QMCPy Quasi-Monte Carlo Community Software Python 3

Aleksei Sorokin
Sou-Cheng T. Choi, Fred J. Hickernell, Lynn Matar,
Mike McCourt

Illinois Institute of Technology Department of Applied Mathematics Computational Math Seminar

November 15, 2019

Development

Components

Integrand

Discrete Distribution

Stopping Criterion

Examples

Future Work

Original & Convenient Forms

$$\mu = \int_{\mathcal{T}} g(t) \, \lambda(\mathrm{d}t) = \int_{\mathcal{X}} f(x) \rho(x) \, \mathrm{d}x = \int_{\mathcal{X}} f(x) \, \nu(\mathrm{d}x)$$

 $g: T \to \mathbb{R}$ = original integrand

 $\lambda = \text{original measure}$

 $\phi: X \to T = \text{change of variables}$

 $f: X \to \mathbb{R}$ = integrand after change of variables

 $\nu = \text{well understood probability measure}$

Development Integrand

Components

Discrete Distribution Stopping Criterion

Examples

Future Work

(Quasi-)Monte Carlo Approximation

$$\hat{\mu}_n = a_n \sum_{i=1}^n f(x_i) w_i = \int_X f(x) \, \hat{\nu}(\mathrm{d}x)$$

$$\nu \approx \hat{\nu}_n = a_n \sum_{i=1}^n w_i \delta_{x_i}(\cdot)$$

= discrete probability measure

How to choose nodes $\{x_i\}_{i=1}^n$ so that $|\mu - \hat{\mu}_n| < \epsilon$? $\epsilon = \text{user-given error tolerance}$

Development

Components

Integrand
Discrete Distribution
True Measure

Stopping Criterion
Examples

Future Work

Abstract Classes

Integrand

- ▶ $g: T \to \mathbb{R}$ = original integrand
- $f: X \to \mathbb{R}$ = integrand after change of variables

True Measure

- λ = original measure
- $ightharpoonup \phi: X \to T = \text{change of variables}$

Discrete Distribution

 $\triangleright \nu = \text{well defined probability measure}$

Stopping Criterion

Find n

Accumulate Data

► House integration data

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

Inputs and Outputs of the integrate Method

Integrand

Keister Function, Asian Call Option

True Measure

▶ Uniform, Gaussian, Brownian Motion, Lebesgue

Discrete Distribution

- (iid): Standard Gaussian, Standard Uniform
- ► (lds): Lattice, Sobol

Stopping Criterion

- ▶ (iid): Based on Central Limit Theorem (CLT)
- ▶ (lds): Based on Repeated CLT (CLTRep)

Accumulate Data

 $\hat{\mu}, \hat{\sigma}^2$ for CLT, CLTRep

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

Integrand

Keister Function [Kei96]

```
y = g(x) = \pi^{d/2} \cos(||x||_2)
```

```
class Keister(Integrand):
    def g(self, x):
        dimension = x.shape[1]
        normx = norm(x, 2, axis=1)
        y = pi ** (dimension / 2.0) * cos(normx)
        return y
integrand = Keister()
```

Equivalent construction

```
integrand = QuickConstruct(\
lambda x: pi**(x.shape[1]/2) * \
cos(norm(x, 2, axis=1)))
```

Development

Components

Integrand

Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work


```
1 # Generate X = [x1,x2] for left plot
2 dd = IIDStdUniform(rng_seed = 7)
3 X = dd.gen_dd_samples(1, 128, 2).squeeze()
```


Developi

Components

Integrand

Discrete Distribution
True Measure

Stopping Criterion

Examples

Future Work

Low Discrepancy Sequence (lds)

Developine

omponent

Integrand

Discrete Distribution
True Measure

Example

Future Work

Uniform

```
1 # Generate X = [x1,x2] for right-most plot
2 tm = Uniform(dimension = 2)
3 dd = Sobol(rng_seed = 7)
4 tm.set_tm_gen(dd) # Initialize below method
5 X = tm.gen_tm_samples(r=1, n=128).squeeze()
```

Transformed to 1/2 (0.1) from...

Components

Discrete Distribution
True Measure

Stopping Criterion

Examples

Future Work

Gaussian

Transformed to Discretized BrownianMotion with time_vector = [.5 , 1] from...

Development

Components Integrand

Discrete Distribution
True Measure

xamples

Future Work

Shift and Stretch

```
# Generate X = [x1,x2] for right plot
tm = Gaussian(dimension=[2], \
mean=[[3,7]], variance=[[9,9]])
dd = Sobol(rng_seed = 7)
tm.set_tm_gen(dd) # Initialize below method
X = tm.gen_tm_samples(r=1, n=128).squeeze()
```

Shift and Stretch Sobol Distribution

Development

Components

Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

CLT Based Monte Carlo Algorithm for IID Nodes

- 1. Choose n_{σ} for pilot sample and compute $\hat{\sigma}_{n_{\sigma}}^2$
- 2. For a 99% confidence interval and inflation factor C, let:

$$n_{\mu} = \underset{n}{\operatorname{argmin}} \left(\frac{2.58 \, C \, \hat{\sigma}_{n_{\sigma}}}{\sqrt{n}} \le \epsilon \right)$$

