18 - Generalizzazione del Teorema delle Funzioni Implicite e del Moltiplicatore di Lagrange

Teorema 18.1: Teorema delle Funzioni Implicite generalizzato

Siano $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ e $(E, \|\cdot\|_E)$ tre spazi di Banach.

Sia $A \subseteq X \times Y$ aperto.

 $f:A \to E$ una funzione di classe C^1 .

Sia $(\mathbf{x}_0,\mathbf{y}_0)\in A$, tale che $f(\mathbf{x}_0,\mathbf{y}_0)=\mathbf{0}_E$, e $f'_{\mathbf{v}}(\mathbf{x}_0,\mathbf{y}_0)\in\mathcal{O}(Y,E)$.

Allora, esistono un intorno aperto U di \mathbf{x}_0 , un intorno aperto V di \mathbf{y}_0 e una funzione $\mathbf{y}:U\to V$ di classe C^1 , dimodoché:

- $U \times V \subseteq A$;
- Graph $(y) = \{(\mathbf{x}, \mathbf{y}) \in U \times V : f(\mathbf{x}, \mathbf{y}) = 0\}.$

Inoltre, si ha

$$m{y}'(\mathbf{x}_0)(\mathbf{u}) = -ig(f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)ig)^{-1}ig(f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u})ig)$$
 per ogni $\mathbf{u}\in X$.

Dimostrazione

Si definisca la funzione $g: A \rightarrow X \times E$ ponendo

$$g(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, f(\mathbf{x}, \mathbf{y}))$$
 per ogni $(\mathbf{x}, \mathbf{y}) \in A$.

Le componenti di g di classe C^1 ;

infatti, la prima pari alla proiezione π_X , lineare, e la seconda pari a f, per ipotesi di classe C^1 .

Allora, g è essa stessa di classe C^1 per la [Proposizione 17.2], e sempre per tale proposizione si ha

$$g'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{v}) = ig(\pi_X'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{v}),f'(\mathbf{x},\mathbf{y})(\mathbf{u},\mathbf{v})ig)$$

$$= (\mathbf{u}, f'(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{v}))$$
Essendo π_X lineare, si ha $\pi'_X(\mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{v}) = \pi_X(\mathbf{u}, \mathbf{v}) = \mathbf{u}$
$$= (\mathbf{u}, f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})(\mathbf{u}) + f'_{\mathbf{y}}(\mathbf{x}, \mathbf{y})(\mathbf{v}))$$
Per la [Proposizione 17.2], essendo f di classe C^1

per ogni $(\mathbf{x}, \mathbf{y}) \in A$ e per ogni $(\mathbf{u}, \mathbf{v}) \in X \times Y$.

Si provi che $g'(\mathbf{x}_0, \mathbf{y}_0) \in \mathcal{O}(X \times Y, X \times E)$; essendo lineare, basta mostrare che $g'(\mathbf{x}_0, \mathbf{y}_0)$ è biunivoca; la continuità della funzione inversa sarà automaticamente acquisita ([Proposizione 13.2]).

Fissato allora $(\mathbf{z}, \mathbf{w}) \in X \times E$, si vogliono ricavare $(\mathbf{u}, \mathbf{v}) \in X \times Y$ soluzioni all'equazione $g'(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}, \mathbf{v}) = (\mathbf{z}, \mathbf{w})$.

Si ha

$$g'(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}, \mathbf{v}) = (\mathbf{z}, \mathbf{w}) \iff (\mathbf{u}, f'_{\mathbf{x}}(\mathbf{x}, \mathbf{y})(\mathbf{u}) + f'_{\mathbf{y}}(\mathbf{x}, \mathbf{y})(\mathbf{v})) = (\mathbf{z}, \mathbf{w})$$
 $\iff \begin{cases} \mathbf{u} = \mathbf{z} \\ f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) + f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}) = \mathbf{w} \end{cases}$
 $\iff \begin{cases} \mathbf{u} = \mathbf{z} \\ f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{z}) + f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}) = \mathbf{w} \end{cases}$

Dunque, le soluzioni all'equazione $g'(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}, \mathbf{v}) = (\mathbf{z}, \mathbf{w})$ sono tutte e sole del tipo $(\mathbf{z}, \mathbf{v}_s)$, con $\mathbf{v}_s \in Y$ soluzione all'equazione $f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{z}) + f'_{\mathbf{v}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{v}_s) = \mathbf{w}$.

