Dynamical Notes - Proofs to Remember

Thomas Chaplin

1 Sharkovskii's Theorem

Theorem 1.1 (Sharkovskii's Theorem). If $f: I \to I$ is continuous and there is a point of prime period 3. Then for each $n \in \mathbb{N}$ there is a periodic point of prime period n.

The proof proceeds by a number of lemmata.

Lemma 1.2. Given $I \subseteq [0,1]$ a closed interval ,if $f(I) \supseteq I$ or $f(I) \subseteq I$ then I contains a fixed point for f.

Proof. Use the ITV on g(x) = f(x) - x and consider the endpoints.

Lemma 1.3 (Whittling down intervals). If $I, I' \subseteq [0, 1]$ are closed intervals and f(I) = I', then \exists a closed interval $I_0 \subseteq I$ such that $f(I_0) = I'$.

Proof. Suppose I' = [a, b] then let

$$A := f^{-1}(a) \cap I$$
$$B := f^{-1}(b) \cap I$$

then take $x_0 = \sup(A)$ and $y_0 = \inf(B)$. Then $I_0 := [x_0, y_0]$ will do the job.

Lemma 1.4. Assume that we have closed intervals $I_1, \ldots, I_n \subseteq [0,1]$ such that

- $f(I_n) \supseteq I_1$,
- $f(I_j) \supseteq I_{j+1}$ for all appropriate j,

then there is a fixed point x for f^n such that

$$x \in I_1, f(x) \in I_2, \dots, f^{n-1} \in I_n$$

Proof. We can just apply the whittling lemma to the intervals in reverse order so

$$\exists I'_n \subseteq I_n \qquad s.t. \quad f(I'_n) = I_1$$

$$\exists I'_{n-1} \subseteq I_{n-1} \quad s.t. \quad f(I'_{n-1}) = I'_n$$

$$\vdots$$

$$\exists I'_1 \subseteq I_1 \qquad s.t. \quad f(I_1)' = I'_2$$

In particular we have that $f^n(I_1') = I_1 \supseteq I_1'$ and hence the first lemma gives us the desired fixed point.

Proof. of Theorem 1.1.

Let $f^3(x) = x$ be our point of prime period 3. For now we will assume that

$$\{x, f(x), f^2(x)\} = \{x_1, x_2, x_3\}$$

where $0 \le x_1 < x_2 < x_3 \le 1$. We also assume $f(x_1) = x_2$, $f(x_2) = x_3$ and $f(x_3) = x_1$. Other cases are similar. Let $I_0 := [x_1, x_2]$ and $I_1 := [x_2, x_3]$. Observe that

- (a) $f(I_0) \supseteq I_1$, and
- (b) $f(I_1) \supseteq I_0 \cup I_1$.

We now split the proof into a number of cases:

Case 1: (n = 3) This follows from the assumption.

Case 2: (n = 1) This follows from the first lemma thanks to (b).

Case 3: $(n = 2 \text{ or } n \ge 4)$

Note that we can make a chain of intervals as in the last Lemma.

$$I_0 \xrightarrow{f} I_1 \xrightarrow{f} I_1 \xrightarrow{f} \dots \xrightarrow{f} I_1 \xrightarrow{f} I_0$$

$$\xrightarrow{n-1 \text{ times}} I_0$$

where $A \leadsto B$ means $f(A) \supseteq B$. Hence there is a fixed point for f^n which starts in I_0 spends n-1 in I_1 and then returns to I_0 . Because the earliest return is at time n we can be sure that this is our prime period.

2 Dense Irrational Orbits

Theorem 2.1. If $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then for any $z \in \mathcal{K}$ we have

$$\{R^n_\alpha(x)\mid n\in\mathbb{N}\}$$

is a dense set in the circle K.

Proof. Get yourself some pigeons. If you put a pigeon on the circle for every point in the orbit up to time $\frac{1}{\epsilon} + 1$ then two pigeons, Kenny k and Lenny l, must be ϵ close.

$$d(R_{\alpha}^{l}(p), R_{\alpha}^{k}(p)) < \epsilon$$

Without loss of generality, assume that Kenny is further along the orbit then Lenny so that

$$m := k - l > 0.$$

Then for any $x \in \mathcal{K}$ we have $d(R_{\alpha}^{m}(x), x < \epsilon)$. Hence the orbit $\{x, R_{\alpha}^{m}(x), R_{\alpha}^{2m}(x), R_{\alpha}^{3m}(x), \dots\}$ is ϵ dense in the circle.

3 Rational Points and Periodic Points

Theorem 3.1. If $f: \mathcal{K} \to \mathcal{K}$ has a periodic point x_0 of period m then $\alpha(f) \in \mathbb{Q}$.

Proof. Let $F: \mathbb{R} \to \mathbb{R}$ be some lift then we must have

$$F^m(x) - x = k \in \mathbb{Z}$$

where $\rho(x) = x_0$. Then we can write any integer as n = pm + r where $p \ge 0$ and $r \in [0, m)$. Hence

$$F^{n}(x) = F^{pm+r}(x) = F^{r}(x) + pk$$

Then we can conclude

$$\lim_{n \to \infty} \frac{1}{n} F^n(x) = \lim_{p \to \infty} \frac{1}{pm+r} \left(F^r(x) + pk \right) = \frac{k}{m} \in \mathbb{Q}$$

Theorem 3.2. If $f: \mathcal{K} \to \mathcal{K}$ has 0 rotation number then f has a fixed point.

Proof. • Take a lift \widetilde{F} that gives $\lim_{n\to\infty} \frac{\widetilde{F}^n(x)}{n} = m$.

- Create a nicer lift $F := \widetilde{F} m$ so that the limit becomes 0.
- Assume d has no fixed point then by the IVT we can assume WLOG F(y) > y for all $y \in \mathbb{R}$.
- Hence $(F^n(0))_{n\in\mathbb{N}}$ is increasing so we just need to show boundedness.
- Suppose unbounded then $|F^{n_0}(0)| > 1$ and hence for all m we have $|F^{mn_0}(0)| > m$.

$$\frac{|F^{mn_0}(0)|}{mn_0} > \frac{m}{mn_0} = \frac{1}{n_0}$$

which cause a contradiction with the earlier 0 limit.

• It can be seen that the limit of this sequence is a fixed point.

Note: As a corollary if the rotation number is $\frac{a}{b} \in \mathbb{Q}$ then f^b has 0 rotation number and hence fixed point. Therefore, f has a periodic point.