Sommersemester 2015 Übungsblatt 7 8. Juni 2015

Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 15. Juni 2015, 12:15 Uhr in die **DWT** Briefkästen. Mit diesem Blatt beginnt die zweite Hälfte der Bonusregelung

Tutoraufgabe 1

Sei \mathcal{M} eine Menge von Teilmengen aus Ω . Bei der von \mathcal{M} erzeugten σ -Algebra, welche wir mit $\sigma(\mathcal{M})$ bezeichnen, handelt es sich um die kleinste σ -Algebra, die alle Mengen aus \mathcal{M} enthält. Bestimmen Sie $\sigma(\mathcal{M})$ für $\mathcal{M} = \{\{1,2\},\{2,4\}\}$ über der Grundmenge $\Omega = [4]$.

Tutoraufgabe 2

Wir betrachten eine kontinuierliche Zufallsvariable X mit der dazugehörigen Dichtefunktion $f_X(x) = c(1-x^4)$ für alle x zwischen -1 und 1 und $f_X(x) = 0$ für alle anderen x. Bestimmen Sie den Parameter c sowie Erwartungswert und Varianz von X.

Tutoraufgabe 3

Sei X eine kontinuierliche Zufallsvariable mit einer abschnittsweise definierten Verteilungsfunktion

$$F_X(x) = \begin{cases} 0 & \text{falls } x \le 0 \\ x & \text{falls } 0 < x \le \frac{1}{2} \\ \frac{1}{2} & \text{falls } \frac{1}{2} < x \le \ln(2) \\ 1 - e^{-x} & \text{falls } x > \ln(2) \end{cases}.$$

- 1. Zeigen Sie, dass $F_X(x)$ eine Verteilungsfunktion ist und geben Sie eine zugehörige Dichte an.
- 2. Sei U eine kontinuierliche Zufallsvariable, die auf dem Intervall (0,1) gleichverteilt ist. Beschreiben Sie, wie X durch U simuliert werden kann.

Hausaufgabe 1 (5 Punkte)

Die Klasse der Borel'schen Mengen \mathcal{B} ist definiert als Menge aller Teilmengen der reellen Zahlen, die sich durch abzählbar viele Vereinigungen und Komplemente von geschlossenen Intervallen [x, y], mit $x, y \in \mathbb{R}$ und $x \leq y$, erzeugen lassen. Bei \mathcal{B} handelt es sich also um eine durch geschlossene Intervalle erzeugte σ -Algebra.

- 1. Zeigen Sie, dass die Intervalle [x, y), (x, y) und $[x, \infty)$ für beliebige reelle Zahlen x < y ebenfalls Borel'sche Mengen sind.
- 2. Beweisen Sie, dass die Menge der rationalen Zahlen eine Borel'sche Menge ist.

Hausaufgabe 2 (5 Punkte)

Wir betrachten einen Kreis $K = \{p \in \mathbb{R}^2 \mid ||p-p_1||_2 = 1\}$ um den Mittelpunkt $p_1 = (0,0)^T$ mit Radius 1, sowie eine Gerade $G = \{p_2 + r \cdot v \in \mathbb{R}^2 \mid r \in \mathbb{R}\}$ durch den Punkt $p_2 = (0,1)^T$ mit zufälliger Richtung $v \in \mathbb{R}^2$. Angenommen der Winkel φ zwischen den Vektoren $(-1,0)^T$ und v ist gleichverteilt auf dem Intervall $[0,\pi]$. Wie groß ist die Wahrscheinlichkeit, dass die Sehne, die sich aus dem Schnittpunkten zwischen K und G ergibt, mindestens Länge 1 hat?

Hausaufgabe 3 (5 Punkte)

Beweisen oder widerlegen Sie die folgende Aussage. Eine σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ enthält entweder endlich viele oder überabzählbar unendlich viele Elemente.

Hinweise: Sei \mathcal{M} eine unendliche Menge disjunkter Mengen. Sie dürfen ohne Beweis verwenden, dass die Menge $\{\bigcup_{i=1}^{\infty} A_i \mid A_i \in \mathcal{M}\}$ überabzählbar ist.

Hausaufgabe 4 (5 Punkte)

Sei X eine kontinuierliche Zufallsvariable mit Dichtefunktion $f_X(x) = \frac{c}{1+x^2}$.

- 1. Bestimmen Sie den Parameter c, so dass $f_X(x)$ eine gültige Dichte ist.
- 2. Existiert der Erwartungswert von X?

Hinweise: Verwenden Sie in der ersten Teilaufgabe die Substitution $x = \tan(\varphi)$ für das Intervall $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$