https://ivan-sergeyev.github.io/seymour/https://github.com/Ivan-Sergeyev/seymourhttps://ivan-sergeyev.github.io/seymour/docs/

Regularity of 1-, 2-, and 3-Sums of Matroids

Ivan Sergeev

June 12, 2025

Preliminaries

1.1 Total Unimodularity

Definition 1. Matrix is a function that takes a row index and returns a vector, which is a function that takes a column index and returns a value. The former aforementioned identity is definitional, the latter is syntactical. By abuse of notation $(R^Y)^X \equiv R^{X \times Y}$ we do not curry functions in this text. When a matrix happens to be finite (that is, both X and Y are finite) and its entries are numeric, we like to represent it by a table of numbers.

Definition 2. Matrix Let A be a square matrix over a commutative ring. Determinant of A is the sum over all permutations, sign of the permutation times the product of (Todo: complete definition).

Definition 3. Matrix.det Let R be a commutative ring. We say that a matrix $A \in R^{X \times Y}$ is totally unimodular, or TU for short, if for every $k \in \mathbb{N}$, every (not necessarily contiguous) $k \times k$ submatrix T of A has $\det T \in \{0, \pm 1\}$.

Lemma 4. Matrix.IsTotallyUnimodular Let A be a TU matrix. Suppose rows of A are multiplied by $\{0, \pm 1\}$ factors. Then the resulting matrix A' is also TU.

Proof. Matrix.IsTotallyUnimodular We prove that A' is TU by Definition ??. To this end, let T' be a square submatrix of A'. Our goal is to show that $\det T' \in \{0, \pm 1\}$. Let T be the submatrix of A that represents T' before pivoting. If some of the rows of T were multiplied by zeros, then T' contains zero rows, and hence $\det T' = 0$. Otherwise, T' was obtained from T by multiplying certain rows by -1. Since T' has finitely many rows, the number of such multiplications is also finite. Since multiplying a row by -1 results in the determinant getting multiplied by -1, we get $\det T' = \pm \det T \in \{0, \pm 1\}$ as desired.

Lemma 5. Matrix.IsTotallyUnimodular Let A be a TU matrix. Suppose columns of A are multiplied by $\{0,\pm 1\}$ factors. Then the resulting matrix A' is also TU.

 $\textit{Proof.} \ \ \text{Matrix.IsTotallyUnimodular,Matrix.IsTotallyUnimodular.mul}_{rowsApplyLemma} \ \ref{totallyUnimodular}.$

Definition 6. Matrix.det Given $k \in \mathbb{N}$, we say that a matrix A is k-partially unimodular, or k-PU for short, if every (not necessarily contiguous, not necessarily injective) $k \times k$ submatrix T of A has det $T \in \{0, \pm 1\}$.

Lemma 7. Matrix.IsTotallyUnimodular,Matrix.IsPartiallyUnimodular A matrix A is TU if and only if A is k-PU for every $k \in \mathbb{N}$.

Proof. Matrix.IsTotallyUnimodular,Matrix.IsPartiallyUnimodular This follows from Definitions ?? and ??.

Definition 8. Matrix Matrix made of 4 blocks (2x2).

1.2 Pivoting

Definition 9. Matrix Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. A long tableau pivot in A on (x,y) is the operation that maps A to the matrix A' where

$$\forall i \in X, \ \forall j \in Y, \ A'(i,j) = \begin{cases} \frac{A(i,j)}{A(x,y)}, & \text{if } i = x, \\ A(i,j) - \frac{A(i,y) \cdot A(x,j)}{A(x,y)}, & \text{if } i \neq x. \end{cases}$$

Lemma 10. Matrix.IsTotallyUnimodular,Matrix.longTableauPivot Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Then performing the long tableau pivot in A on (x,y) yields a TU matrix.

Proof. See implementation in Lean.

Definition 11. Matrix.longTableauPivot Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Perform the following sequence of operations.

- 1. Adjoin the identity matrix $1 \in R^{X \times X}$ to A, resulting in the matrix $B = \begin{bmatrix} 1 & A \end{bmatrix} \in R^{X \times (X \oplus Y)}$.
- 2. Perform a long tableau pivot in B on (x, y), and let C denote the result.
- 3. Swap columns x and y in C, and let D be the resulting matrix.
- 4. Finally, remove columns indexed by X from D, and let A' be the resulting matrix.

A short tableau pivot in A on (x, y) is the operation that maps A to the matrix A' defined above.

Lemma 12. Matrix.shortTableauPivot Let $A \in R^{X \times Y}$ be a matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Then the short tableau pivot in A on (x,y) maps A to A' with

$$\forall i \in X, \ \forall j \in Y, \ A'(i,j) = \begin{cases} \frac{1}{A(x,y)}, & \text{if } i = x \text{ and } j = y, \\ \frac{A(x,j)}{A(x,y)}, & \text{if } i = x \text{ and } j \neq y, \\ -\frac{A(i,j)}{A(x,y)}, & \text{if } i \neq x \text{ and } j = y, \\ A(i,j) - \frac{A(i,y) \cdot A(x,j)}{A(x,y)}, & \text{if } i \neq x \text{ and } j \neq y. \end{cases}$$

Proof. Follows by direct calculation.

Lemma 13. Matrix.shortTableauPivot Let $B = \begin{bmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{bmatrix} \in \mathbb{Q}^{\{X_1 \cup X_2\} \times \{Y_1 \times Y_2\}}$.

Let $B' = \begin{bmatrix} B'_{11} & B'_{12} \\ B'_{21} & B'_{22} \end{bmatrix}$ be the result of performing a short tableau pivot on

 $(x,y) \in X_1 \times Y_1$ in B. Then $B'_{12} = 0$, $B'_{22} = B_{22}$, and $\begin{bmatrix} B'_{11} \\ B'_{21} \end{bmatrix}$ is the matrix resulting from performing a short tableau pivot on (x,y) in $\begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$.

Proof. This follows by a direct calculation. Indeed, because of the 0 block in B, B_{12} and B_{22} remain unchanged, and since $\begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$ is a submatrix of B containing the pivot element, performing a short tableau pivot in it is equivalent to performing a short tableau pivot in B and then taking the corresponding submatrix.

Lemma 14. Matrix.shortTableauPivot Let $k \in \mathbb{N}$, let $A \in \mathbb{Q}^{k \times k}$, and let A' be the result of performing a short tableau pivot in A on (x, y) with $x, y \in \{1, \ldots, k\}$ such that $A(x, y) \neq 0$. Then A' contains a submatrix A'' of size $(k-1) \times (k-1)$ with $|\det A''| = |\det A|/|A(x, y)|$.

