la formule de Mertens

PAR SABIR ILYASS 01 avril 2021

Théorème 1. (théorème de Legendre)

soit $n \in \mathbb{N}^*$, Pour tout nombre premier p on a:

$$v_p(n!) = \sum_{k=1}^{+\infty} \left[\frac{n}{p^k} \right]$$

Démonstration.

Soit $n \in \mathbb{N}^*$, et p premier, on note $n_0 = \max\left\{k \in \mathbb{N}, \frac{n}{p^k} \geqslant 1\right\}$ $(n_0$ existe puisque $\frac{n}{p^k} \underset{k \to +\infty}{\longrightarrow} 0$ et n > 0) En réalité $\sum_{k=1}^{+\infty} \left[\frac{n}{p^k}\right]$ est fini, puisque $\forall k \geqslant n_0 + 1$ $\left[\frac{n}{p^k}\right] = 0$

Et on a alors : $\sum_{k=1}^{+\infty} \left[\frac{n}{p^k} \right] = \sum_{k=1}^{n_0} \left[\frac{n}{p^k} \right]$

commencons par montrer le lemme suivant :

Lemme 2.

Soit $(a,b) \in \mathbb{N}^{\star} \times \mathbb{N}$, le nombre des multiples de a dans $[\![1,b]\!]$ est : $\left[\frac{b}{a}\right]$

Démonstration.

Soit $(a, b) \in \mathbb{N}^* \times \mathbb{N}$,

Si b < a:

on a aucune multiple de a entre 1 et b, donc le nombre des multiple de a dans $[\![1,b]\!]$ est : $0=\left[\frac{b}{a}\right]$ Si $b\geqslant a$:

soit $x \in [\![1,b]\!], \text{tel que }a$ divise x, alors $\exists k \in \mathbb{N}^{\star}\, x = k.a$

On a $1\leqslant k.a\leqslant b$, donc $0<\frac{1}{a}\leqslant k\leqslant \frac{b}{a},$ donc $1\leqslant k\leqslant \left[\frac{b}{a}\right],$

et inversement pour tout entier $1 \le k \le \left[\frac{b}{a}\right]$, on a $a \le a.k \le a.\left[\frac{b}{a}\right] \le b$, avec k.a est un multiple de a alors le nombre des multiples de a dans [1,b] est : $\left[\frac{b}{a}\right]$

Pour tout nombre premier p on a :

$$v_p(n!) = v_p\left(\prod_{k=1}^n k\right) = \sum_{k=1}^n v_p(k)$$

1

On note pour tout $i \in [0, n_0]$, $A_i = \{k \in [1, n] / p^i \text{ divise } k \text{ et } p^{i+1} \text{ ne divise pas } k\}$ On a bien $(A_i)_{0 \leqslant i \leqslant n_0}$ est une partition de [1, n] (par construction), donc

$$v_p(n!) = \sum_{i=0}^{n_0} \left(\sum_{k \in A_i} v_p(k) \right)$$

Or $\forall i \in \llbracket 0, n_0 \rrbracket, \forall k \in A_i p^i$ divise k et p^{i+1} ne divise pas k, donc $\forall i \in \llbracket 0, n_0 \rrbracket, \forall k \in A_i v_p(k) = i$ D'où

$$v_p(n!) = \sum_{i=0}^{n_0} i.\#(A_i) = \sum_{i=1}^{n_0} i.\#(A_i)$$

Or pour tout $i \in [1, n_0]$, On a :

 $A_i = \{k \in \llbracket 1, n \rrbracket \, / \, p^i \text{ divise } k \text{ et } p^{i+1} \text{ ne divise pas } k\} = \{k \in \llbracket 1, n \rrbracket \, / \, p^i \text{ divise } k \, \} \setminus \{k \in \llbracket 1, n \rrbracket \, / \, p^{i+1} \text{ divise } k \, \}$

Puisque $\{k \in [1, n] / p^{i+1} \text{ divise } k \} \subset \{k \in [1, n] / p^i \text{ divise } k \}$, Alors

 $\#A_i = \#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \text{ et } p^{i+1} \text{ ne divise pas } k\} = \#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^{i+1} \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ divise } k \} \\ \backslash -\#\{k \in \llbracket 1, n \rrbracket / p^i \text{ di$

Donc:

$$\#A_i = \left[\frac{n}{p^i}\right] - \left[\frac{n}{p^{i+1}}\right]$$

Ainsi

$$v_p(n!) = \sum_{i=1}^{n_0} i \cdot \left(\left[\frac{n}{p^i} \right] - \left[\frac{n}{p^{i+1}} \right] \right) = \sum_{k=1}^{n_0} \left[\frac{n}{p^k} \right] = \sum_{k=1}^{+\infty} \left[\frac{n}{p^k} \right]$$

Théorème 3. (la formule de Mertens)

we have

$$\sum_{p \leqslant x} \frac{\log(p)}{p} = \log(x) + O(1)$$

Démonstration.

