Klasifikasi Teks Soal Ujian Berbahasa Indonesia Berdasarkan Ranah Kognitif Taksonomi Bloom

1301174597

Justisio Yan Prawira Adam

1. Pendahuluan

Latar Belakang

- Ujian tulis digunakan untuk mengidentifikasi capaian belajar dari siswa.
- Ujian yang diberikan dapat berisi soal dengan tingkat kesulitan yang berbeda.
- Tingkatan kognitif dari Taksonomi Bloom dapat dijadikan acuan.

Permasalahan

- Waktu untuk melakukan klasifikasi manual, selaras dengan jumlah soal yang akan diklasifikasi.
- Klasifikasi manual rentan akan perbedaan persepsi antar pengajar, akibatnya hasil klasifikasi bisa berbeda.
- Oleh karena itu, Tugas Akhir ini mencoba untuk melakukan klasifikasi secara otomatis.
- Algoritma yang digunakan adalah Support Vector Machine dan Naïve Bayes.
- Karena menghasilkan performa yang baik pada penelitian Patil et al. [5] dan Aninditya et al. [3].

1. Pendahuluan

Batasan Masalah

- Data yang digunakan bersifat tekstual dengan Bahasa Indonesia
- Mata pelajaran yang digunakan adalah Bahasa Indonesia, matematika dan Ilmu Pengetahuan Alam (IPA)
- Klasifikasi hanya bertujuan untuk menentukan tingkatan kognitif yang sesuai dari sebuah soal

Tujuan Penelitian

 Melakukan klasifikasi teks berbahasa Indonesia dengan metode SVM dan NB yang kemudian akan diukur performansi dari masing-masing metode.

Penulis	Dataset	Metode	Skor
Kusuma et al. [1]	130 Soal Berbahasa Indonesia	Ekstraksi fitur leksikal dan sintaktik Algoritma SVM dengan kernel linear	Rata-rata akurasi 88,6%
Aninditya et al. [2]	Soal ujian semester Berbahasa Indonesia dari Departemen SISFO Universitas Telkom Klasifikasi Biner (2 kelas)	Ekstraksi fitur N-gram TF-IDF Algoritma Naïve Bayes	Precision 85%
Patil et al. [5]	1000 Pertanyaan Berbahasa Inggris	Algoritma SVM dan KNN	Akurasi SVM 0.923 Akurasi KNN 0.666
Mohammed et al. [12]	Pertanyaan terbuka dalam Bahasa Inggris 141 soal dari website 600 soal dari penelitian sebelumnya	Ekstraksi fitur TF-IDF, TFPOS-IDF, W2V-TFPOSIDF. Algoritma SVM, KNN, LR.	SVM, Data penelitian sebelumnya TF-IDF: F1-measure 0.826 TFPOS-IDF: F1-measure 0.866 W2V-TFPOSIDF: F1-measure 0.897

Taksonomi Bloom

Tingkatan Kognitif	Penjelasan
Mencipta (C6)	kemampuan mengevaluasi dan menilai sesuatu berdasarkan norma, acuan atau kriteria.
Mengevaluasi (C5)	kemampuan merangkai atau menyusun kembali komponen - komponen dalam rangka menciptakan arti/pemahaman/ struktur baru
Menganalisa (C4)	kemampuan memisahkan konsep ke dalam beberapa komponen untuk memperoleh pemahaman yang lebih luas atas dampak komponen - komponen terhadap konsep tersebut secara utuh
Menerapkan (C3)	kemampuan menggunakan konsep dalam praktek atau situasi yang baru
Memahami (C2)	kemampuan memahami instruksi/masalah, menginterpretasikan dan menyatakan kembali dengan kata- kata sendiri
Mengingat (C1)	kemampuan menyebutkan atau menjelaskan kembali

Support Vector Machine

Naïve Bayes

$$\hat{y} = \arg \max P(y) \prod_{i=1}^{n} P(x_i \mid y)$$

TF-IDF

Memberikan bobot pada setiap kata, yang menunjukkan seberapa penting kata tersebut dalam dokumen.

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

TFPOS-IDF

Memberikan pembobotan pada kata berdasarkan POS Tagnya masing-masing.

