Two-level Logic Synthesis and Optimization

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- **□** Objectives
 - □ Fundamentals of logic synthesis
 - Mathematical formulation
 - □ Definition of the problems

Combinational logic design Background

- □ Boolean Algebra
 - □ Quintuple (B, +, . , 0, 1)
 - □ Binary Boolean algebra B = { 0, 1 }
- □ Boolean function
 - □ Single output $f: B^n \rightarrow B$
 - \square Multiple output $f: B^n \rightarrow B^m$
 - □ Incompletely-specified:
 - □ Don't care symbol: *
 - $\Box f: B^n \rightarrow \{0, 1, *\}^m$

The don't care conditions

- We do not care about the value of a function
- Related to the environment
 - Input patterns that never occur
 - □ Input patterns such that some output is never observed
- □ Very important for synthesis and optimization

Definitions

- □ Scalar function:
 - □ ON-set
 - ☐ Subset of the domain such that f is true
 - □ OFF-set
 - □ Subset of the domain such that f is false
 - □ DC-set
 - □ Subset of the domain such that f is a don't care
- Multiple-output function:
 - □ ON, OFF, DC-sets defined for each component

Cubical representation

Definitions

- □ Boolean variables
- □ Boolean literals:
 - Variables and their complement
- □ Product or cube:
 - □ Product of literals
- ☐ Implicant:
 - Product implying a value of the function (usually 1)
 - Hypercube in the Boolean space
- Minterm:
 - Product of all input variables implying a value of the function (usually 1)
 - □ Vertex in the Boolean space

Tabular representations

- □ Truth table
 - □ List of all minterms of a function
- □ Implicant table or cover
 - ☐ List of implicants sufficient to define a function
- □ Note
 - □ Implicant tables are smaller in size as compared to truth tables

Example of truth table

$\Box x = ab+a'c; y = ab+bc+ac$

abc	ху
000	00
001	10
010	00
011	11
100	00
101	01
110	11
111	11

Example of implicant table

 $\Box x = ab+a'c; y = ab+bc+ac$

abc	ху
001	10
*11	11
101	01
11*	11

Cubical representation of minterms and implicants

$$\Box$$
 f₁ = a'b'c' + a'b'c + abc + abc'

$$\Box$$
 f₂ = a'b'c + ab'c

(c) Giovanni De Micheli

Representations

- □ Visual representations
 - Cubical notation
 - □ Karnaugh maps
- □ Computer-oriented representations
 - Matrices
 - □ Sparse
 - Various encoding
 - □ Binary-decision diagrams
 - □ Address sparsity and efficiency

Module 2

- **□** Objectives
 - □ Two-level logic optimization
 - Motivation
 - Models
 - Exact algorithms for logic optimization

Two-level logic optimization motivation

- □ Reduce size of the representation
- Direct implementation
 - □ PLAs reduce size and delay
- □ Other implementation styles
 - □ Reduce amount of information
 - □ Simplify local functions and connections

Programmable logic arrays

- □ Macro-cells with rectangular structure
 - Implement any multi-output function
 - Layout generated by module generators
 - Fairly popular in the seventies/eighties
- Advantages
 - Simple, predictable timing
- Disadvantages
 - Less flexible than cell-based realization
 - Dynamic operation
- □ Open issue
 - □ Will PLA structures be useful with new nanotechnologies? (e.g., nanowires)

Programmable logic array

Two-level minimization

- □ Assumptions
 - □ Primary goal is to reduce the number of implicants
 - □ All implicants have the same cost
 - Secondary goal is to reduce the number of literals
- □ Rationale
 - Implicants correspond to PLA rows
 - □ Literals correspond to transistors

Definitions

- □ Minimum cover
 - Cover of a function with minimum number of implicants
 - Global optimum
- Minimal cover or irredundant cover
 - Cover of the function that is not a proper superset of another cover
 - No implicant can be dropped
 - Local optimum
- ☐ Minimal w.r.to 1-implicant containment
 - No implicant contained by another one
 - Weak local optimum

Example

 \Box f₁ = a'b'c' + a'b'c + ab'c + abc +abc'; f₂ = a'b'c + ab'c

(c) Giovanni De Micheli

Definitions

- □ Prime implicant
 - Implicant not contained by any other implicant
- □ Prime cover
 - □ Cover of prime implicants
- □ Essential prime implicant
 - □ There exist some minterm covered only by that prime implicant
 - □ Needs to be included in the cover

