

Detecção de Faces com Python e OpenCV

Prof. Esp. Danilo Azevedo Figueiredo

Curso: Sistemas de Informação

Disciplina: Processamento de Imagens

UFOPA

OpenCV

- Biblioteca mais popular para detecção de faces
- OpenCV = Open source computer vision
- Intel 1999
- Escrita em C/C++
- https://opencv.org/

Teoria básica sobre haarcascades

Classificador Cascade

Não faces

Faces

Treinamento com AdaBoost

Seleção das características

Aplica para cada subjanela

Componentes

- Haar cascades
- AdaBoost
- Cascade

Haar cascades

- Combinação de features haar para formar um classificador
- Padrão retangular nos dados
- Diferenças na intensidade das regiões retangulares da imagem

Haar cascades

Soma pixels brancos – soma pixels pretos

Mais de 160.000 combinações em uma imagem 24 x 24!

AdaBoost

- AdaBoost remove as características não necessárias
- Combina vários classificadores fracos em um classificador forte

Cascade

- Desliza pela imagem
- Computa a média dos valores dos pixels na área branca e preta
- Se a diferença entre as áreas é abaixo de um limiar, a característica coincide (match)
- Aprendizagem supervisionada

Pixels

Bounding box (caixas delimitadoras)

- Haarcascade (OpenCV)
 - Left, top, width, height
 - 8, 4, 10, 15

Parâmetros do cascadeClassifier no OpenCV

Scale factor

- Quando objetos estão perto da câmera, eles serão maiores que do objetos ao fundo da imagem
- Especifica quanto o tamanho da imagem é reduzido em cada escala de imagem
- Redimensionar um objeto maior para um menor
- Mais lento se o valor for menor

minNeighbors

- Quantos vizinhos cada retângulo candidato deve ter para mantê-lo
- Valores altos
 - Menos detecções, porém apresenta maior qualidade

minSize

- Especifica o menor objeto a ser reconhecido
- 30 x 30 é o valor padrão

maxSize

- Especifica o tamanho máximo de um objeto
- Exemplo: um objeto grande na tela