TIMS: Álgebra

Sesión 2

El plano complejo

Lic. David Balbuena Cruz — Alicia Pérez Figueredo (AAyudt.)

Msc. Wilfredo Morales Lezca Juliet Bringas Miranda (AAyudt.)

Pedro Alejandro Rodríguez S.P (AAyudt.)

Licenciatura en Matemática Curso 2020-2021

Introducción

Un número complejo z=a+bi está unívocamente caracterizado por su parte real e imaginaria. Es decir, a z=a+bi lo podríamos identificar por el par ordenado (a,b). Por ejemplo, el par ordenado (2,-3) corresponde al número complejo z=2-3i; e inversamente, z=2-3i determina el par ordenado (2,-3). Los números 7, i y -5i son equivalentes a (7,0), (0,1) y (0,-5) respectivamente. De esta forma podemos asociar un número complejo z=a+bi con un punto (a,b) en un plano coordenado. Ahora veremos todas las consecuencias que tiene esta inocente observación.

En esta sesión usted aprenderá

- La definición de módulo y argumento de un número complejo.
- Cómo se trazan algunas regiones del plano complejo.
- Cómo transformar un número complejo a su forma trigonométrica.

El plano complejo

Debido a la correspondencia entre un número complejo z = a + bi y el punto (a, b) de un plano coordenado, usaremos los términos número complejo y punto como si fueran el mismo. El plano coordenado que se muestra en la Figura 1 se llama **plano comple-**jo. El eje horizontal Re se llama **eje real** ya que corresponde a la parte real de los números complejos. El eje vertical Im se llama **eje** imaginario ya que dicho eje representa la parte imaginaria. El plano complejo se divide en cuatro cuadrantes que están delimitados por el eje real e imaginario.

Figura 1: Plano complejo

Módulo

En el plano complejo también existe la noción de distancia. Por ejemplo, podemos decir que existen puntos más cerca del origen (0,0) que otros. Entonces surge una pregunta interesante: ¿cómo podemos medir la distancia entre un número complejo z y el origen? La respuesta la tiene nuestro amigo Pitágoras.

Sea (a, b) las coordenadas de un número complejo z cualquiera. Si unimos los puntos (0,0), (a,0) y (a,b) en el plano complejo, se obtiene un triángulo rectángulo de base a y altura b (Figura 2). Por el teorema de Pitágoras, tenemos que $r^2 = a^2 + b^2$, o lo que es lo mismo:

$$r = \sqrt{a^2 + b^2} \tag{1}$$

El valor (1) recibe un nombre muy especial.

Figura 2: Módulo

DEFINICIÓN 1

El **módulo**, o **valor absoluto**, de un número complejo z = a + bi es el número real

$$|z| = \sqrt{a^2 + b^2}$$

y representa la distancia entre (a, b) y el origen (0, 0).

EJEMPLO 1. Si
$$z = 2 - 3i$$
, entonces $|z| = \sqrt{2^2 + (-3)^2} = \sqrt{13}$. Si $z = -9i$ entonces $|z| = \sqrt{(-9)^2} = 9$.

Argumento

Retomemos el triángulo rectángulo de la Figura 2, pero esta vez consideremos el ángulo φ que forma un complejo z=a+bi respecto al eje real (Figura 3).

Las razones trigonométricas indican que

es decir, φ está directamente relacionado con la parte real e imaginaria de z, un detalle que no podemos dejar pasar por alto. Al igual que el módulo, el ángulo φ constituye una pieza clave en la teoría de los números complejos y ahora pasaremos a ver algunas de sus propiedades. Pero primero vamos a definirlo formalmente.

Figura 3: Argumento

DEFINICIÓN 2

Sea un número complejo z = a + bi diferente de 0. El ángulo que traza el segmento (0,0) - -(a,b) respecto al eje real lo llamamos **argumento** de z, y se denota por arg(z).

Por lo general, el argumento se mide en radianes y comenzando por el primer cuadrante; es positivo cuando se mide en contra del sentido del reloj y negativo cuando se mide a favor. Un argumento de un número complejo z no es único, ya que $\cos \varphi$ y sen φ tienen período 2π ; en otras palabras, si φ_0 es un argumento de z, entonces los ángulos $\varphi_0 \pm 2\pi$, $\varphi_0 \pm 4\pi$, ... son también argumentos de z. En la práctica, utilizamos tan $\varphi = b/a$ para determinar el argumento de z = a + bi (Véase ¹), sin embargo este método tiene dos inconvenientes:

- 1. Si a = 0 la fracción b/a queda indefinida
- 2. La función $\tan \varphi$ tiene período π , por lo que es necesario prestar atención al cuadrante en el que se localiza el número complejo.

