Funções reais de várias variáveis reais

Corpo Docente:

Ana Breda, Eugénio Rocha, Paolo Vettori Sandrina Santos, Diana Costa, Rita Guerra

Departamento de Matemática, Universidade de Aveiro, 2017

Consideremos definida em $\mathbb{R}^n = \{x = (x_1, x_2, ..., x_n) : x_i \in \mathbb{R}, i = 1, 2, ..., n\}$ a distância euclidiana d: $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n_+$, definida por

$$d((x_1,x_2,...,x_n),(y_1,y_2,...,y_n)) = \sqrt{(x_1-y_1)^2 + ... + (x_n-y_n)^2}.$$

Def 1.1

Ao conjunto $B_r(p) = \{x \in \mathbb{R}^n : d(x,p) < r\}, r > 0$ chamamos bola aberta de centro em p e raio r.

Ao conjunto $\overline{\mathbb{B}}_r(p) = \{x \in \mathbb{R}^n : d(x,p) \le r\}, \ r > 0$ chamamos bola fechada de centro em p e raio r.

- p é **ponto interior** de D se existe uma bola aberta centrada em p contida em D, $(\exists r > 0 : B_r(p) \subset D)$. Ao conjunto de todos os pontos interiores de D chamamos **interior** de D e representamos por int(D).
- p é ponto fronteiro de D se qualquer bola aberta centrada em p contém pontos de D e do seu complementar $(\forall r > 0 \ B_r(p) \cap D \neq \emptyset \land B_r(p) \cap (\mathbb{R}^n \setminus D) \neq \emptyset)$. Ao conjunto de todos os pontos fronteiros de D chamamos fronteira de D e representamos por fr(D).

Def. 1.2

- p é ponto de acumulação de D se qualquer bola aberta centrada em p contém pontos de D \ $\{p\}$ ($\forall r > 0$ B $_r(p) \cap D \setminus \{p\} \neq \emptyset$). Ao conjunto de todos os pontos de acumulação de D chamamos derivado de D e representamos por D'.
- p é ponto isolado de D se p pertence a D mas não é ponto de acumulação de D ($p \in D \setminus D'$).

Exer. 1.3

Mostre que todo o ponto interior de um conjunto é ponto de acumulação desse conjunto.

Def 1/

Seja A um conjunto de \mathbb{R}^n .

- $A \in aberto se A = int(A)$;
- $A \in \mathbf{fechado}$ se $fr(A) \subset A$;
- $A \in \mathbf{limitado}$ se existem r > 0 e $x_0 \in \mathbb{R}^n$ tal que $A \subset \overline{B}_r(x_0)$;

Exemplo 1.5

Seja D=
$$\{(x,y) \in \mathbb{R}^2: x^2+y^2 \le 4\} \cup \{(x,y) \in \mathbb{R}^2: 2 \le x < 4 \land y = 0\}.$$
 Então,

$$int(D) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\};$$

$$fr(D) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4\} \cup \{(x, y) \in \mathbb{R}^2 : 2 \le x \le 4 \land y = 0\}; e$$

$$D' = D \cup \{(4,0)\}.$$

O conjunto D não tem pontos isolados, não é aberto nem fechado mas é limitado (justifique).

Exercícios

Exer. 1.6

Considere os seguintes subconjuntos de \mathbb{R}^2 :

$$S_1 = \{(x,y) \in \mathbb{R}^2 : (x > 0 \land x + y < 1) \lor (1 < x < 3 \land 0 < y < 2)\};$$

$$S_2 = \{(x,y) \in \mathbb{R}^2 : xy = 0\};$$

$$S_3 = \{(x,y) \in \mathbb{R}^2 : \frac{2x}{4-x^2-y^2} \in \mathbb{R} \lor x = 0\}.$$

Para cada um deles,

- (a) determine o interior, a fronteira e o derivado;
- (b) verifique se são abertos, fechados ou limitados.

Funções reais de várias variáveis reais

Def. 1.7

A uma correspondência $f:D\subset\mathbb{R}^n\to\mathbb{R}$ que a cada elemento $(x_1,x_2,...,x_n)\in D$ associa um único número real $z=f(x_1,x_2,...,x_n)$ chamamos função real de n variáveis reais ou campo escalar a n variáveis de **domínio** D.

O contradomínio de f, CD_f , é o conjunto,

$$CD_f = \{f(x_1, x_2, ..., x_n) : (x_1, x_2, ..., x_n) \in D\}.$$

O gráfico de f é o conjunto,

$$G_f = \{(x_1, x_2, ..., x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, x_2, ..., x_n)\}$$

Como visualizar gráficos de funções reais de duas variáveis reais?

Exercícios

Exer. 1.8

Descreva geometricamente o domínio das seguintes funções reais de duas variáveis reais:

(a)
$$f(x,y) = \frac{xy}{y - 2x}$$
;

(b)
$$f(x,y) = \frac{\sqrt{x+1}}{\sqrt{1-x^2-y^2}};$$

(c)
$$f(x,y) = \frac{x^3}{3} + \arcsin(y+3);$$

(d)
$$f(x,y) = \ln(x \ln(y - x^2));$$

(e)
$$f(x,y) = \ln((16-x^2-y^2)(x^2+y^2-4))$$
.

Alguns Gráficos

Exemplo 1.9

A função $f:\mathbb{R}^2\to\mathbb{R}$ definida por $f(x,y)=x^2+y^2$ é um campo escalar a 2 variáveis que tem por gráfico o conjunto

$$\mathcal{G}_f = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}.$$

Representação gráfica de \mathcal{G}_f

Exemplo 1.10

Observemos os gráficos das seguintes funções:

- **1** $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 4 y^2$ (cilindro parabólico) Representação gráfica de \mathcal{G}_f
- 2 $g: \mathbb{R}^2 \to \mathbb{R}$ definida por $g(x,y) = y^2 x^2$ (parabolóide hiperbólico) Representação gráfica de \mathcal{G}_g
- 3 $h: \mathbb{R}^2 \to \mathbb{R}$ definida por $h(x, y) = \sin(x^2 + y^2)$ Representação gráfica de \mathcal{G}_h

Conjuntos de Nível

Def. 1.11

Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$.

