Finite element simulation data for 3×3 , 5×5 and 7×7 divisions of the surface

Input parameter:

- Number of pieces
- Angle 1-4 (for all the cases)
- Angle 5,6 (for 5×5 and 7×7)
- Angle 7, 8 (for 7×7)
- Length ratio

Output parameter:

- Safety factor: min(safety factor)
- Max out of plane deformation
- Max total contact energy
- Max elastic strain energy
- Max average reaction force
- Max edge temp
- Max average friction force
- Max heat rate
- Max internal energy
- Total friction dissipation rate: area under the curve

Goals:

- 1- Train the model with 3×3 , 5×5 and 7×7 patterns and get acceptable predictions, the observations include:
 - different pieces (9, 25, 49)
 - different angles (4 8 different angles)
 - o all the angles are fixed from (5, 10, 15, 20, 25),
 - o randomly chosen from the list
 - different length ratios (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)
- 2- Make <u>a grid of possible length ratios and angles</u> and feed it to the trained model and get the predictions
- 3- Filter the ceramic designs corresponding to the desired predicted outputs (eg. min Oop. deform., min heat rate,)

Questions:

- Can we mix the simulation results for 3×3 , 5×5 and 7×7 patterns
- If the number of inputs for 3×3 is different from 5×5 and 7×7 patterns, they can not be used in the same data sets for ML model

Exploratory analysis

- Looking at the covariance of parameters to find the most correlated parameters for three different panel structures
- Looking at the pair-plots for three panel structures to compare the range of each parameter change
- Finding the possible outliers based on distribution of outputs and set up reruns
- Comparing the reruns with the initial runs
- Determining the output parameters for predicting via ML models

Covariance of parameters for 3 different panels

-0.8

-0.6

-0.4

-0.2

-0.0

--0.2

-0.4

-0.8

-0.6

-0.4

-0.2

Repeated runs are shown with squares.

Correlated parameters from pairplots:

Elastic strain Engy & Tot. cont. Engy.

Int. Engy & Edge Temp.

Finding possible outliers

Edge_temp

A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots.

Avr_frictForce

HeatRate

IntEngy

Finding possible outliers and send for rerunning

<pre>def boxplot_outliers(arr): # finding the 1st quartile</pre>	Number_pieces	Length_ratio	angle1_9p	angle2_9	angle3_9p	angle4_9p
q1 = np.quantile(arr, 0.25)	9.0	0.50	5.0	25.0	25.0	10.0
<pre># finding the 3rd quartile q3 = np.quantile(arr, 0.75)</pre>	9.0	0.75	5.0	25.0	15.0	10.0
med = np.median(arr)	9.0	0.50	5.0	25.0	15.0	10.0
<pre># finding the iqr region iqr = q3-q1</pre>	9.0	0.50	15.0	10.0	20.0	5.0
# finding upper and lower whiskers	9.0	0.75	5.0	25.0	25.0	10.0
<pre>upper_bound = q3+(1.5*iqr) lower_bound = q1-(1.5*iqr) return df_combined.loc[(arr > upper_bound) (arr < lower_bound)]</pre>	9.0	1.50	10.0	10.0	10.0	10.0
Number pieces Length ratio	anglet 25n an	ale2 25n and	lo3 25n an	ale/ 25p	angle5 25n	angle6 25n

Number_pieces	Length_ratio	angle1_25p	angle2_25p	angle3_25p	angle4_25p	angle5_25p	angle6_25p
25.0	1.0	5.0	5.0	5.0	5.0	5.0	5.0
25.0	1.0	10.0	10.0	10.0	10.0	10.0	10.0

Number_pieces	Length_ratio	angle1_49p	angle2_49p	angle3_49p	angle4_49p	angle5_49p	angle6_49p	angle7_49p	angle8_49p
49.0	1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
49.0	1.0	15.0	10.0	15.0	10.0	20.0	5.0	5.0	15.0
49.0	1.0	25.0	20.0	15.0	10.0	5.0	20.0	5.0	25.0
49.0	1.0	15.0	10.0	20.0	5.0	10.0	15.0	25.0	15.0
49.0	1.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
49.0	1.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
49.0	1.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0