Data Analysis, Homework 3

Elizabeth Gould

June 17, 2025

1 Compressor Statistics

1.1 Intro

- Escape probability given by C.
- In an old version of the code, if there is an extremely rare character or context, the character will not be correctly read, after which the decoder will soon encounter an error. I have fixed this problem, but many of the statistics use the old decoder.
- The number of cycles where the last bit doesn't change at the end was not read properly. I believe this has been fixed, but it doesn't effect statistics in any case.
- There is a new wrapper code. They will all give results with two more bytes (k and N) than the statistics for which I have here. I just hadn't thought about sending these two numbers.
 - encode.run_encoder(import_file, export_file, k = None, N = 64)
 - * import file and export file are file names
 - * k = None will try to calculate k based on the most likely character and context, otherwise k gives the desired context length
 - * N is the length of the window, and must be a whole number of bytes
 - * update_exclusion = False, implements update exclusion variant when True
 - * first_model = False, implements choice of the first model when True
 - encode.run_decoder(import_file, export_file)

1.2 Texts

- 1. With This Ring Season 1: Text has been cleaned. Size is 4115 kB on disk.
- 2. With This Ring Season 2: Text is uncleaned. Size is 5632 kB on disk.

- 3. With This Ring Season 2: Text still uncleaned, but one section has been removed. Size is 5632 kB on disk.
- 4. With This Ring Season 1+2: This is just text 1 and text 3 combined into one file. Size is 9746 kB on disk.
- 5. With This Ring Season 1: Decapitalized version of the text. It is actually not saved to disk, as it is easy to produce in Python.
- 6. With This Ring Season 1: Reversed version of the text. It is actually not saved to disk, as it is easy to produce in Python.
- 7. With This Ring Season 1: Decapitalized and reverse version of the text. It is actually not saved to disk, as it is easy to produce in Python.

1.3 Static Machines

Compressor as of right now only works on the first text. It should be easily alterable to work on the other texts, but I would need to clean the second text, and there is an issue with time requirements.

• k = 3

• window size = 40 bits

• Decapitalization time: 1.5 hours

• Decapitalization size: 24 kB

• find count time: 1.5 hours, of which 20 min actually unnecessary

• find count size: 89 kB on disk

• encryption time: 3 hours, but less for an alternative counter

• encryption size: 1012 kB

• full decryption time: 70 min almost all of which are decryption

The long time here compared to the short time for the dynamic code indicates an inefficiency in the code. I have very little desire to find it, but the only difference is how the counts are stored, so it seems a recursive storage is best. I believe I can search the code in a single pass for better efficiency for decapitalization and find counts.

The old method for storing the encoder array took 20 minutes to encode. I think searching the long arrays is inefficient. If I need to rerun this, I will try to clear the inefficiencies.

1.4 Dynamic Machines without Masking

For text 2, N = 64 too small. I found a chunk of text strangely written (ultra rare). I deleted the problematic part of the text and tried again.

For text 4, as I suspected, the decoder reaches a problem at the first non-ascii character.

• k = 3

• window size = 64 bits

• encoder time, text1: 3 min

• decoder time, text1: 4.5 min

• size text1: 1181 kB

• encoder time, text3: 5+ min

• decoder time, text3: 6-10 min

• size text3: 1575 kB

1.5 Dynamic Machines with Masking

In this section, I added masking of characters which we already ruled out when we choose to encode the new character. So far, it doesn't seem faster, but might save some on size. It bypasses the problem with decoding ultra-rare cases, but for text2, I encountered the end of file issue. Manually telling it to decode the last four characters returns the original text, so it is just stopping at the wrong place. Text1 has an end of file issue of 1 character. I stopped looking for this afterwords. The data is in Table 1. Table 4 updates the timing.

The decoder is still failing at the first non-ascii character for text 4. This may require the second fix which I noted in the issues section. For all except k = 3, text2 also fails. I have updated the decoder, so the statistics for text2 use a different decoder than the others, which works for text2.

k=6 appears to be the best variant from the table, but k=5 is not much worse and faster. This contrasts with the k=4 estimate for the recommended length of k.

1.6 Update Exclusions

This is for only updating the accessed data points. Results appear slightly better that before, but not by much. The data for this is in Table 5. This table has runs with a newer version of the code than Table 4, and therefore the timings are not completely consistent. The byte size is also not completely consistent, as they have 2 more bytes at the beginning due to sending information of model parameters.