Chamamos conjunto de nível associado a f de valor $k \in CD_f$, ou simplesmente conjunto de nível k ao conjunto \mathcal{N}_k definido por

$$\mathcal{N}_k = \{(x_1, x_2, ..., x_n) \in D : f(x_1, x_2, ..., x_n) = k\}$$

Obs. 1.12

A partir de agora vamos apenas considerar funções $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ para n = 2, 3.

Para n=2,3, os conjuntos de nível k designam-se, respetivamente, por **curva** de nível k e superfície de nível k e representam-se, respetivamente, por \mathcal{C}_k e \mathcal{S}_k , respetivamente.

Exemplo 1.13

Determine as curvas de nível associadas às funções do Exemplo 1.10.

Descreva-as geometricamente e esboce o seu gráfico.

As curvas de nível associadas à função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 4 - y^2$ de valor $k \in]-\infty,4]$ são as curvas definidas por $C_k = \{(x,y) \in \mathbb{R}^2 : 4 - y^2 = k\} = \{(x,y) \in \mathbb{R}^2 : y = \pm \sqrt{4-k}\}.$

Consequentemente, as curvas de nível de valor $k \in]-\infty,4]$ são as retas de equações $y=\pm\sqrt{4-k}$. Curvas de nível associadas a f.

■ As curvas de nível $k \in CD_g$ da função $g : \mathbb{R}^2 \to \mathbb{R}$ definida por $g(x,y) = y^2 - x^2$ são as curvas definidas por $C_k = \{(x,y) \in \mathbb{R}^2 : y^2 - x^2 = k\}.$

Consequentemente, as curvas de nível $k \in \mathbb{R} \setminus \{0\}$ são hipérboles e a curva de nível 0 é constituída pela união de duas retas de equações $y = \pm x$.

Curvas de nível associadas a g.

Curvas e Superfícies de Nível

Exemplo 1.14

Determine o domínio e o contradomínio da função real de duas variáveis reais h definida por $h(x,y) = \sin(x^2 + y^2)$. Descreva geometricamente as curvas de nível associadas a h de valor $k \in CD_h$.

$$D_h = \mathbb{R}^2$$
 e $CD_h = [-1, 1]$.

As curvas de nível associadas à função $h:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$h(x,y) = \sin(x^2 + y^2)$$
 de valor $k \in \mathbb{R}$ são as curvas definidas por,

$$C_k = \bigcup_{n \in \mathbb{N}} \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = \arcsin(k) + 2n\pi \ \lor \ x^2 + y^2 = (\pi - \arcsin(k)) + 2n\pi \}$$

Consequentemente, as curvas de nível $k \in [-1,1]$ constituem uma família de circunferências concêntricas

Exemplo 1.15

Determine as superfícies de nível da função F definida por F(x, y, z) = x + y + 3z. Descreva-as geometricamente.

Para cada $k \in \mathbb{R}$, a superfície de nível k, S_k , é definida por:

$$S_k = \{(x, y, z) \in \mathbb{R}^3 : x + y + 3z = k\}$$

Consequentemente, as superfícies de nível constituem uma família de planos paralelos entre si e perpendiculares ao vetor (1, 1, 3).

Exercícios

Exer. 1.16

Determine o domínio das seguintes funções e indique se esse conjunto é aberto, fechado.

(a)
$$f(x, y, z) = \ln(2z^2 - 6x^2 - 3y^2 - 6);$$
 (b) $g(x, y, z) = \sqrt{x + y + z};$

(c)
$$h(x, y, z) = \sqrt{a^2 - x^2 - y^2 - z^2}, \ a \in \mathbb{R};$$
 (d) $j(x, y, z) = \arcsin\left(\frac{z}{\sqrt{x^2 + y^2}}\right);$

(e)
$$m(x, y, z) = \frac{1}{x^2 + y^2 + z^2 - a}, a \in \mathbb{R}.$$

Exer. 1.17

Determine o domínio e o contradomínio da função $h: \mathbb{R}^2 \to \mathbb{R}$ definida por $h(x,y) = \frac{x^2}{x^2+y^2}$. Use o GeoGebra para representar o gráfico desta função.

Exer. 1.18

Determine algumas curvas de nível de f, quando f se encontra definida por:

(a)
$$f(x,y) = y - \sin(x)$$
; (b) $f(x,y) = xy$; (c) $f(x,y) = 4x^2 + y^2$.

Exer. 1.19

Descreva as superfícies de nível de f, quando f se encontra definida por:

(a)
$$f(x, y, z) = z - x^2 - y^2$$
; (b) $f(x, y, z) = x^2 + y^2 - z^2$;

(c)
$$f(x, y, z) = x^2 + y^2 + z^2$$
.

Def. 1.20

Seja $f: D \subset \mathbb{R}^k \to \mathbb{R}$ e $a = (a_1, a_2, ..., a_k)$ um ponto de acumulação de D.

Dizemos que o limite de f quando $x=(x_1,x_2,...,x_k)$ tende para a é $L\in\mathbb{R}$, e escrevemos $\lim_{x\to a} f(x)=L$, se, para qualquer sucessão $(x_n)_{n\in\mathbb{N}}$ de $D\setminus\{a\}$ convergente para a, a correspondente sucessão de imagens $(f(x_n))_{n\in\mathbb{N}}$ converge para L, isto é,

$$\boxed{\lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = L.}$$

De modo equivalente, dizemos que $\lim_{x \to a} f(x) = L$, se

$$\boxed{\forall \varepsilon > 0 \; \exists \delta > 0 \; : \; (\mathsf{d}(x,a) < \delta \; \land x \in D) \Longrightarrow \mid f(x) - L \mid < \varepsilon.}$$

Exemplo 1.21

Seja
$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
 definida por $f(x,y) = \frac{3x^2y}{x^2+y^2}$. Determinar, caso exista, $\lim_{(x,y)\to(0,0)} f(x,y)$.

