# creasing-the-rate-of-heart-attacks

March 28, 2023

#### 0.1 Import the Packages

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

# 1 Importing and Inspecting Data:

#### 1.0.1 Importing Data

```
[2]: data= pd.read_excel("data.xlsx")
data1= pd.read_excel("variable description.xlsx")
```

```
[3]: data.head()
```

```
[3]:
                                                                                     slope
                                                                           oldpeak
        age
              sex
                   ср
                       trestbps
                                   chol
                                          fbs
                                               restecg
                                                         thalach
                                                                   exang
         63
                1
                     3
                              145
                                    233
                                                      0
                                                              150
                                                                                2.3
         37
                     2
     1
                              130
                                    250
                                            0
                                                      1
                                                              187
                                                                        0
                                                                                3.5
                                                                                          0
                1
     2
         41
                0
                   1
                              130
                                    204
                                            0
                                                      0
                                                              172
                                                                        0
                                                                                1.4
                                                                                          2
     3
                                    236
                                                      1
                                                              178
                                                                                0.8
                                                                                          2
         56
                1
                     1
                              120
                                            0
                                                                        0
     4
                0
                     0
                             120
                                            0
                                                      1
                                                                        1
                                                                                0.6
                                                                                          2
         57
                                    354
                                                              163
```

```
ca
       thal
               target
0
    0
            1
            2
1
    0
2
            2
                     1
3
    0
            2
                     1
4
    0
            2
                     1
```

```
[4]: data.columns
```

```
[5]: data.rename(columns={'cp':'chest_pain_type','trestbps':
      Gresting_blood_pressure','chol':'cholestoral',
                            'fbs':'fasting_blood_sugar','restecg':

¬'resting_electrocardiographic_results',
                            'thalach': 'maximum_heart_rate_achieved', 'exang':
      ⇔'exercise_induced_angina',
                            'oldpeak': 'ST.depression(exercise/rest)', 'ca':

¬'no_of_major_vessels',
                            'thal':'thalassemia' },inplace=True)
[6]: data.head()
[6]:
                   chest_pain_type resting_blood_pressure cholestoral \
        age
             sex
     0
         63
               1
                                                         145
                                                                       233
                                  3
     1
         37
               1
                                 2
                                                         130
                                                                       250
     2
               0
                                 1
                                                         130
                                                                       204
         41
         56
                                                                       236
     3
               1
                                  1
                                                         120
         57
               0
                                                         120
                                                                       354
        fasting_blood_sugar resting_electrocardiographic_results
     0
                           1
     1
                           0
                                                                    1
     2
                           0
                                                                    0
     3
                           0
     4
                           0
                                                                    1
        maximum_heart_rate_achieved exercise_induced_angina
     0
                                  150
                                                              0
     1
                                  187
     2
                                  172
                                                              0
     3
                                  178
                                                              0
     4
                                  163
        ST.depression(exercise/rest)
                                        slope no_of_major_vessels
                                                                     thalassemia
     0
                                   2.3
                                            0
                                                                   0
                                                                                 1
                                   3.5
                                            0
                                                                   0
                                                                                2
     1
     2
                                   1.4
                                            2
                                                                   0
                                                                                2
     3
                                   0.8
                                            2
                                                                   0
                                                                                2
     4
                                   0.6
                                                                                 2
        target
     0
             1
     1
             1
     2
             1
     3
             1
             1
```

```
[7]: data.shape
 [7]: (303, 14)
     Checking for null values
 [8]: data.isna().sum()
                                               0
 [8]: age
      sex
                                                0
                                                0
      chest_pain_type
      resting_blood_pressure
                                                0
      cholestoral
                                                0
      fasting_blood_sugar
                                                0
      resting_electrocardiographic_results
                                                0
      maximum_heart_rate_achieved
                                                0
      exercise_induced_angina
                                                0
      ST.depression(exercise/rest)
                                                0
      slope
                                                0
                                                0
      no_of_major_vessels
      thalassemia
                                                0
      target
      dtype: int64
     Checking for duplicate values
[13]: data.duplicated().sum()
[13]: 0
     Removing duplicate values
[10]: data= data.drop_duplicates()
     Treating null values
[11]: from pandas.core.base import value_counts
      data.isna().any().value_counts()
[11]: False
      dtype: int64
     Now ,There is no Missing Value in the data
     Statistical summary of the data
[14]: data.describe()
```

```
[14]:
                                                        resting_blood_pressure
                                      chest_pain_type
                    age
                                 sex
                                                                     302.000000
      count
             302.00000
                         302.000000
                                           302.000000
              54.42053
                           0.682119
                                                                     131.602649
      mean
                                              0.963576
               9.04797
                           0.466426
                                              1.032044
                                                                      17.563394
      std
      min
              29.00000
                           0.000000
                                              0.00000
                                                                      94.000000
      25%
              48.00000
                           0.000000
                                              0.00000
                                                                     120.000000
      50%
              55.50000
                           1.000000
                                              1.000000
                                                                     130.000000
      75%
              61.00000
                           1.000000
                                              2.000000
                                                                     140.000000
              77.00000
                           1.000000
                                              3.000000
                                                                     200.000000
      max
                                                  resting_electrocardiographic_results
                           fasting_blood_sugar
              cholestoral
              302.000000
                                     302.000000
                                                                              302.000000
      count
                                       0.149007
              246.500000
                                                                                0.526490
      mean
      std
               51.753489
                                       0.356686
                                                                                0.526027
