Indução e Recursividade

Indução

Prof. Eanes Torres Pereira

Matemática Discreta

Roteiro

1. Indução Matemática

- 2. Indução Fraca
- 4. Recursividade

Indução Matemática

Indução

- ▶ É usada para mostrar que uma dada afirmação é verdadeira para todos os inteiros positivos.
- ▶ Por exemplo, para todo $n \in \mathbb{Z}^+$:
 - ► $n! \leq n^n$,
 - ► $n^3 n$ é divisível por 3,
 - ▶ a soma dos primeiros n inteiros positivos é n(n+1)/2.

Prof. Eanes Torres Pereira 2/38 UFCG CEEI

Intuição

Indução

Dada uma fileira infinita de dominós, podemos afirmar que todos os dominós irão cair após um dominó arbitrário cair?

Roteiro

Indução

- 1. Indução Matemática
- 2. Indução Fraca

Indução Fraca

- 3. Inducão Fort
- 4. Recursividade
- 5. Relações de Recorrênci
- 6. Algoritmos Recursivo

Primeiro Princípio de Indução

Primeiro Princípio de Indução

Para provar que P(n) é verdade para todo $n \in \mathbb{Z}^+$, precisamos provar o seguinte:

- 1. P(1) (passo básico ou base da indução)
- 2. $(\forall k \in \mathbb{Z}^+) (P(k) \to P(k+1))$ (passo indutivo)

Demonstração usando o primeiro princípio da indução

Passo 1	Prove a base da indução
Passo 2	Suponha $P(k)$
Passo 3	Prove $P(k+1)$ (passo de indução)

Indução

Indução

Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para todo $n\in\mathbb{Z}^+$.

Prof. Eanes Torres Pereira

Indução

Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para todo $n \in \mathbb{Z}^+$.

Para n = 1, $1 = 1^2$ é verdadeiro.

Indução

Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para todo $n\in\mathbb{Z}^+$.

Para n = 1, $1 = 1^2$ é verdadeiro. Agora supomos P(k) verdadeiro

$$1+3+5+\ldots+(2k-1)=k^2 \tag{1}$$

Prof. Eanes Torres Pereira

Indução

Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para todo $n\in\mathbb{Z}^+$.

Para n = 1, $1 = 1^2$ é verdadeiro. Agora supomos P(k) verdadeiro

$$1+3+5+\ldots+(2k-1)=k^2$$
 (1)

Usando a hipótese de indução, queremos mostrar P(k+1), ou seja

$$1+3+5+\ldots+(2k-1)+[(2(k+1)-1]=(k+1)^2$$
 (2)

Prof. Eanes Torres Pereira

Indução

Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para todo $n\in\mathbb{Z}^+$.

Para n = 1, $1 = 1^2$ é verdadeiro. Agora supomos P(k) verdadeiro

$$1+3+5+\ldots+(2k-1)=k^2$$
 (1)

Usando a hipótese de indução, queremos mostrar P(k+1), ou seja

$$1+3+5+\ldots+(2k-1)+[(2(k+1)-1]=(k+1)^2$$
 (2)

Mostrando-se a penúltima parcela, procedemos como segue:

$$1+3+5+...+(2k-1)+[(2(k+1)-1]$$

$$=k^2+[2(k+1)-1]$$

$$=k^2+2k+1$$

$$=(k+1)^2$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 4 ○ ○

Prof. Eanes Torres Pereira 5 / 38 UFCG CEEI

Indução

Mostre que o número de linhas em uma tabela verdade, para qualquer $n \in \mathbb{N}$ proposições, é dado por 2^n .

Indução

Mostre que o número de linhas em uma tabela verdade, para qualquer $n \in \mathbb{N}$ proposições, é dado por 2^n .

 $P(1)=2^1=2$ é verdade, pois uma proposição tem dois valores possíveis.

Agora supomos que $P(k) = 2^k$ e tentamos mostrar que

$$P(k+1) = 2^{k+1}$$

Como P(k+1) = 2P(k), chegamos a

$$P(k+1) = 2(2^k) = 2^{k+1}$$

Prof. Eanes Torres Pereira

Indução

Mostre que para qualquer $n \in \mathbb{Z}^+$, se 1 + x > 0, então

$$(1+x)^n \ge 1 + nx$$

Indução

Mostre que para qualquer $n \in \mathbb{Z}^+$, se 1 + x > 0, então

$$(1+x)^n \ge 1 + nx$$

Base: Para n = 1 temos 1 + x = 1 + x.

