Anno scolastico:	IIS I.Calvino	Classe:
2024/25	Genova	4AEA
Data: 13/11/2024	SISTEMI	

Gruppo: Alessio Sacco e Emanuele Carlini

Sovrapposizione degli effetti

Richieste

1) Simulare il funzionamento di un circuito in cui sono presenti due generatori, uno di tensione ed uno di corrente.

La rete è costituita da 2 maglie. Quella di sinistra vede la presenza del generatore di tensione Vg = 1V ed una R= 1 Kohm in serie.

Il ramo centrale è occupato da una R= 1 Kohm

Il ramo di destra dal generatore di corrente Ig= 1A con in serie una R = 1Kohm Frecce dei generatori verso l'alto.

Trovare TUTTE le misure di tutte le correnti e tensioni.

RIEPILOGARE in un circuito complessivo che riporti tutti i valori trovati COMPRESI i potenziali nei vari morsetti.

2) usare il principio di sovrapposizione degli effetti sulla carta e in simulazione per confermare in teoria il dato sperimentale trovato.

Riportare in una relazione

- 1) i due sottocircuiti con relativa simulazione
- 2) il circuito complessivo con relativi risultati di simulazione
- 3) un commento su tutte le tensioni e correnti trovate nei vari rami e morsetti se coerenti o no con le leggi dell'elettrotecnica che conoscete.

Schema del circuito

1.1 - Circuito complessivo con Multisim:

2.2 - circuito considerando Ig:

Materiale utilizzato

Per questa esperienza è stato utilizzato il simulatore Multisim.

Tabelle, diagrammi e calcoli								
Circuito complessivo:								
Vr2		Vr3	Ig		I1			
1000 V		500 V	1 A		500 mA			
Circuito considerando Vg:								
0 mV		500 mV		500uA				
Circuito considerando Ig:								
Vr2		Vr3		3	I1			
500 V		500 V	1 A		500mA			
	vo: Vr2 1000 V ndo Vg: / ndo lg: Vr2	vo: Vr2 1000 V ndo Vg: / ndo lg: Vr2	vo:	ivo: Vr2 Vr3 Ig 1000 V 500 V 1 ndo Vg: Vreq Vreq Vrodo Ig: Vr2 Vr3 Ig	ivo: Vr2 Vr3 Ig 1000 V 500 V 1 A Indo Vg: Vreq Vreq Vr2 Vr3 Ig			

Procedimento

in questa esperienza, abbiamo voluto verificare il funzionamento del metodo della sovrapposizione degli effetti.

Per fare ciò, andiamo a cercare i valori delle tensioni ai capi delle resistenze considerando un generatore alla volta, andando, infine, a calcolare le tensioni finali sommando quelle intermedie

Consideriamo per primo il generatore Vg passivando il generatore di corrente staccandola dal circuito. Come possiamo notare, R2 risulta appesa, proprio per questo motivo il primo contributo è uguale a 0V.

Per calcolare le tensioni ai capi delle altre resistenze basta solamente applicare il partitore di tensione, con cui troviamo che VR1=VR3=0,5V.

Consideriamo, poi, il generatore di corrente, passivando il generatore Vg ponendolo in cortocircuito.

per calcolare la tensione ai capi di R2 basta applicare la legge di Ohm, con cui troviamo che VR2=1000V.

per trovare le altre due tensioni basta calcolare il parallelo delle resistenze R1//R3 moltiplicando, poi, tale valore per la corrente. Troviamo infine che le tensioni VR1=VR3=500V

A questo punto bisogna solamente calcolare le tensioni generali sommando in maniera opportuna le differenze di potenziale intermedie.

Troviamo, dunque, che VR1=499,5v, VR2=1000v e VR3=500,5v

Osservazioni e conclusioni

Grazie a questa esperienza abbiamo quindi verificato il funzionamento del metodo della sovrapposizione degli effetti, il quale ci permette di trovare i valori totali con dei valori parziali considerando un generatore alla volta, passivando gli altri.

Il tutto è stato possibile verificarlo grazie all'ausilio del simulatore Multisim.

Correzione				
Data	Voto			
Giudizio				
Prof:				