Special Matrices and their Properties

Term	Definition	Unique Attributes / Key Properties
Diagonal	$a_{ij} = 0 \text{ for } i \neq j$	- Determinant is product of diagonal entries
		- Eigenvalues are diagonal entries
		- \mathbf{A}^k is diagonal with entries raised to k
Symmetric	$\mathbf{A} = \mathbf{A}^T$, i.e., $a_{ij} = a_{ji}$	$-\mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^T \mathbf{x}$ for all \mathbf{x} if \mathbf{A} is symmetric
		$\ \mathbf{v}^ op \mathbf{A} \mathbf{v} \leq \lambda_{\max}(\mathbf{A}) \ \mathbf{v}\ ^2$
		- All eigenvalues are real
		- Eigenvectors for distinct eigenvalues are orthogonal
		- Diagonalizable via orthogonal matrices
	$\mathbf{I}_{ij} = \delta_{ij}$	$-\mathbf{AI} = \mathbf{IA} = \mathbf{A}$
Identity (I)		$-\mathbf{I}^{-1}=\mathbf{I}$
		- All eigenvalues are 1
Invertible (Non-	Exists \mathbf{A}^{-1} such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$	$-\det(\mathbf{A}) \neq 0$
singular)		- Linearly independent rows and columns
Siligulai)		- No zero eigenvalues
Singular	A square matrix with $det(\mathbf{A}) = 0$	- Not invertible
		- Linearly dependent rows or columns
		- At least one zero eigenvalue
Orthogonal	$\mathbf{A}^{-1} = \mathbf{A}^T$, so $\mathbf{A}^T \mathbf{A} = \mathbf{I}$	- Rows and columns form an orthonormal set
		- Preserves lengths and angles
		$-\det(\mathbf{A}) = \pm 1$
	$\mathbf{A}^T \mathbf{A} = \mathbf{I} \text{ (tall matrix, } n \geq d)$	- Columns are orthonormal
Loft Orthogonal		$-\mathbf{A}^{\dagger} = \mathbf{A}^{T}$ (left pseudoinverse)
Left Orthogonal		- Used when ${f A}$ has full column rank
		- Condition: rank(\mathbf{A}) = d where $\mathbf{A} \in \mathbb{R}^{n \times d}$
Right Orthogonal	$\mathbf{A}\mathbf{A}^T = \mathbf{I}$ (wide matrix, $n \leq d$)	- Rows are orthonormal
		$-\mathbf{A}^{\dagger} = \mathbf{A}^{T}$ (right pseudoinverse)
		- Used when ${f A}$ has full row rank
		- Condition: rank(\mathbf{A}) = n where $\mathbf{A} \in \mathbb{R}^{n \times d}$

