Data Mining Course

Feature Engineering

Prof. Chiraz Ben Abdelkader

October 03-04, 2019

Data Mining Pipeline Business Understanding Understanding Deployment Data Preparation Modelling

Step 4 – Data Preparation

- Data cleaning last week
- Feature engineering today
- Feature selection next week

Feature Engineering

- In machine learning, attributes are also called features.
- Feature engineering is the process of modifying or transforming existing attributes (columns).
- This is done for two main reasons:
 - 1) Put the data in the form required by the modeling techniques that we intend to use.
 - 2) To improve the quality of the attributes for building better/more accurate models.
- We will focus mostly on feature engineering for structured data.

What is Feature Engineering?

Feature engineering is about **creating new input features** from your existing ones.

In general, you can think of data cleaning as a process of subtraction and feature engineering as a process of addition.

This is often one of the most valuable tasks a data scientist can do to improve model performance, for 3 big reasons:

- You can isolate and highlight key information, which helps your algorithms "focus" on what's important.
- 2. You can bring in your own domain expertise.
- 3. Most importantly, once you understand the "vocabulary" of feature engineering, you can bring in other people's domain expertise!

Getting classy

Source: https://elitedatascience.com/feature-engineering

Common Feature Transformations

- Scaling: map values of a <u>numeric</u> attribute into a uniform range, such as [0,1] or [-1,1]
- Log normalization: apply log function on a numeric variable
- Grouping sparse categories: values of a categorical attribute with low frequency in data
- One-hot encoding: convert a <u>categorical</u> attribute to <u>numeric</u>
- Date and time attributes: (unstructured)
 - Time --> hours, minutes, seconds, ...
 - Date --> day, month, year

Scaling (or Scale Normalization)

- Also called data standardization
- Map values of a numeric attribute into a uniform range so that all attributes have similar range of values, for e.g. [0,1] or [-1,1]
- Scaling is necessary when using a modeling method that is sensitive to scale
 - This means the method gives more weight to larger attribute values in the constructed model.

Scaling (cont.)

- Modeling methods that are sensitive to scale:
 - Any method based on calculating differences between attribute values
 - <u>Examples</u>: linear regression, neural networks, KNN, Kmeans, SVM, ...
- Modeling methods NOT sensitive to scale:
 - Any method based on comparing values
 - Examples: decision trees, random forests, ...

Scaling Methods

• min-max normalization

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- **Z-score** normalization
 - Also called standardization

$$X_{norm} = \frac{x - \mu}{\sigma}$$

• unit-norm normalization

$$X_{norm} = \frac{X}{|X|}$$

 X is a vector containing all numeric attributes of a particular instance

Log Normalization

- This transformation is typically used when a numeric variable has very skewed distribution (long tail), which is problematic for models
- The distribution of the new variable is more symmetric
- Example: the price variable in TP1

One-hot Encoding

- Replaces a categorical attribute with K numeric binary attributes, where K = number of categories in the variable.
- The new attributes are called dummy variables
- Necessary for many modeling methods that <u>only</u> work with <u>numeric</u> attributes.
 - Such as linear regression, NNs, SVM, KNN, Kmeans

Example

Categorical variable

fav_color
blue
green
orange
green

3 dummy variables

fav_color_enc
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[0, 1, 0]

Example (cont.)

Python Code

```
In [8]: print(users["fav_color"])
                                                  users is a data frame
       blue
                                                 fav_color is a categorical column
     green
2
     orange
     green
Name: fav_color, dtype: object
In [9]: print(pd.get_dummies(users["fav_color"]))
   blue green orange
     1
            0
                     0
1 2 3
     0
            1
                     0
      0
             0
                     1
```


Example 2 (cont.)

Category name	Dummy variable name	E.g.	
Wood	exterior_walls_Wood	= 0	
Brick	exterior_walls_Brick	= 1	
Other	exterior_walls_Other	= 0	
Siding (Alum/Vinyl)	exterior_walls_Siding (Alum/Vinyl)	= 0	
Missing	exterior_walls_Missing	= 0	
Metal	exterior_walls_Metal	= 0	
Brick veneer	exterior_walls_Brick veneer	= 0	
Combination	exterior_walls_Combination	= 0	

Example observation Where exterior_walls=Brick

Grouping sparse categories

- Combine <u>2 or more</u> categories into <u>one</u> category
- Two major use cases:
 - 1) Some categories occur in too few observations (rows)
 - under-represented categories are useless and/or confusing for model construction
 - Rule of thumb: at least ~50 observations per category
 - 2) Redundant categories (different category names but represent the <u>same</u> entity in the real-world); actually this can also be considered as data cleaning.

