

Physics-inspired Neural Networks for building modeling and control

Loris Di Natale ^{1,2}
Bratislav Svetozarevic ¹
Philipp Heer ¹
Colin N. Jones ²

¹Urban Energy Systems Lab, Empa, Switzerland

²Automatic Control Lab, EPFL, Switzerland

American Control Conference 2023, San Diego

Neural Networks and physical systems

- Neural Networks (NNs) achieve amazing performance...
- ... but can also fail spectacularly
 - They only do exactly what they are taught

- What about controlling (real-world) physical systems with NNs?
 - Data quantity/quality issues

Loris DI NATALE

- Time to converge
- **Exploration phase**
- Guarantees?

Twitter taught Microsoft's AI chatbot to be a racist a***** in less than a day

The Guardian

Go back to simulation

Neural Networks and physical systems

- Trained sequentially from data
- Can choose to use a **NN to model** the system as well

Loris DI NATALE

It works! Can save 25-30% of energy on UMAR compared to industrial baselines,^[1] but...

Neural Networks are physics-agnostic

- They attain **great accuracy**
- They can **violate physical laws** [2,3]

Heating and cooling have almost no (or even reversed) impact

Can we help NNs? We often have some prior knowledge of the system

PiNNs for supervised learning

• Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: **Modified loss function** to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass/momentum conservation, ...)

Do PiNNs work?

- Want to ensure physical consistency: $\mathcal{L}_{phys}(\hat{y}_i) = \max\left(-\frac{\partial \hat{y}_i^{[a]}}{\partial x_i^{[b]}}, 0\right)^{[3]}$ Idea: heating must heat the building

Does **not solve** our issues!

PiNNs for supervised learning

Modified physical losses are a good start to help NNs

Pros

- Ease of implementation
- Can accelerate learning
- Can improve the solution

$$\frac{1}{B} \sum_{i=1}^{B} \mathcal{L}(y_i, \hat{y}_i) + \lambda \mathcal{L}_{phys}(\hat{z}_i, z_i)$$

Cons

- Hyperparameter tuning
- No guarantees

Whenever possible, you can also try to use **tailored** architectures

• Hamiltonian NNs,^[4] Lagrangian NNs,^[5] ...

Physically Consistent NNs (PCNNs) [6]

Let a basic **physics-inspired module** run in parallel of the NN

- **Key:** Train θ **simultaneously** through backpropagation
- State-of-the-art accuracy on the analyzed case study

Loris DI NATALE

But following the laws of physics

Neural Networks and physical systems

If you have a good model, you can use MPC, unless it is impractical

Learning through interaction with the environment

Learning through interaction with the environment

Loris DI NATALE

Reward shaping: modify the feedback to the network (e.g., constraints violations, ...)

Learning through interaction with the environment

- **Reward shaping**: modify the feedback to the network (e.g., constraints violations, ...)
- **Residual learning:** additive, multiplicative, time varying, ...

Learning through interaction with the environment

- **Reward shaping**: modify the feedback to the network (e.g., constraints violations, ...)
- Residual learning: additive, multiplicative, time varying, ...
- **Shielding**: Define a filter $\mathcal{C}(s_t)$ to correct the agent when some specifications are not met

Learning through interaction with the environment

- **Reward shaping**: modify the feedback to the network (e.g., constraints violations, ...)
- **Residual learning:** additive, multiplicative, time varying, ...
- **Shielding**: Define a filter $\mathcal{C}(s_t)$ to correct the agent when some specifications are not met
 - Project on the desired set

- Learning through interaction with the environment
- **Reward shaping**: modify the feedback to the network (e.g., constraints violations, ...)
- **Residual learning:** additive, multiplicative, time varying, ...
- **Shielding**: Define a filter $\mathcal{C}(s_t)$ to correct the agent when some specifications are not met
 - Project on the desired set
 - Use a known fallback controller $u_{fallback}$

Introducing physics/knowledge can accelerate learning and lead to better solutions

Can we improve the computational efficiency of **shielding** to enforce prior knowledge?

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

"If it's too cold, then heat"
$$\mathcal{C}(s_t) = u^{min}(s_t) \leq u \leq u^{max}(s_t)$$
 ...

Controller

- The projection is **computationally cheap**: saturate the actions at each step!
- **Modify the gradient update** of the agent so it learns from its mistakes

No computational overhead **but** no guarantees

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

No computational overhead **but** no guarantees

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

No computational overhead **but** no guarantees

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

No computational overhead **but** no guarantees

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

No computational overhead **but** no guarantees

Use time-varying bounds on the agent's actions to avoid suboptimal state-action pairs

No computational overhead **but** no guarantees

Up to **6-7x** better sample complexity than classical DRL

Up to **2-3x** better sample complexity than RS

Key takeaways

Neural Networks are powerful but physics-agnostic

PiNNs for modeling

You can try different **informative loss** functions

If possible, you can try tailored architectures like PCNNs

PiNNs for control

You can try different **reward functions** and residual learning techniques

Shielding can give guarantees but is usually complex

Thank you for your attention!

