



KS091201
MATEMATIKA DISKRIT
(DISCRETE
MATHEMATICS)

# RULES OF INFERENCE

Discrete Math Team

#### **Outline**

- Valid Arguments
- Modus Ponens
- Modus Tollens
- Addition and Simplification
- More Rules of Inference
- Fallacy of Affirming the Conclusion
- Fallacy of Denying the Hypothesis
- Rules of Inference for Universal Quantifier
- Rules of Inference for Existensial Quantifier



#### Valid Arguments

- An Argument in propositional logic is a sequence of propositions.
- All but the final proposition are called premises.
- The final proposition is called conclusion.
- An argument is valid if the truth of all premises implies that the conclusion is true.
  - i.e.  $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$  is a tautology.

#### **Modus Ponens**

• Consider  $(p \land (p \rightarrow q)) \rightarrow q$ 

| p | q | p→q | p∧(p→q)) | $(p\land(p\rightarrow q))\rightarrow q$ |
|---|---|-----|----------|-----------------------------------------|
| Т | Τ | T   | Т        | Т                                       |
| Т | F | F   | F        | Т                                       |
| F | T | Т   | F        | Т                                       |
| F | F | Т   | F        | T                                       |

#### **Modus Ponens Example**

- Assume you are given the following two statements:
  - "you are in this class"
  - "if you are in this class, you will get a grade"
- Let p = "you are in this class"
- Let q = "you will get a grade"
- By Modus Ponens, you can conclude that you will get a grade

$$p \rightarrow q$$

p

#### **Modus Tollens**

- Assume that we know:  $\neg q$  and  $p \rightarrow q$ 
  - Recall that  $p \rightarrow q \equiv \neg q \rightarrow \neg p$  (contrapositive)
- Thus, we know  $\neg q$  and  $\neg q \rightarrow \neg p$
- We can conclude ¬p

$$\neg q$$

$$p \rightarrow q$$

$$\therefore \neg p$$

## **Modus Tollens Example**

- Assume you are given the following two statements:
  - "you will not get a grade"
  - "if you are in this class, you will get a grade"
- Let p = "you are in this class"
- Let q = "you will get a grade"
- By Modus Tollens, you can conclude that you are not in this class

$$\neg q$$

$$p \rightarrow q$$

$$\therefore \neg p$$

#### **Addition & Simplification**

• Addition: If you know that p is true, then  $p \lor q$  will ALWAYS be true

• Simplification: If  $p \land q$  is true, then p will ALWAYS be true

#### Example

- We have the hypotheses:
  - "It is not sunny this afternoon and it is colder than yesterday"
  - "We will go swimming only if it is sunny"
  - "If we do not go swimming, then we will take a canoe trip"
  - "If we take a canoe trip, then we will be home by sunset"
- Does this imply that "we will be home by sunset"?
- $\circ ((\neg b \lor d) \lor (r \to b) \lor (\neg r \to s) \lor (s \to t)) \to t \dot{s}\dot{s}\dot{s}$ 
  - When

    - q = "it is colder than yesterday"
    - r = "We will go swimming"
    - s = "we will take a canoe trip"
    - t = "we will be home by sunset"

#### Example

- 1.  $\neg p \land q$
- 2. ¬p
- 3.  $r \rightarrow p$
- 4. ¬r
- 5.  $\neg r \rightarrow s$
- 6. S
- 7.  $S \rightarrow t$
- 8. *†*

1<sup>st</sup> hypothesis

Simplification using step 1

2<sup>nd</sup> hypothesis

Modus tollens using steps 2 & 3

3<sup>rd</sup> hypothesis

Modus ponens using steps 4 & 5

4<sup>th</sup> hypothesis

Modus ponens using steps 6 & 7

- We showed that:
  - $\circ$   $[(\neg p \land q) \land (r \rightarrow p) \land (\neg r \rightarrow s) \land (s \rightarrow t)] \rightarrow t$
  - That when the 4<sup>th</sup> hypothesis is true, then the implication is true
  - In other words, we showed the above is a tautology!

#### More Rules of Inference

 Conjunction: if p and q are true separately, then p∧q is true

$$\frac{p}{q}$$

 $\therefore p \wedge q$ 

• Disjunctive syllogism: If  $p \lor q$  is true, and p is false, then q must be true

$$p \lor q$$
$$\neg p$$

$$\dot{q}$$

• Resolution: If  $p \lor q$  is true, and  $\neg p \lor r$  is true, then  $q \lor r$  must be true

$$p \lor q$$

$$\neg p \lor r$$

$$\therefore q \lor r$$

• Hypothetical syllogism: If  $p \rightarrow q$  is true, and  $q \rightarrow r$  is true, then  $p \rightarrow r$  must be true

