Math 493 Lecture 15

Professor Andrew Snowden

Transcribed by Thomas Cohn

10/28/19

Let G be a group.

Recall: for $A, B \subset G$ subsets, $AB = \{ab \mid a \in A, b \in B\}$. If A and B are subgroups, then AB is not always a subgroup. However, if A is normal, then AB is a subgroup.

Recall:

Defn: G is the (internal) direct product of subgroups A and B if

- 1. A and B are normal
- 2. AB = G
- 3. $A \cap B = \{1\}$

Notation: $G = A \times B$

Defn: G is the (internal) semi-direct product of subgroups A and B if

- 1. A is normal
- 2. AB = G
- 3. $A \cap B = \{1\}$

Notation: $G = A \rtimes B$

 $\mathbf{E}\mathbf{x}$:

- 1. G = M, the group of rigid motions of the plane $P = \mathbb{R}^2$.
 - A is the group of translations.

B is O(2), the group of origin-preserving transformations.

 $G = A \rtimes B$.

- 2. $G = D_n$, the dihedral group of order 2n.
 - A is the group of rotations $(\operatorname{ord}(A) = n)$.

B is the subgroup generated by any reflection.

 $G = A \rtimes B$.

- 3. G = O(n).
 - A = SO(n).

B is the subgroup generated by any reflection.

 $G = A \rtimes B$.

- 4. $G = A \times B$.
 - A = A.
 - B = B.

 $G = A \times B$. (I.e. every direct product is a semi-direct product.)

So, among other things, we have $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = D_n$. Thus, we cannot recover G from A and B as an abstract group from a semi-direct product.

Let X be a set. Perm(X) is the group of permutations of X, i.e., the set of all bijections $X \to X$, under composition.

$$S_n = \text{Perm}(\{1,\ldots,n\}).$$

If X is a G-set, then for $g \in G$, we get a permutation of X by $X \to X$.

$$x \mapsto qx$$

This defines a function $G \to \operatorname{Perm}(X)$, which is a group homomorphism. In fact, giving an action of G on X is the same as giving a homomorphism $G \to \operatorname{Perm}(X)$.

Defn: Now, say X is a group. Aut $(X) \subseteq \operatorname{Perm}(X)$. If G acts on X, we say G acts by group homomorphisms if the map $G \to \operatorname{Perm}(X)$ lands in Aut(X).

Explicitly, this means $g \in G, x, y \in X \Rightarrow g \cdot (xy) = (g \cdot x)(g \cdot y)$.

 $\mathbf{E}\mathbf{x}$:

- 1. G acts on itself by left-multiplication. This action is not by group homomorphisms.
- 2. G acts on itself by conjugation. This action is by group homomorphisms.

Say $G = A \times B$. Given $b \in B$, we know that conjugation by b is a group homomorphism $G \to G$, and maps A to itself because A is normal. Let

$$\varphi_b: A \to A$$
$$a \mapsto bab^{-1}$$

Then $\varphi_b \in \operatorname{Aut}(A)$. The function

$$\varphi: B \to \operatorname{Aut}(A)$$
$$b \mapsto \varphi_b$$

is a group homomorphism. Reason: $\varphi_{bb'}(a) = bb'a(bb')^{-1} = b(b'a(b')^{-1})b^{-1} = \varphi_b(\varphi_{b'}(a))$.

Note: Every element of G can be written uniquely as ab with $a \in A$ and $b \in B$.

Existence is clear – we just need to check uniqueness.

Say ab = a'b'. Then $1 = (a')^{-1}a = b'b^{-1} \in A \cap B = \{1\}$. So a = a' and b = b', because inverses are unique.

To rephrase, the function $A \times B \to G$ is a bijection of sets. But in general, it is not a group homomorphism.

How do we multiply elements of G under this description?

$$(ab)(a'b') = (aba'b^{-1})(bb') = (a\varphi_b(a'))(bb')$$

Defn: A and B are two groups. $\varphi: B \to \operatorname{Aut}(A)$ is a group homomorphism. The **(external) semi-direct product** of A and B is the set of elements in $A \times B$, with multiplication $(a,b)(a',b') = (a\varphi_b(a'),bb')$. Notation: $G = A \rtimes_{\varphi} B$ (the subscript is optional).

Suppose $G = A \rtimes B$. We've constructed $\varphi : B \to \operatorname{Aut}(A)$.

From the above discussion, we know $G \cong A \rtimes_{\varphi} B$ (external). So internal semi-direct products are external semi-direct products.

Now, say $G = A \rtimes_{\varphi} B$ (external). Then $\bar{A} = \{(a,1) \mid a \in A\}, \bar{B} = \{(1,b) \mid b \in B\}. \bar{A}, \bar{B} \subseteq G$. We claim \bar{A} and \bar{B} are subgroups of G, and G is the internal semi-direct product.

