이번 포스트에서는

- 유의성 검사 및 가설 검정 개념을 다룹니다.
- 영가설과 대립가설, 검사 통계량 및 다양한 분포(정규 분포, t-분포, 카이제곱 분포, F-분포)를 설명합니다.
- 다양한 통계 검사를 위한 임계값, 유의 수준 및 p-값을 논의합니다.

Significant Test(유의성 검정)

유의성 검정은 표본 데이터를 기반으로 모집단 모수에 대한 귀무 가설을 기각할 수 있는 충분한 증거가 있는지를 판단하기 위해 사용되는 통계적 테스트이다.

필요성

- 이러한 테스트는 데이터에서 관찰된 효과의 신뢰성을 평가하는 데 필수적이다.
- 관찰된 현상이 우연에 의한 것인지, 또는 실제로 실질적인 의미가 있는지 평가한다. 이는 데이터에서 관찰된 효과의 신뢰성을 판단하는데 필요하다.

\$H_0\$ vs. \$H 1\$

귀무 가설 (\$H 0\$):

정의: 두 측정된 현상 간에 관계가 없거나 그룹 간에 연관성이 없다는 일반적인 진술 또는 기본 입장이다. 예시: "남성과 여성의 평균 키에 차이가 없다"는 주장. 목표: 일반적으로 연구자는 연구를 통해 귀무 가설이 기각되기를 희망한다.

대립 가설 (\$H 1\$):

정의: 연구자가 입증하고자 하는 주장으로, 귀무 가설과 반대되는 진술이다. 예시: "남성이 평균적으로 여성보다 키가 크다"는 주장. 목표: 연구자는 연구를 통해 대립 가설이 채택되기를 희망한다.

-> 귀무 가설은 일반적으로 "차이가 없다" 또는 "효과가 없다"가 기본 입장인 반면, 대립 가설은 연구자가 증명 하고자 하는 바를 나타낸다.

예시

연구자 A: 가구 소득이 전년 대비 크게 증가했다고 주장 연구자 B: 가구 소득의 증가가 단지 우연의 일치일 뿐실제로 소득이 증가하지 않았다고 주장

이때, 귀무가설($\$H_0$ \$) : 전년도와 비교하여 가구 소득이 실제로 증가하지 않았다는 주장. 대립 가설($\$H_1$ \$) : 전년도와 비교하여 가구 소득이 실제로 증가했다는 주장.

Test Statistic(검정 통계량)

정의: 가설 검정 중에 샘플 데이터로부터 계산된 수치 값 이 값은 귀무 가설에 명시된 내용으로부터 표본 증거가 얼마나 벗어났는지를 평가하는 데 사용됩니다.

역할: 귀무 가설에 명시된 내용으로부터 표본 증거가 얼마나 벗어났는지를 평가하여 귀무 가설을 기각할지 여부(타당성)를 결정하는 중요한 역할을 한다.

Test Statistic은 귀무 가설이 참일 때 알려진 확률 분포를 따른다. 연구자는 이 Test Statistic 기반하여 귀무 가설을 기각할지 결정한다. 가설 검정에서 일반적으로 사용되는 분포로는 아래 4가지 등등이 있다.

- 정규 분포(Normal distribution)
- t-분포(t-distribution)
- 카이제곱 분포(Chi-square distribution)
- F-분포(F-distribution)

Types of test statistics

- 1. Z-점수 (Z-score in Normal Distribution)
 - 정의: Z-점수는 특정 값이 평균에서 얼마나 떨어져 있는지를 표준 편차 단위로 나타낸 값이다.
 - 사용 상황:
 - ㅇ 표본 크기가 클 때 사용
 - 모집단의 표준 편차(\$\sigma\$)를 알고 있을 때 사용
 - Z-점수는 정규 분포를 따른다.
 - 공식: \$Z = \frac{X \mu}{\sigma / \sqrt(n)}\$ 여기서 \$X\$는 데이터 값, \$\mu\$는 모평균, \$\sigma\$는 모표 준 편차, \$\sigma / \sqrt(n)\$는 \$SEM\$(표준 오차)
- 2. T-점수 (T-score in t-Distribution)
 - 정의: T-점수는 Z-점수와 유사하지만, 표본 크기가 작거나 모집단의 표준 편차를 모를 때 사용
 - 사용 상황:
 - ㅇ 표본 크기가 작을 때 사용
 - ㅇ 모집단의 표준 편차를 모를 때 사용
 - o T-점수는 t-분포를 따른다.
 - 공식: \$T = \frac{\bar{X} \mu}{s / \sqrt{n}}\$ 여기서 \$\bar{X}\$는 표본 평균, \$\mu\$는 모평균, s는 표본 표준 편차, n은 표본 크기
 - Z-점수와 T-점수 모두 모평균과 표본집단의 크기를 알아여 된다.
 - **Z-점수**는 데이터 값(혹은 표본평균)과 모표준편차를 알아야 되고 **T-점수** 는 표본평균과 표본표준편차를 알아야 한다.

