Am73/8303 • Am73/8304B

Octal Three-State Bidirectional Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- 8-bit bidirectional data flow reduces system package count
- 3-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC} -1.15V V_{OH} interfaces with TTL, MOS and CMOS
- 48mA, 300pF bus drive capability
- Am73/8303 inverting transceivers
- Am73/8304B noninverting transceivers
- Transmit/Receive and Chip Disable simplify control logic
- 20-pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am73/8303 and Am73/8304B are 8-bit 3-State Schottky transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a 3-state condition. Chip Disable is functionally the same as an active LOW chip select.

The output high voltage (V_{OH}) is specified at $V_{CC}=1.15V$ minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

Am73/8304B LOGIC DIAGRAM

Am73/8303 has inverting transceivers

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

 $V_{CC} = Pin 20$ GND = Pin 10 12

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65 to +150°C
Supply Voltage	
Input Voltage	7.0V
	5.5V
Output Voltage	5.5V
Lead Temperature (Soldering, 10 seconds)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

MIL COM'L $T_A = -55 \text{ to } +125^{\circ}\text{C}$ $T_A = 0 \text{ to } +70^{\circ}\text{C}$ V_{CC} MIN = 4.5V V_{CC} MIN = 4.75V

V_{CC} MAX = 5.5V V_{CC} MAX = 5.25V

Parameter	CTRICAL CHARA(S Description			st Condit			Min	Typ (Note 1)	Max	Units
			A PORT ((1000 1)	max	Olika
V _{IH}	Logical "1" Input Voltage		CD = VIL MAX, T/R							1
				= 2.00		0010	2.0			Volts
V _{IL}	Logical "0" Input Voltage		$\frac{CD}{T/R} = V_{IL} MAX,$ $T/R = 2.0V$			COM'L			0.8	Volts
V _{OH}	Logical "1" Output Voltage		CD = VIL MAX,		Юн = -		V _{CC} -1.15	V 07	0.7	╁
-UH	Logical / Output Voltage		T/R = 0.8V		I _{OH} = -:		2.7	V _{CC} -0.7	 -	- Volts
VOL	Logical "0" Output Voltage		CD = VIL MAX,		I _{OL} = 8m			0.3	0.4	+
	- out		T/R = 0.8V	COMIL	I _{OL} = 16			0.35	0.50	. Volts
los	Output Short Circuit Curre	nt	CD = V _{IL} MAX, T/R V _{CC} = MAX, Note 2	= 0.8V, V _O	= 0V,		-10	-38	-75	mA
I IH	Logical "1" Input Current		CD = VIL MAX, T/R	= 2.0V, V _I	= 2.7V			0.1	80	μА
<u>lı</u>	Input Current at Maximum	Input Voltage	CD = 2.0V, V _{CC} MA	X, VI = VCC	MAX				1	mA
I _{IL}	Logical "0" Input Current		CD = V _{IL} MAX, T/R	= 2.0V, V _I	= 0.4V			-70	-200	μА
v _c	Input Clamp Voltage		CD = 2.0V, I _{IN} = -1	12mA				-0.7	-1.5	Volts
lod	Output/Input 3-State Curre	nt	CD = 2.0V		$V_0 = 0.4$	v			-200	1
	<u></u>				$V_{\rm O} = 4.0$	v			80	. μΑ
			B PORT (B ₀ -B ₇)	_					
V _{IH}	Logical "1" Input Voltage		CD = V _{IL} MAX, T/R	= V _{IL} MAX			2.0			Volts
V _{IL}	Logical "0" Input Voltage		CD = VIL MAX,			COMIL			0.8	Volts
			T/R = VIL MAX			MIL			0.7	VOIS
V _{OH} Logic			CD = V _{IL} MAX, T/R = 2.0V		I _{OH} = -0	.4mA	V _{CC} -1.15	V _{CC} -0.8		
	Logical "1" Output Voltage	ogical "1" Output Voltage		l _{OH} = -5	.0mA	2.7	3.9		Volts	
				l _{OH} = -1	OmA	2.4	3.6		1	
V _{OL}	Logical "0" Output Voltage		$\begin{array}{c c} CD = V_{ L} \text{ MAX}, & I_{OL} = 20\pi \\ \hline T/R = 2.0V & I_{OL} = 48\pi \end{array}$				0.3	0.4	Volts	
. – –				10L - 46111A			0.4	0.5		
los	Output Short Circuit Curren	.t	CD = V _{IL} MAX, T/R = 2.0V, V _O = 0V V _{CC} = MAX, Note 2		-25	-50	-150	mA		
<u>ин</u>	Logical "1" Input Current		CD = V _{IL} MAX, T/R :	= V _{IL} MAX,	V _I = 2.7V	-		0.1	80	μА
<u> </u>	Input Current at Maximum	nput Voltage	CD = 2.0V, V _{CC} = M	IAX, VI = VC	CC MAX				1	mA.
<u> </u>	Logical "0" Input Current		CD = V _{IL} MAX, T/R =	= V _{IL} MAX,	$V_l = 0.4V$			-70	-200	μА
v _c	Input Clamp Voltage		$CD = 2.0V, I_{1N} = -12$	2mA				-0.7	-1.5	Volts
ОО	Output/Input 3-State Currer	it	CD = 2.0V	L	$V_0 = 0.4$	_			-200	μΑ
			<u> </u>		V _O = 4.0\	/			200	
			CONTROL INPU	TS CD, T/	/R					
V _{IH}	Logical "1" Input Voltage						2.0			Volts
/L	Logical "0" Input Voltage				1	COMIL			0.8	Volts
н	Logical "t" Input Current		<u> </u>			MIL			0.7	
IH	Input Current at Maximum I	anut Vallana	V _I = 2.7V			0.5	20	μА		
		iput voitage	V _{CC} = MAX, V _I = V _{CC} MAX				1.0	mA.		
IL	Logical "0" Input Current		V _i = 0.4V			T/R CD		-0.1 -0.1	-0.25 -0.25	mA
	Input Clamp Voltage		I _{IN} = -12mA					-0.8		\/aba
/c				CURREN				-0.6	-1.5	Volts
/c			POWER SUPPLY							
/c		A-72/0200	POWER SUPPLY					70 1	400	
		Am73/8303	$CD = V_I = 2.0V, V_{CC}$	= MAX			$ \Box$	70	100	mA
oc l	Power Supply Current	Am73/8303		= MAX /R = 2.0V, \	V _{CC} = MAX			70 100 70	100 150 100	mA