Consideremos uma sucessão arbitrária $(x_n, y_n)_{n \in \mathbb{N}}$ de pontos de $\mathbb{R}^2 \setminus \{(0, 0)\}$ convergente para (0, 0).

O termo geral da sucessão das imagens é $f(x_n,y_n)=\frac{3x_n^2y_n}{x_n^2+y_n^2}$, pelo que, $\lim_{n\to\infty}f(x_n,y_n)=\lim_{n\to\infty}\frac{3x_n^2y_n}{x_n^2+y_n^2}=3\lim_{n\to\infty}y_n\frac{x_n^2}{x_n^2+y_n^2}=0. \text{ (Justifique)}$

Teo. 1.22

Sejam $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$ funções escalares e $a=(a_1,a_2,...,a_n)$ um ponto de acumulação de D.

Se
$$\lim_{x \to 3} f(x) = L_1$$
 e $\lim_{x \to 3} g(x) = L_2$ então

$$\blacksquare \lim_{x \to 2} \lambda f(x) = \lambda \lim_{x \to 2} f(x) = \lambda L_1, \ \lambda \in \mathbb{R};$$

$$\blacksquare \lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2} \quad (\text{com } L_2 \neq 0).$$

Teo. 1.23

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$. Suponhamos que $D = A_1 \cup A_2 \cup ... \cup A_k, k \in \mathbb{N}$ e seja a um ponto de acumulação de A_i para todo o $i \in I \subset \{1, 2, ..., k\}$.

Se existirem os limites $\lim_{x \to a} f_{|A_i}(x)$, para todo o $i \in I$ e forem iguais a L, então existe o $\lim_{x \to a} f(x)$ e o seu valor é precisamente L.

Exer. 1.24

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} 3x^2y & \text{se } y > 0\\ x^2 + y^2 & \text{se } y < 0 \end{cases}$$

Averigue a existência do $\lim_{(x,y)\to(0,0)} f(x,y)$.

Teo. 1.25

Sejam $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$. Se $\lim_{x\to p}f(x)=0$ e g é uma função limitada numa bola centrada em p, então $\lim_{x\to p}f(x)g(x)=0$.

Exer. 1.26

Seja $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ a função definida por $f(x,y) = \frac{x^3 - 3xy^2}{x^2 + y^2}$. Utilize o teorema anterior para mostrar que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Exer. 1.27

Calcule, caso exista,

(a)
$$\lim_{(x,y)\to(1,2)} \frac{x^2}{x^2+y^2}$$
; (b) $\lim_{(x,y)\to(0,0)} \frac{x^4-4y^4}{2x^2+4y^2}$.

Exer. 1.28

Usando trajetórias/sucessões convenientes tire conclusões sobre a existência dos seguintes limites;

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$
; (b) $\lim_{(x,y)\to(1,0)} \frac{2xy-2y}{(x-1)^2+y^2}$.

Exer. 1.29

Mostre que:

(a)
$$\lim_{(x,y)\to(0,0)} (x^2 + 2y^2) \sin(\frac{1}{xy}) = 0;$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2 + 2y^2} = 0.$

Continuidade

Def. 1.30

Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ e $p=(p_1,p_2,...,p_n)$, um ponto de acumulação de D, diz-se que f é contínua em p se $\lim_{x\to p}f(x)=f(p)$. Ou, de modo equivalente, f é contínua em p se para qualquer sucessão $(x_n)_{n\in\mathbb{N}}$ de D convergente para p, a correspondente sucessão das imagens $f(x_n)_{n\in\mathbb{N}}$ converge para f(p).

Se p é ponto isolado de D, então f é contínua em p.

Ao conjunto de pontos onde f é contínua chamamos domínio de continuidade de f.

Teo. 1.31

Sejam $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$ funções escalares, $\alpha:I\to\mathbb{R}$ uma função real de variável real com $f(D)\subset I$.

- Se f e g são contínuas em $p \in D$ então f + g; fg; $\frac{f}{g}$ com $(g(p) \neq 0)$ e λf , $\lambda \in \mathbb{R}$, são também contínuas em p;
- Se f é contínua em $p \in D$ e α é contínua em f(p) então $\alpha \circ f$ é contínua em p.

Exer. 1.32

Mostre que as projeções Π_i , $i=1,2,3\,$ de \mathbb{R}^3 em \mathbb{R} definidas, respetivamente, por $\Pi_1(x,y,z)=x,\ \Pi_2=(x,y,z)=y$ e $\Pi_3(x,y,z)=z$ são contínuas.

Exer. 1.33

Determine o domínio de continuidade da função $F:\mathbb{R}^3 \to \mathbb{R}$ definida por

$$F(x, y, z) = \frac{3xy - 5x^3z}{y^3z - xyz}.$$

Exercícios

Exer. 1.34

Determine o domínio de continuidade das funções definidas por:

(a)
$$f(x,y) = \begin{cases} x^2 + y^2 & \text{se } x^2 + y^2 \le 1\\ 0 & \text{se } x^2 + y^2 > 1 \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x + y} & \text{se } x \neq -y \\ 0 & \text{se } x = -y \end{cases}$$

(c)
$$f(x,y) = \begin{cases} x+y & \text{se } xy = 0 \\ 0 & \text{se } xy \neq 0 \end{cases}$$

Derivadas Parciais

Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ uma função e P = (a, b) um ponto do interior de D.

Ao
$$\lim_{h\to 0} \frac{f(a+h,b)-f(a,b)}{h}$$
, caso exista e seja finito, chamamos derivada

parcial de f em ordem a x no ponto (a,b) e notamos por $\frac{\partial f}{\partial x}(a,b)$.

