

Plagiarism and Al Content Detection Report

Tesis - Johel Heraclio Batista Cárdena...

Scan details

Scan time: Total Pages: Total Words: November 7th, 2023 at 0:19 UTC 158 39483

Plagiarism Detection

Al Content Detection

Q Plagiarism Results: (30)

TM.ED_ChacónDiazDannyAlejandro_2021

https://repository.uniminuto.edu/bitstream/10656/13227/1/t...

EQUIPO18

I La correspondencia entre el estilo de enseñanza del docente y el estilo de aprendizaje de los estudiantes de educación básica secundar...

(a) No Title 0.5%

https://www.revistas.una.ac.cr/index.php/educare/article/do...

15 años Revista Electrónica Educare (Educare Electronic Journal) EISSN: 1409-4258 Vol. 20(3) SETIEMBRE-DICIEMBRE, 2016: 1-29 {Cierre de e...

Estilos de enseñanza y estilos de aprendizaje en ed...

https://www.redalyc.org/journal/1941/194146862007/

Revista Electrónica EducareEducareUniversidad Nacional. CIDE Estilos de enseñanza y estilos de aprendizaje en educación superio...

0.4%

0.6%

MEB HUACANA: ESTILOS DE APRENDIZA...

0.3%

http://mebhuacana.blogspot.com/2012/05/estilos-de-aprend...

MEB HUACANA ...

Practica 10 RPL0 Configuracion Apache...

0.3%

https://www-studocu-com.translate.goog/latam/document/u...

Saltar al documento ...

194146862007.xml 0.3%

https://www.redalyc.org/journal/1941/194146862007/19414...

ree Revista Electrónica Educare Educare 1409-4258 1409-4258 Universidad Nacional. CIDE 10.15359/ree.20-3.7 Artículo original Est...

(PDF) Estilos de enseñanza y estilos de ...

0.2%

https://www.researchgate.net/publication/311398410_estilos...

Constanza Rojas Jara

Home Teaching ArticlePDF AvailableEstilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las preferencias de...

Adaptation of the Grasha Riechman St...

0.2%

https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5041280/

Back to Top Skip to main content ...

Cómo instalar el servidor Web Apache ...

0.2%

https://festivalegiptoenbarcelona-com.translate.goog/c%c3%...

Skip to content El Festival Información ...

Estilos de enseñanza y estilos de apren...

0.2%

https://www.redalyc.org/journal/1941/194146862007/html/

Artículo original Estilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las pre...

Estilos de enseñanza de los profesores ...

0.2%

https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=168...

Wilson Guerrero Gómez

Universidad de La Salle Ciencia Unisalle Maestría en Docencia Facultad de Ciencias de la Educación 2019 Estilos de enseñanza de los p...

Manual De Calificación De Registro De ...

0.2%

https://pdfcookie.com/documents/manual-de-calificacion-de...

PDFCOOKIE Home (current) Explore Explore All Upload Login / Register Home Manual ...

Copyleaks Internal Database

0.1%

No introduction available.

Ejemplo de una actividad tipo crucigra...

0.1%

https://www.researchgate.net/figure/ejemplo-de-una-activid...

Fig 3 - uploaded by Raúl Tomás Mora GarcíaContent may be subject to copyright. Download View publication Copy reference Copy cap...

© C3 Definición y Construcción de Model...

0.1%

https://www-studocu-com.translate.goog/latam/document/u...

Saltar al documento ...

WazquezMart.pdf

0.1%

https://institucional.us.es/revistas/universitaria/30/vazquez...

A. I. Vázquez Martínez y J. M. Alducin Ochoa Revista de Enseñanza Universitaria 2007, N.o 30; 66-86. IDENTIFICACIÓN DE ESTILOS DE APREND...

Redalyc.REVISIÓN Y ANÁLISIS DE INSTR...

0.1%

https://www.redalyc.org/pdf/3498/349852058042.pdf

Cerviño Vázquez, Consuelo; Beltrán O´higgins, Nancy

International Journal of Developmental and Educational Psychology ISSN: 0214-9877 fvicente@unex.es Asociación Nacional de Psicología Evol...

0.1%

No introduction available.

Estilos de enseñanza y estilos de apren...

0.1%

https://dialnet.unirioja.es/servlet/articulo?codigo=5618886

Ayuda ¿En qué podemos ayudarle? × Buscar en la ayuda Buscar Consultar la ayuda ¿En qué podemos ayudarle? x...

Redalyc.AUTONOMÍA EN EL APRENDIZ...

0.1%

https://www.redalyc.org/pdf/447/44713058006.pdf

Cabrera Ruiz, Isaac

Revista Electrónica "Actualidades Investigativas en Educación" E-ISSN: 1409-4703 revista@inie.ucr.ac.cr Universidad de Costa Rica Costa R...

Tesis HILTON PLUA VILLON.pdf

0.1%

http://repositorio.utmachala.edu.ec/bitstream/48000/17242/...

jessykar3381@hotmail.com

UNIVERSIDAD TÉCNICA DE MACHALA FACULTAD DE CIENCIAS SOCIALES MAESTRÍA EN PSICOPEDAGOGÍA ESTILOS DE APRENDIZAJES Y RENDIMIENT...

413755833005.pdf

0.1%

https://www.redalyc.org/journal/4137/413755833005/41375...

Sophia ISSN: 1794-8932 ISSN: 2346-0806 Universidad La Gran Colombia;; Cepeda, Rodrigo Rodríguez Los modelos de aprendizaje de Kolb, Hone...

IISIT - Assessing the Impact of Instructi...

0.1%

https://www.informingscience.org/publications/758?source=...

Peer Tutoring Learning Strategies in M...

0%

https://www.eu-jer.com/peer-tutoring-learning-strategies-in-...

European Journal of Educational Research Online ISSN: 2165-8714 ...

İnönü Üniversitesi Beden Eğitimi ve Sp... https://dergipark.org.tr/en/pub/inubesyo/issue/74034/12174...

0%

Grasha-Riechmann student learning st... https://www.emerald.com/insight/content/doi/10.1108/jarhe...

0%

Books and journals ...

Redalyc.Estilos de Aprendizaje que Car...

0%

https://www.redalyc.org/pdf/863/86322531009.pdf

Martínez-Romero, Aurora; Ortega-Sánchez, José Luis; Urtíz-Estrada,

Norma; Ruiz-Baca, Estela; Alba-Romero, José de Jesús; Cervantes-Flores,

Maribel

Química Viva E-ISSN: 1666-7948 quimicaviva@qb.fcen.uba.ar Universidad de @enBsAFresAugunring Maternet Ropher AMBHENDTES als benchez,...

0%

https://dokumen.tips/documents/cumplimiento-de-ambient...

Dinhngoc

Una propuesta metodológica para la c...

0%

https://revistas.utp.ac.pa/index.php/memoutp/article/view/1...

##plugins.themes.bootstrap3.accessible_menu.label## ##plugins.themes.bootstrap3.accessible_menu.main_nav...

0%

Estilos de enseñanza y estilos de apren... https://ade.edugem.gob.mx/handle/acervodigitaledu/53534

Toggle navigation español English English español English Login Toggle navigation ...

Plagiarism Report Content

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

DEPARTAMENTO DE SISTEMAS DE INFORMACIÓN, CONTROL Y EVALUACIÓN DE RECURSOS INFORMÁTICOS EMPAREJAMIENTO APROXIMADO DE ESTUDIANTES CON TUTORES ACADÉMICOS EN INTERVENCIONES

EDUCATIVAS DE FUNDACIÓN AYUDINGA

MODALIDAD DEL TRABAJO (TEÓRICO – PRÁCTICO)

INTEGRANTE

JOHEL HERACLIO BATISTA CÁRDENAS

ASESOR

VÍCTOR LÓPEZ CABRERA

2023

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

EMPAREJAMIENTO APROXIMADO DE ESTUDIANTES CON TUTORES ACADÉMICOS EN INTERVENCIONES EDUCATIVAS DE FUNDACIÓN AYUDINGA

ASESOR

VÍCTOR LÓPEZ CABRERA

INTEGRANTE

JOHEL HERACLIO BATISTA CÁRDENAS

TRABAJO DE GRADUACIÓN PARA OPTAR POR EL TÍTULO DE LICENCIADO EN INGENIERÍA EN SISTEMAS DE INFORMACIÓN

2023

Resumen

Este trabajo de investigación ofrece un enfoque innovador para el emparejamiento de estudiantes y tutores basándose en la correlación que existen entre los estilos de enseñanza – aprendizaje, respectivamente, según el Modelo Pedagógico de Grasha-Riechmann.

Cuenta como objetivo optimizar el proceso educativo a través de un emparejamiento más informado y estratégico. Estando sustentada en la teoría de "Clústers de Aprendizaje" de Anthony Grasha, la cual sugiere una relación directa entre los estilos de aprendizaje del estudiante y los estilos de enseñanza del tutor. A nivel de metodología, se incluye un proceso de recolección de datos diseñado a través de una aplicación

web en el que se aplicarán la Encuesta de Inventarios de Estilos de Enseñanza y Aprendizaje para los Tutores y Estudiantes.

Los datos recopilados son almacenados, procesados y organizados a través de técnicas de gestión de datos, estableciendo así un repositorio de información interactivo al que se denomina Sistema de Gestión de Aprendizajes #PilandoAndo (SGE, por sus siglas en español) de la Fundación Ayudinga.

La investigación continúa con el desarrollo de una aplicación que implementa el concepto matemático de Grafos Bipartitos para emparejar de manera óptima a estudiantes y tutores.

Este procedimiento permite crear subconjuntos de datos que son analizados utilizando herramientas avanzadas de cálculo matemático. Este enfoque también tiene en cuenta que múltiples estudiantes pueden ser asignados a un solo tutor para maximizar el aprendizaje colectivo.

Posteriormente, estos datos serán analizados por un algoritmo de emparejamiento máximo denominado Gale Shapley, sin embargo, usando una adaptación que tenga el objetivo de identificar los estilos de estudiantes y tutores. Este procedimiento automatizado asegura una gestión eficiente y precisa de los datos, preparándolos para el análisis y la visualización.

Los resultados de este emparejamiento se almacenan para su análisis posterior y se visualizan a través del "Panel de Administración" del SGE de #PilandoAndo, proporcionando un cuadro de mando que presenta el "Emparejamiento Máximo" entre estudiantes y tutores.

Es importante resaltar que este estudio también considera las limitaciones y restricciones de la cantidad de estudiantes que un tutor puede manejar eficazmente, así como lo hace al evaluar lo cambiante que pueden ser los estilos de aprendizaje y enseñanza de un estudiante o tutor, por lo que se limitará a una medición específica adaptativa a través de decisiones humanas.

Los hallazgos de este estudio exploratorio proporcionarán una estrategia efectiva y basada en datos para la creación de grupos de tutorías en las intervenciones educativas masivas de la Fundación Ayudinga, conocidas como #PilandoAndo en sus diferentes versiones.

Este enfoque permitirá una enseñanza más personalizada y efectiva, beneficiando tanto a tutores como a estudiantes al promover un entorno de aprendizaje más productivo y enriquecedor.

Palabras clave: Emparejamiento Aproximado, Clústeres de Aprendizaje, Grasha - Riechmann,

Emparejamiento Perfecto, Enseñanza Personalizada, Gestión de Datos, Sistemas de Información Educativos, Gale-Shapley, Teoría de Emparejamiento, Estudiantes, Tutores, Fundación Ayudinga

Al Lic. Justiniano Cárdenas Barahona (Q.E.P.D.), padre y abuelo, quien me enseñó a mantenerme firme, luchar frente a la adversidad, ser perseverante, resiliente y a creer siempre en mí mismo.

A Wocker Batista Cárdenas (Q.E.P.D.), hermano y fiel compañero de cuatro patas, quien durante diez años fue mucho más que una simple mascota.

A los que estuvieron, a los que están y a los que estarán siendo "Gente Ayudando Gente".

Agradecimientos

Este viaje de aprendizaje y descubrimiento no hubiese sido posible sin la presencia significativa de algunas personas que me ayudaron a superar retos y a navegar en aguas desconocidas.

Justiniano, Reyna Emperatriz, Heraclio (p), Haydee, Heraclio (h), Zuly, Zaida y Jahel, la familia que me dio el regalo del amor incondicional y el espacio para aprender, crecer y equivocarme. Sus enseñanzas y apoyo han sido el cimiento sobre el que se ha construido este logro.

Los voluntarios de la Fundación Ayudinga, han sido mi faro durante esta travesía, enseñándome humildad en la victoria y reflexión en la adversidad. Su espíritu indomable y resiliencia ante los desafíos me han enseñado más de lo que las palabras pueden expresar.

Víctor López Cabrera, mi asesor, quien, con su fe inquebrantable en mis habilidades, me permitió vislumbrar posibilidades más allá de mis dudas. A través de su mentoría, como su asistente Ad-Honorem, encontré la oportunidad de aprender y crecer en formas que nunca había imaginado.

Aquellos cuyos nombres no se mencionan aquí, pero que han jugado roles significativos en este viaje, saben lo esenciales que son.

A cada uno de ustedes, que han dejado huellas imborrables en mi vida y mi corazón, les extiendo mi gratitud más sincera.

Finalmente, agradezco a Dios, la Virgen y a Santa Librada, quienes han sido mi roca y mi refugio, y a quienes confío cada logro y desafío.

Índice de Contenidos

Resumen i

Dedicatoria iii

Agradecimientos iv

Índice de Figuras viii

Índice de Tablas xii

Introducción xiv

Capítulo I: Marco Teórico y Antecedentes - 1 -

Objetivos del Proyecto de Investigación - 2 -

Objetivo General: - 2 -

Objetivos Específicos: - 2 -

Hipótesis de Investigación - 3 -

Hipótesis Nula (): - 3 -

Hipótesis Alternativa - 4 -

Justificación - 4 -

Declaración de Conflictos de Interés del Autor - 5 -

Antecedentes - 5 -

Programa #PilandoAndo - 6 -

Hallazgos Cualitativos y Cuantitativos - 10 -

Modelos de Estilos de Aprendizaje - 11 -

Modelos de Aprendizaje y Enseñanza - 12 -

Modelo de Kolb - 14 -

Modelo de Honey y Mumford - 18 -

Modelo de Felder & Silverman: Índice de Estilos de Aprendizaje - 22 -

Modelo de Grasha-Riechmann - 25 -

Adaptación al Formato de #PilandoAndo - 36 -

Método de Clústeres de Estilos - 37 -

Teoría del Emparejamiento - 39 -

Tipos de Emparejamientos - 40 -

Algoritmo de Hopcroft-Karp - 43 -

Algoritmo de Gale - Shapley - 46 -

Definición de Conjuntos y Subconjuntos - 50 -

Resumen del Modelo Matemático - 51 -

Capítulo II: Metodología y Diseño del Experimento - 52 -

Planteamiento de Antecedentes - 52 -

Estadística Descriptiva de los primeros #PilandoAndo - 53 -

Objetivo del Experimento - 55 -Tipo de Experimento - 56 -Población y Muestra - 57 -Instrumentos de Recolección de Datos - 59 -Prueba de Grasha-Riechmann - 61 -Aplicación de la Prueba de Estilos de Enseñanza (Tutor) - 62 -Aplicación de la prueba de Estilos de Aprendizaje al Estudiante - 64 -Diseño del Experimento - 66 -Variables de Estudio - 70 -Análisis de Resultados - 75 -Perfil Demográfico de los Tutores - 76 -Análisis Descriptivo de los Tutores - 77 -Perfil Demográfico de los Estudiantes - 80 -Análisis Descriptivo de los Estudiantes - 81 -Consideraciones Éticas - 86 -Limitaciones del Estudio - 88 -Conclusiones a priori del Estudio Exploratorio - 89 -Capítulo III: Arquitectura del Sistema - 90 -Estado Previo - 91 -Estado Propuesto - 92 -Casos de Uso del Sistema - 94 -Especificación del Caso de Uso: Usuario Visitante - 97 -Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje - 99 -Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje. - 101 -Especificación del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores - 104 -Diagrama de Casos de Uso de la Aplicación - 108 -Diseño de la Base de Datos - 109 -Modelo Conceptual - 109 -Modelo Entidad - Relación de la Aplicación (SGE - #PilandoAndo) - 114 -Desarrollo e Implementación de la Aplicación - 115 -Infraestructura Tecnológica Utilizada - 115 -Configuración del Servidor - 116 -Estructura de un Sistema en Laravel PHP - 120 -Estructura de Directorios de la Aplicación en Laravel PHP - 125 -Esquema de la Base de Datos Implementada en MySQL (Normalizada a la 3FN) - 126 -Capítulo IV: Emparejamiento de Estudiantes y Tutores - 128 -Adaptación de Clústeres Integrados - 129 -Simulación Teórica del Emparejamiento - 132 -Algoritmo de Emparejamiento Tutores - Estudiantes - 135 -Formulación Matemática del Algoritmo - 136 -Implementación Paso a Paso - 138 -Simulación en Pseudocódigo - 141 -Ejemplo Práctico - 143 -Capítulo V: Análisis y Discusión de Resultados - 148 -Escenario Ideal del Modelo - 149 -Análisis de las Restricciones - 149 -Emparejamiento de Estudiantes y Tutores en #PilandoAndoPaLaU - 152 -Análisis de Sensibilidad del Emparejamiento Estudiantes-Tutores - 156 -Conclusiones y Trabajos Futuros - 161 -Recomendaciones - 169 -Anexos - 176 -Anexo #1: Cuestionario de Estilo de Aprendizaje - 177 -Anexo #2: Cuestionario de Inventario de Estilos de Enseñanza - 180 -Índice de Figuras Figura 1: Clases en vivo durante la Pandemia del COVID-19 - 16 -Figura 2: Primera Sesión de #PilandoAndo (18 de enero, 2020) - 19 -Figura 3: Última Sesión de #PilandoAndo en el BioMuseo (27 de febrero de 2020) - 20 -Figura 5: Logística de organización de estudiantes en #PilandoAndo - 22 -Figura 6: Representación en gráfica radial del Perfil del Estudiante - 41 -Figura 7: Representación en gráfica radial del Perfil del Tutor - 46 -Figura 8: Sesiones de Tutoría de #PilandoAndo en Verano 2023 - 47 -Figura 9 Equipo Logístico de #PilandoAndo - 68 -Figura 10: Primera Edición de #PilandoAndoPaLaU en el año 2023 - 69 -Figura 11: Charla de Explicación a Tutores de la Metodología de la prueba de Estilos de Aprendizaje - 73 -Figura 12: Sistema de Gestión Educativa de #PilandoAndo - 74 -

```
Figura 13: Revisión de la Autorización o Consentimiento por parte de los Tutores - 75 -
Figura 14: Tutores realizando la prueba de Estilos de Enseñanza en sus dispositivos móviles - 78 -
Figura 15: Validación del Tutor usando su email a través del SGE - 79 -
Figura 16: Aplicación en el SGE del Cuestionario de Estilos de Aprendiaje al Estudiante - 80 -
Figura 17: Instrucciones Iniciales para la aplicación de la Prueba de Estilos de Aprendizaje - 81 -
Figura 18: Conferencia denominada "Formalismo Académico en las Tutorías Masivas" - 83 -
Figura 19: Anuncio de "PilandoAndoPaLaU" por el Canal de Panamá en la red social Instagram - 85 -
Figura 20: Asistencia General de Tutores a través de las 5 sesiones de #PilandoAndoPaLaU - 86
Figura 21: Asistencia General de Tutores a las 5 sesiones de #PilandoAndoPaLaU que realizaron la prueba de
Estilos de Enseñanza de Grasha-Riechmann - 87 -
Figura 22: Asistencia General de Estudiantes a las 4 Sesiones de #PilandoAndoPaLaU - 88 -
Figura 23: Asistencia General de Estudiantes a las 4 sesiones de #PilandoAndoPaLaU que realizaron la prueba
de Estilos de Aprendizaje de Grasha-Riechmann - 88 -
Figura 24: Panel de Administración del SGE de #PilandoAndo - 89 -
Figura 25: Resultados de la Prueba de Grasha-Riechmann para Estilos de Enseñanza aplicada a Tutores en el
SGE - 90 -
Figura 26: Estilos de Enseñanza de los Tutores en #PilandoAndoPaLaU - 92 -
Figura 29: Estilos de Enseñanza de Estudiantes en #PilandoAndoPaLaU - 96 -
Figura 32: Simulación Teórica del Algoritmo de Gale-Shapley aplicado a Estudiantes y Tutores - 110 -
Índice de Tablas
Tabla 1: Dimensiones del Aprendizaje según Kolb - 28 -
Tabla 2: Simulación de Resultados de Cuestionario de Estilos de Aprendizaje de un Estudiante - 41 -
Tabla 3: Simulación de Estilos de Enseñanza de un Tutor - 46 -
Tabla 4: Clúster 1 de Estilos de Enseñanza - 48 -
Tabla 5: Clúster 2 de Estilos de Enseñanza - 49 -
Tabla 6: Clúster 3 de Estilos de Enseñanza - 49 -
Tabla 7: Clúster 4 de Estilos de Aprendizaje - 49 -
Tabla 8: Clúster Integrado #1 entre Estilos de Enseñanza y Estilos de Aprendizaje - 49 -
Tabla 9: Clúster Integrado #2 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 10:Clúster Integrado #3 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 11:Clúster Integrado #4 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 12: Preferencias de estudiantes sobre tutores (Algoritmo de Hopcroft-Karp) - 55 -
Tabla 13: Preferencias de Estudiantes sobre Tutores (Algoritmo de Gale-Shapley) - 59 -
Tabla 14: Perfil Demográfico de los Tutores - 92 -
Tabla 15: Desglose por Rangos Etarios de Estilos de Enseñanza en Tutores - 94 -
Tabla 16: Distribución porcentual en sexo femenino de los Estilos de Enseñanza de los Tutores - 95 -
Tabla 17: Distribución porcentual en sexo masculino de los Estilos de Enseñanza de los Tutores - 95 -
Tabla 18: Perfil Demográfico de los Estudiantes - 96 -
Tabla 19: Desgloce por rangos etarios de los Estilos de Aprendizaje de los Estudiantes - 9 -
Tabla 20: Distribución porcentual de los Estilos de Enseñanza en sexo (Femenino) - 100 -
Tabla 21: Distribución porcentual de los Estilos de Enseñanza en sexo (Masculino) - 101 -
```

Tabla 22: Preferencias de Estilos de Enseñanza de Tutores por los Estudiantes - 113 -

Tabla 23: Ejemplo de Estilos de Aprendizaje de estudiantes al azar - 122 -

Tabla 24: Ejemplo de Estilos de Enseñanza de tutores al azar - 122 -

Tabla 25: Creación de grupos de tutoría de usando el Algoriitmo de Emparejamiento - 123 -

Introducción

"El sistema educativo panameño colapsó", algo que se puede escuchar mucho en los diferentes medios de comunicación. Esto ha llegado a convertirse en un campo de distorsión de la realidad para muchas personas; donde se considera que un elemento fundamental de lo que hoy se conoce como "El Estado", depende de un sistema educativo.

Postulaba la Teoría General de Sistemas (TGS), que un sistema es "El todo más que la suma de sus partes"[1] algo que roza el pensamiento filosófico y a su vez, conlleva en cierta medida a refutar la afirmación planteada inicialmente, ya que la misma existencia de un sistema educativo impide su colapso.

Esto se genera, dado a que nunca han dejado de existir las partes o elementos que forman parte de este, el sistema sigue funcionando; es decir, en ningún momento ha tenido un colapso.

Es cierto que se debe mencionar, que un sistema puede no dar la salida específica para la que este fue diseñado. Es decir, que en su linealidad de , esta última ya no es representativa de lo que se espera de esa abstracción lógica del sistema, por ende, se refuerza el concepto del colapso de un sistema; sin embargo, la realidad es que la salida no responde al tiempo, espacio y momento en el que la sociedad se encuentra. Conociendo esto, no se va mucho más allá del imperativo ético y moral que corresponde a un candidato a Ingeniero en Sistemas de Información comprender a cabalidad la implicancia que tienen los sistemas como elemento fundamental de diario convivir entre seres humanos al que se denomina sociedad. Si no que esto obliga a realizar un análisis sistémico de la realidad que está atravesando el

sistema educativo panameño a manera que se generen intervenciones en los puntos de entrada y salida de este, afectando de esta manera el producto final.

Por ello, durante este Proyecto de Investigación, "Se hablará de educación", pero se enfocará en el esfuerzo para comprender más a fondo y optimizar el mismo proceso educativo, mejorar aquel sistema con el uso de las Tecnologías de la Información y la Comunicación (TIC's, por sus siglas en inglés).

Se usará el caso del proyecto #PilandoAndo, ejecutado por la Fundación Ayudinga y el Canal de Panamá, que son intervenciones educativas masivas que se desarrollan bajo la consigna de palear las deficiencias de los estudiantes en diferentes ramas de la matemática como: Aritmética, Álgebra, Geometría, Estadística y Probabilidad en etapas tempranas de su formación secundaria, así como en preparación para que estos puedan rendir sus exámenes de admisión en las universidades de la República de Panamá.

El modelo de #PilandoAndo, tiene como enfoque las "Economías de Escala", dado que cambia por completo la estructura a través de la cual se llevan las tutorías, tradicionalmente, donde es una relación de 1:1, es decir, 1 Tutor por 1 Estudiante.

#PilandoAndo como modelo propone sesiones de tutorías basadas en el voluntariado, donde jóvenes universitarios, profesores y profesionales de la sociedad civil donan su tiempo, esfuerzos y conocimientos para apoyar a más de cinco estudiantes por mesa en donde son asignados.

Sin embargo, el modelo de #PilandoAndo se ha de denotar que es una aproximación novedosa para presentar una propuesta de solución al problema educativo a través del involucramiento directo de la sociedad civil que se organiza a través de Organizaciones No Gubernamentales (ONG), organismos supra gubernamentales como el Canal de Panamá (ACP) y la empresa privada, pero presenta problemas de aseguramiento de la pertinencia y calidad educativa.

Es por esto, que se evaluará la interacción propia e inherente que existe entre estudiantes y tutores, donde cada uno de ellos aprende de una forma totalmente diferente a la que enseña y viceversa.

Materia que se formalizará posteriormente con Modelos como el de Kolb, Honey & Mumford, Felder & Silverman y Grasha-Riechmann.

Estos modelos plantean diferentes perspectivas sobre ¿Cómo las personas aprenden? y ¿Cómo procesan la información?; evaluar "Cuál es el mejor", no es algo que se hará en este Proyecto de Investigación, ya se reconocerá que cada uno tiene sus aplicaciones específicas en casos puntuales.

Se usará el Modelo de Grasha-Riechmann, en el que se plantea la "Taxonomía de Estilos de Enseñanza y Aprendizaje" para evaluar la mejor forma a través de la cual se pueden emparejar, aproximadamente, a los estudiantes y tutores para maximizar ese sentido de pertinencia y calidad educativa en #PilandoAndo. Con el fin de desarrollar un modelo, se tendrá que aplicar la Prueba de Inventarios de Estilos de Aprendizaje a los estudiantes que asistirán a un conjunto específico de sesiones de #PilandoAndo y la Prueba de Inventarios de Estilos de Enseñanza a los tutores que, de igual manera, asistan a ese mismo grupo de sesiones.

Todo esto será desarrollado a través de una plataforma web en las que se podrán tomar esas pruebas, un equipo administrativo, analizar los resultados; teniendo la mente buscar ese "Emparejamiento Aproximado" entre estudiantes y tutores, donde sus Estilos de Enseñanza y Aprendizaje estén lo más correlacionados que sea posible.

En ese camino, se explorará la Teoría de Emparejamiento o mejor conocida como Teoría del Matching, una rama de las matemáticas discretas que se caracteriza

por utilizar diversas técnicas que se centran en buscar diferentes tipos de Emparejamiento para dos conjuntos distintos, garantizando la existencia de un Emparejamiento como tal.

Basado en los elementos del Modelo de Grasha-Riechmann y sus pruebas psicométricas que les serán aplicadas a una muestra de la población de estudiantes y tutores de #PilandoAndo, sin considerar la existencia de un grupo control, se tomarán estos datos garantizando siempre el cumplimiento de la Ley 81 de Protección de Datos de la República de Panamá.

Este planteamiento matemático, como ya bien fue mencionado, tendrá su base en la Teoría del Matching, empero de los múltiples algoritmos de emparejamiento que pueden llegar a existir, se basará en el desarrollado por Lloyd Shapley y David Gale, el cual lleva su nombre llamado Gale-Shapley.

Se desarrollaría de esta manera, dado que permite alcanzar diversos niveles de emparejamiento, que pueden ser el Perfecto, Máximo o el Estable. Siendo el objetivo de este Proyecto de Investigación encontrar un emparejamiento máximo (aproximado) entre los Estudiantes y Tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

La intersección entre las ciencias sociales como la pedagogía y las ciencias naturales como las matemáticas, computación y sistemas de información generarán un producto final que permita al equipo de la Fundación Ayudinga y el Canal de Panamá, una mejor organización y creación de los grupos de tutoría en #PilandoAndo. Capítulo I: Marco Teórico y Antecedentes

Objetivos del Proyecto de Investigación

Objectives derively ecce de investige

Objetivo General:

Diseñar y poner a prueba un sistema web basado en los modelos pedagógicos de Estilos de Aprendizaje y Estilos de Enseñanza, así como en la Teoría del Emparejamiento, que facilite un emparejamiento aproximado entre Estudiantes y Tutores en #PilandoAndo, el programa de intervenciones educativas masivas de la Fundación Ayudinga, maximizando la eficacia de estas.

Objetivos Específicos:

Analizar los diversos modelos pedagógicos en los cuales se establezcan las relaciones en Estilos de Aprendizaje de Estudiantes y Estilos de Enseñanza de Tutores, así como el planteamiento de diversos modelos matemáticos dentro de la Teoría del Emparejamiento.

Ejecutar un experimento que permita la aplicación de la prueba de Inventarios de Estilos de Aprendizaje para los estudiantes y la prueba de Inventarios de Estilos de Enseñanza para los tutores de un grupo de sesiones de #PilandoAndo.

Desarrollar un sistema web que permita la captación de los datos por parte de los estudiantes y tutores en #PilandoAndo, así como su visualización y creación de grupos de tutorías para los organizadores de esta actividad.

Desarrollar el Algoritmo de Gale-Shapley para el emparejamiento aproximado entre estudiantes y tutores tomando en cuenta las disimilitudes entre estos.

Analizar los resultados obtenidos de la aplicación del Algoritmo de Gale-Shapley en el Emparejamiento Aproximado de Estudiantes y Tutores, a manera de crear el grupo de tutorías aproximado para un conjunto de estudiantes y un tutor.

Hipótesis de Investigación

Hipótesis Nula ():

La aplicación del algoritmo de emparejamiento de Gale-Shapley, basado de igual forma en los Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores no demostró ninguna diferencia significativa en los emparejamientos aproximados al momento de la creación de grupos de tutoría en las sesiones de #PilandoAndo, comparándolos con emparejamientos aleatorios.

Hipótesis Alternativa ():

Al aplicar el Algoritmo de Gale-Shapley sobre los Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores se producen emparejamientos entre ellos que son más compatibles en comparación con los realizados al azar en las sesiones de #PilandoAndo

Hipótesis Alternativa ():

Los emparejamientos producto del Algoritmo Gale-Shapley tienden a contar con una mayor concordancia entre Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores que son dominantes producto de la aplicación de la prueba psicométrica en cuestión, en comparación con los emparejamientos realizados al azar en las sesiones de #PilandoAndo.

Hipótesis Alternativa ():

Los emparejamientos que son productos del Algoritmo de Gale-Shapley demuestran una mayor capacidad al maximizar el número de tutores que tienen grupos completos () basados en la compatibilidad de estilos, comparándolos con los emparejamientos al azar en las sesiones de #PilandoAndo.

Hipótesis Alternativa

Los emparejamientos producto del Algoritmo Gale-Shapley muestran una menor variabilidad en la compatibilidad de estilos de aprendizaje y estilos de enseñanza de tutores cuando es comparado con los emparejamientos al azar en las sesiones de #PilandoAndo.

Justificación

Siendo la educación el pilar fundamental de cualquier nación y el desarrollo de sus individuos y sociedad, la eficacia de esta no solamente depende del contenido impartido, sino de cómo se es impartido y cómo este es recibido.

Los estilos de aprendizaje y enseñanza son aspectos fundamentales que influyen en el proceso de enseñanza-aprendizaje, que es la concepción tradicional del modelo educativo. Sabiendo que cada individuo tiene una forma única de aprender y otra forma única de enseñar, por lo que la coincidencia entre estos estilos es un factor determinante para el éxito educativo.

#PilandoAndo es una oportunidad de gran valor para los estudiantes que buscan reforzar sus conocimientos en diversas áreas de las matemáticas a través de tutorías libres y gratuitas. Sin embargo, se reconoce que el éxito de estas sesiones no solamente depende del contenido y su calidad como tal, sino también de la relación pedagógica intrínseca que se genera entre el tutor y el estudiante.

Por ello, un emparejamiento adecuado entre ambos podría potenciar la retención y comprensión del conocimiento compartido, mientras que un emparejamiento inadecuado resulta directamente en sesiones ineficaces, ineficientes e incluso contraproducentes para el mismo estudiante.

Dentro de la Teoría del Emparejamiento, hay herramientas matemáticas que pueden utilizarse para optimizar estos emparejamientos. Especialmente, el Algoritmo de Gale-Shapley que ha demostrado, a lo largo del tiempo, ser eficiente en problemas similares y con ello tiene la capacidad de adaptarse considerando las diferencias entre estilos de aprendizaje y estilos de enseñanza.

Desarrollando un sistema web que facilite la captación y visualización de estos datos, no solamente optimizará el proceso de emparejamiento, sino que permitirá que los organizadores de #PilandoAndo tengan una herramienta de alto valor para la gestión de las sesiones de tutoría.

Declaración de Conflictos de Interés del Autor

El autor de este Trabajo de Graduación Teórico-Práctico declara que su único conflicto de interés es ser presidente y fundador de la Fundación Ayudinga, organización y sus aliados estratégicos como la Autoridad del Canal de Panamá (ACP) gracias a los cuales se ejecuta este proyecto de investigación.

Antecedentes

La Fundación Ayudinga es una entidad educativa sin ánimo de lucro dedicada a proporcionar experiencias de aprendizaje gratuitas, inclusivas y centradas en el ser humano.

Desde su creación, ha ofrecido materiales académicos en vídeo en disciplinas como Matemáticas, Física,

Química y Biología, manteniendo un alto nivel de calidad audiovisual. Estos contenidos se caracterizan por contextualizar el aprendizaje con situaciones del día a día.

En tiempos recientes, la Fundación ha trabajado en la creación de un Modelo Educativo denominado "AyuEduca 2030"[2]. Este modelo establece ejes estratégicos centrados en el Impacto Social en el ámbito educativo.

Es notable cómo la reciente pandemia de COVID-19 [3] afectó a estudiantes del mundo entero y se evidenció la desigualdad en el acceso a recursos tecnológicos. Esta situación limitó la oportunidad educativa para muchos, en particular, para aquellos en contextos de vulnerabilidad.

Figura 1: Clases en vivo durante la Pandemia del COVID-19

Programa #PilandoAndo

A inicios del año 2020, surge la iniciativa conjunta entre la Fundación Ayudinga y el Biomuseo, en donde se dieron tutorías masivas gratuitas y libres de Matemáticas en las instalaciones de este, con el nombre #PilandoAndo.

#PilandoAndo consiste en una iniciativa en la que jóvenes voluntarios que, con el respaldo de la empresa privada y la sociedad civil, ofrecen clases masivas de diferentes temas, sin embargo, haciendo énfasis en Aritmética, Álgebra y Geometría, generando una intervención directa en el proceso educativo del estudiante. Es importante reconocer que el modelo de #PilandoAndo consiste en una "Intervención Masiva", es decir, hay una gran cantidad de estudiantes que forman parte de ella, así como hay una gran cantidad de tutores que, voluntariamente, ceden su tiempo para compartir sus conocimientos, de manera gratuita, con estos estudiantes en sesiones sabatinas.

Se inició con un rango etario de estudiantes con edades entre los 14 a 16 años a través de tutorías de Aritmética y Álgebra, ya que se consideró que estas representan metodologías que propugnan el desarrollo de un Pensamiento Lógico – Matemático desde tempranas edades; más en la realidad educativa latinoamericana [4].

El crecimiento de estudiantes en #PilandoAndo llevó a que se tuviesen que flexibilizar las edades que se le solicitaban a los estudiantes para ir a las tutorías, ya que de una población de , entre de ellos estaban en las edades de , por lo cual se les permitió que ellos formaran parte de las tutorías.

De manera inicial, se debe mencionar que no se contaba con ningún tipo de sistema informático para llegar registro de asistencia, asignación de estudiantes a mesas con tutores y cualquier otro proceso asociado, todo esto se realizaba a mano; exceptuando el registro previo de los estudiantes a través de un formulario web que estos llenaban en colaboración con el Biomuseo.

Dadas las circunstancias, anteriormente planteadas, se tuvo que tomar la decisión de reestructurar por niveles de Aritmética y Álgebra [5] de la siguiente manera:

AritméticaAritmética Básica: Dirigida a estudiantes de 4to - 5to grado Aritmética Intermedia: Dirigida a estudiantes de 5to - 6to grado

Aritmética Avanzada: Dirigida a estudiantes de 6to - 7mo grado

ÁlgebraÁlgebra Básica: Dirigida a estudiantes de 7mo - 8vo grado Álgebra Intermedia: Dirigida a estudiantes de 8vo - 9no grado Álgebra Avanzada: Dirigida a estudiantes de 9no – 10mo grado

Esta decisión fue tomada debido a que algunos autores, como estudios realizados por el Ministerio de Educación de la República de Colombia [6] plantean que las dificultades más grandes en el aprendizaje de la matemática para un estudiante en etapas tempranas (Primaria e Inicios de Secundaria) son:

Alto nivel de abstracción de conceptos

Requerida secuencialidad de los conocimientos.

Los tutores se encontraban previamente informados sobre los niveles que estos iban a enseñar en las sesiones de tutorías, sin embargo, siempre existía un alto grado de incertidumbre debido a que se dependía del estudiante que llegara a #PilandoAndo y lo que este desease aprender o reforzar.

Esto conllevaba cierto nivel de complejidad a nivel logístico, ya que se rompía por completo con la consigna inicial de #PilandoAndo, la cual consistía en un tutor dándole tutorías a un grupo pequeño (En su momento, se planteaba de como máximo).

Bajo el modelo educativo tradicional, se contempla que la entidad docente, puede dar clases a N estudiantes, generando de esta manera, una relación de N, lo que traducido en palabras sería una relación de uno a muchos.

Sin embargo, cuando se analiza ese "Muchos", resulta que la cantidad puede ser cuasi infinita de estudiantes que reciban clases de dicho docente, por lo que se puede perder la personalización de los aprendizajes a nivel de una tutoría [7].

Por ello, de manera empírica y en su momento, únicamente basados en la intuición, se generan las bases para el desarrollo y escalabilidad de #PilandoAndo con la consigna de: "Todo tutor puede darle tutorías a un máximo de 4 estudiantes, en caso de que este sobrepase la cantidad de estudiantes permitidos, serán asignados al siguiente tutor disponible".

Figura 2: Primera Sesión de #PilandoAndo (18 de enero, 2020)

#PilandoAndo tuvo que ser detenido de manera presencial el 27 de febrero de 2020 debido a las previsiones que la Fundación Ayudinga y sus aliados tomaron producto del advenimiento de la Pandemia del COVID-19.

Figura 3: Última Sesión de #PilandoAndo en el BioMuseo (27 de febrero de 2020)

El proyecto continuó de manera virtual con el uso de las redes sociales de Fundación Ayudinga, donde se impartían estas sesiones de tutorías en vivo y pregrabadas en algunas ocasiones, contando con el apoyo de empresas como Banesco, Fundación Alberto Motta y Petróleos Delta.

Durante el año 2022, luego de que se levantaran gran parte de las medidas de restricción por parte del Ministerio de Salud de la República de Panamá (MINSA), se toma la decisión de regresar a hacer sesiones de #PilandoAndo de manera presencial, en esta ocasión directamente con el apoyo de la Autoridad de Canal de Panamá (ACP), así como su financiamiento para el desarrollo de este proyecto.

Para ello, se adoptó una coyuntura relevante como lo es la preparación a los estudiantes para el Examen de Admisión PAA [8] de la Universidad Tecnológica de Panamá, elaborados por el College Board.

Durante estas 3 sesiones de tutorías libres y gratuitas con una duración de 9 horas en total, colaboradores de la ACP, profesionales independientes y estudiantes de la UTP fungieron como tutores para el resto de sus compañeros.

Hallazgos Cualitativos y Cuantitativos

A partir de una población de , producto de esta tutoría libre y gratuita con el nombre #PilandoAndoPaLaU en el año 2022, se obtuvieron los siguientes resultados:

85% de los estudiantes (82 estudiantes) tuvieron puntajes ≥ 1,000 puntos. Esto permitió que pudiesen entrar a Carreras de Ingeniería

6% (6 estudiantes) de los estudiantes obtuvieron puntajes entre 900 y 999 puntos. Esto permitió que pudiesen acceder Carreras de Licenciatura

9% (8 estudiantes de los estudiantes obtuvieron > de 800 puntos)Este puntaje no permite que el estudiante sea admitido bajo los criterios de la Universidad Tecnológica de Panamá y su Sistema de Ingreso Universitario (SIUTP)

Es importante mencionar que toda la información presentada, anteriormente, fue obtenida a través de encuestas que los estudiantes o sus acudientes llenaron posterior a recibir los resultados de la Prueba PAA, a manera de "Feedback o Retroalimentación" como medición de la efectividad o no de la intervención. Uno de los principales hallazgos que surgieron a partir de observaciones cualitativas era la diferencia entre el estilo de enseñanza de un tutor y el estilo de aprendizaje de un estudiante, variables que mantienen una correlación para generar un entorno educativo en el que, tanto tutores como estudiantes, puedan maximizar el proceso de enseñanza-aprendizaje [9].

Modelos de Estilos de Aprendizaje

El principal cuello de botella que se presentó al realizar los análisis "Post-Mórtem" de cada uno de los #PilandoAndo, fue la cantidad de tiempo efectivo de tutorías que se "perdía" por el hecho de tener que estar organizando a los estudiantes, mesas por mesas, desde la perspectiva logística.

Figura 5: Logística de organización de estudiantes en #PilandoAndo

De igual forma, de este la perspectiva académica; se reconoce que no todos los estudiantes se sienten cómodos con un tutor y no todos los tutores se sienten cómodos con un estudiante en específico, es una relación dual [10].

Por ello, se proceden a buscar opciones a través de las cuales se pueda automatizar ese proceso y, de esa manera, maximizar el aprendizaje de los estudiantes y apoyar la labor voluntaria que están realizando los tutores, donando su tiempo en pro de apoyar a los demás.

Modelos de Aprendizaje y Enseñanza

A manera de poder determinar ¿Cómo se encontrará un modelo que permita emparejar a estudiantes y a tutores en las intervenciones educativas masivas de la Fundación Ayudinga?, primero se tiene que hacer una serie de definiciones claras como, por ejemplo ¿Por qué se habla de Pedagogía?

El concepto de #PilandoAndo, como fue mencionado, anteriormente, tiene una clara dirección y enfoque hacia los estudiantes que se encuentran en edades de , dado que se busca reforzar una serie de conocimientos base como lo son: Aritmética, Álgebra, Geometría, Trigonometría y Funciones Matemáticas. Sin embargo, lo que concierne a este Proyecto de Investigación es evaluar lo acontecido y sus posibilidades futuras en #PilandoAndoPaLaU, una intervención específica que duró 5 semanas en la que se prepararon a estudiantes entre para rendir el examen de admisión de las universidades en Panamá.

La Fundación Ayudinga, tiene como su eje principal de desarrollo, la creación de contenidos académicos e intervenciones educativas para estudiantes en las edades anteriormente mencionadas, por lo que se debe saber que no se está refiriendo a modelos pedagógicos, en vez de modelos andragógicos [11].

Para ello, se debe establecer una definición clara de ¿Qué es un Modelo?, para lo que se procede a utilizar definiciones como las del Dr. Modaldo Tuñón, Catedrático de <mark>la Facultad de Ingeniería en Sistemas</mark>

Computacionales de la Universidad Tecnológica de Panamá, quién establece que "Un modelo es una representación física o abstracta de un sistema (grupo de objetos o ideas) que, de alguna manera, es

diferente a su forma original" [12].

Una vez conocida la definición de "Modelo", a continuación, se entra a ver ¿Qué es un Modelo Pedagógico? Para lo cual se debe conocer que la educación es un fenómeno social, por ende, cualquier modelo pedagógico consiste modelos inherentes a la misma pedagogía, que es reconocida en el marco de las Ciencias Sociales no solo como un saber, sino que está a abierta a cualquier tipo de crítica ya sea conceptual o de revisión de los conceptos fundamentales sobre la cual está basada [13].

Se realizará una comparativa entre los diferentes modelos de estilos de aprendizaje y enseñanza que existen, los cuales tienen una base en la Teoría de las Inteligencias Múltiples de Gardner [14], dado que este autor considera a la inteligencia como una concepción de que la misma inteligencia no se puede considerar como un conjunto específico y único de capacidades, sino que es una red de diversos conjuntos de capacidades autónomas, pero que tienen una alta correlación entre sí.

Utilizando esto como una premisa básica, se reconoce que no existe entre los estudiantes, una única e inequívoca forma de aprender, ya que todas las personas tienen maneras diferentes de establecer relaciones como el mundo, generando que las pretensiones que cada uno pueda tener hacia lo que desea aprender sean diferentes.

Conociendo esta realidad, se puede comprender que, cada persona puede llegar a desarrollar ciertas disposiciones o preferencias muy específicas, que afectan directamente la forma en la que este aprende [15]. A esto, se le puede llamar Estilos de Aprendizaje y por extensión, también se puede definir que, si todas las personas aprenden de formas diferentes, pues tendrán maneras diferentes de enseñar o transmitir ese conocimiento previamente adquirido hacia los demás.

Por ello, este proyecto se enfocará en evaluar cuatro Modelos de Estilos de Aprendizaje o Enseñanza que son el Modelo de Kolb, Modelo de Honey & Mumford, Modelo de Felder y Silverman: Índice de Estilos de Aprendizaje y por último el Modelo de Grasha – Riechmann, con el cual se define ¿Cuál modelo permite hacer el emparejamiento aproximado entre estudiantes y tutores?

Modelo de Kolb

David Kolb, profesor de administración de la Universidad de Case Western Reserve, creó un modelo de aprendizaje dirigido al estudiante, directamente relacionado con las experiencias que este percibe [16]. Él consideraba que una experiencia es un conjunto de actividades que le permiten al individuo poder aprender y, por ende, establecer un Estilo de Aprendizaje específico en él.

Al momento de desarrollar su modelo, propuso un enfoque bidimensional para comprender dichos estilos de aprendizaje, específicamente, centrados en la percepción por parte del estudiante y la forma en la que este es capaz de procesar el conocimiento o la información.

Para él, el aprendizaje se podía considerar como una consecuencia directa de la manera en la que los individuos perciben y, posteriormente, procesan la información en el aula de clases [17] o en cualquier otro lugar en el que se desarrolle el proceso de enseñanza – aprendizaje.

Considerando esto, presentó dos tipos opuestos de percepción:

La primera siendo individuos que perciben el aprendizaje a través de una experiencia concreta.

La segunda se relacionaba con aquellos individuos que son capaces de adoptar una percepción con base en la conceptualización abstracta de conceptos, colocándole un énfasis muy particular a las generalizaciones cognitivas que estos puedan desarrollar.

Cuando este empezó a explorar el procesamiento de la información, encontró tipos igualmente opuestos de procesamiento de la información:

Cierto grupo de individuos son capaces de procesar la información a través de la práctica de las implicaciones específicas de situaciones pasadas con la experimentación activa.

Un segundo grupo de individuos tiene una inclinación directa hacia el procesamiento de la información basado en una observación reflexiva de esta.

Tipos de Estilos de Aprendizaje según Kolb

Al momento de realizar la agrupación de estas <mark>dos formas de percibir y las dos formas de procesar la información</mark> en individuos, este percibió que una forma de unificarlo era a través de un Modelo de Cuatro Cuadrantes [18], que le permitiese hacer un planteamiento formal de los Estilos de Aprendizaje:

Acomodador (Convergente)Percepción: Experiencia Concreta

Procesamiento: Experiencia Activa

Características: Estos individuos tienen una tendencia a aprender a través de una experiencia directa que conduzca a una acción específica. Tienen una habilidad especial en las situaciones que requieren un nivel elevado de practicidad y adaptación al cambio, por lo que sus acciones están basadas en sus instintos.

DivergentePercepción: Experiencia Concreta

Procesamiento: Observación Reflexiva

Características: Los individuos que cuentan con este Estilo de Aprendizaje tienen la peculiaridad de ser una fuente de generación de ideas, observando las situaciones que se les presentan de todas las perspectivas que se les sean posibles. Estos prefieren dedicarse a la observación de los hechos antes de actuar, debido a que, pueden recabar información y con su imaginación, pueden establecer propuestas de solución a los problemas

Asimilador Percepción: Conceptualización Abstracta

Procesamiento: Observación Reflexiva

Características: Los individuos requieren que la información que estos reciben posea una explicación clara y lógica, altamente formalista antes de observarle un enfoque práctico a la misma. Tienden a estar más preocupados por la abstracción de conceptos e ideas que por las personas a su alrededor. Presentan una clara preferencia hacia la teoría antes que la aplicación práctica de esta.

ConvergentePercepción: Conceptualización Abstracta

Procesamiento: Experimentación Activa

Características: Los individuos tienden a ser buenos en solucionar problemas a través de la aplicación de sus ideas. Sin embargo, estos son más atraídos por aquellas tareas técnicas y los problemas más específicos, que por aquellas cuestiones de índole social y las relaciones interpersonales con otros individuos.

Cada uno de estos Estilos de Aprendizaje planteados por Kolb, muestra una combinatoria única de las formas en las que estos perciben y procesan la información. De igual manera, se reconoce que ninguno de los Estilos de Aprendizaje planteados por Kolb es mejor o peor que el otro.

La efectividad de estos dependerá, específicamente, del tiempo, espacio y momento en el que el individuo se encuentre.

Al ser este un modelo bidimensional, basado en dos tipos de percepción y dos tipos de procesamiento de la información, puede ser modelado matemáticamente como un , dado que como fue demostrado; su agrupación genera el resultado de la operación matemática, anteriormente mencionada, 4 Estilos de Aprendizaje.

Tabla 1: Dimensiones del Aprendizaje según Kolb

Dimensiones del Aprendizaje

Percepción de la Información

Procesamiento de la Información

Por Experiencias concretas

Por Experiencias Activas

Por Conceptualización Abstracta

Por Observación Reflexiva

El mecanismo utilizado por Kolb para obtener la información por parte de los individuos para determinar su Estilo de Aprendizaje ha sido planteado en la prueba de Kolb para Estilos de Aprendizaje [19], el cual mantiene un alto nivel de relevancia, hoy en día.

Sin embargo, se limita a analizar la dimensión del estudiante como individuo, no considera al docente o Tutor que le transmita estos conocimientos.

En consideración de esto, en el marco de la consigna de emparejamiento de estudiantes y tutores, al no tener información sobre el Estilo de Enseñanza de los segundos, no se puede elaborar un modelo matemático que permita correlacionar cada uno de estos conjuntos.

Por ende, se toma la decisión de descartarlo dado a que no aporta la información requerida.

Modelo de Honey y Mumford

Peter Honey y Alan Mumford, profesores de la Universidad de Leicester [20] fueron los creadores de este modelo con una fuerte base en el trabajo realizado por David Kolb, quien fue el proponente de la idea del aprendizaje mediante experiencias.

Su modelo es ampliamente utilizado en el ámbito empresarial, donde muchas especialistas en recursos humanos buscan diseñar estrategias de capacitación para sus colaboradores y al desconocer la forma en la que estos aprenden, pueden terminar pagando por capacitaciones con baja efectividad en la formación de sus colaboradores.

Honey & Mumford plantearon que los estilos de aprendizaje se basan en el enfoque que se tiene hacia la manera en la que como individuos se aprende.

Estos recomiendan fervientemente que, para poder maximizar el aprendizaje, se debe comprender los estilos del resto de las personas a las que se forman, siendo esta una pequeña aproximación al estilo de enseñanza que es inherente a un individuo.

Los estilos de aprendizaje planteados se basan en que cada individuo decide de forma natural y estos recomiendan, que a manera de que se optimice el aprendizaje individual, los individuos deberían entender a fondo su estilo de aprendizaje y tratar de encontrar oportunidades que permitan maximizar su aprendizaje, usando el estilo previamente detectado.

A continuación, se presenta cada uno de los estilos de aprendizaje detectados por Honey & Mumford: Tipos de Estilos de Aprendizaje según Honey & Mumford

Los Estilos de Aprendizaje principales que estos detectaron a partir de la aplicación del LSQ son: Activista (Activo)Características: Los estudiantes activistas se encuentran dispuestos a vivir nuevas experiencias sumergiéndose completamente en cualquier tarea que estos se encuentren realizando. Su preferencia de aprendizaje se basa en la experiencia directa y aprender a través de la práctica. Tienden a tener una mente abierta y no se encuentran exceptivos ante circunstancias nuevas.

Estos actúan primero y luego consideran las consecuencias de sus acciones, viven del presente únicamente.

Ámbito Educativo: Estos aprenden mejor cuando se encuentran involucrados en actividades de corta

duración, como pueden ser los ejercicios en equipo, los cuales pueden durar únicamente una sesión de clases. Tienden a estar constantemente buscando la retroalimentación de sus compañeros y, por ende, están cómodos al enfrentarse a una tarea compleja y desafiante.

Reflexivo (Pensador)Características: Los estudiantes reflexivos observan cada uno de los posibles escenarios antes de llegar una conclusión definitiva. Consideran todo lo que pueda suceder, las opciones que se encuentran disponibles y los ángulos desde los que se puede abordar un problema antes de tomar cualquier tipo de decisión.

Tienden a tener un bajo perfil al momento de tener discusiones, prefieren observar el entorno y escuchar las opiniones de los demás.

Ámbito Educativo: Estos aprenden mejor al momento que tienen la oportunidad de observar y pensar en cada detalle sobre cualquier evento que haya acaecido. Revisan constantemente lo que han hecho, a manera de poder reflexionar sobre ello, analizando la experiencia. Prefieren la aplicación de tareas en las que puedan tomarse su debido tiempo para considerar todas las opciones disponibles.

Teórico (Conceptual)Características: Los estudiantes teóricos se encargan de buscar la lógica y la teoría que define cualquier pieza de información o concepto que se les presente. Tienden a utilizar los problemas para pensar, paso a paso, con un claro perfeccionismo. Su interés en el detalle los lleva a analizar cada punto y sintetizarlo, adoptando un enfoque secuencial en cualquier tipo de tarea que se les sea asignada.

Ámbito Educativo: Estos aprenden de una mejor forma cuando la información es presentada sistemática y lógicamente, ya que prefieren el aprendizaje con una estructura y orden claramente definidos. Son más abiertos a trabajar bajo el modelo de enseñanza – aprendizaje tradicional como, por ejemplo: "Clases Magistrales, Exposiciones o Conferencias".

Pragmático (Práctico)Características: Los estudiantes pragmáticos se enfocan en buscar resultados probando nuevas teorías, técnicas a ideas con el objetivo de validar si estas funcionan en un entorno práctico. Están orientados a ser realistas y a tomar acción a buscar las soluciones ante los problemas, tomando decisiones rápidamente.

Ámbito Educativo: Estos aprenden de una mejor forma cuando ven sus conocimientos aplicados a situaciones de la vida real. Tienden a apreciar a un Experto en la materia, siendo menos receptivos hacia las teorías e ideas que no tienen ningún tipo de aplicación práctica. Les gusta aprender mediante la experimentación en el laboratorio.

Para ello, estos diseñaron una prueba psicométrica denominada LSQ [21] (Siglas en inglés para Learning Styles Questionnaire) con una recomendación a que esta sea aplicada a individuos mayores de 16 años debido a la profundidad de las consignas que este plantea.

La limitante en el análisis que Honey & Mumford plantean en el LSQ es que no existe un límite específico de tiempo [22] para contestarlo, tampoco existen ningún tipo de respuestas correctas y erróneas (Similar a cualquier otro tipo de pruebas sicométricas).

Empero, su enfoque binario para responder las consignas que le son planteadas al individuo, en donde si este se encuentra de acuerdo con la lo planteado, debe marcar un (+) positivo, sin embargo, en caso de encontrarse en desacuerdo, este debe contestar con un (-) negativo. Lo que impide explorar los diferentes tamices y la multidimensionalidad de los Estilos de Aprendizaje de un individuo.

Ahora que se ha analizado a profundidad el Modelo de Kolb, se debe reconocer que este únicamente se centra en el Conjunto de Estudiantes, a través de definir los Estilos de Aprendizaje de estos. No se cuenta con ninguna medición psicométrica a través de la cual se debe obtener el Estilo de Enseñanza de un docente o tutor.

Reconociendo esto, se toma la decisión de descartarlo dentro de las posibilidades de utilizar sus pruebas psicométricas para emparejar a estudiantes y tutores, dado que no se cuenta con información o al menos una tabla de equivalencias entre ambos estilos.

Modelo de Felder & Silverman: Índice de Estilos de Aprendizaje

Una contraposición a los modelos de estilos de aprendizaje planteados con anterioridad es el expresado por Richard M. Felder y Linda K. Silverman a través de dos razones fundamentales: Comprender las diferencias de estilos de aprendizaje entre los estudiantes de ingeniería, de manera que se les proporcionase esa información a sus docentes con el objetivo de desarrollar estratégicas pedagógicas que permitan abordar las necesidades específicas de estos [23].

Estos mencionan que el aprendizaje dentro de un entorno educativo es un proceso que cuenta con dos etapas, las cuales implican la recepción y el procesamiento de cualquier tipo de información. Durante la primera etapa, la de recepción, la información externa, que es percibida por los 5 sentidos del cuerpo humano, mientras que en la segunda etapa que es la de información interna, que es derivada producto de una introspección del individuo, estos seleccionarán aquel material que procesarán como

información y descartarán aquel material en el que sienten que no les da algún tipo de valor [24].

Índice de Tipos de Aprendizaje según Felder & Silverman

Su modelo, a través de lo previamente expresado, presenta cuatro dimensiones principales de los Estilos de Aprendizaje, haciendo hincapié en que cada una de ellas poseen dos preferencias opuestas:

Percepción de la InformaciónSensorial: Los estudiantes están abocados a los hechos, datos y a los procedimientos a través de los cuales puedan experimentar. Resuelven problemas con métodos o algoritmos ampliamente establecidos y con fundamento teórico, demostrando un poco flexibilidad e incomodidad con teorías o abstracciones que no han sido demostradas utilizando el Método Científico.

Intuitivo: Tienden a preferir la teoría, de cierta forma son buenos identificando y presentando soluciones a problemas e interrogantes nuevas. Buscan constantemente la innovación y tienen una clara desconfianza hacia los procesos repetitivos.

Entrada de la InformaciónVisual: Estos estudiantes prefieren modelos esquemáticos como gráficos o cualquier forma en la que se pueda representar visualmente la información, como "Dashboards". Una vez han visto la información, pueden recordarla mejor.

Verbal: Tienden a preferir cualquier tipo de información escrita o hablada con un especial beneficio intelectual de las discusiones o explicaciones en las que se utilice el habla como factor fundamental, mientras que preferirían leer un escrito antes de ver un diagrama.

Procesamiento de la InformaciónActivo: Los estudiantes aprenden de una forma más holística cuando interactúan directamente con la información, usando como ejemplo las discusiones académicas o dando tutorías a sus pares.

Reflexivo: Tienden a preferir pensar sobre la información que se les ha proporcionado de una forma independiente y reflexionan fuertemente sobre ella antes de llegar a cualquier tipo de conclusión.

ComprensiónSecuencial: Estos estudiantes tienen que seguir procesos lógicos y altamente ordenados para entender cualquier tipo de información. Tienden a tener una comprensión fuerte hacia los detalles, siempre y cuando estos hayan sido aprendidos en pasos pequeños con un orden y secuencia ordenada. Global: Tienden a preferir una visión holística a través de la cual luchan constantemente con entender una información hasta que en un momento lo comprenden. Al ser altamente abiertos en la forma de buscar una solución, tienen dificultades en explicarle a los demás el cómo llegaron a una solución específica a un problema.

Se reconoce el caso de que un estudiante tenga una preferencia específica hacia una dimensión, sin embargo, gran parte de las personas que no se ajustarán en el estricto detalle a una dimensión específica, definiendo de esta manera múltiples características de varios estilos.

Nuevamente, se procede a analizar este modelo desde la perspectiva que compete en este proyecto de investigación y si bien es cierto que cumple con definir los Estilos de Aprendizaje que puede tener un estudiante, empero, Felder & Silverman enfocaron sus esfuerzos en únicamente definir estas 4 dimensiones del aprendizaje.

Esto deja sin elementos cuantitativos con los cuales se pueda correlacionar el estilo de enseñanza que llega a tener un docente o tutor, ya que se reconoce que cada uno de ellos posee un estilo de aprendizaje específico, sin embargo, según el Modelo de Felder & Silverman no se puede aducir que este es directamente equivalente a su Estilo de Enseñanza.

Mencionado esto, se descarta el Modelo de Felder Silverman, debido a que no aporta la información para conseguir un emparejamiento entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

Modelo de Grasha-Riechmann

Propuesto por el Dr. Anthony Grasha y la Dra. Sheryl Hruska Riechmann en 1974, se basa en las preferencias de los estudiantes en relación con la interacción con sus compañeros y docentes. Además, refleja la combinación de estilos de aprendizaje que un estudiante puede exhibir [25].

Al examinar el Modelo de Grasha-Riechmann, es esencial reconocer que los autores delinearon seis Estilos de Aprendizaje, categorizados en tres dimensiones:

Actitud del estudiante hacia el proceso de enseñanza-aprendizaje.

Percepciones respecto a los compañeros y los tutores.

Respuestas ante las estrategias pedagógicas implementadas en el aula.

Estilos de Aprendizaje de Estudiantes

Estas características de cada uno del Inventario de Estilo de Aprendizaje surgen de una adaptación realizada en la Universidad de la Salle, Ciencia Unisalle en Colombia en el año 2014 [26].

IndependienteDescripción: Prefiere la autonomía en el proceso de aprendizaje, estableciendo un ritmo individualizado.

Características:Valoración de la autonomía en el aprendizaje.

Predisposición hacia el descubrimiento autónomo.

Tendencia a la Introspección.

Técnicas de Estudio: Autonomía en la gestión del aprendizaje

Exploración individualizada de contenidos.

Reflexión personal sobre los aprendizajes adquiridos.

Evitativo Descripción: Tendencia a evitar la participación en el proceso de aprendizaje.

