

Choose certainty.

Add value.

# Report On

FCC and Industry Canada Testing of the ETELM SAS NetisB25 In accordance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119

COMMERCIAL-IN-CONFIDENCE

FCC ID: 0024845661

IC: 20543-BSTETRA800

Document 75930525 Report 01 Issue 1

September 2015



#### **Product Service**

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <a href="https://www.tuv-sud.co.uk">www.tuv-sud.co.uk</a>

COMMERCIAL-IN-CONFIDENCE

**REPORT ON** FCC and Industry Canada Testing of the

ETELM SAS NetisB25

In accordance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and

Industry Canada RSS-119

Document 75930525 Report 01 Issue 1

September 2015

PREPARED FOR ETELM SAS

Avenuue des deux lacs

PA Villejust

Courtaboeuf Cedex

91971 France

PREPARED BY



**Natalie Bennett** 

Senior Administrator, Project Support

**APPROVED BY** 

Mark Jenkins

**Authorised Signatory** 

**DATED** 09 September 2015

## **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

M Russell

T Guy





## **CONTENTS**

| Section    |                                          | Page No |
|------------|------------------------------------------|---------|
| 1          | REPORT SUMMARY                           | 3       |
| 1.1        | Introduction                             |         |
| 1.2<br>1.3 | Brief Summary of Results                 |         |
| 1.3<br>1.4 | Application FormProduct Information      |         |
| 1.5        | Test Conditions                          |         |
| 1.6        | Deviations from the Standard             |         |
| 1.7        | Modification Record                      |         |
| 2          | TEST DETAILS                             | 9       |
| 2.1        | Maximum Conducted Output Power           | 10      |
| 2.2        | Type of Emissions                        | 12      |
| 2.3        | Occupied Bandwidth                       |         |
| 2.4        | Spuious Emissions at Antenna Terminals   |         |
| 2.5<br>2.6 | Emission Mask                            |         |
| 2.0        | Frequency Stability                      |         |
| 2.8        | Modulation Characteristics               |         |
| 3          | TEST EQUIPMENT USED                      | 45      |
| 3.1        | Test Equipment Used                      | 46      |
| 3.2        | Measurement Uncertainty                  |         |
| 4          | ACCREDITATION, DISCLAIMERS AND COPYRIGHT | 49      |
| 4.1        | Accreditation, Disclaimers and Copyright | 50      |



## **SECTION 1**

## **REPORT SUMMARY**

FCC and Industry Canada Testing of the
ETELM SAS NetisB25
In accordance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119



#### 1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC and Industry Canada Testing of the ETELM SAS NetisB25 to the requirements of FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119.

Objective To perform FCC and Industry Canada Testing to determine

the Equipment Under Test's (EUT's) compliance with the

Test Specification, for the series of tests carried out.

Manufacturer **ETELM SAS** 

**NETIS B25** Model Number(s)

2000063 0361 Serial Number(s)

**Number of Samples Tested** 

Test Specification/Issue/Date FCC 47 CFR Part 90 (2014)

FCC 47 CFR Part 2 (2014)

Industry Canada RSS-119 (Issue 11, 2011)

Incoming Release Application Form Date 22 May 2015

Held Pending Disposal Disposal

Reference Number Not Applicable Date Not Applicable

Order Number 7807

Date 22 May 2015 Start of Test 22 June 2015

Finish of Test 25 June 2015

M Russell Name of Engineer(s)

T Guy

ANSI C63.4: 2009 Related Document(s)



## 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119 is shown below.

| Section  | Spe        | Specification Clause |         | Test Description                        | Result | Comments/Base Standard |
|----------|------------|----------------------|---------|-----------------------------------------|--------|------------------------|
| Section  | Part 90    | Part 2               | RSS-119 | Test Description                        | Result | Comments/base Standard |
| Transmit |            |                      |         |                                         |        |                        |
| 2.1      | 90.205 (k) | 2.1046               | 5.4     | Maximum Conducted Output Power          | Pass   |                        |
| 2.2      | 90.207     | -                    | -       | Type of Emissions                       | Pass   |                        |
| 2.3      | -          | 2.1049               | 5.5.8   | Occupied Bandwidth                      | Pass   |                        |
| 2.4      | 90.210 (g) | 2.1051               | 5.8.10  | Spurious Emissions at Antenna Terminals | Pass   |                        |
| 2.5      | 90.210 (g) | 2.1051               | 5.8.10  | Emission Mask                           | Pass   |                        |
| 2.6      | 90.213 (a) | 2.1055               | 5.3     | Frequency Stability                     | Pass   |                        |
| 2.7      | 90.221 (c) | -                    | -       | Adjacent Channel Power                  | Pass   |                        |
| 2.8      | -          | 2.1047 (d)           | -       | Modulation Characteristics              | Pass   |                        |