Proof. Let $X = \{1, \ldots, k\} \setminus \{x\}$ and $Y = \{1, \ldots, k\} \setminus \{y\}$, and let A'' = A'(X, Y). Since A'' does not contain the pivot row or the pivot column, $\forall (i, j) \in X \times Y$ we have $A''(i, j) = A(i, j) - \frac{A(i, y) \cdot A(x, j)}{A(x, y)}$. For $\forall j \in Y$, let B_j be the matrix obtained from A by removing row x and column j, and let B''_j be the matrix obtained from A'' by replacing column j with A(X, y) (i.e., the pivot column without the pivot element). The cofactor expansion along row x in A yields

$$\det A = \sum_{j=1}^{k} (-1)^{y+j} \cdot A(x,j) \cdot \det B_j.$$

By reordering columns of every B_j to match their order in B_i'' , we get

$$\det A = (-1)^{x+y} \cdot \left(A(x,y) \cdot \det A' - \sum_{j \in Y} A(x,j) \cdot \det B''_j \right).$$

By linearity of the determinant applied to $\det A''$, we have

$$\det A'' = \det A' - \sum_{j \in Y} \frac{A(x,j)}{A(x,y)} \cdot \det B_j''$$

Therefore, $|\det A''| = |\det A|/|A(x,y)|$.

Lemma 15. Matrix.IsTotallyUnimodular,Matrix.shortTableauPivot Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix and let $(x,y) \in X \times Y$ be such that $A(x,y) \neq 0$. Then performing the short tableau pivot in A on (x,y) yields a TU matrix.

 ${\it Proof.}\ {\it Matrix.} Is Totally Unimodular. long Tableau Pivot See implementation in Lean.$

1.3 Vector Matroids

Definition 16. (Todo: Add definition of matroids)

Definition 17. Matrix, Matroid Let R be a division ring, let X and Y be sets, and let $A \in R^{X \times Y}$ be a matrix. The vector matroid of A is the matroid $M = (Y, \mathcal{I})$ where a set $I \subset Y$ is independent in M if and only if the columns of A indexed by I are linearly independent.

Definition 18. VectorMatroid Let R be a division ring, let X and Y be disjoint sets, and let $S \in R^{X \times Y}$ be a matrix. Let $A = \begin{bmatrix} 1 & S \end{bmatrix} \in R^{X \times (X \cup Y)}$ be the matrix obtained from S by adjoining the identity matrix as columns, and let M be the vector matroid of A. Then S is called the standard representation of M.

Lemma 19. StandardRepr Let $S \in \mathbb{R}^{X \times Y}$ be a standard representation of a vector matroid M. Then X is a base in M.

Proof. See implementation in Lean.

Lemma 20. VectorMatroid Adding extra zero rows to a full representation matrix of a vector matroid does not change the matroid.

Proof. See implementation in Lean.

Lemma 21. Matrix.IsTotallyUnimodular,VectorMatroid,StandardRepr Let $A \in \mathbb{Q}^{X \times Y}$ be a TU matrix, let M be the vector matroid of A, and let B be a base of M. Then there exists a matrix $S \in \mathbb{Q}^{B \times (Y \setminus B)}$ such that S is TU and S is a standard representation of M.

 ${\it Proof.} \ \ {\it Matrix.} \\ {\it Is} \\ {\it Totally} \\ {\it Unimodular.} \\ {\it long} \\ {\it Tableau} \\ {\it Pivot,} \\ {\it Matrix.} \\ {\it from} \\ {\it Rows}_z \\ {\it ero}_r \\ {\it eindex}_t \\ {\it oMatroid} \\ {\it See implement} \\ {\it eindex}_t \\ {\it oMatroid} \\ {\it See implement} \\ {\it eindex}_t \\ {\it oMatroid} \\ {\it oMatroid} \\ {\it eindex}_t \\ {\it oMatroid} \\ {$

Definition 22. Matrix Let R be a magma containing zero. The support of matrix $A \in R^{X \times Y}$ is $A^{\#} \in \{0,1\}^{X \times Y}$ given by

$$\forall i \in X, \ \forall j \in Y, \ A^{\#}(i,j) = \begin{cases} 0, & \text{if } A(i,j) = 0, \\ 1, & \text{if } A(i,j) \neq 0. \end{cases}$$

- 1. If a matroid is represented by A, then it is also represented by $A^{\#}$.
- 2. If a matroid is represented by $A^{\#}$, then it is also represented by A.

 $Proof.\ Matrix.support_transpose, Matrix.support_submatrix, Matrix.IsTotallyUnimodular.linearIndependent$

1.4 Regular Matroids

Definition 32. Matroid, Vector Matroid, Matrix. Is Totally Unimodular A matroid M is regular if there exists a TU matrix $A \in \mathbb{Q}^{X \times Y}$ such that M is a vector matroid of A.

Definition 33. Matrix.IsTotallyUnimodular We say that $A' \in \mathbb{Q}^{X \times Y}$ is a TU signing of $A \in \mathbb{Z}_2^{X \times Y}$ if A' is TU and

$$\forall i \in X, \ \forall j \in Y, \ |A'(i,j)| = A(i,j).$$

Lemma 34. StandardRepr,Matroid.IsRegular,Matrix.IsTuSigningOf Let $B \in \mathbb{Z}_2^{X \times Y}$ be a standard representation matrix of a matroid M. Then M is regular if and only if B has a TU signing.

Proof. Matroid.IsRegular, Matrix.IsTuSigningOf, StandardRepr.toMatroid_isBase_X, VectorMatroid.exists_stan $\in \mathbb{Q}^{X \times Y}$ such that M is a vector matroid of A. By Lemma ??, X (the row set of B) is a base of M. By Lemma ??, A can be converted into a standard representation matrix $B' \in \mathbb{Q}^{X \times Y}$ of M such that B' is also TU. Since B' and B are both standard representations of M, by Lemma ?? the support matrices $(B')^{\#}$ and $B^{\#}$ are the same. Lemma ?? gives $B^{\#} = B$. Thus, B' is TU and $(B')^{\#} = B$, so B' is a TU signing of B.

Suppose that B has a TU signing $B' \in \mathbb{Q}^{X \times Y}$. Then $A = [1 \mid B']$ is TU, as it is obtained from B' by adjoining the identity matrix. Moreover, by Lemma $\ref{lem:suppose}$, A represents the same matroid as $A^\# = [1 \mid B]$, which is M. Thus, A is a TU matrix representing M, so M is regular.

Regularity of 1-Sum

Definition 35. StandardRepr,Matrix.fromBlocks Let R be a magma containing zero (we will use $R = \mathbb{Z}_2$ and $R = \mathbb{Q}$). Let $B_{\ell} \in R^{X_{\ell} \times Y_{\ell}}$ and $B_r \in R^{X_r \times Y_r}$ be matrices where $X_{\ell}, Y_{\ell}, X_r, Y_r$ are pairwise disjoint sets. The 1-sum $B = B_{\ell} \oplus_1 B_r$ of B_{ℓ} and B_r is

$$B = \begin{bmatrix} B_{\ell} & 0 \\ 0 & B_r \end{bmatrix} \in R^{(X_{\ell} \cup X_r) \times (Y_{\ell} \cup Y_r)}.$$

Definition 36. Matroid, Standard Repr, standard Repr1sum Composition A matroid M is a 1-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B_{ℓ} , B_r , and B (for M_{ℓ} , M_r , and M, respectively) of the form given in Definition ??.

Lemma 37. Matrix.det Let A be a square matrix of the form $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$. Then det $A = \det A_{11} \cdot \det A_{22}$.

