Nested logit models

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

- Mode choice example
- Two alternatives: car and bus
- There are red buses and blue buses
- ullet Car and bus travel times are equal: T

Model 1

$$U_{\rm car} = \beta T + \varepsilon_{\rm car}$$

 $U_{\rm bus} = \beta T + \varepsilon_{\rm bus}$

Therefore,

$$P(\operatorname{car}|\{\operatorname{car},\operatorname{bus}\}) = P(\operatorname{bus}|\{\operatorname{car},\operatorname{bus}\}) = \frac{e^{\beta T}}{e^{\beta T} + e^{\beta T}} = \frac{1}{2}$$

Model 2

$$U_{\mathrm{car}} = \beta T + \varepsilon_{\mathrm{car}}$$
 $U_{\mathrm{blue\;bus}} = \beta T + \varepsilon_{\mathrm{blue\;bus}}$
 $U_{\mathrm{red\;bus}} = \beta T + \varepsilon_{\mathrm{red\;bus}}$

$$P(\operatorname{car}|\{\operatorname{car},\operatorname{blue}\,\operatorname{bus},\operatorname{red}\,\operatorname{bus}\}) = \frac{e^{\beta T}}{e^{\beta T} + e^{\beta T} + e^{\beta T}} = \frac{1}{3}$$

$$P(\operatorname{car}|\{\operatorname{car},\operatorname{blue}\,\operatorname{bus},\operatorname{red}\,\operatorname{bus}\})\\P(\operatorname{blue}\,\operatorname{bus}|\{\operatorname{car},\operatorname{blue}\,\operatorname{bus},\operatorname{red}\,\operatorname{bus}\})\\P(\operatorname{red}\,\operatorname{bus}|\{\operatorname{car},\operatorname{blue}\,\operatorname{bus},\operatorname{red}\,\operatorname{bus}\})\\$$

- Assumption of MNL: ε i.i.d
- $\varepsilon_{\text{blue bus}}$ and $\varepsilon_{\text{red bus}}$ contain common unobserved attributes:
 - fare
 - headway
 - comfort
 - convenience
 - etc.

If bus is chosen then

$$U_{
m blue\ bus} = V_{
m blue\ bus} + arepsilon_{
m blue\ bus} \ = V_{
m red\ bus} + arepsilon_{
m red\ bus}$$

where
$$V_{\text{blue bus}} = V_{\text{red bus}} = \beta T$$

$$P(\text{blue bus}|\{\text{blue bus}, \text{red bus}\}) = \frac{e^{\beta T}}{e^{\beta T} + e^{\beta T}} = \frac{1}{2}$$

What about the choice between bus and car?

$$egin{array}{lll} U_{
m car} &=& eta T + arepsilon_{
m car} \ U_{
m bus} &=& V_{
m bus} + arepsilon_{
m bus} \end{array}$$

with

$$V_{\mathrm{bus}} = V_{\mathrm{bus}}(V_{\mathrm{blue \, bus}}, V_{\mathrm{red \, bus}})$$
 $\varepsilon_{\mathrm{bus}} = ?$

Define V_{bus} as the expected maximum utility of red bus and blue bus

Expected maximum utility

For a set of alternative C, define

$$U_{\mathcal{C}} = \max_{i \in \mathcal{C}} U_i = \max_{i \in \mathcal{C}} (V_i + \varepsilon_i)$$

and

$$V_{\mathcal{C}} = E[U_{\mathcal{C}}]$$

For MNL

$$E[\max_{i \in \mathcal{C}} U_i] = \frac{1}{\mu} \ln \sum_{i \in \mathcal{C}} e^{\mu V_i} + \frac{\gamma}{\mu}$$

Expected maximum utility

$$V_{\text{bus}} = \frac{1}{\mu_b} \ln(e^{\mu_b V_{\text{blue bus}}} + e^{\mu_b V_{\text{red bus}}})$$

$$= \frac{1}{\mu_b} \ln(e^{\mu_b \beta T} + e^{\mu_b \beta T})$$

$$= \beta T + \frac{1}{\mu_b} \ln 2$$

where μ_b is the scale parameter for the MNL associated with the choice between red bus and blue bus

