```
import pandas as pd
import numpy as np
```

▼ Understanding The Data

```
df = pd.read_csv('/content/Mall_Customers.csv')
df.head()
         CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
      0
                       Male
                              19
                                                   15
                                                                           39
                  1
                              21
                                                   15
                                                                           81
                       Male
      2
                  3 Female
                              20
                                                   16
                                                                            6
      3
                  4 Female
                                                   16
                                                                           77
      4
                  5 Female
                              31
                                                   17
                                                                           40
df.shape
     (200, 5)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 200 entries, 0 to 199
     Data columns (total 5 columns):
                                  Non-Null Count Dtype
      # Column
      0
          CustomerID
                                  200 non-null
                                                   int64
          Gender
                                   200 non-null
                                                   object
      1
      2 Age
                                  200 non-null
                                                   int64
      Annual Income (k$) 200 non-null
Spending Score (1-100) 200 non-null
                                  200 non-null
                                                   int64
                                                   int64
     dtypes: int64(4), object(1)
     memory usage: 7.9+ KB
```

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

```
CustomerID
Gender
```

df.isnull().sum()

Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

df.Gender.value_counts()

Female 112 Male 88

Name: Gender, dtype: int64

Data Preprocessing

```
new_df = df
new_df = new_df.drop(['CustomerID'],axis=1)
```

new_df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

```
from sklearn.preprocessing import LabelEncoder
```

le = LabelEncoder()

```
new_df['Gender'] = le.fit_transform(new_df['Gender'])
```

new_df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
3	0	23	16	77
4	0	31	17	40

K-Means Algorithm

```
from sklearn import cluster
error = []
 for i in range(1,11):
                 kmeans = cluster.KMeans(n_clusters=i,init='k-means++',random_state=0)
                 kmeans.fit(new_df)
                 error.append(kmeans.inertia_)
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro
                                                                warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                                warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
                                                                warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro
                                                              warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                                warnings.warn(
                                                /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                                                              warnings.warn(
                                          4
```

error

```
[308862.060000000066,
212889.44245524303,
143391.59236035676,
104414.67534220168,
75399.61541401484,
58348.641363315044,
51132.703212576904,
44392.11566567935,
41000.8742213207,
37649.692254297421
```

import matplotlib.pyplot as plt
plt.plot(range(1,11),error)

[<matplotlib.lines.Line2D at 0x792c5ccb4880>]

km_model = cluster.KMeans(n_clusters=5,init="k-means++",random_state=0)
km_model.fit(new_df)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro warnings.warn(

```
r KMeans
KMeans(n_clusters=5, random_state=0)
```

km_model.predict(new_df)

```
array([0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4,
```

Predicting Random Values

```
km_model.predict([[1,20,50,35]])
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted warnings.warn(array([2], dtype=int32)

```
←
```

km_model.predict([[0,22,50,35]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted warnings.warn(array([2], dtype=int32)

```
4
```

km_model.predict([[0,50,100,50]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted warnings.warn(array([3], dtype=int32)

km_model.predict([[0,43,60,20]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitted warnings.warn(array([3], dtype=int32)