Contenus

- Ensemble R des nombres réels, droite numérique
- Intervalles de \mathbb{R} . Notations $+\infty$ et $-\infty$
- Notation |a|. Distance entre deux nombres réels
- Représentation de l'intervalle [a-r;a+r] puis caractérisation par la condition $|x-a| \le r$.
- Ensemble D des nombres décimaux. Encadrement décimal d'un nombre réel à 10⁻ⁿ près.
- Ensemble $\mathbb Q$ des nombres rationnels. Nombres irrationnels ; exemples fournis par la géométrie, par exemple $\sqrt{2}$ et π .
- \bullet Notations $\mathbb N$ et $\mathbb Z$

Capacités attendues

- Associer à chaque point de la droite graduée un unique nombre réel et réciproquement.
- Représenter un intervalle de la droite numérique. Déterminer si un nombre réel appartient à un intervalle donné.
- Donner un encadrement, d'amplitude donnée, d'un nombre réel par des décimaux.
- Dans le cadre de la résolution de problèmes, arrondir en donnant le nombre de chiffres significatifs adaptés à la situation donnée.

Démonstrations:

- Le nombre $\frac{1}{3}$ n'est pas décimal.
- Le nombre $\sqrt{2}$ est irrationnel.

Exemples d'algorithme:

• Déterminer par balayage un encadrement de $\sqrt{2}$ d'amplitude inférieure ou égale à 10^{-n} .

Approfondissements possibles:

- Développement décimal illimité d'un nombre réel.
- Observation, sur des exemples, de la périodicité du développement décimal de nombres rationnels, du fait qu'un développement décimal périodique correspond à un rationnel.

I Les ensembles de nombres

1 Les nombres entiers : entiers naturels et entiers relatifs

Définition 1. Un entier naturel est un nombre entier positif ou nul. L'ensemble des entiers naturels est noté \mathbb{N} ($\ll N \gg comme \ll naturel \gg$).

Remarque 1.

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

En particulier, $0 \in \mathbb{N}$.

Définition 2. Un entier relatif est un nombre entier positif ou négatif ou nul.

 $L'ensemble \ des \ entiers \ relatifs \ est \ not\'e \ \mathbb{Z} \ (\ll Z \gg comme \ll zahlen \gg qui \ signifie \ll compter \gg en \ allemand).$

Remarque 2.

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Propriété 1. Tout entier naturel est un entier relatif. On dit que l'ensemble des entiers naturels **est inclus** dans l'ensemble des entiers relatifs et on note $\mathbb{N} \subset \mathbb{Z}$.

Démonstration.

Par définition, tout entier naturel est un entier positif ou nul. Donc, en particulier, c'est un entier positif ou négatif ou nul.

Remarque 3. L'inclusion réciproque est fausse : $\mathbb{Z} \not\subset \mathbb{N}$. Pour le prouver, il suffit de trouver un élément de \mathbb{Z} qui n'est pas un élément de \mathbb{N} . Le nombre -5 convient (par exemple).

Attention à ne pas confondre les deux symboles \in et \subset .

Exercice 1. Dans chacun des cas suivants, compléter les ... à l'aide du symbole \in ou du symbole \subset .

- ♦ 12 ... N
- \diamond soit (d) une droite et M un point de cette droite. Alors $M \dots (d)$.
- \diamond soient A et B deux points distincts du plan. Alors [AB]...(AB).
- ⋄ soit E l'ensemble de tous les élèves du lycée et S l'ensemble des élèves de votre classe de seconde. Alors S . . . E
- \diamond soit P l'ensemble de tous les professeurs du lycée. Alors Mme $\mathit{Beudez} \ldots \mathit{P}$

Remarque 4. .

L'inclusion est une relation entre deux ensembles. Il ne faut pas la confondre avec l'appartenance (qui est une relation entre un élément et un ensemble). Par exemple, comme 3 est un nombre et pas un ensemble de nombres, on dit que $\ll 3$ appartient à $\mathbb{N} \gg$, ce qui se note $\ll 3 \in \mathbb{N} \gg$.

