第七章 耦合电感与理想变压器

7-1 图题 7-1 所示电路,求 $u_1(t)_{1} u_2(t)_{2}$ 。

答案

解:
$$u_1(t) = L_1 \frac{di_1(t)}{dt} = -10 \sin t = 10 \cos(t + 90^\circ)(V)$$
$$u_2(t) = M \frac{di_1(t)}{dt} = -2.5 \sin t = 2.5 \cos(t + 90^\circ)(V)$$

7-2 图题 7-2 所示电路, $L_1=1H$, $L_2=2H$, M=0.5H, $R_1=R_2=1K\Omega$, $u_s(t)=100\cos 200\pi t V$ 。 求 i(t) 和耦合系数 K。

解: 因
$$K = \frac{M}{\sqrt{L_1 L_2}} = \frac{0.5}{\sqrt{2}} = 0.354$$
 , 故得

$$L = L_1 + L_2 - 2M = 2H$$

$$\dot{I}_{m} = \frac{\dot{U}_{m}}{R_{1} + R_{2} + j\omega L} = \frac{100}{2000 + j400\pi}$$

$$=42.3\angle -32.14^{\circ} (mA)$$

$$i(t) = 42.3\cos(200\pi t - 32.14^{\circ})mA$$

7-3 耦合电感 $L_1 = 6H$, $L_2 = 4H$, M = 3H。 求它们作串联、并联时的各等效电感。

答案

解:两电感串联时:

a) 顺接:
$$L = L_1 + L_2 + 2M = 16(H)$$

b) 反接:
$$L = L_1 + L_2 - 2M = 4(H)$$

两电感并联时:

a) 同名端同侧:
$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M} = 15/4(H)$$

b) 同名端异侧:
$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 + 2M} = 15/16(H)$$

7-4 图题 7-4 所示为变压器电路,已知 $u_{12}=220_{\text{$V$}}$ 。今测得 $u_{34}=u_{56}=12V_{\bullet}$ 。求两种不同连接法时伏特计的读数。

图 题 7-4

答案

解:

$$a$$
)设 $\dot{U}_{12}=220$ $\angle 0^{\circ}V$ 得 $\dot{U}_{34}=12V$ $\dot{U}_{56}=-12V$ 所以电压表的读数为 0V。
$$\dot{U}=\dot{U}_{34}+\dot{U}_{56}=0V$$
 所以电压表的读数为 0V。
$$\dot{b}):\dot{U}_{34}=-12V,\dot{U}_{56}=-12V,\text{ 由图 (b) 所示}$$

$$\dot{U}=\dot{U}_{34}+\dot{U}_{56}=-24V$$
 所以电压表的读数为 $24V$ 。

7-5 图题 7-5 所示示电路, $\omega=10 rad/s$ 。 (1) K=0.5, $_{\bar{\chi}}$ $_{I_1}$ 、 $_{I_2}$; (2) K=1, 再求 $_{I_1}$ 、 $_{I_2}$;

解:
$$(1)$$
 $: K = 0.5$
$$: M = K\sqrt{L_1L_2} = 0.5H$$

$$\begin{cases} j\omega \dot{I}_{1} - j0.5\omega \dot{I}_{2} = 100 \\ -j0.5\omega \dot{I}_{1} + (j\omega + 10) \dot{I}_{2} = 0 \end{cases}$$

解得
$$I_1 = 11.3 \angle 81.87^{\circ} A$$

 $I_2 = 4 \angle -36.9^{\circ} A$

$$P_L = I_2^2 R_L = 160 W$$

$$(2) : K=1$$

$$\therefore M = K\sqrt{L_1L_2} = 1H$$

列方程组:

$$\begin{cases} j10 \dot{j}_{1} - j10 \dot{j}_{2} = 100 & \dot{j}_{1} = 10 - j10 A \\ -j10 \dot{j}_{1} + (j10 + 10) \dot{j}_{2} = 0 & \text{##} \end{cases}$$

