CS 302.1 - Automata Theory

Lecture 12

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Recursive Language/Turing Decidable/Decidable: A language L is called Recursive or Turing decidable or Decidable if there exists a Total Turing Machine M and

$$\forall \omega \in L, M(\omega) \text{ accepts}$$
 Halts on all inputs

The Church Turing thesis: An algorithm can be written for a problem if and only if it is decidable, i.e. there exists a Total Turing machine that solves the problem. Total TM ⇔ Algorithms!

Recursively Enumerable Language/Turing Recognizable (RE): A language L is called Recursively Enumerable (RE) or Turing Recognizable if

$$\forall \omega \in L, M(\omega) \text{ accepts}$$

 $\forall \omega \notin L, M(\omega) \text{ doesn't accept}$ (rejects or runs infinitely)

Co-Recursively Enumerable Language/co-Turing Recognizable (Co-RE/ \overline{RE} /nRE): A language L is Co-Recursively Enumerable (co-RE/ \overline{RE}) or Co-Turing Recognizable if

$$\forall \omega \in L, M(\omega)$$
 doesn't reject (accepts or loops) $\forall \omega \notin L, M(\omega)$ rejects

There exists a one-one mapping (bijective relationship) between the set of finite length binary strings and TMs.

Universal Turing Machine: A Universal Turing Machine, denoted as U_{TM} accepts as input (i) the encoding of a Turing Machine M and (ii) an input string w and simulates M running on w, i.e.

$$U_{TM}(\langle M, w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects} \\ & \text{LOOPS INFINITELY, if } M(w) \text{ loops infinitely} \end{cases}$$

There exists a one-one mapping (bijective relationship) between the set of finite length binary strings and TMs.

Universal Turing Machine: A Universal Turing Machine, denoted as U_{TM} accepts as input (i) the encoding of a Turing Machine M and (ii) an input string w and simulates M running on w, i.e.

$$U_{TM}(\langle M, w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects} \\ & \text{LOOPS INFINITELY, if } M(w) \text{ loops infinitely} \end{cases}$$

Some examples of languages that are recursive/decidable:

An undecidable language:

- $A_{DFA} = \{\langle DFA \rangle, w | w \in L(DFA) \}$
- $E_{DFA} = \{\langle DFA \rangle | L(DFA) = \Phi \}$
- $A_{CFG} = \{\langle CFG, w \rangle | w \in L(CFG)\}$
- $E_{CFG} = \{\langle CFG \rangle | L(CFG) = \Phi \}$

• $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$

There exists a one-one mapping (bijective relationship) between the set of finite length binary strings and TMs.

An undecidable language:

• $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

Proof strategy: By contradiction. We assume that a Total TM A exists that decides A_{TM} .

We build a Total TM D that accepts w as input and calls $A(\langle w, w \rangle)$ as a subroutine and outputs the opposite of A.

The TM D cannot decide the input $w = \langle D \rangle$. So A is undecidable.

For $w = \langle D \rangle$, there is a contradiction!

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

$$A(\langle M,w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects or loops infinitely} \end{cases}$$

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

The proof uses a technique called **Diagonalization**.

First, recall that there exists a bijective map (one-one correspondence) between the set of all finite-length binary strings and Turing Machines.

We can list all the Turing Machines and write down the result of running any M_i on input $\langle M_i \rangle$.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

$$A(\langle M,w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects or loops infinitely} \end{cases}$$

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

The proof uses a technique called **Diagonalization**.

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_0	Accept	Accept	Loops	Reject	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	• • •
M_2	Reject	Loops	Accept	Loops	Accept	• • •
M_3	Accept	Reject	Reject	Accept	Reject	• • •
M_4	Accept	Accept	Accept	Accept	Reject	•••
:	:	••	:	:	••	• • •

First, recall that there exists a bijective map (one-one correspondence) between the set of all finite-length binary strings and Turing Machines.

We can list all the Turing Machines and write down the result of running any M_i on input $\langle M_i \rangle$.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

$$A(\langle M, w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects or loops infinitely} \end{cases}$$

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

The proof uses a technique called **Diagonalization**.