Two-level logic minimization

- □ Exact methods
 - □ Compute minimum cover
 - □ Often difficult/impossible for large functions
 - □ Based on Quine-McCluskey method
- ☐ Heuristic methods
 - □ Compute minimal covers (possibly minimum)
 - □ Large variety of methods and programs
 - □ MINI, PRESTO, ESPRESSO

Exact logic minimization

- □ Quine's theorem:
 - ☐ There is a minimum cover that is prime
- □ Consequence
 - □ Search for minimum cover can be restricted to prime implicants
- □ Quine-McCluskey method
 - □ Compute prime implicants
 - □ Determine minimum cover

Prime implicant table

- □ Rows: minterms
- □ Columns: prime implicants
- □ Exponential size
 - □ 2ⁿ minterms
 - □ Up to 3ⁿ / n prime implicants
- □ Remarks
 - □ Some functions have much fewer primes
 - Minterms can be grouped together
 - Implicit methods for implicant enumeration

Example

□ f = a'b'c' + a'b'c + ab'c +abc +abc'

□ Primes:

$$egin{array}{c|c|c|c} lpha & 00* & 1 \ eta & *01 & 1 \ \gamma & 1*1 & 1 \ \delta & 11* & 1 \ \end{array}$$

□Table:

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

Prime implicants of f

Minimum cover of f

Minimum cover early methods

- □ Reduce table
 - Iteratively identify essentials,
 save them in the cover.
 Remove covered minterms
- □ Petrick's method
 - □ Write covering clauses in pos form
 - □ Multiply out pos form into *sop* form
 - □ Select cube of minimum size
- □ Remark
 - Multiplying out clauses has exponential cost

Example

pos clauses

$$\square (\alpha) (\alpha + \beta) (\beta + \gamma) (\gamma + \delta) (\delta) = 1$$

□ *sop* form:

$$\Box$$
 $\alpha\beta\delta + \alpha\gamma\delta = 1$

Matrix representation

- □ View table as Boolean matrix: A
- □ Selection Boolean vector for primes: x
- □ Determine X such that
 - $\Box A x \ge 1$
 - □ Select enough columns to cover all rows
- Minimize cardinality of x

Example

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

Covering problem

- □ Set covering problem:
 - □ A set S -- minterm set
 - □ A collection C of subsets (implicant set)
 - □ Select fewest elements of C to cover S
- □ Computationally intractable problem
- □ Exact solution method
 - □ Branch and bound algorithm
- □ Several heuristic approximation methods

Example Edge-cover of a hypergraph

Branch and bound algorithm

- ☐ Tree search in the solution space
 - Potentially exponential
- □ Use bounding function:
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far, then kill the search
 - □ Bounding function should be fast to evaluate and accurate
- □ Good pruning may expedite the search

Example

Branch and bound for logic minimization Reduction strategies

- □ Use matrix formulation of the problem
- □ Partitioning:
 - ☐ If A is block diagonal:
 - □ Solve covering problems for the corresponding blocks
- Essentials
 - □ Column incident to one (or more) rows with single 1
 - □ Select column
 - ☐ Remove covered row(s) from table

Branch and bound for logic minimization Reduction strategies

- □ Column (implicant) dominance:
 - □ If $a_{ki} \ge a_{kj}$ for all k
 - □ Remove column j (dominated)
 - Dominated implicant (j) has its minterms already covered by dominant implicant (i)
- □ Row (minterm) dominance:
 - □ If $a_{ik} \ge a_{ik}$ for all k
 - □ Remove row i (dominant)
 - When an implicant covers the dominated minterm, it also covers the dominant one

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Example

- □Fourth column is essential
- □Fifth column is dominated
- □Fifth row is dominant
- ■Matrix after reductions:

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

Branch and bound covering algorithm

```
EXACT_COVER(A,x,b) {
Reduce matrix A and update corresponding x;
if (current_estimate ≥ |b|) return (b);
if (A has no rows) return(x);
select a branching column c;
x_{c} = 1;
\tilde{A} = A after deleting c and rows incident to it;
x^{\sim} = EXACT\_COVER(\tilde{A}, x, b);
if (|x^{-}| < |b|)
        b = x^{-}:
x_c = 0;
\hat{A} = A after deleting c;
x^{\sim} = EXACT\_COVER(\tilde{A}, x, b);
if (|x^{\sim}| < |b|)
        b = x^{-}:
return(b);
```

Bounding function

- Estimate lower bound on covers that can be derived from current solution vector x
- ☐ The sum of the 1s in x, plus bound of cover for local A
 - □ Independent set of rows
 - □ No 1 in the same column
 - □ Require independent implicants to cover
 - □ Construct graph to show pairwise independence
 - □ Find clique number
 - □ Size of the largest clique
 - □ Approximation (lower) is acceptable

