

Muon Alignment Constants Proposed for Sign-off (for CRAFT and Cosmic Ray Monte Carlo)

Jim Pivarski

Texas A&M University

for the Muon Alignment Community

3 June, 2009

- ▶ DTAlignmentRcd for CRAFT
 - internal DT alignment from tracks, independently confirmed by survey
 - ightharpoonup global DT positions and angles from tracks, tested with relative differences and high- p_T momentum reconstruction
- CSCAlignmentRcd for CRAFT
 - individual chambers relative to disks from photogrammetry
 - disk-bending due to \vec{B} from laser measurements
 - whole-disk positions relative to tracker from tracks
- Updated STARTUP Scenario for Monte Carlo
 - includes the above improvements
 - only appropriate for pre-collisions MC

Internal DT alignment

- Physically-motivated corrections to internal chamber geometry (superlayers): layer of glue, about 1 mm thick in z
- ► Track-based measurement (x residuals versus entrance angle) and survey agree in z
- ▶ 540 μ m verification in station 1 (plot)
- Track-based x corrections also improve whole-chamber segment angles

Global DT alignment

- ► Align individual muon chambers relative to tracker with tracker-only refits of globalMuons (unbiased residuals)
- ► Fully 6-DOF procedure, fitting for all alignment corrections and major instrumental/propagation effects together, once per chamber
 - four residuals: x, y position and $\frac{dx}{dz}$, $\frac{dy}{dz}$ entrance angle
 - correlation between position and angle residuals included
 - single-scattering (power-law) convoluted with Gaussian errors
- ▶ $100 < p_T < 200$ GeV, because low- p_T tracks are biased by an effect other than magnetic field map or material budget errors
- Consistent with tracker geometry in Tracker_Geometry_v5_offline
- ▶ Region aligned: wheels -1, 0, +1, all sectors except 1 and 7
- Realistic cosmic ray Monte Carlo study (except tracker misalignment); achieved the following systematics-dominated accuracy:

Up-to-date alignment code in CVS (and 3_1_0 release)

Example in real data

Jim Pivarski 5/13

▶ Wheel 0, station 1, sector 10 (largest statistics, bottom of CMS)

- ► Differences between proposed constants and previous (CRAFT_ALL_V5—12) shown below
- ► Systematic rotation of wheels is due to low-p_T tracks used in previous alignment

Momentum in split cosmics

Jim Pivarski 7/13

$$\frac{(1/\rho_T)_{top} - (1/\rho_T)_{bot}}{\sqrt{2}(1/\rho_T)_{bot}} \text{ (equal to } \frac{(\rho_T)_{top} - (\rho_T)_{bot}}{\sqrt{2}(\rho_T)_{bot}} \text{ if Gaussian)}$$

- $ightharpoonup 200 < p_T < 2000 \text{ GeV tracks (not used in the alignment)}$
- ► Key: tracker-only, sometimes with station 1, with station 1, all stations

CRAFT ALL V5-12

new constants

Tracker-only:

J. Tucker $5.33 \rightarrow 4.36\%$

Tracker and sometimes station 1: Tracker and muon station 1:

 $6.76 \rightarrow 4.50\%$

Tracker and all muon stations:

 $9.11 \rightarrow 5.65\%$

- ▶ 2008 MC $\frac{(1/p_T)_{\text{meas}} (1/p_T)_{\text{gen}}}{\sqrt{2}(1/p_T)_{\text{gen}}}$ tracker + station 1 resolution:
 - IDEAL: 2%, CSA08 10 pb $^{-1}$: 3%, STARTUP: 6% at 200 GeV
- ► Cosmic splitting $\frac{(1/p_T)_{\text{top}}-(1/p_T)_{\text{bot}}}{\sqrt{2}(1/p_T)_{\text{bot}}}$ (same reco): 4.5% at 200 GeV

CSC alignment overview

Photogrammetry + disk-bending (lasers) + disk positions (tracks)

CSC photogrammetry

- Describes individual chamber positions relative to their disks (300 μ m resolution)
- Not expected to move in x and y during $0 \text{ T} \rightarrow 3.8 \text{ T}$

Disk-bending measurements

Jim Pivarski

▶ From Straight Line Monitor lasers and the Link System

Disk positions

Jim Pivarski 10/13

- lacktriangle Local cathode strip residuals $(pprox r\phi)$ as a function of chamber
- ▶ Fit ME1/2 (2/2) to global x, y, ϕ_z , cross-check with ME1/3 (3/2)

Biggest correction: ME-2 and ME-3

 ϕ_z : 1.44 mrad x: 4.4 mm

y: -0.1 mm

► ME-2/2 fit (top) is a good match to ME-3/2 (bottom)

Cross-checks for CSCs

Jim Pivarski 11/13

- ► Raw globalMuon residuals (what we used for alignment): improved by construction
- $p_{\mathrm{tracker}} p_{\mathrm{standAlone}}$ and standAlone χ^2 : no significant improvement (blue is data)
- We're continuing these studies, to align individual CSCs with tracks (difficult because of the angular distribution of cosmic rays)

- ▶ DT/CSC STARTUP misalignment scenario currently in the database describes the February CRAFT alignment (V5-12)
- Since then...
 - more chambers have been aligned, with more degrees of freedom (within wheels -1, 0, +1)
 - resolution has improved due to updated algorithms
 - knowledge about resolution has improved: split cosmics techniques, $p_{\text{tracker}}/p_{\text{globalMuon}}$, relative position checks, Monte Carlo study
- We've prepared a new geometry describing the state after CRAFT
 - random-generator sigmas are explicitly derived from the cross-checks, alignment corrections, and MC study
 - unaligned chambers (wheels ± 2 and sectors 1 and 7) still have large misalignments
- ▶ Appropriate for cosmic ray MC but not for physics: for physics analyses, we will align with collisions data (and therefore reach all chambers)

- ▶ DTAlignmentRcd for CRAFT (2_2_X format) /castor/cern.ch/user/p/pivarski/DTCRAFTiter03_withCenteredTracker.db
- CSCAlignmentRcd for CRAFT (2_2_X format)
 /castor/cern.ch/user/p/pivarski/CSCCRAFT_HardwareAndPGAndDisk2.db
- Updated STARTUP Scenario for Monte Carlo /castor/cern.ch/user/p/pivarski/MCScenario_CRAFT1_22X_V02-09-04.db /castor/cern.ch/user/p/pivarski/MCScenario_CRAFT1_31X_V02-09-04.db

Backup: relative DT positions

- Jim Pivarski
- 14/13

- ► Alignment determined positions of each chamber individually from the tracker
- ► Cross-check with relative chamber positions
- Measured from difference of residuals with respect to an unbiased track:

(track - station 3 hit) - (track - station 2 hit)

- New x resolution: 400 μ m, with the exception of station 4, sector 4 chambers (which have internal structure, under investigation)
- New ϕ_v resolution: 0.3–0.5 mrad