Assignment1.R

RKC

2024-10-30

```
#### 1. Create the vectors: ####
# (1, 2, 3, . . . , 19, 20)
v = c(1:20); v
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# (20, 19, . . , 2, 1)
v = c(20:1); v
## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
# c.
# (1, 2, 3, . . . , 19, 20, 19, 18, . . . , 2, 1)
v = c(1:20,19:1); v
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 19 18 17 16 15
## [26] 14 13 12 11 10 9 8 7 6 5 4 3 2 1
# (4, 6, 3) and assign it to the name tmp.
tmp = c(4,6,3); tmp
## [1] 4 6 3
# (4, 6, 3, 4, 6, 3, ..., 4, 6, 3) where there are 10 occurrences of 4.
rep(tmp, 10)
## [1] 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3
# f.
# (4, 6, 3, 4, 6, 3, . . . , 4, 6, 3, 4) where there are 11
# occurrences of 4, 10 occurrences of 6 and 10 occurrences of 3.
?rep
```

starting httpd help server ... done

```
rep(tmp, c(11,10,10))
# a.
\# (4, 4, . . . , 4, 6, 6, . . . , 6, 3, 3, . . . , 3) where there are 10
# occurrences of 4, 20 occurrences of 6 and 30 occurrences of 3.
rep(tmp, c(10,20,30))
##### 2. Create a following matrix in R ####
v = c(0:4)
z = matrix(c(v, v+1,v+2,v+3, v+4), 5,5); z
##
       [,1] [,2] [,3] [,4] [,5]
## [1,]
         0
            1
                  2
                      3
## [2,]
        1
              2
                  3
                      4
## [3,]
       2
                      5
                           6
             3
                  4
       3
## [4,]
             4
                  5
                      6
                           7
## [5,]
         4
              5
                  6
                      7
                           8
#### 3. Write a R program to take input from the user (name and age) and ####
# display the values.
name = readline("Enter Name as input --> "); name
## Enter Name as input -->
## [1] ""
# age = scan(nmax=1); age
##### 4. Write a R program to create a Dataframes which contain ####
# details of 5 employees and display summary of the data.
emp1 = c("Pranay B Shah", "Siemens Mobility", 'Rolling Stocks', 'Bid and Project Management')
emp2 = c("Pranay B Shah", "Tetra Pak India", 'World Class Manufacturing factory - EMEA/APAC', 'Industri
emp3 = c("Pranay B Shah", "General Electric", 'Wind Turbines', 'Associate Engineer')
emp4 = c("Pranay B Shah", "Johnson Controls", 'Building Design', 'SCABA BMS Design Engg')
emp5 = c("Pranay B Shah", "Go Digital technologies", 'US Energy & Power', 'Ass. Data Engineer')
offers <- data.frame(rbind(emp1, emp2, emp3, emp4, emp5))
rownames(offers) <- c("Offer1", "Offer2", "Offer3", "Offer4", "Offer5")</pre>
colnames(offers) <- c("Name", "Company", "Domain", "Role"); View(offers)</pre>
#### 5. Create two different 2 by 2 matrices named A and B. ####
# A should contain the values 1 - 4 and B the values 5-8.
# Try out the following commands and by looking at the results
```

```
# see if you can figure out what is going on.
# •
# A
A = c(1,2,3,4)
m1 = matrix(A, 2,2); m1
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
B = c(5,6,7,8)
m2 = matrix(B, 2,2); m2
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8
# •
\# A * B
mul = A * B; mul
## [1] 5 12 21 32
# •
# A / B
A / B
## [1] 0.2000000 0.3333333 0.4285714 0.5000000
\# C = A \%x\% B
C = A \%x\% B; C
## [1] 5 6 7 8 10 12 14 16 15 18 21 24 20 24 28 32
# •
\# D = A + B
D = A+B; D
## [1] 6 8 10 12
# •
\# E = A - B
E = A-B; E
## [1] -4 -4 -4 -4
```

```
\# A == B
A == B
## [1] FALSE FALSE FALSE FALSE
#### 6. Create a 4*3 Matrix containing 12 numbers ####
# • What is the length and the mode of the matrix
m = matrix(1:12, 4, 3); m
       [,1] [,2] [,3]
       1 5 9
## [1,]
## [2,]
         2
              6
                10
## [3,]
       3
            7 11
## [4,]
         4
            8 12
# • Extract all values from matrix that are larger than 6.
m[m>6]
## [1] 7 8 9 10 11 12
# • Shift places of column 1 and 3
m[,c(3,2,1)]
       [,1] [,2] [,3]
## [1,]
       9 5 1
## [2,]
       10
              6
                   2
## [3,]
       11
              7
                   3
## [4,]
       12
              8
# • Add a vector with three zeros as a fifth row to the matrix
m = rbind(m, c(0,0,0)); m
       [,1] [,2] [,3]
##
## [1,]
       1 5 9
              6 10
## [2,]
       2
## [3,]
       3
            7 11
## [4,]
       4 8 12
## [5,]
       0 0 0
# • Replace all values the first two columns in your matrix with "NA
m[,1:2] = NA; m
       [,1] [,2] [,3]
## [1,]
       NA
            NA
## [2,]
       NA
             NA
                10
## [3,]
             NA
       NA
                11
## [4,]
       NA
            NA
                12
## [5,]
       NA
             NA
                 0
```

```
\# • Replace all values in the matrix with 0 and convert it to a vector
m[,] = 0 ; m; v2 = c(m); v2
##
        [,1] [,2] [,3]
## [1,]
          0
## [2,]
          0
               0
                    0
## [3,]
          0
               0
                    0
## [4,]
          0
               0
                    0
## [5,]
          0
                    0
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#### 7. Data frame ####
# • Write a R program to create a data frame from four given vectors.
SrNo = c(1:5); name = c('Pranay', 'Hemant', 'Bhupendra', 'Pratik', 'Yash');
age =c(1:5); v = data.frame(SrNo, name, age); v
##
    SrNo
              name age
## 1 1
            Pranay
## 2
       2
            Hemant
## 3
       3 Bhupendra
## 4
       4
            Pratik
## 5
       5
              Yash
                    5
\# \bullet  Write a R program to get the structure of a given data frame
## 'data.frame':
                   5 obs. of 3 variables:
## $ SrNo: int 1 2 3 4 5
## $ name: chr "Pranay" "Hemant" "Bhupendra" "Pratik" ...
## $ age : int 1 2 3 4 5
# • Write a R program to get the statistical summary and nature of
# the data of a given data frame.
summary(v)
##
        SrNo
                   name
                                       age
## Min. :1
              Length:5
                                  Min. :1
## 1st Qu.:2
              Class:character 1st Qu.:2
## Median :3
              Mode :character
                                  Median:3
## Mean :3
                                  Mean :3
## 3rd Qu.:4
                                  3rd Qu.:4
## Max. :5
                                  Max.
                                        :5
# • Write a R program to extract specific column from a data frame
# using column name
v$a; v$b
## [1] 1 2 3 4 5
## NULL
```

```
# • Write a R program to extract first two rows from a given data frame.
v[1:2, ]
##
     SrNo
            name age
## 1
        1 Pranay
## 2
        2 Hemant
\# \bullet \ \mbox{Write a R program to extract 3rd and 5th rows with 1st and}
# 3rd columns from a given data frame
v[c(3,5), c(1,3)]
##
    SrNo age
## 3
       3
## 5
        5
            5
# • Write a R program to add a new column in a given data frame.
# v %>% mutate(
# Newcolumn = age + 22
# ); v
v$City = c('Kalyan', 'Mumbai Central', 'Airoli', 'Andheri', 'Ville Parla'); v
     SrNo
               name age
                                  City
## 1
        1
                                Kalyan
             Pranay
                     1
## 2
        2
             Hemant
                      2 Mumbai Central
## 3
        3 Bhupendra 3
                                Airoli
## 4
        4
             Pratik 4
                               Andheri
## 5
                     5
                           Ville Parla
        5
               Yash
# • Write a R program to add new row(s) to an existing data frame.
v$Engineering = c('Electrical', 'Electronics', 'Civil', 'Civil', 'Electronics'); v
##
     SrNo
                                  City Engineering
               name age
                                Kalyan Electrical
## 1
        1
             Pranay
                     1
## 2
             Hemant
                      2 Mumbai Central Electronics
## 3
                                Airoli
        3 Bhupendra
                      3
                                             Civil
## 4
             Pratik
                               Andheri
                                             Civil
        4
                      4
                           Ville Parla Electronics
## 5
               Yash
                     5
# • Write a R program to drop column(s) by name from a given data frame.
v$age = NULL; v
     SrNo
                              City Engineering
##
               name
## 1
                            Kalyan Electrical
        1
             Pranay
             Hemant Mumbai Central Electronics
## 2
## 3
        3 Bhupendra
                            Airoli
                                         Civil
## 4
        4
             Pratik
                           Andheri
                                         Civil
## 5
                       Ville Parla Electronics
        5
              Yash
```

```
# • Write a R program to drop row(s) by number from a given data frame
v = v[-5, ] ; v
##
    SrNo
                              City Engineering
               name
## 1
                            Kalyan Electrical
       1
             Pranay
## 2
            Hemant Mumbai Central Electronics
## 3
       3 Bhupendra
                           Airoli
                                         Civil
## 4
            Pratik
                           Andheri
                                         Civil
       4
# • Write a R program to sort a given data frame by multiple column(s).
?sort
v[order(v$name, v$Engineering), ]
     SrNo
                              City Engineering
              name
## 3
       3 Bhupendra
                            Airoli
                                         Civil
## 2
       2
            Hemant Mumbai Central Electronics
## 1
       1
            Pranay
                           Kalyan Electrical
## 4
            Pratik
                           Andheri
                                         Civil
# • Write a R program to create inner, outer, left,
# right join(merge) from given two data frames.
df1 = data.frame(ID = c(1,2,3), Name = c("Pranay", 'Hemant', 'Ash'), Age = c(23,24,22)); df1
     ID
         Name Age
## 1 1 Pranay
               23
## 2 2 Hemant
               24
## 3 3
          Ash 22
df2 = data.frame(ID = c(1,2,4), Role = c("Data Engineering", 'Data Analyst',
                                         'Marketing'),
                 Division = c('Finance', 'Marketing', 'Marketing')); df2
                    Role Division
     ID
## 1 1 Data Engineering
                         Finance
## 2 2
            Data Analyst Marketing
## 3 4
              Marketing Marketing
df3 = merge(df1, df2, by = "ID"); df3
                               Role Division
         Name Age
## 1 1 Pranay 23 Data Engineering
                                     Finance
## 2 2 Hemant 24
                      Data Analyst Marketing
# • Write a R program to replace NA values with 3 in a given data frame.
df = data.frame(
 A = c(1, NA, 3, NA),
 B = c(NA, 5, NA, 7),
 C = c(9, NA, 11, NA)
); df
```

```
##
      A B C
## 1 1 NA 9
## 2 NA 5 NA
## 3 3 NA 11
## 4 NA 7 NA
df[is.na(df)] = 3; df
     A B C
## 1 1 3 9
## 2 3 5 3
## 3 3 3 11
## 4 3 7 3
\# • Write a R program to change a column name of a given data frame.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
df3 %>% rename(IdentityNumber = ID)
     IdentityNumber
                                           Role Division
                      Name Age
## 1
                 1 Pranay 23 Data Engineering
                                                  Finance
## 2
                  2 Hemant 24
                                   Data Analyst Marketing
# • Write a R program to change more than one column name of a given data frame.
df3 %>% rename(IdentityNumber = ID, FullName = Name)
##
     IdentityNumber FullName Age
                                             Role Division
## 1
                      Pranay 23 Data Engineering
                  1
## 2
                      Hemant 24
                                    Data Analyst Marketing
# • Write a R program to select some random rows from a given data frame.
df1[sample(nrow(df1), 2), ]
     ID
         Name Age
## 1 1 Pranay 23
## 3 3
           Ash 22
```

```
\# \bullet  Write a R program to reorder an given data frame by column name
v[,c("SrNo", "City", "Engineering", 'name')]
##
     SrNo
                    City Engineering
                                            name
## 1
                  Kalyan Electrical
      1
                                         Pranay
        2 Mumbai Central Electronics
                                         Hemant
## 3
                  Airoli
                                Civil Bhupendra
## 4
                 Andheri
                                Civil
                                         Pratik
# • Write a R program to compare two data frames to find the row(s) in first
# data frame that are not present in second data frame.
df1 = data.frame(
 A = c(1, 2, 3, 4),
 B = c("Pranay", "Hemant", "Onkar", "Pratik")
); df1
##
## 1 1 Pranay
## 2 2 Hemant
## 3 3 Onkar
## 4 4 Pratik
df2 = data.frame(
 A = c(2, 3, 5),
 B = c("Hemant", "Onkar", "Bhupendra")
); df2
               В
##
     Α
## 1 2
          Hemant
## 2 3
           Onkar
## 3 5 Bhupendra
?intersect
library(dplyr)
setdiff(df1, df2)
##
            В
## 1 1 Pranay
## 2 4 Pratik
 \hbox{$\#$ \bullet$ Write a R program to find elements which are present in two given data frame.} 
intersect(df1, df2)
     Α
## 1 2 Hemant
# • Write a R program to find elements come only once that are common to both given data frames.
intersect(df1, df2)
```

```
## A
## 1 2 Hemant
## 2 3 Onkar
# • Create a dataframe then export it in .csv, .txt, .xlsx file.
library(writexl)
getwd()
## [1] "A:/CDAC_SM_VITA/5_R_Programming"
setwd("A:/CDAC_SM_VITA/5_R_Programming")
write.csv(df, "7_1_assign.csv")
write.table(df, "7_2_assign.txt")
write_xlsx(df, "7_3_assign.xlsx")
# • Write a R program to count the number of NA values in a data frame column.
df = data.frame(
 A = c(1, NA, 3, NA),
 B = c(NA, 5, NA, 7),
 C = c(9, NA, 11, NA)
); df
      A B C
##
## 1 1 NA 9
## 2 NA 5 NA
## 3 3 NA 11
## 4 NA 7 NA
sapply(df, function(col) sum(is.na(col)))
## A B C
## 2 2 2
\# \bullet Write \ a \ R \ program \ to \ call \ the \ (built-in) \ dataset \ airquality.
# Remove the variables 'Solar.R' and 'Wind' and display the data frame
df = airquality
names(df)
## [1] "Ozone"
                 "Solar.R" "Wind"
                                      "Temp"
                                                "Month"
                                                          "Day"
df[,c(-2,-3)]
##
       Ozone Temp Month Day
## 1
          41
               67
                      5
                          1
## 2
               72
                      5
                          2
          36
               74
## 3
          12
                      5
                          3
## 4
               62
                      5 4
          18
## 5
         NA
               56
                      5 5
          28
                      5 6
## 6
               66
## 7
         23
               65
                      5 7
```

##	8	19	59	5	8
##	9	8	61	5	9
##	10	NA	69	5	10
##	11	7	74	5	11
##	12	16	69	5	12
##	13	11	66	5	13
##	14	14	68	5	14
##	15	18	58	5	15
##	16	14	64	5	16
##	17	34	66	5	17
##	18	6	57	5	18
##	19	30	68	5	19
##	20	11	62	5	20
##	21	1	59	5	21
##	22	11	73	5	22
##	23	4	61	5	23
##	24	32	61	5	24
##	25	NA	57	5	25
##	26	NA	58	5	26
##	27	NA	57	5	27
##	28	23	67	5	28
##	29	45	81	5	29
##	30	115	79	5	30
##	31	37	76	5	31
##	32	NA	78	6	1
##	33	NA	74	6	2
##	34	NA	67	6	3
##	35	NA	84	6	4
##	36	NA	85	6	5
##	37	NA	79	6	6
##	38	29	82	6	7
##	39	NA	87	6	8
##	40	71	90	6	9
##	41	39	87	6	10
##	42	NA	93	6	11
##	43	NA	92	6	12
##	44	23	82	6	13
##	45	NA	80	6	14
##	46	NA	79	6	15
##	47	21	77	6	16
##	48	37	72	6	17
##	49	20	65	6	18
##	50	12	73	6	19
##	51	13	76	6	20
##	52	NA	77	6	21
##	53	NA	76	6	22
##	54	NA	76	6	23
##	55	NA	76	6	24
##	56	NA	75	6	25
##	57	NA	78	6	26
##	58	NA	73	6	27
##	59	NA	80	6	28
##	60	NA	77	6	29
##	61	NA	83	6	30

