ICS Summer Academy Session II Topic 7: Reasoning Over Time

Michael Shindler

Reasoning Over Time

Observations from Thursday/Friday last week:

- Probability distributions can be quite large
- ▶ Independence (and conditional) reduce probabilities needed
- ▶ Bayesian Networks represent dependencies among variables Edges: *X* has a direct influence on *Y*

► Today: what about influence over time?

Observed and hidden variables

Example of Reasoning Over Time: "Umbrella World"

- Suppose weather is "rainy" XOR "sunny."
- Suppose tomorrow's weather depends only on today's

Here is a problem you might want to solve:

- ► Today is rainy
- ▶ If today is rainy, tomorrow is rainy 50% of the time
- ▶ If today is sunny, tomorrow is sunny 80% of the time
- ▶ If today is rainy, what is the probability ten days from now is rainy?

How to Solve in Probability Class?

- ► Today (day 0) is rainy.
- ► Probability tomorrow:
 - Rainy: 0.5
 - ► Sunny: 0.5
- ► How could day two be rainy? Sunny?
- Probability day two?
 - Rainy:
 - Sunny:

Stationary Markov Chain

Definition

Given ordered random variables $X_1, X_2, \cdots, X_t, \cdots, X_T$, called *states*,

Transition probability

$$P(X_t = \mathsf{value}' | X_{t-1} = \mathsf{value})$$

Initial probability

Text Prediction

This is another prediction of Stationary Markov Chain

- "States" are words
- Probability of "next word" depends on previous word
- How to estimate the probabilities?
 - Suppose all sentences length T
 - We have a file with MANY sentences
- We need to compute

$$P(X_1 = x_1, X_2 = x_2, \cdots, X_T = x_T)$$

We use the Markov property to factor

$$P(X_1 = x_1, X_2 = x_2, \cdots, X_T = x_T) =$$

$$P(X_1 = x_1) \prod_{t=2}^{T} P(X_t = x_t | X_{t-1} = x_{t-1})$$

Maximum likelihood estimation

We can use Maximum likelihood estimation

$$\pi_i = \frac{\# \text{of sequences starting with } i}{\# \text{of sequences}}$$

and

$$a_{ij} = \frac{\# \text{of transitions starting with } i \text{ but ending with } j}{\# \text{of transitions starting with } i}$$

Suppose we have two possible states $X_t \in \{0,1\}$, and we have observed the following 3 sequences

Give estimates for each π_i and each a_{ij} .

XKCD # 1427; More actual results:

- 'Hello. My name is Inigo Montoya. You [are the best. The best thing ever]'.
- ▶ 'Revenge is a dish best served [by a group of people in my room]', and
- ▶ 'They may take our lives, but they'll never take our [money].'

We have assumed the following Markov property

$$P(X_t|X_1, X_2, \cdots, X_{t-1}) = P(X_t|X_{t-1})$$

that is why we are only concerning with ourselves the immediate history.

We can extend to use more previous states

$$P(X_t|X_1, X_2, \cdots, X_{t-1}) = P(X_t|X_{t-1}, X_{t-2}, \cdots, X_{t-H})$$

R_{t-1}	$P(R_t R_{t-1})$
t	0.45
f	0.🤼

R_t	$P(U_t R_t)$
t	0.9
f	0.2

Today's Weather	$P(Umbrella today's\;weather)$	
Rainy	0.9	
Not Rainy	0.2	
0.5	8	
$\bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j$		
(R) (S)		
0.2		

Question: This week, my neighbor had umbrella days 1,2,4 and 5. What is the most likely sequence of weather this past week?

Algorithm to solve

Define $\delta_t(j)$: likelihood of most likely path ending at state j at time t. Let $\psi_t(j)$ be the state I was in at time t-1.

Algorithm to solve

Define $\delta_t(j)$: likelihood of most likely path ending at state j at time t. Let $\psi_t(j)$ be the state I was in at time t-1.

Solving the Umbrella question 14

$$\int_{\mathbf{R}} (\mathbf{R}_{1})$$
:

Today's Weather
$$|P(Umbrella|today's weather)$$
 $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{9}{10} = \frac{9}{10}$$

$$\frac{1}{2} \cdot \frac{2}{10} \cdot \frac{9}{10} = \frac{9}{100}$$

$$\int_{1}^{1} \left(\int_{1}^{1} \right) \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{16} = \frac{1}{2}$$
g been rainy or sunny.

E	p(E X = Erlang)
happy	4/5
angry	1/5

