2008 G7

Ezra Guerrero Alvarez

November 18, 2021

2008 G7

2008 G7

Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Let J be the center of ω , W, X, Y, Z be the tangency points of ω with lines \overline{AB} , \overline{CD} , \overline{DA} , \overline{BC} , $\triangle PQR$ be the intouch triangle of $\triangle ABC$ (with P,Q opposite A,B), S be the tangency point of ω_2 and \overline{AC} , and T be the point on ω such that $\overline{JT} \perp \overline{AC}$. Using the given tangencies we have

$$2AQ = AQ + AR$$

$$= AQ + BW - BR - AW$$

$$= AQ + BZ - BP - AY$$

$$= AQ + PZ - AD - DY$$

$$= AQ + PC + CZ - AD - DY$$

$$= AQ + QC + CX - AD - DX$$

$$= AC + CD - AD.$$

However, it is well known that 2CS = AC + CD - AD, so AQ = CS. Now, since Q and S are isotomic, this implies that \overline{BS} and \overline{DQ} pass through the antipodes of Q and S in ω_1 and ω_2 respectively. However, considering homotheties with centers B and D taking ω_1 and ω_2 to ω respectively, it is clear that this implies that \overline{BT} and \overline{DT} pass through the antipodes of Q and S in ω_1 and ω_2 respectively. Thus, it follows there is a positive homothety centered at T taking ω_1 to ω_2 , so we must have that the common external tangents of ω_1 and ω_2 meet at $T \in \omega$.