Essendo $f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0) \in \mathcal{O}(Y, E)$ per ipotesi, esiste un'unico $\tilde{\mathbf{v}} \in Y$ tale che $f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(\tilde{\mathbf{v}}) = \mathbf{w} - f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{z})$.

Dunque, $(\mathbf{z}, \tilde{\mathbf{v}})$ è l'unica soluzione in $X \times Y$ all'equazione $g'(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{z}, \tilde{\mathbf{v}}) = (\mathbf{z}, \mathbf{w})$.

È stato allora acquisito che $g'(\mathbf{x}_0, \mathbf{y}_0) \in \mathcal{O}(X \times Y, X \times E)$; dunque, si può allora applicare il teorema dell'inversione locale ([Teorema 14.5]) a g in $(\mathbf{x}_0, \mathbf{y}_0)$.

Esiste cioè un intorno aperto W di $(\mathbf{x}_0, \mathbf{y}_0)$ contenuto in A, tale che g(W) sia aperto e $g_{|W}$ sia un diffeomorfismo di classe C^1 tra W e g(W).

Essendo W un intorno di $(\mathbf{x}_0, \mathbf{y}_0)$ rispetto alla topologia prodotto su $X \times Y$, esistono un intorno I aperto di \mathbf{x}_0 e un intorno aperto V di \mathbf{y}_0 , tali che $I \times V \subseteq W$;

è evidente che, essendo g(W) aperto e $g_{|W}$ un diffeomorfismo di classe C^1 tra W e g(W), avendo $I \times V \subseteq W$ aperto si ha anche che $g(I \times V)$ è aperto e $g_{|I \times W|}$ è un diffeomorfismo di classe C^1 tra $I \times V$ e $g(I \times V)$.

Sia ora $U = \{ \mathbf{x} \in I : (\mathbf{x}, \mathbf{0}_E) \in g(I \times V) \}$; esso è un intorno aperto di \mathbf{x}_0 , contenuto in I.

Infatti, si ha evidentemente $U \subseteq I$ dalla definizione, e $\mathbf{x}_0 \in U$ in quanto $g(\mathbf{x}_0, \mathbf{y}_0) = (\mathbf{x}_0, f(\mathbf{x}_0, \mathbf{y}_0)) = (\mathbf{x}_0, \mathbf{0}_E)$, essendo $f(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}_E$ per ipotesi;

Infine, si osserva che $U = I \cap \text{`id}, 0, 0, -1(g(I \times V));$

la mappa ' $\mathrm{id}, \mathbf{0}_E$ ': $X \to X \times E$ è definita ponendo $\mathbf{x} \mapsto (\mathbf{x}, \mathbf{0}_E)$ per ogni $\mathbf{x} \in X$ ed è dunque continua, I è aperto per costruzione e $g(I \times V)$ è aperto per quanto osservato prima.

Dunque, U è aperto.

Si definisca ora la funzione $\psi: U \to V$ ponendo $\psi(\mathbf{x}) \in V$ dimodoché $f(\mathbf{x}, \psi(\mathbf{x})) = \mathbf{0}_E$.

• y è ben definita.

