19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

N° de publication :
(A n'utiliser que pour le classement et les commandes de reproduction).

2.190.406

73.23970

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec (1.N.P.I.)

DEMANDE DE CERTIFICAT D'ADDITION A UN BREVET D'INVENTION

1re PUBLICATION

(2) (41)	Date de dépôt Date de la mise à la disposition du public de la demande	29 juin 1973, à 15 h 41 mn. B.O.P.I. — «Listes» n. 5 du 1-2-1974.		
(51)	Classification internationale (Int. Cl.)	A 61 k 7/06; C 08 f 19/00.		
71	Déposant : Société dite : THE GILLETTE COMPANY, résidant aux États-Unis d'Amérique			
73	Titulaire : Idem (1)			
74	Mandataire : Cabinet de Carsalade du Pont (A. Lourié et W. Flechner).			
54	Compositions cosmétiques.			
		·		
72	Invention de :			
33 32 31	Priorité conventionnelle : Demande de 29 juin 1972, n. 267.664 au nom	brevet déposée aux États-Unis d'Amérique le de Philip Edward Sokol.		
6 1	Références du brevet principal : Brever	t d'invention n. 71.06387 du 25 février 1971.		
60	Certificat(s) d'addition antérieur(s) :			

La présente addition est relative à une composition cosmétique ou de traitement descheveux du type revendiqué au b evet principal.

L'invention vise des compositions de traitement des 5 cheveux afin de les blanchir ou de les faire onduler ou de les faire redresser ou de les décolorer ou de les teindre, plus particulièrement de telles compositions contenant des polymères hydrosolubles à poids moléculaire élevé ayant une multiplicité de groupes amino ou de sel quaternaire.

10 La vie moderne a p ur résultat d'exposer les individus à une quantité sans cesse croissante de lumière solaire, d'eau de chlore, de détergents brutaux et de produits d'origine chimique. Il en résulte que les produits de traitement des cheveux doivent être capables de donner à la chevelure éclat et douceur tout en 15 venant à bout de la sècheresse et de la rudesse naturelle de celle-ci. Une telle action doit compléter le premier objectif de ces produits qui peut être de donner ou de conserver aux cheveux une certaine tenue ou de modifier leur couleur naturelle. Dans chacun de ces cas, on souhaite en outre que les cheveux traités 20 soient d'un aspect et d'un toucher plus agréable. Pour les types de produits qui soumettent les chevelures à une réaction chimique il importe que le produit cosmétique soit capable de redonner à la chevelure autant qu'il est possible son état original pour ce qui concerne la sensation qu'elle fournit au toucher et souvent 25 sa docilité au peignage.

Dans le passé on s'est efforcé d'atteindre cet objectif par plusieurs moyens. L'un des plus simples consiste à dissoudre un produit de conditionnement dans un solvant ou un véhicule convenable. Dans certaines formules de cosmétiques, l'évap ration du solvant après application conduit à des dépôts du produit de conditionnement. Ce procédé a été utile pour le dépôt de gommes naturelles, de certains polymères synthétiques et de quelques dérivés protéiniques. Un inconvénient de ces systèmes, lorsqu'ils sont aqueux, est que tout produit soluble dans l'eau peut aussi être enlevé par un simple lavage. Les produits insolubles dans l'eau déposés sur les cheveux à partir d'un solvant organique, bien qu'ils soient plus résistants à l'action ultérieure de l'eau, nécessitent que les cheveux soient soumis à l'action de solvants organiques pouvant eux-mêmes extraire les constituants naturels des cheveux. Des mélanges pléagineux non aqueux ont parfois été

utilisés pour déposer des couches de produits de conditionnement sur les cheveux. Le traitement habituel à l'huile chaude pour les cheveux ou certains fixatifs en sont des exemples. Ces couches d'huile toutefois, qu'elles soient d'origine minérale, animale ou végétale, sont généralement trop grasses pour satisfaire les goûts modernes. L'application de produits de conditionnement sur les cheveux à partir d'émulsions est souvent utilisée en permettant l'utilisation de nombreux produits qui sinon seraient difficiles à utiliser. Comme dans le cas indiqué plus haut d'application à partir d'un solvant aqueux, la pellicule déposée est généralement facilement enlevable par un simple lavage à l'eau, les matières émulsionnantes d'origine se trouvant dans la composition restant en diminuant le pouvoir de fixation du produit de conditionnement aux cheveux.

