

SUPERFICIES MÍNIMAS

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 24) 19.ABRIL.2022

El problema de Plateau:

Formulado por LAGRANGE en 1760, luego renombrado en honor a JOSEPH PLATEAU, debido a su extensa investigación usando superficies de jabón.

Hoy en día, el problema se considera parte del cálculo de variaciones. El problema de existencia y regularidad forman parte de la teoría geométrica de la medida.

J.L. Lagrange

J. Plateau

El problema de Plateau:

Dada una curva cerrada simple $\alpha \subset \mathbb{R}^3$, queremos determinar de entre todas las superficies $S \subset \mathbb{R}^3$, con borde $\partial S = \alpha$, aquella que tiene menor área.

 $\operatorname{argmin} A(S)$, sujeto a $\partial S = \alpha$.

Relación con física: minimización de energía (tensión superficial). Leyes de PLATEAU.

Definición

Sea $\mathbf{x}: \mathbf{U} \subseteq \mathbb{R}^2 \to \mathbf{V} \cap \mathbf{S}$ una parametrización de una superficie regular S. Una aplicación diferenciable $\overline{\mathbf{x}}: (-\varepsilon, \varepsilon) \times \mathbf{U} \to \mathbb{R}^3$ se llama una **variación** de \mathbf{x} si $\overline{\mathbf{x}}(\mathbf{0}, u, v) = \mathbf{x}(u, v)$, $\forall (u, v) \in \mathbf{U}$.

Definición

Dada una función diferenciable $h:U\to\mathbb{R}$ y S la superficie regular parametrizada por **x**, definimos la **variación normal** de S por h como la aplicación $\overline{\mathbf{x}}:(-\varepsilon,\varepsilon)\times U\to\mathbb{R}^3$ dada por

$$\overline{\mathbf{x}}(t, u, v) = \mathbf{x}(u, v) + th(u, v)N(u, v), \quad t \in (-\varepsilon, \varepsilon), \ (u, v) \in U,$$

donde N es el campo normal unitario a S.

Variación normal de una superficie regular S

Obs. Por diferenciabilidad y continuidad, para valores pequeños de t, tenemos que S regular $\Rightarrow S + thN$ regular. Luego $S_t = S + thN$ se parametriza por

$$\mathbf{x}^{t}(u, \mathbf{v}) = \overline{\mathbf{x}}(t, u, \mathbf{v}), \quad t \in (-\varepsilon, \varepsilon).$$

De ahí, $\mathbf{x}_u^t = \mathbf{x}_u + th_uN + thN_u$, $\mathbf{x}_v^t = \mathbf{x}_v + th_vN + thN_v$. Luego,

$$E^t = \langle \mathbf{x}_u^t, \mathbf{x}_u^t \rangle = E + 2th\langle \mathbf{x}_u, N_u \rangle + O(t^2) \approx E - 2the,$$

$$\label{eq:Ft} F^t \ = \ \langle \boldsymbol{x}_u^t, \boldsymbol{x}_v^t \rangle = E + t h \langle \boldsymbol{x}_u, N_v \rangle + t h \langle \boldsymbol{x}_v, N_u \rangle + O(t^2) \approx F - 2t h f,$$

$$G^t = \langle m{x}_{v}^t, m{x}_{v}^t
angle = G + 2th \langle m{x}_{v}, m{N}_{v}
angle + O(t^2) pprox G - 2thg.$$

Definimos
$$A(t) = A(S^t) = \iint_U \sqrt{E^t G^t - (F^t)^2} \, du \, dv = \iint_U \sqrt{\det(g^t_{ij})} \, du \, dv.$$

Como A : $(-\varepsilon, \varepsilon) \to \mathbb{R}$, para minimizar A hallamos los puntos críticos:

$$\frac{\partial E^t}{\partial t}(\mathsf{o}, \mathsf{u}, \mathsf{v}) = -2he, \quad \frac{\partial F^t}{\partial t}(\mathsf{o}, \mathsf{u}, \mathsf{v}) = -2hf, \quad \frac{\partial G^t}{\partial t}(\mathsf{o}, \mathsf{u}, \mathsf{v}) = -2hg.$$