Infatti, fissato $\mathbf{x} \in U$, si ha $(\mathbf{x}, \mathbf{0}_E) \in g(I \times V)$ per definizione di U;

essendo g una biiezione tra $I \times V$ e $g(I \times V)$, esiste un unico $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in I \times V$ tale che $g(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = (\mathbf{x}, \mathbf{0}_E)$, ossia $(\tilde{\mathbf{x}}, f(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})) = (\mathbf{x}, \mathbf{0}_E)$, che equivale a $\tilde{\mathbf{x}} = \mathbf{x}$ e $f(\mathbf{x}, \tilde{\mathbf{y}}) = \mathbf{0}_E$.

Dunque, $\tilde{\mathbf{y}}$ è l'unica soluzione in V all'equazione $f(\mathbf{x}, \tilde{\mathbf{y}}) = \mathbf{0}_E$, e da ciò segue la buona definizione di \mathcal{Y} .

• $y(\mathbf{x}_0) = \mathbf{y}_0$.

Infatti, si ha $f(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}_E$ per ipotesi, da cui segue $\mathbf{y}_0 = \mathbf{y}(\mathbf{x}_0)$ per buona definizione di \mathbf{y} .

• Si ha $Graph(y) = \{(\mathbf{x}, \mathbf{y}) \in U \times V : f(\mathbf{x}, \mathbf{y}) = \mathbf{0}_E\}.$

Infatti, fissato $\mathbf{x} \in U$, si ha $f(\mathbf{x}, y(\mathbf{x})) = \mathbf{0}_E$ per definizione di y; dunque, vale l'inclusione \subseteq .

D'altra parte, fissato $(\mathbf{x}, \mathbf{y}) \in U \times V$ tale che $f(\mathbf{x}, \mathbf{y}) = \mathbf{0}_E$, si ha $\mathbf{y} = \mathbf{y}(\mathbf{x})$ per buona definizione di \mathbf{y} ; dunque, vale l'inclusione \supseteq .

• y è di classe C^1 .

Infatti, si ha $\boldsymbol{y} = \pi_{Y} \circ g_{|I \times V}^{-1} \circ \operatorname{id}, \boldsymbol{0}_{E}$, in quanto $\mathbf{x} \stackrel{\operatorname{id}, \boldsymbol{0}_{E}}{\longmapsto} (\mathbf{x}, \boldsymbol{0}_{E}) = g(\mathbf{x}, \boldsymbol{y}(\mathbf{x})) \stackrel{g_{|I \times V}^{-1}}{\longmapsto} (\mathbf{x}, \boldsymbol{y}(\mathbf{x})) \stackrel{\pi_{Y}}{\longmapsto} \boldsymbol{y}(\mathbf{x})$ per ogni $\mathbf{x} \in U$.

Essendo π_Y e 'id, $\mathbf{0}_E$ ' lineari e continue, esse sono di classe C^1 ;

 $g_{|I imes V}^{-1}$ è di classe C^1 essendo $g_{|I imes V}$ un diffeomorfismo di classe C^1 tra I imes V e g(I imes V).

Dunque, y è di classe C^1 .

• Si ha $\boldsymbol{y}'(\mathbf{x}_0)(\mathbf{u}) = - \left(f_{\mathbf{y}}'(\mathbf{x}_0,\mathbf{y}_0)\right)^{-1} \left(f_{\mathbf{x}}'(\mathbf{x}_0,\mathbf{y}_0)(\mathbf{u})\right)$ per ogni $\mathbf{u} \in X$.

Infatti, la mappa $\psi: U \to E$ definita ponendo $\psi(\mathbf{x}) = f(\mathbf{x}, \psi(\mathbf{x}))$ per ogni $\mathbf{x} \in U$, è identicamente nulla per definizione di ψ ; dunque, $\psi'(\mathbf{x})(\mathbf{u}) = \mathbf{0}_E$ per ogni $\mathbf{x} \in U$ e per ogni $\mathbf{u} \in X$.