2 Les nombres décimaux

Définition 3. Un nombre **décimal** est un nombre pouvant s'écrire sous la forme $\frac{a}{10^n}$ où a est un entier **relatif** et n est un entier **naturel**.

 $L'ensemble \ des \ nombres \ d\'ecimaux \ est \ not\'e \ \mathbb{D} \ (\ll D \gg comme \ll d\'ecimal \gg).$

Autrement dit, $\mathbb{D} = \left\{ \frac{a}{10^n} ; a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}.$

Exemple 1.

- 0, 2 est un nombre décimal (donc $0, 2 \in \mathbb{D}$). En effet, $0, 2 = \frac{2}{10^1}$ avec 2 entier relatif et 1 entier naturel.
- \diamond -0,04 est un nombre décimal (donc -0,04 \in \mathbb{D}). En effet, -0,04 = $\frac{-4}{10^2}$ avec -4 entier relatif et 2 entier naturel.

Propriété 2. Tout entier relatif est un nombre décimal. On a donc les inclusions suivantes : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D}$

 $D\acute{e}monstration$. Pour tout entier relatif k, on a:

$$k = \frac{k}{1} = \frac{k}{10^0}$$

Ainsi, tout entier relatif k peut s'écrire sous la forme $\frac{k}{10^0}$ avec k entier relatif et 0 entier naturel. Tout entier relatif est donc un nombre décimal, ce qui prouve bien que $\mathbb{Z} \subset \mathbb{D}$. L'inclusion $\mathbb{N} \subset \mathbb{Z}$ ayant déjà été vue précédemment, on obtient bien $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D}$.

Remarque 5. Les nombres décimaux ont une écriture décimale finie (c'est-à-dire qu'ils s'écrivent avec un nombre fini de chiffres après la virgule). Réciproquement, un nombre ayant une écriture décimale finie est un nombre décimal.

Propriété 3. Le nombre $\frac{1}{3}$ n'est pas décimal.

Démonstration. Avant de commencer la démonstration, on rappelle le critère de divisibilité par 3 : un nombre est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3.

On raisonne **par l'absurde** : supposons que $\frac{1}{3}$ soit décimal. Alors il existe un entier relatif a et un entier naturel n tels que $\frac{1}{3} = \frac{a}{10^n}$. D'où $3 \times a = 10^n$. En particulier, a étant un entier, on en déduit que 3 divise $3 \times a$. Or $3 \times a = 10^n$ donc

3 divise 10^n . Or la somme des chiffres de 10^n vaut 1, qui n'est pas un multiple de 3. Cela contredit le critère de divisibilité par 3. On a donc démontré que $\frac{1}{3}$ n'est pas décimal.

3 L'ensemble des nombres rationnels

Définition 4.

 \diamond Un nombre **rationnel** est un nombre qui peut s'écrire sous la forme $\frac{p}{q}$ où p est un entier relatif et q un entier naturel non nul.

L'ensemble des nombres rationnels est noté \mathbb{Q} (« $Q \gg comme$ « quotient »).

Autrement dit, $\mathbb{Q} = \left\{ \frac{p}{q} ; p \in \mathbb{Z} \text{ et } q \in \mathbb{N}^* \right\}.$

♦ Un nombre qui n'est pas rationnel est dit irrationnel.

Propriété 4. On a les inclusions suivantes :

Démonstration. Tout nombre décimal d peut s'écrire sous la forme $\frac{a}{10^n}$ où a est un entier relatif et n un entier naturel. On pose alors p=a et $q=10^n$. Ainsi, p est un entier relatif et q est un entier naturel non nul. Donc d est un nombre rationnel.

Tout nombre décimal est donc un nombre rationnel, ce qui prouve bien que $\mathbb{D} \subset \mathbb{Q}$. Les inclusions $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D}$ ayant déjà été vues précédemment, on obtient bien $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

Propriété 5. Tout nombre rationnel s'écrit de manière unique sous forme irréductible. Autrement dit, pour tout nombre rationnel r, il existe un unique entier relatif a et un unique entier naturel non nul b tel que $r = \frac{a}{b}$ et tels que le seul diviseur positif commun à a et b soit 1.

