Course Code	18PYB103J	PYB103J Course Name PHYSICS: SEMICONDUCTOR PHYSICS			urse egory	,	В	Basic Sciences			s					L 1	+-		C 5							
Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Courses Nil Course Offering Department Physics and Nanotechnology Data Book / Codes/Standards Nil																	_									
Course Learning Rationale (CLR): The purpose of learning this course is to:									earnir	ng]					Progr	am Le	earni	ng O	utcor	nes (I	PLO)			<u> </u>	_
	oduce band gap ar							1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: Prov CLR-4: Proc CLR-5: Dev CLR-6: Utiliz	vide an insight on cure knowledge of elop necessary sk	semiconductor f electrical and kills for low din n physics for t	or optical trans d optical meas mensional sem he understandi	tions and photovolta irements in semicol	nductor processing and characte nd technology	rization		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning		','	PSO - 3
CLO-1: Iden	ntify the energy ba	nd in solids a	nd electron oc	cupation probability				2	85	75		Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
	lyze the working o							2	75	70		Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3: Apply the knowledge to the development of new and novel optoelectronic devices						2	80	75		Н	-	-	Н	-	-	-	-	-	-	-	-	-	-	-		
CLO-4: Identify the working mechanism of electrical and optical measurements							2	75	70		Н	Н	-	-	-	-	-	-		-	-	-	-	-	-	
CLO-5: Utilize the knowledge of the low dimensional semiconductor material fabrication and characterization.						2	80	70		Н	-	Н	-	-	-	-	-	-	-	-	-	-	-]	-		
CLO-6: Apply the concepts of semiconductor physics in real time applications						2	80	70		-	-	-	-	-	-	-	-	-	-	-	-	-	-]	_		
Duration (hour)	Duration (hour) 18 18 1					18							18								18	}			—	
SI O-1	Classical Free	alactron theor	7/	Intrinsic semicondi	ıctor	Concept of optical tra	optical transitions in bu			,	Concept of electrical measurements				Density of states in 2D											

Durati	on (hour)	18	18	18	18	18	
S-1	SLO-1	Classical Free electron theory	Intrinsic semiconductor	Concept of optical transitions in bulk semiconductors	Concept of electrical measurements	Density of states in 2D	
3-1	SLO-2	Quantum Free electron theory	Fermi level on carrier-concentration and temperature in Intrinsic semiconductor	optical absorption process	Two-point probe technique	Density of states in 1D and 0 D	
	SLO-1	Density of states	Extrinsic semiconductors	Concept of recombination process	Four-point probe technique-linear method	Introduction to low dimensional systems	
S-2	SLO-2	Energy band in solids	Fermi level on carrier-concentration and temperature in extrinsic semiconductors	Optical recombination process	Four-point probe technique-Van der Pauw method	Quantum well	
S-3	SLO-1	Kronig-Penney model	Explanation for carrier generation	Explanation for spontaneous emission	Significance of carrier density	Quantum wire and dots	
5-3	SLO-2	Kronig-Penney model	Explanation for recombination processes	Explanation for stimulated emission	Significance of resistivity and Hall mobility	Introduction to novel low dimensional systems	
S-4	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
3-4	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
S 5-6	SLO-1 SLO-2	Basics of experimentation	Study of I-V characteristics of a light dependent resistor (LDR)	Characterization of pn junction diode (Forward Bias)	Determine Particle Size of Semiconductor Laser	Determine of efficiency of solar cell	
S-7	SLO-1	E-k diagram	Carrier transport - diffusion and drift current	Joint density of states in semiconductor	Hot-point probe measurement	CNT- properties and synthesis	
3-1	SLO-2	Direct and Indirect band gap	Continuity equation	Density of states for photons	capacitance-voltage measurements	Applications of CNT	
S-8	SLO-1	Concept of phonons	p-n junction	Explanation of transition rates	Extraction of parameters in a diode	Fabrication technique-CVD	
3-0	SLO-2	Concept of Brillouin Zone	Biasing concept in p-n junction	Fermi's golden rule	I-V characteristics of a diode	Fabrication technique-PVD	

S-9	SLO-1	Energy band structure of semiconductor- Brillouin zone	Metal-semiconductor junction -Ohmic contact	Concept of optical loss	Principle of Deep-level transient spectroscopy (DLTS)	Characterizations techniques for low dimensional systems	
3-9	SLO-2	Concept of effective mass	Metal-semiconductor junction - Schottky junction	Concept of optical gain	Instrumentation of DLTS	XRD-Powder method	
S-10	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
3-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
S 11-12	SLO-1 SLO-2	Determine Hall coefficient of Semiconductor material	Determine Band Gap of semiconductor- Four probe method	Repeat/Revision of experiments	Attenuation, propagation characteristic of optical fiber cable using laser source	Determine lattice parameters using powder XRD	
S-13	SLO-1	Classification of electronic materials	Semiconductor materials of interest for optoelectronic devices	Basic concepts of Photovoltaics	Significance of band gap in semiconductors	Principle of electron microscopy	
3-13	SLO-2	Fermi level	Photocurrent in a P-N junction diode	Photovoltaic effect	Concept of absorption and transmission	Scanning electron microscopy	
S-14	SLO-1	Probability of occupation	Light emitting diode	Applications of Photovoltaic effect	Fundamental laws of absorption	Transmission electron microscopy	
3-14	SLO-2	Influence of donors in semiconductor	Classification of Light emitting diode	Determination of efficiency of a PV cell	Instrumentation of UV-Vis spectroscopy	Atomic force microscope	
S-15	SLO-1	Influence of acceptors in semiconductor	Optoelectronic integrated circuits	Theory of Drude model	Determination of band gap by UV-Vis spectroscopy	Heterojunctions	
0-13	SLO-2	Non-equilibrium properties of carriers	Organic light emitting diodes	Determination of conductivity	Concept of Photoluminescence	Band diagrams of heterojunctions	
S-16	SLO-1	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
3-10	SLO-2	Solving problems	Solving problem	Solving problem	Solving problem	Solving problem	
S 17-18	SLO-1 SLO-2	Determine Band Gap of semiconductor- Post Office Box method	Study of V-I and V-R characteristics of a solar cell	To verify Inverse square law of light using a photo cell.	Characteristic of p_n junction diode under reverse bias	Mini Project	

	 J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. 1995. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2007. 	3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley 2008. 4. A. Yariv and P. Yeh, Photonics:Optical Electronics in Modern Communications, Oxford University Press, New York 2007.
--	--	--

Learning Ass	earning Assessment											
	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100	0 %	100	0 %	100	0 %	100	%	10	0 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Dr. Vinay Gupta, National Physical Laboratory, guptavinay@nplindia.org	Prof. C. Vijayan, IITM, Chennai, cvijayan@iitm.ac.in	Dr. C. Preferencial Kala, SRMIST						
	Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	Dr. M. Krishnamohan, SRMIST						