INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4737B HEF4737V LSI

Quadruple static decade counters

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4737B HEF4737V

DESCRIPTION

The HEF4737B and HEF4737V are static quadruple decade counters for frequencies from 0 to 10 MHz. The counters are supplied with an extra overload flip-flop giving a total count capability of 19 999. The counter has the following inputs and outputs: a count input (CP), an asynchronous reset input (MR), an asynchronous preset input (PL), a transfer input (T), an output enable input (EO) (which controls the BCD outputs), the digit select inputs (Sa, Sa, Sc) (which perform selection of the contents of the latches to the 3-state BCD outputs (Oo to Oo)), and the carry outputs (CO2 to CO5) (which give the carry signals of the decades except from the first decade).

The complementary MOS structure gives the devices very low stand-by and operating dissipation. Operating from a single supply voltage all outputs can drive one standard TTL input without interface circuitry under all specified operating conditions.

The BCD digit outputs are LOCMOS 3-state outputs. The high impedance off-state feature allows common busing of the outputs. The counters are supplied with asynchronous reset and preset to 19 999 facilities making them suitable for counter and time base applications. All carry signals are available except from the first decade.

Schmitt-trigger action in the inputs makes the circuit highly tolerant to slower input rise and fall times.

Recommended supply voltage range for HEF4737B is 3 to 15 V and for HEF4737V is 4,5 to 12,5 V.

18 17 16 14 13 S_A S_B $S_{\mathbb{C}}$ CP MR ΕO VDD **HEF4737B HEF4737V** 00 CO2 CO3 CO4 CO5 01 02 9 2 7Z69203.2

Fig.1 Pinning diagram.

HEF4737BP; HEF4737VP(N); 18-lead DIL

plastic (SOT102-1)

HEF4737BD; HEF4737VD(F); 18-lead DIL

ceramic (SOT133B)

(): Package Designator North America

SUPPLY VOLTAGE

	RATING	RECOMMENDED OPERATING	
HEF4737B	-0,5 to 18	3,0 to 15,0	V
HEF4737V	-0,5 to 18	4,5 to 12,5	V

FAMILY DATA, I_{DD} LIMITS category LSI

See Family Specifications

PINNING

CP count input

MR asynchronous reset input
PL asynchronous preset input

 $\begin{array}{ll} T & & \text{transfer input} \\ S_A,\,S_B,\,S_C & & \text{digit select inputs} \\ EO & & \text{output enable input} \end{array}$

 O_0 to O_3 BCD outputs CO_2 to CO_5 carry outputs

HEF4737B HEF4737V

FUNCTIONAL DESCRIPTION

Input signals

Count input (CP)

The signal to be counted is applied to this input. When PL and MR are LOW the contents of the counter increments by one at a LOW to HIGH transition of CP.

Reset input (MR)

This is an asynchronous reset. A HIGH level applied to this input will reset the counter to zero independent of the level at the count input and preset input.

Preset input (PL)

This is an asynchronous preset. When MR is LOW a HIGH at the PL input will preset the counter to 19 999 independent of the level at the count input.

Transfer input (T)

A HIGH level applied to this input allows the information held by the counter to pass to the latches.

Output enable input (EO)

A HIGH level at this input enables the BCD outputs and information can be read out of the latches using the

HEF4737B HEF4737V

multiplexer. A LOW level at this input disables the BCD outputs making them floating (high impedance off-state).

Digit select inputs (SA, SB, SC)

S _A	S _B	s _c	
L	L	L	selects D1 (LSD)
Н	L	L	selects D2
L	Н	L	selects D3
Н	Н	L	selects D4
Χ	Х	Н	selects D5 (MSD)

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial
- 4. When D5 is selected, the contents of D5 is available at O₀ and O₁, O₂ and O₃ are LOW.
- 5. LSD = least significant divider
- 6. MSD = most significant divider

Output signals

The carry outputs are active LOW outputs.

Carry output CO2

When the contents of the first two decades of the counter are both 9 then the CO_2 output becomes LOW. It remains LOW until the next LOW to HIGH transition of the count input, i.e. until the contents of the first two decades are zero. CO_2 is LOW when the contents of the counter are: 00 099, 00 199, 00 299 etc.