Luego,

$$\begin{split} \frac{\partial A}{\partial t}(O) &= \left. \frac{\partial}{\partial t} \iint_{U} \sqrt{E^{t}G^{t} - (F^{t})^{2}} \, du \, dv \right|_{t=O} = \iint_{U} \frac{\partial}{\partial t} \sqrt{E^{t}G^{t} - (F^{t})^{2}} \Big|_{t=O} du \, dv \\ &= \left. \iint_{U} \frac{1}{2} \big(E^{t}G^{t} - (F^{t})^{2} \big)^{-1/2} \Big(\frac{\partial E^{t}}{\partial t}(O)G^{t} + \frac{\partial G^{t}}{\partial t}(O)E^{t} - 2\frac{\partial F^{t}}{\partial t}(O)F^{t} \Big) \Big|_{t=O} du \, dv \\ &= \left. \iint_{U} \frac{1}{2} \big(EG - F^{2} \big)^{-1/2} \big(-2heG - 2hgE + 2(2hfF) \big) \, du \, dv \right. \\ &= \left. \iint_{U} \frac{1}{2} \Big(\frac{eG - 2fF + gE}{EG - F^{2}} \Big) (-2h)\sqrt{EG - F^{2}} \, du \, dv \right. \end{split}$$

Entonces,
$$A'(0)=-2\iint_U hH\sqrt{EG-F^2}\,du\,dv=-2\iint_U hH\,dS.$$

Hemos probado la siguiente

Proposición

Sea $A_h(t)$ el área de la superficie S^t , parametrizada por $\mathbf{x}^t(u,v) = S + thN = \mathbf{x}(u,v) + th(u,v)N(u,v)$. Entonces

$$A'_h(0) = -2 \iint_U h H \, dS. \tag{1}$$

Obs. De alguna manera queremos encontrar la superfície de menor área, sin importar la forma en que hacemos la variación normal. Esto implica que queremos que las derivadas

$$A'_h(o) = o$$
, para toda función diferenciable $h: U \to \mathbb{R}$.

Definición

Una superficie $S \subset \mathbb{R}^3$ se llama una **superficie mínima** si $H \equiv 0$.

Consecuencia de la ecuación (1), es posible mostrar que

Propiedad

 $S \subset \mathbb{R}^3$ es mínima $\Leftrightarrow A'_h(O) = O$, para toda variación normal \mathbf{x}_h^t de S. Prueba:

 (\Rightarrow) Si S es mínima, entonces $H \equiv 0$, y

$$A'_h(O) = -2 \iint_U h H dS = -2 \iint_U O dS = O, \quad \forall h.$$

 (\Leftarrow) La única forma de anular $A'_h(0) = 0$, $\forall h$, es que el integrando se anule. $\Rightarrow hH = o, \forall h$. Luego. $H \equiv o$.

Recordemos que el gradiente de A de define como el único vector que satisface

$$\langle \nabla A(\mathbf{x}), h \rangle = D_h A(\mathbf{x}) = A'_h(0),$$

donde el producto interno $\langle\cdot,\cdot\rangle$ está definido sobre el espacio de funciones $C^\infty(U)$

$$\langle \psi_{\mathsf{1}}, \psi_{\mathsf{2}} \rangle = \iint_{\Pi} \psi_{\mathsf{1}} \psi_{\mathsf{2}} \sqrt{\det(g_{ij})} \, du \, dv.$$

En particular,
$$\nabla A(\mathbf{x}) = -2H$$
, ya que $\langle -2H, h \rangle = -2 \iint_U hH dS = D_h A(\mathbf{x}) = A'_h(O)$.

Esto muestra que: si \mathbf{x} no es superfície mínima, entonces la evolución $\mathbf{x}^t = \mathbf{x} + thHN = \mathbf{x} - \frac{t}{2}\nabla A(\mathbf{x})N$ conduce a una superficie cuya área es estrictamente menor.

Definición

Sea $S \subset \mathbb{R}^3$ superficie regular. Decimos que una parametrización $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ es **isotérmica** si E = G y F = O ($|\mathbf{x}_u| = |\mathbf{x}_v|$, $\langle \mathbf{x}_u, \mathbf{x}_v \rangle = O$). En ese caso, los parámetros o coordenadas (u,v) se llaman isotérmicos.

Parametrización isotérmica de un elipsoide

Definición

Sea $S \subset \mathbb{R}^3$ superficie regular. Una parametrización $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ es **conforme**, si la primera forma fundamental es un múltipplo de la identiad

$$II_{\mathbf{p}} = (g_{ij}) = \lambda(u, v) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \forall (u, v) \in U,$$

para alguna función $\lambda: U \to \mathbb{R}$.