## 1.3 APPLICATION FORM

| POWER CHARACTERISTICS           |                 |                    |          |                        |              |             |     |             |     |
|---------------------------------|-----------------|--------------------|----------|------------------------|--------------|-------------|-----|-------------|-----|
| Maximum TX power                | 25              | W                  |          |                        |              |             |     |             |     |
| Minimum TX power                |                 | W (if varia        | able)    |                        |              |             |     |             |     |
| Is transmitter intended for :   |                 |                    |          |                        |              |             |     |             |     |
| Continuous duty                 |                 |                    |          |                        |              | $\boxtimes$ | Yes |             | No  |
| Intermittent duty               |                 |                    |          |                        |              |             | Yes | $\boxtimes$ | No  |
| If intermittent state DUTY CYC  | LE              |                    |          |                        |              |             |     |             |     |
| Transmitter ON                  |                 | seconds            |          |                        |              |             |     |             |     |
| Transmitter OFF                 |                 | seconds            |          |                        |              |             |     |             |     |
|                                 |                 |                    |          |                        |              |             |     |             |     |
|                                 |                 | ANTENNA CH         |          |                        | No Street    |             |     |             |     |
| Antenna connector               |                 |                    |          | State impedance        | 50           | Ohm         |     |             |     |
| ☐ Temporary antenna con         | nector          |                    |          | State impedance        |              | Ohm         |     |             |     |
| ☐ Integral antenna              | Туре            | •                  | 5        | State impedance        |              | dBi         |     |             |     |
| ☐ External antenna              | Туре            | •                  |          | State impedance        |              | dBi         |     |             |     |
|                                 | -               | MODULATION         | CHARA    | CTERISTICS             |              |             |     |             |     |
| ☐ Amplitude                     |                 | IIIODOLI IIIOI     |          | Frequency              |              |             |     |             |     |
| □ Phase                         |                 |                    |          | Other (please pro      | vide detail  | 6).         |     |             |     |
| Can the transmitter operate un  | modulated?      |                    |          | Other (picase pro      | ovide detail | -s).<br>□   | Yes |             | No  |
| Can the transmitter operate un  | -modulated?     |                    |          |                        |              |             | 103 |             | 110 |
|                                 |                 | CLASS OF E         | MISSIC   | N USED                 |              |             |     |             |     |
|                                 | -               | ITU designation of | or Class | of Emission:           |              |             |     |             |     |
|                                 | -               | 1                  |          |                        |              |             |     |             |     |
|                                 |                 | (if applicable) 2  |          |                        |              |             |     |             |     |
|                                 |                 | (if applicable) 3  |          |                        |              |             |     |             |     |
| If more than three classes of e | mission, list s | eparately:         |          |                        |              |             |     |             |     |
|                                 |                 |                    |          |                        |              |             |     |             |     |
|                                 |                 | BATTERY P          | OWER     | SUPPLY                 |              |             |     |             |     |
| Model name/number               |                 |                    | Ident    | tification/Part numb   | er           |             |     |             |     |
| Manufacturer                    |                 |                    | Cour     | ntry of Origin         |              |             |     |             |     |
|                                 |                 |                    |          |                        |              |             |     |             |     |
|                                 |                 | ANCILLARIE         |          |                        |              |             |     |             |     |
| Model name/number               |                 |                    | Ident    | tification/Part number | er           |             |     |             |     |
| Manufacturer                    |                 |                    | Cour     | ntry of Origin         |              |             |     |             |     |
|                                 |                 | EXTREME            | CONDI    | TIONS                  |              |             |     |             |     |
| Extreme test voltages (Max)     | 55.2            | V                  |          | eme test voltages (N   | Mix)         | 40.         | g V | <i>y</i>    |     |
|                                 |                 |                    |          |                        | ii.v)        |             |     |             |     |
| Nominal DC Voltage              | 48              | V                  |          | Maximum Current        |              | 15          |     | Α           |     |
| Maximum temperature             | 55              | °C                 | Minir    | num temperature        |              | -10         | ) ' | ,C          |     |



| EQUIPMENT DESCRIPTION                                                                           |  |                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Model Name/Number NetisB25                                                                      |  |                                                                                                                                   |  |  |  |
| Part Number 362                                                                                 |  |                                                                                                                                   |  |  |  |
| Hardware Version                                                                                |  |                                                                                                                                   |  |  |  |
| Software Version 9.05c                                                                          |  |                                                                                                                                   |  |  |  |
| FCC ID (if applicable)                                                                          |  | 0024845661                                                                                                                        |  |  |  |
| Industry Canada ID (if applicable)                                                              |  | 20543-BSTETRA800                                                                                                                  |  |  |  |
| Technical Description (Please provide a brief description of the intended use of the equipment) |  | Tetra Base Station which can work in stand-alone mode or which can be connected to others Base Station to create a Tetra Network. |  |  |  |

|             | PO                                               | WER SOURCE                      |
|-------------|--------------------------------------------------|---------------------------------|
|             | AC mains                                         | State voltage                   |
| AC su       | pply frequency (Hz)                              |                                 |
|             | VAC                                              |                                 |
|             | Max Current                                      |                                 |
|             | Hz                                               |                                 |
|             | Single phase                                     | ☐ Three phase                   |
| And /       | Or                                               |                                 |
| $\boxtimes$ | External DC supply                               |                                 |
|             | Nominal voltage                                  | 48 V Max Current 15 A           |
|             | Extreme upper voltage                            | 55.2 V                          |
|             | Extreme lower voltage                            | 40.8 V                          |
| Batter      | у                                                |                                 |
|             | Nickel Cadmium                                   | ☐ Lead acid (Vehicle regulated) |
|             | Alkaline                                         | Leclanche                       |
|             | Lithium                                          | Other Details:                  |
|             | Volts nominal.                                   |                                 |
| End p       | oint voltage as quoted by equipment manufacturer | V                               |

| FREQUENCY INFORMATION                   |            |        |              |                                |      |  |  |
|-----------------------------------------|------------|--------|--------------|--------------------------------|------|--|--|
| Frequency Range                         | 851 to 868 | 3.975  | MHz          | *                              |      |  |  |
| Channel Spacing (where applicable)      | 5          |        |              |                                |      |  |  |
| Receiver Frequency Range (if different) | 806 to 823 | .975   | MHz          |                                |      |  |  |
| Channel Spacing (if different)          |            |        |              |                                |      |  |  |
| Test Frequencies*                       | Bottom     | 851    | MHz          | Channel Number (if applicable) | 2040 |  |  |
|                                         | Middle     | 860    | MHz          | Channel Number (if applicable) | 2400 |  |  |
|                                         | Тор        | 868.97 | 5 MHz        | Channel Number (if applicable) | 2759 |  |  |
| Intermediate Frequencies                |            |        | 45 MHz       |                                |      |  |  |
| Highest Internally Generated Frequency  | cy:        |        | TX freq+45 I | MHz                            |      |  |  |

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Signature:

Name: VELTZ

Position held:

Tests Manager

Date:

22/05/15



#### 1.4 PRODUCT INFORMATION

## 1.4.1 Technical Description

The Equipment Under Test (EUT) was a ETELM SAS NetisB25. A full technical description can be found in the manufacturer's documentation.

