

Probability Theory Review

Last Edited: February 14, 2022

ő A Note

This review covers some of the basics of calculus based probability theory.

For those of you interested in measure theory based probability theory see Rick Durrett's <u>Probability: Theory and Examples</u>.

Orobability Spaces

A probability space is a triple (\mathcal{S} , \mathcal{F} , P) where:

- - Example: $S = \{H, T\}$, when flipping a coin
- F is known as the event space, the collection of all possible subsets of the sample space
 - Example $F = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}, \text{ when flipping a coin}$
- P is a probability function that assigns each possible subset of the sample space a value in [0, 1].
 - Example P(H) = P(T) = 0.5, $P(\emptyset) = 0$ and $P(\{H, T\}) = 1$ when flipping a balanced coin.

ő Events

An *event* is a collection of simple outcomes.

Example: When flipping a coin:

- The coin landing heads, {H}, is an event
- The coin landing heads or tails, {H, T} is an event

Example: When Rolling a 6-Sided Die:

- Rolling a 2, {2}, is an event
- Rolling an odd number, {1, 3, 5}, is an event

6 Probability Spaces Continued

For slides 4-8 suppose we have the probability space, (\mathcal{S} , \mathcal{F} , P), with events A and B pictured to the right.

ő Unions and Intersection

The *union* of events A and B, denoted A U B, is the collection of outcomes that occur in A **or** B.

The *intersection* of events A and B, denoted A∩B, is the collection of outcomes that occur in both A **and** B. We sometimes denote this as AB.

ő Complements

For an event, A, in a probability space, (S, F, P) we define the complement of A as all outcomes in S that are not in A.

We denote the complement of A as A^c.

ő Basic Probability Properties

P has the following properties:

- $P(\emptyset) = 0$, where \emptyset denotes the empty event,
- P(S) = 1
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

It can be also be shown that:

•
$$P(A^c) = 1 - P(A)$$

6 Conditional Probability

The conditional probability of event B given that event A has occurred is defined as:

$$P(B \mid A) = P(A \cap B) / P(A),$$

assuming $P(A) \neq 0.$

We can see from this that:

$$P(A \cap B) = P(A) P(B \mid A)$$

ő Independent Events

Two events, A and B, are *independent* if:

$$P(A \cap B) = P(A)P(B)$$
,

or equivalently

$$P(B | A) = P(B), P(A|B) = P(A).$$

Law of Total Probability

Suppose there are events B_1 , B_2 , ..., B_n so that:

- B_i∩B_i = Ø for all pairs i, j and
- $S = B_1 \cup B_2 \cup ... \cup B_n$.

The Law of Total Probability says for an event A,

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + ... + P(A \cap B_n)$$
$$= P(A \mid B_1) P(B_1) + ... + P(A \mid B_n) P(B_n)$$

ő Bayes' Rule

Suppose A and B are events and P(B) ≠ 0, then *Bayes' rule* says:

$$P(A|B) = P(B|A)P(A)/P(B)$$

Note that this is often combined with the law of total probability to break up the denominator into a sum.

ő Random Variables

Let (S, F, P) be a probability space.

A random variable is a function from \mathcal{C} to the real numbers.

Example: Suppose the probability space corresponds to flipping a balanced coin two times. X = the number of heads is a random variable with:

- $\bullet \quad X(T,T)=0,$
- X(H,T) = X(T,H) = 1 and
- X(H,H) = 2.

Random Variables Continued

<u>Discrete Random Variables</u>

A random variable that takes on values from an at most countably infinite set.

Example: The sum of rolling two 6-sided dice.

Example: Selecting an integer at random.

Non-Discrete Random Variables

A random variable that takes on values from an uncountably infinite set.

Example: The height of a randomly selected person.

Example: A random value taken from the interval [-71, 199].

Orobability Distributions

Let Y be a random variable.

The probability distribution of Y, is defined to be p(y) = P(Y=y) for all real numbers y.

Example: If Y is the number of heads from the result of flipping a balanced coin twice then:

- P(Y=0) = 0.25,
- P(Y=1) = 0.50,
- P(Y=2) = 0.25 and
- P(Y=y) = 0 for all other real numbers y.

Note: For any non-discrete random variable, Y, P(Y=y) = 0 for all real numbers, y.

6 Cumulative Distribution Functions (CDF)

Let Y be a random variable.

The cumulative distribution function (CDF) of Y, is defined to be $F_{\vee}(y) = P(Y \le y)$ for all real numbers y.

CDFs have the following properties:

- F_Y(y) → 0 as y → -∞,
 F_Y(y) → 1 as y → ∞ and
 F_Y(y) ≤ F_Y(x) for y ≤ x.

Example: The graph of the CDF for Y = the number of heads from the result of flipping a balanced coin twice is given on the right.

8 Probability Density Functions (PDFs)

Let Y be a random variable.