D'altra parte, dalla [Proposizione 17.4] segue che

$$\psi'(\mathbf{x}_0)(\mathbf{u}) = f'_{\mathbf{x}}(\mathbf{x}_0, \boldsymbol{y}(\mathbf{x}_0))(\mathrm{id}'_X(\mathbf{x})(\mathbf{u})) + f'_{\mathbf{y}}(\mathbf{x}_0, \boldsymbol{y}(\mathbf{x}_0))(\boldsymbol{y}'(\mathbf{x}_0)(\mathbf{u})),$$
ossia

$$\psi'(\mathbf{x}_0)(\mathbf{u}) = f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u}) + f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(y'(\mathbf{x}_0)(\mathbf{u})), \text{ per ogni } \mathbf{u} \in X.$$

Si ha allora $f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)(y'(\mathbf{x}_0)(\mathbf{u})) = -f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})$ per ogni $\mathbf{u} \in X$ da cui segue, essendo $f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0) \in \mathcal{O}(Y, E)$ per ipotesi, che

$$\mathbf{y}'(\mathbf{x}_0)(\mathbf{u}) = - \left(f'_{\mathbf{y}}(\mathbf{x}_0, \mathbf{y}_0)\right)^{-1} \left(f'_{\mathbf{x}}(\mathbf{x}_0, \mathbf{y}_0)(\mathbf{u})\right)$$
, per ogni $\mathbf{u} \in X$.

🖹 Teorema 18.2: Teorema del moltiplicatore di Lagrange generalizzato

Sia $(X, \|\cdot\|_X)$ uno spazio di Banach.

Sia $A \subseteq X$ aperto.

Siano $f,g:A o\mathbb{R}$ due funzioni di classe C^1 .

Sia $\mathbf{x}_0 \in A$ tale che $g(\mathbf{x}_0) = 0$ e $g'(\mathbf{x}_0) \neq \mathbf{0}_{X^*}$;

sia dunque $\mathbf{w} \in X$ tale che $g'(\mathbf{x}_0)(\mathbf{w}) \neq 0$.

Si supponga che \mathbf{x}_0 sia di estremo relativo per $f_{|g^{-1}(\{0\})}$.

Allora,
$$f'(\mathbf{x}_0) = \frac{f'(\mathbf{x}_0)(\mathbf{w})}{g'(\mathbf{x}_0)(\mathbf{w})} \cdot g'(\mathbf{x}_0).$$

Dimostrazione

Sia
$$\Omega = \{(\mathbf{x}, t) \in A \times \mathbb{R} : \mathbf{x} + t\mathbf{w} \in A\};$$

si definisca la funzione $h:\Omega \to \mathbb{R}$ ponendo $h(\mathbf{x},t)=g(\mathbf{x}+t\mathbf{w})$ per ogni $(\mathbf{x},t)\in \Omega$.

Si osserva che la mappa $\mathbf{s}: A \times \mathbb{R} \to X$ è di classe C^1 ; $(\mathbf{x},t) \mapsto \mathbf{x} + t\mathbf{w}$

infatti, essa è parzialmente derivabile in $A \times \mathbb{R}$, e per ogni $(\mathbf{x},t) \in A \times \mathbb{R}$ si ha

$$s'_{\mathbf{x}}(\mathbf{x},t)(\mathbf{u}) = \mathbf{u}$$
 per ogni $\mathbf{u} \in X$;

$$s_t'(\mathbf{x},t)(v) = v \mathbf{w}$$
 per ogni $v \in \mathbb{R}$.

Essendo $s'_{\mathbf{x}}$ e s'_{t} costanti su $A \times \mathbb{R}$, esse sono continue; dunque, s è di classe C^{1} per la [Proposizione 17.3].

