WEEK 07

INSTRUCTOR: YANAN WU

TA: KHADIJA NISAR

SPRING 2025

AN INTRODUCTION TO STATISTICAL LEARNING WITH APPLICATIONS IN R

7.1 REGRESSION CRITISIM

ROLE OF ASSUMPTIONS

- Simplify the complexity by imposing constraints
 - E.g. Relationship between dependent and independent variable is linear
- This simplification accelerates our capabilities to analyze the data
- Whenever possible, the plausibility of assumptions for real world data needs to be evaluated.
- "Regression Criticism" is about questioning whether the model and its assumptions truly fit all the data.

WHY CHECKING ASSUMPTIONS MATTERS

- Even if a regression model fits the sample data well, we must ensure that it holds for the broader population.
- We need to evaluate whether our OLS (Ordinary Least Squares) results are trustworthy and generalizable.
- Reasoning: If assumptions are violated, estimates might be biased or inefficient.

RECAP: ORDINARY LEAST SQUARES (OLS)

Predicted Values

$$\hat{y} = \beta_0 + \beta_1 X_1 + \ldots + \beta_{k-1} X_{k-1}$$

Which $\hat{\beta}$ minimizes the sum of squared residuals, i.e.

$$\sum_{i=1}^{n} (y_i - \hat{y})^2$$

 Unusual data points ("outliers") can heavily affect the fit (Power effect)

ASSUMPTION - MULTICOLLINEARITY

Multicollinearity

- linear relationship among x_i
- It causes larger standard error for β_i (coefficient estimate) and insignificant t-statistics.
- **Difficulty interpreting** individual coefficient estimates

Figure 4.15 Effect of multicollinearity on standard errors (simplified).

ASSESS COLLINEARITY

A simple way to detect collinearity is to look at the correlation matrix of the x_i

Which variables look like have collinearity issue?

MODEL WITH MULTICOLLINEARITY AND WITHOUT MULTICOLLINEARITY

 $wage \sim education + age + experience$

 $wage \sim education + experience$

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.76987 7.04271 -0.677 0.499
education 0.94833 1.15524 0.821 0.412
experience 0.12756 1.15571 0.110 0.912
age -0.02241 1.15475 -0.019 0.985
```

Residual standard error: 4.604 on 530 degrees of freedom Multiple R-squared: 0.202, Adjusted R-squared: 0.1975 F-statistic: 44.73 on 3 and 530 DF, p-value: < 2.2e-16

How the standard error change across two models?

Coefficients:

Residual standard error: 4.599 on 531 degrees of freedom Multiple R-squared: 0.202, Adjusted R-squared: 0.199 F-statistic: 67.22 on 2 and 531 DF, p-value: < 2.2e-16

How the significance of t-test change for the estimated parameters of the model?

ASSUMPTION: HOMOSCEDASTICITY

- Homoscedasticity: $Var(\varepsilon) = c$ (constant)
- Heteroscedasticity: $Var(\varepsilon) \neq c$ (constant)

The standard errors, confidence intervals, and hypothesis tests reply upon this assumption

Residuals versus Predicted Y Plots

- If data do violate assumptions :
 - The variance of the error term (ε_i) is not constant across observations
 - Look for a "fan" or "cone" shape in Residual vs.
 Predicted Values Plot

Figure 2.11 Examples of trouble seen in e-versus- \hat{Y} plots (artificial data).

SOLUTION FOR HETEROSCEDASTICITY

Possible Remedies

- Transform the Data (e.g., Log(y))
 - Logarithmic or other functional transformations can stabilize variance if the relationship is multiplicative

ASSUMPTION – NORMALITY OF THE ERROR

Residual Histogram

- centered around zero, roughly bell-shaped
- Severe skewness or heavy tails can invalidate standard inference methods.
- Distribution of small sample is often not normal

Q-Q Plot (Quantile-Quantile Plot)

- Plots the quantiles of residuals against the quantiles of a normal distribution
- If points lie on or near the 45-degree line, the residual distribution is approximately normal
- Deviations (e.g., "S" shape) can indicate skewness or kurtosis.

SOLUTION FOR NON-NORMALITY

Possible Remedies

- Transform the Data (e.g., Log(y))
 - Can reduce skewness and stabilize variance.
- Bootstrap for More Accurate Standard Errors
 - Especially useful for smaller samples or when distributional assumptions are in doubt
 - Resampling techniques can provide inference that does not rely on strict normality assumptions.
 - Generate Bootstrap simulations to obtain the distribution of the estimated parameters

CHECK THE NORMALITY ASSUMPTION

ASSUMPTION – LINEARITY

BASIC RESIDUAL PLOT

- Linear Relationship: The core premise of multiple linear regression is the existence of a linear relationship between the dependent (outcome) variable and the independent variables
- Linearity of any bivariate relationship is easily examined through residual plots.

SOLUTION FOR NON-LINEARITY

POLYNOMIAL REGRESSION

Linear model ($R^2 = 0.606$):

$$mpg = \beta_0 + \beta_1 * horsepower + \varepsilon$$

Degree 2 model ($R^2 = 0.688$):

$$mpg = \beta_0 + \beta_1 * horsepower + \beta_1 * horsepower^2 + \varepsilon$$

Degree 5 model (not recommend):

mpg

$$= \beta_0 + \beta_1 * horsepower + \beta_2 * horsepower^2 + \beta_3$$

- * $horsepower^3 + \beta_4 * horsepower^4 + \beta_5$
- * $horsepower^5 + \varepsilon$

SOLUTION FOR NON-LINEARITY

- Plots of residuals versus fitted values and versus each of the regressors in turn are the most basic diagnostic graphs.
- The Tukey test assesses whether including a squared term of an independent variable, already present in the model, enhances model fit.
 - It is implemented in the function car::residualPlots(), which:
 - Generates a plot comparing the quadratic function to the residuals.
 - Conducts a t-test to determine the significance of the quadratic term.

ASSUMPTION — LINEARITY RESIDUAL PLOT

Full model

Test for education:

 H_0 : There is no evidence of nonlinearity.

 H_1 : There is a evidence of nonlinearity

Original full model: log(wage) = educaton + age

Model with quadratic term:

 $log(wage) = education + education^2 + age$

ASSUMPTION – LINEARITY RESIDUAL PLOT

Full model

Test for age:

 H_0 : There is no evidence of nonlinearity.

 H_1 : There is a evidence of nonlinearity