Soit x > 2, notons n = [x]

On a

$$n! = \prod_{p \leqslant x} p^{v_p(n!)}$$

Donc:

$$\log(n!) = \sum_{p \leqslant x} v_p(n!) \log(p)$$

Et pour tout nombre premier $p \leq x$, on a d'après le theoreme de Legendre:

$$\frac{n}{p} - 1 < \left[\frac{n}{p}\right] < v_p(n!) = \sum_{k=1}^{+\infty} \left[\frac{n}{p^k}\right] \le \sum_{k=1}^{+\infty} \frac{n}{p^k} = \frac{n}{p-1} = \frac{n}{p} + \frac{n}{p(p-1)}$$

Donc

$$n\sum_{p\leqslant x} \left(\frac{\log(p)}{p} - \frac{\log(p)}{n}\right) \leqslant \log(n!) = \sum_{p\leqslant x} v_p(n!)\log(p) \leqslant n\sum_{p\leqslant x} \left(\frac{\log(p)}{p} + \frac{\log(p)}{p(p-1)}\right)$$

Donc:

$$\frac{\log(n!)}{n} - \sum_{p \leqslant x} \frac{\log(p)}{p(p-1)} - \log(x) \leqslant \sum_{p \leqslant x} \frac{\log(p)}{p} - \log(x) \leqslant \frac{\log(n!)}{n} - \log(x) + \sum_{p \leqslant x} \frac{\log(p)}{n}$$

Avec:

$$\sum_{p \leqslant x} \frac{\log(p)}{n} = \frac{1}{n} \log \left(\prod_{p \leqslant x} p \right) = \frac{1}{n} \log \left(\prod_{p \leqslant n} p \right)$$

Or, on a pout tout entier $m \ge 0$ $2 \times 4^m = (1+1)^{2m+1} = \sum_{k=0}^{2m+1} {2m+1 \choose k}$

Donc

$$\binom{2m+1}{m} = \frac{1}{2} \left[\binom{2m+1}{m} + \binom{2m+1}{m+1} \right] \leq \frac{1}{2} \sum_{k=0}^{2m+1} \binom{2m+1}{k} = 4^m$$

Pour tout nombre premier m+1 , on a <math>p divise (2m+1)!, alors p divise : $m!(m+1)!\binom{2m+1}{m}$

Avec p > m + 1, alors p ne divise ni m! ni (m + 1)!, d'où d'après le lemme de GAUSS p divise $\binom{2m + 1}{m}$

Donc :
$$\prod_{m+1$$

Ainsi:

$$\prod_{m+1$$

Montrons maintenant par récurrence que pour tout $m \in \mathbb{N}^*$ que $\prod_{n \le m} p \leqslant 4^m$

pour
$$m=1,$$
 on a $\prod\limits_{p\leqslant m}p=\prod\limits_{p\leqslant 1}p=1\leqslant 4=4^m$

Soit $m \in \mathbb{N}^*$, supposons que $\forall k \in [\![1,m]\!] \prod_{p \leqslant k} p \leqslant 4^k$ et montrons que $\prod_{p \leqslant m+1} p \leqslant 4^{m+1}$

Si m+1 n'est pas premier, on a alors :

$$\prod_{p\leqslant m+1}p\leqslant \prod_{p\leqslant m}p\leqslant 4^m\leqslant 4^{m+1}$$

Si (m+1) est premier,

si
$$m = 1$$
, on a $\prod_{p \le m+1} p = 2 \le 4^2 = 4^{m+1}$

si m > 1, on a (m + 1) est impair, donc $\exists k_0 \in [\![1, m]\!] \ m + 1 = 2k_0 + 1$

On a alors:

$$\prod_{p\leqslant m+1}p=\prod_{p\leqslant 2k_0+1}p=\prod_{p\leqslant k_0+1}p\prod_{k_0+1< p\leqslant 2k_0+1}p\leqslant 4^{k_0}\times 4^{k_0+1}=4^{m+1}$$

D'où pour tout $m \in \mathbb{N}^*$ que $\prod_{p \leqslant m} p \leqslant 4^m$

Par suite:

$$\sum_{p\leqslant x}\frac{\log(p)}{n} = \frac{1}{n}\log\Biggl(\prod_{p\leqslant x}p\Biggr) = \frac{1}{n}\log\Biggl(\prod_{p\leqslant n}p\Biggr) \leqslant \frac{1}{n}\log(4^n) = \log(4)$$

Et on a:

$$\sum_{p \leqslant x} \frac{\log(p)}{p(p-1)} \leqslant \sum_{2 \leqslant k \leqslant n} \frac{\log(k)}{k(k-1)}$$

 $\text{Comme } \frac{\log(k)}{\sqrt{k}} \underset{k \to +\infty}{\longrightarrow} 0, \text{ alors } \frac{\log(k)}{k(k-1)} = o\bigg(\frac{1}{\sqrt{k}(k-1)}\bigg), \text{ avec } \frac{1}{\sqrt{k}(k-1)} \underset{k \to +\infty}{\sim} \frac{1}{k^{3/2}} \text{ et } \sum_{k \geqslant 2} \frac{1}{k^{3/2}} \text{ converge } \frac{1}{\sqrt{k}(k-1)} \underset{k \to +\infty}{\sim} \frac{1}{k^{3/2}} = o\bigg(\frac{1}{\sqrt{k}(k-1)}\bigg)$

Alors $\sum_{k\geqslant 2}\frac{1}{\sqrt{k}(k-1)}$ converge, et par suite $\sum_{k\geqslant 2}\frac{\log(k)}{k(k-1)}$ converge.

On a donc par positivité des termes:

$$\sum_{p \leqslant x} \frac{\log(p)}{p(p-1)} \leqslant \sum_{2 \leqslant k \leqslant n} \frac{\log(k)}{k(k-1)} \leqslant \sum_{k=2}^{+\infty} \frac{\log(k)}{k(k-1)} < +\infty$$

D'où

$$\frac{\log(n!)}{n} - \sum_{k=2}^{+\infty} \frac{\log(k)}{k(k-1)} - \log(x) \leqslant \sum_{p \leqslant x} \frac{\log(p)}{p} - \log(x) \leqslant \frac{\log(n!)}{n} - \log(x) + \log(4)$$

D'après la formule de Stirling :

$$\frac{\log(n!)}{n} = \log(n) - 1 + O\left(\frac{\log(n)}{n}\right)$$

Donc:

$$\frac{\log(n!)}{n} - \log(x) = \log\left(\frac{n}{x}\right) - 1 + O\left(\frac{\log(n)}{n}\right)$$

Avec $n \leqslant x < n+1$, donc $1 - \frac{1}{x} < \frac{n}{x} \leqslant 1$

On a donc : $\log(1 - \frac{1}{x}) \leq \log(\frac{n}{x}) \leq 0$

On a
$$\exists N_1 \in \mathbb{N}, \ \exists M > 0 \ \forall m \geqslant N_1 \left| O\left(\frac{\log(m)}{m}\right) \right| \leqslant M.\frac{\log(m)}{m}$$

Donc $\forall x \geqslant N_1$, ona $n \geqslant N_1$ ona :

$$\left|\frac{\log(n!)}{n} - \log(x)\right| \leqslant 1 + \left|\log\left(\frac{n}{x}\right)\right| + M\frac{\log(n)}{n} \leqslant 1 + \log\left(\frac{x}{x-1}\right) + M.\frac{\log(n)}{n}$$

Donc:

$$\left|\frac{\log(n!)}{n} - \log(x)\right| \leqslant 1 + \left|\log\left(\frac{n}{x}\right)\right| + M\frac{\log(n)}{n} \leqslant 1 + \log\left(\frac{x}{x-1}\right) + M$$

Comme $\log \frac{x}{x-1} \underset{x \to +\infty}{\to} 0$, alors $\exists \eta > 0, \forall x \geqslant \eta \ \log \frac{x}{x-1} \leqslant 1$

Pour $N = \max(N_1, [\eta] + 1)$, on a pour tout $x \ge N$

$$\left|\frac{\log(n!)}{n} - \log(x)\right| \leqslant 2 + M$$

Donc pour tout $x \ge \eta$, on a

$$-\sum_{k=2}^{+\infty} \frac{\log(k)}{k(k-1)} - 2 - M \leqslant \sum_{p \leqslant x} \frac{\log(p)}{p} - \log(x) \leqslant 2 + M + \log(4)$$

D'où

$$\left| \sum_{p \leqslant x} \frac{\log(p)}{p} - \log(x) \right| \leqslant 2 + M + \max\left(\log(4), \sum_{k=2}^{+\infty} \frac{\log(k)}{k(k-1)}\right)$$

D'où

$$\sum_{p \leqslant x} \frac{\log(p)}{p} = \log(x) + O(1)$$