#### 1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 48 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

Industry Canada Company Address Code IC2932B-1 Octagon House, Fareham Test Laboratory

#### 1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard were made during testing.

#### 1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.



## **SECTION 2**

## **TEST DETAILS**

FCC and Industry Canada Testing of the
ETELM SAS NetisB25
In accordance with FCC 47 CFR Part 90, FCC 47 CFR Part 2 and Industry Canada RSS-119



#### 2.1 MAXIMUM CONDUCTED OUTPUT POWER

## 2.1.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.205 (k) FCC 47 CFR Part 2, Clause 2.1046 Industry Canada RSS-119, Clause 5.4

## 2.1.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.1.3 Date of Test

22 June 2015

## 2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.1.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, clause 5.2.1.

#### 2.1.6 Environmental Conditions

Ambient Temperature 19.2°C Relative Humidity 61.5%



#### 2.1.7 Test Results

48 V DC Supply

#### Transmit, Maximum Conducted Output Power Results

| 851.00 | 00 MHz | 854.00 | 0 MHz | 860.00 | 0 MHz | 861.50 | 0 MHz | 868.97 | 5 MHz |
|--------|--------|--------|-------|--------|-------|--------|-------|--------|-------|
| dBm    | W      | dBm    | W     | dBm    | W     | dBm    | W     | dBm    | W     |
| 44.15  | 26.00  | 44.17  | 26.12 | 43.86  | 24.32 | 44.01  | 25.18 | 43.72  | 23.55 |

## FCC 47 CFR Part 90, Limit Clause 90.205

| Frequency (MHz)                                   | Limit                                                                   |
|---------------------------------------------------|-------------------------------------------------------------------------|
| < 25                                              | 1000 W                                                                  |
| 25 to 50                                          | 300 W                                                                   |
| 72 to 76                                          | 300 W                                                                   |
| 150 to 174                                        | Refer to 90.205 (d) of the specification                                |
| 217 to 220                                        | Refer to 90.259 of the specification                                    |
| 220 to 222                                        | Refer to 90.729 of the specification                                    |
| 421 to 430                                        | Refer to 90.279 of the specification                                    |
| 450 to 470                                        | Refer to 90.205 (h) of the specification                                |
| 470 to 512                                        | Refer to 90.307 and 90.309 of the specification                         |
| 758 to 775 and 788 to 805                         | Refer to 90.541 and 90.542 of the specification                         |
| 806 to 824, 851 to 869, 869 to 901 and 935 to 940 | Refer to 90.635 of the specification                                    |
| 902 to 927.25                                     | LMS systems operating pursuant to subpart M of the specification : 30 W |
| 927.25 to 928                                     | LMS equipment: 300 W                                                    |
| 929 to 930                                        | Refer to 90.494 of the specification                                    |
| 1427 to 1429.5 and 1429.5 to 1432                 | Refer to 90.259 of the specification                                    |
| 2450 to 2483.5                                    | 5 W                                                                     |
| 4940 to 4990                                      | Refer to 90.1215 of the specification                                   |
| 5850 to 5925                                      | Refer to subpart M of the specification                                 |
| All other frequency bands                         | On a case by case basis                                                 |

## Industry Canada RSS-119, Limit Clause 5.4

The output power shall be within ±1.0 dB of the manufacturer's rated power.

Typical transmitter output powers are 110 watts for base and/or fixed stations (paging transmitters excepted), and 30 watts for mobile stations. Higher powers may be certified, but it should be noted that mobile stations are normally only licensed up to 30 watts. See the SRSP relevant to the operating frequency for equipment power limits.



#### 2.2 TYPE OF EMISSIONS

## 2.2.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.207

## 2.2.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.2.3 Date of Test

23 June 2015

## 2.2.4 Test Equipment Used

No test equipment applicable for this test.

#### 2.2.5 Test Procedure

The class of emission has been chosen in accordance with FCC 47 CFR Part 90.207(a). A plot showing the bandwidth of the emission has been included for reference.

## 2.2.6 Environmental Conditions

Ambient Temperature 21.0°C Relative Humidity 49.9%



#### 2.2.7 Test Results

48 V DC Supply

## Transmit, Type of Emissions Result

The class of the emission has been declared as G1D.

#### Transmit, Type of Emissions Plot



## FCC 47 CFR Part 90, Limit Clause 90.207

The class of emission declared is authorised for use within the scope of specification.



#### 2.3 OCCUPIED BANDWIDTH

## 2.3.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1049 Industry Canada RSS-119, Clause 5.5.8

## 2.3.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

## 2.3.3 Date of Test

22 June 2015

## 2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, clause 4.2.

#### 2.3.6 Environmental Conditions

Ambient Temperature 21.9°C Relative Humidity 54.8%



#### 2.3.7 Test Results

48 V DC Supply

## Transmit, Occupied Bandwidth Results

| 851.000 MHz | 854.000 MHz | 860.000 MHz | 861.500 MHz | 868.975 MHz |
|-------------|-------------|-------------|-------------|-------------|
| kHz         | kHz         | kHz         | kHz         | kHz         |
| 21.39       | 21.23       | 21.31       | 21.39       | 20.91       |

## Transmit, 851.000 MHz, Occupied Bandwidth Plot



Date: 21.JUN.2015 20:42:18



## Transmit, 854.000 MHz, Occupied Bandwidth Plot



## Transmit, 860.000 MHz, Occupied Bandwidth Plot





## Transmit, 861.500 MHz, Occupied Bandwidth Plot



#### Date: 21.JUN.2015 23:13:10

## Transmit, 868.975 MHz, Occupied Bandwidth Plot





## **Remarks**

Equipment designed to operate with a 25 kHz channel bandwidth may be authorised up to a 22 kHz bandwidth if the equipment meets the adjacent channel power requirements of FCC 47 CFR Part, clause 90.221 and Industry Canada RSS-119, clasue 5.8.9.1.

