Analisi Matematica Formulario

Numeri Complessi

$$i^2 = -1$$

Forma Algebrica:

z = a + ib Re(z) = a parte reale, Im(z) = b parte immaginaria

Complesso conjugato: $z = a + ib \rightarrow \overline{z} = a - ib$

Forma Trigonometrica $z = r[\cos \theta + i \cdot \sin \theta]$

$$r = \sqrt{a^2 + b^2}$$

$$\theta \in (-\pi, \pi]: \qquad \theta \in (0, 2\pi]:$$

$$\arctan(\frac{b}{a})a > 0, b \text{ qualsiasi} \qquad \arctan(\frac{b}{a})a > 0, b \geq 0$$

$$\arctan(\frac{b}{a}) + \pi a < 0, b \geq 0 \qquad \arctan(\frac{b}{a}) + 2\pi a > 0, b < 0$$

$$\arctan(\frac{b}{a}) - \pi a < 0, b < 0 \qquad \arctan(\frac{b}{a}) + \pi a < 0, b \text{ qualsiasi}$$

$$\frac{\pi}{2}a = 0, b > 0 \qquad \frac{\pi}{2}a = 0, b < 0$$

$$\frac{3\pi}{2}a = 0, b < 0$$

 $-\frac{\pi}{2}a = 0, b < 0$ Non definito a = 0, b = 0

 $\theta \in (0, 2\pi]$: $\arctan(\frac{b}{a}) + \pi a < 0, b \ge 0$ $\arctan(\frac{b}{a}) + \pi a < 0, b \ge 0$ $\arctan(\frac{b}{a}) + 2\pi a > 0, b < 0$ $\arctan(\frac{b}{a}) + \pi a < 0, b < 0$ $\arctan(\frac{b}{a}) + \pi a < 0, b < 0$ $\arctan(\frac{b}{a}) + \pi a < 0, b < 0$

 $\frac{\pi}{2}a = 0, b > 0$ $\frac{3\pi}{2}a = 0, b < 0$

Non definito a = 0, b = 0

Forma esponenziale: $z = re^{i\theta}$

Radice n-esima complessa:

$$\begin{cases} r = \sqrt[n]{a^2 + b^2} \\ \theta x = \phi/n + 2k\pi/n \end{cases}$$

Limiti

Forme Indeterminate: 0^0 $\frac{\infty}{\infty}$ $0 \cdot \infty$ 1^{∞} ∞^0 $\frac{0}{0}$ $\infty - \infty$

Regola di de L'Hopital:

se $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ o $\frac{\pm \infty}{\pm \infty}$ allora $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Alcuni Limiti notevoli:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \quad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a) \quad \lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e \quad \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

Polinomio di Taylor

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n$$

Fattoriale: $n! \to n \cdot (n-1)$

Formula di Taylor

$$f(x,y) = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0) + \frac{1}{2}(x - x_0, y - y_0) + \frac{1}{2}(x - x_0, y - y_0) + o(|(x - x_0, y - y_0)|^2) per(x - x_0, y - y_0) \rightarrow (0, 0)$$

Formula di Taylor con Resto di Peano $f(x) = T_{c,n}(x) + R_{c,n}(x)$

Derivate

Esempi

$\ln x$	$\frac{1}{x}$	$\sin(x^2+4)$	$2x \cdot \cos(x^2 + 4)$
a^x	$a^x \ln a$	e^{x^2+2x}	$e^{x^2+2x} \cdot (2x+2)$
e^x	e^x	$\arctan(x^2+4)$	$\frac{1}{(x^2+4)^2+1} \cdot 2x$

Derivata di una funzione composta

f'(x)
$\frac{1}{g(x)} \cdot g'(x)$
$\frac{g(x)}{ g(x) } \cdot g'(x)$
$a^{g(x)} \cdot \ln(a) \cdot g'(x)$
$n \cdot [g(x)]^{n-1} \cdot g'(x)$

Regole di Derivazione

Derivata di una somma

$$f(x) + g(x) + h(x)$$
 $f'(x) + g'(x) + h'(x)$

Prodotto di derivate

$$f(x) \cdot g(x)$$

$$f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Rapporto di derivate

$$\frac{f(x)}{g(x)} \qquad \qquad \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