Hipótese Indutiva: $(1+x)^k \ge 1+kx$

Mostrar: $(1+x)^{k+1} \ge 1 + (k+1)x$

Indução

Mostre que para qualquer $n \in \mathbb{Z}^+$, se 1 + x > 0, então

$$(1+x)^n \ge 1 + nx$$

Base: Para n = 1 temos 1 + x = 1 + x.

Hipótese Indutiva: $(1+x)^k \ge 1 + kx$

Mostrar:
$$(1+x)^{k+1} \ge 1 + (k+1)x$$

$$(1+x)^{k+1}$$
= $(1+x)(1+x)^k$
 $\ge (1+x)(1+kx)$ (pela hip. indutiva)
= $1+(k+1)x+kx^2$
 $>1+(k+1)x$ (pois $kx^2 > 0$)

Prof. Eanes Torres Pereira

Indução

Mostre por indução matemática que:

$$\sum_{i=0}^{n} aq^{j} = a + aq + aq^{2} + \ldots + aq^{n} = \frac{aq^{n+1} - a}{q-1}$$

onde $q \neq 1$ e $n \in \mathbb{N}$.

Base: Para n = 0 temos

$$\frac{aq^{0+1}-a}{q-1} = \frac{aq-a}{q-1} = \frac{a(q-1)}{q-1} = a$$

.

Hipótese Indutiva: $a + aq + aq^2 + ... + aq^k = \frac{aq^{k+1} - a}{a-1}$

◆ロト ◆団 ト ◆ 草 ト ◆ 草 ・ 夕 Q (*)

Indução

Exemplo 4 cont.

Mostrar:
$$a + aq + aq^2 + ... + aq^k + aq^{k+1} = \frac{aq^{k+2} - a}{q-1}$$

Indução

Mostrar:
$$a + aq + aq^2 + \ldots + aq^k + aq^{k+1} = \frac{aq^{k+2} - a}{q - 1}$$

$$a + aq + aq^2 + \ldots + aq^k + aq^{k+1}$$

$$= \frac{aq^{k+1} - a}{q - 1} + aq^{k+1} \text{ (pela hip. indutiva)}$$

$$= \frac{aq^{k+1} - a}{q - 1} + \frac{aq^{k+2} - aq^{k+1}}{q - 1}$$
$$= \frac{aq^{k+2} - a}{q - 1}$$

4□ → 4回 → 4 = → 4 = → 9 へ ○

Prof. Eanes Torres Pereira 9 / 38

Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

Indução

Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

- ▶ Base: P(1) é verdade, pois $2^{2(1)} 1 = 3$ é divisível por 3.
- ► Hip. Indutiva: Assumimos que

$$P(k) = 2^{2k} - 1 = 3m \Rightarrow 2^{2k} = 3m + 1$$

para algum inteiro positivo *m*.

► Mostrar: $2^{2(k+1)} - 1$ é divisível por 3.

$$2^{2(k+1)} - 1 = 2^{2k+2} - 1$$

= $2^2 \cdot 2^{2k} - 1$
= $2^2(3m+1) - 1$ (pela hipótese de indução)
= $12m+3$
= $3(4m+1)$

Prof. Eanes Torres Pereira

Exercícios

Indução

Exercício 1: Mostre que, para todo inteiro positivo n,

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$

Exercício 2: Mostre que, para todo inteiro não negativo *n*,

$$1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$$

Exercício 3: Mostre que, para qualquer inteiro positivo *n*,

$$1+4+9+16+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$$

Exercício 4: Mostre que uma árvore binária completa de k níveis possui $2^k - 1$ vértices.

- 4 ロ b 4 個 b 4 差 b 4 差 b 9 Q @

Indução

1. Indução Matemática

Indução Forte

- 2. Indução Fraca
- 3. Indução Forte
- 4. Recursividade

Prof. Eanes Torres Pereira

Algoritmos Recursivos

Segundo Princípio de Indução Matemática

Segundo Princípio de Indução

Indução

Para provar que $\forall n P(n)$ é verdade, precisamos provar duas sentenças:

- 1. P(1) (passo básico ou base da indução)
- 2. $(\forall k \in \mathbb{Z}^+) (P(1) \land P(2) \land \ldots \land P(k) \rightarrow P(k+1))$ (passo indutivo)

Prof. Eanes Torres Pereira 12 / 38 UFCG CEEI

Indução

Prove que, para todo $n \ge 2$, n é um número primo ou pode ser decomposto em um produto de números primos, sendo essa decomposição única.

