Gestion de Parc Informatique

Avant de commencer ...

2

RESSOURCES

Les ressources disponibles sont multiples :

- Echanges entre les stagiaires,
- INTERNET, consultez les sites spécialisés,

VOUS AVEZ DES QUESTIONS?

Notez-les.

N'hésitez pas à poser des questions à votre formateur :)

PRISE DE NOTE

Pensez à prendre des notes de ce que vous lisez, de vos questions, à faire des schémas ...

Prendre des notes c'est apprendre et retenir!

Gestion de Parc Informatique

Objectifs:

- •Installer et configurer une architecture Serveurs Windows et Linux.
- •Déployer et gérer les postes de travail.
- •Gérer le déploiement des applications et des mises à jour des postes.
- •Gérer les inventaires des équipements.
- •Mettre en place un Helpdesk, gestion des incidents, tickets.

Organisation

4

- > Des cours;
- > Des travaux dirigés;
- > Des travaux pratiques;
- > Des TP notés;
- > Un projet noté.

Sommaire

5

- ➤ Généralités;
- > Les sauvegardes;
- ➤ Gestion de l'annuaire Active Directory AD;
- > Système Nom de Domaine DNS;
- > Configuration dynamique des postes DHCP;
- > Stratégies de groupe GPO;
- > Gestion de parc informatique;

CHAPITRE 4: DNS

•Dans un réseau, chaque machine a un identifiant unique (adresse IP) pour pouvoir communiquer.

•Problème:

Un utilisateur ne peut pas retenir les adresses IP de chaque ordinateur.

•Solution:

Pour répondre à ce besoin, des mécanismes de résolution de noms ont été mis en place, ce qui permet de traduire des noms en adresses IP et inversement.

- •Au départ, chaque machine stockait localement les mappages noms / adresses IP.
- **Problème:**
- •Cependant ce système a l'inconvénient de demander une trop lourde charge administrative.
- •A chaque **ajout** de machine dans le réseau ou bien à chaque **modification** de la configuration d'une machine, **il faut éditer manuellement** le fichier contenant les mappages noms / adresses IP.

- •Le système **DNS** (Domain Name System: système de noms de domaine) ou encore (Domaine Name Services: services de nom de domaine), introduit une convention de nommage hiérarchique des domaines.
- •Le **DNS** est un service permettant de traduire un **nom de domaine en adresse IP** et **inversement**.
- •Le DNS peut être installé sur une machine, un routeur, etc.

- ➤DNS peut servir dans Internet pour faire la correspondance Nom →Adresse IP.
- ➤DNS peut servir aussi dans un réseau local pour designer les machines qui se trouvent sur le réseau.

DNS et DHCP:

- DNS ne fait que **résoudre les noms de domaine**.
- ➤DHCP (Dynamic Host Configuration Protocol) est un protocole de configuration dynamique des hôtes. Il **définit les paramètres principaux du réseau**:
 - •Plages d'adresses IP qu'on peut attribuer aux machines qui se connectent.
 - •Le masque de sous réseau;
 - ·La passerelle par défaut;

• . . .

DNS et DHCP:

- La fonction principale de DHCP est la distribution des paramètres IP.
- ➤En pratique, l'idéal est de mettre les deux services **DHCP** et **DNS** dans le même serveur physique pour que ces deux services puissent communiquer.

- Le système DNS introduit une convention de nommage hiérarchique des domaines qui commence par un domaine racine appelé ".".
- Les domaines situés directement sous le domaine racine sont appelés domaines de **premier niveau** (fr, be, eu, etc.) ou (museum, info, org, gov, mail, com, etc.).
- ➤On les appelle aussi les **TLD** pour **Top Level Domains**, ce sont les **domaines principaux**.

- Les domaines de **second niveau** sont disponibles pour les entreprises et les particuliers. On les appelle aussi les **Services** d'autorité.
- Enfin une multitude de **sous domaines** peuvent être crées à l'intérieur d'un domaine de second niveau.

DNS --- (16)

- Les noms de machines utilisant le système DNS sont appelés noms d'hôtes. Un nom d'hôte peut contenir jusqu'à 255 caractères alphanumériques.
- Le **nom d'hôte** représente le nom d'une machine (un ordinateur, une imprimante ou bien encore un routeur);

Types des enregistrements:

- •Les **serveurs d'autorité** contiennent des enregistrements (**records**) qui sont de différents types:
 - ➤ Type A: il fait la correspondance entre le nom de domaine et une adresse IPV4.
 - **Type AAAA**: il fait la correspondance entre le nom de domaine et une adresse **IPV6**.
 - >Type CNAME: il crée des alias entre différents noms.
 - •Exemple: fr.orange.com ←→ <u>www.orange.com</u>
 - ➤ Type Mx (Mail Exchange): l'objectif est de savoir à quel serveur de mail il faut envoyer les informations quand on envoie un message à un utilisateur de domaine.
 - •Exemple@yahoo.com ←→ mail.yahoo.com

La résolution de nom coté client:

Lorsqu'un client DNS exécutant Windows souhaite résoudre un nom de domaine en adresse IP (par exemple lors de l'accès à une page web ayant l'URL www.google.com ou bien lors de l'accès à un dossier partagé \\ServeurFichiers\Documents), un processus décomposable en plusieurs étapes est exécuté.