Dilakukan normalisasi dengan L2 Norm setelah penghtigungan TFPOS-IDF.

$$\begin{aligned} w_{pos}(t) &= \{w_1 & if \ t \ is \ verb\} \\ \{w_2 & if \ t \ is \ noun \ or \ adjective\} \\ \{w_3 & otherwise \ \} \end{aligned}$$

$$w_1 = 5, w_2 = 3, w_3 = 1$$

$$TFPOS(t, d) &= \frac{c(t, d) * w_{pos}(t)}{\sum_i c(t_i, d) * w_{pos}(t)}$$

$$TFPOS - IDF(t, d) &= TFPOS(t, d).IDF(t)$$

3. Sistem Yang Dibangun

Gambar 2 Alur Kerja Sistem

Data Collection

Sumber:

- EduBox (Pembimbing)
- Artikel Blog RuangGuru
- Penelitian Syarifah et al. [15]

	А	В	С	D	Е	F
1	text	question	options	ans	label	category
2	"Apa ?" tanya Semut	Pada cuplikan fabel t	B. 2	В	C2	Mengkategorikan
3	Suatu hari Si Kancil, l	Kata sandang yang te	B. di pada di pinggir	Α	C2	Mengkategorikan
4	Perhatikan kutipan f	Karakter tokoh Beru	B. Penyayang	Α	C2	Memilih
5		Cerita rakyat pada za	B. hikayat	Α	C1	Menyebutkan
6		Ciri bahasa dalam fal	A. naratif B. monolog	Α	C1	Menyebutkan
7		Puisi rakyat atau pui	terpesona, terhina.	С	C2	Memilih
8		Surat pribadi adalah.	komunikasi tulis	Α	C1	Menyebutkan
9		Surat di atas menunj	B. undangan	В	C2	Memilih
10		Ciri teks prosedur ad	A. IIICIIKKaiiinaivaii	В	C1	Menyebutkan
11			A. Tujuanlangkah-l	С	C1	Menyebutkan
12		Surat penawaran, Su	A. FIÍDAUI	С	C1	Memilih
13	Secara garis besar bu	Yang termasuk unsu	A. 131	С	C1	Memilih
14	and game and a	Rangkuman adalah h	A. DOIEITHIENBUDAN	В	C1	Menyatakan
15	Pada zaman dahulu k	Bagian Orientasi Fab	A. Látai terilipat,	В	C2	Menjelaskan
16		Cuplikan fabel terse	A. Onemasi	С	C2	Mengkategorikan
17	·	'Cuplikan fabel terse	A. Oneması	В	C2	Mengkategorikan
18	,	Pernyataan tersebut	A. mu	С	C2	Mengkategorikan
			A. OHEIRASI	Α	C2	Mengkategorikan
19		Cuplikan fabel terse	A. vara samuang	В	C2	Mengkategorikan
20	, ,	Di pada kata di huta	A. Kata saliualig	D	C2	Mengkategorikan
21		Di pada kata diintai t	A. Kepala surat	В	C2	Mengkategorikan
22		Bagian surat tersebu	A. Langoung	A	C2	0 0
23		Kalimat tersebut ter				Mengkategorikan
24	Burung Hantu selalu	Pada kutipan cerita o	A. kalimat pertama E	D	C2	Mengkategorikan
	→ Matem	natika SMA Matem	natika SMP Matem	atika SD	Bhs Indo	onesia SMA Bhs In

Dataset Distribution

Part-of-Speech Tagging (POS Tagging)

- Menggunakan Pre-Trained model dari FlairNLP.
- Data disimpan pada DataFrame.

```
[[Makna, NOUN], [istilah, NOUN], [kata, NOUN],...

[[Latar, NOUN], [suasana, NOUN], [pada, ADP], ...

[[Makna, NOUN], [frasa, NOUN], [cokelat, NOUN]...

[[Maksud, NOUN], [pernyataan, NOUN], [Evakuasi...

[[Nilai, NOUN], [moral, NOUN], [pada, ADP], [k...
```


Pemeriksaan ejaan

Casefolding

```
[['makna', 'NOUN'], ['istilah', 'NOUN'], ['kata', 'NOUN'], ['vulkanis', 'NOUN'], ['pada', 'ADP'], ['kutipan', 'NOUN'], ['teks', 'NOUN'], ['tersebut', 'DET'], ['adalah', 'AUX'], ['...', 'PUNCT']]
```