Por outras palavras,
$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$

Obs. 1.36

Fixando y = b e considerando a função real de variável real,

$$g: \{x \in \mathbb{R}: (x, b) \in D\} \to \mathbb{R}$$
, definida por $g(x) = f(x, b)$,

verifica-se que, $\frac{\partial f}{\partial x}(a,b) = g'(a)$. Deste modo, $\frac{\partial f}{\partial x}(a,b)$ representa o declive da recta r_1 contida no plano y=b e que é tangente à curva \mathcal{C}_1 , interseção do gráfico de

As equações cartesianas da reta r_1 são y = b e $z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a)$.

f com o plano y = b no ponto P = (a, b, f(a, b)). Interpretação geométrica

A reta r_1 tem como vetor diretor $(1, 0, \frac{\partial f}{\partial v}(a, b))$.

Chamamos derivada parcial de f em ordem a y no ponto (a, b) e representamos por $\frac{\partial f}{\partial y}(a,b)$ ao $\lim_{h\to 0}\frac{f(a,b+h)-f(a,b)}{h}$, caso exista e seja finito. Assim,

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}.$$

Obs. 1.38

Fixando x = a e considerando a função real de variável real,

$$h: \{y \in \mathbb{R}: (a, y) \in D\} \to \mathbb{R}$$
, definida por $h(y) = f(a, y)$,

verifica-se que, $\left| \frac{\partial f}{\partial y}(a,b) = h'(b) \right|$. Deste modo, $\frac{\partial f}{\partial y}(a,b)$ representa o declive da

recta r_2 contida no plano x=a e que é tangente à curva C_2 , interseção do gráfico de f com o plano x = a no ponto P = (a, b, f(a, b)). Interpretação geométrica

As equações cartesianas da reta r_2 são x=a e $z=f(a,b)+rac{\partial f}{\partial v}(a,b)(y-b)$.

A reta r_2 tem como vetor diretor $(0, 1, \frac{\partial f}{\partial v}(a, b))$.

O plano Π , tangente ao gráfico de z=f(x,y) no ponto P=(a,b,f(a,b)), é o plano que passa por P e que tem por vetores diretores $(1,0,\frac{\partial f}{\partial x}(a,b))$ e $(0,1,\frac{\partial f}{\partial y}(a,b))$.

Por outras palavras, uma equação vetorial de Π é:

$$(x,y,z)=(a,b,f(a,b))+\lambda(1,0,rac{\partial f}{\partial x}(a,b))+\mu(0,1,rac{\partial f}{\partial y}(a,b)),\;\lambda,\mu\in\mathbb{R},$$

a que corresponde a equação cartesiana,

$$z - f(a, b) = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b).$$

Questão a ponderar

Que condições deve verificar a função f para que possamos garantir a existência de plano tangente a um ponto da superfície de equação z = f(x, y)?

Exemplo 1.39

O plano tangente ao gráfico da função real f definida por $f(x,y)=4-x^2-y^2$ no ponto P=(1,1,2) tem por equação:

$$z-2=-2(x-1)-2(y-1)$$
, ou ainda, $2x+2y+z=6$.

Def. 1.40

Uma função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ é diferenciável em $P=(a,b)\in \mathrm{int}(D)$ se existem as derivadas parciais de $1.^a$ ordem de f em P e existe uma bola aberta, \mathcal{B} , centrada em P e contida em D tal que, para quaisquer $\triangle x, \triangle y \in \mathbb{R}$ tais que $(a+\triangle x,b+\triangle y)\in D$, se tem

$$f(a + \triangle x, b + \triangle y) - f(a, b) = \triangle x \frac{\partial f}{\partial x}(a, b) + \triangle y \frac{\partial f}{\partial y}(a, b) + \triangle x \varepsilon_1 + \triangle y \varepsilon_2,$$

onde $\varepsilon_1, \varepsilon_2$ são funções de $\triangle x$ e $\triangle y$ tais que $\lim_{(\triangle x, \triangle y) \to (0,0)} \varepsilon_i(\triangle x, \triangle y) = 0$.

Teo. 1.41

Sejam $f:D\subset\mathbb{R}^2\to\mathbb{R}$ e $P=(a,b)\in \mathrm{int}(D)$. Se f admite derivadas parciais de $1.^a$ ordem em todos os pontos de uma bola aberta centrada em P, contida em D, e, pelo menos, uma das derivadas parciais $\frac{\partial f}{\partial x}$ ou $\frac{\partial f}{\partial y}$ é contínua em P então f é diferenciável em P=(a,b).

Teo. 1.42

Se $f:D\subset\mathbb{R}^2\to\mathbb{R}$ é diferenciável em P=(a,b) então f é contínua em P.

Derivadas parciais de ordem superior

Como vimos, sendo $f:D\subset\mathbb{R}^2\to\mathbb{R}$, as derivadas parciais de f em $P=(a,b)\in D$ são dadas, respectivamente, por

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$
(2).

As derivadas parciais de f em ordem a x e a y são também funções reais de duas variáveis reais, definidas num subconjunto de D constituído pelos pontos de D em que o correspondente limite exista.

As derivadas parciais de 2.^a ordem de $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ são as funções:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \quad e \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right).$$

Teo. 1.43

Teorema de Schwarz

Sejam $f:D\subset\mathbb{R}^2\to\mathbb{R}$ e P=(a,b) um ponto do interior de D. Se existem as derivadas parciais $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial^2 f}{\partial x \partial y}$ numa bola aberta centrada em P e $\frac{\partial^2 f}{\partial x \partial y}$ é

contínua em
$$P$$
 então existe $\frac{\partial^2 f}{\partial y \partial x}$ em P e $\frac{\partial^2 f}{\partial x \partial y}(P) = \frac{\partial^2 f}{\partial y \partial x}(P)$.

