

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WFM01_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

May 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme	Notes	Marks				
1.		$3x^{2}$ -	5x + 1 = 0 has roots a , b					
	a + b = -	$\frac{5}{3}$, $ab = \frac{1}{3}$	Both $a + b = \frac{5}{3}$ and $ab = \frac{1}{3}$, seen or implied	B1				
		$\frac{a^2+b^2}{ab}=\dots$	Attempts to substitute at least one of their $(a^2 + b^2)$ or their ab into $\frac{a^2 + b^2}{ab}$	M1				
	$a^2 + b^2 =$	$= (a+b)^2 - 2ab = \dots$	Use of a correct identity for $a^2 + b^2$ (May be implied by their work)	M1				
	$\frac{a}{b} + \frac{b}{a} =$	$\frac{\left(\frac{5}{3}\right)^2 - 2\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)} = \frac{\frac{19}{9}}{\frac{1}{3}} = \frac{19}{3}$	dependent on ALL previous marks being awarded $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$ or 6.3 o.e. from correct working	A1 cso				
				(4)				
			Question 1 Notes	4				
1.	Note	5 1 5[12 5[12						
	Note	$a, b = \frac{5 + \sqrt{13}}{6}, \frac{5 - \sqrt{13}}{6}$ in	Those candidates who then apply $a + b = \frac{5}{3}$, $ab = \frac{1}{3}$ having written down/applied a , $b = \frac{5 + \sqrt{13}}{6}$, $\frac{5 - \sqrt{13}}{6}$ in part (a) can only score the M marks.					
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$	$=\frac{\left(\frac{5+\sqrt{13}}{6}\right)}{\left(\frac{5-\sqrt{13}}{6}\right)}+\frac{\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)}=\frac{19}{3}$					
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$	$= \frac{a^2 + b^2}{ab} = \frac{\left(\frac{5 + \sqrt{13}}{6}\right)^2 + \left(\frac{5 - \sqrt{13}}{6}\right)^2}{\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)} = \frac{19}{3}$					
	Note Give M0M0A0 for $\frac{a}{b} + \frac{b}{a} = \frac{\left(a + b\right)^2 - 2ab}{ab} = \frac{\left(\left(\frac{5 + \sqrt{13}}{6}\right) + \left(\frac{5 - \sqrt{13}}{6}\right)\right)^2 - 2\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)}{\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)}$							
	Note	Allow B1 for both $S = \frac{5}{3}$ a	and $P = \frac{1}{3}$ or for $\mathring{a} = \frac{5}{3}$ and $\widetilde{O} = \frac{1}{3}$					
	Note	Give final A0 for 6.3 or 6.3	3 without reference to $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$					

Question Number		Scheme	Notes	Marks
2. (a)	AB = ($ \begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -k & 2k \\ 3 & 0 \end{pmatrix} $		
	= ($ \begin{pmatrix} 6 - k - 6 & 12 + 2k - 0 \\ -2 + 0 + 15 & -4 + 0 + 0 \end{pmatrix} $	Obtains a 2 ´ 2 matrix consisting of 4 elements with at least two correct elements which can be simplified or un-simplified Correct <i>un-simplified</i> matrix for AB	M1
	= ($ \begin{array}{ccc} -k & 12 + 2k \\ 13 & -4 \end{array} $	Correct un-simpigieu matrix for AB	(2)
	()		
(b)	$\left\{ \det(\mathbf{AB}) \right\}$) = 0 P }		
	. / .) - 13(12 + 2k) = 0	Applies " $ad - bc$ " = 0 on their 2 $$ 2 matrix for AB and solves the resulting equation to give $k =$	M1
			$k = -\frac{156}{22} \text{ or } -\frac{78}{11} \text{ or } -7\frac{1}{11}$ Accept any exact equivalent form for k Condone - 7.09	A1
				(2)
				4
		1	Question 2 Notes	
2. (a)	Note	Give A1 (ignore subsequent wor by an incorrect simplified answe	cking) for a correct un-simplified answer which is later for er.	ollowed
(b)	Note	Give M1A1 for sight of the corre		
	Note	· ·	$\frac{1}{100} = \frac{1}{100} = \frac{1}$.)
		1	$\begin{vmatrix} 2k \\ -156 + 26k = 0 > k = \end{vmatrix} = 0 > 4k - 156 + 26k = 0 > k =$	
	Note	Give final A0 for -7.0 or -7.1	or -7.09 without reference to $-\frac{156}{22}$ or $-\frac{78}{11}$ or $-7\frac{1}{11}$	

