12. predavanje iz OE

OSNOVE ELEKTROTEHNII

POLIFAZNI SUSTAVI

(Pripremio prof.dr.sc. Armin Pavić

1

Polifazni sustavi

OSNOVE ELEKTROTEHNII

Sadržaj:

- Pojam polifaznog napona
- Trofazni napon
- Simetrični trofazni sustav
- Simetrično trošilo u spoju zvijezde i trokuta
- Nesimetrično trošilo s nulvodičem
- Snaga u simetričnom trofaznom sustavu,
- Kompenzacija jalove snage

Pojam polifaznog napona ili struje

- Polifazni napon (struja) = više izmjeničnih napona (struja) jednakih amplituda i frekvencija, međusobno pomaknutih u fazi.
- Dvofazni sustav (fazni pomak 90°) = najjednostavniji primjer
- Značajke: konstantna snaga i rotirajuće magnetsko polje
- Primjer: Ukupna snaga dvofaznog sustava struja i₁ i i₂ (na dva trošila jednakih otpora R)
 i₁=I_msin(ωt); i₂=I_msin(ωt+90°)=I_mcos(ωt);
 p_{uk}=p₁+p₂= i₁²R+i₂²R = I_m²[sin²(ωt)+cos²(ωt)]R

 $p_{uk}(t) = I_m^2 R = \text{konst.} (!)$

Ukupna snaga u ovakvom dvofaznom sustavu ista je u svakom času i ne mijenja se s vremenom!

Trofazni napon

Trofazni napon = 3 napona međusobno pomaknuta u fazi za 120°

$$\dot{U}_{1} = U_{m} \angle 0^{\circ}$$

$$\dot{U}_{2} = U_{m} \angle -120^{\circ}$$

$$\dot{U}_{3} = U_{m} \angle -240^{\circ}$$

$$u_{1} = U_{m} \sin(\omega t)$$

$$u_{2} = U_{m} \sin(\omega t - 120^{\circ})$$

$$u_{3} = U_{m} \sin(\omega t - 240^{\circ})$$

Svojstvo:

$$\dot{U}_1 + \dot{U}_2 + \dot{U}_3 = 0 \implies u_1(t) + u_2(t) + u_3(t) = 0$$

Ovakav napon nazivamo *simetrični* trofazni napon

Generator trofaznog napona

Načelo djelovanja

3 svitka (faze generatora) s osima prostorno zakrenutim za kut 120°, rotiraju u magnetskom polju

(ili svici miruju, a polje rotira - slika desno)

Spojevi faza generatora

Trokut

- Kako su spojene faze ovoga generatora na slici?
- Što je s naponom ako magnet rotira u suprotnome smjeru?
- Što bi se dogodilo s rotorom da na priključnice generatora dovedemo trofazni napon?

◆ Fazni naponi (U_f) - U₁, U₂, U₃ naponi linijskih vodiča prema nulvodiču ◆ L1, L2, L3 - oznake linijskih vodiča (uz ove, normirane oznake, još se mogu naći oznake R, S, T i druge) N - oznaka nulvodiča

Osnovni pojmovi i oznake u trofaznom sustavu

- Linijske struje (I₁) I₁, I₂, I₃ struje kroz linijske vodiče struja nulvodiča i₀ = i₁ + i₂ + i₃ (KZS)
- Linijski naponi (U_1) U_{12} , U_{23} i U_{31} naponi između linijskih vodiča
- ullet Fazne struje ($I_{\rm f}$) (trošila) $I_{\rm Z1}$, $I_{\rm Z2}$, $I_{\rm Z3}$ struje kroz faze trošila
- * Uočimo: kod spoja u zvijezdu: $I_1=I_{Z1}$, $I_2=I_{Z2}$, $I_3=I_{Z3}$, tj. linijske struje jednake su faznima $(I_1=I_f)$

_

Odnos faznih i linijskih napona Trofazni generator u spoju zvijezde Topografski dijagram Fazni naponi: U_1 , U_2 , U_3 ($\underline{U}_1 = U_1 \angle 90^\circ$ Linijski naponi: U_{12} , U_{23} , U_{31} Iz dijagrama se vidi: (istostranični trokut dolje) Također se vidi da je: $\Sigma U_f = 0 \text{ (simetričan sustav), ali i}$ $\Sigma U_l = 0 \text{ (također simetričan sustav!)}$ Odredite linijske napone ako je $\dot{U}_1 = 220 \angle 0^\circ \text{ V}$ \dot{U}_2 \dot{U}_3 \dot{U}_3 \dot{U}_2 \dot{U}_3 \dot{U}_2 \dot{U}_3

