样本自选择模型

瞿博洋

CIGR, 2020/12/17

本章内容

- 第四节 Heckman样本选择模型的应用例子
- 第五节 内生选择变量处置效应模型
- 第六节 样本自选择模型运用常见问题

- 研究受教育程度对女性工资水平的影响
- 简化模型后,结果方程为:

$$Wage_i^* = \alpha + \beta_i Edu_i + \beta_2 Age_i + e_{1i}$$

- 其中, $Wage_i^*$ 是工资水平, Edu_i 是受教育程度, Age_i 是年龄,干扰项 e_{1i} 包含了不可观测但会影响工资水平的变量(如个体性格)。
- 对于总体或随机分配样本:

$$\mathbb{E}(e_{1I}|Edu_i,Age_i)=0$$

- 只有参加工作的人,才能观测到工资水平
- 是否参加工作是自我选择的,选择方程:

$$Utility_i^* = \gamma_0 + \gamma_1 E du_i + \gamma_2 A g e_i + \gamma_3 C hildren_i + e_{2i}$$

$$\begin{cases} Work_i = 1, & \text{如果Utility}_i^* > 0 \\ Work_i = 0, & \text{如果Utility}_i^* \leq 0 \end{cases}$$

• 其中, $Children_i$ 是小孩的数量,干扰项 e_{2i} 包含了不可观测但会影响工资水平的变量(如个体性格)。

- e_{1i} 和 e_{2i} 都包含了一些相同的不可观测的变量,所以 二者是相关的
- Heckman模型假设二者的分布是相关系数为 ρ 的二元正态分布,即:

$$\begin{pmatrix} e_{1i} \\ e_{2i} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho \sigma \\ \rho \sigma & 1 \end{pmatrix}$$

• 对于工资的观测结果为:

$$\begin{cases} Wage_i = Wage_i^*, & \text{如果}Work_i = 1 \\ Wage_i 缺失, & \text{如果}Work_i = 0 \end{cases}$$

● 因果路径图:

- 在结果方程里加入逆米尔斯比例作为调整项 $Wage_i = \alpha + \beta_i Edu_i + \beta_2 Age_i + \rho\sigma\lambda_i + v_i$
- 其中, 逆米尔斯比例为:

$$\lambda_{i} = \frac{\phi(\gamma_{0} + \gamma_{1}Edu_{i} + \gamma_{2}Age_{i} + \gamma_{3}Children_{i})}{1 - \Phi(\gamma_{0} + \gamma_{1}Edu_{i} + \gamma_{2}Age_{i} + \gamma_{3}Children_{i})}$$

4.2 样本数据

- 样本里有2000个观测值,以下显示前20个:
- . list wage work age education children if _n<=20

	wage	work	age	educat~n	children
1.		0	22	10	0
2.	20.31285	1	36	10	0
3.		0	28	10	0
4.		0	37	10	0
5.	16.14224	1	39	10	1
6.	14.95799	1	33	10	2
7.	18.44339	1	57	10	1
8.	17.57406	1	45	16	0
9.		0	39	12	0
10.	18.48312	1	25	10	3
11.	29.40447	1	26	16	0
12.		0	28	10	1
13.		0	52	10	1
14.	24.83475	1	38	16	3
15.	27.17002	1	36	16	4
16.	16.86481	1	32	12	3
17.	33.82108	1	36	16	5
18.	18.97637	1	46	12	5
19.		0	39	16	0
20.	•	0	34	10	0

• 运用Probit模型估计选择模型:

```
Pr(Work_i = 1|Z_i) = \Phi(\gamma_0 + \gamma_1 Edu_i + \gamma_2 Age_i + \gamma_3 Children_i)
```

. probit work education age children

```
Iteration 0: log likelihood = -1266.2225
Iteration 1: log likelihood = -1048.0634
Iteration 2: log likelihood = -1044.0756
Iteration 3: log likelihood = -1044.0621
Iteration 4: log likelihood = -1044.0621
```

Probit regression Number of obs = 2,000LR chi2(3) = 444.32Prob > chi2 = 0.0000Log likelihood = -1044.0621 Pseudo R2 = 0.1755

work	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
education	.071238	.0107186	6.65	0.000	.0502299	.092246
age	.0412517	.0040689	10.14	0.000	.0332769	.0492265
children	.4084356	.0269242	15.17	0.000	.3556651	.461206
_cons	-2.535539	.1906351	-13.30	0.000	-2.909177	-2.161901

