ADS 506 Module 6 Exercises

Gabi Rivera

2023-12-03

Chapter 9: Neural Networks (Page 201): #2 & 3

Forecasting Australian Wine Sales: Figure 6.26 shows time plots of monthly sales of six types of Australian wines (red, rose, sweet white, dry white, sparkling, and fortified) for 1980-1994. Data available in AustralianWines.csv. The units are thousands of liters. You are hired to obtain short-term forecasts (2-3 months ahead) for each of the six series, and this task will be repeated every month.

2. Use neural networks to forecast fortified wine sales, as follows:

• Partition the data using the period until December 1993 as the training period.

• Run a neural network using R's nnetar with 11 non-seasonal lags (i.e., p = 11). Leave all other arguments at their default.

```
# train the model
wine_nnetar = wines_trn |>
    model(nnetar = NNETAR(Fortified, p = 11))
wine_nnetar
```

```
nnetar
<|st_mdl>

| 1 row |
```

```
# forecast
wine_pred = forecast(wine_nnetar,h=12)
wine_pred
```

.model <chr></chr>	Month <mth></mth>	Fortified <dist></dist>	.mean <dbl></dbl>
nnetar	1994 Jan	<dist></dist>	1252.399
nnetar	1994 Feb	<dist></dist>	1337.859
nnetar	1994 Mar	<dist></dist>	2002.467
nnetar	1994 Apr	<dist></dist>	2101.400
nnetar	1994 May	<dist></dist>	2267.884
nnetar	1994 Jun	<dist></dist>	2483.031
nnetar	1994 Jul	<dist></dist>	2688.734
nnetar	1994 Aug	<dist></dist>	2530.968
nnetar	1994 Sep	<dist></dist>	1940.279
nnetar	1994 Oct	<dist></dist>	1616.780
1-10 of 12 rows		Previous	s 1 2 Next

a. Create a time plot for the actual and forecasted series over the training period. Create also a time plot of the forecast errors for the training period. Interpret what you see in the plots.

Forecasted values for the training dataset using NNETAR model performed really well. The forecasted or fitted values are almost superimposed to the training dataset. The forecasted values for the validation dataset also performed well. There are peaks that are under forecasted but with the scope is covered within the 95%

interval. The residual looks random overall. There are presense of seasonality still but pattern looks normally distributed. I don't think there's any negative under laying assumptions to consider.

```
# plot the fitted values with the actuals for the training period
fitted_values <- fitted(wine_nnetar)

wine_pred |>
   autoplot(wines_ts) +
   autolayer(fitted_values, colour = 'blue')+
   theme_minimal() +
   labs(title = "NNETAR Fortified Wine Sale Forecast")
```

```
## Plot variable not specified, automatically selected `.vars = .fitted`
```

```
## Warning: Removed 12 rows containing missing values (`geom_line()`).
```



```
# Create also a time plot of the forecast errors for the training period

observed_values <- as.numeric(wines_trn$Fortified)
predicted_values <- as.numeric(fitted_values$.fitted)
residuals <- observed_values - predicted_values
nresid <- data.frame(wines_trn$Month, residuals)
df_clean <- na.omit(nresid)
resid = ts(df_clean, frequency = 12)

plot(resid,ylab="Residuals",
    main = "Fortified Wine NN Errors (Training Data)",
    col = "blue")</pre>
```

Fortified Wine NN Errors (Training Data)

b. Use the neural network to forecast sales for each month in the validation period (January 1994 to December 1994).

validation
head(wines_val)

Month <mth></mth>	Fortified <dbl></dbl>
1994 Jan	1154
1994 Feb	1568
1994 Mar	1965
1994 Apr	2659
1994 May	2354
1994 Jun	2592
6 rows	

```
#plot the forecast
fc = wine_pred |>
    autoplot(wines_val)
fc
```


 $\begin{tabular}{ll} \it \#output the forecast for the months requested \\ \it wine_pred \end{tabular}$

.model <chr></chr>	Month <mth></mth>	Fortified <dist></dist>	.mean <dbl></dbl>
nnetar	1994 Jan	<dist></dist>	1252.399
nnetar	1994 Feb	<dist></dist>	1337.859
nnetar	1994 Mar	<dist></dist>	2002.467
nnetar	1994 Apr	<dist></dist>	2101.400
nnetar	1994 May	<dist></dist>	2267.884
nnetar	1994 Jun	<dist></dist>	2483.031
nnetar	1994 Jul	<dist></dist>	2688.734
nnetar	1994 Aug	<dist></dist>	2530.968

nnetar	1994 Sep	<dist></dist>		194	10.279
nnetar	1994 Oct	<dist></dist>		161	6.780
1-10 of 12 rows		Previous	1	2	Next