Ne segue che Ω è aperto, essendo pari a $s^{-1}(A)$, e avendo A aperto e s continua;

ne segue anche che h è di classe C^1 , essendo pari a $g \circ s$, e avendo g di classe C^1 per ipotesi e s anch'essa di classe C^1 ;

Si osserva anche che $h(\mathbf{x}_0, 0) = g(\mathbf{x}_0) = 0$ per ipotesi;

infine, si nota che

$$h'_t(\mathbf{x}_0,0) = g'(s(\mathbf{x}_0,0)) \circ s'_t(\mathbf{x}_0,0)$$
 Dal teorema di derivazione di funzioni composte e dalla definizione di derivata parziale

$$g'(\mathbf{x}_0)\circ(\cdot)\mathbf{w}$$
 In quanto $s(\mathbf{x}_0,0)=\mathbf{x}_0$ e $s'_t(\mathbf{x}_0,0)(v)=v$ \mathbf{w} per ogni $v\in\mathbb{R}$

$$=(\cdot)g'(\mathbf{x}_0)(\mathbf{w})$$
 In quanto $g'(\mathbf{x}_0)(v\,\mathbf{w})=v\,g'(\mathbf{x}_0)(\mathbf{w})$ per ogni $v\in\mathbb{R}$, per linearità di $g'(\mathbf{x}_0)$

$$eq \mathbf{0}_{\mathbb{R}^*}$$
 Essendo $g'(\mathbf{x}_0)(\mathbf{w})
eq 0$ per ipotesi

h soddisfa allora in $(\mathbf{x}_0,0)$ le ipotesi del teorema delle funzioni implicite generalizzato ([Teorema 18.1]); dunque, esistono un intorno aperto U di \mathbf{x}_0 , con $U\subseteq A$, ed esiste una funzione $\mathbf{y}:U\to\mathbb{R}$ di classe C^1 tale che:

- $y(\mathbf{x}_0) = 0$;
- Graph $(y) \subseteq \Omega$, dunque $(\mathbf{x}, y(\mathbf{x})) \in \Omega$ per ogni $\mathbf{x} \in U$;
- $h(\mathbf{x}, \mathbf{y}(\mathbf{x})) = 0$ per ogni $\mathbf{x} \in U$.

Per completezza, si ricavi la legge di $h'_{\mathbf{x}}(\mathbf{x}_0, 0)$;

$$h'_{\mathbf{x}}(\mathbf{x}_0,0) = g'(s(\mathbf{x}_0,0)) \circ s'_{\mathbf{x}}(\mathbf{x}_0,0)$$
 Dal teorema di derivazione di funzioni composte e dalla definizione di derivata parziale $= g'(\mathbf{x}_0) \circ \mathrm{id}_X$ In quanto $s(\mathbf{x}_0,0) = \mathbf{x}_0 \in s'_{\mathbf{x}}(\mathbf{x}_0,0)(\mathbf{u}) = \mathbf{u}$ per ogni $\mathbf{u} \in X$

$$=g'(\mathbf{x}_0)$$

Si supponga \mathbf{x}_0 di minimo relativo per $f_{|g^{-1}(\{0\})}$;

esiste allora un intorno aperto V intorno aperto di \mathbf{x}_0 (si supponga $V \subseteq U$) tale che $f(\mathbf{x}_0) \le f(\mathbf{x})$ per ogni $\mathbf{x} \in V \cap g^{-1}(\{0\})$.

La mappa $V \to X : \mathbf{x} \mapsto \mathbf{x} + \mathbf{y}(\mathbf{x})\mathbf{w}$ è continua e tale che $\mathbf{x}_0 \mapsto \mathbf{x}_0$;

in corrispondenza all'intorno V di \mathbf{x}_0 , esiste allora un intorno aperto W di \mathbf{x}_0 (si supponga $W \subseteq U$) tale che $\mathbf{x} + \boldsymbol{y}(\mathbf{x})\mathbf{w} \in V$ per ogni $\mathbf{x} \in W$.

