PFO N° 1 - Lógica, tablas, fórmulas y circuitos

Ejercicio 1

DNI: 34.680.145

Al terminar el DNI en "5", se utiliza el siguiente enunciado:

"Un número es divisible por 2 y 3, pero no es divisible por 6".

Variables:

• P: El número es divisible por 2.

• Q: El número es divisible por 3.

• R: El número es divisible por 6.

El enunciado nos dice que el número es divisible por 2 y 3, pero no es divisible por 6. Esto se traduce de la siguiente manera:

$$(P \wedge Q) \wedge \neg R$$

Donde:

- P∧ Q: El número es divisible por 2 y 3.
- ¬R: El número no es divisible por 6.

La tabla de verdad para este enunciado es la siguiente:

Р	Q	R	P∧Q	¬R	(P∧Q) ∧ ¬R
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	0
0	1	1	0	0	0
0	1	0	0	1	0
0	0	1	0	0	0
0	0	0	0	1	0

Simplificación con mapas de Karnaugh:

El resultado de la tabla de verdad tiene un solo caso en el que la expresión es verdadera: P = 1, Q = 1, R = 0. Esto implica que no hay simplificación adicional posible, ya que esta condición es suficientemente específica. La fórmula ya es mínima.

La expresión booleana simplificada sigue siendo:

(P∧Q) ∧ ¬R

Diseño del circuito lógico:

Posee dos entradas, P y Q, seguidas de una compuerta AND para producir P∧Q.

Por otro lado, una entrada R, que pasa por una compuerta NOT, para obtener ¬R.

Finalmente, el resultado de $P \land Q$ y $\neg R$ que pasan por otra compuerta AND para verificar $(P \land Q) \land \neg R$.

Debajo se adjunta la tabla de verdad brindada al realizar la gráfica, la cual, es coincidente con la tabla de verdad realizada anteriormente para el enunciado.

Tabla de Verdad

IN	IN	IN	OUT
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0

Ejercicio 2

Tabla de verdad

Considerando que hay 4 entradas, hay un total de 16 combinaciones diferentes, es decir, 2^4 = 16.

La salida será 1 solo cuando exactamente dos entradas sean 1.

Α	В	С	D	SALIDA
1	1	1	1	0
1	1	1	0	0
1	1	0	1	0
1	1	0	0	1
1	0	1	1	0
1	0	1	0	1
1	0	0	1	1
1	0	0	0	0
0	1	1	1	0
0	1	1	0	1
0	1	0	1	1
0	1	0	0	0
0	0	1	1	1
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0

Fórmula lógica

La salida es 1 en las siguientes combinaciones

- A = 1, B = 1, C = 0, D = 0
- A = 1, B = 0, C = 1, D = 0
- A = 1, B = 0, C = 0, D = 1
- A = 0, B = 1, C = 1, D = 0
- A = 0, B = 1, C = 0, D = 1
- A = 0, B = 0, C = 1, D = 1

Salida:

 $(A \land B \land \neg C \land \neg D) \lor (A \land \neg B \land C \land \neg D) \lor (A \land \neg B \land \neg C \land D) \lor (\neg A \land B \land C \land \neg D) \lor (\neg A \land B \land \neg C \land D) \lor (\neg A \land B \land C \land D)$

Diagrama del circuito lógico

