

第四章场效应晶体管及基本放大电路

lugh@ustc.edu.cn 2016年10月26日

- □利用电场效应来控制导电性的有源器件
- □ 高输入阻抗,一种载流子参与导电
- □工作频率高、成本低、易于集成等特点

本章主要内容

- § 4.1 结型场效应管
- § 4.2 绝缘栅型场效应管
- § 4.3 直流偏置电路
- § 4.4 场效应管的交流小信号模型
- § 4.5 三种组态场效应管放大器的中频特性
- § 4.6 单级共源放大器的频率特性

3

§ 4.1 结型场效应管

lugh@ustc.edu.cn 2016年10月26日

提纲

- 1. 器件结构
- 2. 漏极伏安特性
- 3. 转移特性

1. 器件结构

1. 器件结构

■ 工作原理

□通过栅-源电压V_{GS}将N-JFET的两个PN结反向偏 置,利用PN结耗尽层的 厚度来控制沟道导电率, 最终达到控制漏极电流I_D 的目标

8

■ V_{GS}控制特点

□ 对N-JFET而言,两PN结 应反向偏置,即

$$V_{GS} \leq 0$$

□ 对N-JFET而言,随着V_{GS} 逐渐减小,沟道逐渐变窄, 导电率逐渐降低

□ 对N-JFET而言,当V_{cs}小 于某电压值时,沟道将被 完全夹断,漏源之间呈极 高阻抗

■ 夹断电压V_{PO}

□ 导电沟道刚刚全部被夹断时所对应的V_{GS}电压模值,称为夹断电压,记为V_{Pn}

10

■电路符号

N-JFET电路符号 (左为基本型,右为增强型)

■说明

□ 电路符号中的箭头指向,表示栅源之间正向偏置时, 栅极电流的流向

P-JFET电路符号 (左为基本型,右为增强型)

■说明

□ JFET正常工作时,栅源之间一定反向偏置,栅极电流 很小: 电路符号中的箭头指向并非真正的电流方向

■ 输入端伏安特性

□ JFET的栅源之间PN结是 反向偏置的,栅极电流I_G 忽略不计,输入端近似为 开路,伏安特性无需讨论

$$I_G = 0$$

■ 漏极伏安特性

□漏极作为JFET静态输出级,故输出端伏安特性又称为漏极伏安特性,即研究在给定栅源电压V_{cs}情况下,漏极电流I_D与漏源电压V_{DS}之间的关系

$$I_D = f(V_{DS}, V_{GS}) = f(V_{DS})|_{V_{GS} = C}$$

■说明

□与BJT伏安特性类似,漏极伏安特性将形成一族曲线

15

■ 情况-1: V_{GS} = 0

□栅源V_{GS}=0,且导电沟道预夹断时对应的漏极电流,称 为饱和漏电流,记为I_{DSS}

■ 恒流特性

- □ 当V_{DS}> V_{P0},而V_{DS}再增大时, I_D不再增大,而是保持一定值I_{DSS},呈现出恒流特性
- □ 增加部分的电压几乎全部加在耗尽层上,导致夹断部 分越来越大,而沟道上加的电压不变
- □此时电子仍然可以从源极到达漏级

■ 情况-2: -V_{P0}<V_{GS}<0

■说明

- □ 在未加V_{DS}时PN结已经反偏,耗尽层较零栅压时为厚。 相应的沟道电阻也较大,沟道的夹断电压V_P比V_{PO}小, 漏极饱和电流I_D和PN结的反向击穿电压也较小
- □ 在相同漏源电压V_{DS}情况下,漏极饱和电流以及预夹断电压V_P均随着栅源控制电压V_{GS}降低而减小

§ 4.1 结型场效应管

19

■ 情况-3: V_{GS} ≤ -V_{P0}

■说明

□不论V_{DS}为何值,导电沟 道始终处于夹断状态, N-JFET截止,即

$$I_D = 0$$

■ N-JFET正常工作的前提条件

$$-V_{P0} < V_{GS} \le 0$$

■ 三个工作区

饱和电流区:
$$\begin{cases} V_{DS} \geq V_{P} \\ -V_{P0} < V_{GS} \leq 0 \end{cases}$$
 可变电阻区: $\begin{cases} V_{DS} < V_{P} \\ -V_{P0} < V_{GS} \leq 0 \end{cases}$ 截止区: $V_{GS} \leq -V_{P0}$

■ 反向击穿区

■说明

□ 当导电沟道被夹断后,若漏源电压V_{DS}继续增大,则可能导致PN结反向击穿,此时漏电流I_D将急剧增大, JFET进入反向击穿区,但是这种情况可能会毁坏 JFET,因此,禁用反向击穿区

§ 4.1 结型场效应管

24

■ 转移特性

□ 研究JFET处于饱和态时,漏极电流I_D与栅源电压V_{GS}之间的关系

$$I_{D} = f(V_{DS}, V_{GS})$$

$$\Rightarrow I_{D} = f(V_{GS}) \Big|_{V_{DS}} \ge V_{P}$$

■说明

□处于饱和态的JFET,其漏极电流Ip与Vps无关

■ 转移特性方程

$$I_D = I_{DSS} \left(1 + \frac{V_{GS}}{V_{P0}} \right)^2$$

□ 当JFET处于可变电阻区时,漏极电流I_D不仅与栅源控制电压V_{CS}有关,还会与漏源电压V_{DS}有关

$$I_{D} = I_{DSS} \left[\frac{2V_{DS}}{V_{P0}} \left(1 + \frac{V_{GS}}{V_{P0}} \right) - \left(\frac{V_{DS}}{V_{P0}} \right)^{2} \right]$$

■ JFET器件参数

 $\left\{ egin{array}{ll}
onumber \ & \mathbb{E}V_{P0}
onumbe$

■ P-JFET的漏极伏安特性及其转移特性

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P0}} \right)^2$$

■说明

□ P-JFET与N-JFET工作原理相同,区别仅在于栅源控制电压V_{GS}以及漏极电流I_D均反相