Table 1: Encoding and decoding with masking time and space requirements based on text and maximum length of context. Order is – number of bits, encoding time, decoding time. Note that text 2 uses an updated decoder, so the times are not based on the same metric. Also all the timings are unstable.

	Text 1	Text 2	Text 3	Reverse	Decap	Decap Rev
find_k k	k=4	k=4	k=4	k=8	k=4	k=8
	1476416	1990550	1990215	1476623	1470545	1470470
k=2	3 m 23.8 s	4m 32.5s	4m 57.6s	$2m\ 52.5s$	3 m 14 s	3m 32.9s
	5m 23.1s	10m 4.9s	$9m\ 7.4s$	5m 11.9s	4m 37.9s	7 m 28.3 s
	1192730	1593626	1593289	1193200	1190498	1190568
k=3	3 m 9.2s	4m 13.5s	5m 29.2s	3 m 6.0 s	2m 48.7s	4m 12.8s
	$4m\ 50.1s$	9 m 29.2 s	7 m 14.1 s	$5 \text{m} \ 3.6 \ \text{s}$	4m 28.7s	6m 27.3s
	1058909	1399465	1399128	1059650	1057195	1057632
k=4	3m 36.6s	6m 1.2s	6m 6.4s	$3m\ 55.0s$	$3m\ 25.5s$	4m 54s
	$5m\ 29.3s$	$10m\ 54.4s$	$9m\ 46.1s$	6m 6.1s	5m 4.1s	$7m\ 20.7s$
	1017021	1335544	1335207	1018142	1012264	1013437
k=5	4 m 22.6s	5m 46.9s	$7m\ 32.5s$	5m 1.3s	3 m 51.6s	6m 21.1s
	6 m 2.8 s	$8m\ 56.5s$	$10m \ 49.4s$	$7m\ 20.3s$	$5m\ 17.3s$	6m 47.7s
	1012453	1325093	1324756	1013572	1004875	1007044
k=6	6 m 10.6s	$7m\ 10.2s$	8m 27.2s	6m 11.2s	5 m 24.5 s	5m $38.3s$
	6m 34.5s	$10m\ 30.9s$	10m 11.2s	8m 32.9s	6m 43.4s	7m 1.8s
	1023743	1338156	1337819	1024888	1014294	1018111
k=7	6m59.5s	9m 91.s	$9m\ 49.2s$	7 m 38.6 s	$6m\ 11.5s$	6 m 37.7 s
	8m 8.7s	11m 52.8s	$12m\ 15.4s$	9m 12.8s	7m 43.6s	8m 2.0s
	1040281	1359464	1359126	1041179	1029459	1034963
k=8	8m 14.0s	$11m\ 59.5s$	$12m\ 55.5s$	8.5m	7m 47.5s	7m 48.6s
	$10m\ 29.9s$	$14m\ 30.2s$	$14m\ 58.7s$	error	$8m\ 50.4s$	$8m\ 36.4s$

Table 2: Statistics for the 100MB Wikipedia benchmark.

Variant	k	Size (%)	Encode Time	Decode Time
Standard	5	24.33%	41 m 14 s	66 m 40 s
Standard	6	23.48%	$50 \mathrm{\ m}\ 36 \mathrm{\ s}$	$73~\mathrm{m}~57~\mathrm{s}$
Update Exclusion	5	24.10%	27 m 20 s	52 m 34 s
Update Exclusion	6	23.26%	31 m 38 s	$55 \mathrm{\ m\ 17\ s}$
First Model	6	25.64%	169 m 25 s	186 m 45 s
First Model	7	24.92%	187 m 00 s	200 m 57 s
First Model	8	24.45%	208 m 02 s	217 m 07 s
Both	6	23.69%	142 m 37 s	156 m 57 s
Both	7	23.33%	150 m 14 s	162 m 01 s

1.7 Choice of First Model

I have found no variant of interpretation of this idea helpful. It always increases the time requirements (and ensures that encoding time is similar to decoding time, although both are greater than the old decoding time). Statistics for the best interpretations are in Table 5.