La résolution de nom:

- •Avant de se connecter au **serveur web** ou bien au **serveur de fichiers**, il faut trouver son adresse IP à partir de son nom d'hôte.
- •Le client commence par vérifier si une adresse IP correspondant au nom d'hôte est présente dans son cache de noms DNS.
- •Le cache de noms DNS contient tous les mappages **noms d'hôte** / **adresses IP** qui ont été précédemment résolus.

La résolution de nom d'hôte côté CLIENT:

- •Le cache de noms DNS est stocké en mémoire vive ce qui permet d'accélérer le processus de résolution de noms d'hôte lorsque l'utilisateur accède souvent au même serveur.
- •On peut afficher le cache de noms DNS en utilisant la commande:

ipconfig /displaydns

•Il est aussi possible de vider cette mémoire cache grâce à la commande:

ipconfig /flushdns

- •Si l'adresse IP recherchée n'est pas présente dans le cache de noms DNS, alors le client consulte **le fichier hosts**.
- •Ce fichier est situé dans le répertoire %SYSTEMROOT%\system32\drivers\etc.

- •Si le mappage n'a pas été trouvé dans le fichier hosts, alors le client va envoyer une requête DNS au premier serveur DNS dont l'adresse IP a été définie dans ses paramètres TCP/IP.
- •Si le premier serveur DNS est injoignable alors le client envoie une requête au second et ainsi de suite...
- •Si aucun serveur DNS n'a été paramétré dans les paramètres TCP/IP du client ou bien si aucun serveur DNS n'est capable de résoudre le nom en adresse IP alors le client passe à la quatrième et dernière étape.

- •Si le client n'a pas trouvé le mappage recherché alors il considère que l'adresse IP recherchée ne correspond pas à un nom d'hôte mais à un nom **NetBIOS** et lance une résolution de nom NetBIOS.
- •Si à la fin de ce processus aucune adresse IP n'a été trouvée alors le client ne peut pas obtenir l'adresse IP correspondante et ne peut pas joindre la ressource.
- •Le résultat de la requête DNS sera mis dans le cache de noms DNS.

La résolution de nom d'hôte côté SERVEUR:

- •Lorsqu'un serveur DNS reçoit une requête récursive, il doit donner la réponse la plus complète possible.
- •Le serveur DNS est souvent amené à joindre d'autres serveurs de noms dans le but de trouver la réponse exacte.

La résolution de nom d'hôte côté SERVEUR:

- •Une machine cliente envoie une requête à un serveur DNS
- →étape 3 de la résolution de nom d'hôte.
- •Lorsqu'un serveur DNS ne peut pas répondre à la requête récursive d'un client, il va d'abord essayer de contacter ses **redirecteurs**:
 - Si le serveur DNS est paramétré pour utiliser des redirecteurs alors il envoie une requête récursive au premier serveur DNS défini dans sa liste de redirecteurs.
 - ➤Si le serveur DNS n'a pas de redirecteurs, il va envoyer une requête itérative au premier serveur DNS situé dans sa liste de serveur DNS racine.

La résolution de nom d'hôte côté SERVEUR: Remarque:

•Les serveurs gardent les information en cache pendant une **TTL**: c'est la durée de temps définie pendant laquelle on garde en cache ses informations.

Les zones de recherches d'un serveur DNS:

- •La console de gestion du service DNS présente une arborescence simple.
- •Les deux premiers conteneurs listent les zones de recherches alors que le troisième, liste les évènements relatifs au service DNS (Le serveur DNS a démarré).
- •Une zone de recherche directe contient des mappages nom d'hôte / adresse IP alors qu'une zone de recherche inversée contient des mappages adresse IP / nom d'hôte.

Les zones de recherches d'un serveur DNS:

- •Une zone de recherche directe permet de trouver l'adresse IP correspondant à un nom d'hôte alors qu'une zone de recherche inversée permet de trouver un nom d'hôte à partir d'une adresse IP.
- •L'enregistrement de type **PTR** fait la fonctionnalité inverse de l'enregistrement de type **A**, c.à.d, à partir d'une adresse IP **trouver le nom** de domaine correspondant.

DNS (30) --

➤TP2: Installation et configuration du DNS.

CONCLUSION DE LA SEANCE

FELICITATIONS !!!

Vous êtes maintenant au courant de ce que c'est le DNS

