Chapitre 15: Espace vectoriel euclidien

I Définition et notations

Un espace vectoriel euclidien = un R-ev de dimension finie muni d'un produit scalaire.

Dans tout ce chapitre, E désigne un \mathbb{R} -ev euclidien de dimension $n \ge 2$, le produit scalaire est noté φ . Pour $x, y \in E$, on note aussi :

- $x \cdot y$ pour $\varphi(x, y)$ (parfois on rencontre aussi $(x \mid y)$)
- x^2 pour $\varphi(x,x)$
- ||x|| pour $\sqrt{\varphi(x,x)}$ (ainsi, $x\mapsto ||x||$ est la norme associée au produit scalaire φ , on l'appelle la norme euclidienne)
 - $x \perp y$ pour $\varphi(x, y) = 0$

Exemple : \mathbb{R}^n muni du produit scalaire canonique : on parle de la structure euclidienne canonique de \mathbb{R}^n .

Remarque : Si E est un espace vectoriel euclidien, alors tout sous-espace vectoriel F de E est muni naturellement d'une structure euclidienne, obtenue par restriction.

II Bases orthonormales

A) Généralités

Définition, proposition :

Une base orthonormale (ou orthonormée) = une famille orthonormale de vecteurs de E qui en forme une base = une famille orthonormale de n vecteurs de E (car une famille orthonormale est libre.

Théorème (Schmidt):

Soit $(u_1, u_2, ... u_n)$ une base quelconque de E.

Alors il existe une unique base orthonormale $(e_1, e_2, ... e_n)$ telle que :

- $\forall p \in [1, n]$, $Vect(e_1, e_2, \dots e_p) = Vect(u_1, u_2, \dots u_p)$
- $\forall p \in [1, n], e_p \cdot u_p > 0$

On dit que $(e_1, e_2, ... e_n)$ est la base orthonormale s'appuyant sur la base $(u_1, u_2, ... u_n)$ par le procédé d'orthonormalisation de Schmidt.

Préliminaire (graphique):

On montre par récurrence sur p que, pour tout $p \in [1, n]$, « on a une et une seule manière de construire e_p ».

- Il est évident qu'il y a une seule façon de construire e_1 de sorte que :
- $\operatorname{Vect}(e_1) = \operatorname{Vect}(u_1)$ (cela impose que $e_1 = \lambda u_1$, avec $\lambda \neq 0$ car $e_1 \neq 0, u_1 \neq 0$)
- $||e_1|| = 1$ (cela impose alors que $|\lambda|||u_1|| = 1$, ainsi $e_1 = \pm |\lambda|u_1$)
- $e_1 \cdot u_1 > 0$, donc $e_1 = +|\lambda|u_1$.

Ainsi, $e_1 = \frac{u_1}{\|u_1\|}$. Réciproquement, ce vecteur convient bien

- Soit $p \in [1, n-1]$. Supposons $(e_1, e_2, ...e_p)$ construit.

Montrons qu'il y a un et un seul choix de sorte que :

- $Vect(e_1, e_2, ...e_{p+1}) = Vect(u_1, u_2, ...u_{p+1})$ (1)
- e_{p+1} est orthogonal aux $e_i, 1 \le i \le p$ (2)
- $\bullet \|e_{p+1}\| = 1 \tag{3}$
- $\bullet e_{p+1} \cdot u_{p+1} > 0 \tag{4}$
- (1) impose que e_{p+1} soit combinaison linéaire des $u_i, 1 \le i \le p+1$
- $= \lambda u_{p+1} + \underbrace{\text{combinaison linéaire des } u_i, 1 \leq i \leq p}_{\text{combinaison linéaire des } e_i, 1 \leq i \leq p}$

et $\lambda \neq 0$ car sinon $\operatorname{Vect}(e_1, e_2, ... e_{p+1}) = \operatorname{Vect}(u_1, u_2, ... u_p) = \operatorname{Vect}(u_1, u_2, ... u_{p+1})$ et u_{p+1} serait alors combinaison linéaire des $u_i, 1 \leq i \leq p$.

Donc
$$e_{p+1} = \lambda \left(u_{p+1} + \sum_{i=1}^{p} \alpha_i e_i \right).$$

Et inversement, si $e_{p+1} = \lambda \left(u_{p+1} + \sum_{i=1}^{p} \alpha_i e_i \right)$, alors on a bien (1).

(2) impose que pour $j \in [1, p], e_j \cdot e_{p+1} = 0$.

Or, pour $j \in [1, p]$, $e_j \cdot e_{p+1} = \lambda \left(u_{p+1} \cdot e_j + \sum_{i=1}^p \alpha_i e_i \cdot e_j\right) = \lambda (u_{p+1} \cdot e_j + \alpha_j)$ car on a

 $e_i \cdot e_j = 0$ si $i \neq j$, 1 sinon, par hypothèse de récurrence.

Ainsi,
$$\forall j \in [1, n], \alpha_j = -u_{p+1} \cdot e_j$$

Inversement, si cette condition est vérifiée, on a bien (2).

