

Application of Deep Learning Technique to Rice Lodging Identification

Hsin-Hung Tseng* & Yu-Chun Hsu NCHU & PAIR Lab, Taiwan

Sep 11th, 2019 PRAGMA37 @UCSD

Outline

Introduction

In Taiwan, storms and typhoons usually cause crops damage.

Disaster Relief

Fields

Account for ¼
Taiwan's land area

78% size **<1ha**

small & irregular

multiple cropping & crop rotation

Disaster damage assessment/Crop monitoring

Why UAV?

High resolution

High mobility

Low price

Object

Large-area Investigation

Visible Band Camera

Process Fast

Related Works

Related Works

Convolutional Neural Network

Semantic Segmentation Architecture

Application on Precision Agriculture

Convolutional Neural Network

Composition of CNN

Modification from CNN to become FCN

Long, Shelhamer and Darrell(2015)

- Proposed FCN
- Pixel-wise classification with no image size limitation
- The skip architecture is robust for detecting multiscale features

Ronneberger, Fischer and Brox (2015)

- Proposed U-Net
- Encoder-Decoder architecture
- Biomedical image binary segmentation

Badrinarayanan, Kendall and Copula (2015)

- Proposed SegNet
- Encoder-Decoder architecture based on VGG-16
- Pooling indices eliminates the learning for upsample

Huang et al. (2018)

FCN outperforms than patch-based CNN and pixel-based CNN in UAV imagery

Fuentes-Pacheco et al. (2019)

Successfully simplified SegNet for binary vegetation identification

Sa et al. (2018)

GPU embedded system performs well on SegNet inference (1.8 fps)

Nvidia Jetson TX2

Ma et al. (2019)

• SegNet was well-suited for pixel-classification on tiny and abnormally shaped object

Approach	GT/Predicted Class	Rice	Background	Weed
SegNet	Rice	0.936	0.015	0.049
	Background	0.061	0.907	0.032
	Weed	0.042	0.019	0.939
FCN	Rice	0.921	0.022	0.056
	Background	0.120	0.834	0.046
	Weed	0.053	0.018	0.929
U-Net	Rice	0.462	0.182	0.356
	Background	0.014	0.977	0.010
	Weed	0.173	0.143	0.685

Kerkech, Hafiane and Canals (2018)

Combination of Vegetation index outperforms RGB-only

Summary

CNN does well in visual recognition

A stack of convolution layers with small filter performs better

FCN outputs pixel-wise classification

FCNs are feasible for real-time classification

Combination of vegetation index outperforms RGB-only

SegNet

FCN-AlexNet

Multi-source

Methodologies

Research Pipeline

Research Flow

3 phases of Methodologies

Data Collection

Training and Validating Dataset

Semantic Segmentation Network

Data Collection (for Training)

Camera Spec.				
Model	SONY QX-100			
Resolution	5472 x 3648			
HFOV	64.8°			

Flight Task					
Height (m)	GSD (cm/pix)	Front-overlap (%)			
230	5.27	85			

Data Collection (for Testing)

Camera Spec.				
Model	SONY A7R MK2			
Resolution	7952 x 5304			
HFOV	100.4°			

Flight Task				
Height (m)	GSD (cm/pix)	Front-overlap (%)		
180	4.68	85		

Training and Validating Dataset

- Total 522 Hi-Res images, 179 annotated image of quarter part (179/2088)
- Ratio invariant (3:2)
- Images are spitted to 480x320
- Training samples: Training 1764 / Validating 742 (70/30 split)

Image Stitching

- Commercial software: Agisoft Metashape
- Image based modeling
- Networking process (distributed computing)
- 2 physical machines, 5 computing nodes (4+1)
- 3 GPU nodes, 2 CPU nodes
- 10Gbps network between physical machines
- 40TB Hybrid storage (SSD cache)

