(104031) אינפי 1מ' | תרגול 18 - יוליה

שם: איל שטיין

December 28, 2022

נושאי השיעור: רציפות, משפט ערך הביניים, משפט ווירשטראס

נושא ראשון - סיווג נקודות אי-רציפות:

$$f\left(x
ight)=egin{cases} rac{(x+\pi)|x|}{\sin(x)}&\sin\left(x
ight)
eq0 & \sin\left(x
ight)=0 \end{cases}$$
תרגיל 1. תהי

[-4,4] בקטע של f בקטע אי-הרציפות את נקודות את פאו י

פתרון:

- \mathbb{R} ומוגדרת בכל ומוגדרת פונקציה אלמנטרית א $|x|=\sqrt{x^2}$ אז הפונקציה אלמנטרית כי ו $|x|=\sqrt{x^2}$ אז הפונקציה אלמנטרית אלמנטרית יא
 - . הגדרתה בכל תחום הגדרתה $\frac{(x+\pi)|x|}{\sin(x)}$ היא אלמנטרית לכן הפונקציה הגדרתה
 - . או היא ולכן היא אלמנטרית אל $f\left(x\right)$ אז $\sin\left(x\right)\neq0$ אם אב $x\in\left[-4,4\right]$ אלמנטרית לכל -
 - $\sin\left(x
 ight)=0$ כלומר, נקודות אי-הרציפות יכולות להיות רק כאשר
 - . $x=0\pm\pi$ בתחום שלנו רק באשר $\sin{(x)}=0$
 - נחלק לשלושה מקרים:
 - $x=-\pi$:מקרה ראשון
 - |x|=-x ולכן x<0 יתקיים $+\pi$ א בסביבה של
 - : מתקיים $x=-\pi$ של הנקובה הנקובה $x=-\pi$

$$f(x) = \frac{(x+\pi) \cdot (-x)}{\sin(x)}$$

: נשתמש בזהות $\sin\left(x+\pi\right)=-\sin\left(x\right)$ ונקבל

$$f(x) = -\frac{(x+\pi)}{\sin(x+\pi)} \cdot (-x)$$

$$f(x) = \frac{(x+\pi)}{\sin(x+\pi)} \cdot (x)$$

: נסתכל על הגבול

$$\lim_{x\to -\pi} \overbrace{\frac{x+\pi}{\sin{(x+\pi)}}}^{\to 1} \cdot x$$

בגלל שקיבלנו גבול מפורסם, מתקיים:

$$\lim_{x \to -\pi} x = -\pi$$

- $-\pi = \lim_{x \to -\pi} f(x) \neq f(-\pi) = 0$ כלומר •
- לכן לפי הגדרת אי רציפות סליקה (הגבול היים בנקודה אך א שווה לערך הפונקציה בנקודה), קיימת אי רציפות סליקה לכן לפי $x=-\pi$ ב
 - $x \to 0$:מקרה שני
 - $x \to 0^+$ *
 - |x|=x ולכן x>0 .

$$\lim_{x\rightarrow0^{+}}f\left(x\right) =\lim_{x\rightarrow0^{+}}\left(x+\pi\right) \overbrace{\frac{x}{\sin\left(x\right) }}^{\rightarrow1}=\pi$$

 $x \to 0^-$

=|x|=-x ולכן x<0 .

$$\lim_{x\rightarrow0^{-}}f\left(x\right)=\lim_{x\rightarrow0^{-}}\left(x+\pi\right)\cdot\frac{-x}{\sin\left(x\right)}=-\pi$$

- ושני הגבולות קיימים. $\lim_{x \to 0^{-}} f\left(x
 ight)
 eq \lim_{x \to 0^{+}} f\left(x
 ight)$ ושני הגבולות קיימים. *
- . אי רציפות קפיצה (שני הגבולות החד-צדדיים קיימים אך לא שווים), יש בx=0 אי רציפות קפיצה \cdot
 - $x=\pi$:מקרה שלישי
 - |x|=x אז x>0 מכיוון

$$\lim_{x \to \pi} f(x) = \lim_{x \to \pi} \underbrace{\frac{x \cdot (x + \pi)}{x \cdot (x + \pi)}}_{x \to 0}$$

