Chapter 2

Fundamentals of Digital Image and Spatial Domain Enhancement

- **2.1** Digital image Representation, Elements of digital image processing systems, sampling and quantization, basic relationships between pixels, mathematical operations on images.
- **2.2** Spatial domain enhancement techniques: Point processing, Neighborhood processing, spatial domain filtering, zooming.
 - **2.3** Spatial enhancement: Global processing: Histogram Equalization.

Self-Learning Topic: Histogram specification

What is Digital Image Processing?

Digital image processing focuses on two major tasks

- Improvement of pictorial information for human interpretation
- Processing of image data for storage, transmission and representation for autonomous machine perception

Some argument about where image processing ends and fields such as image analysis and computer vision start

Light

- Light
 - Particles known as photons
 - Act as 'waves'
- Two fundamental properties
 - Amplitude
 - Wavelength
 - Frequency is the inverse of wavelength
 - Relationship between wavelength (lambda) and frequency (f)

$$\lambda = c/f$$

Where c = speed of light = 299,792,458 m/s

Key Stages in Digital Image Processing

Image Restoration

Key Stages in Digital Image Processing: Morphological Processing

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing: Object Recognition

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

Digital Image Types: Intensity Image

Image Types : Binary Image

Effect of Quantization Levels or Intensity resolution

256 levels

64 levels

128 levels

32 levels

Effect of Quantization Levels (ardnt) nsity resolution

16 levels

8 levels

In this image, it is easy to see false contour.

4 levels

2 levels

How to select the suitable size and pixel depth of images

The word "suitable" is subjective: depending on "subject".

Low detail image

Medium detail image

High detail image

Lena image

Cameraman image

To satisfy human mind

- 1. For images of the same size, the low detail image may need more pixel de
- As an image size increase, fewer gray levels may be needed.

Basic Relationship of Pixels

Conventional indexing method

Neighbors of a Pixel

Neighborhood relation is used to tell adjacent pixels. It is useful for analyzing regions.

4-neighbors of p:

$$N_4(p) = \left\{ \begin{array}{c} (x-1,y) \\ (x+1,y) \\ (x,y-1) \\ (x,y+1) \end{array} \right\}$$

4-neighborhood relation considers only vertical and horizontal neighbors.

Note: $q \in N_4(p)$ implies $p \in N_4(q)$

Neighbors of a Pixel (cont.)

(x-1,y-1)	(x,y-1)	(x+1,y-1)
(x-1,y)	р	(x+1,y)
(x-1,y+1)	(x,y+1)	(x+1,y+1)

8-neighbors of p:

$$N_8(p) = \begin{cases} (x,y-1) \\ (x+1,y-1) \\ (x-1,y) \\ (x+1,y) \\ (x-1,y+1) \\ (x,y+1) \\ (x+1,y+1) \end{cases}$$

8-neighborhood relation considers all neighbor pixels.

Neighbors of a Pixel (cont.)

(x-1,y-1)		(x+1,y-1)
	р	
(x-1,y+1)		(x+1,y+1)

Diagonal neighbors of p:

$$N_D(p) = \begin{cases} (x-1,y-1) \\ (x+1,y-1) \\ (x-1,y+1) \\ (x+1,y+1) \end{cases}$$

Diagonal -neighborhood relation considers only diagonal neighbor pixels.

Mathematical Operations on Images

Image Addition

Original Image

Image 2

Image Subtraction

```
a1 = imread('D:\Matlab\bin\cameraman.jpg'); % Read the image
a2 = imread('D:\Matlab\bin\lena.jpg'); % Read the image
a1=imresize(a1,[255,255]);
a2=imresize(a2,[255,255]);
g=imadd(a1,a2,'uint8');
figure(1)
        subplot(1,3,1),imshow(a1),title('Original Image');
subplot(1,3,2),imshow((a2)),title('Image 2');subplot(1,3,3),imshow(g);
a3 = imread('D:\Matlab\bin\cameraman.jpg'); % Read the image
a4 = imread('D:\Matlab\bin\lena.jpg'); % Read the image
a3=imresize(a3,[255,255]);
a4=imresize(a4,[255,255]);
figure(2)
        subplot(1,3,1),imshow(a3),title('Original Image');
subplot(1,3,2),imshow((a4)),title('Image 2');subplot(1,3,3),imshow(z);
```

Original Image

Image 2

Mathematical Operations on Images

- Image Multiplication
- G(x,y)=f1(x,y)*f2(x,y)
- Image Division
- G(x,y)=f1(x,y)/f2(x,y)

Image Enhancement

- objective of image enhancement is to improve the interpretability of the information present in images for human viewers.
- enhancement algorithm is one that yields a better-quality image for the purpose of some particular application which can be done by either suppressing the noise or increasing the image contrast.