Características: Sensación de abrumo ante desafíos académicos.

Propensión a la postergación de tareas.

Potencial indiferencia o desinterés.

Técnicas de Estudio: Manejo del estrés ante desafíos académicos.

Estrategias contra la procrastinación.

Técnicas de motivación y compromiso.

ColaborativoDescripción: Opta por un aprendizaje colaborativo, valorizando el trabajo en equipo y la interacción.

Características: Aprendizaje interactivo.

Valoración de perspectivas diversas.

Habilidades de escucha activa.

Técnicas de Estudio:Formación de grupos de estudio colaborativos.

Promoción de discusiones y debates constructivos.

Comparación y compartición de notas con pares.

DependienteDescripción: Requiere una estructura definida y directrices claras para el aprendizaje.

Características Necesidad de instrucciones precisas.

Búsqueda de validación por parte de tutores.

Potencial pasividad en el proceso de aprendizaje.

Técnicas de Estudio:Clarificación de instrucciones.

Interacción y retroalimentación con tutores.

Técnicas de activación del aprendizaje.

CompetitivoDescripción: Orientado al logro y a la superación respecto a pares en el proceso de aprendizaje.

Características:Orientación hacia el logro.

Búsqueda de reconocimiento.

Tendencia a la argumentación.

Técnicas de Estudio: Establecimiento de metas académicas.

Uso de tarjetas mnemotécnicas o tarjetas de ayuda de memoria para revisión

Realización de simulacros de evaluación para medir progreso.

Participativo Descripción: Propensión hacia un aprendizaje práctico y experiencial.

Características: Aprendizaje práctico.

Aplicación de conocimientos adquiridos.

Dinamismo y actividad en el proceso de aprendizaje.

Técnicas de Estudio: Ejecución de ejercicios prácticos o simulaciones.

Relacionamiento del contenido con contextos reales.

Implementación de técnicas de aprendizaje experiencial, como aprendizaje basado en proyectos o Project Based – Learning [27].

En el Anexo #1 de este Proyecto de Investigación, se podrá encontrar el Cuestionario de Estilos de Aprendizaje para los estudiantes, planteado por Grasha-Riechmann.

Dicho cuestionario está compuesto por un total de (60) sesenta preguntas, cada una con una ponderación específica [28]. Presenta las siguientes posibles respuestas a cada una de ellas:

Totalmente en desacuerdo

Parcialmente en desacuerdo

Indeciso

Parcialmente de acuerdo

Totalmente de acuerdo

El cuestionario identifica seis Estilos de Aprendizaje, y cada estilo se relaciona directamente con un conjunto específico de preguntas:

Independiente: Preguntas 1, 7, 13, 19, 25, 31, 37, 43, 49 y 55.

Evitativo: Preguntas 2, 8, 14, 20, 26, 32, 38, 44, 50 y 56. Colaborativo: Preguntas 3, 9, 15, 21, 27, 33, 39, 45, 51 y 57.

4.10.16.20.20.21.40.46.50.50.

Dependiente: Preguntas 4, 10, 16, 22, 28, 34, 40, 46, 52 y 58.

Competitivo: Preguntas 5, 11, 17, 23, 29, 35, 41, 47, 53 y 59. Participativo: Preguntas 6, 12, 18, 24, 30, 36, 42, 48, 54 y 60.

Para determinar cuál estilo de aprendizaje corresponde a cada estudiante, se totalizan los resultados para cada uno de los seis estilos, tomando en cuenta los siguientes valores numéricos para las respuestas como son: Totalmente en desacuerdo (1), Parcialmente en desacuerdo (2), Neutro (3), Parcialmente de acuerdo (4) y Totalmente de acuerdo (5)

Primero, se suman las puntuaciones otorgadas por el estudiante para los diferentes estilos de aprendizaje, considerando las preguntas específicas asociadas a cada estilo. Posteriormente, se calcula el promedio de las respuestas del estudiante para cada estilo.

Posterior a ello, se determina aritméticamente un promedio específico, esto de manera que se pueda asignar un Estilo de Aprendizaje a cada estudiante.

Es imperativo subrayar que un estudiante no se asocia exclusivamente con un singular Estilo de Aprendizaje. Al culminar el Cuestionario de Estilos de Aprendizaje de Grasha-Riechmann, se manifestarán múltiples estilos. Para cada estilo, se computará la media basada en las respuestas otorgadas a las interrogantes correspondientes.

Consecuentemente, se elaborará una tabla organizada en orden decreciente, en la cual el Estilo de Aprendizaje situado en la primera posición será identificado como el dominante, mientras que los subsiguientes serán designados como "Estilos de Aprendizaje Secundarios".

Se toma, por ejemplo, un estudiante que completó la prueba y obtuvo los siguientes resultados ponderados: Tabla 2: Simulación de Resultados de Cuestionario de Estilos de Aprendizaje de un Estudiante Independiente

Evitativo

Colaborativo

Dependiente

Competitivo

Participativo

5.2

0.8

3.7

4.1

2.61.4

Posteriormente, se empleará una gráfica de carácter radial para ilustrar los resultados reflejados en la tabla previamente mencionada, previa comprensión de que (1) corresponde a Independiente, (2) se asocia a Evitativo, (3) representa a Colaborativo, (4) está vinculado a Dependiente, (5) designa a Competitivo, y (6) se refiere a Participativo.

Figura 6: Representación en gráfica radial del Perfil del Estudiante

Es perceptible en la gráfica que los resultados atribuidos al estudiante para cada uno de los Estilos de Aprendizaje no corresponden a ningún individuo en particular, sino que son valores dentro del rango de generados de manera pseudoaleatoria [29] para simular un resultado de un estudiante que tomó la prueba. Resulta imperativo no considerar estos datos como definitivos, puesto que constituyen una representación ilustrativa de la realidad, no una manifestación fiel de la misma.

No obstante, mediante esta gráfica radial, es posible discernir que ningún estudiante carece por completo de rasgos asociados a un Estilo de Aprendizaje específico; sin embargo, es probable que algunos de estos rasgos no se manifiesten de manera tan predominante como otros.

Por tal motivo, se recurre a este mecanismo de representación visual para facilitar una comprensión más precisa de dicha diversidad en los estilos de aprendizaje.

Estilos de Enseñanza para Tutores

De igual forma, los tutores, los cuales, a partir de la aplicación de Pruebas Psicométricas especializadas, las cuales han sido adaptadas para este proyecto de investigación a manera que se permitan obtener los Estilos de Enseñanza de los tutores [30] como son planteados del Modelo de Grasha-Riechmann, siendo estos: ExpertoDescripción: Como experto, soy una fuente confiable de información y conocimiento en mi área. Características:Tengo respuestas a las preguntas y dudas de mis estudiantes.

Me esfuerzo por transmitir mi conocimiento de manera clara y concisa.

Técnicas Pedagógicas Recomendadas:Organizo sesiones donde los estudiantes pueden hacerme preguntas directamente.

Realizo mini-conferencias para abordar temas específicos.

Proporciono lecturas y recursos adicionales para que los estudiantes profundicen.

Autoridad FormalDescripción: Como Autoridad Formal, valoro la estructura y sigo un plan detallado en mis tutorías.

Características: Siempre sigo un temario o plan preestablecido.

Me aseguro de que cada sesión esté bien organizada y estructurada.

Técnicas Pedagógicas Recomendadas:Uso esquemas o guías de estudio para mantener a todos en la misma página.

Realizo pruebas o cuestionarios grupales para evaluar el progreso.

Mantengo un seguimiento estructurado de los temas que abordamos.

Modelo PersonalDescripción: Como tutor personal, me enfoco en el crecimiento individual de cada estudiante.

Características: Valoro y considero las experiencias y sentimientos de mis estudiantes.

Busco que cada uno desarrolle sus habilidades personales y académicas.

Técnicas Pedagógicas Recomendadas:Fomento discusiones abiertas donde cada estudiante pueda compartir. Propongo actividades de autoevaluación y reflexión.

Realizo dinámicas de grupo para que todos compartan y aprendan juntos.

FacilitadorDescripción: Como facilitador, guío a mis estudiantes hacia el descubrimiento y aprendizaje autónomo.

Características: Ayudo a los estudiantes a encontrar sus propias respuestas.

Estoy allí para guiarlos, no para darles todas las respuestas.

Técnicas Pedagógicas Recomendadas:Propongo estudios de caso para que los discutan y analicen en grupo. Fomento proyectos de investigación colaborativos.

Utilizo el aprendizaje basado en problemas para que busquen soluciones juntos.

Delegador Descripción: Como delegador, confío plenamente en la capacidad de mis estudiantes para dirigir su propio aprendizaje.

Características: Delego responsabilidades y tareas a los estudiantes.

Creo en la autonomía y capacidad de cada uno.

Técnicas Pedagógicas Recomendadas: Asigno roles específicos a cada miembro del grupo.

Propongo proyectos en los que ellos decidan el enfoque y resultados.

Fomento presentaciones grupales donde cada uno aporte desde su perspectiva.

Grasha-Riechmann identificaron (5) cinco Estilos de Enseñanza, y cada uno está asociado con un conjunto específico de preguntas que se presenta en su Cuestionario de Estilos de Enseñanza.

Dicho cuestionario, se encuentra diseñado de una forma en el que los valores numéricos almacenados en ciertas preguntas son los que permiten determinar el valor de un Estilo de Enseñanza en escala de [28], que son los siguientes:

Experto: Preguntas 1, 6, 11, 16, 21, 26, 31 y 36.

Autoridad Formal: Preguntas 2, 7, 12, 17, 22, 27, 32 y 37. Modelo Personal: Preguntas 3, 8, 13, 18, 23, 28, 33 y 38.

Facilitador: Corresponde a las Preguntas 4, 9, 14, 19, 24, 29, 34 y 39.

Delegador: Preguntas 5, 10, 15, 20, 25, 30, 35 y 40.

Para determinar el Estilo de Enseñanza predominante de un tutor, es necesario totalizar las respuestas dadas para cada estilo. Las respuestas se ponderan de acuerdo con los siguientes valores numéricos:

Totalmente en Desacuerdo (1)

Moderadamente en Desacuerdo (2)

Indeciso (3)

Moderadamente de Acuerdo (4)

Totalmente de Acuerdo (5)

Inicialmente, se suman los puntajes proporcionados por el tutor para cada estilo, teniendo en cuenta las preguntas específicas de cada uno. Posteriormente, se calcula el promedio de estas sumas.

A continuación, se presentan las ecuaciones que permiten obtener la mencionada Medida de Tendencia Central, como lo es el Promedio.

Similar a lo realizado para calcular el Estilo de Aprendizaje de un Estudiante, ahora se utilizarán las puntuaciones otorgadas por el Tutor para los diferentes estilos de enseñanza, considerando las preguntas específicas asociadas a cada estilo.

Para ilustrar esto, se simula un caso en el que un tutor ha completado esta prueba y ha obtenido los siguientes resultados ponderados:

Tabla 3: Simulación de Estilos de Enseñanza de un Tutor

Experto

Autoridad Formal

Modelo Personal

Facilitador

Delegador

3.721.29

4.85

0.47

2.16

A partir de esta tabla, se pudiera establecer que para este "Tutor Simulado", con números pseudo aleatorios [29] en el rango de que existe un Estilo de Enseñanza "Dominante" para este Tutor, que sería el estilo de "Modelo Personal".

De analizarlo, símil como se hizo con los Estudiantes y sus Estilos de Aprendizaje; se obtendrá el hecho ya mencionado que "Todos los tutores tienen un poco de cada uno de los Estilos de Enseñanza que existen".

Figura 7: Representación en gráfica radial del Perfil del Tutor

Con este tipo de gráficas radiales, se puede representar de una manera más abierta la perspectiva del "Espectro de Estilos de Enseñanza", mencionado por algunos autores [31] al momento de describir ¿Cómo es un docente?, en este caso Tutor.

Al analizar el Modelo de Grasha-Riechmann, se puede encontrar que cada uno de los Estilos de Aprendizaje de un estudiante se puede considerar como una dimensión, sucediendo lo mismo con los Estilos de Enseñanza de un tutor, generando, entonces, un modelo de 11 (once) dimensiones. En las que encontramos 6 (seis) dimensiones en los Estilos de Aprendizaje de un Estudiante y las 5 (cinco) dimensiones restantes en los Estilos de Enseñanza de un Tutor.

Teniendo esta medida cuantitativa a través de la aplicación de las respectivas pruebas pedagógicas a estudiantes y tutores, se considera que este es el Modelo Pedagógico más apto para poder llevar a buen puerto la consigna básica de este estudio, que es ¿Cómo emparejar a estudiantes con Tutores? Adaptación al Formato de #PilandoAndo

Para facilitar la comunicación, se adoptarán los términos "Tutor" y "Estudiante", permitiendo así la aplicación de pruebas psicométricas para automatizar la asignación entre ambos, conforme a ciertas reglas predeterminadas.

En una exploración detallada de las entidades "Tutor" y "Estudiante", se identifican los siguientes atributos, que servirán como conjunto de datos para un análisis posterior en un Emparejamiento Aproximado entre Estudiantes y Tutores en las Intervenciones Educativas Masivas de la Fundación Ayudinga:

Estudiante: Edad, Sexo, Nivel Académico y Estilo de Aprendizaje.

Tutor: Edad, Sexo, Nivel Académico, Estilo de Enseñanza.

Estos datos fueron recopilados durante las sesiones de tutoría en matemáticas realizadas en colaboración con el Canal de Panamá (ACP) durante el receso académico de 2023.

Figura 8: Sesiones de Tutoría de #PilandoAndo en verano 2023

Se buscará asignación más precisa entre estudiantes y tutores, a quienes referiremos como y , respectivamente.

Método de Clústeres de Estilos

Una vez ya conocido el origen teórico y práctico de cada uno de los Estilos de Aprendizaje para el y los Estilos de Enseñanza para el se procede a hacer una agrupación en Clústeres.

Dicho modelo fue planteado por el Dr. Grasha [32, p. 144] en 1994, donde se estableció que cada uno de los Tutores podían ser agrupados en un determinado "Clúster de Estilos de Enseñanza".[33]

De esta manera, se generaron 4 (cuatro) Clústeres, los cuales se proceden a explorar a continuación:

Tabla 4: Clúster 1 de Estilos de Enseñanza

Clúster 1

Estilo Primario

Experto/Autoridad Formal

Estilo Secundario

Modelo Personal/Facilitador/Delegador

Tabla 5: Clúster 2 de Estilos de Enseñanza

Clúster 2

Estilo Primario

Experto/Modelo Personal/Autoridad Formal

Estilo Secundario

Facilitador/Delegador

Tabla 6: Clúster 3 de Estilos de Enseñanza

Clúster 3

Estilo Primario

Experto/Facilitador/Modelo Personal

Estilo Secundario

Autoridad Formal/Delegador

Tabla 7: Clúster 4 de Estilos de Aprendizaje

Clúster 4

Estilo Primario

Experto/Facilitador/Delegador

Estilo Secundario

Autoridad Formal/Modelo Personal

Buscando establecer una correlación para los Estilos de Enseñanza y los Estilos de Aprendizaje de los estudiantes, en un análisis realizado en diversas universidades chilenas en 2016 [9], se planteó un "Modelo Integrado" que permitiría establecer un nivel de correlación entre estudiantes y tutores.

Con base en un estudio posterior desarrollado por el Dr. Grasha en 1995 [34], se propuso un modelo que se detalla en los siguientes "Clúster Integrados de Estilos de Enseñanza y Estilos de Aprendizaje".

Tabla 8: Clúster Integrado #1 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #1

Estilo de Enseñanza

Experto/Autoridad Formal

Estilo de Aprendizaje

Dependiente/Participativo/Competitivo

Tabla 9: Clúster Integrado #2 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #2

Estilo de Enseñanza

Modelo Personal/Experto/Autoridad Formal

Estilo de Aprendizaje

Participativo/Dependiente/Competitivo

Tabla 10: Clúster Integrado #3 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #3

Estilo de Enseñanza

Facilitador/Modelo Personal/Experto

Estilo de Aprendizaje

Colaborativo/Participativo/Independiente

Tabla 11:Clúster Integrado #4 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #4

Estilo de Enseñanza

Delegador/Facilitador/Experto

Estilo de Aprendizaje

Independiente/Colaborativo/Participativo

La implementación de este método se determinará en función de los resultados obtenidos por los estudiantes al someterse al Inventario de Estilos de Aprendizaje de Grasha-Riechmann.

Teoría del Emparejamiento

Debido a que este Proyecto de Investigación tiene como base central realizar un emparejamiento aproximado, se debe conocer ciertos conceptos fundamentales acerca de la teoría del emparejamiento. Algunos autores [33], podrán definir dicha teoría como la búsqueda de mecanismos de formación de una pareja entre dos conjuntos diferentes indivisibles entre sí, que solo pueden ser emparejados con elementos pertenecientes al conjunto contrario.

Incluso, se pudiese plantear una definición más sencilla: "Dado los conjuntos X y Y, el emparejamiento resulta en una asignación de los elementos de X hacia los elementos de Y, haciendo que cada elemento de X sea emparejado específicamente con un elemento de Y, y viceversa" [35].

Tipos de Emparejamientos

A priori, se pueden determinar dos tipos de emparejamientos principales [36], los cuales se presentan a continuación:

Emparejamiento Bilateral: Elementos de ambos conjuntos tienen sus respectivas preferencias.

Emparejamiento Bilateral: Solamente los elementos de un conjunto muestran sus preferencias.

Sin embargo, por definición también existen otros tipos de emparejamientos, los cuales se convierten en la base del desarrollo de sus diversos algoritmos, a continuación, se presentan:

Emparejamiento Perfecto: Se considerará un emparejamiento perfecto, cuando cada uno de los vértices del grafo se encuentre emparejado, dicho en otras palabras, que este se encuentre conectado directa y exactamente hacia una arista del emparejamiento. Al hablar de un grafo bipartito, se podría deducir que cada vértice de los dos conjuntos dentro de él se encuentra emparejado con exactamente un vértice de otro conjunto; sabiendo que no podrán ser vértices del mismo conjunto.

Formulación Matemática:

Dados dos conjuntos y y un emparejamiento al que denominaremos :

Ecuación 5: Modelo Matemático de un Emparejamiento Perfecto

Emparejamiento Máximo: Se considerará como un emparejamiento máximo, en caso de que no sea posible encontrar algún otro emparejamiento que tenga más aristas. No es condición necesaria y suficiente que todos sus vértices se encuentren emparejados, pero sí se debe garantizar que no sea posible emparejar a

más vértices. Formulación Matemática:

Dados dos conjuntos y y un emparejamiento denominado , el emparejamiento es máximo si no existe otro emparejamiento tal que

Ecuación 6: Modelo Matemático del Emparejamiento Máximo

Emparejamiento Estable: Cuando se evalúan las preferencias individuales de los elementos de un conjunto, se considerará a un emparejamiento como estable si no existen dos elementos que prefieran estar emparejados entre sí, en vez de los emparejamientos que tienen actualmente. No existe razón o motivo alguno para que estos dos elementos rompan el emparejamiento actual para que se emparejen entre sí.Formulación Matemática:

Dados dos conjuntos y , con un conjunto de preferencias y un emparejamiento , dicho emparejamiento será estable en caso de que y dado que:

prefiere a , en vez de su emparejamiento actual almacenado en .

prefiere a m, en vez de su emparejamiento actual que almacenado en .

Ante esto, emerge la pregunta de investigación: ¿Cómo se puede emparejar a un tutor con un estudiante en una intervención educativa masiva de la Fundación Ayudinga?

Dada la consigna que se presenta, la cual es directamente un problema de emparejamiento, la Teoría de Grafos es la más adecuada para poder establecer un modelo matemático de ella.

Sin embargo, se debe entender que cuando se refiere al emparejamiento, se está utilizando un grafo bipartito, donde sus vértices se pueden dividir en dos conjuntos disjuntos y a su vez, las aristas conectan a dichos vértices de diferentes conjuntos, pero estos no pueden pertenecer al mismo conjunto

La formalización matemática de "Encontrar la persona a la que otra persona tenga una mayor afinidad y en caso de que se encuentren disponibles", se define como un caso de Emparejamiento [37], que es una función matemática que establece una correspondencia uno a uno.

Dado un (denominado Tutores) y un (denominado Estudiantes), se buscará un emparejamiento aproximado entre los elementos de los Conjuntos basados en los Estilos de Enseñanza para , así como los Estilos de Aprendizaje para .

Conociendo esto, no se puede establecer que, por cada Tutor, habrá (1) un Estudiante, ya que eso sería establecer una función biyectiva de notación , impidiendo, de esta manera, que un tutor pueda tener más de un estudiante, contradiciendo directamente la definición de dicha función biyectiva.

En el (tutores disponibles) y el (estudiantes disponibles), no existe una función que establezca esta relación de manera directa.

Al haber formalizado mediante la Teoría del Emparejamiento, que se encuentra ante un grafo bipartito, se procede a evaluar dos algoritmos elementales de dicha teoría que son el Algoritmo de Hopcroft-Karp [38] y el Algoritmo de Gale-Shapley [39], ya que estos son la base para cualquier otro algoritmo que plantee abordar problemas de emparejamiento con grafos bipartitos.

Algoritmo de Hopcroft-Karp

Propuesto en 1973 por John Hopcroft y Richar Karp, el Algoritmo de Hopcroft-Karp tiene como enfoque la eficiencia y fue diseñado para encontrar el emparejamiento máximo dentro de un grafo bipartito.

Hay un concepto que introdujo Hopcroft-Karp en su algoritmo que es el de Caminos de Aumento [40], el cual consiste en un camino que tiene su inicio y fin en los vértices no emparejados de un grafo bipartido y con ello alterna entre las aristas que no se encuentran dentro del emparejamiento y aquellas que sí están.

Su objetivo es mejorar la búsqueda de emparejamientos al encontrar varios camios de aumento en paralelo, esto le convierte en un algoritmo más eficiente que los tradicionales, como el Gale – Shapley que solamente buscan un camino de aumento por cada iteración que estos tengan, es decir, un enfoque en serie.

Descripción del Algoritmo

Inicialización: Se crean dos conjuntos, los cuales se determinarán M y N, en los que cada uno de ellos tiene un conjunto específico de preferencias.

Búsqueda en Anchura (BFS) [41]: A manera de encontrar el camino de aumento que utilizará el algoritmo, se hace una búsqueda en anchura. Para ello, se construirá un árbol de niveles, donde se establece que el nivel 0 (cero) tiene vértices que no han sido emparejados del conjunto de origen, mientras que el nivel 1 (uno) tiene como vértices a aquellos que puedan llegar desde el nivel 0 (cero) hacia una arista que no ha sido emparejada previamente, el nivel 2 (dos) tiene como vértices a aquellos que se pueda llegar desde el nivel 1, usando una arista que ya ha sido emparejada; y de esta manera, sucesivamente.

Búsqueda en Profundidad (DFS) [42]: En caso de que se encuentre un camino de aumento durante la Búsqueda en Anchura o BFS, se utilizará una búsqueda en la profundidad del grafo bipartito y alternar en su camino de aumento, lo que formalizándolo sería que aristas del emparejamiento actual serán eliminadas y con ello se agregarán las aristas que no han sido emparejadas.

Repetición: La BFS y DFS se repetirán de forma ilimitada hasta que no se encuentre ningún nuevo tipo camino de aumento.

Simulación en Pseudocódigo

Hay que suponer que se quiere emparejar a 5 estudiantes (e) con 6 tutores (t); sin embargo, los estudiantes han expresado las siguientes preferencias:

```
Tabla 12: Preferencias de estudiantes sobre tutores (Algoritmo de Hopcroft-Karp)
Primera Opción
Segunda Opción
Tercera Opción
Cuarta Opción
Quinta Opción
Sexta Opción
Estudiante 1
Tutor 2
Tutor 5
Tutor 1
Tutor 3
Tutor 4
Tutor 6
Estudiante 2
Tutor 1
Tutor 2
Tutor 6
Tutor 5
Tutor 3
Tutor 4
Estudiante 3
Tutor 3
Tutor 4
Tutor 5
Tutor 1
Tutor 2
Tutor 6
Estudiante 4
Tutor 4
Tutor 1
Tutor 3
Tutor 2
Tutor 5
Tutor 6
Estudiante 5
Tutor 1
Tutor 4
Tutor 2
Tutor 6
Tutor 3
Tutor 5
Se utilizará el Algoritmo de Hopcroft-Karp para desarrollar una simulación en Pseudocódigo del
funcionamiento del emparejamiento máximo de este Grafo Bipartito Completo.
Función HopcroftKarp ():
M = conjunto vacío // Emparejamiento inicial vacío
mientras exista un camino de aumento P usando BFS ():
para cada camino P en caminos de aumento usando DFS ():
alternar el camino P fin mientras retornar M
Función BFS ():
Q = cola vacía para cada estudiante e en Estudiantes: si e no está emparejado:
nivel[e] = 0 encolar e en Q
sino:
nivel[e] = infinito fin para nivel [NULL] = infinito
mientras Q no esté vacía: e = desencolar Q para cada tutor t en preferencias[e]:
si nivel[pareja[t]] == infinito:
nivel[pareja[t]] = nivel[e] + 1
encolar pareja[t] en fin mientras retornar nivel [NULL] != infinito
Función DFS(e): si e != NULL: para cada tutor t en preferencias[e]:
si nivel[pareja[t]] == nivel[e] + 1 y DFS (pareja[t]):
pareja[t] = e
pareja[e] = t
retornar verdadero
nivel[e] = infinito
```

retornar falso

retornar verdadero

Definiciones esenciales:

Estudiantes: Es el conjunto de estudiantes.

Preferencias: Es un diccionario que fue utilizado para mapear a cada estudiante con su respectiva lista de preferencia de tutores.

Pareja: Es una función que retorna el valor del tutor emparejado con un estudiante o viceversa Nivel: Es un arreglo que almacena los niveles en el árbol BFS.

NULL: Se diseñó como un vértice ficticio para determinar si en efectivo se encontró un posible camino de aumento.

De esto, es importante denotar que a pesar de que los estudiantes definieron sus preferencias al principio, el Algoritmo Hopcroft–Karp no considera las preferencias, por lo que el pseudocódigo previamente planteado en efecto emparejará a los estudiantes y tutores, pero solo se basará en el orden que este encuentre caminos de aumento, no puede garantizar que esto sea igual a las preferencias de los estudiantes.

Como se observó en la simulación teórica, anteriormente presentada, al no tener la capacidad de considerar preferencias de alguno de los conjuntos [43], el Algoritmo de Hopcroft-Karp no resultará útil para la función de emparejar estudiantes con tutores, basados en sus Estilos de Aprendizaje y Estilos de Enseñanza, por lo que se descarta su uso en este Proyecto de Investigación.

Algoritmo de Gale - Shapley

El Algoritmo de Gale – Shapley [39] establece que, al emparejar dos conjuntos, se busca encontrar un emparejamiento que sea estable tomando en cuenta el conjunto de preferencia que tienen cada uno de los elementos de dicho conjunto.

Este nace a partir de la formalización matemática del "Problema de los Matrimonios Estables" [44] que consiste en que se tienen dos grupos conformados por hombres y mujeres.

Siendo los nombres de las mujeres definidos por la siguiente lista mientras que los hombres están definidos por la lista }.

Una definición del problema establece que, dada cantidad de hombres con cantidad de mujeres, donde cada una de las personas pertenecientes a los conjuntos ha establecido una lista de prioridades de los miembros del otro conjunto de su preferencia

Dado que dos personas de un grupo pueden casarse dado que pertenecen a siguientes conjuntos, sin embargo, su matrimonio puede considerarse como "No Estable", ya que alguno de ellos no desea estar con la otra persona en cuestión.

Estableciendo una notación matemática para su definición, se denotará que existen dos hombres , mientras que también existen dos mujeres . La lista de preferencias para es , mientras que la lista de preferencias para w1 es y la lista de preferencias de es .

El emparejamiento de no será estable, dado que m1 y w2 tienen otras preferencias.

Se desea buscar una combinatoria de estos dos conjuntos, estableciendo las preferencias de cada uno de los miembros de ellos para que sea un emparejamiento estable, por lo que se puede determinar que y es estable.

Dado que estas fueron las preferencias iniciales establecidas por ambos conjuntos, por lo que, con la aplicación del Algoritmo de Gale Shapley, se puede obtener un matrimonio estable.

Simulación en Pseudocódigo

A manera de "Juzgar a los dos algoritmos planteados con la misma bara", se presentará el mismo caso que se utilizará para simular el Algoritmo de Hopcroft – Karp, solo que se alterarán las preferencias de los estudiantes.

Hay que suponer que se quiere emparejar a 5 estudiantes (e) con 6 tutores (t); sin embargo, los estudiantes han expresado las siguientes preferencias:

Tabla 13: Preferencias de Estudiantes sobre Tutores (Algoritmo de Gale-Shapley)

Primera Opción

Segunda Opción

Tercera Opción

Cuarta Opción

Quinta Opción

Sexta Opción

Estudiante 1

Tutor 4

Tutor 1

Tutor 6

Tutor 6

Tutor 3

Tutor

Tutor 2

Estudiante 2

Tutor 6

Tutor 3

Tutor 4

Tutor 1

Tutor 2 Tutor 5 Estudiante 3 Tutor 2 Tutor 6 Tutor 3 Tutor 4 Tutor 5 Tutor 1 Estudiante 4 Tutor 5 Tutor 2 Tutor 1 Tutor 6 Tutor 4 Tutor 3 Estudiante 5 Tutor 3 Tutor 5 Tutor 2 Tutor 4 Tutor 6 Tutor 1

Se utilizará el Algoritmo de Gale-Shapley para desarrollar una simulación en Pseudocódigo del funcionamiento del emparejamiento máximo de este Grafo Bipartito Completo.

Inicializar todos los estudiantes y tutores como libres

Preferencias:

Estudiante 1: [Tutor 4, Tutor 1, Tutor 6, Tutor 5, Tutor 3, Tutor 2]

Estudiante 2: [Tutor 6, Tutor 3, Tutor 4, Tutor 1, Tutor 2, Tutor 5]

Estudiante 3: [Tutor 2, Tutor 6, Tutor 3, Tutor 4, Tutor 5, Tutor 1]

Estudiante 4: [Tutor 5, Tutor 2, Tutor 1, Tutor 6, Tutor 4, Tutor 3]

Estudiante 5: [Tutor 3, Tutor 5, Tutor 2, Tutor 4, Tutor 6, Tutor 1]

Mientras exista un estudiante libre que aún no ha propuesto a todos los tutores:

e = primer estudiante libre

t = primer tutor en la lista de preferencias de e al que e aún no ha propuesto

Si t está libre:

Emparejar e con t

Sino:

e' = estudiante actualmente emparejado con t

Si t prefiere a e sobre e' según las preferencias de los estudiantes:

Desemparejar e' de t

Emparejar e con t

Fin Si

Fin Si

Marcar que e ya ha propuesto a t

Fin Mientras

Retornar los emparejamientos

Como se puede observar, el enfoque utilizado al momento de emparejar a estos dos conjuntos se consideró, desde un principio, declarando a través de arrays, las preferencias de los estudiantes.

De igual manera, se pudo haber incluido las preferencias de los tutores sobre dichos estudiantes y sería más similar a la consigna de este proyecto de investigación, que es el emparejamiento aproximado de estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

Sin embargo, se debe denotar que de ahora en adelante; no se va a referir desde la perspectiva formal matemática a un emparejamiento aproximado, ya que el término correcto sería "Emparejamiento Máximo".

Se plantea que es aproximado, dado que el error es intrínseco en los humanos, quienes darán la información a través de responder el Cuestionario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, habrá un margen de error que impedirá que todos los estudiantes y tutores puedan ser emparejados.

Definición de Conjuntos y Subconjuntos

Siendo el caso en cuestión de un Estudiante () que tiene una multiplicidad de Tutores () disponibles y se le asignará el óptimo.

Sin embargo, a manera de que se pueda abordar esto con lujo de detalle en este Proyecto de Investigación, se convierte en un imperativo matemático; no únicamente analizar y definir los dos conjuntos principales, sino conocer que, dentro de cada uno de ellos, existen dos subconjuntos.

Todos los tienen asociados un Subconjunto en el que se expresan los Estilos de Aprendizaje que se han obtenido a partir de la prueba psicométrica que se les fue aplicada a estos de manera inicial.

Importante mencionar que, independientemente, de que un Estilo de Aprendizaje pueda ser más dominante o no para un elemento del , esto no eliminará la posibilidad de que tenga a tendencias hacia otros Estilos de Aprendizaje.

De igual forma todos los tendrá asociados un Subconjunto en el que representarán los Estilos de Enseñanza que un tutor puede llegar a tener, siempre tomando en cuenta el estilo dominante.

Importante es desarrollar una Matriz de Preferencias, la cual se llamará , donde cada una de sus filas represente a un y cada columna a un , es decir, cada columna representa a un Estudiante y cada fila a un Tutor.

En dicha matriz, existirá un elemento que indicará el grado de preferencia de un Estudiante hacia un tutor , basado de esta manera en la compatibilidad que pueda o no existir entre y .

Resumen del Modelo Matemático

Conjuntos

: Conjunto de estudiantes

T: Conjunto de tutores

Subconjuntos

- : Subconjunto que representará los estilos de aprendizaje de un estudiante perteneciente a .
- : Subconjunto que representa los estilos de enseñanza de un tutor perteneciente a .

Matriz de Preferencias

: Matriz donde cada fila representa a un estudiante en y cada columna a un tutor en . El elemento indica el grado de preferencia del estudiante hacia el tutor , basado en la compatibilidad entre y .

Capítulo II: Metodología y Diseño del Experimento

Planteamiento de Antecedentes

Dado que el desarrollo de este Proyecto de Investigación depende directamente de la Calidad de los Datos [45] que se presenten dentro de él, ya que se encuentra directamente acotado y sin margen para el error al tener un modelo matemático rígido que determinará la calidad de un posible Emparejamiento Aproximado entre tutores y estudiantes, el diseño del experimento desde su fase inicial involucra una serie de elementos teóricos y prácticos que hay que poner en funcionamiento simultáneamente.

Para ello, en las mencionadas "Conversaciones Post-Mórtem" de cada una de las sesiones de #PilandoAndo que la Fundación Ayudinga realiza en conjunto con la Autoridad del Canal de Panamá, se comenzó a conversar sobre ideas de ¿Cómo organizar a los estudiantes en los grupos de tutoría?

Figura 9 Equipo Logístico de #PilandoAndo

Los primeros criterios de evaluación que se tomaron en cuenta fueron: Edad, Sexo, Nivel Académico, Conocimientos Previos e incluso si el estudiante contaba o no con habilidades especiales. Siendo este último caso sumamente importante, ya que el tutor tenía que estar capacitado para poder guiar e instruir efectivamente a este tipo de estudiantes.

Sin embargo, el tema que resultó ser preponderante como un "Concepto que pudiese ser investigado", fue buscarle el mejor tutor a cada estudiante o el mejor estudiante a cada tutor. Siempre manteniendo la regla de máximo 5-6 estudiantes por grupo de tutoría, a manera de aumentar la efectividad de la intervención. Estadística Descriptiva de los primeros #PilandoAndo

Desde el año 2020 hasta junio de 2023, la Fundación Ayudinga en colaboración con la Autoridad del Canal de Panamá llevó a cabo 28 sesiones conjuntas bajo el programa #PilandoAndo.

Estas sesiones, en su mayoría, estuvieron orientadas al fortalecimiento de competencias en Aritmética y Álgebra, dirigidas a estudiantes de 5to a 9no grado en la Ciudad de Panamá. Dichas actividades se desarrollaron en las instalaciones del Centro de Capacitaciones Ascanio Arosemena ACP.

Al abordar la primera edición de #PilandoAndoPaLaU (una subdivisión del programa #PilandoAndo con el propósito de preparar a los estudiantes para las pruebas de admisión de universidades públicas nacionales), se tomó la decisión de sostener encuentros preliminares con los tutores, antes de cada sesión.

En estos encuentros, se les proporcionaba una introducción general y se establecían protocolos para la recolección de datos y la identificación de tendencias observadas en los estudiantes.

Figura 10: Primera Edición de #PilandoAndoPaLaU en el año 2023

Posterior a cada sesión, se llevaban a cabo reuniones entre el Equipo de Logística de la Fundación Ayudinga y representantes de la Autoridad del Canal de Panamá, junto con los tutores voluntarios. En estas reuniones, los tutores compartían sus "Evaluaciones sobre el desempeño académico de los estudiantes".

Tras concluir las tres sesiones de #PilandoAndoPaLaU realizadas en el sábado 10, 17 y 23 de junio del año 2023, y con una muestra representativa de , los tutores reportaron ciertos hallazgos respecto al comportamiento y rendimiento de sus estudiantes, los cuales se presentarán:

Dificultades en la Comprensión Lectora al momento de la resolución de Problemas de Aplicación en Álgebra y Aritmética.

Problemas en la resolución de cuestiones matemáticas vinculadas a razones y proporciones.

Deficiencias en Ley de los Signos, Exponentes, Radicación, Suma y Resta de Fracciones y Cálculo del Mínimo Común Múltiplo (MCM).

Tendencia determinística, es decir, los estudiantes siempre estaban enfocados en "Buscar cuál es la respuesta correcta, no analizar y comprender el proceso para llegar a encontrarla.

Se resalta que los tutores nunca fueron instruidos desde un principio para que usasen como factores discriminantes a sus opiniones el Sexo (Masculino o Femenino) del estudiante, edad, ni tipo de colegio del que este provenía.

A pesar de que muchos de los hallazgos mencionados por los tutores son de carácter cualitativo [46], por ende, tienden a la subjetividad; se tiene información cuantitativa de los estudiantes que participaron en la primera edición de #PilandoAndoPaLaU, la cual se presenta a continuación.

Edades entre 13-35 años. Edad promedio de 18.05 años entre todos los participantes.

Moda en la edad de 17 años, lo cual coincide con el hecho de que son estudiantes que están en duodécimo grado aprestos a graduarse de la escuela y empezar su carrera universitaria.

72 estudiantes femeninos y 75 estudiantes masculinos

95 estudiantes provenientes de colegios públicos (oficiales), mientras que asistieron 52 estudiantes de colegios particulares (privados).

Objetivo del Experimento

Conocer los diferentes Estilos de Aprendizaje que puede tener un estudiante que asiste a las sesiones de #PilandoAndoPaLaU aplicando la prueba de Grasha-Riechmann.

De igual forma, conocer y medir los diversos Estilos de Enseñanza de un tutor que asiste voluntariamente a las sesiones de #PilandoAndoPaLaU, aplicando la prueba de Grasha Riechmann.

Posterior a la recolección de los datos con la aplicación de estas dos pruebas, se desarrollará un modelo matemático que permita el emparejamiento aproximado entre tutores y estudiantes con base en sus Estilos de Enseñanza y Estilos de Aprendizaje, respectivamente.

Tipo de Experimento

Este experimento es un estudio exploratorio [47] ya que se plantea obtener una visión holística del problema que se intenta resolver. Esto dado al revisar la literatura proveniente de proyectos de investigación similares, no se encontraron una cantidad relevante de estudios similares a través de los cuales se planteasen un modelo de emparejamiento de estudiantes y tutores académicos en intervenciones educativas masivas. Con esto, se busca familiarizarse con el fenómeno del Emparejamiento Aproximado aplicando instrumentos de evaluación psicométricos como el Inventario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann y obtener datos específicos sobre los estudiantes y tutores que permitan desarrollar grupos de tutorías lo más aproximados posibles en las preferencias individualizadas de cada uno de ellos.

Se establece que los Estilos de Aprendizaje y Enseñanza de cualquier individuo son variables en función del tiempo, dado que esta es una medición específica de un instante, mencionado en el Capítulo I de este Proyecto de Investigación.

Se puede realizar un símil al momento en el que se presenta el tiempo meteorológico y el clima en un lugar específico; siendo el primero una medición del momento actual y el segundo el promedio del tiempo atmosférico a lo largo de muchos años.

Debido a esto, no se puede establecer que un Estilo de Aprendizaje o Estilo de Enseñanza de un estudiante o tutor permanecerá siendo el mismo en cada edición de #PilandoAndo, por lo que consideran a los resultados obtenidos en este estudio exploratorio como únicos y que presentarán los cimientos para el desarrollo de un modelo que pueda ser generalizado en futuras intervenciones educativas masivas de la Fundación Ayudinga; es decir, que no se espera un resultado concluyente en el mismo, sino una aproximación a una de las posibles soluciones al problema.

Población y Muestra

Independiente del tipo de estudio que se realice, se debe tomar en cuenta que hay ciertas definiciones que se mantienen de manera constante, una de ellas siendo la población y muestra de los elementos que forman parte del experimento.

Antes de entrar en materia, se debe hacer ciertas acotaciones de conceptos, como la Población [48] que es "Todos los elementos que forman parte del fenómeno definido y altamente delimitado al momento de analizar la consigna de investigación"; así como la Muestra [48] que se puede definir como "Una parte o pequeña cantidad de una población que es representativa de la Población o Universo".

En el caso de este estudio exploratorio, es importante mencionar que se cuentan con dos poblaciones diferentes:

Población de Estudiantes: 278 que asistieron a la segunda edición de #PilandoAndoPaLaU.De estos, 210 realizaron la Prueba de Inventarios de Estilos de Aprendizaje de Grasha-Riechmann, por lo que se pueden considerar automáticamente como la Muestra.

Población de Tutores: 66 tutores que formaron parte de forma voluntaria de la segunda edición de #PilandoAndoPaLaU.De estos, 60 tutores realizaron la Prueba de Estilos de Enseñanza de Grasha-Riechmann, considerando nuevamente a este dato como la Muestra.

La "Discrepancia" que puede existir entre la Población y Muestra de Estudiantes que realizaron la prueba, de igual forma que con los Tutores se debe a que fue establecido y mencionado abiertamente por medios como email y mensajería instantánea, la voluntariedad debe formar parte del estudio exploratorio.

Figura 11: Charla de Explicación a Tutores de la Metodología de la prueba de Estilos de Aprendizaje

De igual forma, el mismo fue explicado de manera presencial por parte del autor de este documento a través de una charla, se les explicó la metodología de este y el uso de los datos con fines académicos, información que se puede encontrar en el Anexo 4 de este documento.

Mencionado esto, se enfocará el esfuerzo de este estudio exploratorio en la información proporcionada por los 210 estudiantes y 60 tutores que realizaron la prueba psicométrica de Grasha-Riechmann, por ende, se buscará su emparejamiento basado en sus diferentes estilos de enseñanza y aprendizaje. Instrumentos de Recolección de Datos

Para obtener los datos de los 210 estudiantes y tutores se propuso el uso de una plataforma online con desarrollo propio, cuya arquitectura y diseño será abordada a fondo en el Capítulo 3 de este Proyecto de Investigación.

Figura 12: Sistema de Gestión Educativa de #PilandoAndo

Se descartó el uso de sistemas de recolección de datos a través de Formularios como Microsoft Forms o Google Forms, ya que no se podía garantizar el cumplimiento de la Ley 81 de Protección de Datos de 2021 [49] dentro de ellos.

Este documento se les entregó a todos los participantes del estudio previamente para su lectura y comprensión; así como se mantuvieron canales de comunicación electrónicos (email, mensajería instantánea) y físicos al momento de la aplicación de las mencionadas pruebas, donde estos pudiesen aclarar todas sus dudas con respecto al uso de sus datos con fines académicos y de investigación educativa.

Con lo anteriormente mencionado con respecto al desarrollo de una plataforma online propia para la recolección de datos, esta fue desarrollada basada en los requerimientos y cumplimiento de la mencionada Ley, con la denominación de "Sistema de Gestión Educativa | #PilandoAndo (SGE por sus siglas en español), donde se almacenarían todos los datos en servidores administrados por la empresa Digital Ocean con ubicación en la Ciudad de Nueva York.

Dicha información fue comentada de manera verbal a todos los participantes de este estudio, a manera de que estos pudiesen formar parte o no del mismo, dejando a decisión propia y voluntaria.

Figura 13: Revisión de la Autorización o Consentimiento por parte de los Tutores

En el caso de los estudiantes, la autorización y el consentimiento expreso para el uso de información y datos personales, en el caso de que estos fuesen menores de edad (< 18 años, según la legislación de la República de Panamá), dicho documento fue firmado por sus acudientes o tutores (Padres, Madres, Abuelo u Tutor Legal), de lo contrario, no podían participar en el estudio.

Si estos fuesen mayores de edad, pues los firmantes de la autorización fueron ellos mismos en el pleno uso de sus facultades físicas, mentales y sin ejercer ningún tipo de acción coercitiva o penalización por parte de ello; igual caso, para los tutores; sin embargo, con estos últimos todos eran mayores de edad, por lo que no fue necesaria la firma de ninguna persona que estuviese a cargo de su tutela o representación legal. Prueba de Grasha-Riechmann

Los instrumentos utilizados para obtener el Estilo de Aprendizaje de los Estudiantes, así como el Estilo de Enseñanza de los Tutores fue la Prueba de Grasha-Riechmann, que representa 6 dimensiones de Estilos de Aprendizaje y 5 dimensiones de Estilos de Enseñanza [50], sustentada pedagógicamente por los motivos establecidos en el Capítulo 1 de este Proyecto de Investigación.

Sobre la Prueba de Estilos de Aprendizaje: Esta prueba fue desarrollada originalmente por el Dr. Anthony Grasha en el año 1996, sin embargo, la adaptación que se utilizó para este estudio fue la realizada James H. Ford, James M. Robinson y Meg E. Wise [51] en el año 2016 que fue la aproximación más cercana al objetivo de este estudio de investigación, ya que se consideraba el componente de "Tutor" en vez de "Docente". La misma se encontró en el idioma inglés, sin embargo, fue traducida al español por el autor de este Proyecto de Investigación para ser aplicada a los estudiantes.

Se convierte en algo importante de mencionar que el Alpha de Cronbach [52] o el coeficiente de consistencia interna de esta prueba se trasladó de su adaptación original en inglés a la aplicada en español en este estudio con un valor de 0.89.

La prueba está compuesta por 60 ítems o preguntas con una aplicación de 5 (cinco) puntos Likert [53] para medir el nivel de acuerdo o desacuerdo de cada uno de los estudiantes con respecto a los ítems planteados. Este cuenta con seis dimensiones en las que se puede definir el Estilo de Aprendizaje de un Estudiante, siendo: Competitivo, Colaborativo, Evitativo, Participante, Dependiente e Independiente.

Cada una de ella cuenta con 10 ítems de evaluación en los cuales se estimará un promedio de todos los diferentes estilos y el que se encuentra más cercano al valor máximo que es 5.0, pues se denominará el estilo dominante, el siguiente valor más cercano como el estilo intermedio y el tercer valor más cercano como el estilo menos dominante; a manera de que esta pueda ser integrada con los Clústeres de Aprendizaje de los Estudiantes, como fue planteado en el Capítulo I.

Sobre la Prueba de Estilos de Enseñanza: Igualmente, fue desarrollada por el Dr. Anthony Grasha en el año 1996 y se utilizó la versión original traducida al idioma español por el autor de este Proyecto de Investigación. La misma posee un Alfa de Cronbach de 0.89, así como se cuenta con 40 ítems o preguntas con una aplicación de 6 puntos Likert que arrojarán resultados de Estilos de Enseñanza como experto, autoridad formal, modelo personal, facilitador y delegador. Cada uno de estos estilos contiene 8 ítems. Aplicación de la Prueba de Estilos de Enseñanza (Tutor)

El procedimiento para la determinación del Estilo de Enseñanza de un Tutor consiste en promediar cada una de las respuestas para cada uno de los Estilos y por ende, encontrar el dominante, intermedio y menos dominante

Los Tutores realizaron esta prueba utilizando dispositivos electrónicos como Computadores Personales (Laptops), Teléfonos Inteligentes (Smartphones) y Tabletas (Tablets), el cual fue previamente explicado por el autor de este Proyecto de Investigación sobre todo el procedimiento que tenían que realizar al momento de acceder al Sistema de Gestión Educativa (SGE) de #PilandoAndo.

Se declaró que la realización de la prueba era de carácter totalmente voluntario, por lo que no hubo ningún instrumento de coacción o retaliación hacia los tutores.

La prueba se realizó a las 11:30 am del sábado 26 de agosto del 2023, de manera coordinada todos los tutores con una duración para responder a cada uno de los ítems de 20 minutos, el cual no fue extendido en ningún momento.

Figura 14: Tutores realizando la prueba de Estilos de Enseñanza en sus dispositivos móviles Los resultados de esta prueba, así como los datos generales (Nombre y Apellido, Sexo, Edad e Email) fueron almacenados directamente en el Sistema de Gestión Educativa (SGE) de #PilandoAndo.

No se consideró la creación de un usuario con su respectiva contraseña para cada tutor, por lo que solo podían realizar la prueba a través de su correo electrónico y si estos ingresaban sus datos nuevamente tratando de hacer la prueba, el sistema automáticamente le enviaría al punto en el que quedaron de forma antes de salir de este, evitando de esta manera, la duplicación de registros dentro del SGE.

Otra razón por la que se utilizó el email como la "Llave Primaria" del usuario que estuviese realizando la prueba, desde la perspectiva de la Base de Datos, fue producto de la posibilidad de que un tutor confirme su asistencia previamente, sin embargo, este no asista a la sesión [54].

Figura 15: Validación del Tutor usando su email a través del SGE Aplicación de la prueba de Estilos de Aprendizaje al Estudiante

Similar a los tutores, los estudiantes realizaron esta prueba a través del SGE, únicamente que al momento de estos entrar, tenían que seleccionar "Soy Estudiante" lo que les desplegaría automáticamente el Cuestionario de Estilos de Aprendizaje de Grasha-Riechmann, como se muestra a continuación:

Figura 16: Aplicación en el SGE del Cuestionario de Estilos de Aprendizaje del Estudiante

A todos los 278 estudiantes que asistieron a la Sesión 01 de #PilandoAndoPaLaU el día 02 de septiembre de 2023 se les dividió en tres salones diferentes que por motivos de capacidad y Seguridad Ocupacional en el Centro de Capacitaciones Ascanio Arosemena del Canal de Panamá, se efectuó de esta manera.

Los estudiantes comenzaron la sesión con cada uno de sus tutores desde las 8:30 am hasta las 11:00 am que fue el momento de aplicación de la prueba de Estilos de Aprendizaje de Grasha-Riechmann.

Debido a que los estudiantes se encontraban en diferentes salones y no todos contaban con dispositivos electrónicos, así como acceso a Internet, se habilitó una red Wifi especial por parte del Canal de Panamá, así como computadores portátiles para que estos realizasen la prueba.

Para cada uno de los salones, se asignó a un "Aplicador de la Prueba" quién dictó las instrucciones iniciales sobre el uso del (SGE) y el uso de ella, así como se verificó que todos iniciasen simultáneamente con una duración de 30 minutos para que pudiesen responder los 60 ítems que les solicitaba la prueba. De igual forma, como el caso de los tutores se mencionó que la realización de esta prueba era de carácter totalmente voluntario y con fines meramente académicos, a lo cual 68 estudiantes del total de 278 estudiantes decidieron libremente sin la intervención de sus padres o un tutor responsable, no realizar la prueba.

Figura 17: Instrucciones Iniciales para la aplicación de la Prueba de Estilos de Aprendizaje Diseño del Experimento

Para el desarrollo de este estudio exploratorio, se consideró el trabajo previamente realizado por la Fundación Ayudinga en la primera edición en el año 2023 del programa #PilandoAndoPaLaU; sin embargo, se realizaron las siguientes adaptaciones para asegurar la consistencia de este:

La duración de la segunda edición de #PilandoAndoPaLaU fue de 5 (cinco) semanas, en vez de las 3 semanas que se realizó en la primera edición.La primera sesión, la cual fue denominada "Sesión 0", fue directamente orientada a los tutores a forma de capacitarlos en los siguientes temas:Formalismo Académico en las Tutorías Masivas, capacitación dictada por el Ing. Migdonio González; Profesor Universitario y Analista de Datos en el Smithsonian Institute.

¿Por qué los estudiantes necesitan una guía y no un sabelotodo?, capacitación dictada por la Lic. Diana Landero, Licenciada en Psicopedagogía de la Universidad de Panamá.

Inclusión Educativa en las Tutorías Masivas, dictada por la Lic. Kathy Davis, Especialista en Manejo de Proyectos Especiales en la Organización Internacional para los Migrantes (OIM) del Sistema de Naciones Unidas.

El programa se desarrolló de forma sabatina en horario de 8:30 am – 12:30 pm, donde los estudiantes y tutores asistieron voluntariamente.

El programa de tutorías inició el 25 de agosto con la "Sesión 0" y se extendió hasta el sábado 23 de septiembre, ambas fechas correspondientes al año 2023.

Se aumentó el tiempo efectivo de tutorías de 3:00 hrs reloj a 4:00 hrs reloj; esto sugerido por los mismos estudiantes y tutores en la primera edición, dado a que no se alcanzaba a cubrir por completo el material de estudio para la prueba de admisión PAA, utilizada en las universidades en Panamá como parte de sus Sistemas de Ingreso Universitario.

Se estandarizó que todos los estudiantes y tutores utilizasen el mismo conjunto de prácticas y materiales de estudio al momento de las tutorías, el cual fue proporcionado por la Dirección de Contenidos de la Fundación Ayudinga con el aval del College Board, institución encargada de la creación y desarrollo de la Prueba PAA. En previa coordinación con el Canal de Panamá, se aumentó la cantidad de estudiantes de 146 en la primera edición de #PilandoAndoPaLaU a 278 acatando los protocolos de Seguridad Ocupacional establecidos y coordinados previamente con esta institución.

Figura 18: Conferencia denominada "Formalismo Académico en las Tutorías Masivas"

La "Sesión 0" se realizó con el objetivo de preparar a los tutores, los cuales afirmaron que el 20% de ellos son tutores formales, 6% son profesores en una escuela o superior y el 75% afirmaron que "Le doy clases a mis amigos o conocidos".

A pesar de que estos contaran con una experiencia previa, se buscó una forma de estandarizar la Metodología de Tutoría en #PilandoAndoPaLaU, que es una extensión de la Metodología Ayudinga, que a su vez se encuentra basado en el Modelo Educativo AyuEduca2030 [2] de la Fundación Ayudinga.

Es importante reconocer que bien es cierto, no se puede estandarizar al 100% el Estilo de Enseñanza de cada uno de los Tutores (Ya que esto viciaría por completo la aplicación de la prueba), pero con ello se estableció un estándar mínimo para que estos tuviesen conciencia del rol y la responsabilidad que estaban asumiendo. La convocatoria de tutores se realizó a través de diferentes grupos estudiantiles de la Universidad Tecnológica de Panamá como Alianza Estudiantil, voluntarios profesionales del Canal de Panamá, equipo de la Fundación Ayudinga y voluntarios profesionales de Multibank.

En una evaluación del rango etario de los Tutores, se encontró que el 78% estaban entre los , luego un 12% entre los y un 10% en los 30 años en adelante.

Se dio por hecho que todos los tutores contaban con el conocimiento necesario en áreas como Aritmética, Álgebra, Geometría, Trigonometría, Estadística y Probabilidad; por lo que no se aplicó ninguna prueba de evaluación de conocimientos a estos, sino que se les enseñó buenas prácticas y principios básicos al momento de dar una tutoría.

Los tutores declararon previamente su disponibilidad para asistir a las 4 (cuatro) sesiones de tutoría, por lo que ya se conocía, salvo imprevistos de última hora; los tutores que estarían disponibles para una de las cuatro sesiones específicas.

En el caso de los estudiantes, se realizó una convocatoria masiva a través de medios digitales (Facebook, Instagram y TikTok) en las redes sociales del Canal de Panamá y la Fundación Ayudinga, donde se ofrecían 250 "becas" para formar parte de estas sesiones de tutoría gratuitas y libres, para las que se definió la disciplina de cola FIFO [55] (Siglas en inglés para "First In, First Out) al momento de la selección de los estudiantes.

Los primeros estudiantes en aplicar al momento de ver la información en los medios tradicionales o digitales, pues a esos fueron los que se les otorgaron las "becas" previamente establecidas. Esto se realizó sin ningún tipo de criterio de inclusión o exclusión más que el previamente mencionado para mantener la integridad del estudio y con ello eliminar la discreción en la selección de participantes.

A la segunda edición del programa #PilandoAndoPaLaU aplicaron 564 personas, por lo que no se pudo atender a todas ellas, sin embargo, se decidió ser un poco laxos debido a la alta demanda que se tuvo de estudiantes, por lo que se escogieron a 300 estudiantes, de los cuales asistieron 278 estudiantes.

Figura 19: Anuncio de "PilandoAndoPaLaU" por el Canal de Panamá en la red social Instagram Variables de Estudio

Al momento de definir las variables que se van a estudiar, primero se tiene que tomar en cuenta el contexto general, incluyendo el tiempo, espacio y momento en el que se realizó este estudio exploratorio bajo el marco de este Proyecto de Investigación.

Todos los tutores que asistieron a cada una de las sesiones de #PilandoAndoPaLaU lo hicieron de manera totalmente voluntaria, donando su tiempo y conocimientos al proyecto en sí, asistiendo voluntariamente a las tutorías realizadas entre la Fundación Ayudinga y el Canal de Panamá en el periodo sabatino del 25 de agosto (Tutores) al 23 de septiembre del año 2023.

Por ende, se debe considerar el dato de que no todos los mismos tutores asistieron a todas las sesiones por motivos como diversos compromisos, disponibilidad declarada previamente antes del inicio de las sesiones o en sus defectos circunstancias que hayan sucedido "De último momento" e incluso, en algunos casos, los tutores solamente asistieron a la "Sesión 0" que fue en la que se aplicó la Prueba de Grasha-Riechmann. De esta forma, no se pueden considerar como elementos continuos al momento de la definición de variables, es una mera exploración que tendrá resultados aproximados para querer conocer sus Estilos de Aprendizaje mediante la aplicación de la prueba de Grasha-Riechmann para el fin antes mencionado.

A continuación, se presentará una gráfica en la que se puede mostrar la asistencia de los tutores a lo largo de las 5 sesiones realizadas de #PilandoAndoPaLaU:

Figura 20: Asistencia General de Tutores a través de las 5 sesiones de #PilandoAndoPaLaU De igual forma, se llevó un control específico acerca de los tutores que, en efecto, realizaron la prueba de Estilos de Enseñanza de Grasha-Riechmann y su asistencia a las 5 sesiones de #PilandoAndo, gráfico que se muestra a continuación:

Figura 21: Asistencia General de Tutores a las 5 sesiones de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Enseñanza de Grasha-Riechmann

Se debe mencionar, que en este estudio exploratorio no se evaluará la divergencia que existe entre la asistencia general de tutores a lo largo de #PilandoAndoPaLaU vs. la asistencia general de tutores que realizaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann, dado a que esto generaría un análisis no determinístico al momento en el que se realizaría el emparejamiento entre estudiantes y tutores. Se tendrían que utilizar distribuciones probabilísticas para poder determinar una aproximación en efecto de la inasistencia o no de los tutores que realizaron la prueba, por lo que se establece que la variable de Estilos de Enseñanza de un Tutor será determinística, por lo que se utilizarán estadísticos descriptivos. Se menciona para el caso de los estudiantes, se dio un comportamiento similar al de los tutores, en el que no

todos los estudiantes que asistieron a la Sesión #1 de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Aprendizaje de Grasha - Riechmann, continuaron asistiendo a las demás sesiones.

A continuación, se presentará la asistencia general de estudiantes a las 4 sesiones (Únicamente sesiones de tutoría) de #PilandoAndoPaLaU:

Figura 22: Asistencia General de Estudiantes a las 4 Sesiones de #PilandoAndoPaLaU Dado a los registros llevados de los estudiantes que asistieron a cada una de las tutorías, así como conociendo que en la Sesión #1 fue donde se realizó la prueba de Grasha para Estilos de Aprendizaje, se puede hacer la comparativa de la Asistencia General de Estudiantes, si ellos hicieron la mencionada prueba.

Figura 23: Asistencia General de Estudiantes a las 4 sesiones de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann

En consideración de lo anteriormente planteado, se declara que las variables que serán objeto de este estudio de investigación serán: Estilos de Enseñanza del Tutor (Determinístico, tipo numérico), así como Estilo de Aprendizaje del Estudiante (Determinístico, tipo numérico)

Cierto es que tampoco se puede obviar datos o hallazgos que hayan resultado producto de la realización de esta investigación exploratoria, sin embargo, estas no serán parte del modelo matemático que se debe elaborar para desarrollar el objetivo final de este proyecto de investigación que es el emparejamiento aproximado entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga. Análisis de Resultados

Una vez los tutores como los estudiantes realizaban las ya mencionadas pruebas en el SGE de #PilandoAndo, un usuario de tipo administrador accedía a este para obtener los datos provenientes del mismo, ya sea en formato CSV (Comma Separated Value), copiarlos o imprimirlos directamente.

A continuación, se mostrará el Panel de Administración del SGE de #PilandoAndo con el usuario administrador jbatista, en donde se pueden acceder a cada uno de los registros en tiempo real, una vez que el tutor o el estudiante realiza la prueba de Grasha-Riechmann.

Figura 24: Panel de Administración del SGE de #PilandoAndo

Los datos numéricos sobre la cantidad de tutores que realizaron la prueba de Grasha-Riechmann para Estilos de Enseñanza, así como la cantidad de estudiantes que hicieron la Prueba de Grasha-Riechmann para Estilos de Enseñanza es un valor que se actualiza en conformidad como se vaya utilizando el sistema.

Esto permitió que se pudiese realizar una contraposición entre la cantidad de Tutores que se encontraban presentes en la Sesión 0 que fue donde se les aplicó la prueba vs. la cantidad de tutores que en efecto la hicieron, que como ya ha sido mencionado anteriormente, de una muestra de 66 tutores en dicha sesión, 6 tutores voluntariamente no hicieron la prueba de Grasha-Riechmann para Estilos de Enseñanza.

Figura 25: Resultados de la Prueba de Grasha-Riechmann para Estilos de Enseñanza aplicada a Tutores en el SGE

Perfil Demográfico de los Tutores

Aunque no sean variables concomitantes en este estudio exploratorio, se convierte relevante en conocer información adicional acerca de características específicas sobre los tutores que realizaron la prueba .

Tabla 14: Perfil Demográfico de los Tutores

Perfil Demográfico

Cantidad (n)

Porcentaje (%)

Sexo

Masculino

41 68.33 Femenino 19 31.67

Rango Etario

18 - 20 años

26

43.33

21 - 23 años

24

40.00

24 - 26 años

2

3.33

Más de 27 años

23.33

A pesar de que se les solicitó el correo electrónico para que posteriormente hecha la evaluación le pudiesen llegar los resultados, esto no es un dato que sea relevante indagar, dado a que no le aporta ningún valor agregado a este estudio.

Análisis Descriptivo de los Tutores

El menester será analizar los Estilos de Enseñanza de los Tutores, por lo que primero se definirá el resultado completo, que es la única variable de tipo determinística que se evaluará como parte de este estudio exploratorio y de forma adicional, se desglosará a nivel de rangos etarios y sexo del tutor.

