

Meet our Team

Phan Dinh 2021**N65at**

Nguyen Huu 202**1245**1h

Do Quang 202 Mina

TABLE OF CONTENTS

01

Introduction

Problem

Package

Quatta N packages

Size w_i x h_i

Truck Quata K trucks ty Capacity W_k x H_k Cost Cost

There are more trucks than needed to transport all

Target

Packages that are placed in the **same** container must not overlap

Loads all the packages into those given trucks such that **the total cost of trucks used is minimal**

Throughout our mini-project, some concepts are also being used instead of trucks (bins, cars) and packages (items)

XX

CP MODEL

Denotation

- N_i is the number of items given

 Item i has size of $w_i \times h_i$ with width w_i and
 - height h;
- N_bins is the number of bins given
 Bin j has size of W_i x H_i with width W_i ,
 - height H_j and cost C_j

- •
 - Variable

×

- * $X_{ij} = 1$: item i packed in bin j
- : bin j has been used
- * $R_i = 1$: item i rotated 90

1, r, b, t; left, right, bottom and top coordinates of item i

* First way to approach:

if item i not rotated: $R_i \neq 1$

$$\rightarrow \begin{cases} ri = l_i + w_i \\ ti = b_i + h_i \end{cases}$$

if item i rotated: $R_i = 1$

$$\rightarrow \begin{cases} ri = l_i + h_i \\ ti = b_i + w_i \end{cases}$$

Variable Item's Coordinate

1, r, b, t; left, right, bottom and top coordinates of item i

* Another way to approach: if item i not rotated: $R_i \neq 1$

$$\rightarrow \begin{cases} w \, i = w_i \\ h \, i = h_i \end{cases}$$

if item i rotated: $R_i = 1$

$$\rightarrow \begin{cases} w \, i = h_i \\ h \, i = w_i \end{cases}$$

Variable Item's Coordinate

Each item must be packed in exactly 1 bin:

- Items can not overlap each other:
 - if or or or
- Items cannot exceed the bin:
 - if

Minimize

XX

MIP MODEL

Denotation

- M is Constant value
- N_items is the number of items given
 Item i has size of w_i x h_i with width w_i and
- Neightship the number of bins given

 Bin j has size of $W_j \times H_j$ with width W_j , height H_i and cost C_i

- * $X_{ij} = 1$: item i packed in bin j
- : bin j has been used
- To MIP:

* $R_i = 1$: item i rotated 90

Variable

- L, r, b, t, : left, right, bottom and top coordinates of item i
- if item i not rotated: $R_i = 0$

$$\rightarrow \begin{cases} r i = l_i + w \\ t i = b_i + h_i \end{cases}$$

- if item i rotated: $R_i = 1$

$$\rightarrow \begin{cases} ri = l_i + h_i \\ ti = b_i + w_i \end{cases}$$

To MIP:

• •

Variable

Item's Coordinate

Each **item** must be packed in **exactly 1 bin**:

Items cannot exceed the bin:

- if

×

X

Items can not overlap each other:

- if or or or

To MIP:

Minimize

Overview

Heuristic algorithms: Combine two algorithms, including Guillotine and Maximal Rectangles.

Concept of **free rectangles**: A list of free rectangles represents the **free space of the bin**. In the Guillotine algorithm, these rectangles are pairwise disjoint.

Sorting input

×

Bins

Sort by "density" (cost/area), in an ascending order.

Ties broken with the descending order of the longer side, followed by the descending order of the shorter side.

Area: 180 **C**_k: 180

Size: 15 x 12 **Area:** 180

Area: 180 **C**_k: 180

Size: 15 x 10 **Area:** 150

C_k: 150 **Size:** 10 x

Area: 80

C_k: 160

Sorting input

Items

Sort by **longer side** in **descending order**.

Ties broken with the descending order of the shorter side.

Destination for the item

Destination Bin

Bin First Fit rule - pack the item into the bin with the lowest index (after the process of sorting bin); in other words, pack in the first bin that the item fits.

2

3

4

Destination for the item

Destination Free Rectangle of the bin

Best Short Side Fit rule - choose a free rectangle where the shorter remainder side after insertion is minimized; in other words, minimize the length of the shorter leftover side.

Ties broken with **best longer side** (longer leftover side is minimized).

