NAVODIT CHANDRA

navoditchandra0708@gmail.com | +91-9453001199 | linkedin.com/in/navoditchandra/ | navoditc.github.io/

EDUCATION

Carnegie Mellon University

Pittsburgh, USA

Master of Science in Mechanical Engineering - Advanced Study

Dec 2022

GPA: 3.97/4.00

Selected Coursework: Machine Learning and Artificial Intelligence, Deep Learning, Computer Vision, Trustworthy AI Autonomy, Robot Dynamics & Analysis, Linear Control Systems, Numerical Methods in Engineering

Indian Institute of Technology Kanpur

Kanpur, India

Bachelor of Technology in Mechanical Engineering

May 2021

GPA: 9.1/10.0

Selected Coursework: Fundamentals of Computing, Robot Manipulators: Dynamics & Control, Robot Motion Planning

SKILLS

Programming Languages: *Proficient*: Python, C++, *Familiar*: SQL, Java, HTML **Libraries:** PyTorch, OpenCV, Gym, NumPy, Pandas, Matplotlib, Scikit-learn

Software and Tools: Linux (Ubuntu), CARLA, MATLAB, MAPLE, Arduino, Git, AutoCAD, Latex

RESEARCH EXPERIENCE

Carnegie Mellon University

Pittsburgh, USA

Graduate Researcher, Mechanical and Artificial Intelligence Lab

May 2022 - Dec 2022

- Generated a dataset consisting of RGB images and LIDAR point cloud in autopilot mode on CARLA simulator
- Refined image and point cloud feature maps processed by ResNet neural network architecture by introducing Convolutional Block Attention Module
- Improved **Driving Score** evaluation metric by **9.5%** by implementing **Additive Attention** for computation of alignment scores in **transformer block** used to combine intermediate image and LiDAR feature maps
- Experimented model performance in simulation by replacing Self-Attention module with Cross-Attention module

Indian Institute of Technology Kanpur

Kanpur, India

Students-Undergraduate Research Graduate Excellence Fellow, Energy Conservation & Storage Lab

May 2019 - July 2019

• Studied effects of gas velocity, operating current, surface wettability and capillary number on a **PEM Fuel Cell** operation by means of a **parametric study**

RELEVANT PROJECTS

End to End Learning for Self-Driving Cars

Feb 2022 - Apr 2022

- Predicted steering angle of a self-driving car from images captured by it by developing an end-to-end learning pipeline
- Accomplished reasonably good performance on training and testing tracks by executing CNN and CNN-LSTM neural network topologies in a team of 2

Modeling and Study of Adversarial Attacks Arising from Deceiving Perception in Car Autopilot Feb 2022

Feb 2022 - Apr 2022

- Collaborated in a team of 3 and simulated a real-life incident of tricking a self-driving car to misidentify moon as a
 yellow traffic light deploying a targeted adversarial attack algorithm
- Executed PGD algorithm to trick autopilot system and carried out adversarial training as an effective adversarial
 defensive technique to avert such safety-critical scenarios

Seven Segment Digit Recognition using Computer Vision

Mar 2022 - Apr 2022

- Collaborated with 2 colleagues and developed an algorithm to take readings from devices using seven-segment display
- Enhanced accuracy by 7.8% and speeded up process of taking readings by 10.4 times in comparison to average computer typists by utilizing image processing operations and computer vision techniques

Depth Estimation leveraging Stereo Vision and Generation of 3D Point Cloud

Mar 2022 - Apr 2022

- Found depth of pixels from disparity map produced by pair of parallel stereo images to compute distance of objects
- Generated a **3D point cloud** for visualization and verification of correctness of **scaling ratio** used to find depth

Edge Detection

Apr 2022 - Apr 2022

• Detected edges in images by implementing a **Sobel filter** from **scratch** and applying **Canny edge detection** with **increased performance** by tuning parameters

Semantic Segmentation for Drivable Area Detection

May 2022 - May 2022

- Applied semantic segmentation on BDD100k dataset for detection of drivable area and adjacent lane
- Implemented DeepLabv3+ neural network architecture involving a combination of spatial pyramid pooling and encoder decoder structure for enhanced performance

Identification of Abnormal Breasts as Potential Cancers using Machine Learning

Oct 2021 - Dec 2021

- Applied feature engineering leveraging shallow machine learning classification algorithms in a joint effort with 2 colleagues to estimate minimum number of features to predict whether tumors were malignant or benign
- Achieved an implementation time of 4.61 ms and an accuracy of 100% using a single feature with the KNN algorithm