Si osserva anche che $\mathbf{x} + \mathbf{y}(\mathbf{x})\mathbf{w} \in g^{-1}(\{0\})$ per ogni $\mathbf{x} \in W$;

infatti, fissato $\mathbf{x} \in W$ si ha $g(\mathbf{x} + \mathbf{y}(\mathbf{x})\mathbf{w}) = h(\mathbf{x}, \mathbf{y}(\mathbf{x})) = 0$, per definizione di h e per costruzione di y.

Si definisca ora la funzione $\psi: W \to \mathbb{R}$ ponendo $\psi(\mathbf{x}) = f(\mathbf{x} + \psi(\mathbf{x})\mathbf{w})$ per ogni $\mathbf{x} \in V$.

Si osserva che $\psi(\mathbf{x}_0) = f(\mathbf{x}_0)$, ed era già stato osservato che $\mathbf{x} + \psi(\mathbf{x})\mathbf{w} \in V \cap g^{-1}(\{0\})$ per ogni $\mathbf{x} \in V$; per costruzione di V, ne viene allora che $f(\mathbf{x}_0) \leq f(\mathbf{x} + \psi(\mathbf{x})\mathbf{w})$, ossia $\psi(\mathbf{x}_0) \leq \psi(\mathbf{x})$, per ogni $\mathbf{x} \in V$. Cioè, \mathbf{x}_0 è di minimo assoluto per ψ .

Essendo ψ di classe C^1 , si ha allora $\psi'(\mathbf{x}_0) = \mathbf{0}_{X^*}$, cioè $\psi'(\mathbf{x}_0)(\mathbf{u}) = 0$ per ogni $\mathbf{u} \in X$.

D'altra parte, per derivazione delle funzioni composte si ha $\psi'(\mathbf{x})(\mathbf{u}) = f'(\mathbf{x} + \psi(\mathbf{x})\mathbf{w})(\mathbf{u} + \psi'(\mathbf{x})(\mathbf{u})\mathbf{w})$ per ogni $\mathbf{x} \in W$ e per ogni $\mathbf{u} \in X$;

in particolare, si ha perciò

$$\psi'(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0)ig(\mathbf{u} + oldsymbol{y}'(\mathbf{x}_0)(\mathbf{u})\,\mathbf{w}ig) = f'(\mathbf{x}_0)(\mathbf{u}) + oldsymbol{y}'(\mathbf{x}_0)(\mathbf{u}) \cdot f'(\mathbf{x}_0)(\mathbf{w}).$$

Allora, per ogni $\mathbf{u} \in X$ si ha

$$f'(\mathbf{x}_0)(\mathbf{u}) = -\mathcal{Y}'(\mathbf{x}_0)(\mathbf{u}) \ f'(\mathbf{x}_0)(\mathbf{w}) \qquad \text{Essendo } 0 = \psi'(\mathbf{x}_0)(\mathbf{u}) = f'(\mathbf{x}_0)(\mathbf{u}) + \mathcal{Y}'(\mathbf{x}_0)(\mathbf{u}) \cdot f'(\mathbf{x}_0)(\mathbf{w})$$

$$= \left(h'_t(\mathbf{x}_0, 0)\right)^{-1} \left(h'_\mathbf{x}(\mathbf{x}_0, 0)(\mathbf{u})\right) \cdot f'(\mathbf{x}_0)(\mathbf{w}) \qquad \text{Dal teorema delle funzioni implicite generalizzato ([Teorema 18.1])}$$

$$f = ((\cdot) g'(\mathbf{x}_0)(\mathbf{w}))^{-1} (g'(\mathbf{x}_0)(\mathbf{u})) \cdot f'(\mathbf{x}_0)(\mathbf{w})$$
 Per legge di $h'_t(\mathbf{x}_0, 0)$ e $h'_\mathbf{x}(\mathbf{x}_0, 0)$

$$= \frac{g'(\mathbf{x}_0)(\mathbf{u})}{g'(\mathbf{x}_0)(\mathbf{w})} \cdot f'(\mathbf{x}_0)(\mathbf{w}) \qquad \qquad \text{In quanto } \frac{g'(\mathbf{x}_0)(\mathbf{u})}{g'(\mathbf{x}_0)(\mathbf{w})} \cdot g'(\mathbf{x}_0)(\mathbf{w}) = g'(\mathbf{x}_0)(\mathbf{u})$$

da cui segue che $f'(\mathbf{x}_0) = \frac{f'(\mathbf{x}_0)(\mathbf{w})}{g'(\mathbf{x}_0)(\mathbf{w})} \cdot g'(\mathbf{x}_0)$, come si voleva.

