Лекция 9: Качество программного обеспечения

Юрий Литвинов y.litvinov@spbu.ru

23.04.2024

Что такое качество ПО?

- Обывательский подход
 - Лёгкость в использовании, производительность, отсутствие ошибок, документация, кроссплатформенность и т.п.
- Профессиональный подход
 - Соответствие требованиям (Crosby, 1979)
 - ▶ Пригодность к использованию (Juran, Gryna, 1970)
- Жизненный подход
 - Соответствие всем требованиям, явным и неявным

Стоимость качества

- Решения о качестве принимаются на этапе работы с требованиями
- Обычно заказчик полагает качество максимальным
- Стоимость:
 - стоимость предупреждения дефектов (prevention cost)
 - ► стоимость оценки (appraisal cost)
 - стоимость внутренних сбоев (internal failure cost)
 - ► стоимость внешних сбоев (external failure cost)

Модель качества ПО

- Характеристики качества отдельные точки зрения пользователя на качество
- Атрибуты характеристик качества детализация разных аспектов характеристики
- Метрики качества
 - Метод измерения атрибута
 - Шкала измерения значений атрибута
 - Вес (иногда)

Характеристики качества ПО (ISO 25010:2011)

- Функциональность
- Надежность
- Удобство использования
- Эффективность
- Сопровождаемость
- Переносимость

Функциональность

- Функциональная полнота (suitability)
- Правильность (точность) (ассигасу)
- Функциональная совместимость (интероперабельность) (interoperability)
- Защищенность (security)
- ▶ Соответствие стандартам и правилам (compliance)

Надежность

- Безотказность (maturity)
- ▶ Устойчивость к отказам (fault tolerance)
- Восстанавливаемость (recoverability)
- Пригодноспособность (dependability)
 - ▶ Готовность к использованию (availability)
 - ► Готовностью к непрерывному функционированию (reliability)
 - ► Безопасность для окружающей среды (safety)
 - Секретность и сохранность информации (confidentiality)
 - Устойчивость к самопроизвольному изменению (integrity)
 - ▶ Простота выполнения операций обслуживания (maintainability)

Удобство использования

- ▶ Понимаемость (understandability)
- Легкость изучения (learnability)
- Удобство работы (operability)
 - Оперативность
 - Согласованность
- Привлекательность (attractiveness)

Эффективность

- ▶ Временная эффективность, реактивность (time behaviour)
- ▶ Эффективность ресурсов (resource utilisation)

Сопровождаемость

- ► Анализируемость (analyzability)
- Изменяемость (changeability)
- Стабильность (stability)
- ▶ Тестируемость (testability)

Переносимость

- ► Адаптивность (adaptability)
- Настраиваемость, простота инсталляции (installability)
- Сосуществование (coexistence)
- Заменяемость (replaceability)

Метрики качества ПО

- Функциональность: метрики тестирования
- Надежность: метрики тестирования, динамические метрики.
- Удобство использования: метрики эргономики
- Эффективность: динамические метрики
- Сопровождаемость: метрики кода
- Переносимость: метрики кода

Классификация метрик

- Метрики программного продукта
 - Внешние
 - Надежность
 - Функциональность
 - Сопровождение
 - Стоимость
 - Внутренние
 - Размер
 - Сложность
 - Стиль
- Метрики процесса
- Метрики использования

Классификация метрик

- Метрики программного продукта
- Метрики процесса
 - Общее время разработки и отдельно время для каждой стадии
 - Время модификации моделей
 - Время выполнения работ на процессе
 - Число найденных ошибок при инспектировании
 - Стоимость проверки качества
 - Стоимость процесса разработки
- Метрики использования

Классификация метрик

- Метрики программного продукта
- Метрики процесса
- Метрики использования
 - Точность и полнота реализации задач пользователя
 - Затраченные ресурсы на эффективное решение задач пользователя

Юрий Литвинов Качество ПО 23.04.2024 16/39

Что можно измерять?

- Размер
 - Число классов, строк в программе, объём памяти, ...
- Переиспользуемость кода
 - ▶ Переиспользуемые классы, наследуемые классы, зависимости, ...
- Время
 - Отклика, общего функционирования системы, выполнения компонента, ...
- Усилия
 - ▶ Производительность труда, трудоемкость, ...
- Ошибки
 - ▶ Количество ошибок, число отказов, ...