Z-점수 예시

예를 들어, 모집단의 평균 키가 170cm이고 표준 편차가 10cm인 경우, 표본 크기 \$n\$이 25인 표본의 평균 키가 175cm라면, Z-점수는 다음과 같이 계산된다. \$Z = \frac{175 - 170}{10 / \sqrt{25}} = \frac{5}{10 / 5} = \frac{5}{2} = 2.5\$

T-점수 예시

예를 들어, 모집단의 평균 키가 170cm이지만 모집단의 표준 편차를 모르는 경우, 표본 크기 \$n\$이 25인 표본의 평균 키가 175cm이고 표본 표준 편차가 12cm라면, T-점수는 다음과 같이 계산됩니다: \$t = \frac{175 - 170}{12 / \sqrt{25}} = \frac{5}{12 / 5} = \frac{5}{2.4} \approx 2.08\$

각각의 분포를 따르기 때문에 절대적인 상수간 비교는 불가능.

죄송합니다. 다시 확인해본 결과, PDF의 8페이지는 카이제곱 분포와 F-분포에 대해 설명하고 있습니다. 아래에 각 분포에 대한 내용을 자세히 설명드리겠습니다.

3. 카이제곱 분포 (Chi-Square Distribution)

- 독립성 검정 또는 적합도 검정에서 자주 사용되며, 카테고리 별로 관찰된 빈도를 기대 빈도와 비교한다.
- 공식: \$\chi^2 = \sum \frac{(O_i E_i)^2}{E_i}\$ 여기서 \$O\$와 \$E\$는 각각 관찰된 빈도(observed frequency)와 기대 빈도(expected frequency)를 나타낸다. 각각 카테고리 \$i\$에서의 비교값들을 합산하여 계산한다.

4. 분산 분석(ANOVA)에서 F-분포 (F-Distribution)

- 세 개 이상의 그룹의 분산을 비교하여 적어도 하나의 표본 평균이 다른 것들과 다른지 확인하는 데 사용

요약

- **카이제곱 분포**는 범주형 데이터의 적합도 검정이나 독립성 검정에 사용되며, 관찰 빈도와 기대 빈도의 차이를 평가
- F-분포는 하나의 그룹에서 사용하는 카이제곱 분포과 달리 여러 그룹 간의 분산을 비교하여 사용

Normal Distribution

정규 분포는 가우시안 분포라고도 불리며, 통계에서 가장 기본적인 확률 분포 중 하나이다. 이 분포는 **대칭적**이고 종 모양의 곡선으로 특징지어지며, 평균, 중앙값, 최빈값이 모두 동일하다.

- 형태: 평균을 기준으로 대칭
- 매개변수: 평균(\$\mu\$)과 표준 편차(\$\sigma\$) 두 가지 매개변수로 정의된다.
- **공식**: 확률 밀도 함수(PDF)로 그림을 그리고, 공식은 아래와 같다. \$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x \mu)^2}{2\sigma^2}}\$
- 용도: 정규 분포는 hypothesis testing(가설 검정), regression analysis(회귀 분석), Central Limit Theorem(중앙 극한 정리) 등 많은 분야에서 사용된다. 중앙 극한 정리는 많은 수의 랜덤 변수의 합이 그분포와 상관없이 정규 분포에 가까워진다는 것이다.

아래는 Normal Distribution들의 그래프 개형이다.

