Mathematics 251 Exam 1

September 24, 2013

Name: ____ Answers

- 1. Let $\vec{v} = \langle 0, -3, 1 \rangle$ and $\vec{w} = \langle 2, -3, 4 \rangle$.
 - (a) (6 points) Find a vector that is orthogonal to the plane containing these vectors.

Solution: We take the cross product of the vectors. Since it is orthogonal to each vector, it is also orthogonal to the plane containing them.

$$\vec{v} \times \vec{w} = (-12+3)(\hat{\jmath} \times \hat{k}) + (2-0)(\hat{k} \times \hat{\imath}) + (0-(-6))(\hat{\imath} \times \hat{\jmath})$$
$$= \langle -9, 2, 6 \rangle.$$

A quick dot product calculation verifies that this vector is indeed orthogonal to \vec{v} and \vec{w} —of course we know it *should* be, but perhaps we made an arithmetic mistake.

(b) (6 points) Find an equation for the plane containing these vectors. (Either a vector equation or a scalar equation is acceptable.)

Solution: We obtained a normal vector for this plane in the previous part, $\vec{n} = \langle -9, 2, 6 \rangle$. Therefore, an equation for the plane containing these vectors is

$$\langle -9, 2, 6 \rangle \cdot \langle x, y, z \rangle = 0$$
 or $-9x + 2y + 6z = 0$.

2. (a) (12 points) Explain geometrically why the equation

$$\langle 1, 1, 1 \rangle \times \langle x, y, z \rangle = \langle 1, 0, 0 \rangle$$

has no solution, i.e., why the equation is false for every choice of $\langle x, y, z \rangle$.

Solution: If $\langle 1,0,0 \rangle$ is the cross product of $\langle 1,1,1 \rangle$ with anything, then $\langle 1,0,0 \rangle$ must be orthogonal to $\langle 1,1,1 \rangle$. But it is clearly not, since the dot product of these vectors is nonzero.

A more long-winded approach would be to note that the angle between these vectors is, rather than $\pi/2 = \tau/4$,

$$\cos^{-1}\frac{1}{1+\sqrt{3}}$$
.

(b) (12 points) Find a vector $\langle x, y, z \rangle$ that satisfies the equation

$$\langle 1, 1, 1 \rangle \times \langle x, y, z \rangle = \langle 1, -1, 0 \rangle.$$

Note. There are infinitely many such vectors $\langle x, y, z \rangle$.

Solution: The easiest way to proceed is simply to evaluate the left-hand side.

$$\langle 1, 1, 1 \rangle \times \langle x, y, z \rangle = (z - y)(\hat{\jmath} \times \hat{k}) + (x - z)(\hat{k} \times \hat{\imath}) + (y - x)(\hat{\imath} \times \hat{\jmath})$$
$$= \langle z - y, x - z, y - x \rangle.$$

By inspection, we see that x = y, z = y + 1, so (0,0,1) is a solution. Any vector (x, x, x + 1) will do, as is easily checked.

- 3. Let P = (1,1,0), Q = (1,-2,1), and R = (3,-2,4).
 - (a) (8 points) Find the cosine of the angle between the line segments \overline{PQ} and \overline{PR} .

Solution: We use the dot product–cosine formula, $\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos \theta$.

First, compute $\vec{v} = \langle 1-1, -2-1, 1-0 \rangle = \langle 0, -3, 1 \rangle$ and $\vec{w} = \langle 3-1, -2-1, 4-1 \rangle = \langle 2, -3, 4 \rangle$. Then $\vec{v} \cdot \vec{w} = 13$. We also find $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{10}$, $\|\vec{w}\| = \sqrt{29}$.

We obtain

$$\cos\theta = \frac{13}{\sqrt{13}\sqrt{29}}.$$

(b) (8 points) Explain why your answer to the previous part means that the points P, Q, and R are the vertices of a triangle (in other words, why the points are not collinear).

