Project: UNTITLED

Design Summary

IC: L6566B - SO 16-N

Input: 185 - 265 Vac (47 - 53 Hz) - Nominal: 230 Vac

Output: 12 V (2 % ripple) - 36 W max Switching Frequency: 30 kHz - 120 kHz Expected Average Efficiency: 87 % Max. Ambient Temperature: 60 °C

Transformer Specifications:

fsw range: 30 kHz - 120 kHz - Lp: 2.92 mH - leakage: $29.24 \mu\text{H}$

Primary - lpk: 971 mA - **Irms:** 310 mA **Secondary - Irms:** 4.28 A - **Np/Ns:** 11.719

Auxiliary - Irms: 29 mA - **lavg:** 20 mA - **Np/Naux:** 11.719

Transformer Design:

Core:

Type EER28 Vertical - Area Product 5895 mm^4 - Orientation Vertical

Volume (Ve) 5250 mm³ - Cross-Sectional Area (Ae) 82.10 mm² - Bobbin Winding Area (Aw) 71.80 mm²

Bobbin Average Turn Lenght 52.20 mm - **Bobbin Centr. Leg Lenght** 16.70 mm **Material:** N27, N67, N87, 3C81, 3C90, 3C91, 3C95, PC40, PC44, PC50 or equivalent

Core Gap: 0.48 mm

Inductance factor (AL): 214 nH/N^2

Primary: Turns 117 - Layers 4

Wire: Type TIW - Number of strands 1 - Strand copper Ø 0.300 mm Wire gross Ø 0.500 mm - Resistance per meter 0.2629 Ω/m

Secondary: Turns 10 - Layers 2 - Paralleled wires 3

Wire: Type Litz - Number of strands 45 - Strand copper Ø 0.100 mm Wire gross Ø 1.073 mm - Resistance per meter 0.0559 Ω/m

Auxiliary: Turns 10

STMicroelectronics and/or its licensors do not warrant that accuracy or completeness of this specification or any information contained therein. STMicroelectronics and/or its licensors do not warrant that this phases design, phase will meet the specifications, will be suitable for your application or lift for any particular purpose, or will operate in an implementation. STMicroelectronics and/or its licensors do not warrant that the system functionality for your application.

Project: UNTITLED

Bill of Materials

Reference	Value	Description
IC	L6566B	PWM Controller
Q	STP9NK70ZFP	Power MOSFET
Rgate	10 Ω	Standard Resistor - 5% 250 ppm/°C
DZclp	1.5KE250A	250 V Transil
Dclp	STTH108	800 V Diode
Rosc	16 kΩ	Standard Resistor - 1% 100 ppm/°C
Css	100 nF	50 V Standard ceramic capacitor
Rcs	910 mΩ	1/4 W Resistor - 5% 250 ppm/°C
Rbr_h	1.6 MΩ - 500 V	High Voltage Resistor - 1% 100 ppm/°C
Rbr_l	3.3 kΩ	Standard Resistor - 1% 100 ppm/°C
Cbr	2.2 nF	50 V Standard ceramic capacitor
Rovp_h	47 kΩ	Standard Resistor - 5% 250 ppm/°C
Rovp_l	24 kΩ	Standard Resistor - 5% 250 ppm/°C
Docp	1N4148	Fast signal diode
Rvff_h	6.8 MΩ - 500 V	High Voltage Resistor - 1% 100 ppm/°C
Rvff_I	1.6 kΩ	Standard Resistor - 1% 100 ppm/°C
Cvff	2.2 nF	50 V Standard ceramic capacitor
Cvref	100 nF	50 V Standard ceramic capacitor
Cvcc	47 µF	35 V Electrolytic capacitor
Rvcc	1 Ω	Standard Resistor - 5% 250 ppm/°C
Dvcc	STTH102	High efficiency ultrafast diode
SHUNT	Reference 1.24 V	Shunt voltage reference
Rout_h	30 kΩ	Standard Resistor - 1% 100 ppm/°C
Rout_I1	4.7 kΩ	Standard Resistor - 1% 100 ppm/°C
Rout_I2	13 kΩ	Standard Resistor - 1% 100 ppm/°C
Cin	33 µF	400 V Electrolytic capacitor
BD	Bridge Diode	600 V Bridge rectifier
Cout	2.2 mF 16 V	16 V - ESR ≤ 15 m Ω - Electrolytic capacitor
Dout	STPS15L60CB	Low drop power schottky rectifier
HSdiode	Rth ≤ 22.65 °C/W	Heatsink
Ccomp	1.2 nF	50 V Standard ceramic capacitor
Cfb	56 nF	50 V Standard ceramic capacitor
Rfb	47 kΩ	Standard Resistor - 5% 250 ppm/°C
Ropto	5.1 kΩ	Standard Resistor - 5% 250 ppm/°C

STMicroelectronics and/or its licensors do not warrant that this phases design, phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. STMicroelectronics and/or its licensors do not warrant that this phases design, phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. STMicroelectronics and/or its licensors do not warrant that the design is production worthy, You should completely validate and test your design implementation to confirm the system functionality for your application.

Reference	Value	Description
Rbias	2.2 kΩ	Standard Resistor - 5% 250 ppm/°C
ОРТО	CTR: 1	Optocoupler - CTR: 1

Power Losses @(Vin 230 Vac - Pout 36 W)

Bode @(**Vin** 230 Vac - **Pout** 36 W)

Silvicroelectronics and/or its licensors do not warrant that this pacellication or uny information contained therein. Silvicroelectronics and/or its licensors do not warrant that this phases design_phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Silvicroelectronics and/or its licensors do not warrant that this phases design_phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Silvicroelectronics and/or its licensors do not warrant that this phases design_phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation. Silvicroelectronics and/or its licensors do not warrant that this phases design_phase will meet the specifications, will be suitable for your application or fit for any particular purpose, or will operate in an implementation to confirm the system functionality for your application.

Simulation @(Vin 230 Vac - Pout 36 W)

STMicroelectronics and/or its licensors do not warrant that accuracy or completeness of this specification or any information contained therein. STMicroelectronics and/or its licensors do not warrant that this phases.design_phase will meet the specifications, will be suitable for your application or fit for any particular