Here is The Topic of Your Bachelor's Thethis: It's a Minimum Two-Line Title

Your First Name and Last Name

Supervisors: A. Ivanov, B. Georgiou

DATE

Introduction to The Subject Area¹

- What is the thesis about?
- Why is it useful?
- Who else is working on this? Are there any analogs?
- This slide is necessary to make the problem statement clearer.
- We advice to make no more than two slides like this, otherwise, you won't have enough time to talk about your work.
- The introduction to The Subject Area should take no more than 15% of your presentation time.

¹By the way, slides with long enumerations look bad. Try to avoid them.

The Problem Statement

- 1. What task were you trying to solve?
- 2. ..

Task 1: Formula with Explanations

The filter minimizes the standard deviation of the pixel color.

$$\hat{Y}(i,j) = \left[\frac{\hat{H}^*(i,j)}{\left| \hat{H}(i,j) \right|^2 + \frac{S_n(i,j)}{S_s(i,j)}} \right] \times \hat{F}(i,j),$$

- *Y* restored image, *F* observed image,
- H scattering function, H^* complex conjugate H,
- S_n energy spectrum of the noise $\left|\hat{N}\right|^2$,
- ullet S_s energy spectrum of the source image $\left|\hat{F}\right|^2$,
- ullet \times multiplication of complex numbers.

Task 2: Code²

```
fun main() {
val name = "stranger"
println("Hi, $name!")
print("Current count:")
for (i in 0..10) {
    print(" $i")
```

²Be careful with the code on the slides, it is better to give preference to diagrams and tables.

Task 2: Results in Table

Name	Score 1	Score 2	Result
Alice	8.0	9.0	8.5
Bob	9.0	9.8	9.4
Chak	9.1	9.3	9.2

Table Notes

- Tables may require explanations.
- What are these values? Where did they come from?
- What conclusions can be done?

Task 2: Comparison with Competitors³⁴

³Is your diagram clear? Have you forgotten the legend?

⁴Is the image contrasting? Things can look worse on the projector.

Extra Slide

- Information about the implementation
- Future plans (it's better to be realistic:)
- References to the literature can be placed at the end of the slides, but not shown during the presentation.
- Abbreviations. We recommend to use only widely accepted and well-known ones.

Results

- 1. A polynomial algorithm for solving the traveling salesman problem has been developed.
- 2. The software implementation demonstrates the highest performance and surpasses all known analogues.
- 3. The results have been prepared for the report at the conference FOCUS.

First name, Last name and Contacts of the Author, link to the materials, QR-code.

Thank you!

You don't need this slide! It's better to delete it. ⁵

⁵And it's better to delete the footnotes on the slides too. It's possible to say a lot just in words.