Proof. This result is proved in Mathlib.

Lemma 38. standardRepr1sumComposition,Matrix.IsTotallyUnimodular Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $B = B_{\ell} \oplus_1 B_r$ is TU.

Proof. standardRepr1sumComposition,Matrix.IsTotallyUnimodular,Matrix.det $_f$ romBlocks $_z$ eroWeprovethatI $_{\{0,+1\}}$

Let T_{ℓ} and T_r denote the submatrices in the intersection of T with B_{ℓ} and B_r , respectively. Then T has the form

$$T = \begin{bmatrix} T_{\ell} & 0 \\ 0 & T_r \end{bmatrix}.$$

First, suppose that T_{ℓ} and T_r are square. Then $\det T = \det T_{\ell} \cdot \det T_r$ by Lemma ??. Moreover, $\det T_{\ell}$, $\det T_r \in \{0, \pm 1\}$, since T_{ℓ} and T_r are square submatrices of TU matrices B_{ℓ} and B_r , respectively. Thus, $\det T \in \{0, \pm 1\}$, as desired.

Without loss of generality we may assume that T_{ℓ} has fewer rows than columns. Otherwise we can transpose all matrices and use the same proof, since TUness and determinants are preserved under transposition. Thus, T can be represented in the form

$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix},$$

where T_{11} contains T_{ℓ} and some zero rows, T_{22} is a submatrix of T_r , and T_{12} contains the rest of the rows of T_r (not contained in T_{22}) and some zero rows. By Lemma ??, we have $\det T = \det T_{11} \cdot \det T_{22}$. Since T_{11} contains at least one zero row, $\det T_{11} = 0$. Thus, $\det T = 0 \in \{0, \pm 1\}$, as desired.

Theorem 39. Matroid.Is1sumOf,Matroid.IsRegular Let M be a 1-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. StandardRepr,Matroid.Is1sumOf,Matroid.IsRegular,StandardRepr.toMatroid_isRegular_iff_hasTuSigni B_r , and B be standard \mathbb{Z}_2 representation matrices from Definition $\ref{M_\ell}$. Since M_ℓ and M_r are regular, by Lemma $\ref{M_\ell}$, and B_r have TU signings B'_ℓ and B'_r , respectively. Then $B' = B'_\ell \oplus_1 B'_r$ is a TU signing of B. Indeed, B' is TU by Lemma $\ref{M_\ell}$, and a direct calculation shows that B' is a signing of B. Thus, M is regular by Lemma $\ref{M_\ell}$?.

Regularity of 2-Sum

Definition 40. StandardRepr,Matrix.fromBlocks Let R be a semiring (we will use $R = \mathbb{Z}_2$ and $R = \mathbb{Q}$). Let $B_{\ell} \in R^{(X_{\ell} \cup \{x\}) \times Y_{\ell}}$ and $B_r \in R^{X_r \times (Y_r \cup \{y\})}$ be matrices of the form

$$B_{\ell} = \begin{bmatrix} A_{\ell} \\ r \end{bmatrix}, \quad B_r = \begin{bmatrix} c & A_r \end{bmatrix}.$$

The 2-sum $B = B_{\ell} \oplus_{2,x,y} B_r$ of B_{ℓ} and B_r is defined as

$$B = \begin{bmatrix} A_{\ell} & 0 \\ D & A_r \end{bmatrix} \quad \text{where} \quad D = c \otimes r.$$

Here $A_{\ell} \in R^{X_{\ell} \times Y_{\ell}}$, $A_r \in R^{X_r \times Y_r}$, $r \in R^{Y_{\ell}}$, $c \in R^{X_r}$, $D \in R^{X_r \times Y_{\ell}}$, and the indexing is consistent everywhere.

Definition 41. Matroid, Standard Repr, matrix 2 sum Composition A matroid M is a 2-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B_{ℓ} , B_r , and B (for M_{ℓ} , M_r , and M, respectively) of the form given in Definition ??.

Lemma 42. matrix2sumComposition,Matrix.IsTotallyUnimodular Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $C = \begin{bmatrix} D & A_r \end{bmatrix}$ is TU.

Proof. matrix2sumComposition,Matrix.IsTotallyUnimodular,Matrix.IsTotallyUnimodular.mul_colsSince B_{ℓ} is TU, all its entries are in $\{0,\pm 1\}$. In particular, r is a $\{0,\pm 1\}$ vector. Therefore, every column of D is a copy of y, -y, or the zero column. Thus, C can be obtained from B_r by adjoining zero columns, duplicating the y column, and multiplying some columns by -1. Since all these operations preserve TUess and since B_r is TU, C is also TU.

Lemma 43. matrix2sumComposition,Matrix.shortTableauPivot Let B_ℓ and B_r be matrices from Definition ??. Let B'_ℓ and B' be the matrices obtained by performing a short tableau pivot on $(x_\ell,y_\ell)\in X_\ell\times Y_\ell$ in B_ℓ and B, respectively. Then $B'=B'_\ell\oplus_{2,x,y}B_r$.

 ${\it Proof.} \ \ {\it matrix.} {\it shortTable auPivot,} {\it shortTable$

 $\begin{bmatrix} A'_\ell \\ r' \end{bmatrix}, \quad B' = \begin{bmatrix} B'_{11} & B'_{12} \\ B'_{21} & B'_{22} \end{bmatrix} \text{ where the blocks have the same dimensions as in } B_\ell \text{ and } B, \text{ respectively. By Lemma ??}, B'_{11} = A'_\ell, B'_{12} = 0, \text{ and } B'_{22} = A_r. \text{ Equality } B'_{21} = c \otimes r' \text{ can be verified via a direct calculation. Thus, } B' = B'_\ell \oplus_{2,x,y} B_r. \quad \Box$

Lemma 44. matrix2sumComposition,Matrix.IsTotallyUnimodular Let B_{ℓ} and B_r from Definition ?? be TU matrices (over \mathbb{Q}). Then $B_{\ell} \oplus_{2,x,y} B_r$ is TU.

Proof. Matrix.isTotallyUnimodular_iff_forall_isPartiallyUnimodular, matrix2sumComposition, Matrix.IsTo B_r is k-PU for every $k \in \mathbb{N}$. We prove this claim by induction on k. The base case with k = 1 holds, since all entries of $B_{\ell} \oplus_{2,x,y} B_r$ are in $\{0, \pm 1\}$ by construction

Suppose that for some $k \in \mathbb{N}$ we know that for any TU matrices B'_{ℓ} and B'_{r} (from Definition ??) their 2-sum $B'_{\ell} \oplus_{2,x,y} B'_{r}$ is k-PU. Now, given TU matrices B_{ℓ} and B_{r} (from Definition ??), our goal is to show that $B = B_{\ell} \oplus_{2,x,y} B_{r}$ is (k+1)-PU, i.e., that every $(k+1) \times (k+1)$ submatrix T of B has $\det T \in \{0, \pm 1\}$.

