Polarization Signatures of Jet Launching on Horizon Scales

Andrew Chael
Princeton Gravity Initiative
5/24/24

Event Horizon Telescope

Jets are thought to be powered by black hole spin energy extracted via magnetic fields (Blandford & Znajek 1977) Is it possible to observe black hole energy extraction **on horizon scales**?

M87's Jet in Simulations

Jets from General Relativistic
 Magnetohydrodyamic (GRMHD)
 simulations are powered by black
 hole spin

(e.g. McKinney & Gammie 2004, Tchekhovskoy+ 2012, EHTC+ 2019, Narayan+ 2022)

- Radiative GRMHD simulations naturally produce the correct:
 - jet power
 - wide opening angle
 - core-shift
- Can we be sure the jet is BZ?
 What is a physically meaningful
 observation of horizon-scale
 energy flow?

M87* 2017 in linear polarization

- Polarization is concentrated in the southwest
- Polarization angle structure is predominantly helical
- Overall level of polarization is weak, ~15 %

Why polarization?

Synchrotron radiation is emitted with polarization perpendicular to magnetic field lines

Polarization transport is sensitive to the magnetic field, plasma, and spacetime

Synchrotron polarization traces magnetic fields?

GR and Faraday effects make the situation in M87* more complicated!

Faraday Rotation is important!

→ scrambles polarization directions

Without rotation

Faraday Rotation is important!

With rotation

Without rotation

Significant Faraday rotation on small scales

EHT resolution

- → scrambles polarization directions
- → **depolarization** of the image when blurred to EHT resolution
- → rotates the pattern when blurred to EHT resolution

Scoring simulations with polarization: Results

- Scoring with multiple approaches all strongly favor a magnetically arrested accretion flow
- We constrain M87*'s allowed accretion rate by 2 orders of magnitude:

$$\dot{M} \simeq (3 - 20) \times 10^{-4} M_{\odot} \text{ yr}^{-1}$$

 $(\dot{M}_{\rm Edd} = 137 M_{\odot} \text{ yr}^{-1})$

 Strong fields more easily launch jets at lower values of BH spin

Can we connect the polarized image of M87* on horizon scales to energy flow & jet launching?

Chael, Lupsasca, Wong & Quataert 2023

arXiv: 2307.06372

Polarized Images of M87* and horizon-scale energy flow

- The polarization spiral's 2^{nd} Fourier mode (β_2 : Palumbo+ 2020) is the most constraining image feature
- Can we interpret β_2 physically?

Cartoon model: $arg(\beta_2)$ is connected to the pitch angle B^{ϕ}/B^r

- Face on fields, no Faraday rotation, no optical depth, no relativity
- Coordinate axis is into the screen/sky (EHT Paper V, 2019)

$arg(\beta_2)$ is connected to the **electromagnetic energy flux**

Radial Poynting flux in Boyer-Lindquist coordinates:

$$\mathcal{J}^r_{\mathcal{E}} = -T^r_{t \; \mathrm{EM}} = -B^r B^\phi \, \Omega_F \, \Delta \sin^2 \theta \, \mathrm{fieldline \; angular \; speed}$$

$arg(\beta_2)$ is connected to the **electromagnetic energy flux**

- The sign of $arg(\beta_2)$ is directly connected to the direction of Poynting flux, assuming we know the sign of Ω_F
- Ignoring Faraday effects, the EHT's measurement of β_2 implies electromagnetic energy is outflowing in M87*
- This inference requires we assume fieldlines co-rotate with the emitting plasma in a clockwise sense
- Does this simple argument hold up in more complicated models?

$arg(\beta_2)$ in semi-analytic models of M87*

- We fix magnetic fields to the BZ monopole solution (with energy outflow)
- The black hole spin direction is fixed into the sky
- We explore many models for the velocity of the emitting fluid

$arg(\beta_2)$ in MAD **GRMHD simulations** of M87*

- 1600 simulated EHT-resolution M87* images from MAD simulations (Narayan+ 2022)
- Almost all 230 GHz simulation images have **negative** $arg(\beta_2)$ consistent with the measured energy outflow in the simulations
- $arg(\beta_2)$ has the **same qualitative dependence on spin** as in a simple BZ monopole model!

In GRMHD, energy-extracting fieldlines set $arg(\beta_2)$

Even in **retrograde** simulations, field-lines in the 230 GHz emission region usually corotate with the black hole and have a negative B^{φ} / B^{r}

Polarized images are spin dependent

- Black hole spin winds up initially radial fields, but always so that $B^{\phi}/B^{r} < 0$
- The field pitch angle increases with spin
- Increased field winding
 - increases the BZ jet power
 - and makes the observed polarization pattern more radial

To look for energy extraction, we need to zoom in

- Measuring polarization as a function of radius probes energy flow at different scales
- Both simple models and GRMHD simulations make a strong prediction
 - arg(eta_2) evolves rapidly close to the horizon as the rest frame fields become more azimuthal from **GR frame dragging**

To look for energy extraction, we need to zoom out

- New telescope sites & larger bandwidth will enhance EHT's dynamic range
 - These will illuminate both the BH-jet connection
- These new observations will require new theoretical models and simulations to fully interpret
 - Can we directly measure energy flow from the horizon through the jet base?

Sgr A* in linear polarization

- Polarization fraction is **higher** than M87
- β_2 is consistent with **clockwise rotation** measured in NIR flares
 - only after Faraday derotation
- MAD simulations preferred where is the jet?

What is going on in M87 2021?

- M87 $arg(\beta_2)$ flips sign between 2017/2018 and 2021
- This presents a challenge to the clean interpretation of $\arg(\beta_2)$ as a probe of Poynting flux!
- Possible explanations:
 - A large increase in Faraday rotation?
 - inside or outside the emission region?
 - A change in the location of the emission region?
 - Jet vs counterjet vs disk components?
 - Retrograde disk emission?
 - A change in the magnetic field structure?
- Understanding the flip in $arg(\beta_2)$ and its variability in future years is **critical** for theoretical interpretation and for potential future use of polarimetric images for constraining jet launching

Takeaways

- Testing the BZ mechanism and directly measuring BH spin in M87* and other sources is a key science goal for the EHT's next decade
- We need high-dynamic range, multi-frequency, polarized
 EHT images to:
 - Measure polarization down to the horizon
 - Connect the energy flux from horizon scales out through the jet base
- We need new simulation suites and analytic models to
 - calibrate the spin-dependence of β_2
 - fully account for complicating factors (Faraday effects, field geometries, 3D structure...)
- Connecting theory and observation, we will be able to directly test the BZ mechanism for jet launching in the next several years

"inner shadow"
Goal 1:
measure
energy flux
down to
horizon

Goal 2: measure energy flux out through jet base