This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT γ

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERIOR DIVIDINAL APPLICATION PUBLICATION FOR UNA THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Chassification:
C12N 15/12, C07K 14/705,
C12N 5/10

A2 (11) Maternas gal Publication Number:

WO 00/05367

2N 15/12, C07K 14/705, (43) International Publication Date:

03 February 2000 (03.02.2000)

(21) International Application Number:

PCT/JP99/03929

(22) International Filing Date:

22 July 1999 (22.07.1999)

Published

(30) Priority Data:

10/208820 24 July 1998 (24.07.1998) JP 10/224105 07 August 1998 (07.08.1998) JP 10/238116 25 August 1998 (25.08.1998) JP 10/254736 09 September 1998 (09.09.1998) JP 10/275505 29 September 1998 (29.09.1998) JP

(60) Parent Application or Grant

SAGAMI CHEMICAL RESEARCH CENTER [/];
(). PROTEGENE INC. [/]; (). KATO, Seishi [/]; (). KLMURA, Tomoko [/]; (). KATO, Seishi [/]; (). KIMURA, Tomoko [/]; (). AOYAMA, Tamotsu; ().

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(54) Titre: PROTEINES HUMAINES A DOMAINES HYDROPHOBES ET ADN CODANT POUR CES PROTEINES

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs.

(57) Abrégé

L'invention concerne des protéines humaines à domaines hydrophobes, des ADN codant pour ces protéines, et des vecteurs d'expression pour ces ADN, ainsi que des cellules eucaryotes exprimant ces ADN.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)						
(51) International Patent Classification 6:		(11) International Publication Number: WO 00/05367				
C12N 15/12, C07K 14/705, C12N 5/10	A2	(43) International Publication Date: 3 February 2000 (03.02.00				
(21) International Application Number: PCT/JP (22) International Filing Date: 22 July 1999 (IMP Building, 3–7, Shiromi 1–choine, Chuo-ku, Osaka-sh				
(30) Priority Data: 10/208820 24 July 1998 (24.07.98) 10/224105 7 August 1998 (07.08.98) 10/238116 25 August 1998 (25.08.98) 10/254736 9 September 1998 (09.09.98 10/275505 29 September 1998 (29.09.98 (71) Applicants (for all designated States except US): CHEMICAL RESEARCH CENTER [JP/JF] Nishi-Ohnuma 4-chome, Sagamihara-shi, I 229-0012 (JP). PROTEGENE INC. [JP/JP]: Naka-cho, Meguro-ku, Tokyo 153-0065 (JP). (72) Inventors; and (75) Inventors; Applicants (for US only): KATO, Seish 3-46-50, Wakamatsu, Sagamihara-shi, J 229-0014 (JP). KIMURA, Tomoko [JP/JP]: 302 Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa (JP).	SAGA! P]; 4 Kanaga 2-20- ti [JP/Ji Kanaga	ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAl patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MI, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.				
(54) Title: HUMAN PROTEINS HAVING HYDROPHO (57) Abstract		OMAINS AND DNAS ENCODING THESE PROTEINS ophobic domains, DNAs coding for these proteins, and expression vectors.				
for these DNAs as well as eucaryotic cells expressing the						
İ						
		·				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Amenia	FI	Pintand	LT	Lithuanin	SK	Skovakia
AT	Austria -	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	1.V	f.atvia	SZ	Swaziland
AZ	Azerbaijan	CB	United Kingdom	MC	Monaco	TO.	Chad
BA	Bosnia and Herzegovina	GE	Cicorgia	MD	Republic of Maldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BP	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and To
BJ	Benia	IE	freland	MN	Mongo ia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Delarus	18	Iceland	MW	Malawi	US	United States of
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Conga	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KC	Kyrgyzstan	NO	Norway	7.W	Zimbahwe
Ci	Côte d'Ivoire	КР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian l'ederation		
DE	Germany	L.I	Liechtenstein	SD	Sudan		
DK	Denmark .	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Description

L

DESCRIPTION

10

15

25

35

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells into which these genes are introduced to express secretory proteins and membrane proteins in large amounts can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there are

55

hidden potentialities as medicines. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents, etc. have been currently employed as medicines. In addition, secretory proteins other than those described above have been undergoing clinical trials to develop as pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. in the material transportation and the information transmission through the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes for many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hitherto-cryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification from human cells, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises introduction of a cDNA library into eucaryotic cells to express cDNAs and then screening of the cells secreting, or expressing on the surface of membrane,

the objective active protein. However, this method is applicable only to cloning of a gene for a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, this domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding a secretory protein and a membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domain(s) in the amino acid sequence of the protein encoded by this cDNA.

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as transformed eucaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01550.

Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02593.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10195.

Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10423. 10 Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10506. Fig. 6 illustrates the hydrophobicity/hydrophilicity 15 profile of the protein encoded by clone HP10507. Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10548. Fig. 8 illustrates the hydrophobicity/hydrophilicity 20 profile of the protein encoded by clone HP10566. 10 Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10567. Fig. 10 illustrates the hydrophobicity/hydrophilicity 25 profile of the protein encoded by clone HP10568. Fig. 11 illustrates the hydrophobicity/hydrophilicity 15 profile of the protein encoded by clone HP01426. 30 Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02515. Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02575. 20 35 Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10357. Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10447. 40 Fig. 16 illustrates the hydrophobicity/hydrophilicity 25 profile of the protein encoded by clone HP10477. Fig. 17 illustrates the hydrophobicity/hydrophilicity 45 profile of the protein encoded by clone HP10513. Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10540. Fig. 19 illustrates the hydrophobicity/hydrophilicity

profile of the protein encoded by clone HP10557.

5

Fig. 35 illustrates the hydrophobicity/hydrophilicity

profile of the protein encoded by clone HP10031.

Fig. 20 illustrates the hydrophobicity/hydrophilicity 10 profile of the protein encoded by clone HP10563. Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01467. 5 Fig. 22 illustrates the hydrophobicity/hydrophilicity 15 profile of the protein encoded by clone HP01956. Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02545. Fig. 24 illustrates the hydrophobicity/hydrophilicity 20 profile of the protein encoded by clone HP02551. 10 Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631. Fig. 26 illustrates the hydrophobicity/hydrophilicity 25 profile of the protein encoded by clone HP02632. 15 Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10488. 30 Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10538. Fig. 29 illustrates the hydrophobicity/hydrophilicity 20 profile of the protein encoded by clone HP10542. 35 Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10571. Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01470. 40 25 Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02419. Fig. 33 illustrates the hydrophobicity/hydrophilicity 45 profile of the protein encoded by clone KP02631. Fig. 34 illustrates the hydrophobicity/hydrophilicity 30 profile of the protein encoded by clone HP02695.

3		6						
		Fig. 36 illustrates the hydrophobicity/hydrophilicity						
10		profile of the protein encoded by clone HP10530.						
		Fig. 37 illustrates the hydrophobicity/hydrophilicity						
		profile of the protein encoded by clone HP10541.						
	5	Fig. 38 illustrates the hydrophobicity/hydrophilicity						
15		profile of the protein encoded by clone HP10550.						
		Fig. 39 illustrates the hydrophobicity/hydrophilicity						
		profile of the protein encoded by clone HP10590.						
20		Fig. 40 illustrates the hydrophobicity/hydrophilicity						
	10	profile of the protein encoded by clone HP10591.						
		Fig. 41 illustrates the hydrophobicity/hydrophilicity						
		profile of the protein encoded by clone HP01462.						
25		Fig. 42 illustrates the hydrophobicity/hydrophilicity						
		profile of the protein encoded by clone HP02485.						
	15	Fig. 43 illustrates the hydrophobicity/hydrophilicit						
		profile of the protein encoded by clone HP02798.						
30		Fig. 44 illustrates the hydrophobicity/hydrophilicit						
		profile of the protein encoded by clone HP10041.						
		Fig. 45 illustrates the hydrophobicity/hydrophilicit						
35	20	profile of the protein encoded by clone HP10246.						
		Fig. 46 illustrates the hydrophobicity/hydrophilicity						
		profile of the protein encoded by clone HP10392.						
		Fig. 47 illustrates the hydrophobicity/hydrophilicit						
40		profile of the protein encoded by clone HP10489.						
	25	Fig. 48 illustrates the hydrophobicity/hydrophilicit						
		profile of the protein encoded by clone HP10519.						
		Fig. 49 illustrates the hydrophobicity/hydrophilicit						
45		profile of the protein encoded by clone HP10531.						
		Fig. 50 illustrates the hydrophobicity/hydrophilicit						
	30	profile of the protein encoded by clone HP10574.						

SUMMARY OF THE INVENTION

As the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human fulllength cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins having hydrophobic domains, namely comprising any of the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs comprising any of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformed eucaryotic cells that are capable of expressing these DNAs and of producing the abovementioned proteins.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, among which the method for production with the recombinant DNA technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of the cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, introduction of the translated region into a suitable expression vector

10

15

20

25

30

35

40

45

50

5

10

15

20

25

10

15

20

25

35

40

45

50

55

10

15

20

25

30

by the method known in the art leads to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case where one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translated region of this cDNA is introduced into a vector having an RNA polymerase promoter, followed by addition of the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a germ extract, containing RNA polymerase wheat an corresponding to the promoter. RNA polymerase promoters are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Furthermore, the protein of the present invention can be expressed as the secreted form or the form incorporated into the microsome membrane, when a canine pancreas microsome or the like is added to the reaction system.

In the case where one of the protein of the present invention is produced by expressing the DNA in a microorganism such as *Escherichia coli* etc., a recombinant expression vector bearing the translated region of the cDNA of the present invention is constructed in an expression vector having an origin which can be replicated in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator etc. and, after transformation of the host cells with this expression vector, the resulting transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the

15

20

25

30

5

10

15

20

25

30

35

40

4.5

50

microorganism. In this case, a protein fragment containing any region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind the selected translated region. Alternatively, a fusion protein with another protein can be expressed. Only the portion of the protein encoded by this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system, and so on.

In the case where one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a secretory protein or as a membrane protein on the cellmembrane surface, when the translated region of this cDNA is introduced into an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) addition site, etc., followed by introduction into the eucaryotic cells. The expression vector is exemplified by pKAl, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian cultured cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus occytes, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eucaryotic cells by methods known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is

expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (5 amino acid residues or more) containing any partial amino acid sequence in the amino acid sequences represented by SEQ ID Nos. 1. to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins, after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP 8-187100 A]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall come within the

55

10

20

25

30

35

40

45

50

10

15

20

25

scope of the present invention.

5

10

15

20

25

30

35

40

45

50

55

10

15

20

30

The DNAs of the present invention include all the DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. These cDNAs are synthesized by using as templates poly(A)* RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotides which hybridize with both termini of the objective cDNA fragment, followed by the usage of these oligonucleotides as the primers for the RT-PCR method using an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by

comprising either of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from 15 which the cDNA was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

20

10

25

30

35

40

45

Table 1							
SEQ ID No.	HP number	Cells	Base	Number of amino acid residues			
1, 11, 21	HP01550	Stomach cancer	510	125			
2, 12, 22	HP02593	Saos-2	697	131			
3, 13, 23	HP10195	HT-1080	1619	242			
4, 14, 24	HIP10423	U-2 OS	1066	264			
5, 15, 25	HP10506	Stomach cancer	618	112			
6, 16, 26	нъ 10507	Stomach cancer	1021	146			
7, 17, 27	HP10548	Stomach cancer	1432	344			
8, 18, 28	HIP10566	Stomach cancer	601	97			
9, 19, 29	HIP 10567	Stomach cancer	585	124			
10, 20, 30	HP10568	Stomach cancer	1100	327			
31, 41, 51	HP01426	Stomach cancer	1065	313			
32, 42, 52	нР02515	Saos-2	937	229			
33, 43, 53	HP02575	Saos-2	1678	467			
34, 44, 54	HP10357	Stomach cancer	467	99			
35, 45, 55	HP10447	Liver	875	189			
36, 46, 56	HP10477	Liver	1256	363			
37, 47, 57	HP10513	Stomach cancer	884	249			
38, 48, 58	HP10540	Saos-2	589	98			
39, 49, 59	HP10557	Stomach cancer	673	172			
40, 50, 60	HTP10563	Saos-2	1425	120			
61, 71, 81	HP01467	HT-1080	1436	307			
62, 72, 82	HP01956	Liver	997	183			
63, 73, 83	HP02545	Saos-2	1753	327			
64, 74, 84	HP02551	Saos-2	1117	223			
65, 75, 85	HP02631	Saos-2	1380	48			
66, 76, 86	HP02632	HT-1080	1503	371			
67, 77, 87	HP10488	Liver	733	90			
68, 78, 88	HP10538	Saos-2	3768	499			
69, 79, 89	HP10542	Stomach cancer	770	106			
70, 80, 90	HP10571	Stomach cancer	1229	152			

91, 101, 111	HP01470	Stomach cancer	1619	358
92, 102, 112	HP02419	Stomach cancer	2054	226
93, 103, 113	HP02631	Saos-2	1380	195
94, 104, 114	HP02695	Stomach cancer	1292	339
95, 105, 115	HP10031	Saos-2	2168	487
96, 106, 116	HP10530	Saos-2	1357	393
97, 107, 117	HP10541	Stomach cancer	711	196
98, 108, 118	HP10550	Stomach cancer	651	-107
99, 109, 119	HP10590	HT-1080	1310	350
100, 110, 120	HP10591	HT-1080	1400	107
121, 131, 141	HP01462	HT-1080	2050	483
122, 132, 142	HP02485	Stomach cancer	2746	- 334
123, 133, 143	HIP02799	HT-1080	1136	267
124, 134, 144	HP10041	Saos-2	619	106
125, 135, 145	HP10246	кв	864	224
126, 136, 146	HP10392	U-2 OS	1527	258
127, 137, 147	HP10489	Stomach cancer	659	110
128, 138, 148	HP10519	Stomach cancer	710	91
129, 139, 149	HP10531	Saos-2	2182	344
130, 140, 150	HP10574	Stomach cancer	2773	428

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are inserted, deleted and/or substituted with other nucleotides in SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and

131 to 150 shall come within the scope of the present invention.

In a similar manner, any protein in which one or plural amino acids are inserted, deleted and/or substituted with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

The cDNAs of the present invention include cDNA fragments (10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

20

25

30

35

40

45

55

10

15

20

25

30

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be

administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current . Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon 7, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp.

50

5

10

15

20

25

30

35

40

45

5

10

15

20

25

20

6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HTV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp.

55

10

15

20

25

30

35

40

45

50

10

15 .

20

25

5

10

15

20

25

30

5

10

15

20

25

30

35

40

45

50

55

and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host disease gravis, inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. in which immune suppression is desired conditions, (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. in tissue transplants, rejection of the Typically, transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the without transmitting the corresponding immune cells costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking To achieve sufficient immunosuppression or

55

5

10

20

25

30

35

40

45

5

10

15

20

25

,

10

20

25

tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

10

10

1

30

35

25

40

45

50

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating

autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

15

20

25

30

35

40

45

55

10

15

20

25

30

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

25

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. sarcoma, melanoma, lymphoma, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and , microglobulin protein or an MHC class

15

20

25

30

26

chain protein and an MHC class II chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the Optionally, a gene encoding an transfected tumor cell. antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or cytotoxicity include, without limitation, those described Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

55

10

15

20

25

30

35

40

45

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Thl/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965,

1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

10

15

20

25

30

5

10

15

20

25

30

35

40

45

50

55

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation myeloid cells such as granulocytes monocytes/macrophages (i.e., traditional CSF useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes consequently of platelets thereby allowing prevention or treatment of various platelet disorders such thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without aplastic anemia and paroxysmal nocturnal limitation, hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or (i.e., in conjunction with bone transplantation or with peripheral progenitor transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece. I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

in repairing defects to tendon or ligament tissue. tendon/ligament-like tissue formation composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

55

10

15

20

25

30

35

40

45

10

20

25

and cerebrovascular diseases such as 10 Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention. Proteins of the invention may also be useful to promote 5 15 better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like. 20 It is expected that a protein of the present invention 10 may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, 25 pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects 30 may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity. 20 A protein of the present invention may also be useful 35 for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage. A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues 25 described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

55

45

34

5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of family, may be useful as a contraceptive based the inhibin on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

50

10

15

20

25

30

35

40

45

10

15

20

25

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30

without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. protein of the present invention (including, without limitation, fragments of receptors and ligands) themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22),

38

Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the promoting inflammatory process, inhibiting or extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, hyperacute complement-mediated rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A

55

5

10

15

20

25

30

35

40

45

50

10

15

20

25

protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body size or shape (such as, for example, augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of

55

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic operations with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the manufacturer's instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO97/33993), the cDNA library of osteosarcoma cell line U-2 OS (WO98/21328), the cDNA library of epidermoid

10

15

20

25

30

35

40

45

50

10

15

20

25

30

carcinoma cell line KB (WO98/11217), the cDNA library of tissues of stomach cancer delivered by the operation (WO98/21328), the cDNA library of liver tissue delivered by the operation (WO98/21328), and were used for the CDNA libraries. Full-length cDNA clones were selected from respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank . consisting of the full-length CDNA clones. hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. Any clone that has a hydrophobic region being putative as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_nT rabbit reticulocyte lysate kit (Promega). In this case, [^{13}S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_nT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to the kit), 2 μ l of an amino acid mixture (without methionine), 2 μ l of [^{13}S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried

out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

Escherichia coli cells bearing the expression vector for the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing $100~\mu\text{g/ml}$ of ampicillin, the helper phage M13K07 ($50~\mu$ l) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in $100~\mu\text{l}$ of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf serum. Into a 6-well plate (Nunc, well diameter: 3 cm) were inoculated with 1 x 10 5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Trishydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of

43

TRANSFECTAMTM (IBF) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO₂. After the culture medium was replaced by a culture medium containing [¹⁵S]cystine or [¹⁵S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture medium fraction and the cell-membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples

10

15

20

25

35

40

45

50

55

10

15

20

25

30

<HP01550> (SEQ ID Nos. 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP01550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 125 amino acid residues and there existed one putative transmembrane domain. Figure 1 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 15 kDa that was almost identical with the molecular weight of 13,825 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein F45G2.c (GenBank Accession No. Z93382). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C.

elegans hypothetical protein F45G2.c (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region.

Table 2

20

25

30

10

15

35

40

45

50

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA338859) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02593> (SEQ ID Nos. 2, 12, and 22)

Determination of the whole base sequence of the cDNA insert of clone HP02593 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 103-bp 5'-untranslated region, a 396-bp ORF,

and a 198-bp 3'-untranslated region. The ORF codes for a protein consisting of 131 amino acid residues and there existed four putative transmembrane domains at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to a human OB-R gene-related protein (EMBL Accession No. Y12670). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OB-R gene-related protein (OB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the entire region.

Table 3

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA306490) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

insert of clone HP10195 obtained from cDNA library of human fibrosarcoma HT-1080 revealed the structure consisting of a 286-bp 5'-untranslated region, a 729-bp ORF, and a 604-bp

3'-untranslated region. The ORF codes for a protein consisting of 242 amino acid residues and there existed one

putative transmembrane domain at the C-terminus. Figure 3

depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 32 kDa that was somewhat larger than the

molecular weight of 27,300 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the supernatant fraction and the

20

<HP10195> (SEQ ID Nos. 3, 13, and 23)
Determination of the whole base sequence of the cDNA

membrane fraction.

25

15

20

25

30

10

30

35

40

45

50

The search of the protein data base using the amino acid sequence of the present protein has revealed the registration of sequences that were similar to the Aplysia VAP-33 (SWISS-PROT Accession No. P53173). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Aplysia VAP-33 (AP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the

45

50

55

30

present invention, and an amino acid residue similar to that 10 of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region. 5 15 Table 4 HP MAKHEOILVLDPPTDLKFKGPPTDVVTTNLKLRNPSDRKVCPKVKTTAPRRYCVRPNSGI **.*** *.*.*.*.********************* 20 10 AP MASHEQALILEPAGELRFKGPFTDVVTADLKLSNPTDRRICFKVKTTAPKRYCVRPNSGI HP IDPGSTVTVSVMLQPFDYDPNEKSKHKFMVQTIFAPPNTSD-MEAVWKEAKPDELMDSKL ..**.************************ AP LEPKTSIAVAVMLQPFNYDPNEKNKHKPMVQSMYAPDHVVESQELLWKDAPPESLMDTKL 25 HP RCVFEMPNENDKLNDMEPSK-----AVPLNASKQDGPMPKP-HSVSLNDTE 15 *******.... . ..*. AP RCVFEMPDGSHQAPASDASRATDAGAHFSESALEDPTVASRKTETQSPKRVGAVGSAGED HP TRKLMEECKRLQGEMMKLSEENRHLRDEGLRLRKVAHSD--KPGSTSTASPRDNVTSPLP 30 ..** .* *. *.*. .*..*. ***.***** .* .*.. AP VKKLQHELKKAQSEITSLKGENSQLKDEGIRLRKVAMTDTVSPTPLNPSPAPAAAVRAFP 20 HP SLLVVIAAIPIGFFLGKFIL ... *.***..*..* 35 AP PVVYVVAAIILGLIIGKFLL 25 Furthermore, the search of the GenBank using the base 40 sequences of the present cDNA has revealed the registration

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA447905) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10423> (SEQ ID Nos. 4, 14, and 24)

Determination of the whole base sequence of the cDNA insert of clone HP10423 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure consisting of a 64-bp 5'-untranslated region, a 795-bp ORF, and a 207-bp 3'-untranslated region. The ORF codes for a protein consisting of 264 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was almost identical with the molecular weight of 29,377 predicted from the ORF. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D80116) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10506> (SEQ ID Nos. 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10506 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 53-bp 5'-untranslated region, a 339-bp ORF, and a 226-bp 3'-untranslated region. The ORF codes for a protein consisting of 112 amino acid residues and there existed one putative transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,821 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282544) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10507> (SEQ ID Nos. 6, 16, and 26)

Determination of the whole base sequence of the cDNA insert of clone HP10507 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 412-bp 5'-untranslated region, a 441-bp ORF, and a 168-bp 3'untranslated region. The ORF codes for a protein consisting of 146 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane at the C-terminus. Figure 6 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 16,347 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10548> (SEQ ID Nos. 7, 17, and 27)

Determination of the whole base sequence of the cDNA insert of clone RP10548 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 330-bp 5'-untranslated region, a 1035-bp ORF, and a 67-bp 3'-untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed four putative transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA143152) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10566> (SEQ ID Nos. 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10566 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 61-bp 5'-untranslated region, a 294-bp ORF, and a 246-bp 3'-untranslated region. The ORF codes for a protein consisting of 97 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 8 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,452 predicted from the ORF. When expressed in COS7 cells, an expression product of about 12 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W79821) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10567> (SEQ ID Nos. 9, 19, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10567 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 77-bp 5'-untranslated region, a 375-bp ORF, and a 133-bp 3'-untranslated region. The ORF codes for a protein consisting of 124 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 14,484 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA428475) in ESTs, but, since they

10

15

20

25

30

35

40

50

55

10

15

20

25

30

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5 <HP10568> (SEQ ID Nos. 10, 20, and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10568 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 56-bp 5'-untranslated region, a 984-bp ORF, and a 60-bp 3'untranslated region. The ORF codes for a protein consisting of 327 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 10 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36.5 kDa that was almost identical with the molecular weight of 34,326 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa which is considered to have a sugar chain being attached. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Leu-Thr at position 138 and Asn-Leu-Ser at position 206). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 24. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was similar to the human cell-surface A33 antigen

53 (SWISS-PROT Accession No. Q99795). Table 5 shows the comparison between amino acid sequences of the human protein 10 of the present invention (HP) and the human cell-surface A33 antigen (A3). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the 15 protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.0% in the N-terminal region of 243 residues. 20 10 Table 5 HP MAELPGPFLCGALLGFLCLSGLAVEVKVPTEPLSTPLGKTAELTCTYSTSVGDSFAL-EW 25 15 MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIOW HP SFVQPGKPISESHPILYFTNGHLYPTGSKSKRVSLLQNPPTVGVATLKLTDVHPSDTGTY 30 A3 DKLL--LTHTERVVIWPFSNKN-YIHGELYKNRVSISNNAEQSDASITIDQLTMADNGTY HP LCOVNNPPDPYTNGLGLINLTULVPPSNPLCSOSGOTSVGGSTALRCSSSEGAPKDVVNW 20 A3 ECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPQYSW 35 HP VRLGTFPTPSPGSMVQDEVSGQLILTNLSLTSSGTYRCVATNQMGSASCELTLSVTEPS-* ..* *.*.* ..** * *...*. *.. *.. *.. ** A3 KRYNILNQEQP--LAQPASGQPVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSM 25 HP -QGRVAGALIGVLLGVLLLSVAAFCLVRFQKERGKKPKETYGGSDLREDAIAPGISEHTC 40 . .* .**.* A3 NVALYVGIAVGVVAALIIIGIIIYCCCCRGKDDNTEDKEDARPNREAYEEPPEQLRELSR HP MRADSSKGFLERPSSASTVTTTKSKLPMVV 45 30 A3 EREEEDDYRQEEQRSTGRESPDHLDQ

> Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

55

10

15

20

25

30

5

10

15

20

25

30

35

40

45

50

of sequences that shared a homology of 90% or more (for example, Accession No. T24595) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01426> (SEQ ID Nos. 31, 41, and 51)

Determination of the whole base sequence of the cDNA insert of clone HP01426 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 1-bp 5'-untranslated region, a 942-bp ORF, and a 122-bp 3'untranslated region. The ORF codes for a protein consisting of 313 amino acid residues and there existed a putative Figure 11 depicts secretory signal. hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 34,955 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which Nglycosylation may occur (Asn-Ser-Ser at position 163). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from tryptophan at position 17. When expressed in COS7 cells, an expression product of about 39 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

protein was similar to the Xenopus laevis cortical granule lectin (EMBL Accession No. X82626). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the X. laevis cortical granule lectin (XL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the region other than the N-terminal region.

Table 6

25			<u> </u>			
		HP MNQ	LSFLLFLIATTRG	WSTDEANTYFKEWICSS	SPSLPRSCKEIKDEC	PSAFDGLYFLR
	15	*	**	* *,	*******.	.* **.* * .
		XL MLV	HILLLLVTGGLSQ	SCEPVVIVASKNMVKQLI	OCDKFRSCKEIKDSN	EEAQDGIYTLT:
30		HP ENG	VIYQTFCDMTSGG	GGWTLVASVHENDMRGK	CTVGDRWSSQQGSK#	DYPEGDGNWANT
		*	. *******	*********	**.*********	*******
		XL SDG	ISYQTFCDMTTNG	GGWTLVASVHENNMAGK(CTIGDRWSSQQGNRA	LDYPEGDGNWAN?
	20	HP NTF	GSAEAATSDDYKN	ipgyydiqakdlgiwhvpi	nkspmqhwrnssllf	(YRTDTGPLQTL
35		***	*********	*******	**.*. ******	*****.*
		XL NTF	GSAGGATSDDYKN	IPGYYD I E AYNLGVW HVPI	nktplsvw rnssl qf	(YRTTDGILFKH)
		HP HNL	FGI YQKYPVKYGE	GKCWTDNGPVIPVVYDF	GDAQKTASYYSPYG(REFTAGFVQFR
		**	**. *****	*.* .*.******.	*.*. ***.*** .	******
40	25	XL GNL	PSLYRIYPVKYGI	GSCSKDSGPTVPVVYDL	GSAKLTASFYSPDFF	(SQFTPGY I QFRI
		HP FNN	eraanalcagmrv	TGCNTEHHCIGGGGYFP	easp qq cgdf s gfd v	isgygthvgyss:
		.*.	*.** ***.**.		**.*.******.	****. *
		XL INT	EKAALALCPGMKM	iescnvehvci ggg gyfpi	eadpr o cgdfaayde	'ngygtkk p nsac
45		HP REI	TEAAVLLFYR			
	30	***	****			
		XL IET	TEAAVLLFYL			

56

10

15

10

15

20

25

30

10

15

20

25

30

35

40

45

50

55

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R06009) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02515> (SEQ ID Nos. 32, 42, and 52)

Determination of the whole base sequence of the cDNA insert of clone HP02515 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 176-bp 5'-untranslated region, a 690-bp ORF, and a 71-bp 3'-untranslated region. The ORF codes for a protein consisting of 229 amino acid residues and there existed a putative secretory signal at N-terminus and one putative transmembrane domain at the C-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 26,000 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 25.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from phenylalanine at position 28.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human T1/ST2 receptor binding protein (GenBank Accession No. U41804). Table 7 shows the

comparison between amino acid sequences of the human protein of the present invention (HP) and the human T1/ST2 receptor binding protein (T1). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 55.8% in the entire region.

Table 7

T1 AFEARDRNLQEGNLERVNFWSAVNVAVLLLVAVLQVCTLKRFFQDKRPVPT

40 25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA381943) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP02575> (SEQ ID Nos. 33, 43, and 53)

Determination of the whole base sequence of the cDNA insert of clone HP02575 obtained from cDNA library of human osteosarcome cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1404-bp ORF, and a 219-bp 3'-untranslated region. The ORF codes for a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 52 kDa that was almost identical with the molecular weight of 54,065 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 57 kDa which is considered to have a sugar chain being attached afetr secretion. In addition, there exist in the amino acid sequence of this protein three sites at which N-glycosylation may occur (Asn-Arg-Thr at position 171, Asn-Ser-Thr at position 239 and Asn-Asp-Thr at position 377). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from histidine at position 29. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -L-fucosidase (SWISS-PROT Accession No. P04066). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -L-fucosidase (FC). Therein,

5

10

15

20

25

35

40

45

the marks of -, *, and . represent a gap, an amino acid
residue identical with that of the protein of the present
invention, and an amino acid residue similar to that of the
protein of the present invention, respectively. The both
proteins shared a homology of 54.8% in the entire region.

Table 8

59

	${\tt HP\ MRPQELPRLAPPLLLLLLLLPPPPC-PAHSATRFDPTWESLDARQLPAWFDQAKFGIFI}$
10	.******.*** ** ***.*.******
	FC MRSRPAGPALLLLLLFLGAAESVRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVPI
	HP HWGVFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWAD
	*********, *******, ** * *, * **, ******
	FC HWGVFSVPAWGSEWFWWHWQGEGRPQYQRFMRDNYPPGFSYADFGPQFTARFFHPEEWAD
15	HP IFQASGAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGL
	.***.***.***.***.***
	FC LPQAAGAKYVVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKR-NIRYGL
	HP YYSLFEWFHPLFLEDESSSFHKROFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDOYWN
	*,**,*****,* *,* ,**,****,***,*,*,****, **
20	FC YHSLLEWPHPLYLLDKKNGFKTOHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPDTYWN
	HP STGFLAWLYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK

	FC STNFLSWLYNDSPVKDEVVVNDRWGONCSCHEGGYYNCEDKFKPOSLPDHKWEMCTSIDK
	HP LSWGYRREAGISDYLTIEELVKOLVETVSCGGNLLMNIGPTLDGTISVVFEERLROMGSW
95	
20	.******** *** *** *** *** **
	PC FSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTKDGLIVPIPQERLLAVGKW
	HP LKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGA
	*,,******* * *,.***** ******.**.* * *. * .,
	FC LSINGEAIYASKPWRVQWEKNTTSVWYTSKGSAVYAIFLHWPENGVLNLESPITT-ST
30	HP TEVKLLGHGQPLNWISLEQNGIMVELPQLTIHQMPCKWGWALALTNVI
	*** *.********
	FC TKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAVPAEFAWTIKLTGVK
	15

55

50

5

60

Furthermore th

5

10

15

20

25

30

35

40

45

50

55

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N28668) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10 <HP10357> (SEQ ID Nos. 34, 44, and 54)

Determination of the whole base sequence of the cDNA insert of clone HP10357 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 113-bp 5'-untranslated region, a 300-bp ORF, and a 54-bp 3'untranslated region. The ORF codes for a protein consisting of 99 amino acid residues and there existed two putative transmembrare domains. Figure 14 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 11 kDa that was almost identical with the molecular weight of 10,923 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA477156) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10447> (SEQ ID Nos. 35, 45, and 55)

Determination of the whole base sequence of the cDNA

insert of clone HP10447 obtained from cDNA library of human liver revealed the structure consisting of a 271-bp 5'-untranslated region, a 570-bp ORF, and a 34-bp 3'-untranslated region. The ORF codes for a protein consisting of 189 amino acid residues and there existed five putative transmembrare domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA296976) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10477> (SEQ ID Nos. 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10477 obtained from cDNA library of human liver revealed the structure consisting of a 149-bp 5'-untranslated region, a 1092-bp ORF, and a 15-bp 3'-untranslated region. The ORF codes for a protein consisting of 363 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,884 predicted from the ORF.

The search of the protein data base using the amino

15

20

25

30

35

40

45

acid sequence of the present protein revealed that the protein was similar to the human peptidoglycan recognition protein (GenBank Accession No. AF076483). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human peptidoglycan recognition protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 9

15 HP MVDSLLAVTLAGNLGLTFLRGSQTQSHPDLGTEGCWDQLSAPRTFTLLDPKASLLTKAFL HP NGALDGVILGDYLSRTPEPRPSLSHLLSQYYGAGVARDPGFRSNFRRQNGAALTSASILA HP QQVWGTLVLLQRLEPVHLQLQCMSQEQLAQVAANATKEFTEAFLGCPAIHPRCRWGAAPY MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALA-PG20 HP RGRPKLLQLPLGFLYVHHTYVPAPPCTDFTRCAANMRSMQRYHQDTQGWGDIGYSFVVGS PG SECAQHLSLPLRYVVVSHT--AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGE HP DGYVYEGRGWHWVGAHTLGH-NSRGFGVAIVGNYTAALPTEAALRTVRDTLPSCAVRAGL ** ******...***. *...*...*...*** , ,** .*.*... * .*.* .* 25 PG DGLVYEGRGWNFTGAHSGHLWNPMSIGISFMGNYMDRVPTPQAIRAAQGLL-ACGVAQGA HP LRPDYALLGHRQLVRTDCPGDALFDLLRTWPHFTATVKPRPARSVSKRSRREPPPRTLPA **,.*.* ***,. ** .**..*..*.. PG LRSNYVLKGHRDVQRTLSPGNQLYHLIQNWPHYRSP

30

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10513> (SEQ ID Nos. 37, 47, and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10513 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 134-bp 5'-untranslated region, a 750-bp ORF, and a 0-bp 3'-untranslated region. The ORF codes for a protein consisting of 249 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 27,373 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0512 (GenBank Accession No. AB011084). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0512 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.6% in the C-terminal region of 196 amino acid residues.

0		Table 10
•		HP MGGPRGAGWVAAGLLLGAGACYCIYRLTRGRRRG
5	5	KI RGRGRRPVAMQKRPFPYEIDEILGVRDLRKVLALLQKSDDPFIQQVALLTLSNNANYSCN
		HP DRELGIRSSKSAEDLTDGSYDDVLNAEQLQKLLYLLESTEDPVIIERALITLGNNAAFSV
		** . * * * * * * * * * * * * * * *
0	10	KI QETIRKLGGLPIIANMINKTDPHIKEKALMAMNNLSENYENQGRLQVYMNKVMDDIMASN
	10	HP NQAIIRELGGIPIVANKINHSNQSIKEKALNALMNLSVNVENQIKIKVQVLKLLLNLSEN

		KI LNSAVQVVGLKFLTNMTITNDYQHLLVNSIANFFRLLSQGGGKKVEILKILSNFAEN
.5		HP PAMTEGLLRAQVDSSFLSLYDSHVAKEILLRVLTLPQNIKNCLKIEGHLAVQPTFTEGSL
	15	KI PDMLKKLLSTOVPASFSSLYNSYVESEILINALTLFEIIYDNLRAEVFNYREFNKGSL
	10	HP FFL-LHGEECAOKIRALVDHHDABVKEKVVTIIPKI
		** * ****** ** ** ***** **
30		KI FYLCTTSGVCVKKIRALANHHDLLVKVKVIKLVNKP
	20	
	20	Furthermore, the search of the GenBank using the base
35		
		sequences of the present cDNA has revealed the registration
		of sequences that shared a homology of 90% or more (for
		example, Accession No. N92228) in ESTs, but, since they are
10	25	partial sequences, it can not be judged whether or not any
		of these sequences codes for the same protein as the protein
		of the present invention.
15		<hp10540> (SEQ ID Nos. 38, 48, and 58)</hp10540>
	30	Determination of the whole base sequence of the cDNA
		insert of clone HP10540 obtained from cDNA library of human
		osteosarcoma cell line Saos-2 revealed the structure

55

WO 00/05367

PCT/JP99/03929

consisting of a 47-bp 5'-untranslated region, a 297-bp ORF, and a 245-bp 3'-untranslated region. The ORF codes for a protein consisting of 98 amino acid residues and there existed two putative transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein CEF49C12.12 (GenBank Accession No. 268227). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CEF49C12.12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.1% in the entire region.

Table 11

25 HP M-ASLLCCGPKLAACGIVLSAWGVIMLIMLGIFFNVHSAVLIEDVPFTEKDFENGPQNIY

CE AKYNEKATOCWIAAGLYAVTLIAVFWQ---NKYNTAQIF

10

15

20

25

30

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA420715) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

20

25

15

<HP10557> (SEQ ID Nos. 39, 49, and 59)

35

30

40

45

50

Determination of the whole base sequence of the cDNA insert of clone HP10557 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 24-bp 5'-untranslated region, a 519-bp ORF, and a 130-bp 3'untranslated region. The ORF codes for a protein consisting of 172 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 32 kDa that was larger than the molecular weight of 18,844 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 39 kDa which is considered to have been subjected to some modification after secretion. In addition, there exist in the amino acid sequence of this protein no site at which Nglycosylation may occur. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 32. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the supernatant fraction and the membrane fraction.

MVGPAP

The search of the protein data base using the amino acid sequence of the present protein revealed that the 10 protein was similar to the human progesterone binding protein (EMBL Accession No. AJ002030). Table 12 shows the comparison between amino acid sequences of the human protein 15 of the present invention (HP) and the human progesterone binding protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid 20 residue similar to that of the protein of the present 10 invention, respectively. The both proteins shared a homology of 30.5% in the C-terminal region of 151 amino acid residues. 25 Table 12 15 HP 30 PG MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL HP RRRLRPLAALALVLALAPGLPTARAGQTPRPAERGPPV--RLFTEEELARYGGEEEDQPI 20 ** **.. *.. * *. *.* . *.* * 35 PG VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDG-SRNPRI HP YLAVKGVVPDVTSGKEFYGRGAPYNALTGKDSTRGVAKMSLDPADLTHDTTGLTAKELRA PG LLAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQ 25 HP LDEV--FTKVYKAKYPIVGYTARRILNEDGSPNLDFKPEDQPHFDIKDEF ...**.** .*. *.*. ...*. ... *... . *.. PG MESVREWEMQFKEKY---DYVG-RLLKPGEEPS-EYTDEEDTKDHNKQD

> Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

55

45

50

30

WO 00/05367 PCT/JP99/03929

example, Accession No. AA101709) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10563> (SEQ ID Nos. 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10563 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 126-bp 5'-untranslated region, a 363-bp ORF, and a 936-bp 3'-untranslated region. The ORF codes for a protein consisting of 120 amino acid residues and there existed two putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18.5 kDa that was larger than the molecular weight of 13,180 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein F27F23.15 (GenBank Accession No. AC003058). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the A. thaliana hypothetical protein F27F23.15 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.5% in the entire region.

Table 13 HP MMPSRTNLATGIPSSKVKYSRLSSTDDGYIDLQFKKTPPKIPYKAIALATVLFLIGAFLI *..* *. * *.*.**. *... * 5 ΑT MAYVDHAFSISDEDLMIGTSY-TVSNRPPVKEISLAVGLLVFGTLGI 15 HP IIGSLLLSGYISKGGADRAVPVLIIGILVFLPGFYHLRIAYYASKGYRGYSYDDIPDPDD AT VLGFFMAYNRVG-GDRGHGIFFIVLGCLLFIPGFYYTRIAYYAYKGYKGFSFSNIPSV 20 10 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration 25 of sequences that shared a homology of 90% or more (for example, Accession No. AA083574) in ESTs, but, since they 15 are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the 30 protein of the present invention. <HP01467> (SEQ ID Nos. 61, 71, and 81) 20 Determination of the whole base sequence of the cDNA 35 insert of clone HP01467 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 65-bp 5'-untranslated region, a 924-bp ORF, and a 447-bp 3'-untranslated region. The ORF codes for a 25 protein consisting of 307 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation

product of high molecular weight.

The search of the protein data base using the amino

55

50

acid sequence of the present protein revealed that the protein was similar to the rat Sec22 homologue (GenBank Accession No. U42209). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat Sec22 homologue (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 94.6% in the N-terminal region of 241 amino acid residues. The protein of the present invention was longer by 53 amino acids at the C-terminus than the rat Sec22 homologue.

15

Table 14

HP MSMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDRCTLKTGHYNI ************************** RN MSMILSASVVRVRDGLPLSASTDCEQSAGVQECRKYFKMLSRKLAOFPDRCTLKTGRHNI 20 HP NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIQ ******* RN NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNPIO HP RTKQRYNNPRSLSTKINLSDMQTEIKLRPPYQISMCELGSANGVTSAFSVDCKGAGKISS ************* 25 RN RTKQRYNNPRSLSTKINLSDMQMEIKLRPPYQIPMCELGSANGVTSAFSVDCKGAGKISS HP AHQRLEPATLSGIVGFILSLLCGALNLIRGFHAIESLLQSDGDDFNYIIAFFLGTAACLY ************************ RN AHQRLEPATLSGIVAFILSLLCGALNLIRGFHAIESLLQSDGEDFSYMIAFFLGTAACLY HP QCYLLVYYTGWRNVKSFLTFGLICLCNMYLYELRNLWQLFFHVTVGAPVTLQIWLRQAQG 30

RN QMICLCLQGRKERT

--

5

10

15

20

25

30

35

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA421925) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01956> (SEQ ID Nos. 62, 72, and 82)

Determination of the whole base sequence of the cDNA insert of clone HP01956 obtained from cDNA library of human liver revealed the structure consisting of a 86-bp 5'untranslated region, a 552-bp ORF, and a 359-bp 3'untranslated region. The ORF codes for a protein consisting of 183 amino acid residues and there existed one putative transmembrane domain. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 20.5 kDa that was almost identical with the molecular weight of 20,073 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the yeast hypothetical protein 21.5 kDa (SWISS-PROT Accession No. P53073). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the yeast hypothetical protein 21.5 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

10

15

20

25

30

35

40

45

50

10

15

20

25

of 34.3% in the C-terminal region of 108 amino acid residues. 10 Table 15 HP MTAQGGLVANRGRRPKWALELSGPGGGSRGRSDRGSGQGDSLYPVGYLDKQVPDTS 15 SC MSEQEPYEWAKHLLDTKYIEKYNIQNSNTLPSPPGFEGNSSKGNVTRKQQDATSQTTSLA HP VQETDRILVEKRCWDIALGPLKQIPMNLFIMYMAGNTISIFPTMMVCMMAWRPIQALMAI 20 10 SC QKNQITVLQVQKAWQIALQPAKSIPMNIFMSYMSGTSLQIIPIMTALMLLSGPIKAIFST HP SATFK--MLESSSQKFLQGLVYLIGNLMGLALAV-Y-KCQSMGLLPTHASDWLAFIEPPE SC RSAFKPVLGNKATQSQVQTAMPMYIVFQGVLMYIGYRKLNSMGLIPNAKGDWLPWERIAH 25 HP RMEFSGGGLLL 15 SC YNNGLQWFSD 30 Furthermore, the search of the GenBank using the base 20 sequences of the present cDNA has revealed the registration 35 of sequences that shared a homology of 90% or more (for example, Accession No. AA159753) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the 25 protein of the present invention. <HP02545> (SEQ ID Nos. 63, 73, and 83) Determination of the whole base sequence of the cDNA 45 insert of clone HP02545 obtained from cDNA library of human 30 osteosarcoma cell line Saos-2 revealed the structure

consisting of a 133-bp 5'-untranslated region, a 984-bp ORF, and a 636-bp 3'-untranslated region. The ORF codes for a

10

10

15

20

15

25

30

35

40

45

50

55

protein consisting of 327 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat embigin (EMBL Accession No. AJ009698). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat embigin (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 65.4% in the entire region.

Table 16

10 HP MRALPGLLEARARTPRLLLLQCLLAAARPSSADGSAPDSPFTSPPLREEIMAN--NFSLE RN MRSHTGLRALVAPGCSLLLL-YLLAATRPDRAVGDPADSAFTSLPVREEMMAKYANLSLE 15 HP SHNISLTEHSSMPVEKNITLERPSNVNLTCQFTTSGDLNAVNVTWKKDGEQLE--NNYLV RN TYNISLTEQTRVS-EQNITLERPSHLELECTFTATEDVMSMNVTWKKDDALLETTDGFNT HP SATGSTLYTQYRFTIINSKQMGSYSCFFREEKEQRGTFNFKVPELHGKNKPLISYVGDST 20 10 RN TKMGDTLYSQYRFTVFNSKQMGKYSCFLGEB--LRGTFNIRVPKVHGKNKPLITYVGDST HP VLTCKCQNCFPLNWTWYSSNGSVKVPVGVQM-NKYVINGTYANETKLKITQLLEEDGESY **,*,****,***** ***,..**,..*, .*. ***.*******,..****** 25 RN VLKCECONCLPLNWTWYMSNGTAOVPIDVHVNDKFDINGSYANETKLKVKHLLEEDGGSY 15 HP WCRALFQLGESEEHIELVVLSYLVPLKPFLVIVAEVILLVATILLCERYTQKKKKHSDEG RN WCRAAFPLGESEEHIKLVVLSFMVPLKPFLAIIAEVILLVAIILLCEVYTQKKKNDPDDG 30 HP KEFEQIEQLKSDDSNGIENNVPRHRKNESLGQ ****************** 20 RN KEFEQIEQLKSDDSNGIENNVPRYRKTDSGDQ 35

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA312629) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02551> (SEQ ID Nos. 64, 74, and 84)

25

30

45

50

55

Determination of the whole base sequence of the cDNA insert of clone ${\tt HP02551}$ obtained from cDNA library of human

osteosarcoma cell line Saos-2 revealed the consisting of a 61-bp 5'-untranslated region, a 672-bp ORF. and a 384-bp 3'-untranslated region. The ORF codes for a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 24,555 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 26 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 20.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FGF binding protein (GenBank Accession No. U49641). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FGF binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 21.2% in the entire region other than the N-terminal region. In particular, all the eight cysteine residues contained in the both proteins were conserved.

50

10

15

20

25

30

35

40

45

10

15

20

25

30

Table 17

10 HP MKFVPCLLLVTLSCLGTLGQAPRQKQGST ..**. . .* MM MRLHSLILLSPLLLATQAFSEKVRKRAKNAPHSTAEEGVEGSAPSLGKAQNKQRSRTSKS 15 HP GEEFHFQTGGRDSCTMRPSSLGQGAGEVWLRVDCRNTDQTYWCEYRGQPSMCQAFAADPK* ** *.*.* ...**.. * . *.*. * . * . MM LTHGKFVTKDQATC---RWAVTEEEQGISLKVQCTQADQEFSCVFAGDPTDCLKHDKD-Q HP SYWNQALQELRRLHHACQGA-PVLRPSVCREAGPQAHMQQVTSSLKGSPEPNQQPEAGTP 20 10 MM IYWKQVARTLRKQKNICRDAKSVLKTRVCRKRFPESNLKLVNPNARGNTKPRKEKAEVSA HP SLRPKATVKLTEATQLGKDSMEELGKAKPTTRPTAKPTQPGPRPGGNEEAKKKAWEHCWK *... .*. * . *. * *. .. .*.* * * . 25 MM REHNKVQEAVSTEPNRIKEDI-TLNPAATQTM-TIRDPECLEDPDVLNQ-RKTALEFCGE 15 HP PFQALCAFLISFFRG*.*..... MM SWSSICTFFLNMLQATSC 30 20 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration 35 of sequences that shared a homology of 90% or more (for example, Accession No. AA317400) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the 40 25 protein of the present invention. <HP02631> (SEQ ID Nos. 65, 75, and 85) 45 Determination of the whole base sequence of the cDNA 30 insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 147-bp ORF, 50

WO 00/05367 PCT/JP99/03929

. 5

and a 1191-bp 3'-untranslated region. The ORF codes for a protein consisting of 48 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa or less.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

•

<HP02632> (SEQ ID Nos. 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP02632 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 50-bp 5'-untranslated region, a 1116-bp ORF, and a 337-bp 3'-untranslated region. The ORF codes for a protein consisting of 371 amino acid residues and there existed eight putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein CELC2H12 (GenBank Accession No. U23169). Table 18 shows the comparison between amino acid sequences

10

15

20

25

30

35

78

of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELC2H12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.4% in the entire region.

Table 18

10

15

20

25

HP MAWTKYQLFLAGLMLVTGSINTLSAKWADNFMAEGCGGSKEHSFQHPFLQAVGMFLGEFS*.****.**..****...*. . .*.*****. **.** MVAFAVIISVMMVVTGSLNTICAKWADSIKAD-----GVPFNHPFLQATCMFFGEFL HP CLAAFYL-----LRCRAAGQSDS-----SVDPQQPFNPLLFLPPALCDMTGTSL * ...*:*.* . . .****.**.**** CE CLVVFFLIFGYKRYVWNRANVQGESGSVTEITSEEKPTLPPFNPFLFFPPALCDILGTSI HP MYVALNMTSASSFQMLRGAVIIFTGLFSVAFLGRRLVLSQWLGILATIAGLVVVGLADLL CE MYIGLNLTTASSFQMLRGAVIIPTGLLSVGMLNAQIKPFKWFGMLFVMLGLVIVGVTDIY HP SKHDSQHKLSEVITGDLLIIMAQIIVAIQMVLEEKFVYKHNVHPLRAVGTEGLFGFVILS ..*.***.***.********** *.*.. *...* *** *** CE YDDDPLDDKNAIITGNLLIVMAQIIVAIQMVYEQKYLTKYDVPALFAVGLEGLFGMVTLS HP LLLVPMYYIPAG-SFSGNPRGTLEDALDAFCQVGQQPLIAVALLGNISSIAFFNFAGISV CE ILMIPFYYIHVPRTFSTNPEGRLEDVFYAWKEITEEPTIALALSGTVVSIAFFNPAGVSV HP TKELSATTRMVLDSLRTVVIWALSLALGWEAFHALQILGFLILLIGTALYNGLHRPLLGR ************************** CE TKELSATTRMVLDSVRTLVIWVVSIPLFHEKFIAIQLSGFAMLILGTLIYNDILIGPWFR HP LSRGRPLAEESEGERLLGGTRTPINDAS

CE RNILPNLSSHANCARCWLCICGGDSELIEYEQEDQEHLMEA

30

50

WO 00/05367 PCT/JP99/03929

20 -

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N50907) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10488> (SEQ ID Nos. 67, 77, and 87)

Determination of the whole base sequence of the cDNA insert of clone RP10488 obtained from cDNA library of human liver revealed the structure consisting of a 39-bp 5'-untranslated region, a 273-bp ORF, and a 421-bp 3'-untranslated region. The ORF codes for a protein consisting of 90 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,151 predicted from the ORF. When expressed in COS7 cells, an expression product of about 6 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H73534) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10538> (SEQ ID Nos. 68, 78, and 88)

Determination of the whole base sequence of the cDNA insert of clone HP10538 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 357-bp 5'-untranslated region, a 1500-bp ORF, and a 1911-bp 3'-untranslated region. The ORF codes for a protein consisting of 499 amino acid residues and there existed at least four putative transmembrane domains. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

PCT/JP99/03929

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse pore-forming K* channel subunit (GenBank Accession No. AF056492). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse pore-forming K* channel subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the N-terminal region of 241 amino acid residues.

Table 19 10 HP MVDRGPLLTSAIIFYLAIGAAIFEVLEEPHWKEAKKNYYTQKLHLLKEFPCLGOEGLDK ***. ** .*..** ..*.*. . ..*.. **..*..*.. MM MRSTTLLALLALVLLYLVSGALVFQALEQPHEQQAQKKMDHGRDQFLRDHPCVSQKSLED 15 HP ILEVVSDAAGQG----VAITGNQTFNNWNWPNAMIFAATVITTIGYGNVAPKTPAGRLF** .*..*.*******. .* ***** * * * * MM FIKLLVEALGGGANPETSWTNSSNHSSAWNLGSAFFFSGTIITTIGYGNIVLHTDAGRLF HP CVFYGLFGVPLCLTWISALGKFFGGRAKR----LGQFLTKRGVSLRKAQITCTVIFIVWG 20 10*. .*.. .*. *. *. MM CIFYALVGIPLFGMLLAGVGDRLGSSLRRGIGHIEAIFLKWHVPPGLVRSLSAVLFLLIG HP VLVHLVIPPFVFMVTEGWNYIEGLYYSFITISTIGFGDFVAGVNPSANYHALYRYFVELW 25 MM CLLFVLTPTFVFSIMESWSKLEAIYFVIVTLTTVGPGDIVPG-DGTGONSPAYOPLVWFW 15 HP IYLGLAWLSLFVNWKVSMFVEVHKAIKKRRRRRKESFESSPHSRKALQVKGSTASKDVNI \mbox{MM} ILFGLAYFASVLTTIGNWLRAVSRRTRAEMGGLTAQAASWTGTVTARVTQRTGPSAPPPE 30 20 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration 35 of sequences that shared a homology of 90% or more (for example, Accession No. R25184) in ESTs, but, since they are partial sequences, it can not be judged whether or not any 25 of these sequences codes for the same protein as the protein 40 of the present invention. <HP10542> (SEQ ID Nos. 69, 79, and 89) 45 Determination of the whole base sequence of the cDNA 30 insert of clone HP10542 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 23-bp 5'-untranslated region, a 321-bp ORF, and a 426-bp 3'-50

untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,724 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA029683) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10571> (SEQ ID Nos. 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10571 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 95-bp 5'-untranslated region, a 459-bp ORF, and a 675-bp 3'untranslated region. The ORF codes for a protein consisting of 152 amino acid residues and there existed one putative transmembrane domain. Figure 30 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 17,062 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa

10

20

25

30

35

40

45

10

15

20 _

25

which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 10).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA105822) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01470> (SEQ ID Nos. 91, 101, and 111)

Determination of the whole base sequence of the cDNA insert of clone HP01470 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 157-bp 5'-untranslated region, a 1077-bp ORF, and a 385-bp 3'untranslated region. The ORF codes for a protein consisting of 358 amino acid residues and there existed one putative transmembrane domain. Figure 31 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 43 kDa that was somewhat larger than the molecular weight of 40,489 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa from which the secretory signal is considered to have been cleaved and a product of 43.5 kDa which is considered to have been subjected to some modification. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 23. When

55

50

10

15

20

25

30

35

40

5

10

15

20_

expressed in COS7 cells, an expression product of about 44 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein 39.9 kDa (SWISS-PROT Accession No. Q10005). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein 39.9 kDa (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.9% in the entire region.

Table 20

10 HP MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDD *.. * ********* ... * ... ******** .***** CE MRILNVSLLVLASSLVAFVECGRDFYKILGVAKNANANQIKKAYRKLAKELHPDRNQDD 5 HP PQAQEKPQDLGAAYEVLSDSEKRKQYDTYGEEGL--KDGHQSSHGDIFSHFFGDFGFMFG CE EMANEKFQDLSSAYEVLSDKEKRAMYDRHGEEGVAKMGGGGGGGHDPFSSFFGDF-FG-G HP GTPRQQDRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCROEMRTT 10 CE GGGHGGEEGTPKGADVTIDLFVTLEEVYNGHFVEIKRKKAVYKQTSGTRQCNCRHEMRTE HP QLGPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGD 25 CE QMGQGRFQMFQVKVCDECPNVKLVQENKVLEVEVEVGADNGHQQIFHGEGEPHIEGDPGD 15 HP LRFRIKVVKHPIFERRGDDLYTNVTISLVESLVGFZMDITHLDGHKVHISRDKITRPGAK *.*.*.. *** ***.********** ..* ***.* **** *.. ***.*_{*}*.**. CE LKFKIRIQKHPRFERKGDDLYTNVTISLQDALNGFEMEIQHLDGHIVKVORDKVTWPGAR 30 ${\tt HP\ LWKKGEGLPNFDNNN1KGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQ-KVYNGLQG}$ 20 CE LRKKDEGMPSLEDNNKKGMLVVTFDVEFPKTELSDEQKAQIIEILQQNTVKPKAYNGL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282838) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30 <HP002419> (SEQ ID Nos. 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP02419 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 253-bp

55

35

40

5'-untranslated region, a 681-bp ORF, and a 1120-bp 3'untranslated region. The ORF codes for a protein consisting
of 226 amino acid residues and there existed four putative
transmembrane domains. Figure 32 depicts the
hydrophobicity/hydrophilicity profile, obtained by the KyteDoolittle method, of the present protein. In vitro
translation resulted in formation of a translation product
of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0108 (SWISS-PROT Accession No. Q15012). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0108 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.9% in the entire region.

20_

Table 21

this codon encodes selenocysteine from the molecular weight

10 HP MKMVAPWTRFYSNSCCLCCHVRTGTILLGVWYLIINAVVLLILLSALADPD---QY KI MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAV 5 15 HP NFSSSELGGDFEF-MDDANMCIAIAISLLMILICAMATYGAYKQRAAWIIPFFCYQIFDF KI NIQYEVIGNYYSSERMADNACVLFAVSVLMFIISSMLVYGAISYQVGWLIPFFCYRLFDF HP ALNMLVAITVLIYPNSIQEYIRQLPPNFPYRDDVMSVNPTCLVLIILLFISIILTFKGYL 20 .*. **** *.*. ... ***. ** *.***.**.....**..* 10 KI VLSCLVAISSLTYLPRIKEYLDQL-PDFPYKDDLLALDSSCLLFIVLVFFALFIIFKAYL HP ISCVWNCYRYINGRNSSDVLVYVT-SNDTTVLLPPYDDATVNGAAKEPPPPYVSA *,******,**,**,... 25 KI INCVWNCYKYINNRNVPEIAVYPAFEAPPQYVLPTY-EMAVKMPEKEPPPPYLPA 15 Furthermore, the search of the GenBank using the base 30 sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA173214) in ESTs, but, since they 20 are partial sequences, it can not be judged whether or not 35 any of these sequences codes for the same protein as the protein of the present invention. 40 25 <HP02631> (SEQ ID Nos. 93, 103, and 113) Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure 45 consisting of a 42-bp 5'-untranslated region, a 588-bp ORF, and a 750-bp 3'-untranslated region. Although the 49th amino 30 acid residue is encoded by a stop codon, it is likely that

of the translation product and the sequence comparison data with the Caenorhabditis elegans homologue. The ORF codes for a protein consisting of 195 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 58 kDa. In this case, the addition of a microsome led to the formation of a product of 56 kDa from which the secretory signal is considered to have been cleaved. Since both of these products are larger than the molecular weight of 22 kDa predicted from the ORF, it is likely that the protein interacts with another protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein C35C5.3 (EMBL Accession No. Z78417). Table 22 shows the comparison between amino acid sequences - of the human protein of the present invention (HP) and the C. elegans hypothetical protein C35C5.3 (CE). U at position 49 in the amino acid sequence of the protein of the present invention represents selenocysteine. Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the entire region other than the Nterminal region. Cystein was found in the sequence of the C. elegans protein at the posistion corresponding to position 49 encoded by the stop codon (selenocysteine) of the protein of the present invention.

55

5

10

15

20

25

30

35

40

45

50

10

15

20

25

10		Table 22
		HP MRLLLL
15	5	CE MRIHDELQKQDMSRFGVFIIGVLFFMSVCDVLRTEEHSHDENHVHEKDDFEAEFGDRTDS HP LLVAASAMVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMRVISQRY * * *** ****
20	10	CE QSFSQGTEEDHIEVREQSSFVKPTAVHHAKDLPTLRIFYCVSCGYKQAFDQFTTFAKEKY HP PDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAFSIWQWGQENKV ***.*. *
25	15	HP YACMMVFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNEMKLNVH .**.**.******* *
30		CE APVNTESFGEPQQTV
35	20	Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they
40	25	are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.
45	30	<pre><hp02695> (SEQ ID Nos. 94, 104, and 114) Determination of the whole base sequence of the cDNA insert of clone HP02695 obtained from cDNA library of human</hp02695></pre>
50	_ 3	stomach cancer revealed the structure consisting of a 112-bp 5'-untranslated region, a 1020-bp ORF, and a 160-bp 3'-

untranslated region. The ORF codes for a protein consisting of 339 amino acid residues and there existed three putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 38,274 kDa predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat hypertension-induced protein S-2 fragment (PIR Accession No. 539959). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat hypertension-induced protein S-2 fragment (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.3% in the entire region.

Table 23 10 HP MNWELLLWLLVLCALLLLLVQLLRFLRADGDLTLLWAEWQGRRPEWELTDMVVWVTGASS HP GIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDLTDTGSHRA 15 **** ************* RN VKRRSLENGNLKEKDILVLPLDLADTSSHDI HP ATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVLPHMIER ***.************ 20 10 RN ATKTVLQEFGRIDILVNNGGVAHASLVENTNMDIFKVLIEVNYLGTVSLTKCFLPHMMER HP KQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGPVQSN .*****...* RN NQGKIVVMKS 25 15 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration 30 of sequences that shared a homology of 90% or more (for example, Accession No. T84331) in ESTs, but, since they are partial sequences, it can not be judged whether or not any 35 of these sequences codes for the same protein as the protein of the present invention. <HP10031> (SEQ ID Nos. 95, 105, and 115) 40 25 Determination of the whole base sequence of the cDNA insert of clone HP10031 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1464-bp ORF, 45 and a 649-bp 3'-untranslated region. The ORF codes for a 30 protein consisting of 487 amino acid residues and there

existed eleven putative transmembrane domains. Figure 35

depicts the hydrophobicity/hydrophilicity profile, obtained

55

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar to the Caenorhabditis protein was hypothetical protein CELK07H8 (GenBank Accession No. AF047659). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELK07H8 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.2% in the entire region.

