Forecasting Dublin Bike Availability Using Machine Learning Models

This Project aligns with Dublin City Council's Smart Mobility goals and supports sustainable transport initiatives in Ireland.

AUTHOR

Eliana Hincapié

01. Introduction

Since its launch in 2009, the Dublin Bikes scheme has become a vital component of Dublin's public transportation network, offering thousands of bicycles distributed across more than 100 stations throughout the city. The scheme supports over 4 million journeys annually, playing a crucial role in facilitating last-mile connectivity and encouraging the use of public transport.

The project integrates principles of:

- Data Science
- Machine Learning
- Project Management Methodology

To address a real-world problem of growing significance.

02. Business Description

Hypothesis.

Bike availability at docking stations can be forecasted using key contextual and operational features.

Objective.

To develop machine learning models capable of accurately forecasting the availability of bicycles.

03. Technologies and tools used

Libraries.

- pandas data manipulation and preprocessing
- numpy numerical computing
- matplotlib & seaborn data visualization
- scikit-learn model implementation, training, and evaluation

Machine Learning Algorithms.

- Linear Regression
- Decision Tree Regressor
- Random Forest Regressor
- XGBoost Regressor

Hyperparameter Tuning & Cross-Validation.

- GridSearchCV
- Cross-validation, with evaluation via mean crossvalidated scores.

Models.

- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
- R² Score

04. Data

Data Sources. Historical bike-sharing system data containing station status, capacity, availability, and time-based information

Data Size. 605,009 rows and 15 columns

Initial Exploration. - Identified key variables: capacity, num_bikes_available, and last_reported (timestamp) Detected potential issues: high dimensionality, irrelevant data, and non-numeric features

Data Preparation.

- Data Cleaning: Filtered out columns and sampled the dataset. - Feature Engineering: Extracted time-based features from last reported: hour, minute, day_of_week, day, month, year, date. Selected relevant features: capacity, time-based variables

07. Challenges

Challenge Strategy used The original dataset -Sampled the dataset to a contained over manageable size using 600,000 rows, which **Large Dataset** .sample() for development led to slow and testing stages. computations during -Removed unnecessary **Processing** modeling, features to reduce hyperparameter dimensionality. tuning, and visualization. The last_reported Converted it into a column was in object datetime format using format and required pd.to_datetime(), and transformation into then extracted relevant Complexity usable numerical components to create time-based features. new predictive features. Some tree-based models, like Random -Performed cross-

Model **Overfitting**

and

Speed

Datetime

Feature

Forest and Decision Tree, initially performed too well on training data but poorly during crossvalidation, indicating overfitting.

validation to evaluate true generalization. -Used hyperparameter tuning to reduce overfitting.

05. Results

Model	MAE	RMSE	R2 Score
Linear Regression	7.85	9.37	0.06
Decision Tree	2.07	3.89	0.84
Random Forest	2.08	3.08	0.89
XGBoost Regressor	4.01	5.21	0.71

Random Forest delivered the best overall performance. As an ensemble of Decision Trees, it reduced variance through aggregation and provided stable predictions across a variety of scenarios. Its low MAE and high R² score indicate strong generalization capabilities and make it the most reliable candidate for operational deployment.

06. Cross-Validated MAE

Cross-validation results reinforce the earlier conclusion that ensemble methods, particularly Random Forest, are the most reliable for forecasting bike availability in dynamic environments like Dublin. They combine strong predictive accuracy with low variability across data splits, making them robust and deployable solutions

08. Conclusion

This project successfully demonstrated the use of machine learning to forecast bike availability within Dublin's bike-sharing network. By applying a structured CRISP-DM methodology and implementing four predictive models, the analysis revealed that Random Forest provides the most accurate and generalizable results.