Figura 26: Estilos de Enseñanza de los Tutores en #PilandoAndoPaLaU

Cuando se analiza este gráfico de barras, se observa una moda marcada hacia el Estilo de Enseñanza "Facilitador", debido a que, a partir de una muestra de 60 tutores, 41 obtuvieron este Estilo de Enseñanza. De igual manera, surge como pregunta de investigación ¿Por qué ningún tutor tuvo estilo de Autoridad Formal o Delegador?

A manera de aproximar una respuesta a ella, se debe reconocer la naturaleza expresada en los antecedentes de este Proyecto de Investigación, donde fue denotado que el concepto "#PilandoAndo" surge como un esfuerzo en el que el tutor dona su tiempo y conocimiento a otros estudiantes voluntariamente Esto lleva a que presenten "Estilos de Enseñanza" en los que ellos se consideren más parte del proceso, como fue denotado como el "Facilitador" o quieran inspirar a otras personas en la enseñanza aprendizaje como lo es el "Modelo Personal", en comparación a otros Estilos de Enseñanza como una Autoridad Formal que se caracteriza por su personalidad y carácter estricto, así como un Delegador que tiene como principal característica que este deja su labor asignada a otras personas a través de trabajos grupales en los que este solo actúa como guía.

A continuación, se procede a hacer una comparativa entre los diferentes rangos etarios previamente declarados y sus Estilos de Enseñanza.

Es importante señalar que, para cada uno de los rangos etarios se presentará la cantidad de tutores que pertenecen al mismo a manera de calcular los porcentajes, ya que se considerará a ese rango etario como parte de un único conjunto.

Tabla 15: Desglose por Rangos Etarios de Estilos de Enseñanza en Tutores

Rango Etario

Estilo de Enseñanza

Porcentaje (%)

18 - 20 años

(26/60 tutores)

Experto

7.69

Autoridad Formal

0.00

Modelo Personal

3.85

Facilitador

88.46

Delegador

0.00

21-23 años

(24/60 tutores)

Experto

20.83

0.00 Modelo Personal 33.33 Facilitador 45.83 Delegador 0.00 24 - 26 años (2/60 tutores) Experto 50.00 **Autoridad Formal** 0.00 Modelo Personal 0.00 Facilitador 50.00 Delegador Más de 27 años (8/60 tutores) Experto 0.00 **Autoridad Formal** 0.00 Modelo Personal 25.00 Facilitador 75.00 Delegador 0.00 Un hallazgo de la tabla, anteriormente presentada, es que el rango etario que presenta mayor variedad entre los Estilos de Enseñanza de los Tutores es el que compete a los 21-23 años (24/60 tutores), ya que se tiene el 20.83% de los Tutores como "Experto", 0.00% como "Autoridad Formal", 33.33% como "Modelo Personal", 45.83% como "Facilitador" y 0.00% como Delegador. De igual forma, se analizarán los Estilos de Enseñanza de los Tutores con relación al Sexo sin considerar el rango etario que fue planteado anteriormente. Tabla 16: Distribución porcentual en sexo femenino de los Estilos de Enseñanza de los Tutores Sexo Estilos de Enseñanza Porcentaje (%) Femenino Experto 5.26 **Autoridad Formal** 0.00 Modelo Personal 15.79 Facilitador 78.95 Delegador 0.00 Se usará el mismo análisis para los tutores cuyo sexo es Masculino. Tabla 17: Distribución porcentual en sexo masculino de los Estilos de Enseñanza de los Tutores Estilos de Enseñanza Porcentaje (%) Masculino Experto

Autoridad Formal

17.07

0.00

Autoridad Formal

Modelo Personal

19.51 Facilitador 63.41

Delegador

0.00

Perfil Demográfico de los Estudiantes

Como fue mencionado en el caso de los tutores, el análisis y correlación de variables como Rangos Etarios y Sexo no es el objetivo final de este estudio exploratorio, sin embargo, permiten tener un panorama completo de los participantes de este.

Para ello, se basará en los que realizaron la prueba de Grasha-Riechmann para Estilos de Enseñanza.

Tabla 18: Perfil Demográfico de los Estudiantes

Perfil Demográfico

Cantidad (n)

Porcentaje (%)

Sexo

Masculino

107

50.95

Femenino

103

49.05

Rango Etario

15 - 18 años

158

75.24

19 - 22 años

37

17.62

23 - 28 años

9

4.29

Más de 29 años

6

2.86

A partir de esta tabla, resulta interesante mencionar dos hallazgos importantes:

Se alcanzó niveles elevados de paridad entre hombres y mujeres con un 50.95% de estudiantes masculinos y un 49.04% de estudiantes femeninos.

A pesar de que el formato de #PilandoAndoPaLaU estuviese dirigido a Estudiantes en sus últimos años de Educación Media a manera de prepararse para rendir los exámenes de admisión de las universidades, el contar con 24.76% de estudiantes que podrían no formar parte de "el estándar" de estudiantes en Educación Media, demuestra las disparidades del Sistema Educativo panameño, e incluso de manera subjetiva y a criterio de este autor; los deseos y esperanza de nunca parar de aprender de dicho porcentaje de Estudiantes, independiente de la condición socio-económica en la que estos se encuentren. Análisis Descriptivo de los Estudiantes

Se procederá a realizar el mismo análisis que fue utilizado para los tutores, sin embargo, ahora para los estudiantes y con los detalles que eso considera, debido a las seis dimensiones que plantea el Modelo de Grasha-Riechmann, representadas a través de los Estilos de Aprendizaje de los Estudiantes; los cuales se proceden a nombrar: Independiente, Dependiente, Colaborativo, Competitivo, Evitativo y Participativo. Estos Estilos de Aprendizaje serán la base para todos los análisis descriptivos que se presentarán, así como cabe resaltar que, independientemente de otras correlaciones que se harán, como análisis de los resultados de este estudio exploratorio, la segunda variable determinística será el Estilo de Aprendizaje de los Estudiantes que hicieron la prueba de Grasha-Riechmann en la Sesión #1 de #PilandoAndoPaLaU bajo las condiciones antes descritas.

Figura 29: Estilos de Enseñanza de Estudiantes en #PilandoAndoPaLaU

Cuando se analiza el ya presentado gráfico de barras, resulta predominante el Estilo de Aprendizaje "Colaborativo" con un resultado de 97 estudiantes, mientras que este es seguido por el Estilo de Aprendizaje "Dependiente" con 57 estudiantes y el "Participativo" con 41 estudiantes.

Sin embargo, cuando se analizan los demás Estilos de Aprendizaje, se encuentran casos que en "Competitivo" solo se tienen a 2 estudiantes, mientras que en el estilo "Evitativo", se tienen 0 estudiantes.

Esto pudiese permitir dar ciertos elementos de juicio sobre la muestra heterogénea y pseudoaleatorizada de estudiantes que realizaron la prueba de Grasha-Riechmann en #PilandoAndoPaLaU, debido a que todo se realizó en un entorno controlado, sin ningún tipo de coacción o retaliación a los Estudiantes.

Por ende, la conclusión lógica a la que se puede llegar es que los estudiantes que participaron de este estudio exploratorio tienen una marcada tendencia con el Estilo de Aprendizaje "Colaborativo" y "Participativo" a ser

responsables de su propio aprendizaje e involucrarse en el mismo como fue planteado en el Capítulo I de este Proyecto de Investigación.

Mientras que en el caso de los estudiantes con estilo "Dependiente", se requeriría una mayor intervención y esfuerzo por parte del tutor para que este se pudiese involucrar dentro del grupo de tutoría.

El comprender el Estilo de Aprendizaje basado en los rangos etarios definidos anteriormente se convierte en un dato de suma importancia, ya que este refleja una realidad inherente la descripción del análisis y tener la capacidad basada en datos de elaborar ciertas preguntas de investigación.

Tabla 19: Desglose por rangos etarios de los Estilos de Aprendizaje de los Estudiantes

Rango Etario

Estilo de Aprendizaje

Porcentaje (%)

15 - 18 años

(158/210 estudiantes)

Independiente

6.96

Dependiente

25.95

Colaborativo

47.47

Competitivo

0.00

Evitativo

0.00

Participativo

19.62

19-22 años

(37/210 estudiantes)

Independiente

5.41

Dependiente

32.43

Colaborativo

37.84

Competitivo

5.41

Evitativo

0.00

Participativo

18.92

23-28 años

(9/210 estudiantes)

Independiente

0.00

Dependiente

33.33

Colaborativo

44.44

Competitivo

0.00

Evitativo

0.00

Participativo

22.22

Más de 29 años

(6/210 estudiantes)

Independiente

0.00

Dependiente

16.67

Colaborativo

66.67

Competitivo

0.00

Evitativo

0.00

Participativo

16.67

Resulta objeto de estudio que subiendo en los rangos etarios hasta llegar a los "Más de 29 años", que si bien es cierto representan únicamente el 2.86% de esta muestra total, el porcentaje de Estilos de Aprendizaje "Colaborativo" representó un aumento significativo al volverse el 66.67% de los estudiantes.

De igual forma, al analizar por rangos etarios conviene también ver el caso del Estilo de Aprendizaje "Independiente", el cual presentó una disminución conforme, también fueron subiendo dichos rangos hasta llegar al punto en el que no se encontró ningún estudiante que presentase este Estilo de Aprendizaje.

Sin duda alguna, el Estilo de Aprendizaje que más llama la atención ante su marcada ausencia en todos los rangos etarios es el "Evitativo", lo que indica, según lo mencionado en el Capítulo I de este Proyecto de Investigación que los estudiantes siempre se encontraron abiertos a la recepción de nuevos aprendizajes, puede no haber generado un ambiente hostil para el tutor al momento de la conformación de los grupos de tutoría; ya que se conoce que este es el Estilo de Aprendizaje que requiere (como fue mencionado en los Clústeres de Integrados del Capítulo I) una Autoridad Formal que "Pusiese orden" y guiase a este estudiante, marchando en directa concordancia con la ausencia estadística de algún tutor que haya presentado el dicho Estilo de Enseñanza.

Conviene también hacer un análisis descriptivo y visual de los diferentes Estilos de Aprendizaje que presentaron los estudiantes al momento de tomar la prueba de Grasha-Riechmann con respecto a su Sexo, ya sea Masculino o Femenino.

Tabla 20: Distribución porcentual de los Estilos de Enseñanza en sexo (Femenino)

Sexo

Estilos de Aprendizaje

Porcentaje (%)

Femenino

Independiente

2.91

Dependiente

31.48

Colaborativo

45.63

Competitivo

0.00

Evitativo

0.00

Participativo

18.45

Resulta una pregunta de investigación la que dada una muestra de , ¿Por qué no se manifestó los Estilos de Aprendizaje Competitivos y Evitativos? A priori, no se puede establecer ninguna hipótesis que permita darle sentido a esta pregunta, dado que sería ya de carácter sociológico.

Se continúa con el caso de los estudiantes de sexo Masculino, de los cuales también se hará una representación porcentual de sus Estilos de Aprendizaje, a manera que se pueda generar ciertas preguntas de investigación a partir de ello.

Tabla 21: Distribución porcentual de los Estilos de Enseñanza en sexo (Masculino)

Sexo

Estilos de Aprendizaje

Porcentaje (%)

Masculino

Independiente

9.35

Dependiente

21.50

Colaborativo

46.73

Competitivo

1.87

Evitativo

0.00

Participativo

20 18

Resulta ser un Estilo de Aprendizaje preponderante el caso de "Colaborativo" con un 46.73% en el caso de los estudiantes masculinos, así como el estilo "Dependiente" con un 21.50%, seguido directamente por el estilo "Participativo" con un 20.18%.

Consideraciones Éticas

Se adoptaron ciertas Protocolos de Protección al Estudiante, por recomendación de especialistas en la materia en de la Autoridad del Canal de Panamá. A continuación, se presentan las recomendaciones

implementadas:

La comunicación con los estudiantes fuera de las sesiones de tutoría solamente podía ser realizada a través de los canales oficiales del Canal de Panamá y la Fundación Ayudinga.

Ningún tutor podía compartir su teléfono celular o fijo, conversar u ofrecer sus servicios de tutorías adicionales a los Estudiantes.

Todos los tutores fueron entrevistados y filtrados previamente por la Dirección de Voluntariado de la Fundación Ayudinga, así como la Dirección de Responsabilidad Social Empresarial de la Autoridad del Canal de Panamá. Se revisaron aspectos como Experiencia Previa, Disponibilidad para las Sesiones de Tutoría, así como en algunos casos específicos se realizaron averiguaciones de Récord Policivo, denotando que ninguno de ellos tenía algún tipo de antecedentes.

Todas estas recomendaciones fueron de estricto cumplimiento para cada uno de los tutores, de lo contrario, serían automáticamente expulsados como voluntarios de #PilandoAndoPaLaU y la situación sería informada a las autoridades pertinentes.

De igual forma, al momento de ingresar a la aplicación a través de la cual se almacenan los datos de los resultados de la aplicación de las pruebas de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, se limitó el acceso a ellas definiendo únicamente tres usuarios (los cuales pueden ser modificados mediante código únicamente) quienes tienen acceso a dichos datos.

Los criterios de aceptación o discriminación para poder analizar ¿Quién tendría acceso a los datos o no? Fueron realizados mediante el organigrama de la Fundación Ayudinga, dado que es inherente que al momento de realizar cualquier tipo de intervención bajo el formato de #PilandoAndo, hay ciertos procesos académicos y tecnológicos que se llevan a cabo previamente, por lo que estos fueron los usuarios con su respectivo nombre y rol que fueron creados bajo el perfil de "Administrador del Sistema": Nombre: Johel Heraclio Batista CárdenasCargo: Presidente de la Fundación Ayudinga

Nombre: Kevin Anel González OrtegaCargo: Director de Tecnología e Investigación Educativa

Nombre: Rolando Esteban Riley RodríguezCargo: Director de Contenidos

Cada una de las personas en cuestión han firmado el "Acuerdo de Voluntariado", así como el "Código de Ética y Conducta de la Fundación Ayudinga.

Los voluntarios de la Fundación Ayudinga presentan cargos directivos en esta y han firmado el "Acuerdo de Voluntariado", así como el "Código de Ética y Conducta de la Fundación Ayudinga", los cuales son documentos de carácter legal y vinculante bajo las leyes de la República de Panamá, por lo que no pueden divulgar ninguna de la información presentada en el Panel de Administración del SGE de #PilandoAndo.

Por lo que se les da acceso a los datos de los Estilos de Aprendizaje de los Estudiantes y Estilos de Enseñanza de los Tutores única y exclusivamente con el objetivo de trabajos de investigación educativa o de mejora en la experiencia de las intervenciones educativas masivas de la Fundación Ayudinga.

Limitaciones del Estudio

Este estudio es de carácter exploratorio, ya que del mismo no se espera un factor conclusivo. Esto debido a que no se cuentan con los datos de toda la población de estudiantes, en este caso del lugar donde se desarrolla el mismo, que es la República de Panamá; siendo de igual manera con los tutores o docentes. Por ello, se limitará a evaluar lo que acontece dentro de las sesiones de tutoría de #PilandoAndoPaLaU entre las fechas del 25 de agosto y 23 de septiembre en las que se estaba preparando a los estudiantes a través tutores voluntarios para que estos rindiesen los exámenes de admisión de las universidades públicas en Panamá.

Un elemento importante para mencionar es que como fue establecido en el Capítulo I de este Proyecto de Investigación, los estilos tanto de enseñanza como aprendizaje de un estudiante o tutor tienden a ser variables en función del tiempo; es decir, que lo que será analizado en este estudio será únicamente una fotografía del momento en el que los estudiantes y tutores realizaron la prueba, no su posible cambio posterior.

No se considerarán variables exógenas, las cuales pueden resultar subjetivas como el grado de afinidad entre el estudiante y el tutor o viceversa, así como la asistencia de estos a lo largo del tiempo, espacio y momento en el que fue realizado el estudio.

Tampoco se establecerán conclusiones diagnósticas sobre el Sistema Educativo de la República de Panamá, ya que cuenta con una población de más de , mientras que este estudio solamente consideró a una muestra muy puntual y heterogénea de estudiantes para realizar estudios sobre los Estilos de Aprendizaje de estos. Conclusiones a priori del Estudio Exploratorio

Al principio de este capítulo, se plantearon una serie de Hipótesis Nulas, así como alternativas. Todas ellas definiendo escenarios que pudiesen ser el posible resultado de llevar a cabo la completa definición de este Proyecto de Investigación.

Empero, dado que se ha limitado a la metodología y diseño del estudio exploratorio que se está bajo el paraguas del ya mencionado Proyecto de Investigación, se debe mencionar de forma categórica que no se puede aceptar o negar ninguna de las hipótesis planteadas.

Debido a que se requieren los mecanismos a través de los que se emparejará a estudiantes y tutores en las

intervenciones educativas de la Fundación Ayudinga, siendo el caso estudiado, la edición especial de #PilandoAndoPaLaU.

Capítulo III: Arquitectura del Sistema

Estado Previo

Antes del estudio exploratorio que fue realizado, el proyecto #PilandoAndo no contaba con ningún tipo de sistema ni proceso sistemático para la creación de los grupos de tutoría, contando con los Estudiantes y Tutores, por lo que se trabajaba con una con una disciplina de cola FIFO [55], donde los Tutores (Servidores) ya contaban con una mesa en la que iban a desarrollar su grupo de tutoría previamente asignada por la organización con una capacidad específica.

Conforme los Estudiantes (Clientes) iban llegando a formar parte de cualquier sesión de #PilandoAndo, estos eran asignados a cualquier Tutor que se encontrase disponible de manera manual. Sin embargo, resulta importante reconocer que no existía ningún tipo de evidencia sobre la cual se hacían dichas asignaciones, dado que únicamente se trataba de satisfacer la demanda de estudiantes que deseasen recibir tutorías sobre un determinado tema.

Figura 27: Modelo inicial de asignación de Estudiantes a Grupos de Tutoría en #PilandoAndo Bien es descrito gráficamente el proceso de creación de "Grupos de Tutoría" que se realizaba anteriormente, que al tener una entrada al sistema que eran los Estudiantes, quienes iban llegando, gradualmente durante un tiempo, muchas veces no debido, dada la flexibilidad que se planteaba para que todos tuviesen la oportunidad de recibir tutorías; esto complicaba en sobremanera; hacía que no existiese, en muchos casos, ningún tipo de correlación entre el estudiante y tutor, aunado al hecho de que eso no era medido. Por ello, se observa un proceso totalmente lineal, en el que el comienza a llegar y se asigna al "Grupo de Tutoría" con un tutor que se encontrase disponible, sabiendo la limitante que se planteaba de n = 5 estudiantes/grupo de tutoría, la cual en muchos casos se tenía que cambiar debido a que no se era capaz de satisfacer la demanda de Estudiantes con la oferta de tutores disponibles, haciendo que para alcanzar el punto de equilibrio entre ambas, se creasen grupos con una mayor cantidad de estudiantes. Lo último, generaba un completo despropósito con el modelo pedagógico que se buscaba generar en las sesiones de #PilandoAndo, dado que se llegaba a tener una mayor similitud con un aula de clases, en contraprestación a una sesión de tutoría más "íntima" y "personalizada" para el estudiante y a su vez, para el tutor, debido a que ambos asisten de manera totalmente voluntaria y en libertad. Estado Propuesto

Tomando en cuenta la realidad previamente expresada, se plantea en este Proyecto de Investigación que no se puede mantener el estado previo en las sesiones de #PilandoAndo, debido a que, eventualmente, al no tener ningún tipo de base científica u argumentativa para la asignación de un estudiante con un tutor, estas perderían significancia y pertinencia para el actor principal que es el estudiante, por lo que se propone una solución tecnológica aproximada que permita automatizar los procesos de creación de grupos de tutoría. Para ello, se utilizará como base el Modelo de Grasha-Riechmann, en el cual se le aplica la prueba de Estilos de Aprendizaje (Estudiantes) y Estilos de Enseñanza (Tutores), la cual se ha validado con anterioridad desde el marco teórico que resulta la más adaptativa para poder alcanzar el objetivo.

Sin embargo, dado que en el Capítulo II se hizo una definición de la Metodología y Diseño del Experimento, un estudio exploratorio; se debe mencionar nuevamente que no se esperan resultados concluyentes, sino más bien que este sistema a desarrollar resulta ser una aproximación desde la perspectiva lógico-matemática aunada a la pedagogía y a nuevas tendencias en el mundo académico que permiten poder entregar una propuesta de sistema tecnológico que arroje como resultados insumos de alto valor para la toma de decisiones operativas, tácticas y gerenciales a nivel educativo, especificando el caso del proyecto #PilandoAndoPaLaU desarrollado por la Fundación Ayudinga y el Canal de Panamá entre los meses de agosto – septiembre del año 2023.

Con la nueva propuesta de reestructuración de procesos de #PilandoAndo, lo que conlleva a un reajuste en el modelo de asignación de tutores a estudiantes; hace que se requiera replantear el diagrama inicial del sistema, considerando ahora las entradas de Estudiantes E(t) con sus Estilos de Aprendizaje y Tutores T(t) con sus Estilos de Enseñanza, así como la consideración de nuevos procesos para la creación de grupos de tutoría.

Figura 28: Modelo propuesto de asignación de Estudiantes a Grupos de Tutoría en #PilandoAndo Bajo esta nueva estructura propuesta del sistema, se puede observar que se genera un ciclo de retroalimentación negativa, que hace que antes de que se comiencen a ejecutar las sesiones de tutorías de #PilandoAndo, se ofrezca un modelo iterativo de comparación entre los Estilos de Aprendizaje de un Estudiante y los Estilos de Enseñanza de un Tutor, de manera que se pueda obtener el mejor tutor para un estudiante y el mejor estudiante de un tutor.

Es decir, se busca generar una mejor asignación de los recursos, sin embargo, como se muestra en el diagrama del sistema anteriormente presentado, esto requiere la obtención de los datos iniciales por parte de los estudiantes y tutores, lo cual se realizará, inmediatamente, cuando ellos entran a una sesión de tutorías, donde se les aplica la prueba y luego, sus datos son procesados por el sistema a través de un algoritmo de emparejamiento que se describirá a fondo en la perspectiva matemática en el Capítulo IV de este Proyecto de Investigación.

Se espera que esto permita mejorar el sentido de pertinencia por parte de los estudiantes hacia los tutores y viceversa, generando de esta manera propicia un mejor ambiente de enseñanza – aprendizaje, como fue aseverado en el Capítulo II de este Proyecto de Investigación, en el que se planteó la metodología y el diseño de este estudio exploratorio.

Ahora que se conoce el Estado Inicial sobre el que se encontraba el sistema en un principio y el Estado Propuesto para el nuevo sistema, incluyendo la creación de nuevos procesos dentro de #PilandoAndo. Se convierte en la base que se utilizará para diversas técnicas como el Diseño de los Casos de Usos, conceptualización y desarrollo de la Base de Datos y la lógica de la aplicación que permitirá generar un sistema de información como apoyo a la toma de decisiones en las intervenciones educativas masivas de la Fundación Ayudinga.

Casos de Uso del Sistema

Antes de definir los Casos de Uso que se colocarán en el sistema, primero se tendrá que definir el ¿Quiénes serán los usuarios finales de la aplicación informática? [56], por lo que adicional a lo planteado en el Capítulo II, se hará un desglose puntual de cada uno de ellos.

Usuario visitante: Este es una persona que simplemente accede al dominio en el que se encuentra almacenado y en funcionamiento la aplicación que es pilandoando.org, estos no ejercen ninguna acción sobre el sitio, sino que únicamente visualizan su contenido.

Estudiante: Aquellos que asisten a #PilandoAndo en búsqueda de tutorías libres y gratuitas en temas orientados a las matemáticas y estos realizan la prueba de Estilos de Aprendizaje de Grasha-Riechmann, adaptada al español.Datos que son solicitados por parte de ellos son su Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email.

Una vez entran a la aplicación y comienzan a llenar el cuestionario de Estilos de Aprendizaje, sus resultados son almacenados a través de su email como identificador de ellos en la Base de Datos de la Aplicación.

Tutor: Aquellos que asisten a #PilandoAndo con el objetivo de compartir sus conocimientos a través de sesiones de tutorías libres y gratuitas, de los cuales se asume que ya tienen conocimientos previos sobre dichos temas debido a que provienen del sector académico y la empresa privada. Estos realizan la prueba de Estilos de Enseñanza de Grasha-Riechmann, adaptada al idioma español. Al momento de realizar dicha prueba, se le solicitarán datos como su Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email.

De igual forma, como a los estudiantes, una vez entran a la aplicación y comienzan a llenar el cuestionario de Estilos de Enseñanza, sus resultados serán almacenados a través de su email como identificador en la Base de Datos de la aplicación.

Administrador: Estos consisten en un grupo predefinido de usuarios pertenecientes a la Fundación Ayudinga o a sus aliados estratégicos, los cuales son creados de manera totalmente manual a través de inserciones directas a la Base de Datos. Estos pueden realizar la prueba de Estilos de Aprendizaje o Estilos de Enseñanza y se les será solicitado los datos de Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email. El criterio de inclusión o exclusión para la creación de este tipo de usuarios consiste en la pertinencia que ellos tengan dentro de este estudio exploratorio, dado que tienen que cumplir con las siguientes condiciones: Ser voluntarios o aliados de la Fundación Ayudinga y haber firmado el Código de Ética y Conducta de esta, registrado de manera legal y vinculante entre las partes.

Pertenecer al consejo directivo de la organización o en su defecto, tener una autorización aprobada de forma unánime por parte de la Junta Directiva de la Fundación Ayudinga en la cual se le autoriza a un voluntario o aliado a tener un usuario de tipo Administrador.

Hacer de los datos de Estilos de Aprendizaje de los Estudiantes y Estilos de Enseñanza de los Tutores con fines meramente académicos y de investigación científica, por lo que se les impide su utilización con motivos comerciales.

Solo pueden iniciar sesión con un correo institucional @ayudinga.org al que se les ha enviado su contraseña temporal previamente, la cual tiene que ser cambiada al momento de ingresar al Panel de Administración y poder ver la información ahí guardada.

Estos usuarios pueden acceder a todos los datos almacenados de los Estilos de Aprendizaje de cada Estudiante y Estilos de Aprendizaje de cada Tutor que realizó la respectiva prueba de Grasha-Riechmann adaptada al formato de #PilandoAndo, descargando su información en formato CSV o PDF. Tienen la capacidad de establecer crear los "Grupos de Tutoría", es decir hacer el Emparejamiento entre Estudiantes y Tutores para alguna sesión específica de #PilandoAndo, considerando la cantidad de estudiantes que se deberán tener en cada grupo.

Con esto, se puede determinar que existen 4 usuarios fundamentales de la aplicación, siendo el primero de ellos alguien que únicamente la visita. Los estudiantes y tutores los que proveen el insumo para el desarrollo de los Emparejamientos entre ellos, así como los usuarios de tipo administrador que tienen un control total sobre el sistema.

Sin embargo, deben cumplir con una serie de condiciones previamente y no pueden ser registrados directamente en la aplicación, sino que su inserción debe ser a nivel de código, al menos por el momento,

dado que se trata de un estudio exploratorio y esto no quita que permita ser mejorado el sistema en un futuro, considerando que se trata de un MVP (Minimum Valuable Product, por sus siglas en inglés. Especificación del Caso de Uso: Usuario Visitante

Nombre del Caso de Uso: Usuario VisitanteBreve Descripción

El usuario de tipo visitante puede navegar por el sitio Web pilandoando.org visualizando el contenido disponible sin el requerimiento de interactuar con este o de proporcionar datos a la aplicación. Flujo de EventosFlujo BásicoEl usuario visitante accede al dominio Web pilandoando.org La aplicación muestra la página principal con el contenido disponible públicamente El usuario navega por las diferentes secciones de la aplicación Web.

Flujo de ExcepcionesEn caso de que la aplicación no se encuentre disponible o que exista un error de carga o en su defecto, problemas de conexión a Internet por parte del usuario; se mostrará un mensaje de error a este.

Si existe alguna sección que se encuentre en mantenimiento, el usuario será informado mediante un mensaje en la pantalla que dicha sección no se encuentra disponible.

Flujo AlternativoSi el usuario desea validar su perfil, pero olvidó algunos detalles de su cuenta, el sistema puede dirigir al usuario a la funcionalidad "Recuperar Contraseña" o "Recuperar Nombre de Usuario".

Requerimientos EspecialesLa aplicación debe utilizar "Responsive Design" o "Diseño Responsivo" a manera de que se pueda adaptar a diferentes dispositivos tecnológicos y cualquier tipo de tamaño de pantalla. Ha de existir una carga rápida de los contenidos de la aplicación para impedir que el usuario tenga tiempos de espera prolongados

PrecondicionesLa aplicación almacenada en el sitio Web pilandoando.org debe estar en funcionamiento y accesible.

Postcondiciones El usuario ha visualizado todo el contenido de la aplicación sin realizar ninguna acción adicional dentro de ella.

Figura 29: Diagrama de Caso de Uso (Usuario Visitante)

Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje Nombre del Caso de Uso: Realizar Cuestionario de Estilos de AprendizajeBreve Descripción

El usuario de tipo Estudiante ingresa a la aplicación bajo el sitio web pilandoando.org, selecciona la opción "Soy Estudiante" y decide realizar el cuestionario de Estilos de Aprendizaje de Grasha-Riechmann. Durante este proceso, el mismo debe proporcionar los datos personales que le serán solicitados y con ello responder a las preguntas del cuestionario.

Flujo de EventosFlujo BásicoEl estudiante selecciona la opción "Soy Estudiante" en la página principal de la aplicación y accede a la sección del Cuestionario de Estilos de Aprendizaje.

La aplicación le solicita a este que ingrese su Nombre, Apellido, Edad, Sexo (Masculino o Femenino) y Email. El Estudiante le proporciona la información solicitada a la aplicación.

La aplicación le presenta las preguntas del cuestionario de Estilos de Aprendizaje al estudiante en páginas de 10 preguntas cada una.

El Estudiante responde a las preguntas de cada página del cuestionario y cuando termina una de ellas, presiona "Siguiente" para seguir respondiendo las preguntas restantes.

La aplicación almacena las respuestas a las preguntas del cuestionario dadas por el Estudiante y calcula su Estilo de Aprendizaje.

La aplicación muestra los resultados del Estilo de Aprendizaje del Estudiante, así como una breve descripción de sus características y técnicas de estudio recomendadas para el estudiante en dependencia de su Estilo de Aprendizaje.

Flujo de ExcepcionesEn caso de que el estudiante no responda todas las preguntas del cuestionario, la aplicación validará página por página y si queda alguna pendiente, le mostrará un mensaje resaltando en color rojo en el que se indique la pregunta faltante por responder.

Si el email proporcionado por el estudiante ya está registrado en la Base de Datos, la aplicación le informará al estudiante que este ya ha realizado la prueba con anterioridad y le ofrecerá las siguientes opciones:Continuar el cuestionario desde la pregunta que lo dejó.

Eliminar todo su avance y empezar el cuestionario desde cero.

Flujo AlternativoEn caso de que el Estudiante decida abandonar el cuestionario antes de culminarlo, el sistema guardará las respuestas a las preguntas que fueron proporcionadas hasta ese momento en la Base de Datos y le permitirá retomar el cuestionario en otra instancia, siempre y cuando utilice el mismo email.

Requerimientos EspecialesLa aplicación deberá ser capaz de calcular de forma ponderada el Estilo de Aprendizaje del Estudiante basándose en las respuestas del cuestionario.

La aplicación debe validar la existencia previa o no del email en su Base de Datos.

Precondiciones El estudiante ha accedido a la aplicación y seleccionó la opción "Soy Estudiante", en la que se encuentra con el Cuestionario de Estilos de Aprendizaje.

PostcondicionesLas respuestas proporcionadas por el estudiante han sido almacenadas en la Base de Datos de la Aplicación.

El Estilo de Aprendizaje del Estudiante ha sido calculado y almacenado en la Base de Datos de la aplicación, con sus respectivos datos personales.

Figura 30: Diagrama de Caso de Uso (Realizar Cuestionario de Estilos de Aprendizaje) Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje. Nombre del Caso de Uso: Realizar Cuestionario de Estilos de EnseñanzaBreve Descripción

El usuario de tipo Tutor ingresa a la aplicación bajo el sitio Web pilandoando.org, selecciona la opción "Soy Tutor" y decide realizar el cuestionario de Estilos de Enseñanza de Grasha-Riechmann. Durante este proceso, el mismo debe proporcionar los datos personales que le serán solicitados y con ello responder a las preguntas del cuestionario.

Flujo de Eventos Flujo Básico El Tutor selecciona la opción "Soy Tutor" en la página principal de la aplicación y accede a la sección del Cuestionario de Estilos de Aprendizaje.

La aplicación le solicita a este que ingrese su Nombre, Apellido, Edad, Sexo (Masculino o Femenino) y Email. El Tutor le proporciona la información solicitada a la aplicación.

La aplicación le presenta las preguntas del cuestionario de Estilos de Enseñanza al Tutor en páginas de 10 preguntas cada una.

El Tutor responde a las preguntas de cada página del cuestionario y cuando termina una de ellas, presiona "Siguiente" para seguir respondiendo las preguntas restantes.

La aplicación almacena las respuestas a las preguntas del cuestionario dadas por el Tutor y calcula su Estilo de Enseñanza.

La aplicación muestra los resultados del Estilo de Enseñanza del Tutor, así como una breve descripción de sus características y técnicas pedagógicas recomendadas para el estudiante en dependencia de su Estilo de Enseñanza.

Flujo de ExcepcionesEn caso de que el Tutor no responda todas las preguntas del cuestionario, la aplicación validará página por página y si queda alguna pendiente, le mostrará un mensaje resaltando en color rojo en el que se indique la pregunta faltante por responder.

Si el email proporcionado por el Tutor ya está registrado en la Base de Datos, la aplicación le informará al estudiante que este ya ha realizado la prueba con anterioridad y le ofrecerá las siguientes opciones:Continuar el cuestionario desde la pregunta que lo dejó.

Eliminar todo su avance y empezar el cuestionario desde cero.

Flujo AlternativoEn caso de que el Tutor decida abandonar el cuestionario antes de culminarlo, el sistema guardará las respuestas a las preguntas que fueron proporcionadas hasta ese momento en la Base de Datos y le permitirá retomar el cuestionario en otra instancia, siempre y cuando utilice el mismo email.

Requerimientos EspecialesLa aplicación deberá ser capaz de calcular de forma ponderada el Estilo de Enseñanza del Estudiante basándose en las respuestas del cuestionario.

La aplicación debe validar la existencia previa o no del email en su Base de Datos.

PrecondicionesEl estudiante ha accedido a la aplicación y seleccionó la opción "Soy Tutor", en la que se encuentra con el Cuestionario de Estilos de Enseñanza.

PostcondicionesLas respuestas proporcionadas por el Tutor han sido almacenadas en la Base de Datos de la Aplicación.

El Estilo de Enseñanza del Estudiante ha sido calculado y almacenado en la Base de Datos de la aplicación, con sus respectivos datos personales.

Figura 31:Diagrama de Caso de Uso (Realizar Cuestionario de Estilos de Enseñanza) Especificación del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores Nombre del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y TutoresBreve Descripción

El administrador tendrá la capacidad de acceder al Panel de Administración de la aplicación en la que puede visualizar, analizar y gestionar los resultados del Cuestionario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, hacer un emparejamiento entre estudiantes y tutores con reglas previamente y modelos

matemáticos por definir, eliminar registros en la Base de Datos y configurar cualquier parámetro específico. Flujo de EventosFlujo BásicoEl Administrador accede a la aplicación utilizando su correo institucional @ayudinga.org con la contraseña temporal que se le fue enviada.

Una vez ingresa a la aplicación por primera vez, esta le solicitará que cambie su contraseña temporal por una nueva.

Cuando se haya realizado este proceso, el Administrador podrá acceder al Panel de Administración de la aplicación.

Puede visualizar, analizar, y gestionar los datos y resultados provenientes de la prueba de Estilos de Aprendizaje y Estilos de Enseñanza para Estudiantes y Tutores, respectivamente.

Accede a la herramienta "Grupos", donde observará la cantidad de Estudiantes y Tutores que hicieron la prueba, por lo que podrá configurar la cantidad máxima de estudiantes por grupo de tutoría.

La aplicación realizará el emparejamiento entre estudiantes y tutores basados en los resultados de la prueba, así como en otros criterios matemáticos.

Guardará y exportará la información de los emparejamientos que fueron realizados o no en formato CSV o PDF para un análisis directo.

Visualizará la cantidad de Estudiantes con nombre y apellido, aunado a su Estilo de Aprendizaje que quedaron sin grupo y su representación porcentual.Podrá hacer lo mismo para el caso de los Tutores con su Estilo de Enseñanza.

Flujo de ExcepcionesEn caso de que el Administrador ingrese a la aplicación con las credenciales incorrectas, se le mostrará un mensaje de error y se le negará el acceso.

Si el correo ingresado por el usuario Administrador no pertenece al dominio @ayudinga.org o el usuario no ha sido creado de forma manual en el sistema, se le negará el acceso.

En caso de que no existan datos disponibles para visualizar, ya sea de Estudiantes o Tutores, se le mostrará un mensaje al administrador.

En caso de que el administrador intente eliminar un registro de todos los Estudiantes o todos los Tutores, incluso la eliminación de un registro individual de cada uno de ellos, se le mostrará un mensaje de advertencia y se le pedirá que ingrese su contraseña para autenticar la acción.

Flujo AlternativoEl administrador puede revertir o modificar la cantidad máxima de Estudiantes en un emparejamiento.

El administrador puede decidir si desea o no eliminar un registro ya sea de un Estudiante o Tutor, luego de recibir una advertencia de la aplicación.

Requerimientos EspecialesLa aplicación garantizará la privacidad, seguridad e integridad de los datos de los diferentes tipos de usuarios.

La aplicación será capaz de generar archivos provenientes de consultas a la Base de Datos o algoritmos matemáticos en formato CSV y PDF.

La aplicación deberá permitir una gestión flexible de los emparejamientos entre estudiantes y tutores, así como los registros de cada uno de los elementos individuales dando una opción gráfica para eliminar registros.

Los resultados de los emparejamientos entre Estudiantes y Tutores no son almacenados en la Base de Datos, sino que únicamente se despliegan de forma visual en el Panel de Administración.

PrecondicionesEl Administrador debe pertenecer a la Fundación Ayudinga y haber recibido sus credenciales de inicio de sesión con base en un previo análisis de la pertinencia en el tratamiento de los datos. Deben existir los datos de los cuestionarios correspondientes para estudiantes y tutores en la Base de Datos.

PostcondicionesEl administrador tiene un panorama claro de los datos y cuenta con los <mark>resultados de la aplicación del Cuestionario de Estilos de Aprendizaje de</mark> Estudiantes y Cuestionario de Estilos de Enseñanza a Tutores en #PilandoAndo.

El emparejamiento entre Estudiantes y Tutores, así como la creación de grupos de tutoría se realizó, de manera efectiva, y esta es reflejada en el sistema, pero no es almacenada en la Base de Datos. Los registros que fueron eliminados ya no se encuentran disponibles en la Base de Datos.

Figura 32: Diagrama de Caso de Uso (Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores) Diagrama de Casos de Uso de la Aplicación

Ahora que se ha definido los 4 casos de uso principales de la aplicación, se procederá a unificarlos todos en un solo diagrama, debido a que será este el que se utilizará como base la implementación de la aplicación en producción.

Figura 33: Diagrama de Casos de Usos - Sistema de Gestión Educativa (SGE) - #PilandoAnd Diseño de la Base de Datos

Contando con un panorama más amplio, definido y estructurado a nivel de requerimientos y Casos de Uso de esta aplicación, se procederá a simplificarla, estableciendo las relaciones que existen entre las Entidades que

existen dentro de ella.

Es importante reconocer, que a pesar de que se detallan 4 tipos de usuario que accedían a la aplicación e interactuaban con ella (Usuario Visitante, Estudiante, Tutor y Administrador), de ahora en adelante se estudiarán, se agruparán a cada uno de ellos como "Usuario" del cual se almacenarán los siguientes datos: Nombre y Apellido

Edad

Sexo: Masculino o Femenino

Email: Será el identificador único (id) de cada uno de los usuarios dentro de la aplicación.

Posición: Esto solo aplicará cuando sea un usuario con permisos y rol de Administrador, por lo que no será requerido en los demás casos.

Modelo Conceptual

La justificación de utilizar el email como el id de los usuarios en la aplicación es que al generalizar a estudiantes y tutores como parte de una sola Entidad llamada "Usuario", resulta poco conveniente que estos se tengan que registrar con usuario, email y contraseña en la aplicación para que tengan que realizar el cuestionario de Estilos de Aprendizaje o el cuestionario de Estilos de Enseñanza.

Resulta importante mencionar que un "Usuario" es la representación de todas personas que utilizan la aplicación, por lo que también se advierte que un "Usuario" puede tener uno o más roles, el cual se manejará a través de una entidad llamada "Usuario Rol", con la que se pueda asociar a los usuarios con el "Rol que estos tengan en el sistema.

También, cada "Usuario" tiene un conjunto de acciones específicas que este puede realizar dentro de la aplicación como, por ejemplo: "Hacer Cuestionarios", "Eliminar Registros", "Hacer emparejamientos, etc., a todo este conjunto de acciones se les denominará "Permisos", que serán manejados a través de la Entidad llamada "Rol_Permiso" en la que se menciona que un "Rol", puede tener varios "Permisos" asociados a este, por lo que se genera una vinculación entre ambos.

Se comprenderá que el "Usuario" tiene que relación directa con "Preguntas", es la Entidad que almacena, entonces, a las diferentes preguntas de ambos tipos de cuestionarios.

Sin embargo, es importante esgrimir el hecho que cada uno de los elementos que se encuentre dentro de la Entidad "Preguntas", surge producto de la existencia de un "Estilo de Aprendizaje" o un "Estilo de Enseñanza", ambos para cada uno de ellos que son los Estudiantes y Tutores al momento de realizar la prueba.

De igual forma, al momento que el "Usuario" responde "Preguntas", este genera el resultado de ¿Cuál es su Estilo de Aprendizaje o Enseñanza?, así almacenan las respuestas individuales que dio a cada una de las preguntas del cuestionario que se le aplicó.

Por lo que se plantea que un "Usuario" puede responder múltiples preguntas" y una "Pregunta" puede ser entonces respondida por múltiples "Usuarios". Esto, se expresar a través de una relación

"Usuario_Responde_Pregunta". También, se tiene que almacenar la "Respuesta" que el usuario seleccionó para cada pregunta, lo que se puede plantear como una relación de "Puntaje_Usuario" que está relacionado a una "Respuesta" específica dada por el "Usuario.

Se comprende también, que si todo "Usuario" responde "Preguntas" y estas surgen de un Cuestionario que a su vez crea un "Estilo de Aprendizaje" o "Estilo de Enseñanza" que le será asignado al "Usuario" una vez se calcule el "Puntaje_Usuario".

Por lo que se puede determinar que un "Usuario" tiene un "Estilo" (El cual puede ser de Aprendizaje o de Enseñanza, sea Estudiante o Tutor), por lo que se relacionan entre sí ambas Entidades como "Usuario_Tiene_Estilo. Como fue mencionado, esto surge de que cada "Pregunta" tiene múltiples "Respuestas" posibles, así que cada "Respuesta", tiene un "Puntaje" asociado que aporta al cálculo ponderado del "Estilo" del usuario.

De igual forma, al momento en el que un "Usuario" tiene un "Estilo" (Ya sea de Aprendizaje o Enseñanza), se le definirán ciertas "Características" correspondientes al "Estilo" que este mantiene en cuestión. Lo que genera una nueva relación en la que se tiene que establecer que un el "Estilo_Tiene_Características", dado que un "Estilo" puede tener varias características.

Nuevamente, cuando un "Usuario" tiene un "Estilo" (Aprendizaje o Enseñanza), le serán recomendadas técnicas que se asocian a dicho "Estilo", las cuales van orientadas a que el Estudiante con su Estilo de Aprendizaje X pueda conozca formas más eficientes de estudiar y el Tutor con su Estilo de Enseñanza Y tenga recomendaciones pedagógicas sobre ¿Cómo Enseñar?

Esto genera una relación que se denominará "Estilo_Recomienda_Técnicas", la cual permite la asociación de un Estilo de Aprendizaje o Enseñanza que el "Usuario" ha obtenido luego de responder las "Preguntas", donde se reconoce que un "Estilo" puede tener varias técnicas recomendadas para el mismo.

Como ya se sabe que un "Usuario_Tiene_Estilo", permite asociar a cada "Usuario" con un Estilo de Aprendizaje o Enseñanza específico, así que ahora se explorará que cada "Estilo", tiene un conjunto de preferencias. Por ejemplo, en caso de que el "Usuario" tenga un Estilo de Aprendizaje específico, dicho "Estilo" tendrá preferencias Estilos de Enseñanza, así como el "Usuario" que tenga un Estilo de Enseñanza, el mencionado "Estilo" tendrá preferencias específicas de Estilos de Aprendizaje. Se puede representar de la siguiente

Por esto, se creará la entidad "Preferencia", la cual actúa como una entidad asociativa entre dos "Estilos". Con esto, se tiene que determinar que existe una relación que se denominará "Estilo_Tiene_Preferencias", la cual permite asociar un estilo de aprendizaje con uno o varios estilos de enseñanza preferidos, y viceversa.

Como ya se conoce, cada estilo, ya sea de aprendizaje o de enseñanza, tiene asociados a él una serie de características y técnicas recomendadas. Es por ello, que ahora se definirán dos nuevas Entidades llamadas "EstiloAprendizaje" y "EstiloEnseñanza", las cuales representarán al estudiante y tutor, respectivamente. En la entidad a la que se denominará "Clúster", se tendrá una representación del conjunto de preferencias entre los estilos de aprendizaje y de enseñanza. Por ello, en la relación "Preferencia", se vincularán los estilos de estilos de aprendizaje con los estilos de enseñanza y serán agrupados en Clústeres, los cuales tendrán un orden específico que indicará la fuerza o relevancia que pueda tener una preferencia de algún "Estilo". Modelo Entidad – Relación de la Aplicación (SGE - #PilandoAndo)

Figura 34: Modelo E-R de la Aplicación (SGE - #PilandoAndo)

Desarrollo e Implementación de la Aplicación

Resulta importante considerar que al este ser un estudio exploratorio, la consigna principal fue general un Mínimo Producto Viable [57] (MVP por sus siglas en inglés) que permitiese poner en prueba, de forma rápida, todas las hipótesis de investigación y el diseño de dicho del experimento dentro de la versión #PilandoAndoPaLaU que se desarrolló entre los meses de agosto – septiembre del año 2023. Para esto, se requirió del uso de un conjunto de tecnologías que permitiese desarrollar dicho MVP para que los datos de la aplicación del cuestionario de Estilos de Aprendizaje de Grasha-Riechmann y el mismo, solo que orientado a los Estilos de Enseñanza a los Estudiantes y Tutores que asistiesen a estas sesiones. Esto se dio producto que los datos para poder llevar a buen puerto este Proyecto de Investigación, requerían ser recolectados durante el desarrollo de esta versión de #PilandoAndoPaLaU, dado que esta era la única edición del programa #PilandoAndo que se desarrollaría bajo las condiciones expresadas anteriormente, durante el año 2023 por la Fundación Ayudinga y el Canal de Panamá.

Infraestructura Tecnológica Utilizada

A manera de poder llevar a cabo la implementación de la aplicación Sistema de Gestión Educativa (SGE) - #PilandoAndo, se utilizaron las siguientes tecnologías:

Lenguaje de Programación PHP (Versión 8.1)

Estructura o Framework de PHP Laravel (Versión 9.2)

Vue.JS (Versión 2)

Base de Datos MySQL

Servidor Web Apache

Conforme a lo mencionado, se utilizó lo que se conoce como la estructura LAMP (Siglas en inglés para Linux, Apache, MySQL y PHP), que es ampliamente reconocida en la industria como una estructura de desarrollo que permite generar proyectos en entornos web como pruebas de concepto, con las cuales se obtiene una relativa baja complejidad que le permite al analista-programador poder implementar funcionalidades rápidamente.

A nivel de servidores, se optó por una solución en la nube proveída por la empresa Digital Ocean llamada "Droplets", la cual es un "VPS" (Siglas en inglés para Servidor Virtual Privado), el cual contó con una capacidad al momento de su desarrollo e implementación de 8GB de memoria RAM, 2 Intel vCPUS, 160GB SSD de almacenamiento, todo corriendo bajo la versión de Ubuntu Server 22.04 LTS (Siglas en inglés para Soporte a Largo Plazo).

Se reconoce que lo imperativo de este Proyecto de Investigación no yace directamente en el desarrollo de una aplicación web que permita realizar el emparejamiento entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga; sino más bien la validación de conceptos pedagógicos, modelos matemáticos que serán presentados, posteriormente, y la aplicabilidad de buscarle el mejor estudiante a un tutor y el mejor tutor a un estudiante, que como fue mencionado en las hipótesis de Investigación, esto puede coadyuvar a un mejor entorno de enseñanza – aprendizaje.

Configuración del Servidor

Como este es un proyecto que está basado en la infraestructura tecnológica LAMP, se recomienda el uso futuro para una implementación en la que se consideren una mayor cantidad de variables o un esquema de mayor complejidad, el uso de una versión de Servidor Linux que cuente con Soporte a Largo Plazo. Para configurar el servidor, se siguieron los siguientes pasos:

Instalación del Servidor Web ApachePara instalar apache en el servidor Linux, se tuvo que correr la siguiente instrucción en línea de comandos para actualizar el índice del paquete local a manera de que se reflejen los últimos cambios disponibles en el servidor de paquetes (APT) de Ubuntusudo apt update

Luego, se instaló el paquete llamado apache 2:sudo apt install apache2

Ahora que el servidor web Apache se encuentra instalado, se debe validar su instalación corriendo el siguiente comando:sudo systemctl estatus apache2

Figura 35: Validación e Inicialización del Servidor Web Apache Configuración de los Virtual HostsSe creó el directorio para el dominio pilandoando.org en el que se encuentra alojado y disponible nuestra aplicación:sudo mkdir /var/www/pilandoando.org Luego de ello, se asignó la propiedad del directorio con la variable de entorno \$USER:sudo chown -R \$USER:\$USER /var/www/pilandoando.org

A manera de asegurar que los que los permisos hayan sido otorgados correctamente al usuario administrador para leer, escribir y ejecutar los archivos de configuración, mientras que solamente se le otorgan permisos de lectura y ejecución a otros grupos:sudo chmod -R 755 /var/www/pilandoando.org

Posterior a ello, se crea una página de prueba utilizando el editor nano llamada index.html para validar la instalación del Servidor Apachesudo nano /var/www/pilandoando.org/index.html

De forma que el Servidor Apache entregue este contenido, es necesario crear un archivo de virtual host con las instrucciones correctas. En vez de modificar el archivo por defecto de configuración ubicado en /etc/apache2/sites-available/000-default.conf, se creará uno nuevo en /etc/apache2/sites-available/your_domain.conf:sudo nano /etc/apache2/sites-available/pilandoando.org.conf

Figura 36: Configuración exitosa del dominio pilandoando.org en el Servidor Web Apache Como se puede observar, se ha actualizado el DocumentRoot a un nuevo directorio llamado ServerAdmin a un email que el administrador de pilandoando.org pueda acceder. También, se añadieron dos directrices:ServerName: Establece que la base del dominio debe coincidir con la definición del host virtual ServerAlias: Define que otros nombres deben coincidir como si fueran el nombre base

Se guarda y se cierra el archivo cuando se haya terminado. A continuación, se habilitará el archivo con la herramienta a2ensite:sudo a2ensite pilandoando.org.conf

Luego, se deshabilitará el sitio por defecto que se encuentra definido en 00-default.conf.:sudo a2dissite 000-default-conf

Probaremos la existencia de algún error de configuración:sudo apache2ctl configtest

En caso de que todo salga bien, se debe recibir la respuesta Syntax OK.

Se reiniciará el Servidor Apache con el siguiente comando para implementar los cambios que se ha realizado:sudo systemctl restart apache2

Configuración del Proyecto de Laravel en el Servidor (Backend)Se colocará el proyecto Laravel dentro de la carpeta /var/www/ y se asegura de especificar la carpeta pública dentro del proyecto Laravel, el directorio raíz en el archivo anterior que se creó pilandoando.org. conf.

Luego, cuando se accede al dominio, se accederá al archivo index.php dentro de la carpeta pública, y luego, desde index.php, Laravel iniciará toda la aplicación, así es como funciona el ciclo de vida de la solicitud de Laravel.

Posteriormente, se creará la Base de Datos en la que se colocarán las credenciales de ella en PHPMyAdmin. Una vez se cuenten con las credenciales, se creará un archivo. env y se pegarán las credenciales allí. Laravel tiene un archivo. env que se usará para almacenar las claves y contraseñas de la aplicación.

Una vez la Base de Datos ha sido conectada a esta aplicación, se debe ejecutar las migraciones, lo que se puede hacer ejecutando el siguiente comando dentro del directorio del proyecto de Laravel:php artisan migrate.

Esto, creará todas las tablas que se ha definido previamente en la Base de Datos MySQL de forma automática.

Configuración de Vue.JS en el Servidor (Frontend)Para configurar el servidor, como se ha usado la aplicación Vue in-out, se tiene que configurar Vue.js de igual forma.

Se ejecutará el siguiente comando para configurar Vue y todos los demás elementos necesarios para el desarrollo en el ecosistema de Laravel:npm install vue

Luego de ello, a manera de compilar el componente Vue.Js en el lenguaje de programación Javascript, se debe ejecutar el siguiente comando:npm run prod.

Con todo esto, el sistema de Linux + PHP + Laravel + MySQL + Vue.Js se encontrará, totalmente configurado

Estructura de un Sistema en Laravel PHP

Mencionado, anteriormente, Laravel es un "framework" (Marco de Trabajo, en español) de PHP que permite desarrollar aplicaciones web utilizando el patrón de arquitectura Modelo Vista Controlador (MVC).

Figura 37: Diagrama por Jerarquía de los Componentes de una Aplicación en Laravel PHP La estructura de este sistema se encuentra claramente definida, por lo que se facilita el mantenimiento del código de forma que este sea escalable agregando nuevas funcionalidades en trabajos o investigaciones futuras bajo el proyecto #PilandoAndo.

El objetivo en este Proyecto de Investigación no es definir cada uno de los elementos que fueron programados en Laravel PHP bajo la plantilla "Blade" que es el principal motor de Laravel, sino más bien hacer una descripción de la arquitectura de este y especificar los componentes desarrollados el funcionamiento de la aplicación del "Sistema de Gestión Educativa (SGE) - #PilandoAndo" como una prueba de concepto.

El punto de entrada para cualquier petición a una aplicación desarrollada bajo Laravel PHP es la carpeta public/index.php, el cual no contiene casi nada de código; al contrario, se convierte en el punto de partida que permite cargar al resto del entorno de desarrollo. La primera acción que este hace es crear un ejemplo de contenedor de la aplicación o servicio que estemos desarrollando.

Cuando se recibe una solicitud entrante en Laravel PHP, esta se enviará al Kernel HTTP (el cual se ha habilitado en este desarrollo) o al Kernel de la consola de comandos como tal, pero esto dependerá del tipo de solicitud que llegue a la aplicación. Dicho Kernel HTTP que se utiliza permite definir una lista de middleware HTTP a través del cual es necesario que pasen todas las solicitudes antes de ser manejadas por la aplicación desarrollada.

El middleware se encarga de mantener una lectura y escritura en la sesión HTTP de cada usuario, le permite inferir si la aplicación se encuentra en mantenimiento o no. El "Method Signature" recibe una solicitud por parte del usuario y devuelve una respuesta por parte del servidor.

Es útil utilizar una analogía que el Kernel es una gran caja negra en la que se encuentra la aplicación que se ha desarrollado y se encuentra autocontenida dentro de él, si el recibe solicitudes HTTP, devolverá respuestas HTTP a dichas solicitudes.

Se ha desarrollado la Clase Kernel respectiva ruta al middleware y a sus grupos que se estará utilizando en esta aplicación como se muestra a continuación:

Figura 38: Clase Kernel de Laravel PHP para nuestra aplicación

Al momento de arrancar el Kernel, la acción más importante que debe realizar es cagar los "Service Providers" o Proveedores de Servicio de esta aplicación, los cuales son los responsables de iniciar todos los diferentes componentes del Framework Laravel PHP, principalmente la Base de Datos, Validación, Enrutamiento y la Cola. Todos los "Service Providers" para cualquier aplicación Laravel se encuentran en el archivo de configuración en la carpeta raíz llamada config/app.php.

Uno de los principales "Service Providers" en esta aplicación se encuentra en el directorio App\Providers\RouteServiceProvider. Servicio que carga todas las rutas de los archivos que se encuentran en la aplicación.

En continuidad con lo mencionado, anteriormente, el middleware proveerá de un mecanismo de alto rendimiento para filtrar o verificar las solicitudes HTTP que ingresen a la aplicación; siendo utilizado por ejemplo en el Panel de Administración, para verificar si el usuario está autenticado o no, caso contrario hará que el middleware le redireccione a la pantalla de inicio de sesión.

Figura 39: Diagrama de las Rutas utilizadas (en inglés) en la aplicación desarrollada Estructura de Directorios de la Aplicación en Laravel PHP

Figura 40: Estructura de los Directorios de la aplicación Sistema de Gestión Educativa (SGE) - #PilandoAndo Esquema de la Base de Datos Implementada en MySQL (Normalizada a la 3FN)

Figura 41: Esquema de la Base de Datos de la Aplicación (PHPMyAdmin - MySQL)

Por último, se abordará la Base de Datos que con anterioridad fue conceptualizada y establecida a través de un Modelo Entidad-Relación, el cual ahora se procederá a implementar mediante los valores "Seeds" o semillas que permitieron la migración de cada uno de los modelos que fueron desarrollados para suplir cumplir con el objetivo de la aplicación.

Como se puede observar, existen tablas adicionales a las que fueron presentadas inicialmente en el Modelo Entidad Relación que fueron creadas, específicamente, por Laravel PHP con tres objetivos:

Manejo de Contraseñas y Tokens de Acceso Personales: contraseña_resets, personal_access_tokens Gestión de los "Trabajos Fallidos o Incompletos" en el Kernel HTTP: failed_jobs

Migraciones que contienen la estructura principal de la Base de Datos: migrations

Resulta crucial mencionar que en este capítulo no se abordó el emparejamiento entre Estudiantes y Tutores más que la representación a nivel de Base de Datos y su presentación en la arquitectura de la aplicación, dado que dicho modelo matemático y sus ramificaciones serán explicados en el Capítulo IV de este Proyecto de Investigación con mayor profundidad.

Capítulo IV: Emparejamiento de Estudiantes y Tutores

Adaptación de Clústeres Integrados

En el capítulo I de este Proyecto de Investigación se abordaron los diferentes estilos de aprendizaje y enseñanza bajo el Modelo Pedagógico de Grasha-Riechmann, así como las pruebas que se tienen que aplicar a cada uno de los Estudiantes y Tutores que forman parte del estudio a manera de poder realizar el

emparejamiento.

Es por ello, que se procede a hacer una adaptación propia del "Método de Clústeres Integrados", en donde se establecía la correlación entre un Estilo de Enseñanza de un Tutor y un Estilo de Aprendizaje de un Estudiante; sin embargo, para ello, se utilizarán las estructuras matemáticas que ya han sido creadas y establecidas anteriormente.

Primero, nuevamente, se tienen que reconocer que, al tener 6 dimensiones de Estilos de Aprendizaje para un estudiante, que son [Independiente, Dependiente, Colaborativo, Competitivo, Evitativo y Participativo]; así como se tienen 5 dimensiones de Estilos de Enseñanza de un Tutor, siendo las siguientes [Experto, Autoridad Formal, Modelo Personal, Facilitador, Delegador].

Como fue mencionado anteriormente, todos los estudiantes y tutores tienen un poco de cada uno de todos los estilos de aprendizaje y estilos de enseñanza respectivamente; sin embargo, se utilizará el estilo dominante, es decir; el que tienen un valor más grande en comparación de los otros estilos, para realizar el emparejamiento.

Para ejemplificar esto, se trabajará con los resultados de una prueba de estilos de aprendizaje para un estudiante y una prueba de estilos de enseñanza para un tutor. Todos estos resultados no tienen ningún valor más que el teórico, ya que no provienen de ninguna persona que haya realizado la prueba en cuestión. Para eso, únicamente se tomarán en consideración los 3 primeros estilos de aprendizaje o enseñanza que pueda tener un estudiante o tutor, a efectos de simplificar el desarrollo del algoritmo de emparejamiento, serán descartados los demás estilos en cuestión; debido a que lo que se desea es obtener una aproximación o un emparejamiento máximo, no se puede asegurar que este sea el más preciso.

Hay que suponer que se le aplicó la prueba de Estilos de Aprendizaje a un Estudiante, es decir, un elemento del , al que se va a denominar , lo cual arrojó los siguientes resultados en los 60 ítems que este respondió.

Independiente: 4.5

Evitativo: 2.0 Colaborativo: 4.0 Dependiente: 3.0 Competitivo: 2.5 Participativo: 4.7

Con este caso en cuestión, se comprende que el Estilo de Aprendizaje dominante fue "Participativo", sin embargo, también el estudiante presentó valores menores, pero que demuestran que existen ciertas características puntuales de otros estilos de aprendizaje como "Independiente y Colaborativo", respectivamente.

Con ello, se puede determinar que para el elemento del , se establece un subconjunto , en donde se almacenarán las preferencias de este estudiante con respectivo a su estilo de aprendizaje que serán los siguientes expresados en la Matriz de Preferencias (), en un arreglo unidimensional , en vista de que estos son los estilos que presentan las puntuaciones ponderadas más altas.

Se respetará el orden específico con el cual los estudiantes denotaron sus Estilos de Aprendizaje, ya que estas serán sus preferencias, en conformidad con la adaptación propuesta al Algoritmo de Gale-Shapley. De igual forma, se presentará el caso de un Tutor, al que se denominará, ya que es un elemento del Conjunto

T al que se le aplicó la prueba de Estilos de Enseñanza, la cual arrojó los siguientes resultados en los 40 ítems

que este respondió.

Experto: 4.2 Autoridad Formal: 3.4 Modelo Personal: 2.4

Facilitador: 4.1 Delegador: 3.6

Se deduce que el estilo dominante fue el "Experto", sin embargo, el tutor también presentó valores menores que muestran que este tiene cualidades específicas de otros estilos de enseñanza, como lo fue en el caso del estudiante.

Ahora, se determinará que dicho Tutor tiene otros estilos de enseñanza que se expresan en él, como lo son [Facilitador, Delegador], ambos en el orden ya colocado. Es por ello, que se almacenarán en la Matriz de Preferencias , las siguientes preferencias de estilos de enseñanza [Experto, Facilitador, Delegador]. Dicho Tutor , que es un elemento del , tendrá ahora dentro de él un Subconjunto llamado , que servirá para el almacenamiento de los estilos de enseñanza previamente mencionados. Datos que serán colocados en .

