11 класс

Задача 1. Ускорение доски

На гладкой горизонтальной поверхности лежит доска длиной L и массой M. На краю доски покоится небольшой брусок. На брусок начинает действовать постоянная горизонтальная сила, так что он движется вдоль доски с ускорением, которое больше ускорения доски. Найдите ускорение, с которым двигалась доска, если за время движения по ней бруска выделилось количество теплоты Q.

Задача 2. Маятник

Маленький шарик колеблется на лёгкой нерастяжимой нити в поле тяжести g с большой угловой амплитудой α . Найдите величину ускорения, с которым движется шарик в те моменты времени, когда величина силы натяжения в 4 раза больше ее минимальной величины. При каких значениях α возможна такая ситуация?

Задача 3. Перезарядка конденсаторов

Три одинаковых конденсатора ёмкостью C, резистор сопротивлением R и диод включены в схему, представленную на рис. 8. Вольтамперная характеристика диода представлена на рис. 9. Первоначально левый (на рисунке) конденсатор заряжен до напряжения U_0 , при этом заряд верхней пластины — положительный. Два других конденсатора не заряжены, ключ разомкнут. Затем ключ замыкают.

Определите:

- 1. напряжение на конденсаторах через большой промежуток времени после замыкания ключа;
- 2. тепло, которое выделится в схеме к этому моменту времени;
- 3. тепло, выделившееся к этому моменту на диоде;
- 4. тепло, выделившееся к этому моменту на резисторе.

Задача 4. Циклический процесс

На рис. 10 представлен график циклического процесса. Рабочее тело - многоатомный идеальный газ. Найдите КПД этого процесса.

$$pV^{\frac{C_p-C}{C_V-C}} = \text{const},$$

где C_p — теплоёмкость газа при постоянном давлении, а C_V — теплоёмкость газа при постоянном объёме.

Задача 5. Провисла-натянулась

На гладкой горизонтальной плоскости находятся три бруска, массы которых равны m_1 , m_2 и m_3 . На рис. 11 приведён вид сверху. Упругая лёгкая резинка связывает бруски 1 и 2 и проходит через блок, прикреплённый к бруску 3. Трения в системе нет. Исходно бруски неподвижны, а резинка чуть провисает. Бруску 3 ударом (мгновенно) сообщают скорость V.

- 1. Найдите скорости брусков в момент, когда растяжение резинки наибольшее.
- 2. Какими будут скорости брусков, когда резинка снова провиснет?
- 3. В случае, когда V=1 м/с, $m_1=1$ кг, $m_2=2$ кг, $m_3=3$ кг найдите скорость υ_3 третьего бруска, когда растяжение резинки наибольшее.