(3) impose que $||e_{p+1}|| = 1$, c'est-à-dire que $1 = |\lambda|||u_{p+1} + \sum_{i=1}^{p} \alpha_i e_i||$.

Donc
$$\lambda = \pm \frac{1}{\left\| u_{p+1} + \sum_{i=1}^{p} \alpha_i e_i \right\|}$$

$$(u_{p+1} + \sum_{i=1}^{p} \alpha_i e_i \neq 0 \text{ car sinon } u_{p+1} \in \text{Vect}(e_1, e_2, ... e_p) = \text{Vect}(u_1, u_2, ... u_p))$$

Inversement, si on a cette valeur de λ , on a bien (3).

(4) impose le choix de +, car
$$e_{p+1} \cdot e_{p+1} = \lambda \left(u_{p+1} \cdot e_{p+1} + \sum_{i=1}^{p} \alpha_i e_i \cdot e_{p+1} \right)$$
.

Or,
$$\sum_{i=1}^{p} \alpha_i e_i \cdot e_{p+1} = 0$$
 car e_{p+1} est orthogonal aux $e_i, 1 \le i \le p$.

Donc
$$\underbrace{e_{p+1} \cdot e_{p+1}}_{=1} = \lambda \underbrace{u_{p+1} \cdot e_{p+1}}_{>0}$$
 donc $\lambda > 0$.

Inversement, si $\lambda > 0$, on a bien (4).

Ce qui achève la récurrence.

Conséquences:

- (1) Dans un espace vectoriel euclidien, il existe au moins une base orthonormale
- (2) Toute famille orthonormale peut être complétée en une base orthonormale.

En effet:

Soit $(e_1, e_2, ..., e_n)$ une famille orthonormale. Comme elle est libre, on peut la compléter en une base $(e_1, e_2, ..., e_p, e_{p+1}, ..., e_n)$ de E. Par le procédé d'orthonormalisation de Schmidt, on obtient alors une base orthonormale $(e'_1, e'_2, ... e'_n)$. Mais, d'après le théorème de Schmidt appliqué dans $F = \text{Vect}(e_1, e_2, ...e_n)$, on a $(e_1, ...e_p) = (e'_1, ...e'_p)$.

B) Produit scalaire et base orthonormale

Soit $\mathfrak{B} = (e_1, e_2, ... e_n)$ une base orthonormale de E.

Soit
$$x \in E$$
, de composantes $(x_1, x_2, ... x_n)$ dans \mathfrak{B} , notons $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$.

Soit
$$y \in E$$
, de composantes $(y_1, y_2, ..., y_n)$ dans \mathfrak{B} , notons $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$.

On identifie ici \mathbb{R} et $M_{11}(\mathbb{R})$ pour ne pas charger les notations :

$$x \cdot y = \left(\sum_{i=1}^{n} x_{i} e_{i}\right) \cdot \left(\sum_{j=1}^{n} y_{j} e_{j}\right) = \sum_{i,j \in [[1,n]]} x_{i} e_{i} \cdot y_{j} e_{j} = \sum_{i=1}^{n} x_{i} y_{i} = (x_{1} \ x_{2} \ \dots \ x_{n}) \times \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = (^{t}X)Y$$

Ainsi,
$$x \cdot y = \sum_{i=1}^{n} x_i y_i = ({}^{t}X)Y$$
.

Et, en particulier :
$$x^2 = x \cdot x = \sum_{i=1}^{n} x_i^2 = ({}^t X)X$$

Et, en particulier :
$$x^2 = x \cdot x = \sum_{i=1}^n x_i^2 = ({}^t X) X$$

Ainsi, l'application $\phi_{\mathfrak{B}}$: $\mathbb{R}^n \to E$, qui est un isomorphisme de \mathbb{R} -ev, $(x_1, x_2, ... x_n) \mapsto \sum_{i=1}^n x_i e_i$

est aussi un isomorphisme de \mathbb{R} -ev euclidien *, \mathbb{R}^n étant muni de sa structure euclidienne canonique. (* C'est-à-dire que pour tout $u, v \in \mathbb{R}^n, \phi_{\mathfrak{B}}(u) \cdot \phi_{\mathfrak{B}}(v) = u \cdot v$, en plus des règles pour un R-ev).

Remarque:

Inversement, soit E un \mathbb{R} -ev de dimension n, $\mathfrak{B} = (u_1, u_2, ... u_n)$ une base de E.

Alors il existe un et un seul produit scalaire tel que B soit orthonormale dans le R-ev euclidien E muni de ce produit scalaire.

En effet, c'est l'application φ définie par :

Pour tout $x, y \in E$, de composantes $(x_1, x_2, ... x_n)$ et $(y_1, y_2, ... y_n)$ dans \mathfrak{B} ,

$$\varphi(x,y) = \sum_{i=1}^{n} x_i y_i .$$

Exemple:

 \mathbb{R}^2 , muni de la base $[\underbrace{(1,2)}_{u_1},\underbrace{(1,1)}_{u_2}]$. On note (\vec{i},\vec{j}) la base canonique de \mathbb{R}^2 . Soit $x = (x_1, x_2) \in \mathbb{R}^2$.

