Analiza III

Sprawdzić, że

$$j \lrcorner F = "e \cdot E + e(v \times B)".$$

Przykład 1. Niech $X=\dot{x}(t)\frac{\partial}{\partial x}+\dot{p}(t)\frac{\partial}{\partial p},~\omega=dx\wedge dp\in\Lambda^2(M),$

$$\Lambda^0 M \ni H = \frac{p^2}{2m} + \frac{1}{2}kx^2.$$

Niech M - rozmaitość, dim M=2. Co oznacza napis

$$x \lrcorner \omega = dH$$
?

$$\left\langle dx, x(t) \frac{\partial}{\partial x} + p(t) \frac{\partial}{\partial p} \right\rangle dp - \left\langle dp, \dot{x}(t) \frac{\partial}{\partial x} + \dot{p}(t) \frac{\partial}{\partial p} \right\rangle dx = dH,$$

a teraz coś takiego:

$$x(t)dp - p(t)dx = \frac{p^2}{m}dp + kx^2dx.$$

To wypluje na wyjściu równania ruchu

$$\frac{dx}{dt} = \frac{p}{m}, \quad \dot{p}(t) = -kx$$
$$m\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -kx.$$

Rozmaitość z brzegiem

Obserwacja:

Niech $I = [0, 1[\subset \mathbb{R}, \text{ (metryka } d(x, y) = |x - y|) \text{ czy } I \text{ jest otwarty w } \mathbb{R}? \text{ } chyba \text{ } nie.$

Niech $I = [0, 1[\subset [0, 2], \, \operatorname{czy} \, I \, \operatorname{jest} \, \operatorname{otwarty} \, \operatorname{w} \, [0, 2]?$ chyba tak.

$$B(0,1) = \{x \in [0,2], \quad d(0,x) < 1\} = [0,1[.$$

Definicja 1.

$$\mathbb{R}_{+}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, x^{m}), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R}, \quad x^{m} \ge 0 \right\},$$

$$\mathbb{R}_{0}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, 0), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R} \right\}.$$

Niech M - rozmaitość, jeżeli atlas rozmaitości M składa się z takich map φ_{α} , że

$$\varphi_{\alpha}(\mathcal{O}) \subset \mathbb{R}_{+}^{m},$$

 $(\mathcal{O} - otwarty \ w \ M)$, $gdzie \ \varphi_{\alpha}(\mathcal{O}) - otwarte \ w \ \mathbb{R}^m_+$, to M nazywamy rozmaitością z brzegiem. Jeżeli $p \in M$ i $\varphi_{\alpha}(p) \in \mathbb{R}^m_0$, to mówimy, że p należy do brzegu M.

 $(brzeg\ rozmaitości\ M\ oznaczamy\ przez\ \partial M)$

Pytanie 1. Co to jest różniczkowalność φ^{-1} , jeżeli dziedzina $\varphi^{-1} \in \mathbb{R}^m_+$, który nie jest otwarty w \mathbb{R}^m ?

Mówimy wówczas tak:

Definicja 2. Niech $U \subset \tilde{U}$, \tilde{U} - otwarty $w \mathbb{R}^m$, U - otwarty $w \mathbb{R}^m$, φ jest klasy \mathcal{C}^r na U, jeżeli istnieje $\tilde{\varphi}$ klasy \mathcal{C}^r na \tilde{U} i $\tilde{\varphi}|_{U} = \varphi$.

Pytanie 2. Czym jest ∂S , jeżeli S - okrąg?

Odp. $\partial S = {\phi}$. Jeszcze takie uzasadnienie:

sześcian $\xrightarrow{\partial}$ boki sześcianu $\xrightarrow{\partial}$ rogi sześcianu,

kula
$$\stackrel{\partial}{ o}$$
 sfera $\stackrel{\partial}{ o}$ $\{\phi\}$.

Obserwacja:

Zbiór ∂M wraz z mapami $\varphi_{\alpha}|_{\partial M}$ i otoczeniami obciętymi do $\mathcal{O}|_{\partial M}$ jest rozmaitością o wymiarze m-1, jeżeli dim M=m.

Analiza III 3

Definicja 3. Niech $p \in \partial M$, $\langle f_1, \ldots, f_{m-1} \rangle$ - baza $T_p \partial M$, wybierzmy orientację na M.

Niech σ - krzywa na M taka, że

$$\varphi_{\alpha}\sigma = (0, \dots, 0, t) \in \mathbb{R}^m_+,$$

niech $\overline{n} = [\sigma]$. Mówimy, że orientacja ∂M jest zgodna z orientacją M, jeżeli orientacja $\langle \overline{n}, f_1, \ldots, f_{m-1} \rangle$ jest zgodna z orientacją M.

Niech M - rozmaitość, $U\subset M$, dim $M=n,\,\omega\in\Lambda^kM,\,\varphi_1:U_1\to T$ - parametryzacja T oraz $\varphi_2:U_2\to T$ - parametryzacja T. Z własności funkcji φ_1 i φ_2 wiemy, że

$$\exists h : \mathbb{R}^n \supset U_2 \to U_1 \subset \mathbb{R}^n \implies \varphi_2 = \varphi_1 \circ h.$$

Wówczas

$$\int_{T} \omega = \int_{U_{1}} \varphi_{1}^{\star} \omega = \int_{U_{2}} h^{\star} (\varphi_{1}^{\star} \omega) \stackrel{?}{=} \int_{U_{2}} (\varphi_{1} \circ h)^{\star} \omega = \int_{U_{2}} \varphi_{2}^{\star} \omega.$$

$$\langle (kL)^{\star} \omega, v \rangle = \langle \omega, (kL)_{\star} v \rangle = \langle k^{\star} \omega, L_{\star} v \rangle = \langle L^{\star} k^{\star} \omega, v \rangle,$$

ale jeżeli $v = [\sigma(t)], v = \frac{d}{dt}\overline{\sigma}$ to

$$(kL)_{\star}v = \frac{d}{dt} \left(k \left(L \left(\overline{\sigma}(t) \right) \right) \right) = k'(L' \cdot \sigma'(t)) = k_{\star}L_{\star}v.$$

Wniosek: całka z formy po rozmaitości nie zależy od wyboru parametryzacji

Lemat Poincare

Mieliśmy $\omega=\frac{ydx}{x^2+y^2}-\frac{xdy}{x^2+y^2}$, wiemy, że $d\omega=0$. **Pytanie:** czy istnieje η taka, że $\omega=d\eta$? Wówczas wiemy, że $d\omega=d(d\eta)=0$.

Obserwacja:

$$\eta = \operatorname{arct} g \frac{x}{y}, \quad d\eta = \frac{1}{1 + (\frac{x}{y})^2} \frac{1}{y} dx - \frac{1}{1 + (\frac{x}{y})^2} \frac{x}{y^2} dy = \omega$$