Data Networks Introduction

M. R. PakravanDepartment of Electrical EngineeringSharif University of Technology

Introduction

- The course introduces the underlying concepts and principles of data networks.
- It presents different components of a network and how these components fit together.
- The layers of functionalities implemented in network nodes are investigated and the underlying design concepts are discussed.
- The course is designed at a graduate level with practical assignments and short projects

General Information

- Lecturer: Dr. Mohammad Reza Pakravan
- Contact info:
 - E-mail: pakravan@sharif.edu
 - Office: Room 605
 - Office Phone: 6616-5922
- Course Schedule and Location:
 - Sunday /Tuesday, 9:00-10:30
 - Location: Bargh 5

Text References

Required Textbook

- Andrew Tanenbaum. Computer Networks, Sixth Edition, Prentice Hall
- Additional textbooks and References
 - A. Leon-Garcia & I. Widjaja, Communication Networks, McGraw Hill
 - W. Stallings. Data and Computer Communications. Prentice Hall.
 - J. Walrand. Communication Networks: First Course. Aksen Associates.
 - D. Comer. Internetworking with TCP/IP, Volume I, Prentice Hall.
 - W. Stevens. TCP/IP Illustrated: The Protocols, Vol 1. Addison-Wesley.
 - D. Comer. Computer Networks and Internets. Prentice Hall.
 - L. Peterson and B. Davie. Computer Networks: A Systems Approach.
 Morgan Kaufman.
- Some of the course material are presented from other sources

Course Outline

- Introduction.
- The Physical Layer.
- The Data Link Layer.
- The Multiple Access Sub-Layer.
- The Network Layer.
- The Transport Layer.
- The Application Layer.

Course load

- Course work consists of
 - Following up on presented lectures
 - Reading textbook
 - Learning how to use network simulation and modeling tools
 - Preparing reports on course labs, assignments and project
- Grading Policy
 - Course Labs, Assignments and Projects: 30%
 - Exams: 70%

Brief History of Data Networks

- 1961-1964 Idea of store and forward distributed communication in packet networks by L. Kleinrock, D. Watts and P. Baran
 - More suitable for computer communication
 - More resilient to node failure
- Creation of ARPANET in late 1960's
 - To build a network that withstands destruction of some of its nodes
 - First Network started operation in 1969

History of Internet

 ARPANET, the precursor to the modern internet, was an academic research project funded by the Advanced Research Projects Agency, a branch of the military known for funding ambitious research projects without immediate commercial or military applications

1970: ARPANET expands

By the end of 1970, ARPANET had grown to 13 nodes

1973: ARPANET goes international

In 1973, the ARPANET became international, with a satellite link connecting Norway and London to the other nodes in the United States. Hawaii also joined the network by satellite. At this point, the network had around 40 nodes.

1982: the ARPANET community grows

By 1982, the network had about 100 nodes.

1984: ARPANET becomes the internet

- In 1984, ARPANET network operators decided that the network should be reorganized as a decentralized "network of networks."
- Under this scheme, different networks would be controlled by different organizations, but all the networks able to communicate using shared standards, forming a shared "internet."

1984: ARPANET becomes the internet

- A set of standards known as TCP/IP was developed.
- On January 1, 1983, the ARPANET switched to using TCP/IP, marking the birth of the modern internet.

NSFNET: The first internet backbone

- In 1986, the US National Science foundation agency created a TCP/IP-based network called NSFNET to link supercomputing centers together and allow researchers across the country to use them.
- The NSFNET became the internet's "backbone," the high-speed, long-distance network that allowed different parts of the internet to communicate.

NSFNET T3 Network 1992

The internet becomes a global network

In 1993, the internet was still dominated by the United States, but it was becoming a truly global network. This is a map of information flow on Usenet, a bulletin board application.

The privatization of the internet backbone

In 1994, the internet backbone was privatized to several competitive service providers.

Internet Growth

Internet Growth

Global Usage of Internet

Number of internet users worldwide from 2005 to 2021

(in millions)

Global Usage of Internet

Internet > Demographics & Use

Global internet penetration rate from 2009 to 2021, by region

Computer Networks

- Old: Single powerful computer, many local terminals for interaction
- Now: Many <u>autonomous</u> computers <u>interconnected</u> to do the job

Applications of Computer Networks

- Access to Information
 - Web Browsing
 - Online navigation
- Person to Person Communication
 - Instant Messaging
 - Social Networks
 - Video Calling
- Electronic Commerce
 - Business to Consumer (B2C)
 - Business to Business (B2B)
 - Government to consumer (G2C)
- Entertainment
 - IPTV
- Internet of Things

Types of Data Networks

- Broadband Access Networks
- Mobile and Wireless Access Networks
- Content Provider Networks
- Transit Networks
- Enterprise Networks

- PAN (Personal Area Network)
 - Network with a short range
 - Example: Bluetooth connections

- LAN (Local Area Network)
 - Network usually within a building
 - Restricted Size, delay
 - Rate: 10Mbps to 10Gbps
 - Channel allocation: Static or dynamic
 - Examples: Ethernet (IEEE 802.3),

- MAN (Metropolitan Area Network)
 - A network within a city

- WAN (Wide Area Network)
 - A network with large area
 - A WAN can span a country, several countries or a it can have a global coverage
 - Example:
 - FLAG Network (Global)
 - See: https://www.submarinecablemap.com/

FLAG Europe-Asia (FEA)

Overview of Internet Architecture

Network Protocol Design Goals

Reliability

- Resist bit errors
- Find a path to destination

Resource Allocation

- Properly share resources
- Flow control
- Manage the quality of service

Evolvability

Cope with growth

Security

- Confidentiality
- Authentication

Network Operation Principles

- Functionality of most networks are organized as a series of layers
- Each layer is implemented by an entity
- Peers: two communicating entities (within the same layer)

Network Operation Principles

Network Software

- Protocol: An agreement on rules and procedures between two communicating parties on how the communications is to proceed.
- Service: set of primitives (operations) that a layer provides to the above layer

Network Software

Headers/Trailers may be needed to allow implementation of a protocols

Service Categories and Reliability

- Service Categories:
 - Connection oriented
 - Phone conversation
 - Telnet / remote login / FTP
 - Connectionless
 - Postal system
 - Email

- Service Reliability
 - Reliable: never loose data
 - Acknowledgements / retransmission
 - Unreliable: data may be lost
 - No acknowledgements
 - Datagram service

Connectionoriented

Connectionless

Service	Example
Reliable message stream	Sequence of pages
Reliable byte stream	Remote login
Unreliable connection	Digitized voice
Unreliable datagram	Electronic junk mail
Acknowledged datagram	Registered mail
Request-reply	Database query

Service Categories and Reliability

- Service Categories:
 - Connection oriented
 - Phone conversation
 - Telnet / remote login / FTP
 - Connectionless
 - Postal system
 - Email

- Service Reliability
 - Reliable: never loose data
 - Acknowledgements / retransmission
 - Unreliable: data may be lost
 - No acknowledgements
 - Datagram service

Connectionoriented

Connectionless

	Service	Example	
	Reliable message stream	Sequence of pages	
	Reliable byte stream	Remote login	
	Unreliable connection	Digitized voice	
•	Unreliable datagram	Electronic junk mail	
	Acknowledged datagram	Registered mail	
	Request-reply	Database query	

Open System Interconnect (OSI) Reference Model

Originated from ARPANET

Link Layer: Move packets from one node to the next.

Internet Layer: Find the best path for packets to reach their destination.

- Transport Layer: It is designed to allow peer entities on the source and destination hosts to carry on a conversation.
- Transport of data can be "Reliable" or "Un-Reliable".

Application Layer: E-mail, Web, Remote Connection and many other protocols.

Comparing OSI and TCP/IP

OSI:

- Top-down design methodology
- The concepts clearly distinguishes
 - Services (specification)
 - Interfaces
 - Protocols (implementation)
- Network layer supports both connectionless and connection-oriented communication
- □ Transport layer supports only connection-oriented service !! it's support now

TCP / IP

- Bottom-up approach; grew out of practice
- Not a general protocol stack
- Host-to-network layer is actually an interface description

Critics on OSI model

- Bad timing.
- Bad technology.
 - Too many layers (Competition with 7 layer IBM SNA! stack)
 - Overloaded (L2, L1) and empty (L5, L6) layers

- Initially ignored connectionless protocols
- Bad implementations.
 - Early implementations were huge, unwieldy, and slow.
- Bad politics
 - TCP/IP as part of UNIX, widely available, useful and open
 - OSI as a creature of telecom ministers/big telecom companies

Model of Choice

- We will follow a hybrid, 5-layer model in this course
- Data Link Layer includes Multiple Access Control (MAC)
 functionalities, but noting the importance of MAC, we will devote a
 special section to it.

Application layer
 Transport layer
 Network layer
 Data Link layer
 Physical layer

Standardization: Who's Who

- Telecommunication world
 - □ ITU: International Telecommunication Union
- International standards
 - □ ISO: Int. Organization for Standardization (1946)
 - □ ANSI: American National Standards Institute
 - □ IEEE: Inst. of Electrical and Electronic Engineers
- Internet
 - IAB: Internet Activities Board
 - □ IETF: Internet Engineering Task Force
 - □ IRTF: Internet Research Task Force