MATHEMATICS METHODS

MAWA Semester 2 (Unit 3&4) Examination 2019 Calculator-free

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made
 available to anyone who is not a teacher at the school. Teachers may give feedback to students in
 the form of showing them how the work is marked but students are not to retain a copy of the
 paper or marking guide until the agreed release date stipulated in the purchasing
 agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, Fri October 18th 2019

CALCULATOR-FREE SEMESTER 1 (UNIT 3&4) EXAMINATION

Section One: Calculator-free (50 Marks)

Question 1 (a) (3 marks)

Solution	
$f^{(x)} = -2x \cdot e^{-x^2} \sqrt{2x-5} + \frac{1}{2} (2x-5)^{\frac{-1}{2}} \cdot 2 \cdot e^{-x^2} \dot{c} - e^{-x^2} \left(2x \sqrt{2x-5} - \frac{1}{\sqrt{2x-5}} \right)$	
Mathematical behaviours	Marks
uses product rule correctly	1
• differentiates e^{-x^2} correctly	1
• differentiates $\sqrt{2x-5}$ correctly	1

Question 1 (b) (3 marks)

Agestion I (p)	(S marks)
Solution	
Let $u=x^2+16.(*)$	
Then $\frac{du}{dx} = 2x$, and so	
$g(x) = \int \frac{xdx}{x^2 + 16} = \int \frac{du}{2u} = \frac{1}{2} \ln u + c = \frac{1}{2} \ln (x^2 + 16) + c (**)$	
Since $g(0) = \ln 5 \ln 5 = \frac{1}{2} \ln 16 + c \ln 5 = \ln 4 + cc = \ln 5 - \ln 4c = \ln \frac{5}{4} g(x) = \frac{1}{2} \ln (x^2 + c) =$	$+16$) $+ \ln \frac{5}{4}$
Mathematical behaviours	Marks
makes substitution (*)	1
• integrates correctly (**)	1
$\int \left[\frac{f'(x)}{f(x)}\right] dx = \ln f(x) + c$ (use of rule to integrate correctly – award both marks) • evaluates integration constant correctly	1

CALCULATOR-FREE SEMESTER 1 (UNIT 3&4) EXAMINATION

Question 2 (3 marks)

Solution	
	$^{2}k^{2} = \frac{1}{3}k = \frac{1}{\sqrt{3}}$
Mathematical behaviours	Marks
uses the formula for margin of error to compare each sample	1
simplifies equation by squaring and dividing	1
re-arranges equation to determine the value of k	1

Question 3(a) (2 marks)

	So	lution			
$P(x=1) = k \log_e e^1 = k$	X	1	2	a	
$P(x=2) = k \log_e e^2 = 2k$ $P(x=a) = k \log_e e^a = ak$	P(x)	k	2 <i>k</i>	ak	
Mathem	natical beha	aviours			Marks
 uses log laws to find probability, P(2). 				1	
• uses log laws to find probability, P(3).				1	

Question 3(b) (2 marks)

Solution	
k + 2k + ak = 1	
3k + ak = 1	
$a = \frac{1 - 3k}{k}$	
Mathematical behaviours	Marks
sums probabilities and equates to 1	1
ullet rearranges formula to express a in terms of k	1

Question 3(c) (3 marks)

	Solution
1	

$$k = \frac{1}{3} \Rightarrow a = 0$$

$$E(X) = 1 \times k + 2 \times 2k$$

$$k = \frac{1}{3} \Rightarrow E(X) = \frac{5}{3}$$

	Mathematical behaviours	Marks
•	determines value of a	1
•	substitutes into the expected value formula	1
•	states expected value	1

Question 4(a) (3 marks)

Solution

$$2^{x} = 3^{x-1}$$

$$ie \ x \log 2 = (x - 1) \log 3$$

$$ie x log 2 - x log 3 = -log 3$$

$$ie \ x(\log 2 - \log 3) = -\log 3$$

$$ie \ x = \frac{\log 3}{\log 3 - \log 2}$$

	Mathematical behaviours	Marks
•	rewrites equation by taking logarithms of each side and applying log laws	1
•	rearranges equation to isolate χ	1
•	solves for X	1

Question 4(b) (4 marks)

Solution

$$\log_{10}(x+2) + \log_{10}(2x-3) = 2\log_{10}x$$

$$ie \log_{10}(x+2)(2x-3) = \log_{10} x^2$$

ie
$$(x+2)(2x-3) = x^2$$

ie
$$2x^2 + x - 6 = x^2$$

ie
$$x^2 + x - 6 = 0$$

$$ie(x+3)(x-2)=0$$

ie
$$x = -3, 2$$

$$2x - 3 > 0 \Rightarrow x = 2$$

	Mathematical behaviours	Marks
•	uses ^{log} laws to simplify both sides of equation	1
	obtains quadratic equation	1
	obtains quadratic equation	1

•	simplifies quadratic and solves	1
,	• solves for X , justifying answer	

Question 4(c) (4 marks)