First, suppose that T has no rows in X_{ℓ} . Then T is a submatrix of $\begin{bmatrix} D & A_r \end{bmatrix}$, which is TU by Lemma ??, so det $T \in \{0, \pm 1\}$. Thus, we may assume that T contains a row $x_{\ell} \in X_{\ell}$.

Next, note that without loss of generality we may assume that there exists $y_{\ell} \in Y_{\ell}$ such that $T(x_{\ell}, y_{\ell}) \neq 0$. Indeed, if $T(x_{\ell}, y) = 0$ for all y, then det T = 0 and we are done, and $T(x_{\ell}, y) = 0$ holds whenever $y \in Y_r$.

Since B is 1-PU, all entries of T are in $\{0, \pm 1\}$, and hence $T(x_{\ell}, y_{\ell}) \in \{\pm 1\}$. Thus, by Lemma $\ref{Loriginal}$?, performing a short tableau pivot in T on (x_{ℓ}, y_{ℓ}) yields a matrix that contains a $k \times k$ submatrix T'' such that $|\det T| = |\det T''|$. Since T is a submatrix of B, matrix T'' is a submatrix of the matrix B' resulting from performing a short tableau pivot in B on the same entry (x_{ℓ}, y_{ℓ}) . By Lemma $\ref{Loriginal}$?, we have $B' = B'_{\ell} \oplus_{2,x,y} B_r$ where B'_{ℓ} is the result of performing a short tableau pivot in B_{ℓ} on (x_{ℓ}, y_{ℓ}) . Since B_{ℓ} is TU, by Lemma T, TU, is also TU. Thus, by the inductive hypothesis applied to T'' and T'' and T'' is also TU. Thus, by the inductive TU is a submatrix of TU and TU is a submatrix of the matrix TU is also TU. Thus, by the inductive hypothesis applied to T'' and TU is a submatrix of the matrix TU is a submatrix of the matrix TU is a submatrix TU is a submatrix of the matrix TU is a submatrix TU is a submatrix TU is a submatrix TU in the same entry TU is a submatrix TU in TU i

Theorem 45. Matroid. Is Regular, Matroid. Is 2sumOf Let M be a 2-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. StandardRepr,Matroid.Is2sumOf,StandardRepr.toMatroid_isRegular_iff_hasTuSigning, matrix2sumCo B_r , and B be standard \mathbb{Z}_2 representation matrices from Definition ??. Since M_ℓ and M_r are regular, by Lemma ??, B_ℓ and B_r have TU signings B'_ℓ and B'_r , respectively. Then $B' = B'_\ell \oplus_{2,x,y} B'_r$ is a TU signing of B. Indeed, B' is TU by Lemma ??, and a direct calculation verifies that B' is a signing of B. Thus, M is regular by Lemma ??.

Regularity of 3-Sum

4.1 Definition

Definition 46. StandardRepr,Matrix.fromBlocks Let $B_{\ell} \in \mathbb{Z}_2^{(X_{\ell} \cup \{x_0, x_1\}) \times (Y_{\ell} \cup \{y_2\})}, B_r \in \mathbb{Z}_2^{(X_r \cup \{x_2\}) \times (Y_r \cup \{y_0, y_1\})}$ be matrices of the form

The 3-sum $B = B_{\ell} \oplus_3 B_r \in \mathbb{Z}_2^{(X_{\ell} \cup X_r) \times (Y_{\ell} \cup Y_r)}$ of B_{ℓ} and B_r is defined as

Here $x_2 \in X_\ell$, $x_0, x_1 \in X_r$, $y_0, y_1 \in Y_\ell$, $y_2 \in Y_r$, $A_\ell \in \mathbb{Z}_2^{X_\ell \times Y_\ell}$, $A_r \in \mathbb{Z}_2^{X_r \times Y_r}$, $D_\ell \in \mathbb{Z}_2^{\{x_0, x_1\} \times (Y_\ell \setminus \{y_0, y_1\})}$, $D_r \in \mathbb{Z}_2^{\{X_r \setminus \{x_0, x_1\} \times \{y_0, y_1\}\}}$, $D_{\ell r} \in \mathbb{Z}_2^{\{X_r \setminus \{x_0, x_1\} \times \{y_0, y_1\}\}}$, $D_0 \in \mathbb{Z}_2^{\{x_0, x_1\} \times \{y_0, y_1\}}$. The indexing is consistent everywhere.

Note that D_0 is non-singular by construction, so $D_{\ell r}$ and B are well-defined. Moreover, a non-singular $\mathbb{Z}_2^{2\times 2}$ matrix is either $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ up to reindexing. Thus, Definition ?? can be equivalently restated with D_0 required to be non-singular and B_{ℓ} , B_r , and B re-indexed appropriately.

Definition 47. Matroid, StandardRepr, MatrixSum3.matrix A matroid M is a 3-sum of matroids M_{ℓ} and M_r if there exist standard \mathbb{Z}_2 representation matrices B_{ℓ} , B_r , and B (for M_{ℓ} , M_r , and M, respectively) of the form given in Definition ??.

4.2 Canonical Signing

Definition 48. Matrix.fromBlocks We call $D_0' \in \mathbb{Q}^{\{x_0,x_1\} \times \{y_0,y_1\}}$ the canonical signing of $D_0 \in \mathbb{Z}_2^{\{x_0,x_1\} \times \{y_0,y_1\}}$ if

$$D_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad D_0' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \text{or} \quad D_0 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad D_0' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Similarly, we call $S' \in \mathbb{Q}^{\{x_0, x_1, x_2\} \times \{y_0, y_1, y_2\}}$ the canonical signing of $S \in \mathbb{Z}_2^{\{x_0, x_1, x_2\} \times \{y_0, y_1, y_2\}}$ if

$$S = \begin{bmatrix} 1 & 1 & 0 \\ & & 1 \\ & D_0 & 1 \\ & 1 \end{bmatrix} \quad \text{and} \quad S' = \begin{bmatrix} 1 & 1 & 0 \\ & D_0' & 1 \\ & 1 \end{bmatrix}$$

To simplify notation, going forward we use D_0 , D'_0 , S, and S' to refer to the matrices of the form above. BTW, the canonical signing S' of S (from Definition ??) is TU.

Lemma 49. Matrix.IsTuSigningOf,matrix3x3signed Let Q be a TU signing of S (from Definition ??). Let $u \in \{0, \pm 1\}^{\{x_0, x_1, x_2\}}, v \in \{0, \pm 1\}^{\{y_0, y_1, y_2\}}, \text{ and } Q'$ be defined as follows:

$$u(i) = \begin{cases} Q(x_2, y_0) \cdot Q(x_0, y_0), & i = x_0, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2), & i = x_1, \\ 1, & i = x_2, \end{cases}$$

$$v(j) = \begin{cases} Q(x_2, y_0), & j = y_0, \\ Q(x_2, y_1), & j = y_1, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2), & j = y_2, \end{cases}$$

$$'(i, j) = Q(i, j) \cdot u(i) \cdot v(j) \quad \forall i \in \{x_0, x_1, x_2\}, \ \forall j \in \{y_0, y_1, y_2\}.$$

Then Q' = S' (from Definition ??).

