# Sistemas Operacionais Nivelamento em Arquiteturas dos Sistemas de Computação

## **Objetivos da Aula**

- Revisar conceitos associados a
  - Memória
  - Processamento
  - Armazenamento
- Contextualizar as arquiteturas de sistemas computacionais

## Arquitetura de von Neumann



von Neumann "The Computer and the Brain", 1956

#### Unidade Básica de Memória

#### Bit

- Menor unidade de informação que pode ser armazenada em um computador
- Algo está magnetizado num sentido ou está magnetizado no sentido oposto
- Valor 1 a um estado e valor 0 ao outro estado
- Um bit é insuficiente para armazenar uma letra, ou um número decimal

#### **Células**

São a menor parte endereçável da memória

- Conjuntos ordenados de bits
  - Cada célula pode armazenar uma parte da informação, geralmente 8 bits
  - Todas as células possuem a mesma quantidade de bits
- São numeradas de 0 a N-1, onde N é o número de células

#### **Palavra**

- Conjunto de células
- O grupo de bits transferido entre a memória e a CPU na leitura e na escrita
  - A maioria das instruções reconhecidas pela CPU opera sobre palavras inteiras
  - O barramento de dados deve ser capaz de transportar uma palavra
- O tamanho da palavra é a quantidade de bits transferida na leitura e na escrita
  - Tamanho da palavra varia entre 16, 32 e 64 bits

#### Célula e Palavra

 O acesso (leitura e escrita) não depende do tamanho da célula mas do tamanho da palavra

- Organização utilizada atualmente
  - Cada célula possui 8 bits e a palavra de 32 ou 64 bits

# Memória Principal e Secundária

#### Registradores

Fazem parte da CPU

#### Memória principal

- Endereçada pela CPU para obter dados e programas
- Ex.: RAM (cache é uma porção dela)

#### Memória secundária

- Armazenamento em massa e permanente
- Não endereçada diretamente pela CPU
- Ex.: Disco magnético, CD-ROM (óptico), Fitas

#### **Hiato Latência CPU-Memória**



# Hierarquia de Memória



# Hierarquia de Memória

#### Lógica

 Cada nível contém cópia de parte da informação armazenada no nível seguinte

#### Objetivos

- Obter máxima velocidade
- Oferecer ilusão de máximo tamanho de memória, com mínimo custo

# Hierarquia de Memória



# Registradores

 Elemento lógico da CPU utilizado para armazenar uma palavra binária de n-bits.



#### Registradores

- Características
  - Capacidade de armazenamento muito limitada
  - Alta velocidade de acesso ao dado
  - Voláteis
  - Caros
  - Tecnologia de semicondutores

#### **Cache**

- Memória intermediária entre os registradores e a memória principal
  - Nível L1: dentro do processador
  - Nível L2: fora do processador
- Características
  - Capacidade de armazenamento bem limitada
  - Velocidade de acesso inferior a dos registradores
  - Volátil
  - Cara
  - Tecnologia de semicondutores

#### **RAM**

#### Memória de acesso aleatório

- Random Access Memory (RAM)
- Qualquer posição pode ser acessada pelo processador diretamente a qualquer momento
- Há tecnologias diferentes como DRAM e SRAM

#### Características

- Capacidade de armazenamento superior à da Cache
- Velocidade de acesso inferior a da cache
- Volátil
- Relativamente barata
- Tecnologia de semicondutores

#### **RAM**



#### **SRAM**

 Static RAM ou Memória Estática de Acesso Aleatório

 Memória capaz de manter os bits de dados armazenados enquanto a fonte de alimentação estiver conectada ao circuito

#### **DRAM**

- Dynamic RAM ou Memória Dinâmica de Acesso Aleatório
- A DRAM é similar à SRAM, com diferença no projeto das células
  - Células mais simples, menos área no chip
  - Densidades de armazenamento maiores
- Desvantagens
  - As células são mais lentas (leitura e escrita)
  - Necessidade de refresh para manter os dados armazenados