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25^{\circ}C$)

arameters	Description	Test Conditions	Typ (Note 1)	Max	Units
	A PORT DATA/M	ODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	8	12	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	11	16	ns
[†] PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	10	15	ns
[†] PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
^t PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	20	30	ns
[†] PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	30	ns
	B PORT DATA/N	IODE SPECIFICATIONS			
[†] PDHLB	Propagation Delay to a Logical "0" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	12	18	ns
	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	7	12	ns
^t PDLHB	Propagation Delay to a Logical "1" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	15	20	ns
	A Port to B Port	$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	9	14	ns
[†] PLZB	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A_0 to $A_7 = 2.4$ V, $T/\overline{R} = 2.4$ V (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF	13	18	ns
t _{PHZB}	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
t _{PZLB}	Propagation Delay from 3-State to a Logical "0" from CD to B Port	A ₀ to A ₇ = 2.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 100 Ω , C ₄ = 300pF	25	35	ns
	CD to B Fort	$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	16	25	ns
t _{PZHB}	Propagation Delay from 3-State to a Logical "1" from CD to B Port	A_0 to $A_7 = 0.4$ V, $T/\overline{R} = 2.4$ V (Figure 3) $S_3 = 0$, $R_5 = 1$ k, $C_4 = 300$ pF	22	35	ns
	CD to B Port	$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	14	25	ns
	TRANSMIT RECEIV	E MODE SPECIFICATIONS			
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	23	35	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 100Ω, C ₃ = 5pF S ₂ = 0, R ₃ = 5k, C ₂ = 30pF	22	35	ns
^t RTL	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 1$, $R_3 = 300\Omega$, $C_2 = 5pF$	26	35	ns
t _{RTH}	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 0, R ₃ = 300Ω, C ₂ = 5pF	27	35	ns

Notes: 1. All typical values given are for $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$. 2. Only one output at a time should be shorted.