Proof. Matrix.IsTuSigningOf,Matrix.IsTotallyUnimodular.mul_rows, Matrix.IsTotallyUnimodular.mul_cols, Matrix.IsTotallyUnimodular.mul_cols,

$$\begin{split} Q'(x_2,y_0) &= Q(x_2,y_0) \cdot 1 \cdot Q(x_2,y_0) = 1, \\ Q'(x_2,y_1) &= Q(x_2,y_1) \cdot 1 \cdot Q(x_2,y_1) = 1, \\ Q'(x_2,y_2) &= 0, \\ Q'(x_0,y_0) &= Q(x_0,y_0) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot Q(x_2,y_0) = 1, \\ Q'(x_0,y_1) &= Q(x_0,y_1) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot Q(x_2,y_1), \\ Q'(x_0,y_2) &= Q(x_0,y_2) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot (Q(x_2,y_0) \cdot Q(x_0,y_0)) \cdot Q(x_0,y_0) = 1, \\ Q'(x_1,y_0) &= 0, \end{split}$$

 $Q'(x_1, y_2) = Q(x_1, y_2) \cdot (Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2)) \cdot (Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2)) = 1.$

Thus, it remains to show that $Q'(x_0, y_1) = S'(x_0, y_1)$ and $Q'(x_1, y_1) = S'(x_1, y_1)$. Consider the entry $Q'(x_0, y_1)$. If $D_0(x_0, y_1) = 0$, then $Q'(x_0, y_1) = 0 = S'(x_0, y_1)$. Otherwise, we have $D_0(x_0, y_1) = 1$, and so $Q'(x_0, y_1) \in \{\pm 1\}$, as $Q'(x_0, y_1) \in \{\pm 1\}$.

 $Q'(x_1, y_1) = Q(x_1, y_1) \cdot (Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2)) \cdot (Q(x_2, y_1)),$

Consider the entry $Q(x_0, y_1)$. If $D_0(x_0, y_1) = 0$, then $Q(x_0, y_1) = 0 = S'(x_0, y_1)$. Otherwise, we have $D_0(x_0, y_1) = 1$, and so $Q'(x_0, y_1) \in \{\pm 1\}$, as Q' is a signing of S. If $Q'(x_0, y_1) = -1$, then

$$\det Q'(\{x_0, x_2\}, \{y_0, y_1\}) = \det \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = 2 \notin \{0, \pm 1\},$$

which contradicts TUness of Q'. Thus, $Q'(x_0, y_1) = 1 = S'(x_0, y_1)$.

Consider the entry $Q'(x_1, y_1)$. Since Q' is a signing of S, we have $Q'(x_1, y_1) \in \{\pm 1\}$. Consider two cases.

- 1. Suppose that $D_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If $Q'(x_1, y_1) = 1$, then $\det Q = \det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = -2 \notin \{0, \pm 1\}$, which contradicts TUness of Q'. Thus, $Q'(x_1, y_1) = -1 = S'(x_1, y_1)$.
- 2. Suppose that $D_0 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. If $Q'(x_1, y_1) = -1$, then $\det Q(\{x_0, x_1\}, \{y_1, y_2\}) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{0, \pm 1\}$, which contradicts TUness of Q'. Thus, $Q'(x_1, y_1) = 1 = S'(x_1, y_1)$.

Definition 50. Matrix.IsTotallyUnimodular Let X and Y be sets with $\{x_0, x_1, x_2\} \subseteq X$ and $\{y_0, y_1, y_2\} \subseteq Y$. Let $Q \in \mathbb{Q}^{X \times Y}$ be a TU matrix. Define $u \in \{0, \pm 1\}^X$,

 $v \in \{0, \pm 1\}^Y$, and Q' as follows:

$$u(i) = \begin{cases} Q(x_2, y_0) \cdot Q(x_0, y_0), & i = x_0, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2) \cdot Q(x_1, y_2), & i = x_1, \\ 1, & i = x_2, \\ 1, & i \in X \setminus \{x_0, x_1, x_2\}, \end{cases}$$

$$v(j) = \begin{cases} Q(x_2, y_0), & j = y_0, \\ Q(x_2, y_1), & j = y_1, \\ Q(x_2, y_0) \cdot Q(x_0, y_0) \cdot Q(x_0, y_2), & j = y_2, \\ 1, & j \in Y \setminus \{y_0, y_1, y_2\}, \end{cases}$$

$$v'(i, j) = Q(i, j) \cdot u(j) \cdot v(j) \quad \forall i \in X \quad \forall j \in Y \end{cases}$$

We call Q' the canonical re-signing of Q.

Lemma 51. Matrix.IsTuSigningOf,matrix3x3signed,Matrix.toCanonicalSigning Let X and Y be sets with $\{x_0, x_1, x_2\} \subseteq X$ and $\{y_0, y_1, y_2\} \subseteq Y$. Let $Q \in \mathbb{Q}^{X \times Y}$ be a TU signing of $Q_0 \in \mathbb{Z}_2^{X \times Y}$ such that $Q_0(\{x_0, x_1, x_2\}, \{y_0, y_1, y_2\}) = S$ (from Definition ??). Then the canonical re-signing Q' of Q (from Definition ??) is a TU signing of Q_0 and $Q'(\{x_0, x_1, x_2\}, \{y_0, y_1, y_2\}) = S'$ (from Definition ??).

Proof. Matrix.IsTuSigningOf,Matrix.IsTotallyUnimodular.mul_rows, Matrix.IsTotallyUnimodular.mul_cols, Matrix.and Q' is obtained from Q by multiplying some rows and columns by ± 1 factors, Q' is also a TU signing of Q_0 . Equality $Q'(\lbrace x_0, x_1, x_2 \rbrace, \lbrace y_0, y_1, y_2 \rbrace) = S'$ follows from Lemma??.

Definition 52. MatrixSum3.matrix,Matrix.IsTuSigningOf,Matrix.toCanonicalSigning Suppose that B_{ℓ} and B_r from Definition ?? have TU signings B'_{ℓ} and B'_r , respectively. Let B''_{ℓ} and B''_{r} be the canonical re-signings (from Definition ??) of B'_{ℓ} and B'_{r} , respectively. Let A''_{ℓ} , A''_{r} , D''_{ℓ} , D''_{r} , and D''_{0} be blocks of B''_{ℓ} and B''_r analogous to blocks A_ℓ , A_r , D_ℓ , D_r , and D_0 of B_ℓ and B_r . The canonical signing B'' of B is defined as

Note that D_0'' is non-singular by construction, so $D_{\ell r}''$ and hence B'' are welldefined.

4.3 Properties of Canonical Signing

Lemma 53. MatrixSum3.toCanonicalSigning B'' from Definition ?? is a signing of B.

Proof. Matrix.HasTuCanonicalSigning.toCanonicalSigning,Matrix.IsTuSigningOf By Lemma ??, B''_{ℓ} and B''_{r} are TU signings of B_{ℓ} and B_{r} , respectively. As a result, blocks A''_{ℓ} , A''_{r} , D''_{ℓ} , D''_{r} , and D''_{0} in B'' are signings of the corresponding blocks in B. Thus, it remains to show that $D''_{\ell r}$ is a signing of $D_{\ell r}$. This can be verified via a direct calculation. (Todo: Need details?)