Question Number	Scheme		No	otes	Marks		
3.	Required to prove by induction the result	$\sum_{r=1}^{n} \frac{1}{r(r+1)}$	$\frac{2}{(-1)(r+2)} = \frac{1}{2} - \frac{1}{(-1)(r+2)}$	$\frac{1}{(n+1)(n+2)}, n\hat{1}$			
Way 1	$n = 1$: LHS = $\frac{1}{3}$, RHS = $\frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$ (Assume the result is true for $n = k$)	shows either RHS	hows or states LHS = $\frac{1}{3}$ $S = \frac{1}{2} - \frac{1}{(1+1)(2+1)} = \frac{1}{3}$ $\frac{1}{3}$ or RHS = $\frac{1}{2} - \frac{1}{6} = \frac{1}{3}$	B1			
	(Assume the result is true for $n = k$)						
	$= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$						
	$= \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ or $= \frac{1}{2} - \left(\frac{(k+3)-2}{(k+1)(k+2)(k+3)}\right)$	(x + 3)	Makes $(k+1)$	In the previous M mark $(k+2)(k+3)$ a common denominator for their econd and third fractions	dM1		
	$= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtains	$\frac{1}{2} - \frac{1}{(1+\epsilon)^2}$	/ \ /	$\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only	A1		
	If the result is <u>true</u> for $n = k$, then it is <u>true</u> true for $n = 1$, then the		k+1. As the resu	alt has been shown to be	A1 cso		
	Final A1 is dependent on all pre It is gained by candidates conveyir either at the end of their soluti	ng the ic	deas of all four un	derlined points	(5)		
- TY - 2					5		
Way 2	The M1dM1A1 marks for Alternative Wa		2 1+1)(k+1+2)	Adds the $(k+1)^{th}$ term to the sum of k terms	M1		
	$= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 2(2)}{2(k+1)(k+2)(k+3)}$		Makes 2(k + 1) denominato	n the previous M mark $(k+2)(k+3)$ a common r for their three fractions	dM1		
	$= \frac{k^3 + 6k^2 + 9k + 4}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k^2 + 5k + 4)}{2(k+1)(k+2)(k+3)} = \frac{k^2 + 5k + 4}{2(k+2)(k+3)} = \frac{(k+2)(k+3) - 2}{2(k+2)(k+3)}$ $= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtains $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$						
	$= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtains	$\frac{1}{2} - \frac{1}{(4\pi)^2}$	$\frac{1}{(k+2)(k+3)} \text{or} $	$\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only	A1		

		Question 3 Notes					
3.	Note	LHS = RHS by itself or LHS = RHS = $\frac{1}{3}$ is not sufficient for the 1 st B1 mark.					
	Note Way 2	The 1 st A1 can be obtained by e.g. using algebra to show that $\bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}$ gives					
		$\frac{(k^2 + 5k + 4)}{2(k+2)(k+3)}$ and by using algebra to show that $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ also gives $\frac{(k^2 + 5k + 4)}{2(k+2)(k+3)}$					
	Note	Moving from $\frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ to $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$					
		with no intermediate working is 2 nd M0 1 st A0 2 nd A0.					
Way 3	The M1d	M1A1 marks for Alternative Way 3					
		$\frac{2}{1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)}$ Adds the $(k+1)^{th}$ term to the sum of k terms M1					
	$=\frac{1}{2}-\frac{1}{(k)}$	$\frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} - \frac{1}{(k+2)(k+3)}$ dependent on the previous M mark This step must be seen in Way 3					
	$=\frac{1}{2}-\frac{1}{(k)}$	$\frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} - \frac{1}{(k+2)(k+3)}$ dependent on the previous M mark This step must be seen in Way 3 $\frac{1}{(k+2)(k+3)}$ Obtains $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ A1					
	2 ("	by correct solution only					

