# ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ

#### dr Joanna Jureczko

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń, przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu

## **WYKŁAD 11**

Przekształcenia liniowe Wektory i wartości własne macierzy Diagonalizacja macierzy

#### NIEZBĘDNIK INŻYNIERA

# Przykładowe zastosowania wektorów i wartości własnych macierzy

- diagonalizacja macierzy,
- znajdowanie macierzy podobnych,
- szybkie potęgowanie macierzy,
- wyznaczanie drgań harmonicznych układów,
- analiza grafów,
- mechanika kwantowa.

PRZEKSZTAŁCENIE LINIOWE

WEKTOR I WARTOŚĆ WŁASNA ENDOMORFIZMU

Niech V, V' będą przestrzeniami wektorowymi nad tym samym ciałem  $\mathbb{K}$ . Funkcję  $\varphi \colon V \to V'$  nazywamy **przekształceniem liniowym**, jeśli spełnione są warunki

- $\bullet \ \forall_{a \in \mathbb{K}} \forall_{v \in V} \ \varphi(a \cdot v) = a \cdot \varphi(v).$

Przekształcenie liniowe jest *homomorfizmem* przestrzeni wektorowych.

Wyróżniamy następujące typy homomorfizmów:

- monomorfizm = homomorfizm różnowartościowy
- epimorfizm = homomorfizm, który jest "na"
- izomorfizm = homomorfizm wzajmenie jednoznaczny
- endomorfizm = homomorfizm w siebie, czyli  $\varphi: V \to V$
- automorfizm = endomorfizm wzajemnie jednoznaczny.

Niech dany będzie endomorfizm  $\varphi \colon V \to V$  Jeśli niezerowy wektor  $v \in V$  spełnia przy pewnym skalarze  $\lambda \in \mathbb{K}$  warunek

$$\varphi(v) = \lambda \cdot v$$

to wektor v nazywamy **wektorem własnym endomorfizmu**  $\varphi$ , natomiast skalar  $\lambda$  nazywamy **wartością własną endomorfizmu**  $\varphi$ . Mówimy też, że v jest wektorem własnym endomorfizmu  $\varphi$  o wartości własnej  $\lambda$ . Zbiór wszystkich wartości własnych endomorfizmu  $\varphi$  nazywamy **widmem (spektrum)** endomorfizmu i oznaczamy przez  $Sp(\varphi)$ .

WEKTOR WŁASNY I WARTOŚĆ WŁASNA MACIERZY

WIELOMIAN CHARAKTERYSTYCZNY MACIERZY

Jeśli macierz A jest macierzą kwadratową stopnia n, to operacja  $A \cdot v = w$  może być traktowana jako przekształcenie wektora v w wektor w, przy czym oba wektory mają wymiar równy stopniowi macierzy A. Zatem przekształcenie liniowe będziemy wyrażać jako macierz, która działa na wektory. Wtedy jeśli A jest macierzą kwadratową stopnia n oraz

$$A \cdot v = \lambda \cdot v$$
.

to v będziemy nazywać **wektorem własnym macierzy** A, natomiast  $\lambda$  będziemy nazywać **wartością własną macierzy** A.

Przekształcając powyższe równanie mamy

$$(A - \lambda I) \cdot v = (\lambda I - A) \cdot v = \mathbb{O}.$$

Równanie to ma trywialne rozwiązanie, gdy  $v = \mathbb{O}$ , (wtedy v nie jest wektorem własnym), a nietrywialne rozwiązanie, gdy macierz  $A - \lambda I$  iest macierzą osobliwą, tzn.

$$det(A - \lambda I) = det \left[ egin{array}{ccccc} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{array} 
ight] = 0,$$

(wtedy *v* jest wektorem własnym).

Łatwo sprawdzić, że

$$det(A-\lambda I) = \rho(\lambda) = d_n \lambda^n + d_{n-1} \lambda^{n-1} + \dots + d_1 \lambda + d_0.$$

Wielomian  $\rho$  nazywamy **wielomianem charakterystycznym macierzy** A.

Pierwiastki takiego wielomianu charakterystycznego są wartościami własnymi tej macierzy.

Wyznacznik macierzy *A* jest równy iloczynowi wszystkich wartości własnych tej macierzy.

Każda macierz stopnia n ma dokładnie n wartości własnych.



Niech w będzie wektorem postaci w=Cv dla pewnej macierzy nieosobliwej C, gdzie C spełnia równość  $Av=\lambda\,v$ . Wtedy istnieje macierz B taka, że  $Bw=\lambda\,w$ . Wartości własne macierzy A i B są jednakowe, (tzn. v jest wektorem własnym macierzy A przynależnym do wartości własnej  $\lambda$ , wektor w=Cv jest wektorem własnym macierzy B przynależnym do tej samej wartości własnej  $\lambda$ ). Porównując obydwa wzory otrzymujemy równość

$$A = C^{-1}BC$$
.

Wtedy powiemy, że macierze A i B są podobne, co zapisujemy jako  $A \approx B$ .



macierz C, taka, że  $C^{-1}AC = B$ .

Powiemy, że macierz *A* jest *diagonalizowalna*, gdy jest podobna do macierzy diagonalnej *B*, tzn. istnieje nieosobliwa

### Twierdzenie 11.1. Niech macierz A bedzie macierza kwadratową stopnia n.

- A jest diagonalizowalna wtedy i tylko wtedy, gdy ma n liniowo niezależnych wektorów własnych (tzn. macierz
- utworzona z tych wektorów jest nieosobliwa).
  - Jeśli A jest symetryczna, to jest diagonalizowalna.

Jeśli A ma n różnych wartości własnych to jest

diagonalizowalna.