PhD Development Economics

Bastiaar Quast

Introductio

Cryptocurrence Inflation

Currency Attacks

Pensions, Child Growt

End Notes

References

Preliminary Thesis Defence February 26, 2014

Jean-Louis Arcand^{1,4} Ugo Panizza^{2,4}
Bastiaan Quast^{3,4}

¹Professor of Economics, Supervisor

²Professor of Economics, Second Reader

³PhD Student, bastiaan.quast@graduateinstitute.ch

⁴The Graduate Institute. Geneva

Introduction

Bastiaa Quast

Introduction

- Cryptocurrence Inflation
- Uncertainty Currency Attacks
- Pensions, Child Growt

End Note

Reference

- 1 Introduction
- 2 Cryptocurrency Inflation
- 3 Uncertainty and Risk in Currency Attacks
- 4 Pensions and Child Growth: Additional Evidence from South-Africa
- 5 End Notes

Questions

Bastiaar Quast

Introduction

Cryptocurrent Inflation

Uncertainty Currency Attacks

Pensions, Child Growtl

End Note

Reference

Cryptocurrency Inflation

Relevant enough for Development Economics?

Knightian Uncertainty:

What to do with this critique?

Pensions and Child Growth:

- Negative policy effect explanation?
- Defining of Age-Based and Height-Based Z-scores, correct?
- BMI as convex mapping of Weight-for-Height, significance?

Cryptocurrency Inflation

Bastiaaı Quast

Introductio

Cryptocurrency Inflation

Uncertainty Currency Attacks

Pensions, Child Growt

End Note

Referen

Often heard problems Bitcoin:

- There is no inflation
- 2 Mining is wasteful

Consider Bitcoin together with other Cryptocurrencies

- Expansion in no. of coins, but expansion in no. of currencies
- Miners will move to less-mined currencies, leading to less waste
- Model as positive currency attack (Obstfeld 1986, 1996)

CENTRE FOR FINANCE AND DEVELOPMENT

Uncertainty and Risk in Currency Attacks Knightian Uncertainty in Morris and Shin (1998)

Bastiaa Quast

Introduction

Inflation Inflation

Currency Attacks

Pensions, Child Growt

End Notes

Reference

A review of "Unique equilibrium in a model of self-fulfilling currency attacks" (Morris and Shin 1998)

- Based on currency models Obstfeld (1986, 1995, 1996)
- Finds a unique equilibrium when 'uncertainy' is added Model:
 - State of economic fundamentals: $\theta \sim U[0,1]$
 - Pegged at a level larger than fundamentals: $(e* \geq f(\theta))$
 - Speculators can short, their payoff: $e^* f(\theta) t$
 - Peg cost: economic fund. and speculators attacking (α)
 - Government derives value: $\nu c(\alpha, \theta)$ from defending peg

Outcomes:

- $[0, \underline{\theta}]$, cost always too high, unstable region
- $[\underline{\theta}, \overline{\theta}]$, enough attack, cost too high, 'ripe for attack'
- $[\bar{\theta},1]$, cost of shorting always outweigh gains, stable region

Uncertainty and Risk in Currency Attacks

Bastiaar Quast

Introductio

Cryptocurrent Inflation

Uncertainty, Currency Attacks

Pensions, Child Growt

End Note

Reference

Critiques:

- 1 Strange result, does not correspond to reality
- The 'distortion' changes uncertainty to risk, effectively increasing the body of knowledge
- The distortion of perception has a uniform distribution, results do not hold under e.g. Gaussian
- 4 Speculator risk profile is redefined:

For the next step, consider the strategy profile where every speculator attacks the currency if and only if the message x is less than some fixed number k. (Morris and Shin 1998, p. 592)

Pensions and Child Growth

Additional Evidence from South Africa

Bastiaar Quast

Introductio

Cryptocurrent Inflation

Uncertainty Currency Attacks

Pensions, Child Growth

End Note

Referenc

- Based on "Grandmothers and Granddaughters: Old-Age Pensions and Intrahousehold Allocation in South Africa" (Duflo 2000, 2003) methodology
- Address the issue of eligibility-age discrepancy
- South African Household Survey (Southern Africa Labour and Development Research Unit 2008, 2012, 2013)
- Elibility-age equalisation in 2009