Spatial Domain Methods

 Image-enhancement techniques can be classified into two broad categories as

(1) spatial domain method

 The spatial domain method operates directly on pixels or raw data.

(2) transform domain method

 Transform domain method operates on the Fourier transform of an image and then transforms it back to the spatial domain.

1) Image Negative or Digital Negative

- F(x,y) may be an image here F is grey level value(0 to 255).
- 0 black
- 255 white
- Here x,y represents image coordinates

- The inverse transformation reverses light and dark.
- Application X-ray image
- Inverting grey levels.
- g(m, n) = 255 f(m, n)
- Here g (m,n) is negative image
- f(m,n) is original image

- 2) Contrast Stretching or Contrast Adjustment
- Poor illumination images are not clear.
- Contrast stretching is increase the contrast of the images by making the dark portions darker and the brighter portions brighter.
- Contrast adjustment is done by scaling all the pixels of the image by a constant k. It is given by
- g [m, n] = f [m, n] * k

 Specifying a value above 1 will increase the contrast by making bright samples brighter and dark samples darker.

 A value below 1 will do the opposite and reduce a smaller range of sample values.

```
clear all
close all
b=imread("D:\Matlab\bin\butterfly.jpg")
%b=rgb2gray(b);
z=b*0.4; %Decerease contrast
k=b*40; %Increase contrast
figure(1)
imshow(b);
figure(2)
imshow(z);
figure(3)
imshow(k);
```


3) Thresholding

- Extreme contrast stretching yields in thresholding.
- S=255; if r(pixel intensity value) >=a (threshold value)

S=0 if r(pixel intensity value) < a(threshold value)

```
clear all;
close all;
a=imread("D:\Matlab\bin\tumor.jpg");
a=rgb2gray(a);
p=a;
[r c]=size(a) %returns the size of image a
T=input('Enter the value of Threshold');
for i=1:1:r
    for j=1:1:c
        if(p(i,j) < T)
            a(i,j)=0;
        else
            a(i,j)=255;
        end
    end
end
figure(1)
imshow(a)
figure(2)
imshow(p)
```


4) Grey Level Slicing (Intensity slicing)

Thresholding splits the grey level into two parts.

 Highlight specific range of grey values we use grey level slicing. Useful for highlighting features in an image

Band of grey level is selected.

Grey Level without Background

- S=255; if a(low threshold value) <=r(pixel intensity value) <= b(high threshold value)
- S=0; otherwise
- display a high value for all gray levels in the range of interest and a low value for all other gray levels.

Grey Level with Background

- S=255; if a(low threshold value) <=r(pixel intensity value) <= b(high threshold value)
- S=r; otherwise
- based on the transformation brightens the desired range of gray levels but preserves gray levels unchanged.

```
clear all;
close all;
a=imread("D:\Matlab\bin\skull.jpg");
a=rgb2gray(a);
p=a;
[r c]=size(a) %returns the size of image a
T1=input('Enter the value of Threshold T1');
T2=input('Enter the value of Threshold T2');
for i=1:1:r
    for j=1:1:c
        if((p(i,j)>=T1)&&(p(i,j)<=T2)) %without background
            a(i,j)=255;
        else
            a(i,j)=0;
        end
    end
end
figure(1)
imshow(p)
figure(2)
imshow(a)
```



```
clear all;
close all;
a=imread("D:\Matlab\bin\skull.jpg");
a=rgb2gray(a);
p=a;
[r c]=size(a) %returns the size of image a
T1=input('Enter the value of Threshold T1');
T2=input('Enter the value of Threshold T2');
for i=1:1:r
    for j=1:1:c
        if((p(i,j))=T1)&&(p(i,j)<=T2)) % with background
            a(i,j)=255;
        else
            a(i,j)=p(i,j);
        end
    end
end
figure(1)
imshow(p)
figure(2)
imshow(a)
```


5) Bit Plane Slicing

 Pixels are digital numbers, each one composed of bits. Instead of highlighting gray-level range, we could highlight the contribution made by each bit.

