TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỔ CHÍ MINH KHOA CÔNG NGHỆ THÔNG TIN

TOÁN ỨNG DỤNG THỐNG KÊ BÁO CÁO THỰC HÀNH

LAB 03

Mã số sinh viên: 21120582

Họ và Tên: Đinh Hoàng Trung.

Mail: 21120582@student.hcmus.edu.vn.

Họ Tên: Đinh Hoàng Trung.

1. Khái quát bài làm:

- Bài tập được làm trên Visual Studio Code.
- Ma trận đầu vào sẽ được nhập vào file .txt.
 - o Ví du:

```
data.txt
      1971 2250
  2 1972 2500
  3 1974 5000
      1978 29000
  5
    1982 120000
                              Dữ liệu đọc được:
                              [[1.971e+03 2.250e+03]
    1985 275000
                               [1.972e+03 2.500e+03]
      1989 1180000
                               [1.974e+03 5.000e+03]
      1993 3100000
  8
                               [1.978e+03 2.900e+04]
    1997 7500000
                               [1.982e+03 1.200e+05]
      1999 24000000
 10
                               [1.997e+03 7.500e+06]
                               [1,999e+03 2,400e+07]
 11
      2000 42000000
                               [2.000e+03 4.200e+07]
      2002 220000000
 12
                               [2.002e+03 2.200e+08]
      2003 4100000000
 13
                               [2.003e+03 4.100e+08]]
```

- Dữ liệu sau khi được giải nghiệm sẽ xuất ra màn hình terminal (VSC) / console.
- Thư viện được sử dụng : numpy, scipy.linalg, math, matplotlib.pyplot.
- Các hàm theo yêu cầu bài tập:
 - least_square_solution(A, B): tìm nghiệm bình phương tối thiểu của phương trình
 Ax = B, để tìm hệ số của bài toán
- Các hàm hỗ trợ:
 - Readfile_txt(): đọc dữ liệu từ file data.txt lưu vào ma trận lưu dưới dạng numpy.array.
 - log10_model(a): chỉnh sửa số liệu phù hợp với mô hình đề bài (Log₁₀(N) ≈ θ1 + θ2(t −1970)), đặt x = t -1970 và y = Log₁₀(N). Trả về 2 ma trận A và B theo hệ được nêu trên ý tưởng làm bài.
 - o modelling_vector(vt): mô hình hóa vector vt truyền vào.

Họ Tên: Đinh Hoàng Trung.

- find_A_plus(A): trả về ma trận giả nghịch đảo của ma trận A truyền vào.
- o tinh y(x,a,b): trả về giá trị y = a*x + b.

2. Giải thích thuật toán và ý tưởng làm bài:

- Mô hình theo đề bài:

$$log_{10} N \approx \theta_2(t-1970) + \theta_1$$

- Theo đó dữ liệu được cung cấp là t và N, trong đó t là biến độc lập thể hiện năm ra đời của một bộ vi xử lí, N là biến phụ thuộc vào t thể hiện số bóng bán dẫn trong bộ vi xử lí ra đời vào năm t.
- Đặt $y = \log_{10}(N)$ và x = (t 1970), từ đó mô hình sẽ chuyển về dạng $y \approx \theta_2 x + \theta_1$.
- Với N và t từ số liệu ta lập hệ phuong trình:

```
Log10(2250) = a * (1971 - 1970) + b

Log10(2500) = a * (1972 - 1970) + b
```

$$Log10(5000) = a * (1974 - 1970) + b$$

$$Log10(29000) = a * (1978 - 1970) + b$$

$$Log10(120000) = a * (1982 - 1970) + b$$

$$Log10(275000) = a * (1985 - 1970) + b$$

.

$$Log10(410000000) = a * (2003 - 1970) + b$$

 \Rightarrow Ấn cần tìm của hệ là X = (a, b)

Hệ phương trình được biểu diễn dưới dạng Ax = B

Với A là ma hệ số của a và b tức các vector [(t - 1970), 1], và B là ma trận hệ số tự do tức các vector [Log(N)].

