IOMD13A 智能在线监测装置 通讯协议

文档编号: IOMD13A-D03

此操作手册(以下简称手册)为 IOMD13A 智能在线监测装置(以下简称 IOMD) 通讯协议说明.

如在使用中发生手册未提及之错误或者故障,请即时联系本公司。

本公司保留所有相关权利。

○ 宝鸡市明奥电气有限公司

陕西省宝鸡市渭滨区石鼓工业园 7号

721006

(0917)3859529

手册版本

版本编号	日期	说明	
1.0	2013/02/19	最初版本	

▲ 连接各电缆之前,须断开主机供电电源。 正常供电之后,禁止任何接插操作。

目录

- 1 简介
- 2 基本参数
- 3 协议数据格式
- 4 操作指令

1. 简介

本手册为 IOMD 装置编写,以帮助使用者正确使用 IOMD 通讯协议。

本手册仅仅描述 IOMD 内置系统软件的通讯功能,不涉及安装,调试以及通讯等方面的内容。

其他内容,请参阅相关配套文件。

2. 基本参数

IOMD 装置支持 RS232 与 RS485 通讯。

默认通讯参数设置如下列:

速率	19200bps
奇偶校验	0 无校验
停止位	1
数据位	8
流控制	0 无流控制
默认地址	105 (0x69)

- 3. 协议数据格式
- 3.1 发送指令格式

(字母表示 16 进制数,AA 表示 16 进制的 0xAA)

对齐位置 012 3 4 56-----

指令内容 \$ABC D EXXXXXXXX AA#

说明:

\$ = (0x24)前导字符

A = 接收端地址,如 105(0x69)

B = 指令发出者的地址

C = 读取或者写入 W/R (0x57 / 0x52)

D = 指令1

E = 指令 2

XXXXXXXX = 数据内容

AA = 结束标志 1

= (0x23)结束标志 2

以下设置 OMB 系统时间为例:

24 69 0B 57 70 01 0D 0B 0C 12 32 16 AA 23

(以上均为 16 进制数值,以空格分隔)

24 = 前导 \$

69 = 接收端地址,即 OMB 装置地址(可以在终端自行调整),10 进制数 105

OB = 发送端地址,如本地电脑 RS485 地址

57 = W.表示电脑向 OMB 写入数据,52(R)表示读取数据

70 = 时间相关指令

01 = 设定 OMB 装置时间

0D 0B 0C 12 32 16 为需要写入的数据内容

0D = 2013 年(0D(16 进制) = 13(10 进制))

0B = 11 月

 $0C = 12 \; \Box$

12 = 18 时

32 = 50 分

16 = 22 秒

AA = 结束字符 1

23 = 结束字符 2,表示写入数据结束.

3.2 接收的数据格式

接收的数据格式,指由 OMB 装置发出数据,由电脑主机或者其他设备接收到的数据内容的格式。

接收的数据包括2部分:写入指令的返回确认和读取指令请求的数据。

3.2.1 返回确认的数据

返回指令: \$ABCDE AA # FE

\$= 前导字符

A = 指令接收端地址

B = 指令发出端地址,即 OMB 装置地址

C=T 或者 F.表示指令执行成功或者失败

D = 发送的指令1

E = 发送的指令 2

AA = 结束字符 1

= (23) 结束字符 2

FE = 结束字符 3

3.2.2 请求返回的数据

返回指令: \$ABCDEFGHIJ AA# FE

\$= 前导字符

A = 指令接收端地址

B = 指令发出端地址,即 OMB 装置地址

C=T 或者 F.表示指令执行成功或者失败

D = 发送的指令1

E = 发送的指令 2

F = 表示本次传送的有效数据长度,仅仅是有效数据,不包括前导与后缀参数

GHIJ... = 返回的有效数据内容

AA = 结束字符 1

= (23) 结束字符 2

FE = 结束字符 3

如读取 OMB 装置序列号:

F = 12 (10 进制,或者 16 进制 0C),后面为 12 字符.

4. 操作指令

操作指令,由主指令(指令 1),子指令(指令 2)和操作数组成。

4.1 主操作指令(指令1)

OMB 装置支持 RS485,RS232 通讯.主要操作指令如下列示:

主指令号(指令 1): 0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,0x90

序号	指令值	功能
1	0x10	读取配置参数
2	0x20	读取开关状态
3	0x30	
4	0x40	读取运动记录数据
5	0x50	读取温度数据
6	0x60	
7	0x70	设定时钟
8	0x80	读取当前运动数据
9	0x90	系统复位

4.2 读取配置参数指令 0x10

子指令包括

序号	指令值	说明
1	0x01	OMB 装置序号
2	0x02	电路版本
3	0x03	固件版本
4	0x04	产品型号
5	0x05	是否配备温度传感器
6	0x06	运动传感器数量
7	0x07	设置的最大开距
8	0x08	设置的最大速度
9		
10	0x1A	A 相速度传感器序号
11	0x2A	B 相速度传感器序号
12	0x3A	C 相速度传感器序号
13	0x1E	速度传感器数据精度(10K)
14		

4.3 读取开关状态 0x20

序号	指令值	说明
1	0x10	开关当前状态,合闸/分闸
2	0x20	开关当前位置,工作/试验
3	0x30	状态与位置
4	0x40	合闸累计
5	0x50	分闸累计
6	0x60	合闸累计与分闸累计
7	0x70	上述全部数据

4.40x30 保留

4.5 读取运动记录数据 0x40

序号	指令值	说明
1	0x10	清除记录数据
2	0x20	清除配置参数
3	0x30	清除全部存储数据
4	0x40	读取分合闸累计
5	0x50	当前的记录编号
6	0x60	读取动作相关外部数据
7	0x70	读取单相计算数据
8	0x80	读取单相高位字节数
9	0x90	读取单相低位字节数

4.6 读取温度数据 0x50

需要配备温度传感器.

序号	指令值	说明
1	0x10	温度传感器配置参数
2	0x20	当前的温度值
3	0x30	24 小时温度值

4.7 0x60 保留

4.8 内部时钟 0x70

序号	指令值	说明
1	0x10	设定时钟
2	0x20	读取时钟

4.9 读取当前运动数据 0x80

序号	指令值	说明
1	0x60	读取动作相关外部数据
2	0x70	读取单相计算数据
3	0x80	读取单相高位字节数
4	0x90	读取单相低位字节数

4.10 复位指令 0x90

子指令: 无

序号	指令值	说明