Alors
$$x = x_1 \vec{i} + x_2 \vec{j} = x_1 (2u_2 - u_1) + x_2 (u_1 - u_2) = (x_2 - x_1)u_1 + (2x_1 - x_2)u_2$$
.

Ainsi, (\vec{i}, \vec{j}) est une base orthonormale pour le produit scalaire naturel, mais (u_1, u_2) n'en est pas une pour ce produit scalaire; en revanche, c'en est une pour le $\begin{array}{c}
\mathbb{R}^2 \to \mathbb{R} \\
(x=(x_1,x_2),y=(y_1,y_2)) \mapsto (x_2-x_1)(y_2-y_1) + (2x_1-x_2)(2y_1-y_2) \\
2x_1,y_2+5x_1,y_1-3x_1,y_2-3x_2,y_1
\end{array}$ produit scalaire φ :

III Orthogonal d'un sous-espace vectoriel, projecteurs et symétries orthogonaux

A) Orthogonal d'un sous-espace vectoriel (rappel)

Soit F un sous-espace vectoriel de E.

On définit $F^{\perp} = \{x \in E, \forall y \in F, x \cdot y = 0\}.$

Alors F^{\perp} est un sous-espace vectoriel de E, et $E = F \oplus F^{\perp}$.

Démonstration:

Déjà, c'est un sous-espace vectoriel de E (vu dans le chapitre précédent).

- Si $F = \{0\}$, alors $F^{\perp} = E$, et on a bien $E = F \oplus F^{\perp}$.
- Si $F \neq \{0\}$. On note p la dimension de F; ainsi, $1 \le p \le n$.

Soit $(e_1, e_2, ... e_p)$ une base orthonormale de F.

On la complète en une base orthonormale $\mathfrak{B} = (e_1, e_2, ... e_n)$ de E. Soit alors $x \in E$, de composantes $(x_1, x_2, ... x_n)$ dans \mathfrak{B} .

On a alors les équivalences :

$$\begin{aligned} x &\in F^{\perp} \iff \forall y \in F, \left(\sum_{i=1}^{n} x_{i} e_{i}\right) \cdot y = 0 \\ &\iff \forall y_{1}, y_{2}, \dots y_{p} \in \mathbb{R}, \left(\sum_{i=1}^{n} x_{i} e_{i}\right) \cdot \left(\sum_{i=1}^{p} y_{i} e_{i}\right) = 0 \\ &\iff \forall j \in \left[\left[1, p\right]\right] \left(\sum_{i=1}^{n} x_{i} e_{i}\right) \cdot e_{j} = 0 \iff \forall j \in \left[\left[1, p\right]\right], x_{j} = 0 \end{aligned}$$

L'avant-dernière équivalence se justifie dans un sens en prenant, pour $j \in [1, p]$ $y_j = 1$ et $\forall i \in [1, p] \setminus \{j\}, y_i = 0$, et dans l'autre sens par linéarité de la deuxième variable.

Donc $F^{\perp} = \text{Vect}(e_{p+1}, e_{p+2}, ... e_n)$, donc F^{\perp} est bien supplémentaire de F dans E.

Conséquence:

Dans un espace euclidien, $(F^{\perp})^{\perp} = F$.

En effet, on a déjà vu que $F \subset (F^{\perp})^{\perp}$. De plus, en notant $p = \dim F$, on a : $\dim(F^{\perp}) = n - p$, donc $\dim((F^{\perp})^{\perp}) = n - (n - p) = p = \dim F$. D'où l'égalité.

B) Projecteur orthogonal

Définition:

Soit F un sous-espace vectoriel de E.

Le projecteur orthogonal sur $F = \underset{\text{def}}{\text{le}}$ le projecteur sur F selon F^{\perp} .

Pour $x \in E$, p le projecteur orthogonal sur F, alors p(x) est appelée la projection orthogonale de x sur F.

Ainsi, p(x) est l'unique élément de F tel que x s'écrive :

x = p(x) + u, où $u \in F^{\perp}$. (car $E = F \oplus F^{\perp}$, et $x \in E$, $p(x) \in F$)

Autrement dit, p(x) est l'unique élément de F tel que $x - p(x) \in F^{\perp}$. Ainsi, pour

$$y \in E$$
, $y = p(x) \Leftrightarrow \begin{cases} y \in F \\ x - y \in F^{\perp} \end{cases}$.

C) Distance d'un élément à un sous-espace vectoriel

Définition:

Soit A une <u>partie</u> non vide E et soit $x \in E$. Alors la distance de x à A, notée d(x,A), est : $d(x,A) = \inf_{\text{déf } y \in A} d(x,y)$.

La borne inférieure existe bien, car $\{d(x,y), y \in A\}$ est non vide (car A est non vide), et minorée (par 0).

(Définition : frontière = adhérence d'une partie, privée de l'intérieur)

Théorème:

Soit F un sous-espace vectoriel de E, soit p le projecteur orthogonal sur F.