Por lo tanto, el subconjunto para el estudiante es [Independiente, Colaborativo, Participativo] ya que son los estilos con las puntuaciones más altas.

Simulación Teórica del Emparejamiento

A continuación, se utilizarán los elementos matemáticos que ya han sido definidos previamente, para crear un Emparejamiento Aproximado entre y .

Cabe resaltar estos son estudiantes y tutores totalmente ficticios, por lo que no se cuenta con la Matriz de Preferencias (P) de cada uno de ellos, dado que ninguno de ello ha hecho la Prueba de Grasha-Riechmann para Estilos de Aprendizaje o Enseñanza, por lo que se asumirá un entorno en el que todos los estudiantes y tutores están libres inicialmente.

Se aplicará una versión adaptada del Algoritmo Gale-Shapley a Estudiantes y Tutores, conociendo que puede llegar a existir una reafirmación positiva de parte de estas dos entidades al momento de aplicarlo, ya genera

un mejor entorno de enseñanza-aprendizaje.

Inicialmente, todos los estudiantes y tutores están libres, ninguno de ellos ha sido emparejados con el otro. Primera iteración

El propone a (Su primera elección), en la que acepta de manera temporal.

El propone a (Su primera elección), en la que acepta temporalmente.

El propone a (Su primera elección). Sin embargo, ya tiene una propuesta del , la cual prefiere sobre la propuesta de ; dado esta situación, la propuesta de es rechazada.

El propone a (Su primera elección) y lo acepta de forma temporal.

El propone a (Su primera elección). Empero, ya tiene una propuesta de , que prefiere sobre la propuesta de , ocasionando que sea rechazado.

Segunda iteración

propone a (Su segunda elección) y este acepta temporalmente.

propone a (Su segunda elección). Sin embargo, ya tiene una propuesta de E4 que prefiere directamente sobre la propuesta de , por lo que es rechazado por .

Tercera Iteración

propone a (Su tercera elección), donde acepta temporalmente.

Todos los estudiantes que han propuesto a los tutores ya se encuentran emparejados, aproximadamente.

Resultado de la Simulación

está emparejado con .

Figura 32: Simulación Teórica del Algoritmo de Gale-Shapley aplicado a Estudiantes y Tutores Esta es una simulación teórica con fines meramente académico, ya que no presenta un objetivo más que el de ejemplificar gráficamente ¿Cómo sería un emparejamiento Aproximado entre los elementos de los Conjuntos T y E utilizando el Algoritmo de Gale-Shapley como base teórica? [58]

Se reconoce que existen otros Algoritmos de Emparejamiento, los cuales tienen su principal origen en la Investigación de Operaciones con los problemas de Asignación de Recursos, que es básicamente una analogía esencial que permite comprender el fin último de este Proyecto de Investigación: Buscar el mejor estudiante para cada tutor y viceversa.

Conociendo esto, así como las restricciones de dominio establecidas en el Capítulo I de este Proyecto de Investigación, se procederá a establecer la adaptación específica del Algoritmo de Gale-Shapley que se utilizará para emparejar Estudiantes con Tutores, basados en sus Estilos de Aprendizaje vs. Estilos de Enseñanza y el "Método de los Clústeres Integrados" de Grasha-Riechmann.

Algoritmo de Emparejamiento Tutores - Estudiantes

Al utilizar los métodos y pruebas anteriormente mencionados, se debe acotar que se establecerá el conjunto sobre el cual se comenzará a emparejar, serán las preferencias que tengan los estudiantes, las cuales se expresan en la siguiente tabla, comparándolas con los Estilos de Enseñanza de los Tutores.

Tabla 22: Preferencias de Estilos de Enseñanza de Tutores por los Estudiantes

Estilo de Aprendizaje

Preferencia

Independiente

Facilitador

Modelo Personal

Experto

Dependiente

Experto

Autoridad Formal

Colaborativo

Facilitador

Modelo Personal

Experto

Competitivo

Experto

Autoridad Formal

Evitativo

Autoridad Formal

Experto

Delegador

Participativo

Modelo Personal

Experto

Autoridad Formal

De esta tabla, se denotarán aspectos como el caso del Estilo de Aprendizaje "Evitativo", el cual no es expresado por el Dr. Anthony Grasha en ninguno de los Clúster Integrados, por lo cual se realizó una revisión en la literatura correspondiente al comportamiento de este tipo de Estilo de Aprendizaje y con ello se establecieron preferencias para el mismo, las cuales son [Autoridad Formal, Experto, Delegador]. De igual forma, cada una de las preferencias de Estilos de Enseñanza que tienen cada uno de los Estudiantes, los cuales tienen un Estilo de Aprendizaje específico y previamente definido, se encuentran establecidas en tres opciones que se contemplan en la tabla en cuestión, que servirán como base al momento de hacer el emparejamiento con los tutores.

Cuando se está emparejando desde la perspectiva del Estudiante, el Estilo de Aprendizaje que se obtiene al momento de la aplicación de la prueba, debe ser el que sea tomado en consideración; dado que dicho estilo tendrá diferentes preferencias con los Tutores, debido a que ellos tienen Estilos de Enseñanza que son compatibles con dicho Estilo de Aprendizaje.

Estas reglas de emparejamiento proporcionan un marco estructurado y detallado para garantizar que los estudiantes y tutores sean emparejados de manera óptima según sus Estilos de Aprendizaje y Enseñanza, respetando las restricciones y prioridades establecidas.

A continuación, se presenta el Algoritmo de Emparejamiento que se utilizará para emparejar a los Estudiantes con Tutores en las Intervenciones Educativas Masivas de la Fundación Ayudinga.

Formulación Matemática del Algoritmo

Se utilizará el Modelo Matemático planteado en el Capítulo I de este Proyecto de Investigación como base para que este sea ampliado, presentando el algoritmo de emparejamiento entre estudiantes y tutores basados en sus estilos de aprendizaje y enseñanza.

VariablesEs una variable binaria a través de la cual se indica si el estudiante es emparejado con el tutor . Cuando se denota que el estudiante i ha sido emparejado con el tutor j, mientras que muestra que ninguno de los dos ha sido emparejado.

ParámetrosEste es un elemento de la matriz de preferencias en el que se denota el grado de preferencia que tiene un estudiante hacia un tutor , todo esto basado en la compatibilidad previamente definida en los estilos de aprendizaje de un estudiante y los estilos de enseñanza de un tutor .

Funciones de PreferenciaA continuación, se procederá a definir la función de las preferencias de estilos de un estudiante con .Con esta función se calcula la sumatoria de las compatibilidades entre los estilos de aprendizaje de un estudiante i, así como los estilos de enseñanza del tutor j multiplicados por el grado de preferencia

Considerando el concepto, anteriormente mencionado, ahora se define la función de las preferencias de los estilos de un tutor con .De forma similar a la función de preferencias del estudiante, esta calcula la suma de las compatibilidades entre los estilos de aprendizaje de un estudiante i y los estilos de enseñanza de un estudiante j multiplicándolos por el grado de preferencia

RestriccionesExisten algunas restricciones que el estudiante solo sea emparejado como máximo a un tutor y que cada tutor sea emparejado a lo máximo con cinco estudiantes.

También, existe una restricción en la compatibilidad de los clústeres que se puede denotar como , en caso de que no exista compatibilidad entre y .Con esta restricción, se asegura de que únicamente sean permitidos los emparejamientos entre los estudiantes y tutores en caso de que exista alguna compatibilidad entre sus estilos de aprendizaje y enseñanza.

Función ObjetivoAl ser este un problema de emparejamiento o asignación de recursos con sus preferencias específicas, se encuentra una Función Objetivo, a través de la cual se va a sintetizar todos los elementos planteados anteriormente.

Con ella se maximiza la "satisfacción total de los emparejamientos", sumando de esta manera las preferencias de cada uno de los estudiantes y tutores por los emparejamientos efectuados.

Implementación Paso a Paso

Ya una vez formalizado matemáticamente el algoritmo de emparejamiento entre estudiantes y tutores, se procede a describirlo en palabras para una mejor comprensión del lector de este Proyecto de Investigación. InicializaciónTodos los estudiantes y tutores se encuentran libres inicialmente y no están emparejados. Cada estudiante y cada tutor tiene un subconjunto de preferencias que está basado en las correlaciones obtenidas del Método de Clústeres Integrados.

Los estudiantes y tutores ordenarán sus preferencias en conformidad con las opciones de estilos de enseñanza y aprendizaje que estos tienen.

Se inicializará el contador de estudiantes emparejados con cada uno de los tutores en 0.

Propuesta Estudiante – TutorSiempre que exista un estudiante que no haya sido emparejado y este aún no haya propuesto a todos los tutores:Dicho estudiante seleccionará al tutor al que tenga mayor preferencia en su lista, siempre y cuando no haya recibido una propuesta por el estudiante.

Se valida la compatibilidad del Estilo de Enseñanza del Tutor con el Estilo de Aprendizaje del Estudiante. Si el tutor no ha sido emparejado, o en su defecto el contador de estudiantes emparejados con él es < 5 y la compatibilidad entre ambos está confirmada:Se empareja al estudiante con el tutor Incrementa en 1 el contador del tutor.

En caso contrario:Si el tutor tiene preferencia a un nuevo estudiante en contraposición de los que ya tiene actualmente y la compatibilidad entre ambos es válida.Se desempareja al tutor con el estudiante que tenga menos preferencia.

Se emparejará al tutor con ese nuevo estudiante.

SinoEl estudiante marca al tutor como propuesto y este continúa con el siguiente tutor que está en su lista de preferencias.

En cada uno de los pasos al momento de hacer la propuesta, la compatibilidad del estilo de enseñanza del tutor y el estilo de aprendizaje del estudiante será verificado contra los Clústeres Integrados. En caso de no existir compatibilidad, el estudiante continuará con el siguiente tutor en la lista de preferencias propia. Existe una correlación fuerte entre las preferencias de estudiantes y tutores, ya que cada una de ellas surgen de los Clústeres Integrados. Creando un ejemplo ficticio: Se tiene a un estudiante con un estilo de aprendizaje "Independiente", por lo que este en primera instancia preferiría a un tutor con un estilo de enseñanza de tipo "Facilitador", siendo este el dominante; posterior a ello el tutor tipo "Modelo Personal" y por último el "Experto", justamente en ese orden.

Creación de los Grupos de TutoríaCuando un tutor alcanza 5 estudiantes emparejados, se crea un grupo de tutoría completo y de igual forma, se crea un nuevo grupo de tutoría para ese tutor, reiniciando su contador de estudiantes emparejados a 0.

En caso de que algún tutor no pueda alcanzar los 5 estudiantes emparejados y tampoco existan más propuestas posibles según las preferencias establecidas, se formará un nuevo grupo de tutoría con los estudiantes que fueron emparejados hasta ese momento.

Verificación y Ajustes de los gruposSe revisa la distribución de los estudiantes dentro de los grupos de tutoría, de forma que se pueda aseverar que dentro de ellos hay un balance y que las preferencias expresadas por cada uno de ellos estén siendo respetadas.

Puede ser necesario realizar ajustes menores entre cada uno de los grupos de forma que se pueda mejorar la compatibilidad entre cada uno de los estilos, ya sea de enseñanza o de aprendizaje; siempre priorizando las preferencias previamente establecidas por los estudiantes y tutores. Puede suceder que se tenga que reasignar a algunos estudiantes a otros tutores a manera que se pueda mejorar la compatibilidad y el equilibrio propuesto entre todos los grupos de tutoría, respetando sus preferencias declaradas.

Resultado Final (Grupos de Tutoría)Se devuelve una tabla en la que se muestran los emparejamientos entre estudiantes y tutores, así como los grupos de tutorías formados, encabezados por el tutor asignado. Este algoritmo devolverá una estructura de datos en la que se incluyen los emparejamientos y los grupos de tutoría, lo que permite ajustar constantes que se pueden convertir en variables como la cantidad de estudiantes por grupo, la cual por el momento se estaba considerando en .

Simulación en Pseudocódigo

Se crea una función llamada "compatibilidad" la cual toma como argumentos las listas de estudiantes , así como la lista de Tutores y la Matriz de Preferencias . Luego, se inicializará una matriz llamada en la que se almacenarán los emparejamientos y una lista denominada "Emparejados", en la que se guarda el registro de cada uno de los estudiantes que ya han sido emparejados con un Tutor.

Posteriormente, se iterará en la función sobre cada estudiante y tutor verificando si el estudiante que se está evaluando ya se encuentra emparejado, dando en caso contrario, que se calcule con la función "compatibilidad", el grado de compatibilidad entre un estudiante o tutor.

En caso de que exista esta "compatibilidad" y el tutor aún no tenga almacenado la cantidad de 5 estudiantes propuesta, se actualizará la matriz en la que se indicará el emparejamiento y coloca que un estudiante ya ha sido emparejado con dicho tutor. Luego la matriz devuelve su valor en el que se muestran los emparejamientos entre estudiantes y tutores.

Por último, se define una nueva función llamada "compatibilidad", en la que se calcula el grado de compatibilidad basado en los subconjuntos y y la Matriz , entre estudiantes y tutores. Al final se ejecuta la función "Emparejamiento" con la que se despliegan los grupos de estudiantes y tutores, así como la Matriz de Preferencias .

Ejemplo Práctico

Para ejemplificar la aplicación de este algoritmo de emparejamiento entre estudiantes y tutores basados en sus estilos de aprendizaje y estilos de enseñanza, respectivamente; se procede a simular un caso práctico en el que se tendrán a 20 estudiantes y 7 tutores. Cada uno de ellos tendrá un estilo de aprendizaje (estudiantes) y un estilo de enseñanza (tutores) y serán emparejados con las reglas establecidas previamente con el

Método de Clústeres que es planteado en el Modelo de Grasha-Riechmann.

Todos ellos han realizado la prueba de estilos de aprendizaje (estudiantes) y la prueba de estilos de enseñanza (tutores), sin embargo, es importante denotar que todos estos resultados que se mostrarán a continuación son meramente teóricos y han sido creados sin seguir un patrón específico. Solo tienen un carácter demostrativo y meramente académico.

Tabla 23: Ejemplo de Estilos de Aprendizaje de estudiantes al azar

Nombre del Estudiante

Primer Estilo de Aprendizaje

Segundo Estilo de Aprendizaje

Tercer Estilo de Aprendizaje

Marcelo Hernández

Colaborativo

Participativo

Competitivo

Sofía Martínez

Participativo

Independiente

Evitativo

Antonio Ruíz

Independiente

Dependiente

Colaborativo

Camila Gómez

Competitivo

Colaborativo

Independiente

Ricardo Jiménez

Dependiente

Competitivo

Participativo

Vanessa López

Colaborativo

Competitivo

Evitativo

Javier Solís

Independiente

Participativo

Colaborativo

Esperanza Reyes

Competitivo

Dependiente

Colaborativo

Mateo Ortiz

Participativo

Competitivo

Independiente

Valeria Pérez

Dependiente

Independiente

Participativo

Luis Méndez

Colaborativo

Competitivo

Dependiente

Bianca Rojas

Participativo

Colaborativo Evitativo

Fernando Sánchez

Independiente

Participativo

Dependiente

Gabriela Torres

Competitivo

Participativo

Independiente Adrián Guerrero Independiente Participativo Competitivo Catalina Zuñiga Competitivo Dependiente Evitativo Roberto Aguilar Participativo Independiente Colaborativo Daniela Álvarez Dependiente Colaborativo **Evitativo** Se hará lo mismo, pero ahora con los tutores, que serán 7 con estilos de enseñanza totalmente pseudoaleatorios y servirán de base para emparejarlos, posteriormente con los estudiantes que ya se han presentado. Tabla 24: Ejemplo de Estilos de Enseñanza de tutores al azar Nombre del Tutor Estilo de Enseñanza Segundo Estilo Tercer Estilo Óscar Ramírez Facilitador Modelo Personal Experto Patricia González **Autoridad Formal** Experto Modelo Personal Jorge Mendoza Modelo Personal Facilitador Experto Irene Sandoval Experto **Autoridad Formal** Modelo Personal Miguel Ángel López Delegador Facilitador Modelo Personal Carolina Herrera Experto **Autoridad Formal** Modelo Personal Ricardo Nuñez **Autoridad Formal** Experto Modelo Personal Se procederá a utilizar el algoritmo de emparejamiento previamente descrito para crear "Grupos de Tutoría". Estos grupos, se generan a partir de una base del estilo de la compatibilidad del estilo de enseñanza de cada uno de los estudiantes y el estilo de enseñanza del tutor. El algoritmo funciona de forma secuencial, es decir que tomará a los primeros estudiantes que se encuentren

Colaborativo
Carlos Vásquez
Dependiente
Competitivo
Independiente
Mónica Velázquez
Colaborativo
Dependiente

en las listas con sus preferencias de estilos de aprendizaje y los emparejará con un tutor compatible, basado en su estilo de enseñanza. Suponiendo que todos tomaron sus pruebas de Grasha-Riechmann, tanto para estudiantes como para tutores. Los estudiantes serán denotados a manera de simplificación con una numeración secuencial de E1, E2, E3, E4 y E5.

Tabla 25: Creación de grupos de tutoría de usando el Algoritmo de Emparejamiento

Grupo

Tutor

E1

E2

F3

E4

E5

1

Óscar Ramírez

Marcelo Hernández

Vanessa López

Luis Méndez

Mónica Velázquez

2

Patricia González

Fabiola Gómez

Valeria Pérez

Carlos Vásquez

Daniela Álvarez

3

Jorge Mendoza

Antonio Ruíz

Javier Solís

Fernando Sánchez

Adrián Guerrero

4

Irene Sandoval

Camila Gómez

Esperanza Reyes

Iván Castillo

Catalina Zuñiga

Roberto Aguilar

5

Miguel Ángel López

Sofía Martínez

Mateo Ortiz

Bianca Rojas

6

Carolina Herrera

Ricardo Jiménez

7

Ricardo Núñez

Gabriela Torres

Se puede denotar que no todos los grupos han sido llenados con el máximo de estudiantes de y esto se genera producto de la incompatibilidad entre estilos de aprendizaje y estilos de enseñanza de estudiantes y tutores, respectivamente.

En el caso de algunos grupos, incluso los tutores llegan a contar únicamente con un solo estudiante, lo cual puede hacer que, en la práctica, la creación del grupo de tutoría se vuelva inviable debido a restricciones de espacio. Sin embargo, todos los estudiantes tienen un grupo y todos los tutores tienen al menos un estudiante; puede que esto no suceda al trabajar con datos reales.

Resulta importante enfatizar que la cantidad de estudiantes por cada grupo de tutoría responde a las Restricciones de Dominio que fueron presentadas en el Capítulo II, sin embargo, se pueden hacer diferentes combinaciones para denotar los escenarios que se podrían desarrollar frente un nuevo valor de estudiantes por grupo con el grupo de datos que se cuenta.

Es crucial enfatizar que ejemplificaciones como la presente, concernientes al emparejamiento entre estudiantes y tutores en las intervenciones educativas de la Fundación Ayudinga, trascienden meramente el ámbito teórico.

Posteriormente, en el Capítulo V se analizará y se pondrá a prueba el algoritmo de emparejamiento con los datos recopilados en el estudio exploratorio de #PilandoAndoPaLaU.

Capítulo V: Análisis y Discusión de Resultados

Escenario Ideal del Modelo

Una de las restricciones que se ha planteado a este modelo es que la cantidad máxima de estudiantes por grupo de tutoría es . Sin embargo, ante ello hay que evaluar la viabilidad de mantener esa restricción en el modelo, ya que surge una nueva pregunta: ¿Se podrá cumplir siempre en cualquier implementación de #PilandoAndo?

Análisis de las Restricciones

Para esto, se debe tomar en cuenta que una sesión de #PilandoAndo, existen dos variables las cuales, por definición, son dependientes la una de la otra, que en este caso son los Estudiantes y los Tutores. Esto se debe a que sin estudiantes no podrá haber sesión de #PilandoAndo, por lo que no serán necesarios los tutores y que, sin tutores, los estudiantes no podrán tener una sesión de #PilandoAndo, ya que esta se basa en tutorías dadas por voluntarios.

Esto genera una interdependencia entre las variables, la cual afecta directamente a la configuración de cantidad de máxima de estudiantes por grupo de tutoría, ya que en algunas ocasiones puede existir un más estudiantes de los que los tutores pudiesen manejar, de manera óptima y viceversa.

Sin embargo, es importante declarar de antemano que estos datos son variables que no se pueden controlar, dado que dependen de la voluntariedad humana y dicho comportamiento depende de las suposiciones hechas sobre la conducta del individuo, siendo esta una de sus principales limitantes haciendo que, a partir de una serie de hipótesis, se pueda llevar a la comprobación fáctica de estos [59].

Mencionado esto, se debe considerar que la planificación previa a una sesión de #PilandoAndo resulta en un conjunto de elementos que deben trabajar juntos y en armónica colaboración para resolver temas como presupuesto, convocatoria de estudiantes y tutores, así como la distribución del espacio físico.

Hay que detenerse en este último elemento, ya que de ahí nace la necesidad o no de flexibilizar (en aumento o disminución), la cantidad de estudiantes en un grupo de tutoría. A nivel de espacio físico, se debe conocer que este limita directamente la cantidad de Estudiantes y Tutores que se puedan recibir en una sesión específica. Donde el aforo es definido por el equipo de Seguridad Ocupacional de la organización aliada a la Fundación Ayudinga con la que se esté desarrollando el #PilandoAndo.

Esto genera un quiebre en la Oferta y la Demanda, dado que se pueden presentar circunstancias en la cual se tenga una demanda elevada de estudiantes que desean recibir tutorías en #PilandoAndo y en una proporción similar, una cantidad de tutores que estén dispuestos a dar estas tutorías de forma voluntaria; sin embargo, la cantidad de estudiantes o tutores que se pueda recibir queda limitada debido al espacio físico con el que se cuente.

Mencionado esto, es importante establecer que para las sesiones que competen al estudio exploratorio que se ha estado construyendo a lo largo de este Proyecto de Investigación, se observó un aumento no usual en la demanda de Estudiantes que deseaban recibir las sesiones de tutoría de #PilandoAndoPaLaU en la edición desarrollada entre agosto – septiembre del año 2023, por lo que se tuvo que realizar ciertas adecuaciones y expansiones al espacio físico a utilizar.

Para poder atender a 278 Estudiantes, 66 Tutores y 45 voluntarios de logística, se tuvieron que destinar 3 salones en el Centro de Capacitaciones Ascanio Arosemena, Edificio 702, cada uno de ellos con una capacidad máxima de 100 personas. No siendo suficiente este espacio, se habilitaron 4 salones más pequeños en el mismo lugar, únicamente que en el Edificio 703, los cuales contaban con una capacidad máxima de 20 personas cada uno.

Se presentará gráficamente la distribución de los 3 salones del Edificio 702, los cuales se utilizarán como ejemplo de ahora en adelante. Esta es una representación meramente visual, no está bajo ningún tipo de escala ni disposición final.

Figura 43: Esquemático de los Salones del Edificio 702 del Centro de Capacitaciones Ascanio Arosemena utilizados para #PilandoAndoPaLaU

Como se puede observar, en cada uno de los salones hay una limitante espacial en la cual se tendrá que ubicar a las mesas o grupos de tutoría, pero también se debe mencionar un hallazgo producto de la experiencia empírica, que es: El ruido entre las mesas y la capacidad de disminuir la concentración de los estudiantes y tutores.

Bien es cierto que esta no es una de las variables de investigación que se está utilizando en este estudio exploratorio, pero es un elemento que llevó a replantear la estrategia a través de la cual se creaban los grupos de tutoría, debido a que antes se buscaba maximizar el espacio sin ningún tipo de limitante, generando que existiesen grupos de tutoría hasta con 10-15 Estudiantes; cosa que como ya fue planteado en el Capítulo I de este Proyecto de Investigación, no resulta viable.

Al presentarse esta situación, queda en evidencia el hecho de que, si bien es cierto, tener 5 estudiantes máximo por cada grupo de tutoría (dando un total de 6 personas, incluyendo al tutor), puede resultar un escenario ideal. No necesariamente es el escenario que siempre se va a presentar, por ello es por lo que se requiere un balance entre la cantidad de Estudiantes y Tutores.

Emparejamiento de Estudiantes y Tutores en #PilandoAndoPaLaU

Ya se ha presentado algunas restricciones y la viabilidad o no de que estas se puedan ejecutar en un entorno real de una sesión de tutoría del proyecto #PilandoAndo, por lo que ahora se dedicará a examinar las dos variables de investigación (Estilos de Aprendizaje y Estilos de Enseñanza) que fueron declaradas dentro de este estudio exploratorio.

Se encontrará el Emparejamiento entre Estudiantes y Tutores para los que realizaron el cuestionario de Estilos de Aprendizaje de Grasha-Riechmann y los que realizaron el cuestionario de Estilos de Enseñanza de Grasha-Riechmann.

En el Capítulo IV de este Proyecto de Investigación, se definió el modelo matemático basado en el Método de los Clústers Integrados que permite establecer las preferencias de un estudiante hacia un tutor y viceversa, considerando su Estilo de Aprendizaje y Estilo de Enseñanza, respectivamente.

Por esto, se pondrá a prueba la aplicación "Sistema de Gestión Educativa (SGE) - #PilandoAndo", la cual se ha utilizado hasta el momento únicamente para el manejo y recolección de los datos de los estudiantes y tutores una vez responden el cuestionario, por lo que ahora se presentará para buscar su emparejamiento.

Figura 44: Panel de "Grupos" en el SGE - #PilandoAndo

En esta sección del Panel de Administración de esta aplicación, se puede observar que ya se cuenta con la pestaña "Grupos" en la que ya están precargadas la cantidad de tutores que hicieron el cuestionario, e igualmente los estudiantes que hicieron la prueba. Como se puede observar, con este conjunto de datos se tiene una relación de 3.5:1, es decir, que se tiene 3.5 estudiantes para cada tutor.

Sin embargo, esto no implica que, dada esa proporción, se puede crear grupos de un máximo de 3-4 estudiantes con su respectivo tutor, ya que se tiene que evaluar si las preferencias inherentes al Estilo de Aprendizaje de un Estudiante son emparejables con las preferencias del Estilo de Enseñanza del Estudiante. También se observa "Estudiantes por Grupo" que es el valor semilla que se utilizará en esta aplicación para poder ingresar una cantidad específica de estudiantes que se desea por grupo (Por defecto tiene 5 estudiantes) y al momento de presionar el botón "Generar Grupo", se creará un archivo CSV y PDF que se puede descargar en formato de tabla donde se presente la información de un grupo de tutoría en cuestión. Si se ejecuta el emparejamiento con la cantidad de estudiantes específica, quedaría de la siguiente manera:

Figura 45: Emparejamiento entre Estudiantes y Tutores basado en sus Estilos de Enseñanza y Aprendizaje (n = 5 estudiantes/grupo)

Como se puede observar, se despliega una tabla, la cual es de naturaleza volátil y no se encuentra almacenada de manera permanente en la base de datos debido a su capacidad de ser modificada en cualquier instante.

Esta característica se debe a que la generación de la tabla se origina a partir de un valor inicial o semilla, que corresponde al número específico de estudiantes asignados a un grupo. De los 60 tutores disponibles, únicamente a 40 se les ha asignado un grupo de tutoría.

Con ello, entonces, lógicamente surge la pregunta: ¿Se utilizó la cantidad total de estudiantes disponibles?, ¿Faltaron estudiantes por ser emparejados con un tutor? A lo que se tiene que responder que no se utilizó la cantidad total de estudiantes disponibles, quedando entonces 17 de los 210 estudiantes sin un grupo de tutoría asignado, lo que representa el 8.1% de ellos.

Figura 46: Estudiantes y Tutores no Emparejados bajo n=5 estudiantes/grupo

Al contar con 40 grupos de tutoría que fueron formados, incluso el 100% de ellos no se encuentran a su máxima capacidad de (n = estudiantes/grupo), debido a que en algunos casos puede existir un grupo de tutoría que ya haya sido creado y este tenga un Tutor (con Estilo de Enseñanza, y, por ejemplo, el Estudiante () con un estilo de Aprendizaje llamado , sin embargo estos dos no son compatibles y, por lo tanto, no se pueden asignar a ninguno de los grupos previamente establecidos, incluso el caso de que exista espacio para recibir más estudiantes en dicho grupo, ya que no ha alcanzado su capacidad máxima.

Análisis de Sensibilidad del Emparejamiento Estudiantes-Tutores

Con la confirmación de la validez del modelo matemático diseñado para emparejar estudiantes y tutores en función de sus respectivos estilos de aprendizaje y enseñanza, se procederá a realizar un análisis de sensibilidad. Este análisis tiene como objetivo evaluar la robustez del sistema utilizando los datos disponibles, con el fin de identificar un balance óptimo en la cantidad de estudiantes por grupo de tutoría y determinar el número de estudiantes que, en consecuencia, no podrían ser asignados a un grupo.

Para llevar a cabo dicho análisis, se hará uso exclusivamente del conjunto de datos concretos recabados, sin recurrir a suposiciones adicionales ni a la generación de datos sintéticos. Estos datos, que serán objeto de estudio en una variedad de escenarios, provienen de los resultados obtenidos de la implementación de pruebas de estilos de aprendizaje y enseñanza aplicadas a estudiantes y tutores en el marco del programa #PilandoAndoPaLaU durante los meses de agosto y septiembre de 2023.

Figura 47: Número de Estudiantes Emparejados con un Tutor según el Tamaño del Grupo Como se puede observar, al ejecutar el algoritmo de emparejamiento entre estudiantes y tutores, aumentando linealmente la cantidad de estudiantes por grupo de tutoría (1 al 10), se puede observar algunos detalles en el comportamiento de esta gráfica:

Al tener 1 estudiante por grupo, solo 60 estudiantes fueron emparejados y los restantes 150 no lo fueron, pero esto se debió a que no había más tutores disponibles como para crear más grupos de tutoría. Cuando se llega a n = 5 estudiantes/grupo, se ve que se acerca a la cifra de 193 estudiantes emparejados, mientras que 17 estudiantes no fueron emparejados, porque no había más grupos de tutorías disponibles. Conforme se va aumentando la cantidad de estudiantes por grupo de tutoría, se observa que al llegar a 8

estudiantes/grupo, ninguno de los 210 estudiantes quedaría sin emparejar, por ende, todos formarían parte de un grupo y tendrían a un tutor asignado.

Es aquí donde se debe analizar la conveniencia o no de tener grupos grandes o pequeños de tutoría, ya que lo óptimo según los estudios y la evidencia empírica son grupos de tutoría de 5 o menos estudiantes, sin embargo, en este caso para poder satisfacer al 100% de la demanda de estudiantes disponibles, se tendría que obviar los límites establecidos de forma inicial y aumentarlos.

Tabla 26: Relación de Estudiantes/Grupo vs. Estudiantes Emparejados y no Emparejados (n = 210)

Estudiantes/Grupo (n =)

Estudiantes Emparejados

Estudiantes no Emparejados

ı

De forma tabular, se aprecia el aumento progresivo en la cantidad de estudiantes que están emparejados con un tutor, por ende, tienen un grupo de tutoría para #PilandoAndoPaLaU. De 7 estudiantes en adelante, se pudiese decir que el aproximadamente el 100% de los estilos de aprendizaje de los estudiantes coinciden con los estilos de enseñanza de los tutores, que son las variables utilizadas para realizar el emparejamiento. Ahora, se analiza el caso de los tutores, ya que cada uno de ellos tiene un Estilo de Enseñanza específico, lo que conlleva a que este tenga preferencias con Estilos de Aprendizaje específicos, igual que los estudiantes y basado en el Método de los Clústers Integrados de Grasha – Riechmann.

Figura 48: Número de Tutores Emparejados con Estudiantes según el Tamaño del Grupo La reacción en el caso de los tutores es inversamente proporcional a la de los estudiantes, ya que cuando se ejecuta el algoritmo de emparejamiento entre ellos, a mayor cantidad de estudiantes por grupo de tutoría, menor será la cantidad de tutores que sea requerida, llevando incluso a tener "Tutores Ociosos", idea análoga al concepto de servidores ociosos, ya que es un recurso que se encuentra disponible para su uso, sin embargo no es requerido ya que con la Oferta Actual de Tutores, se logra satisfacer la demanda de estudiantes.

Tabla 27: Relación de Tutores/Grupo vs. Tutores Emparejados vs. no Emparejados (n =60)

Estudiantes/Grupo

Tutores Emparejados

Tutores sin Emparejar

Ω

Inicialmente, cuando hay entre [1-2] estudiantes por grupo de tutoría, se puede observar que todos los tutores se encuentran emparejados y no existe ningún "Tutor Ocioso", sin embargo, en esto comienza a dejar de ser realidad cuando se asigna a 3 estudiantes por grupo de tutoría.

Cuando se encuentra en una tasa de 8 estudiantes/grupo, se ve que son más los tutores sin emparejar (32), que los tutores emparejados (28) y conforme se va avanzando en la cantidad de estudiantes/grupo, de igual manera, va disminuyendo la cantidad de tutores emparejados y tutores sin emparejar.

Resulta conveniente mantener a la menor cantidad de "Tutores Ociosos", siempre y cuando se pueda satisfacer la Demanda de estudiantes, tener es un valor recomendado, dado que permite que el enfoque principal de este estudio exploratorio que son los estudiantes, sean emparejados con tutores con estilos de enseñanza relacionados a sus estilos de aprendizaje.

Conclusiones y Trabajos Futuros

Pueden resultar muchas las conclusiones a las que se puede llegar con este Proyecto de Investigación debido a que se ha hecho una revisión de la literatura de modelos pedagógicos, psicológicos, emparejamiento y matemáticos que los hemos implementado a través del desarrollo del "Sistema de Gestión Educativa (SGE) - #PilandoAndo", el cual ya se encuentra en uso por parte de la Fundación Ayudinga y la Autoridad de Panamá en sus intervenciones educativas masivas.

Sin embargo, se estima perentorio enfocarse en algunas de ellas:

A pesar de que el Modelo de Grasha-Riechmann date del año 1996, hasta el momento es el único que posee una fundamentación matemática que permita generar una equivalencia con la que se pueda decir que "Toda persona que tiene un Estilo de Aprendizaje a su vez tiene un conjunto de Estilos de Enseñanza asociados a este y viceversa". Los modelos que analizados como el de Kolb, Honey-Mumford y Felder-Silverman, incluso, hasta la actualidad se centran en el estudio del Estilo de Aprendizaje del Individuo, sin embargo, se planteó que cualquier persona es capaz de enseñar o transmitir conocimientos a otra persona (tutor), por lo que, si sabe aprender, sabe enseñar; es decir que tiene un Estilo de Enseñanza que va directamente asociado al Estilo de Aprendizaje del individuo en sí.

Se desarrolló #PilandoAndoPaLaU, una serie de tutorías de reforzamiento matemático a estudiantes que fuesen a hacer el PAA (Prueba de Aptitudes Académicas) en la que se tuvo más de 278 estudiantes que participaron de ella, siendo 210 estudiantes los que tomaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann, así como 66 tutores que donaron su tiempo de manera voluntaria y 60 de ellos tomaron la prueba de Estilos de Enseñanza de Grasha-Riechmann. A todos los estudiantes y tutores se les informó y se les explicó los detalles de este experimento de carácter exploratorio que se desarrolló, especialmente, que el tratamiento de sus datos sería de carácter académico y con fines investigativos, donde la cantidad mencionada anteriormente accedió voluntariamente a tomar la respectiva prueba y permitir obtener sus Estilos de Aprendizaje y Estilos de Enseñanza. En caso de que algún estudiante fuese menor de edad y desease participar en el estudio exploratorio tomando la prueba de Estilos de Aprendizaje de Grasha-Riechmann, este debía contar con autorización física o digital de sus padres o tutor responsable, de lo contrario, fue descartado automáticamente en el estudio.

Cuando fueron evaluados los Estilos de Enseñanza de los Tutores, se obtuvieron los siguientes resultados para n = 60 tutores:

Tabla 28: Desglose de los Estilos de Enseñanza de los Tutores de #PilandoAndoPaLaU

Estilo de Enseñanza

Cantidad

Experto

8

Autoridad Formal

0

Modelo Personal

11

Facilitador

41

Delegador

0

Esto sugiere que dada la naturaleza de un proyecto como

#PilandoAndoPaLaU, en el que se espera una donación voluntaria del tiempo, lo que inmediatamente hace que Estilos de Enseñanza como el "Modelo Personal" o "Facilitador" se vuelvan los preponderantes en las características de los tutores que formen parte de ello, dejando a un lado otros Estilos de Enseñanza como "Autoridad Formal" y "Delegador".

Cuando fueron evaluados los Estilos de Aprendizaje de los Estudiantes, se obtuvieron los siguientes resultados para n = 218 estudiantes:

Tabla 29: Desglose de los Estilos de Aprendizaje de los Estudiantes de #PilandoAndoPaLaU

Estilo de Aprendizaje

Cantidad

Independiente

13

Dependiente

57

Colaborativo

97

Competitivo

2

Evitativo

0

Participativo

41

Es previsible que se encuentren una mayor cantidad de estudiantes con un Estilo de Aprendizaje "Colaborativo" o "Participativo", dado que estos vienen de manera voluntaria a una sesión de tutorías para realizar sus exámenes de admisión universitarios, lo que les hace tener sentido de responsabilidad e involucramiento en su aprendizaje.

Para el caso de los estudiantes con Estilo de Enseñanza "Dependiente", es común que estos sean encontrados en sesiones de tutoría dado que estos requieren mayor intervención y esfuerzo por parte del tutor, para que estos se puedan involucrar con sus compañeros.

Fue desarrollada una aplicación web denominada "Sistema de Gestión Educativa (SGE) - #PilandoAndo" en el lenguaje de programación PHP utilizando su Framework PHP y el denominado stack "LAMP", acrónimo en inglés para Linux (Tipo de Sistema Operativo), Apache (Servidor Web), MySQL (Base de Datos), PHP (Lenguaje de Programación.La aplicación fue desplegada en producción a través de un servidor en la nube de la empresa Digital Ocean con sus instancias denominadas "Droplets" ubicado en la ciudad de Nueva York para disminuir los tiempos de latencia en las solicitudes HTTP del cliente y las respuestas HTTP del servidor. Dentro de esta aplicación se puede controlar el ciclo completo de la gestión de cualquier intervención educativa que desarrolle la Fundación Ayudinga de manera individual o con alguno de sus aliados estratégicos, ya que permite que el estudiante pueda tomar la prueba de Estilos de Aprendizaje y para el caso del tutor, la prueba de Estilos de Enseñanza.Todos estos datos fueron almacenados en la Base de Datos de la Aplicación, generando un sistema de roles y permisos en el que solamente los individuos que tuviesen relación con el estudio exploratorio pudiesen tener acceso a ella a través de un control de inicio de sesión al Panel de Administración.

La aplicación se desarrolló para múltiples dispositivos y con un tiempo de carga de la información menor a 300ms, considerando una conexión básica a Internet de 10Mbps en dispositivos móviles (smartphones). El usuario administrador tiene la capacidad de crear los grupos de tutorías ingresando la cantidad de estudiantes que este desea que estén en un grupo, haciendo un previo análisis al espacio físico disponible y a la disposición de este.

Cuando se aborda el tema del Emparejamiento entre Estudiantes y Tutores basado en sus Estilos de Enseñanza y Estilos de Aprendizaje, se debe reconocer que por definición no se podrá hacer un "Emparejamiento Perfecto", dado que no siempre los elementos del (Estudiantes) tendrán a un símil elemento del (Tutores). Se utilizó el Método de los Clústeres Integrados de Grasha-Riechmann para desarrollar un Algoritmo propio de emparejamiento, con base en el propuesto Algoritmo de Gale-Shapley. Dicho algoritmo es la base teórica de cualquier emparejamiento aproximado o "Emparejamiento Máximo", dado que como fue mencionado, en este caso se tienen a dos conjuntos que poseen elementos y estos a su vez poseen una serie de preferencias ordenadas de los elementos con los cuales les gustaría estar emparejados del otro conjunto.

Se optó por hacer una simplificación al Método de los Clústeres Integrados en el que se definieron las preferencias de Estilos de Enseñanza para cada uno de los Estilos de Aprendizaje del Estudiante. Al hacer este cambio al Método de los Clústeres Integrados se alcanzó con el objetivo de disminuir la complejidad del algoritmo de emparejamiento desarrollado, ya que se utiliza como elemento pivote a cada Estudiante, el cual tiene su Estilo de Aprendizaje y sus preferencias de Estilos de Enseñanza, por lo que es comparado directamente con cada uno de los tutores, secuencialmente, validando si existe compatibilidad entre ellos y en caso de ser cierto, el estudiante queda asignado a ese grupo de tutoría, de lo contrario, pasa a ser comprobado al siguiente hasta que sea validado con todos.

Este es un algoritmo de emparejamiento que se resuelve utilizando métodos de Teoría de la Optimización, que es una rama de la Investigación de Operaciones en el que tenemos como Función Objetivo:Con esta Función Objetivo, se establece que se busca la satisfacción máxima de cada uno de los emparejamientos, tanto para los estudiantes como para los tutores.

Esto implica que el algoritmo no siempre encontrará al mejor tutor para un estudiante y tampoco al mejor estudiante para un tutor, sino al que se aproxime más al esquema de preferencia existente en la relación de sus Estilos de Enseñanza con sus Estilos de Aprendizaje. Al esta no ser una aproximación algorítmica en la que se busque dar una respuesta exacta, dado que existen variables adicionales que podrían influir o no en el diseño, se establece que puede que para un conjunto de X Estudiantes y, Y Tutores, algunos estudiantes se queden sin un tutor y algún tutor se quede sin estudiantes, dado que sus Estilos de Aprendizaje o Enseñanza no son compatibles entre sí.

Una vez se contó con la aplicación Web y el algoritmo de emparejamiento aproximado entre estudiantes y tutores, se procedió a trabajar con los datos obtenidos en las sesiones de tutoría del Proyecto #PilandoAndoPaLaU, con 210 estudiantes y 60 tutores.Utilizando la consigna propuesta de , se tendría la situación de que solamente se pudiese emparejar a 193 estudiantes, mientras que 17 de ellos se quedarían sin un tutor; así como 40 tutores tendrían un grupo de tutoría con estudiantes, mientras que 20 tutores habrían sido emparejados, por lo que se quedaron sin un grupo de tutorías específico.

A forma de buscar que la mayor cantidad de estudiantes tuviese un tutor y que la mayor cantidad de tutores tuviese estudiantes, para evitar que estos fuesen "Tutores Ociosos", se encontró con que era necesario contar con [7-8] estudiantes por grupo de tutoría. Con estos datos se pudiese llegar a tener 201 estudiantes emparejados con 30 tutores (7 estudiantes/grupo), mientras que con 8 estudiantes/grupo se tendría a la totalidad de los 210 estudiantes que participaron en #PilandoAndoPaLaU emparejados con 28 tutores. Sin embargo, quedaría una cantidad de 32 tutores sin estudiantes para atender. Esto se da producto de la secuencialidad con la que fue diseñado el algoritmo, donde la disciplina de cola es FIFO (First Come, First Serve), es decir, que los primeros tutores que se encuentren registrados o hayan hecho la prueba, son los que mayores probabilidades de tener grupos de tutoría tendrán.

Recomendaciones

El estudio exploratorio que fue elaborado bajo el marco del Proyecto de Investigación titulado "Emparejamiento Aproximado de Estudiantes con Tutores Académicos en las Intervenciones Educativas de Fundación Ayudinga" plasma una realidad que son las diferencias que existen dentro de un aula de clases simulada, como lo pueden ser unas sesiones de tutoría.

Esto se tiene que extrapolar a la realidad, dado que una de las principales consignas del Siglo XXI en materia educativa es la búsqueda de una "Educación Personalizada", sin embargo, se debe tener en cuenta que para ello se requiere una visión sistémica de cada uno de los elementos de lo que, hoy en día, se conoce como "Sistema Educativo".

Por ello, la Fundación Ayudinga desarrolla el programa #PilandoAndo, ya sea en su versión más conocida que lleva el mismo nombre. O en su defecto, en la versión que fue la base de este estudio exploratorio llamada #PilandoAndoPaLaU, en donde la sociedad civil, la empresa privada y los organismos supra gubernamentales aportan a una propuesta diferente al esquema tradicional.

Los datos recolectados de los Estilos de Aprendizaje y Enseñanza de un grupo de Estudiantes y Tutores son apenas una pequeña muestra de la diversidad de información que existe en el sistema educativo. Sin embargo, emparejar a los estudiantes con los tutores basados en sus estilos de aprendizaje y enseñanza bajo el Modelo de Grasha-Riechmann es un buen punto de partida; pero esto es solamente el comienzo. Producto del resultado plasmado en este Proyecto de Investigación, #PilandoAndo lo adoptará como una base en la que se permita personalizar las sesiones de tutoría con nuevos elementos como: ¿Cuál es el efecto

de que 2 personas se encuentren juntas en el mismo grupo?, ¿Cómo se puede incidir en la mejora de la calidad académica de un tutor? y ¿Qué tipo de contenidos educativos se les debe recomendar a un estudiante?

Con la biblioteca digital de materiales académicos en el área de las STEM (Acrónimo en inglés para Science, Technology, Engineering and Mathematics) se comenzará a recomendar contenido educativo a los estudiantes basado ya no en las percepciones de un tutor sobre como este aprende o no, sino que este será catalogado dependiendo de nuevas variables como: El tipo de presentador en los materiales audiovisuales, duración de los mismos, cantidad de estímulos por minuto que se le dan al estudiante y la pertinencia digital basado en sus preferencias de consumo.

#PilandoAndo es un proyecto que siempre ha requerido de mucho trabajo, esfuerzo, vocación y voluntariado humano detrás de él; sin embargo, ahora al contar con una infraestructura tecnológica con sendos análisis y modelos matemáticos que le dan validez a ella, se espera llegarle a más de 3,000 estudiantes en Panamá durante el año 2024.

Agregando más variables como las mencionadas, anteriormente, se mejorarán los algoritmos de emparejamiento ya no solamente de los estudiantes con sus tutores, sino de los estudiantes con los contenidos académicos que estos tienden a percibir. Empero, se debe reconocer que dinámica volátil del mundo en el que se vive hoy día requiere sistemas y modelos que sepan adaptarse en tiempo, espacio y momento a cada una de esas realidades.

Este es un proceso de mejora, pero esto es mucho mejor que empezar desde cero y con este Proyecto de Investigación se ha iniciado una transformación en la que se utilicen los datos como evidencia para la toma de decisiones en políticas públicas educativas, priorizando la inversión y enfocándola en las áreas más importantes para el desarrollo de cualquier país, como lo es hoy en día la formación de jóvenes con pensamiento lógico matemático y crítico de su realidad.

Referencias Bibliográficas

- [1] Universidad Nacional de Colombia, "Teoría de Sistemas".
- [2] J. Heraclio Batista et al., "Modelo Educativo AyuEduca2030".
- [3] M. Parker y P. Alfaro, "Education during the COVID-19 pandemic Access, inclusion and psychosocial support 104 STUDIES AND PERSPECTIVES ECLAC SUBREGIONAL HEADQUARTERS FOR THE CARIBBEAN", 2030, [En línea]. Disponible en: www.cepal.org/apps
- [4] L. A. R. Palacios, M. I. Guifarro, y L. M. C. García, "Difficulties in learning algebra, a study with standardized tests", Bolema Mathematics Education Bulletin, vol. 35, núm. 70, pp. 1016–1033, 2021, doi: 10.1590/1980-4415v35n70a21.
- [5] J. E. Galvis, "Didáctica para la enseñanza de la aritmética y el algebra".
- [6] S. Didácticas y E. Matemáticas, Programa fortalecimiento de la cobertura con calidad para el sector educativo rural PER II. [En línea]. Disponible en: www.mineducacion.gov.co
- [7] F. Alegre, L. Moliner, A. Maroto, y G. Lorenzo-Valentin, "Peer tutoring and mathematics in secondary education: literature review, effect sizes, moderators, and implications for practice", 2017, doi: 10.1016/j.heliyon.2019.e02491.
- [8] College Board, "PAA", 2018.
- [9] C. Rojas-Jara, C. Díaz-Larenas, J. Vergara-Morales, P. Alarcón-Hernández, y M. Ortiz-Navarrete, "Estilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las preferencias de estudiantes de Pedagogía en Inglés en tres universidades chilenas", Revista Electrónica Educare, vol. 20, núm. 3, p. 1, sep. 2016, doi: 10.15359/ree.20-3.7.
- [10] C. R., . C., . J., . P., y . M., "Estilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las preferencias de estudiantes de Pedagogía en Inglés en tres universidades chilenas", Revista Electrónica Educare, vol. 20, pp. 1–29, 2016, [En línea]. Disponible en: https://www.redalyc.org/articulo.oa? id=194146862007
- [11] R. Caraballo Colmenares, "Andragogía en la Educación Superior", Investigación y Postgrado, vol. 22, núm. 2, 2007.
- [12] M. Tuñón, "Capítulo 2 Definición y Construcción de Modelos", 2022.
- [13] A. Myriam, P. Blanco, y L. Castro Quitora, "Los Modelos Pedagógicos".
- [14] A. Blanes Villatoro, "La Teoría de las Inteligencias Múltiples: Descripción breve ¿Qué es, que describe y que tipos de inteligencia existen?"
- [15] R. Rodríguez Cepeda, "Los modelos de aprendizaje de Kolb, Honey y Mumford: implicaciones para la educación en ciencias", Sophia, vol. 14, núm. 1, pp. 51–64, abr. 2018, doi: 10.18634/sophiaj.14v.1i.698.
- [16] D. Kolb, I. M. Rubin, y J. M. Mcintyre, "Modelo de Kolb Aprendizaje basado en Experiencias".
- [17] C. L. García Zuluaga y R. A. Sáchica Navarro, "Modelo de Aprendizaje Experiencial de Kolb en el aula", Universidad Católica de Manizales, 2016.
- [18] A. Silva Sprok, "Conceptualization of the Models of Learning Styles".
- [19] D. Kolb, "Test de Kolb para Estilos de Aprendizaje", 1998.
- [20] P. Honey, A. Mumford, Community Media Applications and Participation, y U. Lifelong Learning Programme, "Honey and Mumford learning styles", 2011. [En línea]. Disponible en:
- http://www2.le.ac.uk/departments/gradschool/training/resources/teaching/theories/honey-
- [21] P. Honey y A. Mumford, "Honey and Mumford: Learning Styles Questionnaire", 1986.
- [22] U. Universidad Autónoma de México, "Cuestionario Honey Alonso de Estilos de Aprendizaje", 2009.

- [23] B. Marcos Salas, V. Alarcón Martínez, N. Serrano Amarilla, M. J. Cuetos Revuelta, y A. I. Manzanal Martínez, "Aplicación de los estilos de aprendizaje según el modelo de Felder y Silverman para el desarrollo de competencias clave en la práctica docente", Tendencias Pedagógicas, vol. 37, pp. 104–120, dic. 2020, doi: 10.15366/tp2021.37.009.
- [24] V. Sánchez y J. María, "Estilos de aprendizaje", 2018.
- [25] M. J. Provitera, "Learning And Teaching Styles In Management Education: Identifying, Analyzing, And Facilitating", 2008. [En línea]. Disponible en: http://longleaf.net/teachingstyle.html
- [26] G. González Gutiérrez y S. Andrés González Ardila, "Estilos de enseñanza según Antonhy Grasha presentes en la práctica pedagógica de un grupo de estudiantes del Programa Licenciatura en Lengua Castellana Inglés y Francés de la Universidad de La Salle". [En línea]. Disponible en:
- https://ciencia.lasalle.edu.co/lic_lenguas
- [27] T. Thi-Kim Le Ho Chi, "Project-based Learning in 21st Century: A Review of Dimensions for Implementation in University-level Teaching and Learning", 2018. [En línea]. Disponible en: https://www.researchgate.net/publication/352977987
- [28] P. Kumar, A. Kumar, y K. Smart, "Issues in Informing Science and Information Technology Assessing the Impact of Instructional Methods and Information Technology on Student Learning Styles".
- [29] D. DiCarlo, "RANDOM NUMBER GENERATION 2 Acceptance of Senior Honors Thesis".
- [30] M. Rosa y R. Fernández, "Estilos de enseñanza y estilos de aprendizaje: implicaciones para la educación por ciclos". [En línea]. Disponible en: https://www.researchgate.net/publication/277795807
- [31] Z. H. Gao, "Teaching Physical Education Using the Spectrum of Teaching Style: Introduction to Mosston's Spectrum of Teaching Style", 2012.
- [32] A. F. Grasha, "A Matter of Style: The Teacher as Expert, Formal Authority, Personal Model", 1994.
- [33] E. Moreno, G. José, y M. Cascón Barbero, "Matching Theory: The Roomates Problem", 2021.
- [34] A. F. Grasha, "Essays on Teaching Excellence Toward the Best in the Academy Teaching With Style: The Integration of Teaching and Learning Styles in the Classroom". [En línea]. Disponible en: www.podnetwork.org [35] P. Winkler, "Combinatorics 18.315 Chapter 2 Matching Theory", 2004.
- [36] J. P. Torrez-Martínez, "Introducción a la Teoría de Emparejamientos".
- [37] Z. Han, Y. Gu, y W. Saad, "Fundamentals of Matching Theory", en Matching Theory for Wireless Networks, Z. Han, Y. Gu, y W. Saad, Eds., Cham: Springer International Publishing, 2017, pp. 9–15. doi: 10.1007/978-3-319-56252-0_2.
- [38] E. Mayr y H. Räcke, "A Fast Matching Algorithm Analysis Hopcroft-Karp".
- [39] J. De Mairena, "Matching Estable Gale Shapley, 1962".
- [40] R. Baviskar y H. Karp, "Hopcroft Karp Algorithm for Bipartite Matching CS 759 Perfect Matchings: Algorithms and Complexity Algorithm for Bipartite Matching", 2019.
- [41] S. Kuller, "CMSC 651 Advanced Algorithms", University of Maryland, vol. Lecture 3, pp. 1–3, 2002.
- [42] J. E. Hopcroft y R. M. Karp, "Algorithm for Maximum Matchings in Bipartite Graphs", 1973.
- [43] R. Rossetti, A. Rocha, A. Pereira, P. Silva, y T. Fernandes, "Algoritmos em Grafos: Emparelhamentos (matching) e Casamentos Estáveis (stable marriage)", 2010.
- [44] L. Zhou, "Stable matchings and equilibrium outcomes of the Gale-Shapley's algorithm for the marriage problem", Econ Lett, vol. 36, núm. 1, pp. 25–29, may 1991, doi: 10.1016/0165-1765(91)90050-U.
- [45] C. Deliotte, "Calidad de Datos en la era del Big Data".
- [46] A. Quintana Peña, "Metodología de Investigación Científica Cualitativa", 2006.
- [47] Paulina. Salinas Meruane, Manuel. Cardenas Castro, A. Music Cáceres, Carlos. Calderon Carvajal, Alberto. Mayol Miranda, y Gabriel. Dadodovics Molnar, Métodos de investigación social: una aproximación desde las estrategias cuantitativas y cualitativas. Universidad Católica del Norte, 2008.
- [48] M. En, E. Neftali, y T. Díaz De León, "Material Didáctico: Sólo Visión (Proyectables) Título: Población y Muestra".
- [49] Gaceta Oficial Digital, "Reglamentación de la Ley 81 de Protección de Datos Personales", 2021.
- [50] A. Freiberg Hoffmann y M. Fernández Liporace, "Grasha–Riechmann student learning style scales: an Argentinian version", Journal of Applied Research in Higher Education, vol. 13, núm. 1, pp. 242–257, ene. 2021, doi: 10.1108/JARHE-12-2019-0325.
- [51] J. H. Ford, J. M. Robinson, y M. E. Wise, "Adaptation of the Grasha Riechman Student Learning Style Survey and Teaching Style Inventory to assess individual teaching and learning styles in a quality improvement collaborative", BMC Med Educ, vol. 16, núm. 1, sep. 2016, doi: 10.1186/s12909-016-0772-4.
- [52] D. G. Bonett y T. A. Wright, "Cronbach's alpha reliability: Interval estimation, hypothesis testing, and sample size planning", J Organ Behav, vol. 36, núm. 1, pp. 3–15, ene. 2015, doi: 10.1002/job.1960.
- [53] J. T. Croasmun y L. Ostrom, "Using Likert-Type Scales in the Social Sciences", 2011.
- [54] S. R. Garuda, R. G. Javalgi, y V. S. Talluri, "Tackling no-show behavior: A market-driven approach", Health Mark Q, vol. 15, núm. 4, pp. 25–44, sep. 1998, doi: 10.1300/J026v15n04_02.
- [55] J. María Ferrer Caja, "Teoría de Colas".
- [56] M. (Mo) Barlow y D. Megquier, "Using Personas to Develop Awesone Experiences", 2017.
- [57] K. Harris y K. Bueltmann, "Minimum Viable Product Making MVP the MVP of your Project".
- [58] B. K. Martens, "Contingency and Choice: The Implications of Matching Theory for Classroom Instruction", 1992.
- [59] J. Arnau Gras, "Utilización de Modelos Matemáticos en Psicología", 2007.

Anexos

Anexo #1: Cuestionario de Estilo de Aprendizaje

Confío plenamente en mi capacidad para aprender el material esencial del curso.

A menudo me descubro divagando durante las lecciones.

Me resulta gratificante colaborar con otros estudiantes en el aula.

El contenido del curso proporciona información fidedigna y precisa.

Siento la necesidad de competir con mis compañeros por la atención del docente y aclarar mis inquietudes antes que ellos.

Estoy generalmente predispuesto a aprender sobre el contenido impartido en clase.

Mis reflexiones sobre el contenido suelen ser tan válidas como las presentadas en el material didáctico.

Las actividades en el aula me resultan monótonas.

Disfruto debatiendo ideas relacionadas con el material del curso con mis compañeros.

Estimo que los docentes tienen un conocimiento preciso sobre lo esencial a aprender en un curso.

Siento la necesidad de competir con mis compañeros por obtener la calificación más alta.

Considero valioso asistir a las clases presenciales.

Estudio aquello que es relevante para mí, no necesariamente lo que el docente destaca como esencial.

Raramente me siento entusiasmado con el contenido presentado en clase.

Valoro escuchar las opiniones de mis compañeros sobre los temas discutidos en clase.

Los docentes deberían especificar claramente sus expectativas hacia los estudiantes.

Durante las discusiones en clase, siento que debo competir con mis compañeros para que mis ideas sean consideradas.

Aprendo más del curso en el aula que en mi hogar.

Gran parte del contenido impartido ya lo he aprendido de manera autónoma.

A menudo siento que debo asistir a clases, incluso si no es de mi interés.

Considero que los estudiantes pueden beneficiarse discutiendo sus ideas entre sí.

Procuro realizar mis tareas siguiendo estrictamente las indicaciones del docente.

Los estudiantes deberían adoptar una actitud competitiva para destacar académicamente.

Tenemos la responsabilidad de aprovechar al máximo las herramientas y recursos educativos proporcionados en clase.

Soy capaz de identificar de manera autónoma los temas relevantes del material de estudio.

Me resulta desafiante mantener la atención durante una clase.

Prefiero prepararme para los exámenes en compañía de otros estudiantes.

Los docentes que permiten total libertad a los estudiantes no están cumpliendo adecuadamente su función.

Me agrada resolver cuestiones o problemas antes que mis compañeros.

Las actividades en clase suelen ser interesantes.

Me gusta formular mis propias interpretaciones sobre los temas presentados en clase.

En ocasiones, me siento desmotivado para aprender durante las clases presenciales.

Las perspectivas de mis compañeros me ayudan a comprender mejor el material del curso.

Los estudiantes deberían ser supervisados por los docentes en todos los proyectos académicos.

Para destacar, es necesario superar a los demás estudiantes.

Me esfuerzo por participar activamente en todas las facetas del curso.

Tengo mis propias visiones sobre cómo deberían ser impartidas las clases.

En la mayoría de mis asignaturas, estudio lo justo y necesario para aprobar.

Un aspecto fundamental de la formación académica es aprender a interactuar con otros.

Mis notas reflejan casi todo lo que el docente ha mencionado en clase.

Los estudiantes se perjudican académicamente al compartir sus apuntes e ideas.

Realizo las tareas asignadas independientemente de si me resultan interesantes.

Si un tema me resulta atractivo, suelo investigar por mi cuenta.

Habitualmente, intensifico mi estudio previo a los exámenes.

El aprendizaje debería ser un esfuerzo conjunto entre estudiantes y la institución educativa.

Prefiero clases que estén estructuradas de manera organizada.

Para sobresalir en clase, intento realizar las tareas mejor que mis compañeros.

Suelo abordar las tareas en cuanto son asignadas.

Prefiero trabajar en proyectos académicos de manera individual.

Desearía que los docentes no me prestaran atención en clase.

Permito que otros estudiantes utilicen mis apuntes cuando lo solicitan.

Los docentes deberían especificar claramente el contenido que será evaluado en un examen.

Me interesa conocer el rendimiento de mis compañeros en tareas y exámenes.

Realizo tanto las tareas obligatorias como las opcionales.

Ante una duda, intento resolverla por mi cuenta antes de buscar asistencia.

Durante las clases, suelo conversar o bromear con guienes están cerca de mí.

Disfruto participando en grupos pequeños durante las clases.

Considero que las anotaciones del docente en el pizarrón son de gran utilidad.

Consulto a mis compañeros sobre las calificaciones obtenidas en exámenes y tareas.

En mis clases, suelo sentarme en las primeras filas del aula.

Anexo #2: Cuestionario de Inventario de Estilos de Enseñanza

Tengo confianza en mi habilidad de aprender material importante del curso

A menudo me encuentro soñando despierto (a) durante clases.

Me gusta mucho trabajar con otros estudiantes en clases.

El material del curso tiene información válida y veraz.

Me parece necesario competir con otros estudiantes por la atención del profesor y resolver mis dudas antes que los demás.

Usualmente estoy dispuesto a aprender sobre el contenido dado en clase.

Mis pensamientos sobre el contenido usualmente son tan buenos como los que aparecen en el material.

Las actividades en el salón de clases me parecen aburridas.

Disfruto discutir ideas sobre el material de la clase con otros estudiantes.

Considero que los profesores saben exactamente lo que es importante aprender en un curso.

Siento que es necesario competir con otros estudiantes por la mejor nota

Siento que vale la pena atender las sesiones de clases presenciales.

Yo estudio lo que es importante para mí y no siempre lo que el profesor diga que es importante.

Muy raras veces me emociona el contenido explicado en clase.

Disfruto escuchar lo que otros estudiantes piensan sobre los temas discutidos en el salón de clases.

Los profesores deberían decir claramente lo que esperan de los estudiantes.

Cuando hay discusiones en clase, debo competir con los otros estudiantes para que mis ideas sean escuchadas.

Aprendo más del curso en el aula de clases que en casa.

