PC 8: Estimation statistique

On corrigera les exercices (1), (4) et (6) en PC.

1 Estimation de paramètres

Exercice 1 (Loi de Poisson). On observe $\mathbf{x} = (x_1, \dots, x_n)$ que l'on considère comme la réalisation du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_n)$, où les X_i sont des variables aléatoires i.i.d. de la loi de Poisson $\mathcal{P}(\theta)$ de paramètre inconnu $\theta > 0$.

- 1. Calculer l'estimateur par la méthode des moments $\hat{\theta}_n^{\text{MM}}$ de θ (s'il existe). On utilisera le moment d'ordre 1.
- 2. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{\text{MV}}$ de θ (s'il existe).
- 3. Vérifier si l'estimateur $\hat{\theta}_n^{\text{MV}}$ est convergent, et déterminer son risque quadratique moyen $\text{RQM}_{\theta}(\hat{\theta}_n^{\text{MV}})$.
- 4. Montrer que $\hat{\theta}_n^{\text{MV}}$ est asymptotiquement normal et préciser sa vitesse de convergence.

Solution. 1. Soit $X \sim \mathcal{P}(\theta)$ avec $\theta > 0$. On a $\mathbb{E}_{\theta}[X] = \theta$. Selon la méthode des moments, on approche $\mathbb{E}_{\theta}[X]$ par la moyenne empirique $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. On obtient alors que l'estimateur par la méthode des moments (EMM) est donné par $\hat{\theta}^{\text{MM}} = \bar{X}_n$. Mais attention, l'espace de paramètre Θ est \mathbb{R}_+ et $\bar{X}_n = 0$ se produit avec probabilité nonnulle. En effet,

$$\mathbb{P}_{\theta}(\bar{X}_n = 0) = \mathbb{P}_{\theta}(X_i = 0, i = 1, \dots, n) = (\mathbb{P}_{\theta}(X_1 = 0))^n = e^{-n\theta} > 0.$$

Donc, lorsque $\bar{x}_n = 0$, l'EMM n'est pas défini. Néanmoins, $\mathbb{P}_{\theta}(\bar{X}_n = 0) \to 0$ lorsque $n \to \infty$ pour tout $\theta > 0$. Donc, si n est suffisamment grand, le problème ne se pose pas.

2. La fonction de vraisemblance associée à $\mathbf{x} = (x_1, \dots, x_n)$ est

$$\mathcal{L}(\mathbf{x};\theta) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!} e^{-\theta} = e^{-n\theta} \theta^{\sum_{i=1}^{n} x_i} \frac{1}{\prod_{i=1}^{n} (x_i!)}.$$

On peut passer à la fonction de log-vraisemblance

$$\ell(\theta) = \log \mathcal{L}(\mathbf{x}; \theta) = -n\theta + \log \theta \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \log(x_i!).$$

Cette fonction est deux fois dérivable avec

$$\ell'(\theta) = -n + \frac{1}{\theta} \sum_{i=1}^{n} x_i, \qquad \ell''(\theta) = -\frac{1}{\theta^2} \sum_{i=1}^{n} x_i.$$

Comme $\ell''(\theta) \leq 0$ pour tout $\theta > 0$, la fonction $\ell(\theta)$ est concave. Pour la maximiser il suffit alors de trouver un point critique :

$$\ell'(\theta) = 0 \Longleftrightarrow -n + \frac{1}{\theta} \sum_{i=1}^{n} x_i = 0 \Longleftrightarrow \theta = \bar{x}_n.$$

L'EMV est alors $\hat{\theta}_n^{\text{MV}} = \hat{\theta}_n^{\text{MM}} = \bar{X}_n$.

La même remarque que pour l'EMM s'applique : si $\bar{x}_n=0$, alors l'EMV n'existe pas.

3. La LFGN implique la convergence de $\hat{\theta}_n^{\text{MV}}$. Le risque quadratique moyen est donné par

$$\mathrm{RQM}_{\theta}(\hat{\theta}^{\mathrm{MV}}) = (\mathbb{E}_{\theta}[\hat{\theta}^{\mathrm{MV}}] - \theta)^{2} + \mathrm{Var}(\hat{\theta}^{\mathrm{MV}}) = 0 + \frac{1}{n}\mathrm{Var}(X_{1}) = \frac{1}{n}.$$

4. Par le TCL, on a $\sqrt{n}(\hat{\theta}_n^{\text{MV}} - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \theta) \ (n \to \infty)$. Donc, l'EMV est bien asymptotiquement normal et sa vitesse de convergence est de $n^{-1/2}$.

Exercice 2 (Loi géométrique). On observe $\mathbf{x} = (x_1, \dots, x_n)$ que l'on considère comme la réalisation du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_n)$, où les X_i sont des variables aléatoires i.i.d. de la loi géométrique $\mathrm{Geo}(\theta)$ de paramètre inconnu $0 < \theta < 1$.