Soit $x_0 \in E$.

Alors $p(x_0)$ est l'unique élément de F tel que $d(x_0, F) = ||x_0 - p(x_0)||$. Autrement dit, la distance de x_0 est atteinte, en un et un seul point, qui n'est autre que $p(x_0)$.

Soit $y \in F$.

Alors
$$||y - x_0||^2 = ||y - p(x_0) + p(x_0) - x_0||^2$$
.

Or, $y - p(x_0) \in F$ car $y \in F$, $p(x_0) \in F$; et $p(x_0) - x_0 \in F^{\perp}$ par définition de p.

Donc $y - p(x_0) \perp p(x_0) - x_0$. Ainsi, d'après le théorème de Pythagore :

$$\|y - x_0\|^2 = \|y - p(x_0) + p(x_0) - x_0\|^2 = \|y - p(x_0)\|^2 + \|p(x_0) - x_0\|^2$$

D'où $||y-x_0|| \ge ||p(x_0)-x_0||$, et il n'y a égalité que si $y = p(x_0)$ (car sinon $||y-x_0||^2 - ||p(x_0)-x_0||^2 = ||y-p(x_0)||^2 \ne 0$)

D) Symétries orthogonales

Ce sont les symétries par rapport à un sous-espace vectoriel F, selon F^\perp . Autrement dit :

La symétrie orthogonale par rapport à F = 1 application $f : E = F \oplus F^{\perp} \to E$ $x = x' + x' \mapsto x' - x''$

Remarque : f(x) = 2p(x) - x, où p est la projection orthogonale sur F.

Proposition:

Soit f une symétrie sur E. On a l'équivalence :

f est une symétrie orthogonale $\Leftrightarrow \forall x \in ||f(x)|| = ||x||$.

Symétrie quelconque :

Démonstration:

Soit f une symétrie par rapport à F selon G. (où G est tel que $E = F \oplus G$).

Soit
$$x \in E$$
. Alors $x = \underbrace{x_F}_{\in F} + \underbrace{x_G}_{\in G}$, et $f(x) = x_F - x_G$.

Donc
$$||x||^2 = ||x_F||^2 + 2x_F \cdot x_G + ||x_G||^2$$
 et $||f(x)||^2 = ||x_F||^2 - 2x_F \cdot x_G + ||x_G||^2$.
Ainsi:

- Si $G = F^{\perp}$, alors $x_F \cdot x_G$ vaudra toujours 0. Donc $\forall x \in ||f(x)|| = ||x||$
- Si $G \neq F^{\perp}$, on peut trouver $x' \in F$, $x'' \in G$ tel que $x' \cdot x'' \neq 0$. Alors, en prenant $x = x' + x'' \in E$, on aura trouvé x tel que $||f(x)|| \neq ||x||$. D'où l'équivalence.

IV Formes linéaires et hyperplans

A) Formes linéaires

Théorème:

Les formes linéaires sur E sont exactement les applications du type : $E \to \mathbb{R}$, où $a \in \mathbb{R}$. Plus précisément :

- (1) Les applications du type $x \mapsto a \cdot x$ sont linéaires, et
- (2) Si $h \in E^*$, alors il existe un et un seul élément a de E tel que $\forall x \in E, h(x) = a \cdot x$. (on retrouve ainsi le fait que $\dim(E^*) = \dim(E)$)

Démonstration:

Le premier point résulte de la linéarité du produit scalaire par rapport à la seconde variable. Pour le deuxième :

Soit $\mathfrak{B} = (e_1, e_2, ... e_n)$ une base orthonormale de E.

Soit $h \in E^*$.

Il existe alors $a_1, a_2, ... a_n \in \mathbb{R}$ tels que, pour tout $x \in E$ de composantes

$$(x_1, x_2, ... x_n)$$
 dans \mathfrak{B} , $h(x) = a_1 x_1 + a_2 x_2 + ... + a_n x_n = a \cdot x$, avec $a = \sum_{i=1}^n a_i e_i$ (on

introduit en fait $(a_1 a_2 ... a_n)$, matrice de h dans les bases \mathfrak{B} et (1)). D'où l'existence.

Unicité:

Si il existe $a, a' \in E$ tels que $\forall x \in E, h(x) = a \cdot x$ et $h(x) = a' \cdot x$, alors $\forall x \in E, (a - a') \cdot x = 0$ (linéarité par rapport à la première variable).

Donc
$$a - a' \in E^{\perp} = \{0\}$$
, d'où $a = a'$.

B) Hyperplans

Soit H un hyperplan de E. Alors H est le noyau d'une forme linéaire sur E, h, non nulle (attention, il n'y a pas unicité!).

Or, il existe $\vec{n} \in E$ tel que $\forall x \in E, h(x) = \vec{n} \cdot x$.

Ainsi,
$$H = \ker h = \{x \in E, h(x) = 0\} = \{x \in E, \vec{n} \cdot x = 0\} = [\text{Vect}(\vec{n})]^{\perp}$$
.

