REGRESSION

Data Preparation Tasks

Import necessary libraries:

Import pandas, numpy, and scikit-learn libraries.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

Load a dataset:

Load a dataset (e.g., Boston Housing dataset) into a pandas DataFrame.

<pre>In [4]: df=pd.read_csv("HousingData.csv") df</pre>

t[4]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN
				***								***		
	501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	NaN
	502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08
	503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64
	504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48
	505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.88

506 rows × 14 columns

Inspect the dataset:

Display the first few rows and summary statistics of the dataset.

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

Column	Non-Null Count	Dtype
CRIM	486 non-null	float64
ZN	486 non-null	float64
INDUS	486 non-null	float64
CHAS	486 non-null	float64
NOX	506 non-null	float64
RM	506 non-null	float64
AGE	486 non-null	float64
DIS	506 non-null	float64
RAD	506 non-null	int64
TAX	506 non-null	int64
PTRATIO	506 non-null	float64
В	506 non-null	float64
LSTAT	486 non-null	float64
MEDV	506 non-null	float64
	CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	CRIM 486 non-null INDUS 486 non-null INDUS 486 non-null CHAS 486 non-null NOX 506 non-null RM 506 non-null AGE 486 non-null DIS 506 non-null RAD 506 non-null TAX 506 non-null PTRATIO 506 non-null B 506 non-null B 506 non-null LSTAT 486 non-null

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

In [6]: df.describe()

Out[6]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
	count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000

	count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000	506.000
	mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519	3.79
	std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513	2.10!
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129
	25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000	2.100
	50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000	3.207
	75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000	5.188
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126

In [7]: df.head()

Out[7]: CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT I **0** 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 296 15.3 396.90 4.98 1 **1** 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 **2** 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 **3** 0.03237 0.0 0.0 0.458 6.998 222 18.7 394.63 2.94 2.18 45.8 6.0622

4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 NaN

```
Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
                 'PTRATIO', 'B', 'LSTAT', 'MEDV'],
                dtype='object')
          df.count() # number of rows
In [60]:
         CRIM
Out[60]:
         ZN
                     506
         INDUS
                     506
         CHAS
                     506
         NOX
                     506
         RM
                     506
         AGE
                     506
         DIS
                     506
         RAD
                     506
         TAX
                     506
         PTRATIO
                     506
                     506
         LSTAT
                     506
         MEDV
                     506
         dtype: int64
 In [9]:
          df.shape
          (506, 14)
Out[9]:
```

Check for missing values:

Check and handle any missing values in the dataset.

```
In [40]:
          df.isnull().sum()
         CRIM
                     0
Out[40]:
                     0
         INDUS
                     0
                     0
         CHAS
         NOX
                     0
         RM
                     0
         AGE
         DIS
                     0
         RAD
                     0
         TAX
         PTRATIO
                     0
                     0
         В
         LSTAT
                     0
         MEDV
                     0
         dtype: int64
          print("Infinite values in each feature:\n", np.isinf(x).sum())
In [41]:
```

```
Infinite values in each feature:
          CRIM
                     0
         ZN
         INDUS
                    0
                    0
         CHAS
         NOX
         RM
                    a
         AGE
         DIS
         RAD
         TAX
         PTRATIO
                    0
         LSTAT
                    0
         dtype: int64
In [42]: df.fillna(df.mean(), inplace=True) #handiling missing values
In [57]: print(f'Any NaN values? {df.isna().values.any()}')
         Any NaN values? False
         print(f'Any duplicates? {df.duplicated().values.any()}')
In [58]:
         Any duplicates? False
```

Feature selection:

Select relevant features for the regression model.

```
In [43]: from sklearn.feature_selection import RFE, RFECV
In [44]:
         from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import StandardScaler
In [49]:
In [63]: # Define the features and target variable
         X = df.drop('MEDV', axis=1) # Features
         y = df['MEDV'] # Target
In [72]: # Normalize the data
         scaler = StandardScaler()
         scaled_x = scaler.fit_transform(X)
In [73]: model = LinearRegression()
         rfe = RFE(model, n_features_to_select=5)
         rfe = rfe.fit(X, y)
In [74]:
         # Get the ranking of the features
         print('Ranking of features:', rfe.ranking_)
         Ranking of features: [5 6 3 1 1 1 8 1 4 7 1 9 2]
```

Split the data:

Split the data into training and testing sets.