```
> car::residualPlots(full_model, main="Full model")
```

```
Test stat Pr(>|Test stat|)
education 1.1086 0.2681
age -4.5541 6.533e-06 ***
Tukey test 0.6012 0.5477
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Original full model: log(wage) = educaton + age

Model with quadratic term:

$$\log(wage) = educaton + age + age^2$$

NON-LINEARITY

Full model

Original model: log(wage) = educaton + age

Model with quadratic term:

 $log(wage) = education + education^2 + age + age^2$

ANOVA

- ANOVA (Analysis of Variance) is a statistical method used to compare multiple models by evaluating whether a simpler model fits the data significantly worse than a more complex model. This helps determine whether adding variables (or transforming them) improves the model's explanatory power.
- In regression analysis, ANOVA is commonly used to compare:
 - Nested models, where one model is a subset of another.
 - Different functional forms, such as linear vs. quadratic models.

ANOVA RESULT

```
> anova(full_model, model_quadratic)
Analysis of Variance Table

Model 1: log(wage) ~ education + age
Model 2: log(wage) ~ education + age + I(age^2)
   Res.Df   RSS Df Sum of Sq   F   Pr(>F)
1    531 117.07
2   530 112.66 1   4.4086 20.74 6.533e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

OUTLIERS

- Identify additional explanatory variables that may clarify why certain cases appear extreme.
- Address measurement errors by:
 - a) (a) Refining or correcting the measurement,
 - b) (b) Assigning a lower weight to the affected case (Hamilton, Chapter 6), or
 - c) (c) Removing the case if necessary.
- Assess population differences:
 - a) If an observation belongs to a different population, either exclude it or account for structural differences using methods such as dummy variables or interaction terms.
- Consider data transformation to stabilize variance and improve model fit.

CHECK OUTLIERS – RESIDUAL PLOT

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6; typically we expect values between −3 and 3.

 \mathbb{R}^2 increase from 0.805 to 0.892 after we exclude the outlier (observation 20)

STUDENTIZED RESIDUALS

The key idea behind studentized residuals is to delete each observation one at a time, refit the regression model on the remaining n-1 observations, and compute the deleted residuals. These deleted residuals are then standardized, resulting in studentized residuals.

$$t_i = rac{d_i}{s(d_i)} = rac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}}$$

If an observation has a studentized residual that is **larger than 3** (in absolute value) we can call it an outlier.

STUDENTIZED RESIDUALS

	wage	education	age
108	14.0	5	55
171	44.5	14	21
200	1.0	12	42
63	7.0	3	64
486	22.2	18	64

Diagnostic Plots

COOK'S DISTANCE

Cook's Distance measures how much removing an observation changes the estimated regression coefficients.

$$D_i = rac{\sum_{j=1}^n ig(\widehat{y}_j - \widehat{y}_{j(i)}ig)^2}{ps^2}$$

- a) $D_i > 1$: The observation may be influential.
- b) Higher values indicate larger impact on model estimates.

COOK'S DISTANCE

 $\log(wage) \sim education + age + age^2$

	wage	education	age
108	14.0	5	5 5
171	44.5	14	21
200	1.0	12	42
63	7.0	3	64
486	22.2	18	64

Diagnostic Plots

BONFERRONI P-VALUE

- The **Bonferroni correction** adjusts p-values when testing multiple hypotheses to reduce the risk of false positives.
 - a) It tests whether an individual **studentized residual** is **statistically significant** after correcting for multiple comparisons.
 - b) Used to **flag extreme residuals** that are unlikely due to random chance.
- If Bonferroni p-value <0.05 → The observation is significantly different and may be an outlier.</p>

BONFERRONI P-VALUE

	wage	education	age
108	14.0	5	55
171	44.5	14	21
200	1.0	12	42
63	7.0	3	64
486	22.2	18	64

Diagnostic Plots

$\mathsf{HAT} ext{-}\mathsf{VALUE}(h_i)$ - $\mathsf{LEVERAGE}$

- Hat-values measure **leverage**, observation with $high\ leverage$ have an unusual value for x_i .
- Points with high leverage pull the regression line, possibly distorting estimates.

	wage	education	age
108	14.0	5	55
171	44.5	14	21
200	1.0	12	42
63	7.0	3	64
486	22.2	18	64

Diagnostic Plots O.00 0.02 0.04 Bonferroni p-valuStudentized residu 0.0 0.4 0.8 -4 0 2 4 hat-values 0.01 0.03 200 300 500 Index

WEEK 03

CODE DEMO SESSION

Instructor: Yanan Wu

TA: Khadija Nisar

Spring 2025