Donc \vec{n} dirige la droite vectorielle $N=H^{\perp}$. On dit que N est la normale à H: $N=H^{\perp}$, ou encore $N^{\perp}=H$, et que \vec{n} est un vecteur normal à H.

Remarque:

Si $\mathfrak{B} = (e_1, e_2, ... e_n)$ est une base orthonormale de E,

Si H a pour équation $H: a_1x_1 + a_2x_2 + ... + a_nx_n = 0$ dans \mathfrak{B} , alors le vecteur \vec{n} de

composantes $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ dans $\mathfrak B$ est normal à H. En effet, l'équation "dit" : $x \in H \Leftrightarrow \vec n \cdot x = 0$.

C) Projection orthogonale sur un hyperplan

On considère un hyperplan H, un vecteur \vec{n} normal à H et p le projecteur orthogonal sur H.

Soit
$$x \in E$$
. Alors $x = \underbrace{x'}_{\in H} + \underbrace{x''}_{\in H^{\perp}}$, et
$$\begin{cases} x' = p(x) \\ x'' = \lambda \vec{n}, \text{ où } \lambda \in \mathbb{R} \end{cases}$$
.

Donc
$$x = p(x) + \lambda . \vec{n}$$

Donc
$$x = p(x) + \lambda . \vec{n}$$

Ainsi, $x \cdot \vec{n} = \underbrace{p(x) \cdot \vec{n}}_{=0 \text{ car } p(x) \in H} + \lambda \|\vec{n}\|^2$

D'où
$$\lambda = \frac{x \cdot \vec{n}}{\|\vec{n}\|^2}$$
, et, par conséquent :

$$p(x) = x - x'' = x - \lambda . \vec{n}$$

Soit
$$p(x) = x - \left(\frac{x \cdot \vec{n}}{\|\vec{n}\|^2}\right) \cdot \vec{n}$$

Conséquence :

Pour tout
$$x \in E$$
, $d(x, H) = ||x - p(x)|| = \frac{|x \cdot \vec{n}|}{||\vec{n}||^2} ||\vec{n}|| = \frac{|x \cdot \vec{n}|}{||\vec{n}||}$

D) Réflexion

Une réflexion = une symétrie orthogonale par rapport à un hyperplan.

Proposition:

Etant donnés deux vecteurs x, x' de E, distincts et de même norme, il existe une et une seule réflexion qui les échange.

Démonstration:

Existence:

Soit H l'hyperplan tel qu'un vecteur normal soit x - x', et soit f la réflexion d'hyperplan H. On note enfin p la projection orthogonale sur H.

Alors
$$f(x) = 2p(x) - x = 2\left(x - \frac{x \cdot (x - x')}{\|x - x'\|^2}(x - x')\right) - x$$

$$= -2\frac{\|x\|^2 - x \cdot x'}{\|x\|^2 - 2x \cdot x' + \|x'\|^2}(x - x') - x$$

$$= -2\frac{\|x\|^2 - x \cdot x'}{2\|x\|^2 - 2x \cdot x'}(x - x') - x$$

$$= -(x - x') - x = x'$$

Et, de même, f(x') = x.

Unicité:

Supposons qu'il existe deux réflexions f, g d'hyperplans F, G telles que :

$$f(x) = x'$$
; $f(x') = x$; $g(x) = x'$; $g(x') = x$

On a alors:

Déjà, x - x' est normal à F. En effet :

Pour tout $y \in F$, on a déjà :

$$||f(x-y)|| = ||x-y||$$

= $||f(x) - f(y)|| = ||x'-y||$

D'où
$$||x - y|| = ||x' - y||$$
.

De plus, pour tout $y \in F$:

$$(x - x') \cdot y = x' \cdot y - x \cdot y = \frac{1}{2} (||x'||^2 + ||y||^2 - ||x' - y||^2) - \frac{1}{2} (||x||^2 + ||y||^2 - ||x - y||^2)$$

$$= 0 \operatorname{car} ||x'|| = ||x|| \operatorname{et} ||x' - y|| = ||x - y||$$

Donc $F^{\perp} = \text{Vect}(x - x')$.

De même, $G^{\perp} = \text{Vect}(x - x')$

Donc $F^{\perp} = G^{\perp}$, d'où F = G

V Automorphismes orthogonaux

A) Définition, théorème

Soit $f \in L(E)$.

$$f$$
 est un automorphisme orthogonal $\underset{\text{def}}{\Leftrightarrow} f$ "conserve le produit scalaire"(1):

$$\forall x, y \in E, f(x) \cdot f(y) = x \cdot y$$

 \Leftrightarrow f "conserve la norme"(2):

$$\forall x \in E, ||f(x)|| = ||x||$$

 \Leftrightarrow f "conserve les bases orthonormales"(3):

Pour toute base orthonormale $(e_1, e_2, ... e_n)$

$$(f(e_1), f(e_2), ... f(e_n))$$
 est orthonormale

 \Leftrightarrow f "conserve une base orthonormale"(4):

Il existe une base orthonormale $(e_1, e_2, ... e_n)$

telle que $(f(e_1), f(e_2), ... f(e_n))$ est orthonormale

Démonstration:

$$(1) \Rightarrow (2)$$
: évident; si (1) , alors $f(x)^2 = x^2$

$$(2) \Rightarrow (1)$$
: supposons (2) .