Simetrično trošilo u spoju zvijezde

- Spoj s nulvodičem: $(\varphi_0, = \varphi_0)$, pa zbog toga na fazama trošila (\underline{Z}) su fazni naponi (U_1, U_2, U_3)
- Fazne struje trošila: (I_1, I_2, I_3)

$$\dot{I}_1 = \frac{\dot{U}_1}{\underline{Z}}$$
 $\dot{I}_2 = \frac{\dot{U}_2}{\underline{Z}}$ $\dot{I}_3 = \frac{\dot{U}_3}{\underline{Z}}$

 $\dot{l}_1 + \dot{l}_2 + \dot{l}_3 = \frac{1}{Z}(\dot{U}_1 + \dot{U}_2 + \dot{U}_3) = 0 \Rightarrow fazne \ struje \ čine \ simetričan \ sustav$

- Struja nulvodiča (prema KZS): $i_0 = i_1 + i_2 + i_3 = 0$
 - Treba li nulvodič kod simetričnog trošila? (provjerite Millmanom)
 - * Zašto je u gradskoj elektrodistribucijskoj mreži nulvodič obvezatan?
- Linijske struje: u spoju zvijezde linijske struje jednake su faznima

Nesimetrično trošilo u spoju zvijezde s nulvodičem 🕏

 Nulvodič osigurava da je na svakoj fazi trošila fazni napon, pa su

- Struje trošila: $\dot{I}_1 = \frac{\dot{U}_1}{Z_1}$ $\dot{I}_2 = \frac{\dot{U}_2}{Z_2}$ $\dot{I}_3 = \frac{\dot{U}_3}{Z_2}$
- Struja nulvodiča (prema KZS): $\dot{I}_0 = \dot{I}_1 + \dot{I}_2 + \dot{I}_3$
- Zadatak
 - Odredite struju nulvodiča u spoju na slici, ako je zadano: $U_f = 110 \text{ V}, \ \underline{Z}_1 = \underline{Z}_2 = 110 \angle 0^{\circ}\Omega; \ \underline{Z}_3 = 110 \angle -90^{\circ}\Omega; \ (1,41 \text{ A})$
 - Bi li u slučaju prekida nulvodiča napon između nultočki trošila i generatora (U_{00}) ostao jednak nuli? *(Provjera Millmanom).
 - Bi li u slučaju prekida nulvodiča svaka faza trošila i dalje imala isti (fazni) napon? *(Provjera Millmanom).

Simetrično trošilo u spoju trokuta

- Faze trošila (<u>Z</u>) spojene su na linijske napone (U_{12}, U_{23}, U_{32}) , koji stvaraju
- $\vec{l}_{12} = \frac{\vec{U}_{12}}{Z} \quad \vec{l}_{23} = \frac{\vec{U}_{23}}{Z} \quad \vec{l}_{31} = \frac{\vec{U}_{31}}{Z}$ Fazne struje trošila: od kojih su sastavljene
- Linijske struje: $\vec{l}_1 = \vec{l}_{12} \vec{l}_{31}$ $\vec{l}_2 = \vec{l}_{23} \vec{l}_{12}$ $\vec{l}_3 = \vec{l}_{31} \vec{l}_{23}$
- Primjer: odrediti fazne i linijske struje ako je zadano: \underline{Z} =72 \angle 30° Ω i U_{12} =380 \angle 0° V.

• Račun i dijagram pokazuju: $I_1 = \sqrt{3} I_f$

Snaga simetričnog trofaznog trošila

Trošilo u spoju zvijezde - radna snaga
 Radna snaga jedne faze trošila: P₁=U_f I_f cosφ
 Ukupna radna snaga (triju faza) trošila: P_{uk}=3P₁=3U_f I_f cosφ
 Izraz pomoću linijskih veličina (U₁=√3U_f, I₁=I_f) daje: P_{uk}=√3U_f I_f cosφ

Trošilo u spoju trokuta - radna snaga
 Radna snaga jedne faze trošila: P₁=U_f I_f cosφ
 Ukupna radna snaga (triju faza) trošila: P_{uk}=3P₁=3U_f I_f cosφ
 Izraz pomoću linijskih veličina (U_i=U_f, I_i=√3I_f) daje: P_{uk}=√3U_i I_i cosφ

⇒ bez obzira na spoj, **ukupna radna snaga** trošila računa se istom jednadžbom: $P_{uk} = \sqrt{3} U_l I_l \cos \varphi$

• Na isti način dobiva se za *jalovu snagu*: $Q_{uk} = \sqrt{3} U_l I_l \sin \varphi$

* Može li se ovdje istim načelom zbrajanja izračunati ukupna prividna snaga kao $S_{uk} = 3U_f I_f = \sqrt{3} U_L I_L$? Zašto?

