Работа 5.1

Измерение коэффициента ослабления потока γ -лучей и их энергии.

Подлесный Артём группа 827

26 октября 2020 г.

Краткая теория

Закон ослабления для пучка интенсивности I_0 :

$$I = I_0 e^{-\mu l}. (1)$$

Так как при прохождении через вещество меняется только количество, а не энергия γ -квантов пучка, то для числа отсчетов получил аналогичную формулу:

$$N = N_0 e^{-\mu l}. (2)$$

Отсюда получаем рассчетную формулу для коэффициента ослабления:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{3}$$

Экспериментальная установка

Зависимость (2) может невыполняться из-за плохой геометрии, когда рассеянные γ -кванты остаются в пучке. Для преодоления этого эффекта, вопервых, счинтилляционный счетчик находится на большом расстоянии от поглотителя, а во-вторых, между образцами оставляются промежутки некоторого расстояния, чтобы рассеянные частицы вылетали из потока, и не наблюдалось вторичного комптоновского рассеяния. Схема установки представлена на рис. 1.

Рис. 1: а) Схема установки по детекции частиц. б) Схема процесса рассеяния γ -квантов.

Экспериментальные данные

В первую очередь был определен фон $(N_{\phi o h a})$ и излучение без поглотителя (N_0) за 10 секунд измерений. Источник закрывался свинцовой защитой для измерения фона. Так же в работе был поглотитель из свинцовой трубки, которая значительно толще защиты, однако счетчик показывал тот же результат. Это свидетельствует о надежности свинцовой защиты. Таким образом измеренные значения:

$$N_{\Phi \text{она}} = 156 \pm 13,$$

 $N_0 = 84433 \pm 174.$

Далее проводились измерения длин всех участвующих образцов. Эти значения представлены на таблице 1.

Каждый из этих образцов добавлялся согласно своему порядковому номеру в установку, то есть в эксперименте с железом N2 присутствовали поглотители из железа с номерами 1 и 2. Все поглотители находились на примерно одинаковом расстоянии друг от друга. Результаты эксперимента на таблице 2.

$\mathcal{N}_{\overline{0}}$	Алюминий, мм	Железо, мм	Свинец, мм
1	20	10	5
2	20	10	4.5
3	19.8	10	4.6
4	20	10	4.9
5	20.3	10.3	4.9

Таблица 1: Точность измерений длин поглотителей составляет 0.1 мм. Поглотители имеют свой номер, который соответствует порядку их добавления в экспериментальную установку.

железо	1	2	3	$N_{ m cpeд Hee}-N_{ m фoha}$	$\sigma_{ m cpeднero}$ $ $
1	47213	47723	47282	47250	160
2	26546	27016	26951	26682	147
3	15153	15446	15479	15203	104
4	8912	8828	8745	8672	48
5	5075	4947	5122	4892	52
свинец	1	2	3	$N_{ m cpeд Hee}-N_{ m \phioha}$	$\sigma_{ m cpeд Hero}$
1	46309	46168	46423	46144	74
2	27878	27569	27627	27535	95
3	17012	16603	16675	16607	126
4	9719	9996	9646	9631	107
5	5882	6022	5990	5809	42
алюминий	1	2	3	$N_{ m cpeд Hee} - N_{ m фoha}$	$\sigma_{ m cpeд Hero}$
1	56037	55988	55968	55842	20
2	37098	37025	37070	36908	21
3	24367	24547	24754	24400	112
4	16365	16526	16307	16243	66
5	11203	11189	11116	11013	27

Таблица 2: Результаты измерений ослабления потока частиц. По горизонтали для каждого материала – кол-во поглотителей, по вертикали – номер измерения. Каждый эксперимент повторялся 3 раза.

Исходя из этих данных возможно построить график ослабления для каждого материала. Исходя из (3) получим линейную зависимость

$$\ln \frac{N_0}{N} = \mu l.$$
(4)

Она представлена на рис 2.

Отсюда получим искомые значения коэффициента ослабления каждого материала, как угол наклона прямой. Исходя из теоретической зависимости

Рис. 2: График зависимости $ln\frac{N_0}{N}(l)$. Каждая прямая подписана своим материалом. Как видно, данные предоставлены с хорошей точностью.

коэффициента ослабления, так же определяем среднюю энергию γ -квантов в нашем эксперименте. Результаты представлены на таблице 3.

	μ, cm^{-1}	$\sigma_{\mu}, \mathrm{cm}^{-1}$	E_{γ} , МэВ
Железо	0.563	0.002	0.7
Алюминий	0.205	0.002	0.65
Свинец	1.1	0.01	0.7

Таблица 3: Результаты измерений. Примерное значение для энергии квантов.

Вывод

Показано, что закон ослабления γ -квантов выполняется достаточно точно. Так как экспериментально определенные значения коэффициентов ослабления поглотителей соответствуют примерно одному значению энергии, а параметры установки не менялись на протяжении эксперимента, то можно говорить о достаточной достоверности результатов.