Лабораторная работа №5.1.

Модель эпидемии (SIR)

Шуваев С. А.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Шуваев Сергей Александрович
- студент
- Российский университет дружбы народов
- · 1032224269@pfur.ru
- · https://Grinders060050.github.io/ru/

Цель работы

Построить модель SIR в xcos и OpenModelica.

- 1. Реализовать модель SIR в в *xcos*;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где eta – скорость заражения, u – скорость выздоровления.

Зафиксируем начальные данные:

$$\beta=1,\,\nu=0,3,s(0)=0,999,\,i(0)=0,001,\,r(0)=0.$$

Figure 1: Задание переменных окружения в хсоѕ

Figure 2: Модель SIR в хсоѕ

Figure 3: Задание начальных значений в блоках интегрирования

Figure 4: Задание начальных значений в блоках интегрирования

▼ Параметры моделирования	
Конечное время интегрирования	3.0E01
Количество секунд в единице времени	0.0E00
Абсолютная погрешность интегрирования	1.0E-06
Относительная погрешность интегрирования	1.0E-06
Погрешность по времени	1.0E-10
Максимальный временной интервал интегрирования	1.0E05
Вид программы решения	Sundials/CVODE - BDF - NEWTON
Максимальный размер шага (0 означает "без ограничения")	0
Установить контекст	
	ОК Отменить По умолча

Figure 5: Задание конечного времени интегрирования в хсоѕ

Figure 6: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Figure 7: Модель SIR в xcos с применением блока Modelica

Figure 8: Параметры блока Modelica для модели SIR

Figure 9: Параметры блока Modelica для модели SIR

Figure 10: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

Упражнение

```
parameter Real I 0 = 0.001;
  parameter Real R 0 = 0:
  parameter Real S_0 = 0.999;
  parameter Real beta = 1:
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
 Real i(start=I 0);
 Real r(start=R 0);
equation
 der(s)=-beta*s*i;
  der(i)=beta*s*i-nu*i;
  der(r)=nu*i;
```

Упражнение

Figure 11: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Figure 12: Модель SIR с учетом демографических процессов в хсоѕ

Figure 13: График модели SIR с учетом демографических процессов

Figure 14: Модель SIR с учетом демографических процессов в хсоs с применением блока Modelica

Figure 15: Параметры блока Modelica для модели SIR с учетом демографических процессов

Figure 16: Параметры блока Modelica для модели SIR с учетом демографических процессов

Figure 17: График модели SIR с учетом демографических процессов

parameter Real I_0 = 0.001; parameter Real R 0 = 0;

```
parameter Real S_0 = 0.999;
  parameter Real beta = 1;
  parameter Real nu = 0.3;
  parameter Real mu = 0.5:
  Real s(start=S 0):
  Real i(start=I 0);
 Real r(start=R 0);
equation
  der(s) = -beta*s*i + mu*i + mu*r;
  der(i)=beta*s*i-nu*i - mu*i;
  der(r)=nu*i - mu*r:
```


Figure 18: График модели SIR с учетом демографических процессов

$$\beta = 1, \nu = 0.3, \mu = 0.1$$

Figure 19: График модели SIR с учетом демографических процессов

$$\mu = 0.3$$

Figure 20: График модели SIR с учетом демографических процессов

$$\mu = 0.9$$

Figure 21: График модели SIR с учетом демографических процессов

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica.