Order-driven markets Econophysics

A. Djermani A. El Aamrani W. Lhourti

CentraleSupelec

June 4th 2018

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

The order book as a reaction-diffusion model Introducing limit and market orders The order book as a deposition-evaporation model Conclusion

Introduction

Modelling financial markets:

 A good characterization of financial markets has important practical consequences for risk control and option pricing.

Introduction

Modelling financial markets:

 A good characterization of financial markets has important practical consequences for risk control and option pricing.

Order-driven markets:

An order driven market has no market makers or specialists.

Introduction

Modelling financial markets:

 A good characterization of financial markets has important practical consequences for risk control and option pricing.

Order-driven markets:

An order driven market has no market makers or specialists.

Econophysics models:

- 3 Simple order books models inspired from Physics.
- Analogy : order ≡ particle

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

Analogy with a diffusion model

The BPS model (1997) = reaction-diffusion process $A + B \longrightarrow \emptyset$

Analogy with a diffusion model

The BPS model (1997) = reaction-diffusion process

$$A + B \longrightarrow \varnothing$$

Figure – Illustration of the Bak, Paczuski and Shubik model

Physics	Bak et al. (1997)
Particles	Orders
Finite pipe	Order book
Collision	Transaction

Market mechanism

Market rules

There is **one type of stock**Each agent can own at most **one share**

Market mechanism

Market rules

There is **one type of stock**Each agent can own at most **one share**

Types of agents

N noise traders:

- N/2 potential sellers
- N/2 potential buyers

Market mechanism

Market rules

There is **one type of stock**Each agent can own at most **one share**

Types of agents

N noise traders:

- N/2 potential sellers
- N/2 potential buyers

Prices

$$\textit{Prices} \in [\![0, P_{\textit{max}}]\!]$$

Market initialization

$$\begin{array}{c} P_b^0 \hookrightarrow U_{\llbracket 0, \frac{P_{max}}{2} \rrbracket} \\ P_s^0 \hookrightarrow U_{\llbracket \frac{P_{max}}{2}, P_{max} \rrbracket} \end{array}$$

Market initialization

$$\begin{array}{c} P_b^0 \hookrightarrow U_{\llbracket 0, \frac{P_{max}}{2} \rrbracket} \\ P_s^0 \hookrightarrow U_{\llbracket \frac{P_{max}}{2}, P_{max} \rrbracket} \end{array}$$

Price evolution

At each time step t, with equal probability:

$$P_{b}^{t+1} = P_{b}^{t} \pm 1$$

 $P_{s}^{t+1} = P_{s}^{t} \pm 1$

Initialize a market with N agents, T time steps

- Initialize a market with N agents, T time steps
- ② At each time step t:
 - All prices are updated

- Initialize a market with N agents, T time steps
- 2 At each time step t:
 - All prices are updated
 - One agent is chosen randomly (buyer or seller). Let's suppose it is a buyer

- Initialize a market with N agents, T time steps
- At each time step t :
 - All prices are updated
 - One agent is chosen randomly (buyer or seller). Let's suppose it is a buyer
 - He **looks in the market**: if there is a seller offering a share at the same price \implies transaction, and the market price at t is the transaction price. Otherwise, $P^t = P^{t-1}$

- Initialize a market with N agents, T time steps
- ② At each time step t:
 - All prices are updated
 - One agent is chosen randomly (buyer or seller). Let's suppose it is a buyer
 - He **looks in the market**: if there is a seller offering a share at the same price \implies transaction, and the market price at t is the transaction price. Otherwise, $P^t = P^{t-1}$
 - If there is a transaction, the **buyer becomes a seller**, with a random price in $[\![P^t,P_{max}]\!]$, and the **seller becomes a buyer**, with a random price in $[\![0,P^t]\!]$

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

Setting Diffusion Simulation

```
# Defining the model parameters
N = 500
price_max = 250
T = 100000
# Running the simulation
prices, agents= diffusion_Model(N, price_max, T)
```

Figure – Setting Diffusion parameters

Transaction price evolution

Figure – Evolution of the transaction price in a diffusion model

Agents price distribution

(a) Initial distribution

(b) Final distribution

Physics theory of the diffusion model

Some authors showed that the **position of annihilation** in diffusion models varies with time intervals Δt following :

$$P_{\Delta t} \sim \Delta t^{rac{1}{4}} ln(\Delta t)^{rac{1}{2}}$$

Physics theory of the diffusion model

Some authors showed that the **position of annihilation** in diffusion models varies with time intervals Δt following :

$$P_{\Delta t} \sim \Delta t^{rac{1}{4}} ln(\Delta t)^{rac{1}{2}}$$

Analogy: Diffusion position $P_{\Delta t} \longleftrightarrow \text{Rescaled range } R_{\Delta t}$

Physics theory of the diffusion model

Some authors showed that the **position of annihilation** in diffusion models varies with time intervals Δt following :

$$P_{\Delta t} \sim \Delta t^{rac{1}{4}} ln(\Delta t)^{rac{1}{2}}$$

Analogy: Diffusion position $P_{\Delta t} \longleftrightarrow \text{Rescaled range } R_{\Delta t}$

$$R_{\Delta t} \sim \Delta t^{rac{1}{4}} ln(\Delta t)^{rac{1}{2}}$$

Rescaled range

Figure – The Hurst plot

Models conclusions

Stylized fact

• H > 0.5 $(H \approx 0.7)$ in real markets

Model's weakness

"Moving" orders are very unrealistic

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

What are we aiming for?

Our goal is to :

Introduce a simple mechanistic model of a limit order-driven market

What are we aiming for?

Our goal is to :

- Introduce a simple mechanistic model of a limit order-driven market
- Infer qualitative behaviors of the distribution of price fluctuations and long range correlations from simulations

What are we aiming for?

Our goal is to :

- Introduce a simple mechanistic model of a limit order-driven market
- Infer qualitative behaviors of the distribution of price fluctuations and long range correlations from simulations

The Maslov model is a theoretical model, which assumes very simple hypothesis upon agents behavior and limit order market structure.

Best ask $p_a(t)$ and Best bid $p_b(t)$

The best ask is the <u>lowest</u> price among the ask limit orders. The best bid is the <u>highest</u> price among the bid limit orders

Best ask $p_a(t)$ and Best bid $p_b(t)$

The best ask is the <u>lowest</u> price among the ask limit orders. The best bid is the <u>highest</u> price among the bid limit orders

Spread s(t)

$$s(t) = \log p(t+1) - \log p(t)$$

Best ask $p_a(t)$ and Best bid $p_b(t)$

The best ask is the <u>lowest</u> price among the ask limit orders. The best bid is the <u>highest</u> price among the bid limit orders

Spread s(t)

$$s(t) = \log p(t+1) - \log p(t)$$

Offsetting parameter Δ

$$\Delta \in \{1,2,3,4\}$$

Best ask $p_a(t)$ and Best bid $p_b(t)$

The best ask is the <u>lowest</u> price among the ask limit orders. The best bid is the <u>highest</u> price among the bid limit orders.

Spread s(t)

$$s(t) = \log p(t+1) - \log p(t)$$

Offsetting parameter Δ

$$\Delta \in \{1,2,3,4\}$$

Hypotheses

Discrete set of time steps

N number of steps during a simulation

Hypotheses

Discrete set of time steps

N number of steps during a simulation

Non finite market

At each step t, a new agent appears out of a infinite set of agents

Hypotheses

Discrete set of time steps

N number of steps during a simulation

Non finite market

At each step t, a new agent appears out of a infinite set of agents

Binary behavior of agents

Two possibilities : make an order at the best price or store a limit order

Hypotheses

Discrete set of time steps

N number of steps during a simulation

Non finite market

At each step t, a new agent appears out of a infinite set of agents

Binary behavior of agents

Two possibilities: make an order at the best price or store a limit order

Unique size for all orders

Unitary lot of stock in each order

4 At each step t, one new agent performs an action

At each step t, one new agent performs an action

2 Either he is buyer, or he is a seller

At each step t, one new agent performs an action

2 Either he is buyer, or he is a seller

3 With probability q_{lo} , he places a limit order, with probability 1

- q_{lo} , he trades at the market price . . .