- . מכיוון שהמכנה שואף לאפס מתקיים שהגבול לא סופי ולכן הוא לא קיים,
- בנוסף נשים לב שמצד ימין הגבול הוא ∞ ומצד שמאל הגבול הוא ∞ , כלומר הגבולות החד צדדיים לא קיימים במובן . בנוסף נשים לב שמצד ימין הגבול הוא הצר.
 - לכן אי הרציפות היא מסוג "עיקרית" (לפחות אחד מהגבולות החד-צדדיים לא קיים).
- לסיכום:
- יש אי רציפות מסוג עיקרית $x=\pi$ -
- יש אי רציפות מסוג סליקה $x=-\pi$ כאשר
 - יש אי רציפות מסוג קפיצה כאשר x=0

 $f\left(x
ight) = \left[|x|
ight] - |[x]|$ בור: עבור: על נקודות את כל נקודות את כל מצאו וסווגו את פתרון:

- $[x] \geq 0$ ולכן גם ואכן |x| = x מתקיים $x \geq 0$ לכל
 - |[x]| = [x] ואז יתקיים –
- $f\left(x
 ight)=\left[x
 ight]-\left[x
 ight]=0$ מתקיים $x\geq0$ אם אם *
 - . כלומר הפונקציה $f\left(x\right)$ קבועה ולכן רציפה
 - : נחלק לשני מקרים x < 0
 - $(n \in \mathbb{N} \$ כאשר x = -n) שלם x .1
 - ואז –

$$f(-n) = [|-n|] - |[-n]|$$

$$f\left(-n\right) = [n] - |-n|$$

$$f(-n) = [n] - |n| = 0$$

- $f\left(x\right)=0$ שלם יתקיים *
 - $x \notin \mathbb{Z}$ לא שלם, כלומר $x \notin \mathbb{Z}$.2
- -n-1 < x < -n ע כך ש $n \in \mathbb{N}$ אז קיים
 - |x| = -n 1 במקרה כזה –

$$f(x) = [|x|] - |[x]| = [|x|] - |-n - 1|$$

|x|=-x מתקיים x<0 ולכן:

$$f(x) = [-x] - |-n - 1|$$

[-x] = n נקבל: הגדרת "עיגול לשלם" ולכן: n < -x < n+1 ולכן: יומכיוון ש

$$f\left(x\right) = n - |n+1|$$

$$f(x) = n - n - 1 = -1$$

$$f(x) = -1$$

 $f\left(x
ight)=-1$ פלומר כאשר x לא שלם מתקיים $f\left(x
ight)=0$ וכאשר x שלם מתקיים •

כי x=0 ב שימים ושונים) ב סיימים מסוג קפיצה (גבולות הד-צדדיים היימים ושונים) ב

$$\lim_{x \to 0^+} f\left(x\right) = 0$$

$$\lim_{x \to 0^{-}} f\left(x\right) = -1$$

(גבול הפונקציה לערך הער אים אין קיים האר (גבול האר כאשר איx=-nלכל לכל הפונקציה אי ומצאנו - x=-nלכל לכל הפונקציה אי

x=-n ולכן: x=-1 בכל סביבה נקובה של t=-1 ולכן:

$$\lim_{x \to (-n)} f\left(x\right) = -1$$

x=-n הוא בנקודה אך ערך הפונקציה בנקודה .

$$0 = f\left(-n\right)$$

י ולכן:

$$\lim_{x \to (-n)} f\left(x\right) \neq f\left(-n\right)$$

:נושא שני - משפט ערך הביניים

משפט 3. משפט ערך הביניים:

- [a,b] רציפה בקטע $f\left(x
 ight)$ תהי
- $f\left(c
 ight)=0$ כך ש כך כך כלומר הסימנים שלהם הפוכים) אז קיימת (כלומר הסימנים שלהם הסימנים שלהם (כלומר הסימנים שלהם הפוכים) אז קיימת

הערה 4. נשתמש בעיקר בניסוח הראשון.

תרגיל 5.

