Concrete Compresive strength analysis and Prediction Model

Data Visualization: Matplotlib

Importing Libraries

```
In [120]:
```

```
# Read Data
import numpy as np
import pandas as pd

# Visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize']=(10,8)

# style
plt.style.use("fivethirtyeight")
sns.set_style("darkgrid")
```

Read Data

```
In [121]:
```

```
# Import first 5 rows
df = pd.read_csv("concrete.csv")
df.head()
```

Out[121]:

Column

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30

Non-Null Count Dtype

```
In [3]:
# shape of data ie Rows x Columns
df.shape

Out[3]:
(1030, 9)

In [11]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):
```

```
0 cement 1030 non-null float64
1 slag 1030 non-null float64
2 ash 1030 non-null float64
3 water 1030 non-null float64
4 superplastic 1030 non-null float64
5 coarseagg 1030 non-null float64
6 fineagg 1030 non-null float64
7 age 1030 non-null int64
8 strength 1030 non-null float64
dtypes: float64(8), int64(1)
memory usage: 72.5 KB
```

Missing Data

In [4]:

```
# checking for null values
df.isnull().sum()
```

Out[4]:

cement	0
slag	0
ash	0
water	0
superplastic	0
coarseagg	0
fineagg	0
age	0
strength	0
dtype: int64	

In [14]:

```
df.describe()
```

Out[14]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000
mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773.580485	45.662136	35.817961
std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80.175980	63.169912	16.705742
min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.000000	1.000000	2.330000
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000	23.710000
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.500000	28.000000	34.445000
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824.000000	56.000000	46.135000
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000	82.600000

Data Visualization

Univariate Analysis

In [44]:

```
# Histrogram
df.hist(figsize = (10,8))
plt.show()
```


In [70]:

```
plt.hist(df.strength)
plt.show()
```


• Target variable 'strength' is right skewed and imbalanced data.

In [88]:

```
data = df['water'].head(10)
data.plot.bar()

plt.xlabel('age', fontsize = 16)
plt.ylabel('count', fontsize = 16)

plt.title('age Vs count', fontsize = 25, fontweight = 'bold')
```

Out[88]:

Text(0.5, 1.0, 'age Vs count')

In [89]:

```
x = df['cement'].head(10)
y = df['strength'].head(10)
data.plot.bar(x,y)
```

Out[89]:

<matplotlib.axes._subplots.AxesSubplot at 0x20287f50b38>

In [77]:

```
plt.figure(figsize=(10,8))

x = df['age'].head(30)
data = df['water'].head(30)

plt.bar(x,data);

#plt.legend()

plt.xlabel('age', fontsize = 16)
plt.vlabel('water', fontsize = 16)
```

```
plt.title('age Vs water', fontsize = 25, fontweight = 'bold')

plt.xticks(rotation = 45, fontsize = 11)
plt.yticks(fontsize = 11)

plt.show()
```


Bivariate Analysis

```
In [21]:
```

```
# Scatter plot
plt.figure(figsize=(10,8))
plt.scatter(df['cement'], df['fineagg'])

plt.xlabel('cement')
plt.ylabel('fineagg')

plt.title('cement Vs fineagg')
```

Out[21]:

Text(0.5, 1.0, 'cement Vs fineagg')

In [25]:

```
plt.figure(figsize=(10,8))
plt.scatter(df['cement'],df['water'])

plt.xlabel('cement')
plt.ylabel('water')

plt.title('cement Vs water')
```

Out[25]:

Text(0.5, 1.0, 'cement Vs water')

In [131]:

```
plt.figure(figsize=(10,8))
plt.scatter(df['cement'],df['ash'])

plt.xlabel('cement', fontsize=18)
plt.ylabel('ash', fontsize=18)

plt.title('cement Vs ash')
```

Out[131]:

Text(0.5, 1.0, 'cement Vs ash')

In [133]:

```
plt.figure(figsize=(9,7))
x = df['age']
y = df['strength']
plt.scatter(df['age'], df['strength'], color='green', linewidth=5, linestyle='dotted')

plt.xlabel('age', fontsize=18)
plt.ylabel('strength', fontsize=18)

plt.title('Age Vs Strength', fontsize=22, fontweight='bold')
```

