Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Sea un conjunto X no vacío y sea $f: X \longrightarrow X$ una aplicación tal que $f \circ f \circ f = f$. Demuestre que:

f es inyectiva si y sólo si f es sobreyectiva

Solución: Supongamos que f es inyectiva. Veamos que f es sobreyectiva. Para cada $y \in X$ buscamos un elemento $x \in X$ tal que f(x) = y. En efecto, de f(f(y)) = f(y) y por la propiedad inyectiva de f, se tiene que f(f(y)) = y. En consecuencia, para x = f(y) se tiene que f(x) = f(f(y)) = y.

Supongamos que f es sobreyectiva. Veamos que f es inyectiva. Sean $x_1, x_2 \in X$ tales que $f(x_1) = f(x_2)$. Como f es sobreyectiva, existen $y_1, y_2 \in X$ tales que $f(y_1) = x_1$ y $f(y_2) = x_2$. Aplicamos de nuevo la propiedad sobreyectiva de f a y_1 e y_2 para hallar $z_1, z_2 \in X$ tales que $f(z_1) = y_1$ y $f(z_2) = y_2$. Tenemos

$$f(x_1) = f(f(y_1)) = f(f(f(z_1))) = f(z_1) = y_1$$

 $f(x_2) = f(f(y_2)) = f(f(f(z_2))) = f(z_2) = y_2$

Por tanto si $f(x_1) = f(x_2)$ entonces, $y_1 = y_2$ y en consecuencia, $f(y_1) = f(y_2)$, es decir, $x_1 = x_2$.

Observación: Exponemos otra manera de demostrar la equivalencia, utilizando el teorema 3.61.

Si f es inyectiva, del apartado 2) del teorema 3.61 se deduce que existe una aplicación $g: X \longrightarrow X$ tal que $g \circ f = I_X$. Componemos a la izquierda ambos miembros de la igualdad $f \circ f \circ f = f$ con g y se obtiene

$$g \circ (f \circ f \circ f) = g \circ f$$

$$(g \circ f) \circ (f \circ f) = g \circ f$$

$$I_X \circ f \circ f = I_X$$

$$f \circ f = I_X$$

Aplicando el apartado 1) del teorema 3.61 se deduce que f es sobreyectiva.

Si f es sobreyectiva, del apartado 1) del teorema 3.61 se deduce que existe una aplicación $h: X \longrightarrow X$ tal que $f \circ h = I_X$. Componemos a la derecha ambos miembros de la igualdad $f \circ f \circ f = f$ con h y procediendo como en el caso anterior también se llega a $f \circ f = I_X$ de donde, aplicando el apartado 2) del teorema 3.61, se deduce que f es sobreyectiva.

Pregunta 2 (2,5 puntos)

Se define en \mathbb{Z} la relación dada por:

 $x \mathcal{R} y$ si y sólo si x + y es divisible por 2

- a) Demuestre que \mathcal{R} es una relación de equivalencia en \mathbb{Z} .
- b) Determine las clases de equivalencia.

Solución: a) Veamos que \mathcal{R} es una relación de equivalencia en \mathbb{Z} .

Es reflexiva: para todo $x \in \mathbb{Z}$ se tiene que $x \Re x$ pues x + x = 2x es divisible por 2.

Es simétrica: para todo $x, y \in \mathbb{Z}$ si $x \mathcal{R} y$ entonces x + y es divisible por 2 y cómo x + y = y + x se tiene que $y \mathcal{R} x$.

Es transitiva: sean $x, y, z \in \mathbb{Z}$ tales que $x \mathcal{R} y$ e $y \mathcal{R} z$. Por tanto, x + y es divisible por 2 e y + z es divisible por 2. Veamos que x + z es divisible por 2. Tenemos que x + y = 2k e y + z = 2k' siendo k y k' enteros, por tanto ,

sumando ambas igualdades se obtiene x + 2y + z = 2k + 2k' y en consecuencia x + z = 2k + 2k' - 2y = 2(k + k' - y) de donde se deduce que x + z es divisible por 2.

