Package 'lfc'

April 19, 2023

Type Package
Title Log Fold Change Distribution Tools for Working with Ratios of Counts
Version 0.2.3
Author Florian Erhard
Maintainer Florian Erhard <florian.erhard@uni-wuerzburg.de></florian.erhard@uni-wuerzburg.de>
Description Ratios of count data such as obtained from RNA-seq are modelled using Bayesian statistics to derive posteriors for effects sizes. This approach is described in Erhard & Zimmer (2015) <doi:10.1093 gkv696="" nar=""> and Erhard (2018) <doi:10.1093 bioinformatics="" bty471="">.</doi:10.1093></doi:10.1093>
License Apache License (>= 2)
Encoding UTF-8
RoxygenNote 7.2.1
<pre>URL https://github.com/erhard-lab/lfc</pre>
<pre>BugReports https://github.com/erhard-lab/lfc/issues</pre>
Imports stats
Suggests knitr, rmarkdown, DESeq2, SummarizedExperiment
VignetteBuilder knitr
biocViews Bayesian, Transcriptomics, DifferentialExpression
NeedsCompilation no
Repository CRAN
Date/Publication 2023-04-19 18:10:02 UTC
R topics documented:
CenterMedian dlfc EmpiricalBayesPrior ltop

CenterMedian		Subtract the median of the given changes).	n vector (for normalizing log2 fold
Index			
	results		
	-		
	PsiLFC		
	NormLFC		

Description

Subtract the median of the given vector (for normalizing log2 fold changes).

Usage

CenterMedian(1)

Arguments

1 Vector of effect sizes

Value

A vector of length 2 containing the two parameters

See Also

PsiLFC

Examples

CenterMedian(rnorm(1000,200))

dlfc 3

dlfc

The log2 fold change distribution

Description

Density, distribution function, quantile function and random generation for the log2 fold change distribution with parameters 'a' and 'b' (corresponding to (pseudo-)counts incremented by 1).

Usage

```
dlfc(x, a, b, log = FALSE)
plfc(q, a, b, lower.tail = TRUE, log.p = FALSE)
qlfc(p, a, b, lower.tail = TRUE, log.p = FALSE)
rlfc(n, a, b)
```

Arguments

x,q	vector of quantiles
а	non-negative parameter
b	non-negative parameter
log, log.p	if TRUE, probabilities p are given as log(p)
lower.tail	if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.
р	vector of probabilities
n	number of observations

Value

The density

Functions

```
dlfc(): Density function
plfc(): Distribution function
qlfc(): Quantile function
rlfc(): random generation
```

Examples

```
x <- seq (-5,5,by=0.01)
plot(x,dlfc(x,1,1))
```

4 ltop

EmpiricalBayesPrior	Computes the prior parameters (i.e. pseudocounts incremented by 1)
	for the log2 fold change distribution

Description

Computes the prior parameters (i.e. pseudocounts incremented by 1) for the log2 fold change distribution

Usage

```
EmpiricalBayesPrior(A, B, min.sd = 0)
```

Arguments

A Vector of counts from condition A

B Vector of counts from condition B

min.sd minimal standard deviation of the prior

Value

A vector of length 2 containing the two parameters

See Also

PsiLFC

Examples

```
EmpiricalBayesPrior(rnorm(1000,200),rnorm(1000,100))
```

ltop	Inverse logit transformation to obtain proportion representation from
	the log fold change representation.

Description

Inverse logit transformation to obtain proportion representation from the log fold change representation.

Usage

ltop(1)

NormLFC 5

Arguments

1 Effect size in log2 fold change representation

Value

The proportion representation of the effect size

See Also

```
ptol
```

Other Effect size representations: ptol()

Examples

```
ptol(0)
ptol(1)
```

NormLFC

Standard LFC effect size estimator

Description

Computes the standard, normalized log2 fold change with given pseudocounts

Usage

```
NormLFC(A, B, pseudo = c(1, 1), normalizeFun = CenterMedian)
```

Arguments

A Vector of counts from condition A

B Vector of counts from condition B

pseudo Vector of length 2 of the pseudo counts

normalizeFun Function to normalize the obtained effect sizes

Value

The vector containing the estimates

Examples

```
NormLFC(rnorm(1000,200),rnorm(1000,100))
```

6 PsiLFC.se

PsiLFC

Psi LFC effect size estimator

Description

Computes the optimal effect size estimate and credible intervals if needed.

Usage

```
PsiLFC(
   A,
   B,
   prior = EmpiricalBayesPrior(A, B),
   normalizeFun = CenterMedian,
   cre = FALSE,
   verbose = FALSE
)
```

Arguments

A Vector of counts from condition A

B Vector of counts from condition B

prior Vector of length 2 of the prior parameters

normalizeFun Function to normalize the obtained effect sizes

cre Compute credible intervals as well? (can also be a vector of quantiles)

verbose verbose status updates?

Value

Either a vector containing the estimates, or a data frame containing the credible interval as well

Examples

```
PsiLFC(rnorm(1000,200),rnorm(1000,100))
```

PsiLFC.se

Psi LFC effect size estimator

Description

Computes the optimal effect size estimate and credible intervals if needed for a Bioconductor SummarizedExperiment object

ptol 7

Usage

```
PsiLFC.se(se, contrast, cre = FALSE)
```

Arguments

se SummarizedExperiment object

contrast Vector of length 3 (<name>,<A>,)

cre Compute credible intervals as well? (can also be a vector of quantiles)

Value

Either a vector containing the estimates, or a data frame containing the credible interval as well

Examples

```
## Not run:
    data(airway, package="airway")
    head(PsiLFC.se(airway,contrast=c("dex","untrt","trt")))
## End(Not run)
```

ptol

Logit transformation to obtain the log fold change representation from the proportion representation.

Description

Logit transformation to obtain the log fold change representation from the proportion representa-

Usage

ptol(p)

Arguments

р

Effect size in proportion representation

Value

The log2 fold change representation of the effect size

See Also

ltop

Other Effect size representations: ltop()

8 results

Examples

```
ptol(0.5)
ptol(2/3)
```

results

Psi LFC effect size estimator for DESeq2

Description

Drop-in replacement for DESeq2's results function for simple settings involving a single variable. Appends the PsiLFC estimate.

Usage

```
results(object, contrast, cre = FALSE, ...)
```

Arguments

object the DESeq2DataSet object

contrast Vector of length 3, specifying the variable and the two levels to compute effect

sizes for (<name>,<A>,)

cre Compute credible intervals as well? (can also be a vector of quantiles)

... Handed over to DESeq2's results function

Value

Either a vector containing the estimates, or a data frame containing the credible interval as well

Index

```
\ast Effect size representations
    ltop, 4
    ptol, 7
* Log2 fold change distribution
    dlfc, 3
CenterMedian, 2
dlfc, 3
EmpiricalBayesPrior, 4
1top, 4, 7
NormLFC, 5
plfc (dlfc), 3
PsiLFC, 6
PsiLFC.se, 6
ptol, 5, 7
qlfc (dlfc), 3
results, 8
rlfc (dlfc), 3
```