Semestrální zkouška ISS, 1. opravný termín, 24.1.2017, skupina A

	Příjmení a jm	néno:			
(čitelně!)		2.05=1	f ₁	= 50Hz	2.905=0
Příklad 1 Na a koeficienty Fo	kreslete periodický sig ourierovy řady: $c_1 = 0$	mál se spojitým časen $.5e^{j\frac{\pi}{2}}, c_{-1} = 0.5e^{-\frac{\pi}{2}}$ (1004 + $\frac{\pi}{2}$	$c_{10} = 0.05$	$c_{-10} = 0.05$	
1.	Son Son	reg of the		ox mens',	js:
-1 -22	i 29 200	o e a		mab; di	
	gnál se spojitým čase ci (průběh modulu i a			$\delta(t) = \delta(t-4).$	Nakreslete jeho
X(jo)	$=$ $\times (t)$ \in	jutalt = e	$\int \omega_{7}$		T +
$ \chi(i\omega) = 1$	-22	1 (x	((50)		ag X(jw)
(())	- 1.04		1.1.2		1 (
ang X(j'w)=				-4:	7
Příklad 3 Na	akreslete výsledek kon	voluce dvou signálů	se spojitým čas	em: $y(t) = x_1(t)$	$\star x_2(t)$.
$x_1(t) = \begin{cases} 1 & \text{pr} \\ 0 & \text{jii.} \end{cases}$	ro $0 \le t \le 2$ nde x_2	$(t) = \begin{cases} -1 & \text{pro } 1 \\ 0 & \text{jinde} \end{cases}$	$\leq t \leq 2$	1 ×1(+)	_
Označte prosím	n pečlivě hodnoty na o	bou osách.		x(f) 1 2	→
77	(+)	· ·		1	7
	7				
_1 -					e)
- 1					
**************************************		12000	lem		
**	dnota spektrální funkc	(C) T T T () T T		$\omega = 45\pi \text{ rad/s je}$	$X(j45\pi) = 1+j.$
V/(i, h)	de hodnota spektrálni	(145%) pro	Signal VZIIIKIY	zpozdenin. g(t)	-x(t-0.0)
((()))	- 100 . 22	2,50	= / (140)	(1+1) (-1	1-1-1
=	$= \chi(j\omega) \cdot e^{j2}$ $= (1+j) e^{j2}$	=(11)	12/2=	Tun To	1-11
$Y(j45\pi) = \dots$				4-11/2	le
	zorkovací frekvence je				
	ideálně vzorkován a i vka, pravoúhlý, stejno		- 1700	1 200	filtr. Určete typ
origi	, , , , , , , , , , , , , , , , , , , ,	resarstruce	1		
- 17	77			-11	
1306	7	Cosinu	Sola IN	a 16 Hz	_
1 1	1517	00		1 - 11-	

Příklad 11 Diskrétní signál $x[n]$ má délku $N=8$ vzorků. Hodnoty jsou následující:				
x[n]=1 2 3 4 5 0 0 0. Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT). X t_{t}				
Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT). X tkym = SKuje im				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
x(m) 1 2 3 4 5 -16 1				
Cjam 1 -1 1 (-11)				
$X[4] = \dots$				
Příklad 12 Diskrétní signál $x[n]$ má délku $N=8$ vzorků. Hodnoty jsou následující:				
x[n]=1 -1 0 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT):				
X[2] = 1 + j. Určete hodnotu koeficientu DFT $Y[2]$ signálu $y[n]$, který je kruhově posunutou verzí signálu $x[n]$: $y[n]=0$ 0 0 0 0 1 -1.				
signálu $x[n]$: $y[n]=0$ 0 0 0 0 1 -1. Prod belinus $m=2$ Y[L] = $x[L]$. $x[L]$ =				
YLLes= XLLes = (1+1) R =				
-(1+i)(-1) = -1-i				
$Y[2] = \dots$				
Příklad 13 Diskrétní signál $x[n]$ má délku N vzorků, N je sudé. Ukládáme pouze hodnoty $X[0] \dots X[\frac{N}{2}]$. Kolik na to potřebujeme proměnných typu float, když na uložení jednoho reálného čísla je potřeba jeden				
X107 - raile, X1] X = -1 - completion,				
float a na uložení jednoho komplexního čísla dva floaty? 10] - rake , XII XI Z -II - komplexního čísla dva floaty? celken z-1				
$1+2(\frac{N}{2}-1)+1=1+N-2+1=N$ flowiting				
Příklad 14 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1+1.8z^{-1}+0.81z^{-2}}$.				
Urcete, zga je filtr staplini, a vysvetjete proc.				
junaioratel jele rozlozit na (2+0,9)(2+0,9)=(2-(-0,9))(2-(-0,9)				
Justitus poll 1 - 09 15/ miles				
dvojitý poh v -0,9 lezi avnibri reluotlové (kažnice =) stabilní				
relablique lantince =) Stabilin				
Diffeled 15. No obvigles in problem module from the characteristiles it is a filter of a f				
Příklad 15 Na obrázku je průběh modulu frekvenční charakteristiky číslicového filtru pro normované kruhové frekvence $\omega \in [0, \pi]$ rad. Nakreslete přibližné rozložení nulových bodů a pólů tohoto filtru.				
1 (4) Im 2 -				
30				

