# 2020年全国统一高考化学试卷 (新课标 I)

- 一、选择题(共7小题,每小题6分,满分42分)
- 国家卫健委公布的新型冠状病毒肺炎诊疗方案指出,乙醚、75%乙醇、含氯消毒剂、过氧乙酸(CH₃COOOH)、氯仿等均可有效灭活病毒。对于上述化学药品,下列说法错误的是
  - A. CH<sub>3</sub>CH<sub>2</sub>OH 能与水互溶
  - B. NaClO 通过氧化灭活病毒
  - C. 过氧乙酸相对分子质量为76
  - D. 氯仿的化学名称是四氯化碳
- 2. 紫花前胡醇 HO 可从中药材当归和白芷中提取得到,能提高人

体免疫力。有关该化合物,下列叙述错误的是

- A. 分子式为 C<sub>14</sub>H<sub>14</sub>O<sub>4</sub>
- B. 不能使酸性重铬酸钾溶液变色
- C. 能够发生水解反应
- D. 能够发生消去反应生成双键
- 3. 下列气体去除杂质的方法中,不能实现目的的是

|    | 气体 (杂质)                                   | 方法         |  |
|----|-------------------------------------------|------------|--|
| Α. | SO <sub>2</sub> (H <sub>2</sub> S)        | 通过酸性高锰酸钾溶液 |  |
| В. | Cl <sub>2</sub> (HCl)                     | 通过饱和的食盐水   |  |
| C. | N <sub>2</sub> (O <sub>2</sub> ) 通过灼热的铜丝网 |            |  |
| D. | NO (NO <sub>2</sub> )                     | 通过氢氧化钠溶液   |  |

4. 铑的配合物离子 $[Rh(CO)_2I_2]^-$ 可催化甲醇羰基化,反应过程如图所示。

$$\begin{bmatrix} I \\ I \end{bmatrix} Rh \begin{bmatrix} CO \\ CO \end{bmatrix} - \begin{bmatrix} CH_3I \\ CO \end{bmatrix} - \begin{bmatrix} CH_3 \\ CO \end{bmatrix} -$$

下列叙述错误的是

- A. CH<sub>3</sub>COI 是反应中间体
- B. 甲醇羰基化反应为 CH<sub>3</sub>OH+CO=CH<sub>3</sub>CO<sub>2</sub>H
- C. 反应过程中 Rh 的成键数目保持不变
- D. 存在反应 CH<sub>3</sub>OH+HI=CH<sub>3</sub>I+H<sub>2</sub>O
- 5. 1934 年约里奥 居里夫妇在核反应中用  $\alpha$  粒子(即氦核  $_2^4$ He )轰击金属原子  $_Z^WX$ ,得到核素  $_{Z+2}^{30}Y$ ,开创了人造放射性核素的先河:

$$_{Z}^{W}X + _{2}^{4}He \rightarrow _{Z+2}^{30}Y + _{0}^{1}n$$

其中元素 X、Y的最外层电子数之和为 8。下列叙述正确的是

- A.  $_{7}^{W}X$  的相对原子质量为 26
- B. X、Y均可形成三氯化物

- C. X 的原子半径小于 Y 的
- D. Y 仅有一种含氧酸
- 6. 科学家近年发明了一种新型 Zn-CO<sub>2</sub> 水介质电池。电池示意图如下,电极为金属锌和选择性催化材料,放电时,温室气体 CO<sub>2</sub> 被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。



下列说法错误的是

A. 放电时,负极反应为  $Zn - 2e^- + 4OH^- = Zn(OH)_4^{2-}$ 

B. 放电时, 1 mol CO<sub>2</sub>转化为 HCOOH, 转移的电子数为 2 mol

C. 充电时,电池总反应为  $2Zn(OH)_4^{2-}=2Zn+O_2\uparrow+4OH^-+2H_2O$ 

D. 充电时,正极溶液中 OH-浓度升高

7. 以酚酞为指示剂,用 0.1000 mol·L<sup>-1</sup>的 NaOH 溶液滴定 20.00 mL 未知浓度的二元酸  $H_2A$  溶液。溶液中,pH、分布系数  $\delta$  随滴加 NaOH 溶液体积  $V_{\rm N_aOH}$  的变化关系如下图所示。

[比如 A²-的分布系数: 
$$\delta(A^{2-}) = \frac{c(A^{2-})}{c(H_2A) + c(HA^-) + c(A^{2-})}$$
]