Probability model:

$$P(\text{car}) = \frac{e^{\mu V_{\text{car}}}}{e^{\mu V_{\text{car}}} + e^{\mu V_{\text{bus}}}} = \frac{e^{\mu \beta T}}{e^{\mu \beta T} + e^{\mu \beta T + \frac{\mu}{\mu_b} \ln 2}} = \frac{1}{1 + 2^{\frac{\mu}{\mu_b}}}$$

If $\mu=\mu_b$, then P(car) = $\frac{1}{3}$ (Model 2) If $\mu_b\to\infty$, then $\frac{\mu}{\mu_b}\to 0$, and P(car) $\to \frac{1}{2}$ (Model 1) Note for $\mu_b\to\infty$

$$e^{\mu V_{\rm bus}} = \frac{1}{2} e^{\mu V_{\rm red \ bus}} + \frac{1}{2} e^{\mu V_{\rm blue \ bus}}$$

Probability model:

$$P(\text{bus}) = \frac{e^{\mu V_{\text{bus}}}}{e^{\mu V_{\text{car}}} + e^{\mu V_{\text{bus}}}} = \frac{e^{\mu \beta T + \frac{\mu}{\mu_b} \ln 2}}{e^{\mu \beta T} + e^{\mu \beta T + \frac{\mu}{\mu_b} \ln 2}} = \frac{1}{1 + 2^{-\frac{\mu}{\mu_b}}}$$

If
$$\mu = \mu_b$$
, then P(bus) = $\frac{2}{3}$ (Model 2)
If $\frac{\mu}{\mu_b} \to 0$, then P(bus) $\to \frac{1}{2}$ (Model 1)

Solving the paradox

If $\frac{\mu}{\mu_b} \to 0$, we have

P(car)	=			1/2
P(bus)	=			1/2
$P(red\;bus bus)$	=			1/2
$P(blue\;bus bus)$	=			1/2
$P(red\;bus)$	=	$P(red\;bus bus)P(bus)$	=	1/4
$P(blue\;bus)$	=	$P(blue\;bus bus)P(bus)$	=	1/4

Comments

- A group of similar alternatives is called a nest
- Each alternative belongs to exactly one nest
- The model is named Nested Logit
- The ratio μ/μ_b must be estimated from the data
- $0 < \mu/\mu_b \le 1$ (between models 1 and 2)

A case study

- Choice of a residential telephone service
- Household survey conducted in Pennsylvania, USA, 1984
- Revealed preferences
- 434 observations

A case study

Availability of telephone service by residential area:

		Adjacent to	Other
	Metro	metro	non-metro
	area	area	areas
Budget Measured	yes	yes	yes
Standard Measured	yes	yes	yes
Local Flat	yes	yes	yes
Extended Area Flat	no	yes	no
Metro Area Flat	yes	yes	no

Multinomial Logit Model

$$\mathcal{C} = \{\mathsf{BM}, \mathsf{SM}, \mathsf{LF}, \mathsf{EF}, \mathsf{MF}\}$$

$$V_{
m BM} = eta_{
m BM} + eta_c \ln({
m cost}_{
m BM})$$
 $V_{
m SM} = eta_{
m SM} + eta_c \ln({
m cost}_{
m SM})$
 $V_{
m LF} = eta_{
m LF} + eta_c \ln({
m cost}_{
m LF})$
 $V_{
m EF} = eta_{
m EF} + eta_c \ln({
m cost}_{
m EF})$
 $V_{
m MF} = eta_c \ln({
m cost}_{
m MF})$

$$P(i|\mathcal{C}) = \frac{e^{V_i}}{\sum_{j \in \mathcal{C}} e^{V_j}}$$

Multinomial Logit Model

Parameter	MNL			
	Value	(t-stat)		
eta_{BM}	-2.46	(-7.84)		
$eta_{ extsf{SM}}$	-1.74	(-6.28)		
eta_{LF}	-0.54	(-2.57)		
eta_{EF}	-0.74	(-1.02)		
eta_c	-2.03	(-9.47)		
\mathcal{L}_0	-560.25			
$\mathcal L$	-477.56			
# Obs	434			

