Evidence on the regularization properties of Maximum-Entropy Reinforcement Learning

Optimization and Learning Conference '24

R. Hosseinkhan Boucher, O. Semeraro, L. Mathelin

Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS

Doctoral School: Sciences and Technologies of Information and Communication (STIC)

Granted by the Agence Nationale de la Recherche (ANR) under projet ANR-21-CE46-0008 Reinforcement Learning as Optimal control for Shear Flows (REASON)

Dynamical Systems Control:

Challenges

Challenges in Dynamical Systems Control

Optimal Control Problem

Dynamics: $\partial_t x(z,t) = P\left[x,u\right](z,t)$

Objective: $\min_{u} J(u) = \int_{0}^{T} c(x(t), u(t)) dt$

Example

P is the Navier-Stokes operator

Energy criterion: $c(x, u) = ||x||^2 + ||u||^2$

Cylinder flow drag reduction. Partial observation through sensors.

Challenges¹

- Partial observability (PO) and delays
- Controllability
- Sampling complexity
- Robustness
- ullet High dimensional hidden state space ${\mathcal X}$
- Extremely large degrees of freedom (sensor placement, actuators, amplitude, optimization problem). No benchmark

Rigorously

 Control problem with continuous time and infinite state space (Relaxed Stochastic Control)

Controlled Kuramoto-Sivashinksy (KS)^{1,2}

Controlled KS:
$$\partial_t x(z,t) + x(z,t) \partial_x x(z,t) = -\partial_x^2 x(z,t) - \partial_x^4 x(z,t) + \langle \phi, \mathbf{u} \rangle (z,t)$$

 $\times (z+L,t) = \times (z,t) \text{ and } (z,t) \in [0,L] \times [0,T]$

Control term:
$$\langle \phi, \mathbf{u} \rangle = \sum_{i=1}^{r} \mathbf{u}_{i} f_{\mathcal{N}(\mu_{i}, \sigma^{2})}$$

 ϕ define a given gaussian mixture, ${\it \it u}$ is unknown

Properties

- Spatio-temporal chaos, 4th order non-linear
- Equilibria, relative equilibria, symmetries
- 4 equilibria $x_e^0(z) = 0$, $x_e^1(z)$, $x_e^2(z)$, $x_e^3(z)$

Evolution of the Kuramoto-Sivashinsky equation with L=100

¹Y. Kuramoto. "Diffusion-Induuced Chaos in Reaction Systems", *Progress of Theoretical Physics Supplement* (1978)

²G.I. Sivashinsky. "Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations", Acta Astronautica (1977)

Controlled Lorenz¹

Controlled Lorenz:
$$\begin{cases} \partial_t x_1 = \sigma(x_2 - x_1) + \mathbf{u_1} \\ \partial_t x_2 = x_1(\rho - x_3) - x_2 + \mathbf{u_2} \\ \partial_t x_3 = x_1 x_2 - \beta x_3 + \mathbf{u_3} \end{cases}$$

Control Term: $u = (u_1, u_2, u_3)$

Properties

- Chaos, instabilities, symmetries
- Equilibria x_e^0 , x_e^1 , x_e^2
- $\sigma = 10$, $\rho = 28$, $\beta = \frac{8}{3}$ (Lorenz 63')

Partially Observable Markov Decision Process (POMDP)

Dynamics

$$\partial_t x(z,t) = P\left[x,u\right](z,t), \qquad x\left(\cdot,t\right) \in \mathbb{L}^2\left(\mathcal{X}\right) \text{ and } u\left(\cdot,t\right) \in \mathbb{L}^2\left(\mathcal{U}\right) \text{ for any } t \in [0,T]$$

Spatial Discretisation

$$\mathbb{L}^{2}\left(\mathcal{X}
ight)\simeq\mathcal{X}^{d_{\mathcal{X}}}\qquad\mathbb{L}^{2}\left(\mathcal{U}
ight)\simeq\mathcal{U}^{d_{\mathcal{U}}}$$

