

Nhập môn An Toàn Thông Tin Nhắc lại một số thuật toán trong lý thuyết số

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Định nghĩa

• Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a \quad \text{và} \quad d \mid b$$
.

• Ta ký hiệu gcd(a, b) là ước chung lớn nhất của a và b.

Định nghĩa

• Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a \quad \text{và} \quad d \mid b$$
.

• Ta ký hiệu gcd(a, b) là ước chung lớn nhất của a và b.

Ví dụ

- $\gcd(12,18)=6$ vì $6\mid 12$ và $6\mid 18$ và không có số nào lớn hơn có tính chất này.
- gcd(748, 2014) = 44 vi

các ước của $748=\{1,2,4,11,17,22,34,44,68,187,374,748\},$ các ước của $2024=\{1,2,4,8,11,22,23,44,46,88,92,184,253,\\506,1012,2024\}.$

$\gcd(21,15) = \gcd(15,6) = \gcd(6,3)$

Định lý (Thuật toán Euclid)

Xét a, b là hai số nguyên dương với a \geq b. Thuật toán sau đây tính $\gcd(a,b)$ sau một số hữu hạn bước.

- **1** Đặt $r_0 = a \ var{} \ r_1 = b$.
- **2** Dặt i = 1.
- **3** Chia r_{i-1} cho r_i , ta được

$$r_{i-1} = r_i \cdot q_i + r_{i+1} \qquad v \acute{\sigma} i \qquad 0 \leq r_{i+1} < r_i.$$

4 Nếu $r_{i+1} = 0$, vậy thì

$$r_i = \gcd(a, b)$$

và thuật toán kết thúc.

5 Ngược lại, $r_{i+1} > 0$, vậy thì đặt i = i + 1 và quay lại Bước 3.

Định lý

Phép chia (Bước 3) của Thuật toán Euclid thực hiện nhiều nhất

 $\log_2(b) + 2$ lần.

Thuật toán Euclid mở rộng

- Thuật toán Euclid có thể mở rộng để tìm thêm một số thông tin.
- Cụ thể, chúng ta mở rộng thuật toán để tính thêm hệ số x,y thỏa mãn

$$d=\gcd(a,b)=ax+by.$$

• Các hệ số x,y có thể âm hoặc bằng 0. Các hệ số này sẽ có ích sau này khi tích phần tử nghịch đảo trong số học modun.

Thuật toán Euclid mở rộng

- Input : Cặp số nguyên dương (a, b)
- Output: Bộ ba (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by.$$

```
EXTENDED-EUCLID(a, b)

if b == 0

return (a, 1, 0)

else

(d', x', y') = EXTENDED-EUCLID(b, a \mod b)

(d, x, y) = (d', y', x' – \lfloor a/b \rfloor y')

return (d, x, y)
```


Tính đúng đắn của thuật toán

• Thuật toán tìm (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by$$

• Nếu b = 0, vậy thì

$$d = a = a \cdot 1 + b \cdot 0.$$

• Nếu $b \neq 0$, thuật toán EXTENDED-EUCLID sẽ tính (d', x', y') thỏa mãn

$$d' = d = \gcd(b, a \mod b)$$
$$= bx' + (a \mod b)y'$$

Và vậy thì

$$d = b'x' + (a - b\lfloor a/b\rfloor)y'$$

= $ay' + b(x' - \lfloor a/b\rfloory')$

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá tri tính |a/b|, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

a	b	$\lfloor a/b \rfloor$	d	X	У	
99	78	1				
78	21	3				
21	15	1				

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá tri tính |a/b|, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			
15	6	2			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá tri tính |a/b|, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá tri tính |a/b|, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

a	b	$\lfloor a/b \rfloor$	d	X	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá tri tính |a/b|, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

а	b	$\lfloor a/b \rfloor$	d	X	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

а	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

a	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

a	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

а	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

а	Ь	$\lfloor a/b \rfloor$	d	X	у
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính |a/b|, và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

Bài tập Hãy tính giá trị

(d, x, y) = Extended-Euclid(899, 493).

