ИЗПИТ

по ДИС I част, специалност "Компютърни науки"
6 февруари 2018г.
Име: Фак.номер:

1. Нека A е ограничено непразно множество от реални числа. Дайте дефиниция на $\sup A$ и $\inf A$. Докажете, че

$$\sup \{|x - y| : x \in A, y \in A\} = \sup A - \inf A.$$

- 2. Нека $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа и $a \in \mathbb{R}$. Какво означава тази редица да клони към a? Какво означава a да е точка на сгъстяване на тази редица? Какво означава, че "редицата $\{a_n\}_{n=1}^{\infty}$ няма точки на сгъстяване"? Дефинирайте "подредица на дадена редица". Докажете, че a е точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$ точно тогава, когато съществува подредица на $\{a_n\}_{n=1}^{\infty}$, която клони към a.
- 3. Дайте дефиниция на $\lim_{x\to 6} f(x) = -\infty$ във формата на Хайне и във формата на Коши, където $f: D \longrightarrow \mathbb{R}, \ D \subset \mathbb{R}$. Какво трябва да предположите за D, за да е смислена дадената дефиниция? Докажете, че ако $\lim_{x\to 6} f(x) = -\infty$ в смисъл на Коши, то f клони към $-\infty$, когато аргументът клони към 6, в смисъл на Хайне.
- 4. Нека $f: D \longrightarrow \mathbb{R}$, където $D \subset \mathbb{R}$. Какво означава f да е непрекъсната? Докажете, че ако $f: D \longrightarrow \mathbb{R}$, $[a,b] \subset D$ и f е непрекъсната във всяка точка на [a,b], то за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяко $x' \in [a,b]$ и за всяко $x'' \in D$, за което $|x' x''| < \delta$, е в сила $|f(x') f(x'')| < \varepsilon$. Доказаното твърдение по-силно ли е от Теоремата на Кантор или по-слабо?
- 5. Разгледайте функцията

$$f(x) = \arctan \frac{1}{x} - \frac{\alpha}{2} \ln \left(1 + \frac{1}{x^2} \right) + \frac{x}{2} \ln \alpha .$$

Намерете супремума и инфимума на стойностите на f в интервала $[1, +\infty)$, ако $\alpha > 1$. (Приемаме, че супремумът на неограничено отгоре множество е $+\infty$, а инфимумът на неограничено отдолу множество е $-\infty$.)

- 6. Напишете дефиницията за производна на функция в дадена точка. Формулирайте и докажете Теоремата на Рол.
- 7. Формулирайте и докажете достатъчно условие една n-кратно диференцируема функция да има екстремум в дадена точка.
- 8. Дайте дефиниция на риманов интеграл чрез похода на Дарбу, като формулирате и докажете и двете леми, необходими за това. Докажете, че непрекъснатите функции са интегруеми.