Question Number	Scheme		N	lotes	Marks
4. (a) Way 1	$\left\{x = 4t, \ y = \frac{4}{t} \implies\right\} \ 3\left(\frac{4}{t}\right)$	- 2(4 <i>t</i>) = 10	equation to o	nd $y = \frac{4}{t}$ into the printed btain an equation in t only	M1
	$8t^2 + 10t - 12 = 0$ or $4t^2 + $ (can be implied)		Note: E.g. $12 - 8t^2 = 1$	A correct 3 term quadratic $10t$, $8t^2 + 10t - 12 = 0$ re acceptable for this mark	A1
	$(8t-6)(t+2) = 0 \bowtie t$ or $(4t-3)(2t+4) = 0 \bowtie t$ or $(4t-3)(t+2) = 0 \bowtie t = 0$	=	Correct method (e.g. f square or applying	on the previous M mark actorising, completing the g the quadratic formula) of olving a 3TQ to find $t =$	dM1
	• $x = 4\left(\frac{3}{4}\right) = 3$ and $y = 4\left(-2\right) = -8$ and	(4)	Correct substitution for <i>t</i> into the g	th the previous M marks at least one of their values given parametric equations ts of corresponding values for $x =$ and $y =$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8,-2\right)$ or A	$A: x = 3, y = \frac{16}{3}$ and	nd $B: x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
					(5)
(a) Way 2	$x\left(\frac{10+2x}{3}\right) = 16 \qquad \left(\frac{3}{2}\right)$ $3\left(\frac{16}{x}\right) - 2x = 10 \qquad 3y$	2)	$3y - 2x = 10 \text{ into } x$ $y = \frac{k}{x} \text{ or } x = \frac{k}{y},$	substitutes their rearranged $y = k$ or substitutes either $k^{-1} 0$, into $3y - 2x = 10$	M1
	$\frac{2}{3}x^2 + \frac{10}{3}x - 16 = 0$ or $\frac{3}{2}y$	$2x^2 + 10x - 48 = 0$ or $x^2 + 5x - 24 = 0$ or $\frac{2}{3}x^2 + \frac{10}{3}x - 16 = 0$ or $\frac{3}{2}y^2 - 5y - 16 = 0$ Note:	Note: $10x + 2x^2$	A correct 3 term quadratic $x = 10x + 2x^2 = 48$, $3y^2 - 10y = 32$ or $3x = 24 = 10$ are acceptable for this mark	A1
	e.g. $(2x+16)(x-3) = 0$ \triangleright or $(x+8)(x-3) = 0$ \triangleright or $(3y-16)(y+2) = 0$ \triangleright	<i>x</i> =	dependent on the previous M r Correct method (e.g. factorising, completing square or applying the quadratic formula solving a 3TQ to find either $x =$ or y	actorising, completing the g the quadratic formula) of	dM1
	E.g. $x = 3 \Rightarrow y = \frac{16}{3}$ dependent on b of at least one of $x = -8 \Rightarrow y = \frac{16}{-8} = -2$ their rearranged		f their values for x or y is d $3y - 2x = 10$ or $y =$	arks. Correct substitution nto either $3y - 2x = 10$ or $\frac{k}{x}$ or $x = \frac{k}{y}$, $k = 0$, and ues for $x =$ and $y =$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8,-2\right)$ or A	A: $x = 3$, $y = \frac{16}{3}$ and	nd $B: x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
			TT .	1 ' /) 1 /)	(5)
(b)	$\left(\frac{3+(-8)}{2},\frac{\frac{16}{3}+(-2)}{2}\right);=\left(\frac{3+(-8)}{2},\frac{16}{3}+(-2)\right)$	$\left(-\frac{5}{2},\frac{5}{3}\right)$		heir (x_1, y_1) and (x_2, y_2) apply $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e.	M1;
				Correct answer	A1
					(2)
					7

		Question 4 Notes
4. (a)	SC	If the two previous M marks have been gained then award Special Case ddM1 for finding
		their correct points by writing either $x = 3$, $y = \frac{16}{3}$ or $x = -8$, $y = -2$ or $\left(3, \frac{16}{3}\right)$ or $\left(-8, -2\right)$
	Note	A decimal answer of e.g. $A(3, 5.33)$, $B(-8, -2)$ (without a correct exact answer) is 2^{nd} A0
	Note	Writing coordinates the wrong way round
		E.g. writing $x = 3$, $y = \frac{16}{3}$ and $x = -8$, $y = -2$ followed by $A\left(\frac{16}{3}, 3\right)$, $B\left(-8, -2\right)$ is 2^{nd} A0
	Note	Imply the dM1 mark for writing down the correct roots for their quadratic equation. E.g.
		• $2x^2 + 10x - 48 = 0$ or $x^2 + 5x - 24 = 0$ or $\frac{2}{3}x^2 + \frac{10}{3}x = 16 \rightarrow x = 3, -8$
		• $\frac{3}{2}y^2 - 5y - 16 = 0$ or $3y^2 - 10y - 32 = 0 \rightarrow y = \frac{16}{3}, -2$
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{3}{4}, -2$
	Note	For example, give dM0 for
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{1}{4}$, -2 [incorrect solution]
		with no intermediate working.
	Note	You can also imply the 1 st A1 dM1 marks for either
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \to x = 3, -8$
		• $\left(\frac{3y-10}{2}\right)y = 16 \text{ or } 3y - 2\left(\frac{16}{y}\right) = 10 \rightarrow y = \frac{16}{3}, -2$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \to x = 3, -8$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow y = \frac{16}{3}, -2$
		with no intermediate working.
	Note	You can imply the 1 st A1 dM1 ddM1 marks for either
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$
		with no intermediate working.
		You can then imply the final A1 mark if they correctly identify the correct pairs of values or coordinates which relate to the point <i>A</i> and the point <i>B</i> .
	Note	Give 2 nd A0 for a final answer of both $A\left(3, \frac{16}{3}\right)$, $B\left(-8, -2\right)$ and $A\left(-8, -2\right)$, $B\left(3, \frac{16}{3}\right)$,
(b)	Note	A decimal answer of e.g. (-2.5, 1.67) (without a correct exact answer) is A0
	Note	Allow A1 for $\left(-\frac{5}{2}, \frac{10}{6}\right)$ or $\left(-2\frac{1}{2}, -1\frac{2}{3}\right)$ or exact equivalent.