Model of the choice among "measured" alternatives

$$P(i|M) = \frac{e^{V_i}}{e^{V_{\text{BM}}} + e^{V_{\text{SM}}}}$$
 $i = \text{BM}, \text{SM}$

We estimate the model with the 196 observations choosing either BM or SM, and calculate the inclusive value

$$I_M = \ln(e^{V_{\rm BM}} + e^{V_{\rm SM}})$$

for all observations (scale normalized to 1)

Parameter	M	NL	Meas	sured
	Value	(t-stat)	Value	(t-stat)
eta_{BM}	-2.46	(-7.84)		
eta_{SM}	-1.74	(-6.28)	0.76	(4.53)
eta_{LF}	-0.54	(-2.57)		
$eta_{\sf EF}$	-0.74	(-1.02)		
eta_c	-2.03	(-9.47)	-3.12	(-4.76)
\mathcal{L}_0	-560.3		-135.9	
$\mathcal L$	-477.6		-116.8	
# Obs	434		196	

Model of the choice among "flat" alternatives

$$P(i|M) = \frac{e^{V_i}}{e^{V_{\mathsf{LF}}} + e^{V_{\mathsf{EF}}} + e^{V_{\mathsf{MF}}}} \quad i = \mathsf{LF}, \mathsf{EF}, \mathsf{MF}$$

We estimate the model with the 238 observations choosing LF, EF or MF and calculate the inclusive value

$$I_F = \ln(e^{V_{\mathsf{LF}}} + e^{V_{\mathsf{EF}}} + e^{V_{\mathsf{MF}}})$$

for all observations (scale normalized to 1)

Parameter	MNL		neter MNL Measured		Flat	
	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)
eta_{BM}	-2.46	(-7.84)				
eta_{SM}	-1.74	(-6.28)	0.76	(4.53)		
eta_{LF}	-0.54	(-2.57)			-1.21	(-3.17)
eta_{EF}	-0.74	(-1.02)			-1.42	(-1.55)
eta_c	-2.03	(-9.47)	-3.12	(-4.76)	-3.73	(-6.22)
\mathcal{L}_0	-560.3		-135.9		-129.5	
$\mathcal L$	-477.6		-116.8		-79.4	
# Obs	434		196		238	

Model of the choice of type of service

$$P(M) = \frac{e^{\mu(\tilde{\beta}_M + I_M)}}{e^{\mu(\tilde{\beta}_M + I_M)} + e^{\mu I_F}} = \frac{e^{\beta_M + \mu I_M}}{e^{\beta_M + \mu I_M} + e^{\mu I_F}}$$

$$P(F) = \frac{e^{\mu I_F}}{e^{\mu(\tilde{\beta}_M + I_M)} + e^{\mu I_F}} = \frac{e^{\mu I_F}}{e^{\beta_M + \mu I_M} + e^{\mu I_F}}$$

- I_M and I_F are attributes of *measured* and *flat*, resp.
- $\beta_M = \mu \tilde{\beta}_M$ and μ are unknown parameters, to be estimated.
- $0 < \mu \le 1$

Parameter	M	NL	Meas	sured	F	lat	Neste	d Logit
	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)
eta_{BM}	-2.46	(-7.84)						
$eta_{ extsf{SM}}$	-1.74	(-6.28)	0.76	(4.53)				
eta_{LF}	-0.54	(-2.57)			-1.21	(-3.17)		
eta_{EF}	-0.74	(-1.02)			-1.42	(-1.55)		
eta_c	-2.03	(-9.47)	-3.12	(-4.76)	-3.73	(-6.22)		
eta_M							-2.32	(-5.67)
μ							0.43	(5.49)
\mathcal{L}_0	-560.3		-135.9		-129.5		-300.8	
$\mathcal L$	-477.6		-116.8		-79.4		-280.4	
# Obs	434		196		238		434	

How to interpret the log-likelihood?

