

Bias-Variance Tradeoff

CS229: Machine Learning
Carlos Guestrin
Stanford University
Slides include content developed by and co-developed with Emily Fox

©2022 Carlos Guestrin

achine Learnii

Fit data with a line or ...?

What about a quadratic function?

Even higher order polynomial

Do you believe this fit?

Do you believe this fit?

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.

©2022 Carlos Guestrin

CS229: Machine Learning

Assessing the loss Part 1: Training error

Define training data

Define training data

Example: Fit quadratic to minimize RSS

Example:

14

Use squared error loss $(y-f_{\hat{w}}(x))^2$

Training error vs. model complexity

Is training error a good measure of predictive performance?

Issue:

Training error is overly optimistic... www was fit to training data

Assessing the loss

Part 2: Generalization (true) error

Generalization error

Really want estimate of loss over all possme (,\$) pairs

18

CS229: Machine Learning

Generalization error definition

Really want estimate of loss over all possible (,\$) pairs

Generalization error vs. model complexity

True error vs. model complexity

Assessing the loss Part 3: Test error

@2022 C-----

CS229: Machine Learning

Training, true, test error vs. model complexity

3 sources of error + the bias-variance tradeoff

©2022 Carlos Guestrin

CS220: Machine Learn

3 sources of error

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2. Bias
- 3. Variance

Data inherently noisy

Bias contribution

Suppose we fit a constant function

Bias contribution

Over all possible size N training sets, what do I expect my fit to be?

Bias contribution

 $\text{Bias}(\mathbf{x}) = f_{\text{w(true)}}(\mathbf{x}) - f_{\bar{\mathbf{w}}}(\mathbf{x}) \longleftarrow \text{Is our approach flexible enough to capture } f_{\text{w(true)}}?$ If not, error in predictions.

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

How much do specific fits vary from the expected fit?

Variance contribution

How much do specific fits vary from the expected fit?

Variance of high-complexity models

Assume we fit a high-order polynomial

Variance of high-complexity models

Suppose we fit a high-order polynomial

Variance of high-complexity models

Bias of high-complexity models

Sum of 3 sources of error

Average squared error at \mathbf{x}_{t}

=
$$\sigma^2$$
 + [bias(f _{$\hat{\mathbf{w}}$} (\mathbf{x}_t))]² + var(f _{$\hat{\mathbf{w}}$} (\mathbf{x}_t))

37

CS229: Machine Learning

Bias-variance tradeoff

Error vs. amount of data

Why 3 sources of error?
A formal derivation

2022 Carlos Guestrin

CS229: Machine Learni

Deriving expected prediction error

- Expected prediction error = E_{train} [generalization error of $\hat{\mathbf{w}}$ (train)]
 - = $E_{train} [E_{x,y}[L(y,f_{\hat{\mathbf{w}}(train)}(x))]]$
- 1. Look at specific \mathbf{x}_t
- 2. Consider $L(y, f_{\hat{w}}(x)) = (y f_{\hat{w}}(x))^2$

Expected prediction error at
$$\mathbf{x}_t$$

= $E_{train, y_t}[(y_t-f_{\hat{\mathbf{w}}(train)}(\mathbf{x}_t))^2]$

Simplifying Notation

• Expected prediction error at \mathbf{x}_{t}

=
$$E_{\text{train},y_t} [(y_t - f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t))^2]$$

• Simple (and abusive ©) notation:

$$\begin{aligned}
&- y_t \rightarrow y \\
&- f_{\text{W(true)}}(x_t) \rightarrow f \\
&- f_{\hat{w}(\text{train})}(x_t) \rightarrow \hat{f} \\
&- E_{\text{train}} [f_{\hat{w}(\text{train})}(x_t)] = f_{\bar{w}}(x_t) \rightarrow \bar{f}
\end{aligned}$$

Deriving expected prediction error

Expected prediction error at \mathbf{x}_t

=
$$E_{\text{train},y_t}[(y_t-f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_t))^2] = E_{\text{train}}[(y-\hat{\mathbf{f}})^2] =$$

$$= E_{\text{train}}[(y-f) + (f-\hat{f}))^2]$$

Equating MSE with

bias and variance

$$MSE[f_{\hat{\mathbf{w}}(\text{train})}(\mathbf{x}_{t})]$$

$$= E_{\text{train}}[(\mathbf{f} - \hat{\mathbf{f}})^{2}]$$

$$= E_{\text{train}}[((\mathbf{f} - \bar{\mathbf{f}}) + (\bar{\mathbf{f}} - \hat{\mathbf{f}}))^{2}]$$

Putting it all together

Expected prediction error at \mathbf{x}_t

$$= \sigma^2 + MSE[f_{\hat{\mathbf{w}}}(\mathbf{x}_t)]$$

=
$$\sigma^2$$
 + [bias(f _{$\hat{\mathbf{w}}$} (\mathbf{x}_t))]² + var(f _{$\hat{\mathbf{w}}$} (\mathbf{x}_t))

3 sources of error

Summary of bias-variance tradeoff

©2022 Carlos Guestrin

CS229: Machine Learn

What you can do now...

- Contrast relationship between model complexity and train, true and test loss
- Compute training and test error given a loss function for different model complexities
- List and interpret the 3 sources of avg. prediction error
 - Irreducible error, bias, and variance