MA0505 - Análisis I

Lección I: Repaso

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Outline

- Espacios métricos
 - Definiciones básicas
- Topología de los Espacios Métricos
 - Definiciones
 - Propiedades Básicas

Definción de Espacios Métricos

Sea E un conjunto, una métrica es una función

$$d: E \times E \rightarrow [0, +\infty[$$

que satisface

- 2 d(x, y) = 0 si y sólo si x = y.
- 3 $d(x, y) \le d(x, z) + d(z, y)$.

La métrica en \mathbb{R}^d .

Observemos que la tercera condición es la desigualdad triangular en \mathbb{R}^d pues si

$$d(x,y) = \|x - y\|$$

entonces

$$d(x,y) = ||x - y|| = ||x - z + z - y||$$

$$\leq ||x - z|| + ||z - y||$$

$$= d(x,y) + d(z,y).$$

Bolas, Unidades de la Topología Métrica.

Recordemos que

$$B(x_0, r) = \{ y \in E : d(x_0, y) \le r \}.$$

Diremos que $D \subseteq E$ es un conjunto abierto si para $x_0 \in D$, existe un r > 0 tal que

$$B(x_0, r) \subseteq D$$
.

De aquí vemos que \emptyset y E son abiertos.

Las Bolas Abiertas son Abiertos.

Lema

 $B(x_0, r)$ es un abierto para todo $x_0 \in E$ y r > 0.

Sea $x_1 \in B(x_0, r)$, debemos encontrar $r_1 > 0$ tal que $B(x_1, r_1) \subseteq B(x_0, r)$. Para ese efecto veremos que si

$$r_1 < r - d(x_0, x_1),$$

(es decir, $r_1 + d(x_0, x_1) < r$), entonces $B(x_1, r_1) \subseteq B(x_0, r)$. Sean r_1 como pedimos y $y \in B(x_1, r_1)$, vale que

$$d(x_0, y) \le d(x_0, x_1) + d(x_1, y)$$

 $< d(x_0, x_1) + r_1$
 $< d(x_0, x_1) + r - d(x_0, x_1) = r.$

Por lo tanto $y \in B(x_0, r)$.

Intersecciones.

Supongamos que G_1 , G_2 on abiertos. Si $x_0 \in G_1 \cap G_2$, entonces existen r_1 , r_2 tales que

$$B(x_0, r_1) \subseteq G_1, B(x_0, r_2) \subseteq G_2.$$

Si $r = \min(r_1, r_2)$, entonces

$$B(x_0,r)\subseteq B(x_0,r_1)\cap B(x_0,r_2)\subseteq G_1\cap G_2.$$

Hemos probado así que la intersección de abiertos es un abierto. Más generalmente, si G_1, \ldots, G_m es una colección de abiertos, entonces $\bigcap_{i=1}^m G_i$ es un abierto. (Ejercicio)

Y ahora Uniones.

Ahora si $(G_i)_{i=1}^{\infty}$ es una colección de abiertos, tome $x_0 \in \bigcup_{i=1}^{\infty}$. Así $x_0 \in G_{i_0}$ para algún i_0 . Como G_{i_0} es abierto, existe r > 0 tal que

$$B(x_0,r)\subseteq G_{i_0}\bigcup_{i=1}^{\infty}G_i.$$

El resultado que hemos probado es

Lema

Dados G_{λ} , $\lambda \in \Lambda$, abiertos vale que $\bigcup_{\lambda \in \Lambda} G_{\lambda}$ es abierto.

Cerrados.

Recuerde que F es cerrado si $E \setminus F$ es abierto.

1 Si (F_{λ}) es una colección de cerrados, entonces

$$E \setminus \bigcap_{\lambda \in \Lambda} F_{\lambda} = \bigcup_{\lambda \in \Lambda} E \setminus F_{\lambda}$$

es una unión de abiertos. Es decir $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ es cerrado.

② De igual forma podemos probar que si $F_1, ..., F_m$ son cerrados, entonces $\bigcup_{i=1}^m F_i$ es un cerrado.

Un par de ejemplos.

Podemos ver que

$$\bigcap_{n=1}^{\infty} \left[a - \frac{1}{n}, a + \frac{1}{n} \right] = \{a\}$$

no es un abierto. Es decir, no vale que la intersección contable de abiertos sea un abierto.

Además

$$]a,b[=\bigcup_{m=1}^{\infty}\left[a+\frac{1}{n},b-\frac{1}{n}\right]$$

no es un cerrado. Así la unión contable de cerrados no es un cerrado.

Resumen

- Definición de métrica y de abiertos.
- Las bolas abiertas son abiertos.
- Definición de cerrado.
- Propiedades de abiertos y cerrados.
- Ejercicios
 - La intersección finita de abiertos es un abierto.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.