Indução

Prove que, para todo $n \ge 2$, n é um número primo ou pode ser decomposto em um produto de números primos, sendo essa decomposição única.

Base: Como 2 é primo, então o caso base é verificado.

Hipótese Indutiva: Assumimos que

$$P(2) \wedge P(3) \wedge \ldots \wedge P(k)$$

é verdadeiro.

Mostrar: Para provar que P(k + 1) temos que considerar dois casos:

- 1. Se k + 1 é primo então P(k + 1) é verificado e terminamos.
- 2. Se não, k+1 é um composto e então ele tem fatores u, v tal que 2 < u, v < k + 1 tal que

$$u \cdot v = k + 1$$

Prof. Eanes Torres Pereira

Exemplo 6 Cont.

Indução

Agora aplicamos o passo indutivo; ambos u e v são menores que k+1 e portanto podem ambos ser decompostos em um produto único de primos;

$$u:=\prod_i p_i, \quad v:=\prod_j p_j$$

Portanto,

$$k+1:=\left(u:=\prod_i p_i\right)\left(v:=\prod_j p_j\right)$$

e verificamos P(k+1) por indução forte.

Prof. Eanes Torres Pereira 14/38

Roteiro

Indução

- 1. Indução Matemática
- 2. Indução Fraca
- 3. Inducão Forto
- 4. Recursividade
- 5. Relações de Recorrênci
- 6. Algoritmos Recursivo

Algoritmos Recursivos

Recursividade: Revisão

Indução

Uma definição onde um item é definido em termos de si mesmo é chamada de uma **definição recursiva** ou **definição por recorrência**.

Uma definição recursiva tem duas partes:

Prof. Eanes Torres Pereira 15 / 38 UFCG CEEI

Recursividade: Revisão

Indução

Uma definição onde um item é definido em termos de si mesmo é chamada de uma **definição recursiva** ou **definição por recorrência**.

Uma definição recursiva tem duas partes:

- 1. Um **caso base**, onde casos mais simples do item sendo definido são especificados.
- 2. Um **passo recursivo**, onde novos casos são construídos em função de casos anteriores.

Prof. Eanes Torres Pereira $15\,/\,38$ UFCG CEEI

Sequências

Indução

Sequência

Uma sequência s é uma lista de objetos numerados em determinada ordem. s(n) denota o n-ésimo elemento da sequencia.

Por exemplo a seqência s(n) = 2n - 1, onde $n \in \mathbb{N}$, é definida por:

$$s(1) = 2(1) - 1 = 1$$

$$s(2) = 2(2) - 1 = 3$$

$$s(3) = 2(3) - 1 = 5$$

:

Considere a sequência s abaixo.

- 1. s(1) = 1 (condição básica)
- 2. s(n) = s(n-1) + 2 para $n \ge 2$ (passo recursivo)

Sequências Definidas Recursivamente

Considere a sequência s abaixo.

Indução

- 1. s(1) = 1 (condição básica)
- 2. s(n) = s(n-1) + 2 para $n \ge 2$ (passo recursivo)

O primeiro elemento é s(1)=1 pela condição básica. A partir disso, aplicando o passo recursivo temos:

$$s(2) = s(1) + 2 = 1 + 2 = 3$$

$$s(3) = s(2) + 2 = 3 + 2 = 5$$

$$s(4) = s(3) + 2 = 5 + 2 + 7$$

:

Também são chamadas de relações de recorrência.

Prof. Eanes Torres Pereira 17/38 UFCG CEEI

Sequências Definidas Recursivamente

Sequência de Fibonacci

Indução

A sequência de Fibonacci f é definida por:

- 1. f(0) = 0 (condição básica)
- 2. f(1) = 1 (condição básica)
- 3. f(n) = f(n-1) + f(n-2) para $n \ge 2$ (passo recursivo)

Prof. Eanes Torres Pereira 18 / 38 UFCG CEEI

Sequências Definidas Recursivamente

Sequência de Fibonacci

Indução

A sequência de Fibonacci f é definida por:

- 1. f(0) = 0 (condição básica)
- 2. f(1) = 1 (condição básica)
- 3. f(n) = f(n-1) + f(n-2) para $n \ge 2$ (passo recursivo)

Exemplo 7: A sequência de Fibonacci para $2 \le n \le 6$ segue abaixo:

$$f(2) = f(1) + f(0) = 1 + 0 = 1$$

$$f(3) = f(2) + f(1) = 1 + 1 = 2$$

$$f(4) = f(3) + f(2) = 2 + 1 = 3$$

$$f(5) = f(4) + f(3) = 3 + 2 = 5$$

$$f(6) = f(5) + f(4) = 5 + 3 = 8$$

(ロ) (回) (回) (目) (目) (回)

Prof. Eanes Torres Pereira 18 / 38

Conjuntos Definidos por Recorrência

Um conjunto é uma coleção não ordenada de objetos.

Prof. Eanes Torres Pereira

Indução

Conjuntos Definidos por Recorrência

Um conjunto é uma coleção não ordenada de objetos.

Exemplo 8: O subconjunto *S* dos inteiros definido por

1. $3 \in S$ (condição básica)

Indução

2. Se $x \in S$ e $y \in S$, então $x + y \in S$ (passo recursivo).

Prof. Eanes Torres Pereira 19 / 38 UFCG CEEI

Conjuntos Definidos por Recorrência

Indução

Um conjunto é uma coleção não ordenada de objetos.

Exemplo 8: O subconjunto *S* dos inteiros definido por

- 1. $3 \in S$ (condição básica)
- 2. Se $x \in S$ e $y \in S$, então $x + y \in S$ (passo recursivo).

Alguns elementos de S são 3+3=6, 3+6=6+3=9, 6+6=12 e assim por diante. S se trata dos múltiplos positivos de S (verifique isso).

Prof. Eanes Torres Pereira 19 / 38 UFCG CEEI

Exercício 7

Indução

Dê uma definição recursiva para o conjunto de pessoas que são ancestrais de João. A condição básica é dada abaixo:

- 1. Os pais de João são seus ancestrais (condição básica)
- 2. Passo recursivo?

Cadeias Definidas por Recorrência

Cadeia

Indução

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Prof. Eanes Torres Pereira 21/38 UFCG CEEI

Cadeias Definidas por Recorrência

Cadeia

Indução

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Exemplo 9: Seja $\Sigma = \{0,1\}$. O conjunto Σ^* de todas as cadeias em Σ pode ser dado usando-se a definição recursiva acima.

Prof. Eanes Torres Pereira 21/38 UFCG CEEI

Cadeias Definidas por Recorrência

Cadeia

Indução

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Exemplo 9: Seja $\Sigma = \{0,1\}$. O conjunto Σ^* de todas as cadeias em Σ pode ser dado usando-se a definição recursiva acima.

A condição básica forma a cadeia vazia λ . Na primeira aplicação do passo recursivo, as cadeias 0 e 1 são formadas. Na segunda aplicação do passo recursivo, as cadeias 00, 01, 10 e 11 são formadas e assim por diante.

Prof. Eanes Torres Pereira 21/38 UFCG CEEI

Operações Definidas por Recorrência

Certas operações em objetos podem ser definidas por recorrência.

Prof. Eanes Torres Pereira

Operações Definidas por Recorrência

Indução

Certas operações em objetos podem ser definidas por recorrência.

Exemplo 10: Uma definição recursiva para a exponenciação a^n de um número real não nulo a, no qual n é um inteiro positivo é

- 1. $a^0 = 1$ (condição básica)
- 2. $a^n = a(a^{n-1})$ para $n \ge 1$ (passo recursivo)

Prof. Eanes Torres Pereira 22 / 38 UFCG CEEI

Operações Definidas por Recorrência

Indução

Certas operações em objetos podem ser definidas por recorrência.

Exemplo 10: Uma definição recursiva para a exponenciação a^n de um número real não nulo a, no qual n é um inteiro positivo é

- 1. $a^0 = 1$ (condição básica)
- 2. $a^n = a(a^{n-1})$ para $n \ge 1$ (passo recursivo)

Exemplo 11: Uma definição recursiva para a multiplicação dos inteiros positivos *a* e *b* é

- 1. a(1) = a (condição básica)
- 2. a(b) = a(b-1) + a para $b \ge 2$ (passo recursivo)

4□ > 4回 > 4 = > 4 = > = 9 < 0</p>

Prof. Eanes Torres Pereira 22/38 UFCG CEI

- 1. Indução Matemática
- 2. Indução Fraca
- 4. Recursividade
- 5. Relações de Recorrência

As vezes é conveniente expressar uma relação de recorrência como uma solução fechada. Por exemplo, expandindo a recorrência

$$s(1) = 2$$

$$s(n) = 2S(n-1) \text{ para } n \ge 2$$

$$s(1) = 2 = 2^{1}$$

 $s(2) = 4 = 2^{2}$
 $s(3) = 8 = 2^{3}$
 $s(4) = 16 = 2^{4}$
:

vemos que $S(n) = 2^n$. Prove!

