

Geographic poverty traps?

A micro model of consumption growth in rural China

Author: Jyotsna Jalan and Martin Ravallion

lecturer: Yishu Wu

02/20/2014

Phenomenon

- China overall GDP and the average living conditions has been improved a lot for decades
- Development level is not balanced between provinces
- Relative gaps between the less developed provinces and the more developed ones is enlarging

Test Assumption

- · Theoritical Model:
 - -Ramsey Model +Imperfect mobility of geo-captial
 - -Growth rate of n is constant
- Empirical Model:
 - -1985-1990's data
 - -Fixed effect
- · Conclusion:
 - -There is a threshold that divides the two N.E. of consumption
 - -The threshold is caused by Geo-factors

HH's Problem

- Max{ $\int_0^\infty \frac{1}{1-\sigma} C(t)^{1-\sigma} e^{-\rho t} dt$ }
- Solve Euler equation, dereive the formula of consumption growth rate

$$g(t) \equiv d \ln C(t) = [F_K(K, G) - \rho - \delta]/\sigma$$

 there will be a threshold value G*, which enables g(t)=0. Below this threshold, g(t)<0. The circumstance is poverty caused by the lack of G.

Critiques

- Fact: "people's migration toward Guangdong Province urban areas since 1987"
 - 1. Overestimate the growth rate of population
 - 2. Underestimate the input of K and G
 - 3. Endogenous problem be left to the empirical
- Only shows there exist value of G enable gc<0;
 Yet, no explaination to the reason why the bad
 N.E. is reached (poverty trap is locked)

Visible	Summary statistics		
	Mess	Standard deviate	
Dependent variable			
Average % growth note of consumption, 1986-90	0.7004	28.5290	
Geographic variables			
Proportion of sample in Guangdong	0.2296	0.4199	
Proportion of sample in Guangni	0.3642	0.4296	
Proportion of sample in Yannan	0.2029	0.4021	
Proportion living in a revolutionary base area	0.0039	0.1587	
Proportion of counties sharing a border with a foreign	0.1547	0.3616	
country	0.0000	0.000	
Proportion of villages located on the coast	0.0007	0.1724	
Proportion of villages in which there is a concentration of otheric minorities	0.7365	0.4365	
Proportion of villages that have a mountainous terrain	0.4415	0.6966	
Proportion of villages that have a monatamous terrain Proportion of villages located in the plains	0.2171	0.4022	
Fortilizers used per cultiv, area (usenes per km²)	11.8970	5.4937	
Furn machinery used per capita (horsepower)	158,5455	151,2995	
Cultivated area per 10 000 persons (km²)	13.0600	3.2622	
Population density (log)	8.2264	0.3786	
Proportion of illiterates in the 15° population (%)	34.8617	15.8343	
Infant mortality rate (per 1900 live births)	40.4600	23.3683	
Medical personnel per 10,000 persons.	8.0576	5.6005	
Pup. employed in commercial (non-farm) enterprises (per 10000 persons)	117.8102	68.8162	
Kilometers of roads per 10000 persons	14.1900	19.4000	
Proportion of population living in the urban areas	0.1018	0.0810	
Household-level variables			
Expenditure on agricultural inputs (fortilizers and preticides)	30.4597	90.5274	
per cultivated area (yean per mu)			
Fixed productive assets per capits (years per capits)	132,1354	217,5793	
Cultivated land per capita (me per capita)*	1.2294	1,1001	
Household size (log)	1.6894	8,3461	
Age of the household head	42.1315	11.A225	
Age ² of the household head	1905.5300	1004,7330	
Proportion of adults in the household who are illisense	6.3230	0.2996	
Proportion of adults in the household with primary school education	0.3819	9.3003	
Proportion of children in the household between ages 6-11 years	0.1173	0.1406	
Properties of children in the bossehold between ages 12-14 years.	6.0636	0.1066	
Properties of children in the household between ages 15-17 years	0.0696	0.1004	
Proportion of children with primary school education	0.2672	0.3642	
Proportion of children with secondary school education	0.0507	0.1757	
Proportion of a boundhold members working in the state sector	0.0436	0.2042	
Proportion of 60" boundfold members	0.0637	0.1218	
Number of Insurhelds: 5644			
Number of counties	HCC		

Data

Prop. of children in the h'hold between a Prop. of children in the h'hold between a Proportion of children with primary scho Proportion of children with secondary sc Whether a household member works in t Proportion of 60° household members

Note: *Significant at 5% level or better

- · Data coverage:
- (1)Geo-features
- (2) HH characteristics
- (3) Consumption growth rate
- · Farm-HH level data obtained from the 1982 Census in China
- · A panel of 5600 farm HH, from 1985-1990
- Contains four provinces in southern China, Guangdong, Guangxi, Guizhou, Yunnan
- · Normalized to 1985 prices