Юрий Литвинов Качество ПО 23.04.2024 17/39

Простые метрики

- Число строк кода (LOC/KLOC)
- Производительность = LOC / Затраты
- Удельная стоимость = Затраты / LOC
- Качество кода = Число ошибок / LOC
- Документированность = Число страниц документации / LOC

 Юрий Литвинов
 Качество ПО
 23.04.2024
 18/39

Ещё метрики

- Метрики Холстеда
- Метрики С. Чидамбера и К. Кемерера
- Метрики Ф. Абреу
- Метрики Л. Константейна и Э. Йордана
- Метрики Л. Отта и Б. Мехра
- Метрики Д. Биемена и Б. Кенга
- Метрики М. Лоренца и Д. Кидда
- Метрики Р. Байндера
- **.**...

Метрики Холстеда

- Number of Unique Operators (NUOprtr)
- Number of Unique Operands (NUOprnd)
- Number of Operators (Noprtr)
- Number of Operands (Noprnd)
- Halstead Program Volume (HPVol)
 = (Noprtr + Noprnd) × log₂(NUOprtr + NUOprnd)
- ► Halstead Difficulty (HDiff) = $(\frac{NUOprtr}{2}) \times (\frac{Noprnd}{NUOprnd})$
- ► Halstead Effort (HEff) = HDiff × HPVol

Юрий Литвинов Качество ПО 23.04.2024 20/39

Цикломатическая сложность

- C = E N + 2P
- ▶ E число ребер
- ▶ N число узлов
- ▶ Р число компонентов связности

Метрики С. Чидамбера и К. Кемерера

- Weighted Methods Per Class (WMC)
 - $lacktriangledown WMC = \sum_{i=1}^n C_i$, где C_i как-то посчитанная сложность метода i
- Depth of Inheritance Tree (DIT)
- Number of children (NOC)
- Coupling between object classes (CBO)
 - Количество вызовов методов или полей
- ▶ Response For a Class (RFC) = $|\{M\} \cup_i \{R_i\}|$
 - $ightharpoonup \{R_i\}$ множество методов, вызываемых методом i
 - ► {M} множество всех методов в классе
- ► Lack of Cohesion in Methods (LCOM)
 - ▶ NotRelated количество пар методов без общих полей/свойств
 - Related количество пар методов с общими полями/свойствами

$$\textit{LCOM} = egin{cases} \textit{NotRelated} - \textit{Related}, & \textit{если NotRelated} > \textit{Related}. \\ 0, & \textit{в противном случае}. \end{cases}$$

Юрий Литвинов Качество ПО 23.04.2024 22/39

Полезные модификации WMC

- ightharpoonup WMC2 = $\sum_{i=1}^n$ количество параметров і-го метода
- ► ANAM (Average Number of Arguments per Method) = $\frac{WMC2}{WMC}$

```
SetInterval(min, max),
SetMethod(method),
SetPrecision(precision),
SetFunctionToIntegrate(function),
Integrate();
```

vs

Integrate(function, min, max, method, precision);

Юрий Литвинов Качество ПО 23.04.2024 23/39

LCOM: недостатки (1)

Юрий Литвинов Качество ПО 23.04.2024 24/39

LCOM: недостатки (2)

Юрий Литвинов Качество ПО 23.04.2024 25/39

Модификация LCOM*

$$LCOM^* = \frac{\left(\frac{1}{a}\sum_{j=1}^{a}m(A_j)\right) - m}{1 - m}$$

- т количество методов класса
- а количество атрибутов класса
- $ightharpoonup m(A_i)$ количество методов, которые имеют доступ к атрибуту A

Юрий Литвинов Качество ПО 23.04.2024 26/39

Метрики Лоренца и Кидда

- Метрики, ориентированные на классы
 - Class Size (CS, <= 20)</p>
 - Number of Operations Overridden by a Subclass (NOO, <= 3)
 - Number of Operations Added by a Subclass (NOA, <= 4)
 - Specialization Index (SI, \leq 0.15) SI = (NOO × уровень)/ M_{0011}
- Метрики, ориентированные на операции
 - Average Operation Size (OS_{ava}, <=9)
 - Operation Complexity (OC)
 - Average Number of Parameters per operation (NP_{ava})

Набор метрик Фернандо Абреу (MOOD)

- Фактор закрытости метода (МНF)
- Фактор закрытости атрибута (АНF)
- Фактор наследования метода (МІГ)
- Фактор наследования атрибута (AIF)
- Фактор полиморфизма (POF)
- Фактор сопряжения (СОF)

Фактор закрытости метода (MHF)

$$MHF = \frac{\sum\limits_{i=1}^{TC} M_h(C_i)}{\sum\limits_{i=1}^{TC} M_a(C_i)}$$

