HUGO CARVALHO

para piano solo

Hugo Carvalho

Arnediad Dim

para piano solo

Opus 1

Duração: ~02:10

Arnediad Dim é uma peça que representa musicalmente uma aproximação do gráfico da função de Cantor, a função de probabilidade acumulada da distribuição de Cantor. Tal função é o exemplo mais recorrente de uma função singular (ou uma "escadaria do diabo", mais coloquialmente). Esta peça é dedicada aos amigos do Grupo de Pesquisa MusMat (Carlos Almada, Carlos Mathias, Cecília Saraiva, Daniel Moreira e Liduino Pitombeira) e ao meu grande amor Beatriz Guerra por me incentivarem ao longo de todos os meus processos criativos e por todo o suporte e bons momentos proporcionados nos últimos tempos, e a meu amigo e orientador Luiz Biscainho por me estimular a sair do Barroco e da Renascença e ouvir coisas mais "esquisitas" e por todos os ensinamentos, bons momentos e suporte.

Arnediad Dim significa "escadaria sem fim" em Sindarin, um idioma ficcional criado por J. R. R. Tolkien, e em sua literatura é o idioma mais falado pelos elfos da Terceira Era na Terra-Média, época e local nos quais ocorrem os eventos das obras O Hobbit e O Senhor dos Anéis. A analogia se dá por conta de dois momentos cruciais da história de O Senhor dos Anéis nos quais os personagens passaram por longas e perigosas escadarias, a saber: a batalha do mago Gandalf com um Balrog, cuja parte final ocorreu na longa escada circular que vai das profundezas das minas de Moria até o topo da montanha de Zirakzigil; e a chegada de Frodo, Sam e Sméagol até a passagem de Cirith Ungol, que se dá através de uma longa e escura escadaria que parte das proximidades da perigosa cidade de Minas Morgul. Caso alguém tentasse subir uma escada descrita pela função de Cantor, ela teria infinitos degraus, sendo, portanto, interminável.

I) A função de Cantor

Georg Ferdinand Ludwig Philipp Cantor (1845, São Petersburgo – 1918, Halle) foi um matemático alemão que desempenhou um papel crucial na criação da Teoria dos Conjuntos, hoje o principal alicerce de toda a Matemática. Uma de suas contribuições mais notáveis e bem-conhecidas é a sua belíssima e elegante demonstração de que os números reais não são enumeráveis. Esta peça se inspira em uma de suas contribuições, hoje conhecida como a *função de Cantor*, interpretada de um ponto de vista probabilístico.

A função de Cantor é a função de probabilidade acumulada da distribuição de Cantor, um exemplo de uma distribuição de probabilidade *singular*, ou seja, uma que não é nem contínua nem discreta e nem combinação alguma desses dois tipos: ao mesmo tempo que nenhum valor específico tem probabilidade positiva de ser assumido (característica de uma distribuição contínua), sua função de probabilidade acumulada tem derivada igual a zero em quase todo ponto (característica de uma distribuição discreta). Uma forma de construir a

função de Cantor é a seguinte: denotando-a por $c: [0,1] \to [0,1]$ e sendo x um número real no intervalo [0,1], o valor de c(x) é definido pelo procedimento abaixo:

- 1. Expresse x em base ternária.
- 2. Se a representação de *x* em base ternária contém algum valor 1, substitua cada dígito imediatamente após o primeiro 1 por 0.
- 3. Substitua qualquer 2 que sobrar por 1.
- 4. Interprete o resultado como um número binário. Eis o valor de c(x).

Uma outra forma de construir a função de Cantor é por meio iterativo, e essa é a que nos é de maior interesse pois será a base para a construção da peça. Abaixo descreve-se detalhadamente os três primeiros passos da iteração:

- 1. Defina c(x) como constante igual a $\frac{1}{2}$ no terço central do intervalo [0,1], ou seja, no intervalo $\left(\frac{1}{3},\frac{2}{3}\right)$; no conjunto $\left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$ o valor de c(x) ainda está indeterminado.
- 2. Defina c(x) como $\frac{1}{4}$ no terço central de $\left[0,\frac{1}{3}\right]$ (ou seja, no intervalo $\left(\frac{1}{9},\frac{2}{9}\right)$) e como $\frac{3}{4}$ no terço central de $\left[\frac{2}{3},1\right]$ (ou seja, no intervalo $\left(\frac{7}{9},\frac{8}{9}\right)$); no conjunto $\left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{9},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$ o valor de c(x) ainda está indeterminado.
- 3. Defina c(x), respectivamente, como $\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$ e $\frac{7}{8}$ nos terços centrais dos intervalos $\left[0, \frac{1}{9}\right], \left[\frac{2}{9}, \frac{1}{3}\right], \left[\frac{2}{3}, \frac{7}{9}\right]$ e $\left[\frac{8}{9}, 1\right]$, e no complementar o valor de c(x) ainda está indeterminado.
- 4. Repita o processo indefinidamente.

Detalhou-se tal procedimento até o passo três por ser precisamente o passo importante para a construção da peça. O gráfico obtido para c(x) até tal passo está ilustrado na Figura 1, juntamente com informações sobre a peça que serão descritas a seguir, na próxima seção.

Figura 1: Gráfico parcial da função de Cantor, após o terceiro passo da iteração de sua construção.