## FCC 47 CFR Part 2, Limit Clause

None Specified.

## Industry Canada RSS-119, Limit Clause 5.5.8

| Frequency Band<br>(MHz)            | Related SRSP for<br>Channelling Plan and<br>e.r.p. | Channel<br>Spacing (kHz) | Authorised<br>Bandwidth<br>(kHz) | Spectrum<br>Masks with<br>Audio Filter | Spectrum<br>Masks Without<br>Audio Filter |
|------------------------------------|----------------------------------------------------|--------------------------|----------------------------------|----------------------------------------|-------------------------------------------|
| 27.41-28.0 and<br>29.7-50.0        | N/A                                                | 20                       | 20                               | В                                      | С                                         |
| 72-76                              | N/A                                                | 20                       | 20                               | В                                      | С                                         |
| 138-144; 148-<br>149.9 and 150.05- | SRSP-500                                           | 30                       | 20                               | В                                      | С                                         |
| 174                                |                                                    | 15                       | 11.25                            | D                                      | D                                         |
|                                    |                                                    | 7.5                      | 6                                | E                                      | E                                         |
| 217-218 and 219-<br>220            | N/A                                                | 12.5                     | 11.25                            | D or I                                 | D or J                                    |
| 220-222                            | SRSP-512                                           | 5                        | 4                                | F                                      | F                                         |
| 406.1-430 and                      | SRSP-501                                           | 25                       | 20                               | В                                      | C (G, Note 1)                             |
| 450-470                            |                                                    |                          | 22                               | Υ                                      | Υ                                         |
|                                    |                                                    | 12.5                     | 11.25                            | D                                      | D                                         |
|                                    |                                                    | 6.25                     | 6                                | E                                      | E                                         |
| 764-776 and 794-<br>806            | SRSP-511                                           | 6.25<br>12.5<br>25<br>50 | Note 2                           | Section 5.8.9                          | Section 5.8.9                             |
| 806-821-/851-866                   | SRSP-502                                           | 25                       | 20                               | В                                      | G                                         |
| and 821-824/866-<br>869            |                                                    |                          | 22                               | Υ                                      | Υ                                         |
| 009                                |                                                    | 12.5                     | 11.25                            | D                                      | D                                         |
| 896-901/935-940                    | SRSP-506                                           | 12.5                     | 13.6                             | 1                                      | J<br>(G, Note 3)                          |
| 929-930 and 931-<br>932            | SRSP-504 (for aging)                               | 25                       | 20                               | В                                      | G                                         |
| 928-929/952-953                    | SRSP-505                                           | 25                       | 20                               | В                                      | G                                         |
| and 932-<br>932.5/941-941.5        |                                                    | 12.5                     | 11.25                            | D                                      | D                                         |
| 932.5-935/941.5-                   | SRSP-507                                           | 25                       | 20                               | В                                      | G                                         |
| 944                                |                                                    | 12.5                     | 11.25                            | D                                      | D                                         |



#### 2.4 SPUIOUS EMISSIONS AT ANTENNA TERMINALS

#### 2.4.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.210 (g) FCC 47 CFR Part 2, Clause 2.1051 Industry Canada RSS-119, Clause 5.8.10

#### 2.4.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.4.3 Date of Test

22 June 2015 & 23 June 2015

#### 2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.5 Test Procedure

For emissions within 854 MHz to 869 MHz and within 250% from the centre of the authorized bandwidth, measurements were performed against FCC 47 CFR Part 90, clause 90.210, emission mask G. The EUT was connected to a spectrum analyser via a cable and attenuator. The spectrum emission mask measurement function of the spectrum analyser was used with the RBW configured to 100 Hz with RMS detector and trace averaging.

For emissions 851 MHz to 869 MHz within 50 kHz from the edge of the authorised bandwidth, measurements were performed against Industry Canada RSS-119, clauses 4.2.2 and 5.8.10.

For emissions greater than 250% of the centre of the authorised bandwidth, measurements were performed in accordance with KDB 971168 D01 v02r02. A 1.5 GHz high pass filter was used between 1.5 GHz and 3 GHz.