Lemma 54. MatrixSum3.matrix,Matrix.IsTuSigningOf,Matrix.toCanonicalSigning Suppose that B_r from Definition ?? has a TU signing B'_r . Let B''_r be the canonical re-signing (from Definition ??) of B'_r . Let $c''_0 = B''_r(X_r, y_0)$, $c''_1 = B''_r(X_r, y_1)$, and $c''_2 = c''_0 - c''_1$. Then the following statements hold.

- 1. For every $i \in X_r$, $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}} \setminus \{ \begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix} \}$.
- 2. For every $i \in X_r$, $c_2''(i) \in \{0, \pm 1\}$.
- 3. $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ is TU.
- 4. $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU.
- 5. $\begin{bmatrix} c_0'' & c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

Proof. Matrix.HasTuCanonicalSigning.toCanonicalSigning,Matrix.IsTotallyUnimodular,Matrix.shortTableauF is TU, which holds by Lemma ??.

1. Since B_r'' is TU, all its entries are in $\{0, \pm 1\}$, and in particular $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}}$. If $\begin{bmatrix} c_0'(i) & c_1''(i) \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}$, then

$$\det B_r''(\{x_2,i\},\{y_0,y_1\}) = \det \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = -2 \notin \{0,\pm 1\},$$

which contradicts TUness of B_r'' . Similarly, if $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} = \begin{bmatrix} -1 & 1 \end{bmatrix}$, then

$$\det B_r''(\{x_2,i\},\{y_0,y_1\}) = \det \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = 2 \notin \{0,\pm 1\},$$

which contradicts TUness of B_r'' . Thus, the desired statement holds.

- 2. Follows from item ?? and a direct calculation.
- 3. Performing a short tableau pivot in B''_r on (x_2, y_0) yields:

$$B_r'' = \begin{bmatrix} \boxed{1} & 1 & 0 \\ c_0 & c_1 & A_r \end{bmatrix} \quad \to \quad \begin{bmatrix} 1 & 1 & 0 \\ -c_0 & c_1'' - c_0 & A_r \end{bmatrix}$$

The resulting matrix can be transformed into $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ by removing row x_2 and multiplying columns y_0 and y_1 by -1. Since B_r'' is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by ± 1 factors, we conclude that $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

4. Similar to item ??, performing a short tableau pivot in $B_r^{\prime\prime}$ on (x_2,y_1) yields:

$$B_r'' = \begin{bmatrix} 1 & \boxed{1} & 0 \\ c_0 & c_1 & A_r \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} 1 & 1 & 0 \\ c_0'' - c_1 & -c_1 & A_r \end{bmatrix}$$

The resulting matrix can be transformed into $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$ by removing row x_2 , multiplying column y_1 by -1, and swapping the order of columns y_0 and y_1 . Since B_r'' is TU and since TUness is preserved under pivoting, taking submatrices, multiplying columns by ± 1 factors, and re-ordering columns, we conclude that $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$ is TU.

5. Let V be a square submatrix of $\begin{bmatrix} c_0'' & c_1'' & c_2'' & A_r'' \end{bmatrix}$. Our goal is to show that $\det V \in \{0, \pm 1\}$.

Suppose that column c_2'' is not in V. Then V is a submatrix of B_r'' , which is TU. Thus, $\det V \in \{0, \pm 1\}$. Going forward we assume that column z is in V.

Suppose that columns c_0'' and c_1'' are both in V. Then V contains columns c_0'' , c_1'' , and $c_2'' = c_0'' - c_1''$, which are linearly. Thus, $\det V = 0$. Going forward we assume that at least one of the columns c_0'' and c_1'' is not in V.

Suppose that column c_1'' is not in V. Then V is a submatrix of $\begin{bmatrix} c_0'' & c_2'' & A_r'' \end{bmatrix}$, which is TU by item ??. Thus, $\det V \in \{0, \pm 1\}$. Similarly, if column c_0'' is not in V, then V is a submatrix of $\begin{bmatrix} c_1'' & c_2'' & A_r'' \end{bmatrix}$, which is TU by item ??. Thus, $\det V \in \{0, \pm 1\}$.

Lemma 55. MatrixSum3.matrix,Matrix.IsTuSigningOf,Matrix.toCanonicalSigning Suppose that B_{ℓ} from Definition ?? has a TU signing B'_{ℓ} . Let B''_{ℓ} be the canonical re-signing (from Definition ??) of B'_{ℓ} . Let $d''_0 = B''_{\ell}(x_0, Y_{\ell})$, $d''_1 = B''_{\ell}(x_1, Y_{\ell})$, and $d''_2 = d''_0 - d''_1$. Then the following statements hold.

- 1. For every $j \in Y_{\ell}$, $\begin{bmatrix} d_0''(i) \\ d_1''(j) \end{bmatrix} \in \{0, \pm 1\}^{\{x_0, x_1\}} \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.
- 2. For every $j \in Y_{\ell}, d_2''(j) \in \{0, \pm 1\}.$

3.
$$\begin{bmatrix} A''_{\ell} \\ d''_{0} \\ d''_{2} \end{bmatrix}$$
 is TU.

4.
$$\begin{bmatrix} A_{\ell}^{"} \\ d_{1}^{"} \\ d_{2}^{"} \end{bmatrix}$$
 is TU.

5.
$$\begin{bmatrix} A_{\ell}' \\ d_0'' \\ d_1'' \\ d_2'' \end{bmatrix}$$
 is TU.

Proof. MatrixSum3.HasTuBr.cccAr_isTotallyUnimodularApplyLemma ??to B_{ℓ}^{\top} , or repeat the same arguments up to transposition.

Lemma 56. MatrixSum3.toCanonicalSigning,Matrix.IsTotallyUnimodular Let B'' be from Definition ??. Let $c_0'' = B''(X_r, y_0)$, $c_1'' = B''(X_r, y_1)$, and $c_2'' = c_0'' - c_1''$. Similarly, let $d_0'' = B''(x_0, Y_\ell)$, $d_1'' = B''(x_1, Y_\ell)$, and $d_2'' = d_0'' - d_1''$. Then the following statements hold.

- 1. For every $i \in X_r$, $c_2''(i) \in \{0, \pm 1\}$.
- 2. If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then $D'' = c_0'' \otimes d_0'' c_1'' \otimes d_1''$. If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then $D'' = c_0'' \otimes d_0'' c_0'' \otimes d_1'' + c_1'' \otimes d_1''$.
- 3. For every $j \in Y_{\ell}$, $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm c_2''\}$.
- 4. For every $i \in X_r$, $D''(i, Y_\ell) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.
- 5. $\begin{bmatrix} A''_{\ell} \\ D'' \end{bmatrix}$ is TU.

Proof. MatrixSum3.HasTuBr.cccAr $_i$ sTotallyUnimodular, $lem: three_sum_signing_{Blp}rops, Matrix.IsTotallyU$ Holds by Lemma ??.??.

Note that

$$\begin{bmatrix} D_\ell'' \\ D_{\ell r}'' \end{bmatrix} = \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot D_\ell'', \quad \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} = \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} \cdot (D_0'')^{-1} \cdot D_0'', \quad \begin{bmatrix} D_0'' \\ D_r'' \end{bmatrix} = \begin{bmatrix} c_0'' & c_1'' \end{bmatrix}, \quad \begin{bmatrix} D_\ell'' & D_0'' \end{bmatrix} = \begin{bmatrix} d_0'' \\ d_1'' \end{bmatrix}.$$

Thus.

$$D'' = \begin{bmatrix} D''_{\ell} & D''_{0} \\ D''_{\ell r} & D''_{r} \end{bmatrix} = \begin{bmatrix} D''_{0} \\ D''_{r} \end{bmatrix} \cdot (D''_{0})^{-1} \cdot \begin{bmatrix} D''_{\ell} & D''_{0} \end{bmatrix} = \begin{bmatrix} c''_{0} & c''_{1} \end{bmatrix} \cdot (D''_{0})^{-1} \cdot \begin{bmatrix} d''_{0} \\ d''_{1} \end{bmatrix}.$$

Considering the two cases for D_0'' and performing the calculations yields the desired results.

Let $j \in Y_{\ell}$. By Lemma ??.??, $\begin{bmatrix} d_0''(i) \\ d_1''(j) \end{bmatrix} \in \{0, \pm 1\}^{\{x_0, x_1\}} \setminus \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$. Consider two cases.

- 1. If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then by item ?? we have $D''(X_r, j) = d_0''(j) \cdot c_0'' + (-d_1''(j)) \cdot c_1''$. By considering all possible cases for $d_0''(j)$ and $d_1''(j)$, we conclude that $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm (c_0'' c_1'')\}$.
- 2. If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then by item ?? we have $D''(X_r, j) = (d_0''(j) d_1''(j)) \cdot c_0'' + d_1''(j) \cdot c_1''$. By considering all possible cases for $d_0''(j)$ and $d_1''(j)$, we conclude that $D''(X_r, j) \in \{0, \pm c_0'', \pm c_1'', \pm (c_0'' c_1'')\}$.

Let $i \in X_r$. By Lemma ??.??, $\begin{bmatrix} c_0''(i) & c_1''(i) \end{bmatrix} \in \{0, \pm 1\}^{\{y_0, y_1\}} \setminus \{\begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \end{bmatrix} \}$. Consider two cases.

- 1. If $D_0'' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then by item ?? we have $D''(i, Y_\ell) = c_0''(i) \cdot d_0'' + (-c_1''(i)) \cdot d_1''$. By considering all possible cases for $c_0''(i)$ and $c_1''(i)$, we conclude that $D''(i, Y_\ell) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.
- 2. If $D_0'' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then by item ?? we have $D''(i, Y_\ell) = c_0''(i) \cdot d_0'' + (c_1''(i) c_0''(i)) \cdot d_1''$. By considering all possible cases for $c_0''(i)$ and $c_1''(i)$, we conclude that $D''(i, Y_\ell) \in \{0, \pm d_0'', \pm d_1'', \pm d_2''\}$.

By Lemma ??.??, $\begin{bmatrix} A''_\ell \\ d''_0 \\ d''_1 \\ d''_2 \end{bmatrix}$ is TU. Since TUness is preserved under adjoining zero

rows, copies of existing rows, and multiplying rows by ± 1 factors, $\begin{bmatrix} A_\ell' \\ 0 \\ \pm d_0'' \\ \pm d_1'' \\ \pm d_2'' \end{bmatrix}$ is also

TU. By item ??, $\begin{bmatrix} A''_{\ell} \\ D'' \end{bmatrix}$ is a submatrix of the latter matrix, hence it is also TU.

4.4 Proof of Regularity

Definition 57. Matrix.IsTotallyUnimodular Let X_{ℓ} , Y_{ℓ} , X_r , Y_r be sets and let $c_0, c_1 \in \mathbb{Q}^{X_r}$ be column vectors such that for every $i \in X_r$ we have $c_0(i)$, $c_1(i)$, $c_0(i) - c_1(i) \in \{0, \pm 1\}$. Define $\mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$ to be the family of matrices of the form $\begin{bmatrix} A_{\ell} & 0 \\ D & A_r \end{bmatrix}$ where $A_{\ell} \in \mathbb{Q}^{X_{\ell} \times Y_{\ell}}$, $A_r \in \mathbb{Q}^{X_r \times Y_r}$, and $D \in \mathbb{Q}^{X_r \times Y_{\ell}}$ are such that:

- 1. for every $j \in Y_{\ell}$, $D(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 c_1)\}$,
- 2. $\begin{bmatrix} c_0 & c_1 & c_0 c_1 & A_r \end{bmatrix}$ is TU,
- 3. $\begin{bmatrix} A_{\ell} \\ D \end{bmatrix}$ is TU.

Lemma 58. MatrixSum3.toCanonicalSigning,MatrixLikeSum3 Let B'' be from Definition ??. Then $B'' \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0'', c_1'')$ where $c_0'' = B''(X_r, y_0)$ and $c_1'' = B''(X_r, y_1)$.

Proof. lem:three_sum_signing_{Bp}rops, MatrixLikeSum3Recallthatc''_0-c''_1 $\in \{0, \pm 1\}^{X_r}$ by Lemma ??.??, so $\mathcal{C}(X_\ell, Y_\ell, X_r, Y_r; c''_0, c''_1)$ is well-defined. To see that $B'' \in \mathcal{C}(X_\ell, Y_\ell, X_r, Y_r; c''_0, c''_1)$, note that all properties from Definition ?? are satisfied: property ?? holds by Lemma ??.??, property ?? holds by Lemma ??.??, and property ?? holds by Lemma ??.??.

Lemma 59. MatrixLikeSum3,Matrix.shortTableauPivot Let $C \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$ from Definition ??. Let $x \in X_{\ell}$ and $y \in Y_{\ell}$ be such that $A_{\ell}(x,y) \neq 0$, and let C' be the result of performing a short tableau pivot in C on (x,y). Then $C' \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$.

 $\begin{aligned} & Proof. \ \ \text{Matrix.shortTableauPivot}_z ero, Matrix.IsTotallyUnimodular, Matrix.IsTotallyUnimodular.shortTableauPivot}_z \\ &= \begin{bmatrix} C'_{11} & C'_{12} \\ C'_{21} & C'_{22} \end{bmatrix}, and let \begin{bmatrix} A'_{\ell} \\ D' \end{bmatrix} bether esult of performing a short tableau pivot on (x, y) in \begin{bmatrix} A_{\ell} \\ D \end{bmatrix}. Observe the following. \end{aligned}$

- By Lemma ??, $C'_{11} = A'_{\ell}$, $C'_{12} = 0$, $C'_{21} = D'$, and $C'_{22} = A_r$.
- Since $\begin{bmatrix} A_\ell \\ D \end{bmatrix}$ is TU by property ?? for C, all entries of A_ℓ are in $\{0, \pm 1\}$.
- $A_{\ell}(x,y) \in \{\pm 1\}$, as $A_{\ell}(x,y) \in \{0,\pm 1\}$ by the above observation and $A_{\ell}(x,y) \neq 0$ by the assumption.
- Since $\begin{bmatrix} A_\ell \\ D \end{bmatrix}$ is TU by property ?? for C, and since pivoting preserves TUness, $\begin{bmatrix} A'_\ell \\ D' \end{bmatrix}$ is also TU.