La mayoría de los temas explicados los aprendí por mi cuenta.

Generalmente siento que tengo que asistir a clases, aunque no quiera.

Pienso que los estudiantes pueden aprender más discutiendo sus ideas entre ellos.

Intento hacer mis tareas siguiendo al pie de la letra las instrucciones del profesor.

Los estudiantes deben volverse competitivos para tener un buen rendimiento en la escuela.

Los estudiantes tenemos la responsabilidad de sacarle el mayor provecho a las herramientas y recursos educativos que se nos dan en clases.

Puedo identificar por mí mismo, los temas importantes del material de clases.

Prestar atención durante una sesión de clases es difícil para mí.

Me gusta estudiar para exámenes con otros estudiantes.

Profesores que dejan que los estudiantes hagan lo que quieran, no están realizando su trabajo.

Me gusta obtener las respuestas de problemas o preguntas antes de que alguien más pueda.

Las actividades del salón son generalmente interesantes.

Me gusta desarrollar mis propias ideas sobre los temas dados en clases.

Me he rendido de intentar aprender durante las clases presenciales.

Las ideas de otros estudiantes me ayudan a entender el material del curso

Los estudiantes deben ser supervisados por profesores en todos los proyectos del curso.

Para estar un paso más adelante, es necesario pasar por encima de los demás estudiantes.

Yo trato de participar lo más posible en todos los aspectos del curso.

Tengo mis propias ideas de cómo las clases deberían ser presentadas.

En la mayoría de mis materias estudio solo lo suficiente para pasar.

Una parte importante de tomar materias es aprender a convivir con otras personas.

Mis apuntes contienen casi todo lo que el profesor ha dicho en clases.

Los estudiantes pierden la oportunidad de una nota cuando comparten sus apuntes e ideas.

Completo las asignaciones de la materia sin importar si me parecen interesantes o no.

Si me gusta un tema, usualmente investigo por mi cuenta.

Normalmente estudio intensamente antes de los exámenes.

Aprender debería ser un esfuerzo cooperativo entre los estudiantes y la escuela.

Prefiero sesiones de clases que estén altamente organizadas.

Para sobresalir en clases, trato de hacer las asignaciones mejor que los demás estudiantes.

Yo completo las asignaciones apenas son entregadas.

Yo prefiero trabajar en proyectos relacionados con las clases (Estudiar para exámenes, hacer tareas, étc.) por mi cuenta.

Me gustaría que los profesores me ignoraran en clases.

Dejo que los otros estudiantes tomen prestados mis apuntes cuando los piden

Los profesores deberían decirles a los estudiantes exactamente qué material se va a cubrir en un examen.

Me gusta saber el rendimiento de los otros estudiantes en las asignaciones y exámenes.

Yo completo las asignaciones que son para nota, tanto como las que son opcionales.

Cuando no entiendo algo, trato de averiguar por mi cuenta antes de buscar ayuda.

Durante clases, tiendo a hablar o bromear con las personas que están cerca de mí.

Participar en grupos pequeños de clases es algo que disfruto.

Yo pienso que las anotaciones e indicaciones del profesor en el tablero son de mucha ayuda.

Le pregunto a otros estudiantes en clases qué notas recibieron en los exámenes y asignaciones.

Al content detector report

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

DEPARTAMENTO DE SISTEMAS DE INFORMACIÓN, CONTROL Y EVALUACIÓN DE RECURSOS INFORMÁTICOS EMPAREJAMIENTO APROXIMADO DE ESTUDIANTES CON TUTORES ACADÉMICOS EN INTERVENCIONES

EDUCATIVAS DE FUNDACIÓN AYUDINGA

MODALIDAD DEL TRABAJO (TEÓRICO – PRÁCTICO)

INTEGRANTE

JOHEL HERACLIO BATISTA CÁRDENAS

ASESOR

VÍCTOR LÓPEZ CABRERA

2023

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA EN SISTEMAS COMPUTACIONALES

EMPAREJAMIENTO APROXIMADO DE ESTUDIANTES CON TUTORES ACADÉMICOS EN INTERVENCIONES EDUCATIVAS DE FUNDACIÓN AYUDINGA

ASESOR

VÍCTOR LÓPEZ CABRERA

INTEGRANTE

IOHEL HERACLIO BATISTA CÁRDENAS

TRABAJO DE GRADUACIÓN PARA OPTAR POR EL TÍTULO DE LICENCIADO EN INGENIERÍA EN SISTEMAS DE INFORMACIÓN

2023

Resumen

Este trabajo de investigación ofrece un enfoque innovador para el emparejamiento de estudiantes y tutores basándose en la correlación que existen entre los estilos de enseñanza – aprendizaje, respectivamente, según el Modelo Pedagógico de Grasha-Riechmann.

Cuenta como objetivo optimizar el proceso educativo a través de un emparejamiento más informado y estratégico. Estando sustentada en la teoría de "Clústers de Aprendizaje" de Anthony Grasha, la cual sugiere una relación directa entre los estilos de aprendizaje del estudiante y los estilos de enseñanza del tutor. A nivel de metodología, se incluye un proceso de recolección de datos diseñado a través de una aplicación web en el que se aplicarán la Encuesta de Inventarios de Estilos de Enseñanza y Aprendizaje para los Tutores y Estudiantes.

Los datos recopilados son almacenados, procesados y organizados a través de técnicas de gestión de datos, estableciendo así un repositorio de información interactivo al que se denomina Sistema de Gestión de Aprendizajes #PilandoAndo (SGE, por sus siglas en español) de la Fundación Ayudinga.

La investigación continúa con el desarrollo de una aplicación que implementa el concepto matemático de Grafos Bipartitos para emparejar de manera óptima a estudiantes y tutores.

Este procedimiento permite crear subconjuntos de datos que son analizados utilizando herramientas avanzadas de cálculo matemático. Este enfoque también tiene en cuenta que múltiples estudiantes pueden ser asignados a un solo tutor para maximizar el aprendizaje colectivo.

Posteriormente, estos datos serán analizados por un algoritmo de emparejamiento máximo denominado Gale Shapley, sin embargo, usando una adaptación que tenga el objetivo de identificar los estilos de estudiantes y tutores. Este procedimiento automatizado asegura una gestión eficiente y precisa de los datos, preparándolos para el análisis y la visualización.

Los resultados de este emparejamiento se almacenan para su análisis posterior y se visualizan a través del "Panel de Administración" del SGE de #PilandoAndo, proporcionando un cuadro de mando que presenta el "Emparejamiento Máximo" entre estudiantes y tutores.

Es importante resaltar que este estudio también considera las limitaciones y restricciones de la cantidad de estudiantes que un tutor puede manejar eficazmente, así como lo hace al evaluar lo cambiante que pueden ser los estilos de aprendizaje y enseñanza de un estudiante o tutor, por lo que se limitará a una medición específica adaptativa a través de decisiones humanas.

Los hallazgos de este estudio exploratorio proporcionarán una estrategia efectiva y basada en datos para la creación de grupos de tutorías en las intervenciones educativas masivas de la Fundación Ayudinga, conocidas como #PilandoAndo en sus diferentes versiones.

Este enfoque permitirá una enseñanza más personalizada y efectiva, beneficiando tanto a tutores como a estudiantes al promover un entorno de aprendizaje más productivo y enriquecedor.

Palabras clave: Emparejamiento Aproximado, Clústeres de Aprendizaje, Grasha - Riechmann,

Emparejamiento Perfecto, Enseñanza Personalizada, Gestión de Datos, Sistemas de Información Educativos, Gale-Shapley, Teoría de Emparejamiento, Estudiantes, Tutores, Fundación Ayudinga

Al Lic. Justiniano Cárdenas Barahona (Q.E.P.D.), padre y abuelo, quien me enseñó a mantenerme firme, luchar frente a la adversidad, ser perseverante, resiliente y a creer siempre en mí mismo.

A Wocker Batista Cárdenas (Q.E.P.D.), hermano y fiel compañero de cuatro patas, quien durante diez años fue mucho más que una simple mascota.

A los que estuvieron, a los que están y a los que estarán siendo "Gente Ayudando Gente".

Agradecimientos

Este viaje de aprendizaje y descubrimiento no hubiese sido posible sin la presencia significativa de algunas personas que me ayudaron a superar retos y a navegar en aguas desconocidas.

Justiniano, Reyna Emperatriz, Heraclio (p), Haydee, Heraclio (h), Zuly, Zaida y Jahel, la familia que me dio el regalo del amor incondicional y el espacio para aprender, crecer y equivocarme. Sus enseñanzas y apoyo han sido el cimiento sobre el que se ha construido este logro.

Los voluntarios de la Fundación Ayudinga, han sido mi faro durante esta travesía, enseñándome humildad en la victoria y reflexión en la adversidad. Su espíritu indomable y resiliencia ante los desafíos me han enseñado más de lo que las palabras pueden expresar.

Víctor López Cabrera, mi asesor, quien, con su fe inquebrantable en mis habilidades, me permitió vislumbrar posibilidades más allá de mis dudas. A través de su mentoría, como su asistente Ad-Honorem, encontré la oportunidad de aprender y crecer en formas que nunca había imaginado.

Aquellos cuyos nombres no se mencionan aquí, pero que han jugado roles significativos en este viaje, saben lo esenciales que son.

A cada uno de ustedes, que han dejado huellas imborrables en mi vida y mi corazón, les extiendo mi gratitud más sincera.

Finalmente, agradezco a Dios, la Virgen y a Santa Librada, quienes han sido mi roca y mi refugio, y a quienes confío cada logro y desafío.

Índice de Contenidos

Resumen i

Dedicatoria iii

Agradecimientos iv

Índice de Figuras viii

Índice de Tablas xii

Introducción xiv

Capítulo I: Marco Teórico y Antecedentes - 1 -

Objetivos del Proyecto de Investigación - 2 -

Objetivo General: - 2 -

Objetivos Específicos: - 2 -

Hipótesis de Investigación - 3 -

Hipótesis Nula (): - 3 -

Hipótesis Alternativa - 4 -

Justificación - 4 -

Declaración de Conflictos de Interés del Autor - 5 -

Antecedentes - 5 -

Programa #PilandoAndo - 6 -

Hallazgos Cualitativos y Cuantitativos - 10 -

Modelos de Estilos de Aprendizaje - 11 -

Modelos de Aprendizaje y Enseñanza - 12 -

Modelo de Kolb - 14 -

Modelo de Honey y Mumford - 18 -

Modelo de Felder & Silverman: Índice de Estilos de Aprendizaje - 22 -

Modelo de Grasha-Riechmann - 25 -

Adaptación al Formato de #PilandoAndo - 36 -

Método de Clústeres de Estilos - 37 -

Teoría del Emparejamiento - 39 -

Tipos de Emparejamientos - 40 -

Algoritmo de Hopcroft-Karp - 43 -

Algoritmo de Gale - Shapley - 46 -

Definición de Conjuntos y Subconjuntos - 50 -

Resumen del Modelo Matemático - 51 -

Capítulo II: Metodología y Diseño del Experimento - 52 -

Planteamiento de Antecedentes - 52 -

Estadística Descriptiva de los primeros #PilandoAndo - 53 -

Objetivo del Experimento - 55 -Tipo de Experimento - 56 -Población y Muestra - 57 -Instrumentos de Recolección de Datos - 59 -Prueba de Grasha-Riechmann - 61 -Aplicación de la Prueba de Estilos de Enseñanza (Tutor) - 62 -Aplicación de la prueba de Estilos de Aprendizaje al Estudiante - 64 -Diseño del Experimento - 66 -Variables de Estudio - 70 -Análisis de Resultados - 75 -Perfil Demográfico de los Tutores - 76 -Análisis Descriptivo de los Tutores - 77 -Perfil Demográfico de los Estudiantes - 80 -Análisis Descriptivo de los Estudiantes - 81 -Consideraciones Éticas - 86 -Limitaciones del Estudio - 88 -Conclusiones a priori del Estudio Exploratorio - 89 -Capítulo III: Arquitectura del Sistema - 90 -Estado Previo - 91 -Estado Propuesto - 92 -Casos de Uso del Sistema - 94 -Especificación del Caso de Uso: Usuario Visitante - 97 -Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje - 99 -Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje. - 101 -Especificación del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores - 104 -Diagrama de Casos de Uso de la Aplicación - 108 -Diseño de la Base de Datos - 109 -Modelo Conceptual - 109 -Modelo Entidad - Relación de la Aplicación (SGE - #PilandoAndo) - 114 -Desarrollo e Implementación de la Aplicación - 115 -Infraestructura Tecnológica Utilizada - 115 -Configuración del Servidor - 116 -Estructura de un Sistema en Laravel PHP - 120 -Estructura de Directorios de la Aplicación en Laravel PHP - 125 -Esquema de la Base de Datos Implementada en MySQL (Normalizada a la 3FN) - 126 -Capítulo IV: Emparejamiento de Estudiantes y Tutores - 128 -Adaptación de Clústeres Integrados - 129 -Simulación Teórica del Emparejamiento - 132 -Algoritmo de Emparejamiento Tutores - Estudiantes - 135 -Formulación Matemática del Algoritmo - 136 -Implementación Paso a Paso - 138 -Simulación en Pseudocódigo - 141 -Ejemplo Práctico - 143 -Capítulo V: Análisis y Discusión de Resultados - 148 -Escenario Ideal del Modelo - 149 -Análisis de las Restricciones - 149 -Emparejamiento de Estudiantes y Tutores en #PilandoAndoPaLaU - 152 -Análisis de Sensibilidad del Emparejamiento Estudiantes-Tutores - 156 -Conclusiones y Trabajos Futuros - 161 -Recomendaciones - 169 -Anexos - 176 -Anexo #1: Cuestionario de Estilo de Aprendizaje - 177 -Anexo #2: Cuestionario de Inventario de Estilos de Enseñanza - 180 -Índice de Figuras Figura 1: Clases en vivo durante la Pandemia del COVID-19 - 16 -Figura 2: Primera Sesión de #PilandoAndo (18 de enero, 2020) - 19 -Figura 3: Última Sesión de #PilandoAndo en el BioMuseo (27 de febrero de 2020) - 20 -Figura 5: Logística de organización de estudiantes en #PilandoAndo - 22 -Figura 6: Representación en gráfica radial del Perfil del Estudiante - 41 -Figura 7: Representación en gráfica radial del Perfil del Tutor - 46 -Figura 8: Sesiones de Tutoría de #PilandoAndo en Verano 2023 - 47 -Figura 9 Equipo Logístico de #PilandoAndo - 68 -Figura 10: Primera Edición de #PilandoAndoPaLaU en el año 2023 - 69 -Figura 11: Charla de Explicación a Tutores de la Metodología de la prueba de Estilos de Aprendizaje - 73 -Figura 12: Sistema de Gestión Educativa de #PilandoAndo - 74 -

```
Figura 13: Revisión de la Autorización o Consentimiento por parte de los Tutores - 75 -
Figura 14: Tutores realizando la prueba de Estilos de Enseñanza en sus dispositivos móviles - 78 -
Figura 15: Validación del Tutor usando su email a través del SGE - 79 -
Figura 16: Aplicación en el SGE del Cuestionario de Estilos de Aprendiaje al Estudiante - 80 -
Figura 17: Instrucciones Iniciales para la aplicación de la Prueba de Estilos de Aprendizaje - 81 -
Figura 18: Conferencia denominada "Formalismo Académico en las Tutorías Masivas" - 83 -
Figura 19: Anuncio de "PilandoAndoPaLaU" por el Canal de Panamá en la red social Instagram - 85 -
Figura 20: Asistencia General de Tutores a través de las 5 sesiones de #PilandoAndoPaLaU - 86
Figura 21: Asistencia General de Tutores a las 5 sesiones de #PilandoAndoPaLaU que realizaron la prueba de
Estilos de Enseñanza de Grasha-Riechmann - 87 -
Figura 22: Asistencia General de Estudiantes a las 4 Sesiones de #PilandoAndoPaLaU - 88 -
Figura 23: Asistencia General de Estudiantes a las 4 sesiones de #PilandoAndoPaLaU que realizaron la prueba
de Estilos de Aprendizaje de Grasha-Riechmann - 88 -
Figura 24: Panel de Administración del SGE de #PilandoAndo - 89 -
Figura 25: Resultados de la Prueba de Grasha-Riechmann para Estilos de Enseñanza aplicada a Tutores en el
SGE - 90 -
Figura 26: Estilos de Enseñanza de los Tutores en #PilandoAndoPaLaU - 92 -
Figura 29: Estilos de Enseñanza de Estudiantes en #PilandoAndoPaLaU - 96 -
Figura 32: Simulación Teórica del Algoritmo de Gale-Shapley aplicado a Estudiantes y Tutores - 110 -
Índice de Tablas
Tabla 1: Dimensiones del Aprendizaje según Kolb - 28 -
Tabla 2: Simulación de Resultados de Cuestionario de Estilos de Aprendizaje de un Estudiante - 41 -
Tabla 3: Simulación de Estilos de Enseñanza de un Tutor - 46 -
Tabla 4: Clúster 1 de Estilos de Enseñanza - 48 -
Tabla 5: Clúster 2 de Estilos de Enseñanza - 49 -
Tabla 6: Clúster 3 de Estilos de Enseñanza - 49 -
Tabla 7: Clúster 4 de Estilos de Aprendizaje - 49 -
Tabla 8: Clúster Integrado #1 entre Estilos de Enseñanza y Estilos de Aprendizaje - 49 -
Tabla 9: Clúster Integrado #2 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 10:Clúster Integrado #3 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 11:Clúster Integrado #4 entre Estilos de Enseñanza y Estilos de Aprendizaje - 50 -
Tabla 12: Preferencias de estudiantes sobre tutores (Algoritmo de Hopcroft-Karp) - 55 -
Tabla 13: Preferencias de Estudiantes sobre Tutores (Algoritmo de Gale-Shapley) - 59 -
Tabla 14: Perfil Demográfico de los Tutores - 92 -
Tabla 15: Desglose por Rangos Etarios de Estilos de Enseñanza en Tutores - 94 -
Tabla 16: Distribución porcentual en sexo femenino de los Estilos de Enseñanza de los Tutores - 95 -
Tabla 17: Distribución porcentual en sexo masculino de los Estilos de Enseñanza de los Tutores - 95 -
Tabla 18: Perfil Demográfico de los Estudiantes - 96 -
Tabla 19: Desgloce por rangos etarios de los Estilos de Aprendizaje de los Estudiantes - 9 -
Tabla 20: Distribución porcentual de los Estilos de Enseñanza en sexo (Femenino) - 100 -
Tabla 21: Distribución porcentual de los Estilos de Enseñanza en sexo (Masculino) - 101 -
```

Tabla 22: Preferencias de Estilos de Enseñanza de Tutores por los Estudiantes - 113 -

Tabla 23: Ejemplo de Estilos de Aprendizaje de estudiantes al azar - 122 -

Tabla 24: Ejemplo de Estilos de Enseñanza de tutores al azar - 122 -

Tabla 25: Creación de grupos de tutoría de usando el Algoriitmo de Emparejamiento - 123 -

Introducción

"El sistema educativo panameño colapsó", algo que se puede escuchar mucho en los diferentes medios de comunicación. Esto ha llegado a convertirse en un campo de distorsión de la realidad para muchas personas; donde se considera que un elemento fundamental de lo que hoy se conoce como "El Estado", depende de un sistema educativo.

Postulaba la Teoría General de Sistemas (TGS), que un sistema es "El todo más que la suma de sus partes"[1] algo que roza el pensamiento filosófico y a su vez, conlleva en cierta medida a refutar la afirmación planteada inicialmente, ya que la misma existencia de un sistema educativo impide su colapso.

Esto se genera, dado a que nunca han dejado de existir las partes o elementos que forman parte de este, el sistema sigue funcionando; es decir, en ningún momento ha tenido un colapso.

Es cierto que se debe mencionar, que un sistema puede no dar la salida específica para la que este fue diseñado. Es decir, que en su linealidad de , esta última ya no es representativa de lo que se espera de esa abstracción lógica del sistema, por ende, se refuerza el concepto del colapso de un sistema; sin embargo, la realidad es que la salida no responde al tiempo, espacio y momento en el que la sociedad se encuentra. Conociendo esto, no se va mucho más allá del imperativo ético y moral que corresponde a un candidato a Ingeniero en Sistemas de Información comprender a cabalidad la implicancia que tienen los sistemas como elemento fundamental de diario convivir entre seres humanos al que se denomina sociedad. Si no que esto obliga a realizar un análisis sistémico de la realidad que está atravesando el

sistema educativo panameño a manera que se generen intervenciones en los puntos de entrada y salida de este, afectando de esta manera el producto final.

Por ello, durante este Proyecto de Investigación, "Se hablará de educación", pero se enfocará en el esfuerzo para comprender más a fondo y optimizar el mismo proceso educativo, mejorar aquel sistema con el uso de las Tecnologías de la Información y la Comunicación (TIC's, por sus siglas en inglés).

Se usará el caso del proyecto #PilandoAndo, ejecutado por la Fundación Ayudinga y el Canal de Panamá, que son intervenciones educativas masivas que se desarrollan bajo la consigna de palear las deficiencias de los estudiantes en diferentes ramas de la matemática como: Aritmética, Álgebra, Geometría, Estadística y Probabilidad en etapas tempranas de su formación secundaria, así como en preparación para que estos puedan rendir sus exámenes de admisión en las universidades de la República de Panamá.

El modelo de #PilandoAndo, tiene como enfoque las "Economías de Escala", dado que cambia por completo la estructura a través de la cual se llevan las tutorías, tradicionalmente, donde es una relación de 1:1, es decir, 1 Tutor por 1 Estudiante.

#PilandoAndo como modelo propone sesiones de tutorías basadas en el voluntariado, donde jóvenes universitarios, profesores y profesionales de la sociedad civil donan su tiempo, esfuerzos y conocimientos para apoyar a más de cinco estudiantes por mesa en donde son asignados.

Sin embargo, el modelo de #PilandoAndo se ha de denotar que es una aproximación novedosa para presentar una propuesta de solución al problema educativo a través del involucramiento directo de la sociedad civil que se organiza a través de Organizaciones No Gubernamentales (ONG), organismos supra gubernamentales como el Canal de Panamá (ACP) y la empresa privada, pero presenta problemas de aseguramiento de la pertinencia y calidad educativa.

Es por esto, que se evaluará la interacción propia e inherente que existe entre estudiantes y tutores, donde cada uno de ellos aprende de una forma totalmente diferente a la que enseña y viceversa.

Materia que se formalizará posteriormente con Modelos como el de Kolb, Honey & Mumford, Felder & Silverman y Grasha-Riechmann.

Estos modelos plantean diferentes perspectivas sobre ¿Cómo las personas aprenden? y ¿Cómo procesan la información?; evaluar "Cuál es el mejor", no es algo que se hará en este Proyecto de Investigación, ya se reconocerá que cada uno tiene sus aplicaciones específicas en casos puntuales.

Se usará el Modelo de Grasha-Riechmann, en el que se plantea la "Taxonomía de Estilos de Enseñanza y Aprendizaje" para evaluar la mejor forma a través de la cual se pueden emparejar, aproximadamente, a los estudiantes y tutores para maximizar ese sentido de pertinencia y calidad educativa en #PilandoAndo. Con el fin de desarrollar un modelo, se tendrá que aplicar la Prueba de Inventarios de Estilos de Aprendizaje a los estudiantes que asistirán a un conjunto específico de sesiones de #PilandoAndo y la Prueba de Inventarios de Estilos de Enseñanza a los tutores que, de igual manera, asistan a ese mismo grupo de sesiones.

Todo esto será desarrollado a través de una plataforma web en las que se podrán tomar esas pruebas, un equipo administrativo, analizar los resultados; teniendo la mente buscar ese "Emparejamiento Aproximado" entre estudiantes y tutores, donde sus Estilos de Enseñanza y Aprendizaje estén lo más correlacionados que sea posible.

En ese camino, se explorará la Teoría de Emparejamiento o mejor conocida como Teoría del Matching, una rama de las matemáticas discretas que se caracteriza

por utilizar diversas técnicas que se centran en buscar diferentes tipos de Emparejamiento para dos conjuntos distintos, garantizando la existencia de un Emparejamiento como tal.

Basado en los elementos del Modelo de Grasha-Riechmann y sus pruebas psicométricas que les serán aplicadas a una muestra de la población de estudiantes y tutores de #PilandoAndo, sin considerar la existencia de un grupo control, se tomarán estos datos garantizando siempre el cumplimiento de la Ley 81 de Protección de Datos de la República de Panamá.

Este planteamiento matemático, como ya bien fue mencionado, tendrá su base en la Teoría del Matching, empero de los múltiples algoritmos de emparejamiento que pueden llegar a existir, se basará en el desarrollado por Lloyd Shapley y David Gale, el cual lleva su nombre llamado Gale-Shapley.

Se desarrollaría de esta manera, dado que permite alcanzar diversos niveles de emparejamiento, que pueden ser el Perfecto, Máximo o el Estable. Siendo el objetivo de este Proyecto de Investigación encontrar un emparejamiento máximo (aproximado) entre los Estudiantes y Tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

La intersección entre las ciencias sociales como la pedagogía y las ciencias naturales como las matemáticas, computación y sistemas de información generarán un producto final que permita al equipo de la Fundación Ayudinga y el Canal de Panamá, una mejor organización y creación de los grupos de tutoría en #PilandoAndo. Capítulo I: Marco Teórico y Antecedentes

Objetivos del Proyecto de Investigación

Objetivo General:

Diseñar y poner a prueba un sistema web basado en los modelos pedagógicos de Estilos de Aprendizaje y Estilos de Enseñanza, así como en la Teoría del Emparejamiento, que facilite un emparejamiento aproximado entre Estudiantes y Tutores en #PilandoAndo, el programa de intervenciones educativas masivas de la Fundación Ayudinga, maximizando la eficacia de estas.

Objetivos Específicos:

Analizar los diversos modelos pedagógicos en los cuales se establezcan las relaciones en Estilos de Aprendizaje de Estudiantes y Estilos de Enseñanza de Tutores, así como el planteamiento de diversos modelos matemáticos dentro de la Teoría del Emparejamiento.

Ejecutar un experimento que permita la aplicación de la prueba de Inventarios de Estilos de Aprendizaje para los estudiantes y la prueba de Inventarios de Estilos de Enseñanza para los tutores de un grupo de sesiones de #PilandoAndo.

Desarrollar un sistema web que permita la captación de los datos por parte de los estudiantes y tutores en #PilandoAndo, así como su visualización y creación de grupos de tutorías para los organizadores de esta actividad.

Desarrollar el Algoritmo de Gale-Shapley para el emparejamiento aproximado entre estudiantes y tutores tomando en cuenta las disimilitudes entre estos.

Analizar los resultados obtenidos de la aplicación del Algoritmo de Gale-Shapley en el Emparejamiento Aproximado de Estudiantes y Tutores, a manera de crear el grupo de tutorías aproximado para un conjunto de estudiantes y un tutor.

Hipótesis de Investigación

Hipótesis Nula ():

La aplicación del algoritmo de emparejamiento de Gale-Shapley, basado de igual forma en los Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores no demostró ninguna diferencia significativa en los emparejamientos aproximados al momento de la creación de grupos de tutoría en las sesiones de #PilandoAndo, comparándolos con emparejamientos aleatorios.

Hipótesis Alternativa ():

Al aplicar el Algoritmo de Gale-Shapley sobre los Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores se producen emparejamientos entre ellos que son más compatibles en comparación con los realizados al azar en las sesiones de #PilandoAndo

Hipótesis Alternativa ():

Los emparejamientos producto del Algoritmo Gale-Shapley tienden a contar con una mayor concordancia entre Estilos de Aprendizaje de Estudiantes y Enseñanza de Tutores que son dominantes producto de la aplicación de la prueba psicométrica en cuestión, en comparación con los emparejamientos realizados al azar en las sesiones de #PilandoAndo.

Hipótesis Alternativa ():

Los emparejamientos que son productos del Algoritmo de Gale-Shapley demuestran una mayor capacidad al maximizar el número de tutores que tienen grupos completos () basados en la compatibilidad de estilos, comparándolos con los emparejamientos al azar en las sesiones de #PilandoAndo.

Hipótesis Alternativa

Los emparejamientos producto del Algoritmo Gale-Shapley muestran una menor variabilidad en la compatibilidad de estilos de aprendizaje y estilos de enseñanza de tutores cuando es comparado con los emparejamientos al azar en las sesiones de #PilandoAndo.

Justificación

Siendo la educación el pilar fundamental de cualquier nación y el desarrollo de sus individuos y sociedad, la eficacia de esta no solamente depende del contenido impartido, sino de cómo se es impartido y cómo este es recibido.

Los estilos de aprendizaje y enseñanza son aspectos fundamentales que influyen en el proceso de enseñanza-aprendizaje, que es la concepción tradicional del modelo educativo. Sabiendo que cada individuo tiene una forma única de aprender y otra forma única de enseñar, por lo que la coincidencia entre estos estilos es un factor determinante para el éxito educativo.

#PilandoAndo es una oportunidad de gran valor para los estudiantes que buscan reforzar sus conocimientos en diversas áreas de las matemáticas a través de tutorías libres y gratuitas. Sin embargo, se reconoce que el éxito de estas sesiones no solamente depende del contenido y su calidad como tal, sino también de la relación pedagógica intrínseca que se genera entre el tutor y el estudiante.

Por ello, un emparejamiento adecuado entre ambos podría potenciar la retención y comprensión del conocimiento compartido, mientras que un emparejamiento inadecuado resulta directamente en sesiones ineficaces, ineficientes e incluso contraproducentes para el mismo estudiante.

Dentro de la Teoría del Emparejamiento, hay herramientas matemáticas que pueden utilizarse para optimizar estos emparejamientos. Especialmente, el Algoritmo de Gale-Shapley que ha demostrado, a lo largo del tiempo, ser eficiente en problemas similares y con ello tiene la capacidad de adaptarse considerando las diferencias entre estilos de aprendizaje y estilos de enseñanza.

Desarrollando un sistema web que facilite la captación y visualización de estos datos, no solamente optimizará el proceso de emparejamiento, sino que permitirá que los organizadores de #PilandoAndo tengan una herramienta de alto valor para la gestión de las sesiones de tutoría.

Declaración de Conflictos de Interés del Autor

El autor de este Trabajo de Graduación Teórico-Práctico declara que su único conflicto de interés es ser presidente y fundador de la Fundación Ayudinga, organización y sus aliados estratégicos como la Autoridad del Canal de Panamá (ACP) gracias a los cuales se ejecuta este proyecto de investigación.

Antecedentes

La Fundación Ayudinga es una entidad educativa sin ánimo de lucro dedicada a proporcionar experiencias de aprendizaje gratuitas, inclusivas y centradas en el ser humano.

Desde su creación, ha ofrecido materiales académicos en vídeo en disciplinas como Matemáticas, Física,

Química y Biología, manteniendo un alto nivel de calidad audiovisual. Estos contenidos se caracterizan por contextualizar el aprendizaje con situaciones del día a día.

En tiempos recientes, la Fundación ha trabajado en la creación de un Modelo Educativo denominado "AyuEduca 2030"[2]. Este modelo establece ejes estratégicos centrados en el Impacto Social en el ámbito educativo.

Es notable cómo la reciente pandemia de COVID-19 [3] afectó a estudiantes del mundo entero y se evidenció la desigualdad en el acceso a recursos tecnológicos. Esta situación limitó la oportunidad educativa para muchos, en particular, para aquellos en contextos de vulnerabilidad.

Figura 1: Clases en vivo durante la Pandemia del COVID-19

Programa #PilandoAndo

A inicios del año 2020, surge la iniciativa conjunta entre la Fundación Ayudinga y el Biomuseo, en donde se dieron tutorías masivas gratuitas y libres de Matemáticas en las instalaciones de este, con el nombre #PilandoAndo.

#PilandoAndo consiste en una iniciativa en la que jóvenes voluntarios que, con el respaldo de la empresa privada y la sociedad civil, ofrecen clases masivas de diferentes temas, sin embargo, haciendo énfasis en Aritmética, Álgebra y Geometría, generando una intervención directa en el proceso educativo del estudiante. Es importante reconocer que el modelo de #PilandoAndo consiste en una "Intervención Masiva", es decir, hay una gran cantidad de estudiantes que forman parte de ella, así como hay una gran cantidad de tutores que, voluntariamente, ceden su tiempo para compartir sus conocimientos, de manera gratuita, con estos estudiantes en sesiones sabatinas.

Se inició con un rango etario de estudiantes con edades entre los 14 a 16 años a través de tutorías de Aritmética y Álgebra, ya que se consideró que estas representan metodologías que propugnan el desarrollo de un Pensamiento Lógico – Matemático desde tempranas edades; más en la realidad educativa latinoamericana [4].

El crecimiento de estudiantes en #PilandoAndo llevó a que se tuviesen que flexibilizar las edades que se le solicitaban a los estudiantes para ir a las tutorías, ya que de una población de , entre de ellos estaban en las edades de , por lo cual se les permitió que ellos formaran parte de las tutorías.

De manera inicial, se debe mencionar que no se contaba con ningún tipo de sistema informático para llegar registro de asistencia, asignación de estudiantes a mesas con tutores y cualquier otro proceso asociado, todo esto se realizaba a mano; exceptuando el registro previo de los estudiantes a través de un formulario web que estos llenaban en colaboración con el Biomuseo.

Dadas las circunstancias, anteriormente planteadas, se tuvo que tomar la decisión de reestructurar por niveles de Aritmética y Álgebra [5] de la siguiente manera:

AritméticaAritmética Básica: Dirigida a estudiantes de 4to - 5to grado Aritmética Intermedia: Dirigida a estudiantes de 5to - 6to grado

Aritmética Avanzada: Dirigida a estudiantes de 6to - 7mo grado

ÁlgebraÁlgebra Básica: Dirigida a estudiantes de 7mo - 8vo grado Álgebra Intermedia: Dirigida a estudiantes de 8vo - 9no grado Álgebra Avanzada: Dirigida a estudiantes de 9no – 10mo grado

Esta decisión fue tomada debido a que algunos autores, como estudios realizados por el Ministerio de Educación de la República de Colombia [6] plantean que las dificultades más grandes en el aprendizaje de la matemática para un estudiante en etapas tempranas (Primaria e Inicios de Secundaria) son:

Alto nivel de abstracción de conceptos

Requerida secuencialidad de los conocimientos.

Los tutores se encontraban previamente informados sobre los niveles que estos iban a enseñar en las sesiones de tutorías, sin embargo, siempre existía un alto grado de incertidumbre debido a que se dependía del estudiante que llegara a #PilandoAndo y lo que este desease aprender o reforzar.

Esto conllevaba cierto nivel de complejidad a nivel logístico, ya que se rompía por completo con la consigna inicial de #PilandoAndo, la cual consistía en un tutor dándole tutorías a un grupo pequeño (En su momento, se planteaba de como máximo).

Bajo el modelo educativo tradicional, se contempla que la entidad docente, puede dar clases a N estudiantes, generando de esta manera, una relación de N, lo que traducido en palabras sería una relación de uno a muchos.

Sin embargo, cuando se analiza ese "Muchos", resulta que la cantidad puede ser cuasi infinita de estudiantes que reciban clases de dicho docente, por lo que se puede perder la personalización de los aprendizajes a nivel de una tutoría [7].

Por ello, de manera empírica y en su momento, únicamente basados en la intuición, se generan las bases para el desarrollo y escalabilidad de #PilandoAndo con la consigna de: "Todo tutor puede darle tutorías a un máximo de 4 estudiantes, en caso de que este sobrepase la cantidad de estudiantes permitidos, serán asignados al siguiente tutor disponible".

Figura 2: Primera Sesión de #PilandoAndo (18 de enero, 2020)

#PilandoAndo tuvo que ser detenido de manera presencial el 27 de febrero de 2020 debido a las previsiones que la Fundación Ayudinga y sus aliados tomaron producto del advenimiento de la Pandemia del COVID-19.

Figura 3: Última Sesión de #PilandoAndo en el BioMuseo (27 de febrero de 2020)

El proyecto continuó de manera virtual con el uso de las redes sociales de Fundación Ayudinga, donde se impartían estas sesiones de tutorías en vivo y pregrabadas en algunas ocasiones, contando con el apoyo de empresas como Banesco, Fundación Alberto Motta y Petróleos Delta.

Durante el año 2022, luego de que se levantaran gran parte de las medidas de restricción por parte del Ministerio de Salud de la República de Panamá (MINSA), se toma la decisión de regresar a hacer sesiones de #PilandoAndo de manera presencial, en esta ocasión directamente con el apoyo de la Autoridad de Canal de Panamá (ACP), así como su financiamiento para el desarrollo de este proyecto.

Para ello, se adoptó una coyuntura relevante como lo es la preparación a los estudiantes para el Examen de Admisión PAA [8] de la Universidad Tecnológica de Panamá, elaborados por el College Board.

Durante estas 3 sesiones de tutorías libres y gratuitas con una duración de 9 horas en total, colaboradores de la ACP, profesionales independientes y estudiantes de la UTP fungieron como tutores para el resto de sus compañeros.

Hallazgos Cualitativos y Cuantitativos

A partir de una población de , producto de esta tutoría libre y gratuita con el nombre #PilandoAndoPaLaU en el año 2022, se obtuvieron los siguientes resultados:

85% de los estudiantes (82 estudiantes) tuvieron puntajes ≥ 1,000 puntos. Esto permitió que pudiesen entrar a Carreras de Ingeniería

6% (6 estudiantes) de los estudiantes obtuvieron puntajes entre 900 y 999 puntos. Esto permitió que pudiesen acceder Carreras de Licenciatura

9% (8 estudiantes de los estudiantes obtuvieron > de 800 puntos)Este puntaje no permite que el estudiante sea admitido bajo los criterios de la Universidad Tecnológica de Panamá y su Sistema de Ingreso Universitario (SIUTP)

Es importante mencionar que toda la información presentada, anteriormente, fue obtenida a través de encuestas que los estudiantes o sus acudientes llenaron posterior a recibir los resultados de la Prueba PAA, a manera de "Feedback o Retroalimentación" como medición de la efectividad o no de la intervención. Uno de los principales hallazgos que surgieron a partir de observaciones cualitativas era la diferencia entre el estilo de enseñanza de un tutor y el estilo de aprendizaje de un estudiante, variables que mantienen una correlación para generar un entorno educativo en el que, tanto tutores como estudiantes, puedan maximizar el proceso de enseñanza-aprendizaje [9].

Modelos de Estilos de Aprendizaje

El principal cuello de botella que se presentó al realizar los análisis "Post-Mórtem" de cada uno de los #PilandoAndo, fue la cantidad de tiempo efectivo de tutorías que se "perdía" por el hecho de tener que estar organizando a los estudiantes, mesas por mesas, desde la perspectiva logística.

Figura 5: Logística de organización de estudiantes en #PilandoAndo

De igual forma, de este la perspectiva académica; se reconoce que no todos los estudiantes se sienten cómodos con un tutor y no todos los tutores se sienten cómodos con un estudiante en específico, es una relación dual [10].

Por ello, se proceden a buscar opciones a través de las cuales se pueda automatizar ese proceso y, de esa manera, maximizar el aprendizaje de los estudiantes y apoyar la labor voluntaria que están realizando los tutores, donando su tiempo en pro de apoyar a los demás.

Modelos de Aprendizaje y Enseñanza

A manera de poder determinar ¿Cómo se encontrará un modelo que permita emparejar a estudiantes y a tutores en las intervenciones educativas masivas de la Fundación Ayudinga?, primero se tiene que hacer una serie de definiciones claras como, por ejemplo ¿Por qué se habla de Pedagogía?

El concepto de #PilandoAndo, como fue mencionado, anteriormente, tiene una clara dirección y enfoque hacia los estudiantes que se encuentran en edades de , dado que se busca reforzar una serie de conocimientos base como lo son: Aritmética, Álgebra, Geometría, Trigonometría y Funciones Matemáticas. Sin embargo, lo que concierne a este Proyecto de Investigación es evaluar lo acontecido y sus posibilidades futuras en #PilandoAndoPaLaU, una intervención específica que duró 5 semanas en la que se prepararon a estudiantes entre para rendir el examen de admisión de las universidades en Panamá.

La Fundación Ayudinga, tiene como su eje principal de desarrollo, la creación de contenidos académicos e intervenciones educativas para estudiantes en las edades anteriormente mencionadas, por lo que se debe saber que no se está refiriendo a modelos pedagógicos, en vez de modelos andragógicos [11]. Para ello, se debe establecer una definición clara de ¿Qué es un Modelo?, para lo que se procede a utilizar definiciones como las del Dr. Modaldo Tuñón, Catedrático de la Facultad de Ingeniería en Sistemas

Computacionales de la Universidad Tecnológica de Panamá, quién establece que "Un modelo es una representación física o abstracta de un sistema (grupo de objetos o ideas) que, de alguna manera, es

diferente a su forma original" [12].

Una vez conocida la definición de "Modelo", a continuación, se entra a ver ¿Qué es un Modelo Pedagógico? Para lo cual se debe conocer que la educación es un fenómeno social, por ende, cualquier modelo pedagógico consiste modelos inherentes a la misma pedagogía, que es reconocida en el marco de las Ciencias Sociales no solo como un saber, sino que está a abierta a cualquier tipo de crítica ya sea conceptual o de revisión de los conceptos fundamentales sobre la cual está basada [13].

Se realizará una comparativa entre los diferentes modelos de estilos de aprendizaje y enseñanza que existen, los cuales tienen una base en la Teoría de las Inteligencias Múltiples de Gardner [14], dado que este autor considera a la inteligencia como una concepción de que la misma inteligencia no se puede considerar como un conjunto específico y único de capacidades, sino que es una red de diversos conjuntos de capacidades autónomas, pero que tienen una alta correlación entre sí.

Utilizando esto como una premisa básica, se reconoce que no existe entre los estudiantes, una única e inequívoca forma de aprender, ya que todas las personas tienen maneras diferentes de establecer relaciones como el mundo, generando que las pretensiones que cada uno pueda tener hacia lo que desea aprender sean diferentes.

Conociendo esta realidad, se puede comprender que, cada persona puede llegar a desarrollar ciertas disposiciones o preferencias muy específicas, que afectan directamente la forma en la que este aprende [15]. A esto, se le puede llamar Estilos de Aprendizaje y por extensión, también se puede definir que, si todas las personas aprenden de formas diferentes, pues tendrán maneras diferentes de enseñar o transmitir ese conocimiento previamente adquirido hacia los demás.

Por ello, este proyecto se enfocará en evaluar cuatro Modelos de Estilos de Aprendizaje o Enseñanza que son el Modelo de Kolb, Modelo de Honey & Mumford, Modelo de Felder y Silverman: Índice de Estilos de Aprendizaje y por último el Modelo de Grasha – Riechmann, con el cual se define ¿Cuál modelo permite hacer el emparejamiento aproximado entre estudiantes y tutores?

Modelo de Kolb

David Kolb, profesor de administración de la Universidad de Case Western Reserve, creó un modelo de aprendizaje dirigido al estudiante, directamente relacionado con las experiencias que este percibe [16]. Él consideraba que una experiencia es un conjunto de actividades que le permiten al individuo poder aprender y, por ende, establecer un Estilo de Aprendizaje específico en él.

Al momento de desarrollar su modelo, propuso un enfoque bidimensional para comprender dichos estilos de aprendizaje, específicamente, centrados en la percepción por parte del estudiante y la forma en la que este es capaz de procesar el conocimiento o la información.

Para él, el aprendizaje se podía considerar como una consecuencia directa de la manera en la que los individuos perciben y, posteriormente, procesan la información en el aula de clases [17] o en cualquier otro lugar en el que se desarrolle el proceso de enseñanza – aprendizaje.

Considerando esto, presentó dos tipos opuestos de percepción:

La primera siendo individuos que perciben el aprendizaje a través de una experiencia concreta.

La segunda se relacionaba con aquellos individuos que son capaces de adoptar una percepción con base en la conceptualización abstracta de conceptos, colocándole un énfasis muy particular a las generalizaciones cognitivas que estos puedan desarrollar.

Cuando este empezó a explorar el procesamiento de la información, encontró tipos igualmente opuestos de procesamiento de la información:

Cierto grupo de individuos son capaces de procesar la información a través de la práctica de las implicaciones específicas de situaciones pasadas con la experimentación activa.

Un segundo grupo de individuos tiene una inclinación directa hacia el procesamiento de la información basado en una observación reflexiva de esta.

Tipos de Estilos de Aprendizaje según Kolb

Al momento de realizar la agrupación de estas dos formas de percibir y las dos formas de procesar la información en individuos, este percibió que una forma de unificarlo era a través de un Modelo de Cuatro Cuadrantes [18], que le permitiese hacer un planteamiento formal de los Estilos de Aprendizaje:

Acomodador (Convergente)Percepción: Experiencia Concreta

Procesamiento: Experiencia Activa

Características: Estos individuos tienen una tendencia a aprender a través de una experiencia directa que conduzca a una acción específica. Tienen una habilidad especial en las situaciones que requieren un nivel elevado de practicidad y adaptación al cambio, por lo que sus acciones están basadas en sus instintos.

DivergentePercepción: Experiencia Concreta

Procesamiento: Observación Reflexiva

Características: Los individuos que cuentan con este Estilo de Aprendizaje tienen la peculiaridad de ser una fuente de generación de ideas, observando las situaciones que se les presentan de todas las perspectivas que se les sean posibles. Estos prefieren dedicarse a la observación de los hechos antes de actuar, debido a que, pueden recabar información y con su imaginación, pueden establecer propuestas de solución a los problemas

Asimilador Percepción: Conceptualización Abstracta

Procesamiento: Observación Reflexiva

Características: Los individuos requieren que la información que estos reciben posea una explicación clara y lógica, altamente formalista antes de observarle un enfoque práctico a la misma. Tienden a estar más preocupados por la abstracción de conceptos e ideas que por las personas a su alrededor. Presentan una clara preferencia hacia la teoría antes que la aplicación práctica de esta.

ConvergentePercepción: Conceptualización Abstracta

Procesamiento: Experimentación Activa

Características: Los individuos tienden a ser buenos en solucionar problemas a través de la aplicación de sus ideas. Sin embargo, estos son más atraídos por aquellas tareas técnicas y los problemas más específicos, que por aquellas cuestiones de índole social y las relaciones interpersonales con otros individuos.

Cada uno de estos Estilos de Aprendizaje planteados por Kolb, muestra una combinatoria única de las formas en las que estos perciben y procesan la información. De igual manera, se reconoce que ninguno de los Estilos de Aprendizaje planteados por Kolb es mejor o peor que el otro.

La efectividad de estos dependerá, específicamente, del tiempo, espacio y momento en el que el individuo se encuentre.

Al ser este un modelo bidimensional, basado en dos tipos de percepción y dos tipos de procesamiento de la información, puede ser modelado matemáticamente como un , dado que como fue demostrado; su agrupación genera el resultado de la operación matemática, anteriormente mencionada, 4 Estilos de Aprendizaje.

Tabla 1: Dimensiones del Aprendizaje según Kolb

Dimensiones del Aprendizaje

Percepción de la Información

Procesamiento de la Información

Por Experiencias concretas

Por Experiencias Activas

Por Conceptualización Abstracta

Por Observación Reflexiva

El mecanismo utilizado por Kolb para obtener la información por parte de los individuos para determinar su Estilo de Aprendizaje ha sido planteado en la prueba de Kolb para Estilos de Aprendizaje [19], el cual mantiene un alto nivel de relevancia, hoy en día.

Sin embargo, se limita a analizar la dimensión del estudiante como individuo, no considera al docente o Tutor que le transmita estos conocimientos.

En consideración de esto, en el marco de la consigna de emparejamiento de estudiantes y tutores, al no tener información sobre el Estilo de Enseñanza de los segundos, no se puede elaborar un modelo matemático que permita correlacionar cada uno de estos conjuntos.

Por ende, se toma la decisión de descartarlo dado a que no aporta la información requerida.

Modelo de Honey y Mumford

Peter Honey y Alan Mumford, profesores de la Universidad de Leicester [20] fueron los creadores de este modelo con una fuerte base en el trabajo realizado por David Kolb, quien fue el proponente de la idea del aprendizaje mediante experiencias.

Su modelo es ampliamente utilizado en el ámbito empresarial, donde muchas especialistas en recursos humanos buscan diseñar estrategias de capacitación para sus colaboradores y al desconocer la forma en la que estos aprenden, pueden terminar pagando por capacitaciones con baja efectividad en la formación de sus colaboradores.

Honey & Mumford plantearon que los estilos de aprendizaje se basan en el enfoque que se tiene hacia la manera en la que como individuos se aprende.

Estos recomiendan fervientemente que, para poder maximizar el aprendizaje, se debe comprender los estilos del resto de las personas a las que se forman, siendo esta una pequeña aproximación al estilo de enseñanza que es inherente a un individuo.

Los estilos de aprendizaje planteados se basan en que cada individuo decide de forma natural y estos recomiendan, que a manera de que se optimice el aprendizaje individual, los individuos deberían entender a fondo su estilo de aprendizaje y tratar de encontrar oportunidades que permitan maximizar su aprendizaje, usando el estilo previamente detectado.

A continuación, se presenta cada uno de los estilos de aprendizaje detectados por Honey & Mumford: Tipos de Estilos de Aprendizaje según Honey & Mumford

Los Estilos de Aprendizaje principales que estos detectaron a partir de la aplicación del LSQ son: Activista (Activo)Características: Los estudiantes activistas se encuentran dispuestos a vivir nuevas experiencias sumergiéndose completamente en cualquier tarea que estos se encuentren realizando. Su preferencia de aprendizaje se basa en la experiencia directa y aprender a través de la práctica. Tienden a tener una mente abierta y no se encuentran exceptivos ante circunstancias nuevas.

Estos actúan primero y luego consideran las consecuencias de sus acciones, viven del presente únicamente.

Ámbito Educativo: Estos aprenden mejor cuando se encuentran involucrados en actividades de corta

duración, como pueden ser los ejercicios en equipo, los cuales pueden durar únicamente una sesión de clases. Tienden a estar constantemente buscando la retroalimentación de sus compañeros y, por ende, están cómodos al enfrentarse a una tarea compleja y desafiante.

Reflexivo (Pensador)Características: Los estudiantes reflexivos observan cada uno de los posibles escenarios antes de llegar una conclusión definitiva. Consideran todo lo que pueda suceder, las opciones que se encuentran disponibles y los ángulos desde los que se puede abordar un problema antes de tomar cualquier tipo de decisión.

Tienden a tener un bajo perfil al momento de tener discusiones, prefieren observar el entorno y escuchar las opiniones de los demás.

Ámbito Educativo: Estos aprenden mejor al momento que tienen la oportunidad de observar y pensar en cada detalle sobre cualquier evento que haya acaecido. Revisan constantemente lo que han hecho, a manera de poder reflexionar sobre ello, analizando la experiencia. Prefieren la aplicación de tareas en las que puedan tomarse su debido tiempo para considerar todas las opciones disponibles.

Teórico (Conceptual)Características: Los estudiantes teóricos se encargan de buscar la lógica y la teoría que define cualquier pieza de información o concepto que se les presente. Tienden a utilizar los problemas para pensar, paso a paso, con un claro perfeccionismo. Su interés en el detalle los lleva a analizar cada punto y sintetizarlo, adoptando un enfoque secuencial en cualquier tipo de tarea que se les sea asignada.

Ámbito Educativo: Estos aprenden de una mejor forma cuando la información es presentada sistemática y lógicamente, ya que prefieren el aprendizaje con una estructura y orden claramente definidos. Son más abiertos a trabajar bajo el modelo de enseñanza – aprendizaje tradicional como, por ejemplo: "Clases Magistrales, Exposiciones o Conferencias".

Pragmático (Práctico)Características: Los estudiantes pragmáticos se enfocan en buscar resultados probando nuevas teorías, técnicas a ideas con el objetivo de validar si estas funcionan en un entorno práctico. Están orientados a ser realistas y a tomar acción a buscar las soluciones ante los problemas, tomando decisiones rápidamente.

Ámbito Educativo: Estos aprenden de una mejor forma cuando ven sus conocimientos aplicados a situaciones de la vida real. Tienden a apreciar a un Experto en la materia, siendo menos receptivos hacia las teorías e ideas que no tienen ningún tipo de aplicación práctica. Les gusta aprender mediante la experimentación en el laboratorio.

Para ello, estos diseñaron una prueba psicométrica denominada LSQ [21] (Siglas en inglés para Learning Styles Questionnaire) con una recomendación a que esta sea aplicada a individuos mayores de 16 años debido a la profundidad de las consignas que este plantea.

La limitante en el análisis que Honey & Mumford plantean en el LSQ es que no existe un límite específico de tiempo [22] para contestarlo, tampoco existen ningún tipo de respuestas correctas y erróneas (Similar a cualquier otro tipo de pruebas sicométricas).

Empero, su enfoque binario para responder las consignas que le son planteadas al individuo, en donde si este se encuentra de acuerdo con la lo planteado, debe marcar un (+) positivo, sin embargo, en caso de encontrarse en desacuerdo, este debe contestar con un (-) negativo. Lo que impide explorar los diferentes tamices y la multidimensionalidad de los Estilos de Aprendizaje de un individuo.

Ahora que se ha analizado a profundidad el Modelo de Kolb, se debe reconocer que este únicamente se centra en el Conjunto de Estudiantes, a través de definir los Estilos de Aprendizaje de estos. No se cuenta con ninguna medición psicométrica a través de la cual se debe obtener el Estilo de Enseñanza de un docente o tutor.

Reconociendo esto, se toma la decisión de descartarlo dentro de las posibilidades de utilizar sus pruebas psicométricas para emparejar a estudiantes y tutores, dado que no se cuenta con información o al menos una tabla de equivalencias entre ambos estilos.

Modelo de Felder & Silverman: Índice de Estilos de Aprendizaje

Una contraposición a los modelos de estilos de aprendizaje planteados con anterioridad es el expresado por Richard M. Felder y Linda K. Silverman a través de dos razones fundamentales: Comprender las diferencias de estilos de aprendizaje entre los estudiantes de ingeniería, de manera que se les proporcionase esa información a sus docentes con el objetivo de desarrollar estratégicas pedagógicas que permitan abordar las necesidades específicas de estos [23].

Estos mencionan que el aprendizaje dentro de un entorno educativo es un proceso que cuenta con dos etapas, las cuales implican la recepción y el procesamiento de cualquier tipo de información. Durante la primera etapa, la de recepción, la información externa, que es percibida por los 5 sentidos del cuerpo humano, mientras que en la segunda etapa que es la de información interna, que es derivada

producto de una introspección del individuo, estos seleccionarán aquel material que procesarán como información y descartarán aquel material en el que sienten que no les da algún tipo de valor [24].

Índice de Tipos de Aprendizaje según Felder & Silverman

Su modelo, a través de lo previamente expresado, presenta cuatro dimensiones principales de los Estilos de Aprendizaje, haciendo hincapié en que cada una de ellas poseen dos preferencias opuestas:

Percepción de la InformaciónSensorial: Los estudiantes están abocados a los hechos, datos y a los procedimientos a través de los cuales puedan experimentar. Resuelven problemas con métodos o algoritmos ampliamente establecidos y con fundamento teórico, demostrando un poco flexibilidad e incomodidad con teorías o abstracciones que no han sido demostradas utilizando el Método Científico.

Intuitivo: Tienden a preferir la teoría, de cierta forma son buenos identificando y presentando soluciones a problemas e interrogantes nuevas. Buscan constantemente la innovación y tienen una clara desconfianza hacia los procesos repetitivos.

Entrada de la InformaciónVisual: Estos estudiantes prefieren modelos esquemáticos como gráficos o cualquier forma en la que se pueda representar visualmente la información, como "Dashboards". Una vez han visto la información, pueden recordarla mejor.

Verbal: Tienden a preferir cualquier tipo de información escrita o hablada con un especial beneficio intelectual de las discusiones o explicaciones en las que se utilice el habla como factor fundamental, mientras que preferirían leer un escrito antes de ver un diagrama.

Procesamiento de la InformaciónActivo: Los estudiantes aprenden de una forma más holística cuando interactúan directamente con la información, usando como ejemplo las discusiones académicas o dando tutorías a sus pares.

Reflexivo: Tienden a preferir pensar sobre la información que se les ha proporcionado de una forma independiente y reflexionan fuertemente sobre ella antes de llegar a cualquier tipo de conclusión.

ComprensiónSecuencial: Estos estudiantes tienen que seguir procesos lógicos y altamente ordenados para entender cualquier tipo de información. Tienden a tener una comprensión fuerte hacia los detalles, siempre y cuando estos hayan sido aprendidos en pasos pequeños con un orden y secuencia ordenada. Global: Tienden a preferir una visión holística a través de la cual luchan constantemente con entender una información hasta que en un momento lo comprenden. Al ser altamente abiertos en la forma de buscar una solución, tienen dificultades en explicarle a los demás el cómo llegaron a una solución específica a un problema.

Se reconoce el caso de que un estudiante tenga una preferencia específica hacia una dimensión, sin embargo, gran parte de las personas que no se ajustarán en el estricto detalle a una dimensión específica, definiendo de esta manera múltiples características de varios estilos.

Nuevamente, se procede a analizar este modelo desde la perspectiva que compete en este proyecto de investigación y si bien es cierto que cumple con definir los Estilos de Aprendizaje que puede tener un estudiante, empero, Felder & Silverman enfocaron sus esfuerzos en únicamente definir estas 4 dimensiones del aprendizaje.

Esto deja sin elementos cuantitativos con los cuales se pueda correlacionar el estilo de enseñanza que llega a tener un docente o tutor, ya que se reconoce que cada uno de ellos posee un estilo de aprendizaje específico, sin embargo, según el Modelo de Felder & Silverman no se puede aducir que este es directamente equivalente a su Estilo de Enseñanza.

Mencionado esto, se descarta el Modelo de Felder Silverman, debido a que no aporta la información para conseguir un emparejamiento entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

Modelo de Grasha-Riechmann

Propuesto por el Dr. Anthony Grasha y la Dra. Sheryl Hruska Riechmann en 1974, se basa en las preferencias de los estudiantes en relación con la interacción con sus compañeros y docentes. Además, refleja la combinación de estilos de aprendizaje que un estudiante puede exhibir [25].

Al examinar el Modelo de Grasha-Riechmann, es esencial reconocer que los autores delinearon seis Estilos de Aprendizaje, categorizados en tres dimensiones:

Actitud del estudiante hacia el proceso de enseñanza-aprendizaje.

Percepciones respecto a los compañeros y los tutores.

Respuestas ante las estrategias pedagógicas implementadas en el aula.

Estilos de Aprendizaje de Estudiantes

Estas características de cada uno del Inventario de Estilo de Aprendizaje surgen de una adaptación realizada en la Universidad de la Salle, Ciencia Unisalle en Colombia en el año 2014 [26].

IndependienteDescripción: Prefiere la autonomía en el proceso de aprendizaje, estableciendo un ritmo individualizado.

Características:Valoración de la autonomía en el aprendizaje.

Predisposición hacia el descubrimiento autónomo.

Tendencia a la Introspección.

Técnicas de Estudio: Autonomía en la gestión del aprendizaje

Exploración individualizada de contenidos.

Reflexión personal sobre los aprendizajes adquiridos.

Evitativo Descripción: Tendencia a evitar la participación en el proceso de aprendizaje.

Características:Sensación de abrumo ante desafíos académicos.

Propensión a la postergación de tareas.

Potencial indiferencia o desinterés.

Técnicas de Estudio: Manejo del estrés ante desafíos académicos.

Estrategias contra la procrastinación. Técnicas de motivación y compromiso.

ColaborativoDescripción: Opta por un aprendizaje colaborativo, valorizando el trabajo en equipo y la

interacción.

Características:Aprendizaje interactivo.

Valoración de perspectivas diversas.

Habilidades de escucha activa.

Técnicas de Estudio:Formación de grupos de estudio colaborativos.

Promoción de discusiones y debates constructivos.

Comparación y compartición de notas con pares.

DependienteDescripción: Requiere una estructura definida y directrices claras para el aprendizaje.

CaracterísticasNecesidad de instrucciones precisas.

Búsqueda de validación por parte de tutores.

Potencial pasividad en el proceso de aprendizaje.

Técnicas de Estudio:Clarificación de instrucciones.

Interacción y retroalimentación con tutores.

Técnicas de activación del aprendizaje.

CompetitivoDescripción: Orientado al logro y a la superación respecto a pares en el proceso de aprendizaje.

Características:Orientación hacia el logro.

Búsqueda de reconocimiento.

Tendencia a la argumentación.

Técnicas de Estudio: Establecimiento de metas académicas.

Uso de tarjetas mnemotécnicas o tarjetas de ayuda de memoria para revisión

Realización de simulacros de evaluación para medir progreso.

Participativo Descripción: Propensión hacia un aprendizaje práctico y experiencial.

Características: Aprendizaje práctico.

Aplicación de conocimientos adquiridos.

Dinamismo y actividad en el proceso de aprendizaje.

Técnicas de Estudio: Ejecución de ejercicios prácticos o simulaciones.

Relacionamiento del contenido con contextos reales.

Implementación de técnicas de aprendizaje experiencial, como aprendizaje basado en proyectos o Project Based – Learning [27].

En el Anexo #1 de este Proyecto de Investigación, se podrá encontrar el Cuestionario de Estilos de Aprendizaje para los estudiantes, planteado por Grasha-Riechmann.

Dicho cuestionario está compuesto por un total de (60) sesenta preguntas, cada una con una ponderación específica [28]. Presenta las siguientes posibles respuestas a cada una de ellas:

Totalmente en desacuerdo

Parcialmente en desacuerdo

Indeciso

Parcialmente de acuerdo

Totalmente de acuerdo

El cuestionario identifica seis Estilos de Aprendizaje, y cada estilo se relaciona directamente con un conjunto específico de preguntas:

Independiente: Preguntas 1, 7, 13, 19, 25, 31, 37, 43, 49 y 55.

Evitativo: Preguntas 2, 8, 14, 20, 26, 32, 38, 44, 50 y 56.

Colaborativo: Preguntas 3, 9, 15, 21, 27, 33, 39, 45, 51 y 57.

Dependiente: Preguntas 4, 10, 16, 22, 28, 34, 40, 46, 52 y 58.

Competitivo: Preguntas 5, 11, 17, 23, 29, 35, 41, 47, 53 y 59. Participativo: Preguntas 6, 12, 18, 24, 30, 36, 42, 48, 54 y 60.

Para determinar cuál estilo de aprendizaje corresponde a cada estudiante, se totalizan los resultados para cada uno de los seis estilos, tomando en cuenta los siguientes valores numéricos para las respuestas como son: Totalmente en desacuerdo (1), Parcialmente en desacuerdo (2), Neutro (3), Parcialmente de acuerdo (4) y Totalmente de acuerdo (5)

Primero, se suman las puntuaciones otorgadas por el estudiante para los diferentes estilos de aprendizaje, considerando las preguntas específicas asociadas a cada estilo. Posteriormente, se calcula el promedio de las respuestas del estudiante para cada estilo.