Assume that individual n has chosen alt. i in nest M.

$$P_n(i) = P_n(i|M)P_n(M)$$

Consider now all individuals choosing an alt. i in nest M

$$\sum_{n} \ln P_n(i) = \sum_{n} \ln P_n(i|M) + \sum_{n} \ln P_n(M) = \mathcal{L}_{\mathsf{M}} + \sum_{n} \ln P_n(M)$$

For individuals choosing an alternative j in nest F, we have

$$\sum_{n} \ln P_n(j) = \sum_{n} \ln P_n(i|F) + \sum_{n} \ln P_n(F) = \mathcal{L}_{\mathsf{F}} + \sum_{n} \ln P_n(F)$$

Therefore, we obtain that

$$\mathcal{L} = \mathcal{L}_{\mathsf{M}} + \mathcal{L}_{\mathsf{F}} + \mathcal{L}_{\mathsf{NL}}$$

Parameter	M	NL	Mea	sured	F	lat	Neste	ed Logit
	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)
eta_{BM}	-2.46	(-7.84)						
$eta_{ extsf{SM}}$	-1.74	(-6.28)	0.76	(4.53)				
eta_{LF}	-0.54	(-2.57)			-1.21	(-3.17)		
eta_{EF}	-0.74	(-1.02)			-1.42	(-1.55)		
eta_c	-2.03	(-9.47)	-3.12	(-4.76)	-3.73	(-6.22)		
eta_M							-2.32	(-5.67)
μ							0.43	(5.49)
\mathcal{L}_0	-560.3		-135.9		-129.5		-300.8	[-566.2]
$\mathcal L$	-477.6		-116.8		-79.4		-280.4	[-476.6]
# Obs	434		196		238		434	

Which value of β_c should we use?

Measured: -3.12 (-4.76) or Flat: -3.73 (-6.22)

Equal β_c 's:

- Jointly estimate measured and flat models and constrain β_C to be equal
- Declare "Measured" alternatives unavailable when a "Flat" alternative is chosen, and vice versa.

Parameter	M	NL	Neste	d Logit
	Value (t-stat)		Value	(t-stat)
eta_{BM}	-2.46	(-7.84)		
$eta_{ extsf{SM}}$	-1.74	(-6.28)	0.79	(4.80)
eta_{LF}	-0.54	(-2.57)	-1.07	(-3.49)
eta_{EF}	-0.74	(-1.02)	-1.28	(-1.46)
eta_c	-2.03	(-9.47)	-3.47	(-8.01)
eta_M			-1.66	(-5.92)
μ			0.42	(5.85)
\mathcal{L}_0	-560.3		-566.2	
$\mathcal L$	-477.6		-473.6	
# Obs	434		434	

Multinomial Logit:

$$P(\mathsf{BM}) = \frac{e^{V_{\mathsf{BM}}}}{\sum_{j \in \mathcal{C}} e_j^V}$$

Nested Logit:

$$\begin{split} P(\mathsf{BM}) &= P(\mathsf{BM}|M)P(M) \\ &= \frac{e^{V_{\mathsf{BM}}}}{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}} \, \frac{e^{\beta_M + \mu I_M}}{e^{\beta_M + \mu I_M} + e^{\mu I_F}} \\ &= \frac{e^{V_{\mathsf{BM}}}}{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}} \, \frac{e^{\beta_M + \mu I_M} + e^{\mu I_F}}{e^{\beta_M + \mu \ln(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}})} \\ &= \frac{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}}{e^{\beta_M + \mu \ln(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}})} + e^{\mu \ln(e^{V_{\mathsf{LF}}} + e^{V_{\mathsf{EF}}} + e^{V_{\mathsf{MF}}})} \end{split}$$