## 62	135	84	7	1
## 63	49	85	7	2
## 64	32	81	7	3
## 65	NA	84	7	4
## 66	64	83	7	5
## 67	40	83	7	6
## 68	77	88	7	7
## 69	97	92	7	8
## 70	97	92	7	9
## 71	85	89	7	10
## 72	NA	82	7	11
## 73	10	73	7	12
## 74	27	81	7	13
## 75	NA	91	7	14
## 76	7	80	7	15
## 77	48	81	7	16
## 78	35	82	7	17
## 79	61	84	7	18
## 80	79	87	7	19
## 81	63	85	7	20
## 82	16	74	7	21
## 83	NA	81	7	22
## 84	NA	82	7	23
## 85	80	86	7	24
## 86	108	85	7	25
## 87	20	82	7	26
## 88	52	86	7	27
## 89	82	88	7	28
## 90	50	86	7	29
## 91	64	83	7	30
## 92	59	81	7	31
## 93	39	81	8	1
## 94	9	81	8	2
## 95	16	82	8	3
## 96	78	86	8	4
## 97	35	85	8	5
## 98	66	87	8	6
## 99	122	89	8	7
## 100	89	90	8	8
## 101	110	90	8	9
## 102	NA	92	8	10
## 103	NA	86	8	11
## 104	44	86	8	12
## 105	28	82	8	13
## 106	65	80	8	14
## 107	NA	79	8	15
## 108	22	77	8	16
## 109	59	79	8	17
## 110	23	76	8	18
## 111	31	78	8	19
## 112	44	78	8	20
## 113	21	77	8	21
## 114	9	72	8	22
## 115	NA	75	8	23

```
## 116
         45
               79
                         24
## 117
         168
                      8
                         25
               81
## 118
         73
               86
                      8
                         26
## 119
                         27
               88
                      8
          NA
## 120
          76
               97
                      8
                         28
## 121
                      8
                         29
         118
               94
## 122
               96
                      8
                         30
          84
## 123
          85
               94
                      8
                         31
## 124
          96
               91
                      9
                          1
## 125
                      9
                          2
          78
               92
## 126
          73
               93
                      9
                          3
## 127
                      9
               93
                          4
          91
## 128
                      9
                          5
          47
               87
## 129
          32
                      9
                          6
               84
## 130
          20
               80
                      9
                          7
## 131
          23
               78
                      9
                          8
## 132
               75
                      9
                          9
          21
## 133
          24
               73
                      9 10
## 134
               81
                      9 11
          44
                      9
## 135
          21
               76
                         12
## 136
          28
               77
                      9
                         13
## 137
          9
               71
                         14
## 138
               71
                      9
                         15
          13
## 139
          46
               78
                      9
                         16
## 140
                      9 17
          18
               67
## 141
          13
               76
                      9 18
## 142
          24
               68
                      9 19
## 143
               82
                      9
                         20
          16
                      9 21
## 144
          13
               64
## 145
                      9
                         22
          23
               71
## 146
          36
               81
                      9
                         23
## 147
          7
               69
                      9
                         24
## 148
                      9 25
          14
               63
## 149
               70
                      9 26
          30
                      9
## 150
          NA
               77
                         27
## 151
          14
               75
                      9
                         28
## 152
          18
               76
                      9
                         29
## 153
          20
               68
                      9
                         30
```

```
#### 8. Create two vectors, vec1 and vec2, with at least 5 elements each and #### # Perform element-wise addition, subtraction, multiplication, and division of # vec1 and vec2 v1 = c(50:55); v1
```

[1] 50 51 52 53 54 55

```
v2 = c(70:75); v2
```

[1] 70 71 72 73 74 75

```
add = v1 + v2; add
```

[1] 120 122 124 126 128 130

```
sub = v1 - v2; sub;
## [1] -20 -20 -20 -20 -20 -20
mul = v1 * v2; mul
## [1] 3500 3621 3744 3869 3996 4125
div = v1 / v2; div
## [1] 0.7142857 0.7183099 0.7222222 0.7260274 0.7297297 0.7333333
### 9. Create a vector named numbers with 10 random integers between 1 and 100 ###
random = c(sample(c(1:100), 10)); random
## [1] 29 32 99 61 81 20 37 83 79 50
#### 10. Create a vector named grades containing random scores between 0 and 100 ####
# for a class of 10 students.
library(randomNames)
Grade = c(sample(c(0:100), 10))
Names = randomNames(10);
df = data.frame(Names, Grade); df
##
                       Names Grade
## 1
             Sherer, Mamadou
## 2
                Dwyer, Roger
                                24
## 3
              Lucero, Michel
                                21
## 4 Fuoco-Martinez, Blanca
                                 5
## 5
              Gully, Matthew
                                54
## 6
              Llamas, Julian
                                22
## 7
            el-Rauf, Sitaara
                                73
## 8
            Johnson, Sequoya
                                90
## 9
                 Gozeh, Khoa
                                16
## 10
          al-Soliman, Aaisha
                                35
?randomNames
# • Find the highest and lowest grades in the grades vector.
max(Grade); min(Grade)
## [1] 90
## [1] 5
# • Create a new vector pass_fail based on the condition that any grade
# below 60 is a fail (0) and above or equal to 60 is a pass (1)
df$pass_fail = ifelse(df$Grade >= 60, 1,0); df
```

```
##
                       Names Grade pass_fail
## 1
            Sherer, Mamadou
                                34
## 2
               Dwyer, Roger
                                           0
## 3
             Lucero, Michel
                                           0
                                21
## 4 Fuoco-Martinez, Blanca
                                5
                                           0
## 5
             Gully, Matthew
                              54
                                           0
## 6
             Llamas, Julian
                               22
                                           0
## 7
            el-Rauf, Sitaara
                               73
                                           1
## 8
            Johnson, Sequoya
                                90
                                           1
## 9
                                           0
                 Gozeh, Khoa
                                16
## 10
          al-Soliman, Aaisha
                                35
                                           0
#### 11. Create a vector named original_vec with at least 8 elements.####
original_vec = c(20:27); original_vec
## [1] 20 21 22 23 24 25 26 27
# • Extract the 3rd through 6th elements of original_vec and store them in a
# new vector called subset_vec.
subset_vec = c(original_vec[3:6]); subset_vec
## [1] 22 23 24 25
# • Append two more elements to original_vec.
c(subset_vec, c(1:2))
## [1] 22 23 24 25 1 2
# Calculate the mean of original_vec.
mean(subset_vec)
## [1] 23.5
# 12. Create a vector named ages with 10 random ages between 20 and 60.
age = sample(20:60, 10); age
## [1] 49 22 27 24 59 44 56 32 50 58
# • Find the maximum and minimum ages in the ages vector.
max(age); min(age)
## [1] 59
## [1] 22
# • Create a new vector seniors with ages above 50
senior = age[age > 50]; senior
```

