/stable/modules/hmm.html

MEMM: ALTERNATIVE TO HMM

- Maximum Entropy Markov Models (MEMM): Models dependencies between each state and the full observation sequence.
- Learning objective function consistent with predictive function: P(Y|X).

MEMM: THE LABEL BIAS PROBLEM

MEMM: THE LABEL BIAS PROBLEM

• In principle, locally, state 1 prefers state 2 in 2nd place.

WARWICK

MEMM: THE LABEL BIAS PROBLEM

Despite $1 \rightarrow 2$ being more likely **locally**,

the **entire path probability** will favour 1 → 1

- But if we look at the entire path (which MEMM does):
 - $P(1\rightarrow 1\rightarrow 1\rightarrow 1) = 0.4*0.45*0.5 = 0.09$
 - $P(1\rightarrow 2\rightarrow 2\rightarrow 2) = 0.6*0.3*0.3 = 0.054$

SOLUTION TO LABEL BIAS

• Solution: don't normalise probabilities locally, use local potentials.

CONDITIONAL RANDOM FIELDS

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF:
 - Global normaliser Z(x) overcomes label bias issue of MEMM.
 - Models the dependency between each state and the entire observation sequence (like MEMM).

CONDITIONAL RANDOM FIELDS

Widely used for a range of sequence classification tasks:

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data.

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers

IMPLEMENTATIONS OF CRF

Python-crfsuite:
 http://python-crfsuite.readthedocs.io/en/latest/

PyStruct: https://pystruct.github.io/

BEYOND CLASSIFIER LINEAR SEQUENCES

- We've talked about classifier linear sequences.
- But sometimes we can have more complex sequences:
 - Graph or tree-structured sequences.

WHERE DO WE FIND TREE SEQUENCES IN NLP?

• Post classification in forums, e.g. binary classification: does a post answer the question of the 1st post?

- Post 1
 - Post 1.1
 - Post 1.1.1
 - Post 1.1.2
 - Post 1.2
 - Post 1.2.1
 - Post 1.2.1.1
 - Post 1.2.2

HMM VS CRF

Fig. 2.4 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linearchain CRFs, generative models, and general CRFs.

USING SEQUENCE CLASSIFIERS FOR PART-OF-SPEECH (POS) TAGGING

 As we were saying, sequence can play an important role in determining POS tags in a sentence:

"man" can't be a verb if it's preceded by a determiner.

 As we were saying, sequence can play an important role in determining POS tags in a sentence:

- With **HMM**, only looking at previous label, we **can end up predicting sequence of 5 nouns** (NN, NN, NN, NN, NN).
- Looking at the **entire sequence** (MEMM, CRF), we avoid this, **we never have a sentence only made of 5 nouns**.

The list of POS tag types is actually quite large!

THE PENN TREEBANK TAG SET

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

OPEN VS CLOSED CLASSES

- Open vs. Closed classes:
 - Closed:
 - **determiners**: a, an, the,...
 - pronouns: she, he, I,...
 - prepositions: on, under, over, near, by,...
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

CHALLENGES IN POS TAGGING: AMBIGUITY

- Words often have more than one possible POS, e.g. back:
 - The back door = JJ (adjective)
 - On my back = NN (noun)
 - Win the voters back = RB (adverb)
 - Promised to back the bill = VB (verb)

 See list of POS tags: <u>http://rednoise.org/rita/reference/PennTags.html</u>

- POS tagging example:
 - Input: Plays well with others

NNS UH IN NNS VBZ JJ NN RB

- 1. List candidate labels for each word.
- 2. Based on probabilities learnt from training data, the classifier predicts the most likely POS sequence.

NB: the fact that there are 2 unambiguous words (with & others) is useful to first label them, and then predict the other 2.

Output: Plays/VBZ well/RB with/IN others/NNS

- Uses of POS tagging in NLP:
 - Text-to-speech.
 - Phrase search through regular expressions, e.g. (Det) Adj* N+
 - As input to or to speed up a full linguistic parser (later lectures)
 - If you know the tag, you can back off to it, e.g. in lemmatisation, saw → see, or saw → saw?
- In other fields:
 - Computational biology.
 - Prediction of series of data, e.g. weather forecasting.

POS TAGGING PERFORMANCE

- Current POS tagging system are very accurate:
 - Baseline system that predicts the most common POS for a word already gets 90% accuracy → thanks to many words not being ambiguous.
 - Standard classifiers (no sequence) can achieve 93% accuracy.
 - Sequence classifiers can achieve 97% accuracy.

POS TAGGING: AMBIGUITY

Types:	W	SJ	Bro	wn	
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

REFERENCES

 List of software for POS tagging: https://aclweb.org/aclwiki/Part-of-speech_tagging

ASSOCIATED READING

- Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 3rd edition. **Chapters 8.**
- Bird Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, Inc., 2009. Chapter 6 Section 1.6.