Let
$$\mu = 1$$

$$\begin{split} &P(\mathsf{BM}) \\ &= \frac{e^{V_{\mathsf{BM}}}}{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}} \, \frac{e^{\beta_{M} + \ln(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}})}}{e^{\beta_{M} + \ln(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}})} + e^{\ln(e^{V_{\mathsf{LF}}} + e^{V_{\mathsf{EF}}} + e^{V_{\mathsf{MF}}})} \\ &= \frac{e^{V_{\mathsf{BM}}}}{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}} \, \frac{e^{\beta_{M}} \left(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}\right)}{e^{\beta_{M}} \left(e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}}\right) + e^{V_{\mathsf{LF}}} + e^{V_{\mathsf{EF}}} + e^{V_{\mathsf{MF}}}} \\ &= \frac{e^{V_{\mathsf{BM}}}}{e^{V_{\mathsf{BM}}} + e^{V_{\mathsf{SM}}} + e^{V_{\mathsf{LF}} - \beta_{M}} + e^{V_{\mathsf{EF}} - \beta_{M}} + e^{V_{\mathsf{MF}} - \beta_{M}}} \end{split}$$

In general, if $\mathcal{C} = \bigcup_{m=1,...M} \mathcal{C}_m$,

$$P(i|\mathcal{C}_m) = \frac{e^{\mu_m V_i}}{\sum_{j \in \mathcal{C}_m} e^{\mu_m V_i}} \text{ and } P(\mathcal{C}_m|\mathcal{C}) = \frac{e^{\mu V_m'}}{\sum_{k=1,...,m} e^{\mu V_k'}}$$

where

$$V_m' = \frac{1}{\mu_m} \ln \sum_{i \in \mathcal{C}_m} (e^{\mu_m V_i})$$

When $\frac{\mu}{\mu_m} = 1$, for all m, NL becomes MNL

Simultaneous estimation

$$P(i|\mathcal{C}) = P(i|\mathcal{C}_m)P(\mathcal{C}_m|\mathcal{C})$$

Note that each i belongs to exactly one nest m i.e. the C_m 's do not overlap The log-likelihood for observation n is

$$\ln P(i_n|\mathcal{C}_n) = \ln P(i_n|\mathcal{C}_{mn}) + \ln P(\mathcal{C}_{mn}|\mathcal{C}_n)$$

where i_n is the chosen alternative.

Simultaneous estimation

Sequential estimation:

- Estimation of NL decomposed into two estimations of MNL
- Estimator is consistent but not efficient

Simultaneous estimation:

- Log-likelihood function is generally non concave
- No guarantee of global maximum
- Estimator asymptotically efficient

Simultaneous estimation

Parameter	MNL		Seq. Ne	sted Logit	Sim. Nes	sted Logit
	Value	(t-stat)	Value	(t-stat)	Value	(t-stat)
eta_{BM}	-2.46	(-7.84)			-3.79	(-6.28)
eta_{SM}	-1.74	(-6.28)	0.79	(4.80)	-3.00	(-5.32)
eta_{LF}	-0.54	(-2.57)	-1.07	(-3.49)	-1.09	(-3.57)
eta_{EF}	-0.74	(-1.02)	-1.28	(-1.46)	-1.19	(-1.41)
eta_c	-2.03	(-9.47)	-3.47	(-8.01)	-3.25	(-6.99)
eta_M			-1.66	(-5.92)		
μ			0.42	(5.85)	0.46	(4.17)
\mathcal{L}_0	-560.3		-566.2		-560.3	
$\mathcal L$	-477.6		-473.6		-473.3	
# Obs	434		434		434	

Compare $\beta_M=-1.66$ and $\mu\beta_{\rm BM}=-1.74$ Compare $\beta_{\rm SM}-\beta_{\rm BM}=0.79$ for Seq. and Sim.

