Simetrías y cantidades conservadas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

20 de agosto de 2024

Agenda

- Variables conjugadas
- 2 Sección
- Sección

• Dado un sistema caracterizado por un Lagrangiano $L(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial L}{\partial \dot{q}_j}$, (también llamado momento canónico) asociado a la coordenada generalizada q_i

- Dado un sistema caracterizado por un Lagrangiano $L(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial L}{\partial \dot{q}_j}$, (también llamado momento canónico) asociado a la coordenada generalizada q_j
- El p_j no necesariamente corresponde a momento lineal; también puede corresponder a momento angular u a otra cantidad.

- Dado un sistema caracterizado por un Lagrangiano $L(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial L}{\partial \dot{q}_j}$, (también llamado momento canónico) asociado a la coordenada generalizada q_j
- El p_j no necesariamente corresponde a momento lineal; también puede corresponder a momento angular u a otra cantidad.
- Si un Lagrangiano L de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.

- Dado un sistema caracterizado por un Lagrangiano $L(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial L}{\partial \dot{q}_j}$, (también llamado momento canónico) asociado a la coordenada generalizada q_i
- El p_j no necesariamente corresponde a momento lineal; también puede corresponder a momento angular u a otra cantidad.
- Si un Lagrangiano L de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica q_i es constante. Luego, la cantidad p_i (q_j, q̇_j, t) constituye una cantidad conservada, llamada también una primera integral del movimiento.

- Dado un sistema caracterizado por un Lagrangiano $L(q_j,\dot{q}_j,t)$, se define el momento conjugado, $p_j\left(q_j,\dot{q}_j,t\right)\equiv \frac{\partial L}{\partial \dot{q}_j}$, (también llamado momento canónico) asociado a la coordenada generalizada q_i
- El p_j no necesariamente corresponde a momento lineal; también puede corresponder a momento angular u a otra cantidad.
- Si un Lagrangiano L de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica q_i es constante. Luego, la cantidad p_i (q_j, q̇_j, t) constituye una cantidad conservada, llamada también una primera integral del movimiento.
- Si una coordenada q_i es cíclica, entonces $\frac{\partial L}{\partial q_i} = 0$, y la ecuación de Lagrange para una coordenada cíclica q_i resulta que $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{dp_i}{dt} = 0 \Rightarrow p_i = \text{cte.}$