#### 2.4.6 Environmental Conditions

Ambient Temperature 19.9 - 22.8°C Relative Humidity 43.8 - 52.7%



#### 2.4.7 Test Results

48 V DC

#### Transmit, 851.000 MHz, Emission Mask Y, Spuious at Antenna Terminals Plot



#### Transmit, 851.000 MHz, 9 kHz to 1 GHz, Spuious at Antenna Terminals Plot





## Transmit, 851.000 MHz, 1 GHz to 1.5 GHz, Spuious at Antenna Terminals Plot



## Transmit, 851.000 MHz, 1.5 GHz to 3 GHz, Spuious at Antenna Terminals Plot





## Transmit, 851.000 MHz, 3 GHz to 9 GHz, Spuious at Antenna Terminals Plot



## Transmit, 854.000 MHz, Emission Mask G, Spuious at Antenna Terminals Plot





#### Transmit, 860.000 MHz, Emission Mask Y, Spuious at Antenna Terminals Plot



#### Transmit, 860.000 MHz, 9 kHz to 1 GHz, Spuious at Antenna Terminals Plot





## Transmit, 860.000 MHz, 1 GHz to 1.5 GHz, Spuious at Antenna Terminals Plot



## Transmit, 860.000 MHz, 1.5 GHz to 3 GHz, Spuious at Antenna Terminals Plot





## Transmit, 860.000 MHz, 3 GHz to 9 GHz, Spuious at Antenna Terminals Plot



#### Transmit, 861.500 MHz, Emission Mask G, Spuious at Antenna Terminals Plot





#### Transmit, 868.975 MHz, Emission Mask Y, Spuious at Antenna Terminals Plot



#### Transmit, 868.975 MHz, Emission Mask G, Spuious at Antenna Terminals Plot





## Transmit, 868.975 MHz, 9 kHz to 1 GHz, Spuious at Antenna Terminals Plot



## Transmit, 868.975 MHz, 1 GHz to 1.5 GHz, Spuious at Antenna Terminals Plot





## Transmit, 868.975 MHz, 1.5 GHz to 3 GHz, Spuious at Antenna Terminals Plot



## Transmit, 868.975 MHz, 3 GHz to 9 GHz, Spuious at Antenna Terminals Plot





#### Remarks

As specified in FCC document 12-114, TETRA equipment exceeds the Part 90 occupied bandwidth limits and emission masks: it operates with a bandwidth of up to 22 kilohertz, and excursions of up to five decibels from Part 90 emission masks B, C and G. In 2009, the TETRA Association requested waivers of the Part 90 occupied bandwidth limits and emission masks in order to permit implementation of TETRA technology in the United States.

#### FCC 47 CFR Part 90, Limit Clause 90.210(g)

For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but no more than 250 percent of the authorized bandwidth: At least 116 log (fd/6.1) dB, or  $50 + 10 \log (P) dB$  or 70 dB, whichever is the lesser attenuation;
- (2) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

## Industry Canada RSS-119, Limit Clause 5.8.10

| Emission Mask Y Displacement Frequency, fd (kHz) | Minimum Attenuation (dB)                                                             | Resolution Bandwidth (Hz)  |
|--------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|
| 12.375 < fd ≤ 13.975                             | whichever is the lesser attenuation:<br>30 + 16.67(fd–12.375) or 55 + 10<br>log10(p) | Specified in Section 4.2.2 |
| fd > 13.975                                      | whichever is the lesser attenuation:<br>57 or 55 + 10 log10(p)                       | Specified in Section 4.2.2 |



#### 2.5 EMISSION MASK

## 2.5.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.210 (g) FCC 47 CFR Part 2, Clause 2.1051 Industry Canada RSS-119, Clause 5.8.10

#### 2.5.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.5.3 Date of Test

25 June 2015

#### 2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.5.5 Test Procedure

Radiated; A preliminary profile of the Spurious Radiated Emissions was obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT, the list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

The EUT was set to transmit on maximum power with both channels operating simultaneously.

For any emissions found the EUT was then removed from the chamber and replaced with a substitution antenna. Using a signal generator the level was adjusted to achieve the same value on the measuring instrument as previously recorded with the EUT. The final result was determined by a calculation using the signal generator level, antenna gain and cable loss.

The measurements were performed at a 3m distance unless otherwise stated.

#### 2.5.6 Environmental Conditions

Ambient Temperature 21.1°C Relative Humidity 41.5%



#### 2.5.7 Test Results

48 V DC

## Transmit, 851.000 MHz, 30 MHz to 1 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:50:53

## Transmit, 851.000 MHz, 1 GHz to 8 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 14:41:38



## Transmit, 851.000 MHz, 8 GHz to 10 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:23:47

## Transmit, 860.000 MHz, 30 MHz to 1 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:54:50



## Transmit, 860.000 MHz, 1 GHz to 8 GHz Spurious Radiated Emissions Plot



Date: 25.JUN.2015 14:55:45

## Transmit, 860.000 MHz, 8 GHz to 10 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:20:47



## Transmit, 868.975 MHz, 30 MHz to 1 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:44:13

## Transmit, 868.975 MHz, 1 GHz to 8 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 14:46:24



## Transmit, 868.975 MHz, 8 GHz to 10 GHz, Spurious Radiated Emissions Plot



Date: 25.JUN.2015 15:28:41

#### Remarks

The EUT was transmitting into a 50ohm load for the duration of the test.

## FCC 47 CFR Part 90, Limit Clause 90.210(g)

For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but no more than 250 percent of the authorized bandwidth: At least 116 log (fd/6.1) dB, or  $50 + 10 \log (P) dB$  or 70 dB, whichever is the lesser attenuation;
- (2) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

## Industry Canada RSS-119, Limit Clause 5.8.10

| Emission Mask Y Displacement<br>Frequency, fd (kHz) | Minimum Attenuation (dB)                                                             | Resolution Bandwidth (Hz)  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------|
| 12.375 < fd ≤ 13.975                                | whichever is the lesser attenuation:<br>30 + 16.67(fd–12.375) or 55 + 10<br>log10(p) | Specified in Section 4.2.2 |
| fd > 13.975                                         | whichever is the lesser attenuation: 57 or 55 + 10 log10(p)                          | Specified in Section 4.2.2 |



#### 2.6 FREQUENCY STABILITY

#### 2.6.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.213 (a) FCC 47 CFR Part 2, Clause 2.1055 Industry Canada RSS-119, Clause 5.3

#### 2.6.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.6.3 Date of Test

23 June 2015, 24 June 2015 & 25 June 2015

#### 2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.5 Test Procedure

Measurements were performed in accordance with FCC 47 CFR Part 2, clause 2.1055.

#### Remarks

This test was performed with an unmodulated carrier with a +2.25 kHz frequency offset to that of the centre frequency of the channel. A GPS signal was supplied to the EUT as representative of normal operation. The EUT was connected via a cable and attenuator to a frequency counter and the frequency was recorded.

The test was performed on 1 channel in the range 851 MHz to 854 MHz and 1 channel in the range 854 MHz to 869 MHz as the limit requirements as stated in FCC 47 CFR Part 90.213 differ between these sub-bands.