Soient $x, y \in E$. Alors:

$$f(x) \cdot f(y) = \frac{1}{2} (||f(x) + f(y)||^2 - ||f(x)||^2 - ||f(y)||^2)$$

$$= \frac{1}{2} (||f(x + y)||^2 - ||f(x)||^2 - ||f(y)||^2)$$

$$= \frac{1}{2} (||x + y||^2 - ||x||^2 - ||y||^2)$$

$$= x \cdot y$$

 $(1) \Rightarrow (3)$: supposons (1).

Soit $(e_1, e_2, ... e_n)$ une base orthonormale.

Alors, pour tout $i, j \in [1, n], f(e_i) \cdot f(e_j) = e_i \cdot e_j = \delta_{i,j}$

 $(3) \Rightarrow (4)$: il en existe puisque l'ensemble des bases orthonormales n'est pas vide.

 $(4) \Rightarrow (1)$: supposons (4).

Soit $\mathfrak{B} = (e_1, e_2, ... e_n)$ une base orthonormale telle que $\mathfrak{B}' = (f(e_1), f(e_2), ... f(e_n))$ soit aussi orthonormale.

Soient alors $x, y \in E$, de composantes $(x_1, x_2, ... x_n)$ et $(y_1, y_2, ... y_n)$ dans \mathfrak{B} .

Alors
$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$
.

Et $f(x) \cdot f(y) = \sum_{i=1}^{n} x_i y_i$ car \mathfrak{B} ' est aussi orthonormale, et les composantes de

f(x) et f(y) dans \mathfrak{B} ' sont $(x_1, x_2, ... x_n)$ et $(y_1, y_2, ... y_n)$ puisque f est linéaire (rappel :

pour une application linéaire,
$$x = \sum_{i=1}^{n} x_i e_i \Rightarrow f(x) = \sum_{i=1}^{n} x_i f(e_i)$$

Remarque:

Si une application f est un automorphisme orthogonal, alors c'est aussi un automorphisme.

En effet : sifest un automorphisme orthogonal, alors :

 $f(x) = 0 \Rightarrow ||f(x)|| = 0 \Rightarrow ||x|| = 0 \Rightarrow x = 0$. Donc ker $f = \{0\}$. Donc f est injective, donc bijective (puisque E est de dimension finie)

Définition, proposition :

On note O(E) l'ensemble des automorphismes orthogonaux de E. Alors O(E) constitue un sous-groupe de $(GL(E), \circ)$ des automorphismes de E. On l'appelle le groupe orthogonal de E. Les éléments de O(E) sont aussi appelés des isométries vectorielles.

Démonstration:

- $\operatorname{Id}_{E} \in O(E)$
- Si $f, g \in O(E)$, alors $f \circ g \in O(E)$ et $f^{-1} \in O(E)$:

$$||(f \circ g)(x)|| = ||f(g(x))|| = ||g(x)|| = ||x||$$
, et $||f^{-1}(x)|| = ||f(f^{-1}(x))|| = ||f^{-1}(x)|| = ||x||$.

Exemple:

Les symétries orthogonales sont des éléments de O(E)

B) Matrices orthogonales

Théorème:

Soit $\mathfrak B$ une base orthonormale de E. Soit $f \in L(E)$, et $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} = \mathrm{mat}(f, \mathfrak B)$.

Alors:

 $f \in O(E) \Leftrightarrow$ les colonnes de A forment une base orthonormale de $M_{n,1}(\mathbb{R})$ muni de son produit scalaire naturel $\Leftrightarrow A^t A = I_n \Leftrightarrow A$ est inversible et $A^{-1} = {}^t A$

$$f \in O(E) \Leftrightarrow (f(e_1), f(e_2), ..., f(e_n))$$
 est orthonormée
 $\Leftrightarrow \forall i, j \in [1, n], f(e_i) \cdot f(e_j) = \delta_{i,j}$
 $\Leftrightarrow \forall i, j \in [1, n], \sum_{k=1}^{n} a_{k,i} a_{k,j} = \delta_{i,j}$

 \Leftrightarrow les colonnes de A forment une famille orthonormale de $M_{n,1}(\mathbb{R})...$

et
$$\forall i, j \in [[1, n]], \sum_{k=1}^{n} a_{k,i} a_{k,j} = \delta_{i,j} \iff^{t} AA = I_{n}$$

$$\iff A \text{ est inversible et } A^{-1} = {}^{t}A$$

$$\iff A^{t}A = I_{n}$$

D'où le résultat.