- □Row 4 independent from 1,2,3
- □Clique number and bound is 2

$$\mathbf{A} = \left[\begin{array}{ccccc} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right]$$

- □There are no independent rows
 - □ Clique number is 1 (one vertex)
 - Bound is 1+1= 2
 - Because of the essential already selected

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Example Branching on the cyclic core

□Select first column

- □ Recur with $\tilde{A} = [11]$
 - □ Delete one dominated column
 - □ Take other column (essential)
- New cost is 3

□Exclude first column

- Find another solution with cost equal to 3.
- Discard

A =	0 1 1	1 0 1	
	•		

Espresso-exact

- □ Exact 2-level logic minimizer
- Exploits iterative reduction and branch and bound algorithm on cyclic core
- □ Compact implicant table
 - Rows represent groups of minterms covered by the same implicants
- □ Very efficient
 - □ Solves most benchmarks

After removing the essentials

	α	β	3	ζ
0000,0010	1	1	0	0
1101	0	0	1	1

α	0 * * 0	1
β	* 0 * 0	1
Y	0 1 * *	1
δ	10**	1
3	1 * 0 1	1
ζ	* 1 0 1	1

Exact two-level minimization

- □ There are two main difficulties:
 - Storage of the implicant table
 - Solving the cyclic core
- □ Implicit representation of prime implicants
 - Methods based on binary decision diagrams
 - Avoid explicit tabulation
- □ Recent methods make 2-level optimization solve exactly almost all benchmarks
 - □ Heuristic optimization is just used to achieve solutions faster

Module 3

- □ Boolean Relations
 - Motivation of using relations
 - Optimization of realization of Boolean relation
 - □ Comparisons to two-level optimization

Boolean relations

- □ Generalization of Boolean functions
- More than one output pattern may correspond to an input pattern
 - Multiple-choice specifications
 - Model inner blocks of multi-level circuits
- Degrees of freedom in finding an implementation
 - More general than don't care conditions
- □ Problem:
 - Given a Boolean relation, find a minimum cover of a compatible
 Boolean function that can implement the relation

□Compare:

- a + b > 4?
- a + b < 3?

a_1	a_0	b_1	b_{O}	×
0	0	0	0	{ 000, 001, 010 }
0	0	0	1	{ 000, 001, 010 }
0	0	1	0	{ 000, 001, 010 }
0	1	0	0	{ 000, 001, 010 }
1	0	0	0	{ 000, 001, 010 }
0	1	0	1	{ 000, 001, 010 }
0	0	1	1	{ 011, 100 }
0	1	1	0	$\{ 011, 100 \}$
1	0	0	1	{ 011, 100 }
1	0	1	0	{ 011, 100 }
1	1	0	0	{ 011, 100 }
0	1	1	1	{ 011, 100 }
1	1	0	1	{ 011, 100 }
1	0	1	1	{ 101, 110, 111 }
1	1	1	0	{ 101, 110, 111 }
1	1	1	1	$\{101, 110, 111\}$

□Circuit is no longer an adder

a_1	a_{0}	b_1	b_{O}	X
0	*	1	*	010
1	*	0	*	010
1	*	1	*	100
*	*	*	1	001
*	1	*	*	001

Minimization of Boolean relations

- □ Since there are many possible output values (for any input), there are many logic functions implementing the relation
 - □ Compatible functions
- □ Problem
 - ☐ Find a minimum compatible function
- □ Do not enumerate all compatible functions
 - □ Compute the primes of the compatible functions
 - □ C-primes
 - □ Derive a logic cover from the c-primes

Binate covering

- □ Covering problem is more complex
 - As compared to minimizing logic functions.
- □ In classic Boolean minimization we just need enough implicants to cover the minterm
 - Covering clause is unate in all variables
 - Any additional implicant does not hurt
- □ In Boolean relation optimization, we need to pick implicants to realize a compatible function
 - Some implicants cannot be taken together
 - Covering clause is binate (implicant mutual exclusion)
 - □ Non-compact Boolean space

Solving binate covering

- □ Binate cover can be solved with branch and bound
 - In practice much more difficult to solve, because it is harder to bound effectively
- □ Binate cover can be reduced to min-cost SAT
 - □ SAT solvers can be used
- ☐ Binate cover can be also modeled by BDDs
- □ Several approximation algorithms for binate cover

Boolean relations

- □ Generalization of Boolean functions
 - More degrees of freedom than don't care sets
- ☐ Useful to represent multiple choice
- □ Useful to model internals of logic networks
- □ Elegant formalism, but computationally-intensive solution method