(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 July 2001 (12.07.2001)

PCT

(10) International Publication Number WO 01/49728 A2

(51) International Patent Classification?: C07K 14/435

PCT/JP00/09359

(22) International Filing Date:

(21) International Application Number:

28 December 2000 (28.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 2000-585
 6 January 2000 (06.01.2000)
 JP

 2000-588
 6 January 2000 (06.01.2000)
 JP

 2000-2299
 11 January 2000 (11.01.2000)
 JP

 2000-26862
 3 February 2000 (03.02.2000)
 JP

 2000-58367
 3 March 2000 (03.03.2000)
 JP

(71) Applicants (for all designated States except US): PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP). SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa

229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

(74) Agents: AOYAMA, Tamotsu et al.; AOYAMA & PART-NERS, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, eukaryotic expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

2

BACKGROUND ART

5

10

15

20

25

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the injection or drip, and they possess the potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like are currently employed as pharmaceuticals. In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them is expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like, in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

3

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides, amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, and isolation of new genes encoding the membrane proteins has been desired.

.5

10

15

20

25

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

4

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

10

15

20

25

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, expression vectors for these DNAs, transformed eucaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins.

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the invention provides а human protein present hydrophobic domain(s), namely a protein comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA encoding said protein, exemplified by a cDNA comprising any one of base sequences selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131

5

to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein, and an antibody directed to said protein.

This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

10

20

5

BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03613.

15 Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03700.

Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03935.

Figure 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10755.

Figure 5: A figure depicting the 25 hydrophobicity/hydrophilicity profile of the protein

10

20

25

encoded by clone HP10760.

Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10764.

Figure 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10768.

Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10769.

Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10784.

Figure 10:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10786.

Figure 11:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03727.

Figure 12:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03801.

Figure 13:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03883.

Figure 14: A depicting figure hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03913. figure depicting the Figure 15: A hydrophobicity/hydrophilicity profile of the protein 5 encoded by clone HP10753. Figure 16: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10758. the Figure 17: A figure depicting 10 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10771. figure depicting Figure 18: A the hydrophobicity/hydrophilicity profile of the 15 encoded by clone HP10778. Figure 19: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10781. Figure 20:A figure depicting the hydrophobicity/hydrophilicity profile of the protein 20 encoded by clone HP10785. Figure 21:A figure depicting the hydrophobicity/hydrophilicity profile of the encoded by clone HP03878. depicting Figure 22:A figure the 25

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03884.

Figure 23:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03934.

Figure 24: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03949.

Figure 25: A figure depicting the

10 hydrophobicity/hydrophilicity profile of the protein

encoded by clone HP03959.

Figure 26: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03983.

15 Figure 27: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10745.

Figure 28: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10775.

Figure 29: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10782.

Figure 30:A figure depicting the hydrophobicity/hydróphilicity profile of the protein.

Figure 31:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03977. Figure 32:A figure depicting the hydrophobicity/hydrophilicity profile of 5 the protein encoded by clone HP10649. Figure 33:A figure depicting hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10779. Figure 34: A figure depicting 10 the hydrophobicity/hydrophilicity profile of the encoded by clone HP10790. Figure 35: A figure depicting the hydrophobicity/hydrophilicity profile of the protein 15 encoded by clone HP10793. Figure 36: A figure depicting the hydrophobicity/hydrophilicity profile of protein the encoded by clone HP10794. Figure 37: A figure depicting the 20 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10797. Figure 38: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10798. 25 Figure 39: A figure depicting the

10

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10800.

Figure 40:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10801.

Figure 41:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03596.

Figure 42:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03882.

Figure 43:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03903.

15 Figure 44: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03974.

Figure 45: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03978.

Figure 46: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10735.

Figure 47: A figure depicting the 25 hydrophobicity/hydrophilicity profile of the protein

encoded by clone HP10750.

5

10

15

20

25

Figure 48: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10777.

Figure 49: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10780.

Figure 50:A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10795.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequence of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a

12

template. Alternatively, incorporation of the translated region into a suitable expression vector by the method known in the art may lead to expression of the encoded protein in large quantities in prokaryotic cells such as *Escherichia coli* and *Bacillus subtilis*, or eukaryotic cells such as veasts, insect cells and mammalian cells.

5

10

15

20

25

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as *Escherichia coli*, a recombinant

10

15

20

25

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultured. Thus, the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region and expressing the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells and Chinese hamster ovary CHO cells, budding yeasts, fission yeasts, silkworm cells, and Xenopus oocytes. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method and the DEAE-dextran method.

10

15

20

25

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or dialysis, centrifugation, precipitation, solvent ultrafiltration, gel filtration, SDS-PAGE, isoelectric ion-exchange chromatography, hydrophobic focusing,

15

chromatography, affinity chromatography and reverse phase chromatography.

5

10

15

20

25

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come within the scope of the protein of the present invention.

. 5

10

15

20

25

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A) * RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be CDNA libraries by synthesizing cloned from the oligonucleotide on the basis of base sequences of portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known

in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which are then used as the primers.

5

10

15

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

	.:.	NT.c	IID 37			•
sequ	ience	No.	HP No.	Cell	Number	Number of
•		•		· ·	of bases	amino
						acids
1,	11,	21	HP03613	Kidney	2865	578
2,	.12,	22	нр03700	Kidney	3323	243
3,	13,	23	HP03935	Kidney	1585	461
4,	14,	24	HP10755	Kidney	2122	647
5,	15,	25	HP10760	Kidney	1775	446
6,	16,	26	HP10764	Kidney	1372	197
7,	17,	27	HP10768	Kidney	2074	540
8,	18,	28	HP10769	Kidney	2252	442
9,	19,	29	HP10784	Kidney	1461	262
10,	20,	30	HP10786	Kidney	1122	152
31,	41,	51	HP03727	Kidney	1617	335
32,	42,	52	HP03801	Umbilical cord blood	1749	208
33,	43,	53	HP03883	Kidney	1402	406
34,	44,	54	HP03913	Kidney	2474	618
35,	45,	55	HP10753	Umbilical cord blood	- 3296	208
36,	46,	56	HP10758	Kidney	1818	502
37,	47,	57	HP10771	Kidney .	1646	336
38,	48,	58	HP10778	Kidney	1416	340
39,	49,	59	HP10781	Kidney	1927	223
40,	50,	60	HP10785	Kidney	1419	309
61,	71,	81	HP03878	Kidney	2016	599 .
62,	72,	82	HP03884	Kidney	1446	81
63,	73,	83	HP03934	Kidney	2467	654
64,	74,	84	HP03949	Kidney	1450	390
65,	75,	85	HP03959	Kidney	1897	452

Table 1 (continued)

Sequence No	o. HP No.	Cell	Number	Number of
•			of	amino
	 	ن ن	bases	acids
66, 76,	86 HP03983	Kidney	1856	490
67, 77.,	87 HP10745	Umbilical cord blood	2173	392
68, 78,	88 HP10775	Kidney	1934	538
69, 79,	89 HP10782	Kidney	1880	102
70, 80, 9	90 HP10787	Kidney	2295	442
91, 101, 13	11 нроз977	Kidney	1894	227
92, 102, 13	12 HP10649	KB	2413	352
93, 103, 1	13 HP10779	Kidney _	2376	130
94, 104, 13	14 HP10790	Kidney	1155	330
95, 105, 11	L5 HP10793	Kidney	1329	350
96, 106, 11	l6 HP10794	Kidney	1387	113
97, 107, 11	l7 HP10797	Kidney	1158	189
98, 108, 11	L8 HP10798	Kidney	1106	277
99, 109, 11	19 HP10800	Kidney	1907	274
100, 110, 12	0 HP10801	Kidney	1816	390
121, 131, 14	11 нроз696	Umbilical cord blood	1961	395
122, 132, 14	12 HP03882	Kidney	2194	550
123, 133, 14	13 нр03903	Kidney	2753	218
124, 134, 14	4 нроз974	Kidney	2085	596
125, 135, 14	15 нр03978	Kidney	2208	467
126, 136, 14	6 нр10735	Umbilical cord blood	2044	476
127, 137, 14	7 HP10750	Umbilical cord blood	2176	449
128, 138, 14	8 HP10777	Kidney	1363	105
129, 139, 14	9 HP10780	Kidney	1043	81
130, 140, 15	0 HP10795	Kidney	2435	552

The same clones as the cDNAs of the present

20

invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

5

10

15

20

25

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA

10

15

20

25

fragments each consisting of a sense strand and an antisense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom [JP-A 7-313187]. Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by

22

administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

5 Research Uses and Utilities

10

15

20

25

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA in patients to identify potential disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques;

23

and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for highthroughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction.

10

20

25

Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are known to those skilled in the References art. well without limitation include methods disclosing such "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

15 <u>Nutritional Uses</u>

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or

25

polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In

20

25

Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assavs for cytokine production and/or spleen cells, lymph node cells proliferation of thymocytes include, without limitation, those described in: 10 Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon y, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. 15 Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988;

Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A., 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens

(which will identify, among others, proteins that affect

APC-T cell interactions as well as direct T-cell effects by

measuring proliferation and cytokine production) include,

without limitation, those described in: Current Protocols in

Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H.

Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing

Associates and Wiley-Interscience (Chapter 3, In Vitro

assays for Mouse Lymphocyte Function; Chapter 6, Cytokines

and their cellular receptors; Chapter 7, Immunologic studies

in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA

77:6091-6095, 1980; Weinberger et al., Eur. J. Immun.

5

10

15

20

25

28

11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania fungal infections malaria spp. and various candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a

protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia disease and autoimmune graft-versus-host gravis, inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. suppression is desired which immune conditions, in (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

5

10

15

20

25

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an response already in progress ormay immune preventing the induction of an immune response. functions of activated T cells be inhibited by may suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable

30

from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent
has ceased. Operationally, tolerance can be demonstrated by
the lack of a T cell response upon reexposure to specific
antigen in the absence of the tolerizing agent.

5

10

15

20

25

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will situations of tissue, skin and organ useful in transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. tissue transplants, rejection of the Typically, in transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the without transmitting cells the corresponding immune

costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

10

15

20

25

Blocking antigen function may also therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue which promote the production of cytokines autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating be useful in therapy. also may immune responses, Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

5

10

15

20

25

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and

thereby activate, T cells in vivo.

5

10

15

20

25

another application, regulation up In enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II

10

15

20

25

molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated chain, the invariant can also protein, such as cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan,

25

A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3. In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et 5 al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 10 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994. 15

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will

10

25

identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which identify, among others, proteins expressed by dendritic activate naive T-cells) include, without cells that limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental 15 Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of 20 Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which

will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

5

10

15

20

25

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby

10

15

20

25

indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation granulocytes and cells such as myeloid of (i.e., traditional activity) CSF monocytes/macrophages useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting proliferation of megakaryocytes arowth and consequently of platelets thereby allowing prevention or disorders such platelet as treatment of various thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without aplastic anemia and paroxysmal nocturnal limitation, hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or with conjunction bone marrow (i.e., in ex-vivo with peripheral progenitor or transplantation transplantation (homologous or heterologous)) as cells or genetically manipulated for gene therapy.

5

10

. 15

20

25

40

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay,

15

20

25

Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

10 <u>Tissue Growth Activity</u>

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial

defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo

5

10

15

20

25

tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced; or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendoninduce ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel ligament defects. syndrome and other tendon or compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be proliferation of neural cells and useful for for regeneration of nerve and brain tissue, i.e. for treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral peripheral nerve system, such as injuries, nervous

15

20

25

peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic and Shy-Drager syndrome. Further lateral sclerosis, conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, cord disorders, head trauma spinal stroke. Peripheral cerebrovascular diseases such as neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A

10

15

20

protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

10

15

20

25

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include,

without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial cells. epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells.

Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

5

10

15

20

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a

protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

10

15

A protein of the present invention may also
demonstrate activity as receptors, receptor ligands or
inhibitors or agonists of receptor/ligand interactions.

Examples of such receptors and ligands include, without
limitation, cytokine receptors and their ligands, receptor
kinases and their ligands, receptor phosphatases and their
ligands, receptors involved in cell-cell interactions and

50

their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

5

10

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

10

15

20

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the cell inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, rejection, nephritis, complement-mediated hyperacute cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein

of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

5

10

15

20

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body for example, shape (such as, part size or augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization,

storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent° behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20 The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the

10

15

20

25

literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having
Hydrophobic Domains

The cDNA library of epidermoid carcinoma cell line KB (W098/11217), and the cDNA libraries constructed from human kidney mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

5

10

15

20

25

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a $T_N T$ rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 µl of [35] methionine (Amersham) (0.37 MBq/µl), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2mercaptoethanol, 2% SDS solution, 0.025% Bromophenol Blue and 20% glycerol) was added to 3 µl of the reaction solution. The resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

5

10 .

15

20

25

vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [³⁵S]cysteine or [³⁵S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

5

10

15

20

25

A plasmid vector containing the cDNA of present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na₂HPO₄, 2 mM KH, PO, pH 7.2) at a concentration of 2 µg/µl. 25 µl each (a total of 50 µl) of the thus prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN3 was added to the supernatant to a concentration of 0.01% and the mixture was then stored at 4°C. The generation of an antibody was confirmed by immunostaining of COS7 cells into which the corresponding vector had been introduced, or by Western blotting using a

58

cell lysate or a secreted product.

5

10

15

20

25

(5) Clone Examples

<HP03613> (SEQ ID NOS: 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP03613 obtained from cDNA library of human kidney revealed the structure consisting of a 337-bp 5'-untranslated region, a 1737-bp ORF, and a 791-bp 3'untranslated region. The ORF encodes a protein consisting of 578 amino acid residues and there existed eleven putative transmembrane domains. Figure 1 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse organic cation transporter—like protein (Accession No. BAA23875). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse organic cation transporter—like protein (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

of 70.4% in the entire region.

Table 2

15

20

- HP ASİLGSLSPEALLAISIPPGPNQRPHQCRRFRQPQWQLLDPNATATSWSEADTEPCVDGW

 *** *. *. *** **** *** ********* .. ***** *** ***

 MT ASIPGDLGPDVLLAVSIPPGPDQQPHQCLRFRQPQWQLTESNATATNWSDAATEPCEDGW
 - - MT LLVSVSGTAAAFMPTFPLYCLFRFLLASAVAGVMMNTAS------

HP LGLLAVMEWTAARARPLVMTLNSLGFSFGHGLTAAVAYGVRDWTLLQLVVSVPFFLCFLY

.****. *... *******. ***. **... *******. * . ***. **. **. ***. * . ***. **. **. **... ***. * . * . ***. * . * . ***. * . * . ***. * . *

- MT ----LLMEWTSAQGSPLVMTLNALGFSFGQVLTGSVAYGVRSWRMLQLAVSAPFFLFFVY
- 25 HP SWYLAESARWLLTTGRLDWGLQELWRVAAINGKGAVQDTLTPEVLLSAMREELSMGQPPA

PCT/JP00/09359

WO 01/49728

5

10

15 .

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792236). However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

<HP03700> (SEQ ID NOS: 2, 12, and 22)

Determination of the whole base sequence of the cDNA insert of clone HP03700 obtained from cDNA library of human kidney revealed the structure consisting of a 45-bp 5'-untranslated region, a 732-bp ORF, and a 2546-bp 3'untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed three putative domains. Figure 2 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. method, of Doolittle translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 25,561 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse yolk sac permease-like molecule 1 (Accession No. AAA92292). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse yolk sac permease-like molecule 1 (MY). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.5% in the N-terminal region of 231 amino acid residues.

Table 3

- 20 HP SGGVWGD
 - MY LGSCQIPLCSWRPSSTSTHICIPVFRLLSVLAPVACVWFISAFVGTSVIPLQLSEPSDAP

MY GTIGLLGYPGRYFPYCGPLVLAPSLVVAGLSAHKEVAQFCSAHWGLALLLILLMVVCSQH

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

10

15

20

25

sequences that shared a homology of 90% or more (for example, Accession No. AW167520). However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03935> (SEQ ID NOS: 3, 13, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP03935 obtained from cDNA library of human kidney revealed the structure consisting of a 72-bp 5'-untranslated region, a 1386-bp ORF, and a 127-bp 3'untranslated region. The ORF encodes a protein consisting of 461 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-In vitro Doolittle method, of the present protein. translation resulted in formation of a translation product of 56 kDa that was somewhat larger than the molecular weight of 52,052 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 61 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ser-Ser at position 193 and Asn-Ser-Thr at position 236). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from histidine at position 32.

10

20

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. CAB41318). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.8% in the intermediate region of 214 amino acid residues.

- 15 Table 4
 - HP MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEE
 - HP ELDAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLD
 - AT MPTIFFFRYVFLLVVISLVGFSIAEKVNSSGGMVWSSVRDEAELVEDSGVVIGEQDQ
- 25 AT IDGGFSSLDGMLHWAIGHSDPATLKEAAKDAEKMS-LDELQKRQLELKELVEKLK---MPS

	HP	DMQ1MVKL1NKFNSSSSSLEEK1AALFDLEYYVHQMDNAQDLLSFGGLQVV1NGLNSTEP
	•	* * ** *** ** ***. ** ***
	АТ	${\tt NAKLMQIAIDDLNNSSLSLEDRHRALQELLILVEPIDNANDLSKSGGLRVVAGELNHDDT}$
5		
	HP	LVKEYAAFVLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHF
•		* **. *** * . ** ** *
	AT	EVRKLAAWVLGKASQNNPFVQEQVLELGALTT-LIKMVNSSSTEEAVKALFAVSALIRNN
10	НР	PYAQRQFLKLGGLQVLRTLVQEKGTEV-LAVRVVTLLYDLVTEKMFAEEEAELTQEMSPE
		.* *. * .** ** *. **
	ΑТ	IAGQDLFFAAHGYIMLRDVMNNGSLDMKLRRKAVFLVGDLAESQLQNTEKDELPIFKDRL
	HP	KLQQYRQVHLLPGLWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLG
15		
	ΑT	FLKSVVDLIVVLDLDLQEKALTAIQTLLQLKSIEPQVLKESCGLEEALERMKLQLEESMA
	НР	RTLASLQAEYQVLASLELQDGEDEGYFQELLGSVNSLLKELR
20	ΑТ	DEVKRDYAADVES I RCEVEL TEROKLOLL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW025017) among ESTs. However, since they are

66

partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10755> (SEQ ID NOS: 4, 14, and 24)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10755 obtained from cDNA library of human kidney revealed the structure consisting of a 55-bp 5'-untranslated region, a 1944-bp ORF, and a 123-bp 3'untranslated region. The ORF encodes a protein consisting of 647 amino acid residues and there existed eight putative Figure depicts transmembrane domains. the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0062 (Accession No. BAA06685). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0062 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention,

respectively	y. The	both	prot	ceins	s shar	ed a	homology	of	30.6%
in the C-te	rminal	region	of	408	amino	acid	residues.		

Table 5

5

- HP MASLVSLELGLLLAVLVVTATASPPAGLLSLLTSGQGALDQEALGGLLNTLADRVHCTNG
- HP PCGKCLSVEDALGLGEPEGSGLPPGPVLEARYVARLSAAAVLYLSNPEGTCEDTRAGLWA
- 10 HP SHADHLLALLESPKALTPGLSWLLQRMQARAAGQTPKTACVDIPQLLEEAVGAGAPGSAG
 - KI RVYADAPAKLLLPPPAAWDLAVRLRGAEAASERQVYSVTM
 - HP GVLAALLDHVRSGSCFHALPSPQYFVDFVFQQHSSEVPMTLAELSALMQRLGVGREAHSD

15

- KI KLLLLHPAFQSCLLLTLLGLWRTTPEAHASSLGAPAISAASFLQDLIHRYGEGDSLTLQQ
- HP HSHRHRGASSRDPVPLISSSNSSSVWDTVCLSARDVMAAYGLSEQAGVTPEAWAQLSPAL

- 20 KI LKALLNHLDVGVGRGNVTQHVQGHRNLSTCFSSGDLFTAHNFSEQSRIGSSELQEFCPTI

 - KI LQQLDSRACTSENQENEENEQTEEGRPSAVEVWGYGLLCVTVISLCSLLGASVVPFMK-K

	HP	GVAHYILQTFLSLAVGALTGDAVLHLTPKVLGLHTHSEEGLSPQPTWRLLAMLAGLYAFF
		* *. **. * *
	KI	TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFNPL-EDYYVSKSAVVFGGFYLFF
		•
5	НР	LFENLFNLLL-PRDPEDLEDGPCGHSS-HSHGGHSHGVSLQLAPSELRQPKPPHEG
		. **** .* .* .* .* .* .
	KI	FTEKILKILLKQKNEHHHGHSHYASESLPSKKDQEEGVMEKLQNGDLDHMIPQHCSSELD
		·
	HP	SRADLVAEESPELLNPEPRRLS-PELRLLPYMITLGDAVHNFADGLAV
10		*.*.** *****.****
	KI	GKAPMVDEKVIVGSLSVQDLQASQSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDGLAI
. •		
	НР	GAAFASSWKTGLATSLAVFCHELPHELGDFAALLHAGLSVRQALLLNLASALTAFAGLYV
		. *. * * **. *. *. **** **. **.
15	ΚI	GASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLGLAF
	НР	ALAVGVSEESEAWILAVATGLFLYVALCDMLPAMLKVRDPRPWLLFLLHNVGLLG
		* *. ***. *. *.* *. *. * * * * *
	ΚI	GILAG-SHFSANWIFALAGGMFLYISLADMFPEMNEVCQEDERKGSILIPFIIQNLGLLT
20		
	НР	GWTVLLLLSLYEDDITF
		*.***
	ΚI	GFTIMVVLTMYSGQIQIG

base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA42490) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10760> (SEQ ID NOS: 5, 15, and 25)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10760 obtained from cDNA library of human kidney revealed the structure consisting of a 61-bp 5'-untranslated region, a 1341-bp ORF, and a 373-bp 3'untranslated region. The ORF encodes a protein consisting of 446 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 48 kDa that was somewhat smaller than the molecular weight of 49,468 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 50 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 144 and Asn-Ile-Ser at position Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal

70

sequence, allows to expect that the mature protein starts from glutamic acid at position 27.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human 25 kDa trypsin inhibitor (Accession No. BAA25066). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human 25 kDa trypsin inhibitor (TI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 33.5% in the intermediate region of 185 amino acid residues.

15 .

10

5

Table 6

HP

MLHPETSPGRGHLLAVLLALLGTAWAEVWPPQLQEQAPMAG

TI MIAISAVSSALLFSLLCEASTVVLLNSTDSSPPTNNFTDIEAALKAQLDSADIPKARRKR

25

HP RTLQVGWNMQLLPAGLASFVEVVSLWFAEGQRYSHA-AGEC----AR--NATCTHYTQL

** * * * . . . * * . . *******.

TI RFLGQN--LSVRTGRYRSILQLVKPWYDEVKDYAFPYPQDCNPRCFGPMCTHYTQM

5 HP VWATSSQLGCGRHLCSAGQA--AI---EAF-VCAYSPGGNWEVNGKTIIPYKKGAWCSLC

*****...** * * **.*. * * * . . *** * . . *** * *

TI VWATSNRIGCAIHTCQNMNVWGSVWRRAVYLVCNYAPKGNW--IGEA--PYKVGVPCSSC

HP TASVSGCFKAWDHAGGLCEVPRNPCRMSCQNHGRLNISTCHCHCPPGYTGRYCQVRCSLQ

10 . . * . *

TI PPSYGGSCTDNLCFPGVTSNYLYWFK

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792411) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20 <HP10764> (SEQ ID NOS: 6, 16, and 26)

Determination of the whole base sequence of the CDNA insert of clone HP10764 obtained from cDNA library of human kidney revealed the structure consisting of a 326-bp 5'-untranslated region, a 594-bp ORF, and a 452-bp 3'-untranslated region. The ORF encodes a protein consisting of

10

20

25

197 amino acid residues and there existed two putative Figure 6 depicts the transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. In Doolittle method, of the translation resulted in formation of a translation product of 25 kDa that was somewhat larger than the molecular weight of 21,508 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H45965) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 <HP10768> (SEQ ID NOS: 7, 17, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10768 obtained from cDNA library of human kidney revealed the structure consisting of a 100-bp 5'-untranslated region, a 1623-bp ORF, and a 351-bp 3'untranslated region. The ORF encodes a protein consisting of 540 amino acid residues and there existed nine putative Figure 7 depicts domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. In vitro method, of the Doolittle translation resulted in formation of a translation product

73

of high molecular weight.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA459236) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10769> (SEQ ID NOS: 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10769 obtained from cDNA library of human kidney revealed the structure consisting of a 11-bp 5'-untranslated region, a 1329-bp ORF, and a 912-bp 3'untranslated region. The ORF encodes a protein consisting of 442 amino acid residues and there existed two putative depicts transmembrane domains. Figure 8 hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 52 kDa that was somewhat larger than the molecular weight of 49,101 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI625881) among ESTs. However, since they are

74

partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10784> (SEQ ID NOS: .9, 19, and 29)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10784 obtained from cDNA library of human kidney revealed the structure consisting of a 60-bp 5'-untranslated region, a 789-bp ORF, and a 612-bp 3'untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed six putative Figure domains. 9 depicts transmembrane the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, .of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was almost identical with the molecular weight of 27,551 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rice (Oryza sativa) hypothetical protein (Accession No. AAD39600). Table 7 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rice hypothetical protein (OS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 40.0% in the intermediate region of 195 amino acid residues.

5 Table 7

HP

10

MTPEDPEETQPLLGPPGGSAPRGR

- OS MSFRGEESGGEDGGRTASASDLRKPFLHTGSWYKMSSAGGGGGMGSRLGSSAYSLRDSSV
- OS SAVLCTLIVALGPIQFGFTCGFSSPTQDAI----ISDLGLTLSEFSLFGSLSNVGAMVGA
- HP VLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVY

 . .* . . *** **. . . * . *. *. *. *. ****. . . ** * *. ****
 - OS IASGQIAEYIGRKGSLMIAAIPNIIGWLAISFAKDSSFLFMGRLLEGFGVGVISYVVPVY
 - HP ISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPE
- - OS IAEIAPQTMRGALGSVNQLSVTIGILLAYLLGMFVPWRILSVLGILPCSILIPGLFFIPE
 - HP TPRFLLTQHRRQEAAPGLVRCGHGVQHECLRRLLQADPGWPWQLLARGHLGACLCTAC
 .**.*..*
- OS SPRWLAKMGKMEDFESSLQVLRGFETDIAVEVNEIKRSVQSSRRRTTIRFADIKQKRYSV

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW028826) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10786> (SEQ ID NOS: 10, 20, and 30)

Determination of the whole base sequence of the 10 cDNA insert of clone HP10786 obtained from cDNA library of human kidney revealed the structure consisting of a 78-bp 5'-untranslated region, a 459-bp ORF, and a 585-bp 3'untranslated region. The ORF encodes a protein consisting of 15 152 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In vitro Doolittle method, of translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular 20 weight of 16,904 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW052022) among ESTs.

77

However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03727> (SEQ ID NOS: 31, 41, and 51)

Determination of the whole base sequence of the 5 cDNA insert of clone HP03727 obtained from cDNA library of human kidney revealed the structure consisting of a 254-bp 5'-untranslated region, a 1008-bp ORF, and a 355-bp 3'untranslated region. The ORF encodes a protein consisting of 335 amino acid residues and there existed one putative 10 . transmembrane domain. Figure 11 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product 15 of 41 kDa that was somewhat larger than the molecular weight of 37,999 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to protein MG87 from diabetic rat kidney (Accession No. AAC64190). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and protein MG87 from diabetic rat kidney (RD). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

20

25

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.2% in the entire region.

- 5 Table 8

 - RD MGSSSSTALARLGLPGQPRSTWLGVAALGLAAVALGTVAWRRARPRRRRQLQQVGTVSKV
- 10
- RD WIYPIKSCKGVSVCETECTDMGLRCGKVRDRFWMVVKEDGHMITARQEPRLVLVTITLEN
- - RD NYLMLEAPGMEPIVLPIKLPSSNKIHDCRLFGLDIKGRDCGDEVARWFTSYLKTQAYRLV
- - RD QFDTKMKGRTTKKLYPSESYLQNYEVAYPDCSPIHLISEASLVDLNTRLQKKVKMEYFRP
- 25 RD NIVVSGCEAFEEDTWDELLIGDVEMKRVLSCPRCVLTTVDPDTGIIDRKEPLETLKSYRL

79

HP CDPSERELYKLSPLFGIYYSVEKIGSLRVGDPVYRMV

**** . . **. ***** * . ***********

RD CDPSVKSLYQSSPLFGMYFSVEKIGSLRVGDPVYRMVD

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI912794) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03801> (SEQ ID NOS: 32, 42, and 52)

Determination of the whole base sequence of the cDNA insert of clone HP03801 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 158-bp 5'-untranslated region, a 627-bp ORF, and a 964-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed six putative transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was almost identical with the molecular weight of 22,526 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-15 (Accession No. AAD27724). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-15 (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The amino acid sequences of the two proteins were completely different each other in the N-terminal, intermediate and C-terminal regions although partial match was observed.

15 Table 9

CP VLFILIFSLIFKLEELRAALVLVVLLIAGGLFMFTYKSTQFNVEGFAWCWGPRSSVAFAG

20

25

5

10

- CP PSPRCSCRRLNSASRIPSTPCSTCSHSCSWGLFPLFAVFEGLHLSTSEKIFRFQDTGLLL
- HP RVLGSLFLGGILAFGLGFSEFLLVSRTSSLTLSIAGIFKEVCTLLLAAHLLGDQISLLNW

81

- CP RVLGSLFLGGILAFGLGFSEFLLVSRTSSLTLSIAGIFKEVCTLLLAAHLLGDQISLLNW
- HP LGFALCLSGISLHVALKALHSRGNPESLPEASVFCSSPCDS

5 ****

10

20

25

CP LGFASASREYPSTLPSKPCIPEVMVAPRP

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI741613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 <HP03883> (SEQ ID NOS: 33, 43, and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03883 obtained from cDNA library of human kidney revealed the structure consisting of a 59-bp 5'-untranslated region, a 1221-bp ORF, and a 122-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed eight putative transmembrane domains. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

10

15

of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the similar to human choline/ethanolamine protein was phosphotransferase (Accession No. NP 006081). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and choline/ethanolamine phosphotransferase (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 66.8% in the entire region. addition, the amino acid sequence from position 70 to position 311 of the present protein shared a homology of 98.3% with human AAPT1-like protein (Accession No. AAD44019).

Table 10

20 HP

MAAGAGAGSAPRWLRALSEPLSAAQLRRLEEHRYSAAG

*** **. ***** . **

CE MSGHRSTRKRCGDSHPESPVGFGHMSTTGCVLNKLFQLPTPPLSRHQLKRLEEHRYQSAG

25

	CE	RSLLEPLMQGYWEWLVRRVPSWIAPNLITIIGLSINICTTILLVFYCPTATEQAPLWAYI
	НР	LCALGLFIYQSLDAIDGKQARRTNSCSPLGELFDHGCDSLSTVFMAVGASIAARLGTYPD
		** ***********************************
5	CE	ACACGLFIYQSLDAIDGKQARRTNSSSPLGELFDHGCDSLSTVFVVLGTCIAVQLGTNPD
	HР	WFFFCSFIGMFVFYCAHWQTYVSGMLRFGKVDVTEIQIALVIVFVLSAFGGATMWDYTIP
		*. ***. * * *. ********* **** . ** * * * * * * *.
	CE	WMFFCCFAGTFMFYCAHWQTYVSGTLRFGIIDVTEVQIFIIIMHLLAVIGGPPFWQSMIP
LO		
	·HP	ILEIKLKILPVLGFLGGVIFSCSNYFHVILHGGVGKNGSTIAGTSVLSPGLHIGLIIILA
		. *. * . * * * . * * * * * * * * *
	CE	VLNIQMKIFPALCTVAGTIFSCTNYFRVIFTGGVGKNGSTIAGTSVLSPFLHIGSVITLA
15	HР	IMIYKKSATDVFEKHPCLYILMFGCVFAKVSQKLVVAHMTKSELYLQDTVFLGPGLLFLD
		*************** ** * **********.*.*.*.*.
	CE	AMIYKKSAVQLFEKHPCLYILTFGFVSAKITNKLVVAHMTKSEMHLHDTAFIGPALLFLD
		·
	HP	QYFNNFIDEYVVLWMAMVISSFDMVIYFSALCLQISRHLHLNIFKTACHQAPEQVQVLSS
20		****. *****. ***. * ** * * ** **
	CE	QYFNSFIDEYIVLWIALVFSFFDLIRYCVSVCNQIASHLHIHVFRIKVSTAHSNHH

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

84

Accession No. AI816449) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5 <HP03913> (SEQ ID NOS: 34, 44, and 54).

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03913 obtained from cDNA library of human kidney revealed the structure consisting of a 344-bp 5'-untranslated region, a 1857-bp ORF, and a 273-bp 3'untranslated region. The ORF encodes a protein consisting of 618 amino acid residues and there existed thirteen putative transmembrane domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 5 (Accession No. NP_000444). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 5 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 48.3% in the entire region.

5 Table 11

. 10

- HP MEVKNFAVWDYVVFAALFFISSGIGVFFAIKERKKATSREFLVGGRQMSFGPVG

 * .*. *** *** ... *.*** ... ***

 SC MEAVETGERPTFGAWDYGVFALMLLVSTGIGLWVGLARGGQRSAEDFFTGGRRLAALPVG

- HP LGGLKAVVWTDAFQMVVMIVGFLTVLIQGSTHAGGFHNVLEQSTNGSRLHIFDFDVDPLR

 20 .**. *******. **. ** .** . ** .. ** .. **. .. **.

 SC VGGMKAVVWTDVFQVVVMLSGFWVVLARGVMLVGGPRQVLTLAQNHSRINLMDFNPDPRS
- 25 SC RYTFWTFVVGGTLVWLSMYGVNQAQVQRYVACRTEKQAKLALLINQVGLFLIVSSAACCG

	НР	LIMYSHFKDCDPWTSGIISAPDQLMPYFVMEIFATMPGLPGLFVACAFSGTLSTVASSIN
		***** * ****** ** .***.**.***.*
	SC	${\tt IVMFVFYTDCDPLLLGRISAPDQYMPLLVLDIFEDLPGVPGLFLACAYSGTLSTASTSIN}$
5		
•	HP	ALATVTFEDFVKSCFPHLSDKLSTWISKGLCLLFGVMCTSMAVAASVM-GGVVQASLSIH
		..** *** *
	SC	${\tt AMAAVTVEDLIKPRLRSLAPRKLVIISKGLSLIYGSACLTVAALSSLLGGGVLQGSFTVM}$
10	HP	${\tt GMCGGPMLGLFSLGIVFPFVNWKGALGGLLTGITLSFWVAIGAFIYPAPASKTWPLPLST}$
		* **. ** * ** * * *. *. **. **. *
	SC	GVISGPLLGAFILGMFLPACNTPGVLAGLGAGLALSLWVALGATLYPPSEQTMRVLPSSA
	• .	•
	HP	DQCIKSNVTATGPPVLSSRPGIADTWYSISYLYYSAVGCLGCI
15		**.*. **
	SC	${\small \texttt{ARCVALSVNASGLLDPALLPANDSSRAPSSGMDASRPALADSFYAISYLYYGALGTLTTV}.}$
	HP	VAGVIISLITGRQRGEDIQPLLIRPVCNLFCFWSKKYKTLCWCGVQHDSGTEQENLENGS
		. *. ** . **
20	SC	LCGALISCLTGPTKRSTLAPGLLWWDLARQTASVAPKEEVAILDDNLVKGPEELPTGNKK
	HP	ARKQGAESVLQNGLRRESLVHVPGYDPKDKSYNNMAFETTHF
	0.5	PDODL DEVENDE DOV GOVER DO A GOUERD GLOVED GODDOOD THE
	SC	PPGFLPTNEDRLFFLGQKELEGAGSWTPCVGHDGGRDQQETNL

87

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI733508) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20 .

25

<HP10753> (SEQ ID NOS: 35, 45, and 55)

Determination of the whole base sequence of the cDNA insert of clone HP10753 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 141-bp 5'-untranslated region, a 627-bp ORF, and a 2528-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 21,518 predicted from the ORF. Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from methionine at position 32.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW162064) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10758> (SEQ ID NOS: 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10758 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 1509-bp ORF, and a 284-bp 3'untranslated region. The ORF encodes a protein consisting of 502 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 60 kDa that was somewhat larger than the molecular weight of 55,848 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 66 kDa. In addition, there exists in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Val-Ser at position 67, Asn-Tyr-Thr at position 103, Asn-

10

15

20

25

Phe-Thr at position 156, Asn-Ile-Thr at position 183, Asn-Phe-Thr at position 197 and Asn-Lys-Ser at position 283). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T96740) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10771> (SEQ ID NOS: 37, 47, and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10771 obtained from cDNA library of human kidney revealed the structure consisting of a 36-bp 5'-untranslated region, a 1011-bp ORF, and a 599-bp 3'-untranslated region. The ORF encodes a protein consisting of 336 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 41 kDa that was somewhat larger than the molecular weight

90

of 37,924 predicted from the ORF.

5

10

15

20

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human interferon-α induced protein (Accession No. AR053364). The C-terminal portion downstream from methionine at position 51 of the protein of the present invention matched with the C-terminal portion downstream from methionine at position 12 of human interferon- α induced protein. However, the putative transmembrane domain at the N-terminus observed for the protein of the present invention was not present in human interferon-α induced protein.

The search of the GenBank using the base sequences the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA452543) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10778> (SEQ ID NOS: 38, 48, and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10778 obtained from cDNA library of human kidney revealed the structure consisting of a 173-bp 5'-untranslated region, a 1023-bp ORF, and a 220-bp 3'untranslated region. The ORF encodes a protein consisting of 340 amino acid residues and there existed six putative 25

91

transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA429745) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10781> (SEQ ID NOS: 39, 49, and 59)

Determination of the whole base sequence of the cDNA insert of clone HP10781 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 672-bp ORF, and a 1167-bp 3'-untranslated region. The ORF encodes a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was larger than the molecular weight of 24,239 predicted from the ORF. In this case, the addition of

a microsome led to the formation of a product of 33 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Thr at position 70 and Asn-Thr-Ser at position 71). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from gluthamine at position 23.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA334609) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10785> (SEQ ID NOS: 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10785 obtained from cDNA library of human kidney revealed the structure consisting of a 171-bp 5'-untranslated region, a 930-bp ORF, and a 318-bp 3'-untranslated region. The ORF encodes a protein consisting of 309 amino acid residues and there existed six putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

93

translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI822041) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03878> (SEQ ID NOS: 61, 71, and 81)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03878 obtained from cDNA library of human kidney revealed the structure consisting of a 77-bp 5'-untranslated region, a 1800-bp ORF, and a 139-bp 3'untranslated region. The ORF encodes a protein consisting of 599 amino acid residues and there existed ten putative domains. transmembrane Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to flounder (Pseudopleuronectes americanus) Na/Pi cotransport system protein (Accession No.

94

AAB16821). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and flounder Na/Pi cotransport system protein (PN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.1% in the region of 545 amino acid residues other than the N-terminal and C-terminal regions.

5

10

Table 12

HP	${\tt MPSSLPGSQVPHPTLDAVDLVEKTLRNEGTSSSAPVLEEGDTDPWTLPQLKDTSQPWKEL}$
	* *. ** * *. * **
PN	MAPRQKVGTNSSPKPALDDDAPVGNIPPAYSTLDLVSDDPDADPWNAPELIDNGVKWSEL
HP	RVAGRLRRVAGSVLKACGLLGSLYFFICSLDVLSSAFQLLGSKVAGDIFKDNVVLSNPVA
	. *** ** . *** **************** *. *.
PN	DTKGKMMRVLTGLLKLVALLGLLYFFICSLDVLSSAFQLVGGKAAGDIFKDNAVLANPVA
HP	GLVIGVLVTALVQSSSTSSSIVVSMVAAKLLTVRVSVPIIMGVNVGTSITSTLVSMAQSG
	************************************ **.*******
PN	GLVIGVLVTVMVQSSSTSSSIVVSMVSSGLLDVQSAVPIIMGANIGTSVTNTIVAMMQAG
HP	DRDEFQRAFSGSAVHGIFNWLTVLVLLPLESATALLERLSELALGAASLTPRAQAPDILK
	. **. *. *
PN	DRNEFRRAFAGATVHDFFNWLAVLILLPLEVATGVLYKLTHLIIESFNIQGGEDAPDLLN
НР	VLTKPLTHLIVQLDSDMIMSSATGNATNSSLIKHWCGTTGQPTQENSSCGAFGPC
	*. *. ***. ***** *
PN	VITDPLTDSIVQLDKNVISLIATNDEAAVNMSLIKEWCKTKTNVTFWNATVENCTAGALO
HP	TEKNSTAPADRLPCRHLFAGTELTDLAVGCILLAGSLLVLCGCLVLIVKLLN
	*
PN	WERCHI TWTMI NKTWI INGERCKHI FANTTI PDI AVCI II I AI SI RVI CTCI II IVKI I N

- HP SVLRGRVAQVVRTVINADFPFPLGWLGGYLAVLAGAGLTFALQSSSVFTAAVVPLMGVGV
 *. *. *. ** *. **** *. *** *. . *** *. . *** *. . *** *. . *** *. . ***

 *. *. ** * . . *** *. . ** *. . ** *. . ** *. . *** *. . *** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. . ** *. .
- PN SMLKGQVAVVIKRVINTDFPFPFCWVTGYIAIFVGAGMTFIVQSSSVFTSAITPLVGIGV
- PN ISLERAYPLTLGSNIGTTTTAILAAMASPAEKLKESLQIALCHFFFNVMGILLFYPIPFT
- PN RVPIRLARGLGNHTAKYRWFAGLYLVLCFLVFPLTVFGLSMAGWQVLVGVGVPFVVLIVF
- HP VILVTVLQRRRPAWLPVRLRSWAWLPVWLHSLEPWDRLVTRCCPCNVCSPPKATTKEAYC

 . *. *. * * . ** * . ** ** . * . ***
- PN VIVVNVMQSRCPRFLPKVLQDWDFLPRPLHSMAPWDTVVTSALGFCGKYCCCCKCCKKT
- HP YENPEILASOOL
- PN EDENMKNNTKSLEMYDNPSMLKDEDTKEASKATHL

97

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792826) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03884> (SEQ ID NOS: 62, 72, and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03884 obtained from cDNA library of human kidney revealed the structure consisting of a 336-bp 5'-untranslated region, a 246-bp ORF, and a 864-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed one putative transmembrane domain. Figure 22 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyteof Doolittle method, the present protein. translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 8,928 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat cortexin (Accession No. P41237). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat

cortexin (RC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

Table 13

5

10

20

- - RC MSAPWTLSPEPLPPSTGPPVGAGLDVEQRTVFAFVLCLLVVLVLLMVRCVRILLDPYSRM
- RC PASSWTDHKEALERGQFDYALV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI791379) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03934> (SEQ ID NOS: 63, 73, and 83)

Determination of the whole base sequence of the

10

15

20

25

cDNA insert of clone HP03934 obtained from cDNA library of human kidney revealed the structure consisting of a 39-bp 5'-untranslated region, a 1965-bp ORF, and a 463-bp 3'-untranslated region. The ORF encodes a protein consisting of 654 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 80 kDa that was larger than the molecular weight of 74,110 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human β -galactosidase (Accession No. AAC12775). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human β -galactosidase (BG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.6% in the entire region.

Tab	16	. 1	4

	•
HP.	MAPKKLSCLRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHY . * *** * * * * * . * . * . * . * . *
BG	MPGFLVRILLLLVLLLLGPTRGLRNATQRMFEIDYSRDSFLKDGQPFRYISGSIHY
HP	FRVPRVLWADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLL

BG	SRVPRFYWKDRLLKMKMAGLNAIQTYVPWNFHEPWPGQYQFSEDHDVEYFLRLAHELGLL.
HP	VILRPGPYICAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNG

BG	VILRPGPYICAEWEMGGLPAWLLEKESILLRSSDPDYLAAVDKWLGVLLPKMKPLLYQNG
HP	GNIISIQVENEYGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLY
	* . * . * * * * * * * * * * * * * * * *
BG	GPVITVQVENEYGSYFACDFDYLRFLQKRFRHHLGDDVVLFTTDGAHKTFLKCGALQGLY
HP	TTVDFGPADNMTKIFTLLRKYEPHGPLVNSEYYTGWLDYWGQNHSTRSVSAVTKGLENML
	*******. *. * **. **. ***. **** ***
BG	TTVDFGTGSNITDAFLSQRKCEPKGPLINSEFYTGWLDHWGQPHSTIKTEAVASSLYDIL
HP	KLGASVNMYMFHGGTNFGYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVIS
	*****. *** *****. ***** *******
BG	ARGASVNLYMF I GGTNF AYWNGAN—SPYAAQPTSYDYDAPLSEAGDLTEKYFALRNI I Q

HP	KFQEVPLGPLPPPSPKMMLGPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGF
	. ** **. **. **. * * * **. ***. *.
BG	KFEKVPEGPIPPSTPKFAYGKVTLEKLKTVGAALDILCPSGPIKSLYPLTFIQVKQHYGF
HP	MLYRTYMTHTIFEPTPFWVPNNGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDI
	*****. * ******* *** *** .* . * . *** * **.
BG	VLYRTTLPQDCSNPAPLSSPLNGVHDRAYVAVDGIPQGVLERNNVITLNITGKAGATLDL
HP	LVENMGRLSFGSNSSDFKGLLKPPILGQTILTQWMMFPLKIDNLVKW-FPLQ
	********* ***** * ***. *
BG	LVENMGRVNYGAYINDFKGLYSNLTLSSNILTDWTIFPLDTEDAVRSHLGGWGHRDSGHH
HP	LPKWPYPQAP-SGPTFYSKTFPILGSVGDTFLYLPGWTKGQVWINGFNLGRYWTKQ
	* *. ** . *. * ** *************
BG	DEAWAHNSSNYTLPAFYMGNFSIPSGIPDLPQDTFIQFPGWTKGQVWINGFNLGRYWPAR
HP	GPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLDKPILNSTSTLHRTH
	*** **. ** *
BC	GPQLTLFVPQHILMTSAP-NTITVLELEWAPCSSDDPELCAVTFVDRPVIGSSVTYDHPS
HI	PINSLSADTLSASEPMELSGH
BO	G KPVEKRLMPPPPQKNKDSWLDHV

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI907720) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03949> (SEQ ID NOS: 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP03949 obtained from cDNA library of human kidney revealed the structure consisting of a 244-bp 5'-untranslated region, a 1173-bp ORF, and a 33-bp 3'untranslated region. The ORF encodes a protein consisting of 390 amino acid residues and there existed ten putative transmembrane domains. Figure 24 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 16 (Accession No. NM_004696). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 16

103

(HS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 98.7% in the region other than the N-terminal and C-terminal regions.

5

able	15
HP	MGMDDCDSFFPGPLVAIICDILGEKTTSILGAFVVTGGYLISSWATSIPFLCVTMGLL
	* . ****************************
HS	WIGSIMSSLRFCAGPLVAIICDILGEKTTSILGAFVVTGGYLISSWATSIPFLCVTMGLL
	···· .
HP	PGLGSAFLYQVAAVVTTKYFKKRLALSTAIARSGMGLTFLLAPFTKFLIDLYDWTGALIL

HS	PGLGSAFLYQVAAVVTTKYFKKRLALSTAIARSGMGLTFLLAPFTKFLIDLYDWTGALIL
HP	FGAIALNLVPSSMLLRPIHIKSENNSGIKDKGSSLSAHGPEAHATETHCHETEESTIKDS

HS	FGAIALNLVPSSMLLRPIHIKSENNSGIKDKGSSLSAHGPEAHATETHCHETEESTIKDS
·	
HP	TTQKAGLPSKNLTVSQNQSEEFYNGPNRNRLLLKSDEESDKVISWSCKQLFDISLFRNPF

HS	TTQKAGLPSKNLTVSQNQSEEFYNGPNRNRLLLKSDEESDKVISWSCKQLFDISLFRNPF
HP	FYIFTWSFLLSQLAYFIPTFHLVARAKTLGIDIMDASYLVSVAGILETVSQIISGWVADQ

HS	FYIFTWSFLLSQLAYFIPTFHLVARAKTLGIDIMDASYLVSVAGILETVSQIISGWVADQ
HP	NWIKKYHYHKSYLILCGITNLLAPLATTFPLLMTYTICFAIFAGGYLALILPYLYDLCRN

HS	NWIKKYHYHKSYLILCGITNLLAPLATTFPLLMTYTICFAIFAGGYLALILPVLVDLCRN
HP	STVNRFLGLASFFAGMAVLSGPPIAGNTFTTF

HS	STVNRFI.GLASFFAGMAVI.SGPPIAGWI.YDYTOTYNGSFYFSGICVII SSUSPERVDI AR

105

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW239415) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03959> (SEQ ID NOS: 65, 75, and 85)

Determination of the whole base sequence of the cDNA insert of clone HP03959 obtained from cDNA library of human kidney revealed the structure consisting of a 7-bp 5'untranslated region, a 1359-bp ORF, and a 531-bp 3'untranslated region. The ORF encodes a protein consisting of 452 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 53 kDa that was somewhat larger than the molecular weight of 50,798 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 55 kDa. In addition, there exists in the amino acid sequence of this protein three sites at which N-glycosylation may occur (Asn-Phe-Ser at position 64, Asn-Gly-Ser at position 126 and Asn-Val-Thr at position 362). Application of the (-3,-1) rule, a

106

method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 27.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana putative carboxypeptidase (Accession No. AAD21510). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana putative carboxypeptidase (AC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.3% in the region of 323 amino acid residues other than the N-terminal and C-terminal regions.

able	e 16
HP	MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATN
-	
AC	MDPKLGDTSKLDQHTCFGG I IKV
-	
IID	SCKNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGT
111	
	*. *. *. *. ***. *. ****. ****. ****. * ****. ***
AC.	HIELKILPSHGLSSSGSKGASGVGIGNFQEVGPLDTFLKPRNSTWLKKADLLFVDSPVGA
HP	GFSYVNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGL
	*. *. *. * *. * * *
AC	GYSFVEGNQKDLYVKSDEEAAQDLTKLLQQLFNKNQTLNQSPLFIVAESYGGKIAVKLGL
מנו	EI VVA I ODOTI VONDA CVAL ODOWI ODVDOVI OWODVI VONGLI DDVOL ADVOVIA DOV
111	ELYKA I QRGT I KCNFAGVALGDSW I SPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVL
	*. *. * * * ****** * * . * * . * * . * * **
AC	SVIDAVQSGKLKLHLGGVILGDSWISPEDFVFSWGPLLKHVSRLDDNGLDSSNSLAEKIK
HP	NAVNKGLYREATELWGKAEMI IEQNTDGVNFYN-ILTKSTPTSTMESSLEFTQSHLV
	* * . **. * . * . *. *. *. *. *
AC	TQIKNGEYVGATQTWMDLENLISSKSNFVDFYNFLLDTGMDPVSLTTSLKIKKEEKIKKY
HP	CLCQ-RHVRHLQRDALSQLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPV
	. * . *
4.0	
AC	SRYLNDMRSLSDVEDVEGDLDKLMNGVIKKKLKIIPNDLIWGNNSDDVFTAMEAAFMKPV
HP	ISIVDELLEAGINVTVYNGQLDLIVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSL
	*. ********. ******. * . * * ****. **.
AC	I EDVDELLATGVDVT I YNGQLDV I CSTSGTEAWVHKLR

108

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T59065) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03983> (SEQ ID NOS: 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HPO3983 obtained from cDNA library of human kidney revealed the structure consisting of a 42-bp 5'-untranslated region, a 1473-bp ORF, and a 341-bp 3'-untranslated region. The ORF encodes a protein consisting of 490 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 22.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human ClqR protein (Accession No. AAB53110). Table 17 shows the comparison between amino acid

109

sequences of the human protein of the present invention (HP) and human ClqR protein (HC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 25.8% in the N-terminal region of 310 amino acid residues. Since the positions of 17 cysteine residues are conserved, in particular, the two proteins are considered to assume similar higher-order structures.

5

Table 17

HP	MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGA
	* * **
HC	MATSMGLLLLLLLTQPGAGTGADTEAVVC-VGTACYTAHSGKLSAAEAQNHCNQNGGN
HP	LSTVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSS
	*, **,
HC	LATVKSKEEAQHVQRVLAQLLRREAALTARMSKFWIGLQREKGKCLDPSLPLKGFSWV
HP	DPGGLESDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRAN ** * . * . * . * . * . * . * . * .
HC	-GGGEDTPYSNWHKELRNSCISKRCVSLLLDLSQPLLPNRLPKWSEGPCGSPGSPGSNIE
HP	GYLCKYQFEVLCPAPRPGAASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPIS
	*. **. * * *
HC	GFVCKFSFKGMCRPLALGGPGQVTYTTPFQTTSSSLEAVPFASAANVACGEGDKDETQSH
HP	-VTCIADEIGA-RWDKLSGDVLCPCPGRYLRAGKCAELPNCLD-DLGGFACECATGFE
	* * * * - * * * * * * * * *
HC	YFLCKEKAPDVFDWGSSGPLCVSPKYGCNFNNGGCHODCFEGGDGSFLCGCRPGRR

- HP LGKDGRSCVTSGEGQPTLGGTGVPTRRPPATATSPVPQRTWPIRVDEKLGETPLVPEQDN
 - HC LLDDLVTCASRNPCSSSPCRGGATCVLGPHGKNYTCRCPQGYQLDSSQLDCVDVDECQDS
 - HP SVTSIPEIPRWGSQSTMSTLQMSLQAESKATITPSGSVISKFNSTTSSATPQAFDSSSAV
 - HC PCAQECVNTPGGFRCECWVGYEPGGPGEGACQDVDECALGRSPCAQGCTNTDGSFHCSCE
 - HP VFIFVSTAVVVLVILTMTVLGLVKLCFHESPSSQPRKESMGPPGLESDPEPAALGSSSAH
 - ${\tt HC} \quad {\tt EGYVLAGEDGTQCQDVDECVGPGGPLCDSLCFNTQGSFHCGCLPGWVLAPNGYSCTMGPV}$
 - HP CTNNGVKVGDCDLRDRAEGALLAESPLGSSDA
 - HC SLGPPSGPPDEEDKGEKEGSTVPRAATASPTRGPEGTPKATPTTSRPSLSSDAPITSAPL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R51653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10745> (SEQ ID NOS: 67, 77, and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10745 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 261-bp 5'-untranslated region, a 1179-bp ORF, and a 733-bp 3'-untranslated region. The ORF encodes a protein consisting of 392 amino acid residues and there existed nine putative transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R59881) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

5

10

5

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10775 obtained from cDNA library of human kidney revealed the structure consisting of a 30-bp 5'-untranslated region, a 1617-bp ORF, and a 287-bp 3'untranslated region. The ORF encodes a protein consisting of 538 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 66 kDa that was larger than the molecular weight of 55,133 predicted from the ORF. Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 23.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA366320) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10782> (SEQ ID NOS: 69, 79, and 89)

Determination of the whole base sequence of the contained insert of clone HP10782 obtained from cDNA library of

114

human kidney revealed the structure consisting of a 70-bp 5'-untranslated region, a 309-bp ORF, and a 1501-bp 3'-untranslated region. The ORF encodes a protein consisting of 102 amino acid residues and there existed three putative transmembrane domains. Figure 29 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI815463) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10787> (SEQ ID NOS: 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10787 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp 5'-untranslated region, a 1329-bp ORF, and a 912-bp 3'-untranslated region. The ORF encodes a protein consisting of 442 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

115

of 50 kDa that was almost identical with the molecular weight of 50,562 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 56 kDa. In addition, there exists in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 83, Asn-Phe-Thr at position 89, Asn-Ala-Ser at position 113 and Asn-Lys-Ser at position 151).

5

acid sequence of the present protein revealed that the protein was similar to rat PV-1 (Accession No. AAD41524).

Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat PV-1 (RP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 61.1% in the entire region.

Tab	ole 18
HP	${\tt MGLAMEHGGSYARAGGSSRGCWYYLRYFFLFVSLIQFLIILGLVLFMVYGNVHVSTESNL}$
	. * *. * ************
RP.	${\tt MGLSMDR-SPYSRTGDRDRGCWYYLRYFFLFVSLIQFLIILGLVLFMIYGNVHATTESSL}$
HP	${\tt QATERRAEGLYSQLLGLTASQSNLTKELNFTTRAKDAIMQMWLNARRDLDRINASFRQCQ}$
	. *** ** **** **. *. **. ** * . ** ** * ** ******
RP	RATEIRADNLYSQVVGLSAAQANLSKQLNISTLVKDTVMQQLLTTRREVERINASFRQCQ
HP	GDRY I YTNNQRYMAA I ILSEKQCRDQFKDMNKSCDALLFMLNQKVKTLEVE I AKEKT I CT
***	** * . * . ** ******** . * . * . ** **
RP	GDLITYINYNRFIAAIILSEKQCQEQLKEGNKTCEALLFKLGEKVKTLEMEVVKEKAVCS
NI.	ADPI I I I MIMILIANI I POPUACAFAPURONICI ORUMPI URAPULLI PRIMIPA AURINIA OR
HP	KDKESVLLNKRVAEEQLVECVKTRELQHQERQLAKEQLQKVQALCLPLDKDKFEMDLRNL
	. *. * . ** ** * . * *. ** *. * ***. ***. ***
RP	KDKDSLLAGKRQAEMQQEACGKAREQQKQDQQVTEEQLRKVQSLCLPLDQEKFQADVLNV
ım	WRDSIIPRSLDNLGYNLYHPLGSELASIRRACDHMPSLMSSKVEELARSLRADIERVARE
HP	
	****. *****. **. * . * . * . *. * . * .
RP	WRDSLVYRSLDNIGYH-Y-SLMPEFSSLRRTCESLPGIMTTKVEELARGLRAGIERVTRI
HP.	NSDLQRQKLEAQQGLRASQEAKQKVEKEAQAREAKLQAECSRQTQLALEEKAVLRKERDI
	.***** ******* **. ******
RP	NGELRRQKLELERA I QGEREARTRAGTEAQARETQLRTECARQTQLALEEKAALRTQRDI
ЙЬ	LAKELEEKKREAEQLRMELAIRNSALDTCIKTKSQPMMPVSRPMGPVPNPQPIDPASLEI
	* ** *** **** * * ******. *. ** * * ** *
рÞ	I EDOI PADKORI POI DTPVOVDI SAI DTCVKAKSLPATO-PRI PCPPPNPPP I DPASI P

117

HP FKRKILESQRPPAGIPVAPSSG

. ***** *. . *. **

RP FKKRILESQRPPLVNPAVPPSG

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL041217) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03977> (SEQ ID NOS: 91, 101, and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03977 obtained from cDNA library of human kidney revealed the structure consisting of a 35-bp 5'-untranslated region, a 684-bp ORF, and a 1175-bp 3'-untranslated region. The ORF encodes a protein consisting of 227 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was larger than the molecular weight of 25,926 predicted from the ORF. Application of the (-3,-1)

118

rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 30.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human gp25L2 (Accession No. CAA62380). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human gp25L2 (GP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 78.5% in the region other than the N-terminal region.

10

Table 19 ,

HP	${\tt MAGVGAGPLRAMGRQALLLLALCATGAQGLYFHIGETEKRCFIEEIPDETMVIGNYRTQM}$
	* **. * * . * **********************
GP	MRTLLLVLWLATRGS-ALYFHIGETEKKCFIEEIPDETMVIGNYRTQL
HP	WDKQKEVFLPSTPGLGMHVEVKDPDGKVVLSRQYGSEGRFTFTSHTPGDHQICLHSNSTR
	. ***. * . *. ***. ** ****** **. *. *
GP	YDKQREEYQPATPGFGMCVEVKDPEDKVILAREYGSEGRFTFTSHTPGEHQICLHSNSTK
HP	MALFAGGKLRVHLDIQVGEHANNYPEIAAKDKLTELQLRARQLLDQVEQIQKEQDYQRYR
	*****. ************. *. **. *****. ****. *** ******
GP	FSLFAGGMLRVHLDIQVGEHANDYAEIPAKDKLSELQLRVRQLVEQVEQIQKEQNYQRWR
HP	EERFRLTSESTNQRVLWWSIAQTVILILTGIWQMRHLKSFFEAKKLV
	***** ********* **. ** *. **********
CΡ	FFRFROTSFSTNORVI WWSILOTLILVAIGVWOMRHLKSFFEAKKLV

120

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AR052481, U.S. Patent No. 5831052) in patent data. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10649> (SEQ ID NOS: 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP10649 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 114-bp 5'-untranslated region, a 1059-bp ORF, and a 1240-bp 3'-untranslated region. The ORF encodes a protein consisting of 352 amino acid residues and there existed one putative transmembrane domain. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,774 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Epiphyas postvittana nucleopolyhedrovirus apoptosis inhibitor iap-1 (Accession No. AAD19698). Table 20 shows the comparison between amino

121

acid sequences of the human protein of the present invention (HP) and Epiphyas postvittana nucleopolyhedrovirus apoptosis inhibitor iap-1 (EP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the C-terminal region of 49 amino acid residues.

Table 20

HP MESGGRPSLCQFILLGTTSVVTAALYSVYRQKARVSQELKGAKKVHLGEDLKSILSEAPG HP KCVPYAVIEGAVRSVKETLNSQFVENCKGVIQRLTLQEHKMVWNRTTHLWNDCSKIIHQR MSATSPLY I INVCENAHEVSAEHVFNVL I ERHNSFENYP I DNVAF VNSL I INGF EP HP TNTVPFDLVPHEDGVDVAVRVLKPLDSVDLGLETVYEKFHPSIQSFTDVIGHYISGERPK EP RYQNYDDAVMCEYCSAVIKNWHEDDCVEFVHATLSPYCVYANKIAQNENFANNLSTNAFL HP GIQETEEMLKVGATLTGVGELVLDNNSVRLQPPKQGMQYYLSSQDFDSLLQRQESSVKLW EP VTPGKPICVYSRLTHTNARKSTFEDYWPAALQHLVANISEAGMFHTKLGDETACFFCDCR HP KVLALVFGFATCATLFFILRKQYLQRQERLRLKQMQEEFQEHEAQLLSRAKPEDRESLKS EP VRDWLPNDDPWQRHAIANPQCYFVVCIKGDEFCNAVRQRDELAPLQSVVALEHVSNDENM HP ACVVCLSSFKSCVFLECGHVCSCTECYRALPEPKKCPICRQAITRVIPLYNS EP ECKICLERQRDTVLLPCRHFCVCMQCYFAL-DNKCPTCRQDVTDFVKIFVV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T50032) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10779> (SEQ ID NOS: 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP10779 obtained from cDNA library of human kidney revealed the structure consisting of a 34-bp 5'-untranslated region, a 393-bp ORF, and a 1949-bp 3'-untranslated region. The ORF encodes a protein consisting of 130 amino acid residues and there existed two putative transmembrane domains. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL042495) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, this gene was mapped on chromosome 9q34 (Accession No. AC001644).

5

10

15

20

25

<HP10790> (SEQ ID NOS: 94, 104, and 114)

Determination of the whole base sequence of the cDNA insert of clone HP10790 obtained from cDNA library of human kidney revealed the structure consisting of a 109-bp 5'-untranslated region, a 993-bp ORF, and a 53-bp 3'untranslated region. The ORF encodes a protein consisting of 330 amino acid residues and there existed one putative transmembrane domain. Figure 34 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 34 kDa that was smaller than the molecular weight of 36,642 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW241940) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10793> (SEQ ID NOS: 95, 105, and 115)

Determination of the whole base sequence of the cDNA insert of clone HP10793 obtained from cDNA library of human kidney revealed the structure consisting of a 70-bp 5'-untranslated region, a 1053-bp ORF, and a 206-bp 3'-

WO 01/49728

5

10

15

20

25

untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was somewhat larger than the molecular weight of 37,134 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA326569) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10794> (SEQ ID NOS: 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10794 obtained from cDNA library of human kidney revealed the structure consisting of a 146-bp 5'-untranslated region, a 342-bp ORF, and a 899-bp 3'-untranslated region. The ORF encodes a protein consisting of

126

113 amino acid residues and there existed one putative transmembrane domain. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 12,017 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI346561) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 < HP10797> (SEQ ID NOS: 97, 107, and 117)

5

10

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10797 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 570-bp ORF, and a 459-bp 3'-untranslated region. The ORF encodes a protein consisting of 189 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product

of 22 kDa that was almost identical with the molecular weight of 21,053 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 23.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356938) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, this gene was mapped on chromosome 4 (Accession No. AC004067).

<HP10798> (SEQ ID NOS: 98, 108, and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10798 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 834-bp ORF, and a 247-bp 3'untranslated region. The ORF encodes a protein consisting of 277 amino acid residues and there existed seven putative transmembrane domains. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 27 kDa that was smaller than the molecular weight of

128

30,685 predicted from the ORF.

5

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H92084) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10800> (SEQ ID NOS: 99, 109, and 119)

10 Determination of the whole base sequence of the cDNA insert of clone HP10800 obtained from cDNA library of human kidney revealed the structure consisting of a 158-bp 5'-untranslated region, a 825-bp ORF, and a 924-bp 3'untranslated region. The ORF encodes a protein consisting of 15 274 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of In translation resulted in formation of a translation product 20 of 33 kDa that was somewhat larger than the molecular weight of 31,108 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45 kDa. In addition, there exists in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-25 Ile-Thr at position 145, Asn-Ile-Thr at position 151, AsnWO 01/49728

5

15

20

25

Ile-Thr at position 164, Asn-Ile-Thr at position 183, and Asn-Thr-Thr at position 256).

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA729308) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10801> (SEQ ID NOS: 100, 110, and 120)

Determination of the whole base sequence of the CDNA insert of clone HP10801 obtained from cDNA library of human kidney revealed the structure consisting of a 133-bp 5'-untranslated region, a 1173-bp ORF, and a 510-bp 3'-untranslated region. The ORF encodes a protein consisting of 390 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation with the addition of microsome resulted in formation of a product of 50 kDa that was larger than the molecular weight of 41,097 predicted from the ORF. In addition, there exists in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-

130

Leu-Ser at position 108, Asn-Val-Thr at position 169, Asn-Leu-Ser at position 213, Asn-Val-Thr at position 236 and Asn-Gly-Thr at position 307). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 30.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human A33 antigen (Accession No. NP_005805). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human A33 antigen (HA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 28.7% in the intermediate region of 265 amino acod residues.

Table 21

HP	MI SLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWY-TLHGE
	, *, *, *, *, *, *, *, *, *, *, *, *, *,
HA	MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSS
HP	VSSSQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEK
	***. * ** * *
HA	REGLIQWDKLLLTHTERVVIWPFSNKNYIHG-ELYKNRVSISNNAEQSDASITIDQLTMA
НР	DSGPYSCSVNVQDKQGKSRGHS1KTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRS
	*. *. *. ***
HA	DNGTYECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEG
НР	KPAVQYQWDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTL
	.*. ** *.* ***.* * *.*. ** **
HA	SPTPQYSWKR-YNILNQEQPLAQPASGQPVSLKNISTDTSGYYICTSSNEEGTQFCNITV
HP	EV-STGPGAAVVAGAVVGTLVGLGLLAGLVLLYHCRGKALEEPANDIKEDAIAPRTLPWF
	. * *, *, . * . **, *
-	AVRSPSMNVALYVGIAVGVVAALIIIGIIIYCCCCRGKDDNTEDKEDARPNREAYEE
HP	KSSDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPI
ПΛ	PDENT PET SDEDREENNVDNEENDSTCDESDNHI NA

132

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R33685) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03696> (SEQ ID NOS: 121, 131, and 141)

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP03696 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 184-bp 5'-untranslated region, a 1188-bp ORF, and a 589-bp 3'-untranslated region. The ORF encodes a protein consisting of 395 amino acid residues and there existed one putative transmembrane domain. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat cell surface glycoprotein GP42 (Accession No. P23505). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and rat cell surface glycoprotein GP42 (RC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of

133

the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.1% in the intermediate region of amino acid residues 62-280.

Table 22

HP MSGMEEYTTVSGEVLQRWKIPSFKENQTLSMGAATVQSRGQYSCSGQVMYIPQTF	TQTSE
--	-------

RC MLLWMYLLLC

- RC VSMTEAQELFQDPVLSRLNSSETSD---LLLKCTTKVDPNKPASELFYSFYKDNHIIQNR
- RC SHNPLFFISEANEENSGLYQCVVDAKDGTIQKKSDYLDIDLCTSVSQPVLTLQHEATNLA
- HP VGDMVQLLCEAQRGSPPILYSFYLDEKIVGNHSAPCGGTTSLLFPVKSEQDAGNYSCEAE

 . *.. *. * ** ******** * ... **. * ... ***. * ... ****. **. **
- RC EGDKVKFLCETQLGSLPILYSFYMDGEILGEPLAPSGRAASLLISVKAEWSGKNYSCQAE
- HP NSVSRERSEPKKLSLKGSQVLFTPASNWLVPWLPAS-LLGLMVIAAALLVYVRSWRKAGP

 *. ***. ***** * * ***. *
- RC NKVSRDISEPKKFPLVVSGTASMKSTT-VVIWLPVSCLVGWPWLLRF

135

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA446524) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03882> (SEQ ID NOS: 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03882 obtained from cDNA library of human kidney revealed the structure consisting of a 57-bp 5'-untranslated region, a 1653-bp ORF, and a 484-bp 3'untranslated region. The ORF encodes a protein consisting of 550 amino acid residues and there existed ten putative domains. Figure 42 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. method, of translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse solute carrier family 22 (cation transporter)-like protein (Accession No. NP_033229). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse

136

solute carrier family 22 (cation transporter)-like protein (MS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 48.9% in the entire region.

Tak	ole 23
HP	MAFSKLLEQAGGYGLFQTLQYLTFILPCLMIPSQMLLENFSAAIPGHRCWTHMLDNG
	*******.* ** . * * * * . ******
MS	MAFPELLDRYGGLGRFQLFQTVALVTPILWVTTQNMLENFSAAVPHHRCWVPLLDNSTSQ
НР	SAVSTNMTPKALLTISIPPGPNQGPHQCRRFRQPQWQLLDPNATATSWSEADTEPCVDGW
MS	ASIPGDLGPDVLLAVSIPPGPDQQPHQCLRFRQPQWQLTESNATATWWSDAATEPCEDGW
HP	VYDRSVFTSTIVAKWDLVCSSQGLKPLSQSIFMSGILVGSFIWGLLSYRFGRKPMLSWCC
	. *. * * *****. **. * ***** * * **** *. *
MS	VYDHSTFRSTIVTTWDLVCNSQALRPMAQSIFLAGILVGAAVCGHASDRFGRRRVLTWSY
HP	LQLAVAGTSTIFAPTFVIYCGLRFVAAFGMAGIFLSSLTLMVEWTTTSRRAVTMTVVGCA
	* *. ** * *** . ** . **. * **
MS	LLVSVSGTAAAFMPTFPLYCLFRFLLASAVAGVMMNTASLLMEWTSAQGSPLVMTLNALG
HP	FSAGQAALGGLAFALRDWRTLQLAASVPFFAISLISWWLPESARWLIIKGKPDQALQELR
	** **. * * *. ** ****. *. *** ********
MS	FSFGQVLTGSVAYGVRSWRMLQLAVSAPFFLFFVYSWWLPESARWLITVGKLDQGLQELQ
HI	KVARINGHK-EAKNLTIEVLMSSVKEEVASAKEPRSVLDLFCVPVLRWRSCAMLVVNFSL
	. * * . * . * * * * * * * * *
MS	S RVAAVNRRKAEGDTLTMEVLRSAMEEEPSRDKAGASLGTLLHTPGLRHRTIISMLCWFAF
Н	P LISYYGLVFDLQSLGRDIFLLQALFGAVDFLGRATTALLLSFLGRRTIQAGSQAMAGLAI
	*** ***. ** ********. * *** **. * **** * ** *
M:	s_GFTFYGLALDLOALGSNIFLLQALIGIVDFPVKTGSLLLISRLGRRLCQVSFLVLPGLCI

WO 01/49728

PCT/JP00/09359

138

HP LANMLVPQDLQTLRVVFAVLGKGCFGISLTCLTIYKAELFPTPVRMTADGILHTVGRLGA

*. *. ***... ** .. **** **... ***** **... ***** **... * **

MS LSNILVPHGMGVLRSALAVLGLGCLGGAFTCITIFSSELFPTVIRMTAVGLCQVAARGGA

HP GNRQEAVTVESTSL

. **.*

10

15

20

25

MS HDTPDGSILMSTRL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI242210) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03903> (SEQ ID NOS: 123, 133, and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03903 obtained from cDNA library of human kidney revealed the structure consisting of a 108-bp 5'-untranslated region, a 657-bp ORF, and a 1988-bp 3'-untranslated region. The ORF encodes a protein consisting of 218 amino acid residues and there existed three putative

139

transmembrane domains. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 26 kDa that was somewhat larger than the molecular weight of 23,487 predicted from the ORF.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse prominin (Accession No. NP_032961). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse prominin (MP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.6% in the region other than the N-terminal and C-terminal regions.

Tal	ble 24
HP	MKHTLALLAPLLGLGLGLALSQLAAGATDCKFLGPAEHLTFTPAARARWLAPRVRAPGLL
	. * * * . *
MP	MALYFSALLLLGLCGKISSEGQPAFHNTPGAMNYELPT-TKYETQDTFNAGIV
HP	DSLYGTVRRFLSVVQLNPFPSELVKALLNELA-SVKVNEVVRYEAGYVVCAVIAGLYL
	** *. **. *** * ** . * ** ** ** *
MP	GPLYKMVHIFLNVVQPNDFPLDLIKKLIQNKNFDISVDSKEIALYEIGVLICAILGLLFI
HP	LLVPTAGLCFCCCRCHRRCGGRVKTEHK-ALAÇERAALMVFLLLTTLLLLIGVVCAFVTN
	.*.*.* ** **** *
МP	ILMPLVGCFFCMCRCCNKCGGEMHQRQKQNAPCRRKCLGLSLLVICLLMSLGIIYGFVAN
HP	QRTHEQMGPSIEAMPETLLSLWGLYSDVPQVSTVTPHPHVPL
	*. *.
MP	QQTRTRIKGTQKLAKSNFRDFQTLLTETPKQIDYVVEQYTNTKNKAFSDLDGIGSVLGGR

141

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792608) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

20 .

25

<HP03974> (SEQ ID NOS: 124, 134, and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03974 obtained from cDNA library of 10 human kidney revealed the structure consisting of a 41-bp 5'-untranslated region, a 1791-bp ORF, and a 253-bp 3'untranslated region. The ORF encodes a protein consisting of 596 amino acid residues and there existed twelve putative 15 transmembrane domains. Figure depicts 44 hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rabbit (Oryctolagus cuniculus) sodium/glucose cotransporter protein (Accession No. AAA66065). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP)

142

and rabbit sodium/glucose cotransporter protein (OC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 89.1% in the entire region.

Т	a	h	1	е	2	5
1	a	v	ㅗ	$\overline{}$	_	·

	,
HP	M-AANSTSDLHTPGTQLSVADIIVITVYFALNVAVGIWSSCRASRNTVNGYFLAGRDMTV
	* *. ***** *. **. ****. **. ***********
0C	${\tt MVADNSTSDPHAPGPQLSVTDIVVITVYFALNVAVGIWSSCRASRNTVSGYFLAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRASRNTVSGYFTAGRASRNTVSGYFTAGRDMTWARDSCRASRNTVSGYFTAGRASRNTVSGYFTAG$
HP	WPIGASLFASSEGSGLFIGLAGSGAAGGLAVAGFEWNATYVLLALAWVFVPIYISSEIV7

0C	WPIGASLFGSSEGSGLFIGLAGSGAAGGLAVAGFDWNATYVLLALAWVFGAIYISSEIVT
HP	LPEYIQKRYGGQRIRMYLSVLSLLLSVFTKISLDLYAGALFVHICLGWNFYLSTILTLGIFTED LYAGALFVHICLGWNFYLSTILTLGIFTED LYAGALFYHICLGWNFYLSTILTLGIFTED LYAGALFVHICLGWNFYLSTILTLGIFTED LYAGALFVHICTTUR LYAGALFT
	*. ******. ***************************
0C	LAEYIQKRFGGQRIRMYLSVLSLLLSVFTKISLDLYAGALFVHICLGWNFYLSTILTLTI
•	*
HP	TALYTIAGGLAAVIYTDALQTLIMVVGAVILTIKAFDQIGGYGQLEAAYAQAIPSRTIAN
	******. ***. *******************. ***. **. ****. ****. *****. **
በሮ	TAI YTI TCCI VAVI YTDAI OTI IMWCAULI ALKARUO I DCVCOMBAAVADA I DCDTUAN

ΙP	TTCHLPRTDAMHMFRDPHTGDLPWTGMTFGLTIMATWYWCTDQVIVQRSLSARDLNHAKA
	******. ******. <u>*</u> *********************
)C .	TTCHLPRADAMHMFRDPYTGDLPWTGMTFGLTIMATWYWCTDQVIVQRSLSARNLNHAKA
IP	GSILASYLKMLPMGLIIMPGMISRALFPDDVGCVVPSECLRACGAEVGCSNIAYPKLVME

OC	${\tt GSILASYLKMLPMGLMIMPGMISRALFPDEVGCVVPSECLRACGAEIGCSNIAYPKLVME}$
HP	${\tt LMPIGLRGLMIAVMLAALMSSLTSIFNSSSTLFTMDIWRRLRPRSGERELLLVGRLVIVA$
	. ****** ******. ************
0C	${\tt LMPVGLRGLMIAVMMPALMSSLSSIFNSSSTLFTMDIWRRLRPCASERELLLVGRLVIVV$
HP	LIGVSVAWIPVLQDSNSGQLFIYMQSVTSSLAPPVTAVFVLGVFWRRANEQGAFWGLIAG

0C	LIGVSVAWIPVLQGSNGGQLFIYMQSVTSSLAPPVTAVFTLGIFWQRANEQGAFWGLLAG
HP	LVVGATRLVLEFLNPAPPCGEPDTRPAVLGSIHYLHFAVALFALSGAVVVAGSLLTPPPQ
	*. ********* **. ******* ********* ******
0C	LAVGATRLVLEFLHPAPPCGAADTRPAVLSQLHYLHFAVALFVLTGAVAVGGSLLTPPPR
HP	SVQIENLTWWTLAQDVPLGTKAGDGQTPQKHAFWARVCGFNAILLMCVNIFFYAYFA
	. **********************
0C	RHQIENLTWWTLTRDLSLGAKAGDGQTPQRYTFWARVCGFNAILLMCVNIFFYAYFA

145

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI793336) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03978> (SEQ ID NOS: 125, 135, and 145)

Determination of the whole base sequence of the cDNA insert of clone HP03978 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1404-bp ORF, and a 705-bp 3'untranslated region. The ORF encodes a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 55 kDa that was somewhat larger than the molecular weight of 52,352 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 57 kDa. In addition, there exists in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Arg-Thr at position 78 and Asn-His-Ser at position 161). Application of the (-3,-1) rule, a method for predicting the

146

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 22.

The search of the protein database using the amino 5 acid sequence of the present protein revealed that the protein was similar to human tubulo-interstitial nephritis antigen (Accession No. BAA84949). Table 26 shows comparison between amino acid sequences of the human protein of the present invention (HP) and human tubulo-interstitial 10 nephritis antigen (TA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.0% in the region other than the N-terminal region. 15

Tab	le 26
HP	MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQ
•	*. **
TA I	MWTGYKILIFSYLTTEIWMEKQYLSQREVDLEAYFTRNHTVLQGTRFKRAIFQGQYCRNF
HP 1	DLCCRGRADDCALP-YLG-AICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQ
	. ** . *. *. * * * * *
TA	G-CCEDRDDGCVTEFYAANALCYCDKFCDRENSDCCPDYKSFCREEKEWPPHTQPWYPE(
HP	CMHGGRIYPVLGTYWDNCNRCTCQENRQWQCDQEPCLVDPDMIKAINQGNYGWQAGNHSA
	. **. *** **. *. *** ** *. *
TA	CFKDGQHYEEGSVIKENCNSCTC-SGQQWKCSQHVCLVRPELIEQVNKGDYGWTAQNYS(
HP 1	FWGMTLDEGIRYRLGTIRPSSSVMNMHEIYTVLNPGEVLPTAFEASEKWPNLIHEPLDQ(
	**************.* **. * ** *
TA !	FWGMTLEDGFKFRLGTLPPSLMLLSMNEMTASLPATTDLPEFFVASYKWPGWTHGPLDQF
HP !	NCAGSWAFSTAAVASDRYSIHSLGHMTPVLSPQNLLSCDTHQQQGCRGGRLDGAWWFLRI
	. ***. **. ** *. *. *. *. *****. ** * * * ***. **.
TA I	NCAASWAFSTASVAADRIAIQSKGRYTANLSPQNLISCCAKNRHGCNSGSIDRAWWYLRI
HP 1	RGVVSDHCYPFSGRERDEAGPAPPCMMHSRAMGRGKRQATAHCPNSYVNNNDIYQVTPV
	. **. *.
TA :	RGLVSHACYPLFKDQNATNNGCAMASRSDGRGKRHATKPCPNNVEKSNRIYQCSPPY
HP :	RLGSNDKEIMKELMENGPVQALMEVHEDFFLYKGGIYSHTPVSLGRPERYRRHGTHSVKI
	* ** **** * ***** * ****** ** *** *

 $TA\ RVSSNETEIMKEIMQNGPVQAIMQVHEDFFHYKTGIYRHVTSTNKESEKYRKLQTHAVKL$

148

HP TGWGEETLPDGRTLKYWTAANSWGPAWGERGHFRIVRGVNECDIESFVLGVWGRVGMEDM

****. ..*. *. *. ****** . ***. ****. ***. ... *

TA TGWGTLRGAQGQKEKFWIAANSWGKSWGENGYFRILRGVNESDIEKLIIAAWGQLTSSDE

HP GHH

5

10

20

25

TA P

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R48402) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15 <HP10735> (SEQ ID NOS: 126, 136, and 146)

Determination of the whole base sequence of the cDNA insert of clone HP10735 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 370-bp 5'-untranslated region, a 1431-bp ORF, and a 243-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed ten putative transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino

149

acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans tetracycline resistance protein-like protein (Accession No. CAA94337). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and C. elegans tetracycline resistance protein-like protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.5% in the intermediate region of 196 amino acid residues.

10

Table 27	
HP MAGSDTAPFLSQADDPDDGPVPGTPGLPGSTGNPKSEEPEVPDQEGLQRITGLSI	PGRSAL
CP MVN	SQQDY
HP IVAVLCYINLLNYMDRFTVAGVLPDIEQFFNIGDSSSGLIQTVFISSYMVLAPV	
CP SVTALFVVNLLNYVDRYTVAGVLTQVQTYYNISDSLGGLIQTVFLISFMVFSPV	
HP RYNRKYLMCGGIAFWSLVTLGSSFIPGEHFWLLLLTRGLVGVGEASYSTIAPTL	
*. *** * * * *****. * ** **. **. **. **. **. **. **. **. CP RFNRKWIMIIGVGIWLGAVLGSSFVPANHFWLFLVLRSFVGIGEASYSNVAPSL	
HP ADQRSRMLSIFYFAIPVGSGLGYIAGSKVKDMAGDWHWALRVTPGLGVVAVLLLE	
CP GQKRSTVFMIFYFAIPVGSGLGFIVGSNVATLTGHWQWGIRVSAIAGLIVMIALV	
HP PPRGAVERHSDLPPLNPTSWWADLRALARNLIFGLITCLTGVLGVGLGVEISRRL * ***	.RHSNP
CP PERGAADKAMGESKDVVVTTNTTYLEDLVILLKTPTLVACTWGYTALVFVSGTLS	SWWEPT
HP RADPLVCATGLLGSAPFLFLSLACARGSIVATYIFIFIGETLLSMNWAIVADILL	q1VVY.
CP VIQHLTAWHQGLNDTKDLASTDKDRVALYFGAITTAGGLIGVIFGSMLSKWLVAG	WGPFR
HP TRRSTAEAFQIVLSHLLGDAGSPYLIGLISDRLRRNWPPSFLSEFRALQFSLMLC	AFVGA
CP RLQTDRAQPLVAGGGALLAAPFLLIGMIFGDKSLVLLYIMIFFGITFMCFNWGLN	T.IMI.T

151

HP LGGAAFLGTAIFIEADRRRAQLHVQGLLHEAGSTDDRIVVPQRGRSTRVPVASVLI

5

10

15

20

25

CP TVIHPNRRSTAFSYFVLVSHLFGDASGPYLIGLISDAIRHGSTYPKDQYHSLVSATYCCV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA460778) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. Furthermore, the search has revealed the registration of sequences that shared a homology of 90% or more (Accession No. E12646) in patent data. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10750> (SEQ ID NOS: 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10750 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 262-bp 5'-untranslated region, a 1350-bp ORF, and a 564-bp 3'-untranslated region. The ORF encodes a protein consisting of 449 amino acid residues and there existed four putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein.

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW304031) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10777> (SEQ ID NOS: 128, 138, and 148)

Determination of the whole base sequence of the cDNA insert of clone HP10777 obtained from cDNA library of human kidney revealed the structure consisting of a 15-bp 5'-untranslated region, a 318-bp ORF, and a 1030-bp 3'untranslated region. The ORF encodes a protein consisting of 105 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 48 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was somewhat larger than the molecular weight of 11,603 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 30.

