Sistema autônomo para supervisão de missão e segurança de voo em VANTs

Jesimar da Silva Arantes

Orientador: Claudio Fabiano Motta Toledo

Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos, SP

Novembro – 2017

Estrutura da Apresentação

- Introdução
- Conceitos Fundamentais
- Revisão Bibliográfica
- 4 Metodologia
- 6 Resultados Preliminares
- **6** Cronograma
- Considerações Finais

Introdução

Contextualização

- Arquitetura MOSA proposta por Figueira et al. 2013.
- Planejador de rotas HGA4m desenvolvido por Arantes et al. 2016.

- Arquitetura IFA proposta por Mattei et al. 2013.
- Replanejador de rotas MGPA4s desenvolvido por Arantes et al.
 2015.

Introdução

Contextualização

- Sistema MOSA para gerenciamento da missão;
- Sistema IFA para gerenciamento da segurança.

Introdução

Objetivos

Propor uma arquitetura para VANTs de baixo custo com as seguintes características:

- Propósito geral: diferentes missões podem ser incorporadas sem grandes mudanças na arquitetura.
- Resiliência: os sistemas devem prevenir a propagação de erros ou alterar seu comportamento visando o correto funcionamento da aeronave.
- Autonomia: os sistemas operarão a aeronave com baixo nível de intervenção humana.

Veículos Aéreos Não-Tripulados

Estação de Controle de Solo

Mission Planner

 ${\sf QGroundControl}$

MAVProxy

Simuladores de Voo

FlightGear

X-Plane

Pilotos Automáticos

APM

Pixhawk

Companion Computers

Intel Edison

Raspberry Pi

Odroid XU4

Aviônicos

Receptor de rádio controle

Módulo de telemetria air

GPS com bússola

Simulação Software-In-The-Loop:

- Simulação em que todo o hardware é emulado em software;
- Hardware Emulado em Software: AP, Telemetria, RC, Receptor do RC, Aeronave e Sensores.

MOSA: Mission Oriented Sensor Array

- Sistema responsável pelo cumprimento da missão;
- Arquitetura proposta em Figueira 2017;
- Sistema aplicado no geração automática de mapas temáticos;
- Sistema validado usando o Matlab Simulink.

IFA: In-Flight Awareness

- Sistema responsável pela segurança em voo;
- Arquitetura proposta em Mattei 2015;
- Sistema validado usando o ambiente Labview junto com o X-Plane.

Arquitetura para Pulverização

- Sistema autônomo para pulverização aérea;
- Arquitetura proposta em Xue et al. 2016;
- Aplicação em pulverização contra pragas agrícolas.

Arquitetura para Busca e Resgate

- Sistema autônomo para operações de busca e resgate;
- Arquitetura proposta em Brown et al. 2011;
- Aplicação em resgate de caminhantes perdidos no deserto.

Arquitetura de Hardware/Software Proposta

Arquitetura de Hardware/Software Proposta

Arquitetura de Hardware/Software Proposta

Arquitetura de Hardware/Software Plug-in-Play

Arquitetura de Hardware/Software Plug-in-Play

Plataforma iDroneAlpha

Plataforma Ararinha

Protocolo para Especificação do Mapa e da Missão

Resultados Preliminares

Artigos

- Publicado no GECCO 2017
- Publicado no ICTAI 2017

Resultados Preliminares

Artigo do GECCO

- Desenvolvimento sistema MOSA (simulado)
 - Integração do planejador: HGA4m
 - 40 mapas artificiais foram avaliados no total;
 - Critério de parada 10 segundos.
- Desenvolvimento sistema IFA (simulado)
 - Integração do replanejador: MPGA4s
 - 60 mapas artificiais foram avaliados no total;
 - 4 falhas críticas foram avaliadas;
 - Critério de parada 1 segundo.
- Plataformas avaliadas:

	PC i5	Intel Edison
Frequência	1.8 GHz	500 MHz
Memória RAM	4 GB	1 GB
Sistema Operacional	Linux - Ubuntu	Linux - Yocto

Artigo do GECCO

Figura 1: Número de avaliações por instância para o planejamento de rotas.

Artigo do GECCO

Figura 2: Comprimento do caminho por instância para o planejamento de rotas.

Novembro - 2017

Artigo do GECCO

Método MPGA4s

Figura 3: Número de avaliações por instância para o replanejamento de rotas.

Artigo do GECCO

Método MPGA4s

Figura 4: Locais de pouso em ambas arquiteturas para replanejamento.

Artigo do ICTAI

Figura 5: Arquitetura do sistema no módulo de replanejamento de rota.

Artigo do ICTAI

Figura 6: Estratégias implementadas executando os métodos em paralelo.

Artigo do ICTAI

		Intel Edison				
Métodos	CP (ms)	Ψ_b	Ψ_m	Média	Tempo	
HG	-	86,7%	60,0%	73,3%	347	
AG	250	72,3%	62,3%	67,3%	250	
AG	500	84,7%	65,3%	75,0%	500	
AG	1000	91,0%	68,0%	79,5%	1000	
AG-HG	250	89,3%	62,7%	76,0%	309	
AG-HG	500	90,3%	65,7%	78,0%	510	
AG-HG	1000	92,3%	69,0%	80,7%	1000	
AG-AG	250	81,0%	65,0%	73,0%	250	
AG-AG	500	89,7%	68,3%	79,0%	500	
AG-AG	1000	94,7%	70,0%	82,3%	1000	
Média	-	87,2%	65,6%	76,4%	-	

Figura 7: Resultado do estudo de caso em um cenário do mundo real usando AG-AG.

Cronograma

	Meses						
Atividades	01-06	07-12	13-18	19-24	25-30	31-36	37-42
Disciplinas	✓	√					
Proficiência	✓						
Revisão Bibliográfica	✓	✓	✓	•	•	•	
Desenvolvimento			✓	•	•	•	
Qualificação				•			
Experimentação			✓	•	•	•	
Artigos		✓	✓	•	•	•	•
Tese						•	•

Legenda	Símbolo
Atividades já realizadas	✓
Atividades a serem feitas	•

Considerações Finais

Conclusão

- Este trabalho apresentou um proposta para automatização de VANTs para realização de missões com segurança;
- Uma arquitetura de hardware/software está sendo desenvolvida;
- Diversos planejadores de missão e segurança estão sendo adaptados ao novo contexto aqui proposto;
- Diversos resultados já foram obtidos executando em simulações computacionais e sobre a Intel Edison;
- Obtemos grandes avanços validando os planejadores em cenários do mundo real;
- Implementação do sistema MOSA básico integrado ao VANT.

Considerações Finais

Artigos Publicados

Conferências

- **GECCO 2017**: An Embedded System Architecture based on Genetic Algorithms for Mission and Safety Planning with UAV. Apêndice A.
- ICTAI 2017: Evaluating Hardware Platforms and Path Re-Planning Strategies for the UAV Emergency Landing Problem. Apêndice B.

Revista

• IJAIT 2017: Heuristic and Genetic Algorithm Approaches for UAV Path Planning under Critical Situation. Apêndice C.

Considerações Finais

Próximas Etapas

- Implementação dos sistemas MOSA e IFA.
- Avaliação sobre as aeronaves iDroneAlpha e Ararinha.
- Avaliação da arquitetura sobre outras plataformas de Hardware.
- Realização de experimentos em aplicações reais como imageamento aéreo e pulverização.

Agradecimentos

Muito Obrigado! Perguntas!

E-mail para contato:

jesimar.arantes@usp.br