Punctuation Removal

```
[['makna', 'NOUN'], ['istilah', 'NOUN'], ['kata', 'NOUN'], ['vulkanis', 'NOUN'], ['pada', 'ADP'], ['kutipan', 'NOUN'], ['teks', 'NOUN'], ['tersebut', 'DET'], ['adalah', 'AUX']]
```


Stopwords Removal

Membuat 2 data berbeda untuk stopwords default PySastrawi dan modifikasi

Default

Modifikasi

Stemming

Mengubah kata kedalam bentuk dasarnya

Sebelum

Sesudah

Feature Extraction

Contoh Nilai TF-IDF dan TFPOS-IDF untuk dokumen nomor 6 pada dataset

	Teladan (NOUN)	Tokoh (NOUN)	Dasar (ADP)	Kutip (NOUN)
TF-IDF	0.402	0.521	0.638	0.402
TFPOS-IDF	0.689	0.563	0.145	0.434

Tabel 1 Hasil Ekstraksi Fitur Pada Dokumen nomor 6

^{*}nilai dibulatkan ke atas.

Random Oversampling

- Digunakan untuk mengatasi data yang tidak seimbang
- Implementasi menggunakan Imbalanced-learn, strategi 'not majority'

Kelas	Sebelum random oversampling	Setelah random oversampling
C1	130	248
C2	134	248
C3	248	248
C4	113	248
C5	37	248
C6	19	248

Tabel 2 Hasil Random Oversampling

Data Split

- Data dipisah dengan rasio 80:20 untuk training dan testing
- Parameter random_state = 23 untuk pembagian data yang konsisten tiap eksekusi

Skenario	Algoritma	Feature Extraction	Stopwords	Random Over-Sampling
1	SVM	TF-IDF	Default	N
1	NB	TF-IDF	Default	N
2	SVM	TF-IDF	Modifikasi	N
	NB	TF-IDF	Modifikasi	N
3	SVM	TF-IDF	Default	Y
3	NB	TF-IDF	Default	Y
4	SVM	TF-IDF	Modifikasi	Y
4	NB	TF-IDF	Modifikasi	Y
5	SVM	TFPOS-IDF	Default	N
3	NB	TFPOS-IDF	Default	N
6	SVM	TFPOS-IDF	Modifikasi	N
0	NB	TFPOS-IDF	Modifikasi	N
7	SVM	TFPOS-IDF	Default	Y
7	NB	TFPOS-IDF	Default	Y
8	SVM	TFPOS-IDF	Modifikasi	Y
8	NB	TFPOS-IDF	Modifikasi	Y

Tabel 3 Skenario Pengujian

Classification Algorithm

- Support Vector Machine (SVM)
- Parameter C = 1 dan kernel = linear
- Naïve Bayes (NB)
- MultinomialNB(), Parameter default
- Parameter akan dioptimasi menggunakan GridSearchCV

Evaluation & analysis

$$Accuracy = \frac{TP + TN}{n} \tag{7}$$

$$Precision = \frac{TP}{TP + FP} \tag{8}$$

$$Recall = \frac{TP}{TP + FN} \tag{9}$$

$$F1-Measure = \frac{2 \times (Precision + Recall)}{(Precision + Recall)}$$
(10)

		Actual	Values
		Positive (1)	Negative (0)
Predicted Values	Positive (1)	TP	FP
Predicte	Negative (0)	FN	TN

Gambar 6 Confusion Matrix [13]

Analisis Hasil Pengujian

Skenario	Algoritma	Feature Extraction	Stopwords	Random Over- Sampling	Akurasi & F1-Measure	Akurasi & F1-Measure optimized
	SVM	TF-IDF	Default	N	0.453 0.429	0.445 0.438
1	NB	TF-IDF	Default	N	0.423 0.421	0.445 0.434
	SVM	TF-IDF	Modifikasi	N	0.474 0.452	0.438 0.434
2	NB	TF-IDF	Modifikasi	N	0.401 0.421	0.467 0.479
2	SVM	TF-IDF	Default	Y	0.799 0.798	0.839 0.837
3	NB	TF-IDF	Default	Default Y	0.772 0.772	0.815 0.815