 This method is useful and used in image compression.

8-bit Image composed of 8 1-bit planes

 Often by isolating particular bits of the pixel values in an image we can highlight interesting aspects of that image.

 Higher -order bits usually contain most of the significant visual information.

Lower -order bits contain subtle details.

Ex. 7.1: Given a 3 × 3 image, plot its bit planes.

1	2	0
4	3	2
7	5	2

Soin.:

Since 7 is the maximum grey level, we need only 3-bits to represent the grey levels.

Hence we will have 3-bit planes. Converting the image to binary we get,

001	010	000
100	011	010
111	101	010

1	0	0
0	1	0
1	1	0

0	1	0
0	1	1
1	0	1

0	0	0
1	0	0
1	1	0

Binary image

LSB plane

Middle bit plane

MSB plane

```
clear all;
close all;
clc;
a=imread('D:\Matlab\bin\lena.jpg');
b1=[];
b2=[];
b3=[];
b4=[];
b5=[];
b6=[];
b7=[];
b8=[];
for m=1:256
    for n=1:256
        t=de2bi(a(m,n),8,'left-msb');
        b1(m,n)=t(1,1);
        b2(m,n)=t(1,2);
        b3(m,n)=t(1,3);
        b4(m,n)=t(1,4);
        b5(m,n)=t(1,5);
        b6(m,n)=t(1,6);
        b7(m,n)=t(1,7);
        b8(m,n)=t(1,8);
    end
end
subplot(3,3,1);
imshow(a);
title('image of cameramen','color','r');
```

```
subplot(3,3,1);
imshow(a);
title('image of cameramen','color','r');
subplot(3,3,2);
imshow(b8);
title('image of bit-1', 'color', 'r');
subplot(3,3,3);
imshow(b7);
title('image of bit-2', 'color', 'r');
subplot(3,3,4);
imshow(b6);
title('image of bit-3','color','r');
subplot(3,3,5);
imshow(b5);
title('image of bit-4','color','r');
subplot(3,3,6);
imshow(b4);
title('image of bit-5', 'color', 'r');
subplot(3,3,7);
imshow(b3);
title('image of bit-6', 'color', 'r');
subplot(3,3,8);
imshow(b2);
title('image of bit-7', 'color', 'r');
```


- 6) Dynamic Range Compression (Log Transformation)
- Dynamic range of the image exceeds the capability of the display device.
- Some pixel values are so high that low pixel values get over shadowed.
- To be able to see the small value pixels dynamic range compression is used.

- Log operator being the excellent compressing function.
- Dynamic range compression is achieved by using log operator.
- Log Transformation = C*log(1+|a|)...(a=image)

	1000000	Mookingik		TOTAL PROPERTY.
	FILE	NAVIGATE	CODE	ANALYZ
1	a1 = imread('D:\Mat	:lab\bin\saturn.jpg');	; % Read the image	(
2	a = double(a1)/256	% Normalized Image		
2	c = 2; % Constant			
4	f = c*log(1 + (a)); % Log Transform			
5	<pre>subplot(1,2,1),imshow(a1),title('Original Image');</pre>			
6	subplot(1,2,2),imsh	now((f)),title('Log Tr	ransformation Imag	e');
	Constitution of the San Constitution of the Co		Control of the Control of the Control	X47-0

C:\Users\Admin\Documents\MATLAB\image9.m

- 7) Power Law Transformation
- human perception of brightness more sensitive to changes in dark as compared to bright.
- display devices like computer screen have Intensity to voltage (non linear) which is a power function with exponents(Gamma) varying from 1.8 to 2.5.
- any input signal(say from a camera), the output will be transformed by gamma because of non-linear intensity to voltage relationship of the display screen - This results in images that are darker than intended.

$$s = c*r^{\gamma}$$

- we apply gamma correction to the input signal.
- This input cancels out the effects generated by the display and we see the image as it is.

```
a1 = imread('D:\Matlab\bin\cameraman.jpg'); % Read the image
a = double(a1)/256; % Normalized Image
gamma=input('Enter the correction factor gamma value:')
c=2;
f = c*a.^gamma;
subplot(1,2,1),imshow(a1),title('Original Image');
subplot(1,2,2),imshow((f)),title('Power Law Image');
```