Temporal Discretisation

$$[0,T]\simeq (k\delta)_{0\leq k\leq n}$$

Continuous operator \longrightarrow Discrete¹ operator: $x_{k+1} = P(x_k, u_k), x_k \in \mathcal{X}^{d_{\mathcal{X}}}, u_k \in \mathcal{U}^{d_{\mathcal{U}}}$

Partially Observable Markov Decision Process (POMDP)

Dynamics

$$\partial_t x(z,t) = P[x,u](z,t), \qquad x(\cdot,t) \in \mathbb{L}^2(\mathcal{X}) \text{ and } u(\cdot,t) \in \mathbb{L}^2(\mathcal{U}) \text{ for any } t \in [0,T]$$
Spatial Discretisation

Spatial Discretisation $\mathbb{L}^2(\mathcal{X}) \simeq \mathcal{X}^{d_{\mathcal{X}}} \qquad \mathbb{L}^2(\mathcal{U}) \simeq \mathcal{U}^{d_{\mathcal{U}}}$

Temporal Discretisation

[0, T] $\simeq (k\delta)_{0 \le k \le n}$

Continuous operator
$$\longrightarrow$$
 Discrete¹ operator: $x_{k+1} = P(x_k, u_k), x_k \in \mathcal{X}^{d_{\mathcal{X}}}, u_k \in \mathcal{U}^{d_{\mathcal{U}}}$

Generalisation: Partially Observable Markov Decision Process (POMDP)

$$X_{k+1} = P(X_k, U_k, \eta_k) \qquad \eta_k \sim \mathcal{N}(0, \sigma_\eta^2 I_d)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$

with $X_0 \sim \mathcal{N}\left(x_e, \, \sigma_e^2 I_d\right)$.

Q: observation operator.

(1)

¹The same notations (operator, time horizon etc.) as the continuous time framework will be used for the discrete time framework.

Modeling as a Markov Decision Process (MDP)

State space ${\mathcal X}$, control space ${\mathcal U}$, observation space ${\mathcal Y}$

Random Dynamics

$$\mathcal{P}\left(d\mathsf{x}_{k+1}\mid\left(\mathsf{x}_{k},u_{k}
ight)
ight)
ightarrow\mathsf{probability}$$
 on \mathcal{X} given $\left(\mathsf{x}_{k},u_{k}
ight)\in\mathcal{X} imes\mathcal{U}$

Random Observation

 $\mathcal{Q}\left(dy_k\mid x_k
ight)
ightarrow$ probability on \mathcal{Y} given $x_k\in\mathcal{X}$

Random Control

 $\pi(\mathit{du}_k \mid y_k) o \mathsf{probability}$ on \mathcal{U} given $y_k \in \mathcal{Y}$

Transition Kernel ${\mathcal P}$

Modeling as a Markov Decision Process (MDP)

State space \mathcal{X} , control space \mathcal{U} , observation space \mathcal{Y}

Random Dynamics

$$\mathcal{P}\left(dx_{k+1}\mid(x_k,u_k)
ight)
ightarrow ext{probability on }\mathcal{X} ext{ given }(x_k,u_k)\in\mathcal{X} imes\mathcal{U}$$

Random Observation

 $\mathcal{Q}(dy_k \mid x_k) \rightarrow \text{probability on } \mathcal{Y} \text{ given } x_k \in \mathcal{X}$

Random Control

 $\pi(du_k \mid y_k) o ext{probability on } \mathcal{U} ext{ given } y_k \in \mathcal{Y}$

Policy gradient iterations to solve $\arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} c(X_k, U_k) \right]$