Được biểu diễn dưới dạng ma trận như sao:

[30, 1],

```
Họ Tên: Đinh Hoàng Trung.
                         [32, 1],
                         [33, 1]]
                  B = [[3.3521825181113627],
                         [3.3979400086720375],
                         [3.6989700043360187],
                         [4.462397997898956],
                         [5.079181246047625],
                         [5.4393326938302625],
                         [6.0718820073061255],
                         [6.4913616938342725],
                         [6.8750612633917],
                         [7.380211241711606],
                         [7.6232492903979],
                         [8.342422680822206],
                          [8.612783856719735]]
                  x = [[a],
                     [b]]
```

Theo yêu cầu bài toán thì ta cần phải tìm ra x là nghiệm bình phương tối tiểu của phương trình Ax = B:

Theo định lý 1 được cung cấp từ tài liệu: $x = A^+ B$

⇒ Vậy ta cần phải tìm A+: ma trận giả nghịch đảo của A.

Ta có $A = U\Sigma V^T$: là phân tích điểm kì dị của ma trận A có kích thước 13×2 được phân tích bằng phân rã SVD.

Ma trận A^+ sẽ được tính như sau: $A^+ = V\Sigma^+U^T$

Từ đó tìm ra $x = A^+ B$, thay vào $log_{10} N \approx \theta_2 (t - 1970) + \theta_1$ được phương trình đường thẳng khớp với mô hình.

3. Câu a:

Lập ma trận từ dữ liệu đọc từ file:

Họ Tên: Đinh Hoàng Trung.

```
1
     1971 2250
 2
     1972 2500
 3
     1974 5000
     1978 29000
 5
     1982 120000
                               Dữ liệu đọc được:
                               [[1.971e+03 2.250e+03]
     1985 275000
                                 [1.972e+03 2.500e+03]
7
     1989 1180000
                                 [1.974e+03 5.000e+03]
8
     1993 3100000
                                 [1.978e+03 2.900e+04]
9
     1997 7500000
                                 [1.982e+03 1.200e+05]
     1999 24000000
10
                                 [1.997e+03 7.500e+06]
                                 [1.999e+03 2.400e+07]
11
     2000 42000000
                                 [2.000e+03 4.200e+07]
12
     2002 220000000
                                 [2.002e+03 2.200e+08]
     2003 4100000000
13
                                 [2.003e+03 4.100e+08]]
```

Ma Trận A, B trong phương trình Ax = B:

```
A = [[1, 1],
        [2, 1],
        [4, 1],
        [8, 1],
        [12, 1],
        [15, 1],
        [19, 1],
        [23, 1],
        [27, 1],
        [29, 1],
        [30, 1],
        [32, 1],
        [33, 1]]
-B = [[3.3521825181113627],
        [3.3979400086720375],
        [3.6989700043360187],
        [4.462397997898956],
        [5.079181246047625],
        [5.4393326938302625],
        [6.0718820073061255],
        [6.4913616938342725],
        [6.8750612633917],
        [7.380211241711606],
        [7.6232492903979],
        [8.342422680822206],
```

Họ Tên: Đinh Hoàng Trung.

[8.612783856719735]]

Tìm nghiệm bình phương tối tiểu:

- Tìm A^+ : bằng công thức A^+ = $V\Sigma^+U^T$
 - o Phân rã SVD ma trận A nhận được U, các giá trị riêng $\sqrt{\sigma}$, và ma trận V.
 - o Chuyển đổi các giá trị riêng $\sqrt{\sigma}$ thành ma trận Σ^+ . o Tìm $A^+ = V \Sigma^+ U^T$.

 - \circ $x = A^+ B$.
- Có x = (a, b): viết phương trình đường thẳng khớp với mô hình.

$$y = [0.15401818] x + [3.12559263]$$

4. Câu b:

Từ câu a ta có phương trình đường thẳng: y = [0.15401818] x + [3.12559263]. Thay x = 2015 - 1970 tìm được $y = Log_{10}(N)$.

 $N = 10^{y} = 1.13870369.10^{10}$

Họ Tên: Đinh Hoàng Trung.

⇒ Số bóng bán dẫn dự đoán trong bộ xử lí giới thiệu vào năm $2015 = 1.13870369.10^{10}$ bóng bán dẫn.

⇒ Chênh lệch với thực tế 7.38703687.109.

----Hết----