Exercícios

Exer. 1.44

Calcule as derivadas parciais de 2.^a ordem das seguintes funções:

- (a) $f(x,y) = \ln(x+y) \ln(x-y)$;
- (b) $f(x,y) = \sin(xy)$;
 - (c) $f(x, y) = \operatorname{arctg}(\frac{y}{x})$.

Exer. 1.45

Uma função $f:D\subset\mathbb{R}^2 o\mathbb{R}$ diz-se harmónica se verifica a equação de

Laplace, isto é, verifica a equação $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$

Mostre que a função f definida por $f(x, y) = \operatorname{arctg}(y/x)$ é uma função harmónica.

Sejam
$$f: D \subset \mathbb{R}^n \to \mathbb{R}, \ a = (a_1, a_2, ..., a_n) \in D \ e \ \hat{u} = (u_1, u_2, ..., u_n)$$
 um vector unitário de \mathbb{R}^n , isto é, $\|\hat{u}\| = \sqrt{(u_1^2 + u_2^2 + ... + u_n^2)} = 1$.

Ao
$$\lim_{h\to 0} \frac{f(a_1 + hu_1, a_2 + hu_2, ..., a_n + hu_n) - f(a_1, a_2, ..., a_n)}{h}$$
, caso exista e seja

finito, chamamos derivada direcional de f segundo \hat{u} no ponto a e

representamo-la por
$$D_{\hat{u}}f(a)$$
. Assim,

representamo-la por
$$D_{\hat{u}}f(a)$$
. Assim, $D_{\hat{u}}f(a) = \lim_{h \to 0} \frac{f(a+h\hat{u}) - f(a)}{h}$

Interpretação geométrica

Supondo n=2, $D_{\hat{u}}f(a_1,a_2)$ dá-nos a informação acerca da variação da cota de um observador que caminhando sobre a superfície de equação z = f(x, y)passe por $P = (a_1, a_2, f(a_1, a_2))$ deslocando-se na direção e sentido de \hat{u} .

Derivada Direcional

Obs. 1.47

A derivada parcial de f em ordem a x_i , i = 1, 2, ..., n, não é mais do que a derivada direcional de f segundo o vetor $\hat{e}_i = (0, ..0, 1, 0, ...0)$.

Suponhamos que $f:D\subset\mathbb{R}^n\to\mathbb{R}$ admite todas as derivadas de 1.^a ordem em

$$a = (a_1, a_2, ..., a_n)$$
. Ao vetor

$$a = (a_1, a_2, ..., a_n)$$
. Ao vetor $\nabla f(a) = (\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), ..., \frac{\partial f}{\partial x_n}(a))$

chamamos gradiente de f em a.

Teo. 1.49

Se f é uma função diferenciável de duas variáveis de domínio D, P = (x, y) é um ponto do interior de D e $u = (\cos(\theta), \sin(\theta)), \ \theta \in [0, 2\pi], \ \text{então}$

$$D_{u}f(x,y) = \langle \nabla f(x,y), u \rangle = \frac{\partial f}{\partial x}(x,y)\cos\theta + \frac{\partial f}{\partial y}(x,y)\sin\theta,$$

onde <,> designa o produto escalar canónico de \mathbb{R}^2 .

Demonstração: Exercício.

Sendo f uma função escalar diferenciável em $D \subset \mathbb{R}^2$, $P = (x_0, y_0) \in \text{int} D$ e u um vetor unitário de \mathbb{R}^2 ,

$$D_u f(x_0, y_0) = \langle \nabla f(x_0, y_0), u \rangle = \|\nabla f(x_0, y_0)\| \cos \alpha,$$

onde α designa o ângulo formado pelos vetores $\nabla f(x,y)$ e u.

Podemos então concluir que

lacktriangle ∇f aponta na direção e sentido do maior crescimento de f.

Teo. 1.50

Se $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável em D, e $P=(x_0,y_0)$ é um ponto do interior de D, existe um plano tangente à superfície S de equação z=f(x,y) no ponto P e uma equação cartesiana desse plano é (como visto anteriormente)

$$z-f(x_0,y_0)=\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

sendo
$$\overrightarrow{n}=(-\frac{\partial f}{\partial x}(x_0,y_0),-\frac{\partial f}{\partial x}(x_0,y_0),1)$$
 um vetor normal à superfície.

S a superfície de nível 0 de F, isto é $S = \{(x,y,z) \in D : F(x,y,z) = 0\}$. Se $P = (x_0, y_0, z_0) \in S$ e as derivadas parciais de 1. a ordem de F não se anulam simultaneamente em P, uma equação cartesiana do plano, Π , tangente a S em P é dada por

$$<\nabla F(P), (x-x_0, y-y_0, z-z_0)>=0,$$

28

ou seja, Π tem por equação,

$$(x-x_0)\frac{\partial F}{\partial x}(x_0,y_0,z_0)+(y-y_0)\frac{\partial F}{\partial y}(x_0,y_0,z_0)+(z-z_0)\frac{\partial F}{\partial z}(x_0,y_0,z_0)=0.$$

Exemplo 1.52

Determine uma equação para o plano tangente e um sistema de equações para a reta normal ao elipsoide $\mathcal E$ de equação $4x^2+9y^2+z^2-49=0$ no ponto P=(1,-2,3).

Definindo $F:\mathbb{R}^3 \to \mathbb{R}$ por $F(x,y,z)=4x^2+9y^2+z^2-49$ constatamos que \mathcal{E} é precisamente a superfície de nível 0 de F. Assim, uma equação para o plano, Π , tangente a \mathcal{E} em P é $<\nabla F(P), (x-x_0,y-y_0,z-z_0)>=0$, ou ainda, 8(x-1)-36y(y+2)+6(z-3)=0.

As equação da reta normal a \mathcal{E} em P são $\frac{x-1}{2} = \frac{y+2}{26} = \frac{z-3}{6}.$ Justifique.

