MATH3301 Tutorial 2

- 1. Let G be a group and let a, b, c be any elements in G.
 - (a) Using the axioms of group theory, demonstrate how $(ab)^{-1}$ can be expressed as a product of the inverses of a and b.
 - (b) Show that the equation ax = b (with unknown x) has a unique solution.
 - (c) Show that the equation xa = b (with unknown x) has a unique solution.
 - (d) Develop Cancellation Laws.

[Hint: In \mathbb{Z} , one part of the cancellation law yields that 3m = 3n implies m = n.]

2. Let X be a set. For any subsets U, V of X, we define

$$U - V = \{x \in U : x \notin V\} \qquad \text{and} \qquad U \ominus V = (U - V) \cup (V - U).$$

Let P(X) be the **power set of** X (i.e. the set of all subsets of X). Show that

- (i) ⊖ is a well-defined operation, and
- (ii) $(P(X), \Theta)$ is a group.
- 3. Let $\emptyset \neq G$ be a set and * be an associative binary operation on G (i.e. a*(b*c) = (a*b)*c, $\forall a, b, c \in G$). Consider the following properties:
 - (RId) $\exists e \in G$ such that a * e = a, $\forall a \in G$.
 - (LInv) $\forall a \in G$, $\exists b \in G$ such that b * a = e.
 - (RInv) $\forall a \in G$, $\exists b \in G$ such that a * b = e.
 - (LC) $a * b = a * c \Rightarrow b = c$,
 - (RC) $b * a = c * a \Rightarrow b = c$.
 - (a) Take G to be the set of all constant functions from the set $\{\pm 1\} := \{-1, \pm 1\}$ to $\{\pm 1\}$, and the operation * to be the function composition.
 - (i) Show that G has the property (RId). Is the element e in Condition (RId) unique?
 - (ii) Show that G has the property (LInv). Is (G, *) a group?
 - (b) Show that G is a group if G satisfies (RId) and (RInv)
 - (c) Show that G is a group if G is finite and G satisfies both (LC) and (RC).