

23MT2014

THEORY OF COMPUTATION

Topic:

TURING MACHINES

Session - 17

AIM OF THE SESSION

The aim of this session is to provide an understanding of Turing Machines, their theoretical basis, and their significance in the field of computer science.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

- •To introduce the concept of Turing Machines and their key components.
- •To explain the working principles of Turing Machines and their computational capabilities.
- •To discuss the importance of Turing Machines in the context of computability theory and the foundation of modern computing.

LEARNING OUTCOMES

At the end of this session, you should be able to:

- •Define what a Turing Machine is and identify its essential components.
- •Describe the operation of a Turing Machine and explain how it can simulate various computational tasks.
- •Discuss the significance of Turing Machines in the field of computability theory and the development of computer science.
- •Analyze problems and determine whether they are solvable or undecidable based on the concepts learned about Turing Machines.

Turing Machines

The Language Hierarchy

CATEGORY 1 UNIVERSITY

Languages accepted by

Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 ww^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

Time 0

- 1. Reads a
- 2. Writes k

- 1. Reads b
- 2. Writes f

The Input String

Head starts at the leftmost position of the input string

Remark: the input string is never empty

States & Transitions

Example:

Example:

Time 1

Example:

Time 1

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No lambda transitions allowed

Example:

Partial Transition Function

Allowed:

No transition for input symbol c

Halting

The machine *halts* if there are no possible transitions to follow

20

Example:

No possible transition

HALT!!!

Final States q_1 Allowed

· Final states have no outgoing transitions

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an infinite loop

Turing Machine Example

A Turing machine that accepts the language:

aa*

$$a \rightarrow a, R$$

28

Halt & Accept

Rejection Example

No possible Transition

 $a \rightarrow a, R$

Halt & Reject

Infinite Loop Example A Turing machine

for language aa*+b(a+b)*

$$b \rightarrow b, L$$

 $a \rightarrow a, R$

33

Because of the infinite loop:

·The final state cannot be reached

The machine never halts

The input is not accepted

Another Turing Machine Example Turing machine for the language $\{a^nb^n\}$

Time.8

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

Time 5

A Move:

$$q_2 xayb > x q_0 ayb$$

Time 5

CATEGORY 1 UNIVERSITY

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:

 $q_2 xayb \succ xxy q_1 b$

Initial configuration: $q_0 w$

Input string

The Accepted Language For any Turing Machine M

$$L(M) = \{ w : q_0 \ w \succ x_1 \ q_f \ x_2 \}$$

Initial state

Final state

Standard Turing Machine The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file

Another Turing Machine Example

Turing machine for the language $\{a^nb^nc^n\}$

67

 $x \rightarrow x, R$

71

72

CATEGORY 1 UNIVERSITY BY MHRD, Govt. of India

 $x \rightarrow x, R$

 $x \rightarrow x, R$

CATEGORY 1 UNIVERSITY BY MHRD, Govt. of India

CATEGORY 1 UNIVERSITY BY MHRD, Govt. of India

86

 $x \rightarrow x, R$

87

88

"Accepted"

q₅

 $x \rightarrow x, R$

MCQ

- 1. What is a Turing Machine?
- a) A type of computer hardware
- b) A mathematical model of computation
- c) A programming language
- d) A networking protocol
- 2. Who introduced the concept of Turing Machines?
- a) Alan Turing
- b) Charles Babbage
- c) Ada Lovelace
- d) John von Neumann
- 3. What are the components of a Turing Machine?
- a) Input tape, output tape, and control unit
- b) Input tape, output tape, and memory
- c) Input tape, work tape, and control unit
- d) Input tape, work tape, and memory

TERMINAL QUESTIONS

- 1. Question: Explain the concept of universality in relation to Turing Machines. How does it enable Turing Machines to solve any computational problem?
- 2. Question: Discuss the significance of the halting problem in the context of Turing Machines. Why is it impossible to design a Turing Machine that can determine whether another Turing Machine halts or not?
- 3. Question: How can a Turing Machine simulate the behavior of a computer program? Discuss the necessary steps and components involved in this simulation process.
- 4. Question: Explain the concept of time complexity in relation to Turing Machines. How is it measured, and why is it important for analyzing the efficiency of algorithms?
- 5. Question: Discuss the concept of undecidability in relation to Turing Machines. Provide an example of an undecidable problem and explain why it cannot be solved by any Turing Machine.
- 6. Question: Can a Turing Machine compute irrational numbers such as π or $\sqrt{2}$? Explain why or why not, considering the limitations of the Turing Machine model.

Team - TOC