Packing process

Heuristic algorithms: Combine two algorithms, including Guillotine and Maximal Rectangles.


```
Algorithm 1: The Guillotine algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
      Decide the free rectangle F_i \in F to pack the item into;
      Decide the orientation for the item and place it at the bottom-left of F_i;
      Use the guillotine split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
      Set F \leftarrow F \cup \{F_{i_1}, F_{i_2}\} \setminus \{F_i\};
      foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
          if F_{j_1} and F_{j_2} can be merge together then
              F_{merge} = \text{Merge } F_{j_1} \text{ and } F_{j_2};
             Set F \leftarrow F \cup \{F_{merge}\} \setminus \{F_i, F_{i_2}\};
          end
      end
 end
```

Pseudocode for Guillotine algorithm

Splitting rule: Best Short Side rule - split by horizontal axis if the free rectangle's width is less than its height; otherwise, split by vertical axis.

The guillotine split placement process. After placing a rectangle, there are two ways to store the remaining free


```
Algorithm 1: The Guillotine algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
      Decide the free rectangle F_i \in F to pack the item into;
      Decide the orientation for the item and place it at the bottom-left of F_i;
      Use the guillotine split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
      Set F \leftarrow F \cup \{F_{i_1}, F_{i_2}\} \setminus \{F_i\};
      foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
          if F_{j_1} and F_{j_2} can be merge together then
              F_{merge} = \text{Merge } F_{j_1} \text{ and } F_{j_2};
             Set F \leftarrow F \cup \{F_{merge}\} \setminus \{F_i, F_{i_2}\};
          end
      end
 end
```

Pseudocode for Guillotine algorithm

• •

Rectangles Merging: if there exists a pair of neighboring rectangles and such that U can be exactly represented by a single bigger rectangle, merge these two into one.

Examples of rectangles merging


```
Algorithm 1: The Guillotine algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
      Decide the free rectangle F_i \in F to pack the item into;
      Decide the orientation for the item and place it at the bottom-left of F_i;
      Use the guillotine split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
      Set F \leftarrow F \cup \{F_{i_1}, F_{i_2}\} \setminus \{F_i\};
      foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
          if F_{j_1} and F_{j_2} can be merge together then
              F_{merge} = \text{Merge } F_{j_1} \text{ and } F_{j_2};
              Set F \leftarrow F \cup \{F_{merge}\} \setminus \{F_i, F_{i_2}\};
          end
      end
 end
```

Pseudocode for Guillotine algorithm

• •

Guillotine

A sample packing produced by a Guillotine algorithm. The red lines denote the split choices.


```
Algorithm 2: The Maximal Rectangles algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
     Decide the free rectangle F_i \in F to pack the item into;
     Decide the orientation for the item and place it at the bottom-left of F_i;
     Use the max_rec split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
     Set F \leftarrow F \cup \{F_i, F_{i_2}\} \setminus \{F_i\};
     foreach Free Rectangles F_i in F do
          Compute F_j \setminus i and subdivided the result into at most four new free rectangles
           F_{i_1},...,F_{i_4};
          Set F \leftarrow F \cup \{F_i, ..., F_{i_\ell}\} \setminus \{F_i\};
     end
     foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
         if F_{j_1} contains F_{j_2} then \mid Set F \leftarrow F \setminus \{F_{j_2}\};
          end
     end
 end
```

Pseudocode for Maximal Rectangles algorithm

Splitting rule: Pick both split axes at the same time to ensure that the largest possible rectangular areas are present in the list of free rectangles.

The rectangle placement rule for the MAXRECTS data structure. Both the rectangles on the right are stored in F.


```
Algorithm 2: The Maximal Rectangles algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
     Decide the free rectangle F_i \in F to pack the item into;
     Decide the orientation for the item and place it at the bottom-left of F_i;
     Use the max_rec split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
     Set F \leftarrow F \cup \{F_i, F_{i_2}\} \setminus \{F_i\};
     foreach Free Rectangles F_i in F do
          Compute F_j \setminus i and subdivided the result into at most four new free rectangles
           F_{i_1},...,F_{i_4};
          Set F \leftarrow F \cup \{F_i, ..., F_{i_\ell}\} \setminus \{F_i\};
     end
     foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
         if F_{j_1} contains F_{j_2} then \mid Set F \leftarrow F \setminus \{F_{j_2}\};
          end
     end
 end
```

Pseudocode for Maximal Rectangles algorithm

Any **free rectangle** that **intersects** the area occupied by the **newly inserted item** is **split** such to remove the intersection.

Any **free rectangle** that **intersects** the area occupied by the **newly inserted item** is **split** such to remove the intersection.