<HP10780> (SEQ ID NOS: 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10780 obtained from cDNA library of human kidney revealed the structure consisting of a 226-bp 5'-untranslated region, a 246-bp ORF, and a 571-bp 3'untranslated region. The ORF encodes a protein consisting of acid residues and there existed a putative secretory signal at the N-terminus. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, Doolittle of the present protein. In translation resulted in formation of a translation product of 10 kDa that was somewhat larger than the molecular weight of 8,533 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 6 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA658245) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

154

Determination of the whole base sequence of the cDNA insert of clone HP10795 obtained from cDNA library of human kidney revealed the structure consisting of a 356-bp 5'-untranslated region, a 1659-bp ORF, and a 420-bp 3'untranslated region. The ORF encodes a protein consisting of 552 amino acid residues and there existed one transmembrane N-terminus. domain the Figure 50 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 65 kDa that was almost identical with the molecular weight of 64,280 predicted from the ORF.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the similar human protein was to UDP-N-acetyl-α-Dgalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (Accession No. NP 004472). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human UDP-N-acetyl-α-Dqalactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GA). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 49.9% in the entire

region other than the N-terminal region.

Tab.	Le 28
HP	MRRLTRRLVLPVFGVLWITVLLFFWVTKRKLEVPT**
GA	${\tt MRRRSRMLLCFAFLWVLGIAYYMYSGGGSALAGGAGGGAGRKEDWNEIDPIKKKDLHHSN}$
HP	GPEVQTPKP SDADWDDLWDQFDERRYLNAKKWRVGDDPYKLYAFNQRESER I SSNRA I PD
	* * * . * . * . * * * * * * *
GA	GEEKAQSMETLPPGKVRWPDFNQEAYVGGTMVRSGQDPYARNKFNQVESDKLRMDRAIPD
ĦР	TRHLRCTLLVYCTDLPPTSIIITFHNEARSTLLRTIRSVLNRTPTHLIREIILVDDFSND
	*** . * ***. ** ****. ***. *** *. *
GA	TRHDQCQRKQWRVDLPATSVVITFHNEARSALLRTVVSVLKKSPPHLIKEIILVDDYSND
HP	PDDCKQLIKLPKVKCLRNNERQGLVRSRIRGADIAQGTTLTFLDSHCEVNRDWLQPLLHR
	*. * * *. **. ***. *. ***. ***. ***. ***. * . ***. ***. *
GA	PEDGALLGKIEKVRVLRNDRREGLMRSRVRGADAAQAKVLTFLDSHCECNEHWLEPLLER
H	VKEDYTRVVCPVIDIINLDTFTYIESASELRGGFDWSLHFQWEQLSPEQ-KARRLDPTEP
	* ** **** *. **. **. * *
G/	A VAEDRTRVVSPIIDVINMDNFQYVGASADLKGGFDWNLVFKWDYMTPEQRRSRQGNPVAE
·	P IRTPIIAGGLFVIDKAWFDYLGKYDMDMDIWGGENFEISFRVWMCGGSLEIVPCSRVGH
	*. **. *******. ** . *. ****** **. ****** ***
C	A IKTPMIAGGIFVMDKFYFFELGKYDMMMDVWGGENLEISFRVWQCGGSLEIIPCSRVGH

156

	HP FRKKHPYVFPDGNANTYIKNTKRTAEVWMDEYKQYYYAARPFALERPFGNVESRLDLRKN
	, ***, **, *, **, *, ******
	GA FRKQHPYTFPGGSGTVFARNTRRAAEVWMDEYKNFYYAAVPSARNVPYGNIQSRLELRKK
	UD I DOGGEVEVI ENIVERI CIEVECCIOVONI DODOVOI ECODONNOCEDNI VI CEGARAVA
_	HP LRCQSFKWYLENIYPELSIPKESSIQKGNIRQRQKCLESQRQNNQETPNLKLSPCAKVKG
5	*. * ******** ****. * *
	GA LSCKPFKWYLENVYPELRVPDHQDIAFGALQQGTNCLDTLGHFADGVVGVYECH
	,
	HP EDAKSQVWAFTYTQQILQEELCLSVITLFPGAPVVLVLCKNGDDRQQWTKTGSHIEHI
	GA NAGGNQEWALTKEKSVKHMDLCLTVVDRAPGSLIKLQGCRENDSRQKWEQIEGNSKLRHV
10	
	HP ASHLCLDTDMFGDGTENGKEIVVNPCESSLMSQHWDMVSS
	GA GSNLCLDSRTAKSGGLSVEVCGPAL-SQQWKFTLNLQQ

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA160076) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins,

5

10

15

20

25

157

expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents control the proliferation and/or which act differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in large quantities. Cells into which these genes introduced to express these proteins can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include

5

10

15

20

25

contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or the disclosed sequence information primers from identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s)

5

10

15

20.

25

corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the and their transformed cells progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. 5,464,764; 5,487,992; 5,627,059; 5,631,153; Patent Nos. 5,614, 396; 5,616,491; and 5,679,523; all of which are

160

incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s).

5

10

15

20

25

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where

161

sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the

162

polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

invention 5 The present also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, polynucleotides described herein. Examples of stringency 10 conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for 15 example, conditions M-R.

Table 29

T = 1	T = 3	77. 3		I 1
Stringency		Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Léngth (bp)‡	and Buffer	Temperature and Buffer
	Hybrid		65°C; 1×SSC -or-	
A	DNA: DNA	≥50	•	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
		1	45°C; 1×SSC,50%	0.3×SSC
			formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	Tp*; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
			50°C; 1×SSC,50%	0.3×SSC
		,	formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
	DINA . DINA	230	42°C; 4×SSC,50%	05 07 11000
		ļ	formamide	
Н	DNA: DNA	<50	T _H *; 4×SSC	T _R *; 4×SSC
I			67°C; 4×SSC -or-	67°C; 1×SSC
	DNA: RNA	. ≥50	45°C; 4×SSC,50%	07 C, 1,35C
			formamide	
J	D172 + D172	45.0	T ₁ *; 4×SSC	T _J *; 4×SSC
	DNA: RNA	<50	•	
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50%	
		ļ	formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50%	
1			formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50%	
			formamide	
P	DNA: RNA	<50	Tp*; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
_	14411.1441		45°C; 6×SSC, 50%	
			formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC
L				

5

- † : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides.

 When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- t: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- *T_B T_R: The hybridization temperature for hybrids
 anticipated to be less than 50 base pairs in length should
 be 5-10°C less than the melting temperature (T_m) of the
 hybrid, where T_m is determined according to the following
 equations. For hybrids less than 18 base pairs in length,

 T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids
 between 18 and 49 base pairs in length, T_m(°C)=81.5 +
 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) (600/N), where N is the
 number of bases in the hybrid, and [Na⁺] is the concentration
 of sodium ions in the hybridization buffer ([Na⁺] for
 1×SSC=0.165M).

165

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

5

10 Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 15 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and 20 identity while minimizing sequence gaps.

WO 01/49728

5

10

20

PCT/JP00/09359

166

CLAIMS

- 1. A protein comprising any one of amino acid sequences selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of base sequences selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
 - 4. The cDNA according to Claim 3 consisting of any one of base sequences selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

Amino Acid Residue Number

, b

Hydrophilicity/Hydrophobicity

2/50

Hydrophilicity/Hydrophobicity

.

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

下 .8

2

Hydrophilicity/Hydrophobicity

9 Fig.

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

י ר

Hydrophilicity/Hydrophobicity

6

<u>با</u> ھ

ΗλακορμίΙοιτη/Ηγακορμορίοιτγ

Ηλακορμιιισίτη/Ηγακορhobicity

Hydrophilicity/Hydrophobicity

ΗλακορμίΙισίτη/Ηγακορhobicity

Fig. 12

Hydrophilicity/Hydrophobicity

· :

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

 $\hbox{H}{\lambda} drophilicity/\hbox{H}{\lambda} drophobicity$

.

ΗλαιορμίΙισίτν/Ηγαιορμορίσιτγ

 $\hbox{\it H} \lambda d \hbox{\it kobbilicity} / \hbox{\it H} \lambda d \hbox{\it kobbobicity}$

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

ΗλακορμίΙισίτη/Ηγακορμορίσίτη

Fig.

21

Amino Acid Residue Number

Hydrophilicity/Hydrophobicity

23

 $\hbox{\it H} \lambda \hbox{\it d} \hbox{\it Lobhilicity} / \hbox{\it H} \lambda \hbox{\it d} \hbox{\it Lobhobicity}$

Amino Acid Residue Number

25 Fig.

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

30

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

F; 4.39

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

Amino Acid Residue Number

Fig. 34

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

35

Fig

Hydrophilicity/Hydrophobicity

Amino Acid Residue Number

Fig. 36

Amino Acid Residue Number

38

٣. اق

Amino Acid Residue Number

 ${\it H} \lambda {\it q} Lobhilicity/{\it H} \lambda {\it d} Lobhobicity$

Amino Acid Residue Number

39

 $\hbox{Hydrophilicity/Hydrophobicity}$

Amino Acid Residue Number

Fig. 40

Amino Acid Residue Number

. ...

Hydrophilicity/Hydrophobicity

 ${\tt H} \lambda {\tt q} Lobhilicity/{\tt H} \lambda {\tt q} Lobhobicity$

Amino Acid Residue Number

Amino Acid Residue Number

Amino Acid Residue Number Fig. 46

 $H\lambda drophilicity/Hydrophobicity$

Amino Acid Residue Number

Amino Acid Residue Number

Amino Acid Residue Number

Amino Acid Residue Number

Fig. 50

 $H \lambda d rophilicit y/H y d rophobicit y$

1 /34,6

SEQUENCE LISTING

<110> Protegene Inc.,

Sagami Chemical Research Center

5

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662248

10

<150> JP 2000-585

<151> 2000-01-06

<150> JP 2000-588

15 <151> 2000-01-06

<150> JP 2000-2299

<151> 1999-01-11

20 <150> JP 2000-26862

<151> 2000-02-03

<150> JP 2000-58367

<151> 2000-03-03

25

<160> 150

<210> 1

<211> 578

5 <212> PRT

<213> Homo sapiens

<400> 1

Met Ala Phe Ser Glu Leu Leu Asp Leu Val Gly Gly Leu Gly Arg Phe

1 5 10 15

10 Gln Val Leu Gln Thr Met Ala Leu Met Val Ser Ile Met Trp Leu Cys

20 25 30

Thr Gln Ser Met Leu Glu Asn Phe Ser Ala Ala Val Pro Ser His Arg

35 40 45

Cys Trp Ala Pro Leu Leu Asp Asn Ser Thr Ala Gln Ala Ser Ile Leu

15 50 55 60

Gly Ser Leu Ser Pro Glu Ala Leu Leu Ala Ile Ser Ile Pro Pro Gly

65 70 75 80

Pro Asn Gln Arg Pro His Gln Cys Arg Arg Phe Arg Gln Pro Gln Trp

90 95

20 Gln Leu Leu Asp Pro Asn Ala Thr Ala Thr Ser Trp Ser Glu Ala Asp

100 105 110

Thr Glu Pro Cys Val Asp Gly Trp Val Tyr Asp Arg Ser Ile Phe Thr

115 120 125

Ser Thr Ile Val Ala Lys Trp Asn Leu Val Cys Asp Ser His Ala Leu

25 130 135 140

	Lys	Pro	Met	Ala	Gln	Ser	Ile	Tyr	Leu	Ala	Gly	Ile	Leu	Val	Gly	Ala
	145					150					155					160
	Ala	Ala	Cys	Gly	Pro	Ala	Ser	Asp	Arg	Phe	Gly	Arg	Arg	Leu	Val	Leu
					165					170					175	
5	Thr	Trp	Ser	Tyr	Leu	Gln	Met	Ala	Val	Met	Gly	Thr	Ala	Ala	Ala	Phe
				180					185					190		
	Ala	Pro	Ala	Phe	Pro	Val	Tyr	Cys	Leu	Phe	Arg	Phe	Leu	Leu	Ala	Phe
		,	195					200					205			
	Ala	Val	Ala	Gly	Val	Met	Met	Asn	Thr	Gly	Thr	Leu	Arg	Arg	Ser	Leu
10		210					215			,		220				
	Thr	Trp	Arg	His	Ala	Gly	Gly	Leu	His	Ala	Gly	Ser	Arg	Ala	Glu	Pro
	225					230				•	235					240
	Leu	Gly	Leu	Leu	Ala	Val	Met	Glu	Trp	Thr	Ala	Ala	Arg	Ala	Arg	Pro
					245	•				250					255	
15	Leu	Val	Met	Thr	Leu	Asn	Ser	Leu	Gly	Phe	Ser	Phe	Gly	His	Gly	Leu
	,			260					265					270		
	Thr	Ala	Ala	Val	Ala	Tyr	Gly	Val	Arg	Asp	Trp	Thr	Leu	Leu	Gln	Leu
	~		275					280					285			
	Val	Val	Ser	Val	Pro	Phe	Phe	Leu	Cys	Phe	Leu	Tyr	Ser	Trp	Trp	Leu
20		290					295					300				
	Ala	Glu	Ser	Ala	Arg	Trp	Leu	Leu	Thr	Thr	Gly	Arg	Leu	Asp	Trp	Gly
	305					310					315					320
	Leu	Gln	Glu	Leu	Trp	Arg	Val	Ala	Ala	Ile	Asn	Gly	Lys	Gly	Ala	Val
			•		325					330					335	
25	Gln	Asp	Thr	Leu	Thr	Pro	Glu	Val	Leu	Leu	Ser	Ala	Met	Arg	Glu	Glu

				340					345					350		
	Leu	Ser	Met	Gly	Gln	Pro	Pro	Ala	Ser	Leu	Gly	Thr	Leu	Leu	Arg	Met
,		×	355					360					365			
	Pro	Gly	Leu	Arg	Phe	Arg	Thr	Cys	Ile	Ser	Thr	Leu	Cys	Trp	Phe	Ala
5		370					375					380				
	Phe	Gly	Phe	Thr	Phe	Phe	Gly	Leu	Ala	Leu	Asp	Leu	Gln	Ala	Leu	Gly
	385					390					395					400
	Ser	Asn	Ile	Phe	Leu	Leu	Gln	Met	Phe	Ile	Glv	Val	Val	Asp	Ile	
					405					410					415	
10	Ala	Lys	Met	Glv		Len	Leu	Leu	Tien		His	T.e.u	G] v	Ara		Pro
				420					425	202		200	CLJ	430	9	110
	ሞኮኮ	Leu	Δla		Sar	T.011	Len	Tou		Clv	Tou	Cva	,Tlo		71-	7.00
	1111	пса	435	ma	ner.	пец	иeu		ΛΙα	GTĀ	neu	Cys.		Leu	AIA	ASII
	mb	T		D	***	~ 3		440				_	445			
10	THE	Leu	vaı	PIO	HIS	GIU		СΤΆ	Ala	Leu	Arg		Ала	Leu	Ala	Val
15		450					455			•		460				
	Leu	Gly	Leu	Gly	Gly	Val	Gly	Ala	Ala	Phe	Thr	Cys	Ile	Thr	Ile	Tyr
	465					470					475					480
	Ser	Ser	Glu	Leu	Phe	Pro	Thr	Val	Leu	Arg	Met	Thr	Ala	Val	Gly	Leu
					485					490					495	
20	Gly	Gln	Met	Ala	Ala	Arg	Gly	Gly	Ala	Ile	Leu	Gly	Pro	Leu	Val	Arg
				500					505					510		
	Leu	Leu	Gly	Val	His	Gly	Pro	Trp	Leu	Pro	Leu	Leu	Val	Tyr	Gly	Thr
			515					520					525			
	Val	Pro	Val	Leu	Ser	Gly	Leu	Ala	Ala	Leu	Leu	Leu	Pro	Glu	Thr	Gln
25		530					535					540				

	Ser	Leu	Pro	Leu	Pro	Asp	Thr	Ile	Gln	Asp	Val	Gln	Asn	Gln	Ala	Val
	545					550					55 ⁻ 5					560
	Lys	Lys	Ala	Thr	His	Gly	Thr	Leu	Gly	Asn	Ser	Val	Leu	Lys	Ser	Thr
					565					570					575	•
5	Gln	Phe								٠						
	<210)> 2											•			
	<21	l> 24	13													
	<212	2> PI	RT													
10	<213	3> Ho	omo s	sapie	ens											
•	<400)> 2														
	Met	Ser	Arg	Ser	Pro	Leu	Asn	Pro	Ser	Gln	Leu	Arg	Ser	Val	Gly	Ser
	1	•			5		·			10					15	
•	Gln	Asp	Ala	Leu	Ala	Pro	Leu	Pro	Pro	Pro	Ala	Pro	Gln	Asn	Pro	Ser
15				20					25					30		
	Thr	His	Ser	Trp	Asp	Pro	Leu	Cys	Gly	Ser	Leu	Pro	Trp	Gly	Leu	Ser
			35					40					45			
	Cys	Leu	Leu	Ala	Leu	Gln	His	Val	Leu	Val	Met	Ala	Ser	Leu	Leu	Cys
		50					55					60				
20	Val	Ser	His	Leu	Leu	Leu	Leu	Cys	Ser	Leu	Ser	Pro	Gly	Gly	Leu	Ser
	65					70		•			75					80
	Tyr	Ser	Pro	Ser	Gln	Leu	Leu	Ala	Ser	Ser	Phe	Phe	Ser	Cys	Gly	Met
					85					90					95	
	Ser	Thr	Ile	Leu	Gln	Thr	Trp	Met	Gly	Ser	Arg	Leu	Pro	Leu	Val	Gln
25				100					105					110		

	Ala	Pro	Ser	Leu	Glu	Phe	Leu	Ile	Pro	Ala	Leu	Val	Leu	Thr	Ser	Gln
			115					120					125			
	Lys	Leu	Pro	Arg	Ala	Ile	Gln	Thr	Pro	Gly	Asn	Ser	Ser	Leu	Met	Leu
	•	130					135					140				
5	His	Leu	Cys	Arg	Gly	Pro	Ser	Cys	His	Gly	Leu	Gly	His	Trp	Asn	Thr
	145					150					155					160
	Ser	Leụ	Gln	Glu	Val	Ser	Gly	Ala	Val	Val	Val	Ser	Gly	Leu	Leu	Gln
					165					170					175	
	Gly	Met	Met	Gly	Leu	Leu	Gly	Ser	Pro	Gly	His	Val	Phe	Pro	His	Cys
10				180					185					190		
	Gly	Pro	Leu	Val	Leu	Ala	Pro	Ser	Leu	Val	Val	Ala	Gly	Leu	Ser	Ala
			195					200					205			
	His	Arg	Glu	Val	Ala	Gln	Phe	Суѕ	Phe	Thr	His	Trp	Gly	Leu	Ala	Leu
		210					215					220				
1.5	Leu	Tyr	Val	Ser	Pro	Glu	Arg	Arg	Gly	Met	Val	Pro	Ser	Gly	Gly	Val
	225					230					235					240
	Trp	Gly	Asp													
	<210	0> 3														
20	<21	1> 4	61													
	<212	2> PI	RT									٠				
	<213	3> н	omo	sapie	ens											
	<400)> 3														
	Met	Ala	Pro	Gln	Ser	Leu	Pro	Ser	Ser	Arg	Met	Ala	Pro	Leu	Gly	Met
25	1				5					10		•			15	,

	Leu	Leu	Gly	Leu	Leu	Met	Ala	Ala	Cys	Phe	Thr	Phe	Суѕ	Leu	Ser	His
				20					25					30		
	Gln	Asn	Leu	Lys	Glu	Phe	Ala	Leu	Thr	Asn	Pro	Glu	Lys	Ser	Ser	Thr
			35					40					45			
5	Lys	Glu	Thr	Glu	Arg	Lys	Glu	Thr	Lys	Ala	Glu	Glu	Glu	Leu	Asp	Ala
		50					55					60				
	Glu	Val	Leu	Glu	Val	Phe	His	Pro	Thr	His	Glu	Trp	Gln	Ala	Leu	Gln
	65 ·					70					75					80
	Pro	Gly	Gln	Ala	Val	Pro	Ala	Gly	Ser	His	Val	Arg	Leu	Asn	Leu	Gln
10					85					90					95	
	Thr	Gly	Glu	Arg	Glu	Ala	Lys	Leu	Gln	Tyr	Glu	Asp	Lys	Phe	Arg	Asn
				100					105					110		
	Asn	Leu	Lys	Gly	Lys	Arg	Leu	Asp	Ile	Asn	Thr	Asn	Thr	Tyr	Thr	Ser
			115					120					125			
15	Gln	Asp	Leu	Lys	Ser	Ala	Leu	Ala	Lys	Phe	Lys	Glu	Gly	Ala	Glu	Met
		130					135					140				
	Glu	Ser	Ser	Lys	Glu	Asp	Lys	Ala	Arg	Gln	Ala	Glu	Val	Lys	Arg	Leu
	145					150					155					160
	Phe	Arg	Pro	Ile	Glu	Glu	Leu	ГÀ2	Lys	Asp	Phe	Asp	Glu	Leu	Asn	Val
20					165					170					175	
	Val	Ile	Glu	Thr	Asp	Met	Gln	Ile	Met	Val	Arg	Leu	Ile	Asn	Lys	Phe
				180					185					190		
	Asn	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Glu	Lys	Ile	Ala	Ala	Leu	Phe	Asp
			195					200					205			
25	Leu	Glu	Tyr	Tyr	Val	His	Gln	Met	Asp	Asn	Ala	Gln	Asp	Leu	Leu	Ser

		210					215					220				
	Phe	Gly	Gly	Leu	'Gln	Val	Val	Ile	Asn	Gly	Leu	Asn	Ser	Thr	Glu	Pro
	225					230					235					240
	Leu	Val	Lys	Glu	Tyr	Ala	Ala	Phe	Val	Leu	Gly	Ala	Ala	Phe	Ser	Ser
5					245					250					255	
	Asn	Pro	Lys	Val	Gln	Val	Glu	Ala	Ile	Glu	Gly	Gly	Ala	Leu	Gln	Lys
				260					265					270		
	Leu	Leu	Val	Ile	Leu	Ala	Thr	Glu	Gln	Pro	Leu	Thr	Ala	Lys	Lys	Lys
			275					280					285			
10)	Val	Leu	Phe	Ala	Leu	Cys	Ser	Leu	Leu	Arg	His	Phe	Pro	Tyr	Ala	Glr
		290	•				295					300				
	Arg	Gln	Phe	Leu	Lys	Leu	Gly	Gly	Leu	Gln	Val	Leu	Arg	Thr	Leu	Va]
	305					310					315					320
	Gln	Glu	Lys	Gly	Thr	Glu	Val	Leu	Ala	Val	Arg	Val	Val	Thr	Leu	Let
15					325					330					335	
	Tyr	Asp	Leu	Val	Thr	Glu	Lys	́меt	Phe	Ala	Glu	Glu	Glu	Ala	Glu	Let
				340					345					350	•	
	Thr	Gln	Glu	Met	Ser	Pro	Glu	Lys	Leu	Gln	Gln	Tyr	Arg	Gln	Val	His
			355					360					365			
20	Leu	Leu	Pro	Gly	Leu	Trp	Glu	Gln	Gly	Trp	Cys	Glu	Ile	Thr	Ala	His
		370					375					380				
	Leu	Leu	Ala	Leu	Pro	Glu	His	Asp	Ala	Arg	Glu	Lys	Val	Leu	Gln	Thi
	385					390					395					400
	Leu	Gly	Val	Leu	Leu	Thr	Thr	Cys	Arg	Asp	Arg	Tyr	Arg	Gln	Asp	Pro
25	•				405					410					41 E	

9 /346

Gln Leu Gly Arg Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg <210> 4 <211> 647 <212> PRT <213> Homo sapiens <400> 4 Met Ala Ser Leu Val Ser Leu Glu Leu Gly Leu Leu Leu Ala Val Leu Val Val Thr Ala Thr Ala Ser Pro Pro Ala Gly Leu Leu Ser Leu Leu Thr Ser Gly Gln Gly Ala Leu Asp Gln Glu Ala Leu Gly Gly Leu Leu Asn Thr Leu Ala Asp Arg Val His Cys Thr Asn Gly Pro Cys Gly Lys Cys Leu Ser Val Glu Asp Ala Leu Gly Leu Gly Glu Pro Glu Gly Ser Gly Leu Pro Pro Gly Pro Val Leu Glu Ala Arg Tyr Val Ala Arg Leu Ser Ala Ala Ala Val Leu Tyr Leu Ser Asn Pro Glu Gly Thr Cys Glu

				100					105					110		
	Asp	Thr	Arg	Ala	Gly	Leu	Trp	Ala	Ser	His	Ala	Asp	His	Leu	Leu	Ala
			115					120					125			
	Leu	Leu	Glu	Ser	Pro	Lys	Ala	Leu	Thr	Pro	Gly	Leu	Ser	Trp	Leu	Leu
5		130					135		<i>:</i>			140				
	Gln	Arg	Met	Gln	Ala	Arg	Ala	Ala	Gly	Gln	Thr	Pro	Lys	Thr	Ala	Cys
	145					150					155					160
	Val	Asp	Ile	Pro	Gln	Leu	Leu	Glu	Glu	Ala	Val	Gly	Ala	Gly	Ala	Pro
					165					170					175	
10	Gly	Ser	Ala	Gly	Gly	Val	Leu	Ala	Ala	Leu	Leu	Asp	His	Val	Arg	Ser
				180					185					190		•
	Gly	Ser	Cys	Phe	His	Ala	Leu	Pro	Ser	Pro	Gln	Tyr	Phe	Val	Asp	Phe
			195					200					205			
	Val	Phe	Gln	Gln	His	Ser	Ser	Glu	Val	Pro	Met	Thr	Leu	Ala	Glu	Leu
15		210					215					220				
	Ser	Ala	Leu	Met	Gln	Arg	Leu	Gly	Val	Gly	Arg	Glu	Ala	His	Ser	Asp
	225					230					235					240
	His	Ser	His	Arg	His	Arg	Gly	Ala	Ser	Ser	Arg	Asp	Pro	Val	Pro	Leu
		•			245					250		-			255	
20	Ile	Ser	Ser	Ser	Asn	Ser	Ser	Ser	Val	Trp	Asp	Thr	Val	Cvs		Ser
				260					265	_	-			270		
	Ala	Ara	Asp		Met	Ala	Ala	Tvr		Leu	Ser	Glu	Gln		Glv	Val
		5	275					280				014	285	1114	0.1	var
	Thr	Pro	Glu	د ۵۱	ጥኮኮ	Δls	Gln		Ser	Pro	د ا ۵	Lor		C1-	C1~	C1-
25	111	290	JAU	n.d	ııp	n.d	295	neu	JUL	,	n.d	300	теп	GTU	GTIJ	GTII
		200					~JJ					300				

	Leu	Ser	Gly	Ala	Cys	Thr	Ser	Gln	Ser	Arg	Pro	Pro	Val	Gln	Asp	Gln
	305					310					315					320
	Leu	Ser	Gln	.ser	Glu	Arg	Tyr	Leu	Tyr	Gly	Ser	Leu	Ala	Thr	Leu	Leu
					325					330					335	
5	Ile	Cys	Leu	Cys	Ala	Val	Phe	Gly	Leu	Leu	Leu	Leu	Thr	Cys	Thr	Gly
				340					345					350		
	Cys	Arg	Gly	Val	Ala	His	Tyr	Ile	Leu	Gln	Thr	Phe	Leu	Ser	Leu	Ala
			355					360					365			
	Val	Gly	Ala	Leu	Thr	Gly	Asp	Ala	Val	Leu	His	Leu	Thr	Pro	Lys	Val
10		370					375					380				
	Leu	Gly	Leu	His	Thr	His	Ser	Glu	Glu	Gly	Leu	Ser	Pro	Gln	Pro	Thr
	385		•			390					395					400
	Trp	Arg	Leu	Leu	Ala	Met	Leu	Ala	Gly	Leu	Tyr	Ala	Phe	Phe	Leu	Phe
					405				•	410				•	415	
15	Glu	Asn	Leu	Phe	Asn	Leu	Leu	Leu	Pro	Arg	Asp	Pro	Glu	Asp	Leu	Glu
				420	•				425					430		
	Asp	Gly	Pro	Суз	Gly	His	Ser	Ser	His	Ser	His	Gly	Gly	His	Ser	His
			435					440					445			
	Gly	Val	Ser	Leu	Gln	Leu	Ala	Pro	Ser	Glu	Leu	Arg	Gln	Pro	Lys	Pro
20		450					455					460				
	Pro	His	Glu	Gly	Ser	Arg	Ala	Asp	Leu	Val	Ala	Glu	Glu	Ser	Pro	Glu
	465					470					475					480
	Leu	Leu	Asn	Pro	Glu	Pro	Arg	Arg	Leu	Ser	Pro	Glu	Leu	Arg	Leu	Leu
					485					490					495	
25	Pro	Tvr	Met	Tle	Thr	T.e.i	Glv	Asp	Ala	Val	His	Asn	Dho	717	7 cm	GI.

				500					505					510		
	Leu	Ala	Val	Gly	Ala	Ala	Phe	Ala	Ser	Ser	Trp	Lys	Thr	Gly	Leu	Ala
			515					520					525			
	Thr	Ser	Leu	Ala	Val	Phe	Cys	His	Glu	Leu	Pro	His	Glu	Leu	Gly.	Asp
5 ·		530					535					540				
	Phe	Ala	Ala	Leu	Leu	His	Ala	Gly	Leu	Ser	Val	Arg	Gln	Ala	Leu	Leu
	545					550					555		•			560
	Leu	Asn	Leu	Ala	Ser	Ala	Leu	Thr	Ala	Phe	Ala	Gly	Leu	Tyr	Val	Ala
					565					570					575	
10	Leu	Ala	Val	Gly	Val	Ser	Glu	Glu	Ser	Glu	Ala	Trp	Ile	Leu	Ala	Val
				580					585					590		
	Ala	Thr	Gly	Leu	Phe	Leu	Tyr	Val	Ala	Leu	Cys	Asp	Met	Leu	Pro	Ala
			595					600					605			
	Met	Leu	Lys	Val	Arg	Asp	Pro	Arg	Pro	Trp	Leu	Leu	Phe	Leu	Leu	His
15		610					615		-			620				
	Asn	Val	Gly	Leu	Leu	Gly	Gly	Trp	Thr	Val	Leu	Leu	Leu	Leu	Ser	Leu
	625					630					635	•				640
	Tyr	Glu	Asp	Asp	Ile	Thr	Phe									
					645											
20 ·		•												,		
	<210	0> 5														
	<21	1> 4	46													
	<212	2> PI	RT													
	<21	3> Ho	omo :	sapi	ens											
25	<400	0> 5		•												

	Met	Leu	His	Pro	Glu	Thr	Ser	Pro	Gly	Arg	Gly	His	Leu	Leu	Ala	Val
	1				5					10					15	
	Leu	Leu	Ala	Leu	Leu	Gly	Thr	Ala	Trp	Ala	Glu	Val	Trp	Pro	Pro	Gln
				20					25					30		
5	Leu	Gln	Glu	Gln	Ala	Pro	Met	Ala	Gly	Ala	Leu	Asn	Arg	Lys	Glu	Ser
		•	35					40				•	45			
	Phe	Leu	Leu	Leu	Ser	Leu	His	Asn	Arg	Leu	Arg	Ser	Trp	Val	Gln	Pro
		50					55					60				
	Pro	Ala	Ala	Asp	Met	Arg	Arg	Leu	Asp	Trp	Ser	Asp	Ser	Leu	Ala	Gln
10	65					70					75					80
	Leu	Ala	Gln	Ala	Arg	Ala	Ala	Leu	Cys	Gly	Ile	Pro	Thr	Pro	Ser	Leu
					85					90					95	
	Ala	Ser	Gly	Leu	Trp	Arg	Thr	Leu	Gln	Val	Gly	Trp	Asn	Met	Gln	Leu
				100					105					110		
15	Leu	Pro	Ala	Gly	Leu	Ala	Ser	Phe	Val	Glu	Val	Val	Ser	Leu	Trp	Phe
			115					120					125			
	Ala	Glu	Gly	Gln	Arg	Tyr	Ser	His	Ala	Ala	Gly	Glu	Cys	Ala	Arg	Asn
		130					135		•			140				
	Ala	Thr	Cys	Thr	His	Tyr	Thr	Gln	Leu	Val	Trp	Ala	Thr	Ser	Ser	Gln
20	145					150			•		155					160
	Leu	Gly	Cys	Gly	Arg	His	Leu	Cys	Ser	Ala	Gly	Gln	Ala	Ala	Ile	Glu
					165					170					175	
	Ala	Phe	Val	Cys	Ala	Tyr	Ser	Pro	Gly	Gly	Asn	Trp	Glu	Val	Asn	Gly
				180					185					190		
25	Lys	Thr	Ile	Ile	Pro	Tyr	Lys	Lys	Gly	Ala	Trp	Cys	Ser	Leu	Cys	Thr

			195					200					205			
	Ala	Ser	Val	Ser	Gly	Cys	Phe	Lys	Ala	Trp	Asp	His	Ala	Gly	Gly	Leu
		210					215				Ÿ	220				
	Cys	Glu	Val	Pro	Arg	Asn	Pro	Cys	Arg	Met	Ser	Cys	Gln	Asn	His	Gly
5	225					230					235					240
	Arg	Leu	Asn	Ile	Ser	Thr	Cys	His	Cys	His	Cys	Pro	Pro	Gly	Tyr	Thr
					245					250					255	
	Gly	Arg	Tyr	Суз	Gln	Val	Arg	Cys	Ser	Leu	Gln	Cys	Val	His	Gly	Arg
				260					265					270		
LO	Phe	Arġ	Glu	Glu	Glu	Cys	Ser	Cys	Val	Cys	Asp	Ile	Gly	Tyr	Gly	Gly
		-	275					280					285			
	Ala	Gļn	Cys	Ala	Thr	Lys	Val	His	Phe	Pro	Phe	His	Thr	Cys	Asp	Let
		290					295					300				
	Arg	Ile	Asp	Gly	Asp	Cys	Phe	Met	Val	Ser	Ser	Glu	Ala	Asp	Thr	Туг
15	305					310					315					320
	туr	Arg	Äla	Arg	Met	Lys	Cys	Gln	Arg	Lys	Gly	Gly	Val	Leu	Ala	Glr
					325					330					335	
	Ile	Lys	Ser	Gln	Lys	Val	Gln	Asp	Ile	Leu	Ala	Phe	Tyr	Leu	Gly	Arc
				340					345					350		
20	Leu	Glu	Thr	Thr	Asn	Glu	Val	Ile	Asp	Ser	Asp	Phe	Glu	Thr	Arg	Asr
			355					360					365			
	Phe	Trp	Ile	Gly	Leu	Thr	Tyr	Lys	Thr	Ala	Lys	Asp	Ser	Phe	Arg	Trp
		370					375					380				
	Ala	Thr	Gly	Glu	His	Gln	Ala	Phe	Thr	Ser	Phe	Ala	Phe	Gly	Gln	Pro
25	385					300					205					400

15 /346

Asp Asn His Gly Phe Gly Asn Cys Val Glu Leu Gln Ala Ser Ala Ala Phe Asn Trp Asn Asn Gln Arg Cys Lys Thr Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser <210> 6 <211> 197 <212> PRT <213> Homo sapiens <400> 6 Met Pro Pro Ala Gly Leu Arg Arg Ala Ala Pro Leu Thr Ala Ile Ala Leu Leu Val Leu Gly Ala Pro Leu Val Leu Ala Gly Glu Asp Cys Leu Trp Tyr Leu Asp Arg Asn Gly Ser Trp His Pro Gly Phe Asn Cys Glu Phe Phe Thr Phe Cys Cys Gly Thr Cys Tyr His Arg Tyr Cys Cys Arg Asp Leu Thr Leu Leu Ile Thr Glu Arg Gln Gln Lys His Cys Leu Ala Phe Ser Pro Lys Thr Ile Ala Gly Ile Ala Ser Ala Val Ile Leu Phe Val Ala Val Val Ala Thr Thr Ile Cys Cys Phe Leu Cys. Ser Cys Cys

		100		105		110
	Tyr Leu Tyr	Arg Arg	Arg Gln (Gln Leu Gl	n Ser Pro Phe	Glu Gly Gln
	115		:	120	125	
	Glu Ile Pro	Met Thr	Gly Ile 1	Pro Val Gli	n Pro Val Tyr	Pro Tyr Pro
5	130	•	135		140	
	Gln Asp Pro	Lys Ala	Gly Pro 1	Ala Pro Pro	o Gln Pro Gly	Phe Ile Tyr
	145		150	÷	155	160
	Pro Pro Ser	Gly Pro	Ala Pro (Gln Tyr Pro	o Leu Tyr Pro	Ala Gly Pro
		165		170	0	175
10	Pro Val Tyr	Asn Pro	Ala Ala 1	Pro Pro Pro	o Tyr Met Pro	Pro Gln Pro
		180		185		190
	Ser Tyr Pro	Gly Ala				
	195					
15	<210> 7					
	<211> 540					
,	<212> PRT					
	<213> Homo	sapiens				
	<400> 7					
20	Met Ala Thr	Ser Gly	Ala Ala	Ser Ala Gl	u Leu Val Ile	Gly Trp Cys
	1	5		1	0	15
	Ile Phe Gly	Leu Leu	Leu Leu 2	Ala Ile Le	u Ala Phe Cys	Trp Ile Tyr
		20		25		30
	Val Arg Lys	Tyr Gln	Ser Arg	Arg Glu Se	r Glu Val Val	Ser Thr Ile
25	35			40	45	

	Thr	Ala	Ile	Phe	Ser-	Leu	Ala	Ile	Ala	Leu	Ile	Thr	Ser	Ala	Leu	Leu
		50			٠.		55					60				
	Pro	Val	Asp	Ile	Phe	Leu	Val	Ser	Tyr	Met	Lys	Asn	Gln	Asn	Gly	Thr
	65					70					75					80
5	Phe	Lys	Asp	Trp	Ala	Asn	Ala	Asn	Val	Ser	Arg	Gln	Ile	Glu	Asp	Thr
					85					90					95	
	Val	Leu	Tyr	Gly	Tyr	Tyr	Thr	Leu	Tyr	Ser	Val	Ile	Leu	Phe	Cys	Val
				100					105					110		
	Phe	Phe	Trp	Ile	Pro	Phe	Val	Tyr	Phe	Tyr	Tyr	Glu	Glū	Lys	Asp	Asp
10			115					120	•				125			
	Asp	Asp	Thr	Ser	Lys	Cys	Thr	Gln	Ile	Lys	Thr	Ala	Leu	Lys	Týr	Thr
		130					135					140				
	Leu	Gly	Phe	Val	Val	Ile	Cys	Ala	Leu	Leu	Leu	Leu	Val	Gly	Ala	Phe
•	145					150					155					160
15	Val	Pro	Leu	Asn	Val	Pro	Asn	Asn	Lys	Asn	Ser	Thr	Glu	Trp	Glu	Lys
					165					170					175	
	Val	Lys	Ser	Leu	Phe	Glu	Glu	Leu	Gly	Ser	Ser	His	Gly	Leu	Ala	Ala
				180	•				185					190		
	Leu	Ser	Phe	Ser	Ile	Ser	Ser	Leu	Thr	Leu	Ile	Gly	Met	Leu	Ala	Ala
20			195					200					205			
	Ile	Thr	Tyr	Thr	Ala	Tyr	Gly	Met	Ser	Ala	Leu	Pro	Leu	Asn	Leu	Ile
		210					215					220				
	Lys	Gly	Thr	Arg	Ser	Ala	Ala	Tyr	Glu	Arg	Leu	Glu	Asn	Thr	Glu	Asp
	225					230					235				•	240
25	Ile	Glu	Glu	Val	Glu	Gln	His	Ile	Gln	Thr	Ile	Lys	Ser	Lys	Ser	Lys

					245					250					255	
	Asp	Gly	Arg	Pro	Leu	Pro	Ala	Arg	Asp	Lys	Arg	Ala	Leu	Lys	Gln	Phe
				260					265					270		
	Glu	Glu	Arg	Leu	Arg	Thr	Leu	Lys	Lys	Arg	Glu	Arg	His	Leu	Glu	Phe
5			275					280					285			
	Ile	Glu	Asn	Ser	Trp	Trp	Thr	Lys	Phe	Суѕ	Gly	Ala	Leu	Arg	Pro	Leı
		290					295					300				
	Lys	Ile	Val	Trp	Gly	Ile	Phe	Phe	Ile	Leu	Val	Ala	Leu	Leu	Phe	۷a:
	305					310					315					320
10	Ile	Ser	Leu	Phe	Leu	Ser	Asn	Leu	Asp	Lys	Ala	Leu	His	Ser	Ala	Gly
					325					330					335	
	Ile	Asp	Ser	Gly	Phe	Ile	Ile	Phe	Gly	Ala	Asn	Leu	Ser	Asn	Pro	Le
				340		٠			345					350		
	Asn	Met	Leu	Leu	Pro	Leu	Leu	Gln	Thr	Val	Phe	Pro	Leu	Asp	Tyr	Ile
15			355					360					365			
	Leu	Ile	Thr	Ile	Ile	Ile	Met	Tyr	Phe	Ile	Phe	Thr	Ser	Met	Ala	Gl
		370					375					380				
	Ile	Arg	Asn	Ile	Gly	Ile	Trp	Phe	Phe	Trp	Ile	Arg	Leu	Tyr	Lys	Ile
	385					390					395					400
20	Arg	Arg	Gly	Arg	Thr	Arg	Pro	Gln	Ala	Leu	Leu	Phe	Leu	Cys	Met	Ile
					405					410					415	
	Leu	Leu	Leu	Ile	Val	Leu	His	Thr	Ser	Tyr	Met	Ile	Tyr	Ser	Leu	Ala
				420					425					430		
	Pro	Gln	Tyr	Val	Met	Tyr	Gly	Ser	Gln	Asn	Tyr	Leu	Ile	Glu	Thr	Ası
25			435	~				440					445			

	Ile	Thr	Ser	Asp	Asn	His	Lys	Gly	Asn	Ser	Thr	Leu	Ser	Val	Pro	Lys
		450					455					460				
	Arg	Cys	Asp	Ala	Asp	Ala	Pro	Glu	Asp	Gln	Cys	Thr	Val	Thr	Arg	Thr
	465		,			470					475					480
5	Tyr	Leu	Phe	Leu	His	Lys	Phe	Trp	Phe	Phe	Ser	Ala	Ala	Tyr	Tyr	Ph∈
					485					490					495	
	Gly	Asn	Trp	Ala	Phe	Leu	Gly	Val	Phe	Leu	Ile	Gly	Leu	Ile	Val	Sei
				500					505					510		,
	Cys	Cys	Гуs	Gly	Lys	Lys	Ser	Val	Ile	Glu	Gly	Vaļ	Asp	Glu	Asp	Ser
LO			515					520					525			
	Asp	Ile	Ser	Asp	Asp	Glu	Pro	Ser	Val	Tyr	Ser	Ala				
		530					535					540				
	<210)> 8														
L5	<21	l> 4	42													
	<212	2> PE	RT													
	<213	3> Ho	omo :	sapie	ens											
	<400	S <0														
	Met	Ala	Leu	Pro	Ser	Arg	Ile	Leu	Leu	Trp	Lys	Leu	Val	Leu	Leu	Glı
20	1				5					10					15	
	Ser	Ser	Ala	Val	Leu	Leu	His	Ser	Gly	Ser	Ser	Val	Pro	Ala	Ala	Ala
				20					25					30		
	Gly	Ser	Ser	Val	Val	Ser	Glu	Ser	Ala	Val	Ser	Trp	Glu	Ala	Gly	Ala
			35					40					45			
25	Arg	Ala	Val	Leu	Arg	Cys	Gln	ser	Pro	Arg	Met	Val	Trp	Thr	Gln	Ası

	•	50					55					60				
	Arg	Leu	His	Asp	Arg	Gln	Arg	Val	Leu	His	Trp	Asp	Leu	Arg	Gly	Pro
	65					70					75					80
	Gly	Gly	Gly	Pro	Ala	Arg	Arg	Leu	Leu	Asp	Leu	Tyr	Ser	Ala	Gly	Glu
5					85		٥			90					95	
	Gln	Arg	Val	Tyr	Glu	AÏa	Arg	Asp	Arg	Gly	Arg	Leu	Glu	Leu	Ser	Ala
				100					105					110		
	Ser	Ala	Phe	Asp	Asp	Gly	Asn	Phe	Ser	Leu	Leu	Ile	Arg	Ala	Val	Glu
			115					120					125		3	
10	Glu	Thr	Asp	Ala	Gly	Leu	Tyr	Thr	Cys	Asn	Leu	His	His	His	Tyr	Cys
		1,30					135					140				
	His	Leu	Tyr	Glu	Ser	Leu	Ala	Val	Arg	Leu	Glu	Val	Thr	Asp	Gly	Pro
	145					150					155					160
	Pro	Ala	Thr	Pro	Ala	Tyr	Trp	Asp	Gly	Glu	Lys	Glu	Val	Leu	Ala	Val
15					165					170					175	
	Ala	Arg	Gly	Ala	Pro	Ala	Leu	Leu	Thr	Cys	Val	Asn	Arg	Gly	His	Val
				180					185					190		
•	Trp	Thr	Asp	Arg	His	Val	Glu	Glu	Ala	Gln	Gln	Val	Val	His	Trp	Asp
			195					200					205			
20	Arg	Gln	Pro	Pro	Gly	Val	Pro	His	Asp	Arg	Ala	Asp	Arg	Leu	Leu	Asp
		210					215					220				
	Leu	Tyr	Ala	Ser	Gly	Glu	Arg	Arg	Ala	Tyr	Gly	Pro	Leu	Phe	Leu	Arg
	225					230			-		235					240
	Asp	Arg	Val	Ala	Val	Gly	Ala	Asp	Ala	Phe	Glu	Arg	Gly	Asp	Phe	Ser
25					245					250					255	

	Leu	Arg	Ile	Glu	Pro	Leu	Glu	Val	Ala	Asp	Glu	Gly	Thr	Tyr	Ser	Cys
			,	260					265					270		
	His	Leu	His	His	His	Tyr	Cys	Gly.	Leu	His	Glu	Arg	Arg	Val	Phe	His
			275					280					285			
5	Leu	Thr	Val	Ala	Glu	Pro	His	Ala	Glu	Pro	Pro	Pro	Arg	Gly	Ser	Pro
		290					295					300				
	Gly	Asn	Gly	Ser	Ser	His	Ser	Gly	Ala	Pro	Gly	Pro	Asp	Pro	Thr	Leu
	305					310					315					320
	Ala	Arg	Gly	His	Asn	Val	Ile	Asn	Val	Ile	Val	Pro	Glu	Ser	Arg	Ala
.0					325					330					335	
	His	Phe	Phe	Gln	Gln	Leu	Gly	Tyr	Val	Leu	Ala	Thr	Leu	Leu	Leu	Phe
				340			į		345					350 _.		
	Ile	Leu	Leu	Leu	Val	Thr	Val	Leu	Leu	Ala	Ala	Arg	Arg	Arg	Arg	Gly
			355					360					365			
15	Gly	Tyr	Glu	Tyr	Ser	Asp	Gln	Lys	Ser	Gly	Lys	Ser	Lys	Gly	Lys	Asp
		370					375					380				
	Val	Asn	Leu	Ala	Glu	Phe	Ala	Val	Ala	Ala	Gly	Asp	Gln	Met	Leu	Tyr
	385					390					395					400
	Arg	Ser	Glu	Asp	Ile	Gln	Leu	Asp	Tyr	Lys	Asn	Asn	Ile	Leu	Lys	Glu
20				•	405					410					415	
	Arg	Ala	Glu	Leu	Ala	His	Ser	Pro	Leu	Prò	Ala	Lys	Tyr	Ile	Asp	Leu
				420					425					430		
•	Asp	Lys	Gly	Phe	Arg	Lys	Glu	Asn	Cys	Lys						
			435					440								

	<210)> 9														
	<211	L> 26	52													
	<212	2> PF	₹ T													
	<213	3> Ho	omo s	sapie	ens											
5	<400)> 9												:		
	Met	Thr	Pro	Glu	Asp	Pro	Glu	Glu	Thr	Gln	Pro	Leu	Leu	Gly	Pro	Pro
	1				5					10					15	
	Gly	Gly	Ser	Ala	Pro	Arg	Gly	Arg	Arg	Val	Phe	Leu	Ala	Ala	Phe	Ala
				20					25					30		
LO	Ala	Ala	Leu	Gly	Pro	Leu	Ser	Phe	Gly	Phe	Ala	Leu	Gly	Tyr	Ser	Ser
•			35					40					45			
	Pro	Ala	Ile	Pro	Ser	Leu	Gln	Arg	Ala	Ala	Pro	Pro	Ala	Pro	Arg	Leu
		50					55					60				
•	Asp	Asp	Ala	Ala	Ala	Ser	Trp	Phe	Gly	Ala	Val	Val	Thr	Leu	Gly	Ala
15	65					70					75				•	80
•	Ala	Ala	Gly	Gly	Val	Leu	Gly	Gly	Trp	Leu	Val	Asp	Arg	Ala	Gly	Arg
					85					90					95	
	Lýs	Leu	Ser	Leų	Leu	Leu	Суѕ	Ser	Val	Pro	Phe	Val	Ala	Gly	Phe	Ala
				100					105					110		
20	Val	Ile	Thr	Ala	Ala	Gln	Asp	Val	Trp	Met	Leu	Leu	Gly	Gly	Arg	Leu
			115					120					125			
	Leu	Thr	Gly	Leu	Ala	Cys	Gly	Val	Ala	Ser	Leu	Val	Ala	Pro	Val	Tyr
		130					135					140				
	Ile	Ser	Glu	Ile	Ala	Tyr	Pro	Ala	Val	Arg	Gly	Leu	Leu	Gly	Ser	Cys
25	145					150					155					160

	Val	Gln	Leu	Met	Val	Val	Val	Gly	Ile	Leu	Leu	Ala	Tyr	Leu	Ala	Gly
					165					170					175	
	Trp	Val	Leu	Glu	Trp	Arg	Trp	Leu	Ala	Val	Leu	Gly	Cys	Val	Pro	Pro
				180					185					190		و
5	Ser	Leu	Met	Leu	Leu	Leu	Met	Cys	Phe	Met	Pro	Glu	Thr	Pro	Arg	Phe
			195					200					205			
	Leu	Leu	Thr	Gln	His	Arg	Arg	Gln	Glu	Ala	Ala	Pro	Gly	Leu	Val	Arg
		210					215					220		,		
	Суз	Gly	His	Gly	Val	Gln	His	Glu	Cys	Leu	Arg	Arg	Leu	Leu	Gln	Ala
10	225					230					235					240
·	Asp	Pro	Gly	Trp	Pro	Trp	Gln	Leu	Leu	Ala	Arg	Gly	His	Leu	Gly	Ala
					245					250					255	
	Cys	Leu	Cys	Thr	Ala	Суз										
				260				•				٠				
15																
	<210)> 10)													
	<211	l> 15	52													
	<212	2> PI	RT													
	<213	3> н	omo :	sapi	ens											
20 ·	<400	0> 10	0													
	Met	Arg	Gly	Pro	Gly	His	Pro	Leu	Leu	Leu	Gly	Leu	Leu	Leu	Val	Leu
-	1				5					10					15	
	Gly	Ala	Ala	Gly	Arg	Gly	Arg	Gly	Gly	Ala	Glu	Pro	Arg	Glu	Pro	Ala
		•		. 20					25					30		
25	Asp	Gly	Gln	Ala	Leu	Leu	Arg	Leu	Val	Val	Glu	Leu	Va1	Gln	Glu	Leu

24 /346

35 40 45 Arg Lys His His Ser Ala Glu His Lys Gly Leu Gln Leu Leu Gly Arg 50 55 60 Asp Cys Ala Leu Gly Arg Ala Glu Ala Ala Gly Leu Gly Pro Ser Pro 5 65 70 75 80 Glu Gln Arg Val Glu Ile Val Pro Arg Asp Leu Arg Met Lys Asp Lys 85 90 Phe Leu Lys His Leu Thr Gly Pro Leu Tyr Phe Ser Pro Lys Cys Ser 100 105 10 Lys His Phe His Arg Leu Tyr His Asn Thr Arg Asp Cys Thr Ile Pro 115 120 125 Ala Tyr Tyr Lys Arg Cys Ala Arg Leu Leu Thr Arg Leu Ala Val Ser 130 135 140 Pro Val Cys Met Glu Asp Lys Gln 15 145 150 <210> 11 <211> 1737 <212> DNA 20 <213> Homo sapiens <400> 11 atggcatttt ctgaactcct ggacctcgtg ggtggcctgg gcaggttcca ggttctccaq 60 acgatggctc tgatggtctc catcatgtgg ctgtgtaccc agagcatgct ggagaacttc 120 teggeegeeg tgeecageea eegetgetgg geacceetee tggacaacag caeggeteag 180

gccagcatcc tagggagctt gagtcctgag gccctcctgg ctatttccat cccgccgggc 240

25

cccaaccaga ggccccacca gtgccgccgc ttccgccagc cacagtggca gctcttggac 300 cccaatgcca cggccaccag ctggagcgag gccgacacgg agccgtgtgt ggatggctgg 360 gtctatgacc gcagcatctt cacctccaca atcgtggcca agtggaacct cgtgtgtgac 420 teteatgete tgaageeeat ggeeeagtee atetaéetgg etgggattet ggtgggaget 480 5 gctgcgtgcg gccctgcctc agacaggttt gggcgcaggc tggtgctaac ctggagctac 540 cttcagatgg ctgtgatggg tacggcagct gccttcgccc ctgccttccc cgtgtactgc 600 ctgttccgct tcctgttggc ctttgccgtg gcaggcgtca tgatgaacac gggcactctc 660 cgtaggtctc tgacctggcg ccatgcaggg gggctccatg caggctccag ggctgaacca 720 ctcggtctcc ttgcagtgat ggagtggacg gcggcacggg cccgaccctt ggtgatgacc 780 10 ttgaactctc tgggcttcag cttcggccat ggcctgacag ctgcagtggc ctacggtgtg 840 cgggactgga cactgctgca gctggtggtc tcggtcccct tcttcctctg ctttttgtac 900 teetggtgge tggeagagte ggcacgatgg eteeteacea caggeagget ggattgggge 960 ctgcaggagc tgtggagggt ggctgccatc aacggaaagg gggcagtgca ggacaccctq 1020 accectgagg tettgettte agecatgegg gaggagetga geatgggeea geeteetgee 1080 15 agcctgggca ccctgctccg catgcccgga ctgcgcttcc ggacctgtat ctccacgttg 1140 tgctggttcg cctttggctt caccttcttc ggcctggccc tggacctgca ggccctgggc 1200 agcaacatct tcctgctcca aatgttcatt ggtgtcgtgg acatcccagc caagatgggc 1260 gccctgctgc tgctgagcca cctgggccgc cgcccacgc tggccgcatc cctgttgctg 1320 gcggggctct gcattctggc caacacgctg gtgccccacg aaatgggggc tctgcgctca 1380 20 gccctggccg tgctggggct gggcggggtg ggggctgcct tcacctgcat caccatctac 1440 agcagcgagc tcttccccac tgtgctcagg atgacggcag tgggcttggg ccagatggca 1500 gcccgtggag gagccatcct ggggcctctg gtccggctgc tqqqtqtcca tqqcccctqq 1560 ctgcccttgc tggtgtatgg gacggtgcca gtgctgagtg gcctggccgc actgcttctg 1620 cccgagaccc agagettgcc gctgcccgac accatccaag atgtgcagaa ccaggeagta 1680 25 aagaaggcaa cacatggcac gctggggaac tctgtcctaa aatccacaca gttttag 1737

26/346

<210> 12

<211> 732

<212> DNA

5 <213> Homo sapiens

<400> 12

atgagecgat caccecteaa teceagecaa etecgateag tgggetecea ggatgeeetg 60
geeeeettge etecacetge teeeeagaat eeetecacee actettggga eeetttgtgt 120
ggatetetge ettggggeet eagetgeett etggetetge ageatgeett ggteatgget 180
tetetgetet gtgteteeea eetgeteetg etttgeagte teteeeeagg aggaetetet 240
tacteeett eteageteet ggeeteeage ttettteat gtggtatgte taccateetg 300
caaacttgga tgggeageag getgeetett gteeaggete eateettaga gtteettate 360
eetgetetgg tgetgaceag eeagaageta eeeegggeea teeagaeace tggaaactee 420
teeeteatge tgeacetttg taggggaeet agetgeeatg geetggggea etggaacaet 480
teteeteeagg aggtgteegg ggeagtggta gtatetggge tgetgeaggg eatgatgggg 540
etgetgggga gteeeggeea egtgtteeee eactgtggge eeetggtget ggeteeeage 600
etggttgtgg eagggetete tgeeeacagg gaggtageee agttetgett eacacaetgg 660
gggttggeet tgetgtaegt gagteetgag aggegtggaa tggtgeecag tgggggtgta 720
tggggggaet ag

20

10

15

<210> 13

<211> 1386

<212> DNA

<213> Homo sapiens

25 <400> 13

atggctcccc agagcctgcc ttcatctagg atggctcctc tgggcatgct gcttgggctg 60 ctgatggccg cctgcttcac cttctgcctc agtcatcaga acctgaagga gtttgccctg 120 accaacccag agaagagcag caccaaagaa acagagagaa aagaaaccaa agccgaggag 180 gagetggatg cegaagteet ggaggtgtte caccegacge atgagtggea ggeeetteag 240 5 ccagggcagg ctgtccctgc aggatcccac gtacggctga atcttcagac tggggaaaga 300 gaggcaaaac tccaatatga ggacaagttc cgaaataatt tgaaaggcaa aaggctggat 360 atcaacacca acacctacac atctcaggat ctcaagagtg cactggcaaa attcaaggag 420 ttccgcccca ttgaggaact gaagaaagac tttgatgagc tgaatgttgt cattgagact 540 10 gacatgcaga tcatggtacg gctgatcaac aagttcaata gttccagctc cagtttggaa 600 gagaagattg ctgcgctctt tgatcttgaa tattatgtcc atcagatgga caatgcgcag 660 gacctgcttt cctttggtgg tcttcaagtg gtgatcaatg ggctgaacag cacagagece 720 ctcgtgaagg agtatgctgc gtttgtgctg ggcgctgcct tttccagcaa ccccaaggtc 780 caggtggagg ccatcgaagg gggagccctg cagaagctgc tggtcatcct ggccacggag 840 15 cageegetea etgeaaagaa gaaggteetg tttgeaetgt geteeetget gegeeaette 900 ccetatgece ageggeagtt cetgaagete ggggggetge aggteetgag gaecetggtg 960 caggagaagg gcacggaggt gctcgccgtg cgcgtggtca cactgctcta cgacctggtc 1020 acggagaaga tgttcgccga ggaggaggct gagctgaccc aggagatgtc cccagagaag 1080 ctgcagcagt atcgccaggt acacctcctg ccaggcctgt gggaacaggg ctggtgcgag 1140 20 atcacggccc acctcctggc gctgcccgag catgatgccc gtgagaaggt gctgcagaca 1200 ctgggcgtcc tcctgaccac ctgccgggac cgctaccgtc aggaccccca gctcggcagg 1260 acactggcca gcctgcaggc tgagtaccag gtgctggcca gcctggagct gcaggatggt 1320 gaggacgagg gctacttcca ggagctgctg ggctctgtca acagcttgct gaaggagctg 1380 agatga 1386

28 / 346

<210> 14

<211> 1944

<212> DNA

<213> Homo sapiens

5 <400> 14

10

15

20

25

atggcgtccc tggtctcgct ggagctgggg ctgcttctgg ctgtgctggt ggtgacggcg 60 acggcgtccc cgcctgctgg tctgctgagc ctgctcacct ctggccaggg cgctctggat 120 caagaggete tgggeggeet gttaaatacg etggeggaee gtgtgeaetg caccaaeggg 180 ccgtgtggaa agtgcctgtc tgtggaggac gccctgggcc tggggcgagcc tgaggggtca 240 gggctgcccc cgggcccggt cctggaggcc aggtacgtcg cccgcctcag tgccgccgcc 300 gtcctgtacc tcagcaaccc cgagggcacc tgtgaggaca ctcgggctgg cctctgggcc 360 teteatgeag accaectect ggeeetgete gagageecea aggeeetgae eeegggeetg 420 agctggctgc tgcagaggat gcaggcccgg gctgccggcc agacccccaa gacggcctgc 480 gtagatatec eteagetget ggaggaggeg gtgggggegg gggeteeggg eagtqetgge 540 ggcgtcctgg ctgccctgct ggaccatgtc aggagcgggt cttgcttcca cgccttgccg 600 ageceteagt acttegtgga etttgtgtte eageageaca geagegaggt eectatgaeg 660 ctggccgagc tgtcagcctt gatgcagcgc ctgggggtgg gcagggaggc ccacagtgac 720 cacagtcatc ggcacagggg agccagcagc cgggaccctg tgcccctcat cagctccagc 780 aacagctcca gtgtgtggga cacggtatgc ctgagtgcca gggacgtgat ggctgcatat 840 ggactgtcgg aacaggctgg ggtgaccccg gaggcctggg cccaactgag ccctqccctq 900 ctccaacage agetgagtgg agectgcace teccagteca ggeeeeeegt ecaggaceag 960 ctcagccagt cagagaggta tetgtacgge teeetggeca egetgeteat etgeetetge 1020 geggtetttg geeteetget getgaeetge aetggetgea ggggggtege ceaetacate 1080 ctgcagacct tcctgagcct ggcagtgggt gcactcactg gggacgctgt cctgcatctg 1140 acgeceaagg tgetgggget geatacaeae agegaagagg geeteageee acageceaee 1200

	tggcgcctcc	tggctatgct	ggccgggctc	tacgccttct	tcctgtttga	gaacctcttc	1260
	aatctcctgc	tgcccaggga	cccggaggac	ctggaggacg	ggccctgcgg	ccacagcagc	1320
	catagccacg	ggggccacag	ccacggtgtg	tccctgcagc	tggcacccag	cgagctccgg	1380
	cagcccaagc	cccccacga	gggctcccgc	gcagacctgg	tggcggagga	gagcccggag	1440
5	ctgctgaacc	ctgagcccag	gagactgagc	ccagagttga	ggctactgcc	ctatatgatc	1500
	actctgggcg	acgccgtgca	caacttcgcc	gacgggctgg	ccgtgggcgc	cgccttcgcg	1560
	tcctcctgga	agaccgggct	ggccacctcg	ctggccgtgt	tctgccacga	gttgccacac	1620
	gagctggggg	acttcgccgc	cttgctgcac	gcggggctgt	ccgtgcgcca	agcactgctg	1680
	ctgaacctgg	cctccgcgct	cacggccttc	gctggtctct	acgtggcact	cgcggttgga	1740
10	gtcagcgagg	agagcgaggc	ctggatcctg	gcagtggcca	ccggcctgtt	cctctacgta	1800
•	gcactctgcg	acatgctccc	ggcgatgttg	aaagtacggg	acccgcggcc	ctggctcctc	1860
	ttcctgctgc	acaacgtggg	cctgctgggc	ggctggaccg	tcctgctgct	gctgtccctg	1920
	tacgaggatg	acatcacctt	ctga				1944

15 <210> 15

<211> 1341

<212> DNA

<213> Homo sapiens

<400> 15

20

25

atgetgeate cagagacete ecetggeegg gggeatetee tggetgtget eetggeeete 60

cttggeaceg cetgggeaga ggtgtggeea eeceagetge aggageagge teegatggee 120

ggageeetga acaggaagga gagtttettg eteeteteee tgeacaaceg eetgegeage 180

tgggteeage eceetgegge tgacatgegg aggetggaet ggagtgacag eetggeecaa 240

etggeteaag ecagggeage eetetgtgga ateecaacee egageetgge gteeggeetg 300

tggegeacee tgeaagtggg etggaacatg eagetgetge eegegggett ggegteettt 360

	gttgaagtgg	tcagcctatg	gtttgcagag	gggcagcggt	acagccacgc	ggcaggagag	420
	tgtgctcgca	acgccacctg	cacccactac	acgcagctcg	tgtgggccac	ctcaagccag	480
	ctgggctgtg	ggcggcacct	gtgctctgca	ggccaggcag	cgatagaagc	ctttgtctgt	540
	gcctactccc	ccggaggcaa	ctgggaggtc	aacgggaaga	caatcatccc	ctataagaag	600
5	ggtgcctggt	gttcgctctg	cacagccagt	gtctcaggct	gcttcaaagc	ctgggaccat	660
	gcaggggggc	tctgtgaggt	ccccaggaat	ccttgtcgca	tgagctgcca	gaaccatgga	720
	cgtctcaaca	tcagcacctg	ccactgccac	tgtcccctg	gctacacggg	cagatactgc	780
	caagtgaggt	gcagcctgca	gtgtgtgcac	ggccggttcc	gggaggagga	gtgctcgtgc	840
	gtctgtgaca	tcggctacgg	gggagcccag	tgtgccacca	aggtgcattt	tcccttccac	900
10	acctgtgacc	tgaggatcga	cggagactgc	ttcatggtgt	cttcagaggc	agacacctat	960
	tacagagcca	ggatgaaatg	tcagaggaaa	ggcggggtgc	tggcccagat	caagagccag	1020
	aaagtgcagg	acateetege	cttctatctg	ggccgcctgg	agaccaccaa	cgaggtgatt	1080
	gacagtgact	tcgagaccag	gaacttctgg	atcgggctca	cctacaagac	cgccaaggac	1140
	tccttccgct	gggccacagg	ggagcaccag	gccttcacca	gttttgcctt	tgggcagcct	1200
15	gacaaccacg	ggtttggcaa	ctgcgtggag	ctgcaggctt	cagctgcctt	caactggaac	1260
	aaccagcgct	gcaaaacccg	aaaccgttac	atctgccagt	ttgcccagga	gcacatctcc	1320
	cggtggggcc	cagggtcctg	a				1343

<210> 16

20 <211> 594

25

<212> DNA

<213> Homo sapiens

<400> 16

atgccaccg cggggctccg ccgggccgcg ccgctcaccg caatcgctct gttggtgctg 60 ggggctcccc tggtgctggc cggcgaggac tgcctgtggt acctggaccg gaatggctcc 120

31 /346

tggcatccgg ggtttaactg cgagttcttc accttctget gcgggacctg ctaccatcgg 180
tactgctgca gggacctgac cttgcttatc accgagaggc agcagaagca ctgcctggcc 240
ttcagcccca agaccatagc aggcatcgcc tcagctgtga tcctctttgt tgctgtggtt 300
gccaccacca tctgctgctt cctctgttcc tgttgctacc tgtaccgccg gcgccagcag 360
ctccagagcc catttgaagg ccaggagatt ccaatgacag gcatcccagt gcagccagta 420
tacccatacc cccaggaccc caaagctggc cctgcacccc cacagcctgg cttcatatac 480
ccacctagtg gtcctgctcc ccaatatcca ctctacccag ctgggccccc agtctacaac 540
cctgcagctc ctcctccta tatgccacca cagccetctt acccgggagc ctga 594

10 <210> 17

5

<211> 1623

<212> DNA

<213> Homo sapiens

<400> 17

atggcgactt ctggcgcggc ctcggcggag ctggtgatcg gctggtgcat attcggcctc 60
ttactactgg ctattttggc attctgctgg atatatgttc gtaaatacca aagtcggcgg 120
gaaagtgaag ttgtctccac cataacagca atttttctc tagcaattgc acttatcaca 180
tcagcacttc taccagtgga tatatttttg gtttcttaca tgaaaaatca aaatggtaca 240
tttaaggact gggctaatgc taatgtcagc agacagattg aggacactgt attatacggt 300
tactatactt tatattctgt tatattgttc tgtgtgttct tctggatccc ttttgtctac 360
ttctattatg aagaaaagga tgatgatgat actagtaaat gtactcaaat taaaacggca 420
ctcaagtata ctttgggatt tgttgtgatt tgtgcactgc ttcttttagt tggtgccttt 480
gttccattga atgttcccaa taacaaaaat tctacagagt gggaaaaagt gaagtcccta 540
tttgaagaac ttggaagtag tcatggttta gctgcattgt cattttctat cagttctctg 600
accttgattg gaatgttggc agctataact tacacagcct atggcatgtc tgcgttacct 660

ttaaatctga taaaaggcac tagaagcgct gcttatgaac gtttggaaaa cactgaagac 720 attgaagaag tagaacaaca cattcaaacg attaaatcaa aaaqcaaaga tqqtcqacct 780 ttgccagcaa gggataaacg cgccttaaaa caatttgaag aaaggttacg aacacttaag 840 aagagagaga ggcatttaga attcattgaa aacagctggt ggacaaaatt ttgtggcgct 900 ctgcgtcccc tgaagatcgt ctggggaata tttttcatct tagttgcatt gctgtttgta 960 atttetetet tettgteaaa tttagataaa getetteatt eagetggaat agattetggt 1020 ttcataattt ttggagctaa cctgagtaat ccactgaata tgcttttgcc tttactacaa 1080 acagttttcc ctcttgatta tattcttata acaattatta ttatgtactt tatttttact 1140 tcaatggcag gaattcgaaa tattggcata tggttctttt ggattagatt atataaaatc 1200 agaagaggta gaaccaggcc ccaagcactc ctttttctct gcatgatact tctqcttatt 1260 gtccttcaca ctagctacat gatttatagt cttgctcccc aatatgttat gtatggaagc 1320 caaaattact taatagagac taatataact tctgataatc ataaaggcaa ttcaaccctt 1380 tctgtgccaa agagatgtga tgcagatgct cctgaagatc agtgtactgt tacccggaca 1440 tacctattcc ttcacaagtt ctggttcttc agtgctgctt actattttgg taactgggcc 1500 tttcttgggg tatttttgat tggattaatt gtatcctgtt gtaaagggaa gaaatcggtt 1560 attgaaggag tagatgaaga ttcagacata agtgatgatg agccctctgt ctattctgct 1620 tga 1623

<210> 18

20 <211> 1329

5

10

15

25

<212> DNA

<213> Homo sapiens

<400> 18

atggcgctgc catcccgaat cctgctttgg aaacttgtgc ttctgcagag ctctgctgtt 60 ctcctgcact cagggtcctc ggtacccgcc gctgctggca gctccgtggt gtccgagtcc 120

gcggtgagct gggaggcggg cgcccgggcg gtgctgcqct qccaqaqccc gcgcatggtg 180 tggacccagg accggctgca cgaccgccag cgcgtgctcc actgggacct gcqcggcccc 240 gggggtggcc ccgcgcggcg cctgctggac ttgtactcgg cgggcgagca gcgcgtgtac 300 gaggegeggg accgeggeeg cetggagete teggeetegg cettegaega eggeaactte 360 5 tegetgetca teegegeggt ggaggagaeg gaegegggge tgtacacetg caacetgeae 420 catcactact gccacctcta cgagagcctg gccgtccgcc tggaggtcac cgacggcccc 480 ccggccaccc ccgcctactg ggacggcgag aaggaggtgc tggcggtggc gcgcggcgca 540 cccgcgcttc tgacctgcgt gaaccgcggg cacgtgtgga ccgaccggca cgtggaggag 600 getcaacagg tggtgcactg ggaceggeag cegeeegggg teeegeaega eegegeggae 660 10 cgcctgctgg acctctacgc gtcgggcqaq cqccqcqcct acqqqcccct ttttctqcqc 720 gaccgcgtgg ctgtgggcgc ggatgccttt gagcqcggtg acttctcact qcgtatcgag 780 ccgctggagg tcgccgacga gggcacctac tcctgccacc tgcaccacca ttactgtqgc 840 ctgcacgaac gccgcgtctt ccacctgacg gtcgccgaac cccacgcgga gccgccccc 900 cggggctctc cgggcaacgg ctccagccac agcggcgccc caggcccaga ccccacactg 960 15 gcgcgcggcc acaacgtcat caatgtcatc gtccccgaga gccgagccca cttcttccag 1020 cagetggget aegtgetgge caegetgetg etetteatee tgetaetggt caetgteete 1080 ctggccgccc gcaggcgccg cggaggctac gaatactcgg accagaaqtc qqqaaaqtca 1140 aaggggaagg atgttaactt ggcggagttc gctgtggctg caggggacca gatgctttac 1200 aggagtgagg acatccagct agattacaaa aacaacatcc tgaaggagag ggcggagctg 1260 20 geceacagee ecetgeetge caagtacate gacetagaca aagggtteeg gaaggagaae 1320 tgcaaatag 1329

<210> 19

<211> 789

25 <212> DNA

<213> Homo sapiens

<400> 19

5

10

15

25

atgacgcccg aggacccaga ggaaacccag cegettetgg ggeeteetgg eggeagegg 60

cecegeggee geegegtett eetegeegee ttegeegetg eeetgggeee acteagette 120

ggettegege teggetacag eteceeggee atecetagee tgeagegge egegeeeeeg 180

geecegegee tggacgacge egeegeetee tggttegggg etgtegtgae eetgggtgee 240

geggegggggg gagtgetggg eggetggetg gtggacegeg eegggegeaa getgageete 300

ttgetgtget eegtgeeett egtggeegge tttgeegtea teacegegge eeaggacgtg 360

tggatgetge tggggggeeg eetecteaee ggeetggeet geggtgttge etecetagtg 420

geeceggtet acateteega aategeetae eeageagtee gggggttget eggeteetgt 480

gtgeagetaa tggtegtegt eggeateete etggeetaee tggeaggetg ggtgetggag 540

tggegetgge tggetgtget gggetgegtg eeeeeeteee teatgetget teteatgtge 600

tteatgeeeg agaceeegeg etteetgetg acteageaea ggegeeagga ggetgeteet 660

ggtettgtea ggtgtggtea tggtgtteag eaegagtee tteggegeet actteaaget 720

gaceeagggt ggeeetggea acteetegea egtggeeate teggegeetg tetetgeaea 780

geetgttga

<210> 20

<211> 459

20 <212> DNA

<213> Homo sapiens

<400> 20

atgcgcggac ccgggcaccc cctcctctg gggctgctgc tggtgctggg ggcggcgggg 60 cgcggccggg ggggcgcgga gccccgggag ccggcggacg gacaggcgct gctgcggctg 120 gtggtggaac tcgtccagga gctgcggaag caccactcgg cggagcacaa gggcctgcag 180

35 / 346

ctcctcggc gggactgcgc cctgggccgc gcggaggcgg cggggctggg gccttcgccg 240
gagcagcgag tggaaattgt tcctcgagat ctgaggatga aggacaagtt tctaaaacac 300
cttacaggcc ctctttattt tagtccaaag tgcagcaaac acttccatag actttateac 360
aacaccagag actgcaccat tcctgcatac tataaaagat gcgccaggct tcttacccgg 420
ctggctgtca gtccagtgtg catggaggat aagcagtga 459

<210> 21

<211> 2865

<212> DNA

10 <213> Homo sapiens

<220>

<221> CDS

<222> (338)..(2074)

<400> 21

agtetaaaat taaagtette agteteeaca tteeetaett teeaaattea gettteeegg 60
gaggtetgga geagetgeet etetggggag atgetggagg teteggaate aceteaegeg 120
geeteaggge eeagttggag eeaceeeaag tgacaeeage aggeagatga eeagagagee 180
tgageeteeg geeeegagte tgtgaageet ageegetggg etggagaage eactgtggge 240
aceaeegtgg gggaaaeagg eeegttgeee tggeetettt geeetgggee ageetttgtg 300
20 aagtgggeee etettetggg eeeettgagt aggttee atg gea ttt tet gaa ete 355
Met Ala Phe Ser Glu Leu

1 5

ctg gac ctc gtg ggt ggc ctg ggc agg ttc cag gtt ctc cag acg atg 403 Leu Asp Leu Val Gly Gly Leu Gly Arg Phe Gln Val Leu Gln Thr Met

25 10 15 20

	gct	ctg	atg	gtc	tcc	atc	atg	tgg	ctg	tgt	acc	cag	agc	atg	ctg	gag	451
	Ala	Leu	Met	Val	Ser	Ile	Met	Trp	Leu	Cys	Thr	Gln	Ser	Met	Leu	Glu	
			25					30					35				
	aac	ttc	tcg	gcc	gcc	gtg	ccc	agc	cac	cgc	tgc	tgg	gca	ccc	ctc	ctg	499
5	Asn	Phe	Ser	Ala	Ala	Val	Pro	Ser	His	Arg	Cys	Trp	Ala	Pro	Leu	Leu	
		40					45					50					
	gac	aac	agc	acg	gct	cag	gcc.	agc	atc	cta	ggg	agc	ttg	agt	cct	gag	547
	Asp	Asn	Ser	Thr	Ala	Gln	Ala	Ser	Ile	Leu	Gly	Ser	Leu	Ser	Pro	Glu	
	55					60					65					70	
10	gcc	ctc	ctg	gct	att	tcc	atc	ccg	ccg	ggc	ccc	aac	cag	agg	ccc	cac	595
	Ala	Leu	Leu	Ala	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Asn	Gln	Arg	Pro	His	
					75					80					85		
	cag	tgc	cgc	cgc	ttc	cgc	cag	cca	cag	tgg	cag	ctc	ttg	gac	ccc	aat	643
	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu	Asp	Pro	Asn	
15				90					95					100			
	gcc	acg	gcc	acc	agc	tgg	agc	gag	gcc	gac	acg	gag	ccg	tgt	gtg	gat	691
	Ala	Thr	Ala	Thr	Ser	Trp	Ser	Glu	Ala	Asp	Thr	GÌu	Pro	Cys	Val	Asp	
			105					110					115				
	ggc	tgg	gtc	tat	gac	cgc	agc	atc	ttc	acc	tcc	aca	atc	gtg	gcc	aag	739
20	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Ile	Phe	Thr	Ser	Thr	Ile	Val	Ala	Lys	
		120					125					130					
	tgg	aac	ctc	gtg	tgt	gac	tct	cat	gct	ctg	aag	ccc	atg	gcc	cag	tcc	787
	Trp	Asn	Leu	Val	Cys	Asp	Ser	His	Ala	Leu	Lys	Pro	Met	Ala	Gln	Ser	
	135					140					145					150	
25	atc	tac	ctg	gct	ggg	att	ctg	gtg	gga	gct	gct	gcg	tgc	ggc	cct		835

	Ile	Tyr	Leu	Ala	Gly	Ile	Leu	Val	Gly	Ala	Ala	Ala	Cys	Gly	Pro	Ala	
				•	155					160					165		
	tca	gac	agg	ttt	ggg	cgc	agg	ctg	gtg	cta	acc	tgg	agc	tac	ctt	cag	883
	Ser	Asp	Arg	Phe	Gly	Arg	Arg	Leu	Val	Leu	Thr	Trp	Ser	Tyr	Leu	Gln	
5				170					175			٠.		180			
	atg	gct	gtg	atg	ggt	acg	gca	gct	gcc	ttc	gcc	cct	gcc	ttc	ccc	gtg	931
	Met	Ala	Val	Met	Gly	Thr	Ala	Ala	Ala	Phe	Ala	Pro	Ala	Phe	Pro	Val	
		,	185					190					195				
	tac	tgc	ctg	ttc	cgc	ttc	ctg	ttg	gcc	ttt	gcc	gtg	gca	ggc	gtc	atg	979
10	Tyr	Cys	Leu	Phe	Arg	Phe	Leu	Leu	Ala	Phe	Ala	۷al	Ala	Gly	۷al	Met	
		200					205					210					
	atg	aac	acg	ggc	act	ctc	cgt	agg	tct	ctg	acc	tgg	cgc	cat	gca	ggg	1027
	Met	Asn	Thr	Gly	Thr	Leu	Arg	Arg	Ser	Leu	Thr	Trp	Arg	His	Ala	Gly	
	215					220					225					230	
15	ggg	ctc	cat	gca	ggc	tcc	agg	gct	gaa	cca	ctc	ggt	ctc	ctt	gca	gtg	1075
	Gly	Leu	-His	Ala	Gly	Ser	Arg	Ala	Glu	Pro	Leu	Gly	Leu	Leu	Ala	Val	
					235					240					245		
	atg	gag	tgg	acg;	gcg	gca	cgg	gcc	cga	ccc	ttg	gtg	atg	acc	ttg	aac	1123
	Met	Glu	Trp	Thr	Ala	Ala	Arg	Ala	Arg	Pro	Leu	Val	Met	Thr	Leu	Asn	
20				250					255					260			
	tct	ctg	ggc	ttc	agc	ttc	ggc	cat	ggc	ctg	aca	gct	gca	gtg	gcc	tac	1171
	Ser	Leu	Gly	Phe	Ser	Phe	Gly	His	Gly	Leu	Thr	Ala	Ala	Val	Ala	Tyr	
			265					270					275				
	ggt	gtg	cgg	gac	tgg	aca	ctg	ctg	cag	ctg	gtg	gtc	tcg	gtc	ccc	ttc	1219
25	Gly	Val	Arg	Asp	Trp	Thr	Leu	Leu	Gln	Leu	Val	Val	Ser	Val	Pro	Phe	

		280					285					290					
	ttc	ctc	tgc	ttt	ttg	tac	tcc	tgg	tgg	ctg	gca	gag	tcg	gca	cga	tgg	1267
	Phe	Leu	Cys	Phe	Leu	Tyr	Ser	Trp	Trp	Leu	Ala	Glu	Ser	Ala	Arg	Trp	
	295		,			300					305					310	
5	ctc	ctc	acc	aca	ggc	agg	ctg	gat	tgg	ggc	ctg	cag	gag	ctg	tgg	agg	1315
	Leu	Leu	Thr	Thr	Gly	Arg	Leu	Asp	Trp	Gly	Leu	Gln	Glu	Leu	Trp	Arg	
٠.					315					320					325		
	gtg	gct	gcc	atc	aac	gga	aag	ggg	gca	gtg	cag	gac	acc	ctg	acc	cct	1363
	Val	Ala	Ala	Ile	Asn	Gly	Lys	Gly	Ala	Val	Gln	Asp	Thr	Leu	Thr	Pro	
10				330					335					340			
	gag	gtc	ttg	ctt	tca	gcc.	atg	cgg	gag	gag	ctg	agc	atg	ggc	cag	cct	1411
	Glu	Val	Leu	Leu	Ser	Ala	Met	Arg	Glu	Glu	Leu	Ser	Met	Gly	Gln	Pro	
			345					350					355				
	cct	gcc	agc	ctg	ggc	acc	ctg	ċtc	cgc	atg	ccc	gga	ctg	cgc	ttc	cgg	1459
15	Pro	Ala	Ser	Leu	Gly	Thr	Leu	Leu	Arg	Met	Pro	Gly	Leu	Arg	Phe	Arg	
		360					365					370					
	acc	tgt	atc	tcc	acg	ttg	tgc	tgg	ttc	gcc	ttt	ggc	ttc	acc	ttc	ttc	1507
	Thr	Суѕ	Ile	Ser	Thr	Leu	Cys	Trp	Phe	Ala	Phe	Gly	Phe	Thr	Phe	Phe	
	375					380					385					390	
20	ggc	ctg	gċc	ctg	gac	ctg	cag	gcc	ctg	ggc	agc	aac	atc	ttc	ctg	ctc	1555
	Gly	Leu	Ala	Leu	Asp	Leu	Gln	Ala	Leu	Gly	Ser	Asn	Ile	Phe	Leu	Leu	
					395					400					405		
	caa	atg	ttc	att	ggt	gtc	gtg	gac	atc	cca	gcc	aag	atg	ggc	gcc	ctg	1603
	Gln	Met	Phe	Ile	Gly	Val	Val	Asp	Ile	Pro	Ala	Lys	Met	Gly	Ala	Leu	
25				410					415					420			

	ctg	ctg	ctg	agc	cac	ctg	ggc	cgc	cgc	CCC	acg	ctg	gcc	gca	tcc	ctg	1651
	Leu	Leu	Leu	Ser	His	Leu	Gly	Arg	Arg	Pro	Thr	Leu	Ala	Ala	Ser	Leu	
			425					430					435				
	ttg	ctg	gcg	ggg	ctc	tgc	att	ctg	gcc	aac	acg	ctg	gtg	ccc	cac	gaa	1699
5	Leu	Leu	Ala	Gly	Leu	Cys	Ile	Leu	Ala	Asn	Thr	Leu	Val	Pro	His	Glu	
		440					445					450					
	atg	ggg	gct	ctg	cgc	tca	gcc	ctg	gcc	gtg	ctg	ggg	ctg	ggc	ggg	gtg	1747
	Met	Gly	Ala	Leu	Arg	Ser	Ala	Leu	Ala	Val	Leu	Gly	Leu	giy	Gly	Val	
	455					460					465					470	
10	ggg	gct	gcc	ttc	acc	tgc	atc	acc	atc	tac	agc	agc	gag	ctc	ttc	ccc	1795
	Gly	Ala	Ala	Phe	Thr	Cys	Ile	Thr	Ile	Tyr	Ser	Ser	Glu	Leu	Phe	Pro	
					475				,	480					485		
	act	gtg	ctc	agg	atg	acg	gca	gtg	ggc	ttg	ggc	cag	atg	gca	gcc	cgt	1843
	Thr	Val	Leu	Arg	Met	Thr	Ala	Val	Gly	Leu	Gly	Gln	Met	Ala	Ala	Arg	
15				490					495					500			
	gga	gga	gcc	atc	ctg	ggg	cct	ctg	gtc	cgg	ctg	ctg	ggt	gtc	cat	ggc	1891
	Gly	Gly	Ala	Ile	Leu	Gly	Pro	Leu	Val	Arg	Leu	Leu	Gly	Val	His	Gly	
			505					510					515				
	ccc	tgg	ctg	ccc	ttg	ctg	gtg	tat	ggg	acg	gtg	cca	gtg	ctg	agt	ggc	1939
20	Pro	Trp	Leu	Pro	Leu	Leu	Val	Tyr	Gly	Thr	Val	Pro	Val	Leu	Ser	Gly	
		520					525					530					
	ctg	gcc	gca	ctg	ctt	ctg	ccc	gag	acc	cag	agc	ttg	ccg	ctg	ccc	gac	1987
	Leu	Ala	Ala	Leu	Leu	Leu	Pro	Glu	Thr	Gln	Ser	Leu	Pro	Leu	Pro	Asp	
	535					540					545					550	
25	acc	atc	caa	gat	gta	cao	aac	cag	qca	gta	aaσ	aaσ	gca	aca	cat		2035
				-				_	-	-	_	9				35-	

