

Some slides courtesy of:

- CAD slides from Dr. Saheb Zamani
- Xilinx & Altera products documentations

FPGA vs. ASIC Design Flow

FPGA and Embedded Design

- http://www.xilinx.com/training/free-video-courses.htm#ASIC
 - Videos by Product (25+ Videos)

 - Embedded FPGA Design (8 Videos)
 - DSP Digital Signal Processing (1 Video)

 - AMS Analog Mixed Signal (9 Videos)

 - Automotive Applications (7 Videos)

چرخه ی طراحی برای FPLDها

Design Entry

- Schematic Netlist
- HDL
- Waveform
- State Diagram

چرخه ی طراحی برای FPLDها

• مزایا:

- کوتاه شدن پروسه ی طراحی.
- نوآوری بیشتر (پروسه ی طراحی به مراحل بالاتر رفتاری منتقل می شود) (تشابه با زبانهای سطح بالا)
 - Debug طرح بسيار آسانتر و سريعتر.
 - مانند سیکل برنامه نویسی:

- تغییرات در طرح بسیار آسانتر.
- بعضی شرکتها نسخه های جدید سخت افزار خود را روی CD یا از طریق اینترنت در اختیار مشتری خود قرار می دهند تا EPROM را مجددا برنامه ریزی کند.

Entry – HDL Coding

- HDL allows us to describe the functionality of a logic circuit in a language that is:
 - Easy to understand
 - Easy to share
 - Hide complicated implementation details
- Designer more concerned about the design functionality than the detailed circuit design

Simulation by Testbenches

- After HDL coding, the code has to be tested using "Testbenches" (Verification)
- Simulation Tools
 - Modelsim (Mentor Graphics)
 - Simulators of Synthesis Tools

Synthesis

Synthesis Tool:

- Analyzes a piece of HDL code and converts it into optimized logic gates
- This conversion is done according to the "language semantics"
- → We have to learn these language semantics, i.e., VHDL code
- Why using synthesis tools?
 - It is an important tool to improve designers' productivity to meet today's design complexity
 - If a designer can design 150 gates a day, it will take 6666 man's day to design a 10-million gate design, or almost 20 years for 10 designers! This is assuming a linear grow of complexity when design gets bigger

Synthesis Tools

Input

- HDL Code
- "Technology Library" file
- Constraint file (Timing, area, power, loading requirement, optimization Alg.)

Output

- A gate-level "Netlist" of the design
- Timing files (.sdf)

Synthesis Example

A 2-to-1 Multiplexer (2x1 Mux)

Synthesized gate-level

Schematic

Synthesis Tool

- Infer logic and state elements
- Perform technology-independent optimizations
 - e.g., logic simplification, state assignment
- Map elements to the target technology
- Perform technology-dependent optimizations
 - Multi-level logic optimization
 - Choose gate strengths to achieve speed goals

Vendor Name	Product Name	Platform
Altera	Quartus II	FPGA
Xilinx	ISE	FPGA
Mentor Graphics	Modelsim, Precision	FPGA/ASIC
Synopsys	Design Compiler, Galaxy	ASIC
Synplicity	Synplify	ASIC
Cadence	Ambit, BG, RC	ASIC

Implementation for FPGA

1. Technology Mapping

Assign a logical LUT to a physical location.

Routing

4. Convert all implementation "details" to FPGA programming info (configuration bits): LUT RAM bits, CCM & PSM FF/SRAM bits, etc.

- Can store config bits on disk or ROM and load into FPGA as needed
- Can thus use the FPGA to implement multiple digital systems (at different times or sometimes simultaneously in different FPGA partitions)

Select wire segments and switches for Interconnection.

Application of HDLs

Modelling

Synthesis

VHDL به عنوان زبان مستندسازی (توصیف فرمال و بدون ابهام).
سنتز: تبدیل (اتوماتیک یا دستی) یک توصیف به توصیفی با جزئیات بیشتر

Concepts of HDL

- Execution of Statements:
 - Sequential
 - Concurrent

• اجرای دستورات: •ترتیبی •همزمان (موازی)

Concepts of HDL

- Abstraction: طرح را می توان در سطوح مختلفی از جزئیات توصیف کرد:
 - برای مدلسازی، سطوح بالا کافی است.
 - برای سنتز، ممکن است جزئیات بیشتری لازم باشد.
- •Modularity: می توان بلوک بزرگ پیچیده را به بلوکهای کوچکتر تقسیم کرد و برای هر بخش یک مدل نوشت.
 - Hierarchy: تشكيل يک درخت سلسله مراتبي
 - هر کدام از نودها ممکن است در سطح متفاوتی از abstraction توصیف شده باشد.

Modeling Capability

16