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

#### Summary: Rules of Inference

|                        | р                            |                          | ¬ q               |
|------------------------|------------------------------|--------------------------|-------------------|
| Modus ponens           | $p \rightarrow q$            | Modus tollens            | $p \rightarrow q$ |
|                        | ∴ q                          |                          | ∴ ¬ p             |
|                        | $p \rightarrow q$            | <b>.</b>                 | pvq               |
| Hypothetical syllogism | $q \rightarrow r$            | Disjunctive<br>syllogism | $\neg p$          |
| 5, 5 9                 | $\therefore p \rightarrow r$ | 5 7 11 5 9 10 1 1        | ∴ q               |
| Addition               | p                            | Simplification           | p ^ q             |
| Addition               | ∴p∨q                         | Simplification           | ∴ p               |
|                        | p                            |                          | pvq               |
| Conjunction            | q                            | Resolution               | $\neg p \lor r$   |
|                        | ∴ p ∧ q                      |                          | ∴q∨r              |

 "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on"

$$\circ (\neg r \lor \neg f) \rightarrow (s \land d)$$

 "If the sailing race is held, then the trophy will be awarded"

$$\circ s \rightarrow t$$

"The trophy was not awarded"

$$\circ$$
  $\neg$   $t$ 

Can you conclude: "It rained"?

or

$$s \rightarrow t$$

4. 
$$(\neg r \lor \neg f) \rightarrow (s \land d)$$
 1<sup>st</sup> hypothesis

6. 
$$(\neg s \lor \neg d) \rightarrow (r \land f)$$
 negation law

 $\neg s \lor \neg d$ 

8.  $r \wedge f$ 

3<sup>rd</sup> hypothesis

2<sup>nd</sup> hypothesis

Modus tollens using steps 2 & 3

 $\neg (s \land d) \rightarrow \neg (\neg r \lor \neg f)$  Contrapositive of step 4

6.  $(\neg s \lor \neg d) \rightarrow (r \land f)$  DeMorgan's law and double

Addition from step 3

Modus ponens using steps 6 & 7

Simplification using step 8

#### Fallacy of Affirming the Conclusion

• Consider the following: q q  $p \rightarrow q$   $q \rightarrow \neg p$   $p \rightarrow q$   $q \rightarrow \neg p$ 

• Is this true?

| p | 9 | р→q | q∧(p→q)) | $(d\lor(b\rightarrow d))\rightarrow b$ |
|---|---|-----|----------|----------------------------------------|
| Т | T | Т   | Т        | Т                                      |
| Т | F | F   | F        | Т                                      |
| F | T | T   | Т        | F                                      |
| F | F | Т   | F        | Т                                      |

Not a valid rule!

## Fallacy Example 1

- Assume you are given the following two statements:
  - "you will get a grade"
  - o "if you are in this class, you will get a grade"
- Let p = "you are in this class"
- Let q = "you will get a grade"

$$\frac{p \to q}{\therefore p}$$

- You CANNOT conclude that you are in this class
  - You could be getting a grade for another class

#### Fallacy of denying the hypothesis

• Consider the following:  $\neg p$ 

$$p \rightarrow q$$

$$\therefore \neg q$$

• Is this true?

| р | q | p→q | ¬p∧(p→q)) | (¬p∧(p→q)) → ¬q |
|---|---|-----|-----------|-----------------|
| T | Τ | Т   | F         | Т               |
| Т | F | F   | F         | Τ               |
| F | Т | Т   | T         | F               |
| F | F | Т   | T         | Т               |

Not a valid rule!

#### Fallacy Example 2

- Assume you are given the following two statements:
  - "you are not in this class"
  - "if you are in this class, you will get a grade"
- Let p = "you are in this class"
- Let q = "you will get a grade"

$$\frac{p}{p \to q}$$

$$\therefore \neg q$$

- You CANNOT conclude that you will not get a grade
  - You could be getting a grade for another class

#### Rules of Inference for Universal Quantifier

- Assume that we know that  $\forall x P(x)$  is true
  - $\circ$  Then we can conclude that P(c) is true
    - Here c stands for some specific constant
  - This is called "universal instantiation"
- Assume that we know that P(c) is true for any value of c
  - Then we can conclude that  $\forall x P(x)$  is true
  - This is called "universal generalization"

#### Rules of Inference for Existential Quantifier

- Assume that we know that  $\exists x P(x)$  is true
  - Then we can conclude that P(c) is true for some value of c
  - This is called "existential instantiation"
- Assume that we know that P(c) is true for some value of c
  - Then we can conclude that  $\exists x P(x)$  is true
  - This is called "existential generalization"

- Given the hypotheses:
  - "Linda, a student in this class, C(Linda)
     owns a red convertible." R(Linda)
  - "Everybody who owns a red convertible has gotten at  $\forall x \ (R(x) \rightarrow T(x))$  least one speeding ticket"
- Can you conclude:
   "Somebody in this class has gotten a speeding ticket"?

$$\exists x (C(x) \land T(x))$$

- 1.  $\forall x (R(x) \rightarrow T(x))$
- 2.  $R(Linda) \rightarrow T(Linda)$
- R(Linda)
- 4. T(Linda)
- 5. C(Linda)
- 6. C(Linda) ∧ T(Linda)
- 7.  $\exists x (C(x) \land T(x))$

3<sup>rd</sup> hypothesis

Universal instantiation using

step 1

2<sup>nd</sup> hypothesis

Modes ponens using steps

2 & 3

1<sup>st</sup> hypothesis

Conjunction using steps 4

& 5

Existential generalization

using step 6

 Thus, we have shown that "Somebody in this class has gotten a speeding ticket"

- Given the hypotheses:
  - "There is someone in this class who has been to France"

 $\forall x (F(x) \rightarrow L(x))$ 

 $\exists x (C(x) \land F(x))$ 

- "Everyone who goes to France visits the Louvre"
- Can you conclude: "Someone in this class has visited the Louvre"?

| 1. | $\exists x (C(x) \land F(x))$       | 1 <sup>st</sup> hypothesis              |
|----|-------------------------------------|-----------------------------------------|
| 2. | $C(y) \wedge F(y)$                  | Existential instantiation using step 1  |
| 3. | F(y)                                | Simplification using step 2             |
| 4. | C(y)                                | Simplification using step 2             |
| 5. | $\forall x (F(x) \rightarrow L(x))$ | 2 <sup>nd</sup> hypothesis              |
| 6. | $F(y) \rightarrow L(y)$             | Universal instantiation using step 5    |
| 7. | L(y)                                | Modus ponens using steps 3 & 6          |
| 8. | $C(y) \wedge L(y)$                  | Conjunction using steps 4 & 7           |
| 9. | $\exists x (C(x) \land L(x))$       | Existential generalization using step 8 |

• Thus, we have shown that "Someone in this class has visited the Louvre"

- Show that these premises: "A student in this class has not read the book" and "Everyone in this class passed the first exam" have the conclusion: "Someone who passed the first exam has not read the book"
- Let:
  - C(x): "x is in the class"
  - B(x): "x has read the book"
  - P(x): "x passed the first exam"
- Premises:
  - $\bullet$   $\exists x (C(x) \land \neg B(x))$
  - $\circ$   $\forall x (C(x) \rightarrow P(x))$
- Conclusion:  $\exists x (P(x) \land \neg B(x))$

| 1 | ∃x (C | $(x) \wedge$ | $\neg B(x)$ | Premise 1 |
|---|-------|--------------|-------------|-----------|
|   |       |              |             |           |

2 
$$C(a) \land \neg B(a)$$
 Existential instantiation from (1)

4 
$$\forall x (C(x) \rightarrow P(x))$$
 Premise 2

5 
$$C(a) \rightarrow P(a)$$
 Universal instantiation from (4)

$$^{\prime}$$
  $-$  B(a) Simplification from (2)

P(a) 
$$\land \neg$$
 B(a) Conjunction from (6) and (7)

9 
$$\exists x (P(x) \land \neg B(x))$$
 Existential generalization from (8)

Explain which rules of inference are used for each step

- "David, a student in this class, knows how to write programs in JAVA. Everyone who knows how to write programs in JAVA can get high-paying job. Therefore, someone in this class can get a highpaying job."
- Let:
  - C(x): "x is in the class"
  - J(x): "x knows how to write programs in JAVA"
  - H(x): "x can get high-paying job"
- Premises:
  - C(David); J(David);  $\forall x (J(x) \rightarrow H(x))$
- Conclusion:  $\exists x (C(x) \land H(x))$

Simplification from (2)

## **Proofing Example 4**

7  $\exists x (C(x) \land H(x))$ 

| 1 | $\forall x (J(x) \rightarrow H(x))$         | Premise 3                        |
|---|---------------------------------------------|----------------------------------|
| 2 | $\forall x (J(David) \rightarrow H(David))$ | Universal instantiation from (1) |
| 3 | J(David)                                    | Premise 2                        |
| 4 | H(David)                                    | Modus ponens from (2) and (3)    |
| 5 | C(David)                                    | Premise 2                        |
| 6 | C(David) ∧ H(David)                         | Conjunction from (4) and (5)     |

- "Somebody in this class enjoy whale watching. Every person who enjoys whale watching cares about ocean pollution. Therefore, there is a person in this class who cares about ocean pollution."
- o Let:
  - C(x): "x is in the class"
  - W(x): "x enjoys whale watching"
  - P(x): "x cares about ocean pollution"
- Premises:
  - $\bullet$   $\exists x (C(x) \land W(x))$
  - $\circ$   $\forall x (W(x) \rightarrow P(x))$
- Conclusion:  $\exists x (C(x) \land P(x))$

- 1  $\exists x (C(x) \land W(x))$
- 2  $(C(a) \wedge W(a))$
- 3 W(a)
- $4 \quad \forall x \ (W(x) \rightarrow P(x))$
- 5  $W(a) \rightarrow P(a)$
- 6 P(a)
- 7 C(a)
- 8  $(C(a) \wedge P(a))$
- 9  $\exists x (C(x) \land P(x))$

Premise 1

Existensial instantiation from (1)

Simplification from (2)

Premise 2

Universal instantiation from (4)

Modus Ponens from (3) and (5)

Simplification from (2)

Conjunction fro (6) and (7)

Existensial generalization from (8)

#### How do you know which one to use?

- o Experience!
- In general, use quantifiers with statements like "for all" or "there exists"