Solution: If the points were collinear, the angle between the vectors would have to be either 0 or π . But the cosine of the angle is evidently not 1 or -1.

(c) (8 points) Recall that for *any* two vectors \vec{u} , \vec{v} , the angle formed by \vec{u} and \vec{v} is acute (resp. obtuse) if $\vec{u} \cdot \vec{v}$ is positive (resp. negative). Are any of the angles of the triangle obtuse? Justify your answer.

Solution: All of the angles of the triangle have positive cosines, so this triangle is acute.

4. (8 points) (Note: In this problem, no justification or explanation is required.) Let \vec{u} , \vec{v} , and \vec{w} be nonzero vectors in \mathbf{R}^3 . Identify the correct completion(s) of the sentence: The vectors \vec{u} , \vec{v} , and \vec{w} are coplanar (they lie in one plane) if (select one of (a) through (g)):

- I. One of the three vectors is parallel to the cross product of the others.
- II. There exist scalars a and b with $\vec{w} = a\vec{u} + b\vec{v}$.
- III. $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{0}$.
- IV. $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$.

- a. I only
- b. II only
- c. III only
- d. II and IV only
- e. III and IV only
- f. II, III, and IV only
- g. I, II, III, and IV

Solution:

- I. If, say, \vec{u} is parallel to $\vec{v} \times \vec{w}$, then \vec{u} is orthogonal to both \vec{v} and \vec{w} . It is possible for all three to be coplanar, but only when \vec{v} and \vec{w} are parallel to begin with. Usually, \vec{u} will not be coplanar with \vec{v} and \vec{w} . This item does not hold.
- II. If \vec{w} is a combination of \vec{u} and \vec{v} as indicated, then \vec{w} is indeed coplanar with \vec{u} and \vec{v} . This item holds.
- III. This is a special case of the first item, so it doesn't hold.
- IV. If the three vectors span a box of volume 0, they are coplanar. The box product formula thus tells us that \vec{u} , \vec{v} and \vec{w} are coplanar in this case. This item holds.

Therefore, the correct answer is d.

5. (12 points) Suppose that \vec{u} and \vec{v} are orthogonal. Use facts about vectors and their dot products to verify the equation

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Do you think this equation can be true for a pair of non-orthogonal vectors? Justify your answer.

Solution: We make repeated use of the formula $\|\vec{w}\|^2 = \vec{w} \cdot \vec{w}$. Applying this to the left-hand side of the equation, we obtain via bilinearity and commutativity

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}.$$

But \vec{u} and \vec{v} are orthogonal, so $\vec{u} \cdot \vec{v} = 0$. Hence, the right-hand side above reduces to $\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v}$. Another application of the formula allows us to rewrite this last as

$$\|\vec{u}\|^2 + \|\vec{v}\|^2$$
.

This equation does not hold for non-orthogonal vectors, because such vectors' dot products do not vanish.

- 6. (8 points) Suppose that \mathcal{P} is a plane in \mathbb{R}^3 and that ℓ is a line contained in \mathcal{P} . Let Q be a point not on \mathcal{P} . Choose the correct relationship between D, the distance from Q to ℓ , and d, the distance from Q to \mathcal{P} .
 - A. $d \leq D$.
 - B. $d \ge D$.
 - C. d = D.
 - D. None of the above.

Solution: The answer is B, because the line is constrained to lie in the plane. Thus the distance from ℓ to Q cannot be smaller than the distance from \mathcal{P} to Q. Of course D can be made as large as you please by moving ℓ away from Q within \mathcal{P} .

- 7. Figure 7 shows a contour plot of a function f(x, y).
 - (a) (6 points) Starting at (2,2) and moving in the negative x-direction, are the values of f(x,y) decreasing or increasing?

Solution: The values are increasing.

(b) (6 points) Starting at point (2,0) and moving in the positive *y*-direction, are the values of f(x, y) decreasing or increasing?

Solution: The values are increasing.

Figure 1: Contour plot for Problem 7