矩阵理论作业6

刘彦铭 ID: 122033910081

Last Edited: 2022 年 10 月 30 日

2.7 节习题 2、3、12.

习题 2 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 5 \end{bmatrix}$, $AA^{\top} = \begin{bmatrix} 2 & 1 \\ 1 & 26 \end{bmatrix}$, 容易验证这是一个正定的 Hermite 矩阵,所以它的 Cholesky 分

解存在. 证明了存在性后, Cholesky 分解的具体构造较为容易, 这里直接给出结果:

$$L = \begin{bmatrix} \sqrt{2} & 0\\ \sqrt{1/2} & \sqrt{51/2} \end{bmatrix}, AA^{\top} = LL^{\top}.$$

习题 3 (1) 首先,容易验证 AA^* 是一个半正定的 Hermite 矩阵, 那么存在酉矩阵 $U_m \in \mathbb{C}^{n \times n}$,使得

$$AA^\star = U_m \mathtt{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0) U_m^\star. \not \exists \pitchfork \ r = r(A) = r(A^\star) = r(AA^\star).$$

对 A 进行奇异值分解,有 $A=U_m$ $\begin{bmatrix} \Lambda_r & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$ V_n ,其中 V_n 是另一个 n 阶酉矩阵, $\Lambda_r=\operatorname{diag}(\lambda_1^{1/2},\ldots,\lambda_r^{1/2})$.

方便起见,记 $\Lambda = diag(\lambda_1, \ldots, \lambda_r, 0, \ldots 0)$. 对 SVD 分解中的 $m \times n$ 准对角矩阵进行分块可得:

其中 $P = U_m \Lambda^{1/2} U_m^{\star} = (AA^{\star})^{1/2}, U_{m \times n} = U_m[E_m; O]V_n = [V_m; O]V_n$,可以验证 $UU^{\star} = [V_m; O]V_n V_n^{\star}[V_m; O]^{\star} = V_m V_m^{\star} = E_m$.

- (2) r(A)=m 时, AA^{\star} 是满秩方阵, $P=(AA^{\star})^{1/2}$ 也是满秩方阵,故而 $U=P^{-1}A$ 唯一确定。
- 习题 12 证明关于方阵 $A \in \mathbb{M}_n$ 的下列三个命题的等价性:
 - (1) 存在正整数 $k \ge 1$, 使得 $A^k = 0$;
 - (2) 对于任意正整数 $m \ge 1$, $tr(A^m) = 0$;
 - (3) 对于任意正整数 $m, 1 \le m \le n, tr(A^m) = 0$.

证明. 为方便讨论矩阵的迹, 根据 Schur 引理, 对 A 做分解: 存在酉矩阵 $U \in \mathbb{M}_n$, 和上三角矩阵 $R \in \mathbb{M}_n$ 使得 $A = URU^*$. 从而有 $A^k = UR^kU^*$, $\forall k \in \mathbb{N}^*$. 通过简单的数学归纳可以证明 R^k 是上三角矩阵, 且 $(R^k)_{ii} = (R_{ii})^k$. 下面按照 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ 的顺序来证明等价性:

- (1) \Rightarrow (2) $A^k = UR^kU^* = 0$, 其中酉矩阵 U 可逆, 所以 $R^k = 0$. 于是对于任意的 $1 \le i \le n, i \in \mathbb{N}$, $(R^k)_{ii} = (R_{ii})^k = 0$, 所以 $R_{ii} = 0$ 即 R 的对角线元素均为 0. 所以对正整数 $m \ge 1$, $tr(R^m) = \sum_i R_{ii}^m = 0$, $tr(A^m) = tr(UR^mU^*) = tr(R^mU^*U) = tr(R^m) = 0$.
- $(2) \Rightarrow (3)$ 显然

 $(3) \Rightarrow (1)$ 对于任意的 $1 \le m \le n$, $tr(A^m) = tr(R^m) = \sum_i R_{ii}^m = 0$. 假设 $R_{ii}, 1 \le i \le n$ 不全为 0, 则可取出其中不为 0 的项,去重后得到 $r_1, r_2, \cdots, r_t, 1 \le t \le n$. 从而有方程组

$$\begin{bmatrix} r_1 & r_2 & \cdots & r_t \\ r_1^2 & r_2^2 & \cdots & r_t^2 \\ \vdots & \vdots & \ddots & \vdots \\ r_1^t & r_2^t & \cdots & r_t^t \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_t \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ r_1^1 & r_2^1 & \cdots & r_t^1 \\ \vdots & \vdots & \ddots & \vdots \\ r_1^{t-1} & r_2^{t-1} & \cdots & r_t^{t-1} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_t \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

其中 n_i 表示 r_i 去重前的出现次数,应有 $r_i \neq r_j, \forall i \neq j$ 以及 $n_i > 0, r_i \neq 0, \forall i$. 故而此时方程中的 Vandermonde 矩阵和对角矩阵均可逆,从而 $[n_1, n_2, \cdots, n_t]^{\mathsf{T}}$ 应为 0 向量,矛盾。所以 R_{ii} 不全为 0 的假设不成立,从而得到 R 是对角线全为 0 的上三角矩阵。即 $R_{ij} = 0, \forall i < j + 1$.

下归纳证明 $(R^k)_{ij} = 0, \forall i < j + k$: (1) 对于 k = 1 成立; (2) $(R^k)_{ij} = 0, \forall i < j + k \Rightarrow (R^{k+1})_{ij} = (R^k R)_{ij} = \sum_t (R^k)_{it} R_{tj}$. 当 i < j + k + 1 时, $i \ge t + k$ 与 $t \ge j + 1$ 不能同时成立,故 $(R^k)_{it}$ 与 R_{tj} 中至少有一个为 0,从而推出 $(R^{k+1})_{ij} = 0, \forall i < j + (k+1)$.

对于任意 $1 \le i, j \le n$, 有 i < j + n, 于是 $(R^n)_{ij} = 0$, 所以 $R^n = 0$, $A^n = UR^nU^* = 0$.

注: 这还说明了,如果存在正整数 k 使得 $A^k = 0$,那么存在 $k \le n$ 使得 $A^k = 0$.