Exer. 1.53

Mostre que f é diferenciável no seu domínio de definição D_f e determine a expressão geral das derivadas direcionais, segundo as direções e sentidos indicados, com f definida por:

- (a) $f(x,y) = \ln(\sqrt{x^2 + y^2})$ na direção e sentido do vetor (1,1);
- (b) $f(x,y) = x^2y^3$ na direção e sentido do vetor $(\frac{3}{5}, -\frac{4}{5})$;
- (c) $f(x, y, z) = e^x + yz$ na direção e sentido do vetor (-1, 5, -2);
- (d) $f(x, y, z) = \cos(xy) + \sin(yz)$ na direção e sentido do vetor $\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

Exer. 1.54

Mostre que f é diferenciável no ponto (x_0,y_0) e determine uma equação do plano tangente ao gráfico de f no ponto $P_0=(x_0,y_0,f(x_0,y_0))$, sendo f e P_0 dados por:

- (a) $f(x,y) = 2x^2 + y^2$ e $P_0 = (1,1,3)$;
- (b) $f(x,y) = \sin(xy) e P_0 = (1, \pi, 0);$
- (c) $f(x,y) = xe^{x^2-y^2}$ e $P_0 = (2,2,f(2,2))$.

Exer. 1.55

Sejam f e g funções escalares definidas em $D \subset \mathbb{R}^3$. Supondo que f e g possuem derivadas parciais em $P \in D$, mostre que $\nabla(fg)(P) = (f\nabla g)(P) + (g\nabla f)(P)$.

Def. 2.3

Sejam $f: D \subset \mathbb{R}^n \to \mathbb{R}$ e $A = (a_1, a_2, ..., a_n)$ um ponto de D.

Dizemos que:

- f(A) é um máximo relativo (ou máximo local) de f se existe uma bola aberta, \mathcal{B} , centrada em A tal que $\forall P \in \mathcal{B} \cap D$, $f(P) \leq f(A)$.
- f(A) é um máximo absoluto de f se $\forall P \in D$, $f(P) \leq f(A)$.
- f(A) é um **mínimo relativo** (ou mínimo local) de f se existe uma bola aberta, \mathcal{B} , centrada em A tal que $\forall P \in \mathcal{B} \cap D$, $f(P) \geq f(A)$.
- f(A) é um mínimo absoluto de f se e $\forall P \in D$, $f(P) \ge f(A)$.

Máximos e mínimos (relativos) designam-se, no seu conjunto, por extremos (relativos) e os pontos onde estes são atingidos dizem-se extremantes (relativos) - maximizantes ou minimizantes consoante a natureza do extremo que originam.

Teo. 2.2

Teorema de Weierstrass

Se D é um subconjunto fechado e limitado de \mathbb{R}^n e f é um função escalar contínua em D então f tem em D um mínimo e um máximo absolutos.

Teo. 2.3

Teorema de Fermat

Se $f: D \subset \mathbb{R}^n \to \mathbb{R}$ tem derivadas de 1. $\frac{a}{n}$ ordem em $P = (p_1, p_2, ..., p_n) \in int D$ e f(P) é um extremo (relativo) de f então $\nabla f(P) = (0, 0, ..., 0)$.

Def. 2.4

Um ponto $P \in D_f$ diz-se **ponto** crítico de f se existem e são nulas todas as derivadas parciais de $1.\frac{a}{2}$ ordem de f em P, isto é, se $\nabla f(P) = (0, 0, ..., 0)$.

Assim, se $P \in \text{int}D$ é ponto extremante de f então P é ponto crítico de f.

O recíproco é falso, isto é, nem sempre um ponto crítico é ponto extremante. É o caso de P=(0,0) que é ponto crítico de $f:\mathbb{R}^2\to\mathbb{R}$ definida por $f(x,y)=x^2-y^2$ mas não é ponto extremante. (Justifique). Os pontos críticos que não são extremantes dizem-se **pontos de sela**.

(0,0)-Ponto de sela de f.

Def. 2.5

Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ uma função com derivadas parciais de primeira e segunda ordem contínuas e $p\in \mathrm{int}D$. A matriz

$$H_f(p) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(P) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(P) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(P) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(P) & \frac{\partial^2 f}{\partial x_n \partial x_2}(P) & \dots & \frac{\partial^2 f}{\partial x_n^2}(P) \end{pmatrix}$$

diz-se matriz Hessiana de f em p. Ao determinante de $H_f(p)$ chamamos Hessiano de f em p que designamos por $\Delta_f(p)$.

Def. 2.6

Chamamos **menor princial** de ordem k de uma matriz de ordem n ao determinante da submatriz de ordem k que se obtém eliminando as últimas n-k linhas e as últimas n-k colunas.

Teo. 2.7

Teste da Segunda Derivada

Sejam $f:D\subset\mathbb{R}^n\to\mathbb{R}$ uma função com derivadas parciais de primeira e segunda ordem contínuas e $P\in \mathrm{int}(D)$ um ponto crítico de f e

$$\Delta_f(P) \neq 0$$

- 1. Se todos os menores principais de $\Delta f(P)$ são positivos, $\Delta_1(P) > 0$; $\Delta_2(P) > 0$; ... então P é um minimizante local.
- 2. Se os menores principais são alternadamente negativos e positivos, sendo o primeiro negativo, $\Delta_1(P) < 0$; $\Delta_2(P) > 0$; ... então P é um maximizante local.
- 3. Se nenhuma das situações anteriores ocorrer P é um ponto de sela.

Obs. 2.8

Observe que se $\Delta_f(P) = 0$ nada se pode concluir.

Teo. 2.9

Teste da Segunda Derivada no caso n = 2

Sejam $f:D\subset\mathbb{R}^2\to\mathbb{R}$ uma função com derivadas parciais de primeira e segunda ordem contínuas e $P\in \mathrm{int}(D)$ um ponto crítico de f e $\Delta_f(P)\neq 0$.

