Ф.Г. Гаращенко, В.Т. Матвієнко, В.В. Пічкур, І.І. Харченко

Задачі з курсу "Диференціальні рівняння"

для студентів факультету кібернетики за напрямком підготовки "Прикладна математика" (Спеціальність – інформатика)

Заняття 1.Тема: Побудова диференціальних рівнянь за заданим параметричним сімейством кривих.

Рекомендовані приклади для аудиторної роботи

Знайти диференціальні рівняння сімейств кривих та дати геометричне тлумачення результатів

1.
$$x + y^2 = C$$
. 2. $y = e^{Cx}$. 3. $y = C_1 \cos \alpha x + C_2 \sin \alpha x$.

4. Написати диференціальні рівняння всіх кіл на площині.

5.
$$(x-C)^2 + y^2 = r^2$$
. 6. $y-C = e^{\frac{x}{C}}$. 7. $y = C_1 + C_2 \ln x + C_3 x^3$.

8. Знайти диференціальні рівняння всіх кіл на площині, які проходять через початок координат: $x^2 + y^2 - 2C_1x - 2C_2y = 0$.

Рекомендовані приклади для домашнього завдання

Знайти диференціальні рівняння сімейств кривих та дати геометричне тлумачення результатів

1.
$$x^2 + y^2 - Cx = 0$$
. 2. $y = \frac{C}{x}$. 3. $y = \sin(x + C)$.

4.
$$y = C_1 e^{3x} + C_2 e^{-3x}$$
. 5. $y = tgCx$. 6. $tg(x+C) - y = 0$.

7. Знайти диференціальне рівняння всіх прямих на площині.

8. Утворити диференціальне рівняння прямих, що проходять через задану точку з координатами (a;b).

Заняття 2.Тема: Поле напрямів. Інтегральні криві.

Побудувати поле напрямів та накреслити схематично поведінку інтегральних кривих наступних диференціальних рівнянь.

Рекомендовані приклади для аудиторної роботи

1.
$$\frac{dy}{dx} = 2x + 1.$$
 2.
$$\frac{dy}{dx} = \frac{y}{x}.$$
 3.
$$\frac{dy}{dx} = y - x^2.$$

4.
$$\frac{dy}{dx} = 2y - x$$
. 5. $\frac{dy}{dx} = x^2 + 2x - y$.

6.
$$\frac{dy}{dx} = x^2 + y^2$$
. Побудувати ізокліни $y' = 0$, $y' = \frac{1}{\sqrt{3}}$, $y' = 1$, $y' = \sqrt{3}$.

7.
$$\frac{dy}{dx} = \frac{y}{x+y}.$$
 8.
$$\frac{dy}{dx} = -2xy.$$

1.
$$\frac{dy}{dx} = y + x.$$
 2.
$$\frac{dy}{dx} = -\frac{x}{y}.$$
 3.
$$\frac{dy}{dx} = y + x^2.$$

4.
$$\frac{dy}{dx} = y - 3x$$
. 5. $\frac{dy}{dx} = (y - 1)^2$.

6.
$$\frac{dy}{dx} = x^2 - y^2$$
. Побудувати ізокліни $y' = 0$, $y' = \pm 1$, $y' = \pm 2$, $y' = \pm 3$.

$$7. \quad \frac{dy}{dx} = \frac{y - 3x}{x + 3y}.$$

$$8. \quad y \left(\frac{dy}{dx} + x \right) = 1.$$

Заняття 3. Тема: Диференціальні рівняння 1-го порядку, розв'язані відносно похідної. Рівняння з відокремлюваними змінними.

Рекомендовані приклади для аудиторної роботи

1.
$$(y^2-1)(x+2)dx-x^2ydy=0$$
.

2.
$$\sec^2 x \, tg \, y \, dx + \sec^2 y \, tg \, x \, dy = 0$$
.

3.
$$xy - (x^2 + 1)y' = 0$$
; $M(0;1)$. **4.** $\frac{dy}{dx} + \frac{x^3(y-1)^3}{(x+1)y} = 0$.

5.
$$x^2 dx + y^3 e^{x+y} dy = 0$$
.

6.
$$y^{-3} \ln \ln x dx + x e^{y^2} dy = 0$$
.

7.
$$\frac{e^x-1}{e^y}=e^{e^y}(1+e^x)y'$$
.

Рекомендовані приклади для домашнього завдання

1.
$$2x(1+y^2)dx + y(1+x^2)dy = 0$$
; $M(1;0)$.

2.
$$\frac{dy}{dx} = e^{x+y}$$
; $M(0;0)$.

3.
$$ydx + (\sqrt{xy} - \sqrt{x})dy = 0$$
; $M(1;1)$. **4.** $y' = \frac{\sin(\ln x)}{\cos(\ln y)}$.

4.
$$y' = \frac{\sin(\ln x)}{\cos(\ln y)}$$

$$5. \left(\frac{\cos x}{\ln y}\right)^2 dx + \frac{y}{x^2} dy = 0.$$

6.
$$\frac{1 - \ln^2 y}{x \ln y} dx + \frac{\sqrt{3 - \ln^2 x}}{y} dy = 0.$$

Заняття 4. Тема: Інтегровані типи диференціальних рівнянь 1-го порядку, розв'язані відносно похідної. Однорідні рівняння та зведені до них. Лінійні рівняння.

Рекомендовані приклади для аудиторної роботи

1.
$$(y + \sqrt{x^2 - y^2})dx - xdy = 0$$
.

2.
$$2xydx + (y^2 - x^2)dy = 0$$
; $M(1;1)$.

3.
$$(2x+3y)dx + (x+2y)dy = 0$$
.

4.
$$xy' - x\cos\frac{y}{x} - y = 0$$
.

5.
$$(y^3 + 2x^2y)dx - (2x^3 + 2xy^2)dy = 0$$
.

6.
$$(6x + y - 1)dx + (4x + y - 2)dy = 0$$
.

7.
$$(x+y+1)dx + (2x+2y-1)dy = 0$$
.

8.
$$y(x^2y^2+1)dx+(x^2y^2-1)xdy=0$$
.

9.
$$xydx + (y^4 - x^2)dy = 0$$
.

10.
$$\frac{dy}{dx} - y = 2x - x^2$$
. 11.
$$\frac{dy}{dx} + y \cos x = \sin x \cos x$$
.

