

CSE 554

Lecture 3: Shape Analysis (Part II)

Fall 2018

Review

- Skeletons
 - Centered curves/surfaces
 - Approximations of medial axes
 - Useful for shape analysis

2D skeletons

Review

Thinning on binary pictures

- Removable pixels (voxels)
 - Whose removal does not alter the object's shape or topology
 - Border, Simple, and not curve-end

- Parallel thinning: topology is lost
- Serial thinning: topology is preserved
 - But result depends on pixel order

Removal pixels

Thinning

Review

- Issues (with thinning on a binary picture)
 - Difficult to write a 3D thinning algorithm
 - E.g., simple voxel criteria, surface-end voxel criteria
 - Skeletons can be noisy
 - Requires pruning

This lecture...

- Thinning on a cell complex
 - One algorithm that works for shapes in any dimensions (2D, 3D, etc.)
 - Integrates pruning with thinning
 - Based on [Liu et al., 2010]

Cells

- Geometric elements with simple topology
 - k-cell: an element at dimension k that can be continuously deformed to a k-dimensional ball
 - 0-cell: point
 - 1-cell: line segment, curve segment, ...
 - 2-cell: triangle, quad, ...
 - 3-cell: cube, tetrahedra, ...

Not a 2-cell

Not a 3-cell

Cells

- The boundary of a k-cell (k>0) has dimension k-1
 - Examples:
 - A 1-cell is bounded by 0-cells
 - A 2-cell is bounded by 1-cells
 - A 3-cell is bounded by 2-cells

(boundary is colored blue)

Cell Complex

Union of cells and cells on their boundaries

- The formal name is CW (closure-finite, weak-topology) Complex
 - Precise definition can be found in algebraic topology books

Cell Complex

Are these cell complexes?

Example Cell Complexes

Polyline (0-,1-cells)

Triangular mesh (0-,1-, 2-cells)

Triangulated polygon (0-,1-, 2-cells)

Tetrahedral volume (0-,1-, 2-, 3-cells)

Cell Complex from Binary Pic

- Representing the object as a cell complex
 - Approach 1: create a 2-cell (3-cell) for each object pixel (voxel), and add all boundary cells
 - Reproducing 8-connectivity in 2D and 26-connectivity in 3D

Cell Complex from Binary Pic

- Representing the object as a cell complex
 - Approach 2: create a 0-cell for each object pixel (voxel), and connect them to form higher dimensional cells.
 - Reproducing 4-connectivity in 2D and 6-connectivity in 3D

• 2D:

 For each object pixel, create a 2-cell (square), four 1-cells (edges), and four 0cells (points).

• 3D:

 For each object voxel, create a 3-cell (cube), six 2-cells (squares), twelve 1-cells (edges), and eight 0-cells (points).

Challenge: avoid creating duplicated cells

- Avoid duplicates
 - Use a data structure to keep track of the index of cells
 - Look up before creating a new cell, and update if a new cell is created
 - We could use a hash table
 - Indexed by the coordinates of the 0-, 1-, or 2- cells
 - Possible hash collision and/or unused hashing space
 - In our case, an array is more efficient (perfect hashing)

- For a binary image of dimension n by n, this extra array has dimension of 2n-1 by 2n-1
 - Stores the index of 0-cells, 1-cells, 2-cells once they are created
 - Initialized to be all zero (indicating no cells have been created)

• 2D:

 Create a 0-cell at each object pixel, a 1-cell for two object pixels sharing a common edge, and a 2-cell for four object pixels sharing a common point

• 3D:

- Create a 0-cell at each object voxel, a 1-cell for two object voxels sharing a common face, a 2-cell for four object voxels sharing a common edge, and a 3cell for eight object voxels sharing a common point
- Same strategy as in Approach 1 for storing cell indices

Thinning on Binary Pictures

- Remove simple pixels (voxels)
 - Whose removal does not affect topology
- Protect end pixels (voxels) of skeleton curves and surfaces
 - To prevent shrinking of skeleton

Thinning on Cell Complexes

- Remove simple pairs
 - Whose removal does not affect topology
- Protect medial cells
 - To prevent shrinking of skeleton
 - To prune noise

- Advantages:
 - Easy to detect in 2D and 3D (same code)
 - Robust to noise

 How can we remove cells from a complex so that the result is still a complex and has the same topology?

- How can we remove cells from a complex so that the result is still a complex and has the same topology?
 - Removing a single cell will either change topology or not result in a cell complex

Definition

A pair {x, y} such that y is on the boundary of x, and there is no other cell in the complex with y on its boundary.

Definition

A pair {x, y} such that y is on the boundary of x, and there is no other cell in the complex with y on its boundary.