# Disco Magnético (HDD)

- Armazenamento permanente de dados e instruções de forma magnética
  - Acesso mecânico a superfície, trilhas e setores
- Características
  - Maior capacidade de armazenamento que a RAM
  - Tempo de acesso inferior à da RAM
    - SRAM (0.5-2.5ns)
    - DRAM (50-70ns)
    - Disco magnético (5-20ms)
  - Não volátil, barato e de tecnologia magnética

# **Disco Magnético**



Tipicamente de 4500 a 15000 rpm (rotations per minute)

# Arquitetura do Sistema de Computação

- Sistemas de computação podem ser categorizados de acordo com o número de processadores utilizados
- Três classes amplas
  - Sistemas com um único processador
  - Sistemas multiprocessadores
  - Sistemas agrupados (multicomputadores)

## Sistemas de Processador Único

- Há uma CPU principal capaz de executar um conjunto de instruções
  - Inclusive instruções provenientes de processos de usuários
- Quase todos os dispositivos também têm processadores específicos
  - Controladores de dispositivos, processadores de I/O
  - Executam um conjunto específico de instruções

## **Sistemas Multiprocessadores**

- Também conhecidos como sistemas paralelos fortemente acoplados
- Compartilham uma mesma memória principal
- Possuem dois ou mais processadores que se comunicam entre si
- Podem ser assimétrico ou simétrico

# Multiprocessamento Assimétrico

- A cada processador é designada uma tarefa específica
  - Pode ser uma definição em software ou em hardware
- Organização principais (\*mestre) e secundários (\*escravo)
  - O processador principal agenda e aloca tarefas para os processadores secundários
  - Os processadores secundários procuram tarefas com o processador principal ou possuem tarefas específicas

# Multiprocessamento Simétrico (SMP)

- Todos os processadores são iguais
  - não existe relacionamento principal e secundário

Cada processador executa todas as tarefas

# Representação do SMP



# Vários Núcleos no Mesmo Chip

Os chips são multiprocessadores

Há alto acoplamento

- Proporciona redução do
  - tempo de comunicação entre os núcleos
  - consumo de energia da arquitetura

# Vários Núcleos no Mesmo Chip



## Vantagens dos Multiprocessadores

- Aumento do throughput (vazão)
  - Mais trabalho pode ser executado em menos tempo
  - Embora também exista um overhead
- Economia de escala
  - Redução de periféricos
  - Um sistema com vários processadores pode custar menos que vários sistemas com um processador
- Aumento da confiabilidade
  - Falha em um processador não interrompe o sistema

## **Sistemas Multicomputadores**

- Também conhecidos como aglomerados de computadores, ou multicomputadores
- Computadores que compartilham armazenamento e que são conectados por uma rede local (LAN)



## Vantagens dos Multicomputadores

#### Paralelização

 Divisão de um programa em componentes separados que são executados em paralelo em computadores individuais

#### Computação de alto desempenho

 Executar aplicações concorrentes em todos os computadores

#### Alta disponibilidade

Continua funcionando apesar de falhas individuais

# Classificação de Flynn

- Proposta em 1966, muito conhecida e utilizada
- Unicidade e multiplicidade de dados e instruções

Very High-Speed Computing Systems

MICHAEL J. FLYNN, MEMBER, IEEE

Abstract-Very high-speed computers may be classified as follows:

- 1) Single Instruction Stream-Single Data Stream (SISD)
- 2) Single Instruction Stream-Multiple Data Stream (SIMD)
- 3) Multiple Instruction Stream-Single Data Stream (MISD)
- 4) Multiple Instruction Stream-Multiple Data Stream (MIMD).

"Stream," as used here, refers to the sequence of data or instructions as seen by the machine during the execution of a program.

The constituents of a system: storage, execution, and instruction handling (branching) are discussed with regard to recent developments and/or systems limitations. The constituents are discussed in terms of concurrent SISD

Manuscript received June 30, 1966; revised August 16, 1966. This work was performed under the auspices of the U. S. Atomic Energy Commission. The author is with Northwestern University, Evanston, Ill., and Argonne National Laboratory, Argonne, Ill.

systems (CDC 6600 series and, in particular, IBM Model 90 series), since multiple stream organizations usually do not require any more elaborate components.