12.
$$y'(x + ctgy) = 1$$
.

1.
$$xy' = y(1 + \ln y - \ln x)$$
.

2.
$$xdy - (\sqrt{x^2 + y^2} + y)dx = 0$$
.

3.
$$(xye^{\frac{x}{y}} + y^2)dx - x^2e^{\frac{x}{y}}dy = 0$$
.

4.
$$(6xy + 5y^2)dx + (3x^2 + 10xy - y^2)dy = 0.$$

5.
$$(x^3 + 3xy^2)dx + (2y^3 + 3x^2y)dy = 0$$
.

6.
$$(x-2)dx + (y-2x+1)dy = 0$$
.

7.
$$(x+2y+1)dx + (2x+4y+3)dy = 0$$
.

8.
$$y^3 dx + 2(x^2 - xy^2) dy = 0$$
.

9.
$$(xy^2 - y)dx - (x^3y^2 - 3x^2y + 3x)dy = 0$$
.

10.
$$\frac{dy}{dx} - y = x - 1$$
; $M(0;1)$.

$$11. y' + y = \sin x + \cos x.$$

12.
$$y'(x + \ln y) = 1$$
.

Заняття 5. Тема: Інтегровані типи диференціальних рівнянь 1-го порядку, розв'язані відносно похідної. Лінійні неоднорідні рівняння. Метод варіації довільної сталої. Рівняння типу Бернуллі.

Рекомендовані приклади для аудиторної роботи

1.
$$\frac{dy}{dx} - 2xy = 1$$
.

$$2. \frac{dy}{dx} + \frac{y}{x} = \frac{\sin x}{x^2}.$$

3.
$$xy' + y = x \cos x$$
; $M(\pi/2;1)$. **4.** $y' \sin x - y = 2 \sin^2 \frac{x}{2}$.

4.
$$y' \sin x - y = 2 \sin^2 \frac{x}{2}$$
.

5.
$$x\cos x \frac{dy}{dx} + y(x\sin x + \cos x) = 1.$$

6.
$$\frac{1}{v} \frac{dy}{dx} + (2-x) \ln y = x(e^{2x} - e^{-\frac{x^2}{2}})$$
.

7.
$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$$
.

7.
$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$$
. 8. $\cos x \frac{dy}{dx} - y \sin x = y^4$.

4

1.
$$x \ln x \frac{dy}{dx} - y = x(\ln x - 1).$$

2.
$$y' + ytgx = x\cos^2 x; M(0;1)$$
.

3.
$$(y^2 - 6x)y' + 2y = 0$$
; $M(0,-1)$.

4.
$$(y-y^2)dx + (2xy^2 - x - y^2)dy = 0$$
.

5.
$$dx + (x - e^{-y} \sec^2 y) dy = 0$$
; $M(2;0)$.

6.
$$\sec^2 y \frac{dy}{dx} + xtgy = x$$
. **7.** $y' + \frac{xy}{1 - x^2} = x\sqrt{y}$.

8.
$$3\frac{dy}{dx} - y\sin x + 3y^4\sin x = 0$$
. **9.** $xy' + y = xy^2\ln x$.

Заняття 6. Тема: Рівняння Рікатті.

Рекомендовані приклади для аудиторної роботи

Знайти розв'язки рівнянь, підібравши спочатку частинні розв'язки

1.
$$x^2 \frac{dy}{dx} - x^2 y^2 + 5xy - 3 = 0.$$
 2. $\frac{dy}{dx} + xy^2 + \frac{y}{x} - x^3 - 2 = 0.$

2.
$$\frac{dy}{dx} + xy^2 + \frac{y}{x} - x^3 - 2 = 0.$$

Знайти загальні розв'язки рівнянь

3.
$$(x-x^4)y'-x^2-y+2xy^2=0$$
, $y_1(x)=x^2$.

4.
$$\frac{dy}{dx} = \frac{2y^2}{x^2} + \frac{y}{x} + x\cos x - 1 + \cos 2x$$
, $y_1 = x\sin x$.

5.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \left(2 + \frac{1}{x}\right)y - \ell^{4x}, \ y_1 = x\ell^{2x}.$$

Рекомендовані приклади для домашнього завдання

1.
$$x^3 \frac{dy}{dx} - y^2 - x^2y + x^2 = 0$$
. **2.** $\frac{dy}{dx} = y^2 - x^2 + 1$.

2.
$$\frac{dy}{dx} = y^2 - x^2 + 1$$

3.
$$y' = y^2 + \frac{y}{x} + \frac{1}{x^2}$$
, $y_1(x) = -\frac{1}{x}$.

4.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \frac{y}{x} - x \sin x - \cos^2 x$$
, $y_1 = x \cos x$.

5.
$$\frac{dy}{dx} = \frac{\ell^{-x}}{\sin x} y^2 + y + \ell^x (\cos x - \sin x), \quad y_1 = \ell^x \sin x.$$

Заняття 7. Тема: Рівняння в повних диференціалах.

Рекомендовані приклади для аудиторної роботи

Знайти розв'язки рівнянь в повних диференціалах

1.
$$(\ell^y \cos x + \ell^x \cos y) dx + (\ell^y \sin x - \ell^x \sin y) dy = 0.$$

2.
$$\left(2x\ln(x+y) + \frac{x^2+y}{x+y}\right)dx + \left(\ln(x+y) + \frac{x^2+y}{x+y}\right)dy = 0.$$

3.
$$(2x+x^2-y^2x)dx-(2y+x^2y-y^2)dy=0$$
.

4.
$$(2x\sin y - y^2\sin x)dx + (x^2\cos y + 2y\cos x + 1)dy = 0.$$

5.
$$(6xy + x^2 + 3)y' + 3y^2 + 2xy + 2x = 0$$
.

