

Build, train, and deploy machine learning models at scale

Julien Simon

Principal Technical Evangelist, Al and Machine Learning

@julsimon

ML is still too complicated for everyday developers

Easily build, train, and deploy Machine Learning models

Build

Build Train

Build Train Deploy

Open Source Containers for TF and MXNet

https://github.com/aws/sagemaker-tensorflow-containers https://github.com/aws/sagemaker-mxnet-containers

- Customize them
- Run them locally for development and testing
- Run them on SageMaker for training and prediction at scale

Bring your own container

https://github.com/aws/sagemaker-container-support

- Integration with SageMaker Python SDK Estimators, including:
 - Downloading user-provided Python code
 - Deserializing hyperparameters (preserving their Python types)
- bin/entry.py, the Docker entrypoint required by SageMaker
- Reading in the metadata files provided to the container during training
- nginx + Gunicorn HTTP server for serving inference requests

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/scikit_bring_your_own https://github.com/awslabs/amazon-sagemaker-examples/tree/master/advanced_functionality/r_bring_your_own

Amazon EC2 C5 instances

C5: Next Generation Compute-Optimized Instances with Intel® Xeon® Scalable Processor

AWS Compute optimized instances support the new Intel® AVX-512 advanced instruction set, enabling you to more efficiently run vector processing workloads with single and double floating point precision, such as Al/machine learning or video processing.

25% improvement in price/performance over C4

Faster TensorFlow training on C5

https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/

Amazon EC2 P3 Instances

The fastest, most powerful GPU instances in the cloud

- P3.2xlarge, P3.8xlarge, P3.16xlarge
- Up to eight NVIDIA Tesla V100 GPUs in a single instance
 - 40,960 CUDA cores, 5120 Tensor cores
 - 128GB of GPU memory
- 1 PetaFLOPs of computational performance 14x better than P2
- 300 GB/s GPU-to-GPU communication (NVLink) 9x better than P2

Digital Globe

https://aws.amazon.com/solutions/case-studies/digitalglobe-machine-learning/

- Operating Earth imaging satellites and providing image analysis services.
- Over 100 PB of imagery.
- Extensive use of Machine Learning on SageMaker to extract information from images.
- Working with the AWS ML Lab, built a predictive model reducing cloud storage costs by 50%.

DEMOS

Linear Learner (built-in) – binary classification of MNIST (0 vs 1-9)

Image Classification (built-in) – classifying Caltech-256

TensorFlow – classifying MNIST with a CNN

Spark on EMR + XGBoost (built-in) – classifying spam

Bonus: invoking a SageMaker endpoint with AWS Chalice

Thank you!

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://github.com/aws/sagemaker-python-sdk

https://github.com/aws/sagemaker-spark

https://medium.com/@julsimon https://youtube.com/juliensimonfr

Julien Simon

Principal Technical Evangelist, Al and Machine Learning

@ julsimon