#### 2.6.6 Environmental Conditions

Ambient Temperature 20.0 - 23.3°C Relative Humidity 44.8 - 60.2%



#### 2.6.7 Test Results

# <u>Transmit, 851.000 MHz, TETRA, pi/4 DQPSK, Frequency Tolerance Under Temperature Variations Results</u>

| Temperature Interval | Fundamental Frequency Deviation (ppm) |
|----------------------|---------------------------------------|
| -30 °C               | 0.032                                 |
| -20 °C               | 0.037                                 |
| -10 °C               | 0.026                                 |
| 0 °C                 | 0.070                                 |
| +10 °C               | 0.016                                 |
| +20 °C               | -0.040                                |
| +30 °C               | 0.045                                 |
| +40 °C               | 0.042                                 |
| +50 °C               | -0.053                                |

# <u>Transmit, 868.975 MHz, TETRA, pi/4 DQPSK, Frequency Tolerance Under Temperature Variations Results</u>

| Temperature Interval | Fundamental Frequency Deviation (ppm) |
|----------------------|---------------------------------------|
| -30 °C               | 0.037                                 |
| -20 °C               | 0.039                                 |
| -10 °C               | 0.021                                 |
| 0 ℃                  | 0.045                                 |
| +10 °C               | 0.024                                 |
| +20 °C               | 0.059                                 |
| +30 °C               | 0.028                                 |
| +40 °C               | 0.027                                 |
| +50 °C               | -0.031                                |

# <u>Transmit, 851.000 MHz, TETRA, pi/4 DQPSK, Frequency Tolerance Under Voltage Variations Results</u>

| Voltage   | Fundamental Frequency Deviation (ppm) |  |
|-----------|---------------------------------------|--|
| 48 V DC   | -0.040                                |  |
| 40.8 V DC | -0.039                                |  |
| 55.2 V DC | 0.060                                 |  |



# <u>Transmit, 860.000 MHz, TETRA, pi/4 DQPSK, Frequency Tolerance Under Voltage Variations</u> Results

| Voltage   | Fundamental Frequency Deviation (ppm) |
|-----------|---------------------------------------|
| 48 V DC   | 0.066                                 |
| 40.8 V DC | 0.031                                 |
| 55.2 V DC | 0.036                                 |

# <u>Transmit, 868.975 MHz, TETRA, pi/4 DQPSK, Frequency Tolerance Under Voltage Variations</u> Results

| Voltage   | Fundamental Frequency Deviation (ppm) |
|-----------|---------------------------------------|
| 48 V DC   | 0.059                                 |
| 40.8 V DC | 0.040                                 |
| 55.2 V DC | 0.056                                 |

### FCC 47 CFR Part 90, Limit Clause 90.213

In the frequency range 851 to 854 MHz, the frequency error shall not exceed 1.0 ppm.

In the frequency range 854 to 869 MHz, the frequency error shall not exceed 1.5 ppm.

# Industry Canada RSS-119, Limit Clause 5.3

The frequency error shall not exceed 1.5 ppm.



#### 2.7 ADJACENT CHANNEL POWER

### 2.7.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.221 (c)

### 2.7.2 Equipment Under Test and Modification State

NETIS B25 S/N: 2000063 0361 - Modification State 0

#### 2.7.3 Date of Test

22 June 2015

### 2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.7.5 Test Procedure

The EUT was configured to operate at maximum power with modulation as described in the manufacturer's documentation. The EUT was connected to a spectrum analyser using a cable and attenuator. The adjacent channel power measurement function of the spectrum analyser was used configured using the TETRA radio standard mode.

### 2.7.6 Environmental Conditions

Ambient Temperature 22.4°C Relative Humidity 42.8%



#### 2.7.7 Test Results

### Transmit, Adjacent Channel Power Results

Channel Separation: 25 kHz

| Tomporatura | Voltage | oltage Frequency<br>Offset (kHz) | 851.000 MHz | 854.000 MHz | 860.000 MHz | 861.500 MHz | 868.975 MHz |
|-------------|---------|----------------------------------|-------------|-------------|-------------|-------------|-------------|
| Temperature | voltage |                                  | dBc         | dBc         | dBc         | dBc         | dBc         |
| +22.4°C     | 48 V DC | +25                              | -56.1       | -58.1       | -58.8       | -59.6       | -59.4       |
|             |         | -25                              | -56.7       | -57.2       | -56.4       | -57.2       | -59.2       |
|             |         | +50                              | -70.0       | -70.4       | -70.3       | -70.3       | -71.2       |
|             |         | -50                              | -69.8       | -70.2       | -70.0       | -69.6       | -70.3       |
|             |         | +75                              | -81.7       | -81.0       | -80.3       | -80.6       | -82.1       |
|             |         | -75                              | -81.9       | -81.2       | -80.6       | -80.8       | -82.2       |

# Transmit, 851.000 MHz, Adjacent Channel Power Plot





# Transmit, 854.000 MHz, Adjacent Channel Power Plot



#### Transmit, 860.000 MHz, Adjacent Channel Power Plot





### Transmit, 861.500 MHz, Adjacent Channel Power Plot



### Transmit, 868.975 MHz, Adjacent Channel Power Plot





# FCC 47 CFR Part 90, Limit Clause 90.221 (b)(c)

Maximum adjacent power levels for frequencies in the 450-470 MHz band

| Frequency Offset | Maximum ACP (dBc) for devices 1 watt and less | Maximum ACP (dBc) for devices above 1 watt |
|------------------|-----------------------------------------------|--------------------------------------------|
| 25 kHz           | -55 dBc                                       | -60 dBc                                    |
| 50 kHz           | -70 dBc                                       | -70 dBc                                    |
| 75 kHz           | -70 dBc                                       | -70 dBc                                    |

Maximum adjacent power levels for frequencies in the 809–824/854–869 MHz band.

| Frequency Offset | Maximum ACP (dBc) for devices less than 15 watts | Maximum ACP (dBc) for devices 15 watts and above |
|------------------|--------------------------------------------------|--------------------------------------------------|
| 25 kHz           | -55 dBc                                          | -55 dBc                                          |
| 50 kHz           | -65 dBc                                          | -65 dBc                                          |
| 75 kHz           | -65 dBc                                          | -70 dBc                                          |

In any case, no requirement in excess of -36 dBm shall apply

On any frequency removed from the assigned frequency by more than 75 kHz, the attenuation of any emission must be at least 43 + 10 log ( $P_{watts}$ ) dB.