 $D\acute{e}monstration$. Soit r un nombre rationnel. Il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tel que $r = \frac{p}{q}$. On considère d le plus grand diviseur commun à p et à q. Alors, par définition, d divise p et d divise q donc il existe un entier relatif a et un entier naturel non nul b tels que :

$$r = \frac{p}{q} = \frac{d \times a}{d \times b} = \frac{a}{b}$$

La fraction $\frac{a}{b}$ est nécessairement irréductible puisque d était le **plus grand divisieur commun** de p et de q.

4 L'ensemble des réels, la droite réelle

Point historique:

La mesure des grandeurs est à l'origine de l'invention des nombres réels. Ils permettent d'associer à toute mesure une valeur. Une unité de longueur étant choisie :

- toute longueur de segment est mesurée par un réel nombre positif. Par exemple la longueur de la diagonale d'un carré de côté 1 est mesurée par le réel positif $\sqrt{2}$.
- inversement, tout réel positif est la mesure d'une longueur de segment.

Définition 5.

On considère une droite munie d'un repère (O; I).

L'ensemble des nombres réels est l'ensemble des abscisses des points de cette droite, appelée droite des réels. On note cet ensemble \mathbb{R} .

Propriété 6. On a les inclusions suivantes :

Remarque 6. Il existe des nombres réels qui ne sont pas rationnels comme par exemple $\sqrt{2}$, π . C'est ce que l'on appelle les nombres irrationnels.

Propriété 7. Le nombre $\sqrt{2}$ est irrationnel.

 $D\acute{e}monstration$. Admise pour l'instant. La démonstration sera faite plus tard lorsque nous aurons vu la notion de nombre pair et de nombre impair et leurs propriétés.

Faire:

- ◊ l'exercice résolu 1 p.25 (en cachant la correction ;-))
- $\diamond \ l'exercice \ll Utiliser \ différents \ raisonnements \gg p.31$

5 Encadrement décimal d'un nombre réel à 10^{-n} près

Propriété-définition 1. Soit x un nombre réel et n un entier relatif. Il existe un unique nombre entier relatif a tel que :

$$\frac{a}{10^n} \leqslant x < \frac{a+1}{10^n}$$

Cet encadrement est appelé l'encadrement décimal de x à 10^{-n} près.

L'arrondi de $x \ \hat{a} \ 10^{-n}$ **près** est celui des deux nombres $\frac{a}{10^n}$ ou $\frac{a+1}{10^n}$ qui est le plus proche de x (lorsqu'il existe).

Dans le cas où x est à égale distance de $\frac{a}{10^n}$ et de $\frac{a+1}{10^n}$, par convention, l'arrondi est alors $\frac{a+1}{10^n}$.

 $D\acute{e}monstration$. Admis.

Exercice 2. Encadrer π par deux nombre décimaux à 10^{-2} près, puis à 10^{-4} près.

Faire:

- ♦ l'exercice 10 p.59
- ♦ les exercices 49, 50, 51, 52 et 53 p.66
- ♦ les exercices 54 et 55 p.67

Faire le TP 1 p.60 du livre « détermination par balayage de l'encadrement de $\sqrt{2}$ à 10^{-n} près ».

6 Quelques exemples de constructions géométriques de nombres réels

Il est très facile de placer un entier sur la droite des réels : il suffit de reporter l'unité de longueur autant de fois que nécessaire sur la droite, en faisant bien attention à l'orientation de la droite.

En revanche, placer un nombre rationnel ou un nombre irrationnel est moins évident. Nous allons voir quelques constructions dans l'activité indiquée ci-dessous.

Activité 1 chapitre 1 : « quelques constructions de nombres réels ».

II Intervalles de \mathbb{R}

Exemple introductif : On considère l'ensemble des nombres compris au sens large entre 2 et 5. Comment écrire cet ensemble plus simplement ?

