1 Описание метода Tensor MSSA

Пусть дан многомерный временной ряд X длины N размерности P, то есть

$$X = (X^{(1)}, X^{(2)}, \dots, X^{(P)})^{T},$$

 $X^{(p)} = (x_{p1}, x_{p2}, \dots, x_{pN}).$

Рассматривается задача выделения сигнала из ряда с шумом.

Определение 1. (Траекторный тензор многомерного ряда) Траекторным тензором многомерного ряда X с параметром $L: 1 \leqslant L \leqslant N$ будем называть тензор $\mathcal X$ размерности $L \times K \times P$, где K = N - L + 1, слои вдоль третьего измерения которого удовлетворяют равенству

$$\mathcal{X}_{,p} = \begin{pmatrix} x_{p1} & x_{p2} & \dots & x_{pK} \\ x_{p2} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{pL} & \dots & \dots & x_{pN} \end{pmatrix}, \qquad p \in \overline{1:P}.$$

Алгоритм Tensor MSSA для выделения сигнала из ряда с шумом сводится к получению как можно более точного приближения траекторного тензора тензором меньших n-рангов, задаваемых пользователем.

1.1 Ранг ряда в терминах Tensor MSSA

Следующее утверждение позволяет определить принцип выбора n-рангов в алгоритме Tensor MSSA.

Утверждение 1. Пусть X_1, X_2, \ldots, X_P - временные ряды длины N. Пусть $\mathbf{H}_1, \ldots, \mathbf{H}_P$ - траекторные матрицы этих рядов c параметром $L \leq N$. Обозначим K = N - L + 1.

Построим матрицу $\mathbf{X} = [\mathbf{H}_1: \mathbf{H}_2: \dots: \mathbf{H}_P] \in \mathbb{R}^{L \times KP}$. Eë SVD имеет вид:

$$X = U\Lambda V. \tag{1}$$

Построим тензор $\mathcal{X} \in \mathbb{R}^{L \times K \times P}$: $\mathcal{X}_{,p} = \mathbf{H}_p$ (p-й слой тензора по 3-му измерению берём равным \mathbf{H}_p). Его HOSVD имеет вид:

$$\mathcal{X} = \mathcal{Z} \times_1 \hat{\mathbf{U}}_1 \times_2 \hat{\mathbf{U}}_2 \times_3 \hat{\mathbf{U}}_3. \tag{2}$$

Существуют такие SVD матрицы ${\bf X}$ и HOSVD тензора ${\cal X},$ что ${\bf U}=\hat{{\bf U}}_1.$

Доказательство. Из свойств HOSVD известно, что в качестве $\hat{\mathbf{U}}_1$ можно выбрать матрицу $\hat{\mathbf{U}}$ левых сингулярных векторов из SVD матрицы $[\mathcal{X}]_{(1)}$ - развёртки тензора \mathcal{A} по первому измерению. Эта развёртка имеет вид

$$[\mathcal{X}]_{(1)} = [\mathbf{H}_1 : \mathbf{H}_2 : \ldots : \mathbf{H}_P] = \mathbf{A},$$

откуда и следует искомое утверждение.

Следствие 1.1. Из этого утверждения и из того, что разложения SVD и HOSVD единственны с точностью до, возможно, некоторых ортогональных преобразований матриц сингулярных векторов, следует, что пространства, порождаемые левыми сингулярными векторами матрицы \mathbf{X} и сингулярными векторами первого измерения тензора \mathcal{X} , совпадают.

Замечание. На практике при вычислении HOSVD тензора используется алгоритм, который последовательно вычисляет SVD развёрток этого тензора по каждому измерению, и получившиеся матрицы левых сингулярных векторов используются в качестве матриц сингулярных векторов соответствующего измерения в формуле (2). Таким образом, на практике совпадают не только пространства, порождаемые описанными выше сингулярными векторами, но и сами матрицы этих векторов.

Следствие 1.2. Пусть многомерный ряд X длины N имеет ранг r в терминах MSSA, и число $L \in \overline{1:N}$ таково, что $r \leqslant \min(L,K)$, где K = N - L + 1, и пусть \mathcal{X} — траекторный тензор этого ряда. Тогда

$$\operatorname{rank}_1(\mathcal{X}) = r, \quad \operatorname{rank}_2(\mathcal{X}) = r.$$

Замечание. Ранг третьего измерения ${\rm rank}_3(\mathcal{X})$ имеет смысл отличный от смысла ранга ряда в теории MSSA. Этот ранг имеет смысл меры структурного отличия рядов друг от друга.