#report the forecast accuracy for the months requested
accuracy(wine_pred, wines_val)

.model <chr></chr>	.type <chr></chr>	ME <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MPE <dbl></dbl>	MAPE <dbl></dbl>		RM <dbl></dbl>	ACF1 <dbl></dbl>
nnetar	Test	156.689	289.4538	225.2917	6.350464	10.07304	NaN	NaN	-0.1605309
1 row									

3. Compare your neural network to an exponential smoothing model used to forecast fortified wine sales.

a. Use R's ets function to automatically select and fit an exponential smoothing model to the training period until December 1993. Which model did ets fit?

ETS chose and fit the MAM model in this case.

```
# fit models
wine_ets = wines_trn |>
   model(ets = ETS(Fortified))
wine_ets
```

```
ets
<|st_md|>

| 1 row |
```

b. Use this exponential smoothing model to forecast sales for each month in 1994.

```
# forecast the next 12 months
wine_ets_pred <- forecast(wine_ets, h = 12)

# plot the forecasts
wine_ets_pred |>
autoplot(wines_val)
```


output the forecast for the months requested wine_ets_pred

.model <chr></chr>	Month <mth></mth>	Fortified <dist></dist>	.mean <dbl></dbl>
ets	1994 Jan	<dist></dist>	1290.973
ets	1994 Feb	<dist></dist>	1546.065
ets	1994 Mar	<dist></dist>	1886.199

ets	1994 Apr	<dist></dist>	2032.918
ets	1994 May	<dist></dist>	2412.106
ets	1994 Jun	<dist></dist>	2471.522
ets	1994 Jul	<dist></dist>	2946.189
ets	1994 Aug	<dist></dist>	2733.496
ets	1994 Sep	<dist></dist>	2030.893
ets	1994 Oct	<dist></dist>	1881.176
1-10 of 12 rows		Previous	1 2 Next

c. How does the neural network compare to the exponential smoothing model in terms of predictive performance in the training period? In the validation period?

In terms of predictive performance in the training period, NN have a lower MAPE value at 5.8 compared to ETS at 7.1. This indicates that NN have better accuracy. NN also have lower RMSE score at 216 as well as MAE at 167. In terms of validation period, accuracy scores also supports that NN model performed slightly better than ETS. NN has 308 RMSE, 244 MAE, and 10.0 MAPE. ETS has 319 RMSE, 243 MAE, and 10.2 MAPE.

NNETAR
accuracy(wine_nnetar)

.mo <chr></chr>	.type <chr></chr>	ME <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MPE <dbl></dbl>	MAPE <dbl></dbl>	MASE <dbl></dbl>	RMSS <dbl< th=""></dbl<>
nnetar	Training	-0.03085785	224.2451	171.6837	-0.7493967	5.960064	0.6169982	0.630774
1 row								

accuracy(wine_pred, wines_val)

.model <chr></chr>	.type <chr></chr>	ME <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MPE <dbl></dbl>	MAPE <dbl></dbl>		RM <dbl></dbl>	ACF1 <dbl></dbl>
nnetar	Test	156.689	289.4538	225.2917	6.350464	10.07304	NaN	NaN	-0.1605309
1 row									

ETS
accuracy(wine_ets)

.mo <chr></chr>	.type <chr></chr>	ME <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MPE <dbl></dbl>	MAPE <dbl></dbl>	MASE <dbl></dbl>	RMSSE <dbl></dbl>
ets	Training	15.49844	285.2321	222.3198	-0.04620971	7.098462	0.7989745	0.8023235
1 row								

accuracy(wine_ets_pred,wines_val)

.model <chr></chr>	.type <chr></chr>	ME <dbl></dbl>	RMSE <dbl></dbl>	MAE <dbl></dbl>	MPE <dbl></dbl>	MAPE <dbl></dbl>		RM > <dbl></dbl>	ACF1 <dbl></dbl>
ets	Test	98.19161	318.9037	242.6523	3.228787	10.23738	NaN	NaN	-0.04043727
1 row									