El siguiente ejemplo muestra cómo podemos abordar el problema #2.

EJEMPLO 2. Determine el argumento del número complejo z=-2+2i tal que $0 \le \arg(z) < 2\pi$.

Solución: Con a=-2 y b=2, tenemos que $\tan\varphi=-2/2=-1$ donde φ es el argumento que estamos buscando. Sabemos que $\tan\pi/4=1$, pero nuestra tangente es negativa y -2+2i se encuentra en el segundo cuadrante. Entonces lo que vamos hacer es tomar la solución de $\tan\varphi=-1$ como $\varphi=\pi-\pi/4=3\pi/4$, así aseguramos que el argumento esté ubicado en el cuadrante correcto y el valor de la tangente coincida.

Regiones del plano complejo

En esta sección, usaremos las definiciones de módulo y argumento para identificar algunas regiones del plano complejo.

$$\tan \varphi = \frac{\sin \varphi}{\cos \varphi} = \frac{b}{r} \cdot \frac{r}{a} = \frac{b}{a} \quad a \neq 0$$

 $^{^{1}\}text{Usamos} \, \tan \varphi$ ya que compacta las expresiones del sen y el cos del argumento:

Círculo: Supongamos que $z_0 = a_0 + ib_0$ es un número complejo fijo cualquiera. Ya sabemos que $|z_0|$ representa la distancia entre z_0 y el origen (0,0). Bueno, pues para determinar la distancia entre z_0 y otro complejo z = a + bi solo es necesario calcular el módulo de $z_0 - z$:

$$|z - z_0| = \sqrt{(a - a_0)^2 - (b - b_0)^2}$$

Figura 4: Círculo $|z - z_0| = r$

Entonces, los puntos z que satisfacen la ecuación

$$|z - z_0| = r, \quad r > 0$$

se encuentran en la circunferencia de un círculo de radio r centrado en el punto (a_0, b_0) (Figura 4).

EJEMPLO 3. |z| = 1 es la ecuación de una circunferencia de un círculo unitario centrado en el origen. Al escribir |z - 1 + 3i| = 5 como |z - (1 - 3i)| = 5 vemos que esta ecuación describe la circunferencia de un círculo de radio 5 centrado en el punto (1, -3).

Discos y vecindades: Los puntos z que satisfacen la desigualdad $|z-z_0| \le r$ pueden estar ya sea sobre la circuferencia del círculo $|z-z_0|=r$ o dentro del círculo (Figura 5a). Decimos que el conjunto de puntos definido por $|z-z_0| < r$ se encuentran dentro, y no sobre, la circunferencia de un círculo de radio r centrado en el punto z_0 . Este conjunto se llama vecindad de z_0 (Figura 5b). A veces, necesitaremos usar una vecindad de z_0 que también excluya a z_0 . Dicha vecindad está definida por la desigualdad simultánea $0 < |z-z_0| < r$ (Figura 5c). Por ejemplo, |z| < 1 es una vecindad del origen (0,0), mientras que 0 < |z| < 1 define una vecindad de (0,0) que no lo incluye.

Figura 5: Discos y vecindades

Anillos: El conjunto S_1 de puntos que satisfacen la desigualdad $r_0 < |z - z_0|$ se encuentran en el exterior del círculo de radio r_0 centrado en z_0 , mientras que el conjunto S_2 de puntos tales que $|z - z_0| < r_1$ se encuentran en el interior del círculo de radio r_1 y centrado en z_0 . Por lo que, si $0 < r_1 < r_2$ entonces el conjunto de puntos z tales que

$$r_1 < |z - z_0| < r_2$$

es la intersección de los conjuntos S_1 y S_2 . Esta intersección es visualmente un anillo centrado en z_0 (Figura 6).