- 1. Calculer l'estimateur par la méthode des moments $\hat{\theta}_n^{\text{MM}}$ de θ (s'il existe). On utilisera le moment d'ordre 1.
- 2. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{\text{MV}}$ de θ (s'il existe).
- 3. Vérifier si l'estimateur $\hat{\theta}_n^{\text{MV}}$ est convergent.
- 4. Montrer que $\hat{\theta}_n^{\text{MV}}$ est asymptotiquement normal et préciser sa vitesse de convergence.

Exercice 3 (Loi de Cauchy). On observe $\mathbf{x} = (x_1, \dots, x_n)$ que l'on considère comme la réalisation du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_n)$, où les X_i sont des variables aléatoires i.i.d. de la loi de Cauchy avec un paramètre d'échelle dont la densité est donnée par

$$f_{\theta}(x) = \frac{\theta}{\pi(\theta^2 + x^2)},$$

pour $\theta > 0$ inconnu.

- 1. Calculer l'estimateur par la méthode des moments $\hat{\theta}_n^{\text{MM}}$ de θ (s'il existe). On utilisera le moment d'ordre 1. Vérifier si l'estimateur est convergent et asymptotiquement normal, et calculer son risque quadratique moyen.
- 2. Calculer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{\text{MV}}$ de θ (s'il existe). Que dire des propriétés de cet estimateur?

2 Modèle statistique

Exercice 4 (Méthode de capture-recapture). On souhaite estimer le nombre N de poissons vivant dans un bassin. Pour cela, on en pêche k que l'on marque. Ensuite, on pêche et on relâche successivement n poissons et l'on compte le nombre X de poissons marqués parmi les n. Donner l'estimateur du maximum de vraisemblance \hat{N} de N en fonction de X, n et k. Montrer que \hat{N} est convergent et donner une approximation de sa loi quand n est grand. Comment la variance de \hat{N} dépend du choix de k?

Solution. Notons Y_i la v.a. à valeurs dans $\{0,1\}$ telle que $Y_i=1$ si le i-me poisson pêché est marqué. Comme les poissons sont toute de suite relâchés, on peut supposer que les $Y_i, i=1,\ldots,n$ sont des v.a. i.i.d. de loi Bernoulli de paramètre k/N avec k connu et N inconnu. Le nombre X de poissons marqués parmi les n est $X=\sum_{i=1}^n Y_i$ de loi binomiale $\mathrm{Bin}(n,k/N)$. La fonction de vraisemblance est donnée par

$$\mathcal{L}(x;N) = \mathbb{P}(X=x) = \binom{n}{x} \left(\frac{k}{N}\right)^x \left(1 - \frac{k}{N}\right)^{n-x} = \binom{n}{x} k^x (N-k)^{n-x} \left(\frac{1}{N}\right)^n,$$

et sa fonction de log-vraisemblance par

$$\ell(N) = \log(\mathcal{L}(x; N)) = (n - x)\log(N - k) - n\log N + \text{constante}.$$

Ainsi

$$\ell'(N) \leq 0 \quad \Leftrightarrow \quad \frac{n-x}{N-k} - \frac{n}{N} \leq 0 \quad \Leftrightarrow \quad N \geq \frac{kn}{x}.$$

Donc l'EMV de N est donné par $\hat{N} = kn/X$.

Remarquons que $\hat{N} = k/\bar{Y}_n$. Par la LFGN et h(y) = k/y fonction continue, on a $\hat{N} = h(\bar{Y}_n) \longrightarrow h(\mathbb{E}[Y_1]) = N$ p.s.. Donc, l'estimateur est convergent.

Par le TCL et la méthode delta (h est C^1), on a

$$\sqrt{n}(\hat{N}-N) = \sqrt{n}\left(h(\bar{Y}_n) - h\left(\frac{k}{N}\right)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \operatorname{Var}(Y_1)\left[h'\left(\frac{k}{N}\right)\right]^2\right) = \mathcal{N}\left(0, N^2\left(\frac{N}{k}-1\right)\right).$$

On en déduit que, pour n grand, $\hat{N} \approx \mathcal{N}\left(N, \frac{N^2}{n}\left(\frac{N}{k}-1\right)\right)$. Donc, plus k est grand, plus la variance de \hat{N} diminue.

Exercice 5 (Ampoules défaillantes). Un statisticien observe pendant n jours le nombre d'ampoules défaillantes par jour à la sortie d'une chaîne de fabrication, noté x_1, \ldots, x_n . Il considère que x_1, \ldots, x_n sont des réalisations i.i.d. d'une loi \mathbb{P} , et il souhaite estimer la probabilité p de n'avoir aucune ampoule défaillante par jour $(p = \mathbb{P}(X = 0))$.