II) Influência da função de Cantor na peça

A parte principal da peça consiste em 54 compassos (os três compassos do *Coda* foram adicionados por razões estéticas, para que a peça não se finalize de modo abrupto), e no andamento proposto tais 54 compassos são executados em aproximadamente 2 minutos, fazendo uma analogia com o fato do comprimento de curva do gráfico da função de Cantor (após totalmente construída) ser igual a 2. Tais 54 compassos estão ilustrados no eixo horizontal do gráfico da Figura 1.

As letras de A até O denotam as partes da peça, também indicadas na partitura. Nas partes onde a função de Cantor está definida até o 3º passo da iteração da Seção I (indicadas em vermelho na Figura 1) a peça é completamente determinada. Porém, nas partes onde a função de Cantor ainda será definida após o 3º passo da iteração (indicadas em preto na Figura 1), a peça é parcialmente aberta, com instruções na partitura para o improviso do intérprete. Tais instruções induzem improvisos cada vez mais "caóticos" e "confusos" ao longo da peça, representando a "fadiga" de se subir uma "escada com infinitos degraus", que é o que seria a função de Cantor, após ser completamente construída.

Ao enumerar as letras do nome "G. Cantor" e tomá-las módulo 12, obtemos, após ordenação, os números 0 1 2 5 6 7, que quando interpretados em termos de classes de altura representam as notas Dó Dó# Ré Fá# Sol. Tal sequência aparece sistematicamente ao longo de toda a peça, primeiramente na ordem Dó Sol Fá# Ré Dó# Fᇠlogo no primeiro compasso e aumentando um semitom a cada compasso, até o quinquagésimo quarto, sendo os primeiros 27 executados na mão esquerda e os seguintes na mão direita. Esta sistemática visa representar os valores do eixo \boldsymbol{x} no gráfico da função de Cantor, que tomam valores de 0 até 1.

III) Instruções adicionais para o intérprete

Para facilitar a leitura, lembra-se que a mão esquerda nos compassos 1 até 27 e a mão direita nos compassos 28 até 54 são sempre transposições da sequência de notas Dó Sol Fá# Ré Dó# Fá#, precisamente assim no primeiro compasso e transpondo um semitom acima a cada compasso subsequente.

Nas partes onde não há indicação de improvisação recomenda-se seguir a acentuação e dinâmica indicadas; nas partes com improvisação o intérprete pode modificar as dinâmicas e acentuação para que melhor se adeque à sua realização dos improvisos. O uso do pedal é totalmente livre para o intérprete, e recomenda-se utilizá-lo de modo distinto nas partes com e sem improviso. No geral, as partes com e sem improvisos devem soar de maneiras bem discrepantes, o que justifica o ritmo da "parcela sistemática" (notas Dó Sol FᇠRé Dó‡ Fᇠe suas transposições) ser bem metódico nas partes sem improviso e mais livre nas partes com improviso.

O andamento deve ser mantido o mais próximo possível do recomendado, visto que a duração da peça tem um componente metafórico importante.

Hugo Carvalho (1989, São Paulo) tem Bacharelado e Mestrado em Matemática Aplicada (IM/UFRJ) e Doutorado em Engenharia Elétrica (COPPE/UFRJ). Atualmente Hugo é professor do Departamento de Métodos Estatísticos da UFRJ, membro do grupo de pesquisa MusMat, membro do corpo editorial do periódico MusMat • Brazilian Journal of Music and Mathematics, e claro, apaixonado por Música. Suas principais linhas de pesquisa são a aplicação de modelos estatísticos para descrição e estimação de parâmetros musicais, e a aplicação de modelos bayesianos para restauração de gravações de áudio degradadas. Hugo toca violão desde criança, e tem grande apreço pela música latino-americana.

HUGO CARVALHO

hugo@dme.ufrj.br

DIREITOS AUTORAIS

Essa obra está sob a licença Creative Commons **CC-BY 4.0**. Segundo informação da página oficial da Creative Commons, "Esta licença permite que outros distribuam, remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam o devido crédito pela criação original. É a licença mais flexível de todas as licenças disponíveis. É recomendada para maximizar a disseminação e uso dos materiais licenciados". Portanto, sinta-se livre para arranjar, executar e/ou gravar a minha composição, inclusive monetizando o conteúdo. Porém, me dê o devido crédito pela autoria da obra, e peço encarecidamente que me deixe saber do seu uso! Ficarei muito contente em ter ciência de reproduções da minha peça, e ficarei feliz em auxiliar no processo, se for o caso. Meu endereço de e-mail está logo acima.

Tipografias: Garamond, Ruritania (por Paul Lloyd, disponível em https://www.dafont.com/) e tipografias do MuseScore Studio 4 (Edwin, Leland, dentre outras).

_

¹ Veja https://br.creativecommons.org/licenses/by/4.0/.

Arnediad Dim

Hugo Carvalho Op. 1 (2022)

CC BY 4.0 - Hugo Carvalho (hugo@dme.ufrj.br)

Improviso livre (surpreso, inesperado...)

Improviso livre (desesperançoso...)

CC BY 4.0 - Hugo Carvalho (hugo@dme.ufrj.br)

Improviso livre (angustiado...)

Improviso livre (caótico, exausto...)