 If a market order is executed, then the corresponding best limit order is removed and its price becomes the new market price

 If a market order is executed, then the corresponding best limit order is removed and its price becomes the new market price

ullet Else, the price of the new limit order is fixed : $p=p(t)\pm\Delta$ and a new expiration time is given

 If a market order is executed, then the corresponding best limit order is removed and its price becomes the new market price

• Else, the price of the new limit order is fixed : $p=p(t)\pm\Delta$ and a new expiration time is given

 For each limit order, if its expiration time is reached, then it disappears from the order book

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

Setting Maslov Simulation

Before the evolution of prices, we generate

- an array of bid limit orders {990, 991, ..., 999}
- an array of ask limit orders {1001, 1002, ..., 1010}

At each simulation step t, two random numbers u and v are generated :

- If $u \le 0.5$, the agent is a buyer.
- Else, he is a seller.
- For each :
 - If $v > q_{lo}$, the order is an effective market order.
 - The agent places a limit order.

Setting Maslov Simulation

```
N = 100000
buy_sell_param = 0.5
qlo = 0.5
bids = np.linspace(990,999,10).tolist()
asks = np.linspace(1001,1010,10).tolist()
ask limit_orders = {i: asks[i] for i in range(10)}
bid_limit_orders = {i: bids[i] for i in range(10)}
bid_limit_price = 1000
expiration_time = 1000
prices = Maslow_expiration_model(N,buy_sell_param,qlo,bid_limit_orders, ask_limit_orders, initialPrice, expiration_time
```

Figure – Setting Maslov parameters

We obtain an array of N prices (current price for each step t)

Market price evolution

Figure – Evolution of the market price for N = 100000 steps

Market price increments

Figure – Evolution of the market price increments

Heavy tails of the log-increments

Figure – The distribution of the log-increments of market prices

Heavy tails of the log-increments

Figure – The distribution of the log-increments of market prices

Observations

- High volatility of prices is observed
- Phenomenon of clustering : price increments are grouped and separated by "quiet" zones of fluctuation
- Long-range auto correlation of price
- Shows a non trivial, unexpected Hirst Exponent H=1/4

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

Quantities of interest

Spread s(t)

$$s(t) = \log p_a(t) - \log p_b(t)$$

Quantities of interest

Spread s(t)

$$s(t) = \log p_a(t) - \log p_b(t)$$

Logarithmic midprice $\pi_m(t)$

$$s(t) = \frac{1}{2} \left(\log p_a(t) + \log p_b(t) \right)$$

Quantities of interest

Spread s(t)

$$s(t) = \log p_a(t) - \log p_b(t)$$

Logarithmic midprice $\pi_m(t)$

$$s(t) = \frac{1}{2} \left(\log p_a(t) + \log p_b(t) \right)$$

Logarithmic returns |r(t)|

$$r(t) = \pi_m(t) - \pi_m(t-1)$$

Order placement

The model for order placement is developed in the same style as that of Challet and Stinchcombe (2001).

Physics		Challet and Stinchcombe (2001)		
	Particles	Orders		
	Infinite lattice	Order book		
	Deposition	Limit orders submission		
	Evaporation	Limit orders cancelation		
Annihilation		Transaction		

Table – Analogy between the deposition-evaporation process and the order book of Challet and Stinchcombe (2001)

Cancellation model

Introducing an empirical cancellation probability

- The position in the order book $y(t) = \frac{\Delta(t)}{\Delta(0)}$
- The total number $N(t) = N_a(t) + N_b(t)$ of orders in the book.
- The order imbalance $N_{imb}(t) = \frac{N_i(t)}{N(t)}$

$$P(C|y(t), N_{imb}(t), N_t(t)) = A(1 - e^{-y(t)})(N_{imb}(t) + B)\frac{1}{N_t(t)}$$

Sommaire

- Introduction
- 2 The order book as a reaction-diffusion model
 - Study of the 'Bak and al. (1997)' model
 - Simulations and result interpretations
- 3 Introducing limit and market orders
 - Study of the 'Maslov (2000)' model
 - Simulations and result interpretations
- 4 The order book as a deposition-evaporation model
 - Study of the 'Mike-Farmer (2008)' model
 - Simulations and result interpretations
- Conclusion

Before the evolution of prices, we generate

ullet array of signs $\{s(t): t=1, \cdots, T\} \sim \textit{BrownianMotion}_{H_s}$

Before the evolution of prices, we generate

- \bullet array of signs {s(t) : t = 1, ... , T} \sim BrownianMotion_{H_s}
- \bullet array of relative prices $\{x(t): t=1,\, \cdots,\, T\} \sim \textit{Student}_{\alpha_x,\sigma_x}$

Before the evolution of prices, we generate

- ullet array of signs $\{ \mathsf{s}(\mathsf{t}) : \mathsf{t} = \mathsf{1}, \cdots, \mathsf{T} \} \sim \textit{BrownianMotion}_{H_s}$
- \bullet array of relative prices $\{x(t): t=1, \ \cdots, \ T\} \sim \textit{Student}_{\alpha_x,\sigma_x}$

At each simulation step t, an order is generated, whose relative price and direction are x(t) and s(t), respectively.