>> image10

Enter the correction factor gamma value: 0.4

gamma =

0.4000

>>

>> image10
Enter the correction factor gamma value:2.2

gamma = Fig

2.2000 File Edit View Insert Tools

Feature	Power Law Transformation	Contrast Stretching
Transformation Type	Nonlinear (depends on the exponent $\gamma \geq \gamma$)	Linear (stretches pixel values over a specified range)
Effect on Image	Adjusts brightness and local contrast based on intensity	Increases global contrast by expanding pixel values
Parameter	Gamma (γ \gamma γ) determines the nonlinearity	Minimum and maximum values determine contrast enhancement
Pixel Range	Does not necessarily change the pixel value range, but alters the distribution	Expands the pixel range from input min/max to desired output min/max
Visual Impact	Changes pixel intensity to brighten/darken based on the exponent	Increases overall contrast, making dark areas darker and bright areas brighter
Use Case	Correcting brightness issues (e.g., for display calibration)	Improving visibility in images with low contrast

Neighbourhood Processing

 In neighbourhood operation, the pixels in an image are modified based on some function of the pixels in their neighbourhood.

• Instead of 3*3 neighbourhood, we could also use 5*5 or a 7*7

Low Pass Averaging Filter (Box Filter)

- If an image has Gaussian noise present in it a low pass averaging filter is used to eliminate it.
- The mean filter replaces each pixel by the average of all the values in the local neighbourhood.

 The size of the neighbourhood controls the amount of filtering.

Low Pass Averaging Filter

 spatial averaging operation, each pixel is replaced by a weighted average of its neighbourhood pixels.

 The low-pass filter preserves the smooth region in the image and it removes the sharp variations leading to blurring effect.

Low Pass Averaging Filter

3 by 3 low-pass spatial mask =
$$\frac{1}{9} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Low Pass Averaging Filter

 It is to be noted that the sum of the elements is equal to 1 in the case of a low-pass spatial mask.

• The blurring effect will be more with the increase in the size of the mask.

 the size of the mask will be odd so that the central pixel can be located exactly.

	F01	W 11	280	PU	veno	gin	9 5	MEG				BASS		
	1 25	iven	0	NO 000		2	10	10	10	10	10	10	10	+07
	1	1 V GYC	97	1	1		10	10	10	10	10	10	10	10
							10	10	10	10	+0		10	10
		-					10	10	10	10	10	10	10	10.
		8>	89	mo	ye.		50	50	50	62.0	50	50	50	50
							50	50	50	50	50	50	20	50
		4.71				*	50	50	50	60	50	50	20	2.0
					- 0		50	50	50	50	50	50	50	50
	Mo	kek_	th	act	w	in	be	1000	ed	is	37	x.3		
								_						
		H U		1	1	1	1							
				CI										
	12.				1 1	- 1	1	- 1						
	-	- 91		-	1	1	1							
-	-	- 41			Li	1	1	1.						
-		15			Li	1	1)_ is			
3	tera	reit	5_1	:-	Li -	1	1)			
3	lena				L: -	1	1							
3	= 41	tier	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	[; - -	1	to	10	10	1.0	1.0	10	10	10
3.	tena /g		1	2-	[; - !]	*	1	10	10	10	10	10	10	
3	= 41		1 1	2		*	to	1500	370					10
9.	= 41		1 1		[:	*	to	10	10	10	10	10	16	10
3.	= 41		1 1	;-		*	10 10 10	10	10	10	10	10	10	10
3.	= 41	1 1	1 1			*	10 10 10	10	10 10 50	10	10 10	10	10	10 10 10 10
3.	= 41	1 1	1 1	:		*	10 10 10 10 50	10 10 10 50 50	10 10 50 50	10 10 50 50	10 10 30	10	10	10 10 10 10 10
3.	= 41	1 1	1 1	1-2		*	10 10 10 10 50	10 10 10 50	10 10 50	10	10 10	10 10 50 50	10 5 5	10 10 10 10