40 /346

Thr Ile Gln Asp Val Gln Asn Gln Ala Val Lys Lys Ala Thr His Gly

555 560

565

acg ctg ggg aac tct gtc cta aaa tcc aca cag ttt tagcctcctg 2081

Thr Leu Gly Asn Ser Val Leu Lys Ser Thr Gln Phe

5

10

15

570

575

gggaacctgc gatggacgg tcagaggaag agacttette tgttetetgg agaaggcagg 2141
aggaaagcaa agacetecat ttecagagge ccagaggetg ceetetgagg teeceactet 2201
cccccaggge tgeeceteca ggtgagecet geecetetca cagtecaagg ggeeceette 2261
aatactgaag gggaaaagga cagtttgatt ggcaggaggt gacecagtge accateacee 2321
tgeecetgeee tegtggette ggagageaga ggggtcagge ccaggggaac gagetggeet 2381
tgeeaaccet etgettgaet eegeactgee acttgteee ceacaccegt ecacetgeee 2441
agagetcaga getaaccace atecatggte aagaeetete etageteeae acaageagta 2501
gagteteage teeacagett tacecagaag ecetgtaage etggeecetg geeceteeee 2561
atgteeetee aggeetcage eacetgeeeg ecacateete tgeetgetg eceetteeea 2621
ccetcateee tgaeegaete eacttaacce ecaaacceag eceeecttee aggggteeag 2681
ggeeageetg agatgeeegt gaaaeteeta eceacagtta eageeacaag ectgeeteet 2741
cccaccetge eageetatga gtteecagag ggttggggea gteecatgae eceatgteee 2801
ageteeceae acagegetgg geeagagagg cattggtge agggattgaa taaagaaaca 2861
aatg

20

<210> 22

<211> 3323

<212> DNA

<213> Homo sapiens

25 <220>

	<221	.> CI	S														
	<222	?> (4	16)	(777	'}							٠					
	<400)> 22	2														
	aact	ctg	gtc c	cggg	gcago	c aa	igaca	aago	gaa	iąggo	aag	gcag	ıc at	cg ag	ge eg	ja tca	57
5													Me	et Se	er Ai	g Ser	
											,			1			
	ccc	ctc	aat	ccc	agc	caa	ctc	cga	tca	gtg	ggc	tcc	cag	gat	gcċ	ctg	105
	Pro	Leu	Asn	Pro	Ser	Gln	Leu	Arg	Ser	Val	Gly	Ser	Gln	Asp	Ala	Leu	
	5					10					15					20	
10	gcc	ccc	ttg	cct	cca	cct	gct	ccc	cag	aat	ccc	tcc	acc	cac	tct	tgg	153
	Ala	Pro	Leu	Pro	Pro	Pro	Ala	Pro	Gln	Asn	Pro	Ser	Thr	His	Ser	Trp	
					25					30					35		
	gac	cct	ttg	tgt	gga	tct	ctg	cct	tgg	ggc	ctc	agc	tgt	ctt	ctg	gct	201
	Asp	Pro	Leu	Суз	Gly	Ser	Leu	Pro	Trp	Gly	Leu	Ser	Cys	Leu	Leu	Ala	
15				40					45					50			
	ctg	cag	cat	gtc	ttg	gtc	atg	gct	tct	ctg	ctc	tgt	gtc	tcc	cac	ctg	249
	Leu	Gln	His	Val	Leu	Val	Met	Ala	Ser	Leu	Leu	Суѕ	Val	Ser	His	Leu	
			55					60					65				
	ctc	ctg	ctt	tgc	agt	ctc	tcc	cca	gga	gga	ctc	tct	tac	tcc	cct	tct	297
20	Leu	Leu	Leu	Cys	Ser		Ser	Pro	Gly	Gly	Leu	Ser	Tyr	Ser	Pro	Ser	
		70					75					80					
	cag	ctc	ctg	gcc	tċc	agc	ttc	ttt	tca	tgt	ggt	atg	tct	acc	atc	ctg	345
	Gln	Leu	Leu	Ala	Ser	Ser	Phe	Phe	Ser	Cys	Gly	Met	Ser	Thr	Ile	Leu	
	85					90					95					100	
25	caa	act	tgg	atg	ggc	agc	agg	ctg	cct	ctt	gtc	cag	gct	cca	tcc	tta	393

	Gln	Thr	Trp	Met	Gly	Ser	Arg	Leu	Pro	Leu	Val	Gln	Ala	Pro	Ser	Leu	
					105					110					115		
	gag	ttc	ctt	atc	cct	gct	ctg	gtg	ctg	acc	agc	cag	aag	cta	ccc	cgg	441
	Glu	Phe	Leu	Ile	Pro	Ala	Leu	Val	Leu	Thr	Ser	Gln	Lys	Leu	Pro	Arg	
5			•	120					125					130			
	gcc	atc	cag	aca	cct	gga	aac	tcc	tcc	ctc	atg	ctg	cac	ctt	tgt	agg	489
	Ala	Ile	Gln	Thr	Pro	Gly	Asn	Ser	Ser	Leu	Met	Leu	His	Leu	Суѕ	Arg	
			135					140					145				
	gga	cct	agc	tgc	cat	ggc	ctg	ggg	cac	tgg	aac	act	tct	ctc	cag	gag	537
10	Gly	Pro	Ser	Cys	His	Gly	Leu	Gly	His	Trp	Asn	Thr	Ser	Leu	Gln	Glu	
		150					155					160					
	gtg	tcc	ggg	gca	gtg	gta	gta	tct	ggg	ctg	ctg	cag	ggc	atg	atg	ggg	585
•	Val	Ser	Gly	Ala	Val	Val	Val	Ser	Gly	Leu	Leu	Gln	Gly	Met	Met	Gly	
	165					170					175					180	
15	ctg	ctg	ggg	agt	ccc	ggc	cac	gtg	ttc	ccc	cac	tgt	ggg	ccc	ctg	gtg	633
	Leu	Leu	Gly	Ser	Pro	Gly	His	Val	Phe	Pro	His	Cys	Gly	Pro	Leu	Val	
					185					190					195		
	ctg	gct	ccc	agc	ctg	gtt	gtg	gca	ggg	ctc	tct	gcc	cac	agg	gag	gta	681
	Leu	Ala	Pro	Ser	Leu	Val	Val	Ala	Gly	Leu	Ser	Ala	His	Arg	Glu	Val	
20				200					205	•				210			
	gcc	cag	ttc	tgc	ttc	aca	cac	tgg	ggg	ttg	gcc	ttg	ctg	tac	gtg	agt	729
	Ala	Gln	Phe	Cys	Phe	Thr	His	Trp	Gly	Leu	Ala	Leu	Leu	Tyr	Val	Ser	
			215					220					225				
	cct	gag	agg	cgt	ggg	atg	gtg	ccc	agt	ggg	ggt	gta	tgg	ggg	gac		774
25	Pro	Glu	Arg	Arg	Gly	Met	Val	Pro	Ser	Gly	Gly	Val	Trp	Glv	Asp		

43 /346

230 235 240

taggggaggg cagaactgct ggtcctatca gattcagcag cgactggaat agggacatat 834 tttatatttg gaatccaaga cttttccttg attcatctgg tctccttgaa tttcacactg 894 ttttctgctg tcccccaagg tcacttccta ttccttccat gggagtttcc ttctctggta 954 5 teaceceeg etettatgat attetgeeca eteceacete ettteecate eeteaggata 1014 cccactgcct cttgctccta aagccttctg tctcctaggg ttatcctgct catggtgqtc 1074 tgttctcagc acctgggctc ctgccagttt catgtgtgcc cctggaggcg agcttcaacg 1134 tcatcaactc acactcctct ccctgtcttc cggctccttt cggtgctgat cccagtggcc 1194 tgtgtgtgga ttgtttctgc ctttgtggga ttcagtgtta tcccccagga actgtctgcc 1254 10 cccaccaagg caccatggat ttggctgcct cacccaggtg agtggaattg gcctttgctg 1314 acgcccagag ctctggctgc aggcatctcc atggccttgg cagcctccac cagttccctg 1374 ggctgctatg ccctgtgtgg ccggctgctg catttgcctc ccccacctcc acatgcctgc 1434 agtcgagggc tgagcctgga ggggctggc agtgtgctgg ccgggctgct gggaagcccc 1494 atgggcactg catccagctt ccccaacgtg ggcaaagtgg gtcttatcca ggctggatct 1554 15 cagcaagtgg ctcacttagt ggggctactc tgcgtggggc ttggactctc ccccaggttg 1614 gctcagctcc tcaccaccat cccactgcct gttgttggtg gggtgctggg ggtgacccag 1674 getgtggttt tgtetgetgg attetecage ttetacetgg etgacataga etetgggega 1734 aatatcttca ttgtgggctt ctccatcttc atggccttgc tgctgccaag atggtttcgg 1794 gaagccccag tcctgttcag cacaggctgg agccccttgg atgtattact gcactcactg 1854 20 ctgacacage ceatetteet ggetggacte teaggettee tactagagaa cacqatteet 1914 ggcacacagc ttgagcgagg cctaggtcaa gggctaccat ctcctttcac tgcccaagag 1974 gctcgaatgc ctcagaagcc cagggagaag gctgctcaag tatggaagaa ctggagcaag 2034 gcctgttgat gcagccatgg gcgtggctac agcttgcaga gaactccctc ttggccaagg 2094 tttttatcac caagcagggc tatgccttgt tggtttcaga tcttcaacag gtgtggcatg 2154 25 aacaggtgga cactagtgtg gtcagccagc gagccaagga gctgaacaag cggctcactg 2214

44 /346

ctcctcctgc agetttectc tgtcatttgg ataatetect tegeccattg ttgaaggaeg 2274 ctgctcaccc tagcgaagct accttctcct gtgattgtgt ggcagatgca ctgattctac 2334 gggtgcgaag tgagctctct ggcctcccct tctattggaa tttccactgc atgctagcta 2394 gtccttccct ggtctcccaa catttgattc gtcctctgat gggcatgagt ctggcattac 2454 5 agtgccaagt gagggagcta gcaacgttac ttcatatgaa agacctagag atccaagact 2514 accaggagag tggggctacg ctgattcgag atcgattgaa gacagaacca tttgaagaaa 2574 attecttett ggaacaattt atgatagaga aactgecaga ggeatgeage attggtgatg 2634 gaaagccctt tgtcatgaat ctgcaggatc tgtatatggc agtcaccaca caagaggtcc 2694 aagtgggaca gaagcatcaa ggcgctggag atcctcatac ctcaaacagt gcttccctqc 2754 10 aaggaatcga tagccaatgt gtaaaccagc cagaacaact ggtctcctca gccccaaccc 2814 teteageace tgagaaagag teeaegggta etteageec tetgeagaga ceteagetgt 2874 caaaggtcaa gaggaagaag ccaaggggtc tcttcagtta atctqttqtq qcctcaqctq 2934 ctgaggatgg acttggagaa tagcttccaa gcttcacctt gaaagaagct tacatggcag 2994 caatatttct aaaatagtga tacagtcaga ggcctcctgt aagggcgaga gaactgaagt 3054 15 tgatgttgac aggcccacag ggaattggcc ttccctgttc aagtggaagc cagtctctga 3114 gaatcccgtg ctctcctctc ttttggtgga ggttctgtag gttcagqttt ctaccatgga 3174 ctttaggtat atagggcaag tcagcaagaa agcaccacac actcaggaag ccttgtctac 3234 etttecetag egtetetage cagecagece cagatactee teagagacee aettetetet 3294 tttgcatgga ataaaaagca ctcacagtc 3323

20

<210> 23

<211> 1585

<212> DNA

<213> Homo sapiens

25 <220>

45 /346

	<221> CD	s													
•	<222> (7	3)(1458)												•
	<400> 23							•							
	aaaaaaa	aa aa	aaaaa	aaa aa	aaaa	aagt	tgt	gtct	gcc a	actc	ggct	gc c	ggagg	gccga	60
5	aggtccct	ga ct	atg	gct co	c ca	g ag	c ct	g cc	t tca	a tci	t agg	g ate	g gct	t cct	111
			Met 2	Ala Pr	o Gl	n Se	r Le	u Pr	o Sei	r Se	r Ar	g Me	t Ala	a Pro	
			1				5				1	0			
	ctg ggc	atg c	ctg ct	t ggg	ctg	ctg	atg	gcc	gcc ·	tgc	ttc	acc	ttc	tgc	159
	Leu Gly	Met I	Leu Le	u Gly	Leu	Leu	Met	Ala	Ala	Суѕ	Phe	Thr	Phe	Cys	
10	15				20					25					
	ctc agt	cat o	cag aa	c ctg	aag	gag	ttt	gcc	ctg	acc	aac	cca	gag	aag	207
	Leu Ser	His (Gln As	n Leu	Lys	Glu	Phe	Ala	Leu	Thr	Asn	Pro	Glu		
	30			35					40					45	
	agc agc														255
15	Ser Ser	Thr	Lys G	u Thr	Glu	Arg	Lys	Glu	Thr	Lys	Ala	Glu		Glu	
				0				55					60		
	ctg gat														303
	Leu Asp	Ala	Glu V	al Leu	Glu	Val		His	Pro	Thr	His		Trp	Gln	
			65				70					75			
20	gcc ctt														351
	Ala Lev		Pro G	ly Glr	ı Ala			Ala	GLY	Ser			Arg	ьeu	
	•	80				85					90				200
	aat ctt														399
	Asn Let	ı Gln	Thr G	ly Gl	ı Arç	g Glu	Ala	Lys	Leu	GIn	Tyr	Glu	Asp	гуз	•

		ttc	cga	aat	aat	ttg	aaa	ggc	aaa	agg	ctg	gat	atc	aac	acc	aac	acc	447
		Phe	Arg	Asn	Asn	Leu	Lys	Gly	Lys	Arg	Leu	Asp	Ile	Asn	Thr	Asn	Thr	
		110					115					120					125	
		tac	aca	tct	cag	gat	ctc	aag	agt	gca	ctg	gca	aaa	ttc	aag	gag	ggg	495
	5	Tyr	Thr	Ser	Gln	Asp	Leu	Lys	Ser	Ala	Leu	Ala	Lys	Phe .	Lys	Glu	Gly	
						130					135					140		
		gca	gag	atg	gag	agt	tca	aag	gaa	gac	aag	gca	agg	cag	gct	gag	gta	543
		Ala	Glu	Met	Glu	Ser	Ser	Lys	Glu	Asp	Lys	Ala	Arg	Gln	Ala	Glu	Val	
					145					150					155			
	10	aag	cgg	ctc	ttc	cgc	CCC	att	gag	gaa	ctg	aag	aaa	gac	ttt	gat	gag	591
		Lys	Arg	Leu	Phe	Arg	Pro	Ile	Glu	Glu	Leu	Lys	Lys	Asp	Phe	Asp	Glu	
				160					165					170		-		
•		ctg	aat	gtt	gtc	att	gag	act	qac	atq	caq	atc	atq		caa	cta	atc	639
					Val											-		
	15		175					180	•				185	•	5			
		aac		ttc	aat	agt.	tcc		tcc	agt	tta	gaa			att	act	aca	687
					Asn									_				ΟŅ /
		190	173	1110	71511	Der	195	Der	261	Ser	neu		GIU	пур	116	ALA		
			+++	~~+	~++							200					205	205
•	20				ctt											-		735
	20	ьеи	rne	Asp	Leu		ryr	ryr	vaı	HIS		Met	Asp	Asn	Ala		Asp	
						210					215					220		
					ttt											-		783
		Leu	Leu	Ser	Phe	Gly	Gly	Leu	Gln		Val	Ile	Asn	Gly	Leu	Asn	Ser	
					225					230					235			
	25	aca	gag	ccc	ctc	gtg	aag	gag	tat	gct	gcg	ttt	gtg	ctg	ggc	gct	gcc	831

	Thr	Glu	Pro	Leu	Val	Lys	Glu	Tyr	Ala	Ala	Phe	Val	Leu	Gly	Ala	Ala	
			240					245					250				
	ttt	tcc.	agc	aac	CCC ·	aag	gtc	cag	gtg	gag	gcc	atc	gaa	ggg	gga	gcc	879
	Phe	Ser	Ser	Asn	Pro	Lys	Val	Gln	Val	Glu	Ala	Ile	Glu	Gly	Gly	Ala	
5	•	255					260					265					
	ctg	cag	aag	ctg	ctg	gtc	atc	ctg	gcc	acg	gag	cag	ccg	ctc	act	gca	927
	Leu	Gln	Lys	Leu	Leu-	Val	Ile	Leu	Ala	Thr	Glu	Gln	Pro	Leu	Thr	Ala	
	270					275				•	280		ė			285	
	aag	aag	aag	gtc	ctg	ttt	gca	ctg	tgc	tcc	ctg	ctg	cgc	cac	ttc	ccc	975
LO	Lys	Lys	Lys	Val	Leu	Phe	Ala	Leu	Cys	Ser	Leu	Leu	Arg	His	Phe	Pro	
					290					295					300		
	tat	gcc	cag	cgg	cag	ttc	ctg	aag	ctc	ggg	ggg	ctg	cag	gtc	ctg	agg	1023
	Tyr	Ala	Gln	Arg	Gln	Phe	Leu	Lys	Leu	Gly	Gly	Leu	Gln	Val	Leu	Arg	
				305					310					315			
L5	acc	ctg	gtg	cag	gag	aag	ggc	acg	gag	gtg	ctc	gcc	gtg	cgc	gtg	gtc ·	1071
	Thr	Leu	Val	Gln	Glu	Lys	Gly	Thr	Glu	Val	Leu	Àla	Val	Arg	Val	Val	
			320					325					330				
	aca	ctg	ctc	tac	gac	ctg	gtc	acg	gag	aag	atg	ttc	gcc	gag	gag	gag	1119
	Thr	Leu	Leu	Tyr	Asp	Leu	Val	Thr	Glu	Lys	Met	Phe	Ala	Glu	Glu	Glu	
20		335					340					345					
	gct	gag	ctg	acc	cag	gag	atg	tcc	cca	gag	aag	ctg	cag	cag	tat	cgc	1167
	Ala	Glu	Leu	Thr	Gln	Glu	Met	Ser	Pro	Glu	Lys	Leu	Gln	Gln	Tyr	Arg	
	350					355					360					365	
	cag	gta	cac	ctc	ctg	cca	ggc	ctg	tgg	gaa	cag	ggc	tgg	tgc	gag	atc	1215
25	Gln	Val	His	Leu	Leu	Pro	Gly	Leu	Trp	Glu	Gln	Gly	Trp	Cys	Glu	Ile	

48 /346

					370					375					380		
	acg	gcc	cac	ctc	ctg	gcg	ctg	ccc	gag	cat	gat	gcc	cgt	gag	aag	gtg	1263
	Thr	Ala	His	Leu	Leu	Ala	Leu	Pro	Glu	His	Asp	Ala	Arg	Glu	Lys	Val	
				385		,			390					395			
5	ctg	cag	aca	ctg	ggc	gtc	ctc	ctg	acc	acc	tgc	cgg	gac	cgc	tac	cgt	1311
	Leu	Gln	Thr	Leu	Gly	Val	Leu	Leu	Thr	Thr	Cys	Arg	Asp	Arg	Tyr	Arg	
			400					405					410				•
	cag	gac	ccc	cag	ctc	ggc	agg	aca	ctg	gcc	agc	ctg	cag	gct	gag	tac	1359
	Gln	Asp	Pro	Gln	Leu	Gly	Arg	Thr	Leu	Ala	Ser	Leu	Gln	Ala	Glu	Tyr	
LO		415					420					425					
	cag	gtg	ctg	gcc	agc	ctg	gag	ctg	cag	gat	ggt	gag	gac	gag	ggc	tac	1407
	Gln	Val	Leu	Ala	Ser	Leu	Glu	Leu	Gln	Asp	Gly	Glu	Asp	Glu	Gly	Tyr	
	430					435					440					445	
	ttc	cag	gag	ctg	ctg	ggc	tct	gtc	aac	agc	ttg	ctg	aag	gag	ctg	aga	1455
15	Phe	Gln	Glu	Leu	Leu	Gly	Ser	Val	Asn	Ser	Leu	Leu	Lys	Glu	Leu	Arg	
					450					455					460		
	tgag	ggcc	cca (cacca	aggad	ct g	gact	gggai	t gc	cgct	agtg	agg	ctga	ggg (gtgc	cagcgt	1515
	gggt	gggd	ctt (ctca	ggca	gg a	ggac	atcti	t gg	cagt	gctg	gct	tggc	cat.	taaai	tggaaa	1575
	cct	gaag	gcc														1585
20																	
	<210)> 24	4														
	<211	L> 2:	122														
	<212	2> Di	AV					•									
	<213	3> H	omo :	sapi	ens												

25 . <220>

	<22	l> CI	os															
	<222	2> (5	56)	(199	99)													
	<40	0> 24	4															
	agaa	agcad	ctg c	gcct	tggc	cc ac	cagca	acac	cca	actga	ıgca	cgct	ggga	agc t	gagt	atg	58	•
5	•															Met		
							•									1		
	gcg	tcc	ctg	gtc	tcg	ctg	gag	ctg	ggg	ctg	ctt	ctg	gct	gtg	ctg	gtg	106	
	Ala	Ser	Leu	Val	Ser	Leu	Glu	Leu	Gly	Leu	Leu	Leu	Ala	Val	Leu	Val		
				5					10					15				
10	gtg	acg	gcg	acg	gcg	tcc	ccg	cct	gct	ggt	ctg	ctg	agc	ctg	ctc	acc	154	
	Val	Thr	Ala	Thr	Ala	Ser	Pro	Pro	Ala	Gly	Leu	Leu	Ser	Leu	Leu	Thr		
			20					25					30					
	tct	ggc	cag	ggc	gct	ctg	gat	caa	gag	gct	ctg	ggc	ggc	ctg	tta	aat	202	
	Ser	Gly	Gln	Gly	Ala	Leu	Asp	Gln	Glu	Ala	Leu	Gly	Gly	Leu	Leu	Asn		
15		35					40					45					•	
	acg	ctg	gcg	gac	cgt	gtg	cac	tgc	acc	aac	ggg	ccg	tgt	gga	aag	tgc	250	
	Thr	Leu	Ala	Asp	Arg	Val	His	Cys	Thr	Asn	Gly	Pro	Cys	Gly	Lys	Cys		
	50					55					60					65		
	ctg	tct	gtg	gag	gac	gcc	ctg	ggc	ctg	ggc	gag	cct	gag	ggg	tca	ggg	298	
20	Leu	Ser	Val	Glu	Asp	Ala	Leu	Gly	Leu	Gly	Glu	Pro	Glu	Gly	Ser	Gly		
					70					75					80		•	
	ctg	ccc	ccg	ggc	ccg	gtc	ctg	gag	gcc	agg	tac	gtc	gcc	cgc	ctc	agt	346	
	Leu	Pro	Pro	Gly	Pro	Val	Leu	Glu	Ala	Arg	Tyr	Val	Ala	Arg	Leu	Ser		
				85					90					95				
25	gcc	gcc	gcc	gtc	ctq	tac	ctc	agc	aac	ccc	gag	aac	acc	tat	gag	gac	394	

	Ala	Ala	Ala	Val	Leu	Tyr	Leu	Ser	Asn	Pro	Glu	Gly	Thr	Cys	Glu	Asp	
	•		100					105					110				
	act	cgg	gct	ggc	ctc	tgg	gcc	tct	cat	gca	gac	cac	ctc	ctg	gcc	ctg	442
	Thr	Arg	Ala	Gly	Leu	Trp	Ala	Ser	His	Ala	Asp	His	Leu	Leu	Ala	Leu	
5		115					120					125					
	ctc	gag	agc	ccc	aag	gcc	ctg	acc	ccg	ggc	ctg	agc	tgg	ctg	ctg	cag	490
	Leu	Glu	Ser	Pro	Lys	Ala	Leu	Thr	Pro	Gly	Leu	Ser	Trp	Leu	Leu	Gln	•
	130					135					140					145	
	agg	atg	cag	gcc	cgg	gct	gcc	ggc	cag	acc	ccc	aag	acg	gcc	tgc	gta	538
10	Arg	Met	Gln	Ala	Arg	Ala	Ala	Gly	Gln	Thr	Pro	Lys	Thr	Ala	Cys	Val	
					150					155					160		
	gat	atc	cct	cag	ctg	ctg	gag	gag	gcg	gtg	ggg	gcg	ggg	gct	ccg	ggc	586
	Asp	Ile	Pro	Gln	Leu	Leu	Glu	Glu	Ala	Val	Gly	Ala	Gly	Ala	Pro	Gly	
			•	165			•		170					175			
15	agt	gct	ggc	ggc	gtc	ctg	gct	gcc	ctg	ctg	gac	cat	gtc	agg	agc	ggg	634
	Ser	Ala	Gly	Gly	Val	Leu	Ala	Ala	Leu	Leu	Asp	His	Val	Arg	Ser	Gly	
			180					185	•		•		190				
	tct	tgc	ttc	cac	gcc	ttg	ccg	agc	cct	cag	tac	ttc	gtg	gac	ttt	gtg	682
	Ser	Cys	Phe	His	Ala	Leu	Pro	Ser	Pro	Gln	Tyr	Phe	Val	Asp	Phe	Val	
20		195					200					205					
,	ttc	cag	cag	cac	agc	agc	gag	gtc	cct	atg	acg	ctg	gcc	gag	ctg	tca	730
	Phe	Gln	Gln	His	Ser	Ser	Glu	Val	Pro	Met	Thr	Leu	Ala	Glu	Leu	Ser	
	210					215					220			ı		225	
	gcc	ttg	atg	cag	cgc	ctg	ggg	gtg	ggc	agg	gag	gcc	cac	agt	gac	cac	778
25	Ala	Leu	Met	Gln	Arg	Leu	Gly	Val	Gly	Arg	Glu	Ala	His	Ser	Asp	His	

					230					235					240		
	agt	cat	cgg	cac	agg	gga	gcc	agc	agc	cgg	gac	cct	gtg	ccc	ctc	atc	826
	Ser	His	Arg	His	Arg	Gly	Ala	Ser	Ser	Arg	Asp	Pro	Val	Pro	Leu	Ile	
				245					250					255			
5	agc	tcc	agc	aac	agc	tcc	agt	gtg	tgg	gac	acg	gta	tgc	ctg	agt	gcc	874
	Ser	Ser	Ser	Asn	Ser	Ser	Ser	۷al	Trp	Asp	Thr	Val	Cys	Leu	Ser	Ala	
			260					265					270				
	agg	gac	gtg	atg	gct	gca	tat	gga	ctg	tcg	gaa	cag	gct	ggg	gtg	acc	922
	Arg	Asp	Val	Met	Ala	Ala	Tyr	Gly	Leu	Ser	Glu	Gln	Ala	Gly	Val	Thr	
10		275					280					285					
	ccg	gag	gcc	tgg	gcc	caa	ctg	agc	cct	gcc	ctg	ctc	caa	cag	cag	ctg	970
	Pro	Glu	Ala	Trp	Ala	Gln	Leu	Ser	Pro	Ala	Leu	Leu	Gln	Gln	Gln	Leu	
	290					295					300					305	
	agt	gga	gcc	tgc	acc	tcc	cag	tcċ	agg	ccc	ccc	gtc	cag	gac	cag	ctc	1018
15	Ser	Gly	Ala	Суз	Thr	Ser	Gln	Ser	Arg	Pro	Pro	Val	Gln	Asp	Gln	Leu	
					310					315					320		
	agc	cag	tca	gag	agg	tat	ctg	tac	ggc	tcc	ctg	gcc	acg	ctg	ctc	atc	1066
	Ser	Gln	Ser	Glu	Arg	Tyr	Leu	Tyr	Gly	Ser	Leu	Ala	Thr	Leu	Leu	Ile	
•				325					330					335			
20	tgc	ctc	tgc	gcg	gtc	ttt	ggc	ctc	ctg	ctg	ctg	acc	tgc	act	ggc	tgc	1114
	Cys	Leu	Cys	Ala	Val	Phe	Gly	Leu	Leu	Leu	Leu	Thr	Cys	Thr	Gly	Cys	
			340					345					350				
	agg	ggg	gtc	gcc	cac	tac	atc	ctg	cag	acc	ttc	ctg	agc	ctg	gca	gtg	1162
	Arg	Gly	Val	Ala	His	Tyr	Ile	Leu	Gln	Thr	Phe	Leu	Ser	Leu	Ala	Val	
25		355					360					365					

	ggt	gca	ctc	act	ggg	gac	gct	gtc	ctg	cat	ctg	acg	ccc	aag	gtg	ctg	1210
	Gly	Ala	Leu	Thr	Gly	Asp	Ala	Val	Leu	His	Leu	Thr	Pro	Lys	Val	Leu	
	370					375					380					385	
	ggg	ctg	cat	aca	cac	agc	gaa	gag	ggc	ctc	agc	cca	cag	ccc	acc	tgg	1258
5	Gly	Leu	His	Thr	His	Ser	Glu	Glu	Gly	Leu	Ser	Pro	Gln	Pro	Thr	Trp	
					390					395					400		
	cgc	ctc	ctg	gct	atg	ctg	gcc	ggg	ctc	tac	gcc	ttc	ttc	ctg	ttt	gag	1306
	Arg	Leu	Leu	Ala	Met	Leu	Ala	Gly	Leu	Tyr	Ala	Phe	Phe	Leu	Phe	Glu	
				405					410					415			
10 ` ~	aac	ctc	ttc	aat	ctc	ctg	ctg	ccc	agg	gac	ccg	gag	gac	ctg	gag	gac	1354
	Asn	Leu	Phe	Asn	Leu	Leu	Leu	Pro	Arg	Asp	Pro	Glu	Asp	Leu	Glu	Asp	
			420					425					430				
	ggg	ccc	tgc	ggc	cac	agc	agc	cat	agc	cac	ggg	ggc	cac	agc	cac	ggt	1402
	Gly	Pro	Cys	Gly	His	Ser	Ser	His	Ser	His	Gly	Gly	His	Ser	His	Gly	
L5		435					440					445					
. *	gtg	tcc	ctg	cag	ctg	gca	ccc	agc	gag	ctc	cgg	cag	ccc	aag	ccc	ccc	1450
	Val	Ser	Leu	Gln	Leu	Ala	Pro	Ser	Glu	Leu	Arg	Gln	Pro	Lys	Pro	Pro	
	450					455					460					465	
	cac	gag	ggc	tcc	cgc	gca	gac	ctg	gtg	gcg	gag	gag	agc	ccg	gag	ctg	1498
20	His	Glu	Gly	Ser	Arg	Ala	Asp	Leu	Val	Ala	Glu	Glu	Ser	Pro	Glu	Leu	
					470					475					480		
	ctg	aac	cct	gag	ccc	agg	aga	ctg	agc	cca	gag	ttg	agg	cta	ctg	ccc	1546
	Leu	Asn	Pro	Glu	Pro	Arg	Arg	Leu	Ser	Pro	Glu	Leu	Arg	Leu	Leu	Pro .	
				485					490					495			
25	tat	atg	atc	act	ctg	ggc	gac	gcc	gtg	cac	aac	ttc	gcc	gac	qqq	ctg	1594

	Tyr	Met	Ile	Thr	Leu	Gly	Asp	Ala	Val	His	Asn	Phe	Ala	Asp	Gly	Leu	
			500					505					510				
	gcc	gtg	ggc	gcc	gcc	ttc	gcg	tcc	tcc	tgg	aag	acc	ggg	ctg	gcc	acc	1642
	Ala	Val	Gly	Ala	Ala	Phe	Ala	Ser	Ser	Trp	Lys	Thr	Gly	Leu	Ala	Thr	
5		515					520					525					
	tcg	ctg	gcc	gtg	ttc	tgc	cac	gag	ttg	cca	cac	gag	ctg	ggg	gac	ttc	1690
	Ser	Leu	Ala	Val	Phe	Cys	His	Glu	Leu	Pro	His	Glu	Leu	Gly	Asp	Phe	
	530					535					540					545	
	gcc	gcc	ttg	ctg	cac	gcg	ggg	ctg	tcc	gtg	cgc	caa	gca	ctg	ctg	ctg	1738
10	Ala	Ala	Leu	Leu	His	Ala	Gly	Leu	Ser	Val	Arg	Gln	Ala	Leu	Leu	Leu	
					550					555					560		
	aac	ctg	gcc	tcc	gcg	ctc	acg	gcc	ttc	gct	ggt	ctc	tac	gtg	gca	ctc	1786
	Asn	Leu	Ala	Ser	Ala	Leu	Thr	Ala	Phe	Ala	Gly	Leu	Tyr	Val	Ala	Leu	
				565					570					575			
15	gcg	gtt	gga	gtc	agc	gag	gag	agc	gag	gcc	tgg	atc	ctg	gca	gtg	gcc	1834
	Ala	Val	Gly	Val	Ser	Glu	Glu	Ser	Glu	Ala	Trp	Ile	Leu	Ala	Val	Ala	
			580					585					590				
	acc	ggc	ctg	ttc	ctc	tac	gta	gca	ctc	tgc	gac	atg	ctc	ccg	gcg	atg	1882
	Thr	Gly	Leu	Phe	. Leu	Tyr	Val	Ala	Leu	Cys	Asp	Met	Leu	Pro	Ala	Met	
20		595					600					605					
	ttg	aaa	gta	cgg	gac	ccg	cgg	ccc	tgg	ctc	ctc	ttc	ctg	ctg	cac	aac	1930
	Leu	Lys	Val	Arg	Asp	Pro	Arg	Pro	Trp	Leu	Leu	Phe	Leu	Leu	His	Asn	
	610					615					620					625	
	gtg	ggc	ctg	ctg	ggc	ggc	tgg	acc	gtc	ctg	ctg	ctg	ctg	tcc	ctg	tac	1978
25	Val	Gly	Leu	Leu	Gly	Gly	Trp	Thr	Val	Leu	Leu	Leu	Leu	Ser	Leu	Tyr	

54 /346

630 635 640 gag gat gac atc acc ttc tgataccetg ccctagtece ccacetttga 2026 Glu Asp Asp Ile Thr Phe 645 5 cttaagatcc cacacctcac aaacctacag cccagaaacc agaagcccct ataqaggccc 2086 cagtcccaac tccagtaaag acactcttgt ccttgg 2122 <210> 25 <211> 1775 10 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (62)..(1402) 15 <400> 25 aaaacaagcc gggtggctga gccaggctgt gcacggagtg cctgacgggc ccaacagacc 60 c atg ctg cat cca gag acc tcc cct ggc cgg ggg cat ctc ctg gct gtg 109 Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala Val 1 5 10 15 20 ctc ctg gcc ctc ctt ggc acc gcc tgg gca gag gtg tgg cca ccc cag Leu Leu Ala Leu Leu Gly Thr Ala Trp Ala Glu Val Trp Pro Pro Gln 20 25 30 ctg cag gag cag gct ccg atg gcc gga gcc ctg aac agg aag gag agt

25 35 40 45

Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg Lys Glu Ser

	ttc	ttg	ctc	ctc	tcc	ctg	cac	aac	cgc	ctg	cgc	agc	tgg	gtc	cag	CCC	253
	Phe	Leu	Leu	Leu	Ser	Leu	His	Asn	Arg	Leu	Arg	Ser	Trp	Val	Gln	Pro	
		50	-				55					60					
	cct	gcg	gct	gac	atg	cgg	agg	ctg	gac	tgg	agt	gac	agc	ctg	gcc	caa	301
5	Pro	Ala	Ala	Asp	Met	Arg	Arg	Leu	Asp	Trp	Ser	Asp	Ser	Leu	Ala	Gln	
	65					70					75					80	
	ctg	gct	caa	gcc	agg	gca	gcc	ctc	tgt	gga	atc	cca	acc	ccg	agc	ctg	349
	Leu	Ala	Gln	Ala	Arg	Ala	Ala	Leu	Cys	Gly	Ile	Pro	Thr	Pro	Ser	Leu	
					85	•				90					95		
10	gcg	tcc	ggc	ctg	tgg	cgc	acc	ctg	caa	gtg	ggc	tgg	aac	atg	cag	ctg	397
	Ala	Ser	Gly	Leu	Trp	Arg	Thr	Leu	Gln	Val	Gly	Trp	Asn	Met	Gln	Leu	
				100					105					110			
	ctg	ccc	gcg	ggc	ttg	gcg	tcc	ttt	gtt	gaa	gtg	gtc	agc	cta	tgg	ttt	445
	Leu	Pro	Ala	Gly	Leu	Ala	Ser	Phe	Val	Glu	Val	Val	Ser	Leu	Trp	Phe	
15			115					120					125		÷		
	gca	gag	ggg	cag	cgg	tac	agc	cac	gcg	gca	gga	gag	tgt	.gct	cgc	aac	493
	Ala	Glu	Gly	Gln	Arg	Tyr	Ser	His	Ala	Ala	Gly	Glu	Cys	Ala	Arg	Asn	
		130					135					140		`			
	gcc	acc	tgc	acc	cac	tac	acg	cag	ctc	gtg	tgg	gcc	acc	tca	agc	cag	541
20	Ala	Thr	Cys	Thr	His	Tyr	Thr	Gln	Leu	Val	Trp	Ala	Thr	Ser	Ser	Gln	
٠	145					150					155					160	
	ctg	ggc	tgt	ggg	cgg	cac	ctg	tgc	tct	gca	ggc	cag	gca	gcg	ata	gaa	589
	Leu	Gly	Cys	Gly	Arg	His	Leu	Cys	Ser	Ala	Gly	Gln	Ala	Ala	Ile	Glu	
					165					170					175		
25	gcc	ttt	gtc	tgt	gcc	tac	tcc	ccc	gga	ggc	aac	taa	gag	atc	aac	aaa	637

	Ala	Phe	Val	Cys	Ala	Tyr	Ser	Pro	Gly	Gly	Asn	Trp	Glu	Val	Asn	Gly	
				180					185					190			
	aag	aca	atc	atc	ccc	tat	aag	aag	ggt	gcc	tgg	tgt	tcg	ctc	tgc	aca ,	685
	Lys	Thr	Ile	Ile	Pro	Tyr	Lys	Lys	Gly	Ala	Trp	Cys	Ser	Leu	Cys	Thr	
5			195					200					205				
	gcc	agt	gtc	tca	ggc	tgc	ttc	aaa	gcc	tgg	gac	cat	gca	ggg	ggg	ctc	733
-	Ala	Ser	Val	Ser	Gly	Cys	Phe	Lys	Ala	Trp	Asp	His	Ala	Gly	Gly	Leu [·]	
		210					215					220					
	tgt	gag	gtc	ccc	agg	aat	cct	tgt	cgc	atg	agc	tgc	cag	aac	cat	gga	781
10	Cys	Glu	Val	Pro	Arg	Asn	Pro	Cys	Arg	Met	Ser	Cys	Gln	Asn	His	Gly	
	225					230					235					240	
	cgt	ctc	aac	atc	agc	acc	tgc	cac	tgc	cac	tgt	ccc	cct	ggc	tac	acg	829
	Arg	Leu	Asn	Ile	Ser	Thr	Cys	His	Cys	His	Суз	Pro	Pro	Gly	Tyr	Thr	
					245					250					255		
15	ggc	aga	tac	tgc	caa	gtg	agg	tgc	agc	ctg	cag	tgt	gtg	cac	ggc	cgg	877
	Gly	Arg	Tyr	Cys	Gln	Val	Arg	Суз	Ser	Leu	Gln	Cys	Val	His	Gly	Arg	
				260					265					270			
	ttc	cgg	gag	gag	gag	tgc	tcg	tgc	gtc	tgt	gac	atc	ggc	tac	ggg	gga	925
	Phe	Arg	Glu	Glu	Glu	Суѕ	Ser	Cys	Val	Cys	Asp	Ile	Gly	Tyr	Gly	Gly	
20			275					280					285				
	gcc	cag	tgt	gcc	acc	aag	gtg	cat	ttt	ccc	ttc	cac	acc	tgt	gac	ctg	973
	Ala	Gln	Cys	Ala	Thr	Lys	Val	His	Phe	Pro	Phe	His	Thr	Cys	Asp	Leu	
		290					295					300					
	agg	atc	gac	gga	gac	tgc	ttc	atg	gtg	tct	tca	gag	gca	gac	acc	tat	102
25	Arg	Ile	Asp	Gly	Asp	Cys	Phe	Met	Val	Ser	Ser	Glu	Ala	Asp	Thr	Tyr	

	305					310	-				315					320	
	tac	aga	gcc	agg	atg	aaa	tgt	cag	agg	aaa	ggc	ggg	gtg	ctg	gcc	cag	1069
	Tyr	Arg	Ala	Arg	Met	Lys	Cys	Gln	Arg	Lys	Gly	Gly	Val	Leu	Ala	Gln	
					325					330					335		
5	atc	aag	agc	cag	aaa	gtģ	cag	gac	atc	ctc	gcc	ttc	tat	ctg	ggc	cgc	1117
	Ile	Lys	Ser	Gln	Lys	Val	Gln	Asp	Ile	Leu	Ala	Phe	Tyr	Leu	Gly	Arg	
				340					345	,				350			
	ctg	gag	acc	acc	aac	gag	gtg	att	gac	agt	gac	ttc	gag	acc	agg	aac	1165
	Leu	Glu	Thr	Thr	Asn	Glu	Val	Ile	Asp	Ser	Asp	Phe	Glu	Thr	Arg	Asn	
10			355					360				•	365				
	ttc	tgg	atc	ggg	ctc	acc	tac	aag	acc	gcc	aag	gac	tcc	ttc	cgc	tgg	1213
	Phe	Trp	Ile	Gly	Leu	Thr	Tyr	Lys	Thr	Ala	Lys	Asp	Ser	Phe	Arg	Trp	
		370					375					380					
	gcc	aca	ggg	gag	cac	cag	gcc	ttc	acc	agt	ttt	gcc	ttt	ggg	cag	cct	1261
15	Ala	Thr	Gly	Glu	His	Gln	Ala	Phe	Thr	Ser	Phe	Ala	Phe	Gly	Gln	Pro	
	385				•	390					395					400	
	gac	aac	cac	ggg	ttt	ggc	aac	tgc	gtg	gag	ctg	cag	gct	tca	gct	gcc	1309
	Asp	Asn	His	Gly	Phe	Gly	Asn	Суѕ	Val	Glu	Leu	Gln	Ala	Ser	Ala	Ala	
				•	405					410					415		
20	ttc	aac	tgg	aac	aac	cag	cgc	tgc	aaa	acc	cga	aac	cgt	tac	atc	tgc	1357
	Phe	Asn	Trp	Asn	Asn	Gln	Arg	Суз	Lys	Thr	Arg	Asn	Arg	Tyr	Ile	Cys	
				420		•			425					430			
	cag	ttt	gcc	cag	gag	cac	atc	tcc	cgg	tgg	ggc	cca	ggg	tcc			1399
	Gln	Phe	Ala	Gln	Glu	His	Ile	Ser	Arg	Trp	Gly	Pro	Gly	Ser			
25			435					440					445				

58 / 346

tgaggcctga ccacatggct ccctcgcctg ccctgggagc accggctctg cttacctgtc 1459
cgcccacctg tctggaacaa gggccaggtt aagaccacat gcctcatgtc caaagaggtc 1519
tcagaccttg cacaatgcca gaagttgggc agaggaggc agggaggcca gtgagggcca 1579
gggagtgagt gttagaagaa gctggggccc ttcgcctgct tttgattggg aagatgggct 1639
tcaattagat ggcaaaggag aggacaccgc cagtggtcca aaaaggctgc tctcttccac 1699
ctggcccaga ccctgtgggg cagcggagct tccctgtggc atgaacccca cagggtatta 1759
aattatgaat cagctg

<210> 26

10 <211> 1372

5

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

15 <222> (327)..(920)

<400> 26

20

aactgcccgc agtgcccatg gtggctcgga tgggaggaac caccgcggag ccggggacag 60 ggggagcagg gcagtgctct gctgggtgag gggcacccag ctccagaggc taggtgggcg 120 tcgctggtgg gtggactcct gggcgctgcg cggagccgcg ccggctgggt tagcgcgggc 180 ggggcgctta gtcccacccc cagaggaggc ggaagaggag cccgagcctg gccgcgggct 240 gggccccgcc gcagctccag ctggccggct tggtcctgcg gtcccttctc tgggaggccc 300 gaccccggcc gcgcccagcc cccacc atg cca ccc gcg ggg ctc cgc cgg gcc 353

Met Pro Pro Ala Gly Leu Arg Arg Ala

gcg ccg ctc acc gca atc gct ctg ttg gtg ctg ggg gct ccc ctg gtg 401

1

	Ala	Pro	Leu	Thr	Ala	Ile	Ala	Leu	Leu	Val	Leu	Gly	Ala	Pro	Leu	Val	
	10					15					20					25	
	ctg	gcc	ggc	gag	gac	tgc	ctg	tgg	tac	ctg	gac	cgg	aat	ggc	tcc	tgg	449
	Leu	Ala	Gly	Glu	Asp	Cys	Leu	Trp	Tyr	Leu	Asp	Arg	Asn	Gly	Ser	Trp	
5					30					35					40		
	cat	ccg	ggg	ttt	aac	tgc	gag	ttc	ttc	acc	ttc	tgc	tgc	ggg	acc	tgc	497
	His	Pro	Gly	Phe	Asn	Cys	Glu	Phe	Phe	Thr	Phe	Суѕ	Суѕ	Gly	Thr	Cys	
				45					50					55			
	tac	cat	cgg	tac	tgc	tgc	agg	gac	ctg	acc	ttg	ctt	atc	acc	gag	agg	545
10	Tyr	His	Arg	Tyr	Cys	Cys	Arg	Asp	Leu	Thr	Leu	Leu	Ile	Thr	Glu	Arg	
			60					65					70		•		
	cag	cag	aag	cac	tgc	ctg	gcc	ttc	agc	ccc	aag	acc	ata	gca	ggc	atc	593
	Gln	Gln	Lys	His	Cys	Leu	Ala	Phe	Ser	Pro	Lys	Thr	Ile	Ala	Gly	Ile	
		75					80					85					
15				gtg									•			_	641
	Ala	Ser	Ala	Val	Ile	Leu	Phe	Val	Ala	Val	Val	Ala	Thr	Thr	Ile	Cys	
	90					95					100					105	
	tgc	ttc ·	ctc	tgt	tcc	tgt	tgc	tac	ctg	tac	cgc	cgg	cgc	cag	cag	ctc	689
	Cys	Phe	Leu	Cys	Ser	Cys	Cys	Tyr	Leu	Tyr	Arg	Arg	Arg	Gln	Gln	Leu	
20					110					115					120		
	cag	agc	cca	ttt	gaa	ggc	cag	gag	att	cca	atg	aca	ggc	atc	cca	gtg	737
	Gln	Ser	Pro	Phe	Glu	Gly	Gln	Glu	Ile	Pro	Met	Thr	Gly	Ile	Pro	Val	
				125					130					135			
	cag	cca	gta	tac	cca	tac	ccc	cag	gac	ccc	aaa	gct	ggc	cct	gca	ccc	785
25	Gln	Pro	Val	Tvr	Pro	Tvr	Pro	Gln	Asn	Pro	T.VS	Δla	G1 17	Pro	Δla	Pro	

60 /346

			140					145				•	150				
	cca c	cag	cct	ggc	ttc	ata	tac	cca	cct	agt	ggt	cct	gct	ccc	caa	tat	833
	Pro 0	Sln	Pro	Gly	Phe	Ile	Tyr	Pro	Pro	Ser	Gly	Pro	Ala	Pro	Gln	Tyr	
	• 1	L55					160			•		165					
5	cca d	ctc	tac	cca	gct	ggg	ccc	cca	gtc	tac	aac	cct	gca	gct	cct	cct	881
	Pro I	Leu	Tyr	Pro	Ala	Gly	Pro	Pro	Val	Tyr	Asn	Pro	Ala	Ala	Pro	Pro	
	170					175					180					185	
	ccc t	tat	atg	cca	cca	cag	CCC	tct	tac	ccg	gga	gcc	tga	ggaa	cca		927
	Pro 1	lyr	Met	Pro	Pro	Gln	Pro	Ser	Tyr	Pro	Gly	Ala					
10					190					195						-	
	gccat	tgtc	tc t	gct	jece	ct to	cagt	gatgo	c caa	accti	tggg	aga ^s	tgcc	ctc	atcci	tgtacc	987
	tgcat	tctg	gt d	cctg	ggggt	tg go	cagga	agtc	c te	cagco	cacc	agg	cccc	aga	ccaa	gccaag	1047
	ccct	gggc	cc t	cacto	gggg	ac a	gage	cca	g gga	aagt	ggaa	cag	gagc	tga .	acta	gaacta	1107
	tgag	gggt	tg g	gggg	gagg	gc ti	tggaa	atta	t gg	gcta	tttt	tac	tggg	ggc	aagg	gaggga	1167
15	gatga	acag	jcc t	gggt	caca	ag to	gcct	gttt	t caa	aata	gtcc	ctc	tgct	ccc	aaga	tcccag	1227
	ccag	gaag	igc t	ggg	gecet	ta c	tgtti	tgtc	c cc	tctg	ggct	ggg	gtgg	ggg	gagg	gaggag	1287
	gttc	cgto	ag d	cagct	tggc	ag ta	agcc	ctcc	t ct	ctgg	ctgc	ccc	actg	gcc	acat	ctctgg	1347
	cctg	ctag	gat t	taaaq	gctg	ta a	agac										1372
20	<210	> 27	,														
	<211	> 20	74				•										
	<212	> DN	IA														
	<213	> Hc	omo s	sapi	ens												
_	<220	>															

25

<221> CDS

	<222	!> (1	101).	. (17	(23)											•	
	<400	> 27	7														
	cttt	aggo	gtg c	gcgg	gtgc	a gt	atat	ctcg	cgc	tctc	tcc	cctt	tccc	cc t	cccc	tttcc	60
	ccac	cccg	ggg c	gctc	aggt	t gg	rtctg	gaco	gga	agcg	jaag	aţg	gcg	act	tct	ggc	115
5												Met	Ala	Thr	Ser	Gly	
					•							1				5	
	gcg	gcc	tcg	gcg	gag	ctg	gtg	atc	ggc	tgg	tgc	ata	ttc	ggc	ctc	tta	163
	Ala	Ala	Ser	Ala	Glu	Leu	Val	Ile	Gly	Trp	Cys	Ile	Phe	Gly	Leu	Leu	
					10					15					20		
10	cta	ctg	gct	att	ttg	gca	ttc	tgc	tgg	ata	tat	gtt	cgt	aaa	tac	caa	211
	Leu	Leu	Ala	Ile	Leu	Ala	Phe	Cys	Trp	Ile	Tyr	Val	Arg	Lys	Tyr	Gln	
				25					30					35			
	agt	cgg	cgg	gaa	agt	gaa	gtt	gtc	tcc	acc	ata	aca	ġca	att	ttt	tct	259
	Ser	Arg	Arg	Glu	Ser	Glu	Val	Val	Ser	Thr	Ile	Thr	Ala	Ile	Phe	Ser	
15			40	•				45					50				
	cta	gca	att	gca	ctt	atc	aca	tca	gca	ctt	cta	cca	gtg	gat	ata	ttt	307
	Leu	Ala	Ile	Ala	Leu	Ile	Thr	Ser	Ala	Leu	Leu	Pro	Val	Asp	Ile	Phe	
		55					60					65					
	ttg	gtt	tct	tac	atg	aaa	aat	caa	aat	ggt	aca	ttt	aag	gac	tgg	gct	355
20	Leu	Val	Ser	Tyr	Met	Lys	Asn	Gln	Asn	Gly	Thr	Phe	Lys	Asp	Trp	Ala	
	70			`		75					80					85	
	aat	gct	aat	gtc	agc	aga	cag	att	gag	gac	act	gta	tta	tac	ggt	tac	403
	Asn	Ala	Asn	Val	Ser	Arg	Gln	Ile	Glu	Asp	Thr	Val	Leu	Tyr	Gly	Tyr	
					90					95					100		
25	tat	act	tta	tat	tct	att	ata	tta	ttc	tat	ata	ttc	ttc	t.aa	atc	cct	45

	туг	Thr	Leu	Tyr	ser	vaı	тте	ьeu	Pne	Cys	Val	Phe	Phe	Trp	IIe	Pro	
				105		,			110					115			
	ttt	gtc	tac	ttc	tat	tat	gāa	gaa	aag	gat	gat	gat	gat	act	agt	aaa	499
	Phe	Val	Tyr	Phe	Tyr	Tyr	Glu	Glu	Lys	Asp	Asp	Asp	Asp	Thr	Ser	Lys	
5			120					125					130				
	tgt	act	caa	att	aaa	acg	gca	ctc	aag	tat	act	ttg	gga	ttt	gtt	gtg	547
	Cys	Thr	Gln	Ile	Lys	Thr	Ala	Leu	Lys	Tyr	Thr	Leu	Gly	Phe	Val	Val	
		135					140					145					
	att	tgt	gca	ctg	ctt	ctt	tta	gtt	ggt	gcc	ttt	gtt	cca	ťtg	aat	gtt	595
10	Ile	Cys	Ala	Leu	Leu	Leu	Leu	Val	Gly	Ala	Phe	Val	Pro	Leu	Asn	Val	
	150					155					160					165	
	ccc	aat	aac	aaa	aat	tct	aca	gag	tgg	gaa	aaa	gtg	aag	tcc	cta	ttt	643
	Pro	Asn	Asn	Lys	Asn	Ser	Thr	Glu	Trp	Glu	Lys	Val	Lys	Ser	Leu	Phe	
					170					175					180		
15	gaa	gaa	ctt	gga	agt	agt	cat	ggt	tta	gct	gca	ttg	tca	ttţ	tct	atc	691
	Glu	Glu	Leu	Gly	Ser	Ser	His	Gly	Leu	Ala	Ala	Leu	Ser	Phe	Ser	Ile	
				185					190					195			
	agt	tct	ctg	acc	ttg	att	gga	atg	ttg	gca	gct	ata	act	tac	aca	gcc	739
	Ser	Ser	Leu	Thr	Leu	Ile	Gly	Met	Leu	Ala	Ala	Ile	Thr	Tyr	Thr	Ala	
20			200					205					210				
	tat	ggc	atg	tct	gcg	tta	cct	tta	aat	ctg	ata	aaa	ggc	act	aga	agc	787
	Tyr	Gly	Met	Ser	Ala	Leu	Pro	Leu	Asn	Leu	Ile	Lys	Gly	Thr	Arg	Ser	
		215					220					225					
	gct	gct	tat	gaa	cgt	ttg	gaa	aac	act	gaa	gac	att	gaa	gaa	gta	gaa	835
25	Ala	Ala	Tyr	Glu	Arg	Leu	Glu	Asn	Thr	Glu	Asp	Ile	Glu	Glu	Val	Glu	

	230					235					240					245	
	caa	cac	att	caa	acg	att	aaa	tca	aaa	agc	aaa	gat	ggt	cga	cct	ttg	883
	Gln	His	Ile	Gln	Thr	Ile	Lys	Ser	Lys	Ser	Lys	Asp	Gly	Arg	Pro	Leu	
					250					255					260		
5	cca	gca	agg	gat	aaa	cgc	gcc	tta	,aaa	caa	ttt	gaa	gaa	agg	tta	cga	931
	Pro	Ala	Arg	Asp	Lys	Arg	Ala	Leu	Lys	Gln	Phe	Glu	Glu	Arg	Leu	Arg	•
				265					270					275			
	aca	ctt	aag	aag	aga	gag	agg	cat	tta	gaa	ttc	att	gaa	aac	agc	tgg	979
	Thr	Leu	Lys	Lys	Arg	Glu	Arg	His	Leu	Glu	Phe	Ile	Glu	Asn	Ser	Trp	
LO			280					285					290				
	tgg	aca	aaa	ţtt	tgt	ggc	gct	ctg	cgt	ccc	ctg	aag	atc	gtc	tgg	gga	1027
	Trp	Thr	Lys	Phe	Cys	Gly	Ala	Leu	Arg	Pro	Leu	Lys	Ile	Val	Trp	Gly	
		295					300					305					
	ata	ttt	ttc	atc	tta	gtt	gca	ttg	ctg	ttt	gta	att	tct	ctc	ttc	ttg	1075
15	Ile	Phe	Phe	Ile	Leu	Val	Ala	Leu	Leu	Phe	Val	Ile	Ser	Leu	Phe	Leu	
	310				٠	315		•			320					325	
	tca	aat	tta	gat	aaa	gct	ctt	cat	tca	gct	gga	ata	gat	tct	ggt	ttc	1123
	Ser	Asn	Leu	Asp	Lys	Ala	Leu	His	Ser	Ala	Gly	Ile	Asp	Ser	Gly	Phe	
					330				٠	335					340		
20	ata	att	ttt	gga	gct	aac	ctg	agt	aat	cca	ctg	aat	atg	ctt	ttg	cct	1171 [.]
	Ile	Ile	Phe	Gly	Ala	Asn	Leu	Ser	Asn	Pro	Leu	Asn	Met	Leu	Leu	Pro	
				345					350		•			355		•	
	tta	cta	caa	aca	gtt	ttc	cct	ctt	gat	tat	att	ctt	ata	aca	att	att	1219
	Leu	Leu	Gln	Thr	Val	Phe	Pro	Leu	Asp	Tyr	Ile	Leu	Ile	Thr	Ile	Ile	
2.5		•	360					365					270				

	att	atg	tac	ttt	att	ttt	act	tca	atg	gca	gga	att	cga	aat	att	ggc	1267
	Ile	Met	Tyr	Phe	Ile	Phe	Thr	Ser	Met	Ala	Gly	Ile	Arg	Asn	Ile	Gly	
		375					380					385					
	ata	tgg	ţţc	ttt	tgg	att	aga	tta	tat	aaa	atc	aga	aga	ggt	aga	acc	1315
5	Ile	Trp	Phe	Phe	Trp	Ile	Arg	Leu	Tyr	Lys	Ile	Arg	Arg	Gly	Arg	Thr	
	390					395					400		•			405	
	agg	ccc	caa	gca	ctc	ctt	ttt	ctc	tgc	atg	ata	ctt	ctg	ctt	att	gtc	1363
	Arg	Pro	Gln	Ala	Leu	Leu	Phe	Leu	Cys	Met	Ile	Leu	Leu	Leu	Ile	Val	
					410					415					420		
10	ctt	cac	act	agc	tac	atg	att	tat	agt	ctt	gct	ccc	caa	tat	gtt	atg	1411
	Leu	His	Thr	Ser	Tyr	Met	Ile	Tyr	Ser	Leu	Ala	Pro	Gln	Tyr	Val	Met	
				425					430					435			
	tat	gga	agc	caa	aat	tac	tta	ata	gag	act	aat	ata	act	tct	gat	aat	1459
	Tyr	Gly	Ser	Gln	Asn	Tyr	Leu	Ile	Glu	Thr	Asn	lle	Thr	Ser	Asp	Asn	
15			440					445					450				
	cat	aaa	ggc	aat	tca	acc	ctt	tct	gtg	cca	aag	aga	tgt	gat	gca	gat	1507
	His	Lys	Gly	Asn	Ser	Thr	Leu	Ser	Val	Pro	Lys	Arg	Суѕ	Asp	Ala	Asp	
		455					460					465					
	gct	cct	gaa	gat	cag	tgt	act	gtt	acc	cgg	aca	tac	cta	ttc	ctt	cac	1555
20	Ala	Pro	Glu	Asp	Gln	Cys	Thr	Val	Thr	Arg	Thr	Tyr	Leu	Phe	Leu	His	
	470					475					480					485	
	aag	ttc	tgg	ttc	ttc	agt	gct	gct	tac	tat	ttt	ggt	aac	tgg	gcc	ttt	1603
	Lys	Phe	Trp	Phe	Phe	Ser	Ala	Ala	Tyr	Tyr	Phe	Gly	Asn	Trp	Ala	Phe	
					490					495					500		
25	ctt	ggg	gta	ttt	ttg	att	gga	tta	att	gta	tcc	tgt	tgt	aaa	ggg	aag	1651

65 /346

Leu Gly Val Phe Leu Ile Gly Leu Ile Val Ser Cys Cys Lys Gly Lys
505 510 515

aaa tcg gtt att gaa gga gta gat gaa gat tca gac ata agt gat gat 1699 Lys Ser Val Ile Glu Gly Val Asp Glu Asp Ser Asp Ile Ser Asp Asp

5 520 525 530

gag ccc tct gtc tat tct gct tgacagcctt ctgtcttaaa ggttttataa 1750
Glu Pro Ser Val Tyr Ser Ala

535 540

tgctgactga atatctgtta tgcatttta aagtattaaa ctaacattag gatttgctaa 1810 ctagctttca tcaaaaatgg gagcatggct ataagacaac tatatttat tatatgttt 1870 ctgaagtaac attgtatcat agattaacat tttaaattac cataatcatg ctatgtaaat 1930 ataagactac tggctttgtg agggaatgtt tgtgcaaaat ttttcctct aatgtataat 1990 agtgttaaat tgattaaaaa tcttccagaa ttaatattcc cttttgtcac tttttgaaaa 2050 cataataaat catctgtatc tgtg

15

10

<210> 28

<211> 2252

<212> DNA

<213> Homo sapiens

20 <220>

<221> CDS

<222> (12)..(1340)

<400> 28

gggcgggggc c atg gcg ctg cca tcc cga atc ctg ctt tgg aaa ctt gtg 50

Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val

				1	L			į	5				10)			
	ctt	ctg	cag	agc	tct	gct	gtt	ctc	ctg	cac	tca	ggg	tcc	tcg	gta	ccc	98
	Leu	Leu	Gln	Ser	Seŗ	Ala	Val	Leu	Leu	His	Ser	Gly	Ser	Ser	Val	Pro	
		15					20					25					
5	gcc	.gct	gct	ggc	agc	tcc	gtg	gtg	tcc	gag	tcc	gcg	gtg	agc	tgg	gag	146
	Ala	Ala	Ala	Gly	Ser	Ser	Val	Val	Ser	Glu	Ser	Ala	Val	Ser	Trp	Glu	
	30					35					40					45	
	gcg	ggc	gcc	cgg	gcg	gtg	ctg	cgc	tgc	cag	agc	ccg	cgc	atg	gtg	tgg	194
	Ala	Gly	Ala	Arg	Ala	Val	Leu	Arg	Cys	Gln	Ser	Pro	Arg	Met	Val	Trp	
10					50					55					60		
	acc	cag	gac	cgg	ctg	cac	gac	cgc	cag	cgc	gtg	ctc	cac	tgg	gac	ctg	242
	Thr	Gln	Asp	Arg	Leu	His	Asp	Arg	Gln	Arg	Val	Leu	His	Trp	Asp	Leu	
				65					70					75			٠
	cgc	ggc	ccc	ggg	ggt	ggc	ccc	gcg	cgg	cgc	ctg	ctg	gac	ttg	tac	tcg	290
15	Arg	Gly	Pro	Gly	Gly	Gly	Pro	Ala	Arg	Arg	Leu	Leu	Asp	Leu	Tyr	Ser	•
			80					85					90				
	gcg	ggc	gag	cag	cgc	gtg	tac	gag	gcg	cgg	gac	cgc	ggc	cgc	ctg	gag	338
	Ala	Gly	Glu	Gln	Arg	Val	Tyr	Glu	Ala	Arg	Asp	Arg	Gly	Arg	Leu	Glu	
		95					100					105					
20	ctc	tcg	gcc	tcg	gcc	ttc	gac	gac	ggc	aac	ttc	tcg	ctg	ctc	atc	cgc	386
	Leu	Ser	Ala	Ser	Ala	Phe	Asp	Asp	Gly	Asn	Phe	Ser	Leu	Leu	Ile	Arg	
	110					115					120					125	
	gcg	gtg	gag	gag	acg	gac	gcg	ggg	ctg	tac	acc	tgc	aac	ctg	cac	cat	434
	Ala	Val	Glu	Glu	Thr	Asp	Ala	Gly	Leu	Tyr	Thr	Cys	Asn	Leu	His	His	
25					130					135					140		

• •		cac	tac	tgc	cac	ctc	tac	gag	agc	ctg	gcc	gtc	cgc	ctg	gag	gtc	acc	482
		His	Tyr	Cys	His	Leu	Tyr	Glu	Ser	Leu	Ala	Val	Arg	Leu	Glu	Val	Thr	
					145					150					155			
		gac	ggc	ccc	ccg	gcc	acc	ccc	gcc	tac	tgg	gac	ggc	gag	aag	gag	gtg	530
	5	Asp	Gly	Pro	Pro	Ala	Thr	Pro	Ala	Tyr	Trp	Asp	Gly	Glu	Lys	Glu	Val	
				160					165					170				
		ctg	gcg	gtg	gcg	cgc	ggc	gca	ccc	gcg	ctt	ctg	acc	tgc	gṫg	aac	cgc	578
•		Leu	Ala	Val	Ala	Arg	Gly	Ala	Pro	Ala	Leu	Leu	Thr	Cys	Val	Asn	Arg	
			175					180					185					
	10	ggg	cac	gtg	tgg	acc	gac	cgg	cac	gtg	gag	gag	gct	caa	cag	gtg	gtg	626
		Gly	His	Val	Trp	Thr	Asp	Arg	His	۷al	Glu	Glu	Ala	Gln	Gln	Val	Val	•
		190					195					200					205	
		cac	tgg	gac	cgg	cag	ccg	ccc	ggg	gtc	ccg	cac	gac	cgc	gcg	gac	cgc	674
		His	Trp	Asp	Arg	Gln	Pro	Pro	Gly	Val	Pro	His	Asp	Arg	Ala	Asp	Arg	
	15					210					215					220		
		ctg	ctg	gac	ctc	tac	gcg	tcg	ggc	gag	cgc	cgc	gcc	tac	ggg	ccc	ctt	722
		Leu	Leu	Asp	Leu	Tyr	Ala	Ser	Gly	Glu	Arg	Arg	Ala	Tyr	Gly	Pro	Leu	
					225					230					235			
		ttt	ctg	cgc	gac	cgc	gtg	gct	gtg	ggc	gcg	gat	gcc	ttt	gag	cgc	ggt	770
	20	Phe	Leu	Arg	Asp	Arg	Val	Ala	Val	Gly	Ala	Asp	Ala	Phe	Glu	Arg	Gly	
				240					245					250				
		gac	ttc	tca	ctg	cgt	atc	gag	ccg	ctg	gag	gtc	gcc	gac	gag	ggc	acc	818
		Asp	Phe	Ser	Leu	Arg	Ile	Glu	Pro	Leu	Glu	Val	Ala	Asp	Glu	Gly	Thr	
			255					260					265					
	25	tac	tcc	tgc	cac	ctg	cac	cac	cat	tac	tgt	ggc	ctg	cac	gaa	cgc	cgc	866

	Tyr	Ser	Cys	His	Leu	His	His	His	Tyr	Cys	Gly	Leu	His	Glu	Arg	Arg	
	270					275					280				•	285	
	gtc	ttc	cac	ctg	acg	gtc	gcc	gaa	ccc	cac	gcg	gag	ccg	ccc	ccc	cgg	914
	Val	Phe	His	Leu	Thr	Val	Ala	Glu	Pro	His	Ala	Glu	Pro	Pro	Pro	Arg	
5					290			•		295					300		
	ggc	tct	ccg	ggc	aac	ggc	tcc	agc	cac	agc	ggc	gcc	cca	ggc	cca	gac	962
	Gly	Ser	Pro	Gly	Asn	Gly	Ser	Ser	His	Ser	Gly	Ala	Pro	Gly	Pro	Asp	
				305					310					315			
	ccc	aca	ctg	gcg	cgc	ggc	cac	aac	gtc	atc	aat	gtc	atc	gtc	ccc	gag	1010
10	Pro	Thr	Leu	Ala	Arg	Gly	His	Asn	Val	Ile	Asn	Val	Ile	Val	Pro	Glu	
			320					325					330				
	agc	cga	gcc	cac	ttc	ttc	cag	cag	ctg	ggc	tac	gtg	ctg	gcc	acg	ctg	1058
	Ser	Arg	Ala	His	Phe	Phe	Gln ,	Gln	Leu	Gly	Tyr	Val	Leu	Ala	Thr	Leu	
		335					340					345					
15	ctg	ctc	ttc	atc	ctg	cta	ctg	gtc	act	gtc	ctc	ctg	gcc	gcc	cgc	agg	1106
•	Leu	Leu	Phe	Ile	Leu	Leu	Leu	Val	Thr	Val	Leu	Leu	Ala	Ala	Arg	Arg	
	350					355					360					365	
	cgc	cgc	gga	ggc	tac	gaa	tac	tcg	gac	cag	aag	tcg	gga	aag	tca	aag	1154
	Arg	Arg	Gly	Gly	Tyr	Glu	Tyr	Ser	Asp	Gln	Lys	Ser	Gly	Lys	Ser	Lys	
20					370					375					380		
																cag	1202
	Gly	Lys	Asp	Val	Asn	Leu	Ala	Glu	Phe	Ala	Val	Ala	Ala	Gly	Asp	Gln	
				385					390					395			
	atg	ctt	tac	agg	agt	gag	gac	atc	cag	cta	gat	tac	aaa	aac	aac	atc	1250
25	Met	Leu	Tvr	Ara	Ser	Glu	Asn	Tle	Gln	T.e.11	Asn	Tur	Luc	7 cn	7 cn	Tla	

	400	0	405		410	
	ctg aag ga	g agg gcg ga	g ctg gcc d	cac agc ccc	ctg cct gcc	aag tac 129
	Leu Lys Gl	u Arg Ala Gl	u Leu Ala F	dis Ser Pro	Leu Pro Ala	Lys Tyr
	415		420		425	
5	atc gac cta	a gac aaa gg	g ttc cgg a	aag gag aac	tgc aaa tag	ggaggcc 134'
	Ile Asp Le	ı Asp Lys Gl	y Phe Arg I	Lys Glu Asn	Cys Lys	
	430	43	5	440		
	ctgggctcct	ggctgggcca	gcagctgcac	ctctcctgtc	tgtgctcctc	ggggcatctc 140°
	ctgatgctcc	ggggctcacc	ccccttccag	cggctggtcc	cgctttcctg	gaatttggcc 146
10	tgggcgtatg	cagaggccgc	ctccacaccc	ctccccagg	ggcttggtgg	cagcatagec 152°
•	cccacccctg	cggcctttgc	tcacgggtgg	ccctgcccac	ccctggcaca	accaaaatcc 158°
	cactgatgcc	catcatgccc	tcagaccctt	ctgggctctg	cccgctgggg	gcctgaagac 164
	attcctggag	gacactccca	tcagaacctg	gcagccccaa	aactggggtc	agcctcaggg 170°
	caggagtccc	actcctccag	ggctctgctc	gtccggggct	gggagatgtt	cctggaggag 176
15	gacactccca	tcagaacttg	gcagccttga	agttggggtc	agcctcggca	ggagtcccac 182°
	tcctcctggg	gtgctgcctg	ccaccaagag	ctccccacc	tgtaccacca	tgtgggactc 188
	caggcaccat	ctgttctccc	cagggacctg	ctgacttgaa	tgccagccct	tgctcctctg 194
	tgttgctttg	ggccacctgg	ggctgcaccc	cctgcccttt	ctctgcccca	tccctaccct 200°
	agccttgctc	tcagccacct	tgatagtcac	tgggctccct	gtgacttctg	accctgacac 206
20	ccctcccttg	gactctgcct	gggctggagt	ctagggctgg	ggctacattt	ggcttctgta 212
•	ctggctgagg	acaggggagg	gagtgaagtt	ggtttggggt	ggcctgtgtt	gccactctca 218
	gcaccccaca	tttgcatctg	ctggtggacc	tgccaccatc	acaataaagt	ccccatctga 224
	ttttt					225

70 /346

<211> 1461 <212> DNA <213> Homo sapiens <220> 5 . <221> CDS <222> (61)..(849) <400> 29 actegeaggg ceegtggegg tteaggegee agagetggee gateggegtt ggeegeegae 60 atg acg ccc gag gac cca gag gaa acc cag ccg ctt ctg ggg cct cct 10 Met Thr Pro Glu Asp Pro Glu Glu Thr Gln Pro Leu Leu Gly Pro Pro 1 10 15 156 Gly Gly Ser Ala Pro Arg Gly Arg Arg Val Phe Leu Ala Ala Phe Ala 20 25 · 30 15 get gee etg gge eca etc age tte gge tte geg etc gge tac age tec Ala Ala Leu Gly Pro Leu Ser Phe Gly Phe Ala Leu Gly Tyr Ser Ser 35 40 ccg gcc atc cct age ctg cag cgc gcg ccc ccg gcc ccg cgc ctg 252 Pro Ala Ile Pro Ser Leu Gln Arg Ala Ala Pro Pro Ala Pro Arg Leu 20 50 55 60 gac gac gcc gcc tcc tgg ttc ggg gct gtc gtg acc ctg ggt gcc 300 Asp Asp Ala Ala Ser Trp Phe Gly Ala Val Val Thr Leu Gly Ala 65 70 75 gcg gcg ggg gga gtg ctg ggc tgg ctg gtg gac cgc gcc ggg cgc 25 Ala Ala Gly Gly Val Leu Gly Gly Trp Leu Val Asp Arg Ala Gly Arg

					85					90	•				95		
	aag	ctg	agc	ctc	ttg	ctg	tgc	tcc	gtg	ccc	ttc	gtg	gcc	ggc	ttt	gcc	396
	Lys	Leu	Ser	Leu	Leu	Leu	Cys	Ser	Val	Pro	Phe	Val	Ala	Gly	Phe	Ala	
				100					105					110			
5	gtc	atc	acc	gcg	gcc	cag	gac	gtg	tgg	atg	ctg	ctg	ggg	ggc	cgc	ctc	444
	Val	Ile	Thr	Ala	Ala	Gln	Asp	Val	Trp	Met	Leu	Leu	Gly	Gly	Arg	Leu	
			115					120					125				
	ctc	acc	ggc	ctg	gcc	tgc	ggt	gtt	gcc	tcc	cta	gtg	gcc	ccg	gtc	tac	492
	Leu	Thr	Gly	Leu	Ala	Cys	Gly	Val	Ala	Ser	Leu	Val	Ala	Pro	Val	Tyr	
10		130					135					140					
	atc	tcc	gaa	atc	gcc	tac	cca	gca	gtc	cgg	ggg	ttg	ctc	ggc	tcc	tgt	540
	Ile	Ser	Glu	Ile	Ala	Tyr	Pro	Ala	Val	Arg	Gly	Leu	Leu	Gly	Ser	Cys	
	145		•			150					155					160	
	gtg	cag	cta	atg	gtc	gtc	gtc	ggc	atc	ctc	ctg	gcc	tac	ctg	gca	ggc	588
15	Val	Gln	Leu	Met	Val	Val	Val	Gly	Ile	Leu	Leu	Ala	Tyr	Leu	Ala	Gly	
					165					170					175		
	tgg	gtg	ctg	gag	tgg	cgc	tgg	ctg	gct	gtg	ctg	ggc	tgc	gtg	ccc	ccc	636
	Trp	Val	Leu	Glu	Trp	Arg	Trp	Leu	Ala	Val	Leu	Gly	Cys	Val	Pro	Pro	•
		•		180					185					190			
20	tcc	ctc	atg	ctg	ctt	ctc	atg	tgc	ttc	atg	ccc	gag	acc	ccg	cgc	ttc	684
	Ser	Leu	Met	Leu	Leu	Leu	Met	Cys	Phe	Met	Pro	Glu	Thr	Pro	Arg	Phe	
			195					200					205				
	ctg	ctg	act	cag	cac	agg	cgc	cag	gag	gct	gct	cct	ggt	ctt	gtc	agg	732
	Leu	Leu	Thr	Gln	His	Arg	Arg	Gln	Glu	Ala	Ala	Pro	Gly	Leu	Val	Arg	
25		210					215					220					

	tgt ggt cat ggt gtt cag cac gag tgc ctt cgg cgc cta ctt caa gct	780
	Cys Gly His Gly Val Gln His Glu Cys Leu Arg Arg Leu Leu Gln Ala	
	225 230 235 240	
•	gac cca ggg tgg ccc tgg caa ctc ctc gca cgt ggc cat ctc ggc gcc	828
5	Asp Pro Gly Trp Pro Trp Gln Leu Leu Ala Arg Gly His Leu Gly Ala	
	245 250 255	
	tgt ctc tgc aca gcc tgt tgatgccagc gtggggctgg cctggctggc	876
	Cys Leu Cys Thr Ala Cys	
	260	
10	cgtgggcagc atgtgcctct tcatcgccgg aggtcctcag gccctatgga gccttctggc	936
	ttgcctccgc tttctgcatc ttcagtgtcc ttttcacttt gttctgtgtc cctgaaacta	996
	aaggaaagac tctggaacaa atcacagccc attttgaggg gcgatgacag ccactcacta	1056
	ggggatggag caageetgtg actecaaget gggeecaage ceagageece tgeetgeece	1116
	aggggagcca gaatccagcc ccttggagcc ttggtctgca gggtccctcc ttcctgtcat	1176
15	gctccctcca gcccatgacc cggggctagg aggctcactg cctcctgttc cagctcctgc	1236
	tgctgctctg aggactcagg aacaccttcg agctttgcag acctgcggtc agccctccat	1296
,	gcgcaagact aaagcagcgg aagaggaggt gggcctctag gatctttgtc ttctggctgg	1356
	aggtgctttt ggaggttggg tgctgggcat tcagtcgctc ctctcacgcg gctgccttat	1416
	cgggaaggaa atttgtttgc caaataaaga ctgacacaga aaatc	1461
20		•
	<210> 30	
	<211> 1122 ·	
	<212> DNA	
	<213> Homo sapiens	
25	<220>	

	<22:	, ;> Ci	DS														
	<222	2> (79).	. (53	7)												
	<40	0> 30	0 .														•
	tgti	tccto	cgg (ggtc	cgcg	ga go	cgago	cca	g cto	eteg	gege	gtgi	togga	agt (ctcc	cagccc	60
5	cgc	ggcc	ccg a	agcgo	cacg	atg	cgc	gga	ccc	ggg	cac	ccc	ctc	ctc	ctg	ggg	111
						Met	Arg	Gly	Pro	Gly	His	Pro	Leu	Leu	Leu	Gly	
						1				5					10		
	ctg	ctg	ctg	gtg	ctg	ggg	gcg	gcg	ggg	cgc	ggc	cgg	ggg	ggc	gcg	gag	159
				Val													
10				15					20					25			
	ccc	cgg	gag	ccg	gcg	gac	gga	cag	gcg	ctg	ctg	cgg	ctg	gtg	gtg	gaa	207
	Pro	Arg	Glu	Pro	Ala	Asp	Gly	Gln	Ala	Leu	Leu	Arg	Leu	Val	Val	Glu	
			30					35					40				
	ctc	gtc	cag	gag	ctg	cgg	aag	cac	cac	tcg	gċg	gag	cac	aag	ggc	ctg	255
15	Leu	Val	Gln	Glu	Leu	Arg	Lys	His	His	Ser	Ala	Glu	His	Lys	Gly	Leu	
		45					50					55					
	cag	ctc	ctc	ggg	cgg	gac	tgc	gcc	ctg	ggc	cgc	gcg	gag	gcg	gcg	ggg .	303
	Gln	Leu	Leu	Gly	Arg	Asp	Cys	Ala	Leu	Gly	Arg	Ala	Glu	Ala	Ala	Gly	
	60					65					70					75	
20	ctg	ggg	cct	tcg	ccg	gag	cag	cga	gtg	gaa	att	gtt	cct	cga	gat	ctg	351
•	Leu	Gly	Pro	Ser	Pro	Glu	Gln	Arg	Val	Glu	Ile	Val	Pro	Arg	Asp	Leu	
					80					85					90		
	agg	atg	aag	gac	aag	ttt	cta	aaa	cac	ctt	aca	ggc	cct	ctt	tat	ttt	399
	Arg	Met	Lys	Asp	Lys	Phe	Leu	Lys	His	Leu	Thr	Gly	Pro	Leu	Tyr	Phe	
25				95					100					105	,		

74 /346

	agt cca aa	g tgc agc	aaa cac	ttc cat	aga ctt	tat cac aac	acc aga	447
	Ser Pro Lys	s Cys Ser	Lys His	Phe His	Arg Leu	Tyr His Asn	Thr Arg	
	110	0		115		120		•
	gac tgc ac	c att cct	gca tac	tat aaa	aga tgc	gcc agg ctt	ctt acc	495
5	Asp Cys Th:	r Ile Pro	Ala Tyr	Tyr Lys	Arg Cys	Ala Arg Leu	Leu Thr	
	125		130			135		
	cgg ctg gc	t gtc agt	cca gtg	tgc atg	gag gat	aag cag tga	ıgcagacc	544
	Arg Leu Ala	a Val Ser	Pro Val	Cys Met	Glu Asp	Lys Gln		
	140		145	·	150			
10	gtacaggagc	agcacacca	g gagcca	atgag aa	gtgccttg	gaaaccaaca	gggaaacaga	604
	actatcttta	tacacatcc	c ctcatg	ggaca ag	agatttat	ttttgcagac	agactcttcc	664
	ataagtcctt	tgagttttg	t atgttg	gttga ca	gtttgcag	atatatattc	gataaatcag	724
	tgtacttgac	agtgttatc	t gtcact	tatt ta	aaaaaaaa	acacaaaagg	aatgctccac	784
	atttgacgtg	tagtgctat	a aaacac	cagaa ta	tttcattg	tcttcattag	gtgaaatcgc	844
1.5	aaaaaatatt	tctttagaa	a cataag	gcaga at	cttaaagt	atattttcat	ataacataat	904
	ttgatattct	gtattactt	t cactgt	taaa tt	ctcagagt	attatttgga	acggcatgaa	964
	aaattaaaat	ttcggtcate	g ttttag	gagac ag	tggagtgt	aaatctgtgg	ctaattctgt	1024
	tggtcgtttg	tattataaa	t gtaaaa	atagt at	tccagcta	ttgtgcaata	tgtaaatagt	1084
	gtaaataaac	acaagtaat	a aatgaa	agtgt tt	gttttt			1122
20								
	<210> 31							
	<211> 335							
	<212> PRT							
	<213> Homo	sapiens						

25

<400> 31

	Met	Gly	Ala	Ser	Ser	Ser	Ser	Ala	Leu	Ala	Arg	Leu	Gly	Leu	Pro	Ala
	1				5					10					15	
	Arg	Pro	Trp	Pro	Arg	Trp	Leu	Gly	Val	Ala	Ala	Leu	Gly	Leu	Ala	Ala
	-			20					25					30		
5	Val	Ala	Leu	Gly	Thr	Val	Ala	Trp	Arg	Arg	Ala	Trp	Pro	Arg	Arg	Arg
			35					40					45			
	Arg	Arg	Leu	Gln	Gln	Val	Gly	Thr	Val	Ala	Lys	Leu	Trp	Ile	Tyr	Pro
		50					55	•				60				٠.
	Val	Lys	Ser	Cys	Lys	Gly	Val	Pro	Val	Ser	Glu	Ala	Glu	Cys	Thr	Ala
10	65					70					75					80
	Met	Gly	Leu	Arg	Ser	Gly	Asn	Leu	Arg	Asp	Arg	Phe	Trp	Leu	Val	·Ile
					85					90					95	
	Lys	Glu	Asp	Gly	His	Met	Val	Thr	Ala	Arg	Gln	Glu	Pro	Arg	Leu	Val
				100					105					110		
15	Leu	Ile	Ser	Ile	Ile	Tyr	Glu	Asn	Asn	Cys	Leu	Ile	Phe	Arg	Ala	Pro
			115					120					125			
	Àsp	Met	Asp	Gln	Leu	Val	Leu	Pro	Ser	Lys	Gln	Pro	Ser	Ser	Asn	Lys
		130					135			-		140				
	Leu	His	Asn	Cys	Arg	Ile	Phe	Gly	Leu	Asp	Ile	Lys	Gly	Arg	Asp	Cys
20	145					150					155					160
	Gly	Asn	Glu	Ala	Ala	Lys	Trp	Phe	Thr	Asn	Phe	Leu	Lys	Thr	Glu	Ala
					165					170					175	
	Tyr	Arg	Leu	Val	Gln	Phe	Glu	Thr	Asn	Met	Lys	Gly	Arg	Thr	Ser	Arc
				180					185	•				190		
25	Lys	Leu	Leu	Pro	Thr	Leu	Asp	Gln	Asn	Phe	Gln	Val	. Ala	Tyr	Pro	Asp

