Homework 2

Deadline: April 24

- 1. If we have $f: \mathbb{R}^{n \times p} \to \mathbb{R}$, then $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{X}} = \frac{\partial f}{\partial x_{ij}}$. Assume $f = \mathrm{tr}(\mathbf{A}\mathbf{X})$. Prove that $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{X}} = \mathbf{A}^T$.
- 2. Let **X** be an $n \times p$ matrix. Solve the following optimization problem: $\min \phi(\mathbf{Z}, \mathbf{V}|\mathbf{X}) = \|\mathbf{X} \mathbf{Z}\mathbf{V}^T\|_F^2$, s.t. $\mathbf{V}^T\mathbf{V} = \mathbf{I}_q$ and $\mathbf{Z}^T\mathbf{1}_n = \mathbf{0}$, where **V** is a $p \times q$ matrix and **Z** is an $n \times q$ matrix.
- 3. Assume a mapping from the latent space into the data space is $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \sigma\boldsymbol{\epsilon}$, where $\mathbf{x} \in \mathbb{R}^p$, $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_q)$, $\mathbf{z} \perp \boldsymbol{\epsilon}$, and $\mathbf{W}^T\mathbf{W} = \mathbf{I}_q$. Please use EM algorithm to solve parameters: \mathbf{W} , $\boldsymbol{\mu}$, σ .
- 4. Please give the formula of Probabilistic Kernel PCA, and solve it.