$rac{1}{2}$ Corollario 18.3: Esistenza di soluzioni a un'equazione del tipo $\lambda \mathbf{x} = \dot{f}(\mathbf{x})$ con norma arbitrariamente piccola

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $f:X\to\mathbb{R}$ una funzione di classe C^1 , sequenzialmente debolmente semicontinua inferiormente. Sia r>0.

Esiste $\lambda \in \mathbb{R}$ tale che l'equazione $\lambda \mathbf{x} = \dot{f}(\mathbf{x})$ abbia almeno una soluzione $\mathbf{x} \in X$ con $\|\mathbf{x}\| \leq r$.

Dimostrazione

L'insieme $\overline{B}(\mathbf{0},r)$ è limitato, chiuso e convesso.

Essendo f sequenzialmente debolmente semicontinua inferiormente, per la [Proposizione 10.4] segue che f ammette minimo assoluto su $\overline{B}(\mathbf{0}, r)$.

Sia dunque $\mathbf{x}_0 \in \overline{B}(\mathbf{0},r)$ un punto di minimo assoluto per f su $\overline{B}(\mathbf{0},r)$.

Se $\|\mathbf{x}_0\| < r$, si ha $\mathbf{x}_0 \in B(\mathbf{0}, r)$ aperto, dunque \mathbf{x}_0 è di minimo relativo per f su X; dunque, si ha $\dot{J}(\mathbf{x}_0) = \mathbf{0}$, e la tesi è acquisita in quanto $0 \mathbf{x}_0 = \mathbf{0} = \dot{J}(\mathbf{x}_0)$ e $\|\mathbf{x}_0\| < r$.

Se $\|\mathbf{x}_0\| = r$, si definisca la funzione $g: X \to \mathbb{R}$ ponendo $g(\mathbf{x}) = \|\mathbf{x}\|^2 - r^2$ per ogni $\mathbf{x} \in X$.

Si ha che g è di classe C^1 e $g(\mathbf{x}_0)=0$; inoltre, per la [Proposizione 16.2] ed essendo $\mathbf{x}_0\neq \mathbf{0}$ in quanto $\|\mathbf{x}_0\|=r>0$, si ha

$$\dot{g}(\mathbf{x}_0) = 2\mathbf{x}_0
eq \mathbf{0}.$$

Per il teorema del moltiplicatore di Lagrange generalizzato ([Teorema 18.2]), fissato $\mathbf{w} \in X$ tale che $\langle \dot{g}(\mathbf{x}_0), \mathbf{w} \rangle \neq 0$ si ha

$$\dot{f}(\mathbf{x}_0) = rac{\langle \dot{f}(\mathbf{x}_0), \mathbf{w}
angle}{\langle \dot{g}(\mathbf{x}_0), \mathbf{w}
angle} \cdot \dot{g}(\mathbf{x}_0) = rac{\langle \dot{f}(\mathbf{x}_0), \mathbf{w}
angle}{\langle 2\mathbf{x}_0, \mathbf{w}
angle} \cdot 2\mathbf{x}_0 = rac{\langle \dot{f}(\mathbf{x}_0), \mathbf{w}
angle}{\langle \mathbf{x}_0, \mathbf{w}
angle} \cdot \mathbf{x}_0;$$

la tesi è allora acquisita anche in questo caso.

L