A Simple Model

- Initial household wealth per capita(HW), mean wealth per capita in the county of residence(CW)
- · Interpretation: HW--->K; CW--->G
- · Long-run growth rate for HHi is:

$$g(HW_i, CW_i) = (\alpha + \xi^c \ln CW_i + \xi^h \ln HW_i)/(1 - \gamma)$$

· GMM estimate result is like:

$$g(HW,CW) = \frac{(-0.278 - 0.0221 \ln HW + 0.0602 \ln CW)}{(6.02)} \frac{1.172}{(57.46)}$$

- · Conclusion:
- the sign of coefficients: lnCW>0 and lnHW<0: Consumption growth rate is decreasing of own wealth; and increasing of average wealth
- The substitution parameter (1-r) >0: Mariginal product of own capital is decreasing with respect to own capital, and increasing with respect to geographic capital

A Richer Model

- Added a set of geo and HH features variables, as well as time-invariant geo and non-geo variables
- · Many geo-variables are significant
- Consistent with the simpler model, geo factors tends to increase the MP of own captital
- · Conclusion:
- 1. The results are consistent with geo-poverty traps
- Figure 1 (top right), shows that given a value of HW there is a optimal level of county wealth CW*, such that g(HW*, CW*)=0
- The optimal values of inputs are calculated (bottom wht)
 - 4. Geo poverty traps are clearly proved

Geographic Fertiliers o

different from

A Richer Model

- Added a set of geo and HH features variables, as well as time-invariant geo and non-geo variables
- · Many geo-variables are significant
- Consistent with the simpler model, geo factors tends to increase the MP of own captital
- · Conclusion:
- 1. The results are consistent with geo-poverty traps
- Figure 1 (top right), shows that given a value of HW there is a optimal level of county wealth CW*, such that g(HW*, CW*)=0
- The optimal values of inputs are calculated (bottom ght)
 - 4. Geo poverty traps are clearly proved

Figure 1. Zero growth combinations of country wealth and household wealth

Table III. 0	Critical	values f	for a p	peogn	phic	poverty	trap
--------------	----------	----------	---------	-------	------	---------	------

Geographic variables	Full sample			
	Critical values to avoid prographic poverty traps	Sample mean (standard deviation in parentheses)		
Fortilizers used per cultivated area (tonnes per km²)	8.5233	11.896		
Farm machinery used per capita (horsepower)	2.5209	15.855 (11.811)		
Infant mortality rate (per 1000 live births)	63.9579*	40.460 (23.370)		
Medical personnel per 19000 persons	2.7977	8.058		
Population employed in commercial (non-farm) enterprises (per 10'000 persons)	38.1904	117.810		
Kilometers of roads per 10000 persons	6.4942	(68.816) 14.190 (10.402)		

Note: A geographic poverty trap will exist if the observed value for any county is less than the critical value; given above, for those marked * the observed value cannot exceed the critical value if a poverty trap is to be avoided. Critical values are only regorded if the relevant conflictment from Table II is significantly different from zero. All the critical values reported above are significantly different from zero. All the critical values reported above are significantly different from zero (based on a Wald-type seet) at the 5% invel or better.

1.4876 5.3429 0.4776 9.0738

0.3688 4.5430 -0.8196 2.3962 -0.0667 -1.187 -1.1091 -2.1237 2.36317 3.6096 3.7536 1.5465 0.7832 -2.0525 3.3340 -2.0525 3.3347 4.4787 -9.7538

-4.7967 0.2958 -1.5890 6.9717 2.84637 -2.9626 1.4718 -0.5816 3.90637 3.31997 0.4963 -0.9654 2.34467 -1.5062

Critiques

- At first glance, the correlation between HW and g(HW, CW) is solid
- However, the so called geographic factors are not as pure as expected, in this model authors did not deal with the fixed-effect
- Even if author can ensure that CW is just the measurement of geo-factors, there are still alternatively fancy explanations to the relationship between the correlation between CW and g(HW, CW) other than the geoexternality.

The paper's conclusions

- The initial assumption is proved
- The evidence that a number of indicators of geographic capital have divergent impacts on consumption growth at the micro level is strong
- The main interpretation is that living in a poor area lowers the productivity of a farm-HH's own investments, which reduce consumption's growth rate, given restrictions on capital mobility

Critiques

- Fixed effect--Technically difficulty to separate geographic factors from other time-invariable factors
- Model's assumption on population lack of facts' support
- Lack the ability to make a good prediction of the current society

Prospective

- Based on the threshold: study the mechanism of formation of the two different Nash Equilibrium
- Based on the mechanism of formation of N.E.: find the key factors. (80/20, eg. human capital formation)
- Based on the key factors: come up with an incentive strategy to influence the key factor, which in turn enhances the economy's conditions (Bad N.E.--> Good N.E.)