15 L'un des moyens les plus intéressants parmi les plus communément utilisés pour surmonter ure sonsation de rudeose au toucher des cheveux consiste à déposer des produits cationiques qui sont absorbés par la structure protéinique du substrat. Sont particulièrement utiles à cet effet les composés quaternaires gras 20 cationiques ayant des chaines grasses d'environ 8 à 18 atomes de carbone. Ces produits qui sont à la base de nombreux produits de rinçage des cheveux, bien qu'étroitement liés à la peau et aux cheveux, ne peuvent résister, dans une mesure importante, à l'action de la plupart des produits détergents utilisés pour l'hygiène 25 personnelle. Bien que ces produits constituent une amélioration par rapport aux anciens modes de conditionnement décrits ci-dessus. ils peuvent avoir une action trop amollissante pour les cheveux les rendant impossibles à coiffer et sans tenue. En général on n'a pas trouvé intéressant de diminuer simplement la concentration de 30 la matière quaternaire puisqu'une telle diminution entraîne une diminution des propriétés de conditionnement et/ou des avantages de docilité de peignage impartis par ces produits aux cheveux. De plus, comme nombre de ces produits parmi les plus utilisés pour traiter les cheveux contiennent des agents tensio-actifs anioniques 35 et comme les matières cationiques sont habituellement inactivées par réaction sur des agents tensio-actifs anioniques, il est habituel d'utiliser des matières cationiques seulement sous la forme d'une composition distincte, telle qu'un ringage après shampooing appliqué séparé ent. On a décrit d'autres procédés de dépôt de 40 matières de conditionnement sur la chevelure. Les Brevets des

- 1 Etats Unis d'Amérique N°3.313.734 et Canadien N° 762.893 décrivent des compositions cosmétiques contenant certains polymères possédant des sites cationiques. Ces compositions donnent un fin précipité des constituants polymères lorsqu'on les dilue avec de l'eau.
- 5 Ce précipité adhère à la surface du corps du cheveu modifiant ainsi les propriétés superficielles des fibres capillaires. Cet effet, ainsi qu'il est décrit dans les brevets mentionnés plus haut, n'est toutefois employé que dans des compositions servant pour les shampooings et donne dans plus eurs cas un dépôt épais indésirable de matière qui fait apparaître les cheveux comme recouverts d'un enduit et peu propres.

On a maintenant trouvé que les caractéristiques superficielles de la chevelure peuvent être modifiées et que son conditionnement peut être amélioré par l'application d'une composi-15 tion comportant certains polymères hydrosolubles contenant des groupes amino secondaires et tertiaires ou ammonium quaternaires. Ces polymères sont incorporés dans la composition de traitement des cheveux elle-même au lieu d'être utilisés sous la forme de solutions distinctes appliquées séparément. La composition de 20 traitement des cheveux inclut dans chaque cas en plus de l'eau et du polymère hydrosoluble (tel que défini ci-dessous) un agent décolorant, c'est-à-dire un agent de teinture de la chevelure ou un précurseur de teinture, ou bien un agent pour onduler ou redresser la chevelure, tel qu'un agent réducteur capable de rempre les 25 liaisons di-sulfure de la kératine des cheveux, ou bien encore un peroxide tel que de l'eau oxygénée dans le cas de compositions de blanchiment des cheveux ou des compositions de neutralisation (destinées à être utilisées en association avec des compositions pour l'ondulation ou le redressement). On trouve également, dans 30 le cas de compositions de décoloration ou de blanchiment un agent tensio-actif tel qu'un savon ou un détergent et suffisamment de solvant hydroxyle aliphatique miscible à l'eau (ou un mélange d'un tel solvant avec un sel hydro-soluble inerte vis-à-vis des ingrédients et de la chevelure) pour maintenir l'homogénéité de la 35 composition, c'est-à-dire une seule phase.