Model:

$$y_{it} = \gamma_i + \lambda_t + \mu P_{it}^f + \nu P_{it}^m + X_{it} + \delta T_{it} + \rho T_{it} * P_{it}^m + \epsilon_{it}$$
 (3)

Pensions and Child Growth

Results: Age-Based Z-scores

Bastiaar Quast

Introduction

Cryptocurrence Inflation

Currency Attacks

Pensions, Child Growth

End Note

Reference

Table : Height-for-Age Z-score

specification	1	2	3
w_spen_m	0.2366	*0.8228	0.7908
w_spen_w	-0.2331	0.1053	0.1072
elig.men.60		**-0.3419	**-0.3465
w_spen_m1:elig.men.60			0.0446

Table : Weight-for-Age Z-score

specification	1	2	3
w_spen_m	0.2366	0.2981	0.4780
w_spen_w	-0.2331	-0.3112	-0.3280
elig.men.60		***-0.3475	**-0.3243
w_spen_m1:elig.men.60			-0.2545

CENTRE FOR FINANCE AND DEVELOPMENT

Pensions and Child Growth

Results: Height-Based Z-scores

Bastiaar Quast

Introduction

Inflation

Uncertaint Currency Attacks

Pensions, Child Growth

End Note

Reference

Table: Weight-for-Height Z-score

specification	1	2	3
w_spen_m	-0.3532	-0.3210	-0.4303
w_spen_w	0.0655	0.0371	0.0478
elig.men.60		-0.1417	-0.1574
w_spen_m1:elig.men.60			0.1484

Table: Body-Mass-Index Z-score

specification	1	2	3
w_spen_m	*-0.8058	*-0.7905	*-1.0226
w_spen_w	-0.1592	-0.1956	-0.1742
elig.men.60		-0.1674	-0.2049
w_spen_m1:elig.men.60			0.3407

End Notes

Bastiaar Quast

Introductio

Cryptocurren Inflation

Uncertainty Currency Attacks

Pensions, Child Growt

End Notes

Referenc

Summary

- Cryptocurrency Inflation, through multiplicity
- Currency Attacks: uncertainty vs. risk, redefining risk profile, uniform distribution
- Pensions and Child Growth: negative effect

Questions

- Negative policy effect: explanation?
- Cryptocurrency Inflation: relevant for Development Economics?
- Knightian Uncertainty: What to do with this critique?

References I

Bastiaai Quast

Introductio

Cryptocurren Inflation

Uncertainty Currency Attacks

Pensions, Child Growt

End Note

References

Duflo, Esther. 2000. "Child health and household resources in South Africa: Evidence from the Old Age Pension program." *The American Economic Review* 90 (2): 393–398.

http://www.jstor.org/discover/10.2307/117257.

——. 2003. "Grandmothers and Granddaughters: Old-Age Pensions and Intrahousehold Allocation in South Africa." *The World Bank Economic Review* 17 (1): 1–25. doi:10.1093/wber/lhg013.

Morris, Stephen, and Hyun Song Shin. 1998. "Unique equilibrium in a model of self-fulfilling currency attacks." American Economic Review:587–597. http://www.jstor.org/stable/116850.

References II

Bastiaar Quast

Introductio

Inflation

Uncertainty Currency Attacks

Pensions, Child Growt

End Note

References

Obstfeld, Maurice. 1986. Rational and self-fulfilling balance-of-payments crises.

——. 1995. *The logic of currency crises*. Springer.

——. 1996. "Models of currency crises with self-fulfilling features." *European economic review* 40 (3): 1037–1047.

Southern Africa Labour and Development Research Unit. 2008.

National Income Dynamics Study, Wave 1.

http://www.nids.uct.ac.za/home/.

———. 2012. National Income Dynamics Study, Wave 2. http://www.nids.uct.ac.za/home/.

——. 2013. National Income Dynamics Study, Wave 3. http://www.nids.uct.ac.za/home/.