Model Training and Evaluation Tasks

Train a Linear Regression model:

Train a simple linear regression model on the training data.

```
In [76]: lr = LinearRegression()
lr.fit(x_train, y_train)
Out[76]: LinearRegression()
```

Make predictions:

Make predictions on the testing data.

```
In [77]: y_pred = lr.predict(x_test)
In [78]: y_pred
```

```
array([28.94684244, 37.080947 , 15.16334344, 25.59977001, 18.52050399,
       22.92953198, 17.99840423, 14.43800382, 22.06639946, 20.81944231,
       25.11881906, 18.72123522, -6.3071011 , 21.86734043, 19.02489041,
       25.40599155, 19.37239698, 5.95086419, 40.85794132, 17.18432226,
       24.93251127, 30.36869589, 11.39935905, 22.76748541, 17.50857422,
       15.11943012, 21.39728476, 14.47830797, 23.13536511, 19.56542429,
       22.18119889, 25.26140438, 25.38274556, 17.33845553, 16.24266113,
       17.25502918, 30.91188566, 20.39390975, 24.67921133, 22.85756708,
       14.52166278, 31.79401526, 42.81650058, 17.99338659, 27.3605525,
       16.56320925, 13.95314318, 26.53462251, 19.75194991, 30.2586963 ,
                  , 33.48015966, 15.97922002, 26.27389748, 39.58817583,
       22.50675409, 18.73574376, 33.02789505, 25.25340181, 13.16505164,
       22.85496664, 31.01835795, 31.53871931, 16.756762 , 21.22003054,
       17.10830699, 19.99132099, 26.38841982, 31.29685552, 11.7231931,
       20.97258967, 26.63335287, 10.95888213, 13.4158528, 23.97236272,
        5.66817291, 21.45418183, 41.56712305, 18.17594507, 9.48043905,
       21.41371834, 12.83886454, 21.86984499, 9.17605135, 22.77784869,
       32.52178098, 19.08870649, 25.76101077, 29.03718152, 19.79942549,
       25.99768914, 5.55973693, 19.67592421, 15.58843642, 12.05864065,
       20.27908381, 23.71715385, -0.33118013, 13.574537 , 15.58002707,
       22.63744043, 24.63223041, 10.44203817, 19.7020956 , 23.19945908,
       12.54800472, 18.49880298, 25.97268923, 21.20986934, 24.74534596,
        7.87558719, 20.25419972, 22.14202929, 27.49138377, 32.02443374,
       14.76313946, 34.77670429, 13.04840788, 21.34756531, 28.27990076,
       15.36800974, 25.1865523 , 3.35128356, 23.72015504, 26.26550372,
       23.10384338, 25.43047681, 33.18312767, 21.64835442, 38.47259389,
       14.41283553, 26.16157834, 17.60366271, 20.79190337, 10.45939827,
       20.49798709, 22.67008757, 31.99471793, 31.79670093, 15.52452541,
       17.02050129, 29.09484276, 25.06877192, 17.53901345, 6.54114984,
       25.94712745, 23.79112755, 20.48659363, 13.59421774, 40.22597747,
       16.39307918, 17.86909777])
```

Evaluate the model:

Calculate the Mean Absolute Error (MAE) of the model.

```
In [79]: from sklearn.metrics import mean_absolute_error, r2_score
In [85]: mae = mean_absolute_error(y_test, y_pred)
In [86]: mae
Out[86]: 3.1410525671083374
```

Calculate R-squared:

Calculate the R-squared value to assess model performance.

Plot actual vs predicted values:

Create a scatter plot of actual vs predicted values.

'k--': This is a string that specifies the style of the line:

'k' indicates the color of the line (black in this case). '--' indicates that the line should be dashed.

[y_test.min(), y_test.max()]: This specifies the x-coordinates of the points that define the line.

y_test.min() gets the minimum value from the actual target values (the ground truth).

y_test.max() gets the maximum value from the actual target values. This means the line will start from the minimum actual value and extend to the maximum actual value

```
In [87]: plt.figure(figsize=(8, 6))
   plt.scatter(y_test, y_pred, alpha=0.5)
   plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
   plt.xlabel('Actual')
   plt.ylabel('Predicted')
   plt.title('Actual vs Predicted')
   plt.show() # Lw=2 for thickness
```

Actual vs Predicted

Advanced Regression Techniques Tasks

Polynomial Regression:

Train a polynomial regression model.

Evaluate Polynomial Regression:

Calculate the MAE and R-squared for the polynomial regression model.