[1] 59 56 58

```
#### 13. Create a vector named original_vec with at least 10 elements. ####
original_vec = sample(c(10:100), 10); original_vec
## [1] 77 74 11 51 98 52 78 30 36 35
# • Extract the first, third, and fifth elements of original_vec
# and store them in a new vector called subset_vec.
original_vec[c(1,3,5)]
## [1] 77 11 98
# • Sort original vec in descending order.
sort(original_vec, decreasing = TRUE)
## [1] 98 78 77 74 52 51 36 35 30 11
#### 14. Create a random 4x4 matrix named random_mat. ####
random_mat = matrix(sample(1:100, 16), 4,4); random_mat
        [,1] [,2] [,3] [,4]
##
## [1,]
          92
               10
                    29
## [2,]
           5
               84
                    19
                         71
## [3,]
               23
          20
                    32
                         15
## [4,]
          21
                    95
# • Write a function row_mean that takes a matrix as input and
# returns a vector containing the mean of each row.
row_mean = function(matrices){
  for (i in 1:4) {
    print(mean(random_mat[i, ]))
  }
# • Use the row_mean function to find the row means of random_mat
row_mean(random_mat)
## [1] 40.5
## [1] 44.75
## [1] 22.5
## [1] 68.25
#### 15. Create a 5x5 matrix named student_grades with random grades between 0 and 100. ####
student_grades = matrix(sample(0:100, 25), 5,5); student_grades
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
           8
                3
                    91
                         95
                              40
## [2,]
               83
                    76
                              50
          86
                         33
## [3,]
                    28
                         23
          21
               80
                               9
## [4,]
               62
                    71
                         25
                              39
          75
## [5,]
          66
               19
                    29
                         34
                              64
```

```
# • Find the highest grade in the matrix along with its row and column index.
# index(mean(student_grades))
which(student_grades == max(student_grades), arr.ind = TRUE)
        row col
## [1,]
        1
# • Create a new matrix pass_fail based on the condition that any grade
# below 60 is a fail (0) and above or equal to 60 is a pass (1)
pass_fail = matrix(ifelse(student_grades>60,1,0), 5, 5); pass_fail
        [,1] [,2] [,3] [,4] [,5]
##
## [1,]
                     1
## [2,]
           1
                               0
                1
                     1
## [3,]
           0
                     0
                          0
                               0
                1
## [4,]
                               0
           1
                          0
                1
                     1
## [5,]
# 16. Create a 3x3 matrix named mat1 with elements 1 to 9.
mat1 = matrix(c(1:9), 3, 3); mat1
        [,1] [,2] [,3]
## [1,]
           1
               4
## [2,]
           2
                5
## [3,]
                     9
# • Define a 2x4 matrix mat2 with all elements set to 0.
mat2 = matrix(c(0), 2,4); mat2
        [,1] [,2] [,3] [,4]
## [1,]
          0
               0
                     0
## [2,]
                0
# • What is the difference between cbind() and rbind() functions when
# creating matrices?
 # cbind()
  # Combines objects by columns.
  # cbind() is used when we want to add additional columns to an existing data frame or matrix.
  # rbind()
  #Combines objects by rows.
  # rbind() is used when we want to add additional rows to an existing data frame or matrix.
# 17. Create a data frame named students with columns: Name, Age, Grade,
# and Gender, containing information for at least 5 students.
students = data.frame(Name =c('Pranay', 'Hemant', 'Bhupendra', 'Pratik', 'Yash'),
                      Age = sample(20:29, 5),
                      Grade = sample(80:100, 5),
                      Gender = c('M')); students
```

```
##
          Name Age Grade Gender
## 1
                      91
       Pranay 22
                              Μ
## 2
       Hemant 28
                      87
                              Μ
## 3 Bhupendra 26
                      92
                              М
## 4
       Pratik 24
                      94
                              Μ
## 5
          Yash 20
                      89
                              Μ
?randomNames
# • Display the first 3 rows of the students data frame.
students[1:3,]
##
          Name Age Grade Gender
## 1
        Pranay 22
                      91
                              М
## 2
        Hemant 28
                      87
                              М
## 3 Bhupendra 26
                      92
                              Μ
\# • Calculate the average age of the students.
mean(students$Age)
## [1] 24
# 18. Extract the Grade column from the students data frame.
students$Grade
## [1] 91 87 92 94 89
# • Select the rows where the Grade is greater than or equal to 85.
students[(Grade >= 85), ]
      Name Age Grade Gender
## NA <NA> NA
                       <NA>
                  NA
# • Create a new data frame called female_students containing only the female students.
female_students = students[students$Gender == 'M',]; female_students
##
          Name Age Grade Gender
## 1
       Pranay 22
                      91
                              Μ
## 2
        Hemant
                      87
## 3 Bhupendra 26
                      92
                              Μ
## 4
       Pratik 24
                      94
                              Μ
## 5
          Yash 20
                      89
                              М
# Since I dont have any female in above df, I've filtered using 'M'
#### 19. Create a dataframe named my_data with
# columns: Name, Age, City, and Salary containing information for at least 5 individuals.
my data = data.frame(Name =c('Pranay', 'Hemant', 'Bhupendra', 'Pratik', 'Yash'),
                     Age = sample(20:29, 5),
```

```
City = c('Kalyan', 'Mumbai Central', 'Airoli', 'Andheri', 'Ville Parla'),
                     'Salary(K in Rs)' = sample(70:120,5),
                     Experience = sample(1:10, 5)
); my_data
##
                             City Salary.K.in.Rs. Experience
          Name Age
## 1
               20
                                               107
        Pranay
                           Kalyan
## 2
                                                            4
        Hemant
               27 Mumbai Central
                                               119
## 3 Bhupendra
                                               75
               25
                           Airoli
                                                            2
## 4
                          Andheri
                                               84
       Pratik
               26
## 5
          Yash 22
                      Ville Parla
                                               85
                                                            8
# • Display the first 5 rows of my_data.
my_data %>% head(5)
##
                             City Salary.K.in.Rs. Experience
          Name Age
## 1
        Pranay 20
                                               107
                                                           10
                           Kalyan
## 2
                                               119
                                                            4
        Hemant 27 Mumbai Central
                                                            6
## 3 Bhupendra 25
                           Airoli
                                                75
                                                            2
## 4
       Pratik 26
                          Andheri
                                               84
## 5
          Yash 22
                      Ville Parla
                                               85
# • Calculate the average salary in my_data.
mean(my_data$Salary.K.in.Rs.)
## [1] 94
# • Extract the Age column from my_data.
my_data$Age
## [1] 20 27 25 26 22
# • Select the rows where the Age is greater than 30.
subset(my_data, Age > 30)
## [1] Name
                       Age
                                       City
                                                        Salary.K.in.Rs.
## [5] Experience
## <0 rows> (or 0-length row.names)
# • Create a new dataframe named high_earners containing only
# individuals with a salary above $50,000.
my_data1 = data.frame(high_earners = subset(my_data, Salary.K.in.Rs. > 50)); my_data1
     high_earners.Name high_earners.Age high_earners.City
## 1
                                     20
                Pranay
                                                    Kalyan
## 2
                Hemant
                                     27
                                           Mumbai Central
## 3
                                     25
             Bhupendra
                                                    Airoli
## 4
                Pratik
                                     26
                                                   Andheri
## 5
                                     22
                                              Ville Parla
                  Yash
```

```
high_earners.Salary.K.in.Rs. high_earners.Experience
## 1
                              107
## 2
                              119
                                                         4
## 3
                               75
                                                         6
## 4
                               84
                                                         2
## 5
                               85
                                                         8
# • Add a new column named Education to my_data, indicating the highest level
# of education for each individual.
my_data$Education = c('Electrical Engg', 'Electronics Engg', 'Civil Engg', 'Civil Engg', 'Electronics E
##
          Name Age
                             City Salary.K.in.Rs. Experience
                                                                     Education
## 1
       Pranay 20
                           Kalyan
                                              107
                                                           10 Electrical Engg
## 2
        Hemant 27 Mumbai Central
                                              119
                                                            4 Electronics Engg
## 3 Bhupendra 25
                           Airoli
                                               75
                                                            6
                                                                    Civil Engg
                                                            2
## 4
        Pratik
                26
                          Andheri
                                               84
                                                                    Civil Engg
## 5
               22
                      Ville Parla
                                               85
          Yash
                                                            8 Electronics Engg
# • Rename the column City to Residence.
rename(my_data, Residence = City)
##
          Name Age
                        Residence Salary.K.in.Rs. Experience
                                                                     Education
## 1
                                              107
        Pranay
               20
                           Kalyan
                                                           10 Electrical Engg
        Hemant 27 Mumbai Central
                                              119
                                                            4 Electronics Engg
## 3 Bhupendra 25
                           Airoli
                                               75
                                                            6
                                                                    Civil Engg
## 4
       Pratik 26
                          Andheri
                                               84
                                                            2
                                                                    Civil Engg
## 5
          Yash 22
                      Ville Parla
                                               85
                                                            8 Electronics Engg
# • Remove the Salary column from my_data.
my_data[-4]
##
          Name Age
                             City Experience
                                                     Education
## 1
        Pranay 20
                                          10 Electrical Engg
                           Kalyan
## 2
        Hemant 27 Mumbai Central
                                           4 Electronics Engg
## 3 Bhupendra 25
                           Airoli
                                           6
                                                    Civil Engg
## 4
                          Andheri
                                           2
       Pratik 26
                                                    Civil Engg
## 5
          Yash 22
                      Ville Parla
                                           8 Electronics Engg
# • Find the maximum and minimum ages in the dataframe.
max(my_data$Age); min(my_data$Age)
## [1] 27
## [1] 20
# • Calculate the mean salary of individuals with more than 5 years of experience.
my_data[(my_data$Experience > 5),]
##
                          City Salary.K.in.Rs. Experience
                                                                  Education
          Name Age
## 1
       Pranay 20
                        Kalyan
                                           107
                                                        10 Electrical Engg
## 3 Bhupendra 25
                        Airoli
                                            75
                                                                 Civil Engg
```

