BCA/D-17

1230

LOGICAL ORGANIZATION OF COMPUTER-I BCA-114

Time: Three Hours] [Maximum Marks: 80 Note: Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory. 1. (a) How many control signals are needed for 8:1 and 16:1 MUX ? 2 Prove that NAND is universal gate. (b) 2 State and prove DeMorgan's laws. (c) 4 Make TT for cyclic code and excess-3 code from 0 (d) to 9. Solve using Boolean Algebra: (e) a + a.b = a(i) $a + \overline{a}.b = (a+b).$ (ii) Unit I Perform conversions: 2. (a) $(13.625)_{10} \rightarrow ()_2$ 2 \rightarrow ()₁₆ (2-01/6) L-1230 P.T.O.

		(ii) $(X)_4 = (1234)_4$
		(iii) $(101111001101)_2 \rightarrow ()_{16}$ 2
		(iv) $(3A37) \to ()_2$
		\rightarrow () ₈
	(b)	What is Error Detection and correction coding
		scheme ?
	(c)	Write abbreviation for ASCII, EBCDIC, BCD,
		DRAM.
3.	(a)	Perform using 2's compliment: 6
		−9 +32 · · · · −6
		<u>–10</u> <u>–17</u> <u>–7</u>
	(b)	Explain concept of floating point representation
		using condition of overflow and underflow. 10
		Unit II
4.	(a)	Define Boolean Algebra and write its postulates. 8
	(b)	Solve using boolean algebra:
		$XY + \overline{X}Z + YZ = XY + \overline{X}Z$
		$(X + Y) (Z) (\overline{\overline{Y} + XZ}) = \overline{X}YZ$
5.	(a)	Draw and label 4 var K-Map. 4
	(b)	Make Venn diagram for OR and AND Gates. 4

(c) Solve using K-map: $Z = \sum 0, 2, 8, 10, 12 + \sum_{\phi} 4, 6, 14, 15$ $Z = \sum 0, 1, 4, 10, 15 + \sum_{\phi} 5, 11, 14$ Unit III Define and explain the following gates: (a) NOR, XOR, NOT. Define and explain the following gates using 3-(b) variables TT: AND, NAND, OR. 6 (c) Make circuit: $(X\overline{Y} + \overline{X}Y)CD + (\overline{X}\overline{Y} + XY)\overline{CD}$

Explain combinational logic, its characteristics and design procedures.

Unit IV

- 8. (a) Make 4: 1 MUX.
 (b) Draw code convertor from 8421 to 2421.
 9. (a) Make full-adder using K-map.
 - (b) Draw 4 to 10 line decoder. 16

(2-01/7) L-1230

3

4,200