	SVM	TF-IDF	F Modifikasi Y	0.819	0.842	
4	5 7 171	11 151	Wiodilikusi	1	0.818	0.842
4	NB	TE IDE	Modifikasi	Y	0.782	0.829
	ND	TF-IDF	WIOGIIIKasi	1	0.781	0.829
	SVM	TFPOS-IDF	Default	N	0.438	0.438
5	SVIVI	TFFOS-IDF	Default	IN	0.43	0.43
3	NB	TFPOS-IDF	Default	N	0.431	0.453
	ND	TFFOS-IDF	Default	0.463	0.45	
	SVM	TFPOS-IDF	Modifikasi	N	0.445	0.504
_	SVIVI	TTTOS-IDT	WIOGIIIKasi	dilikasi	0.431	0.491
6	NB	TFPOS-IDF	Modifilzaci	Modifikasi N	0.401	0.467
	ND	Trros-idr	Modifikasi		0.43	0.472
	SVM	TFPOS-IDF	Default	Y	0.815	0.836
7	SVIVI	Trros-idr	Default	1	0.814	0.836
/	ND	TFPOS-IDF	Default	Y	0.735	0.795
	NB	11103-101	Default	ĭ	0.732	0.793
	SVM	TFPOS-IDF	Modifilmai	v	0.826	0.846
	SVIVI	11103-101	Modifikasi Y	ĭ	0.825	0.846
8	NB	TFPOS-IDF	Modifikasi	Iodifikasi Y	0.752	0.812
	ND	TFFOS-IDF	Modifikasi	1	0.748	0.81

- Random Oversampling dapat meningkatkan performa klasifikasi pada semua scenario.
- Modifikasi stopwords & TFPOS-IDF secara rata-rata dapat meningkatkan performa klasifikasi.

Analisis Hasil Pengujian

Algoritma	Feature Extraction	Stopwords	Random Over- Sampling	Akurasi & F1-Measure	Akurasi & F1-Measure optimized	
SVM	TFPOS-IDF	Modifikasi	V	0.826	0.846	
SVIVI	111 03 151	IVIOUITIKASI	Widdiikasi	•	0.825	0.846
ND	TE IDE	Modifikasi	V	0.782	0.829	
IND	NB TF-IDF Modi	IVIOUIIIKASI	Y	0.781	0.829	

Parameter SVM, C = 10 & kernel = linear Parameter NB, alpha = 0.0

Analisis Hasil Pengujian

	C1	C2	C3	C4	C5	C6
SVM	4	16	21	8	0	0
NB	5	14	21	9	0	3

Tabel 5 Jumlah Salah Prediksi per Kelas

	Bahasa Indonesia	IPA	Matematika
SVM	22	9	18
NB	26	9	19

Tabel 6 Jumlah Salah Prediksi per Mata Pelajaran

Analisis Hasil Pengujian

Contoh soal misklasifikasi Predicted C2, Actual C3	Contoh Soal kelas C2
Berikut merupakan contoh kalimat untuk iklan buku tulis	Berikut merupakan ciri ciri dari iklan baris , kecuali

	Predicted C4, Actual C3	Predicted C2, Actual C3
SVM	8	7
NB	7	9

Contoh soal misklasifikasi Predicted C4 Actual C3	Contoh Soal kelas C4
Ditentukan sin A = ,maka nilai cos 2A adalah	Pada segitiga ABC diketahui panjang sisi AB = 10 cm, sisi AC = 12 cm, dan sin B = maka nilai cos C adalah

5. Kesimpulan

- Pada penelitian ini, performansi SVM dapat mengungguli performansi NB.
- Ekstraksi fitur dengan TFPOS-IDF dapat memberikan performansi yang lebih baik dibandingkan TF-IDF pada algoritma SVM.
- TF-IDF memiliki performansi yang lebih baik dibandingkan dengan TFPOS-IDF pada algoritma NB
- Memodifikasi stopwords dapat membantu memberikan performansi yang baik untuk kedua algoritma.
- Melakukan random oversampling pada data dapat meningkatkan performa yang dihasilkan untuk algoritma SVM dan NB.

Terima Kasih