그래프의 개형을

결정짓는 파라미터는 평균(\$\mu\$)과 표준 편차(\$\sigma\$)이다.

• \$\mu\$ = 0, \$\sigma\$ = 1 일때 Standard Normal Distribution

t-Distribution

t-분포, 또는 스튜던트의 t-분포는 정규 분포와 유사하지만 뚱뚱한 꼬리(fatter tails)를 가진다. 주로 표본 크기가 작거나 모집단의 표준 편차를 알 수 없을 때 사용된다.

- **형태**: 정규 분포와 마찬가지로 **대칭적**이지만, 꼬리가 더 두꺼워서 꼬리 부분에 더 많은 확률을 가진다(샘플이 작아 모수의 모양을 정확히 알 수 없으므로).
- 매개변수: 자유도(df)라는 하나의 매개변수로 정의된다.
- 공식: \$f(t \mid \text{df}) = \frac{\Gamma\left(\frac{\text{df}+1}{2}\right)}{\sqrt{\text{df}\pi} \Gamma\left(\frac{\text{df}}{2}\right)} \left(1 + \frac{t^2}{\text{df}}\right)^{-\frac{\text{df}}+1}{2}}\$

여기서:

- \$t\$는 T-점수
- \$\text{df}\$는 자유도 (degrees of freedom)
- \$\Gamma\$는 감마 함수
- **용도**: 신뢰성을 높이기 위해서는 많은 표본을 얻어야 하지만, 현실적으로는 시간과 비용의 제한으로 많은 표본을 얻을 수 없는 경우가 많다. 이러한 경우, 예측 범위가 정규 분포보다 더 넓은 t-분포를 사용한다. 이는 특히 표본 크기가 작은 상황에서, 모집단의 표준 편차를 모를 때 신뢰 구간 계산 및 가설 검정에 사용된다.

샘플의 수가 늘어날수록, 그래프의

개형은 Normal Distribution에 가까워진다.

자유도 (degrees of freedom)?

변수가 n개면 n-1로 표현이 된다. 자유도는 통계적 분석에서 특정 선택의 자유를 나타내며, 아래 예시에서는 7 개의 모자 중 6일 동안 선택할 수 있는 자유도가 있었음을 나타낸다.

당신은 일주일 동안 매일 다른 모자를 쓰고 싶다.

- 당신은 7개의 모자를 가지고 있다.
- 첫째 날에는 7개의 모자 중 아무거나 쓸 수 있다. 둘째 날에는 남은 6개의 모자 중에서 선택할 수 있고, 셋째 날에는 5개의 모자 중에서 선택할 수 있다.
- ..
- 여섯째 날에는 아직 쓰지 않은 두 개의 모자 중 하나를 선택할 수 있다.
- 그러나 일곱째 날에는 더 이상 선택할 수 있는 모자가 없으며, 마지막 남은 모자를 써야 한다.
- 즉, 6일 동안 선택할 수 있는 '모자'의 자유도가 있었다 (7-1).

Chi-Square Distribution

카이제곱 분포는 독립적인 표준 정규 변수를 제곱하여 얻어지는 **비대칭 분포**이다. 이 분포는 가설 검정, 특히 독립성 검정과 적합도 검정에서 매우 중요하다.

- 형태: 비대칭적이며, 0에서 시작하여 오른쪽으로 확장되며, 자유도가 증가함에 따라 더 대칭적으로 변한다.
- 매개변수: 자유도(df)라는 하나의 매개변수로 정의된다.
- 공식: \$f(x \mid \text{df}) = \frac{x^{(\text{df}/2)-1} e^{-x/2}}{2^{\text{df}/2} \Gamma(\text{df}/2)}\$

여기서:

- \$x\$는 카이제곱 값
- \$\text{df}\$는 자유도 (degrees of freedom)
- \$\Gamma\$는 감마 함수
- **용도**: 각 범주의 '관찰 빈도'와 '기대 빈도' 사이의 차이를 살펴봄으로써 주어진 데이터가 특정 확률 모델에서 얻어졌는지를 검정하는 데 사용된다.

F-Distribution

F-Distribution은 주로 분산 분석(ANOVA)에서 사용된다. 이는 두 분산의 비율을 비교할 때, 예를 들어 ANOVA나 회귀 분석에서 발생합니다.