35

30

10

20

25

10

15

40

45

50

Table 24

10 ΗP MDGTETRQRRLDSCGKPGELGLPHPLSTGGLPVAS CE MKGGGGIGDGKKDYQSAVHEGLTTFDQLGIALEDVGKSMDAETATPGGSLFSRVIFRFRN 15 HP EDGALRAPESQSVTPKPLETEPSRETAWSIGLQVTVPFMPAGLGLSWAGMLLDYFQHWPV CE ENSSLKSRTYDHSNDLVNMSVIPAESSYVLFFQVLFPFAVAGLGMVFAGLVLSIVVTWPL HP FVEVKDLLTLVPPLVGLKGNLEMTLASRLSTAANTGQIDDPQEQHRVISSNLALIQVQAT 20 10 * *. ..*.***,*.************** ** *..*.... *. .*** CE FEEIPEILILVPALLGLKGNLEMTLASRLSTLANLGHMDSSKQRKDVVIANLALVQVQAT HP VVGLLAAVAALLLGVVSREEVDVAKVELLCASSVLTAFLAAFALGVLMVCIVIGARKLGV 25 CE VVAFLASAFAAALAFIPSGDFDWAHGALMCASSLATACSASLVLSLLMVVVIVTSRKYNI 15 HP NPDNIATPIAASLGDLITLSILALVSSFFYR-HKDSRYLTPLVCLSFAALTPVWVLIAKQ ***************************** CE NPDNVATPIAASLGDLTTLTVLAFFGSVFLKAHNTESWLNVIVLFLLLLPFWIKIANE 30 HP SPPIVKILKFGWFPIILAMVISSFGGLILSKTVSKQQYKGMAIFTPVICGVGGNLVAIOT 20 CE NEGTQETLYNGWTPVIMSMLISSAGGFILETAV--RRYHSLSTYGPVLNGVGGNLAAVQA HP SRISTYLHMWSAPGVLPLQ--MKKFWPNPCSTFCTSEINSMSARVLLLLVVPGHLIF-FY 35 CE SRLSTYFHKAGTVGVLPNEWTVSRF-TSVQRAFFSKEWDSRSARVLLLLVVPGHICFNFL HP I-IYLVEGQSVINSQ--TFVVLYLLAGLIQVTILLYLAEVMVRLTWHQALDPDNHCIPYL 25 * *. *. **.*.*****., ...* * *. .**** **** CE IQLFTLTSKNNVTPHGPLFTSLYMIAAIIQVVILLFVCQLLVALLWKWKIDPDNSVIPYL 40 HP TGLGDLLGTGLLALCFFTDWLLKSRAELGGISELASGPP *.******* CE TALGDLLGTGLLFIVFLTTDHFDPKELTSS 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

55

10

15

20

25

30

35

40

45

50

55

5

10

15

25

30

example, Accession No. AA334000) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10530> (SEQ ID Nos. 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10530 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 80-bp 5'-untranslated region, a 1182-bp ORF, and a 95-bp 3'-untranslated region. The ORF codes for a protein consisting of 393 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was somewhat larger than the molecular weight of 44,912 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 23. When expressed in COS7 cells, an expression product of about 43 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein IG002N01 (GenBank Accession No. AF007269). Table 25 shows the comparison between amino acid sequences of the

WO 00/05367 PCT/JP99/03929

human protein of the present invention (HP) and the A. thaliana hypothetical protein IG002N01 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.0% in the N-terminal region of 355 amino acid residues.

5/3

Table 25

10 HP MRTLFNLLWL AT MELTSFQKSPSSNDVVSFSVSLVRNSMARRRRSSAAESLKRRNDGYESLCQVVQQDSDRR 15 HP ALACSPVHTTLSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSA AT LITIFVIFFIVIPAVSIAVYKVKFADRVIQTESSIRQKGIVKTDINFQEILTEHSK--AS HP KARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQ-LKRRGREMPEVTGLHDV 20 10**.. **.*.** ..* .. *... . . *.* *..**... . .**... AT ENSTRHYDYPVLAYITP--CQGSGL--VLEGR-HNADKGWIQELRSRGNALSASKGLPKL HP DQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGF 25 AT ---YNSCIFHALKRMNFFTLELVNFNTYLVIMFALNS-REMEYNGIVLESWSRWAAYGVL 15 HP VVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGMPTHKEFEQL AT HDPDLRKMALKFVKQLGDALHSTSSPRNNQQHMQFMYVVGPPRSEKLQMYDFGPEDLQFL 30 HP APVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQ-VLDPKSK----WRSKILLGLNPYGM .*******.*... 20 AT KDSVDGFSLMTYDFSNPQNPGPNAPVKWIDLTLKLLLGSSNNIDSNIARKVLLGINFYGN HP DYATSKDAREPVVGARYIQTLKDHRPRMVWDSQASEHFFEYKKSRSGRHVVFYPTLKSLQ *...** *.. *.. **...**.* *.... **.** 35 AT DFVISGGGGGAITGRDYLALLQRHKPTFRWDKESGEHLFMYRDDRNIKHAVFYPTLMSIL HP VRLELARELGVGVSIWELGOGLDYFYDLL 25 .*** ** *.*.***.**. ..* AT LRLENARLWGIGISIWEIGQDKGHFGKYAEASLEASSIFSGHTFDMQFRTNPRQLSRNGS 40 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration 45 30 of sequences that shared a homology of 90% or more (for example, Accession No. AA302913) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the 50

10

15

20-

25

30

97

protein of the present invention.

10

15

20

25

30

35

<HP10541> (SEQ ID Nos. 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10541 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 7-bp 5'-untranslated region, a 591-bp ORF, and a 113-bp 3'untranslated region. The ORF codes for a protein consisting of 196 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,553 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 20 kDa from which the secretory signal is considered to have been cleaved and a product of 23 kDa which is considered to have a sugar chain being attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 41. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Leu-Thr at position 185).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human zymogen membrane protein (GenBank Accession No. AF056492). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human zymogen membrane protein (ZM). Therein, the marks of -, *, and . represent a

50

45

PCT/JP99/03929

gap, an amino acid residue identical with that of the 10 protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the C-terminal region of 133 amino acid residues. 15 Table 26 20 HP MWRVPGTTRRPVTGESPGMHRPEANLLLLTLALLGGPTWAGKMYGPGGGKYFS-TTEDYD 10 **.*** ** ... * MLTVALLALLCASASGNAIQARSSSYSGEYGSGGGKRFSHSGNQLD HP HEITGLRVSVGLLLVKSVQVKLGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLR 25 ZM GPITALRVRVNTYYIVGLQVRYGKVWSDYVGGRNGDLEEIFLHPGESVIQVSGKYKWYLK HP GMVMYTSKDRYFYFGKLDGOISSAYPSQEGQVLVGIYGQYQLLGIKSIGFEWN-YPLEEP 15 .*. *.*. *** .* .* * . . ** * *. * *...*. ** ZM KLVFVTDKGRYLSFGKDSGTSFNAVPLHPNTVLRFISGRSGSL-IDAIGLHWDVYPTSCS 30 HP TTEPPVNLTYSANSPVGR 20 ZM RC 35 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for 25 example, Accession No. AA340605) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the 45 protein of the present invention.

30

<HP10550> (SEQ ID Nos. 98, 108, and 118)

Determination of the whole base sequence of the cDNA

55

insert of clone HP10550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 241-bp 5'-untranslated region, a 324-bp ORF, and a 86-bp 3'untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative 38 transmembrane domain. Figure depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA348310) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10590> (SEQ ID Nos. 99, 109, and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10590 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 77-bp 5'-untranslated region, a 1053-bp ORF, and a 180-bp 3'-untranslated region. The ORF codes for a protein consisting of 350 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,285 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of

10

15

20

25

30

35

40

45

50

10

15

20 -

25

WO 00/05367 PCT/JP99/03929

43 kDa which is considered to have a sugar chain being attached. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Ser at position 144 and Asn-Leu-Thr at position 328).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA461346) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10591> (SEQ ID Nos. 100, 110, and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10591 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 232-bp 5'-untranslated region, a 324-bp ORF, and a 844-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,328 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H09424) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

WO 00/05367 PCT/JP99/03929

101

of the present invention.

<HP01462> (SEQ ID Nos. 121, 131, and 141)

Determination of the whole base sequence of the cDNA insert of clone HP01462 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 121-bp 5'-untranslated region, a 1452-bp ORF, and a 477-bp 3'-untranslated region. The ORF codes for a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 72 kDa that was larger than the molecular weight of 55,838 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 21.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein ZK1058.4 (EMBL Accession No. 235604). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein ZK1058.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.6% in the entire region.

50

55

5

10

15

20

25

30

35

40

45

10

15

20 _

Table 27

10 HP MKAFHTFCVVLLVFGSVSEAKFDDFEDEEDIVEYDDNDFAEFEDVMEDSVTESPQRVIIT MKIVWIFLIFFIGFAIST 5 CE 15 HP EDDE-DETTVELEGQDENQEGDFEDADTQEGDTESEPYDDEEFEGYEDKP-----D .*.* .* . *. * ...*.*.*. *..* CE DDNEFAEFEDEFVGSSATQAPEIQREGEPPVLKQKDDFEEEDFGVVEEEPEEAEKVREAD HP TSSSKNKDPITIVDVPAHLQNSWESYYLEILMVTGLLAYIMNYIIGKNKNSRLAQAWFNT 20 10 CE SDDAAPAQPLKFADVPAHFRSNWASYQVEGIVVLIILIYMTNYLIGKTTNASIAQTIFDM HP HRELLESNFTLVGDDGTNKEATSTGKLNQENEHIYNLNCSGRVCCEGMLIOLRFLKRODL CE CRPTLEEQFAVVGDDGTTDLDKMIPSLKHDTDSTFSAWCTGRVNVNSLFLQMKMVKRQDV 15 HP LNVLARMMRPVSDQVQIKVTMN-DEDMDTYVFAVGTRKALVRLQKEMQDLSEFCSDKPKS ... *. * .*.. **... ... **... *** * * **.. * **... *** CE VSRIMEMFTPSGDKMTIKASLETTNDTDPLIFAVGEKKIASKYPKEMLDLNSFASERKQA 30 HP GAKYGLPDSLAILSEMGEVTDGMMDTKMVHFLTHYADKIESVHPSDQFSGPKIMQEEGQP**.***. ...* .* .* .*.****.*** ...* . 20 CE AQQFNLPASWQVYADQNEVVFSILDPGVVSLLKKHEDAIEFIHISDQFTGPKPAEGESYT HP LKLPDTKRTLLFTFNVPGSGNTYPKDMEALLPLMNMVIYSIDKAKKFRLNREGKOKADKN 35 CE -RLPEAQRYMFVSLNLQYLG----QDEESVMEILNLVFYLIDKARKMKLSKDAKVKAERR HP RARVEENFLKLTHVQRQBAAQSRREEKKRAEKERIMNEEDPEKQRRLEEAALRREQKKLE 25 CE RKEFEDAFLKQTHQFRQEAAQARREEKTRERKQKLMDESDPERQKRLEAKELKREAKA--40 HP KKOMKMKOIKVRAM * ****.** CE -KSPKMKQLKVK 30 45

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

55

example, Accession No. AA307793) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02485> (SEQ ID Nos. 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP02485 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 69-bp 5'-untranslated region, a 1005-bp ORF, and a 1672-bp 3'untranslated region. The ORF codes for a protein consisting of 334 amino acid residues and there existed one putative transmembrane domain. Figure 42 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 38,171 predicted from the ORF. When expressed in COS7 cells, an expression product of about 23 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein W01A11.2 (GenBank Accession No. U64852). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein W01A11.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 45.5% in the entire region.

55

10

15

20

25

30

35

40

45

5

10

15

20

10 Table 28 MVEFAPLFMPWERRLQTLAVLQFVFSFLALAEICT-V HР 5 .***..**.**** 15 CE MRLRLSSISGKAKLPDREICSSVSRILAPLLVPWKRRLETLAVMGFIFMWVILPIMDLWV HP GFIALLFTRFWLLTVLYAAWWYLDRDKPRQGGRHIQAIRCWTIWKYMKDYFPISLVKTAE * .*. **.*.*. ***.*.* * *.*...*. . * . ***. .***..*.* CE PFHVLFNTRWWFLVPLYAVWFYYDFDTPKKASRRWNWARRHVAWKYFASYFPLRLIKTAD 20 10 HP LDPSRNYIAGFHPHGVLAVGAFANLCTESTGFSSIFPGIRPHLMMLTLWFRAPFFRDYIM ${\tt CE-LPADRNYIIGSHPHGMFSVGGFTAMSTNATGFEDKFPGIKSHIMTLNGQFYFPFRREFGI}$ HP SAGLVTSERESAAHILMRKGGGNLLGIIVGGAQEALDARPGSPTLLLRMRKGFVRLALTH 25 * .. .*** ...*. * *. .*..*** ***.*.*. ** * **.** . **. 15 CE MLGGIEVSKESLEYTLTKCGKGRACAIVIGGASEALEAHPNKNTLTLINRRGFCKYALKF HP GAPLVPIFSFGENDLFDQIPNSSGSWLRYIQNRLQKIMGISLPLFHGRGVF-QYSFGLIP ** ***...** ** *..** **....... **...* **..* ** .**.* 30 CE GADLVPMYNFGENDLYEQYENPKGSRLREVQEKIKDMFGLCPPLLRGRSLFNQYLIGLLP HP YRRPITTVVGKPIEVQKTLHPSEEEVNQLHQRYIKELCNLFEAHKLKPNIPADQHLEPC 20 CE FRKPVTTVMGRPIRVTQTDEPTVEQIDELHAKYCDALYNLFEEYKHLHSIPPDTHLIFQ 35 Furthermore, the search of the GenBank using the base 25 sequences of the present cDNA has revealed the registration 40 of sequences that shared a homology of 90% or more (for example, Accession No. D25664) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein 45 30 of the present invention. <HP02798> (SEQ ID Nos. 123, 133, and 143) 50 Determination of the whole base sequence of the cDNA

insert of clone HP02798 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 31-bp 5'-untranslated region, a 804-bp ORF, and a 301-bp 3'-untranslated region. The ORF codes for a protein consisting of 267 amino acid residues and there existed four putative transmembrane domains. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 30,778 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human DHHC-containing cysteinerich protein (GenBank Accession No. U90653). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human DHHCcontaining cysteine-rich protein (DH). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the intermediate region of 100 amino acid residues. The positions of seven cysteines were conserved between the two proteins. The protein of the present invention also had the DHHC (Asp-His-His-Cys) sequence.

30

10

15

20

25

55

50

. 10

15

20

25

30

35

40

Table 29 10 MAPWALLSPGVLVRTGHTVLTWGI HP DH MYKMNICNKPSNKTAPEKSVWTAPAQPSGPSPELQGQRSRRNGWSWPPHPLQIVAWLLYL 15 HP TLVLFLHDTELRQWEEQGELLLPLTFLLLVLGSLLLYLAVSLMDPGYVNVQPQP-QEELK * *...*.. . **. **. * DH FFAVIGFGILVPLLPHEWVPAGYACMGAIFAGHLVVHLTAVSIDPADDNVRDKSYAGPLP HP EEQTAMVPPAIPLRRCRYCLVLQPLRARHCRECRRCVRRYDHHCPWMENCVGERNHPLFV 20 10 DH IFNRSQHAHVIEDLHCNLCNVDVSARSKHCSACNKCVCGFDHHCKWLNNCVGERNYRLFL HP VYLALQLVVLLWGLYLAWSGLRFFQPWGLWLRSSGLLFATFLLLSLFSLVASLLLVSHLY * * * 25 DH HSVASALLGVLLLVLGGHICLRGVLCQPHASAHQPTL 15 Furthermore, the search of the GenBank using the base 30 sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for 20 example, Accession No. D79050) in ESTs, but, since they are 35 partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention. 40 25 <HP10041> (SEQ ID Nos. 124, 134, and 144) Determination of the whole base sequence of the cDNA insert of clone HP10041 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure 45 consisting of a 12-bp 5'-untranslated region, a 321-bp ORF, and a 286-bp 3'-untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there

existed one putative transmembrane domain. Figure 44 depicts

55

the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 12,060 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein K10B2.4 (GenBank Accession No. U28730). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein K10B2.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 62.1% in the entire region.

Table 30 '

HP MSTNNMSDPRRPNKVLRYKP---PPSECNPALDDFTPDYMNLLGMIFSMCGLMLKLKWCA

.***.*...***

CE MQQNGDPRRTNRIVRYKPLDSTANQQQAISEDPLPEYMNVLGMIFSMCGLMIRMKWCS

HP WVAVYCSFISFANSRSSEDTKQMMSSFMLSISAVVMSYLQNPQPMTPPW

.. ** *****...**

CE WLALVCSCISFANTRTSDDAKQIVSSFMLSVSAVVMSYLQNPSPIIPPWVTLLQS

Furthermore, the search of the GenBank using the base

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H20098) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10246> (SEQ ID Nos. 125, 135, and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10246 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 110-bp 5'-untranslated region, a 675-bp ORF, and a 79-bp 3'-untranslated region. The ORF codes for a protein consisting of 224 amino acid residues and there existed five putative transmembrane domains. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat smaller than the molecular weight of 25,244 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human putative seven transmembrane domain protein (GenBank Accession No. Y18007). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human putative seven transmembrane domain protein (TM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

109 of the protein of the present invention, respectively. The 10 both proteins shared a homology of 93.3% in the entire region.

5 Table 31 15

> HP MTLFHFGNCFALAYFPYFITYKCSGLSEYNAFWKCVQAGVTYLFVQLCKMLFLATFFPTW ************ TM MTLFHPGNCFALAYFPYFITYKCTDLSEYNAPWKCVQAGVTYLFVQLCKMLFLATFFPTW

10 HP EGGIYDFIGEFMKASVDVADLIGLNLVMSRNAGKGEYKIMVAALGWATAELIMSRCIPLW **********

TM EGGIYDFIGEFMKASVDVADLIGLNLVMSRNAGKGEYKIMVAALGWATAELIMSRCIPLW HP VGARGIEFDWKYIQMSIDSNISLVHYIVASAQVWMITRYDLYHTPRPAVLLLMPLSVYKA **************************************

15 TM VGARGIEFDWKYIOMSIDSNISLGPYIVASAQVWMITRYDLYHTFRPAVLLLMFLRVYKA HP FVMETFVHLCSLGSWAALLARAVVTGLLALSTLALYVAVVNVHS

TM PVMETFVHLCSLGSWAVLMAGVVVKGLLVIRNLAMYVAVVNVHS

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA453931) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

45

50

5

20

25

30

35

40

<HP10392> (SEQ ID Nos. 126, 136, and 146)

30

Determination of the whole base sequence of the cDNA insert of clone HP10392 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure

10

15

20

25

30

35

40

55

10

15

25

30

110

consisting of a 24-bp 5'-untranslated region, a 777-bp ORF, and a 726-bp 3'-untranslated region. The ORF codes for a protein consisting of 258 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 29,623 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 49.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H15999) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention. In addition, partial identity with the hypothetical protein KIAA0384 (Accession No. AB002382) was observed, although the hypothetical protein had a different ORF.

<HP10489> (SEQ ID Nos. 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10489 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 137-bp 5'-untranslated region, a 333-bp ORF, and a 189-bp 3'untranslated region. The ORF codes for a protein consisting of 110 amino acid residues and there existed two putative transmembrane domains. Figure 47

15

20

25

30

35

40

45

50

55

10

15

20

25

30

111

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 12,010 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262162) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10519> (SEQ ID Nos. 128, 138, and 148)

Determination of the whole base sequence of the cDNA insert of clone HP10519 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 67-bp 5'-untranslated region, a 276-bp ORF, and a 367-bp 3'untranslated region. The ORF codes for a protein consisting of 91 amino acid residues and there existed one putative transmembrane domain. Figure 48 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,275 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W16639) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

WO 00/05367 PCT/JP99/03929

of the present invention.

<HP10531> (SEQ ID Nos. 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10531 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1035-bp ORF, and a 1092-bp 3'-untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed five putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R50695) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10574> (SEQ ID Nos. 130, 140, and 150)

Determination of the whole base sequence of the cDNA insert of clone HP10574 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 210-bp 5'-untranslated region, a 1287-bp ORF, and a 1276-bp 3'-untranslated region. The ORF codes for a protein consisting of 428 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained

WO 00/05367 PCT/JP99/03929

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 36.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Drosophila melanogaster GOLIATH protein (SWISS-PROT Accession No. Q06003). Table 32 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the D. melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The intermediate region of 169 amino acids of the protein of the present invention shared a homology of 41.4% with the N-terminal region of the D. melanogaster GOLIATH protein.

40 -

Table 32

10 HP MGPPPGAGVSCRGGCGFSRLLAWCFLLALSPQAPGSRGAEAVWTAYLNVSWRVPHTGVNR HP TVWELSEEGVYGQDSPLEPVAGVLVPPDGPGALNACNPHTNFTVPTVWGSTVOVSWLALI HP QRGGGCTFADKIHLAYERGASGAVIFNFPGTRNEVIPMSHPGAVDIVAIMIGNLKGTKIL 15 .*.*... . * ... DM MQLEKMQIKGKTRNIAAVITYQNIGQDLS HP QSIQRGIQVTMVIEVGKK---HGPWVNHYSIPPVSVSFFIITAATVGYFIFYSARRLRNA* .**. * *.. . .*. *..***.* **.*** .*.* 10 DM LTLDKGYNVTISIIEGRRGVRTISSLNRTSVLFVSIS-FIV-DDILCWLIFYYIORFRYM HP RAQSRKQRQLKADAKKAIGRLQLRTLKQGDKEIGPDGDSCAVCIELYKPNDLVRILTCNH DM QAKDQQSRNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKH 25 HP IFHKTCVDPWLLEHRTCPMCKCDILKALGIEVDVEDGSVSLQVPVSNEISNSASSHEEDN 15 ***.*.***.***** *.** * *. DM EFHKNCIDPWLIEHRTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEKVPVIVVA HP RSETASSGYASVQGTDEPPLEEHVQSTNESLQLVNHEANSVAVDVIPHVDNPTFEEDETP 30 DM VPHGPQPLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNS 20 HP NQETAVREIKS 35 DM APATMPHAITASHQVTDV 25 Furthermore, the search of the GenBank using the base 40 sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA155685) in ESTs, but, since they 45 are partial sequences, it can not be judged whether or not 30 any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents which act to control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel lowmolecular pharmaceuticals, and so on.

The present invention also provides genes corresponding sequences disclosed herein. polynucleotide "Corresponding genes" are the regions of the genome that are mRNAs from CDNA transcribed to produce the which polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed Such methods include the preparation of probes or

55

5

10

20

25

30

35

40

45

50

10

15

20

25

primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression the gene(s) corresponding the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed their cells and progeny, are Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

10

15

20

25

30

10

15

20

25

30

35

40

45

50

55

through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more

. 5

45

50

55

30

preferably, at least 75% identity; most preferably at least 10 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize 5 overlap and identity while minimizing sequence gaps. 15 included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% 20 10 sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins. 25 Species homologs of the disclosed polynucleotides proteins are also provided by the present invention. Άв used herein, a "species homologue" is a protein or 15 polynucleotide with a different species of origin from that 30 of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. 20 homologs may be isolated and identified by making suitable 35 probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species. The invention also encompasses allelic variants of the 40 25 disclosed polynucleotides or proteins; that is, naturallyoccurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous,

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

or related to that encoded by the polynucleotides.

The present invention also includes polynucleotides

WO 00/05367 PCT/JP99/03929

capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table 33 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 33

0

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
		(bp) [‡]		and Buffer
Α	DNA : DNA	≥50	65℃; 1×SSC -or-	65°C; 0.3×SSC
			42℃; 1×SSC,50% formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67℃; 1×SSC -or-	67°C; 0.3×SSC
			45℃; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	To*: 1×SSC
Е	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	Tp*; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50% formamide	1
Н	DNA : DNA	<50	T _H *, 4×SSC	TH*; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA : RNA	<50	T _J *; 4×SSC	T,*: 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
	l	ļ	50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA : RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA : RNA	<50	Tp*; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
•			45°C; 6×SSC,50% formamide	
R	RNA : RNA	<50	T _R *; 4×SSC	TR*: 4×SSC

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†:SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

 ${}^*T_B \cdot T_R$: The hybridization temperature for hybrids anticipated to be less than

50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(C)=2(\#of A+T bases)+4(\#of G+C bases)$. For hybrids between 18 and 49 base pairs in length, $T_m(C)=81.5+16.6(\log_{10}(Na^n))+0.41$ (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na^n] is the concentration of sodium ions in the hybridization buffer ([Na^n] for 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

Claims

WO 00/05367

PCT/JP99/03929

1	0	

1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

2. An isolated DNA coding for the protein according to Claim 1.

. .

3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.

4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.

5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells.

6. A transformed eucaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.

_ . .

Fig. 2

Fig. 3

Fig. 4

7.g. 0

۲. اق

7<u>G</u>. α

ار ال

<u>1</u>9.

-ig. 11

7.8. -

-18.

. . .

FIg.1 /

ج ق

Fig. 19

28. 40

Fig. 21

-1g.22

·Ig. 23

F18. 24

rlg. 23

.ig. 26

rig. 28

L8. €3

Fig. 30

Fig. 31

-1g.32

18. S.S.

rig. 35

FIB.37

Fig. 38

. S

7.8.40 40

-IB.42

<u>छ</u> २

F18. 44

FIG. 45

Fig. 46

rlg.4/

Fig. 48

Fig. 49

Sequence listing

<110> Sagami Chemical Research Center; Protegene Inc.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661102

10 <150> JP 10-208820 <151> 1998-07-24

<150> JP 10-224105

<151> 1998-08-07

15

<150> JP 10-238116

<151> 1998-08-25

<150> JP 10-254736

20 <151> 1998-09-09

<150> JP 10-275505

<151> 1998-09-29

25 <160> 150

<170> Windows 95 (Word 98)

<210> 1

30 <211> 125

<212> PRT

<213> Homo sapiens

<400> 1

35 Met Ala Lye Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val

2/177

1				5					10					15	
Gly	Arg	Ala	Phe	Ala	Arg	Ala	Leu	Arg	Gln	Glu	Phe	Ala	Ala	Ser	Arg
			20					25					30		
Ala	Ala	Ala	Asp	Ala	Arg	Gly	Arg	Ala	Gly	His	Arg	Ser	Ala	Ala	Ala
		35					40					45			
Ser	Asn	Leu	Ser	Gly	Leu	Ser	Leu	Gln	Glu	Ala	Gln	Gln	Ile	Leu	Asn
	50					55					60				
Val	Ser	Lys	Leu	Ser	Pro	Glu	Glu	Val	Gln	Lys	Asn	Tyr	Glu	His	Leu
65					70					75					80
Phe	Lys	Val	Asn	Asp	Lys	Ser	Val	Gly	Gly	Ser	Phe	Tyr	Leu	Gln	Ser
				85					90					95	
Lys	Val	Val	Arg	Ala	Lys	Glu	Arg	Leu	Asp	Glu	Glu	Leu	Lys	Ile	Gln
			100					105					110		
Ala	Gln	Glu	Asp	Arg	Glu	Lys	Gly	Gln	Met	Pro	His	Thr			
		115					120					125			
<210)> 2														
<21	1> 1:	31													
<212> PRT															
<21	3> Ho		sapie	aus											
			_								_				
		Gly	Ile	-	Ala	Leu	Ile	Ser		Ser	Phe	Gly	Gly		Ile
												_			
Gly	Leu	Met		Leu	Met	Leu	Gly	_	Ala	Leu	Pro	Ile	7	Asn	ГÀв
				_1.			_,			-1-	•				_
Tyr	ттр		Leu	Phe	Val	Leu		Phe	Tyr	110	Leu		Pro	Ile	Pro
					_					_,				_	_
туг		ΙTΘ	Ala	Arg	Arg		Val	Asp	Asp	Thr	_	ALA	Met	Ser	Asn
		_		_				_			-		•		_
	Cys	гуз	GIU	Leu		ITE	Pne	Leu	The		GIÀ	TTe	Val	Val	
	Dh.a	G 1	.			••- 1	71. -				•••	•	-1-	01	80
WTQ	rne	GTÀ	rea		116	ATT	LUG	HTS	-	WTØ	nıs	Leu	116		ırp
G3	a 1 –	C -	n 1 -		**** 1	•	m}	a1		mb	17-7	+ 1 -	nk -		m\-
GTÅ	ALE	cys	Ala	Ten	vai	τeπ	rnr	GIĄ	ASN	Thr	val	116	₽D0	ATA	Thr
	Gly Ala Ser Val 65 Phe Lys Ala <210 <211 <211 <400 Met 1 Gly Tyr Tyr Ala 65 Ala	Gly Arg Ala Ala Ser Asn 50 Val Ser 65 Phe Lys Lys Val Ala Gln <210> 2 <211> 1: <212> Pf <213> Ho <400> 2 Met Ala 1 Gly Leu Tyr Trp Tyr Cys 50 Ala Cys 65 Ala Phe	Gly Arg Ala Ala Ala Ala 35 Ser Asn Leu 50 Val Ser Lys 65 Phe Lys Val Lys Val Val Ala Gln Glu 115 <210> 2 <211> 131 <212> PRT <213> Homo 400> 2 Met Ala Gly 1 Gly Leu Met Tyr Trp Pro 35 Tyr Cys Ile 50 Ala Cys Lys 65 Ala Phe Gly	Gly Arg Ala Phe	Gly Arg Ala Phe Ala 20 Ala Ala Ala Asp Ala 35 Ser Asn Leu Ser Gly 50 Val Ser Lys Leu Ser 65 Phe Lys Val Asn Asp 85 Lys Val Val Arg Ala 100 Ala Gln Glu Asp Arg 115 <210> 2 <211> 131 <212> PRT <213> Homo sapiens <400> 2 Net Ala Gly Ile Lys 1	Gly Arg Ala Phe Ala Arg 20 Ala Ala Ala Asp Ala Arg 35 Ser Asn Leu Ser Gly Leu 50 Val Ser Lys Leu Ser Pro 65 70 Phe Lys Val Asn Asp Lys 85 Lys Val Val Asp Ala Lys 100 Ala Gln Glu Asp Arg Glu 115 <210> 2 <211> 131 <212> PRT <213> Homo sapiens <400> 2 Met Ala Gly Ile Lys Ala 1 5 Gly Leu Met Phe Leu Met 20 Tyr Trp Pro Leu Phe Val 35 Tyr Cys Ile Ala Arg Arg 50 Ala Cys Lys Glu Leu Ala 65 70 Ala Phe Gly Leu Pro Ile 85	Gly Arg Ala Phe Ala Arg Ala 20	Gly Arg Ala Phe Ala Arg Ala Leu 20 Ala Ala Ala Asp Ala Arg Gly Arg 35	Gly Arg Ala Phe 20 Ala Arg Ala Leu Arg 20 Ala Ala Ala Asp Ala Arg Gly Arg Ala 35 40 Ser Asn Leu Ser Gly Leu Ser Leu Gln 50 55 Val Ser Lys Leu Ser Pro Glu Glu Val 65 70 Phe Lys Val Asn Asp Lys Ser Val Gly 85 81 Lys Val Arg Ala Lys Glu Arg Leu 100 105 Ala Gln Glu Asp Arg Glu Lys Gly Gln 115 120 <210> 2 2 <211> 131 212> PRT <213> Homo sapiens 5 Gly Leu Met Phe Leu Met Leu Gly Cys 25 Tyr Trp Pro Leu Phe Val Leu Phe Phe 35 40 Tyr Cys Ile Ala Arg Arg Leu Val Asp 50 55 Ala Cys Lys Glu Leu Ala Ile Phe Leu 65 70 Ala Phe Gly Leu Pro Ile Val Phe Ala 85	Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln 20	Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu 20	Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe 20 25 Ala Ala Ala Asp Ala Asp 35	Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala 20 25 Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser 35 40 45 Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln 50 55 60 Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr 65 70 75 Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr 85 90 Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Glu Cau 100 105 Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr 115 120 125 <210> 2 2 131 <212> PRT 213> Homo sapiens 10 Ser Leu Ser Phe Gly	Gly Arg Ala Phe Ala Arg Ala Leu Arg Gly Glu Phe Ala Ala Ala Ala Ala Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala Ala Ala Gly Arg Ala Gly His Arg Ser Ala Ala Ala Gly Arg Ala Gly His Arg Ser Ala Ala Ala Ala Ala Ala Ala Gly Ala Ala <th> Cly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser 20 25 30 Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala 35 40 45 Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Glu His Glo Glu Glu Glu Ala Gln Glu His Glo Glu Glu</th>	Cly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser 20 25 30 Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala 35 40 45 Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Glu His Glo Glu Glu Glu Ala Gln Glu His Glo Glu Glu

				100					105					110		
	Ile	Leu	Gly	Phe	Phe	Leu	Val	Phe	Gly	Ser	Asn	Asp	Asp	Phe	Ser	Tr
			115					120					125			
	Gln	Gln	Trp													
5		130														
	<210	3 <2														
	<21	1> 24	12													
	<212	2> PI	RT.													
10	<213	3> Ho	omo s	sapi	ens											
	<400)> 3														
	Met	Ala	Lys	His	Glu	Gln	Ile	Leu	Val	Leu	Asp	Pro	Pro	Thr	Asp	Leu
	1				. 5					10					15	
15	Lys	Phe	Lys	Gly	Pro	Phe	Thr	Asp	Val	Val	Thr	Thr	Asn	Leu	Lys	Leu
				20					25					30		
	Arg	Asn	Pro	ser	Asp	Arg	Lys	Val	Cys	Phe	Lys	Val	Lys	Thr	Thr	Ala
			35					40					45			
	Pro	Arg	Arg	Tyr	Cys	Val	Arg	Pro	Asn	Ser	Gly	Ile	Ile	Asp	Pro	Gly
20		50					55					60				
	Ser	Thr	Val	Thr	Val	Ser	Val	Met	Leu	Gln	Pro	Phe	qaA	Tyr	qaA	Pro
	65					70					75					80
	Asq	Glu	Lys	Ser	ГÄЗ	His	Lys	Phe	Met	Val	Gln	Thr	Ile	Phe	Ala.	Pro
					. 85					90					95	
25	Pro	Asn	Thr	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Gl u	Ala	Lys	Pro	Asp
				100					105					110		
	Glu	Leu	Met	Дsр	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu
			115					120					125			
	Asn	Asp	Lys	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn
30		130					135					140				
	Ala	Ser	Lys	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu
	145					150					155					160
	Asn	Asp	Thr	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Сув	Lув	Arg	Leu	Gln
					165					170					175	
25	A3	C1				_							_		_	

				100					103					130		
	Gly	Leu	Arg	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr
			195		•			200					205			
	Ser	Thr	Ala	Ser	Phe	Arg	qaA	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu
õ		210					215					220				
	Leu	Val	Val	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe
	225					230					235					240
	Ile	Leu														
10	<210)> 4														
	<21	1> 20	54													
	<212	2> P1	RT													
	<213	3> H		apie	ens											
15	<400	0> 4														
	Met	Phe	Val	Pro	Сув	Gly	Glu	Ser	Ala	Pro	Asp	Гел	Ala	Gly	Phe	Thr
	1				5				•	10					15	
	Leu	Leu	Met	Pro	Ala	Val	Ser	Val	Gly	Asn	Val	Gly	Gln	Leu	Ala	Mat
				20					25					30		
20	Asp	Leu	Ile	Ile	Ser	Thr	Leu	Asn	Met	Ser	Lys	Ile	Gly	Tyr	Phe	Tyr
			35					40					45			
	Thr	Asp	Суз	Leu	Val	Pro	Met	Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr	Thr
		50					55					60				
	G1u	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	Leu
25	65					70					75					80
	Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile	Lys
					85					90					95	
	Tyr	Lys	Ser	Lys	Pro	Phe	CAa	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys	Ser
				100	٠				105					110		
30	Ser	Gly	Cys.	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	Gln
			115					120					125			
	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	Thr
		130					135					140				
	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	ГÀа	Ile	Lys	Ser	Leu	Asn	Trp
35	145					150					155					160

	Glu	Glu	Met	Glu	Lys	Ser	Arg	Cys	Ile	Pro	Glu	Ile	Asp	Asp	Ser	Glu
					165					170					175	
	Phe	Сув	Ile	Arg	Ile	Pro	Gly	Gly	Gly	Ile	Thr	Lys	Thr	Leu	Tyr	Asp
				180					185					190		
5	Glu	Ser	Cys	Ser	Lys	Glu	Ile	Gln	Met	Ala	Val	Leu	Leu	Lys	Phe	Val
			195					200					205			
	Ser	Glu	Gly	Asp	Asn	Ile	Pro	Asp	Ala	Leu	Gly	Leu	Val	Glu	Tyr	Leu
		210					215					220				
	Asn	Glu	Trp	Leu	Gln	Ile	Leu	Lys	Pro	Leu	Ser	Asp	Asp	Pro	Thr	Val
10	225					230					235					240
	Ser	Ala	Ser	Arg	Trp	Lys	Ile	Pro	Ser	Ser	Trp	Arg	Leu	Leu	Phe	Gly
					245					250					255	
	Ser	Gly	Leu	Pro	Pro	Ala	Leu	Phe								
				260												
15																
	<210															
	<211															
	<212															
90	<213	3> Ho	omo s	sapie	ens											
20	-400															
	<400	-		•		_	-1	_				_				_
	1	GTÅ	Ser	Arg	Leu 5	ser	GIN	Pro	rne	10	ser	Tyr	116	Thr		PIO
		Gly	ጥኮ፦	۸۱.	-	٧	Dro	210	T 100		N1 n	Dra	Dra	810	15	· D==
25		Gly	1111	20	vro	A_a	PLO	WIG	25	PLU	WTG	PIO	PLO	Ala 30	TAL	PIO
	Glv	Ala	Pro		Ser	Pro	Δla	Glu		Ara	f.an	T.com	T.seq	Thr	C) re	T
	,		35		-			40		9			45		-,5	115
	Ser	Cvs		Val	Leu	Ser	Glv		Glv	Leu	Met	Glv		Gly	Glv	Tvr
		50					55		,			60		1	1	-,-
30	Val	Tyr	Trp	Val	Ala	Arq	Lvs	Pro	Met	Lvs	Met	Glv	Tyr	Pro	Pro	Ser
	65	•	•			70	•			•	75	•	•			80
	Pro	Trp	Thr	Ile	Thr	Gln	Met	Val	Ile	Gly	Leu	Ser	Ile	Ala	Thr	Tro
		-			85					90					95	•
	Gly	Ile	Val	Val	Met	Ala	qeA	Pro	Lys	Gly	Lys	Ala	Tyr	Arg		Val
35				130			-		105	-	•		•	110		

<210> 6 <211> 146 <212> PRT <213> Homo sapiens Met Leu Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu 10 Cys Trp Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala 25 Pro Val Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys 40 Trp Leu Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser 15 55 Asn Phe Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val 70 . 75 Glu Lys Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys 90 85 20 Arg Ser Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala 105 Val Val Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln 120 Arg Gln Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu 25 135 Ser Ile <210> 7 30 <211> 344 <212> PRT <213> Homo sapiens <400> 7 35 Met Asp Phe Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met

	1				5					10					15	
	Gly	Leu	Val	Leu	Ile	Cys	Val	Сув	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly
				20					25					30		
	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	Phe	Ser	Сув	Ile	Ile	Pro	Glu	Суя
5			35					40					45			
	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	Leu	His	Tyr	Leu	Phe	His	Thr	Arc
		50					55					60				
	Asn	His	Thr	Phe	Ile	Val	Leu	His	Leu	Val	Leu	Gln	Gly	Met	Val	Туг
	65					70			•		75					80
10	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	Gly	Tyr	Сув	Gln	Glu	Leu	Glu	Leu
					85					90					95	
	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu
				100					105					110		
	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly	Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys
15			115					120					125			
	Ala		Glu	Leu	Leu	Phe		His	Val	Tyr	Glu		Авр	Glu	Va.l	Met
		130					135	•				140				
		Pro	Lys	Asn	Val	Arg	Cys	Ser	Thr	Cya	_	Leu	Arg	Lys	Pro	
50	145	_				150					155					160
20	Arg	Ser	Lys	His	-	ser	Val	Суз	Asn		Cys	Val	His	Arg		Asp
	****	•••		••••	165					170	a1	•••		•	175	_
	HIS	HIS	cys	180	тър	Val	Asn	Asn		116	GIÀ	Аца	ттр		He	Arg
	Tree	Bho	T 011		Mn	**-1	7	m	185	m b		C		190	m b	
25	171	FIIE	195	116	TYE	Val	Leu	200	Leu	THE	Ата	261	205	Ala	THE	val
20	Ala	T 3 🕳		Sar	Thr	Thr	Pha		17al	Wie	Tau	Val		Wat	S.,-	7.00
		210	141	361	****	1411	215	Dea	Vul	nis	Deu	220	VQI	Mec	Ser	мар
	Leu		Gln	Glu	Thr	Tyr		Asn	Asp	Leu	Glv		ī,eu	His	Va1	Net
	225	-,-				230					235					240
30	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tvr	Leu	Phe		Thr	Phe	Pro	Ara	
	•				245			-4-		250					255	
	Val	Phe	Met	Leu	Gly	Phe	Val	Val	Val	Leu	Ser	Phe	Leu	Leu	Gly	Glv
				260	•				265					270	•	1
	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	Ala	Ala	Thr	Asn	Gln	Thr	Thr	Asn
35			275					280					285			

Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val 295 Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser 310 315 His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro 325 330 Cys His Glu Arg Lys Lys Gln Glu 340 10 <210> 8 <211> 97 <212> PRT <213> Homo sapiens 15 <400> 8 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp 5 · 10 Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val 20 25 20 Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser 40 Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu 55 Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu 70 25 Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr Met 30 <210> 9 <211> 124 <212> PRT <213> Homo sapiens <400> 9

	Met	Ala	Thr	Ser	Ser	Met	Ser	Lys	Gly	Cys	Phe	Val	Phe	Lys	Pro	As
	1				5			-		10					15	
	Ser	Lys	Lys	Arg	Lys	Ile	Ser	Leu	Pro	Ile	Glu	Asp	туr	Phe	Asn	Ly
				20					25					30		
5	Gly	ГÀв	Asn	Glu	Pro	Glu	Asp	Ser	Lys	Leu	Arg	Phe	Glu	Thr	Tyr	Gl
			35					40					45			
	Leu	Ile	тгр	Gln	Gln	Met	Lys	Ser	Glu	Asn	Glu	Arg	Leu	Gln	Glu	Glu
		50					55					60				
			Lys	Asn	Leu	Phe	Asp	Asn	Leu	Ile	Glu	Phe	Leu	Gln	Lys	Se
10	65					70					75					80
	His	Ser	Gly	Phe	Gln	Lys	Asn	Ser	Arg	Asp	Leu	Gly	Gly	Gln	Ile	Lys
					85		•			90					95	
	Leu	Arg	Glu		Pro	Thr	Ala	Ala		Val	Leu	Gly	Ile		Ala	Туз
		_		100					105					110		
15	Val	Cys	Ser	Cys	Met	His	Leu	•	Val	Phe	Arg	Phe				
			115					120								
	~21	0> 10	^													
		1> 3:														
20		2> P1														
			omo i	sania	ens.											
	<40	0> 10	0													
	Met	Ala	Glu	Leu	Pro	Gly	Pro	Phe	Leu	Сув	Gly	Ala	Leu	Leu	Gly	Ph∈
25	1				5					10					15	
	Leu	Суз	Leu	Ser	Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro	Thr	Glu	Pro
				20					25					30		
	Leu	Ser	Thr	Pro	Leu	Gly	Lys	Thr	Ala	Glu	Leu	Thr	Сув	Thr	Tyr	Ser
			35					40					45			
30	Thr	Ser	Val	Gly	Asp	Ser	Phe	Ala	Leu	Glu	Trp	Ser	Phe	Val	Gln	Pro
		50					55					60				
	Gly	Lys	Pro	Ile	Ser	Glu	Ser	His	Pro	Ile	Leu	Tyr	Phe	Thr	Asn	Gly
	65					70					75					80
	His	Leu	Tyr	Pro	Thr	Gly	Ser	Lys	Ser	Lys	Arg	Val	Ser	Leu	Leu	Gln
35					85					90					95	

	Asn	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His
				100					105					110		
	Pro	Ser	Asp	Thr	Gly	Thr	Tyr	Leu	Cys	Gln	Val	Asn	Asn	Pro	Pro	Asp
			115					120					125			
5	Phe	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro
		130					135					140				
	Pro	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly
	145					150					155					160
	Ser	Thr	Ala	Leu	_	Cys	Ser	Ser	Ser		Gly	Ala	Pro	Lys	Pro	Val
10					165					170					175	
	Tyr	Asn	Txp		Arg	Leu	Gly	Thr		Pro	Thr	Pro	Ser		Gly	Ser
				180					185					190		
	Met	Val	Gln	Авр	Glu	Val	Ser	_	Gln	Leu	Ile	Leu		Asn	Leu	Ser
	_		195	_			_	200	_				205			
15	Leu		Ser	Ser	GIY	Thr		Arg	Cys	Vai	A_a		Asn	GIn	Met	Gly
	o	210				•	215	•		1	mL_	220	D	.	- 1-	٠.
	225	ATA	Ser	Cys	GIU	230	Thr	ren	261	Val	235	GIU	PIO	ser	GIN	G19 240
		V-1	Ala	<i>a</i> 1	81.		710	<i>0</i> 1	ttal	Lau		Glar	V-1	Tan	Ť ou	
20	ALG	Val	ита	GIŞ	245	Leu	116	GIĄ	var	250	Dou	Grà	VAL	Deu	255	Hen
	Ser	Val	Ala	Δla		Cvs	Len	Val	Ara		Gln	Lvs	Glu	Ara		T.vq
	552			260		-,-			265			-,-		270	٠.,	_,5
	Lvs	Pro	Lys		Thr	Tvr	Glv	Glv	-	Asp	Leu	Arq	Glu		Ala	Ile
			275			-1-		280		•			285			
25	Ala	Pro	Gly	Ile	Ser	Glu	His	Thr	Cys	Met	Arg	Ala	Asp	Ser	Ser	Lys
		290	•				295		•		-	300	Ī			•
	Gly	Phe	Leu	Glu	Arg	Pro	Ser	Ser	Ala	Ser	Thr	Val	Thr	Thr	Thr	Lys
	305					310					315					320
	Ser	Lys	Leu	Pro	Met	Val	Val									
30					325											
	<210)> 11	Ļ													
	<21	l> 37	75													
	<212	?> Dî	ĮA.													
₹5	<211	3> Hc	mo s	anie	200											

	<400> 11						
	atggccaagt	acctggccca	gatcattgtg	atgggcgtgc	aggtggtggg	cagggccttt	60
	geaegggeet	tgcggcagga	gtttgcagcc	ageegggeeg	cagctgatgc	ccgaggacge	120
5 .	gctggacacc	ggtctgcagc	cgcttccaac	eteteeggee	tcagcctcca	ggaggcacag	180
	cagattotoa	acgtgtccaa	gctgagccct	gaggaggtec	agaagaacta	tgaacactta	240
	tttaaggtga	atgataaatc	cgtgggtggc	tccttctacc	tgcagtcaaa	ggtggtccgc	300
	gcaaaggagc	gcctggatga	ggaactcaaa	atccaggccc	aggaggacag	agaaaaaggg	360
	cagatgcccc	atacg					379
10							
	<210> 12						
	<211> 393						
	<212> DNA						
	<213> Homo	sapiens					
15							
	<400> 12						
	atggcaggca	tcaaagcttt	gattagtttg	teetttggag	gageaategg	actgatgttt	60
	ttgatgcttg	gatgtgccct	tccaatatac	aacaaatact	ggcccctctt	tgttctattt	120
	ttttacatcc	tttcacctat	tccatactgc	atagcaagaa	gattagtgga	tgatacagat	180
20	gctatgagta	acgcttgtaa	ggaacttgcc	atctttctta	caacgggcat	tgtcgtgtca	240
	gettttggac	teectattgt	atttgccaga	gcacatctga	ttgagtgggg	agcttgtgca	300
	cttgttctca	caggasacac	agtcatcttt	gcaactatac	taggettttt	cttggtcttt	360
	ggaagcaatg	acgacttcag	ctggcagcag	tgg			393
						•	
25	<210> 13						
	<211> 726						
	<212> DNA						
	<213> Homo	sapiens					
20							
30	<400> 13						
		acgagcagat					60
		atgtagtcac					120
		tgaagactac					180
	attgacccag	ggtcaactgt	gactgtttca	gtaatgctac	agccctttga	ctatgatccg	240
35	aatgaaaaga	gtaaacacaa	atttataata	cadacaattt	ttoctccacc	asacacttcs	300

	gatatggaag	ctgtgtggaa	agaggcaaaa	cctgatgaat	tastggattc	caaattgaga	360
	tgcgtatttg	aaatgcccaa	tgaaaatgat	aaattgaatg	atatggaacc	tagcaaagct	420
	gttccactga	atgcatctaa	gcaagatgga	cctatgccaa	aaccacacag	tgtttcactt	480
	aatgataccg	aaacaaggaa	actaatggaa	gagtgtaaaa	gacttcaggg	agaaatgatg	540
5	aagctatcag	aagaaaatcg	gcacctgaga	gatgaaggtt	taaggctcag	aaaggtagca	600
	catteggata	aacctggatc	aacctcaact	gcatccttca	gagataatgt	caccagtest	660
	cttccttcac	ttettgttgt	aattgcagcc	attttcattg	gattettet	agggaaatto	720
	atcttg						726
10	<210> 14						
	<211> 792						
	<212> DNA						
	<213> Homo	sapiens					
15	<400> 14						
	atgttcgttc	cctgcgggga	gteggeeeee	gacettgeeg	gottoaccct	cctaatgcca	60
	gcagtatctg	ttggaaatgt	tggccagctt	gcaatggatc	tgattatttc	tacactgaat	120
	atgtctaaga	ttggttactt	ctataccgat	tgtcttgtgc	caatggttgg	aaacaatcca	180
	tatgcgacca	cagaaggaaa	ttcaacagaa	cttagcataa	atgctgaagt	gtattcattg	240
20	ccttcaagaa	agetggtgge	tctacagtta	agatccattt	ttattaagta	taaatcaaag	300
	ccattctgtg	aaaaactgct	ttcctgggtg	aaaagcagtg	gctgtgccag	agtcattgtt	360
	ctttcgagca	gtcattcata	tcagcgtaat	gatetgeage	ttcgtagtac	tecetteegg	420
	tacctactta	caccttccat	gcaaaaaagt	gttcaaaata	aaataaagag	ccttaactgg	480
	gaagaaatgg	aaaaaagccg	gtgcattcct	gaaatagatg	attccgagtt	ttgtateege	540
25	attccgggag	gaggtateae	aaaaacactc	tatgatgaaa	gctgttctaa	agasatccaa	600
	atggeagtte	tgctgaaatt	tgtttcagaa	ggggacaaca	tcccagatgc	attaggtett	660
	gttgagtatc	ttaatgagtg	gcttcagata	ctcaaaccac	ttagegatga	ccccacagta	720
	tctgcctcac	ggtggaaaat	accaagttct	tggagattac	tctttggcag	tggtattacc	780
	cctgcacttt	te					792
30							
	<210> 15						
	<211> 336				•		
	<212> DNA		•				
	<213> Homo	sapiens					
0.5							

35

	<400> 15						
	atggggtete	ggttgtccca	gccttttgag	tcctatatca	ctgcgcctcc	cggtaccgcc	6
	geegegeeeg	ccaaacctgc	gcccccagct	acacccggag	cgccgacctc	cccagcagaa	120
	caccgcctgt	tgaagacetg	ctggagctgt	egegtgettt	ctgggttggg	getgatgggg	180
5	gegggegggt	acgtgtactg	ggtggcacgg	aagcccatga	agatgggata	cccccgagt	240
	ccatggacca	ttacgcagat	ggtcatcggc	ctcagcattg	ccacctgggg	tategttgte	300
	atggcagacc	ccaaagggaa	ggectacege	gttgtt			336
	•						
	<210> 16						
10	<211> 438						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 16						
15	atgettgegg	gtgccgggag	gcctggcctc	ccccagggcc	gecaectetg	ctggttgata	60
	tgtgctttca	ccttaaagct	ctgccaagca	gaggeteeeg	tgcaggaaga	gaagetgtea	120
	gcaagcacct	caaatttgcc	atgetggetg	gtggaagagt	ttgtggtage	agaagagtgc	180
	tctccatgct	ctastttccg	ggctaaaact	acccctgagt	gtggtcccac	aggatatgta	240
	gagaaaatca	catgeagete	atctaagaga	aatgagttca	aaagctgccg	ctcagetttg	300
20	atggaacaac	gcttattttg	gaagttegaa	ggggctgtcg	tgtgtgtgge	cctgatcttc	360
	gcttgtcttg	tcatcattcg	tcagcgacaa	ttggacagaa	aggetetgga	aaaggtccgg	420
	aagcaaatcg	agtccata					438
	<210> 17						
25	<211> 1032						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 17						
30	atggactttc	tggtcetett	cttgttctac	etggettegg	tgctgatggg	tettgttett	60
	atctgcgtct	gctcgaaaac	ccatagettg	aaaggeetgg	ccaggggagg	agcacagata	120
	ttttcctgta	taattccaga	atgtcttcag	agageegtge	atggattget	tcattacctt	180
	ttccatacga	gaaaccacac	cttcattgtc	ctgcacctgg	tcttgcaagg	gatggtttat	240
	actgagtaca	cctgggaagt	atttggctac	tgtcaggagc	tggagttgtc	cttgcattac	300
35	cttettetge	cctatctgct	gctaggtgta	aacctgtttt	ttttcaccct	gacttgtgga	360

	accaatcctg	gcattataac	aaaagcaaat	gaattattat	ttcttcatgt	ttatgaattt	420
	gatgaagtga	tgtttccaaa	gaacgtgagg	tgctctactt	gtgatttaag	gaaaccagct	480
	cgatccaagc	actgcagtgt	gtgtaactgg	tgtgtgcacc	gtttcgacca	teactgtgtt	540
	tgggtgaaca	actgcatcgg	ggcctggaac	atcaggtact	tectcateta	cgtcttgacc	600
5	ttgacggcct	cggctgccac	cgtcgccatt	gtgagcacca	cttttctggt	ccacttggtg	660
	gtgatgtcag	atttatacca	ggagacttac	ategatgace	ttggacacct	ccatgttatg	720
	gacacggtct	ttcttattca	gtacctgttc	ctgacttttc	cacggattgt	cttcatgctg	780
	ggetttgteg	tggttctgag	cttectectg	ggtggctacc	tgttgtttgt	cctgtatctg	840
	geggeeacea	accagactac	taacgagtgg	tacagaggtg	actgggcctg	gtgccagegt	900
10	tgtccccttg	tggcctggcc	tccgtcagca	gageceeaag	tecaceggaa	cattcactcc	960
	catgggcttc	ggagcaacct	tcaagagatc	tttctacctg	cctttccatg	tcatgagagg	1020
	aagaaacaag	aa ·					1032
	<210> 18		•				
1 5	<211> 291						
	<212> DNA		*			•	
	<213> Homo	sapiens	•				
	<400> 18						
20	atgactaaaa	agaagcggga	gaatctgggc	gtegetetag	agatcgatgg	gctagaggag	60
	aagctgtccc	agtgteggag	agacctggag	geegtgaaet	ccagactcca	cagccgggag	120
	ctgagcccag	aggccaggag	gtccctggag	aaggagaaaa	acagcetaat	gaacaaagcc	180
	tecaactacg	agaaggaact	gaagtttctt	cggcaagaga	accggaagaa	catgctgctc	240
	tctgtggcca	tetttatect	cctgacgctc	gtctatgcct	actggaccat	g	291
25							
	<210> 19						
	<211> 372						
	<212> DNA						
	<213> Homo	sapiens					
30							
	<400> 19						
	atggctacgt	cctcgatgtc	taagggttgc	tttgttttta	agccaaactc	caaaaagaga	60
	aagatetete	tgccaataga	ggactatttt	aacaaaggga	aaaatgagcc	tgaggacagt	120
	aagettegat	togaaactta	tcagttgata	tggcagcaga	tgaaatetga	aaatgagega	180
35	ctacaagagg	aattaaataa	aaacttgttt	gacaatctga	ttgaatttet	gcaaaaatca	240

	cattetggat	tccagaagaa	ttcaagagac	ttgggeggte	aaataaaact	cagagaaatt	300
	ccaactgctg	ctcttgttct	tggtatatat	gcgtatgttt	gttcatgcat	geatetetgt	360
	gtatttcgtt	tt					372
5	<210> 20						
	<211> 981						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 20				•		
	atggccgagc	taacggggac	cttctctgc	ggggccctgc	taggcttcct	gtgcctgagt	60
	gggetggeeg	tggaggtgaa	ggtacccaca	gagccgctga	gcacgcccct	ggggaagaca	120
	gccgagctga	cctgcaccta	cagcacgtcg	gtgggagaca	gettegeeet	ggagtggagc	180
	tttgtgcagc	ctgggaaacc	catctctgag	teccatecaa	tectgtactt	caccaatggc	240
15	catctgtatc	caactggttc	taagtcaaag	egggtcagce	tgcttcagaa	ccccccaca	300
	gtgggggtgg	ccacactgaa	actgactgac	gtccacccct	cagatactgg	aacctacctc	360
	tgccaagtca	acaacccacc	agatttctac	accaatgggt	tggggctaat	caaccttact	420
	gtgctggttc	ccccagtaa	tecettatge	agtcagagtg	gacaaacctc	tgtgggagge	480
	tctactgcac	tgagatgcag	ctcttccgag	ggggctccta	agccagtgta	caactgggtg	540
20	cgtcttggaa	cttttcctac	accttctcct	ggcagcatgg	ttcaagatga	ggtgtetgge	600
	cagctcattc	tcaccaacct	ctccctgacc	tectegggea	cctaccgctg	tgtggccacc	660
	aaccagatgg	gcagtgcatc	ctgtgagctg	accetetetg	tgaccgaacc	ctcccaaggc	720
	cgagtggccg	gagetetgat	tggggtgete	ctgggcgtgc	tgttgctgtc	agttgctgcg	780
	ttctgcctgg	tcaggttcca	gaaagagagg	gggaagaagc	ccaaggagac	atatgggggt	840
25	agtgaccttc	gggaggatgc	categetect	gggatetetg	agcacacttg	tatgaggget	900
	gattctagca	aggggttcct	ggaaagaccc	tegtetgeea	geaccgtgac	gaccaccaag	960
	tccmagetee	ctatggtcgt	g				981
	<210> 21						
30	<211> 510						
	<212> DNA						
	<213> Homo :	sapiens					
	<220>						
	<221> CDS						
35	<222> (66).	(443)					

	<400> 21	
	acgettgate ceeggeegeg gggeeaggaa gteggagttt gageecegga ggeagagegg	60
	ctgcc atg gcc aag tac ctg gcc cag atc att gtg atg ggc gtg cag gtg	110
5	Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val	
	1 5 10 15	
	gtg gge agg gee tit gea egg gee tig egg eag gag tit gea gee age	158
	Val Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser	
	20 25 30	
10	egg gee gea get gat gee ega gga ege get gga eae egg tet gea gee	206
	Arg Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala	
	35 40 45	
	get tee aac etc tee gge etc age etc cag gag gea cag cag att etc	254
	Ala Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu	
15	50 55 60	
	ame gtg tee amg etg mge eet gmg gmg gte emg mmg mae tat gmm eme	302
	Asn Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His	
	65 70 75	
	tta ttt aag gtg aat gat aaa too gtg ggt ggo too tto tac etg cag	350
20	Leu Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln	
	80 85 90 95	
	tca aag gtg gtc cgc gca aag gag cgc ctg gat gag gaa ctc aaa atc	398
	Ser Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile	
05	100 105 110	
25	cag gec cag gag gac aga gaa aaa ggg cag atg eec cat acg tgaetgete	450
	Gln Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr	
	115 120 125	
	getecceecg eccaeceege egectetaat ttatagettg gtaataaatt tettttetge	510
30	<210> 22	
00	<211> 697	
	<212> DNA	
	<213> Homo sapiens	
	<220>	•
35	<221> CDS	

<222> (104)...(499)

	<400> 22	
	actteegggt gttgtetgge egeegtageg egtettgggt eteceggetg eegetgetge	60
5	egeogeogeo tegggtegtg gageoaggag egaogtoaco goo atg goa ggo ato	115
	Met Ala Gly Ile	
	1	
	ass got ttg att agt ttg too ttt ggs ggs gcs atc ggs ctg atg ttt	163
	Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile Gly Leu Met Phe	
10	5 10 15 20	
	ttg atg ett gga tgt gee ett eea ata tae aae aaa tae tgg eee eto	211
	Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys Tyr Trp Pro Leu	
	25 30 35	
	ttt gtt cta ttt ttt tac atc ctt tca cct att cca tac tgc ata gca	259
15	Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro Tyr Cys Ile Ala	
	40 45 50	
	aga aga tta gtg gat gat aca gat gct atg agt aac gct tgt aag gaa	307
	Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn Ala Cys Lys Glu	
	55 60 65	
20	ett ged atc ttt ett aca acg ggd att gtd gtg tca get ttt gga etc	355
	Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser Ala Phe Gly Leu	
	70 75 80	
	cct att gta ttt gcc aga gca cat ctg att gag tgg gga gct tgt gca	403
	Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp Gly Ala Cys Ala	
25	85 90 95 100	
	ott gtt etc aca gga aac aca gtc atc ttt gca act ata eta gge ttt	451
	Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe	
	105 110 115	
	tto ttg gto ttt gga ago aat gao gao tto ago tgg cag tag tggaa	500
30	Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp	
	120 125 130	
	aagaaattac tgaactattg tcaaatggac ttcctgtcat ttgttggcca ttcacgcaca	560
	caggagatgg ggcagttaat gctgaatggt atagcaagcc tettgggggt attttaggtg	620
	ctcccttctc acttttattg taagcatact attttcacag agacttgctg aaggattaaa	680
35	aggattttct cttttgg	697