Dos superficies S,\widetilde{S} , con parametrizaciones $\mathbf{x}:U\to S,\widetilde{\mathbf{x}}:U\to \widetilde{S}$ son **conformemente equivalentes** si

$$\widetilde{II}_{\mathbf{p}} = \left(\widetilde{g}_{ij}\right) = \lambda(u, v)\left(g_{ij}\right) = \lambda(u, v)II_{\mathbf{p}}, \quad for(u, v) \in U,$$

para alguna función positiva $\lambda: U \to \mathbb{R}$. Equivalentemente, S y S' son conformemente equivalentes si existe un cambio de parametrización $\varphi = \widetilde{\mathbf{x}}^{-1} \circ \mathbf{x} : \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\left\langle \frac{\partial (\widetilde{\mathbf{x}} \circ \varphi)}{\partial u_i}, \frac{\partial (\widetilde{\mathbf{x}} \circ \varphi)}{\partial u_j} \right\rangle = \lambda(u, v) \left\langle \frac{\partial \mathbf{x}}{\partial u_i}, \frac{\partial \mathbf{x}}{\partial u_j} \right\rangle, \quad \forall i, j.$$

Proposición

Las siguientes son equivalentes:

- (1.) $\mathbf{x}: \mathbf{U} \subseteq \mathbb{R}^2 \to \mathbf{V} \cap \mathbf{S}$ es isotérmica.
- (2.) \mathbf{x} es una aplicación conforme (preserva ángulos entre vectores $T_{\mathbf{p}}S$).
- (3.) para todo $\mathbf{q} \in U$, existe $\lambda(\mathbf{q}) > 0$ tal que

$$\langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_1, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_2 \rangle = \lambda(\mathbf{q})^2 \langle \mathbf{w}_1, \mathbf{w}_2 \rangle.$$

<u>Prueba</u>: $(1 \Rightarrow 3)$. Sea $\lambda(\mathbf{q}) = E = G$. Por definición de la primera forma fundamental, tenemos $\langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1 \rangle = E = \lambda^2 = \langle \mathbf{x}_u, \mathbf{x}_u \rangle$. Similarmente, $\langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2 \rangle = G = \lambda^2 = \langle \mathbf{x}_v, \mathbf{x}_v \rangle$, y $\langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_1, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_2 \rangle = F = O = \lambda \langle \mathbf{x}_u, \mathbf{x}_v \rangle$. Así, la propiedad se verifica para la base canónica de \mathbb{R}^2 , y por linealidad, se extiende a todo vector.

$$(3 \Rightarrow 2)$$
.

$$\begin{split} \cos \angle (D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_1, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_2) &= \frac{\langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_1, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_2 \rangle}{|D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_1| \cdot |D\mathbf{x}(\mathbf{q}) \cdot \mathbf{w}_2|} = \frac{\lambda^2(\mathbf{q}) \langle \mathbf{w}_1, \mathbf{w}_2 \rangle}{\lambda^2(\mathbf{q}) |\mathbf{w}_1| \cdot |\mathbf{w}_2|} \\ &= \frac{\langle \mathbf{w}_1, \mathbf{w}_2 \rangle}{|\mathbf{w}_1| \cdot |\mathbf{w}_2|} = \cos \angle (\mathbf{w}_1, \mathbf{w}_2). \end{split}$$

 \Rightarrow **x** es conforme.

$$(2\Rightarrow 1)$$
.

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = \langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{1}, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{1} \rangle = \lambda(\mathbf{q}) \langle \mathbf{e}_{1}, \mathbf{e}_{1} \rangle = \lambda(\mathbf{q}) = \lambda(\mathbf{q}) \langle \mathbf{e}_{2}, \mathbf{e}_{2} \rangle$$

$$= \langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{2}, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{2} \rangle = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = G,$$

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = \langle D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{1}, D\mathbf{x}(\mathbf{q}) \cdot \mathbf{e}_{2} \rangle = \lambda(\mathbf{q}) \langle \mathbf{e}_{1}, \mathbf{e}_{2} \rangle = O. \square$$

Teorema

Sea $S \subset \mathbb{R}^3$ superficie regular. Dado $\mathbf{p} \in V \cap S$, siempre existe una parametrización isotérmica $\mathbf{x} : U \subseteq \mathbb{R}^2 \to V \cap S$.

(<u>Idea</u>: aplicar ortonormalización de Gram-Schmidt a la base $\{\mathbf{x}_u, \mathbf{x}_v\}$.)

