Üzleti Intelligencia

11. Előadás: Transzformáló architektúrák

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1.félév

Bevezetés

Transzformáló architektúrák

Bevezetés

Transzformáló architektúrák

Tegnap Józsi letörölte a

termelési adatbázist.

Nevek felismerése

Visszacsatolásos neurális hálózatok alapjai						
Alkalmazás	Input	Output				
Beszédfelismerés	##-#+ - - - - - - - - -	"Milyen szép időnk van ma!"				
Szemantikai értelmezés	"Ez egy rossz film volt."	****				
DNS szekvencia elemzés	AGCCCTGTACTAG	AGCCCTGTACTAG				
Gépi fordítás	"Willst du mit mir tanzen?"	"Szeretnél velem táncolni?"				
Videók elemzése	1 1 1	Futás				

Tegnap Józsi letörölte a

termelési adatbázist.

Szavak reprezentálása 1-hot vektorokkal

Input: A kedvenc sportom a foci.

Reprezentáció: $X = [x_1, x_2, x_3, x_4, x_5,]$

Szókincs: $\begin{bmatrix} a, \ foci, \ kedvenc, \ sportom \\ 1 \ 2 \ 3 \ 4 \end{bmatrix}$

Problémák:

- Ha van egy 10.000 szóból álló szövegtörzs, minden szava egy 10.000 elemű vektorként lesz reprezentálva, aminek csak egyetlen eleme 1, a többi 0. Ez nem egy skálázható megoldás.
- Nincs kapcsolat a szavak között. A szavak külön-külön vannak kezelve, hasonló jelentésű szavak reprezentációja nagyban eltérhet.

Szavak reprezentálása beágyazóvektorokkal

Beágyazás

Egy szó beágyazása egy magas dimenziójú vektortérben való numerikus reprezentáció. Ezek a vektorok tartalmazzák a szavak struktúráját, szemantikáját, és szintaktikai szerkezetét.

Ezáltal képesek a mélytanuló modellek elsajátítani a szavak közötti hasonlóságokat és az egyes szavak jelentését.

	Férfi	Nő	Király	Királynő	Alma
Nem	-1	1	-0.95	0.97	0.0
Előkelő	0.01	0.02	0.93	0.95	-0.01
Kor	0.03	0.02	0.7	0.68	0.03
Étel	0.04	0.01	0.02	0.01	0.96

Tehát ebben az esetben például a férfi szó beágyazóvektora:

$$e_{\text{f\'erfi}} = [-1, 1, -0.95, 0.97, 0.0]$$

Beágyazóvektorok reprezentálása

A beágyazóvektorok használatával lehetőség nyílik a szavak hasonlóságának kiszámítására.

Az egymáshoz jelentés tartalmilag közelebb álló szavak beágyazóvektorainak matematikai távolsága alacsonyabb lesz, mint az egymástól távolabb eső szavaké.

Ezáltal továbbá lehetséges analógiák kiszámítása is. A férfi és a király olyanok egymásnak, mint a nő és a királynő.

Beágyazások vizualizálása

Dimenziócsökkentő algoritmusok segítségével lehetőség nyílik a magasabb dimenziós vektorok alacsonyabb térben való reprezentációjára. Az egyik ilyen algoritmus a T-SNE, ami egy jól működő algoritmus komplex input adatok esetén.

Ez hasznos a következő problémák esetén:

- Vizualizáció
- Klaszterezés
- Adatminőség mérése
- Szemantikai kapcsolatok elemzése
- Hiperparaméter hangolás

Bevezetés

Transzformáló architektúrák

Hagyományos visszacsatolásos architektúrák

A visszacsatolásos neurális hálózatok (RNN) olyan mesterséges neurális hálózatok, amelyek képesek kezelni időbeli szekvenciákat és más időfüggő adatokat.

Ezek a hálózatok olyan struktúrával rendelkeznek, amely lehetővé teszi a korábbi lépések eredményeinek visszacsatolását az aktuális lépésbe. Ennek eredményeként képesek tartani az emlékezetüket korábbi állapotokról, és ezáltal kezelni a szekvenciális adatokat

Önkódoló architektúrák

Az önkódoló neurális hálózatok feladata az inputot átmásolni az outputba úgy, hogy közben megismeri az adatok alacsony szintű struktúráját:

- Kódoló: A bemeneti adatokat tömöríti egy rövidebb, alacsony dimenziójú reprezentációba.
- Látens tér: Az az alacsony dimenziójú tér, amelyben a kódoló reprezentálja a bemeneti adatokat. Ez a tér tartalmazza az információkat a bemenetről kompakt formában.
- Dekódoló: Feladata a látens térben lévő reprezentációt visszaalakítani eredeti vagy közelítőleges formájára.

Transzformáló architektúrák

A transzformálók feladata két szekvencia közötti leképezés megtanulása. A transzformálónak két fő része van: a kódoló és a dekódoló. A kódoló a bemeneti szekvenciát dolgozza fel, míg a dekódoló kibővíti a kódolt információt. A kódoló és a dekódoló között összekapcsoló rétegek, figyelmi mechanizmusok segítenek az információáramlás szabályozásában.

