1 Inverzní matice

Obsah

Obsah

1 Inverzní matice 1

2 Spektrální analýza matic

4

Regulární matice

• Z předchozího víme, že množina $\mathcal{M}_n(T)$ čtvercových matic stupně n nad číselným tělesem T spolu se sčítáním a násobením tvoří nekomutativní okruh.

Definice 8.1

Matice $A \in \mathcal{M}_n(T)$ se nazývá regulární, jestliže $\det(A) \neq 0$. V opačném případě matici A nazýváme singulární.

Inverzní matice

Věta 8.1

Ke každé matici $A \in \mathcal{M}_n(T)$ existuje nejvýše jedna matice $X \in \mathcal{M}_n(T)$ splňující

$$AX = XA = E$$
,

kde E je jednotková matice stupně n.

- Existují samozřejmě i čtvercové matice, pro které nenajdeme žádnou matici, která by předchozí požadavky splňovala.
- Např. pro matici $A = \begin{pmatrix} -1 & 3 \\ 2 & -6 \end{pmatrix}$ ne.

Inverzní matice

Definice 8.2

Nechť $A \in \mathcal{M}_n(T)$. Pokud pro A existuje matice $X \in \mathcal{M}_n(T)$ splňující

$$AX = XA = E$$

pak X říkáme inverzní matice k matici A a značíme ji A^{-1} .

Věta 8.2

Množina všech matic z $\mathcal{M}_n(T)$, ke kterým existuje inverzní matice, tvoří grupu vzhledem k maticovému násobení.

Adjungovaná matice

Definice 8.3

Adjungovaná matice k matici $A=(a_{ij})\in\mathcal{M}_n(T)$ je matice $\mathrm{adj}(A)=(b_{ij})\in\mathcal{M}_n(T)$, kde

$$b_{ij} = \mathcal{A}_{ji}$$
 pro každé $i, j = 1, 2, \dots, n$.

Přitom A_{ij} je algebraický doplněk prvku a_{ij} v matici A.

Pro $A = (a_{ij}) \in \mathcal{M}_n(T)$ tedy platí

$$\operatorname{adj}(A) = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}^{T}$$

Adjungovaná matice

Příklad 8.1

Adjungovaná matice k matici

$$A = \left(\begin{array}{rrr} 1 & 3 & -1 \\ 2 & 1 & 4 \\ 0 & 3 & 1 \end{array}\right)$$

je potom matice

$$adj(A) = \begin{pmatrix} -11 & 6 & 13 \\ -2 & 1 & -6 \\ 6 & -3 & -5 \end{pmatrix}$$

Výpočet inverzní matice - způsob č. 1

Věta 8.3

Pro každou regulární matici $A \in \mathcal{M}_n(T)$ platí

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A).$$

Příklad 8.2

Matice

$$A = \left(\begin{array}{rrr} 1 & 3 & -1 \\ 2 & 1 & 4 \\ 0 & 3 & 1 \end{array}\right)$$

je regulární, neboť $\det(A) = -23$. Tedy její inverzní matice je

$$A^{-1} = \begin{pmatrix} 11/23 & 6/23 & -13/23 \\ 2/23 & -1/23 & 6/23 \\ -6/23 & 3/23 & 5/23 \end{pmatrix}$$

Vlastnosti inverzních matic

Věta 8.4

Pro každé dvě regulární matice $A, B \in \mathcal{M}_n(T)$ platí

1.
$$\det(A^{-1}) = \frac{1}{\det(A)}$$
,

2.
$$(A^{-1})^{-1} = A$$
,

3.
$$(A^T)^{-1} = (A^{-1})^T$$
,

4.
$$(AB)^{-1} = B^{-1}A^{-1}$$
,

5.
$$(A^k)^{-1} = (A^{-1})^k$$
 pro každé $k \in \mathbf{N}$.

EŘT jako maticové násobení #1

- Dána matice $A \in \mathcal{M}_n(T)$.
- Násobíme-li matici A zleva diagonální maticí $B \in \mathcal{M}_n(T)$, která má tvar

$$B = \begin{pmatrix} 1 & 0 & & \dots & & & 0 \\ 0 & 1 & & & & & & \\ & & \ddots & & & & & \\ & & & 1 & & & \\ \vdots & & & & c & & \\ & & & & 1 & & \\ & & & & \ddots & \\ 0 & & & & & 1 \end{pmatrix},$$

pak výsledkem je matice, která je stejná jako A, jen má oproti matici A i-tý řádek vynásobený číslem $c \in T$.

EŘT jako maticové násobení #2

- Dána matice $A \in \mathcal{M}_n(T)$.
- Násobíme-li matici A zleva maticí $C \in \mathcal{M}_n(T)$, která má tvar

$$C = \begin{pmatrix} 1 & 0 & & \dots & & & 0 \\ 0 & 1 & & & & & & \\ & & \ddots & & & & & \\ & & & 0 & \dots & 1 & & \\ \vdots & & \vdots & \ddots & \vdots & & & \\ & & 1 & \dots & 0 & & & \\ & & & & \ddots & \ddots & \\ 0 & & & & & 1 \end{pmatrix},$$

pak výsledkem je matice, která je stejná jako A, jen má i-tý řádek prohozený s j-tým.

EŘT jako maticové násobení #3

- Dána matice $A \in \mathcal{M}_n(T)$.
- Násobíme-li matici A zleva maticí $D \in \mathcal{M}_n(T)$, která má tvar

$$D = \begin{pmatrix} 1 & 0 & & \dots & & & 0 \\ 0 & 1 & & & & & & \\ & & \ddots & & & & & \\ & & & 1 & \dots & 1 & & \\ \vdots & & & \vdots & \ddots & \vdots & & \\ & & & 0 & \dots & 1 & & \\ & & & & \ddots & \ddots & \\ 0 & & & & & 1 \end{pmatrix},$$

pak výsledkem je matice, která je stejná jako A, ale její má i-tý řádek je součtem i-tého a j-tého řádku matice A.

Výpočet inverzní matice - způsob č. 2

Věta 8.4

Je-li $A \in \mathcal{M}_n(T)$ regulární, pak je možné konečnou posloupností EŘT t_1, t_2, \ldots, t_k převést A na jednotkovou matici $E \in \mathcal{M}_n(T)$ a přitom stejnou posloupností EŘT t_1, t_2, \ldots, t_k lze zároveň převést E na A^{-1} .

- Tato metoda je vhodnější k ručnímu výpočtu, zejména pokud matice A je vyššího stupně.
- Výpočet probíhá tak, že do jednoho schématu zapíšeme vedle sebe matici A a matici E, tedy (A|E).
- S touto maticí dále pracujeme jako s celkem tak, abychom A pomocí EŘT převedli na matici E.
- ullet Veškeré úpravy ovšem zároveň provádíme i na původní matici E ve schématu.
- Po konečném počtu kroků dojdeme k výsledku, a sice $(E|A^{-1})$.

2 Spektrální analýza matic

Obsah

Obsah