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_0	Accept	Accept	Loops	Reject	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	• • •
M_2	Reject	Loops	Accept	Loops	Accept	• • •
M_3	Accept	Reject	Reject	Accept	Reject	• • •
M_4	Accept	Accept	Accept	Accept	Reject	•••
:	:	:	:	:	:	•••

How would this Table look for A?

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

$$A(\langle M,w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ accepts} \\ & \text{REJECTS, if } M(w) \text{ rejects or loops infinitely} \end{cases}$$

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

The proof uses a technique called **Diagonalization**.

How would this Table look for A?

	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_0	Accept	Accept	Loops	Reject	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••
M_2	Reject	Loops	Accept	Loops	Accept	•••
M_3	Accept	Reject	Reject	Accept	Reject	•••
M_4	Accept	Accept	Accept	Accept	Reject	•••
:	:	:	:	:	:	•••

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••
M_2	Reject	Reject	Accept	Reject	Accept	
M_3	Accept	Reject	Reject	Accept	Reject	
M_4	Accept	Accept	Accept	Accept	Reject	
:	:	:	:	:	:	

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

The proof uses a technique called **Diagonalization**.

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••	Accept	•••
M_2	Reject	Reject	Accept	Reject	Accept		Accept	•••
M_3	Accept	Reject	Reject	Accept	Reject		Reject	•••
M_4	Accept	Accept	Accept	Accept	Reject		Reject	•••
:	÷	i	÷	i	i	•••	÷	
D						•••		
i	÷	:	:	:	:	•••	:	•••

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

$$D(w) = \{ \ \operatorname{Run} \ \operatorname{A}(\langle w, w \rangle) \}$$

If $A(\langle w, w \rangle)$ accepts, then $REJECT$

If $A(\langle w, w \rangle)$ rejects, then $ACCEPT$

$$D(\langle M_w \rangle) = \left\{ \begin{array}{l} \text{ACCEPTS, if } \mathbf{M}_w(\langle M_w \rangle) \text{ doesn't accept} \\ \\ \text{REJECTS, if } M_w(\langle M_w \rangle) \text{ accepts} \end{array} \right.$$

- Somewhere we will also have the TM D.
- Note that D by definition computes the opposite of the diagonal entries of the table.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

The proof uses a technique called **Diagonalization**.

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••	Accept	•••
M_2	Reject	Reject	Accept	Reject	Accept	•••	Accept	
M_3	Accept	Reject	Reject	Accept	Reject	•••	Reject	
M_4	Accept	Accept	Accept	Accept	Reject	•••	Reject	
:	:	:	:	:	:	•••	:	
D	Reject					•••		•••
:	÷	:	:	:	:	•••	:	•••

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

Note that *D* by definition **computes the opposite of the diagonal entries** of the table.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$. A_{TM} is undecidable

The proof uses a technique called **Diagonalization**.

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••	Accept	•••
M_2	Reject	Reject	Accept	Reject	Accept	•••	Accept	•••
M_3	Accept	Reject	Reject	Accept	Reject	•••	Reject	
M_4	Accept	Accept	Accept	Accept	Reject	•••	Reject	
:	:	:	:	:	:	•••	:	
D	Reject	Accept				•••		•••
:	÷	:	:	:	:	•••	:	•••

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

Note that *D* by definition **computes the opposite of the diagonal entries** of the table.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

The proof uses a technique called **Diagonalization**.

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••	Accept	•••
M_2	Reject	Reject	Accept	Reject	Accept	•••	Accept	
M_3	Accept	Reject	Reject	Accept	Reject	•••	Reject	
M_4	Accept	Accept	Accept	Accept	Reject	•••	Reject	
:	:	:	:	:	:	•••	:	
D	Reject	Accept	Reject	Reject	Accept	•••		•••
:	÷	:	:	:	:	•••	:	•••

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

Note that *D* by definition **computes the opposite of the diagonal entries** of the table.

What will be the D^{th} diagonal entry??

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}. A_{TM} \text{ is undecidable }$

The proof uses a technique called **Diagonalization**.