Tính nghịch đảo

• Xét n > 1, nếu $\gcd(a, n) = 1$ thì ta có

$$\gcd(a, n) = 1 = ax + ny$$

• Vậy $ax = 1 \pmod{n}$. Tức là

$$x = a^{-1} \pmod{n}$$

Tính nghịch đảo theo modun

- Input : Số n > 0 và số $a \in \mathbb{Z}_n$ sao cho $\gcd(a, n) = 1$
- Output: Số b thoả mãn $a \cdot b = 1 \mod n$.

```
Mod-Inv (a, n)

(d, x, y) = \text{Extended-Euclid}(a, n)

b = x \mod n

return b
```


а	Ь	$\lfloor a/b \rfloor$	d	X	y
5	12	0			
12	5	2			

a	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2			

а	Ь	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2			
2	1	2			

a	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2			
2	1	2			
1	0	_			

a	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2			
2	1	2			
_1	0	_	1	1	0

a	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2			
2	1	2	1	0	1
_ 1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2			
5	2	2	1	1	-2
2	1	2	1	0	1
1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0			
12	5	2	1	-2	5
5	2	2	1	1	-2
2	1	2	1	0	1
_1	0	_	1	1	0

a	b	$\lfloor a/b \rfloor$	d	X	У
5	12	0	1	5	$\overline{-2}$
12	5	2	1	-2	5
5	2	2	1	1	-2
2	1	2	1	0	1
_ 1	0	_	1	1	0

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Tính lũy thừa nhanh

Ví du

Giả sử ta muốn tính

$$3^{218} \pmod{1000}$$
.

Đầu tiên, ta viết 218 ở dạng cơ số 2:

$$218 = 2 + 2^3 + 2^4 + 2^6 + 2^7.$$

Vậy thì 3^{218} trở thành

$$3^{218} = 3^{2+2^3+2^4+2^6+2^7} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}.$$

Để ý rằng, dễ tính các mũ

Ví dụ (tiếp)

Ta lập bảng

	i	0	1	2	3	4	5	6	7
3^{2^i}	(mod 1000)	3	9	81	561	721	841	281	961

rồi tính

$$3^{218} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}$$

$$\equiv 9 \cdot 561 \cdot 721 \cdot 281 \cdot 961 \pmod{1000}$$

$$\equiv 489 \pmod{1000}.$$

Thuật toán tính nhanh $a^b \pmod{n}$

```
Modular-Exponentiation (a, b, n)
     c = 0
     d = 1
     Biểu diễn b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2
     for i = k downto 0
          c=2c
          d = (d \cdot d) \mod n
          if b_i == 1 then
               c = c + 1
               d = (d \cdot a) \mod n
     return d
```


Thuật toán tính nhanh $a^b \pmod{n}$

MODULAR-EXPONENTIATION
$$(a, b, n)$$
 $c = 0$
 $d = 1$
Biểu diễn $b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2$
for $i = k$ downto 0
 $c = 2c$
 $d = (d \cdot d) \mod n$
if $b_i == 1$ then
 $c = c + 1$
 $d = (d \cdot a) \mod n$
return d

• Giá trị của c bằng $\langle b_k, b_{k-1}, \dots, b_{i+1} \rangle_2$

Thuật toán tính nhanh $a^b \pmod{n}$

MODULAR-EXPONENTIATION(
$$a, b, n$$
)
 $c = 0$
 $d = 1$
Biểu diễn $b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2$
for $i = k$ downto 0
 $c = 2c$
 $d = (d \cdot d) \mod n$
if $b_i == 1$ then
 $c = c + 1$
 $d = (d \cdot a) \mod n$
return d

• Giá tri của c bằng $\langle b_k, b_{k-1}, \dots, b_{i+1} \rangle_2$

- và $d = a^c \mod n$.
- ox 2

i	9	8	7	6	5	4	3	2	1	0
		0	0	0	1	1	0	0	0	0
c d	1									
d	7									

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2								
d	7	49								

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
С	1	2	$\frac{4}{157}$							
d	7	49	157							

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
				0	1	1	0	0	0	0
С	1	2	$\frac{4}{157}$	8						
d	7	49	157	526						

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8 526	17					
d	7	49	157	526	160					

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35				
d	7	49	157	526	160	241				

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3 0 70 298	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70			
d	7	49	157	526	160	241	298			

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70	140		
d	7	49	157	526	160	241	298	0 140 166		

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0 280 67	0
С	1	2	4	8	17	35	70	140	280	
d	7	49	157	526	160	241	298	166	67	

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0 70 298	0	0	0
С	1	2	4	8	17	35	70	140	280	560
d	7	49	157	526	160	241	298	166	67	1

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70 298	140	280	560
d	7	49	157	526	160	241	298	166	67	1

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

• Kết quả cuối cùng bằng 1

Thuật toán đệ quy tính $a^b \mod n$

```
MODULAR-EXPONENTIATION(a, b, n)

if b == 0 then return 1

if b == 1 then return a

r = \text{MODULAR-EXPONENTIATION}(a, b/2, n)

r = r * r

if b \mod 2 == 1 then r = r * a

return r
```


Bài tập

Giả sử bạn biết $\varphi(n)$, hãy chỉ ra cách tính $a^{-1} \mod n$ cho mọi $a \in \mathbb{Z}_n^*$ dùng thuật toán MODULAR-EXPONENTIATION.