			195					200					205			
	Tyr	Суѕ	Pro	Leu	Leu	Ile	Met	Thr	Asp	Ala	Ser	Leu	Val	Asp	Leu	Asn
		210					215					220				
	Thr	Arg	Met	Glu	Lys	Lys	Met	Lys	Met	Glu	Asn	Phe	Arg	Pro	Asn	Ile
5	225					230					235					240
	Val	Val	Thr	Gly	Суз	Asp	Ala	Phe	Glu	Glu	Asp	Thr	Trp	Asp	Glu	Leu
					245					250					255	
	Leu	Ile	Gly	Ser	Val	Glu	Val	Lys	Lys	Val	Met	Ala	Суѕ	Pro	Arg	Cys
				260					265					270		
10	Ile	Leu	Thr	Thr	Val	Asp	Pro	Asp	Thr	Gly	Val	Ile	Asp	Arg	Lys	Gln
			275					280					285			
	Pro	Leu	Asp	Thr	Leu	Lys	Ser	Tyr	Arg	Leu	Cys	Asp	Pro	Ser	Glu	Arg
		290					295					300				
	Glu	Leu	Tyr	Lys	Leu	Ser	Pro	Leu	Phe	Gly	Ile	Tyr	Tyr	Ser	Val	Glu
15	305					310					315					320
	Lys	Ile	Gly	Ser	Leu	Arg	Val	Gly	Asp	Pro	Val	Tyr	Arg	Met	Val	
					325					330					-335	
	<21	0> 3	2													
20	<21	1> 2	80													
	<21	2> P	RT													
	<21	3> н	omo	sapi	ens											
	<40	0> 3	2													
	Met	Glu	Leu	Arg	Ala	Ala	Leu	Val	Leu	Val	Val	Leu	Leu	Ile	Ala	Gly
25	.1				5					10					15	

	Gly	Leu	Phe	Met	Phe	Thr	Tyr	Lys	Ser	Thr	Gln	Phe	Asn	Val	Glu	Gly
				20					25					30		
	Phe	Ala	Leu	Val	Leu	Gly	Ala	Ser	Phe	Ile	Gly	Gly	Ile	Arg	Trp	Thr
			35					40	·		•	٠	45			
5	Leu	Thr	Gln	Met	Leu	Leu	Gln	Lys	Ala	Glu	Leu	Gly	Leu	Gln	Asn	Pro
		50					55					60	•			
	Ile	Asp	Thr	Met	Phe	His	Leu	Gln	Pro	Leu	Met	Phe	Leu	Gly	Leu	Phe
	65					70					75					80
	Pro	Leu	Phe	Ala	Val	Phe	Glu	Gly	Leu	His	Leu	Ser	Thr	Ser	Glu	Lys
10					85	•				90					95	
	Ile	Phe	Arg	Phe	Gln	Asp	Thr	Gly	Leu	Leu	Leu	Arg	Val	Leu	Gly	Ser
				100					105					110		
	Leu	Phe	Leu	Gly	Gly	Ile	Leu	Ala	Phe	Gly	Leu	Gly	Phe	Ser	Glu	Phe
			115					120					125			
15	Leu	Leu	Val	Ser	Arg	Thr	Ser	Ser	Leu	Thr	Leu	Ser	Ile	Ala	Gly	Ile
		130					135					140				
	Phe	Lys	Glu	Val	Cys	Thr	Leu	Leu	Leu	Ala	Ala	His	Leu	Leu	Gly	Asp
	145					150					155					160
	Gln	Ile	Ser	Leu	Leu	Asn	Trp	Leu	Gly	Phe	Ala	Leu	Cys	Leu	Ser	Gly
20					165					170					175	
	Ile	Ser	Leu	His	Val	Ala	Leu	Lys	Ala	Leu	His	Ser	Arg	Gly	Asn	Pro
			•	180					185					190		
	Glu	Ser	Leu	Pro	Glu	Ala	Ser	Val	Phe	Cys	Ser	Ser	Pro	Cys	Asp	Ser
			195			•		200					205	•		

	<210)> 33	3													
	<211	L> 4C)6													
	<212	2> PF	TS													
•	<213	3> Hc	omo s	sapie	ens											
5	<400)> 33	3													
	Met	Ala	Ala	Gly	Ala	Gly	Ala	Gly	Ser	Ala	Pro	Arg	Trp	Leu	Arg	Ala
	1				5					10					15	
	Leu	Ser	Glu	Pro	Leu	Ser	Ala	Ala	Gln	Leu	Arg	Arg	Leu	Glu	Glu	His
				20					, 25					30		
LO	Arg	Tyr	Ser	Ala	Ala	Gly	Val	Ser	Leu	Leu	Glu	Pro	Pro	Leu	Gln	Leu
			35					40				•	45			
	Tyr	Trp	Thr	Trp	Leu	Leu	Gln	Trp	Ile	Pro	Leu	Trp	Met	Ala	Pro	Asr
		50	•				55					60				
	Ser	Ile	Thr	Leu	Leu	Gly	Leu	Ala	۷al _.	Asn	Val	Val	Thr	Thr	Leu	Val
15	65					70					75					80
	Leu	Ile	Ser	Tyr	Cys	Pro	Thr	Ala	Thr	Glu	Glu	Ala	Pro	Tyr	Trp	Thi
					85					90					95	
	Tyr	Leu	Leu	Cys	Ala	Leu	Gly	Leu	Phe	Ile	Tyr	Gln	Ser	Leu	Asp	Ala
				100					105					110		
20	Ile	Asp	Gly	Lys	Gln	Ala	Arg	Arg	Thr	Asn	Ser	Cys	Ser	Pro	Leu	Gl
			115					120					125			
	Glu	Leu	Phe	Asp	His	Gly	Cys	Asp	Ser	Leu	Ser	Thr	Val	Phe	Met	Ala
		130			٠		135					140				
	Val	Gly	Ala	Ser	Ile	Ala	Ala	Arg	Leu	Gly	Thr	Tyr	Pro	Asp	Trp	Phe
25	145					150	•				155					160

	Phe	Phe	Cys	Ser	Phe	Ile	Gly	Met	Phe	Val	Phe	Tyr	Cys	Ala	His	Trp
		,			165					170					175	
	Gln	Thr	Tyr	Val	Ser	Gly	Met	Leu	Arg	Phe	Gly	Lys	Val	Asp	Val	Thi
				180					185					190		
5	Glu	Ile	Gln	Ile	Ala	Leu	Val	Ile	Val	Phe	Val	Leu	Ser	Ala	Phe	G17
			195					200					205			
	Gly	Ala	Thr	Met	Trp	Asp	Tyr	Thr	Ile	Pro	Ile	Leu	Glu	Ile	Lys	Leu
		210					215					220				
	Lys	Ile	Leu	Pro	Val	Leu	Gly	Phe	Leu	Gly	Gly	Val	Ile	Phe	Ser	Cys
10	225					230	,				235					240
	Ser	Asn	Tyr	Phe	His	Val	Ile	Leu	His	Gly	Gly	Val	Gly	Lys	Asn	G17
					245					250					255	
	Ser	Thr	Ile	Ala	Gly	Thr	Ser	Val	Leu	Ser	Pro	Gly	Leu	His	Ile	Gl
				260					265					270		
15	Leu	Ile	Ile	Ile	Leu	Ala	Ile	Met	Ile	Tyr	Lys	Lys	Ser	Ala	Thr	Asp
			275					280					285			
	Val	Phe	Glu	Lys	His	Pro	Cys	Leu	Tyr	Ile	Leu	Met	Phe	Gly	Cys	Va]
		290					295					300				
	Phe	Ala	ГÀе	Val	Ser	Gln	Lys	Leu	Val	Val	Ala	His	Met	Thr	Lys	Ser
20	305					310					315					320
	Glu	Leu	Tyr	Leu	Gln	Asp	Thr	Val	Phe	Leu	Gly	Pro	Gly	Leu	Leu	Phe
					325					330					335	
	Leu	Asp	Gln	Tyr	Phe	Asn	Àsn	Phe	Ile	Asp	Glu	Tyr	Val	Val	Leu	Trp
				340					345					350		
25	Met	Ala	Met	Val	Ile	Ser	Ser	Phe	Asp	Met	Val	Ile	Tyr	Phe	Ser	Ala

			355					360					365		•	
	Leu	Cys	Leu	Gln	Ile	Ser	Arg	His	Leu	His	Leu	Asn	Ile	Phe	Lys	Thr
		370					375					380				
	Ala	Cys	His	Gln	Ala	Pro	Glu	Ġln	Val	Gln	Val	Leu	Ser	Ser	Lys	Ser
5	385					390					395					400
	His	Gln	Asn	Asn	Met	Asp			•							
			•		405											
	<210	0> 34	4													
10	<21	1> 61	18													
	<212	2> PF	RT						/							
	<213	3> Ho	omo s	sapie	ens											
	<400	0> 34	1													•
	Met	Glu	Val	Lys	Asn	Phe	Ala	Val	Trp	Asp	Tyr	Val	Val	Phe	Ala	Ala
15	1				5					10					15	
	Leu	Phe	Phe	Ile	Ser	Ser	Gly	Ile	Gly	Val	Phe	Phe	Ala	Ile	Lys	Glu
				20					25					30		
	Arg	Lys	Lys	Ala	Thr	Ser	Arg	Glu	Phe	Leu	Val	Gly	Gly	Arg	Gln	Met
			35					40					45			
20	Ser	Phe	Gly	Pro	Val	Gly	Leu	Ser	Leu	Thr	Ala	Ser	Phe	Met	Ser	Ala
		50					55					60				
	Val	Thr	Val	Leu	Gly	Thr	Pro	Ser	Glu	Val	Tyr	Arg	Phe	Gly	Ala	Ser
	65			•		70					75					80
	Phe	Leu	Val	Phe	Phe	Ile	Ala	Tyr	Leu	Phe	Val	Ile	Leu	Leu	Thr	Ser
25					85					90					95	

	Glu	Leu	Phe	Leu	Pro	Val	Phe	Tyr	Arg	Ser	Gly	Ile	Thr	Ser	Thr	Tyr
				100					105					110		
	Glu	Tyr	Leu	Gln	Leu	Arg	Phe	Asn	Lys	Pro	Val	Arg	Tyr	Ala	Ala	Thr
			115					120					125			
5	Val	Ile	Tyr	Ile	Val	Gln	Thr	Ile	Leu	Tyr	Thr	Gly	Val	Val	Val	Tyr
		130					135				•	140				
	Ala	Pro	Ala	Leu	Ala	Leu	Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gly
	145		•			150					155					160
	Ser	Val	Phe	Ala	Thr	Gly	Île	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly
10					165					170					175	
	Gly	Leu	Lys	Ala	Val	Val	Trp	Thr	Asp	Ala	Phe	Gln	Met	Val	Val	Met
				180				•	185		•			190		
	Ile	Val	Gly	Phe	Leu	Thr	Val	Leu	Ile	Gln	Gly	Ser	Thr	His	Ala	Gly
			195					200					205			
.5	Gly	Phe	His	Asn	Va1	Leu	Glu	Gln	Ser	Thr	Asn	Gly	Ser	Arg	Leu	His
		210					215					220				
	Ile	Phe	Asp	Phe	Asp	Val	Aspí	Pro	Leu	Arg	Arg	His	Thr	Phe	Trp	Thr
	225					230					235	•				240
	Ile	Thr	Val	Gly	Gly	Thr	Phe	Thr	Trp	Leu	Gly	Ile	Tyr	Gly	Val	Asn
20					245					250					255	
	Gln	Ser	Thr	Ile	Gln	Arg	Cys	Ile	Şer	Cys	Lys	Thr	Glu	Lys	His	Ala
				260					265					270		
	Lys	Leu	Ala	Leu	Tyr	Phe	Asn	Leu	Leu	Gly	Leu	Trp	Ile	Ile	Leu	Val
			275					280					285			
25	Cys	Ala	Val	Phe	Ser	Gly	Leu	Ile	Met	Tyr	Ser	His	Phe	Lys	Asp	Cys

		290					295					300				
	Asp	Pro	Trp	Thr	Ser	Gly	Ile	Ile	Ser	Ala	Pro	Asp	Gln	Leu	Met	Pro
	305					310					315					320
	Tyr	Phe	Val	Met	Glu	Ile	Phe	Ala	Thr	Met	Pro	Gly	Leu	Pro	Gly	Leu
5					325					330	•				335	
	Phe	Val	Ala	Cys	Ala	Phe	Ser	Gly	Thr	Leu	Ser	Thr	Val	Ala	Ser	Ser
				340					345					.350		
	Ile	Asn	Ala	Leu	Ala	Thr	Val	Thr	Phe	Glu	Asp	Phe	Val	Lys	Ser	Суз
			355					360					365			
10	Phe	Pro	His	Leu	Ser	Asp	Lys	Leu	Ser	Thr	Trp	Ile	Ser	Lys	Gly	Leu
		370					375					380				
	Cys	Leu	Leu	Phe	Gly	Val	Met	Cys	Thr	Ser	Met	Ala	Val	Ala	Ala	Ser
	385					390					395					400
	Val	Met	Gly	Gly	Val	Val	Gln	Ala	Ser	Leu	Ser	Ile	His	Gly	Met	Суз
15					405				_	410					415	
	Gly	Gly	Pro	Met	Leu	Gly	Leu	Phe	Ser	Leu	Gly	Ile	Val	Phe	Pro	Ph∈
				420					425		,			430		
	Val	Asn	Trp	Lys	Gly	Ala	Leu	Gly	Gly	Leu	Leu	Thr	Gly	Ile	Thr	Let
			435					440					445			
20	Ser	Phe	Trp	Val	Ala	Ile	Gly	Ala	Phe	Ile	Tyr	Pro	Ala	Pro	Ala	Sei
		450					455					460				
	Lys	Thr	Trp	Pro	Leu	Pro	Leu	Ser	Thr	Asp	Gln	Cys	Ile	Lys	Ser	Ası
	465					470					475				•	480
	Val	Thr	Ala	Thr	Gly	Pro	Pro	Val	Leu	Ser	Ser	Arg	Pro	Gly	Ile	Ala
25					485					490					495	

83 / 346

Asp Thr Trp Tyr Ser Ile Ser Tyr Leu Tyr Tyr Ser Ala Val Gly Cys Leu Gly Cys Ile Val Ala Gly Val Ile Ile Ser Leu Ile Thr Gly Arg Gln Arg Gly Glu Asp Ile Gln Pro Leu Leu Ile Arg Pro Val Cys Asn Leu Phe Cys Phe Trp Ser Lys Lys Tyr Lys Thr Leu Cys Trp Cys Gly Val Gln His Asp Ser Gly Thr Glu Gln Glu Asn Leu Glu Asn Gly Ser Ala Arg Lys Gln Gly Ala Glu Ser Val Leu Gln Asn Gly Leu Arg Arg Glu Ser Leu Val His Val Pro Gly Tyr Asp Pro Lys Asp Lys Ser Tyr Asn Asn Met Ala Phe Glu Thr Thr His Phe <210> 35 <211> 208 <212> PRT <213> Homo sapiens <400> 35 Met Glý Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly Thr Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala Ala Met

				20					25					30		
	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	Leu	Pro	His	Asn	Ser	Ser
			35					40					45			
	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	Pro	Ser	Asp	His	Thr	Asn
5		50					55	•				60				
	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	Thr	Ser	Val	Ala	Ser	Asp
	65					70					75					80
	Ser	Ser	Asn	Thr	Thr	Val	Thr	Thr	Met	Lys	Pro	Thr	Ala	Ala	Ser	Asn
					85					90					95	
10	Thr	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr	Asn	Met	Thr	Ser	Thr	Thr	Leu
				100					105					110		
	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser	Val	Ser	Gln	Asn	Thr	Ser	Gln	Ile
			115	•	,			120					125			
	Ser	Thr	Ser	Thr	Met	Thr	Val	Thr	His	Asn	Ser	Ser	Val	Thr	Ser	Ala
15		130					135					140				
	Ala	Ser	Ser	Val	Thr	Ile	Thr	Thr	Thr	Met	His	Ser	Glu	Ala	Lys	Lys
	145					150					155					160
	Gly	Ser	Lys	Phe	Asp	Thr	Gly	Ser	Phe	Val	Gly	Gly	Ile	Val	Leu	Thr
					165					170					175	
20	Leu	Gly	Val	Leu	Ser	Ile	Leu	Tyr	Ile	Gly	Cys	Lys	Met	Tyr	Tyr	Ser
				180					185					190		
	Arg	Arg	Gly	Iḷe	Arg	Tyr	Arg	Thr	Ile	Asp	Glu	His	Asp	Ala	Ile	Ile
			195		•			200					205			

	<21	1> 50	02													
	<21	2> PI	RT													
	<21	3> н	omo :	sapi	ens											
	<40	0> 3	6													
5	Met	Ser	Leu	Val	Leu	Leu	Ser	Leu	Ala	Ala	Leu	Cys	Arg	Ser	Ala	Va]
	1				5					10					15	
	Pro	Arg	Glu	Pro	Thr	Val	Gln	Cys	Gly	Ser	Glu	Thr	Gly	Pro	Ser	Pro
				20					25					30		
	Glu	Trp	Met	Leu	Gln	His	Asp	Leu	Ile	Pro	Gly	Asp	Leu	Arg	Asp	Lei
10			35					40					45			
	Arg	Val	Glu	Pro	Val	Thr	Thr	Ser	Val	Ala	Thr	Gly	Asp	Tyr	Ser	Ile
		50					55				•	60			•	
	Leu	Met	Asn	Val	Ser	Trp	Val	Leu	Arg	Ala	Asp	Ala	Ser	Ile	Arg	Let
	65				•	70					75					80
15	Leu	Lys	Ala	Thr	Lys	Ile	Cys	Val	Thr	Gly	Lys	Ser	Asn	Phe	Gln	Sei
					85					90					95	
	Tyr	Ser	Cys	Val	Arg	Cys	Asn	Tyr	Thr	Glu	Ala	Phe	Gln	Thr	Gln	Thi
				100					105					110		
	Arg	Pro	Ser	Gly	Gly	Lys	Trp	Thr	Phe	Ser	Tyr	Ile	Gly	Phe	Pro	Val
20			115					120					125			
	Glu	Leu	Asn	Thr	Val	Tyr	Phe	Ile	Gly	Ala	His	Asn	Ile	Pro	Asn	Ala
		130					135					140				
	Asn	Met	Asn	Glu	Asp	Gly	Pro	Ser	Met	Ser	Val	Asn	Phe	Thr	Ser	Pro
	145					150					155					160
25	Gly	Cys	Leu	Asp	His	Ile	Met	Lys	Tvr	Lvs	Lvs	Lvs	Cvs	Val	Lvs	Δla

					165	•				170					175	
	Gly	Ser	Leu	Trp	Asp	Pro	Asn	Ile	Thr	Ala	Cys	Lys	Lys	Asn	Glu	Glu
				180					185					190		
	Thr	Val	Glu	Val	Asn	Phe	Thr	Thr	Thr	Pro	Leu	Gly	Asn	Arg	Tyr	Met
5			195					200					205			
	Ala	Leu	Ile	Gln	His	Ser	Thr	Ile	Ile	Gly	Phe	Ser	Gln	Val	Phe	Glu
		210					215					220				
	Pro	His	Gln	Lys	Lys	Gln	Thr	Arg	Ala	Ser	Val	Val	Ile	Pro	Val	Thr
	225					230					235					240
10	Gly	Asp	Ser	Glu	Gly	Ala	Thr	Val	Gln	Leu	Thr	Pro	Tyr	Phe	Pro	Thr
					245					250					255	
	Cys	Gly	Ser	Asp	Cys	Ile	Arg	His	Lys	Gly	Thr	Val	Val	Leu	Cys	Pro
				260					265					270		
	Gln	Thr	Gly	Val	Pro	Phe	Pro	Leu	Asp	Asn	Asn	Lys	Ser	Lys	Pro	Gly
15	ı		275					280					285			
	Gly	Trp	Leu	Pro	Leu	Leu	Leu	Leu	Ser	Leu	Leu	Val	Ala	Thr	Trp	Val
		290					295					300				
	Leu	Val	Ala	Gly	Ile	Tyr	Leu	Met	Trp	Arg	His	Glu	Arg	Ile	Lys	Lys
	305					310					315					320
20	Thr	Ser	Phe	Ser	Thr	Thr	Thr	Leu	Leu	Pro	Pro	Ile	Lys	Val	Leu	Val
					325					330					335	
	Val	Tyr	Pro	Ser	Glu	Ile	. Cys	Phe	His	His	Thr	· Ile	Cys	Tyr	Phe	Thr
				340	•				345					350		
	Glu	. Phe	Leu			His	Cys	Arq			. Val	. Ile	Leu			Trr
25			355				-	360					365			•

	Gln	Lys	Lys	Lys	Ile	Ala	Glu	Met	Gly	Pro	Val	Gln	Trp	Leu	Ala	Thr
		370					375					380		•		
	Gln	Lys	Lys	Ala	Ala	Asp	Lys	Val	Val	Phe	Leu	Leu	Ser	Asn	Asp	Val
	385					390					395					400
5	Asn	Ser	Val	Cys	Asp	Gly	Thr	Суз	Gly	Lys	Ser	Glu	Gly	Ser	Pro	Ser
					405					410					415	
	Glu	Asn	Ser	Gln	Asp	Leu	Phe	Pro	Leu	Ala	Phe	Asn	Leu	Phe	Cys	Ser
•				420					425			٠		430		
	Asp	Leu	Arg	Ser	Gln	Ile	His	Leu	His	Lys	Tyr	Val	Val	Val	Tyr	Phe
10			435					440					445			
	Arg	Glu	Ile	Asp	Thr	Lys	Asp	Asp	Tyr	Asn	Ala	Leu	Ser	Val	Cys	Pro
		450					455					460				
	Lys	Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	Ala	Phe	Cys	Ala	Glu	Leu	Leu
	465					470					475					480
15	His	Val	Lys	Gln	Gln	Val	Ser	Ala	Gly	Lys	Arg	Ser	Gln	Ala	Cys	His
			i		485					490					495	
	Asp	Gly ,	Cys	Cys	Ser	Leu										
				500						*						
20	<210)> 37	7							•						
	<211	L> 33	86													
	<212	2> PF	T													
	<213	3> Hc	omo s	sapie	ens											
	<400)> 37														
25	Met	Arg	Ala	Pro	Ser	Met	Asp	Arg	Ala	Ala	Val	Ala	Arg	Val	Gly	Ala

	1				5					. 10		,	•		15	
	Val	Ala	Ser	Ala	Ser	Val	Cys	Ala	Leu	Val	Ala	Gly	Val	Val	Leu	Ala
				20					25					30		
	Gln	Tyr	Ile	Phe	Thr	Leu	Lys	Arg	Lys	Thr	Gly	Arg	Lys	Thr	Lys	Ile
5			35					40					45			
	Ile	Glu	Met	Met	Pro	Glu	Phe	Gln	Lys	Ser	Ser	Val	Arg	Ile	Lys	Asr
		50					55					60	•			
	Pro	Thr	Arg	Val	Glu	Glu	Ile	Ile	Cys	Gly	Leu	Ile	ŗ'ns	Gly	Gly	Ala
	65					70					75					80
10	Ala	Lys	Leu	Gl'n	Ile	Ile	Thr	Asp	Phe	Asp	Met	Thr	Leu	Ser	Arg	Phe
					85					90					95	
	Ser	Tyr	Lys	Gly	Lys	Arġ	Cys	Pro	Thr	Суѕ	His	Asn	Ile	Ile	Asp	Asr
				100		•			105					110		
	Cys	Lys	Leu	Val	Thr	Asp	Glu	Cys	Arg	Lys	Lys	Leu	Leu	Gln	Leu	Lys
15			115		•			120					125			
	Glu	Lys	Tyr	Tyr	Ala	Ile	Glu	Val	Asp	Pro	Val	Leu	Thr	Val	Glu	Glu
		130					135					140				
	Lys	Tyr	Pro	Tyr	Met	Val	Glu	Trp	Tyr	Thr	Lys	Ser	His	Gly	Leu	Leu
	145					150					155					160
20	Val	Gln	Gln	Ala	Leu	Pro	Lys _.	Ala	Lys	Leu	Lys	Glu	Ile	Val	Ala	Glu
					165					170					175	
	Ser	Asp	Val	Met	Leu	Lys	Glu	Gly	Tyr	Glu	Asn	Phe	Phe	Asp	Lys	Let
				180					185					190		
	Gln	Gln		Ser	Ile	Pro	Val	Phe	Ile	Phe	Ser	Ala	Gly	Ile	Gly	Asp
25			195					200					205			

Gly Phe Lys Gly Glu Leu Ile His Val Phe Asn Lys His Asp Gly Ale 245 Leu Arg Asn Thr Glu Tyr Phe Asn Gln Leu Lys Asp Asn Ser Asn Ile 260 265 The Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val 275 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 280 295 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 280 295 300		Val	Leu	Glu	Glu	Val	Ile	Arg	Gln	Ala	Gly	Val	Tyr	His	Pro	Asn	Val
225 230 235 244 5 Gly Phe Lys Gly Glu Leu Ile His Val Phe Asn Lys His Asp Gly Alice 245 250 255 Leu Arg Asn Thr Glu Tyr Phe Asn Gln Leu Lys Asp Asn Ser Asn Ile 260 265 270 Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 32: 5 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 4210> 38 4211> 340 4212> PRT 4213> Homo sapiens 4400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 1 5 10 10 15			210					215					220				
Gly Phe Lys Gly Glu Leu Ile His Val Phe Asn Lys His Asp Gly Alc 245 250 255 Leu Arg Asn Thr Glu Tyr Phe Asn Gln Leu Lys Asp Asn Ser Asn Ile 260 265 270 Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15		Lys	Val	Val	Ser	Asn	Phe	Met	Asp	Phe	Asp	Glu	Thr	Gly	Val	Leu	Lys
245 250 255 Leu Arg Asn Thr Glu Tyr Phe Asn Gln Leu Lys Asp Asn Ser Asn Ile 260 265 270 Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 321 Cl Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15		225					230					235					240
Leu Arg Asn Thr Glu Tyr Phe Asn Gln Leu Lys Asp Asn Ser Asn Ile 260 265 270 Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15	5	Gly	Phe	Lys	Gly	Glu	Leu	Ile	His	Val	Phe	Asn	Lys	His	Asp	Gly	Ala
260 265 270 Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Value Clo 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Value 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Value 305 310 315 320 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 20 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Alace 1 5 10 15						245					250					255	
Ile Leu Leu Gly Asp Ser Gln Gly Asp Leu Arg Met Ala Asp Gly Val. 275 280 285 Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val. 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val. 305 310 315 321 325 330 335 4210> 38 4211> 340 20 4212> PRT 4213> Homo sapiens 4400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala. 1 5 10 15		Leu	Arg	Asn	Thr	Glu	Tyr	Phe	Asn	Gln	Leu	Lys	Asp	Asn	Ser	Asn	Ile
Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210>38 <211>340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Alagement Company (100) 15					260					265					270		
Ala Asn Val Glu His Ile Leu Lys Ile Gly Tyr Leu Asn Asp Arg Val 290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 321 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15		Ile	Leu	Leu	Gly	Asp	Ser	Gln	Gly	Asp	Leu	Arg	Met	Ala	Asp	Gly	Val
290 295 300 Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 15 1 5 10 15	LO			275					280		,			285			
Asp Glu Leu Leu Glu Lys Tyr Met Asp Ser Tyr Asp Ile Val Leu Val 305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 10 15		Ala	Asn	Val	Glu	His	Ile	Leu	Lys	Ile	Gly	Tyr	Leu	Asn	Asp	Arg	Val
305 310 315 326 Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15			290					295					300				
Gln Asp Glu Ser Leu Glu Val Ala Asn Ser Ile Leu Gln Lys Ile Leu 325 330 335 <210> 38 <211> 340 <20 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15		Asp	Glu	Leu	Leu	Glu	Lys	Tyr	Met	Asp	Ser	Tyr	Asp	Ile	Val	Leu	Val
325 330 335 <210> 38 <211> 340 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala		305					310					315					320
<pre><210> 38 <211> 340 20</pre>	L5	Gln	Asp	Glu	Ser	Leu	Glu	Val	Ala	Asn	Ser	Ile	Leu	Gln	Lys	Ile	Leu
<pre><211> 340 20 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala</pre>						325					′330					335	
<pre><211> 340 20 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala</pre>																	
<pre>20 <212> PRT <213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala</pre>		<210)> 38	3													
<213> Homo sapiens <400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1 5 10 15		<211	L> 34	10													
<pre><400> 38 Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala 1</pre>	20	<212	2> PF	T													
Met Glu Pro Gly Arg Thr Gln Ile Lys Leu Asp Pro Arg Tyr Thr Ala		<213	3> нс	omo s	sapie	ens											
1 5, 10 15		<400)> 38	3 -													
		Met	Glu	Pro	Gly	Arg	Thr	Gln	Ile	Lys	Leu	Asp	Pro	Arg	Tyr	Thr	Ala
Asp Leu Leu Glu Val Leu Lys Thr Asn Tyr Gly Ile Pro Ser Ala Cy		1				5,					10					15	
	25	Asp	Leu	Leu	Glu	Val	Leu	Lys	Thr	Asn	Tyr	Gly	Ile	Pro	Ser	Ala	Cys

				20					25					30		
	Phe	Ser	Gln	Pro	Pro	Thr	Ala	Ala	Gln	Leu	Leu	Arg	Ala	Leu	Gly	Pro
		i	35					40					45			•
	Val	Glu	Leu	Ala	Leu	Thr	Ser	Ile	Leu	Thr	Leu	Leu	Ala	Leu	Gly	Ser
5		50					55					60				
	Ile	Ala	Ile	Phe	Leu	Glu	Asp	Ala	Val	Tyr	Leu	Tyr	Lys	Asn	Thr	Let
	65					70					75					80
	Cys	Pro	Ile	Lys	Arg	Arg	Thr	Leu	Leu	Trp	Lys	Ser	Ser	Ala	Pro	-Thr
				•	85					90					95	
10	Val	Val	Ser	Val	Leu	Cys	Cys	Phe	Gly	Leu	Trp	Ile	Pro	Arg	Ser	Leu
-				100					105			•		110		
	Val	Leu	Val	Glu	Met	Thr	Ile	Thr	Ser	Phe	Tyr	Ala	Val	Cys	Phe	Tyr
			115	•				120					125			
	Leu	Leu	Met	Leu	Val	Met	Val	Glu	Gly	Phe	Gly	Gly	ГÀг	Glu	Ala	Val
15		130					135					140				
	Leu	Arg	Thr	Leu	Arg	Asp	Thr	Pro	Met	Met	Val	His	Thr	Gly	Pro	Суз
	145					150					155					160
	Cys	Cys	Суѕ	Cys	Pro	Суз	Cys	Pro	Arg	Leu	Leu	Leu	Thr	Arg	Lys	Ьys
					165					170					175	
20	Leu	Gln	Leu	Leu	Met	Leu	Gly	Pro	Phe	Gln	Tyr	Ala	Phe	Leu	Lys	Ile
	•			180					185			,		190		
	Thr	Leu	Thr	Leu	Val	Gly	Leu	Phe	Leu	Ile	Pro	Asp	Gly	Ile	Tyr	Asp
			195					200					205			
	Pro	Ala	Asp	Ile	Ser	Glu	Gly	Ser	Thr	Ala	Leu	Trp	Ile	Asn	Thr	Phe
25	•	210					215					220			•	

	Leu	Gly	Val	Ser	Thr	Leu	Leu	Ala	Leu	Trp	Thr	Leu	Gly	Ile	Ile	Ser
	225			•		230					235					240
	Arg	Gln	Ala	Arg	Leu	His	Leu	Gly	Glu	Gln	Asn	Met	Gly	Ala	Lys	Phe
					245					250					255	
5	Ala	Leu	Phe	Gln	Val	Leu	Leu	Ile	Leu	Thr	Ala	Leu	Gln	Pro	Ser	Ile
				260					265					270		
	Phe	Ser	Val	Leu	Ala	Asn	Gly	Gly	Gln	Ile	Ala	Cys	Ser	Pro	Pro	туг
			275				٠	280	٠				285			
	Ser	Ser	Lys	Thr	Arg	Ser	Gln	Val	Met	Asn	Cys	His	Leu	Leu	Ile	Leu
10		290			•		295					300				
	Glu	Thr	Phe	Leu	Met	Thr	Val	Leu	Thr	Arg	Met	Tyr	Tyr	Arg	Arg	Lys
	305					310					315					320
	Asp	His	Lys	۷al	Gly	Tyr	Glu	Thr	Phe	Ser	Ser	Pro	Asp	Leu	Asp	Leu
					325					330					335	
15	Asn	Leu	Lys	Ala												
				340												
	<210)> 39	9													
	<21	1> 22	23													
20	<212	2> PI	RT										•			
	<21	3> Ho	omo s	sapie	ens											
	<400)> 39	9													
	Met	Leu	Trp	Arg	Gln	Leu	Ile	Tyr	Trp	Gln	Leu	Leu	Ala	Leu	Phe	Phe
	1				5					10					15	٠
25	Leu	Pro	Phe	Cys	Leu	Cys	Gln	Asp	Glu	Tyr	Met	Glu	Val	Ser	Gly	Arg

				20					25					30		
	Thr	Asn	Lys	Val	Val	Ala	Arg	Ile	Val	Gln	Ser	His	Gln	Gln	Thr	Gly
			35					40					45		•	
	Arg	Ser	Gly	Ser	Arg	Arg	Glu	Lys	Val	Arg	Glu	Arg	Ser	His	Pro	Lys
5		50				٠.	55					60				
	Thr	Gly	Thr	Val	Asp	Asn	Asn	Thr	Ser	Thr	Asp	Leu	Lys	Ser	Leu	Arg
	65					70					75					80
	Pro	Asp	Glu	Leu	Pro	His	Pro	Glu	Val	Asp	Asp	Leu	Ala	Gln	Ile	Thr
					85					90					95	
10	Thr	Phe	Trp	Gly	Gln	Ser	Pro	Gln	Thr	Gly	Gly	Leu	Pro	Pro	Asp	Cys
				100					105					110		
	Ser	Lys	Cys	Cys	His	Gly	Asp	Tyr	Ser	Phe	Arg	Gly	Tyr	Gln	Gly	Pro
			115					120					125			
	Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Ile	Pro	Gly	Asn	His	Gly	Asn	Asn
15		130					135					140				
	Gly	Asn	Asn	Gly	Ala	Thr	Gly	His	Glu	Gly	Ala	Lys	Gly	Glu	Lys	Gly
	145					150			. •		155					160
	Asp	Lys	Gly	Asp	Leu	Gly	Pro	Arg	Gly	Glu	Arg	Gly	Gln	His	Gly	Pro
					165					170					175	
20	Lys	Gly	Glu	Lys	Gly	Tyr	Pro	Gly	Ile	Pro	Pro	Glu	Leu	Gln	Ile	Ala
				180					185					190		
	Phe	Met	Ala	Ser	Leu	Ala	Thr	His	Phe	Ser	Asn	Gln	Asn	Ser	Gly	Ile
			195					200					205			
	Ile	Phe	Ser	Ser	Val	Glu	Thr	Asn	Ile	Gly	Asn	Phe	Leu	Met	Ser	
25		210					215					220				

	<210	J> 4(J														
	<211	L> 30	9				•										
	<212	2> PF	RT									•					
5	<213	3> Ho	omo s	sapie	ens												
	<400)> 40)														
	Met	Ala	Thr	Leu	Ser	Val	Ile	Gly	Ser	Ser	Ser	Leu	Ile	Ala	Tyr	Ala	
	1				5	,				10					15		
	Val	Phe	His	Asn	Ile	Gln	Lys	Ser	Pro	Glu	Ile	Arg	Pro	Leu	Phe	Tyr	
10				20					25					30			
	Leu	Ser	Phe	Cys	Asp	Leu	Leu	Leu	Gly	Leu	Cys	Trp	Leu	Thr	Glu	Thr	
			35					40					45				
	Leu	Leu	Tyr	Gly	Ala	Ser	Val	Ala	Asn	Lys	Asp	Ile	Ile	Cys	Tyr	Asn	
		50					55					60					
15	Leu	Gln	Ala	Val	Gly	Gln	Ile	Phe	Tyr	Ile	Ser	Ser	Phe	Leu	Tyr	Thr	
	65					70					75					80	
	Val	Asn	Tyr	Ile	Trp	Tyr	Leu	Tyr	Thr	Glu	Leu	Arg	Met	Lys	His	Thr	
					85					90					95		
	Gln	Ser	Gly	Gln	Ser	Thr	Ser	Pro	Leu	Val	Ile	Asp	Tyr	Thr	Cys	Arg	
20				100					105					110			
	Val	Cys	Gln	Met	Ala	Phe	Val	Phe	Ser	Arg	Cys	Ile	Leu	Met	His	Ser	
			115					120					125				
	'Pro	Pro	Ser	Ala	Met	Ala	Glu	Leu	Pro	Pro	Ser	Ala	Asn	Thr	Ser	Val	
		130					135					140					
25	Cys	Ser	Thr	Leu	Tyr	Phe	Tyr	Gly	Ile	Ala	Ile	Phe	Leu	Gly	Ser	Phe	

	145					150					155					160
	Val	Leu	Ser	Leu	Leu	Thr	Ile	Met	Val	Leu	Leu	Ile	Arg	Ala	Gln	Thr
					165					170					175	
	Leu	Tyr	Lys	Lys		Val	Lys	Ser	Thr	Gly	Phe	Leu	Gly	Ser	Glu	Gln
5		-	•	180			-		185	-			_	190		
	Trp	Ala	Val	Ile	His	Ile	Val	Asp		Arg	Val	Arg	Phe		Pro	Val
	-		195					200		_			205			
	Ala	Phe		Cys	Cys	Trp	Gly	Pro	Ala	Val	Ile	Leu	Met	Ile	Ile	Lys
		210		-	-	-	215					220				
10	Leu	Thr	Lys	Pro	Gln	Asp	Thr	Lys	Leu	His	Met	Ala	Leu	Tyr	Val	Leu
	225					230					235					240
	Gln	Ala	Leu	Thr	Ala	Thr	Ser	Gln	Gly	Leu	Leu	Asn	Cys	Gly	Val	Tyr
					245					250					255	
	Gly	Trp	Thr	Gln	His	Lys	Phe	His	Gln	Leu	Lys	Gln	Glu	Ala	Arg	Arg
15				260					265					270		
	Asp	Ala	Asp	Thr	Gln	Thr	Pro	Leu	Leu	Cys	Ser	Gln	Lys	Arg	Phe	Tyr
			275					280					285			
	Ser	Arg	Gly	Leu	Asn	Ser	Leu	Glu	Ser	Thr	Leu	Thr	Phe	Pro	Ala	Ser
		290					295					300				
20	Thr	Ser	Thr	Ile	Phe	:										
	305											•				
						,										
	<21	.0> 4	1													
	<21	.1> 1	.008													
25	<21	2> D	NA AN													

<213> Homo sapiens .

<400> 41

5

10

15

atgggcgctt ccagetcete egegetggee egecteggee teccageeeg geeetggeee 60 aggtggctcg gggtcgccgc gctaggactg gccgccgtgg ccctggggac tgtcgcctgg 120 cgccgcgcat ggcccaggcg gcgccggcgg ctgcagcagg tgggcaccgt ggcgaagctc 180 tggatctacc cggtgaaatc ctgcaaaggg gtgccggtga gcgaggctga gtgcacggcc 240 atggggctgc gcagcggcaa cctgcgggac aggttttggc tggtgattaa ggaagatgga 300 cacatggtca ctgcccgaca ggagcctcgc ctcgtgctca tctccatcat ttatgagaat 360 aactgcctga tcttcagggc tccagacatg gaccagctgg ttttgcctag caagcagcct 420 tcctcaaaca aactccacaa ctgcaggata tttggccttg acattaaagg cagagactgt 480 ggcaatgagg cagctaagtg gttcaccaac ttcttgaaaa ctgaaqcgta tagattggtt 540 caatttgaga caaacatgaa gggaagaaca tcaagaaaac ttctccccac tcttgatcag 600 aatttccagg tggcctaccc agactactgc ccgctcctga tcatgacaga tgcctccctg 660 gtagatttga ataccaggat ggagaágaaa atgaaaatgg agaatttcag gccaaatatt 720 gtggtgaccg gctgtgatgc ttttgaggag gatacctggg atgaactcct aattggtagt 780 gtagaagtga aaaaggtaat ggcatgcccc aggtgtattt tgacaacggt ggacccagac 840 actggagtca tagacaggaa acagccactg gacaccctga agagctaccg cctgtgtgat 900 ccttctgaga gggaattgta caagttgtct ccactttttg ggatctatta ttcagtggaa 960 aaaattggaa gcctgagagt tggtgaccct gtgtatcgga tggtgtag 1008

20

<210> 42

<211> 627

<212> DNA

<213> Homo sapiens

25 <400> 42

5

10

20

25

96 /346

atggagetge gegeggeact ggteetggtg gteetectea tegeeggggg tetetteatg 60
tteacetaca agteeacaca gtteaacgtg gagggetteg cettggtget gggggeeteg 120
tteateggtg geattegetg gaceeteace cagatgetee tgeagaagge tgaactegge 180
cteeagaate ceategacac catgtteeac etgeageeac teatgtteet ggggetette 240
cetetettig etgtatitga aggteteeat tigteeacat etgagaaaat etteegttee 300
caggacacag ggetgeteet gegggtaett gggageetet teettggegg gattetegee 360
ttiggtitgg gettetetga giteeteetg giteteeagaa eeteeageet eactetetee 420
attgeeggea tittaagga agtetgeact tigetgtigg eageteatet getgggegat 480
cagateagee teetgaactg getgggette geeetetgee tetegggaat ateeeteea 540
gitegeetea aageeetgea tieeagaggt aaceeagagt eeetteeaga ageetetgtt 600
tietgtiett eteeetgtga etettag

<210> 43

15 <211> 1221

<212> DNA

<213> Homo sapiens

<400> 43

atggcggcag gcgccgggc cgggtccgcg ccgcgctggc tgagggcgct gagcgagccg 60 ctgagcgcgg cgcagctgcg gcgactggag gagcaccgct acagcgcggc gggcgtctcg 120 ctgctcgagc cgccgctgca gctctactgg acctggctgc tccagtggat cccgctctgg 180 atggcccca actccatcac cctgctgggg ctcgccgtca acgtggtcac cacgctcgtg 240 ctcatctcct actgtccac ggccaccgaa gaggcaccat actggacata ccttttatgt 300 gcactgggac tttttattta ccagtcactg gatgctattg atgggaaaca agccagaaga 360 acaaactctt gttcccttt aggggagctc tttgaccatg gctgtgactc tctttccaca 420

gtatttatgg cagtgggagc ttcaattgcc gctcgcttag gaacttatcc tgactggttt 480 tttttctgct cttttattgg gatgtttgtg ttttattgcg ctcattggca gacttatgtt 540 tcaggcatgt tgagatttgg aaaagtggat gtaactgaaa ttcagatagc tttagtgatt 600 gtctttgtgt tgtctgcatt tggaggagca acaatgtggg actatacgat tcctattcta 660 5 gaaataaaat tgaagatcct tccagttctt ggatttctag gtggagtaat attttcctgt 720 tcaaattatt tccatgttat cctccatggt ggtgttggca agaatggatc cactatagca 780 ggcaccagtg tcttgtcacc tggactccac ataggactaa ttattatact ggcaataatg 840 atctataaaa agtcagcaac tgatgtgttt gaaaagcatc cttgtcttta tatcctaatg 900 tttggatgtg tctttgctaa agtctcacaa aaattagtgg tagctcacat gaccaaaagt 960 10 gaactatate tteaagacae tgtettttg gggccaggte ttttgttttt agaccagtae 1020 tttaataact ttatagacga atatgttgtt ctatggatgg caatggtgat ttcttcattt 1080 gatatggtga tatactttag tgctttgtgc ctgcaaattt caagacacct tcatctaaat 1140 atattcaaga ctgcatgtca tcaagcacct gaacaggttc aagttctttc ttcaaagagt 1200 catcagaata acatggattg a 1221

15

25

<210> 44

<211> 1857

<212> DNA

<213> Homo sapiens

20 <400> 44

atggaggtga agaactttgc agtttgggat tatgttgtat ttgcagccct ctttttcatt 60 tcctctggaa ttggggtgtt ctttgccatt aaggaggaa aaaaggcaac ttcccgagag 120 ttcctggttg ggggaaggca aatgagcttt ggccctgtcg gcttgtctct gacagccagc 180 ttcatgtcag ctgtcacggt cctggggacc ccttctgaag tctaccgctt tggggcatcc 240 ttcctagtct tcttcattgc ttacctattt gtcatcctct taacatcaga gctctttctc 300

5

10

15

20

25

cctqtqttct acagatctqq tatcaccagc acttatgagt acttacaact acgattcaac 360 aaaccagttc gctatgctgc cacagtcatc tacattgtac agacgattct ctacacagga 420 qtqqtqqtqt atqctcctqc cctggcactc aatcaaqtqa ctqqqtttga tctctggggc 480 tctgtgtttg caacaggaat tgtttgcaca ttctactgta ccctgggagg attaaaagca 540 qtqqtqtqqa caqatgcatt tcaqatggtt gtcatgattg tgggcttctt aacggttctc 600 attcaaggat caactcatgc tgggggattc cacaatgtat tagagcaatc aacaaatgga 660 totogactac atatatttqa ctttqatqta qatoctotoa qqoqacacac tttttqqact 720 atcacagtgg gaggaacttt tacttggctc ggaatctatg gggtcaatca atcaactatt 780 cagcgatgca tctcttgcaa aacagaaaag catgctaagc ttgccttgta ttttaacttg 840 ctgggtetet ggateattet ggtgtgtget gtettetetg gettaateat gtacteteac 900 tttaaagact gtgacccttg gacttctggc atcatctcag caccagacca gctgatgccg 960 tactttgtca tggagatatt tgccacaatg ccaggactgc caggactttt tgtggcttgt 1020 gccttcagtg gaactctgag caccgtggct tccagcatca atgccttggc aacagtgacc 1080 tttgaggatt ttgtcaagag ctgttttcct catctctccg acaagctgag cacctggatc 1140 agtaaaggct tatgtctctt atttggcgtg atgtgtacct ctatggctgt ggctgcatct 1200 gtcatgggag gtgttgtgca ggcttccctc agcattcacg gcatgtgtgg aggaccaatg 1260 ctgggcttat tctccctggg aatcgtgttc ccttttgtga actggaaggg tgcactagga 1320 ggtcttctta ctggaatcac cttgtcattt tgggtggcca ttggggcctt catttaccct 1380 gtgacagcaa cagggcctcc agtactatcc agcagacctg gaatagctga tacctggtac 1500 tegatetect acctttacta cagtgeagtg ggetgettag gatgeattgt tgetggagta 1560 atcatcagcc tcataacagg tcgccaaaga ggtgaggata ttcaaccact gttaattaga 1620 ccagtttgta atttattttg cttttggtct aagaagtaca aaacactatg ctggtgcgga 1680 gttcagcatg acagtgggac agagcaggaa aaccttgaga atggcagtgc ccggaaacag 1740 ggggctgaat ctgtcttaca gaacggactc agaagagaaa gcctggtaca tgttccaggc 1800

99/346

tatgatccta aggacaaaag ctacaacaat atggcatttg agactaccca tttctaa 1857

<210> 45

<211> 627

5 <212> DNA

<213> Homo sapiens

<400> 45

atgggactcg gcgcgcagg tgcttgggcc gcgctgctcc tggggacgct gcaggtgcta 60
gcgctgctgg gggccgcca tgaaagcgca gccatggcgg catctgcaaa catagagaat 120
tctgggcttc cacacaactc cagtgctaac tcaacagaga ctctccaaca tgtgccttct 180
gaccatacaa atgaaacttc caacagtact gtgaaaccac caacttcagt tgcctcagac 240
tccagtaata caacggtcac caccatgaaa cctacagcgg catctaatac aacaacacca 300
gggatggtct caacaaatat gacttctacc accttaaagt ctacacccaa aacaacaca 360
gtttcacaga acacatctca gatatcaaca tccacaatga ccgtaaccca caatagttca 420
gtgacatctg ctgcttcatc agtaacaatc acaacaacta tgcattctga agcaaagaaa 480
ggatcaaaat ttgatactgg gagctttgtt ggtggtattg tattaacgct gggagttta 540
tctattcttt acattggatg caaaatgtat tactcaagaa gaggcattcg gtatcgaacc 600
ataggatgaac atgatgccat catttaa

20 <210> 46

<211> 1509

<212> DNA

<213> Homo sapiens

<400> 46

atgtcgctcg tgctgctaag cctggccgcg ctgtgcagga gcgccgtacc ccgagagccg 60

5

10

15

20

25

100/346

accgttcaat gtggctctga aactgggcca tctccagagt ggatgctaca acatgatcta 120 atcccgggag acttgaggga cctccgagta gaacctgtta caactagtgt tgcaacaggg 180 gactaticaa titigatgaa tgtaagcigg qiacteeqqq caqaiqeeaq cateeqeiig 240 ttgaaggcca ccaagatttg tgtgacgggc aaaagcaact tccagtccta cagctgtgtg 300 ttttcctaca tcggcttccc tgtagagctg aacacagtct atttcattgg ggcccataat 420 attoctaatg caaatatgaa tgaagatggc cottocatgt ctgtgaattt cacctcacca 480 ggctgcctag accacataat gaaatataaa aaaaagtgtg tcaaggccgg aagcctgtgg 540 gatccgaaca tcactgcttg taagaagaat gaggagacag tagaagtgaa cttcacaacc 600 actoccotgg gaaacagata catggotott atocaacaca gcactatoat cgggttttot 660 caggtgtttg agccacacca gaagaaacaa acgcgagctt cagtggtgat tccagtgact 720 ggggatagtg aaggtgctac ggtgcagctg actccatatt ttcctacttg tggcagcgac 780 tgcatccgac ataaaggaac agttgtgctc tgcccacaaa caggcgtccc tttccctctg 840 gataacaaca aaagcaagcc gggaggctgg ctgcctctcc tcctgctgtc tctgctggtg 900 gccacatggg tgctggtggc agggatctat ctaatgtgga ggcacgaaag gatcaagaag 960 acttcctttt ctaccaccac actactgccc cccattaagg ttcttgtggt ttacccatct 1020 gaaatatgtt tccatcacac aatttgttac ttcactgaat ttcttcaaaa ccattgcaga 1080 agtgaggtca tccttgaaaa gtggcagaaa aagaaaatag cagagatggg tccagtgcag 1140 tggcttgcca ctcaaaagaa ggcagcagac aaagtcgtct tccttctttc caatgacgtc 1200 aacagtgtgt gcgatggtac ctgtggcaag agcgagggca gtcccagtga gaactctcaa 1260 gacctettee ceettgeett taacetttte tgeagtgate taagaageea gatteatetg 1320 cacaaatacg tggtggtcta ctttagagag attgatacaa aagacgatta caatgctctc 1380 agtgtctgcc ccaagtacca cctcatgaag gatgccactg ctttctgtgc agaacttctc 1440 catgtcaagc agcaggtgtc agcaggaaaa agatcacaag cctgccacga tggctgctgc 1500 tccttgtag. 1509

101/346

<210> 47

<211> 1011

<212> DNA

5 <213> Homo sapiens

<400> 47

10

15

20

atgagggccc cgtccatgga ccgcgcggcc gtggcgaggg tgggcgcggt agcgagcgcc 60 agcgtgtgcg ccctggtggc gggggtggtg ctggctcagt acatattcac cttgaagagg 120 aagacggggc ggaagaccaa gatcatcgag atgatgccag aattccagaa aagttcagtt 180 cgaatcaaga accctacaag agtagaagaa attatctgtg gtcttatcaa aggaggagct 240 gccaaacttc agataataac ggactttgat atgacactca gtagattttc atataaaggg 300 aaaagatgcc caacatgtca taatatcatt gacaactgta agctggttac agatgaatgt 360 agaaaaaagt tattgcaact aaaggaaaaa tattacgcta ttgaagttga tcctgttctt 420 actgtagaag agaagtaccc ttatatggtg gaatggtata ctaaatcaca tggtttgctt 480 gttcagcaag ctttaccaaa agctaaactt aaagaaattg tggcagaatc tgacgttatg 540 ctcaaagaag gatatgagaa tttctttgat aagctccaac aacatagcat ccccgtgttc 600 atattttcgg ctggaatcgg cgatgtacta gaggaagtta ttcgtcaagc tggtgtttat 660 catcccaatg tcaaagttgt gtccaatttt atggattttg atgaaactgg ggtgctcaaa 720 ggatttaaag gagaactaat tcatgtattt aacaaacatg atggtgcctt gaggaataca 780 gaatatttca atcaactaaa agacaatagt aacataattc ttctgggaga ctcccaagga 840 gacttaagaa tggcagatgg agtggccaat gttgagcaca ttctgaaaat tggatatcta 900 aatgatagag tggatgagct tttagaaaag tacatggact cttatgatat tgttttagta 960 caagatgaat cattagaagt agccaactct attttacaga agattctata a 1011

25 <210> 48

102/346

<211> 1023

<212> DNA

<213> Homo sapiens

<400> 48

5 atggagccgg gcaggaccca gataaagctt gaccccaggt acacagcaga tcttctqqaq 60 gtgctgaaga ccaattacgg catcccctcc gcctgcttct ctcagcctcc cacagcagcc 120 caactectga gageeetggg ceetgtggaa ettgeeetea etageateet gaeettgetg 180 gcgctgggct ccattgccat cttcctggag gatgccgtct acctgtacaa qaacaccctt 240 tgccccatca agaggcggac tctgctctgg aagagetcgg cacccacggt ggtgtctgtg 300 10 ctgtgctgct ttggtctctg gatccctcgt tccctggtgc tggtggaaat gaccatcacc 360 tegttttatg cegtgtgett ttacetgetg atgetggtea tggtggaagg ctttgggggg 420 aaggaggcag tgctgaggac gctgagggac accccgatga tggtccacac aggcccctgc 480 tgctgctgct gcccctgctg tccacggctg ctgctcacca ggaagaagct tcagctgctg 540 atgttgggcc ctttccaata cgccttcttg aagataacgc tgaccctggt gggcctgttt 600 15 ctcatccccg acggcatcta tgacccagca gacatttctg aggggagcac agctctatgg 660 atcaacactt teettggegt gtecacactg etggetetet ggaecetggg catcatttee 720 cgtcaagcca ggctacacct gggtgagcag aacatgggag ccaaatttgc tctgttccag 780 gtteteetea teetgaetge eetacageee teeatettet eagtettgge caacggtggg 840 cagattgctt gttcgcctcc ctattcctct aaaaccaggt ctcaagtgat gaattgccac 900 20 ctcctcatac tggagacttt tctaatgact gtgctgacac gaatgtacta ccgaaggaaa 960 gaccacaagg ttgggtatga aactttctct tctccagacc tggacttgaa cctcaaagcc 1020 taa 1023

<210> 49

25 <211> 672

103/346

<212> DNA

<213> Homo sapiens

<400> 49

5

10

15

25

atgetttgga ggeageteat etattggeaa etgetggett tgtttteet eeetttttge 60
ctgtgteaag atgaatacat ggaggtgage ggaagaacta ataaagtggt ggeaagaata 120
gtgeaaagee aceageagae tggeegtage ggeteeagga gggagaaagt gagagagegg 180
agceateeta aaactgggae tgtggataat aacaetteta cagacetaaa ateeetgaga 240
ccagatgage tacegeacee egaggtagat gaeetageee agateaceae attetgggge 300
cagteteeae aaaceggagg actaeeeea gaetgeagta agtgttgtea tggagaetae 360
agetttegag getaeeaagg eeeeeetggg eeaeegggee eteetggeat teeaggaaae 420
catggaaaca atggeaacaa tggageeaet ggteatgaag gageeaaagg tgagaaggge 480
gaeaaaggtg acetggggee tegaggggag egggggeage atggeeeaa aggagagaag 540
ggetaeeegg ggatteeaee agaaetteag attgeattea tggettetet ggeaaceeae 600
tteageaate agaacagtgg gattatette ageagtgttg agaecaacat tggaaactte 660
ttgatgteat ga

<210> 50

<211> 930

<212> DNA

20 <213> Homo sapiens

<400> 50

atgctactc tgagtgttat aggttcaagt tcacttattg cctatgctgt attccataat 60 atacagaaat ctccagagat aagaccactt ttttatctga gcttctgtga cctgctcctg 120 ggactttgct ggctcacgga gacacttctc tatggagctt cagtagcaaa taaggacatc 180 atctgctata acctacaage agttggacag atattctaca tttcctcatt tctctacacc 240

104/346

gtcaattaca totggtatt gtacacagag otgagatga aacacaccca gagtggacag 300
agcacatoto cactggtgat agattatact tgtcgagttt gtcaaatggo otttgtttto 360
toaaggtgta tottgatgca otcaccacca toagcoatgg otgaacttoo acottotgco 420
aacacatotg totgtagcac actttattt tatggtatog occattttoot gggcagottt 480
gtactcagco toottaccat tatggtotta ottatoogag occagacatt gtataagaag 540
tttgtgaagt caactggott totggggagt gaacagtggg oagtgattoa oattgtggac 600
caacgggtgo gottotacco agtggootto tittgctgot ggggoccago tgtcattota 660
atgatoataa agotgactaa gocacaggac accaagotto acatggoot ttatgttoto 720
caggototaa oggoaacato toagggtota otcaactgtg gagtatatgg otggacgag 780
toacaaattoo accaactaaa goaggaggot oggogtgatg oagataccca gacaccatta 840
ttatgotoca gtacttotac oatttttga

<210> 51

15 <211> 1617

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

20 <222> (255)..(1262)

<400> 51

25

cacggcgccc agggtacccc cgccgctgtc tgcctgtct cctccattac cgcgcaggct 60
tggtcaccgc attaaggcat tcccgctctc cgcggaactg ctctgccgtc tcggcggtga 120
aagtgtgaga gggtccgtag ttgggtcaac tttgactcct ctcgcctgcc cggatcctta 180
agggcctcct cgtcctccg gtctccggtc gctgccgggt ctgtgcgccg gtccgcgccc 240

	gccc	tcgc	ctc t	gcc	atg	ggc	gct	tcc	agc	tcc	tcc	gcg	ctg	gcc	cgc	ctc	290
					Met	Gly	Ala	Ser	Ser	Ser	Ser	Ala	Leu	Ala	Arg	Leu	•
					1				5				•	10			
	ggc	ctc	cca	gcc	cgg	ccc	tgg	ccc	agg	tgg	ctc	ggg	gtc	gcc	gcg	cta	338
5	Gly	Lėu	Pro	Ala	Arg	Pro	Trp	Pro	Arg	Trp	Leu	Gly	Val	Ala	Ala	Leu	
			15					20					25				
	gga	ctg	gcc	gcc	gtg	gcc	cţg	ggg	act	gtc	gcc	tgg	cgc	cgc	gca	tgg	386
	Gly	Leu	Ala	Ala	Val	Ala	Leu	Gly	Thr	Val	Ala	Trp	Arg	Arg	Ala	Trp	
		30	1				35					40	,				
10	ccc	agg	cgg	cgc	cgg	cgg	ctg	cag	cag	gtg	ggc	acc	gtg	gcg	aag	ctc	434
	Pro	Arg	Arg	Arg	Arg	Arg	Leu	Gln	Gln	Val	Gly	Thr	Val	Ala	Lys	Leu	
	45					50					55			1		60	
	tgg	atc	tac	ccg	gtg	aaa	tcc	tgc	aaa	ggg	gtg	ccg	gtg	agc	gag	gct	482
	Trp	Ile	Tyr	Pro	Val	Lys	Ser	Cys	Lys	Gly	Val	Pro	Val	Ser	Glu	Ala	
15					65					70		•			75		
	gag	tgc	acg	gcc	atg	ggg	ctg	cgc	agc	ggc	aac	ctg	cgg	gac	agg	ttt	530
	Glu	Cys	Thr	Ala	Met	Gly	Leu	Arg	Ser	Gly	Asn	Leu	Arg	Asp	Arg	Phe	
				80		•			85					90			
	tgg	ctg	gtg	att	aag	gaa	gat	gga	cac	atg	gtc	act	gcc	cga	cag	gag	578
20	Trp	Leu	Val	Ile	Lys	Glu	Asp	Gly	His	Met	Val	Thr	Ala	Arg	Gln	Glu	
•			95					100					105				
	cct	cgc	ctc	gtg	ctc	atc	tcc	ato	att	tat	gag	aat	aac	tgc	ctg	atc	626
	Pro	Arg	Leu	Val	Leu	Ile	Ser	Ile	Ile	Tyr	Glu	Așn	Asn	Cys	Leu	Ile	
		110					115					120					
25	ttc	agg	gct	сса	gac	atg	gac	cag	ctg	gtt	ttg	cct	agc	aag	cag	cct	674

	Phe	Arg	Ala	Pro	Asp	Met	Asp	Gln	Leu	Val	Leu	Pro	Ser	Lys	Gln	Pro	
	125					130					135					140	
	tcc	tca	aac	aaa	ctc	cac	aac	tgc	agg	ata	ttt	ggc	ctt	gac	att	aaa	722
	Ser	Ser	Asn	Lys	Leu	His	Asn	Cys	Arg	Ile	Phe	Gly	Leu	Asp	Ile	Lys	
5					145					150					155		
	ggc	aga	gac	tgt	ggc	aat	gag	gca	gct	aag	tgg	ttc	acc	aac	ttc	ttg	770
	Gly	Arg	Asp	Cys	Gly	Asn	Glu	Ala	Ala	Lys	Trp	Phe	Thr	Asn	Phe	Leu	
			٠	160					165					170			
	aaa	act	gaa	gcg	tat	aga	ttg	gtt	caa	ttt	gag	aca	aac	atg	aag	gga	818
10	Lys	Thr	Glu	Ala	Tyr	Arg	Leu	Val	Gln	Phe	Glu	Thr	Asn	Met	Lys	Gly	
			175					180			,		185				
	aga	aca	tca	aga	aaa	ctt	ctc	ccc	act	ctt	gat	cag	aat	ttc	cag	gtg	866
	Arg	Thr	Ser	Arg	Lys	Leu	Leu	Pro	Thr	Leu	Asp	Gln	Asn	Phe	Gln	Val	
		190					195					200					
15	gcc	tac	cca	gac	tac	tgc	ccg	ctc	ctg	atc	atg	aca	gat	gcc	tcc	ctg	914
•	Ala	Tyr	Pro	Asp	Tyr	Cys	Pro	Leu	Leu	Ile	Met	Thr	Asp	Ala	Ser	Leu	
	205					210	+				215	;				220	
	gta	gat	ttg	aat	acc	agg	atg	gag	aag	aaa	ato	, aaa	atg	gag	aat	ttc	. 962
	Val	Asp	Leu	Asn	Thr	Arg	Met	Glu	Lys	Lys	Met	: Lys	Met	: Glu	. Asn	Phe	
20					225					230					235		
	agg	cca	a aat	: att	gtg	gto	acc	ggc	: tgt	gat	gct	: ttt	gag	g gag	gat	acc	1010
	Arg	Pro	Asr	ıle	val	. Val	Thr	Gly	Cys	asp	Ala	a Phe	e Glu	ı Glu	a Asp	Thr	
				240)				245	5				250)		
	tgg	g gat	gaa	a cto	c cta	att	ggt	agt	gta	gaa	gto	g aaa	a aag	g gta	a atg	gca	1058
25	Trp	Asp	Glu	ı Leı	ı Lev	ı Ile	e Gly	/ Sei	· Va]	. Glu	ı Val	L Lys	. Lys	s Val	L Met	: Ala	

107/346

			255					260					265				
	tgc	ccc	agg	tgt	att	ttg	aca	acg	gtg	gac	cca	gac	act	gga	gtc	ata	1106
	Cys	Pro	Arg	Cys	Ile	Leu	Thr	Thr	Val	Asp	Pro	Asp	Thr	Gly	Val	Ile	`
		270					275					280		,			
5	gac	agg	aaa	cag	cca	ctg	gac	acc,	ctg	aag	agc	tac	cgc	ctg	tgt	gat	1154
	Asp	Arg	Lys	Gln		Leu	Asp	Thr	Leu	Lys	Ser	Tyr	Arg	Leu	Cys	Asp	
	285				O	290					295					300	
	cct	tct	gag	agg	gaa	ttg	tac	aag	ttg	tct	cca	ctt	ttt	ggg	atc	tat	1202
10	Pro	Ser	Glu	Arg	Glu	Leu	Tyr	Lys	Leu	Ser	Pro	Leu	Phe	Gly	Ile	Tyr	
					305					310					315		
	tat	tca	gtg	gaa	aaa	att	gga	agc	ctg	aga	gtt	ggt	gac	cct	gtg	tat	1250
	Tyr	Ser	Val	Glu	Lys	Ile	Gly	Ser	Leu	Arg	Val	Gly	Asp	Pro	Val	Tyr	
				320					325					330			
	cgg	atg	gtg	tagi	gato	gag t	tgat	ggato	cc ad	ctag	ggtga	a tai	tggc	ttca			1299
15	Arg	Met	Val														
		•	335						•								
,	gcaa	acca	gga (gggat	tgad	ct ga	agato	ctta	a caa	acago	cagc	aac	gata	cat o	cagca	aaatcc	1359
20	ttattatcca gccttcaact atctttaccc tggaaaacaa tctcgatttt tgacttttca 1														1419		
	aagt	tgt	gta 1	tgct	ccago	gt ta	aatgo	caag	g aaa	agtai	ttag	agg	gggg	aat a	atgaa	agtat	1479
	atatataaat tttaggtact gaaggcttta aaaataatta agatcatcaa aaatgctatt 1														1539		
	ttga	aatgi	ta 1	cat	ggcta	at ta	acact	ttt	a cti	tcct	gact	ttaa	atat	tga 1	tgaat	caaagc	1599
	aagt	ttaa	atg a	aatca	aact		٠					•				•	1617
										•							

<210> 52

25 <211> 1749

108/346

<212> DNA <213> Homo sapiens <220> <221> CDS 5 <222> (159)..(785) <400> 52 gcacttccgg tggggagatt ccggcctgga gctcccaggg ccgagcagac cttgggacct 60 gtgagcgctg catccaatta accatgggaa gggtcagcac cagccaccag ccccttaggt 120 gaggactete cetggggete tgetgatggt teegaate atg gag etg ege geg gea 176 10 Met Glu Leu Arg Ala Ala 1 5 ctg gtc ctg gtg gtc ctc ctc atc gcc ggg ggt ctc ttc atg ttc acc Leu Val Leu Val Leu Leu Ile Ala Gly Gly Leu Phe Met Phe Thr 10 15 20 15 tac aag tcc aca cag ttc aac gtg gag ggc ttc gcc ttg gtg ctg ggg 272 Tyr Lys Ser Thr Gln Phe Asn Val Glu Gly Phe Ala Leu Val Leu Gly 25 30 35 gcc tcg ttc atc ggt ggc att cgc tgg acc ctc acc cag atg ctc ctg 320 Ala Ser Phe Ile Gly Gly Ile Arg Trp Thr Leu Thr Gln Met Leu Leu 20 40 45 50 cag aag get gaa ete gge ete eag aat eee ate gae ace atg tte eac Gln Lys Ala Glu Leu Gly Leu Gln Asn Pro Ile Asp Thr Met Phe His 55 60 65 70 ctg cag cca ctc atg ttc ctg ggg ctc ttc cct ctc ttt gct gta ttt 25 Leu Gln Pro Leu Met Phe Leu Gly Leu Phe Pro Leu Phe Ala Val Phe

					75					80					85		
	gaa	ggt	ctc	cat	ttg	tcc	aca	tct	gag	aaa	atc	ttc	cgt	ttc	cag	gac	464
	Glu	Gly	Leu	His	Leu	Ser	Thr	Ser	Glu	Lys	Ile	Phe	Arg	Phe	Gln	Asp .	
				90					95					100			
5	aca	ggg	ctg	ctc	ctg	cgg	gta	ctt	ggg	agc	ctc	ttc	ctt	ggc	ggg	att	512
	Thr	Gly	Leu	Leu	Leu	Arg	Val	Leu	Gly	Ser	Leu	Phe	Leu	Gly	Gly	Ile	
			105					110					115				
	ctc	gcc	ttt	ggt	ttg	ggc	ttc	tct	gag	ttc	ctc	ctg	gtc	tcc	aga	acc	560
	Leu	Ala	Phe	Gly	Leu	Gly	Phe	Ser	Glu	Phe	Leu	Leu	Val	Ser	Arg	Thr	
10		120					125					130					
	tcc	agc	ctc	act	ctc	tcc	att	gcc	ggc	att	ttt	aag	gaa	gtc	tgc	act	608
	Ser	Ser	Leu	Thr	Leu	Ser	Ile	Ala	Gly	Ile	Phe	Lys	Glu	Val	Cys	Thr	
	135					140					145		•			150	
	ttg	ctg	ttg	gca	gct	cat	ctg	ctg	ggc	gat	cag	atc	agc	ctc	ctg	aac	656
15	Leu	Leu	Leu	Ala	Ala	His	Leu	Leu	Gly	Asp	Gln	Ile	Ser	Leu	Leu	Asn	
					155					160		٠			165		
	tgg	ctg	ggc	ttc	gcc	ctc	tgc	ctc	tcg	gga	ata	tco	ctc	cac	gtt	gcc	704
	Trp	Leu	Gly	Phe	Ala	Leu	Cys	Leu	Ser	Gly	lle	Ser	Leu	His	: Val	Ala	
,				170	•				175					180	l		
20	ctc	aaa	gcc	ctg	cat	tcc	aga	ggt	aac	cca	gag	tec	ctt	cca	gaa	gcc	752
	Leu	Lys	Ala	Leu	His	s Ser	Arg	Gly	' Asn	Pro	Glu	Ser	Leu	Pro	Glu	ı Ala	
			185					190	•				195	1			
		_		: tgt								rtgat	tct	gato	gcago	jaa	802
	Ser	· Val	Phe	Cys	Ser	Ser	Pro	Cys	asp	Ser	•						
25		200)				205	,									

	gtgtgcccgg	tggctctgct	gccgtcactc	ctctaggaag	atgtgggggt	catctccaga	862
	gtgggtgggt	ggggcctggg	tgactcagca	cacatgcaaa	tcagagcaaa	ccaagaaaac	922
	cacgactggg	cctgtaactg	tggtctctct	ctatcccaag	gtgatggtgg	ccccaaggcc	982
•	ttgaaggggc	tgggctccag	ccccgacctg	gagctgctgc	tccggagcag	ccagcgggag	1042
5	gaaggtgaca	atgaggagga	ggagtacttt	gtggcccagg	ggcagcagtg	accagccagg	1102
	gcaaatggct	tagaagcagg	ccactcccca	gcctgctgcc	agcactcact	gtgctcaagc	1162
	cgccagggct	catcatggta	gctgggagct	gtggacggga'	gtcaccaggt	ggtggggcca	1222
	agccagggac	tcatgacttt	tgcccctccc	ttcagagcct	ggtcacacaa	ggggcgagca	1282
	ccaggccagc	ctgggactgg	ccagagctgg	gcccaagctg	cgctggaatc	gcagcaggag	1342
10	aggggagtgg	gctggttctt	cccaccactt	cccaggctct	gacagccgag	actcatttcc	1402
	aaggcacagc	agctttctaa	agggactgag	tttggactgg	gttttggacc	tccaggggct	1462
	ggagcttcat	cacctgggca	gtgtcttttc	tcagagagca	ggtttcttta	tagtttggaa	1522
	ataaatġgtt	cacggtccac	tggccgcctt	gtgttgctgg	agacgtgggg	gcagggaggg	1582
	gacagtgtgg	gcctggcctc	tcctttcctt	tccctgcctg	gagccttctt	caaatgtctg	1642
15	gtcttaagcc	aggcctcctt	cattttctcg	ctcctgttag	aacaccagtc	ccctccccag	1702
	tggggcccca	ctgcacctgc	tggcaggaaa	taaatgaatg	tttactg		1749

<210> 53

<211> 1402

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (60)..(1280)

25 <400> 53

	tgc	cccca	agc c	gccag	ggcgc	g gg	gctgo	gcto	ggt :	ggcg	ggcg	gcg	gggc	cct o	caggo	eggee	59
	atg	gcg	gca	ggc	gcc	ggg	gcc	ggg	tcc	gcg	ccg	cġc	tgg	ctg	agg	gcg	107
	Met	Ala	Ala	Gly	Ala	Gly	Ala	Gly	Ser	Ala	Pro	Arg	Trp	Leu	Arg	Ala	
	1				5				٠	10		,			15		
5	ctg	agc	gag	ccg	ctg	agc	gcg	gcg	cag	ctg	cgg	cga	ctg	gag	gag	cac	155
	Leu	Ser	Glu	Pro	Leu	Ser	Ala	Ala	Gln	Leu	Arg	Arg	Leu	Glu	Glu	His	
				20					25					30			
	cgc	tac	agc	gcg	gcg	ggc	gtc	tcg	ctg	ctc	gag	ccg	ccg	ctg	cag	ctc	203
	Arg	Tyr	Ser	Ala	Ala	Gly	Val	Ser	Leu	Leu	Glu	Pro	Pro	Leu	Gln	Leu	
10			35		١			40					45				
	tac	tgg	acc	tgg	ctg	ctc	cag	tgg	atc	ccg	ctc	tgg	atg	gcc	ccc	aac	251
	Tyr	Trp	Thr	Trp	Leu	Leu	Gln	Trp	Ile	Pro	Leu	Trp	Met	Ala	Pro	Asn	
		50					55					60					
	tcc	atc	acc	ctg	ctg	ggg	ctc	gcc	gtc	aac	gtg	gtc	acc	acg	ctc	gtg	299
15	Ser	Ile	Thr	Leu	Leu	Gly	Leu	Ala	Val	Asn	Val	Val	Thr	Thr	Leu	Val	
	65					70					75					80	
	ctc	atc	tcc	tac	tgt	ccc	acg	gcc	acc	gaa	gag	gca	cca	tac	tgg	aca	347
	Leu	Ile	Ser	Tyr	Cys	Pro	Thr	Ala	Thr	Glu	Glu	Ala	Pro	Tyr	Trp	Thr	
					85				•	90				•	95		
20	tac	ctt	tta	tgt	gca	ctg	gga	ctt	ttt	att	tac	cag	tca	ctg	gat	gct	395
	Tyr	Leu	Leu	Cys	Ala	Leu	Gly	Leu	Phe	Ile	Tyr	Gln	Ser	Leu	Asp	Ala	
	•			100					105					110			
	att	gat	ggg	aaa	caa	gcc	aga	aga	aca	aac	tct	tgt	tcc	cct	tta	ggg	443
	Ile	Asp	Gly	Lys	Gln	Ala	Arg	Arg	Thr	Asn	Ser	Cys	Ser	Pro	Leu	Gly	
25			115					120					125				

	gag	ctc	ttt	gac	cat	ggc	tgt	gac	tct	ctt	tcc	aca	gta	ttt	atg	gca	491
	Glu	Leu	Phe	Asp	His	Gly	Cys	Asp	Ser	Leu	Ser	Thr	Val	Phe	Met	Ala	
		130					135					140		,			
	gtg	gga	gct	tca	att	gcc	gct	cgc	tta	gga	act	tat	cct	gac	tgg	ttt	539
5	Val	Gly	Ala	Ser	Ile	Ala	Ala	Arg	Leu	Gly	Thr	Tyr	Pro	Asp	Trp	Phe	
	145					150					155					160	
	ttt	ttc	tgc	tct	ttt	att	ggg	atg	ttt	gtg	ttt	tat	tgc	gct	cat	tgg	587
	Phe	Phe	Cys	Ser	Phe	Ile	Gly	Met	Phe	Val	Phe	Tyr	Cys	Ala	His	Trp	
					165					170		•			175		
10	cag	act	tat	gtt	tca	ggc	atg	ttg	aga	ttt	gga	aaa	gtg	gat	gta	act	635
•	Gln	Thr	Tyr	Val	Ser	Gly	Met	Leu	Arg	Phe	Gly	Lys	Val	Asp	Val	Thr	
				180					185			v		190			
	gaa	att	cag	ata	gct	tta	gtg	att	gtc	ttt	gtg	ttg	tct	gca	ttt	gga	683
	Glu	Ile	Gln	Ile	Ala	Leu	Val	Ile	Val	Phe	Val	Leu	Ser	Ala	Phe	Gly	
15		•	195	\				200					205				
	gga -	gca	aca	atg	tgg	gac	tat	acg	att	cct	att	cta	gaa	ata	aaa	ttg	731
	Gly.	Ala	Thr	Met	Trp	Asp	Tyr	Thr	Ile	Pro	Ile	Leu	Glu	Ile	Lys	Leu	
		210					215					220					
	aag	atc	ctt	cca	gtt	ctt	gga	ttt	cta	ggt	gga	gta	ata	ttt	tcc	tgt .	779
20	Lys	Ile	Leu	Pro	Val	Leu	Gly	Phe	Leu	Gly	Gly	Val	Ile	Phe	Ser	Cys	
	225					230					235					240	
	tca	aat	tat	ttc	cat	gtt	atc	ctc	cat	ggt	ggt	gtt	ggc	aag	aat	gga	827
	Ser	Asn	Tyr	Phe	His	Val	Ile	Leu	His	Gly	Gly	Val	Gly	Lys	Asn	Gly	
					245					250					255 _.		
25	tcc	act	ata	gca	ggc	acc	agt	gtc	ttg	tca	cct	gga	ctc	cac	ata	qqa	875

	Ser	Thr	Ile	Ala	Gly	Thr	Ser	Val	Leu	Ser	Pro	Gly	Leu	His	Ile	Gly	
				260					265				•	270			
	cta	att	att	ata	ctg	gca	ata	atg	atc	tat	aaa	aag	tca	gca	act	gat	923
	Leu	Ile	Ile	Ile	Leu	Ala	Ile	Met	Ile	Tyr	Lys	Lys	Ser	Ala	Thr	Asp	
5			275					280					285				
	gtg	ttt	gaa	aag	cat	cct	tgt	ctt	tat	atc	cta	atg	ttt	gga	tgt	gtc	971
	Val	Phe	Glu	Lys	His	Pro	Cys	Leu	Tyr	Ile	Leu	Met	Phe	Gly	Cys	Val	
		290					295					300					
	ttt	gct	aaa	gtc	tca	caa	aaa	tta	gtg	gta	gct	cac	atg	acc	aaa	agt	1019
10	Phe	Ala	Lys	Val	Ser	Gln	Lys	Leu	Val	Val	Ala	His	Met	Thr	Lys	Ser	
	305					310					315					320	
	gaa	cta	tat	ctt	caa	gac	act	gtc	ttt	ttg	ggg	cca	ggt	ctt	ttg	ttt	1067
	Glu	Leu	Tyr	Leu	Gln	Asp	Thr	Val	Phe	Leu	Gly	Pro	Gly	Leu	Leu	Phe .	•
					325					330					335		
15	tta	gac	cag	tac	ttt	aat	aac	ttt	ata	gac	gaa	tat	gtt	gtt	cta	tgg	1115
	Leu	Asp	Gln	Tyr	Phe	Asn	Asn	Phe	Ile	Asp	Glu	Tyr	Val	Val	Leu	Trp	
				340					345					350			
	atg	gca	atg	gtg	att	tct	tca	ttt	gat	. atg	gtg	, ata	tac	ttt	agt	gct	1163
	Met	Ala	Met	. Val	Ile	Ser	Ser	Phe	. Asp	Met	. Val	. Ile	Туг	Phe	Ser	Ala	•
20			355	•				360	}				365	•			
	ttg	tgc	: ctg	caa	att	tca	aga	cac	ctt	: cat	cta	a aat	ata	tto	aag	g act	1211
	Leu	Cys	Leu	Gln	Ile	Ser	Arg	, His	Let	ı His	Leu	ı Asn	Ile	e Phe	Lys	Thr	
		370)				375	5				380)				
•	gca	tgt	: cat	caa	gca	cct	gaa	a cag	g gti	caa	a gti	ctt	tct	tca	a aag	g agt	1259
25	Ala	Cys	Hi:	Glr	ı Ala	Pro	Glu	ı Glı	ı Val	L Glr	ı Va.	L Lev	ı Sei	s Sei	Lys	s Ser	

114/346

385 390 395 400

cat cag aat aac atg gat tgaagagact tccgaacact tgctatctct 1307
His Gln Asn Asn Met Asp

405

5 tgctgctgct gtttcatgga aggagatatt aaacatttgt ttaattttta tttaagtgtt 1367 atacctattt cagcaaataa aatatttcat tgctt 1402

<210> 54

<211> 2474

10 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (345)..(2201)

15 <400> 54

20

tccacccca gtggttatta atttcagaac acatctgaat tccttctctg tggcatatgc 60
tttaggagag gagcagacag ctcttagcta gggtcagatt tcaaattctc atctcttggt 120
gccaatacca ccaccagatt cttctttgaa gtcaactttt gagatcttca ctaagtacac 180
gttggtgtct gaagattcac acgagtgcct ctggtaatca ttttcttcag ggaatcacag 240
tctctcctct cagcaaagca tccactgtac tgaactttgc ttttggaaac atcttcttcc 300
tgagacctcg ttgaaagaaa ctctctggtg tcatactttc caat atg gag gtg aag 356

1

Met Glu Val Lys

aac ttt gca gtt tgg gat tat gtt gta ttt gca gcc ctc ttt ttc att 404

25 Asn Phe Ala Val Trp Asp Tyr Val Val Phe Ala Ala Leu Phe Phe Ile

	5					10					15					20	
	tcc	tct	gga	att	ggg	gtg	ttc	ttt	gcc	att	aag	gag	aga	aaa	aag	gca	452
	Ser	Ser	Gly	Ile	Gly	Val	Phe	Phe	Ala	Ile	Lys	Glu	Arg	Гуs	Lys	Ala	
					25					30					35		
5	act	tcc	cga	gag	ttc	ctg	gtt	ggg	gga	agg	caa	atg	agc	ttt	ggc	cct	500
	Thr	Ser	Arg	Glu	Phe	Leu	Val	Gly	Gly	Arg	Gln	Met	Ser	Phe	Gly	Pro	
		•		40					45					50			
	gtc	ggc	ttg	tct	ctg	ạca	gcc	agc	ttc	atg	tca	gct	gtc	acg	gtc	ctg	548
	Val	Gly	Leu	Ser	Leu	Thr	Ala	Ser	Phe	Met	Ser	Ala	Val	Thr	Val	Leu	
10			55					60					65				
	ggg	acc	cct	tct	gaa	gtc	tac	cgc	ttt	ggg	gca	tcc	ttc	cta	gtc	ttc	596
•	Gly	Thr	Pro	Ser	Glu	Val	Tyr	Arg	Phe	Gly	Alạ	Ser	Phe	Leu	Val	Phe	
		70					75					80					
	ttc	att	gct	tac	cta	ttt	gtc	atc	ctc	tta	aca	tca	gag	ctc	ttt	ctc	644
15	Phe	Ile	Ala	Tyr	Leu	Phe	Val	Ile	Leu	Leu	Thr	Ser	Glu	Leu	Phe	Leu	
	85					90					95					100	
	cct	gtg	ttc	tac	aga	tct	ggt	atc	acc	agc	act	tat	gag	tac	tta	caa	692
	Pro	Val	Phe	Tyr	Arg	Ser	Gly	Ile	Thr	Ser	Thr	Tyr	Glu	Tyr	Leu	Gln	
					105					110					115		
20 '	cta	cga	ttc	aac	aaa	cca	gtt	cgc	tat	gct	gcc	aca	gtc	atc	tac	att	740
	Leu	Arg	Phe	Asn	Lys	Pro	Val	Arg	Tyr	Ala	Ala	Thr	Val	Ile	Tyr	Ile	
				120					125					130			
	gta	cag	acg	att	ctc	tac	aca	gga	gtg	gtg	gtg	tat	gct	cct	gcc	ctg	788
	Val	Gln	Thr	Ile	Leu	Tyr	Thr	Gly	Val	Val	Val	Tyr	Ala	Pro	Ala	Leu	
25			135					140					145				

	gca	ctc	aat	caa	gtg	act	ggg	ttt	gat	ctc	tgg	ggc	tct	gtg	ttt	gca	836
	Ala	Leu	Asn	Gln	Val	Thr	Gly	Phe	Asp	Leu	Trp	Gly	Ser	Val	Phe	Ala	
		150					155					160					
	aca	gga	att	gtt	tgc	aca	ttc	tac	tgt	acc	ctg	gga	gga	tta	aaa	gca	884
5	Thr	Gly	Ile	Val	Cys	Thr	Phe	Tyr	Cys	Thr	Leu	Gly	Gly	Leu	Lvs	Ala	
	165					170		_			175	-	•		-	180	
		ata	+~~	202	~~+		444						1. 1-				
•		gtg															932
	Val	Val	Trp	Thr	Asp	Ala	Phe	Gln	Met	Val	Val	Met	Ile	Val	Gly	Phe	
					.185					190					195		•
10	tta	acg	gtt	ctc	att	caa	gga	tca	act	cat	gct	ggg	gga	ttc	cac	aat	980
	Leu	Thr	Val	Leu	Ile	Gln	Gly	Ser	Thr	His	Ala	Gly	Gly	Phe	His	Asn	
				200					205					210			
	gta	tta	gag	caa	tca	aca	aat	gga	tct	cga	cta	cat	ata	ttt	gac	ttt	1028
	Val	Leu	Glu	Gln	Ser	Thr	Asn	Gly	Ser	Arg	Leu	His	Ile	Phe	Asp	Phe	
15			215					220					225				
	gat	gta	gat	cct	ctc	agg	cga	cac	act	ttt	tgg	act	atc	aca	gtg	gga	1076
	Asp	Val	Asp	Pro	Leu	Arg	Arg	His	Thr	Phe	Trp	Thr	Ile	Thr	Val	Gly	
		230					235					240					
	gga	act	ttt	act	tgg	ctc	gga	atc	tat	ggg	gtc	aat	caa	tca	act	att	1124
20	Gly	Thr	Phe	Thr	Trp	Leu	Gly	Ile	Tyr	Gly	Val	Asn	Gln	Ser	Thr	Ile	
	245					250					255					260	
	cag	cga	tgc	atc	tct	tgc	aaa	aca	gaa	aag	cat	gct	aag	ctt	gcc	ttg	1172
	Gln	Arg	Cys	Ile	Ser	Cys	Lys	Thr	Glu	Lys	His	Ala	Lys	Leu	Ala	Leu	
					265					270					275		
25 .	tat	ttt	aac	ttg	ctg	ggt	ctc	tgg	atc	att	ctg	gtg	tgt	gct	gtc	ttc	1220