85

8 Electronics Engg

Yash 22 Ville Parla

5

```
mean(my_data$Salary.K.in.Rs.[(my_data$Experience > 5)])
## [1] 89
# • Determine the number of individuals from each city.
library(dplyr)
my_data %>% group_by(my_data$City) %>% summarise(Count = n())
## # A tibble: 5 x 2
     'my_data$City' Count
##
     <chr>>
                    <int>
## 1 Airoli
                        1
## 2 Andheri
                         1
## 3 Kalyan
                         1
## 4 Mumbai Central
## 5 Ville Parla
                         1
# 20. Load the inbuilt iris dataset and display its first 6 rows.
df = iris
df %>% head(6)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
              5.1
                          3.5
                                        1.4
                                                    0.2 setosa
## 2
              4.9
                           3.0
                                        1.4
                                                     0.2 setosa
## 3
              4.7
                           3.2
                                                     0.2 setosa
                                        1.3
## 4
              4.6
                           3.1
                                                     0.2 setosa
                                        1.5
## 5
              5.0
                           3.6
                                        1.4
                                                     0.2 setosa
## 6
              5.4
                                        1.7
                           3.9
                                                     0.4 setosa
# • Filter the dataset to include only rows where Sepal. Width is greater than 3.
df['Sepal.Width' > 3, ]
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                              Species
## 1
                5.1
                             3.5
                                          1.4
                                                       0.2
                                                               setosa
## 2
                4.9
                             3.0
                                          1.4
                                                       0.2
                                                               setosa
## 3
                4.7
                             3.2
                                          1.3
                                                       0.2
                                                               setosa
## 4
                4.6
                                          1.5
                             3.1
                                                       0.2
                                                               setosa
## 5
                5.0
                             3.6
                                          1.4
                                                       0.2
                                                               setosa
## 6
                5.4
                             3.9
                                          1.7
                                                       0.4
                                                               setosa
## 7
                4.6
                             3.4
                                          1.4
                                                       0.3
                                                               setosa
## 8
                5.0
                             3.4
                                          1.5
                                                       0.2
                                                               setosa
## 9
                4.4
                             2.9
                                          1.4
                                                       0.2
                                                               setosa
## 10
                4.9
                             3.1
                                          1.5
                                                       0.1
                                                               setosa
## 11
                5.4
                             3.7
                                          1.5
                                                       0.2
                                                               setosa
## 12
                4.8
                                          1.6
                             3.4
                                                       0.2
                                                               setosa
## 13
                4.8
                             3.0
                                          1.4
                                                       0.1
                                                               setosa
```

1.1

1.2

1.5

1.3

1.4

0.1

0.2

0.4

0.4

0.3

setosa

setosa

setosa

setosa

setosa

14

15

16

17

18

4.3

5.8

5.7

5.4

5.1

3.0

4.0

4.4

3.9

3.5

##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	
				1.3		setosa
##	37	5.5	3.5		0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4 ver	sicolor
##	52	6.4	3.2	4.5	1.5 ver	sicolor
##	53	6.9	3.1	4.9	1.5 ver	sicolor
##	54	5.5	2.3	4.0	1.3 ver	sicolor
##	55	6.5	2.8	4.6	1.5 ver	sicolor
##	56	5.7	2.8	4.5	1.3 ver	sicolor
##		6.3	3.3	4.7	1.6 ver	sicolor
	58	4.9	2.4	3.3	1.0 ver	sicolor
##	59	6.6	2.9	4.6	1.3 ver	sicolor
	60	5.2	2.7	3.9	1.4 ver	
	61	5.0	2.0	3.5	1.0 ver	sicolor
	62	5.9	3.0	4.2	1.5 ver	
	63	6.0	2.2	4.0	1.0 ver	
##	64	6.1	2.9	4.7	1.4 ver	
	65	5.6	2.9	3.6	1.3 ver	
##	66	6.7	3.1	4.4	1.4 ver	
	67	5.6	3.0	4.4	1.4 ver 1.5 ver	
##	68	5.8	2.7	4.1	1.0 ver	
	69	6.2	2.7		1.5 ver	
	70	5.6	2.5	4.5	1.5 ver	
				3.9		
	71	5.9	3.2	4.8	1.8 ver	
##	12	6.1	2.8	4.0	1.3 ver	sicolor

## 7	73	6.3	2.5	4.9	1.5	versicolor
## 7	74	6.1	2.8	4.7	1.2	versicolor
## 7	75	6.4	2.9	4.3	1.3	versicolor
## 7	76	6.6	3.0	4.4	1.4	versicolor
## 7	77	6.8	2.8	4.8	1.4	versicolor
## 7	78	6.7	3.0	5.0	1.7	versicolor
## 7	79	6.0	2.9	4.5	1.5	versicolor
## 8	30	5.7	2.6	3.5	1.0	versicolor
## 8	31	5.5	2.4	3.8	1.1	versicolor
## 8	32	5.5	2.4	3.7	1.0	versicolor
## 8	33	5.8	2.7	3.9	1.2	versicolor
## 8	34	6.0	2.7	5.1	1.6	versicolor
## 8	35	5.4	3.0	4.5	1.5	versicolor
## 8	36	6.0	3.4	4.5	1.6	versicolor
		6.7	3.1	4.7	1.5	versicolor
		6.3	2.3	4.4	1.3	versicolor
		5.6	3.0	4.1	1.3	versicolor
		5.5	2.5	4.0	1.3	versicolor
		5.5	2.6	4.4		versicolor
		6.1	3.0	4.6		versicolor
		5.8	2.6	4.0		versicolor
		5.0	2.3	3.3		versicolor
		5.6	2.7	4.2		versicolor
		5.7	3.0	4.2		versicolor
		5.7	2.9	4.2		versicolor
		6.2	2.9	4.3		versicolor
		5.1	2.5	3.0		versicolor
		5.7	2.8	4.1		versicolor
		6.3	3.3	6.0	2.5	virginica
		5.8	2.7	5.1	1.9	virginica
		7.1	3.0	5.9	2.1	virginica
		6.3	2.9	5.6	1.8	virginica
		6.5	3.0	5.8	2.2	virginica
		7.6	3.0	6.6	2.1	virginica
		4.9	2.5	4.5	1.7	virginica
	108	7.3	2.9	6.3	1.8	virginica
	109	6.7	2.5	5.8	1.8	virginica
## 1		7.2	3.6	6.1	2.5	virginica
	111	6.5	3.2	5.1	2.0	virginica
	112	6.4	2.7	5.3		virginica
					1.9	_
	113	6.8	3.0	5.5	2.1	virginica
	114	5.7	2.5	5.0	2.0	virginica
	115	5.8	2.8	5.1	2.4	virginica
	116	6.4	3.2	5.3	2.3	virginica
	117	6.5	3.0	5.5	1.8	virginica
	118	7.7	3.8	6.7	2.2	virginica
	119	7.7	2.6	6.9	2.3	virginica
	120	6.0	2.2	5.0	1.5	virginica
	121	6.9	3.2	5.7	2.3	virginica
	122	5.6	2.8	4.9	2.0	virginica
	123	7.7	2.8	6.7	2.0	virginica
	124	6.3	2.7	4.9	1.8	virginica
	125	6.7	3.3	5.7	2.1	virginica
## 1	126	7.2	3.2	6.0	1.8	virginica

```
## 127
               6.2
                           2.8
                                       4.8
                                                   1.8 virginica
## 128
               6.1
                           3.0
                                       4.9
                                                   1.8 virginica
## 129
               6.4
                           2.8
                                       5.6
                                                   2.1 virginica
## 130
               7.2
                           3.0
                                       5.8
                                                   1.6 virginica
## 131
               7.4
                           2.8
                                       6.1
                                                   1.9 virginica
## 132
               7.9
                           3.8
                                       6.4
                                                   2.0 virginica
## 133
               6.4
                           2.8
                                      5.6
                                                   2.2 virginica
## 134
               6.3
                          2.8
                                      5.1
                                                  1.5 virginica
## 135
               6.1
                           2.6
                                       5.6
                                                  1.4 virginica
## 136
               7.7
                          3.0
                                       6.1
                                                  2.3 virginica
## 137
               6.3
                           3.4
                                       5.6
                                                   2.4 virginica
## 138
               6.4
                           3.1
                                       5.5
                                                   1.8 virginica
## 139
               6.0
                           3.0
                                       4.8
                                                   1.8 virginica
## 140
               6.9
                          3.1
                                       5.4
                                                   2.1 virginica
## 141
               6.7
                          3.1
                                      5.6
                                                   2.4 virginica
## 142
               6.9
                          3.1
                                       5.1
                                                  2.3 virginica
## 143
               5.8
                          2.7
                                       5.1
                                                  1.9 virginica
## 144
               6.8
                          3.2
                                       5.9
                                                  2.3 virginica
## 145
               6.7
                          3.3
                                       5.7
                                                  2.5 virginica
## 146
               6.7
                           3.0
                                       5.2
                                                   2.3 virginica
## 147
               6.3
                          2.5
                                       5.0
                                                  1.9 virginica
## 148
               6.5
                           3.0
                                       5.2
                                                   2.0 virginica
## 149
               6.2
                           3.4
                                       5.4
                                                  2.3 virginica
## 150
               5.9
                           3.0
                                       5.1
                                                   1.8 virginica
# • Calculate the mean Petal.Length for each species.
df %>% group_by(Species) %>% summarise(mean_petal_length = mean(Petal.Length))
## # A tibble: 3 x 2
    Species
               mean_petal_length
##
     <fct>
                           <dbl>
## 1 setosa
                            1.46
## 2 versicolor
                            4.26
                            5.55
## 3 virginica
# 21 Load the mtcars dataset and display its first 5 rows.
df = mtcars
# • Create a new column named Miles_per_Gallon by converting mpg to
# kilometers per liter (1 mile = 1.60934 kilometers).
df %>% mutate(Miles_per_Gallon = (mpg * 1.60934) / 3.78541)
##
                       mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                      21.0
                             6 160.0 110 3.90 2.620 16.46
## Mazda RX4 Wag
                             6 160.0 110 3.90 2.875 17.02 0
                                                                      4
                      21.0
                                                            1
## Datsun 710
                      22.8
                           4 108.0 93 3.85 2.320 18.61 1 1
## Hornet 4 Drive
                      21.4 6 258.0 110 3.08 3.215 19.44 1 0
                                                                      1
## Hornet Sportabout
                      18.7 8 360.0 175 3.15 3.440 17.02 0 0
                                                                 3
                                                                      2
## Valiant
                      18.1 6 225.0 105 2.76 3.460 20.22 1 0
                                                                 3
                                                                      1
## Duster 360
                    14.3 8 360.0 245 3.21 3.570 15.84 0 0
## Merc 240D
                     24.4 4 146.7 62 3.69 3.190 20.00 1 0
                                                                      2
```

```
22.8
## Merc 230
                              4 140.8 95 3.92 3.150 22.90
## Merc 280
                       19.2
                              6 167.6 123 3.92 3.440 18.30
                                                                          4
                                                            1
## Merc 280C
                       17.8
                              6 167.6 123 3.92 3.440 18.90
                              8 275.8 180 3.07 4.070 17.40
## Merc 450SE
                       16.4
                                                                          3
## Merc 450SL
                       17.3
                              8 275.8 180 3.07 3.730 17.60
                                                                    3
                                                                          3
## Merc 450SLC
                       15.2
                              8 275.8 180 3.07 3.780 18.00
                                                            0
                                                               Λ
                                                                    3
                                                                          3
## Cadillac Fleetwood 10.4
                              8 472.0 205 2.93 5.250 17.98
                              8 460.0 215 3.00 5.424 17.82
                                                                    3
## Lincoln Continental 10.4
                                                            0
                                                               0
                                                                          4
## Chrysler Imperial
                       14.7
                              8 440.0 230 3.23 5.345 17.42
                                                                     3
                                                                          4
## Fiat 128
                              4 78.7 66 4.08 2.200 19.47
                       32.4
                                                            1
                                                               1
                                                                          1
## Honda Civic
                       30.4
                              4 75.7 52 4.93 1.615 18.52
                                                                          2
                              4 71.1 65 4.22 1.835 19.90
## Toyota Corolla
                       33.9
                                                                     4
                                                            1
                                                               1
                                                                          1
                                                                    3
## Toyota Corona
                       21.5
                              4 120.1 97 3.70 2.465 20.01
                                                               0
                                                                          1
                              8 318.0 150 2.76 3.520 16.87
                                                                    3
                                                                          2
## Dodge Challenger
                       15.5
                                                               Ω
## AMC Javelin
                       15.2
                              8 304.0 150 3.15 3.435 17.30
                                                            0
                                                               0
                                                                    3
                                                                          2
## Camaro Z28
                       13.3
                              8 350.0 245 3.73 3.840 15.41
                                                            0
                                                               0
                                                                    3
                                                                          4
## Pontiac Firebird
                       19.2
                              8 400.0 175 3.08 3.845 17.05
                                                            0
                                                                    3
                                                                          2
                                                               0
## Fiat X1-9
                       27.3
                              4 79.0 66 4.08 1.935 18.90
## Porsche 914-2
                       26.0
                              4 120.3 91 4.43 2.140 16.70 0
                                                                    5
                                                                          2
                                                                          2
## Lotus Europa
                       30.4
                              4 95.1 113 3.77 1.513 16.90 1
                                                                    5
                       15.8
## Ford Pantera L
                              8 351.0 264 4.22 3.170 14.50 0
                                                              1
                                                                    5
                                                                          4
## Ferrari Dino
                       19.7
                              6 145.0 175 3.62 2.770 15.50 0 1
                                                                    5
## Maserati Bora
                       15.0
                              8 301.0 335 3.54 3.570 14.60 0 1
                                                                    5
                                                                          8
## Volvo 142E
                       21.4
                              4 121.0 109 4.11 2.780 18.60 1 1
                                                                          2
##
                       Miles_per_Gallon
## Mazda RX4
                               8.928000
## Mazda RX4 Wag
                               8.928000
## Datsun 710
                               9.693257
## Hornet 4 Drive
                               9.098057
## Hornet Sportabout
                               7.950171
## Valiant
                               7.695086
## Duster 360
                               6.079543
## Merc 240D
                              10.373486
## Merc 230
                               9.693257
## Merc 280
                               8.162743
## Merc 280C
                               7.567543
## Merc 450SE
                               6.972343
## Merc 450SL
                               7.354971
## Merc 450SLC
                               6.462171
## Cadillac Fleetwood
                               4.421486
## Lincoln Continental
                               4.421486
## Chrysler Imperial
                               6.249600
## Fiat 128
                              13.774628
## Honda Civic
                              12.924343
## Toyota Corolla
                              14.412343
## Toyota Corona
                               9.140571
## Dodge Challenger
                               6.589714
## AMC Javelin
                               6.462171
## Camaro Z28
                               5.654400
## Pontiac Firebird
                               8.162743
## Fiat X1-9
                              11.606400
## Porsche 914-2
                              11.053714
## Lotus Europa
                              12.924343
## Ford Pantera L
                               6.717257
```

```
## Ferrari Dino
                            8.375314
## Maserati Bora
                             6.377143
## Volvo 142E
                             9.098057
# • Find the car with the highest horsepower.
df %>% filter(hp == max(hp))
##
                mpg cyl disp hp drat wt qsec vs am gear carb
## Maserati Bora 15 8 301 335 3.54 3.57 14.6 0 1 5
names(df)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs"
                                                              "am"
                                                                     "gear"
## [11] "carb"
# 22 Load the ChickWeight dataset and display the first few rows.
df = ChickWeight
# • How many rows and columns does the dataset have?
dim(df)
## [1] 578 4
# • What are the unique values in the Diet column?
unique(df$Diet)
## [1] 1 2 3 4
## Levels: 1 2 3 4
# • Calculate the average weight of all chicks in the dataset.
mean(df$weight)
## [1] 121.8183
# • Find the maximum and minimum weight of chicks.
max(df$weight); min(df$weight)
## [1] 373
## [1] 35
# • Calculate the total number of observations for each Diet type.
df %>%
 group_by(Diet) %>%
summarise(total_observations = n())
```