In [89]:

from sklearn.preprocessing import PolynomialFeatures

PolynomialFeatures(degree=2) creates new features by taking the original features and raising them to powers up to the specified degree (2 in this case)

```
poly= PolynomialFeatures(degree= 2)
x_train_poly= poly.fit_transform(x_train)
x_test_poly= poly.transform(x_test)
```

```
In [130... poly_model = LinearRegression()
    poly_model.fit(x_train_poly, y_train)

Out[130]: LinearRegression()

In [131... y_pred_ploy = poly_model.predict(x_test_poly)
```

Evaluate Polynomial Regression

Ridge Regression:

Train a ridge regression model.

Evaluate Ridge Regression:

Calculate the MAE and R-squared for the ridge regression model.

```
In [99]: from sklearn.linear_model import Ridge
```

Ridge Regression (Ridge(alpha=1.0)): Adds L2 regularization, which penalizes large coefficients but does not shrink them to zero, making it useful when all features are expected to contribute to the prediction

```
In [101... ridge_model = Ridge(alpha=1.0)
    ridge_model.fit(x_train, y_train)

Out[101]:

Ridge()

In [102... ridge_y_pred = ridge_model.predict(x_test)

In [103... ridge_mae = mean_absolute_error(y_test, ridge_y_pred)
    ridge_r2 = r2_score(y_test, ridge_y_pred)

In [104... print(ridge_r2)
    0.7005989750756149
```

```
In [112... print(ridge_mae)
```

3.158193755884402

Lasso Regression:

Train a lasso regression model.

Evaluate lasso Regression:

Calculate the MAE and R-squared for the lasso regression model.

In [105...

from sklearn.linear_model import Lasso

Lasso Regression (Lasso(alpha=0.1)): Adds L1 regularization to the model, which can shrink some coefficients to zero, making it useful for feature selection.

```
In [106...
           lasso_model = Lasso(alpha=0.1)
           lasso_model.fit(x_train, y_train)
           Lasso(alpha=0.1)
Out[106]:
In [107...
           lasso_y_pred = lasso_model.predict(x_test)
In [109...
           lasso_mae = mean_absolute_error(y_test, lasso_y_pred)
           lasso_r2 = r2_score(y_test, lasso_y_pred)
In [110...
           print(lasso_mae)
           3.224332395349057
In [111...
           print(lasso_r2)
           0.6914578902133115
```

ElasticNet Regression:

Train an ElasticNet regression model.

Evaluate ElasticNet Regression:

Calculate the MAE and R-squared for the ElasticNet regression model.

```
In [115... from sklearn.linear_model import ElasticNet
```

```
elastic_model = ElasticNet(alpha=0.5, l1_ratio=0.5)
In [116...
          elastic_model.fit(x_train, y_train)
          elastic_y_pred = elastic_model.predict(x_test)
          elastic_mae = mean_absolute_error(y_test, elastic_y_pred)
          elastic_r2 = r2_score(y_test, elastic_y_pred)
          print(f'ElasticNet Regression: MAE = {elastic_mae:.2f}, R-squared = {elastic_r2:.2f}
          ElasticNet Regression: MAE = 3.44, R-squared = 0.68
          Compare all models:
          Compare the performance of all regression models and visualize the results.
In [139...
          results = {
              'Model': ['Polynomial Regression', 'Ridge Regression', 'Lasso Regression', 'Ela
              'MAE': [poly_mae, ridge_mae, lasso_mae, elastic_mae],
              'R-squared': [poly_r2, ridge_r2, lasso_r2, elastic_r2]
          results_df = pd.DataFrame(results)
In [140...
          print(results_df)
                             Model
                                         MAE R-squared
          0 Polynomial Regression 3.231257 0.537401
                  Ridge Regression 3.158194
                                              0.700599
                  Lasso Regression 3.224332 0.691458
          3 ElasticNet Regression 3.440487 0.683913
          # Visualize the results
In [141...
          fig, ax = plt.subplots(figsize=(10, 6))
          ax.scatter(y_test, y_pred_ploy, label='Polynomial Regression', alpha=0.5)
          ax.scatter(y_test, ridge_y_pred, label='Ridge Regression', alpha=0.5)
          ax.scatter(y_test, lasso_y_pred, label='Lasso Regression', alpha=0.5)
          ax.scatter(y test, elastic y pred, label='ElasticNet Regression', alpha=0.5)
```

```
In [141... # Visualize the results
fig, ax = plt.subplots(figsize=(10, 6))

ax.scatter(y_test, y_pred_ploy, label='Polynomial Regression', alpha=0.5)
ax.scatter(y_test, ridge_y_pred, label='Ridge Regression', alpha=0.5)
ax.scatter(y_test, lasso_y_pred, label='Lasso Regression', alpha=0.5)
ax.scatter(y_test, elastic_y_pred, label='ElasticNet Regression', alpha=0.5)

# Add Labels and title
ax.set_xlabel('Actual Values')
ax.set_ylabel('Predicted Values')
ax.set_title('Comparison of Regression Models')
ax.legend()

# Display the plot
plt.show()
```


