霍尔效应及磁阻测量

lolll

2023年6月17日

目录

目录

1 实验目的 1

1 实验目的

- 了解霍尔效应的产生原理以及副效应的产生原理;
- 掌握霍尔系数的测量方法,学习消除霍尔副效应的实验方法;
- 研究半导体材料的电阻值随磁场的变化规律。

2 实验原理

2.1 霍尔效应

在长方形薄板中通过电流 (记为 x 轴方向),并在电流的垂直方向 (z 轴方向) 加上磁场,那么载流子受洛伦兹力向 y 轴方向偏转,最终形成霍尔电势差。霍尔发现这个电位差 UH 即霍尔电压或电势与电流强度 I 及磁感应强度 B 均成正比,与金属板的厚度 d 成反比,即

$$U_H = R_H \frac{IB}{d} = K_H IB$$

2.2 副效应

除霍尔效应外,有其他一些副效应与霍尔效应混在一起,使霍尔电压的测量产生误差,需要消除。

2.2.1 厄廷好森 (Etinghausen) 效应

载流子在磁场中运动的动能转化成热能,导致材料温度升高产生温差 电动势 $U_E \propto IB$

2.2.2 能斯脱 (Nernst) 效应

通电流的方向导线和材料的接触电阻可能不同,或由于电极、半导体材料不同而产生不同的焦耳热。由此导致载流子产生热流并产生电位差 U_N 。

3 实验仪器 2

只考虑电阻效应, U_N 仅与 B 的方向有关。

里纪-勒杜克 (Righi-Leduc) 效应热流中载流子速度不同,也会产生上述 Nernst 效应中的电位差。

2.2.3 不等位效应

不等位效应是使得实验**产生误差最大**的效应。由于工艺制作方面的精度很难达到足够高,电势测量点不可能恰好处于同一条条电势等位线上,也即必然会出现电势差 U_0

2.2.4 磁电阻效应

在一定条件下,导电材料的电阻值 R 随磁感应强度 B 的变化规律称为 磁电阻效应

设磁阻器件在磁场为零时电阻及电阻率分别为 R(0) $\rho(0)$, 磁场为 B 时电阻及电阻率分别为 R(B) $\rho(B)$ 通常以电阻率的相对改变量 $\Delta\rho/\rho(0)$ 表示磁阻

$$\Delta \rho = \rho(B) - \rho(0)$$

而

$$\Delta R/R(0) \propto \Delta \rho/\rho(0)$$

其中 $\Delta R = R(B) - R(0)$ 。理论计算和实验都证明了在磁场较弱时,一般正常磁阻器件的 $\Delta R/R(0)$ 正比于 $B^2,B>0.12T$ 时 $\Delta R/R(0)$ 正比于 B

本实验中,磁阻器件的 $\Delta R/R(0)$ 与工作状态相关,因此在测量时需要记录工作状态。

3 实验仪器

• 霍尔效应实验仪

- 测试仪
- 万用表
- 导线

4 实验内容及数据处理

仪器编号 11025044; 实验编号 110832——磁场强度 131.4mT。

4.1 一、测量霍尔片的有关参数

不等位电压 $U_0 = (U_1 + U_2 - U_3 - U_4)/4$, 测量结果附在表后

U/mV I/mA	U_1	U_2	U_3	U_4	U_H	U_0
2.00	-47.3	46.8	-46.7	46.5	-46.825	-0.075
3.00	-70.7	70.0	-70.1	69.5	-70.075	-0.025
4.00	-94.4	93.0	-93.5	92.5	-93.35	-0.1
5.00	-118.2	116.0	-116.9	115.2	-116.575	-0.125
6.00	-142.3	138.9	-140.5	138.0	-139.925	-0.225
7.00	-166.3	161.4	-163.8	160.2	-162.925	-0.325
8.00	-191.1	184.2	-187.8	182.7	-186.45	-0.45

利用 Excel 拟合 U-I 关系,得到解析式为

$$U_H = -23.55I - 0.3125$$

误差系数 $r^2=0.999997$ 又由理论分析知 $U=K_HIB$,因此计算得灵敏度 $K_H=-179.2m^2/C$,霍尔系数为 $R=dK_H=-5.377\times 10^{-4}m^3/C$.而载流 子浓度 $n=1/eR_H=1.16\times 10^{22}$