• Create a new dataframe high_weight containing chicks with weight greater than 100. df %>% filter(weight > 100)

##	weight	Time	Chick	Diet
## 1	106	12	1	1
## 2	125	14	1	1
## 3	149	16	1	1
## 4	171	18	1	1
## 5	199	20	1	1
## 6	205	21	1	1
## 7	103	10	2	1
## 8	122	12	2	1
## 9	138	14	2	1
## 10	162	16	2	1
## 11	187	18	2	1
## 12	209	20	2	1
## 13	215	21	2	1
## 14	115	12	3	1
## 15	138	14	3	1
## 16	163	16	3	1
## 17	187	18	3	1
## 18	198	20	3	1
## 19	202	21	3	1
## 20	102	12	4	1
## 21	108	14	4	1
## 22	136	16	4	1
## 23	154	18	4	1
## 24	160	20	4	1
## 25	157	21	4	1
## 26	106	10	5	1
## 27	141	12	5	1
## 28	164	14	5	1
## 29	197	16	5	1
## 30	199	18	5	1
## 31	220	20	5	1
## 32	223	21	5	1
## 33	124	10	6	1
## 34	141	12	6	1
## 35	148	14	6	1
## 36	155	16	6	1
## 37	160	18	6	1
## 38	160	20	6	1
## 39	157	21	6	1
## 40	112	10	7	1
## 41	146	12	7	1
## 42	174	14	7	1

##	43	218	16	7	1
##	44	250	18	7	1
##	45	288	20	7	1
##	46	305	21	7	1
##	47	110	12	8	1
##	48	116	14	8	1
##	49	126	16	8	1
##	50	134	18	8	1
##	51	125	20	8	1
##	52	101	16	10	1
## ##	53 54	112 120	18 20	10 10	1 1
##	5 4	124	21	10	1
##	56	112	8	11	1
##	57	139	10	11	1
##	58	168	12	11	1
##	59	177	14	11	1
##	60	182	16	11	1
##	61	184	18	11	1
##	62	181	20	11	1
##	63	175	21	11	1
##	64	119	12	12	1
##	65	135	14	12	1
##	66	162	16	12	1
##	67	185	18	12	1
##	68	195	20	12	1
##	69	205	21	12	1
##	70	101	8	14	1
##	71	128	10	14	1
##	72	164	12	14	1
##	73	192	14	14	1
##	74	227	16	14	1
##	75	248	18	14	1
##	76	259	20	14	1
##	77	266	21	14	1
##	78	103	14	17	1
##	79	113	16	17	1
##	80	123	18	17	1
##	81	133	20	17	1
##	82	142	21	17	1
##	83	106	16	19	1
##	84	120	18	19	1
##	85 86	144 157	20	19	1
## ##	87	107	21 18	19 20	1 1
##	88	115	20	20	1
##	89	117	21	20	1
##	90	125	8	21	2
##	91	163	10	21	2
##	92	217	12	21	2
##	93	240	14	21	2
##	94	275	16	21	2
##	95	307	18	21	2
##	96	318	20	21	2

##	97	331	21	21	2
##	98	108	12	22	2
##	99	111	14	22	2
##	100	131	16	22	2
##	101	148	18	22	2
##	102	164	20	22	2
##	103	167	21	22	2
##	104	103	10	23	2
##	105	127	12	23	2
##	106	135	14	23	2
##	107	145	16	23	2
##	108	163	18	23	2
##	109	170	20	23	2
##	110	175	21	23	2
##	111	102	8	25	2
##	112	124	10	25	2
##	113	146	12	25	2
##	114	164	14	25	2
##	115	197	16	25	2
##	116	231	18	25	2
##	117	259	20	25	2
##	118	265	21	25	2
##	119	114	10	26	2
##	120	136	12	26	2
##	121	147	14	26	2
##	122	169	16	26	2
##	123	205	18	26	2
##	124	236	20	26	2
##	125	251	21	26	2
##	126	115	12	27	2
##	127	123	14	27	2
##	128	144	16	27	2
##	129	163	18	27	2
## ##	130 131	185 192	20 21	27	2
##	132	114	10	27 28	2
##	133	145	12	28	2
##	134	156	14	28	2
##	135	184	16	28	2
##	136	207	18	28	2
##	137	212	20	28	2
##	138	233	21	28	2
##	139	106	10	29	2
##	140	134	12	29	2
##	141	150	14	29	2
##	142	187	16	29	2
##	143	230	18	29	2
##	144	279	20	29	2
##	145	309	21	29	2
##	146	115	12	30	2
##	147	122	14	30	2
##	148	143	16	30	2
##	149	151	18	30	2
##	150	157	20	30	2

##	151	150	21	30	2
##	152	102	10	31	3
##	153	123	12	31	3
##	154	138	14	31	3
##	155	170	16	31	3
##	156	204	18	31	3
##	157	235	20	31	3
##	158	256	21	31	3
##	159	107	8	32	3
##	160	129	10	32	3
##	161	159	12	32	3
##	162	179	14	32	3
##	163	221	16	32	3
##	164	263	18	32	3
##	165	291	20	32	3
##	166	305	21	32	3
##	167	111	10	33	3
##	168	137	12	33	3
##	169	144	14	33	3
##	170	151	16	33	3
##	171	146	18	33	3
##	172	156	20	33	3
##	173	147	21	33	3
##	174	107	8	34	3
##	175	134	10	34	3
##	176	164	12	34	3
##	177	186	14	34	3
##	178	235	16	34	3
##	179	294	18	34	3
##	180	327	20	34	3
##	181	341	21	34	3
##	182	123	8	35	3
##	183	158	10	35	3
##	184	201	12	35	3
##	185	238	14	35	3
##	186	287	16	35	3
##	187	332	18	35	3
##	188	361	20	35	3
##	189	373	21	35	3
##	190	116	10	36	3
##	191	145	12	36	3
##	192	166	14	36	3
##	193	198	16	36	3
##	194	227	18	36	3
##	195	225	20	36	3
##	196	220	21	36	3
##	197	103	12	37	3
##	198	112	14	37	3
##	199	135	16	37	3
##	200	157	18	37	3
##	201	169	20	37 37	3
##	202	178	21	37	3
##	203	109	10	38	3
##	204	128	12	38	3

##	205	154	14	38	3
##	206	192	16	38	3
##	207	232	18	38	3
##	208	280	20	38	3
##	209	290	21	38	3
##	210	109	10	39	3
##	211	130	12	39	3
##	212	146	14	39	3
##	213	170	16	39	3
##	214	214	18	39	3
##	215	250	20	39	3
##	216	272	21	39	3
##	217	101	8	40	3
##	218	120	10	40	3
##	219	154	12	40	3
##	220	182	14	40	3
##	221	215	16	40	3
##	222	262	18	40	3
##	223	295	20	40	3
##	224	321	21	40	3
##	225	103	8	41	4
##	226	124	10	41	4
##	227	155	12	41	4
##	228	153	14	41	4
##	229	175	16	41	4
##	230	184	18	41	4
##	231	199	20	41	4
##	232	204	21	41	4
##	233	103	8	42	4
##	234	126	10	42	4
##	235	160	12	42	4
##	236	174	14	42	4
##	237	204	16	42	4
##	238	234	18	42	4
##	239	269	20	42	4
##	240	281	21	42	4
##	241	131	8	43	4
##	242	157	10	43	4
##	243	184	12	43	4
##	244	188	14	43	4
##	245	197	16	43	4
##	246	198	18	43	4
##	247	199	20	43	4
##	248	200	21	43	4
##	249	103	8	44	4
##	250	118	10	44	4
##	251	127	12	44	4
##	252	138	14	44	4
##	253	145	16	44	4
##	254	146	18	44	4
##	255	117	10	45	4
##	256	135	12	45	4
##	257	141	14	45	4
##	258	147	16	45	4

```
## 259
           174
                 18
                        45
                               4
## 260
           197
                 20
                        45
                               4
## 261
           196
                 21
                        45
                               4
## 262
           101
                  8
                        46
                               4
## 263
           120
                 10
                        46
                               4
## 264
           144
                 12
                        46
                               4
                        46
## 265
           156
                 14
                               4
## 266
           173
                  16
                        46
                               4
## 267
           210
                 18
                        46
                               4
## 268
                 20
                               4
           231
                        46
## 269
           238
                 21
                        46
                               4
## 270
           123
                 10
                        47
                               4
## 271
           148
                 12
                        47
                               4
## 272
           157
                        47
                  14
## 273
           168
                 16
                        47
                               4
## 274
           185
                  18
                        47
                               4
## 275
           210
                 20
                        47
                               4
## 276
           205
                 21
                        47
                               4
## 277
           104
                        48
                               4
                  8
## 278
           125
                 10
                        48
                               4
## 279
           154
                 12
                        48
                               4
## 280
           170
                 14
                        48
## 281
           222
                 16
                               4
                        48
## 282
           261
                 18
                        48
                               4
## 283
                 20
                               4
           303
                        48
## 284
           322
                 21
                        48
                               4
## 285
           108
                  8
                        49
                               4
## 286
           128
                 10
                        49
                               4
## 287
           152
                 12
                        49
                               4
## 288
           166
                 14
                        49
                               4
## 289
           184
                  16
                        49
                               4
## 290
           203
                 18
                        49
                               4
## 291
           233
                 20
                        49
                               4
## 292
           237
                 21
                        49
                               4
## 293
           105
                  8
                        50
                               4
## 294
           122
                 10
                        50
                               4
## 295
           155
                  12
                        50
## 296
           175
                 14
                        50
                               4
## 297
           205
                 16
                        50
                               4
## 298
                               4
           234
                 18
                        50
## 299
           264
                 20
                        50
                               4
## 300
           264
                 21
                        50
```