9	1000	Marie Contract	Sec.	-	UNIX MAGE	mak	will	10 C	1	ula -	W	
2		Sim	i law	4 7	he m	April .	-14	im				
		ob its	-enl	to	the r	nent	posi	100				
		Shap			ind	mulas	m- h	olse		_		
		new	-wie	se s	we.	***						
										. 7		
E		,			la.	10	10_	10	7.033	10	-	
			10	10	10	10	10 -	10	10			
		7	10	10	10	1.0	110-		10			
-	11	1 '	10	10	10_	10	_10		10	V V V V V V V V V V V V V V V V V V V	-	
-	91	1 1	10	50	50	50	50	50		50	-	
1	L	1 1	50	50	50	50	50	THE COURT		90		
1			50	50	50	50	50		The same of	50		
			50	90	50	50	50	50_	50	201		-
-			-			1 1						
		=> 1	×10	+ 1	×10 =	- 1×	10 +	17	10 +	IXI	1	
							_	_	_		-	
			+1×	10	+ 17	50 -	+ 10	× 50) +	1×51	2	
-	310	1100		1 0	1	61	1			3	_	
4	- 00	and the same	11		0.1	01	2.			100		
1		=>	23.	83	26 32	011				1		
14					11 15	91						
1		Blmila					alves	con	n she			-
-	an:	Co	divide	nteel.	3 64	100						-
1	-5	The M	could	- 97	- conv	ralvin	of the	se +	mag	e Wi	th_	-
2	100	the	3×	3 0	were	ging	Ino	sk_	a			
3-		-	-			1 1						
	horas	10	3	10	10	10	10	10	10	10	1	
K.		10	000	10	10	10	10	10	10	10		-
1		10		10	10	10	10	10			-	
		23-		8.83	23-33	28-33	a briefly and		10	10	1	
-	IEI	36-	5 8	36-6	36-6	36-6	36-6	36.6			District Co.	
-		50		50	50	50	50	10000				
-		50		50	50	50	50	50	50	50	-	
-	187	50		50	50	50	-	50	50	50		
-		-			30	30	20	50	50	50	-	1

Low Pass Averaging Filter

 Low frequency regions remain unchanged while sharp edges become blur.

 Grey level transition from 10 to 50 reduces to 10 -23.33 -36.6-50 blurring effect.

Low Pass Averaging Filter

- Limitations of Averaging Filter
- 1. Averaging operation **leads to the blurring** of an image. Blurring affects feature localisation.
- 2. If the averaging operation is applied to an image corrupted by impulse noise then the impulse noise is attenuated and diffused but not removed.
- 3. A single pixel with unrepresentative value can affect the mean value of the centre pixel.

Impulse Noise

Low Pass Averaging Filter

Fig. 5.33 Results of spatial domain filters

Weighted Average Filter

The mask of a weighted average filter is given by

 the pixels nearest to the centre are weighted more than the distant pixels

Weighted Average Filter

 In the mask the pixel at the center of the mask is multiplied by a higher value than any other, thus giving this pixel more importance in the calculation of the average.

Median Filter

- Median filters are statistical non linear filters in spatial domain.
- Median filter smoothens the image by utilising the median of the neighbourhood.
- Steps performed by median filter to find each pixel value in processed image:
 - All pixels in the neighbourhood of the pixel in the original image which are identified by the mask are sorted in the ascending (or) descending order.
 - 2. The median of the sorted value is computed and is chosen as the pixel value for the processed image.

Median Filter

Example 5.5 Compute the median value of the marked pixel shown in Fig. 5.40 using a 3×3 mask.

$$\begin{bmatrix}
1 & 5 & 7 \\
2 & 4 & 6 \\
3 & 2 & 1
\end{bmatrix}$$

Fig. 5.40 Data for Example 5.5

Step 1 First, the pixel values are arranged in ascending order as follows:

Step 2 The median value of the ordered pixel is computed as follows:

The median value is computed to be 3. Then, the original pixel value of 4 will be replaced by the computed median value of 3.

$$\begin{bmatrix} 1 & 5 & 7 \\ 2 & 4 & 6 \\ 3 & 2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 5 & 7 \\ 2 & 3 & 6 \\ 3 & 2 & 1 \end{bmatrix}$$

Original image data

After median filtering

Example 5.6 Compute the median value of the marked pixels shown in Fig. 5.41 using a 3 × 3 mask.

Fig. 5.41 Input image

Step 1 To compute the median value of the marked pixel 128

Step Ia The eight neighbours of the marked pixel '128' are now arranged in ascending order as follows:

Step 1b The median value is computed as 24.