● 用估计出来的系数去估计逆米尔斯系数

$$\lambda_i = \frac{\phi(\gamma_0 + \gamma_1 E du_i + \gamma_2 A g e_i + \gamma_3 Children_i)}{1 - \Phi(\gamma_0 + \gamma_1 E du_i + \gamma_2 A g e_i + \gamma_3 Children_i)}$$

- Stata代码如下:
- . predict z if e(sanple),xb
- . generate phi=normalden(z)
- . generate PHI=normal(z)
- . generate lambda=phi/PHI

• 生成的新的变量如下所示

. list wage work age education children z phi PHI lambda if _n<=20

	мадо	work	200	educat~n	children	z	phi	PHI	lambda
	wage	WOLK	age	euucat~ii	Chilluren		PILL	PHI	Tallibua
1.		0	22	10	0	9156223	.2623383	.1799325	1.457981
2.	20.31285	1	36	10	0	3380987	.37678	.3676444	1.024849
3.		0	28	10	0	6681122	.31914	.252031	1.266273
4.		0	37	10	0	296847	.3817468	.3832916	.9959697
5.	16.14224	1	39	10	1	.1940919	.3914982	.576948	.6785675
6.	14.95799	1	33	10	2	.3550174	.3745773	.6387117	.5864575
7.	18.44339	1	57	10	1	.9366222	.2572854	.8255236	.3116634
8.	17.57406	1	45	16	0	.4605941	.3587922	.6774551	.5296177
9.		0	39	12	0	0718678	.3979133	.4713536	.8441929
10.	18.48312	1	25	10	3	.4334395	.3631739	.6676522	.5439567
11.	29.40447	1	26	16	0	3231878	.3786421	.3732765	1.014374
12.		0	28	10	1	2596766	.3857158	.3975566	.9702159
13.		0	52	10	1	.7303638	.3055462	.7674161	.3981494
14.	24.83475	1	38	16	3	1.397139	.1503278	.9188141	.1636106
15.	27.17002	1	36	16	4	1.723071	.0904077	.9575621	.0944145
16.	16.86481	1	32	12	3	.8646771	.2745088	.806392	.3404161
17.	33.82108	1	36	16	5	2.131507	.0411472	.9834763	.0418385
18.	18.97637	1	46	12	5	2.259072	.0310971	.9880605	.0314729
19.		0	39	16	0	.2130841	.3899873	.5843693	.6673645
20.		0	34	10	0	4206021	.3651702	.3370228	1.083518

• 估计回归方程

. reg wage education age lambda

Source	SS	df	MS		er of obs 1339)	=	1,343 171.27
Model Residual	14796.046 38558.8486	3 1,339	4932.0153 28.796750	3 Prob3 R-sq	> F uared	=	0.0000 0.2773
Total	53354.8946	1,342	39.757745	_	R-squared MSE	=	0.2757 5.3663
wage	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
education age lambda _cons	.98588 .2123369 3.973879 .6543349	.0508305 .0209086 .5979168 1.197644	19.40 10.16 6.65 0.55	0.000 0.000 0.000 0.585	.88616 .17131 2.8009 -1.6951	97 24	1.085596 .2533542 5.146835 3.003799

4.4 使用Stata的Heckman命令估计模型

• Stata中也有自带的Heckman命令可以用来直接估计模型的回归结果

. heckman wage education age, select(education age children) twostep

Heckman selection model -- two-step estimates
(regression model with sample selection)

Number of obs = 2,000 Selected = 1,343 Nonselected = 657

Wald chi2(2) = 432.15 Prob > chi2 = 0.0000

wage	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
wage						
education	.98588	.0542582	18.17	0.000	.8795358	1.092224
age	.2123369	.0223243	9.51	0.000	.1685821	.2560917
_cons	.6543347	1.282338	0.51	0.610	-1.859001	3.16767
select						
education	.071238	.0107186	6.65	0.000	.0502299	.092246
age	.0412517	.0040689	10.14	0.000	.0332769	.0492265
children	.4084356	.0269242	15.17	0.000	.3556651	.461206
_cons	-2.535539	.1906351	-13.30	0.000	-2.909177	-2.161901
/mills						
lambda	3.973879	.6296416	6.31	0.000	2.739805	5.207954
rho	0.66708					
sigma	5.9570896					

