CONCOURS D'ADMISSION 2006

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Matrices réelles de partie symétrique positive

Dans tout le problème, l'espace vectoriel \mathbf{R}^n sera muni du produit scalaire usuel noté (.|.) et de la norme correspondante ||.||. On notera $M_n(\mathbf{R})$ l'espace vectoriel des matrices à n lignes et n colonnes, à coefficients réels, et I la matrice identité; on munira $M_n(\mathbf{R})$ de la norme usuelle :

$$||A|| = \sup \left\{ \frac{||Ax||}{||x||}, x \neq 0 \right\}.$$

Une matrice A de $M_n(\mathbf{R})$ sera dite s-positive si l'on a $(Ax|x) \ge 0$ pour tout x de \mathbf{R}^n .

Première partie

- 1. Montrer que toute matrice A de $M_n(\mathbf{R})$ s'écrit de façon unique comme somme d'une matrice symétrique A_s et d'une matrice antisymétrique A_a .
- **2.** Soit A une matrice de $M_n(\mathbf{R})$. Trouver une condition nécessaire et suffisante, portant sur les valeurs propres de A_s , pour que A soit s-positive.

Deuxième partie

3. Montrer que, pour toute matrice s-positive A et tout nombre réel $\lambda > 0$, la matrice $\lambda I + A$ est inversible.

On posera alors $R_{\lambda}(A) = (\lambda I + A)^{-1}$.

4. (Étude d'exemples) On examinera les deux exemples suivants :

a)
$$n=2$$
, $A=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

b)
$$n = 3$$
, $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.

Pour chacun de ces exemples : calculer Ker A, Im A, $R_{\lambda}(A)$, dire si $R_{\lambda}(A)$ (resp. $\lambda R_{\lambda}(A)$) admet une limite lorsque $\lambda \to 0$ et, si oui, donner cette limite.

Dans la suite de cette deuxième partie on se donne une matrice s-positive A et un réel $\lambda > 0$.

5. Démontrer les assertions suivantes :

5.a)
$$AR_{\lambda}(A) = R_{\lambda}(A)A = I - \lambda R_{\lambda}(A) .$$

5.b) Pour tout réel $\mu > 0$, on a

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A)$$
.

- **6.** Démontrer l'inégalité $||R_{\lambda}(A)|| \leq \frac{1}{\lambda}$, avec égalité si et seulement si det A est nul.
- 7. Démontrer les assertions suivantes :
- **7.a)** Pour tout $x \in \text{Im } A$, $\lambda R_{\lambda}(A)x \to 0$ lorsque $\lambda \to 0$.
- **7.b)** L'espace \mathbb{R}^n est somme directe de Ker A et Im A.
- 7.c) Lorsque λ tend vers 0, $\lambda R_{\lambda}(A)$ tend vers le projecteur sur Ker A parallèlement à Im A.
- 8. Montrer que l'application $\Phi: \lambda \mapsto R_{\lambda}(A)$ de $]0, +\infty[$ dans $M_n(\mathbf{R})$ est indéfiniment dérivable, et exprimer ses dérivées successives $\Phi^{(p)}$ en fonction de ses puissances $\Phi^q: \lambda \mapsto \Phi(\lambda)^q$.

Troisième partie

Dans cette troisième partie on se donne une application F de $]0, +\infty[$ dans $M_n(\mathbf{R})$ possédant les propriétés suivantes :

- (i) $\forall \lambda > 0$, $||F(\lambda)|| \leq \frac{1}{\lambda}$;
- (ii) $\forall \lambda, \mu > 0, F(\lambda) F(\mu) = (\mu \lambda)F(\lambda)F(\mu);$
- (iii) F(1) est inversible.
 - **9.** Montrer que $F(\lambda)$ est inversible pour tout $\lambda > 0$.
 - **10.a)** Calculer $F(\lambda)^{-1} F(\mu)^{-1}$.
- **10.b)** Montrer que, lorsque $\lambda \to 0$, $F(\lambda)^{-1}$ admet une limite A et que l'on a, pour tout $\lambda > 0$, $\lambda I + A = F(\lambda)^{-1}$.
 - 11. Montrer que les matrices $AF(\lambda)$ et A sont s-positives.

Quatrième partie

Étant donné une matrice A de $M_n(\mathbf{R})$, on pourra admettre les résultats suivants :

- (i) La série $\sum_{k=0}^{+\infty} \frac{A^k}{k!}$ est convergente. Notons $\exp A$ sa somme.
- (ii) La fonction de variable réelle $t\mapsto \exp(tA)$ est dérivable et sa dérivée est donnée par

$$\frac{\mathrm{d}}{\mathrm{d}t}\exp(tA) = A\exp(tA) \ .$$

- 12. Soit A une matrice de $M_n(\mathbf{R})$. Démontrer l'équivalence des conditions suivantes :
- (i) pour tout $t \ge 0$, on a $\|\exp(-tA)\| \le 1$;
- (ii) pour tout $x \in \mathbf{R}^n$, la fonction $t \mapsto \|\exp(-tA)x\|^2$ est décroissante;
- (iii) A est s-positive.

On fixe maintenant une matrice A s-positive et un réel $\lambda > 0$.

13. Démontrer la convergence des intégrales

$$\rho(\lambda)_{i,j} = \int_0^{+\infty} e^{-\lambda t} (\exp(-tA))_{i,j} dt \quad , \quad 1 \leqslant i, j \leqslant n .$$

On note $\rho(\lambda)$ la matrice de coefficients $\rho(\lambda)_{i,j}$.

- **14.** Comparer $\rho(\lambda)$ et $R_{\lambda}(A)$. [On pourra calculer d'abord $A\rho(\lambda) + \lambda\rho(\lambda)$.]
- 15. On considère le premier exemple de la question 4. Calculer $\exp(-tA)$, puis $\rho(\lambda)$. Retrouver la valeur de $R_{\lambda}(A)$ obtenue à la question 4.

* *

*