- 1. Se $\frac{\partial^2 f}{\partial x^2}(P) > 0$ e $\Delta_f(p) > 0$ então p é um minimizante local.
- 2. Se $\frac{\partial^2 f}{\partial x^2}(P) < 0$ e $\Delta_f(p) > 0$ então p é um maximizante local.
- 3. Se nenhuma das situações anteriores ocorrer P é um ponto de sela.

Exemplo 2.10

Determinar, caso existam, os extremos locais de $f(x, y) = -x^3 + 4xy - 2y^2 + 1$

Os pontos críticos de f são os pontos P=(x,y) tais que $\nabla f(P)=(0,0)$, ou seja, as soluções do sistema $-3x^2+4y=0$, e 4x-4y=0. Temos então como pontos críticos $P_0=(0,0)$ e $P_1=\left(\frac{4}{3},\frac{4}{3}\right)$.

Ora, $H_f(x,y)=\begin{pmatrix} -6x & 4 \\ 4 & -4 \end{pmatrix}$ Utilizando as condições de 2.^a ordem (Teste das segundas derivadas) podemos concluir que P_0 é um ponto de sela e que P_1 é um maximizante de f a que corresponde o valor máximo $f(\frac{4}{2},\frac{4}{3})=\frac{59}{27}$.

Exemplo 2.11

Determinar, caso existam, os extremos locais de $f(x,y) = x^2 - 7xy^2 + 10y^4$

O único ponto crítico de f é o ponto $P_0 = (0,0)$. Ora,

$$H_f(x,y) = \left(\begin{array}{cc} 2 & -14y \\ -14y & -14x + 120y^2 \end{array} \right) \text{ e portanto } H_f(0,0) = \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right).$$

Como $\Delta_f(0,0) = 0$ temos que fazer uma análise não baseada na condições de 2.^a ordem. Comecemos por observar que f(0,0) = 0.

Considerando a restrição de f a pontos da parábola $x=3y^2$ obtemos para pontos imagens $f(3y^2,y)=-8y^4$.

Se considerarmos a restrição de f a pontos da parábola $x=-2y^2$ obtemos para pontos imagens $f(-2y^2,y)=28y^4$. Pelo que, qualquer vizinhança (bola) centrada em (0,0), contém pontos onde f(x,y)>0 e pontos onde f(x,y)<0. Por conseguinte, (0,0) não é ponto extremante para f.

Exercícios

Exer. 2.12

Determinar, caso existam, os extremos locais de f para f definida por

- (a) $f(x,y) = 3x^2y^2 + y^2 3x^2 6y + 7$;
- (b) $f(x,y) = \frac{1}{x^2} + \frac{1}{y} + xy, \ x, y > 0;$
- (c) $f(x, y, z) = 4 y^2$;
- (d) $f(x, y, z) = x^3 y^3 + z^3$;
- (e) $f(x,y) = xye^{x-y}$;
- (f) $f(x,y) = (x^2 + y^2 1)^2$;
- (g) $f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{se } y \ge 0 \\ 0 & \text{nos restantes casos;} \end{cases}$
- (h) $f(x, y) = \sin x \cos y$;
- (i) $f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{se } y \ge 0 \\ |x| & \text{se } y < 0; \end{cases}$
- (j) $f(x, y, z) = xy + yz + \frac{1}{4}(x^2 + y^2 + z^2)$.

Exer. 2.13

Seja $f:D\subset\mathbb{R}^2\to\mathbb{R}$ a função definida por $f(x,y)=-x^2$. Mostre, usando a definição de maximizante global, que f possui um número infinito de tais maximizantes.

Extremos em conjuntos limitados e fechados

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ contínua com D limitado e fechado. Como determinar os extremos absolutos de f?

Regra prática

- **1.** Determinar os pontos críticos de f que pertençam ao interior de D_f ;
- **2.** Determinar os pontos do interior de D_f onde pelo menos uma das derivadas parciais da função não esteja definida;
- **3.** Estudar os extremos da restrição de f à fronteira de D_f ;
- 4. Calcular os valores da função em todos os pontos determinados anteriormente; os menor e maior valores serão, respetivamente, o mínimo e o máximo absolutos da função.

Exemplo 2.14

Determinar os extremos absolutos de f definida em $D=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 1\}$ por $f(x,y)=x^2+y^2-x-y+1$.

- O $\mathsf{int}(D) = \{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 < 1\} \ \mathsf{e} \ \mathsf{a} \ \mathsf{fr}(D) = \{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 = 1\}.$
- O único ponto crítico de f no int(D) é o ponto $P_0 = (\frac{1}{2}, \frac{1}{2})$.

Vamos agora considerar a restrição de f a fr $(D) = \{(\cos \theta, \sin \theta), \theta \in [0, 2\pi]\}.$

O comportamento de f na fr(D) pode ser descrito pela composição $f \circ g$ onde $g:[0,2\pi] \to \mathbb{R}^2$ é a função definida por $g(\theta)=(\cos\theta,\sin\theta)$.

Ora, $f \circ g(\theta) = 2 - \cos \theta - \sin \theta$. Os pontos críticos de $f \circ g$ no $\operatorname{int}[0, 2\pi] =]0, 2\pi[$ são $\theta_1 = \frac{\pi}{4}$ e $\theta_2 = \frac{5\pi}{4}$ a que correspondem os pontos $P_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ e $P_2 = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

Finalmente a $fr([0, 2\pi]) = \{0, 2\pi\}$ corresponde o ponto $P_3 = (1, 0)$.

Como $f(P_0)=\frac{1}{2},\ f(P_1)=2-\sqrt{2},\ f(P_2)=2+\sqrt{2}\ e\ f(P_3)=1$ os valores máximo e mínimo de f são respetivamente $2+\sqrt{2}$ e $\frac{1}{2}$ atingidos respetivamente em $P_2=(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$ e em $P_0=(\frac{1}{2},\frac{1}{2})$.