Controlled Hidden Markov Chain

$$P^{\pi}(dx_{0}du_{0}dy_{0}dx_{1}du_{1}...dx_{T}) = P_{X_{0}}(dx_{0}) \mathcal{Q}(dy_{0} \mid x_{0}) \pi(du_{0} \mid y_{0}) \mathcal{P}(dx_{1} \mid x_{0}, u_{0})$$

$$\mathcal{Q}(dy_{1} \mid x_{1}) \pi(du_{1} \mid y_{1}) \cdots \pi(du_{T-1} \mid y_{T-1}) \mathcal{P}(dx_{T} \mid x_{T-1}, u_{T-1})$$

Maximum Entropy:

Noise Robustness

Robustness: Maximum Entropy and Flat Minima

Maximum Entropy in Reinforcement Learning

$$\arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \|X_k\|^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0, \quad \mathcal{H} : \text{entropy}$$

Observations

- Better exploration
- Robustness
- Flat minima and optimisation regularity (recent work: Ahmed et al. ICLR (2019)¹)

 $^{^{1}\}mathrm{A.}$ Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)

Robustness: Maximum Entropy and Flat Minima

Maximum Entropy in Reinforcement Learning

$$\arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \|X_k\|^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0, \quad \mathcal{H} : \text{entropy}$$

Observations

- Better exploration
- Robustness
- Flat minima and optimisation regularity (recent work: Ahmed et al. ICLR (2019)¹)

Questions:

Why does entropy improve robustness? Why does entropy regularise the optimisation landscape?

Objective

Understanding robustness-entropy-regularity synergy

Hypothesis

Entropy → **Policy Complexity**

 $^{^{1}}$ A. Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)

Excess Risk Under Noise

Partial Observability

$$X_{k+1} = P(X_k, U_k, \eta_k)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$
(2)

Notation

When $\epsilon \equiv 0 \longrightarrow P^{\pi}$ When $\epsilon \not\equiv 0 \longrightarrow P^{\pi,\epsilon}$

7

Excess Risk Under Noise

Partial Observability

$$X_{k+1} = P(X_k, U_k, \eta_k)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$
(2)

Notation

When $\epsilon \equiv 0 \longrightarrow P^{\pi}$ When $\epsilon \not\equiv 0 \longrightarrow P^{\pi,\epsilon}$

Rate of Excess Risk Under Noise

$$\mathring{\mathcal{R}}^{\pi} = \frac{J^{\pi, \epsilon} - J^{\pi}}{J^{\pi}}$$

with $J^{\pi,\epsilon} = \mathbb{E}^{\pi,\epsilon} \left[\sum_{k=0}^{T} \gamma^k \|X_k\|^2 \right]$

7

(3)

Training with different temperature levels α

Objective

$$\pi_{\alpha}^* = \arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \|X_k\|^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0$$

Initial condition
$$X_0 \sim \mathcal{N}(\mathbf{x}_e^2, \sigma^2)$$
 and $\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$

Goal control
$$x_k \longrightarrow x_e^0 = 0$$

Training with different temperature levels α

Objective

$$\pi_{\alpha}^* = \arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \|X_k\|^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0$$

Initial condition
$$X_0 \sim \mathcal{N}(\mathbf{x}_e^2, \sigma^2)$$
 and $\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$
Goal control $x_k \longrightarrow \mathbf{x}_s^0 = \mathbf{0}$

Hypothesis

With $\alpha>0$ the policies π_{α}^{*} are more robust than $\pi_{\alpha=0}^{*}$

Experimental Plan

- Fix 5 entropy levels α
- ullet 10 trainings for each lpha for 2m of iterations with the system
- ullet lpha decreases linearly
- Study of the regularity of π_{α}^{*} and its robustness

Evaluation of the policy with noisy observation

Hypothesis

$$\stackrel{\epsilon}{\sim}$$
 \longrightarrow $J^{\pi^*,\epsilon}$ \nearrow (noise impacts perf) $\alpha > 0$ \longrightarrow $\mathring{\mathcal{R}}^{\pi,\alpha}$ \searrow (robustness)

