```
Preliminaries
                    Suppose that
A = \{ x : x \in Nandxiseven \}, \\ B = \{ x : x \in Nandxisprime \}, \\ A = \{ x : x \in Nandxisprime \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}, \\ A = \{ x : x \in Nandxiseven \}
C = \{x : x \in Nandxisamultipleof5\}.
                    Then
                    A \cap B = \{2\}
B \cap C = \{5\}

A \cup B = \{x : x \in Nandxisevenorxisprime\}
 A \cap (B \cup C) = \{x : x \in Nandx = 2orxisamultipleof 10\}
                    If A = \{a, b, c\}, B = \{1, 2, 3\}, C = \{x\}, D = \emptyset then
                    A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)\}
B \times C = \{(1, x), (2, x), (3, x)\}

A \times B \times C = \{(a, 1, x), (a, 2, x), (a, 3, x), (b, 1, x), (b, 2, x), (b, 3, x), (c, 1, x), (c, 2, x), (c, 3, x)\}
A\times \mathop{D}_{*3}=\emptyset.
                    Find an example of two nonempty sets A and B for which A \times B = B \times A.
                    Consider any nonempty set A = B.
                     *4
                    Prove A \cup \emptyset = A.
                    By definition A \cup \emptyset = \{x : x \in A \lor x \in \emptyset\}. Note that the second condition is always false and hence
                    Prove A \cap \emptyset = \emptyset.
                    This is very similar to the previous proof. By definition A \cap \emptyset = \{x : x \in A \land x \in \emptyset\}. Note that the second condition is
```

*5 Prove $A \cup B = B \cup A$.

This follows directly from the definition

Prove $A \cap B = B \cap A$.

This follows directly from the definition

```
*6
Prove A \cup (B \cap C) = (A \cup B) \cap (A \cup C).

x \in A \cup (B \cap C) \iff x \in A \lor x \in B \cap C
\iff x \in A \lor (x \in B \land x \in C)
\iff (x \in A \land x \in B) \lor (x \in A \land x \in C)
\iff x \in (A \cup B) \lor x \in (A \cup C)
\iff x \in (A \cup B) \cap (A \cup C)
Therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
*7
Prove A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
```

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. There are two cases. If $x \in B$ then $x \in A \cap B$ by definition. Similarly

Let $x \in (A \cap B) \cup (A \cap C)$. There are two cases. If $x \in A \cap B$ then clearly $x \in A \cap (B \cup C)$. Similarly, if $x \in A \cap C$ the *8

Prove $A \subset B$ if and only if $A \cap B = A$.

Assume $A \cap B = A$. Then for all $a \in A$ it is true that $a \in A \cap B$ and thus $a \in B$. Hence $A \subset B$.

Assume $A \subset B$. Then for all $a \in A$ it is true that $a \in B$. Since $a \in A$ and $a \in B$ we know $A \subset A \cap B$. Clearly $A \cap B \subset *9$