6.
$$\left(1 + \frac{y^2}{x^2}\right) dx - 2\frac{y}{x} dy = 0.$$
 7. $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$

Рекомендовані приклади для домашнього завдання

5

Знайти розв'язки рівнянь в повних диференціалах

1.
$$\ell^{-y} dx - (2y + x\ell^{-y}) dy = 0.$$

2.
$$\frac{3x^2 + y^2}{y^2} dx - \frac{2x^3 + xy}{y^3} dy = 0.$$

3.
$$\left(\frac{x}{\sin y} + 2\right) dx + \frac{(x^2 + 1)\cos y}{\cos 2y - 1} dy = 0.$$

4.
$$(x \ln y - x^2 + \cos y) dy + (x^2 + y \ln y - y - 2xy) dx = 0.$$

5.
$$\frac{2x-y}{x^2+y^2}dx + \frac{2y+x}{x^2+y^2}dy = 0.$$

6.
$$(2x\cos y - y^2\sin x)dx + (2y\cos x - x^2\sin y)dy = 0.$$

7.
$$(xe^y + e^x)dy + (e^y + ye^x)dx = 0.$$

Заняття 8. Тема: Інтегрувальний множник. Випадки знаходження інтегрувального множника.

Рекомендовані приклади для аудиторної роботи

Розв'язати диференціальні рівняння методом інтегрувального множника, знаючи, що вони мають $\mu = f(x)$ або $\mu = f(y)$

1.
$$(2y+xy^3)dx+(x+x^2y^2)dy=0$$
.

2.
$$y^2(x-3y)dx + (1-3xy^2)dy = 0$$
.

3.
$$2ydx + (y^2 - 6x)dy = 0$$
.

Зінтегрувати рівняння за допомогою множників $\mu(x+y)$, $\mu(xy)$ або $\mu(x-y)$

4.
$$\left(y - \frac{ay}{x} + x\right) dx + a dy = 0.$$
 5. $y^2 dx + (xy - 1) dy = 0.$

$$5. y^2 dx + (xy - 1) dy = 0.$$

Рекомендовані приклади для домашнього завдання

Розв'язати диференціальні рівняння методом інтегрувального множника, знаючи, що вони мають $\mu = f(x)$ або $\mu = f(y)$

1.
$$(1+x^2y)dx + x^2(x+y)dy = 0$$
.

2.
$$(2xy + ax)dx + dy = 0$$
.

$$(2xy+ax)dx+dy=0.$$
 3. $dx+(x+e^{-y}y^2)dy=0.$

Зінтегрувати рівняння за допомогою множників $\mu = (x + y)$, $\mu = f(xy)$ або $\mu = (x - y)$

4.
$$dx + xctg(x + y)(dx + dy) = 0$$
.

5.
$$(2x^2y + x)dy + (y + 2xy^2 - x^2y^3)dx = 0$$
.

Заняття 9. Тема: Диференціальні рівняння 1-го порядку, не розв'язані відносно похідної. Метод параметризації

Рекомендовані приклади для аудиторної роботи

Знайти загальні розв'язки і загальні інтеграли рівнянь

1.
$$x^3 y'^2 + x^2 yy' + a = 0$$
. **2.** $xy'^2 - 2y' - y = 0$.

$$2. xy'^2 - 2y' - y = 0$$

3.
$$y = 2xy' + \sqrt{1 + {y'}^2}$$
. 4. $x\sqrt{1 + {y'}^2} - y' = 0$.

$$4. \quad x\sqrt{1+y'^2-y'}=0$$

6

$$5. \quad x = y' \sin y'$$

6.
$$3y'^5 - yy' + 1 = 0$$
.

5.
$$x = y' \sin y'$$

6. $3y'^5 - yy' + y'^3 - 3xy' = 0$
8. $y'^3 - 1 = 0$

8.
$$y'^3 - 1 = 0$$

9.
$$x(2+y'^2)=1$$
.

10.
$$y = y' \ln y'$$
.

Рекомендовані приклади для домашнього завдання

Знайти загальні розв'язки і загальні інтеграли рівнянь

1.
$$9yy'^2 + 4x^3y' - 4x^2y = 0$$
. **2.** $xy'^2 + yy' + a = 0$.

2.
$$xy'^2 + yy' + a = 0$$

3.
$$y = xy' + \sin y'$$
.

4.
$$x(1+y'^2)=1$$

3.
$$y = xy' + \sin y'$$
.
4. $x(1+y'^2) = 1$.
5. $y = y' \sin y' + \cos y'$.
6. $y - y' = \sqrt{1 + y'^2}$.

6.
$$y - y' = \sqrt{1 + {y'}^2}$$

7.
$$y'^2 + xy' - x^2 = 0$$
.

8.
$$y'^2 + 2y' + 1 = 0$$
.

9.
$$x = ay' + b\sqrt{1 + {y'}^2}$$
.

10.
$$x = y \left(\frac{1}{\sqrt{y'}} - \frac{1}{y'} \right)$$
.

Заняття 10. Тема: Інтегрування і пониження порядку диференціальних рівнянь з вищими похідними

Зінтегрувати диференціальні рівняння та відшукати частинні розв'язки там, де задані початкові умови:

Рекомендовані приклади для аудиторної роботи

1.
$$y''' = 0$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$, $y''_0 = 2$.

2.
$$y''' = x + \cos x$$
.

3.
$$xy^{IV} + y''' = e^{2x}$$
.

4.
$$y''' - y''^2 = 0$$
.

5.
$$xy'' = y' \ln \frac{y'}{x}$$
.

6.
$$2yy'' - y'^2 = 1$$
.

7.
$$x^2 y''' - y''^2 = 0$$
.

8.
$$y'' = xe^x$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$.

9.
$$y'' + y'^2 = 2e^{-y}$$
.

9.
$$y'' + y'^2 = 2e^{-y}$$
. **10.** $x^2yy'' = (y - xy')^2$.

Рекомендовані приклади для домашнього завдання

1.
$$y^V = x - 1$$
.

2.
$$y''' = \frac{\ln x}{x^2}$$
. **3**. $y''' = \frac{\ln x}{x^2}$

1.
$$y^V = x - 1$$
. **2.** $y''' = \frac{\ln x}{r^2}$. **3.** $y'' + \ln y'' - x = 0$.

4.
$$2yy'' - 3y'^2 = 4y^2$$

4.
$$2yy'' - 3y'^2 = 4y^2$$
. **5**. $xy'' + y' - x^2 - 1 = 0$.

6.
$$y'''y - 3y''^2 = 0$$
.

7.
$$y(xy'' + y') = xy'^2(1-x)$$
.

8.
$$yy'' - y'^2 = y'$$
.

$$9. \quad xyy'' + xy' = 2yy'.$$

10.
$$y''' - 3yy' = 0$$
.

