CIRCUNFERENCIA I

- DEFINICIÓN, ELEMENTOS Y ELEMENTOS ASOCIADOS.
- ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA.
- TEOREMAS ADICIONALES

LA RUEDA, ELEMENTO FUNDAMENTAL EN EL DESARROLLO DE LA HUMANIDAD

LOS ANDENES CIRCULARES EN EL VALLE SAGRADO DE MARAS MORAY (CUSCO)

CIRCUNFERENCIA I

DEFINICIÓN:

Es aquella figura geométrica formada por infinitos puntos, los cuales equidistan de un punto fijo coplanar a ella.

ELEMENTOS:

Centro: O

• Radio: \overline{OP}

OP=R

ELEMENTOS ASOCIADOS:

• Cuerda: \overline{QS}

• Diámetro: \overline{AB}

• Arco: \widehat{AQ}

$$m\widehat{AQ}=\theta$$

Rectas:

Posecante: \overleftrightarrow{L}_1

• Tangente: \overleftrightarrow{L}_2

TOMAR EN CUENTA:

La circunferencia se mide de dos formas.

Como medida angular

Medida de 1 vuelta = 360°

1v=360°

Como longitud

Longitud de la circunferencia = $2\pi R$

CIRCUNFERENCIA I

ÁNGULOS ASOCIADOS EN LA CIRCUNFERENCIA

<u>Ángulo central:</u>

Ángulo inscrito:

DEMOSTRACION:

 Los Δs AOB y BOC son isósceles:

> $m \not< OAB = m \not< OBA = \alpha$ $m \not< OBC = m \not< OCB = \beta$ $\theta = \alpha + \beta$

- En ABCO por teorema: $m \not AOC = 2\alpha + 2\beta$ $m \not AOC = 2\theta$
- Por ángulo central: ∴X=20

ARCO CAPAZ:

Es un arco de circunferencia determinado por el conjunto de todos los vértices de los ángulos inscritos con respecto a un mismo arco.

El arco APB es el arco capaz respecto a 2α

CIRCUNFERENCIA I

Del gráfico se tiene las circunferencias \mathcal{C}_1 y \mathcal{C}_2 , si la m \widehat{AB} =80°,

RESOLUCIÓN:

Nos piden m \widehat{BO}_1 =X
Dato:
m \widehat{AB} =80°

- Por \triangleleft inscrito en \mathcal{C}_2 : $m \triangleleft AO_1B=40^\circ$
- Si en la C_1 el radio es a El Δ B O_1 C es isósceles:

$$m \not < O_1 BC = 70^{\circ}$$

• Si en la C_2 el radio es b El $\Delta B O_2 O_1$ es isósceles:

 $m \angle BO_2O_1 = 40^{\circ}$

Finalmente por \checkmark central en \mathcal{C}_2 : $\therefore X=40^{\circ}$

CIRCUNFERENCIA I

Ángulo semi - inscrito: •

Si T es punto de tangencia:

Si T es punto de tangencia:

OBSERVACIÓN:

Si T es punto de tangencia:

OBSERVACIONES:

SEMI CIRCUNFERENCIA

 \overline{AB} : DIAMETRO

RESOLUCIÓN:

Nos piden m \widehat{PQ} =X

En la semi circunferencia trazamos \overline{AQ} , por teorema:

- En el $\triangle AQC$: m∢*QAC*=40°
 - Por ∢ inscrito:

∴X=80°

• CUADRANTE:

Cuarta parte de circunferencia o arco cuyo medida angular central es 90°

Del gráfico, AOB es un cuadrante. Si BC=AB $\sqrt{2}$. Calcule m \widehat{AB}

Además el ⊿APC es notable de 53°/2:

Por \triangleleft inscrito: $\widehat{mBC} = 53^{\circ}$

Finalmente en el cuadrante:

CIRCUNFERENCIA I

Ángulo Interior:

θ

Del gráfico ABCD es un rectángulo y T es punto de tangencia. Calcule X.

Si T y Q son puntos de tangencia:

$$X + \alpha = 180^{\circ}$$

 Por el rectángulo y la circunferencia:

• En el ⊿BPC mediana rel. hipotenusa:

PT=R

R

• Por observación:

- Entonces $m\widehat{PD} = 30^{\circ}$
- Por ∢ interior:

$$X = \frac{90^{\circ} + 30^{\circ}}{2}$$

∴X=60°

CIRCUNFERENCIA I

Del gráfico si PB=PC=R y la m \widehat{AD} =120°. calcule m∢APD.

RESOLUCIÓN:

Nos piden m ∢APD=X

Dato:

$$PB=PC=R$$

m $\widehat{AD}=120^{\circ}$

$$X = \frac{120^{\circ} - (m\widehat{BC})}{2}$$

RECORDAR:

Todo rombo es un paralelogramo, en ese sentido sus medidas apuestas son iguales.

• Como PB=PC=R, aprovechamos que el radio es constante y trazamos \overline{OB} y \overline{OC} :

Entonces OBPC es un rombo:

$$\widehat{BC}=X$$

Finalmente reemplazando la medida del arco BC: