

Heart Failure Prediction

Student: Harshil Ashish Desai
Analytics Capstone Project, Pace University

Introduction

- Heart failure is a major health problem worldwide.
- Early detection can save lives but is very challenging.
- Traditional methods cannot handle complex health data well.
- Machine learning can help predict heart failure risk.

Literature Review

- Chicco et al. (2020): Gradient boosting (XGBoost) achieved the highest accuracy in heart failure prediction, highlighting feature selection and tuning.
- Yancy et al. (2017): Logistic regression had limitations, prompting the need for advanced machine learning models.
- Ahmed et al. (2019): Random forests were effective for heart failure prediction due to their robustness and handling of missing data.
- Zhou et al. (2020): Deep neural networks outperformed traditional models, especially when combining structured and unstructured data.

Data Collection

- The "Heart Failure Prediction" dataset was taken from IEEE dataset.
- It contains information about patients' features like age, gender, blood pressure, cholesterol, chest pain type, and more.
- The data was checked for missing or incorrect values.
- I checked and removed duplicate entries.

age	sex	chest pain type	resting bp s	cholesterol	fasting blood sugar	resting ecg	max heart rate	exercise angina	oldpeak	ST slope	target
			140	289					0.0		0
			160	180			156				1
				283			98				0
48			138	214			108		1.5		1
54				195							0

ML Models

- Logistic Regression: A statistical model used for binary classification, effectively distinguishing between heart disease and no heart disease.
- K-Nearest Neighbors (KNN): A distance-based model that classifies data based on proximity to nearest neighbors, performing well with smaller datasets.
- Decision Tree: A non-linear model that splits data into branches based on feature values, offering interpretability but prone to overfitting.

Results

- AUC Scores: All models showed strong performance with AUC values above 0.8, indicating good ability to distinguish between patients with and without heart disease
- Confusion Matrix: Logistic Regression showed a good balance of true positives (correctly predicting heart disease) and false negatives (missed cases).
- Feature Insights: Chest pain type ("asymptomatic") and exercise-induced angina showed the strongest correlation with heart disease.

Conclusion

- Successfully predicted heart failure using machine learning models like Logistic Regression, Decision Trees, and K-Nearest Neighbors.
- The best-performing model, Logistic Regression, achieved high accuracy in predicting heart failure.
- Key features related to heart disease include age, resting blood pressure, and cholesterol levels.

Model	Accuracy	Precision	Recall	F1-Score	
Logistic Regression	85%	83%	87%	85%	
K-Nearest Neighbors	83%	81%	84%	82%	
Decision Tree Classifier	82%	80%	83%	81%	