Actual Values

Advanced Regression Techniques

Train a Decision Tree Regressor:

Train a decision tree regressor on the training data.

```
In [142... from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import mean_squared_error, r2_score

In [143... dt_regressor = DecisionTreeRegressor()
    dt_regressor.fit(x_train, y_train)

Out[143]: DecisionTreeRegressor()
```

Evaluate the performance using MSE and R-squared.

Train a Random Forest Regressor:

Train a random forest regressor on the training data.

Evaluate the performance using MSE and R-squared.

Train a Gradient Boosting Regressor:

Train a gradient boosting regressor on the training data.

```
In [155... from sklearn.ensemble import GradientBoostingRegressor
In [157... gb_regressor = GradientBoostingRegressor()
    gb_regressor.fit(x_train, y_train)
Out[157]: GradientBoostingRegressor()
In [158... y_pred_gb = gb_regressor.predict(x_test)
```

Evaluate the performance using MSE and R-squared

```
In [159... gb_mse = mean_squared_error(y_test, y_pred_gb)
    gb_r2 = r2_score(y_test, y_pred_gb)

In [160... print(gb_mse)
    print(gb_r2)
```

Model Tuning and Optimization:::

Hyperparameter Tuning for Ridge Regression:

Perform hyperparameter tuning for the alpha parameter of the ridge regression model using cross-validation.

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV

param_grid = {'alpha': [0.1, 1, 10, 100]}
ridge_regressor = Ridge()
grid_search = GridSearchCV(ridge_regressor, param_grid, cv=5)
grid_search.fit(x_train, y_train)

print(f'Best Alpha: {grid_search.best_params_["alpha"]}')
print(f'Best Score: {grid_search.best_score_}')

Best Alpha: 0.1
```

Hyperparameter Tuning for Lasso Regression:

Best Score: 0.6766815039525739

Perform hyperparameter tuning for the alpha parameter of the lasso regression

```
In [166... from sklearn.linear_model import Lasso
    from sklearn.model_selection import GridSearchCV

In [170... param_grid= {'alpha': [0.1, 1, 10,100] }
    lasso_regressor= Lasso()
    grid_search= GridSearchCV(lasso_regressor,param_grid, cv=5)
    grid_search.fit(x_train, y_train)
```

```
print(f'BEST ALPHA: {grid_search.best_params_["alpha"]}')
print(f'BEST SCORE: {grid_search.best_score_}')

BEST ALPHA: 0.1
BEST SCORE: 0.6684514748259278
```

Hyperparameter Tuning for Random Forest:

Perform hyperparameter tuning for the number of estimators and max depth of the random forest regressor using cross-validation

```
In [171...
          from sklearn.ensemble import RandomForestRegressor
          from sklearn.model selection import GridSearchCV
          # Assume X_train, y_train are your training data
          param_grid = {
               'n_estimators': [100, 200, 300],
               'max_depth': [5, 10, 15]
          rf_regressor = RandomForestRegressor()
          grid_search = GridSearchCV(rf_regressor, param_grid, cv=5)
          grid_search.fit(x_train, y_train)
          print(f'Best n_estimators: {grid_search.best_params_["n_estimators"]}')
          print(f'Best max_depth: {grid_search.best_params_["max_depth"]}')
          print(f'Best Score: {grid_search.best_score_}')
          Best n_estimators: 100
          Best max_depth: 15
          Best Score: 0.7941907158853029
```

Hyperparameter Tuning for Gradient Boosting:

Perform hyperparameter tuning for the learning rate and number of estimators of the gradient boosting regressor using cross-validation.

```
In [175... from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV

param_grid = {
    'learning_rate': [0.1, 0.01, 0.001],
    'n_estimators': [100, 200, 300]
}
gb_regressor = GradientBoostingRegressor()
```