1. Dans un premier temps, il compte le nombre de jours où aucune ampoule n'est défaillante, noté N_n , qui est alors le nombre de X_i , $i=1,\ldots,n$, égaux à 0. Il propose d'estimer la probabilité p par

$$\hat{p}_1 = \frac{1}{n} N_n.$$

Montrer que l'estimateur est convergent et sans biais. Calculer son risque quadratique, et donner sa loi limite.

2. Désormais le statisticien suppose que X_i suivent une loi de Poisson $\operatorname{Poi}(\lambda)$ de paramètre $\lambda>0$ inconnu. Il propose comme estimateur de p

$$\hat{p}_2 = e^{-\bar{X}_n},$$

où
$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
.

- (i) Expliquer sa démarche. Montrer que \hat{p}_2 est convergent. Calculer sa variance et son biais. Déterminer des équivalents asymptotiques des quantités précédentes.
- (ii) Montrer que l'on peut choisir t_n tel que $\hat{p}_3 = e^{-t_n \bar{X}_n}$ soit sans biais.
- (iii) Lequel de \hat{p}_1 , \hat{p}_2 et \hat{p}_3 choisiriez-vous pour estimer $e^{-\lambda}$?

3 Estimation statistique dans le modèle linéaire

Exercice 6 (Régression linéaire). Soit $X \in M_{n,p}(\mathbb{R})$, $\beta \in \mathbb{R}^p$ avec p < n. On définit

$$Y = X\beta + \varepsilon$$
,

où $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$. La matrice X est connue et on observe Y. L'objectif est d'estimer β . On supposera que X est de rang maximal, ce qui implique en particulier que X'X est inversible.

- 1. Quelle est la loi du vecteur $Y = (Y_1, \dots, Y_n)'$? Les cordonnées Y_i sont-elles indépendantes et identiquement distribuées?
- 2. La définition de l'estimateur du maximum de vraisemblance se généralise à des observations non i.i.d.. La fonction de vraisemblance est alors définie comme la densité du vecteur d'observations. Ainsi, l'estimateur du maximum de vraisemblance $\hat{\beta}$ de β est défini comme le point où la densité de Y, notée f_{β} , est maximale (on maximise $\beta \mapsto f_{\beta}(Y)$).

Montrer que $\hat{\beta}$ minimise $\beta \mapsto \|Y - X\beta\|_2^2$. En déduire que

$$\hat{\beta} = (X'X)^{-1}X'Y.$$

Donner la loi de $\hat{\beta}$.

3. On définit un estimateur de σ^2 par

$$\hat{\sigma}^2 = \frac{\|Y - X\hat{\beta}\|_2^2}{n - p}.$$

Montrer que $\hat{\beta}$ et $\hat{\sigma}^2$ sont indépendants.

4. Donner la loi de $\hat{\sigma}^2$ et en déduire qu'il s'agit d'un estimateur sans biais qui converge en probabilité vers σ^2 .

Rappel du Théorème de Cochran : Soient $(V_i)_{1 \leq i \leq n}$ une décomposition orthogonale en somme directe de \mathbb{R}^n et $(\Pi_{V_i})_{1 \leq i \leq n}$ les matrices de projection orthogonale associées. Pour un vecteur gaussien $Z \sim \mathcal{N}_n(0, \sigma^2 I_n)$, on a

- $\Pi_{V_1}Z, \dots, \Pi_{V_k}Z$ sont des vecteurs aléatoires indépendants de loi $\mathcal{N}_n(0, \sigma^2\Pi_{V_i})$.
- Pour tout $1 \leq i \leq n$, $\|\Pi_{V_i} Z\|_2^2/\sigma^2$ suit la loi $\chi_{p_i}^2$ où p_i est la dimension de V_i .

Solution. 1. Comme ε est un vecteur gaussien de loi $\mathcal{N}_n(0, \sigma^2 I_n)$,

$$Y = X\beta + \varepsilon \sim \mathcal{N}_n(X\beta + \mathbb{E}[\varepsilon], \operatorname{Var}(\varepsilon)) = \mathcal{N}_n(X\beta, \sigma^2 I_n).$$

La matrice de covariance de Y étant diagonale, les Y_i sont bien indépendants. En revanche, les entrées de $X\beta$ ne sont pas identiques, donc les Y_i ne suivent pas la même loi.

2. La log-vraisemblance associée à $Y \sim \mathcal{N}_n(X\beta, \sigma^2 I_n)$ s'écrit

$$\ell(\beta) = \log(f_{\mathcal{N}_n(X\beta,\sigma^2 I_n}(Y))) = -n\log(\sigma) - \frac{p}{2}\log(2\pi) - \frac{\|Y - X\beta\|_2^2}{2\sigma^2}.$$

Ainsi, maximiser la log-vraisemblance en β revient à minimiser $\|Y - X\beta\|_2^2$. On remarque que minimiser $\|Y - X\beta\|_2^2$ revient à projeter linéairement Y sur le sous-espace vectoriel engendré par les colonnes de X. Ainsi $\hat{\beta}$ vérifie

$$\langle Y - X\hat{\beta}, X\beta \rangle_{\mathbb{R}^n} = 0, \ \forall \beta \in \mathbb{R}^p \iff \langle X'(Y - X\hat{\beta}), \beta \rangle_{\mathbb{R}^p} = 0, \ \forall \beta \in \mathbb{R}^p.$$

On en déduit que $\hat{\beta}$ vérifie :

$$X'Y = X'X\hat{\beta},$$

et comme X'X est supposé inversible,

$$\hat{\beta} = (X'X)^{-1}X'Y.$$

Le vecteur Y est gaussien, alors $\hat{\beta}$ l'est aussi, de movenne

$$\mathbb{E}[\hat{\beta}] = (X'X)^{-1}X'\mathbb{E}[Y] = (X'X)^{-1}X'X\beta = \beta,$$

et variance

$$\operatorname{Var}(\hat{\beta}) = (X'X)^{-1}X'\operatorname{Var}(Y)((X'X)^{-1}X')' = \sigma^2(X'X)^{-1}X'((X'X)^{-1}X')' = \sigma^2(X'X)^{-1}.$$

Donc,
$$\hat{\beta} \sim \mathcal{N}_p \left(\beta, \sigma^2 (X'X)^{-1} \right)$$
.

3. L'estimateur $\hat{\sigma}^2$ est une fonction du vecteur $Y - X\hat{\beta}$. Pour montrer que $\hat{\sigma}^2$ et $\hat{\beta}$ sont indépendants, il suffit de montrer que $Y - X\hat{\beta}$ et $\hat{\beta}$ sont indépendants. Or, $Y - X\hat{\beta}$ est un vecteur gaussien, et même le vecteur $(\hat{\beta}, Y - X\hat{\beta})'$ est vecteur gaussien comme transformation linéaire de ε . Plus précisément,

$$\hat{\beta} = (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$$

$$Y - X\hat{\beta} = X\beta + \varepsilon - X\beta - X(X'X)^{-1}X'\varepsilon = (I - X(X'X)^{-1}X')\varepsilon.$$

Pour montrer l'indépendance, il suffit de montrer que la matrice de covariance de $\hat{\beta}$ et $Y-X\hat{\beta}$ est nulle :

$$\operatorname{Cov}(\hat{\beta}, Y - X\hat{\beta}) = \mathbb{E}\left[(\hat{\beta} - \mathbb{E}[\hat{\beta}])(Y - X\hat{\beta} - \mathbb{E}[Y - X\hat{\beta}])'\right]$$

$$= \mathbb{E}\left[((X'X)^{-1}X'\varepsilon)((I - X(X'X)^{-1}X')\varepsilon)'\right]$$

$$= (X'X)^{-1}X'\mathbb{E}\left[\varepsilon\varepsilon'\right](I - X(X'X)^{-1}X')'$$

$$= \sigma^{2}\left((X'X)^{-1}X' - (X'X)^{-1}X'X(X'X)^{-1}X'\right)$$

$$= 0.$$

4. Par construction, $X\hat{\beta}$ est la projection orthogonale de Y sur l'espace vectoriel engendré par les colonnes de X. On a la décomposition orthogonale :

$$\varepsilon = Y - X\beta = (X\hat{\beta} - X\beta) + (Y - X\hat{\beta}),$$

où $X\hat{\beta} - X\beta$ est la projection orthogonale de $Y - X\beta$ sur l'espace vectoriel engendré par X et $Y - X\hat{\beta}$ sur son supplémentaire orthogonal de dimension n-p. On en déduit, par le théorème de Cochran, que

$$\frac{\|Y - X\hat{\beta}\|_2^2}{\sigma^2} \sim \mathcal{X}_{n-p}^2.$$

Puisque $\mathbb{E}\left(\mathcal{X}_{n-p}^2\right)=n-p$ et $\mathrm{Var}(\mathcal{X}_{n-p}^2)=2(n-p)$, on en déduit que $\mathbb{E}\left(\hat{\sigma}^2\right)=\sigma^2$ et $\mathrm{Var}(\hat{\sigma}^2)=\frac{2\sigma^4}{n-p}$. L'erreur quadratique moyenne tend vers 0 ce qui implique la convergence L^2 de l'estimateur et donc en probabilité.