- 自选择样本偏差的原理及其处理方法的另一个应用,是估计为生二元选择变量(endogenous binary-treatment variable)的处置效应
- 一个常见的内生二元自选择变量模型:

$$Y_i = \alpha_0 + \alpha_1 D_i + X_i' \beta + e_{1i}$$

- 其中, D_i 是一个二元选择变量, X_i 是控制变量
- 选择公式为:

$$Utility_i = \mathbf{Z}_i' \mathbf{\gamma} + e_{2i}$$

• 其中,只有当 $Utility_i > 0$ 时才接受处置:

$$\begin{cases} D_i = 1, & \text{如果}Utility_i > 0 \\ D_i = 0, & \text{如果}Utility_i \leq 0 \end{cases}$$

- 该模型有两个和Heckman相同的假设:
 - Z;和X;为外生变量,他们与干扰项无关
 - e_{1i} 和 e_{2i} 服从二元正态分布:

$$\begin{pmatrix} e_{1i} \\ e_{2i} \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \sigma^2 & \rho \sigma \\ \rho \sigma & 1 \end{pmatrix}$$

路径图: e_2 e_1 Y_i Z_i D_i X_i

- 和Heckman模型类似的,我们计算条件期望
- 当 $D_i = 1$ 时:

$$\mathbb{E}(Y_i|\boldsymbol{X_i},D_i=1)$$

$$= \alpha_0 + \alpha_1 + X_i' \beta + \mathbb{E}(e_{1i}|D_i = 1, X_i)$$

$$= \alpha_0 + \alpha_1 + X_i'\beta + \mathbb{E}(e_{1i}|e_{2i} > -Z_i'\gamma)$$

$$= \alpha_0 + \alpha_1 + \mathbf{X}_i' \boldsymbol{\beta} + \rho \sigma \frac{\phi(-\mathbf{Z}_i' \boldsymbol{\gamma})}{1 - \Phi(-\mathbf{Z}_i' \boldsymbol{\gamma})}$$

• 当
$$D_i = 0$$
时:
$$\mathbb{E}(Y_i | X_i, D_i = 0)$$

$$= \alpha_0 + X_i' \beta + \mathbb{E}(e_{1i} | D_i = 0, X_i)$$

$$= \alpha_0 + X_i' \beta + \mathbb{E}(e_{1i} | e_{2i} < -Z_i' \gamma)$$

$$= \alpha_0 + X_i' \beta + \rho \sigma \frac{-\phi(-Z_i' \gamma)}{\Phi(-Z_i' \gamma)}$$

5.2 估计方法

- 要获得α1,有两种估计方法
 - 分别估计

分别对 $D_i = 1$ 和 $D_i = 0$ 时的样本使用Heckman样本选择模型进行估计,然后将两个回归结果的截距相减,就能得到系数 α_1

■ 整合估计

将两个公式和在一起,表示为:

$$Y_i = \alpha_0 + \alpha_1 D_i + X_i' \beta + \rho \sigma \left[\frac{\phi(-Z_i' \gamma)}{1 - \Phi(-Z_i' \gamma)} D_i + \frac{-\phi(-Z_i' \gamma)}{\Phi(-Z_i' \gamma)} (1 - D_i) \right] + u_i$$
 然后对上述方程使用Heckman样本选择模型模拟

5.3 实例

估计女性工会成员身份对工资水平的影响,结果方程如下:

 $Wage_i = \alpha_0 + \alpha_1 Age_i + \alpha_2 Grade_i + \alpha_3 Smsa_i + \alpha_4 Black_i + \alpha_5 Tenure_i + e_{1i}$

- 其中, Wage_i是工资水平, Age_i是年龄, Grade_i是
 学历, Tenure_i是工作时限
- 进入工会的选择方程为:

$$Utility_i = \gamma_0 + \gamma_1 South_i + \gamma_2 Black_i + \gamma_3 Tenure_i + e_{2i}$$

$$\begin{cases} Union_i = 1, & \text{如果Utility}_i > 0 \\ Union_i = 0, & \text{如果Utility}_i \leq 0 \end{cases}$$