Variants:

- Choosing model based on the full statistics. The preferred k is definitely not optimal.
- Choose character with greatest probability (at the root when there is no update exclusion) and find the greatest probability for it at every machine length. Results for text 2 for k = 6 are 2851636 (if not in set, p=0), 2815064 (if not in set p=0 except for the smallest such case, for which p=p_new), 2367140 (if not in set, p = p_new). All are significantly greater than the optimal 1324595 for this text and k.
- Calculate for every step, for every potential machine length, which one has the greatest probability for the most likely character of that machine length. The best performing variant is with update exclusion, which is slightly worse than with or without update exclusion without the first model choice. Without update exclusion, updating the full tree every time, is worse, but not by much. k prefers to be larger in this case than for other cases. All other variants are noticeably worse preforming.

2 Wikipedia Benchmark

Statistics for 100MB are in Table 2, and statistics for 1 GB are in Table 3.

Table 3: Statistics for the 1G Wikipedia benchmark.

Variant	k	Size (%)	Encode Time	Decode Time
Standard	5	21.81%	$385 \mathrm{\ m\ 37\ s}$	616 m 14 s
Standard	6	20.30%	522 m 42 s	693 m 55 s
Update Exclusion	6			
First Model	8			
Both	6			

Table 4: Encoding an decoding time based on text and maximum length of context on a faster computer for comparison with Wikipedia benchmark times. Order is – encrypted size in bytes, encoding time, decoding time. Text 4 has an estimated k of 4.

estimated k of 4.									
k	Text 1	Text 2	Text 3	Text 4	\mathbf{Rev}	Decap	Dec+Rev		
	1476416	1990550	1990215	3487140	1476623	1470545	1470470		
2	55.2s	$1 \mathrm{m} \ 18.3 \mathrm{s}$	$1 \mathrm{m} \ 16.9 \mathrm{s}$	2m $19.4s$	53.5s	54.1s	55.9s		
	$2 \mathrm{m} \ 14.8 \mathrm{s}$	3m 9.4s	3m 8.5s	5m 43.9s	2m 5.9s	$2m\ 10.2s$	$2m\ 10.3s$		
	1192730	1593626	1593289	2789743	1193200	1190498	1190568		
3	$1 \mathrm{m} \ 0.9 \mathrm{s}$	1m 24.4s	1 m 24.6 s	2 m 33.3 s	58s	58.6s	$1 \mathrm{m} \ 0.2 \mathrm{s}$		
	$2 \mathrm{m} \ 0.2 \mathrm{s}$	2m 44.1s	2m 45.7s	5m 6.9s	1m 54.2s	$1m\ 55.2s$	1m 58s		
	1058909	1399465	1399128	2438273	1059650	1057195	1057632		
4	$1 \mathrm{m} \ 12.5 \mathrm{s}$	1 m 39.3 s	$1m\ 40.5s$	4m 34.9s	$1 \mathrm{m} \ 8.8 \mathrm{s}$	1m 8.5s	1m 11.2s		
	$2 \mathrm{m} \ 3.6 \mathrm{s}$	2m 49.1s	2m 49.2s	$7m\ 54.8s$	$1m\ 57.4s$	$1m\ 56.8s$	2m 3.1s		
	1017021	1335544	1335207	2311383	1018142	1012264	1013437		
5	$1m\ 28.4s$	1 m 59.1 s	1 m 59.3 s	$5m\ 28.8s$	$1 \mathrm{m}\ 22.9 \mathrm{s}$	$1 \mathrm{m}\ 22.9 \mathrm{s}$	$1m\ 25.8s$		
	$2m\ 15.4s$	3m 3.9s	3m 2.6s	6 m 11.8 s	2m 9.0s	2m 7.4s	2m 13s		
	1012453	1325093	1324756	2280430	1013572	1004875	1007044		
6	1m 49.5s	$2m\ 27.5s$	2m 24.7s	4m 22.2s	$1m\ 42.9s$	$1m\ 42.6s$	1m 47.4s		
	2m 32.4s	$3m\ 25.8s$	$3m\ 25.1s$	6m 11.9s	$2m\ 25.9s$	$2m\ 26.8s$	2m 32s		
	1023743	1338156	1337819	2294026	1024888	1014294	1018111		
7	$2 \mathrm{m} \ 13.2 \mathrm{s}$	$3m\ 0.1s$	2m 59.8s	$5m\ 20.1s$	2m 8.6s	2m 7.9s	2m 14s		
	2 m 55.8 s	$3m\ 55.4s$	3m 57.2s	6 m 57 s	2m 48.3s	2m 47.4s	2m 54.6s		
	1040281	1359464	1359126	2326546	1041179	1029459	1034963		
8	2m 44.4s	3m $38.2s$	$3m\ 37.3s$	$6m\ 24.2s$	$2\mathrm{m}\ 38.1\mathrm{s}$	$2\mathrm{m}\ 36.4\mathrm{s}$	2m 45.1s		
	3 m 22.7 s	4m 32s	$4m\ 30.3s$	$8m\ 2.2s$	$3\mathrm{m}\ 14.7\mathrm{s}$	$3\mathrm{m}\ 13.8\mathrm{s}$	3m 21.1s		

