DEVOIR SURVEILLÉ

12 Novembre 2018

[durée : 2 heures]

!\ Documents autorisés : Aucun.

Exercice 1 (Questions de cours)

1. Donner une valeur approchée à 10^{-3} près du nombre e :

 $e \simeq$

- 2. Donner l'expression de f'(x), la fonction dérivée de f dans le cas où $f(x) = e^{u(x)}$ avec u(x) une fonction dérivable.
 - a. Application : Donner l'expression de la dérivée de chaque fonction suivantes :

a)
$$f(x) = e^{3x}$$

b)
$$f(x) = e^{-x^2}$$

- 3. a. Donner la limite en $+\infty$ de la fonction $x \mapsto e^x$.
 - b. Restitution organisée des connaissances :

En utilisant le résultat précédent, démontrer que $\lim_{x\longrightarrow -\infty}e^x=0$

Exercice 2 (Résolution d'équations)

1. Résoudre les equations suivantes dans $\mathbb R$:

a)
$$e^{x^2+5} = e^{2x+4}$$

b)
$$xe^{2x} - 2e^{2x} = 0$$

- 2. a) Déterminer les solutions dans \mathbb{R} du polynôme : $x^2 + 4x 5 = 0$
 - b. En posant $X=e^x$, résoudre dans $\mathbb R$ l'équation : $e^{2x}+4e^x-5=0$

Exercice 3 (Étude de fonction)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x^2 - \frac{5}{2}x + 1)e^x$. Sa courbe représentative notée C_f est donnée ci-dessous :

- 1. On note f' la dérivée de la fonction f.
 - a. Calculer f'(x).
 - b. Etudier le signe de f'(x) selon les valeurs de x.
 - c. Dresser le tableau des variations de f.
- 2. Donner une équation de la tangente T à la courbe C_f au point d'abscisse 0. Tracer la droite sur le graphique précédent.
- 3. Montrer que l'équation f(x) = 40 admet une solution unique α dans l'intervalle [2, 3].