Training and Validating Dataset

- Combination of visible band and vegetation index
- Excess Green index (ExG)
- Excess Green minus Excess Red index (ExGR)

$$ExG = 2 * G - R - B$$

 $ExGR = ExG - ExR = 3 * G - 2.4 * R - B$

RGB ExG ExGR

2 Fully Convolutional Network

Pooling Indices

Conv + Batch Normalization + ReLU
Pooling Upsampling Softmax

FCN-AlexNet

SegNet

FCN-AlexNet

- Based on AlexNet
- Adjustment:
 - Three 1x1 convolution layer
 - One 32x deconvolution layer
 - One softmax activation layer

SegNet

- Based on VGG-16
- Adjustment :
 - A mirrored convolution structure
 - Encoder-Decoder FCN
 - Pooling indices

Area for experiments (40ha)

Histogram matching for color similarity

2019 Before Histogram matching

2019 After Histogram matching

2017 (same as training)

- Crop image to tiles because the limitation of GPU memory
- Each tile is 320x480

- Well annotated ground truth for model evaluation
- Compared with Maximum Likelihood Classification (MLC)

2017 2019

Training Environment (TWGC service)

Compute Hardware			
CPU	Intel Xeon Gold 6154 @3.00GHz (8 cores/GPU node)		
Memory	60 GB/GPU node		
Accelerator	NVIDIA Tesla V100 16GB /GPU node		

Software Environment				
OS	Ubuntu 16.04			
Container Soft.	Docker EE			
Containerized Image	nchc-tensorflow-18.07-py3			
Libraries	Python 3.5.2 TensorFlow 1.10.1 Keras 2.2.2 Numpy 1.15 Scikit-image 0.15.0 Jupyter Notebook CUDA 9.0			

Training Parameter

Source: Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." *arXiv preprint arXiv:1412.6980*(2014).

Training Parameter				
Optimizer	Adam (Adaptive Moment Estimation)			
Learning rate	10E-3			
B1	0.9			
B2	0.999			
Epsilon	10E-8			
Decay	0.05			
Epoch	50			
Batch size	24			

Results and Discussion

Evaluation and Discussion

Precision and OA of Rice Lodging Identification (%)

Model	Information	Rice Paddy	Rice Lodging	Road	Ridge	Unmarked	OA
	RGB	92.97	68.12	68.49	74.37	91.05	85.25
FCN-AlexNet	RGB+ExG	89.09	84.51	40.25	75.00	95.11	84.78
ren-Alexinet	RGB+ExGR	87.75	84.58	37.84	76.87	96.19	85.00
	RGB+ExG+ExGR	92.11	81.63	40.69	79.41	95.46	86.68
	RGB	94.90	61.74	50.90	61.74	92.59	87.67
CapNat	RGB+ExG	95.77	57.38	63.99	87.96	88.96	87.07
SegNet	RGB+ExGR	92.04	76.71	41.86	86.55	92.04	87.17
	RGB+ExG+ExGR	85.57	80.82	67.12	87.59	88.89	85.74

Results (Rice Lodging Identification)

Evaluation and Discussion

Precision

$$precision_c = \frac{TP_c}{TP_c + FP_c}$$

Recall

$$recall_c = \frac{TP_c}{TP_c + FN_c}$$

Overall Accuracy

$$OA = \sum_{c=1}^{n} \frac{TP_c}{TP_c + TN_c + FP_c + FN_c}$$

• F1-score

$$F_1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Performance Comparison on 2017 Rice Lodging Mosaic Image

Classifier	Information	Precision(%)	Recall(%)	F1-score(%)	Time(s)
	RGB+ExG+ExGR	61.63	95.49	74.91	126
SegNet	RGB+ExGR	71.35	91.44	80.16	119
Beginet	RGB+ExG	73.55	86.27	79.40	134
	RGB	80.42	77.85	79.11	121
	RGB+ExG+ExGR	68.64	90.46	78.05	96
FCN-AlexNet	RGB+ExGR	71.29	91.65	80.20	135
I'CIN-AIEXINEI	RGB+ExG	72.01	86.98	78.79	141
	RGB	73.30	86.72	79.45	101
	RGB+ExG+ExGR	56.47	96.64	71.29	1526
MLC	RGB+ExGR	63.42	91.76	75.00	1492
MILC	RGB+ExG	61.75	93.23	74.29	1511
	RGB	57.43	96.16	71.91	1342