Заняття 11. Тема: Лінійні диференціальні рівняння вищих порядків зі сталими коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

Знайти загальні розв'язки лінійних однорідних рівнянь, а також частинні там, де задані початкові умови:

1.
$$y'' + 5y' + 4y = 0$$
.

2.
$$y'' - a^2 y = 0$$

$$3. \quad y''' + 8y = 0.$$

4.
$$y^{(IV)} + 2y'' + y = 0$$
.

1.
$$y'' + 5y' + 4y = 0$$
.
2. $y'' - a^2y = 0$.
3. $y''' + 8y = 0$.
4. $y^{(IV)} + 2y'' + y$
5. $y^V - 10y''' + 9y' = 0$.
6. $y^{(6)} + 64y = 0$.

6.
$$y^{(6)} + 64y = 0$$

7.
$$y'' - 5y' + 4y = 0$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$.

8.
$$y'' + y = 0$$
, при $y\left(-\frac{\pi}{2}\right) = 1$, $y'\left(-\frac{\pi}{2}\right) = 0$.

9.
$$y^{(IV)} + a^4 y = 0$$
.

Рекомендовані приклади для домашнього завдання

1.
$$y'' - 7y' + 10y = 0$$
.
2. $y'' + 9y = 0$.
3. $y'' + 3y' = 0$.
4. $y'' + 4y' + 13$

2.
$$y'' + 9y = 0$$

3.
$$y'' + 3y' = 0$$
.

4.
$$y'' + 4y' + 13y = 0$$
.

5.
$$2y'' + y' - y = 0$$
, $y(0) = 3$, $y'(0) = 0$.

6.
$$y^{IV} - a^4 y = 0$$
. **7.** $y^V - 4y^{IV} = 0$. **8.** $y^{VI} + 2y^V = 0$.

8.
$$v^{VI} + 2v^{V} = 0$$

9
$$y'' - 4y' + 29y = 0$$
, $y(0) = 1$, $y'(0) = 7$

Заняття 12. Тема: Лінійні диференціальні рівняння вищих порядків зі змінними коефіцієнтами. Рівняння, що зводяться до лінійних рівнянь зі сталими коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

1. Функції x, \bar{x}^2, x^3 справджують деяке однорідне лінійне диференціальне рівняння. Переконатися, що вони утворюють фундаментальну систему, та скласти згадане рівняння.

Розв'язати лінійні рівняння зі змінними коефіцієнтами.

2.
$$(1+x^2)y'' - 2xy' + 2y = 0$$
, $y_1(x) = x$.

3.
$$y'' - (x^2 + 1)y = 0$$
, $y_1(x) = e^{\frac{x^2}{2}}$.

4.
$$xy'' + 2y' + xy = 0$$
, $y_1(x) = \frac{\sin x}{x}$ $(x \neq 0)$.

Скласти лінійне однорідне диференціальне рівняння (найменшого можливого порядку), яке має такі частинні розв'язки.

5.
$$y_1 = 1$$
, $y_2 = \cos x$.

5.
$$y_1 = 1$$
, $y_2 = \cos x$. **6.** $y_1 = xe^{-x}$, $y_2 = e^{-x}$.

Розв'язати рівняння.

7.
$$y''' - \frac{3}{x}y'' + \frac{6y'}{x^2} - \frac{6y}{x^3} = \sqrt{x}$$
. 8. $x^3y''' + xy' - y = 0$.

8.
$$x^3y''' + xy' - y = 0$$
.

9.
$$x^2y'' - xy' - 3y = 0$$

9.
$$x^2y'' - xy' - 3y = 0$$
. **10.** $x^2y'' + xy' + y = 0$.

11.
$$(2x+3)^2 y'' + (2x+3)y' - y = 0$$
. **12.** $x^2 y'' + xy' + 4y = 10x$.

Рекомендовані приклади для домашнього завдання

1. Побудувати диференціальне рівняння, що має таку фундаментальну систему функції 1 та $\cos 2x$.

Розв'язати лінійні рівняння зі змінними коефіцієнтами.

2.
$$(1-x)y'' + xy' - y = 0; y_1(x) = e^x.$$

3.
$$(1+x^2)y'' + xy' - y = 0$$
; $y_1(x) = \sqrt{1+x^2}$.

4.
$$y'' - xy' + 2y = 0$$
; $y_1(x) = x^2 - 1$.

5.
$$x^2y'' + 2xy' - 6y = 0$$
.

6.
$$x^2y''' - 2y' = 0$$
.

7.
$$(x+1)^3 y''' - 3(x+1)^2 y'' + 4(x+1)y' - 4y = 0$$
.

8.
$$x^3y''' - xy' - 3y = 0$$
.

9.
$$x^2y'' - xy' - 3y = 5x^4$$

10.
$$x^2y'' - 4xy' + 6y = 0$$
. **11.** $x^2y'' - xy' + y = 8x^3$.

12.
$$x^2y'' - 3xy' + 5y = 3x^2$$
.

Заняття 13, 14. Тема: Методи Лагранжа, Коші і невизначених коефіцієнтів для розв'язування неоднорідних рівнянь вищих порядків

Рекомендовані приклади для аудиторної роботи

1.
$$y'' - y = x^2 + 1$$
 (HK).

2.
$$y''' - 4y' = x^2$$
 (Π).

3.
$$y'' + 4y' + 3y = x + e^{2x}$$
 (HK)

1.
$$y'' - y = x^2 + 1$$
 (HK). **2.** $y''' - 4y' = x^2$ (J). **3.** $y'' + 4y' + 3y = x + e^{2x}$ (HK). **4.** $y'' + 2y' + y = e^{-x} \cos x + xe^{-x}$ (HK).

5.
$$y'' + y = ctgx$$
 (K).

5.
$$y'' + y = ctgx$$
 (K). **6.** $y'' - 6y' + 9y = \frac{9x^2 + 6x + 2}{x^2}$ (Л).

7.
$$y'' - y = x^2 - x + 1$$
 (HK). **8.** $y'' + 4y = 4x \cos 2x$ (Л).

8.
$$y'' + 4y = 4x \cos 2x$$
 (Л).

9.
$$y'' + 2y' - 3y = 2x - e^{3x}$$
 (HK). **10.** $y'' - 2y' + y = \frac{e^x}{x}$ (K).