• Extract the rows where Diet is equal to 1 and Time is greater than 10.
df %>% filter(Diet == 1 & Time > 10)

```
##
       weight Time Chick Diet
## 1
           106
                  12
                         1
## 2
           125
                  14
                         1
                               1
## 3
           149
                  16
                         1
                               1
## 4
           171
                  18
                         1
                               1
## 5
           199
                  20
                         1
                               1
## 6
           205
                  21
                         1
                               1
## 7
           122
                         2
                  12
                               1
```

##	8	138	14	2	1
##	9	162	16	2	1
##	10	187	18	2	1
##	11	209	20	2	1
##	12	215	21	2	1
##	13	115	12	3	1
##	14	138	14	3	1
##	15	163	16	3	1
## ##	16 17	187 198	18 20	3 3	1 1
##	18	202	21	3	1
##	19	102	12	4	1
##	20	102	14	4	1
##	21	136	16	4	1
##	22	154	18	4	1
##	23	160	20	4	1
##	24	157	21	4	1
##	25	141	12	5	1
##	26	164	14	5	1
##	27	197	16	5	1
##	28	199	18	5	1
##	29	220	20	5	1
##	30	223	21	5	1
##	31	141	12	6	1
##	32	148	14	6	1
##	33	155	16	6	1
##	34	160	18	6	1
##	35	160	20	6	1
##	36	157	21	6	1
##	37	146	12	7	1
##	38	174	14	7	1
##	39	218	16	7	1
##	40	250	18	7	1
##	41	288	20	7	1
##	42	305	21	7	1
##	43	110	12	8	1
##	44	116	14	8	1
##	45	126	16	8	1
##	46	134	18	8	1
## ##	47 48	125 90	20 12	8 9	1 1
##	49	92	14	9	1
##	50	93	16	9	1
##	51	100	18	9	1
##	52	100	20	9	1
##	53	98	21	9	1
##	54	89	12	10	1
##	55	96	14	10	1
##	56	101	16	10	1
##	57	112	18	10	1
##	58	120	20	10	1
##	59	124	21	10	1
##	60	168	12	11	1
##	61	177	14	11	1

```
## 62
           182
                  16
                         11
## 63
           184
                  18
                         11
                               1
## 64
           181
                  20
                         11
                               1
## 65
           175
                  21
                         11
                               1
## 66
           119
                  12
                         12
                               1
## 67
           135
                  14
                         12
                               1
## 68
           162
                  16
                         12
                               1
## 69
           185
                  18
                         12
                               1
## 70
           195
                  20
                         12
                               1
## 71
           205
                  21
                         12
                               1
## 72
            71
                  12
                         13
                               1
## 73
            70
                  14
                         13
                               1
## 74
            71
                  16
                         13
                               1
## 75
            81
                  18
                         13
                               1
## 76
            91
                  20
                         13
                               1
## 77
            96
                  21
                         13
                               1
## 78
           164
                  12
                         14
                               1
## 79
           192
                  14
                         14
## 80
           227
                  16
                         14
                               1
## 81
           248
                  18
                         14
                               1
## 82
           259
                  20
                         14
                               1
## 83
           266
                  21
                         14
## 84
            67
                  12
                         15
                               1
## 85
            68
                  14
                         15
                               1
## 86
            54
                  12
                         16
                               1
## 87
            98
                  12
                         17
                               1
## 88
           103
                  14
                         17
                               1
## 89
           113
                  16
                         17
                               1
## 90
           123
                  18
                         17
                               1
## 91
           133
                  20
                        17
                               1
## 92
           142
                  21
                         17
                               1
## 93
            82
                  12
                         19
                               1
## 94
            88
                  14
                         19
                               1
## 95
           106
                  16
                         19
                               1
## 96
           120
                  18
                         19
                               1
## 97
           144
                  20
                         19
                               1
## 98
           157
                  21
                         19
## 99
            77
                  12
                        20
                               1
## 100
            89
                  14
                         20
## 101
            98
                  16
                        20
                               1
## 102
           107
                  18
                         20
                               1
## 103
           115
                  20
                         20
                               1
## 104
           117
                  21
                         20
# • Find the average weight of chicks for each Diet type and Time point.
df %>% group_by(Diet, Time) %>% summarise(average_weight = mean(weight))
```

```
## 'summarise()' has grouped output by 'Diet'. You can override using the
## '.groups' argument.

## # A tibble: 48 x 3
## # Groups: Diet [4]
## Diet Time average_weight
```

```
<fct> <dbl>
##
                          <dbl>
        0
##
   1 1
                           41.4
  2 1
              2
                           47.2
##
## 3 1
              4
                           56.5
## 4 1
              6
                           66.8
## 5 1
              8
                           79.7
## 6 1
              10
                           93.1
## 7 1
              12
                          109.
## 8 1
              14
                          123.
## 9 1
              16
                          145.
## 10 1
              18
                          159.
## # i 38 more rows
# • Calculate the average weight for each combination of Diet and Time.
df %>% group_by(Diet, Time) %>% summarise(average_weight = mean(weight))
## 'summarise()' has grouped output by 'Diet'. You can override using the
## '.groups' argument.
## # A tibble: 48 x 3
## # Groups:
              Diet [4]
##
     Diet
           Time average_weight
      <fct> <dbl>
##
                          <dbl>
##
   1 1
               0
                           41.4
## 2 1
              2
                          47.2
## 3 1
              4
                           56.5
## 4 1
              6
                           66.8
## 5 1
                           79.7
              8
## 6 1
              10
                           93.1
## 7 1
              12
                          109.
## 8 1
              14
                          123.
## 9 1
              16
                          145.
## 10 1
              18
                          159.
## # i 38 more rows
# • Find the chick with the highest weight in each Diet group.
df %>% group_by(Diet) %>% filter(weight == max(weight))
## # A tibble: 4 x 4
## # Groups:
              Diet [4]
    weight Time Chick Diet
      <dbl> <dbl> <ord> <fct>
              21 7
## 1
       305
## 2
       331
              21 21
## 3
       373
              21 35
                       3
## 4
       322
              21 48
# • Determine the total weight gain for each chick.
df %>% group_by(Chick) %>% summarise(total_gain = max(weight) - min(weight))
## # A tibble: 50 x 2
```

Chick total_gain

##		<or< th=""><th>d></th><th><dbl></dbl></th></or<>	d>	<dbl></dbl>
##	1	18		4
##	2	16		16
##	3	15		27
##	4	13		55
##	5	9		58
##	6	20		76
##	7	10		83
##	8	8		92
##	9	17		100
##	10	19		114
##	# j	i 40	more	rows