

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

Interconnect

Nishith N. Chakraborty

October, 2024

INTRODUCTION

- Chips are mostly made of wires called interconnect
 - ➤ In stick diagram, wires set size
 - > Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

WIRE GEOMETRY

- Pitch = w + s
- Aspect ratio: AR = t/w
 - ➢ Old processes had AR << 1</p>
 - ➤ Modern processes have AR ~ 2
 - Pack in many skinny wires

LAYER STACK

• AMI 0.6 μm process has 3 metal layers

•	Modern processes use 6-10+ metal layers	Layer	T (nm)	W (nm)	S (nm)	AR	
•	Example:	6	1720	860	860	2.0	
	Intel 180 nm process		1000				
•	M1: thin, narrow (< 3λ)	5	1600	800	800	2.0	
			1000				
	High density cells	4	1080	540	540	2.0	
•	M2-M4: thicker	0	700	000	000	0.0	
		3	700 700	320	320	2.2	
	For longer wires	2	700	320	320	2.2	•
•	M5-M6: thickest		700				
•	IVIS-IVIO: LITICKEST	1	480 800	250	250	1.9	••
	For V _{DD} , GND, clk						Substrate

10/15/2024

WIRE RESISTANCE

• $\rho = \text{resistivity } (\Omega^* m)$ $R = \frac{\rho}{t} \frac{l}{w}$

WIRE RESISTANCE

• $\rho = \text{resistivity } (\Omega * m)$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

- R_{\Box} = sheet resistance (Ω / \Box)
 - → □ is a dimensionless unit(!)
- Count number of squares
 - $ightharpoonup R = R_{\square} * (# of squares)$

CHOICE OF METALS

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)		
Silver (Ag)	1.6		
Copper (Cu)	1.7		
Gold (Au)	2.2		
Aluminum (Al)	2.8		
Tungsten (W)	5.3		
Molybdenum (Mo)	5.3		

SHEET RESISTANCE

Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/□)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

CONTACT RESISTANCE

- Contacts and vias also have resistance, typically around 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

SKIN EFFECT

The skin-effect reduces the flow of current to the surface of the wire.

Resistance per unit length at high frequency

$$(f>f_s)$$

$$r(f) = \frac{\sqrt{\pi f \mu \rho}}{2(H+W)}$$

Below f_s the whole wire conducts current

$$f_s = \frac{4\rho}{\pi\mu(\max(W, H))^2}$$

The skin-effect is only an issue for wider wires. Since clocks tend to carry the highest-frequency signals on a chip and also are fairly wide to limit resistance, the skin effect is likely to have its first impact on these lines. This is a real concern for GHz-range design, as clocks determine the overall performance of the chip (cycle time, instructions per second, etc.).

WIRE CAPACITANCE

- Wire has capacitance per unit length
 - > To neighbors
 - > To layers above and below
- $C_{total} = C_{top} + C_{bot} + 2C_{adj}$

CAPACITANCE TRENDS

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - > Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\geq \varepsilon = k \varepsilon_0$
- ε_0 = 8.85 x 10-14 F/cm
- k = 3.9 for SiO2
- Processes are starting to use low-k dielectrics
 - ➤ k ~ 3 (or less) as dielectrics use air pockets

M2 CAPACITANCE DATA

- Typical wires have ~ 0.2 fF/μm
 - > Compare to 2 fF/μm for gate capacitance

DIFFUSION AND POLYSILICON

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

LUMPED ELEMENT MODELS

- Wires are a distributed system
 - > Approximate with lumped element models

- 3-segment π -model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

EXAMPLE

- Metal2 wire in 180 nm process
 - > 5 mm long
 - \geq 0.32 μ m wide
- Construct a 3-segment π -model

$$ightharpoonup R_{\Box} = 0.05 \Omega /_{\Box} => R = 781 \Omega$$

$$ightharpoonup C_{permicron} = 0.2 fF/\mu m$$
 => C = 1 pF

WIRE RC DELAY

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1mm wire having a width of 0.125 μ m.
 - \triangleright R = 10 k Ω , C= 0.1fF for unit sized inverter
 - \triangleright Wire capacitance: 0.2fF/μm, sheet resistance: R_{\Box} = 0.1 Ω / \Box

• $t_{pd} =$

WIRE RC DELAY

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1mm wire having a width of 0.125 μm .
 - \triangleright R = 10 k Ω , C= 0.1fF for unit sized inverter
 - \triangleright Wire capacitance: 0.2fF/μm, sheet resistance: R_{\square} = 0.1 Ω / \square

• $t_{pd} = 281ps$

CROSSTALK

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - ➤ When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on non-switching wires
 - Increased delay on switching wires

CROSSTALK DELAY

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - \triangleright Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - ➤ Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant			
Switching with A			
Switching opposite A			

CROSSTALK DELAY

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - \triangleright Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - ➤ Miller effect

В	ΔV	$C_{\text{eff(A)}}$	MCF
Constant	$\mathbf{V}_{ extsf{DD}}$	$C_{gnd} + C_{adj}$	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	$C_{gnd} + 2 C_{adj}$	2

CROSSTALK NOISE

- Crosstalk causes noise on non-switching wires
- If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{\scriptscriptstyle victim} = rac{C_{\scriptstyle adj}}{C_{\scriptstyle gnd-v} + C_{\scriptstyle adj}} \Delta V_{\scriptstyle aggressor}$$

DRIVEN VICTIMS

- Usually, victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - ➤ Victim driver is in linear region, agg. in saturation
 - \rightarrow If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{\text{\tiny victim}} = \frac{C_{\text{\tiny adj}}}{C_{\text{\tiny gnd-v}} + C_{\text{\tiny adj}}} \frac{1}{1+k} \Delta V_{\text{\tiny aggressor}}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj} \right)}{R_{victim} \left(C_{gnd-v} + C_{adj} \right)}$$

COUPLING WAVEFORMS

Simulated coupling for C_{adj} = C_{gnd}

NOISE IMPLICATIONS

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - ➤ Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing
 - Layer

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:
 - Width
 - > Spacing
 - Layer
 - Shielding

REPEATERS

- R and C are proportional to I
- RC delay is proportional to *l*²
 - Unacceptably great for long wires

REPEATERS

- R and C are proportional to I
- RC delay is proportional to l²
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

REPEATER DESIGN

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - ➤ Wire length I/N
 - Wire Capaitance C_w*I/N , Resistance R_w*I/N
 - ➤ Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

REPEATER DESIGN

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - ➤ Wire length /
 - Wire Capaitance $C_w * I$, Resistance $R_w * I$
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

REPEATER RESULTS

- Write equation for Elmore Delay
 - > Differentiate with respect to W and N
 - > Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{l} = (2 + \sqrt{2}) \sqrt{RC'R_w C_w}$$

$$W = \sqrt{\frac{RC_w}{R.C'}}$$

~60-80 ps/mm

in 180 nm process

Thank you!