NEC

NPN SILICON TRANSISTOR 2SC1843

DESCRIPTION

The 2SC1843 is designed for use in an AF amplifier of low level low

noise and general purpose.

FEATURES

• High hee.

 h_{FE} : 400 TYP. ($V_{CE} = 6.0 \text{ V}, I_{C} = 1.0 \text{ mA}$)

• Low Noise Voltage. NV : 30 mV TYP. V_{CE} = 5.0 V, I_{C} = 1.0 mA, R_{G} = 100 k Ω , G_{v} = 80 dB,

f= 10 Hz to 1.0 kHz

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature55 to +125 °C
Junction Temperature +125 °C Maximum
Maximum Power Dissipation (Ta = 25 $^{\circ}$ C)
Total Power Dissipation
Maximum Voltages and Currents ($Ta = 25$ °C)
V _{CBO} Collector to Base Voltage 60 V
V _{CEO} Collector to Emitter Voltage 50 V
V _{EBO} Emitter to Base Voltage 5.0 V
I _C Collector Current 100 mA
In Base Current 20 mA

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	150	370		. –	V _{CE} = 6.0 V, I _C = 0.1 mA
hFE2	DC Current Gain	200	400	800	_	$V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$
fŢ	Gain Bandwidth Product	150	250		MHz	$V_{CE} = 6.0 \text{ V}, I_{E} = -10 \text{ mA}$
Cob	Output Capacitance		3.0	4.0	ρF	$V_{CB} = 6.0 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
NV	Noise Voltage	•	30	40	mV	V_{CE} = 5.0 V, I_{C} = 1.0 mA, R_{G} = 100 k Ω , G_{V} = 80 dB, f = 10 Hz to 1.0 kHz
СВО	Collector Cutoff Current			100	nA	$V_{CB} = 60 \text{ V, } I_{E} = 0$
IEBO	Emitter Cutoff Current		•	100	nA	$V_{EB} = 5.0 V, I_{C} = 0$
VBE	Base to Emitter Voltage	0.55	0.60	0.65	٧	$V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		0.15	0.30	٧	I _C = 100 mA, I _B = 10 mA
V _{BE(sat)}	Base Saturation Voltage		0.86	1.0	V	1 _C = 100 mA, I _B = 10 mA

Classification of hFE2

Rank	Р	F	E
Range	200 – 400	300 – 600	400 – 800

hFE Test Conditions : $V_{CE} = 6.0 \text{ V}$, $I_{C} = 1.0 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)

10

10 20

Ic - Collector Current - mA

-0.1 - 0.2 - 0.5

-1-2 -5-10-20-50-100

IE - Emitter Current - mA

0. 01

0.1 0.2

SMALL SIGNAL CURRENT GAIN vs. DC CURRENT GAIN

INPUT IMPEDANCE, VOLTAGE FEEDBACK RATIO AND OUTPUT ADMITTANCE vs. SMALL SIGNAL CURRENT GAIN

NORMALIZED h-PARAMETERS vs. COLLECTOR CURRENT

NORMALIZED h-PARAMETERS vs. COLLECTOR TO EMITTER VOLTAGE

en AND in vs. COLLECTOR CURRENT

NOISE VOLTAGE TEST CIRCUIT

 $V_{CE} = 5$ V, $I_C = 1.0$ mA, $R_G = 100$ kQ, $G_V = 80$ dB, FLAT (f = 10 Hz to 1.0 kHz)