$$P_{L} = I_{2}^{2} R_{L} = 1000 W$$

7-6 图示电路,
$$K = 0.1$$
, $\omega = 1000 rad/s$ 。求 I_2 。

$$\therefore M = K\sqrt{L_1L_2} = 0.2H$$

$$j\omega M = j200(\Omega)$$

$$U_{oc} = \frac{100}{1K + j1K} \bullet j200 = 10\sqrt{2} \angle 45^{\circ} V$$

$$Z_o = 20 + \jmath 3980$$

$$\vec{I}_2 = \frac{\vec{U}_{oc}}{1K + Z_o} = 3.44 \angle -30.625^{\circ} \, mA$$

7-7 图题 7-7 所示电路, $u_s(t) = 120\cos 1000tV$, 求 $i_1(t)$.

$$\underset{\text{ME:}}{\text{HI}} : u_s(t) = 120 \cos 1000 tV$$

$$\therefore \omega = 1000$$

$$Z_{L} = \frac{\omega^{2} M^{2}}{R_{2} + R_{L} + j\omega L_{2} + \frac{1}{j\omega C}}$$

 $=3.98K\Omega$

$$\dot{I}_{1} = \frac{\dot{U}_{s}}{R_{2} + j\omega L_{1} + Z_{L}} = \frac{120}{3.98K + 5 + j1K} = 29.2 \angle -14.1^{\circ} \, mA$$

$$\therefore i_1(t) = 29.2 \cos(1000 t - 14.1^{\circ}) \, mA$$

7-8 图题 7-8 所示电路, 求 a、b 端的等效电感。

解: :图 7-8(a)等效为图 7-8(b)

$$\therefore L = 14 + \frac{6 \times (-4)}{6 + (-4)} = 2(mH)$$

7-9 图题 7-9 所示电路, $u(t) = \cos \omega t V$, $i(t) = \cos \omega t A$ 。求两个电源发出的功率。

答案

解: 设变压器两边的电压相量分别是 $\overset{\bullet}{U_1}$ 、 $\overset{\bullet}{U_2}$,电流相量分别为 $\overset{\bullet}{I_1}$ 、 $\overset{\bullet}{U_2}$ 。 则有

$$\dot{U}_2 = 2\dot{U}_1 = 2/\sqrt{2}V$$

$$\vec{I}_1 = 2 \vec{I}_2 = 2 / \sqrt{2} A$$

$$P_1 = U_1 I_1 = \frac{1}{\sqrt{2}} \bullet \frac{2}{\sqrt{2}} = 1W$$

$$P_1 = -U_1 I_1 = -\frac{1}{\sqrt{2}} \bullet \frac{2}{\sqrt{2}} = -1W$$

7-10 图题 7-10 所示电路, 为使 R 获得最大功率, 求 n 及此最大功率。

解:设理想变压器两端电压分别为 $\overset{\bullet}{U_1}$ 、 $\overset{\bullet}{U_2}$,电 流为 $\overset{\bullet}{I_1}$ 、 $\overset{\bullet}{I_2}$,方向如图所示:

列方程组得:

$$\begin{cases} 1.5\dot{U}_{1} - 0.5\dot{U}_{2} = 10 - \dot{I}_{1} \\ -0.5\dot{U}_{1} + 1.5\dot{U}_{2} = -\dot{I}_{2} \\ \dot{U}_{2} = n\dot{U}_{1} \\ \dot{I}_{2} = -\frac{1}{n}\dot{I}_{1} \end{cases}$$

$$\Rightarrow \begin{cases} (1.5/n - 0.5) \dot{U}_2 + \dot{I}_1 = 10 \\ 1.5 - 0.5/n) \dot{U}_2 - \frac{1}{n} \dot{I}_1 = 0 \end{cases}$$
$$\Rightarrow \dot{U}_2 = \frac{20n}{3n^2 - 2n + 3}$$

$$\therefore P = U_2^2 / R = U_2^2$$

$$\frac{dP}{dn} = 0 \quad n = 1(-1 \pm \pm 1)$$

∴ P=25W

7-11 图题 7-11 所示电路,欲使 10Ω 电阻获得最大功率, n 应为何值?最大功率多大?