FUNCTION TABLE

Inputs		Conditions	В
Chip Disable	0	0	1
Transmit/Receive	0	1	X
A Port	Out	ln	HI-Z
B Port	In	Out	HI-Z

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25$ °C)

Parameters	Description	Test Conditions	Typ (Note 1)	Max	Units
	A PORT DATA/	MODE SPECIFICATIONS			
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	14	18	ns
^t PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF	13	18	ns
[†] PLZA	Propagation Delay from a Logical "0" to 3-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$	11	15	ns
[†] PHZA	Propagation Delay from a Logical "1" to 3-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
[†] PZLA	Propagation Delay from 3-State to a Logical "0" from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 30pF$	27	35	ns
^t PZHA	Propagation Delay from 3-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$	19	25	ns
	B PORT DATA/	MODE SPECIFICATIONS	!		<u> </u>
^t PDHLB	Propagation Delay to a Logical "0" from	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	18	23	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
t _{PDLHB}	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) $R_1 = 100\Omega, R_2 = 1k, C_1 = 300pF$	16	23	ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$	11	18	ns
t _{PLZB}	Propagation Delay from a Logical "0" to 3-State from CD to B Port	A ₀ to A ₇ = 0.4V, T/\overline{R} = 2.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 15pF	13	18	ns
^t PHZB	Propagation Delay from a Logical "1" to 3-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$	8	15	ns
^t PZLB	Propagation Delay from 3-State to a Logical "0" from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300pF$	32	40	ns
		$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$	16	22	ns
^t PZHB	Propagation Delay from 3-State to a Logical "1" from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 300pF$	26	35	ns
		$S_3 = 0$, $R_5 = 5k$, $C_4 = 45pF$	14	22	ns
	TRANSMIT RECEIV	E MODE SPECIFICATIONS			
t _{TRL}	Propagation Delay from Transmit Mode to Receive a Logical "0", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 1$, $R_3 = 1k$, $C_2 = 30pF$	30	40	ns
^t TRH	Propagation Delay from Transmit Mode to Receive a Logical "1", T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 5pF$ $S_2 = 0$, $R_3 = 5k$, $C_2 = 30pF$	28	40	ns
^t RTL	Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 300\Omega$, $C_2 = 5pF$	31	40	ns
Ч ЕТТН	Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 300pF S ₂ = 1, R ₃ = 300Ω, C ₂ = 5pF	28	40	ns

Notes: 1. All typical values given are for $V_{CC}=5.0V$ and $T_A=25^{\circ}C$.

DEFINITION OF FUNCTIONAL TERMS

Ao-A7 A port inputs/outputs are receiver output drivers when T/R is LOW and are transmit inputs when T/R is HIGH.

 $\label{eq:B0B0} \textbf{B}_{\textbf{0}}\textbf{-}\textbf{B}_{\textbf{7}} \ \ \, \text{B port inputs/outputs are transmit output drivers when T/\overline{R}} \\ \text{is HIGH and receiver inputs when T/\overline{R} is LOW.}$

CD Chip Disable forces all output drivers into 3-state when HIGH (same function as active LOW chip select, CS).

Transmit/Receive direction control determines whether A port or B port drivers are in 3-state. With T/\overline{R} HIGH A port is the input and B port is the output. With T/\overline{R} LOW A port is the output and B port is the input.

T/R

^{2.} Only one output at a time should be shorted.

12

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.

Figure 2. Propagation Delay from T/\overline{R} to A Port or B Port.

Figure 3. Propagation Delay from CD to A Port or B Port.

Metallization and Pad Layouts

Am73/8303

Am73/8304B

DIE SIZE .069" X .089"

DIE SIZE 069" X .089"

ORDERING INFORMATION

Order the part number according to the table below to obtain the desired package, temperature range, and screening level.

Am73/8303 Order Number	Am73/8304B Order Number	Package Type (Note 1)	Operating (Note 2)	Screening Level (Note 3)
DP7303J	DP7304BJ	D-20	М	C-3
DP7303JB	DP7304BJB	D-20	M	B-3
DP8303J	DP8304BJ	D-20	C	C-1
DP8303JB	DP8304BJB	D-20	Ċ	B-1
DP8303N	DP8304BN	P-20	Ċ	C-1
DP8303NB	DP8304BNB	P-20	č	B-1
) Visual inspection
AM7303X	AM7304BX	Dice	M	to MIL-STD-883
AM8303X	AM8304BX	Dice	С	Method 2010B.

- 1. P = Molded DIP, D = Hermetic DIP, F = Flat Pak. Number following letter is number of leads.
- 2. C = 0 to 70° C, V_{CC} = 4.75 to 5.25V, M = -55 to $+125^{\circ}$ C, V_{CC} = 4.50 to 5.50V. 3. Levels C-1 and C-3 conform to MIL-STD-883, Class C. Level B-3 conforms to MIL-STD-883, Class B.