Si $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ es una parametrización isotérmica, entonces $\langle \mathbf{x}_u, \mathbf{x}_u \rangle = \langle \mathbf{x}_v, \mathbf{x}_v \rangle$ y $\langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0$.

Derivando obtenemos

$$\begin{split} \langle \boldsymbol{x}_{uu}, \boldsymbol{x}_{u} \rangle &= \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{v} \rangle, & \langle \boldsymbol{x}_{uu}, \boldsymbol{x}_{v} \rangle + \langle \boldsymbol{x}_{u}, \boldsymbol{x}_{uv} \rangle = o, \\ \langle \boldsymbol{x}_{vv}, \boldsymbol{x}_{v} \rangle &= \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{u} \rangle, & \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{v} \rangle + \langle \boldsymbol{x}_{u}, \boldsymbol{x}_{vv} \rangle = o. \end{split}$$

Luego,

$$\begin{split} \langle \boldsymbol{x}_{uu} + \boldsymbol{x}_{vv}, \boldsymbol{x}_{u} \rangle &= \langle \boldsymbol{x}_{uu}, \boldsymbol{x}_{u} \rangle + \langle \boldsymbol{x}_{vv}, \boldsymbol{x}_{u} \rangle = \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{v} \rangle - \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{v} \rangle = O, \\ \langle \boldsymbol{x}_{uu} + \boldsymbol{x}_{vv}, \boldsymbol{x}_{v} \rangle &= \langle \boldsymbol{x}_{uu}, \boldsymbol{x}_{v} \rangle + \langle \boldsymbol{x}_{vv}, \boldsymbol{x}_{v} \rangle = -\langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{u} \rangle + \langle \boldsymbol{x}_{uv}, \boldsymbol{x}_{u} \rangle = O. \end{split}$$

Obtenemos entonces la siguiente propiedad.

Propiedad

Si $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ es una parametrización isotérmica, entonces $\Delta \mathbf{x}$ es paralelo al vector normal N.

Prueba:

De las ecuaciones anteriores, $\langle \Delta \mathbf{x}, \mathbf{x}_u \rangle = \langle \Delta \mathbf{x}, \mathbf{x}_v \rangle = 0$. Esto muestra que $\Delta \mathbf{x} \in T_{\mathbf{p}}S^{\perp} \Rightarrow \Delta \mathbf{x}$ es paralelo a N, $\forall \mathbf{p} \in S$.

Obs.

De la propiedad anterior, existe una función diferenciable $\beta: S \to \mathbb{R}$ tal que $\Delta \mathbf{x} = \beta N$. En particular, podemos escribir

$$\beta = \langle \beta N, N \rangle = \langle \Delta \mathbf{x}, N \rangle.$$

Luego,

$$\beta = \langle \Delta \mathbf{x}, \mathbf{N} \rangle = \langle \mathbf{x}_{uu} + \mathbf{x}_{vv}, \mathbf{N} \rangle = \langle \mathbf{x}_{uu}, \mathbf{N} \rangle + \langle \mathbf{x}_{vv}, \mathbf{N} \rangle = e + g$$
$$= II_{\mathbf{p}}(\mathbf{x}_{u}) + II_{\mathbf{p}}(\mathbf{x}_{v}).$$

De ahí que

$$\frac{1}{\lambda^2}\beta = II_{\mathbf{p}}\left(\frac{\mathbf{X}_u}{\lambda}\right) + II_{\mathbf{p}}\left(\frac{\mathbf{X}_v}{\lambda}\right) = \frac{eG - 2fF + gE}{EG - F^2} = 2H.$$

Portanto,

$$\beta = 2\lambda^2 H, \quad \Delta \mathbf{x} = 2\lambda^2 H N.$$

Propiedad

Si **x** es isotérmica, entonces Δ **x** = $2\lambda^2$ HN.

Recordemos que una función f es **armónica** si $\Delta f = \mathbf{0}$.

Corolario

 $S \subset \mathbb{R}^3$ es superficie mínima \Leftrightarrow las funciones coordenadas x(u,v), y(u,v), z(u,v) son funciones armónicas, cuando se consideran en parámetros isotérmicos (u,v).

Prueba:

S es mínima
$$\Leftrightarrow H \equiv 0 \Leftrightarrow \Delta \mathbf{x} = 2\lambda^2 HN = 0 \Leftrightarrow \mathbf{x} = (x, y, z)$$
 es armónica $\Leftrightarrow x, y, z$ son armónicas.

• Conexiones con funciones holomorfas (próxima aula).