Search Algorithm	Missionaries and Cannibals	Towers of Hanoi	Farmer Fox Chicken and Grain
Heretine Double	Calutian Dath Longth - O	Calution Dath Langth - 40	Calution Dath Langth - 7
Iterative Depth	Solution Path Length = 9	Solution Path Length = 40	Solution Path Length = 7
First Search	States Expanded = 10	States Expanded = 40	States Expanded = 7
	Max Open Length = 2	Max Open Length = 7	Max Open Length = 3
Breadth First	Solution Path Length = 7	Solution Path Length = 15	Solution Path Length = 7
Search	States Expanded = 10	States Expanded = 70	States Expanded = 9
	Max Open Length = 2	Max Open Length = 16	Max Open Length = 2
Iterative	Solution Path Length = 7	Solution Path Length = 15	Solution Path Length = 7
Deepening DFS	States Expanded = 19	States Expanded = 129	States Expanded = 17
	Max Open Length = 2	Max Open Length = 9	Max Open Length = 2

Solution Paths

- 1. Missionaries : $[x, y] \rightarrow x$ missionaries and y cannibals on the left bank (and the rest on the right bank)
 - **a.** IterDFS: $[3,3] \rightarrow [2,2] \rightarrow [3,2] \rightarrow [0,2] \rightarrow [2,2] \rightarrow [1,1] \rightarrow [3,1] \rightarrow [0,1] \rightarrow [1,1] \rightarrow [0,0]$ done!
 - **b.** BFS: $[3,3] \rightarrow [2,2] \rightarrow [3,2] \rightarrow [0,2] \rightarrow [2,2] \rightarrow [0,1] \rightarrow [1,1] \rightarrow [0,0]$ done!
 - **c.** IDDFS: $[3,3] \rightarrow [2,2] \rightarrow [3,2] \rightarrow [0,2] \rightarrow [2,2] \rightarrow [0,1] \rightarrow [1,1] \rightarrow [0,0]$ done!
- 2. Farmer Fox: Fgcf → F: Farmer, g: Grain, c: Chicken, f: Fox. Given string lists which objects are on LEFT side of river
 - **a.** IterDFS: Fcfg \rightarrow fg \rightarrow Ffg \rightarrow f \rightarrow Fcf \rightarrow c \rightarrow Fc \rightarrow done!
 - **b.** BFS: Fcfg \rightarrow fg \rightarrow Ffg \rightarrow f \rightarrow Fcf \rightarrow c \rightarrow Fc \rightarrow done!
 - c. IDDFS: Fcfg \rightarrow fg \rightarrow Ffg \rightarrow f \rightarrow Fcf \rightarrow c \rightarrow Fc \rightarrow done!
- 3. Towers Of Hanoi (4): [[list1][list2][list3]] → list i lists the plates on pole i; 4 = largest plate, 1 = smallest plate
 - **a.** IterDFS

[[4, 3, 2, 1],[],[]] [[4, 3, 2],[1],[]] [[4, 3],[1],[2]] [[4, 3, 1],[],[2]] [[4, 3],[],[2, 1]] [[4],[3],[2, 1]] [[4],[3],[2]] [[4],[3, 1],[2]] [[4],[3, 1],[2]] [[4, 2],[3, 1],[]] [[4, 2],[3, 1],[]] [[4, 2],[3],[1]] [[4],[3,2],[1]][[4, 1], [3, 2], []][[4],[3,2,1],[]][[],[3, 2, 1],[4]] [[1],[3,2],[4]][[],[3, 2],[4, 1]] [[2],[3],[4,1]] [[2, 1],[3],[4]] [[2],[3, 1],[4]] [[],[3,1],[4,2]] [[1],[3],[4, 2]] [[],[3],[4, 2, 1]] [[3],[],[4, 2, 1]] [[3, 1],[],[4, 2]] [[3],[1],[4, 2]] [[3, 2],[1],[4]] [[3, 2, 1], [], [4]][[3, 2],[],[4, 1]] [[3],[2],[4, 1]] [[3, 1],[2],[4]] [[3],[2, 1],[4]] [[],[2,1],[4,3]] [[1],[2],[4, 3]] [[],[2],[4, 3, 1]] [[2],[],[4, 3, 1]] [[2, 1],[],[4, 3]] [[2],[1],[4, 3]] [[],[1],[4,3,2]][[1],[],[4, 3, 2]] [[],[],[4, 3, 2, 1]]

b. BFS

[[4, 3, 2, 1],[],[]] [[4, 3, 2],[1],[]] [[4, 3],[1],[2]] [[4, 3],[],[2, 1]] [[4],[3],[2, 1]] [[4],[3],[2]] [[4, 1],[3, 2],[]] [[4],[3, 2, 1],[4]] [[],[3, 2],[4, 1]] [[2],[3],[4, 1]] [[2, 1],[3],[4]] [[2, 1],[1],[4, 3]] [[2],[1],[4, 3]] [[],[1],[4, 3, 2, 1]]

c. IDDFS:

[[4, 3, 2, 1], [], []][[4, 3, 2], [1], []][[4, 3],[1],[2]] [[4, 3],[],[2, 1]] [[4],[3],[2,1]] [[4, 1],[3],[2]] [[4, 1], [3, 2], []][[4],[3,2,1],[]][[],[3, 2, 1],[4]] [[],[3, 2],[4, 1]] [[2],[3],[4,1]] [[2, 1], [3], [4]][[2, 1],[],[4, 3]] [[2],[1],[4, 3]] [[],[1],[4, 3, 2]] [[],[],[4, 3, 2, 1]]