Loris DI NATALE
Urban Energy Systems Lab, Empa
Laboratoire d'Automatique, EPFL

loris.dinatale@empa.ch
https://www.empa.ch/web/dilo

References

- [1] Di Natale, L., Svetozarevic, B., Heer, P., & Jones, C. N. (2022, June). Near-optimal deep reinforcement learning policies from data for zone temperature control. In 2022 IEEE 17th International Conference on Control & Automation (ICCA) (pp. 698-703). IEEE.
- [2] Geirhos, R., Jacobsen, J. H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., & Wichmann, F. A. (2020). Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11), 665-673.
- [3] Di Natale, L., Svetozarevic, B., Heer, P., & Jones, C. N. (2023). Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models. *Applied Energy*, 340, 121071.
- [4] Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks. Advances in neural information processing systems, 32.
- [5] Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., & Ho, S. (2020). Lagrangian neural networks. arXiv preprint arXiv:2003.04630.
- [6] Di Natale, L., Svetozarevic, B., Heer, P., & Jones, C. N. (2022). Physically consistent neural networks for building thermal modeling: theory and analysis. *Applied Energy*, 325, 119806.
- [7] Di Natale, L., Svetozarevic, B., Heer, P., & Jones, C. N. (2022). Efficient Reinforcement Learning (ERL): Targeted Exploration Through Action Saturation. arXiv preprint arXiv:2211.16691.

Appendix

Key takeaways

Neural Networks are powerful but physics-agnostic

Loris DI NATALE

PiNNs for modeling

You can try different **informative loss** functions

If possible, you can try tailored architectures like PCNNs

PiNNs for control

You can try different **reward functions** and residual learning techniques

Shielding can give guarantees but is usually complex

Conclusion

Key takeaways

- Neural Networks are powerful but physics-agnostic but solutions exist!
- **PiNNs for modeling** supervised learning
 - Implementing a physical loss can be easy and might help but tuning the weighting factor is not trivial
 - Use tailored architectures when possible
 - PCNNs for example attain state-of-the-art accuracy for building thermal modeling while ensuring physical consistency
- **PiNNs for control** reinforcement learning

Loris DI NATALE

- While reward shaping and residual learning are easy, they might not enforce knowledge.
- Shielding can preserve prior specifications but is often computationally expensive
 - Enforcing simple rules instead can already help without computational overhead

Use (a combination of) these techniques to improve your NNs

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: Modified loss function to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass conservation, ...)

Loris DI NATALE

Can augment the NN's output

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: Modified loss function to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass conservation, ...)

Loris DI NATALE

Can augment the NN's output

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: Modified loss function to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass conservation, ...)

Loris DI NATALE

Can augment the NN's output

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: Modified loss function to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass conservation, ...)

Loris DI NATALE

- Can augment the NN's output
- Can create a bottleneck

Model

PiNNs for supervised learning

- Given a dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$
- Main idea: Modified loss function to steer the NN towards expected solutions
 - Boundary conditions
 - Physical laws (energy/mass conservation, ...)

Loris DI NATALE

- Can augment the NN's output
- Can create a bottleneck

• ..

The issue of *shortcut* learning

- Case study on UMAR: learn the thermodynamics of buildings
- PiNNs and LSTMs have a great accuracy on the validation data

Issue of shortcut learning No impact of heating/cooling!

Physically Consistent NNs (PCNNs)

Enforce physical properties by design in a module running in parallel of the NN

Building thermodynamics example We want to ensure:

- The predicted temperatures increase when the applied heating power or the outside temperature increases;
- Physically meaningful energy flows between the thermal zones.

This is hard-encoded in the physics-inspired **module**, which processes the power inputs, ambient temperatures, and energy exchanges between the zones.

Loris DI NATALE

The parameters are **learned from data**

$$D_{k+1} = D_k + f(x_k, D_k),$$

$$E_{k+1} = E_k + a_h \max\{u_k, 0\} + a_c \min\{u_k, 0\}$$

$$-b(T_k - T_k^{out}) - \sum_{z' \in \mathcal{N}(z)} c_{z'}(T_k - T_k^{z'}),$$

$$T_{k+1} = D_{k+1} + E_{k+1},$$

$$\frac{\partial T_{k+i}^z}{\partial u_{k+j}^z} > 0$$

$$\frac{\partial T_{k+i}^z}{\partial T_{k+j}^{out}} > 0$$

^{*} under mild assumptions on a_h, a_c, b, c

Solving the *shortcut* learning issue

- Case study on UMAR: learn the thermodynamics of buildings
- PiNNs and LSTMs have a great accuracy on the validation data PCNNs are physically consistent by construction

Solving the *shortcut* learning issue

- Case study on UMAR: learn the **thermodynamics of buildings**
- PiNNs and LSTMs have a great accuracy on the validation data PCNNs are physically consistent by construction
- But they also outperform all the other physically consistent methods by 17-35%

Simulation

- DRL agents **converge to behaviors similar to the optimal trajectories** (computed *a posteriori*)
 - Confirmed by **statistical analysis** over 2000 3-day long sequences
 - And for different reward functions and random seeds

Experiment

Only short period because of connection issues

- But the agent shows similar behavior as in simulation
 - Preheating
 - Close to lower bound

Introduction

An issue of convergence speed

- **3 years** worth of data (randomly sampled days) to obtain the performance of classical rule-based controllers
- **15 years (500k points)** to "converge"
- (D)RL is usually (very, very, very) data-inefficient

Loris DI NATALE

High computational burden Limited deployment on physical systems

Introduction

Why?