Les polymères sont également efficaces, qu'un agent tensio-actif anionique tel qu'un savon, etc.. soit présent ou que seulement des agents cationiques, nonioniques ou ampholytiques soient présents en dépit du fait que l'interaction ionique aurait 40 pu conduire à la formation d'une cire de catan inactive et inso-

luble. Le polymère doit être utilisé à des teneurs supérieures 1 à 0,05 % en poids de la composition totale. Il n'y a pas de limite sup rieure critique pour la quantité de polymère qui peut être présente, et on peut utiliser des quantités aussi élevées que 40 % du poids de la composition ou même davantage, en particulier quand l'application de la composition à la chevelure est suivie d'un rinçage à l'eau. Si la composition est fournie en une forme aussi concentrée, il est en général souhaitable de la diluer à l'eau jusqu'à ce que sa teneur en polymère soit de 0,5 à 15 % 10 en poids avant usage. Les compositions dans lesquelles les polymères peuvent être utilisés avec efficacité peuvent varier beaucoup du point de vue de leur teneur en acide ou en base, ayant un pH, mesuré dans l'eau, de 1,5 à 11,5. Les polymères sont efficaces pour modifier les caractéristiques superficielles de la 15 chevelure et maintenir l'effet de conditionnement désiré quand bien même l'application de la composition est suivie, intentionnellement ou non, par un rinçage à l'eau. En effet, l'effet de conditionnement produit en incorporant ces polymères dans une composition de traitement de la chevelure a une longévité remar-20 quable et est persistant bien souvent après plusieurs rinçages successifs et même après plusieurs lavages successifs par un détergent classique ou une composition de shampooing. Cela est vrai même dans le cas de compositions de décoloration ou de blanchi-

Dans les compositions de décoloration de la chevelure suivant l'invention, les agents décolorants peuvent être toutes matières connues acides ou basiques, teintures par dispersion ou intermédiaires de teintures par oxydation. Ils peuvent être présents en une quantité efficace de l'ordre de 0,03 à 10 % du poids de la composition totale, suivant le type de teinture et la coloration désirée. Quand l'agent décolorant est un intermédiaire de teinture par oxydation, il est en général souhaitable de mélanger à la composition avant application à la chevelure un agent oxydant, tel que de l'eau oxygénée, du peroxyde de sodium, un produit de l'addition de l'urée et de l'eau oxygénée, etc, comme il est classique, en une quantité efficace pour développer la coloration désirée.

ment des cheveux qui contiennent du savon ou un détergent dont 25 on aurait pu croire qu'en lui-même il aurait enlevé le polymère,

même si on n'utilise pas ensuite de shampooing.

40 Les compositions de blanchiment de la chevelure contien-

1 nent en solution aqueuse un agent oxydant, tel que l'eau oxygénée ou le produit d'addition de l'eau oxygénée et de l'urée, ainsi que des stabilisants classiques, tels que la phénacétine et/ou un stannate de sodium, le cas échéant, avec un agent tampon classique convenable qui maintient le pH entre 2.1 et 6,5. La quantité d'agent oxydant, comme il est classique, peut aller de 0,5 à 20 % du poids de la composition totale.

Les compositions pour faire onduler et redresser la chevelure contiennent des solutions aqueuses d'agents réducteurs capables de réduire les liaisons di-sulfure dans la kératine des cheveux, nombre d'entre eux étant bien connus tels que les mercaptans hydrosolubles, par exemple le thioglycolate de sodium ou d'ammonium, le thioglycolate de magnésium, le thioglycérol, le borohydrure de sodium ou de potassium, le sulfite de sodium ou d'ammonium, etc. La quantité d'un tel agent réducteur peut représenter de 0,5 à 10 % du poids de la composition totale. Divers adjuvants classiques de ces compositions peuvent également être présents.