Out[133]:

Text(0.5, 1.0, 'Age Vs Strength')

In [43]:

```
# Box Plot
plt.figure(figsize=(15,10))
plt.boxplot([df['cement'],df['water'],df['slag'],df['age'],df['strength'],df['ash'],df['superplasti
c'],
                                                    df['coarseagg'],df['fineagg']])
plt.show()
4
1200
1000
 800
 600
 400
 200
  0
```

• Observe that we have outliers in water, slag, age, strength, superplastic, fineagg

Data Visualization: Seaborn

Univariate Analysis

Histogram

```
In [93]:
```

```
sns.distplot(df.strength, kde=True)
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
Out[93]:
Text(0, 0.5, 'Y-Axis')
```


Count Plot

In [19]:

```
plt.figure(figsize=(9,7))
sns.countplot('age', data=df)
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x202dae86550>

Missing Values

In [13]:

Missing value representation by Heatmap

```
sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x202da541198>

In [16]:

```
plt.figure(figsize=(9,7))
sns.heatmap(df.corr(), annot=True)
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x202da7849e8>

_ . _. .

Pair Plot

• to represent relation between each feature

In [112]:

sns.pairplot(df)

Out[112]:

<seaborn.axisgrid.PairGrid at 0x20298da9dd8>

Box Plot

· to find out outliers

In [99]:

```
plt.figure(figsize=(5,4))
sns.boxplot(data=df.cement, palette='winter')
```


In [100]:

```
plt.figure(figsize=(5,4))
sns.boxplot(data=df.strength, palette='winter')
```

Out[100]:

<matplotlib.axes. subplots.AxesSubplot at 0x20290572be0>

Relational Plot

In [110]:

```
sns.relplot(x='cement', y='strength', data=df, hue="age")
```

Out[110]:

<seaborn.axisgrid.FacetGrid at 0x2029344b1d0>


```
100 200 300 400 500
cement
```

Strip Plot

In [113]:

```
sns.stripplot(x='cement', y='strength', data=df)
```

Out[113]:

<matplotlib.axes. subplots.AxesSubplot at 0x2029cb21c50>

Voilin Plot

In [129]:

```
fig,ax = plt.subplots(nrows=4, ncols=2, figsize=(10,8))
plt.suptitle('Violin Plots', fontsize=20, fontweight = 'bold')
sns.violinplot(x="cement", data=df, ax=ax[0,0], palette='Set3')
sns.violinplot(x="slag", data=df, ax=ax[0,1], palette='Set3')
sns.violinplot (x='ash', data=df, ax=ax[1,0], palette='Set3')
sns.violinplot(x='water', data=df, ax=ax[1,1], palette='Set3')
sns.violinplot(x="superplastic", data=df, ax=ax[2,0], palette='Set3')
sns.violinplot(x="coarseagg", data=df, ax=ax[2,1], palette='Set3')
sns.violinplot (x = 'fineagg', data=df, ax=ax[3,0], palette='Set3')
sns.violinplot(x='age', data=df, ax=ax[3,1], palette='Set3')
plt.show()
```

Violin Plots

Swarm Plot

In [118]:

```
sns.swarmplot(x='cement', y='strength', data=df)
```

Out[118]:

<matplotlib.axes._subplots.AxesSubplot at 0x2029f7ed7b8>

Regression Plot

In [119]:

Out[119]:

<seaborn.axisgrid.FacetGrid at 0x202a0384160>

Dist Plot

In [124]:

```
fig, ax = plt.subplots(4,2, figsize=(12,10))
sns.distplot(df.cement, bins = 20, ax=ax[0,0])
sns.distplot(df.slag, bins = 20, ax=ax[0,1])
sns.distplot(df.ash, bins = 20, ax=ax[1,0])
sns.distplot(df.water, bins = 20, ax=ax[1,1])
sns.distplot(df.superplastic, bins = 20, ax=ax[2,0])
sns.distplot(df.coarseagg, bins = 20, ax=ax[2,1])
sns.distplot(df.fineagg, bins = 20, ax=ax[3,0])
sns.distplot(df.age, bins = 20, ax=ax[3,1])
plt.show()
```


