SMART INDIA HACKATHON 2025

- Problem Statement ID 25213
- Problem Statement Title Integrated
 Wearable for Vitals, Gas, and Fatigue
- Theme Disaster Management
- PS Category Hardware
- Team ID 109956
- Team Name Bit Masters

IDEA TITLE

PROBLEM

Responder Fatigue in Harsh Conditions – Long hours in toxic, humid, and high-stress rescue environments lead to exhaustion and unnoticed health risks.

Toxic Gas Exposure in Disaster Sites – CO, NO₂, NH₃, VOCs silently affect responders during chemical leaks or industrial fires.

No Real-time
Communication of Risk –
Commanders don't know
which officer is in danger
until collapse happens.

High Cost & Foreign
Dependence - Current
imported devices are
expensive, rely on
subscriptions, and are not
scalable for deployment
across all NDRF teams.

EXISTING SOLUTION

Manual observation &
fitness bands – supervisors
rely on visual checks;
consumer wearables (Fitbit,
Apple Watch) are not
reliable in extreme
conditions.

Imported gas detectors Blackline, Honeywell
devices exist but are
bulky, expensive, and not
for long-term wear.

Handheld tools &
fragmented systems – data
is scattered, no centralized
live sync with command
centers.

Standalone Solutions Gas detectors and medical
wearables work well
individually, but they are
fragmented, costly, and
miss fatigue monitoring.

PROPOSED SOLUTION

Field-grade monitoring – ECG, SpO₂, HR, respiratory rate with fatigue prediction, tuned for disaster environments (not clinical diagnosis, but early warning system).

Wearable multi-gas band compact, affordable, continuously tracks gases, sends instant alerts if unsafe levels detected.

Live sync to command centers - Bluetooth transmit responder data in real-time to supervisors for quick decisions.

Our rugged integrated band combines only the essential vitals, gas, and fatigue monitoring — reducing cost, simplifying logistics, and purpose-built for NDRF conditions.

Prototype Model

https://drive.google.com/file/d/1MxexH Jt1Noi0WxuXKwY5npctULWiS7n/view

Prototype Demo – ESP32 BLE Receiving SpO₂ & Heart Rate (One of the Core Modules of Our Wearable)

https://drive.google.com/file/d/1D58ORLB-m4Ygys0rsSo6V0CdJlTr s8T/view

<u>JITr</u>

TECHNICAL APPROACH

Methodology

Data Acquisition

Sensors collect health, gas and environment

Local Alerts

Buzzer/vibration alerts if danger is detected.

Data Transmission

Data is transmitted to the mobile app via BLE.

Data Management

Encrypted data is stored in a timeseries database.

Post-Operation Analysis

Cloud ML for triage & log insights

Edge ML (TinyML on ESP32)

Fatigue prediction + anomaly detection in vitals & gas readings.

Offline Buffer Storage

Data is stored locally if no connectivity.

Mobile Sync to Cloud

Mobile app syncs data to the cloud server.

Visualization & Alerts

Mobile app and dashboard display data and alerts.

Prototype dashboard ready; extendable to mobile.

Hardware to be used

- MAX32664 BP, HR, SpO2, Respiratory Rate, Motion
- BME688 VOC, Temp, Humidity, Pressure
- MiCS-4514 Alcohol, NO₂, NH₃
- ZE07-CO CO (Electrochemical)
- O₂ Sensor (DFRobot I²C) Oxygen levels
- ESP32 Processing + Wi-Fi + Bluetooth
- Battery + BMS + Charger Power supply
- OLED Display + LEDs + Buzzer + Vibration Alerts & UI
- Rugged Strap/Enclosure Wearable form factor

FEASIBILITY AND VIABILITY

FEASIBILITY

Integratable with existing modules

- The MAX32664 hub, ESP32, and commercially available gas sensors (BME688, MiCS-4514, ZE07-CO, O₂ sensor) can communicate through I²C or UART, making a single-band integration technically achievable.

Supports continuous monitoring and wireless data flow - The ESP32 offers BLE/Wi-Fi with low-power operation, enabling real-time vitals and environmental data transfer without draining the battery excessively.

Prototype-ready and scalable - Offthe-shelf sensor modules allow quick prototyping and field validation, and the design can later evolve into a compact custom PCB and ruggedized enclosure for deployment.

VIABILITY

Aligned with NDRF operations – A

lightweight band that monitors gases and health vitals provides frontline responders with real-time situational awareness, directly supporting their mission in hazardous environments.

Improves command-center decisions – Aggregated data from multiple responders can be sent to a central dashboard, enabling better triage, rotation, and resource planning during rescue operations.

Future-proof design – The modular sensor setup and ESP32 base allow upgrades (e.g., LoRa, GSM, 9comms), ensuring longterm viability and adaptability across different missions and terrains.

Challenges

Gas and vital sensors may struggle with reliability under mixed or extreme conditions.

results.

Use motion data to refine and stabilize health readings.

Strategies

and recalibrate for stable

Combine multiple sensor inputs

Continuous monitoring and transmission drain power quickly.

Motion and stress can distort

physiological readings.

Optimize sampling, connectivity, and battery design for long use.

Harsh environments and device placement reduce effectiveness.

Build rugged, ergonomic enclosures and flexible sensor placement.

STANDALONE

GAS **MEDICAL DETECTOR WEARABLE**

Perform well individually, but costly and fragmented

INTEGRATED RUGGED BAND

Multiparameter vitals, gas, and fatigue monitoring

0

IMPACT AND BENEFITS

IMPACT

- NDRF Responders: Improved safety and reduced health risks during long disaster operations.
- O2 Command Center Officers: Real-time awareness of responder status, enabling quicker decisions and interventions.
- Medical Teams: Early detection of fatigue or toxic exposure → faster medical attention, fewer casualties.
- **Government & Nation:** Reduced dependency on costly foreign imports; a scalable, Swadeshi solution for disaster management.
- Maps hazard zones dynamically, aiding safe evacuation and planning.

BENEFITS

- Social: Protects frontline heroes, saves lives, boosts trust in technology for disaster response.
- Economic: Affordable "Make in India" solution under ₹20k, reducing dependence on costly imports and scalable nationwide.
- **Environmental:** Continuous monitoring of toxic gases reduces prolonged exposure; helps in mapping hazardous areas for safer rescue operations.
- Operational: Ensures mission continuity even in low-connectivity zones via local data storage and post-sync capabilities.
 - Enhances **public trust** through visible commitment to responder safety.

Applications:

The solution enhances NDRF operations by providing real-time health tracking, toxic gas detection, fall detection in floods, and remote team monitoring, ensuring safety and efficiency in disaster response.

RESEARCH AND REFERENCES

- MAX32664 Health Sensor Hub Maxim Integrated (Analog Devices) Documentation
- MAX32664 User Guide / Reference Design
- A Framework for Selecting and Assessing Wearable Sensors Deployed in Safety-Critical Scenarios
- Wearable Sensor-Based Fatigue Classification Under Diverse Thermal Conditions
- A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors
- Assessment of Fatigue Using Wearable Sensors: A Pilot Study
- Monitoring Inattention in Construction Workers ... Using ECG & GSR Sensors
- RespNet: Extracting Respiration from PPG using Deep Learning
- Wearable Respiration Monitoring: Interpretable Inference with Context and Sensor Biomarkers
- Energy-Efficient Real-Time Heart Monitoring on Edge-Fog-Cloud IoMT
- Wearable Gas Sensor Platforms for Environmental Monitoring and Encountered Challenges in Optimization