- $ightharpoonup M_b(C_i)$ количество private-методов в классе C_i
- ▶ $M_a(C_i)$ общее количество методов в классе C_i (без унаследованных)

Юрий Литвинов Качество ПО 23.04.2024 29/39

Фактор закрытости свойства (AHF)

$$AHF = rac{\sum\limits_{i=1}^{TC} A_h(C_i)}{\sum\limits_{i=1}^{TC} A_a(C_i)}$$

- $ightharpoonup A_h(C_i)$ количество private-атрибутов в классе C_i
- ▶ $A_a(C_i)$ общее количество атрибутов в классе C_i

Юрий Литвинов Качество ПО 23.04.2024 30/39

Фактор наследования метода (MIF)

$$MIF = \frac{\sum\limits_{i=1}^{TC} M_i(C_i)}{\sum\limits_{i=1}^{TC} M_a(C_i)}$$

- $M_i(C_i)$ количество унаследованных и не переопределенных методов в классе C_i
- ▶ $M_a(C_i)$ общее количество методов в классе C_i

 Юрий Литвинов
 Качество ПО
 23.04.2024
 31/39

Фактор наследования свойства (AIF)

$$AIF = \frac{\sum\limits_{i=1}^{TC} A_i(C_i)}{\sum\limits_{i=1}^{TC} A_a(C_i)}$$

- $ightharpoonup A_i(C_i)$ количество унаследованных и не переопределенных атрибутов в классе C_i
- ▶ $A_a(C_i)$ общее количество атрибутов в классе C_i

Юрий Литвинов Качество ПО 23.04.2024 32/39

Фактор полиморфизма (POF)

$$POF = \frac{\sum\limits_{i=1}^{TC} M_o(C_i)}{\sum\limits_{i=1}^{TC} M_n(C_i) \times DC(C_i)}$$

- ▶ $M_o(C_i)$ количество унаследованных и переопределенных методов в C_i
- $M_n(C_i)$ количество новых (не унаследованных и переопределенных) методов в C_i
- ▶ $DC(C_i)$ количество потомков класса C_i

 Юрий Литвинов
 Качество ПО
 23.04.2024
 33/39

Фактор сопряжения (СОГ)

$$extit{COF} = rac{\sum\limits_{i=1}^{TC} \left(\sum\limits_{j=1}^{TC} i s_client(C_i, C_j)
ight)}{TC^2 - TC} \ i s_client(C_c, C_s) = egin{cases} 1, & ext{ec. cond } C_c => C_s \cap C_c
eq C_s \ 0, & ext{в противном случае}. \end{cases}$$

 $C_c = C_s$ — класс-клиент содержит по меньшей мере одну не унаследованную ссылку на атрибут или метод класса-поставщика

Юрий Литвинов Качество ПО 23.04.2024 34/39

Метрики для тестирования

- Недостаток связности в методах
- Процент публичных и защищенных методов
- Публичный доступ к атрибутам
- Количество корневых классов
- Количество детей, Высота дерева наследования
- Процентное количество не переопределенных запросов
- Процентное количество динамических запросов
- Скачок класса, Скачок системы

Юрий Литвинов Качество ПО 23.04.2024 36/39

Аудит программного кода

- Сбор информации, накопление знаний, формирование эталонов
- Ручной
 - Экспертный
 - Расчётный
- Автоматический
 - https://plugins.jetbrains.com/plugin/93-metricsreloaded
 - http://metrics.sourceforge.net/
 - https://www.codacy.com/

Capability Maturity Model Integration (CMMI)

- Комплексная модель производительности и зрелости компании
- Пять уровней зрелости
- 22 области усовершенствования
 - Управление процессами
 - Управление проектами
 - Инженерные области
 - Служебные области
- Цели: общие и специфические
- Best Practices

	Level		Capability	Result
	2 optimis	Continuous Process Improvement	Organizational Innovation & Deployment Causal Analysis & Resolution	Productivity & Quality
4	Quanti- tatively Managed	Quantitative Management	Quantitative Process Management Software Quality Management	
3 page	Stai	Process ndardization	Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus Organizational Process Definition Organizational Training Integrated Product Management Risk Management Integrated Teaming Integrated Teaming Integrated Supplier Management Decision Analysis & Resolution Organizational Environment for Integration	
2 Managed	P	Basic Project nagement	Requirements Management Project Planning Project Monitoring & Control Supplier Agreement Management Measurement & Analysis Product & Process Quality Assurance Configuration Management	
1 📱		eroic forts	Design Develop Integrate Test	Risk & Waste