Practical 05

Aim - HR Analytics based on employee attrition factors.

```
# Sample employee data
data = {
    'EmployeeID': [1, 2, 3, 4, 5],
    'HireDate': ['2022-01-01', '2022-05-15', '2022-07-20', '2022-09-01', '2022-11-10'],
    'TerminationDate': ['2023-01-10', '2023-04-22', None, '2023-08-05', None],
    'Department': ['Sales', 'IT', 'Sales', 'HR', 'IT'],
    'ReasonForLeaving': ['Resignation', 'Retirement', None, 'Layoff', None]
}

df = pd.DataFrame(data)
[2] # Convert dates to datetime format
```

```
[2] # Convert dates to datetime format
    df['HireDate'] = pd.to_datetime(df['HireDate'])
    df['TerminationDate'] = pd.to_datetime(df['TerminationDate'])

# Calculate the number of employees who left during the period
    employees_left = df['TerminationDate'].notna().sum()

# Assuming the period is 1 year for simplicity, adjust as necessary
    period_start = pd.to_datetime('2023-01-01')
    period_end = pd.to_datetime('2023-12-31')
```

```
# Calculate the average number of employees during the period
employees_start = df[(df['HireDate'] <= period_start)].shape[0]
employees_end = df[(df['HireDate'] <= period_end) & (df['TerminationDate'].isna() | (df['TerminationDate'] > period_end))].shape[0]
average_employees = (employees_start + employees_end) / 2

# Calculate turnover rate
turnover_rate = (employees_left / average_employees) * 100
print(f"Employee Turnover Rate: (turnover_rate:.2f)%")

# Analyzing contributing factors
turnover_by_department = df[df['TerminationDate'].notna()].groupby('Department').size()
print("\nTurnover_by_department').", turnover_by_department)

turnover_reasons = df['ReasonForLeaving'].value_counts()
print("\nReasons for Leaving:\n", turnover_reasons)
```

→▼ Employee Turnover Rate: 85.71%

```
Turnover by Department:
Department
HR 1
IT 1
Sales 1
dtype: int64

Reasons for Leaving:
ReasonForLeaving
Resignation 1
Retirement 1
```

Layoff 1
Name: count, dtype: int64

Python Code for Cox PH Model

```
√ [5] !pip install lifelines
```

→ Collecting lifelines

Downloading lifelines-0.29.0-py3-none-a Requirement already satisfied: numpy<2.0, Requirement already satisfied: scipy>=1.7 Requirement already satisfied: pandas>=2.

```
import numpy as np
     from lifelines import KaplanMeierFitter, CoxPHFitter
     import matplotlib.pyplot as plt
     # Sample data preparation (assuming you have loaded your data into df)
     df = pd.read_csv('/content/employee_data - employee_data.csv')
     # Convert dates to datetime
     df['HireDate'] = pd.to_datetime(df['HireDate'])
df['TerminationDate'] = pd.to_datetime(df['TerminationDate'])
     # Create tenure feature (days worked)
     df['Tenure'] = (df['TerminationDate'].fillna(pd.Timestamp('today')) - df['HireDate']).dt.days
     # Create a 'Turnover' binary column (1 if left, 0 if still employed)
df['Turnover'] = df['TerminationDate'].notna().astype(int)
     # One-hot encode categorical variables (e.g., Department, JobRole)

df_encoded = pd.get_dummies(df, columns=['Department', 'JobRole', 'ReasonForLeaving'], drop_first=True)
     # Cox Proportional Hazards Model
     cph = CoxPHFitter()
     # Fit the model on the encoded data
     cph.fit(df_encoded[['Tenure', 'Turnover'] + list(df_encoded.columns[6:])], duration_col='Tenure', event_col='Turnover')
     # Print the summary of the model
     cph.print_summary()
```

model	lifelines.CoxPHFitter
duration col	'Tenure'
event col	'Turnover'
baseline estimation	breslow
number of observations	200
number of events observed	57
partial log-likelihood	-213.32
time fit was run	2024-09-17 09:04:58 UTC

Sakshi Sawant (MSCIT-II/6957)

0		coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp	Z	р	log2(p)
₹	Department_IT	0.21	1.23	0.49	-0.75	1.16	0.47	3.21	0.00	0.42	0.67	0.57
	Department_Marketing	-0.52	0.59	0.41	-1.34	0.29	0.26	1.34	0.00	-1.26	0.21	2.27
	Department_Sales	0.16	1.17	0.45	-0.73	1.04	0.48	2.84	0.00	0.35	0.73	0.46
	JobRole_Developer	0.07	1.07	0.44	-0.80	0.93	0.45	2.54	0.00	0.15	0.88	0.18
	JobRole_Executive	-0.05	0.95	0.47	-0.96	0.87	0.38	2.38	0.00	-0.10	0.92	0.12
	JobRole_Manager	-0.02	0.98	0.56	-1.11	1.08	0.33	2.94	0.00	-0.03	0.98	0.04
	JobRole_Salesperson	0.58	1.79	0.46	-0.31	1.48	0.73	4.40	0.00	1.27	0.20	2.30
	ReasonForLeaving_Layoff	3.90	49.46	0.51	2.91	4.89	18.33	133.43	0.00	7.70	<0.005	46.11
	ReasonForLeaving_Resignation	4.62	101.40	0.53	3.57	5.67	35.54	289.33	0.00	8.63	<0.005	57.23
	ReasonForLeaving_Retirement	3.76	42.95	0.50	2.77	4.75	16.01	115.21	0.00	7.47	<0.005	43.50
	$Reason For Leaving_Termination$	4.07	58.43	0.47	3.14	4.99	23.12	147.64	0.00	8.60	<0.005	56.81

Concordance	0.87
Partial AIC	448.65
log-likelihood ratio test	155.49 on 11 df
-log2(p) of II-ratio test	89.52

Plot the coefficients
cph.plot()
plt.title('Cox Proportional Hazards Model Coefficients')
plt.show()