Derivata di una costante

$$k \cdot f(x)$$
 $k \cdot f'(x)$

Derivata di una funzione composta

$$f[g(x)]$$
 $f'[g(x)] \cdot g'(x)$

Derivata di una funzione elevata ad una funzione

$$f(x)^{g(x)}$$
 $f(x)^{g(x)} \cdot [g'(x) \cdot \ln[f(x)] + g(x) \cdot \frac{f'(x)}{f(x)}]$

Integrali

$$\begin{array}{|c|c|c|c|c|}\hline f(x) & F(x) & [primitiva] & f(x) & F(x)\\ \int 1 \, dx & x+c & \int \sin x \, dx & -\cos x+c\\ \int x^n \, dx & \frac{x^{n+1}}{n+1}+c & \int \cos x \, dx & \sin x+c\\ \int \frac{1}{x} \, dx & \ln|x|+c & \int \frac{1}{\cos^2 x} \, dx & \tan x+c\\ \int a \, dx & ax+c & \int \frac{1}{\sin^2 x} \, dx & -\cot x+c\\ \int a^x \, dx & \frac{a^x}{\ln a}+c & \int \tan^2 x \, dx & \int \frac{1}{\cos^2 x} = \tan x+c\\ \int e^x & e^x+c & \int \cot^2 x \, dx & \int \frac{1}{\sin^2 x} = \cot x+c\\ \int e^{kx} & \frac{e^{kx}}{k}+c & \int \frac{1}{1+x^2} \, dx & \arctan x+c \end{array}$$

Regole di Integrazione

In generale

$$\int f[g(x)] \cdot g'(x) dx \qquad F[g(x)] + c$$
Prodotto di una costante k

$$\int k \cdot f(x) \, dx \qquad \qquad k \cdot \int f(x) \, dx$$

Somma di due o più funzioni

$$\int f(x) \pm g(x) \pm h(x) dx \qquad \int f(x) dx \pm \int g(x) dx \pm \int h(x) dx$$

Integrazione per parti

$$\int f(x) \cdot g(x) \, dx \qquad F(x)g(x) - \int F(x) \cdot g'(x) \, dx$$

Integrazione per sostituzione

$$\int f(x) dx \qquad \text{ponendo } \mathbf{x} = g(t)$$
da cui deriva $dx = g'(t)$
$$\int f[g(t)] \cdot g'(t)$$

Integrazione delle funzioni razionali fratte

- 1. **DIVISIONE**. Se il grado del denominatore > grado numeratore, allora **SALTO** QUESTO PASSAGGIO.
- 2. **FATTORIZZARE**, scomporre il denominatore in un prodotto di fattori di 1° grado.
- 3. **DECOMPORRE**, la frazione in frazioni semplici.
- 4. INTEGRAZIONE, delle varie parti.

Successioni

Successioni

- Successione convergente
 - $-\lim_{x\to +\infty} x_n = l \quad \text{(I limite finito)}$
- Successione divergente
 - Se una successione ha limite infinito.
- Successione oscillante
 - II limite non esiste. Esempio: $x_n = (-1)^n$
 - Possiamo dividerle in due gruppi:
 - * successioni regolari: il limite per $n \to \infty$ esiste.
 - * successioni irregolari: il limite per $n \to \infty$ non esiste.
- Successioni Monotone
 - monotona crescente $x_n \leq x_{n+1} \ \forall n \in \mathbb{N}$
 - monotona decrescente $x_n \geq x_{n+1} \ \forall n \in \mathbb{N}$
 - strettamente monotona crescente $x_n < x_{n+1} \ \forall n \in \mathbb{N}$
 - strettamente monotona decrescente $x_n > x_{n+1} \ \forall n \in \mathbb{N}$
- Successioni limitate e illimitate
 - limitata se $\exists a, b \in \mathbb{R}$ tali che $\forall n \in \mathbb{N}$ vale che $x_n \in [a, b]$
 - illimitata in caso contrario.

Gerarchie degli Infiniti

 $n^k (k > 0)$ $a^n (a > 1)$ n! n^n (in ordine decrescente da sinistra (più grande) a destra (più piccolo)).