图 1: 工作电流和霍尔电压的关系

不确定度计算

仪器不确定度 $\Delta_{\mathbb{Q}} = 10^{-3}$. 而

$$\Delta_{\rm K_H} = t_P(v)S_{\bar{x}} = \frac{t_P(v)}{\sqrt{n}}S_x = 8.927 \times 10^{-7}$$

$$\Delta_{\rm R_H} = t_P(v)S_{\bar{x}} = \frac{t_P(v)}{\sqrt{n}}S_x = 0.2976$$

由此 K_H 的不确定度 $\Delta_{K_H} = \sqrt{\Delta_A^2 + \Delta_Q^2} = 1 \times 10^{-3}$ 而 R_H 的不确定度为 $\Delta_{R_H} = \sqrt{\Delta_A^2 + \Delta_Q^2} = 0.2976$ 根据测量结果可知,霍尔元件内的载流子为电子。

4.2 三、标定电磁铁磁隙间磁场

标定工作电流 I=4.00mA

I_M /mA	U_1	U_2	U_3	U_4	U_H	B/mT
0	-0.7	-0.5	-0.7	-0.5	-0.1	0.139
100	-19.8	18.5	-19.0	17.8	-18.775	26.2
200	-38.6	36.3	-37.4	36.6	-37.225	51.9
300	-57.2	55.8	-56.3	54.9	-56.05	78.1
400	-75.8	74.5	-74.6	73.6	-74.625	104.1
500	-94.0	92.6	-93.4	92.4	-93.1	129.9
600	-112.8	111.4	-111.4	110.9	-111.625	155.7
700	-131.1	129.7	-130.1	129.2	-130.025	181.4
800	-149	147.6	-147.9	147.2	-147.925	206.3

图 2: 励磁电流和霍尔电压的关系

4.3 * 四、测定磁极间隙磁场分布

标定工作电流 $I=4.00mA;I_{M}=500mA$ 由图可知水平方向上磁隙间

图 3: 霍尔元件在磁场中的位置和霍尔电压的关系

匀强磁场的分布范围约为 10mm ~ 43mm

4.4 五、测量霍尔片载流子迁移率

理论计算知电子迁移速率 $\mu = \frac{I \cdot l}{neSU},$ 其中 U - I 关系测量如下,求得 I/U 平均值为 0.001323

由此可计算出 $\mu = 0.711 cm^2/(V \cdot s)$

表 1: 工作电流和对应的电势差

I/mV	1.5	2	3	4	5	6	7
U_{CD} /V	1.1201	1.4939	2.25	3.015	3.79	4.587	5.398

4.5 六、磁电阻特性测量

图 4: 磁电阻特性测量

实验数据如下

5 实验小结 8

表 2: 励磁电流和磁阻变化测量

I_M /mA	0	50	100	150	200	250	300	350
I/mA	0.4599	0.466	0.4758	0.4914	0.5115	0.5352	0.560	0.5865
R(B)	306.6	310.7	317.2	327.6	341	356.8	373.5	391
$\Delta R / R(0)$	0	0.01348	0.03457	0.06849	0.1122	0.1637	0.218	0.275
B/mT	0.4510	13.36	26.3	39.19	52.11	65.02	77.9	90.9
I_M/mA	400	450	500	600	700	800	900	1000
I/mA	0.6131	0.6381	0.6592	0.6929	0.7195	0.7426	0.764	0.786
R	408.7	425.4	439.5	461.9	479.7	495.1	509.7	523.6
$\Delta R / R(0)$	0.3331	0.3874	0.4333	0.5066	0.5645	0.6147	0.662	0.708
B/mT	103.7	116.6	129.5931	155.4	181.2	207.1	232.9	258.7

5 实验小结

- 1 在实验一和实验二中,我得到的测量结果 (U-I) 关系并不完全是正比例关系,而是一次函数关系,且误差较大。分析过后较大的误差应该来自于磁场强度变化 (磁场强度主要受励磁电流的影响,但还随着工作温度升高,磁场也会发生变化,这导致了测量误差),以及输出工作电流电流并非恒流 (测量过程中会有 ±1 ~ 2mA 的跳变)。
- 2 通过实验,我了解到霍尔电压的测量方法,以及对霍尔效应的应用有了进一步的认识,例如能用来测量半导体材料的载流子浓度和迁移速率等等。

6 原始数据

6 原始数据 9