13

Snaga nesimetričnog trofaznog trošila

Kod nesimetričnog trofaznog trošila (i kod spojeva više takvih trošila) ukupna snaga se računa kao u bilo kojoj mreži, tj.

- Ukupna radna snaga = Σ svih radnih snaga ($P_{ijk} = \Sigma P_i = P_1 + P_2 + P_3$).
- Ukupna jalova snaga jednaka je razlici ukupne induktivne i ukupne kapacitivne jalove snage $(Q_{uk} = \Sigma Q_L \Sigma Q_C)$.
- Ukupna prividna snaga dobiva se iz trokuta ukupne snage:

$$S_{uk} = \sqrt{P_{uk}^2 + Q_{uk}^2}$$

Zadatak:

Trošilo s impedancijama \underline{Z}_1 , \underline{Z}_2 i \underline{Z}_3 spojenim u zvijezdu priključeno je na trofaznu mrežu linijskog napona 381 V s nulvodičem. Odredite ukupnu radnu i ukupnu jalovu snagu trošila, struje trošila i nulvodiča te skicirajte vektore svih struja, ako je zadano: \underline{Z}_1 =44 \angle 60° Ω , \underline{Z}_2 =44 \angle -60° Ω , \underline{Z}_3 =44 \angle 0° Ω . (2200 W; 0 VAr; I_1 = I_2 = I_3 =5 A; I_0 =5 A)

Kompenzacija jalove snage simetričnog trošila

OSNOVE ELEKTROTEHNII

- Kompenzacija jalove snage, radi popravljanja faktora snage, obavlja se ovdje istim načelom kao i u jednofaznoj mreži, s tom razlikom da se ovdje (simetrično na sve tri faze) priključuju 3 kompenzacijska kapaciteta, od kojih svaki preuzima po 1/3 ukupne snage.
- Određivanje potrebne kapacitivne jalove snage Na temelju poznatog $(\cos \varphi)$ i željenog faktora snage $(\cos \varphi')$ te poznate radne snage P, iz trokuta snage (desno) dobiva se
- Kapacitivna snaga potrebna za kompenzaciju

 $Q_C = Q - Q' = P(\tan \varphi - \tan \varphi')$

iz čega se računaju potrebni (fazni) kompenzacijski kapaciteti ovako:

gdje je: $U=U_f$ za spoj kondenzatora u zvijezdu, a $U=U_I$ za spoj kondenzatora u trokut.

Za koji spoj trebamo manji kapacitet? Na što treba pritom paziti?

15

Zadaci

- Kondenzator kapaciteta 150 μF priključuje se prvo između linijskih vodiča (L1 i L2), a zatim između linijskog vodiča (L1) i nulvodiča (N) mreže trofaznog napona, frekvencije 50 Hz. Ako se pritom izmjerene struje kroz kondenzator razlikuju za 7,59 A, odredite:
 - a) u kojem spoju je izmjerena veća struja?
 - b) koliki je linijski napon mreže? (380 V)
- Kako se promijene linijske struje simetričnog trošila spojenog u trokut, ako faze trošila prespojimo u zvijezdu? (↓ 3x)
- * Na trofazni napon gradske mreže priključen je elektromotor snage P=6 kW i cos φ =0,77. Odredite najmanji kapacitet i način spajanja kondenzatora kojima bismo ukupni faktor snage povećali na cos φ '=0,86. Koliki bi trebao biti nazivni napon kondenzatora? (10,4 μ F, Δ ; 400 V)
- * *S pomoću izraza za trenutačnu snagu jedne faze trošila: $p_1(t)=U_f I_f \cos \varphi U_f I_f \cos(2\omega t + 2\alpha_u \varphi)$ dokažite da je ukupna trenutačna snaga simetričnog trofaznog trošila konstantna i da je jednaka ukupnoj radnoj snazi trošila. $(p_{ijk}(t)=3U_f I_f \cos \varphi = konst.)$