3. Compute $\hat{\mu}_{n_{\mu}}$ and $\hat{\epsilon}=\frac{2.58C\hat{\sigma}_{n}}{\sqrt{n}}$ s.t.

$$\mathbb{P}[|\mu - \hat{\mu}_{n_{\mu}}| \le \hat{\epsilon} \le \epsilon] \ge 99\%$$

Development

Components

Integrand
Discrete Distribution
True Measure

Stopping Criterion

Examples

Future Work

CLT Based Monte Carlo Algorithm for LDS Nodes

- 1. Choose $n = \frac{n_0}{2}$ and number or replications R
- 2. DO
 - $2.1 \ n = 2n$
 - 2.2 Generate samples $\{X_j\}_{j=1}^R$ to compute $\{\hat{\mu}_{j,n}\}_{j=1}^R$
 - 2.3 Let $\hat{\sigma}_n = Std(\{\hat{\mu}_{j,n}\}_{j=1}^R)$

WHILE $\hat{\sigma}_n > \epsilon$

3. Compute $\hat{\mu}_n = Mean(\{\hat{\mu}_{j,n}\}_{j=1}^R)$ and $\hat{\epsilon} = \frac{2.58 C \hat{\sigma}_n}{\sqrt{n}}$ s.t.

$$\mathbb{P}[|\mu - \hat{\mu}_n| \le \hat{\epsilon} \le \epsilon] \ge 99\%$$

Development

Components

Integrand
Discrete Distribution
True Measure

Stopping Criterion

Examples

Future Work

Keister Example

```
1 integrand = Keister()
2 dd = IIDStdGaussian(rng_seed=7)
3 tm = Gaussian(dimension=2, variance=1/2)
 stop = CLT(dd, tm, abs_tol= \epsilon, n_init=16)
5 sol, data = integrate(integrand, tm, dd, stop)
```


Development

Components Integrand

Discrete Distribution True Measure Stopping Criterion

Examples

Future Work

Keister Example Output

print(data)

3 Solution: 2.0554

```
4 Keister (Integrand Object)
  IIDStdGaussian (Discrete Distribution Object)
                      StdGaussian
    mimics
   rng_seed
8 Gaussian (True Measure Object)
   dimension
10
    mu
    sigma
                      0.7071067811865476
11
12 CLT (Stopping Criterion Object)
13
    abs tol
                      0.500
14
   rel_tol
                      10000000000
15
   n_{max}
    alpha
                      0.010
16
    inflate
                      1,200
17
18 MeanVarData (AccumData Object)
                      65
19
    n
    n_{total}
                      81.0
20
                                2.4641
  confid int
                      Γ 1.646
21
    time_total
                      0.002
                                        0.00
22
```

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

Multi-Level Asian Call Option Example [GS18]

```
tm = BrownianMotion(dimension = [4, 16, 64], \
           time vector = \
                   arange (1/4, 5/4, 1/4),
                   arange (1/16, 17/16, 1/16),
                   arange (1/64, 65/64, 1/64)
               ])
  integrand = \
      AsianCall(tm,
           volatility = .5, \
10
           start_price = 30, \
11
           strike_price = 25, \
12
           interest_rate = .01, \
13
           mean_type = 'arithmetic')
14
15 dd = IIDStdGaussian(rng_seed = 7)
16 stop = CLT(dd, tm, abs_tol=.05)
17 sol, data = integrate(integrand, tm, dd, stop)
```

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

Future Work

Attract collaborators

▶ i.e. Lattice, Sobol generators from Magic Point Shop [KN16]

Expand library of components & test cases

► Integrand, True Measure, Discrete Distribution, Stopping Criterion

Implement GAIL algorithms [CDH+19]

meanMC_g, cubLattice_g, cubSobol_g [HCJ⁺18]

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

Project Links

[HCS19]

- GitHub (https://github.com/QMCSoftware/QMCSoftware.git)
- Documentation (https://qmcsoftware.github.io/QMCSoftware/index.html)
- Website (https://sites.google.com/hawk.iit.edu/qmcsoftware/home)

Development

Components

Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

References I

- Sou-Cheng T. Choi, Yuhan Ding, Fred J. Hickernell, Lan Jiang, Lluis Antoni Jimenez Rugama, Da Li, Jagadeeswaran Rathinavel, Xin Tong, Kan Zhang, Yizhi Zhang, and Xuan Zhou, GAIL: Guaranteed Automatic Integration Library (version 2.3) [MATLAB Software], http://gailgithub.github.io/GAIL_Dev/, 2019.
- Michael B Giles and Lukasz Szpruch, Multilevel Monte Carlo methods for applications in finance, High-Performance Computing in Finance, Chapman and Hall/CRC, 2018, pp. 197–247.
- Fred J. Hickernell, Sou-Cheng T. Choi, Lan Jiang, Lluís Antoni, and Jiménez Rugama, *Monte Carlo Simulation, Automatic Stopping Criteria for*, Wiley StatRef: Statistics Reference Online (2018).

Development

Components

Integrand
Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

References II

- Fred J. Hickernell, Sou-Cheng T. Choi, and Aleksei Sorokin, *QMCPy: QMC Community Software*, https://github.com/QMCSoftware/QMCSoftware.git, 2019.
- B. D. Keister, *Multidimensional Quadrature Algorithms*, vol. 10, Computers in Physics, 1996.
- F.Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients a survey of analysis and implementation, foundations of computational mathematics, https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/, 2016.

Development

Components Integrand

Discrete Distribution
True Measure
Stopping Criterion

Examples

Future Work