Figura 6: Anillo

Franjas: Los complejos z que cumplen $\rho_0 < Re(z) < \rho_1$ definen en el plano complejo una franja paralela al eje imaginario (Figura 7a); así mismo, la desigualdad $\rho_0 < Im(z) < \rho_1$ denota una franja paralela al eje real (Figura 7b). Por otra parte, las desigualdades $\rho_0 < Re(z)$ y $\rho_0 < Im(z)$ dividen al plano en dos mitades por los puntos $(0, \rho_0)$ y $(\rho_0, 0)$ respectivamente.

Secciones circulares (Conos): Al restringir el módulo podemos trazar discos, circunferencias y anillos. Bueno, si restringimos el argumento lo que obtenemos son secciones circulares. Por ejemplo, la inecuación $\varphi_0 < \arg(z) < \varphi_1$ traza el cono de la Figura 8a sin incluir los bordes; en la figura Figura 8b se muestran dos porciones del plano complejo: el ROJO representa al conjunto $\{z \in \mathbb{C}; \varphi < \arg(z) \leq 2\pi\}$ y la AZUL es el conjunto $\{z \in \mathbb{C}; 0 < \arg(z) \leq \varphi\}$.

Figura 7: Franjas

Figura 8: Secciones Circulares

Forma trigonométrica

Calcular $(\frac{\sqrt{3}}{2} + \frac{1}{2}i)^6$ significa multiplicar a $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ por sí mismo 6 veces, un proceso que resulta tedioso y poco eficiente (si gusta, puede comprobarlo por su cuenta). Afortunadamente, el plano complejo ofrece otra forma para los números complejos; una forma que facilita mucho las operaciones de multiplicación y división.

Sea un número complejo z=a+bi cualquiera, r=|z| y $\varphi=\arg(z)$. Sabemos que φ cumple las razones trigonométricas:

$$\cos \varphi = \frac{a}{r}$$
 $\operatorname{sen} \varphi = \frac{b}{r}$

o lo que es lo mismo

$$r\cos\varphi = a$$
 $r\sin\varphi = b$

Si sustituimos a y b en z, obtenemos que

$$z = a + bi$$

$$z = r \cos \varphi + r \sin \varphi \cdot i$$

$$z = r(\cos \varphi + i \sin \varphi)$$
(2)

La expresión (2) es la nueva forma que estábamos buscando.

DEFINICIÓN 3

Dado un número complejo z = a + bi, decimos que

$$z = r(\cos\varphi + i \sin\varphi)$$

es la forma trigonométrica de z, donde r es el módulo de z (r=|z|) y φ su argumento ($\varphi=\arg(z)$)

Veamos un ejemplo sobre como llevar un número complejo z=a+bi a forma trigonométrica.

EJEMPLO 4. Exprese $-\sqrt{3} - i$ en forma trigonométrica.

Solución Con $a=-\sqrt{3}$ y b=-1 obtenemos $r=|z|=\sqrt{(-3)^2+(-1)^2}=2$. Por otra parte, $\tan\varphi=b/a=1/\sqrt{3}$ y sabemos que $\tan\pi/6=1/\sqrt{3}$. Pero $\pi/6$ está en el primer cuadrante, mientras que $-\sqrt{3}-1$ está en el tercero. Entonces la solución de $\tan\varphi=1/\sqrt{3}$ se toma como $\varphi=\pi+\pi/6=7\pi/6$. Se sigue que la forma trigonométrica de $z=-\sqrt{3}-i$ es

$$z = 2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

Multiplicación y División

En la sección anterior, comentamos que la forma trigonométrica es especialmente conveniente cuando multiplicamos o dividimos números complejos. Sin embargo no llegamos a explicar porqué. Sean

$$z_1 = r_1(\cos\varphi_1 + i \sin\varphi_1)$$
 $z_2 = r_2(\cos\varphi_2 + i \sin\varphi_2)$

dos números complejos cualesquiera en su forma trigonométrica. Entonces

$$z_1 z_2 = r_1 r_2 [(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i(\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)]$$
 (3)

y, para $z_2 \neq 0$,

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos\varphi_1\cos\varphi_2 + \sin\varphi_1\sin\varphi_2 + i(\sin\varphi_1\cos\varphi_2 - \cos\varphi_1\sin\varphi_2)\right] \tag{4}$$

Usando las fórmulas de suma para el seno y el coseno², (3) y (4) se pueden rescribir como

$$z_1 z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$$

У

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right]$$

Estas dos últimas expresiones son espectaculares, pues demuestran que:

PROPOSICIÓN 1

 El módulo del producto (de la división) es igual al producto (la división) de los módulos

$$|z_1 z_2| = |z_1||z_2|$$
 $|z_1/z_2| = |z_1|/|z_2|$

• El argumento del producto (de la división) es igual a la suma (resta) de los argumentos

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$
 $\arg(z_1/z_2) = \arg(z_1) - \arg(z_2)$

Bien, ahora que sabemos como se comportan el módulo y el argumento de z_1z_2 y z_1/z_2 , podemos multiplicar y dividir números complejos de forma más eficiente.

