The Plane

- (1) The general equation of a plane is ax + by + cz + d = 0. The d.r.'s of the normal to the plane are a, b, c.
- (2) The equation of the plane passing through the point $P(x_1, y_1, z_1)$ is $a(x x_1) + b(y y_1) + c(z z_1) = 0$.
- (3) If a plane makes intercepts a, b and c with the X axis, Y axis and Z axis respectively, then its equation is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
- (4) The equation of a plane passing through three points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ is given by

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

(5) (i) Let a plane be at a distance p from the origin and let \hat{n} be a unit vector perpendicular to the plane.

Then, equation of the plane is $\vec{r} \cdot \hat{n} = p$.

- (ii) The cartesian form of equation of this plane is lx + my + nz = p, where l, m, n are the d.c.' s of normal to the plane.
 - (iii) If \vec{n} is a vector normal to a given plane then $\vec{r} \cdot \hat{n} = q$ represents a plane.
 - (iv) The cartesian form is ax + by + cz + d = 0, where a, b, c are the d.r.'s of \vec{n} .
- (6) (i) The vector equation of a plane passing through a point A with p. v. \vec{a} and perpendicular to \vec{n} is $(\vec{r} \vec{a}) \cdot \vec{n} = 0$.
- (ii) The cartesian equation of a plane passing through a point $A(x_1, y_1, z_1)$ and perpendicular to a line having d.r.'s a, b, c is

$$a(x-x_1) + b(y-y_1) + c(z-z_1) = 0.$$

(7) Distance of a Plane from a point

Vector Form

(i) Let p be the length of perpendicular drawn from a point P with p. v. \vec{a} to the plane $\vec{r} \cdot \vec{n} = q$. Then,

$$p = \frac{|\vec{a}.\vec{n} - q|}{|\vec{n}|}.$$

(ii) Let p be the length of perpendicular drawn from the origin to the plane $\vec{r}.\,\vec{n}=q.\,Then,$

$$p=\frac{|q|}{|\vec{n}|}.$$