Chapter 1 & 2: Basics and Sufficiency *

1 Set-up for Statistics

- $(\Omega, \mathcal{F}, \mathcal{P}) \xrightarrow{X} (\mathcal{X}, \mathcal{B})$
- X is $\langle \mathcal{F}, \mathcal{B} \rangle$ measurable if $X^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}$.
- Dominance: $\mu_1 \ll \mu_2$. Equivalently, $\mu_2(B) = 0 \implies \mu_1(B) = 0$
- σ -finite measure μ : $\exists A_1, \ldots \in \Omega, \Omega = \bigcup_{i=1}^{\infty} A_i, \mu(A_i) < \infty$.
- Radon-Nikodym Theorem: $P_{\theta} \ll \mu, \mu$ is σ -finite, then for each $\theta \in \Theta, \exists f_{\theta} : \mathcal{X} \to \mathbb{R}$ such that

$$P_{\theta}(B) = \int_{B} f_{\theta} d\mu, \forall B \in \mathcal{B}.$$

• $f_{\theta}(X)$ is called the likelihood function, with respect to measure μ . When X is completely discrete, μ is counting measure; when X is completely continuous, μ is Lebesgue measure; otherwise, μ can be a mixture of these two.

2 Sufficiency and Related Concepts

- Statistic $T(X): (\mathcal{X}, \mathcal{B}) \to (\mathcal{T}, \mathcal{F})$ is a measurable map.
- σ -algebra generated by T is $\mathcal{B}_T := \sigma \langle T \rangle = \{T^{-11}(A) : A \in \mathcal{F}\} \subset \mathcal{B}$
- Sufficiency: $[X|T(X)] \perp \theta$. Equivalently, $T(x) = T(x') \implies f_{\theta}(x) = c(x, x') f_{\theta}(x')$. Equivalently, $\forall B \in \mathcal{B}, \exists \mathcal{B}_T$ -measurable random variable $Y_B : \mathcal{X} \to \mathbb{R}$ such that

$$Y_B \equiv E_{\theta}(I_B|\mathcal{B}_T) = P_{\theta}(B|\mathcal{B}_T)$$

a.s. P_{θ} for all $\theta \in \Theta$, i.e. the conditional probability of X given T(X) does not depend on θ .

• Factorization Theorem (Halmos-Savage): Suppose $\mathcal{P} \ll \mu, \mu$ is a σ -finite measure on (\mathcal{X}, B) . Then T(X) is sufficient for $\mathcal{P} \iff \exists$ nonnegative \mathcal{B} -measurable function $h: \mathcal{X} \to \mathbb{R}$ and a \mathcal{F} - measurable function $g_{\theta}: \mathcal{T} \to \mathbb{R}$ such that

$$\frac{dP_{\theta}}{du}(x) = f_{\theta}(x) = g_{\theta}(T(X))h(x)$$

a.s. μ for all $\theta \in \Theta$.

– Lehmann's Theorem: (Lemma 1.2 / Page 37 of Shao): Let $T:(\mathcal{X},\mathcal{B}) \to (\mathcal{T},\mathcal{F})$ be measurable and let $\phi:(\mathcal{X},\mathcal{B}) \to (\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ be $\mathcal{B}_T \equiv \sigma \langle T \rangle$ -measurable. Then, there exists an \mathcal{F} -measurable function $\psi:(\mathcal{T},\mathcal{F}) \to (\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ such that

$$\phi(x) = \psi(T(x))$$

– Lemma 03 (Lemma 2.1/Page 104 of Shao): $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is dominated by a σ -finite measure μ if and only if \mathcal{P} is dominated by a probability measure λ of the form

$$\lambda = \sum_{i=1}^{\infty} c_i P_{\theta_i}$$

for some countable subset $\{\theta_i\}\subset\Theta$ and a countable $\{c_i\}$ with $c_i\geq 0$ and $\sum_{i=1}^{\infty}c_i=1$

^{*}STA643: Advanced Theory of Statistical Inference. Instructed by Dr. Daniel Nordman. Arranged by Zhiling Gu

- Lemma 04: Suppose $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is dominated by a σ -finite measure μ and $T : (\mathcal{X}, \mathcal{B}) \to (\mathcal{T}, \mathcal{F})$. Then, T is sufficient for \mathcal{P} if and only if there exists a nonnegative \mathcal{F} -measurable function $g_{\theta} : (\mathcal{T}, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$\frac{dP_{\theta}}{d\lambda}(x) = g_{\theta}(T(x))$$
 a.s. λ

using a fixed probability measure λ in the form of Lemma 03.

• Minimal Sufficiency: A sufficient statistic $T: (\mathcal{X}, \mathcal{B}) \to (\mathcal{T}, \mathcal{F})$ is minimal sufficient for $\mathcal{P}($ or $\theta)$ provided for every sufficient statistic $S: (\mathcal{X}, \mathcal{B}) \to (\mathcal{S}, \mathcal{G})$, there is a function $U: \mathcal{S} \to \mathcal{T}$ such that

$$T = U \circ S$$
 a.s. \mathcal{P}

(that is, the set $A = \{x \in \mathcal{X} : T(x) \neq U(S(x))\}$ satisfies $P_{\theta}(A) = 0$ for any θ)

- Theorem 06: Suppose \mathcal{P} is dominated by a σ -finite measure μ and $T:(\mathcal{X},\mathcal{B}) \to (\mathcal{T},\mathcal{F})$ is sufficient. Suppose further that, if given versions of densities $\frac{dP_{\theta}}{d\lambda} = f_{\theta}$ and some \mathcal{P} -null set N_0 , it turns out that, for two datasets $x, y \in \mathcal{X} \setminus N_0$, the existence of a constant k(x,y) > 0 such that

$$f_{\theta}(x) = f_{\theta}(y)k(x,y) \quad \forall \theta \in \Theta \quad (*)$$

in turn implies that T(x) = T(y). Then, T is minimal sufficient. (Null set $N_0 \in \mathcal{B}$ and $P_{\theta}(N_0) = 0$ for all $P_{\theta} \in \mathcal{P}$.) Proof: only need to show T is a function of $S \iff$ wherever S(X) = S(Y), T(X) = T(Y).

- Theorem 07: For finite dimension measure $\mathcal{P} = \{P_i\}_{i=1}^k$, $T(X) = \left(\frac{f_1(X)}{f_0(X)} \dots \frac{f_k(X)}{f_0(X)}\right)$ is minimal sufficient for \mathcal{P} .
- Theorem 08: $\mathcal{P} \ll \mathcal{P}_0$ (i.e. $P(B) = 0, \forall P \in \mathcal{P}_0 \implies P(B) = 0, \forall P \in \mathcal{P}), \mathcal{P}_0 \subset \mathcal{P}$, T sufficient for $\mathcal{P}, \mathcal{P}_0, T$ minimal sufficient for $\mathcal{P}_0 \implies T$ minimal sufficient for \mathcal{P} .