	<210> 23	
	<211> 1619	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (287)(1015)	
10	<400> 23	
	gcagaggccg tcacgtgggt cgccgaggct cgcaagtgcg cgtggccgtg gcggctggtg	60
	tggggttgag teagttgtgg gaeceggage tgetgaecea gegggtggee caecgaaceg	120
	gtgacacage ggcaggcgtt agggcteggg ageegegage etggeetegt eetagagete	180
	ggeegageeg tegeegeegt egteeceege ecceagteag eaaacegeeg eegegggege	240
15	geocecgete tgegetgtet etcegatgge gteegeetea ggggee atg geg aag	299
	Met Ala Lys	
	1	
	cac gag cag ate etg gte ete gat ceg cee aca gae ete aaa tte aaa	34:
20	His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu Lys Phe Lys 5 10 15	
20	5 10 15 ggc ccc ttc aca gat gta gtc act aca aat ctt aaa ttg cga aat cca	201
	Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu Arg Asn Pro	391
	20 25 30 35	
	tog gat aga ama gtg tgt tto ama gtg amg act acm gcm cot ogg	439
25	Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala Pro Arg Arg	132
	40 45 50	
	tac tgt gtg agg ccc aac agt gga att att gac cca ggg tca act gtg	487
	Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly Ser Thr Val	
	55 60 65	
30	act gtt tca gta atg cta cag ccc ttt gac tat gat ccg aat gaa aag	535
	Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro Asn Glu Lys	
	70 75 80	
	agt aaa cac aag tit atg gta cag aca att tit get eea eea aac act	583
	Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro Pro Asn Thr	
35	85 90 95	

	tca	gat	atg	gaa	gct	gtg	tgg	asa	gag	gca	aaa	act	gat	gaa	tța	atg	631
	Ser	qeA	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp	Glu	Leu	Met	
	100					105					110					115	
	gat	tcc	aaa	ttg	aga	tgc	gta	ttt	gaa	atg	ccc	aat	gaa	aat	gat	aaa	679
5	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu	Asn	Asp	Lys	
					120					125					130		
	ttg	aat	gat	atg	gaa	cct	agc	аад	gct	gtt	cca	ctg	aat	gca	tct	aag	727
	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn	Ala	Ser	Lys	
				135					140					145			
10	caa	gat	gga	cct	atg	cca	aaa	cca	cac	agt	gtt	tca	ctt	aat	gat	acc	775
	Gln	Asp	Gly	Pro	Met	Pro	Lув	Pro	His	Ser	Val	Ser	Leu	Asn	Asp	Thr	
			150					155					160				
	gaa	aca	agg	aaa	cta	atg	gaa	gag	tgt	aaa	aga	ctt	cag	gga	gaa	atg	823
	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln	Gly	Glu	Met	
15		165					170					175					
	atg	aag	cta	tca	gaa	gaa	aat	cgg	cac	ctg	aga	gat	gaa	ggt	tta	agg	871
	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu	Gly	Leu	Arg	
	180					185					190					195	
	ctc	aga	aag	gta	gca	cat	tcg	gat	488	act	gga	tca	acc	tca	act	gca	919
2C	Leu	Arg	ГÀЗ	Va_	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr	Ser	Thr	Ala	
					200					205					210		
	tcc	ttc	aga	gat	aat	gtc	acc	agt	cct	ctt	cct	tca	ctt	ctt	gtt	gta	967
	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu	Leu	Val	Val	
				215					220					225			
25	att	gca	gcc	att	ttc	att	gga	ttc	ttt	cta	9 99	aaa	ttc	atc	ttg		1012
	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe	Ile	Leu		
			230					235					240				
	taga	gtga	ag c	atgo	agag	rt go	tgtt	tctt	ttt	tttt	ttt	ttct	cttg	ac c	agaa	aaa	1070
	gatt	tgtt	ta c	ctac	catt	t ca	ttgg	tagt	atg	gece	acg	gtga	ccat	tt t	tttg	tgtgt	1130
30	acag	cgtc	at a	tagg	cttt	g cc	ttta	atga	tct	ctta	egg	ttag	2222	CAC	aata	aaaac	1190
	aaac	tgtt	cg g	ctac	tgga	c ag	gttg	tata	tta	ccag	atc	atca	ctag	ca g	atgt	cagtt	1250
	gcac	attg	ag t	ccti	tatg	a aa	ttca	taaa	taa	agaa	ttg	ttct	ttet	tt g	tggt	tttaa	1310
							-	_		_						aattt	
	tatc	tgtt	gc t	gtta	cctc	t tg	aaat	atga	ttt	attt	aga	ttgc	tast	cc c	actc	attca	1430
35	ggaa	atge	ca a	gagg	tatt	c ct	tggg	gaaa	tgg	tgcc	tct	taca	gtgt	aa a	tttt	teete	1490

	ctttaccttt gctaatatca tggcagaatt tttcttatcc cttgtgaggc agttgttgac	1550
	tgagtttttc atccttacaa tcctgtccca tggtatttaa cataaaaaaa aataaaactg	1610
	ttaacagat	1619
_		
5	<210> 24	
	<211> 1066	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
10	<221> CDS	
	<222> (65)(859)	
	<400> 24	
	ettettgetg ecetegttet tgeeggggee geggttagte eetgetggee aeeeeaetge	60
15	gace atg tte gtt eec tge ggg gag teg gee eec gae ett gee gge tte	109
	Met Phe Val Pro Cys Gly Glu Ser Ala Pro Asp Leu Ala Gly Phe	
	1 5 10 15	
	acc etc eta atg eca gea gta tet gtt gga aat gtt gge eag ett gea	157
00	Thr Leu Leu Met Pro Ala Val Ser Val Gly Asn Val Gly Gln Leu Ala	
20	20 25 30	
	atg gat ctg att att tet aca etg aat atg tet aag att ggt tae tte	205
	Met Asp Leu Ile Ile Ser Thr Leu Asn Met Ser Lys Ile Gly Tyr Phe	
	35 40 45	
0.5	tat acc gat tgt ctt gtg cca atg gtt gga aac aat cca tat gcg acc	253
25	Tyr Thr Asp Cys Leu Val Pro Met Val Gly Asn Asn Pro Tyr Ala Thr	
	50 55 60	
	aca gaa gga aat toa aca gaa ett age ata aat get gaa gtg tat tea	301
	Thr Glu Gly Asn Ser Thr Glu Leu Ser Ile Asn Ala Glu Val Tyr Ser	
90	65 70 75	
30	ttg cct tca aga aag ctg gtg gct cta cag tta aga tcc att ttt att	349
	Leu Pro Ser Arg Lys Leu Val Ala Leu Gln Leu Arg Ser Ile Phe Ile	
	80 85 90 95	
	and tat and too and con the test game and one of the test test get and	397
0.5	Lys Tyr Lys Ser Lys Pro Phe Cys Glu Lys Leu Leu Ser Trp Val Lys	
35	100 105 110	

	age	agt	ggc	tgt	gcc	aga	gto	att	gtt	ctt	tcg	age	agt	cat	tca	tat	445
	Sor	Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	
				115					120					125			
						cag											493
5	Gln	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	
	•		130					135					140				
						aaa											541
	Thr		Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	
		145					150					155					
10						aaa											589
		Glu	Glu	Met	Glu	Lys	Ser	Arg	Суя	Ile		Glu	Ile	Asp	Asp	Ser	
	160					165					170					175	
						att											637
15	GIU	Pne	Сув	He		Ile	Pro	Gly	Gly		Ile	Thr	Lys	Thr		Tyr	
10	~= +				180					185					190		
						aaa											685
	vab	GIU	Ser	195	ser	Lys	GIU	TIE	200	Met	Ala	vai	Leu		Lys	Phe	
	att	tca	an a		C20	aac	•+=							205		.	
20						Asn											733
			210	- 1	nap	. TOI	110	215	ωģ	nia	Leu	Gly	220	Val	GIU	туг	
	ctt	aat		taa	ctt	cag	ata		222	CCR	ctt	200		an.	200	•	781
						Gln						-	-	-			/61
		225					230		-,-			235					
25	gta	tct	gee	tca	cdd	tgg	aaa	ata	cca	agt	tct	taa	aga	tta	ctc	ttt	829
						Trp											
	240					245	•				250	-	_			255	
	gge	agt	ggt	ctt	ccc	cct	gca	ctt	ttc	tgat	ctaa	tt t	ctgt	ttt	it ac	et	880
	Gly	Ser	Gly	Leu	Pro	Pro	Ala	Leu	Phe								
30					260												
	tata	CCCB	iaa a	cact	tact	a cc	aaca	cage	tgt	taaa	cat	tota	taca	aa a	aaat	tgtat	940
	gate	tggt	at t	agge	aatt	a ct	ttca	cagt	aaa	tatc	aaa	gana	aaag	at t	aagg	g t ctc	1000
	tttg	ccat	gc t	tttc	atca	t at	gcac	caaa	tgt	aaat	ttt	gtac	aata	aa a	ittt	attte	1060
	ctaa	gt															1066
35																	

	2105 25	
	<211> 618	
	<212> DNA	
	<213> Homo sapiens	
5	<220>	
	<221> CDS	
	<222> (54)(392)	
	(00),(052)	
	<400> 25	
10	gtttacgcca gtttgaacca aagacgccca aggttgaggc cgagttccag agc atg	-
		5
	Mat .	
	ggg tet egg ttg tee cag eet ttt gag tee tat ate act geg eet eee	104
15	Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro Pro 5 10 . 15	
10		
	ggt acc gec gec gec gec aaa eet geg eec eea get aca eec gga	152
	Gly Thr Ala Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro Gly 20 25 30	
20	geg ceg acc tee eea gea gaa eac ege etg ttg aag acc tge tgg age	200
20	ALa Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp Ser	
	tgt cgc gtg ctt tct ggg ttq ggg ctg atg ggg ggg ggc ggg tac gtg	248
	Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr Val	
05	50 55 60 65	
25	tac tgg gtg gca cgg aag ccc atg aag atg gga tac ccc ccg agt cca	296
	Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser Pro	
	70 75 80	
	tgg acc att acg cag atg gtc atc ggc ctc agc att gcc acc tgg ggt	344
00	Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp Gly	
30	85 90 95	
	atc gtt gtc atg gca gac ccc aaa ggg aag gcc tac cgc gtt gtt t	390
	Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val	
	100 105 110	
	gaaagtacca ccagtgaato tgtcttetgt etetgteeet tteecegtga cacacacage	450
35	aggcatggaa tttaatgggt gttctggaca gacacttgta catggacaga catcactact	510

	gtggatacta caagactgag aagaaaatcg tatgttgtca ttctctggct atggagtgtt	570
	tgtggcette acagatttea caggaaceaa taaatccote agagaagt	618
	•	
	<210> 26	
5	<211> 1021	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
10	<222> (413)(853)	
	<400> 26	
	aagactataa geeecagegg gegaegaeeg aacgeeeeeg ggaacaeegg geeecgaget	60
	eggteeegeg eeegaggate eteeaegggg etagatgget gegteggggg egggagegga	120
15	ggtgageggg egetagggee gegageeeee geeggeeett eeteeagege eetgeggaee	180
	cegeagaagg egetegeete eetageeege aaaaacatat egattittet egetgtggea	240
•	acggggacgt cctgatagat cctctgctcc aataggcaac tccggccttc cctgccctga	300
	cetggaacet etgggagge tgeagagtaa gtgeegeete tgegeteega eggaggeaeg	360
90	aggeetgtgg agtaggteee tetgtteega caggtgegae aettggeget ee atg ett	418
20	Met Leu	
	1	
	geg ggt gee ggg agg eet gge ete eee eag gge ege eae ete tge tgg	466
	Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu Cys Trp	
25	5 10 15	
20	ttg etc tgt get tte acc tta aag etc tge caa gea gag get eee gtg	514
	Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala Pro Val	
	20 25 30	
	cag gaa gag aag etg tea gea age ace tea aat ttg eea tge tgg etg	562
30	Gin Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys Trp Leu 35 40 45 50	
50		
	gig gaa gag tit gig gia goa gaa gag igo tot coa igo tot aat ito	610
	Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser Asn Phe	
	55 60 65	
35	egg get aaa act ace eet gag tgt ggt eee aca gga tat gta gag aaa Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val Glu Lys	658
170	ALS ALS LIE THE PIO GIU LVS GIV PIO THE GIV TVF VALGIN LVS	

	70 75	80
	atc aca tgc agc tca tct aag aga aat gag ttc aaa agc	tge ege tea 706
	Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser	Cys Arg Ser
	85 90 95	
5	get tig aig gaa caa ege tia tit igg aag tie gaa ggg	get gte gtg 754
	Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly	Ala Val Val
	100 105 110	
	tgt gtg gee etg ate tte get tgt ett gte ate att egt	cag cga caa 802
	Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg	Gln Arg Gln
10	115 120 125	130
	ttg gac aga aag got otg gaa aag gto ogg aag caa ato	gag tee ata 850
	Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile	Glu Ser Ile
	135 140	145
	tagetacatt ceaccettgt atcetgggts ttagagaces tateteag	ac agtgaaagtg 910
15	aaatggactg attigcactc tiggitetti ggageetigi ggiggaat	ce cetttteece 970
	atcttcttct ttcagatcat taatgagcag aataaaaaga gtaaaatg	gt t 1021
	<210> 27	
	<211> 1432	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (331)(1365)	
25		
	<400> 27	
	ategegeeeg ggaggegeeg gageeeageg getggeggge egeegtee	ca coccacctc 60
	geoogagtee ggggeggeee eggtgteeee teegageetg etgeacte	ca cgtccccta 120
	ccagggctcc ageccccagg gaaatctccg accaggcccg cccaggag	cc agatccaggc 180
30	teetggaaga accatgteeg geagetactg gteatgeeag geacacaet	tg ctgcccaaga 240
	ggagetgetg tttgaattat etgtgaatgt tgggaagagg aatgeeag	ag atgaaggatg 300
	assattaccc saccasgegs satctgcagg atg gac ttt ctg gtc	ctc ttc ttg 354
	Met Asp Phe Leu Val	Leu Phe Leu
	1 5	
35	tte tae etg get teg gtg etg atg ggt ett gtt ett ate t	ge gte tge 402

		Phe	Tyr	Leu	Ala	Ser	Val	Leu	Met	Gly	Leu	Val	Leu	Ile	Суз	Val	Сув	
			10					15					20					
						agc										-		450
			ràs	Thr	His	Ser	Leu	Lys	Gly	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	
	5	25					30					35					40	
		ttt	tcc	tgt	ata	att	cca	gaa	tgt	ctt	cag	aga	gcc	gtg	cat	gga	ttg	498
		Phe	Ser	Суз	Ile	Ile	Pro	Glu	Суѕ	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	
						45					50					55		
						ttc									-	-		546
,	10	Leu	His	Tyr		Phe	His	Thr	Arg		His	Thr	Phe	Ile		Leu	His	
					60					65					70			
						999									-	-		594
		rea	var	75	GIN	Gly	Met	Val	Tyr 80	Thr	Glu	Tyr	Thr	-	Glu	Val	Phe	
1	15	aac	tac		car	gag	at a	727	-	ton	++~	ast	***	85		 -		642
•						Glu										-		042
		,	90	-,.	01	GIU	пеп	95	пец	Jer	Dou	1113	100	Leu	nen	Deu	PIO	
		tat	etq	ctq	cta	qqt	qta		cta	ttt	ttt	tte		cta	act	tot	gga	690
			-	-		Gly	-		-					•				
2	20	105				•	110					115					120	
		acc	aat	cct	ggc	att	ata	aca	aaa	gca	aat	gaa	tta	tta	ttt	ctt	cat	738
		Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His	
						125					130					135		
		gtt	tat	gaa	ttt	gat	gaa	gtg	atg	ttt	cca	aag	aac	gtg	agg	tge	tet	786
2	25	Val	Tyr	Glu	Phe	Ąsp	Glu	Val	Met	Phe	Pro	Lys	Asn	Val	Arg	Cys	Ser	
					140					145					150			
		act	tgt	gat	tta	agg	aaa	cca	gct	cga	tcc	aag	cac	tgc	agt	gtg	tgt	834
		Thr	Сув	Asp	Leu	Arg	Lys	Pro	Ala	Arg	Ser	Lys	His	Сув	Ser	Val	Сув	
				155					160					165				
í	30	aac	tgg	tgt	gtg	cac	cgt	ttc	gac	cat	cac	tgt	gtt	tgg	gtg	aac	aac	882
	•	Asn		Сув	Val	Nis	Arg		Asp	His	His	CAa		Trp	Val	Asn	Asn	
			170					175					180					
						tgg -												930
)		Ιle	G1y	Ala	Ттр		Ile	Arg	Tyr	Phe		Ile	Tyr	Val	Leu		
٠	35	185					190					195					200	

Leu Thr Ala Ser Ala Ala Thr Val Ala Ile Val Ser Thr Thr Phe	eu
but Ata Ata III val inte ite val int int int	
205 210 215	
gtc cac ttg gtg gtg atg tca gat tta tac cag gag act tac atc	at 1026
5 Val His Leu Val Val Met Ser Asp Leu Tyr Gln Glu Thr Tyr Ile	qs
220 225 230	
gac off gga cac ofe cat gft and gac and gft fift off aft cag	ac 1074
Asp Leu Gly His Leu His Val Met Asp Thr Val Phe Leu Ile Gln	γr
235 240 245	
10 ctg ttc ctg act ttt cca cgg att gtc ttc atg ctg ggc ttt gtc g	tg 1122
Leu Phe Leu Thr Phe Pro Arg Ile Val Phe Met Leu Gly Phe Val V	al
250 255 260	
GTT CTG AGC TTC CTC CTG GGT GGC TAC CTG TTG TTT GTC CTG TAT (
Val Leu Ser Phe Leu Leu Gly Gly Tyr Leu Leu Phe Val Leu Tyr I	en
	80
geg gee ace aac cag act act aac gag tgg tac aga ggt gac tgg	
Ala Ala Thr Asn Gln Thr Thr Asn Glu Trp Tyr Arg Gly Asp Trp ?	la
285 290 295	
tgg tgc cag cgt tgt ccc ctt gtg gcc tgg cct ccg tca gca gag c	
20 Trp Cys Gln Arg Cys Pro Leu Val Ala Trp Pro Pro Ser Ala Glu E	ro
300 305 310	
caa gto cac ogg aac att cac too cat ggg ott ogg ago aac ott o	
Gln Val His Arg Asn Ile His Ser His Gly Leu Arg Ser Asn Leu G	in
315 320 325 25 gag atc ttt gra get geg ttt gea tgt gag agg agg agg agg	
ZD gag atc ttt cta cct gcc ttt cca tgt cat gag agg aag aaa caa g Glu Ile Phe Leu Pro Ala Phe Pro Cys His Glu Arg Lys Lys Gln G	
330 335 340	Iu
tgacaagtgt atgactgcot ttgagctgta gttcccgttt atttacacat gtggat	ec 1420
togtitica aq	1432
30	1432
<210> 28	
<211> 601	
<212> DNA	
<213> Homo sapiens	
35 <220>	

<221> CDS <222> (62)...(355)

	<400)> 28	3														
5	atg	gcac	at a	igega	actt	gg to	ggc	gegte	ca	gtgai	tgac	tgg	ggga	tee :	egge	aagtaa	a 6
																to grat	
																le Asp	
		1				5					10					15	
	ggg	cta	gag	gag	aag	ctg	tec	cag	tgt	cgg	aga	gac	ctg	gag	gec	gtg	15
10	Gly	Leu	Glu	Glu	Lys	Leu	Ser	Gln	Сув	Arg	Arg	Asp	Leu	Glu	Ala	Val	
				20					25					30			
	aac	tcc	aga	ctc	cac	agc	cgg	gag	ctg	agc	cca	gag	gcc	agg	agg	tcc	20
	Asn	Ser	Arg	Leu	His	Ser	Arg	Glu	Leu	Ser	Pro	Glu	Ala	Arg	Arg	Ser	
			35					40					45				
15	ctg	gag	aag	gag	aaa	aac	agc	cta	atg	aac	aaa	gcc	tcc	aac	tac	gag	25
	Leu	Glu	Lys	Glu	Lys	Asn	Ser	Leu	Met	Asn	Lys	Ala	Ser	Asn	Tyr	Glu	
		50					55	,				60					
	aag	gaa	ctg	aag	ttt	ctt	cgg	caa	gag	aac	cgg	aag	aac	atg	ctg	oto	30
	Lys	Glu	Leu	Lys	Phe	Leu	Arg	Gln	Glu	Asn	Arg	Lys	Asn	Met	Leu	Leu	
20	65					70					75					80	
	tct	gtg	gee	atc	ttt	atc	ctc	ctg	acg	ctc	gtc	tat	gcc	tac	tgg	acc	349
	Ser	Val	Ala	Ile	Phe	Ile	Leu	Leu	Thr	Leu	Val	Tyr	Ala	Tyr	Trp	Thr	
					85					90					95		
	atg	tga	geet	ge i	actt	ccc	ac a	acca	gcac	a ggo	ette	cact	tgg	caca	t		400
25	Met																
	tga	tcago	gat o	aago	cagg	ca ci	ttca	agcci	ca	atago	gacc	aage	gtge	tgg (ggtgi	teecc	460
	tee	caaco	cta ç	tgti	tcaa	ge at	tggci	ttee	gge	egge	cag	gcct	tge	etc (ectg	geetge	520
	tgg	999 91	tte d	:9991	tata	ca ga	aagga	acat	ggt	getge	gtcc	ctc	ectt	age o	ccaaç	ggage	580
30	gge	aata	aag e	cace	aaag	et g											601
	<21	0> 29	9														

<211> 585

<212> DNA

35 <213> Homo sapiens

	<220>												
	<221> CDS												
	<222> (78) (45	2)										
=	<400> 29												
5	actaacete			70 an and				0000	ra ert e				60
	qeaqaqtea	•	-										110
	geagageea	y caaga	-	Ala Thr							-		11,
			1	410 INT	Der (5	EC 2	er r	,yo	, Ly	.ys = 10	ne.	
10	gtt ttt a	ag cca	aac tcc	aaa aa	g aga	aag	atc	tct	ctg	cca	ata	gag	15
	Val Phe L	ys Pro	Asn Ser	Lys Ly	s Arg	Lys	Ile	Ser	Leu	Pro	Ile	Glu	
		15			20					25			
	gac tat t	tt aac	aaa ggg	aaa aa	t gag	cct	gag	gac	agt	aag	ctt	cga	20
	Tyr can	he Asn	Lys Gly	Lys As	n Glu	Pro	Glu	Asp	Ser	Lys	Leu	Arg	
15		30		3	5				40				
	ttc gaa a	ct tat	cag ttg	ata tg	g cag	cag	atg	aaa	tct	gaa	aat	gag	25
	Phe Glu T	hr Tyr	Gln Leu	Ile Tr	p Gln	Gln	Met	Lys	Ser	Glu	Asn	Glu	
	45	•		50				55					
	ega eta e												30
20	Arg Leu G	ln Glu	Glu Leu	Asn Ly	s Asn	Leu	Phe	Asp	Asn	Leu	Ile	Glu	
	60		65				70					75	
	ttt ctg c												35
	Phe Leu C	In Lys	Ser His	Ser Gl	y Phe		Lys	Asn	Ser	Arg		Leu	
		•	80			85					90		
25	gge ggt o												39
	Gly Gly G	ln Ile	Lys Lev	Arg Gl			Thr	Ala	Ala			Leu	
		95			100					105			
	ggt ata t												44
	Gly Ile 1		Tyr Val			Met	His	Leu		Val	Phe	Arg	
30		110		11					120				
	ttt taaat	ttttt 1	tttattgi	tg agaa	atagtg	g aa	ggac	ctgt	tt t	gatg	age	С	50
	Phe												
	tattttgto	et eteti	tatttg 1	acaatta	aa co	aact	atag	ttt	atat	tac	atat	tttcaa	56
35	aaaccaata												58

	<210)> 3	0														
	<211	l> 1	100		•												
	<212	?> 21	NA.														
5	<213	3> H		sapi	ens												
	<220)>															
	<221	l> CI	os														
	<222	?> (!	57).	(1	040)												
10	<400)> 3(3														
	agad	cga	ect '	tgac	egee	ca c	ctgg	cagg	a gc	agga	cagg	acg	gccg	gac	gegg	cc at	g 5
																Me	st.
																	1
	gcc	gag	ctc	ccg	999	ccc	ttt	ctc	tgc	999	gcc	ctg	cta	ggc	ttc	ctg	10
15	Ala	Glu	Leu	Pro	Gly	Pro	Phe	Leu	Cys	Gly	Ala	Leu	Leu	Gly	Phe	Leu	
				5					10					15			
	tge	ctg	agt	999	ctg	gec	gtg	gag	gtg	aag	gta	ccc	aca	gag	ccg	ctg	15
	Cys	Leu		Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro	Thr	Glu	Pro	Leu	
			20					25					30				
20					aaa												20
	Ser		Pro	Leu	Gly	ГÀЗ	Thr	Ala	Glu	Leu	Thr	Суз	Thr	Tyr	Ser	Thr	
		35					40					45					
					agc		-	-									25
05		Val	Gly	Asp	Ser		Ala	Leu	Glu	Ттр		Phe	Val	Gln	Pro	-	
25	50					55					60					65	•
					gag												29
	Lys	Pro	Ile	Ser	Glu	Ser	His	Pro	Ile		Tyr	Phe	Thr	Asn	_	His	
					70					75					80		
30					ggt			•									34
อบ	ren	туr	Pro		Gly	Ser	Lys	Ser	-	Arg	Val	Ser	Leu		GIn	Asn	
				85					90					95			
					999												39
	PEO	PIO		Val	Gly	Val	Ala		Leu	Lys	Leu	Thr		Val	His	Pro	
35			100					105					110				
UÜ	cca	gat	act	gga	acc	cac	CCC	tgc	caa	gtc	aac	aac	cca	cca	gat	ttc	. 44:

	Ser	Asp	Thr	Gly	Thr	Tyr	Leu	сув	Gln	Val	Asn	Asr.	Pro	Pro	Asp	Phe	
		115					120					125					
	tac	acc	aat	999	ttg	999	cta	atc	aac	ctt	act	gtg	ctg	gtt	CCC	ccc	491
	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro	Pro	
5	130					135					140					145	
	agt	aat	ccc	tta	tge	agt	cag	agt	gga	caa	acc	tct	gtg	gga	gge	tet	539
	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly	Ser	
					150					155					160		
	act	gca	ctg	aga	tgc	agc	tct	tcc	gag	ggg	gct	cct	aag	cca	gtg	tac	587
10	Thr	Ala	Leu	Arg	Сув	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Val	Tyr	
				165					170					175			
				-				ttt							-	-	635
	Asn	Trp		Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser		Gly	Ser	Met	
			180					185					190				
15								cag								•	683
	Val		Asp	Glu	Val	Ser		Gln	Leu	Ile	Leu		Asn	Leu	Ser	Leu	
		195					200					205					
								tgt -						_		-	731
90		Ser	ser	GLY	Thr	-	Arg	Сув	Val	ALA		Asn	Gln	Met	Gly		
20	210	.				215					220					225	
			_		-			tet			_					-	779
	Ala	Ser	Cys	GIU		Thr	Leu	ser	Val		GIU	Pro	Ser	GID	-	Arg	
	at a	-	~~~		230					235					240		007
25					-			gtg							-		827
20	VAI	Ala	GŢĀ	245	Leu	TTB	GIÀ	Val	250	Leu	GIÀ	Val	reu	255	rea	ser	
	σtt	act	222		+	a+ a	at a	• ~ ~				~~	• ~ ~		2 200	887	875
					-	-	-	agg Arg								_	
			260	rne	cys	Den	VAI	265	FILE	3111	пуз	GIL	270	GIĀ	цуз	пуо	
30	ccc	220		909	+=+	<i></i>	a art	agt	asc.	~++	caa	man.		acc	-+-	aat.	923
								Ser									323
		275		1111	ıyı	Gly	280	Jei	vab	Deu	ary	285	n-P	A.Lu	110	ALU.	
	cct			tot	a=a	C=C	_	tgt	ata	add	ac-		tct	anc	880	aaa	971
								Cys									,,1
35	250		- ^ -	JGI	ATR	295		-ya		9	300		242		دور	305	
						473					200						

	ttc	ctg	gaa	aga	ccc	teg	tot	gee	ago	acc	gtg	acg	acc	acc	aag	tee	101
	Phe	Leu	Glu	Arg	Pro	Ser	Ser	Ala	Ser	Thr	Val	Thr	Thr	Thr	Lys	Ser	
					310					315					320		
	aag	ctc	cct	atg	gtc	gtg	tga	cttc	tee	cgat	ccct	ga g	ggcg	gtga	g gg	g	107
5	Lys	Leu	Pro	Met	Val	Val											
				325													
	gaat	tate	aat a	aatt	aaag	tc t	gtgg	gtac	c								110
)> 3:															
10		1> 3:					•										
		2> PI															
	<21	3> Ho	omo :	sapi	ens												
	-400																
15)> 3)	_	_	_			_		_							
10	Met 1	Asn	GIL	Leu	Ser 5	Phe	Leu	Leu	Phe		Ile	Ala	Thr	Thr		Gly	
		Sar	Wh=	۸	_	» 1 -		mh		10	T	~ 1		m >	15		
	ıιρ	SEL	IIIL	20	GIU	HIG	Asn	The	25	Pne	гуя	GIU	тър	30	Cys	Ser	
	Ser	Ser	Pro		T.ou	Pro	Arg	Sor		T.vo	Glu	Tla	Lva		GI.	Cue	
20			35				9	40	-ys	_y.	314	1.10	45	na p	GIU	Сув	
	Pro	Ser	Ala	Phe	Asp	Glv	Leu		Phe	Leu	Ara	Thr		Asn	Glv	Val	
		50					55	-7-			,	60			1		
	Ile	2yr	Gln	Thr	Phe	Cys	Asp	Met	Thr	Ser	Gly	Gly	Glv	Glv	Tro	Thr	
	65					70	_				75	•	•	·	•	80	
25	Leu	Val	Ala	Ser	Val	His	Glu	Asn	Asp	Met	Arg	Gly	Lys	Cys	Thr	Val	
					85					90			_	_	95		
	Gly	Asp	Arg	Trp	Ser	Ser	Gln	Gln	Gly	Ser	Lys	Ala	Asp	Tyr	Pro	Glu	
				100					105					110			
	Gly	Asp	Gly	Asn	Trp	Ala	Asn	Tyr	Asn	Thr	Phe	Gly	Ser	Ala	Glu	Ala	
30			115					120					125				
	Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
		130					135					140					
	Lys	Asp	Leu	Gly	Ile	Trp	His	Val	Pro	Asn	Lys	Ser	Pro	Met	Gln	His	
	145					150					155					160	
35	~	8	n			•	•				-1	_				_	

					165					170					175	
	Gln 1	Thr	Leu	Glv		Asn	Leu	Phe	Glv	Ile	Tvr	Gln	Lvs	Tvr		Val
				180					185		-2-		-1	190		•
	Lys 1	Tyr	Gly	Glu	Gly	Lys	Суз	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro
5			195		_	-	_	200					205			
	Val V	/al	Tyr	Asp	Phe	Gly	Авр	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser
	2	210					215					220				
	Pro 1	ryr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val
	225					230					235					240
10	Phe A	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arg	Val
					245					250					255	
	Thr C	Зlу	Cys	Asn	Thr	Glu	His	His	Сув	Ile	Gly	cly	Gly	Gly	Tyr	Phe
				260					265					270		
	Pro C	3lu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Trp
15			275					280					285			
	Ser (Tyr	Gly	Thr	His	Val	Gly	Туг	Ser	Ser	Ser	Arg	Glu	Ile	Thr
		290					295					300				
	Glu A	Ala	Ala	Val	Leu	Leu	Phe	Tyr	Arg							
00	305					310										
20																
	<210>															
	<2112 <2122															
	<213			ani												
25	12132	ne	A.(IO 2	apro	=115											
	<400>	> 32	-													
	Met (Gly	Авр	Lys	Ile	Trp	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala	Ala
	1	-	-	•	5	•				10					15	
	Leu I	Pro	Pro	Val	Leu	Leu	Pro	Gly	Ala	Ala	Gly	Phe	Thr	Pro	Ser	Leu
30				20					25					30		
	Asp S	Ser	Авр	Phe	Thr	Pho	Thr	Leu	Pro	Ala	Gly	Gla	Lys	Glu	Сув	Phe
			35					40					45			
	Tyr (Sln	Pro	Met	Pro	Leu	Lys	Ala	Ser	Leu	Glu	Ile	Glu	Tyr	Gln	Val
		50					55					60				
35	Leu A	Asp	Gly	Ala	Gly	Leu	Asp	Ile	Asp	Phe	His	Leu	Ala	Ser	Pro	Glu

	65					70					75					80
	Gly	Lys	Thr	Leu	Val	Phe	Glu	Gln	Arg	Lys	Ser	Asp	Gly	Val	His	Thr
					85					90					95	
	Val	Glu	Thr	Glu	Val	Gly	Asp	Tyr	Met	Phe	Cys	Phe	Asp	Asn	Thr	Phe
5				100					105					110		
	Ser	Thr	lle	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn
			115					120					125			
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Ąsp	Trp	Lys	Lys	Tyr	Ile	Thr
		130					135					140				
10	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu		Ile	Leu	Glu	Ser	Ile
	145					150					155					160
	Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys		Gly	His	Ile	Gln	Ile	Leu
					165					170					175	
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp		Asn	Ile	Gln	Glu		Asn	Phe
15				180					185					190		
	Asp	Arg	Val	Asn	Phe	Trp	Ser		Val	Asn	Leu	Val		Met	Val	Val
			195					200					205			
	Val		Ala	Ile	Gln	Val	-	Met	Leu	Lys	Ser		Phe	Glu	Asp	Lys
		210					215					220				
20	-	•	Ser	Arg	Thr											
	225															
			_													
		0> 3														
05		1> 4														
25		2> P:														
	<21	3> H	omo	sapi	ens											
	<40	0> 3	3													
		_	_	Gln	Glu	Len	Pro	Ara	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu
30	1			42	5	204	•••	,		10					15	
			Leu	Leu		Pro	Pro	Pro	Pro		Pro	Ala	His	Ser		Thr
				20					25	-2-				30		
	Ara	Phe	Ago	Pro	Thr	Tra	Glu	Ser		Asp	Ala	Ara	Gln	Leu	Pro	Ala
	3		35			P		40		-		•	45			
35	Tro	Phe		Gln	Ala	Lvs	Phe		Ile	Phe	Ile	His	Trp	Gly	Val	Phe
			Р	- 111		-,,-		,						,		

		50	1				55	i				60	0			
	Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Tr	Phe	Trp	TL	э Туз	Tr	Glr	Lys
	65				•	70					75	i				80
	Glu	Lys	Ile	Pro	Lys	туг	val	Glu	Phe	Met	Lys	Asp	Ası	Туг	Pro	Pro
5					85					90					95	i
	Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	: Ala	Lys	Phe	Phe
				100					105					110		
	Asn	Ala	Asn	Gln	Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr
			115					120					125			
10	Ile		Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser
		130					135					140				
		Tyr	Ser	Ττρ	Asn	Trp	Asn	Ala	Ile	Asp	Glu	Gly	Pro	Lys	Arg	Asp
	145					150					155					160
	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg
15					165					170					175	
	Phe	Gly	Leu	Tyr	Tyr	ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu
				180					185					190		
	Glu	Asp		Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys
4343			195					200					205			
20	Thr		Pro	Glu	Leu	Tyr	Glu	Leu	Val	Asn	Asn	Tyr	Gln	Pro	Glu	Val
		210					2 15					220				
		Trp	Ser	Asp	Gly		Gly	Gly	Ala	Pro		Gln	Tyr	Trp	Asn	Ser
	225					230					235					240
0.5	Thr	Gly	Phe	Leu	Ala	Trp	Leu	Tyr	Asn		Ser	Pro	Val	Arg	Gly	Thr
25					245					250					255	
	Val	Val	Thr		qaA	Arg	Тгр	Gly		Gly	Ser	Ile	Сув		His	Gly
			_	260					265					270		
	GIĀ	Phe		Thr	Суз	Ser	Asp		Tyr	neA	Pro	Gly		Leu	Leu	Pro
30		_	275					280					285			
30	H18		Trp	Glu	Asn			Thr	Ile	Asp			Ser	Trp	Gly	Tyr
	•	290			_		295					300				
		Arg	GLu	Ala	Gly		Ser	Asp	Tyr			Ile	Glu	Glu	Leu	Val
	305	-1				310					315					320
) E	ràe	GIn	Leu		Glu	Thr	Val	Ser	Cys		Gly .	Asn	Leu	Leu	Met	Asn
35					325					330					335	

	Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thi	: Ile	Ser	Va:	l Vai	l Ph	e Gl	u Gli	ı Ar
				340					345					350		
	Leu	Arg	g Gln	Met	Gly	Ser	Trį	Lev	Lye	Val	. Ası	ı Gly	Gl:	ı Ala	ı Ile	э Ту
_			355					360					369			
5	Glu		His	Thr	Ттр	Arg			Asn	Asp	Thi			Pro	gaA o	Va
		370					375					380				
			Thr	Ser	Lys			Glu	Lys	Leu			Ala	Ile	Phe	: Le
	385				_	390		_		_	395					40
10	гÀв	тгр	Pro	Thr		Gly	Gln	Leu	Phe			His	Pro	Lys		
10	Lou	C1		m h ==	405		•	•	•	410			٠.	_	415	
	ren	GIY	Ala	420	GIU	Vaı	Lys	Leu	425		H18	Gly	Glr			As:
	Trm	Tlo	Ser		C1	C1-		C1			· · · · · ·	G1		430		_
		110	435	nea	GIU	GIII	ASI	440		Met	vai	GIL	445		GTD	Le
15	Thr	He	His	Gln	Mot	Pro	Cva			Clu	T	. מומ				m.
		450					455		110	GLY	111	460		, AIG	red	TIL
	Asn		Ile				100					100				
	465															
20	<21	0> 3	4													
	<21	1> 9	9													
	<21	2> P :	RT													
	<21	3> H	omo a	apie	ens											
25	<400	D> 3	4													
	Met	Asp	Asn	Val	Gln	Pro	Lys	Ile	Lys	His	Arg	Pro	Phe	Cys	Phe	Ser
	1				5		-		-	10	•			•	15	
	Val	Lys	Gly	His	Val	Lys	Met	Leu	Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu
				20					25					30		
30	Val	Thr	Thr	Val	Phe	Met	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro
			35					40					45			
	Glu	Thr	Thr	Thr	Leu	Thr	Val	Gly	Gly	Gly	Val	Phe	Ala	Leu	Val	Thr
		50					55					60				
	Ala	Val	Cys	Сув	Leu	Ala	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu
35	65					70					75					80

	Phe Asn Pr	o Ser Gl		Gln Gln	Lys Pro	Val Hi	s Glu	Lys Lys
	Glu Val Le	u .						
5	<210> 35							
	<211> 189							
	<212> PRT							
	<213> Homo	sapiens						
10	<400> 35							
	Met Glu Gl	u Gly Gly	Asn Leu	Gly Gly	Leu lle	Lys Me	t Val i	His Leu
	1	5			10			15
	Leu Val Le	u Ser Gly	Ala Trp	Gly Met	Gln Met	Trp Va	l Thr !	Phe Val
		20		25			30	
15	Ser Gly Ph	e Leu Leu	Phe Arg	Ser Leu	Pro Arg	His Th	r Phe (Gly Leu
	3:	5		40		4	5	
	Val Gln Se	r Lys Leu	Phe Pro	Phe Tyr	Phe His	Ile Se	r Met (Cly Cys
	, 50		55			60		
	Ala Phe Il	e Asn Leu	Cys Ile	Leu Ala	Ser Glm	His Ale	a Trp !	Ala Gln
20	65		70		75	i		80
	Leu Thr Ph	e Trp Glu	Ala Ser	Gln Leu	Tyr Leu	Leu Phe	e Leu S	Ser Leu
		85			90			95
	Thr Leu Al		Asn Ala	Arg Trp	Leu Glu	Pro Ar	J Thr 1	Thr Ala
		100		105			110	
2 5	Ala Met Tr		Gln Thr	Val Glu	Lys Glu	Arg Gly	Leu G	Sly Gly
	11:			120		12		
	Glu Val Pro	o Gly Ser	His Gln	Gly Pro	Asp Pro	Tyr Ar	j Gln I	Leu Arg
	130		135			140		
20	Glu Lys Ası	Pro Lys		Ala Leu	Arg Gln	Asn Phe	Phe A	irg Tyr
30	145		150		155			160
	His Gly Lo		Leu Cys	Asn Leu		Val Leu	Ser A	an Gly
		165			170			.75
	Leu Cys Let	_	Leu Ala		Ile Arg	Ser Leu	ı	
0.7		180		185				
3 5								

00

	<21	0> 3	6													
	<21	1> 30	63													
	<21	2> PI	RT													
	<21	3> #:	omo :	sapi	ers											
5																
	<40	0> 31	5													
	Met	Val	Asp	Ser	Leu	Leu	Ala	Val	Thr	Leu	Ala	Gly	Asn	Leu	Gly	Le
	1				5					10					15	
	Thr	Phe	Leu	Arg	Gly	Ser	Gln	Thr	Gln	ser	His	Pro	Asp	Leu	Gly	Th
10				20					25					30		
	Glu	Gly	Cys	Trp	Asp	Gln	Leu	Ser	Ala	Pro	Arg	Thr	Phe	Thr	Leu	Le
			35					40					45			
	Asp	Pro	Lys	Ala	Ser	Leu	Leu	Thr	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Le
		50					55					60				
15	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Ar
	65					70					75					8
	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Al
					85					90					95	
	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Al
20				100					105					110		
	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	Gln	Gln	Val	Trp	Gly	Thr	Leu	۷a
			115					120					125			
	Leu		Gln	Arg	Leu	Glu	Pro	Val	His	Leu	Gln.	Leu	Gln	Cys	Met	Se
		130					135					140				
25		Glu	Gln	Leu	Ala		Val	Ala	Ala	Asn		Thr	Lys	Glu	Phe	Th
	145	_				150					155					16
	Glu	Ala	Phe	Leu		Cha	Pro	Ala	Ile		Pro	Arg	Сув	Arg		Gl
					165					170					175	
อก	ALA	Ala	Pro		Arg	Gly	Arg	Pro		Leu	Leu	Gln	Leu		Leu	G1
30	~ 1	_	_	180					185					190		
	Pne	Leu		Val.	His	His	Thr	_	Val	Pro	Ala	Pro		Сув	Thr	Авј
	nh -		195	_				200		_			205			
	rue		Arg	Сув	Ala	Ala	Asn	Met	Arg	Ser	Met		Arg	Tyr	His	Glı
25	h	210	۵٠		_	_,	215	_,		_	_	220				_
35	ASP	Thr	Gln	Gly	Trp	Gly	Asp	Ile	Gly	Tyr	Ser	Phe	Val	Val	Gly	Sei

	225				230					235					240
	Asp Gl	y Tyr	Val	Tyr	Glu	Gly	Arg	Gly	Trp	His	Тгр	Val	Gly	Ala	His
				245					250					255	
	Thr Let	ı Gly	His	Asn	Ser	Arg	Gly	Phe	Gly	Val	Ala	Ile	Val	Gly	Asn
5			260					265					270		
	Tyr Thi	r Ala	Ala	Leu	Pro	Thr	Glu	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp
		275					280					285			
	Thr Le	ı Pro	Ser	Cys	Ala	Val	Arg	Ala	Gly	Leu	Leu	Arg	Pro	Asp	Тут
	290)				295					300				
10	Ala Le	ı Leu	Gly	His	Arg	Gln	Leu	Val	Arg	Thr	Asp	Cys	Pro	Gly	Азр
	305				310					315					320
	Ala Le	ı Phe	Asp	Leu	Leu	Arg	Thr	Trp	Pro	His	Phe	Thr	Ala	Thr	Val
				325					330					335	
	Lys Pro	Arg		Ala	Arg	Ser	Val		Lys	Arg	Ser	Arg	_	Glu	Pro
15			340					345					350		
	Pro Pro	-	Thr	Leu	Pro	Ala		Asp	Leu	Gln					
		355					360								
	<210>	27													
20	<211>														
	<212> 1														
	<213>		sapi	ens											
			<u>-</u> -												
	<400>	37 .													
25	Met Gl	y Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	Ala	Ala	Gly	Leu	Leu	Leu
	1			5					10					15	
	Gly Al	a Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	Arg	Gly	Arg	Arg
			20					25					30		
	Arg Gl	y Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	Ser	Ala	Glu	qеA
30		35					40					45			
	Leu Th	r Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	Glu	Gln	Leu	Gln
	5	0				55					60				
	Lys Le	ı Leu	Tyr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	Val	Ile	Ile	Glu
	65				70					75					80
35	Arg Ale	a Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	Ser	Val	Asn	Gln

Note that

					85					90					95	
	Ala	lle	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	Ala	Asn	Lys	Ile
				100					105					110		
	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	Asn	Ala	Leu	Asn
5			115					120					125			
	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	Lys	Val	Gln	Val
		130					135					140				
	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	Net	Thr	Glu	Gly
	145					150					155					160
10	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	Leu	Tyr	Asp	Ser
					165					170					175	
	His	Val	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	Leu	Phe	Gln	Asn
				180					185					190		
	Ile	Lys	Asn	Суз	Leu	Lys	Ile	Glu	Gly	His	Leu	Ala	Val	Gln	Pro	Thr
15			195					200					205			
	Phe	Thr	Glu	Gly	Ser	Leu		Phe	Leu	Leu	His	-	Glu	Glu	Cys	Ala
		210					215					220				
		Lys	Ile	Arg	Ala		Val	Asp	His	His	_	Ala	Glu	Val	Lys	
90	225					230					235					240
20	Lys	Val	Val	Thr		Ile	Pro	Lys	Ile							
					245											
	/21	0> 38	5													
		1> 91														
25		2> P1														
		3> H		sapie	ens											
•		-	"													
	<40	0> 31	8													
•	Met	Ala	Ser	Leu	Leu	Сув	Cys	Gly	Pro	Lys	Leu	Ala	Ala	Cys	Gly	Ile
30	1				5		-	-		10				-	15	
	Val	Leu	Ser	Ala	Trp	Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe
				20					25					30		
	Phe	Asn	Val	His	Ser	Ala	Val	Leu	Ile	Glu	Asp	Val	Pro	Phe	Thr	Gl u
			35					40					45			
35	Lys	Asp	Phe	Glu	Asn	Gly	Pro	Gln	Asn	Ile	Tyr	Asn	Leu	Tyr	Glu	Gln

	50)			55					60					
	Val Ser	Tyr	Asn	Cys	Phe	Ile	Ala	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Gly
	65				70					75					80
	Gly Phe	Ser	Phe	Сув	Gln	Val	Arg	Leu	Asn	Lys	Arg	Lys	Glu	Tyr	Met
5				85					90					95	
	Val Arq	3													
	<210> 3	39													
	<211> 1	172													
10	<212> F	PRT													
	<213> i	omo	sapi	ens											
	<400> 3	39													
	Met Val	l Gly	Pro	,Ala	Pro	Arg	Arg	Arg	Leu	Arg	Pro	Leu	Ala	Ala	Leu
15	1			5					10					15	
	Ala Let	ı Val	Leu	Ala	Leu	Ala	Pro	Gly	Leu	Pro	Thr	Ala	Arg	Ala	Gly
			20					25	•				30		
	Gln Thi	Pro	Arg	Pro	Ala	Glu	Arg	Gly	Pro	Pro	Val	Arg	Leu	Phe	Thr
		35					40					45	,		
20	Glu Glu	ı Glu	Leu	Ala	Arg	Tyr	Gly	Gly	Glu	Glu	Glu	Asp	Gln	Pro	Ile
	50					55					60				
	Tyr Let	ı Ala	Val	Lys	Gly	Val	Val	Phe	Asp		Thr	Ser	Gly	Lys	
	65				70					75					80
	Phe Ty	Gly	Arg	Gly	Ala	Pro	Tyr	Asn		Leu	Thr	Gly	Lys		Ser
25				85					90					95	
	Thr Arc	gGly	Val	Ala	Lys	Met	Ser		Asp	Pro	Ala	Asp		Thr	His
			100					105					110		-
	Asp Thi		Gly	Leu	Thr	Ala		Glu	Leu	Glu	Ala		Asp	GLu	Val
00		115					120				•	125		_,	
30	Phe Thi		Val	Tyr	Lys		Lys	Tyr	Pro	Ile		Gly	Tyr	Thr	Ala
	130					135					140	_			
	Arg Arg	; Ile	Leu	Asn		Asp	Gly	Ser	Pro		ren	Asp	Pne	гав	
	145		_		150		_,	-	•	155	5 L.				160
ne .	Glu Ası	GIn	Pro		Phe	Asp	He	rys		GIU	Fue				
35				165					170						

	<210> 40	
	<211> 120	
	<212> PRT	
5	<213> Homo sapiens	
	<400> 40	
	Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys	
	1 5 10 15	
10	Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu	
	20 25 30	
	Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu	
	35 40 45	
	Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser	•
15	50 55 60	
	Leu Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val	
	65 70 75 80	
	Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His	
	85 90 95 ·	
20	Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr	
	100 105 110	
	Asp Asp Ile Pro Asp Phe Asp Asp	
	115 120	
25	2010×44	
20	<210> 41 <211> 939	
	<212> DNA	
	<213> Homo sapiens	
	-5135 Homo adpteirs	
30	<400> 41	
	atgaaccaac teagetteet getgtttete atagegaeca ceagaggatg gagtacagat	e
	gaggetaata ettaetteaa ggaatggaee tgttettegt etecatetet geecagaage	12
	tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg gcctgtattt teteogeact	16
	gagaatggtg ttatctacca gaccttctgt gacatgacct ctggggggtgg cggctggacc	24
35	ctggtggcca gcgtgcatga gaatgacatg cgtgggaagt gcacggtggg cgatcgctgg	30

	tccagtcagc	agggcagcaa	agcagactac	ccagaggggg	acggcaactg	ggccaactac	360
	aacacctttg	gatctgcaga	ggcggccacg	agegatgact	acaagsaccc	tggctactac	420
	gacatecagg	ccaaggacct	gggcatctgg	cacgtgccca	ataagtcccc	catgcagcac	480
	tggagaaaca	getecetget	gaggtaccgc	acggacactg	gcttcctcca	gacactggga	540
5	cataatctgt	ttggcatcta	ccagaaatat	ccagtgaaat	atggagaagg	aaagtgttgg	600
	actgacaacg	gcccggtgat	ccctgtggtc	tatgattttg	gegaegeeca	gaaaacagca	660
	tcttattact	caccetatgg	ccagcgggaa	ttcactgcgg	gatttgttca	gttcagggta	720
	tttaataacg	agagagcagc	caacgccttg	tgtgctggaa	tgagggtcac	cggatgtaac	780
	actgagcacc	actgcattgg	tggaggagga	tactttccag	aggccagtcc	ccagcagtgt	840
10	ggagattttt	ctggttttga	ttggagtgga	tatggaactc	atgttggtta	cagcagcagc	900
	cgtgagataa	ctgaggcagc	tgtgetteta	ttctatcgt			939
	<210> 42						
	<211> 687						
15	<212> DNA						
	<213> Homo	sapiens					
			•				
	<400> 42						
	atgggcgaca	agatetgget	gecetteece	gtgeteette	tggccgctct	gcctccggtg	60
20	ctgctgcctg	gggeggeegg	cttcacacct	tecetegata	gegaetteae	ctttaccctt	120
	cccgccggca	agaaggagtg	cttctaccag	cccatgcccc	tgaaggeete	gctggagatc	180
	gagtaccaag	ttttagatgg	agcaggatta	gatattgatt	tccatcttgc	ctctccagaa	240
	ggcaaaacct	tagtttttga	acaaagaaaa	tcagatggag	ttcacactgt	agagactgaa	300
	gttggtgatt	acatgttctg	ctttgacaat	acattcagca	ccatttctga	gaaggtgatt	360
25	ttctttgaat	taatcctgga	taatatggga	gaacaggcac	aagaacaaga	agattggaag	420
	aaatatatta	ctggcacaga	tatattggat	atgaaactgg	aagacatcct	ggaatccatc	480
	aacagcatca	agtccagact	aagcaaaagt	gggcacatac	aaattctgct	tagagcattt	540
	gaagetegtg	atcgaaacat	acaagaaagc	aactttgata	gagtcaattt	ctggtctatg	600
	gttaatttag	tggtcatggt	ggtggtgtca	gccattcaag	tttatatgct	gaagagtetg	660
30	tttgaagata	agaggaaaag	tagaact				687
	<210> 43						
	<211> 1401						
	<212> DNA						
35	<213> Homo	ganiene					

	<400> 43						
	atgeggeeee	aggageteee	caggetegeg	tteccgttgc	tgctgttgct	gttgctgctg	60
	ctgccgccgc	cgccgtgccc	tgcccacago	gccacgcgct	tegaceceae	ctgggagtee	120
5	ctggacgccc	gecagetgee	egegtggttt	gaccaggcca	agttcggcat	cttcatccac	180
	tggggagtgt	tttccgtgcc	cagetteggt	agcgagtggt	tctggtggta	ttggcaaaag	240
	gaaaagatac	cgaagtatgt	ggaatttatg	aaagataatt	accetectag	tttcaaatat	300
	gaagattttg	gaccactatt	tacagcaaaa	ttttttaatg	ccaaccagtg	ggcagatatt	360
	tttcaggcct	ctggtgccaa	atacattgtc	ttaacttcca	aacatcatga	aggetttace	420
10	ttgtgggggt	cagaatattc	gtggaactgg	aatgecatag	atgaggggcc	caagagggac	480
	attgtcaagg	aacttgaggt	agecattagg	aacagaactg	acctgcgttt	tggactgtac	540
	tattcccttt	ttgaatggtt	tcatccgctc	ttccttgagg	atgaatccag	ttcattccat	600
	aageggeaat	ttccagtttc	taagacattg	ccagagetet	atgagttagt	gaacaactat	660
	cagectgagg	ttetgtggte	ggatggtgac	ggaggagcac	cggatcaata	ctggaacagc	720
15	acaggettet	tggcctggtt	atataatgaa	ageccagtte	ggggcacagt	agteaccaat	780
	gatcgttggg	gagetggtag	catctgtaag	catggtggct	tctatacctg	cagtgategt	840
	tataacccag	gacatetttt	gccacataaa	tgggaaaact	gcatgacaat	agacaaactg	900
	teetgggget	ataggaggga	agctggaatc	tetgactate	ttacaattga	agaattggtg	960
	aagcaacttg	tagagacagt	ttcatgtgga	ggaaatcttt	tgatgaatat	tgggcccaca	1020
20	ctagatggca	ccatttctgt	agtttttgag	gagcgactga	ggcaaatggg	gtcctggcta	1080
	aaagtcaatg	gagaagctat	ttatgaaacc	catacctggc	gateceagaa	tgacactgtc	1140
	accccagatg	tgtggtacac	atccaagcct	aaagaaaaat	tagtctatgc	catttttctt	1200
	aaatggccca	catcaggaca	getgtteett	ggecatecea	aagctattct	gggggcaaca	1260
	gaggtgaaac	tactgggcca	tggacageca	cttaactgga	tttctttgga	gcaaaatggc	1320
25	attatggtag	aactgccaca	gctaaccatt	catcagatge	cgtgtaaatg	gggetg gg et	1380
	ctagccctga	ctaatgtgat	C				1401
	<210> 44						
	<211> 297						
30	<212> DNA						
	<213> Homo	sapiens					
	<4,00> 44						*
	atggataacg	tgcagccgaa	aataaaacat	cgccccttct	getteagtgt	gaaaggccac	60
35	atassatas	tanaantaas	tettetoppo	toectootee	caacagtatt	catastasta	120

	gtatotgtgt	tggcactgat	accagaaacc	acaacattga	cagttggtgg	aggggtgttt	180
	gcacttgtga	cagcagtatg	ctgtcttgcc	gacggggccc	ttatttaccg	gaagettetg	240
	ttcaatccca	gcggtcctta	ccagcaaaag	cctgtgcatg	aaaaaaaaga	agttttg	297
5	<210> 45					•	
	<211> 567						
	<212> DNA						
	<213> Homo	sapiens					
		•					
10	<400> 45						
	atggaggaag	gcgggaacct	aggaggcctg	attaagatgg	tecatetact	ggtcttgtca	60
	ggtgcctggg	gcatgcaaat	gtgggtgacc	ttcgtctcag	getteetget	tttccgaage	120
	cttccccgac	ataccttcgg	actagtgcag	agcaaactct	teceetteta	cttccacatc	180
	tecatggget	gtgccttcat	caacctctgc	atcttggctt	cacageatge	ttgggctcag	240
15	ctcacattct	gggaggccag	ccagetttac	ctgctgttcc	tgagcettae	gctggccact	300
	gtcaacgccc	getggetgga	accccgcacc	acagetgeea	tgtgggeeet	gcaaaccgtg	360
	gagaaggagc	gaggcctggg	tggggaggta	ccaggcagcc	accagggtcc	cgatccctac	420
	cgccagctgc	gagagaagga	ccccaagtac	agtgctctcc	gccagaattt	cttccgctac	480
	catgggctgt	cctctctttg	caatctgggc	tgcgtcctga	gcaatgggct	ctgtctcgct	540
20	ggccttgccc	tggaaataag	gageete				567
		1					
	<210> 46						
	<211> 1089		N.			• '	
	<212> DNA						
25	<213> Homo	sapiens					
	<400> 46						
		gactectgge	-				60
20		cccagagcca					120
30		cctttacgct					180
		tggatggggt					240
		gccacttgct					300
		acttccgacg					360
~-		ggggaaccct					420
35	cagtgcatga	gccaagaaca	gctggcccag	gtggctgcca	atgetaceaa	ggaattcact	480

	gaggeettee tg	ggatgees ggesatesac	cecegetgee	gctggggagc	ggcgccttat	540
	eddddaedae edd	aagetget geagetgee	g ctgggattct	tgtacgtgca	tcacacctac	600
	gtgcctgcac cad	ecctgcac ggacttcacg	g cgctgcgcag	ccaacatgcg	ctccatgcag	660
	cgctaccacc ago	gacacgca aggctgggga	gacategget	acagtttcgt	ggtgggeteg	720
5	gacggetacg tg	acgaggg acgcggctgg	cactgggtgg	gegeeeacae	geteggeeae	780
	aactcccggg gct	teggegt ggecatagtg	ggcaactaca	cegeggeget	gcccaccgag	840
	gccgctctgc gca	acggtgeg egacaegete	ccgagttgtg	cggtgagaga	eggeeteetg	900
	cggccagact acq	jegetget gggeeacege	cagctggtgc	gcaccgactg	ccccggcgac	960
	gegetetteg acc	tgetgeg cacetggeeg	cacttcaccg	cgactgttaa	gccaagacct	1020
10	gccaggagtg tot	ctaagag atccaggagg	gagecacece	caaggaccct	gecagecaca	1080
	gacctccaa					1089
	<210> 47					
	<211> 747	•				
15	<212> DNA					
	<213> Homo sar	piens				
	<400> 47					
90		ggggcgc gggctgggtg				60
20		acagget gacceggggt				120
		ccgcaga agacttaact				180
		aacteet ttacetgetg				240
		ctttggg taacaatgca				300
0.5		ttecaat tettecaaac				360
25		atgcact asstancetg				420
		tgaaact gcttttgaat				480
		aagtgga tteateatte		- -		540
		gagtact tacgctattt				600
00		tgcagec tactttcact				660
30		agaaaat aagagettta	gttgatcacc	atgatgcaga	ggtgaaggaa	720
	aaggttgtaa caa	taatacc caaaatc				747
	<210> 48					
o.c	<211> 294					
35	<212> DNA					

<213> Homo sapiens

	<400> 48	•					
	atggcgtcgc	teetgtgetg	tgggccgaag	etggeegeet	geggeategt	cetcagegee	6
5	tggggagtga	tcatgttgat	aatgctcgga	atatttttca	atgtecatte	egetgtgttg	12
	attgaggacg	tteccttcac	ggagaaagat	tttgagaatg	gccccagaa	catatacasc	18
	ctttacgagc	aagtcagcta	caactgtttc	atcgctgcag	geetttaeet	cctcctcgga	24
	ggettetett	tctgccaagt	teggeteaat	aagcgcaagg	aatacatggt	gaga	29
10	<210> 49						
	<211> 516						
	<212> DNA		•				
	<213> Homo	sapiens					
15	<400> 49						
		cededeeded				=	6
		cggggctgcc					120
		tgcggctttt					180
		tctacttggc		•			240
20		gaggageeee	-				300
		ccttggatcc					360
		ccctggatga					420
		cccggagaat			ctaacctgga	cttcaagcct	480
O.F.	gaagaccagc	cccattttga	catcanggat	gagttc			516
25	42.20- 5.0						
	<210> 50						
	<211> 360						
	<212> DNA						
30	<213> Homo	sapiens					
30	<400> 50						
		coort socs s	cataaateat	anestanase	ateateeeat	canatatte:	60
		cccgtaccaa					120
		gcacagacga		-	_	_	180
25		aggecatege		-			240

	ccag	tgct	iga 1	tcat	tggc	at t	ctgg	tgtt	c ct	accc	ggat	ttt	acca	cet	gege	atego	t 300
	tact	atgo	at d	ccaa	agge	ta c	cgtg	gtta	e te	ctat	gatg	aca	ttee	aga	cttt	gatga	ac 360
	<210	·	1														
5	<211																
U	<211																
	<220		3000 1	sapi	ens												
	<221																
10					٠.												
10	~222	- (-	2 }	. (94)	3)												
	<400)> 5:	ı														
	a at	g as	ac ca	aa ci	te a	re t	te e	ta ci	ta ti	tt ct	c at	ta q	cq a	cc a	cc a	ga gg	a 49
						-		_	-			-	-			rq Gl	
15		1				5					LO					15	2
	tgg	agt	aca	gat	qaq	gct	aat	act	tac	tte	aag	gaa	tgg	acc	tgt	tet	97
	Trp	Ser	Thr	Asp	Glu	Ala	Asn	Thr	Tyr	Phe	Lys	Glu	Trp	Thr	Сув	Ser	
				20					25				_	30	-		
	teg	tct	cca	tet	ctg	ccc	aga	agc	tge	aag	gaa	atc	aaa	gac	gaa	tgt	145
20										Lys							
			35					40					45				
	cct	agt	gca	ttt	gat	gge	ctg	tat	ttt	ctc	cgc	act	gag	aat	ggt	gtt	193
	Pro	Ser	Ala	Phe	Азр	Gly	Leu	Tyr	Phe	Leu	Arg	Thr	Glu	Asn	Gly	Val	
		50					55				•	60					
25	atc	tac	cag	acc	ttc	tgt	gac	atg	acc	tct	ggg	ggt	ggc	ggc	tgg	acc	241
	Ile	Tyr	Gln	Thr	Phe	Суз	Asp	Met	Thr	Ser	Gly	Gly	Gly	Gly	Trp	Thr	
	65					70					75					80	
	atg	gtg	gcc	agc	gtg	cat	gag	aat	gac	atg	cgt	ggg	aag	tgc	acg	gtg	289
	Leu	Val	Ala	Ser	Val	His	Glu	Asn	Asp	Met	Arg	Gly	Lys	Cys	Thr	Val	
30					85					90					95		
	ggc	gat	ege	tgg	tcc	agt	cag	cag	ggc	agc	aaa	gca	gac	tac	cca	gag	337
	Gly	Asp	Arg	Trp	Ser	Ser	Gln	Gln	Gly	Ser	Lys	Ala	Asp	Tyr	Pro	Glu	
				100					105					110			
	999	gac	ggc	aac	tgg	gcc	aac	tac	aac	acc	ttt	gga	tct	gca	gag	gcg	365
35	Gly	qaA	Gly	Asn	Trp	Ala	Asn	Tyr	Asn	Thr	Phe	Gly	Ser	Ala	Glu	Ala	