解:根据图(b)求开路电压 $\overset{ullet}{U_{oc}}$

因为
$$\dot{I}_2 = 0$$
, $\dot{I}_1 = 50 \, n \angle 0^\circ V$
$$\dot{U}_{oc} = n \, \dot{U}_1 = 50 \, n \angle 0^\circ V$$
 根据图 (c) 求 Z_o , 得

劉(c)来 ²∘, 信

$$Z_o = 50 n^2 \Omega$$

根据最大功率传输定理要使 10Ω 电阻获得最大功率 P_{\max}

$$Z_o = R$$

$$50n^2 = 10$$

$$n = \frac{1}{\sqrt{5}}$$

$$P_{\text{max}} = \frac{\dot{U}_{oc}}{4R} = 12.5W$$

7-12 图题 7-12 所示电路, 求 **5Ω** 电阻的功率。

解:

 5Ω 电阻在图 (b) 中等效为:

$$R_3' = \frac{1}{(\frac{1}{5})^2} (\frac{1}{5})^2 R_3 = 5\Omega$$

25Ω电阻在图 (b) 中等效为:

$$R_{2}' = (\frac{1}{5})^{2} \cdot 25 = 1\Omega$$

$$\dot{I}_{1} = \frac{\dot{U}}{R_{1} + \dot{R}_{2} + \dot{R}_{3}} = 2 \angle 0^{\circ} (A)$$

$$P_{5\Omega} = 2^{2} * 5 = 20W$$

$$R_{1} \qquad R_{2} \qquad R_{3} \qquad R_{4} \qquad R_{5} \qquad R_{5$$

7-13 图题 7-13 所示电路,非线性电路的伏安特性为 $u(t) = 0.5[i(t)]^2 V i_s(t) = 4\cos\omega t A_s$ 求电压表的读数(电压表的内阻抗认为无穷大)。

解: 因为电压表内阻为无穷大, 所以理想变压器

开路。

$$i(t) = i_s(t)$$

因为
$$u(t) = 0.5[i_s(t)]^2$$

$$=8\cos^2\omega t$$

$$=4\cos 2\omega t+4$$

故
$$U_{\text{fix}} = \sqrt{4^2 + \frac{1}{2} \times 4^2} = \sqrt{24} = 4.9V$$

7-14 图题 7-14 所示电路, Z 可变,求 Z 为何值能获得最大功率 P_{\max} , $P_{\max} = ?$

答案

解: a、b 两端的开路电压

$$U_{oc} = \frac{20 \angle 0^{\circ}}{2 + j2} * 2 - \frac{20 \angle 0^{\circ}}{2 - j2} * 2 = 40 * \frac{-j}{2} = -j20V$$

由 a、b 两端的左端看的等效阻抗

$$Z_0 = \frac{2*(-2j)}{2+(-2j)} + \frac{2*(2j)}{2+2j} = 2\Omega$$

$$Z = Z_{o \text{时, 有}} P_{\text{max}} = \frac{U_{oc}^2}{4 \text{R } 0} = \frac{20^2}{4 * 2}$$

7-15 图 7-15 (a) 示电路,今欲使 R 获得的功率最大,则次级匝数 N_2 应如何改变?若将图 (a) 电路中的电流源改为电压源,如图 (b) ,则 N_2 有如何改变?

解:

$$a) :: P = I_2^2 R = \frac{I_1^2}{n^2} R = \frac{N_1^2}{N_2^2} I_1^2 R$$

$$\therefore P \uparrow \rightarrow N_2 \downarrow$$

$$b) :: P = U_2^2 / R = \frac{n^2 U_1^2}{R} = \frac{N_1^2}{N_2^2} \frac{U_1^2}{R}$$

$$\therefore P \uparrow \rightarrow N_2 \uparrow$$