10.
$$y'' - 2y' + y = \frac{e^x}{x}$$
 (K).

Рекомендовані варіанти домашнього завдання:

1.
$$y'' + y = tgx$$
 (K).

1.
$$y'' + y = tgx$$
 (K). **2.** $y'' + 3y' + 2y = \frac{1}{e^x + 1}$ (Π).

3.
$$y'' - y = \frac{1}{x}$$
 (K)

3.
$$y'' - y = \frac{1}{x}$$
 (K). **4.** $y'' + 4y = \frac{1}{\cos 2x}$ (π).

5.
$$y'''-4y''+5y'-2y=2x+3$$
 (HK).

6.
$$y'''-3y'+2y = e^{-x}(4x^2 + 4x - 10)$$
 (HK).

7.
$$y^{N} + 8y'' + 16y = \cos x$$
 (HK). 8. $y^{V} + y''' = x^{2} - 1$ (HK).

9.
$$y^{IV} - y = xe^x + \cos x$$
 (HK).

10.
$$y'' + \omega^2 y = \frac{1}{x+1}$$
; $y(1) = 2$, $y'(1) = -3$ (Π).

Заняття 15. Тема: Крайові задачі. Задача Штурма — Ліувілля. Побудова функції Гріна.

Рекомендовані приклади для аудиторної роботи

Яка з крайових задач має розв'язки:

1.
$$y'' - y = 0$$
; $y(0) = 0$, $y'(\pi/2) = 1$.

2.
$$y'' + y = 0$$
; $y(0) = 0$, $y'(2\pi) = 1$.

Знайти власні значення і власні функції:

3.
$$y'' = \lambda y$$
; $y(0) = 0$, $y(b) = 0$.

4.
$$y'' = \lambda y$$
; $y(0) = y'(b) = 0$.

Побудувати функції Гріна для крайових задач:

5.
$$y'' = f(x)$$
; $y(0) = 0$, $y(1) = 0$.

6.
$$y'' + y = f(x)$$
; $y(0) = y(\pi)$, $y'(0) = y'(\pi)$.

1.
$$y'' + y = 1$$
; $y'(0) = 0$, $y(1) = 1$.

2.
$$y'' + y = 1$$
; $y(0) = 0$, $y(\pi/2) = 0$.

3.
$$y'' + y = f(x)$$
; $y'(0) = 0$, $y(\pi) = 0$.

4.
$$y'' = \lambda y$$
; $y'(0) = 0$, $y'(l) = 0$.

5.
$$x^2y'' = \lambda y$$
; $y(1) = 0$, $y(a) = 0$.

Заняття 16. Тема: Розв'язування однорідних лінійних систем з постійними коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

1.
$$\begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 3x + 4y. \end{cases}$$

2.
$$\begin{cases} \dot{x} + x - 8y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

$$\mathbf{3.} \begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$

4.
$$\begin{cases} \dot{x} = x + z - y, \ \lambda_1 = 1, \\ \dot{y} = x + y - z, \ \lambda_2 = 2 \end{cases}$$

Persone Hoosaht in purchased outsit a youtmorpholipotomu

1.
$$\begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 3x + 4y. \end{cases}$$
2.
$$\begin{cases} \dot{x} + x - 8y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$
3.
$$\begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$
4.
$$\begin{cases} \dot{x} = x + z - y, \ \lambda_1 = 1, \\ \dot{y} = x + y - z, \ \lambda_2 = 2, \\ \dot{z} = 2x - y, \ \lambda_3 = -1. \end{cases}$$
5.
$$\begin{cases} \dot{x} = x - y - z, \ \lambda_1 = 1, \\ \dot{y} = x + y, \ \lambda_2 = 1 + 2i \\ \dot{z} = 3x + z, \ \lambda_3 = 1 - 2i \end{cases}$$
6.
$$\begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$
6.
$$\begin{cases} \dot{x} = 4x - y - z, \ \lambda_1 = 2, \\ \dot{y} = x + 2y - z, \ \lambda_2 = 3, \\ \dot{z} = x - y + 2z, \ \lambda_3 = 3. \end{cases}$$

6.
$$\begin{cases} \dot{x} = 4x - y - z, & \lambda_1 = 2, \\ \dot{y} = x + 2y - z, & \lambda_2 = 3, \\ \dot{z} = x - y + 2z, & \lambda_3 = 3, \end{cases}$$

7.
$$\begin{cases} \dot{x} = x - y + z, & \lambda_1 = 1 \\ \dot{y} = x + y - z, & \lambda_2 = 1 \\ \dot{z} = 2z - y, & \lambda_3 = 2. \end{cases}$$

Рекомендовані приклади для домашнього завдання

$$\mathbf{1.} \begin{cases} \dot{x} = x - y, \\ \dot{y} = y - 4x \end{cases}$$

$$\mathbf{2.} \begin{cases} \dot{x} = x + y, \\ \dot{y} = 3y - 2x. \end{cases}$$

3.
$$\begin{cases} \dot{x} + x + 5y = 0 \\ \dot{y} - x - y = 0. \end{cases}$$

$$\begin{cases} \dot{x} = x - 2y - z, & \lambda_1 = 0 \\ \dot{y} = y - x + z, & \lambda_2 = 2. \end{cases}$$

$$\lambda_2 = 2$$
,

$$\int \dot{x} = 2x + y, \qquad \lambda_1 = 2.$$

$$\begin{vmatrix}
\dot{z} = x - z, & \lambda_3 = -1
\end{vmatrix}$$

5.
$$\begin{cases} \dot{y} = x + 3y - z, & \lambda_2 = 3 + y, \\ \dot{z} = 2x + 3y - z, & \lambda_3 = 3 + y, \end{cases}$$

$$\left[\dot{x} = 2x - y - z, \quad \lambda_1 = 0, \right]$$

$$\dot{x} = y - 2z - x, \quad \lambda_1 = 1,$$

6.
$$\begin{cases} \dot{y} = 3x - 2y - 3z, & \lambda_2 = 1, \\ \dot{z} = y + 2z, & z = 1, \end{cases}$$

7.
$$\begin{cases} \dot{y} = 4x + y, & \lambda_2 = -1, \\ \dot{y} = 4x + y, & \lambda_3 = -1, \end{cases}$$