Les compositions de neutralisation suivant l'invention
20 qui sont utilisées pour être appliquées à la chevelure ondulée ou redres
sée de manière à restaurer les liaisons di-sulfure dans la kératine des cneveux, contiennent en solution aqueuse tout agent oxydant classique utilisé à cet effet, tel que de l'eau oxygénée, le
produit d'addition de l'urée et de l'eau oxygénée, le per arbonate
25 de sodium, le bromate de sodium ou de potassium, le perborate de
sodium ou l'hypochlorite de sodium. Les compositions neutralisantes utilisées avec des compositions destinées à l'ondulation
ou au redressement de la chevelure au sulfite peuvent contenir
simplement un sesqui-carbonate de sodium au lieu d'un agent
30 oxydant.

L'agent tersio-actif présent à titre d'ingrédient essent el de la composition de blanchiment ou de décoloration de la
chevelure, peut être un savon, par exemple un sel de métal alcalin,
d'armonium ou d'amine d'un acide aliphatique à longue chaîne, en
particulier un acide gras, tel que les sels d'ammonium, de lithium
de potassium ou de sodium ou les sels d'amine tels que la mono-,
di ou tri-ethanolamine, le 2-amino-1-butanol, le 2-amino-2-méthyl1-propanol, la diéthylamine, la mono-et di-isopropanolamine, la
polyglycolamine, la N-éthylmorpholine et d'un acide tel que
40 l'acid caprique, l'acide undécylique, l'acide laurique, l'acide

1 myristique, l'acide palmitique, l'acide stearique, l'acide oléique, l'acide linoléique, l'acide ricinoléique, des acides dimères ou trimères produits par polymérisacion d'acides gras en C₁₀ des acides de colophane hydrogénée, des acides de la lanoline, l'acide phénylstéarique, des acides gras de la noix de coco, des acides gras de suif, des acides gras d'huile de ricin y compris l'acide hydroxyricinoléique, etc. L'agent tensio-actif peut également être une matière anioniqué, telle que le di-(2-éthylhexyl) phospate de sodium, le dioctyl sulfosuccinate de sodium, le dodécyl-10 benzenesulfonate de sodium, le lauryl sulfate de sodium, l'alcool éthoxylé semi-sulfosuccinate disodique. On peut également utiliser des agents tensio-actifs cationiques, tels que le chlorure de stéaryldiméthylbenzylammonium, l'aminoamide de l'acide stéarique, des chlorures de diméthyldialcoylammonium dans lesquels chaque groupe alcoyle a de 8 à 18 atomes de carbone, des sels d'ammonium quaternaire polyéthoxylés, un dérivé oxydé amidoaminé de l'acide laurique, ou le chlorure de cétylpyridinium. Parmi les agents tensio-actifs nonioniques qui peuvent être utilisés figurent divers condensats d'oxydes d'alcoylène, par exemple d'oxyde 20 d'éthylène ou d'oxyde de propylène avec d'autres molécules, chaque molécule du concensat contenant de 5 à 500 motifs d'oxyde d'alcoylène, tel que l'octyl phénoxypolyéthoxyéthanol, des condensats d'oxyde d'éthylène avec des bases hydrophobes formés par condensation de l'amyde de propylène sur du propylène glycol, des monoet di-glycérides d'acides gras à longue chaîne, des esters de sorbitan d'acides gras à longue chaîne, le sorbitan mono-oléate mono-palmitate ou mono-stéarate polyoxyéthyléné, l'éther laurilique polyoxyéthyléné, l'éther stéarylique polyoxyéthyléné, le diéthanolamide laurique, l'oxyde de diméthyloctadécylamine, un 30 éther glycol de nonylphénylpolyéthylène, des condensats d'oxyde d'éthylène et d'amides à chaîne grasse longue, des alcools de la lanoline acétylée, ou des alcanolamides d'acide gras de coprah. Parmi les agents tensic-actifs amphotères utiles pour les compositions suivant l'invention figurent des dérivés de l'imidazoline obtenus par condensation de polyamides et d'acides gras à longue chaîne, tels que l'acide laurique, l'acide caprique, l'acide oléique et l'acide stéarique vendus sous la marque Miranol sous la forme de divers sels, tels que ceux de potassium, de sodium de mono-, di- ou tri-éthanolamine ou d'isopropanolamine, l'acide N-coprah-beta-aminop-opionique ou son sel de sodium, le

1 N-lauryl-bêta-iminodipropionate disodique, l'acide N-lauryl/
myristyl-bêta-aminopropionique ou un polyalcoylamido imidazolinium sulfate complexe fourni sous la marque Soromine CAZ-75.
Tous ces agents tensio-actifs peuvent être présents sous la forme
5 d'ingrédients dans les compositions pour onduler ou pour redresser
la chevelure ou dans les compositions neutralisantes suivant
l'invention. On peut utiliser des agents tensio-actifs à raison
de 0,1 à 50 % du poids de la composition totale et mieux à raison de 0,3 à 25 % en poids.

Quand un agent tensio-actif est présent dans l'une des 10 compositions, il doit également y avoir suffisamment de solvant. aliphatique primaire organique hydroxylé miscible à l'eau ou un mélange d'un tel solvant avec un sel hydrosoluble inerte pour solubiliser tous les ingrédients. Parmi les solvants convenables 15 figurent l'éthanol, l'isopropanol, l'alesol benzylique, l'hexylène glycol, l'hexanol, le 2-méthylpentanol, le 2-éthylbutanol, le diethylène glycol, le tétra-éthylène glycol, le propylène glycol, le 1,5-pentamedioi, le polyéthylème glycol, des éthers de glycol tels que le 2-éthoxyéthanol, le 2-phénoxyéthanol, l'éther mono-20 ethylique du diéthylène glycol, l'éther monobutylique du diéthylène glycol, l'éther monobutylique du diéthylène glycol, l'éther monobutylique du 1,2-propanediol, l'éther monométhylique du dipropylène glycol ou le 1-butoxyéthoxy-2-propanol. La quantité minimale d'un tel solvant nécessaire pour assurer l'homogénéité 25 varie suivant l'identité et la quantité des autres ingrédients présents mais, en général, représente de 1 à 90 % du poids de la composition totale.

Les sels hydrosolubles qui peuvent être utilisés en association avec le solvant hydroxylé pour augmenter son effica30 cité comprenent ceux qui sont chimiquement inertes par rapport aux ingrédients restants de la composition ainsi que par rapport aux cheveux, tels que les chlorures, bromures, sulfates ou acétates de sodium, potassium, lithium, ammonium ou alcanolamine inférieure. On peut les utiliser à raison de 0,01 à 15 % du poids de la composition totale, et mieux à raison de 0,05 à 5 %.

les polymères utiles suivant l'invention sont des amino homopolymères et copolymères et des copolymères d'ammorium quaternaire solubles dans l'eau à poids moléculaire élevé ayant, à titre de constituant de la chaine ou du squelette de la molé40 cule polymère, mis à part les groupes terminaux qui finissent

chacune des chaines et qui n'ont pas d'effet important sur les propriétés et les caractéristiques du polymère, des motifs tels que les suivants :

(1) des hamopolymères et des copolymères contenant des 5 motifs de formule :

- dans laquelle R est de l'hydrogène ou méthyle , R' est de l'hydrogène ou un groupe alcoyle ayant de un à vingt deux atomes de carbone ou un groupe hydroxyalcoyle inférieur ayant de un à cinq atomes de carbone ou un groupe alcoyle inférieur contenant un groupe amido d'extrémité, tel que le groupe bêta-propionamido ou
 - (2) des copolymères d'acrylamide ou de diacétone acrylamide et des monomères fournissant dans le copolymère obtenu des motifs ayant la formule :

40

dans aquelle R est tel que défini ci-cessus et A et B sont indépendamment l'un de l'autre, (c'est-à-dire qu'ils peuvent être identiques ou différents) des groupes alcoyles ayant de un à vingt deux atomes de carbone, des groupes hydroxyalcoyles inférieurs ayant de un à cinq atomes de carbone, des groupes alcoyles inférieurs contenant des groupes amido d'extrémité, tels que le bêtapropionamido, A et B pouvant ensemble avec l'atome d'azote auquel ils sont reliés être des groupes pipéridinyles ou morpholinyles. Des sels du polymère 1, tels que le chlorhydrate, le Fromhydrate ou le sulfate équivalent au Polymère I. Les homopolymères et copolymères (1) et les copolymères (2) préférés sont ceux dans lesquels R est de l'hydrogène. De même, les copolymères (2) préférés sont ceux dans lesquels A et B sont indépendamment des groupes alcoyles inférieurs ayant de 1 à 5 atomes de carbone ou 15 dans lesquels A et B forment ensemble avec l'atome d'azote un groupe pipéridinium ou morpholinium. Ces homopolymères et copolymères ont un poids moléculaire allant de 20.000 à 3.000.000 environ. Dans le cas d'homopolymères, tous les motifs de la chaine po'ymère sont identiques, tandis que dans le cas de polymères, 10 les motifs, bien qu'ayant la structure définie ci-dessus, ne sont pas tous identiques 1'un à 1'autre et, en outre, peuvent contenir les structures e l'actylamide ou du diacetone acrylamide tel que décrit ci- essous. Tout anion non toxique et cosmétiquement acceptable, tant organique que minéral, peut être 21 présent dans le polymère et associé aux groupes d'ammonium quaternaire cationique. Ce peut être notamment des acétate, borate., bromure, chlorure, citrat, tartrate, bisulfate, bisulfite, sulfate, phosphate et succinate. Les homopolymères et copolymères de formule I peuvent être préparés comme décrit Jans le brevet des Etats Unis d'Amérique N° 2.926.161 en polymérisant les sels de diallylamine ou d'amine appropriés. Les copolymères de formule II peuvent être préparés en polymérisant un chlorure ou bromure de diallyldialcoylammonium ou d'autres sels monomères de diallyl ammonium convenables à l'aide d'un catalyseur de polymérisation 3. radicalaire, tel qu'un peroxyde, puis en utilisant une colonne d'échange d'ions éventuellement, tel que décrit dans les brevets des Etats Unis d'Amérique N° 3.288.770 et 3.412.019. Si on dissout un polymère d'un chlorure dans une solution aqueuse ou dans une base cosmétique contenant des sels de tout autre anion, la solution obtenue contient les deux types d'anions chacun étant associé dans

une certaine mesure aux groupes d'ammonium quaternaires du polymère. Le sel de diall lammonium est copolymérisé avec l'acrylamide ou le diacétone acrylamide; ces derniers monomères peuvent être également copolymérisés avec une dialcoylamine. Les motifs du polymère dérivés de l'acrylamide ont la structure

tandis que ceux dérivés du d'acétone acrylamide ont la structure

40

La quantité de ces monomères de type acrylamide incorporés dans le copolymère peut représenter de 5 à 95 % du p ids des monomères totaux ; les copolymères peuvent être obtenus en soumettant le 25 mélange de monomères aux mêmes conditions de polymérisation que celles utilisées pour faire les homopolymères. Il est en général sans importance pour ce qui concerne l'invention que le polymère ou le copolymère contenant un anion particulier désiré ou une association d'anions soit préparé sous forme pure avant d'être 30 mélangé à la composition de traitement des cheveux ou que les anions désirés soient introduits dans la composition sous la forme d'autres sels. Il est habituellement très commode d'utilisar le sel le moins coûteux du polymère qui est facilement disponible, quel que soit l'anion qu'il contienne et d'ajouter 35 l'anion désiré sous la forme d'autres sels moins coûteux. Les compositions de traitement de la chevelura, corme il est bien connu, contien ent n'importe quels anions non toxiques, dont on donne ci-dessous nombre d'exemples.

Les exemples suivants illustrent l'invention.

Pour s'assurer de l'obtention d'une action de condition-

1 nement, on effectue l'essai suivant. On prépare des tresses en utilisant des cheveux qui ont été blanchiset ondulés. Ce type de cheveux est difficile à peigner qu'il soit à l'état sec ou à l'état humide et représente un échantillon réaliste pour l'évalua-5 tion des traitements de conditionnement. On marque à titre de témoin une tresse non traitée et on évalue pour les deux tresses les propriétés de peignage à l'état humide et à l'état sec. On soumet ensuite un certain nombre de tresses provenant du même lot de cheveux (pour éliminer les variations de lot à lot) à la 10 composition de traitement de la chevelure à tester. On effectue les évaluations par une commission de savants en cosmétiques ou d'utilisateurs en produits de beauté. On peigne les cheveux et on les note sur une échelle de 1 à 5, la note 1 étant la plus mauvaise et 5 étant la meilleure.Les changements de notation 15 par rapport au témoin indiquent l'efficacité du traitement de conditionnement. La persistance de notes élevées après une série de shampooings indique la continuité du conditionnement sur les tresses. Les notes rapportées aux exemples ci-dessous sont basées sur l'échelle ci-dessus et sont celles obtenues pour des pei-20 gnages à l'état humide sauf mention contraire.

EXEMPLE 1

On prépare les compositions suivantes (Tableau 1), ces compositions convenant comme teinture pour cheveux lorsqu'on leur ajoute la teinture classique désirée. On mélange ensuite ces compositions à une solution aqueuse à 16 % d'eau oxygénée à raison de 3,5 parties en poide de la composition pour 1,0 partie d'eau oxygénée et on laisse le mélange en contact avec les tresses de cheveux, l'une des tresses comportant des cheveux vierges qui n'ont jamais été blanchis ou ondulés chimiquement, une autre tresse comportant des cheveux blanchis et ondulés, pendant vingt minutes à température ambiante puis on rince. On note chaque tresse de cheveux avec les résultats indiqués au tableau II. Dans ce cas les tresses de cheveux ont reçu des notes tant à l'état humide (WC) qu'après séchage (DC) ainsi qu'après un shampooing et 35 un rincage (1S) et après trois rincages (3S).

TABLEAU I

	Ingrédient	Pourcentage en poids
	Acide oléique	8,7
	Monoéth anolamin e	5,0
5	Triton X-100 (Octylphénoxy-	
	polyéthoxy(9-10)éthanol)	1,0
	Triton X-35 (Octylphénoxy-	
	pslyéthoxy(3-4)éthanol)	5,0
	Isopropanol	25,0
10	Acide éthylène diaminetétracétic	rue 0,05
	Sulfite de sodium	0,05
	Polymère	1,0
	Eau	q.s.

TABLEAU II

15		Conditionnement de la chevelure						
		Vi	erges		В	lanc	his/ondu	1és
	WC	DC	WC(1S)	WC(3S)	WC	DC	WC(1S)	WC(3S)
Chlorhydrate de polydiallylimine 20 Rien	-	_	-	4,0 3,5	-	-	4,0 2,5	3,0 2,5

EXEMPLE 2

On prépare des compositions de blanchiment des cheveux 25 en mélangeant une partie en poids d'une solution aqueuse d'eau oxygénée à 16 % et 3,5 parties de chacune des compositions ayant la formule suivante, le polymère étant différent dans chaque cas comme mentionné au tableau III.

20	Formule					
30	Ingrédient	Pourcentage en poids				
35	Acide oléique	9,0				
	Monoéthanolamine	5,1				
	Octylphénoxypolyéthoxy (9-10) éthanol	1,0				
	Octylphénoxypolyéthoxy (3-4) éthanol	5,0				
	Isopropanol	15 à37				
	Polymère cationique	1,0				
	Eau pour faire	100				