Expandir, Conjecturar e Verificar

Indução

- ► **Expandir:** usa repetidamente a recorrência para expandir a expressão a partir do *n*-ésimo termo até o caso base.
- Conjecturar: a expansão nos ajuda a conjecturar a solução da recorrência.
- ► Verificar: a conjectura é finalmente verificada por indução.

Prof. Eanes Torres Pereira 24 / 38 UFCG CEEI

Indução

Resolva a seguinte relação de recorrência:

$$S(1) = 2$$

 $S(n) = 2S(n-1) \text{ para } n \ge 2$

Indução

Expandindo aplicando a definição para n, n-1, n-2, etc.:

$$S(n) = 2S(n-1)$$

$$= 2[2S(n-2)] = 2^{2}S(n-2)$$

$$= 2^{2}[2s(n-3)] = 2^{3}S(n-3)$$

$$= 2^{3}[2s(n-4)] = 2^{4}S(n-4)$$

$$\vdots$$

Analisando o padrão, conjecturamos que, após k expansões, a equação tem a forma

$$s(n) = 2^k s(n-k)$$

Prof. Eanes Torres Pereira

Exemplo 12 cont.

Indução

A expansão tem que parar quando n-k=1, ou seja, quando k=n-1. Nesse ponto temos:

$$S(n) = 2^{n-1}S[n - (n-1)]$$

$$= 2^{n-1}S(1)$$

$$= 2^{n-1}(2)$$

$$= 2^{n}$$

Ainda falta provar que 2^n é a solução da recorrência.

Prof. Eanes Torres Pereira 27 / 38

Indução

A base da indução é $s(1) = 2^1$ que é verdade pelo caso base da definição recursiva.

Supondo que $s(k) = 2^k$, queremos provar que $s(k+1) = 2^{k+1}$:

$$S(k+1) = 2S(k)$$

 $S(k+1) = 2(2^k)$
 $S(k+1) = 2^{k+1}$

E portanto fica provada a relação de recorrência.

Indução

Resolva a seguinte relação de recorrência:

$$S(1) = 4$$

 $S(n) = 2S(n-1) + 3 \text{ para } n \ge 2$

Exemplo 13 cont.

Expandindo aplicando a definição para n, n-1, n-2, etc.:

$$S(n) = 2S(n-1) + 3$$

$$= 2[2S(n-2) + 3] = 2^2S(n-2) + 2 \cdot 3 + 3$$

$$= 2^2[2S(n-3) + 3] + 2 \cdot 3 + 3 = 2^3S(n-3) + 2^2 \cdot 3 + 2 \cdot 3 + 3$$

$$\vdots$$

Analisando o padrão, conjecturamos que, após k expansões, a equação tem a forma

$$S(n) = 2^k S(n-k) + 2^{k-1} \cdot 3 + \dots + 2^2 \cdot 3 + 2 \cdot 3 + 3$$

◆ロト ◆団 ト ∢ 圭 ト ◆ 重 ・ 夕 Q (^)

Prof. Eanes Torres Pereira

Exemplo 13 cont.

Indução

A expansão tem que parar quando n-k=1, ou seja, quando k=n-1. Nesse ponto temos:

$$S(n) = 2^{n-1}S(1) + 2^{n-2} \cdot 3 + 2^{n-3} \cdot 3 + \dots + 2^{2} \cdot 3 + 2 \cdot 3 + 3$$

= $2^{n-1}(4) + 3[2^{n-2} + 2^{n-3} + \dots + 2^{2} + 2 + 1]$
= $2^{n+1} + 3[2^{n-1} - 1]$

Prove por indução que $2^{n+1} + 3[2^{n-1} - 1]$ é a solução da recorrência.