Définition, proposition :

- Soit $A \in M_n(\mathbb{R})$

A est orthogonale $\Leftrightarrow_{\text{def}}^t AA = I_n \Leftrightarrow A$ est inversible et $A^{-1} = {}^t A$

- L'ensemble des matrices carrées et orthogonales, noté O_n (ou O(n), ou $O_n(\mathbb{R})$), forme un sous-groupe de $(GL_n(\mathbb{R}),\times)$
- Si $\mathfrak B$ est une base orthonormale de E, si f est une application linéaire de E dans E, et si $A = \operatorname{mat}(f, \mathfrak B)$, alors $f \in O(E) \Leftrightarrow A \in O_n$
 - $\mathfrak B$ étant une base orthonormale de E, l'application $\phi: O(E) \to O_n$ est un $f \mapsto \mathrm{mat}(f, \mathfrak B)$

isomorphisme du groupe $(O(E), \circ)$ dans (O_n, \times)

En effet :

Déjà, ϕ est correctement définie, puisque pour $f \in O(E)$, $mat(f, \mathfrak{B})$ est bien orthogonale.

- $\phi(f \circ g) = \text{mat}(f \circ g, \mathfrak{B}) = \text{mat}(f, \mathfrak{B}) \times \text{mat}(g, \mathfrak{B}) = \phi(f) \times \phi(g)$
- $\phi(\mathrm{Id}_E) = I_n$
- C'est surjectif d'après le tiret précédent : pour $A \in O_n$, on trouve $f \in O(E)$.
- C'est aussi injectif : $\ker \phi = \{ \text{Id} \}$

Exemple:

$$\begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \in O_n$$

C) Déterminant d'un automorphisme orthogonal

Proposition:

Si
$$f \in O(E)$$
, alors det $f = \pm 1$

Si
$$A \in O_n$$
, alors det $A = \pm 1$

Si $A \in O_n$, on a alors:

 ${}^{t}AA = I_{n}$, donc $\det({}^{t}AA) = 1$, soit $\det({}^{t}A) \times \det(A) = 1$, d'où $\det(A)^{2} = 1$

Si $f \in O(E)$: soit $A = \max(f, \mathfrak{B})$, où \mathfrak{B} est une base orthonormale.

Alors det $f = \det A = \pm 1$ car A est orthogonale.

Définition, proposition:

On note SO(E) l'ensemble des éléments $f \in O(E)$ tels que det f = 1

On note SO_n l'ensemble des $A \in O_n$ tels que det(A) = 1.

Alors SO(E) est un sous-groupe de $(O(E),\circ)$, on l'appelle le groupe orthogonal spécial de E. Et SO_n est un sous-groupe de (O_n,\times) , on l'appelle le groupe orthogonal spécial d'ordre n (attention, SO_n n'est pas pour autant de cardinal n!)

Ces deux groupe sont isomorphes; plus précisément, si $\mathfrak B$ désigne une base orthonormale de E, l'application $O(E) \to O_n$ définit, par restriction, un $f \mapsto \operatorname{mat}(f, \mathfrak B)$

isomorphisme de SO(E) vers SO_n .

(Remarque : $O(E) \setminus SO(E)$ n'est pas un sous-groupe, puisque si det f = -1 et det g = -1, alors det $f \circ g = 1$!)

Exemple:

Soit f une symétrie orthogonale par rapport à un sous-espace vectoriel quelconque F de E. (on note p la dimension de F).

Alors $f \in O(E)$ (puisque f conserve la norme)

On considère la matrice de f dans une base adaptée (le "début" dans F, le "reste" dans F^{\perp}):

$$\begin{pmatrix}
1 & 0 & \dots & \dots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & 1 & \ddots & \vdots \\
\vdots & & \ddots & -1 & \ddots & \vdots \\
\vdots & & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 0 & -1
\end{pmatrix}$$

Ainsi, det $f = (-1)^{n-p}$

Vocabulaire:

Un élément de SO(E) est un automorphisme orthogonal direct / une isométrie vectorielle directe. (et indirect(e) pour les éléments de $O(E) \setminus SO(E)$)

Ainsi:

- Les réflexions sont toujours indirectes (n p = 1)
- Les symétries orthogonales par rapport à une droite (appelées aussi retournements) sont indirectes en dimension 2, directes en dimension 3.

Autre vocabulaire:

Les éléments de SO(E) s'appellent aussi des rotations.

VI Orientation et changement de base

A) Orientation d'un \mathbb{R} -ev E de dimension n.

Orienter E, c'est choisir une base \mathfrak{B} de E, décréter qu'elle est directe, et convenir qu'étant donnée une base \mathfrak{B} ' de E:

 \mathfrak{B}' est directe \Leftrightarrow $\det_{\mathfrak{B}} \mathfrak{B}' > 0$

 \mathfrak{B}' est indirecte \Leftrightarrow det $\mathfrak{B}' < 0$

Ainsi, étant données deux bases \mathfrak{B} ' et \mathfrak{B} '' de E, \mathfrak{B} ' et \mathfrak{B} '' sont de même sens (c'està-dire toutes les deux (in)directes) si et seulement si det \mathfrak{B} '' > 0

En effet : $\det_{\mathfrak{B}'} \mathfrak{B}'' = \det_{\mathfrak{B}'} \mathfrak{B} \times \det_{\mathfrak{B}} \mathfrak{B}'' = (\det_{\mathfrak{B}} \mathfrak{B}')^{-1} \times \det_{\mathfrak{B}} \mathfrak{B}''$, qui est positif si et seulement si les deux déterminants on même signe.