Question Number			Scheme				Notes		Marks
5.	Given f(:	(x) = 30	$0 - \frac{7}{\sqrt{x}} - x^5$, x > 0 and ro	oot of $f(x) =$	0 lies in the	ne interval [2, 2	.1]	
(a)	f(2) = 2.9	9497	or f(2.1)	- 6.0105	Attempts	Attempts to evaluate <i>at least one</i> of $f(2)$ <i>or</i> $f(2.1)$ and evaluates $f(2.05)$			M1
Way 1	f(2.05) = -1.3160				` ′	` /	`	runcated) to 1 sf truncated) to 1 sf	A1
	f(2.025)	f(2.025) =				Evalu	ates f(2.025) (a	revious M mark $f(2.075)$	dM1
	f(2.025) = 0.86846 or $2.025 \le \alpha$ so interval is (2.025, 2.05) or (2.025, 2.050) Allow a mixtus such as $2.05 < \alpha$			A^{2} $25 \leqslant \alpha \leqslant 2.0$ 025, 2.05) eo a mixture of $05 < \alpha < 2.0$	llow 2.025 05 or 2.025 quivalent in 6"ends". I 125 or (2.0	$5 \leqslant x \leqslant 2.05$ or $5 \leqslant x \leqslant 2.05$ or n words. Condo oo not allow incomplete $5, 2.025$) or 2.025	correct interval. 2.025 < x < 2.05 [2.025, 2.05] or 10.025 - 2.05 correct statements 10.025 - 2.025 unless 10.025 - 2.025 or of 10.025	A1	
	Note that some candidates only indicate the sign of f and not its value. In this case the M marks can still score as defined but not the A marks.					(4)			
(a)	Common approach in the for			m of a table	(use the i	mark scheme al	bove)		
Way 2	а	a $f(a)$		b		f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$	
	2		2.9497			5.0105	2.05	-1.3160	
	2		2.9497			.3160	2.025 marks in part (0.86846	
		SC) liller var is	2.023 < a < 2	2.03 Would	score ruii	marks in part (a)	
(b)	f((x) =	$-\frac{7}{2}$	$-\frac{3}{2} - 5x^4$	A	t least one o	· ·	V A	or $-x^5 \to \pm Bx^4$ n-zero constants.	M1
(*)	1 (1)	2	SA	At least one of either $-\frac{7}{2}x^{-\frac{3}{2}}$ or $-5x^4$ simplified or un-simplified					A1
					Correc	_		or un-simplified	A1
	$\begin{cases} \alpha \simeq 2 - 1 \end{cases}$	$\frac{f(2)}{f'(2)}$	$\Rightarrow \alpha \simeq 2 -$	2.94974746 -81.2374368	8 87		ttempt at Newton	revious M mark n-Raphson using f(2) and $f(2)$	dM1
	$\left\{a=2.03\right\}$	363101	99} Þ <i>a</i>	= 2.04 (2 dp))		2.04 on th	previous marks heir first iteration equent iterations)	A1 cso cao
	Correct	t differ		•			scores full ma	- · · ·	
			Correct an	swer with <u>no</u>	working sc	ores no ma	arks in part (b)		(5)
					Onation	5 Notes			9
5 (a)	Note	Give	2nd MO for	evaluating bot	Question		75)		
5. (a)	Note			terval = $f(2.0)$	` /	,	· /		
	Note							nce of evaluating	
	Note			• `	,	•	oj wiui no eviae .	nce of evaluating	
		ai iet	isi one oj el	ther $f(2)$ or	1 (2.1) IS IVI	MUNIUAU			

		Question 5 Notes Continued					
5. (b)	Note	Incorrect differentiation followed by their estimate of a with no evidence of applying the					
		NR formula is final dM0A0.					
	Final	This mark can be implied by applying at least one correct <i>value</i> of either $f(2)$ or $f(2)$					
	in $2 - \frac{f(2)}{f(2)}$. So just $2 - \frac{f(2)}{f(2)}$ with an incorrect answer and no other evidence						
		scores final dM0A0.					
	Note	You can imply the M1A1A1 marks for algebraic differentiation for either					
		• $f(2) = -\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4$					
		• $f(2)$ applied correctly in $\alpha \approx 2 - \frac{30 - 7(2)^{-\frac{1}{2}} - (2)^5}{-\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4}$					
	Note Differentiating INCORRECTLY to give $f(x) = -\frac{7}{2}x^{-2} - 5x^4$ leads to						
		$\alpha \simeq 2 - \frac{2.949747468}{-81.75} = 2.036082538 = 2.04 (2 dp)$					
		This response should be awarded M1A1A0M1A0					