Remark

 When the categorical attribute is ordered, only contiguous categories can be combined.

Example

- Consider an attribute shirt_size that has 6 possible values(categories): XS, S, M, L, XL, XXL
- We can aggregate (combine) XL and XXL into one category
- But we cannot aggregate XS and XXL

Example (cont.)

- 'Wood Siding', 'Wood Shingle', and 'Wood' were grouped into a single category called 'Wood'
- 'Concrete Block', 'Stucco', 'Masonry', 'Other', and 'Asbestos shingle' were grouped into a new category called 'Other'

Summary of Transformations

Transformati on name	Type of input & output variables	Why/when should be used?	Python functions and classes
Scale normalization	Numeric to Numeric	All numeric variables must have similar ranges; for scale-sensitive modeling methods.	sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.Normalizer
Grouping sparse categories	Categorical to categorical	categories with few observations are useless/noisy for modeling.	Regular Pandas methods
One-hot encoding	Categorical to numeric	You want to later use a model that only accepts numeric features.	For two categories: sklearn.preprocessing.LabelEncoder For multiple categories: pd.get_dummies(df.categorical_var)
Log normalization	Numeric to numeric	variable has an asymmetric distribution (long tail)	<pre>df['new_var'] = np.log(df.old_var) OR df['new_var'] = df.old_var.map(np.log)</pre>
Date/time	unstructured	map unstructured variable to structured variables	Pandas and numpy

Examples with Python Code

Scaling Example

from sklearn.preprocessing import StandardScaler

```
# Create instance of the StandardScaler class
ss = StandardScaler()

# Apply scaler to numeric columns of DataFrame
df_numeric = df[numeric_variables]
df scaled = ss.fit transform(df numeric)
```

MinMaxScaler class is used the same way as StandardScaler

OneHot Encoding Example

from sklearn.preprocessing import LabelEncoder

```
# Create instance of the LabelEncoder class
le = LabelEncoder()

# Apply transformation to a specific categorical column
```

df['gender binary'] = le.fit transform(df.gender)

LabelEncoder class is used when categorical variable has 2 values.

OneHot Encoding Example 2

Example with 2 categories

OneHot Encoding Example 3

Example with multiple categories

```
In [8]: print(users["fav_color"])
                                                  users is a data frame
       blue
                                                  fav_color is a categorical column
      green
2
     orange
     green
Name: fav color, dtype: object
In [9]: print(pd.get dummies(users["fav_color"]))
   blue green orange
             0
                     0
     1
                     0
     0
             1
1
2
                     1
      0
             0
3
                     0
```

Sparse Categories Example

Sparse Categories Example (cont.)

Sparse Categories Example 2

```
In [45]:
              school data df.Travel to School.value counts()
Out[45]: Car
                          418
         Bus
                          288
                           214
         Walk
                           25
         Cycle
         Rail
         Other
         SkateBoarding
                            1
         SkateBoard
         Name: Travel to School, dtype: int64
```

Sparse Categories Example 2 (cont)

Final Remarks

- You should choose the right data transformations based on :
 - 1) your data
 - 2) Modeling methods you intend to use
- Data transformation is also a bit of an art
 - need to try different transformations until find the magic combination
 - · experience and intuition help alot

Feature Engineering for Unstructured Data

- Feature engineering is <u>necessary</u> for unstructured attributes because most modeling methods can accept only structured data.
- Each type of unstructured data requires specialized feature engineering techniques
 - text data: feature engineering is done using regular expressions and natural language processing (NLP)
 - **image data**: feature engineering is done using computer vision and image processing techniques
 - Time series data
 - ...

Deep Learning

 One of the major strengths of deep neural networks (deep learning) is that they perform feature engineering automatically as part of the modeling process.

Reference https://elitedatascience.com/feature-engineering