		Λ1
Pseudoinverse (Moore– Penrose)	Generalized inverse \mathbf{A}^{\dagger} satisfying the four Penrose conditions	 Always exists and is unique for any matrix Full column rank (n ≥ d, rank(A) = d): A[†] = (A^TA)⁻¹A^T (left pseudoinverse) Full row rank (n ≤ d, rank(A) = n): A[†] = A^T(AA^T)⁻¹ (right pseudoinverse) Square and invertible: A[†] = A⁻¹ Rank deficient: Computed via SVD decomposition
Positive Definite	$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero \mathbf{x}	- All eigenvalues are positive - $\det(\mathbf{A}) > 0$ - Always defines an inner product: for any PD matrix, there exists a unique inner product - For any inner product, there exists a PD matrix \mathbf{A} such that $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{A} \mathbf{y}$ - Invertible
Positive Semi- Definite	$\mathbf{A} = \mathbf{A}^T, \ \mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0 \text{ for all } \mathbf{x}$	- All eigenvalues are non-negative $ \begin{array}{l} \text{- det}(\mathbf{A}) \geq 0 \\ \text{- Always symmetric} \\ \text{- Can always be written as } \mathbf{X}^T\mathbf{X} \text{ for some } \mathbf{X} \text{ (Gram matrix)} \\ \text{- Defines a semi-inner product} \end{array} $
Triangular (Upper / Lower)	Upper: $a_{ij} = 0$ for $i > j$; Lower: $a_{ij} = 0$ for $i < j$	Determinant is product of diagonal entriesEigenvalues are diagonal entriesSolves systems efficiently via substitution
Skew-Symmetric	$\mathbf{A} = -\mathbf{A}^T$, so $a_{ii} = 0$	- Eigenvalues are 0 or purely imaginary - $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ for all \mathbf{x}
Idempotent	$\mathbf{A}^2 = \mathbf{A}$	- Used in projection operations - Eigenvalues are 0 or 1
Nilpotent	$\mathbf{A}^k = 0 \text{ for some } k \in \mathbb{N}$	- All eigenvalues are 0
Orthogonal Projection	Linear transformation \mathbf{p} where $\mathbf{p}^2 = \mathbf{p}$ and $\mathbf{p} = \mathbf{p}^T$	- Projects onto a subspace along its orthogonal complement - Minimizes distance to the subspace (best approximation) - $\operatorname{Im}(\mathbf{p})$ is a subspace; $\operatorname{Ker}(\mathbf{p}) = \operatorname{Im}(\mathbf{I} - \mathbf{p})$
Linear Map (Transforma- tion)	Function $T: V \to W$ satisfying $T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y})$	- Represented by a matrix in finite dimensions - Preserves linear structure - Kernel and image define fundamental subspaces
Fundamental Subspaces	Column space, row space, null space, left null space	- Column space: span of columns (range of \mathbf{A}) - Row space: span of rows = col space of \mathbf{A}^T - Null space: solutions to $\mathbf{A}\mathbf{x} = 0$ - Left null space: null space of \mathbf{A}^T
Unitary	$\mathbf{U}^{\dagger} = \mathbf{U}^{-1}$, where \mathbf{U}^{\dagger} is the conjugate transpose of \mathbf{U}	- $\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}$ - Preserves inner products: $\langle \mathbf{U}\mathbf{x}, \mathbf{U}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$ - All eigenvalues lie on the unit circle: $ \lambda = 1$ - Generalization of orthogonal matrices to complex space
Gram Matrix	$\mathbf{G} = \mathbf{X}^T \mathbf{X}$ for some matrix \mathbf{X}	- Always positive semi-definite - Symmetric by construction - Entries are inner products: $G_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ - Used in least squares and quadratic forms
Eigenvalue Matrix	Matrix with known eigenvalues $\lambda_1, \ldots, \lambda_n$	- Can be diagonalized as $\mathbf{A} = \mathbf{p} \mathbf{\Lambda} \mathbf{p}^{-1}$ - $\mathbf{\Lambda}$ is diagonal matrix of eigenvalues - \mathbf{p} contains corresponding eigenvectors as columns - Powers: $\mathbf{A}^k = \mathbf{p} \mathbf{\Lambda}^k \mathbf{p}^{-1}$

Einen Me	Diamanal	- Contains eigenvalues on the diagonal
Eigenvalue Matrix (Λ)	Diagonal matrix	- Result of eigendecomposition/PCA
	$\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$	$-\mathbf{\Lambda}_{ii} = \lambda_i, \mathbf{\Lambda}_{ij} = 0 \text{for} i \neq j$
		- Used in spectral analysis and dimensionality reduction
Covariance Matrix	$ Cov(\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \mu)^T (\mathbf{X} - \mu) $ (unbiased)	- Always positive semi-definite
		- Symmetric by construction
		- Diagonal entries are variances
		- Off-diagonal entries are covariances
Correlation Matrix	Normalized covariance matrix with unit diagonal	- Positive semi-definite
		- Symmetric with $\rho_{ii} = 1$
		- Entries satisfy $-1 \le \rho_{ij} \le 1$
		- Used in statistics and data analysis
	$H = I - 2\frac{vv^T}{v^Tv}$ for vector v	- Symmetric and orthogonal
Householder		$-H^2 = I \text{ (involutory)}$
Matrix		- Reflects vectors across hyperplane
		- Used in QR decomposition
	Matrix with exactly one 1 in each row and column	- Orthogonal matrix
Permutation		- Determinant is ± 1
Matrix		- Reorders rows/columns when multiplied
		$P^T P = I \text{ and } P^{-1} = P^T$
	Each row is cyclic shift of previous row	- Diagonalized by Discrete Fourier Transform
Circulant Matrix		- Eigenvalues given by DFT of first row
		- Used in signal processing
		- Fast matrix-vector multiplication via FFT
	Constant along each diago-	- Determined by $2n-1$ parameters
		- Includes circulant matrices as special case
Toeplitz Matrix	nal: $a_{ij} = a_{i-j}$	- Used in time series and signal processing
	, , , , , , , , , , , , , , , , , , ,	- Fast algorithms available for solving systems
Hankel Matrix		- Symmetric if square
	Constant along each anti-	- Related to Toeplitz matrices
	diagonal: $a_{ij} = a_{i+j}$	- Used in system identification
		- Connection to moment problems
		Processing