      min
              126.000000
                                       0.000000
                                                                                0.000000
      25%
              211.000000
                                       0.00000
                                                                                0.000000
      50%
              240.500000
                                       0.000000
                                                                                1.000000
      75%
              274.750000
                                       0.000000
                                                                                1.000000
              564.000000
                                       1.000000
                                                                                2.000000
      max
             maximum_heart_rate_achieved
                                             exercise_induced_angina
                                                          302.000000
      count
                                302.000000
      mean
                                149.569536
                                                             0.327815
      std
                                 22.903527
                                                             0.470196
      min
                                 71.000000
                                                             0.000000
      25%
                                133.250000
                                                             0.000000
      50%
                                152.500000
                                                             0.000000
      75%
                                166.000000
                                                             1.000000
                                202.000000
                                                             1.000000
      max
             ST.depression(exercise/rest)
                                                          no_of_major_vessels
                                                   slope
                                 302.000000
                                              302.000000
                                                                    302.000000
      count
                                   1.043046
                                                1.397351
                                                                      0.718543
      mean
                                                                      1.006748
      std
                                   1.161452
                                                0.616274
                                   0.00000
      min
                                                0.000000
                                                                      0.000000
      25%
                                                                      0.00000
                                   0.000000
                                                1.000000
      50%
                                   0.800000
                                                1.000000
                                                                      0.000000
      75%
                                   1.600000
                                                2.000000
                                                                      1.000000
                                   6.200000
                                                2.000000
                                                                      4.000000
      max
             thalassemia
                                target
              302.000000
                           302.000000
      count
                 2.314570
                             0.543046
      mean
      std
                 0.613026
                             0.498970
      min
                 0.00000
                             0.00000
      25%
                 2.000000
                             0.000000
      50%
                 2.000000
                              1.000000
```

```
75%
                3.000000
                             1.000000
                3.000000
                             1.000000
      max
[15]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 302 entries, 0 to 302
     Data columns (total 14 columns):
          Column
                                                  Non-Null Count
                                                                  Dtype
          _____
      0
                                                  302 non-null
                                                                  int64
          age
                                                  302 non-null
                                                                  int64
      1
          sex
      2
                                                  302 non-null
                                                                  int64
          chest_pain_type
      3
                                                  302 non-null
                                                                  int64
          resting_blood_pressure
                                                  302 non-null
                                                                  int64
      4
          cholestoral
      5
          fasting_blood_sugar
                                                  302 non-null
                                                                  int64
          resting_electrocardiographic_results
                                                 302 non-null
                                                                  int64
      6
      7
          maximum_heart_rate_achieved
                                                  302 non-null
                                                                  int64
      8
          exercise_induced_angina
                                                  302 non-null
                                                                  int64
      9
          ST.depression(exercise/rest)
                                                  302 non-null
                                                                  float64
      10 slope
                                                  302 non-null
                                                                  int64
          no_of_major_vessels
                                                  302 non-null
                                                                  int64
                                                  302 non-null
          thalassemia
                                                                  int64
      13 target
                                                  302 non-null
                                                                  int64
     dtypes: float64(1), int64(13)
     memory usage: 35.4 KB
 []: #Separating numeric and categorical values for calculations
[17]: list(enumerate(data))
[17]: [(0, 'age'),
       (1, 'sex'),
       (2, 'chest_pain_type'),
       (3, 'resting_blood_pressure'),
       (4, 'cholestoral'),
       (5, 'fasting_blood_sugar'),
       (6, 'resting_electrocardiographic_results'),
       (7, 'maximum_heart_rate_achieved'),
       (8, 'exercise_induced_angina'),
       (9, 'ST.depression(exercise/rest)'),
       (10, 'slope'),
       (11, 'no_of_major_vessels'),
       (12, 'thalassemia'),
       (13, 'target')]
```

```
[18]: numeric_data= data.iloc[:,[0,3,4,7,9]]
      numeric_data.head()
[18]:
             resting_blood_pressure cholestoral maximum_heart_rate_achieved \
         age
          63
                                   145
                                                 233
                                                                                150
      0
                                                 250
      1
          37
                                   130
                                                                                187
                                                 204
      2
          41
                                   130
                                                                                172
                                                 236
      3
          56
                                   120
                                                                                178
          57
                                   120
                                                 354
                                                                                163
         ST.depression(exercise/rest)
      0
                                    2.3
                                    3.5
      1
                                    1.4
      2
                                    0.8
      3
      4
                                    0.6
[19]: categorical_data= data.iloc[:,[1,2,5,6,8,10,11,12,13]]
      categorical_data.head()
[19]:
              chest_pain_type
                                fasting_blood_sugar
         sex
      0
           1
                                                    1
                             2
      1
           1
                                                    0
      2
           0
                             1
                                                    0
      3
           1
                             1
                                                    0
      4
                             0
                                                    0
         resting_electrocardiographic_results
                                                 exercise_induced_angina
                                                                            slope
      0
                                                                                 0
                                                                         0
                                                                                 0
      1
                                              1
                                                                         0
                                                                                 2
      2
                                              0
                                                                                 2
      3
                                              1
                                                                         0
      4
                                               1
                                                                         1
                                                                                 2
         no_of_major_vessels
                               thalassemia
                                             target
      0
                                          1
      1
                            0
                                          2
                                                   1
      2
                                          2
                            0
                                                   1
                            0
                                          2
      3
                                                   1
                                          2
     Measures of central tendencies
[20]: numeric_data.mean()
[20]: age
                                         54.420530
```

