UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO IV

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Kethely Adelaide Acipar Rocha - 21252514 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Parte Experimental	4
3	Análise de Dados	5
	Deslocamento X Tempo	5
	Aceleração X Tempo	5
	Velocidade X Tempo	6
	Massa X Tempo	7
	Aceleração X Massa	8
4	Conclusão	10
\mathbf{R}_{0}	eferências	11

1. Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática no dia 01 de julho de 2016.

A próxima seção explicará detalhamendamente o experimento realizado.

2. Parte Experimental

O experimento consiste em caracterizar o movimento retilíneo uniforme através da análise de dados e gráficos. Para isto foram utilizados os seguintes materias e aparelhos:

- Trilho de ar e carrinho: aparelho formado por um trilho posicionado horizontalmente responsável pela trajetória retilínea do carrinho e um carrinho encarrilhado neste trilho. O carrinho se movimenta quando um compressor injeta ar por buraquinhos no trilho. A massa do carrinho é 0.1901 kg.
- Compressor de ar: responsável pela injeção de ar no trilho de ar. A injeção de ar causa a movimentação do carrinho.
- Sensores de movimento: Há dois sensores de movimento. Um no início da trajétória e é responsável por registrar o posicionamento inicial. O segundo sensor foi utilizado para registrar o posicionamento final da medição.
- Cronômetro digital: aparelho responsável por iniciar a marcação de tempo a partir do recebimento das informações dos sensores de movimento.
- Outros materias utilizados foram: barbante, porta-peso, peso e polia. O barbante foi preso ao carrinho e ao porta-peso através de uma polia. A massa do porta-peso é 0.01 kg.

O experimento consiste de duas etapas:

- 1. A primeira etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a uma sequência de pontos finals iniciando em 120cm e terminando 170cm.
- 2. A segunda etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a um ponto final variando a quantidade de pesos no porta-peso.

A próxima seção explicará em detalhes cada uma destas etapas.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Deslocamento X Tempo

Na etapa 1, coletamos amostras de tempo para vários deslocamentos do carrinho. O carrinho foi amarrado ao barbante que foi amarrado ao porta-peso. Nesta etapa, o porta-peso não recebeu nenhum peso adicional. Os valores coletados estão na tabela a seguir:

Tabela 3.1: Amostras dos deslocamentos e tempos de duração.

Deslocamentos (m)	Tempos (s)
0.0	0.00000
0.1	0.68166
0.2	0.74200
0.3	1.11600
0.4	1.24900
0.5	1.44900
0.6	1.70900

A seguir, é apresentado o gráfico destas duas variáveis:

Aceleração X Tempo

Agora que temos os dados de deslocamento e tempo, podemos calcular a aceleração utilizando a fórmula abaixo:

$$\Delta x = v_0 t + \frac{1}{2} a t^2 (3.1)$$

Onde:

 Δx : representa o deslocamento percorrido pelo carrinho. Os valores estão apresentados na tabela anterior para a posição final. A posição inicial é 0;

 v_0 : representa a velocidade inicial. Neste caso, ela é 0;

t: representa o momento que se deseja determinar a aceleração;

a: a aceleração que desejamos calcular a partir do deslocamento e tempo;

Após realizarmos estes cálculos, obtemos o seguinte resultado para a aceleração:

Tabela 3.2: Aceleração X Tempo

$\overline{\Delta x}$ (m)	t (s)	a (m/s^2)
0.1	0.68166	0.4304219148
0.2	0.74200	0.7265277061
0.3	1.11600	0.4817512622
0.4	1.24900	0.5128201841
0.5	1.44900	0.4762809696
0.6	1.70900	0.4108630830

A seguir, é apresentado o gráfico da aceleração por intervalor de tempo:

A aceleração pode ser resumida com a média das acelerações, o valor obtido é: 0.5064441866 m/s^2

Velocidade X Tempo

Agora que temos a aceleração, podemos calcular a velocidade utilizando a seguinte fórmula:

$$v^2 = {v_0}^2 + 2a\Delta x (3.2)$$

Onde:

 v^2 : representa a velocidade que desejamos obter;

 v_{02} : representa a velocidade inicial. Neste caso, ela é 0;

2a: representa 2 vezes a aceleração;

 Δx : representa o deslocamento que obtemos no experimento.

Após realizarmos estes cálculos, obtemos o seguinte resultado para a velocidade:

Tabela 3.3: Velocidade m/s

Δx (m)	t (s)	a (m/s^2)	v (m/s)
0.1	0.000	0.4304219148	0.2934014025
0.2	0.742	0.7265277061	0.5390835580
0.3	1.116	0.4817512622	0.5376344086
0.4	1.249	0.5128201841	0.6405124099
0.5	1.449	0.4762809696	0.6901311249
0.6	1.709	0.4108630830	0.7021650088

A seguir, é apresentado o gráfico da velocidade por intervalor de tempo:

Massa X Tempo

Na etapa 2, coletamos amostras de tempo que o carrinho demorou para um deslocamento de constante de 0.3 metros variando o peso do porta-peso de 1g em 1g iniciando em 11g. A próxima tabela apresenta os valores obtidos.

Tabela 3.4: Amostras dos pesos e tempos de duração.

M_{total} (kg)	t (s)
0.2011	1.11600
0.2021	1.09560
0.2031	1.04860
0.2041	1.00760
0.2051	0.95660
0.2061	0.92263
0.2071	0.91466

A massa total foi calculada pela fórmula:

$$M_{total} = M_{carrinho} + M_{porta-peso} + M_{peso}$$
(3.3)

Onde

 $M_{carrinho}$: é 0.1901 kg.

 $M_{porta-peso}$: é 0.01 kg.

 M_{peso} : são os valores 0,001 0,002, 0,003 0,004 0,005 0,006 e 0,007 gramas.

A seguir, é apresentado o gráfico destas duas variáveis:

Como mostrado, há uma relação inversa entre a massas do porta-peso e tempo que o carrinho demorou para atingir o ponto final. Ou seja, quanto maior a massa menor será o tempo para o carrinho atingir o ponto final.

Aceleração X Massa

A seção anterior mostrou a relação Massa total X Tempo decorrido para cada variação de peso do porta-peso. Primeiramente, precisa-se calcular a aceleração para cada mudança de peso no porta-peso. A tabela abaixo apresenta os valores obtidos:

Tabela 3.5: Acelerações para os pesos do porta-peso.

Massa total (kg)	Tempos (s)	Aceleração (m/s^2)
0.2011	1.11600	0.48175
0.2021	1.09560	0.49986
0.2031	1.04860	0.54567
0.2041	1.00760	0.59098
0.2051	0.95660	0.65568
0.2061	0.92263	0.70485
0.2071	0.91466	0.71719

Para este cálculo, foi utilizado o deslocamento constante do carrinho previamente citado (0.3 m) e a fórmula 3.1.

Agora que temos o valor da aceleração para cada peso do porta-peso podemos colocar estas informações em um gráfico apresentado abaixo:

4. Conclusão

A seção anterior mostrou o gráfico de Aceleração X Massa. Com este resultado obtido, pode-se determinar a força resultante calculando-se a área da região triangular mostrada na seção anterior.

$$F_r = \frac{((0.2071 - 0.2011) * (0.71719 - 0.48175))}{2} = 7.0632 \times 10^{-4} N$$
 (4.1)

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora. Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda. Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.