Carry output CO₃

When the contents of the first three decades of the counter are all 9 then the CO_3 output becomes LOW. It remains LOW until the next LOW to HIGH transition of the count input, i.e. until the contents of the first three decades are zero. CO_3 is LOW when the contents of the counter are 00 999, 01 999, 02 999 etc.

Carry output CO₄

When the contents of the first four decades of the counter are all 9 then the CO_4 output becomes LOW. It remains LOW until the next LOW to HIGH transition of the count input, i.e. until the contents of the first four decades are zero. CO_4 is LOW when the contents of the counter are 09 999 and 19 999.

The carry signals CO_2 , CO_3 and CO_4 are suppressed while the preset is active. A HIGH to the preset input sets the counter to 19 999 but the carry signals remain HIGH until preset input returns to LOW, then the carry outputs will also become LOW.

Carry output CO₅

When the content of the counter is 10 000 the CO_5 output becomes LOW. It returns to HIGH when the content of the counter is zero.

Digit outputs (O_0 to O_3)

The digit outputs give the contents of the selected latch. The output is in the form of BCD, positive logic.

Philips Semiconductors

Philips Semiconductors Product specification

Quadruple static decade counters

HEF4737B HEF4737V

The values given at V_{DD} = 15 V in the following d.c. and a.c. characteristics, are not applicable to the HEF4737V, because of its reduced supply voltage range.

DC CHARACTERISTICS

 $V_{SS} = 0 V$

					T _{amb} (°C)							
	V _{DD} V	V _{OH} V	V _{OL} V	SYMBOL	_	40	+ 2	25	+	85		
		-	_		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Input leakage												
current at	10				_	_	_	0,3	_	1	μΑ	
$V_I = 0$ or V_{DD}	15			± I _{IN}	_	_	_	0,3	_	1	μΑ	
Output (sink)	4,75		0,4		1,6	_	1,6	_	1,4	_	mA	
current LOW	10		0,5	I _{OL}	2,5	_	2,3	_	1,7	-	mA	
	15		1,5		7,0	_	6,0	_	4,0	-	mA	
Output (source)	5	4,6			0,96	_	0,80	_	0,65	-	mA	
current HIGH	10	9,5		-I _{OH}	2,4	_	2,0	_	1,6	-	mA	
	15	13,5			7,0	_	6,0	_	4,5	_	mA	
Output (source)												
current HIGH	5	2,5		-I _{OH}	3,0	_	2,5	_	2,0	-	mA	
3-state output												
leakage current	10				_	1,6	_	1,6	_	12	μΑ	
$V_O = 0$ or V_{DD}	15			± I _{OZ}	_	1,6	_	1,6	_	12	μΑ	

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 15 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			320	640	ns	308 ns + (0,24 ns/pF) C _L
(D1 selected)	10	t _{PHL}		120	240	ns	125 ns + (0,10 ns/pF) C _L
HIGH to LOW	15			90	180	ns	86 ns + (0,07 ns/pF) C _L
	5			320	640	ns	296 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		120	240	ns	110 ns + (0,20 ns/pF) C _L
	15			90	180	ns	82 ns + (0,15 ns/pF) C _L
$CP \to O_n$	5			620	1240	ns	608 ns + (0,24 ns/pF) C _L
(D5 selected)	10	t _{PHL}		330	660	ns	325 ns + (0,10 ns/pF) C _L
HIGH to LOW	15			250	500	ns	246 ns + (0,07 ns/pF) C _L
	5			620	1240	ns	596 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		330	660	ns	320 ns + (0,20 ns/pF) C _L
	15			250	500	ns	242 ns + (0,15 ns/pF) C _L

