

Vishay High Power Products

Power MOSFET, 180 A

SOT-227

PRODUCT SUMMARY			
V_{DSS}	100 V		
I _D DC	180 A		
R _{DS(on)}	0.0065 Ω		

FEATURES

- · Fully isolated package
- · Easy to use and parallel
- · Very low on-resistance
- · Dynamic dV/dt rating
- · Fully avalanche rated
- Simple drive requirements
- Low drain to case capacitance
- · Low internal inductance
- UL pending
- Compliant to RoHS directive 2002/95/EC

DESCRIPTION

5th Generation, high current density Power MOSFETs are paralled into a compact, high power module providing the best combination of switching, ruggedized design, very low on resistance and cost effectiveness.

The isolated SOT-227 package is preferred for all commercial-industrial applications at power dissipation levels to approximately 500 W. The low thermal resistance and easy connection to the SOT-227 package contribute to its universal acceptance throughout the industry.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Continuous drain current at V _{GS} 10 V	I _D	T _C = 25 °C	180		
		T _C = 100 °C	120	Α	
Pulsed drain current	I _{DM} ⁽¹⁾		720		
Power dissipation	P _D	T _C = 25 °C	480	W	
Linear derating factor			2.7	W/°C	
Gate to source voltage	V _{GS}		± 20	V	
Single pulse avalanche energy	E _{AS} (2)		700	mJ	
Avalanche current	I _{AR} ⁽¹⁾		180	Α	
Repetitive avalanche energy	E _{AR} (1)		48	mJ	
Peak diode recovery dV/dt	dV/dt (3)		5.7	V/ns	
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	
Insulation withstand voltage (AC-RMS)	V _{ISO}		2.5	kV	
Mounting torque		M4 screw	1.3	Nm	

Notes

- (1) Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- (2) Starting $T_J = 25$ °C, L = 43 μ H, $R_g = 25$ Ω , $I_{AS} = 180$ A (see fig. 12)
- (3) $I_{SD} \le 180$ A, $dI/dt \le 83$ A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C

FB180SA10P

Vishay High Power Products Power MOSFET, 180 A

THERMAL RESISTANCE					
PARAMETER	SYMBOL	TYP.	MAX.	UNITS	
Junction to case	R _{thJC}	-	0.26	°C/W	
Case to sink, flat, greased surface	R _{thCS}	0.05	-		

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Drain to source breakdown voltage	V(BR)DSS	V _{GS} = 0 V, I _D = 250 μA	100	-	-	٧
Breakdown voltage temperature coefficient	$\Delta V_{(BR)DSS}/\Delta T_{J}$	Reference to 25 °C, I _D = 1 mA	-	0.093	-	V/°C
Static drain to source on-resistance	R _{DS(on)} (1)	V _{GS} = 10 V, I _D = 180 A	-	0.0065	-	Ω
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	-	4.0	V
Forward transconductance	9 _{fs}	V _{DS} = 25 V, I _D = 180 A	93	-	-	S
Drain to source leakage current	1	V _{DS} = 100 V, V _{GS} = 0 V	=	-	50	μΑ
	I _{DSS}	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	-	500	
Gate to source forward leakage I _{GSS}	1	V _{GS} = 20 V	-	-	200	nA
	GSS	I _{GSS} V _{GS} = - 20 V	-	-	- 200	nA
Total gate charge	Qg	I _D = 180 A	=	250	380	
Gate to source charge	Q _{gs}	V _{DS} = 80 V	=	40	60	nC
Gate to drain ("Miller") charge	Q_{gd}	V _{GS} = 10.0 V; see fig. 6 and 13 ⁽¹⁾	=	110	165	
Turn-on delay time	t _{d(on)}	V _{DD} = 50 V	=	45	-	
Rise time	t _r	$I_D = 180 \text{ A}$ $R_G = 2.0 \Omega \text{ (internal)}$	-	351	-	
Turn-off delay time	t _{d(off)}		-	181	-	ns
Fall time	t _f	$R_D = 0.27 \Omega$, see fig. 10 ⁽¹⁾	-	335	-	1
Internal source inductance	L _S	Between lead, and center of die contact	-	5.0	-	nH
Input capacitance	C _{iss}	V _{GS} = 0 V	-	10 700	-	
Output capacitance	C _{oss}	V _{DS} = 25 V	-	2800	-	pF
Reverse transfer capacitance	C _{rss}	f = 1.0 MHz, see fig. 5	-	1300	-	1

Note

 $^{^{(1)}\,}$ Pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%$

SOURCE-DRAIN RATINGS AND CHARACTERISTICS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Continuous source current (body diode)	Is	MOSFET symbol	i	-	180	Α
Pulsed source current (body diode)	I _{SM} ⁽¹⁾	showing the integral reverse p-n junction diode.	-	-	720	
Diode forward voltage	V _{SD} (2)	T _J = 25 °C, I _S = 180 A, V _{GS} = 0 V	-	-	1.3	V
Reverse recovery time	t _{rr} (2)	T 05 °C 100 A didt 100 A/vo	-	300	450	ns
Reverse recovery charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = 180 \text{ A}; dI/dt = 100 \text{ A}/\mu\text{s}$	-	2.6	3.9	μC
Forward turn-on time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by $L_S + L_D$)				

Notes

⁽¹⁾ Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

⁽²⁾ Pulse width \leq 300 μ s, duty cycle \leq 2 %

Power MOSFET, 180 A Vishay High Power Products

Fig. 1 - Typical Output Characteristics

Fig. 2 - Typical Output Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs.
Drain to Source Voltage

Fig. 6 - Typical Gate Charge vs. Gate to Source Voltage

Vishay High Power Products Power MOSFET, 180 A

Fig. 7 - Typical Source Drain Diode Forward Voltage

Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 8 - Maximum Safe Operating Area

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Power MOSFET, 180 A Vishay High Power Products

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction to Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Vishay High Power Products Power MOSFET, 180 A

Fig. 13b - Gate Charge Test Circuit

Fig. 13c - Peak Diode Recovery dV/dt Test Circuit

Power MOSFET, 180 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code

- 1 Power MOSFET
- 2 Generation 5 MOSFET silicon DBC construction
- Current rating (180 = 180 A)
- 4 Single switch
- **5** SOT-227
- 6 Voltage rating (10 = 100 V)
- 7 P = Lead (Pb)-free

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95036			
Packaging information	www.vishay.com/doc?95037			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com