1.
$$\begin{cases} \dot{x} = x - y, \\ \dot{y} = y - 4x. \end{cases}$$
2.
$$\begin{cases} \dot{x} = x + y, \\ \dot{y} = 3y - 2x. \end{cases}$$
3.
$$\begin{cases} \dot{x} + x + 5y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$
4.
$$\begin{cases} \dot{x} = x - 2y - z, \ \lambda_1 = 0, \\ \dot{y} = y - x + z, \ \lambda_2 = 2, \\ \dot{z} = x - z, \ \lambda_3 = -1. \end{cases}$$
5.
$$\begin{cases} \dot{x} = 2x + y, \ \lambda_1 = 2, \\ \dot{y} = x + 3y - z, \ \lambda_2 = 3 + i, \\ \dot{z} = 2y + 3z - x, \ \lambda_3 = 3 - i. \end{cases}$$
6.
$$\begin{cases} \dot{x} = 2x - y - z, \ \lambda_1 = 0, \\ \dot{y} = 3x - 2y - 3z, \ \lambda_2 = 1, \\ \dot{z} = y + 2z - x, \ \lambda_3 = 1. \end{cases}$$
7.
$$\begin{cases} \dot{x} = y - 2z - x, \ \lambda_1 = 1, \\ \dot{y} = 4x + y, \ \lambda_2 = -1, \\ \dot{z} = 2x + y - z, \ \lambda_3 = -1. \end{cases}$$

7.
$$\begin{cases} \dot{y} = 4x + y, & \lambda_2 = -1, \\ \dot{z} = 2x + y - z, & \lambda_3 = -1. \end{cases}$$

17,18. Тема: *Методи розв'язування неоднорідних* систем з постійним коефіцієнтами. Застосування методу невизначених коефіцієнтів.

10

$$\mathbf{1.} \begin{cases} \dot{x} = y + 2e^t, \\ \dot{y} = x + t^2. \end{cases}$$

$$\mathbf{2.} \begin{cases} \dot{x} = 3x + 2y \\ \dot{y} = x + 2y. \end{cases}$$

$$\mathbf{3.} \begin{cases} \dot{x} = 4x + y - e^{2t} \\ \dot{y} = y - 2x. \end{cases}$$

1.
$$\begin{cases} \dot{x} = y + 2e^t, \\ \dot{y} = x + t^2. \end{cases}$$
 2.
$$\begin{cases} \dot{x} = 3x + 2y + 4e^{5t}, \\ \dot{y} = x + 2y. \end{cases}$$
 3.
$$\begin{cases} \dot{x} = 4x + y - e^{2t}, \\ \dot{y} = y - 2x. \end{cases}$$
 4.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = y - 2x + 18. \end{cases}$$

5.
$$\begin{cases} \dot{x} = x - y + 8t \\ \dot{y} = 5x - y. \end{cases}$$

6.
$$\begin{cases} x = y + tg^2t - 1 \\ y = -x + tgt. \end{cases}$$

5.
$$\begin{cases} \dot{x} = x - y + 8t, \\ \dot{y} = 5x - y. \end{cases}$$
6.
$$\begin{cases} \dot{x} = y + tg^2 t - 1, \\ \dot{y} = -x + tgt. \end{cases}$$
7.
$$\begin{cases} \dot{x} = -4x - 2y + \frac{2}{e^t - 1}, \\ \dot{y} = 6x + 3y - \frac{3}{e^t - 1}. \end{cases}$$
8.
$$\begin{cases} \dot{x} = x - y + \frac{1}{\cos t}, \\ \dot{y} = 2x - y. \end{cases}$$

8.
$$\begin{cases} \dot{x} = x - y + \frac{1}{\cos t} \\ \dot{y} = 2x - y. \end{cases}$$

$$\mathbf{1.} \begin{cases} \mathbf{x} = y - 5\cos t \\ \mathbf{y} = 2x + y. \end{cases}$$

1.
$$\begin{cases} \dot{x} = y - 5\cos t, \\ \dot{y} = 2x + y. \end{cases}$$
 2.
$$\begin{cases} \dot{x} = 2x - 4y + 4e^{-2t}, \\ \dot{y} = 2x - 2y. \end{cases}$$

3.
$$\begin{cases} \overset{\bullet}{x} = 2y - x + 1, \\ \overset{\bullet}{y} = 3y - 2x. \end{cases}$$
4.
$$\begin{cases} \overset{\bullet}{x} = x + 2y + 16te^{t}, \\ \overset{\bullet}{y} = 2x - 2y. \end{cases}$$

$$\begin{cases} \overset{\bullet}{x} = 2y - x, \end{cases}$$

$$\begin{cases} \overset{\bullet}{x} = 2y - x, \end{cases}$$

5.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = 2y - x - 5e^t \sin t. \end{cases}$$
 6.
$$\begin{cases} \dot{x} = 2y - x, \\ \dot{y} = 4y - 3x + \frac{e^{3t}}{e^{2t} + 1}. \end{cases}$$

Заняття 19,20. Тема: Системи в симетричній формі. Розв'язування лінійних рівнянь першого порядку з частинними похідними. Метод характеристик. Задача Коші.

Рекомендовані приклади для аудиторної роботи

1.
$$\frac{dx}{2y-z} = \frac{dy}{y} = \frac{dz}{z}.$$
 2.
$$\frac{dx}{z} = \frac{dy}{xz} = \frac{dz}{y}.$$

3.
$$y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0.$$
 4. $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0.$

5.
$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = x - y$$
. **6.** $(z - y)^2 \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = xy$.

Знайти розв'язки рівняння, яке задовольняє вказаним умовам.

7.
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$$
, $z = 2x$ при $y = 1$.

Знайти поверхню, яка задовольняє даному рівнянню і проходить через задану лінію.

8.
$$y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = x$$
; $x = 0$, $z = y^2$.

Рекомендовані приклади для домашнього завдання

1.
$$\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{z}$$
. 2. $\frac{dx}{z^2 - y^2} = \frac{dy}{z} = -\frac{dz}{y}$. 3. $(x + 2y)\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0$.

4.
$$(x-z)\frac{\partial u}{\partial x} + (y-z)\frac{\partial u}{\partial y} + 2z\frac{\partial u}{\partial z} = 0$$
. **5.** $e^x\frac{\partial z}{\partial x} + y^2\frac{\partial z}{\partial y} = ye^x$. **6.** $xy\frac{\partial z}{\partial x} + (x-2z)\frac{\partial z}{\partial y} = yz$.

