Jakob Wolitzki, grupa I2, nr albumu: 136830

Ćwiczenie nr 4

Temat: Algorytmy z powracaniem

Wymagania.

Znajomość:

- idei działania algorytmów z powracaniem,
- problemów znajdowania cyklu Eulera i Hamiltona w grafie nieskierowanym oraz ich przynależności do odpowiednich klas złożoności obliczeniowej,
- idei algorytmu z powracaniem dla problemu znajdowania cyklu Hamiltona.
- 1. Dla losowo wygenerowanego grafu spójnego (zbadać spójność) i o nasyceniu krawędziami (k= 0.2, 0.3, 0.4, 0.6, 0,8, 0,95) (n wierzchołków) poszukać **cyklu Eulera** (**CE**). Wykres t=f(n)- czasu poszukiwania CE. Uzasadnij wybór reprezentacji grafu. Podaj zalety i wady wybranej reprezentacji w porównaniu z pozostałymi.
- 2. Dla losowo wygenerowanego grafu spójnego (zbadać spójność) i o nasyceniu krawędziami (k= 0.2, 0.3, 0.4, 0.6, 0,8, 0,95) (n wierzchołków) poszukać **cyklu Hamiltona (CH)**. Wykres *t=f(n)* czasu poszukiwania CH (średnia z przynajmniej 10-ciu pomiarów).
- 3. Na podstawie przeprowadzonych badań sformułować wnioski dotyczące złożoności rozwiązywanych problemów oraz zastosowanych algorytmów.

Wszystkie pomiary były powtórzone dla różnej ilości elementów, badania zostały przeprowadzone na komputerze domowym z procesorem Intel Core i5-4200H CPU 2.80GHz.

Zacznę od opisania cyklu Eulera oraz Hamiltona.

Cykl Eulera to taki cykl w grafie, w naszym przypadku nieskierowanym, który zawiera każdą krawędź grafu dokładnie raz. Graf taki musi być spójny oraz z każdego wierzchołka musi wychodzić parzysta liczba krawędzi.

Cykl Hamiltona to taki cykl w grafie, w naszym przypadku nieskierowanym, który zawiera każdy wierzchołek grafu dokładnie raz.

Zad 1.

Do rozwiązania tego zadania, stworzyłem generator grafów eulerowskich, przez co każdy generowany graf zawierał cykl Eulera. Ilość krawędzi dla poszczególnych grafów była obliczana ze wzoru E = d * (n*(n-1)/2), gdzie d to wartość nasycenia, a n to liczba wierzchołków.

Duży wpływ na szybkość działania algorytmu wyszukiwania cyklu Eulera ma reprezentacja grafu. Została tu użyta macierz sąsiedztwa, w której złożoność pamięciowa wynosi O(n^2), gdzie n to liczba wierzchołków. Złożoność przeszukiwania grafu wynosi O(n), co jest znacznie szybsze od macierzy incydencji oraz listy krawędzi O(m). Warto też wspomnieć iż implementacja macierzy sąsiedztwa jest najprostsza.

Czasy wyszukiwania cyklu Eulera dla poszczególnych nasyceń grafu

Szukanie cyklu Hamiltona dla poszczególnych nasyceń

Szukanie cyklu Hamiltona dla poszczególnych nasyceń

Zad 3.

- a) Znajdowanie cyklu Eulera posiada złożoność obliczeniową O(m), gdzie m jest liczbą krawędzi w grafie. Problem ten należy do klasy problemów, których rozwiązanie jesteśmy w stanie znaleźć w czasie wielomianowym (P). Dla grafów o dużym nasyceniu złożoność zbliża się do O(n^2). Czas dla znalezienia cyklu Eulera jest tym większy im większe nasycenie grafu jest.
- b) Szukanie cyklu Hamiltona w grafie jest problemem silnie NP-zupełnym, czyli nie da się go rozwiązać ani w czasie wielomianowym, anie nawet w pseudowielomianowym. Warto wspomnieć, że gdyby algorytm nie umożliwiał dokonywania powrotów to należałoby zobaczyć wszystkie możliwe n! rozwiązań i wtedy dopiero wybrać prawidłowy.

Algorytm, który wykorzystałem do przeprowadzenia badań uwzględnia wykonywanie powrotów. Dzięki temu złożoność tej procedury wynosi O(2ⁿ). W rzeczywistości wyniki przeprowadzonych pomiarów, nie odzwierciedlają dokładnie funkcji wykładniczej na wykresie. Dzieje się tak, dlatego, że czas działania tego algorytmu zależy od nasycenia krawędzi oraz od ich układu w grafie. Grafy zostały wygenerowane pseudolosowo (zachowanie idealnej losowości było niemożliwe, aby maksymalnie przybliżyć losowość,

użyłem funkcji rand() w języku C++). Układ krawędzi w grafie, za każdym razem mógł być inny, przez co funkcja raz znajdowała cykl bardzo szybko, a często dochodziła do warunku stopu (break pointa). Im więcej graf posiada wierzchołków, tym większa jest liczba przypadków to przeanalizowania, za czym idzie dłuższy czas wykonania algorytmu. Z wykresu wynika, że im większe jest nasycenie grafu tym istnieje większe prawdopodobieństwo szybkiego znalezienia cyklu Hamiltona. Grafy z większym nasyceniem posiadają więcej krawędzi, przez co posiadają więcej różnych dróg Hamiltona, które mogą okazać się cyklami.