Table 5: Encryption size, and encoding and decoding time based on text and maximum length of context for update exclusion and first model variants. Order is – encrypted size in bytes, encoding time, decoding time. k from 5 to 7 for update exclusion, 6 to 9 for first model, and 5 to 7 when both variants are used together. UE = update exclusion, FM = choice of the first model, B = both

Type	Text 1	Text 2	Text 3	Text 4	Rev	Decap	Dec+Rev
	1014029	1330437	1330146	2302544	1013960	1009975	1010582
UE5	1 m 08 s	$1 \mathrm{m}\ 27 \mathrm{s}$	1 m 31 s	2m 32s	1m 04s	$1m\ 04s$	1 m 02 s
	2m 02s	$2 \mathrm{m} \ 37 \mathrm{s}$	2m 44s	4m 37s	1m 54s	1m 56s	1 m 53 s
	1013181	1324595	1324304	2279118	1013191	1006058	1007908
UE6	1m 23s	1m 46s	1m 51s	$3m\ 01s$	1m 18s	1m 19s	$1 \mathrm{m} \ 16 \mathrm{s}$
	2m 15s	2m 52s	3m~00s	5m~00s	2 m 08 s	$2m\ 10s$	$2 \text{m} \ 05 \text{s}$
	1029213	1343801	1343511	2303153	1029317	1020037	1023760
UE7	1m 45s	2m 11s	2m 18s	3m 43s	1 m 40 s	1m 40s	$1 \mathrm{m} \ 37 \mathrm{s}$
	2m 36s	3m 16s	3m 25s	5m 38s	2m 26s	2m 28s	2m 24s
	1055325	1388465	1388150	2419931	1058296	1048529	1055152
FM6	$7 \text{m} \ 03 \text{s}$	12m 28s	7 m 47 s	13m~07s	$5m\ 05s$	4m 41s	4m 32s
	9 m 10 s	13m 38s	8m 43s	15m~05s	5m 33s	$5m\ 15s$	5m 09s
	1041703	1368991	1368667	2376351	1043577	1034037	1038521
FM7	9m~36s	14m 15s	8m 59s	15m 04s	5m 49s	5m 31s	5m 21s
	$10 \mathrm{m} \ 13 \mathrm{s}$	15m~08s	9m 38s	16m 41s	6 m 13 s	5m 55s	5m 47s
	1039151	1363879	1363552	2357563	1040216	1030570	1034643
FM8	11m 11s	16m 22s	10 m 20 s	17m 24s	6m 44s	6m 28s	6m 18s
	11m 22s	16m 48s	10m 42s	18m 26s	6 m 57 s	6 m 38 s	6 m 30 s
	1043447	1367958	1367627	2357561	1044944	1033898	1039542
FM9	$13m\ 02s$	18m 46s	11m 49s	19m 52s	7m 48s	7 m 31 s	7m 18s
	12m 39s	18m 27s	11m 48s	$20 \mathrm{m} \ 20 \mathrm{s}$	7m 42s	7m 24s	7m 16s
	1025369	1347516	1347221	2336603	1025601	1022496	1021005
B5	$3m\ 55s$	5m 43s	5m 47s	9m 40s	3m 37s	3m 28s	3m 18s
	4m 32s	6 m 36 s	6m 41s	11m 34s	4m 21s	4m~05s	3m 57s
B6	1017280	1331768	1331499	2295518	1019168	1011298	1012638
	4m 32s	6 m 37 s	6m 39s	11m 04s	$4 \mathrm{m} \ 17 \mathrm{s}$	4m 03s	3m 53s
	5m 03s	7m 23s	7m 24s	12m 53s	4m 50s	4m 34s	4m 26s
	1026642	1338470	1338182	2303394	1026813	1018636	1020386
B7	5m 17s	7 m 38 s	7 m 36 s	12m 59s	5m~00s	4m 46s	4m 34s
	5m 39s	8m 12s	8m 09s	14m 25s	5m 24s	5m~08s	4m 59s