Solution	
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos x}{\sin x} dx = \left[\ln \sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$ $= \ln \sin\left(\frac{\pi}{3}\right) - \ln \sin\frac{\pi}{6}$ $= \ln \frac{\sqrt{3}}{2} - \ln \frac{1}{2}$ $= \ln \sqrt{3} - \ln 2 - (\ln 1 - \ln 2)$ $= \ln \sqrt{3}$ $= \ln \frac{3}{2}$ $\therefore a = 0.5, b = 3$	
Mathematical behaviours	Marks
• anti-differentiates to obtain ^{ln} expression	1
substitutes exact values and evaluates expression	1
uses ^{log} laws to simplify expression	1 1
• states the value of a and b	T

Question 5 (4 marks)

Solution	
$\frac{d}{dx}\left(\int_{0}^{x} f(t)dt\right) = \frac{d}{dx}\left(\left[f(x)\right]^{2}\right)$	
$f(x) = 2f(x) \cdot f'(x) f'(x) = \frac{1}{2}$	
$f(x) = \frac{x}{2} + c \int_{0}^{0} f(t) dt = [f(0)]^{2} : 0 = f(0) f(x) = \frac{x}{2}$	
Mathematical behaviours	Marks
uses Fundamental Theorem of Calculus	1
• uses chain rule to differentiate $[f(x)]^2$	1
• determines $f(x)$	1
• determines $f(x)$ and shows how to calculate the constant, c.	1

CALCULATOR-FREE SEMESTER 1 (UNIT 3&4) EXAMINATION

Question 6(a) (3 marks)

Solution	
$v=4Whent=0$ i $a=0Whent=5$ i $a=2$: $a=\frac{2}{5}tv=\frac{1}{5}t^2+cWhent=0$ i $v=4$: $whent=5v=\frac{1}{5}(25)+4v=9m.s^{-1}$	$v = \frac{1}{5}t^2 + 4$
Mathematical behaviours	Marks
determines the acceleration equation	1
anti-differentiates to find the velocity equation	1
states the correct velocity at 5 seconds	1

Question 6(b) (3 marks)

Solution	
$x = \left(\frac{1}{5}\right)\frac{t^3}{3} + 4t + cLet \ x = 0, \ when \ t = 0 : c = 0 \ x = \frac{1}{15}t^3 + 4tWhen \ t = 5x = \frac{1}{15}(125)$	+20
$x = \frac{25}{3} + 20$ $x = \frac{85}{3} \vee 28.33 m$	
Mathematical behaviours	Marks
anti-differentiates velocity equation to find displacement equation	1
substitutes for t = 5 seconds	1
gives correct distance travelled	1

Question 7 (3 marks)

Solution	
$\int_{0}^{\ln 2} e^{-2x} dx \dot{c} \left[\frac{e^{-2x}}{-2} \right]_{0}^{\ln 2} \dot{c} \frac{e^{-2\ln 2}}{-2} - \frac{e^{0}}{-2} \dot{c} \frac{e^{\ln\left(\frac{1}{4}\right)}}{-2} - \frac{1}{-2} \dot{c} - \frac{1}{8} + \frac{1}{2} \dot{c} \frac{3}{8}$	
Mathematical behaviours	Marks
anti-differentiates exponential function	1
substitutes correctly	1
simplifies correctly	1

Question 8 (4 marks)
Solution

$V = \frac{4}{3}\pi r^3$, and so $\frac{dV}{dr} = 4\pi r^2$

By the increments formula, $\delta V \cong \frac{dV}{dr} \, \delta r = 4 \, \pi \, r^2 \, \delta r \, \, (*)$

So
$$\frac{\delta V}{V} \approx \frac{4\pi r^2}{\frac{4}{3}\pi r^3} \delta r = 3\frac{\delta r}{r} (**)$$

Now
$$\frac{\delta V}{V} = \frac{-12}{800} = -0.015$$

So
$$\frac{\delta r}{r} \approx \frac{-0.015}{3} = -0.005$$

So the percentage change in the radius r is a decreases of 0.5 %.

Mathematical behaviours	Marks
differentiates correctly	1
finds approximation (*)	1
• evaluates $\frac{\delta V}{V}$	1
obtains correct answer	1

Question 9(a) (2 marks)

	,,
Solution	
Area of triangle = 1	
So k (y-intercept) = $\frac{1}{3}$	
Gradient = $\frac{-1}{3} \div 6$	
$f(t) = \frac{-1}{18}t + \frac{1}{3}$ for $0 \le t \le 6$	
Mathematical behaviours	Marks
determines k value	1
states the probability density function	1

Question 9(b) (2 marks)

Solution	
$\int_{0}^{t} \frac{-1}{18} t + \frac{1}{3} dt \frac{1}{36} + \frac{1}{3} t \text{ i.e. } F(t) = \zeta$	
Mathematical behaviours	Marks
• integrates f(t)	1
states the cumulative distribution function	1

Question 9(c)	(2 marks)
Solution	
$P(t<1) = \frac{11}{36}$	
$P(t<1) = \frac{11}{36}$ $P(t<3) = \frac{27}{36}$	
$P(t>1) = \frac{25}{36}$	
$P(t>1 \cap t<3) = \frac{16}{36}$	
$P(t < 3 \lor t > 1) = \frac{16}{25}$	
Mathematical behaviours	Marks
 determines the intersection of probabilities for t > 1 and t < 3 	1
calculates the conditional probability	1