#### 2.8 MODULATION CHARACTERISTICS

# 2.8.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 (d)

# 2.8.2 Equipment Under Test

NETIS B25 S/N: 2000063 0361

#### 2.8.3 Test Results

48 V DC Supply

Transmit, Modulation Characteristics, Customer Description



# FCC 47 CFR Part 2, Limit Clause 2.1047 (d)

A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.



# **SECTION 3**

**TEST EQUIPMENT USED** 



### 3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

| Instrument                  | Manufacturer             | Type No.                       | TE No. | Calibration<br>Period<br>(months) | Calibration Due |
|-----------------------------|--------------------------|--------------------------------|--------|-----------------------------------|-----------------|
| Section 2.1 – Maximum Cor   |                          |                                |        |                                   |                 |
| Multimeter                  | Fluke                    | 75 Mk3                         | 455    | 12                                | 23-Jul-2015     |
| Power Supply Unit           | Farnell                  | H60-25                         | 1092   | -                                 | O/P Mon         |
| Spectrum Analyser           | Rohde & Schwarz          | FSU26                          | 2747   | 12                                | 20-Jan-2016     |
| Hygrometer                  | Rotronic                 | I-1000                         | 3220   | 12                                | 24-Jul-2015     |
| Attenuator (20dB, 150W)     | Narda                    | 769-20                         | 3367   | 12                                | 29-May-2016     |
| Network Analyser            | Rohde & Schwarz          | ZVA 40                         | 3548   | 12                                | 3-Sep-2015      |
| 'N' - 'N' RF Cable (1m)     | Rhophase                 | NPS-1803-1000-<br>NPS          | 3700   | 12                                | 24-Nov-2015     |
| DC - 8 GHz Attenuator       | Lucas Weinschel          | 24-30-33                       | 3963   | 12                                | 30-Jun-2015     |
| 1m N-Type Cable             | Rhophase                 |                                | 4233   | 12                                | 12-Mar-2016     |
| Calibration Unit            | Rohde & Schwarz          | ZV-Z54                         | 4368   | 12                                | 24-Sep-2015     |
| PXA Signal Analyser         | Agilent Technologies     | N9030A PXA                     | 4409   | 12                                | 16-Feb-2016     |
| Section 2.3 - Occupied Band | dwidth                   | •                              | •      | •                                 | •               |
| Multimeter                  | Fluke                    | 75 Mk3                         | 455    | 12                                | 23-Jul-2015     |
| Power Supply Unit           | Farnell                  | H60-25                         | 1092   | -                                 | O/P Mon         |
| Rubidium Standard           | Rohde & Schwarz          | XSRM                           | 1316   | 6                                 | 28-Jul-2015     |
| Spectrum Analyser           | Rohde & Schwarz          | FSU26                          | 2747   | 12                                | 20-Jan-2016     |
| Hygrometer                  | Rotronic                 | I-1000                         | 3220   | 12                                | 24-Jul-2015     |
| Attenuator (20dB, 150W)     | Narda                    | 769-20                         | 3367   | 12                                | 29-May-2016     |
| 'N' - 'N' RF Cable (1m)     | Rhophase                 | NPS-1803-1000-<br>NPS          | 3700   | 12                                | 24-Nov-2015     |
| DC - 8 GHz Attenuator       | Lucas Weinschel          | 24-30-33                       | 3963   | 12                                | 30-Jun-2015     |
| 1m N-Type Cable             | Rhophase                 |                                | 4233   | 12                                | 12-Mar-2016     |
| Frequency Standard          | Spectracom               | Secure Sync 1200-<br>0408-0601 | 4393   | 6                                 | 28-Jul-2015     |
| Section 2.4 - Spurious Emis | sions at Antenna Termina | ls                             | •      | •                                 |                 |
| Receiver                    | Schaffner                | SCR 3502                       | 277    | -                                 | TU              |
| Multimeter                  | Fluke                    | 75 Mk3                         | 455    | 12                                | 23-Jul-2015     |
| Power Supply Unit           | Farnell                  | H60-25                         | 1092   | -                                 | O/P Mon         |
| Rubidium Standard           | Rohde & Schwarz          | XSRM                           | 1316   | 6                                 | 28-Jul-2015     |
| Spectrum Analyser           | Rohde & Schwarz          | FSU26                          | 2747   | 12                                | 20-Jan-2016     |
| Attenuator (30dB/50W)       | Aeroflex / Weinschel     | 47-30-34                       | 3164   | 12                                | 12-Dec-2015     |
| Attenuator (10dB, 50W)      | Aeroflex / Weinschel     | 47-10-34                       | 3166   | 12                                | 16-Sep-2015     |
| Hygrometer                  | Rotronic                 | I-1000                         | 3220   | 12                                | 24-Jul-2015     |
| Attenuator (20dB, 150W)     | Narda                    | 769-20                         | 3367   | 12                                | 29-May-2016     |
| Network Analyser            | Rohde & Schwarz          | ZVA 40                         | 3548   | 12                                | 3-Sep-2015      |
| 'N' - 'N' RF Cable (1m)     | Rhophase                 | NPS-1803-1000-<br>NPS          | 3700   | 12                                | 24-Nov-2015     |
| DC - 8 GHz Attenuator       | Lucas Weinschel          | 24-30-33                       | 3963   | 12                                | 30-Jun-2015     |
| 1m N-Type Cable             | Rhophase                 |                                | 4233   | 12                                | 12-Mar-2016     |
| Calibration Unit            | Rohde & Schwarz          | ZV-Z54                         | 4368   | 12                                | 24-Sep-2015     |
| Frequency Standard          | Spectracom               | Secure Sync 1200-<br>0408-0601 | 4393   | 6                                 | 28-Jul-2015     |
| PXA Signal Analyser         | Agilent Technologies     | N9030A PXA                     | 4409   | 12                                | 16-Feb-2016     |