			115					120					125				
	gcc	acg	age	gat	gac	tac	aag	aac	cct	ggc	tac	tac	gac	atc	cag	gee	43.
	Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
		130					135					140					
5	aag	gac	ctg	ggc	atc	tgg	cac	gtg	ccc	aat	aag	tcc	ccc	atg	cag	cac	48
	Lys	Asp	Leu	Gly	Ile	Trp	His	Val	Pro	Asn	Lys	Ser	Pro	Met	Gln	His	
	145					150					155					160	
	tgg	aga	aac	agc	tcc	ctg	ctg	agg	tac	cgc	acg	gac	act	gge	ttc	ctc	529
	Trp	Arg	Asn	Ser	Ser	Leu	Leu	Arg	Tyr	Arg	Thr	Asp	Thr	Gly	Phe	Leu	
10					165					170					175		
	cag	aca	ctg	gga	cat	aat	ctg	ttt	gge	atc	tac	cag	aaa	tat	cca	gtg	57
	Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val	
				180					185					190			
	aaa	tat	gga	gaa	gga	aag	tgt	tgg	act	gac	aac	99c	ccg	gtg	atc	cct	62
15	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro	
			195					200					205				
	gtg	gte	tat	gat	ttt	ggc	gac	gcc	cag	aaa	aca	gca	tct	tat	tac	tca	673
	Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser	
		210					215					220					
20	ccc	tat	ggc	cag	cgg	gaa	ttc	act	gcg	gga	ttt	gtt	cag	ttc	agg	gta	72
	Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val	
	225					230					235					240	
	ttt	aat	aac	gag	aga	gca	gcc	aac	gcc	ttg	tgt	gct	gga	atg	agg	gtc	769
	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Lcu	Cys	Ala	Gly	Met	Arg	Val	
25					245					250					255		
	acc	gga	tgt	aac	act	gag	cac	cac	tgc	att	ggt	gga	gga	gga	tac	ttt	817
	Thr	Gly	Сув	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly	Tyr	Phe	
				260					265					270			
	cca	gag	gee	agt	ccc	cag	cag	tgt	gga	gat	ttt	tct	ggt	ttt	gat	tgg	865
30	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Сув	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Trp	•
			275					280					285				
	agt	gga	tat	gga	act	cat	gtt	ggt	tac	agc	agc	agc	cgt	gag	ata	act	913
	Ser	Gly	Tyr	GľÀ	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr	
		290					295					300					
35	gag	gca	act	ata	ctt	cta	ttc	tat	cat	tgag	ragti	ett d	T aa	та ост	TA.		960

	Glu Ala Ala Val Leu Leu Phe Tyr Arg																
	305					310											
	acc	cagad	eet o	eteci	tece	aa co	catg	agato	CCE	agg	atgg	aga	acaa	ctt	accc	agtago	1020
	tag	aatgt	tta a	atggo	caga	ag a	gaaa	acaat	: aaa	atca	att	gac	tc				1065
5																	
	<21	0> 52	2														
	<21	1> 93	37														
	<21	2> Di	VA.														
	<21	3> Ho	omo s	apie	ens												
10	<220	0>															
	<22	1> CI	os														
	<22	2> (:	177).	(8	866)												
	<40	0> 52	2														
15	ctt	ttgge	aga a	actg	egeti	to to	cttt	cggag	g gge	agtg	tcg	ccg	cege	ege (ggcc	gecaco	60
	tgg	agtti	tet 1	cag	actc	ea ga	attt	ccct	, te	acc	acga	gga	gtcc	aga (gagg	aaacgo	120
	gga	gegge	aga o	aaca	agtad	ec te	gacgo	cetet	tte	eage	cegg	gate	egec	cca	geag	3 9	176
			gac	_			_							-	-	-	224
20		Gly	Asp	Lys		Trp	Leu	Pro	Phe		Val	Leu	Leu	Leu	Ala	Ala	
20	1				5					10					15		
			ccg														272
	Leu	Pro	Pro		Leu	Leu	Pro	Gly		Ala	Gly	Phe	Thr		Ser	Leu	
				20					25					30			
ne .			gac -									-	-		-		320
25	Asp	Ser	Asp	Phe	Thr	Phe	Thr		Pro	Ala	GIŅ	Gln	_	Glu	Сув	Phe	
	***		35					40					45				
			ccc													-	368
	ığı	50	Pro	Mec	PIO	rea	1.ys 55	AIS	261	Leu	GIU	116	GIU	ryr	GIN	vai	
30	++-		~~-		~~=												43.0
,,,			gga Gly	-			_		-				-			•	416
	65	чэр	GLY	VIG	GIY	70	wah	TTE	vsh	rii¢	75	ren	Ma	SEL	PIO	80	
			acc	++=	a++								~~~				464
			Thr									_		-			404
35	1	~, 3		⊸ 0 u	85	2 110	314		.49	. 90 SAT	202	wap	GTÄ	val	95	THE	
										,,					93		

	gta	gag	act	gaa	gtt	ggt	gat	tac	atg	tto	tgc	ttt	gac	aat	aca	ttc	512
	Val	Glu	Thr	Glu	Val	Gly	Asp	Tyr	Met	Phe	Суз	Phe	Asp	Asn	The	Pho	
				100	•				105					110			
	agc	acc	att	tct	gag	aag	gtg	att	ttc	ttt	gaa	tta	atc	ctg	gat	aat	560
5	Ser	Thr	Ile	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn	
			115					120					125				
	atg	gga	gaa	cag	gca	caa	gaa	caa	gaa	gat	tgg	aag	aaa	tat	att	act	608
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr	
		130					135					140					
10	ggc	aca	gat	ata	ttg	gat	atg	aaa	ctg	gaa	gac	atc	ctg	gaa	tcc	atc	656
	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile	
	145					150					155					160	
	aac	age	atc	aag	tcc	aga	cta	agc	aaa	agt	999	cac	ata	caa	att	ctg	704
	Aon	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu	
15					165					170					175		
	ctt	aga	gca	ttt	gaa	get	cgt	gat	cga	aac	ata	caa	gaa	age	aac	ttt	752
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	G1n	Glu	Ser	Asn	Phe	
				180					185					190			
	gat	aga	gtc	aat	tto	tgg	tct	atg	gtt	aat	tta	gtg	gte	atg	gtg	gtg	800
20	Asp	Arg	Val	neA	Phe	тгр	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val	
			195					200					205				
	gtg	tca	gcc	att	caa	gtt	tat	atg	ctg	aag	agt	¢tg	ttt	gaa	gat	aag	848
	Val	Ser	Ala	Ile	Gln	Val	Tyr	Met	Leu	Lys	Ser	Leu	Phe	Glu	Asp	Lys	
		210					215					220					
25	agg	aaa	agt	aga	act	taas	acto	ca a	acta	igagt	a co	jtaac	att	982	aat	j	900
	Arg	Lys	Ser	Arg	Thr												
	225																
	agge	ataa	aa a	tgce	ataa	a ct	gtta	cag	cae	gaco	;						937
30	<210)> 53	3														
	<211	l> 16	78														
	<212	!> D8	(A														
	<213	3> Hc	a ome	apie	ns												
	<220)>															
35	<221	> CI	S														

<222> (56)...(1459)

	<400	0> 5	3														
	age	gete	ccg	agge	egeg	gg a	geet	gcag	a ga	ggac	açcc	ggc	ctgc	gcc	ggga	c	5
5	atg	cgg	ccc	cag	gag	ctc	ccc	agg	ata	gcg	ttc	ccg	ttg	ctg	ctg	ttg	10
	Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu	
	1				5					10					15		
	ctg	ttg	ctg	ctg	ctg	ccg	ccg	ccg	ccg	tgc	cct	gcc	CAC	agc	gcc	acg	15
	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Суз	Pro	Ala	His	Ser	Ala	Thr	
10				20					25					30			
	cgc	ttc	gac	ccc	acc	tgg	gag	tcc	ctg	gac	gcc	ege	cag	ctg	ccc	gcg	199
	Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala	
			35					40					45				
	tgg	ttt	gac	cag	gcc	aag	ttc	ggc	atc	ttc	atc	cac	tgg	gga	gtg	ttt	24
15	Trp	Phe	Asp	Gln	Ala	ГÀа	Phe	Gly	Ile	Phe	Ile	His	Trp	Gly	Val	Phe	
		50					55					60					
	tee	gtg	ccc	agc	ttc	ggt	agc	gag	tgg	ttc	tgg	tgg	tat	tgg	caa	aag	299
	Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Trp	Phe	Trp	Trp	Tyr	Trp	Gln	Lys	
	65					70					75					80	
20	gaa	aag	ata	ccg	aag	tat	gtg	gaa	ttt	atg	aaa	gat	aat	tac	cct	cct	343
	Glu	Lys	Ile	Pro	Lys	Tyr	Val	Glu	Phe	Met	Lys	qaA	Asn	Tyr	Pro	Pro	
					85					90					95		
	agt	ttc	aaa	tat	gaa	gat	ttt	gga	cca	cta	ttt	aca	gca	aaa	ttt	ttt	393
	Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	Ala	ràs	Phe	Phe	
25				100					105					110			
	aat	gcc	aac	cag	tgg	gca	gat	att	ttt	cag	gcc	tct	ggt	gee	aaa	tac	439
	Asn	Ala	Asn	Gln	Trp	Ala	qaA	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr	
			115					120					125				
	att	gtc	tta	act	tcc	aaa	cat	cat	gaa	ggc	ttt	acc	ttg	tgg	9 99	tca	487
30	Ile	Val	Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser	
		130					135					140					
	gaa	tat	tcg	tgg	aac	tgg	aat	gcc	ata	gat	gag	9 99	ccc	aag	agg	gac	535
	Glu	Tyr	Ser	тгр	Asn	Trp	Asn	Ala	lle	Asp	Glu	Gly	Pro	Lys	Arg	Asp	
	145					150					155					160	
35	at t	gtc	aag	gaa	ctt	gag	gta	gcc	att	agg	aac	aga	act	gac	ctg	cgt	583

	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg	
					165					170					175		
	ttt	gga	ctg	tac	tat	tcc	ctt	ttt	gaa	tgg	ttt	cat	ccg	ctc	ttc	ctt	631
	Pho	Gly	Leu	Tyr	Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu	
5				180					185					190			
	gag	gat	gaa	tcc	agt	tca	ttc	cat	aag	cgg	caa	ttt	cca	gtt	tct	aag	679
	Glu	Авр	Glu	Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys	
			195					200					205				
	aca	ttg	cca	gag	ctc	tat	gag	tta	gtg	aac	aac	tat	cag	cct	gag	gtt	727
10	Thr	Leu	Pro	Glu	Leu	Tyr	Glu	Leu	Val	Asn	Asn	Tyr	Gln	Pro	Glu	Val	
		210					215					220					
	ctg	tgg	tcg	gat	ggt	gac	gga	gga	gca	ccg	gat	caa	tac	tgg	aac	age	775
	Leu	Trp	Ser	Asp	Gly	Asp	Gly	Gly	Ala	Pro	Asp	Gln	Tyr	Trp	Asn	Ser	•
	225					230					235					240	
15	aca	ддс	ttc	ttg	gcc	tgg	tta	tat	aat	gaa	agc	cca	gtt	cgg	ggc	aca	823
	Thr	Gly	Phe	Leu	Ala	Trp	Leu	Tyr	Asn	Glu	Ser	Pro	Val	Arg	Gly	Thr	
					245					250					255		
	gta	gtc	acc	aat	gat	cgt	tgg	gga	gct	ggt	agc	atc	tgt	aag	cat	ggt	871
	Val	Val	Thr	Asn	Asp	Arg	Trp	Gly	Ala	Gly	Ser	Ile	Cys	Lys	His	Gly	
20				260					265					270			
	ggc	ttc	tat	acc	tgc	agt	gat	cgt	tat	aac	cca	gga	cat	ctt	ttg	cca	919
	Gly	Phe	Tyr	Thr	Суѕ	Ser	Asp	Arg	Tyr	Asn	Pro	Gly	His	Leu	Leu	Pro	
			275					280					285				
	cat	aaa	tgg	gaa	aac	tgc	atg	aca	ata	gac	aaa	ctg	tec	tgg	gge	tat	967
25	His	Lys	Trp	Glu	Asn	Суз	Met	Thr	Ile	Авр	Lys	Leu	Ser	Trp	Gly	Tyr	
		290					295					300					
	agg	agg	gaa	gct	gga	atc	tct	gac	tat	ctt	aca	att	gaa	gaa	ttg	gtg	1015
	Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu	Val	
	305					310					315					320	
30	aag	caa	ctt	gta	gag	aca	gtt	tca	tgt	gga	gga	aat	ctt	ttg	atg	aat	1063
	Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Сув	Gly	Gly	Asn	Leu	Leu	Met	Asr.	
					325					330					335		
	att	9 99	ccc	aca	cta	gat	ggc	acc	att	tct	gta	gtt	ttt	gag	gag	cga	1111
	Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thr	Ile	Ser	Val	Val	Phe	Glu	Glu	Arg	
35				340					345					350			

	ctg agg cam atg ggg too tgg cta amm gtc mat ggm gmm gct att tat	1159
	Leu Arg Gln Met Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr	
	355 360 365	
	gaa acc cat acc tgg cga tcc cag aat gac act gtc acc eca gat gtg	1207
5	Glu Thr His Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val	
	370 375 380	
	tgg tac aca tee aag eet aaa gaa aaa tta gte tat gee att ttt ett	1255
	Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu	
10	385 390 395 400	
10	aaa tgg coc aca tea gga cag ctg tte ctt gge cat coc aaa get att	1303
	Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile 405 410 415	
	405 410 415 ctg ggg gca aca gag gtg aaa cta ctg ggc cat gga cag cca ctt aac	1261
	Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn	1351
15	420 425 430	
	tgg att tot ttg gag caa aat ggc att atg gta gaa ctg cca cag cta	1399
	Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu	
	435 440 445	
	acc att cat cag atg ccg tgt aaa tgg ggc tgg gct cta gcc ctg act	1447
20	Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr	
	450 455 460	
	aat gtg atc taaagtgcag cagagtgget gatgctgcaa gttatgtcta aggc	1500
	Asn Val Ile	
0.5	465	
25	taggaactat caggtgtcta taattgtagc acatggagaa agcaaatgta aaactggata	1560
	agaaaattat titiggeagit cagecettic eetititicee actaaattit tiettaaatt	1620
	acceatgtaa ccattttaac tetecagtge actttgecat taaagtetet teacattg	1678
	<210> 54	
30	<211> 467	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
35	<222> (114)(413)	
	·	

	<400> 5	4														
	aggggag	ggc	ggtg	ctcc	gc c	gegg	tggc	ggt	tgct	atcg	ctt	cgca	gaa	ccta	ctcagg	60
	cagccag	ctg	agaa	gagt	tg a	ggga	aagt	g ct	gctg	etgg	gte	tgca	gac	gcg .	atg	116
5														1	Met	
															1	
	gat aac	gtg	cag	ccg	888	ata	aaa	cat	cgc	ccc	ttc	tge	tte	agt	gtg	164
	Asp Asn	Val	Gln	Pro	Lys	Ile	Lys	His	Arg	Pro	Phe	Суз	Phe	Ser	Val	
			5					10					15			
10	aaa ggc	cac	gtg	aag	atg	ctg	cgg	ctg	gat	att	atc	aac	tca	ctg	gta	212
	Lys Gly	His	Val	Lys	Met	Leu	Arg	Leu	yab	Ile	Ile	Asn	Ser	Leu	Val	
		20					25					30				
	aca aca			_			_					_			-	260
	Thr Thr		Phe	Met	Leu		Val	Ser	Val	Leu	Ala	Leu	Ile	Pro	Glu	
15	35					40					45					
	acc aca		•		-						-				-	308
	Thr Thr	Thr	Leu	Thr		Gly	Gly	Gly	Val		Ala	Leu	Val	Thr		
	50				55					60					65	
	gta tgc	_		-	_		-					_		-		356
20	Val Cys	Cys	Leu		Asp	Gly	Ala	Leu		Tyr	Arg	Lys	Leu		Phe	
				70					75					80		
	aat ccc	_				-		-				-			-	404
	Asn Pro	Ser	_	Pro	Tyr	Gln	Gln	-	Pro	Val	His	Glu	_	-	Glu	
~~			85					90					95			
25	gtt ttg		tttt	ata '	ttac	tttt	ta gi	tttga	stact	t aa	gtati	taaa				450
	Val Leu	l														
	catattt	ctg	tatto	ett												467
90	d2105 F	_														
30	<210> 5															
	<211> 8															
	<212> D															
	<213> H		sapie	ens							•					
35	<220>															
JJ	<221> C	us														

<222> (272)...(841)

<400> 55 attgyttggg ggaaacccac gaggggacge ggccgaggag ggtcgctgtc cacccggggg cgtgggagtg aggtaccaga ttcagcccat ttggccccga cgcctctgtt ctcggaatcc 120 gggtgctgcg gattgaggte ceggttecta acquatetet getggattgg cegtaaccet 240 gtccccgage gggctcacag ggtctgaagg ccacgcatga ggcaaaggta aagttctgag ccacceggtg cotecttece aggactgeaa g atg gag gaa ggc ggg aac cta Met Glu Glu Gly Gly Asn Leu 10 gga gge etg att aag atg gte eat eta etg gte ttg tea ggt gee tgg 340 Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp 15 gge atg caa atg tgg gtg acc ttc gtc tca ggc ttc ctg ctt ttc cga 388 15 Gly Met Gln Met Trp Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg 25 30 age ctt cee ega cat ace tte gga cta gtg cag age aaa ctc tte eee Ser Leu Pro Arg His Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro 20 tto tac tto cac ate too atg ggc tgt gcc tto ate aac ctc tgc atc 484 Phe Tyr Phe His Ile Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile ttg get tea eag eat get tgg get eag etc aca tte tgg gag gee age 532 Leu Ala Ser Gln His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser 80 cag ctt tac ctg ctg ttc ctg age ctt acg ctg gcc act gtc aac gcc 580 Gln Leu Tyr Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala ege tgg etg gaa eee ege ace aca get gee atg tgg gee etg caa ace 628 Arg Trp Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr 30 110 gtg gag aag gag cga ggc ctg ggt ggg gag gta cca ggc agc cac cag Val Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln 130 125 ggt ece gat ece tae ege eag etg ega gag aag gae eee aag tae agt

	aag	gcc	tte	ctc	aat	ggc	gec	ctg	gat	ggg	gto	atc	ctt	gga	gac	tac	365
	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	
				60					65					70			
	ctg	age	cgg	act	cct	gag	ccc	cgg	cca	tcc	ctc	agc	CAC	ttg	ctg	agc	413
5	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	
			75					80					85				
			tet											-	_		461
	Gln		Tyr	Gly	Ala	Gly	Val	Ala	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	
		90					95					100					
10			cgg												-	-	509
		Arg	Arg	Gln	Asn	Gly	Ala	Ala	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	
	105					110					115					120	
			gtg														557
	Gln	Gln	Val	Trp	_	The	Leu	Val	Leu		Gln	Arg	Leu	Glu	Pro	Val	
15					125					130					135		,
			cag														605
	HTB	Leu	Gln		Gln	Сув	Met	Ser		Glu	Gln	Leu	Ala		Val	Ala	
				140					145					150			
20			gct		_	_			-	-		_		_	_	-	653
20	ATO	ASN	Ala	Thr	Lys	GIU	Phe		GIU	Ala	Pne	Leu		Сув	Pro	Ala	
	200		155					160					165				
			ccc													_	701
	110	170	Pro	ALG	сув	Arg	175	GTÅ	ATG	ALC	PLO	180	AEG	GTÀ	Arg.	Pro	
25			a+=						++-		*					.	740
20			ctg Leu		-		-										749
	185	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GIII	nea	190	шеч	GTÅ	FIIG	1,000	195	V	*****	ura	1111	200	
		cct	gca	cce	ccc		aca	aac	ttc	aca		tar	aca	acc	880		797
			Ala													_	,,,
30					205	-,-				210		٠,,,			215		
	cac	tcc	atg	саσ		tac	cac	СВП	anc		CAA	aac	taa	aaa		atc	845
			Met														043
	,			220		-,-			225				- - F	230			
	gge	tac	agt		ata	ata	qac	tça		qqc	tac	ata	tac		gga	cge	893
35			Ser					-	_							-	.,,
		-	_				-2			-4	-,-		. –		-3		

			235					240					245				
	gge t	Egg	cac	tgg	gtg	ggc	gee	cac	acg	ctc	ggc	cac	aac	tce	cgg	gge	941
	Gly 1	rp	His	Trp	Val	Gly	Ala	His	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly	
	2	250					255					260					
5	tte q	gge	gtg	gee	ata	gtg	gge	aac	tac	acc	geg	gcg	ctg	ccc	acc	gag	989
	Phe G	Sly	Val	Ala	Ile	Val	Gly	Asn	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu	
	265					270					275					280	-
	gee g	gct	ctg	cgc	acg	gtg	cgc	gac	acg	ctc	ccg	agt	tgt	gcg	gtg	cgc	1037
	Ala A	Ala	Leu	Arg	Thr	Val	Arg	qeA	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg	
10					285					290					295		
	gec s	ggc	ctc	ctg	cgg	cca	gac	tac	gcg	ctg	ctg	ggc	cac	ege	cag	ctg	1085
	Ala (Gly	Leu	Leu	Arg	Pro	Asp	Tyr	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu	
				300					305					310			
	gtg d	ege	acc	gac	tgc	ccc	ggc	gac	gcg	ctc	ttc	gac	ctg	ctg	ege	acc	1133
15	Val A	Arg	Thr	qaA	Сув	Pro	Gly	Asp	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr	
			315					320					325				
	tgg o	ccg	Cac	ttc	acc	gcg	act	gtt	aag	cca	aga	cct	gcc	agg	agt	gtc	1181
	Trp I	Pro	His	Phe	Thr	Ala	Thr	Val	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val	
	:	330					335					340					
20	tct a	aag	aga	tec	agg	agg	gag	CCA	ccc	cca	agg	acc	ctg	cca	gcc	aca	1229
	Ser I	Lys	Arg	Ser	Arg	Arg	Glu	Pro	Pro	Pro	Arg	Thr	Leu	Pro	Ala	Thr	
	345					350					355					360	
	gac	ctc	caa	taaa	igaca	age a	atgga	aac			-						1256
	Asp :	Ŀeu	Gln														
25																	
	<210																
	<211		-														
	<212																
	<213		omo :	apie	ens												
30	<220																
	<221:																
	<222	> (1	135).	(8	384)												
	<400	> 57	7														
35	catt	teet	tt d	ctcca	cato	c aç	gtca	ıggtç	geg	t ttq	getg	tggo	ggct	ag g	ccc	jegtge	60

	gctggagacc tcc	gagatgg caaca	gegag cetectgeec	tggcccggcg ctgcggctc	t 120
	geegeggegg eag	c atg ggt ggc	ece egg gge geg	ggc tgg gtg gcg gcg	170
		Met Gly Gly	Pro Arg Gly Ala	Gly Trp Val Ala Ala	
		1	5	10	
5	gge etg etg et	c ggc gcg ggc	ged tge tad tge	att tac agg ctg acc	218
	Gly Leu Leu Le	u Gly Ala Gly	Ala Cys Tyr Cys	Ile Tyr Arg Leu Thr	
	15		20	25	
	egg ggt egg eg	g egg gge gae	ege gag ete ggg	ata ege tet teg aag	266
	Arg Gly Arg Ar	g Arg Gly Asp	Arg Glu Leu Gly	Ile Arg Ser Ser Lys	
10	30	35		40	
	tee gea gaa ga	c tta act gat	ggt toa tat gat	gat gtt cta aat gct	314
	Ser Ala Glu As	p Leu Thr Asp	Gly Ser Tyr Asp	Asp Val Leu Asn Ala	
	45	50	55	60	
	gaa caa ctt ca	g aaa ete ett	tac ctg ctg gag	tca acg gag gat cct	362
15	Glu Gln Leu Gl	n Lys Leu Leu	Tyr Leu Leu Glu	Ser Thr Glu Asp Pro	
		65	70	75	
	gta att att ga	a aga get ttg	att act ttg ggt	aac aat goa goo ttt	410
	Val Ile Ile Gl	u Arg Ala Leu	Ile Thr Leu Gly	Asn Asn Ala Ala Phe	
	8	0	85	90	
20	toa gtt aac cad	a gct att att	egt gam ttg ggt	ggt att cca att gtt	458
	Ser Val Asn Gl	n Ala Ile Ile	Arg Glu Leu Gly	Gly Ile Pro Ile Val	
	95		100	105	
	gca aac aaa ato	c aac cat tcc	asc cag agt att	asa gag asa gct tta	506
	Ala Asn Lys Ile	e Asn His Ser	Asn Gln Ser Ile	Lys Glu Lys Ala Leu	
25	110	115		120	
	aat gca cta aa	t asc ctg agt	gtg aat gtt gaa	aat caa atc aag ata	554
	Asn Ala Leu Ası	n Asn Leu Ser	Val Asn Val Glu	Asn Gln Ile Lys Ile	
	125	130	135	140	
	ang gtg can gt	t ttg ass ctg	ctt ttg aat ttg	tot gam amt com goo	602
30	Lys Val Gln Val	l Leu Lys Leu	Leu Leu Asn Leu	Ser Glu Asn Pro Ala	
		145	150	155	
	atg aca gaa gg	a ctt ctc cgt	gee caa gtg gat	tca tca ttc ctt tcc	650
	Met Thr Glu Gly	y Leu Leu Arg	Ala Gln Val Asp	Ser Ser Phe Leu Ser	
	160)	165	170	
35	ctt tat gac ago	cac gta gca	aag gag att ctt	ctt cga gta ctt acg	698

	Leu	Tyr	Asp	Ser	His	Val	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	
			175					180					185				
			-	aat		-		_				_				•	746
_	Leu		Gln	Asn	Ile	Lys		Сув	Leu	Lys	Ile		Cly	His	Leu	Ala	
5		190					195					200					
	- •	-		act			•			_			•		-	33-	794
		Gln	Pro	Thr	Phe		Glu	Gly	Ser	Leu		Phe	Leu	Leu	His	Gly	
	205					210					215					220	
	gaa	gaa	tgt	gcc	cag	aaa	ata	aga	gct	tta	gtt	gat	cac	cat	gat	gca	842
10	Glu	Glu	CÀa	Ala	Gln	Lys	Ile	Arg	Ala	Leu	Val	Asp	His	His	Asp	Ala	
					225					230					235		
	gag	gtg	aag	gaa	aag	gtt	gta	aca	ata	ata	ccc	aaa	atc	tga			884
	Glu	Val	Lys	Glu	Lys	Val	Val	Thr	Ile	Ile	Pro	Lys	Ile				
	•			240					245								
15																	
	<210)> 58	В														
	<211	l> 58	89														
	<212	?> Dt	AZ														
	<213	3> Ho		sapie	ens												
20	<220)>															
	<221	l> CI	os										,				
	<222	2> (4	18).	(34	44)										ς		
															`		
	<400)> 56	3														
25	gctt	tee	gag d	ccg	ettgo	ca co	eteg	jegat	ccc	cgac	tcc	ctt	ttt	atg	gcg	tcg	56
														Met	Ala	Ser	
														1			
	ctc	ctg	tgc	tgt	ggg	ccg	aag	ctg	gcc	gcc	tgc	ggc	atc	gtc	ctc	agc	104
	Leu	Leu	Сув	Сув	Gly	Pro	Lys	Leu	Ala	Ala	Сув	Gly	Ile	Val	Leu	Ser	
30		5					10					15					
	gee	tgg	gga	gtg	atc	atg	ttg	ata	atg	ctc	gga	ata	ttt	ttc	aat	gtc	152
	Ala	Trp	Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe	Phe	Asn	Val	
	20					25					30					35	
	cat	tee	gct	gtg	ttg	att	gag	gac	gtt	ccc	ttc	acg	gag	aaa	gat	ttt	200
35	Lis	Ser	Ala	Val	Leu	Ile	Glu	Asp	Val	Pro	Phe	Thr	Glu	Lys	Asp	Phe	

	40 45 50	
	gag aat ggc ccc cag aac ata tac aac ctt tac gag caa gtc agc tac	248
	Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Glu Gln Val Ser Tyr	
	55 60 65	
5	aac tgt ttc atc gct gca ggc ctt tac ctc ctc ctc gga ggc ttc tct	296
	Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Gly Gly Phe Ser	
	70 75 80	
	tto tgo caa gtt ogg oto aat aag ogo aag gaa tao atg gtg ogo	341
	Phe Cys Gln Val Arg Leu Asn Lys Arg Lys Glu Tyr Met Val Arg	
10	85 90 95	
	tagggcccc ggcgcgtttc cccgctccag cccctcctct atttaaagac tccctgcacc	400
	gtgtcaccca ggtcgcgtcc caccettgcc ggcgccctct gtgggactgg gtttcccggg	460
	egagagaetg aatecettet eccatetetg geateeggee eeegtggaga gggetgagge	520
	tggggggctg ttccgtctct ccaccettcg ctgtgtcccg tatctcaata aagagaatct	580
15	gatatatte	589
	<210> 59	
	<211> 673	
	<212> DNA	
20	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (25)(543)	
25	<400> 59	
	cttgcettge getgegeget eace atg gtg gge eee geg eeg egg egg egg	51
	Met Val Gly Pro Ala Pro Arg Arg	
	1 5	
	ctg cgg ccg ctg gca gcg ctg gcc ctg gtc ctg gcc ctg gcc ccg ggg	99
30	Leu Arg Pro Leu Ala Ala Leu Ala Leu Val Leu Ala Leu Ala Pro Gly	
	10 15 20 25	
	ctg ccc aca gcc egg gcc ggg cag aca ccg egc cct gcc gag egg ggg	147
	Leu Pro Thr Ala Arg Ala Gly Gln Thr Pro Arg Pro Ala Glu Arg Gly	
	30 35 40	
35	eec cca gtg egg ett tte ace gag gag etg gee ege tat gge ggg	195

	Pro	Pro	Val	Arg	Leu	Phe	Thr	Glu	Glu	Glu	Leu	Ala	Arg	Tyr	Gly	Gly	
				45					50					55			
	gag	gag	gaa	gat	cag	ccc	atc	tac	ttg	gca	gtg	aag	gga	gtg	gtg	ttt	243
	Glu	Glu	Glu	Asp	Gln	Pro	Ile	Tyr	Leu	Ala	Val	Lys	Gly	Val	Va1	Phe	
5			60					65					70				
	gat	gtc	acc	tcc	gga	aag	gag	ttt	tat	gga	cga	gga	gcc	ccc	tac	aat	291
	Asp	Val	Thr	Ser	Gly	Lys	Glu	Phe	Tyr	Gly	Arg	Gly	Ala	Pro	Tyr	Asn	
		75					80					85					
		ttg			_	-											339
10		Leu	Thr	Gly	Lys	Asp	Ser	Thr	Arg	Gly	Val	Ala	Lys	Met	Ser		
	90					95					100					105	
		cct															387
	Asp	Pro	Ala	Asp	Leu	Thr	His	qaA	Thr		Gly	rea	Thr	Ala		Glu	
- -					1 10					115					120		
15		gag															435
	Leu	Glu	Ala		Asp	Glu	Val	Phe		Lув	Val	Tyr	Lys		Lys	Tyr	
•				125					130					135			400
		atc					-										483
20	PEO	Ile		GIĀ	Tyr	Thr	Ala		Arg	116	Leu	ASN	150	АБР	GIĀ	ser	
20			140					145						720			531
		aac Asn	_	_		-		-	_								331
	PLO	155	Den	Asp	Pne	гуs	160	Gin	мар	GIM	FLO	165	rne	пор	110	. шуз	
	cet.	gag	tta	+40		200			9.7 C	eaat.	tett		aded	таас			580
25		Glu		-	Lycu		ceg	.ayy	19 C	499 L		יבב פ	-909	-3-3			333
	170																
		ggaa	gac :	acta	aata	et a	atci	tect	o ca	aac'	taac	tqc	ctqq	agg :	ccct	gagcca	640
		agat	-			_			_					-			673
		•				- , -	,		•	•							
30	<21	0> 6	0														
	<21	1> 1	425														
	<21	2> D	NZA.														
	<21	3> н	omo :	sapi	ens												
	<22			-													
35	<22	1> C	DS														

35

63/177

<222> (127)...(489)

	<400>	> 60)															
	tecce	gcct	gg g	gcc	ggct	ga g	tggc	actt	a ag	cggg	ccat	gee	atgo	aac	cttg	ggege:	t 6	ì
5	gccae	1000	ıtg ç	geg	ageto	et g	ggtg	tgcg	g gc	ggcc	tggc	geg	gege	tcc	getg	tgtca	g 12	•
	egtgt	tt a	itg a	atg (ccg 1	tee (cgt .	acc	aac	ctg	get a	act	gga	atc	ccc i	agt	16	1
		M	let M	1et 1	Pro S	Ser .	Arg '	Thr .	Asn :	Leu .	Ala :	Thr	Gly	Ile	Pro :	Ser		
		•	1				5					10						
	agt a	aaa	gtg	aaa	tat	tca	agg	ctc	tcc	agc	aca	gac	gat	ggc	tac	att	21	1
10	Ser I	Lys	Val	Lys	Tyr	Ser	Arg	Leu	Ser	Ser	Thr	gaA	Авр	Gly	Tyr	Ile		
	15					20					25					30		
	gac c	ett	cag	ttt	aag	aaa	acc	cct	cct	aag	atc	cct	tat	aag	gcc	atc	26	•
	Asp I	eu	Gln	Phe	Lys	Lys	Thr	Pro	Pro	Lys	Ile	Pro	Tyr	Lys	Ala	Ile		
				,	35					40					45			
15	gca c	ett	gcc	act	gtg	ctg	ttt	ttg	att	gge	gcc	ttt	ctc	att	att	ata	31	:
	Ala I	Leu	Ala	Thr	Val	Leu	Phe	Leu	Ile	Gly	Ala	Phe	Leu	Ile	Ile	Ile		
				50					55					60				
	ggc t	cc	ctc	ctg	ctg	tca	ggc	tac	atc	agc	aaa	ggg	ggg	gca	gac	cgg	36	Ç
	Gly s	Ser	Leu	Leu	Leu	Ser	Gly	Tyr	Ile	Ser	Lys	Gly	Gly	Ala	Asp	Arg		
20			65					70					75					
	gee g	jtt	cca	gtg	ctg	atc	att	ggc	att	ctg	gtg	ttc	cta	ccc	gga	ttt	40	E
	Ala V	/al	Pro	Val	Leu	Ile	Ile	Gly	Ile	Leu	Val	Phe	Leu	Pro	Gly	Phe		
		80					85					90						
	tac c	cac	ctg	ege	atc	gct	tac	tat	gca	tcc	aaa	ggc	tac	cgt	ggt	tac	450	E
25	Tyr F	lis	Leu	Arg	Ile	Ala	Tyr	Tyr	Ala	Ser	Lys	Gly	Tyr	Arg	Gly	Tyr		
	95					100					105					110		
	tcc t	at	gat	gac	att	cca	gac	ttt	gat	gac	tago	acc	cac d	cca			50	•
	Ser 1	'yr	Asp	qaA	Ile	Pro	Авр	Phe	Asp	Asp								
					115					120								
30	taget	gag	ga g	gagt	caca	g to	gaac	etgto	. cc	ageti	taa	gati	atct	age a	agaaa	ctata	560	נ
	gctga	agga	ct a	agga	atto	t go	agct	tgc	a gat	tgtti	aag	aaa	acaat	tgg d	ccaga	tttt	620	3
	tgggt	cet	te e	caas	igatg	t te	agto	jaac	tac	agti	agc	taat	ttag	gac a	agct	ctatt	. 680	2
	tttcs	itcc	ct g	ggee	ectga	c as	gttt	tte	ace	aggae	atat	gtai	tcate	gga a	agaat	ag ag g	740	J
																tett		1

tamatagtet teattgeeaa tttgttettg tageanatgg aacaatgtgg tatggetaat

	ttottattat taagtagtit attitaaaaa tatetgagta tattateetg tacacttate	920
	cctacettea tgttscagtq qaaqacetta gtaaaatcaa agatcagtga gtreatetgt	980
	aatattitti ttactiqett tettactqae agcaaccagg aatititita teetgeaqaq	1040
	caagttttea aaatqtamat actteetetq tttaacaqte ettqqaccat tetqatecaq	1100
5	ttcaccagta ggttqqacaq catataattt qcatcatttt gtcccttgta aatcaaqatq	1160
Ü	ttetgeagat tatteettta acggeeggae ttttggetgt tteetaatga aacatgtagt	1220
	ggttattatt tagagtttat agccqtattg ctagcacctt gtagtatgtc atcattctgc	1280
	teatgattee aaggateage etggatgeet agaggactag ateacettag titgatteta	1340
	ttttttaget tgeaanangt gacttatatt ccanaganat tannatgttg anatecanat	1400
10	cotaganata anatgagtta actto	1425
	,	
	<210> 61	
	<211> 307	
	<212> PRT	
15	<213> Homo sapiens	
	<400> 61	
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp Gly Leu	
	1 5 10 15	
20	Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met Gln Glu	
	20 25 30	
	Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln Leu Pro	
	35 40 45	
	Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe Ile Ser	
25	50 55 60	
	Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr Pro Asn	
	65 70 75 80	
	Val Leu Ala Phe Ser Phe Leu Asp Glu Leu Gln Lys Glu Phe Ile Thr	
	85 90 95	
30	Thr Tyr Asn Met Met Lys Thr Asn Thr Ala Val Arg Pro Tyr Cys Phe	
	100 105 110	
	Ile Glu Phe Asp Asn Phe Ile Gln Arg Thr Lys Gln Arg Tyr Asn Asn	
	115 120 125	•
05	Pro Arg Ser Leu Ser Thr Lys Ile Asn Leu Ser Asp Met Gln Thr Glu	
35	135 140	

	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Сув	Glu	Leu	Gly	Sez
	145					150					155					160
	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Авр	Cys	Lys	Gly	Ala	Gly
		•			165					170					175	
5	ГÀЗ	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	Ser	Gly
				180					185					190		
	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	Leu	Ile
			195					200					205			
	Arg		Phe	His	Ala	Ile		Ser	Leu	Leu	Gln		ĄaĄ	Gly	qaA	Asp
10		210					215					220				
		Asn	Tyr	Ile	Ile		Phe	Phe	Leu	Gly		Ala	Ala	Cys	Leu	Tyr
	225					230					235					240
	Gln	Суз	Tyr	Leu		Val	Tyr	Tyr	Thr		Trp	Arg	Asn	Val		Ser
					245					250					255	
15	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys		Сув	Asn	Met	Tyr		Tyr	Glu
		_		260					265				_	270		
	Leu	Arg		Leu	Trp	Gln	Leu		Phe	His	Val	Thr		Gly	Ala	Phe
	••- 1	mt	275			_	_	280					285	_		
20	ATT	290	Leu	Gln	He	Trp		Arg	Gln	Ala	Gln	_	Lys	Ala	Pro	Asp
20	M						295					300				
	305	Asp	vai													
	303														•	
	<2.10	0> 62	,													•
25		1> 18					,									
		2> PI														
				apie	ma				•							
	<400	D> 62	?													
30	Met	Thr	Ala	Gln	Gly	Gly	Leu	Val	Ala	Asn	Arg	Gly	Arg	Arg	Phe	Lvs
	1				5	-				10	•	-	-		15	
	Trp	Ala	Ile	Glu	Leu	Ser	Gly	Pro	Gly	Gly	Gly	Ser	Arq	Gly	Arq	Ser
				20			-		25	-	-		•	30		
	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Asp	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu
35		-	35		-		-	40					45	-	-	

	qzA	Lys	Gln	Val	Pro	Asp	Thr	Ser	Val	Gln	Glu	Thr	yab	Arg	Ile	Leu
		50					55					60				
	Val	Glu	Lys	Arg	Cys	Trp	qsA	Ile	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile
	65					70					75					80
5	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile
					85					90					95	
	Phe	Pro	Thr	Met	Met	Val	Cys	Met	Met	Ala	Тгр	Arg	Pro	Ile	Gln	Ala
				100					105					110		
	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln
10			115					120					125			
	Lys	Phe	Leu	Gln	Gly	Leu	Val	Tyr	Leu	Ile	Gly		Leu	Met	Gly	Leu
		130					135					140				
		Leu	Ala	Val	туг	Lys	Сув	Gln	Ser	Met		Leu:	Leu	Pro	Thr	His
	145					150					155					160
15	Ala	Ser	Asp	Trp	Leu	Ala	Phe	Ile	Glu		Pro	Glu	Arg	Met		Phe
					165					170					175	
	Ser	Gly	Gly	-	Leu	Leu	Leu									
				180												
00																
20		0> 6:														
		1> 3:														
		2> PI														
	<21.	3> H	omo s	sapi	ens											
25	<40	0> 6:	2		•											
20			_	Lou	Pro	Clv.	Ten	T.OU	Glu	Ala	A = 0	Ala	Ara	Thr	Pro	Ara
	1	ary	ALC.	Ded	5	Gly	Deu	Dog	910	10	9		7		15	,
		T.011	T.eu	Len	Gln	Cue	T.eu	Y.eu	λla		Δla	Ara	Pro	Ser		Aln
	200	Leu	LICU	20	GIN	cys	Leu	Der	25			,		30		
30	Asn	Glv	Ser		Pro	Agn	Sar	Pro		Thr	Ser	Pro	Pro		Ara	Glu
		u.,	35	N.L.C	210	us Þ		40	•		-		45		5	
	Glu	Tle		Ala	Asn	A en	Phe		(A)	Glu	Ser	His		Ile	Ser	Leu
		50	Mec	nia	ra.	ASII	55	DCI	204		-	60				
	Thr		Hie	Ser	Ser	Met		Va1	G] v	Lvs	Asn		Thr	Leu	Glu	Ara
35	65	-Lu	****	JGI		70				-,-	75					80
	03					70					,,					

	Pro	Ser	Asn	Val	Asn	Leu	Thr	Сув	Gln		Thr	Thr	Ser	Gly	-	Leu
					85					90					95	
	Asn	Ala	Val	Asn	Val	Thr	Trp	Lys	Lys	qaA	Gly	Glu	Gln	Leu	Glu	Asn
				100					105					110		
5	Asn	Tyr	Leu	Val	Ser	Ala	Thr	Gly	Ser	Thr	Leu	Tyr	Thr	Gln	Tyr	Arg
			115					120					125			
	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	Ser	Сув	Phe	Phe
		130					135					140				
	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	Lys	Val	Pro	Glu
10	145					150					155					160
	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	Gly	Asp	Ser	Thr
					165					170					175	
	Val	Leu	Thr	Суз	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	Asn	Тър	Thr	Trp
				180	_				185					190		
15	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	val	Gly	Val	Gln	Met	Asn
	=		195		_			200					205			
	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	Lys	Leu	Lys	Ile
	•	210				1	215					220	-		-	
	Thr	Gln	Leu	Leu	Glu	Glu		Gly	Glu	Ser	Tyr	Trp	Суз	Arg	Ala	Leu
20	225					230	•	•			235	Ī	-			240
	Phe	Gln	Leu	Glv	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	Val	Val	Leu	Ser
				,	245					250					255	
	Tvr	Leu	Val	Pro	Leu	Lvs	Pro	Phe	Leu		Ile	Val	Ala	Glu		Ile
	-1-			260		-,-			265					270		
25	Leu	ī.en	Val		Thr	Tle	T.en	T.en		Glu	Lvs	Tur	Thr		Lvs	Lvs
			275					280	-,-		-,-	-4-	285			
	Lvs	T.wa		Sar	Авр	G3n	G) re		Glu	Phe	Glu	Gln		Glu	Gln	Leu
	-,-	290	1110	351	wpp	514	295	ny o	-			300				
	T.ve		Acn		Ser			Tla	CI.	A on	Aen		Pro	Ara	uio	Ara
30	305	261	usþ	Asp	Ser	310	GIĀ	116	GIU	non	315	•	110	,		320
UU.		200	~1 ··	0			01 -				213					320
	πλa	กอก	oru	ser	Leu	σтХ	GTU									
					325											

<210> 64

35 <211> 223

	<21	2> P	RT													
	<21	3> н	omo :	sapi	ens											
	<40	0> 6	4													
5	Met	Lys	Phe	Val	Pro	Cys	Leu	Leu	Leu	Val	Thr	Leu	Ser	Суз	Leu	Gly
	1				5					10					15	
	Thr	Leu	Gly	Gln	Ala	Pro	Arg	Gln	Lys	Gln	Gly	Ser	Thr	Gly	Glu	Glu
				20					25					30		
	Phe	His	Phe	Gln	Thr	Gly	Gly	Arg	qsA	Ser	Суз	Thr	Met	Arg	Pro	Ser
10			35					40					45			
	Ser	Leu	Gly	Glr.	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Сув	Arg
		50					55					60				
		Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	Met
	65				·	70					75					80
15	Cys	Gln	Ala	Phe		Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	Leu
					85				_	90					95	
	Gin	Glu	Leu	_	Arg	Leu	His	His		Cys	Gln	Gly	Ala		Val	Leu
	h	D		100			~1		105		0 1-	• • •		110		
20	Arg	Pro	115	vai	сув	Arg	GIU	120	GIY	PIO	GIN	ATS		Met	GIN	GIN
20	V-1	Thr			T	t	c1			c1	D	.	125	01 -		6 1
	V	130	261	361	Leu	Lys	135	Ser	PLU	GIU	PLO	140	GIII	GIII	PIO	GIU
	Ala	Gly	Thr	Pro	Ser	Len		Pro	I.ve	Δla	ጥኮሮ		Lize	Len	Thr	Gla
	145	1				150			-,-		155		-,-		****	160
25		Thr	Gln	Leu	Glv		Asp	Ser	Met	Glu		Leu	Glv	Lvs	Ala	
					165	-1-				170			2	-,-	175	-,-
	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly	Pro	Arq	Pro
				180				-	185				_	190	-	
	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	Lys
30			195					200					205			
	Pro	Phe	Gln	Ala	Leu	Сув	Ala	Phe	Leu	lle	Ser	Phe	Phe	Arg	Gly	
		210					215					220				
	<21	0> 65	5													
35	<21	1> 48	3													

	<212	> PI	RT													
	<213	> но	omo :	sapi	ens											
	<400	> 69	5													
5	Met	Arg	Leu	Leu	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Arg
	1				5					10					15	
	Ser	Glu	Ala	Ser	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Arg	Leu	Lys
				20					25					30		
	Met	Gln	Tyr	Ala	Thr	Gly	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Cys	Val	Sei
10			35					40					45			
	<210	> 66	5													
	<211	> 37	71													
	<212	> bi	RT.													
15	<213	> Hc	omo :	sapi	ens											
	<400	> 66	5													
		Ala	Trp	Thr	Lys	Tyr	Gln	Leu	Phe	Leu	Ala	Gly	Leu	Met	Leu	Val
90	1				5					10					15	
20	Thr	Gly	Ser		Asn	Thr	Leu	Ser		ГÀа	Trp	Ala	Asp		Phe	Met
	.1-	-1		20					25		_			30		
	Ala	GIU	G1y 35	Cys	GIA	Gly	Ser	_	Glu	His	Ser	Phe		His	Pro	Phe
	Ton	C1=		**-1	01		D b -	40	-	03	D b	c	45			
25	Leu	50	АТА	vaı	GIY	met	Pne 55	ren	GIÀ	GIU	Pne	60	Cys	red	ATG	Ala
	Phe		Len	T.011	Ara	Cire		ala	8 1 a	Glv	G) n		Aen	Ser	Ser	W-1
	65			204	*****	70	9			 ,	75	501	p		-	80
	Авр	Pro	Gln	Gln	Pro		Asn	Pro	Leu	Leu		Leu	Pro	Pro	Ala	
	-				85					90					95	
30	Cys	Asp	Met	Thr	Gly	Thr	Ser	Leu	Met	Tyr	Val	Ala	Leu	Asn	Met	Thr
				100	•				105	-				110		
	Ser 2	Ala	Ser	Ser	Phe	Gln	Met	Leu	Arg	Gly	Ala	Val	Ile	Ile	Phe	Thr
			115					120		-			125			
	Gly 1	Leu	Phe	Ser	Val	Ala	Phe	Leu	Gly	Arg	Arg	Leu	Val	Leu	Ser	Gln
3 5	;	130					135					140				

	_		-,													
		Leu	GIY	He	Leu		Thr	Ile	Ala	Gly		Val	Val	Val	Gly	Leu
	145		_			150					155					160
	Ala	Asp	Leu	Leu		Lys	His	Asp	Ser	Gln	His	Lув	Leu	Ser		Val
_					165					170					175	
5	Ile	Thr	Gly		Leu	Leu	Ile	Ile		Ala	Gln	Ile	Ile		Ala	Ile
				180					185					190		
	Gln	Met		Leu	Glu	Glu	Lys		Val	Туг	ràa	His		Val	His	Pro
			195					200					205			
10	Leu		Ala	Val	Gly	Thr		Gly	Leu	Phe	Gly		Val	Ile	Leu	8er
10	_	210	_				215					220				
		Leu	Leu	Val	Pro		Tyr	Tyr	Ile	Pro		Gly	Ser	Phe	Ser	-
	225	_			_	230					235					240
	Asn	Pro	Arg	Gly		Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Суз		Val
15	03	~1	_,	_	245					250					255	
10	GIY	GIN	Gin		Leu	Ile	Ala	Val		Leu	Leu	Gly	Aen		Ser	Ser
	~1 -		5 1	260	_				265	_			_	270		
	116	ALA		Pne	ABN	Pne	Ala	_	He	Ser	Val	Thr	-	Glu	Leu	Ser
	21.	መከተ	275	١	V--	**-1	•	280		•		-	285		-1.	_
20	AL U	290	TRI	Arg	Met	vai	295	Asp	ser	Leu	Arg	300	VAI	AgT	TTE	тър
20	al a		Co=	7	N1-	+		m_	a1	. 1 -	DL.		• • •	•	01	-1.
	305	ren	26I	Leu	AIA	310	GIÀ	ттр	G1U	Ala	315	HIB	АТа	ren	GIN	
		Glv	Pho	T on	T10		T avi	T10	C1**	Thr		T 611	T		c1	320
		913	1110	Leu	325	TEI	Leu	115	ату	330	ΝTα	rec	TYL	ABII	335	Leu
25	His	Ara	Pro	T.eus		Glv	Ara	T.611	Sar	Arg	Cl#	2 24	Bro	Leu		c1
		9		340	Leu	GLy	ALY	Den	345	ALG	GLY	My	110	350	AIG	GIU
	Glu	Ser	Glu		Glu	Ara	T.ou	T.611		Gly	Thr.	Ara	Thr		716	Aen.
			355	V	U1u	9		360	o1y	Q±y	****	my	365	110	110	nou.
•	Asp	Ala						200					303			
30	•	370														
	<210)> 67	,													
		l> 90														
		> PR														
35			mos	anie	ns											
				~P^C												

<400)> 67	7													
Met	Phe	His	Gln	Ile	Trp	Ala	Ala	Leu	Leu	Tyr	Phe	Tyr	Gly	Ile	Ile
1				5					10					15	
Leu	Asn	Ser	Ile	Tyr	Gln	Суз	Pro	Glu	His	Ser	Gln	Leu	Thr	Thr	Le
			20					25					30		
Gly	Val	Asp	Gly	Lys	Glu	Phe	Pro	Glu	Val	His	Leu	Gly	Gln	Trp	Ту
		35					40					45			
Phe	Ile	Ala	Gly	Ala	Ala	Pro	Thr	Lys	Glu	Glu	Leu	Ala	Thr	Phe	Ası
	50					55					60				
Pro	Val	Asp	Asn	Ile	Val	Phe	Asn	Met	Ala	Ala	Gly	Ser	Ala	Pro	Met
65					70					75					80
Gln	Leu	His	Leu	Arg	Ala	Thr	Ile	Arg	Met						
				. 85					90						
	•														
<210)> 61	8													
<21	1> 49	99													
<21	3> Ho	omo s	sapie	ens											
		_													
			_				_		_			-1.			
	Val	Asp	Arg	_	Pro	Leu	Leu	Thr		ΑΙΦ	TTE	116	Pne		
	-1 -				-1-	m b -	 1	**- 1		61	c1	7	FT 6		
ALA	TTE	GIY		Ala	TTE	Pne	GIU		rea	GIU	GIU	Pro		тър	гуз
<i>c</i> 1	21.	Y					mb m		T	7	wi.	T		T	c1.
GIU	VTS	_	пĀа	Asn	туг	ıyr		GIN	гуя	neu	urs		Lieu	ьуз	GT
Dha	Dra		*	61	01-	01		T	N.o.m	T 120	714		Glu.	V-1	V-1
FILE		Cys	reu	GIÀ	GIN		GTÅ	ren	Asp	пàр		Deu	Giu	Val	va.
Ser		h1-	21-	c1	C) n		17.1	21-	T 7 a	Thr		Асп	Gln	The	Dhe
	vəħ	A10	AIG	GTÀ		GIY	AGI	WTG	116		GLY		0111		80
	Δen	Ten	Aen	m erro		Nen	A 1 .	Mot	Tla		Δla	Ma	ጥከተ	Val	
	.1011	110	veri		210	non	wig	MEC		. 1113	- 14				
Thr	Thr	Tle	Gly		Glv	Agr	Val	a [4		Lvs	Thr	Pro	Ala		Arc
		110	100	• • •	1	* JY-313				-10			110	1	:
	Met 1 Leu Gly Phe Pro 65 Gln <211 <211 <400 Met 1 Ala Glu Phe Ser 65 Asn	Met Phe 1 Leu Asn Gly Val Phe Ile 50 Pro Val 65 Gln Leu <210> 66 <211> 49 <212> Pl <213> Ho 1 Ala Ile Glu Ala Phe Pro 50 Ser Asp 65 Asn Asn	1 Leu Asn Ser Gly Val Asp 35 Phe Ile Ala 50 Pro Val Asp 65 Gln Leu His <210> 68 <211> 499 <212> PRT <213> Homo 4400> 68 Met Val Asp 1 Ala Ile Gly Glu Ala Lys 35 Phe Pro Cys 50 Ser Asp Ala 65 Asn Asn Trp	Met Phe His Gln 1 Leu Asn Ser Ile 20 Gly Val Asp Gly 35 Phe Ile Ala Gly 50 Pro Val Asp Asn 65 Gln Leu His Leu (210> 68 (211> 499 (212> PRT (213> Homo sapid (400> 68 Met Val Asp Arg 1 Ala Ile Gly Ala 20 Glu Ala Lys Lys 35 Phe Pro Cys Leu 50 Ser Asp Ala Ala 65 Asn Asn Trp Asn	Met Phe His Gln Ile 1	Met Phe His Gln Ile Trp 1	Met Phe His Gln Ile Trp Ala 1	Met Phe His Gln Ile Trp Ala Ala 1	Met Phe His Gln Ile Trp Ala Ala Leu 1	Met Phe His Gln Ile Trp Ala Ala Leu Leu 1	Met Phe His Gln Ile Trp Ala Ala Leu Leu Tyr 1	Met Phe His Gln Ile Trp Ala Ala Leu Leu Tyr Phe 1 5 10 Leu Asn Ser Ile Tyr Gln Cys Pro Glu His Ser Gln 20 25 Gly Val Asp Gly Lys Glu Phe Pro Glu Val His Leu 35 40 Phe Ile Ala Gly Ala Ala Pro Thr Lys Glu Glu Leu 50 55 60 Pro Val Asp Asn Ile Val Phe Asn Met Ala Ala Gly 65 70 75 Gln Leu His Leu Arg Ala Thr Ile Arg Met 85 90 70 < 2112> PRT 213> Homo sapiens 85 90 70 < 2400> 68 40 85 10 80 <	Met Phe His Gin Ite Trp Ala Ala Leu Leu Tyr Phe Tyr 1 5 10 Leu Asn Ser Ite Tyr Gin Cys Pro Glu His Ser Gin Leu 20 25 Gly Val Asp Gly Lys Glu Phe Pro Glu Val His Leu Gly 35 40 45 Phe Ite Ala Gly Ala Ala Pro Thr Lys Glu Glu Leu Ala 50 55 60 Pro Val Asp Asn Ite Val Phe Asn Met Ala Ala Gly Ser 65 70 75 Gln Leu His Leu Arg Ala Thr Ite Arg Met 8212> PRT 85 90 <210> 68 2212> PRT <213> Homo sapiens 10 Ala Ite Gly Ala Ala Ite Phe Glu Val Leu Glu Glu Pro 20 25 Glu Ala Lys Lys Asn Tyr Tyr Thr Gln Lys Leu His Leu 35 40 Phe Pro Cys Leu Gly Gln Glu Gly Leu Asp Lys Ite Leu 50 45 Phe Pro Cys Leu Gly Gln Glu Gly Leu Asp Lys Ite Leu 50 55 Ser Asp Ala Ala Gly Gln Gly Val Ala Ite Thr Glp Asn 65 70 75 Asn Asn Trp Asn Trp Pro Asn Ala Met Ite Phe Ala Ala Ala 65 70 75 Asn Asn Trp Asn Trp Pro Asn Ala Met Ite Phe Ala Ala Ala 65 70 75 Asn Asn Trp Asn Trp Pro Asn Ala Met Ite Phe Ala Ala Ala 65 70 75 Asn Asn Trp Asn Trp Fro Asn Ala Met Ite Phe Ala Ala Ala 65 70 75	Met Phe His Gln Ile Trp Ala Leu Leu Tyr Phe Tyr Gly Leu Asn Ser Ile Tyr Gln Cys Pro Glu His Ser Gln Leu Thr 20 25 30 Gly Glu Glu His Leu Gly Gln Gly Glu Glu Glu Glu Glu Glu Glu Glu Glu Leu Ala Thr Tyr Glu Glu Leu Ala Thr Tyr Glu Glu Leu Ala Thr Tyr Glu Glu Leu Ala Glu Fre Ala Glu Fre Ala Ile Tyr Tyr	Met Phe His Gin Ite Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ite 1 5 10 15 Leu Asn Ser Ite Tyr Gln Cys Pro Glu His Ser Gln Leu Thr Thr 20 25 30 30 Gly Val Asp Gly Lys Glu Phe Pro Glu Val His Leu Gly Gln Trp 35 40 45 45 Phe Ite Ala Gly Ala Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe 50 55 60 60 Pro Val Asp Asn Ite Val Phe Asn Met Ala Ala Gly Ser Ala Pro 65 70 75 75 Gln Leu His Leu Arg Ala Thr Ite Arg Met 85 90 90 90 <210> 68 85 90 90 90 <212> PRT 85 90 90 90 90 <210> 68 8211> 499 90

	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Сув	Leu	Thr
			115					120					125			
	Trp	Ile	Ser	Ala	Leu	Gly	Lys	Phe	Phe	Gly	Gly	Arg	Ala	Lys	Arg	Leu
		130					135					140				
5	Gly	Gln	Phe	Leu	Thr	Lys	Arg	Gly	Val	Ser	Leu	Arg	Lys	Ala	Gln	Ile
	145					150					155					160
	Thr	Сув	Thr	Val	lle	Phe	Ile	Val	Trp	Gly	Val	Leu	Val	His	Leu	Val
					165					170					175	
	Ile	Pro	Pro	Phe	Val	Phe	Met	Val	Thr	Glu	Gly	Trp	Asn	Tyr	Ile	Glu
10				180					185					190		
	Gly	Leu	Tyr	Tyr	Ser	Phe	Ile	Thr	Ile	Ser	Thr	Ile	Gly	Phe	Gly	Asp
			195	·				200					205			
	Phe	Val	Ala	Gly	Val	Asn	Pro	Ser	Ala	Asn	Tyr	His	Ala	Leu	Tyr	Arg
		210					215					220				
15		Phe	Val	Glu	Leu	Trp	Ile	Tyr	Leu	Gly	Leu	Ala	Trp	Leu	Ser	Leu
	225					230					235					240
	Phe	Val	Asn	Ττρ	-	Val	Ser	Met	Phe	Val	Glu	Val	His	Lys	Ala	Ile
					245					250					255	
00	Lys	Lys	Arg	-	Arg	Arg	Arg	Lya		Ser	Phe	Glu	Ser		Pro	His
20				260					265					270		
	Ser	Arg	-	Ala	Leu	Gln	Val	-	Gly	Ser	Thr	Ala		Lys	Авр	Val
			275					280					285			
	Asn	Ile	Phe	Ser	Phe	Leu		Lys	Lys	GLu	GIu		Tyr	Asn	Asp	Leu
25	- 1-	290					295			_		300	-1	-1.		
20	305	Lys	GIN	116	GIY	-	rys	ATA	Met	гÀз		ser	GIĀ	GTÅ	GIY	
		c1	D	03		310	•			6 1	315	a 1	0 1	-	D	320
	TILL	Gly	PIO	GIY	325	GIA	Leu	GIY	Pro	330	GIĀ	GIĂ	GIY	Leu	335	ATG
	Leu	Pro	Dro	Car		tra l	Dec	T ou	ua)		m	For	T ***	A on		17.1
30	Deu	PLO	PLO	340	Leu	Val	PIO	ren	345	VAL	туг	Set	гуя	350	ALG	vaı
00	Dro	Thr	T en		C1	17-1		~1 =		T	B ===	Cow	T		ui a	17-1
	.10	1111	355	GTU	GIU	val	Ser	360	IIII	теп	AIG	Ser	365	СТА	urs	Val
	Sor	Arg		D=0	Nam	~ 1	C1		17-1	21-	N = 0	81-		C1	ð an	e
		370	Per	210	ւտի	GIU	375	esT q	AGT	rra	ara	380	-10	JIU	b	267
35	Ser	Pro	Δ 12	Dro	G) n	1707		Mat) er	Glr	T.eu	• • •	Ara	Tle	Ser	Gliv
00	261		wiq	PLO	GIU	ART	rne	rie: C	Holl	GIII	Ten	หลก	ar A	TTE	Ser.	GIU

