# Выбор метода для определения параметров модели Басса прогнозирования развития возобновляемой энергетики на примере ветрогенерации на языке программирования Python с использованием библиотеки scipy

Никифоров М.М., Куделин А.Г. (nikiforov1601@gmail.com) Ухтинский государственный технический университет, г. Ухта, Россия

При выборе модели моделирования и прогнозирования на основе модели Басса, существует не мало методов для осуществления её работы. Каждый из методов является оптимальным в зависимости от данных, с которыми работает модель. Необходимо исследовать методы, которые можно применить к выбранной модели и выбрать тот метод, который даёт самое оптимальное решение.

В качестве модели Басса, было использовано следующее уравнение [1]:

$$S(t) = p * m + (q - p) * Y(t - 1) - \frac{q}{m}Y^{2}(t - 1)$$

 $S(t) = p*m + (q-p)*Y(t-1) - \frac{q}{m}Y^2(t-1)$  Где S(t) – продажи в период  $t; Y(t-1) = \sum_{x=1}^{x=t-1} S(x)$  – совокупные продажи за период [0]... t - 1]; p - коэффициент инновации, q - коэффициент имитации, m - общее количество всех покупок.

Модель Басса описывает продажи за период, которые являются производной от ветрогенерации за прошлый период. Определив продажи за период, мы высчитываем текущую ветрогенерацию. Таким образом, определив параметры р, q, m, так, что смоделированные данные будут максимально равны фактическим, мы в дальнейшем можем давать прогноз на необходимые промежутки времени.

Для дальнейшего исследования определим данные, над которыми будем выполнять все операции. Будем использовать данные по ветрогенерации за период с 1995 по 2020 гг в следующих регионах: Суммарные данные по миру, Европа, Северная Америка, Центральная и Южная Америка, Африка, Азиатско-Тихоокеанский регион, Средний Восток.

Реализуем поиск оптимальных параметров p, q, m c помощью MS Excel (данные-Поиск решения) на одном наборе данных (Суммарные данные по миру):

| C  | УММ *        | ×✓          | $f_x$ =\$A4*    | \$C4 <b>+(</b> | \$B4-\$A4)*16- | (\$84 <mark>/\$C4</mark> )*(16^2 | 2)                  |    |          |                 |          |          |         |
|----|--------------|-------------|-----------------|----------------|----------------|----------------------------------|---------------------|----|----------|-----------------|----------|----------|---------|
| á  | А            | В           | C               | D              | E              | F                                | G                   | Н  | Ī        | J               | K        | L        | М       |
| 1  |              |             |                 |                |                |                                  | Year                |    | 1995     | 1996            | 1997     | 1998     | 199     |
| 2  | Мировые дан  | ные         |                 |                |                |                                  | Generation (TW*h)   |    | 8,3      | 9,2             | 12,0     | 15,9     | 21      |
| 3  | р            | lq          | m               |                |                |                                  | "Sales"             |    | 0        | 0,9             | 2,813216 | 3,903444 | 5,2949  |
| 4  | 0,000572651  | 0,249510681 | 2407,359254     |                |                |                                  | Prognose "Sales"    |    | 0        | =\$A4*\$C4+(\$B | 4,274531 | 5,326373 | 6,63174 |
| 5  |              |             |                 |                |                | Square Mista                     | 4722,499296         |    | 0        | 6,177868128     | 15,5776  | 28,8345  | 44,978  |
| 6  |              |             |                 |                |                |                                  | Prognose Cumulative |    | 8,261923 | 11,69013242     | 15,96466 | 21,29104 | 27,922  |
| CZ | /MM Ŧ        | X ✓         | fx =16+J4       | D              | E              | F                                | G                   | н  | ( 1      | j               | K        | L        | М       |
| 1  |              |             |                 |                |                |                                  | Year                |    | 1995     | 1996            | 1997     | 1998     | 199     |
| 2  | Мировые данн | ые          |                 |                |                |                                  | Generation (TW*h)   |    | 8,3      | 9,2             | 12,0     | 15,9     | 21,     |
| 3  | р            | q           | m               |                |                |                                  | "Sales"             |    | 0_       | 0,9             | 2,813216 | 3,903444 | 5,29491 |
| 4  | 0,000572651  | 0,249510681 | 2407,359254     |                |                |                                  | Prognose "Sales"    |    | 0        | 3,428208977     | 4,274531 | 5,326373 | 6,63174 |
| 5  |              |             |                 |                |                | Square Mista                     | 4722,499296         | 1  | 0        | 6,177868128     | 15,5776  | 28,8345  | 44,9785 |
| 6  |              |             |                 |                |                |                                  | Prognose Cumulative | ij | 8,261923 | =16+J4          | 15,96466 | 21,29104 | 27,9227 |
| СУ | MM +         | × ✓         | $f_{x}$ =(16-12 |                |                |                                  |                     |    |          |                 |          |          |         |
| À  | A            | В           | С               | D              | E              | F                                | G                   | Н  | 1        | J               | K        | L        | М       |
| 1  |              |             |                 |                |                |                                  | Year                |    | 1995     | 1996            | 1997     | 1998     | 199     |
| 2  | Мировые данн | ые          |                 |                |                |                                  | Generation (TW*h)   |    | 8,3      | 9,2             | 12,0     | 15,9     | 21,     |
| 3  | р            | q           | m               |                |                |                                  | "Sales"             |    | 0        | 0,9             | 2,813216 | 3,903444 | 5,29491 |
| 4  | 0,000572651  | 0,249510681 | 2407,359254     |                |                |                                  | Prognose "Sales"    |    | 0        | 3,428208977     | 4,274531 | 5,326373 | 6,63174 |
| 5  |              |             |                 |                |                | Square Mista                     | 4722,499296         |    | 0        | =(J6-J2)^2      | 15,5776  | 28,8345  | 44,9785 |
| 6  |              |             |                 |                |                |                                  | Prognose Cumulative |    | 8,261923 | 11,69013242     | 15,96466 | 21,29104 | 27,9227 |