To get there...

... we need this!

Exploration is *necessary*

... but often stupid!

Postulate

Prior expert knowledge often provides **intuition** about what optimal policies should do We can accordingly constrain the agents to regions of the state space that are deemed interesting

Methods

Proposed approach to accelerate learning

How can we constrain the actions of agents to explore interesting states?

- Design **handcrafted simple rules** from expert knowledge to ensure meaningful actions
- **Saturate** the agents' actions according to these rules
- Modify the gradient update of the policy to let it learn from the corrections and steer it towards expected behaviors

Methods

Proposed approach to accelerate learning

How can we constrain the actions of agents to explore interesting states?

Correct the agents using safe action sets - but no need to always satisfy these artifical constraints!

- Design **handcrafted simple rules** from expert knowledge to ensure meaningful actions
- Saturate the agents' actions according to these rules
- Modify the gradient update of the policy to let it learn from the corrections and steer it towards expected behaviors

Loris DI NATALE

$$a^{min}(s), a^{max}(s) = f(s)$$

$$a(s) = \operatorname{clip}\left(\pi_{\theta}(s) + \nu, a^{min}(s), a^{max}(s)\right) \qquad \qquad \nu \sim \mathcal{N}(0, \sigma^2)$$

$$\hat{\nabla}_{\theta}^{EA}\pi_{\theta}\pi_{\theta} = \nabla \nabla \left[\frac{1}{|B|} \sum_{s \in B} Q_{\phi}(Q_{\phi}(s(s))) - \frac{\lambda}{2} (\pi_{\theta}(s) - a(s))^{2} \right]$$

Each step is easy to implement and computationally inexpensive

Introduction

What does the saturation do?

To get there...

... we need this!

Classical DRL

Loris DI NATALE

EA 0 / 1

EA 0 / 0.5

EA 0 / 0.25

Meaningful exploration

Results

Does it impact performance?

The learnt behaviors are similar!

Results

Does it accelerate learning?

• Results

Does it accelerate learning?

Results

Does it accelerate learning?

Wrap-up

Discussion & Conclusion

- **Black-box models can be misleading**, even if they fit the data well
 - PCNNs as a potential solution easy to scale
- **Deep Reinforcement Learning** provides good results when coupled with PCNNs
- It is possible to design simple rules based on prior knowledge to help (D)RL agents converge faster
 - **Saturate** the actions of the agents accordingly
 - **Modify the gradient update** to let agents learn from it

→ Fully black-box pipeline from data to control policies

Loris DI NATALE

- → Avoid tedious engineering
- → Energy savings of 25-30%
- Comfort of the occupants improved
- → Straightforward implementation
- → Computationally inexpensive
- → Up to 6-7 times faster

→ "Plug & Play" controllers

Wrap-up

Discussion & Conclusion

- Neural Networks can be misleading, even if they fit the data well
 - PCNNs as a potential solution easy to scale
- **Deep Reinforcement Learning** provides good results when coupled with PCNNs
- It is possible to design simple rules based on prior knowledge to help (D)RL agents converge faster
 - **Saturate** the actions of the agents accordingly
 - **Modify the gradient update** to let agents learn from it
- → Fully black-box pipeline from data to control policies

- → State-of-the-art accuracy
- → Physical consistency
- → Energy savings of 25-30%
- Comfort of the occupants improved
- → Straightforward implementation
- → Computationally inexpensive
- → Up to 6-7 times faster
- → "Plug & Play" controllers

Main references

PCNNs

 Towards Scalable Physically Consistent Neural Networks: an Application to Data-driven Multi-zone Thermal **Building Models.**

L. Di Natale, B. Svetozarevic, P. Heer, and C.N. Jones (2022). Manuscript submitted to Applied Energy. https://arxiv.org/abs/2212.12380.

 Physically consistent neural network building models: theory and analysis. L. Di Natale, B. Svetozarevic, P. Heer, and C.N. Jones (2022). Applied Energy, 119806. https://doi.org/10.1016/j.apenergy.2022.119806.

DRL

- Efficient Reinforcement Learning (ERL): Targeted Exploration Through Action Saturation. L. Di Natale, B. Svetozarevic, P. Heer, and C.N. Jones (2022). Manuscript submitted to L4DC 2023. https://arxiv.org/abs/2211.16691.
- Near-optimal Deep Reinforcement Learning Policies from Data for Zone Temperature Control. L. Di Natale, B. Svetozarevic, P. Heer, and C.N. Jones (2022). 2022 IEEE 17th International Conference on Control & Automation (ICCA), 698-703. https://doi.org/10.1109/ICCA54724.2022.9831914.