A	$\langle M_0 \rangle$	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_0	Accept	Accept	Reject	Reject	Accept	•••	Accept	•••
M_1	Accept	Reject	Reject	Accept	Reject	•••	Accept	
M_2	Reject	Reject	Accept	Reject	Accept	•••	Accept	
M_3	Accept	Reject	Reject	Accept	Reject	•••	Reject	
M_4	Accept	Accept	Accept	Accept	Reject	•••	Reject	
:	:	:	:	:	:	•••	:	•••
D	Reject	Accept	Reject	Reject	Accept	•••	??	
:	:	:	:	:	:	•••	:	

- A_{TM} is undecidable
- $A_{TM} \in RE$ but not recursive
- A_{TM} is partially decidable

Note that *D* by definition **computes the opposite of the diagonal entries** of the table.

What will be the D^{th} diagonal entry??

Contradiction!

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

The Halting Problem: Does there exist a Total Turing Machine H that accepts as input a Turing Machine M and an input string w and outputs YES, if M(w) halts (accepts or rejects) and NO, if M(w) does not halt (loops forever), i.e.

$$H(\langle M,w \rangle) = \left\{ egin{array}{ll} {\sf ACCEPTS, if } M(w) \ {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \ {\sf does not HALT, i.e. loops infinitely} \end{array} \right.$$

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

The Halting Problem: Does there exist a Total Turing Machine H that accepts as input a Turing Machine M and an input string w and outputs YES, if M(w) halts (accepts or rejects) and NO, if M(w) does not halt (loops forever), i.e.

$$H(\langle M,w \rangle) = \left\{ egin{array}{ll} {\sf ACCEPTS, if } M(w) \ {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \ {\sf does not HALT, i.e. loops infinitely} \end{array} \right.$$

- Turing stated the Halting problem and demonstrated its undecidability in his famous 1936 paper.
- This provided a negative answer to Hilbert's Eintscheidungsproblem.
- **Proof strategy:** We will try to show that if we had such a Total TM H, we would be able to build a Total TM for A_{TM}
- But since we proved that A_{TM} is undecidable, this would mean that H is undecidable.

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

Proof idea: We first assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM}

But A cannot be Total and so a total TM that decides H cannot exist

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$\langle M, w \rangle$$
 H
 $REJECT$, if $M(w)$ halts

 $REJECT$, if $M(w)$ loops

Proof idea: We first assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM}

Outlining the steps for building A using H:

- A calls $H(\langle M, w \rangle)$
- If H rejects, then we know that M(w) loops forever and so A would output REJECT.

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$\langle M, w \rangle$$
 H

ACCEPT, if $M(w)$ halts

 $REJECT$, if $M(w)$ loops

Proof idea: We first assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM}

Outlining the steps for building A using H:

- $A \text{ calls } H(\langle M, w \rangle)$
- If H rejects, then we know that M(w) loops forever and so A would output REJECT.
- If H accepts,
 - M(w) surely halts (either accepts or rejects).

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$\langle M, w \rangle$$
 H

ACCEPT, if $M(w)$ halts

 $REJECT$, if $M(w)$ loops

Proof idea: We first assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM}

Outlining the steps for building A using H:

- $A \text{ calls } H(\langle M, w \rangle)$
- If H rejects, then we know that M(w) loops forever and so A would output REJECT.
- If H accepts,
 - M(w) surely halts (either accepts or rejects).
 - Simply run M(w) and
 - ACCEPT if M(w) accepts
 - REJECT if M(w) rejects

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$H(\langle M,w \rangle) = \begin{cases} & \text{ACCEPTS, if } M(w) \text{ HALTS, i.e. accepts or rejects} \\ & \text{REJECTS, if } M(w) \text{ does not HALT, i.e. loops infinitely} \end{cases}$$

Proof: Assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM} as follows:

https://www.udiprod.com/halting-problem/

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$H(\langle M,w\rangle)= \left\{ egin{array}{ll} {\sf ACCEPTS, if } M(w) \ {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \ {\sf does not \ HALT, i.e. loops infinitely} \end{array} \right.$$

Proof: Assume that there exists such a Total Turing Machine H. Then, we use H as a subroutine to construct a Total Turing Machine A for A_{TM} as follows:

```
A = \text{On input } \langle M, w \rangle
\text{Run } H(\langle M, w \rangle)
\text{If } H \text{ rejects, output } REJECT
\text{If } H \text{ accepts,}
\text{Run } M(w)
\text{If } M(w) \text{ accepts, output } ACCEPT
\text{If } M(w) \text{ rejects, output } REJECT
```


