import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import cv2

training, validation, test set data 나누는 함수(특징 세로방향) def data_division(n_data, Tr_rate, V_rate, Te_rate):

np.random.shuffle(n_data) 이터 섞기 #데

tr_index = int(len(n_data) * Tr_rate / 10)

#Tr_set

비율만큼 데이터 index 양 확인

v_index = int(len(n_data) * V_rate / 10)

#V_set

비율만큼 데이터 index 양 확인

te_index = int(len(n_data) * Te_rate / 10)

#Te_set

비율만큼 데이터 index 양 확인

#비율대로 data 나누기

tr_set = n_data[0:tr_index]

#

n_data의 0부터 tr_index - 1까지 tr_set에 저장

v_set = n_data[tr_index : tr_index + v_index]

#

tr_index 부터 tr_index + v_index - 1까지 v_set에 저장

te_set = n_data[tr_index + v_index : tr_index + v_index + te_index]
tr_index + v_index부터 tr_index + v_index, te_index까지 te_set에 저장

#

```
return tr_set, v_set, te_set
tr_set, v_set, te_set을 반환함
```

#

받아온 파일의 데이터 x와 y로 자동 분류 해주는 함수 def make_input_output(M):

for i in range(M.shape[1]):

#M의

column 수만큼 반복

#i 가 0일 때 x_matrix에 M 처음 column값 저장 => np.column stack을 쓰기 위함

if i == 0:

 $x_matrix = M[:, 0]$

#M

의 첫번째 column 성분 값들 x_matrix에 저장

#i가 그 외 값일 때부터 마지막 전 값까지

elif i < (M.shape[1] - 1):

x_matrix = np.column_stack([x_matrix, M[:, i]]) 마지막 column 성분 제외한 값들 x_matrix에 저장 #M의

#i가 마지막 값일 때

else:

y = M[:, i]

#M

의 마지막 column 성분 y에 저장 (데이터의 라벨 따로 저장)

y = y.reshape(y.shape[0], 1)

#y

```
size 다듬기
```

x_matrix_t = np.transpose(x_matrix) #한 데이터에 대한 특징들 한 column으로 나타나기 위해 transpose

y_t = np.transpose(y) # 데이터 라벨을 가로로 나열하기 위함

return x_matrix_t, y_t #x_matrix_t, y_t 반환함

데이터의 class수 세는 함수 def y_class(y):

y_class = np.unique(y) #unique를 이용해 다른 속성 개수를 셈 => class 수 계산

Q = len(y_class) #numpy array로 받아지기 때문에 길이를 셈

return Q # Q값 반환

데이터의 특징 수 세는 함수 def ch_count(y):

Q = len(y) # 받아온 데이터의 열 개수를 셈

return Q # Q값 반환

```
# One-Hot Encoding 구현 함수
def One_Hot_Encoding(y):
```

Q = y_class(y) class 개수 Q에 저장 #

#

y_vector = np.zeros((Q, y.shape[1])) (class 개수, y data의 가로방향 길이)의 성분이 0인 matrix 생성

y의 길이만큼 반복

for i in range(y.shape[1]):

label = int(y[0, i])

y는

정수로 가정

y_vector[label, i] = 1 label, i번째 자리를 1로 만듦 #

return y_vector y_vector

#

#row기반 dummy추가해주는 함수 def add_dummy(x):

x_dummy = np.ones(x.shape[1]) 입력데이터 x의 길이만큼 dummy 생성

#

x = np.row_stack([x, x_dummy]) #row방향으로 쌓음

```
# x
   return x
반환
#sigmoid 구현 함수
def sigmoid_function(z):
   return(1/(1 + np.exp(-z)))
#sigmoid 식 구현한 것 바로 반환
#대표값 찾아서 1로 만들어주는 함수
def classification_data_max(y):
                                                                     #받
   p = np.zeros_like(y)
아온 y데이터의 row와 column 크기만큼 요소가 0인 matrix 생성
   y_max = np.argmax(y, axis = 0)
                                                                      #y
의 최댓값 index 저장
   #y 데이터 길이만큼 p (i번째 최댓값 index, i)에 1 저장
   for i in range(y.shape[1]):
       p[y_max[i], i] = 1
```

return p

p값 반환

#

```
#데이터 정확도 함수
```

def data_accuracy(y_h, y):

#한

데이터에 대한 성분 row로 나열한 데이터기준

count = 0

#count 기능 이용할 변수 0으로 초기화

for i in range(y_h.shape[1]):

#예측

데이터 column 개수만큼 반복

if $(y_h[:, i] == y[:, i]).all():$

#받아온 데

이터와 예측 데이터의 같은 column의 row성분 값이 모두 같은지 확인

count += 1

#

위 조건에 해당할 때 count

accuracy = count / y_h.shape[1]

#count 된 수를 예측데이터 column 개수만큼 나눠줌

return accuracy

#accuracy 반환

#batch size 1 forward_propagation 구현 함수

def forward_propagation_1(x_input_added_dummy, v_matrix, w_matrix, L): #Hidden Layer의 node 수 지정

alpha = np.dot(v_matrix, x_input_added_dummy)

#

v와 xinput을 곱해 alpha를 구함

b_matrix = sigmoid_function(alpha).reshape(-1, 1)

#

batch size 1일 때 sigmoid에 넣으면 형태 깨져서 reshape이용

b_matrix = add_dummy(b_matrix) b에 dummy 추가 #

beta = np.dot(w_matrix, b_matrix)

W

와 b 곱해서 beta 구함

y_hat = sigmoid_function(beta) beta를 sigmoid function에 넣어 y_hat 구함 #

return y_hat, b_matrix y_gat, b_matrix 반환 #

#batch size 1 back propagation 구현 함수

def Back_Propagation_1(y_hat, y_data, x_matrix_added_dummy, b_matrix, w_prev, L): # w 먼저 weight update시키므로 update 전 w 입력 받음

w 기울기 구하는 코드

delta = 2 * (y_hat - y_data.reshape(-1, 1)) * y_hat * (1 - y_hat) #delta 구 함, y_data는 (:, 1)로 슬라이스 된 크기

w_dif = np.dot(delta, b_matrix.T) #delta와 b를 이용해 w의 기울기 구함

v 기울기 구하는 코드

proc = np.dot(delta.T, w_prev)

```
#dummy data 삭제
   b_matrix_h = np.delete(b_matrix, L, axis = 0)
   proc = np.delete(proc, L, axis = 1)
   v_dif = np.dot((proc.T * b_matrix_h * (1 - b_matrix_h)),
x_matrix_added_dummy.reshape(1, -1)) # v의 기울기 구하기
                                                                          # 함
   return w_dif, v_dif
수의 반환값으로 w와 v의 기울기를 반환함
# batch size 1인 Two_Layer_Neural Network
def Two_Layer_Neural_Network_1(x_input, y_data, L, epoch, LR):
   MSE_list = []
#MSE 저장할 list
   ACCURACY_list = []
#accuracy 저장할 list
   x_matrix = add_dummy(x_input)
입력에 dummy data 추가
   M = ch_count(x_input)
#input 속성 수 체크
   Q = ch_count(y_data)
#ouput class 수 체크
```

```
# weight 초기화
```

v = np.random.rand(L, M + 1) * 2 - 1

w = np.random.rand(Q, L + 1) * 2 - 1

epoch수 만큼 반복

for i in range(epoch):

y_hat_all_epoch = [] epoch마다 y_hat 저장하는 list 초기화 #한

#데이터 길이만큼 반복

for j in range(y_data.shape[1]):

w_prev = w.copy()

#update전 weight값 저장

y_hat, b_matrix = forward_propagation_1(x_matrix[:, j], v, w, L) #forward propagation 진행

y_hat_all_epoch.append(y_hat) #y_hat 값 list에 저장

w_dif, v_dif = Back_Propagation_1(y_hat, y_data[:, j], x_matrix[:, j], b_matrix, w_prev, L) #back propagation 진행

#weight update

 $w = w - LR * w_dif$

 $v = v - LR * v_dif$

y_hat_all = np.hstack(y_hat_all_epoch) #y_hat을 쌓은 list에 numpy array를 배열로 만들어줌

error = y_hat_all - y_data

#error 계산

MSE = np.mean(error ** 2)

#MSE 계산

MSE_list.append(MSE)

#MSE list에 저장

P = classification_data_max(y_hat_all) 터 당 최댓값을 1로 만들어주는 분류 함

accuracy = data_accuracy(P, y_data)

#accuracy 구하기

ACCURACY_list.append(accuracy)

#accuracy list에 저장

return MSE_list, ACCURACY_list, v, w #MSE_list, ACCURACY_list, v, w 반환함

confusion matrix 구현 함수

def confusion_matrix(y_hat, y_data):

y_pred_index = np.argmax(y_hat, axis = 0)

#y_hat 데이터당 최댓값 index 가져옴

y_true_index = np.argmax(y_data, axis = 0) #y_data 데이터당 최댓값 index 가져옴 #데이

```
true_num = 0
                                                                         #
정확히 예측한 횟수 초기화
   classes_num = ch_count(y_data)
#y_data class 수 체크
   confusion_matrix = np.zeros((classes_num + 1, classes_num + 1))
                                                                      #정확
도 나타내기 위해 class수 + 1개만큼 정방 행렬 만듦
   #y 길이만큼반복
   for i in range(len(y_pred_index)):
       confusion_matrix[y_true_index[i], y_pred_index[i]] += 1
                                                                    #실제
값, 예측값 index에 해당하는 자리에 1 더함
   # class 수만큼 반복
   for i in range(classes_num):
       #row방향으로 더한 값이 0보다 클 때 전체 데이터로 정확히 예측한 값 나눠줌
       if sum(confusion_matrix[i, : classes_num]) > 0:
           confusion_matrix[i, classes_num] = confusion_matrix[i, i] /
np.sum(confusion_matrix[i, : classes_num])
       # column 방향으로 더한 값이 0보다 클 때 전체 데이터로 정확히 예측한 값 나
눠줌
       if sum(confusion_matrix[: classes_num, i]) > 0:
           confusion_matrix[classes_num, i] = confusion_matrix[i, i] /
```

np.sum(confusion_matrix[: classes_num, i])

```
true_num += confusion_matrix[i, i] #정
확히 예측한 값 세기
```

confusion_matrix[classes_num, classes_num] = true_num / len(y_pred_index) #전체 데이터에 대한 정확도 마지막 index에 저장

return confusion_matrix #confusion_matrix 반환

#clustering 이용 함수 def clustering(data):

K = 10 # 군집 개수

n, c = data.shape # data의 row, column 수 n, c에 저장

rand_idx = np.random.choice(n, K, replace=False) # n, c 값들중 random으로 뽑아 rand_idx에 저장

m = data[rand_idx].copy() # data중 rand_idx에 해당하는 값 복사해 중심으로 초기화

while(1):

m_prev = m.copy() m값 복사해 m_prev에 저장

clus = np.zeros(n) #

한 데이터의 특징 수만큼 반복

for i in range(n):

d = (np.sum(((m - data[i]) ** 2), axis = 1)) ** (1 / 2) #데이터와 각 중심과의 거리 계산(유클리드 거리: norm 2)

clus[i] = np.argmin(d) #거 리중 제일 적은 거리의 index를 clus에 저장

#군집 개수만큼 반복

for j in range(K):

clus_p = data[clus == j] #clus데이터중 j군집에 속한 값들 clus_p에 저장

#j군집에 아무것도 없을 경우 방지

if len(clus_p) > 0:

 $m[j] = np.mean(clus_p, axis = 0)$ 집의 모든 데이터의 평균을 새로운 군집의 중심으로 저장

#j군

#새로운 중심과 이전 중심과 비교(소수점이라 loop 탈출 못할 가능성 존재하여 어느정도 근접하면 멈추게 해줌)

if np.allclose(m_prev, m):

break

return clus, m clustering label 데이터랑 중심값 반환 #

#사과, 복숭아, 토마토 분류 위한 저격 함수 def extract_class_distance(data, labels, clus, m, target_label): labels = np.array(labels, dtype=int) #label numpy array로 변환 clus = np.array(clus, dtype=int) #clus numpy array로 변환 $max_count = 0$ #m 길이만큼 반복 for k in range(m.shape[0]): cluster_labels = labels[clus == k] #clus 중 k인 데이터값 모두 저장 count = np.sum(cluster_labels == target_label) #cluster label과 target label이 같은 수를 셈 if count > max_count: #count가 max_count보다 클 경우 class clus = k# 그 k값을 목표 class 군집이라고 판단, 저장 max_count = count # count 값을 max_count에 옮김 ## class_clus에 아무것도 입력 안됐을 때 0으로 채워 오류 피하기 # if class_clus is None: d = np.zeros((data.shape[0], 1))

center = m[class_clus]

#그

#data 크기만큼 성분 0인 벡터 생성

else:

peach_clus_idx에 어떤 값 입력 됐을 떄

index를 목표 class 군집의 중심이라 설정

d = np.log1p(np.sum(((center - data) ** 2), axis = 1)) ** (1 / 2) #그 중심과 데이터들의 거리 구하기

d = d.reshape(-1, 1) #d vector 모양 다듬기

return d #

목표 class 군집과 데이터들 간 거리 벡터 d 반환함

#데이터 정규화 함수

def standard_data (input_data):

mean = np.mean(input_data, axis=0) # 데이터의 평균

std = np.std(input_data, axis=0) #표준 편차

표준편차가 0인 경우 방지 => 분모 0되면 오류남 std[std == 0] = 1

input_data[:, :] = (input_data - mean) / std #마지막 label데이터 제외 정규화시킴

return input_data #input data 반환

#초록 분류

def No1_feature(input_data):

feature = input_data[:, :, 1].mean() 색만 뽑아 평균 취하기, feature에 저장 #초록

return feature #feature 반환

#빨강 분류

def No2_feature(input_data):

feature = input_data[:, :, 0].mean() 색만 뽑아 평균취하기, featrue에 저장 #빨간

return feature #feature 반환

가로 분산 => 줄무늬 같은 패턴 분류

def No3_feature(input_data):

row_mean = np.mean(input_data, axis = (1, 2)) 로줄 평균 취한 것 저장 => 가로방향 밝기 변화 # 세

var = np.var(row_mean) 위에서 구한 값 분산 구하기 #

var 반환

return var

#청사과, 사과, 복숭아 분류 위함 => 복숭아는 노란색깔 성분 많이 가짐 => 노랑 초록 비율 사과보다 높을 것,, 청사과는 빨강 비율 적음

def No4_feature(input_data):

red_mean = input_data[:, :, 0].mean()

#빨간

색 밝기 평균

blue_mean = input_data[:, :, 2].mean()

#파란

색 밝기 평균

green_mean = input_data[:, :, 1].mean()

#초록

색 밝기 평균

feature = (blue_mean + green_mean) / red_mean 초록밝기 + 파랑밝기와 빨강밝기 비율 특징으로 저장 #

return feature

#데이터 전처리, 특징추출 함수

def select_features(directory):

#이미지 파일 directory

#이미지 파일 directory 안의 파일 이름들 문자열 리스트로 저장 file_list = os.listdir(directory)

#특징 저장할 list

feature_1_list = []

feature_2_list = []

feature_3_list = []

feature_4_list = []

label = [] #정답 라벨

file_list에 있는 값들 반복 for name in file_list:

#경로 설정함

path = os.path.join(directory, name)

#라벨 불러오기(파일명 첫 숫자)

label.append(int(name.split('_', 1)[0]))

#이미지 읽고 RGB(red, green, blue)값으로 변환하기

img_GRB = cv2.imread(path)

img_RGB = cv2.cvtColor(img_GRB, cv2.COLOR_BGR2RGB)

#특징추출하기

특징 1: 초록색 분류기

feature_1 = No1_feature(img_RGB)

특징 3: 빨간색 분류기

feature_2 = No2_feature(img_RGB)