# **Product Service**

| Instrument                               | Manufacturer         | Type No.                       | TE No. | Calibration<br>Period<br>(months) | Calibration Due |
|------------------------------------------|----------------------|--------------------------------|--------|-----------------------------------|-----------------|
| Section 2.5 – Emission Mask              |                      | <b>.</b>                       |        |                                   |                 |
| Antenna (Double Ridge Guide, 1GHz-18GHz) | EMCO                 | 3115                           | 234    | 12                                | 29-Apr-2016     |
| Antenna (Double Ridge Guide, 1GHz-18GHz) | EMCO                 | 3115                           | 235    | 22                                | 28-Nov-2015     |
| Antenna (Bilog)                          | Schaffner            | CBL6143                        | 287    | 24                                | 3-Feb-2016      |
| Dual Power Supply Unit                   | Thurlby              | PL320                          | 288    | -                                 | TU              |
| Signal Generator (10MHz to 40GHz)        | Rohde & Schwarz      | SMR40                          | 1002   | 12                                | 19-Sep-2015     |
| Pre-Amplifier                            | Phase One            | PS04-0086                      | 1533   | 12                                | 23-Dec-2015     |
| Screened Room (5)                        | Rainford             | Rainford                       | 1545   | 24                                | 26-Jun-2015     |
| Turntable Controller                     | Inn-Co GmbH          | CO 1000                        | 1606   | -                                 | TU              |
| Filter                                   | Daden Anthony Ass    | MH-1500-7SS                    | 2778   | 12                                | 5-Feb-2016      |
| EMI Test Receiver                        | Rohde & Schwarz      | ESU40                          | 3506   | 12                                | 27-Oct-2015     |
| Tilt Antenna Mast                        | maturo Gmbh          | TAM 4.0-P                      | 3916   | -                                 | TU              |
| Mast Controller                          | maturo Gmbh          | NCD                            | 3917   | -                                 | TU              |
| Section 2.6 - Frequency Stabil           | ity                  |                                |        | •                                 | •               |
| Counter                                  | Hewlett Packard      | 53181A                         | 159    | 12                                | 27-May-2016     |
| Multimeter                               | Fluke                | 75 Mk3                         | 455    | 12                                | 23-Jul-2015     |
| Temperature Chamber                      | Montford             | 2F3                            | 467    | -                                 | O/P Mon         |
| Power Supply Unit                        | Farnell              | H60-25                         | 1092   | -                                 | O/P Mon         |
| Climatic Chamber                         | Climatec             | Climatec 1                     | 2124   | 12                                | 18-Nov-2015     |
| Digital Thermometer                      | Digitron             | T208                           | 2831   | 12                                | 31-Jul-2015     |
| Attenuator (10dB, 50W)                   | Aeroflex / Weinschel | 47-10-34                       | 3166   | 12                                | 16-Sep-2015     |
| Attenuator (20dB, 150W)                  | Narda                | 769-20                         | 3367   | 12                                | 29-May-2016     |
| 'N' - 'N' RF Cable (1m)                  | Rhophase             | NPS-1803-1000-<br>NPS          | 3700   | 12                                | 24-Nov-2015     |
| 1m N-Type Cable                          | Rhophase             |                                | 4233   | 12                                | 12-Mar-2016     |
| Section 2.7 - Adjacent Channe            | el Power             |                                |        |                                   |                 |
| Multimeter                               | Fluke                | 75 Mk3                         | 455    | 12                                | 23-Jul-2015     |
| Power Supply Unit                        | Farnell              | H60-25                         | 1092   | -                                 | O/P Mon         |
| Rubidium Standard                        | Rohde & Schwarz      | XSRM                           | 1316   | 6                                 | 28-Jul-2015     |
| Hygrometer                               | Rotronic             | I-1000                         | 3220   | 12                                | 24-Jul-2015     |
| Attenuator (20dB, 150W)                  | Narda                | 769-20                         | 3367   | 12                                | 29-May-2016     |
| Network Analyser                         | Rohde & Schwarz      | ZVA 40                         | 3548   | 12                                | 3-Sep-2015      |
| 'N' - 'N' RF Cable (1m)                  | Rhophase             | NPS-1803-1000-<br>NPS          | 3700   | 12                                | 24-Nov-2015     |
| DC - 8 GHz Attenuator                    | Lucas Weinschel      | 24-30-33                       | 3963   | 12                                | 30-Jun-2015     |
| 1m N-Type Cable                          | Rhophase             |                                | 4233   | 12                                | 12-Mar-2016     |
| Calibration Unit                         | Rohde & Schwarz      | ZV-Z54                         | 4368   | 12                                | 24-Sep-2015     |
| Frequency Standard                       | Spectracom           | Secure Sync 1200-<br>0408-0601 | 4393   | 6                                 | 28-Jul-2015     |
| PXA Signal Analyser                      | Agilent Technologies | N9030A PXA                     | 4409   | 12                                | 16-Feb-2016     |

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment



# 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

| Test Discipline                        | MU          |
|----------------------------------------|-------------|
| Spuious Emissions at Antenna Terminals | ± 3.454 dB  |
| Maximum Conducted Output Power         | ± 0.70 dB   |
| Adjacent Channel Power                 | ± 3.0 dB    |
| Type of Emissions                      | -           |
| Occupied Bandwidth                     | ± 16.74 kHz |
| Emission Mask                          | ± 3.08 dB   |
| Frequency Stability                    | ± 46.70 Hz  |
| Modulation Characteristics             | -           |



# **SECTION 4**

ACCREDITATION, DISCLAIMERS AND COPYRIGHT



### 4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT



This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2015 TÜV SÜD Product Service