EJEMPLO 5. Determine
$$\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^6$$

Solución: Por la Proposición 1 tenemos que

$$\left| \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right)^6 \right| = \left| \frac{\sqrt{3}}{2} + \frac{1}{2}i \right|^6 = 1^6 = 1$$

 $^{^{2}}$ sen $(x \pm y) =$ sen $x \cos y \pm \cos x$ seny

 $[\]cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$

У

$$\arg\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^{6} = 6\arg\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 6 \cdot \frac{\pi}{6} = \pi$$

Entonces, la forma trigonométrica de $z=(\frac{\sqrt{3}}{2}+\frac{1}{2}i)^6$ está dada por

$$z = \cos \pi + i \sin \pi$$

que a su vez es igual a z=-1. Conclusión:

$$\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^6 = \cos\pi + i\sin\pi = -1$$

Ejercicios Propuestos

1. Determine el módulo de los siguientes números complejos:

a)
$$(1-i)^2$$

c)
$$i(2-i)-4(1+\frac{1}{4}i)$$

$$b) \ \frac{2i}{3-4i}$$

$$d) \ \frac{1-2i}{1+i} + \frac{2-i}{1-i}$$

2. Describa el conjunto de puntos z en el plano complejo que satisfaga las siguientes expresiones

a)
$$|z-4+3i|=5$$

j)
$$|\text{Re } z| > 2$$

b) Re
$$z=5$$

$$k) 2 < \text{Re}(z-1) < 4$$

c) Im
$$z = -2$$

$$l) -1 < \text{Im } z < 4$$

$$|2z - 1| = 4$$

$$|z-i| > 1$$

$$|z - i| = |z - 1|$$

$$n) \ 2 < |z - i| < 3$$

$$f) |z-2| = \operatorname{Re} z$$

$$\tilde{n}$$
) $2 < |z - 3 + 4i| < 5$

$$g) \operatorname{Im} (\bar{z} + 3i) = 6$$

o)
$$0 < \arg z < \pi/6$$

$$h) \arg z = \pi/4$$

0)
$$0 \le \arg z \le \pi/c$$

$$i) \operatorname{Re} z < -1$$

$$p) -\pi < \arg z < \pi/2$$

3. Exprese los siguientes números complejos en forma trigonométrica

$$b) -3i$$

c)
$$1+i$$

$$d) -\sqrt{3} + i$$

$$e) \ \frac{3}{-1+i}$$

$$f) -2 - 2\sqrt{3}i$$

$$g) \frac{12}{\sqrt{3}+i}$$

4. Determine los números complejos que resultan de las siguientes operaciones:

$$a) (1 + \sqrt{3}i)^9$$

b)
$$(2-2i)^5$$

c)
$$\left(\sqrt{2}\cos\frac{\pi}{8} + i\sqrt{2}\sin\frac{\pi}{8}\right)^{12}$$

d)
$$\left(\cos\frac{\pi}{9} + i\sin\frac{\pi}{9}\right)^{12} \left[2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\right]^5$$

- 5. Demuestre que la distancia entre dos números complejos z y z_0 está dada por $|z-z_0|$.
- 6. Sean zy wdos números complejos. Pruebe que

a)
$$|\bar{z}| = |z|$$

$$b) |zw| = |z||w|$$

c)
$$\left| \frac{1}{z} \right| = \frac{1}{|z|}$$
, con $z \neq 0$

d) Re
$$z = \frac{1}{2}(z + \bar{z}) \le |z|$$

e) Im
$$z = \frac{1}{2i}(z - \bar{z}) \le |z|$$

$$|z + w| \le |z| + |w|$$

$$(z+w)^2 + |z-w|^2$$

h)
$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$