## DS-GA 3001.009 Applied Statistics: Homework #3

Due on Thursday, October 5, 2023

Please hand in your homework via Gradescope (entry code: RKXJN2) before 11:59 PM.

- 1. Let  $p_{\theta}(y) = \exp(\theta \cdot T(y) A(\theta))h(y)$  be a general one-dimensional exponential family, and consider a GLM  $y_i \sim p_{\theta_i}$  with  $\theta_i = \langle \beta, x_i \rangle$  for all  $1 \leq i \leq n$ .
  - (a) Let  $\widehat{\beta}$  be the MLE of  $\beta$  based on  $(x_1, y_1), \dots, (x_n, y_n)$ . Prove Hoeffding's formula:

$$D_{+}(\widehat{\beta};\beta) = 2\log \frac{p_{\widehat{\beta}}(y_1, \dots, y_n \mid x_1, \dots, x_n)}{p_{\beta}(y_1, \dots, y_n \mid x_1, \dots, x_n)}$$

holds for any  $\beta$ , where  $D_{+}(\cdot;\cdot)$  denotes the total deviance.

(b) Let  $\widehat{\beta}_0$  be the MLE restricted to a subset  $\beta \in \Omega_0 \subseteq \mathbb{R}^p$ ; assume that Hoeffding's formula also holds for  $\widehat{\beta}_0$  whenever  $\beta \in \Omega_0$ . Prove the deviance additivity theorem:

$$D_{+}(\widehat{\beta}; \widehat{\beta}_{0}) = D_{+}(\widehat{\beta}; \beta) - D_{+}(\widehat{\beta}_{0}; \beta), \quad \forall \beta \in \Omega_{0}.$$

- 2. Let  $\pi = (\pi_1, \dots, \pi_k)$  be a probability vector, i.e.  $\pi_j \ge 0$  for all  $j = 1, \dots, k, \sum_{j=1}^k \pi_j = 1$ . Let  $p_{\pi}$  denote the statistical model  $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \pi$  with sample size n.
  - (a) Write out the log-likelihood  $\ell_{\pi}(Y_1, \dots, Y_n) = \log p_{\pi}(Y_1, \dots, Y_n)$ .
  - (b) Let  $(\pi_1, \dots, \pi_{k-1})$  be the free parameters, and  $\pi_k = 1 \sum_{j=1}^{k-1} \pi_j$ . Show that the score function  $s_{\pi} = (s_{\pi,1}, \dots, s_{\pi,k-1})$  is given by

$$s_{\pi,j}(Y_1,\dots,Y_n) = \sum_{i=1}^n \left( \frac{\mathbb{1}(Y_i=j)}{\pi_j} - \frac{\mathbb{1}(Y_i=k)}{\pi_k} \right).$$

(c) Verify that the Fisher information matrix  $I(\pi)$  is given by

$$I(\pi) = n \left( \operatorname{diag}(\pi_1^{-1}, \cdots, \pi_{k-1}^{-1}) + \frac{\mathbf{1}\mathbf{1}^{\top}}{\pi_k} \right),$$

where  $\mathbf{1} \in \mathbb{R}^{k-1}$  is the column vector consisting of all ones.

- (d) Using the Woodbury matrix identity (consult wikipedia), compute  $I(\pi)^{-1}$ . Compare your result with your answer to 2(a) in HW2. What do you find?
- 3. Coding: we will implement Lindsey's method for density estimation. Given  $z_1, \dots, z_{200} \sim p_Z$  (in the experiment we set  $p_Z = \mathcal{N}(0.5, 1)$ ), we aim to fit  $p_Z$  using

$$p_{\theta}(z) \propto \exp\left(\sum_{j=1}^{5} \theta_{j} z^{j}\right) h(z)$$

with  $h(z) = \exp(-z^2/2)$ . In other words, the fitted exponent is a degree-5 polynomial of z. In this problem, we will:

Homework 3 Page 1 of 2

- (a) use Lindsey's method to fit a full model  $\theta \in \mathbb{R}^5$ ;
- (b) use model selection techniques (AIC and Lasso) to fit a reduced model.

Based on the inline instructions, fill in the missing codes in https://tinyurl.com/mr34wr63. Be sure to submit a pdf with your codes, outputs, and colab link.

4. (Bonus question, 5 pts) In this problem we show that the map

$$(x,y) \mapsto g(x,y) = \log\left(\frac{1}{1 + e^{-x}} - \frac{1}{1 + e^{-y}}\right), \quad x, y \in \mathbb{R}, x \ge y$$

is concave, which implies the concavity of the MLE objective in the ordered logit model. To this end we use the following Prékopa-Leindler inequality.

**Theorem 1** (Prékopa-Leindler). If  $(u,v) \mapsto f(u,v) \in [0,\infty)$  is log-concave for  $u \in \mathbb{R}^m, v \in \mathbb{R}^n$ , the partial integration  $u \mapsto \int_{\mathbb{R}^n} f(u,v) dv$  is also log-concave.

(a) For  $x \geq y, t \in \mathbb{R}$ , show that

$$f(x, y, t) = \frac{e^t}{(1 + e^t)^2} \mathbb{1}(y \le t \le x)$$

is log-concave in (x, y, t).

- (b) Use Prékopa-Leindler to conclude that g(x, y) is concave in (x, y).
- (c) Use the above program to prove that  $(x, y) \mapsto \log(\Phi(x) \Phi(y))$  is jointly concave in  $(x, y) \in \mathbb{R}^2$  with  $x \geq y$ , where  $\Phi$  is the CDF of the standard normal distribution. Choosing  $y \to -\infty$ , this gives an alternative proof that  $x \mapsto \log \Phi(x)$  is concave.

Homework 3 Page 2 of 2