Exploring Circular Corner Regions as Seed Points for PDE-based Inpainting

Daniel Gusenburger

May 8, 2020

1/15

What is inpainting...

https://upload.wikimedia.org/wikipedia/commons/a/ae/Digital_Image_Restoration_and_Reconstraction.jpg

- Restoration technique (antique paintings etc.)
- Used for decades
- Digital inpainting introduced in 2000

...and why do we care?

Image Compression

Inpainting based image compression methods are already able to outperform traditional codecs like JPEG for high compression rates

...and why do we care?

Image Compression

Inpainting based image compression methods are already able to outperform traditional codecs like JPEG for high compression rates

Source: [Hoeltgen et al., 2017]

Choosing optimal seed points for PDE-based inpainting is not trivial

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: use image features as seeds (edges/corners)

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: use image features as seeds (edges/corners)
- Edge-based methods successful

- Choosing optimal seed points for PDE-based inpainting is not trivial
- Many different approaches (semantic, tree-based, analytic, ...)
- Semantic: use image features as seeds (edges/corners)
- Edge-based methods successful
- Corners as seed points barely explored

PDE-based inpainting using corner information (Zimmer, 2007)

Examined how well images can be compressed using only corners

PDE-based inpainting using corner information (Zimmer, 2007)

- Examined how well images can be compressed using only corners
- Masks as small neighbourhood around important corners

PDE-based inpainting using corner information (Zimmer, 2007)

- Examined how well images can be compressed using only corners
- Masks as small neighbourhood around important corners
- Reconstruction using mean curvature motion (MCM) + edge-enhancing diffusion (EED)

PDE-based inpainting using corner information (Zimmer, 2007)

Inpainting results from [Zimmer, 2007] for corner regions of different sizes

PDE-based inpainting using corner information (Zimmer, 2007)

- Examined how well images can be compressed using only corners
- Masks as small neighbourhood around important corners
- Reconstruction using mean curvature motion (MCM) + edge-enhancing diffusion (EED)
- Open potential:
 - Corner detection very fuzzy (example results)
 - Corner regions not optimised properly
 - MCM not well suited for inpainting

Approach

Idea

What if instead of only a small neighbourhood around each corner, we kept a large disc?

Approach

Idea

What if instead of only a small neighbourhood around each corner, we kept a large disc?

Approach

- Follow up on approach of Zimmer
- Förstner-Harris corner detection
- Introduce modifications
 - to better control mask size
 - to adapt detection to circular corner regions
- Pure EED inpainting
- Quantitative evaluation using MSE/PSNR

 Structure tensor averages directional information in the surrounding region

$$J_{
ho} = K_{
ho} * (\nabla u \nabla u^{\top})$$

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u \nabla u^{\top})$$

Corner detection based on eigenvalues

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u \nabla u^{\top})$$

- Corner detection based on eigenvalues
- Förstner-Harris measure:

$$\det(J)/\operatorname{tr}(J) = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} > T$$

Visualization of relation between eigenvalues of structure tensor. Source: [Harris and Stephens, 1988]

 Structure tensor averages directional information in the surrounding region

$$J_{\rho} = K_{\rho} * (\nabla u \nabla u^{\top})$$

- Corner detection based on eigenvalues
- Förstner-Harris measure:

$$\det(J)/\mathrm{tr}(J) = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} > T$$

Local maxima of this measure are marked as corners

Percentile Thresholding

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Percentile Thresholding

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Remedy

Use so called percentile on cornerness map to filter out a certain percentage of corners

Percentile Thresholding

Problem

Amount of corners varying on input image with fixed threshold Makes it hard to reliably produce masks of the same size

Remedy

Use so called percentile on cornerness map to filter out a certain percentage of corners

Alternative

Instead of filtering out percentage of corners, calculate upper bound for number of corners such that only a certain percentage of *pixels* is kept.

Non-maximum Suppression

Observation

Corner regions tend to overlap a lot, especially in textured regions Results in poorly distributed inpainting mask

Possible Remedy

Discard corners already covered by a 'better' corner

Non-maximum suppression

Left: Centre points of corner regions without suppression. **Right:** With suppression (boundary of each region highlighted). Corner detection using Förstner-Harris detector with identical parameters

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ か Q ()

Expectations and Limitations

Left: Mask (\approx 5% of all pixels). **Right:** Inpainting result ($\sigma=4, \lambda=0.03$, stopped after 1000 iterations with $\tau=1000$) PSNR=32.04

Expectations and Limitations

Left: Original image *lena512*. **Middle:** Mask (filled with white for visualisation, \approx 20% of all pixels) **Right:** Inpainting result ($\sigma=2,\lambda=0.4$, stopped after 1000 iterations with $\tau=1000$) PSNR=21.56

Any questions?

Thank you for your time!

Bibliography

[Harris and Stephens, 1988] Harris, C. G. and Stephens, M. (1988). A combined corner and edge detector.

In Alvey Vision Conference, pages 147-151.

[Hoeltgen et al., 2017] Hoeltgen, L., Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Setzer, S., Johannsen, D., Neumann, F., and Doerr, B. (2017).

Optimising spatial and tonal data for pde-based inpainting.

In M. Bergounioux, G. Peyré, C. Schnörr, J.-P. Caillau, T. Haberkorn (Eds.): Variational Methods in Imaging and Geometric Control., pages 35–83. De Gruyter, Berlin.

[Zimmer, 2007] Zimmer, H. L. (2007).

Pde-based image compression using corner information.

Master's thesis, Saarland University.

Examples (3)

Left: Original image. **Middle:** Mask ($\approx 5\%$ of all pixels) **Right:** Inpainting result ($\sigma = 4, \lambda = 0.3$, stopped after 1000 iterations with $\tau = 1000$) PSNR=16.72