Snow stratigraphy in a pit dug in September 1956, at what was later named Ahlmann Station.

Notes on deep pit stratigraphy (cf. Schytt, 1958), Fig. 2.			
Depth	Density ¹	Temp.	
10 cm	0.260	_ 5.9 °C	
20	0.343	— 4.8	0-39 cm New snow (Aug. and Sept., 1956)
30	0.273	3.4	39-47 cm. Very coarse, g.d. (grain diameter) = 3-4 mi
40	0.478	— 2.5	numerous cupshaped crystals
50	_	— 1.9	48— 78 cm. Homogeneous, g.d. = 2 mm
62	0.428	— 1.4	78-83.5 cm. Very coarse and porous, g.d. = 2-4 mm, mu
70		— 1.0	depth hoar
80	0.451	-0.8	84—184 cm. Rather homogeneous, g.d. = 2 mm
90		0.4	184—234 cm. Homogeneous, g.d. = 3 mm, considerably coars
100	0.488	0.0	than previous layer
120	0.513	0.0	234-376 cm. Still g.d. = 3 mm in upper parts but harder a
140	0.536	_	denser than above 234 cm. Below 330 cm g.
160	0.570		about 1 mm
180	0.505		acout i iiiii
200	0.438	0.0	376-705 cm. No appreciable variations in firn grain size. Norm
220	0.423		g.d. 2—3 mm
240	0.490		g.d. 2—5 mm
260	0.493	0.0	
280	0.508		Possible summer surfaces:
300	0.488	0.0	39—47 cm (very definite), 78—83.5 cm, 184 cm, 234 cm, 315 cm
320	0.528	0.0	376 cm
340	0.503		370 CIII
360	0.538	_	Ice layers and laminae:
380	0.456		47—48 cm (porous), 66.5—67, 83.5—84, 89 and 94 (4 mm), 1
400	0.478	0.0	
420	0.478	0.0	(4 mm), 159—163, 169 and 177 (3 mm), 198 (4 mm), 214 (8 mi)
440	0.503	_	234—235.5, 261—262, 298—299, 310—311, 315—316, 353 (0-
460	0.303		cm), 384—386, 400—401, 440 (0—7 cm), 477 (0—12 cm), 5
515	0.498		(3—21 cm), 522 (0—3 cm), 530 (1—10 cm), 555—590 (vary
540		0.0	between 15 and 45 cm), 625—629 (4—35 cm, at one place join
	0.553		with the one above for a total thickness of 58 cm), 643—646
605	0.533	0.0	
640	0.518		

¹ All densities recorded with an accuracy of 0.001 have been measured according to the "block method" described by Schytt (1958, p. 24).