TABLEAU III

Chlorhydrate de polydiallylamine

Copolymère (50:50) de chlorure de dimethyldiallylammonium et d'acrylamide

Copolymère (75:25) de chlorure de dimethyldiallylammonium et d'acrylamide

Copolymère (27:53) de chlorure de diméthyldiallylammonium et d'acrylamide

Copolymère (13:87) de chlorure de diméthyldiallylammonium et $_{10}^{}\,$ d'acrylamide

Copolymère (7:93) de chlorure de diméthyldiallylammonium et d'acry amide

Copolymère (90:10) de chlorure de diméthyldiallylammonium et de diacétore acrylamide

Copolymère (95:5) de ch'orure de diméthyldiallylammonium et 20 de diccétone acrylamide

On évalue les compositions en les appliquant à des tresses de cheveux vierges et de cheveux 'lanchis et ordulés et les y laissant pendant vingt minutes. Après un rinçage et un 25 shampooing, les tresses présentent le même conditionnement remarquable qu'observé à l'exemple 1, à l'inverse du conditionnement peu souhaitable des tresses traitées par des compositions similaires ne contenant pas le polymère.

REVENDICATIONS

1. Composition pour blanchir, faire onduler ou redresser la chevelure, caractérisée en ce qu'elle comprend, en plus d'un agent de blanchiment, d'un agent d'ondulation ou de redressement, ou d'un agent décolorant une solution aqueuse d'un polymère hydrosoluble ayant un poids moléculaire compris entre 20.000 et 3.000.000 et consistant soit en des homopolymères ou copolymères contenant des motifs de formule:

10 CH2 CH2 CR - CH2

dans laquelle R est de l'hydrogène ou un radical méthyle, R'est de l'hydrogène ou un groupe alcoyle ayant de un à vingt deux atomes de carbone ou un groupe hydroxyalcoyle inférieur ayant de un à cinq atomes de carbone ou un groupe alcoyle inférieur contenant un groupe terminal amido, tel que bêta-propionamido, soit des copolymères d'acrylamide ou de diacétone acrylamide et des monomères fournissant dans le copolymère obtenu des motifs répondant à la formule :

3C

CH2

CH2

CR

CH2

CR

CH2

CR

CH2

dans laquelle R est défini ci-dessus et A et B sont indépendamment l'un de l'autre des groupe alcoyles ayant de un à vingt deux atomes de carbone, des groupes hydroxyalcoyles inférieurs ou des groupes alcoyles inférieurs contenant des groupes amido terminaux, ou, quand A et B sont pris ensemble avec l'atome d'azote auquel ils sont reliés, des groupes pipéridinyle ou morpholinyle, la quantité

de ce polymère représentant de 0,05 à 40 % du poids de la composi-

2. Composition suivant la revendication 1, caractérisée 10 en ce que A et B sont tous deux des groupes méthyles.

tion aqueuse totale.

- 3. Composition suivant la revendication 1, caractérisée en ce que A et B sont tous deux des groupes éthyles.
- 4. Composition suivant l'une des revendications précédentes, caractérisée en ce qu'elle contient de 0,5 à 20 % en poids 15 d'un agent tensio-actif.
 - 5. Composition suivant la revendication 1 ou 2, caractérisée en ce que le copolymère contient jusqu'à 95 % en poids de motifs consistant en :

- 30 6. Composition suivant l'une des revendications précédentes, caractérisée en ce qu'elle est utilisée à titre de composition pour faire onduler les cheveux ou pour redresser la chevelure.
- 7. Composition suivant l'une des revendications 1 à 5, 35 caractérisée en ce qu'elle est utilisée à titre de composition pour teindre la chevelure.
 - 8. Composition suivant l'une des revendication 1 à 5, caractérisée en ce qu'elle est utilisée à titre de composition pour blanchir la chevelure.
- 9. Un procédé pour blanchir, onduler ou redresser ou

décolorer la chevelure, caractérisé en ce qu'il consiste à appliquer à la chevelure une composition suivant l'une quelconque des revendications précédentes.

10. Un emballage, caractérisé en ce qu'il comprend une 5 composition suivant l'une quelconque des revendications 1 à 8, ainsi qu'un propulseur liquide dans un récipient tenant la pression.