Performance Comparison on 2019 Rice Lodging Mosaic Image

Classifier	Information	Precision(%)	Recall(%)	F1-score(%)	Time(s)
	RGB+ExG+ExGR	50.62	84.14	63.21	131
SegNet	RGB+ExGR	55.93	73.77	63.62	124
Beginet	RGB+ExG	68.55	69.15	68.85	135
	RGB	79.07	47.66	66.21	132
	RGB+ExG+ExGR	57.40	75.29	65.14	95
FCN-AlexNet	RGB+ExGR	73.31	83.30	77.99	97
ren-Alexinet	RGB+ExG	81.87	51.87	63.51	106
	RGB	89.78	24.46	38.45	99
	RGB+ExG+ExGR	57.03	80.67	66.82	1562
MLC	RGB+ExGR	56.88	86.33	68.58	1512
WILC	RGB+ExG	58.40	85.21	69.30	1493
	RGB	58.67	79.07	67.36	1416

2017 SegNet (RGB+ExG)

2017 SegNet (RGB)

2017 FCN-AlexNet (RGB+ExGR)

2017 FCN-AlexNet (RGB)

2017 MLC (RGB+ExG)

2017 MLC (RGB)

2019 SegNet (RGB+ExG)

2019 SegNet (RGB)

2019 FCN-AlexNet (RGB+ExGR)

2019 FCN-AlexNet (RGB)

2019 MLC (RGB+ExG)

2019 MLC (RGB)

80ha for 2 min

Rice Lodging Identification

2600 ha area

within 1 day

Conclusion

Conclusion

- 1) UAVs help the large-area investigation and also lower the cost of labor and money.
- 2) With the deep learning technique, data can be reused and the classifier can be reinforced, which means the experience can be accumulated.
- 3) Adding vegetation index makes the classification model robust.
- 4) Image tile eliminates the memory insufficient problem of processing large-scale images.
- 5) The variant of illumination, white balance and saturation are still the challenges for image classification tasks.

Future Work

Future Work

- 1) Test other networks, such as Enet, EDANet.
- 2) Edge devices integration
- 3) Distributed computing for faster results.
- 4) Autonomous identification and pathfinding
- 5) Paddy field mapping for lodging rate calculation.
- 6) Preparing an article for submission

Future Work

Nvidia Jetson AGX Xavier

Reference

- 1. Council of Agriculture, Executive Yuan, Taiwan., Agriculture Statistics Data., Available at : http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx [Accessed April, 4th, 2019]
- 2. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
- 3. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097-1105).
- 4. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE.
- 5. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- 6. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).
- 7. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
- 8. Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., & Zhang, L. (2018). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PloS one, 13(4), e0196302.
- 9. Fuentes-Pacheco, J., Torres-Olivares, J., Roman-Rangel, E., Cervantes, S., Juarez-Lopez, P., Hermosillo-Valadez, J., & Rendón-Mancha, J. M. (2019). Fig Plant Segmentation from Aerial Images Using a Deep Convolutional Encoder-Decoder Network. Remote Sensing, 11(10), 1157.
- 10. Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., Nieto, J., Stachniss, C., Walter, A. & Siegwart, R. (2018). Weedmap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sensing, 10(9), 1423.

Reference

- 11. Ma, X., Deng, X., Qi, L., Jiang, Y., Li, H., Wang, Y., & Xing, X. (2019). Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields. PloS one, 14(4), e0215676.
- 12. Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and Electronics in Agriculture, 155, 237-243.
- 13. Labelbox: The best way to create and manage training data. Available at: https://www.labelbox.com/ [Accessed Nov., 30th, 2019]
- 14. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). Tensorflow: a system for large-scale machine learning. OSDI (Vol. 16, pp. 265-283).
- 15. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259-269.
- 16. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- 17. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing. Harlow: Prentice Hall.
- 18. Richards, J. A. (1999). Remote sensing digital image analysis: An introduction. Heidelberg: Springer.

Thanks for your attention!

Hsin-Hung Tseng d108062001@mail.nchu.edu.tw