Rules for Continuous Functions

Consider functions $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ with domain $D \subset \mathbb{R}$ and $c \in \mathbb{R}$,

- * Sum rule: If f and g are continuous, then f + g is a continuous function,
- * Broduct rule: It f and g are continuous, then f.g is a continuous function.
- * Multiplerule: It t is continuous, then cot is a continuous function.

Example $f(n) = 3n^3 + 2n^2 - n + 5$ is continuous.

This is because the constant function 1 and the identity function id are continuous. Vaking products, multiples and rums:

 $f(n) = (3 \cdot id \cdot id \cdot id + 2 \cdot id \cdot id - id + 5 \cdot 1)(n),$ $= 3 \cdot a \cdot a \cdot a + 2 \cdot a \cdot a - a + 5$ To fix continuous by the sum rule, multiple rule and product rule.

Remarks

- * all polynomials are continuous, using a similar argument as in the example.
- * The rules are an implication in one direction. They do not ray, e.g.

if 6+9 is continuous, then fis continuous and gis continuous. (FALSE)

If The rules still work it we replace "continuous" by "continuous at $a \in \mathbb{R}$ " for a single, fixed element $a \in \mathbb{R}$. E, q., it f and q are both continuous at f, then f+q is continuous at f.

In order to apply e.g. the Intermediate Value Theorem we can often use:

* Pertriction rule: If $f: D \to \mathbb{R}$ is continuous and $D' \subset D$, then the restriction $fl_D: D' \to \mathbb{R}$ is a continuous function.

Further rules for continuous functions:

- * Composition rule: If $f:D \to \mathbb{R}$ and $g:D' \to \mathbb{R}$ are continuous and if the composition $f\circ g$ is defined (D contains the range of g), then $f\circ g$ is a continuous function.
- * Quotient rule: If $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are continuous, then the quotient $\frac{f}{g}$ is a continuous bunction on its (ratural) domain $\{u \in D \mid g(u) \neq o\}$.

Examples

- * The functions in: $\mathbb{R} \to \mathbb{R}$ and cos: $\mathbb{R} \to \mathbb{R}$ are continuous. It follows that $\sin(n^3-2n+1)$ is also continuous by the composition rule.
- * The rational function $f(n) = \frac{2n^2+3}{n^3-1}$ is continuous on its natural domain, which is R \{13}.

 This follows from the quotient rule and the fact that the polynomials $2n^2+3$ and n^3-1 are continuous.

Remarks

- * The restriction rule still holds if we replace "continuity" by "continuity at a" for a fixed $a \in D'$. Similarly for the quotient rule, with a in the natural domain,
- * The composition rule still holds if q is continuous at a $\in O'$, f is continuous at $g(a) \in O$ and we conclude that fog is continuous at a;
- * The quatient rule can be derived from the restriction, composition and product rules:

Write D' for the (ratural) domain of $\frac{t}{y}$ and let $h(u) = \frac{1}{x}$, then

= \$10, (h o 9/0) and the restrictions, composition and product preserve continuity.

* All rational functions are continuous on their natural domain, using a similar argument as in the example.

Example Show that $f(n) = \frac{n^3 + 2n^2 - n - 1}{n^2 - 4}$ has a root in the interval [0,1],

Solution: We want to use the Intermediate Value Theorem again.

The denominator of f(u) is 0 when $u^2-4=0$, i.e. u=-2 or u=2.

The natural domain of f(n) is IR\{-2,2}, we it contains Co, 1].

f(u) is a rational function, so it is continuous on its domain and hence $b|_{E0,1]}$ is continuous.

 $f(0) = \frac{-1}{-4} = \frac{1}{4}$ and $f(1) = \frac{1+2-7-1}{1-4} = \frac{1}{-3} = \frac{-7}{3}$.

y=0 lies between $\frac{1}{4}$ and $\frac{-1}{3}$, so by the Intermediate Value Theorem there is an $n \in [0,1]$ with f(n)=0, i.e. f has a root in the interval [0,1].