b) Observamos que la clase de equivalencia de 0 está formada por los elementos $x \in \mathbb{Z}$ tales que x + 0 = x es divisible por 2. Es decir,

$$[0] = \{ x \in \mathbb{Z} \mid x \text{ es par} \}$$

Análogamente la clase de equivalencia de 1 está formada por los elementos $x \in \mathbb{Z}$ tales que x+1 es divisible por 2. Equivalentemente

$$[1] = \{ x \in \mathbb{Z} \mid x \text{ es impar} \}$$

Teniendo en cuenta que [0] y [1] forman unas partición de \mathbb{Z} pues $[0] \cap [1] = \emptyset$ y $\mathbb{Z} = [0] \cup [1]$ podemos afirmar que la relación sólo consta de esas dos clases de equivalencia.

Pregunta 3 (2,5 puntos)

Sea la sucesión tal que $u_0 = 0$ y

$$u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$$

para todo $n \in \mathbb{N}^*$. Demuestre por inducción que para todo $n \in \mathbb{N}^*$ se tiene $0 < u_n \le 1$.

Solución: i) Las desigualdades son ciertas para n=1 pues $u_1=\frac{1}{2}$ y por tanto $0 < u_1 \le 1$.

ii) Supongamos que las desigualdades son ciertas para n, esto es, $0 < u_n \le 1$. Veamos que es cierta para n + 1, esto es, $0 < u_{n+1} \le 1$.

En primer lugar, si $u_n > 0$ entonces $1 + 2u_n > 0$ y $2 + u_n > 0$ y en consecuencia $u_{n+1} = \frac{1 + 2u_n}{2 + u_n} > 0$.

Por otro lado, teniendo en cuenta que $2 + u_n > 0$ se obtiene que

$$\frac{1+2u_n}{2+u_n} \le 1 \iff 1+2u_n \le 2+u_n \iff 2u_n-u_n \le 2-1 \iff u_n \le 1$$

y en consecuencia si $0 < u_n \le 1$ entonces $0 < u_{n+1} \le 1$.

Pregunta 4 (2,5 puntos)

Sea $H = \{z \in \mathbb{C} : z = a + ib, a, b \in \mathbb{Z}\}$. Consideramos las operaciones suma y producto de números complejos restringidas a H.

- a) ξ Es (H, +) un grupo?
- b) ¿Es (H^*, \cdot) un grupo? (siendo $H^* = H \setminus \{0\}$)

Justifique las respuestas.

Solución: a) Veamos que (H, +) es un grupo viendo que es un subgrupo de $(\mathbb{C}, +)$.

- i) $H \neq \emptyset$ pues $0 = 0 + i0 \in H$.
- ii) Si $z_1, z_2 \in H$, existen $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ tales que $z_1 = a_1 + ib_1$ y $z_2 = a_2 + ib_2$. En consecuencia,

$$z_1 - z_2 = a_1 + ib_1 - (a_2 + ib_2) = (a_1 - a_2) + i(b_1 - b_2) \in H$$

pues $a_1 - a_2, b_1 - b_2 \in \mathbb{Z}$.

b) (\mathbb{C}^*,\cdot) es un grupo y sin embargo (H^*,\cdot) no lo es pues, en general, no se puede asegurar que si $z\in H^*$, su inverso, que es un elemento de \mathbb{C}^* , sea un elemento de H^* . Por ejemplo, para $z=2=2+i.0\in H^*$ se tiene que $\frac{1}{z}=\frac{1}{2}\notin H^*$. De hecho los únicos elementos de H^* inversibles en H^* son:

$$\{1, -1, i, -i\}$$

Observación: Cuando se opta por demostrar que (H, +) (o (H^*, \cdot)) es un grupo directamente es fundamental no olvidar comprobar y constatar las únicas propiedades que podrían fallar:

- i) que las operaciones sean internas en H (o H^*).
- ii) que exista elemento neutro en H (o H^*).
- iii) que el simétrico de cada elemento de H (o H^*) esté en H (o H^*).

De hecho si no se comprueban lo que se está demostrando es que $(\mathbb{C},+)$ (o (\mathbb{C}^*,\cdot)) es un grupo y eso no es lo que se pide.