TIPE: FOURCHE XCR 32 SUNTOUR

MORETTI Thibault: 33887

WENTZLER Matisse

PRESENTATION DU SYSTEME:

QUELLE EST L'INFLUENCE DE LA PRECHARGE DU RESSORT ET DU REBOND SUR LE SAG ET LA DECOMPRESSION DE LA FOURCHE ?

OBJECTIFS DU TIPE:

• 1. Mettre en évidence le comportement statique de la fourche avec un ajout progressif de poids afin de connaître le déplacement initial du SAG selon les différents réglages de la précharge du ressort.

• 2. Mettre en évidence le comportement dynamique de la décompression de la fourche en utilisant un accéléromètre pour connaître l'impact du réglage du rebond, plus ou mois élevé, sur la vitesse de remontée lors de la phase de détente.

EXPLICATION DE LA PRECHARGE DU RESSORT :

La flèche réelle se calcule en ôtant la précharge à l'effort appliqué tel que : f=(F-FP)/k

EXPERIENCE SAG:

Explication de l'expérience :

- Fourche en liaison encastrement
- Ajout 10kg par 10 kg jusqu'à 60kg
- Mesure du débattement de la fourche par rapport à la positon initialement haute

ETUDE DU SAG:

poids (en kg)	0 cran		10 crans	20 crans	30 crans	40 crans	50 crans	60 crans	70 crans	80 crans	86 crans	Débattement de la fourche	SAG (%)	SAG (mm)
0		0	0	(0	0	0	0	0	0	0	200 - 180mm	30 - 35%	70 - 54mm
10	C),7	0,6	0,6	0,6	0,5	0,5	0,3	0,3	0,2	0,2	200 200	00 00/1	
20	1	,4	1,3	1,2	1,1	1	0,9	0,9	0,8	0,7	0,7	180 - 160mm	25 - 30%	54 - 40mm
30	2	,4	2,2	2,2	2,1	2	1,8	1,7	1,6	1,4	1,4	160 - 140mm	20 - 25%	40 - 28mm
40	3	,4	3,2	3,1	3,1	2,9	2,8	2,6	2,5	2,4	2,3	140 - 120mm	20 - 25%	35 - 24mm
50	4	,3	4,2	4,1	4,1	3,9	3,7	3,6	3,4	3,4	3,4			
60		-				-	-					120 - 100mm	15 - 20%	24 - 15mm
00	_	,2	5,1	•)]	4,8	4,6	4,5	4,4	4,3	4,2	100 - 80mm	15 - 20%	20 - 12mm

80 - 63mm

10 - 15%

12 - 6mm

DETERMINATION DE LA RAIDEUR DU

RESSORT:

Formule issue de la seconde loi de Newton :

 $P=k\Delta l$

m=10 kg

lo = 256 mm

1 = 247 mm

Incertitudes sur m et sur Δl

On applique la méthode de Monte-Carlo par Python :

 $k_{\text{moven}} = 11,04 \text{ N.mm}^{-1}$

Ecart type = $1,25 \text{ N.mm}^{-1}$

ETUDE DU LOR CARTOUCHE FERMEE:

PHASE DE COMPRESSION:

L'huile passe par les valves (le clapet anti-retour se soulève)

PHASE DE DETENTE:

L'huile passe par le système principal avec rebond

ETUDE THEORIQUE DU DEBIT :

Ecoulement laminaire, visqueux, incompressible dans une conduite cylindrique

Hypothèse : écoulement de Poiseuille

On admet
$$\vec{v}(r) = v_{\text{max}}(1 - \frac{r^2}{R^2}) \overrightarrow{ez}$$

$$Dv = \iint \vec{v} \, \overrightarrow{dS} = \int v_{\text{max}} (1 - \frac{r^2}{R^2}) \, 2\pi r \, dr$$

$$Dv = 2\pi v_{max} \int_{0}^{R} (r - \frac{r^{3}}{R^{2}}) dr$$

Après intégration :
$$Dv = \frac{\pi V_{\text{max}} R^2}{2}$$

Conclusion : plus R diminue, plus Dv diminue. La détente est plus lente.