Знайти розв'язок рівняння, яке задовольняє вказаним умовам.

7.
$$\frac{\partial z}{\partial x} - (2e^x - y)\frac{\partial z}{\partial y} = 0$$
, $z = y$ при $x = 0$.

Знайти поверхню, яка задовольняє даному рівнянню і проходить через задану лінію.

8.
$$x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = x^2 + y^2$$
; $y = 1$, $z = x^2$.

Заняття 21. Тема: Особливі точки диференціальних рівнянь на площині.

Рекомендовані приклади для аудиторної роботи

Дослідити особливі точки для поданих нижче рівнянь та систем. Дати схематичний малюнок розміщення інтегральних кривих на площині (x, y).

1.
$$y' = \frac{2x + y}{3x + 4y}$$
. **2.** $y' = \frac{y - 2x}{2y - 3x}$. **3.** $y' = \frac{y}{x}$.

4.
$$\begin{cases} \frac{dx}{dt} = x + 3y, \\ \frac{dy}{dt} = -6x - 5y. \end{cases}$$
 5.
$$\begin{cases} \frac{dx}{dt} = -2x - 5y, \\ \frac{dy}{dt} = 2x + 2y. \end{cases}$$

Знайти та дослідити особливі точки систем.

6.
$$y' = \frac{2y - x}{3x + 6}$$
. **7.** $y' = \frac{4y^2 - x^2}{2xy - 4y - 8}$.

Рекомендовані приклади для домашнього завдання

Дослідити особливі точки для поданих нижче рівнянь та систем. Дати схематичний малюнок розміщення інтегральних кривих на площині (x, y).

1.
$$y' = \frac{x - 4y}{2y - 3x}$$
. 2. $y' = \frac{4y - 2x}{x + y}$. 3. $y' = \frac{4x - y}{3x - 2y}$.

4. $\begin{cases} \dot{x} = x, \\ \dot{y} = 2x - y. \end{cases}$ 5. $\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = y - x. \end{cases}$ 7. $y' = \frac{2y}{x^2 - y^2 - 1}$.

Заняття 22,23. Тема: *Методи Ляпунова. Побудова функцій Ляпунова для лінійних* стаціонарних систем. Критерій Гурвіца

Рекомендовані приклади для аудиторної роботи

- **1.** Дослідити стійкість розв'язків з вказаними початковими умовами $\dot{x} = 4x t^2x$, x(0) = 0.
- **2.** Дослідити стійкість нульового розв'язку, якщо відомо загальний розв'язок системи $x = C_1 \cos^2 t C_2 e^{-t}$.
- **3.** За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок

$$\begin{cases} \dot{x} = e^{x+2y} - \cos 3x, \\ \dot{y} = \sqrt{4+8x} - 2e^y. \end{cases}$$

4. При яких значеннях параметрів a і b ϵ асимптотично стійким нульовий розв'язок системи звичайних диференціальних рівнянь

$$\begin{cases} \dot{X} = y + \sin X \\ \dot{y} = ax + by \end{cases}.$$

5.Дослідити, при яких значеннях параметрів a буде асимптотично стійким нульовий розв'язок

$$\begin{cases} \dot{x} = ax - 2y + x^2 \\ \dot{y} = x + y + xy. \end{cases}$$

6. Знайти стан рівноваги даної системи і дослідити його на стійкість

$$\begin{cases} \dot{x} = y - x^2 - x, \\ \dot{y} = 3x - x^2 - y. \end{cases}$$

Дослідити стійкість користуючись відомими критеріями

- 7. y''' + y'' + y' + 2y = 0.
- 8. y'' + 3.1y''' + 5.2y'' + 9.8y' + 5.8y = 0.
- **9.** Дослідити, при яких значеннях параметрів a і b нульовий розв'язок буде асимптотично стійким

$$y''' + ay'' + by' + 2y = 0.$$

10. Побудувати функцію Ляпунова у вигляді квадратичної форми

$$V(x) = x^T B x$$
 , $x = (x_1, x_2)^T$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, для системи

$$\begin{cases} \dot{x}_1 = -2x_1 + x_2 \\ \dot{x}_2 = 2x_1 - 3x_2 \end{cases}$$
 (*) таким чином, що $\left(\frac{dV}{dt}\right)_{(*)} = -x_1^2 - x_2^2$.

11. При яких значеннях параметрів a і b ϵ асимптотично стійким нульовий розв'язок системи звичайних диференціальних рівнянь

$$\begin{cases} \dot{x} = \ln(\ell + ax) - \ell^{\gamma} \\ \dot{y} = bx + tgy \end{cases}.$$

12. Знайти всі положення рівноваги та дослідити їх на стійкість системи звичайних диференціальних рівнянь

$$\begin{cases} \dot{X} = \ln(y^2 - X) \\ \dot{y} = X - Y - 1 \end{cases}.$$

Рекомендовані приклади для домашнього завдання

1. Дослідити стійкість розв'язків з вказаними початковими умовами $3(t-1)\dot{x}=x$, x(2)=0.

За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок

2.
$$\begin{cases} \dot{x} = x^2 + y^2 - 2x, \\ \dot{y} = 3x^2 - x + 3y. \end{cases}$$
 3.
$$\begin{cases} \dot{x} = \ln(4y + e^{-3x}), \\ \dot{y} = 2y - 1 + \sqrt[3]{1 - 6x}. \end{cases}$$

4. Дослідити, при яких значеннях параметрів a і b буде асимптотично стійким нульовий розв'язок

$$\begin{cases} \dot{x} = ax + y + x^2, \\ \dot{y} = x + ay + y^2. \end{cases}$$

5. Знайти стан рівноваги даної системи і дослідити його на стійкість

$$\begin{cases} \dot{x} = (x-1)(y-1), \\ \dot{y} = xy - 2. \end{cases}$$

13

Дослідити стійкість користуючись відомими критеріями

- **6.** y''' + 2y'' + 2y' + 3y = 0.
- 7. $y^{V} + 2y^{W} + 4y''' + 6y'' + 5y' + 4y = 0$.
- **8.** При яких значеннях параметрів a і b нульовий розв'язок ϵ асимптотично стійким v'' + v''' + av'' + v' + bv = 0.
- **9.** Дослідити, при яких значеннях параметрів a і b нульовий розв'язок буде асимптотично стійким y''' + 3y'' + ay' + by = 0.
 - 10. Побудувати функцію Ляпунова у вигляді квадратичної

форми
$$V(x) = x^T B x$$
, $x = (x_1, x_2)^T$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, для системи $\begin{cases} \dot{x}_1 = -3x_1 + 3x_2 \\ \dot{x}_2 = 2x_1 - 4x_2 \end{cases}$ (**) таким чином, що $\left(\frac{dV}{dt}\right)_{(**)} = -x_1^2 - x_2^2$.