Question Number	Scheme		Notes	Marks	
6. (a)	$ \bigcap_{r=1}^{n} r^{2}(r+1) = \bigcap_{r=1}^{n} r^{3} + \bigcap_{r=1}^{n} r^{2} $	{ N o	te: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$		
	$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$		or their answer to part (a).} mpts to expand $r^2(r+1)$ and attempts to at least one correct standard formula into their resulting expression.	M1	
	-		Correct expression (or equivalent)	A1	
	$= \frac{1}{12}n(n+1)[3n(n+1)+2(2n+1)]$		dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both standard formulae.		
	$= \frac{1}{12}n(n+1)[3n^2 + 7n + 2]$		{this step does not have to be written}		
	$= \frac{1}{12}n(n+1)\left[3n^2 + 7n + 2\right]$ $= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Correct completion with no errors. Note: $a = 12, b = 1$	A1 cso	
<i>a</i> >				(4)	
(b) Way 1	$\left\{\sum_{r=25}^{49} r^2(r+1)\right\}$		Attempts to find either $f(49) - f(24)$ or $f(49) - f(25)$. This mark can be implied.	M1	
	$= \left(\frac{1}{12}(49)(50)(51)(148)\right) - \left(\frac{1}{12}(24)(25)(26)(73)\right)$ $\left\{ = 1541050 - 94900 = 1446150 \right\}$ Correct numerical expression or un-simplified. Note: This is the implied by seeing the content of			A1	
	$\left\{ \sum_{r=25}^{49} \left(r^2(r+1) + 2 \right) \right\}$ = "1446150" + 25(2); = 1446200		25(2) or equivalent to their $\bigcap_{r=25}^{49} r^2(r+1)$ ar evidence that $\bigcap_{r=25}^{49} 2 = 2(49) - 2(24)$ or 50	M1	
			1446200	A1 cao	
4.5				(4)	
(b) Way 2	$\left\{ \sum_{r=25}^{49} \left(r^2(r+1) + 2 \right) \right\} = \left(\frac{1}{12} (49)(50)(51)(14) \right)$				
			= 1541148 - 94948 = 1446200	2.61	
			$\underbrace{\frac{24)}{\text{con}}}$ or $\underbrace{\frac{f(49) - f(25)}{f(49)}}$	M1	
	Correct numerical expression for $f(49)$ - $f(24)$ which can be simplified or un-simplified. Note: This mark can be implied by $(\underline{1541050} +)$ - $(\underline{94900} +)$ or 1541148 - 94948				
	Adds 50 or equivalent to their $\bigcap_{r=25}^{49} r^2(r+1)$ or clear evidence that $\bigcap_{r=25}^{49} 2 = 2(49) - 2(24)$ or 50				
	Note: This mark can be implied by		- (<u></u> + <u>2(24)</u>) or 1541148 - 94948		
		1446200	I	A1 cao	
				(4)	

Question Number		Scheme	Notes	Marks			
6. (b) Way 3	$ \begin{cases} \sum_{r=25}^{49} \left(r^2(r+1)+2\right) \\ = \sum_{r=25}^{49} r^3 + \sum_{r=25}^{49} r^2 + \sum_{r=25}^{49} 2 \end{cases} $ $ = \left(\frac{1}{4}(49)^2(50)^2 - \frac{1}{4}(24)^2(25)^2\right) + \left(\frac{1}{6}(49)(50)(99) - \frac{1}{6}(24)(25)(49)\right) + \frac{(98-48)}{6} $ $ = (1500625 - 90000) + (40425 - 4900) + 50 = 1410625 + 35525 + 50 = 1446200 $ $ \mathbf{or} = \bigotimes_{r=25}^{49} \left(r^3 + r^2 + 2\right) $ $ = \left(\frac{1}{4}(49)^2(50)^2 + \frac{1}{6}(49)(50)(99) + 2(49)\right) - \left(\frac{1}{4}(24)^2(25)^2 + \frac{1}{6}(24)(25)(49) + 2(24)\right) $ $ = (1500625 + 40425 + 98) - (90000 + 4900 + 48) = 1541148 - 94948 = 1446200 $						
	Attempts to find either $f(49)$ - $f(24)$ or $f(49)$ - $f(25)$						
	Correct numerical expression for $f(49) - f(24)$ which can be simplified or un-simplified.						
		49 49					
	Adds 50 or equivalent to their $\bigcap_{r=25}^{8} r^2(r+1)$ or clear evidence that $\bigcap_{r=25}^{8} 2 = 2(49) - 2(24)$ or 50						
		1446200		A1 cao			
				(4)			
			n 6 Notes				
6. (a)	Note	Applying e.g. $n = 1$, $n = 2$ to the printed e to give $a = 12$, $b = 1$ is M0A0M0A0	quation without applying the standard for	rmulae			
	Alt 1	Alt Method 1: Using $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{3}{4}$	$\frac{1}{6}n \circ \frac{3}{6}n^4 + \frac{(9+b)}{6}n^3 + \frac{(6+3b)}{6}n^2 + \frac{2b}{6}$	- <i>n</i> o.e.			
	dM1	Equating coefficients to find both $a = \dots a$					
	A1 cso	Finds $a = 12$, $b = 1$ and demonstrates the id	entity works for all of its terms.				
	Alt 2	Alt Method 2: $\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2)$	$(n+1) \circ \frac{1}{a} n(n+1)(n+2)(3n+b)$				
	dM1	Substitutes $n = 1$, $n = 2$, into this identity of					
		and at least one of $a = 12$, $b = 1$					
	A1	Finds $a = 12, b = 1$					
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2$ or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n^4 + 10n^3 +$		zing			
		$\frac{12}{12} (3n + 10n + 9n + 2n) \rightarrow \frac{1}{12} n(n)$	1 1)(n + 2)(3n + 1) Holli ilo ilicollect woll	хиід. 			