 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$H(\langle M,w\rangle)= \left\{ egin{array}{ll} {\sf ACCEPTS, if } M(w) \ {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \ {\sf does not \ HALT, i.e. loops infinitely} \end{array} \right.$$

 $HALT_{TM} \in RE$ as H halts whenever M accepts or rejects w and so

 $Q = \text{On input } \langle M, w \rangle$:

- Simulate *M* on input *w*
- If M accepts w, ACCEPT; if M rejects w, ACCEPT

Q recognizes HALT_{TM}

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

$$H(\langle M,w\rangle)= \left\{egin{array}{ll} {\sf ACCEPTS, if } M(w) \ {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \ {\sf does not \ HALT, i.e. loops infinitely} \end{array}\right.$$

 $HALT_{TM} \in RE$ as H halts whenever M accepts or rejects w and so

 $Q = \text{On input } \langle M, w \rangle$:

- Simulate *M* on input *w*
- If M accepts w, ACCEPT; if M rejects w, ACCEPT

Q recognizes HALT_{TM}

- $HALT_{TM}$ is undecidable
- $HALT_{TM} \in RE$ but not recursive
- $HALT_{TM}$ is partially decidable

Recall the proof of the undecidability of the Halting Problem

What did we do there?

- We used a (supposed) decider for the Halting Problem to build a decider for A_{TM} .
- This established that $HALT_{TM}$ can be used to solve A_{TM} .
- As A_{TM} is undecidable, this established that $HALT_{TM}$ is undecidable too.
- The key underlying concept is an idea called Reduction.

 A_{TM} reduces to $HALT_{TM}$

Generally,

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B
- In terms of computability, suppose using B we can compute A. Then, if A is undecidable then so is B.
- So, in the last proof we showed: $A_{TM} \leq HALT_{TM}$ to prove that $HALT_{TM}$ is undecidable.

Generally,

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B.
- In terms of computability, suppose using B we can compute A. Then, if A is undecidable then so is B.
- So, in the last proof we showed: $A_{TM} \leq HALT_{TM}$ to prove that $HALT_{TM}$ is undecidable.
- This is a common technique to show that certain problems are decidable/undecidable.

Suppose, $A \leq B$ and

• A is undecidable. Then B is undecidable.

For example, we can prove that a problem P is undecidable by reducing the Halting problem to P.

 $HALT_{TM} \leq P \Rightarrow P$ is undecidable

Generally,

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B.
- In terms of computability, suppose using B we can compute A. Then, if A is undecidable then so is B.
- So, in the last proof we showed: $A_{TM} \leq HALT_{TM}$ to prove that $HALT_{TM}$ is undecidable.
- This is a common technique to show that certain problems are decidable/undecidable.

Suppose, $A \leq B$ and

• A is undecidable. Then B is undecidable.

For example, we can prove that a problem P is undecidable by reducing the Halting problem to P.

- Intuitively, this means B is at least as hard as A.
- So, if $A \notin R \Rightarrow B \notin R$
- $A \notin RE \Rightarrow B \notin RE$
- $A \notin co RE \Rightarrow B \notin co RE$

 $HALT_{TM} \leq P \Rightarrow P$ is undecidable. Also, $P \notin R$

Generally,

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B...
- In terms of computability, suppose using B we can compute A. Then, if A is undecidable then so is B.
- So, in the last proof we showed: $A_{TM} \leq HALT_{TM}$ to prove that $HALT_{TM}$ is undecidable.
- This is a common technique to show that certain problems are decidable/undecidable.

Suppose, $A \leq B$ and

- A is undecidable. Then B is undecidable.
- *B* is decidable. Then *A* is decidable.

- Intuitively, this means B is at least as hard as A.
- So, if $\mathbf{A} \notin \mathbf{R} \Rightarrow \mathbf{B} \notin \mathbf{R}$
- $A \notin RE \Rightarrow B \notin RE$
- $A \notin co RE \Rightarrow B \notin co RE$

- Intuitively, this means A is not harder than B.
- So, if $\mathbf{B} \in R \Rightarrow A \in R$
- $B \in RE \Rightarrow A \in RE$
- $B \in co RE \Rightarrow A \in co RE$

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B.
- If A is undecidable then so is B, i.e. B is at least as hard as A.
- If B is decidable, then so is A. Intuitively, this means A is not harder than B.
- This is a common technique to show that certain problems are decidable/undecidable.

