NP-completeness proofs

Recall from last day

Definition Problem X is NP complete if

O KENP

2 Y = p X for all YENP reduces in poly, time

We will prove Satisfiability is NP-complete even the special case of 3-SAT

How to prove a problem Z is NP-complete (after 1st proof)

O Show ZENP

2 show X = p Z for some known NP-complete X.

Last day: Ind. Set is NZ-complete using reduction 3-SAT Ind. Set

Today: more NP-complete problems.

Clique: Given a graph G=(V, E) and k ∈ IN, does a Rave a clique of size =k

set of vertices, every two, joined by an edge

Observe CSV is a dique in Giff Cisan independent set in G' - the complement

G' - vertices V - edge (u,v) iff (u,v) & E(G)

Ihm Clique is NP-complete

Praof (1) Clique ENP

certificate: the vertices of the dique verification: - check = k vertice's

-check every 2 joined by edge

(2) Ind Set Ep Clique

Alg. for Ind. Set assuming poly. time alg. for clique

- give input G, n-k to clique alg.

- return YES/NO answer.

This takes poly. time

It is correct because G has an ind. Set of Size

Today: more NP-complete problems. Vertex Cover Input: Graph G= (V, E), number kEN Question: Does G have a vertex cover of Size zk = a set SEV s.t every edge (4,v) EE has u or v (or both) in S observe: V-S is an independent set Theorem vertex Cover is NP-complete 7f. O Vertex Cover & NP certificate: the set S verification: check that every edge has endpoint in S and check ISIX k 2 Ind. Set Server Assume we have an alg. for Vertex Cover. Give an alg. for Ind. Set. We use relationship between Verlex Cover & Ind Setin G. Claim Sis a vertex cover iff V-Sis an indiset. Pf. Exercise Here's our alg. for Ind. Set input G, k give G, n-k to Vertex Gover alg. output YES/NO answer correct. Poly. time (assuming Vertex Cover alg. is poly time)

Road Map of NP-completeness Reductions Circuit-SAT = 3-SAT = HAM. CYCLE = TSP In SUBSET SUM History proof that 3-SAT is NP-complete due to Prof. Stephen cook, U. of Toronto, 71 and independently to Levin. Other "first" NP-completeness proofs above due to Richard Karp

Directed Hamiltonian Cycle Input: a directed graph G= (v, E) Question: Does Ghave a Edirected T Hamiltonian Cycle, i.e. a directed cycle that visits every vertex exactly once. Ihm Directed Ham cycle is NP-complete IF O ENT certificate - order of visitive vertices verification-heckfordirected edge between each pair of vertices, and that all vertices visited once. 2 3-SAT & Directed Ham cycle. Assume we have a gody. time alg. for Directed Ham. cycle. Design a poly. time alg. for 3-SAT. Input: Clauses Ci' Cm, each clause has 3 literals variables 2e, " 2c n. Construct gadget to choose T/F for each variable

Note: make sure to leave a spare vertex between 2 clause detours
mot ok not ok not ok
2 not ok 2 spare vertices
To prove this construction is correct we must prove there's
no other way to visit C.
Claim G has a directed Ham cycle If all clauses satisfiable
Pf = traverse the variable paths in True/false
direction. For each clause C, at least one literal is
set True - take a detour from that path to node C.
=> Suppose G has a Ham. cycle
Claim visiting c must happen as a deteur off a path
Suppose we use (a, c) but not (c, b) Can't use (a, s.) so must enter si from left. Must use (si, a).
Si from left. Must use (si, a).
re path size (51, a).
Thus the Ham. cycle must traverse at or Fpath
for each variable, and must visit each dause
vertex of such a parth.
So this corresponds to satisfying truth value assignment.
<u>Claim</u> This construction takes poly time.