Experimental Plan

- Test π_{α}^* with different noise levels ϵ on Y
- Compare $J^{\pi^*,\epsilon}$ according to J^{π^*} i.e. $\mathring{\mathcal{R}}^{\pi} = \frac{J^{\pi^*,\epsilon} J^{\pi^*}}{J^{\pi^*}}$ with $J^{\pi^*} = \mathbb{E}^{\pi^*} \left[\sum_{k=0}^T \|X_k\|^2 \right]$

with
$$J^{\pi^*} = \mathbb{E}^{\pi^*} \left[\sum_{k=0}^T \|X_k\|^2 \right]$$
 and $J^{\pi^*, \epsilon}$ same quantity evaluated with noisy observables

Observation noise robustness by Maximum Entropy

Experiment

- ullet Evaluate 10 models $heta_{lpha}^*$ for each value of lpha
- **Total** : 50 models $\theta_{\alpha_i}^*$
- $\forall \theta^*_{\alpha_i}$ evaluate 200 trajectories until T

Results

- Noise ϵ increases globally the cost J^{π^*}
- KS and Lorenz: $\alpha = 0$ noise sensitive
- KS: α_{max} noise sensitive

Variation $\frac{\int_{\pi}^{\pi} \frac{\delta}{\sqrt{\pi}} - \int_{\pi}^{\pi}}{\int_{\pi}^{\pi}}$. Each **bar block**: noise intensity ϵ . Colors: $\alpha = 0$ (black), $\alpha > 0$ (blue), α_{\max} (red)

10

Complexity measures¹

Complexity Measure

 $\mathcal{M} \colon \pi \in \Pi \to \mathbb{R}_+$

 $\mathcal{M}(\pi)$ measures the **complexity** of the model π

Robustness Measure

 $\mathring{\mathcal{R}}^{\pi} \leq f(\mathcal{M}(\pi))$

where f is an increasing function

Objective

Identify proper complexity measures for robustness

 $^{^{1}\}mathrm{B.}$ Neyshabur et al. "Exploring Generalization in Deep Learning" NIPS (2017)

Complexity Measure: Lipschitz Upper Bound

Lipshitz Bound

$$\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \, \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$$
If $\mu_{\theta}(x) = (\sigma_l \circ \sigma_{l-1} \circ \ldots \circ \sigma_1)(x)$,

$$Lips(\mu_{\theta}) \leq \prod_{i=1}^{I} Lips(\sigma_{i}) = \prod_{i=1}^{I} \|\theta_{i}\|,$$

where θ_i weight matrix i.

Complexity Measure: Lipschitz Upper Bound

Lipshitz Bound

$$\pi_{\theta}(\cdot|X_{k}) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_{k}), \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$$
If $\mu_{\theta}(x) = (\sigma_{l} \circ \sigma_{l-1} \circ \dots \circ \sigma_{1})(x)$,
$$Lips(\mu_{\theta}) \leq \prod_{i=1}^{l} Lips(\sigma_{i}) = \prod_{i=1}^{l} \|\theta_{i}\|,$$

where θ_i weight matrix i.

Lipshitz Complexity Measure

•
$$\mathcal{M}(\pi_{\theta}) = \prod_{i=1}^{I} \|\theta_i\|$$

Result

Low $\mathcal{M}(\pi^{\alpha}_{\theta})$ corresponds to low $\mathring{\mathcal{R}}^{\pi}$

Colors: $\alpha = 0$, $\alpha > 0$, α_{max} Top: Lorenz, Bottom: KS

Conclusion and perspectives

Hypothesis

Entropy → Landscape Regularisation Already observed in (Ahmed et al. ICLR, 2019)

Entropy \longleftrightarrow Robustness \longleftrightarrow Policy Regularisation θ_{π}

Remarks

- ullet For $lpha_{
 m max}$ we lose robustness because we no longer solve the same objective
- Lorenz (fully observable) does not discriminate policies (because deterministic solution?)
- ullet Other complexity measures ${\cal M}$ (e.g. Fisher Information) are defined in the article

Perspectives

Formal link between robust-RL and maximum entropy