TABLA DE DERIVADAS (de usos más frecuentes)

Referencias: x es la variable independiente, c es una constante, u y v son funciones de x derivables

FUNCIONES	DERIVADAS	FUNCIONES	DERIVADAS
y = c	y'=0	y = u	y' = u'
y = x	y'=1	$y = u \pm v$	$y' = u' \pm v'$
$y = cx$ $y = x^n, n \in \mathbb{R}$	$y' = c$ $y' = n. x^{n-1}$	$y = c.u$ $y = u^n, n \in \mathbb{R}$	$y' = c.u'$ $y' = n.u^{n-1}.u'$
$y = \frac{1}{x}$	1	$y = \frac{1}{u}$	1
_	$y' = -\frac{1}{\chi^2}$		$\frac{u^2}{1}$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$	$y = \sqrt{u}$	$y' = -\frac{1}{u^2} \cdot u'$ $y' = \frac{1}{2\sqrt{u}} \cdot u'$
$y = \sqrt[n]{x}$	$y' = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	$y = \sqrt[n]{u}$	$y' = \frac{1}{n \cdot \sqrt[n]{u^{n-1}}} \cdot u'$
$y = \ln x$	$y' = \frac{1}{x}$	y = ln u	$y' = \frac{1}{u} \cdot u'$
$y = \log_a x$	$y' = \frac{1}{x} \cdot \log_a e$	$y = log_a u$	$y' = \frac{1}{u} \cdot \log_a e \cdot u'$
$y = e^x$	$y' = e^x$	$y = e^u$	$y' = e^u \cdot u'$
$y = a^x$	$y' = a^x \cdot \ln a$	$y = a^u$	$y' = a^u \cdot \ln a \cdot u'$
y = sen x	$y' = \cos x$	y = sen u	$y' = \cos u \cdot u'$
$y = \cos x$	$y' = -\sin x$	$y = \cos u$	y' = -sen u.u'
y = tan x	$y' = \frac{1}{\cos^2 x} = \sec^2 x$	y = tan u	$y' = \frac{1}{\cos^2 u} \cdot u' = \sec^2 u \cdot u'$
$y = \sec x$	$y' = \sec x \cdot \operatorname{tg} x = \frac{\sec x}{\cos^2 x}$	y = sec u	$y' = \sec u \cdot \operatorname{tg} u \cdot u' = \frac{\sec u}{\cos^2 u} \cdot u'$
y = cosec x	$y' = -\csc x \cdot \cot g \ x = -\frac{\cos x}{\sin^2 x}$	y = cosec u	$y' = -\cos c u \cdot \cot g \ u.u' = -\frac{\cos u}{\sin^2 u} .u'$
$y = \cot g x$	$y' = \frac{-1}{\sin^2 x} = -\csc^2 x$	y = cotg u	$y' = \frac{-1}{\operatorname{sen}^2 u} \cdot u' = -\operatorname{cosec}^2 u \cdot u'$
y = arc sen x	$y' = \frac{1}{\sqrt{1 - x^2}}$	y = arc sen u	$y' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$
$y = arc \cos x$	$y' = -\frac{1}{\sqrt{1 - x^2}}$	$y = arc \cos u$	$y' = -\frac{1}{\sqrt{1 - u^2}}.u'$
y = arc tan x	$y' = \frac{1}{1+x^2}$	y = arc tan u	$y' = \frac{1}{1+u^2}.u'$
y = arc sec x	$y' = \frac{1}{x \cdot \sqrt{x^2 - 1}}$	y = arc sec u	$y' = \frac{1}{u \cdot \sqrt{u^2 - 1}} \cdot u'$
$y = arc \ cosec \ x$	$y' = -\frac{1}{x \cdot \sqrt{x^2 - 1}}$	$y = arc \ cosec \ u$	$y' = -\frac{1}{u \cdot \sqrt{u^2 - 1}} \cdot u'$
y = arc cotg x	$y' = -\frac{1}{1+x^2}$	y = arc cotg u	$y' = -\frac{1}{1+u^2}.u'$
y = u.v	y' = u'.v + u.v'		u'\
$y = \frac{u}{v}$	$y' = \frac{u'.v - u.v'}{v^2}$	$y = u^v$	$y' = u^{v} \left(v' \cdot \ln u + v \cdot \frac{u}{u} \right)$