Philips Semiconductors Product specification

Quadruple static decade counters

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
$CP \to CO_2$	5			220	440	ns	208 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		110	220	ns	105 ns + (0,10 ns/pF) C _L
	15			85	170	ns	81 ns + (0,07 ns/pF) C _L
	5			220	400	ns	196 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		110	220	ns	100 ns + (0,20 ns/pF) C _L
	15			85	170	ns	77 ns + (0,15 ns/pF) C _L
Propagation delays							
$CP o CO_5$	5			350	700	ns	338 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		160	320	ns	155 ns + (0,10 ns/pF) C _L
	15			120	240	ns	116 ns + (0,07 ns/pF) C _L
	5			350	700	ns	326 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		160	320	ns	150 ns + (0,20 ns/pF) C _L
	15			120	240	ns	112 ns + (0,15 ns/pF) C _L
$S_n \rightarrow O_n$	5			200	400	ns	188 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		80	160	ns	75 ns + (0,10 ns/pF) C _L
	15			55	110	ns	51 ns + (0,07 ns/pF) C _L
	5			200	400	ns	176 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		80	160	ns	70 ns + (0,20 ns/pF) C _L
	15			55	110	ns	47 ns + (0,15 ns/pF) C _L
$T \rightarrow O_n$	5			220	440	ns	208 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		90	180	ns	85 ns + (0,10 ns/pF) C _L
	15			60	120	ns	56 ns + (0,07 ns/pF) C _L
	5			220	440	ns	196 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		90	180	ns	80 ns + (0,20 ns/pF) C _L
	15			60	120	ns	52 ns + (0,15 ns/pF) C _L
$MR \to O_n$	5			490	980	ns	478 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		200	400	ns	195 ns + (0,10 ns/pF) C _L
	15			60	120	ns	56 ns + (0,07 ns/pF) C _L
$PL \rightarrow O_n$	5			260	520	ns	236 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		110	220	ns	100 ns + (0,20 ns/pF) C _L
	15			85	170	ns	77 ns + (0,15 ns/pF) C _L
$MR \to CO_n$	5			350	700	ns	326 ns + (0,48 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		160	320	ns	150 ns + (0,20 ns/pF) C _L
	15			120	240	ns	112 ns + (0,15 ns/pF) C _L
$PL \rightarrow CO_n$	5			350	700	ns	338 ns + (0,24 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		160	320	ns	155 ns + (0,10 ns/pF) C _L
	15			120	240	ns	116 ns + (0,07 ns/pF) C _L

Philips Semiconductors Product specification

Quadruple static decade counters

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition	5			35	70	ns	15 ns + (0,40 ns/pF) C _L
times; any output	10	t _{THL}		18	36	ns	9 ns + (0,18 ns/pF) C _L
HIGH to LOW	15			15	30	ns	8 ns + (0,13 ns/pF) C _L
	5			50	100	ns	15 ns + (0,70 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	13 ns + (0,33 ns/pF) C _L
	15			25	50	ns	13 ns + (0,23 ns/pF) C _L
3-state propagation delays							
Output disable times							
$EO \rightarrow O_n$	5			60	120	ns	
HIGH	10	t _{PHZ}		35	70	ns	
	15			25	50	ns	
	5			60	120	ns	
LOW	10	t _{PLZ}		35	70	ns	
	15			25	50	ns	
Output enable times							
$EO \rightarrow O_n$	5			90	180	ns	
HIGH	10	t _{PZH}		40	80	ns	
	15			30	60	ns	
	5			90	180	ns	
LOW	10	t _{PZL}		40	80	ns	
	15			30	60	ns	
Maximum CP pulse	5		160	80		ns	
width; LOW	10	t _{WCPL}	60	30		ns	
	15		50	25		ns	
Minimum MR pulse	5		100	50		ns	
width; HIGH	10	t _{WMRH}	50	25		ns	
	15		40	20		ns	
Minimum PL pulse	5		120	60		ns	
width; HIGH	10	t _{WPLH}	60	30		ns	
	15		50	25		ns	
Minimum T pulse	5		100	50		ns	
width; HIGH	10	t _{WTH}	40	20		ns	
	15		36	18		ns	
Maximum clock	5		3	6		MHz	
pulse frequency	10	f _{max}	8	16		MHz	
	15		10	20		MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	950 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	11 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)