Gợi ý: Nhắc lại rằng $a^{\varphi(n)} = 1 \mod n$.

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Nhóm con

Định nghĩa

Xét nhóm G và $S \subseteq G$. Khi đó S được gọi là **nhóm con** của G nếu S là một nhóm dưới phép toán của G.

Ví dụ

Xét $G = \mathbb{Z}_{11}^*$ và $S = \{1, 2, 3\}$. Khi đó S không phải là nhóm con vì

- $2 \cdot 3 \mod 11 = 6 \notin S$, vi phạm tính chất đóng.
- $3^{-1} \mod 11 = 4 \notin S$, vi phạm tính khả nghịch.

Tuy nhiên $\{1,3,4,5,9\}$ là một nhóm con. Bạn có thể kiểm tra!

Cấp của một phần tử

Xét G là một nhóm (hữu hạn) với phần tử đơn vị 1.

Định nghĩa

Cấp của phần tử $g \in G$, ký hiệu o(g), là số nguyên $n \ge 1$ nhỏ nhất thoả mãn $g^n = 1$.

Xác đinh cấp của phần tử

$$\mathsf{X\acute{e}t}\ \textit{G} = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

Cấp o(a) của phần tử a là số $n \ge 1$ nhỏ nhất sao cho $a^n = 1$. Bởi vây

- o(2) =• o(5) = .

Xác định cấp của phần tử

$$\mathsf{X\acute{e}t}\ \textit{G} = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

Cấp o(a) của phần tử a là số $n \geq 1$ nhỏ nhất sao cho $a^n = 1$. Bởi vậy

- o(2) = 10
- o(5) = .

Xác định cấp của phần tử

$$\mathsf{X\acute{e}t}\ \textit{G} = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

Cấp o(a) của phần tử a là số $n \geq 1$ nhỏ nhất sao cho $a^n = 1$. Bởi vậy

- o(2) = 10
- o(5) = 5.

Nhóm con sinh bởi $g \in G$

Định nghĩa

Cho phần tử $g \in G$ có cấp n, ta đặt

$$\langle g \rangle = \{g^0, g^1, \dots, g^{n-1}\}.$$

Đây là một nhóm con của g và cấp của nó chính là o(g)=n.

Cấp của nhóm con

Mệnh đề

 $C\hat{ap} \mid S \mid$ của nhóm con $S \subseteq G$ luôn là ước của cấp $\mid G \mid$ của nhóm G.

Mênh đề

 $C\hat{a}p \ o(g) \ của \ g \ luôn \ là ước của \ |G|.$

Ví dụ

Nếu $G=\mathbb{Z}_{11}^*$ thì

- |G| = 10
- o(2) = 10 là ước của 10
- o(5) = 5 là ước của 10

Nhóm con sinh bởi một phần tử

$$\mathsf{X\acute{e}t}\ \textit{G} = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \bmod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

Khi đó

$$\langle 2 \rangle = \{1,2,3,4,5,6,7,8,9,10\}$$

$$\langle 5 \rangle = \{1, 3, 4, 5, 9\}.$$

Phần tử sinh

Đinh nghĩa

Phần tử $g \in G$ là một phần tử sinh (hoặc phần tử nguyên thuỷ) nếu $\langle g \rangle = G$.

Mệnh đề

g là phần tử sinh nếu và chỉ nếu o(g) = G.

Định nghĩa

G là nhóm vòng nếu nó có phần tử sinh.

Phần tử sinh

$$\mathsf{X\acute{e}t}\ \textit{G} = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^i \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

Khi đó

$$\langle 2 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $\langle 5 \rangle = \{1, 3, 4, 5, 9\}.$

- Liêu 2 có phải phần tử sinh?
- Liêu 5 có phải phần tử sinh?
- Nhóm \mathbb{Z}_{11}^* có phải nhóm vòng?

Nếu $G=\langle g \rangle$ là nhóm vòng thì với mọi phần tử $a\in G$ có duy nhất số mũ $i\in\{0,...,|G|-1\}$ thoả mãn $g^i=a$. Ta gọi i là logarit rời rạc cơ sở g của a và ký hiệu

$$\mathsf{DLog}_{G,g}(a)$$

Logarit rời rạc là hàm ngược của hàm mũ.

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0									

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1								

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8							

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2						

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4					

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9				

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7			

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3		

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5

VIÊN CÔNG NGHÊ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