Из полученных данных видно, что данный метод наиболее максимально подбирает параметры p, q, m. Но, что затрудняет его применение при дальнейших исследованиях? Основные проблемы:

- 1. При необходимости исследовать большое количество данных, уходит очень много времени на подстановку данных;
- 2. Первоначальные параметры p, q, m необходимо подбирать вручную, что не всегда дает нужный результат;

Данный способ необходимо автоматизировать, избежав проблем метода с помощью MS Excel.

Для автоматизации был выбран язык программирования — python, являющийся одним из основных используемых в научных вычислениях и имеющий множество библиотек, специализированных для работы с математическими вычислениями. Использование данного языка программирования решит нашу первую проблему предыдущего способа.

Для решения поставленной задачи, были выбраны следующие библиотеки:

- numpy (Numerical Python), для работы с массивами, матрицами;
- pandas, для работы с DataFrame;
- scipy, предназначенная для выполнения научных и инженерных расчётов.

Для решения второй проблемы, будем использовать библиотеку scipy и её модуль optimize, содержащий функцию curve\_fit - использующая нелинейный метод наименьших квадратов, чтобы подогнать функцию f к данным.

Функция minimize (минимизация скалярной функции одной или нескольких переменных) модуля optimize отлично подойдет для оптимального подбора параметров p, q, m, так, что полученные данные будут максимально приближены к фактическим. Обратившись к описанию функции minimize видим, что если наши параметры имеют ограничения (в нашем случае параметры p, q, m положительные целые числа), то используются определенные методы «Bounds on variables for Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell, and trust-constr methods»[2], соответственно их все надо проверить и определить самый оптимальный, но сначала посмотрим описание данных методов:

Nelder-Mead – также известный как метод деформируемого многогранника и симплексметод, — метод безусловной оптимизации функции от нескольких переменных, не использующий производной (точнее — градиентов) функции, а поэтому легко применим к негладким и/или зашумлённым функциям.[3]

Powell – представляет собой алгоритм, предложенный Майклом Дж. Д. Пауэллом для нахождения локального минимума функции. Функция не обязательно должна быть дифференцируемой.[4]

L-BFGS-B — метод реализованный с уменьшенным потреблением памяти за счет частичной загрузки векторов из матрицы Гессе.[5]

TNC – Truncated Newton Constrained, ограниченное число итераций, хорош для нелинейных функций с большим числом независимых переменных.[5]

SLSQP – последовательное квадратичное программирование с ограничениями, ньютоновский метод решения системы Лагранжа.[5]

trust-constr – поиск локального минимума в доверительной области.[5]

Для дальнейшего исследования создадим функцию Bass, принимающую предыдущие значения ветрогенерации и параметры p, q, m, рассчитывает продажи. Функцию def squareMistake, принимающую первоначальные параметры p, q, m и кортеж продаж, рассчитывает сумму квадратов разностей значений прогнозируемой и реальной генерации. Наилучший метод оптимизации будем определять по значению RSS, разности суммы квадратов между реальными значениями и значениями, полученными при использования каждого метода.

