

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Linear differential equation with constant coefficients

A linear differential equation with constant coefficients is that in which dependent variables and its differentials occur only in first degree, and not multiplied together, and coefficients are all constants

$$\frac{d^{n}y}{dx^{n}} + a_{1}\frac{d^{n-1}y}{dx^{n-1}} + a_{2}\frac{d^{n-2}y}{dx^{n-2}} + \dots + a_{n-1}\frac{dy}{dx} + a_{n}y = X ...(1)$$

Where X is a function of x only and a₁, a₂,, a_n are constants is called linear differential equation constant coefficients of nth order.

We can write (1) as

$$D^{n}y + a_1 D^{n-1}y + a_2 D^{n-2}y + \dots + a_n y = X$$

$$\begin{split} D^n y + a_1 \ D^{n-1} y + a_2 D^{n-2} y + \ldots + a_n y &= X \\ [D_n + a_n D^{n-1} + a_2 D^{n-2} + \ldots + a_n] \ y &= X \end{split}$$

$$f(D)y = X \dots (2)$$

$$f(D)y = X \qquad (2)$$
 Where $f(D) = D^n + a_1 D^{n-1} + a_2 D^{n-2} + + a_n$.

Now consider the differential equation f(D)y = 0....(3)

The general solution of nth order differential equation involved arbitrary constants. So, the general solution of (3) is of the form

$$y = c_1y_1 + c_2y_2 + \dots + c_ny_n$$
 ... (4)

Which is also called complementary function (CF) of (2).

Let V be the particular solution of (2) (due to X called PI)

Hence, f(D)y = X, has the complete solution as

$$y = CF + PI$$
.

CF involves n arbitrary constants and PI does not involve any constant.

Complementary Function

For the sake of convenience, we consider a second order linear equation

$$\frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_2 y = 0 \qquad(1)$$

Then auxiliary equation is $m^2 + a_1m + a_2 = 0$(2)

Case I: The roots of (2) are real and distinct:

Let m_1 , m_2 be the two real and distinct roots of (2).

Then e^{m_1x} , e^{m_2x} are the solutions of (1)

Hence, the complementary function of (1) is $y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \qquad \dots (3)$

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \dots (3)$$

Case II: The roots of (2) are real and equal:

$$\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}$$

then

$$y \neq (c_1 + c_2 x)e^{mx}$$

is a complementary function.

Case - III : The roots of (ii) are complex

Let a + ib and a - ib are the roots of (2)

Then the general solution of (1)

$$y = e^{ax}[A\cos bx + B\sin bx]$$

Q.1. Let y(x) be a solution of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0.\text{s.t. } \lim_{x \to \infty} e^{-x}y(x) \text{ is finitely exist. Then}$ y(log 2) is

(a) Constant

(b) in term of x

- (c) in term of e^x (d) None of these

Q.2. If y(x) is the solution of the initial value problem

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0, y(0) = 1, \frac{dy}{dx}(0) = -2, \text{ then y(ln 2) is}$$

(a) ln2

- (b) $(1-\ln 2)\frac{1}{2}$
- (c) integer number (d) 0

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. If $y(x) = \lambda e^{2x} + e^{\beta x}$, $\beta \neq 2$, is a solution of the differential

equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$$
 satisfying $\frac{dy}{dx}(0) = 5$, then

y(0) is equal to

(a) 3

(b) 4

(c)5

(d) 6

Q.4. The differential equation whose linearly independent solutions are cos 2x, sin 2x and e^x, is

(a)
$$(D^3 + D^2 + 4D)y = 0$$
 (b) $(D^3 - D^2 + 4D - 4)y = 0$

(c)
$$(D^3 + D^2 - 4D - 4)y = 0$$
 (d) $(D^3 - D^2 - 4D + 4)y = 0$

Q.5. The number of arbitrary constants in the complete primitive of differential equation $\frac{d^5y}{dx^5} + 2\frac{d^4y}{dx^4} = 0$ is/are

not

(a) 5

(b) 4

(c) 1

(d) 6

Q.6 Let $P: R \to R$ be a continuous function such that P(x) > 0 for all $x \in R$. Let y be a twice differentiable function on R satisfying y``(x) + P(x)y`(x) - y(x) = 0 for all $x \in R$. Suppose that there exist two real numbers a, b (a < b) such that y(a) = y(b) = 0. Then

- (a) y(x) > 0 for all $x \in (a, b)$
- (b) y(x) < 0 for all $x \in (a, b)$
- (c) y(x) changes sign on (a, b)
- (d) y(x) = 0 for all $x \in [a, b]$

Q.7. The homogeneous part of the differential equation

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r$$
 has real distinct real roots if

(a)
$$p^2 - 4q > 0$$

(b)
$$p^2 - 4q < 0$$

(c)
$$p^2 - 4q = 0$$

(d)
$$p^2 - 4q = r$$

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	Total ₹ 21,780
24 months	₹ 908 / mo

0 12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR