Liban 2018. Enseignement spécifique. Corrigé

EXERCICE 1

1) L'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Donc, en moyenne, le temps d'attente d'un étudiant, exprimé en secondes, est :

$$E(X) + E(Y) = \frac{1}{\lambda} + \mu = \frac{1}{0,02} + 96 = 50 + 96 = 146 \text{ s},$$

ou aussi 2 min 26 s.

2) a) Puisque 2 minutes sont aussi 120 secondes, la probabilité demandée est $P(X \ge 120)$. Or, pour $t \ge 0$,

$$P(X \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = 1 - e^{-\lambda t} = 1 - e^{-0.02t}.$$

Par suite,

$$P(X \geqslant 120) = 1 - P(X < 120) = 1 - P(X \leqslant 120) = 1 - \left(1 - e^{-0.02 \times 120}\right) = e^{-2.4} = 0,091 \text{ arrondi au millième}.$$

- b) La probabilité demandée est $P(Y \le 90)$. La calculatrice fournit $P(Y \le 90) = 0,409$ arrondi au millième.
- 3) La loi exponentielle de paramètre λ est une loi sans vieillissement. Donc, $P_{X\geqslant 60}(X\leqslant 60+30)=P(X\leqslant 30)$. Une fois que l'on a attendu une minute, la probabilité d'attendre encore 30 secondes est la même que celle qu'on avait au départ. L'étudiante a eu tort de raccrocher car elle n'a pas augmenté ses chances mais elle a perdu le temps utilisé pour rappeler.

EXERCICE 2

1) $|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$ puis

$$1+\mathfrak{i}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\mathfrak{i}\right)=\sqrt{2}\left(\cos\left(\frac{\pi}{4}\right)+\mathfrak{i}\sin\left(\frac{\pi}{4}\right)\right)=\sqrt{2}e^{\mathfrak{i}\frac{\pi}{4}}.$$

 $\mathrm{Ensuite},\ 1-\mathfrak{i}=\overline{(1+\mathfrak{i})}=\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+\mathfrak{i}\sin\left(-\frac{\pi}{4}\right)\right)=\sqrt{2}e^{-\mathfrak{i}\frac{\pi}{4}}.$

2) a) Soit n un entier naturel.

$$\begin{split} S_n &= (1+\mathfrak{i})^n + (1-\mathfrak{i})^n = \left(\sqrt{2}e^{\mathfrak{i}\frac{\pi}{4}}\right)^n + \left(\sqrt{2}e^{-\mathfrak{i}\frac{\pi}{4}}\right)^n = \left(\sqrt{2}\right)^n \left(e^{\mathfrak{i}\frac{n\pi}{4}} + e^{-\mathfrak{i}\frac{n\pi}{4}}\right) \\ &= \left(\sqrt{2}\right)^n \left(\cos\left(\frac{n\pi}{4}\right) + \mathfrak{i}\sin\left(\frac{n\pi}{4}\right) + \cos\left(\frac{n\pi}{4}\right) - \mathfrak{i}\sin\left(\frac{n\pi}{4}\right)\right) \\ &= 2\left(\sqrt{2}\right)^n \cos\left(\frac{n\pi}{4}\right). \end{split}$$

$$\begin{split} &\mathrm{Si}\;\cos\left(\frac{n\pi}{4}\right)>0,\;\mathrm{la}\;\mathrm{forme}\;\mathrm{trigonom\acute{e}trique}\;\mathrm{de}\;S_n\;\mathrm{est}\;2\left(\sqrt{2}\right)^n\cos\left(\frac{n\pi}{4}\right)(\cos(0)+\mathrm{i}\sin(0)).\\ &\mathrm{Si}\;\cos\left(\frac{n\pi}{4}\right)<0,\;\mathrm{la}\;\mathrm{forme}\;\mathrm{trigonom\acute{e}trique}\;\mathrm{de}\;S_n\;\mathrm{est}\;-2\left(\sqrt{2}\right)^n\cos\left(\frac{n\pi}{4}\right)(\cos(\pi)+\mathrm{i}\sin(\pi)).\\ &\mathrm{Si}\;\cos\left(\frac{n\pi}{4}\right)=0,\;S_n\;\mathrm{n'admet}\;\mathrm{pas}\;\mathrm{de}\;\mathrm{forme}\;\mathrm{trigonom\acute{e}trique}. \end{split}$$

b) Pour tout entier naturel n, S_n est un nombre réel. Donc, l'affirmation A est vraie. Soit $n \in \mathbb{N}$.

$$S_n = 0 \Leftrightarrow 2\left(\sqrt{2}\right)^n \cos\left(\frac{n\pi}{4}\right) = 0 \Leftrightarrow \cos\left(\frac{n\pi}{4}\right) = 0.$$

Si n est un entier naturel de la forme 2+4k où k est un entier naturel, alors

$$\cos\left(\frac{n\pi}{4}\right) = \cos\left(\frac{(2+4k)\pi}{4}\right) = \cos\left(\frac{\pi}{2} + k\pi\right) = 0$$

et donc $S_n=0$. Ainsi, si n est l'un des entiers 2, 6, 10, 14, ..., S_n est nul. Donc, l'affirmation B est vraie.

EXERCICE 3

- 1) a) A l'instant 0, le sous-marin est en $S_1(0)$ où le point $S_1(0)$ a pour coordonnées (140, 105, -170).
- b) Le point $S_1(60)$ a pour coordonnées (-3460, -5295, -1970). Puisque le premier sous-marin se déplace à vitesse constante en ligne droite, la distance, exprimée en mètres, parcourue par le premier sous-marin en une heure est $S_1(0)S_1(60)$.

$$S_1(0)S_1(60) = \sqrt{(-3460 - 140)^2 + (-5295 - 105)^2 + (-1970 + 170)^2} = \sqrt{3600^2 + 5400^2 + 1800^2}$$
$$= \sqrt{45\ 360\ 000} = 6\ 734, 98\dots$$

En une heure, le premier sous-marin parcourt 6,7 km arrondi au dixième de kilomètre ou encore la vitesse du premier sous-marin est 6,7 km/h arrondi au dixième de kilomètre par heure.

- c) Le point $S_1(1)$ a pour coordonnées (80, 15, -200). Le vecteur $\overline{S_1(0)S_1(1)}$ a pour coordonnées (-60, -90, -30). L'angle α est l'angle non orienté entre le vecteur $\overrightarrow{u} = -\frac{1}{30} \overline{S_1(0)S_1(1)}$ de coordonnées (2,3,1) et le vecteur \overrightarrow{v} de
 - $\overrightarrow{u} \cdot \overrightarrow{v} = 2 \times 2 + 3 \times 3 + 1 \times 0 = 13$. $\|\overrightarrow{u}\| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}$ et $\|\overrightarrow{u}\| = \sqrt{2^2 + 3^2 + 0^2} = \sqrt{13}$.

Donc.

$$\cos\left(\overrightarrow{u},\overrightarrow{v}\right) = \frac{\overrightarrow{u}.\overrightarrow{v}}{\|u\| \times \|v\|} = \frac{13}{\sqrt{14} \times \sqrt{13}} = \sqrt{\frac{13}{14}}.$$

La calculatrice fournit alors $\alpha=15,5^{\circ}$ à dixième de degré près

2) Le point $S_2(t)$ se déplace sur une droite de représentation paramétrique

$$\begin{cases} x = 68 + at \\ y = 135 + bt \\ z = -68 + ct \end{cases}, t \in \mathbb{R},$$

a pour coordonnées (-202, -405, -248) » fournit $\begin{cases} -202 = 68 + 3\alpha \\ -405 = 135 + 3b \\ -248 = -68 + 3c \end{cases}$ et donc $\alpha = -90$, b = -180 et c = -60. Ainsi, -248 = -68 + 3c le point $S_2(t)$ a pour coordonnées à l'instant $t: \begin{cases} x(t) = 68 - 90t \\ y(t) = 135 - 180t \\ z(t) = -68 - 60t \end{cases}$ Les deux source.

Les deux sous-marins sont à la même profondeur si et seulement si -170 - 30t = -68 - 60t ce qui équivaut à $t = \frac{102}{30} = 3,4$. Les deux sous-marins sont à la même profondeur à l'instant t = 3,4 min.

On peut noter que quand t = 3,4 l'abscisse du point $S_1(t)$ est $140 - 60 \times 3,4 = -64$ et l'abscisse du point $S_2(t)$ est $68-90\times3,4=-238$. Donc, il n'y a pas de collision entre les deux sous-marins.

EXERCICE 4.

1) Soit n un entier naturel non nul. Puisque pour tout x de [1,5], $x^n \neq 0$, la fonction f_n est dérivable sur [1,5] et pour $x \in [1,5]$

$$f_n'(x) = \frac{\frac{1}{x} \times x^n - \ln x \times nx^{n-1}}{(x^n)^2} = \frac{x^{n-1} - nx^{n-1} \ln x}{x^{2n}} = \frac{x^{n-1} (1 - n \ln x)}{x^{2n}} = \frac{1 - n \ln x}{x^{2n-(n-1)}} = \frac{1 - n \ln x}{x^{n-1}}.$$

2) Soit $\mathfrak n$ un entier naturel non nul. Notons (x_n,y_n) , avec $y_n=f_n(x_n)$, les coordonnées du point A_n . En admettant que $x_n\in]1,5[$, on a nécessairement $f_n'(x_n)=0$. Or,

$$f'_n(x) = 0 \Leftrightarrow 1 - n \ln x = 0 \Leftrightarrow \ln x = \frac{1}{n} \Leftrightarrow x = e^{\frac{1}{n}}.$$

Donc, $x_n = e^{\frac{1}{n}}$ puis

$$y_n = f_n(x_n) = \frac{\ln\left(e^{\frac{1}{n}}\right)}{\left(e^{\frac{1}{n}}\right)^n} = \frac{\ln\left(e^{\frac{1}{n}}\right)}{e} = \frac{1}{e}\ln\left(x_n\right).$$

Donc, le point A_n appartient à la courbe d'équation $y = \frac{1}{e} \ln(x)$.

3) a) Soit $x \in [1,5]$. La fonction ln est croissante sur l'intervalle [1,5] et donc $\ln(1) \leq \ln(x) \leq \ln(5)$ ou encore $0 \leq \ln(x) \leq \ln(5)$. En divisant les trois membres de cet encadrement par le réel strictement positif x^n , on obtient

pour tout x de [1,5],
$$0 \leqslant \frac{\ln(x)}{x^n} \leqslant \frac{\ln(5)}{5^n}$$
.

b) Soit n un entier naturel non nul

$$\int_{1}^{5} \frac{1}{x^{n}} dx = \int_{1}^{5} x^{-n} dx = \left[\frac{x^{-n+1}}{-n+1} \right]_{1}^{5} = \left[-\frac{1}{(n-1)x^{n-1}} \right]_{1}^{5} = -\frac{1}{(n-1)5^{n-1}} + \frac{1}{n-1}$$
$$= \frac{1}{n-1} \left(1 - \frac{1}{5^{n-1}} \right).$$

c) Soit $\mathfrak n$ un entier naturel non nul. Puisque la fonction $\mathfrak f_{\mathfrak n}$ est continue et positive sur [1,5], l'aire $\mathcal A_{\mathfrak n}$ considérée est

$$\mathscr{A}_n = \int_1^5 f_n(x) \ dx = \int_1^5 \frac{\ln x}{x^n} \ dx.$$

D'après la question 3)a) et par positivité et croissance de l'intégrale,

$$0 \leqslant \mathcal{A}_n \leqslant \int_1^5 \frac{\ln x}{x^n} dx = \ln 5 \int_1^5 \frac{1}{x^n} dx = \frac{\ln 5}{n-1} \left(1 - \frac{1}{5^{n-1}} \right).$$

 $\mathrm{Puisque} \ -1 < \frac{1}{5} < 1, \ \mathrm{on \ sait \ que} \ \lim_{n \to +\infty} \frac{1}{5^{n-1}} = 0. \ \mathrm{D'autre \ part}, \ \lim_{n \to +\infty} \frac{\ln 5}{n-1} = 0. \ \mathrm{Donc},$

$$\lim_{n \to +\infty} \frac{\ln 5}{n-1} \left(1 - \frac{1}{5^{n-1}} \right) = 0 \times (1-0) = 0.$$

Mais alors, d'après le théorème des gendarmes, $\lim_{n \to +\infty} \mathcal{A}_n = 0$.

EXERCICE 5.

1) D'après la formule des probabilités totales,

$$\begin{split} p_2 &= P\left(G_2\right) = P\left(G_1\right) \times P_{G_1}\left(G_2\right) + P\left(\overline{G_1}\right) \times P_{\overline{G_1}}\left(G_2\right) \\ &= \frac{1}{4} \times \frac{1}{4} + \left(1 - \frac{1}{4}\right) \times \left(1 - \frac{1}{2}\right) = \frac{1}{16} + \frac{3}{8} = \frac{7}{16}. \end{split}$$

2) Soit n un entier naturel non nul. D'après la formule des probabilités totales,

$$\begin{split} p_{n+1} &= P\left(G_{n+1}\right) = P\left(G_{n}\right) \times P_{G_{n}}\left(G_{n+1}\right) + P\left(\overline{G_{n}}\right) \times P_{\overline{G_{n}}}\left(G_{n+1}\right) \\ &= p_{n} \times \frac{1}{4} + (1 - p_{n}) \times \frac{1}{2} = -\frac{1}{4}p_{n} + \frac{1}{2}. \end{split}$$

- 3) Il semble que la suite (p_n) converge vers 0,4.
- 4) a) Soit n un entier naturel non nul.

$$u_{n+1} = p_{n+1} - \frac{2}{5} = -\frac{1}{4}p_n + \frac{1}{2} - \frac{2}{5} = -\frac{1}{4}p_n + \frac{1}{10} = -\frac{1}{4}\left(p_n - \frac{2}{5}\right) = -\frac{1}{4}u_n.$$

La suite $(u_n)_{n\geqslant 1}$ est une suite géométrique de raison $-\frac{1}{4}$.

b) La suite $(\mathfrak{u}_n)_{n\geqslant 1}$ est la suite géométrique de raison $q=-\frac{1}{4}$ et de premier $\mathfrak{u}_1=\mathfrak{p}_1-\frac{2}{5}=-\frac{3}{20}$. On sait alors que pour tout entier naturel non nul \mathfrak{n} ,

$$u_n = u_1 \times q^{n-1} = -\frac{3}{20} \left(-\frac{1}{4}\right)^{n-1}$$

puis

$$p_n = \frac{2}{5} + u_n = \frac{2}{5} - \frac{3}{20} \left(-\frac{1}{4} \right)^{n-1}$$
.

c) Puisque $-1 < -\frac{1}{4} < 1$, $\lim_{n \to +\infty} \left(-\frac{1}{4} \right)^{n-1}$ et donc $\lim_{n \to +\infty} p_n = \frac{2}{5} = 0,4$. Ceci signifie qu'au bout d'un grand nombre de parties, le joueur a environ 40% de chances de gagner une partie.