Для каждого набора данных выведем значения, методов (с помощью MS Excel, curve\_fit первоначальными значениями, Nelder-Mead, L-BFGS-B, TNC, SLSQP, Powell, trust-constr), минимизации (True – минимизация прошла успешно, false - нет), параметров p, q, m и значение RSS. Сначала выводим график полученных данных, ниже его значения.



| Генерация      | Метод        | Минимизирована | Р            | Q            | М               | RSS                  |
|----------------|--------------|----------------|--------------|--------------|-----------------|----------------------|
| Мировые данные | Вручную      |                | 0.0005726510 | 0.2495106815 | 2407.3592536598 | 4722.4992960118      |
| Мировые данные | curve_fit    |                | 0.0008791697 | 0.1925282635 | 3328.9194507414 | 456497.3094664136    |
| Мировые данные | Nelder-Mead  | True           | 0.0005724562 | 0.2495302410 | 2407.0349034294 | 4722.4961073601      |
| Мировые данные | Powel1       | True           | 0.0141298677 | 0.1824165251 | 1121.2597409441 | 1337418.1068945487   |
| Мировые данные | L-BFGS-B     | True           | 0.0008474944 | 0.2143716594 | 3328.9194511150 | 9997.4786109689      |
| Мировые данные | TNC          | False          | 0.0008379150 | 0.2285403501 | 2737.8717016444 | 6490.7910221679      |
| Мировые данные | SLSQP        | True           | 0.7813909630 | 0.2089801208 | 3328.9194510486 | 209331090.9082589447 |
| Мировые данные | trust-constr | False          | 0.0012468316 | 0.1959540975 | 3328.9194510386 | 23158.4081252461     |

Рисунок 2



| Европа | Вручную      |       | 0.0026905792 | 0.1656779601 | 968.8619048751  | 1294.4645554770      |
|--------|--------------|-------|--------------|--------------|-----------------|----------------------|
| Европа | curve_fit    |       | 0.0010605382 | 0.1107641829 | 3205.5577891014 | 54900.1605036525     |
| Европа | Nelder-Mead  | True  | 0.0026908364 | 0.1656931974 | 968.6466570607  | 1294.4643838107      |
| Европа | Powell       | True  | 0.0367084999 | 0.6361559325 | 217.7948606388  | 412085.3361803551    |
| Европа | L-BFGS-B     | True  | 0.0011677141 | 0.1227965322 | 3205.5577891287 | 2111.0148828319      |
| Европа | TNC          | False | 0.0012421014 | 0.1234550609 | 3006.3657906855 | 2077.2734180703      |
| Европа | SLSQP        | False | 0.0536499403 | 0.1116237588 | 3205.5577891203 | 102127624.5173335224 |
| Европа | trust-constr | True  | 0.0011678490 | 0.1227893290 | 3205.5474182261 | 2111.0128094999      |

### Северная америка



| Северная америка | Вручную      | 0.0000000000 0.2714272786       | 479.2328093480 | 1880.4015926827  |
|------------------|--------------|---------------------------------|----------------|------------------|
| Северная америка | curve_fit    | 0.0023187286 0.1841640722       | 730.8623375931 | 16181.4101913008 |
| Северная америка | Nelder-Mead  | True 0.0000000000 0.2714274563  | 479.2329731698 | 1880.4015909381  |
| Северная америка | Powel1       | True 0.0000000000 0.2713342911  | 470.7796309894 | 1970.2865897525  |
| Северная америка | L-BFGS-B     | True 0.0000000000 0.2672133164  | 503.8082336088 | 2062.4027198326  |
| Северная америка | TNC          | False 0.0012493774 0.2031586779 | 707.9320610910 | 3908.5496129588  |
| Северная америка | SLSQP        | True 0.0023187286 0.1841640722  | 730.8623375931 | 16181.4101913008 |
| Северная америка | trust-constr | False 0.0023187286 0.1841640722 | 730.8623375931 | 16181.4101913008 |

## Центральная и Южная Америка



|                             |              | T (00000)                                                     |
|-----------------------------|--------------|---------------------------------------------------------------|
| Центральная и Южная Америка | Вручную      | 0.0000000000 0.5343151234 93.3138680130 72.3611589272         |
| Центральная и Южная Америка | curve_fit    | 0.0000000000 0.4885059692 105.2386309378 1600.8021971074      |
| Центральная и Южная Америка | Nelder-Mead  | True 0.0000000000 0.5310004335 97.2837564361 64.1956702870    |
| Центральная и Южная Америка | Powell       | True 0.0000486846 0.4684022585 101.3486700641 135.2483165314  |
| Центральная и Южная Америка | L-BFGS-B     | True 0.0000259445 0.4885059792 105.2386309378 96.5945892840   |
| Центральная и Южная Америка | TNC          | True 0.0000260535 0.4883812263 105.2371067047 96.6903170737   |
| Центральная и Южная Америка | SLSQP        | True 0.0562409115 0.0668376690 41.7828647864 12449.4392748953 |
| Центральная и Южная Америка | trust-constr | False 0.0000260354 0.4883731807 105.2386317061 96.6989177510  |
|                             | *            |                                                               |