	Tyr	Phe	Asn	Leu	Leu	Gly	Leu	Trp	Ile	Ile	Leu	Val	Cys	Ala	Val	Phe	
				280					285	٠				290			
	tct	ggc	tta	atc	atg	tac	tct	cac	ttt	aàa	gac	tgt	gac	cct	tgg	act	1268
	Ser	Gly	Leu	Ile	Met	Tyr	Ser	His	Phe	Lys	Asp	Cys	Asp	Pro	Trp	Thr	
5			295					300					305				
	tct	ggc	atc	atc	tca	gca	cca	gac	cag	ctg	atg	ccg	tac	ttt	gtc	atg	1316
	Ser	Gly	Ile	Ile	Ser	Ala	Pro	Asp	Gln	Leu	Met	Pro	Tyr	Phe	Val	Met	
		310					315					320			•		
	gag	ata	ttt	gcc	aca	atg	cca	gga	ctg	cca	gga	ctt	ttt	gtg	gct	tgt	1364
10	Glu	Ile	Phe	Ala	Thr	Met	Pro	Gly	Leu	Pro	Gly	Leu	Phe	Val	Ala	Cys	
	325					330			•		335					340	
	gcc	ttc	agt	gga	act	ctg	agc	acc	gtg	gct	tcc	agc	atc	aat	gcc	ttg	1412
•	Ala	Phe	Ser	Gly	Thr	Leu	Ser	Thr	Val	Ala	Ser	Ser	Ile	Asn	Ala	Leu	
					345					350					355		
15	gca	aca	gtg	acc	ttt	gag	gat	ttt	gtc	aag	agc	tgt	ttt	cct	cat	ctc	1460
	Ala	Thr	Val	Thr	Phe	Glu	Asp	Phe	Val	Lys	Ser	Суѕ	Phe	Pro	His	Leu	
				360					365					370			
	tcc	gac	aag	ctg	agc	acc	tgg	atc	agt	aaa	ggc	tta	tgt	ctc	tta	ttt	1508
	Ser	Asp	Lys	Leu	Ser	Thr	Trp	Ile	Ser	Lys	Gly	Leu	Cys	Leu	Leu	Phe	
20			375					380					385				
	ggc [′]	gtg	atg	tgt	acc	tct	atg	gct	gtg	gct	gca	tct	gtc	atg	gga	ggt	1556
	Gly	Val	Met	Cys	Thr	Ser	Met	Ala	Val	Ala	Ala	Ser	Val	Met	Gly	Gly	
		390					395					400					
	gtt	gtg	cag	gct	tcc	ctc	agc	att	cac	ggc	atg	tgt	gga	gga	cca	atg	1604
25	Val	Val	Gln	Ala	Ser	Leu	Ser	Ile	His	Gly	Met	Cys	Gly	Gly	Pro	Met	

	405					410					415					420	
	ctg	ggc	tta	ttc	tcc	ctg	gga	atc	gtg	ttc	cct	ttt	gtg	aac	tgg	aag	1652
	Leu	Gly	Leu	Phe	Ser	Leu	Gly	Ile	Val	Phe	Pro	Phe	Val	Asn	Trp	Lys ·	
					425					430					435		
5	ggt	gca	cta	gga	ggt	ctt	ctt	act	gga	atc	acc	ttg	tca	ttt	tgg	gtg	1700
	Gly	Ala	Leu	Gly	Gly	Leu	Leu	Thr	Gly	Ile	Thr	Leu	Ser	Phe	Trp	Val	
				440	•				445					450			
	gcc	att	ggg	gcc	ttc	att	tac	cct	gca	cca	gcc	tct	aag	aca	tgg	cct	1748
	Ala	Ile	Gly	Ala	Phe	Ile	Tyr	Pro	Ala	Pro	Ala	Ser	Lys	Thr	Trp	Pro	
10			455					460					465				
	ttg	cct	cta	tca	aca	gac	caa	tgt	atc	aaa	tca	aat	gtg	aca	gca	aca	1796
	Leu	Pro	Leu	Ser	Thr	Asp ·	Gln	Cys	Ile	Lys	Ser	Asn	Val	Thr	Ala	Thr	
		470					475					480					
	ggg	cct	cca	gta	cta	tcc	agc ·	aga	cct	gga	ata	gct	gat	acc	tgg	tac	1844
15	Gly	Pro	Pro	Val	Leu	Ser	Ser	Arg	Pro	Gly	Ile	Ala	Asp	Thr	Trp	Tyr	
	485					490					495					500	
	tcg	atc	tcc	tac	ctt	tac	tac	agt	gca	gtg	ggc	tgc	tta	gga	tgc	att	1892
	Ser	Ile	Ser	Tyr	Leu	Tyr	Tyr	Ser	Ala	Val	Gly	Суѕ	Leu	Gly	Cys	Ile	
		٠			505					510					515		
20.	gtt	gct	gga	gta	atc	atc	agc	ctc	ata	aca	ggt	cgc	caa	aga	ggt	gag	1940
	Val	Ala	Gly	Val	Ile	Ile	Ser	Leu	Ile	Thr	Gly	Arg	Gln	Arg	Gly	Glu	
				520					525					530			
	gat	att	caa	cca	ctg	tta	att	aga	cca	gtt	tgt	aat	tta	ttt	tgc	ttt	1988
	Asp	Ile	Gln	Pro	Leu	Leu	Ile	Arg	Pro	Val	Cys	Asn	Leu	Phe	Суѕ	Phe	
25			535					540					545			•	

119/346

	tgg	tct	aag	aag	tac	aaa	aca	cta	tgc	tgg	tgc	gga	gtt	cag	cat	gac	2036
	Trp	Ser	Lys	Lys	Tyr	Lys	Thr	Leu	Cys	Trp	Cys	Gly	Val	Gln	His	Asp	
		550					555					560					
	agt	ggg	aca	gag	cag	gaa	aac	ctt	gag	aat	ggc	agt	gcc	cgg	aaa	cag	2084
5	Ser	Gly	Thr	Glu	Gln	Glu	Asn	Leu	Glu	Asn	Gly	Ser	Ala	Arg	Lys	Gļn	
	565					570					575					580	
	ggg	gct	gaa	tct	gtc	tta	cag	aac	gga	ctc	aga	aga	gaa	agc	ctg	gta	2132
	Gly	Ala	Glu	Ser	Val	Leu	Gln	Asn	Gly	Leu	Arg	Arg	Glu	Ser	Leu	Val	
		٠			585					590					595		
10	cat	gtt	cca	ggc	tat	gat	cct	aag	gac	aaa	agc	tac	aac	aat	atg	gca	2180
	His	Val	Pro	Gly	Tyr	Asp	Pro	Lys	Asp	Lys	Ser	Tyr	Asn	Asn	Met	Ala	
				600					605					610			
	ttt	gag	act	acc	cat	ttc	taag	ggcaa	ata d	cctgt	atga	aa to	gcaca	acac	a		2228
	Phe	Gĺu	Thr	Thr	His	Phe											
15			615														
	cacç	jtgca	aat a	acaca	acaca	ac ac	cacad	caaac	tco	cacat	tact	tcti	.gcc1	tac '	ttgt!	tagtag	2288
	atat	gtat	ag t	ttgc	catto	gc ta	agaaq	gacaç	g gga	atgto	ctgg	tgc	ctati	ttc	tacti	tattta	2348
	taac	ctaca	atg d	caaaa	atgad	ct gi	tctc	tcgg	g ata	atte	:ttg	aaa	gacto	cca	actti	tcacag	2408
	agaa	aaago	cca a	acct	gctc	ca aa	atgc	cctt	g act	tacti	cct	tcti	tgaai	taa .	atta	gggctg	2468
20	gatt	tc															2474
	<210)> 55	5														
	<211	L> 32	296														

<212> DNA

<213> Homo sapiens

25

	<220	>															
	<221	.> CE	s							,							
	<222	:> (1	.42).	. (76	58)												
	<400	> 55	;														
5	ttcg	igggg	gc a	agco	ggcgg	gg aig	ıggga	aacg	tgo	gcgg	ıccg	aagg	ggaa	agc (ggago	ccggcg	60
	ccgg	ctgo	egc a	agago	gaged	g ct	ctcg	ccgc	: cgc	caco	ctcg	gcto	gggag	gcc (cacga	aggctg	120 .
	ccgc	atco	ctg o	ccto	cggaa	ac a	atg	gga	ctc	ggc	gcg	cga	ggt	gct	tgg	gcc	171
							Met	Gly	Leu	Gly	Ala	Arg	Gly	Ala	Trp	Ala	
							1				5				•	10	
10	gcg	ctg	ctc	ctg	ggg	acg	ctg	cag	gtg	cta	gcg	ctg	ctg	ggg	gcc	gcc	219
	Ala	Leu	Leu	Leu	Gly	Thr	Leu	Gln	Val	Leu	Ala	Leu	Leu	Gly	Ala	Ala .	
					15					20					25		
	cat	gaa	agc	gca	gcc	atg	gcg	gca	tct	gca	aac	ata	gag	aat	tct	ggg	267
	His	Glu	Ser	Ala	Ala	Met	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	
15				30					35					40			
	ctt	cca	cac	aac	tcc	agt,	gct	aac	tca	aca	gag	act	ctc	caa	cat	gtg	315 .
	Leu	Pro	His	Asn	Ser	Ser	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	
			45					50		-			55				
-	cct	tct	gac	cat	aca	aat	gaa	act	tcc	aac	agt	act	gtg	aaa	cca	cca	363
20	Pro	Ser	Asp	His	Thr	Asn	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	
		60					65					70					
	act	tca	gtt	gcc	tca	gac	tcc	agt	aat	aca	acg	gtc	acc	acc	atg	aaa	411
	Thr	Ser	Val	Ala	Ser	Asp	Ser	Ser	Asn	Thr	Thr	Val	Thr	Thr	Met	Lys	
	75					80					85					90	
25	cct	aca	gcg	gca	tct	aat	aca	aca	aca	cca	ggg	atg	gtc	tca	aca	aat	459

	Pro	Thr	Ala	Ala	Ser	Asn	Thr	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr	Asn	
					95		•	•		100					105		
	atg	act	tct	acc	acc	tta	aag	tct	aca	ccc	aaa	aca	aca	agt	gtt	tca	507
	Met	Thr	Ser	Thr	Thr	Leu	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser	Val	Ser	
5				110					115					120		,	
	cag	aac	aca	tct	cag	ata	tca	aca	tcc	aca	atg	acc	gta	acc	cac	aat	555
	Gln	Asn	Thr	Ser	Gln	Ile	Ser	Thr	Ser	Thr	Met	Thr	Val	Thr	His	Asn	
			125					130					135				
	agt	tca	gtg	aca	tct	gct	gct	tca	tca	gta	aca	atc	aca	aca	act	atg	603
10	Ser	Ser	Val	Thr	Ser	Ala	Ala	Ser	Ser	Val	Thr	Ile	Thr	Thr	Thr	Met	
		140					145					150					
	cat	tct	gaa	gca	aag	aaa	gga	tca	aaa	ttt	gat	act	ggg	agc	ttt	gtt	651
	His	Ser	Glu	Ala	Lys	Lys	Gly	Ser	Lys	Phe	Asp	Thr	Gly	Ser	Phe	Val	
	155					160					165					170	
15	ggt	ggt	att	gta	tta	acg	ctg	gga	gtt	tta	tct	att	ctt	tac	att	gga	699
	Gly	Gly	Ile	Val	Leu	Thr	Leu	Gly	Val	Leu	Ser	Ile	Leu	Tyr	Ile	Gly	
					175	•				180					185		
	tgc	aaa	atg	tat	tac	tca	aga	aga	ggc	att	cgg	tat	cga	acc	ata	gat	747
	Cys	Lys	Met	Tyr	Tyr	Ser	Arg	Arg	Gly	Ile	Arg	Tyr	Arg	Thr	Ile	Asp	
20				190					195		•			200			
	gaa	cat	gat	gcc	atc	att	taa	ggaaa	atc d	catg	gacca	aa g	gatg	gaat	a		795
	Glu	His	Asp	Ala	Ile	Ile						•					
			205														
	caga	attga	atg (ctgc	ccta	tc aa	attaa	attti	ggt	tttai	ttaa	tag	ttta	aaa (caata	attctc	855
25	ttt	ttgaa	aaa 1	tagta	ataa	ac a	ggcca	atgca	a tai	taat	gtac	agt	gtati	tac (gtaaa	atatgt	915

5

10

15

20

25

122/346

aaagattett caaggtaaca agggtttggg ttttgaaata aacatetgga tettatagae 975 cgttcataca atggttttag caagttcata gtaagacaaa caagtcctat ctttttttt 1035 ggctggggtg ggggcattgg tcacatatga ccagtaattg aaagacgtca tcactgaaag 1095 acagaatgcc atctgggcat acaaataaga agtttgtcac agcactcagg attttgggta 1155 tcttttgtag ctcacataaa gaacttcagt gcttttcaga gctggatata tcttaattac 1215 taatgccaca cagaaattat acaatcaaac tagatctgaa gcataattta agaaaaacat 1275 caacattttt tgtgctttaa actgtagtag ttggtctaga aacaaaatac tccaagaaaa 1335 agaaaatttt caaataaaac ccaaaataat agctttgctt agccctgtta gggatccatt 1395 ggagcattaa ggagcacata tttttattaa cttcttttga gctttcaatg ttgatgtaat 1455 ttttgttctc tgtgtaattt aggtaaactg cagtgtttaa cataataatg ttttaaagac 1515 ttagttgtca gtattaaata atcctggcat tatagggaaa aaacctccta gaagttagat 1575 tatttgctac tgtgagaata ttgtcaccac tggaagttac tttagttcat ttaattttaa 1635 ttttatattt tgtgaatatt ttaagaactg tagagctgct ttcaatatct agaaattttt 1695 aattgagtgt aaacacacct aactttaaga aaaagaaccg cttgtatgat tttcaaaaga 1755 acatttagaa ttctatagag tcaaaactat agcgtaatgc tgtgtttatt aagccaggga 1815 ttgtgggact tcccccaggc aactaaacct gcaggatgaa aatgctatat tttctttcat 1875 gcactgtcga tattactcag atttggggaa atgacatttt tatactaaaa caaacaccaa 1935 aatattttag aataaattct tagaaagttt tgagaggaat ttttagagag gacatttcct 1995 cettectgat ttggatatte ceteaaatee eteetettae teeatgetga aggagaagta 2055 ctctcagatg cattatgtta atggagagaa aaagcacagt attgtagaga caccaatatt 2115 agctaatgta ttttggagtg ttttccattt tacagtttat attccagcac tcaaaactca 2175 gggtcaagtt ttaacaaaag aggtatgtag tcacagtaaa tactaagatg gcatttctat 2235 ctcagagggc caaagtgaat cacaccagtt tctgaaggtc ctaaaaatag ctcagatgtc 2295 ctaatgaaca tgcacctaca tttaatagga gtacaataaa actgttgtca gcttttgttt 2355 tacagagaac gctagatatt aagaattttg aaatggatca tttctacttg ctgtgcattt 2415

taaccaataa tetgatgaat atagaaaaaa atgatecaaa atatggatat gattggatgt 2475 atgtaacaca tacatggagt atggaggaaa ttttctgaaa aatacattta gattagttta 2535 gtttgaagga gaggtgggct gatggctgag ttgtatgtta ctaacttggc cctgactggt 2595 tgtgcaacca ttgcttcatt tctttgcaaa atgtagttaa gatatacttt attctaatga 2655 aggicettta aatttgtcca ctgcattctt ggtatttcac tacttcaagt cagtcagaac 2715 ttcgtagacc gacctgaagt ttctttttga atacttgttt ctttagcact ttgaagatag 2775 aaaaaccact ttttaagtac taagtcatca tttgccttga aagtttcctc tgcattgggt 2835 ttgaagtagt ttagttatgt ctttttctct gtatgtaagt agtataattt gttactttca 2895 aatacccgta ctttgaatgt aggtttttt gttgttgtta tctataaaaa ttgagggaaa 2955 tggttatgca aaaaaatatt ttgctttgga ccatatttct taagcataaa aaaaatgctc 3015 agttttgctt gcattccttg agaatgtatt tatctgaaga tcaaaacaaa caatccagat 3075 gtataagtac taggcagaag ccaattttaa aatttccttg aataatccat gaaaggaata 3135 attcaaatac agataaacag agttggcagt atattatagt gataattttg tattttcaca 3195 aaaaaaaagt taaactcttc ttttcttttt attataatga ccagcttttg gtatttcatt 3255 gttaccaagt tctattttta gaataaaatt gttctccttc t 3296

<210> 56

5

10

15

<211> 1818

<212> DNA

20 <213> Homo sapiens

<220>

<221> CDS

<222> (26)..(1534)

<400> 56

25 aaaaaacccg cgcagtggcc cggcg atg tcg ctc gtg ctg cta agc ctg gcc 5

								Met	Ser	Leu	Val	Leu	Leu	Ser	Leu	Ala	
								1				5					
	gcg	ctg	tgc	agg	agc	gcc	gta	ccc	cga	gag	ccg	acc	gtt	caa	tgt	ggc	100
	Ala	Leu	Cys	Arg	Ser	Ala	Val	Pro	Arg	Glu	Pro	Thr	Val	Gln	Cys	Gly	
5	10					15					20					25	
	tct	gaa	act	ggg	cca	tct	cca	gag	tgg	atg	cta	caa	cat	gat	cta	atc	148
	Ser	Glu	Thr	Gly	Pro	Ser	Pro	Glu	Trp	Met	Leu	Gln	His	Asp	Leu	Ile	
					30					35					40		
	ccg	gga	gac	ttg	agg	gac	ctc	cga	gta	gaa	cct	gtt	aca	act	agt	gtt	196
10	Pro	Gly	Asp	Leu	Arg	Asp	Leu	Arg	Val	Glu	Pro	Val	Thr	Thr	Ser	Val	
				. 45					50					55			
	gca	aca	ggg	gac	tat	tca	att	ttg	atg	aat	gta	agc	tgg	gta	ctc	cgg	244
•	Ala	Thr	Gly	Asp	Tyr	Ser	Ile	Leu	Met	Asn	Val	Ser	Trp	Val	Leu	Arg	
			60					65					70				
15	gca	gat	gcc	agc	atc	cgc	ttg	ttg	aag	gcc	acc	aag	att	tgt	gtg	acg	292
	Ala	Asp	Ala	Ser	Ile	Arg	Leu	Leu	Lys	Ala	Thr	Lys	Ile	Cys	Val	Thr	
		75					80					85					
	ggc	aaa	agc	aac	ttc	cag	tcc	tac	agc	tgt	gtg	agg	tgc	aat	tac	aca	340
	Gly	Lys	Ser	Asn	Phe	Gln	Ser	Tyr	Ser	Cys	Val	Arg	Cys	Asn	Tyr	Thr	
20	90					95					100					105	
	gag	gcc	ttc	cag	act	cag	acc	aga	ccc	tct	ggt	ggt	aaa	tgg	aca	ttt	388
	Glu	Ala	Phe	Gln	Thr	Gln	Thr	Arg	Pro	Ser	Gly	Gly	Lys	Trp	Thr	Phe	
					110					115					120		
	tcc	tac	atc	ggc	ttc	cct	gta	gag	ctg	aac	aca	gtc	tat	ttc	att	ggg	436
25	Ser	Tyr	Ile	Gly	Phe	Pro	Val	Glu	Leu	Asn	Thr	Val	Tyr	Phe	Ile	Gly	

				125					130					135			
	gcc	cat	aat	att	cct	aat	gca	aat	atg	aat	gaa	gat	ggc	cct	tcc	atg	484
	Ala	His	Asn	Ile	Pro	Asn	Ala	Asn	Met	Asn	Glu	Asp	Gly	Pro	Ser	Met	
			140					145			•		150				
5	tct	gtg	aat	ttc	acc	tca	cca	ggc	tgc	cta	gac	cac	ata	atg	aaa	tat	532
	Ser	Val	Asn	Phe	Thr	Ser	Pro	Gly	Cys	Leu	Asp	His	Ile	Met	Lys	Tyr	
		1:55					160					165					
	aaa	aaa	aag	tgt	gtc	aag	gcc	gga	agc	ctg	tgg	gat	ccg	aac	atc	act	580
	Lys	Lys	Lys	Cys	Val	Lys	Ala	Gly	Ser	Leu	Trp	Asp	Pro	Asn	Ile	Thr	
10	170					175					180					185	
	gct	tgt	aag	aag	aat	gag	gag	aca	gta	gaa	gtg	aac	ttc	aca	acc	act	628
	Ala	Cys	Lys	Lys	Asn	Glu	Glu	Thr	Val	Glu	Val	Asn	Phe	Thr	Thr	Thr	
•					190					195					200		
	ccc	ctg	gga	aac	aga	tac	atg	gct	ctt	atc	caa	cac	agc	act	atc	atc	676
15	Pro	Leu	Gly	Asn	Arg	Tyr	Met	Ala	Leu	Ile	Gln	His	Ser	Thr	Ile	Ile	
				205					210					215			
	ggg	ttt	tct	cag	gtg	ttt	gag	cca	cac	cag	aag	aaa	caa	acg	cga	gct	724
	Gly	Phe	Ser	Gln	Val	Phe	Glu	Pro	His	Gln	Lys	Lys	Gln	Thr	Arg	Ala	
			220					225					230				
20	tca	gtg	gtg	att	cca	gtg	act	ggg	gat	agt	gaa	ggt	gct	acg	gtg	cag	772
	Ser	Val	Val	Ile	Pro	Val	Thr	Gly	Asp	Ser	Glu	Gly	Ala	Thr	Val	Gln	
		235					240					245					
	ctg	act	cca	tat	ttt	ccţ	act	tgt	ggc	agc	gac	tgc	atc	cga	cat	aaa	820
	Leu	Thr	Pro	Tyr	Phe	Pro	Thr	Суз	Gly	Ser	Asp	Cys	Ile	Arg	His	Lys	
25	250 ⁻					255					260					265	

	gya	aca	gtt	gra	CLC	tgc	.cca	caa	aca	ggc	gtc	CCE	ttc	CCT	ctg	gat	868
	Gly	Thr	Val	Val	Leu	Cys	Pro	Gln	Thr	Gly	Val	Pro	Phe	Pro	Leu	Asp	
					270					275					280		
	aac	aac	aaa	agc	aag	ccg	gga	ggc	tgg	ctg	cct	ctc	ctc	ctg	ctg	tct	916
5 ·	Asn	Asn	Lys	Ser	Lys	Pro	Gly	Gly	Trp	Leu	Pro	Leu	Leu	Leu	Leu	Ser	
				285					290					295			
	ctg	ctg	gtg	gcc	aca	tgg	gtg	ctg	gtg	gca	ggg	atc	tat	cta	atg	tgg	964
	Leu	Leu	Val	Ala	Thr	Trp	Val	Leu	Val	Ala	Gly	Ile	Tyr	Leu	Met	Trp	
			300					305					310				•
10	agg	cac	gaa	agg	atc	aag	aag	act	tcc	ttt	tct	acc	acc	aca	cta	ctg	1012
	Arg	His	Glu	Arg	Ile	Lys	Lys	Thr	Ser	Phe	Ser	Thr	Thr	Thr	Leu	Leu	
		315					320				•	325					
	ccc	ccc	att	aag	gtt	ctt	gtg	gtt	tac	cca	tct	gaa	ata	tgt	ttc	cat	1060
	Pro	Pro	Ile	Lys	Val	Leu	Val	Val	Tyr	Pro	Ser	Glu	Ile	Cys	Phe	His	
15	330					335					340					345	
	cac	aca	att	tgt	tac	ttc	act	gaa	ttt	ctt	caa	aac	cat	tgc	aga	agt	1108
	His	Thr	Ile	Cys	Tyr	Phe	Thr	Glu	Phe	Leu	Gln	Asn	His	Cys	Arg	Ser	
					350					355					360		
	gag	gtc	atc	ctt	gaa	aag	tgg	cag	aaa	aag	aaa	ata	gca	gag	atg	ggt	1156
20	Glu	Val	Ile	Leu	Glu	Lys	Trp	Gln	Lys	Lys	Lys	Ile	Ala	Glu	Meț	Gly	
				365					370					375			
	cca	gtg	cag	tgg	ctt	gcc	act	caa	aag	aag	gca	gca	gac	aaa	gtc	gtc	1204
	Pro	Val	Gln	Trp	Leu	Ala	Thr	Gln	Lys	Lys	Ala	Ala	Aṣp	Lys	Val	·Val	÷
			380					385					390				
25	ttc	ctt	ctt	tcc	aat	gac	gtc	aac	agt	gtg	tgc	gat	ggt	acc	tgt	ggc	1252

	Phe	Leu	Leu	Ser	Asn	Asp	Val	Asn	Ser	Val	Cys	Asp	Gly	Thr	Cys	Gly	
		395					400					405					
	aag	agc	gag	ggc	agt	ccc	agt	gag	aac	tct	caa	gac	ctc	ttc	ccc	ctt	1300
	Lys	Ser	Glu	Gly	Ser	Pro	Ser	Glu	Asn	Ser	Gln	Asp	Leu	Phe	Pro	Leu	
5	410					415					420					425	
	gcc	ttt	aac	ctt	ttc	tgc	agt	gat	cta	aga	agc	cag	att	cat	ctg	cac	1348
	Ala	Phe	Asn	Leu	Phe	Cys	Ser	Asp	Leu	Arg	Ser	Gln	Ile	His	Leu	His	
					430					435					440		
	aaa	tac	gtg	gtg	gtc	tac	ttt	aga	gag	att	gat	aca	aaa	gac	gat	tac	1396
10	Lys	Tyr	Val	Val	Val	Tyr	Phe	Arg	Glu	Ile	Asp	Thr	Lys	Asp	Asp	Tyr	
				445	٠				450					455			
	aat	gct	ctc	agt	gtc	tgc	ccc	aag	tac	cac	ctc	atg	aag	gat	gcc	act	1444
	Asn	Ala	Leu	Ser	Val	Cys	Pro	Lys	Tyr	His	Leu	Met	Lys	Asp	Ala	Thr	
			460					465					470				
15	gct	ttc	tgt	gca	gaa	ctt	ctc	cat	gtc	aag	cag	cag	gtg	tca	gca	gga	1492
	Ala	Phe	Cys	Ala	Glu	Leu	Leu	His	Val	Lys	Gln	Gln	Val	Ser	Ala	Gly	
		475					480					485					
	aaa	aga	tca	caa	gcc	tgc	cac	gat	ggc	tgc	tgc	tcc	ttg	tago	ccad	ccc	1541
	Lys	Arg	Ser	Gln	Ala	Cys	His	Asp	Gly	Cys	Cys	Ser	Leu				
20	490					495			:		500						
	atga	aga ag	jca a	agaga	cctt	a aa	ıggct	tcct	ato	ccac	caa	ttad	caggg	gaa a	aaaa	gtgtg	1601
	atga	tcct	ga a	igctt	acta	at go	agco	ctaca	a aac	agco	ctta	gtaa	ittaa	aa c	attt	tatac	1661
	caat	aaaa	itt t	tcaa	atat	t go	taad	ctaat	gta	igcat	:taa	ctaa	acgat	tg g	jaaac	ctacat	1721
	ttac	aact	tc a	aaago	tgtt	t ta	taca	taga	aat	caat	tac	agtt	ttaa	att g	jaaaa	ctata	1781
25	acca	tttt	ga t	aato	caac	a at	aaag	cato	: ttc	agco	:						1818

	<210	> 57															•
	<211	> 16	46														
	<212	> DN	Α														
5	<213	> Ho	mo s	apie	ns												
	<220	>															
	· <221	> CD	s														
	<222	> (3	37)	(104	7)												
	<400	> 57	,														
10	acgo	gago	ctg o	ctgt	tttt	t to	ctgc	ttgg	acg	cgc	atg	agg	gcc	ccg	tcc	atg	54
											Met	Arg	Ala	Pro	Ser	Met	
											1	,			5		
	gac	cgc	gcg	gcc	gtg	gcg	agg	gtg	ggc	gcg	gta	gcg	agc	gcc	agc	gtg	102
	Asp	Arg	Ala	Ala	Val	Ala	Arg	Val	Gly	Ala	Val	Ala	Ser	Ala	Ser	Val	,
15				10					15					20			
	tgc	gcc	ctg	gtg	gcg	ggg	gtg	gtg	ctg	gct	cag	tac	ata	ttc	acc	ttg	150
	Cys	Ala	Leu	Val	Ala	Gly	Val	Val	Leu	Ala	Gln	Tyr	Ile	Phe	Thr	Leu	
			25					30					35				
	aag	agg	aag	acg	ggg	cgg	aag	acc	aag	atc	atc	gag	atg	atg	cca	gaa	198
20	Lys	Arg	Lys	Thr	Gly	Arg	Lys	Thr	Lys	Ile	Ile	Glu	Met	Met	Pro	Glu	
		40					45					50					
	ttc	cag	aaa	agt	tca	gtt	cga	atc	aag	aac	cct	aca	aga	gta	gaa	gaa	246
	Phe	Gln	Lys	Ser	Ser	Val	Arg	Ile	Lys	Asn	Pro	Thr	Arg	Val	Glu	Glu	
	55					60					65					70	
25	att	atc	tgt	ggt	ctt	atc	aaa	gga	gga	gct	gcc	aaa	ctt	cag	ata	ata	294

	Ile	Ile	Cys	Gly	Leu	Ile	Lys	Gly	Gly	Ala	Ala	Lys	Leu	Gln	Ile	Ile	
		•			75					80					85		
	acg	gac	ttt	gat	atg	aca	ctc	agt	aga	ttt	tca	tat	aaa	ggg	aaa	aga	342
	Thr	Asp	Phe	Asp	Met	Thr	Leu	Ser	Arg	Phe	Ser	Tyr	Lys	Gly	Lys	Arg	
5				90					95					100			
	tgc	cca	aca	tgt	cat	aat	atc	att	gac	aac	tgt	aag	ctg	gtt	aca	gat	390
	Cys	Pro	Thr	Cys	His	Asn	Ile	Ile	Asp	Asn	Cys	Lys	Leu	Val	Thr	Asp	•
			105					110					115				
	gaa	tgt	aga	aaa	aag	tta	ttg	caa	cta	aag	gaa	aaa	tat	tac	gct	att	438
10	Glu	Cys	Arg	Lys	Lys	Leu	Leu	Gln	Leu	Lys	Glu	Lys	Tyr	Tyr	Ala	Ile	
		120					125			•		130					
	gaa	gtt	gat	cct	gtt	ctt	act	gta	gaa	gag	aag	tac	cct	tat	atg	gtg	486
	Glu	Val	Asp	Pro	Val	Leu	Thr	Val	Glu	Glu	Lys	Tyr	Pro	Tyr	Met	Val	
	135					140					145			•		150	
15	gaa	tgg	tat	act	aaa	tca	cat	ggt	ttg	ctt	gtt	cag	caa	gct	tta	cca	534
	Glu	Trp	Tyr	Thr	Lys	Ser	His	Gly	Leu	Leu	Val	Gln	Gln	Ala	Leu	Pro	
					155					160					165		
	aaa	gct	aaa	ctt	aaa	gaa	att	gtg	gca	gaa	tct	gac	gtt	atg	ctc	aaa	582
	Lys	Ala	Lys	Leu	Lys	Glu	Ile	Val	Ala	Glu	Ser	Asp	Val	Met	Leu	Lys	
20				170					175					180			
	gaa	gga	tat	. gag	aat	ttc	ttt	gat	aag	cto	: caa	caa	cat	ago	ato	ccc	630
•	Glu	Gly	Tyr	Glu	Asn	Phe	Phe	Asp	Lys	Leu	Gln	Gln	His	Ser	Ile	Pro	
			185	i				190	1				195				
	gtg	ttc	: ata	ittt	tcg	gct	gga	atc	ggc	gat	gta	cta	gag	gaa	gtt	att	678
25	Val	Phe	: Ile	Phe	Ser	Ala	Gly	, Ile	Gly	Asp	Val	. Leu	ı Glu	Glu	ı Val	. Ile	

		200					005										
		200					205					210					
	cgt	caa	gct	ggt	gtt	tat	cat	ccc	aat	gtc	aaa	gtt	gtg	tcc	aat	ttt	726
	Arg	Gln	Ala	Gly	Val	Tyr	His	Pro	Asn	Val	Lys	Val	Val	Ser	Asn	Phe	
	215					220					225					230	
5	atg	gat	ttt	gat	gaa	act	ggg	gtg	ctc	aaa	gga	ttt	aaa	gga	gaa	cta	774
	Met	Asp	Phe	Asp	Glu	Thr	Gly	Val	Leu	Lys	Gly	Phe	Lys	Gly	Glu	Leu	•
					235					240					245		
	att	cat	gta	ttt	aac	aaa	cat	gat	ggt	gcc	ttg	agg	aat	aca	gaa	tat	822
	Ile	His	Val	Phe	Asn	Lys	His	Asp	Gly	Ala	Leu	Arg	Asn	Thr	Glu	Tyr	
10		•		250					255			•	•	260			
	ttc	aat	caa	cta	aaa	gac	aat	agt	aac	ata	att	ctt	ctg	gga	gac	tcc	870
	Phe	Asn	Gln	Leu	Lys	Asp	Asn	Ser	Asn	.Ile	Ile	Leu	Leu	Gly	Asp	Ser	
			265					270					275				
	caa	gga	gac	tta	aga	atg	gca	gat	gga	gtg	gcc	aat	gtt	gag	cac	att	918
15	Gln	Gly	Asp	Leu	Arg	Met	Ala	Asp	Gly	Val	Ala	Asn	Val	Glu	His	Ile	
		280			ė		285					290					
	ctg	aaa	att	gga	tat	cta	aat	gat	aga	gtġ	gat	gag	ctt	tta	gaa	aag	966
	Leu	Lys	Ile	Gly	Tyr	Leu	Asn	Asp	Arg	Val	Asp	Glu	Leu	Leu	Glu	Lys	
	295					300					305					310	
20	tac	atg	gac	tct	tat	gat	att	gtt	tta	gta	caa	gat	gaa	tca	tta	gaa	1014
	Tyr	Met	Asp	Ser	Tyr	Asp	Ile	Val	Leu	Val	Gln	Asp	Glu	Ser	Leu	Glu	
					315					320					325		
	gta	gcc	aac	tct	att	tta	cag	aag	att	cta	taaa	acaa	gca t	tctc	ccaag	ja	1064
	Val	Ala	Asn	Ser	Ile	Leu	Gln	Lys	Ile	Leu							
25				330					335								

131/346

agacetetet cetgtgggtg caattgaact gttcatecgt teatettget gagagaetta 1124
tttataatat atcettacte tegaagtgtt eeetttgtat aactgaagta ttttcagata 1184
tggtgaatge attgactgga ageteettt etecacetet eteaacacae teeteacegt 1244
atetttaac eeatttaaaa aaaaaaaaa getaaaatta gaaaaataac teeetaettt 1304
tecaaagtga attttgtagt ttaatgttat eatgeagett ttgaggagte ttttacactg 1364
ggaaagtttg tagaaatttt aaaataagtt ttatgaaatg gtgaaataat atgeatgatt 1424
ttaagtattg eeatttttgt aatttgggtt attatgetga tggtateace atetettgaa 1484
attgtgttag gtttggttat tttgtetggg gaaaaaaatat ttaetggaaa agactageag 1544
ttagtgttgg aaaaacetgg tggtgtttac aatgttgeta ateattacaa aacattetat 1604
attgaageae tgataataaa tatgaaatge aaaacetttt tt 1646

<210> 58

5

10

<211> 1416

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (174)..(1196)

<400> 58

20 aaaagttggc ccgggaagct caaggaggga gagcggcaga ggggaagact ctgcaattct 60 gcttgcccc caccccggcc caggcaagcc accetgccc cggcccccac ctgcccgccc 120 cgcctgccct tcctcacccc ggtgcctgcg ggattgctgg agagaacgcg gcg atg 176

Met

1

gag ccg ggc agg acc cag ata aag ctt gac ccc agg tac aca gca gat 224

	Glu	Pro	Gly	Arg	Thr	Gln	Ile	Lys	Leu	Asp	Pro	Arg	Tyr	Thr	Ala	Asp	
				5					10					15		•	
	ctt	ctg	gag	gtg	ctg	aag	acc	aat	tac	ggc	atc	ccc	tcc	gcc	tgc	ttc	272
	Leu	Leu	Glu	Val	Leu	Lys	Thr	Asn	Tyr	Gly	Ile	Pro	Ser	Ala	Cys	Phe	
5			20					25	•				30				
	tct	cag	cct	ccc	aca	gca	gcc	caa	ctc	ctg	aga	gcc	ctg	ggc	cct	gtg	320
	Ser	Gln	Pro	Pro	Thr	Ala	Ala	Gln	Leu	Leu	Arg	Ala	Leu	Gly	Pro	Val	
		35					40					45			٠		
	gaa	ctt	gcc	ctc	act	agc	atc	ctg	acc	ttg	ctg	gcg	ctg	ggc	tcc	att	368
10	Glu	Leu	Ala	Leu	Thr	Ser	Ile	Leu	Thr	Leu	Leu	Ala	Leu	Gly	Ser	Ile	•
	50		,			55					60					65	
	gcc	atc	ttc	ctg	gag	gat	gcc	gtc	tac	ctg	tac	aag	aac	acc	ctt	tgc	416
	Ala	Ile	Phe	Leu	Glu	Āsp	Ala	Val	Tyr	Leu	Tyr	Lys	Asn	Thr	Leu	Cys	
					70					75					80		
15	ccc	atc	aag	agg	cgg	act	ctg	ctc	tgg	aag	agc	tcg	gca	CCC	acg	gtg	464.
•	Pro	Ile	Lys	Arg	Arg	Thr	Leu	Leu	Trp	Lys	Ser	Ser	Ala	Pro	Thr	Val	
				85			•		90					95			
	gtg	tct	gtg	ctg	tgc	tgc	ttt	ggt	ctc	tgg	atc	cct	cgt	tcc	ctg	gtg	512
	Vál	Ser	Val	Leu ·	Cys	Cys	Phe	Gly	Leu	Trp	Ile	Pro	Arg	Ser	Leu	Val	
20			100					105					110				
	ctg	gtg	gaa	atg	acc	atc	acc	tcg	ttt	tat	gcc	gtg	tgc	ttt	tac	ctg	560
	Leu	Val	Glu	Met	Thr	Ile	Thr	Ser	Phe	Tyr	Ala	Val	Суѕ	Phe	Tyr	Leu	
		115					120		•			125					
	ctg	atg	ctg	gtc	atg	gtg	gaa	ggc	ttt	ggg	ggg	aag	gag	gca	gtg	ctg	608
25	Leu	Met	Leu	۷al	Met	Val	Glu	Gly	Phe	Gly	Gly	Lys	Glu	Ala	Val	Leu	

	130					135					140					145	
	agg	acg	ctg	agg	gac	acc	ccg	atg	atg	gtc	cac	aca	ggc	ccc	tgc	tgc	656
	Arg	Thr	Leu	Arg	Asp	Thr	Pro	Met	Met	Val	His	Thr	Gly	Pro	Cys	Cys	
					150					155					160		
5	tgc	tgc	tgc	ccc	tgc	tgt	cca	cgg	ctg	ctg	ctc	acc	agg	aag	aag	ctt	704
	Cys	Cys	Cys	Pro	Cys	Cys	Pro	Arg	Leù	Leu	Leu	Thr	Arg	Lys	Lys	Leu	
				165					170					175			
	cag	ctg	ctg	atg	ttg	ggc	cct	ttc	caa	tac	gcc	ttc	ttg	aag	ata	acg	752
	Gln	Leu	Leu	Met	Leu	Gly	Pro	Phe	Gľn	Tyr	Ala	Phe	Leu	Lys	Ile	Thr	
10			180					185					190				
	ctg	acc	ctg	gtg	ggc	ctg	ttt	ctc	atc	ccc	gac	ggc	atc	tat	gac	cca	800
	Leu	Thr	Leu	Val	Gly	Leu	Phe	Leu	Ile	Pro	Asp	Gly	Ile	Tyr	Asp	Pro	
		195					200					205					
	gca	gac	att	tct	gag	ggg	agc	aca	gct	cta	tgg	atc	aac	act	ttc	ctt	848
15 ·	Ala	Asp	Ile	Ser	Glu	Gly	Ser	Thr	Ala	Leu	Trp	Ile	Asn	Thr	Phe	Leu	
	210	•				215					220					225	
	ggc	gtg	tcc	aca	ctg	ctg	gct	ctc	tgg	acc	ctg	ggc	atc	att	tcc	cgt	896
	Gly	Val	Ser	Thr	Leu	Leu	Ala	Leu	Trp	Thr	Leu	Gly	Ile	Ile	Ser	Arg	
					230					235					240		
20	caa	gcc	agg	cta	cac	ctg	ggt	gag	cag	aac	atg	gga	gcc	aaa	ttt	gct	944
	Gln	Ala	Arg	Leu	His	Leu	Gly	Glu	Gln	Asn	Met	Gly	Ala	Lys	Phe	Ala	
,				245					250					255			
	ctg	ttc	cag	gtt	ctc	ctc	atc	ctg	act	gcc	cta	cag	ccc	tcc	atc	ttc	992
,	Leu	Phe	Gln	Val	Leu	Leu	Ile	Leu	Thr	Ala	Leu	Gln	Pro	Ser	Ile	Phe	
25			260					265					270				

	tca	gtc	ttg	gcc	aac	ggt	ggg	cag	att	gct	tgt	tcg	cct	ccc	tat	tcc	1040
	Ser	Val	Leu	Ala	Asn	Gly	Gly	Gln	Ile	Ala	Cys	Ser	Pro	Pro	Tyr	Ser	
		275					280					285		•			
	tct	aaa	acc	agg	tct	caa	gtg	atg	aat	tgc	cac	ctc	ctc	ata	ctg	gag	1088
5	Ser	Lys	Thr	Arg	Ser	Gln	Val	Met	Asn	Cys	His	Leu	Leu	Ile	Leu	Glu	
	290					295					300					305	
	act	ttt	cta	atg	act	gtg	ctg	aca	cga	atg	tac	tac	cga	agg	aaa	gac	1136
	Thr	Phe	Leu	Met	Thr	Val	Leu	Thr	Arg _.	Met	Tyr	Tyr	Arg	Arg	Lys	Asp	
•		•			310					315					320		
LO	cac	aag	gtt	gġg	tat	gaa	act	ttc	tct	tct	cca	gac	ctg	gac	ttg	aac	1184
	His	Lys	Val	Gly	Tyr	Glu	Thr	Phe	Ser	Ser	Pro	Asp	Leu	Asp	Leu	Asn	
				325					330					335			
	ctc	aaa	gcc	taaq	ggtgg	gat q	gcti	tggad	ca at	gaaa	aggat	gct	gtad	ctca			1233
	Leu	Lys	Ala	-													
L5			340														
	ttag	raata	aca a	agatt	cctt	t a	ctgto	ccct	c aad	cctto	gacc	aaat	ggga	aag d	catto	cccct	1293
	tgto	aaca	aca a	agct	ggcag	ga ta	acati	ttgad	tct	cacaç	gatg	aag	gtgaa	aca a	atgti	agaat	1353
	aaaa	ttgo	ctt t	eggat	ctt	gc ct	ggaa	aggto	g tti	taaç	ttt	tgta	ata	aac a	aagat	gatgt	1413
	ctg																1416
20																	
	<210	> 59)														
	<211	> 19	927														
	<212	> DN	IA.														
	<213	> Hc	omo s	sapie	ens												
25	<220	>		•													

	<221	L> CI	os														
	<222	2> (8	39).	. (760)											•	
	<400)> 59	€.														
	agct	ccag	gtc o	ctggd	catct	ig co	cgaç	ggaga	a cca	acgct	cct	gga	getei	tgc 1	tgtct	ttctca	60
·5	ggga	agact	ct q	gaggo	ctct	gt to	gagaa	atc _. a	atg d	ctt t	egg a	agg (cag (ctc a	atc t	tat	112
								ľ	Met I	Leu 1	rp A	Arg (Gln 1	Leu :	Ile :	ſyr	
									1				5				
	tgg	caa	ctg	ctg	gct	ttg	ttt	ttc	ctc	cct	ttt	tgc	ctg	tgt	caa	gat	160
	Trp	Gln	Leu	Leu	Ala	Leu	Phe	Phe	Leu	Pro	Phe	Cys	Leu	Cys	Gln	Asp	
10		10					15		•			20					
	gaa	tac	atg	gag	gtg	agc	gga	aga	act	aat	aaa	gtg	gtg	gca	aga	ata	208
	Glu	Tyr	Met	Glu	Val	Ser	Gly	Arg	Thr	Asn	Lys	Val	Val	Ala	Arg	Ile	
	25					30					35					40	
	gtg	caa	agc	cac	cag	cag	act	ggc	cgt	agc	ggc	tcc	agg	agg	gag	aaa	256
15	Val	Gln	Ser	His	Gln	Gln	Thr	Gly	Arg	Ser	Gly	Ser	Arg	Arg	Glu	Lys	
					45					,50					55		
	gtg	aga	gag	cgg	agc	cat	cct	aaa	act	ggg	act	gtg	gat	aat	aac	act	304
	Val	Arg	Glu	Arg	Ser	His	Pro	Lys	Thr	Gly	Thr	Val	Asp	Asn	Asn	Thr	
				60					65				,	70			
20	tct	aca	gac	cta	aaa	tcc	ctg	aga	cca	gat	gag	cta	ccg	cac	ccc	gag	352
	Ser	Thr	Asp	Leu	Lys	Ser	Leu	Arg	Pro	Asp	Glu	Leu	Pro	His	Pro	Glu	
			75					80					85				
	gta	gat	gac	cta	gcc	cag	atc	acc	aca.	ttc	tgg	ggc	cag	tct	cca	caa	400
	Val	Asp	Asp	Leu	Ala	Gln	Ile	Thr	Thr	Phe	Trp	Gly	Gln	Ser	Pro	Gln	
25		90					95					100					

	acc	gga	gga	cta	ccc	cca	gac	tgc	agt	aag	tgt	tgt	cat	gga	gac	tac	448
	Thr	Gly	Gly	Leu	Pro	Pro	Asp	Cys	Ser	Lys	Cys	Cys	His	Gly	Asp	Tyr	
	105	•				110					115					120	
\	agc	ttt	cga	ggc	tac	caa	ggc	ccc	cct	ggg	cca	ccg	ggc	cct	cct	ggc	496
\iightarrow \iightarrow i	Ser	Phe	Arg	Gly	Tyr	Gln	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	
\.					125					130					135		
	att	сса	gga	aac	cat	gga	aac	aat	āāc	aac	aat	gga	gcc	act	ggt	cat	544
. \	Ile	Pro	Gly	Asn	His	Gly	Asn	Asn	Gly	Asn	Asn	Gly	Ala	Thr	Gly	His	
				140					145					150			
10	gac	gga	gcc	aaa	ggt	gag	aag	ggc	.gac	aaa	ggt	gac	ctg	ggg	cct	cga	592
	Glu	ly	Ala	Lys	Gly	Glu	Lys	Gly	Asp	Lys	Gly	Asp	Leu	Gly	Pro	Arg	٠
			155	•				160					165				
•	ggg	gag	/.aa	ggg	cag	cat	ggc	CCC	aaa	gga	gag	aag	ggc	tac	ccg	ggg	640
	Gly	Glu	Ar)	Gly	Gln	His	Gly	Pro	Lys	Gly	Glu	Lys	Gly	Tyr	Pro	Gly	
15		170	`				175					180				•	
	att	cca	cca	gal	ctt	cag	att	gca	ttc	atg	gct	tct	ctg	gca	acc	cac	688
	Ile	Pro	Pro	Glu	ne T	Gln	Ile	Ala	Phe	Met	Ala	Ser	Leu	Ala	Thr	His	
	185					190					195					200	
	ttc	agc	aat	cag	aac	a t	ggg	att	atc	ttc	agc	agt	gtt	gag	acc	aac	736
20	Phe	Ser	Asn	Gln	Asn	Ser	Sly	Ile	Ile	Phe	Ser	Ser	Val	Glu	Thr	Asn	
					205					210					215		
	att	gga	aac	ttc	ttg	atg	tca	\.ga	ctgg	tag	attt	gggg	cc c	cagt	atca	g	787
	Ile	Gly	Asn	Phe	Leu	Met	Ser		\								
				220													
25	gtgi	tgtai	ttt (cttc	accti	tc a	gcate	gatg	a ao	à ta	agga	tat	tαaα	gaa	atat	atgtgt	847

accttatgca caatggcaac acagtcttca gcatgtacag ctatgaaatg aagggcaaat 907 cagatacatc cagcaatcat gctgtgctga agctagccaa aggggatgag gtttggctgc 967 gaatgggcaa tggcgctctc catggggacc accaacgctt ctccaccttt gcaggattcc 1027 . tgctctttga aactaagtaa atatatgact agaatagctc cactttgggg aagacttgta 1087 5 gctgagctga tttgttacga tctgaggaac attaaagttg agggttttac attgctgtat 1147 tcaaaaaatt attggttgca atgttgttca cgctacaggt acaccaataa tgttggacaa 1207 ttcaggggct cagaagaatc aaccacaaaa tagtcttctc agatgacctt gactaatata 1267 ctcagcatct ttatcactct ttccttggca cctaaaagat aattctcctc tgacgcaggt 1327 tggaaatatt tttttctatc acagaagtca tttgcaaaga attttgacta ctctgctttt 1387 10 aatttaatac cagttttcag gaacccctga agttttaagt tcattattct ttataacatt 1447 tgagagaatc ggatgtagtg atatgacagg gctggggcaa gaacaggggc actagctgcc 1507 ttattagcta atttagtgcc ctccgtgttc agcttagcct ttgacccttt ccttttgatc 1567 cacaaaatac attaaaactc tgaattcaca tacaatgcta ttttaaagtc aatagatttt 1627 agctataaag tgcttgacca gtaatgtggt tgtaattttg tgtatgttcc cccacatcgc 1687 15 ccccaacttc ggatgtgggg tcaggaggtt gaggttcact attaacaaat gtcataaata 1747 tctcatagag gtacagtgcc aatagatatt caaatgttgc atgttgacca gagggatttt 1807 atatctgaag aacatacact attaataaat accttagaga aagattttga cctggcttta 1867 gataaaactg tggcaagaaa aatgtaatga gcaatatatg gaaataaaca cacctttgtt 1927

20 <210> 60

<211> 1419

<212> DNA

<213> Homo sapiens

<220>

25 <221> CDS

	<222	2> (1	L72).	. (11	.01)														
	<400)> 60)														٠		
	gaag	geged	caa g	gtgcg	cato	ig gg	gacgo	ctata	gca	atto	gtt	tgctgtcctt cctctccttc							
	gaag	gatga	aca a	aggco	ctaco	ca togtttotto otgootttgg							gccgtcaggc agttggttgg						
5	gaco	ccgct	tcc a	acco	ctcgg	jt to	ette	ctgca	a ata	cagt	gga	tacaatttgt c atg gct							
	,											Met Ala							
					-							1							
	act	ctg	agt	gtt	ata	ggt	tca	agt	tca	ctt	att	gcc	tat	gct	gta	ttc	225		
	Thr	Leu	Ser	Val	Ile	Gly	Ser	Ser	Ser	Leu	Ile	Ala	Tyr	Ala	Val	Phe			
10			5					10					15						
	cat	aat	ata	cag	aaa	tct	cca	gag	ata	aga	cca	ctt	ttt	tat	ctg	agc	273		
	His	Asn	Ile	Gln	Lys	Ser	Pro	Glu	Ile	Arg	Pro	Leu	Phe	Tyr	Leu	Ser			
		20					25					30							
	ttc	tgt	gac	ctg	ctc	ctg	gga	ctt	tgc	tgg	ctc	acg	gag	aca	ctt	ctc .	321		
15	Phe	Cys	Asp	Leu	Leu	Leu	Gly	Leu	Cys	Trp	Leu	Thr	Glu	Thr	Leu	Leu			
	35					40					45					50			
	tat	gga	gct	tca	gta	gca	aat	aag	gac	atc	atc	tgc	tat	aac	cta	caa	369		
	Tyr	Gly	Ala	Ser	Val	Ala	Asn	Lys	Asp	Ile	Ile	Cys	Tyr	Asn	Leu	Gln			
					55					60					65				
20	gca	gtt	gga	cag	ata	ttc	tac	att	tcc	tca	ttt	ċtc	tac	acc	gtc	aat	417		
	Ala	Val	Gly	Gln	Ile	Phe	Tyr	Ile	Ser	Ser	Phe	Leu	Tyr	Thr	Val	Asn			
				70					75					80					
	tac	atc	tgg	tat	ttg	tac	aca	gag	ctg	agg	atg	aaa	cac	acc	cag	agt	465		
	Tyr	Ile	Trp	Tyr	Leu	Tyr	Thr	Glu	Leu	Arg	Met	Lys	His	Thr	Gln	Ser			
25			85					90					95						

•	gga	cag	agc	aca	tct	cca	ctg	gtg	ata	gat	tat	act	tgt	cga	gtt	tgt	513
	Gly	Gln	Ser	Thr	Ser	Pro	Leu	Val	Ile	Asp	Tyr	Thr	Cys	Arg	Val	Cys	
		100			.*		105					110					
	caa	atg	gcc	ttt	gtt	ttc	tca	agg	tgt	atc	ttg	atg	cac	tca	cca	cca	561
5	Gln	Met	Ala	Phe	Val	Phe	Ser	Arg	Cys	Ile	Leu	Met	His	Ser	Pro	Pro	
	115					120					125					130	
	tca	gcc	atg	gct	gaa	ctt	cca	cct	tct	gcc	aac	aca	tct	gtc	tgt	agc	609
	Ser	Ala	Met	Ala	Glu	Leu	Pro	Pro	Ser	Ala	Asn	Thr	Ser	Val	Cys	Ser	
					135					140					145		
10	aca	ctt	tat	ttt	tat	ggt	atc	gcc	att	ttc	ctg	ggc	agc	ttt	gta	ctc	657·
	Thr	Leu	Tyr	Phe	Tyr	Gly	Ile	Ala	Ile	Phe	Leu	Gly	Ser	Phe	Val	Leu	
				150					155					160			
	agc	ctc	ctt	acc	att	atg	gtc	tta	ctt	atc	cga	gcc	cag	aca	ttg	tat	705
	Ser	Leu	Leu	Thr	Ile	Met	Val	Leu	Leu	Ile	Arg	Ala	Gln	Thr	Leu	Tyr	
15			165					170					175				
	aag	aag	ttt	gtg	aag	tca	act	ggc	ttt	ctg	ggg	agt	gaa	cag	tgg	gca	- 753
		Lys															
		180					185					190			-		
	gtg	att	cac	att	gtg	gac	caa	cgg	gtg	cgc	ttc	tac	cca	ata	acc	ttc	801
20		Ile													_	•	
	195					200		_		_	205	-4-				210	
	ttt	tgc	tac	taa	aac		act	atc	att	cta		ato	ata	220	cta		040
																	849
	rne.	Cys	Cys	ıτb		ETO	ATG	val	тте		Met	TTE	тте	гуѕ		rnr	
0.5					215					220					225		
25	aag	cca	cag	gac	acc	aag	ctt	cac	atg	gcc	ctt	tat	gtt	ctc	cag	gct	897

140/346

	Lys	Pro	Gln	Asp	Thr	Lys	Leu	His	Met	Ala	Leu	Tyr	Val	Leu	Gln	Ala	
				230				·	235					240			
•	cta	acg	gca	aca	tct	cag	ggt	cta	ctc	aac	tgt	gga	gta	tat	ggc	tgg	945
	Leu	Thr	Ala	Thr	Ser	Gln	Gly	Leu	Leu	Asn	Cys	Gly	Val	Tyr	Gly	Trp	
5			245					250					255				
	acg	cag	cac	aaa	ttc	cac	caa	cta	aag	cag	gag	gct	cgg	cgt	gat	gca	993
	Thr	Gln	His	Lys	Phe	His	Gln	Leu	Lys	Gln	Glu	Ala	Arg	Arg	Asp	Ala	
		260					265					270					
	gat	acc	cag	aca	cca	tta	tta	tgc	tca	cag	aag	aga	ttc	tat	agc	agg	1041
10	Asp	Thr	Gln	Thr	Pro	Leu	Leu	Cys	Ser	Gln	Lys	Arg	Phe	Tyr	Ser	Arg	
	275	'	•			280					285					290	
	ggc	tta	aat	tca	ctg	gaa	tcc	acc	ctg	act	ttt	cct	gcċ	agt	act	tct	1089
	Gly	Leu	Asn	Ser	Leu	Glu	Ser	Thr	Leu	Thr	Phe	Pro	Ala	Ser	Thr	Ser	
				•	295					300					305		
15	acc	att	ttt	tgaa	aacta	aca a	ataci	tgga	ac a	tcca	ggaa	c tg	gagt	tatt			1138
	Thr	Ile	Phe														
	cta	cgcta	aat (ggat	tigga	aa g	aatg	ttgg	g aa	agga	catc	tta	aatc	ttt	tcta	actatg	1198
	ccci	taaa	ctg (caga	actc	aa a	ggaa	atat	a gt	gcca	ttgt	tag	tagt	cat	tcta	gatgaa	1258
	ttg	ggagi	tat (ctct	ccag	tt a	ttcc	caga	t tc	acta	gtga	tcc	ttaa	agt (ctct	attcag	1318
20	gga	gagga	aag a	acac	tttc	ca t	ctca	gaga	t ag	actc	gtgt	tac	cttg	atg	gata	ttggat	1378
	ttg	tcta	agt (ctct	tcta	ga a	aaaa	taaa	t tc	taga [.]	ttat	t					1419

<210> 61

<211> 599

25 <212> PRT

<213> Homo sapiens

<1	~ 0.0	61

	<400	0> 6	l													
	Met	Pro	Ser	Ser	Leu	Pro	Gly	Ser	Gln	Val	Pro	His	Pro	Thr	Leu	Asp
5	1				5					10					15	
	Ala	Val	Asp	Leu	Val	Glu	Lys	Thr	Leu	Arg	Asn	Glu	Gly	Thr	Ser	Ser
				20					25.					30		
	Ser	Ala	Pro	Val	Leu	Glu	Glu	Gly	Asp	Thr	Asp	Pro	Trp	Thr	Leu	Pro
			35					40					45			
10	Gln	Leu	Lys	Asp	Thr	Ser	Gln	Pro	Trp	Lys	Glu	Leu	Arg	Val	Ala	Gly
		50					55					60				
	Arg	Leu	Arg	Arg	Val	Ala	Gly	Ser	Val	Leu	Lys	Ala	Cys	Gly	Leu	Leu
	65					70					75					80
	Gly	Ser	Leu	Tyr	Phe	Phe	Ile	Cys	Ser	Leu	Asp	Val	Leu	Ser	Ser	Ala
15					85					90					95	
•	Phe	Gln	Leu	Leu	Gly	Ser	Lys	Val	Ala	Gly	Asp	Ile	Phe	Lys	Asp	Asn
				100					105					110		
	Val	Val	Leu	Ser	Asn	Pro	Val	Ala	Gly	Leu	Val	Ile	Gly.	Val	Leu	Val
			115					120					125			
20	Thr	Ala	Leu	Val	Gln	Ser	Ser	Ser	Thr	Ser	Ser	Ser	Ile	Val	Val	Ser
		130					135					140				
	Met	Val	Ala	Ala	Lys	Leu	Leu	Thr	Val	Arg	Val	Ser	Val	Pro	Ile	Ile
	145					150					155					160
	Met	Gly	Val	Asn	Val	Gly	Thr	Ser	Ile	Thr	Ser	Thr	Leu	Val	Ser	Met
25					165					170					175	

	Ala	Gln	Ser	Gly	Asp	Arg	Asp	Glu	Phe	Gln	Arg	Ala	Phe	Ser	Gly	Ser
				180					185					190		
	Ala	Val	His	Gly	Ile	Phe	Asn	Trp	Leu	Thr	Val	Leu	Val	Leu	Leu	Pro
			195					200					205			
5	Leu	Glu	Ser	Ala	Thr	Ala	Leu	Leu	Glu	Arg	Leu	Ser	Glu	Leu	Ala	Leu
		210					215					220				
	Gly	Ala	Ala	Ser	Leu	Thr	Pro	Arg	Ala	Gln	Ala	Pro	Asp	Ile	Leu	Lys
	225	٠				230					235					240
	Val	Leu	Thr	Lys	Pro	Leu	Thr	His	Leu	Ile	Val	Gln	Leu	Asp	Ser	Asp
10					245					250					255	
	Met	Ile	Met	Ser	Ser	'Ala	Thr	Gly	Asn	Ala	Thr	Asn	Ser	Ser	Leu	Ile
				260					265					270		
	Lys	His	Trp	Суз	Gly	Thr	Thr	Gly	Gln	Pro	Thr	Gln	Glu	Asn	Ser	Ser
			275					280					2,85			
15	Cys	Gly	Ala	Phe	Gly	Pro	Cys	Thr	Glu	Lys	Asn	Ser	Thr	Ala	Pro	Ala
		290					295					300				
	Asp	Arg	Leu	Pro	Cys	Arg	His	Leu	Phe	Ala	Gly	Thr	Glu	Leu	Thr	Asp
	305					310					315					320
	Leu	Ala	Val	Gly	Суз	Ile	Leu	Leu	Ala	Gly	Ser	Leu	Leu	Val	Leu	Cys
20					325				•	330				. •	335	,
	Gly	Cys	Leu	Val	Leu	Ile	Val	Lys	Leu	Leu	Asn	Ser	Val	Leu	Arg	Gly
				340					345					350		
	Arg	Val	Ala	Gln	Val	Val	Arg	Thr	Val	Ile	Asn	Ala	Asp	Phe	Pro	Phe
		•	355					360					365			
25	Pro	Leu	Gly	Trp	Leu	Gly	Gly	Tyr	Leu	Ala	Val	Leu	Ala	Gly	Ala	Gly
														_		-

		370					375					380				
	Leu	Thr	Phe	Ala	Leu	Gln	Ser	Ser	Ser	Val	Phe	Thr	Ala	Ala	Val	Val
	385					390					395					400
	Pro	Leu	Met	Gly	Val	Gly	Val	Ile	Ser	Leu	Asp	Arg	Ala	Tyr	Pro	Leu
5					405					410					415	
	Leu	Leu	Gly	Ser	Asn	Ile	Gly	Thr	Thr	Thr	Thr	Ala	Leu	Leu	Ala	Ala
				420					425					430		
	Leu	Ala	Ser	Pro	Ala	Asp	Arg	Met	Leu	Ser	Ala	Leu	Gln	Val	Ala	Leu
-			435					440					445			
10	Ile	His	Phe	Phe	Phe	Asn	Leu	Ala	Gly	Ile	Leu	Leu	Trp	Tyr	Leu	Val
		450					455					460		•		
	Pro	Ala	Leu	Arg	Leu	Pro	Ile	Pro	Leu	Ala	Arg	His	Phe	Gly	Val	Val
	465					470					475					480
	Thr	Ala	Arg	Tyr	Arg	Trp	Val	Ala	Gly	Val	Tyr	Leu	Leu	Leu	Gly	Phe
15					485					490					495	
	Leu	Leu	Leu	Pro	Leu	Ala	Ala	Phe	Gly	Leu	Ser	Leu	Ala	Gly	Gly	Met
				500		٠			505					510		
	Val	Leu	Ala	Ala	Val	Gly	Gly	Pro	Leu	Val	Gly	Leu	Val	Leu	Leu	Val
			515					520					525			
20	Ile	Leu	Val	Thr	Val	Leu	Gln	Arg	Arg	Arg	Pro	Ala	Trp	Leu	Pro	Val
		530					535					540	•	-		
	Arg	Leu	Arg	Ser	Trp	Ala	Trp	Leu	Pro	Val	Trp	Leu	His	Ser	Leu	Glu
	545				٠	550					555					560
	Pro	Trp	Asp	Arg	Leu	Val	Thr	Arg	Cys	Cys	Pro	Cys	Asn	Val	Cys	Ser
25					565					570					575	

144/346

Pro Pro Lys Ala Thr Thr Lys Glu Ala Tyr Cys Tyr Glu Asn Pro Glu
580 585 590

Ile Leu Ala Ser Gln Gln Leu

595

<211> 81

<210> 62

<212> PRT

<213> Homo sapiens

10

5

<400> 62

Met Asp Gly Gln Pro Ile Pro Ser Ser Leu Val Pro Leu Gly Asn

1 5 10 15

Glu Ser Ala Asp Ser Ser Met Ser Leu Glu Gln Lys Met Thr Phe Val

15 20 25 30

Phe Val Ile Leu Leu Phe Ile Phe Leu Gly Ile Leu Ile Val Arg Cys

35 40 45

Phe Arg Ile Leu Leu Asp Pro Tyr Arg Ser Met Pro Thr Ser Thr Trp

50 55 60

Ala Asp Gly Leu Glu Gly Leu Glu Lys Gly Gln Phe Asp His Ala Leu

65 70 75 80

_ -

Ala

25 <210> 63

<211> 654

145/346

		•									-					
	<212	2> PI	RT													
	<21	3> Ho	omo s	sapie	ens								٠.			
	•															
5	<400	0> 63	3													
	Mat	7\1 =	Pro	Tue	T.170	T 011	50×	C	T	7	0	T	T	T	D	•
		Ala	FIO	пуз		пеп	ser	Cys	ren	Arg	Ser	ьeu	ьeu	Leu	Pro	ren
	1				5					10					15	
	Ser	Leu	Thr	Leu	Leu	Leu	Pro	Gln	Ala	Asp	Thr	Arg	Ser	Phe	Val	Val
				20					25					30		
10	Asp	Arg	Gly	His	Asp	Arg	Phe	Leu	Leu	Asp	Gly	Ala	Pro	Phe	Arg	Tyr
			35	•				40					45			
•	Val	Ser	Gly	Ser	Leu	His	Tyr	Phe	Arg	Val	Pro	Ara	Val	Leu	Trp	Ala
		50					- 55		,			60				
					_			•							•	
	Asp	Arg	Leu	Leu	Lys	Met	Arg	Trp	Ser	Gly	Leu	Asn	Ala	Ile	Gln	Phe
15	65					70					75					80
	Tyr	Val	Pro	Trp	Asn	Tyr	His	Glu	Pro	Gln	Pro	Gly	Val	Tyr	Asn	Phe
					85					90					95	
	Asn	Gly	Ser	Arg	Asp	Leu	Ile	Ala	Phe	Leu	Asn	Glu	Ala	Ala	Leu	Ala
				100			,		105					110		
20	Asn	Leu	T.e.i		TIA	T.011	λrα	Pro		Dro	m	Tlo	C		C1	Massa
	-10	Dou	•	Val	110	neu	Arg		СТУ	FLO	ıyı	TTE		ATA	GIU	Trp
			115					120					125			
	Glu	Met	Gly	Gly	Leu	Pro	Ser	Trp	Leu	Leu	Arg	Lys	Pro	Glu	Ile	His
		130			÷		135					140				
	Leu	Arg	Thr	Ser	Asp	Pro	Asp	Phe	Leu	Ala	Ala	Val	Asp	Ser	Trp	Phe
25	145					150					155					160

160

155

	ГЛS	Val	Leu	Leu	Pro	Lys	Ile	Tyr	Pro	Trp	Leu	Tyr	His	Asn	Gly	Gly
					165					170					175	
	Asn	Ile	Ile	Ser	Ile	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Arg	Ala
				180					185					190	•	
5	Суз	Asp	Phe	Ser	Tyr	Met	Arg	His	Leu	Ala	Gly	Leu	Phe	Arg	Ala	Leu
			195					200					205			
	Leu	Gly	Glu	Lys	Ile	Leu	Leu	Phe	Thr	Thr	Asp	Gly	Pro	Glu	Gly	Leu
		210					215					220				
	Lys	Cys	Gly	Ser	Leu	Arg	Gly	Leu	Tyr	Thr	Thr	Val	Asp	Phe	Gly	Pro
10	225					230					235					240
	Ala	Asp	Asn	Met	Thr	Lys	Ile	Phe	Thr	Leu	Leu	Arg	Lys	Tyr	Glu	Pro
					245					250					255	
	His	Gly	Pro	Leu	Val	Asn	Ser	Glu	Tyr	Tyr	Thr	Gly	Trp	Leu	Asp	туг
				260					265					270		
15	Trp	Gly	Gln	Asn	His	Ser	Thr	Arg	Ser	Val	Ser	Ala	Val	Thr	Lys	Gly
			275					280					285			
	Leu	Glu	Asn	Met	Leu	Lys	Leu	Gly	Ala	Ser	Val	Asn	Met	Tyr	Met	Phe
		290					295					300				
	His	Gly	Gly	Thr	Asn	Phe	Gly	Tyr	Trp	Asn	Gly	Ala	Asp	Lys	Lys	Gly
20	305					310					315					320
	Arg	Phe	Leu	Pro	Ile	Thr	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Ile	Ser
					325					330					335	
	Glu	Ala	Gly	Asp	Pro	Thr	Pro	Lys	Leu	Phe	Ala	Leu	Arg	Asp	Val	Ile
				340				-	345				_	350		
25	Ser	Lys	Phe		Glu	Val	Pro	Leu		Pro	Leu	Pro	Pro		Ser	Pro
		-							1							

			355					360					365			
	Lys	Met	Met	Leu	Gly	Pro	Val	Thr	Leu	His	Leu	Val	Gly	His	Leu	Leu
		370					375					380	•			
	Ala	Phe	Leu	Asp	Leu	Leu	Cys	Pro	Arg	Gly	Pro	Ile	His	Ser	Ile	Leu
5	385					390					395					400
	Pro	Met	Thr	Phe	Glu	Ala	Val	Lys	Gln	Asp	His	Gly	Phe	Met	Leu	Tyr
					405					410					415	
	Arg	Thr	Tyr	Met	Thr	His	Thr	Ile	Phe	Gļu	Pro	Thr	Pro	Phe	Trp	Val
				420					425					430		•
10	Pro	Asn	Asn	Gly	Val	His	Asp	Arg	Ala	Tyr	Val	Met	Val	Asp	Gly	Val
			435					440					445			
	Phe	Gln	Gly	Val	Val	Glu	Arg	Asn	Met	Arg	Asp	Lys	Leu	Phe	Leu	Thr
		450		÷			455					460				
	Gly	Lys	Leu	Gly	Ser	Lys	Leu	Asp	Ile	Leu	Val	Glu	Asņ	Met	Gly	Arg
15	465					470					475					480
	Leu	Ser	Phe	Gly	Ser	Asn	Ser	Ser	Asp	Phe	Lys	Gly	Leu	Leu	Lys	Pro
					485					490					495	
	Pro	Ile	Leu	Gly	Gln	Thr	Ile	Leu	Thr	Gln	Trp	Met	Met	Phe	Pro	Leu
				500					505					510		
20	Lys	Ile	Asp	Asn	Leu	Val	Lys	Trp	Trp	Phe	Pro	Leu	Gln	Leu	Pro	Lys
			515					520					525			
	Trp	Pro	Tyr	Pro	Gln	Ala	Pro	Ser	Gly	Pro	Thr	Phe	Tyr	Ser	Lys	Thr
		530					535					540				
	Phe	Pro	Ile	Leu	Gly	Ser	Val	Gly	Asp	Thr	Phe	Leu	Tyr	Leu	Pro	Gly

148/346

Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 640 -Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His <210> 64 <211> 390 <212> PRT <213> Homo sapiens <400> 64 Met Gly Met Asp Asp Cys Asp Ser Phe Phe Pro Gly Pro Leu Val Ala Ile Ile Cys Asp Ile Leu Gly Glu Lys Thr Thr Ser Ile Leu Gly Ala Phe Val Val Thr Gly Gly Tyr Leu Ile Ser Ser Trp Ala Thr Ser Ile

	Pro	Phe	Leu	Cys	Val	Thr	Met	Gly	Leu	Leu	Pro	Gly	Leu	Gly	Ser	Ala
		50					55					60				
	Phe	Leu	Tyr	Gln	Val	Ala	Ala	Val	Val	Thr	Thr	Lys	Tyr	Phe	Lys	Lys
	65					70					75					80
5	Arg	Leu	Ala	Leu	Ser	Thr	Ala	Ile	Ala	Arg	Ser	Gly	Met	Gly	Leu	Thr
	,				85					90			•		95	
	Phe	Leu	Leu	Ala	Pro	Phe	Thr	Lys	Phe	Leu	Ile	Asp	Leu	Tyr	Asp	Trp
				100					105					110		
	Thr	Gly	Ala	Leu	Ile	Leu	Phe	Gly	Ala	Ile	Ala	Leu	Asn	Leu	۷al	Pro
LO			115					120					125			
	Ser	Ser	Met	Leu	Leu	Arg	Pro	Ile	His	Ile	Lys	Ser	Glu	Asn	Asn	Ser
		130					135					140	•			
	Gly	Ile	Lys	Asp	Lys	Gly	Ser	Ser	Leu	Ser	Ala	His	Gly	Pro	Glu	Ala
	145					150					155					160
L5	His	Ala	Thr	Glu	Thr	His	Cys	His	Glu	Thr	Glu	Glu	Ser	Thr	Ile	Lys
					165					170					175	
	Asp	Ser	Thr	Thr	Gln	Lys	Ala	Gly	Leu	Pro	Ser	Lys	Asn	Leu	Thr	Val
				180					185					190		
	Ser	Gln	Asn	Gln	Ser	Glu	Glu	Phe	Tyr	Asn	Gly	Pro	Asn	Arg	Asn	Arg
20			195					200					205			
	Leu	Leu	Leu	Lys	Ser	Asp	Glu	Glu	Ser	Asp	Lys	Val	Ile	Ser	Trp	Ser
		210					215					220				
	Cys	Lys	Gln	Leu	Phe	Asp	Ile	Ser	Leu	Phe	Arg	Asn	Pro	Phe	Phe	Туг
	225					230					235					240
25	Ile	Phe	Thr	Trp	Ser	Phe	Leu	Leu	Ser	Gln	T.e.1	Δla	ጥህ <u>ዮ</u>	Phe	Tle	Pro

150/346

Thr Phe His Leu Val Ala Arg Ala Lys Thr Leu Gly Ile Asp Ile Met Asp Ala Ser Tyr Leu Val Ser Val Ala Gly Ile Leu Glu Thr Val Ser Gln Ile Ile Ser Gly Trp Val Ala Asp Gln Asn Trp Ile Lys Lys Tyr His Tyr His Lys Ser Tyr Leu Ile Leu Cys Gly Ile Thr Asn Leu Leu Ala Pro Leu Ala Thr Thr Phe Pro Leu Leu Met Thr Tyr Thr Ile Cys Phe Ala Ile Phe Ala Gly Gly Tyr Leu Ala Leu Ile Leu Pro Val Leu Val Asp Leu Cys Arg Asn Ser Thr Val Asn Arg Phe Leu Gly Leu Ala Ser Phe Phe Ala Gly Met Ala Val Leu Ser Gly Pro Pro Ile Ala Gly Asn Thr Phe Thr Thr Phe <210> 65 <211> 452 <212> PRT <213> Homo sapiens

	<400	> 65	i													
	Met (Glu	Leu	Ala	Leu	Arg	Arg	Ser	Pro	Val	Pro	Arg	Trp	Leu	Leu	Leu
	. 1				5					10					15	
	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp	Trp	Pro
5				20					25					30		
	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val	Arg	Lys	Asp
			35					40					45			
	Ala	Tyr	Met	Phe	Trp	Trp	Leu	Tyr	Tyr	Ala	Thr	Asn	Ser	Cys	Lys	Asn
		50					55					60		٠		
10	Phe	Ser	Glu	Leu	Pro	Leu	Val	Met	Trp	Leu	Gln	Gly	Gly	Pro	Gly	Gly
	65					70					75					80
	Ser	Ser	Thr	Gly	Phe	Gly	Asn	Phe	Glu	Glu	Ile	Gly	Pro	Leu	Asp	Ser
					85					90					95	
	Asp	Leu	Lys	Pro	Arg	Lys	Thr	Thr	Trp	Leu	Gln	Ala	Ala	Ser	Leu	Leu
15				100					105					110		
	Phe	Val	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser	Tyr	Val	Asn	Gly	Ser
			115					120					125			,
	Gly	Ala	Tyr	Ala	Lys	Asp	Leu	Ala	Met	Val	Ala	Ser	Asp	Met	Met	Val
		130					135					140				
20	Leu	Leu	Lys	Thr	.Phe	Phe	Ser	Cys	His	Lys	Glu	Phe	Gln	Thr	Val	Pro
	145					150				•	.155					160
	Phe	Tyr	Ile	Phe	Ser	Glu	Ser	Tyr	Gly	Gly	Lys	Met	Ala	Ala	Gly	Ile
					165					170					175	
	Gly	Leu	Glu	Leu	Tyr	Lys	Ala	Ile	Gln	Arg	Gly	Thr	Ile	Lys	Cys	Asn
25				180					185					190	ı	

		Phe	Ala	Gly	Val	Ala	Leu	Gly	Asp	Ser	Trp	Ile	Ser	Pro	Val	Asp	Sei
				195					200					205			
		Val	Leu	Ser	Trp	Gly	Pro	Tyr	Leu	Tyr	Ser	Met	Ser	Leu	Leu	Glu	Asp
	•		210					215					220				
	5	Lys	Gly	Leu	Ala	Glu	Val	Ser	Lys	Val	Ala	Glu	Gln	Val	Leu	Asn	Ala
		225					230	•				235					240
		Val	Asn	Lys	Gly	Leu	Tyr	Arg	Glu	Ala	Thr	Glu	Leu	Trp	Gly	Lys	Ala
						245					250					255	
		Glu	Met	Ile	Ile	Glu	Gln	Asn	Thr	Asp	Gly	Val	Asn	Phe	Tyr	Asn	Ile
	10				260					265		•			270		
		Leu	Thr	Lys	Ser	Thr	Pro	Thr	Ser	Thr	Met	Glu	Ser	Ser	Leu	Glu	Phe
				275					280					285			
		Thr	Gln	Ser	His	Leu	Val	Cys	Leu	Cys	Gln	Arg	His	Val	Arg	His	Leu
			290					295					300				
	15	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly	Pro	Ile	Arg	Lys	Lys
		305					310					315					320
		Leu	Lys	Ile	Ile	Pro	Glu	Asp	Gln	Ser	Trp	Gly	Gly	Gln	Ala	Thr	Asr
						325					330					335	
		Val	Phe	Val	Asn	Met	Glu	Glu	Asp	Phe	Met	Lys	Pro	Val	Ile	Ser	Ile
	20				340					345					350.	•	
		Val	Asp	Glu	Leu	Leu	Glu	Ala	Gly	Ile	Asn	Val	Thr	Val	Tyr	Asn	Gly
				355					360					365			
		Gln	Leu	Asp	Leu	Ile	Val	Asp	Thr	Met	Gly	Gln	Glu	Ala	Trp	Val	Arg
			370					375					380				
٠	25	Lys	Leu	Lys	Trp	Pro	Glu	Leu	Pro	Lys	Phe	Ser	Gln	Leu	Lys	Trp	Lys

153/346

Ala Leu Tyr Ser Asp Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln Gln Glu <210> 66 <211> 490 <212> PRT <213> Homo sapiens <400> 66 Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gin Ala Leu Trp Pro Gly Pro Gly Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly

	65					70					75					80
	Pro	Gly	Pro	Gly	Gly	Gly	Ser	Lys	Asp	Leu	Leu	Phe	Trp	Val	Ala	Leu
					85					90					95	
	Glu	Arg	Arg	Arg	Ser	His	Cys	Thr	Leu	Glu	Asn	Glu	Pro	Leu	Arg	Gly
5				100					105					110		
	Phe	Ser	Trp	Leu	Ser	Ser	Asp	Pro	Gly	Gly	Leu	Glu	Ser	Asp	Thr	Leu
			115					120					125			
	Gln	Trp	Val	Glu	Glu	Pro	Gln	Arg	Ser	Cys	Thr	Ala	Arg	Arg	Cys	Ala
		130					135					140				
10	Val	Leu	Gln	Ala	Thr	Gly	Gly	Val	Glu	Pro	Ala	Gly	Trp	Lys	Glu	Met
	145					150					155	•				160
	Arg	Cys	His	Leu	Arg	Ala	Asn	Gly	Tyr	Leu	Cys	Lys	Tyr	Gln	Phe	Glu
					165					170					175	•
	Val	Leu	Суѕ	Pro	Ala	Pro	Arg	Pro	Gly	Ala	Ala	Ser	Asn	Leu	Ser	Туг
15				180					185					190		
	Arg	Ala	Pro	Phe	Gln	Leu	His	Ser	Ala	Ala	Leu	Asp	Phe	Ser	Pro	Pro
			195					200					205			
	Gly	Thr	Glu	Val	Ser	Ala	Leu	Cys	Arg	Gly	Gln	Leu	Pro	Ile	Ser	Val
		210					215					220				
20	Thr	Cys	Ile	Ala	Asp	Glu	Ile	Gly	Ala	Arg	Trp	Asp	Lys	Leu	Ser	Gl
	225					230					235					240
	Asp	Val	Leu	Cys	Pro	Cys	Pro	Gly	Arg	Tyr	Leu	Arg	Ala	Gly	Lys	Cys
					245					250					255	
	Ala	Glu	Leu	Pro	Asn	Cys	Leu	Asp	Asp	Leu	Gly	Gly	Phe	Ala	Cys	Glu
25				260					265					270		

	Суз	Ala	Thr	Gly	Phe	Glu	Leu	Gly	Lys	qzA	Gly	Arg	Ser	Cys	Val	Thr
			275					280					285			
	Ser	Gly	Glu	Gly	Gln	Pro	Thr	Leu	Gly	Gly	Thr	Gly	Val	Pro	Thr	Arç
		290					295					300				
5	Arg	Pro	Pro	Ala	Thr	Ala	Thr	Ser	Pro	Val	Pro	Gln	Arg	Thr	Trp	Pro
	305					310					315					320
	Ile	Arg	Val	Asp	Glu	Lys	Leu	Gly	Glu	Thr	Pro	Leu	Val	Pro	Glu	Glr
					325					330					335	
	Asp	Asn	Ser	Val	Thr	Ser	Ile	Pro	Glu	Ile	Pro	Arg	Trp	Gly	Ser	Glr
10				340					345					350		
	Ser	Thr	Met	Ser	Thr	Leu	Gln	Met	Ser	Leu	Gln	Ala	Glu	Ser	Lys	Ala
			355					360					365			
	Thr	Ile	Thr	Pro	Ser	Gly	Ser	Val	Ile	Ser	Lys	Phe	Asn	Ser	Thr	Thi
		370					375					380			•	
15	Ser	Ser	Ala	Thr	Pro	Gln	Ala	Phe	Asp	Ser	Ser	Ser	Ala	Val	Val	Phe
	385					390					395					400
	Ile	Phe	Val	Ser	Thr	Ala	Val	Val	Val	Leu	Val	Ile	Leu	Thr	Met	Thi
					405					410					415	
	Val	Leu	Gly	Leu	Val	Lys	Leu	Cys	Phe	His	Glu	Ser	Pro	Ser	Ser	Glr
20				420					425		•			430		
	Pro	Arg	Lys	Glu	Ser	Met	Gly	Pro	Pro	Gly	Leu	Glu	Ser	Asp	Pro	Glu
			435					440					445			
	Pro	Ala	Ala	Leu	Gly	Ser	Ser	Ser	Ala	His	Cys	Thr	Asn	Asn	Gly	Va]
		450					455					460				
25	Lys	Val	Gly	Asp	Cys	Asp	Leu	Arg	Asp	Arg	Ala	Glu	Gly	Ala	Leu	Let

156/346

Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala <210> 67 <211> 392 <212> PRT <213> Homo sapiens <400> 67 Met Gln Val Asn Thr Thr Lys Phe Met Leu Leu Tyr Ala Trp Tyr Ser Trp Pro Asn Val Val Leu Cys Phe Phe Gly Gly Phe Leu Ile Asp Arg Val Phe Gly Ile Arg Trp Gly Thr Ile Ile Phe Ser Cys Phe Val Cys Ile Gly Gln Val Val Phe Ala Leu Gly Gly Ile Phe Asn Ala Phe Trp Leu Met Glu Phe Gly Arg Phe Val Phe Gly Ile Gly Glu Ser Leu Ala Val Ala Gln Asn Thr Tyr Ala Val Ser Trp Phe Lys Gly Lys Glu Leu Asn Leu Val Phe Gly Leu Gln Leu Ser Met Ala Arg Ile Gly Ser Thr Val Asn Met Asn Leu Met Gly Trp Leu Tyr Ser Lys Ile Glu Ala