These observations immediately imply properties $\ref{eq:condition}$ and $\ref{eq:condition}$?? for C'. Indeed, property $\ref{eq:condition}$? holds for C', since $C'_{22} = A_r$ and $\begin{bmatrix} c_0 & c_1 & c_0 - c_1 & A_r \end{bmatrix}$ is TU by property $\ref{eq:condition}$?? for C. On the other hand, property $\ref{eq:condition}$?? follows from $C'_{11} = A'_{\ell}$, $C'_{21} = D'$, and $\begin{bmatrix} A'_{\ell} \\ D' \end{bmatrix}$ being TU. Thus, it only remains to show that C' satisfies property $\ref{eq:condition}$?. Let $j \in Y_r$. Our goal is to prove that $D'(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$.

Suppose j = y. By the pivot formula, $D'(X_r, y) = -\frac{D(X_r, y)}{A_\ell(x, y)}$. Since $D(X_r, y) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$ by property ?? for C and since $A_\ell(x, y) \in \{\pm 1\}$, we get $D'(X_r, y) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$.

Now suppose $j \in Y_{\ell} \setminus \{y\}$. By the pivot formula, $D'(X_r, j) = D(X_r, j) - \frac{A_{\ell}(x,j)}{A_{\ell}(x,y)} \cdot D(X_r, y)$. Here $D(X_r, j)$, $D(X_r, y) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$ by property ?? for C, and $A_{\ell}(x,j) \in \{0,\pm 1\}$ and $A_{\ell}(x,y) \in \{\pm 1\}$ by the prior observations. Perform an exhaustive case distinction on $D(X_r, j)$, $D(X_r, y)$, $A_{\ell}(x,j)$, and $A_{\ell}(x,y)$. In every case, we can show that either $\begin{bmatrix} A_{\ell}(x,y) & A_{\ell}(x,j) \\ D(X_r,y) & D(X_r,j) \end{bmatrix}$ contains a submatrix with determinant not in $\{0,\pm 1\}$, which contradicts TUness of $\begin{bmatrix} A_{\ell} \\ D \end{bmatrix}$, or that $D'(X_r, j) \in \{0, \pm c_0, \pm c_1, \pm (c_0 - c_1)\}$, as desired. (Todo: need details?)

Lemma 60. MatrixLikeSum3,Matrix.IsTotallyUnimodular Let $C \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$ from Definition ??. Then C is TU.

Proof. MatrixLikeSum3, Matrix.isTotallyUnimodular $_iff_forall_isPartiallyUnimodular$, $shortTableauPivot_substitute e_sum_like_pivotByLemma$??, $itsufficestoshowthatCisk-PUforeveryk \in$

N. We prove this claim by induction on k. The base case with k=1 holds, since properties $\ref{eq:condition}$ and $\ref{eq:condition}$?? imply that A_ℓ , A_r , and D are TU, so all their entries of $C = \begin{bmatrix} A_\ell & 0 \\ D & A_r \end{bmatrix}$ are in $\{0, \pm 1\}$, as desired.

Suppose that for some $k \in \mathbb{N}$ we know that every $C' \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$ is k-PU. Our goal is to show that C is (k+1)-PU, i.e., that every $(k+1) \times (k+1)$ submatrix S of C has $\det V \in \{0, \pm 1\}$.

First, suppose that V has no rows in X_{ℓ} . Then V is a submatrix of $\begin{bmatrix} D & A_r \end{bmatrix}$, which is TU by property ?? in Definition ??, so det $V \in \{0, \pm 1\}$. Thus, we may assume that S contains a row $x_{\ell} \in X_{\ell}$.

Next, note that without loss of generality we may assume that there exists $y_{\ell} \in Y_{\ell}$ such that $V(x_{\ell}, y_{\ell}) \neq 0$. Indeed, if $V(x_{\ell}, y) = 0$ for all y, then det V = 0 and we are done, and $V(x_{\ell}, y) = 0$ holds whenever $y \in Y_r$.

Since C is 1-PU, all entries of V are in $\{0, \pm 1\}$, and hence $V(x_{\ell}, y_{\ell}) \in \{\pm 1\}$. Thus, by Lemma ??, performing a short tableau pivot in V on (x_{ℓ}, y_{ℓ}) yields a matrix that contains a $k \times k$ submatrix S'' such that $|\det V| = |\det V''|$. Since V is a submatrix of C, matrix V'' is a submatrix of the matrix C' resulting from performing a short tableau pivot in C on the same entry (x_{ℓ}, y_{ℓ}) . By Lemma ??, we have $C' \in \mathcal{C}(X_{\ell}, Y_{\ell}, X_r, Y_r; c_0, c_1)$. Thus, by the inductive hypothesis applied to V'' and C', we have $\det V'' \in \{0, \pm 1\}$. Since $|\det V| = |\det V''|$, we conclude that $\det V \in \{0, \pm 1\}$.

Lemma 61. MatrixSum3.toCanonicalSigning,Matrix.IsTotallyUnimodular B'' from Definition ?? is TU.

Proof. lem:three $_sum_like_signing_B$, $lem:three_sum_like_tuCombinetheresultsofLemmas ??and ??. <math>\square$

Theorem 62. Matroid. Is 3 sum Of, Matroid. Is Regular Let M be a 3-sum of regular matroids M_{ℓ} and M_r . Then M is also regular.

Proof. StandardRepr,Matroid.Is3sumOf,StandardRepr.toMatroid_isRegular_iff_hasTuSigning, MatrixSum3.t three_sum_signing_{Bv}alid, lem: three_sum_signing_{Bt}uLetB_ℓ, B_r, and B be standard \mathbb{Z}_2 representation matrices from Definition ??. Since M_ℓ and M_r are regular, by Lemma ??, B_ℓ and B_r have TU signings. Then the canonical signing B" from Definition ?? is a TU signing of B. Indeed, B" is a signing of B by Lemma ??, and B" is TU by Lemma ??. Thus, M is regular by Lemma ??. \square

Conclusion

Definition 63. Matroid.IsRegular,Matroid.Is1sumOf,Matroid.Is2sumOf,Matroid.Is3sumOf Regular matroid is good. Any 1-sum of good matroids is a good matroid. Any 2-sum of good matroids is a good matroid. Any 3-sum of good matroids is a good matroid.

Corollary 64. Matroid.IsGood,Matroid.IsRegular Any good matroid is regular. This is the easy direction of the Seymour theorem.

 $\label{eq:proof:matroid.Is2sumOf.isRegular,Matroid.Is2sumOf.isRegular,Matroid.Is3sumOf.isRegular,Mat$