WO 00/05367 PCT/JP99/03929

	385				390					395					400
	Glu Cys	Glu	Pro	Trp	qsA	Ala	Gln	Asp	Tyr	His	Pro	Leu	Ile	Phe	Gln
				405					410					415	
	Asp Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu
5			420					425					430		
	Glu Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser
		435					440					445			
	Pro Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe
	450					455					460				
10	Pro Ser	Ser	Ser	Glu	Ser	Thr	Phe	Thr	Ser	Thr	Glu	Ser	Glu	Leu	Ser
	465				470					475					480
	Val Pro	Tyr	Glu	Gln	Leu	Met	Asn	Glu	Tyr	Asn	Lys	Ala	Asn	Ser	Pro
				485					490					495	
	Lys Gly	Thr													
15															
	<210> 6	9													
	<211> 1	06													
	<212> P	RT				,									
20	<213> н	omo i	sapi	ens											
	<400> 6	9													
	Met Ala	Ser	Ser	Gly	Ala	Gly	Asp	Pro	Leu	Asp	Ser	Lys	Arg	Gly	Glu
	1			5					10					15	
25	Ala Pro	Phe	Ala	Gln	Arg	Ile	Asp	Pro	Thr	Arg	Glu	Lys	Leu	Thr	Pro
			20					25					30		
	Glu Gln	Leu	His	Ser	Met	Arg	Gln	Ala	Glu	Leu	Ala	Gln	Trp	Gln	Lys
		35					40					45			
	Val Leu	Pro	Arg	Arg	Arg	Thr	Arg	Asn	Ile	Val	Thr	Gly	Leu	Gly	Ile
30	50					55					60				
	Gly Ala	Leu	Val	Leu	Ala	Ile	Tyr	Gly	Tyr	Thr	Phe	Tyr	Ser	Ile	Ser
	65				70					75					80
	Gln Glu	Arg	Phe	Leu	qaA	Glu	Leu	Glu	Asp	Glu	Ala	Lys	Ala	Ala	Arg
				85					90					95	
35															

<400> 71

100

74/177

105

<210> 70 <211> 152 <212> PRT <213> Homo sapiens <400> 70 Met Asp Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp 10 10 Glu Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu 25 Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile 40 15 Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp Lys Lys 55 Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu 65 70 75 Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu 20 85 90 Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe Pro Asp Val Ser Gly 100 105 Val Ser Arg Ile Pro Ser Arg Ser Val Pro Ala Ser Asp Cys Val Ser 125 120 25 Gly Gln Asp Leu His Ser Thr Val Tyr Glu Val Ile Gln His Ile Pro . 135 140 Ala Gln Gln Asp His Pro Glu 145 30 <210> 71 <211> 921 <212> DNA <213> Homo sapiens

	atgtctatga	ttttatctgc	ctcagtcatt	cgtgtcagag	atggactgcc	actttctgct	60
	tctactgatt	atgaacaaag	cacaggaatg	caggagtgca	gaaagtattt	taaaatgett	120
	tcgaggaaac	ttgctcaact	tcctgataga	tgtacactga	aaactggaca	ttataacatt	180
	aattttatta	getetetggg	agtgagctac	atgatgttgt	gcactgaaaa	ttacccaaat	240
5	gttctcgcct	tetettteet	ggatgagctt	cagaaggagt	tcattactac	ttataacatg	300
	atgaagacaa	atactgctgt	cagaccatac	tgtttcattg	aatttgataa	cttcattcag	360
	aggaccaagc	agcgatataa	taatcccagg	tctctttcaa	caaagataaa	tetttetgae	420
	atgcagacgg	aaatcaagct	gaggeeteet	tatcamattt	ccatgtgcga	actggggtca	480
	gccaatggag	teacateage	attttctgtt	gactgtaaag	gtgctggtaa	gatttcttct	540
10	gctcaccage	gactggaacc	agcaactctg	tcagggattg	taggatttat	ccttagtctt	600
	ttatgtggag	ctctgaattt	aattcgaggc	tttcatgcta	tagaaagtct	cctgcagagt	660
	gatggtgatg	attttaatta	catcattgca	tttttccttg	gascagcagc	ctgcctttac	720
	cagtgttatt	tacttgtcta	ctacaccggc	tggcggaatg	temmatettt	tttgactttt	780
	ggcttaatct	gtetatgeaa	catgtatete	tatgaactge	geaacetetg	geagetttte	840
15	tttcatgtga	ctgtgggagc	atttgttaca	ctacagatct	ggctaaggca	agcccagggc	900
	aaggeteeeg	attatgatgt	c				92
			•				
	<210> 72						
	<211> 549						
20	<212> DNA			•			
	<213> Нотю	sapiens					
	<400> 72						
	atgacggccc	aggggggcct	ggtggctaac	cgaggccggc	getteaagtg	ggecattgag	60
25	ctaageggge	ctggaggagg	cagcaggggt	cgaagtgacc	ggggcagtgg	ccagggagac	120
	togototaco	cagtoggtta	cttggacaag	caagtgeetg	ataccagcgt	gcaagagaca	186
	gaccggatcc	tggtggagaa	gegetgetgg	gacategeet	tgggtcccct	casscagatt	240
	cccatgaatc	tcttcatcat	gtacatggca	ggcaatacta	tetecatett	ccctactatg	300
	atggtgtgta	tgatggcctg	gcgacccatt	caggcactta	tggccatttc	agccactttc	360
30	aagatgttag	amagttcamg	ccagaagttt	cttcagggtt	tggtctatct	cattgggaac	420
	ctgatgggtt	tggcattggc	tgtttacaag	tgccagtcca	tgggactgtt	acctacacat	480
	gcateggatt	ggttagcctt	cattgagece	cctgagagaa	tggagttcag	tggtggagga	540
	etgettttg						549

<211> 981

	<212> DNA						
	<213> Homo	sapiens					
5	<400> 73						
	atgegegeee	tecceggect	gctggaggcc	agggcgcgta	cgccccggct	getectecte	60
	cagtgccttc	tegetgeege	gegeeeaage	teggeggaeg	gcagtgcccc	agattogoct	120
	tttacaagtc	cacctctcag	agaagaaata	atggcaaata	acttttcctt	ggagagtcat	180
	aacatatcac	tgactgaaca	ttctagtatg	ccagtagaaa	easatatcac	tttagaaagg	240
10	ccttctmatg	tasatctcac	atgccagttc	acaacatetg	gggatttgaa	tgcagtamat	300
	gtgacttgga	aaaaagatgg	tgaacaactt	gagaataatt	atcttgtcag	tgcaacagga	360
	agcaccttgt	atacccaata	caggttcacc	atcattaata	gcaaacaaat	gggaagttat	420
	tettgtttet	ttegagagga	aaaggaacaa	aggggaacat	ttaatttcaa	agtecetgaa	480
	cttcatggga	aaaacaagcc	attgatetet	tacgtagggg	attctactgt	cttgacatgt	540
15	aaatgtcaaa	attgttttcc	tttaaattgg	acctggtaca	gtagtaatgg	gagtgtaaag	600
	gtteetgttg	gtgttcamat	gaataaatat	gtgatcaatg	gaacatatgo	taacgaaaca	660
	aagetgaaga	taacacaact	tttggaggaa	gatggggaat	cttactggtg	ccgtgcacta	720
	ttecaattag	gcgagagtga	agaacacatt	gagcttgtgg	tgctgagcta	tttggtgece	780
	ctcaaaccat	ttcttgtaat	agtggctgag	gtgattcttt	tagtggccac	cattetgett	840
20	tgtgaaaagt	acacacaaaa	gaaaaagaag	cactcagatg	aggggaaaga	atttgagcag	900
	attgaacagc	tgaaatcaga	tgatagcaat	ggtatagaaa	ataatgtccc	caggcataga	960
	aaaaatgagt	ctctgggcca	g.				981
						•	
	<210> 74						
25	<211> 669						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 74						•
30	atgaagtteg	teccetgeet	cctgctggtg	accttgtcct	gcctggggac	tttgggtcag	60
	gccccgaggc	aaaagcaagg	aagcactggg	gaggaattee	atttccagac	tggagggaga	120
	gatteetgea	ctatgcgtcc	cageagettg	gggcaaggtg	ctggagaagt	ctggcttcgc	180
	gtegaetgee	gcaacacaga	ccagacetae	tggtgtgagt	acagggggca	gcccagcatg	240
	tgccaggctt	tegetgetga	ccccaaatct	tactggaatc	aagccctgca	ggagetgagg	300
35	cgccttcacc	atgcgtgcca	ddddaccca	gtgcttaggc	cateegtgtg	cagg gaggc t	360

	ggaccccagg	cccatatgca	gcaggtgact	tocagoetea	agggeagece	agageceaae	420
	cagcagcctg	aggetgggae	gecatetetg	aggcccaagg	ccacagtgaa	actcacagaa	480
	gcaacacage	tgggaaagga	ctcgatggaa	gagctgggaa	aagccaaacc	caccacccga	540
	cccacagcca	aacctaccca	geetggaece	aggcccggag	ggaatgagga	agcaaagaag	600
5	aaggeetggg	aacattgttg	gaaacccttc	caggccctgt	gegeetttet	catcagette	660
	ttccgaggg		•				669
	<210> 75						
	<211> 144						
10	<212> DNA						
	<213> Homo	sapiens					
	<400> 75						
	atgaggette	tgctgcttct	cctagtggcg	gegtetgega	tggtccggag	cgaggceteg	60
15	gccaatctgg	geggegtgee	cagcaagaga	ttaaagatge	agtacgccac	ggggeegetg	120
	ctcaagttcc	agatttgtgt	ttcc				144
	<210> 76						
20	<211> 1113						
20	<212> DNA						
	<213> Homo	sapiens					
	<400> 76					,	
		ccaagtacca	getatteeta	qeeqqqetca	tgcttgttac	cggctccatc	60
25		cggcaaaatg					120
		tocagcatco					180
	tgcctggctg	ccttctacct	cctccgatgc	agagetgeag	ggcaatcaga	ctccagcgta	240
	gacccccage	agecetteas	ccctcttctt	ttcctgcccc	cagegetetg	tgacatgaca	300
	gggaccagcc	tcatgtatgt	ggctctgaac	atgaccagtg	cciccagctt	ccagatgctg	360
30	cggggtgcag	tgatcatatt	cactggcctg	tteteggtgg	ecttectggg	ccggaggctg	420
	gtgctgagee	agtggctggg	catcetagee	accategegg	ggctggtggt	cgtgggcctg	480
	gctgacctcc	tgagcaagca	cgacagtcag	cacaagctca	gcgaagtgat	cacaggggac	540
	ctgttgatca	teatggecca	gatcatcgtt	gccatccaga	tggtgctaga	ggagaagttc	600
	gtctacaaac	acaatgtgca	eccactgegg	gcagttggca	ctgagggcct	ctttggcttt	660
35	gtgatectet	ccctgctgct	ggtgcccatg	tactacatcc	cegeeggete	cttcagcgga	720

	aaccctcgtg	ggacactgga	ggatgcattg	gacgccttct	gccaggtggg	ccagcagccg	780
	ctcattgccg	tggcactgct	gggcaacatc	ageageattg	ccttcttcae	cttcgcaggc	840
	atcagcgtca	ccaaggaact	gagegeeace	accegeatgg	tgttggacag	cttgcgcacc	900
	gttgtcatct	gggcactgag	cctggcactg	ggctgggagg	ccttccatgc	actgcagatc	960
5	cttggcttcc	tcatactcct	tataggcact	gecetetaca	atgggctaca	cegteegetg	1020
	ctgggccgcc	tgtccagggg	ceggeeeetg	gcagaggaga	gcgagcagga	gagactgctg	1080
	ggtggcaccc	gcactcccat	caatgatgcc	age			1113
	<210> 77						
10	<211> 270						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 77	•					
15	atgttccacc	anatttgggc	agetetgete	tacttctatg	gtattatcct	taactccatc	60
	taccagtgcc	ctgagcacag	tcaactgaca	actetgggeg	tggatgggaa	ggagttccca	120
	gaggtccact	tgggccagtg	gtactttatc	gcaggggcag	ctcccaccaa	ggaggagttg	180
	gcaacttttg	accctgtgga	caacattgtc	ttcaatatgg	ctgctggctc	tgccccgatg	240
	cagetecace	ttegtgetae	cateegeatg				270
20							
	<210> 78						
	<211> 1497						
	<212> DNA						
	<213> Homo	sapiens					
25							
	<400> 78						
					tctacctggc		60
					ccaagaaaaa		120
20					aggagggcct		180
30					tcacagggaa		240
					ccgtcattac		300
					tetgtgtttt		360
						cgggggacgt	420
0.5					gtctgcggaa		480
35	acgtgcacag	teatetteat	egtgtgggge	gteetagtee	acctggtgat	cccacccttc	540

79/177

	gtattcatgg	tgactgaggg	gtggaactac	atcgagggcc	tctactactc	cttcatcacc	600
	atctccacca	teggettegg	tgactttgtg	geeggtgtga	accccagege	caactaccac	660
	gecetgtace	getacttegt	ggagetetgg	atctacttgg	ggetggeetg	getgtecett	720
	tttgtcaact	ggaaggtgag	catgtttgtg	gaagtccaca	aagccattaa	gaagcggegg	780
5	eggegaegga	aggagteett	tgagagetee	ccacactccc	ggaaggccct	gcaggtgaag	840
	gggagcacag	cctccaagga	cgtcaacatc	tteagettte	tttccaagaa	ggaagagacc	900
	tacaacgacc	tcatcaagca	gatcgggaag	aaggecatga	agacaagegg	gggtggggag	960
	acgggcccgg	gcccagggct	ggggceteaa	ggcggtgggc	teccageact	gececettee	1020
	ctggtgeece	tggtagtcta	ctccaagaac	cgggtgccca	ccttggaaga	ggtgtcacag	1080
10	acactgagga	gcaaaggcca	cgtatcaagg	tecccagatg	aggaggetgt	ggcacgggcc	1140
	cctgaagaca	geteccetge	ccccgaggtg	ttcatgaacc	agctggaccg	catcagcgag	1200
	gaatgcgagc	catgggaege	ccaggactac	cacccactca	tettecagga	cgccagcatc	1260
	accttcgtga	acacggaggc	tggcctctca	gacgaggaga	cctccaagtc	ctcgctagag	1320
	gacaacttgg	caggggagga	gageeeccag	cagggggctg	aagccaaggc	gcccctgaac	1380
15	atgggcgagt	tecectecte	cteegagtee	accttcacca	gcactgagtc	tgagetetet	1440
	gtgccttacg	aacagctgat	gaatgagtac	aacaaggcta	acagececaa	gggcaca	1497
	<210> 79						
	<233> 338			•			
20	<212> DNA						
	<213> Homo	sapiens					
	<400> 79					•	
	atggcgtctt	cgggagctgg	tgaccetetg	gattctaagc	gtggagaggc	cccgttcgct	60
25	cagcgtatcg	accegacteg	ggagaagctg	acacccgage	aactgcattc	catgeggeag	120
	geggagettg	cecagtggca	gaaggteeta	ccacggcggc	gaacccggaa	catcgtgacc	180
	ggcctaggca	teggggeeet	ggtgttggat	atttatggtt	acacetteta	ctcgatttcc	240
	caggagcgtt	tectagatga	gctagaagac	gaggccaaag	ctgcccgagc	ccgagctctg	300
	gcaagggegt	cagggtcc					318
30							
	<210> 80						
	<211> 456						
	<212> DNA						
	<213> Homo	sapiens					

35

	<400> 80	
	atggactatg tgtgctgtgc ttacaacaac ataaccggca ggcaagatga aactcatttc	60
	acagitatca teacitecgi aggaciggag aageligeae agaaaggaaa ateatigica	120
	cotttagona gtatanotgg antatonota tttttgatta tatocatgtg tottototto	180
5	ctatggaaaa aatatcaacc ctacaaagtt ataaaacaga aactagaagg caggccagaa	240
	acagaataca ggaaagetea aacattttea ggeeatgaag atgetetgga tgaettegga	300
	atatatgaat ttgttgettt teeagatgtt tetggtgttt eeaggateee aageaggtet	360
	gttccagcct ctgattgtgt atcggggcaa gatttgcaca gtacagtgta tgaagttatt	420
	cagcacatoc etgeccagea geaagaceat ceagag	456
10		
	<210> 81	
	<211> 1436	
	<212> DNA	
	<213> Homo sapiens	
15	<220>	
	<221> CDS	
	<222> (66)(989)	
	<400> 81	
20	geactteggg gegegteact eggageggeg ggteeegtet egacaggtet tetetgttgg	60
	ttgaa atg tet atg att tta tet gee tea gte att egt gte aga gat	107
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp	
	1 5 10	
0=	gga ctg cca ctt. tot got tot act gat tat gaa caa ago aca gga atg	155
25	Gly Leu Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met	
	15 20 25 30	
	cag gag tgc aga ang tat ttt ama atg ctt tcg agg ama ctt gct cam	203
	Gln Glu Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln	
20	35 40 45	
30	ctt cet gat aga tgt aca ctg aaa act gga cat tat aac att aat ttt	251
	Leu Pro Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe	
	50 55 60	
	att age tet etg gga gtg age tac atg atg ttg tge act gaa aat tac	299
or.	Ile Ser Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr	
35	65 70 75	

	cca	aat	gtt	ctc	gee	ttc	tct	ttc	ctg	gat	gag	ctt	cag	aag	gag	ttc	347
	Pro	Asn	Val	Leu	Ala	Phe	Ser	Phe	Leu	Asp	Glu	Leu	Gln	Lys	Glu	Phe	
		80					85					90					
	att	act	act	tat	aac	atg	atg	aag	aca	aat	act	get	gtc	aga	cca	tac	395
5	Ile	Thr	Thr	Tyr	Asn	Met	Met	Lys	Thr	Asn	Thr	Ala	Val	Arg	Pro	Tyr	
	95					100					105					110	
	tgt	ttc	att	gaa	ttt	gat	aac	tte	att	cag	agg	acc	aag	cag	cga	tat	443
	Cys	Phe	Ile	Glu	Phe	Asp	Asn	Phe	Ile	Gln	Arg	Thr	Lys	Gln	Arg	Tyr	
					115					120					125		
10	aat	aat	ccc	agg	tet	ctt	tca	aca	aag	ata	aat	ctt	tct	gac	atg	cag	491
	Asn	Asn	Pro	Arg	Ser	Leu	Ser	Thr	Lys	Ile	Asn	Leu	Ser	qaA	Met	Gln	
				130					135					140			
	acg	gaa	atc	aag	ctg	agg	cct	ect	tat	caa	att	tee	atg	tgc	gaa	ctg	539
	Thr	Glu	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	
15			145					150					155				
	3 33	tca	gcc	aat	gga	gtc	aca	tca	gca	ttt	tet	gtt	gac	tgt	aaa	ggt	587
	Gly	Ser	Ala	Asn	Gly	Val	The	Ser	Ala	Phe	Ser	Val	Asp	Сув	Lys	Gly	
	/	~160					165					170					
	gat	ggt	aag	att	tet	tct	gct	cac	cag	cga	ctg	gaa	cca	gca	act	ctg	635
20	Ala	Gly	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thŕ	Leu	
	175					180					185					190	
	tca	99 9	att	gta	gga	ttt	atc	ctt	agt	ctt	tta	tgt	gga	gct	ctg	aat	683
	Ser	Gly	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	
					195					200					205		
25	tta	att	cga	ggc	ttt	cat	gct	ata	gaa	agt	ctc	ctg	cag	agt	gat	ggt	731
	Leu	Ile	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Авр	Gly	
				210					215					220			
			ttt					-									779
	Asp	Asp	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Cly	Thr	Ala	Ala	Cys	
30			225					230					235				
	ctt	Lac	cag	tgt	tat	tta	ctt	gtc	tac	tac	acc	ggc	tgg	cgg	aat	gtc	827
	Leu	Tyr	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	;tb	Arg	Asn	Val	
		240					245					250					
	aaa	tet	ttt	ttg	act	ttt	gge	tta	atc	tgt	cta	tgc	aac	atg	tat	ctc	875
35	Lys	Ser	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Сув	Leu	Cys	Asn	Met	Tyr	Leu	

	255 260 265 270	
	tat gas ctg cgc asc ctc tgg cag ctt ttc ttt cat gtg act gtg ggs	923
	Tyr Glu Leu Arg Asn Leu Trp Gln Leu Phe Phe His Val Thr Val Gly	
	275 280 285	
5	gea tit git aca eta cag ato tgg eta agg caa gee cag gge aag get	971
	Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Ala	
	290 295 300	
	ecc gat tat gat gto tgacaccatc ottoagatot attgeottgg otto	1020
	Pro Asp Tyr Asp Val	
10	305	
	agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttccccacag	1080
	aggagaaget etgetttett teteteeaae ttteettitt taaaateage atgatgtgee	1140
	tgtgagcatg gaagagteet etcagaagaa tgttggeeat gagactatea tteagaggag	1200
	gaggggattt etetetteaa ggeeataaea gtggaagaae agteatatge cattggaagt	1260
15	cttggccagc agtcctgaat cettcctgaa gagttcagaa aatagatgtg gtattgctct	1320
	gaggaccagg caggaggaac totacaacot gagtttgoot ttgtgaggca ttagtataga	1380
	ccaaataaaa agctgcagaa attggaaagt ttatgtttta aataaatgac tgtgat	1436
	<210> 82	
20	<211> 997	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
25	<222> (87)(638)	
	<400> 82	
	gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaageat	60
	cgaggetata ggacgeaget gttgee atg acg gcc cag ggg ggc ctg gtg	110
30	Met Thr Ala Gln Gly Gly Leu Val	
	1 5	
	get ame egm gge egg ege tte mag tgg gee att gmag etm mage ggg eet	158
	Ala Asn Arg Gly Arg Arg Phe Lys Trp Ala Ile Glu Leu Ser Gly Pro	
	10 15 20	
35	gga gga ggc agc agg ggt cga agt gac cgg ggc agt ggc cag gga gac	206

	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Авр	
	25					30					35					40	
	tcg	ctc	tac	cca	gtc	ggt	tac	ttg	gac	aag	caa	gtg	cct	gat	acc	agc	254
	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	
5					45					50					55		
	gtg	caa	gag	aca	gac	cgg	atc	ctg	gtg	gag	aag	cgc	tge	tgg	gac	atc	302
	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu	Val	Glu	Lys	Arg	Сув	Тгр	Asp	Ile	
				60					65					70			
	gcc	ttg	ggt	ccc	ctc	aaa	cag	att	ccc	atg	aat	ctc	tte	atc	atg	tac	350
10	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	
			75					80					85				
	atg	gca	ggc	aat	act	atc	tcc	atc	ttc	cct	act	atg	atg	gtg	tgt	atg	398
	Met	Ala	Gly	neA	Thr	Ile	Ser	Ile	Phe	Pro	Thr	Met	Met	Val	СЛа	Met	
		90					95					100					
15	-	-		cga			_	-		-	_			_			446
		Ala	Тгр	Arg	Pro	Ile	Gln	Ala	Leu	Met		Ile	Ser	Ala	Thr	Phe	
	105					110					115					120	
	aag	atg	tta	gaa	agt	tca	age	cag	aag	ttt	ctt	cag	ggt	ttg	gtc	tat	494
	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln	Lys		Leu	Gln	Gly	Leu		Tyr	
20					125					130					135		
				aac		_										_	542
	Leu	Ile	Gly	Asn	Leu	Met	Gly	Leu		Leu	Ala	Val	Tyr	_	Cys	Gln	
				140					145					150			
~=		_		ctg					-	-	-			-			590
2 5	Ser	Met		Leu	Leu	Pro	Thr		Ala	Ser	Asp	Trp		Ala	Phe	Ile	
			155					160					165				
	_				_	_			-				_		_	tgaac	640
	Glu		Pro	Glu	Arg	Met		Phe	Ser	Gly	Gly	_	Leu	Leu	Leu		
00		170					175					180					
30	atg	gaa	age a	racac	etg	jt co	ctat	tgtat	tte	ggto	tta	ttt	cato	ect 1	cttt	aagcc	700
																igactc	
											_	_				acaca	
								-		_	-				-	ttcca	
0.5				•									-			jetget	940
35	aaat	caaç	gaa d	etgtt	gcag	ge at	ctco	tttc	: aat	aaat	taa	atg	jttga	ga a	caat	ge	997

	<210	> 8:	3															
	<21	1> 1'	753															
	<212	2> DI	A)															
5	<21	3> H	omo s	sapi	ens													
	<220)>																
	<22	l> CI	03															
	<222	2> {:	134)	(1117)												
10	<400)> 8:	3															
	tett	cago	egt d	ectad	ecego	eg ge	cact	gget	g cga	ageg	ccgg	gcc	acct	gcg	agtg	tgege	a 6	0
	333	acte	egg 4	1040	ege	gg c	ggogi	gct	g ag	ggag	cagt	ctc	cacg	agg	accc	aggeg	rg 12	0
	acco	ctct	gge (gcc a	atg o	ege (gee (etc (200	gge (etg (etg (gag	gcc	agg ·	gcg	16	9
				ŀ	1et 1	Arg i	Ala 1	leu l	Pro (3ly 1	Leu 1	Leu (3lu /	Ala .	Arg .	Ala		
15					1				5					10				
	cgt	acg	CCC	egg	ctg	ctc	ctc	ctc	cag	tgc	ctt	ctc	gct	gee	gcg	cgc	21	7
	Arg	Thr	Pro	Arg	Leu	Leu	Leu	Leu	Gln	Сув	Leu	Leu	Ala	Ala	Ala	Arg		
			15					20					25					
00		-	tcg		-		-	-		-	_				-		26	5
20	Pro		Ser	Ala	Asp	Gly		Ala	Pro	Asp	Ser		Phe	Thr	Ser	Pro		
		30					35					40						
			aga												_		31	3
		Leu	Arg	Glu	Glu		Met	Ala	Asn	Asn		Ser	Leu	Glu	Ser			
or.	45					50					55					60		_
25			tca	-		-			-	_		-	-				36	1
	Asn	He	Ser	Leu		Glu	His	Ser	Ser		Pro	Val	GIn	Lys		Ile		
					65					70					75			_
			gaa					-				-	_				40	9
30	THE	Leu	Glu	-	Pro	ser	Asn	Val	Asn 85	Leu	Thr	Cys	GIR	Pne 90	The	THE		
30	+-+			80													45	_
			gat	-		-	-										451	′
	361	GIÀ	Asp 95	Leu	Asn	Ald	val	100	vai	THE	пр	Lys	105	Asp	GIY	GIU		
	CRR	a++				+-+	a++			ac-	803	ac.			***	+-+	509	_
35			gag Glu					_	-	-			_		_		50:	נ
00	GII	Leu	GIU	Asn	ABII	ryr	Teg	val	ser	wid	THE	GTÀ	Set	TILE	TAI	TÀL		

		110					115					120					
	acc	caa	tac	agg	tte	acc	atc	att	aat	agc	aaa	caa	atg	gga	agt	tat	553
	Thr	Gln	Tyr	Arg	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	
	125					130					135					140	
5	tct	tgt	ttc	ttt	cga	gag	gaa	aag	gaa	caa	agg	gga	aca	ttt	aat	ttc	601
	Ser	Cys	Phe	Phe	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	
					145					150					155		
	aaa	gtc	cct	gaa	ctt	cat	999	asa	aac	aag	cca	ttg	atc	tct	tac	gta	649
	Lys	Val	Pro	Glu	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	ser	Tyr	Val	
10				160					165					170			
	ggg	gat	tct	act	gtc	ttg	aca	tgt	aaa	tgt	caa	aat	tgt	ttt	cct	tta	697
	Gly	Asp	Ser	Thr	Val	Leu	Thr	Cys	Lув	Cys	Gln	Asr.	Сув	Phe	Pro	Leu	
			175					180					185				
	aat	tgg	acc	tgg	tac	agt	agt	aat	999	agt	gta	aag	gtt	cct	gtt	ggt	745
15	Asn	Trp	Thr	тгр	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	
		190					195					200					
	gtt	caa	atg	aat	aaa	tat	gtg	atc	aat	gga	aca	tat	gct	aac	gaa	aca	793
	Val	Gln	Met	Asn	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	
	205					210					215					220	
20	aag	ctg	aag	ata	aca	caa	ctt	ttg	gag	gaa	gat	999	gaa	tct	tac	tgg	841
	Lys	Leu	Lys	Ile	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	
					225					230					235		
	tgc	cgt	gca	cta	ttc	caa	tta	ggc	gag	agt	gaa	gaa	cac	att	gag	ctt	889
	Сув	Arg	Ala	Leų	Phe	Gln	Leu	Gly	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	
25				240					245					250			
	gtg	gtg	ctg	agc	tat	ttg	gtg	ccc	ctc	aaa	cca	ttt	ctt	gta	ata	gtg	937
	Val	Val	Leu	Ser	Tyr	Leu	Val	Pro	Leu	Lys	Pro	Phe	Leu	Val	Ile	Val	
			255					260					265				
	gct	gag	gtg	att	ctt	tta	gtg	gcc	acc	att	ctg	ctt	tgt	gaa	aag	tac	985
30	Ala	Glu	Val	Ile	Leu	Leu	Val	Ala	Thr	Ile	Leu	Гел	Суз	Glu	Lys	Tyr	
		270					275					280					
	aca	caa	aag	aaa	aag	aag	cac	tca	gat	gag	999	aaa	gaa	ttt	gag	cag	1033
	Thr	Gln	Lys	Lys	Lys	Lys	His	Ser	Asp	Glu	Gly	Lys	Glu	Phe	Glu	Gln	
	285					290					295					300	
35	att	gaa	cag	eta	aaa	tca	dat	qat	age	aat	qqt	ata	gaa	aat	aat	qtc	1081

	Ile Glu Gln Leu Lys Ser Asp Ser Asn Gly Ile Glu Asn Asn Val	
	305 310 315	
	ccc agg cat aga aaa aat gag tot otg ggo cag tgaatacaaa acatca	1130
	Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln	
5	320 325	
	tgtcgagaat cattggaaga tatacagagt tcgtatttca getttattta teetteetgt	1190
	taagageete tgagttitta gtittaaaag gatgaaaage ttatgeaaca tgeteageag	1250
	gagetteate amegatatat gtemagateta maggtatatt ttemttetgt mattatgttm	1310
	cataaaagca atgtaaatca gaataaatat gttagaccag aataaaatta attatattct	1370
10	ggtcttcaaa ggacacacag aacagatatc agcagaatca cttaatactt catagaacaa	1430
	asatcactca anacctgttt ataaccanag aattcatgaa aanganagec tttgccattt	1490
	gtottagaaa gttatttttt taaaqaaaat catacttact attagtatot atggaagtat	1550
	atgtaacaat ttttatgtaa aggtcatctt tctgtgatag tgaaaaaata tgtctttact	1610
	aagttgaaat gaatactttc tgeetttget catgatagtt attetacaat etceacaaga	1670
15	assatatacc ttttatccgg assatattggt ttaaggcass taastassac tgtgcttgct	1730
	ctaaagctct gcactacaaa agc	1753
	•	
	<210> 84	
20	<211> 1117	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
25	<222> (62)(733)	
20	<400> 84	
	cqtcccactt qtqttctctc tcctqqtqca qaqttqcaag caaqtttatc ggagtatcqc	60
	c atg aag tte gte eee tge ete etg gtg ace ttg tee tge etg	106
	Met Lys Phe Val Pro Cys Leu Leu Val Thr Leu Ser Cys Leu	100
30	1 5 10 15	
	ggg act tig ggt cag gcc ccg agg caa mag cam gga agc act ggg gag	154
	Gly Thr Leu Gly Gln Ala Pro Arg Gln Lys Gln Gly Ser Thr Gly Glu	
	20 25 30	
	gam the cat the eag act qqa qqq aga gat tee tgo act atg egt eec	202
35	Glu Phe His Phe Gln Thr Gly Gly Arg Asp Ser Cys Thr Met Arg Pro	

				35					40					45			
	agc	agc	ttg	999	caa	ggt	gct	gga	gaa	gtc	tgg	ctt	ege	gtc	gac	tge	250
					Gln												
			30					55					60				
5	ege	aac	aca	gac	cag	acc	tac	tgg	tgt	gag	tac	agg	999	cag	cec	age	298
	Arg	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	
		65					70					75					
	atg	tgc	cag	gct	tte	gct	gct	gac	ccc	aaa	tct	tac	tgg	aat	caa	gee	346
	Met	Сув	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	
10	80					85					90					95	
					agg												394
	Leu	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Сув	Gln	Gly	Ala	Pro	Val	
					100					105					110		
					gtg												442
15	Leu	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	
				115					120					125			
					age												490
	Gln	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro		Gln	Gln	Pro	
			130					135					140				
20					cca												538
	Glu	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala		Val	Lys	Leu	Thr	
		145					150					155					
					ctg												586
		Ala	Thr	Gln	Leu		Lys	Asp	Ser	Met		Glu	Leu	Gly	Lys		
25	160					165					170					175	
					cga												634
	Lys	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys		Thr	GIN	Pro	GTĀ		Arg	
					180					185					190		600
00					gag												682
30	Pro	Gly	Gly		Glu	Glu	Ala	Lys		Lys	Ala	ТТ	GIU		cys	Trp	
				195					200					205			770
					gcc												730
	Lys	Pro		Gln	Ala	Leu	Cys		Phe	Leu	TTE	ser		rne	AFG	GIÀ	
0.5			210					215					220				700
35	tga	caggi	tga i	aagad	ccct	ta c	agato	ctga	ct	ctcc	ccga	cag	acaa	ca 1	ccte	tttta	790

	tattatgeeg ettteaatee aaegttetea eaetggaaga agagagttte taateagatg	850
	caacggccca aattettgat etgcagette tetgaagttt ggaaaagaaa cetteettte	910
	tggagtttgc agagttcagc aatatgatag ggaacaggtg ctgatgggcc caagagtgac	970
	aagcatacac aactacttat tatctgtaga agttttgctt tgttgatctg agccttctat	1030
5	gaaagtttaa atatgtaacg cattoatgaa tttccagtgt tcagtaaata gcagctatgt	1090
	gtgtgcaaaa taaaagaatg atttcag	1117
	<210> 85	
	<211> 1380	
10	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (43)(189)	
15		
	<400> 85	
	geagtetgte tgagggegge egaagtgget ggeteattta ag atg agg ett etg	54
	Met Arg Leu Leu	
20	1	
20	ctg ctt ctc cta gtg gcg gcg tct gcg atg gtc cgg agc gag gcc tcg	102
	Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser	
	5 10 15 20	
	gec aat etg gge gge gtg eee age aag aga tta aag atg eag tae gee	150
0.5	Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala	
25	25 30 35	
	acg ggg ecg etg etc aag tte cag att tgt gtt tee tgag	190
	Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser	
	40 45	
30	gttataggcg ggtgtttgag gagtacatgc gggttattag ccagcggtac ccagacatcc	250
30	gentigaagg agagaattac etceeteaac caatatatag acacatagca tettteetgt	310
	cagtetteaa actagtatta ataggettaa taattgttgg caaggateet tttgetttet	370
	ttggcatgca agetectage atetggcagt ggggccaaga aaataaggtt tatgcatgta	430
	tgatggtttt ettettgage aacatgattg agaaccagtg tatgtcaaca ggtgcatttg	490
35	agataacttt aaatgatgta cetgtgtggt ctaagetgga atetggteac ettecateea	550
50	tgcaacaact tgttcaaatt cttgacaatg aaatgaagct caatgtgcat atggattcaa	610

	teccacacca tegateatag caccacctat cagcactgaa aastettttg cattaaggga	670
	tcattgcaag agcagcgtga ctgacattat gaaggeetgt actgaagaca gcaagetgtt	730
	agtacagace agatgettte ttggeagget egttgtacet ettggaaaac etcaatgeaa	790
	gatagtgttt cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac	850
5	tgtatagett tececacete ecacaaaate acceagttaa tgtgtgtgtg tgtttttttt	910
	tttaaggtaa acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa	970
	attgagttac aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata	1030
	tgaatatttg tittitatag titaaaattg atcetttggg aatceagttg aagtteceaa	1090
	atactttata agagtttatc agacatetet aatttggeca tgtccagttt atacagttta	1150
10	cassatatag cagatgcasg attatggggg asstectats ttcsgagtac tctatasatt	1210
	tttgtgtatg tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgett	1270
	tttaaatcet attgtgtagt taaagtgtca tgccttgacc aatctaatga attgattaat	1330
	taactgggcc tttatactta actamatama amactamgca gatatgagtt	1380
15	<210> 86	
	<211> 1503	
	<212> DNA	
	<213> Homo sapiens	
80.	<220>	
20	<221> CDS	
	<222> (51)(1166)	
	4400- 06	
	<400> 86	
25	gtgacgggge ceggegeege taactggage gaacceeage gteegeegae atg gee	56
20	Met Ala	
	1	104
	tgg acc aag tac cag etg tte etg gee ggg etc atg ett gtt acc gge	104
	Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val Thr Gly 5 10 15	
30		152
50	tee ate and acg ete teg gen and teg geg gas and the atg gee gag	132
	Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn ?he Met Ala Glu 20 25 30	
	gge tqt qqa qqq age aaq qaq cac age tte cag cat eec tte etc caq	200
	Gly Cys Gly Gor Lys Glu His Ser Phe Gln His Pro Phe Leu Gln	200
35	35 40 45 50	
JU	20 40 40 30 .	

	gca	gtg	ggc	atg	ttc	ctg	gga	gaa	ttc	tcc	tge	ctg	gct	gcc	ttc	tac	248
	Ala	Val	Gly	Met	Phe	Leu	Gly	Glu	Phe	Ser	Сув	Leu	Ala	Ala	Phe	Tyr	
					55					60					65		
						gct											296
5	Leu	Leu	Arg	Cys	Arg	Ala	Ala	Gly	Gln	Ser	qaA	Ser	Ser	Val	Авр	Pro	
				70					75					80			
	-	-				cct											344
	Gln	Gln	Pro	Phe	Asn	Pro	Leu		Phe	Leu	Pro	Pro		Leu	Cys	Asp	
-			85					90					95				
10						ctc											392
	Met		Gly	Thr	Ser	Leu		Tyr	Val	Ala	Leu		Met	Thr	Ser	Ala	
		100					105					110					
						ctg											440
		Ser	Phe	Gln	Met	Leu	Arg	Gly	Ala	Val		Ile	Phe	Thr	Gly		
15	115					120					125					130	
				-		ctg											488
	Phe	Ser	Val	Ala		Leu	Gly	Arg	Arg		Val	Leu	Ser	Gin		Leu	
					135					140					145		
00						atc											536
20	Gly	Ile	Leu		Thr	Ile	Ala	GTÅ		vaı	vaı	VAI	GIY		AIG	Asp	
				150					155					160			504
		-	_	_		gac											584
	Leu	ren		Lys	HIS	Asp	ser		HIB	гуз	Leu	Set	175	Val	110	THE	
25			165					170			-+-			•+•		•==	632
20						atc Ile											032
	GIY	180	rea	rea	116	116	185	MIG	GIII	110	110	190	AIG	1	GIII	MGC	
	a ta				<i>-</i>								cac	CCB	cta	caa	680
					_	ttc Phe											000
30	195	Leu	GIU	GIU	гуя	200	Val	Tyr	Lys	пто	205	Val	1112	710	Deu	210	
30			~~~			ggc	ata		~~ ~	+++		240	ctc	tcc	cta		728
						Gly											,,,
	ALL	AGT	GIY	The		GIY	Tea	FIIG	gry	220	VUL	116	Dou	561	225	Deu	
	c+ ~	at a	000		215	tac	2+0	200	700	_	tee	ttc	agc	aas		cct	776
35						Tyr											. 70
υU	ren	val	PIO	wec	TyE	TAL	TTE	FIO	vrq	GT.	Jer	E 116	Ser	3.7			

91/177

				230					235					240			
	cgt	ggg	aca	ctg	gag	gat	gca	ttg	gac	gcc	ttc	tgc	cag	gtg	ggc	cag	824
	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Сув	Gln	Val	Gly	Gln	
			245					250					255				
5	cag	ccg	ctc	att	gcc	gtg	gca	ctg	ctg	ggc	aac	atc	age	agc	att	gcc	872
	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser	Ile	Ala	
		260					265					270					
	ttc	ttc	aac	ttc	gca	ggc	atc	agc	gtc	acc	aag	gaa	ctg	agc	gcc	acc	920
	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser	Ala	Thr	
10	275					280					285					290	
	acc	cgc	atg	gtg	ttg	gac	agc	ttg	cgc	acc	gtt	gtc	atc	tgg	gca	ctg	968
	Thr	Arg	Met	Val	Leu	qeA	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp	Ala	Leu	
					295					300					305		
	agc	ctg	gca	ctg	ggc	tgg	gag	gcc	ttc	cat	gca	ctg	cag	atc	ctt	gge	1016
15	Ser	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile	Leu	Gly	
				310					315					320			
	ttc	ctc	ata	ctc	ctt	ata	ggc	act	gcc	cto	tac	aat	999	cta	cao	cgt	1064
	Phe	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu	His	Arg	
			325					330					335				
20			_		cgc	-											1112
,	Pro	Leu	Leu	Gly	Arg	Leu	Ser	Arg	Gly	Arg	Pro	Leu	Ala	Glu	Glu	Ser	
		340					345					350					
					ctg												1160
	Glu	Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg	Thr	Pro	Ile	Asn	qeA	Ala	
25	355					360					365					370	
	agc	tga	ggtto	eec 1	ggag	ggcti	to ta	actgo	caco	: cg	gtg	etec	ttct	ccc			1210
	Ser																
	tga	ract	gac o	ccae	cacac	3a c1	cart	a acc	e cec	raato	iccc	tato	ccca	ag c	reeto	accct	1270
30							-									caagt	1330
•																jagtge	1390
•																agttg	1450
					accad												1503
			- ,						- 3-								

35 <210> 87

	<211> 733	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
5	<221> CDS	
	<222> (40)(312)	
	<400> 87	
	gttaaggcac acagagcacc agetecetec tgeetgaag atg tte cae caa att	54
10	Met Phe His Gln Ile	
	1 5	
	tgg gea get etg ete tae tte tat ggt att ate ett aac tee ate tae	102
	Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ile Ile Leu Asn Ser Ile Tyr	
	10 15 20	
15	cag tgc cct gag cac agt caa ctg aca act ctg ggc gtg gat ggg aag	150
	Gln Cys Pro Glu His Ser Gln Leu Thr Thr Leu Gly Val Asp Gly Lys	
	25 30 35	
	gag tto oca gag gto cac ttg ggo cag tgg tac ttt atc gca ggg gca	198
	Glu Phe Pro Glu Val His Leu Gly Gln Trp Tyr Phe Ile Ala Gly Ala	
20	40 45 50	
	get eee ace aag gag gag ttg gea act ttt gae eet gtg gae aac att	246
	Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe Asp Pro Val Asp Asn Ile	
	55 60 65	
95	gto tto aat atg got got got tot goo cog atg cag etc cac ott ogt	294
25	Val Phe Asn Met Ala Ala Gly Ser Ala Pro Met Gln Leu His Leu Arg	
	70 75 80 85	
	get ace ate ege atg tgagtggaaa gatgggetet gtgtgeeeeg g	340
	Ala Thr Ile Arg Met	
30	90	400
00	aaatggatet accacetgae tgaagggage acagatetea gaactgaagg cegecetgae	460
	atgaagactg agototttto cagotoatgo coaggtggaa toatgotgaa tgagacaggo	520
	cagggttace agegetttet cetetacaat egeteaceae atecteeega aaagtgtgtg gaggaattea agtecetgae tteetgeetg gaeteeaaag eettettatt gaeteetagg	580
	aatcaagagg cotqtqagot qtccaataac tqacetgtaa cttcatetaa gtccccaqat	640
35		700
	gggtacaatg ggagctgagt tgttggaggg agaagctgga gacttecagc tecagctecc	,00

	actcaagata ataaagataa tttttcaatc ctc	733
	<210> 88	
	<211> 3768	
5	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> cps	
	<222> (358)(1857)	
10		
	<400> 88	
	getagtggeg egeggaggag egaegegtgg agaageggee caegtgtetg eccagagtea	60
	agtectgtgt tetteceget cettaegeat cegeggteea gggegecett teageceege	120
	tggtgttege ecacceggg cegegtgagt ggggccccac geagetecec geactecgtg	180
15	ggccaacttg gccaagcaac tetgtccggg gagcggtgct tgcggggggt gagtaccggg	240
	cactgogeat goggagetee amattemane agetgtttte agaggetgga gggegggegg	300
	actggtagea getggggeta ggagaggett tetetaggag geggeegete gggagee	357
20	ats gtg gae egg gge cet etg ete ace teg gee ate ate tte tac etg	405
	Met Val Asp Arg Gly Pro Leu Leu Thr Ser Ala Ile Ile Phe Tyr Leu	
	1 5 10 15	
	gec ate ggg geg geg ate tte gaa gtg etg gag gag eea eac tgg aag	453
	Ala Ile Gly Ala Ala Ile Phe Glu Val Leu Glu Glu Pro His Trp Lys	
25	20 25 30	
	gag gee aag aaa aac tac tac aca cag aag etg cat etg etc aag gag	501
	Glu Ala Lys Lys Asn Tyr Tyr Thr Gln Lys Leu His Leu Leu Lys Glu	
	35 40 45	
	tto eeg tge etg ggt cag gag gge etg gae aag ate eta gag gtg gta	549
30	Phe Pro Cys Leu Gly Gln Glu Gly Leu Asp Lys Ile Leu Glu Val Val	
	50 55 60	
	tot gat get gea gga cag ggt gtg gee ate aca ggg aac cag ace tte	597
	Ser Asp Ala Ala Cly Cln Gly Val Ala Ile Thr Gly Asn Gln Thr Phe	
	65 70 75 80	
35	aac aac tyg aac tyg ccc aat gca atg att tit gca gcg acc gtc att	645

	Asn	Asn	Trp	Asn	_	Pro	Asn	Ala	Met	Ile	Phe	Ala	Ala	Thr		Ile	
					85					90					95		
										ccc	_			_		-	693
_	Thr	Thr	Ile		Tyr	Gly	Asn	Val		Pro	Lys	Thr	Pro		Gly	Arg	
5				100					105					110			
										999						-	741
	Leu	Phe	_	Val	Phe	Tyr	GLY		Phe	Gly	Val	Pro		Сув	Leu	Thr	
			115					120					125				
										ggg					-		789
10	Trp			Ala	Leu	Gly		Phe	Phe	Gly	Gly	_	Ala	Lys	Arg	Leu	
		130	•				135					140					
		-				_	-			agt	_		•		•		837
	_	Gln	Phe	Leu	Thr	-	Arg	Gly	Val	Ser		Arg	Lys	Ala	Gln		
	145					150					155					160	
15	-	-		-				_		ggc	_		-		-	5 5	885
	Thr	Сув	Thr	Val		Phe	Ile	Val	Trp	Gly	Val	Leu	Val	His		Val	
					165					170					175		
										gag							933
90	Ile	Pro	Pro		Val	Phe	Met	Val		Glu	Gly	Trp	Aen	-	Ile	Glu	
20				180					185	:				190			
										tee						-	981
	GLĀ	Leu	_	Tyr	Ser	Phe	Ila		Ile	Ser	Thr	Tle	-	Phe	Gly	Asp	
			195					200				•	205				
or.					-			_	-	aac			-	_		-	1029
25	Pne		Ala	Gly	Val	Asn		ser	Ala	Asn	Tyr		Ala	Leu	Tyr	Arg	
		210					215					220					,
									_		-	_				ctt	1077
		Phe	Val	Glu	Leu	-	Ile	Tyr	Leu	Gly		Ala	Trp	Leu	Ser		
20	225					230					235					240	
30					_		-	_		gtg	_	-			-		1125
	Pne	Val	Asn	Тър	_	Vai	Ser	Met	Phe	Val	Glu	Val	His	Lys		.Ile	
					245					250					255		
		_				-				tee			_				1173
a=	Lys	Lys	Arg	-	Arg	Arg	Arg	Lys		Ser	Phe	Glu	Ser		Pro	His	
35				260					265					270			

	tcc	caa	aag	acc	cta	CAG	ata	aag	aaa	aac	aca	acc	tee	Aacı	Gac	σtο	1221
								Lys							_	-	1621
		•	275					280	-				285	-1-			
	aac	atc	tte	agc	ttt	ctt	tcc	aag	aag	gaa	gag	acc	tac	aac	gac	ctc	1269
5								Lys									
		290					295					300					
	atc	aag	cag	atc	ggg	aag	aag	gcc	atg	aag	aca	agc	ggg	ggt	ggg	gag	1317
	Ile	Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu	
	305					310					315					320	
10	acg	ggc	ccg	ggc	cca	999	ctg	999	cct	caa	ggc	ggt	399	ctc	cca	gca	1365
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala	
					325					330					335		
								ctg									1413
1.5	Leu	Pro	Pro		Leu	Val	Pro	Leu		Val	Tyr	Ser	Lys		Arg	Val	
15				340					345					350			
								cag		-		_				•	1461
	Pro	Thr		Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser	•	Gly	His	Val	
			355					360					365				
20								get				-		_	-	_	1509
20	JGI	370	201	PLO	wab	GIU	375	Ala	Val	AIG	Arg	380	PIO	GIU	Asp	ser	
	tcc		acc	ccc	gag	ata		atg	aac	Cag	cta		cac	atc	agg	gag	1557
								Met			_	-	-		-		1337
	385					390					395		,			400	
25	gaa	tgc	gag	cca	tgg	gac	gee	cag	gac	tac	cac	cca	ctc	atc	ttc	cag	1605
	Glu	Суз	Glu	Pro	Trp	Asp	Ala	Gln	Asp	Tyr	His	Pro	Leu	Ile	Phe	Gln	
					405					410					415		
	gac	gcc	ago	atc	acc	ttc	gtg	aac	acg	gag	get	gge	ete	tca	gac	gag	1653
	Авр	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu	
30				420					425					430			
	gag	acc	tcc	aag	tcc	tcg	cta	gag	gac	aac	ttg	gca	99 9	gag	gag	agc	1701
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser	
			435					440					445				
	cce	cag	cag	aaa	get	gaa	gcc	aag	geg	ccc	ctg	aac	atg	ddc	gag	ttc	1749
35	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe	

		•
	450 455 460	
	ecc tee tee tee gag tee acc tte acc age act gag tet gag ete t	tct 1797
	Pro Ser Ser Ser Glu Ser Thr Phe Thr Ser Thr Glu Ser Glu Leu S	Ser
	465 470 475	480
5	gtg cct tac gam cag ctg atg amt gag tac amc amag gct amc age o	ccc 1845
	Val Pro Tyr Glu Gln Leu Met Asn Glu Tyr Asn Lys Ala Asn Ser I	Pro
	485 490 495	
	aag ggc aca tgaggcaggg coggeteese acceeacett tgatgg	1890
	Lys Gly Thr	
10		
	cetetteece ceteaceeta gggtgteeeg agatgacegg gaegeetgge eeetg	gtggg 1950
	ggggcagcet cggaactgcg agtgggggc caggggcett cetaacette cateat	teeec 2010
	agetagatgt atgeceggga eagggeetet gtteteeage tgaaccatac cetgge	etgtg 2070
	ggggcatetg teetgagett ggetggtgta teteacaatg caaagacatg etgget	tggcg 2130
15	ggacaggtgg gcaggactga cectgaggag gcettgeotg cagggtettt gtees	accat 2190
	ttggtggagt atcacacggt tetetgaggt ceggggeete agetgtttaa gtttac	eeggt 2250
	attactgage teggeatttg gagagggage tetgaagtgt etggggaggt accget	tgtgc 2310
	gtggggtcag gtgtttccgt accacageag gagcagggcc cgcccgcatc ccago	tgtgg 2370
	geotgooggt caggtoggge acctactaca aaccgtagtg gggtggagge tgotgg	gaggt 2430
20	gggagtgagg agatgaggge agggteteaa acagteetga eteaeaggge etggas	aacaa 2490
	gteetatgtg ggeetgggge etggggteet eatecteett gttggtetae teagge	ccag 2550
	cecagagetg tgttecetgt eteaggteaa geagtggeag aegeaagget ttetgt	tgggc 2610
	ccccaagtgg taggagggag agtagcagag catgggttac tggaagccgg gactg	etagg 2670
	getggtggce agggagetge aagagtgagg etcagetetg getggttetg ecette	acccc 2730
25	tectgecege eggagaactg cacaccetge eegetggeee caggacetge actee	caatc 2790
	ctgctgtctt ctccttccct gtgccctgaa caaggacctc actgcccgcc ttcccc	etece 2850
	accageocce ttgggecagg cagggtgagg ccaaattget ettggeceae aaatg	ggtga 2910
	tggtcagata tgtgaatcaa gctcctttct ctagctagtg tttgatgtgc acgtgt	tgtgt 2970
	gcacagtgcg tgtgtgcaca cgcacacctg tgcactcgtg tgtgtttaag aaagga	aaagg 3030
30	atttgggetg gggageaaaa gataatgtga aactgttggt ggactetetg gtgagg	gggtg 3090
	ggcagaactt gctgctacta gagttettgg gttetecatg atgtteacce tggggc	etgge 3150
	ccactgtgtc ctgaatgttt ttgttatttt ttgttttatt ttttaaacaa actgct	gttt 3210
	ttatatacet ggaatetgtt gttggettea gageeagtgg ttaaagagea gggtee	caag 3270
	gattgggaga tetagtgtet geeeteetge eetgeaacte aattgggeet titteg	ggtga 3330
35	cotcatocaa ggocatgatg toaagggoca tgtooccaag cagaggtgga gaaggg	g a ca 3390

	ctgaggtgag caaaagcagg aaggggcatc cactgcgggt gactggaggc cgggcaggaa	3450
	gcaagtcatc agagecycte agetecytte actetetyce ttetycecca etaetytygg	3510
	geagtgggge cagageeeae eteceeaaca tgtgaagaca gtgatgggea egtgeeeaea	3570
	cecceactte tetageegtt tgcagaggee gecacceage aggggeetga aaaggageag	3630
5	cotogtattt ttotgtgaam tgttttmatg maccatgttg ttgctggttg tootggcate	3690
	gegeacactg tatgtacata etggeaacga tgteaaatgt aatttatttt aacattttta	3750
	caataaaaca tgaggtgg	3768
	<210> 89	
10	<211> 770	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
15	<222> (24)(344)	
	<400> 89	
	accepegaagg gaggagtege aac atg geg tet teg gga get ggt gac eet etg	53
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu	53
20	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 . 10	
20	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag god oog tot get dag ogt atd gad oog	101
20	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag goo oog tto got oag ogt ato gac oog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr	
20	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag god oog tte got oag ogt ate gad oog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25	101
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag goo cog tto got cag ogt ato gac cog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 cgg gag aag otg aca coc gag caa otg cat too atg cgg cag gog gag	
20 25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag goo cog tto got cag ogt ato gac cog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 cgg gag aag otg aca coc gag caa ctg cat too atg cgg cag gog gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu	101
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag cgt gga gag gcc ccg ttc gct cag cgt atc gac ccg act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 cgg gag aag ctg aca ccc gag caa ctg cat tcc atg cgg cag gcg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40	101 149
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag egt gga gag gee eeg tte get eag egt ate gae eeg aet Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag caa etg eat tee atg egg eag geg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg egg aac eeg aac ate	101
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag egt gga gag gee eeg tte get eag egt ate gae eeg aet Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag caa etg eat tee atg egg eag gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg ega ace egg aac ate Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile	101 149
25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag egt gga gag gee eeg tte get eag egt ate gae eeg act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag caa etg eat tee atg egg eag geg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg ace egg aac ate Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55	101 149 197
	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag goe cog tto got cag ogt ato gac cog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 cgg gag aag otg aca coc gag caa otg cat too atg ogg cag gog gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ctt goo cag tgg cag aag gto cta coa cgg cgg cga aco cgg aac atc Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55 gtg aco ggc cta ggc atc ggg gcc ctg gtg ttg gct att tat ggt tac	101 149
25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tot aag ogt gga gag goo cog tto got cag ogt ato gac cog act Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 cgg gag aag otg aca coe gag caa otg cat too atg cgg cag gog gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett goo cag tgg cag aag gto cta coa cgg cgg cga aco cgg aac atc Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55 gtg aco ggo cta ggo atc ggg gcc ctg gtg ttg got att tat ggt tac Val Thr Gly Leu Gly Ile Gly Ala Leu Val Leu Ala Ile Tyr Gly Tyr	101 149 197
25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag cgt gga gag gee eeg tte get eag egt ate gae eeg aet Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag eaa etg eat tee atg egg eag geg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg ace egg aac ate Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55 gtg ace gge eta gge ate ggg gee etg gtg ttg get att tat ggt tae Val Thr Gly Leu Gly Ile Gly Ala Leu Val Leu Ala Ile Tyr Gly Tyr 60 65 70	101 149 197 245
25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag egt gga gag gee eeg tte get eag egt ate gae eeg aet Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag eaa etg eat tee atg egg eag geg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg ega ace egg aac ate Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55 gtg ace gge eta gge ate ggg gee etg gtg ttg get att tat ggt tae Val Thr Gly Leu Gly Ile Gly Ala Leu Val Leu Ala Ile Tyr Gly Tyr 60 65 70 ace tte tae teg att tee eag gag egt tte eta gat gag eta gaa gae	101 149 197
25	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu 1 5 10 gat tet aag cgt gga gag gee eeg tte get eag egt ate gae eeg aet Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25 egg gag aag etg aca eee gag eaa etg eat tee atg egg eag geg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu 30 35 40 ett gee eag tgg eag aag gte eta eea egg egg egg ace egg aac ate Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile 45 50 55 gtg ace gge eta gge ate ggg gee etg gtg ttg get att tat ggt tae Val Thr Gly Leu Gly Ile Gly Ala Leu Val Leu Ala Ile Tyr Gly Tyr 60 65 70	101 149 197 245

	gag gcc aaa gct gcc cga gcc cga gct ctg gca agg gcg tca ggg tcc	341
	Glu Ala Lys Ala Ala Arg Ala Arg Ala Leu Ala Arg Ala Ser Gly Ser	
	95 100 105	
	taatotgga tgggtattga toatgtocaa ootgotggag oocottoaca tggtggatga	400
5	tgocccatga cootgtagaa attgaatoot gotcacaaca ttgttggoot tottactaac	460
	cttggaccgt gattgagccc aagaaaccag ggacttacgc atttggccaa tgtcaaaaga	520
	acagaacttt geceaetgea eacttgetgt gtacaatgae tgageeettt ettgtagttt	580
	gtttccttgt ttgagaggtg tgcatgcgac cgtggctttt cccaaagttt ctgactttgt	640
	ggtttacccc cttcaccttc cagggacgca gttgttacga ggttagacgt ggcagetetg	700
10	tgcagtgttt gagcctacag tgggatacat agggtcaaat tgagaataat aaactgagtc	760
	atteteetgg	770
	<210> 90	
	<211> 1229	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (96)(554)	
20		
	<400> 90	
	cetactectg gattaggagg actgacanta ctacatatat cattaagcat gggceteget	60
	tagaagttgc atctgagaaa gtagcccaga agaca atg gac tat gtg tgc tgt	113
	Met Asp Tyr Val Cys Cys	
25	1 5	
	got tac aac aac ata acc ggc agg caa gat gaa act cat ttc aca gtt	161
	Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu Thr His Phe Thr Val	
	10 15 20	
	ate ate act tee gta gga etg gag aag ett gea eag aaa gga aaa tea	209
30	Ile Ile Thr Ser Val Gly Leu Glu Lys Leu Ala Gln Lys Gly Lys Ser	
	25 30 35	
	ttg tca cct tta gca agt ata act gga ata tca cta ttt ttg att ata	257
	Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile Ser Leu Phe Leu Ile Ile	
	40 45 50	
35	too atg tgt ett ete tte eta tgg aaa aaa tat caa eee tae aaa gtt	305

99/177

	Ser	Met	Сув	Leu	Leu	Phe	Leu	Trp	Lys	Lys	Tyr	Gln	Pro	Tyr	Lys	Val	
	55					60					65					70	
	ata	aaa	cag	aaa	cta	gaa	gge	agg	cca	gaa	aca	gaa	tac	agg	aaa	get	353
	Ile	Lys	Gln	Lys	Leu	Glu	Gly	Arg	Pro	Glu	Thr	Glu	Tyr	Arg	Lys	Ala	
5					75					80					85		
	caa	aca	ttt	tca	ggc	cat	gaa	gat	gct	ctg	gat	gac	ttc	gga	ata	tat	401
	Gln	Thr	Phe	Ser	Gly	His	Glu	Asp	Ala	Leu	Asp	Asp	Phe	Gly	Ile	Tyr	
				90					95					100			
	gaa	ttt	gtt	gct	ttt	cca	gat	gtt	tct	ggt	gtt	tee	agg	atc	CCA	age	449
10	Glu	Phe	Val	Ala	Phe	Pro	Asp	Val	Ser	Gly	Val	Ser	Arg	Ile	Pro	Ser	
			105					110					115				
	agg	tct	gtt	cca	gcc	tct	gat	tgt	gta	tcg	999	caa	gat	ttg	Cac	agt	497
	Arg	Ser	Val	Pro	Ala	Ser	Asp	Сув	Val	Ser	Gly	Gln	Asp	Leu	His	Ser	
		120					125					130					
15	aca	gtg	tat	gaa	gtt	att	cag	cac	atc	cct	gcc	cag	cag	caa	gac	cat	545
	Thr	Val	Tyr	Glu	Val	Ile	Gln	His	Ile	Pro	Ala	Gln	Gln	Gln	Asp	His	
	135					140					145					150	
	cca	gag	tgad	actt	ca (tgggd	taas	ac ag	gtaca	ttc	g agt	tgaaa	atte	tga	agaaa	aC .	600
	Pro	Glu															
20																	
	atti	taa	gga a	1888	agto	gg as	aagt	atat	: tas	itct	ggaa	tcaç	gtgae	ıga a	acce	agacc	660
	aaca	accto	ett a	etca	attai	t co	ttte	cat	cag	gaata	agag	gcat	ttat	ge a	aatt	gaact	720
	geag	įgtt1	tt d	age	atata	ac ac	aato	tctt	gtg	caac	aga	2002	cato	jtt g	19993	aatat	780
	teet	cagt	egg a	ıgagı	cgtt	c to	atgo	tgad	ggg	gaga	acg	aaag	gtgac	ag g	gggtt	tcctc	840
25	atad	gtti	tg t	atga	aata	it ct	ctac	caaac	cto	aatt	agt	tcta	ctct	ac a	ettt	cacta	900
	tcat	caac	ac t	gaga	ictat	c ct	gtet	caco	tac	aaat	gtg	gaas	cttt	ac a	ittgt	tegat	960
	tttt	cago	ag s	etti	gttt	t at	taas	ttt	tat	tagt	gtt	aaga	uatgo	ta a	agtt	tcsat	1020
	ttte	attte	ca a	attt	ctat	c tt	gtta	itttg	tac	aaca	aag	taat	aagg	at c	gtto	tcaca	1080
	8888	caas	ac t	atgo	ctto	t ct	tttt	tttc	aat	cacc	agt	agta	ttt	tg a	gaag	acttg	1140
30	tgaa	cact	ta e	ggae	atga	ic ta	ttaa	agto	tta	tttt	tat	tttt	ttca	ag g	jaaag	atgga	1200
	ttca	aate	uaa t	tatt	ctgt	t tt	tget	ttt									1229

