Real-Time Traffic Prediction with Kafka

Phase 1

- 1. Kafka Producer and Consumer Implementation:
 - a. Kafka producer Script https://github.com/pushkar-saraf/traffic flow prediction/blob/master/src/producer.py
 - b. Kafka Consumer Script https://github.com/pushkar-saraf/traffic flow prediction/blob/master/sr c/consumer.py
- 2. Stream data from the producer to Kafka and consume it using the consumer.
 - a. In Producer function stream data()
 - i. Reads data from pickle file
 - ii. Processes and encodes to json
 - iii. Streams it with 1 second delay
 - b. In Consumer function <u>subscribe()</u>
 - i. Subscribes to the topic, and decodes back to json
 - ii. Sends it for prediction
- 3. Ensure real-time simulation by introducing appropriate delays (e.g., 1-second intervals).
 - a. Function <u>stream_data()</u> has sleep(1)

Phase 2

- 1. Visualizations
 - a. Time-Series Plots (5 Points): Create clear and well-labeled time-series plots showing traffic flow over time, including at least:
 - i. Traffic Flow vs Time

b. Autocorrelation and Partial Autocorrelation Plots (5 Points): Generate and interpret ACF and PACF plots to identify patterns, seasonality, and trends in the traffic flow data.

i. Autocorrelation

• Plot below clearly indicates seasonality. Notice how for lags of 1 to 10 there is a high correlation, and how it decreases as we go further back.

ii. Partial Autocorrelation

• Confirms our understanding of the autoregressive model. Current value is highly dependent of previous value. Traffic is not truly random. It can be predicted!

c. Additional Visualizations (5 Points): Include any additional visualizations that help in understanding the data, such as histograms, scatter plots, or heatmaps.

i. Histogram

Histogram shows that there is a high probability of very high and very low traffic.

- ii. **Prediction with Lag 10:** Confirms our prediction that that data is not truly random and can be predicted
 - Training MAE: 0.08731196348703892
 - Training RMSE: 0.10894698839724803

iii. Prediction with Lag 1:

• Highly correlated. We can use this!

• Training MAE: 0.03605470311660593

• Training RMSE: 0.05078659336312084

iv. Prediction with time vectors

• There is some overfitting.

• Training MAE: 0.019540443928494636

- Training RMSE: 0.02630296300970578
- 2. Analysis and Interpretation:
 - a. Provide insightful analysis based on the visualizations.
 - b. Identify key patterns, trends, and any anomalies in the data.

Based on above, its clear that we can use following things easily

- i. Past data high correlation with less lag
- ii. **Time of day**: Higher traffic in the middle of the day. Periodical.
- iii. Higher probability of **extreme traffic conditions**. Empty roads or high traffic.
- c. Discuss how these findings will influence your model selection and feature engineering.
 - i. Model will use previous data as input
 - ii. Linear regression provides a good baseline.
 - iii. Additional features can be designed.
 - Example: Rolling average: To reduce no of vectors
 - Weighted average: As data is highly correlated with lesser lag
 - Reverse weighted average: For comparison
 - Time of day on linear scale and Day of week on linear scale.