		Question 6 Notes Continued				
6. (b)	Note	Give 1 st M1 1 st A0 for applying $f(49) - f(25)$. i.e. $1541050 - 111150 = 1429900$				
	Note	You cannot follow through their incorrect answer from part (a) for the 1 st A1 mark.				
	Note	Give M1A0M1A0 for applying $[f(49) + 2(49)] - [f(25) + 2(24)]$				
		i.e. 1541148 - 111198 {= 1429950}				
	Note	Give M1A0M0A0 for applying $[f(49) + 2(49)] - [f(25) + 2(25)]$				
		i.e. 1541148 - 111200 {= 1429948}				
	Note	Give 1st M0 1st A0 for applying $(49)^2(50) - (24)^2(25) = 120050 - 14400 = 105650$				
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50) - (25)^2(26) = 120050 - 16250 = 103800$				
	Note	Give M0A0M0A0 for listing individual terms.				
		e.g. $16250 + 18252 + + 112896 + 120050 = 1446200$				
	Note	Give 2 nd M0 for lack of bracketing in				
		$\frac{1}{12}(49)(50)(51)(148) + 2(49) - \frac{1}{12}(24)(25)(26)(73) + 2(24)$ unless recovered				
	Note	Give M0A0M0A0 for writing down 1446200 without any working.				
	Note	Applying $f(49) - f(24)$ for $\frac{1}{4}n(n+1)(n+2)(3n+1)$ is $4623150 - 284700 = 4338450$				
		is 1 st M1 1 st A0				

Question Number		Scheme		Notes	Marks			
7.	$f(z) = z^4$	$4 + 4z^3 + 6z^2 + 4z + a$, a i	s a real const	ant. $z_1 = 1 + 2i$ satisfies $f(z) = 0$				
(a)		$\left\{z_2 = \right\} 1 - 2i$		1 - 2i	B1			
, ,					((1)		
(b)(i)				Attempt to expand $(z - (1+2i))(z - (1-2i))$				
				or $(z - (1+2i))(z - (their complex z_2))$				
				ny valid method to establish a quadratic factor	M1			
		$z^2 - 2z + 5$	e.	g. $z = 1 \pm 2i \triangleright z - 1 = \pm 2i \triangleright z^2 - 2z + 1 = -4$ or sum of roots 2, product of roots 5				
				to give $z^2 \pm$ (their sum) $z +$ (their product)				
					Λ1			
		$\frac{z^2 - 2z + 5}{\text{Attempts to find the other quadratic factor.}}$						
			e.g. using l	ong division to obtain either $z^2 \pm kz +, k^{-1}$ 0				
	C() (2 2 . 5)(2 . 6 . 12)		or $z^2 \pm az + b$, $b^{-1} 0$, acan be 0	M1			
	I(x) = (z	$z^2 - 2z + 5)(z^2 + 6z + 13)$	or factorisi	ng e.g. $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c), k^{-1} 0$	1411			
				$= (z^2 - 2z + 5)(z^2 \pm az \pm b), b^{-1}0, a \text{ can be } 0$				
	$z^2 + 6z + 13$				A1			
	$\{z^2 + 6z + 13 = 0 \bowtie\}$							
	Either			dependent on only the previous M mark				
		$-6 \pm \sqrt{36 - 4(1)(13)}$						
	• 2	$z = \frac{-6 \pm \sqrt{36 - 4(1)(13)}}{2(1)}$		Correct method of applying the quadratic formula or completing the square for solving	dM1			
	• ($(z+3)^2 - 9 + 13 = 0 \triangleright z$	=	a 3TQ on their 2 nd quadratic factor				
		3 + 2i, -3 - 2i		-3 + 2i and -3 - 2i	A1			
	, ,				((6)		
(ii)	a = 65	5		65 or $a = 65$ stated anywhere in (b)	B1			
					((1)		
			0	Duestion 7 Notes		8		
7. (b)(i)	Note	No working leading to		- 3 - 2i is M0A0M0A0M0A0.				
	Note	You can assume $x \circ z$						
	Note	Give dM1A1 for $z^2 + 6$	6z + 13 = 0 >	z = -3 + 2i, $-3 - 2i$ with no intermediate work	king.			
	Note	Special Case: If their	second 3 terr	m quadratic factor can be factorised then				
				factorisation leading to $z =$				
	Note			ig a method of factorising to solve their 3TQ.				
	Note Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "							
	Formula: Attempt to use the correct formula (with values for a, b and c)							
		Completing the squar		with values for a, v and c)				
		$\left(z\pm\frac{b}{2}\right)^2\pm q\pm c=0,$		ag to $z = \dots$				
1								

