High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

Wenjie Niu 2018.08.22

Indroduction

The method of pix2pix suggest that adversarial training might be unstable and prone to failure for high-resolution image generation tasks.

This paper presents a new method for synthesizing high-resolution(2048 × 1024) photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs).

Related Work

- Generative adversarial networks
- Image-to-image translation
- Deep visual manipulation

The objective of the generator G is to translate semantic label maps to realistic-looking images, while the discriminator D aims to distinguish real images from the translated ones.

The paper improves the pix2pix framework by using a coarse-to-fine generator, a multi-scale discriminator architecture, and a robust adversarial learning objective function.

Coarse-to-fine generator

Figure 2: Network architecture of our generator. We first train a residual network G_1 on lower resolution images. Then, another residual network G_2 is appended to G_1 and the two networks are trained jointly on high resolution images. Specifically, the input to the residual blocks in G_2 is the element-wise sum of the feature map from G_2 and the last feature map from G_1 .

Multi-scale discriminators

T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In *CVPR*, 2018.

Improved adversarial loss

The feature matching loss $\mathcal{L}_{FM}(G, D_k)$ is then calculated as:

$$\mathcal{L}_{FM}(G, D_k) = \mathbb{E}_{(\mathbf{s}, \mathbf{x})} \sum_{i=1}^{T} \frac{1}{N_i} [||D_k^{(i)}(\mathbf{s}, \mathbf{x}) - D_k^{(i)}(\mathbf{s}, G(\mathbf{s}))||_1],$$

Our full objective combines both GAN loss and feature matching loss as:

$$\min_{G} \left(\left(\max_{D_1, D_2, D_3} \sum_{k=1,2,3} \mathcal{L}_{\text{GAN}}(G, D_k) \right) + \lambda \sum_{k=1,2,3} \mathcal{L}_{\text{FM}}(G, D_k) \right)$$

Using Instance Maps

Figure 3: Using instance maps: (a) a typical semantic label map. Note that all connected cars have the same label, which makes it hard to tell them apart. (b) The extracted instance boundary map. With this information, separating different objects becomes much easier.

Using Instance Maps

Figure 4: Comparison between results without and with instance maps. It can be seen that when instance boundary information is added, adjacent cars have sharper boundaries.

Results

Quantitative Comparisons

	pix2pix [21]	CRN [5]	Ours	Oracle
Pixel acc	78.34	70.55	83.78	84.29
Mean IoU	0.3948	0.3483	0.6389	0.6857

Analysis

	U-Net [21,43]	CRN [5]	Our generator
Pixel acc (%) Mean IoU	77.86	78.96	83.78
	0.3905	0.3994	0.6389

	single D	multi-scale Ds
Pixel acc (%) Mean IoU	82.87 0.5775	83.78 0.6389

Analysis

Q&A