: הראו שקיים פיתרון למשוואה הבאה

$$e^x = 3x \tag{1}$$

פתרון:

- $f\left(x
 ight) =e^{x}-3x$ נגדיר פונקציה •
- . רציפה בכל f כי סכום פונקציות אלמנטריות הוא הוא הם פונקציה אלמנטרית (ולכן f רציפה בכל תחום הגדרתם).
 - f(0) = 1 > 0 מתקיים x = 0 עבור
 - f(1) = e 3 < 0 מתקיים x = 1 –
- בקטע [0,1] מתקיימים תנאי משפט ערך הביניים (הפונקציה רציפה בכל $\mathbb R$ ובפרט ב-[0,1] ויש ערכי פונקציה עם סימנים הפוכים)
 - $f\left(c
 ight)=0$ ערך כך לפי משפט ערך הביניים קיימת ערך אולכן ניי אולכן א
 - $e^{x}=3x$ מתקיים x=cשעבור קיבלנו $f\left(c\right)=e^{x}-3x=0$ מתקיים יומכיוון י

:תרגיל 6. הראו שקיים פתרון למשוואה הבאה

$$\tan\left(x\right) = x + 1\tag{2}$$

פתרון:

- $f(x) = \tan(x) x 1$ נגדיר
- . אך אנחנו צריכים קטע סגור בשביל להשתמש במשפט ערך הביניים. אל $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ אך אנחנו אונקציה פונקציה מוגדרת
- $\lim_{x \to -\frac{\pi}{2}^+} \tan{(x)} = -\infty$ מתקיים $x \to -\frac{\pi}{2}^+$ וכאשר $\lim_{x \to \frac{\pi}{2}^-} \tan{(x)} = \infty$ מתקיים $x \to \frac{\pi}{2}^-$ מתקיים שכאשר אנחנו יודעים שכאשר $x \to \frac{\pi}{2}^-$

- : חסום גבולות אבון לפי לפי אפי הסום בקטע $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ אבולות אבולות א ומכיוון א
 - $\lim_{x \to -\frac{\pi}{2}^+} f(x) = -\infty$ גם י

$$\lim_{x \to \frac{\pi}{2}^-} f(x) = \infty$$
 וגם ·

- $f\left(a
 ight) < 0$ כך ש כך $-rac{\pi}{2} < a < 0$ המוגדרת a המודה לכן קיימת נקודה
 - $0 < f\left(b
 ight)$ כך ש כל $0 < b < \frac{\pi}{2}$ המוגדרת *
- : מתקיים ש-f מתקיים ש-f רציפה (כי f היא סכום אלמנטריות) ולכן לפי משפט ערך הביניים $[a,b]\subset \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
 - $f\left(c
 ight)=0$ כך ש כך כך המוגדרת $c\in\left(a,b
 ight)$ המוגדרת
 - $f\left(x
 ight)= an\left(x
 ight)-x-1$ להיות להיות את הגדרנו את הגדרנו
 - $f(c) = \tan(x) x 1 = 0$ והראנו –
 - . x=c אומרת שקיים פיתרון למשוואה כאשר *

f(x):[0,1] o [0,1] פיתרון למשוואה: הראו שקיים פיתרון למשוואה

$$e^{f(x)} = e \cdot x - x + 1 \tag{3}$$

פתרון:

- $g(x) = e^{f(x)} e \cdot x + x 1$ נגדיר •
- . ביפה פונקציה הוא פונקציה וסכום של רציפות הוא פונקציה היא הרכבה $e^{f(x)}$ כי [0,1] כי מוגדרת ורציפה $g\left(x
 ight)$
 - [0,1] הוא $f\left(x
 ight)$ כי הטווח של $0\leq f\left(x
 ight)\leq 1$ מתקיים $x\in\left[0,1\right]$ לכל
 - ולכן *

$$e^0 \le e^{f(x)} \le e^1$$

$$1 \le e^{f(x)} \le e$$

$$g\left(0
ight)=\overbrace{e^{f\left(0
ight)}}^{\geq 1}-1\geq 0$$
 נקבל $x=0$ אם ניקח י

נקבל
$$x=1$$
 נקבל י

$$g(1) = e^{f(1)} - e + 1 - 1$$

$$g(1) = e^{\frac{\leq e}{f(1)}} - e \leq 0$$

- אם פיתרון למשוואה. $g\left(1\right)=0$ או $g\left(0\right)=0$ אם $g\left(0\right)=0$ אם יימנו פיתרון למשוואה.
 - $g\left(1\right)<1$ ים ו- $g\left(0\right)>0$ אז ו-, $g\left(0\right)\neq0$ ו-. אחרת, כלומר אם י
- . ווהו פיתרון $g\left(c\right)=0$ ער כך הביניים ולכן קיימת נקודה (0,1) מתקיימים תנאי משפט ערך הביניים ולכן היימת נקודה ($c\in(0,1)$

