TUTORIAL 4

INDIAN INSTITUTE OF TECHNOLOGY PATNA

COURSE CODE: PH103 COURSE TITLE: PHYSICS-I

- **1.** Physical interpretation of $\nabla \times$: Consider the motion of a rigid body rotating about a fixed axis through O. If $\vec{\Omega}$ be its angular velocity then the velocity \vec{v} of any particle $P(\vec{r})$ of the body is given by: $\vec{v} = \vec{\Omega} \times \vec{r}$. Show that $\vec{\Omega} = \frac{1}{2} \vec{\nabla} \times \vec{v}$
- **2.** If $\vec{F} = (x+y+1)\hat{\imath} + \hat{\jmath} (x+y)\hat{k}$, show that $\vec{F} \cdot (\vec{\nabla} \times \vec{F}) = 0$.
- **3.** Find the work done in moving a particle from (0,0) to (1,2) in the force field $\vec{F} = 3xy\hat{\imath} y^2\hat{\jmath}$ along the curve C in the xy-plane defined by equation $y = 2x^2$.
- **4.** Verify the Stoke's Theorem for $\vec{F} = (x^2 + y^2)\hat{\imath} 2xy\hat{\jmath}$ taken around the rectangle bounded by the lines: $x = \pm a, y = 0, y = b$.
- 5. r_{min} and r_{max} for a Earth's satellite are 10000 km and 6000 km, respectively. The mass of satellite is 2000 kg. Compute the eccentricity, energy, angular momentum and minimum and maximum speed of satellite.
- **6.** A particle moving under the influence of potential $U(r) = k/r^2$ with k > 0. Derive the trajectory of the particle.
- 7. Forced Oscillations of LCR Circuit: Consider a series LCR circuit which is being driven by a sinusoidal voltage source $V_0 \sin \omega t$. Assume that the capacitor is totally uncharged and the inductor is totally demagnetized at t=0 when the switch in between the voltage source and series-LCR-combination is closed. Obtain the expressions for instantaneous current i(t) and instantaneous charge q(t) on the capacitor plates.

[**Hint:** Start writing the KVL \Rightarrow Convert it to a linear differential equation of second order in $i(t) \Rightarrow$ Obtain the Auxuliary equation and solve it to obtain its roots \Rightarrow Depending on the nature of roots, write the Complimentary Function (C.F.) and particular integral (P.I.) $\Rightarrow i(t) = \text{C.F.} + \text{P.I.}$; it will have two arbitrary constants, say c_1 and $c_2 \Rightarrow$ Obtain $\frac{di}{dt}$ and from the expressions for i(t) and $\frac{di}{dt}$, obtain the expression for q(t) using KVL \Rightarrow Using the initial conditions upon i(t) and q(t), obtain two linear equation in c_1 and $c_2 \Rightarrow$ Substitute it back in expressions for i(t) and q(t) and that's it.]