Any **free rectangle** that **intersects** the area occupied by the **newly inserted item** is **split** such to remove the intersection.


```
Algorithm 2: The Maximal Rectangles algorithm
 Initialize:
 Set F = \{(W, H)\};
 Pack:
 foreach Item i = (w, h) in the list of inserted items of the bin do
     Decide the free rectangle F_i \in F to pack the item into;
     Decide the orientation for the item and place it at the bottom-left of F_i;
     Use the max_rec split scheme to subdivide F_i into two new free rectangles F_{i_1} and F_{i_2};
     Set F \leftarrow F \cup \{F_i, F_{i_2}\} \setminus \{F_i\};
     foreach Free Rectangles F_i in F do
          Compute F_j \setminus i and subdivided the result into at most four new free rectangles
           F_{i_1},...,F_{i_4};
          Set F \leftarrow F \cup \{F_i, ..., F_{i_i}\} \setminus \{F_i\};
     end
     foreach Ordered pair of free rectangles F_{i_1}, F_{i_2} in F do
         if F_{j_1} contains F_{j_2} then \mid Set F \leftarrow F \setminus \{F_{j_2}\};
          end
     end
 end
```

Pseudocode for Maximal Rectangles algorithm

Delete every free rectangle which is fully overlapped by others in the list.

A sample packing produced by the MAXRECTS algorithm. The maximal rectangles of F are shown in colors.

Analysis

Exact solution

RESULTS

F: Feasible Solution N/A: No Solution Found

Test	Input sizes		Exact methods						Heuristics				
			CP 1		CP 2		MIP		Treat istics				
	n packs	n bins	f	t(s)	f	t(s)	f	t(s)	f min	f max	f avg	std dev	t avg(s)
0007.txt	7	3	250	0.027932056	250	0.029741828	250	3.176666667	300	300	300	0	0.000029500
0010.txt	10	10	51	0.049313393	51	0.082288480	51	2.642000000	51	51	51	0	0.000037000
0011.txt	11	11	79	0.053943779	79	0.194204638	79	14.00300000	79	79	79	0	0.000035500
0012.txt	12	12	54	0.057868931	54	0.088900393	54	7.898000000	54	54	54	0	0.000040500
0013.txt	13	13	103	0.109191075	103	0.248680102	F	F	145	145	145	0	0.000039000
0014.txt	14	14	50	0.218952388	50	0.156991295	50	27.73466667	55	55	55	0	0.000051000
0015.txt	15	15	106	0.513134012	106	0.859766784	F	F	106	106	106	0	0.000057500
0016.txt	16	16	113	0.905138111	113	0.434518921	F	F	130	130	130	0	0.000049000
0017.txt	17	17	105	117.0229775	105	48.88790709	F	F	105	105	105	0	0.000052500
0018.txt	18	18	F	F	F	F	F	F	121	121	121	0	0.000059000
0019.txt	19	19	106	5.214479066	106	4.515408114	F	F	129	129	129	0	0.000058500
0020.txt	20	20	171	2.519827466	171	3.259184459	F	F	188	188	188	0	0.000053500
0021.txt	21	21	108	8.500796449	108	13.22533175	F	F	120	120	120	0	0.000060000

Exact solution

Exact solution

• •

- CP model gives exact solutions for tests with sizes: 7 x 3, 10 x 10, 11 x 11, 12 x 12, 13 x 13, 14 x 14, 15 x 15, 16 x 16, 17 x 17, 19 x 19, 20 x 20, 21 x 21.
- MIP model gives exact solutions for test with sizes: 7 x 3, 10 x 10, 11 x 11, 12 x 12, 14 x 14.

General

CP cannot handle data sets larger than 240 x 240.

MIP cannot handle data sets larger than 44 x 44.

Heuristic can handle all test cases (the largest test size is 10,000 x 10,000).

Compare Total cost

MIP gives the worst results.

- equivalent results, but with larger data sets, CP2 gives better results.
- results. With tests of size smaller than 100 x 100, it is still a bit inferior to CP, but for all other tests, it is significantly better.

Zoomed comparing total cost graph

Compare Running Time

- MIP reaches the time limit of 300 seconds for all tests with size ≥ 15 x 15.
- CP reaches the time limit of 300 seconds for all tests with size ≥ 22 x 22.
- Heuristic has a very short run time, every test is under 1 second, even for the test size of 10,000 x 10,000.

Conclusion

- MIP is not good in terms of results and running time.
- with better results and faster running time (in some early tests).
- Heuristic gives the best results in both cost and running time.

Visualizing

Visualizing

Figure generated for output of Heuristic solver with test 0015.txt

Thanks for your attention!