Step 2 To Compute the median value of the marked pixel 24

Step 2a Arrange the pixels in the neighbourhood (shown by dotted lines) in the ascending order.

After arranging the pixels in the neighbourhood in the ascending order, the values are displayed as follows:

19 22 24 25 31 32 33 128 174

Step 2b The median value is computed to be 31.

Step 3 To compute the median value of the marked pixel 172

Step 3a Arrange the pixels in the neighbourhood of 172 in the ascending order.

After arranging the pixel values in the neighbourhood in the ascending order, we have 24 25 26 28 31 32 32 33 172

Step 3b The median value is computed as 31.

Step 4 To compute the median value of the marked pixel 26

Step 4a Arrange the pixels in the neighbourhood of 26 in the ascending order:

After arranging the pixel values in the neighbourhood in the ascending order, we have 23 24 25 26 26 28 31 32 172

Step 4b The median value is computed as 26.

The original pixel values and the values replaced by their median are shown side by side below:

$$\begin{bmatrix} 18 & 22 & 33 & 25 & 32 & 24 \\ 34 & 128 & 24 & 172 & 26 & 23 \\ 22 & 19 & 32 & 31 & 28 & 26 \end{bmatrix} \longrightarrow \begin{bmatrix} 18 & 22 & 33 & 25 & 32 & 24 \\ 34 & 24 & 31 & 31 & 26 & 23 \\ 22 & 19 & 32 & 31 & 28 & 26 \end{bmatrix}$$

Original pixel value

Median value

Median Filter

- When we take the median value, the pixel values which are very different from their neighbouring pixels are replaced by a value equal to the neighbouring pixel value.
- median filter is capable of reducing salt-and-pepper noise.
- A median filter is an effective tool to minimise salt-and-pepper noise.

Original image Salt and pepper noise 3×3 smoothing 5×5 smoothing

Fig. 5.43 Output of the box and median-filtered image

Comparison Between Filters:

Parameters	Average Filter	Weighted Filter	Median Filter		
Noise Reduction	Reduces Noise but it introduces blurring effect at edges.	Blurring effect is less as compared with Average filter	Blurring effect is less as compared with Average filter		
Percentage of noise Reduction	100% noise Not Reduced	100% noise Not Reduced	Almost 100% noise reduced.		
Size of Filter	As we increase the size of the filter mask, Noise reduces but blurring effect increases.	As we increase the size of the filter mask, Noise reduces but blurring effect increases.	As we increase the size of the filter mask, 100% of Noise reduces but blurring effect at edges increases.		
Mask	1/9x[1,1,1;1,1,1;1,1,1]	1/16x[1,2,1;2,4,4;1,2,1]	Pixel value is replaced by median value of neighborhood.		
MATLAB Function	filter2(mask,Noisy_img)	filter2(mask,Noisy_img)	medfilt2(Noisy_img,[3 3])		

Highpass Filtering

- High pass filtering eliminates the low frequency regions while retaining or enhancing the high frequency components.
- High pass image will have no background as it's a low frequency region.
- The main aim of image sharpening is to highlight fine details in the image.
- Image sharpening is used to enhance the high-frequency components.

Highpass Filtering

The spatial mask which performs image sharpening is given as
$$\frac{1}{9} \times \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Highpass Filtering

 Sum of coefficients of high pass mask has to be zero to eliminate the low frequency regions.

High poes Mack 1/9 -1 -1 -1 -1 -1 -1 -1 -1

	0	0	b	0	0	0	D	0 7	Ī
	0	0	0	0	0	Ø	o	0:	
	0	0	0	0	0	0	0	0	
	-240	-240	-240	-240	-220	-290	-270	-24	
	270	240	240	240	2=0	240	290	270	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	U	U	0	
	0	0	0	0	0	0	0.	0	
ŕ	L			100.00				- 44	

y fixel values cannot be negative. They amongo start with zero. Consider our negative values as zero.

2) The values of the original image at the edge are very lange and there is a tendency of them going out of themes are do center veight of T8.

You so simply scaling factor.

tinal result using mask & One

High-boost Filtering

- High-boost filter is also known as a high-frequency emphasis filter.
- A high-boost filter is used to retain some of the low-frequency components(background) to aid in the interpretation of an image.
- In high-boost filtering, the input image f(m, n) is multiplied by an amplification factor A before subtracting the low-pass image.