Exer. 2.15

Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = x^2 + y^2$ onde D designa a região planar dada por $D = \{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}$.

- (a) Justifique, convenientemente, que f possui um mínimo e um máximo absolutos.
- (b) Represente geometricamente D. Determine os extremos absolutos de f e os extremantes onde tais valores são atingidos.

Exer. 2.16

Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ a função definida por f(x,y) = y, e A e B os subconjuntos de \mathbb{R}^2 definidos por: $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ e $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.

- (a) Justifique, convenientemente, que f possui extremos absolutos em B.
- (b) Identifique os extremantes absolutos de f em B.
- (c) A função f possui extremos em A? Justifique.

Extremos Condicionados

Suponhamos que $f,g:D\subset\mathbb{R}^2\to\mathbb{R}$ são função diferenciáveis em D, aberto de \mathbb{R}^2 , e que se pretende determinar os extremos de f que pertencem ao subconjunto $C\subset D$, definido por $C=\{(x,y)\in D:g(x,y)=0\}$.

Teo. 2.17

Sejam f e g nas condições acima descritas, com derivadas parciais contínuas em $P_0=(x_0,y_0)\in C$. Se P_0 é um extremante local de f e $\nabla g(P_0)\neq 0$ então existe $\lambda\in\mathbb{R}$, dito multiplicador de Lagrange, tal que $\nabla f(P_0)=\lambda\nabla g(P_0)$.

Este teorema, generalizável de modo natural para n > 2, $n \in \mathbb{N}$, fornece um modo de resolução para problemas deste tipo, (extremos condicionados).

Método dos Multiplicadores de Lagrange

Sejam f e g funções nas condições acima descritas.

- 1. Determinar as soluções (x, y) do sistema $\begin{cases} \nabla f(x, y) = \lambda \nabla g(x, y) \\ g(x, y) = 0 \end{cases}$
- 2. Estudar a natureza de cada um dos pontos assim determinados.

Exemplo 2.18

Determinar os extremos de $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = x+y na elipse \mathcal{E} de equação $(x-1)^2 + \frac{y^2}{4} = 1$.

As funções f e g, com g definida por $g(x,y)=(x-1)^2+\frac{y^2}{4}-1$, são funções diferenciáveis com derivadas parciais contínuas, de qualquer ordem, em \mathbb{R}^2 .

Mais, $\nabla g(P) \neq 0$ para qualquer $P \in \mathcal{E}$.

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases} \iff \begin{cases} 1 = 2\lambda(x-1) \\ 1 = \lambda \frac{y}{2} \\ (x-1)^2 + \frac{y^2}{4} = 1 \end{cases}$$

As soluções são $P_0=\left(\frac{5+\sqrt{5}}{5},\frac{4\sqrt{5}}{5}\right)$ e $P_1=\left(\frac{5-\sqrt{5}}{5},-\frac{4\sqrt{5}}{5}\right)$.

Ora, $f(P_0)=1+\sqrt{5}$ e $f(P_1)=1-\sqrt{5}$, atendendo ao Teorema de Wierstrass ($\mathcal E$ é limitado e fechado) podemos concluir que os valores máximo e mínimo de f em $\mathcal E$ são, respetivamente, $1+\sqrt{5}$ e $1-\sqrt{5}$.

Extremos Condicionados

Suponhamos que $f, g_1, g_2, ..., g_m : D \subset \mathbb{R}^n \to \mathbb{R}$ são função diferenciáveis no aberto D de \mathbb{R}^n , que m < n, e que se pretende determinar os extremos de f sujeito às condições de ligação $g_1(x_1, x_2, ..., x_n) = 0$, $g_2(x_1, x_2, ..., x_n) = 0$, ..., $g_m(x_1, x_2, ..., x_n) = 0$.

Teo. 2.19

Nas condições acima descritas, se $P_0=(x_0,y_0)$ é um extremante local de f sujeito às condições de ligação $g_1(x_1,x_2,...,x_n)=0,\ g_2(x_1,x_2,...,x_n)=0,$..., $g_m(x_1,x_2,...,x_n)=0$, e os m vetores $\nabla g_1(P_0),\ \nabla g_2(P_0),\ ...,\ \nabla g_m(P_0)$ são linearmente independentes, então existe $\lambda_1,\ \lambda_2,\ ...,\ \lambda_m\in\mathbb{R},\ ditos$ multiplicadores de Lagrange, tal que $\nabla f(P_0)=\sum_{m}\lambda_i\nabla g_i(P_0)$.

Método dos Multiplicadores de Lagrange generalizado

Sejam f e $g_1, g_2, ..., g_m$ funções nas condições acima descritas.

1. Determinar as soluções $(x_1, x_2, ..., x_n)$ do sistema

$$\begin{cases} \nabla f(x_1, x_2, ..., x_n) = \sum_{i=1}^m \lambda_i \nabla g_i(x_1, x_2, ..., x_n) \\ g_i(x_1, x_2, ..., x_n) = 0, \quad i = 1, ..., m \end{cases}$$

2. Estudar a natureza de cada um dos pontos assim determinados.

Exer. 2.20

Utilize, se possível, o método dos multiplicadores de Lagrange para determinar os extremos (locais) das seguintes funções sujeitas às condições de ligação indicadas.

(a)
$$f(x, y) = x^2 + 2x + y^2 + 2y - 1$$
, $x^2 - 4x + y^2 = -2$;

(b)
$$f(x, y, z) = x - 2y + 2z$$
, $x^2 + y^2 + z^2 = 1$;

(c)
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $x - y + z = 1$;

(d)
$$f(x,y) = 2x^2 + xy - y^2 + y$$
, $2x + 3y = 1$;

Exer. 2.21

De entre todos os paralelipípedos retângulos em que a soma das medidas das arestas é 12 cm, qual é o que tem maior volume?

Exer. 2.22

Determine o ponto do plano de equação x+y+2z=1 que está mais próximo de M=(1,2,3).