ETUDE THEORIQUE DE LA FORCE FLUIDE SUR LE PISTON :

Modélisation:

Hypothèse : <u>écoulement de Poiseuille</u>

On admet
$$v_{\text{max}} = \frac{R^2}{4\eta} \left| \frac{dp}{dz} \right|$$

Donc
$$\left| \frac{dp}{dz} \right| = \frac{4\eta}{R^2} v_{\text{max}}$$

Après intégration $p(z) = \frac{4\eta}{R^2} v_{\text{max}} |z| + po$

On isole le piston :

$$p \text{bas} = \frac{4\eta}{R^2} v_{\text{max}} 1 + \text{po}$$

$$p$$
haut = po

$$\overrightarrow{F}_{fluide \rightarrow piston} = \iint p \text{bas } \overrightarrow{dS} + \iint p \text{haut } \overrightarrow{dS} + \iint p \text{lat } \overrightarrow{dS}$$

$$= 0$$

$$=(\frac{4\eta}{R^2}v_{max}1+po-po)\int_R^{Rc}2\pi r dr \overrightarrow{ez}$$

On obtient donc:

$$|\overrightarrow{F}_{fluide}|_{\rightarrow piston} = 4\eta \, |v_{max}| (\frac{Rc^2}{R^2} - 1) |\overrightarrow{ez}|$$

ACQUISITION ACCELERATION:

Explication de l'expérience :

- Fourche en liaison encastrement
- Outil de mesure accéléromètre du téléphone (résolution 4,9ms)
- Logiciel de mesure Phyphox et de traitement Excel

ACCELERATION / VITESSE / POSITION:

Intégration par la méthode des trapèzes : On approche f sur $[t_k, t_{k+1}]$ par la fonction affine qui coïncide avec f aux points t_k et t_{k+1}

$$Tn(f) = \frac{b-a}{n} \left(\frac{f(a)+f(b)}{2} + \sum_{k=1}^{n-1} f(tk) \right)$$

ETUDE DE LA VITESSE DE LA FOURCHE:

Rebond	Vitesse max moyenne	Régime transitoire moyen		
Tour minimal	0,51±0,02 m.s ⁻¹	0,33±0,02 s		
Tour 1	0,50±0,01 m.s ⁻¹	0,33±0,02 s		
Tour 2	0,46±0,01 m.s ⁻¹	0,37±0,02 s		
Tour 3	0,43±0,03 m.s ⁻¹	0,38±0,02 s		
Tour 4	0,31±0,01 m.s ⁻¹	0,43±0,02 s		
Tour 5	0,21±0,01 m.s ⁻¹	0,44±0,02 s		
Tour maximal	0,20±0,01 m.s ⁻¹	0,52±0,02 s		

Incertitude type A : $|\langle u\rangle \pm u(\langle x\rangle)|$

$$u() = \frac{u(x)}{\sqrt{N}}$$
 et $u(x) = \sqrt{\frac{\sum_{1}^{N}(xi -)^{2}}{N}}$

Plus on augmente le réglage du rebond, plus la vitesse de remontée de la fourche est faible.

CONCLUSION:

THEORIQUE

$$\underline{\mathbf{D}\mathbf{v}} = \frac{\pi \mathbf{v}_{\max} R^2}{2}$$

$$|\overrightarrow{F}_{fluide \rightarrow piston}| = 4\eta 1 v_{max} (\frac{Rc^2}{R^2} - 1) |\overrightarrow{ez}|$$

EXPERIMENTAL

Rebond	Vitesse max moyenne	Régime transitoire moyen
Tour minimal	0,51±0,02 m.s ⁻¹	0,33±0,02 s
Tour 1	0,50±0,01 m.s ⁻¹	0,33±0,02 s
Tour 2	0,46±0,01 m.s ⁻¹	0,37±0,02 s
Tour 3	0,43±0,03 m.s ⁻¹	0,38±0,02 s
Tour 4	0,31±0,01 m.s ⁻¹	0,43±0,02 s
Tour 5	0,21±0,01 m.s ⁻¹	0,44±0,02 s
Tour maximal	0,20±0,01 m.s ⁻¹	0,52±0,02 s

ANNEXE:

```
import numpy as np
import matplotlib.pyplot as plt
# Mesure
M = 10 \# kg
L = 9 # mm
# incertitudes types et précisions
uM = 0.1 \# kg
uL = 1 # mm
DeltaM=uM*np.sqrt(3)
DeltaL=uL*np.sqrt(3)
# fonction
def calcul raideur(a,b):
  return (9.81*a)/b
# nombre de simulation effectuée
N = 100000
Raideur = []
for i in range(0,N):
  a = np.random.uniform(M-DeltaM,M+DeltaM)
  b = np.random.uniform(L-DeltaL,L+DeltaL)
  Raideur.append(calcul_raideur(a,b))
moy = np.mean(Raideur)
std = np.std(Raideur,ddof=1)
print("Moyenne = {:.2f} N/mm".format(moy))
print("Ecart type = {:.2f} N/mm".format(std))
```