Proof:

 \bar{A} is closed under multiplication: $(a,1)(a',1)=(a\varphi_1(a'),1\cdot 1)=(aa',1)$, because $\varphi_1=\mathrm{Id}_A$, so $\bar{A}\cong A$. \bar{B} is closed under multiplication: $(1,b)(1,b')=(1\varphi_b(1),bb')=(1,bb')$, so $\bar{B}\cong B$. $G=\bar{A}\bar{B}$: $(a,1)(1,b)=(a\varphi_1(1),1\cdot b)=(a,b)$.

 $\bar{A} \text{ normal: } (1,b)(a,1)(1,b)^{-1} = (1,b)(a,1)(1,b^{-1}) = (1,b)(a,b^{-1}) = (\varphi_b(a),bb^{-1}) = (\varphi_b(a),1) \in \bar{A}. \ \Box$

Ex: Some external semi-direct products:

- 1. $\varphi: B \to \operatorname{Aut}(A)$ is the trivial homomorphism. Then $\varphi_b = \operatorname{Id}_A$, $\forall b$, so $\varphi_b(a) = a$, $\forall a, b$. Then $(a,b)(a',b') = (a\varphi_b(a'),bb') = (aa',bb')$. So we get the direct product $A \times B$.
- 2. $G = D_n$, A is the group of rotations $\left\langle \rho_{\frac{2\pi}{n}} \right\rangle \cong \mathbb{Z}/n\mathbb{Z}$. B is the group generated by some reflection, which is equal to $\langle r \rangle \cong \mathbb{Z}/2\mathbb{Z}$. We want to understand

$$\varphi: B \to \operatorname{Aut}(A)$$

$$1 \mapsto \operatorname{Id}_A$$

$$r \mapsto (\rho^k \mapsto \rho^{-k})$$

Recall, $r\rho^k r^{-1} = \rho^{-k}$, so we have

$$\rho^{k} \longleftarrow k$$

$$\rho^{k} \quad \langle \rho \rangle \longleftarrow \mathbb{Z}/n\mathbb{Z} \quad k$$

$$\downarrow \qquad \downarrow^{\varphi_{r}} \qquad \downarrow \qquad \downarrow$$

$$\rho^{-k} \quad \langle \rho \rangle \longleftarrow \mathbb{Z}/n\mathbb{Z} \quad -k$$

3. F a field, $A = F^n$ (the group of column vectors, under addition). $B = \operatorname{GL}_n(F) \subseteq \operatorname{Aut}(A)$. (B consists of F-linear automorphisms.) Take φ to be inclusion. Explicitly, $\varphi_b(a) = ba$ (matrix multiplication). $G = A \rtimes_{\varphi} B$: $(a,b)(a',b') = (a+\varphi_b(a'),bb') = (a+ba',bb')$ (with vector addition, and matrix multiplication).

Let $A \triangleleft G$ a normal subgroup. Let A' be some nonzero proper F-subspace of A. $A' \triangleleft A$, but $A' \not \triangleleft G$.

Question: What is $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$?

Suppose $\varphi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is an automorphism. φ is determined by $\varphi(1)$, call this $a \in \mathbb{Z}/n\mathbb{Z}$.

 $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = a + a = 2a.$

 $\varphi(3) = \varphi(2+1) = \varphi(2) + \varphi(1) = 2a + a = 3a.$

In general, $\varphi(k) = ka$ (multiplication modulo n). Since φ is an automorphism, $\exists k$ s.t. $\varphi(k) = 1$, so ka = 1. So a is invertible under multiplication.

Defn: We say a is a **unit** of $\mathbb{Z}/n\mathbb{Z}$.

 $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of units of $\mathbb{Z}/n\mathbb{Z}$, and it is a group under multiplication.

Summary: The map $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ is an isomorphism of groups.

 $a \mapsto m_a = \text{multiplication by } a$

Note: $m_a(m_b(x)) = a \cdot b \cdot x = m_{ab}(x)$, so $m_a \circ m_b = m_{ab}$, so this is a group homomorphism.)

Lemma: If $a \in \mathbb{Z}/n\mathbb{Z}$, then a is a unit iff gcd(a, n) = 1.

 $\mathbf{E}\mathbf{x}$:

- If n=p is prime, $(\mathbb{Z}/n\mathbb{Z})^{\times}=\mathbb{F}_p^{\times}=\mathbb{F}\setminus\{0\}$. We've shown this is cyclic, and of order p-1.
 $(\mathbb{Z}/4\mathbb{Z})^{\times}=\{1,3\}\cong\mathbb{Z}/2\mathbb{Z}$.
 $(\mathbb{Z}/6\mathbb{Z})^{\times}=\{1,5\}\cong\mathbb{Z}/2\mathbb{Z}$.
 $(\mathbb{Z}/8\mathbb{Z})^{\times}=\{1,3,5,7\}\cong\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$.
 $(\mathbb{Z}/16\mathbb{Z})^{\times}\cong\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$.

Ex: The last computation implies we have an injective group homomorphism $\varphi: \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/16\mathbb{Z})$. We get a semi-direct product $\mathbb{Z}/16\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$.