Posterior a ello, se determina aritméticamente un promedio específico, esto de manera que se pueda asignar un Estilo de Aprendizaje a cada estudiante.

Es imperativo subrayar que un estudiante no se asocia exclusivamente con un singular Estilo de Aprendizaje. Al culminar el Cuestionario de Estilos de Aprendizaje de Grasha-Riechmann, se manifestarán múltiples estilos. Para cada estilo, se computará la media basada en las respuestas otorgadas a las interrogantes correspondientes.

Consecuentemente, se elaborará una tabla organizada en orden decreciente, en la cual el Estilo de Aprendizaje situado en la primera posición será identificado como el dominante, mientras que los subsiguientes serán designados como "Estilos de Aprendizaje Secundarios".

Se toma, por ejemplo, un estudiante que completó la prueba y obtuvo los siguientes resultados ponderados: Tabla 2: Simulación de Resultados de Cuestionario de Estilos de Aprendizaje de un Estudiante Independiente

Evitativo

Colaborativo

Dependiente

Competitivo

. Participativo

5.2

0.8

3.7

4.1

2.61.4

Posteriormente, se empleará una gráfica de carácter radial para ilustrar los resultados reflejados en la tabla previamente mencionada, previa comprensión de que (1) corresponde a Independiente, (2) se asocia a Evitativo, (3) representa a Colaborativo, (4) está vinculado a Dependiente, (5) designa a Competitivo, y (6) se refiere a Participativo.

Figura 6: Representación en gráfica radial del Perfil del Estudiante

Es perceptible en la gráfica que los resultados atribuidos al estudiante para cada uno de los Estilos de Aprendizaje no corresponden a ningún individuo en particular, sino que son valores dentro del rango de generados de manera pseudoaleatoria [29] para simular un resultado de un estudiante que tomó la prueba. Resulta imperativo no considerar estos datos como definitivos, puesto que constituyen una representación ilustrativa de la realidad, no una manifestación fiel de la misma.

No obstante, mediante esta gráfica radial, es posible discernir que ningún estudiante carece por completo de rasgos asociados a un Estilo de Aprendizaje específico; sin embargo, es probable que algunos de estos rasgos no se manifiesten de manera tan predominante como otros.

Por tal motivo, se recurre a este mecanismo de representación visual para facilitar una comprensión más precisa de dicha diversidad en los estilos de aprendizaje.

Estilos de Enseñanza para Tutores

De igual forma, los tutores, los cuales, a partir de la aplicación de Pruebas Psicométricas especializadas, las cuales han sido adaptadas para este proyecto de investigación a manera que se permitan obtener los Estilos de Enseñanza de los tutores [30] como son planteados del Modelo de Grasha-Riechmann, siendo estos: ExpertoDescripción: Como experto, soy una fuente confiable de información y conocimiento en mi área. Características:Tengo respuestas a las preguntas y dudas de mis estudiantes.

Me esfuerzo por transmitir mi conocimiento de manera clara y concisa.

Técnicas Pedagógicas Recomendadas:Organizo sesiones donde los estudiantes pueden hacerme preguntas directamente.

Realizo mini-conferencias para abordar temas específicos.

Proporciono lecturas y recursos adicionales para que los estudiantes profundicen.

Autoridad FormalDescripción: Como Autoridad Formal, valoro la estructura y sigo un plan detallado en mis tutorías.

Características: Siempre sigo un temario o plan preestablecido.

Me aseguro de que cada sesión esté bien organizada y estructurada.

Técnicas Pedagógicas Recomendadas:Uso esquemas o guías de estudio para mantener a todos en la misma página.

Realizo pruebas o cuestionarios grupales para evaluar el progreso.

Mantengo un seguimiento estructurado de los temas que abordamos.

Modelo PersonalDescripción: Como tutor personal, me enfoco en el crecimiento individual de cada estudiante.

Características: Valoro y considero las experiencias y sentimientos de mis estudiantes.

Busco que cada uno desarrolle sus habilidades personales y académicas.

Técnicas Pedagógicas Recomendadas:Fomento discusiones abiertas donde cada estudiante pueda compartir. Propongo actividades de autoevaluación y reflexión.

Realizo dinámicas de grupo para que todos compartan y aprendan juntos.

FacilitadorDescripción: Como facilitador, guío a mis estudiantes hacia el descubrimiento y aprendizaje autónomo.

Características: Ayudo a los estudiantes a encontrar sus propias respuestas.

Estoy allí para guiarlos, no para darles todas las respuestas.

Técnicas Pedagógicas Recomendadas:Propongo estudios de caso para que los discutan y analicen en grupo. Fomento proyectos de investigación colaborativos.

Utilizo el aprendizaje basado en problemas para que busquen soluciones juntos.

Delegador Descripción: Como delegador, confío plenamente en la capacidad de mis estudiantes para dirigir su propio aprendizaje.

Características: Delego responsabilidades y tareas a los estudiantes.

Creo en la autonomía y capacidad de cada uno.

Técnicas Pedagógicas Recomendadas: Asigno roles específicos a cada miembro del grupo.

Propongo proyectos en los que ellos decidan el enfoque y resultados.

Fomento presentaciones grupales donde cada uno aporte desde su perspectiva.

Grasha-Riechmann identificaron (5) cinco Estilos de Enseñanza, y cada uno está asociado con un conjunto específico de preguntas que se presenta en su Cuestionario de Estilos de Enseñanza.

Dicho cuestionario, se encuentra diseñado de una forma en el que los valores numéricos almacenados en ciertas preguntas son los que permiten determinar el valor de un Estilo de Enseñanza en escala de [28], que son los siguientes:

Experto: Preguntas 1, 6, 11, 16, 21, 26, 31 y 36.

Autoridad Formal: Preguntas 2, 7, 12, 17, 22, 27, 32 y 37. Modelo Personal: Preguntas 3, 8, 13, 18, 23, 28, 33 y 38.

Facilitador: Corresponde a las Preguntas 4, 9, 14, 19, 24, 29, 34 y 39.

Delegador: Preguntas 5, 10, 15, 20, 25, 30, 35 y 40.

Para determinar el Estilo de Enseñanza predominante de un tutor, es necesario totalizar las respuestas dadas para cada estilo. Las respuestas se ponderan de acuerdo con los siguientes valores numéricos:

Totalmente en Desacuerdo (1)

Moderadamente en Desacuerdo (2)

Indeciso (3)

Moderadamente de Acuerdo (4)

Totalmente de Acuerdo (5)

Inicialmente, se suman los puntajes proporcionados por el tutor para cada estilo, teniendo en cuenta las preguntas específicas de cada uno. Posteriormente, se calcula el promedio de estas sumas.

A continuación, se presentan las ecuaciones que permiten obtener la mencionada Medida de Tendencia Central, como lo es el Promedio.

Similar a lo realizado para calcular el Estilo de Aprendizaje de un Estudiante, ahora se utilizarán las puntuaciones otorgadas por el Tutor para los diferentes estilos de enseñanza, considerando las preguntas específicas asociadas a cada estilo.

Para ilustrar esto, se simula un caso en el que un tutor ha completado esta prueba y ha obtenido los siguientes resultados ponderados:

Tabla 3: Simulación de Estilos de Enseñanza de un Tutor

Experto

Autoridad Formal

Modelo Personal

Facilitador

Delegador

3.721.29

4.85

0.47

2.16

A partir de esta tabla, se pudiera establecer que para este "Tutor Simulado", con números pseudo aleatorios [29] en el rango de que existe un Estilo de Enseñanza "Dominante" para este Tutor, que sería el estilo de "Modelo Personal".

De analizarlo, símil como se hizo con los Estudiantes y sus Estilos de Aprendizaje; se obtendrá el hecho ya mencionado que "Todos los tutores tienen un poco de cada uno de los Estilos de Enseñanza que existen".

Figura 7: Representación en gráfica radial del Perfil del Tutor

Con este tipo de gráficas radiales, se puede representar de una manera más abierta la perspectiva del "Espectro de Estilos de Enseñanza", mencionado por algunos autores [31] al momento de describir ¿Cómo es un docente?, en este caso Tutor.

Al analizar el Modelo de Grasha-Riechmann, se puede encontrar que cada uno de los Estilos de Aprendizaje de un estudiante se puede considerar como una dimensión, sucediendo lo mismo con los Estilos de Enseñanza de un tutor, generando, entonces, un modelo de 11 (once) dimensiones. En las que encontramos 6 (seis) dimensiones en los Estilos de Aprendizaje de un Estudiante y las 5 (cinco) dimensiones restantes en los Estilos de Enseñanza de un Tutor.

Teniendo esta medida cuantitativa a través de la aplicación de las respectivas pruebas pedagógicas a estudiantes y tutores, se considera que este es el Modelo Pedagógico más apto para poder llevar a buen puerto la consigna básica de este estudio, que es ¿Cómo emparejar a estudiantes con Tutores? Adaptación al Formato de #PilandoAndo

Para facilitar la comunicación, se adoptarán los términos "Tutor" y "Estudiante", permitiendo así la aplicación de pruebas psicométricas para automatizar la asignación entre ambos, conforme a ciertas reglas predeterminadas.

En una exploración detallada de las entidades "Tutor" y "Estudiante", se identifican los siguientes atributos, que servirán como conjunto de datos para un análisis posterior en un Emparejamiento Aproximado entre Estudiantes y Tutores en las Intervenciones Educativas Masivas de la Fundación Ayudinga:

Estudiante: Edad, Sexo, Nivel Académico y Estilo de Aprendizaje.

Tutor: Edad, Sexo, Nivel Académico, Estilo de Enseñanza.

Estos datos fueron recopilados durante las sesiones de tutoría en matemáticas realizadas en colaboración con el Canal de Panamá (ACP) durante el receso académico de 2023.

Figura 8: Sesiones de Tutoría de #PilandoAndo en verano 2023

Se buscará asignación más precisa entre estudiantes y tutores, a quienes referiremos como y , respectivamente.

Método de Clústeres de Estilos

Una vez ya conocido el origen teórico y práctico de cada uno de los Estilos de Aprendizaje para el y los Estilos de Enseñanza para el se procede a hacer una agrupación en Clústeres.

Dicho modelo fue planteado por el Dr. Grasha [32, p. 144] en 1994, donde se estableció que cada uno de los Tutores podían ser agrupados en un determinado "Clúster de Estilos de Enseñanza".[33]

De esta manera, se generaron 4 (cuatro) Clústeres, los cuales se proceden a explorar a continuación:

Tabla 4: Clúster 1 de Estilos de Enseñanza

Clúster 1

Estilo Primario

Experto/Autoridad Formal

Estilo Secundario

Modelo Personal/Facilitador/Delegador

Tabla 5: Clúster 2 de Estilos de Enseñanza

Clúster 2

Estilo Primario

Experto/Modelo Personal/Autoridad Formal

Estilo Secundario

Facilitador/Delegador

Tabla 6: Clúster 3 de Estilos de Enseñanza

Clúster 3

Estilo Primario

Experto/Facilitador/Modelo Personal

Estilo Secundario

Autoridad Formal/Delegador

Tabla 7: Clúster 4 de Estilos de Aprendizaje

Clúster 4

Estilo Primario

Experto/Facilitador/Delegador

Estilo Secundario

Autoridad Formal/Modelo Personal

Buscando establecer una correlación para los Estilos de Enseñanza y los Estilos de Aprendizaje de los estudiantes, en un análisis realizado en diversas universidades chilenas en 2016 [9], se planteó un "Modelo Integrado" que permitiría establecer un nivel de correlación entre estudiantes y tutores.

Con base en un estudio posterior desarrollado por el Dr. Grasha en 1995 [34], se propuso un modelo que se detalla en los siguientes "Clúster Integrados de Estilos de Enseñanza y Estilos de Aprendizaje".

Tabla 8: Clúster Integrado #1 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #1

Estilo de Enseñanza

Experto/Autoridad Formal

Estilo de Aprendizaje

Dependiente/Participativo/Competitivo

Tabla 9: Clúster Integrado #2 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #2

Estilo de Enseñanza

Modelo Personal/Experto/Autoridad Formal

Estilo de Aprendizaje

Participativo/Dependiente/Competitivo

Tabla 10: Clúster Integrado #3 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #3

Estilo de Enseñanza

Facilitador/Modelo Personal/Experto

Estilo de Aprendizaje

Colaborativo/Participativo/Independiente

Tabla 11:Clúster Integrado #4 entre Estilos de Enseñanza y Estilos de Aprendizaje

Clúster Integrado #4

Estilo de Enseñanza

Delegador/Facilitador/Experto

Estilo de Aprendizaje

Independiente/Colaborativo/Participativo

La implementación de este método se determinará en función de los resultados obtenidos por los estudiantes al someterse al Inventario de Estilos de Aprendizaje de Grasha-Riechmann.

Teoría del Emparejamiento

Debido a que este Proyecto de Investigación tiene como base central realizar un emparejamiento aproximado, se debe conocer ciertos conceptos fundamentales acerca de la teoría del emparejamiento. Algunos autores [33], podrán definir dicha teoría como la búsqueda de mecanismos de formación de una pareja entre dos conjuntos diferentes indivisibles entre sí, que solo pueden ser emparejados con elementos pertenecientes al conjunto contrario.

Incluso, se pudiese plantear una definición más sencilla: "Dado los conjuntos X y Y, el emparejamiento resulta en una asignación de los elementos de X hacia los elementos de Y, haciendo que cada elemento de X sea emparejado específicamente con un elemento de Y, y viceversa" [35].

Tipos de Emparejamientos

A priori, se pueden determinar dos tipos de emparejamientos principales [36], los cuales se presentan a continuación:

Emparejamiento Bilateral: Elementos de ambos conjuntos tienen sus respectivas preferencias.

Emparejamiento Bilateral: Solamente los elementos de un conjunto muestran sus preferencias.

Sin embargo, por definición también existen otros tipos de emparejamientos, los cuales se convierten en la base del desarrollo de sus diversos algoritmos, a continuación, se presentan:

Emparejamiento Perfecto: Se considerará un emparejamiento perfecto, cuando cada uno de los vértices del grafo se encuentre emparejado, dicho en otras palabras, que este se encuentre conectado directa y exactamente hacia una arista del emparejamiento. Al hablar de un grafo bipartito, se podría deducir que cada vértice de los dos conjuntos dentro de él se encuentra emparejado con exactamente un vértice de otro conjunto; sabiendo que no podrán ser vértices del mismo conjunto.

Formulación Matemática:

Dados dos conjuntos y y un emparejamiento al que denominaremos :

Ecuación 5: Modelo Matemático de un Emparejamiento Perfecto

Emparejamiento Máximo: Se considerará como un emparejamiento máximo, en caso de que no sea posible encontrar algún otro emparejamiento que tenga más aristas. No es condición necesaria y suficiente que todos sus vértices se encuentren emparejados, pero sí se debe garantizar que no sea posible emparejar a

más vértices. Formulación Matemática:

Dados dos conjuntos y y un emparejamiento denominado , el emparejamiento es máximo si no existe otro emparejamiento tal que

Ecuación 6: Modelo Matemático del Emparejamiento Máximo

Emparejamiento Estable: Cuando se evalúan las preferencias individuales de los elementos de un conjunto, se considerará a un emparejamiento como estable si no existen dos elementos que prefieran estar emparejados entre sí, en vez de los emparejamientos que tienen actualmente. No existe razón o motivo alguno para que estos dos elementos rompan el emparejamiento actual para que se emparejen entre sí.Formulación Matemática:

Dados dos conjuntos y , con un conjunto de preferencias y un emparejamiento , dicho emparejamiento será estable en caso de que y dado que:

prefiere a , en vez de su emparejamiento actual almacenado en .

prefiere a m, en vez de su emparejamiento actual que almacenado en .

Ante esto, emerge la pregunta de investigación: ¿Cómo se puede emparejar a un tutor con un estudiante en una intervención educativa masiva de la Fundación Ayudinga?

Dada la consigna que se presenta, la cual es directamente un problema de emparejamiento, la Teoría de Grafos es la más adecuada para poder establecer un modelo matemático de ella.

Sin embargo, se debe entender que cuando se refiere al emparejamiento, se está utilizando un grafo bipartito, donde sus vértices se pueden dividir en dos conjuntos disjuntos y a su vez, las aristas conectan a dichos vértices de diferentes conjuntos, pero estos no pueden pertenecer al mismo conjunto

La formalización matemática de "Encontrar la persona a la que otra persona tenga una mayor afinidad y en caso de que se encuentren disponibles", se define como un caso de Emparejamiento [37], que es una función matemática que establece una correspondencia uno a uno.

Dado un (denominado Tutores) y un (denominado Estudiantes), se buscará un emparejamiento aproximado entre los elementos de los Conjuntos basados en los Estilos de Enseñanza para , así como los Estilos de Aprendizaje para .

Conociendo esto, no se puede establecer que, por cada Tutor, habrá (1) un Estudiante, ya que eso sería establecer una función biyectiva de notación , impidiendo, de esta manera, que un tutor pueda tener más de un estudiante, contradiciendo directamente la definición de dicha función biyectiva.

En el (tutores disponibles) y el (estudiantes disponibles), no existe una función que establezca esta relación de manera directa.

Al haber formalizado mediante la Teoría del Emparejamiento, que se encuentra ante un grafo bipartito, se procede a evaluar dos algoritmos elementales de dicha teoría que son el Algoritmo de Hopcroft-Karp [38] y el Algoritmo de Gale-Shapley [39], ya que estos son la base para cualquier otro algoritmo que plantee abordar problemas de emparejamiento con grafos bipartitos.

Algoritmo de Hopcroft-Karp

Propuesto en 1973 por John Hopcroft y Richar Karp, el Algoritmo de Hopcroft-Karp tiene como enfoque la eficiencia y fue diseñado para encontrar el emparejamiento máximo dentro de un grafo bipartito.

Hay un concepto que introdujo Hopcroft-Karp en su algoritmo que es el de Caminos de Aumento [40], el cual consiste en un camino que tiene su inicio y fin en los vértices no emparejados de un grafo bipartido y con ello alterna entre las aristas que no se encuentran dentro del emparejamiento y aquellas que sí están.

Su objetivo es mejorar la búsqueda de emparejamientos al encontrar varios camios de aumento en paralelo, esto le convierte en un algoritmo más eficiente que los tradicionales, como el Gale – Shapley que solamente buscan un camino de aumento por cada iteración que estos tengan, es decir, un enfoque en serie.

Descripción del Algoritmo

Inicialización: Se crean dos conjuntos, los cuales se determinarán M y N, en los que cada uno de ellos tiene un conjunto específico de preferencias.

Búsqueda en Anchura (BFS) [41]: A manera de encontrar el camino de aumento que utilizará el algoritmo, se hace una búsqueda en anchura. Para ello, se construirá un árbol de niveles, donde se establece que el nivel 0 (cero) tiene vértices que no han sido emparejados del conjunto de origen, mientras que el nivel 1 (uno) tiene como vértices a aquellos que puedan llegar desde el nivel 0 (cero) hacia una arista que no ha sido emparejada previamente, el nivel 2 (dos) tiene como vértices a aquellos que se pueda llegar desde el nivel 1, usando una arista que ya ha sido emparejada; y de esta manera, sucesivamente.

Búsqueda en Profundidad (DFS) [42]: En caso de que se encuentre un camino de aumento durante la Búsqueda en Anchura o BFS, se utilizará una búsqueda en la profundidad del grafo bipartito y alternar en su camino de aumento, lo que formalizándolo sería que aristas del emparejamiento actual serán eliminadas y con ello se agregarán las aristas que no han sido emparejadas.

Repetición: La BFS y DFS se repetirán de forma ilimitada hasta que no se encuentre ningún nuevo tipo camino de aumento.

Simulación en Pseudocódigo

Hay que suponer que se quiere emparejar a 5 estudiantes (e) con 6 tutores (t); sin embargo, los estudiantes han expresado las siguientes preferencias:

```
Tabla 12: Preferencias de estudiantes sobre tutores (Algoritmo de Hopcroft-Karp)
Primera Opción
Segunda Opción
Tercera Opción
Cuarta Opción
Quinta Opción
Sexta Opción
Estudiante 1
Tutor 2
Tutor 5
Tutor 1
Tutor 3
Tutor 4
Tutor 6
Estudiante 2
Tutor 1
Tutor 2
Tutor 6
Tutor 5
Tutor 3
Tutor 4
Estudiante 3
Tutor 3
Tutor 4
Tutor 5
Tutor 1
Tutor 2
Tutor 6
Estudiante 4
Tutor 4
Tutor 1
Tutor 3
Tutor 2
Tutor 5
Tutor 6
Estudiante 5
Tutor 1
Tutor 4
Tutor 2
Tutor 6
Tutor 3
Tutor 5
Se utilizará el Algoritmo de Hopcroft-Karp para desarrollar una simulación en Pseudocódigo del
funcionamiento del emparejamiento máximo de este Grafo Bipartito Completo.
Función HopcroftKarp ():
M = conjunto vacío // Emparejamiento inicial vacío
mientras exista un camino de aumento P usando BFS ():
para cada camino P en caminos de aumento usando DFS ():
alternar el camino P fin mientras retornar M
Función BFS ():
Q = cola vacía para cada estudiante e en Estudiantes: si e no está emparejado:
nivel[e] = 0 encolar e en Q
sino:
nivel[e] = infinito fin para nivel [NULL] = infinito
mientras Q no esté vacía: e = desencolar Q para cada tutor t en preferencias[e]:
si nivel[pareja[t]] == infinito:
nivel[pareja[t]] = nivel[e] + 1
encolar pareja[t] en fin mientras retornar nivel [NULL] != infinito
Función DFS(e): si e != NULL: para cada tutor t en preferencias[e]:
si nivel[pareja[t]] == nivel[e] + 1 y DFS (pareja[t]):
pareja[t] = e
pareja[e] = t
retornar verdadero
nivel[e] = infinito
```

retornar falso

retornar verdadero

Definiciones esenciales:

Estudiantes: Es el conjunto de estudiantes.

Preferencias: Es un diccionario que fue utilizado para mapear a cada estudiante con su respectiva lista de preferencia de tutores.

Pareja: Es una función que retorna el valor del tutor emparejado con un estudiante o viceversa Nivel: Es un arreglo que almacena los niveles en el árbol BFS.

NULL: Se diseñó como un vértice ficticio para determinar si en efectivo se encontró un posible camino de aumento.

De esto, es importante denotar que a pesar de que los estudiantes definieron sus preferencias al principio, el Algoritmo Hopcroft–Karp no considera las preferencias, por lo que el pseudocódigo previamente planteado en efecto emparejará a los estudiantes y tutores, pero solo se basará en el orden que este encuentre caminos de aumento, no puede garantizar que esto sea igual a las preferencias de los estudiantes.

Como se observó en la simulación teórica, anteriormente presentada, al no tener la capacidad de considerar preferencias de alguno de los conjuntos [43], el Algoritmo de Hopcroft-Karp no resultará útil para la función de emparejar estudiantes con tutores, basados en sus Estilos de Aprendizaje y Estilos de Enseñanza, por lo que se descarta su uso en este Proyecto de Investigación.

Algoritmo de Gale - Shapley

El Algoritmo de Gale – Shapley [39] establece que, al emparejar dos conjuntos, se busca encontrar un emparejamiento que sea estable tomando en cuenta el conjunto de preferencia que tienen cada uno de los elementos de dicho conjunto.

Este nace a partir de la formalización matemática del "Problema de los Matrimonios Estables" [44] que consiste en que se tienen dos grupos conformados por hombres y mujeres.

Siendo los nombres de las mujeres definidos por la siguiente lista mientras que los hombres están definidos por la lista }.

Una definición del problema establece que, dada cantidad de hombres con cantidad de mujeres, donde cada una de las personas pertenecientes a los conjuntos ha establecido una lista de prioridades de los miembros del otro conjunto de su preferencia

Dado que dos personas de un grupo pueden casarse dado que pertenecen a siguientes conjuntos, sin embargo, su matrimonio puede considerarse como "No Estable", ya que alguno de ellos no desea estar con la otra persona en cuestión.

Estableciendo una notación matemática para su definición, se denotará que existen dos hombres , mientras que también existen dos mujeres . La lista de preferencias para es , mientras que la lista de preferencias para w1 es y la lista de preferencias de es .

El emparejamiento de no será estable, dado que m1 y w2 tienen otras preferencias.

Se desea buscar una combinatoria de estos dos conjuntos, estableciendo las preferencias de cada uno de los miembros de ellos para que sea un emparejamiento estable, por lo que se puede determinar que y es estable.

Dado que estas fueron las preferencias iniciales establecidas por ambos conjuntos, por lo que, con la aplicación del Algoritmo de Gale Shapley, se puede obtener un matrimonio estable.

Simulación en Pseudocódigo

A manera de "Juzgar a los dos algoritmos planteados con la misma bara", se presentará el mismo caso que se utilizará para simular el Algoritmo de Hopcroft – Karp, solo que se alterarán las preferencias de los estudiantes.

Hay que suponer que se quiere emparejar a 5 estudiantes (e) con 6 tutores (t); sin embargo, los estudiantes han expresado las siguientes preferencias:

Tabla 13: Preferencias de Estudiantes sobre Tutores (Algoritmo de Gale-Shapley)

Primera Opción

Segunda Opción

Tercera Opción

Cuarta Opción

Quinta Opción

Sexta Opción

Estudiante 1

Tutor 4

Tutor 1

Tutor 6

Tutor 6

Tutor 3

Tutor

Tutor 2

Estudiante 2

Tutor 6

Tutor 3

Tutor 4

Tutor 1

Tutor 2 Tutor 5 Estudiante 3 Tutor 2 Tutor 6 Tutor 3 Tutor 4 Tutor 5 Tutor 1 Estudiante 4 Tutor 5 Tutor 2 Tutor 1 Tutor 6 Tutor 4 Tutor 3 Estudiante 5 Tutor 3 Tutor 5 Tutor 2 Tutor 4 Tutor 6 Tutor 1

Se utilizará el Algoritmo de Gale-Shapley para desarrollar una simulación en Pseudocódigo del funcionamiento del emparejamiento máximo de este Grafo Bipartito Completo.

Inicializar todos los estudiantes y tutores como libres

Preferencias:

Estudiante 1: [Tutor 4, Tutor 1, Tutor 6, Tutor 5, Tutor 3, Tutor 2]

Estudiante 2: [Tutor 6, Tutor 3, Tutor 4, Tutor 1, Tutor 2, Tutor 5]

Estudiante 3: [Tutor 2, Tutor 6, Tutor 3, Tutor 4, Tutor 5, Tutor 1]

Estudiante 4: [Tutor 5, Tutor 2, Tutor 1, Tutor 6, Tutor 4, Tutor 3]

Estudiante 5: [Tutor 3, Tutor 5, Tutor 2, Tutor 4, Tutor 6, Tutor 1]

Mientras exista un estudiante libre que aún no ha propuesto a todos los tutores:

e = primer estudiante libre

t = primer tutor en la lista de preferencias de e al que e aún no ha propuesto

Si t está libre:

Emparejar e con t

Sino:

e' = estudiante actualmente emparejado con t

Si t prefiere a e sobre e' según las preferencias de los estudiantes:

Desemparejar e' de t

Emparejar e con t

Fin Si

Fin Si

Marcar que e ya ha propuesto a t

Fin Mientras

Retornar los emparejamientos

Como se puede observar, el enfoque utilizado al momento de emparejar a estos dos conjuntos se consideró, desde un principio, declarando a través de arrays, las preferencias de los estudiantes.

De igual manera, se pudo haber incluido las preferencias de los tutores sobre dichos estudiantes y sería más similar a la consigna de este proyecto de investigación, que es el emparejamiento aproximado de estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga.

Sin embargo, se debe denotar que de ahora en adelante; no se va a referir desde la perspectiva formal matemática a un emparejamiento aproximado, ya que el término correcto sería "Emparejamiento Máximo".

Se plantea que es aproximado, dado que el error es intrínseco en los humanos, quienes darán la información a través de responder el Cuestionario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, habrá un margen de error que impedirá que todos los estudiantes y tutores puedan ser emparejados.

Definición de Conjuntos y Subconjuntos

Siendo el caso en cuestión de un Estudiante () que tiene una multiplicidad de Tutores () disponibles y se le asignará el óptimo.

Sin embargo, a manera de que se pueda abordar esto con lujo de detalle en este Proyecto de Investigación, se convierte en un imperativo matemático; no únicamente analizar y definir los dos conjuntos principales, sino conocer que, dentro de cada uno de ellos, existen dos subconjuntos.

Todos los tienen asociados un Subconjunto en el que se expresan los Estilos de Aprendizaje que se han obtenido a partir de la prueba psicométrica que se les fue aplicada a estos de manera inicial.

Importante mencionar que, independientemente, de que un Estilo de Aprendizaje pueda ser más dominante o no para un elemento del , esto no eliminará la posibilidad de que tenga a tendencias hacia otros Estilos de Aprendizaje.

De igual forma todos los tendrá asociados un Subconjunto en el que representarán los Estilos de Enseñanza que un tutor puede llegar a tener, siempre tomando en cuenta el estilo dominante.

Importante es desarrollar una Matriz de Preferencias, la cual se llamará , donde cada una de sus filas represente a un y cada columna a un , es decir, cada columna representa a un Estudiante y cada fila a un Tutor.

En dicha matriz, existirá un elemento que indicará el grado de preferencia de un Estudiante hacia un tutor , basado de esta manera en la compatibilidad que pueda o no existir entre y .

Resumen del Modelo Matemático

Conjuntos

: Conjunto de estudiantes

T: Conjunto de tutores

Subconjuntos

- : Subconjunto que representará los estilos de aprendizaje de un estudiante perteneciente a .
- : Subconjunto que representa los estilos de enseñanza de un tutor perteneciente a .

Matriz de Preferencias

: Matriz donde cada fila representa a un estudiante en y cada columna a un tutor en . El elemento indica el grado de preferencia del estudiante hacia el tutor , basado en la compatibilidad entre y .

Capítulo II: Metodología y Diseño del Experimento

Planteamiento de Antecedentes

Dado que el desarrollo de este Proyecto de Investigación depende directamente de la Calidad de los Datos [45] que se presenten dentro de él, ya que se encuentra directamente acotado y sin margen para el error al tener un modelo matemático rígido que determinará la calidad de un posible Emparejamiento Aproximado entre tutores y estudiantes, el diseño del experimento desde su fase inicial involucra una serie de elementos teóricos y prácticos que hay que poner en funcionamiento simultáneamente.

Para ello, en las mencionadas "Conversaciones Post-Mórtem" de cada una de las sesiones de #PilandoAndo que la Fundación Ayudinga realiza en conjunto con la Autoridad del Canal de Panamá, se comenzó a conversar sobre ideas de ¿Cómo organizar a los estudiantes en los grupos de tutoría?

Figura 9 Equipo Logístico de #PilandoAndo

Los primeros criterios de evaluación que se tomaron en cuenta fueron: Edad, Sexo, Nivel Académico, Conocimientos Previos e incluso si el estudiante contaba o no con habilidades especiales. Siendo este último caso sumamente importante, ya que el tutor tenía que estar capacitado para poder guiar e instruir efectivamente a este tipo de estudiantes.

Sin embargo, el tema que resultó ser preponderante como un "Concepto que pudiese ser investigado", fue buscarle el mejor tutor a cada estudiante o el mejor estudiante a cada tutor. Siempre manteniendo la regla de máximo 5-6 estudiantes por grupo de tutoría, a manera de aumentar la efectividad de la intervención. Estadística Descriptiva de los primeros #PilandoAndo

Desde el año 2020 hasta junio de 2023, la Fundación Ayudinga en colaboración con la Autoridad del Canal de Panamá llevó a cabo 28 sesiones conjuntas bajo el programa #PilandoAndo.

Estas sesiones, en su mayoría, estuvieron orientadas al fortalecimiento de competencias en Aritmética y Álgebra, dirigidas a estudiantes de 5to a 9no grado en la Ciudad de Panamá. Dichas actividades se desarrollaron en las instalaciones del Centro de Capacitaciones Ascanio Arosemena ACP.

Al abordar la primera edición de #PilandoAndoPaLaU (una subdivisión del programa #PilandoAndo con el propósito de preparar a los estudiantes para las pruebas de admisión de universidades públicas nacionales), se tomó la decisión de sostener encuentros preliminares con los tutores, antes de cada sesión.

En estos encuentros, se les proporcionaba una introducción general y se establecían protocolos para la recolección de datos y la identificación de tendencias observadas en los estudiantes.

Figura 10: Primera Edición de #PilandoAndoPaLaU en el año 2023

Posterior a cada sesión, se llevaban a cabo reuniones entre el Equipo de Logística de la Fundación Ayudinga y representantes de la Autoridad del Canal de Panamá, junto con los tutores voluntarios. En estas reuniones, los tutores compartían sus "Evaluaciones sobre el desempeño académico de los estudiantes".

Tras concluir las tres sesiones de #PilandoAndoPaLaU realizadas en el sábado 10, 17 y 23 de junio del año 2023, y con una muestra representativa de , los tutores reportaron ciertos hallazgos respecto al comportamiento y rendimiento de sus estudiantes, los cuales se presentarán:

Dificultades en la Comprensión Lectora al momento de la resolución de Problemas de Aplicación en Álgebra y Aritmética.

Problemas en la resolución de cuestiones matemáticas vinculadas a razones y proporciones.

Deficiencias en Ley de los Signos, Exponentes, Radicación, Suma y Resta de Fracciones y Cálculo del Mínimo Común Múltiplo (MCM).

Tendencia determinística, es decir, los estudiantes siempre estaban enfocados en "Buscar cuál es la respuesta correcta, no analizar y comprender el proceso para llegar a encontrarla.

Se resalta que los tutores nunca fueron instruidos desde un principio para que usasen como factores discriminantes a sus opiniones el Sexo (Masculino o Femenino) del estudiante, edad, ni tipo de colegio del que este provenía.

A pesar de que muchos de los hallazgos mencionados por los tutores son de carácter cualitativo [46], por ende, tienden a la subjetividad; se tiene información cuantitativa de los estudiantes que participaron en la primera edición de #PilandoAndoPaLaU, la cual se presenta a continuación.

Edades entre 13-35 años. Edad promedio de 18.05 años entre todos los participantes.

Moda en la edad de 17 años, lo cual coincide con el hecho de que son estudiantes que están en duodécimo grado aprestos a graduarse de la escuela y empezar su carrera universitaria.

72 estudiantes femeninos y 75 estudiantes masculinos

95 estudiantes provenientes de colegios públicos (oficiales), mientras que asistieron 52 estudiantes de colegios particulares (privados).

Objetivo del Experimento

Conocer los diferentes Estilos de Aprendizaje que puede tener un estudiante que asiste a las sesiones de #PilandoAndoPaLaU aplicando la prueba de Grasha-Riechmann.

De igual forma, conocer y medir los diversos Estilos de Enseñanza de un tutor que asiste voluntariamente a las sesiones de #PilandoAndoPaLaU, aplicando la prueba de Grasha Riechmann.

Posterior a la recolección de los datos con la aplicación de estas dos pruebas, se desarrollará un modelo matemático que permita el emparejamiento aproximado entre tutores y estudiantes con base en sus Estilos de Enseñanza y Estilos de Aprendizaje, respectivamente.

Tipo de Experimento

Este experimento es un estudio exploratorio [47] ya que se plantea obtener una visión holística del problema que se intenta resolver. Esto dado al revisar la literatura proveniente de proyectos de investigación similares, no se encontraron una cantidad relevante de estudios similares a través de los cuales se planteasen un modelo de emparejamiento de estudiantes y tutores académicos en intervenciones educativas masivas. Con esto, se busca familiarizarse con el fenómeno del Emparejamiento Aproximado aplicando instrumentos de evaluación psicométricos como el Inventario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann y obtener datos específicos sobre los estudiantes y tutores que permitan desarrollar grupos de tutorías lo más aproximados posibles en las preferencias individualizadas de cada uno de ellos.

Se establece que los Estilos de Aprendizaje y Enseñanza de cualquier individuo son variables en función del tiempo, dado que esta es una medición específica de un instante, mencionado en el Capítulo I de este Proyecto de Investigación.

Se puede realizar un símil al momento en el que se presenta el tiempo meteorológico y el clima en un lugar específico; siendo el primero una medición del momento actual y el segundo el promedio del tiempo atmosférico a lo largo de muchos años.

Debido a esto, no se puede establecer que un Estilo de Aprendizaje o Estilo de Enseñanza de un estudiante o tutor permanecerá siendo el mismo en cada edición de #PilandoAndo, por lo que consideran a los resultados obtenidos en este estudio exploratorio como únicos y que presentarán los cimientos para el desarrollo de un modelo que pueda ser generalizado en futuras intervenciones educativas masivas de la Fundación Ayudinga; es decir, que no se espera un resultado concluyente en el mismo, sino una aproximación a una de las posibles soluciones al problema.

Población y Muestra

Independiente del tipo de estudio que se realice, se debe tomar en cuenta que hay ciertas definiciones que se mantienen de manera constante, una de ellas siendo la población y muestra de los elementos que forman parte del experimento.

Antes de entrar en materia, se debe hacer ciertas acotaciones de conceptos, como la Población [48] que es "Todos los elementos que forman parte del fenómeno definido y altamente delimitado al momento de analizar la consigna de investigación"; así como la Muestra [48] que se puede definir como "Una parte o pequeña cantidad de una población que es representativa de la Población o Universo".

En el caso de este estudio exploratorio, es importante mencionar que se cuentan con dos poblaciones diferentes:

Población de Estudiantes: 278 que asistieron a la segunda edición de #PilandoAndoPaLaU.De estos, 210 realizaron la Prueba de Inventarios de Estilos de Aprendizaje de Grasha-Riechmann, por lo que se pueden considerar automáticamente como la Muestra.

Población de Tutores: 66 tutores que formaron parte de forma voluntaria de la segunda edición de #PilandoAndoPaLaU.De estos, 60 tutores realizaron la Prueba de Estilos de Enseñanza de Grasha-Riechmann, considerando nuevamente a este dato como la Muestra.

La "Discrepancia" que puede existir entre la Población y Muestra de Estudiantes que realizaron la prueba, de igual forma que con los Tutores se debe a que fue establecido y mencionado abiertamente por medios como email y mensajería instantánea, la voluntariedad debe formar parte del estudio exploratorio.

Figura 11: Charla de Explicación a Tutores de la Metodología de la prueba de Estilos de Aprendizaje

De igual forma, el mismo fue explicado de manera presencial por parte del autor de este documento a través de una charla, se les explicó la metodología de este y el uso de los datos con fines académicos, información que se puede encontrar en el Anexo 4 de este documento.

Mencionado esto, se enfocará el esfuerzo de este estudio exploratorio en la información proporcionada por los 210 estudiantes y 60 tutores que realizaron la prueba psicométrica de Grasha-Riechmann, por ende, se buscará su emparejamiento basado en sus diferentes estilos de enseñanza y aprendizaje. Instrumentos de Recolección de Datos

Para obtener los datos de los 210 estudiantes y tutores se propuso el uso de una plataforma online con desarrollo propio, cuya arquitectura y diseño será abordada a fondo en el Capítulo 3 de este Proyecto de Investigación.

Figura 12: Sistema de Gestión Educativa de #PilandoAndo

Se descartó el uso de sistemas de recolección de datos a través de Formularios como Microsoft Forms o Google Forms, ya que no se podía garantizar el cumplimiento de la Ley 81 de Protección de Datos de 2021 [49] dentro de ellos.

Este documento se les entregó a todos los participantes del estudio previamente para su lectura y comprensión; así como se mantuvieron canales de comunicación electrónicos (email, mensajería instantánea) y físicos al momento de la aplicación de las mencionadas pruebas, donde estos pudiesen aclarar todas sus dudas con respecto al uso de sus datos con fines académicos y de investigación educativa.

Con lo anteriormente mencionado con respecto al desarrollo de una plataforma online propia para la recolección de datos, esta fue desarrollada basada en los requerimientos y cumplimiento de la mencionada Ley, con la denominación de "Sistema de Gestión Educativa | #PilandoAndo (SGE por sus siglas en español), donde se almacenarían todos los datos en servidores administrados por la empresa Digital Ocean con ubicación en la Ciudad de Nueva York.

Dicha información fue comentada de manera verbal a todos los participantes de este estudio, a manera de que estos pudiesen formar parte o no del mismo, dejando a decisión propia y voluntaria.

Figura 13: Revisión de la Autorización o Consentimiento por parte de los Tutores

En el caso de los estudiantes, la autorización y el consentimiento expreso para el uso de información y datos personales, en el caso de que estos fuesen menores de edad (< 18 años, según la legislación de la República de Panamá), dicho documento fue firmado por sus acudientes o tutores (Padres, Madres, Abuelo u Tutor Legal), de lo contrario, no podían participar en el estudio.

Si estos fuesen mayores de edad, pues los firmantes de la autorización fueron ellos mismos en el pleno uso de sus facultades físicas, mentales y sin ejercer ningún tipo de acción coercitiva o penalización por parte de ello; igual caso, para los tutores; sin embargo, con estos últimos todos eran mayores de edad, por lo que no fue necesaria la firma de ninguna persona que estuviese a cargo de su tutela o representación legal. Prueba de Grasha-Riechmann

Los instrumentos utilizados para obtener el Estilo de Aprendizaje de los Estudiantes, así como el Estilo de Enseñanza de los Tutores fue la Prueba de Grasha-Riechmann, que representa 6 dimensiones de Estilos de Aprendizaje y 5 dimensiones de Estilos de Enseñanza [50], sustentada pedagógicamente por los motivos establecidos en el Capítulo 1 de este Proyecto de Investigación.

Sobre la Prueba de Estilos de Aprendizaje: Esta prueba fue desarrollada originalmente por el Dr. Anthony Grasha en el año 1996, sin embargo, la adaptación que se utilizó para este estudio fue la realizada James H. Ford, James M. Robinson y Meg E. Wise [51] en el año 2016 que fue la aproximación más cercana al objetivo de este estudio de investigación, ya que se consideraba el componente de "Tutor" en vez de "Docente". La misma se encontró en el idioma inglés, sin embargo, fue traducida al español por el autor de este Proyecto de Investigación para ser aplicada a los estudiantes.

Se convierte en algo importante de mencionar que el Alpha de Cronbach [52] o el coeficiente de consistencia interna de esta prueba se trasladó de su adaptación original en inglés a la aplicada en español en este estudio con un valor de 0.89.

La prueba está compuesta por 60 ítems o preguntas con una aplicación de 5 (cinco) puntos Likert [53] para medir el nivel de acuerdo o desacuerdo de cada uno de los estudiantes con respecto a los ítems planteados. Este cuenta con seis dimensiones en las que se puede definir el Estilo de Aprendizaje de un Estudiante, siendo: Competitivo, Colaborativo, Evitativo, Participante, Dependiente e Independiente.

Cada una de ella cuenta con 10 ítems de evaluación en los cuales se estimará un promedio de todos los diferentes estilos y el que se encuentra más cercano al valor máximo que es 5.0, pues se denominará el estilo dominante, el siguiente valor más cercano como el estilo intermedio y el tercer valor más cercano como el estilo menos dominante; a manera de que esta pueda ser integrada con los Clústeres de Aprendizaje de los Estudiantes, como fue planteado en el Capítulo I.

Sobre la Prueba de Estilos de Enseñanza: Igualmente, fue desarrollada por el Dr. Anthony Grasha en el año 1996 y se utilizó la versión original traducida al idioma español por el autor de este Proyecto de Investigación. La misma posee un Alfa de Cronbach de 0.89, así como se cuenta con 40 ítems o preguntas con una aplicación de 6 puntos Likert que arrojarán resultados de Estilos de Enseñanza como experto, autoridad formal, modelo personal, facilitador y delegador. Cada uno de estos estilos contiene 8 ítems. Aplicación de la Prueba de Estilos de Enseñanza (Tutor)

El procedimiento para la determinación del Estilo de Enseñanza de un Tutor consiste en promediar cada una de las respuestas para cada uno de los Estilos y por ende, encontrar el dominante, intermedio y menos dominante

Los Tutores realizaron esta prueba utilizando dispositivos electrónicos como Computadores Personales (Laptops), Teléfonos Inteligentes (Smartphones) y Tabletas (Tablets), el cual fue previamente explicado por el autor de este Proyecto de Investigación sobre todo el procedimiento que tenían que realizar al momento de acceder al Sistema de Gestión Educativa (SGE) de #PilandoAndo.

Se declaró que la realización de la prueba era de carácter totalmente voluntario, por lo que no hubo ningún instrumento de coacción o retaliación hacia los tutores.

La prueba se realizó a las 11:30 am del sábado 26 de agosto del 2023, de manera coordinada todos los tutores con una duración para responder a cada uno de los ítems de 20 minutos, el cual no fue extendido en ningún momento.

Figura 14: Tutores realizando la prueba de Estilos de Enseñanza en sus dispositivos móviles Los resultados de esta prueba, así como los datos generales (Nombre y Apellido, Sexo, Edad e Email) fueron almacenados directamente en el Sistema de Gestión Educativa (SGE) de #PilandoAndo.

No se consideró la creación de un usuario con su respectiva contraseña para cada tutor, por lo que solo podían realizar la prueba a través de su correo electrónico y si estos ingresaban sus datos nuevamente tratando de hacer la prueba, el sistema automáticamente le enviaría al punto en el que quedaron de forma antes de salir de este, evitando de esta manera, la duplicación de registros dentro del SGE.

Otra razón por la que se utilizó el email como la "Llave Primaria" del usuario que estuviese realizando la prueba, desde la perspectiva de la Base de Datos, fue producto de la posibilidad de que un tutor confirme su asistencia previamente, sin embargo, este no asista a la sesión [54].

Figura 15: Validación del Tutor usando su email a través del SGE Aplicación de la prueba de Estilos de Aprendizaje al Estudiante

Similar a los tutores, los estudiantes realizaron esta prueba a través del SGE, únicamente que al momento de estos entrar, tenían que seleccionar "Soy Estudiante" lo que les desplegaría automáticamente el Cuestionario de Estilos de Aprendizaje de Grasha-Riechmann, como se muestra a continuación:

Figura 16: Aplicación en el SGE del Cuestionario de Estilos de Aprendizaje del Estudiante

A todos los 278 estudiantes que asistieron a la Sesión 01 de #PilandoAndoPaLaU el día 02 de septiembre de 2023 se les dividió en tres salones diferentes que por motivos de capacidad y Seguridad Ocupacional en el Centro de Capacitaciones Ascanio Arosemena del Canal de Panamá, se efectuó de esta manera.

Los estudiantes comenzaron la sesión con cada uno de sus tutores desde las 8:30 am hasta las 11:00 am que fue el momento de aplicación de la prueba de Estilos de Aprendizaje de Grasha-Riechmann.

Debido a que los estudiantes se encontraban en diferentes salones y no todos contaban con dispositivos electrónicos, así como acceso a Internet, se habilitó una red Wifi especial por parte del Canal de Panamá, así como computadores portátiles para que estos realizasen la prueba.

Para cada uno de los salones, se asignó a un "Aplicador de la Prueba" quién dictó las instrucciones iniciales sobre el uso del (SGE) y el uso de ella, así como se verificó que todos iniciasen simultáneamente con una duración de 30 minutos para que pudiesen responder los 60 ítems que les solicitaba la prueba. De igual forma, como el caso de los tutores se mencionó que la realización de esta prueba era de carácter totalmente voluntario y con fines meramente académicos, a lo cual 68 estudiantes del total de 278 estudiantes decidieron libremente sin la intervención de sus padres o un tutor responsable, no realizar la prueba.

Figura 17: Instrucciones Iniciales para la aplicación de la Prueba de Estilos de Aprendizaje Diseño del Experimento

Para el desarrollo de este estudio exploratorio, se consideró el trabajo previamente realizado por la Fundación Ayudinga en la primera edición en el año 2023 del programa #PilandoAndoPaLaU; sin embargo, se realizaron las siguientes adaptaciones para asegurar la consistencia de este:

La duración de la segunda edición de #PilandoAndoPaLaU fue de 5 (cinco) semanas, en vez de las 3 semanas que se realizó en la primera edición.La primera sesión, la cual fue denominada "Sesión 0", fue directamente orientada a los tutores a forma de capacitarlos en los siguientes temas:Formalismo Académico en las Tutorías Masivas, capacitación dictada por el Ing. Migdonio González; Profesor Universitario y Analista de Datos en el Smithsonian Institute.

¿Por qué los estudiantes necesitan una guía y no un sabelotodo?, capacitación dictada por la Lic. Diana Landero, Licenciada en Psicopedagogía de la Universidad de Panamá.

Inclusión Educativa en las Tutorías Masivas, dictada por la Lic. Kathy Davis, Especialista en Manejo de Proyectos Especiales en la Organización Internacional para los Migrantes (OIM) del Sistema de Naciones Unidas.

El programa se desarrolló de forma sabatina en horario de 8:30 am – 12:30 pm, donde los estudiantes y tutores asistieron voluntariamente.

El programa de tutorías inició el 25 de agosto con la "Sesión 0" y se extendió hasta el sábado 23 de septiembre, ambas fechas correspondientes al año 2023.

Se aumentó el tiempo efectivo de tutorías de 3:00 hrs reloj a 4:00 hrs reloj; esto sugerido por los mismos estudiantes y tutores en la primera edición, dado a que no se alcanzaba a cubrir por completo el material de estudio para la prueba de admisión PAA, utilizada en las universidades en Panamá como parte de sus Sistemas de Ingreso Universitario.

Se estandarizó que todos los estudiantes y tutores utilizasen el mismo conjunto de prácticas y materiales de estudio al momento de las tutorías, el cual fue proporcionado por la Dirección de Contenidos de la Fundación Ayudinga con el aval del College Board, institución encargada de la creación y desarrollo de la Prueba PAA. En previa coordinación con el Canal de Panamá, se aumentó la cantidad de estudiantes de 146 en la primera edición de #PilandoAndoPaLaU a 278 acatando los protocolos de Seguridad Ocupacional establecidos y coordinados previamente con esta institución.

Figura 18: Conferencia denominada "Formalismo Académico en las Tutorías Masivas"

La "Sesión 0" se realizó con el objetivo de preparar a los tutores, los cuales afirmaron que el 20% de ellos son tutores formales, 6% son profesores en una escuela o superior y el 75% afirmaron que "Le doy clases a mis amigos o conocidos".

A pesar de que estos contaran con una experiencia previa, se buscó una forma de estandarizar la Metodología de Tutoría en #PilandoAndoPaLaU, que es una extensión de la Metodología Ayudinga, que a su vez se encuentra basado en el Modelo Educativo AyuEduca2030 [2] de la Fundación Ayudinga.

Es importante reconocer que bien es cierto, no se puede estandarizar al 100% el Estilo de Enseñanza de cada uno de los Tutores (Ya que esto viciaría por completo la aplicación de la prueba), pero con ello se estableció un estándar mínimo para que estos tuviesen conciencia del rol y la responsabilidad que estaban asumiendo. La convocatoria de tutores se realizó a través de diferentes grupos estudiantiles de la Universidad Tecnológica de Panamá como Alianza Estudiantil, voluntarios profesionales del Canal de Panamá, equipo de la Fundación Ayudinga y voluntarios profesionales de Multibank.

En una evaluación del rango etario de los Tutores, se encontró que el 78% estaban entre los , luego un 12% entre los y un 10% en los 30 años en adelante.

Se dio por hecho que todos los tutores contaban con el conocimiento necesario en áreas como Aritmética, Álgebra, Geometría, Trigonometría, Estadística y Probabilidad; por lo que no se aplicó ninguna prueba de evaluación de conocimientos a estos, sino que se les enseñó buenas prácticas y principios básicos al momento de dar una tutoría.

Los tutores declararon previamente su disponibilidad para asistir a las 4 (cuatro) sesiones de tutoría, por lo que ya se conocía, salvo imprevistos de última hora; los tutores que estarían disponibles para una de las cuatro sesiones específicas.

En el caso de los estudiantes, se realizó una convocatoria masiva a través de medios digitales (Facebook, Instagram y TikTok) en las redes sociales del Canal de Panamá y la Fundación Ayudinga, donde se ofrecían 250 "becas" para formar parte de estas sesiones de tutoría gratuitas y libres, para las que se definió la disciplina de cola FIFO [55] (Siglas en inglés para "First In, First Out) al momento de la selección de los estudiantes.

Los primeros estudiantes en aplicar al momento de ver la información en los medios tradicionales o digitales, pues a esos fueron los que se les otorgaron las "becas" previamente establecidas. Esto se realizó sin ningún tipo de criterio de inclusión o exclusión más que el previamente mencionado para mantener la integridad del estudio y con ello eliminar la discreción en la selección de participantes.

A la segunda edición del programa #PilandoAndoPaLaU aplicaron 564 personas, por lo que no se pudo atender a todas ellas, sin embargo, se decidió ser un poco laxos debido a la alta demanda que se tuvo de estudiantes, por lo que se escogieron a 300 estudiantes, de los cuales asistieron 278 estudiantes.

Figura 19: Anuncio de "PilandoAndoPaLaU" por el Canal de Panamá en la red social Instagram Variables de Estudio

Al momento de definir las variables que se van a estudiar, primero se tiene que tomar en cuenta el contexto general, incluyendo el tiempo, espacio y momento en el que se realizó este estudio exploratorio bajo el marco de este Proyecto de Investigación.

Todos los tutores que asistieron a cada una de las sesiones de #PilandoAndoPaLaU lo hicieron de manera totalmente voluntaria, donando su tiempo y conocimientos al proyecto en sí, asistiendo voluntariamente a las tutorías realizadas entre la Fundación Ayudinga y el Canal de Panamá en el periodo sabatino del 25 de agosto (Tutores) al 23 de septiembre del año 2023.

Por ende, se debe considerar el dato de que no todos los mismos tutores asistieron a todas las sesiones por motivos como diversos compromisos, disponibilidad declarada previamente antes del inicio de las sesiones o en sus defectos circunstancias que hayan sucedido "De último momento" e incluso, en algunos casos, los tutores solamente asistieron a la "Sesión 0" que fue en la que se aplicó la Prueba de Grasha-Riechmann. De esta forma, no se pueden considerar como elementos continuos al momento de la definición de variables, es una mera exploración que tendrá resultados aproximados para querer conocer sus Estilos de Aprendizaje mediante la aplicación de la prueba de Grasha-Riechmann para el fin antes mencionado.

A continuación, se presentará una gráfica en la que se puede mostrar la asistencia de los tutores a lo largo de las 5 sesiones realizadas de #PilandoAndoPaLaU:

Figura 20: Asistencia General de Tutores a través de las 5 sesiones de #PilandoAndoPaLaU De igual forma, se llevó un control específico acerca de los tutores que, en efecto, realizaron la prueba de Estilos de Enseñanza de Grasha-Riechmann y su asistencia a las 5 sesiones de #PilandoAndo, gráfico que se muestra a continuación:

Figura 21: Asistencia General de Tutores a las 5 sesiones de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Enseñanza de Grasha-Riechmann

Se debe mencionar, que en este estudio exploratorio no se evaluará la divergencia que existe entre la asistencia general de tutores a lo largo de #PilandoAndoPaLaU vs. la asistencia general de tutores que realizaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann, dado a que esto generaría un análisis no determinístico al momento en el que se realizaría el emparejamiento entre estudiantes y tutores. Se tendrían que utilizar distribuciones probabilísticas para poder determinar una aproximación en efecto de la inasistencia o no de los tutores que realizaron la prueba, por lo que se establece que la variable de Estilos de Enseñanza de un Tutor será determinística, por lo que se utilizarán estadísticos descriptivos. Se menciona para el caso de los estudiantes, se dio un comportamiento similar al de los tutores, en el que no

todos los estudiantes que asistieron a la Sesión #1 de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Aprendizaje de Grasha - Riechmann, continuaron asistiendo a las demás sesiones.

A continuación, se presentará la asistencia general de estudiantes a las 4 sesiones (Únicamente sesiones de tutoría) de #PilandoAndoPaLaU:

Figura 22: Asistencia General de Estudiantes a las 4 Sesiones de #PilandoAndoPaLaU Dado a los registros llevados de los estudiantes que asistieron a cada una de las tutorías, así como conociendo que en la Sesión #1 fue donde se realizó la prueba de Grasha para Estilos de Aprendizaje, se puede hacer la comparativa de la Asistencia General de Estudiantes, si ellos hicieron la mencionada prueba.

Figura 23: Asistencia General de Estudiantes a las 4 sesiones de #PilandoAndoPaLaU que realizaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann

En consideración de lo anteriormente planteado, se declara que las variables que serán objeto de este estudio de investigación serán: Estilos de Enseñanza del Tutor (Determinístico, tipo numérico), así como Estilo de Aprendizaje del Estudiante (Determinístico, tipo numérico)

Cierto es que tampoco se puede obviar datos o hallazgos que hayan resultado producto de la realización de esta investigación exploratoria, sin embargo, estas no serán parte del modelo matemático que se debe elaborar para desarrollar el objetivo final de este proyecto de investigación que es el emparejamiento aproximado entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga. Análisis de Resultados

Una vez los tutores como los estudiantes realizaban las ya mencionadas pruebas en el SGE de #PilandoAndo, un usuario de tipo administrador accedía a este para obtener los datos provenientes del mismo, ya sea en formato CSV (Comma Separated Value), copiarlos o imprimirlos directamente.

A continuación, se mostrará el Panel de Administración del SGE de #PilandoAndo con el usuario administrador jbatista, en donde se pueden acceder a cada uno de los registros en tiempo real, una vez que el tutor o el estudiante realiza la prueba de Grasha-Riechmann.

Figura 24: Panel de Administración del SGE de #PilandoAndo

Los datos numéricos sobre la cantidad de tutores que realizaron la prueba de Grasha-Riechmann para Estilos de Enseñanza, así como la cantidad de estudiantes que hicieron la Prueba de Grasha-Riechmann para Estilos de Enseñanza es un valor que se actualiza en conformidad como se vaya utilizando el sistema.

Esto permitió que se pudiese realizar una contraposición entre la cantidad de Tutores que se encontraban presentes en la Sesión 0 que fue donde se les aplicó la prueba vs. la cantidad de tutores que en efecto la hicieron, que como ya ha sido mencionado anteriormente, de una muestra de 66 tutores en dicha sesión, 6 tutores voluntariamente no hicieron la prueba de Grasha-Riechmann para Estilos de Enseñanza.

Figura 25: Resultados de la Prueba de Grasha-Riechmann para Estilos de Enseñanza aplicada a Tutores en el SGE

Perfil Demográfico de los Tutores

Aunque no sean variables concomitantes en este estudio exploratorio, se convierte relevante en conocer información adicional acerca de características específicas sobre los tutores que realizaron la prueba .

Tabla 14: Perfil Demográfico de los Tutores

Perfil Demográfico

Cantidad (n)

Porcentaje (%)

Sexo

Masculino

41 68.33 Femenino 19 31.67

Rango Etario

18 - 20 años

26

43.33

21 - 23 años

24

40.00

24 - 26 años

2

3.33

Más de 27 años

23.33

A pesar de que se les solicitó el correo electrónico para que posteriormente hecha la evaluación le pudiesen llegar los resultados, esto no es un dato que sea relevante indagar, dado a que no le aporta ningún valor agregado a este estudio.

Análisis Descriptivo de los Tutores

El menester será analizar los Estilos de Enseñanza de los Tutores, por lo que primero se definirá el resultado completo, que es la única variable de tipo determinística que se evaluará como parte de este estudio exploratorio y de forma adicional, se desglosará a nivel de rangos etarios y sexo del tutor.

Figura 26: Estilos de Enseñanza de los Tutores en #PilandoAndoPaLaU

Cuando se analiza este gráfico de barras, se observa una moda marcada hacia el Estilo de Enseñanza "Facilitador", debido a que, a partir de una muestra de 60 tutores, 41 obtuvieron este Estilo de Enseñanza. De igual manera, surge como pregunta de investigación ¿Por qué ningún tutor tuvo estilo de Autoridad Formal o Delegador?

A manera de aproximar una respuesta a ella, se debe reconocer la naturaleza expresada en los antecedentes de este Proyecto de Investigación, donde fue denotado que el concepto "#PilandoAndo" surge como un esfuerzo en el que el tutor dona su tiempo y conocimiento a otros estudiantes voluntariamente Esto lleva a que presenten "Estilos de Enseñanza" en los que ellos se consideren más parte del proceso, como fue denotado como el "Facilitador" o quieran inspirar a otras personas en la enseñanza aprendizaje como lo es el "Modelo Personal", en comparación a otros Estilos de Enseñanza como una Autoridad Formal que se caracteriza por su personalidad y carácter estricto, así como un Delegador que tiene como principal característica que este deja su labor asignada a otras personas a través de trabajos grupales en los que este solo actúa como guía.

A continuación, se procede a hacer una comparativa entre los diferentes rangos etarios previamente declarados y sus Estilos de Enseñanza.

Es importante señalar que, para cada uno de los rangos etarios se presentará la cantidad de tutores que pertenecen al mismo a manera de calcular los porcentajes, ya que se considerará a ese rango etario como parte de un único conjunto.

Tabla 15: Desglose por Rangos Etarios de Estilos de Enseñanza en Tutores

Rango Etario

Estilo de Enseñanza

Porcentaje (%)

18 - 20 años

(26/60 tutores)

Experto

7.69

Autoridad Formal

0.00

Modelo Personal

3.85

Facilitador

88.46

Delegador

0.00

21-23 años

(24/60 tutores)

Experto

20.83

0.00 Modelo Personal 33.33 Facilitador 45.83 Delegador 0.00 24 - 26 años (2/60 tutores) Experto 50.00 **Autoridad Formal** 0.00 Modelo Personal 0.00 Facilitador 50.00 Delegador Más de 27 años (8/60 tutores) Experto 0.00 **Autoridad Formal** 0.00 Modelo Personal 25.00 Facilitador 75.00 Delegador 0.00 Un hallazgo de la tabla, anteriormente presentada, es que el rango etario que presenta mayor variedad entre los Estilos de Enseñanza de los Tutores es el que compete a los 21-23 años (24/60 tutores), ya que se tiene el 20.83% de los Tutores como "Experto", 0.00% como "Autoridad Formal", 33.33% como "Modelo Personal", 45.83% como "Facilitador" y 0.00% como Delegador. De igual forma, se analizarán los Estilos de Enseñanza de los Tutores con relación al Sexo sin considerar el rango etario que fue planteado anteriormente. Tabla 16: Distribución porcentual en sexo femenino de los Estilos de Enseñanza de los Tutores Sexo Estilos de Enseñanza Porcentaje (%) Femenino Experto 5.26 **Autoridad Formal** 0.00 Modelo Personal 15.79 Facilitador 78.95 Delegador 0.00 Se usará el mismo análisis para los tutores cuyo sexo es Masculino. Tabla 17: Distribución porcentual en sexo masculino de los Estilos de Enseñanza de los Tutores Estilos de Enseñanza Porcentaje (%) Masculino Experto

Autoridad Formal

17.07

0.00

Autoridad Formal

Modelo Personal

19.51 Facilitador 63.41

Delegador

0.00

Perfil Demográfico de los Estudiantes

Como fue mencionado en el caso de los tutores, el análisis y correlación de variables como Rangos Etarios y Sexo no es el objetivo final de este estudio exploratorio, sin embargo, permiten tener un panorama completo de los participantes de este.