The *probability density function* of Y, if it exists, is defined to be the derivative of $F_{Y}(y)$ and is denoted as $f_{Y}(y)$

Some properties of $f_Y(y)$ include:

- $f_Y(y) \geq 0$
- $\bullet \int_{-\infty}^{\infty} f_Y(y) \, dy = 1$
- $F_Y(y) = \int_{-\infty}^y f_Y(x) dx$

ő Independent Random Variables

Let X and Y be random variables. We say that X and Y are *independent random* variables if:

$$\mathsf{F}_{\mathsf{X},\mathsf{Y}}(\mathsf{x},\,\mathsf{y}) = \mathsf{P}(\mathsf{X} \leq \mathsf{x} \text{ and } \mathsf{Y} \leq \mathsf{y}) = \mathsf{P}(\mathsf{X} \leq \mathsf{x}) \mathsf{P}(\mathsf{Y} \leq \mathsf{y}) = \mathsf{F}_{\mathsf{X}}(\mathsf{x}) \mathsf{F}_{\mathsf{Y}}(\mathsf{y}).$$

Expectation of a Random Variable

For a random variable Y, the *expectation* of Y, denoted E(Y), can be thought of as the "average" value of Y. More specifically:

Discrete Random Variables

Non-Discrete Random Variables

$$E(Y) = \sum_{y \in \text{range}(Y)} yp(y)$$

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

Assuming Y has a probability density function f(y).

6 Expectation of a Random Variable: Example Calculation

If Y = number of heads from flipping two balanced coins then

$$E(Y) = 0*0.25 + 1*0.5 + 2*0.25 = 1.$$

Or Properties of Expectation

Suppose X and Y are random variables with a finite expected value, then:

- E(aX + bY) = aE(X) + bE(Y), for constants a and b,
- If X ≥ Y almost surely, then E(X) ≥ E(Y) and
- If X and Y are independent, then E(XY) = E(X)E(Y)

8 Variance of a Random Variable

For a random variable Y, the *variance* of Y, denoted Var(Y), can be thought of as how far Y tends to be from its expected value.

Formally it is defined as:

$$Var(Y) = E[(Y - E(Y))^2] = E(Y^2) - E(Y)^2.$$

Note, there is no guarantee that the variance of Y is finite.

Variance of a Random Variable: Example Calculation

If Y = number of heads from flipping two balanced coins then

$$Var(Y) = E(Y^2) - E(Y)^2$$
,

$$E(Y^2) = 0*0.25 + 1*0.5 + 4*0.25 = 1.5$$
 and $E(Y)^2 = 1$ so

$$Var(Y) = 1.5 - 1 = 0.5$$

6 Covariance of Two Random Variables

Let X and Y be two random variables.

The covariance between X and Y is defined to be:

$$Cov(X,Y) = E[(X - E(X)) (Y - E(Y))] = E(XY) - E(X)E(Y).$$

6 Properties of Variance/Covariance

Suppose X and Y are random variables with a finite variance, then:

- Var(X) ≥ 0,
- Var(aX) = a²Var(X) for any constant a,
- Var(X) = Cov(X, X)
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y),
- Cov(X, Y) = Cov(Y, X) and
- If X and Y are independent, Cov(X, Y) = 0.

Bernoulli

If Y is a Bernoulli random variable then it takes the value 1 with probability p and the value 0 with probability 1 - p.

- E(Y) = p and
- Var(Y) = p(1 p).

Commonly used to model coin tosses.

CDF seen to the right.

Binomial

The number of successes from n independent identically distributed Bernoulli trials with p as the probability of success. If X is a binomial random variable then

•
$$P(X = x) = p(x) = \binom{n}{x} p^x (1-p)^{(n-x)}$$

- \bullet E(X) = np
- Var(X) = np(1-p)

Commonly used to model the number of heads after tossing *n* coins.

Another example is the number of people that support a candidate in a poll of *n* people.

Uniform

If X is a uniform random variable over the interval [a, b] then:

- $f_X(x) = 1/(b-a)$, for $a \le x \le b$,
- E(X) = (a + b)/2 and
- $Var(X) = (b a)^2/12$

PDF seen on the right.

Normal or Gaussian

If X is a normal random variable with mean μ and variance σ^2 , then:

- We say that $X \sim N(\mu, \sigma^2)$,
- $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(x-\mu)^2\right],$
- E(X) = μ and
- $Var(X) = \sigma^2$.

PDF seen on the right, called the "bell curve"

Photo Credit: wikipedia.com

Note: standard deviation is the square root of the variance.

A Standard Normal

Z is a standard normal random variable if: $Z \sim N(0, 1)$.

Any normal random variable, $X \sim N(\mu, \sigma^2)$, can be transformed into a standard normal variable using the transformation: $Z = (X - \mu)/\sigma$.

6 The Law of Large Numbers

Let X_1, X_2, \ldots, X_n denote a sequence of independent identically distributed random variables with mean μ , then the law of large numbers says that:

$$(X_1 + X_2 + ... + X_n)/n \to \mu \text{ as } n \to \infty.$$

ő The Central Limit Theorem

Let X_1, X_2, \ldots, X_n denote a sequence of independent identically distributed random variables with mean μ and finite variance σ^2 .

Let $\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$, then the central limit theorem states that: as $n \to \infty$ the distribution of $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ approaches that of a standard normal.

This theorem was a massive achievement and is the foundation for much of modern statistics.