<210> 91 <211> 358 <212> PRT

35

<213> Homo sapience

	<400	0> 9	1													
	Met	Ala	Pro	Gln	Asn	Leu	Ser	Thr	Phe	Суз	Leu	Leu	Leu	Leu	Tyr	Le
5	1				5					10					15	
	Ile	Gly	Ala	Val	Ile	Ala	Gly	Arg	qeA	Phe	Tyr	Lys	Ile	Leu	Gly	Va
				20					25					30		
	Pro	Arg	Ser	Ala	Ser	Ile	Lys	Asp	Ile	Lys	Lys	Ala	Tyr	Arg	Lys	Le
			35					40					45			
10	Ala		Gln	Leu	His	Pro	Asp	Arg	Asn	Pro	Дар	Asp	Pro	Gln	Ala	Gl
		. 50					55					60				
		Lys	Phe	Gln	Asp		Gly	Ala	Ala	Tyr		Val	Leu	Ser	qsA	Se
	65					70					75					8
	Glu	Lys	Arg	Lys		Tyr	Asp	Thr	Tyr		Glu	Glu	Gly	Leu	_	As
15					85					90					95	
	Gly	His	Gln	Ser	Ser	His	Gly	Asp		Phe	Ser	His	Phe		Gly	As
				100					105					110		
	Phe	Gly		Met	Phe	Gly	Gly		Pro	Arg	Gln	Gln	-	Arg	Asn	11
90		•	115					120		_	~1	1	125	_		
20	PIO		СТА	Ser	Asp	He		Vai	Asp	Leu	Glu		Thr	Leu	Glu	G1
	17-1	130		~1		Db	135	a1	17-1	17-1		140	****	D	••- 1	
	145	TYL	Ата	Gly	Asn	150	VAI	GIU	vai	vai	155	Asn	гда	PEO	Val	16
		Gln.	11.	Pro	G1v		۸۳۵	T tec	Cue	hen		N = 07	Cln.	C1	Mot	
25	шy	GIII	A40	PLO	165	Lys	ALY	гур	Cys	170	Cys	ALG	GIII	GIU	175	AL
20	The	The	Gin	Leu		210	ดใช	Ara	Dhe		Met	The	Gla	Gln		Wa.
			U	180		-10	J-,	9	185			****	U 1.11	190	•41	va.
	cvs	Asp	Glu	Сув	Pro	Asn	Val	Lvs		Val	Asn	Glu	Glu	-	Thr	T.ei
	-2-		195	-,-				200					205	,		
30	Glu	Val	Glu	Ile	Glu	Pro	Glv		Arq	Asp	Glv	Net		Tvr	Pro	Phe
		210					215		,		1	220		-,-		
	Ile		Glu	Gly	Glu	Pro		Val	Asp	Gly	Glu	Pro	Gly	Asp	Leu	Arc
	225	•		4		230			*	•	235					240
	Phe	Arg	Ile	Lys	Val	Val	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly	
35		•		•			-			250			-	•	255	•

	Авр	Leu	Tyr	Thr	Asn	Val	Thr	Ile	Ser	Leu	Val	Glu	Ser	Leu	Val	Gl
				260					265					270		
	Phe	Glu	Met	Asp	Ile	Thr	His	Leu	Авр	Gly	His	Lys	Val	His	Ile	Sex
			275					280					285			
5	Arg	Asp	Lys	Ile	Thr	Arg	Pro	Gly	Ala	Lys	Leu	Trp	Lys	Lys	Gly	Gl
		290					295					300				
	Gly	Leu	Pro	Asn	Phe	Asp	Asn	Asn	Asn	Ile	Lys	Gly	Ser	Leu	Ile	116
	305					310					315					320
	Thr	Phe	Asp	Val	Asp	Pho	Pro	Lys	Glu	Gln	Leu	Thr	Glu	Glu	Ala	Ar
10					325					330					335	
	Glu	Gly	Ile	Lys	Gln	Leu	Leu	Lys	Gln	Gly	Ser	Val	Gln	Lys	Val	ту
				340					345					350		
	Asn	Gly	Leu	Gln	Gly	Tyr										
			355													
15										•						
	<210	0> 9:	2													
	<21	1> 2	26													
	<212	2> P1	RT													
	<21	3> Hz	a conc	sapie	ence											
20																
)> 9:														
		Lys	Met	Val		Pro	Trp	Thr	Arg		Tyr	Ser	Asn	Ser	-	-
	1				5					10					15	
~	Leu	Суз	Сув		Val	Arg	Thr	Gly		Ile	Leu	Leu	Gly		Trp	Tyr
25	_			20		_	_		25	_				30		_
	Leu	He		Asn	Ala	Val	Val		Leu	Ile	Leu	Leu		Ala	Leu	Ala
	_		35		_			40				_	45			
	Asp		Asp	GTI	Tyr	Asn		Ser	Ser	ser	Glu	Leu	GIY	GTÅ	Авр	Ph∈
20	-1	50					55					60			_	_
30		Pne	Met	Asp	Asp		Asn	Met	Cys	Ile		Ile	Ala	He	Ser	
	65			_		70					75			_	_	80
	Leu	Met	ite	Leu		cys	Ala	Met	Ala		Туг	Gly	ATØ	Tyr		Gln
				_	85		_			90		01 -	-1.	n. .	95	
25	Arg	ATS	ALA	_	110	rie	Pro	чре		Cys	ryr	Gln	1.16		Asp	Phe
35				100					105					110		

	Ala	Leu	Asn	Met	Leu	Val	Ala	Ile	Thr	Val	Leu	Ile	Tyr	Pro	Asn	Se
			115					120					125			
	Ile	Gln	Glu	Tyr	Ile	Arg	Gln	Leu	Pro	Pro	Asn	Phe	Pro	Tyr	Arg	As
		130					135					140				
5	Asp	Val	Met	Ser	Val	Asn	Pro	Thr	Суз	Leu	Val	Leu	Ile	Ile	Leu	Le
	145					150					155					16
	Phe	Ile	Ser	Ile	Ile	Leu	Thr	Phe	Lys	Gly	Tyr	Leu	Ile	Ser	Cys	Va
					165					170					175	
	Trp	Asn	сув	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	Ser	Asp	Val	Le
10				180					185					190		
	Val	Tyr	Val	Thr	Ser	Asn	qaA	Thr	Thr	Val	Leu	Leu	Pro	Pro	Tyr	Asj
			195					200					205			
	Asp	Ala	Thr	Val	Asn	Gly	Ala	Ala	Lys	Glu	Pro	Pro	Pro	Pro	Tyr	Va
		210					215					220				
15	Ser	Ala														
	225															
	<21	0> 9:	3													
	<21	1> 19	95													
20	<21	2> P1	RT													
	<21	3> H	omo s	apie	ence											
	<40	0> 9:	3													
	Met	Arg	Leu	Leu	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Ar
25	1				5					10					15	
	Ser	Glu	Ala	Ser	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Arg	Leu	Ly
				20					25					30		
	Met	Gln	Tyr	Ala	Thr	G <u>`</u> y	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Сув	Val	Sei
			35					40					45			
30	Xaa	Gly	Tyr	Arg	Arg	Val	Phe	Glu	Glu	Tyr	Met	Arg	Val	Ile	ser	Gli
		50					55					60				
	Arg	Tyr	Pro	Asp	Ile	Arg	Ile	Glu	Gly	Glu	Asn	Tyr	Leu	Pro	Gln	Pro
	65					70					75					80
	Ile	Tyr	Arg	His	Ile	Ala	Ser	Phe	Leu	Ser	Val	Phe	Lys	Leu	Val	Leu
35					85					90					95	

	Ile	Gly	Leu	Ile	Ile	Val	Gly	Lys	Asp	Pro	Phe	Ala	Phe	Phe	Gly	Met
				100					105					110		
	Gln	Ala	Pro	Ser	Ile	Trp	Gln	Trp	Gly	Gln	Glu	Asn	Lys	Val	Tyr	Ala
			115					120					125			
5	Cys	Met	Met	Val	Phe	Phe	Leu	Ser	Asn	Met	Ile	Glu	Asn	Gln	Cys	Met
		130					135					140				
	Ser	Thr	Gly	Ala	Phe	Glu	Ile	Thr	Leu	Asn	Asp	Val	Pro	Val	Trp	Ser
	145					150					155					160
	Lys	Leu	Glu	Ser	Gly	His	Leu	Pro	Ser	Met	Gln	Gln	Leu	Val	Gln	Ile
10					165					170					175	
	Leu	Asp	Asn	Glu	Met	Lys	Leu	Asn	Val	His	Met	qaA	Ser	Ile	Pro	His
				180					185					190		
	His	Arg	Ser													
			195													
15																
	<210	> 94	1													
	<211	l> 33	39													
	<212	> PI	T.													
	<213)> Hc	omo s	sapie	ance											
20																
		> 94	-													
		Asn	Trp	Glu		Leu	Leu	Trp	Leu		Val	Leu	Суз	Ala		
	1	_		_	5					10					15	
0.5	Leu	Leu	Leu	Val	Gln	Leu	Leu	Arg		Leu	Arg	Ala	Asp	-	Asp	Leu
25		_	_	20			_		25		_	_		30		
	rnr	Leu		Тгр	Ala	Glu	Trp		Gly	Arg	Arg	Pro		Trp	Glu	Leu
			35			_	·	40		_			45			
	Tur	_	Met	Val	Val	Trp		Thr	Gly	Ala	Ser		GIÀ	He	GIĀ	Glu
30	a1	50		_			55	_	_			60			_	_
30		ren	AT.	Tyr	Gin		ser	rys	Leu	GIĀ		ser	ren	VAI	Leu	
	65		-			70	_		_		75	_		_	٠.	80
	ALA	Arg	Arg	Val		Glu	Leu	Glu	Arg		гàа	Arg	Arg	Cys		Glu
•	٠	61	•	. .	85	-1	.			90		•	-	•	95	_
25	ABR	стĀ	Asn	Leu	гÀа	GIU	rys	qzA		Leu	Val	ren	PIO		Asp	Leu
35				100					105					110		

	Thr	Asp	Thr	Gly	Ser	His	Glu	Ala	Ala	Thr	Lys	Ala	Val	Leu	Gln	Glu
			115					120					125		•	
	Phe	Gly	Arg	Ile	Asp	Ile	Leu	Val	Asn	Asn	Gly	Gly	Met	Ser	Gln	Arg
		130					135					140				
5	Ser	Leu	Суэ	Met	Asp	Thr	Ser	Leu	Asp	Val	Tyr	Arg	Lys	Leu	Ile	Glu
	145					150					155					160
	Leu	Asn	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His
					165					170					175	
	Met	Ile	Glu	-	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	neA	Ser	Ile	Leu
10				180					185					190		
	Gly	Ile	Ile	Ser	Val	Pro	Leu		Ile	Gly	Tyr	Суз		Ser	Lys	His
			195					200					205			
	Ala		Arg	Gly	Phe	Phe		Gly	Leu	Arg	Thr		Leu	Ala	Thr	Tyr
15		210				_	215		_	_		220			_	
15		GIŊ	Ile	Ile	Val		Asn	Ile	Cys	Pro	_	Pro	Val	Gln	Ser	
	225	••- 1	a :			230		-1			235			٠.		240
	119	Val	Glu	Asn		Leu	ALA	G1A.	GIU		The	rys	Thr	He	-	Asn
	nen.	C1	*	~1 ~	245	***	T		mh	250	e	n	C	**-1	255	٠
20	กอแ	GIY	Asp	260	Ser	LTR	тÅя	met	265	Int	Ser	ALY	cys	270	Arg	red
	Met	T.em	Ile		Mot	Δla	Δen) en		Lve	Glu	Val	Trn.		Ser	Glu
			275	J C1	MEC	nia	non	280	Dou	212	014	•	285	110	301	914
	Gln	Pro	Phe	Leu	Leu	Val	Thr		Leu	Tro	Gln	Tvr		Pro	Thr	Tro
		290					295	-1-				300				
25	Ala	Trp	Trp	Ile	Thr	Asn	Lvs	Met	Gly	Lys	Lys	Arg	Ile	Glu	Asn	Phe
	305	-	-			310	•		•	•	315	Ī				320
	Lys	Ser	Gly	Val	Авр	Ala	Asp	Ser	Ser	Tyr	Phe	Lys	Ile	Phe	Lys	Thr
					325					330					335	
	Lys	His	Asp													
30																
	<210	> 95	;													
	<211	> 48	17													
	<212	> PF	T													
	<213	}> Hc	omo s	apie	nce											
35																

35

		0> 9														
	Met	Asp	Gly	Thr	Glu	The	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Ly
	1				5					10					15	
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro
5				20					25					30		
,	Val	Ala	Ser	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Va.
			35					40					45			
	Thr	Pro	Lys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg	Glu	Thr	Ala	Trp	Sez
		50					55					60				
10	Ile	Gly	Leu	Gln	Val	Thr	Val	Pro	Phe	Met	Phe	Ala	Gly	Leu	Gly	Leu
	65					70					75					80
	Ser	Trp	Ala	Gly	Met	Leu	Leu	Asp	Tyr	Phe	Gln	His	Trp	Pro	Val	Phe
					85					90					95	
	Val	Glu	Val	Lys	Asp	Leu	Leu	Thr	Leu	Val	Pro	Pro	Leu	Val	Gly	Leu
15				100					105					110		
	Lys	Gly	Asn	Leu	Glu	Met	Thr	Leu	Ala	Ser	Arg	Leu	Ser	Thr	Ala	Ala
			115					120	•				125			
	Asn	Thr	Gly	Gln	Ile	Авр	Asp	Pro	Gln	Glu	Gln	His	Arg	Val	Ile	Ser
		130					135					140				
20	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu
	145					150					155					160
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val
					165					170					175	
	Asp	Val	Ala	Lys	Val	Glu	Leu	Leu	Суз	Ala	Ser	Ser	Val	Leu	Thr	Ala
25				180					185					190		
	Phe	Leu	Ala	Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	Cys	Ile	Val	Ile
			195					200					205			
	Gly	Ala	Arg	Lys	Leu	Gly	Val	Asn	Pro	qaA	Asn	Ile	Ala	Thr	Pro	Ile
		210					215					220				
30	Ala	Ala	Ser	Leu	Gly	Asp	Leu	Ile	Thr	Leu	Ser	Ile	Leu	Ala	Leu	Val
	225					230					235					240
	Ser	Ser	Phe	Phe	Tyr	Arg	His	Lys	Asp	Ser	Arg	Tyr	Leu	Thr	Pro	Leu
					245					250					255	
	Val	Cys	Leu	Ser	Phe	Ala	Ala	Leu	Thr	Pro	Val	Trp	Val	Leu	Ile	Ala
35				260					265					270		

	Lys Gln Ser Pro Pro Ile Val Lys Ile Leu Lys Phe Gly Trp Phe Pr	ю.
	275 280 285	
	Ile Ile Leu Ala Met Val Ile Ser Ser Phe Gly Gly Leu Ile Leu Se	I
	290 295 300	
5	Lys Thr Val Ser Lys Gln Gln Tyr Lys Gly Met Ala Ile Phe Thr Pr	0
	305 310 315 32	0
	Val Ile Cys Gly Val Gly Gly Asn Leu Val Ala Ile Gln Thr Ser Ar	g
	325 330 335	
	Ile Ser Thr Tyr Leu His Met Trp Ser Ala Pro Gly Val Leu Pro Le	ıı.
10	340 345 350	
	Gln Met Lys Lys Phe Trp Pro Asn Pro Cys Ser Thr Phe Cys Thr Se	ī
	355 360 365	
	Glu Ile Asn Ser Met Ser Ala Arg Val Leu Leu Leu Val Val Pr	ю
	370 375 380	
15	Gly His Leu Ile Phe Phe Tyr Ile Ile Tyr Leu Val Glu Gly Gln Se	r
	385 390 395 40	0
	Val Ile Asn Ser Gln Thr Phe Val Val Leu Tyr Leu Leu Ala Gly Le	u
	405 410 415	
	Ile Gln Val Thr Ile Leu Leu Tyr Leu Ala Glu Val Met Val Arg Le	u
20	420 425 430	
	Thr Trp His Gln Ala Leu Asp Pro Asp Asn His Cys Ile Pro Tyr Le	u
	435 440 445	
	Thr Gly Leu Gly Asp Leu Leu Gly Thr Gly Leu Leu Ala Leu Cys Ph	e
	450 455 460	
25	Phe Thr Asp Trp Leu Leu Lys Ser Lys Ala Glu Leu Gly Gly Ile Se	r
	465 470 475 48	٥
	Glu Leu Ala Ser Gly Pro Pro	
	485	
30	<210> 96	
	<211> 393	
	<212> PRT	
	<213> Homo sapience	
	•	
35	<400> 96	

	Met	Arg	Thr	Leu	Phe	Asn	Leu	Leu	Trp	Leu	Ala	Leu	Ala	Cys	Ser	Pr
	1				5					10					15	
	Val	His	Thr	Thr	Leu	Ser	Lys	Ser	Asp	Ala	Lys	Lys	Ala	Ala	Ser	Lys
				20					25			•		30		
5	Thr	Leu	Leu	Glu	Lys	Ser	Gln	Phe	ser	Asp	Lys	Pro	Val	Gln	Asp	Arg
			35					40					45			
	Gly	Leu	Val	Val	Thr	Asp	Leu	Lys	Ala	Glu	Ser	Val	Val	Leu	Glu	His
		50					55					60				
	Arg	Ser	Tyr	Сув	Ser	Ala	Lys	Ala	Arg	Авр	Arg	His	Phe	Ala	Gly	Ası
10	65					70					75					80
	Val	Leu	Gly	Tyr	Val	Thr	Pro	Тгр	Asn	Ser	His	Gly	Tyr	Asp	Val	Thi
					85					90					95	
	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	Ser	Pro	Val	Trp	Leu	Glr
				100					105					110		
15	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	Val	Thr	Gly	Leu	His	Asg
			115					120					125			
	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	Lys	His	Ala	Lys	Gly	Lei
		130					135					140				
	His	Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	Trp	Thr	Tyr	Asp	Asp	Phe
20	145					150					155					160
	Arg	Asn	Val	Leu	Asp	Ser	Glu	Asp	Glu	Ile	Glu	Glu	Leu	Ser	Lys	Thi
					165					170					175	
	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	Asp	Gly	Phe	Val	Val.	Glu
				180					185					190		
25	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	Val	Gly	Leu	Ile	His	Met
			195					200	,				205			
	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln	Ala	Arg	Leu	Leu	Ala	Let
		210					215					220				
	Leu	Val	Ile	Pro	Pro	Ala	Ile	Thr	Pro	Gly	Thr	Asp	Gln	Leu	Gly	Met
30	225					230					235					240
	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala	Pro	Val	Leu	Asp	Gly	Phe
					245					250					255	
	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala	His	Gln	Pro	Gly	Pro	Asn
				260			-		265					270		
35	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	Gln	Val	Leu	Asp	Pro	Lys

			275					280					285			
	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	Leu	Asn	Phe	Туг	Gly	Met
		290		•			295					300				
	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	Pro	Val	Val	Gly	Ala	Arg
5	305					310					315					320
	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	Arg	Met	Val	Trp	Asp	Ser
					325					330					335	
	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	Lys	Ser	Arg	Ser	Gly	Arg
				340					345					350		
10	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	Leu	Gln	Val	Arg	Leu	Glu
			355					360					365			
	Leu	Ala	Arg	Glu	Leu	Gly	Val	Gly	Val	Ser	Ile	Trp	Glu	Leu	Gly	Gln
		370					375					380				
	Gly	Leu	Asp	Tyr	Phe	Tyr	Asp	Leu	Leu							
15	385					390										
	<210)> 97	7					•								
	<21	I> 19	96													
	<21	2> PI	RT.													
20	<21	3> Ho	omo s	sapie	ence											
	<400	3> 97	7													
	Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	Glu	Ser
	1				5					10					15	
25	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	Leu	Ala
				20					25					30		
	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	Tyr	Gly	Pro	Gly	Gly
			35					40					45			
	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	qeA	Tyr	qeA	His	Glu	Ile	Thr	Gly
30		50					55					60				
	Leu	Arg	Val	Ser	Val	Gly	Leu	Leu	Leu	Val	Lys	Ser	Val	Gln	Val	Lys
	65					70					75					80
	Leu	Gly	Asp	Ser	Trp	Asp	Val	Lys	Leu	Gly	Ala	Leu	Gly	Gly	Asn	Thr
					85					90					95	
35	G1n	Slu	Val	Thr	Leu	Gln	Pro	Gly	Glu	Tyr	Ile	Thr	Lys	Val	Phe	Val

				100					105					110		
	Ala	Phe	Gln	Ala	Phe	Leu	Arg	Gly	Met	Val	Met	Tyr	Thr	Ser	Lys	Asp
			115					120					125			
	Arg	Tyr	Phe	Tyr	Phe	Gly	Lys	Leu	Asp	Gly	Gln	Ile	Ser	Ser	Ala	туг
5		130					135					140				
	Pro	Ser	Gln	Glu	Gly	Gln	Val	Leu	Val	Gly	Ile	Tyr	Gly	Gln	Tyr	Gln
	145					150					155					160
	Leu	Leu	Gly	Ile	Lys	Ser	Ile	Gly	Phe	Glu	Trp	Asn	Tyr	Pro	Leu	Glu
					165					170					175	
10	Glu	Pro	Thr	Thr	Glu	Pro	Pro	Val	Asn	Leu	Thr	Tyr	Ser	Ala	Asn	Ser
				180					185					190		
	Pro	Val	Gly	Arg												
			195													
15	<210															
		> 10														
		> PF														
	<213	> Hc		apie	ence											
20	-400	> 98														
20				T	T 011	Wa1	ėn.	C1	T10	Tou	Gl n	21-	716	Thr	Mot	Car
	1	GIU	GIII	гур	5	AGI	GIU	GIU	110	10	GTI1	N10	110	1111	15	201
	_	Agn	Th =	Glv	-	Ser	T.643	Pro	Ser	-	G'u	Glu	Asp	Gln		Ser
				20				•••	25	-,-		•		30	,	J,J_
25	Lva	Leu	Ile		Lvs	Ala	Lvs	Glu		Pro	Phe	Val	Pro	Val	Glv	Ile
	•		35	,	-,-			40					45		•	
	Ala	Gly	Phe	Ala	Ala	Ile	Val	Ala	Tyr	Gly	Leu	Tyr	Lys	Leu	Lys	Ser
		50					55		-			60				
	Arg	Gly	Asn	Thr	Lys	Met	Ser	Ile	His	Leu	Ile	His	Met	Arg	Val	Ala
30	65					70					75					80
	Ala	Glu	Gly	Phe	Val	Val	Gly	Ala	Met	Thr	Val	Gly	Met	Gly	Tyr	Ser
					85					90					95	
	Met	Tyr	Arg	Glu	Phe	Trp	Ala	Lys	Pro	Lys	Pro					
				100					105							

35

110/177

<210> 99 <211> 350 <212> PRT <213> Homo sapience 5 <400> 99 Met Ser Glu Val Lys Ser Arg Lys Lys Ser Gly Pro Lys Gly Ala Pro 10 5 Ala Ala Glu Pro Gly Lys Arg Ser Glu Gly Gly Lys Thr Pro Val Ala 10 20 25 Arg Ser Ser Gly Gly Gly Trp Ala Asp Pro Arg Thr Cys Leu Ser 40 Leu Leu Ser Leu Gly Thr Cys Leu Gly Leu Ala Trp Phe Val Phe Gln 55 15 Gln Ser Glu Lys Phe Ala Lys Val Glu Asn Gln Tyr Gln Leu Leu Lys 70 75 Leu Glu Thr Asn Glu Phe Gln Gln Leu Gln Ser Lys Ile Ser Leu Ile 85 90 Ser Glu Lys Trp Gln Lys Ser Glu Ala Ile Met Glu Gln Leu Lys Ser 20 100 105 110 Phe Gln Ile Ile Ala His Leu Lys Arg Leu Gln Glu Glu Ile Asn Glu 120 Val Lys Thr Trp Ser Asn Arg Ile Thr Glu Lys Gln Asp Ile Leu Asn 135 140 25 Asn Ser Leu Thr Thr Leu Ser Gln Asp Ile Thr Lys Val Asp Gln Ser 150 155 Thr Thr Ser Met Ala Lys Asp Val Gly Leu Lys Ile Thr Ser Val Lys 165 170 Thr Asp Ile Arg Arg Ile Ser Gly Leu Val Thr Asp Val Ile Ser Leu 30 185 Thr Asp Ser Val Glu Glu Leu Glu Asn Lys Ile Glu Lys Val Glu Lys 200 Asn Thr Val Lys Asn Ile Gly Asp Leu Leu Ser Ser Ser Ile Asp Arg 215 35 Thr Ala Thr Leu Arg Lys Thr Ala Ser Glu Asn Ser Gln Arg Ile Asn

	225					230					235					240
	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	Asp	Phe	Asp	Lys	His
					245					250					255	
	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	Ala	Lys	Val	Leu	Lys
5				260					265					270		
	Thr	Val	Thr	Phe	Ala	Asn	Asp	Leu	Lys	Pro	Lys	Val	Tyr	Asn	Leu	Lys
			275					280					285			
	Lys	Asp	Phe	Ser	Arg	Leu	Glu	Pro	Leu	Val	Asn	Asp	Leu	Thr	Leu	Arg
		290					295					300				
10	Ile	Gly	Arg	Leu	Val	Thr	Asp	Leu	Leu	Gln	Arg	Glu	Lys	Glu	Ile	Ala
	305					310					315					320
	Phe	Leu	Ser	Glu	Lys	Ile	Ser	Asn	Leu	Thr	He	Val	Gln	Ala	Glu	Ile
					325					330					335	
	Lys	qaA	Ile	Lys	Asp	Glu	Ile	Ala	His	Ile	Ser	Asp	Met	Asn		
15				340					345					350		
)> 10												•		
		1> 10														
	_	2> PI														
20	<21	3> Ho	omo s	sapie	ence											
)> 10														
		Ser	Ser	Ala	-	Thr	Ala	Thr	Pro		Glu	Met	Asp	His	-	ren
0.5	_ 1	_		_	5		_	_		10	_	_	_	_	15	_
25	Thr	Ser	GIn	Pro	GIĀ	Arg	Pro	Ser		Tyr	Сув	Asn	Ser	_	His	Ser
	٠	1	 1	20		•• : _	- 1-		25	- 1-			a	30	•	
	116	val	•	Ser	ser	HIS	GIU		GIY	Pne	тър	Pne	5er 45	HIS	ren	GIU
	c	.	35	•		••• 1	nt -	40	1		•	D		a 1	^	
30	ser	50	GIY	Leu	гув	vai	55	GIR	val	Ser	Leu	50 50	сув	GIU	Сув	AST
30			n	m		+1-		c	17-1	17-7	*		T	14	۰	T
	65	ren	PIO	Thr	Arg	70	AIG	ser	Val	vai	75	Set	reu	MUSIC	ser	80 Ten
		11-1	17-1	C1	61 -		Dwa	31 =	m	C1		C	T 041	T	۸	
	Leu	vai	val	Gly	85 85	HTG	PEO	MT9	тър	90	дТÅ	ser	∟eu	Leu	95	чħ
35	N=-	7		61.		.1.	ui.	t au-	C		81-				93	
uu	Arg	720	A_d	Gly	3.LY	mra	urg	ned	cys	WTG	wrq					

WO 00/05367 PCT/JP99/03929

112/177

105

100

<210> 101 <211> 1074 5 <212> DNA <213> Homo Sapience <400> 101 atggeteege agameetgag emeetttige etgttgetge talmeetemt eggggeggtg 60 10 attgeeggae gagattteta taagatettg ggggtgeete gaagtgeete tataaaggat attamamagg cotataggam actagecetg cagetteate eegaceggam eeetgatgat 180 ccacaageec aggagaaatt ccaggatetg ggtgetgett atgaggttet gteagatagt 240 gagaaacgga aacagtacga tacttatggt gaagaaggat taaaagatgg tcatcagagc 300 toccatggag acatttttc acacttottt ggggattttg gtttcatgtt tggaggaacc 360 15 cotogtoago aagacagaaa tattocaaga ggaagtgata ttattgtaga totagaagto 420 actitggang angtatatgc agganattit gtggangtag ttaganacan acctgtggca 480 aggeaggete etggeaaaeg gaagtgeaat tgteggeaag agatgeggae caeccagetg 540 ggecetggge gettecaaat gacceaggag gtggtetgeg aegaatgeee taatgteaaa 600 ctagtgaatg aagaacgaac gctggaagta gaaatagagc ctggggtgag agacggcatg 660 20 gagtacccct ttattggaga aggtgagcct cacgtggatg gggagcctgg agatttacgg 720 ttocgaatca aagttgtcaa gcacccaata tttgaaagga gaggagatga tttgtacaca 780 aatgtgacaa teteattagt tgagteactg gttggetttg agatggatat tacteacttg 840 gatggtcaca aggtacatat ttcccgggat aagatcacca ggccaggagc gaagctatgg 900 aagaaagggg aagggeteec caactttgac aacaacaata tcaagggete tttgataate 960 25 1020 acttttgatg tggattttcc aaaagaacag ttaacagagg aagcgagaga aggtatcaaa 1074 cagetactga aacaagggte agtgcagaag gtatacaatg gactgcaagg atat <210> 102 <211> 678 30 <212> DNA <213> Homo Sapience <400> 102 atgaagatgg tegegeeetg gacgeggtte tactecaaca getgetgett gtgetgeeat 35 gteegeaceg geaceatect geteggegte tggtatetga teateaatge tgtggtactg 120

	ttgattttat	tgagtgccct	ggctgatccg	gatcagtata	acttttcaag	ttctgaactg	180
	ggaggtgact	ttgagttcat	ggatgatgcc	aacatgtgca	ttgccattgc	gatttetett	240
	ctcatgatcc	tgatatgtgc	tatggctact	tacggagcgt	acaagcaacg	cgcagcctgg	300
	atcatcccat	tettetgtta	ccagatcttt	gactttgccc	tgaacatgtt	ggttgcaatc	360
5	actgtgctta	tttatccasa	ctccattcag	gaatacatac	ggcaactgcc	tcctaatttt	420
	ccctacagag	atgatgtcat	gtcagtgaat	cctacctgtt	tggtccttat	tattcttctg	480
	tttattagca	ttatcttgac	ttttaagggt	tacttgatta	gctgtgtttg	gaactgctac	540
	cgatacatca	atggtaggaa	ctcctctgat	gtcctggttt	atgttaccag	caatgacact	600
	acggtgctgc	tacccccgta	tgatgatgcc	actgtgaatg	gtgctgccaa	ggagecaeeg	660
10	ccaccttacg	tgtctgcc					678
	<210> 103				,		
	<211> 585						
	<212> DNA						
15	<213> Homo	Sapience					
	<400> 103						
	atgaggette	tgctgcttct	cctagtggcg	gegtetgega	tggtccggag	cgaggcctcg	60
	gccaatctgg	geggegtgee	cagcaagaga	ttaaagatge	agtacgccac	ggggccgctg	120
20	ctcaagttcc	agatttgtgt	ttcctgaggt	tataggcggg	tgtttgagga	gtacatgegg	180
	gttattagcc	ageggtacee	agacateege	attgaaggag	agaattacct	ccctcaacca	240
	atatatagac	acatagcatc	tttcctgtca	gtettcaaac	tagtattaat	aggettaata	300
	attgttggca	aggateettt	tgetttettt	ggcatgcaag	ctcctagcat	ctggcagtgg	360
	ggccaagaaa	ataaggttta	tgcatgtatg	atggttttct	tettgageaa	catgattgag	420
25	aaccagtgta	tgtcaacagg	tgcatttgag	ataactttaa	atgatgtacc	tgtgtggtct	480
	aagctggaat	ctggtcacct	tccatccatg	caacaacttg	ttcaaattct	tgacaatgaa	540
	atgaagetea	atgtgcatat	ggattcaatc	ccacaccatc	gatca		585
00	<210> 104						
30	<211> 1017						
	<212> DNA						
	<213> Homo	Sapience					
	-1100						
o c	<400> 104						•
35	atgaactggg	agctgctgct	gtggctgctg	gtgetgtgeg	egetgeteet	getettggtg	60

WO 00/05367 PCT/JP99/03929

	cagetgetge	gcttcctgag	ggctgacggc	gacctgacgc	tactatgggc	cgagtggcag	120
	ggacgacgcc	cagaatggga	gctgactgat	atggtggtgt	gggtgactgg	agcctcgagt	180
	ggaattggtg	aggagetgge	ttaccagttg	tctaaactag	gagtttctct	tgtgctgtca	240
	gccagaagag	tgcatgagct	ggaaagggtg	aaaagaagat	geetagagaa	tggcaattta	300
5	aaagaaaaag	atatacttgt	tttgcccctt	gacctgaccg	acactggttc	ccatgaagcg	360
	getaccasag	ctgttctcca	ggagtttggt	agaatcgaca	ttctggtcaa	caatggtgga	420
	atgtcccagc	gttctctgtç	catggatacc	agettggatg	tctacagaaa	gctaatagag	480
	cttaactact	tagggacggt	gtccttgaca	aaatgtgttc	tgectcacat	gatcgagagg	540
	aagcaaggaa	agattgttac	tgtgaatagc	atcctgggta	tcatatctgt	acctctttcc	600
10	attggatact	gtgctagcaa	gcatgetete	cggggttttt	ttaatggcct	togaacagaa	660
	cttgccacat	acccaggtat	aatagtttct	ascatttgcc	caggacctgt	gcaatcaaat	720
	attgtggaga	attccctagc	tggagaagtc	acaaagacta	taggcaataa	tggagaccag	780
	teccacaaga	tgacaaccag	tcgttgtgtg	cggctgatgt	taatcagcat	ggccaatgat	840
	ttgaaagaag	tttggatctc	agaacaacct	ttcttgttag	taacatattt	gtggcaatac	900
15	atgccaacct	gggcctggtg	gataaccaac	aagatgggga	agaaaaggat	tgagaacttt	960
	aagagtggtg	tggatgcaga	ctcttcttat	tttaaaatct	ttaagacaaa	acatgac	1017
			•				
	<210> 105						
	<211> 1461						
20	<212> DNA						
	<213> Homo	Sapience					
	<400> 105				-	•	
	atggatggga	cagagacccg	gcagcggagg	ctggacagct	gtggcaagcc	aggggagctg	60
25	gggetteete	accccctcag	cacaggagga	ctccctgtag	cctcagaaga	tggagctctc	120
	agggeceetg	agagccaaag	cgtgaccccc	aagccactgg	agactgagcc	tagcagggag	180
	accgcctggt	ccataggcct	tcaggtgacc	gtgcccttca	tgtttgcagg	cctgggactg	240
	teetgggeeg	gcatgettet	ggactatttc	cagcactggc	ctgtgtttgt	ggaggtgaaa	300
	gaccttttga	cattggtgcc	geceetggtg	ggcctgaagg	ggaacctgga	gatgacactg	360
30	gcatccagac	tctccacage	tgccaacact	ggacaaattg	atgaccccca	ggagcagcac	420
	agagtcatca	gcagcaacct	ggccctcatc	caggtgcagg	ccactgtcgt	ggggetettg	480
	getgetgtgg	etgegetget	gttgggegtg	gtgtctcgag	aggaagtgga	tgtcgccaag	540
	gtggagttgc	tgtgtgccag	cagtgtcctc	actgccttcc	ttgcagcctt	tgccctgggg	600
	gtgctgatgg	tctgtatagt	gattggtgct	cgaaagctcg	gggtcaaccc	agacaacatt	660
35	gecaegecca	ttgcagccag	cetqqqaqae	ctcatcacac	tgtccattct	ggetttggtt	720

	agcagettet	tetacagaca	caaagatagt	cggtatctga	cgccgctggt	ctgcctcage	780
	tttgcggctc	tgaccccagt	gtgggteete	attgccaagc	agagcccacc	categtgaag	840
	atcctgaagt	ttggctggtt	cccaatcatc	ctggccatgg	tcatcagcag	tttcggagga	900
	ctcatcttga	gcaaaaccgt	ttctaaacag	cagtacasag	gcatggcgat	atttaccccc	960
5	gtcatatgtg	gtgttggtgg	caatctggtg	gccattcaga	ccagccgaat	ctcaacctac	1020
	ctgcacatgt	ggagtgcacc	tggcgtcctg	cccctccaga	tgaagaaatt	ctggcccaac	1080
	ccgtgttcta	ctttctgcac	gtcagaaatc	aattccatgt	cagetegagt	cetgetettg	1140
	ctggtggtcc	caggccatct	gattttcttc	tacatcatct	acctggtgga	gggtcagtca	1200
	gtcataaaca	gecagacett	tgtggtgctc	tacctgctgg	caggcotgat	ccaggtgaca	1260
10	atcctgctgt	acctggcaga	agtgatggtt	cggctgactt	ggcaccaggc	cctggatcct	1320
	gacaaccact	gcatccccta	ccttacaggg	ctgggggacc	tgctcggtac	tggcetectg	1380
	gcactctgct	ttttcactga	ctggctactg	aagagcaagg	cagagetggg	tggcatctca	1440
	gaactggcat	ctggacctcc	С				1461
15	<210> 106						
	<211> 1179						
	<212> DNA						
	<213> Homo	Sapience					
20	<400> 106						
	atgeggacae	tetteaacet	cctctggctt	gccetggcct	geagecetgt	tcacactacc	60
	ctgtcaaagt	cagatgccaa	aaaageegee	tcaaagacgc	tgctggagaa	gagtcagttt	120
	tcagataage	cggtgcaaga	ccggggtttg	gtggtgacgg	acctcaaagc	tgagagtgtg	180
	gttettgage	ategeageta	ctgctcggca	aaggeeeggg	acagacactt	tgctggggat	240
25	gtactgggct	atgtcactcc	atggaacage	catggetacg	atgtcaccaa	ggtctttggg	300
	agcaagttca	cacagatete	accegtetgg	ctgcagctga	agagacgtgg	ccgtgagatg	360
	tttgaggtca	cgggcctcca	cgacgtggac	caagggtgga	tgegagetgt	caggaagcat	420
	gccaagggco	tgcacatagt	gcctcggctc	ctgtttgagg	actggaotta	cgatgatttc	480
	cggaacgtct	tagacagtga	ggatgagata	gaggagetga	gcaagaccgt	ggtccaggtg	540
30	gcanagaacc	agcatttcga	tggcttcgtg	gtggaggtet	ggaaccaget	gctaagccag	600
	aagegegtgg	geeteateea	catgeteace	cacttggccg	aggetetgea	ccaggcccgg	660
	ctgctggccc	tectggtcat	cccgcctgcc	atcacccccg	ggaccgacca	gctgggcatg	720
	ttcacgcaca	aggagtttga	gcagetggec	cccgtgctgg	atggtttcag	cctcatgacc	780
	tacgactact	ctacagegea	tcagcctggc	cctaatgcac	ccctgtcctg	ggttcgagec	840
35	tgcgtccagg	tectggacec	gaagtccaag	tggcgaagca	aastecteet	ggggctcaac	900

	ttctatggta	tggactacgc	gaceteeaag	gatgecegtg	agectgttgt	cggggccagg	960
	tacatocaga	cactgaagga	ccacaggeee	cggatggtgt	gggacageca	ggcctcagag	1020
	cacttetteg	agtacaagaa	gagccgcagt	gggaggcacg	tegtetteta	cccaaccctg	1080
	aagtccctgc	aggtgegget	ggagctggcc	cgggagctgg	gegttggggt	ctctatctgg	1140
5	gagetgggee	agggcctgga	ctacttctac	gacctgctc			1179
	<210> 107						
	<211> 588						
	<212> DNA						
10	<213> Homo	Sapience					
	<400> 107						
	atgtggaggg	tgcccggcac	aaccagacgc	ccagtcacag	gegagageee	tgggatgcac	60
	cggccagagg	ccatgotget	gctgctcacg	ettgeeetee	tggggggccc	cacctgggca	120
15	gggaagatgt	atggccctgg	aggaggcaag	tatttcagca	ccactgaaga	ctacgaccat	180
	gaaatcacag	ggetgegggt	gtetgtaggt	etteteetgg	tgaaaagtgt	ccaggtgaaa	240
	cttggagact	cctgggacgt	gaaactggga	gccttaggtg	ggastaccca	ggaagtcacc	300
	ctgcagccag	gcgaatacat	cacaaaagtc	tttgtcgcct	tccaagettt	cctccggggt	360
	atggtcatgt	acaccagcaa	ggaccgctat	ttctattttg	ggaagettga	tggccagatc	420
20	tectetgeet	accccagcca	agaggggcag	gtgctggtgg	gcatctatgg	ccagtatcaa	480
	ctccttggca	tcaagagcat	tggctttgaa	tggaattatc	cactagagga	gccgaccact	540
	gagccaccag	ttaateteac	atactcagca	aactcacccg	tgggtcgc		588
	<210> 108						
25	<211> 321						
	<212> DNA						
	<213> Homo	Sapience					
	<400> 108						
30		agcttgtgga	ggagattett	caagcaatca	ctatotcaac	agacacaggt	60
						agctaaagag	120
		taccegttgg					180
		gcaggggaaa					240
		ttgttgtagg					300
35		aacctaaccc		22723	,	,-a00 9990 u	321

	<210> 109						
	<211> 1050						
	<212> DNA						
5	<213> Homo	Sapience					
	<400> 109						
		tgaagageeg	gaagaagtcg	gggcccaagg	gagecectge	tgcqqaqccc	6
						cgggggetgg	12
10					cgtgcctggg		18
	_					gttactgaaa	24
	ctagaaacca	atgaatteca	acaacttcaa	agtaaaatca	gtttaatttc	agaaaagtgg	. 30
	cagaaatctg	aagctatcat	ggaacaattg	aagtetttte	aaataattgc	tcatctaaag	36
	cgtctacagg	aagaaattaa	tgaggtaaaa	acttggtcca	ataggataac	tgassacag	420
15	gatatactga	acaacagtet	gacgacgctt	totcaagaca	ttacaaaagt	agaccaaagt	486
	acaactteca	tggcaaaaga	tgttggtctc	aagattacaa	gtgtaaaaac	agatatacga	540
	cggatttcag	gtttagtaac	tgatgtaata	tcattgacag	attetgtgea	agaactagaa	600
	aataaaatag	agaaagtaga	aaaaaataca	gtaaaaaata	taggtgatct	tctttcaagc	660
	agtattgatc	gaacagcaac	geteegaaag	acagcatctg	aaaattcaca	aagaattaac	720
20	tctgttaaga	agacgctaac	cgaactaaag	agtgacttcg	acaaacatac	agatagattt	780
	ctaagcttag	aaggtgacag	agccaaagtt	ctgaagacag	tgacttttgc	aaatgatcta	840
	aaaccaaagg	tgtataatct	aaagaaggac	ttttcccgtt	tagaaccatt	agtamatgat	900
	ttaacactac	gcattgggag	attggttacc	gacttactac	aaagagagaa	agaaattgct	960
	ttcttaagtg	aaaaaatatc	taatttaaca	atagtccaag	ctgagattaa	ggatattaaa	1020
25	gatgaaatag	cacacatttc	agatatgaat				1050
	<210> 110						
	<211> 321						
	<212> DNA						
30	<213> Homo	Sapience					
	<400> 110						
					acaaactcac		60
0.5		-		- ·	teggateate		120
35	aattttaat	ttagtcatct	agagtegtet	ggactaaagg	totttceaat	ctccttaccc	180

WO 00/05367 PCT/JP99/03929

	tgtgagtgcg tgaacctccc cacccgaatt gcctcagttg tcctgagcct catgtctctc	240
	ctggtggtgg gecaggcece tgeatgggaa gggageetge tgeggggeag gecagetggg	300
	ggtgeteace tatgegeage a	321
5	<210> 111	
	<211> 1619	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
10	<221> CDS	
	<222> (158)(1234)	
	24005 111	
	<400> 111	60
15	agaagaggg getagetage tytetetgeg gaceagggag accecegege cececeggtg tgaggeggee teacagggee gggtgggetg gegageegae geggeggegg aggaggetgt	120
10	gaggagtgte teacaggge seegggacag aggaace atg got ccg cag aac otg	175
	Met Ala Pro Gln Asn Leu	1,2
	1 5	
	age acc tit tge cig tig cig cia tae cic atc ggg geg gig att gee	223
20	Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala	
	10 15 20	
	gga cga gat tto tat aag ato ttg ggg gtg cot cga agt gco tot ata	271
	Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile	
	25 30 35	
25	ang gat att ama mag gee tat agg amm etm gee etg emg ett emt eec	319
	Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro	
	40 45 50	
	gae egg aac eet gat gat eea caa gee eag gag aaa tte eag gat etg	367
	Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu	
30	55 60 65 70	
	ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac	415
	Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr	
	75 80 85	
	gat act tot ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	463
35	Asp Thr Tyr Gly Glu Glu Gly Leu Lys Asp Gly His Gln Ser Ser His	

				90					95					100			
	gga	gac	att	ttt	tca	cac	ttc	ttt	999	gat	ttt	ggt	ttc	atg	ttt	gga	511
	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp	Phe	Gly	Phe	Met	Phe	Gly	
			105					110					115				
5	gga	acc	cct	cgt	cag	caa	gac	aga	aat	att	cca	aga	gga	agt	gat	att	559
	Gly	Thr	Pro	Arg	Gln	Gln	-Asp	Arg	Asn	Ile	Pro	Arg	Gly	Ser	Asp	Ile	
		120					125					130					
	att	gta	gat	cta	gaa	gtc	act	ttg	gaa	gaa	gta	tat	gca	gga	aat	ttt	607
	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu	Val	Tyr	Ala	Gly	Asn	Phe	
10	135					140					145					150	
	gtg	gaa	gta	gtt	aga	aac	aaa	cct	gtg	gca	agg	cag	get	cct	ggc	aaa	655
	Val	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala	Arg	Gln	Ala	Pro	Gly	Lys	
					155					160					165		
		_	-		tgt				-				-	-			703
15	Arg	Lys	Сув		Сув	Arg	Gln	Glu		Arg	Thr	Thr	Gln		Gly	Pro	
				170					175					180			
		-			atg		_			-			_	-			751
	Gly	Arg		Gln	Met	Thr	Gln		Val	Val	Cys	Asp		Cys	Pro	Asn	
00			185					190					195				
20	-				aat	-	_	-	_	-	-	-	-				799
	Val	-	Leu	Val	Asn	Glu		Arg	Thr	Leu	Glu		Glu	Ile	Glu	Pro	
		200					205					210					
			-	-	ggc	-							_				847
o E		var	Arg	Asp	Gly		GIU	Tyr	Pro	Pne		GIĄ	GIU	GIY	GII		
25	215					220					225					230	
					gag												895
	HIS	Val	Aab	GIĀ	Glu	Pro	GIĀ	Авр	Leu	240	Pne	Arg	116	ьув	245	VAI	
					235						~	***					943
30					ttt Phe	-		-									743
30	ry a	UTS	PLO	250	Pile	GIU	Arg	ALG	255	wah	rap	Heu	ryr	260	Mali	Val	
		a+a	+~=		gtt		t a 2	ata			+++	~=a	-+-		-++	200	991
					Val			-	-			-	_	-			331
	1111	-19	265	ned	Val	ara	201	270	101	211	- 1.0	214	275	-125	-19		
35	CAC	tta		aat	cac	aac	ate		att	tee	caa	ast		atc	acc	200	1039

	His Leu Asp Gly His Lys Val His Ile Ser Arg Asp Lys Ile Thr Arg	
•	280 285 290	
	cca gga gcg aag cta tgg aag aaa ggg gaa ggg ctc ccc aac ttt gac	1087
	Pro Gly Ala Lys Leu Trp Lys Lys Gly Glu Gly Lou Pro Asn Phe Asp	
5	295 300 305 310	
	ame ame and are many gge tet ttg atm are act ttt gmt gtg gmt ttt	1135
	Asn Asn Asn Ile Lys Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe	
	315 320 325	
	cca aaa gaa cag tta aca gag gaa geg aga ggt atc aaa cag cta	1183
10	Pro Lys Glu Gln Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu	
	330 335 340	
	ctg aaa caa ggg tca gtg cag aag gta tac aat gga ctg caa gga tat	1231
	Leu Lys Gln Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr	
	345 350 355	
15	tgagagtga ataaaattgg actttgttta aaataagtga ataagcgata tttattatct	1290
	gcaaggtttt titgtgtgtg titttgtttt tattitcaat atgcaagtta ggcttaattt	1350
	ttttatctaa tgatcatcat ganatgaata agagggetta agaatttgte catttgcatt	1410
	eggaaaagaa tgaccagcaa aaggtttact aatacetete eetttgggga tttaatgtet	1470
	ggtgctgccg cctgagtttc aagaattaaa gctgcaagag gactccagga gcaaaagaaa	1530
20	cacaatatag agggttggag ttgttagcaa tttcattcaa aatgccaact ggagaagtct	1590
	gtttttaaat acattttgtt gttatttt	1619
	·	
	<210> 112	
0.5	<211> 2054	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
30	<222> (254)(934)	
30	<400> 112	
	•	
	cacatggcea agtecgccc gccccetece egteccegce gctgcagegg tegeettegg	60
	agegaagggt accgaccegg cagaageteg gagetetegg ggtategagg aggeaggeee	120
35	gegggegeac gggegagegg geegggagee ggageggegg aggageegge ageageggeg	180
*1.5	eggegggete caggegagge ggtegaeget cetgaaaaet tgegegegeg etegegeeae	240

	tge	gccc	gga (geg	atg	aag	atg	gtc	gcg	ecc	tgg	acg	cgg	ttc	tac	tcc	289
				1	Met :	Lys :	Met	Val	Ala	Pro	Trp	Thr	Arg	Phe	Tyr	Ser	
					1				5					10			
	aac	agc	tge	tgc	ttg	tgc	tgc	cat	gtc	cgc	acc	ggc	acc	ato	ctg	ctc	337
5	Asn	Ser	Cys	Сла	Leu	Суз	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	
			15					20					25				
	gge	gtc	tgg	tat	ctg	atc	atc	aat	gct	gtg	gta	ctg	ttg	att	tta	ttg	385
	Gly	Val	Trp	Tyr	Leu	Ile	Ile	Asn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	
		30					35					40					
10	agt	gcc	ctg	gct	gat	ccg	gat	cag	tat	aac	ttt	tca	agt	tet	gaa	ctg	433
	Ser	Ala	Leu	Ala	Asp	Pro	Asp	Gln	Tyr	Asn	Phe	Ser	Ser	Ser	Glu	Leu	
	45					50					55					60	
	gga	ggt	gac	ttt	gag	tte	atg	gat	gat	gcc	aac	atg	tgc	att	gcc	att	481
	Gly	Gly	Asp	Phe	Glu	Phe	Met	Asp	Asp	Ala	Asn	Met	Сув	Ile	Ala	Ile	
15					65					70					75		
	geg	att	tet	ctt	ctc	atg	atc	ctg	ata	tgt	gct	atg	gct	act	tac	gga	529
	Ala	Ile	Ser	Leu	Leu	Met	Ile	Leu	Ile	Сув	Ala	Met	Ala		Tyr	Gly	
				80					85					90			
	gcg	tac	aag	caa	cgc	gca	gee	tgg	atc	atc	cca	ttc	ttc	tgt	tac	cag	577
20	Ala	Tyr	Lys	Gln	Arg	Ala	Ala	Trp	Ile	Ile	Pro	Phe		Сув	Tyr	Gln	
			95					100					105				
			-		-	-		atg	-								625
	Ile		Asp	Phe	Ala	Leu	Asn	Met	Leu	Val	Ala		Thr	Val	Leu	Ile	
~=		110					115					120					
25						-	-	tac				_					673
		Pro	Asn	Ser	Ile		Glu	Tyr	Ile	Arg		Leu	Pro	Pro	Asn	Phe	
	125					130					135					140	
			-	-	-	-	-	tca					_	_	-		721
20	Pro	Tyr	Arg	Asp	_	Val	Met	Ser	Val		Pro	Thr	Сув	Leu		Leu	
30					145					150					155		
				-			-	att					_			_	769
	Ile	Ile	Leu		Phe	Ile	Ser	Ile		Leu	Thr	Phe	Lys	_	Tyr	Leu	
				160					165					170			
		_	-	-			-	tac	_								817
35	Ile.	Ser	Сув	Val	Тгр	Asn	Сув	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	

	175 180 185	
	tet gat gie etg git tat git ace age aat gae act acg gig etg eta	865
	Ser Asp Val Leu Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu	
	190 195 200	
5	ecc ccg tat gat gat gec act gtg aat ggt get gec aag gag eca ccg	913
	Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro	
	205 210 215 220	
	cca cet tac gtg tet gee taageettea agtgggegga getgaggge	960
	Pro Pro Tyr Val Ser Ala	
10	225	
	agcagettga etttgeagae atetgageaa tagttetgtt attteaettt tgeeatgage	1020
	etetetgage ttgtttgtte etgaaatget actttttaaa atttagatgt tagattgaaa	1080
	actgtagttt tcaacatatc ctttgctgga acactgtgat agattaactg tagaattett	1140
	cctgtacgat tggggatata atgggcttca ctaaccttcc ctaggcattg aaacttcccc	1200
15	caaatetgat ggacctagaa gtetgetttt gtacctgetg ggecccaaag ttgggeattt	1260
	ttetetetgt tecetetett ttgaaaatgt aaaataaaac caaaaataga caacttttte	1320
	tteagceatt ceagcataga gaacaaaace ttatggaaac aggaatgtea attgtgtaat	1380
	cattgttcta attaggtaaa tagaagteet tatgtatgtg ttacaagaat tteecceaca	1440
	acateettta tgaetgaagt teaatgaeag tttgtgtttg gtggtaaagg atttteteea	1500
20	tggcctgaat taagaccatt agaaagcacc aggccgtggg agcagtgacc atctgctgac	1560
	tgttcttgtg gatcttgtgt ccagggacat ggggtgacat gcctcgtatg tgttagaggg	1620
	tggaatggat gtgtttggeg etgeatggga tetggtgeee etetteteet ggatteacat	1680
	ccccacccag ggcccgcttt tactaagtgt totgccctag attggttcaa ggaggtcatc	1740
	caactgactt tatcaagtgg aattgggata tatttgatat acttctgcct aacaacatgg	1800
25	aaaagggttt tetttteeet geaagetaca teetaetget ttgaacttee aagtatgtet	1860
	agteacettt taaaatgtaa acatttteag aaaaatgagg attgeettee ttgtatgege	1920
	tttttacctt gactacctga attgcaaggg atttttatat attcatatgt tacaaagtca	1980
	gcaactotee tgttggttes ttattgsatg tgctgtasat taagttgttt gcaattasas	2040
	caaggtttgc ceac	2054
30		
	<210> 113	
	<211> 1380	
	<212> DNA	
	<213> Homo Sapience	
35	<220>	

WO 00/05367 PCT/JT99/03929

123/177

<221> CDS <222> (43)...(630) <400> 113 geagtetgte tgagggegge egaagtgget ggeteattta ag atg agg ett etg ctg ctt ctc cta gtg gcg gcg tct gcg atg gtc cgg agc gag gcc tcg 102 Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser 10 10 15 gee aat etg gge gge gtg eee age aag aga tta aag atg eag tae gee 150 Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala 25 30 acg ggg ccg ctg ctc aag ttc cag att tgt gtt tcc tga ggt tat agg 198 15 Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser Xaa Gly Tyr Arg 40 45 egg gtg ttt gag gag tac atg egg gtt att agc cag egg tac eca gae 246 Arg Val Phe Glu Glu Tyr Met Arg Val Ile Ser Gln Arg Tyr Pro Asp 60 20 atc ege att gas gga gag aat tac etc eet cas ees ats tat ags eac Ile Arg Ile Glu Gly Glu Asn Tyr Leu Pro Gln Pro Ile Tyr Arg His 75 ata goa tot tto ctg toa gto tto aaa cta gta tta ata ggo tta ata 342 Ile Ala Ser Phe Leu Ser Val Phe Lys Leu Val Leu Ile Gly Leu Ile 25 85 90 95 att gtt gge aag gat eet tit get tie tit gge atg caa get eet age Ile Val Gly Lys Asp Pro Phe Ala Phe Phe Gly Met Gln Ala Pro Ser 110 ate tgg cag tgg ggc caa gaa aat aag gtt tat gca tgt atg atg gtt 438 30 Ile Trp Gln Trp Gly Gln Glu Asn Lys Val Tyr Ala Cys Met Met Val 125 tto tto ttg ago aac atg att gag aac cag tgt atg tca aca ggt gca Phe Phe Leu Ser Asn Met Ile Glu Asn Gln Cys Met Ser Thr Gly Ala 140 ttt gag ata act tta aat gat gta cct gtg tgg tct aag ctg gaa tct

WO 00/05367 PCT/JP99/03929

124/177

	Phe G	lu Il	e Thr	Leu	Asn	Asp	Val	Pro	Val	Trp	Ser	Lys	Leu	Glu	Ser	
	1	50				155					160					
	ggt c	ac ct	t cca	tec	atg	caa	caa	ctt	gtt	caa	att	ctt	gae	aat	gaa	582
	Gly H	is Le	u Pro	Ser	Met	Gl n	Gln	Leu	Val	Gln	Ile	Leu	Asp	Asn	Glu	
5	165				170					175					180	
	atg a	ag ct	c aat	gtg	cat	atg	gat	tca	atc	cca	CAC	cat	cga	tca		627
	Met L	ys Le	u Asn	Val	His	Met	Asp	Ser	Ile	Pro	His	His	Arg	Ser		
				185					190					195		
	tag c	accac	ctat	cagca	ctga	10 00	ictct	ttt	g cat	taaq	ggga	tcat	tge	aag		680
10	agcag	cgtga	ctga	catta	t ga	agge	etgt	act	tgaag	jaca	gca	aget	jtt .	agta	cagaco	740
	agatg	ctttc	ttgg	caggo	to	jttgi	acct	ct1	tggas	aac	ctc	natgo	aa ·	gata	gtgttt	800
	cagtg	ctggc	atat	tttgg	a at	tct	gcace	tto	catg	jagt	gca	ataat	ac	tgta	tagett	860
	tcccc	accto	ccac	aaaat	c ac	cca	gttas	tgt	tgtgt	gtg	tgti	tttt	tt	ttta	aggtaa	920
	acatt	actac	ttgt	sactt	t tt	tte	tagt	cat	tattt	gaa	aaa	gtaga	aa	attg	agttac	980
15	aattt	gattt	tttt	tecaa	a ga	atgt	etgtt	. 446	atct	gttg	tge	tttt	ta	tgaa	tatttg	1040
	tttt	tataç	, ttta	aaatt	g at	ecti	ttggg	aat	cca	gttg	aagt	ttcc	caa	atac	tttata	1100
	agagt	ttato	agac	atctc	t as	ittt	ggcca	tgt	ccaç	jttt	atac	cagti	ta	caaa	atatag	1160
	cagat	gcaag	, atta	tgggg	g aa	atco	ctata	tto	cagag	ftac	tct	ataaa	itt '	tt t g	tgtatg	1220
	tgtgt	atgtç	g egtg	tgatt	a co	aga	gaact	act	taaa	1448	cca	actgo	tt	ttta	aatcct	1280
20	attgt	gtagt	: taaa	gtgtc	a t	jeet1	tgaco	aat	tetas	itga	att	gatta	at	taac	tgggcc	1340
	tttat	actta	acta	aataa	a as	act	agca	gat	tatge	ıgtt						1380
									,							
	<210>	114									-					
	<211>	1292	!													
25	<212>	DNA														
	<213>	Homo	Sapi	ence												
	<220>															
	<221>	CDS						,								
	<222>	(113	١٠٠٠(1132)												
30																
	<400>	114														
	aaaag	tgcgg	ctet	gggct	g go	cga	1 9 999	j tg	geget	gcg	atco	cgce	agg (gcag	cgacgo	60
	gactc	tggtg	cada	ccgtc	t to	tte	cccc	gaç	getge	ldcd	tge	gegge	eg (ca a	tg aac	118
														M	et Asn	

35

1

	tgg	gag	ctg	ctg	ctg	tgg	ctg	ctg	gtg	ctg	tge	gcg	ctg	cto	ctg	ctc	166
	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Сув	Ala	Leu	Leu	Leu	Leu	
			5					10					15				
	ttg	gtg	cag	ctg	ctg	cgc	ttc	ctg	agg	gct	gac	ggc	gac	ctg	acg	cta	214
5	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu	Thr	Leu	
		20					25					30					
	cta	tgg	gcc	gag	tgg	cag	gga	cga	cgc	CCA	gaa	tgg	gag	etg	act	gat	262
	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu	Thr	Asp	
	35					40					45					50	
10						act									-	-	310
	Met	Val	Val	Trp		Thr	Gly	Ala	Ser		Gly	Ile	Gly	Glu	Glu	Leu	
					55					60					65		
						aaa			-				_		-	-	358
	Ala	Tyr	Gln		Ser	Lys	Leu	Gly		Ser	Leu	Val	Leu		Ala	Arg	
15				70					75					80			
				-	-	gaa				-	-	-					406
	Arg	Val		Glu	Leu	Glu	Arg		Lys	Arg	Arg	Cys		Glu	Asn	Gly	
			85					90					95				
20				-		gat			-	-			-	-		•	454
20	ASI		ьys	G1u	Lys	Asp		Leu	Val	Leu	Pro		qaA	Leu	Thr	qaA	
		100	.				105					110					
						geg				-	-		_				502
	115	GIÀ	3et	ura	GIU	Ala 120	ATG	THE	Lys	WIG	125	TEA	GLII	GIU	Pne	130	
25		ato	anc.	a++	ata	gte	220		aa+			too	024	-			550
						Val										-	550
	9		p	110	135	V 4.1.	AJII	Abii	GIJ	140	1100	JGL	GLII	ur y	145	Lieu	
	taa	ato	σat	acc		ttg	gat	ata	tac		aag	cta	ata	dad		aac	598
	_	-	_		-	Leu	-	-		-	-						
30	-		٠	150					155	,				160			
	tac	tta	qqq		ata	tec	tta	aca		tat	att	cta	cct		ata	atc	646
						Ser											
	-		165	-		-		170		• •			175				
	gaq	agg		caa	qqa	aag	att		act	gta	aat	age		cta	ggt	atc	694
35			-			Lys		-				_		-			
		-	-		-	-				_						-	