11. При яких значеннях параметрів a і b ϵ асимптотично стійким нульовий розв'язок системи звичайних диференціальних рівнянь

$$\begin{cases} \dot{X} = y + \sin X \\ \dot{y} = ax + by \end{cases}$$

12. Знайти всі положення рівноваги та дослідити їх на стійкість системи звичайних диференціальних рівнянь

$$\begin{cases} \dot{X} = Y \\ \dot{y} = Sin(X + Y) \end{cases}$$

Заняття 24,25. Тема: Варіаційне числення.

Рекомендовані приклади для аудиторної роботи

Знайти екстремалі таких функціоналів

1.
$$I[y(x)] = \int_{-1}^{0} (12xy - y'^2) dx$$
; $y(-1) = 1$, $y(0) = 0$.

2.
$$I[y(x)] = \int_{-1}^{1} (y'^2 - 2xy) dx$$
; $y(-1) = -1$, $y(1) = 1$.

3.
$$I[y(x)] = \int_{0}^{1} (y^2 + 2y'^2 + y''^2) dx$$
; $y(0) = 0$, $y(1) = 0$, $y'(0) = 1$, $y'(1) = -sh1$.

4.
$$I[y(x)] = \int_{0}^{1} (y + y'') dx$$
; $y(0) = y_0$, $y(1) = y_1$, $y'(0) = y_0'$, $y'(1) = y_1'$.

5.
$$I[y(x)] = \int_{0}^{1} (y'^2 + y''^2) dx$$
; $y(0) = 0$, $y(1) = sh1$, $y'(0) = 1$, $y'(1) = ch1$.

6.
$$I[y(x), z(x)] = \int_{0}^{\pi/4} (2z - 4y^2 + y'^2 - z'^2) dx; \ y(0) = 0, \ y\left(\frac{\pi}{4}\right) = 1, \ z(0) = 0, z\left(\frac{\pi}{4}\right) = 1.$$

7.
$$I[y(x), z(x)] = \int_{0}^{\pi/2} (y'^2 + z'^2 - 2yz) dx; \ y(0) = 0, \ y\left(\frac{\pi}{2}\right) = 1, \ z(0) = 0, z\left(\frac{\pi}{2}\right) = 1.$$

Дослідити на екстремум функціонали

8.
$$I[y(x)] = \int_{0}^{1} (y'^3 + y') dx$$
; $y(0) = 0$, $y(1) = 2$.

9.
$$I[y(x), z(x)] = \int_{0}^{1} (y'^2 + z'^2) dx$$
; $y(0) = 0$, $y(1) = 1$, $z(0) = 0$, $z(1) = 2$.

Рекомендовані приклади для домашнього завдання

Знайти екстремалі таких функціоналів

1.
$$I[y(x)] = \int_{0}^{1} \sqrt{y(1+{y'}^{2})} dx$$
; $y(0) = y(1) = \frac{1}{\sqrt{2}}$.

2.
$$I[y(x)] = \int_{-1}^{1} (y'^2 - 2xy) dx$$
; $y(-1) = -1$, $y(1) = 1$.

3.
$$I[y(x)] = \int_{-1}^{0} (240y - y'''^2) dx; \ y(-1) = 1, \ y(0) = 0,$$

 $y'(-1) = -4.5, \ y'(0) = 0, \ y''(-1) = 16, \ y''(0) = 0.$

4.
$$I[y(x)] = \int_{a}^{b} (y'^2 + yy'') dx$$
; $y(a) = A_1$, $y(b) = B_1$, $y'(a) = A_2$, $y'(b) = B_2$...

5.
$$I[y(x)] = \frac{1}{2} \int_{0}^{1} (y'')^2 dx$$
; $y(0) = 0$, $y(1) = 1$, $y'(0) = 0$, $y'(1) = 1$.

6.
$$I[y(x), z(x)] = \int_{-1}^{1} \left(2xy - y'^2 + \frac{z'^3}{3}\right) dx; \ y(1) = 0, \ y(-1) = 2, \ z(1) = 1, z(-1) = -1.$$

7.
$$I[y(x), z(x)] = \int_{0}^{1} (y'^{2} + z'^{2} + 2y) dx; \ y(0) = 1, \ y(1) = \frac{3}{2}, \ z(0) = 0, z(1) = 1.$$

Дослідити на екстремум функціонали

8.
$$I[y(x)] = \int_{0}^{1} (x + 2y + \frac{1}{2}y'^{2})dx$$
, $y(0) = 0$, $y'(0) = 0$.

9.
$$I[y(x), z(x)] = \int_{0}^{1} (y'^2 + z'^2 + 4z)dx$$
; $y(0) = 0$, $y(1) = 1$, $z(0) = 0$, $z(1) = 0$.

Заняття 26 (1 година). Огляд методів розв'язування звичайних диференціальних рівнянь. Методи інтегрування систем диференціальних рівнянь. Якісні методи дослідження розв'язків диференціальних рівнянь

ЛІТЕРАТУРА

- 1. Гудименко Ф.С., Павлюк І.А., Волкова В.О. Збірник задач з диференціальних рівнянь. К.: Вища школа, 1972. –156 с.
- 2. Краснов М.П., Макаренко Г.И., Киселёв А.И. Вариационное исчисление. Задачи и упражнения. М.: Наука, 1973. 191 с.
- 3. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям. –М.: Высшая школа, 1979. –128 с.
- 4. Гаращенко Ф. Г., Харченко І.І. Збірник задач і вправ з диференціальних рівнянь. К.: ВПЦ «Київський університет», 2004. 162 с.