Serie

• Serie numerica

$$- A_k := a_1 + a_2 + a_3 + \dots + a_k = \sum_{n=1}^k a_n$$

- La successione A_k viene detta serie numerica.
- La quantità A_k viene chiamata somma parziale k-esima, $\forall k \in \mathbb{N}$

• Serie Geometrica

$$-\sum_{n=0}^{+} \infty q^n = \begin{cases} +\infty & \text{se } q \ge 1\\ \frac{1}{1-q} & \text{se } |q| < 1\\ \text{oscilla} & \text{se } q \le 1 \end{cases}$$

• Serie Armonica

$$-\sum_{n=1}^{+} \infty \frac{1}{n} = +\infty$$

Punti di non derivabilità

Punto Angoloso

Se
$$\lim_{x \to x_0-} f'(x) = m$$
 e $\lim_{x \to x_0+} f'(x) = l$ con $m \neq l$

Allora x_0 è un punto angoloso.

Cuspide

Se
$$\lim_{x \to x_0-} f'(x) = +\infty$$
 e $\lim_{x \to x_0+} f'(x) = -\infty$

Allora x_0 è una cuspide con vertice in alto.

Se
$$\lim_{x \to x_0-} f'(x) = -\infty$$
 e $\lim_{x \to x_0+} f'(x) = +\infty$

Allora x_0 è una cuspide con vertice in basso.

Flesso

Se
$$\lim_{x \to x_0} f'(x) = +\infty$$

Allora x_0 è un flesso a tangente verticale crescente.

Se
$$\lim_{x \to x_0} f'(x) = -\infty$$

Allora x_0 è un flesso a tangente verticale decrescente.

Monotonia di una funzione

- Determinare la sua derivata prima
- Studiarne il segno. (disequazioni)
- Applicare il teorema.
- Descrivere la crescenza, decrescenza e punti di massimo e minimo relativi.

Determinare i punti critici

Punti critici: Massimo, Minimo, punto di sella, flesso. Metodologia:

- Calcolare le derivate prime in base x ed y.
- Mettere a sistema queste derivate.
- Trovare gli eventuali punti.
- Calcolare le derivate seconde e fare l'Hessiano.
- Calcolare il determinante $det(Hf(x,y)) = (f_{xx} \cdot f_{yy}) (f_{xy} \cdot f_{yx})$
- Calcolo la $f_{xx}(Punto)$.
- Sostituisco il punto nel determinante: det(Hf(Punto))
- In base ai risultati determino la natura del punto:
 - determinante positivo, primo elemento positivo → punto di minimo relativo
 - determinante positivo, primo elemento negativo → punto di massimo relativo
 - determinante negativo \rightarrow **punto di sella**
 - determinante nullo \rightarrow il test è inconcludente

Tabella dei gradi

	Funzione	0°	30°	45°	60°	90°
Sine, Cosine, Tangent	$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Sine, Cosine, Tangent	$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\tan(\theta)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undef.

Arcotangente

Arctan

Funzione -90° -60° -45° -30° 0° 30° 45° 60° 90°
$$\arctan(\theta)$$
 $-\infty$ $-\sqrt{3}$ -1 $-\frac{1}{\sqrt{3}}$ 0 $+\frac{1}{\sqrt{3}}$ 1 $+\sqrt{3}$ $+\infty$ $\pi=180°$ $-\frac{\pi}{2}$ $-\frac{\pi}{3}$ $-\frac{\pi}{4}$ $-\frac{\pi}{6}$ 0 $+\frac{\pi}{6}$ $+\frac{\pi}{4}$ $+\frac{\pi}{3}$ $+\frac{\pi}{2}$

Differenziabilità

Determinare se una funzione è differenziabile

- Esistono le derivate parziali prime nel punto (x_0, y_0)
- $\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-f_x(x_0,y_0)h-f_y(x_0,y_0)k}{\sqrt{h^2+k^2}} = 0$

Derivata direzionale

Derivata direzionale rispetto a v nel punto (x_0, y_0) :

$$D_v f(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + t\cos(\theta), y_0 + t\sin(\theta)) - f(x_0, y_0)}{t}$$

Se chiamo $g(f) := f(x_0 + t\cos(\theta), y_0 + t\sin(\theta))$

$$\Rightarrow D_v f(x_0, y_0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0)$$

(quindi fai la derivata prima e poi passi 0 a questa)

Gradiente

Teorema del Gradiente

Se f è differenziabile, allora esiste la derivata direzionale $D_v f(x_0,y_0)$ e vale:

$$D_v f(x_0, y_0) = \nabla f(x_0, y_0) \cdot v$$

 \bigtriangledown (gradiente) significa, almeno nel piano cartesiano, semplicemente le derivate prime in base ad x e y.