			115					120					125				
	Leu	Leu	Gly	Ser	Ala	Gly	His	Thr	Thr	Leu	Gly	Ile	Thr	Leu	Met	Ile	
		130				•	135					140					
	Gly	Gly	Ile	Thr	Cys	Ile	Leu	Ser	Leu	Ile	Cys	Ala	Leu	Ala	Leu	Ala	
5	145					150					155					160	
	Tyr	Leu	Asp	Gln	Arg	Ala	Glu	Arg	Ile	Leu	His	Lys	Glu	Gln	Gly	Lys	
					165	-				170					175.		
	Thr	Gly	Glu	Val	Ile	Lys	Leu	Thr	Asp	Val	Lys	Asp	Phe	Ser	Leu	Pro	
				180					185				•	190			
LO	Leu	Trp	Leu	Ile	Phe	Ile	Ile	Cys	Val	Суз	Tyr	Tyr	Val	Ala	Val	Phe	
			195					200					205				
	Pro	Phe	Ile	Gly	Leu	Gly	Lys	Val	Phe	Phe	Thr	Glu	Lys	Phe	Gly	Phe	
		210					215					220					
	Ser	Ser	Gln	Ala	Ala	Ser	Ala	Ile	Asn	Ser	Val	Val	Tyr	Val	Ile	Ser	
15	225					230					235					240 -	
	Ala	Pro	Met	Ser	Pro	Val	Phe	Gly	Leu	Leu	Val	Asp	Lys	Thr	Gly	Lys	
					245					250					255		
•	Asn	Ile	Ile	Trp	Val	Leu	Cys	Ala	Val	Ala	Ala	Thr	Leu	Val	Ser	His	
				260					265					270			
20	Met	Met	Leu	Ala	Phe	Thr	Met	Trp	Asn	Pro	Trp	Ile	Ala	Met	Cys	Leu	
			275					280					285				
	Leu	Gly	Leu	Ser	Tyr	Ser	Leu	Leu	Ala	Cys	Ala	Leu	Trp	Pro	Met	Val	
		290					295					300					
	Ala	Phe	Val	Val	Pro	Glu	His	Gln	Leu	Gly	Thr	Ala	Tyr	Gly	Phe	Met	
25	305					310					315	•				320	

	Gln	Ser	Ile	Gln	Asn	Leu	Gly	Leu	Ala	Ile	Ile	Ser	Ile	Ile	Ala	Gly
					325					330					335	
	Met	Ile	Leu	Asp	Ser	Arg	Gly	Tyr	Leu	Phe	Leu	Glu	Val	Phe	Phe	Ile
				340					345					350		
5	Ala	Cys	Val	Ser	Leu	Ser	Leu	Leu	Ser	Val	Val	Leu	Leu	Tyr	Leu	Val
			355					360					365			
•	Asn	Arg	Ala	Gln	Gly	Gly	Asn	Leu	Asn	Tyr	Ser	Ala	Arg	Gln	Arg	Glu
		370					375					380				
	Glu	Ile	Lys	Phe	Ser	His	Thr	Glu								
10	385			•		390										
	<210	D> 68	3													
	<21	1> 53	38													
	<212	2> PI	RT													
15	<213	3> Ho	omo s	sapie	ens											
	<400	O> 68	3													
	Met	Gly	Суѕ	Leu	Trp	Gly	Leu	Ala	Leu	Pro	Leu [.]	Phe	Phe	Phe	Cys	Trp
	1				5					10					15	
20	Glu	Val	Gly	Val	Ser	Gly	Ser	Ser	Ala	Gly	Pro	Ser	Thr	Arg	Arg	Ala
				20					25					30		
	Asp	Thr	Ala	Met	Thr	Thr	Asp	Asp	Thr	Glu	Val	Pro	Ala	Met	Thr	Leu
			35					40					45			
	Ala	Pro	Gly	His	Ala	Ala	Leu	Glu	Thr	Gln	Thr	Leu	Ser	Ala	Glu	Thr
25		50			•		55					60				

	Ser	Ser	Arg	Ala	Ser	Thr	Pro	Ala	Gly	Pro	Ile	Pro	Glu	Ala	Glu	Thr
	65					70					75					80
	Arg	Gly	Ala	Lys	Arg	Ile	Ser	Pro	Ala	Arg	Glu	Thr	Arg	Ser	Phe	Thr
					85					90					95	
5	Lys	Thr	Ser	Pro	Asn	Phe	Met	Val	Leu	Ile	Ala	Thr	Ser	Val	Glu	Thr
				100					105	•				110		
	Ser	Ala	Ala	Ser	Gly	Ser	Pro	Glu	Gly	Ala	Gly	Met	Thr	Thr	Val	Gln
			115					120					125			
	Thr	Ile	Thr	Gly	Ser	Asp	Pro	Glu	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys
10		130					135					140				
	Thr	Asp	Asp	Ser	Ser	Glu	Glu	Ala	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu
	145					150					155					160
	Thr	Leu	Ala	His	Thr	Ser	Thr	Glu	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser
					165					170					175	
15	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala
				180					185					190		•
	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro
			195					200					205			
	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val
20		210	_				215					220			•	
	Ile	Thr	Pro	Ser	Trp	Ser	Pro	Gly	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu
•	225					230					235					240
	Ala	Leu	Val	Thr	Val	Thr	Asn	Ile	Glu	Val	Ile	Asn	Cys	Ser	Ile	Thr
					245					250					255	
25	Glu	Ile	Glu	Thr	Thr	Thr	Ser	Ser	Ile	Pro	Glv	Ala	Ser	Asp	Ile	Asr

				260					265					270		
	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	Ala	Ser	Ser	Thr	Ser	Asp	Pro	Pro
			275					280					285			
	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	Lys	Pro	His	Ile	Thr	Glu	Val	Thr
5		290					295	-				300				
	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	Ala	Gly	Thr	Thr	Glu	Ser	Ala	Ala
	305					310					315					320
	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	Leu	Pro	Thr	Asn	Ser	Ala	Thr	Glu
					325					330					335	
10	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	Thr	Thr	Leu	Ser	Gly	Ala	Leu	Val
				340					345					350		
	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu	Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu
			355					360					365			
	Thr	Pro	Ser	Tyr	Val	Lys	Val	Ser	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu
15		370					375					380				
	Ala	Gly	Ser	Ala	Val	Gly	Lys	Thr	Thr	Ser	Phe	Ala	Gly	Ser	Ser	Ala
	385					390					395					400
	Ser	Ser	Tyr	Ser	Pro	Ser	Glu	Ala	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser
					405					410					415	
20	Glu	Thr	Pro	Thr	Met	Asp	Ile	Ala	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser
				420					425					430		
	Arg	Asp	Pro	Leu	Pro	Ser	Val	Pro	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg
			435					440		•			445			
	Gly	Thr	Asn	Ser	Thr	Leu	Ala	Lys	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr
25		450					455					460				

161/346

Met Lys Pro Pro Thr Ala Thr Pro Thr Thr Ala Arg Thr Arg Pro Thr Thr Asp Val Ser Ala Gly Glu Asn Gly Gly Phe Leu Leu Leu Arg Leu Ser Val Ala Ser Pro Glu Asp Leu Thr Asp Pro Arg Val Ala Glu Arg Leu Met Gln Gln Leu His Arg Glu Leu His Ala His Ala Pro His Phe Gln Val Ser Leu Leu Arg Val Arg Arg Gly <210> 69 . <211> 102 <212> PRT <213> Homo sapiens <400> 69 Met Glu Ala Ala Leu Leu Gly Leu Cys Asn Trp Ser Thr Leu Gly Val Cys Ala Ala Leu Lys Leu Pro Gln Ile Ser Ala Val Leu Ala Ala Arg Ser Ala Arg Gly Leu Ser Leu Pro Ser Leu Leu Leu Glu Leu Ala Gly Phe Leu Val Phe Leu Arg Tyr Gln Cys Tyr Tyr Gly Tyr Pro Pro Leu

162/346

Thr Tyr Leu Glu Tyr Pro Ile Leu Ile Ala Gln Asp Val Ile Leu Leu Leu Cys Ile Phe His Phe Asn Gly Asn Val Lys Gln Ala Thr Pro Tyr Ile Ala Val Tyr Pro Phe <210> 70 <211> 442 <212> PRT <213> Homo sapiens <400> 70 Met Gly Leu Ala Met Glu His Gly Gly Ser Tyr Ala Arg Ala Gly Gly Ser Ser Arg Gly Cys Trp Tyr Tyr Leu Arg Tyr Phe Phe Leu Phe Val Ser Leu Ile Gln Phe Leu Ile Ile Leu Gly Leu Val Leu Phe Met Val Tyr Gly Asn Val His Val Ser Thr Glu Ser Asn Leu Gln Ala Thr Glu Arg Arg Ala Glu Gly Leu Tyr Ser Gln Leu Leu Gly Leu Thr Ala Ser Gln Ser Asn Leu Thr Lys Glu Leu Asn Phe Thr Thr Arg Ala Lys Asp , 90

	Ald	лте	Met	GIN	Met	тгр	ren	ASN .	ALA	Arg	Arg	Asp	Leu	Asp	Arg	116
				100					105					110		
	Asn	Ala	Ser	Phe	Arg	Gln	Cys	Gln	Gly	Asp	Arg	Val	Ile	Tyr	Thr	Asr
			115	•				120					125			
5	Asn	Gln	Arg	Tyr	Met	Ala	Ala	Ile	Ile	Leu	Ser	Glu	Lys	Gln	Cys	Arg
		130					135					140				
	Asp	Gln	Phe	Lys	Asp	Met	Asn	Lys	Ser	Cys	Asp	Ala	Leu	Leu	Phe	Met
	145					150					155					160
	Leu	Àsn	Gln	Lys	Val	Lys	Thr	Leu	Glu	Val	Glu	Ile	Ala	Lys	Glu	Lys
10					165	•				170					175	
	Thr	Ile	Cys	Thr	Lys	Asp	Lys	Glu	Ser	Val	Leu	Leu	Asn	Lys	Arg	Va.
				180					185					190		
	Ala	Glu	Glu	Gln	Leu	Val	Glu	Cys	Val	Lys	Thr	Arg	Glu	Leu	Gln	His
			195					200					205			
15	Gln	Glu	Arg	Gln	Leu	Ala	Lys	Glu	Gln	Leu	Gln	Lys	Val	Gln	Ala	Le
		210					215					220				
	Cys	Leu	Pro	Leu	Asp	Lys	Asp	Lys	Phe	Glu	Met	Asp	Leu	Arg	Asn	Lei
	225					230					235					240
	Trp	Arg	Asp	Ser	Ile	Ile	Pro	Arg	Ser	Leu	Asp	Asn	Leu	Gly	Tyr	Ası
20					245					250					255	
	Leu	Tyr	His	Pro	Leu	Gly	Ser	Glu	Leu	Ala	Ser	Ile	Arg	Arg	Ala	Су
				260					265					270		
	Asp	His	Met	Pro	Ser	Leu	Met	Ser	Ser	Lys	Val	Glu	Glu	Leu	Ala	Arg
			275					280					285			
25	Ser	Leu	Arg	Ala	Asp	Ile	Glu	Arg	Val	Ala	Arg	Glu	Asn	Ser	Asp	Lei

164/346

		290					295					300				
	Gln	Arg	Gln	Lys	Leu	Glu	Ala	Gln	Gln	Gly	Leu	Arg	Ala	Ser	Gln	Glu
	305					310					315					320
	Ala	Lys	Gln	Lys	Val	Glu	Lys	Glu	Ála	Gln	Ala	Arg	Glu	Ala	Lys	Leu
5					325					330					335	
	Gln	Ala	Glu	Cys	Ser	Arg	Gln	Thr	Gln	Leu	Ala	Leu	Glu	Glu	Lys	Ala
				340					345					350		
	Val	Leu	Arg	Lys	Glu	Arg	Asp	Asn	Leu	Ala	Lys	Glu	Leu	Glu	Glu	Lys
			355					360					365			
10	Lys	Arg	Glu	Ala	Glu	Gln	Leu	Arg	Met	Glu	Leu	Ala	Ile	Arg	Asn	Ser
	_	370			-		375	·				380				•
	Ala		Asp	Thr	Cvs	Ile		Thr	Lvs	Ser	Gln		Met	Met	Pro	Val
	385		•		-3 -	390			-1-		395					400
		Arα	Pro	Met	Glv		Val	Pro	Asn	Pro		Pro	Tle	Asp	Pro	
15	-	9			405	0	141			410	01.1	110		тыр	415	7120
	Sar	T.O.1	Glu	Glu		Two	Λκα	Tve	TIO		Clu	202	Cl.	7, 20,00		Dwa
	Ser	Leu	Giu		FILE	пЛ2	ALG	тйг		пец	GIU	ser	GIII	Arg	PIO	PIC
	77-	61	71.	420	**- 1	77 -			425	a 1				430		
	Ата	Gly		Pro	vai	Ата	Pro		ser	стА						
			435					440								•
20																
	<21	0> 7:	1.													
	<21	1> 18	300											•		
	<21	2> DI	AV													
	<21	3> Ho	omo :	sapi	ens											

25

165/346

<400> 71

5

10

15

20

25

gtggaaaaga ctctgaggaa tgaagggacc tccagttctg ctccagtctt ggaggaaggg 120 gacacagace cetggaceet eceteagetg aaggacacaa gecageeetg gaaagagete 180 cgcgtggccg gcaggctgcg ccgcgtggcc ggcagcgtcc tcaaggcctq cqqqctcctc 240 ggcagcctgt acttcttcat ctgctctctg gacgtcctca gctccgcctt ccagctgctg 300 ggcagcaaag tggccggaga catcttcaag gacaacgtgg tgctgtccaa ccctgtggct 360 ggactggtca ttggcgtgct ggtcacagcc ctggtgcaqa qttccaqcac qtcctcctcc 420 atcgtggtca gcatggtggc tgctaagctg ctgactgtcc gggtgtctgt gcccatcatc 480 atgggtgtca acgtaggcac atccatcacc agcaccctqq tctcaatqqc qcaqtcaqqq 540 gaccgggatg aatttcagag ggctttcagc ggctcggcgg tgcacgggat cttcaactgg 600 ctcacagtgc tggtcctgct gccactggag agcgccacgg ccctgctgga gaggctaagt 660 gagctagccc tgggtgccgc cagcctgaca cccagggcgc aggcgcccga catcctcaag 720 gtgctgacga agccgctcac acacctcatc gtgcagctgg actccgacat gatcatgagc 780 agtgccacag gcaacgccac taacagcagt ctcattaagc actggtgcgg caccacqqqq 840 cagccgaccc aggagaacag cagctgtggc gccttcggcc cgtgcacaga gaagaacagc 900 acagccccgg cggacaggct gccctgccgc cacctgtttg cgggcacgga gctcacggac 960 ctggccgtgg gctgcatcct gctggccggc tccctgctgg tgctctgcgg ctgcctqqtc 1020 ctcatagtca agetgetcaa etetgtgetg egeggeegeg tggeceaggt egtgaggaca 1080 gtcatcaatg cggacttccc cttcccgctg ggctggctcg gcggctacct ggccgtcctc 1140 gcgggcgccg gcctgacctt cgcactgcag agcagcagcg tcttcacggc ggccgtcgtg 1200 cccctcatgg gggtcggggt gatcagtctg gaccgggcgt accccctctt actgggctcc 1260 aacatcggca ccactaccac agccctgctg gctgccctgg ccagccccgc agacaggatg 1320 ctcagcgccc tgcaggtcgc cctcatccac ttcttcttca acctggccqq catcctqctq 1380 tggtacctgg tgcctgcact gcggctgccc atcccgctgg ccaggcactt cggggtggtg 1440

166/346

accgcccgtt accgctggt ggctgggtc tacctgctgc tcggattcct gctgctgccc 1500 ctggcggcct tcgggctctc cctggcaggg ggcatggtgc tggccgctgt cgggggtccc 1560 ctggtggggc tggtgctcct cgtcatcctg gttactgtcc tgcagcggcg ccggccggcc 1620 tggctgcctg tccgcctgcg ctcctgggcc tggctccccg tctggctcca ttctctggag 1680 ccctgggacc gcctggtgac ccgctgctgc ccctgcaacg tctgcagccc cccgaaggcc 1740 accaccaaag aggcctactg ctacgagaac cctgagatct tggcctcca gcagttgtga 1800

<210> 72

<211> 246

10 <212> DNA

5

<213> Homo sapiens

<400> 72

atggatggag gacagcccat cccctcatcc ctagtgcccc ttgggaacga atcagcagat 60

15 tctagcatgt ccctggagca gaaaatgaca tttgtttttg tgattctgtt gtttattttc 120

ttgggcattc tcattgtccg gtgcttccgg attcttttgg atccatatcg aagcatgcca 180

acctctacct gggctgatgg acttgaaggc ctggagaaag ggcagttcga ccatgccctt 240

gcttag

246

20 <210> 73

<211> 1965

<212> DNA

<213> Homo sapiens

25 <400> 73

5

10

15

20

25

167/346

atggctccca agaagctgtc ctgccttcgt tccctgctgc tgccgctcag cctqacqcta 60 ctgctgcccc aggcagacac tcggtcgttc gtagtggata ggggtcatga ccggtttctc 120 ctagacgggg ccccgttccg ctatgtgtct ggcagcctgc actactttcg ggtaccgcgg 180 gtgctttggg ccgaccggct tttgaagatg cgatggagcg gcctcaacgc catacagttt 240 tatgtgccct ggaactacca cgagccacag cctggggtct ataactttaa tggcagccgg 300 gacctcattg cctttctgaa tgaggcagct ctagcgaacc tgttggtcat actgagacca 360 ggaccttaca tctgtgcaga gtgggagatg gggggtctcc catcctggtt gcttcgaaaa 420 cctgaaattc atctaagaac ctcagatcca gacttccttg ccgcagtgga ctcctggttc 480 aaggtettge tgcccaagat atatccatgg etttatcaca atgggggcaa catcattage 540 attcaggtgg agaatgaata tggtagctac agagcctgtg acttcagcta catgaggcac 600 ttggctgggc tcttccgtgc actgctagga gaaaagatct tgctcttcac cacagatggg 660 cctgaaggac tcaagtgtgg ctccctccgg ggactctata ccactgtaga ttttggccca 720 gctgacaaca tgaccaaaat ctttaccctg cttcggaagt atgaacccca tgggccattg 780 gtaaactetg agtactacac aggetggetg gattactggg gecagaatca etceacacgg 840 tctgtgtcag ctgtaaccaa aggactagag aacatgctca agttgggagc cagtgtgaac 900 atgtacatgt tccatggagg taccaacttt ggatattgga atggtgccga taagaaggga 960 cgcttccttc cgattactac cagctatgac tatgatgcac ctatatctga agcaggggac 1020 cccacaccta agetttttgc tcttcgagat gtcatcagca agttccagga agttcctttg 1080 ggacctttac ctcccccgag ccccaagatg atgcttggac ctgtgactct gcacctggtt 1140 gggcatttac tggctttcct agacttgctt tgcccccgtg ggcccattca ttcaatcttg 1200 ccaatgacct ttgaggctgt caagcaggac catggcttca tgttgtaccg aacctatatg 1260 acccatacca tttttgagcc aacaccattc tgggtgccaa ataatggagt ccatgaccgt 1320 gcctatgtga tggtggatgg ggtgttccag ggtgttgtgg agcgaaatat gagagacaaa 1380 ctatttttga cggggaaact ggggtccaaa ctggatatct tggtggagaa catggggagg 1440 ctcagctttg ggtctaacag cagtgacttc aagggcctgt tgaagccacc aattctgggg 1500

168/346

caaacaatcc ttacccagtg gatgatgttc cetetgaaaa ttgataacct tgtgaagtgg 1560
tggtttcccc teeagttgcc aaaatggcca tatcetcaag eteettetgg eeccacatte 1620
tactccaaaa catttccaat tttaggetca gttggggaca catttetata tetacetgga 1680
tggaccaagg gecaagtetg gatcaatggg tttaacttgg geeggtactg gacaaagcag 1740
gggccacaac agacceteta egtgecaaga tteetgetgt tteetagggg ageeeteaac 1800
aaaattacat tgetggaact agaagatgta eeteteeage eecaagteea atttttggat 1860
aageetatee teaatageac tagtacttg eacaggacac atatcaatte eettteaget 1920
gatacactga gtgeetetga accaatggag ttaagtggge actga 1965

15 <400> 74

20

25

5

atggggatgg atgattgtga ttcattttt cctggtccc tggttgctat tatttgtgac 60 atacttggag agaaaactac ctccattctt ggggcttttg ttgttactgg tggatatctg 120 atcagcagct gggccacaag tattcctttt ctttgtgtga ctatgggact tctacccggt 180 ttgggttctg ctttcttata ccaagtggct gctgtggtaa ctaccaaata cttcaaaaaa 240 cgattggctc tttctacagc tattgcccgt tctgggatgg gactgacttt tcttttggca 300 ccctttacaa aattcctgat agatctgtat gactggacag gagcccttat attattgga 360 gctatcgcat tgaatttggt gccttctagt atgctcttaa gacccatcca tatcaaaagt 420 gagaaacaatt ctggtattaa agataaaggc agcagtttgt ctgcacatgg tccagaggca 480 catgcaacag aaacacactg ccatgagaca gaagagtcta ccatcaaaga cagtactacg 540 cagaaggctg gactacctag caaaaattta acagtctcac aaaatcaaag tgaagagttc 600

169/346

tacaatgggc ctaacaggaa cagactgtta ttaaagagtg atgaagaaag tgataaggtt 660
atttcgtgga gctgcaaaca actgtttgac atttctctct ttagaaatcc tttcttctac 720
atatttactt ggtcttttct cctcagtcag ttagcatact tcatccctac ctttcacctg 780
gtagccagag ccaaaacact ggggattgac atcatggatg cctcttacct tgtttctgta 840
gcaggtatcc ttgagacggt cagtcagatt atttctggat gggttgctga tcaaaactgg 900
attaagaagt atcattacca caagtcttac ctcatcctct gcggcatcac taacctgctt 960
gctcctttag ccaccacatt tccactactt atgacctaca ccatctgctt tgccatcttt 1020
gctggtggtt acctggcatt gatactgcct gtactggttg atctgtgtag gaattctaca 1080
gtaaacaggt ttttgggact tgccagtttc tttgctggga tggctgtcct ttctggacca 1140
cctatagcag gtaacacctt caccacattc tga

<210> 75

5

10

20

25

<211> 1359

<212> DNA

15 <213> Homo sapiens

<400> 75

atggagetgg cactgeggeg etetecegte eegeggtggt tgetgetget geegetgetg 60 etgggeetga acgeaggage tgteattgae tggeecacag aggagggeaa ggaagtatgg 120 gattatgtga eggteegaa ggatgeetae atgttetggt ggetetatta tgeeaceaac 180 teetgeaaga actteteaga actgeecetg gteatgtgge tteagggegg teeaggeggt 240 teetageactg gatttggaaa etttgaggaa attgggeece ttgacagtga teetaaacea 300 eggaaaacea eetggeteea ggetgeeagt eteetatttg tggataatee egtgggeact 360 gggtteagtt atgtgaatgg tagtggtgee tatgeeaagg acetggetat ggtggettea 420 gacatgatgg tteteetgaa gacettette agttgeeaca aagaatteea gacagtteea 480

170/346

ttctacattt tctcagagtc ctatggagga aaaatggcag ctggcattgg tctagagctt 540 tataaggcca ttcagcgagg gaccatcaag tgcaactttg cgggggttgc cttgggtgat 600 teetggatet eccetgttga tteggtgete teetggggae ettacetgta eageatgtet 660 cttctcgaag acaaaggtct ggcagaggtg tctaaggttg cagagcaagt actgaatgcc 720 5 gtaaataagg ggctctacag agaggccaca gagctgtggg ggaaagcaga aatgatcatt 780 gaacagaaca cagatggggt gaacttctat aacatcttaa ctaaaagcac tcccacgtct 840 acaatggagt cgagtctaga attcacacag agccacctag tttgtctttg tcagcgccac 900 gtgagacacc tacaacgaga tgccttaagc cagctcatga atggccccat cagaaagaag 960 ctcaaaatta ttcctgagga tcaatcctgg ggaggccagg ctaccaacgt ctttgtgaac 1020 10 atggaggagg acttcatgaa gccagtcatt agcattgtgg acgagttgct ggaggcaggg 1080 atcaacgtga cggtgtataa tggacagctg gatctcatcg tagataccat gggtcaggag 1140 gcctgggtgc ggaaactgaa gtggccagaa ctgcctaaat tcagtcagct gaagtggaag 1200 gccctgtaca gtgaccctaa atctctggaa acatctgctt ttgtcaagtc ctacaagaac 1260 cttgctttct actggattct gaaagctggt catatggttc cttctgacca aggggacatg 1320 15 gctctgaaga tgatgagact ggtgactcag caagaatag 1359

<210> 76

<211> 1473

<212> DNA

20 <213> Homo sapiens

<400> 76

25

atgaggccgg cgttcgcct gtgcctcctc tggcaggcgc tctggcccgg gccgggcggc 60 ggcgaacacc ccactgccga ccgtgctggc tgctcggcct cgggggcctg ctacagcctg 120 caccacgcta ccatgaagcg gcaggcggcc gaggaggcct gcatcctgcg aggtggggcg 180

171/346

	ctcagcaccg	tgcgtgcggg	cgccgagctg	cgcgctgtgc	tcgcgctcct	gcgggcaggc	240
	ccagggcccg	gagggggctc	caaagacctg	ctgttctggg	tcgcactgga	gcgcaggcgt	300
	tcccactgca	ccctggagaa	cgagcctttg	cggggtttct	cctggctgtc	ctccgacccc	360
	ggcggtctcg	aaagcgacac	gctgcagtgg	gtggaggagc	cccaacgctc	ctgcaccgcg	420
5	cggagatgcg	cggtactcca	ggccaccggt	ggggtcgagc	ccgcaggctg	gaaggagatg	480
	cgatgccacc	tgcgcgccaa	cggctacctg	tgcaagtacc	agtttgaggt	cttgtgtcct	540
	gcgccgcgcc	ccggggccgc	ctctaacttg	agctatcgcg	cgcccttcca	gctgcacagc	600
	gccgctctgg	acttcagtcc	acctgggacc	gaggtgagtg	cgctctgccg	gggacagctc	660
	ccgatctcag	ttacttgcat	cgcggacgaa	atcggcgctc	gctgggacaa	actctcgggc	720
10	gatgtgttgt	gtccctgccc	cgggaggtac	ctccgtgctg	gcaaatgcgc	agagctccct	780
	aactgcctag	acgacttggg	aggctttgcc	tgcgaatgtg	ctacgggctt	cgagctgggg	840
	aaggacggcc	gctcttgtgt	gaccagtggg	gaaggacagc	cgacccttgg	ggggaccggg	900
	gtgcccacca	ggcgcccgcc	ggccactgca	accageceeg	tgccgcagag	aacatggcca	960
	atcagggtcg	acgagaagct	gggagagaca	ccacttgtcc	ctgaacaaga	caattcagta	1020
15	acatctattc	ctgagattcc	tcgatgggga	tcacagagca	cgatgtctac	ccttcaaatg	1080
	tcccttcaag	ccgagtcaaa	ggccactatc	accccatcag	ggagcgtgat	ttccaagttt	1140
	aattctacga	cttcctctgc	cactcctcag	gctttcgact	cctcctctgc	cgtggtcttc	1200
	atatttgtga	gcacagcagt	agtagtgttg	gtgatcttga	ccatgacagt	actggggctt	1260
	gtcaagctct	gctttcacga	aagcccctct	tcccagccaa	ggaaggagtc	tatgggcccg	1320
20	ccgggcctgg	agagtgatcc	tgagcccgct	gctttgggct	ccagttctgc	acattgcaca	1380
	aacaatgggg	tgaaagtcgg	ggactgtgat	ctgcgggaca	gagcagaggg	tgccttgctg	1440
	gcggagtccc	ctcttggctc	tagtgatgca	tag			1473

<210> 77

25 <211> 1179

172/346

<212> DNA

<213> Homo sapiens

<400> 77

5 atgcaagtga ataccacgaa attcatgctg ctgtatgcct ggtattcttg gcccaatgta 60 gttttgtgtt tctttggtgg ctttttgata gaccgagtat ttggaatacg atggggcaca 120 atcattttta gctgctttgt ttgcattgga caggttgttt ttgccctggg tggaatattt 180 aatgcttttt ggctgatgga atttggaaga tttgtatttg ggattggtgg cgagtcctta 240 gcagttgccc agaatacata tgctgtgagc tggtttaaag gcaaagaatt aaacctggtg 300 10 tttggacttc aacttagcat ggctagaatt ggaagtacag taaacatgaa cctcatggga 360 tggctgtatt ctaagattga agctttgtta ggttctgctg gtcacacaac cctcgggatc 420 acacttatga ttgggggtat aacgtgtatt ctttcactaa tctgtgcctt ggctcttgcc 480 tacttggatc agagagcaga gagaatcctt cataaagaac aaggaaaaac aggtgaagtt 540 attaaattaa ctgatgtaaa ggacttctcc ttacccctgt ggcttatatt tatcatctgt 600 15 gtctgctatt atgttgctgt gttccctttt attggacttg ggaaagtttt ctttacagag 660 aaatttggat tttcttccca ggcagcaagt gcaattaaca gtgttgtata tgtcatatca 720 gctcccatgt ccccggtgtt tgggctcctg gtggataaaa cagggaagaa catcatctgg 780 gttctttgcg cagtagcagc cactcttgtg tcccacatga tgctggcctt tacgatgtgg 840 aaccettgga ttgctatgtg tettetggga eteteetact cattgettge etgtgcattg 900 20 tggccaatgg tggcatttgt agttcctgaa catcagctgg gaactgcata tggcttcatg 960 cagtccattc agaatcttgg gttggccatc atttccatca ttgctggtat gatactggat 1020 tctcgggggt atttgttttt ggaagtgttc ttcattgcct gtgtttcttt gtcactttta 1080 tctgtggtct tactctattt ggtgaatcgt gcccagggtg ggaacctaaa ttattctgca 1140 agacaaaggg aagaaataaa attttcccat actgaatga 1179

173/346

<210> 78

<211> 1617

<212> DNA

<213> Homo sapiens

5

10

15

20

25

<400> 78

atgggctgtc tctggggtct ggctctgccc cttttcttct tctgctggga ggttggggtc 60 tctgggagct ctgcaggccc cagcacccgc agagcagaca ctgcgatgac aacggacgac 120 acagaagtgc ccgctatgac tctagcaccg ggccacgccg ctctggaaac tcaaacgctg 180 agegetgaga cetettetag ggeeteaace ecageeggee ceattecaga ageagagace 240 aggggagcca agagaatttc ccctgcaaga gagaccagga gtttcacaaa aacatctccc 300 aacttcatgg tgctgatcgc cacctccgtg gagacatcag ccgccagtgg cagccccgag 360 ggagctggaa tgaccacagt tcagaccatc acaggcagtg atcccgagga agccatcttt 420 gacacccttt gcaccgatga cagctctgaa gaggcaaaga cactcacaat ggacatattg 480 acattggctc acacctccac agaagctaag ggcctgtcct cagagagcag tgcctcttcc 540 gacggccccc atccagtcat caccccgtca cgggcctcag agagcagcgc ctcttccgac 600 ggcccccatc cagtcatcac cccgtcacgg gcctcagaga gcagcgcctc ttccgacggc 660 ccccatccag tcatcacccc ctcatggtcc ccgggatctg atgtcactct cctcgctgaa 720 gccctggtga ctgtcacaaa catcgaggtt attaattgca gcatcacaga aatagaaaca 780 acaacttcca gcatccctgg ggcctcagac atagatctca tccccacgga aggggtgaag 840 geetegteca ceteegatee accagetetg cetgacteca etgaageaaa accaeaate 900 actgaggtca cagcetetge egagaceetg tecacageeg geaceacaga gteagetgea 960 ceteatgeca eggttgggae eccaetecee actaacageg ecaeagaaag agaagtgaca 1020 gcacccgggg ccacgaccct cagtggagct ctggtcacag ttagcaggaa tcccctggaa 1080 gaaacctcag ccctctctgt tgagacacca agttacgtca aagtctcagg agcagctccg 1140

174/346

gtctccatag aggctgggtc agcagtgggc aaaacaactt cetttgctgg gagctctgct 1200 teetectaca geeeetegga agecgeeete aagaacttea eeeetteaga gacacegace 1260 atggacateg caaccaaggg geeetteeee accageaggg accetettee ttetgteeet 1320 eegactacaa eeaacageag eegagggaeg aacageacet tagceaagat eacaacetea 1380 gegaagacea egatgaagee eeeaacagee acgeeeacga etgeeeggae gaggeegaee 1440 acagacgtga gtgeaggtga aaatggaggt tteeteetee tgeggetgag tgtggettee 1500 eeggaagace teaetgaeee eagagtggea gaaaggetga tgeageage eeacegggaa 1560 etceaegeee acgeeetea etteeaggte teettaetge gtgteaggag aggetaa 1617

10 <210> 79

5

<211> 309

<212> DNA

<213> Homo sapiens

15 <400> 79

20

atggaggcgg cgctgctggg gctgtgtaac tggagcacge tggggcgtgtg cgccgcgctg 60
aagctgccgc agatctccgc tgtgctagcg gcgcgcagcg cgcggggcct cagccttccg 120
agtttacttc tggagctggc aggatccctg gtgtttctgc ggtaccagtg ttactatggg 180
tatccgccgc tgacctacct ggagtacccc atcctcatcg cgcaagatgt catcctcctg 240
ctctgtatct ttcattttaa cgggaacgtg aagcaggcca ctccttacat cgctgtgtat 300
cctttctga

<210> 80

<211> 1329

25 <212> DNA

175/346

<213> Homo sapiens

<400> 80

atgggtctgg ccatggagca cggagggtcc tacgctcggg cggggggcag ctctcggggc 60 5 tgctggtatt acctgcgcta cttcttcctc ttcgtctccc tcatccaatt cctcatcatc 120 ctggggctcg tgctcttcat ggtctatggc aacgtgcacg tgagcacaga gtccaacctg 180 caggecaccg agegecgage egagggecta tacagteage tectaggget caeggeetee 240 cagtecaact tgaccaagga geteaactte accaeeegeg ccaaggatge cateatgeag 300 atgtggctga atgctcgccg cgacctggac cgcatcaatg ccagcttccg ccagtgccag 360 10 ggtgaccggg tcatctacac gaacaatcag aggtacatgg ctgccatcat cttgagtgag 420 aagcaatgca gagatcaatt caaggacatg aacaagagct gcgatgcctt gctcttcatg 480 ctgaatcaga aggtgaagac gctggaggtg gagatagcca aggagaagac catttgcact 540 aaggataagg aaagcgtgct gctgaacaaa cgcgtggcgg aggaacagct ggttgaatgc 600 gtgaaaaccc gggagctgca gcaccaagag cgccagctgg ccaaggagca actgcaaaag 660 15 gtgcaagece tetgeetgee eetggacaag gacaagtttg agatggacet tegtaacetg 720 tggagggact ccattatccc acgcagcctg gacaacctgg gttacaacct ctaccatccc 780 ctgggctcgg aattggcctc catccgcaga gcctgcgacc acatgcccag cctcatgagc 840 tccaaggtgg aggagctggc ccggagcctc cgggcggata tcgaacgcgt ggcccgcgag 900 aactcagacc tccaacgcca gaagctggaa gcccagcagg gcctgcgggc cagtcaggag 960 20 gcgaaacaga aggtggagaa ggaggctcag gcccgggagg ccaagctcca agctgaatgc 1020 tcccggcaga cccagctagc gctggaggag aaggcggtgc tgcggaagga acgagacaac 1080 ctggccaagg agctggaaga gaagaagagg gaggcggagc agctcaggat ggagctggcc 1140 atcagaaact cagccctgga cacctgcatc aagaccaagt cgcagccgat gatgccagtg 1200 tcaaggccca tgggccctgt ccccaaccc cagcccatcg acccagctag cctggaggag 1260 25 ttcaagagga agatcctgga gtcccagagg ccccctgcag gcatccctgt agccccatcc 1320

176/346

agtggctga 1329 <210> 81 <211> 2016 5 <212> DNA <213> Homo sapiens <220> <221> CDS 10 <222> (78)..(1877) <400> 81 gtctcctccc tgcaggtgcc ccctcaccac ccacacagat ctagacctgg gcctgggtct 60 gtccctgccc gaaatcc atg ccg agt tcc ctt ccc ggc agc cag gtc ccc 15 Met Pro Ser Ser Leu Pro Gly Ser Gln Val Pro 1 10 cac ccc act ctg gac gcg gtt gac cta gtg gaa aag act ctg agg aat His Pro Thr Leu Asp Ala Val Asp Leu Val Glu Lys Thr Leu Arg Asn 15 20 25 20 gaa ggg acc tcc agt tct gct cca gtc ttg gag gaa ggg gac aca gac 206 Glu Gly Thr Ser Ser Ala Pro Val Leu Glu Glu Gly Asp Thr Asp 30 35 40 ccc tgg acc ctc cct cag ctg aag gac aca agc cag ccc tgg aaa gag 254 Pro Trp Thr Leu Pro Gln Leu Lys Asp Thr Ser Gln Pro Trp Lys Glu

50

55

25

45

	ctc	cgc	gtg	gcc	ggc	agg	ctg	cgc	cgc	gtg	gcc	ggc	agc	gtc	ctc	aag	302
	Leu	Arg	Väl	Ala	Gly	Arg	Leu	Arg	Arg	Val	Ala	Gly	Ser	Val	Leu	Lys	
	60			,		65					70					75	
	gcc	tgc	ggg	ctc	ctc	ggc	agc	ctg	tac	ttc	ttc	atc	tgc	tct	ctg	gac	350
5	Ala	Cys	Gly	Leu	Leu	Gly	Ser	Leu	Tyr	Phe	Phe	Ile	Cys	Ser	Leu	Asp	
					80					85					90		
	gtc	ctc	agc	tcc	gcc	ttc	cag	ctg	ctg	ggc	agc	aaa	gtg	gcc	gga	gac	398
	Val	Leu	Ser	Ser	Ala	Phe	Gln	Leu	Leu	Gly	Ser	Lys	Val	Ala	Gly	Asp	
				95					100					105			
10	atc	ttc	aag	gac	aac	gtg	gtg	ctg	tcc	aac	cct	gtg	gct	gga	ctg	gtc	446
	Ile	Phe	Lys	Asp	Asn ·	Val	Val	Leu	Ser	Asn	Pro	Val	Ala	Gly	Leu	Val	
			110					115					120				
	att	ggc	gtg	ctg	gtc	aca	gcc	· ctg	gtg	cag	agt	tcc	agc	acg	tcc	tcc	494
	Ile	Gly	Val	Leu	Val	Thr	Ala	Leu	Val	Gln	Ser	Ser	Ser	Thr	Ser	Ser	
15		125					130					135					
	tcc	atc	gtg	gtc	agc	atg	gtg	gct	gct	aag	ctg	ctg	act	gtc	cgg	gtg	542
	Ser	Ile	Val	Val	Ser	Met	Val	Ala	Ala	Lys	Leu	Leu	Thr	Val	Arg	Val	
	140	•				145					150					155	
	tct	gtg	ccc	atc	ato	atg	ggt	gtc	aac	gta	ggc	aca	tcc	ato	acc	agc	590
20	Ser	Val	Pro	Ile	Ile	Met	Gly	Val	Asn	Val	Gly	Thr	Ser	Ile	Thr	Ser	
					160	1				165					170		
	acc	ctg	gto	tca	atg	gcg	cag	tca	ggg	gac	cgg	gat	gaa	ttt	cag	agg	638
	Thr	Leu	Val	Ser	Met	: Ala	Gln	Ser	Gly	Asp	Arg	Asp	Glu	Phe	Gln	Arg	
				175					180	1				185	•		
25	gct	tto	ago	ggc	tcg	gcg	gtg	cac	ggg	ato	ttc	aac	: tgg	cto	aca	gtg	686

	Ala	Phe	Ser	Gly	Ser	Ala	Val	His	Gly	Ile	Phe	Asn	Trp	Leu	Thr	Val	
			190				٠,	195					200				
	ctg	gtc	ctg	ctg	cca	ctg	gag	agc	gcc	acg	gcc	ctg	ctg	gag	agg	cta	734
	Leu	Val	Leu	Leu	Pro	Leu	Glu	Ser	Ala	Thr	Ala	Leu	Leu	Glu	Arg	Leu	
5		205					210					215					
	agt	gag	cta	gcc	ctg	ggt	gcc	gcc	agc	ctg	aca	ccc	agg	gcg	cag	gcg	782
	Ser	Glu	Leu	Ala	Leu	Gly	Ala	Ala	Ser	Leu	Thr	Pro	Arg	Ala	Gln	Ala	
	220		٠			225					230					235	
	ccc	gac	atc	ctc	aag	gtg	ctg	acg	aag	ccg	ctc	aca	cac	ctc	atc	gtg	830
10	Pro	Asp	Ile	Leu	Lys	Val	Leu	Thr	Lys	Pro	Leu	Thr	His	Leu	Ile	Val	
			-		240					245					250		
	cag	ctg	gac	tcc	gac	atg	atc	atg	agc	agt	gcc	aca	ggc	aac	gcc	act	878
	Gln	Leu	Asp	Ser	Asp	Met	Ile	Met	Ser	Ser	Ala	Thr	Gly	Asn	Ala	Thr	
				255					260					265			
15	aac	agc	agt	ctc	att	aag	cac	tgg	tgc	ggc	acc	acg	ggg	cag	ccg	acc	926
	Asn	Ser	Ser	Leu	Ile	Lys	His	Trp	Cys	Gly	Thr	Thr	Gly	Gln	Pro	Thr	
			270					275					280				
	cag	gag	aac	agc	agc	tgt	ggc	gcc	ttc	ggc	ccg	tgc	aca	gag	aag	aac	974
	Gln	Glu	Asn	Ser	Ser	Cys	Gly	Ala	Phe	Gly	Pro	Cys	Thr	Glu	Lys	Asn	
20		285					290					295					
	agc	aca	gcc	ccg	gcg	gac	agg	ctg	ccc	tgc	cgc	cac	ctg	ttt	gcg	ggc	1022
	Ser	Thr	Ala	Pro	Ala	Asp	Arg	Leu	Pro	Cys	Arg	His	Leu	Phe	Ala	Gly	
	300					305					310					315	
	acg	gag	ctc	acg	gac	ctg	gcc	gtg	ggc	tgc	atc	ctg	ctg	gcc	ggc	tcc ;	1070
25	Thr	Glu	Leu	Thr	Asp	Leu	Ala	Val	Glv	Cvs	Ile	Leu	Leu	Ala	Glv	Ser	

					320					325					330	•	
	ctg	ctg	gtg	ctc	tgc	ggc	tgc	ctg	gtc	ctc	ata	gtc	aag	ctg	ctc	aac	1,118
	Leu	Leu	Val	Leu	Cys	Gly	Суз	Leu	Val	Leu	Ile	Val	Lys	Leu	Leu	Asn	
				335					340					345			
5	tct	gtg	ctg	cgc	ggc	cgc	gtg	gcc	cag	gtc	gtg	agg	aca	gtc	atc	aat	1166
	Ser	Val	Leu	Arg	Gly	Arg	Val	Ala	Gln	Val	Val	Arg	Thr	Val	Ile	Asn	
			350					355					360				
	gcg	gac	ttc	ccc	ttc	ccg	ctg	ggc	tgg	ctc	ggc	ggc	tac	ctg	gcc	gtc	1214
	Ala	Asp	Phe	Pro	Phe	Pro	Leu	Gly	Trp	Leu	Gly	Gly	Tyr	Leu	Ala	Val	
10		365			·		370					375					
	ctc	gcg	ggc	gcc	ggc	ctg	acc	ttc	gca	ctg	cag	agc	agc	agc	gtc	ttc	1262
	Leu	Ala	Gly	Ala	Gly	Leu	Thr	Phe	Ala	Leu	Gln	Ser	Ser	Ser	Val	Phe	
	380					385					390					395	•
	acg	gcg	gcc	gtc	gtg	ccc	ctc	atg	ggg	gtc	ggg	gtg	atc	agt	ctg	gac	1310
15	Thr	Ala	Ala	Val	Val	Pro	Leu	Met	Gly	Val	Gly	Val	Ile	Ser	Leu	Asp	
					400			•		405					410		
	cgg	gcg	tac	ccc	ctc	tta	ctg	ggc	tcc	aac	atc	ggc	acc	act	acc	aca	1358
	Arg	Ala	Tyr	Pro	Leu	Leu	Leu	Gly	Ser	Asn	Ile	Gly	Thr	Thr	Thr	Thr	
				415					420					425			
20	gcc	ctg	ctg	gct	gcc	ctg	gcc	agc	ccc	gca	gac	agg	atg	ctc	agc	gcc	1406
	Ala	Leu	Leu	Äla	Ala	Leu	Ala	Ser	Pro	Ala	Asp	Arg	Met	Leu	Ser	Ala	
			430					435					440				
	ctg	cag	gtc	gcc	ctc	atc	cac	ttc	ttc	ttc	aac	ctg	gcc	ggc	atc	ctg	1454
	Leu	Gln	Val	Ala	Leu	Ile	His	Phe	Phe	Phe	Asn	Leu	Ala	Gly	Ile	Leu	
25		445					450					455 ⁻					

	ctg	tgg	tac	ctg	gtg	cct	gca	ctg	cgg	ctg	CCC	atc	ccg	ctg	gcc	agg	1502
	Leu	Trp	Tyr	Leu	Val	Pro	Ala	Leu	Arg	Leu	Pro	Ile	Pro	Leu	Ala	Arg	
	460					465					470					475	
	cac	ttc	ggg	gtg.	gtg	acc	gcc	cgt	tac	cgc	tgg	gtg	gct	ggg	gtc	tac	1550
5	His	Phe	Gly	Val	Val	Thr	Ala	Arg	Tyr	Arg	Trp	Val	Ala	Gly	Val	Tyr	
					480					485					490		
	ctg.	ctg	ctc	gga	ttc	ctg	ctg	ctg	ccc	ctg	gcg	gcc	ttc	ggg	ctc	tcc	1598
	Leu	Leu	Leu	Gly	Phe	Leu	Leu	Leu	Pro	Leu	Ala	Ala	Phe	Gly	Leu	Ser	
				495					500					505			
LO	ctg	gca	ggg	ggc	atg	gtg	ctg	gcc	gct	gtc	ggg	ggt	ccc	ctg	gtg	ggg	1646
	Leu	Ala	Gly	Gly	Met	Val	Leu	Ala	Ala	Val	Gly	Gly	Pro	Leu	Val	Gly	
			510					515					520				
	ctg	gtg	ctc	ctc	gtc	atc	ctg	gtt	act	gtc	ctg	cag	cgg	cgc	cgg	ccg	1694
	Leu	Val	Leu	Leu	Val	Ile	Leu	Val	Thr	Val	Leu	Gln	Arg	Arg	Arg	Pro ·	
15		525					530					535					
	gcc	tgg	ctg	cct	gtc	cgc	ctg	cgc	tcc	tgg	gcc	tgg	ctc	ccc	gtc	tgg	1742
	Ala	Trp	Leu	Pro	Val	Arg	Leu	Arg	Ser	Trp	Ala	Trp	Leu	Pro	Val	Trp	
	540					545					550					555	
	ctc	cat	tct	ctg	gag	ccc	tgg	gac	cgc	ctg	gtg	acc	cgc	tgc	tgc	ccc	1790
20	Leu	His	Ser	Leu	Glu	Pro	Trp	Asp	Arg	Leu	Val	Thr	Arg	Cys	Cys	Pro	-
					560					565					570		
	tgc	aac	gtc	tgc	agc	ccc	ccg	aag	gcc	acc	acc	aaa	gag	gcc	tac	tgc	1838
	Cys	Asn	Val	Cys	Ser	Pro	Pro	Lys	Ala	Thr	Thr	Lys	Glu	Ala	Tyr	Cys	
				575					580					585			
25	tac	gag	aac	cct	gag	atc	ttg	gcc	tcc	cag	cag	ttg	tga	cgg	gcag	ttg	1887

181/346

Tyr Glu Asn Pro Glu Ile Leu Ala Ser Gln Gln Leu

590 595 600

ctgcgcagac cgcccaccc tccccggctg ggagggctct ggagggccct ggagggggg 1947
tccccgcggc agctgacctc cggtcacctg cttccccttc tgtgcaaata aaccaggctg 2007
ttatctggg 2016

<210> 82

<211> 1446

<212> DNA

<213> Homo sapiens

10

20

25

5

<220>

<221> CDS

<222> (337)..(582)

15 <400> 82

gaatcgagat gcagtgtgta ggaagcatgg gcaagggatg aggaacgcca ctttgaaaat 60
tactaaaact aaagcaagtg actaagagtg tgaatgaccc tggctgcaat gactacgcct 120
gctgggcttc tattaaaatt agactctatt tcctgagcac ccacaaatgg acctgacaaa 180
gggaagacac agatgtactg cgtgatgagg aaagcctatc aggattaaaa tatggctata 240
actcagcctc tccagagtgc agccaccatg acctccgcag attgatgatg gaagaaaaga 300
aaaccaggat atcctgtgct ctggcttccc tggacc atg gat gga gga cag ccc 354
Met Asp Gly Gly Gln Pro

1 5

atc ccc tca tcc cta gtg ccc ctt ggg aac gaa tca gca gat tct agc 402

Ile Pro Ser Ser Leu Val Pro Leu Gly Asn Glu Ser Ala Asp Ser Ser

25

182/346

				10					15					20			
	atg	tcc	ctg	gag	cag	aaa	atg	aca	ttt	gtt	ttt	gtg	att	ctg	ttg	ttt	450
	Met	Ser	Leu	Glu	Gln	Lys	Met	Thr	Phe	Val	Phe	Val	Ile	Leu	Leu	Phe	
			25	•				30					35				
5	att	ttc	ttg	ggc	att	ctc	att	gtc	cgg	tgc	ttc	cgg	att	ctt	ttg	gat	498
	Ile	Phe	Leu	Gly	Ile	Leu	Ile	Val	Arg	Cys	Phe	Arg	Ile	Leu	Leu	Asp	
		40					45					50					
	cca	tat	cga	agc	atg	cca	acc	tct	acc	tgg	gct	gat	gga	ctt	gaa	ggc	546
	Pro	Tyr	Arg	Ser	Met	Pro	Thr	Ser	Thr	Trp	Ala	Asp	Gly	Leu	Glu	Glý	
10	55					60					65					70	
	ctg	gag	aaa	ggg	cag	ttc	gac	cat	gcc	ctt	gct	tag	gag	ggat	ggt		592
	Leu	Glu	Lys	Gly	Gln	Phe 、	Asp	His	Ala	Leu	Ala						
					75		•			80						•	
	gtgg	gato	etc (ctcct	gagg	ga ga	atgaa	agtgo	c ttt	gtgt	ctt	ggt	gagga	att (ccctt	tattt	652
15	agto	gttct	ca a	acaaa	atcaa	aa tt	taaa	acaat	: ati	tggt	ccc	agga	accat	taa :	tccat	tattc	712
	cata	aata	atg (cagtt	gggt	it aa	agad	cattt	gag	gato	gttg	gaaa	atgga	aca (cttat	cataac	772
	taat	ccaa	ica 1	taaga	aggt	t ta	aatt	ttta	a tgt	ttgo	ctca	atga	aatga	agt a	actct	taaaa	832
	ttgt	:gt <u>.g</u> a	att (gtgaa	acca	aa ga	agcgt	taat	act	gaca	atag	att	gcca	atc a	aaaca	aaaca	892
	ccad	ctga	atc 1	tgact	aaa	ga at	aaaa	agact	aga	aagg	gatc	tcat	atga	aat (ctggt	gacaa	952
20	ggco	cagga	aag a	agatt	tcct	t go	ctcta	aatta	a tgt	ctat	att	tgtt	ttat	tt (catgo	gcacc	1012
	tato	ctggg	jtc (ctgag	gcaga	a to	gagga	agat	tgt:	gcto	gaat	ggad	ccaa	aag 1	tagtt	tcttg	1072
	tttt	ctcc	ca a	aagca	aggga	ag ct	ttgg	ggaag	g caa	atgga	aaa	gctt	caaaa	aga (gatga	attctg	1132
	tcct	tggt	aa a	atgto	gagto	ga ga	ataç	gcgtt	ttg	jtttt	tca	agta	aaad	ctt a	aatto	caaagg	1192
	ctac	aaag	ıtt i	taaa	aact	a tt	taco	caago	caa	ctac	att	atat	gtat	tc a	atatt	aataa	1252

catgtgtaga ggtagctata cattacttga atttacactt tacacaaatg atttaaaaaa 1312

183/346

taggttgcaa	gtgcagctta	aagtttttt	tcaatgaaaa	gttaattgtt	tagaggagaa	1372
gacttttata	gtcttcagag	gaatgtgtat	ttatgattgt	atatagtcac	caaataaaac	1432
ttttcaagaa	acag	•				1446

5 <210> 83

<211> 2467

<212> DNA

<213> Homo sapiens

10 <220>

<221> CDS

<222> (40)..(2004)

<400> 83

15 ctgtccgccg tctcagacta gaggagcgct gtaaacgcc atg gct ccc aag aag 54

Met Ala Pro Lys Lys

. 9

ctg tcc tgc ctt cgt tcc ctg ctg ctg ccg ctc agc ctg acg cta ctg 102

Leu Ser Cys Leu Arg Ser Leu Leu Pro Leu Ser Leu Thr Leu Leu

20 10 15 20

ctg ccc cag gca gac act cgg tcg ttc gta gtg gat agg ggt cat gac 150
Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val Asp Arg Gly His Asp

25 30 3

cgg ttt ctc cta gac ggg gcc ccg ttc cgc tat gtg tct ggc agc ctg 198

25 Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr Val Ser Gly Ser Leu

٠		•	40					45					50				
	cac	tac	ttt.	cgg	gta	ccg	cgg	gtg	ctt	tgg	gcc	gac	cgg	ctt	ttg	aag	246
	His	Tyr	Phe	Arg	Val	Pro	Arg	Val	Leu	Trp	Ala	Asp	Arg	Leu	Leu	Lys	
		55					60					65					
5	atg _,	cga	tgg	agc	ggc	ctc	aac	gcc	ata	cag	ttt	tat	gtg	ccc	tgg	aac	294
	Met	Arg	Trp	Ser	Gly	Leu	Asn	Ala	Ile	Gln	Phe	Tyr	Val	Pro	Trp	Asn	
	70					75					80					85	141
	tac	cac	gag	cca	cag	cct	ggg	gtc	tat	aac	ttt	aat	ggc	agc	cgg	gac	342
	Tyr	His	Glu	Pro	Gln	Pro	Gly	Val	Tyr	Asn	Phe	Asn	Gly	Ser	Arg	Asp	
10					90					95					100		
	ctc	att	gcc	ttt	cţg	aat	gag	gca	gct	cta	gcg	aac	ctg	ttg	gtc	ata	390
	Leu	Ile	Ala	Phe	Leu	Asn	Glu	Ala	Ala	Leu	Ala	Asn	Leu	Leu	Val	Ile	
				105					110	•				115			
	ctg	aga	cca	gga	cct	tac	atc	tgt	gca	gag	tgg	gag	atg	ggg	ggt	ctc	438
15	Leu	Arg	Pro	Gly	Pro	Туŗ	Ile	Cys	Ala	Glu	Trp	Glu	Met	Gly	Gly	Leu	
			120					125					130				
	cca	tcc	tgg	ttg	ctt	cga	aaa	cct	gaa	att	cat	cta	aga	acc	tca	gat	486
	Pro	Ser	Trp	Leu	Leu	Arg	Lys	Pro	Glu	Ile	His	Leu	Arg	Thr	Ser	Asp	
		135					140					145					
20	cca	gac	ttc	ctt	gcc	gca	gtg	gac	tcc	tgg	ttc	aag	gtc	ttg	ctg	ccc	534
	Pro	Asp	Phe	Leu	Ala	Ala	Val	Asp	Ser	Trp	Phe	Lys	Val	Leu	Leu	Pro	
	150					155					160					165	
	aag	ata	tat	cca	tgg	ctt	tat	cac	aat	ggg	ggc	aac	atc	att	agc	att	582
	Lys	Ile	Tyr	Pro	Trp	Leu	Tyr	His	Asn	Gly	Gly	Asn	Ile	Ile	Ser	Ile	
25					170					175					180		

	cag	gtg	gag	aat	gaa	tat	ggt	agc	tac	aga	gcc	tgt	gac	ttc	agc	tac	630
	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Arg	Ala	Суѕ	Asp	Phe	Ser	Tyr	
				185					190					195			
	atg	agg	cac	ttg	gct	ggg	ctc	ttc	cgt	gca	ctg	cta	gga	gaa	aag	atc	678
5	Met	Arg	His	Leu	Ala	Gly	Leu	Phe	Arg	Ala	Leu	Leu	Gly	Glu	Lys	Ile	
			200					205					210				
	ttg	ctc	ttc	acc	aca	gat	ggg	cct	gaa	gga	ctc	aag	tgt	ggc	tcc	ctc	726
	Leu	Leu	Phe	Thr	Thr	Asp	Gly	Pro	Glu	Gly	Leu	Lys	Cys	Gly	Ser	Leu	
		215					220					225					
10	cgg	gga	ctc	tat	acc	act	gta	gat	ttt	ggc	cca	gct	gac	aac	atg	acc	774
	Arg	Gly	Leu	Tyr	Thr	Thr	Val	Asp	Phe	Gly	Pro	Ala	Asp	Asn	Met	Thr	
	230					235					240					245	
	aaa	atc	ttt	acc	ctg	ctt	cgg	aag	tat	gaa	ccc	cat	ggg	cca	ttg	gta	822
	Lys	Ile	Phe	Thr	Leu	Leu	Arg	Lys	Tyr	Glu	Pro	His	Gly	Pro	Leu	Val	
15					250					255					260		
	aac	tct	gag	tac	tac	aca	ggc	tgg	ctg	gat	tac	tgg	ggc	cag	aat	cac	870
	Asn	Ser	Glu	Tyr	Tyr	Thr	Gly	Trp	Leu	Asp	Tyr	Trp	Gly	Gln	Asn	His	
				265					270		•			275			
	tcc	aca	cgg	tct	gtg	tca	gct	gta	acc	aaa	gga	cta	gag	aac	atg	ctc	918
20	Ser	Thr	Arg	Ser	Val	Ser	Ala	Val	Thr	Lys	Gly	Leu	Glu	Asn	Met	Leu	
			280					285					290				
	aag	ttg	gga	gcc	agt	gtg	aac	atg	tac	atg	ttc	cat	gga	ggt	acc	aac	966
	Lys	Leu	Gly	Ala	Ser	Val	Asn	Met	Tyr	Met	Phe	His	Gly	Gly	Thr	Asn	
	_	295					300		-			305	_				
25	ttt			. taa	aat	gat.			aaq	aao	gaa			ctt	. cca	att	101
-		254		- 25		220	500	5		9	224	-30					

		Phe	Gly	Tyr	Trp	Asn	Gly	Ala	Asp	Lys	Lys	Gly	Arg	Phe	Leu	Pro	Ile	
		310					315					320					325	
		act	acc	agc	tat	gac	tat	gat	gca	cct	ata	tct	gaa	gca	ggg	gac	ccc	1062
		Thr	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Pro	Ile	Ser	Glu	Ala	Gly	Asp	Pro	
5						330					335					340		
		aca	cct	aag	ctt	ttt	gct	ctt	cga	gat	gtc	atc	agc	aag	ttc	cag	gaa	1110
		Thr	Pro	Lys	Leu	Phe	Ala	Leu	Arg	Asp	Val	Ile	Ser	Lys	Phe	Gln	Glu	
					345					350					355			
		gtt	cct	ttg	gga	cct	tta	cct	ccc	ccg	agc	ccc	aag	atg	atg	ctt	gga	1158
10		Val	Pro	Leu	Gly	Pro	Leu	Pro	Pro	Pro	Ser	Pro	Lys	Met	Met	Leu	Gly	
				360					365					370				
		cct	gtg	act	ctg	cac	ctg	gtt	ggg	cat	tta	ctg	gct	ttc	cta	gac	ttg	1206
		Pro	Val	Thr	Leu	His	Leu	Val	Gly	His	Leu	Leu	Ala	Phe	Leu	Asp	Leu	•
			375					380					385					
15		ctt	tgc	ccc	cgt	ggg	ccc	att	cat	tca	atc	ttg	cca	atg	acc	ttt	gag	1254
•		Leu	Cys	Pro	Arg	Gly	Pro	Ile	His	Ser	Ile	Leu	Pro	Met	Thr	Phe	Glu	
		390					395					400					405	
		gct	gţc	aag	cag	gac	cat	ggc	ttc	atg	ttg	tac	cga	acc	tat	atg	acc	1302
		Ala	Val	Lys	Gln	Asp	His	Gly	Phe	Met	Leu	Tyr	Arg	Thr	Tyr	Met	Thr	
20						410					415					420		
	•	cat	acc	att	ttt	gag	cca	aca	cca	ttc	tgg	gtg	cca	aat	aat	gga	gtc	1350
		His	Thr	Ile	Phe	Glu	Pro	Thr	Pro	Phe	Trp	Val	Pro	Asn	Asn	Gly	Val	
					425					430					435			
-		cat	gac	cgt	gcc	tat	gtg	atg	gtg	gat	ggg	gtg	ttc	cag	ggt	gtt	gtg	1398
25	· •	His	Asp	Arg	Ala	Tyr	Val	Met	Val	Asp	Gly	Val	Phe	Gln	Gly	Val	Val	

			440					445					450				
	gag	cga	aat	atg	aga	gac	aaa	cta	ttt	ttg	acg	ggg	aaa	ctg	ggg	tcc	1446
	Glu	Arg	Asn	Met	Arg	Asp	Lys	Leu	Phe	Leu	Thr	Gly	Lys	Lėu	Gly	Ser	
		455					460					465					
5	aaa	ctg	gat	atc	ttg	gtg	gag	aac	atg	ggg	agg	ctc	agc	ttt	ggg	tct	1494
	Lys	Leu	Asp	Ile	Leu	Val	Glu	Asn	Met	.Gly	Arg	Leu	Ser	Phe	Gly	Ser	
	470					475					480					485	
	aac	agc	agt	gac	ttc	aag	ggc	ctg	ttg	aag	cca	cca	att	ctg	ggg	caa	1542
	Asn	Ser	Ser	Asp	Phe	Lys	Gly	Leu	Leu	Lys	Pro	Pro	Ile	Leu	Gly	Gln	
10					490					495					500		
	aca	atc	ctt	acc	cag	tgg	atg	atg	ttc	cct	ctg	aaa	att	gat	aac	ctt	1590
	Thr	Ile	Leu	Thr	Gln	Trp	Met	Met	Phe	Pro	Leu	Lys	Ile	Asp	Asn	Leu	
	•			505					510					515			•
	gtg	aag	tgg	tgg	ttt	ccc	ctc	cag	ttg	cca	aaa	tgg	cca	tat	cct	caa	1638
15	Val	Lys	Trp	Trp	Phe	Pro	Leu	Gln	Leu	Pro	Lys	Trp	Pro	Tyr	Pro	Gln	
			520					525					530				
	gct	cct	tct	ggc	ccc	aca	ttc	tac	tcc	aaa	aca	ttt	cca	att	tta	ggc	1686
	Ala	Pro	Ser	Gly	Pro	Thr	Phe	Tyr	Ser	Lys	Thr	Phe	Pro	Ile	Leu	Gly	
		535					540					545					
20	tca	gtt	ggg	gac	aca	ttt	cta	tat	cta	cct	gga	tgg	acc	aag	ggc	caa .	1734
	Ser	Val	Gly	Asp	Thr	Phe	Leu	Tyr	Leu	Pro	Gly	Trp	Thr	Lys	Gly	Gln	
	550					555					560					565	
	gtc	tgg	atc	aat	ggg	ttt	aac	ttg	ggc	cgg	tac	tgg	aca	aag	cag	ggg	1782
	Val	Trp	Ile	Asn	Gly	Phe	Asn	Leu	Gly	Arg	Tyr	Trp	Thr	Lys	Gln	Gly	
25					570					575					580		

	cca	caa	cag	acc	ctc	tac	gtg	cca	aga	ttc	ctg	ctg	ttt	cct	agg	gga	1830
	Pro	Gln	Gln	Thr	Leu	Tyr	Val	Pro	Arg	Phe	Leu	Leu	Phe	Pro	Arg	Gly	
				585					590					595			
	gcc	ctc	aac	aaa	att	aca	ttg	ctg	gaa	cta	gaa	gat	gta	cct	ctc	cag	1878
5	Ala	Leu	Asn	Lys	Ile	Thr	Leu	Leu	Glu	Leu	Glu	Asp	Val	Pro	Leu	Gln	
			600					605					610				
	ccc [°]	caa	gtc	caa	ttt	ttg	gat	aag	cct	atc	ctc	aat	agc	act	agt	act -	1926
	Pro	Gln	Val	Gln	Phe	Leu	Asp	Lys	Pro	Ile	Leu	Asn	Ser	Thr	Ser	Thr	
		615					620					625					
10	ttg	cac	agg	aca	cat	atc	aat	tcc	ctt	tca	gct	gat	aca	ctg	agt	gcc	1974
	Leu	His	Arg	Thr	His	Ile	Asn	Ser	Leu	Ser	Ala	Asp	Thr	Leu	Ser	Ala	
	630				•	635					640					645	
	tct	gaa	cca	atg	gag	tta	agt	ggg	cac	tga	aag	gtag	gcc	gggc	atgg	tg	2024
	Ser	Glu	Pro	Met	Glu	Leu	Ser	Gly	His)							
15			=		650					655							
	gct	catg	cct	gtaa	tccc	ag c	actt	tggg	a gg	ctga	gacg	ggt	ggat	tac	ctga	ggtcag	2084
•	gac	ttca	aga	ccag	cctg	gc c	aaca	tggt	g aa	accc	cgtc	tcc	acta	aaa	atac	aaaaat	2144
	tag	ccgg	gcg	tgat	ggtg	gg c	acct	ctaa	t cc	cagc	tact	tgg	gagg	ctg	aggg	caggag	2204
	aat	tgct	tga	atcc	agga	gg c	agag	gttg	c ag	tgag	tgga	ggt	tgta	cca	ctgc	actcca	2264
20	gcc	tggc	tga	cagt	gaga	ca c	tcca	tctc	a aa	aaaa	aaaa	aaa	aaaa	aaa	aagt	aaccct	2324
	tgg	acct	ggg	acat	ggag	tg g	gcag	gatc	c ct	tggt	gctg	gcc	acgg	tga	ccct	aaggaa	2384
	cta	aagg	cca	cagt	gcct	ct g	aatg	taag	t ac	aagt	acac	att	cctt	gcc	aaac	tttatt	2444
	gtg	atta	aaa	ttcc	agag	ac a	gt										2467

189/346

<211> 1450

<212> DNA

<213> Homo sapiens

5 <220>

<221> CDS

<222> (245)..(1417)

<400> 84

tgagccctcc ttggctctta caatgctcac ttgttttcac aatgcagcaa aatgaaatgc 60 cttagaaaaa gagtaacatt ccagaaaacg gtgtaattta tttttcttcc ttaattgccc 120 catctgtgga ggatttcttt gctgaacacc acatcaaagg gatcttctgc atttaaaata 180 gaagaggcat catgctgaag agggagggga aggtccaacc ttacactaaa accctggatg 240 gagg atg ggg atg gat gat tgt gat tca ttt ttt cct ggt ccc ctg gtt 289

Met Gly Met Asp Asp Cys Asp Ser Phe Phe Pro Gly Pro Leu Val

1 5 10 15

gct att att tgt gac ata ctt gga gag aaa act acc tcc att ctt ggg 337
Ala Ile Ile Cys Asp Ile Leu Gly Glu Lys Thr Thr Ser Ile Leu Gly

20 25 30

20 gct ttt gtt gtt act ggt gga tat ctg atc agc agc tgg gcc aca agt 385
Ala Phe Val Val Thr Gly Gly Tyr Leu Ile Ser Ser Trp Ala Thr Ser

35 40 45

att cct ttt ctt tgt gtg act atg gga ctt cta ccc ggt ttg ggt tct 433
.
Ile Pro Phe Leu Cys Val Thr Met Gly Leu Pro Gly Leu Gly Ser

25 50 55 60

	gct	ttc	tta	tac	caa	gtg	gct	gct	gtg	gta	act	acc	aaa	tac.	ttc	aaa	481
	Ala	Phe	Leu	Tyr	Gln	Val	Ala	Ala	Val	Val	Thr	Thr	Lys	Tyr	Phe	Lys	
		65					70					75					
	aaa	cga	ttg	gct	ctt	tct	aca	gct	att	gcc	cgt	tct	ggg	atg	gga	ctg	529
5	Гуз _.	Arg	Leu	Ala	Leu	Ser	Thr	Ala	Ile	Ala	Arg	Ser	Gly	Met	Gly	Leu	
	80					85					90					95	
	act	ttt	ctt	ttg	gca	ccc	ttt	aca	aaa	ttc	ctg	ata	gat	ctg	tat	gac	577
	Thr	Phe	Leu	Leu	Ala	Pro	Phe	Thr	Lys	Phe	Leu	Ile	Asp	Leu	Tyr	Asp	
					100					105					110		
10	tgg	aca	gga	gcc.	ctt	ata	tta	ttt	gga	gct	atc	gca	ttg	aat	ttg	gtg	625
	Trp	Thr	Gly	Ala	Leu	Ile	Leu	Phe	Gly	Ala	Ile	Ala	Leu	Asn	Leu	Val	
				115					120					125			
	cct	tct	agt	atg	ctc	tta	aga	ccc	atc	cat	atc	aaa	agt	gag	aac	aat	673
	Pro	Ser	Ser	Met	Leu	Leu	Arg	Pro	Ile	His	Ile	Lys	Ser	Glu	Asn	Asn	
15			130					135					140				
	tct	ggt	att	aaa	gat	aaa	ggc	agc	agt	ttg	tct	gca	cat	ggt	cca	gag	721
	Ser	Gly	Ile	Lys	Asp	Lys	Gly	Ser	Ser	Leu	Ser	Ala	His	Gly	Pro	Glu	
		145					150					155					
	gca	cat	gca	aca	gaa	aca	cac	tgc	cat	gag	aca	gaa	gag	tct	acc	atc	769
20	Ala	His	Ala	Thr	Glu	Thr	His	Cys	His	Glu	Thr	Glu	Glu	Ser	Thr	Ile	
	160					165					170					175	
	aag	gac	agt	act	acg	cag	aag	gct	gga	cta	cct	agc	aaa	aat	tta	aca	817
	Lys	Asp	Ser	Thr	Thr	Gln	Lys	Ala	Gly	Leu	Pro	Ser	Lys	Asn	Leu	Thr	
					180					185					190		
25	gtc	tca	caa	aat	caa	agt	gaa	gag	ttc	tac	aat	ggg	cct	aac	agg	aac	865

	Val	Ser	Gln	Asn	Gln	Ser	Glu	Glu	Phe	Tyr	Asn	Gly	Pro	Asn	Arg	Asn	
				195					200					205			
	aga	ctg	tta	tta	aag	agt	gat	gaa	gaa	agt	gat	aag	gtt	att	tcg	tgg	913
	Arg	Leu	Leu	Leu	Lys	Ser	Asp	Glu	Glu	Ser	Asp	Lys	Val	Ile	Ser	Trp	
5 .			210					215					220				
	agc	tgc	aaa	caa	ctg	ttt	gac	att	tct	ctc	ttt	aga	aat	cct	ttc	ttc	961
	Ser	Cys	Lys	Gln	Leu	Phe	Asp	Ile	Ser	Leu	Phe	Arg	Asn	Pro	Phe	Phe	
		225					230					235					
	tac	ata	ttt	act	tgg	tct	ttt	ctc	ctc	agt	cag	tta	gca	tac	ttc	atc	1009
10	Tyr	Ile	Phe	Thr	Trp	Ser	Phe	Leu	Leu	Ser	Gln	Leu	Ala	Tyr	Phe	Ile	
	240					245					250					-255	
	cct	acc	ttt	cac	ctg	gta	gcc	aga	gcc	aaa	aca	ctg	ggg	att	gac	atc	1057
	Pro	Thr	Phe	His	Leu	Val	Ala	Arg	Ala	Lys	Thr	Leu	Gly	Ile	Asp	Ile	
					260					265					270		
15	atg	gat	gcc	tct	tac	ctt	gtt	tct	gta	gca	ggt	. atc	ctt	gàg	acg	gtc	1105
	Met	Asp	Ala	Ser	Tyr	Leu	Val	Ser	Val	Ala	Gly	Ile	Leu	Glu	Thr	Val	
				275				•	280					285			
	agt	cag	att	att	tct	gga	tgg	gtt	gct	gat	caa	aac	tgg	att	aag	aag	1153
	Ser	Gln	Ile	Ile	Ser	Gly	Trp	Val	Ala	Asp	Gln	Asn	Trp	Ile	Lys	Lys	
20			290					295					300				
	tat	cat	tac	cac	aag	tct	tac	ctc	atc	ctc	tgc	ggc	atc	act	aac	ctg	1201
	Tyr	His	Tyr	His	Lys	Ser	Tyr	Leu	Ile	Leu	Cys	Gly	Ile	Thr	Asn	Leu	
		305					310					315					
	ctt	gct	cct	tta	gcc	acc	aca	ttt	cca	cta	ctt	atg	acc	tac	acc	atc	1249
25	Leu	Ala	Pro	Leu	Ala	Thr	Thr	Phe	Pro	Leu	Leu	Met	Thr	Tyr	Thr	Ile	

192/346

320 325 330 335 tgc ttt gcc atc ttt gct ggt ggt tac ctg gca ttg ata ctg cct gta Cys Phe Ala Ile Phe Ala Gly Gly Tyr Leu Ala Leu Ile Leu Pro Val 340 345 350 5 ctg gtt gat ctg tgt agg aat tct aca gta aac agg ttt ttg gga ctt Leu Val Asp Leu Cys Arg Asn Ser Thr Val Asn Arg Phe Leu Gly Leu 355 360 365 gcc agt ttc ttt gct ggg atg gct gtc ctt tct gga cca cct ata gca 1393 Ala Ser Phe Phe Ala Gly Met Ala Val Leu Ser Gly Pro Pro Ile Ala 10 370 375 380 ggt aac acc ttc acc aca ttc tga acaaatttca atagcaataa aagagaaaaa 1447 Gly Asn Thr Phe Thr Thr Phe 385 390 ctg 1450 15 <210> 85 <211> 1897 <212> DNA <213> Homo sapiens 20 <220> <221> CDS <222> (8)..(1366)

25

<400> 85

	actt	gtc	atg	gag	ctg	gca	ctg	cgg	cgc	tcţ	ccc	gtc	ccg	cgg	tgg	ttg	49
			Met	Glu	Leu	Ala	Leu	Arg	Arg	Ser	Pro	Val	Pro	Arg	Trp	Leu	
			1				5					10					
	ctg	ctg	ctg	ccg	ctg	ctg	ctg	ggc	ctg	aac	gca	gga	gct	gtc	att	gac	97
5	Leu	Leu	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp	
	15					20					25					30	
	tgg	ccc	aca	gag	gag	ggc	aag	gaa	gta	tgg	gat	tat	gtg	acg	gtc	cgc	145
	Trp	Pro	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val	Arg	
					35					40					45		
10	aag	gat	gcc	tac	atg	ttc	tgg	ţgg	ctc	tat	tat	gcc	acc	aac	tcc	tgc	193
	Lys	Asp	Ala	Tyr	Met	Phe	Trp	Trp	Leu	Tyr	Tyr	Ala	Thr	Asn	Ser	Суѕ	
				50					55					60			
	aag	aac	ttc	tca	gaa	ctg	ccc	ctg	gtc	atg	tgg	ctt	cag	ggc	ggt	cca	241
	Lys	Asn	Phe	Ser	Glu	Leu	Pro	Leu	Val	Met	Trp	Leu	Gln	Gly	Gly	Pro	
15			65					70					75				
	ggc	ggt	tct	agc	act	gga	ttt	gga	aac	ttt	gag	gaa	att	ggg	ccc	ctt	289
	Gly	Gly	Ser	Ser	Thr	Gly	Phe	Gly	Asn	Phe	Glu	Glu	Ile	Gly	Pro	Leu	
		80					85					90					
	gac	agt	gat	ctc	aaa	сса	. cgg	aaa	acc	acc	tgg	ctc	cag	gct	gcc	agt	337
20	Asp	Ser	Asp	Leu	Lys	Pro	Arg	Lys	Thr	Thr	Trp	Leu	Glr	Ala	Ala	Ser	
	95					100					105					110	
	ctc	cta	ttt	gtg:	gat	aat	ccc	gtg	ggc	act	ggg	tto	: agt	: tat	gtg	aat	385
	Leu	Leu	ı Phe	e Val	. Asp	Asn	Pro	Val	. Gly	Thr	Gly	Phe	e Ser	Туг	· Val	. Asn	
					115	•				120)				125	,	
25	ggt	agt	ggt:	gcc	: tat	gcc	: aag	gac	ctg	gct	: atg	gto	gct	tca	a gad	atg	433

	Gly	Ser	Gly	Ala	Tyr	Ala	Lys	Asp	Leu	Ala	Met	Val	Ala	Ser	Asp	Met		
				130					135					140				
	atg.	gtt	ctc	ctg	aag	acc	ttc	ttc	agt	tgc	cac	aaa	gaa	ttc	cag	aca ·	481	
•	Met	Val	Leu	Leu	Lys	Thr	Phe	Phe	Ser	Cys	His	Lys	Glu	Phe	Gln	Thr		
5			145					150					155					
	gtt	cca	ttc	tac	att	ttc	tca	gag	tcc	tat	gga	gga	aaa	atg	gca	gct	529	
	Val	Pro	Phe	Tyr	Ile	Phe	Ser	Glu	Ser	Tyr	Gly	Gly	Lys	Met	Ala	Ala		
		160					165					170						
	ggc	att	ggt	cta	gag	ctt	tat	aag	gcc	att	cag	cga	ggg	acc	atc	aag	577	
10	Gly	Ile	Gly	Leu	Glu	Leu	Tyr	Lys	Ala	Ile	Gln	Arg	Gly	Thr	Ile	Lys		
	175	٠				180					185					190	•	
	tgc	aac	ttt	gcg	ggg	gtt	gcc	ttg	ggt	gat	tcc	tgg	atc	tcc	cct	gtt	625 ⁻	
	Cys	Asn	Phe	Ala	Gly	Val	Ala	Leu	Gly	Asp	Ser	Trp	Ile	Ser	Pro	Val		
					195					200					205			
15	gat	tcg	gtg	ctc	tcc	tgg	gga	cct	tac	ctg	tac	agc	atg	tct	ctt	ctc	673	
	Asp	Ser	Val	Leu	Ser	Trp	Gly	Pro	Tyr	Leu	Tyr	Ser	Met	Ser	Leu	Leu		
				210					215					220				
	gaa	gac	aaa	ggt	ctg	gca	gag	gtg	tct	aag	gtt	gca	gag	caa	gta	ctg	721	
•	Glu	Asp	Lys	Gly	Leu	Ala	Glu	Val	Ser	Lys	Val	Ala	Glu	Gln	Val	Leu		
20			225					230					235					
•	aat	gcc	gta	aat	aag	ggg	ctc	tac	aga	gag	gcc	aca	gag	ctg	tgg	ggg	769	
	Asn	Ala	Val	Asn	Lys	Gly	Leu	Tyr	Arg	Glu	Ala	Thr	Glu	Leu	Trp	Gly		
		240					245					250						
	aaa	gca	gaa	atg	atc	att	gaa	. cag	aac	aca	gat	ggg	gtg	aac	ttc	tat	817	
25	Lys	Ala	Glu	Met	Ile	Ile	Glu	Gln	Asn	Thr	Asp	Gly	Val	Asn	Phe	Tyr		

	•	255					260					265					270	
		aac	atc	tta	act	aaa	agc	act	ccc	acg	tct	aca	atg	gag	tcg	agt	cta	865
		Asn	Ile	Leu	Thr	Lys	Ser	Thr	Pro	Thr	Ser	Thr	Met	Glu	Ser	Ser	Leu	
						275					280					285		
	5	gaa	ttc	aca	cag	agc	cac	cta	gtt	tgt	ctt	tgt	cag	cgc	cac	gtg	aga	913
	•	Glu	Phe	Thr	Gln	Ser	His	Leu	Val	Cys	Leu	Cys	Gln	Arg	His	Val	Arg	
					290					295					300			
		cac	cta	caa	cga	gat	gcc	tta	agc	cag	ctc	atg	aat	ggc	ccc	atc	aga	961
		His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly	Pro	Ile	Arg	
	10			305					310					315				
		aag	aag	ctc	aaa	att	att	cct	gag	gat	caa	tcc	tgg	gga	ggc	cag	gct	1009
		Lys	Lys	Leu	Lys	Ile	Ile	Pro	Glu	Asp	Gln	Ser	Trp	Gly	Gly	Gln	Ala	
			320					325					330				•	
		acc	aac	gtc	ttt	gtg	aac	atg	gag	gag	gac	ttc	atg	aag	cca	gtc	att [°]	1057
	15	Thr	Asn	Val	Phe	Val	Asn	Met	Glu	Glu	Asp	Phe	Met	Lys	Pro	Val	Ile	
		335					340					345					350	
~	٠	agc	att	gtg	gac	gag	ttg	ctg	gag	gca	ggg	atc	aac	gtg	acg	gtg	tat	1105
		Ser	Ile	Val	Asp	Glu	Leu	Leu	Glu	Ala	Gly	Ile	Asn	Val	Thr	Val	Tyr	
						355					360					365		
	20	aat	gga	cag	ctg	gat	ctc	atc	gta	gat	acc	atg	ggt	cag	gag	gcc	tgg	1153
		Asn	Gly	Gln	Leu	Asp	Leu	Ile	Val	Asp	Thr	Met	Gly	Gln	Glu	Ala	Trp	
					370					375					380			
		gtg	cgg	áaa	ctg	aag	tgg	cca	gaa	ctg	cct	aaa	ttc	agt	cag	ctg	aag	1201
		Val	Arg	Lys	Leu	Lys	Trp	Pro	Glu	Leu	Pro	Lys	Phe	Ser	Gln	Leu	Lys	-
	25			385					390					395				

196/346

tgg aag gcc ctg tac agt gac cct aaa tct ctg gaa aca tct gct ttt Trp Lys Ala Leu Tyr Ser Asp Pro Lys Ser Leu Glu Thr Ser Ala Phe 400 405 410 gtc aag tcc tac aag aac ctt gct ttc tac tgg att ctg aaa gct ggt 5 Val Lys Ser Tyr Lys Asn Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly 415 420 425 cat atg gtt cct tct gac caa ggg gac atg gct ctg aag atg atg aga 1345 His Met Val Pro Ser Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg 435 440 445 10 ctg gtg act cag caa gaa tag gatggatggg gctggagatg agctggtttg 1396 Leu Val Thr Gln Gln Glu 450

gccttgggc acagagctga gctgaggccg ctgaagctgt aggaagcgcc attcttccct 1456
gtatctaact ggggctgtga tcaagaaggt tctgaccagc ttctgcagag gataaaatca 1516
ttgtctctgg aggcaatttg gaaattattt ctgcttctta aaaaaaaccta agattttta 1576
aaaaattgat ttgttttgat caaaataaag gatgataata gatattattt tttcttatga 1636
cagaagcaaa tgatgtgatt tatagaaaaa ctgggaaata caggtaccca aagagtaaat 1696
caacatctgt ataccccctt cccaggggta agcactgtta ccaatttagc atatgtcctt 1756
gcagaatttt ttttctata tatacatata tattttttac caaaatgaat cattactcta 1816
tgttgtttta ctatttgttt gacatatcag tatacctgaa acaccttttc atgtcaataa 1876
atgttcttct ctaacattt t

<210> 86

<211> 1856

25 <212> DNA

15

20

197/346

<213> Homo sapiens

<220>

<221> CDS

5 <222> (43)..(1515)

<400> 86

15

agatccaagt tgggagcagc tctgcgtgcg gggcctcaga ga atg agg ccg gcg 54

Met Arg Pro Ala

10

ttc gcc ctg tgc ctc ctc tgg cag gcg ctc tgg ccc ggg ccg ggc ggc 102

Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro Gly Pro Gly Gly

5 10 15 20

ggc gaa cac ccc act gcc gac cgt gct ggc tgc tcg gcc tcg ggg gcc 150
Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser Ala Ser Gly Ala

25 30 35

tgc tac age ctg cac cac gct acc atg aag cgg cag gcg gcc gag gag 198 Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln Ala Ala Glu Glu

45

50

gcc tgc atc ctg cga ggt ggg gcg ctc agc acc gtg cgt gcg ggc gcc 246
Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val Arg Ala Gly Ala

55 60 65

gag ctg cgc gct gtg ctc gcg ctc ctg cgg gca ggc cca ggg ccc gga 294
Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly Pro Gly Pro Gly

