

Digitalized Logistics

Advanced Analytics@POST AG

Christoph Bodner & Thomas Laber

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

What we do

How we do it

Data Science@Post AG:

- Overview: Post AG
- Interdisciplinary team

Projects we work on:

- Parcel volume forecast
- Expected delivery times

With a combination of:

- Math/statistics
- Coding (Azure + R)
- Grit & perseverance©

AGENDA

01

03

Topics

Who we are (obligatory marketing stuff...) What we do

Data Science@Post AG:

- Overview: Post AG
- Interdisciplinary team

Projects we work on:

- Parcel volume forecast
- Expected delivery times

How we do it

With a combination of:

- Math/statistics
- Coding (Azure + R)
- Grit & perseverance©

PARCEL VOLUMES OF AUSTRIAN POST mio parcels

OVERVIEW: POST AG STRONG PRESENCE IN EASTERN EUROPE

GROWTH FOCUS ON PACKAGE & LOGISTICS DIVISION

Post

OUR TEAM PEOPLE WHO LIKE $\pi z^2 a$ IN EVERY FORM®

Christoph Bodner
Lead Data Scientist

Quantitative Finance (WU)
Prev.: KPMG

Thomas Laber
Senior Data Scientist

Business Informatics (TU)
Prev.: Accenture

Martin Blöschl

Junior Data Scientist

Computational Intelligence (TU)

Raphael Pesi
Junior Data Scientist
---Mathematics (TU)

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

What we do

How we do it

Data Science@Post AG:

- Overview: Post AG
- Interdisciplinary team

Projects we work on:

- Parcel volume forecast
- Expected delivery times

With a combination of:

- Math/statistics
- Coding (Azure + R)
- Grit & perseverance⊚

PARCEL VOLUME FORECAST HOW MANY PARCELS WILL WE NEED TO DELIVER IN THE FUTURE?

THE PROBLEM IS SIMPLE TO FORMULATE BUT NOT THAT EASY TO SOLVE

Parcel volume over time

As small as possible

Package volume = prediction + error

h(X)

How can we find the optimal h(X)?

$$\hat{h} = arg \min_{h \in H} R_{emp}(h)$$

where:

$$R_{emp}(h) = \frac{1}{m} \sum_{i=1}^{m} L(h(x_i), y_i)$$

Post

SO THE QUESTION IS: HOW DO WE FIND THE OPTIMAL PREDICTION FUNCTION?

There are lots of different ways to find h(X):

Neural networks

Linear Regression (Image is no mistake ©)

Gradient Boosting (with decision trees)

other models

BUT NEURAL NETS ARE SO SEXY! WHY USE GRADIENT BOOSTING?

Gradient Boosting offers a very good combination of complexity & performance

Post

LET'S TAKE A DEEPER LOOK HOW DOES GRADIENT BOOSTING WORK?

Individual weak forecasts are combined to form a strong prediction

XGBOOST - OVERVIEW VISUALISATION

XGBOOST A CLOSER LOOK

XGBOOST A CLOSER LOOK

PREDICTING PARCEL DELIVERY TIMES PROBLEM OVERVIEW

MOSTLY VERY CONSTANT TOURS DELIVERY 'CLUSTERS' CLEARLY VISIBLE

SOMETIMES DRASTIC DIFFERENCES TOUR CAN CHANGE RAPIDLY

Using Frechet-distance to compare tours ...

... shows rapid change from one day to next

Post

HOW CAN WE PREDICT DELIVERY TIMES? IDEA: FIND 'SIMILAR' ROUTES IN THE PAST

Routes in location-time matrix (part of Vienna)

When are two routes similar?

- Similar trajectory, but differing stops and time points
- Similar trajectory, similar stops and differing time points
- Similar trajectory, similar stops and similar time points

AGENDA

01

02

03

Topics

Who we are (obligatory marketing stuff...)

What we do

How we do it

Data Science@Post AG:

- Overview: Post AG
- Interdisciplinary team

Projects we work on:

- Parcel volume forecast
- Expected delivery times

With a combination of:

- Math/statistics
- Coding (Azure + R)
- Grit & perseverance©

VPost

DATA SCIENTISTS NEED MANY SKILLS ASKING THE RIGHT QUESTIONS ≥ ALGORITHMS

PROCESS OVERVIEW DATA SCIENCE PROJECTS ARE ALWAYS "AGILE"

OUR STACK WE ARE CURRENTLY BUILDING A HPC ENVIRONMENT

Data Validation

Done in R or Python

Explore Data

Test hypotheses

Feature Engineering

Identify relevant variables or create them

Prototyp Model

create a baseline Scrum Demo

Deployment

Does is scale?
Are we ready for the cloud?
Is the cloud ready for us?

LET'S TAKE A LOOK...

PREDICTION CHALLENGE FORECAST & WIN!

Predict 1h-delivery-time windows for our customer parcels

Der Online Marktplat für Österreich

1. Price: € 200,- voucher
2. Price: € 100,- voucher
3. Price: Goody bag

All the information you need:

https://github.com/POSTAG/time_window_prediction

THANK YOU FOR YOUR ATTENTION!