Пример 1.1 (Ранги рядов). Пусть многомерный ряд X имеет следующий вид:

$$s_n^{(m)} = a_m \cos(2\pi n\omega_m + \psi_m), m \in \{1, 2\}, n \in \overline{1:N},$$

 $N > 7, a_m \neq 0, 0 < \omega_m < \frac{1}{2}, 0 \leq \psi < 2\pi.$

Обозначим r — ранг ряда X в терминах MSSA, $r_i = \operatorname{rank}_i(\mathcal{X})$, где \mathcal{X} — траекторный тензор, построенный по ряду X с длиной окна L такой, что $r \leq \min(L,K), \ K = N - L + 1$. Тогда

- 1. если $\psi_1 = \psi_2$, $\omega_1 = \omega_2$, то $r = r_1 = r_2 = 2$, $r_3 = 1$,
- 2. если $\psi_1 \neq \psi_2$, $\omega_1 = \omega_2$, то $r = r_1 = r_2 = 2$, $r_3 = 2$,
- 3. если $\omega_1 \neq \omega_2$, то $r = r_1 = r_2 = 4$, $r_3 = 2$.

1.2 Алгоритм HOSVD MSSA для выделения сигнала

На вход алгоритму подаётся многомерный временной ряд X длины N и размерности P. Параметры алгоритма: $L: 1 \le L \le N, R, R_3: R \le \min(L,K), R_3 \le P$, где K=N-L+1. Алгоритм Tensor MSSA для выделения сигнала из ряда с шумом заключается в проведении следующих четырёх шагов.

- 1. Выбор параметра L и построение по нему траекторного тензора \mathcal{X} ;
- 2. Проведение HOSVD траекторного тензора \mathcal{X} , получение его представления в виде

$$\mathcal{X} = \sum_{l=1}^{L} \sum_{k=1}^{K} \sum_{p=1}^{P} \mathcal{Z}_{l,k,p} \mathbf{U}_{l}^{(1)} \circ \mathbf{U}_{k}^{(2)} \circ \mathbf{U}_{p}^{(3)};$$
(3)

3. Группировка: выбор параметров R, R_3 имеющих смысл числа компонент, относимых к сигналу, и построение тензора

$$\hat{\mathcal{X}} = \sum_{l=1}^{R} \sum_{k=1}^{R} \sum_{p=1}^{R_3} \mathcal{Z}_{l,k,p} \mathbf{U}_l^{(1)} \circ \mathbf{U}_k^{(2)} \circ \mathbf{U}_p^{(3)}.$$

4. Восстановление сигнала \hat{X} по тензору $\hat{\mathcal{X}}$ посредством его усреднения вдоль плоскостей $l+k+p=\mathrm{const}$:

$$\hat{x}_n = \frac{1}{\#\mathfrak{M}_n} \sum_{(l,k,p)\in\mathfrak{M}_n} \hat{\mathcal{X}}_{l,k,p}, \qquad n \in \overline{1:N},$$

$$\mathfrak{M}_n = \{(l, k, p) \mid 1 \le l \le L, 1 \le k \le K, 1 \le p \le P, l + k + p - 2 = n\}.$$

Результатом алгоритма является временной ряд \hat{X} , принимаемый за оценку сигнала.

Замечание. В качестве параметра R в общем случае рекомендуется выбирать ранг искомого сигнала, а в качестве параметра R_3 — ранг траекторного тензора сигнала по третьему измерению.

1.3 Сравнение HOSVD MSSA и MSSA

Пусть сигнал задан многомерным временным рядом

$$S = \begin{pmatrix} s_1^{(1)}, & s_2^{(1)}, & \dots, s_N^{(1)} \\ s_1^{(2)}, & s_2^{(2)}, & \dots, s_N^{(2)} \end{pmatrix}$$
$$s_n^{(m)} = a_m \cos(2\pi n\omega_m + \psi_m), N = 71, a_1 = 30, a_2 = 20.$$

На сигнал подействовали белым гауссовским шумом, с параметром $\sigma=5$.

Таблица 1: RMSE восстановленных с помощью MSSA и HOSVD MSSA сигналов для каждого набора параметров сигнала.

Условия	Метод	L	12	24	36	48	60
$\omega_1 = \omega_2 = \frac{1}{12}$		MSSA	1.78	1.34	1.24	1.20	1.42
$\psi_1 = \psi_2 = 0$	HOSVD	MSSA	1.35	1.10	1.10	1.10	1.35
$\omega_1 = \omega_2 = \frac{1}{12}$		MSSA	1.78	1.34	1.25	1.20	1.41
$\psi_1 = 0, \psi_2 = \frac{\pi}{4}$	HOSVD	MSSA	1.41	1.19	1.20	1.19	1.41
$\omega_1 = \frac{1}{12}, \omega_2 = \frac{1}{8}$		MSSA	2.63	1.94	1.74	1.69	1.95
$\psi_1 = 0, \psi_2 = \frac{\pi}{4}$	HOSVD	MSSA	1.95	1.67	1.69	1.67	1.95

В таблице 1 приведены значения отклонения восстановленного ряда от исходного ряда для различных значений параметров после использования алгоритмов MSSA и HOSVD MSSA для выделения сигнала. RMSE посчитан по 500 реализациям шума, методы сравнивались на одних и тех же наборах реализаций шума.