Definition

- A pair {x, y} such that y is on the boundary of x, and there is no other cell in the complex with y on its boundary.
- In a simple pair, x is called a simple cell, and y is called the witness of x.
 - A simple cell can pair up with different witnesses

Removing a simple pair does not change topology

- True even when multiple simple pairs are removed together
 - As long as the pairs are disjoint
 - "Almost" parallel thinning

- Removing all simple pairs in parallel at each iteration
 - Only the topology of the cell complex is preserved
 - If a simple cell has multiple witnesses, an arbitrary choice is made

```
// Exhaustive thinning on a cell complex C
```

- 1. Repeat:
 - 1. Let S be all disjoint simple pairs in C
 - 2. If S is empty, Break.
 - 3. Remove all cells in S from C
- 2. Output C

- Removing all simple pairs in parallel at each iteration
 - Only the topology of the cell complex is preserved

2D example

- Removing all simple pairs in parallel at each iteration
 - Only the topology of the cell complex is preserved

3D example

- Removing all simple pairs in parallel at each iteration
 - Only the topology of the cell complex is preserved

A more interesting 2D shape

- Removing all simple pairs in parallel at each iteration
 - Only the topology of the cell complex is preserved

A 3D shape

"Meaningful" skeleton edges survive longer during thinning

"Meaningful" skeleton edges and faces survive longer during thinning

Isolated cells

- A cell x is isolated if it is not on the boundary of other cells
 - A k-dimensional skeleton is made up of isolated k-cells

- Isolation iteration (I(x)): # thinning iterations before cell is isolated
 - Measures "thickness" of shape
- Removal iteration (R(x)): # thinning iterations before cell is removed
 - Measures "length" of shape

- Medial-ness: difference between R(x) and I(x)
 - A greater difference means the shape around x is more tubular

- Medial-ness: difference between R(x) and I(x)
 - A greater difference means the shape around x is more tubular

- For a 2-cell x that is isolated during thinning:
 - I(x), R(x) measures the "thickness" and "width" of shape
 - A greater difference means the local shape is more "plate-like"

- For a 1-cell x that is isolated during thinning:
 - I(x), R(x) measures the "width" and "length" of shape
 - A greater difference means the local shape is more "tubular"

Medial Cells and Thinning

- A cell x is a medial cell if it is isolated and the difference between R(x) and I(x) exceeds given thresholds
 - A pair of absolute/relative difference thresholds is needed for medial cells at each dimension
 - 2D: thresholds for medial 1-cells
 - t1_{abs}, t1_{rel}
 - 3D: thresholds for both medial 1-cells and 2-cells
 - t1_{abs}, t1_{rel}
 - t2_{abs}, t2_{rel}
- Thinning: removing simple pairs that are not medial cells
 - Note: only need to check the simple cell in a pair (the witness is never isolated)

Thinning Algorithm (2D)


```
// Thinning on a 2D cell complex C
// Thresholds tl<sub>abs</sub> and tl<sub>rel</sub> for medial 1-cells
1. k = 1
2. For all x in C, set I(x) be 0 if x is isolated, NULL otherwise
3. Repeat and increment k. Current iteration
    1. Let S be all disjoint simple pairs in C
    2. Repeat for each pair {x,y} in S:
         1. If x is 1-cell and (k-I(x)>t1_{abs}) and 1-I(x)/k>t1_{rel},
            exclude {x,y} from S.
    3. If S is empty, Break.
    4. Remove all cells in S from C
    5. Set I(x) be k for newly isolated cells x in C
4. Output C
```

Thinning Algorithm (3D)


```
// Thinning on a 3D cell complex C
// Thresholds tlabs and tlrel for medial 1-cells
// Thresholds t2<sub>abs</sub> and t2<sub>rel</sub> for medial 2-cells
1. k = 1
2. For all x in C, set I(x) be 0 if x is isolated, NULL otherwise
3. Repeat and increment k. Current iteration
    1. Let S be all disjoint simple pairs in C
    2. Repeat for each pair {x,y} in S:
         1. If x is 1-cell and (k-I(x)>t1_{abs}) and 1-I(x)/k>t1_{rel},
            exclude {x,y} from S.
         2. If x is 2-cell and (k-I(x)>t2_{abs}) and 1-I(x)/k>t2_{rel},
            exclude {x,y} from S.
    3. If S is empty, Break.
    4. Remove all cells in S from C
    5. Set I(x) be k for newly isolated cells x in C
4. Output C
```

Choosing Thresholds

- Higher thresholds result in smaller skeleton
 - Threshold the absolute difference at ∞ will generally purge all cells at that dimension
 - Except those for keeping the topology
 - Absolute threshold has more impact on features at small scales (e.g., noise)
 - Relative threshold has more impact on rounded features (e.g., blunt corners)

Skeletons computed at threshold

More Examples

2D

More Examples

More Examples

