Capítulo 1

Amplificadores realimentados

1.1. Efectos de la realimentación negativa

- Mejora estabilidad de la ganancia.
- Reducción de las señales espurias (ruidos externos e internos).
- Cambio en las impedancias de entrada y de salida.
- Aumento del ancho de banda del amplificador.
- Aumento de la estabilidad de frecuencia.

1.2. Amplificador de tensión con muestra de tensión en serie (Realimentación de Tensión en Serie)

Figura 1.1: Esquema general de bloques de un amplificador de tensión con muestra de tensión en serie

- Impedancia de entrada a lazo cerrado muy alta.
- Impedancia de salida a lazo cerrado baja.
- La ganancia de la tensión se ve disminuida.
- Cada uno de estos factores afectados por el factor de desensibilidad **D**.
- Todos estos factores mejora las condiciones y propiedades del amplificador.

1.3. Amplificador de transconductancia con muestra de corriente en serie (Realimentación de Corriente en Serie)

Figura 1.2: Esquema general de bloques de un amplificador de transconductancia con muestra de corriente en serie

- Baja amplificación de tensión.
- Baja transconductancia.
- Alta desensibilidad.

1.4. Amplificador de corriente con muestra de corriente en paralelo (Muestreo de Corriente en Paralelo)

Figura 1.3: Esquema general de bloques de un amplificador de corriente con muestra de corriente en paralelo $\,$

- Impedancia de entrada a lazo cerrado muy baja.
- Impedancia de salida a lazo cerrado alta.
- La ganancia de corriente se ve disminuida.

1.5. Amplificador de transresistencia con muestra de tensión en paralelo (Realimentación de tensión en paralelo)

Figura 1.4: Esquema general de bloques de un amplificador de transresistencia con muestra de tensión en paralelo

- Bajas impedancias de entrada y salida a lazo cerrado.
- Reducción de transresistencia.

1.6. Cuadros de comparación de amplificadores

Parámetro	Tensión	Corriente	Transconductancia	Transresistencia
R_i	∞	0	∞	0
R_o	0	∞	∞	0
Transferencia	$A_v = \frac{V_o}{V_s}$	$A_i = \frac{I_L}{I_s}$	$G_m = \frac{I_L}{V_s}$	$R_m = \frac{V_L}{I_s}$

Señal	Tension/Serie	Corriente/Serie	Tension/Paralelo	Corriente/Paralelo
X_o	Tension	Corriente	Tension	Corriente
X_s, X_f, X_d	Tension	Tension	Corriente	Corriente
A	A_v	G_m	R_m	A_i
$\beta\left(\frac{X_f}{X_o}\right)$	$\frac{V_f}{V_o}$	$rac{V_f}{I_o}$	$rac{I_f}{V_o}$	$rac{I_f}{I_o}$
R_{of}	Disminuye	Aumenta	Disminuye	Aumenta
R_{if}	Aumenta	Aumenta	Disminuye	Disminuye
A.B.	Aumenta	Aumenta	Aumenta	Aumenta
Distorsión no lineal	Disminuye	Disminuye	Disminuye	Disminuye
Característica	A_v	G_m	A_i	R_m