Rapport TER

Yves Appriou

February 3, 2025

Contents

1	Algorithmes de restauration d'images			
	1.1	Algorithme de Gibbs	2	
	1.2	Algorithme de Metropolis	2	

1 Algorithmes de restauration d'images

1.1 Algorithme de Gibbs

Maintenant nous allons voir plus en detail l'algorithme de Metropolis, developpé dans les années **1960** il consiste en :

- Choisir un pixel s_{ij} aléatoirement dans l'image.
- On calcule l'energie locale $U_s(x_0 = \lambda_i | \mathcal{V}_s), \forall \lambda_i \in \mathbb{E}$ pour chacun des états possibles. On obtient donc le vecteur des energies locales :

$$U(x_0) = \begin{pmatrix} U_s(x_0 = \lambda_1 | \mathcal{V}_s) \\ U_s(x_0 = \lambda_2 | \mathcal{V}_s) \\ \dots \\ U_s(x_0 = \lambda_k | \mathcal{V}_s) \end{pmatrix}$$

• Ainsi a partir de cette mesure on obtient une réalisation de la loi de Gibbs :

$$\mu = P(x_1 = \lambda) = \frac{1}{Z} \begin{pmatrix} \exp(-U_s(x_1 = \lambda_1 | \mathcal{V}_s)) \\ \exp(-U_s(x_1 = \lambda_2 | \mathcal{V}_s)) \\ \dots \\ \exp(-U_s(x_1 = \lambda_k | \mathcal{V}_s)) \end{pmatrix}, Z = \sum_{i \in \mathbb{E}} U_s(x_1 = i | \mathcal{V}_s)$$

La probabilité que le site s_{ij} prenne la valeur λ_i au temps n+1 est donnée par le $i^{\grave{e}me}$ élèment du vecteur de la loi de Gibbs.

• Enfin on tire sur \mathbb{E} muni de la loi μ , et on remplace par l'état tiré

Pour le modele d'Ising par exemple on a $\mathbb{E} = \{0, 1\}$;

1.2 Algorithme de Metropolis