- 형태: 비대칭적이며, 카이제곱 분포와 유사하지만 두 개의 다른 자유도에 의해 형태가 결정됩니다.
- 매개변수: 분자의 자유도(\$\text{df}_1\$)와 분모의 자유도(\$\text{df}_2\$)두 개의 매개변수로 정의된다.
- 공식: \$f(x \mid \text{df}_1, \text{df}_2) = \sqrt{\frac{(\text{df}_1 x)^{\text{df}_1} \text{df}_2^{\text{df}_2}} {(\text{df}_1 x + \text{df}_2)^{\text{df}_1 + \text{df}_2}} \Big/ \left(x \cdot B\left(\frac{\text{df}_1}{2}, \frac{\text{df}_2}{2}\right) \right)\$
- **용도**: 주로 분산 분석(ANOVA)에서 여러 그룹 간의 분산을 비교하고, 회귀 분석에서 예측 변수의 유의성을 검정하는 데 사용된다.

Test Statistic

• 결과 결정

- ο 검정 통계량을 계산한 후, 선택된 유의 수준(α)을 고려하여 관련 분포의 임계값과 비교한다.
- 검정 통계량이 임계값을 초과하면, 귀무 가설을 기각하며 이는 관찰된 효과(주장)가 통계적으로 유 의미함을 시사한다.
- 이 과정은 과학적 가설의 타당성을 결정하는 데 필수적이다.

critical value(임계값)

ㅇ 주어진 유의 수준에서 귀무 가설을 받아들일지 기각할지를 결정할 때 기준이 되는 값.

• Significance Level : 유의 수준 (α)

- 연구자가 선택한 기준 값으로, p-value와 비교된다.
- o critical value가 그래프에서 일종의 x값이고, Significance Level은 어떤 밀도함수의 면적의 값으로 이해하자.
- 이 값은 종종 0.05로 설정된다.
- p-value가 α(0.05)보다 작으면, 귀무 가설을 기각한다.(대립가설 채택)

p-value

- o p-값은 실제 데이터로부터 계산된 값
- 귀무 가설이 맞다는 가정 하에, 실제로 관찰된 결과와 같거나 더 극단적인 결과를 얻을 확률.
- o p-value가 작을수록 관찰된 데이터가 귀무 가설 하에서는 발생하기 어려움을 나타낸다.(귀무가설이 아닌, 실험으로 주장하는 바가 맞다는 것)

이 페이지는 통계적 가설 검정에서 중요한 개념인 임계값, 유의 수준, 그리고 p-값에 대해 설명하고 있습니다. 유의 수준(α)은 연구자가 설정한 기준값으로, p-값과 비교하여 귀무 가설을 기각할지 결정합니다. p-값은 귀무 가설 하에서 관찰된 데이터가 얼마나 극단적인지를 나타내는 확률로, p-값이 작을수록 귀무 가설을 기각할 가능성이 높아집니다.

Z-test

critical value : Z값 Significance Level : 노란색 면적 p-value : 초록 빗금 면적 p-value와 Significance Level를 비교하여 귀무가설을 기각할지 정한다.

one tail만 볼 경우 반대의 상황도 있을 수 있는데, p-value와 Significance Level을 비교할 경우 부등호의 방향이

바뀌지는 않는다. 하지만 x축 값인 critical value와 test statistic을 비교할 경우 부등호의 방향이 바뀜에 주의하자.

Z-test in Standard Normal Distribution

Standard Normal Distribution의 경우에는 이미 도표로 계산된 결과가 나와있기 때문에 계산하기 쉽다.

upper tail과 lower tail의 면적이 같음을 확인할 수 있다.

two tail의 경우에는 Significance Level의 값이 절반으로 나누어짐을 생각할 수 있다.

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Cumulative distribution table을 활용하여 critical value 값을 구할 수 있다. CDF(z) = 0.95 Z = the middle value between 1.64 and 1.65 => Critical value = 1.645 CDF(z) = 0.05 Z = the middle value between -1.64 and -1.65

=> Critical value = -1.645 대칭형태이기 때문에 0.95의 값을 구해서 -값을 구하면 된다.