		180					185					190					
	ata	tct	'gta	cct	ctt	tcc	att	gga	tac	tgt	gct	age	aag	cat	gct	ctc	742
	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His	Ala	Leu	
	195					200					205					210	
5	egg	ggt	ttt	ttt	aat	gge	ctt	cga	aca	gaa	ctt	gcc	aca	tac	cca	ggt	790
	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr	Pro	Gly	
					215					220					225		
	ata	ata	gtt	tct	aac	att	tge	cca	gga	cct	gtg	caa	tca	aat	att	gtg	838
	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn	Ile	Val	
10				230					235					240			
	gag	aat	tcc	cta	gct	gga	gaa	gtc	aca	aag	act	ata	ggc	aat	aat	gga	886
	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	ГÅа	Thr	Ile	Gly	Asn	Asn	Gly	
			245					250					255				
	_	-			_	-			agt	-	-			-	-		934
15	Asp		Ser	His	Lys	Met		Thr	Ser	Arg	СЛВ		Arg	Leu	Met	Leu	
		260					265					270					
		-	- 7	-		-			gaa	-				-			982
		Ser	Met	Ala	Asn	-	Leu	Lys	Glu	Val	_	Ile	Ser	Glu	Gln		
20	275					280					285					290	
20		-		-			-		CAA		-				-		1030
	Pne	Leu	Leu	Val		туг	Leu	тър	Gln	300	met	Pro	Thr	тър		ттр	
	taa				295										305		1070
					-	-		-	aaa						-	-	1078
25	IIp	116	THE	310	гЛя	met	GTÅ	гля	Lys 315	MLG	116	GIU	ASII	320	гуз	ser	
20	aat	ata	rat		dec.	tet	+a+		ttt		eta	+++	220			ast	1126
			-	-	-				Phe				•				1120
	,	***	325	AIG.	unb	201	201	330	- 110	Lyo	110	- 110	335	••••	_ya	nio	
	gac	tos		iac s	itetr	rtact	+ ++		rccac	· taa	aaaa	raaa		gaaz.	18C 8		1180
30	Asp	-9-	5			,		····	,ccuc			,		,,,,,,,,,			1100
	tgas	aaca	ige é	atct	tett	a to	ctto	toas	taa	tcaa	ада	ctas	ttto	rta a	rttt	actt	t 1240
								-	aat		-		_				1292
				,						<i></i>							

35 <210> 115

	<21	1> 2	168														
	<21	2> D	NA														
	<21	3> B	omo	Sapi	ence												
	<22	0>															
5	<22	1> C	DS														
	<22	2> (56).	(1	519)												
	<40	0> 1	15														
	ttt	eege	ege (egce	tggg	ag g	ggac	cegg	g ct	geca	ggcg	ccc	agct	gtg	ccca	g	55
10	atg	gat	999	aca	gag	acc	cgg	cag	cgg	agg	ctg	gac	agc	tgt	ggc	aag	103
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys	
	1				5					10					15		
	cca	999	gag	ctg	ggg	ctt	cct	Cac	ccc	ctc	agc	aca	gga	gga	ctc	cct	151
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro	
15				20					25					30			
	gta	gcc	tca	gaa	gat	gga	gct	ctc	agg	gcc	cct	gag	age	Caa	age	gtg	199
	Val	Ala	Ser	Glu	Ąsp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val	
			35					40					45				
	acc	CCC	aag	cca	ctg	gag	act	gag	cct	agc	agg	gag	acc	gcc	tgg	tcc	247
20	Thr		Lys	Pro	Leu	Glu		Glu	Pro	Ser	Arg		Thr	Ala	Ттр	Ser	
		50					55					60					
				-	gtg					_		-		_		-	295
		Gly	Leu	Gln	Val		Val	Pro	Phe	Met		Ala	Gly	Leu	Gly		
0=	65					70					75					80	
25			•	••	atg			-			-						343
	Ser	Trp	Ala	Gly	Met	Leu	Leu	Asp	Tyr		Gln	His	Ттр	Pro		Phe	
					85					90					95		
			-		gac		-		_		_		_			-	391
30	Val	GIU	Val	_	Asp	Leu	Leu	Thr		Val	Pro	PIO	Leu		GIÀ	Leu	
30				100					105					110			
				-	gag	-		_	-		-				•	•	439
	rÀs	ath		reu	Glu	Met	rnr		WTF	ser	AEG	ren		rnr	ATE	ALA	
		•==	115		-++	a=+		120		~~~			125				407
35					att	-	-		-	_	_		-	-		-	487
UU	нип	Int	GTÅ	GIN	Ile	чэр	upp	PLO	GHI	OTG	GTII	чтя	wrd	val	тте	ser	

		130					135					140					
	age	aac	ctg	gcc	ctc	atc	cag	gtg	cag	gee	act	gtc	gtg	999	ctc	ttg	535
	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu	
	145					150					155					160	
5	gct	gct	gtg	gct	gcg	ctg	ctg	ttg	ggc	gtg	gtg	tct	cga	gag	gaa	gtg	583
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val	
					165					170					175		
	gat	gtc	gas	aag	gtg	gag	ttg	ctg	tgt	gcc	agc	agt	gtc	ctc	act	gee	631
	qeA	Val	Ala	Lys	Val	Glu	Leu	Leu	Cys	Ala	Ser	Ser	Val	Leu	Thr	Ala	
10				180					185					190			
	ttc	ctt	gca	gcc	ttt	gcc	ctg	999	gtg	ctg	atg	gtc	tgt	ata	gtg	att	679
	Phe	Leu	Ala	Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	Суз	Ile	Val	Ile	
			195					200					205				
	ggt	gat	cga	aag	ctc	999	gtc	aac	cca	gac	aac	att	gcc	acg	ccc	att	727
15	Gly	Ala	Arg	Lya	Leu	Gly	Val	Asn	Pro	Авр	Asn	Ile	Ala	Thr	Pro	Ile	
		210					215					220					
	gca	gcc	agc	ctg	gga	gac	ctc	atc	aca	ctg	tcc	att	ctg	gct	ttg	gtt	775
	Ala	Ala	Ser	Leu	Gly	Asp	Leu	Ile	Thr	Leu	Ser	Ile	Leu	Ala	Leu	Val	
	225					230					235					240	
20	agc	agc	ttc	ttc	tac	aga	cac	aaa	gat	agt	cgg	tat	ctg	acg	ccg	ctg	823
	Ser	Ser	Phe	Phe	Tyr	Arg	His	Lys	Asp	Ser	Arg	Tyr	Leu	Thr	Pro	Leu	
					245					250					255		
	gtc	tge	ctc	agc	ttt	gcg	gct	ctg	acc	cca	gtg	tgg	gtc	ctc	att	gee	871
	Val	Сув	Leu	Ser	Phe	Ala	Ala	Leu	Thr	Pro	Val	Ττρ	Val	Leu	Ile	Ala	
25				260					265					270			
	aag	cag	age	cca	ccc	atc	gtg	aag	atc	ctg	aag	ttt	gge	tgg	ttc	cca	919
	Lys	Gln	Ser	Pro	Pro	Ile	Val	Lys	Ile	Leu	Lys	Phe	Gly	Тгр	Phe	Pro	
			275					280					285				
	atc	atc	ctg	gcc	atg	gtc	atc	age	agt	ttc	gga	gga	ctc	atc	ttg	agc	967
30	Ile	Ile	Leu	Ala	Met	Val	Ile	Ser	Sér	Phe	Gly	Gly	Leu	Ile	Leu	Ser	
		290					295					300					
	aaa	acc	gtt	tct	aaa	cag	cag	tac	aaa	ggc	atg	gcg	ata	ttt	acc	ccc	1015
	Lys	Thr	Val	Ser	Lys	Cln	Gln	Tyr	Lys	Gly	Met	Ala	Ile	Phe	Thr	Pro	
	305					310					315					320	
35	gtc	ata	tgt	ggt	gtt	ggt	ggc	aat	ctg	gtg	gcc	att	cag	acc	agc	cga	1063

	Val	Ile	Сув	Gly	Val	Gly	Gly	naA	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arg	
					325					330					335		
	atc	tca	acc	tac	ctg	cac	atg	tgg	agt	gca	cct	ggc	gtc	ctg	CCC	ctc	1111
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu	
5				340					345					350			
	cag	atg	aag	aaa	ttc	tgg	ccc	aac	ccg	tgt	tct	act	ttc	tgc	acg	tca	1159
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Сув	Ser	Thr	Phe	Cys	Thr	Ser	
			355					360					365				
	gaa	atc	aat	tee	atg	tca	get	ega	gtc	ctg	ctc	ttg	ctg	gtg	gtc	cca	1207
10	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro	
		370					375					380					
	gge	cat	ctg	att	ttc	ttc	tac	atc	atc	tac	ctg	gtg	gag	ggt	cag	tca	1255
	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser	
	385				•	390					395					400	
1 5	gtc	ata	aac	agc	cag	acc	ttt	gtg	gtg	ctc	tac	ctg	ctg	gca	ggc	ctg	1303
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu	
					405					410					415		
	atc	cag	gtg	aca	atc	ctg	ctg	tac	ctg	gca	gaa	gtg	atg	gtt	cgg	ctg	1351
	Ile	Gln	Val	Thr	Ile	Leu	Leu	Tyr	Leu	Ala	Glu	Val	Met	Val	Arg	Leu	
20				420					425					430			
	act	tgg	cac	cag	gcc	ctg	gat	cct	gac	aac	cac	tgc	atc	ccc	tac	ctt	1399
	Thr	Trp	His	Gln	Ala	Leu	qaA	Pro	qaA	Asn	His	Cys	Ile	Pro	Tyr	Leu	
			435					440					445				
	aca	999	ctg	999	gac	ctg	ctc	ggt	act	ggc	ctc	ctg	gca	ctc	tgc	ttt	1447
25	Thr	Gly	Leu	Gly	qaA	Leu	Leu	Gly	Thr	Gly	Leu	Leu	Ala	Leu	Сув	Phe	
		450					455					460					
	ttc	act	gac	tgg	cta	ctg	aag	agc	aag	gca	gag	ctg	ggt	ggc	atc	tca	1495
	Phe	Thr	Asp	тър	Leu	Leu	Lys	Ser	Lys	Ala	Glu	Leu	Gly	Gly	Ile	Ser	
	465					470					475					480	
30	gaa	ctg	gca	tct	gga	cct	ccc	taac	etgg	gec o	ecget	tggt	CC C	attt	jete	a ttag	1550
	Glu	Leu	Ala	Ser	Gly	Pro	Pro										
					485												
	aati	ttaai	tet (cacat	cagt	tg gg	gatad	agaa	tto	agti	tct	ccct	ttge	eag o	jtect	tggga	1610
	tggi	ttga	eee (etge	etet	gc ag	gtago	cttt	tgt:	gagt	ctg	cta	iggti	agc 1	cto	acacac	1670
35	ctc	ggata	etg (gggti	gata	ac ct	gago	ctg	aat	agag	jece	tgad	atco	aag a	igcat	ggctt	1730

	gagtgtgtga atatgatgtg tgcacatgct taatgagcgt gcaagtgtgc acacgtttgt	1790
	ggagaggagg gtgttctggc ctgagaaget aaagaagagg catgtccagt atgetttgca	1850
	gggtgtgtttt getettttee atgeeeatge aacocagatt ggggtggage aggaaggage	1910
	tettttetgt teccaageet cagaactett gagetgtgge ttacttgetg tettcaceag	1970
5	gttcaagete cgtgggccac actgctgctg tgccaagaag gtgtacagec tccccaggat	2030
	ggggcctcat acaacccttc atctgcactc aacatttaat cgtgtccttg ctgtcttttt	2090
	attiticetti tigitageaa aaacetetat tiagatitea ataateagag aagigtaaaa	2150
	tasaacagat tatattgt	2168
10	<210> 116	
	<211> 1357	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
15	<221> CDS	
	<222> (81)(1262)	
•	<400> 116	
90	egtgegtttg tggeegteeg geeteeetga catgeageee tetggaceee gaggttggac	60
20	cotactgtga cacacctacc atg cgg aca ctc ttc aac ctc ctc tgg ctt	110
	Met Arg Thr Leu Phe Asn Leu Leu Trp Leu 1 5 10	
	-	150
	gee etg gee tge age cet gtt cae act ace etg tea aag tea gat gee	158
25	Ala Leu Ala Cys Ser Pro Val His Thr Thr Leu Ser Lys Ser Asp Ala 15 20 25	
40		203
	and and gcc gcc tca and acg ctg ctg gag and agt cag ttt tca gat Lys Lys Ala Ala Ser Lys Thr Leu Leu Glu Lys Ser Gln Phe Ser Asp	203
	30 35 40	
	and ccg gtq can gac cgg ggt ttg gtg gtg acg gac ctc nan gct gag	254
30	Lys Pro Val Gln Asp Arg Gly Leu Val Val Thr Asp Leu Lys Ala Glu	
	45 50 55	
	agt gtg gtt ett gag eat ege age tae tge teg gea aag gee egg gae	302
	Ser Val Val Leu Glu His Arg Ser Tyr Cys Ser Ala Lys Ala Arg Asp	
	60 65 70	
35	aga cac tit get ggg gat gia etg gge tat gic act cca tgg aac age	350
	3 3 3 3 330 mag	

	Arg	His	Phe	Ala	Gly	Asp	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser	
	75					80					85			_		90	
	cat	ggc	tac	gat	gte	acc	aag	gtc	ttt	ggg	age	aag	ttc	aca	cag	atc	398
	<u>ris</u>	Gly	Tyr	Asp	Val	Thr	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	
5					95					100					105		
	tca	ccc	gtc	tgg	ctg	cag	ctg	aag	aga	cgt	ggc	cgt	gag	atg	ttt	gag	446
	Ser	Pro	Val	Trp	Leu	Gln	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	
				110					115					120			
••					Cac										_		494
10	Val	Thr	_	Leu	His	Asp	Val	_	Gln	Gly	Trp	Met	_	Ala	Val	Arg	
			125					130					135				
	-		_	_	ggc Gly	_							-			•	542
	гуу	140	ма	pys	GIY	neu	145	116	Val	PLO	ALY	150	Leu	rite	GIU	ABP	
15	taa		tac	gat	gat	ttc		aac	atc	tta	gac		gag	gat	gag	ata	590
				-	Asp				-		-	-		-			370
	155		•			160					165					170	
	gag	gag	ctg	agc	aag	ACC	gtg	gtc	cag	gtg	gca	aag	aac	cag	cat	tte	638
	Glu	Glu	Leu	Ser	Lys	Thr	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	
20					175					180					185		
	gat	ggc	ttc	gtg	gtg	gag	gtc	tgg	aac	cag	ctg	cta	age	cag	aag	cgc	686
	qaA	Gly	Phe	۷al	Val	Glu	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	
				190					195					200			
	gtg	gg¢	ctc	atc	cac	atg	ctc	acc	cac	ttg	gcc	gag	gct	ctg	cac	cag	734
25	Val	Gly		Ile	His	Met	Leu		His	Leu	Ala	Glu		Leu	His	Gln	
			205					210					215				
	-			•	gcc		-	-		-		_					782
	Ala	220	rea	ren	Ala	Leu	225	Val	116	Pro	Pro	230	116	Thr	Pro	GIÀ	
30	800		0.00	ata	qqc	-+-				222	~~~		~~~	ana	a+=		830
00		-	-	_	Gly	-		_		_				-	-	-	030
	235	····	41		cary	240	£ 114.			-75	245	1		U 1	лоц	250	
		gtg	ctq	gat	qqt		agc	ctc	atg	acc		gac	tac	tet	aca		878
			-	-	Gly		-		-			-					
35				•	255					260	-	-	-		265		

	cat	cag	cct	ggc	cct	aat	gca	CCC	ctg	tcc	tgg	gtt	cga	gcc	tgc	gtc	926
	His	Gln	Pro	Gly	Pro	Asn	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	
				270					275					280			
	cag	gtc	ctg	gac	ccg	aag	tcc	aag	tgg	cga	age	aaa	atc	ctc	ctg	999	974
5	Gln	Val	Leu	Asp	Pro	Lys	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	
			285					290					295				
	ctc	aac	ttc	tat	ggt	atg	gac	tac	geg	acc	tcc	aag	gat	gcc	cgt	gag	1022
	Leu	Asn	Phe	Tyr	Gly	Met	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Gl u	
		300					305					310					
10	cat	gtt	gtc	999	gcc	agg	tac	atc	cag	aca	ctg	aag	gac	cae	agg	ccc	1070
	Pro	Val	Val	Gly	Ala	Arg	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	
	315					320					325					330	
	cgg	atg	gtg	tgg	gac	agc	cag	gcc	tca	gag	cac	tte	tte	gag	tac	aag	1118
	Arg	Met	Val	Trp	Asp	Ser	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	
15					335					340					345		
	aag	agc	cgc	agt	999	agg	cac	gtc	gto	ttc	tac	cca	acc	ctg	aag	tee	1166
	Lys	Ser	Arg	Ser	Gly	Arg	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	
				350					355					360			
	ctg	cag	gtg	cgg	ctg	gag	ctg	gcc	cgg	gag	ctg	ggc	gtt	999	gtc	tet	1214
20	Leu	Gln	Val	Arg	Leu	Glu	Leu	Ala	Arg	Glu	Leu	Gly	Val	Gly	Val	Ser	
			365					370					375				
	atc	tgg	gag	ctg	ggc	cag	ggc	ctg	gac	tac	ttc	tac	gac	ctg	ctc	t	1260
	Ile	Trp	Glu	Leu	Gly	Gln	Gly	Leu	Asp	Tyr	Phe	Tyr	qaA	Leu	Leu		
		380					385					390					
25	aggt	tgg g c	at t	geg	geet	ec go	ggt	gac	, tgt	tctt	ttc	taaq	gecat	gg a	ıgtga	igtgag	1320
	cag	gtgt	jaa e	tace	igge	et co	acto	cgtt	: tgc	tgto	j						1357
	<210)> 11	17														
	<211	l> 71	1														
3 0	<212	2> DB	IA.														
	<213	3> Ho	mo 5	apie	nce												
	<220)>															
	<221	> CI	S														
	<222	?> (8)	(598	3)												
0.5																	

35

	<400	> 11	17														
	aaag	gcg	atg	tgg	agg	gtg	ccc	ggc	aca	acc	aga	cgc	cca	gtc	aca	ggc	49
			Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	
			1				5					10					
5	gag	agc	cct	999	atg	cac	cgg	cca	gag	gcc	atg	ctg	ctg	ctg	ctc	acg	97
	Glu	Ser	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	
	15					20					25					30	
	ctt	gcc	ctc	ctg	9 99	ggc	ccc	acc	tgg	gca	ggg	aag	atg	tat	ggc	cct	145
	Leu	Ala	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	Tyr	Gly	Pro	
10					35					40					45		
	gga	gga	ggc	aag	tat	ttc	age	acc	act	gaa	gac	tac	gaċ	cat	gaa	atc	193
	Gly	Gly	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	qsA	Tyr	qsA	His	Glu	Ile	
				50					55					60			
	aca	999	ctg	cgg	gtg	tct	gta	ggt	ctt	ctc	ctg	gtg	288	agt	gtc	cag	241
15	Thr	Gly	Leu	Arg	Val	Ser	Val	Gly	Leu	Leu	Leu	Val	Lys	Ser	Val	Gln	
			65					70					75				
	gtg	aaa	ctt	gga	gac	tcc	tgg	gac	gtg	aaa	ctg	gga	gcc	tta	ggt	9 99	289
	Val	Lys	Leu	Gly	Авр	Ser	Trp	qaA	Val	Lys	Leu	Gly	Ala	Leu	Gly	Gly	
		80					85					90					
20	aat	acc	cag	gaa	gtc	acc	ctg	cag	cca	ggc	gaa	tac	atc	aca	aaa	gtc	337
	Asn	Thr	Gln	Glu	Val	Thr	Leu	Gln	Pro	Gly	Glu	Tyr	Ile	Thr	Lys	Val	
	95					100					105					110	
	ttt	gtc	gcc	ttc	caa	gct	ttc	ctc	cgg	ggt	atg	gtc	atg	tac	acc	agc	385
	Phe	Val	Ala	Phe	Gln	Ala	Phe	Leu	Arg	Gly	Met	Val	Met	Tyr	Thr	Ser	
25					115					120					125		
	aag	gac	cgc	tat	ttc	tat	ttt	ggg	aag	ctt	gat	ggc	cag	atc	tee	tet	433
	Lys	yeb	Arg	Tyr	Phe	Tyr	Phe	Gly	Lys	Leu	Asp	Gly	Gln	Ile	Ser	Ser	
				130					135					140			
	gcc	tac	ccc	agc	caa	gag	999	cag	gtg	ctg	gtg	ggc	atc	tat	ggc	cag	481
30	Ala	Tyr	Pro	Ser	Gln	Glu	Gly	Gln	Val	Leu	Val	Gly	Ile	Tyr	Gly	Gln	
			145					150					155				
	tat	caa	ctc	ctt	ggc	atc	aag	agc	att	ggc	ttt	gaa	tgg	aat	tat	cca	529
	Tyr	Gln	Leu	Leu	Gly	Ile	Lys	Ser	Ile	Gly	Phe	Glu	Trp	Asn	Tyr	Pro	
		160					165					170					
9.5																	577

	Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala	
	175 180 185 ,190	
	aac tea eee gtg ggt ege tagggtgggg tatggggeea teegagetga ggeea	630
	Asn Ser Pro Val Gly Arg	
5	195	
	tetgtgtggt ggtggetgat ggtaetggag taaetgagte gggaegetga atetgaatee	690
	accantaant anagettetg c	711
	<210> 119	
10	<211> 651	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
15	<222> (242)(565)	
	<400> 118	
	aaagaaacaa geegggggac tgegageeag ggacteggge egeggggegg gaagaagtgg	60
	ggcagcgctt ggccaggccg aaaggacttt gggggtgggg gctgggagtc cgtgtctcga	120
20	atgagggagg agaggtggag ttgccggggc tcaggcccgg cctcgagcat gggcggatga	180
	gaggagtegg gageegagge etagggteet tegggtgagg ggagaeggag eeagegagga	240
	g atg gag cag aag ctt gtg gag gag att ctt caa gca atc act atg	286
	Met Glu Gln Lys Leu Val Glu Glu Ile Leu Gln Ala Ile Thr Met	
	1 5 10 15	
25	tea aca gae aca ggt gtt tee ett eet tea tat gag gaa gat eag gga	334
	Ser Thr Asp Thr Gly Val Ser Leu Pro Ser Tyr Glu Glu Asp Gln Gly	
	20 25 30	
	tea aaa ete att ega aaa get aaa gag gea eea tte gta eee gtt gga	382
	Ser Lys Leu Ile Arg Lys Ala Lys Glu Ala Pro Phe Val Pro Val Gly	
30	35 40 45	
	ata geg ggt ttt gea gea att gtt gea tat gga tta tat aaa etg aag	430
	Ile Ala Gly Phe Ala Ala Ile Val Ala Tyr Gly Leu Tyr Lys Leu Lys	
	50 55 60	
	age agg gga aat act aaa atg tee att eat etg ate eac atg egt gtg	478
25	Ser Arg Gly Asn Thr Lys Met Ser Ile His Leu Ile His Met Arg Val	

	65		•	70			75		
	gea gee	caa c	gge ttt	gtt gta	gga gca	a atg act	gtt g	gt atg ggc tat	526
	Ala Ala	Gln C	Gly Phe	Val Val	Gly Ale	a Met Thr	Val G	ly Met Gly Tyr	
	80			95		90	+	95	
5	tcc atg	tat c	egg gaa	ttc tgg	gca aaa	a cct aag	cet to	agaagaa	570
	Ser Met	Tyr A	Arg Glu	Phe Trp	Ala Lys	s Pro Lys	Pro		
			100			105			
	gagatget	gt ct	ttggtcti	tg ttgga	ggage ti	tgctttagt	tagat	gtott attattaaag	630
	ttacctat	ta tt	tgttggad	aa t					651
10									
	<210> 11	19							
	<211> 13	310							
	<212> D	IA.							
	<213> Ho	omo Sa	apience						
15	<220>								
	<221> CI	os							
	<222> (78)	. (1130)		•				
	<400> 1	19							
20	cgaacgco	caa go	geggeead	eg teetg	etece e	etggtgaag	aagct	geect gggettgteg	60
	tectagg	gtc to	ccagac e	atg tot	gag gtg	aag agc	cgg aa	g aag teg ggg	110
			1	Met Ser	Glu Val	Lys Ser	Arg Ly	s Lys Ser Gly	
				1		5		10 .	
	ccc aag	gga g	gee eet	get geg	gag cc	ggg aag	cgg a	go gag gge ggg	158
25	Pro Lys	Gly A	Ala Pro	Ala Ala	Glu Pro	Gly Lys	Arg S	er Glu Gly Gly	
			15		20	ס		25	
	aag acc	coc ç	gtg gcc	cgg agc	age gga	a ggc ggg	gge to	gg gca gac eee	206
	Lys Thr	Pro V	Val Ala	Arg Ser	Ser Gly	Gly Gly	Gly T	rp Ala Asp Pro	
		30			35		4	10	
30	oga acg	tge c	etg age	ctg ctg	teg etg	g ggg acg	tge ci	tg gge etg gee	254
	Arg Thr	Cys I	Leu Ser	Leu Leu	Ser Lev	ı Gly Thr	Cys Le	eu Gly Leu Ala	
	45			50			55		
	tgg ttt	gta t	ttt cag	cag tca	gaa aaa	ttt gca	aag gt	g gaa aac caa	302
	Trp Phe	Val E	Phe Gln	Gln Ser	Glu Lys	s Phe Ala	Lys V	al Glu Asn Gln	
35	60			65		70		75	

	tac	cag	tta	ctg	aaa	cta	gaa	acc	aat	gaa	tte	caa	caa	ctt	caa	agt	350
	Tyr	Gln	Leu	Leu	Lys	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	
					80					85					90		
	aaa	atc	agt	tta	att	tca	gaa	aag	tgg	cag	aaa	tct	gaa	gct	ato	atg	398
5	Lys	Ile	Ser	Leu	Ile	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	
				95					100					105			
	gaa	caa	ttg	aag	tct	ttt	caa	ata	att	gct	cat	cta	aag	cgt	cta	cag	446
	Glu	Gln	Leu	Lys	Ser	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	
			110					115		•			120				
10	gaa	gaa	att	aat	gag	gta	aaa	act	tgg	tcc	aat	agg	ata	act	gaa	aaa	494
	Glu	Glu	Ile	Aen	Glu	Val	Lye	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	
		125					130					135					
	cag	gat	ata	ctg	aac	aac	agt	ctg	acg	acg	ctt	tet	caa	gac	att	aca	542
	Gln	Asp	Ile	Leu	Asn	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	
15	140					145					150					155	
	888	gta	gac	Caa	agt	aca	act	tcc	atg	gca	888	gat	gtt	ggt	ctc	aag	590
	Lys	Val	Asp	Gln	Ser	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	
					160					165					170		
20			-	-	ana		-		-						•		638
20	Ile	Thr	Ser		Lys	Thr	Asp	Ile	-	Arg	Ile	Ser	Gly		Val	Thr	
				175					180					185			
	-	-			t t g		-				-		_				686
	Asp	Val		Ser	Leu	Thr	Asp		Val	GIn	Glu	Leu		Asn	Lys	Ile	
o.e			190					195					200				
25			•	-	aaa			-					-				734
	GIU	•	VAI	GIU	Lys	ASD		Val	гав	ABN	TTe	-	qsA	ren	Leu	ser	
		205					210					215					700
				-	cga			-									782
30	220	Set	116	Asp	Arg		YTG	THE	ren	Arg	_	THE	Ala	Ser	GII		
30						225					230					235	820
			-		aac		-	-	_	_			-		_	•	830
	Ser	GIII	AIG	116	Asn	Ser	val	гуя	гåз		rea	THE	GIU	ren	-	201	
	~ac	++~	~~		240		a=+		+++	245	900	++=	a a e	a art	250	-~-	970
35	-		•		cat		-				-		•		_	•	878
0.0	wsb	-ne	vab	nya	His	rnr	veb	wid	5 UG	₽6.ft	3GT	red	OTT	GTÅ	web	wed	

	255 260 263	
	gcc aaa gtt ctg aag aca gtg act ttt gca aat gat cta aaa cca aag	926
	Ala Lys Val Leu Lys Thr Val Thr Phe Ala Asn Asp Leu Lys Pro Lys	
	270 275 280	
5	gtg tat aat cta aag aag gac ttt tcc cgt tta gaa cca tta gta aat	974
	Val Tyr Asn Leu Lys Lys Asp Phe Ser Arg Leu Glu Pro Leu Val Asn	
	285 290 295	
	gat tta aca cta ege att ggg aga ttg gtt ace gac tta cta caa aga	1022
	Asp Leu Thr Leu Arg Ile Gly Arg Leu Val Thr Asp Leu Leu Gln Arg	
10	300 305 310 315	
	gag amm gam att got tto ttm agt gam amm atm tot amt ttm acm atm	1070
	Glu Lys Glu Ile Ala Phe Leu Ser Glu Lys Ile Ser Asn Leu Thr Ile	
	320 325 330	
	gto cam got gag att mag gat att mam gat gam atm gom cac att tom	1118
15	Val Gln Ala Glu Ile Lys Asp Ile Lys Asp Glu Ile Ala His Ile Ser	
	335 340 345	
	gat atg aat tagtitgaca ttattgagat tagactaagg taattittit aat	1170
	Asp Met Asn	
	350	
20	gggacctete atgagaagae tggtaaatea aaaataatga tattttggag caaaagteat	1230
	tttatattta atcctatttt gtacagtaaa aataaaactt taaaacaggt tgattttcca	1290
	aaataaatat getaaaacet	1310
	<210> 120	
25	<211> 1400	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
30	<222> (233)(556)	
	<400> 120	
	tggctgtatg ctattggagg gtggaaatca catctcctgt ttatccgtgt gcttgttagg	60
	tgtcagccgc caceccccc ccatatgcag atttactcgg catggtagtg gecagettet	120
35	aacacagetg gtatttcaag teteetggga ceteacteag gaatgatace ceeteagtag	180

	aagcagcagg tgatettaac teettteaaa gagcaggeet gtetgggaag ee atg	235
	Met	
	1	
	tee tea gea gge aca gea ace cet etg gaa atg gat eac aaa ete act	283
5	Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu Thr	
	5 10 15	
	tet cag cea ggc agg cea age tte tat tgt aac agt agg cae agt ata	331
	Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser Ile	
	20 25 30	
10	gte gga tea tea cat eag etg ggt ttt tgg ttt agt eat eta gag teg	379
	Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu Ser	
	35 40 45	
	tet gga eta aag gte tit eag gte tee tig eee tigt gag tige gig aac	427
	Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val Asn	
15	50 55 60 65	
	ctc ccc acc cga att gcc tca gtt gtc ctg agc ctc atg tct ctc ctg	475
	Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu Leu	
	70 75 80	
	gtg gtg gge cag gee cet gea tgg gaa ggg age etg etg egg gge agg	523
20	Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly Arg	
	85 . 90 95	
	cea get ggg ggt get cae eta tge gea gea tgaagttatt gaaggae	570
	Pro Ala Gly Gly Ala His Leu Cys Ala Ala	
	100 105	
25	tggttgttga tgttggtgag cgtateette atggeeageg egaagtegge eaggteagee	630
	aggtgetgee agegetetet eteggaettg tetteetgtg ceaggggaee gtggagaaag	690
	tgtcagggge egeteactge ageageetge tetgetgeet tecctggeag tgttetgggg	750
	gtggattecc tacacctaga tgttcaagge ettactttte etcecacaaa ggagtegeag	810
	ccacgctage tetgacttge caetgtgaca aagtteaegt ageaggteta ggeaaagaet	870
30	gggcaattga gcagaggaga cggacctgtg agtctgacca cgaggcggac cccttcacct	930
	tggctgggcc tggtcctggt cettaggttt tgtcaggttg tecttgtttg gatecetcaa	990
	ctaggtgata agcactggag ggggatgacc cgccttggac gtgtttcttt aacctcatcc	1050
	atataatagg gccgtgggat ggttgtagag gtaaagcagg atgatggtgt tttaagacca	1110
•	gagettggga ceagggetee tacacetaat ttteteteet ggtagetgaa caaaggteta	1170
35	aattagetta acaaaagaac aggetgeegt cageeagagt tetgaaggee atgettteag	1230

1290 1350 1400

	tttecettgt tgacaattge tetecagtte ctatgaaag										aagc	acagageett agggggeetg						
	gccacagaac acaaccatet taggeetgag etgtgaaca											cagggggttg tgtgtctgtt						
	ctg	ttte	tet	gctt	geeg	aa ci	tttc	tcaa	t aa	CCC.	tast	teti	tatti	tat				
5	<210	0> 13	21															
	<21	1> 46	33															
	<212	2> PI	RT															
	<21	3> Ho	omo s	sapi	ence													
10	<400	D> 12	21															
	Met	Lys	Ala	Phe	His	Thr	Phe	Суз	Val	Val	Leu	Leu	Val	Phe	Gly	Ser		
	1				5					10					15			
	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	Val		
				20					25					30				
15	Glu	Tyr	Asp	Asp	neA	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	Asp		
			35					40					45					
	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Дзр	Glu		
		50					55					60						
	Aap	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	Gly		
20	65					70					75					80		
	Авр	Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	Pro		
					85					90					95			
	Tyr	Asp	Asp	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro	Asp	Thr	Ser		
				100					105					110				
25	Ser	Ser	Lys	Asn	Lys	Asp	Pro	Ile	Thr	Ile	Val	Asp	Val	Pro	Ala	His		
			115					120					125					
	Leu	Gln	Asn	Ser	Тгр	Glu	Ser	Tyr	Tyr	Leu	Glu	Ile	Leu	Met	Val	Thr		
		130					135					140						
	Gly	Leu	Leu	Ala	Tyr	Ile	Met	Asn	Tyr	Ile	Ile	Gly	Lys	Asn	Lys	Asp		
30	145					150					155					160		
	Ser	Arg	Leu	Ala	Gln	Ala	Тгр	Phe	Asn	Thr	His	Arg	Glu	Leu	Leu	Glu		
					165					170					175			
	Ser	Asn	Phe	Thr	Leu	Val	Gly	Asp	qzA	Gly	Thr	Asn	Lys	Glu	Ala	Thr		
				180					185					190				
35	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	Trp		

			195					200					205			
	Cys	Ser	Gly	Arq	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Ara	Ph
		210	-	_		•	215		-			220			3	
	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	Pro
5	225					230					235				_	24
	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	Me
					245					250					255	
	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	Lei
				260					265					270		
10	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Сув	Ser	Asp	Lys	Pro	Ly
			275					280					285			
	Ser	Gly	Ala	Lys	туг	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	Glu
		290					295					300				
	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	Phe
15	305					310					315					320
	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	Asp	GL
					325				•	330					335	
	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	Leu
				340					345					350		
20	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	Sei
			355					360					365			
	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	Ası
		370					375					380				
	Met	Val	Ile	Tyr	Ser	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Arg	Leu	Asn	Arg
25	385					390					395					400
	Glu	Gly	Lys	Gln	Lys	Ala	qeA	гåа	Asn	Arg	Ala	Arg	Val	Glu	Glu	Ası
					405					410					415	
	Phe	Leu	Lys	Leu	Thr	His	Val	Gln	Arg	Gln	Glu	Ala	Ala	Gln	Ser	Arç
				420					425					430		
30	Arg	Glu	Glu	Lys	Lys	Arg	Ala	Glu	Lуз	Glu	Arg	Ile	Met	Asn	Glu	Glu
			435					440					445			
	Asp	Pro	Glu	Lys	Gln	Arg	Arg	Leu	Glu	Glu	Ala	Ala	Leu	Arg	Arg	Glu
		450					455					460				
		Lys	Lys	Leu	Glu	Lys	Lys	Gln	Met	Lys		Lys	Gln	Ile	Lys	Val
35	465					470					475					480

	Lys	Ala	Met													
		٠														
	<210	> 12	22													
	<211	l> 3.	34													
5	<212	2> PI	RT.													
	<213	3> Ho	omo :	sapie	ence											
	<400	> 12	22													
	Met	Val	Glu	Phe	Ala	Pro	Leu	Phe	Met	Pro	Trp	Glu	Arg	Arg	Leu	G1
10	1				5					10					15	
	Thr	Leu	Ala	Val	Leu	Gln	Phe	Val	Phe	Ser	Phe	Leu	Ala	Leu	Ala	Gl
				20					25					30		
	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	Phe	Trp	Le
			35					40					45			
15	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	qaA	Lys	Pr
		50					55					60				
	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	Thr	Ile	Tr
	65					70					75					8
	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	Thr	Ala.	G1
20					85					90					95	
	Leu	Asp	Pro	Ser	Arg	Asn	Tyr	Ile	Ala	Gly	Phe	His	Pro	His	Gly	۷a
				100					105					110		
	Leu	Ala	Val	Gly	Ala	Phe	Ala	Asn	Leu	Cys	Thr	Clu	Ser	Thr	Gly	Ph
			115					120					125			
25	Ser	Ser	Ile	Phe	Pro	Gly	Ile	Arg	Pro	His	Гел	Met	Met	Leu	Thr	Le
		130					135					140				
	Trp	Phe	Arg	Ala	Pro	Phe	Phe	Arg	Asp	Tyr	Ile	Met	Ser	Ala	Gly	Le
	145					150					155					16
	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	Arg	Lys	G1
30					165					170					175	
	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	Glu	Ala	Le
		•		180					185					190		
	Ąsp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	Arg	Lys	Gl
			195					200					205			
35	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	Pro	Ile	Ph

	210	215		220
	Ser Phe Gly Glu	Asn Asp Leu	Phe Asp Gln Ile	Pro Asn Ser Ser Gly
	225	230	235	240
	Ser Trp Leu Arg	Tyr Ile Gln	Asn Arg Leu Gln	Lys Ile Met Gly Ile
5		245	250	255
	Ser Leu Pro Leu	Phe His Gly	Arg Gly Val Phe	Gln Tyr Ser Phe Gly
	260		265	270
	Leu Ile Pro Tyr	Arg Arg Pro	Ile Thr Thr Val	Val Gly Lys Pro Ile
	275		280	285
10	Glu Val Gln Lys	Thr Leu His	Pro Ser Glu Glu	Glu Val Asn Gln Le
	290	295		300
	His Gln Arg Tyr	Ile Lys Glu	Leu Cys Asn Leu	Phe Glu Ala His Lys
	305	310	315	320
	Leu Lys Phe Asn	Ile Pro Ala	Asp Gln His Leu	Glu Phe Cys
15		325	330	
	<210> 123		•	
	<211> 267			
	<212> PRT			
20	<213> Homo sapi	ence		
	<400> 123			
	-		-	Leu Val Arg Thr Gly
	1	5	10	15
25		Thr Trp Gly		Leu Phe Leu His As
	20		25	30
	-	Gln Trp Glu	-	Leu Leu Leu Pro Le
	35		40	45
00			Gly Ser Leu Leu	Leu Tyr Leu Ala Va
30	50	55		60
	-			Pro Gln Pro Gln Gli
	65	70	75	80
	Glu Leu Lys Glu			Pro Ala Ile Pro Les
05		85	90	95
35	Arg Arg Cys Arg	Tyr Cys Leu	Val Leu Gln Pro	Leu Arg Ala Arg Hi:

				100					105					110		
	Сув	Arg	Glu	Cys	Arg	Arg	Суз	Val	Arg	Arg	Tyr	Asp	His	His	Сув	Pro
			115					120					125			
	Trp	Met	Glu	Asn	Суз	Val	Gly	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val
5		130					135					140				
	Tyr	Leu	Ala	Leu	Gln	Leu	Val	Val	Leu	Leu	Trp	Gly	Leu	Tyr	Leu	Ala
	145					150					155					160
	Trp	Ser	Gly	Leu	Arg	Phe	Phe	Gln	Pro	Trp	Gly	Leu	Trp	Leu	Arg	Ser
					165					170					175	
10	Ser	Gly	Leu	Leu	Phe	Ala	Thr	Phe	Leu	Leu	Leu	Ser	Leu	Phe	Ser	Leu
		٠		180					185					190		
	Val	Ala	Ser	Leu	Leu	Leu	Val	Ser	His	Leu	Tyr	Leu	Val	Ala	Ser	Asn
			195					200					205			
	Thr	Thr	Thr	Trp	Glu	Phe	Ile	Ser	ser	His	Arg	Ile	Ala	Tyr	Leu	Arg
15		210			•		215					220				
	Gln	Arg	Pro	Ser	Asn	Pro	Phe	Asp	Arg	Gly	Leu	Thr	Arg	Asn	Leu	Ala
	225					230					235					240
	His	Phe	Phe	Суз	Gly	Trp	Pro	Ser	Gly	Ser	Trp	Glu	Thr	Leu	Trp	Ala
					245					250					255	
20	Glu	Glu	Glu	Glu	Glu	Gly	Ser	Ser	Pro	Ala	Val					
				260					265							
		•														
		I> 12														
	<211	l> 10)6													
25	<212	?> PI	₹ T													
	<213	3> Ho	a ome	apie	ence											
)> 12														
20		Ser	Thr	Asn	Asn	Met	Ser	Asp	Pro	_	Arg	Pro	Asn	Lys		Leu
30	1				5					10					15	
	Arg	Tyr	Lys		Pro	Pro	Ser	Glu		Asn	Pro	Ala	Leu		Aap	Pro
				20					25					30		
	Thr	Pro	_	Tyr	Met	Asn	Leu		Gly	Met	Ile	Phe		Met	СУз	Gly
			35					40					45			
35	Leu	Met	Leu	Lys	Leu	Lys	Trp	Суз	Ala	Trp	Val	Ala	Val	Tyr	Сув	Ser

	5 Q		55		60	
	Phe Ile Ser	Phe Ala Asr	Ser Arg	Ser Ser Glu	Asp Thr	Lys Gln Met
	65	. 70)	75	i	80
	Met Ser Ser	Phe Met Lev	Ser Ile	Ser Ala Val	Val Met	Ser Tyr Lex
5		85		90		95
	Gln Asn Pro	Gln Pro Met	Thr Pro	Pro Trp		
		100		105		
	<210> 125					
10	<211> 224					
	<212> PRT					
	<213> Homo s	apience				
	<400> 125					
15	Met Thr Leu	Phe His Phe	Gly Asn	Cys Phe Ale	Leu Ala	Tyr Phe Pro
	1	5		10		15
	Tyr Phe Ile	Thr Tyr Lys	Cys Ser	Gly Leu Sei	Glu Tyr	
		20		25		30
	Trp Lys Cys	Val Gln Ala	-	Thr Tyr Le		Gln Leu Cys
20	35		40		45	
	Lys Met Leu	Phe Leu Ala		Phe Pro Th		Gly Gly Ile
	50		55		60	
	Tyr Asp Phe	-		_	_	
0.5	65	70		79		80
25	Leu Ile Gly		Val Met		Ala Gly	
		85		90		95
	Tyr Lys Ile		Ala Leu		THE ALE	
		100		105		110
30	Met Ser Arg	Cys Ile Pro	-	ANT GTA WTS		IIS GIU PNE
30		m . wi . gi-	120	71- N C	125	Com Tau Mal
	Asp Trp Lya '	Tyr lie Gir		ite Asp Sei	140	Set Ten Adi
		ral bl- cam	135	I/al man Mot		Are for Ace
	His Tyr Ile '			vai Trp Met		160
35		150 The Dho Ard				
00	Leu Tyr His	rnr Pne Arg	Pro Ala	Agi ren ren	Leu net	rus ren ser

					165					170					175	
	Val	Tyr	Lys	Ala	Phe	Val	Met	Glu	Thr	Phe	Val	His	Leu	Cys	Ser	Le
				180					185					190		
	Gly	Ser	Trp	Ala	Ala	Leu	Leu	Ala	Arg	Ala	Val	Val	The	Gly	Leu	Le
5			195					200					205			
	Ala	Leu	Ser	Thr	Leu	Ala	Leu	Tyr	Val	Ala	Val	Val	Asn	Val	His	Se
		210					215					220				
	<210	> 1:	26													
10	<21	1> 25	58													
	<212	2> PE	RT													
	<213	3> Ho	ome	заріє	ence											
	<400)> 12	26													
15	Met	Ala	Val	Leu	Ala	Pro	Leu	Ile	Ala	Leu	Val	Tyr	Ser	Val	Pro	Ar
	1				5					10					15	
	Leu	Ser	Arg	Trp	Leu	Ala	Gln	Pro	Tyr	Tyr	Leu	Leu	Ser	Ala	Leu	Le
				20					25					30		
	Ser	Ala	Ala	Phe	Leu	Leu	Val	Arg	Lys	Leu	Pro	Pro	Leu	Сув	His	G1
20			35					40					45			
	Leu		Thr	Gln	Arg	Glu	_	-	Asn	Pro	Cys	_	Phe	Asp	Trp	Arc
		50					55					60				
		Val	Glu	Ile	Leu		Phe	Leu	Ser	Ala		.Val	Met	Met	Lys	
0.5	65					70					75					80
25	Arg	Arg	Ser	Met		Leu	Met	Thr	Cys	_	Pro	Pro	Leu	Tyr	Met	Gly
	_		_		85	_			_	90			_		95	
	PIO	GIU	туг		Lys	туг	Phe	Asn	_	Lys	TOF	110	Asp		Glu	Let
	63.			100	•				105	1		5 1	- 1.	110		_
30	GIU	Arg	115	råa	Arg	Val	Thr		TTG	Val	GIU	Pne	125	Ala	Asn	Tr
30	50=	B. n. m.		~	c1-	C	nh a	120	D==	T10		n1-		.		T
	361	130	мвр	cys	GIU	ser	135	ATG	PIO	110	TYL	140	Авр	ren	Ser	rec
	TMP) Aer	Cue	Thr	Glv.		A or	Dhe	Gle	Lire) Aor	t7a 1	Gly	A second
	145	4 Y L	Aail	cla	III	150	nen	Asil	2116	319	155		vaħ	AGI	атА	160
35		Thr	λ -	Val	Ser		Arc	Tur	Lve	Val		ጥ ከ ~	Sar	Dro	Leu	
	TAT	THE	vañ	AGT	GEL	THE	wra	TYE	ny B	444	Ser	THE	361	210	red	Ini

					165					170					175	
	Lys	Gln	Leu	Pro	Thr	Leu	Ile	Leu	Phe	Gln	Gly	Gly	Lys	Glu	Ala	Me
				180					185					190		
	Arg	Arg	Pro	Gln	Ile	Asp	Lys	Lys	Gly	Arg	Ala	Val	Ser	Trp	Thr	Ph
5			195					200					205			
	Ser	Glu	G_u	Asn	Val	Ile	Arg	Glu	Phe	Asn	Leu	Asn	Glu	Leu	Tyr	Glı
		210					215					220				
	Arg	Ala	Lys	Lys	Leu	Ser	Lys	Ala	Gly	Asp	Asn	Ile	Pro	Glu	Glu	GL
	225					230					235					240
10	Pro	Val	Ala	Ser	Thr	Pro	Thr	Thr	Val	Ser	qaA	Gly	Glu	Asn	Lys	Lys
					245					250					255	
	Asp	Lys														
		0> 12														
15		1> 11														
		2> PI														
	<21	3> Hc	OUTO E	apie	ence											
200		0> 12					_				_	_			_	
20		ALA	AIA	Val		Ala	Lys	Arg	Glu	-	Pro	Pro	Phe	ITe		Glu
	1			_	5	_				10	_	_	_		15	
	ALG	ALA	vai	Arg	GIÀ	nea	ATA	Ата		Leu	Asp	туг	cys	_	Thr	Sei
	Tra l	Com	210	20 Leu	c	~1	.1.	mh	25	63	- 1-	·	63	30		
25	Val	SeT	35	rea	Ser	СТА	MIG	40	итα	GIÅ	116	neu	45	ren	TNE	GI
	Len	Tres-		Phe	TIO	Dha	The same		1 ~1	816	505	ual		Lou		T
	Deu	50	Gly	FIIG	TTE	rue	55	Leu	Leu	HIG	201	60	neu	ьец	ser	Let
	T.eu		Tla	Leu	T 126	A 7 a		2	1	T	n en		The same	Bha	T	P
	65	Deu	110	Leu	∟ys	70	GLY	ALY	wid	ırp	75	r) P	. y r	FIIC	rys	80
30 .		Ara	Pro	Leu	Phe		Glv	Glv	r.eu	Tla		Glv	T.em	Dha	መኮኮ	
	9	9		Dea	85	1111	Gly	GIŞ	Dea	90	GLy	G_y	Dea	1110	95	TÄT
	Va1	Lev	Dhe	Trp		Phe	Len	ጥህም	Glv		Val	Hie	Val	Tur	33	
				100	-111	٠٠	204	- 7-	105		·uı		, u.i	110		
				100					103					110		

35 <210> 129

<211> 91 <212> PRT <213> Homo sapience <400> 128 Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser Gln Ser 10 Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile Ala Glu 20 25 30 10 Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val Lys Lys 35 40 45 Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp Gly Arg 55 60 Gly Pro Pro Gly Asn Pro Pro Arg Arg Met Gly Arg Ile Asn His Leu 75 15 65 70 Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly 85 <210> 129 20 <211> 344 <212> PRT <213> Homo sapience <400> 129 25 Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser 10 Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Ala Leu 25 20 Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 30 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 55 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 65 70 75 80 35 Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu

148/177

					85					90	,				95	
	Leu	Gly	Ser	Tro	Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu
		•		100					105		•			110		
	Ala	Met	Gln	Tvr	Phe	Phe	Glv	Ile	Thr	Ala	Ala	Ser	Asn	Leu	Pro	Ser
5			115	•				120					125			
_	Glv	Phe	Leu	Ala	Pro	Val	Phe	Ala	Leu	Phe	Val	Pro	Phe	Tyr	Cys	Ser
	•	130					135					140		•	-	
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr
	145		_			150					155					160
10	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly
					165					170					175	
	Ser	Tyr	Ile	Trp	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Сув
				180					185					190		
	туг	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Сув	Ile	Pro	Ser
15			195					200					205			
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser
		210					215					220				
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp
	225					230					235					240
20	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	Asp	Arg	Gln	Leu		Phe
					245					250					255	
	\$er	Gln	Phe			Gly	Arg	Arg		_	Gln	Gln	Gln		Gly	Met
				260					265					270		
۰.	Ile	Asn	-	Asn	Arg	Leu	Phe			Leu	Arg	Gln	Arg		Asn	Val
25		_	275					280					285		•	
	Asn			GIĄ	GTA	Arg			GTII	Pro	ATH	300	Pro	PIO	ьeu	GIU
	****	290			- 7-	1	295				01			Bho	Cor	N
	305		GIU	GIU	GIN	310		Arg	Leu	Met	315		Gly	Pile	Ser	320
30				T	61.			n wa	- N1-	Sar			Asp	T.em	Aon	
50	GIY	nap	, WTG	Leu	325	ATG	Leu	ara	ATG	330		AOII	տե	Licu	335	
	Δ1=	Th-	. Nan	Dha		T.on	G) n	His		330						
	ala.		non	340		nen	GIII	1113								
				240												

35 <210> 130

<211> 428

	<212	?> PF	T													
	<213	3> Ho	omo s	apie	nce											
5	<400	> 13	30													
	Met	Gly	Pro	Pro	Pro	Gly	Ala	Gly	Val	Ser	Суз	Arg	Gly	Gly	Сув	Gly
	1				5					10					15	
	Phe	Ser	Arg	Leu	Leu	Ala	Trp	Сув	Phe	Leu	Leu	Ala	Leu	Ser	Pro	Gln
				2G					25					30		
10	Ala	Pro	Gly	Ser	Arg	Gly	Ala	Glu	Ala	Val	Trp	Thr	Ala	Туг	Leu	Asn
			35					40					45			
	Val	Ser	Trp	Arg	Val	Pro	His	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu
		50					55					60				
		Ser	Glu	Glu	Gly		Tyr	Gly	Gln	Asp		Pro	Leu	Glu	Pro	
15	65					70				_	75					80
	Ala	Gly	Val	Leu		Pro	Pro	Asp	Gly		Gly	Ala	Leu	Asn		Cys
					85				_	90		_		_	95	
	Asn	Pro	H1s	Thr	Asn	Pne	Thr	Val	105	Thr	Val	Trp	GIY	ser 110	The	Val
20	61 m	17-1	C	100 Trp	T an	310	Tou	710		2=0	C1	~3··	c1		Th.	Dho
20	GIII	val	115	пр	Leu	VIG	Leu	120	GIU	ALY	Gly	GIY	125	Cys	1111	PHE
	Ala	Agn		Ile	His	Len	Ala		Glu	Ara	Glv	Ala		Glv	Ala	Val
		130	_,	110		204	135	-,-			,	140				• 442
	Ile		Asn	Phe	Pro	Glv		Arq	Asn	Glu	Val		Pro	Met	Ser	Hie
25	145					150					155					160
•	Pro	Gly	Ala	Val	Asp	Ile	Val	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly
		-			165					170					175	
	Thr	Lys	Ile	Leu	Gln	Ser	Ile	Gln	Arg	Gly	Ile	Gln	Val	Thr	Met	Val
				180					185					190		
30	Ile	Glu	Val	Gly	Lys	Lys	His	Gly	Pro	Trp	Val	Asn	His	Tyr	Ser	Ile
			195					200					205			
	Phe	Phe	Val	Ser	Val	Ser	Phe	Phe	Ile	Ile	Thr	Ala	Ala	Thr	Val	Gly
		210					215					220				
	Tyr	Phe	Ile	Phe	Tyr	Ser	Ala	Arg	Arg	Leu	Arg	Àsn	Ala	Arg	Ala	Glr
35	225					230					235					240

	Ser Arg Lys Gin Arg	-	250 255
		Thr Leu Lys Gln G	Gly Asp Lys Glu Ile Gly Pro
	260	265	270
5	Asp Gly Asp Ser Cys	Ala Val Cys Ile G	Glu Leu Tyr Lys Pro Asn Asp
	275	280	285
	Leu Val Arg Ile Leu	Thr Cys Asn His I	Ile Phe His Lys Thr Cys Val
	290	295	300
	Asp Pro Trp Leu Leu	Glu His Arg Thr C	Cys Pro Met Cys Lys Cys Asp
10	305	310	315 320
	Ile Leu Lys Ala Leu	Gly Ile Glu Val F	Asp Val Glu Asp Gly Ser Val
	325		330 335
	Ser Leu Gln Val Pro	Val Ser Asn Glu I	Ile Ser Asn Ser Ala Ser Ser
	340	345	350
15	-	_	Ala Ser Ser Gly Tyr Ala Ser
	355	360	365
			Glu Glu His Val Gln Ser Thr
	370	375	380
20			Glu Ala Asn Ser Val Ala Val
20	385	390	395 400
	ASP VAL TIE PTO HIS	-	Thr Phe Glu Glu Asp Glu Thr 410 415
	Pro Asn Gln Glu Thr		
	420	425	2/3 552
25			
	<210> 131		
	<211> 1449		
	<212> DNA		
	<213> Homo sapience		
30	-		
	<400> 131		
	atgaaageet teeacaet	tt etgtgttgte ette	etggcgt ttgggagtgt ctctgaagcc 6
•	angittgatg attttgag	ga tgaggaggac atag	gtagagt atgatgataa tgactteget 12
	gaatttgagg atgtcatg	ga agactctgtt actg	gaatete eteaaegggt cataateaet 18
35	gaagatgatg aagatgag	ac cactgtggag ttgg	gaagggc aggatgaaaa ccaagaagga 24

	gattttgaag	atgcagatac	ccaggaggga	gatactgaga	gtgaaccata	tgatgatgaa	300
	gaatttgaag	gttatgaaga	caaaccagat	acttetteta	gcaaaaataa	agacccaata	360
	acgattgttg	atgttcctgc	acacctccag	aacagctggg	agagttatta	tctagaaatt	420
	ttgatggtga	ctggtctgct	tgettatate	atgaattaca	tcattgggaa	gestaassac	460
5	agtegeettg	cacaggcctg	gtttaacact	catagggagc	ttttggagag	caactttact	540
	ttagtggggg	atgatggaac	taacaaagaa	gccacaagca	caggaaagtt	gaaccaggag	600
	aatgagcaca	tctataacct	gtggtgttct	ggtcgagtgt	gctgtgaggg	catgettate	660
	cagetgaggt	teeteaagag	acaagactta	ctgaatgtcc	tggcccggat	gatgaggeca	720
	gtgagtgatc	aagtgcaaat	aaaagtaacc	atgaatgatg	aagacatgga	tacctacgta	780
10	tttgatgttg	gcacacggaa	agcettggtg	cgactacaga	aagagatgca	ggatttgagt	840
	gagttttgta	gtgataaacc	taagtotgga	gcamagtatg	gactgccgga	ctctttggcc	900
	atcctgtcag	agatgggaga	agtcacagac	ggaatgatgg	atacaaagat	ggttcacttt	960
	cttacacact	atgctgacaa	gattgaatct	gttcattttt	cagaccagtt	ctctggtcca	1020
	assattatge	aagaggaagg	teageettta	aagetacetg	acactaagag	gacactgttg	1080
15	tttacattta	atgtgcctgg	ctcaggtaac	acttacccaa	aggatatgga	ggcactgcta	1140
	cecetgatga	aoatggtgat	ttattctatt	gataaagcca	aaaagttccg	actceacaga	1200
	gaaggcaaac	aaaaagcaga	taagaaccgt	gcccgagtag	aagagaactt	cttgamactg	1260
	acacatgtgc	aaagacagga	agcagcacag	teteggeggg	aggagaaaaa	aagagcagag	1320
	aaggagegaa	tcatgaatga	ggaagateet	gagaaacagc	gcaggctgga	ggaggetgca	1380
20	ttgaggcgtg	agcaaaagaa	gttggaaaag	aagcaaatga	aaatgaaaca	aatcaaagtg	1440
	aaagccatg						1449
•							
	<210> 132						
	<211> 1002						
25	<212> DNA						
	<213> Homo	sapience					
	<400> 132						
20			gtttatgccg				60
30	ctacagtttg	tetteteett	cttggcactg	gccgagatct	gcactgtggg	cttcatagcc	120
		-	getecteact				180
			gggccggcac				240
	aagtacatga	aggactattt	ccccatctcg	ctggtcaaga	ctgctgagct	ggacccctct	300
	cggaactaca	ttgegggett	ccacccccat	ggagtcctgg	cagteggage	ctttgccaac	360
35	ctgtqcactg	agagcacagg	cttctcttcg	atottccccg	gtateegeee	ccatctgatg	420

	atgctgacct	tgtggtteeg	ggececette	ttcagagatt	acatcatgte	tgcagggttg	480
	gtcacatcag	aaaaggagag	tgctgctcac	attetgaaca	ggaagggtgg	cggaaacttg	540
	ctgggcatca	ttgtaggggg	tgcccaggag	gccctggatg	ccaggcctgg	atcettcacg	600
	ctgttactgc	ggaaccgaaa	gggettegte	aggetegece	tgacacacgg	ggcacccctg	660
5	gtgccaatct	teteettegg	ggagaatgac	ctatttgacc	agattcccaa	etettetgge	720
	tectggttac	gctatatcca	gaatcggttg	cagaagatca	tgggcatete	cctcccactc	780
	tttcatggcc	gtggtgtctt	ccagtacage	tttggtttaa	taccctaccg	ccggcccate	840
	accactgtgg	tggggaagcc	catcgaggta	cagaagacgc	tgcatccctc	ggaggaggag	900
	gtgaaccagc	tgcaccagcg	ttatatcaaa	gagetgtgea	acctcttcga	ggcccacaaa	960
10	cttaagttca	acatecetge	tgaccagcac	ttggagttet	gc		1002
	<210> 133						
	<211> 801						
	<212> DNA						
15	<213> Homo	sapience					
	<400> 133		,				
	atggcgccct	gggegeteet	cagecetggg	gteetggtge	ggaccgggca	caccgtgctg	50
	acctggggaa	teaegetggt	getetteetg	cacgataccg	agetgeggea	atgggaggag	120
20	cagggggagc	tgeteetgee	cctcaccttc	etgeteetgg	tgctgggctc	cctgctgctc	180
	tacctcgctg	tgtcactcat	ggaccetgge	tacgtgaatg	tgcagcccca	gootcaggag	240
	gageteaaag	aggagcagac	agccatggtt	cctccagcca	tecctetteg	gegetgeaga	300
	tactgcctgg	tgctgcagcc	cctgagggct	cggcactgcc	gtgagtgeeg	ccgttgcgtc	360
	cgccgctacg	accaccactg	cccctggatg	gagaactgtg	tgggagagcg	caaccaccca	420
25	ctctttgtgg	tetacetgge	gctgcagctg	gtggtgcttc	tgtggggcct	gtacctggca	480
	tggtcaggcc	teeggttett	ccagccctgg	ggtetgtggt	tgcggtccag	cgggctcctg	540
	ttegecacet	teetgotgot	gtccctcttc	tegttggtgg	ccagectgct	catagtatag	600
	cacctctacc	tggtggccag	caacaccacc	acctgggaat	tcatctcctc	acaccgcatc	660
	geetatetee	gecagegece	cagcaacccc	ttcgaccgag	geetgaeeeg	caacctggcc	720
30	cacttettet	gtggatggce	ctcagggtcc	tgggagaccc	tetgggetga	ggaggaggaa	780
	gagggcagca	geceagetgt	t				801
	<210> 134						