下列叙述正确的是

A. 曲线①代表 $\delta(H_2A)$ , 曲线②代表 $\delta(HA^-)$ 

B. H<sub>2</sub>A 溶液的浓度为 0.2000 mol·L<sup>-1</sup>

- C. HA-的电离常数 K<sub>a</sub>=1.0×10<sup>-2</sup>
- D. 滴定终点时,溶液中 $c(Na^+) < 2c(A^{2-}) + c(HA^-)$

### 二、解答题(共3小题,满分43分)

## 8. (14分)

钒具有广泛用途。黏土钒矿中,钒以+3、+4、+5 价的化合物存在,还包括钾、镁的铝硅酸盐,以及  $SiO_2$ 、 $Fe_3O_4$ 。采用以下工艺流程可由黏土钒矿制备  $NH_4VO_3$ 。



该工艺条件下,溶液中金属离子开始沉淀和完全沉淀的 pH 如下表所示:

| 金属离子    | Fe³+ | Fe <sup>2+</sup> | Al <sup>3+</sup> | Mn <sup>2+</sup> |
|---------|------|------------------|------------------|------------------|
| 开始沉淀 pH | 1.9  | 7.0              | 3.0              | 8.1              |
| 完全沉淀 pH | 3.2  | 9.0              | 4.7              | 10.1             |

### 回答下列问题:

- (1)"酸浸氧化"需要加热,其原因是\_\_\_\_。
- (3) "中和沉淀"中,钒水解并沉淀为 $V_2O_5 \cdot xH_2O$ ,随滤液②可除去金属离子  $K^+$ 、 $Mg^{2+}$ 、 $Na^+$ 、\_\_\_\_\_,以及部分的\_\_\_\_\_。
  - (4) "沉淀转溶"中, $V_2O_5 \cdot xH_2O$ 转化为钒酸盐溶解。滤渣③的主要成分是
  - (5) "调 pH"中有沉淀生产,生成沉淀反应的化学方程式是\_\_\_\_。
  - (6) "沉钒"中析出 NH<sub>4</sub>VO<sub>3</sub> 晶体时,需要加入过量 NH<sub>4</sub>CI, 其原因是\_\_\_\_\_。

#### 9. (15分)

为验证不同化合价铁的氧化还原能力,利用下列电池装置进行实验。



回答下列问题:

(1)由 FeSO₄·7H₂O 固体配制 0.110 mol·L⁻¹ FeSO₄溶液,需要的仪器有药匙、玻璃棒、
\_\_\_\_\_(从下列图中选择,写出名称)。



(2)电池装置中,盐桥连接两电极电解质溶液。盐桥中阴、阳离子不与溶液中的物质发生化学反应,并且电迁移率(u<sup>∞</sup>)应尽可能地相近。根据下表数据,盐桥中应选择\_\_\_\_\_\_\_\_\_作为电解质。

| 阳离子              | $u^{\infty} \times 10^{8} / (\text{m}^{2} \cdot \text{s}^{-1} \cdot \text{V}^{-1})$ | 阴离子                  | <i>u</i> ∞×10 <sup>8</sup> / (m²·s⁻¹·V⁻¹) |
|------------------|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------|
| Li <sup>+</sup>  | 4.07                                                                                | HCO <sub>3</sub>     | 4.61                                      |
| Na <sup>+</sup>  | 5.19                                                                                | NO <sub>3</sub>      | 7.40                                      |
| Ca <sup>2+</sup> | 6.59                                                                                | Cl-                  | 7.91                                      |
| K <sup>+</sup>   | 7.62                                                                                | $\mathrm{SO}_4^{2-}$ | 8.27                                      |

- (3) 电流表显示电子由铁电极流向石墨电极。可知,盐桥中的阳离子进入\_\_\_\_\_电极溶液中。
- (4) 电池反应一段时间后,测得铁电极溶液中  $c(Fe^{2+})$ 增加了  $0.02 \text{ mol·}L^{-1}$ 。石墨电极上未见 Fe 析出。可知,石墨电极溶液中  $c(Fe^{2+})=$ \_\_\_\_\_。

(6)实验前需要对铁电极表面活化。在 FeSO<sub>4</sub>溶液中加入几滴 Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>溶液,将铁电极浸泡一段时间,铁电极表面被刻蚀活化。检验活化反应完成的方法是

\_\_\_\_\_°

10. (14分)

硫酸是一种重要的基本化工产品,接触法制硫酸生产中的关键工序是 SO2 的催化氧

代: 
$$SO_2(g) + \frac{1}{2}O_2(g)$$
  $O_2(g)$   $O_3(g)$   $\Delta H = -98 \text{ kJ·mol}^{-1}$ 。回答下列问题:

(1)钒催化剂参与反应的能量变化如图(a)所示, $V_2O_5(s)$ 与  $SO_2(g)$ 反应生成  $VOSO_4(s)$ 和  $V_2O_4(s)$ 的热化学方程式为:



- (2) 当  $SO_2(g)$ 、 $O_2(g)$ 和  $N_2(g)$ 起始的物质的量分数分别为 7.5%、10.5%和 82%时,在 0.5MPa、2.5MPa 和 5.0MPa 压强下, $SO_2$  平衡转化率  $\alpha$  随温度的变化如图(b)所示。反应在 5.0MPa、550℃ 时的  $\alpha$ =\_\_\_\_\_\_, 判 断 的 依 据 是 \_\_\_\_\_\_。 影 响  $\alpha$  的 因 素 有
- - (4) 研究表明, SO<sub>2</sub>催化氧化的反应速率方程为:

$$v=k(\frac{\alpha}{\alpha}-1)^{0.8}(1-n\alpha')$$

式中: k为反应速率常数,随温度 t 升高而增大; $\alpha$  为  $SO_2$  平衡转化率, $\alpha$ '为某时刻  $SO_2$  转化率,n 为常数。在  $\alpha$ '=0.90 时,将一系列温度下的 k、 $\alpha$  值代入上述速率方程,得到  $v^*t$  曲线,如图(c)所示。



曲线上v最大值所对应温度称为该 $\alpha$ '下反应的最适宜温度 $t_m$ 。 $t< t_m$ 时,v逐渐提高; $t> t_m$ 后,v逐渐下降。原因是\_\_\_\_\_。

11. [化学——选修 3: 物质结构与性质] (15 分)

Goodenough 等人因在锂离子电池及钴酸锂、磷酸铁锂等正极材料研究方面的卓越贡献而获得 2019 年诺贝尔化学奖。回答下列问题:

- (1) 基态 Fe<sup>2+</sup>与 Fe<sup>3+</sup>离子中未成对的电子数之比为。
- (2) Li 及其周期表中相邻元素的第一电离能(I<sub>1</sub>)如表所示。I<sub>1</sub>(Li)> I<sub>1</sub>(Na),原因是\_\_\_\_\_。I<sub>1</sub>(Be)> I<sub>1</sub>(B)> I<sub>1</sub>(Li),原因是\_\_\_\_\_。
- (3)磷酸根离子的空间构型为\_\_\_\_\_,其中 P 的价层电子对数为\_\_\_\_\_、杂化轨道 类型为\_\_\_\_。
- (4)LiFePO<sub>4</sub>的晶胞结构示意图如(a)所示。其中 O 围绕 Fe 和 P 分别形成正八面体和正四面体,它们通过共顶点、共棱形成空间链结构。每个晶胞中含有 LiFePO<sub>4</sub>的单元数有\_\_\_\_\_个。



电池充电时,LiFeO<sub>4</sub>脱出部分Li+,形成Li<sub>1-x</sub>FePO<sub>4</sub>,结构示意图如(b)所示,则x=\_\_\_\_,n(Fe<sup>2+</sup>):n(Fe<sup>3+</sup>)=\_\_\_\_。

12. [化学——选修 5: 有机化学基础] (15 分)

有机碱,例如二甲基胺( $^{
m NH}$ )、苯胺( $^{
m NH_2}$ ),吡啶( $^{
m NH_2}$ )等,在有机合成中应用很普遍,目前"有机超强碱"的研究越来越受到关注,以下为有机超强碱  $^{
m F}$  的合成路线:



已知如下信息:

①
$$H_2C=CH_2$$
  $\longrightarrow$   $CCl_3COONa$   $\longrightarrow$   $Cl$   $\longrightarrow$   $Cl$   $\longrightarrow$   $Cl$ 

$$\mathbb{Q}^{R^2}$$
  $\xrightarrow{\text{Cl}}$   $\xrightarrow{\text{NaOH}}$   $\xrightarrow{\text{R}^1}$   $\xrightarrow{\text{NB}}$   $\mathbb{R}^2$ 

③苯胺与甲基吡啶互为芳香同分异构体 回答下列问题:

- (1) A 的化学名称为\_\_\_\_。
- (2) 由 B 生成 C 的化学方程式为。
- (3) C中所含官能团的名称为。
- (4)由C生成D的反应类型为\_\_\_\_。
- (5) D 的结构简式为。
- (6) E的六元环芳香同分异构体中,能与金属钠反应,且核磁共振氢谱有四组峰,峰面积之比为 6:2:2:1的有\_\_\_\_\_种,其中,芳香环上为二取代的结构简式为