Parcial 2

Decisiones

- Se encontró que el 7% de los datos de las filas presentan "missing values", sin embargo, se dejaron así dado que no se evidencian problemas y alteraciones al momento de correr el código y obtener los resultados
- Se transformó la variables *income* a un tipo dummy, para el cual se escogió poner 0 a aquellos datos que fueran menores o iguales a 50k, y 1 a aquellos datos que fueran mayores a 50k
- Para la exploración y procesamiento de los datos, se decidió obtener la media por cada variable para identificar el promedio de la edad, horas a la semana, ingreso y otras variables de las personas y saber a qué tipo de personas y características se está realizando el análisis

Procesamiento de Datos

- age: cuenta con edades aporx. entre 15 a 90 años, con una media de 38 años
- workclass: prevalece el privado con mas de 20,000
- *fnlwgt*: tiene una media aprox de 0.189
- education-num: cuenta con datos desde 1 hasta 16, con una media de 10
- *marital-status*: prevalecen las personas casadas sobre los otros estatus
- relationship: la mayoría son hombres casados

- *race*: prevalecen las personas blancas con una diferencia de aprox. 20,000 sobre el segundo (negras)
- *sex*: hay el doble de hombres que mujeres
- capital-gain: cuenta con una media de 1077
- capital-loss: cuenta con una media de 87
- hours-per-week: con datos desde 0 hasta 90, tiene una media de 40.44 horas a la semana

Métricas Clasificación Binaria

Entrenamiento

	precision	recall	f1-score	support
0	0.88 0.74	0.93	0.91 0.67	24720 7841
accuracy macro avg weighted avg	0.81 0.85	0.77 0.85	0.85 0.79 0.85	32561 32561 32561
Validacion	precision	recall	f1-score	support
0	0.88 0.71	0.93 0.59	0.90 0.64	6231 1910
accuracy			0.85	8141

Test

macro avg
weighted avg

	precision	recall	f1-score	support
0	0.88 0.75	0.94	0.91	6204 1936
accuracy			0.86	8140
macro avg weighted avg	0.82 0.85	0.77 0.86	0.79	8140 8140

0.80 0.76

0.85

0.84

0.77

0.84

8141

8141

Se puede evidenciar que en las anteriores tablas que para la clase 0 (es decir las personas que tienen un ingreso igual o menos a 50k) la precisión ronda entre 0.88-0.89 lo que indica que cuando el modelo predice que alguien va a ganar menos de 50k suele acertar, el recall y el F1 están por encima de 0.90 lo que indica que tiene un balance sólido y casi todos los casos reales cuando se ganan 50k o menos se detectan correctamente. Mientras que para la clase 1 (es decir las persona que ganan más de 50k), tiene una precisión entre 0.74-0.75 que indica que cuando se predice que alguien va a ganar mas de 50k es confiable pero puede fallar, el recall y el F1 están por debajo de 0.67 lo que indica que su rendimiento es menor, ya que, deja escapar alrededor del 40% de las personas que realmente ganan mas de 50k aumentando la probabilidad de que hayan falsos positivos. Lo anterior explica que el modelo es bueno para detectar personas con ingresos iguales o menores a 50k, pero no para personas con ingresos mayores a 50k. Con un Accuracy de 85% que significa un buen desempeño global.

Experimento sin Dropout ni Earlystopping

Métricas Entrenamiento:

Accuracy: 0.9612, Precision: 0.9367, Recall: 0.8999, F1: 0.9179, ROC-AUC: 0.9403

Métricas de Validación:

Accuracy: 0.8225, Precision: 0.6323, Recall: 0.5817, F1: 0.6059, ROC-AUC: 0.7390

Métricas test:

Accuracy: 0.8262, Precision: 0.6474, Recall: 0.5909, F1: 0.6179, ROC-AUC: 0.7452

Métricas Entrenamiento:

Accuracy: 0.9350, Precision: 0.9234, Recall: 0.7961, F1: 0.8550, ROC-AUC: 0.8876

Métricas de Validación:

Accuracy: 0.8294, Precision: 0.6697, Recall: 0.5382, F1: 0.5968, ROC-AUC: 0.7284

Métricas test:

Accuracy: 0.8313, Precision: 0.6851, Recall: 0.5382, F1: 0.6028, ROC-AUC: 0.7305

Métricas Entrenamiento:

Accuracy: 0.9723, Precision: 0.9399, Recall: 0.9455, F1: 0.9427, ROC-AUC: 0.9632

Métricas de Validación:

Accuracy: 0.8116, Precision: 0.5967, Recall: 0.6073, F1: 0.6020, ROC-AUC: 0.7408

Métricas test:

Accuracy: 0.8141, Precision: 0.6094, Recall: 0.6085, F1: 0.6089, ROC-AUC: 0.7434

Métricas Entrenamiento:

Accuracy: 0.9605, Precision: 0.9207, Recall: 0.9147, F1: 0.9177, ROC-AUC: 0.9448

Métricas de Validación:

Accuracy: 0.8212, Precision: 0.6204, Recall: 0.6126, F1: 0.6164, ROC-AUC: 0.7488

Métricas test:

Accuracy: 0.8254, Precision: 0.6387, Recall: 0.6126, F1: 0.6254, ROC-AUC: 0.7522

Métricas Entrenamiento:

Accuracy: 0.9480, Precision: 0.9076, Recall: 0.8731, F1: 0.8900, ROC-AUC: 0.9225

Métricas de Validación:

Accuracy: 0.8278, Precision: 0.6391, Recall: 0.6110, F1: 0.6247, ROC-AUC: 0.7526

Métricas test:

Accuracy: 0.8271, Precision: 0.6472, Recall: 0.6007, F1: 0.6231, ROC-AUC: 0.7493

En esta primera parte se puede evidenciar que en el experimento 1 el modelo tiene un balance en el entrenamiento, sin embargo, en la validación y test cae significativamente lo que indica que el modelo memoriza pero no generaliza (overfitting). Mismo caso para los modelos 2 y 3, tienen buen rendimiento en el entrenamiento pero en la validación su rendimiento cae (overfitting), siendo el modelo 3 muy fuerte y peor overfitting que el modelo 1. Ahora bien, los modelos 4 y 5 tienen mejor rendimiento que los modelos anteriores pero el modelo 4 sigue teniendo overfitting aunque más estable, y el modelo 5 es más balanceado con una diferencia entre el entrenamiento y validación menor en comparación a los otros modelos. Por lo que, los cinco modelos son parecidos pero el 5 es el que mejor rendimiento tiene en

comparación a los otros y generaliza mejor en la validación y métricas más consistentes, es decir, para este caso es el mejor.

Experimento con Dropout y Earlystopping

Métricas entrenamiento:

Accuracy: 0.8752, Precision: 0.7955, Recall: 0.6485, F1: 0.7145, ROC-AUC: 0.7978

Métricas de Validación:

Accuracy: 0.8509, Precision: 0.7254, Recall: 0.5864, F1: 0.6485, ROC-AUC: 0.7592

Métricas Test:

Accuracy: 0.8549, Precision: 0.7425, Recall: 0.5971, F1: 0.6619, ROC-AUC: 0.7662

Métricas entrenamiento:

Accuracy: 0.8811, Precision: 0.7834, Recall: 0.6994, F1: 0.7390, ROC-AUC: 0.8190

Métricas de Validación:

Accuracy: 0.8490, Precision: 0.7009, Recall: 0.6220, F1: 0.6591, ROC-AUC: 0.7703

Métricas Test:

Accuracy: 0.8557, Precision: 0.7242, Recall: 0.6348, F1: 0.6766, ROC-AUC: 0.7797

Métricas entrenamiento:

Accuracy: 0.8763, Precision: 0.7829, Recall: 0.6727, F1: 0.7236, ROC-AUC: 0.8068

Métricas de Validación:

Accuracy: 0.8500, Precision: 0.7102, Recall: 0.6094, F1: 0.6560, ROC-AUC: 0.7666

Métricas Test:

Accuracy: 0.8548, Precision: 0.7293, Recall: 0.6193, F1: 0.6698, ROC-AUC: 0.7738

Early stopping en época 18

Métricas entrenamiento:

Accuracy: 0.8788, Precision: 0.8042, Recall: 0.6563, F1: 0.7228, ROC-AUC: 0.8028

Métricas de Validación:

Accuracy: 0.8477, Precision: 0.7167, Recall: 0.5801, F1: 0.6412, ROC-AUC: 0.7549

Métricas Test:

Accuracy: 0.8563, Precision: 0.7449, Recall: 0.6018, F1: 0.6657, ROC-AUC: 0.7687

Early stopping en época 17

Métricas entrenamiento:

Accuracy: 0.8779, Precision: 0.7793, Recall: 0.6877, F1: 0.7306, ROC-AUC: 0.8129

Métricas de Validación:

Accuracy: 0.8508, Precision: 0.7062, Recall: 0.6230, F1: 0.6620, ROC-AUC: 0.7718

Métricas Test:

Accuracy: 0.8558, Precision: 0.7260, Recall: 0.6322, F1: 0.6759, ROC-AUC: 0.7789

Para esta parte, se realizó los mismos 5 experimentos con los mismos valores de los hiperparametros por cada uno pero se le aplicó la regularización con un Dropout. Por consiguiente se obtuvo que la regularización permitió tener los 5 modelos más estables que sin regularización y no se observa overfitting ni underfitting en ningún modelo. Para los modelos 1 y 4 el balance es mejor pero con una capacidad predictiva no tan alta dado un F1 y ROC menor que los modelos 2 y 3, los cuales tienen un F1 y ROC en la validación y test más altos que los modelos 1 y 4, indicando un buen balance y por ende generaliza mejor. Sin embargo, el modelo 5 es el que tiene un F1 y ROC en el entrenamiento, validación y test superiores que los otros modelos, lo que indica un mejor balance y una capacidad predictiva mejor que los otros modelos. Por lo que, con la aplicación de la regularización el modelo 5 sigue siendo el modelo con mejor rendimiento y generalización mucho más sólida en comparación a los otros modelos, es decir, en general con y sin regularización el modelo con mejor rendimiento es el 5.