# Африка



| Африка | вручную      | 0.0002253305 0.3183020783 43.1080940018 7.8920090734        |
|--------|--------------|-------------------------------------------------------------|
| Африка | curve_fit    | 0.0000000000 0.2843527410 45.6377725207 1113.3650994329     |
| Африка | Nelder-Mead  | True 0.0000000000 0.4434814504 26.9235036962 8.2059568444   |
| Африка | Powell       | True 0.4514442981 0.2454956990 4.8599471088 941.7208689545  |
| Африка | L-BFGS-B     | False 0.0001784864 0.3263036312 45.6378457411 7.5464721687  |
| Африка | TNC          | True 0.0001807924 0.3213845586 48.0899265771 7.7090582492   |
| Африка | SLSQP        | True 0.0100862914 0.1727331425 17.1798511336 328.9471456094 |
| Африка | trust-constr | True 0.0001193341 0.3712871665 33.5372679355 6.9315689227   |
|        |              |                                                             |

Рисунок 4

#### Азиатско-Тихоокеанский регион 1000 Sales Bass, метод Nelder-Mead - True Sales Bass, метод Powell - True Sales Bass, метод L-BFGS-B - True 800 Sales Bass, метод TNC - False Sales Bass, метод SLSQP - False Sales Bass, метод trust-constr - False Sales fact 600 generate 400 200 0 2000 2005 2010 2015 1995 2020 year 0.0000001109 0.3349636857 1968.8661404116 Азиатско-Тихоокеанский регион Вручную 774.1021683152 Азиатско-Тихоокеанский регион curve\_fit --- 0.0005610691 0.2600558920 981.2284218616 6277.5667057539 Азиатско-Тихоокеанский регион Nelder-Mead True 0.0000110027 0.3329251741 779.3372969105 1957.5268378333 Азиатско-Тихоокеанский регион Powell True 0.0005556505 0.2300566171 1566.1718340505 6717.9927076976 2676.4244228839 Азиатско-Тихоокеанский регион L-BFGS-B True 0.0002423746 0.2922963955 981.2284249206 3369.2489644990 Азиатско-Тихоокеанский регион TNC False 0.0002933489 0.2789791575 1114.2398081834 Азиатско-Тихоокеанский регион SLSQP False 0.0185561791 0.2603569531 981.2284218864 6266514.0205576271 Азиатско-Тихоокеанский регион trust-constr False 0.0003699639 0.2797887386 981.2283911807 3120.0111272986 Средний Восток 2.00 Sales Bass, метод Nelder-Mead - True Sales Bass, метод Powell - True 1.75 Sales Bass, метод L-BFGS-B - True Sales Bass, метод TNC - True 1.50 Sales Bass, метод SLSQP - True Sales Bass, метод trust-constr - False 1.25 Sales fact generate 1.00 0.75 0.50 0.25 0.00 1995 2000 2005 2010 2015 2020 year

0.0000217807 0.3441681293 .3126511883 0.1832602763 Средний Восток Вруч 0.0000000000 0.3059547203 5.4576438435 3.8406491790 Средний Восток curve\_fit Средний Восток Nelder-Mead True 0.0000000000 0.3682698062 6.4184066729 0.1831050530 Powel1 11.6685439043 Средний Восток True 0.0000187370 0.3342713973 0.1787976017 Средний Восток -BFGS-B True 0.0000000000 0.3705188937 5.4585160218 0.1843092120 Средний Восток TNC True 0.0000521697 0.3249524017 6.8609583970 0.1938955908 Средний Восток SLSQP True 0.0000000000 0.8253401253 0.4984808910 4.6454169750 False 0.0000196332 0.3310019896 0.1785492859 Средний Восток 12.4911484614

Рисунок 5

Заключение.

Проведя исследование по нахождению метода для определения параметров модели Басса на языке программирования Python с использованием библиотеки scipy, можно сделать вывод, что нет универсального метода. Следовательно, необходимо использовать тот метод, который является самым оптимальным при подборе параметров.

Используемый код находится по ссылке https://github.com/Misha1601/magistr/blob/main/bass\_doclad\_30032023.py

#### Библиографический список:

- 1. F.M. Bass, Bass 1969 New Prod Growth Model.pdf, Manage. Sci. 15 (1969) 215–227.
- 2. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- 3. <a href="https://ru.wikipedia.org/wiki/Mетод Нелдера">https://ru.wikipedia.org/wiki/Mетод Нелдера</a> Мида
- 4. https://en.wikipedia.org/wiki/Powell%27s method
- 5. https://habr.com/ru/companies/ods/articles/448054/