5.3 实例

● 展示1693个观测值中的前20个

. list wage age grade smsa black tenure if $_{n<=20}$

	wage	age	grade	smsa	black	tenure
1.	4.903638	20	12	1	1	.9166667
2.	3.3407572	20	12	1	1	1
3.	4.9892929	26	12	1	1	2.416667
4.	11.177726	26	17	1	0	3.416667
5.	7.2376854	26	12	1	0	.6666667
6.	4.9892929	25	12	1	0	1.416667
7.	4.282655	23	12	1	0	4.75
8.	5.7387546	20	12	1	0	2.5
9.	3.6748322	20	10	1	0	3.25
10.	7.4732333	23	15	1	0	1.666667
11.	8.0299786	23	15	1	0	2.333333
12.	5.888651	23	15	1	0	2.416667
13.	8.3083492	23	15	1	0	.3333333
14.	9.1006418	23	15	1	0	1.75
15.	10.192716	24	15	1	0	.4166667
16.	8.1584569	25	14	1	0	.75
17.	5.3319055	23	13	1	0	2
18.	4.8393968	21	8	1	0	.5833333
19.	3.6748322	20	12	1	0	1.166667
20.	4.9464658	27	12	1	0	3.083333
	L					

5.3 实例

• 使用etregress命令

. etregress wage age grade smsa black tenure, treat(union = south black tenure)

Iteration 0: log likelihood = -3140.811
Iteration 1: log likelihood = -3053.6629
Iteration 2: log likelihood = -3051.5847
Iteration 3: log likelihood = -3051.575
Iteration 4: log likelihood = -3051.575

LR test of indep. eqns. (rho = 0): chi2(1) =

Linear regression with endogenous treatment Number of obs = 1,210 Estimator: maximum likelihood Wald chi2(6) = 681.89 Log likelihood = -3051.575 Prob > chi2 = 0.0000

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
vage						
age	.1487409	.0193291	7.70	0.000	.1108566	.1866252
grade	.4205658	.0293577	14.33	0.000	.3630258	.4781058
smsa	.9117044	.1249041	7.30	0.000	.6668969	1.156512
black	7882471	.1367078	-5.77	0.000	-1.05619	5203048
tenure	.1524015	.0369596	4.12	0.000	.0799621	.2248409
1.union	2.945815	.2749621	10.71	0.000	2.4069	3.484731
_cons	-4.351572	.5283952	-8.24	0.000	-5.387208	-3.315936
union						
south	5807419	.0851111	-6.82	0.000	7475566	4139271
black	.4557499	.0958042	4.76	0.000	.2679771	.6435226
tenure	.0871536	.0232483	3.75	0.000	.0415878	.1327195
_cons	8855758	.0724506	-12.22	0.000	-1.027576	7435753
/athrho	6544347	.0910314	-7.19	0.000	832853	4760164
/lnsigma	.7026769	.0293372	23.95	0.000	.645177	.7601767
rho	5746478	.060971			682005	4430476
sigma	2.019151	.0592362			1.906325	2.138654
lambda	-1.1603	.1495097			-1.453334	8672668

19.84 Prob > chi2 = 0.0000

21

6.1 解释变量的选择

- 在实际运用中,要求 Z_i 至少包含一个与 X_i 不同的变量
- 假设 $Z_i = X_i$,即 $Y_i = \alpha_0 + X_i'\beta + \lambda(X_i'\hat{\gamma}) + e_i$ 。由于 $\lambda(X_i'\hat{\gamma})$ 在定义域的大部分范围内是近线性的,所以会导致严重的共线性问题
- 需要一个工具变量,影响选择但不影响结果,称为排 他性约束条件(exclusion constraints)

6.2 二元正态分布假设

- 如果干扰项不符合二元正态分布假设,调整项的计算就有可能是错误的
- 一种替代方案是,假定干扰项服从一些其他的特定的 非正态分布
- 但现有的理论很少指出应该用何种分布来代替

6.3 选择模型必须为Probit模型

- 在Heckman模型中,一阶段的估计选择方程不能使用 Logit模型,因为Logit模型不具有干扰项正态分布的 假设,与Heckman模型不符合
- Probit模型:
 - 一个二元0/1变量的模型,取值取决于如下方程:

$$D_i^* = \mathbf{Z}_i' \mathbf{\gamma} + e_i$$
 $\begin{cases} D_i = 1, & \text{with } p_i^* > 0 \\ D_i = 0, & \text{with } p_i^* \leq 0 \end{cases}$

■ 假设ei符合标准正态分布,则:

$$\Pr(D_i = 1 | \mathbf{Z}_i) = \Phi(\mathbf{Z}_i' \gamma)$$

6.4 检查相关系数 ρ

- 当e_{1i}和e_{2i}不相关时,样本自选择并不会造成估计偏差,这种情况也被称为外生样本选择
- 这种情况下不需要加入调整项