Minicurso: Fundamentos de Computação Gráfica

Eudóxia Moura

Agenda

- CONCEITOS FUNDAMENTAIS
 - Segmentações
 - Limiarização
 - Operações morfológicas
 - Baseadas em Bordas

COMPUTAÇÃO GRÁFICA

É uma ferramenta de concepção de arte, assim como o piano ou o pincel (Conci, 2022)

- Whirlwind I 1950
- Termo *Computer Graphics*, criado por Verne Hudson 1959
- Tese Ivan Sutherland estruturas de dados 1962
- General Motors Primeiro programa de CAD 1965

<mark>Áreas</mark>

A computação gráfica atualmente é uma área que engloba pelo menos três grandes subáreas:

- A **Síntese de Imagens** considera a criação sintética das imagens, ou seja, as representações visuais de objetos criados pelo computador a partir das especificações geométricas e visuais de seus componentes.
- O **Processamento de Imagens** considera o processamento das imagens na f<u>orma</u> digital e suas transformações, por exemplo, para melhorar ou realçar suas características visuais.
- A **Análise de Imagens** considera as imagens digitais e as <u>analisa para obtenção de</u> <u>características desejadas</u>, como, por exemplo, a especificação dos componentes de uma imagem a partir de sua representação visual.

<mark>Áreas</mark>

A computação gráfica trata da síntese de imagens de objetos reais ou imaginários a partir de modelos computacionais.

Processamento de imagens é uma área relacionada que trata do processo inverso: a análise de cenas, ou a reconstrução de modelos de objetos 2D ou 3D a partir de suas imagens.

Mercado de trabalho

Área	Aplicações			
Arte	Efeitos especiais, modelagens criativas, esculturas e pinturas			
Medicina	Exames, diagnósticos, estudo, planejamento de procedimentos			
Arquitetura	Perspectivas, projetos de interiores e paisagismo			
Engenharia	Em todas as suas áreas (mecânica, civil, aeronáutica etc.)			
Geografia	Cartografia, GIS, georreferenciamento, previsão de colheitas			
Meteorologia	Previsão do tempo, reconhecimento de poluição			
Astronomia	Tratamento de imagens, modelagem de superfícies			
Marketing	Efeitos especiais, tratamento de imagens, projetos de criação			
Segurança Pública	Definição de estratégias, treinamento, reconhecimento			
Indústria	Treinamento, controle de qualidade, projetos			
Turismo	Visitas virtuais, mapas, divulgação e reservas			
Moda	Padronagem, estamparias, criação, modelagens, gradeamentos			
Lazer	Jogos, efeitos em filmes, desenhos animados, propaganda			
Processamento de Dados	Interface, projeto de sistemas, mineração de dados			
Psicologia	Terapias de fobia e dor, reabilitação			
Educação	Aprendizado, desenvolvimento motor, reabilitação			

Gêmeo digital do planeta Terra

PIXEL

Um *pixel* é caracterizado pelo valor de **intensidade** de cor e pela sua **localização** na imagem.

	47	52	64	132	153
_	51	58	121	149	142
	49	99	143	144	164
	94	135	161	170	199
	138	165	180	212	213

Representação matricial de uma região da imagem.

Imagem 18X18


```
0 255 255 255 255 255 255
                    255 255 255 255 255
                    255 255 255 255 255
                    255 255 255 255 255
                        255 255 255
                        255 255 255 255
                                             255 255 255 255 2551
                                             255 255 255 255 255]
255 255 255
                                             255 255 255 255 255]
    255 255 255
                                             255 255 255 255 255]
                                                                0]
                        255 255 255
                                                                0]
                    255 255 255 255 255
              0 255 255 255 255 255 255
```

IMAGEM MATRICIAL (RASTER)

Cinza
8 x 8 = 64 valores
Colorida
3 canais de cores RGB

 $8 \times 8 \times 3 = 192 \text{ valores}$

https://www.w3schools.co m/colors/colors rgb.asp

SEGMENTAÇÃO DE IMAGENS

Fonte: https://iaexpert.academy/

Técnicas Clássicas

Limiarização

Limiarização Global, Método de Otsu, Limiarização Adaptativa

Segmentação baseada em bordas

Sobel e Canny Edge

Segmentação baseada em regiões

Segmentação baseada em clusters

Segmentação com Watershed

Segmentação por cor

Fonte: https://iaexpert.academy/

Técnicas de Aprendizagem Profundo

Fonte: https://iaexpert.academy/

APLICAÇÕES DE SEGMENTAÇÕES

Veículos autônomos

Uso industrial - ex: Segmentação de peças defeituosas

Créditos das Imagens: data-flair.training & deepsense.ai

Imagens médicas

Imagens de satélite

FERRAMENTAS

Google Colab

- Python
- OpenCV (cv2)
- NumPy
- MatPlotLib

import cv2 # OpenCV

import numpy as np

from matplotlib import pyplot as plt

LIMIARIZAÇÃO (Binarização)

Resultado da separação da imagem em dois tons pela operação de thresholding. Dois tons são necessários para descrever a imagem depois disto:o branco e o preto.

• Thresholding é um tipo de segmentação que se baseia na obtenção de limiares que separam grupos de pixels de características semelhantes.

https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html

cv2.threshold

val, img_thresh = cv.threshold(img_gray, limiar, max_val, metodo)

Método de OTSU

O método de Otsu é um algoritmo de limiarização, proposto por Nobuyuki Otsu [Otsu,1975].

Seu objetivo é, a partir de uma imagem em tons de cinza, determinar o valor ideal de um threshold que separe os elementos do fundo e da frente da imagem em dois clusters, atribuindo a cor branca ou preta para cada um deles.

Devido à essa característica, funciona especialmente bem para casos de **imagens com histogramas bimodais**, podendo ser divididas adequadamente com um único valor.

OTSU

lim_otsu, img_otsu= cv.threshold(img_gray, limiar, min_val, max_val, cv2.metodobinarizacao | cv2.metodootsu)

cv.THRESH_OTSU é passado como um sinalizador extra. O valor limite pode ser escolhido arbitrariamente. O algoritmo então encontra o valor limite ótimo que é retornado como a primeira saída.

HISTOGRAMA

O histograma de uma imagem indica o **número ou o percentual** de *pixels* que a imagem tem em determinado nível de cinza ou cor.

Imagem em tons de cinza e o seu histograma.

HISTOGRAMA

```
limiar_otsu, img_otsu = cv2.threshold(gray, o, 255, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)
print(limiar_otsu)
plt.imshow(img_otsu, cmap='gray')
_
histograma, bins = np.histogram(gray, 256, [0,256])
```

histograma

Desfoque gaussiano - cv2.GaussianBlur

Desfoque gaussiano (também conhecido como suavização gaussiana) é o resultado do desfoque de uma imagem por uma função gaussiana (nomeada em homenagem ao matemático e cientista Carl Friedrich Gauss).

A suavização gaussiana é usada com detecção de bordas.

O uso de um filtro Gaussian Blur antes da detecção de bordas visa reduzir o nível de ruído na imagem, o que melhora o resultado do seguinte algoritmo de detecção de bordas.