Contrôle final

Les exercices 1 et 2 sont indépendants. Les documents, calculettes et téléphones sont interdits.

Exercice 1. Considérons l'élément suivant du groupe symétrique S_8 :

$$\sigma = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 5 & 3 & 7 & 8 & 6 \end{array}\right)$$

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Décomposer σ en produit de transpositions.
- 3. Déterminer la signature de σ .
- 4. Quel est l'ordre de σ ?
- 5. Y a-t-il un élément $\tau \in S_8$ tel que $\tau^2 = \sigma$?

Exercice 2. Soit $u: \mathbf{R}^4 \to \mathbf{R}^4$ dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}. \text{ Posons } F = \{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbf{R}^4/x + y + z + t = 0 \}. \text{ Posons }$$

$$e_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, e_{2} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, e_{4} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \text{ et } B = \begin{pmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{pmatrix},$$

où $a, b \in \mathbf{R}$. Notons I la matrice identité dans $M_4(\mathbf{R})$.

- 1. Montrer qu'il existe $r, s \in \mathbf{R}$ tels que $A^2 = rI + sA$.
- 2. En déduire que toute valeur propre λ de u vérifie $\lambda^2 2\lambda 3 = 0$.
- 3. Montrer que u est bijectif.
- 4. Montrer que e_1 est un vecteur propre pour u.
- 5. Montrer que F est stable par u.
- 6. Montrer que (e_2, e_3, e_4) est une base de F.
- 7. Quelle est la matrice de la restriction à F de u dans cette base?
- 8. Donner une base de diagonalisation de u.
- 9. Quelle est la matrice de passage à cette base depuis la base canonique?
- 10. Quel est le polynôme caractéristique de u?
- 11. Quel est le polynôme minimal de u?
- 12. Montrer que la matrice B commute à A.
- 13. Montrer que B est diagonalisable.
- 14. Donner son polynôme caractéristique.
- 15. Calculer A^n pour n entier ≥ 0 .