x_1 s/ x_4 . Stabiliți tipul soluției de hază găsite (și explicați/justificati de ce este de acest tip). => XE = (K, p, -d+ 1 p - 2 & 3+d- 1 p + 2 & 1 & 1 & 1 & 2 + 2 & ma explicite consep. up. 203 126 Des avalle de feart o rivaux colonia a matrici avidet (\$\frac{1}{2}\)!! In 4-5 minute descriptionali minine note (\$\frac{1}{2}\)!! In 4-5 minute descriptionali minine 12. Fie mulțimea de vectori $B = \{x_1, x_2, x_3\} \subset R^3$ de forma: $\{x_2 = (0, -1, 1)^7\}$. Se cere: $x_3 = (-1.1, 0)^{\text{Y}}$ a) arătați că B ≤ R³ (B este bază în R³); b) dacă $y = (3,0,-2)^{r}$ determinați numai cu <u>lema substitutei</u> coordonatele acestula în baza B: $y_n = [\lambda_1, \lambda_2, \lambda_3]$; c) dată $z_k = [2, 1, -2]$ determinați coordonatele acestuia în baza canonică din $R^i : z_{i_i} = [\alpha_i, \alpha_j, \alpha_i]$. => (== 8-L1 (=1 8 4 8) Verificone calcula: =-x(-8x8-x3=(-21211)-401-11)-(-1110)=(3,01-2) (when) 9=-11-925-27 (=) 28=[-1-33-1] c) = = [2,1,-2] (=) = = = = x1+x2-2x3 = = = (-2,2)-1]+(0)-1,1]-2(-1,10) = (-2,1,-1) (-2,2)-1] (-2,1,-1)

11. Fie sistemul de ecuații liniare $\begin{cases} 2x_1 - x_2 - 2x_4 + 3x_5 = -6 \\ -2x_1 + x_2 + x_3 + 3x_4 = 9 \end{cases}$. Aplicând metoda lui Gauss, determinați

forma explicită și soluția de bază corespunzătoare acesteia, considerând variabile principale pe

13. Fie bazele din R²:
$$(B)$$
 $\begin{cases} u_1 = (5, -3)^y \\ u_2 = (-2, 1)^y \end{cases}$ si (B') $\begin{cases} v_1 = (-3, -1)^y \\ v_2 = (7, 2)^T \end{cases}$. Se cere:

- a) dacă $w = (-1,3)^T$ aflați <u>cu ajutorul lemei substituției coordonatele</u> $w_k = [\alpha_1, \alpha_2]$ și $w_k = [\beta_1, \beta_2]$;
- b) dacă $x_{\rm s}$ = [-1,-2] determinați vectorul $x = (a_{\rm i}, a_{\rm i})^{\rm T}$;
- e) dacă $y_8 = [2, 4]$ determinați, <u>cu ajutorul lemei substitutiei</u>, coordonatele $y_8 = [y_1, y_2]$;
- d) determinați, cu loma substituției, matricea schimbării de bază: $S_{B|B}$;
- e) rezolvați punctul c) folosind <u>formulele</u> de schimbare a coordonatelor unui vector la schimbarea bazei (prin intermediul matricii schimbării de bază).

$$S_{1}^{(1)} = (S_{1}^{(1)}) = (S_{1}^{(1)})$$

9.0.0