

Document title
Fundational principles
Date
2023-05-09
Author
Jerker Delsing
Contact
jerker.delsing@ltu.se

Document type GSoSD-F Version 4.6.1 Status DRAFT Page 1 (10)

Fundational principles Generic System of Systems Description -

Abstract

This is the template for System Description (SysD document) according to the Eclipse Arrowehad documentation structure.

Version 4.6.1 Status DRAFT Page 2 (10)

Contents

1	Overview 1.1 Significant Prior Art	5 6
2	Services 2.1 Produced service	8 8
3	Security 3.1 Security model	9 9
	Revision History 4.1 Amendments	10 10

Version
4.6.1
Status
DRAFT
Page
3 (10)

1 Overview

This document describes the fundational principels for Eclispe Arrowhead.

The rest of this document is organized as follows. In Section 1.1, we reference major prior art capabilitites of the system. In Section 1.2, we the intended usage of the system. In Section ??, we describe fundmental properties provided by the system. In Section 1.4, we describe de-limitations of capabilitites ofn the system. In Section 2, we describe the abstract service functions consumed or produced by the system. In Section 3, we describe the security capabilitites of the system.

Version 4.6.1 Status DRAFT Page 4 (10)

1.1 Significant Prior Art

Eclipse Arrowhead has its roots in service oriented arcitecture, SOA, and its use for primarily far edge, edge and fog automation and digitalsiation with interoperability to the cloud level.

A set of EU projects have built the foundation for whats now Eclipse Arrowhead, current version 4.6.1 with the specifications for v5.0 in the works. These projects are:

- Socrades
- IMC-AESOP
- · Arrowhead
- Productive4.0
- · Arrowhead Tools
- AIMS5.0
- Arrowhead fPVN

A couple of basic architectture ideas has been around since the prior art projects:

- · Socrades:
 - Hard real time control using internet protocols
- · IMC-AESOP:
 - Objective to be capable of implementing real world SCADA and DCS systems.
 - The local cloud concept was born. Local clouds are self contined for its intended operation enabling local security, protection and if equiped with TDMA network MAC real time properties can be achived.
 - System are self contained for its intended operation, e.g. owning and responsible for its own data storage and compitational resources.
 - Arrowhead:
 - Objective to be interoperability to legacy and internet protocols and being Open Source.
 - * Basic SOA foundation established, Look-up, Late binding and Lossely coupled.
 - * Mandatory core systems defined: ServiceRegistry, Orcehstration, Authorisation
 - * Interoperability enabled through translation dynamically instatiated when needed.
 - * v3.3 released as open source
 - Productive4.0:
 - * Arrowhead Framework becomes Eclipse Arrowhead architecture and implementation platform
 - * Extending the implementation platform teh Arrowhead technology stack is defined
 - * v4.5 released
 - Arowheead Tools
 - * Objective to reduce engineereing cost with 20-50%
 - * Extending the Eclipse Arrowehad technology stack
 - * v4.6 released
 - * Achived 30-95% engineering cost and time reduction in 28 industrial use cases along the extended IEC 81346 engineering process.

The current comprehensive high level architecture description of Eclipse Arrowhead architecture is the book "IoT Automation - Arrowhead framework" [?]. The currently released core systems and associated documentations are avialable at www.github.com/eclipsearrowhead.

Version 4.6.1 Status DRAFT Page 5 (10)

Figure 1: The Eclipse Arrowhead technology stack an dassoicated microsystems, released, relase candidates and protoypes.

1.2 Eclispe Arrowhead architecture philophosy

The architecture philiposy is based on the following key technology decission and objectives:

- · Key technology decisions
 - A fully distributed microservice SOA approach shall be used
 - Support for design and run time engineering
 - A set of microsystems, the technology stack cf. Figure 2, shall be provided enabling the implementation of automation and digitalisation solutions
 - * Three core microsystems considered as primary and almost mandatory, ServiceRegistry, Orcehstration, Authorisation, enabling Look-up, Late binding and Lossely coupling.
 - * A set of support microsystem will be defined and implemented covering the technology stack cf. Figure enabling implementation automation architectures like ISA-95 and RAMI4.0. 2.
 - Basic microsystem properties: A micosystem can be stateless or statefull. If statefull the microsystem
 is responsible for its own data stoarage perferable using a database and a well established/standardised datamodel.
 - The local cloud concept shall be used providing segmentation and protection of functionall properties enabling differentieade security, safety, and real time properties within a solution architecture with managed access into a segment and between segements.
 - Network technology agnostic, allowing for different network properties inside different local clouds.
 - Support for multipe strategy direction. A strategy directions may be: Security, LifeCycle, Maintenance, Business, Audit, Monitoring, BusinessAdminstration, BusinessModels. This will also require ways of addressing interdependecies between the various strategy directions.
 - Interoperability support at Service level shall be provided regrding: SOA, IP and legacy protocols, encodings, compressions, security, data models, trough translators or dedicated adaptors. For data model interopeability between major standards like e.g. ISO10303, ISO 15926, IEC 81346 are prioritised.

pression,data encryption and data enco d, e.g CoAP, UDP, EXI, DTLS and XML.

- Security shall be supported at service exchange level with authentication, authorisation and audit.
 Security at finer granularity that service level is being addressed.
- Secure on-boarding: On-boarding based on authentication of devices, microsystems and microservices shall be supproted.
- A documentation structure has been defined, cf. Figure ??.

Black box Design

Paystern of systems Description - LecalCloud Design

Id = "2" | The SCOL describes the mini fundocellities and the provider exhibitation of the SCOL It all mainly letter or 19 to 1

Figure 2: The Eclipse Arrowhead documentation structure.

1.3 Ecllipse Arrowhead core systems

Narrative describe system functionalities and properties (no implmentation details) like e.g.:

- 1.3.1 Functional properties of the system
- 1.3.2 Configuration of system properties
- 1.3.3 Data stored by the system

Brief overview of data stored to achive the functionality of the system.

Version 4.6.1 Status DRAFT Page 7 (10)

1.3.4 Non functional properties

- security,
- · safety,
- energy consumption,
- latency
- · Power saving properties,

1.3.5 Stateful or stateless

• states preserved, functional and non-functional

1.4 Important Delimitations

Provide delimitations of the provided system. Describe what the system solve and what i does not solve.

Version 4.6.1 Status DRAFT Page 8 (10)

2 Services

This section describes consumed and produced service. In particular, each subsection names a prodiuced or consumed service indicating the different capabilities and associated interfaces of the service. Reference to the appropriate SD document shall be made.

2.1 Produced service

with references to SD and IDD documents

2.2 Consumed services

with references to SD and IDD documents

Version 4.6.1 Status **DRAFT** Page **9 (10)**

Security 3

Overview of security leel chosen for the system The follwoing bullets should be covered

- If the system can be started in un-secure and/or Arrowhead secure mode.
- Handling of Arrowhead compliant and non-compliant X.509 certificates.

Security model

The following points should be described:

- · protocol supported
- · data protection supported
- · system authentication capability supported
- · produced service authorisation checking,
- etc.

For Arrowhead certificate profile see github.com/eclipse-arrowhead/documentation

References

Version 4.6.1 Status DRAFT Page 10 (10)

5 Revision History

5.1 Amendments

Revision history and Quality assurance as per examples below

No.	Date	Version	Subject of Amendments	Author
1	2023-05-08	4.6.1		Jerker Delsing
2				
3				

5.2 Quality Assurance

No.	Date	Version	Approved by
1	2022-01-10	4.6.1	