131.602649

246.500000

resting\_blood\_pressure

cholestoral

maximum\_heart\_rate\_achieved 149.569536 ST.depression(exercise/rest) 1.043046

dtype: float64

#### [21]: numeric\_data.median()

| [21]: | age                          | 55.5  |
|-------|------------------------------|-------|
|       | resting_blood_pressure       | 130.0 |
|       | cholestoral                  | 240.5 |
|       | maximum_heart_rate_achieved  | 152.5 |
|       | ST.depression(exercise/rest) | 0.8   |
|       | dtype: float64               |       |

# Spread of the data

# [22]: numeric\_data.hist(figsize=(12,8)) plt.show()





From above graphs, we observe that:

1.ST.depression(exercise/rest) is right skewed. 2.Maximum hear rate achieved is left skewed. 3.Age,Cholestrol,Resting Blood Pressure is normally distributed.

#### 1.1 Performing EDA and Modellling

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/\_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning



#### Study the occurrence of CVD across different ages.

```
[25]: df=data[data.target==1]
[26]: df.target.value_counts()

[26]: 1    164
    Name: target, dtype: int64

[27]: plt.figure(figsize=(15,6))
    sns.countplot(x = "age", data= df)
    plt.title("Occurence of CVD across different ages")
    plt.show()
```



We can observe that occurrence of disease is more in the age group between 40 to 60, though people of age 50-60 are at more risk.

Detection of heart attack based on anomalies in resting blood pressure of the patient

```
[28]: sns.boxplot(y="resting_blood_pressure", x= "target", data= data)
plt.show()
```



From the above observation, there are people who does not got heart attack also have high blood pressure. Therefore, we can not detect heart attack based on resting blood pressure.

#### Study the composition of overall patients (Genderwise)

```
[29]: sns.countplot(x="sex",hue="target", data=data)
  plt.title("Sex distribution according to Target")
  plt.xlabel("Sex:0 = Female, 1= Male")
  plt.show()
```



From the above graph it can be concluded that male patients are more prone to the Cardiovascular disease. Target = 0 represent Don't have disease, 1 represent have Disease

Sex:0 = Female, 1= Male

1

The relationship between cholesterol levels and our target variable.

0

0

```
[30]: data.cholestoral.corr(data.target)

[30]: -0.08143720051844144

[31]: sns.jointplot(data=data,x="cholestoral",y="target")
    plt.show()
```



Cholestoral and target variables have weak correlation.

### The relationship between peak exercising and occurrence of heart attack

```
[32]: data.slope.corr(data.target)

[32]: 0.3439395324893888

[33]: sns.countplot(x="slope",hue="target", data=data)
    plt.show()
```



People with Downsloping(2) have more people prone to heart attack. Peak exercising is poitively correlated to the target variable

#### Determination of thalassemia as a major cause of CVD(if any)

```
[34]: data.thalassemia.corr(data.target)

[34]: -0.3431007123895653

[35]: sns.countplot(x="thalassemia", hue="target", data= data)
   plt.show()
```



Thalassemia–0=Null, 1= Normal, 2= Fixed Defect, 3=Reversable defect. People with fixed defect are at higher risk of CVD

## Roll of the other factors determining the occurrence of $\operatorname{CVD}$

```
[36]: new_data= data.drop(columns=["thalassemia","cholestoral","slope"])

[37]: plt.figure(figsize=(15,10))
    sns.heatmap(new_data.corr(),annot=True)
    plt.show()
```



Chest pain type and maximum heart rate achieved are positively correlated to target, and they are the causes of heart attack, there are no major causes as such.

