Aplicación del modelo AERMOD en la dispersión de contaminantes atmosféricos producidos por plantas termoeléctricas en Quito

Revisión del uso del programa

Itinerario de hoy

Parte 1. Introducción

Modelo, programa & lenguajes

Parte 2. AERMOD.exe

Entradas

Salidas

Modelado de la dispersión de contaminantes en el aire

$$C = \frac{Q}{2\pi\sigma_x\sigma_y}g\exp\left[-d_a^2/\left(2\sigma_x^2\right)\right]\exp\left[-d_c^2/\left(2\sigma_y^2\right)\right]$$

Modelo regulatorio EPA

Estacionario

Gaussiano

Capa límite planetaria

Terreno simple y complejo

Programa: Sistema de modelación AERMOD

Lenguajes de programación

Usuario:

Lenguaje interfaz

Escritura del programa:

Fortran

Compilación EPA:

Intel Visual Fortran
Compiler for Windows

Quick reference for AERMOD - Version 21112

SUMMARY OF <u>CONTROL</u> PATHWAY KEYWORDS AND PARAMETERS

Keyword	Parameters			
TITLEONE	Title1			
TITLETWO	Title2			
MODELOPT	DFAULT ALPHA BETA CONC AREADPLT FLAT NOSTD NOCHKD NOWARN SCREEN SCIM PVMRM			
	or or or FASTAREA NODRYDPLT NOWETDPLT			
AVERTIME	Time1 Time2 TimeN MONTH PERIOD or ANNUAL			
URBANOPT	UrbanID Urbpop (Urbname) (UrbRoughness) [For multiple urban areas]			
	or Urbpop (Urbname) (UrbRoughness) [For single urban areas]			
POLLUTID	Pollut (H1H or H2H or INC)			
HALFLIFE	Haflif			
DCAYCOEF	Decay			
GASDEPDF	React F_Seas2 F_Seas5 (Refpoll)			
GASDEPVD	Uservd			
GDLANUSE	Sec1 Sec2 Sec36			
GDSEASON	Jan Feb Dec			
LOW_WIND	SVmin (WSmin) or SVmin WSmin (FRANmax) or SVmin WSmin FRANmax (SWMin) or SVmin WSmin FRANmax SWMin (BigT)			

Parte 2. AERMOD.exe

Entradas

Salidas

Entradas

Entradas

AERMAP

```
1 CO STARTING
      TITLEONE Ouito Test for 1 sector
      TITLETWO Using SRTM 3arc-minute Data
    DATATYPE NED FILLGAPS
5
     DATAFILE UIO.tif
8
     DOMAINXY 764000.0 9957000.0 -17 803000.0 9996000.0 -17
9
     ANCHORXY 765000.0 9958000.0 765000.0 9958000.0 -17 3
10
11
    RUNORNOT RUN
12
    DEBUGOPT ALL
13
14
15 CO FINISHED
16
17 SO STARTING
18
     LOCATION STACK1 POINT 783500.0 9976500.0
19
20 SO FINISHED
21
22 RE STARTING
23 ** Xi Xn deltax yi yn deltay
24
25 GRIDCART CART2 STA
26
27
                    XYINC 769500.0 7 3000.0 9965500.0 4 3000.0
28
    GRIDCART CART2 END
29 RE FINISHED
30
31 OU STARTING
    RECEPTOR Quito REC2.OUT
    DEBUGREC RECIDB Quito.OUT REC2DB Quito.OUT REC3DB Quito.OUT
33
34
35 OU FINISHED
```


Diagrama de flujo AERMOD

Salida

Salida

spice file

length: 31.187 lines: 490 Ln: 32 Col: 1 Pos: 1.079

INS

Windows (CR LF) UTF-8

Promedio anual de SO2 simulado con AERMOD. Año 2009

UPPER AIR Data


```
#recupera datos para cada variable
lat = ncvar_get(f,"lat_3")
lon = ncvar_get(f,"lon_3")
lev = ncvar_qet(f,"lv_ISBL4")
hgt = ncvar_get(f,"HGT_3_ISBL")
tmp = ncvar_get(f,"TMP_3_ISBL")
r_h = ncvar_get(f, "R_H_3_ISBL")
u_w = ncvar_get(f, "U_GRD_3_ISBL")
v_w = ncvar_qet(f, "V_GRD_3_ISBL")
#variable attributes
\#r_h2 = ncatt_get(f, "R_H_3_ISBL")
#missing values
#ncvar_change_missval(f, "R_H_3_ISBL", 99990)
#extrae vectores y toma alturas
lonlat <- expand.grid(lon, lat)</pre>
lev.vec <- as.vector(lev)[-(1:13)]
hgt.vec <- as.vector(hgt)[-(1:13)]
tmp.vec \leftarrow as.vector(tmp)[-(1:13)]
```

NetCDF4 -> .UA

Land Use

ONTHLY	1		
0	360		
R 1	1 0.18	0.4	0.05
2	1 0.18	0.4	0.05
3	1 0.18	0.4	0.05
	1 0.18	0.4	0.05
R 5	1 0.20	1.5	0.20
R 6	1 0.20	1.5	0.20
7	1 0.20	1.5	0.20
8 5	1 0.20	1.5	0.20
R 9	1 0.20	1.5	0.20
R 10	1 0.18	0.4	0.05
R 11	1 0.18	0.4	0.05
R 12	1 0.18	0.4	0.05
	0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8	R 1 1 0.18 R 2 1 0.18 R 3 1 0.18 R 4 1 0.18 R 5 1 0.20 R 6 1 0.20 R 7 1 0.20 R 8 1 0.20 R 9 1 0.20 R 10 1 0.18 R 11 1 0.18	0 360 R 1 1 0.18 0.4 R 2 1 0.18 0.4 R 3 1 0.18 0.4 R 4 1 0.18 0.4 R 5 1 0.20 1.5 R 6 1 0.20 1.5 R 7 1 0.20 1.5 R 8 1 0.20 1.5 R 9 1 0.20 1.5 R 9 1 0.20 1.5 R 10 1 0.18 0.4 R 11 1 0.18 0.4

cicam@epn.edu.ec @CICAM_EPN

leonardo.soto@epn.edu.ec @LeoSotoJ