Question Number	Scheme			Notes		
8.	$C: y^2 = 36x$, $P(9p^2, 18p)$ lies on C, where p is a constant.					
(a)	$y = 6x^{\frac{1}{2}} > \frac{dy}{dx} = \frac{1}{2}(6)x^{-\frac{1}{2}} = \frac{3}{\sqrt{x}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$	l	
	$y^2 = 36x \Rightarrow 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 36$			$py\frac{\mathrm{d}y}{\mathrm{d}x}=q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 18 \left(\frac{1}{18p}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 18 \left(\frac{1}{18p}\right)$		$py \frac{dy}{dx} = q$ their $\frac{dy}{dt} \cdot \frac{1}{\text{their } \frac{dx}{dt}}$		
	So at P , $m_T = \frac{1}{p}$	<u>1</u> p		Correct calculus work leading to $m_T = \frac{1}{p}$	A1	
	$y - 18p = \frac{1}{p}(x - 9p^2)$ or $y = \frac{1}{p}x + 9p$			In the line method for an equation of a tangent here $m_T \begin{pmatrix} 1 & m_N \end{pmatrix}$ is found by using calculus. Note: m_T must be a function of p	M1	
	leading to $py - x = 9p^2$ (*)			Correct solution only	A1 *	
	reading to py w >p ()					(4)
(b)	(Directrix: $x = -9 \triangleright$) $a = 9$	a = 9 or $a = 9$ stated anywhere in this question			B1	
	T					(1)
(c)	Tangent goes through $(-a,6) \triangleright$	Substitu	tutes th	neir value $x = -"a"$ or their value $x = "a"$		
	$6p + 9 = 9p^2$		substitutes their value $x = -a$ or their value $x = a$ and $y = 6$ into either $py - x = 9p^2$ or $py - x = -9p^2$			
	$9p^2 - 6p - 9 = 0$ or $3p^2 - 2p - 3 = 0$	= 0				
	E.g. $p = \frac{6 \pm \sqrt{36 - 4(9)(-9)}}{2(9)}$	$p = \frac{6 \pm \sqrt{36 - 4(9)(-9)}}{2(9)}$		dependent on the previous M mark Correct method of solving their 3TQ	dM1	
	{as $p > 0$ } $p = \frac{1 + \sqrt{10}}{3}$		<i>p</i> =	$\frac{1+\sqrt{10}}{3}$ or $\frac{6+\sqrt{360}}{18}$ or $\frac{6+6\sqrt{10}}{18}$ etc.	A1	
	Note: Give A0 for give	ing two va	alues f	for p as their answer to part (c)		(3)
(d)	$x = 9\left(\frac{1+\sqrt{10}}{3}\right)^2, \ y = 18\left(\frac{1+\sqrt{10}}{3}\right)^2$			Uses a real value of p , which is the result of substituting $(\pm a, 6)$ into $py - x = \pm 9p^2$, and substitutes p into at least one of either $x = 9p^2$ or $y = 18p$	M1	
	$(11 + 2\sqrt{10}, 6 + 6\sqrt{10})$ or $(11 + 2\sqrt{10}, 6(1 + \sqrt{10}))$			Either $x = 11 + 2\sqrt{10}$ or $y = 6 + 6\sqrt{10}$ or $y = 6\left(1 + \sqrt{10}\right)$	A1	
				Correct coordinates of P . Condone $x =, y =$	A1	
	Note: Give 2 nd A0 for two sets of coordinates for <i>P</i>					(3)
						11

Question Number	Scheme		Notes		Mark	ΚS
9. (a)	$\left\{ \left z \right = \right\} \sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2}; = \frac{\sqrt{5}}{5} \text{ or } \frac{1}{\sqrt{5}} \text{ or } \sqrt{\frac{1}{5}}$	1 5	$\sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2}$ or $\sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2}$ which can be implied.			
	,	,		Correct exact answer	A1	
	${\text{arg } z = \arctan(-2) = -1.107148718}$	} = -1.11	(2 dp)	-1.11 cao or 5.18 cao	B1	
			T			(3)
(b) Way 1	$w = \frac{/i}{z} = \frac{/i}{(\frac{1}{5} - \frac{2}{5}i)}$ or $w = \frac{5/i}{5z}$	$=\frac{5/i}{(1-2i)}$	Corre	ct method of making w the subject and substituting for z	M1	
	$= \frac{/i(\frac{1}{5} + \frac{2}{5}i)}{(\frac{1}{5} - \frac{2}{5}i)(\frac{1}{5} + \frac{2}{5}i)} = \frac{5/i(1 - 2i)}{(1 - 2i)}$ $= \frac{-\frac{2}{5} + \frac{1}{5}/i}{\frac{1}{25} + \frac{4}{25}} = \frac{-10/}{1 + 2i}$		Muli of righ	bendent on the previous M mark tiplies numerator and denominator thand side by $(\frac{1}{5} + \frac{2}{5}i)$ or $(1+2i)$ to give an expression in terms which contains a real denominator	dM1	
	= -2/ + /i $= -2/ +$	/i	01 7	$\frac{-2/+/i \text{ or } /i-2/}{}$	A1	
				2, 1,7,1 00 7,1 2,1		(3)
(b) Way 2	$ (\frac{1}{5} - \frac{2}{5}i)(a + bi) = /i \Rightarrow \frac{1}{5}a + \frac{1}{5}bi - \frac{2}{5}ai + \frac{2}{5}b = /i $ Substitutes z and w into $zw = /i$, expands zw and attempts to equate either the real part of the imaginary part of the resulting equation.				M1	
	dependent on the previous M mark $\frac{1}{5}a + \frac{2}{5}b = 0$, $-\frac{2}{5}a + \frac{1}{5}b = 1$ Obtains an equation in terms of a and b and obtains a second equation in terms of a , b and b and solves them simultaneously to give at least one of $a =$ or $b =$				dM1	
				-2/ +/i or /i -2/	A1	
	,					(3)
	[44	2.	Substitu	tes z, / and their w into $\frac{4}{3}(z+w)$	M1	
(c)	$\left\{\frac{4}{3}(z+w) = \right\} \frac{4}{3} \left(\left(\frac{1}{5} - \frac{2}{5}i\right) + \left(-\frac{2}{10} + \frac{1}{10}i\right) \right);$	$= -\frac{2}{5}1$		$-\frac{2}{5}i$ or $-\frac{6}{15}i$ or $-0.4i$ o.e.	A1	
				3 13		(2)
(d)	Im♠	Criteria				
	T	• p	olots $(\frac{1}{5}, \frac{1}{5})$	$-\frac{2}{5}$) in quadrant 4		
	$C(-\frac{1}{5},\frac{1}{10})$ $B(0,\frac{1}{10})$	• p	olots $(0,\frac{1}{10})$	$\frac{1}{2}$) on the positive imaginary axis		
	(°, 10)	• p	plots $\left(-\frac{1}{5}, \frac{1}{10}\right)$ in quadrant 2			
	Proof of the plots $(0, -\frac{2}{5})$ on the negative imaginary axis at least two of the four criteria scale or coordinates stated. All points (arrows must be in the correct position relative to each other)			$\frac{2}{5}$) on the negative imaginary axis		
				fies at least two of the four criteria	B1	
				B1		
						(2)
						10

	Question 9 Notes		
9. (a)	9. (a) Note M1 can be implied by awrt 0.45 or a truncated 0.44		
	Note	Give A0 for 0.4472 without reference to $\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$	
	Note	Give B0 for -1.11 followed by a final answer of 1.11	
(b)	Note	Be aware that $\frac{1}{(\frac{1}{5} - \frac{2}{5}i)} = 1 + 2i$	

Question Number	Scheme	Notes	Marks	
10. (a)	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} $	Correct matrix which is expressed in exact so		
(b)	$ \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} $	Correct matrix which is expressed in exact so	(1) urds B1	
(c)	$ \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{cases} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} = \end{cases} $	Multiplies their matrix from part (a) by t matrix from part (b) [either way rou and finds at least one elen in the resulting ma	heir nd] nent M1	
	$\left(\frac{\sqrt{2}-\sqrt{6}}{2\sqrt{2}} - \frac{-\sqrt{2}-\sqrt{6}}{2\sqrt{2}}\right) = \left(\frac{1-\sqrt{3}}{2\sqrt{2}} - \frac{-1}{2\sqrt{2}}\right)$	$\frac{\sqrt{3}}{2}$ At least 3 correct exact elem	ents A1	
	$= \begin{pmatrix} \frac{\sqrt{2} - \sqrt{6}}{4} & \frac{-\sqrt{2} - \sqrt{6}}{4} \\ \frac{\sqrt{2} + \sqrt{6}}{4} & \frac{\sqrt{2} - \sqrt{6}}{4} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1 - \sqrt{3}}{2\sqrt{2}} & \frac{-1}{2\sqrt{2}} \\ \frac{\sqrt{3} + 1}{2\sqrt{2}} & \frac{1 - \sqrt{3}}{2\sqrt{2}} \end{pmatrix}$	Correct exact material $\sqrt{3}$ Note: Allow multiplicate either way ro	tion A1 und	
(1)	D ((1) ((0))	Rotation (condone t	(3) urn) p.1	
(d)	Rotation about (0, 0)	and about $(0, 0)$ or about O or about the or	igin B1	
	105 degrees (anticlockwise)	105 degrees or $\frac{7p}{12}$ (anticlockword or 255 degrees clockwise or $\frac{17p}{12}$ clockwise or $\frac{17p}{12}$	IDIOC	
	Note: Give 2 nd B0 for 105 degrees clockwise Note: Give B0B0 for combinations of transformations			
(e)	Either • $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ • $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{1}{2}$	dependent on the 1 st A mark in par	$\frac{d}{d\mathbf{c}} \mathbf{c}$ $\frac{d}{d\mathbf{B}} 1$	
	$\cos 75^\circ = -\cos 105^\circ = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right) \text{ or } \frac{2}{2\sqrt{2}}$	States $\cos 75^\circ = -\cos 1$ $2\sqrt{2}$ or $\frac{\sqrt{6} - \sqrt{2}}{4}$ States $\cos 75^\circ = -\cos 1$ and deduces a cor exact value for $\cos 1$	rect B1 75°	
			9	
		Question 10 Notes		
10. (e)	ALT 1 Comparing their matrix found in part (c) with a correct $\begin{pmatrix} -\cos 75 & -\sin 75 \\ \sin 75 & -\cos 75 \end{pmatrix}$			
	(representing a rotation 105° anti-clockwise about O) gives			
	$\sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ (with the 1 st A mark scored in part (c))			
	$\cos 75^{\circ} = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right) \text{ or } \frac{\sqrt{3}-1}{2\sqrt{2}} \text{ or } \frac{\sqrt{6}-\sqrt{2}}{4}$			
			(2)	