. רציפה f:[a,b] o [a,b] רציפה f:[a,b] o [a,b]

"ע"ל: הוכיחו כי קיימת נקודה $c \in [a,b]$ כך ש $c \in [a,b]$ (נקראת גם "נקודת שבת" כי שום דבר לא זז בה. היא "שובתת") ב"ל: פתרון:

- $g\left(x\right)=f\left(x\right)-x$ נגדיר פונקציה •
- [a,b] איא סכום של פונקציות רציפות ולכן היא מוגדרת ורציפה בקטע $g\left(x
 ight)$
 - $g\left(a\right)=f\left(a\right)-a$ יתקיים x=a -
- $a \leq f\left(x
 ight) \leq b$ הוא f הפונקציה של הטווח של $a \leq f\left(a
 ight)$ בי אנחנו יודעים ש \star
 - $g\left(b
 ight)=f\left(b
 ight)-b$ עבור x=b יתקיים –
- $a \leq f\left(x
 ight) \leq b$ הוא הפונקציה של הטווח כי הטווח ל היא היא $f\left(b
 ight) \leq b$ * אנחנו יודעים א
- $g\left(b
 ight)=f\left(b
 ight)-b=0$ או $g\left(a
 ight)=f\left(a
 ight)-a=0$ אז סיימנו כי $g\left(b
 ight)=0$ או $g\left(a
 ight)=0$ אם
 - g(b) < 0 ו- g(a) > 0 אחרת,
 - . מתקיימים תנאי ערך הביניים [a,b] א ובקטע *
 - $g\left(c\right)=0$ כך ש כך כל היימת יולכן קיימת י
 - g(x) = f(x) x : ומכיוון שהגדרנו את g(x) = f(x) x
 - $g(c) = 0 = f(c) c \cdot$
 - f(c) = c : נעביר אגפים ונקבל

הערה 9. פונקציה יכולה לקיים את קיום הנקודה $c \in (a,b)$ במשפט ערך הביניים גם בלי להיות רציפה. לכן משפט ערך הביניים הוא לא משפט "אם ורק אם".

תרגיל 10.

 $\left|f\left(x
ight)-x^{3}
ight|\leq x^{2}$ מתקיים $x\in\mathbb{R}$ אלכל $f:\mathbb{R}
ightarrow\mathbb{R}$ תהי

."על" $f\left(x
ight)$ צ"ל:

פתרון:

- $y_0\in\mathbb{R}$ יהיullet •
- f נוכיח שקיים f כך שf כך שf כך שf כך שf כך יעל").
 - $g(x) = f(x) y_0$ נגדיר פונקציה –
 - . היא רציפה בכל $\mathbb R$ כי היא סכום של פונקציות רציפות $g\left(x
 ight)$

- לפי הנתון מתקיים:

$$x^3 - x^2 < f(x) < x^2 + x^3 \setminus -y_0$$

$$x^{3} - x^{2} - y_{0} \le \underbrace{f(x) - y_{0}}_{=g(x)} \le x^{2} + x^{3} - y_{0}$$

$$x^{3} - x^{2} - y_{0} \le g(x) \le x^{2} + x^{3} - y_{0}$$

- $\lim_{x o\infty}g\left(x
 ight)=\infty$ מכיוון ש הפיצה גם , $\lim_{x o\infty}\left(x^3-x^2-y_0
 ight)=\infty$.
- $\lim_{x \to -\infty} g\left(x
 ight) = -\infty$ הפיצה משפט ולכן ו $\lim_{x \to -\infty} x^2 + x^3 y_0 = -\infty$. באותו אופן
 - : נמצא שתי נקודות שייצרו קטע סגור
 - $0>g\left(a\right)$ כך ש 0>a נקודה *
 - $0 < g\left(b
 ight)$ כך ש 0 < b נקודה *
 - . כעת בקטע ערך הביניים מתקיימים תנאי משפט ערך הביניים. [a,b]
 - $g\left(c\right)=0$ כך ש כ $c\in\left(a,b\right)$ לכן קיימת .
 - $f\left(c
 ight)=y_{0}$ כך ש $c\in\left[a,b
 ight]$ קיימת קיימת $y_{0}\in\mathbb{R}$ ולכן לכל

נושא שלישי - משפט ווירשטראס:

משפט 11. משפט ווירשטראס:

- : אזי: [a,b] אזי: רציפה בקטע f
 - .טע. חסומה בקטע. f
- .2 קיימים ל-f מינימום ומקסימום גלובלי.