Exemples:

• En dimension 2:

Si (\vec{i}, \vec{j}) est directe, alors (\vec{j}, \vec{i}) est indirecte, $(-\vec{j}, \vec{i})$ est directe, $(-\vec{i}, -\vec{j})$ aussi. (Les déterminants sont « multipliés par -1 » lorsqu'on échange deux vecteurs)

• En dimension 3:

Si $(\vec{i}, \vec{j}, \vec{k})$ est directe, alors $(\vec{j}, \vec{k}, \vec{i})$ est directe, $(\vec{j}, \vec{i}, \vec{k})$ est indirecte, et $(\vec{j}, \vec{i}, -\vec{k})$ directe.

On considère dorénavant *E* orienté.

Proposition:

Si $(u_1, u_2, ... u_p)$ est une famille orthonormale de E, avec p < n, on peut la compléter en une base orthonormée directe de E.

Démonstration:

On sait construire $(u_1, u_2, ... u_n)$ base orthonormale. Ainsi, soit $(u_1, u_2, ... u_n)$, soit $(u_1, u_2, ... - u_n)$ sera directe.

B) Changement de base orthonormale

Proposition:

Soit $\mathfrak{B} = (e_1, e_2, ...e_n)$ une base orthonormale de E.

Soit $\mathfrak{B}' = (e'_1, e'_2, ... e'_n)$ une autre base de E, et P la matrice de passage de \mathfrak{B} à \mathfrak{B}' .

Alors \mathfrak{B} ' est orthonormale $\Leftrightarrow P$ est orthogonale.

Plus précisément :

 \mathfrak{B}' est orthonormale de même sens que $\mathfrak{B} \Leftrightarrow P \in SO_n$

 \mathfrak{B} ' est orthonormale de sens contraire à $\mathfrak{B} \iff P \in O_n \setminus SO_n$.

Démonstration:

P donne les composantes de \mathfrak{B} ' dans \mathfrak{B} , qui est orthonormale.

Donc, pour tout $i, j \in [1, n], e'_i \cdot e'_j = C_i \cdot C_j$ (produit scalaire naturel des colonnes de P), et donc \mathfrak{B} ' est orthonormale si et seulement si les colonnes de P forment une base orthonormale de $M_{n,1}(\mathbb{R})$. (Par ailleurs, $\det_{\mathfrak{B}} \mathfrak{B}' = \det P$, d'où le sens...)

Ainsi, si $\mathfrak B$ est une base orthonormée directe et si $\mathfrak B$ ' est une autre base, P la matrice de passage de $\mathfrak B$ à $\mathfrak B$ ', alors $\mathfrak B$ ' est une base orthonormée directe si et seulement si $P \in SO_n$

C) Automorphismes orthogonaux et orientation

Proposition:

Soit $f \in L(E)$, soit $\mathfrak{B} = (e_1, e_2, ... e_n)$ une base orthonormale de E.

On sait déjà que $f \in O(E) \Leftrightarrow (f(e_1), f(e_2), ..., f(e_n))$ est une base orthonormale.

On a, plus précisément :

 $f \in SO(E) \Leftrightarrow (f(e_1),...f(e_n))$ est une base orthonormale de même sens que \mathfrak{B} .

 $f \in O(E) \setminus SO(E) \Leftrightarrow (f(e_1), f(e_2), ... f(e_n))$ est une base orthonormale de sens opposé à \mathfrak{B} .

Démonstration:

Si
$$\mathfrak{B}' = (f(e_1), f(e_2), ... f(e_n))$$
, alors $\det_{\mathfrak{B}}(\mathfrak{B}') = \det f$.

D) Déterminant en base orthonormée directe

Proposition, définition:

Soit \mathfrak{B} une base orthonormée directe de E.

Soit $(u_1, u_2, ... u_n)$ une famille de *n* vecteurs de *E*.

Alors $\det_{\mathfrak{B}}(u_1, u_2, ... u_n)$ ne dépend pas du choix de la base orthonormée directe \mathfrak{B} , et s'appelle le produit mixte de $u_1, u_2, ... u_n$, qu'on note $\det(u_1, u_2, ... u_n)$ ou $[u_1, u_2, ... u_n]$.

Démonstration:

Si \mathbb{B}, \mathbb{B}' sont deux bases orthonormées directes :

$$\det_{\mathfrak{B}^{\mathsf{t}}}(u_{1},u_{2},...u_{n}) = \underbrace{\det_{\mathfrak{B}^{\mathsf{t}}}\mathfrak{B}}_{=1 \text{ car }\mathfrak{B},\mathfrak{B}^{\mathsf{t}}} \times \det_{\mathfrak{B}}(u_{1},u_{2},...u_{n})$$
sont deux bases orthonormales de même sens