Use a pair plot to understand the relationship between all the given variables.

```
[38]: plt.figure(figsize=(10,8))
sns.pairplot(data)
plt.show()
```

<Figure size 720x576 with 0 Axes>



Perform logistic regression, predict the outcome for test data, and validate the results by using the confusion matrix.

| [39]: | df=data.copy() |     |     |                 |                        |             |   |  |  |  |
|-------|----------------|-----|-----|-----------------|------------------------|-------------|---|--|--|--|
| [40]: | df.head()      |     |     |                 |                        |             |   |  |  |  |
| [40]: |                | age | sex | chest_pain_type | resting_blood_pressure | cholestoral | \ |  |  |  |
|       | 0              | 63  | 1   | 3               | 145                    | 233         |   |  |  |  |
|       | 1              | 37  | 1   | 2               | 130                    | 250         |   |  |  |  |
|       | 2              | 41  | 0   | 1               | 130                    | 204         |   |  |  |  |
|       | 3              | 56  | 1   | 1               | 120                    | 236         |   |  |  |  |
|       | 4              | 57  | 0   | 0               | 120                    | 354         |   |  |  |  |

```
0
                                                                    0
                            0
                                                                    1
      1
      2
                            0
                                                                    0
      3
                            0
                                                                    1
      4
                            0
                                                                    1
         maximum_heart_rate_achieved exercise_induced_angina
      0
                                   150
      1
                                   187
                                                               0
      2
                                   172
                                                               0
      3
                                   178
                                                               0
      4
                                   163
                                                               1
                                                                     thalassemia
         ST.depression(exercise/rest)
                                        slope no_of_major_vessels
      0
                                   2.3
                                                                   0
                                             0
                                                                                 1
      1
                                   3.5
                                             0
                                                                   0
                                                                                 2
                                                                                 2
      2
                                   1.4
                                             2
                                                                   0
                                             2
                                                                                 2
      3
                                   0.8
                                                                   0
      4
                                   0.6
                                             2
                                                                                 2
         target
      0
              1
      1
              1
      2
              1
              1
              1
[42]: x= df.drop(["target"], axis=1)
      y=df.target
[43]: from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,_
       →random_state=1234)
[44]: x_train.shape, x_test.shape, y_train.shape,y_test.shape
[44]: ((241, 13), (61, 13), (241,), (61,))
     For training we have 241 data points and for testing we have 61
[45]: from sklearn.linear_model import LogisticRegression
      log= LogisticRegression()
[46]: log.fit(x_train,y_train)
     /usr/local/lib/python3.7/site-packages/sklearn/linear_model/_logistic.py:818:
```

resting\_electrocardiographic\_results

fasting\_blood\_sugar

```
ConvergenceWarning: lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-
     regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
[46]: LogisticRegression()
[47]: y_pred=log.predict(x_test)
      y_pred
[47]: array([0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,
             1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0])
 []:
[48]: from sklearn.metrics import confusion matrix
      conf_mat = confusion_matrix(y_test,y_pred)
[49]: conf_mat
[49]: array([[20, 9],
             [5, 27]])
[51]: import matplotlib.pyplot as plt
      fig, ax = plt.subplots()
      sns.heatmap(conf_mat, annot = True,cmap="YlGnBu",fmt='g')
      ax.xaxis.set_label_position("top")
      plt.tight_layout()
      plt.title('Confusion matrix', y=1.1)
      plt.ylabel('Actual label')
      plt.xlabel('Predicted label')
[51]: Text(0.5, 257.44, 'Predicted label')
```

#### Confusion matrix



```
[52]: from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score print('Accuracy score: ',accuracy_score(y_test,y_pred)) print('Precision score: ',precision_score(y_test,y_pred)) print('Precision score: ',precision_score(y_test,y_pred)) print('Recall score: ',recall_score(y_test,y_pred)) print('F1 score: ',f1_score(y_test,y_pred))
```

Accuracy score: 0.7704918032786885

Precision score: 0.75 Precision score: 0.75 Recall score: 0.84375

F1 score: 0.7941176470588235

Accuracy for the logistic regression model is 77%.

#### #Dashboarding#

Visualize the variables using Tableau to create an understanding for attributes of a Diseased vs. a Healthy person

Attributes of a Diseased vs. a Healthy person

Demonstrate the variables associated with each other and factors to build a dashboard Correlation

# among the Variables