- 1. The difference between Shreve and ours.
 - (a) The value function there is homotheticity which is $v(ax, ay) = a^p v(x, y)$. This property makes this problem into a one dimension problem instead of two.
 - (b) The value function there is concave from which the value function is proven to be C^1 in the buying stock and selling stock region.
 - (c) The value function is $C^{(1,2)}$ via the boundary, however, with two equality holds the same time, it is still impossible to solve for the ratio without knowing the expression of the value function(because there is a nonlinear term that can not be eliminated). Unlike this, ours can be solved directly without knowing the value function.
 - (d) We actually assume that V_{qxx} is continuous at the boundary which is not proven in the paper. They only show that V_x , V_{yy} are both continuous at the boundary and says nothing about V_{qxx} .
- The value functions via solving PDE and simulation are quite similar. I do simulation on 1600 points of one fixed boundary and the results are similar.
- 3. Since the proof of moving boundary used the W_{qq} and W_{qxx} , I want to make sure both of them exist.
- 4. I want to come back to the constant transaction cost case.
 - (a) In this case, is the analytical way of solving boundary right?
 - (b) If it is not right, does W_{qq} and W_{qxx} exist?
 - (c) How to discretize the PDE in this problem? It is always singular matrix.
- 5. Is it possible that this problem can be somehow turned into a one dimensional problem? Maybe not, because the price above average and below average are not the same.
- 6. I want to do the moving boundary method for this problem right now and check all the things after getting the solution of it.