가로 전체 밝기 분산 ==> 줄무늬같은 패턴 탐지

feature_3 = No3_feature(img_RGB)

```
# 빨간색밝기 평균에 대한 파랑, 초록 밝기 평균 비율
        feature_4 = No4_feature(img_RGB)
        #각 리스트에 각특징값 append
        feature_1_list.append(feature_1)
        feature_2_list.append(feature_2)
        feature_3_list.append(feature_3)
        feature_4_list.append(feature_4)
    #각 특징 리스트들 numpy array로 변환
    feature_1_list = np.array(feature_1_list)
    feature_2_list = np.array(feature_2_list)
    feature_3_list = np.array(feature_3_list)
    feature_4_list = np.array(feature_4_list)
    #features 한군데에 모으기
    features = np.column_stack([feature_1_list, feature_2_list, feature_3_list, feature_4_list])
    #clustering 이용
    cluster_features, m = clustering(features)
#clustering label, 중심 얻기
    #복숭아 군집 중심에 대한 거리 뽑는 함수
    peach_dist = extract_class_distance(features, label, cluster_features, m, target_label =
```

6)

#토마토 군집 중심에 대한 거리 뽑는 함수

tomato_dist = extract_class_distance(features, label, cluster_features, m, target_label = 8)

#복숭아, 토마토, 사과 구분위한 특징까지 포함한 features

features = np.column_stack([features, peach_dist, tomato_dist])

features 정규화

features = standard_data(features)

return features, label #features와 label 반환

directory = "C:\\Users\\kim07\\Desktop\\Machinlearning_Workplace\\text{Wtrain"} #directory 설정

L = 80

#hidden node 수 설정

LR = 0.01

#learning rate 설정

epoch = 1000

#epoch(학습 횟수) 설정

training set, validation set, test set 데이터 비율 설정

 $Tr_rate = 7$

#training data 비율 7 설정

 $Val_rate = 3$

#validation data 비율 3 설정

 $Te_rate = 0$

#test data 비율 0 설정

data, label = select_features(directory) 추출한 데이터와 라벨 받기 #특징

total_data = np.column_stack([data, label]) 추출 데이터와 라벨 합친 total 데이터 생성

#특징

tr_set, val_set, te_set = data_division(total_data, Tr_rate, Val_rate, Te_rate) # training set, validation set, test set 나누기

x_features, y_label = make_input_output(tr_set) #training set의 특징추출 데이터와 label 분리하기

x_features_val, y_label_val = make_input_output(val_set) #validation set의 특징추출 데이터와 label 분리하기

y_data = One_Hot_Encoding(y_label) #training set label one_hot encoding 하기

y_data_val = One_Hot_Encoding(y_label_val)
#validation set label one_hot encoding 하기

```
MSE_tr, Accuracy_tr, v_tr, w_tr = Two_Layer_Neural_Network_1(x_features, y_data, L,
epoch, LR) #training set에 대한 MSE, ACCURACY, (v, w) weight 저장
y_hat_val_all = []
                                                                               #test
set의 y_hat 저장할 list
x_features_val = add_dummy(x_features_val)
#dummy 추가
# training set으로 학습한 weight로 validation set forwoard propagation
#batch size 1이므로 데이터 하나씩 forward propagation
for i in range(x_features_val.shape[1]):
    y_hat_val, _ = forward_propagation_1(x_features_val[:, i], v_tr, w_tr, L)
                                                                           #forward
propagation 진행
    y_hat_val_all.append(y_hat_val)
#y_hat_te list에 저장
y_hat_val = np.hstack(y_hat_val_all)
#validation set에 대한 confusion matrix
confusion_matrix_val = confusion_matrix(y_hat_val, y_data_val)
# weight csv 파일로 넘기기
```

#training set을 이용한 신경망 학습

```
\# df_v = pd.DataFrame(v_tr)
# df_w = pd.DataFrame(w_tr)
# df_v.to_csv("w_hidden.csv", index = False, header = False)
# df_w.to_csv("w_output.csv", index = False, header = False)
#
______
parameters = {"axes.labelsize": 20, "axes.titlesize": 30, 'xtick.labelsize': 12, "ytick.labelsize":
12, "legend.fontsize": 12}
plt.rcParams.update(parameters)
plt.figure()
plt.plot(MSE_tr, '-o', markevery = 50, label = 'MSE')
plt.xlabel("epoch")
plt.ylabel("MSE")
plt.title("Training Set MSE")
plt.legend()
plt.grid()
plt.figure()
plt.plot(Accuracy_tr, '-o', markevery = 50, label = 'Accuracy')
plt.xlabel("epoch")
```

===============

```
plt.ylabel("Accuracy")

plt.title("Training Set Accuracy")

plt.legend()

plt.grid()
```