Regression Analysis Other Regression Methods

Nicoleta Serban, Ph.D.

Associate Professor

Stewart School of Industrial and Systems Engineering

Robust Regression

About this lesson

Multiple Linear Regression

What if there are outliers?

- If one or two, remove the outliers and fit again

 Compare models with and without outliers
- If many, it is an indication that the normality assumption does not hold ⇒ Use an approach that provider robust estimates to outliers
- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\epsilon_1,...,\epsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

Example: Departure from Normality

• Assume Y_i has a pdf given as

$$f(y|\mu,\sigma) = \frac{1}{2\sigma}e^{-|y-\mu|/\sigma}$$

This has heavier tails than the normal distribution.

- MLE for μ : $\hat{\mu}$ to minimize min $\sum_{i=1}^{n} |Y_i \mu|$
 - The estimate of μ is the sample median
- Assuming $Y_i \sim f(y|\mu_i, \sigma)$ in regression analysis:
 - Estimate $(\beta_0, \beta_1, \beta_2, ..., \beta_p)$ by minimizing $\sum_{i=1}^{n} |Y_i \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}|$

OLS vs Robust Regression

Ordinary Least Squares (OLS): Estimate by minimizing

$$\sum_{i=1}^{n} (Y_i - \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip})^2$$

Estimate expectation: $E(Y_i | x_{i1}, x_{i2}, ..., x_{ip})$

Robust Regression: Estimate by minimizing:

$$\sum_{i=1}^{n} |Y_i - \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}|$$

Estimate median: $median(Y_i | x_{i1}, x_{i2}, ..., x_{ip})$

Why not always use Robust Regression?

Estimation Algorithm:

 Not close form expression ⇒ Use numeric algorithm to estimate the regression parameters: Iteratively re-weighted least squares

Statistical Inference:

- The estimated variance is $\hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{w}_i r_i}{n-p-1}$
- Efficiency comes with a cost: Confidence intervals for Robust Regression are wider than for OLS

Summary