High-boost Filtering

- High pass filter gets rid of the complete background.
- Thus, the high-boost filter expression becomes
 A is amplification factor

high boost =
$$(A-1)\times f(m,n)$$
 + high pass

HBF Mask

A or K amplification factor

The HBF mask is given by,

w = 1/9	-1	-1	-1
	-1	9k-1	-1
	-1	-1	-1

Zooming

- When an image has fine details, it may not be possible to examine the detail easily in a standard display on a monitor.
- zooming operation helps to view fine details in the image.
- Zooming is equivalent to holding a magnifying glass in front of the screen.
- The simplest zooming operation is through 'replication' of pixels.

Fig. 5.73 Zooming illustration

Zoomed image

Zooming factor is 2

Fig. 5.75 Output of zooming operation

 Histogram of images provides global description of the appearance of an image.

 Histogram of an image represents the relative frequency of occurrence of the various grey levels in an image.

Two methods of plotting histogram.

- Histogram plotted in the second method is normalised histogram.
- Maximum value to be plotted will be 1.
- Normalised histogram provides clear information about the image.

Linear Stretching

 Histogram stretching is one way to increase dynamic range of the image.

• Here the basic shape of the histogram is not altered, instead the histogram is spread to cover the entire dynamic range.

$$s = T(r) = \frac{s_{max} - s_{min}}{r_{max} - r_{min}} (r - r_{min}) + s_{min}$$

 $s_{max} \rightarrow Maximum$ grey level of output image $s_{min} \rightarrow Minimum$ grey level of output image $r_{max} \rightarrow Maximum$ grey level of input image $r_{min} \rightarrow Minimum$ grey level of input image

Histogram Equalization

 Equalisation is a process that attempts to spread out the gray levels in an image so that they are evenly distributed across their range.

• Histogram equalisation reassigns the brightness values of pixels based on the image histogram.

 Histogram equalisation is a technique where the histogram of the resultant image is as flat as possible.

Histogram Equalization

 Histogram equalisation provides more visually pleasing results across a wider range of images.

(c) Procedure to Perform Histogram Equalisation

Histogram equalisation is done by performing the following steps:

- 1. Find the running sum of the histogram values.
- 2. Normalise the values from Step (1) by dividing by the total number of pixels.
- 3. Multiply the values from Step (2) by the maximum gray-level value and round.
- 4. Map the gray level values to the results from Step (3) using a one-to-one correspondence.

Solution The maximum value is found to be 5. We need a minimum of 3 bits to represent the number. There are eight possible gray levels from 0 to 7. The histogram of the input image is given below:

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0

Step 1 Compute the running sum of histogram values.

The running sum of histogram values is otherwise known as cumulative frequency distribution.

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0
Running sum	0	0	0	6	20	25	25	25

Step 2 Divide the running sum obtained in Step 1 by the total number of pixels. In this case, the total number of pixels is 25.

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0
Running sum	0	0	0	6	20	25	25	25
Running Sum/Total number of pixels	0/25	0/25	0/25	6/25	20/25	25/25	25/25	25/25

Step 3 Multiply the result obtained in Step 2 by the maximum gray-level value, which is 7 in this case.

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0
Running Sum	0	0	0	6	20	25	25	25
Running sum / Total number of pixels	0/25	0/25	0/25	6/25	20/25	25/25	25/25	25/25
Multiply the above result by maximum gray level	$\frac{0}{25} * 7$	$\frac{0}{25} * 7$	$\frac{0}{25} * 7$	6/25 * 7	$\frac{20}{25} * 7$	$\frac{25}{25} * 7$	$\frac{25}{25} * 7$	$\frac{25}{25} * 7$

The result is then rounded to the closest integer to get the following table:

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0
Running Sum	0	0	0	6	20	25	25	25
Running Sum/Total number of pixels	0/25	0/25	0/25	6/25	20/25	25/25	25/25	25/25
Multiply the above result by maximum gray level	0	0	0	2	6	7	7	7

Step 4 Mapping of gray level by a one-to-one correspondence:

Original gray level	Histogram equalised values
0	0
1	0
2	0
3	2
4	6
5	7
6	7
7	7

The original image and the histogram equalised image are shown side by side.

Original image

Histogram equalised image

Fig. 5.11 Results of histogram equalisation