

Niels Henrik Abels matematikkonkurranse 2011–2012. *Løsninger*

Andre runde 19. januar 2012

Oppgave 2. Tallet $a_1 = 2012$ kan også skrives 2048 - 32 - 4, som blir 11111011100 i totallsystemet. Det tar ett trinn å bli kvitt hver av tre nuller og to trinn å bli kvitt hver av sju enere, det vil si i alt $3 + 2 \cdot 7 = 17$ trinn å bli kvitt alle de binære sifrene utenom den første eneren.

Oppgave 3. La x betegnet tallet. Den andre opplysningen gir x=2012n+100 for et heltall n, så x er delelig med 4. Den første opplysningen gir x=2010m+1000 for et heltall m. Siden både x og 1000 er delelege med 4, mens 2010 ikke er det, må m være et partall. Men da er 2010m delelig med 12, så svaret blir det samme som resten når 1000 deles med 12. Vi har $1000=12\cdot 83+4.$

Oppgave 4. For et generelt indre punkt Q i et kvadrat ABCD gjelder $AQ^2 + CQ^2 = BQ^2 + DQ^2$. Man kan se dette ved å anvende Pythagoras på hver av de fire skyggelagte trekantene i figuren og legge sammen:

$$AQ^2 = s^2 + u^2$$
 $BQ^2 = t^2 + u^2$ $CQ^2 = t^2 + v^2$ $DQ^2 = s^2 + v^2$

Med Q = P får vi $CP^2 = BP^2 + DP^2 - AP^2 = 2 \cdot (10\sqrt{5})^2 - 39 = 961 = 31^2$.

 Oppgave 6. Trekantene EDC og ABC har en lik vinkel og to like sider, så de er kongruente. Spesielt er trekanten ACE likebent, slik at $\angle EAC = \angle AEC = 80^{\circ}$, og $\angle ACE = 180^{\circ} - 2 \cdot 80^{\circ} = 20^{\circ}$. Trekantene EDC og ABC er også likebente, så $\angle BAC = \angle BCA = \angle DEC = \angle DCE = 40^{\circ}$. Det gir $\angle ABC = \angle CDE = 180^{\circ} - 2 \cdot 40^{\circ} = 100^{\circ}$. Men vi har også $\angle BCD = 40^{\circ} + 20^{\circ} + 40^{\circ} = 100^{\circ}$. Dermed er trekantene ABC og BCD kongruente (to like sider og en lik vinkel), så AC = BD. Dette betyr i sin tur at trekantene ACD og

Hver vinkel i figuren er et heltallig multippel av 20°.

DBA er kongruente, siden de har tre like sider. Dermed er $\angle ADC = \angle DAB$. Vinkelsummen i firkanten ABCD er 360° , det vil si $2 \cdot \angle DAB + 2 \cdot 100^\circ = 360^\circ$, altså $\angle DAB = 80^\circ$. Til sist er da $\angle CAD = \angle DAB - \angle BAC = 80^\circ - 40^\circ = 40^\circ$.

......40

Oppgave 7. La hver av vennene holde gaven de gir bort i høyre hånd, og ta tak i gaven de mottar i venstre hånd, mens ingen slipper taket. Da blir enten alle fem stående i en sirkel, eller de blir stående i to sirkler, med tre venner i den ene sirkelen og to i den andre. Alle fem i en sirkel kan forekomme på $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ måter. Den andre muligheten kan telles slik: Det er $\frac{1}{2} \cdot 5 \cdot 4 = 10$ måter å velge ut de to som danner en sirkel alene. For hver av disse finnes det to måter å ordne de andre tre i en sirkel, tilsammen $10 \cdot 2 = 20$ muligheter.

Oppgave 9. For enkelhets skyld skriver vi |XYZ| for arealet av trekanten XYZ. Trekantene ABC og DBE er likeformede, og den sistnevnte er $\frac{2}{3}$ så stor i hver retning. Dermed blir $|DBE| = \frac{4}{9}|ABC| = 200$, så firkanten ADEC har areal 450 - 200 = 250. Linjestykkene AC og DE er parallelle, så høyden fra AC til E er lik høyden fra DE til C. Dermed er $|DEC| = \frac{2}{3}|ACE|$ siden forholdet mellom grunnlinjene DE og AC er $\frac{2}{3}$. Arealet av firkanten ADEC kan nå skrives $250 = |ACD| + |DEC| = \frac{5}{3}|ACD|$,

så |ACD|=150. Til sist ser vi at trekantene AFC og EDC er likeformede (tre like vinkler), med EDC $\frac{2}{3}$ så stor som AFC. Spesielt er $DF=\frac{2}{3}FC$, så $DF=\frac{2}{5}DC$. Trekantene AFD og ACD har samme høyde fra A, mens forholdet mellom grunnlinjene er $FD/CD=\frac{2}{5}$, så $|AFD|=\frac{2}{5}|ACD|=60$. 60

Fasit

1	968	6	40
2	18	7	44
3	4	8	671
4	31	9	60
5	99	10	10

Hvis denne sida kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.