Jutge.org

The Virtual Learning Environment for Computer Programming

Cycle detection

P30452_en

Setè Concurs de Programacio de la UPC - Final (2009-09-16)

For any function f that maps a finite set to itself, and for any initial value x_0 in the set, the sequence of values x_0 , $x_1 = f(x_0)$, $x_2 = f(x_1)$, ..., $x_k = f(x_{k-1})$, ... eventually repeats some values, i.e., there is some $i \ge 0$ and some j > i such that $f(x_i) = f(x_i)$. Once this happens, the sequence continues by repeating the cycle from x_i to x_{i-1} .

For instance, the function that maps (0,1,2,3,4,5,6,7,8) to (6,6,0,1,4,3,3,4,0) generates the following sequence when $x_0 = 2$:

```
2 0 6 3 1 6 3 1 6 3 1 ...
```

In this sequence, the beginning of the cycle (6 3 1) is found after 2 steps. In this case, i = 2, j = 5, and the periodicity is j - i = 3.

Given a function that maps the interval [0, n-1] to itself, and several starting values x_0 , compute the corresponding values of j - i and i.

Input

Input starts with the number of cases. Every such case begins with two integer numbers $1 \le n \le 10^5$ and $0 \le k \le 10n$. Follow, in order, the *n* images of the numbers in [0, n-1]. Follow k numbers: the x_0 's for which the result must be computed.

Output

For every case, print its number and k lines each one with j - i and i.

Observation

Since some of the private cases are huge, a recursive program may exhaust the recursion stack.

Sample input	Sample output
3 9 1	Case #1:
6 6 0 1 4 3 3 4 0	Case #2:
2 3 3	2 0 1 0
2 1 0 0 1 2	2 0 Case #3:
4 3	2 1
1 2 3 2 1 0 1	2 2 2 1

Problem information

Author : Xavier Martínez

Generation: 2013-09-02 15:41:14

© *Jutge.org*, 2006–2013. http://www.jutge.org