Prof. Eanes Torres Pereira 31/38

Roteiro

- 1. Indução Matemática
- 2. Indução Fraca
- 4. Recursividade
- 6. Algoritmos Recursivos

Algoritmos Recursivos

Indução

Algoritmo Recursivo

Um algoritmo é recursivo quando ele resolve um problema reduzindo-o a instâncias menores do mesmo problema.

Indução

Algoritmo recursivo para calcular n!

```
FAT(n)
```

- if n == 0
- return 1
- 3 else
- **return** FAT $(n-1) \cdot n$ para n > 04

Indução

Algoritmo recursivo para calcular a^n

```
POT(a, n)
1 if n == 0
2 return 1
3 else
4 return a \cdot POT(a, n - 1)
```

► Indução matemática pode ser usada para provar que algoritmos recursivos estão corretos.

- ► Indução matemática pode ser usada para provar que algoritmos recursivos estão corretos.
- ► Defina a conjectura a provar.

- ▶ Indução matemática pode ser usada para provar que algoritmos recursivos estão corretos.
- ► Defina a conjectura a provar.
- ► Caso Base: condição de parada do algoritmo.

Prof. Eanes Torres Pereira

Indução

- Indução matemática pode ser usada para provar que algoritmos recursivos estão corretos.
- Defina a conjectura a provar.
- ► Caso Base: condição de parada do algoritmo.
- ► Assuma que as chamadas recursivas anteriores estão corretas (hipótese indutiva).

Prof. Eanes Torres Pereira 35 / 38

Indução

- Indução matemática pode ser usada para provar que algoritmos recursivos estão corretos.
- Defina a conjectura a provar.
- Caso Base: condição de parada do algoritmo.
- Assuma que as chamadas recursivas anteriores estão corretas (hipótese indutiva).
- Use a hip. indutiva para provar que a execução atual é correta (passo indutivo).

Prof. Eanes Torres Pereira 35 / 38

Indução

Prove que o algoritmo do fatorial recursivo é correto.

▶ Conjectura: FAT(n) = n!, para $n \ge 0$

Prof. Eanes Torres Pereira

Indução Fraca

Indução

Prove que o algoritmo do fatorial recursivo é correto.

- ▶ Conjectura: FAT(n) = n!, para $n \ge 0$
- ▶ Caso Base: Se n = 0, então FAT(n) = 1. Isso é correto já que 0! = 1.

Prof. Eanes Torres Pereira 36 / 38

Indução

Prove que o algoritmo do fatorial recursivo é correto.

- ▶ Conjectura: FAT(n) = n!, para $n \ge 0$
- ▶ Caso Base: Se n = 0, então FAT(n) = 1. Isso é correto já que 0! = 1.
- ▶ **Hip. indutiva:** Agora assumimos que FAT(k) = k!

Indução

Prove que o algoritmo do fatorial recursivo é correto.

- ▶ Conjectura: FAT(n) = n!, para $n \ge 0$
- ▶ Caso Base: Se n = 0, então FAT(n) = 1. Isso é correto já que 0! = 1.
- ▶ **Hip. indutiva:** Agora assumimos que FAT(k) = k!
- ► Mostrar: FAT(k+1) = (k+1)!

Indução

Prove que o algoritmo do fatorial recursivo é correto.

- ▶ Conjectura: FAT(n) = n!, para $n \ge 0$
- ▶ Caso Base: Se n = 0, então FAT(n) = 1. Isso é correto já que 0! = 1.
- ▶ **Hip. indutiva:** Agora assumimos que FAT(k) = k!
- ► Mostrar: FAT(k+1) = (k+1)!
- ► Passo Indutivo: Como

$$FAT(k+1) = FAT(k) \cdot (k+1)$$

e pela hipótese indutiva FAT(k) = k!, segue que

$$FAT(k+1) = (k+1) \cdot k! = (k+1)!$$

Prof. Eanes Torres Pereira

Exercício 8

Mostre que o algoritmo Pot é correto.

Prof. Eanes Torres Pereira

Referências

Indução

- Keneth H. Rosen. Discrete Mathematics and Its Applications. Sexta Edição. McGRAW-HILL International Edition, 2007.
- Judith L. Gersting. Fundamentos Matemáticos para a Ciência da Computação. Quinta Edição. LTC, 2004.
- Leandro Balby Marinho. Slides fornecidos de anos anteriores, 2013.

Prof. Eanes Torres Pereira 38 / 38 UFCG CEI