Teorema Derivazione della Composizione

Sia $f:\mathbb{R}^2\to\mathbb{R}$ differenziabile, sia $g:\mathbb{R}\to\mathbb{R}$ derivabile

$$\nabla h(x,y) = g'(f(x,y)) \cdot \nabla f(x,y)$$

Teoremi degli estremanti locali

Teorema di Fermat

Se f è derivabile in c e c è un estremante locale allora:

$$f'(c) = 0$$

Teorema di Rolle

Se f è continua su [a,b] e derivabile in (a,b) e f(a)=f(b) allora:

$$\exists d \in (a,b) \text{ tale che } f'(d) = 0$$

Teorema di Lagrange

Sia $f:[a,b]\to\mathbb{R}$, continua in [a,b] e derivabile in (a,b) Allora:

$$\exists d \in (a,b)$$
 tale che $f(b) - f(a) = f'(d)(b-a)$

Esistenza e Calcolo del Piano Tangente in due variabili

Data una funzione f(x, y) e un punto (x_0, y_0) .

Il piano che contiene entrambe le rette è dato da:

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Asintoti

Asintoti verticali

$$\lim_{x \to c \pm} f(x) = \pm \infty$$

$c \in \mathbb{R}$

Asinti orizzontali

$$\lim_{x\to\pm\infty}f(x)=l\in\mathbb{R}$$

Asintoti Obliqui

- $\bullet \lim_{x \to \pm \infty} f(x) = \pm \infty$
- Se $\lim_{x \to \pm \infty} \frac{f(x)}{x} = m \in \mathbb{R}$
- $\bullet \ \operatorname{Se} \ \lim_{x\to\pm\infty} (f(x)-mx)=q\in\mathbb{R}$
- ullet Allora ho un asintoto obliquo di equazione: y=mx+q

O-Piccolo

Diciamo che
$$f(x) = o(g(x))$$
 per $x \to c$

se
$$\lim_{x \to c} \frac{f(x)}{g(x)} = 0$$

es:
$$x^3 = o(x^2)$$
 per $x \to 0$

es:
$$x^2 = o(x^3)$$
 per $x \to \infty$

Equazioni differenziali

Modello di Malthus

È stato il primo modello di dinamica delle popolazioni a essere introdotto ed è il più semplice modello di crescita esponenziale.

tasso r costante.

N(t) = numero di individui al tempo t.

 $N'(t) = rN(t) \Rightarrow N(t) = ce^{rt}$ è la soluzione.

Equazioni Differenziali del I Ordine Omogenee

È un'equazione che ha per incognita una funzione y=f(x) e che stabilisce una relazione tra la variabile indipendente x, la funzione incognita f(x) e almeno una delle sue derivate.

Integrale Generale (o soluzione generale)

Insieme di tutte le funzioni y = f(x) che risolvono l'equazione.

Soluzione particolare

È una determinata funzione che risolve l'equazione.

Problema di Cauchy

È la **soluzione particolare** di un'equazione differenziale di una funzione y = f(x) in cui la curva integrale passa per un punto assegnato (x_0, y_0)

$$\begin{cases} y' = F(x;y) \\ y_0 = f(x_0) \end{cases}$$

La condizione $y_0=f(x_0)$ è detta **condizione iniziale** del problema di Cauchy.

Individuare la funzione y=f(x) che soddisfa l'equazione differenziale e passa per il punto (x_0,y_0)

Equazioni differenziali a variabili separabili

Quando può essere scritta nella forma $y' = g(x) \cdot h(y)$, con g(x) e h(y) funzioni continue.

- 1. Separo le variabili y e x
- 2. Integro ciascun membro

Equazioni differenziali lineari

Quando la funzione incognita y e la sua derivata prima y' compaiono solamente in termini di primo grado.