# Revealing biomolecular structure and motion with neural ab initio cryo-EM reconstruction

Junwen Liao

Qiuzhen College, Tsinghua university

Sept 26th, 2024

## Contents

Introduction

DRGN-AI

Results

# Background

#### Forward Model

$$I_i = C_i * P_{\phi_i} V_i + \eta_i, \tag{1}$$

where  $I_i$  is the measured data,  $\mathcal{C}_i$  denotes the point spread function, P represents the projection under rotation R and translation t ( $\phi_i = (R, t)$ ),  $V_i$  is the object to be reconstructed and  $\eta_i$  is the noise.

#### Reconstruction neural network

#### Cryo-DRGN

- Architecture: VAE
- lnput:  $I_i$ ,  $C_i$ ,  $\phi_i$
- ▶ Output:  $z_i \rightarrow V_i$
- Loss: just like standard VAE (reconstruction + KL)

#### 3DFlex

- Architecture: Auto-decoder
- lnput:  $I_i$ ,  $C_i$ ,  $\phi_i$
- Output:  $V, z_i \rightarrow f_i, V_i = f_i(V)$
- Loss: reconstruction term and non-rigidity penalty.

# Contents

Introduction

**DRGN-AI** 

Results

#### Architecture overview



#### DRGN-Al Architecture [1]

$$I_i = C_i * P_{\phi_i} \mathcal{V}_{\theta}(z_i) + \eta_i$$

# Grid search

### (b) 5-D Pose search



HPS [2]

#### Model

#### **DRGN-AI**

Architecture: Auto-decoder

Input:  $I_i$ ,  $C_i$ 

▶ Output:  $\phi_i$ ,  $z_i \rightarrow V_i$ 

Loss: reconstruction term only.

## Contents

Introduction

DRGN-AI

Results

# Pose estimate

| Mean Error          | cryoSPARC | cryoSPARC<br>(refined) | DRGN-AI<br>(HPS only) | DRGN-AI    |
|---------------------|-----------|------------------------|-----------------------|------------|
| Out-of-plane (deg.) | 3.81      | 0.64                   | 0.92                  | 0.62       |
| In-plane (deg.)     | 3.67      | 0.57                   | 0.81                  | 0.56       |
| Translation (pix.)  | 0.32      | 0.13                   | 0.17                  | 0.14       |
| Resolution (pix.)   | 2.4       | 2.1                    | 2.4                   | <u>2.2</u> |

mean error [1]

# Clustering for EMPIAR-10076



LSU dataset [3]

Four major states and one unassigned state for this dataset.

# Clustering



- CryoDRGN's latent variables are closer due to its KL loss term.
- ► The left one plot the KDE with 6 k-means clusters.

# Clustering



Real labels and K=4

# Clustering



K=5 and K=20

# Ab initio



Ab initio with unfiltered datasets using DRGN-Al and CryoSparc [1].

## Ab initio



Where are the junk images going?

#### References

- [1]. Levy A, Grzadkowski M, Poitevin F, et al. Revealing biomolecular structure and motion with neural ab initio cryo-EM reconstruction[J]. bioRxiv, 2024: 2024.05. 30.596729.
- [2]. Zhong E D, Lerer A, Davis J H, et al. Cryodrgn2: Ab initio neural reconstruction of 3d protein structures from real cryo-em images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 4066-4075.
- [3]. Zhong E D, Bepler T, Berger B, et al. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks[J]. Nature methods, 2021, 18(2): 176-185.