This is how we can prove several problems are undecidable: by reducing some known undecidable problem to these problems.

Examples:

- $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$
- $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are Turing Machines having } L(M_1) = L(M_2) \}$
- $ALL_{TM} = \{\langle M \rangle | M \text{ halts on all inputs} \}$

:

This is how we can prove several problems are undecidable: by reducing some known undecidable problem to these problems.

Examples:

- $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$
- $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are Turing Machines having } L(M_1) = L(M_2) \}$
- $ALL_{TM} = \{\langle M \rangle | M \text{ halts on all inputs} \}$

Generic strategy for proof:

- Consider that a Total TM for the given problem exists (say T_M).
- Build a total TM that can decide some undecidable problem (e.g. $HALT_{TM}$, A_{TM}) using T_M as a subroutine.

Undecidability

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

What is $\overline{A_{TM}}$?

Undecidability

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

What is $\overline{A_{TM}}$?

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$

 $\overline{A_{TM}} = \{\langle M, w \rangle | M \text{ DOES NOT accept input } w\}$

Undecidability

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

What is $\overline{A_{TM}}$?

$$A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$$

$$\overline{A_{TM}} = \{\langle M, w \rangle | M \text{ DOES NOT accept input } w\}$$

$$A(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ accepts} \\ REJECTS, & \text{if } M(w) \text{ rejects/loops} \end{cases}$$

$$N(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ rejects/loops} \\ REJECTS, & \text{if } M(w) \text{ accepts} \end{cases}$$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

What is $\overline{A_{TM}}$?

 $\overline{A_{TM}} \in \text{co-RE}-R$.

 $A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$

 $\overline{A_{TM}} = \{\langle M, w \rangle | M \text{ DOES NOT accept input } w\}$

$$A(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ accepts} \\ REJECTS, & \text{if } M(w) \text{ rejects/loops} \end{cases}$$

$$N(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ rejects/loops} \\ REJECTS, & \text{if } M(w) \text{ accepts} \end{cases}$$

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$N(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ rejects/loops} \\ REJECTS, & \text{if } M(w) \text{ accepts} \end{cases}$$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

$$N(\langle M, w \rangle) = \begin{cases} ACCEPTS, & \text{if } M(w) \text{ rejects/loops} \\ REJECTS, & \text{if } M(w) \text{ accepts} \end{cases}$$

Key idea:

- $N(\langle M, w \rangle)$ first builds the encoding of a TM $T_{\langle M, w \rangle}$.
- $T_{\langle M,w\rangle}$ does not accept any string if and only if M(w) does not accept.
- That is, running $T_{\langle M,w\rangle}(x)$ on **ANY** input x, runs M on w.

What does this achieve??

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

Key idea:

- $N(\langle M, w \rangle)$ first builds the encoding of a TM $T_{\langle M, w \rangle}$
- $T_{\langle M,w\rangle}$ does not accept any string if and only if M does not accept w.
- That is, running $T_{\langle M,w\rangle}(x)$ on **ANY** input x, runs M on w.

What does this achieve??

- This means, $L(T) = \Phi$ if M does not accept w and $L(T) \neq \Phi$ if M accepts w!
- This allows N to call $T_E(\langle T \rangle)$

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

Key idea:

- $N(\langle M, w \rangle)$ first builds the encoding of a TM $T_{\langle M, w \rangle}$
- Running $T_{\langle M,w\rangle}(x)$ on **ANY** input x, runs M on w.
- $T_{\langle M,w\rangle}$ does not accept any input x if and only if M does not accept w.
- This means, $L(T) = \Phi$ if M does not accept w and $L(T) = \Sigma^*$ if M accepts w!
- This allows N to call $T_E(\langle T \rangle)$ and
 - ACCEPT if $T_E(\langle T \rangle)$ accepts $\Leftrightarrow L(T) = \Phi$ [M does not accept w]
 - REJECT if $T_E(\langle T \rangle)$ rejects $\Leftrightarrow L(T) \neq \Phi$ [M accepts w]

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

Key idea:

- $N(\langle M, w \rangle)$ first builds the encoding of a TM $T_{\langle M, w \rangle}$
- Running $T_{\langle M,w\rangle}(x)$ on **ANY** input x, runs M on w.
- $T_{\langle M,w\rangle}$ does not accept any input x if and only if M does not accept w.
- This means, $L(T) = \Phi$ if M does not accept w and $L(T) = \Sigma^*$ if M accepts w!
- This allows N to call $T_E(\langle T \rangle)$ and
 - ACCEPT if $T_E(\langle T \rangle)$ accepts $\Leftrightarrow L(T) = \Phi$ [M does not accept w]
 - REJECT if $T_E(\langle T \rangle)$ rejects $\Leftrightarrow L(T) \neq \Phi$ [M accepts w]
- Deciding $\overline{A_{TM}}$ is tied to whether $L(T) = \Phi!$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$T_{\langle M,w\rangle}(x) =$$

- Ignore *x*.
- Run *M* on *w*
 - If *M* accepts *w*, accept *x*
 - If M rejects w, reject x

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$T_E(\langle M \rangle) = \begin{cases} \Phi, \text{ if } M(w) \text{ doesn't accept} \\ \bullet \text{ ACCEPT, if } L(M) = \Phi \\ \bullet \text{ REJECT, if } L(M) \neq \Phi \end{cases}$$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$T_{\langle M,w\rangle}(x) =$$

- Ignore x.
- Run *M* on *w*
 - If M accepts w, accept x
 - If *M* rejects *w*, reject *x*

$$L(T) = \begin{cases} \Phi, & \text{if } M(w) \text{ doesn't accept} \\ \Sigma^*, & \text{if } M(w) \text{ accepts} \end{cases}$$

$$T_E(\langle T \rangle) =$$

- ACCEPT, if $L(T) = \Phi$
- REJECT, if $L(T) \neq \Phi$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$L(T) = \begin{cases} \Phi, \text{ if } M(w) \text{ doesn't accept} \\ T_E(\langle T \rangle) = \\ \bullet \text{ ACCEPT, if } L(T) = \Phi \text{ (if } M(w) \text{ doesn't accept)} \\ \Sigma^*, \text{ if } M(w) \text{ accepts} \end{cases}$$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$N(\langle M, w \rangle) =$$

- Construct $\langle T_{\langle M,w \rangle} \rangle$, the encoding of $T_{\langle M,w \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run *M* on *w*
 - If M accepts w, accept x
 - If *M* rejects *w*, reject *x*
- Send $\langle T_{\langle M, w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

$$N(\langle M, w \rangle) =$$

- Construct $\langle T_{\langle M, w \rangle} \rangle$, the encoding of $T_{\langle M, w \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run *M* on *w*
 - If *M* accepts *w*, accept *x*
 - If *M* rejects *w*, reject *x*
- Send $\langle T_{\langle M,w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

- $\overline{A_{TM}} \leq E_{TM}$
- $\overline{A_{TM}}$ is undecidable
- E_{TM} is undecidable!

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

$$N(\langle M, w \rangle) =$$

- Construct $\langle T_{\langle M,w \rangle} \rangle$, the encoding of $T_{\langle M,w \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run *M* on *w*
 - If *M* accepts *w*, accept *x*
 - If *M* rejects *w*, reject *x*
- Send $\langle T_{\langle M,w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

- $\overline{A_{TM}} \leq E_{TM}$
- $\overline{A_{TM}}$ is undecidable
- E_{TM} is undecidable!

Claim: $E_{TM} \in \text{co-RE}-R$

WHY?

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

$$N(\langle M, w \rangle) =$$

- Construct $\langle T_{\langle M, w \rangle} \rangle$, the encoding of $T_{\langle M, w \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run *M* on *w*
 - If *M* accepts *w*, accept *x*
 - If *M* rejects *w*, reject *x*
- Send $\langle T_{\langle M,w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

- $\overline{A_{TM}} \leq E_{TM}$
- $\overline{A_{TM}}$ is undecidable
- E_{TM} is undecidable!

$$E_{TM} \in \text{co-RE}-R$$

Proof idea: We can build a co-recognizer for E_{TM} .

 $C = \text{On input } \langle M \rangle$ • For $i = 1, 2, 3, \cdots$ • For $j = 1, 2, 3, \cdots i$ Run M on s_j for i steps.
If M accepts s_j , REJECT.

Thank You!