Para ello, se basará en los que realizaron la prueba de Grasha-Riechmann para Estilos de Enseñanza.

Tabla 18: Perfil Demográfico de los Estudiantes

Perfil Demográfico

Cantidad (n)

Porcentaje (%)

Sexo

Masculino

107

50.95

Femenino

103

49.05

Rango Etario

15 - 18 años

158

75.24

19 - 22 años

37

17.62

23 - 28 años

9

4.29

Más de 29 años

6

2.86

A partir de esta tabla, resulta interesante mencionar dos hallazgos importantes:

Se alcanzó niveles elevados de paridad entre hombres y mujeres con un 50.95% de estudiantes masculinos y un 49.04% de estudiantes femeninos.

A pesar de que el formato de #PilandoAndoPaLaU estuviese dirigido a Estudiantes en sus últimos años de Educación Media a manera de prepararse para rendir los exámenes de admisión de las universidades, el contar con 24.76% de estudiantes que podrían no formar parte de "el estándar" de estudiantes en Educación Media, demuestra las disparidades del Sistema Educativo panameño, e incluso de manera subjetiva y a criterio de este autor; los deseos y esperanza de nunca parar de aprender de dicho porcentaje de Estudiantes, independiente de la condición socio-económica en la que estos se encuentren. Análisis Descriptivo de los Estudiantes

Se procederá a realizar el mismo análisis que fue utilizado para los tutores, sin embargo, ahora para los estudiantes y con los detalles que eso considera, debido a las seis dimensiones que plantea el Modelo de Grasha-Riechmann, representadas a través de los Estilos de Aprendizaje de los Estudiantes; los cuales se proceden a nombrar: Independiente, Dependiente, Colaborativo, Competitivo, Evitativo y Participativo. Estos Estilos de Aprendizaje serán la base para todos los análisis descriptivos que se presentarán, así como cabe resaltar que, independientemente de otras correlaciones que se harán, como análisis de los resultados de este estudio exploratorio, la segunda variable determinística será el Estilo de Aprendizaje de los Estudiantes que hicieron la prueba de Grasha-Riechmann en la Sesión #1 de #PilandoAndoPaLaU bajo las condiciones antes descritas.

Figura 29: Estilos de Enseñanza de Estudiantes en #PilandoAndoPaLaU

Cuando se analiza el ya presentado gráfico de barras, resulta predominante el Estilo de Aprendizaje "Colaborativo" con un resultado de 97 estudiantes, mientras que este es seguido por el Estilo de Aprendizaje "Dependiente" con 57 estudiantes y el "Participativo" con 41 estudiantes.

Sin embargo, cuando se analizan los demás Estilos de Aprendizaje, se encuentran casos que en "Competitivo" solo se tienen a 2 estudiantes, mientras que en el estilo "Evitativo", se tienen 0 estudiantes.

Esto pudiese permitir dar ciertos elementos de juicio sobre la muestra heterogénea y pseudoaleatorizada de estudiantes que realizaron la prueba de Grasha-Riechmann en #PilandoAndoPaLaU, debido a que todo se realizó en un entorno controlado, sin ningún tipo de coacción o retaliación a los Estudiantes.

Por ende, la conclusión lógica a la que se puede llegar es que los estudiantes que participaron de este estudio exploratorio tienen una marcada tendencia con el Estilo de Aprendizaje "Colaborativo" y "Participativo" a ser

responsables de su propio aprendizaje e involucrarse en el mismo como fue planteado en el Capítulo I de este Proyecto de Investigación.

Mientras que en el caso de los estudiantes con estilo "Dependiente", se requeriría una mayor intervención y esfuerzo por parte del tutor para que este se pudiese involucrar dentro del grupo de tutoría.

El comprender el Estilo de Aprendizaje basado en los rangos etarios definidos anteriormente se convierte en un dato de suma importancia, ya que este refleja una realidad inherente la descripción del análisis y tener la capacidad basada en datos de elaborar ciertas preguntas de investigación.

Tabla 19: Desglose por rangos etarios de los Estilos de Aprendizaje de los Estudiantes

Rango Etario

Estilo de Aprendizaje

Porcentaje (%)

15 - 18 años

(158/210 estudiantes)

Independiente

6.96

Dependiente

25.95

Colaborativo

47.47

Competitivo

0.00

Evitativo

0.00

Participativo

19.62

19-22 años

(37/210 estudiantes)

Independiente

5.41

Dependiente

32.43

Colaborativo

37.84

Competitivo

5.41

Evitativo

0.00

Participativo

18.92

23-28 años

(9/210 estudiantes)

Independiente

0.00

Dependiente

33.33

Colaborativo

44.44

Competitivo

0.00

Evitativo

0.00

Participativo

22.22

Más de 29 años

(6/210 estudiantes)

Independiente

0.00

Dependiente

16.67

Colaborativo

66.67

Competitivo

0.00

Evitativo

0.00

Participativo

16.67

Resulta objeto de estudio que subiendo en los rangos etarios hasta llegar a los "Más de 29 años", que si bien es cierto representan únicamente el 2.86% de esta muestra total, el porcentaje de Estilos de Aprendizaje "Colaborativo" representó un aumento significativo al volverse el 66.67% de los estudiantes.

De igual forma, al analizar por rangos etarios conviene también ver el caso del Estilo de Aprendizaje "Independiente", el cual presentó una disminución conforme, también fueron subiendo dichos rangos hasta llegar al punto en el que no se encontró ningún estudiante que presentase este Estilo de Aprendizaje. Sin duda alguna, el Estilo de Aprendizaje que más llama la atención ante su marcada ausencia en todos los rangos etarios es el "Evitativo", lo que indica, según lo mencionado en el Capítulo I de este Proyecto de Investigación que los estudiantes siempre se encontraron abiertos a la recepción de nuevos aprendizajes, puede no haber generado un ambiente hostil para el tutor al momento de la conformación de los grupos de tutoría; ya que se conoce que este es el Estilo de Aprendizaje que requiere (como fue mencionado en los Clústeres de Integrados del Capítulo I) una Autoridad Formal que "Pusiese orden" y guiase a este estudiante, marchando en directa concordancia con la ausencia estadística de algún tutor que haya presentado el dicho Estilo de Enseñanza.

Conviene también hacer un análisis descriptivo y visual de los diferentes Estilos de Aprendizaje que presentaron los estudiantes al momento de tomar la prueba de Grasha-Riechmann con respecto a su Sexo, ya sea Masculino o Femenino.

Tabla 20: Distribución porcentual de los Estilos de Enseñanza en sexo (Femenino)

Sexo

Estilos de Aprendizaje

Porcentaje (%)

Femenino

Independiente

2.91

Dependiente

31.48

Colaborativo

45.63

Competitivo

0.00

Evitativo

0.00

Participativo

18.45

Resulta una pregunta de investigación la que dada una muestra de , ¿Por qué no se manifestó los Estilos de Aprendizaje Competitivos y Evitativos? A priori, no se puede establecer ninguna hipótesis que permita darle sentido a esta pregunta, dado que sería ya de carácter sociológico.

Se continúa con el caso de los estudiantes de sexo Masculino, de los cuales también se hará una representación porcentual de sus Estilos de Aprendizaje, a manera que se pueda generar ciertas preguntas de investigación a partir de ello.

Tabla 21: Distribución porcentual de los Estilos de Enseñanza en sexo (Masculino)

Sexo

Estilos de Aprendizaje

Porcentaje (%)

Masculino

Independiente

9.35

Dependiente

21.50

Colaborativo

46.73

Competitivo

1.87

Evitativo

0.00

Participativo

20.18

Resulta ser un Estilo de Aprendizaje preponderante el caso de "Colaborativo" con un 46.73% en el caso de los estudiantes masculinos, así como el estilo "Dependiente" con un 21.50%, seguido directamente por el estilo "Participativo" con un 20.18%.

Consideraciones Éticas

Se adoptaron ciertas Protocolos de Protección al Estudiante, por recomendación de especialistas en la materia en de la Autoridad del Canal de Panamá. A continuación, se presentan las recomendaciones

implementadas:

La comunicación con los estudiantes fuera de las sesiones de tutoría solamente podía ser realizada a través de los canales oficiales del Canal de Panamá y la Fundación Ayudinga.

Ningún tutor podía compartir su teléfono celular o fijo, conversar u ofrecer sus servicios de tutorías adicionales a los Estudiantes.

Todos los tutores fueron entrevistados y filtrados previamente por la Dirección de Voluntariado de la Fundación Ayudinga, así como la Dirección de Responsabilidad Social Empresarial de la Autoridad del Canal de Panamá. Se revisaron aspectos como Experiencia Previa, Disponibilidad para las Sesiones de Tutoría, así como en algunos casos específicos se realizaron averiguaciones de Récord Policivo, denotando que ninguno de ellos tenía algún tipo de antecedentes.

Todas estas recomendaciones fueron de estricto cumplimiento para cada uno de los tutores, de lo contrario, serían automáticamente expulsados como voluntarios de #PilandoAndoPaLaU y la situación sería informada a las autoridades pertinentes.

De igual forma, al momento de ingresar a la aplicación a través de la cual se almacenan los datos de los resultados de la aplicación de las pruebas de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, se limitó el acceso a ellas definiendo únicamente tres usuarios (los cuales pueden ser modificados mediante código únicamente) quienes tienen acceso a dichos datos.

Los criterios de aceptación o discriminación para poder analizar ¿Quién tendría acceso a los datos o no? Fueron realizados mediante el organigrama de la Fundación Ayudinga, dado que es inherente que al momento de realizar cualquier tipo de intervención bajo el formato de #PilandoAndo, hay ciertos procesos académicos y tecnológicos que se llevan a cabo previamente, por lo que estos fueron los usuarios con su respectivo nombre y rol que fueron creados bajo el perfil de "Administrador del Sistema": Nombre: Johel Heraclio Batista CárdenasCargo: Presidente de la Fundación Ayudinga

Nombre: Kevin Anel González OrtegaCargo: Director de Tecnología e Investigación Educativa

Nombre: Rolando Esteban Riley RodríguezCargo: Director de Contenidos

Cada una de las personas en cuestión han firmado el "Acuerdo de Voluntariado", así como el "Código de Ética y Conducta de la Fundación Ayudinga.

Los voluntarios de la Fundación Ayudinga presentan cargos directivos en esta y han firmado el "Acuerdo de Voluntariado", así como el "Código de Ética y Conducta de la Fundación Ayudinga", los cuales son documentos de carácter legal y vinculante bajo las leyes de la República de Panamá, por lo que no pueden divulgar ninguna de la información presentada en el Panel de Administración del SGE de #PilandoAndo.

Por lo que se les da acceso a los datos de los Estilos de Aprendizaje de los Estudiantes y Estilos de Enseñanza de los Tutores única y exclusivamente con el objetivo de trabajos de investigación educativa o de mejora en la experiencia de las intervenciones educativas masivas de la Fundación Ayudinga.

Limitaciones del Estudio

Este estudio es de carácter exploratorio, ya que del mismo no se espera un factor conclusivo. Esto debido a que no se cuentan con los datos de toda la población de estudiantes, en este caso del lugar donde se desarrolla el mismo, que es la República de Panamá; siendo de igual manera con los tutores o docentes. Por ello, se limitará a evaluar lo que acontece dentro de las sesiones de tutoría de #PilandoAndoPaLaU entre las fechas del 25 de agosto y 23 de septiembre en las que se estaba preparando a los estudiantes a través tutores voluntarios para que estos rindiesen los exámenes de admisión de las universidades públicas en Panamá.

Un elemento importante para mencionar es que como fue establecido en el Capítulo I de este Proyecto de Investigación, los estilos tanto de enseñanza como aprendizaje de un estudiante o tutor tienden a ser variables en función del tiempo; es decir, que lo que será analizado en este estudio será únicamente una fotografía del momento en el que los estudiantes y tutores realizaron la prueba, no su posible cambio posterior.

No se considerarán variables exógenas, las cuales pueden resultar subjetivas como el grado de afinidad entre el estudiante y el tutor o viceversa, así como la asistencia de estos a lo largo del tiempo, espacio y momento en el que fue realizado el estudio.

Tampoco se establecerán conclusiones diagnósticas sobre el Sistema Educativo de la República de Panamá, ya que cuenta con una población de más de , mientras que este estudio solamente consideró a una muestra muy puntual y heterogénea de estudiantes para realizar estudios sobre los Estilos de Aprendizaje de estos. Conclusiones a priori del Estudio Exploratorio

Al principio de este capítulo, se plantearon una serie de Hipótesis Nulas, así como alternativas. Todas ellas definiendo escenarios que pudiesen ser el posible resultado de llevar a cabo la completa definición de este Proyecto de Investigación.

Empero, dado que se ha limitado a la metodología y diseño del estudio exploratorio que se está bajo el paraguas del ya mencionado Proyecto de Investigación, se debe mencionar de forma categórica que no se puede aceptar o negar ninguna de las hipótesis planteadas.

Debido a que se requieren los mecanismos a través de los que se emparejará a estudiantes y tutores en las

intervenciones educativas de la Fundación Ayudinga, siendo el caso estudiado, la edición especial de #PilandoAndoPaLaU.

Capítulo III: Arquitectura del Sistema

Estado Previo

Antes del estudio exploratorio que fue realizado, el proyecto #PilandoAndo no contaba con ningún tipo de sistema ni proceso sistemático para la creación de los grupos de tutoría, contando con los Estudiantes y Tutores, por lo que se trabajaba con una con una disciplina de cola FIFO [55], donde los Tutores (Servidores) ya contaban con una mesa en la que iban a desarrollar su grupo de tutoría previamente asignada por la organización con una capacidad específica.

Conforme los Estudiantes (Clientes) iban llegando a formar parte de cualquier sesión de #PilandoAndo, estos eran asignados a cualquier Tutor que se encontrase disponible de manera manual. Sin embargo, resulta importante reconocer que no existía ningún tipo de evidencia sobre la cual se hacían dichas asignaciones, dado que únicamente se trataba de satisfacer la demanda de estudiantes que deseasen recibir tutorías sobre un determinado tema.

Figura 27: Modelo inicial de asignación de Estudiantes a Grupos de Tutoría en #PilandoAndo Bien es descrito gráficamente el proceso de creación de "Grupos de Tutoría" que se realizaba anteriormente, que al tener una entrada al sistema que eran los Estudiantes, quienes iban llegando, gradualmente durante un tiempo, muchas veces no debido, dada la flexibilidad que se planteaba para que todos tuviesen la oportunidad de recibir tutorías; esto complicaba en sobremanera; hacía que no existiese, en muchos casos, ningún tipo de correlación entre el estudiante y tutor, aunado al hecho de que eso no era medido. Por ello, se observa un proceso totalmente lineal, en el que el comienza a llegar y se asigna al "Grupo de Tutoría" con un tutor que se encontrase disponible, sabiendo la limitante que se planteaba de n = 5 estudiantes/grupo de tutoría, la cual en muchos casos se tenía que cambiar debido a que no se era capaz de satisfacer la demanda de Estudiantes con la oferta de tutores disponibles, haciendo que para alcanzar el punto de equilibrio entre ambas, se creasen grupos con una mayor cantidad de estudiantes. Lo último, generaba un completo despropósito con el modelo pedagógico que se buscaba generar en las sesiones de #PilandoAndo, dado que se llegaba a tener una mayor similitud con un aula de clases, en contraprestación a una sesión de tutoría más "íntima" y "personalizada" para el estudiante y a su vez, para el tutor, debido a que ambos asisten de manera totalmente voluntaria y en libertad. Estado Propuesto

Tomando en cuenta la realidad previamente expresada, se plantea en este Proyecto de Investigación que no se puede mantener el estado previo en las sesiones de #PilandoAndo, debido a que, eventualmente, al no tener ningún tipo de base científica u argumentativa para la asignación de un estudiante con un tutor, estas perderían significancia y pertinencia para el actor principal que es el estudiante, por lo que se propone una solución tecnológica aproximada que permita automatizar los procesos de creación de grupos de tutoría. Para ello, se utilizará como base el Modelo de Grasha-Riechmann, en el cual se le aplica la prueba de Estilos de Aprendizaje (Estudiantes) y Estilos de Enseñanza (Tutores), la cual se ha validado con anterioridad desde el marco teórico que resulta la más adaptativa para poder alcanzar el objetivo.

Sin embargo, dado que en el Capítulo II se hizo una definición de la Metodología y Diseño del Experimento, un estudio exploratorio; se debe mencionar nuevamente que no se esperan resultados concluyentes, sino más bien que este sistema a desarrollar resulta ser una aproximación desde la perspectiva lógico-matemática aunada a la pedagogía y a nuevas tendencias en el mundo académico que permiten poder entregar una propuesta de sistema tecnológico que arroje como resultados insumos de alto valor para la toma de decisiones operativas, tácticas y gerenciales a nivel educativo, especificando el caso del proyecto #PilandoAndoPaLaU desarrollado por la Fundación Ayudinga y el Canal de Panamá entre los meses de agosto – septiembre del año 2023.

Con la nueva propuesta de reestructuración de procesos de #PilandoAndo, lo que conlleva a un reajuste en el modelo de asignación de tutores a estudiantes; hace que se requiera replantear el diagrama inicial del sistema, considerando ahora las entradas de Estudiantes E(t) con sus Estilos de Aprendizaje y Tutores T(t) con sus Estilos de Enseñanza, así como la consideración de nuevos procesos para la creación de grupos de tutoría.

Figura 28: Modelo propuesto de asignación de Estudiantes a Grupos de Tutoría en #PilandoAndo Bajo esta nueva estructura propuesta del sistema, se puede observar que se genera un ciclo de retroalimentación negativa, que hace que antes de que se comiencen a ejecutar las sesiones de tutorías de #PilandoAndo, se ofrezca un modelo iterativo de comparación entre los Estilos de Aprendizaje de un Estudiante y los Estilos de Enseñanza de un Tutor, de manera que se pueda obtener el mejor tutor para un estudiante y el mejor estudiante de un tutor.

Es decir, se busca generar una mejor asignación de los recursos, sin embargo, como se muestra en el diagrama del sistema anteriormente presentado, esto requiere la obtención de los datos iniciales por parte de los estudiantes y tutores, lo cual se realizará, inmediatamente, cuando ellos entran a una sesión de tutorías, donde se les aplica la prueba y luego, sus datos son procesados por el sistema a través de un algoritmo de emparejamiento que se describirá a fondo en la perspectiva matemática en el Capítulo IV de este Proyecto de Investigación.

Se espera que esto permita mejorar el sentido de pertinencia por parte de los estudiantes hacia los tutores y viceversa, generando de esta manera propicia un mejor ambiente de enseñanza – aprendizaje, como fue aseverado en el Capítulo II de este Proyecto de Investigación, en el que se planteó la metodología y el diseño de este estudio exploratorio.

Ahora que se conoce el Estado Inicial sobre el que se encontraba el sistema en un principio y el Estado Propuesto para el nuevo sistema, incluyendo la creación de nuevos procesos dentro de #PilandoAndo. Se convierte en la base que se utilizará para diversas técnicas como el Diseño de los Casos de Usos, conceptualización y desarrollo de la Base de Datos y la lógica de la aplicación que permitirá generar un sistema de información como apoyo a la toma de decisiones en las intervenciones educativas masivas de la Fundación Ayudinga.

Casos de Uso del Sistema

Antes de definir los Casos de Uso que se colocarán en el sistema, primero se tendrá que definir el ¿Quiénes serán los usuarios finales de la aplicación informática? [56], por lo que adicional a lo planteado en el Capítulo II, se hará un desglose puntual de cada uno de ellos.

Usuario visitante: Este es una persona que simplemente accede al dominio en el que se encuentra almacenado y en funcionamiento la aplicación que es pilandoando.org, estos no ejercen ninguna acción sobre el sitio, sino que únicamente visualizan su contenido.

Estudiante: Aquellos que asisten a #PilandoAndo en búsqueda de tutorías libres y gratuitas en temas orientados a las matemáticas y estos realizan la prueba de Estilos de Aprendizaje de Grasha-Riechmann, adaptada al español.Datos que son solicitados por parte de ellos son su Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email.

Una vez entran a la aplicación y comienzan a llenar el cuestionario de Estilos de Aprendizaje, sus resultados son almacenados a través de su email como identificador de ellos en la Base de Datos de la Aplicación.

Tutor: Aquellos que asisten a #PilandoAndo con el objetivo de compartir sus conocimientos a través de sesiones de tutorías libres y gratuitas, de los cuales se asume que ya tienen conocimientos previos sobre dichos temas debido a que provienen del sector académico y la empresa privada. Estos realizan la prueba de Estilos de Enseñanza de Grasha-Riechmann, adaptada al idioma español. Al momento de realizar dicha prueba, se le solicitarán datos como su Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email.

De igual forma, como a los estudiantes, una vez entran a la aplicación y comienzan a llenar el cuestionario de Estilos de Enseñanza, sus resultados serán almacenados a través de su email como identificador en la Base de Datos de la aplicación.

Administrador: Estos consisten en un grupo predefinido de usuarios pertenecientes a la Fundación Ayudinga o a sus aliados estratégicos, los cuales son creados de manera totalmente manual a través de inserciones directas a la Base de Datos. Estos pueden realizar la prueba de Estilos de Aprendizaje o Estilos de Enseñanza y se les será solicitado los datos de Nombre y Apellido, Edad, Sexo (Masculino y Femenino), así como su email. El criterio de inclusión o exclusión para la creación de este tipo de usuarios consiste en la pertinencia que ellos tengan dentro de este estudio exploratorio, dado que tienen que cumplir con las siguientes condiciones: Ser voluntarios o aliados de la Fundación Ayudinga y haber firmado el Código de Ética y Conducta de esta, registrado de manera legal y vinculante entre las partes.

Pertenecer al consejo directivo de la organización o en su defecto, tener una autorización aprobada de forma unánime por parte de la Junta Directiva de la Fundación Ayudinga en la cual se le autoriza a un voluntario o aliado a tener un usuario de tipo Administrador.

Hacer de los datos de Estilos de Aprendizaje de los Estudiantes y Estilos de Enseñanza de los Tutores con fines meramente académicos y de investigación científica, por lo que se les impide su utilización con motivos comerciales.

Solo pueden iniciar sesión con un correo institucional @ayudinga.org al que se les ha enviado su contraseña temporal previamente, la cual tiene que ser cambiada al momento de ingresar al Panel de Administración y poder ver la información ahí guardada.

Estos usuarios pueden acceder a todos los datos almacenados de los Estilos de Aprendizaje de cada Estudiante y Estilos de Aprendizaje de cada Tutor que realizó la respectiva prueba de Grasha-Riechmann adaptada al formato de #PilandoAndo, descargando su información en formato CSV o PDF. Tienen la capacidad de establecer crear los "Grupos de Tutoría", es decir hacer el Emparejamiento entre Estudiantes y Tutores para alguna sesión específica de #PilandoAndo, considerando la cantidad de estudiantes que se deberán tener en cada grupo.

Con esto, se puede determinar que existen 4 usuarios fundamentales de la aplicación, siendo el primero de ellos alguien que únicamente la visita. Los estudiantes y tutores los que proveen el insumo para el desarrollo de los Emparejamientos entre ellos, así como los usuarios de tipo administrador que tienen un control total sobre el sistema.

Sin embargo, deben cumplir con una serie de condiciones previamente y no pueden ser registrados directamente en la aplicación, sino que su inserción debe ser a nivel de código, al menos por el momento,

dado que se trata de un estudio exploratorio y esto no quita que permita ser mejorado el sistema en un futuro, considerando que se trata de un MVP (Minimum Valuable Product, por sus siglas en inglés. Especificación del Caso de Uso: Usuario Visitante

Nombre del Caso de Uso: Usuario VisitanteBreve Descripción

El usuario de tipo visitante puede navegar por el sitio Web pilandoando.org visualizando el contenido disponible sin el requerimiento de interactuar con este o de proporcionar datos a la aplicación. Flujo de EventosFlujo BásicoEl usuario visitante accede al dominio Web pilandoando.org La aplicación muestra la página principal con el contenido disponible públicamente El usuario navega por las diferentes secciones de la aplicación Web.

Flujo de ExcepcionesEn caso de que la aplicación no se encuentre disponible o que exista un error de carga o en su defecto, problemas de conexión a Internet por parte del usuario; se mostrará un mensaje de error a este.

Si existe alguna sección que se encuentre en mantenimiento, el usuario será informado mediante un mensaje en la pantalla que dicha sección no se encuentra disponible.

Flujo AlternativoSi el usuario desea validar su perfil, pero olvidó algunos detalles de su cuenta, el sistema puede dirigir al usuario a la funcionalidad "Recuperar Contraseña" o "Recuperar Nombre de Usuario".

Requerimientos EspecialesLa aplicación debe utilizar "Responsive Design" o "Diseño Responsivo" a manera de que se pueda adaptar a diferentes dispositivos tecnológicos y cualquier tipo de tamaño de pantalla. Ha de existir una carga rápida de los contenidos de la aplicación para impedir que el usuario tenga tiempos de espera prolongados

PrecondicionesLa aplicación almacenada en el sitio Web pilandoando.org debe estar en funcionamiento y accesible.

Postcondiciones El usuario ha visualizado todo el contenido de la aplicación sin realizar ninguna acción adicional dentro de ella.

Figura 29: Diagrama de Caso de Uso (Usuario Visitante)

Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje Nombre del Caso de Uso: Realizar Cuestionario de Estilos de AprendizajeBreve Descripción

El usuario de tipo Estudiante ingresa a la aplicación bajo el sitio web pilandoando.org, selecciona la opción "Soy Estudiante" y decide realizar el cuestionario de Estilos de Aprendizaje de Grasha-Riechmann. Durante este proceso, el mismo debe proporcionar los datos personales que le serán solicitados y con ello responder a las preguntas del cuestionario.

Flujo de EventosFlujo BásicoEl estudiante selecciona la opción "Soy Estudiante" en la página principal de la aplicación y accede a la sección del Cuestionario de Estilos de Aprendizaje.

La aplicación le solicita a este que ingrese su Nombre, Apellido, Edad, Sexo (Masculino o Femenino) y Email. El Estudiante le proporciona la información solicitada a la aplicación.

La aplicación le presenta las preguntas del cuestionario de Estilos de Aprendizaje al estudiante en páginas de 10 preguntas cada una.

El Estudiante responde a las preguntas de cada página del cuestionario y cuando termina una de ellas, presiona "Siguiente" para seguir respondiendo las preguntas restantes.

La aplicación almacena las respuestas a las preguntas del cuestionario dadas por el Estudiante y calcula su Estilo de Aprendizaje.

La aplicación muestra los resultados del Estilo de Aprendizaje del Estudiante, así como una breve descripción de sus características y técnicas de estudio recomendadas para el estudiante en dependencia de su Estilo de Aprendizaje.

Flujo de ExcepcionesEn caso de que el estudiante no responda todas las preguntas del cuestionario, la aplicación validará página por página y si queda alguna pendiente, le mostrará un mensaje resaltando en color rojo en el que se indique la pregunta faltante por responder.

Si el email proporcionado por el estudiante ya está registrado en la Base de Datos, la aplicación le informará al estudiante que este ya ha realizado la prueba con anterioridad y le ofrecerá las siguientes opciones:Continuar el cuestionario desde la pregunta que lo dejó.

Eliminar todo su avance y empezar el cuestionario desde cero.

Flujo AlternativoEn caso de que el Estudiante decida abandonar el cuestionario antes de culminarlo, el sistema guardará las respuestas a las preguntas que fueron proporcionadas hasta ese momento en la Base de Datos y le permitirá retomar el cuestionario en otra instancia, siempre y cuando utilice el mismo email.

Requerimientos EspecialesLa aplicación deberá ser capaz de calcular de forma ponderada el Estilo de Aprendizaje del Estudiante basándose en las respuestas del cuestionario.

La aplicación debe validar la existencia previa o no del email en su Base de Datos.

Precondiciones El estudiante ha accedido a la aplicación y seleccionó la opción "Soy Estudiante", en la que se encuentra con el Cuestionario de Estilos de Aprendizaje.

PostcondicionesLas respuestas proporcionadas por el estudiante han sido almacenadas en la Base de Datos de la Aplicación.

El Estilo de Aprendizaje del Estudiante ha sido calculado y almacenado en la Base de Datos de la aplicación, con sus respectivos datos personales.

Figura 30: Diagrama de Caso de Uso (Realizar Cuestionario de Estilos de Aprendizaje) Especificación del Caso de Uso: Realizar Cuestionario de Estilos de Aprendizaje. Nombre del Caso de Uso: Realizar Cuestionario de Estilos de EnseñanzaBreve Descripción

El usuario de tipo Tutor ingresa a la aplicación bajo el sitio Web pilandoando.org, selecciona la opción "Soy Tutor" y decide realizar el cuestionario de Estilos de Enseñanza de Grasha-Riechmann. Durante este proceso, el mismo debe proporcionar los datos personales que le serán solicitados y con ello responder a las preguntas del cuestionario.

Flujo de Eventos Flujo Básico El Tutor selecciona la opción "Soy Tutor" en la página principal de la aplicación y accede a la sección del Cuestionario de Estilos de Aprendizaje.

La aplicación le solicita a este que ingrese su Nombre, Apellido, Edad, Sexo (Masculino o Femenino) y Email. El Tutor le proporciona la información solicitada a la aplicación.

La aplicación le presenta las preguntas del cuestionario de Estilos de Enseñanza al Tutor en páginas de 10 preguntas cada una.

El Tutor responde a las preguntas de cada página del cuestionario y cuando termina una de ellas, presiona "Siguiente" para seguir respondiendo las preguntas restantes.

La aplicación almacena las respuestas a las preguntas del cuestionario dadas por el Tutor y calcula su Estilo de Enseñanza.

La aplicación muestra los resultados del Estilo de Enseñanza del Tutor, así como una breve descripción de sus características y técnicas pedagógicas recomendadas para el estudiante en dependencia de su Estilo de Enseñanza.

Flujo de ExcepcionesEn caso de que el Tutor no responda todas las preguntas del cuestionario, la aplicación validará página por página y si queda alguna pendiente, le mostrará un mensaje resaltando en color rojo en el que se indique la pregunta faltante por responder.

Si el email proporcionado por el Tutor ya está registrado en la Base de Datos, la aplicación le informará al estudiante que este ya ha realizado la prueba con anterioridad y le ofrecerá las siguientes opciones:Continuar el cuestionario desde la pregunta que lo dejó.

Eliminar todo su avance y empezar el cuestionario desde cero.

Flujo AlternativoEn caso de que el Tutor decida abandonar el cuestionario antes de culminarlo, el sistema guardará las respuestas a las preguntas que fueron proporcionadas hasta ese momento en la Base de Datos y le permitirá retomar el cuestionario en otra instancia, siempre y cuando utilice el mismo email.

Requerimientos EspecialesLa aplicación deberá ser capaz de calcular de forma ponderada el Estilo de Enseñanza del Estudiante basándose en las respuestas del cuestionario.

La aplicación debe validar la existencia previa o no del email en su Base de Datos.

PrecondicionesEl estudiante ha accedido a la aplicación y seleccionó la opción "Soy Tutor", en la que se encuentra con el Cuestionario de Estilos de Enseñanza.

PostcondicionesLas respuestas proporcionadas por el Tutor han sido almacenadas en la Base de Datos de la Aplicación.

El Estilo de Enseñanza del Estudiante ha sido calculado y almacenado en la Base de Datos de la aplicación, con sus respectivos datos personales.

Figura 31:Diagrama de Caso de Uso (Realizar Cuestionario de Estilos de Enseñanza) Especificación del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores Nombre del Caso de Uso: Acceso, Análisis y Emparejamiento entre Estudiantes y TutoresBreve Descripción

El administrador tendrá la capacidad de acceder al Panel de Administración de la aplicación en la que puede visualizar, analizar y gestionar los resultados del Cuestionario de Estilos de Aprendizaje y Enseñanza de Grasha-Riechmann, hacer un emparejamiento entre estudiantes y tutores con reglas previamente y modelos

matemáticos por definir, eliminar registros en la Base de Datos y configurar cualquier parámetro específico. Flujo de EventosFlujo BásicoEl Administrador accede a la aplicación utilizando su correo institucional @ayudinga.org con la contraseña temporal que se le fue enviada.

Una vez ingresa a la aplicación por primera vez, esta le solicitará que cambie su contraseña temporal por una nueva.

Cuando se haya realizado este proceso, el Administrador podrá acceder al Panel de Administración de la aplicación.

Puede visualizar, analizar, y gestionar los datos y resultados provenientes de la prueba de Estilos de Aprendizaje y Estilos de Enseñanza para Estudiantes y Tutores, respectivamente.

Accede a la herramienta "Grupos", donde observará la cantidad de Estudiantes y Tutores que hicieron la prueba, por lo que podrá configurar la cantidad máxima de estudiantes por grupo de tutoría.

La aplicación realizará el emparejamiento entre estudiantes y tutores basados en los resultados de la prueba, así como en otros criterios matemáticos.

Guardará y exportará la información de los emparejamientos que fueron realizados o no en formato CSV o PDF para un análisis directo.

Visualizará la cantidad de Estudiantes con nombre y apellido, aunado a su Estilo de Aprendizaje que quedaron sin grupo y su representación porcentual.Podrá hacer lo mismo para el caso de los Tutores con su Estilo de Enseñanza.

Flujo de ExcepcionesEn caso de que el Administrador ingrese a la aplicación con las credenciales incorrectas, se le mostrará un mensaje de error y se le negará el acceso.

Si el correo ingresado por el usuario Administrador no pertenece al dominio @ayudinga.org o el usuario no ha sido creado de forma manual en el sistema, se le negará el acceso.

En caso de que no existan datos disponibles para visualizar, ya sea de Estudiantes o Tutores, se le mostrará un mensaje al administrador.

En caso de que el administrador intente eliminar un registro de todos los Estudiantes o todos los Tutores, incluso la eliminación de un registro individual de cada uno de ellos, se le mostrará un mensaje de advertencia y se le pedirá que ingrese su contraseña para autenticar la acción.

Flujo AlternativoEl administrador puede revertir o modificar la cantidad máxima de Estudiantes en un emparejamiento.

El administrador puede decidir si desea o no eliminar un registro ya sea de un Estudiante o Tutor, luego de recibir una advertencia de la aplicación.

Requerimientos EspecialesLa aplicación garantizará la privacidad, seguridad e integridad de los datos de los diferentes tipos de usuarios.

La aplicación será capaz de generar archivos provenientes de consultas a la Base de Datos o algoritmos matemáticos en formato CSV y PDF.

La aplicación deberá permitir una gestión flexible de los emparejamientos entre estudiantes y tutores, así como los registros de cada uno de los elementos individuales dando una opción gráfica para eliminar registros.

Los resultados de los emparejamientos entre Estudiantes y Tutores no son almacenados en la Base de Datos, sino que únicamente se despliegan de forma visual en el Panel de Administración.

PrecondicionesEl Administrador debe pertenecer a la Fundación Ayudinga y haber recibido sus credenciales de inicio de sesión con base en un previo análisis de la pertinencia en el tratamiento de los datos. Deben existir los datos de los cuestionarios correspondientes para estudiantes y tutores en la Base de Datos.

PostcondicionesEl administrador tiene un panorama claro de los datos y cuenta con los resultados de la aplicación del Cuestionario de Estilos de Aprendizaje de Estudiantes y Cuestionario de Estilos de Enseñanza a Tutores en #PilandoAndo.

El emparejamiento entre Estudiantes y Tutores, así como la creación de grupos de tutoría se realizó, de manera efectiva, y esta es reflejada en el sistema, pero no es almacenada en la Base de Datos. Los registros que fueron eliminados ya no se encuentran disponibles en la Base de Datos.

Figura 32: Diagrama de Caso de Uso (Acceso, Análisis y Emparejamiento entre Estudiantes y Tutores) Diagrama de Casos de Uso de la Aplicación

Ahora que se ha definido los 4 casos de uso principales de la aplicación, se procederá a unificarlos todos en un solo diagrama, debido a que será este el que se utilizará como base la implementación de la aplicación en producción.

Figura 33: Diagrama de Casos de Usos - Sistema de Gestión Educativa (SGE) - #PilandoAnd Diseño de la Base de Datos

Contando con un panorama más amplio, definido y estructurado a nivel de requerimientos y Casos de Uso de esta aplicación, se procederá a simplificarla, estableciendo las relaciones que existen entre las Entidades que

existen dentro de ella.

Es importante reconocer, que a pesar de que se detallan 4 tipos de usuario que accedían a la aplicación e interactuaban con ella (Usuario Visitante, Estudiante, Tutor y Administrador), de ahora en adelante se estudiarán, se agruparán a cada uno de ellos como "Usuario" del cual se almacenarán los siguientes datos: Nombre y Apellido

Edad

Sexo: Masculino o Femenino

Email: Será el identificador único (id) de cada uno de los usuarios dentro de la aplicación.

Posición: Esto solo aplicará cuando sea un usuario con permisos y rol de Administrador, por lo que no será requerido en los demás casos.

Modelo Conceptual

La justificación de utilizar el email como el id de los usuarios en la aplicación es que al generalizar a estudiantes y tutores como parte de una sola Entidad llamada "Usuario", resulta poco conveniente que estos se tengan que registrar con usuario, email y contraseña en la aplicación para que tengan que realizar el cuestionario de Estilos de Aprendizaje o el cuestionario de Estilos de Enseñanza.

Resulta importante mencionar que un "Usuario" es la representación de todas personas que utilizan la aplicación, por lo que también se advierte que un "Usuario" puede tener uno o más roles, el cual se manejará a través de una entidad llamada "Usuario Rol", con la que se pueda asociar a los usuarios con el "Rol que estos tengan en el sistema.

También, cada "Usuario" tiene un conjunto de acciones específicas que este puede realizar dentro de la aplicación como, por ejemplo: "Hacer Cuestionarios", "Eliminar Registros", "Hacer emparejamientos, etc., a todo este conjunto de acciones se les denominará "Permisos", que serán manejados a través de la Entidad llamada "Rol_Permiso" en la que se menciona que un "Rol", puede tener varios "Permisos" asociados a este, por lo que se genera una vinculación entre ambos.

Se comprenderá que el "Usuario" tiene que relación directa con "Preguntas", es la Entidad que almacena, entonces, a las diferentes preguntas de ambos tipos de cuestionarios.

Sin embargo, es importante esgrimir el hecho que cada uno de los elementos que se encuentre dentro de la Entidad "Preguntas", surge producto de la existencia de un "Estilo de Aprendizaje" o un "Estilo de Enseñanza", ambos para cada uno de ellos que son los Estudiantes y Tutores al momento de realizar la prueba.

De igual forma, al momento que el "Usuario" responde "Preguntas", este genera el resultado de ¿Cuál es su Estilo de Aprendizaje o Enseñanza?, así almacenan las respuestas individuales que dio a cada una de las preguntas del cuestionario que se le aplicó.

Por lo que se plantea que un "Usuario" puede responder múltiples preguntas" y una "Pregunta" puede ser entonces respondida por múltiples "Usuarios". Esto, se expresar a través de una relación

"Usuario_Responde_Pregunta". También, se tiene que almacenar la "Respuesta" que el usuario seleccionó para cada pregunta, lo que se puede plantear como una relación de "Puntaje_Usuario" que está relacionado a una "Respuesta" específica dada por el "Usuario.

Se comprende también, que si todo "Usuario" responde "Preguntas" y estas surgen de un Cuestionario que a su vez crea un "Estilo de Aprendizaje" o "Estilo de Enseñanza" que le será asignado al "Usuario" una vez se calcule el "Puntaje_Usuario".

Por lo que se puede determinar que un "Usuario" tiene un "Estilo" (El cual puede ser de Aprendizaje o de Enseñanza, sea Estudiante o Tutor), por lo que se relacionan entre sí ambas Entidades como "Usuario_Tiene_Estilo. Como fue mencionado, esto surge de que cada "Pregunta" tiene múltiples "Respuestas" posibles, así que cada "Respuesta", tiene un "Puntaje" asociado que aporta al cálculo ponderado del "Estilo" del usuario.

De igual forma, al momento en el que un "Usuario" tiene un "Estilo" (Ya sea de Aprendizaje o Enseñanza), se le definirán ciertas "Características" correspondientes al "Estilo" que este mantiene en cuestión. Lo que genera una nueva relación en la que se tiene que establecer que un el "Estilo_Tiene_Características", dado que un "Estilo" puede tener varias características.

Nuevamente, cuando un "Usuario" tiene un "Estilo" (Aprendizaje o Enseñanza), le serán recomendadas técnicas que se asocian a dicho "Estilo", las cuales van orientadas a que el Estudiante con su Estilo de Aprendizaje X pueda conozca formas más eficientes de estudiar y el Tutor con su Estilo de Enseñanza Y tenga recomendaciones pedagógicas sobre ¿Cómo Enseñar?

Esto genera una relación que se denominará "Estilo_Recomienda_Técnicas", la cual permite la asociación de un Estilo de Aprendizaje o Enseñanza que el "Usuario" ha obtenido luego de responder las "Preguntas", donde se reconoce que un "Estilo" puede tener varias técnicas recomendadas para el mismo.

Como ya se sabe que un "Usuario_Tiene_Estilo", permite asociar a cada "Usuario" con un Estilo de Aprendizaje o Enseñanza específico, así que ahora se explorará que cada "Estilo", tiene un conjunto de preferencias. Por ejemplo, en caso de que el "Usuario" tenga un Estilo de Aprendizaje específico, dicho "Estilo" tendrá preferencias Estilos de Enseñanza, así como el "Usuario" que tenga un Estilo de Enseñanza, el mencionado "Estilo" tendrá preferencias específicas de Estilos de Aprendizaje. Se puede representar de la siguiente

Por esto, se creará la entidad "Preferencia", la cual actúa como una entidad asociativa entre dos "Estilos". Con esto, se tiene que determinar que existe una relación que se denominará "Estilo_Tiene_Preferencias", la cual permite asociar un estilo de aprendizaje con uno o varios estilos de enseñanza preferidos, y viceversa.

Como ya se conoce, cada estilo, ya sea de aprendizaje o de enseñanza, tiene asociados a él una serie de características y técnicas recomendadas. Es por ello, que ahora se definirán dos nuevas Entidades llamadas "EstiloAprendizaje" y "EstiloEnseñanza", las cuales representarán al estudiante y tutor, respectivamente. En la entidad a la que se denominará "Clúster", se tendrá una representación del conjunto de preferencias entre los estilos de aprendizaje y de enseñanza. Por ello, en la relación "Preferencia", se vincularán los estilos de estilos de aprendizaje con los estilos de enseñanza y serán agrupados en Clústeres, los cuales tendrán un orden específico que indicará la fuerza o relevancia que pueda tener una preferencia de algún "Estilo". Modelo Entidad – Relación de la Aplicación (SGE - #PilandoAndo)

Figura 34: Modelo E-R de la Aplicación (SGE - #PilandoAndo)

Desarrollo e Implementación de la Aplicación

Resulta importante considerar que al este ser un estudio exploratorio, la consigna principal fue general un Mínimo Producto Viable [57] (MVP por sus siglas en inglés) que permitiese poner en prueba, de forma rápida, todas las hipótesis de investigación y el diseño de dicho del experimento dentro de la versión #PilandoAndoPaLaU que se desarrolló entre los meses de agosto – septiembre del año 2023. Para esto, se requirió del uso de un conjunto de tecnologías que permitiese desarrollar dicho MVP para que los datos de la aplicación del cuestionario de Estilos de Aprendizaje de Grasha-Riechmann y el mismo, solo que orientado a los Estilos de Enseñanza a los Estudiantes y Tutores que asistiesen a estas sesiones. Esto se dio producto que los datos para poder llevar a buen puerto este Proyecto de Investigación, requerían ser recolectados durante el desarrollo de esta versión de #PilandoAndoPaLaU, dado que esta era la única edición del programa #PilandoAndo que se desarrollaría bajo las condiciones expresadas anteriormente, durante el año 2023 por la Fundación Ayudinga y el Canal de Panamá.

Infraestructura Tecnológica Utilizada

A manera de poder llevar a cabo la implementación de la aplicación Sistema de Gestión Educativa (SGE) - #PilandoAndo, se utilizaron las siguientes tecnologías:

Lenguaje de Programación PHP (Versión 8.1)

Estructura o Framework de PHP Laravel (Versión 9.2)

Vue.JS (Versión 2)

Base de Datos MySQL

Servidor Web Apache

Conforme a lo mencionado, se utilizó lo que se conoce como la estructura LAMP (Siglas en inglés para Linux, Apache, MySQL y PHP), que es ampliamente reconocida en la industria como una estructura de desarrollo que permite generar proyectos en entornos web como pruebas de concepto, con las cuales se obtiene una relativa baja complejidad que le permite al analista-programador poder implementar funcionalidades rápidamente.

A nivel de servidores, se optó por una solución en la nube proveída por la empresa Digital Ocean llamada "Droplets", la cual es un "VPS" (Siglas en inglés para Servidor Virtual Privado), el cual contó con una capacidad al momento de su desarrollo e implementación de 8GB de memoria RAM, 2 Intel vCPUS, 160GB SSD de almacenamiento, todo corriendo bajo la versión de Ubuntu Server 22.04 LTS (Siglas en inglés para Soporte a Largo Plazo).

Se reconoce que lo imperativo de este Proyecto de Investigación no yace directamente en el desarrollo de una aplicación web que permita realizar el emparejamiento entre estudiantes y tutores en las intervenciones educativas masivas de la Fundación Ayudinga; sino más bien la validación de conceptos pedagógicos, modelos matemáticos que serán presentados, posteriormente, y la aplicabilidad de buscarle el mejor estudiante a un tutor y el mejor tutor a un estudiante, que como fue mencionado en las hipótesis de Investigación, esto puede coadyuvar a un mejor entorno de enseñanza – aprendizaje.

Configuración del Servidor

Como este es un proyecto que está basado en la infraestructura tecnológica LAMP, se recomienda el uso futuro para una implementación en la que se consideren una mayor cantidad de variables o un esquema de mayor complejidad, el uso de una versión de Servidor Linux que cuente con Soporte a Largo Plazo. Para configurar el servidor, se siguieron los siguientes pasos:

Instalación del Servidor Web ApachePara instalar apache en el servidor Linux, se tuvo que correr la siguiente instrucción en línea de comandos para actualizar el índice del paquete local a manera de que se reflejen los últimos cambios disponibles en el servidor de paquetes (APT) de Ubuntusudo apt update

Luego, se instaló el paquete llamado apache 2:sudo apt install apache2

Ahora que el servidor web Apache se encuentra instalado, se debe validar su instalación corriendo el siguiente comando:sudo systemctl estatus apache2

Figura 35: Validación e Inicialización del Servidor Web Apache Configuración de los Virtual HostsSe creó el directorio para el dominio pilandoando.org en el que se encuentra alojado y disponible nuestra aplicación:sudo mkdir /var/www/pilandoando.org Luego de ello, se asignó la propiedad del directorio con la variable de entorno \$USER:sudo chown -R \$USER:\$USER /var/www/pilandoando.org

A manera de asegurar que los que los permisos hayan sido otorgados correctamente al usuario administrador para leer, escribir y ejecutar los archivos de configuración, mientras que solamente se le otorgan permisos de lectura y ejecución a otros grupos:sudo chmod -R 755 /var/www/pilandoando.org

Posterior a ello, se crea una página de prueba utilizando el editor nano llamada index.html para validar la instalación del Servidor Apachesudo nano /var/www/pilandoando.org/index.html

De forma que el Servidor Apache entregue este contenido, es necesario crear un archivo de virtual host con las instrucciones correctas. En vez de modificar el archivo por defecto de configuración ubicado en /etc/apache2/sites-available/000-default.conf, se creará uno nuevo en /etc/apache2/sites-available/your_domain.conf:sudo nano /etc/apache2/sites-available/pilandoando.org.conf

Figura 36: Configuración exitosa del dominio pilandoando.org en el Servidor Web Apache Como se puede observar, se ha actualizado el DocumentRoot a un nuevo directorio llamado ServerAdmin a un email que el administrador de pilandoando.org pueda acceder. También, se añadieron dos directrices:ServerName: Establece que la base del dominio debe coincidir con la definición del host virtual ServerAlias: Define que otros nombres deben coincidir como si fueran el nombre base

Se guarda y se cierra el archivo cuando se haya terminado.

A continuación, se habilitará el archivo con la herramienta a2ensite:sudo a2ensite pilandoando.org.conf

Luego, se deshabilitará el sitio por defecto que se encuentra definido en 00-default.conf.:sudo a2dissite 000-default-conf

Probaremos la existencia de algún error de configuración:sudo apache2ctl configtest

En caso de que todo salga bien, se debe recibir la respuesta Syntax OK.

Se reiniciará el Servidor Apache con el siguiente comando para implementar los cambios que se ha realizado:sudo systemctl restart apache2

Configuración del Proyecto de Laravel en el Servidor (Backend)Se colocará el proyecto Laravel dentro de la carpeta /var/www/ y se asegura de especificar la carpeta pública dentro del proyecto Laravel, el directorio raíz en el archivo anterior que se creó pilandoando.org. conf.

Luego, cuando se accede al dominio, se accederá al archivo index.php dentro de la carpeta pública, y luego, desde index.php, Laravel iniciará toda la aplicación, así es como funciona el ciclo de vida de la solicitud de Laravel.

Posteriormente, se creará la Base de Datos en la que se colocarán las credenciales de ella en PHPMyAdmin. Una vez se cuenten con las credenciales, se creará un archivo. env y se pegarán las credenciales allí. Laravel tiene un archivo. env que se usará para almacenar las claves y contraseñas de la aplicación.

Una vez la Base de Datos ha sido conectada a esta aplicación, se debe ejecutar las migraciones, lo que se puede hacer ejecutando el siguiente comando dentro del directorio del proyecto de Laravel:php artisan migrate.

Esto, creará todas las tablas que se ha definido previamente en la Base de Datos MySQL de forma automática.

Configuración de Vue.JS en el Servidor (Frontend)Para configurar el servidor, como se ha usado la aplicación Vue in-out, se tiene que configurar Vue.js de igual forma.

Se ejecutará el siguiente comando para configurar Vue y todos los demás elementos necesarios para el desarrollo en el ecosistema de Laravel:npm install vue

Luego de ello, a manera de compilar el componente Vue.Js en el lenguaje de programación Javascript, se debe ejecutar el siguiente comando:npm run prod.

Con todo esto, el sistema de Linux + PHP + Laravel + MySQL + Vue.Js se encontrará, totalmente configurado

Estructura de un Sistema en Laravel PHP

Mencionado, anteriormente, Laravel es un "framework" (Marco de Trabajo, en español) de PHP que permite desarrollar aplicaciones web utilizando el patrón de arquitectura Modelo Vista Controlador (MVC).

Figura 37: Diagrama por Jerarquía de los Componentes de una Aplicación en Laravel PHP La estructura de este sistema se encuentra claramente definida, por lo que se facilita el mantenimiento del código de forma que este sea escalable agregando nuevas funcionalidades en trabajos o investigaciones futuras bajo el proyecto #PilandoAndo.

El objetivo en este Proyecto de Investigación no es definir cada uno de los elementos que fueron programados en Laravel PHP bajo la plantilla "Blade" que es el principal motor de Laravel, sino más bien hacer una descripción de la arquitectura de este y especificar los componentes desarrollados el funcionamiento de la aplicación del "Sistema de Gestión Educativa (SGE) - #PilandoAndo" como una prueba de concepto.

El punto de entrada para cualquier petición a una aplicación desarrollada bajo Laravel PHP es la carpeta public/index.php, el cual no contiene casi nada de código; al contrario, se convierte en el punto de partida que permite cargar al resto del entorno de desarrollo. La primera acción que este hace es crear un ejemplo de contenedor de la aplicación o servicio que estemos desarrollando.

Cuando se recibe una solicitud entrante en Laravel PHP, esta se enviará al Kernel HTTP (el cual se ha habilitado en este desarrollo) o al Kernel de la consola de comandos como tal, pero esto dependerá del tipo de solicitud que llegue a la aplicación. Dicho Kernel HTTP que se utiliza permite definir una lista de middleware HTTP a través del cual es necesario que pasen todas las solicitudes antes de ser manejadas por la aplicación desarrollada.

El middleware se encarga de mantener una lectura y escritura en la sesión HTTP de cada usuario, le permite inferir si la aplicación se encuentra en mantenimiento o no. El "Method Signature" recibe una solicitud por parte del usuario y devuelve una respuesta por parte del servidor.

Es útil utilizar una analogía que el Kernel es una gran caja negra en la que se encuentra la aplicación que se ha desarrollado y se encuentra autocontenida dentro de él, si el recibe solicitudes HTTP, devolverá respuestas HTTP a dichas solicitudes.

Se ha desarrollado la Clase Kernel respectiva ruta al middleware y a sus grupos que se estará utilizando en esta aplicación como se muestra a continuación:

Figura 38: Clase Kernel de Laravel PHP para nuestra aplicación

Al momento de arrancar el Kernel, la acción más importante que debe realizar es cagar los "Service Providers" o Proveedores de Servicio de esta aplicación, los cuales son los responsables de iniciar todos los diferentes componentes del Framework Laravel PHP, principalmente la Base de Datos, Validación, Enrutamiento y la Cola. Todos los "Service Providers" para cualquier aplicación Laravel se encuentran en el archivo de configuración en la carpeta raíz llamada config/app.php.

Uno de los principales "Service Providers" en esta aplicación se encuentra en el directorio App\Providers\RouteServiceProvider. Servicio que carga todas las rutas de los archivos que se encuentran en la aplicación.

En continuidad con lo mencionado, anteriormente, el middleware proveerá de un mecanismo de alto rendimiento para filtrar o verificar las solicitudes HTTP que ingresen a la aplicación; siendo utilizado por ejemplo en el Panel de Administración, para verificar si el usuario está autenticado o no, caso contrario hará que el middleware le redireccione a la pantalla de inicio de sesión.

Figura 39: Diagrama de las Rutas utilizadas (en inglés) en la aplicación desarrollada Estructura de Directorios de la Aplicación en Laravel PHP

Figura 40: Estructura de los Directorios de la aplicación Sistema de Gestión Educativa (SGE) - #PilandoAndo Esquema de la Base de Datos Implementada en MySQL (Normalizada a la 3FN)

Figura 41: Esquema de la Base de Datos de la Aplicación (PHPMyAdmin - MySQL)

Por último, se abordará la Base de Datos que con anterioridad fue conceptualizada y establecida a través de un Modelo Entidad-Relación, el cual ahora se procederá a implementar mediante los valores "Seeds" o semillas que permitieron la migración de cada uno de los modelos que fueron desarrollados para suplir cumplir con el objetivo de la aplicación.

Como se puede observar, existen tablas adicionales a las que fueron presentadas inicialmente en el Modelo Entidad Relación que fueron creadas, específicamente, por Laravel PHP con tres objetivos:

Manejo de Contraseñas y Tokens de Acceso Personales: contraseña_resets, personal_access_tokens Gestión de los "Trabajos Fallidos o Incompletos" en el Kernel HTTP: failed_jobs

Migraciones que contienen la estructura principal de la Base de Datos: migrations

Resulta crucial mencionar que en este capítulo no se abordó el emparejamiento entre Estudiantes y Tutores más que la representación a nivel de Base de Datos y su presentación en la arquitectura de la aplicación, dado que dicho modelo matemático y sus ramificaciones serán explicados en el Capítulo IV de este Proyecto de Investigación con mayor profundidad.

Capítulo IV: Emparejamiento de Estudiantes y Tutores

Adaptación de Clústeres Integrados

En el capítulo I de este Proyecto de Investigación se abordaron los diferentes estilos de aprendizaje y enseñanza bajo el Modelo Pedagógico de Grasha-Riechmann, así como las pruebas que se tienen que aplicar a cada uno de los Estudiantes y Tutores que forman parte del estudio a manera de poder realizar el

emparejamiento.

Es por ello, que se procede a hacer una adaptación propia del "Método de Clústeres Integrados", en donde se establecía la correlación entre un Estilo de Enseñanza de un Tutor y un Estilo de Aprendizaje de un Estudiante; sin embargo, para ello, se utilizarán las estructuras matemáticas que ya han sido creadas y establecidas anteriormente.

Primero, nuevamente, se tienen que reconocer que, al tener 6 dimensiones de Estilos de Aprendizaje para un estudiante, que son [Independiente, Dependiente, Colaborativo, Competitivo, Evitativo y Participativo]; así como se tienen 5 dimensiones de Estilos de Enseñanza de un Tutor, siendo las siguientes [Experto, Autoridad Formal, Modelo Personal, Facilitador, Delegador].

Como fue mencionado anteriormente, todos los estudiantes y tutores tienen un poco de cada uno de todos los estilos de aprendizaje y estilos de enseñanza respectivamente; sin embargo, se utilizará el estilo dominante, es decir; el que tienen un valor más grande en comparación de los otros estilos, para realizar el emparejamiento.

Para ejemplificar esto, se trabajará con los resultados de una prueba de estilos de aprendizaje para un estudiante y una prueba de estilos de enseñanza para un tutor. Todos estos resultados no tienen ningún valor más que el teórico, ya que no provienen de ninguna persona que haya realizado la prueba en cuestión. Para eso, únicamente se tomarán en consideración los 3 primeros estilos de aprendizaje o enseñanza que pueda tener un estudiante o tutor, a efectos de simplificar el desarrollo del algoritmo de emparejamiento, serán descartados los demás estilos en cuestión; debido a que lo que se desea es obtener una aproximación o un emparejamiento máximo, no se puede asegurar que este sea el más preciso.

Hay que suponer que se le aplicó la prueba de Estilos de Aprendizaje a un Estudiante, es decir, un elemento del , al que se va a denominar , lo cual arrojó los siguientes resultados en los 60 ítems que este respondió.

Independiente: 4.5

Evitativo: 2.0 Colaborativo: 4.0 Dependiente: 3.0 Competitivo: 2.5 Participativo: 4.7

Con este caso en cuestión, se comprende que el Estilo de Aprendizaje dominante fue "Participativo", sin embargo, también el estudiante presentó valores menores, pero que demuestran que existen ciertas características puntuales de otros estilos de aprendizaje como "Independiente y Colaborativo", respectivamente.

Con ello, se puede determinar que para el elemento del , se establece un subconjunto , en donde se almacenarán las preferencias de este estudiante con respectivo a su estilo de aprendizaje que serán los siguientes expresados en la Matriz de Preferencias (), en un arreglo unidimensional , en vista de que estos son los estilos que presentan las puntuaciones ponderadas más altas.

Se respetará el orden específico con el cual los estudiantes denotaron sus Estilos de Aprendizaje, ya que estas serán sus preferencias, en conformidad con la adaptación propuesta al Algoritmo de Gale-Shapley. De igual forma, se presentará el caso de un Tutor, al que se denominará, ya que es un elemento del Conjunto

T al que se le aplicó la prueba de Estilos de Enseñanza, la cual arrojó los siguientes resultados en los 40 ítems que este respondió.

Experto: 4.2

Autoridad Formal: 3.4 Modelo Personal: 2.4

Facilitador: 4.1 Delegador: 3.6

Se deduce que el estilo dominante fue el "Experto", sin embargo, el tutor también presentó valores menores que muestran que este tiene cualidades específicas de otros estilos de enseñanza, como lo fue en el caso del estudiante.

Ahora, se determinará que dicho Tutor tiene otros estilos de enseñanza que se expresan en él, como lo son [Facilitador, Delegador], ambos en el orden ya colocado. Es por ello, que se almacenarán en la Matriz de Preferencias , las siguientes preferencias de estilos de enseñanza [Experto, Facilitador, Delegador]. Dicho Tutor , que es un elemento del , tendrá ahora dentro de él un Subconjunto llamado , que servirá para el almacenamiento de los estilos de enseñanza previamente mencionados. Datos que serán colocados en . Por lo tanto, el subconjunto para el estudiante es [Independiente, Colaborativo, Participativo] ya que son los estilos con las puntuaciones más altas.

Simulación Teórica del Emparejamiento

A continuación, se utilizarán los elementos matemáticos que ya han sido definidos previamente, para crear un Emparejamiento Aproximado entre y .

Cabe resaltar estos son estudiantes y tutores totalmente ficticios, por lo que no se cuenta con la Matriz de Preferencias (P) de cada uno de ellos, dado que ninguno de ello ha hecho la Prueba de Grasha-Riechmann para Estilos de Aprendizaje o Enseñanza, por lo que se asumirá un entorno en el que todos los estudiantes y tutores están libres inicialmente.

Se aplicará una versión adaptada del Algoritmo Gale-Shapley a Estudiantes y Tutores, conociendo que puede llegar a existir una reafirmación positiva de parte de estas dos entidades al momento de aplicarlo, ya genera

un mejor entorno de enseñanza-aprendizaje.

Inicialmente, todos los estudiantes y tutores están libres, ninguno de ellos ha sido emparejados con el otro. Primera iteración

El propone a (Su primera elección), en la que acepta de manera temporal.

El propone a (Su primera elección), en la que acepta temporalmente.

El propone a (Su primera elección). Sin embargo, ya tiene una propuesta del , la cual prefiere sobre la propuesta de ; dado esta situación, la propuesta de es rechazada.

El propone a (Su primera elección) y lo acepta de forma temporal.

El propone a (Su primera elección). Empero, ya tiene una propuesta de , que prefiere sobre la propuesta de , ocasionando que sea rechazado.

Segunda iteración

propone a (Su segunda elección) y este acepta temporalmente.

propone a (Su segunda elección). Sin embargo, ya tiene una propuesta de E4 que prefiere directamente sobre la propuesta de , por lo que es rechazado por .

Tercera Iteración

propone a (Su tercera elección), donde acepta temporalmente.

Todos los estudiantes que han propuesto a los tutores ya se encuentran emparejados, aproximadamente.

Resultado de la Simulación

está emparejado con .

Figura 32: Simulación Teórica del Algoritmo de Gale-Shapley aplicado a Estudiantes y Tutores Esta es una simulación teórica con fines meramente académico, ya que no presenta un objetivo más que el de ejemplificar gráficamente ¿Cómo sería un emparejamiento Aproximado entre los elementos de los Conjuntos T y E utilizando el Algoritmo de Gale-Shapley como base teórica? [58]

Se reconoce que existen otros Algoritmos de Emparejamiento, los cuales tienen su principal origen en la Investigación de Operaciones con los problemas de Asignación de Recursos, que es básicamente una analogía esencial que permite comprender el fin último de este Proyecto de Investigación: Buscar el mejor estudiante para cada tutor y viceversa.

Conociendo esto, así como las restricciones de dominio establecidas en el Capítulo I de este Proyecto de Investigación, se procederá a establecer la adaptación específica del Algoritmo de Gale-Shapley que se utilizará para emparejar Estudiantes con Tutores, basados en sus Estilos de Aprendizaje vs. Estilos de Enseñanza y el "Método de los Clústeres Integrados" de Grasha-Riechmann.

Algoritmo de Emparejamiento Tutores - Estudiantes

Al utilizar los métodos y pruebas anteriormente mencionados, se debe acotar que se establecerá el conjunto sobre el cual se comenzará a emparejar, serán las preferencias que tengan los estudiantes, las cuales se expresan en la siguiente tabla, comparándolas con los Estilos de Enseñanza de los Tutores.

Tabla 22: Preferencias de Estilos de Enseñanza de Tutores por los Estudiantes

Estilo de Aprendizaje

Preferencia

Independiente

Facilitador

Modelo Personal

Experto

Dependiente

Experto

Autoridad Formal

Colaborativo

Facilitador

Modelo Personal

Experto

Competitivo

Experto

Autoridad Formal

Evitativo

Autoridad Formal

Experto

Delegador

Participativo

Modelo Personal

Experto

Autoridad Formal

De esta tabla, se denotarán aspectos como el caso del Estilo de Aprendizaje "Evitativo", el cual no es expresado por el Dr. Anthony Grasha en ninguno de los Clúster Integrados, por lo cual se realizó una revisión en la literatura correspondiente al comportamiento de este tipo de Estilo de Aprendizaje y con ello se establecieron preferencias para el mismo, las cuales son [Autoridad Formal, Experto, Delegador]. De igual forma, cada una de las preferencias de Estilos de Enseñanza que tienen cada uno de los Estudiantes, los cuales tienen un Estilo de Aprendizaje específico y previamente definido, se encuentran establecidas en tres opciones que se contemplan en la tabla en cuestión, que servirán como base al momento de hacer el emparejamiento con los tutores.

Cuando se está emparejando desde la perspectiva del Estudiante, el Estilo de Aprendizaje que se obtiene al momento de la aplicación de la prueba, debe ser el que sea tomado en consideración; dado que dicho estilo tendrá diferentes preferencias con los Tutores, debido a que ellos tienen Estilos de Enseñanza que son compatibles con dicho Estilo de Aprendizaje.

Estas reglas de emparejamiento proporcionan un marco estructurado y detallado para garantizar que los estudiantes y tutores sean emparejados de manera óptima según sus Estilos de Aprendizaje y Enseñanza, respetando las restricciones y prioridades establecidas.

A continuación, se presenta el Algoritmo de Emparejamiento que se utilizará para emparejar a los Estudiantes con Tutores en las Intervenciones Educativas Masivas de la Fundación Ayudinga.

Formulación Matemática del Algoritmo

Se utilizará el Modelo Matemático planteado en el Capítulo I de este Proyecto de Investigación como base para que este sea ampliado, presentando el algoritmo de emparejamiento entre estudiantes y tutores basados en sus estilos de aprendizaje y enseñanza.

VariablesEs una variable binaria a través de la cual se indica si el estudiante es emparejado con el tutor . Cuando se denota que el estudiante i ha sido emparejado con el tutor j, mientras que muestra que ninguno de los dos ha sido emparejado.

ParámetrosEste es un elemento de la matriz de preferencias en el que se denota el grado de preferencia que tiene un estudiante hacia un tutor , todo esto basado en la compatibilidad previamente definida en los estilos de aprendizaje de un estudiante y los estilos de enseñanza de un tutor .

Funciones de PreferenciaA continuación, se procederá a definir la función de las preferencias de estilos de un estudiante con .Con esta función se calcula la sumatoria de las compatibilidades entre los estilos de aprendizaje de un estudiante i, así como los estilos de enseñanza del tutor j multiplicados por el grado de preferencia

Considerando el concepto, anteriormente mencionado, ahora se define la función de las preferencias de los estilos de un tutor con .De forma similar a la función de preferencias del estudiante, esta calcula la suma de las compatibilidades entre los estilos de aprendizaje de un estudiante i y los estilos de enseñanza de un estudiante j multiplicándolos por el grado de preferencia

RestriccionesExisten algunas restricciones que el estudiante solo sea emparejado como máximo a un tutor y que cada tutor sea emparejado a lo máximo con cinco estudiantes.

También, existe una restricción en la compatibilidad de los clústeres que se puede denotar como , en caso de que no exista compatibilidad entre y .Con esta restricción, se asegura de que únicamente sean permitidos los emparejamientos entre los estudiantes y tutores en caso de que exista alguna compatibilidad entre sus estilos de aprendizaje y enseñanza.

Función ObjetivoAl ser este un problema de emparejamiento o asignación de recursos con sus preferencias específicas, se encuentra una Función Objetivo, a través de la cual se va a sintetizar todos los elementos planteados anteriormente.

Con ella se maximiza la "satisfacción total de los emparejamientos", sumando de esta manera las preferencias de cada uno de los estudiantes y tutores por los emparejamientos efectuados.

Implementación Paso a Paso

Ya una vez formalizado matemáticamente el algoritmo de emparejamiento entre estudiantes y tutores, se procede a describirlo en palabras para una mejor comprensión del lector de este Proyecto de Investigación. InicializaciónTodos los estudiantes y tutores se encuentran libres inicialmente y no están emparejados. Cada estudiante y cada tutor tiene un subconjunto de preferencias que está basado en las correlaciones obtenidas del Método de Clústeres Integrados.

Los estudiantes y tutores ordenarán sus preferencias en conformidad con las opciones de estilos de enseñanza y aprendizaje que estos tienen.

Se inicializará el contador de estudiantes emparejados con cada uno de los tutores en 0.

Propuesta Estudiante – TutorSiempre que exista un estudiante que no haya sido emparejado y este aún no haya propuesto a todos los tutores:Dicho estudiante seleccionará al tutor al que tenga mayor preferencia en su lista, siempre y cuando no haya recibido una propuesta por el estudiante.

Se valida la compatibilidad del Estilo de Enseñanza del Tutor con el Estilo de Aprendizaje del Estudiante. Si el tutor no ha sido emparejado, o en su defecto el contador de estudiantes emparejados con él es < 5 y la compatibilidad entre ambos está confirmada:Se empareja al estudiante con el tutor Incrementa en 1 el contador del tutor.

En caso contrario:Si el tutor tiene preferencia a un nuevo estudiante en contraposición de los que ya tiene actualmente y la compatibilidad entre ambos es válida.Se desempareja al tutor con el estudiante que tenga menos preferencia.

Se emparejará al tutor con ese nuevo estudiante.

SinoEl estudiante marca al tutor como propuesto y este continúa con el siguiente tutor que está en su lista de preferencias.

En cada uno de los pasos al momento de hacer la propuesta, la compatibilidad del estilo de enseñanza del tutor y el estilo de aprendizaje del estudiante será verificado contra los Clústeres Integrados. En caso de no existir compatibilidad, el estudiante continuará con el siguiente tutor en la lista de preferencias propia. Existe una correlación fuerte entre las preferencias de estudiantes y tutores, ya que cada una de ellas surgen de los Clústeres Integrados. Creando un ejemplo ficticio: Se tiene a un estudiante con un estilo de aprendizaje "Independiente", por lo que este en primera instancia preferiría a un tutor con un estilo de enseñanza de tipo "Facilitador", siendo este el dominante; posterior a ello el tutor tipo "Modelo Personal" y por último el "Experto", justamente en ese orden.

Creación de los Grupos de TutoríaCuando un tutor alcanza 5 estudiantes emparejados, se crea un grupo de tutoría completo y de igual forma, se crea un nuevo grupo de tutoría para ese tutor, reiniciando su contador de estudiantes emparejados a 0.

En caso de que algún tutor no pueda alcanzar los 5 estudiantes emparejados y tampoco existan más propuestas posibles según las preferencias establecidas, se formará un nuevo grupo de tutoría con los estudiantes que fueron emparejados hasta ese momento.

Verificación y Ajustes de los gruposSe revisa la distribución de los estudiantes dentro de los grupos de tutoría, de forma que se pueda aseverar que dentro de ellos hay un balance y que las preferencias expresadas por cada uno de ellos estén siendo respetadas.

Puede ser necesario realizar ajustes menores entre cada uno de los grupos de forma que se pueda mejorar la compatibilidad entre cada uno de los estilos, ya sea de enseñanza o de aprendizaje; siempre priorizando las preferencias previamente establecidas por los estudiantes y tutores. Puede suceder que se tenga que reasignar a algunos estudiantes a otros tutores a manera que se pueda mejorar la compatibilidad y el equilibrio propuesto entre todos los grupos de tutoría, respetando sus preferencias declaradas.

Resultado Final (Grupos de Tutoría)Se devuelve una tabla en la que se muestran los emparejamientos entre estudiantes y tutores, así como los grupos de tutorías formados, encabezados por el tutor asignado. Este algoritmo devolverá una estructura de datos en la que se incluyen los emparejamientos y los grupos de tutoría, lo que permite ajustar constantes que se pueden convertir en variables como la cantidad de estudiantes por grupo, la cual por el momento se estaba considerando en .

Simulación en Pseudocódigo

Se crea una función llamada "compatibilidad" la cual toma como argumentos las listas de estudiantes , así como la lista de Tutores y la Matriz de Preferencias . Luego, se inicializará una matriz llamada en la que se almacenarán los emparejamientos y una lista denominada "Emparejados", en la que se guarda el registro de cada uno de los estudiantes que ya han sido emparejados con un Tutor.

Posteriormente, se iterará en la función sobre cada estudiante y tutor verificando si el estudiante que se está evaluando ya se encuentra emparejado, dando en caso contrario, que se calcule con la función "compatibilidad", el grado de compatibilidad entre un estudiante o tutor.

En caso de que exista esta "compatibilidad" y el tutor aún no tenga almacenado la cantidad de 5 estudiantes propuesta, se actualizará la matriz en la que se indicará el emparejamiento y coloca que un estudiante ya ha sido emparejado con dicho tutor. Luego la matriz devuelve su valor en el que se muestran los emparejamientos entre estudiantes y tutores.

Por último, se define una nueva función llamada "compatibilidad", en la que se calcula el grado de compatibilidad basado en los subconjuntos y y la Matriz , entre estudiantes y tutores. Al final se ejecuta la función "Emparejamiento" con la que se despliegan los grupos de estudiantes y tutores, así como la Matriz de Preferencias .

Ejemplo Práctico

Para ejemplificar la aplicación de este algoritmo de emparejamiento entre estudiantes y tutores basados en sus estilos de aprendizaje y estilos de enseñanza, respectivamente; se procede a simular un caso práctico en el que se tendrán a 20 estudiantes y 7 tutores. Cada uno de ellos tendrá un estilo de aprendizaje (estudiantes) y un estilo de enseñanza (tutores) y serán emparejados con las reglas establecidas previamente con el

Método de Clústeres que es planteado en el Modelo de Grasha-Riechmann.

Todos ellos han realizado la prueba de estilos de aprendizaje (estudiantes) y la prueba de estilos de enseñanza (tutores), sin embargo, es importante denotar que todos estos resultados que se mostrarán a continuación son meramente teóricos y han sido creados sin seguir un patrón específico. Solo tienen un carácter demostrativo y meramente académico.

Tabla 23: Ejemplo de Estilos de Aprendizaje de estudiantes al azar

Nombre del Estudiante

Primer Estilo de Aprendizaje

Segundo Estilo de Aprendizaje

Tercer Estilo de Aprendizaje

Marcelo Hernández

Colaborativo

Participativo

Competitivo

Sofía Martínez

Participativo

Independiente

Evitativo

Antonio Ruíz

Independiente

Dependiente

Colaborativo

Camila Gómez

Competitivo

Colaborativo

Independiente

Ricardo Jiménez

Dependiente

Competitivo

Participativo

Vanessa López

Colaborativo

Competitivo

Evitativo

Javier Solís

Independiente

Participativo

Colaborativo

Esperanza Reyes

Competitivo

Dependiente

Colaborativo

Mateo Ortiz

Participativo

Competitivo

Independiente

Valeria Pérez

Dependiente

Independiente

Participativo

Luis Méndez

Colaborativo

Competitivo

Dependiente

Bianca Rojas

Participativo

Colaborativo Evitativo

Fernando Sánchez

Independiente

Participativo

Dependiente

Gabriela Torres

Competitivo

Participativo

Independiente Adrián Guerrero Independiente Participativo Competitivo Catalina Zuñiga Competitivo Dependiente Evitativo Roberto Aguilar Participativo Independiente Colaborativo Daniela Álvarez Dependiente Colaborativo **Evitativo** Se hará lo mismo, pero ahora con los tutores, que serán 7 con estilos de enseñanza totalmente pseudoaleatorios y servirán de base para emparejarlos, posteriormente con los estudiantes que ya se han presentado. Tabla 24: Ejemplo de Estilos de Enseñanza de tutores al azar Nombre del Tutor Estilo de Enseñanza Segundo Estilo Tercer Estilo Óscar Ramírez Facilitador Modelo Personal Experto Patricia González **Autoridad Formal** Experto Modelo Personal Jorge Mendoza Modelo Personal Facilitador Experto Irene Sandoval Experto **Autoridad Formal** Modelo Personal Miguel Ángel López Delegador Facilitador Modelo Personal Carolina Herrera Experto **Autoridad Formal** Modelo Personal Ricardo Nuñez **Autoridad Formal** Experto Modelo Personal Se procederá a utilizar el algoritmo de emparejamiento previamente descrito para crear "Grupos de Tutoría". Estos grupos, se generan a partir de una base del estilo de la compatibilidad del estilo de enseñanza de cada uno de los estudiantes y el estilo de enseñanza del tutor. El algoritmo funciona de forma secuencial, es decir que tomará a los primeros estudiantes que se encuentren

Colaborativo
Carlos Vásquez
Dependiente
Competitivo
Independiente
Mónica Velázquez
Colaborativo
Dependiente

en las listas con sus preferencias de estilos de aprendizaje y los emparejará con un tutor compatible, basado en su estilo de enseñanza. Suponiendo que todos tomaron sus pruebas de Grasha-Riechmann, tanto para estudiantes como para tutores. Los estudiantes serán denotados a manera de simplificación con una numeración secuencial de E1, E2, E3, E4 y E5.

Tabla 25: Creación de grupos de tutoría de usando el Algoritmo de Emparejamiento

Grupo

Tutor

E1

E2

F3

E4

E5

1

Óscar Ramírez

Marcelo Hernández

Vanessa López

Luis Méndez

Mónica Velázquez

2

Patricia González

Fabiola Gómez

Valeria Pérez

Carlos Vásquez

Daniela Álvarez

3

Jorge Mendoza

Antonio Ruíz

Javier Solís

Fernando Sánchez

Adrián Guerrero

4

Irene Sandoval

Camila Gómez

Esperanza Reyes

Iván Castillo

Catalina Zuñiga

Roberto Aguilar

5

Miguel Ángel López

Sofía Martínez

Mateo Ortiz

Bianca Rojas

6

Carolina Herrera

Ricardo Jiménez

7

Ricardo Núñez

Gabriela Torres

Se puede denotar que no todos los grupos han sido llenados con el máximo de estudiantes de y esto se genera producto de la incompatibilidad entre estilos de aprendizaje y estilos de enseñanza de estudiantes y tutores, respectivamente.

En el caso de algunos grupos, incluso los tutores llegan a contar únicamente con un solo estudiante, lo cual puede hacer que, en la práctica, la creación del grupo de tutoría se vuelva inviable debido a restricciones de espacio. Sin embargo, todos los estudiantes tienen un grupo y todos los tutores tienen al menos un estudiante; puede que esto no suceda al trabajar con datos reales.

Resulta importante enfatizar que la cantidad de estudiantes por cada grupo de tutoría responde a las Restricciones de Dominio que fueron presentadas en el Capítulo II, sin embargo, se pueden hacer diferentes combinaciones para denotar los escenarios que se podrían desarrollar frente un nuevo valor de estudiantes por grupo con el grupo de datos que se cuenta.

Es crucial enfatizar que ejemplificaciones como la presente, concernientes al emparejamiento entre estudiantes y tutores en las intervenciones educativas de la Fundación Ayudinga, trascienden meramente el ámbito teórico.

Posteriormente, en el Capítulo V se analizará y se pondrá a prueba el algoritmo de emparejamiento con los datos recopilados en el estudio exploratorio de #PilandoAndoPaLaU.

Capítulo V: Análisis y Discusión de Resultados

Escenario Ideal del Modelo

Una de las restricciones que se ha planteado a este modelo es que la cantidad máxima de estudiantes por grupo de tutoría es . Sin embargo, ante ello hay que evaluar la viabilidad de mantener esa restricción en el modelo, ya que surge una nueva pregunta: ¿Se podrá cumplir siempre en cualquier implementación de #PilandoAndo?

Análisis de las Restricciones

Para esto, se debe tomar en cuenta que una sesión de #PilandoAndo, existen dos variables las cuales, por definición, son dependientes la una de la otra, que en este caso son los Estudiantes y los Tutores. Esto se debe a que sin estudiantes no podrá haber sesión de #PilandoAndo, por lo que no serán necesarios los tutores y que, sin tutores, los estudiantes no podrán tener una sesión de #PilandoAndo, ya que esta se basa en tutorías dadas por voluntarios.

Esto genera una interdependencia entre las variables, la cual afecta directamente a la configuración de cantidad de máxima de estudiantes por grupo de tutoría, ya que en algunas ocasiones puede existir un más estudiantes de los que los tutores pudiesen manejar, de manera óptima y viceversa.

Sin embargo, es importante declarar de antemano que estos datos son variables que no se pueden controlar, dado que dependen de la voluntariedad humana y dicho comportamiento depende de las suposiciones hechas sobre la conducta del individuo, siendo esta una de sus principales limitantes haciendo que, a partir de una serie de hipótesis, se pueda llevar a la comprobación fáctica de estos [59].

Mencionado esto, se debe considerar que la planificación previa a una sesión de #PilandoAndo resulta en un conjunto de elementos que deben trabajar juntos y en armónica colaboración para resolver temas como presupuesto, convocatoria de estudiantes y tutores, así como la distribución del espacio físico.

Hay que detenerse en este último elemento, ya que de ahí nace la necesidad o no de flexibilizar (en aumento o disminución), la cantidad de estudiantes en un grupo de tutoría. A nivel de espacio físico, se debe conocer que este limita directamente la cantidad de Estudiantes y Tutores que se puedan recibir en una sesión específica. Donde el aforo es definido por el equipo de Seguridad Ocupacional de la organización aliada a la Fundación Ayudinga con la que se esté desarrollando el #PilandoAndo.

Esto genera un quiebre en la Oferta y la Demanda, dado que se pueden presentar circunstancias en la cual se tenga una demanda elevada de estudiantes que desean recibir tutorías en #PilandoAndo y en una proporción similar, una cantidad de tutores que estén dispuestos a dar estas tutorías de forma voluntaria; sin embargo, la cantidad de estudiantes o tutores que se pueda recibir queda limitada debido al espacio físico con el que se cuente.

Mencionado esto, es importante establecer que para las sesiones que competen al estudio exploratorio que se ha estado construyendo a lo largo de este Proyecto de Investigación, se observó un aumento no usual en la demanda de Estudiantes que deseaban recibir las sesiones de tutoría de #PilandoAndoPaLaU en la edición desarrollada entre agosto – septiembre del año 2023, por lo que se tuvo que realizar ciertas adecuaciones y expansiones al espacio físico a utilizar.

Para poder atender a 278 Estudiantes, 66 Tutores y 45 voluntarios de logística, se tuvieron que destinar 3 salones en el Centro de Capacitaciones Ascanio Arosemena, Edificio 702, cada uno de ellos con una capacidad máxima de 100 personas. No siendo suficiente este espacio, se habilitaron 4 salones más pequeños en el mismo lugar, únicamente que en el Edificio 703, los cuales contaban con una capacidad máxima de 20 personas cada uno.

Se presentará gráficamente la distribución de los 3 salones del Edificio 702, los cuales se utilizarán como ejemplo de ahora en adelante. Esta es una representación meramente visual, no está bajo ningún tipo de escala ni disposición final.

Figura 43: Esquemático de los Salones del Edificio 702 del Centro de Capacitaciones Ascanio Arosemena utilizados para #PilandoAndoPaLaU

Como se puede observar, en cada uno de los salones hay una limitante espacial en la cual se tendrá que ubicar a las mesas o grupos de tutoría, pero también se debe mencionar un hallazgo producto de la experiencia empírica, que es: El ruido entre las mesas y la capacidad de disminuir la concentración de los estudiantes y tutores.

Bien es cierto que esta no es una de las variables de investigación que se está utilizando en este estudio exploratorio, pero es un elemento que llevó a replantear la estrategia a través de la cual se creaban los grupos de tutoría, debido a que antes se buscaba maximizar el espacio sin ningún tipo de limitante, generando que existiesen grupos de tutoría hasta con 10-15 Estudiantes; cosa que como ya fue planteado en el Capítulo I de este Proyecto de Investigación, no resulta viable.

Al presentarse esta situación, queda en evidencia el hecho de que, si bien es cierto, tener 5 estudiantes máximo por cada grupo de tutoría (dando un total de 6 personas, incluyendo al tutor), puede resultar un escenario ideal. No necesariamente es el escenario que siempre se va a presentar, por ello es por lo que se requiere un balance entre la cantidad de Estudiantes y Tutores.

Emparejamiento de Estudiantes y Tutores en #PilandoAndoPaLaU

Ya se ha presentado algunas restricciones y la viabilidad o no de que estas se puedan ejecutar en un entorno real de una sesión de tutoría del proyecto #PilandoAndo, por lo que ahora se dedicará a examinar las dos variables de investigación (Estilos de Aprendizaje y Estilos de Enseñanza) que fueron declaradas dentro de este estudio exploratorio.

Se encontrará el Emparejamiento entre Estudiantes y Tutores para los que realizaron el cuestionario de Estilos de Aprendizaje de Grasha-Riechmann y los que realizaron el cuestionario de Estilos de Enseñanza de Grasha-Riechmann.

En el Capítulo IV de este Proyecto de Investigación, se definió el modelo matemático basado en el Método de los Clústers Integrados que permite establecer las preferencias de un estudiante hacia un tutor y viceversa, considerando su Estilo de Aprendizaje y Estilo de Enseñanza, respectivamente.

Por esto, se pondrá a prueba la aplicación "Sistema de Gestión Educativa (SGE) - #PilandoAndo", la cual se ha utilizado hasta el momento únicamente para el manejo y recolección de los datos de los estudiantes y tutores una vez responden el cuestionario, por lo que ahora se presentará para buscar su emparejamiento.

Figura 44: Panel de "Grupos" en el SGE - #PilandoAndo

En esta sección del Panel de Administración de esta aplicación, se puede observar que ya se cuenta con la pestaña "Grupos" en la que ya están precargadas la cantidad de tutores que hicieron el cuestionario, e igualmente los estudiantes que hicieron la prueba. Como se puede observar, con este conjunto de datos se tiene una relación de 3.5:1, es decir, que se tiene 3.5 estudiantes para cada tutor.

Sin embargo, esto no implica que, dada esa proporción, se puede crear grupos de un máximo de 3-4 estudiantes con su respectivo tutor, ya que se tiene que evaluar si las preferencias inherentes al Estilo de Aprendizaje de un Estudiante son emparejables con las preferencias del Estilo de Enseñanza del Estudiante. También se observa "Estudiantes por Grupo" que es el valor semilla que se utilizará en esta aplicación para poder ingresar una cantidad específica de estudiantes que se desea por grupo (Por defecto tiene 5 estudiantes) y al momento de presionar el botón "Generar Grupo", se creará un archivo CSV y PDF que se puede descargar en formato de tabla donde se presente la información de un grupo de tutoría en cuestión. Si se ejecuta el emparejamiento con la cantidad de estudiantes específica, quedaría de la siguiente manera:

Figura 45: Emparejamiento entre Estudiantes y Tutores basado en sus Estilos de Enseñanza y Aprendizaje (n = 5 estudiantes/grupo)

Como se puede observar, se despliega una tabla, la cual es de naturaleza volátil y no se encuentra almacenada de manera permanente en la base de datos debido a su capacidad de ser modificada en cualquier instante.

Esta característica se debe a que la generación de la tabla se origina a partir de un valor inicial o semilla, que corresponde al número específico de estudiantes asignados a un grupo. De los 60 tutores disponibles, únicamente a 40 se les ha asignado un grupo de tutoría.

Con ello, entonces, lógicamente surge la pregunta: ¿Se utilizó la cantidad total de estudiantes disponibles?, ¿Faltaron estudiantes por ser emparejados con un tutor? A lo que se tiene que responder que no se utilizó la cantidad total de estudiantes disponibles, quedando entonces 17 de los 210 estudiantes sin un grupo de tutoría asignado, lo que representa el 8.1% de ellos.

Figura 46: Estudiantes y Tutores no Emparejados bajo n=5 estudiantes/grupo

Al contar con 40 grupos de tutoría que fueron formados, incluso el 100% de ellos no se encuentran a su máxima capacidad de (n = estudiantes/grupo), debido a que en algunos casos puede existir un grupo de tutoría que ya haya sido creado y este tenga un Tutor (con Estilo de Enseñanza, y, por ejemplo, el Estudiante () con un estilo de Aprendizaje llamado , sin embargo estos dos no son compatibles y, por lo tanto, no se pueden asignar a ninguno de los grupos previamente establecidos, incluso el caso de que exista espacio para recibir más estudiantes en dicho grupo, ya que no ha alcanzado su capacidad máxima.

Análisis de Sensibilidad del Emparejamiento Estudiantes-Tutores

Con la confirmación de la validez del modelo matemático diseñado para emparejar estudiantes y tutores en función de sus respectivos estilos de aprendizaje y enseñanza, se procederá a realizar un análisis de sensibilidad. Este análisis tiene como objetivo evaluar la robustez del sistema utilizando los datos disponibles, con el fin de identificar un balance óptimo en la cantidad de estudiantes por grupo de tutoría y determinar el número de estudiantes que, en consecuencia, no podrían ser asignados a un grupo.

Para llevar a cabo dicho análisis, se hará uso exclusivamente del conjunto de datos concretos recabados, sin recurrir a suposiciones adicionales ni a la generación de datos sintéticos. Estos datos, que serán objeto de estudio en una variedad de escenarios, provienen de los resultados obtenidos de la implementación de pruebas de estilos de aprendizaje y enseñanza aplicadas a estudiantes y tutores en el marco del programa #PilandoAndoPaLaU durante los meses de agosto y septiembre de 2023.

Figura 47: Número de Estudiantes Emparejados con un Tutor según el Tamaño del Grupo Como se puede observar, al ejecutar el algoritmo de emparejamiento entre estudiantes y tutores, aumentando linealmente la cantidad de estudiantes por grupo de tutoría (1 al 10), se puede observar algunos detalles en el comportamiento de esta gráfica:

Al tener 1 estudiante por grupo, solo 60 estudiantes fueron emparejados y los restantes 150 no lo fueron, pero esto se debió a que no había más tutores disponibles como para crear más grupos de tutoría. Cuando se llega a n = 5 estudiantes/grupo, se ve que se acerca a la cifra de 193 estudiantes emparejados, mientras que 17 estudiantes no fueron emparejados, porque no había más grupos de tutorías disponibles. Conforme se va aumentando la cantidad de estudiantes por grupo de tutoría, se observa que al llegar a 8

estudiantes/grupo, ninguno de los 210 estudiantes quedaría sin emparejar, por ende, todos formarían parte de un grupo y tendrían a un tutor asignado.

Es aquí donde se debe analizar la conveniencia o no de tener grupos grandes o pequeños de tutoría, ya que lo óptimo según los estudios y la evidencia empírica son grupos de tutoría de 5 o menos estudiantes, sin embargo, en este caso para poder satisfacer al 100% de la demanda de estudiantes disponibles, se tendría que obviar los límites establecidos de forma inicial y aumentarlos.

Tabla 26: Relación de Estudiantes/Grupo vs. Estudiantes Emparejados y no Emparejados (n = 210)

Estudiantes/Grupo (n =)

Estudiantes Emparejados

Estudiantes no Emparejados

I

U

De forma tabular, se aprecia el aumento progresivo en la cantidad de estudiantes que están emparejados con un tutor, por ende, tienen un grupo de tutoría para #PilandoAndoPaLaU. De 7 estudiantes en adelante, se pudiese decir que el aproximadamente el 100% de los estilos de aprendizaje de los estudiantes coinciden con los estilos de enseñanza de los tutores, que son las variables utilizadas para realizar el emparejamiento. Ahora, se analiza el caso de los tutores, ya que cada uno de ellos tiene un Estilo de Enseñanza específico, lo que conlleva a que este tenga preferencias con Estilos de Aprendizaje específicos, igual que los estudiantes y basado en el Método de los Clústers Integrados de Grasha – Riechmann.

Figura 48: Número de Tutores Emparejados con Estudiantes según el Tamaño del Grupo La reacción en el caso de los tutores es inversamente proporcional a la de los estudiantes, ya que cuando se ejecuta el algoritmo de emparejamiento entre ellos, a mayor cantidad de estudiantes por grupo de tutoría, menor será la cantidad de tutores que sea requerida, llevando incluso a tener "Tutores Ociosos", idea análoga al concepto de servidores ociosos, ya que es un recurso que se encuentra disponible para su uso, sin embargo no es requerido ya que con la Oferta Actual de Tutores, se logra satisfacer la demanda de estudiantes.

Tabla 27: Relación de Tutores/Grupo vs. Tutores Emparejados vs. no Emparejados (n =60)

Estudiantes/Grupo

Tutores Emparejados

Tutores sin Emparejar

Ω

Inicialmente, cuando hay entre [1-2] estudiantes por grupo de tutoría, se puede observar que todos los tutores se encuentran emparejados y no existe ningún "Tutor Ocioso", sin embargo, en esto comienza a dejar de ser realidad cuando se asigna a 3 estudiantes por grupo de tutoría.

Cuando se encuentra en una tasa de 8 estudiantes/grupo, se ve que son más los tutores sin emparejar (32), que los tutores emparejados (28) y conforme se va avanzando en la cantidad de estudiantes/grupo, de igual manera, va disminuyendo la cantidad de tutores emparejados y tutores sin emparejar.

Resulta conveniente mantener a la menor cantidad de "Tutores Ociosos", siempre y cuando se pueda satisfacer la Demanda de estudiantes, tener es un valor recomendado, dado que permite que el enfoque principal de este estudio exploratorio que son los estudiantes, sean emparejados con tutores con estilos de enseñanza relacionados a sus estilos de aprendizaje.

Conclusiones y Trabajos Futuros

Pueden resultar muchas las conclusiones a las que se puede llegar con este Proyecto de Investigación debido a que se ha hecho una revisión de la literatura de modelos pedagógicos, psicológicos, emparejamiento y matemáticos que los hemos implementado a través del desarrollo del "Sistema de Gestión Educativa (SGE) - #PilandoAndo", el cual ya se encuentra en uso por parte de la Fundación Ayudinga y la Autoridad de Panamá en sus intervenciones educativas masivas.

Sin embargo, se estima perentorio enfocarse en algunas de ellas:

A pesar de que el Modelo de Grasha-Riechmann date del año 1996, hasta el momento es el único que posee una fundamentación matemática que permita generar una equivalencia con la que se pueda decir que "Toda persona que tiene un Estilo de Aprendizaje a su vez tiene un conjunto de Estilos de Enseñanza asociados a este y viceversa". Los modelos que analizados como el de Kolb, Honey-Mumford y Felder-Silverman, incluso, hasta la actualidad se centran en el estudio del Estilo de Aprendizaje del Individuo, sin embargo, se planteó que cualquier persona es capaz de enseñar o transmitir conocimientos a otra persona (tutor), por lo que, si sabe aprender, sabe enseñar; es decir que tiene un Estilo de Enseñanza que va directamente asociado al Estilo de Aprendizaje del individuo en sí.

Se desarrolló #PilandoAndoPaLaU, una serie de tutorías de reforzamiento matemático a estudiantes que fuesen a hacer el PAA (Prueba de Aptitudes Académicas) en la que se tuvo más de 278 estudiantes que participaron de ella, siendo 210 estudiantes los que tomaron la prueba de Estilos de Aprendizaje de Grasha-Riechmann, así como 66 tutores que donaron su tiempo de manera voluntaria y 60 de ellos tomaron la prueba de Estilos de Enseñanza de Grasha-Riechmann. A todos los estudiantes y tutores se les informó y se les explicó los detalles de este experimento de carácter exploratorio que se desarrolló, especialmente, que el tratamiento de sus datos sería de carácter académico y con fines investigativos, donde la cantidad mencionada anteriormente accedió voluntariamente a tomar la respectiva prueba y permitir obtener sus Estilos de Aprendizaje y Estilos de Enseñanza. En caso de que algún estudiante fuese menor de edad y desease participar en el estudio exploratorio tomando la prueba de Estilos de Aprendizaje de Grasha-Riechmann, este debía contar con autorización física o digital de sus padres o tutor responsable, de lo contrario, fue descartado automáticamente en el estudio.

Cuando fueron evaluados los Estilos de Enseñanza de los Tutores, se obtuvieron los siguientes resultados para n = 60 tutores:

Tabla 28: Desglose de los Estilos de Enseñanza de los Tutores de #PilandoAndoPaLaU

Estilo de Enseñanza

Cantidad

Experto

8

Autoridad Formal

0

Modelo Personal

11

Facilitador

41

Delegador

0

Esto sugiere que dada la naturaleza de un proyecto como

#PilandoAndoPaLaU, en el que se espera una donación voluntaria del tiempo, lo que inmediatamente hace que Estilos de Enseñanza como el "Modelo Personal" o "Facilitador" se vuelvan los preponderantes en las características de los tutores que formen parte de ello, dejando a un lado otros Estilos de Enseñanza como "Autoridad Formal" y "Delegador".

Cuando fueron evaluados los Estilos de Aprendizaje de los Estudiantes, se obtuvieron los siguientes resultados para n = 218 estudiantes:

Tabla 29: Desglose de los Estilos de Aprendizaje de los Estudiantes de #PilandoAndoPaLaU

Estilo de Aprendizaje

Cantidad

Independiente

13

Dependiente

57

Colaborativo

97

Competitivo

2

Evitativo

0

Participativo

41

Es previsible que se encuentren una mayor cantidad de estudiantes con un Estilo de Aprendizaje "Colaborativo" o "Participativo", dado que estos vienen de manera voluntaria a una sesión de tutorías para realizar sus exámenes de admisión universitarios, lo que les hace tener sentido de responsabilidad e involucramiento en su aprendizaje.

Para el caso de los estudiantes con Estilo de Enseñanza "Dependiente", es común que estos sean encontrados en sesiones de tutoría dado que estos requieren mayor intervención y esfuerzo por parte del tutor, para que estos se puedan involucrar con sus compañeros.

Fue desarrollada una aplicación web denominada "Sistema de Gestión Educativa (SGE) - #PilandoAndo" en el lenguaje de programación PHP utilizando su Framework PHP y el denominado stack "LAMP", acrónimo en inglés para Linux (Tipo de Sistema Operativo), Apache (Servidor Web), MySQL (Base de Datos), PHP (Lenguaje de Programación.La aplicación fue desplegada en producción a través de un servidor en la nube de la empresa Digital Ocean con sus instancias denominadas "Droplets" ubicado en la ciudad de Nueva York para disminuir los tiempos de latencia en las solicitudes HTTP del cliente y las respuestas HTTP del servidor. Dentro de esta aplicación se puede controlar el ciclo completo de la gestión de cualquier intervención educativa que desarrolle la Fundación Ayudinga de manera individual o con alguno de sus aliados estratégicos, ya que permite que el estudiante pueda tomar la prueba de Estilos de Aprendizaje y para el caso del tutor, la prueba de Estilos de Enseñanza.Todos estos datos fueron almacenados en la Base de Datos de la Aplicación, generando un sistema de roles y permisos en el que solamente los individuos que tuviesen relación con el estudio exploratorio pudiesen tener acceso a ella a través de un control de inicio de sesión al Panel de Administración.

La aplicación se desarrolló para múltiples dispositivos y con un tiempo de carga de la información menor a 300ms, considerando una conexión básica a Internet de 10Mbps en dispositivos móviles (smartphones). El usuario administrador tiene la capacidad de crear los grupos de tutorías ingresando la cantidad de estudiantes que este desea que estén en un grupo, haciendo un previo análisis al espacio físico disponible y a la disposición de este.

Cuando se aborda el tema del Emparejamiento entre Estudiantes y Tutores basado en sus Estilos de Enseñanza y Estilos de Aprendizaje, se debe reconocer que por definición no se podrá hacer un "Emparejamiento Perfecto", dado que no siempre los elementos del (Estudiantes) tendrán a un símil elemento del (Tutores). Se utilizó el Método de los Clústeres Integrados de Grasha-Riechmann para desarrollar un Algoritmo propio de emparejamiento, con base en el propuesto Algoritmo de Gale-Shapley. Dicho algoritmo es la base teórica de cualquier emparejamiento aproximado o "Emparejamiento Máximo", dado que como fue mencionado, en este caso se tienen a dos conjuntos que poseen elementos y estos a su vez poseen una serie de preferencias ordenadas de los elementos con los cuales les gustaría estar emparejados del otro conjunto.

Se optó por hacer una simplificación al Método de los Clústeres Integrados en el que se definieron las preferencias de Estilos de Enseñanza para cada uno de los Estilos de Aprendizaje del Estudiante. Al hacer este cambio al Método de los Clústeres Integrados se alcanzó con el objetivo de disminuir la complejidad del algoritmo de emparejamiento desarrollado, ya que se utiliza como elemento pivote a cada Estudiante, el cual tiene su Estilo de Aprendizaje y sus preferencias de Estilos de Enseñanza, por lo que es comparado directamente con cada uno de los tutores, secuencialmente, validando si existe compatibilidad entre ellos y en caso de ser cierto, el estudiante queda asignado a ese grupo de tutoría, de lo contrario, pasa a ser comprobado al siguiente hasta que sea validado con todos.

Este es un algoritmo de emparejamiento que se resuelve utilizando métodos de Teoría de la Optimización, que es una rama de la Investigación de Operaciones en el que tenemos como Función Objetivo:Con esta Función Objetivo, se establece que se busca la satisfacción máxima de cada uno de los emparejamientos, tanto para los estudiantes como para los tutores.

Esto implica que el algoritmo no siempre encontrará al mejor tutor para un estudiante y tampoco al mejor estudiante para un tutor, sino al que se aproxime más al esquema de preferencia existente en la relación de sus Estilos de Enseñanza con sus Estilos de Aprendizaje. Al esta no ser una aproximación algorítmica en la que se busque dar una respuesta exacta, dado que existen variables adicionales que podrían influir o no en el diseño, se establece que puede que para un conjunto de X Estudiantes y, Y Tutores, algunos estudiantes se queden sin un tutor y algún tutor se quede sin estudiantes, dado que sus Estilos de Aprendizaje o Enseñanza no son compatibles entre sí.

Una vez se contó con la aplicación Web y el algoritmo de emparejamiento aproximado entre estudiantes y tutores, se procedió a trabajar con los datos obtenidos en las sesiones de tutoría del Proyecto #PilandoAndoPaLaU, con 210 estudiantes y 60 tutores.Utilizando la consigna propuesta de , se tendría la situación de que solamente se pudiese emparejar a 193 estudiantes, mientras que 17 de ellos se quedarían sin un tutor; así como 40 tutores tendrían un grupo de tutoría con estudiantes, mientras que 20 tutores habrían sido emparejados, por lo que se quedaron sin un grupo de tutorías específico.

A forma de buscar que la mayor cantidad de estudiantes tuviese un tutor y que la mayor cantidad de tutores tuviese estudiantes, para evitar que estos fuesen "Tutores Ociosos", se encontró con que era necesario contar con [7-8] estudiantes por grupo de tutoría. Con estos datos se pudiese llegar a tener 201 estudiantes emparejados con 30 tutores (7 estudiantes/grupo), mientras que con 8 estudiantes/grupo se tendría a la totalidad de los 210 estudiantes que participaron en #PilandoAndoPaLaU emparejados con 28 tutores. Sin embargo, quedaría una cantidad de 32 tutores sin estudiantes para atender. Esto se da producto de la secuencialidad con la que fue diseñado el algoritmo, donde la disciplina de cola es FIFO (First Come, First Serve), es decir, que los primeros tutores que se encuentren registrados o hayan hecho la prueba, son los que mayores probabilidades de tener grupos de tutoría tendrán.

Recomendaciones

El estudio exploratorio que fue elaborado bajo el marco del Proyecto de Investigación titulado "Emparejamiento Aproximado de Estudiantes con Tutores Académicos en las Intervenciones Educativas de Fundación Ayudinga" plasma una realidad que son las diferencias que existen dentro de un aula de clases simulada, como lo pueden ser unas sesiones de tutoría.

Esto se tiene que extrapolar a la realidad, dado que una de las principales consignas del Siglo XXI en materia educativa es la búsqueda de una "Educación Personalizada", sin embargo, se debe tener en cuenta que para ello se requiere una visión sistémica de cada uno de los elementos de lo que, hoy en día, se conoce como "Sistema Educativo".

Por ello, la Fundación Ayudinga desarrolla el programa #PilandoAndo, ya sea en su versión más conocida que lleva el mismo nombre. O en su defecto, en la versión que fue la base de este estudio exploratorio llamada #PilandoAndoPaLaU, en donde la sociedad civil, la empresa privada y los organismos supra gubernamentales aportan a una propuesta diferente al esquema tradicional.

Los datos recolectados de los Estilos de Aprendizaje y Enseñanza de un grupo de Estudiantes y Tutores son apenas una pequeña muestra de la diversidad de información que existe en el sistema educativo. Sin embargo, emparejar a los estudiantes con los tutores basados en sus estilos de aprendizaje y enseñanza bajo el Modelo de Grasha-Riechmann es un buen punto de partida; pero esto es solamente el comienzo. Producto del resultado plasmado en este Proyecto de Investigación, #PilandoAndo lo adoptará como una base en la que se permita personalizar las sesiones de tutoría con nuevos elementos como: ¿Cuál es el efecto

de que 2 personas se encuentren juntas en el mismo grupo?, ¿Cómo se puede incidir en la mejora de la calidad académica de un tutor? y ¿Qué tipo de contenidos educativos se les debe recomendar a un estudiante?

Con la biblioteca digital de materiales académicos en el área de las STEM (Acrónimo en inglés para Science, Technology, Engineering and Mathematics) se comenzará a recomendar contenido educativo a los estudiantes basado ya no en las percepciones de un tutor sobre como este aprende o no, sino que este será catalogado dependiendo de nuevas variables como: El tipo de presentador en los materiales audiovisuales, duración de los mismos, cantidad de estímulos por minuto que se le dan al estudiante y la pertinencia digital basado en sus preferencias de consumo.

#PilandoAndo es un proyecto que siempre ha requerido de mucho trabajo, esfuerzo, vocación y voluntariado humano detrás de él; sin embargo, ahora al contar con una infraestructura tecnológica con sendos análisis y modelos matemáticos que le dan validez a ella, se espera llegarle a más de 3,000 estudiantes en Panamá durante el año 2024.

Agregando más variables como las mencionadas, anteriormente, se mejorarán los algoritmos de emparejamiento ya no solamente de los estudiantes con sus tutores, sino de los estudiantes con los contenidos académicos que estos tienden a percibir. Empero, se debe reconocer que dinámica volátil del mundo en el que se vive hoy día requiere sistemas y modelos que sepan adaptarse en tiempo, espacio y momento a cada una de esas realidades.

Este es un proceso de mejora, pero esto es mucho mejor que empezar desde cero y con este Proyecto de Investigación se ha iniciado una transformación en la que se utilicen los datos como evidencia para la toma de decisiones en políticas públicas educativas, priorizando la inversión y enfocándola en las áreas más importantes para el desarrollo de cualquier país, como lo es hoy en día la formación de jóvenes con pensamiento lógico matemático y crítico de su realidad.

Referencias Bibliográficas

- [1] Universidad Nacional de Colombia, "Teoría de Sistemas".
- [2] J. Heraclio Batista et al., "Modelo Educativo AyuEduca2030".
- [3] M. Parker y P. Alfaro, "Education during the COVID-19 pandemic Access, inclusion and psychosocial support 104 STUDIES AND PERSPECTIVES ECLAC SUBREGIONAL HEADQUARTERS FOR THE CARIBBEAN", 2030, [En línea]. Disponible en: www.cepal.org/apps
- [4] L. A. R. Palacios, M. I. Guifarro, y L. M. C. García, "Difficulties in learning algebra, a study with standardized tests", Bolema Mathematics Education Bulletin, vol. 35, núm. 70, pp. 1016–1033, 2021, doi: 10.1590/1980-4415v35n70a21.
- [5] J. E. Galvis, "Didáctica para la enseñanza de la aritmética y el algebra".
- [6] S. Didácticas y E. Matemáticas, Programa fortalecimiento de la cobertura con calidad para el sector educativo rural PER II. [En línea]. Disponible en: www.mineducacion.gov.co
- [7] F. Alegre, L. Moliner, A. Maroto, y G. Lorenzo-Valentin, "Peer tutoring and mathematics in secondary education: literature review, effect sizes, moderators, and implications for practice", 2017, doi: 10.1016/j.heliyon.2019.e02491.
- [8] College Board, "PAA", 2018.
- [9] C. Rojas-Jara, C. Díaz-Larenas, J. Vergara-Morales, P. Alarcón-Hernández, y M. Ortiz-Navarrete, "Estilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las preferencias de estudiantes de Pedagogía en Inglés en tres universidades chilenas", Revista Electrónica Educare, vol. 20, núm. 3, p. 1, sep. 2016, doi: 10.15359/ree.20-3.7.
- [10] C. R., . C., . J., . P., y . M., "Estilos de enseñanza y estilos de aprendizaje en educación superior: Análisis de las preferencias de estudiantes de Pedagogía en Inglés en tres universidades chilenas", Revista Electrónica Educare, vol. 20, pp. 1–29, 2016, [En línea]. Disponible en: https://www.redalyc.org/articulo.oa? id=194146862007
- [11] R. Caraballo Colmenares, "Andragogía en la Educación Superior", Investigación y Postgrado, vol. 22, núm. 2, 2007.
- [12] M. Tuñón, "Capítulo 2 Definición y Construcción de Modelos", 2022.
- [13] A. Myriam, P. Blanco, y L. Castro Quitora, "Los Modelos Pedagógicos".
- [14] A. Blanes Villatoro, "La Teoría de las Inteligencias Múltiples: Descripción breve ¿Qué es, que describe y que tipos de inteligencia existen?"
- [15] R. Rodríguez Cepeda, "Los modelos de aprendizaje de Kolb, Honey y Mumford: implicaciones para la educación en ciencias", Sophia, vol. 14, núm. 1, pp. 51–64, abr. 2018, doi: 10.18634/sophiaj.14v.1i.698.
- [16] D. Kolb, I. M. Rubin, y J. M. Mcintyre, "Modelo de Kolb Aprendizaje basado en Experiencias".
- [17] C. L. García Zuluaga y R. A. Sáchica Navarro, "Modelo de Aprendizaje Experiencial de Kolb en el aula", Universidad Católica de Manizales, 2016.
- [18] A. Silva Sprok, "Conceptualization of the Models of Learning Styles".
- [19] D. Kolb, "Test de Kolb para Estilos de Aprendizaje", 1998.
- [20] P. Honey, A. Mumford, Community Media Applications and Participation, y U. Lifelong Learning Programme, "Honey and Mumford learning styles", 2011. [En línea]. Disponible en:
- http://www2.le.ac.uk/departments/gradschool/training/resources/teaching/theories/honey-control of the control - [21] P. Honey y A. Mumford, "Honey and Mumford: Learning Styles Questionnaire", 1986.
- [22] U. Universidad Autónoma de México, "Cuestionario Honey Alonso de Estilos de Aprendizaje", 2009.

- [23] B. Marcos Salas, V. Alarcón Martínez, N. Serrano Amarilla, M. J. Cuetos Revuelta, y A. I. Manzanal Martínez, "Aplicación de los estilos de aprendizaje según el modelo de Felder y Silverman para el desarrollo de competencias clave en la práctica docente", Tendencias Pedagógicas, vol. 37, pp. 104–120, dic. 2020, doi: 10.15366/tp2021.37.009.
- [24] V. Sánchez y J. María, "Estilos de aprendizaje", 2018.
- [25] M. J. Provitera, "Learning And Teaching Styles In Management Education: Identifying, Analyzing, And Facilitating", 2008. [En línea]. Disponible en: http://longleaf.net/teachingstyle.html
- [26] G. González Gutiérrez y S. Andrés González Ardila, "Estilos de enseñanza según Antonhy Grasha presentes en la práctica pedagógica de un grupo de estudiantes del Programa Licenciatura en Lengua Castellana Inglés y Francés de la Universidad de La Salle". [En línea]. Disponible en: https://ciencia.lasalle.edu.co/lic_lenguas
- [27] T. Thi-Kim Le Ho Chi, "Project-based Learning in 21st Century: A Review of Dimensions for Implementation in University-level Teaching and Learning", 2018. [En línea]. Disponible en: https://www.researchgate.net/publication/352977987
- [28] P. Kumar, A. Kumar, y K. Smart, "Issues in Informing Science and Information Technology Assessing the Impact of Instructional Methods and Information Technology on Student Learning Styles".
- [29] D. DiCarlo, "RANDOM NUMBER GENERATION 2 Acceptance of Senior Honors Thesis".
- [30] M. Rosa y R. Fernández, "Estilos de enseñanza y estilos de aprendizaje: implicaciones para la educación por ciclos". [En línea]. Disponible en: https://www.researchgate.net/publication/277795807
- [31] Z. H. Gao, "Teaching Physical Education Using the Spectrum of Teaching Style: Introduction to Mosston's Spectrum of Teaching Style", 2012.
- [32] A. F. Grasha, "A Matter of Style: The Teacher as Expert, Formal Authority, Personal Model", 1994.
- [33] E. Moreno, G. José, y M. Cascón Barbero, "Matching Theory: The Roomates Problem", 2021.
- [34] A. F. Grasha, "Essays on Teaching Excellence Toward the Best in the Academy Teaching With Style: The Integration of Teaching and Learning Styles in the Classroom". [En línea]. Disponible en: www.podnetwork.org [35] P. Winkler, "Combinatorics 18.315 Chapter 2 Matching Theory", 2004.
- [36] J. P. Torrez-Martínez, "Introducción a la Teoría de Emparejamientos".
- [37] Z. Han, Y. Gu, y W. Saad, "Fundamentals of Matching Theory", en Matching Theory for Wireless Networks, Z. Han, Y. Gu, y W. Saad, Eds., Cham: Springer International Publishing, 2017, pp. 9–15. doi: 10.1007/978-3-319-56252-0_2.
- [38] E. Mayr y H. Räcke, "A Fast Matching Algorithm Analysis Hopcroft-Karp".
- [39] J. De Mairena, "Matching Estable Gale Shapley, 1962".
- [40] R. Baviskar y H. Karp, "Hopcroft Karp Algorithm for Bipartite Matching CS 759 Perfect Matchings: Algorithms and Complexity Algorithm for Bipartite Matching", 2019.
- [41] S. Kuller, "CMSC 651 Advanced Algorithms", University of Maryland, vol. Lecture 3, pp. 1–3, 2002.
- [42] J. E. Hopcroft y R. M. Karp, "Algorithm for Maximum Matchings in Bipartite Graphs", 1973.
- [43] R. Rossetti, A. Rocha, A. Pereira, P. Silva, y T. Fernandes, "Algoritmos em Grafos: Emparelhamentos (matching) e Casamentos Estáveis (stable marriage)", 2010.
- [44] L. Zhou, "Stable matchings and equilibrium outcomes of the Gale-Shapley's algorithm for the marriage problem", Econ Lett, vol. 36, núm. 1, pp. 25–29, may 1991, doi: 10.1016/0165-1765(91)90050-U.
- [45] C. Deliotte, "Calidad de Datos en la era del Big Data".
- [46] A. Quintana Peña, "Metodología de Investigación Científica Cualitativa", 2006.
- [47] Paulina. Salinas Meruane, Manuel. Cardenas Castro, A. Music Cáceres, Carlos. Calderon Carvajal, Alberto. Mayol Miranda, y Gabriel. Dadodovics Molnar, Métodos de investigación social: una aproximación desde las estrategias cuantitativas y cualitativas. Universidad Católica del Norte, 2008.
- [48] M. En, E. Neftali, y T. Díaz De León, "Material Didáctico: Sólo Visión (Proyectables) Título: Población y Muestra".
- [49] Gaceta Oficial Digital, "Reglamentación de la Ley 81 de Protección de Datos Personales", 2021.
- [50] A. Freiberg Hoffmann y M. Fernández Liporace, "Grasha–Riechmann student learning style scales: an Argentinian version", Journal of Applied Research in Higher Education, vol. 13, núm. 1, pp. 242–257, ene. 2021, doi: 10.1108/JARHE-12-2019-0325.
- [51] J. H. Ford, J. M. Robinson, y M. E. Wise, "Adaptation of the Grasha Riechman Student Learning Style Survey and Teaching Style Inventory to assess individual teaching and learning styles in a quality improvement collaborative", BMC Med Educ, vol. 16, núm. 1, sep. 2016, doi: 10.1186/s12909-016-0772-4.
- [52] D. G. Bonett y T. A. Wright, "Cronbach's alpha reliability: Interval estimation, hypothesis testing, and sample size planning", J Organ Behav, vol. 36, núm. 1, pp. 3–15, ene. 2015, doi: 10.1002/job.1960.
- [53] J. T. Croasmun y L. Ostrom, "Using Likert-Type Scales in the Social Sciences", 2011.
- [54] S. R. Garuda, R. G. Javalgi, y V. S. Talluri, "Tackling no-show behavior: A market-driven approach", Health Mark Q, vol. 15, núm. 4, pp. 25–44, sep. 1998, doi: 10.1300/J026v15n04_02.
- [55] J. María Ferrer Caja, "Teoría de Colas".
- [56] M. (Mo) Barlow y D. Megquier, "Using Personas to Develop Awesone Experiences", 2017.
- [57] K. Harris y K. Bueltmann, "Minimum Viable Product Making MVP the MVP of your Project".
- [58] B. K. Martens, "Contingency and Choice: The Implications of Matching Theory for Classroom Instruction", 1992.
- [59] J. Arnau Gras, "Utilización de Modelos Matemáticos en Psicología", 2007.

Anexos

Anexo #1: Cuestionario de Estilo de Aprendizaje

Confío plenamente en mi capacidad para aprender el material esencial del curso.

A menudo me descubro divagando durante las lecciones.

Me resulta gratificante colaborar con otros estudiantes en el aula.

El contenido del curso proporciona información fidedigna y precisa.

Siento la necesidad de competir con mis compañeros por la atención del docente y aclarar mis inquietudes antes que ellos.

Estoy generalmente predispuesto a aprender sobre el contenido impartido en clase.

Mis reflexiones sobre el contenido suelen ser tan válidas como las presentadas en el material didáctico.

Las actividades en el aula me resultan monótonas.

Disfruto debatiendo ideas relacionadas con el material del curso con mis compañeros.

Estimo que los docentes tienen un conocimiento preciso sobre lo esencial a aprender en un curso.

Siento la necesidad de competir con mis compañeros por obtener la calificación más alta.

Considero valioso asistir a las clases presenciales.

Estudio aquello que es relevante para mí, no necesariamente lo que el docente destaca como esencial.

Raramente me siento entusiasmado con el contenido presentado en clase.

Valoro escuchar las opiniones de mis compañeros sobre los temas discutidos en clase.

Los docentes deberían especificar claramente sus expectativas hacia los estudiantes.

Durante las discusiones en clase, siento que debo competir con mis compañeros para que mis ideas sean consideradas.

Aprendo más del curso en el aula que en mi hogar.

Gran parte del contenido impartido ya lo he aprendido de manera autónoma.

A menudo siento que debo asistir a clases, incluso si no es de mi interés.

Considero que los estudiantes pueden beneficiarse discutiendo sus ideas entre sí.

Procuro realizar mis tareas siguiendo estrictamente las indicaciones del docente.

Los estudiantes deberían adoptar una actitud competitiva para destacar académicamente.

Tenemos la responsabilidad de aprovechar al máximo las herramientas y recursos educativos proporcionados en clase.

Soy capaz de identificar de manera autónoma los temas relevantes del material de estudio.

Me resulta desafiante mantener la atención durante una clase.

Prefiero prepararme para los exámenes en compañía de otros estudiantes.

Los docentes que permiten total libertad a los estudiantes no están cumpliendo adecuadamente su función.

Me agrada resolver cuestiones o problemas antes que mis compañeros.

Las actividades en clase suelen ser interesantes.

Me gusta formular mis propias interpretaciones sobre los temas presentados en clase.

En ocasiones, me siento desmotivado para aprender durante las clases presenciales.

Las perspectivas de mis compañeros me ayudan a comprender mejor el material del curso.

Los estudiantes deberían ser supervisados por los docentes en todos los proyectos académicos.

Para destacar, es necesario superar a los demás estudiantes.

Me esfuerzo por participar activamente en todas las facetas del curso.

Tengo mis propias visiones sobre cómo deberían ser impartidas las clases.

En la mayoría de mis asignaturas, estudio lo justo y necesario para aprobar.

Un aspecto fundamental de la formación académica es aprender a interactuar con otros.

Mis notas reflejan casi todo lo que el docente ha mencionado en clase.

Los estudiantes se perjudican académicamente al compartir sus apuntes e ideas.

Realizo las tareas asignadas independientemente de si me resultan interesantes.

Si un tema me resulta atractivo, suelo investigar por mi cuenta.

Habitualmente, intensifico mi estudio previo a los exámenes.

El aprendizaje debería ser un esfuerzo conjunto entre estudiantes y la institución educativa.

Prefiero clases que estén estructuradas de manera organizada.

Para sobresalir en clase, intento realizar las tareas mejor que mis compañeros.

Suelo abordar las tareas en cuanto son asignadas.

Prefiero trabajar en proyectos académicos de manera individual.

Desearía que los docentes no me prestaran atención en clase.

Permito que otros estudiantes utilicen mis apuntes cuando lo solicitan.

Los docentes deberían especificar claramente el contenido que será evaluado en un examen.

Me interesa conocer el rendimiento de mis compañeros en tareas y exámenes.

Realizo tanto las tareas obligatorias como las opcionales.

Ante una duda, intento resolverla por mi cuenta antes de buscar asistencia.

Durante las clases, suelo conversar o bromear con guienes están cerca de mí.

Disfruto participando en grupos pequeños durante las clases.

Considero que las anotaciones del docente en el pizarrón son de gran utilidad.

Consulto a mis compañeros sobre las calificaciones obtenidas en exámenes y tareas.

En mis clases, suelo sentarme en las primeras filas del aula.

Anexo #2: Cuestionario de Inventario de Estilos de Enseñanza

Tengo confianza en mi habilidad de aprender material importante del curso

A menudo me encuentro soñando despierto (a) durante clases.

Me gusta mucho trabajar con otros estudiantes en clases.

El material del curso tiene información válida y veraz.

Me parece necesario competir con otros estudiantes por la atención del profesor y resolver mis dudas antes que los demás.

Usualmente estoy dispuesto a aprender sobre el contenido dado en clase.

Mis pensamientos sobre el contenido usualmente son tan buenos como los que aparecen en el material.

Las actividades en el salón de clases me parecen aburridas.

Disfruto discutir ideas sobre el material de la clase con otros estudiantes.

Considero que los profesores saben exactamente lo que es importante aprender en un curso.

Siento que es necesario competir con otros estudiantes por la mejor nota

Siento que vale la pena atender las sesiones de clases presenciales.

Yo estudio lo que es importante para mí y no siempre lo que el profesor diga que es importante.

Muy raras veces me emociona el contenido explicado en clase.

Disfruto escuchar lo que otros estudiantes piensan sobre los temas discutidos en el salón de clases.

Los profesores deberían decir claramente lo que esperan de los estudiantes.

Cuando hay discusiones en clase, debo competir con los otros estudiantes para que mis ideas sean escuchadas.

Aprendo más del curso en el aula de clases que en casa.

La mayoría de los temas explicados los aprendí por mi cuenta.

Generalmente siento que tengo que asistir a clases, aunque no quiera.

Pienso que los estudiantes pueden aprender más discutiendo sus ideas entre ellos.

Intento hacer mis tareas siguiendo al pie de la letra las instrucciones del profesor.

Los estudiantes deben volverse competitivos para tener un buen rendimiento en la escuela.

Los estudiantes tenemos la responsabilidad de sacarle el mayor provecho a las herramientas y recursos educativos que se nos dan en clases.

Puedo identificar por mí mismo, los temas importantes del material de clases.

Prestar atención durante una sesión de clases es difícil para mí.

Me gusta estudiar para exámenes con otros estudiantes.

Profesores que dejan que los estudiantes hagan lo que quieran, no están realizando su trabajo.

Me gusta obtener las respuestas de problemas o preguntas antes de que alguien más pueda.

Las actividades del salón son generalmente interesantes.

Me gusta desarrollar mis propias ideas sobre los temas dados en clases.

Me he rendido de intentar aprender durante las clases presenciales.

Las ideas de otros estudiantes me ayudan a entender el material del curso

Los estudiantes deben ser supervisados por profesores en todos los proyectos del curso.

Para estar un paso más adelante, es necesario pasar por encima de los demás estudiantes.

Yo trato de participar lo más posible en todos los aspectos del curso.

Tengo mis propias ideas de cómo las clases deberían ser presentadas.

En la mayoría de mis materias estudio solo lo suficiente para pasar.

Una parte importante de tomar materias es aprender a convivir con otras personas.

Mis apuntes contienen casi todo lo que el profesor ha dicho en clases.

Los estudiantes pierden la oportunidad de una nota cuando comparten sus apuntes e ideas.

Completo las asignaciones de la materia sin importar si me parecen interesantes o no.

Si me gusta un tema, usualmente investigo por mi cuenta.

Normalmente estudio intensamente antes de los exámenes.

Aprender debería ser un esfuerzo cooperativo entre los estudiantes y la escuela.

Prefiero sesiones de clases que estén altamente organizadas.

Para sobresalir en clases, trato de hacer las asignaciones mejor que los demás estudiantes.

Yo completo las asignaciones apenas son entregadas.

Yo prefiero trabajar en proyectos relacionados con las clases (Estudiar para exámenes, hacer tareas, étc.) por mi cuenta.

Me gustaría que los profesores me ignoraran en clases.

Dejo que los otros estudiantes tomen prestados mis apuntes cuando los piden

Los profesores deberían decirles a los estudiantes exactamente qué material se va a cubrir en un examen.

Me gusta saber el rendimiento de los otros estudiantes en las asignaciones y exámenes.

Yo completo las asignaciones que son para nota, tanto como las que son opcionales.

Cuando no entiendo algo, trato de averiguar por mi cuenta antes de buscar ayuda.

Durante clases, tiendo a hablar o bromear con las personas que están cerca de mí.

Participar en grupos pequeños de clases es algo que disfruto.

Yo pienso que las anotaciones e indicaciones del profesor en el tablero son de mucha ayuda.

Le pregunto a otros estudiantes en clases qué notas recibieron en los exámenes y asignaciones.