- (a) Always reject H₀, no matter what data are obtained (equivalent to the practice of choosing the α level to force rejection of H_0).
- (b) Always accept H_0 , no matter what data are obtained (equivalent to the practice of choosing the α level to force acceptance of H_0).
- **8.17** Suppose that X_1, \ldots, X_n are iid with a beta $(\mu, 1)$ pdf and Y_1, \ldots, Y_m are iid with a $beta(\theta, 1)$ pdf. Also assume that the Xs are independent of the Ys.
 - (a) Find an LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_i}.$$

- (c) Find the distribution of T when H_0 is true, and then show how to get a test of size $\alpha = .10$.
- **8.18** Let X_1, \ldots, X_n be a random sample from a $n(\theta, \sigma^2)$ population, σ^2 known. An LRT of $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ is a test that rejects H_0 if $|\bar{X} - \theta_0|/(\sigma/\sqrt{n}) > c$.
 - (a) Find an expression, in terms of standard normal probabilities, for the power function of this test.
 - (b) The experimenter desires a Type I Error probability of .05 and a maximum Type II Error probability of .25 at $\theta = \theta_0 + \sigma$. Find values of n and c that will achieve this.
- **8.19** The random variable X has pdf $f(x) = e^{-x}, x > 0$. One observation is obtained on the random variable $Y = X^{\theta}$, and a test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ needs to be constructed. Find the UMP level $\alpha = .10$ test and compute the Type II Error probability.
- **8.20** Let X be a random variable whose pmf under H_0 and H_1 is given by

_x	1	2	3	4	5	6	7
$f(x H_0)$.01	.01	.01	.01	.01	.01	.94
$f(x H_1)$.06	.05	.04	.03	.02	.01	.79

Use the Neyman-Pearson Lemma to find the most powerful test for H_0 versus H_1 with size $\alpha = .04$. Compute the probability of Type II Error for this test.

- 8.21 In the proof of Theorem 8.3.12 (Neyman-Pearson Lemma), it was stated that the proof, which was given for continuous random variables, can easily be adapted to cover discrete random variables. Provide the details; that is, prove the Neyman-Pearson Lemma for discrete random variables. Assume that the α level is attainable.
- **8.22** Let X_1, \ldots, X_{10} be iid Bernoulli(p).
 - (a) Find the most powerful test of size $\alpha = .0547$ of the hypotheses $H_0: p = \frac{1}{2}$ versus $H_1: p = \frac{1}{4}$. Find the power of this test.
 - (b) For testing H₀: p ≤ ½ versus H₁: p > ½, find the size and sketch the power function of the test that rejects H₀ if ∑_{i=1}¹⁰ X_i ≥ 6.
 (c) For what α levels does there exist a UMP test of the hypotheses in part (a)?
- **8.23** Suppose X is one observation from a population with beta $(\theta, 1)$ pdf.
 - (a) For testing $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, find the size and sketch the power function of the test that rejects H_0 if $X > \frac{1}{2}$.
 - (b) Find the most powerful level α test of H_0 : $\theta = 1$ versus H_1 : $\theta = 2$.
 - (c) Is there a UMP test of $H_0: \theta \leq 1$ versus $H_1: \theta > 1$? If so, find it. If not, prove so.