AN EXPLORATORY DATA ANALYSIS FOR DRIVERS OF COST OF CARE

LINYE CHEN 11.02.2022

Outline

- Dataset Overview
 - Demographic Data
 - Clinical Data
 - Bill Data
 - Master Data
- Univariate Analysis
 - Continuous Variables
 - Categorical Variables
- Multi-Variable Linear Regression

Section 1 – Dataset Overview

Demographic Data

- 3000 observations of 5 variables, each observation belonging to one unique patient (identified by patient ID)
- New variable generated: Age

Variable	Patient ID	Gender	Race	Resident Status	Date of Birth	Age
Туре		Binary - Female - Male	Categorical - Chinese - Malay - Indian - Others	Categorical - Singaporean - PR - Foreigner	Date	Discrete (treated as continuous)

Clinical Data

- 3400 observations of 26 variables, each observation belonging to one unique admission (identified by patient ID and date of admission)
- Based on the number of unique patients (3000), a small portion of patients are admitted more than once
- Assumption: from Client's perspective, the expense of each unique admission is of greater interest than the overall expense of each patient
- Medical history 2 and 5 have missing values (7% and 9%), NA treated as another level
- New variables generated: Length of stay and BMI

Variable	Patient ID	Date of Admission/Discharge	Medical History 1 -7	Preop Medication 1 - 6		Lab Result 1 - 3	Weight	Height	Length of Stay	ВМІ
Туре		Date	Categorical (1/0/NA)	Binary (1,	inary (1/0)		Со	ntinuous		

Bill Data

- Combined Bill ID with Bill Amount, 13600 observations of 5 variables
- Based on the number of unique admission record (3400), each admission correspond with multiple bills
- Sum the bill amount for each unique admission, generating 3400 observations of 3 variables

Variable	Patient ID	Date of Admission	Bill Amount
Туре		Date	Continuous

Master Data

- Combined Demographic, Clinical and Bill data by patient ID and date of admission
- 3400 observations of 31 variables

■ Categorical variables:

Variable	Readmitted Status	Gender	Race	Resident Status	Medical History 1 - 7	Preop Medication 1 - 6	Symptom 1 - 5	
Levels	(1/0)	- Female - Male	ChineseIndianMalayOthers	SingaporeanPRForeigner	(1/0/NA)	(1/0)	(1/0)	

■ Continuous variables:

Variable An	mount Lak	b Result We	eight Heig	ht Bi	BMI	Length of Stay	Age
--------------------	-----------	-------------	------------	-------	-----	----------------	-----

Section 2 – Univariate Analysis

Categorical Variables – Demographics

- Readmitted status: majority being first-time admission with 12% being re-admitted
- Race: majority being Chinese and Malay, with 10% Indian and 5% Others
- Gender: equal proportion of female and male
- Resident status: majority being Singaporean, with 15% PR and 5% foreigner

Categorical Variables – Medical History 1 - 7

For all 7 medical histories, only a small portion is YES, unbalanced data to be noted

Categorical Variables – Preop Medication 1 - 6

Most of the admission records show usage of preop medication 1, 2, 3, 4, 5, or 6

Categorical Variables – Symptom 1 - 5

Most of the admission records present symptom 1, 2, 3, 4 or 5

Association between Categorical Variables and Amount

Applying one-way ANOVA,	13	categorical	variables	identified	to be	e associated	with
amount							

- ☐ Gender
- ☐ Race
- ☐ Resident status
- ☐ Medical history 1
- ☐ Medical history 6
- ☐ Medical history 7
- ☐ Preop medication 2
- ☐ Preop medication 6

- ☐ Symptom 1
- ☐ Symptom 2
- ☐ Symptom 3
- ☐ Symptom 4
- ☐ Symptom 5

Continuous Variables - Amount

Due to the right skewedness of bill amount, log(amount) is taken to approximate normal distribution

Continuous Variables – Lab Results 1 - 3

Lab results 1 to 3 all approximate normal distribution

Continuous Variables – Weight, Height & BMI

- Weight and height are both significantly associated with gender, whereas BMI between female and male shows no significant difference
- In the following analysis, BMI will be used instead of weight and height

Continuous Variables – Age & Length of Stay

- Age approximates bi-modal normal distribution
- Length of stay approximates normal distribution when treated as continuous

Correlation Among Continuous Variables

- Age is moderately associated with amount
- The other continuous variables do not show significant correlation with amount

Section 3 – Multi-Variable Linear Regression

Optimal Linear Regression Model

Amount versus Race grouped by Gender and Resident Status

- The median bill amount of Malays is the largest among all races
- Male has slightly larger median bill amount than female
- Foreigner has the largest median bill among, followed by PR.
 Singaporean has the smallest median bill amount regardless of gender or race

Amount versus Race grouped by Gender and Resident Status

- If government subsidy for Singaporean's and PR's healthcare service is taken into consideration, the larger bill amount of Foreigners could potentially be explained by the applicability/accessibility of subsidy scheme.
- If datasets originate from different hospitals including private and public hospitals, the sampled Foreigners might have a higher tendency to visit a private hospital than a public one, compared with Singaporean and PR.
- Among all patients admitted by this particular condition, Malays might have a worse underlying health condition compared with the other races, which is not captured by any of the variable reported. As a result, more intensive care is needed for Malays and bill amount is increased.
- Among all patients admitted by this particular condition, Male might have an overall worse health condition compared with Female.
- Relatively small sample size of Foreigners and Malays should be noted.

Amount versus Medical Histories and Symptoms 11 log_amount mh6 sm2 mh1 sm1 sm3 sm4 sm5

Presence of Medical History 1, Medical History 6 or any symptom from 1 to 5 would lead to a larger median bill amount

 $mh1 \stackrel{.}{\boxminus} 0 \stackrel{.}{\leftrightharpoons} 1 mh6 \stackrel{.}{\boxminus} 0 \stackrel{.}{\leftrightharpoons} 1 sm1 \stackrel{.}{\boxminus} 0 \stackrel{.}{\leftrightharpoons} 1 sm2 \stackrel{.}{\leftrightharpoons} 0 \stackrel{.}{\leftrightharpoons} 1 sm3 \stackrel{.}{\leftrightharpoons} 0 \stackrel{.}{\leftrightharpoons} 1 sm4 \stackrel{.}{\leftrightharpoons} 0 \stackrel{.}{\leftrightharpoons} 1 sm5 \stackrel{.}{\leftrightharpoons} 0 \stackrel{.}{\leftrightharpoons} 1$

- BMI and Age are both positively correlated with bill amount.
- No significant difference observed in the linear trend of different Resident Status. Similar trend observed when grouped by Race and Gender.

Optimal Linear Regression Model - Limitation

- Diagnostic graphs indicating that data do not fit well into a multi-variable linear model.
- Nevertheless, linear model is good starting point to identify the meaningful variables.