Matemática IV-2022

TP3 - Números

- 1. Probar que no hay naturales simultáneamente pares e impares
- 2. Demostrar las siguientes propiedades para a,b,c números enteros :
 - (a) $a|b \ y \ b \neq 0$ entonces $|a| \leq |b|$
 - (b) a(a+1) es par
 - (c) a|b entonces a|bc
 - (d) a|b+c y a|b entonces a|c
- 3. Analizar si las siguientes afirmaciones son verdaderas o falsas:
 - (a) $1|a \ y \ a|0$
 - (b) $a|b \ y \ b|a \ \text{entonces} \ |a| = |b|$
 - (c) $a|b \ y \ c|b$ entonces ac|b
 - (d) a|b+c entonces a|c ó a|b
 - (e) $a|b \ y \ a|c$ entonces a|b+c
- 4. Si a un número se lo divide por 4, el resto es 2 y si se lo divide por 3, el resto es 1. ¿Cuál es el resto si se lo divide por 12?
- 5. Sean a y b dos números enteros que tienen restos 4 y 7 respectivamente en la división por 11. Hallar los restos de la división por 11 de $(a + b^2)$
- 6. Calcular el máximo común divisor entre:
 - (i) (16, 38)
- (ii) (120, 50)
- (iii) (31, 57)
- (iv) (-60, 45) (v) (9834, 1430)
- 7. Probar que si a y b son enteros:
 - (a) (a,1)=1
 - (b) si a es no nulo, (a, 0) = |a|
 - (c) (a, a) = |a|
 - (d) (a,b) = (a-b,b)
- 8. Hallar mcd(5k+3,3k+2), para cualquier k entero

- 9. Sean a y b dos enteros coprimos, demostrar que :
 - (a) a + b es coprimo con a
 - (b) $a|c \ y \ b|c$ entonces ab|c
- 10. Si p es primo, calcular (a, p) para cualquier $a \in Z$
- 11. Sean $a, b \in \mathbb{Z}$ y sea p primo. Demostrar que si p|ab entonces p|a ó p|bMostrar que ésto no se cumple si p no es primo.
- 12. Hallar el menor entero positivo q tal que 6552q es el cuadrado de un entero.
- 13. Sean u y v números racionales. Probar que:
 - (a) $u + v \in Q$ y $u v \in Q$
 - (b) $u.v \in Q$
 - (c) Si u es no nulo, $u^{-1} \in Q$

Demostrar que dados a y b en Q tales que a < b, existe otro número racional x tal que a < x < b.

- 14. Probar que no existe un número racional cuyo cuadrado sea 3
- 15. Indique la parte real $\operatorname{Re}(z)$ y la parte imaginaria $\operatorname{Im}(z)$ de los siguientes complejos:

a)
$$\sqrt{-49}$$

b)
$$\sqrt{-20}$$

c)
$$\sqrt{-\frac{9}{16}}$$

d)
$$z = -8$$

h)
$$z = 7$$

a)
$$\sqrt{-49}$$
 b) $\sqrt{-20}$ c) $\sqrt{-\frac{9}{16}}$ d) $z = -8$ h) $z = 7i$ f) $z = (3+i) + (5-4i)$ g) $z = 3i - (5-2i)$ h) $\frac{1+3i}{3-i}$ i) $\frac{1-i}{(1+i)^2}$

$$z = 3i - (5 - 2i)$$

h)
$$\frac{1+3i}{3-i}$$

$$i) \frac{1-i}{(1+i)^2}$$

- 16. La suma de un número complejo y su conjugado es -8 y la suma de sus módulos es 10. De qué números complejos se trata?
- 17. Encuentre x e y tales que:

a)
$$x - 15i = 9 + 5yi$$

a)
$$x - 15i = 9 + 5yi$$
; b) $2x + 3yi = 6 + yi$;

18. Hallar, si existe, x real tal que Re(z) = Im(z) siendo $z = \frac{x+2i}{4-3i}$

- 19. Demostrar que para cualquier complejo z vale que
 - $z.\overline{z} = |z|^2$
 - $z + \overline{z} = 2Re(z)$
 - $z \overline{z} = 2Im(z)i$
- 20. Encontrar, si existe,un valor de k real para que el complejo $\frac{2-(1+k)i}{1-ki}$ sea un número
- 21. Calcular las siguientes potencias:
 - a) i^{489} b) $-i^{1026}$ c) $(3i)^{168}$
- 22. Encontrar las formas de par ordenado, trigonométrica y exponencial de los siguientes complejos en forma binómica:

- 23. Realizar las siguientes operaciones con los complejos del punto anterior:
 - a) z_1+z_7 b) z_5-z_3 c) $z_9.z_6$ d) z_8/z_{10} e) z_3+z_6 f) z_2-z_6 g) $z_3.z_{10}$ h) z_1^3 i) z_9^9 j) z_5^{15} k) z_{10}^3

- l) hallar las raíces cuartas de z_2
- m) hallar las raíces cúbicas de z_4
- n) hallar las raíces séptimas de i

Ejercicios Adicionales

- 1. Dados a,b,c enteros, probar que si a|c y b|c entonces ab|c
- 2. Demostrar que : Si (a, b) = d; a|c y b|c entonces ab|cd
- 3. El resto de la división de un número por 7 es 2; si se lo divide por 3, su resto es 1. ¿Cuál es el resto si se lo divide por 21?
- 4. * Intente codificar (en el lenguaje que Ud prefiera) el algoritmo de Euclides. Pruebe que funciona con alguno de los ejercicios
- 5. * Investigue que dice La criba de Eratóstenes y trate de escribir un código que realice el procedimiento.

- 6. Sea m un número entero. Probar que 5 no divide a m^2+2 .
- 7. Dados $a,b,c,d\in Z$, suponiendo que los denominadores no se anulen y que $\frac{a}{b}=\frac{c}{d}$ no es cero, probar:
 - (a) $\frac{a}{c} = \frac{b}{d}$ y $\frac{b}{a} = \frac{d}{c}$ (b) $\frac{a+b}{b} = \frac{c+d}{d}$

 - (c) $\frac{a-b}{b} = \frac{c-d}{d}$
- 8. Demostrar que si p es primo y $n \in N$, entonces $\sqrt[p]{p}$ es irracional
- 9. La suma de dos números complejos es 6, el módulo del primero es $\sqrt{13}$ y el del segundo es 5. De qué números complejos se trata?
- 10. Encontrar el valor de h para que el complejo $\frac{1+3hi}{7+(h-2)i}$ sea un imaginario puro.
- 11. Realizar las operaciones con los complejos del último ejercicio (antes de los adicionales):
 - *) hallar las raíces cúbicas de z_5
 - **) hallar las raíces quintas de z_6
 - ***) hallar las raíces séptimas de z_8