• If $x(t) \ge s(t)$, the order is an effective market order.

Before the evolution of prices, we generate

- array of signs $\{s(t): t=1, \cdots, T\} \sim \textit{BrownianMotion}_{H_s}$
- \bullet array of relative prices $\{x(t): t=1, \ \cdots, \ T\} \sim \textit{Student}_{\alpha_x,\sigma_x}$

At each simulation step t, an order is generated, whose relative price and direction are x(t) and s(t), respectively.

- If $x(t) \ge s(t)$, the order is an effective market order.
- Otherwise, the order is an effective limit order.

Before the evolution of prices, we generate

- ullet array of signs $\{s(t): t=1, \cdots, T\} \sim \textit{BrownianMotion}_{H_s}$
- \bullet array of relative prices $\{x(t): t=1, \ \cdots, \ T\} \sim \textit{Student}_{\alpha_x,\sigma_x}$

At each simulation step t, an order is generated, whose relative price and direction are x(t) and s(t), respectively.

- If $x(t) \ge s(t)$, the order is an effective market order.
- Otherwise, the order is an effective limit order.

Check if orders should be canceled

Setting Mike-Farmer Simulation

```
# Defining hyperparameters
T = 100000
alpha_x = 1.3
sigma_x = 0.0024
Hs = 0.75
A = 1.12
B = 0.2
ask_lo = np.log(np.linspace(101,110,10)).tolist()
bid_lo = np.log(np.linspace(90,99,10)).tolist()
# Simulating the model
log_prices, log_returns, spreads = Mike_and_Farmer(T, Hs, A, B, alpha_x, sigma_x, ask_lo, bid_lo)
```

Figure – Setting Mike-Farmer parameters

Transaction price evolution

Figure – Evolution of the transaction price of a random run

Stylized facts

Distribution of the log-returns:

- "The returns are distributed according to the cubic law"
- The power law exponent for the log returns is $\alpha = 3.37$

Heavy tails of the log-returns

Figure – The distribution of the log-returns of transaction prices

Stylized facts

Hurst exponent of the log transaction prices

- $H_p \sim 0.6 \in]0.5, 1[$
- "The DFA scaling exponent of returns is close to 0.5"
- Stylized fact absent in the previous models

Prediction

Stock sizer	H _s	α_{x}	$\sigma_{\scriptscriptstyle X} imes 10^{-3}$	Α	В
AZN	0.77	1.31	2.4	1.12	0.2

Figure – The measured parameters of our order flow models

Stock sizer	$\mathbb{E}(r) \times 10^{-4}$	$\mathbb{E}(s) \times 10^{-4}$	$\sigma(r) \times 10^{-4}$	$\sigma(s) \times 10^{-4}$	$\alpha(r)$	$\alpha(s)$
AZN	5.4	13.9	7.2	12.1	2.4	3.3
Predicted	3.94	40.21	9.83	57.41	3.4	3.1

Figure – The statistical properties of our order flow models

Prediction

Stock sizer	H _s	α_{x}	$\sigma_{x} imes 10^{-3}$	Α	В
AZN	0.77	1.31	2.4	1.12	0.2

Figure – The measured parameters of our order flow models

Stock sizer	$\mathbb{E}(r) \times 10^{-4}$	$\mathbb{E}(s) \times 10^{-4}$	$\sigma(r) \times 10^{-4}$	$\sigma(s) \times 10^{-4}$	$\alpha(r)$	$\alpha(s)$
AZN	5.4	13.9	7.2	12.1	2.4	3.3
Predicted	3.94	40.21	9.83	57.41	3.4	3.1

Figure – The statistical properties of our order flow models

"Effect of tick size on model stability"

Mike and Farmer model

Equation of state

Mike and Farmer model

Equation of state

The properties of order flow

Mike and Farmer model

Equation of state

The properties of order flow

The properties of prices

Conclusion

Comparing models

	Heavy tails	Long-memory	Empirical
Bak (1997)	-	-	-
Maslov (2000)	+	-	-
M&F (2008)	+	+	+

Table – Models comparison