On ne peut pas écrire la liste de tous les nombres appartenant à cet ensemble (puisqu'il y en a une infinité).

On peut représenter cet ensemble sur la droite graduée ci-dessous en coloriant :

Cet ensemble de nombres se note [2;5]. Les crochets indiquent ici que 2 et 5 appartiennent à cet ensemble. On peut se les représenter comme des mains qui tiennent les nombres 2 et 5: Un tel ensemble est appelé un **intervalle** (du latin « intervallum » qui désignait la distance entre deux pieux).

Les nombres 2 et 5 sont appelés les bornes de l'intervalle [2;5].

1 Les intervalles de \mathbb{R}

Activité 2 chapitre 1 : « à la découverte des intervalles ».

Le tableau suivant donne les différents types d'intervalles que vous pouvez rencontrer (a et b sont deux réels tels que a < b).

Intervalle	Description	Ensemble des réels	Représentation
		x tels que	
[a;b]	tous les nombres compris au sens large entre a et b	$a \leqslant x \leqslant b$	$\begin{array}{ccc} & & & \\ \hline & a & & b \end{array}$
]a;b[tous les nombres strictement compris entre a et b	a < x < b	$\frac{}{a} \qquad \stackrel{[}{b}$
[a;b[tous les nombres compris entre a et b , b exclus	$a \leqslant x < b$	${a} \qquad \stackrel{[}{\underset{b}{\longrightarrow}} \qquad$
]a;b]	ouvert en a , fermé en b	$a < x \leqslant b$	$\begin{array}{ccc} & & & \\ \hline & & \\ a & & b \end{array}$
$[a; +\infty[$	fermé	$x \geqslant a$	\xrightarrow{a}
$]a;+\infty[$	ouvert	x > a	\xrightarrow{a}
$]-\infty;b]$	fermé	$x \leqslant b$	\xrightarrow{b}
$]-\infty;b[$	ouvert	x < b	<u> </u>

Exemple 2.

$$\begin{aligned} &1 \in \left[-3; 2 \right] \ et \ 1 \in \left] -3; 2 \right[. \\ &-3 \in \left[-3; 2 \right] \ mais \ -3 \notin \left] -3; 2 \right]. \\ &2 \in \left[-3; 2 \right] \ mais \ 2 \notin \left[-3; 2 \right[. \end{aligned}$$

Remarque 8.

- ♦ Quand le crochet « tient » le nombre, on dit qu'il est fermé et le nombre appartient à l'intervalle.
- ♦ Quand le crochet « ne tient pas » le nombre, on dit qu'il est ouvert et le nombre n'appartient pas à l'intervalle.
- ♦ Du côté de $-\infty$ et de $+\infty$, le crochet est **toujours ouvert**. En effet, $-\infty$ et $+\infty$ ne désignent pas des nombres réels et ne peuvent pas être atteints.
- $\diamond L$ 'ensemble \mathbb{R} est lui-aussi un intervalle, c'est l'intervalle $]-\infty;+\infty[$.

Définition 6.

- \diamond L'ensemble des réels positifs (ou nuls) est l'intervalle $[0; +\infty[$. On le note aussi \mathbb{R}^+ .
- \diamond L'ensemble des réels négatifs (ou nuls) est l'intervalle $]-\infty;0]$. On le note aussi \mathbb{R}^- .

Faire:

- ⋄ l'exercice résolu 1 p.27 (en cachant la correction ;-)) ;
- ♦ les exercices 1 et 2 de la feuille d'exercices du chapitre;
- ♦ les exercices 41, 42, 43, 44 p.40. Indication pour l'exercice 43 : on appelle amplitude d'un intervalle sa longueur. Par exemple, l'intervalle [1;3] a pour amplitude 2;
- ♦ l'exercice 46 p.40 (sauf les questions 7 et 8);
- ♦ l'exercice 84 p.44.

2 Intersection et réunion d'intervalles

Définition 7. Soient I et J deux intervalles de \mathbb{R} .