Representative organizations are selected from each class and the arrangement of the constituents is shown.

#### INTRODUCTION

ANY SIGNIFICANT scientific problems require the use of prodigious amounts of computing time. In order to handle these problems adequately, the large-scale scientific computer has been developed. This computer addresses itself to a class of problems characterized by having a high ratio of computing requirement to input/output requirements (a partially de facto situation

Michael Flynn Very High-Speed Computing Systems. Proc. IEEE, 54, pp.1901-1909, 1966.

## Classificação de Duncan

- Proposta em 1990
- É uma classificação mais recente e abrangente do que a de Flynn
  - Extensão: Interconexão, memória, não convencionais
- Menos conhecida



# A Survey of **Parallel Computer**

**Architectures** 



Ralph Duncan, Control Data Corporation

his decade has witnessed the introduction of a wide variety of new computer architectures for parallel processing that complement and extend the major approaches to parallel computing developed in the 1960s and 1970s. The recent proliferation of parallel

The diversity of parallel computer architectures can

· Include pipelined vector processors and other architectures that intuitively seem to merit inclusion as parallel architectures, but which are difficult to gracefully accommodate within Flynn's scheme.

Ralph Duncan "A survey of parallel computer architectures", IEEE Computer, pp. 5-16, Fevereiro, 1990.

# Dados e Instruções

- Flynn classifica os computadores segundo duas dimensões independentes
  - Instruções
  - Dados
- Cada dimensão pode tomar apenas um de dois valores distintos
  - Único (Single)
  - Múltiplo (Multiple)

# **Quatro Tipos de Arquiteturas**

|                      | Single Data                            | Multiple Data                            |
|----------------------|----------------------------------------|------------------------------------------|
| Single Instruction   | SISD Single Instruction Single Data    | SIMD Single Instruction Multiple Data    |
| Multiple Instruction | MISD  Multiple Instruction Single Data | MIMD  Multiple Instruction Multiple Data |



Lesandro Ponciano

37

# Atividade de Fixação

Na hierarquia de memória do computador, há uma memória intermediária que visa aumentar o desempenho do processador no acesso à memória principal, evitando esperas, o nome dessa memória intermediária é?

- a) Disco
- b) Disquete
- c) Cache
- d) Registradores

## **Material Complementar**

- Texto: "A revolução do Pequeno Intel" Disponível em: <a href="https://lesandrop.github.io/site/opinion/Inforuso-2018-EntrevistaIntel">https://lesandrop.github.io/site/opinion/Inforuso-2018-EntrevistaIntel</a>
   <a href="4004.pdf">4004.pdf</a> Acesso em: 04 Fev. 2024
- Artigo científico: "Very High-Speed Computing Systems"
   Disponível em: <a href="https://doi.org/10.1109/PROC.1966.5273">https://doi.org/10.1109/PROC.1966.5273</a> Acesso em: 04 Fev. 2024
- Artigo científico: "A survey of parallel computer architectures"
   Disponível em: <a href="https://doi.org/10.1109/2.44900">https://doi.org/10.1109/2.44900</a> Acesso em: 04 Fev.
   2024

#### Referências

PATTERSON, David A.; HENNESSY, John L. Arquitetura de computadores: uma abordagem quantitativa. Rio de Janeiro, RJ: Elsevier, Campus, c2014.

STALLINGS, William. Arquitetura e Organização de Computadores: projeto para o desempenho - 8ª edição. (Seção 4.1)

TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson Prentice Hall, 2009. xvi, 653 p. ISBN 9788576052371 (Capítulos 1 e 2)

SILBERSCHATZ, Abraham; GALVIN, Peter B.; GAGNE, Greg. Fundamentos de sistemas operacionais: princípios básicos. Rio de Janeiro, RJ: LTC, 2013. xvi, 432 p. ISBN 9788521622055 (Capítulos 2 e 3)

O hardware (memória, processamento e Entrada/Saída) é a base na qual opera o Sistema Operacional.

#### Sistemas Operacionais

#### Prof. Dr. Lesandro Ponciano

https://orcid.org/0000-0002-5724-0094