

Solution of a Problem of E. M. Wright on Convex Functions

Author(s): V. L. Klee, Jr.

Source: The American Mathematical Monthly, Vol. 63, No. 2 (Feb., 1956), pp. 106-107

Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2306432

Accessed: 09-10-2017 21:06 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

 ${\it Mathematical~Association~of~America} \ {\it is~collaborating~with~JSTOR~to~digitize,~preserve~and~extend~access~to~The~American~Mathematical~Monthly}$

MATHEMATICAL NOTES

EDITED BY F. A. FICKEN, University of Tennessee

Material for this department should be sent to F. A. Ficken, University of Tennessee, Knoxville 16, Tenn.

SOLUTION OF A PROBLEM OF E. M. WRIGHT ON CONVEX FUNCTIONS*

V. L. KLEE, JR., University of Washington

With R denoting the real number field and f a function on R to R, consider the following two statements about f:

- (A) $f(x+\delta) f(x) \ge f(y+\delta) f(y)$ for all $\delta > 0$ and x > y.
- (B) $f(\frac{1}{2}x + \frac{1}{2}y) \le \frac{1}{2}f(x) + \frac{1}{2}f(y)$ for all x, y.

It is well known that (A) implies (B), and that for continuous f the two are equivalent. (See [2], for example.) In a recent note [3], Professor E. M. Wright showed that (A) is equivalent to certain other interesting inequalities, and raised a question as to the existence of a function f for which (B) is true but (A) is false. The purpose of this note is to describe such a function. Needless to say, the argument given leans heavily on the Axiom of Choice.

THEOREM. There is a function f on R to R such that for all x, $y \in R$ it is true that

- (i) $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$ for all rational λ with $0 \le \lambda \le 1$;
- (ii) if $x \neq y$, there is a $\delta > 0$ such that $f(x+\mu\delta) f(x) < f(y+\mu\delta) f(y)$ for all rational $\mu > 0$.

Proof. Recall first that the line R and the plane R^2 are both of dimension 2^{\aleph_0} as vector spaces over the rational field.‡ (This follows, for example, from the lemma on p. 20 of [1].) Thus there is an (additive, rationally homogeneous) isomorphism τ of R onto R^2 . For each $x \in R$ let $f(x) = |\tau(x)|^2$, where $|\cdot|$ is the Euclidean norm in the plane R^2 . That (i) is true follows readily from the corresponding property of $|\cdot|^2$ and the fact that τ is an isomorphism. It remains to establish (ii).

Consider an arbitrary pair x and y of distinct points of R and let $x' = \tau(x)$, $y' = \tau(y)$. Let U be the non-empty open set of all $p \in R^2$ such that (y', p) > (x', p), where $(\ ,\)$ denotes the inner-product in R^2 . Since for all z, $q \in R^2$ it is true that $d|z+tq|^2/dt=2(z, q)+2t|q|^2$, it then follows that $|x'+tp|^2-|x'|^2<|y'+tp|^2-|y'|^2$ for all $p \in U$ and t>0. Thus with $\delta=\tau^{-1}(p)$ and μ a positive rational number, it is true that $f(x+\mu\delta)-f(x)< f(y+\mu\delta)-f(y)$. It remains only to show that $\tau^{-1}U$ includes at least one positive number. Suppose not. Then τ^{-1} is an additive real function on R^2 which is bounded above on the non-empty open set

^{*} Sponsored by the Office of Ordnance Research, U. S. Army, under Contract DA-04-200-ORD-292.

[†] Since Wright works with functions on $[0, \infty[$ to R, his question is answered by the restriction to $[0, \infty[$ of the function described in the Theorem.

[‡] The Axiom of Choice enters in the proof of this fact.

U, and hence is bounded above on a translate V of U which includes the origin. But then τ^{-1} is bounded on the set $V \cap (-V)$, which is a neighborhood of the origin. Since τ^{-1} is rationally homogeneous, it follows that τ^{-1} is continuous at the origin, and hence by additivity at each point of R^2 . Since, however, τ^{-1} maps R^2 biuniquely onto R, it cannot be continuous, and the contradiction completes the proof.

References

- 1. Reinhold Baer, Linear Algebra and Projective Geometry, New York, 1952.
- 2. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934.
- 3. E. M. Wright, An inequality for convex functions, this Monthly, vol. 61, 1954, pp. 620-622.

NOTE ON CONVEX FUNCTIONS

HEWITT KENYON, University of Rochester

E. M. Wright in an interesting note [1] on a convex inequality states that it is unknown whether functions exist which satisfy condition (i) below and not condition (ii). It is not difficult to construct such a function, making use of a Hamel basis. (This makes use of the axiom of choice. See [2] or [3].) The conditions are as follows:

(i)
$$f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}$$
 for real a and b .

(ii) If
$$a \le b$$
 and $\delta > 0$ then $f(a + \delta) - f(a) \le f(b + \delta) - f(b)$.

Let H be a Hamel basis for the real numbers over the rationals. Suppose without loss of generality that 1 and π belong to H. Then each real number x has the unique representation $x = \sum_{h \in H} r_{x,h} \cdot h$, where the $r_{x,h}$ are rational numbers, only a finite number of which are not zero. Let

$$f(x) = \sum_{h \in H} r_{x,h}^2$$
 for each real x ,

It is easy to check that (i) holds. To see that (ii) does not hold, let a=1, $b=\pi$, and $\delta=1$. Then a < b, $\delta > 0$, and $f(a+\delta)-f(a)=4-1>2-1=f(b+\delta)-f(b)$.

The function f may be modified so that (i) is still satisfied; and so that (ii) is satisfied for any preassigned set of values of $\delta > 0$ of power less than the continuum, but not for all $\delta > 0$.

References

- 1. E. M. Wright, An inequality for convex functions, this Monthly, vol. 61, 1954, pp. 620-622.
- 2. G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: f(x+y) = f(x) + f(y), Math. Ann., vol. 60, 1905, pp. 459-462.
- 3. G. H. Hardy, J. E. Littlewood, G. Pólya, *Inequalities*, Cambridge University Press, 1934, p. 96.