- \diamond L'intersection de I et de J est l'ensemble des nombres qui appartiennent à la fois à I et à J. On la note $I \cap J$, ce qui se lit "I inter J".
- \diamond La **réunion** de I et de J est l'ensemble des nombres qui appartiennent à I ou à J (éventuellement aux deux à la fois). On la note $I \cap J$, ce qui se lit "I union J".

Remarque 9. Lorsque les intervalles I et J n'ont aucun nombre en commun, leur intersection est l'ensemble vide, noté \emptyset . On dit alors que les intervalles I et J sont disjoints.

Remarque 10. On en déduit immédiatement que $I \cap J \subset I \cup J$.

Méthode pour représenter l'intersection et l'union de deux intervalles :

On commence par représenter ces deux intervalles sur la même droite avec deux couleurs différentes.

- ♦ L'intersection des deux intervalles est la partie de la droite qui a été coloriée des deux couleurs à la fois.
- ♦ La réunion des deux intervalles est la partie de la droite qui a été coloriée d'au moins une des deux couleurs (soit d'une couleur uniquement, soit des deux couleurs à la fois).

Exercice 3.

Faire l'exercice 3 de la feuille d'exercices du chapitre.

Valeur absolue d'un nombre réel. Distance entre deux nombres TTT réels.

Définition 8. Soit x un nombre réel.

Definition 8. Soit x un nombre rect.

On appelle valeur absolue de x, et on note |x|, le nombre réel égal à : $\begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

Exemple 3.

$$|6| = 6$$
 ; $|-5| = 5$; $|-3,2| = 3,2$; $|0| = 0$

Définition 9. Soient a et b deux nombres réels.

On appelle distance entre les réels a et b le nombre |b-a| (aussi égal à |a-b|).

Exemple 4. La distance entre les nombres 1 et 6 est |6-1| = |5| = 5.

La distance entre les nombres 5 *et* 0, 3 *est* |0, 3-5| = |-4, 7| = 4, 7.

La distance entre les nombres -2 et 4 est |4 - (-2)| = |4 + 2| = |6| = 6.

Exercice 4. On considère les réels suivants :

$$a = -4$$
 ; $b = -1$; $c = 2$; $d = 3, 6$

- 1. Calculer:
 - \diamond la distance entre a et b;
 - \diamond la distance entre c et d;
 - \diamond la distance entre a et c.
- 2. Sur une droite de repère (O; I), placer les points A, B, C et D d'abscisses respectives a, b, c et d. Que semblent représenter géométriquement les résultats obtenus à la question précédente?

Interprétation géométrique de |b-a| avec a et b deux réels :

On considère une droite graduée (d). On note A le point d'abscisse a et B le point d'abscisse b. Alors la distance |b-a|entre les nombres a et b s'interprète comme la distance AB.

Propriété 8. Soient a, x et r trois nombres réels avec $r \ge 0$. Alors :

$$x \in [a-r; a+r]$$
 équivaut à $|x-a| \le r$

Démonstration.

Exercice 5. Sur une droite graduée, A est le point d'abscisse 2.

- 1. Représenter l'ensemble des points M tels que $AM \leq 4$.
- 2. On note x l'abscisse du point M. Compléter l'inégalité caractérisant x :

$$|x - \dots | \leq \dots$$

Exercice 6. Dans chacun des cas suivants, représenter sur une droite graduée l'ensemble des réels x vérifiant l'inégalité donnée :

$$\diamond |x-3| < 1$$

$$\diamond |x+4| < 2$$

$$\diamond |5-x| < 3$$

Chapitre 1 - Cours 8/9 M. Botcazou

- \diamond les exercices résolus 2 et 3 p.27 (en cachant la correction ;-))
- ♦ l'exercice 8 p.33
- ♦ l' exercice 45 p.40
- \diamond les questions 7 et 8 de l'exercice 46 puis l'exercice 47 p.40
- ♦ l'exercice 72 p.43
- ♦ l'exercice 104 p.47