<211> 318

35 <212> DNA

153/177

<213> Homo sapience

	<400> 134				-		
	atgtccacta	acaatatgtc	ggacccacgg	aggeegaaca	aagtgotgag	gtacaagccc	60
5			ggccttggac				120
	ggcatgatct	tcagcatgtg	eggeeteatg	cttaagctga	agtggtgtgc	ttgggteget	180
	gtctactgct	ccttcatcag	ctttgccaac	tctcggagct	cggaggacac	gaagcaaatg	240
	atgagtaget	teatgetgte	catctctgcc	gtggtgatgt	cctatctgca	gaatcctcag	300
	cccatgacgc	ccccatgg					318
10							
	<210> 135						
	<211> 672						
	<212> DNA						
	<213> Homo	sapience					
15		•					
	<400> 135				•		
			gaactgcttc				60
			cgagtacaac				120
			ctgcaagatg				180
20			cattggggag				240
			catgtcccgg				300
			cactgctgag				360
			gtttgactgg				420
			egtegegtet				480
25			agetgteete				540
			ccacctctgc				600
	cgagcagtgg	taacggggct	getggeeete	agcactttgg	ccctgtatgt	cgccgttgtc	660
	aatgtgcact	cc					672
30	<210> 136						
	<211> 774						
	<212> DNA						
	<213> Homo	sapience					
3 5	<400> 135						

	atggcggtct	tggcacctct	aattgctctc	gtgtattegg	tgccgcgact	ttcacgatgg	60
	ctcgcccaac	cttactacct	tetgteggee	ctgctctctg	ctgccttcct	actcgtgagg	120
	aaactgccgc	cgctctgcca	aggtatgaca	acccaacgcg	aagacggtaa	cccgtgtgac	180
	tttgactgga	gagaagtgga	gatectgatg	tttctcagtg	ccattgtgat	gatgaagaac	240
5	cgcagatcca	tgttcctgat	gacgtgcaaa	cccccctat	atatgggccc	tgagtatatc	300
	aagtacttca	atgataaaac	cattgatgag	gaactagaac	gggacaagag	ggtcacttgg	360
	attgtggagt	tetttgccaa	ttggtctaat	gactgccaat	catttgcccc	tatetatget	420
	gacctctccc	ttaaatacaa	ctgtacaggg	ctamattttg	ggaaggtgga	tgttggacgc	480
	tatactgatg	ttagtacgcg	gtacasagtg	agcacatcac	cecteaceaa	gcaactccct	540
10	accetgates	tgttccaagg	tggcaaggag	gcaatgcggc	ggccacagat	tgacaagaaa	600
	ggacgggctg	tetcatggae	cttctctgag	gagaatgtga	teegagaatt	taacttaaat	660
	gagctatacc	agegggccaa	gaaactatca	aaggctggag	acaatatccc	tgaggagcag	720
	cctgtggctt	caacccccac	cacagtgtca	gatggggaaa	acaagaagga	taaa	774
1 5	<210> 137						
	<211> 330						
	<212> DNA		٠.				
	<213> Homo	sapience					
20	<400> 137						
	atggccgcgg	tggtggccaa	gcgggaaggg	ccgccgttca	tcagegagge	ggeegtgegg	60
	ggcaacgccg	ccgtcctgga	ttattgccgg	acctcggtgt	cagegetgte	gggggccacg	120
	geeggeatee	teggeeteae	eggeetetae	ggcttcatct	tctacctgct	cgcctccgtc	180
	etgetetece	tgctcctcat	teteaaggeg	ggaaggaggt	ggaacaaata	tttcaaatca	240
25	cggagacctc	tetttacagg	aggeeteate	gggggcetet	tcacctacgt	cctgttctgg	300
	acgttcctct	acggcatggt	gcacgtctac				330
	<210> 138						
	<211> 273						
30	<212> DNA						
	<213> Homo	sapience					
		-					
	<400> 138						
	atggtttaca	tctcgaacgg	acaagtgttg	gacagccgga	gtcagtctcc	atggagatta	60
35	tctttgataa	cagatttett	ctgggga ata	gctgagtttg	tggttttgtt	tttcaaaact	120

	ctgcttcagc	aagatgtgaa	aaaaagaaga	agctatggsa	acteatetga	ttccagatat	180
	gatgatggaa	gagggcacc	aggaaaccct	ccccgaagaa	tgggtagaat	caatcatctg	240
	cgtggcccta	gtccccctcc	aatggctggt	gga			273
5	<210> 139						
	<211> 1032						
	<212> DNA						
	<213> Homo	sapience					
10	<400> 139						
	atgttcacca	geaccggete	cagtgggctc	tacaaggcgc	ctctgtcgaa	gageettetg	60
	ctggtcccca	gtgesetete	cctcctgctc	geceteetee	tgcctcactg	ccagaagete	120
	tttgtgtatg	accttcacge	agtcaagaac	gacttccaga	tttggaggtt	gatatgtgga	180
	agaataattt	geettgattt	gaaagatact	ttctgcagta	gtctgcttat	ttataatttt	240
15	aggatatttg	aaagaagata	tggaagcaga	aaatttgcat	cetttttget	gggtteetgg	300
	gttttgtcag	ccttatttga	ctttctcctc	attgaagcta	tgcagtattt	ctttggcatc	360
	actgcageta	gtaatttgcc	ttetggatte	ctggcacctg	tgtttgctct	gtttgtacca	420
	ttttactgct	ccataccaag	agtccaagtg	gcacaaattc	tgggtccgtt	gtecateaca	480
	aacaagacat	tgatttatat	attgggactg	cagettttea	cctctggttc	ctacatctgg	540
20	attgtageca	taagtggact	tatgtccggt	ctgtgctacg	acagcammat	gttccaggtg	60 0
	catcaggtgc	tetgeatece	cagetggatg	gcaaaattct	tttcttggac	acttgaaccc	660
,	atcttctctt	cttcagaacc	caccagcgaa	gccagaattg	ggatgggagc	cacgetggac	720
	atccagagac	agcagagaat	ggagetgetg	gaccggcagc	tgatgttctc	teagtttgca	780
	caagggaggc	gacagagaca	gcagcaggga	ggaatgatca	attggaatcg	tettttteet	840
25	cctttacgtc	agcgacaaaa	cgtaaactat	cagggeggte	ggcagtctga	gccagcagcg	900
	cccctctag	aagtttctga	ggaacaggtc	geceggetea	tggagatggg	attttccaga	960
	ggtgatgctt	tggaagccct	gagagettea	aacaatgacc	tcaatgtcgc	caccaacttc	1020
	ctgctgcagc	ac					1032
30	<210> 140						
	<211> 1284						
	<212> DNA						
	<213> Homo	sapience					
35	<400> 140						

	atggggeege egeetgggge eg	gggtetee tgeegeggtg	getgeggett ttecagat	tg 60
	ctggcatggt gcttcctgct ggd	ccctgagt ccgcaggcac	ccgqttcccg gggggctg	aa 120
	geagtgtgga eegegtacet ca	acgtgtcc tggcgggttc	cgcacacggg agtgaacc	gt 180
	acggtgtggg-agctgagcga gg	agggegtg taeggeeagg	actogeoget ggageotg	tg 240
5	getggggtee tggtacegee eg	acgggeec ggggegetta	acgeetgtaa eeegeacas	cg 300
	aatttcacgg tgcccacggt ttc	ggggaage accgtgcaag	tetettggtt ggecetea	tc 360
	caacgcggcg ggggctgcac ct	tegeagae aagateeate	tggcttatga gagagggg	cg 420
	totggagoog toatotttaa ott	teeceggg accegeaatg	aggtcatccc catgtctc	ac 480
	ccgggtgcag tagacattgt tg	caatcatg ateggeaate	tgaaaggcac aaaaattc	tg 540
10	caatctattc aaagaggcat aca	aagtgaca atggtcatag	aagtagggaa aaaacatg	gc 600
	cottgggtga atcactatto aat	tttttttc gtttctgtgt	cettttttat tattacgg	eg 660
	geaactgtgg getattttat et	tttattet getegaagge	tacggaatgc aagagctca	aa 720
	agcaggaagc agaggcaatt aas	aggcagat gctaaaaaag	ctattggaag gcttcaac	Ta 780
	cgcacactga aacaaggaga caa	aggaaatt ggccctgatg	gagatagttg tgctgtgtg	gc 840
15	attgaattgt ataaaccaaa tga	atttggta cgcatcttaa	egigeaacea tattitee	at 900
	aagacatgtg ttgacccatg gct	tgttagaa cacaggactt	geceeatgtg caaatgtg	ac 960
	atactcaaag ctttgggaat tg	aggtggat gttgaagatg	gateagtgte tttacaag	tc 1020
	cctgtatcca atgaaatatc taa	atagtgee testessatg	aagaggataa tegeagega	ag 1080
	accgcatcat ctggatatgc tto	cagtacag ggaacagatg	aaccgcctct ggaggaaca	ac 1140
20	gtgcagtcaa caaatgaaag tot	tacagetg gtaaaccatg	aagcaaattc tgtggcag	tg 1200
	gatgttatte eteatgttga cas	acceaace tttgaagaag	acquaactcc taatcaag	ag 1260
	actgctgttc gagaaattaa ato	ct		1284
	<210> 141		•	
25	<211> 2050			
	<212> DNA			
	<213> Homo sapience			
	<220>			
	<221> CDS			
30	<222> (122)(1573)			
	<400> 141			
	aaaaaaccgc tgcgatcgcg gag	ggeggegg ccaggecgag	aggcaggccg ggcaggggt	.g 60
	teggaegeag ggegetggge egg	ggtttegg etteggecae	agettttttt etcaaggto	je 120
35	a atg aaa goo tto cac act	t tto tgt gtt gto ct	t ctg gtg ttt ggg	166

	Ms	et Ly	A ey	la Pl	ne E.	із Т	hr P	he C	ys V	al V	al L	eu L	eu V	al P	he G	ly	
		1				5					10					15	
	agt	gtc	tct	gaa	gcc	aag	ttt	gat	gat	ttt	gag	gat	gag	gag	gac	ata	214
	Ser	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	
5					20					25					30		
	gta	gag	tat	gat	gat	aat	gac	ttc	gct	gaa	ttt	gag	gat	gtc	atg	gaa	262
	Val	Glu	Tyr	Asp	Asp	λsn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	
				35					40					45			
	gac	tct	gtt	act	gaa	tet	cct	caa	cgg	gtc	ata	atc	act	gaa	gat	gat	310
10	Asp	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Авр	Asp	
			50					55					60				•
	gaa	qat	gag	acc	act	qtg	gag	ttg	gaa	ggg	cag	gat	gaa	aac	caa	gaa	358
	Glu	Asp	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	
_		65					70					75					
15	gga	gat	ttt	gaa	gat	gca	gat	acc	cag	gag	gga	gat	act	gag	agt	gaa	406
	-	Asp	Phe	Glu	Asp		Asp	The	Gln	Glu	-	qaA	Thr	Glu	Ser		
	80					85					90					95	
			-	gat	-	-		-	• •						-		454
00	Pro	Tyr	qeA	Asp		Glu	Phe	Glu	Gly		Glu	Asp	Lys	Pro	_	Thr	
20					100					105					110		
			-	aaa			-			_		•	_	_		•	502
	Ser	Ser	Ser	Lys	Asn	ГÀв	Asp	Pro		Thr	Ile	Val	Aap		Pro	Ala	
				115					120		. •			125			
05			-	aac	_			-				-			_		550
25	HIS	Leu		Asn	Ser	Trp	Glu		туг	Tyr	Leu	GIU		Leu	Met	Val	
			130					135					140				500
			_	ctt	-			_						_			598
	Thr	-	Leu	Leu	Ala	ryr		Met	Asn	ryr	iie	11e	GIĄ	гув	Asn	гÀв	
30		145					150										646
UU		-	-	ctt		-	_									-	646
		ser	AEG	Leu	AIG		Ala	тгр	Pne	ABII		nıs	ALG	GIU	Ten		
	160					165					170					175	604
				ttt					_								694
35	GIN	<i>s</i> er	VAU	Phe		Leu	Aat	GTÀ	чар	-	отА	THE	Weij	гåg		via	
UU					180					185					190		

	aca	age	aca	gga	aag	ttg	aac	cag	gag	aat	gag	cac	atc	tat	aac	ctg	742
	Thr	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	
				195					200					205			
	tgg	tgt	tet	ggz	cga	gtg	tgc	tgt	gag	ggc	atg	ctt	atc	cag	ctg	agg	790
5	Trp	Суз	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	
			210					215					220				
			_	aga		_		-							_		838
	Phe		Lys	Arg	Gln	Asp		Leu	Asn	Val	Leu		Arg	Met	Met	Arg	
10		225					230					235					
10			_	gat Asp										-	-	•	886
	240	var	SCL	MSP	· GIN	245	GIII	TTE	где	Vai	250	Her	ASII	ASD	GIU	Asp 255	
		gat	acc	tac	σta		act	att	aac	aca		aaa	acc	tta	ata		934
	-	-		Tyr	-		-	•					•	•		-	,,,
15		•		•	260				-	265	Ī	•			270	,	
	cta	cag	aaa	gag	atg	cag	gat	ttg	agt	gag	ttt	tgt	agt	gat	aaa	cct	982
	Leu	Gln	Lys	Glu	Met	Gln	qaA	Leu	Ser	Glu	Phe	Суз	Ser	Asp	Lys	Pro	
				275					280					285			
	aag	tet	gga	gca	aag	tat	gga	etg	ccg	gac	tct	ttg	gcc	atc	ctg	tca	1030
20	Lys	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	
			290					295					300				
		-		gaa	-		-		_	_	_		-	_	_		1078
	GIU	Met 305	Gly	Glu	Val	Thr	_	GIY	Met	Met	Asp		ГАв	Met	Val	His	
25	+++					aat	310			~**	+a +	315	a==	+++	*		1126
20				cac His		-	-	_		-		-				-	1126
	320				-1-	325	··-P	2,5			330				-	335	
			tct	ggt	cca		att	atg	caa	gag		ggt	cag	cct	tta		1174
	_			Gly				_			_		-			-	
30					340					345					350	_	
	cta	cct	gac	act	aag	agg	aca	ctg	ttg	ttt	aca	ttt	aat	gtg	cct	gge	1222
	Leu	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	
				355					360					365			
	tca	ggt	aac	act	tac	cca	aag	gat	atg	gag	gca	ctg	cta	ccc	ctg	atg	1270
35	Ser	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	

			370					375					380				
	aac	atg	gtg	att	tat	tct	att	gat	aaa	gcc	aaa	aag	ttc	cga	ctc	aac	1318
	Asn	Met	Val	Ile	Tyr	Ser	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Arg	Leu	Asn	
		385					390					395					
5	aga	gaa	āđc	aaa	caa	aaa	gca	gat	aag	aac	cgt	gcc	cga	gta	gaa	gag	1366
	Arg	Glu	Gly	Lys	Gln	Lys	Ala	Asp	Lys	Asn	Arg	Ala	Arg	Val	Glu	Glu	
	400					405					410					415	
	aac	ttc	ttg	aaa	ctg	aca	cat	gtg	caa	aga	cag	gaa	gca	gca	cag	tct	1414
	Asn	Phe	Leu	Lys	Leu	Thr	His	Val	Gln	Arg	Gln	Glu	Ala	Ala	Gln	Ser	
10					420					425					430		
	cgg	cgg	gag	gag	aaa	aaa	aga	gca	gag	aag	gag	cga	atc	atg	aat	gag	1462
	Arg	Arg	Glu	Glu	Lys	Lys	Arg	Ala	Glu	Lys	Glu	Arg	Ile	Met	Asn	Glu	
				435					440					445			
	gaa	gat	cct	gag	aaa	cag	cgc	agg	ctg	gag	gag	gct	gca	ttg	agg	cgt	1510
15	Glu	Asp	Pro	Glu	Lys	Gln	Arg	Arg	Leu	Glu	Glu	Ala	Ala	Leu	Arg	Arg	
			450					455					460				
	gag	caa	aag	aag	ttg	gaa	aag	aag	caa	atg	aaa	atg	aaa	caa	atc	aaa	1558
	Glu		Lys	Lys	Leu	Glu	Lys	Lys	Gln	Met	Lys		Lув	Gln	Ile	Lys	
		465					470					475					
20			-	atg	taa	agcca	atc o	cage	igati	tt ga	agtto	etgat	geo	acci	tgta		1610
		Lys	Ala	Met													
	480																
					-		_									tttcag	1670
0.5		-		•		•							-			tggggt	1730
25																cagata	1790
				_				-		-		-				ttttaa	1850
											_					aagaaa	1910
		_				-		-		_						cagttg	1970
20					_		taaa	accaa	ı gan	ttet	gcaa	ataa	itgai	tg (gaati	tgeaca	2030
30	ata	aaca	ttg (ettg	atgtt	:t											2050
	-216	. 1	42														
		0> 1: 1> 2:															
		1> 2 2> DI															
35					2256												

<220> <221> CDS

25

160/177

	<222> (70)(1074)																
5		0> 1															
	aaaa	acct	gtg (ggtg	ecte	ag ac	ccacı	agca	g ag	ctca	caga	acc:	Egag	gga	geca	ggctga	60
	CCC	gcca	ge at	eg g	ta ga	ag ti	te g	eg c	ec t	tg t	tt a	tg c	eg to	39 g	ag c	gc	108
			Me	et V	al G	lu Pl	ne A.	la P	ro L	eu P	ne M	et P	o T	ap G	lu A	rg	
				1				5					10				
10	agg	ctg	cag	aca	ctt	gct	gta	cta	cag	ttt	gtc	tte	tcc	ttc	ttg	gca	156
	Arg	Leu	Gln	Thr	Leu	Ala	Val	Leu	Gln	Phe	Val	Phe	Ser	Phe	Leu	Ala	
		15					20					25					
	ctg	gcc	gag	atc	tge	act	gtg	ggc	ttc	ata	gcc	ctc	ctg	ttt	aca	aga	204
	Leu	Ala	Glu	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	
15	30					35					40					45	
	ttc	tgg	ctc	ctc	act	gto	ctg	tat	gcg	gca	tgg	tgg	tat	ctg	gac	cga	252
	Phe	Trp	Leu	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	
					50					55					60		
	gac	aag	CCB	egg	cag	ggg	ggc	agg	cac	atc	cag	gcc	atc	agg	tgc	tgg	300
20	Asp	Lys	Pro	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	
				65					70					75			
	act	ata	tgg	aag	tac	atg	aag	gac	tat	ttc	ccc	atc	teg	ctg	gtc	aag	348
	Thr	Ile	Trp	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	

cat gga gtc ctg gca gtc gga gcc ttt gcc aac ctg tgc act gag agc 444

His Gly Val Leu Ala Val Gly Ala Phe Ala Asn Leu Cys Thr Glu Ser

30 110 115 120 125

aca ggc ttc tct tcg atc ttc ccc ggt atc cgc ccc cat ctg atg atg

Thr Gly Phe Ser Sar Ile Phe Pro Gly Ile Arg Pro His Leu Met Met

85

act get gag etg gae eec tet egg aac tae att geg gge tte eac eec Thr Ala Glu Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro

ctg acc ttg tgg ttc cgg gec ccc ttc ttc aga gat tac atc atg tct 540
35 Leu Thr Leu Trp Phe Arg Ala Pro Phe Phe Arg Asp Tyr Ile Met Ser

				145					150					155			
	gca	ggg	ttg	gto	aca	tca	gaa	aag	gag	agt	gct	gct	cac	att	ctg	aac	588
	Ala	Gly	Leu	Va1	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	
			160					165					170				
5	agg	aag	ggt	gge	gga	azc	ttg	ctg	gge	atc	att	gta	999	ggt	gcc	cag	636
	Arg	Lys	Gly	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	
		175					180					185					
	gag	gcc	ctg	gat	gcc	agg	cct	gga	tcc	ttc	acg	ctg	tta	ctg	cgg	aac	684
	Glu	Ala	Leu	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	
10	190					195					200					205	
	cga	aag	ggc	ttc	gtc	agg	ctc	gcc	ctg	aca	cac	999	gca	ccc	ctg	gtg	732
	Arg	Lys	Gly	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	
					210	;				215					220		
	cca	atc	ttc	tee	ttc	999	gag	aat	gac	cta	ttt	gac	cag	att	ccc	aac	780
15	Pro	Ile	Phe	Ser	Phe	Gly	Glu	Asn	Asp	Leu	Phe	Asp	Gln	Ile	Pro	Asn	
				225					230					235			
	tat	tct	ggc	tcc	tgg	tta	cgc	tat	atc	cag	aat	cgg	ttg	cag	aag	atc	828
	Ser	Ser	Gly	Ser	Trp	Leu	Arg	Tyr	Ile	Gln	Asn	Arg	Leu	Gln	Lys	Ile	
			240					245					250				
20	atg	ggc	atc	tcc	ctc	cca	ctc	ttt	cat	ggc	cgt	ggt	gtc	ttc	cag	tac	876
	Met	Gly	Ile	Ser	Leu	Pro	Leu	Phe	His	Gly	Arg	Gly	Val	Phe	Gln	Tyr	
		255					260					265					
	age	ttt	ggt	τta	ata	ccc	tac	cgc	cgg	ccc	atc	acc	act	gtg	gtg	999	924
	Ser	Phe	Gly	Leu	Ile	Pro	Tyr	Arg	Arg	Pro	Ile	Thr	Thr	Val	Val	Gly	
25	270					275					280					285	
	aag	ccc	atc	gag	gta	cag	aag	acg	ctg	cat	ccc	tcg	gag	gag	gag	gtg	972
	Lys	Pro	Ile	Glu	Val	Gln	Lys	Thr	Leu	His	Pro	Ser	Glu	Glu	Glu	Val	
					290					295					300		
	aac	cag	ctg	cac	cag	cgt	tat	atc	aaa	gag	ctg	tge	aac	ctc	ttc	gag	1020
30	Asn	Gln	Leu	His	Gln	Arg	Tyr	Ile	rae	Glu	Leu	Сув	Asn	Leu	Phe	Glu	
				3 05					310					315			
	gcc	cac	aaa	ctt	aag	ttc	aac	atc	cct	gct	gac	cag	cac	ttg	gag	ttc	1068
	Ala	His	Lys	Leu	Lys	Phe	Asn	Ile	Pro	Ala	Asp	Gln	His	Leu	Glu	Phe	
			320					325					330				
35	tac	tgac	icce	a ac	aace	10000	cas	catt	agg	gagg	ccac	rca d	тааа	rtact	ď		1120

162/177

	Суз						
	tgctgagaag	acttcctgga	ggtgtttgtt	gaacatatct	gcagagcctt	cccagaetec	1180
	tgcaaatcca	acccatatca	ggctgtaagt	cagagcaggc	aatgcagaag	aggagaccag	1240
	accaaggggt	cagctggggc	taggacagtg	agggctgcta	gaggggetgg	gectetettt	1300
5	gcacatggac	actgggcccc	tototatatt	gagtggtctg	ttaacattca	ttggtggetg	1360
	attccaaaag	atgagagesa	aagctgcacg	gactcgagtc	ctaggctgca	cacctcacaa	1420
	geatetette	tactgcattc	tgttggtcga	agcaagtcac	aacccagcag	attcaaggag	1480
	taaggaatag	gatececete	tggatgggag	gagcagcaat	gtcatattac	aaaagggtgt	1540
	ggacacatgc	agggattett	actgccgtct	ttgcaaacaa	tccaccaaaa	cttaaaaact	1600
10	aaaagcctga	agcacazyca	ctctccaccc	caggcacaca	caccctggaa	ttccctgtgt	1660
	gaccatggta	ccaccactgt	gtgtcccgag	gateccaget	cagetttgea	tegetgeeet	1720
	atctccctct	agatataca	tgttgatccc	tcatgcacag	ccacagcgag	ctgtctaaaa	1780
	cacaaagctg	accgcgccat	ttcctactca	gcatccttcc	atgaccctcc	attgctccta	1840
	ggatagggtt	tggaccagtc	tgaatccaga	ggatcaggat	ccagcaggaa	ccagaggata	1900
15	atttgaggag	ggtttaaaaa	ggaaccattt	tttgaggtgt	gtgcactgtt	tccaccctga	1960
	ggcctggaag	gatgaatgga	agcagcagtt	cctgaaccag	gaagactcat	gtgtgggggc	2020
	cattgctggt	caaggggcac	gaacaggtet	ggtgaccctg	caagggagga	gccaggagca	2080
	agcattccca	cttcaccttc	ctccattcag	tetgetgeca	agttccccac	tgcctgagcc	2140
	caactagaag	ctggagggaa	ggagggcctg	tggctgcagt	ccaggcatgt	aggeeteetg	2200
20	ggaaagggag	aatggcaaag	acaggcagag	tggatctgga	ggggtcaacg	gaagacggaa	2260
	catctccact	tecaggeeeg	agcttctcag	cctgccgttt	gccactctcc	agcatctggc	2320
	ccagcctgtc	catesteate	tetetteete	cettactccg	tgctcccatc	actcggaacc	2380
	atttgcattt	ctttgtctca	gctatattgt	ctcacctctg	agtttttgcc	catgatgttg	2440
	gatgccatgg	aatgccatat	cctccccatt	atetececet	tgtctggata	attectacte	2500
25	atcctacaat	actgatttta	tctgtgcaaa	gaagtettee	ccagtgcctc	tggttgacag	2560
	gggtttcctc	tggcttctcc	agactttctg	ttcctccacc	acagecetta	gcaccctggg	2620
	gaggaggtgt	tgctgtccag	gtaaatgctg	cgccaatgcc	cctgcctcta	gtgcactccc	2680
	tccagcctac	ccacaaacag	gacctgcatc	ctgtctcaca	aataaaactg	aactcttgaa	2740
	atggtg				•		2746
30							
	<210> 143		•				

<211> 1136

<212> DNA

<213> Homo sapience

35 <220>

	<22	1> C	DS														
	<22	2> (32).	(8	35)												
	<40	0> 1	43														
5				a+ aa	~~~					ata	aaa		+				
Ū	acc	CLCC	cđđ	9-99	3900	ec g	ggee	gagg									52
											WIE	Pro	Trp		Leu	Leu	
										1				5			
																gga	100
••	Ser	Pro		Val	Leu	Val	Arg			His	The	Val			Trp	Gly	
10			10					15					20				
	atc	acg	ctg	gtg	ctc	ttc	ctg	cac	gat	acc	gag	ctg	cdd	Çaa	tgg	gag	148
	Ile	Thr	Leu	Val	Leu	Phe	Leu	His	Αsp	Thr	Glu	Leu	Arg	Gln	Trp	Glu	
		25					30					35					
	gag	cag	99 9	gag	ctg	ctc	ctg	ccc	ctc	acc	ttc	ctg	cto	ctg	gtg	ctg	196
15	Glu	Gln	Gly	Glu	Leu	Leu	Leu	Pro	Leu	Thr	Phe	Leu	Leu	Leu	Val	Leu	
	40					45					50					55	
	ggc	tcc	ctg	ctg	ctc	tac	ctc	gct	gtg	tca	ctc	atg	gac	cct	gge	tac	244
	Gly	Ser	Leu	Leu	Leu	Tyr	Leu	Ala	Val	Ser	Leu	Met	Asp	Pro	Gly	тут	
					60					65					70		
20	gtg	aat	gtg	cag	ccc	cag	cct	cag	gag	gag	ctc	aaa	gag	gag	cag	aca	292
	Val	Asn	val	Glm	Pro	Gln	Pro	Gln	Glu	Glu	Leu	Lys	Glu	Glu	Gln	Thr	
				75					80					85			
	gcc	atg	gtt	cct	cca	gcc	atc	cct	ctt	cgg	ege	tgc	aga	tac	tge	ctg	340
			Val												-		
25			90					95		-	-		100	•	•		
	qtq	ctg	cag	ccc	cta	agg	qet	caa	CAC	tqc	cat	qaq	tac	cas	cat	tac	388
			Gln		-								_	_	_	•	
		105					110			•	-	115		,	,	-1-	
	atc		cge	tac	dac	cac		tac	ccc	taa	ato		aac	tat	ata	aaa	436
30			Arg					_						_			430
	120	9	*****	.,.	vab	125	****	-y-	710		130	GIL	non	Cys	Val	135	
		ccc		·020			+++	a+a	ata	tac		202	ata				494
			aac						_		_		-	_	-		484
	GIU	urd	Asn	nis		Leu	rne	val	V dl.	-	Leu	wig	neu	GTU		val	
95		- 4-4			140					145					150		
35	gtg	ctt	ctg	tgg	ggc	ctg	tac	ctg	gca	tgg	tca	ggc	ctc	cgg	ttc	ttc	532

	Val Leu Leu Trp Gly Leu Tyr Leu Ala Trp Ser Gly Leu Arg Phe Phe	
	155 160 165	
	cag eee tyg ggt etg tyg ttg egg tee age ggg ete etg tte gee ace	580
	Gln Pro Trp Gly Leu Trp Leu Arg Ser Ser Gly Leu Leu Phe Ala Thr	
5	170 175 180	
	tte etg etg etg tee ete tte teg ttg gtg g	628
	Phe Leu Leu Ser Leu Phe Ser Leu Val Ala Ser Leu Leu Val	
	185 190 195	
	tog cac oto tac otg gtg goo ago aac acc acc tgg gaa tto atc	67 6
10	Ser His Leu Tyr Leu Val Ala Ser Asn Thr Thr Thr Trp Glu Phe Ile	
	200 205 210 215	
	tee tea eac ege ate gee tat ete ege eag ege eec age aac eec tte	724
	Ser Ser His Arg Ile Ala Tyr Leu Arg Gln Arg Pro Ser Asn Pro Phe	
	220 225 230	
15	gac ega gge etg ace ege aac etg gee eac tte tte tgt gga tgg eee	772
	Asp Arg Gly Leu Thr Arg Asn Leu Ala His Phe Phe Cys Gly Trp Pro	
	235 240 245	
	tea ggg tee tgg gag ace ete tgg get gag gag gag gaa gag gge age	820
20	Ser Gly Ser Trp Glu Thr Leu Trp Ala Glu Glu Glu Glu Glu Gly Ser	
20	250 255 260	220
	age cea get gtt tagggttget ggaggeeggg etacegtett gtgeetga Ser Pro Ala Val	870
	265	
		930
25	anaccaceggy geetgteece agetggggtg agegeteaga gggeetgggg ceeteactee tgeecacegee teccagacee cagaaceggag etteaagtea gacagateee tgeettggtg	990
20	ggcagttctg cottccaagg aagaagggga agaaaaggac ctgtgggtgg ctcaggccca	1050
	ageagacece gggetecace ecagececge ecagetget gecagtgeac actitiacaa	1110
	atttaatata aagcaagtoo agtott	1136
30	<210> 144	
	<211> 619	
	<212> DNA	
	<213> Homo sapience	
	<220>	
35	<2215 CDC	

165/177

<222> (13)...(333)

	<400> 144	
	cttogactog of atg too act ame mat atg tog gao com ogg agg cog	4
5	Met Ser Thr Asn Asn Met Ser Asp Pro Arg Arg Pro	
	1 5 10	
	aac aaa gtg ctg agg tac aag ccc ccg ccg agc gaa tgt aac ccg gcc	9
	Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser Glu Cys Asn Pro Ala	
	15 20 25	
10	ttg gac gac ccg acg ccg gac tac atg aac ctg ctg ggc atg atc ttc	14
	Leu Asp Asp Pro Thr Pro Asp Tyr Met Asn Leu Leu Gly Met Ile Phe	
	30 35 40	
	age atg tge gge ete atg ett aag etg aag tgg tgt get tgg gte get	19
	Ser Met Cys Gly Leu Met Leu Lys Leu Lys Trp Cys Ala Trp Val Ala	
15	45 50 55 60	
	gto tac tgc tcc ttc atc ago ttt gcc aac tot cgg ago tog gag gac	24
	Val Tyr Cys Ser Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp	
	65 70 75	
	acg mag cam atg atg agt age tto atg etg tee ate tet gee gtg gtg	28
20	Thr Lys Gln Met Met Ser Ser Phe Met Leu Ser Ile Ser Ala Val	
	80 85 90	
	atg tee tat etg cag aat eet eag eee atg aeg eee eea tgg	34
	Met Ser Tyr Leu Gln Asn Pro Gln Pro Met Thr Pro Pro Trp	
	95 100 105	
25	tgataccago ctagaaqqqt cacattttqq accotqtota tocactaggo ctqqqotttq	39
	gotgetamac otgetgeett cagetgeent cotggmette cotgantgag googtotogg	45
	tgecccage tggatagagg gaacetggee etttectagg gaacacecta ggettaccec	51
	tectgectee etteccetge etgetgetgg gggagatget gtecatgttt etaggggtat	57
	teatttgett tetegttgaa acetgttgtt aataaagttt tteacteag	61
30	· · · · · · · · · · · · · · · · · · ·	
	<210> 145	
	<211> 864	
	<212> DNA	

<213> Homo sapience
35 <220>

<221> CDS <222> (111)...(785)

<400> 145

	<400> 145	
5	aggtgggtge caggecetgg cegtggegaa agageeggeg gagee	ggaga coogetooog 60
	gagacgccgc ctcgcgatcc ccgcgcgggc gggaccgggc ggccg	gcatc atg acc 116
		Met Thr
		1
	ctg ttt cac ttc ggg aac tgc ttc gct ctt gcc tac t	tc ccc tac ttc 164
10	Leu Phe His Phe Gly Asn Cys Phe Ala Leu Ala Tyr P	he Pro Tyr Phe
	5 10	15
	atc acc tac aag tgc agc ggc ctg toc gag tac aac g	cc ttc tgg ann 212
	Ile Thr Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn A	la Phe Trp Lys
	20 25 30	
15	tgc gtc cag gct gga gtc acc tac ctc ttt gtc caa c	to tgc aag atg 260
	Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln L	eu Cys Lys Met
	35 40 45	50
	etg tte ttg gee act tte ttt eee ace tgg gaa gge g	gc.atc tat gac 308
	Leu Phe Leu Ala Thr Phe Phe Pro Thr Trp Glu Gly G	ly Ile Tyr Asp
20	. 55 60	. 65
	tte att ggg gag tte atg aag gee age gtg gat gtg g	ca gac ctg ata 356
	Phe Ile Gly Glu Phe Met Lys Ala Ser Val Asp Val A	la Asp Leu Ile
	70 75	80
	ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag g	ga gag tac aag 404
25	Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys G	ly Glu Tyr Lys
	85 90	95
	ate atg gtt get gee etg gge tgg gee aet get gag e	tt att atg tee 452
	Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu L	eu Ile Met Ser
	100 105 110	
30	ege tge att eee eta tgg gte gga gee egg gge att g	ag ttt gac tgg 500
	Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile G	lu Phe Asp Trp
	115 120 125	130
	aag tac atc cag atg agc ata gac toc aac atc agt c	tg gtc cat tac 548
	Lys Tyr Ile Gln Met Ser Ile Asp Ser Asn Ile Ser L	eu Val His Tyr
35	135 140	145

	ate gtc gcg tet get cag gtc tgg atg ata aca cgc tat gat etg tac	596
	Ile Val Ala Ser Ala Gln Val Trp Met Ile Thr Arg Tyr Asp Leu Tyr	
	150 155 160	
	eac acc ttc egg cea get gtc etc etg etg atg ttc etc agt gtc tac	644
5	His Thr Phe Arg Pro Ala Val Leu Leu Met Phe Leu Ser Val Tyr	
	165 170 175	
	aag goo tit git atg gag acc tic gic cac cic tge teg etg gge agt	692
	Lys Ala Phe Val Met Glu Thr Phe Val His Leu Cys Ser Leu Gly Ser	
	180 185 190	
10	tgg gea get eta etg gee ega gea gtg gta acg ggg etg etg gee ete	740
	Trp Ala Ala Leu Leu Ala Arg Ala Val Val Thr Gly Leu Leu Ala Leu	
	195 200 205 210	
	age act ttg gee etg tat gte gee gtt gte aat gtg eae tee taggettg	790
	Ser Thr Leu Ala Leu Tyr Val Ala Val Val Asn Val His Ser	
lõ	215 220	
	gtgteteaga eattgatgta eetttteeet geetegetee aggttttagt gaagtaaaca	850
	gtatttggaa agtt	864
90	<210> 146	
20	<211> 1527	
	<212> DNA	
	<213> Homo sapience <220>	
	<221> CDS	
25	<222> (25)(801)	•
20	~2227 (23)(001)	
	<400> 146	
	geagtggeeg ttaeggeega aaag atg geg gte ttg gea cet eta att get	51
	Met Ala Val Leu Ala Pro Leu Ile Ala	
30	1 5	
	ctc gtg tat tcg gtg ccg cga ctt tca cga tgg ctc gcc caa cct tac	99
	Leu Val Tyr Ser Val Pro Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr	
	10 15 20 25	
	tac ctt ctg teg gee etg etc tet get gee tte eta etc gtg agg aaa	147
35	Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys	
	_	

					30					35					40		
	ctg	ccg	ccg	ctc	tgc	cac	ggt	ctg	ccc	acc	caa	cgc	gaa	gac	ggt	aac	195
	Leu	Pro	Pro	Leu	Cys	His	Gly	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	
				45					50					55			
5	ccg	tgt	gac	ttt	gac	tgg	aga	gaa	gtg	gag	atc	ctg	atg	ttt	ctc	agt	243
	Pro	Сув	Asp	Phe	qeA	Trp	Arg	Glu	Val	Glu	Ile	rea	Met	Phe	Leu	Ser	
			60					65					70	•			
	gcc	att	gtg	atg	atg	aag	aac	ege	aga	tcc	atg	ttc	ctg	atg	acg	tgc	291
	Ala	Ile	Val	Met	Met	Lys	Asn	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	САз	
10		75					80					85					
	aaa	ccc	CCC	cta	tat	atg	ggc	cct	gag	tat	atc	aag	tac	ttc	aat	gat	339
	Lys	Pro	Pro	Leu	Tyr	Met	Gly	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	
	90					95					100					105	
	aaa	acc	att	gat	gag	gaa	cta	gaa	cgg	gac	aag	agg	gtc	act	tgg	att	387
15	Lys	Thr	Ile	Asp	Glu	Glu	Leu	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	
					110					115					120		
	gtg	gag	ttc	ttt	gcc	aat	tgg	tct	aat	gac	tgc	caa	tca	ttt	gcc	cct	435
	Val	Glu	Phe	Phe	Ala	Asn	Trp	Ser	Asn	Asp	Сув	Gln	Ser	Phe	Ala	Pro	
				125					130					135			
20	atc	tat	gct	gac	ctc	tcc	ctt	aaa	tac	aac	tgt	aca	ggg	cta	aat	ttt	483
	Ile	Tyr	Ala	Asp	Leu	Ser	Leu	ГÀЗ	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	
			140					145					150				
	3 33	aag	gtg	gat	gtt	dda	cđc	tat	act	gat	gtt	agt	acg	cgg	tac	aaa	531
	Gly	Lys	Val	Asp	Val	Gly	Arg	Tyr	Thr	qsA	Val	Ser	Thr	Arg	Tyr	Lys	
25		155					160					165					
	gtg	agc	aca	tca	ccc	ctc	acc	aag	caa	ctc	cct	acc	ctg	atc	ctg	tte	579
	Val	Ser	Thr	Ser	Pro	Leu	Thr	Lys	Gln	Leu	Pro	Thr	Leu	Ile	Leu	Phe	
	170					175					180					185	
	caa	ggt	ggc	aag	gag	gca	atg	cgg	cgg	cca	cag	att	gac	aag	aaa	gga	627
30	Gln	Gly	Gly	Lys	Glu	Ala	Met	Arg	Arg	Pro	Gln	Ile	Asp	Lys	Lys	Gly	
					190					195					200		
	cgg	gct	gtc	tca	tgg	acc	ttc	tct	gag	gag	aat	gtg	atc	cga	gaa	ttt	675
	Arg	Ala	Val	Ser	Trp	Thr	Phe	Ser	Glu	Glu	Asn	Val	Ile	Arg	Glu	Phe	
				205					210					2 15			
35	aac	tta	aat	gag	cta	tac	cag	cgg	gcc	aag	aaa	cta	tca	aag	gct	gga	723

	Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly	
	220 225 230	
	gac aat are cot gag gag cag cot gtg got toa ace coe ace aca gtg	771
	Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Scr Thr Pro Thr Thr Val	
5	235 240 245	
	tos gat ggg gas aac aag aag gat aas tasgateete ac	810
	Ser Asp Gly Glu Asn Lys Lys Asp Lys	
	250 255	
	tttggcagtg ettectetee tgtcaattee aggetettte cataaccaca agcetgagge	870
10	tgcagccttt tatttatgtt ttccctttgg ctgtgactgg gtggggcagc atgcagcttc	930
	tgattttaaa gaggeateta gggaattgte aggeacceta eaggaaggee tgecatgetg	990
	tggccaactg tttcactgga gcaagaaaga gatctcatag gacggagggg gaaatggttt	1050
	costcomage ttgggtcagt gtgttmactg ettmtcaget attcmgacat etcemtggtt	1110
	totocatgaa actotytygt ticatcatto ottottagtt gacetycaca gettygttag	1170
15	acctagattt aaccctaagg taagatgctg gggtatagaa cgctaagaat tttcccccaa	1230
	ggactottgc ttccttaagc ccttctggct tcgtttatgg tcttcattaa aagtataagc	1290
	ctaectttgt cgctagtcct aaggagaaac ctttaaccac aaagttttta tcattgaaga	1350
	caatattgaa caacececta ttttgtgggg attgagaagg ggtgaataga ggcttgagae	1410
	ttteetttgt gtggtaggac ttggaggaga aatceeetgg aettteaeta aecetetgae	1470
20	atacteccea cacceagitg atggetttee gtaataaaaa gattgggatt teetitt	1527
	<210> 147	
	<211> 659	
-	<212> DNA	
25	<213> Homo sapience	
	<220>	
	<221> CDS	
	<222> (138)(470)	
00		
30	<400> 147	
	agtottecga geaagatgge geogegggea titettecae tgeeegtetg agggaacget	60
	aagtagtgtg teeggegeeg tgtteeaget eegegttgtt eegegagaaa gegagaggee	120
	gageceggge tggtgeg atg gee geg gtg gtg gee aag egg gaa ggg eeg	170
0.5	Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro	
35	1 5 10	

	ccg	ttc	atc	agc	gag	gcg	gcc	gtg	cgg	ggc	aac	gcc	gcc	gtc	ctg	gat	218
	Pro	Phe	Ile	Ser	Glu	Ala	Ala	Val	Arg	Gly	Asn	Ala	Ala	Val	Leu	Asp	
				15					20					25			
	tat	tgc	cgg	acc	tcg	gtg	tca	gcg	ctg	tcg	999	gcc	acg	gcc	ggc	atc	266
5	Tyr	Cys	Arg	Thr	Ser	Val	Ser	Ala	Leu	Ser	Gly	Ala	Thr	Ala	Gly	Ile	
			30					35					40				
												tac	-		-		314
	Leu		Leu	Thr	Gly	Leu	-	Gly	Phe	Ile	Phe	Tyr	Leu	Leu	Ala	Ser	
		45					50					55					
10												gga					362
		Leu	Leu	Ser	Leu		Leu	Ile	Leu	Lys		Gly	Arg	Arg	Trp	Asn	
	60					65					70					75	
												gga					410
	Lys	Tyr	Phe	Lys	•	Arg	Arg	Pro	Leu		Thr	Gly	Gly	Leu	Ile	Gly	
15					80					85					90		
						-	_			-		ctc			-		458
	Gly	Leu	Phe		Tyr	Val	Leu	Phe		Thr	Phe	Leu	Tyr		Met	Val	
				95					100					105			
20				tgaa	atg	199 9	jecci	19999	ja ct	tttt	taaa	aae	1				500
20	HIS	Val	-														
			110														
						-	-									taagt	560
												cate	itetç	jaa c	jacgo	gagage	620
25	ccgi	-aacc	itt c	CLUZ	igaci	.a ac	Lyas	igegi	. yaç	jacac							659
20	<21C)> 14															
		l> 71															
		> Da															
			nos	anie	nce												
30	<220			- Pr													
	<221	> CE	s														
			8)	. (34	31												
		,,	-,••	., , , ,	-,												
	<400	> 14	8														
35	agag	iggag	at a	caga	aacc	g ac	aggg	gcca	ggo	gccc	ggt	ggct	ccga	ag c	3333	aagtg	60

	ggacaag	atg	gtt	tac	atc	tcg	aac	gga	caa	gtg	ttg	gac	agc	cgg	agt	109
		Met	Val	Tyr	Ile	Ser	Asn	Gly	Gln	Val	Leu	Asp	Ser	Arg	Ser	
		1				5					10					
	cag tct	cca	tgg	aga	tta	tot	ttg	ata	aca	gat	tto	ttc	tgg	gga	ata	157
5	Gln Ser	Pro	Trp	Arg	Leu	Ser	Leu	Ile	Thr	Asp	Phe	Phe	тър	Gly	Ile	
	15				20					25					30	
	gct gag	ttt	gtg	gtt	ttg	ttt	ttc	aaa	act	ctg	ctt	cag	caa	gat	gtg	205
	Ala Glu	Phe	Val	Val	Leu	Phe	Phe	Lys	Thr	Leu	Leu	Gln	Gln	Asp	Val	
				35					40					45		
10	aaa aaa	aga	aga	age	tat	gga	aac	tca	tct	gat	tec	aga	tat	gat	gat	253
	Lys Lys	Arg	Arg	Ser	Tyr	Gly	Asn	Ser	Ser	Asp	Ser	Arg	Tyr	qaA	Asp	
			50					55					60			
	gga aga	999	cca	cca	gga	aac	cct	ccc	cga	aga	atg	ggt	aga	atc	aat	301
	Gly Arg	Gly	Pro	Pro	Gly	Asn	Pro	Pro	Arg	Arg	Met	Gly	Arg	Ile	Asn	
15		65					70					75				
	cat ctg	cgt	ggc	cct	agt	ccc	cct	cca	atg	gct	ggt	gga	tga	ggaaq	ggt	350
	Ris Leu	Arg	Gly	Pro	Ser	Pro	Pro	Pro	Met	Ala	Gly	Gly				
	80					85					90					
	aaatgtct	ige t	cta	igaag	c a	jacaa	ccg	aca	tgeg	cat	tcat	agca	iga a	aggae	accat	410
20 .	caagaagt	igg a	aggo	tgac	c at	gate	gagca	gta	igato	jaat	gtgt	atgt	ct a	14808	aggac	470
	tgatatgt	gt c	ctca	acaga	t ga	atga	ıggto	ato	retgg	gaa	ttcc	ctet	ge a	1ggga	actgg	530
	cctgact	gac a	itgce	agtto	c at	aaat	gcag	ato	rtttg	tct	catt	acct	t t t	tgta	tagtt	590
	tattaaag	jta t	taat	atag	t tt	taat	aagt	aaa	tatt	ttt	aggt	tgce	iga e	atgga	ctcct	650
	catcttt	ıta t	tcac	gaaa	a aç	cant	ctga	aga	aaac	aaa	taaa	agco	tg t	gtat	ttage	710
25																
	<210> 14	9														
	<211> 21	182														
	<212> D8															
	<213> Ho	DIC S	apie	ence												
30	<220>															
	<221> CD	_														
	<222> (5	6)	. (10	90)												
														٠		
	<400> 14	9														
35	gcacttca	gc t	tece	ctcc	c cc	ggcg	ecct	ctg	9 9 90	tee	gago	ccgg	cg g	gaco		58

	atg	ttc	acc	agc	acc	ggc	tcc	agt	ggg	ctc	tac	aag	gcg	cct	ctg	teg	103
	Met	Phe	Thr	Ser	Thr	Gly	Ser	Ser	Gly	Leu	Tyr	ГÅа	Ala	Pro	Leu	Ser	
	1				5					10					15		
_	aag	agc	ctt	ctg	ctg	gtc	ccc	agt	acc	ctc	tee	ctc	ctg	ctc	gcc	cte	151
5	Lуз	Ser	Leu	Leu	Leu	Val	Pro	Ser			Ser	Leu	Leu	Leu	Ala	Leu	
				20					25					30			
		_			tgc		•					-			-	•	199
	Leu	Leu		His	Cys	Gln	ГЛа		Phe	Val	Tyr	Asp		His	Ala	Val	
			35					40					45				
10			-		cag				_				-			-	247
	Lys		Asp	Phe	Gln	Ile	-	Arg	Leu	He	Cys	-	Arg	Ile	Ile	Сув	
		50					55					60					
		_	_		gat			-	-	_	_						295
15		Asp	Leu	Lys	Asp		Phe	Сув	Ser	ser		ren	116	тут	Asn		
10	65					70					75					80	
				-	aga	-			-				-			-	343
	ALY	116	rne	GIU	Arg 85	Arg	ıyı	GIY	Ser	90	Lys	PHE	ита	ser	95	red	
	cta	aat	too	t aa	gtt	tta	tos	acc	tta		gac.	+++	ctc	ctc		722	391
20				•••	Val	-		-			-					-	337
		J-,	561	100	V 41	454	361	niu	105	11.0	ишр	1	LCu	110	110	910	
	get	ato	cao		ttc	ttt	aac	atc		gca.	act	agt	aat		cct	tet	439
		-	•		Phe					-	-	_		-			
			115	-			•	120			. '	•	125				
25	gga	tte	ctq	qca	cct	gzg	ttt	gct	ctq	ttt	gta	CCA	ttt	tac	tge	tcc	487
			-	-	Pro			-	-		-				-		
		130					135					140		-	-		
	ata	cca	aga	gtc	caa	gtg	gca	caa	att	ctg	ggt	ccg	ttg	tee	atc	aca	535
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr	
30	145					150					155					160	
	aac	aag	aca	ttg	att	tat	ata	ttg	gga	ctg	cag	ctt	ttc	acc	tct	ggt	583
	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly	
					165					170					175		
	tec	tac	atc	tgg	att	gta	gcc	ata	agt	gga	ast	atg	tcc	ggt	ctg	tgc	631
35	Ser	Tyr	Ile	Trp	Ile	Val	Ala	lle	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cys	

				180					185					190	•		
	tac	gac	age	aaa	atg	ttc	cag	gtg	cat	cag	gtg	ctc	tgc	atc	ccc	agc	679
	Tyr	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Cys	Ile	Pro	Ser	
			195					200					205				
5	tgg	atg	gca	aaa	ttc	ttt	tct	tgg	aca	ctt	gaa	ccc	atc	ttc	tet	tct	727
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser	
		210					215					220					
	tca	gaa	CCC	acc	age	gaa	gcc	aga	att	ggg	atg	gga	gcc	acg	ctg	gac	775
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp	
10	225					230					235					240	
	atc	cag	aga	cag	cag	aga	atg	gag	ctg	ctg	gac	cgg	cag	ctg	atg	ttc	823
	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	qsA	Arg	Gln	Leu	Met	Phe	
					245					250					255		
	tct	cag	ttt	gca	caa	999	agg	cga	cag	aga	cag	cag	cag	gga	gga	atg	871
15	Ser	Gln	Phe	Ala	Gln	Gly	Arg	Arg	Gln	Arg	Gln	Gln	Gln	Gly	Gly	Met	
				260					265					270			
	atc	aat	tgg	aat	cgt	ctt	ttt	cct	cct	tta	cgt	cag	cga	Caa	aac	gta	919
	Ile	Asn	-	Asn	Arg	Leu	Phe		Pro	Leu	Arg	Gln		Gln	Asn	Val	
			275					280					285				
20					ggt		-				-	-				-	967
	Asn		Gln	Gly	Gly	Arg		Ser	Glu	Pro	Ala		Pro	Pro	Leu	Glu	
		290					295					300					
	-			-	cag	-	•	• • •		-		-				-	1015
o.#		Ser	Glu	GLu	Gln		Ala	Arg	Leu	Met		Met	Gly	Phe	Ser	-	
25	305					310					315					320	
		-	-	_	gaa	-	_	-	-				-			-	1063
	Gly	Asp	Ala	Leu	Glu	Ala	Leu	Arg	Ala		Asn	Asn	qaA	Leu		Val	
					325					330					335		
20	-				ctg	-	-		tgat	agto	cc a	iggeo	aaca	ic to	33		1110
30	Ala	Thr	Asn		Leu	Leu	Gln	His									
				340													
				_	-		-									ggacc	1170
					-	-							-			geeet	1230
0.5					_			_								atgta	1290
35	tttt	ctat	tot a	atatt	tttt	a tt	aaac	attt	: tcc	ctac	ratt	agac	agto	ea c	acto	atttt	1350

	gaatgtgttt aasatgcatt aasatggaag atttetgeag geagttgaat ggeacteeag	1410
	atggggaatt getgtaacce tettactgta acatgteate teetgegteg tgatggggag	1470
	agggtmatct tacttcacaa aggacatgtc agateettet teatggaett ttttagttae	1530
	tgttttttct ctcaeacttg ttttegaatc tcctgggagt gagggagaaa cagggagctg	1590
5	aatootooco caagetgtte caggecagag gactetgoag tacottotoo tacatetagt	1650
	aacaaagaat ggtgataacc atgcactggt tcaaggttet ggagttetec atgaaacttg	1710
	ggttaatttt geteagagta teeggagtta geeactagge tgegggtgaa atgggatgga	1770
	gtagaacaac agcaggette etggagecac atgggetgac tagggeacte tgtggetgge	1830
	etggeaeggg eteageeeag gaagaggaga aacgateeet tgeetgeeee teeetgtgge	1890
10	agggetaact geetggeeet eetggetege ageeageeag eeccetggea geaggttete	1950
	eteagggett gggtetteaa eetgtggega eaggaggeag ggeagaetgt ggaggaeagg	2010
	atgcaggtca gggagaggga aggcaggggt ggaccgccat gagcatgaaa agacccgaag	2070
	caagttgact cttgcaatgt gcaactgtta tgttctgcaa aatgagcaac gatgtatcaa	2130
	attgatgcaa atttagatgt tgatacttac aataaagttt ttaatgtgtt tt	2182
15		
	<210> 150	
	<211> 2773	
	<212> DNA	
	<213> Homo sapience	
20	<220>	
	<221> CDS	
	<222> (211)(1497)	
	<400> 150	
25	gtageggaga agaetggage teegaggage tgeatetgeg geaacetgtg tgetgaeget	60
	acgtgoctcc tggctccgac gtagctcgca gctccccagt ctcactccat tccttcccca	120
	cetggegege acctgeteaa gaccagggte etgecaageg etaggaggge gegtgecagg	180
	ggogetaggg aactgeggag egegegegee atg ggg eeg eet ggg geo	231
	Met Gly Pro Pro Gly Ala	
30	1 5	
	ggg gte tee tgc ege ggt ggc tgc ggc ttt tee aga ttg etg gea tgg	279
	Gly Val Ser Cys Arg Gly Gly Cys Gly Phe Ser Arg Leu Leu Ala Trp	
	10 15 20	
	tgo tto etg etg gee etg agt eeg eag gea eee ggt tee egg ggg get	327
35	Cys Phe Leu Leu Ala Leu Ser Pro Gln Ala Pro Gly Ser Arg Gly Ala	

		25					30					35					
	gaa	gca	gtg	tgg	acc	gcg	tac	ctc	aac	gtg	tcc	tgg	cgg	gtt	ccg	cac	375
	Glu	Ala	Val	Ξгр	Thr	Ala	Tyr	Leu	Asn	Val	Ser	Trp	Arg	Val	Pro	His	
	40					45					50					55	
5	acg	gga	gtg	aac	cgt	acg	gtg	tgg	gag	ctg	agc	gag	gag	gge	gtg	tac	423
	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu	Leu	Ser	Glu	Glu	Gly	Val	Tyr	
					60					65					70		
	gge	cag	gac	tog	ccg	ctg	gag	cct	gtg	gct	999	gte	ctg	gta	ccg	ecc	471
	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val	Ala	Gly	Val	Leu	Val	Pro	Pro	
10				75					80					85			
	gac	999	ccc	999	gcg	ctt	aac	gcc	tgt	aac	ccg	cac	acg	aat	ttc	acg	519
	Asp	Gly	Pro	Gly	Ala	Lau	Asn	Ala	Сув	Asn	Pro	His	Thr	Asn	Phe	Thr	
			90					95					100				
	gtg	ccc	acg	gtt	tgg	gga	agc	acc	gtg	caa	gtc	tct	tgg	ttg	gcc	ete	567
15	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val	Gln	Val	Ser	Trp	Leu	Ala	Leu	
		105					110					115					
	atc	caa	cđc	ddc	999	ggc	tge	acc	ttc	gca	gac	aag	atc	cat	ctg	gct	615
	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe	Ala	Asp	ГЛа	Ile	His	Leu	Ala	
	120					125					130					135	
20	tat	gag	aga	993	gcg	tct	gga	gcc	gtc	atc	ttt	aac	ttc	ccc	9 99	acc	663
	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val	Ile	Phe	Asn	Phe	Pro	Gly	Thr	
					140					145					150		
	cgc	aat	gag	gtc	atc	ccc	atg	tct	cac	ccg	ggt	gca	gta	gac	att	gtt	711
	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His	Pro	Gly	Ala	Val	qeA	Ile	Val	
25				155					160					165			
	gca	atc	atg	atc	ggc	aat	ctg	aaa	ggc	aca	aaa	att	ctg	caa	tct	att	759
	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly	Thr	Lys	Ile	Leu	Gln	Ser	Ile	
			170		,			175					180				
	caa	aga	ggc	ata	caa	gtg	aca	atg	gtc	ata	gaa	gta	ggg	aaa	aaa	cat	807
30	Gln	Arg	Gly	Ile	Gln	Val	Thr	Met	Val	Ile	Glu	Val	Gly	Lys	Lys	His	
		185					190					195					
	gge	cct	tgg	gtg	aat	cac	tat	tca	att	ttt	ttc	gtt	tct	gtg	tcc	ttt	855
	Gly	Pro	Trp	Val	neA	His	туг	Ser	Ile	Phe	Phe	Val	Ser	Val	Ser	Phe	
	200					205					210					215	
35	ttt	2++					- ot	ata	000	tet	+++	atc		tat	tet	ant	903

	Phe	Ile	Ile	Thr	Ala	Ala	Thr	Val	Gly	Tyr	Phe	Ile	Phe	Tyr	Ser	Ala	
					220					225					230		
	cga	agg	cta	egg	aat	gca	aga	gct	caa	age	agg	aag	cag	agg	caa	tta	951
	Arg	Arg	Leu	Arg	Asn	Ala	Arg	Ala	Gln	Ser	Arg	Lys	Gln	Arg	Gln	Leu	
5				235					240					245			
	aag	gca	gat	gct	aaa	aaa	gct	att	gga	agg	ctt	caa	cta	cgc	aca	ctg	999
	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly	Arg	Leu	Gln	Leu	Arg	Thr	Leu	
			250					255					260				
	aaa	Caa	gga	gac	aag	gaa	att	ggc	cct	gat	gga	gat	agt	tgt	gct	gtg	1047
10	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro	Авр	Gly	Asp	Ser	Сла	Ala	Val	
		265					270					275					
	tgc	att	gaa	ttg	tat	aaa	cca	aat	gat	ttg	gta	cgc	atc	tta	acg	tgc	1095
	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp	Leu	Val	Arg	Ile	Leu	Thr	Суз	
	280					285					290					295	
15	aac	cat	att	ttc	cat	aag	aca	tgt	gtt	gac	cca	tgg	ctg	tta	gaa	Cac	1143
	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val	-	Pro	Trp	Leu	Leu		His	
					300					305					310		
			-		-	tgc		-	-					_			1191
	Arg	Thr	Сув		Met	Суз	Lys	Сув	-	Ile	Leu	Lys	Ala		Gly	Ile	
20				315					320					325			
			-	-	-	gat							-		-		1239
	Glu	Val	_	Val	Glu	Asp	Gly		Val	Ser	Leu	Gln		Pro	Val	Ser	
			330					335					340				
~-		_				agt	-				-		-		_	_	1287
25	Asn		Ile	Ser	Asn	Ser		Ser	Ser	His	Glu		Asp	Asn	Arg	Ser	
		345					350					355					
						gga		-									1335
		Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser	Val		GLY	Thr	Asp	GIa		
00	360					365					370					375	
30		_				gtg											1383
	Pro	Leu	Glu	Glu		Val	Gln	Ser	Thr		Glu	Ser	Leu	Gin		Val	
					380					385					390		
			-	_		tet		-	-								1431
0.5	Asn	His	Glu		Asn	Ser	Val	Ala		Asp	Val	île	PIO		Val	qeA	
35				395					400					405			

	aac cca acc	ttt gaa ga	la gac gaa a	ct cct aat	caa gag act get gtt	1479
	Asn Pro Thr	Phe Glu Gl	u Asp Glu T	hr Pro Asn	Gln Glu Thr Ala Val	
	410	,	415		420	
	cga gaa att	aaa tot ta	laaatotgt gt	aaatagaa as	acttgaacc attagt	1530
5	Arg Glu Ile	Lys Ser			•	
	425	•				
	aataacagaa	ctgccaatca	gggcctagtt	tctattaata	aattggataa atttaataaa	1590
	ataagagtga	tactgaaagt	gctcagatga	ctaatattat	gctatagtta aatggcttaa	165 0
	aatatttaac	ctqttaactt	ttttccacaa	actcattata	atatttttca taggcaagtt	1710
10	tecteteagt	agtgataaca	acatttttag	acattcaaaa	ctgtcttcaa gaagtcacgt	1770
	ttttcattta	taacaatttt	cttataaaaa	catgttgctt	ttaaaatgtg gagtagctgt	1830
	aatcacttta	ttttatgata	gtatettaat	gaaaaatact	acttetttag ettgggetae	1890
	atgtgtcagg	gtttttctcc	aggtgcttat	attgatctgg	asttgtaatg taaaaagcaa	1950
	tgcasactta	ggcgagtact	tettgaaatg	tctatttaag	ctgctttaag ttaatagaaa	2010
15	agattaaagc	aaaatattca	tttttacttt	ttcttatttt	taaaattagg ctgaatgtac	2070
	ttcatgtgat	ttgtcaacca	tagtttatca	gagattatgg	acttaattga ttggtatatt	2130
	agtgacatca	acttgacaca	agattagaca	assaatteet	tacaaaaata ctgtgtaact	2190
	atttctcaaa	cttgtgggat	ttttcaaaag	ctcagtatat	gaatcatcat actgtttgaa	2250
	attgctaatg	acagagtaag	taacactaat	attggtcatt	gatettegtt catgaattag	2310
20	tctacagaaa	assastgttc	tgtaaaatta	gtctgttgaa	matgttttcc mamcamatgtt	2370
	actttgaaaa	ttgagtttat	gtttgaccta	aatgggctaa	aattatatta gataaactaa	2430
	aattetgtee	gtgtaactat	aaattttgtg	aatgcatttt	cctggtgttt gaaaaagaag	2490
	ggggggagaa	ttccaggtgc	cttaatataa	agtttgaage	ttcatccacc aaagttaaat	2550
	agagetattt	aaaaatgcac	tttatttgta	ctctgtgtgg	cttttgtttt agaattttgt	2610
25	tcaaattata	gcagaattta	ggcaaaaata	aaacagacat	gtatttttgt ttgctgaatg	2670
	gatgaaacca	ttgcattctt	gtacactgat	ttgaaatgct	gtaaatatgt cccaatttgt	2730
	attgattete	tttaaatata	aaatgtaaat	aaaatattcc	aat	2773