 $\lim_{x \to a^+} f\left(x
ight) = L$ וו $\lim_{x \to \infty} f\left(x
ight) = K$ כך שקיימים (a, ∞) כך אנימים ב- a, ∞ רציפה בf חסומה בf חסומה ב-פתרון:

 $g\left(x
ight) :\left[a,\infty
ight)
ightarrow \mathbb{R}$ כך שullet נגדיר פונקציה

$$g(x) = \begin{cases} f(x) & x > a \\ L & x = a \end{cases}$$

: כעת –

$$L = g\left(a\right) = \lim_{x \to a^{+}} g\left(x\right) = \lim_{x \to a^{+}} f\left(x\right)$$

- $[a,\infty)$ ביפה ולכן היא התחום התחום מתנהגת כמו היא תנהגת $f\left(x
 ight)$ היא התחום היא א לכן $g\left(x
 ight)$ לכן \star
 - $\lim_{x \to \infty} g\left(x
 ight) = \lim_{x \to \infty} f\left(x
 ight) = K$ מכיוון שלפי הגדרת ולפי חלפי הנתון מתקיים מכיוון שלפי הגדרת ו
 - : מתקיים x>b כך שלכל b>a כך קיימת ($\varepsilon=1$ מתקיים -

$$K - 1 < g\left(x\right) < K + 1$$

- . בקטע חסומה היא חירשטראס ווירשטראס (1) ולכן לפי פעיף [a,b] ולכן רציפה ב- $g\left(x\right)$
 - $\left|g\left(x
 ight)
 ight| < M_{1}$ מתקיים $x \in \left[a,b
 ight]$ כך שלכל $M_{1} > 0$ מתקיים
 - $M = max \left\{ M_1, \left| K 1 \right|, \left| K + 1 \right| \right\}$ נסמן
 - :ואז לכל x>a יש שני מקרים
 - $x \leq b$ אם .1

$$\left| f\left(x
ight)
ight| = \left| g\left(x
ight)
ight| < M_1 \leq M$$
 אז (א)

a < x < b סומה אם f(x) i.

- b < x אם .2
 - (א) אז

$$K - 1 < \overbrace{f(x)}^{=g(x)} < K + 1$$

:יתקיים M יתקיים (ב)

$$-M \le |K-1| \le K-1 < \overbrace{f(x)}^{=g(x)} < K+1 \le |K+1| \le M$$

a < b < x סטומה אם f(x) i.

. חסומה f-ש מתקיים ש $x \in (a, \infty)$ חסומה •

תרגיל 13. - לפתור לבד

. תהי $f:\mathbb{R} o \mathbb{R}$ רציפה $f:\mathbb{R} o \mathbb{R}$

 $\lim_{x \to \infty} f\left(x\right) = \lim_{x \to -\infty} = \infty$: נתוו

 \mathbb{R} -ב מוחלט מינימום מינימו כי ל-f קיים מינימום צ"ל:

רעיון ההוכחה:

- : מינימום שיש לפונקציה יתקיים שיש לפונקציה מינימום פנימום אז לפי שפט דירותי שבו לפונקציה מינימום י
 - $f\left(x
 ight)>c$ אז מתקיים א x>b שאם שאם b קיימת קיימת $f\left(0
 ight)=c$ אם הסמן –
- $f\left(x
 ight)>c$ יתקיים אינסוף אינסוף, כלומר קיימת נקודה a כך אינסוף אינסוף אינסוף אינסוף אינסוף אינסוף אינסוף לגבי אינסוף אינסוף אינסוף לגבי אינסוף אינסוף לגבי אינסוף לגבי אינסוף לגבי אינסוף אינסוף לגבין אינסוף אינסו
 - נמשיך בתרגול הבא.