

EECS 151/251A
Spring 2019
Digital Design and Integrated Circuits

Instructor:
John Wawrzynek

Lecture 16

Memory Circuits

General Latch Design

Storage principles

- Hardwired (Read-only-memory- ROM)
- Programmable
 - Volatile
 - Feedback to hold state while power is on
 - Non-volatile
 - Persistent state without power supplied

Volatile Storage Mechanisms

Static - feedback

Dynamic - charge

Basic Static Storage Element

- If D is high, D b will be driven low
 - Which makes D stay high
- Positive feedback
- Tolerant to noise and other small disturbances

A Static Latch

Access transistor must be able to overpower the feedback.

Addressing the write problem

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Implemented with a MUX.

Memories

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM	FIFO	FLASH	
DRAM	LIFO		
	Shift Register		
	CAM		

Storage Mechanisms

Static (SRAM)

Dynamic (DRAM)

Memory Architecture Overview

- Word lines used to select a row for reading or writing
- Bit lines carry data to/from periphery
- □ **Core** aspect ratio keep close to 1 to help balance delay on word line versus bit line
- Address bits are divided between the two decoders
- Row decoder used to select word line
- Column decoder used to select one or more columns for input/output of data

Memory - SRAM

Memory Cells

Complementary data values are written (read) from two sides

Cells stacked in 2D to form memory core.

SRAM read/write operations

6-Transistor CMOS SRAM Cell

SRAM Operation - Read

- 1. Bit lines are "pre-charged" to VDD
- 2. Word line is driven high (pre-charger is turned off)
- 3. Cell pulls-down one bit line
- 4. Differential sensing circuit on periphery is activated to capture value on bit lines.

During read \overline{Q} will get pulled up when WL first goes high, but ...

Reading the cell should not destroy the stored value

CMOS SRAM Analysis (Read)

$$CR = \frac{W_1/L_1}{W_5/L_5}$$

SRAM Operation - Write

- 1. Column driver circuit on periphery differentially drives the bit lines
- 2. Word line is driven high (column driver stays on)
- 3. One side of cell is driven low, flips the other side

For successful write the access transistor needs to overpower the cell pullup

CMOS SRAM Analysis (Write)

Size width ratio between PMOS pull-up and NMOS access

$$\frac{W_4/L_4}{W_6/L_6}$$

6T-SRAM — Layout

V_{DD} and GND: in M1

Bitlines: M2

Wordline: poly-silicon

65nm SRAM

□ ST/Philips/Motorola

Memory Periphery

Periphery

- Decoders
- Sense Amplifiers
- ☐ Input/Output Buffers
- ☐ Control / Timing Circuitry

Row Decoder

 Expands L-K address lines into 2^{L-K} word lines

Row Decoders

(N)AND Decoder

$$\begin{aligned} WL_0 &= A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 \\ WL_{511} &= \bar{A}_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 \end{aligned}$$

NOR Decoder

Collection of 2^K logic gates, but need to be dense and fast.

Predecoders

•

•

•

$$a_5 a_4 a_3 a_2 \overline{a_1} \overline{a_0}$$
 $a_5 a_4 a_3 a_2 \overline{a_1} a_0$
 $a_5 a_4 a_3 a_2 a_1 \overline{a_0}$
 $a_5 a_4 a_3 a_2 a_1 \overline{a_0}$
 $a_5 a_4 a_3 a_2 a_1 a_0$

- Use a single gate for each of the shared terms
 - E.g., from $a_1, \overline{a_1}, a_0, \overline{a_0}$ generate four signals:
 - $\overline{a_1} \overline{a_0}, \overline{a_1} a_0, a_1 \overline{a_0}, a_1 a_0$
- □ In other words, we are decoding smaller groups of address bits first
 - And using the "predecoded" outputs to do the rest of the decoding

Predecoder and Decoder

Column "Decoder"

 $d_7c_7b_7a_7d_6c_6b_6a_6d_5c_5b_5a_5d_4c_4b_4a_4d_3c_3b_3a_3d_2c_2b_2a_2d_1c_1b_1a_1d_0c_0b_0a_0$

4-input pass-transistor based Column Decoder

decoder shared across all 2K × M row bits

Advantages: speed (t_{pd} does not add to overall memory access time) Only one extra transistor in signal path

Sense Amplifiers

Sense Amplifiers

large make as small as possible
$$\tau_p = \frac{C \cdot \Delta V}{I_{av}}$$
 small

Idea: Use Sense Amplifer

Differential Sense Amplifier

Differential Sensing — SRAM

Memory - DRAM

3-Transistor DRAM Cell

No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a "1" = V WWL -VTn

Can work with a normal logic IC process

1-Transistor DRAM Cell

Write: C _S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

 $C_{\rm S} << C_{\rm BI}$ Voltage swing is small; typically around 250 mV.

- ☐ To get sufficient C_s, special IC process is used
- Cell reading is destructive, therefore read operation always is followed by a write-back
- Cell looses charge (leaks away in ms highly temperature dependent), therefore cells occasionally need to be "refreshed" - read/write cycle

Latch-Based Sense Amplifier (DRAM)

- Initialized in its meta-stable point with EQ
- Once adequate voltage gap created, sense amp enabled with SE
- Positive feedback quickly forces output to a stable operating point.

Advanced 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell

Multi-ported memory

Multi-ported Memory

→ Motivation:

- Consider CPU core register file:
 - 1 read or write per cycle limits processor performance.
 - Complicates pipelining. Difficult for different instructions to simultaneously read or write regfile.
 - Common arrangement in pipelined CPUs is 2 read ports and 1 write port.

I/O data buffering:

dual-porting allows both sides to simultaneously access memory at full bandwidth.

Dual-ported Memory Internals

 Add decoder, another set of read/write logic, bits lines, word lines:

Example cell: SRAM

- Repeat everything but cross-coupled inverters.
- This scheme extends up to a couple more ports, then need to add additional transistors.