25 70 75 80

40

	ggg	ggc	tcc	aaa	gac	ctg	ctg	ttc	tgg	gtc	gca	ctg	gag	cgc	agg	cgt	342
	Gly	Gly	Ser	Lys	Asp	Leu	Leu	Phe	Trp	Val	Ala	Leu	Glu	Arg	Arg	Arg	
	85					90			•	•	95					100	
	tcc	cac	tgc	acc	ctg	gag	aac	gag	cct	ttg	cgg	ggt	ttc	tcc	tgg	ctg	390
5	Ser	His	Cys	Thr	Leu	Glu	Asn	Glu	Pro	Leu	Arg	Gly	Phe	Ser	Trp	Leu ·	
					105					110					115		
	tcc	tcc	gac	ccc	ggc	ggt	ctc	gaa	agc	gac	acg	ctg	cag	tgg	gtg	gag	438
	Ser	Ser	Asp	Pro	Gly	Gly	Leu	Glu	Ser	Asp	Thr	Leu	Gln	Trp	Val	Glu	
				120					125					130			
10	gag	ccc	caa	cgc	tcc	tgc	acc	gcg	cgg	aga	tgc	gcg	gta	ctc	cag	gcc	486
	Glu	Pro	Gln	Arg	Ser	Cys	Thr	Ala	Arg	Arg	Cys	Ala	Val	Leu	Gln	Ala	
			135					140					145				
	acc	ggt	ggg	gtc	gag	ccc	gca	ggc	tgg	aag	gag	atg	cga	tgc	cac	ctg	534
	Thr	Gly	Gly	Val	Glu	Pro	Ala	Gly	Trp	Lys	Glu	Met	Arg	Cys	His	Leu	
15		150					155					160					
	cgc	gcc	aac	ggc	tac	ctg	tgc	aag	tac	cag	ttt	gag	gtc	ttg	tgt	cct	582
	Arg	Ala	Asn	Gly	Tyr	Leu	Суѕ	Lys	Tyr	Gln	Phe	Glu	Val	Leu	Cys	Pro	
	165					170					175					180	
	gcg	ccg	cgc	ccc	ggg	gcc	gcc	tct	aac	ttg	agc	tat	cgc	gcg	ccc	ttc	630
20	Ala	Pro	Arg	Pro	Gly	Ala	Ala	Ser	Asn	Leu	Ser	Tyr	Arg	Ala	Pro	Phe	
					185					190					195		
	cag	ctg	cac	agc	gcc	gct	ctg	gac	ttc	agt	cca	cct	ggg	acc	gag	gtg	678
	Gln	Leu	His	Ser	Ala	Ala	Leu	Asp	Phe	Ser	Pro	Pro	Gly	Thr	Glu	Val	
				200					205					210			
25	agt	gcg	ctc	tgc	cgg	gga	cag	ctc	ccg	atc	tca	gtť	ạct	tgc	atc	gcg	726

	Ser	Ala	Leu	Cys	Arg	Gly	Gln	Leu	Pro	Ile	Ser	Val	Thr	Cys	Ile	Ala	
			215					220					225				
	gac	gaa	atc	ggc	gct	cgc	tgg	gac	aaa	ctc	tcg	ggc	gat	gtg	ttg	tgt	774
	Asp	Glu	Ile	Gly	Ala	Arg	Trp	Asp	Lys	Leu	Ser	Gly	Asp	Val	Leu	Cys	
5		230					235					240					
	ccc	tgc	ccc	ggg	agg	tac	ctc	cgt	gct	ggc	aaa	tgc	gca	gag	ctc	cct	822
	Pro	Cys	Pro	Gly	Arg	Tyr	Leu	Arg	Ala	Gly	Lys	Cys	Ala	Glu	Leu	Pro	
	245					250					255					260	
	aac	tgc	cta	gac	gac	ttg	gga	ggc	ttt	gcc	tgc	gaa	tgt	gct	acg	ggc	870
10	Asn	Cys	Leu	Asp	Asp	Leu	Gly	Gly	Phe	Ala	Cys	Glu	Cys	Ala	Thr	Gly	
					265					270					275		
	ttc	gag	ctg	ggg	aag	gac	ggc	cgc	tct	tgt	gtg	acc	agt	ggg	gaa	gga	918
	Phe	Glu	Leu	Gly	Lys	Asp	Gly	Arg	Ser	Cys	Val	Thr	Ser	Gly	Glu	Gly	
				280					285					290			
. 15	cag	ccg	acc	ctt:	ggg	ggg	acc	ggg	gtg	ccc	acc	agg	cgc	ccg	ccg	gcc	966
	Gln	Pro	Thr	Leu	Gly	Gly	Thr	Gly	Val	Pro	Thr	Arg	Arg	Pro	Pro	Ala	
			295	5				300					305	•			
	act	gca	aco	c ago	ccc	gtg	ccg	cag	aga	aca	tgg	cca	ato	agg	gto	gac	1014
	Thr	: Ala	th:	: Ser	Pro	val	Pro	Gln	Arg	Thr	Trp	Pro) Ile	Arg	, Val	. Asp	
20		310)				315	,				320)				
	gag	, aag	g cto	g gga	a gaç	g aca	cca	ctt	gto	cct	: gaa	a caa	a gad	aat	tca	gta	1062
	Glı	ı Lys	s Lei	ı Gl	/ Glu	ı Thr	Pro	Leu	ı Val	Pro	Glu	ı Glı	n Asp	Asr	ı Sei	. Val	
	325	5				330)				335	5				340	
	aca	a tci	t ati	t cct	c gag	g att	c cct	cga	tgg	gga	a tca	a cag	g ago	c acq	g ato	g tct	1110
25	Th	r Se	r Ile	e Pro	o Gla	ı Ile	e Pro	o Arg	g Trp	Gly	y Se:	r Gli	n Se	r Thi	r Met	t Ser	

					345					350					355		
	acc	ctt	caa	atg	tcc	ctt	caa	gcc	gag	tca	aag	gcc	act	atc	acc	cca	1158
	Thr	Leu	Gln	Met	Ser	Leu	Gln	Ala	Glu	Ser	Lys	Ala	Thr	Ile	Thr	Pro	
				360					365					370			
5	tca	ggg	agc	gtg	att	tcc	aag	ttt	aat	tct	acg	act	tcc	tct	gcc	act	1206
	Ser	Gly	Ser	Val	Ile	Ser	Lys	Phe	Asn	Ser	Thr	Thr	Ser	Ser	Ala	Thr	
			375					380					385				
	cct	cag	gct	ttc	gac	tcc	tcc	tct	gcc	gtg	gtc	ttc	ata	ttt	gtg	agc	1254
	Pro	Gln	Ala	Phe	Asp	Ser	Ser	Ser	Ala	Val	Val	Phe	Ile	Phe	Val	Ser	
10		390					395					400					
	aca	gca	gta	gta	gtg	ttg	gtg	atc	ttg	acc	atg	aca	gta	ctg	ggg	ctt	1302
	Thr	Ala	Val	Val	Val	Leu	Val	Ile	Leu	Thr	Met	Thr	Val	Leu	Gly	Leu	
	405					410					415					420	
	.gtc	aag	ctc	tgc	ttt	cac	gaa	agc	ccc	tct	tcc	cag	cca	agg	aag	gag	1350
15	Val	Lys	Leu	Cys	Phe	His	Glu	Ser	Pro	Ser	Ser	Gln	Pro	Arg	Lys	Glu	
					425					430)				435	•	
	tct	atg	ggc	ccg	ccg	ggc	ctg	gag	agt	gat	cct	gag	ccc	gct	gct:	ttg	1398
	Ser	Met	: Gly	Pro	Pro	Gly	Leu	Glu	Ser	Asp	Pro	Glu	Pro	Ala	Ala	Leu	-
				440	1				445	1				450)		
20	ggc	: tcc	agt	tct	. gca	cat	tgc	aca	aac	: aat	ggg	g gto	g aaa	gto	ggg	g gac	1446
	Gly	/ Ser	: Ser	s Ser	: Ala	His	Cys	Thr	Asn	a Asr	ı Gly	y Val	Lys	val	L Gly	y Asp	
			455	5				460)				465	ò			
	tgt	gat	cto	g cgg	g gad	aga	gca	gag	g ggt	gco	c tto	g ct	g gcg	g gaq	g tc	c cct	1494
	Cys	a Asp) Le	ı Arg	g Asp	Arg	, Ala	a Glu	ı Gly	/ Ala	a Lei	ı Leı	ı Ala	a Glu	ı Sei	r Pro	
25		470)				475	5				480)				

201/346

ctt ggc tct agt gat gca tag ggaaacaggg gacatgggca ctcctgtgaa 1545 Leu Gly Ser Ser Asp Ala 485 490 caqtttttca cttttgatga aacggggaac caagaggaac ttacttgtgt aactgacaat 1605 5 ttctgcagaa atcccccttc ctctaaattc cctttactcc actgaggagc taaatcagaa 1665 ctgcacactc cttccctgat gatagaggaa gtggaagtgc ctttaggatg gtgatactgg 1725 gggaccgggt agtgctgggg agagatattt tcttatqttt attcggagaa tttggagaag 1785 tgattgaact tttcaagaca ttggaaacaa atagaacaca atataattta cattaaaaaa 1845 taatttctac c 1856 10 <210> 87 <211> 2173 <212> DNA <213> Homo sapiens 15 <220> <221> CDS <222> (262)..(1440) 20 <400> 87 gtttggagtt gtcaccactt tcccctctcc gtctcctgcg ggcgcaatgg aggaggagga 60 tgaggaagcg cgggcgctcc tggcaggcgg ccctgacgag gccgacagag gtgccccggc 120 cgcccctgga gccctgccgg ccctctgcga ccccagtcgc ctgqcqcacc ggcttttggt 180 getgttactg atgtgettee ttggetttge tatttttget atgataatee tgetgeeett 240

cagactcaag ttaaacgaga t atg caa gtg aat acc acg aaa ttc atg ctg

25

							Met	Gln	Val	Asn	Thr	Thr	Lys	Phe	Met	Leu	
							1				5					10	
	ctg	tat	gcc	tgg	tat	tct	tgg	ccc	aat	gta	gtt	ttg	tgt	ttc	ttt	ggt	339
	Leu	Tyr	Ala	Trp	Tyr	Ser	Trp	Pro	Asn	Val	Val	Leu	Cys	Phe	Phe	Gly	
5					15					20					25		
	ggc	ttt	ttg	ata	gac	cga	gta	ttt	gga	ata	cga	tgg	ggc	aca	atc	att	387
	Gly	Phe	Leu	Ile	Asp	Arg	Val	Phe	Gly	Ile	Arg	Trp	Gly	Thr	Ile	Ile	
				30			-		35					40		1	
	ttt	agc	tgc	ttt	gtt	tgc	att	gga	cag	gtt	gtt	ttt	gcc	ctg	ggt	gga	435
10	Phe	Ser	Cys	Phe	Val	Суѕ	Ile	Gly	Gln	Val	Val	Phe	Ala	Leu	Gly	Gly	
			45					50					55				
	ata	ttt	aat	gct	ttt	tgg	ctg	atg	gaa	ttt	gga	aga	ttt	gta	ttt	aaa	483
	Ile	Phe	Asn	Ala	Phe	Trp	Leu	Met	Glu	Phe	Gly	Arg	Phe	Val	Phe	Gly	
		60					65					70					
15	att	ggt	ggc	gag	tcc	tta	gca	gtt	gcc	cag	aat	aca	tat	gct	gtg	agc	531
	Ile	Gly	Gly	Glu	Ser	Leu	Ala	Val	Ala	Gln	Asn	Thr	Tyr	Ala	Val	Ser	
	75					80					85					90	
	tgg	ttt	aaa	ggc	aaa	gaa	tta	aac	ctg	gtg	ttt	gga	ctt	caa	ctt	agc	579
	Trp	Phe	Lys	Gly	Lys	Glu	Leu	Asn	Leu	Val	Phe	Gly	Leu	Gln	Leu	Ser	
20					95					100					105		
	atg	gct	aga	att	gga	agt	aca	gta	aac	atg	aac	ctc	atg	gga	tgg	ctg	62°
	Met	Ala	Arg	Ile	Gly	Ser	Thr	Val	Asn	Met	Asn	Leu	Met	Gly	Trp	Leu	
				110					115				•	120			
	tat	tct	aag	att	gaa	gct	ttg	tta	ggt	tct	gct	ggt	cac	aca	acc	ctc	675
25	ጥህዮ	Ser	Lvs	Tle	Glu	Δla	T.011	Lou	C1	Com	712	Gly	uic	Thr.	Thr	T 011	

			125					130					135				
	ggg	atc	aca	ctt	atg	att	ggg	ggt	ata	acg	tgt	att	ctt	tca	cta	atc	723
	Gly	Ile	Thr	Leu	Met	Ile	Gly	Gly	Ile	Thr	Cys	Ile	Leu	Ser	Leu	Ile	
		140					145			,		150					
5	tgt	gcc	ttg	gct	ctt	gcc	tac	ttg	gat	cag	aga	gca	gag	aga	atc	ctt	771
	Cys	Ala	Leu	Ala	Leu	Ala	Tyr	Leu	Asp	Gln	Arg	Ala	Glu	Arg	Ile	Leu	
	155					160					1 65					170	
	cat	aaa	gaa	caa	gga	aaa	aca	ggt	gaa	gtt	att	aaa	tta	act	gat	gta	819
	His	Lys	Glu	Gln	Gly	Lys	Thr	Gly	Glu	Val	Ile	Lys	Leu	Thr	Asp	Val	
10					175					180					185		
	aag	gac	ttc	tcc	tta	ccc	ctg	tgg	ctt	ata	ttt	atc	atc	tgt	gtc	tgc	867
	Lys	Asp	Phe	Ser	Leu	Pro	Leu	Trp	Leu	Ile	Phe	·Ile	Ile	Cys	Val	Cys	
				190					195					200			
	tat	tat	gtt	gct	gtg	ttc	cct	ttt	att	gga	ctt	ggg	aaa	gtt	ttc	ttt	915
15	Tyr	Tyr	Val	Ala	Val	Phe	Pro	Phe	Ile	Gly	Leu	Gly	Lys	Val	Phe	Phe	
			205					210					215				
	aca	gag	aaa	ttt	gga	ttt	tct	tcc	cag	gca	gca	agt	gca	att	aac	agt	963
	Thr	Glu	Lys	Phe	Gly	Phe	Ser	Ser	Gln	Ala	Ala	Ser	Ala	Ile	Asn	Ser	
		220					225					230					
20			•									gtg					1011
			Tyr	Val	Ile	Ser	Ala	Pro	Met	Ser		Val	Phe	Gly	Leu	Leu	
	235					240					245					250	
																gca	1059
0.5	Val	Asp	Lys	Thr		_	Asn	Ile	lle			. Leu	. Cys	Ala			
25					255	1				260)				265		

	gcc	act	ctt	gtg	tcc	cac	atg	atg	ctg	gcc	ttt	acg	atg	tgg	aac	cct	1107
	Ala	Thr	Leu	Val	Ser	His	Met	Met	Leu	Ala	Phe	Thr	Met	Trp	Asn	Pro	
				270					275					280			
	tgg	att	gct	atg	tgt	ctt	ctg	gga	ctc	tcc	tac	tca	ttg	ctt	gcc	tgt	1155
5	Trp	Ile	Ala	Met	Cys	Leu	Leu	Gly	Leu	Ser	Tyr	Ser	Leu	Leu	Ala	Cys	•
			285					290					295				
	gca	ttg	tgg	cca	atg	gtg	gca	ttt	gta	gtt	cct	gaa	cat	cag	ctg	gga	1203
	Ala	Leu	Trp	Pro	Met	Val	Ala	Phe	Val	Val	Pro	Glu	His	Gln	Leu	Gly	•
		300					305					310					
10	act	gca	tat	ggc	ttc	atg	cag	tcc	att	cag	aat	ctt	ggg	ttg	gcc	atc	1251
	Thr	Ala	Tyr	Gly	Phe	Met	Gln	Ser	Ile	Gln	Asn	Leu	Gly	Leu	Ala	Ile	
	315				•	320					325					330	
	att	tcc	ato	: att	gct	ggt	atg	ata	ctg	gat	tct	cgg	ggg	tat	t.tg	ttt	1299
	Ile	Ser	Ile	: Ile	Ala	Gly	Met	Ile	Leu	Asp	Ser	Arg	Gly	Tyr	Leu	Phe	
15					335					340	ı				345		
	ttg	gaa	gto	, tţc	ttc	att	gcc	tgt	gtt	tct	ttg	tca	ctt	tta	tct	gtg	1347
	Leu	ı Glu	ı Val	. Phe	Phe	· Ile	Ala	Cys	Val	. Ser	Lev	Ser	Leu	Leu	Ser	Val	
				350)				355	•				360)		
	gto	: tta	a cto	tat	: ttg	gto	, aat	: cgt	geo	cag	ggt	ggg	g aac	cta	aat	: tat	1395
20	Val	L Lev	1 Let	ı Tyr	Leu	ı Val	L Asn	a Arg	, Ala	Glr	1. Gl y	, Gl	/ Asr	ı Leu	ı Asr	Tyr	
			365	5				370)				375	5			
	tct	c gca	a aga	a caa	a agg	g gaa	a gaa	a ata	a aaa	a ttt	tc	c cat	act	gaa	a tga	1	1440
•	Sei	r Ala	a Aro	g Gli	n Arg	g Glu	ı Glu	ı Ile	e Lys	s Phe	e Sei	c His	s Thi	c Glu	1		
		380	0				385	5				390)				
25	gaa	agtta	aaaa	tgaa	atgto	gtc a	atgaç	gaato	gg go	cttaa	acaca	a to	gttg	gttt	gaaa	acttc	1500

205/346

tatttaaaa atttagagtt tagtcattag aaaaaataat ggactggaaa gttatattta 1560
tatccaaata tacctattte aaagtgtatt tgtgaggcct gttttagcct gtgtcttttg 1620
tattgtgtgt tgctaaagaa ttctactttt agtaggctaa tcaacaatga aagggttaga 1680
aaattgctgt ggaacatcca ggtgaactte aggaaagaca gtgaaaaatg gaaaacgttg 1740
gagcttctgt tgagataate ttcattaggt atatatctta gggatacage cttttcttta 1800
tcttatagca ggaaaaaaaa acttttgagg gaaatagaag ggctgcgtta cacaaaataa 1860
acaatggcat tgtcatagge cttccttta ctagtaggge ataatgctag ggaatatgtg 1920
aagatgttt tatgaagtct cttcttgate acgaacaata gcttgcgcte tactctgtag 1980
ttatgtggat tgccgagcaa tgaccettt caatttetta tttctgtgtt actgaggacc 2040
ctaatcactt agggatgtaa ttttatagta taaacttct gtacagttt tcttatagte 2100
taataagtaa aaagtgtcct tcaaattatg ataattgcct atgtacatgg ataaattaaa 2160
acactgcaca cgg

<210> 88

15 <211> 1934

<212> DNA

<213> Homo sapiens

<220>

. 20 <221> CDS

25

<222> (31)..(1647)

<400> 88

agttctgtgg agcagcggtg gccggctagg atg ggc tgt ctc tgg ggt ctg gct 54

Met Gly Cys Leu Trp Gly Leu Ala

									1	_			5)			
	ctg	ccc	ctt	ttc	ttc	ttc	tgc	tgg	gag	gtt	ggg	gtc	tct	ggg	agc	tct	102
	Leu	Pro	Leu	Phe	Phe	Phe	Суз	Trp	Glu	Val	Gly	Val	Ser	Gly	Ser	Ser	
		10					15					20					
5	gca	ggc	ccc	agc	acc	cgc	aga	gca	gac	act	gcg	atg	aca	acg	gac	gac	150
	Ala	Gly	Pro	Ser	Thr	Arg	Arg	Ala	Asp	Thr	Ala	Met	Thr	Thr	Asp	Asp	
	25					30					35					40	
	aca	gaa	gtg	ccc	gct	atg	act	cta	gca	ccg	ggc	cac	gcc	gct	ctg	gaa	198
	Thr	Glu	Val	Pro	Ala	Met	Thr	Leu	Ala	Pro	Gly	His	Ala	Ala	Leu	Glu	
10					45					50					55		
	act	caa	acg	ctg	agc	gct	gag	acc	tct	tct	agg	gcc	tca	acc	cca	gcc	246
	Thr	Gln	Thr	Leu	Ser	Ala	Glu	Thr	Ser	Ser	Arg	Ala	Ser	Thr	Pro	Ala	
				60			•		65					70			
	ggc	ccc	att	cca	gaa	gca	gag	acc	agg	gga	gcc	aag	aga	att	tcc	cct	294
15	Gly	Pro	Ile	Pro	Glu	Ala	Glu	Thr	Arg	Gly	Ala	Lys	Arg	Ile	Ser	Pro	
	-		75					80					85				
	gca	aga	gag	acc	agg	agt	ttc	aca	aaa	aca	tct	ccc	aac	ttc	atg	gtg	342
	Ala	Arg	Glu	Thr	Arg	Ser	Phe	Thr	Lys	Thr	Ser	Pro	Asn	Phe	Met	Val	
		90					95					100					
20	ctg	atc	gcc	acc	tcc	gtg	gag	aca	tca	gcc	gcc	agt	ggc	agc	ccc	gag	390
	Leu	Ile	Ala	Thr	Ser	Val	Glu	Thr	Ser	Ala	Ala	Ser	Gly	Ser	Pro	Glu	
	105					110					115					120	
	gga	gct	gga	atg	acc	aca	gtt	cag	acc	atc	aca	ggc	agt	gat	ccc	gag	438
	Gly	Ala	Gly	Met	Thr	Thr	Val	Gln	Thr	Ile	Thr	Gly	Ser	Asp	Pro	Glu	
25					125					130					135		

	gaa	gcc	atc	ttt	gac	acc	ctt	tgc	acc	gat	gac	agc	tct	gaa	gag	gca	486
	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys	Thr	Asp	Asp	Ser	Ser	Glu	Glu	Ala	
				140					145					150			
	aag	aca	ctc	aca	atg	gac	ata	ttg	aca	ttg	gct	cac	acc	tcc	aca	gaa	534
5	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu	Thr	Leu	Ala	His	Thr	Ser	Thr	Glu	,
			155					160					165				
	gct	aag	ggc	ctg	tcc	tca	gag	agc	agt	gcc	tct	tcc	'gac	ggc	ccc	cat	582
	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	
		170					175			•		180					
10	cca	gtc	atc	acc	ccg	tca	cgg	gcc	tca	gag	agc	agc	gcc	tct	tcc	gac	630
	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	
	185					190					195					200	
	ggc	ccc	cat	cca	gtc	atc	acc	ccg	tca	cgg	gcc	tca	gag	agc	agc	gcc	678
	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser	Ser	Ala	
15					205					210					215		
	tct	tcc	gac	ggc	ccc	cat	cca	gtc	atc	acc	ccc	tca	tgg	tcc	ccg	gga	726
	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Trp	Ser	Pro	Gly	
				220					225					230			
	tct	gat	gtc	act	ctc	ctc	gct	gaa	gcc	ctg	gtg	act	gtc	aca	aac	atc	774
20	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu	Ala	Leu	Val	Thr	Val	Thr	Asn	Ile	
		•	235					240					245				
_	gag	gtt	att	aat	tgc	agc	atc	aca	gaa	ata	gaa	aca	aca	act	tcc	agc	822
	Glu	Val	Ile	Asn	Cys	Ser	Ile	Thr	Ġlu	Ile	Glu	Thr	Thr	Thr	Ser	Ser	•
		250					255					260					
25	atc	cct	ggg	gcc	tca	gac	ata	gat	ctc	atc	ccc	acg	gaa	ggg	gtg	aag	870

	Ile	Pro	Gly	Ala	Ser	Asp	Ile	Asp	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	
	265					270					275					280	
	gcc	tcg	tcc	acc	tcc	gat	cca	cca	gct	ctg	cct	gac	tcc	act	gaa	gca	918
	Ala	Ser	Ser	Thr	Ser	Asp	Pro	Pro	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	
5					285					290					295		•
	aaa	cca	cac	atc	act	gag	gtc	aca	gcc	tct	gcc	gag	acc	ctg	tcc	aca	966
	Lys	Pro	His	Ile	Thr	Glu	Val	Thr	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	
				300					305					310			
	gcc	ggc	acc	aca	gag	tca	ġct	gca	cct	cat	gcc	acg	gtt	ggg	acc	cca	1014
10	Ala	Gly	Thr	Thr	Glu	Ser	Ala	Ala	Pro	His	Ala	Thr	۷al	Gly	Thr	Pro	
			315					320		o			325				
	ctc	ccc	act	aac	agc	gcc	aca	gaa	aga	gaa	gtg	aca	gca	ccc	ggg	gcc	1062
	Leu	Pro	Thr	Asn	Ser	Ala	Thr	Glu	Arg	Glu	۷al	Thr	Ala	Pro	Gly	Ala	
		330					335					340					
15	acg	acc	ctc	agt	gga	gct	ctg	gtc	aca	gtt	agc	agg	aat	ccc	ctg	gaa	1110
	Thr	Thr	Leu	Ser	Gly	Ala	Leu	Val	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu	
	345					350					355					360	
	gaa	acc	tca	gcc	ctc	tct	gtt	gag	aca	cca	agt	tac	gtc	aaa	gtc	tca	1158
	Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu	Thr	Pro	Ser	Tyr	Val	Lys	Val	Ser	
20					365					370					375		
	gga	gca	gct	ccg	gto	tcc	ata	gag	gct	ggg	tca	gca	gtg	ggc	: aaa	aca	1206
	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu	Ala	Gly	Ser	: Ala	Val	Gly	Lys	Thr	
				380)				385					390)		
	act	tcc	ttt:	gct	ggg	ago	tct	gct	tcc	tcc	: tac	ago	ccc	tcg	gaa	gcc	1254
25	Thr	Ser	Phe	a Ala	Gly	Ser	Ser	Ala	Ser	Ser	Туг	Ser	Pro	Ser	Glu	Ala	

			395					400					405				
	gcc	ctc	aag	aac	ttc	acc	cct	tca	gag	aca	ccg	acc	atg	gac	atc	gca	1302
	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser	Glu	Thr	Pro	Thr	Met	Asp	Ile	Ala	
		410					415					420					
5	acc	aag	ggg	ccc	ttc	ccc	acc	agc	agg	gac	cct	ctt	cct	tct	gtc	cct	1350
	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser	Arg	Asp	Pro	Leu	Pro	Ser	Val	Pro	
	425					430					435					440	
	ccg	act	aca	acc	aac	agc	agc	cga	ggg	acg	aac	agc	acc	tta	gcc	aag	1398
	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg	Gly	Thr	Asn	Ser	Thr	Leu	Ala	Lys	
١٥					445					450		•			455		
	atc	aca	acc	tca	gcg	aag	acc	acg	atg	aag	ccc	cca	aca	gcc	acg	ccc	1446.
	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr	Met	Lys	Pro	Pro	Thr	Ala	Thr	Pro	
				460					465					470			
	acg	act	gcc	cgg	acg	agg	ccg	acc	aca	gac	gtg	agt	gca	ggt	gaa	aat	1494
15	Thr	Thr	Ala	Arg	Thr	Arg	Pro	Thr	Thr	Asp	Val	Ser	Ala	Gly	Glu	Asn	
			475					480					485				
	gga	ggt	ttc	ctc	ctc	ctg	cgg	ctg	agt	gtg	gct	tcc	ccg	gaa	gac	ctc	1542
	Gly			Leu	Leu	Leu	Arg	Leu	Ser	Val	Ala	Ser	Pro	Glu	Asp	Leu	
		490					495					500					
20		_		_						•						gaa	1590
	Thr	Asp	Pro	Arg	Val	Ala	Glu	Arg	Leu	Met	Gln	Gln	Leu	His	Arg	Glu	
	505					510					515					520	
																agg	1638
	Leu	His	Ala	His			His	Phe	Gln			Leu	Leu	Arg			
25					525					530					535		

210/346

	,	
	aga ggc taa cggacatcag ctgcagccag gcatgtcccg tatgccaaaa	1687
	Arg Gly	
	gagggtgctg cccctagcct gggcccccac cgacagactg cagctgcgtt actgtgctga	1747
	gaggtaccca gaaggttccc atgacgggca gcatgtccaa gcccctaacc ccagatgtgg	1807
5	caacaggacc ctcgctcaca tccaccggag tgtatgtatg gggaggggct tcacctgttc	1867
	ccagaggtgt ccttggactc accttggcac atgttctgtg tttcagtaaa gagagacctg	1927
	atcaccc	1934
	<210> 89	
10	<211> 1880	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
15	<221> CDS	
	<222> (71)(379)	
	<400> 89	•
	agagetgege egeegagget gageggteee ttetegetge ggeegeecag gtgeeegege	60
20	ccgtggcgct atg gag gcg gcg ctg ctg ggg ctg tgt aac tgg agc acg	109
	Met Glu Ala Ala Leu Leu Gly Leu Cys Asn Trp Ser Thr	•
	1 5 10	
	ctg ggc gtg tgc gcc gcg ctg aag ctg ccg cag atc tcc gct gtg cta	157
	Leu Gly Val Cys Ala Ala Leu Lys Leu Pro Gln Ile Ser Ala Val Leu	

	gcg	gcg	cgc	agc	gcg	cgg	ggc	ctc	agc	ctt	ccg	agt	tta	ctt	ctg	gag	205
	Ala	Ala	Arg	Ser	Ala	Arg	Gly	Leu	Ser	Leu	Pro	Ser	Leu	Leu	Leu	Glu	
	30					35					40					45	
	ctg	gca	gga	ttc	ctg	gtg	ttt	ctg	cgg	tac	cag	tgt	tac	tat	ggg	tat	253
5	Leu	Ala	Gly	Phe	Leu	Val	Phe	Leu	Arg	Tyr	Gln	Суѕ	Tyr	Tyr	Gly	Tyr	
					50					55					60		
	ccg	ccg	ctg	acc	tac	ctg	gag	tac	ccc	atc	ctc	atc	gcg	caa	gat	gtc	301
	Pro	Pro	Leu	Thr	Tyr	Leu	Glu	Tyr	Pro	Ile	Leu	Ile	Ala	Gln	Asp	Val	
		•		65					70					75			
10	atc	ctc	ctg	ctc	tgt	atc	ttt	cat	ttt	aac	ggg	aac	gtg	aag	cag	gcc	349
	Ile	Leu	Leu	Leu	Cys	Ile	Phe	His	Phe	Asn	Gly	Asn	Val	Lys	Gln	Ala '	
			80					85					90				
1	act	cct	tac	atc	gct	gtg	tat	cct	ttc	tga	atc	tgag	cca	gaag	tggg	aa	399
	Thr	Pro	Tyr	Ile	Ala	Val	Tyr	Pro	Phe								
15		95					100					٠					
	cgg	ggat	gtt	attt	gcga	at g	taga	gacg	g tg	tttc	gccg	tgc	tggc	cag	gatg	gtctcg	459
	atc	tcct	gac	ctca	tgat	ct g	cctg	cctc	g gc	ctcc	cagg	gtg	ctgg	aat	taca	ggtgtg	519
	agc	cacc	gca	cctg	gcct	ct t	ttgc	tttt	t ta	acaa	atcg	act	cgtg	act	ttct	cacatt	579
	tta	tctg	caa	acag	aatc	ta t	gtac	tttc	a tc	agcg	cggc	cag	taag	ttt	gcac	agctcc	639
20	agt	gtct	gtg	gaag	acga	ga g	acto	agga	a∙ ct	gtga	gtgc	gct	gact	tgg	agcc	tctctt	699
	cct	atac	ctg	tgca	acaa	ga a	taat	caca	a cc	ttaa	tgac	cac	caat	gat	ttta	caattc	759
	ttc	tacg	ttt	tgtg	atca	tg c	tggc	ttta	a at	atat	gggt	aac	agtg	aca	gtac	ttcgct	819
	acc	ggaa	gac	cgct	ataa	ag g	ctga	atga	t gg	atac	atta	ttc	cttc	aca	cagt	ggattt	879
	tga	gtaa	ctg	aacc	aaag	ga a	aaag	aagc	t ct	ttgc	taaa	tta	aggt	ctt	ttat	aaattt	939
25	agt	aaat	cag	ttta	taat	ct t	taaa	.gcca	a ag	gttt	tttt	aga	cttg	aaa	gaaa	gagcca	999

212/346

cttaaattct tgtttaaaaa taccaatttg cctcctctt cctcacttcg ttaggttatg 1059 gtagtgctca gacatctgca gtgttgaggc cagtcactgt tggaagtcat ccaagaagcc 1119 cattttgagg ccattttgag ccttactctt aagttctcta tgaagaacta cattgatttg 1179 ttggctttca gaatctttta ggaaataaat cctctccagg acaaaaatga acatgaatgg 1239 5 agtggcattt tgttccaagt cagaggtggg cacctataat aaatgactag ggttcacttt 1299 ctgggactga tgtttaattg taacacagat acaacagggt ggccttgttg tgtataatac 1359 ggtattatac ctgcatgtgc tctagcaagg ataccaaggc aagcatacat gtagctggct 1419 tgagtttgta ccaaaacagt ccttcaactt tgcactgtgc cttaagtaat tactaacaaa 1479 aggtactagg attagctgca atctctactt tcgatgagga aatcccagta agctttctga 1539 10 ttcaagtaca atgctgccat tttttaaagg gccacaacta tagaattacc actgttggaa 1599 tttggtacaa aatatgtttt gtctattgaa aacatacacg gtaaatggtg ttgttaggta 1659 ggttctgtcc agttcttagg gacttttttc acattatagc atttttaccc taaacatgat 1719 gttgagatta ttatatactg tattttcttc taaattaacc ctaatgttta aaaactcact 1779 ttcccccttt aattgaaggc attgttttgt tagatgcagt aatgatgttt accagagatt 1839 attgtttcct atgcaaaata aattttcata ttttgaattc t 15 1880

<210> 90

<211> 2295

<212> DNA

20 <213> Homo sapiens

<220>

<221> CDS

<222> (55)..(1383)

<4	n	U.	>	9	n

	agag	gcag	gcc t	ggto	gtga	ig ca	iggga	cggt	gca	ccgg	acg	gcgg	gato	ga g	gcaa	atg	57
																Met	
																1	
5	ggt	ctg	gcc	atg	gag	cac	gga	ggg	tcc	tac	gct	cgg	gcg	ggg	ggc	agc	105
	Gly	Leu	Ala	Met	Glu	His	Gly	Gly	Ser	Tyr	Ala	Arg	Ala	Gly	Gly	Ser	
				5					10					15			
•	tct	cgg	ggc	tgc	tgg	tat	tac	ctg	cgc	tac	ttc	ttc	ctc	ttc	gtc	tcc	153
	Ser	Arg	Gly	Cys	Trp	Tyr	Tyr	Leu	Arg	Tyr	Phe	Phe	Leu	Phe	Val	Ser	
10			20					25	,				30				
	ctc	atc	caa	ttc	ctc	atc	atc	ctg	ggg	ctc	gtg	ctc	ttc	atg	gtc	tat	201
	Leu	Ile	Gln	Phe	Leu	Ile	Ile	Leu	Gly	Leu	Val	Leu	Phe	Met	Val	Tyr	
		35					40					45					
	ggc	aac	gtg	cac	gtg	agc	aca	gag	tcc	aac	ctg	çag	`gcc	acc	gag	cgc	249
15	Gly	Asn	Val	His	Val	Ser	Thr	Glu	Ser	Asn	Leu	Gln	Ala	Thr	Glu	Arg	
	50					55					60					65	
	cga	gcc	gag	ggc	cta	tac	agt	cag	ctc	cta	ggg	ctc	acg	gcc	tcc	cag	297
	Arg	Ala	Glu	Gly	Leu	Tyr	Ser	Gln	Leu	Leu	Gly	Leu	Thr	Ala		Gln	
					70					75					80		
20	tcc	aac	ttg	acc	aag	gag	ctc	aac	ttc	acc	acc	cgc	gcc	aag	gat	gcc	345
	Seŗ	Asn	Leu	Thr	Lys	Glu	Leu	Asn	Phe	Thr	Thr	Arg	Ala	Lys	Asp	Ala	
				85					90					95			
	atc	atg	cag	atg	tgg	ctg	aat	gct	cgc	cgc	gac	ctg	gac	cgc	atc	aat	393
	Ile	Met	Gln	Met	Trp	Leu	Asn	Ala	Arg	Arg	Asp	Leu	Asp	Arg	Ile	Asn	
25			100					105					110				

	gcc	agc	ttc	cgc	cag	tgc	cag	ggt	gac	cgg	gtc	atc	tac	acg	aac	aat	441
	Ala	Ser	Phe	Arg	Gln	Cys	Gln	Gly	Asp	Arg	Val	Ile	Tyr	Thr	Asn	Asn	
		115					120					125		•			
	cag	agg	tac	atg	gct	gcc	atc	atc	ttg	agt	gag	aag	caa	tgc	aga	gat	489
5	Gln	Arg	Tyr	Met	Ala	Ala	Ile	Ile	Leu	Ser	Glu	Lys	Gln	Cys	Arg	Asp	
	130					135					140					145	
	caa	ttc	aag	gac	atig	aac	aag	agc	tgc	gat	gcc	ttg	ctc	ttc	atg	ctg	537
	Gln	Phe	Lys	Asp	Met	Asn	Lys	Ser	Cys	Asp	Ala	Leu	Leu	Phe	Met	Leu	
					150					155					160		
10	aat	cag	aag	gtg	aag	acg	ctg	gag	gtg	gag	ata	gcc	aag	gag	aag	acc	585
	Asn	Gln	Lys	Val	Lys	Thr	Leu	Glu	Val	Glu	Ile	Ala	Lys	Glu	ГЛЗ	Thr	
				165					170					175			
	att	tgc	act	aag	gat	aag	gaa	agc	gtg	ctg	ctg	aac	aaa	cgc	gtg	gcg	633
	Ile	Cys	Thr	Lys	Asp	Lys	Glu	Ser	Val	Leu	Leu	Asn	Lys	Arg	Val	Ala	
15			180	•				185					190				
	gag	gaa	cag	ctg	gtt	gaa	tgc	gtg	aaa	acc	cgg	gag	ctg	cag	cac	caa	681
	Glu	Glu	Gln	Leu	Val	Glu	Ċys	Val	Lys	Thr	Arg	Glu	Leu	Gln	His	Gln	·
		195					200					205					
	gag	cgc	cag	ctg	gcc	aag	gag	caa	ctg	caa	aag	gtg	caa	gcc	cto	tgc	729
20	Glu	Arg	Gln	Leu	Ala	Lys	Glu	Gln	Leu	Gln	Lys	Val	Gln	Ala	Leu	Cys	
	210			•		215					220					225	
	ctg	ccc	ctg	gac	aag	gac	aag	ttt	gag	atg	gac	ctt	cgt	. aac	: ctg	tgg	77
	Leu	Pro	Leu	Asp	Lys	Asp	Lys	Phe	Glu	Met	Asp	Leu	Arg	Asn	Leu	Trp	
		•			230					235	i				240	١	
25	agg	gac	tcc:	att	ato	: сса	cgc	ago	ctg	gac	aac	: c'tg	ggt	: tac	aac	ctc	82

	Arg	Asp	Ser	Ile	Ile	Pro	Arg	Ser	Leu	Asp	Asn	Leu	Gly	Tyr	Asn	Leu	
		•		245					250					255			
	tac	cat	ccc	ctg	ggc	tcg	gaa	ttg	gcc	tcc,	atc	cgc	aga	gcc	tgc	gac	873
	Tyr	His	Pro	Leu	Gly	Ser	Glu	Leu	Ala	Ser	Ile	Arg	Arg	Ala	Cys	Asp	
5 .			260					265				-	270				
	cac	atg	ccc	agc	ctc	atg	agc	tcc	aag	gtg	gag	gag	ctg	gcc	cgg	agc	921
	His	Met	Pro	Ser	Leu	Met	Ser	Ser	Lys	Val	Glu	Glu	Leu	Ala	Arg	Ser	
		275					280					285					
	ctc	cgg	gcg	gat	atc	gaa	cgc	gtg	gcc	cgc	gag	aac	tca	gac	ctc	caa	969
10	Leu	Arg	Ala	Asp	Ile	Glu	Arg	Val	Ala	Arg	Glu	Asn	Ser	Asp	Leu	Gln	
	290			•		295		1			300					305	
	cgc	cag	aag	ctg	gaa	gcc	cag	cag	ggc	ctg	cgg	gcc	agt	cag	gag	gcg	1017
	Arg	Gln	Lys	Leu	Glu	Ala	Gln	Gln	Gly	Leu	Arg	Ala	Ser	Gln	Glu	Ala	
					310					315					320		
15	aaa	cag	aag	gtg	gag	aag	gag	gct	cag	gcc	cgg	gag	gcc	aag	ctc	caa	1065
	Lys	Gln	Lys	Val	Glu	Lys	Glu	Ala	Gln	Ala	Arg	Glu	Ala	Lys	Leu	Gln	
				325					330					335			
	gct	gaa	tgc	tcc:	: cgg	cag	acc	cag	cta	gcg	ctg	gag	gag	aag	gcg	gtg	1113
	Ala	Glu	Cys	Ser	Arg	Gln	Thr	Gln	Leu	Ala	Leu	Glu	Glu	Lys	Ala	Val	
20			340)				345					350)			
	ctg	cgg	, aag	gaa	cga	gac	aac	ctg	gcc	aag	gag	cto	gaa	gag	g aag	aag	1161
	Leu	Arç	, Lys	Glu	Arg	Asp	Asn	Leu	Ala	Lys	Glu	ı Lev	ı Glu	Glu	ı Lys	Lys	
		355	;				360)				365	5				
	agg	g gag	g gcg	g gag	g cag	cto	agg	atg	gag	ctg	ged	c ato	aga	aac	tca	gcc	1209
25	Arc	, Glı	ı Ala	a Glu	ı Gln	Let	a Arg	Met	Glu	Lev	Ala	ı Ile	e Arg	, Asr	ı Sei	Ala	

216/346

370 375 380 385 ctg gac acc tgc atc aag acc aag tcg cag ccg atg atg cca gtg tca 1257 Leu Asp Thr Cys Ile Lys Thr Lys Ser Gln Pro Met Met Pro Val Ser 395 400 390 5 agg ecc atg gge ect gte ecc aac ecc eag ecc atc gae eca get age 1305 Arg Pro Met Gly Pro Val Pro Asn Pro Gln Pro Ile Asp Pro Ala Ser 405 410 415 ctg gag gag ttc aag agg aag atc ctg gag tcc cag agg ccc cct gca 1353 Leu Glu Glu Phe Lys Arg Lys Ile Leu Glu Ser Gln Arg Pro Pro Ala 10 420 425 430 ggc atc cct gta gcc cca tcc agt ggc tga ggaggctcca ggcctgagga 1403 Gly Ile Pro Val Ala Pro Ser Ser Gly 440 435 ccaagggatg gcccgactcg gcggtttgcg gaggatgcag ggatatgctc acagcgcccg 1463 15 acacaacccc ctcccgccgc ccccaaccac ccagggccac catcagacaa ctccctgcat 1523 gcaaacccct agtaccctct cacacccgca cccgcgcctc acgatccctc acccagagca 1583 cacggccgcg gagatgacgt cacgcaagca acggcgctga cgtcacatat caccgtggtg 1643 atggcgtcac gtggccatgt agacgtcacg aagagatata gcgatqgcgt cgtgcagatg 1703 cagcacgtcg cacacagaca tggggaactt ggcatgacgt cacaccgaga tgcagcaacg 1763 20 acgtcacggg ccatgtcgac gtcacacata ttaatgtcac acagacgcgg cgatggcatc 1823 acacagacgg tgatgatgtc acacacagac acagtgacaa cacacaccat gacaacgaca 1883 cctatagata tggcaccaac atcacatgca cgcatgccct ttcacacaca ctttctaccc 1943 aatteteace tagtgteacg tteeceegae eetggeacae gggeeaaggt acceaeagga 2003 teceatecce tecegeacag ceetgggeec cageacetec cetectecag ettectggee 2063 25 teccagecae ttecteacee ceagtgeetg gaceeggagg tgagaacagg aagecattea 2123

217/346

cetecgetee ttgagegtga gtgttteeag gaceeeteg gggeeetgag eeggggtga 2183 gggteaeetg ttgtegggag gggageeaet eetteteee caacteeeag eeetgeetgt 2243 ggeeegttga aatgttggtg geaettaata aatattagta aateetteaa ag 2295

5 <210> 91 <211> 227

<212> PRT

<213> Homo sapiens

10 <400> 91

Met Ala Gly Val Gly Ala Gly Pro Leu Arg Ala Met Gly Arg Gln Ala

1 5 10 15

Leu Leu Leu Leu Ala Leu Cys Ala Thr Gly Ala Gln Gly Leu Tyr Phe
20 25 30

His Ile Gly Glu Thr Glu Lys Arg Cys Phe Ile Glu Glu Ile Pro Asp

40
45

Glu Thr Met Val Ile Gly Asn Tyr Arg Thr Gln Met Trp Asp Lys Gln
50 55 60

Lys Glu Val Phe Leu Pro Ser Thr Pro Gly Leu Gly Met His Val Glu

20 65 70 75 80

Val Lys Asp Pro Asp Gly Lys Val Val Leu Ser Arg Gln Tyr Gly Ser

85 90 95

Glu Gly Arg Phe Thr Phe Thr Ser His Thr Pro Gly Asp His Gln Ile

100 105 110

25 Cys Leu His Ser Asn Ser Thr Arg Met Ala Leu Phe Ala Gly Gly Lys

218/346

Leu Arg Val His Leu Asp Ile Gln Val Gly Glu His Ala Asn Asn Tyr Pro Glu Ile Ala Ala Lys Asp Lys Leu Thr Glu Leu Gln Leu Arg Ala Arg Gln Leu Leu Asp Gln Val Glu Gln Ile Gln Lys Glu Gln Asp Tyr Gln Arg Tyr Arg Glu Glu Arg Phe Arg Leu Thr Ser Glu Ser Thr Asn Gln Arg Val Leu Trp Trp Ser Ile Ala Gln Thr Val Ile Leu Ile Leu Thr Gly Ile Trp Gln Met Arg His Leu Lys Ser Phe Phe Glu Ala Lys Lys Leu Val <210> 92 <211> 352 <212> PRT <213> Homo sapiens <400> 92 Met Glu Ser Gly Gly Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly Thr Thr Ser Val Val Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys

				20	-				25					30		
	Ala	Arg	Val	Ser	Gln	Glu	Leu	Lys	Gly	Ala	Lys	Lys	Val	His	Leu	Gly
	•		35					40					45		•	
•	Glu	Asp	Leu	Lys	Ser	Ile	Leu	Ser	Glu	Ala	Pro	Gly	Lys	Cys	Val	Pro
5		50					55					60				
	Tyr	Ala	Val	Ile	Glu	Gly	Ala	Val	Arg	Ser	Val	Lys	Glu	Thr	Leu	Asn
	65					70					75					80
	Ser	Gln	Phe	Val	Glu	Asn	Cys	Lys	Gly	Val	Ile	Gln	Arg	Leu	Thr	Leu
					85					90					95	
10	Gln	Glu	His	Lys	Met	Val	Trp	Asn	Arg	Thr	Thr	His	Leu	Trp	Asn	Asp
				100					105					110		٠.
	Cys	Ser	Lys	Ile	Ile	His	Gln	Arg	Thr	Asn	Thr	Val	Pro	Phe	Asp	Leu
			115					120					125			
	Val	Pro	His	Glu	Asp	Gly	Val	Asp	Val	Ala	Val	Arg	Val	Leu	Lys	Pro
15.		130					135					140				-
	Leu	Asp	Ser	Val	Asp	Leu	Gly	Leu	Glu	Thr	Val	Tyr	Glu	Lys	Phe	His
	145					150					155					160
	Pro	Ser	Ile	Gln	Ser	Phe	Thr	Asp	Val	Ile	Gly	His	Tyr	Ile	Ser	Gly
				•	165					170					175	
20	Glu	Arg	Pro	Lys	Gly	Ile	Gln	Glu	Thr	Glu	Glu	Met	Leu	Lys	Val	Gly
				180					185					190		
	Ala	Thr	Leu	Thr	Gly	Val	Gly	Glu	Leu	Val	Leu	Asp	Asn	Asn	Ser	Va]
			195					200					205			
	Arg	Leu	Gln	Pro	Pro	Lys	Gln	Gly	Met	Gln	Tyr	Tyr	Leu	Ser	Ser	Glr
25		210					215					220	ı			

220/346

	Asp	Phe	Asp	Ser	Leu	Leu	Gln	Arg	Gln	Glu	Ser	Ser	Val	Arg	Leu	Trp
	225	•				230		,			235					240
	Lys	Val	Leu	Ala	Leu	Val	Phe	Gly	Phe	Ala	Thr	Cys	Ala	Thr	Leu	Phe
					245					250					255	
5	Phe	Ile	Leu	Arg	Lys	Gln	Tyr	Leu	Gln	Arg	Gln	Glu	Arg	Leu	Arg	Leu
				260					265					270		
	Lys	Gln	Met	Gln	Glu	Glu	Phe	Gln	Glu	His	Glu	Ala	Gln	Leu	Leu	Ser
			275					280					285			
	Arg	Ala	Lys	Pro	Glu	Asp	Arg	Glu	Ser	Leu	Lys	Ser	Ala	Cys	Val	Val
L·O		290	•				295					300				
	Cys	Leu	Ser	Ser	Phe	Lys	Ser	Cys	۷al	Phe	Leu	Glu	Cys	Gly	His	Val
	305					310					315					320
	Cys	Ser	Cys	Thr	Glu	Cys	Tyr	Arg	Ala	Leu	Pro	Glu	Pro	Lys	Lys	Cys
					325					330					335	
15	Pro	Ile	Cys	Arg	Gln	Ala	Ile	Thr	Arg	Val	Ile	Pro	Leu	Tyr	Asn	Ser
				340		•			345			·		350	•	

<210> 93

20 <211> 130

<212> PRT

<213> Homo sapiens

<400> 93

25 Met Ser Ser Gly Gly Ala Pro Gly Ala Ser Ala Ser Ser Ala Pro

221/346

Pro Ala Gln Glu Glu Gly Met Thr Trp Trp Tyr Arg Trp Leu Cys Arg Leu Ser Gly Val Leu Gly Ala Val Ser Cys Ala Ile Ser Gly Leu Phe Asn Cys Ile Thr Ile His Pro Leu Asn Ile Ala Ala Gly Val Trp Met Met Met Ala Val Val Pro Ile Val Ile Ser Leu Thr Leu Thr Thr Leu Leu Gly Asn Ala Ile Ala Phe Ala Thr Gly Val Leu Tyr Gly Leu Ser Ala Leu Gly Lys Lys Gly Asp Ala Ile Ser Tyr Ala Arg Ile Gln Gln Gln Arg Gln Gln Ala Asp Glu Glu Lys Leu Ala Glu Thr Leu Glu Gly Glu Leu <210> 94 <211> 330 <212> PRT <213> Homo sapiens <400> 94

Met Ser Arg Cys Ala Gln Ala Ala Glu Val Ala Ala Thr Val Pro Gly

. 25

	1				5					10					15	
	Ala	Gly	Val	Gly	Asn	Val	Gly	Leu	Arg	Pro	Pro	Met	Val	Pro	Arg	Gln
				20					25					30		
	Ala	Ser	Phe	Phe	Pro	Pro	Pro	Val	Pro	Asn	Pro	Phe	Val	Gln	Gln	Thr
5			35					40					45			
	Gln	Ile	Gly	Ser	Ala	Arg	Arg	Val	Gln	Ile	Val	Leu	Leu	Gly	Ile	Ile
		50					55					60				
	Leu	Leu	Pro	Ile	Arg	Val	Leu	Leu	Val	Ala	Leu	Ile	Leu	Leu	Leu	Ala
	65			•		70					75					80
LO	Trp	Pro	Phe	Ala	Ala	Ile	Ser	Thr	Val	Cys	Cys	Pro	Glu	Lys	Leu	Thr
					85					90					95	
	His	Pro	Ile	Thr	Gly	Trp	Arg	Arg	Lys	Ile	Thr	Gln	Thr	Ala	Leu	Lys
				100					105					110		
	Phe	Leu	Gly	Arg	Ala	Met	Phe	Phe	Ser	Met	Gly	Phe	Ile	Val	Ala	Val
15			115					120					125			
	Lys	Gly	Lys	Ile	Ala	Ser	Pro	Leu	Glu	Ala	Pro	Val	Phe	Val	Ala	Ala
		130	•				135					140	1	,	•	
	Pro	His	Ser	Thr	Phe	Phe	Asp	Gly	Ile	Ala	Cys	Val	. Val	Ala	Gly	Leu
	145					150					155	ı				160
20	Pro	Ser	Ile	Val	Ser	Arg	Asn	Glu	Asn	Ala	Gln	. Val	Pro	Leu	Ile	Gly
					165	•				170	ı				175	
	Arg	Leu	. Leu	Arg	Ala	. Val	. Glm	Pro	Val	. Leu	val	. Ser	: Arg	Val	Asp	Pro
	•			180)				185	,				190		
	Asp	Ser	: Arg	Lys	. Asr	n Thr	: Ile	. Asr	ı Glu	ı Ile	: Ile	Lys	s Arg	Thr	Thr	Ser
25			195	,				200)				205	,		

	GŢŻ	Gly	Glu	Trp	Pro	Gln	Ile	Leu	Val	Phe	Pro	Glu	Gly	Thr	Cys	Thr
		210					215					220	•			
	Asn	Arg	Ser	Cys	Leu	Ile	Thr	Phe	Lys	Pro	Gly	Ala	Phe	Ile	Pro	Gly
•	225					230					235					240
5 `	Val	Pro	Val	Gln	Pro	Val	Leu	Leu	Arg	Tyr	Pro	Asn	Lys	Leu	Asp	Thr
					245					250					255	
	Val	Thr	Trp	Thr	Trp	Gln	Gly	Tyr	Thr	Phe	Ile	Gln	Leu	Cys	Met	Leu
		٠		260					265					270	ė	
	Thr	Phe	Cys	Gln	Leu	Phe	Thr	Lys	Val	Glu	Val	Glu	Met	Phe	Leu	Phe
10			275					280					285			
	Phe	Trp	Glu	Gly	Ser	Ser	Lys	His	Cys	Leu	Lys	Ile	Ser	Ser	Phe	Phe
		290					295					300				
	Cys	Ile	Phe	Ser	Leu	Arg	Arg	Phe	Lys	Arg	Arg	Ile	Thr	Gln	Arg	Thr
	305					310					315					320
15	Arg	Thr	Ala	His	Leu	Leu	Arg	Leu	Ser	Phe						
					325					330						
	<21	0> 9	5													
	<21	1> 3.	50													
20	<21	2> · P	RT													
	<21	3> н	omo	sapi	ens						٠					
	<40	0> 9	5				,		•							
	Met	Ala	Leu	Pro	Pro	Gly	Pro	Ala	Ala	Leu	Arg	His	Thr	Leu	Leu	Leu
25	1				5					10					15	

	Leu	Pro	Ala	Leu	Leu	Ser	Ser	Gly	Gly	Pro	Gly	Thr	Pro	Arg	Leu	Ala
				20					25					30		
	Trp	Tyr	Leu	Asp	Gly	Gln	Leu	Gln	Glu	Ala	Ser	Thr	Ser	Arg	Leu	Leu
			35					40					45			
5	'Ser	Val	Gly	Gly	Glu	Ala	Phe	Ser	Gly	Gly	Thr	Ser	Thr	Phe	Thr	Val
		50					55					60				
	Thr	Ala	His	Arg	Ala	Gln	His	Glu	Leu	Asn	Cys	Ser	Leu	Gln	Asp	Pro
	65					70					75					80
	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala	Ser	Val	Ile	Leu	Asn	Val	Gln	Phe
10					85		,			90	•				95	
	Lys	Pro	Glu	Ile	Ala	Gln	Val	Gly	Ala	Lys	Tyr	Gln	Glu	Ala	Gln	Gly
				100					105					110		
	Pro	Gly	Leu	Leu	Val	Val	Leu	Phe	Ala	Leu	Val	Arg	Ala	Asn	Pro	Pro
			115					120					125			
15	Ala	Asn	Val	Thr	Trp	Ile	Asp	Gln	Asp	Gly	Pro	Val	Thr	Val	Asn	Thr
		130					135					140		,		
	Ser	Asp	Phe	Leu	Val	Leu	Asp	Ala	Gln	Asn	Tyr	Pro	Trp	Leu	Thr	Asn
	145					150					155					160
	His	Thr	Val	Gln	Leu	Gln	Leu	Arg	Ser	Leu	Ala	His	Asn	Leu	Ser	Va]
20					165					170	I				175	
	Val	Ala	Thr	Asn	Asp	Val	Gly	Val	Thr	Ser	Ala	Ser	Leu	Pro	Ala	Pro
				180	,				185					190	I	
1	Gly	Leu	Leu	Ala	Thr	Arg	Val	Glu	Val	Pro	Leu	Leu	Gly	Ile	Val	Va]
			195	•			•	200					205			
25	Ala	Ala	Gly	Leu	Ala	Leu	Gly	Thr	Leu	Val	. Gly	Phe	Ser	Thr	Leu	Va.

225/346

Ala Cys Leu Val Cys Arg Lys Glu Lys Lys Thr Lys Gly Pro Ser Arg His Pro Ser Leu Ile Ser Ser Asp Ser Asn Asn Leu Lys Leu Asn Asn Val Arg Leu Prò Arg Glu Asn Met Ser Leu Pro Ser Asn Leu Gln Leu Asn Asp Leu Thr Pro Asp Ser Arg Ala Val Lys Pro Ala Asp Arg Gln Met Ala Gln Asn Asn Ser Arg Pro Glu Leu Leu Asp Pro Glu Pro Gly Gly Leu Leu Thr Ser Gln Ala Cys Leu Leu His His Gly Thr Pro Ala Leu Thr Asn Pro Trp Leu Pro His Gln Glu Gly Ala Leu Pro Gly Gly Trp Ser Pro Gln Ala His Asn Ser Thr Val Trp Lys Leu <210> 96 <211> 113

<212> PRT

<213> Homo sapiens

<400> 96 '

Met Asn Glu Thr Asn Lys Thr Leu Val Gly Pro Ser Glu Leu Pro Thr

`	1				5					10					15	
	Ala	Ser	Ala	Val	Ala	Pro	Gly	Pro	Gly	Thr	Gly	Ala	Arg	Ala	Trp	Pro
				20					25		•			30		
	Val	Leu	Val	Gly	Phe	Val	Leu	Gly	Ala	Val	Val	Leu	Ser	Leu	Leu	Ile
5			35					40					45			
	Ala	Leu	Ala	Ala	Lys	Cys	His	Leu	Cys	Arg	Arg	Tyr	His	Ala	Ser	Tyr
		50					55		•			60				
	Arg	His	Arg	Pro	Leu	Pro	Glu	Thr	Gly	Arg	Gly	Gly	Arg	Pro	Gln	Val
	65					70					75					80
LO	Ala	Glu	Asp	Glu	Asp	Asp	Asp	Gly	Phe	Ile	Glu	Asp	Asn	Tyr	Ile	Gln
					85					90					95	
	Pro	Gly	Thr	Gly	Glu	Leu	Gly	Thr	Glu	Gly	Ser	Arg	Asp	His	Phe	Ser
				100					105					110		•
	Leu														•	
15											ı					
	<21	0> 9	17													
	<21	1> 1	.89													
	<21	2> F	PRT													
20	<21	3> E	Iomo	sapi	.ens											
	<40	0> 9	97											•		
	Met	Ala	a Lei	ג Leı	ı Sei	Arg	y Pro	Ala	a Leu			ı Leı	ı Leı	1 Leu		
	1									10					15	
25	Ala	Ala	a Val	l Vai	l Arg	Cys	s Glr	ı Glı	ı Glr	a Ala	a Glr	n Thi	r Thi	: Asp	Trp	Arg

227/346

					•											
				20					25					30		
	Ala	Thr	Leu	Lys	Thr	Ile	Arg	Asn	Gly	Val	His	Lys	Ile	Asp	Thr	Tyr
			35	•				40					45			
•	Leu	Asn	Ala	Ala	Leu	Asp	Leu	Leu	Gly	Gly	Glu	Asp	Gly	Leu	Cys	Gln
5		50					55	•				60				
	Tyr	Lys	Cys	Ser	Asp	Gly	Ser	Lys	Pro	Phe	Pro	Arg	Tyr	Gly	Tyr	Lys
	65					70					75					80
	Pro	Ser	Pro	Pro	Asn	Gly	Cys	Gly	Ser	Pro	Leu	Phe	Gly	Val	His	Leu
					85					90					95	
10	Asn	Ile	Gly	Ile	Pro	Ser	Leu	Thr	Lys	Cys	Cys	Asn	Gln	His	Asp	Arg
				100					105					110		
	Cys	Tyr	Glu	Thr	Cys	Gly	Lys	Ser	Lys	Asn	Asp	Cys	Asp	Glu	Glu	Phe
			115					120					125			
	Gln	Tyr	Cys	Leu	Ser	Lvs	Ile		Arg	Asp	Val	Gln		Thr	Leu	Glv
15		130	-			•	135	•	J	•		140	3			2
	Leu	•	Gln	His	Val	Gln		Cvs	Glu	Thr	ጥከዮ		G111	T.A.1	T.011	Phe
	145					150		0,0	014	1111	155	VUI	GIU	acu.	пси	
		Ser	Wa 1	Tla	uio		C1 v	Cva	Ť.v.a	Dwo		Tarr	7	Com	C1-	160
	Asp	Pet	Val	116		ьец	СТА	cys	тух		TAL	ьeu	Asp	ser		Arg
20	- 1		_	_	165		_			170		_			175	
20	Ala	Ala	Cys		Cys	His	Tyr	GLu		Lys	Thr	Asp	Leu			
				180					185							
		0> 9														
	<21	1> 2	77													

25

<212> PRT

228/346

<213> Homo sapiens

	<400)> 98	3 .													
	Met	Ser	Pro	Leu	Leu	Gly	Leu	Arg	Ser	Glu	Leu	Gln	Asp	Thr	Cys	Thr
5	1				5					10					15	
	Ser	Leu	Gly	Leu	Met	Leu	Ser	Val	Val	Leu	Leu	Met	Gly	Leu	Ala	Arg
				20					25	•				30		
	Val	Val	Ala	Arg	Gln	Gln	Leu	His	Arg	Pro	Val	Ala	His	Ala	Phe	Val
			35				•	40					45			
10	Leu	Glu	Phe	Leu	Ala	Thr	Phe	Gln	Leu	Cys	Cys	Суѕ	Thr	His	Glu	Leu
		50					55					60				
	Gln	Leu	Leu	Ser	Glu	Gln	His	Pro	Ala	His	Pro	Thr	Trp	Thr	Leu	Thr
	65					70					75					80
	Leu	Val	Tyr	Phe	Phe	Ser	Leu	Val	His	Gly	Leu	Thr	Leu	Val	Gly	Thr
15					85					90					95	
	Ser	Ser	Asn	Pro	Cys	Gly	Val	Met	Met	Gln	Met	Met	Leu	Gly	Gly	Met
				100					105			•		110		
	Ser	Pro	Glu	Thr	Gly	Ala	Val	Arg	Leu	Leu	Ala	Gln	Leu	Val	Ser	Ala
			115					120					125			
20	Leu	Cys	Ser	Arg	Tyr	Cys	Thr	Ser	Ala	Leu	Trp	Ser	Leu	Gly	Leu	Thr
		130					135					140				
	Gln	Tyr	His	Val	Ser	Glu	Arg	Ser	Phe	Ala	Cys	Lys	Asn	Pro	Ile	Arg
	145					150					155					160
	Val	Asp	Leu	Leu	Lys	Ala	Val	Ile	Thr	Glu	Ala	Val	Cys	Ser	Phe	Leu
25					165					170					175	

	Phe	His	Ser	Ala	Leu	Leu	His	Phe	Gln	Glu	Val	Arg	Thr	Lys	Leu	Arg
				180					185					190		
	Ile	His	Leu	Leu	Ala	Ala	Leu	Ile	Thr	Phe	Leu	Val	Tyr	Ala	Gly	Gly
			195					200					205			
5	Ser	Leu	Thr	Gly	Ala	Val	Phe	Asn	Pro	Ala	Leu	Ala	Leu	Ser	Leu	His
		210					215					220				
	Phe	Met	Cys	Phe	Asp	Glu	Ala	Phe	Pro	Gln	Phe	Phe	Ile	Val	Tyr	Trp
	225					230					235					240
	Leu	Ala	Pro	Ser	Leu	Gly	Ile	Leu	Leu	Met	Ile	Leu	Met	Phe	Ser	Phe
10					245					250					255	
	Phe	His	Gly	Cys	Ile	Thr	Thr	Ile	Gln	Leu	Ile	Lys	Arg	Asn	Asn	Cys
				260					265					270		
	Ser	Lys	Asp	Ser	Asp											
	,		275													
15						•										
	<210)> 99	9													
	<211	l> 2'	74			•										
	<212	2> PI	RT													
	<213	3> H	omo :	sapi	ens											
20																
	<400	0> 9:	9							•						
	Met	Gly	Lys	Ser	Leu	Ser	His	Leu	Pro	Leu	His	Ser	Ser	Lys	Glu	Asp
	1				5					10					15	
	Ala	Tyr	Asp	Gly	Val	Thr	Ser	Glu	Asn	Met	Arg	Asn	Gly	Leu	Val	Asn
25				20					25					30		

	Ser	Glu	Val	His	Asn	Glu	Asp	Gly	Arg	Asn	Gly	Asp	Val	Ser	Gln	Phe
			35					40					45			
	Pro	Tyr	Val	Glu	Phe	Thr	Gly	Arg	Asp	Ser	Val	Thr	Cys	Pro	Thr	Суѕ
•		50					55					60				
5	Gln	Gly	Thr	Gly	Arg	Ile	Pro	Arg	Gly	Gln	Glu	Asn	Gln	Leu	Val	Ala
	65					70					75					80
	Leu	Ile	Pro	Tyr	Ser	Asp	Gln	Arg	Leu	Arg	Pro	Arg	Arg	Thr	Lys	Leu
					85					90					95	
	Tyr	Val	Met	Ala	Ser	Val	Phe	Val	Cys	Leu	Leu	Leu	Ser	Gly	Leu	Ala
LO				100					105					110		
	Val	Phe	Phe	Leu	Phe	Pro	Arg	Ser	Ile	Asp	Val	Lys	Tyr	Ile	Gly	Val
			115					120					125			
•	Lys	Ser	Ala	Tyr	Val	Ser	Tyr	Asp	Val	Gln	Lys	Arg	Thr	Ile	Tyr	Leu
		130					135					140				
15	Asń	Ile	Thr	Asn	Thr	Leu	Asn	Ile	.Thr	Asn	Asn	Asn	Tyr	Tyr	Ser	Val
	145					150					155					160
	Glu	Val	Glu	Asn	Ile	Thr	Ala	Gln	Val	Gln	Phe	Ser	Lys	Thr	Val	Ile
					165					170					175	
	Gly	Lys	Ala	Arg	Leu	Asn	Asn	Ile	Thr	Ile	Ile	Gly	Pro	Leu	Asp	Met
20				180					185					190		
	Lys	Gln	Ile	Asp	Tyr	Thr	Val	Pro	Thr	Val	Ile	Ala	Glu	Glu	Met	Ser
			195					200					205			
	Tyr	Met	Tyr	Asp	Phe	Cys	Thr	Leu	Ile	Ser	Ile	Lys	Val	His	Asn	Ile
		210					215					220				
25	Val	Leu	Met	Met	Gln	Val	Thr	Val	Thr	Thr	Thr	Tyr	Phe	Gly	His	Ser

231/346

Glu Gln Ile Ser Gln Glu Arg Tyr Gln Tyr Val Asp Cys Gly Arg Asn Thr Thr Tyr Gln Leu Gly Gln Ser Glu Tyr Leu Asn Val Leu Gln Pro Gln Gln <210> 100 <211> 390 <212> PRT <213> Homo sapiens <400> 100 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys

Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro

				•	85					90					95	
	Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	Leu	Ser	Leu	Arg
				100					105					110		
	Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	Ser	Cys	Ser	Val
5	•		115					120					125			
,	Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	Ser	Ile	Lys	Thr
		130					135					140				
	Leu	Glu	Leu	Asn	Val	Leu	Val `	Pro	Pro	Ala	Pro	Pro	Ser	Cys	Arg	Leu
	145					150	•	•			155					160
10	Gln	Gly	Val	Pro	His	Val	Gly	Ala	Asn	Val	Thr	Leu	Ser	Cys	Gln	Ser
					165					170					175	
J	Pro	Arg	Ser	Lys	Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	Arg	Gln	Leu	Pro
				180					185					190		
	Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	Ile	Arg	Gly	Ser
15			195					200	,				205			
	Leu		Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Gly	Val	Tyr	Val	Cys
		210					215					220				
		Ala	His	Asn	Glu	Val	Gly	Thr	Ala	Gln	Cys	Asn	Val	Thr	Leu	Glu
•	225					230					235					240
20	Val	Ser	Thr	Gly		Gly	Ala	Ala	Val	Val	Ala	Gly	Ala	Val	Val	Gl
			•		245					250					255	
	Thr	Leu	Val		Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	Leu	Leu	Tyr	His
•				260					265					270		
	Cys	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	·Ala	Asn	Asp	Ile	Lys	Glu	Asp
25			275					280					285			

233/346

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320 5 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 340 345 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 10 355 360 365 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380 Gln Ala Gly Ser Leu Val 385 390 15 <210> 101 <211> 684 <212> DNA <213> Homo sapiens 20 <400> 101 atggcaggtg teggggetgg geetetgegg gegatgggge ggcaggeeet getgettete 60 gegetgtgeg ceacaggege ceaggggete tacttecaca teggegagae egagaagege 120 tgtttcatcg aggaaatccc cgacgagacc atggtcatcg gcaactatcg tacccagatg 180

tgggataagc agaaggaggt cttcctgccc tcgacccctg gcctqqqcat gcacgtggaa 240

25

234/346

gtgaaggacc ccgacggcaa ggtggtgctg tcccggcagt acggctcgga gggccgcttc 300
acgttcacct cccacacgcc cggtgaccat caaatctgtc tgcactccaa ttctaccagg 360
atggctctct tcgctggtgg caaactgcgg gtgcatctcg acatccaggt tggggagcat 420
gccaacaact accctgagat tgctgcaaaa gataagctga cggagctaca gctccgcgcc 480
cgccagttgc ttgatcaggt ggaacagatt cagaaggagc acgattacca aaggtatcgt 540
gaagagcgct tccgactgac gagcgagagc accaaccaga gggtcctatg gtggtccatt 600
gctcagactg tcatcctcat cctcactggc atctggcaga tgcgtcacct caagagcttc 660
tttgaggcca agaagctggt gtag 684

10 <210> 102

5

<211> 1059

<212> DNA

<213> Homo sapiens

15 <400> 102

20

25

atggagagcg gagggcggcc ctcgctgtgc cagttcatcc tcctgggcac cacctctgtg 60 gtcaccgccg ccctgtactc cgtgtaccgg cagaaggccc gggtctccca agagctcaag 120 ggagctaaaa aagttcattt gggtgaagat ttaaagagta ttctttcaga agctccagga 180 aaatgcgtgc cttatgctgt tatagaagga gctgtgcggt ctgttaaaga aacgcttaac 240 agccagtttg tggaaaactg caagggggta attcagcggc tgacacttca ggagcacaag 300 atggtgtgga atcgaaccac ccacctttgg aatgattgct caaagatcat tcatcagagg 360 accaacacag tgcccttga cctggtgccc cacgaggatg gcgtggatgt ggctgtgcga 420 gtgctgaagc ccctggactc agtggatctg ggctaagaa ctgtgtatga gaagttccac 480 ccctcgattc agtccttcac cgatgtcatc ggccactaca tcagcggtga gcggcccaaa 540 ggcatccaag agaccgagga gatgctgaag gtgggggcca ccctcacagg ggttggcga 600

235/346

ctggtcctgg acaacaactc tgtccgcctg cagccgcca aacaaggcat gcagtactat 660 ctaagcagcc aggacttcga cagcctgctg cagaggcagg agtcgagcgt caggctctgg 720 aaggtgctgg cgctggtttt tggctttgcc acatgtgcca ccctcttctt cattctccgg 780 aagcagtatc tgcagcggca ggagcgcctg cgcctcaagc agatgcagga ggagttccag 840 gagcatgagg cccagctgct gagccgagcc aagcctgagg acagggagag tctgaagagc 900 gcctgtgtag tgtgtctgag cagcttcaag tcctgcgtct ttctggagtg tgggcacgtt 960 tgttcctgca ccgagtgcta ccgcgccttg ccagagccca agaagtgccc tatctgcaga 1020 caggcgatca cccgggtgat acccctgtac aacagctaa

10 <210> 103

5

<211> 393

<212> DNA

<213> Homo sapiens

15 <400> 103

20

atgagcaget caggtggge geeeggggeg teegeeaget etgegeegee egegeaggaa 60 gagggeatga egtggtggt eegeetgt tgtegeetgt etggggtget gggggeagte 120 tettgegega tetetggeet etteaaetge ateaceatee accetetgaa eategeggee 180 ggegtgtgga tgatgatgge ggtegtteee ategteatea geetgaeeet gaeeaegetg 240 etgggeaaeg ceategeett tgetaegggg gtgetgtaeg gaetetetge tetgggeaaa 300 aagggegatg egateteeta tgeeaggate eageagaa ggeageagge ggatgaggag 360 aagetegegg agaeeetgga gggggagetg tga 393

<210> 104

25 <211> 993

236/346

<212> DNA

<213> Homo sapiens

<400> 104

5 atgagecggt gegeccagge ggeggaagtg geggecacag tgecaggtge eggegteggg 60 aacgtggggc tgcggccgcc catggtgccc cgtcaggcgt ccttcttccc gccgccggtg 120 ccgaacccct tcgtgcagca gacgcagatc ggctccgcga ggcgggtcca gattgtcctt 180 cttgggatta tcttgcttcc aattcgtgtc ttattggttg cgttaatttt attacttgca 240 tggccatttg ctgcaatttc aacagtatgc tgtcctgaaa agctgaccca cccaataact 300 10 ggttggagga ggaaaattac tcaaacagct ttgaaatttc tgggtcgtgc tatgttcttt 360 tcaatgggat ttatagttgc tgtaaaagga aagattgcaa gtcctttgga agcaccagtt 420 tttgttgctg cccctcattc aacattcttt gatggaattg cctgtgttgt agctgggtta 480 ccttctatag tatctcgaaa tgagaatgca cadgtccctc tgattggcag actgttacgg 540 gctgtgcaac cagttttggt gtcccgtgta gatccggatt cccqaaaaaa cacaataaat 600 15 gaaataataa agcgaacaac atcaggagga gaatggcccc agatactagt tttcccagaa 660 ggtacttgta ctaatcgttc ctgtttgatt acttttaaac caggagcctt cattccagga 720 gttccagtgc agccagtcct cctcagatac ccaaacaagc tggatactgt gacctggaca 780 tggcaaggat atacattcat tcagctttgt atgcttactt tctgccagct cttcacaaag 840 gtagaagttg agatgtttct gttcttttgg gaaggaagca gcaagcattg tttaaaaata 900 20 tetteettet tttgeatttt ttetettega agatttaaaa gaagaattac acaaagaact 960 agaactgcac atttgttaag attgtccttt taa 993

<210> 105

<211> 1053

25 <212> DNA

237/346

<213> Homo sapiens

<400> 105

5

10

15

20

atggcgctgc ctccaggccc agccgccctc cggcacacac tgctgctcct gccagccctt 60 ctgageteag gtgggeetgg cacececaga ttggeetggt atetggatgg acagetgeag 120 accttcactg tcactgccca tcgggcccag catgagctca actgctctct gcaggacccc 240 agaagtggcc gatcagccaa cgcctctgtc atccttaatg tgcaattcaa gccagagatt 300 qcccaaqtcq qcqccaaqta ccaggaagct cagggcccag gcctcctggt tgtcctgttt 360 gccctggtgc gtgccaaccc gccggccaat gtcacctgga tcgaccagga tgggccagtg 420 actqtcaaca cctctgactt cctggtgctg gatgcgcaga actacccctg gctcaccaac 480 cacacggtgc agctgcagct ccgcagcctg gcacacaacc tctcggtggt ggccaccaat 540 gacgtgggtg teaccagtge gtegetteea geeceaggge ttetggetae eegggtggaa 600 gtgccactgc tgggcattgt tgtggctgct gggcttgcac tgggcaccct cgtggggttc 660 agcacettgg tggeetgeet ggtetgeaga aaagagaaga aaaccaaagg cccctcccgg 720 cacccatctc tgatatcaag tgactccaac aacctaaaac tcaacaacgt gcgcctgcca 780 cgggagaaca tgtccctccc gtccaacctt cagctcaatg acctcactcc agattccaga 840 qcaqtqaaac caqcaqaccq qcaqatggct cagaacaaca gccggccaga gcttctggac 900 ccggagcccg gcggcctcct caccagccaa gcatgtctcc tccaccacgg gaccccagcc 960 ctgaccaacc catggttgcc tcatcagcag gaaggtgccc ttcctggagg atggtcgcca 1020 1053 caggcacata attcaacagt gtggaagctt tag

<210> 106

<211> 342

25 <212> DNA

238/346

<213> Homo sapiens

<400> 106

atgaatgaga caaacaaaac acttgttggg ccttcggagc tccccacagc gtctgctgtg 60 gcccctggcc caggcactgg ggctcgggca tggcctgtgc tggtaggatt tgtgctgggg 120 gctgtggtcc tctcgctcct cattgcactt gctgccaaat gccacctctg ccgccgatac 180 catgccagct accggcaccg cccactgcct gagacaggaa ggggaggccg cccacaggtg 240 gctgaagatg aggatgatga tggcttcatc gaggacaatt acattcagcc tgggactggc 300 gagctgggga cagagggtag caggggaccac ttctccctct ga 342

10

5

<210> 107

<211> 570

<212> DNA

<213> Homo sapiens

15

20

25

<400> 107

atggecctge tetegegece egegeteace eteetgetee teeteatgge egetgttgte 60
aggtgecagg ageaggecea gaceacegae tggagageca ecetgaagae cateeggaae 120
ggegtteata agatagaeae gtaeetgaae geegeettgg aceteetggg aggegaggae 180
ggtetetgee agtataaatg eagtgaegga tetaageett teecaegtta tggttataaa 240
eceteeceae egaatggatg tggeteteea etgtttggtg tteatettaa eattggtate 300
eetteeetga eaaagtgttg eaaeeaaeae gaeaggtget atgaaaeetg tggeaaaage 360
aagaatgaet gtgatgaaga atteeagtat tgeeteteea agatetgeeg agatgtaeag 420
aaaaeaetag gaetaaetea geatgtteag geatgtgaaa eaaeagtgga getettgtt 480
gaeagtgtta taeatttagg ttgtaaaeea tatetggaea geeaaegage egeatgeagg 540

239/346

570

tgtcattatg aagaaaaac tgatctttaa

<210> 108

<211> 834

5 <212> DNA

10

15

20

<213> Homo sapiens

<400> 108

atgtegeege tgetgggget eeggteegag etgeaggaea eetgeacete getgggaetg 60
atgetgtegg tggtgetget eatggggetg geeegegtag tegeeeggea geagetgeae 120
aggeeggtgg eecacgeett egteetggag tttetageea eetteeaget etgetgetge 180
acceacgage tgeaactget gagegaacag eaceeeggee acceeacetg gaeggtgaeg 240
etegtetaet tetteteget tgtgeatgge etgaetetgg tgggeacgte eageaaceeg 300
tgeggegtga tgatgeagat gatgetgggg ggeatgteee eegagaeggg tgeggtgagg 360
etattggete agetggttag tgeeetgtge ageaggtaet geacaagege ettgtggage 420
ttgggtetga eecagtatea egteagegag aggagetteg ettgeaagaa teceateega 480
gtegaettge teaaageggt eateacagag geegtetget eetttetett eeacageget 540
etgetgeaet teeaggaagt eegaaceaag ettegtatee acetgetgge tgeaeteate 600
acetttttgg tetatgeagg aggaagteta acaggagetg tatttaatee agetttggea 660
etttegetae attteatgtg ttttgatgaa geatteeete agtttttat agtataetgg 720
etggeteett etttaggtat attgttgatg attttgatgt teagetttt ceatggetge 780
ataacaacea tacaattaat aaaaaggaat aactgtteea aagaeteaga etaa

<210> 109

25 <211> 825

240/346

<212> DNA

<213> Homo sapiens

<400> 109

5 atgggaaagt ctcttctca tttgcctttg cattcaagca aagaagatgc ttatgatgga 60 gtcacatctg.aaaacatgag gaatggactg gttaatagtg aagtccataa tgaagatgga 120 agaaatggag atgtctctca gtttccatat gtggaattta caggaagaga tagtgtcacc 180 tgccctactt gtcagggaac aggaagaatt cctagggggc aagaaaacca actggtggca 240 ttgattccat atagtgatca gagattaagg ccaagaagaa caaagctgta tgtgatggct 300 10 tetgtgtttg tetgtetaet cetttetgga ttggetgtgt tttteetttt ceetegetet 360 atcgacgtga aatacattgg tgtaaaatca gcctatgtca gttatgatgt tcagaagcgt 420 acaatttatt taaatatcac aaacacacta aatataacaa acaataacta ttactctgtc 480 gaagttgaaa acatcactgc ccaagttcaa ttttcaaaaa cagttattgg aaaggcacgc 540 ttaaacaaca taaccattat tggtccactt gatatgaaac aaattgatta cacagtacct 600 15 accepttatag cagaggaaat gagttatatg tatgatttct gtactctgat atccatcaaa 660 gtgcataaca tagtactcat gatgcaagtt actgtgacaa caacatactt tggccactct 720 gaacagatat cccaggagag gtatcagtat gtcgactgtg gaagaaacac aacttatcag 780 ttggggcagt ctgaatattt aaatgtactt cagccacaac agtaa 825

20 <210> 110

<211> 1173

<212> DNA

<213> Homo sapiens

25 <400> 110

241/346

atgatttccc tcccggggcc cctggtgacc aacttgctgc ggtttttgtt cctggggctg 60 agtgccctcg cgccccctc gcgggcccag ctgcaactgc acttgcccgc caaccggttg 120 caggcggtgg agggagggga agtggtgctt ccagcgtggt acaccttgca cqqqqaqqtg 180 tetteatece agecatggga ggtgeeettt gtgatgtggt tetteaaaca gaaagaaaag 240 5 gaggatcagg tgttgtccta catcaatggg qtcacaacaa qcaaacctgq aqtatccttq 300 gtctactcca tgccctcccg gaacctgtcc ctqcqqctqq agqqtctcca qqaqaaaqac 360 tetggcccct acagetgctc cgtgaatgtg caagacaaac aaggcaaatc taggggccac 420 agcatcaaaa cettagaact caatgtactg gtteeteeag eteeteeate etgeegtete 480 cagggtgtgc cccatgtggg ggcaaacgtg accctgagct gccagtctcc aaggagtaag 540 10 cccgctgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca 600 gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga 660 gtgagcacag ggcctggagc tgcagtggtt gctggagctg ttgtgggtac cctggttgga 780 ctggggttgc tggctgggct ggtcctcttg taccactgcc ggggcaaggc cctggaggag 840 15 tcagacacaa tctccaagaa tgggaccctt tcctctgtca cctccgcacg agccctccgg 960 ccacccatg gccctcccag gcctggtgca ttgaccccca cgcccagtct ctccagccag 1020 geoetgeeet caccaagaet geocacgaca gatggggeec acceteaace aatateeece 1080 atccctggtg gggtttcttc ctctggcttg agccgcatgg gtgctgtgcc tgtgatggtg 1140 20 cctgcccaga gtcaagctgg ctctctggta tga 1173

<210> 111

<211> 1894

<212> DNA

25 <213> Homo sapiens

	<220)>										•					
	·<221	r> ci	os														
	<222	2> (3	36)	(719	9)												•
5									,							. •	
	<400)> 11	11														
	gcaa	aatgt	.gc g	gcago	geget	t ag	gggg	ctgag	g gcg	jeg a	atg q	gca g	gt g	gtc g	ggg g	gct	53
									•	A	1et 1	Ala (Sly V	al (Gly A	Ala	
					•						1		•		5		
10	ggg	cct	ctg	cgg	gcg	atg	ggg	cgg	cag	gcc	ctg	ctg	ctt	ctc	gcg	ctg	101
	Gly	Pro	Leu	Arg	Ala	Met	Gly	Arg	Gln _.	Ala	Leu	Leu	Leu	Leu	Ala	Leu	•
				10					15					20			
	tgc	gcc	aca	ggc	gcc	cag	ggg	ctc	tac	ttc	cac	atc	ggc	gag	acc	gag	149
	Cys	Ala	Thr	Gly	Ala	Gln	Gly	Leu	Tyr	Phe	His	Ile	Gly	Glu	Thr	Glu	
15			25					30	•				35				
	aag	cgc	tgt	ttc	atc	gag	gaa	`atc	ccc	gac	gag	acc	atg	gtc	atc	ggc	197
• 4	Lys	Arg	Cys	Phe	Ile	Glu	Glu	Ile	Pro	Asp	Glu	Thr	Met	Val	Ile	Gly	
	٠	40					45					50					
	aac	tat	cgt	acc	cag	atg	tgg	gat	aag	cag	aag	gag	gtc	ttc	ctg	ccc	245
20	Asn	Tyr	Arg	Thr	Gln	Met	Trp	Asp	Lys	Gln	Lys	Glu	Val	Phe	Leu	Pro	
	55					60					65					70	
	tcg	acc	cct	ggc	ctg	ggc	atg	cac	gtg	gaa	gtg	aag	gac	ccc	gac	ggc	293
	Ser	Thr	Pro	Gly	Leu	Gly	Met	His	Val	Glu	Val	Lys	Asp	Pro	Asp	Gly	
					75				•	80					85		
25	aag	gtg	gtg	ctg	tcc	cgg	cag	tac	ggc	tcg	gag	ggc	cgc	ttc	acg	ttc	341

	Lys	Val	Val	Leu	Ser	Arg	Gln	Tyr	Gly	Ser	Glu	Gly	Arg	Phe	Thr	Phe	
•				90					95					100			
	acc	tcc	cac	acg	ccc	ggt	gac	cat	caa	atc	tgt	ctg	cac	tcc	aat	tct	389
	Thr	Ser	His	Thr	Pro	Gly	Asp	His	Gln	Ile	Cys	Leu	His	Ser	Asn	Ser	
5			105	•			•	110					115				
	acc	agg	atg	gct	ctc	ttc	gct	ggt	ggc	aaa	ctg	cgg	gtg	cat	ctc	gac	437
	Thr	Arg	Met	Ala	Leu	Phe	Ala	Gly	Gly	Lys	Leu	Arg	Val	His	Leu	Asp	
		120					125					130					
	atc	cag	gtt	ggg	gag	cat	gcc	aac	aac	tac	cct	gag	att	gct	gca	aaa	485
10	Ile	Gln	Val	Gly	Glu	His	Ala	Asn	Asn	Tyr	Pro	Glu	Ile	Àla	Ala	Lys	
	135					140					145				•	150	
	gat	aag	ctg	acg	gag	cta	cag	ctc	cgc	gcc	cgc	cag	ttg	ctt	gat	cag	533
	Asp	Lys	Leu	Thr	Glu	Leu	Gln	Leu	Arg	Ala	Arg	Gln	Leu	Leu	Asp	Gln	
					155					160					165		
15	gtg	gaa	cag	att	cag	aag	gag	cag	gat	tac	caa	agg	tat	cgt	gaa	gag	581
	Val	Glu	Gln	Ile	Gln	Lys	Glu	Gln	Asp	Tyr	Gln	Arg	Tyr	Arg	Glu	Glu	
				170					175					180			
	cgc	ttc	cga	ctg	acg	agc	gag	agc	acc	aac	cag	agg	gtc	cta	tgg	tgg	629
	Arg	Phe	Arg	Leu	Thr	Ser	Glu	Ser	Thr	Asn	Gln	Arg	Val	Leu	Trp	Trp	
20			185					190					195				
	tcc	att	gct	cag	act	gtc	atc	ctc	atc	ctc	act	ggc	atc	tgg	cag	atg	677
	Ser	Ile	Ala	Gln	Thr	Val	Ile	Leu	Ile	Leu	Thr	Gly	Ile	Trp	Gln	Met	
		200					205					210					
	cgt	cac	ctc	aag	agc	ttc	ttt	gag	gcc	aag	aag	ctg	gtg	tag			719
25	Arg	His	Leu	Lys	Ser	Phe	Phe	Glu	Ala	Lys	Lys	Leu	Val				

244/346

215 220 225

tgccctcttt gtatgaccct tcctttttac ctcatttatt tggtactttc cccacacagt 779 cctttatcca cctggatttt tagggaaaaa aatgaaaaag aataagtcac attggttcca 839 tggccacaaa ccattcagat cagccacttg ctgaccctgg ttcttaagga cacatgacat 899 tagtccaatc tttcaaaatc ttgtcttagg gcttgtgagg aatcagaact aacccaggac 959 tcagtcctgc ttcttttgcc tcgagtgatt ttcctctgtt tttcactaaa taagcaaatg 1019 aaaactctct ccattacctt ctgctttctc tttgtccact tacgcagtag gtgactggca 1079 tgtgccacag agcaggccct gcctcactgt ctgctggtca gttctgggtt cacttaatgg 1139 ctttgtgaat gtaaataagg ggcaggtctt ggccctagag gattgagatg tttttctaaa 1199 tcttagaact atttttggat aaattatata ttttccttcc tagtagaagt gttactgcct 1259 tttttttttt ttttttgag ttttgctctt gtcgcccagg ctggagtgca atggcgtgat 1379 ctcageteae tggcaacate tgeeteeegg gttcaaatga tteteetgee teagteteet 1439 gagtagctgg gattacaggt gcccgccacc acgctcagct aatttttgta tttttaqtaq 1499 agatggggtt ttaccatgtt ggccaggctg gtcttagact cctgacctca gttgatccac 1559 ctgcctcagc ctctgcattc agtttattca catatttttg gtaactccca tggcagctcc 1619 taggatttca gcggtctgtg ggccagaaag caggcaccag ggctgacctc aaggccqtat 1679 cagagggcca agcagagttc ttttggatac ctgcttttca tcccacaggg ccttagagtc 1739 agaggtaagg tagcaacaga gctagaatgg ggcaatgcac tcttaccctc cttctcaact 1799 tttatttaag ctgtgctaaa tgttttcttc aagggaacca gatttagttc tttacagaat 1859 tttccagtga aataaactct catgttattg ttccc 1894

<210> 112

<211> 2413

25 <212> DNA

5

10

15

20

245/346

<213> Homo sapiens

<220>

<221> CDS

5 <222> (115)..(1173)

<400> 112

tttccggtca ggttaggccg ggggggtgcg gtcctggtcg gaaggaggtg gagagtcggg 60 ggtcaccagg cctatecttg gcgccacagt cggccaccgg ggctcgccgc cgtc atg 117

Met 10

1

gag agc gga ggg cgg ccc tcg ctg tgc cag ttc atc ctc ctg ggc acc 165 Glu Ser Gly Gly Arg Pro Ser Leu Cys Gln Phe Ile Leu Leu Gly Thr 15

10

acc tot gtg gtc acc gcc gcc ctg tac toc gtg tac cgg cag aag gcc 15 Thr Ser Val Val Thr Ala Ala Leu Tyr Ser Val Tyr Arg Gln Lys Ala

> 25 20

cgg gtc tcc caa gag ctc aag gga gct aaa aaa gtt cat ttg ggt gaa 261 Arg Val Ser Gln Glu Leu Lys Gly Ala Lys Lys Val His Leu Gly Glu

40 45 20 35

5

gat tta aag agt att ctt tca gaa gct cca gga aaa tgc gtg cct tat Asp Leu Lys Ser Ile Leu Ser Glu Ala Pro Gly Lys Cys Val Pro Tyr 55 60 50

gct gtt ata gaa gga gct gtg cgg tct gtt aaa gaa acg ctt aac agc

Ala Val Ile Glu Gly Ala Val Arg Ser Val Lys Glu Thr Leu Asn Ser 25

					70					75					80		
	cag	ttt	gtg	gaa	aac	tgc	aag	ggg	gta	att	cag	cgg	ctg	aca	ctt	cag	405
	Gln	Phe	Val	Glu	Asn	Cys	Lys	Gly	Val	ΙΊe	Gln	Arg	Leu	Thr	Leu	Gln	
				85					90					95			
5	gag	cac	aag	atg	gtg	tgg	aat	cga	acc	acc	cac	ctt	tgg	aat	gat	tgc	453
	Glu	His	Lys	Met	Val	Trp	Asn	Arg	Thr	Thr	His	Leu	Trp	Asn	Asp	Cys	.,
			100					105					110				
	tca	aag	atc	att	cat	cag	agg	acc	aac	aca	gtg	ccc	ttt	gac	ctg	gtg	501
	Ser	Lys	Ile	Ile	His	Gln	Arg	Thr	Asn	Thr	Val	Pro	Phe	Asp	Leu	Val	
LO		115					120					125					
	ccc	cac	gag	gat	ggc	gtg	gat	gtg	gct	gtg	cga	gtg	ctg	aag	ccc	ctg	549
	Pro	His	Glu	Asp	Gly	Val	Asp	Val	Ala	Val	Arg	Val	Leu	Lys	Pro	Leu	
	130					135				•	140					145	
	gac	tca	gtg	gat	ctg	ggt	cta	gag	act	gtg	tat	gag	aag	ttc	cac	ccc	597
15	Asp	Ser	Val	Asp	Leu	Gly	Leu	Glu	Thr	Val	Tyr	Glu	Lys	Phe	His	Pro	
					150					155					160		
	tcg	att	cag	tcc	ttc	acc	gat	gtc	atc	ggc	cac	tac	atc	agc	ggt	gag	645
	Ser	Ile	Gln	Ser	Phe	Thr	Asp	Val	Ile	Gly	His	Tyr	Ile	Ser	Gly	Glu	
	•			165					170					175			
20	cgg	ccc	aaa	ggc	atc	caa	gag	acc	gag	gag	atg	ctg	aag	gtg	ggg	gcc	693
	Arg	Pro	Lys	Gly	Ile	Gln	Glu	Thr	Glu	Glu	Met	Leu	Lys	Val	Gly	Ala	
			180					185					190			•	
	acc	ctc	aca	ggg	gtt	ggc	gaa	ctg	gtc	ctg	gac	aac	aac	. tct	gtc	cgc	743
	Thr	Leu	Thr	Gly	Val	Gly	Glu	Leu	Val	Leu	Asp	Asņ	Asn	Ser	Val	Arg	
25		195					200					205					

	ctg	cag	ccg	ccc	aaa	caa	ggc	atg	cag	tac	tat	cta	agc	agc	cag	gac	789
	Leu	Gln	Pro	Pro	Lys	Gln	Gly	Met	Gln	Tyr	Tyr	Leu	Ser	Ser	Gln	Asp	
	210					215					220					225	
	ttc	gac	agc	ctg	ctg	cag	agg	cag	gag	tcg	agc	gtc	agg	ctc	tgg	aag	837
5	Phe	Asp	Ser	Leu	Leu	Gln	Arg	Gln	Glu	Ser	Ser	Val	Arg	Leu	Trp	Lys	
					230					235					240	•	
	gtg	ctg	gcg	ctg	gtt	ttt	ggc	ttt	gcc	aca	tgt	gcc	acc	ctc	ttc	ttc	885
	Val	Leu	Ala	Leu	Val	Phe	Gly	Phe	Ala	Thr	Cys	Ala	Thr	Leu	Phe	Phe	
				245					250					255			
10	att	ctc	cgg	aag	cag	tat	ctg	cag	cgg	cag	gag	cgc	ctg	cgc	ctc	aag	933
	Ile	Leu	Arg	Lys	Gln	Tyr	Leu	Gln	Arg	Gln	Glu	Arg	Leu	Arg	Leu	Lys	
			260					265					270				
	cag	atg	cag	gag	gag	ttc	cag	gag	cat	gag	gcc	cag	ctg	ctg	agc	cga	981
	Gl'n	Met	Gln	Glu	Glu	Phe	Gln	Glu	His	Glu	Ala	Gln	Leu	Leu	Ser	Arg	
15		275					280					285					
	gcc	aag	cct	gag	gac	agg	gag	agt	ctg	aag	agc	gcc	tgt	gta	gtg	tgt	1029
	. Ala	Lys	Pro	Glu	Asp	Arg	Glu	Ser	Leu	Lys	Ser	Ala	Cys	Val	Val	Cys	
	290					295					300					305	
	ctg	agc	agc	ttc	aag	tcc	tgc	gtc	ttt	ctg	gag	tgt	ggg	cac	gtt	tgt	1077
20	Leu	Ser	Ser	Phe	Lys	Ser	Cys	Val	Phe	Leu	Glu	Cys	Gly	His	Val	Cys	
					310					315					320		
	tcc	tgc	acc	gag	tgc	tac	cgc	gcc	ttg	cca	gag	ccc	aag	aag	tgc	cct	1125
	Ser	Cys	Thr	Glu	Cys	Tyr	Arg	Ala	Leu	Pro	Glu	Pro	Lys	Lys	Cys	Pro	
				325					330					335			
25	atc	tgc	aga	cag	gcg	atc	acc	cgg	gtg	ata	ccc	ctg	tac	aac	agc	taa	1173

248/346

Ile Cys Arg Gln Ala Ile Thr Arg Val Ile Pro Leu Tyr Asn Ser

340 345 350

tagtttggaa gccgcacagc ttgacctgga agcaccctt cccccttttc agggattttt 1233 atctcgaggc ctttggagga gcagtggtgg gggtagctgt cacctccagg tatgattgag 1293 ggaggaattg ggtagaaact ctccagaccc atgcctccaa tggcaggatg ctgcctttcc 1353 cacctgagag gggaccctgt ccatgtgcag cctcatcaga gcctcaccct gggaggatgc 1413 cgtggcgtct cctcccagga gccagatcag tgcgaqtqtq actgaaaatq cctcatcact 1473 taagcaccaa.agccagtgat cagcagctct tctgttcctg tgtcttctgt ttttttctqg 1533 tgaatcgttg cttgctgtgg acttggtgga ggactcagag gggaggaaag gctqggccc 1593 gagtacaacg gatgccttgg gtgctgcctc cgaaqaqact ctgccqcaqc ttttcttctt 1653 tttcctcatg ccccgggaaa cagtctttct tcagaattgt caggctgggc aggtcaactt 1713 gtgttccttt cccctcacct gcttgcctcc ttaacgcctg cacgtgtgtg tagaggacaa 1773 aagaaagtga agtcagcaca tccgcttctg cccagatggt tggggccccg ggcaacagat 1833 tgaagagaga tcatgtgaag ggcagttggt caggcaggcc tcctggtttc gccactggcc 1893 ctgatttgaa ctcctgccac ttgggagagc tcggggtggt ccctggtttt ccctcctgga 1953 gaatgaggcg cagaggcctc gcctcctgaa ggacgcagtg tggatgccac tggcctagtg 2013 teetggeete acagetteet tgeaaggetg teacaaggaa aageageegg etggeaceet 2073 gagcatatgc cetettgggg etceetcate cagecegteg cagetttgac atettggtgt 2133 actcatgtcg cttctccttg tgttaccccc tcccagtatt accatttgcc cctcacctgc 2193 ccttggtgag ccttttagtg caagacagat gggqctqttt tcccccacct ctqaqtagtt 2253 ggaggtcaca tacacagctc ttttttatt gcccttttct gcctctgaat gttcatctct 2313 cgtcctcctt tgtgcaggcg aggaaggggt gccctcaggg gccgacacta gtatgatgca 2373 gtgtccagtg tgaacagcag aaattaaaca tgttgcaacc 2413

25 . <210> 113

5

10

15

20

249/346

<211> 2376 <212> DNA <213> Homo sapiens 5 <220> <221> CDS <222> (35)..(427) <400> 113 10 gtgagggctg tgagctgcgc ctgacggtgg cacc atg agc agc tca ggt ggg gcg 55 Met Ser Ser Ser Gly Gly Ala 1 5 ccc ggg gcg tcc gcc agc tct gcg ccg ccc gcg cag gaa gag ggc atg 103 Pro Gly Ala Ser Ala Ser Ser Ala Pro Pro Ala Gln Glu Gly Met 15 10 15 20 acg tgg tgg tac cgc tgg ctg tgt cgc ctg tct ggg gtg ctg ggg gca Thr Trp Trp Tyr Arg Trp Leu Cys Arg Leu Ser Gly Val Leu Gly Ala 25 30 35 gte tet tge geg ate tet gge etc tte aac tge ate ace ate cae ect 199 20 Val Ser Cys Ala Ile Ser Gly Leu Phe Asn Cys Ile Thr Ile His Pro 40 45 50 55 ctg aac atc gcg gcc ggc gtg tgg atg atg atg gcg gtc gtt ccc atc

gtc atc agc ctg acc ctg acc acg ctg ctg ggc aac gcc atc gcc ttt 29

60

Leu Asn Ile Ala Ala Gly Val Trp Met Met Ala Val Val Pro Ile

65

70

	Val II	.e Ser	Leu	Thr	Leu	Thr	Thr	Leu	Leu	Gly	Asn	Ala	Ile	Ala	Phe .	
			75					80					85	•		
	gct ac	g ggg	gtg	ctg	tac	gga	ctc	tct	gct	ctg	ggc	aaa	aag	ggc	gat	343
	Ala Th	ır Gly	Val	Leu	Tyr	Gly	Leu	Ser	Ala	Leu	Gly	Lys	Lys	Gly	Asp	
5		90		`			95					100				
	gcg at	c tcc	tat	gcc	agg	atc	cag	cag	cag	agg	cag	cag	gcg	gat	gag	391
	Ala Il	le Ser	Tyr	Ala	Arg	Ile	Gln	Gln	Gln	Arg	Gln	Gln	Ala	Asp	Glu	
	10)5				110					115					
	gag aa	ag ctc	gcg	gag	acc	ctg	gag	ggg	gag	ctg	tga	agg	gctg	ggc		437
10	Glu Ly	/s Leu	Ala	Glu	Thr	Leu	Glu	Gly	Glu	Leu					-	
	120				125					130						
	gcccct	ccct	ccct	gtcc	cc t	cttc	tggci	t ct	gtgt	gggt	cca	agtg	agg	cctg	gactgt	497
	ccacgo	ctgag	gcac	agcci	tg g	agag	gggc	c tt	tgca	cgtg	tcc	ctac	acc	tgga	gtcctc	557
	tgctc	ctttc	tcca	gact	gg c	ttaa	gcca	g ga	gcca	ctgg	ctg	ctgg	tgt	gagg	gtctgg	617
15	gctgc	tggac	ttga	ggca	ga g	cctg	cagc	a gc	tgtg	tgga	cac	tacc	cag	ccct	actcct	677
	ctgct	gggtg	ggtc	tgca ,	ga t	ctca	cacca	a ca	gaca	gggc	tgc	ctgt	gac	ctgc	tgtgac	737
	ctggg	agcag	cttc	ccct	gg a	gatg	ctgg	t cc	tggc	ttga	ggg	gagg	ggc	aagt	gggacc	797
	ctgcc	acctg	ggca	ctga	gc a	gagg	ġacc [.]	t cc	ccca	gctc	tct	tagc	agg	tgga	gcccca	857
	gggcc	tggga	cagc	ctgc	cg c	tgcc	agca	a cc	tccc	actg	ctg	ccta	ggg	tgca	gcgccc	917
20	actgt	caccc	tgcc	ttct	ga a	gaag	ccca	c ag	ggct	ccta	agg	tgca	ccc	cggt	acctgg	977
	aactg	cagcc	ttgg	cagt	ga c	tgga	cagc	t gg	gtgg	ggga	tgc	tccc	tgc	tggc	cctggg	1037
	aacct	tggac	aggc	cacc	tc a	aggc	ccct	c gg	ctgc	ccct	cct	ccct	ggg	cctg	ctgggg	1097
	cccct	aggtt	ctgc	ccat	ca c	cccc	cgcc	c ct	ġctg	gcct	gcc	caag	ccc	tgcc	ctcagg	1157
	gagct	tctgc	cttt	taag	aa c	tggg	caga	g gc	caca	gtca	cct	cccc	aca	caga	gctgtc	1217
25	cccac	tgccc	tggg	tgcc	ag g	ctgt	ccgg	a gc	cagg	ccta	ccc	aggg	agg	atgc	agagag	1277

251/346

,	ctggtgccca	ggatgtgcac	ccccatattc	cctctgccct	gtggcctcag	cccgctggcc	1337
	tctctgaccg	tgaggctggc	tctcagccat	cgggcaggtg	cctggtcggg	cctggcttag	1397
	cccaggtggg	gcttggcaga	agcgggcggg	tgtggaagat	attccatctg	gggccaaccc	1457
	caggctgggc	ctgcgctgag	cttctggagc	gcaggtactg	ggtcttgcta	agtgaactgt	1517
5	ttcccaggaa	cacctctcgg	gcccatctgc	gtctgaggct	gggagtggca	tctgaggccg	1577
	ggagtggcat	ctgaggccag	gagtggcagg	ctggtgggct	gggcgtgggg	tttctgggc	1637
	cctgcccagt	actgccctgg	ggacttggtg	ggctcctggg	tcagcagcat	cccacccctg	1697
	ggagtctggc	cagctgagcc	ccagggtggc	aggggcatta	tagcctggtg	gacatgtgcc	1757
	ttcagggttc	ctccggggcc	accttcctca	ggccagtgct	gggttcaaag	ggctgtgtgt	1817
10	gtgtgtgtgt	gtgtgtgtgt	gtatgtatat	gtgtgtgggt	gcacacatct	gtcccatgta	1877
	tgcagtgaga	cctgtctacc	tcccacaagg	agcaagggct	ctgcccgccc	tctgctcatt	1937
	cctacccagg	tagtgggacc	ccgggccccc	ttctgcctgg	cttgcctgct	tctgcccttt	1997
	ccagaggggt	ctcactgaca	gccagagaca	gcaggagaag	ggttggctgt	ggatcaagga	2057
	aggctgcccc	tgtaccctgt	ggggaaatgg	tgggtgcatg	gctggatgca	gaggtggaag	2117
15	gccctgggcc	acaggcgaga	gtgggcgtgt	cacctgtccc	aggttcccag	caagtctgca	2177
	gctgtgcagt ,	cctggggtcc	ctgaccctgt	cgcccagggg	gcgtgctgtc	cagcaggggc	2237
	cctgccttgc	aaggaacgtc	tcttccggcg	gctgggccgc	tcctgcctgg	tctgggctgt	2297
	gtgtggcgcc	ctttcctcct	tgtttgttcc	tctgtgttct	gtgtgcgtct	taagcaataa	2357
	agcgtggccg	tggctcgcg					2376

20

<210> 114

<211> 1155

<212> DNA

<213> Homo sapiens

252/346

<220>
<221> CDS
<222> (110)...(1102)
<400> 114

5

55

5

gaggetecce agegtegee taggetggga etetagtagg tetteggete agttttgget 60
geagegeeeg egtagatege tteggeeggg ttetaegeee ggeteaact atg age egg 118
Met Ser Arg

1

65

tgc gcc cag gcg gca gtg gcc aca gtg cca ggt gcc ggc gtc 166

Cys Ala Gln Ala Ala Glu Val Ala Ala Thr Val Pro Gly Ala Gly Val

10 15

ggg aac gtg ggg ctg cgg ccc ccc atg gtg ccc cgt cag gcg tcc ttc 214
Gly Asn Val Gly Leu Arg Pro Pro Met Val Pro Arg Gln Ala Ser Phe

15 20 25 30 35

ttc ccg ccg ccg gtg ccg aac ccc ttc gtg cag cag acg cag atc ggc 262
Phe Pro Pro Pro Val Pro Asn Pro Phe Val Gln Gln Thr Gln Ile Gly

40 45 50

tcc gcg agg cgg gtc cag att gtc ctt ctt ggg att atc ttg ctt cca 310

Ser Ala Arg Arg Val Gln Ile Val Leu Leu Gly Ile Ile Leu Leu Pro

att cgt gtc tta ttg gtt gcg tta att tta tta ctt gca tgg cca ttt 358

Ile Arg Val Leu Leu Val Ala Leu Ile Leu Leu Leu Ala Trp Pro Phe

60

70 75 80

gct gca att tca aca gta tgc tgt cct gaa aag ctg acc cac cca ata 406

	Ala	Ala	Ile	Ser	Thr	Val	Cys	Cys	Pro	Glu	Lys	Leu	Thr	His	Pro	Ile	
		85					90					95					
	act	ggt	tgg	agg	agg	aaa	att	act	caa	aca	gct	ttg	aaa	ttt	ctg	ggt	454
	Thr	Gly	Trp	Arg	Arg	Lys	Ile	Thr	Gln	Thr	Ala	Leu	Lys	Phe	Leu	Gly	
5	100					105					110					115	
	cgt	gct	atg	ttc	ttt	tca	atg	gga	ttt	ata	gtt	gct	gta	aaa	gga	aag	502
	Arg	Ala	Met	Phe	Phe	Ser	Met	Gly	Phe	Ile	Val	Ala	Val	Lys	Gly	Lys	
					120					125					130		
	att	gca	agt	cct	ttg	gaa	gca	сса	gtt	ttt	gtt	gct	gcc	cct	cat	tca	550
10	Ile	Ala	Ser	Pro	Leu	Glu	Ala	Pro	Val	Phe	Val	Ala	Ala	Pro	His	Ser	
				135					140					145			
	aca	ttc	ttt	gat	gga	att	gcc	tgt	gtt	gta	gct	ggg	tta	cct	tct	ata	598
	Thr	Phe	Phe	Asp	Gly	Ile	Ala	Cys	Val	۷al	Ala	Gly	Leu	Pro	Ser	Ile	
			150					155					160				
15	gta	tct	cga	aat	gag	aat	gca	caa	gtc	cct	ctg	att	ggc	aga	ctg	tta	646
	Val	Ser	Arg	Asn	Glu	Asn	Ala	Gln	Val	Pro	Leu	Ile	Gly	Arg	Leu	Leu	
		165					170					175					•
	cgg	gct	gtg	caa	cca	gtt	ttg	gtg	tcc	cgt	gta	gat	ccg	gat	tcc	cga	694
	Arg	Ala	Val	Gln	Pro	Val	Leu	Val	Ser	Arg	Val	Asp	Pro	Asp	Ser	Arg	
20	180					185					190					195	
	aaa	aac	aca	ata	aat	gaa	ata	ata	aag	cga	aca	. aca	tca	gga	gga	gaa	742
	Lys	Asn	Thr	Ile	Asn	Glu	Ile	Ile	Lys	Arg	Thr	Thr	Ser	Gly	Gly	Glu	
		•			200					205	i				210		
	tgg	ccc	cag	ata	cta	gtt	ttc	cca	gaa	ggt	act	tgt	act	aat	cgt	tcc	790
25	Trp	Pro	Gln	Ile	Leu	Val	Phe	Pro	Glu	Gly	Thr	Cys	Thr	Asn	Arg	Ser	

				215					220					225			
	tgt	ttg	att	act	ttt	aaa	cca	gga	gcc	ttc	att	cca	gga	gtt	cca	gtg	838
	Cys	Leu	Ile	Thr	Phe	Lys	Pro	Gly	Ala	Phe	Ile	Pro	Gly	Val	Pro	Val	
			230					235					240				
5	cag	cca	gtc	ctc	ctc	aga	tac	cca	aac	aag	ctg	gat	act	gtg.	acc	tgg	886
	Gln	Pro	Val	Leu	Leu	Arg	Tyr	Pro	Asn	Lys	Leu	Asp	Thr	Val	Thr	Trp	
		245					250			•		255					
	aca	tgg	caa	gga	tat	aca	ttc	att	cag	ctt	tgt	atg	ctt	act	ttc	tgc	934
	Thr	Trp	Gln	Gly	Tyr	Thr	Phe	Ile	Gln	Leu	Суѕ	Met	Leu	Thr	Phe	Cys	
10	260					265					270					275	
	cag	ctc	ttc	aca.	aag	gta	gaa	gtt	gag	atg	ttt	ctg	ttc	ttt	tgg	gaa	982
	Gln	Leu	Phe	Thr	Lys	Val	Glu	Val	Glu	Met	Phe	Leu	Phe	Phe	Trp	Glu	
					280					285					290		
-	gga	agc	agc	aag	cat	tgt	tta	aaa	ata	tct	tcc	ttc	ttt	tgc	att	ttt	1030
15	Gly	Ser	Ser	Lys	His	Cys	Leu	Lys	Ile	Ser	Ser	Phe	Phe	Cys	Ile	Phe	
				295					300					305		i	
	tct	ctt	cga	aga	ttt	aaa	aga	aga	att	aca	caa	aga	act	aga	act	gca	1078
	Ser	Leu	Arg	Arg	Phe	Lys	Arg	Arg	Ile	Thr	Gln	Arg	Thr	Arg	Thr	Ala	
			310					315					320				
20	cat	ttg	tta	aga	ttg	tcc	ttt	taa	aat	tatt	ttc.	tgtt	acaa	gg a	aaaa	ataaa	1132
	His	Leu	Leu	Arg	Leu	Ser	Phe										
		325					330				•						
	aga	ttga	tta	tagt	gtca	tà a	tt										1155

255/346

	<211> 13	29							
	<212> DN	A						_	
	<213> Hor	mo sapie	ns						
5	<220>								
	<221> CD	S							
	<222> (7	1)(112	3)						
	<400> 11	5					•		
10	agacctga	gc agttg	ctccg go	ggcgctc	g gggaggg	gage cage	cagoota g	gggcctaggc	60
	ccgggcca	cc atg g	jeg etg e	ct cca	ggc cca g	gee gee o	ctc cgg o	cac aca	109
		Met A	la Leu E	ro Pro	Gly Pro A	Ala Ala I	Leu Arg H	lis Thr	
		1		5			10		
	ctg ctg	ctc ctg	cca gcc	ctt ctg	agc tca	ggt ggg	cct ggc	acc ccc	157
15	Leu Leu	Leu Leu	Pro Ala	Leu Leu	Ser Ser	Gly Gly	Pro Gly	Thr Pro	
	15			20		25			
	aga ttg	gcc tgg	tat ctg	gat gga	cag ctg	cag gag	gcc agc	acc tca	205
	Arg Leu	Ala Trp	Tyr Leu	Asp Gly	Gln Leu	Gln Glu	Ala Ser	Thr Ser	
	30		35			40		45	
20	aga ctg	ctg agc	gtg gga	ggg gag	gcc ttc	tct gga	ggc acc	agc acc	253
	Arg Leu	Leu Ser	Val Gly	Gly Glu	Ala Phe	Ser Gly	Gly Thr	Ser Thr	
			50		55			60	

25 65 70 75

ttc act gtc act gcc cat cgg gcc cag cat gag ctc aac tgc tct ctg

Phe Thr Val Thr Ala His Arg Ala Gln His Glu Leu Asn Cys Ser Leu

	cag	gac	ccc	aga	agt	ggc	cga	tca	gcc	aac	gcc	tct	gtc	atc	ctt	aat	349
	Gln	Asp	Pro	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala	Ser	Val	Ile	Leu	Asn	
			80					85					90				
	gtg	caa	ttc	aag	cca	gag	att	gcc	caa	gtc	ggc	gcc	aag	tac	cag	gaa	397
5	Val	Gln	Phe	Lys	Pro	Glu	Ile	Ala	Gln	Val	Gly	Ala	Lys	Tyr	Gln	Glu	
		95					100					105					
	gct	cag	ggc	cca	ggc	ctc	ctg	gtt	gtc	ctg	ttt	gcc	ctg	gtg	cgt	gcc	445
	Ala	Gln	Gly	Pro	Gly	Leu	Leu	Val	Val	Leu	Phe	Ala	Leu	Val	Arq	Ala	
	110		_		-	115					120				•	125	
10			cca	gcc	aat.		acc	taa	atc	gac		gat	aaa	cca	ata		493
			_	Ala							_	_			-		130
	11011	110	110	1124	130	•41			110	_	011	nsp	OLY	11,0		1111	
										135			-		140		_0_
	gtc	aac	acc	tct	gac	ttc	ctg	gtg	ctg	gat	gcg	cag	aac	tac	ccc	tgg	541
	Val	Asn	Thr	Ser	Asp	Phe	Leu	Val	Leu	Asp	Ala	Gln	Asn	Tyr	Pro	Trp	
15				145					150					155			
	ctc	acc	aac	cac	acg	gtg	cag	ctg	cag	ctc	cgc	agc	ctg	gca	cac	aac	589
	Leu	Thr	Asn	His	Thr	Val	Gln	Leu	Gln	Leu	Arg	Ser	Leu	Ala	His	Asn	
			160					165					170				
	ctc	tcg	gtg	gtg	gcc	acc	aat	gac	gtg	ggt	gtc	acc	agt	gcg	tcg	ctt	637
20	Leu	Ser	Val	Val	Ala	Thr	Asn	Asp	Val	Gly	Val	Thr	Ser	Ala	Ser	Leu	
		175					180					185					
	cca	gcc	cca	ggg	ctt	ctg	gct	acc	cgg	gtg	gaa	gtg	cca	ctg	ctg	ggc	685
	Pro	Ala	Pro	Gly	Leu	Leu	Ala	Thr	Arg	Val	Glu	Val	Pro	Leu	Leu	Gly	
	190			_		195					200					205	
25		at.t	ata	gct	act		ctt	σca ,	cta				ata	aaa	ttc		733
		500	ラーゴ	500	500	222		504		990	400		وبو	999		~9~	, 55

	Ile	Val	Val	Ala	Ala	Gly	Leu	Ala	Leu	Gly	Thr	Leu	Val	Gly	Phe	Ser	
					210					215					220		
	acc	ttg	gtg	gcc	tgc	ctg	gtc	tgc	aga	aaa	gag	aag	aaa	acc	aaa	ggc	781
	Thr	Leu	Val	Ala	Cys	Leu	Val	Cys	Arg	Lys	Glu	Lys	Lys	Thr	Lys	Gly	
5				225					230					235			
	ccc	tcc	cgg	cac	cca	tct	ctg	ata	tca	agt	gac	tcc	aac	aac	cta	aaa	829
	Pro	Ser	Arg	His	Pro	Ser	Leu	Ile	Ser	Ser	Asp	Ser	Asn	Asn	Leu	Lys	
			240					245					250				
	ctc	aac	aac	gtg	cgc	ctg	cca	cgg	gag	aac	atg	tcc	ctc	ccg	tcc	aac	877
10	Leu	Asn	Asn	Val	Arg	Leu	Pro	Arg	Glu	Asn	Met	Ser	Leu	Pro	Ser	Asn	
		255	,		,	•	260					265					
	ctt	cag	ctc	aat	gac	ctc	act	cca	gat	tcc	aga	gca	gtg	aaa	cca	gca	925
	Leu	Gln	Leu	Asn	Asp	Leu	Thr	Pro	Asp	Ser	Arg	Ala	Val	. Lys	Pro	Ala	
	270					275					280)				285	
15 .	gac	cgg	cag	atg	gct	cag	aac	aac	ago	cgg	cca	a gag	ctt	ctg	gac	ccg	973
•	Asp	Arg	Gln	Met	. Ala	Gln	Asn	Asn	Ser	Arg	Pro	Glu	Leu	ı Lev	Asp	Pro	
					290					295					300)	
	gag	cco	ggc	ggc	cto	cto	acc	ago	caa	gca	tgt	cto	cto	c cac	cac	ggg	1021
	Glu	Pro	Gly	/ Gly	, Leu	ı Let	ı Thr	: Ser	Glr	n Ala	с Суз	s Leu	Let	ı His	His	Gly	
20				305	5				310)	•			315	5		
	acc	CC	a gco	c cto	g acc	aad	c cca	a tgg	y tto	g cct	cat	t cag	g cag	g gaa	a ggt	gcc	1069
	Thr	Pro	o Ala	a Lei	I Thi	Ası	n Pro	o Trp) Let	ı Pro) Hi	s Glr	ı Glı	n Gl	ı Gly	y Ala	
		•	. 320	0				325	5				33	0			
	ctt	cc.	t gga	a gga	a tgg	g to	g cca	a ca	g gca	a cat	t aa	t tca	a ac	a gt	g tg	g aag	1117
25	Tei	ı Pr	o G1	v Gl	v ጥጥ	s Se	r Pr	o Gli	n Ala	a His	s As	n Se	r Th	r Va	l Tr	p Lys	

258/346

335 340 345

ctt tag gggaacatgg agaaagaagg agaccacata ccccaaagtg acctaagaac 1173

Leu

350

actttaaaaa gcaacatgta aatgattgga aattaatata gtacagaata tatttttccc 1233.

ttgttgagat cttcttttgt aatgtttttc atgttactgc ctagggeggt gctgagcaca 1293
cagcaagttt aataaacttg actgaattca tttaat 1329

<210> 116

10 <211> 1387

<212> DNA

<213> Homo sapiens

<220>

15 <221> CDS

<222> (147)..(488)

<400> 116

cccaaggggc ttctggcagc aggaaggaag ctacacatca gagttgggga cttgtgccct 60

20 ggggctgcct ggcatctggg ggcctcctca gagccagggc tctttctggt tgaggctgag 120

actcactggt gtcatcaggc ccctcc atg aat gag aca aac aaa aca ctt gtt 173

Met Asn Glu Thr Asn Lys Thr Leu Val

ggg cct tcg gag ctc ccc aca gcg tct gct gtg gcc cct ggc cca ggc 221

25 Gly Pro Ser Glu Leu Pro Thr Ala Ser Ala Val Ala Pro Gly Pro Gly

	10					15					20					25	
	act g	ggg	gct	cgg	gca	tgg	cct	gtg	ctg	gta	gga	ttt	gtg	ctg	ggg	gct	269.
	Thr (Gly	Ala	Arg	Ala	Trp	Pro	.Val	Leu	Val	Gly	Phe	Val	Leu	Gly	Ala	
					30					35					40		ŕ
5	gtg (gtc	ctc	tcg	ctc	ctc	att	gca	ctt	gct	gcc	aaa	tgc	cac	ctc	tgc	317
	Val '	Val	Leu	Ser	Leu	Leu	Ile	Ala	Leu	Ala	Ala	Lys	Cys	His	Leu	Cys	
				45					50					55			
	cgc	cga	tac	cat	gcc	agc	tac	cgg	cac	cgc	cca	ctg	cct	gag	aca	gga	365
	Arg	Arg	Tyr	His	Ala	Ser	Tyr	Arg	His	Arg	Pro	Leu	Pro	Glu	Thr	Gly	
10			60					65					70	1			
	agg	gga	ggc	cgc	cca	cag	gtg	gct	gaa	gat	gag	gat	gat	gat	ggc	ttc	413
	Arg	Gly	Gly	Arg	Pro	Gln	. Val	. Ala	Glu	a Asp	Glu	ı Asp	Asp	Asp	Gly	, Phe	
		75					80)				85	5				
	atc	gag	gac	aat	tac	att	caç	g cct	gg	g act	ggc	c gaç	g cto	g ggg	g aca	a gag	461
15	Ile	Glu	. Asp	Asr	туі	: Ile	e Gli	n Pro	Gly	y Thi	r Gly	y Glı	ı Let	u Gl	y Thi	r Glu	
-	90					95	5				10	0				105	·
	ggt	ago	agg	g gad	c ca	c tto	c to	c ct	c tg	a gc	tccc	atct	tta	gacc	ctc	٠	508
	Gly	Sei	. Ar	g Ası	o Hi	s Ph	e Se	r Le	u								
		•			11	0											
20	ccc	acto	ccct	cca	tgcc	tga	cago	ttaa	gg a	cagt	ggtt	a tg	acat	.gggg	gcc	ttgaa	.cc 568
	tca	ıggg	acag	agg	tggc	tgg	ggct	taaa	gg t	tggc	cagg	g at	.ggag	rtaaa	ccc	cactt:	.cc 628
	ctg	gaca	ctag	сса	gcaa	agt	gaca	atga	.cc c	tctc	:ttgc	t ca	ataa	ctct	caa	ıctgtt	cc 688
	ctg	gctg	ttct	cag	gata	aag	ccaa	acaa	ag g	cttg	gagto	ıt gg	jacat	aagg	g cco	tctgt	ga 748
	tca	atgc	ctct	. cgg	cctc	ttg	gttt	cttt	tc t	tgcc	ette	c ct	actt	tact	gto	gaaat	ca 808
25	ato	gcta	ttct	ccc	tccc	cacc	actt	ccca	atg o	cagtt	tcc	cc ag	gcad	cctt	t gct	cacat	tg 868

260/346

10

5

<210> 117

<211> 1158

<212> DNA

<213> Homo sapiens

15

<220>

<221> CDS

<222> (130)..(699)

20 <400> 117

aagetgtgga tatggagetg getgetgeca agteeggge eegeeget geetagegeg 60 teetggggae tetgtgggga egegeeege geegeggete ggggaeeegt agageeegge 120 getgegege atg gee etg ete teg ege eee geg ete aee ete etg ete ete 171

Met Ala Leu Leu Ser Arg Pro Ala Leu Thr Leu Leu Leu Leu

25

1

5

10

	ctc	atg	gcc	gct	gtt	gtc	agg	tgc	cag	gag	cag	gcc	cag	acc.	acc	gac	219
	Leu	Met	Ala	Ala	Val	Val	Arg	Cys	Gln	Glu	Gln	Ala	Gln	Thr	Thr	Asp	
	15					20					25				•	30	
	tgg	aga	gcc	acc	ctg	aag	acc	atc	cgg	aac	ggc	gtt	cat	aag	ata	gac	267
5	Trp	Arg	Ala	Thr	Leu	Lys	Thr	Ile	Arg	Asn	Gly	Val	His	Lys	Ile	Asp	
					35					40					45		
	acg	tac	ctg	aac	gcc	gcc	ttg	gac	ctc	ctg	gga	ggc	gag	gac	ġgt	ctc	315
	Thr	Tyr	Leu	Asn	Ala	Ala	Leu	Asp	Leu	Leu	Gly	Gly	Glu	Asp	Gly	Leu	
				50			•		55					60			
10	tgc	cag	tat	aaa	tgc	agt	gac	gga	tct	aag	cct	ttc	cca	cgt	tat	ggt	363
	Cys	Gln	Tyr	Lys	Cys	Ser	Asp	Gly	Ser	Lys	Pro	Phe	Pro	Arg	Tyr	Gly	
			65					70					75				
	tat	aaa	ccc	tcc	cca	ccg	aat	gga	tgt	ggc	tct	cca	ctg	ttt	ggt	gtt	411
	Tyr		Pro	Ser	Pro	Pro	Asn	Gly	Cys	Gly	Ser	Pro	Leu	Phe	Gly	Val	
15		. 80					85					90					
				att									•				459
		Leu	Asn	Ile	Gly		Pro	Ser	Leu	Thr		Cys	Cys	Asn	Gln	His	
	95					100					105					110	
0.0				tat											-		507
20	Asp	Arg	Cys	Tyr		Thr	Cys	Gly	Lys		Lys	Asn	Asp	Cys		•	
					115					120					125	:	
				tat													555
	. Glu	Pne	GIN	Tyr	Cys	ren	ser	гÀг		Cys	Arg	Asp	Val		Lys	Thr	
25	cta	aa-	cta	130	63 ~	Co.t	~++	6 22	135	+	~ ^~	2.55		140	<i>~</i> ~	:	cor
													200				

262/346

Leu Gly Leu Thr Gln His Val Gln Ala Cys Glu Thr Thr Val Glu Leu 145 150 155 ttg ttt gac agt gtt ata cat tta ggt tgt aaa cca tat ctg gac agc Leu Phe Asp Ser Val Ile His Leu Gly Cys Lys Pro Tyr Leu Asp Ser 5 160 165 170 caa cga gcc gca tgc agg tgt cat tat gaa gaa aaa act gat ctt taa 699 Gln Arg Ala Ala Cys Arg Cys His Tyr Glu Glu Lys Thr Asp Leu 175 180 185 190 aggagatgcc gacagctagt gacagatgaa gatggaagaa cataaccttt gacaaataac 759 10 taatgttttt acaacataaa actgtcttat ttttgtgaaa ggattatttt gagaccttaa 819 aataatttat atcttgatgt taaaacctca aagcaaaaaa agtgagggag atagtgaggg 879 gagggcacgc ttgtcttctc aggtatcttc cccagcattg ctcccttact tagtatgcca 939 aatgtcttga ccaatatcaa aaacaagtgc ttgtttagcg gagaattttg aaaagaggaa 999 15 cataatgtct gttcaacatt atcttatttg gaaaatgggg aaattatcac ttacaaqtat 1119 ttgtttacta tgaaatttta aatacacatt tatgcctag 1158

<210> 118

<211> 1106

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

25 <222> (26)..(859)

263/346

<400> 118

	aacc	cgct	ca g	ggcgg	gcgac	g ga	gcc	atg	tcg	ccg	ctg	ctg	ggg	ctc	cgg	tcc	52
						•		Met	Ser	Pro	Leu	Leu	Gly	Leu	Arg	Ser	
5								1				5	`				
	gag	ctg	cag	gac	acc	tgc	acc	tcg	ctg	gga	ctg	atg	ctg	tcg	gtg	gtg	100
	Glu	Leu	Gln	Asp	Thr	Суѕ	Thr	Ser	Leu	Gly	Leu	Met	Leu	Ser	Val	Val	
	10					15					20					25	
	ctg	ctc	atg	ggg	ctg	gcc	cgc	gta	gtc	gcc	cgg	cag	cag	ctg	cac	agg	148
L O	Leu	Leu	Met	Gly	Leu	Ala	Arg	Val	Val	Ala	Arg	Gln	Gln	Leu	His	Arg	
					30					35					40		
	ccg	gtg	gcc	cac	gcc	ttc	gtc	ctg	gag	ttt	cta	gcc	acc	ttc	cag	ctc	196
	Pro	Val	Ala	His	Ala	Phe	Val	Leu	Glu	Phe	Leu	Ala	Thr	Phe	Gln	Leu	
				45	٠				50					55			
L5	tgc	tgc	tgc	acc	cac	gag	ctg	caa	ctg	ctg	agc	gaa	cag	cac	ccc	gcg	244
	Cys	Cys	Cys	Thr	His	Glu	Leu	Gln	Leu	Leu	Ser	Glu	Gln	His	Pro	Ala	
			60					65					70				
	cac	ccc	acc	tgg	acg	ctg	acg	ctc	gtc	tac	ttc	ttc	tcg	ctt	gtg	cat	292
	His	Pro	Thr	Trp	Thr	Leu	Thr	Leu	Val	Tyr	Phe	Phe	Ser	Leu	Val	His	
20		75					80					85					
	ggc	ctg	act	ctg	gtg	ggc	acg	tcc	agc	aac	ccg	tgc	ggc	gtg	atg	atg	340
	Gly	Leu	Thr	Leu	Val	Gly	Thr	Ser	Ser	Asn	Pro	Cys	Gly	Val	Met	Met	
	90					95					100					105	
	cag	atg	atg	ctg	ggg	ggc	atg	tcc	ccc	gag	acg	ggt	gcg	gtg	agg	cta	388
25	Gln	Met	Met	Leu	Gly	Gly	Met	Ser	Pro	Glu	Thr	Gly	Ala	Val	Arg	Leu	

					110					115					120		
	ttg	gct	cag	ctg	gtt	agt	gcc	ctg	tgc	agc	agg	tac	tgc	aca	agc	gcc	436
	Leu	Ala	Gln	Leu	Val	Ser	Ala	Leu	Cys	Ser	Arg	Tyr	Cys	Thr	Ser	Ala	
				125					130					135			
5	ttg	tgg	agc	ttg	ggt	ctg	acc	cag	tat	cac	gtc	agc	gag	agg	agc	ttc	484
	Leu	Trp	Ser	Leu	Gly	Leu	Thr	Gln	Tyr	His	Val	Ser	Glu	Arg	Ser	Phe	
			140					145					150	٠			
	gct	tgc	aag	aat	ccc	atc	cga	gtc	gac	ttg	ctc	aaa,	gcg	gtc	atc	aca	532
	Ala	Cys	Lys	Asņ	Pro	Ile	Arg	Val	Asp	Leu	Leu	Lys	Ala	Val	Ile	Thr	
LO		155					160					165					
-	gag	gcc	gtc	tgc	tcc	ttt	ctc	ttc	cac	agc	gct	ctg	ctg	cac	ttc	cag	580
	Glu	Ala	Val	Cys	Ser	Phe	Leu	Phe	His	Ser	Ala	Leu	Leu	His	Phe	Gln	-
	170		ė			175					180					185	
	gaa	gtc	cga	acc	aag	ctt	cgt	atc	cac	ctg	ctg	gct	gca	ctc	atc	acc	628
L5	Glu	Val	Arg	Thr	Lys	Leu	Arg	Ile	His	Leu	Leu	Ala	Ala	Leu	Ile	Thr	
					190					195					200		
	ttt	ttg	gtc	tat	gca	gga	gga	agt	cta	aca	gga	gct	gta	ttt	aat	cca	676
	Phe	Leu	۷al	Tyr	Ala	Gly	Gly	Ser	Leu	Thr	Gly	Ala	Val	Phe	Asn	Pro	
				205					210					215			
20	gct	ttg	gca	ctt	tcg	cta	cat	ttc	atg	tgt	ttt	gat	gaa	gca	ttc	cct	724
	Ala	Leu	Ala	Leu	Ser	Leu	His	Phe	Met	Cys	Phe	Asp	Glu	Ala	Phe	Pro	
			220					225					230				
	cag	ttt	ttt	ata	gta	tac	tgg	ctg	gct	cct	tct	tta	ggt	ata	ttg	ttg	772
	Gln	Phe	Phe	Ile	Val	Tyr	Trp	Leu	Ala	Pro	Ser	Leu	Gly	Ile	Leu	Leu	
25		235					240					245					

265/346

atg att ttg atg ttc agc ttt ttc cat ggc tgc ata aca acc ata caa 820

Met Ile Leu Met Phe Ser Phe Phe His Gly Cys Ile Thr Thr Ile Gln

250 255 260 265

tta ata aaa agg aat aac tgt tcc aaa gac tca gac taa catacaggac 869
Leu Ile Lys Arg Asn Asn Cys Ser Lys Asp Ser Asp

270 275

agtocagotg gatgtgataa agattttato acctoatatg gaaaacacog gotgoactgg 929
attoatoagt gttaacttoo tttgaggaag otgoottata gttttoatoa otgggacttt 989
aaaaaaaaat tactgtgaaa atgaggtatt otgtacttot oagttaagao ttgttotttg 1049
agtgatgtat taaatgotgo tagaaaagoo toattacatt aaatataaat oaatott 1106

<210> 119

<211> 1907

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (159)..(983).

20

5

10

<400> 119

gttatcctac coetcocceg teccagetet acggeggeeg egegetecag geoggteget 60 ccacececeg geteceggga etgtggacte cacgacectg tecteggeec tgtecgegec 120 gaageageec gggactgege agegeeeege gtgeegae atg gga aag tet ett tet 176

25

Met Gly Lys Ser Leu Ser

												1				5	
	cat	ttg	cct	ttg	cat	tca	agc	aaa	gaa	gat	gct	tat	gat	gga	gtc	aca	224
	His	Leu	Pro	Leu	His	Ser	Ser	Lys	Glu	Asp	Ala	Tyr	Asp	Gly	Val	Thr	
				10					15					20			
5	tct	gaa	aac	atg	agg	aat	gga	ctg	gtt	aat	agt	gaa	gtc	cat	aat	gaa	272
	Ser	Glu	Asn	Met	Arg	Asn	Gly	Leu	Val	Asn	Ser	Glu	Val	His	Asn	Glu	
			25					30					35				
	gat	gga	aga	aat	gga	gat	gtc	tct	cag	ttt	cca	tat	gtg	gaa	ttt	aca	320
	Asp	Gly	Arg	Asn	Gly	Asp	Val	Ser	Gln	Phe	Pro	Tyr	Val	Glu	Phe	Thr	
10		40					45					50					
	gga	aga	gat	agt	gtc	acc	tgc	cct	act	tgt	cag	gga	aca	gga	aga	att	368
	Gly	Arg	Asp	Ser	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	Thr	Gly	Arg	Ile	
٠	55					60					65					70	
	cct	agg	ggg	caa	gaa	aac	caa	ctg	gtg	gca	ttg	att	cca	tat	agt	gat	416
15	Pro	Arg	Gly	Gln	Glu	Asn	Gln	Leu	Val	Ala	Leu	Ile	Pro	Tyr	Ser	Asp	
•					75					80					85		
	cag	aga	tta	agg	cca	aga	aga	aca	aag	ctg	tat	gtg	atg	gct	tct	gtg	464
	Gln	Arg	Leu	Arg	Pro	Arg	Arg	Thr	Lys	Leu	Tyr	Val	Met	Ala	Ser	Val	
				90					95					100			
20	ttt	gtc	tgt	cta	ctc	ctt	tct	gga	ttg	gct	gtg	ttt	ttc	ctt	ttc	cct	512
	Phe	Val	Cys	Leu	Leu	Leu	Ser	Gly	Leu	Ala	Val	Phe	Phe	Leu	Phe	Pro	
			105					110					115				
	cgc	tct	atc	gac	gtg	aaa	tac	att	ggt	gta	aaa	tca	gcc	tat	gtc	agt	560
	Arg	Ser	Ile	Asp	Val	Lys	Tyr	Ile	Gly	Val	Lys	Ser	Ala	Tyr	۷al	Ser	
25		120					125					120					

	tat	gat	gtt	cag	aag	cgt	aca	att	tat	tta	aat	atc	aca	aac	aca	cta	608
	Tyr	Asp	Val	Gln	Lys	Arg	Thr	Ile	Tyr	Leu	Asn	Ile	Thr	Asn	Thr	Leu	
	135					140					145					150	
	aat	ata	aca	aac	aat	aac	tat	tac	tct	gtc	gaa	gtt	gaa	aac	atc	act	656
5	Asn	Ile	Thr	Asn	Asn	Asn	Tyr	Tyr	Ser	Val	Glu	Val	Glu	Asn	Ile	Thr	
					155					160					165		
	gcc	caa	gtt	caa	ttt	tca	aaa	aca	gtt	att	gga	aag	gca	cgc	tta	aac	704
	Ala	Gln	Val	Gln	Phe	Ser	Lys	Thr	Val	Ile	Gly	Lys	Ala	Arg	Leu	Asn	
				170					175					180			
10	aac	ata	acc	att	att	ggt	cca	ctt	gat	atg	aaa	caa	att	gat	tac	aca	752
	Asn	Ile	Thr	Ile	Ile	Gly	Pro	Leu	Asp	Met	Lys	Gln	Ile	Asp	Tyr	Thr	
			185					190					195				
	gta	cct	acc	gtt	ata	gca	gag	gaa	atg	agt	tat	atg	tat	gat	ttc	tgt	800
	Val	Pro	Thr	Val	Ile	Ala	Glu	Glu	Met	Ser	Tyr	Met	Tyr	Asp	Phe	Cys	
15		200					205					210					
	act	ctg	ata	tcc	ato	aaa	gtg	cat	aac	ata	gta	ctc	atg	atg	caa	gtt	848
	Thr	Leu	Ile	Ser	Ile	Lys	Val	His	Asn	Ile	. Val	Leu	Met	Met	: Gln	Val	
	215	ì				220					225	i				230	
	act	gtg	aca	aca	. aca	tac	ttt	ggc	cac	tct:	gaa	cag	ata	tco	c cag	gag	896
20	Thr	: Val	Thr	Thr	Thr	Tyr	Phe	Gly	His	Ser	Glu	Gln	Ile	e Sei	Gln	Glu	
					235	5				240)				245	•	
	agg	g tat	caç	, tat	gto	gac	tgt:	gga	aga	aac	aca	act	: tat	cag	y ttg	ggg	944
	Arg	Ј Туг	Glr	туг	: Val	L Asp	Cys	Gl)	Arg	g Asr	1 Thi	Thr	Туг	Gl:	n Leu	Gly	
				250)				255	5				260)		
25	cag	g tct	gaa	a tat	: tţa	a 'aat	gta	a ctt	cag	g cca	a caa	cag	, taa	a aaa	actgo	gaag	993

268/346

Gln Ser Glu Tyr Leu Asn Val Leu Gln Pro Gln Gln

265 270 275

agatggattt aaagaagaaa tatctattga tatttcctat actctcaatg aagaggtatt 1053 tcctaatagg agaccttaaa ttgaacaaac ctaaagttta cacttctaag agtacagtta 1113 aaagtatgtg gacctgcagt tettgtaact etceaetetg tgttaatgat atatttgtae 1173 taggatettt taettgaate taaatttaet ggttgattte etteteeage etateeeeta 1233 cagggaaaag ctgatacttc ccctatagta caataaataa ttatttaaaa gtcatagctc 1293 cagtcactac tgaaaacata attttggtga taaaataatt tgagaaactt aatttctgaa 1353 tgtttttata gaaaattact gaaagtctat tactcatgga agacttttaa agaataacct 1413 tttttcctgt tttataaatt cccattgtta tatggtagta tttcagctac acaatatttt 1473 agcttttagc tagacattta tagcttttca tttgttgaaa tggtaatcat ctgcatgttt 1533 ttqtcactta tttcaqqtta qtqattqcct aacacttata agccaaaata atctttqcaa 1593 aattccatac ctaaaatttt qaaaqccct aatgttttca cacatctttc tgtattagtt 1653 atagttttgt gaaatctttg tgtgatcttc aaacattatc atttaatgta caatactgta 1713 aataaactgt gcatggcttt tatacagctt tagtaaatgt caaataaagt ggtacagact 1773 cattacaaca agtttctcat aaaaatacaa taaataggaa aatgaaattc agaaacccat 1833 agactgggaa taggttccag ttacagcttg gatctggcat aaaataaatt tgaaataaaa 1893 1907 tattttgatg ctcc

20 <210> 120

5

10

15

<211> 1816

<212> DNA

<213> Homo sapiens

25 <220>

269/346

	<221> CDS	
	<222> (134)(1306)	
	<400> 120	
5	cttgggctgg agccgccctg ggtgtcagcg gctcggctcc cgcgcacgct ccggccgtcg 60	ı
	cgcagcctcg gcacctgcag gtccgtgcgt cccgcggctg gcgcccctga ctccgtcccg 12	:0
	gccagggagg gcc atg att tcc ctc ccg ggg ccc ctg gtg acc aac ttg 16	9
`	Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu	
	1 5 10	
10	ctg cgg ttt ttg ttc ctg ggg ctg agt gcc ctc gcg ccc ccc tcg cgg 21	.7
	Leu Arg Phe Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg	
	15 20 25	
	gcc cag ctg caa ctg cac ttg ccc gcc aac cgg ttg cag gcg gtg gag 26	55
	Ala Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu	
15	30 35 40	
	gga ggg gaa gtg gtg ctt cca gcg tgg tac acc ttg cac ggg gag gtg 31	L3 .
	Gly Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val	
	45 50 55 60	
	tot toa too cag coa tgg gag gtg coc ttt gtg atg tgg tto tto aaa 30	61
20	Ser Ser Ser Gla Pro Tra Glu Val Pro Phe Val Met Tra Phe Phe Ive	

cag aaa gaa aag gag gat cag gtg ttg tcc tac atc aat ggg gtc aca 409
Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr
80 85 90

25 aca age aaa eet gga gta tee ttg gte tae tee atg eee tee egg aac 457

	Thr	Ser	Lys	Pro	Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	
			95					100					105			•	
•	ctg	tcc	ctg	cgg	ctg	gag	ggt	ctc	cag	gag	aaa	gac	tct	ggc	ccc	tac	505
	Leu	Ser	Leu	Arg	Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	
5		110				`	115					120					
	agc	tgc	tcc	gtg	aat	gtg	caa	gac	aaa	caa	ggc	aaa	tct	agg	ggc	cac	553
	Ser	Cys	Ser	Val	Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	
	125					130					135					140	
	agc	atc	aaa	acc	tta	gaa	ctc	aat	gta	ctg	gtt	cct	cca	gct	cct	сса	601
10	Ser	Ile	Lys	Thr	Leu	Glu	Leu	Asn	Val	Leu	Val	Pro	Pro	Ala	Pro	Pro	
					145					150					155		
	tcc	tgc	cgt	ctc	cag	ggt	gtg	ccc	cat	gtg	ggg	gca	aac	gtg	acc	ctg	649
	Ser	. Cys	Arg	Leu	Gln	Gly	Val	Pro	His	۷al	Gly	Ala	Asn	Val	Thr	Leu	
		•		160					165			,		170			
15	agc	tgc	cag	tct	cca	agg	agt	aag	ccc	gct	gtc	caa	tac	cag	tgg	gat	697
	Ser	Cys	Gln	Ser	Pro	Arg	Ser	Lys	Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	
			175					180					185				
	cgg	cag	ctt	cca	tcc	ttc	cag	act	ttc	ttt	. gca	сса	gca	tta	gat	gtc	745
	Arg	Gln	Leu	Pro	Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	
20		190)				195					200	l				
	ato	: cgt	ggg	tct	tta	ago	cto	acc	aac	ctt	tcg	tct	tec	ato	gct	gga	793
	Ile	Arg	g Gly	Ser	Leu	Ser	Leu	Thr	Asn	Leu	ser Ser	Ser	Ser	: Met	: Ala	Gly	
	205	,	•			210	•				215	5				220	
•	gto	: tat	gto	tgc	aac	gcc	: cac	aat	gag	gto	g ggc	act	gco	caa	a tgt	aat	84:
25	Val	. Tyr	: Val	. Cys	Lys	: Ala	His	Asr	Glu	ı Val	Gl	7 Thr	Ala	a Glr	ı Cys	Asn	

					225					230					235 .		
	gtg	acg	ctg	gaa	gtg	agc	aca	ggg	cct	gga	gct	gca	gtg	gtt	gct	gga	889
	Val	Thr	Leu	Glu	Val	Ser	Thr	Gly	Pro	Gly	Ala	Ala	Val	Val	Ala	Gly	
				240					245					250			
5	gct	gtt	gtg	ggt	acc	ctg	gtt	gga	ctg	ggg	ttg	ctg	gct	ggg	ctg	gtc	937
	Ala	Val	Val	Gly	Thr	Leu	Val	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	
		•	255					260		•			265				
	ctc	ttg	tac	cac	tgc	cgg	ggc	aag	gcc	ctg	gag	gag	cca	gcc	aat	gat	985
	Leu	Leu	Tyr	His	Cys	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	Ala	Asn	Asp	
10		270					275					280					
	atc	aag	gag	gat	gcc	att	gct	ccc	cgg	acc	ctg	ccc	tgg	ccc	aag	agc	1033
	Ile	Lys	Glu	Asp	Ala	Ile	Ala	Pro	Arg	Thr	Leu	Pro	Trp	Pro	Lys	Ser	
	285					290					295					300	
	tca	gac	aca	atc	tcc	aag	aat	ggg	acc	ctt	tcc	tct	gtc	acc	tcc	gca	1081
15	Ser	Asp	Thr	Ile	Ser	Lys	Asn	Gly	Thr	Leu	Ser	Ser	Val	Thr	Ser	Ala	
					305					310					315		
	cga	gcc	ctc	cgg	cca	ccc	cat	ggc	cct	ccc	agg	cct	ggt	gca	ttg	acc	1129
	Arg	Ala	Leu	Arg	Pro	Pro	His	Gly	Pro	Pro	Arg	Pro	Gly	Ala	Leu	Thr	
•				320		•			325					330			
20	ccc	acg	ccc	agt	ctc	tcc	agc	cag	gcc	ctg	ccc	tca	cca	aga	ctg	ccc	1177
	Pro	Thr	Pro	Ser	Leu	Ser	Ser	Gln	Ala	Leu	Pro	Ser	Pro	Arg	Leu	Pro	
			335					340					345				
	acg	aca	gat	ggg	gcc	cac	cct	caa	cca	ata	tcc	ccc	atc	cċt	ggt	ggg	1225
	Thr	Thr	Asp	Gly	Ala	His	Pro	Gln	Pro	Ile	Ser	Pro	Ile	Pro	Gly	Gly	
25		350					355					360					

272/346

gtt tct tcc tct ggc ttg agc cgc atg ggt gct gtg cct gtg atg gtg 1273

Val Ser Ser Ser Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val

365 370 375 380

cct gcc cag agt caa gct ggc tct ctg gta tga tgaccccacc actcattggc 1326 Pro Ala Gln Ser Gln Ala Gly Ser Leu Val

385 390

taaaggattt ggggtetete etteetatag gggteacete tageacagag geetgagtea 1386
tgggaaagag teacacteet gaecettagt actetgeece eacetetett taetgtggga 1446
aaaceatete agtaagacet aagtgteeag gagacagaag gagaagagga agtggatetg 1506
gaattgggag gageeteeae eeaceeetga eteeteetta tgaageeage tgetgaaatt 1566
agetaeteae eaagagtgag gggeagagae tteeagteae tgagteteee aggeeeeett 1626
gatetgtaee eeaceeetat etaacaceae eettggetee eacteeaget eeetgtattg 1686
atataaacetg teaggetgge ttggttaggt tttaetgggg eagaggatag ggaatetett 1746
attaaaacta acatgaaata tgtgttgtt teattgeaa attaaaataa agatacataa 1806
tgtttgtatg

<210> 121

5

10

15.

<211> 395

<212> PRT

20 <213> Homo sapiens

<400> 121

Met Ser Gly Met Glu Glu Tyr Thr Thr Val Ser Gly Glu Val Leu Gln

1 . 5 10 15

25 Arg Trp Lys Ile Pro Ser Phe Lys Glu Asn Gln Thr Leu Ser Met Gly

				20					25					30		
	Ala	Ala	Thr	Val	Gln	Ser	Arg	Gĺy	Gln	Tyr	Ser	Cys	Ser	Gly	Gln	Val
			35					40					45			
	Met	Tyr	Ile	Pro	Gln	Thr	Phe	Thr	Gln	Thr	Ser	Glu	Thr	Ala	Met	Val
5		50					55					60	.•			
	Gln	Val	Gln	Glu	Leu	Phe	Pro	Pro	Pro	Val	Leu	Ser	Ala	Ile	Pro	Ser
	65					70					75					80
	Pro	Glu	Pro	Arg	Glu	Gly	Ser	Leu	Val	Thr	Leu	Arg	Cys	Gln	Thr	Lys
					85					90					95	
10	Leu	His	Pro	Leu	Arg	Ser	Ala	Leu	Arg	Leu	Leu	Phe	Ser	Phe	His	Lys
				100					105					110		
	Asp	Gly	His	Thr	Leu	Gln	Asp	Arg	Gly	Pro	His	Pro	Glu	Leu	Cys	Ιlε
			115					120					125			
	Pro	Gly	Ala	Lys	Glu	Gly	Asp	Ser	Gly	Leu	Tyr	Trp	Cys	Glu	Val	Ala
15		130					135					140				
	Pro	Glu	Gly	Gly	Gln	Val	Gln	Lys	Gln	Ser	Pro	Gln	Leu	Glu	Val	Arg
	145					150					155					160
	Val	Gln	Ala	Pro	Val	Ser	Arg	Pro	Val	Leu	Thr	Leu	His	His	Gly	Pro
					165					170					175	
20	Ala	Asp	Pro	Ala	Val	Gly	Asp	Met	Val	Gln	Leu	Leu	Cys	Glu	Ala	Glı
				180					185					190		
	Arg	Gly	Ser	Pro	Pro	Ile	Leu	Tyr	Ser	Phe	Tyr	Leu	Asp	Glu	Lys	Il
			195					200					205			
	Val	Gly	Asn	His	Ser	Ala	Pro	Cys	Gly	Gly	Thr	Thr	Ser	Leu	Leu	Pho
25		210					215					220				

274/346

	Pro	Val	Lys	Ser	Glu	Gln	Asp	Ala	Gly	Asn	Tyr	Ser	Cys	Glu	Ala	Glu
	225					230		,			235					240
	Asn	Ser	Val	Ser	Arg	Glu	Arg	Ser	Glu	Pro	Lys	Lys	Leu	Ser	Leu	Lys
					245					250					255	
5	Gly	Ser	Gln	Val	Leu.	Phe	Thr	Pro	Ala	Ser	Asn	Trp	Leu	Val	Pro	Trp
				260					265					270		
	Leu	Pro	Ala	Ser	Leu	Leu	Gly	Leu	Met	Val	Ile	Ala	Ala	Ala	Leu	Leu
			275					280					285			
	Val	Tyr	Val	Arg	Ser	Trp	Arg	Lys	Ala	Gly	Pro	Leu	Pro	Ser	Gln	Ile
LO		290					295					300				
	Pro	Pro	Thr	Ala	Pro	Gly	Gly	Glu	Gln	Суз	Pro	Leu	Tyr	Ala	Asn	Val
	305					310			•		315					320
	His	His	Gln	Lys	Gly	Lys	Asp	Glu	Gly	Val	Val	Tyr	Ser	Val	Val	His
		•			325					330					335	
15	Arg	Thr	Ser	Ļys	Arg	Ser	Glu	Ala	Arg	Ser	Ala	Glu	Phe	Thr	Val	Gly
				. 340			,		345			•		350	•	
	Arg	Lys	Asp	Ser	Ser	Ile	Ile	Cys	Ala	Glu	Val	Arg	Cys	Leu	Gln	Pro
			355					360					365		•	
	Ser	Glu	Val	Ser	Ser	Thr	Glu	Val	Asn	Met	Arg	Ser	Arg	Thr	Leu	Gln
20		370					375					380				
	Glu	Pro	Leu	Ser	Asp	Суз	Glu	Glu	Val	Leu	Суѕ					
	385			•		390					395		•			

<210> 122

25 <211> 550

275/346

<2	12>	PRT

<213> Homo sapiens

	<400	> 12	22													
5	Met	Ala	Phe	Ser	Lys	Leu	Leu	Glu	Gln	Ala	Gly	Gly	Val	Gly	Leu	Phe
	1				5					10					15	
	Gln	Thr	Leu	Gln	Val	Leu	Thr	Phe	Ile	Leu	Pro	Cys	Leu	Met	Ile	Pro
				20					25					30		
	Ser	Gln	Met	Leu	Leu	Glu	Asn	Phe	Ser	Ala	Ala	Ile	Pro	Gly	His	Arg
10	•		35					40					45			
	Cys	Trp	Thr	His	Met	Leu	Asp	Asn	Gly	Ser	Ala	Val	Ser	Thr	Asn	Met
		50					55					60				
	Thr	Pro	Lys	Ala	Leu	Leu	Thr	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Asn	Gln
	65				•	70					75					80
15	Gly	Pro	His	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu
					85					90		,			95	
	Asp	Pro	Asn	Ala	Thr	Ala	Thr	Ser	Trp	Ser	Glu	Ala	Asp	Thr	Glu	Pro
				100					105					110		
	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Val	Phe	Thr	Ser	Thr	Ile
20			115					120					125			
	Val	Ala	Lys	Trp	Asp	Leu	Val	Cys	Ser	Ser	Gln	Gly	Leu	Lys	Pro	Leu
		130					135					140				
	Ser	Gln	Ser	Ile	Phe	Met	Ser	Gly	Ile	Leu	Val	Gly	Ser	Phe	Ile	Trp
	145					150					155					160
25	Gly	Leu	Leu	Ser	Tyr	Arg	Phe	Gly	Arg	Lys	Pro	Met	Leu	Ser	Trp	Cys

					165					170					175	
	Cys	Leu	Gln	Leu	Ala	Val	Ala	Gly	Thr	Ser	Thr	Ile	Phe	Ala	Pro	Thr
				180					185					190		
	Phe	Val	Ile	Tyr	Cys	Gly	Leu	Arg	Phe	Val	Ala	Ala	Phe	Gly	Met	Ala
5			195					200			•		205		•	
	Gly	Ile	Phe	Leu	Ser	Ser	Leu	Thr	Leu	Met	Val	Glu	Trp	Thr	Thr	Thr
		210				•	215					220				
	Ser	Arg	Arg	Ala	Val	Thr	Met	Thr	Val	Val	Gly	Cys	Ala	Phe	Ser	Ala
	225					230					235					240
10	Gly	Gln	Ala	Ala	Leu	Gly	Gly	Leu	Ala	Phe	Ala	Leu	Arg	Asp	Trp	Arg
					245					250					255	
	Thr	Leu	Gln	Leu	Ala	Ala	Ser	Val	Pro	Phe	Phe	Ala	Ile	Ser	Leu	Ile
				260					265					270		
	Ser	Trp	Trp	Leu	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Ile	Ile	Lys	Gly	Lys
15	,	,	275					280					285			
	Pro	Asp	Gln	Ala	Leu	Gln	Glu	Leu	Arg	Lys	Val	Ala	Arg	Ile	Asn	Gly
		290					295					300		,		
	His	Lys	Glu	Ala	Lys	Asn	Leu	Thr	Ile	Glu	Val	Leu	Met	Ser	Ser	Val
	305					310					315					320
20	Lys	Glu	Glu	Val	Ala	Ser	Ala	Lys	Glu	Pro	Arg	Ser	Val	Leu	Asp	Leu
					325					330					335	
	Phe	Cys	Val	Pro	Val	Leu	Arg	Trp	Arg	Ser	Cys	Ala	Met	Leu	Val	Va]
				340					345					350		
	Asn	Phe	Ser	Leu	Leu	Ile	Ser	Tyr	Tyr	Gly	Leu	Val	Phe	Asp	Leu	Glr
25			355					360					365			

	Ser	Leu	Gly	Arg	Asp	Ile	Phe	Leu	Leu	Ģln	Ala	Leu	Phe	Gly	Ala	Val
		370					375					380				
	Asp	Phe	Leu	Gly	Arg	Ala	Thr	Thr	Ala	Leu	Leu	Leu	Ser	Phe	Leù	Gly
	385					390					395					400
5	Arg	Arg	Thr	Ile	Gln	Ala	Gly	Ser	Gln	Ala	Met	Ala	Gly	Leu	Ala	Ile
					405					410					415	
	Leu	Ala	Asn	Met	Leu	Val	Pro	Gln	Asp	Leu	Gln	Thr	Leu	Arg	Val	Val
				420					425		~			430		
	Phe	Ala	Val	Leu	Gly	Lys	Gly	Cys	Phe	Gly	Ile	Ser	Leu	Thr	Cys	Leu
LO			435					440					445			
	Thr	Ile	Tyr	Lys	Ala	Glu	Leu	Phe	Pro	Thr	Pro	Val	Arg	Met	Thr	Ala
		450			,		455					460				
	Asp	Gly	Ile	Leu	His	Thr	Val	Gly	Arg	Leu	Gly	Ala	Met	Met	Gly	Pro
	465					470					475					480
15	Leu	Ile	Leu	Met	Ser	Arg	Gln	Ala	Leu	Pro	Leu	Leu	Pro	Pro	Leu	Leu
					485					490	•				495	
	Tyr	Gly	Val	Ile	Ser	Ile	Ala	Ser	Ser	Leu	Val	Val	Leu	Phe	Phe	Leu
				500		•			505					510		
	Pro	Glu	Thr	Gln	Gly	Leu	Pro	Leu	Pro	Asp	Thr	Ile	Gln	Asp	Leu	Glu
20			515					520					525			
	Ser	Gln	Lys	Ser	Thr	Ala	Ala	Gln	Gly	Asn	Arg	Gln	Glu	Ala	Val	Thr
		530					535					540				
	Val	Glu	Ser	Thr	Ser	Leu										
	545					550										

	<210)> 12	23													
	<211	i> 21	L8													
	<212	?> PF	r.													
	<213	3> Ho	omo s	apie	ens											
5																
	<400)> 12	23													
	Met	Lys	His	Thr	Leu	Ala	Leu	Leu	Ala	Pro	Leu	Leu	Gly	Leu	Gly	Leu
	1				5					10					15	
	Gly	Leu	Ala	Leu	Ser	Gln	Leu	Ala	Ala	Gly	Ala	Thr	Asp	Cys	Lys	Phe
LO				20					25					30		
	Leu	Gly	Pro	Ala	Glu	His	Leu	Thr	Phe	Thr	Pro	Ala	Ala	Arg	Ala	Arg
			35					40					45		•	
	Trp	Leu	Ala	Pro	Arg	Val	Arg	Ala	Pro	Gly	Leu	Leu	Asp	Ser	Leu	Tyr
		50					55					60				
15	Gly	Thr	Val	Arg	Arg	Phe	Leu	Ser	Val	Val	Gln	Leu	Asn	Pro	Phe	Pro
	65					70					75					80
	Ser	Glu	Leu	Val	Lys	Ala	Leu	Leu	Asn	Glu	Leu	Ala	Ser	Val	Lys	Val
					. 85					90					95	
	Asn	Glu	Val	Val	Arg	Tyr	Glu	Ala	Gly	Tyr	Val	۷al	Cys	Ala	Val	Ile
20				100					105					110		
	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Val	Pro	Thr	Ala	Gly	Leu	Cys	Phe	Cys
			115					120					125			
	Суз	Cys	Arg	Cys	His	Arg	Arg	Cys	Gly	Gly	Arg	Val	Lys	Thr	Glu	His
		130					135	•				140				
25	Lys	Ala	Leu	Ala	Cys	Glu	Arg	Ala	Ala	Leu	Met	Val	Phe	Leu	Leu	Leu

	145					150					155					100
	Thr	Thr	Leu	Leu	Leu	Leu	Ile	Gly	Val	Val	Cys	Ala	Phe	Val	Thr	Asn
					165					170					175	
	Gln	Arg	Thr	His	Glu	Gln	Met	Gly	Pro	Ser	Ile	Glu	Ala	Met	Pro	Glu
5				180					185					190		•
	Thr	Leu	Leu	Ser	Leu	Trp	Gly	Leu	Val	Ser	Asp	Val	Pro	Gln	Val	Ser
			195					200					205			
	Thr	Val	Thr	Pro	His	Pro	His	Val	Pro	Leu						
		210					215									
10											·					
	<21	0> 1	24							1						
	<21	1> 5	96													
	<21	2> P	RT													
	<21	3> H	OMO	sapi	ens											
15		:														
	<40	0> 1	24				•									
	Met	Ala	Ala	Asn	Ser	Thr	Ser	Asp	Leu	His	Thr	Pro	Gly	Thr	Gln	Leu
	1	٠.			5					10	1		•	•	. 15	
	Ser	· Val	Ala	Asp	Ile	Ile	val	Ile	Thr	· Val	. Tyr	Phe	Ala			. Val
20				20)				25	i				30	1	
	Ala	val	. Gly	' Ile	Trp	Ser	Ser	Cys	Arg	Ala	Ser	Arg	Asn	Thr	· Val	Ası
			35	•				40					45	•		
	Gl	y Tyr	Phe	e Leu	ı Ala	Gly			Met	: Thr	Trp			Ile	e Gly	Ala
		50					55					60				
25	Sei	Leu	ı Phe	Ala	Ser	: Sei	c Glu	ı Gly	' Ser	: Gly	/ Let	ı Phe	: Ile	: Gly	Let	ı Ala

	65					70					75					80
	Gly	Ser	Gly	Ala	Ala	Gly	Gly	Leu	Ala	Val	Ala	Gly	Phe	Glu	Trp	Asn
					85					90					95	
	Ala	Thr	Tyr	Val	Leu	Leu	Ala	Leu	Ala	Trp	Val	Phe	Val	Pro	Ile	Tyr
5				100					105					110		
	Ile	Ser	Ser	Glu	Ile	Val	Thr	Leu	Pro	Glu	Tyr	Ile	Gln	Lys	Arg	Tyr
•			115					120					125			
	Gly	Gly	Gln	Arg	Ile	Arg	Met	Tyr	Leu	Ser	Val	Leu	Ser	Leu	Leu	Leu
		130					135					140			•	
10 ·	Ser	Val	Phe	Thr	Lys	Ile	Ser	Leu	Asp	Leu	Tyr	Ala	Gly	Ala	Leu	Phe
	145					150					155					160
	Val	His	Ile	Суз	Leu	Gly	Trp	Asn	Phe	Tyr	Leu	Ser	Thr	Ile	Leu	Thr
					165					170					175	
	Leu	Gly	Ile	Thr	Ala	Leu	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Ala	Ala	Val
15				180					1,85					190		
	Ile	Tyr	Thr	Asp	Ala	Leu	Gln	Thr	Leu	Ile	Met	Val	Val	Gly	Ala	Val
			195					200					205			
	Ile	Leu	Thr	Ile	Lys	Ala	Phe	Asp	Gln	Ile	Gly	Gly	Tyr	Gly	Gln	Leu
		210					215					220				
20	Glu	Ala	Ala	Tyr	Ala	Gln	Ala	Ile	Pro	Ser	Arg	Thr	Ile	Ala	Asn	Thr
	225					230					235					240
	Thr	Cys	His	Leu	Pro	Arg	Thr	Asp	Ala	Met	His	Met	Phe	Arg.	Asp	Pro
					245					250					255	
	His	Thr	Gly	Asp	Leu	Pro	Trp	Thr	Gly	Met	Thr	Phe	Gly	Leu	Thr	Ile
25				260					265					270		

	Met	Ala	THE	тър	TYL	тър	Cys	THE	ASP	GIN	vaı	тте	vaı	GIN	Arg	ser
			275					280					285			
	Leu	Ser	Ala	Arg	Asp	Leu	Asn	His	Ala	Lys	Ala	Gly	Ser	Ile	Leu	Ala
		290					295					300				
5	Ser	Tyr	Leu	Lys	Met	Leu	Pro	Met	Gly	Leu	Ile	Ile	Met	Pro	Gly	Met
	305					310					315					320
	Ile	Ser	Arg	Ala	Leu	Phe	Pro	Asp	Asp	Val	Gly	Cys	Val	Val	Pro	Ser
					325					330					335	
	Glu	Cys	Leu	Arg	Ala	Cys	Gly	Ala	Glu	Val	Gly	Cys	Ser	Asn	Ile	Ala
10				340					345	•				350		
	Tyr	Pro	Lys	Leu	Val	Met	Glu	Leu	Met	Pro	Ile	Gly	Leu	Arg	Gly	Let
			355		•			360					365			
	Met	Ile	Ala	Val	Met	Leu	Ala	Ala	Leu	Met	Ser	Ser	Leu	Thr	Ser	Ιlε
		370					375					380				
15	Phe	Asn	Ser	Ser	Ser	Thr	Leu	Phe	Thr	Met	Asp	Ile	Trp	Arg	Arg	Leu
	385					390					395					400
	Arg	Pro	Arg	Ser	Gly	Glu	Arg	Glu	Leu	Leu	Leu	Val	Gly	Arg	Leu	Va]
					405					410					415	_
	Ile	Val	Ala	Leu	Ile	Gly	Val	Ser	Val	Ala	Trp	Ile	Pro	Val	Leu	Glr
20				420					425					430		
	Asp	Ser	Asn	Ser	Gly	Gln	Leu	Phe	Ile	Tyr	Met	Gln	Ser	Val	Thr	Sei
			435					440					445			
	Ser	Leu	Ala	Pro	Pro	Val	Thr	Ala	Val	Phe	Val	Leu	Gly	Val	Phe	Tr
		450					455					460				
25	Arg	Arg	Ala	Asn	Glu	Gln	Gly	Ala	Phe	Trp	Gly	Leu	Ile	Ala	Gly	Let

282/346

Val Val Gly Ala Thr Arg Leu Val Leu Glu Phe Leu Asn Pro Ala Pro Pro Cys Gly Glu Pro Asp Thr Arg Pro Ala Val Leu Gly Ser Ile His Tyr Leu His Phe Ala Val Ala Leu Phe Ala Leu Ser Gly Ala Val Val Val Ala Gly Ser Leu Leu Thr Pro Pro Pro Gln Ser Val Gln Ile Glu Asn Leu Thr Trp Trp Thr Leu Ala Gln Asp Val Pro Leu Gly Thr Lys Ala Gly Asp Gly Gln Thr Pro Gln Lys His Ala Phe Trp Ala Arg Val Cys Gly Phe Asn Ala Ile Leu Leu Met Cys Val Asn Ile Phe Phe Tyr Ala Tyr Phe Ala <210> 125 <211> 467 <212> PRT <213> Homo sapiens <400> 125

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly

•	1				5					10					15	
	His	Leu	Ala	Leu	Gly	Ala	Gln	Gln	Gly	Arg	Gly	Arg	Arg	Glu	Leu	Ala
				20					25					30		
	Pro	Gly	Leu	His	Leu	Àrg	Gly	Ile	Arg	Asp	Ala	Gly	Gly	Arg	Tyr	Cys
5			35					40					45			
	Gln	Glu	Gln	Asp	Leu	Cys	Cys	Arg	Gly	Arg	Ala	Asp	Asp	Cys	Ala	Leu
		50					55	•				60				
	Pro	Tyr	Leu	Gly	Ala	Ile	Cys	Tyr	Cys	Asp	Leu	Phe	Cys	Asn	Arg	Thr
	65					70					75					80
10	Val	Ser	Asp	Cys	Cys	Pro	Asp	Phe	Trp	Asp	Phe	Çys	Leu	Gly	Val	Pro
					85					90					95	
	Pro	Pro	Phe	Pro	Pro	Ile	Gln	Gly	Cys	Met	His	Gly	Gly	Arg	Ile	Туг
				100				•	105					110		
	Pro	Val	Leu	Gly	Thr	Tyr	Trp	Asp	Asn	Cys	Asn	Arg	Cys	Thr	Суѕ	Glr
15			115					120					125			
	Glu	Asn	Arg	Gln	Trp	Gln	Cys	Asp	Gln	Glu	Pro	Cys	Leu	Val	Asp	Pro
		130					135					140				
	Asp	Met	Ile	Lys	Ala	Ile	Asn	Gln	Gly	Asn	Tyr	Gly	Trp	Gln	Ala	Gly
	145					150					155					160
20	Asn	His	Ser	Ala	Phe	Trp	Gly	Met	Thr	Leu	Asp	Glu	Gly	Ile	Arg	Туз
					165					170					175	
	Arg	Leu	Gly	Thr	Ile	Arg	Pro	Ser	Ser	Ser	Val ·	Met	Asn	Met	His	Glı
				180					185					190		
	Ile	Tyr	Thr	Val	Leu	Asn	Pro	Gly	Glu	. Val	Leu	Pro	Thr	Ala	Phe	Glı
25			195					200					205			

	Ala	Ser	Glu	Lys	Trp	Pro	Asn	Leu	Ile	His	Glu	Pro	Leu	Asp	Gln	Gly
		210					215					220				
	Asn	Cys	Ala	Gly	Ser	Trp	Ala	Phe	Ser	Thr	Ala	Ala	Val	Ala	Ser	Asp
	225					230					235					240
5	Arg	Val	Ser	Ile	His	Ser	Leu	Gly	His	Met	Thr	Pro	Val	Leu	Ser	Pro
		٠			245					250					255	
	Gln	Asn	Leu	Leu	Ser	Cys	Asp	Thr	His	Gln	Gln	Gln	Gly	Cys	Arg	Gly
				260					265			å		270		
	Gly	Arg	Leu	Asp	Gly	Ala	Trp	Trp	Phe	Leu	Arg	Arg	Arg	Gly	Val	Val
LO			275				•	280					285			
	Ser	Asp	His	Cys	Tyr	Pro	Phe	Ser	Gly	Arg	Glu	Arg	Asp	Glu	Ala	Gly
		290					295					300				
	Pro	Ala	Pro	Pro	Cys	Met	Met	His	Ser	Arg	Ala	Met	Gly	Arg	Gly	Lys
	305					310					315					320
15	Arg	Gln	Ala	Thr	Ala	His	Cys	Pro	Asn	Ser	Tyr	Val	Asn	Asn	Asn	Asp
					325					330					335	
	Ile	Tyr	Gln	Val	Thr	Pro	Val	Tyr	Arg	Leu	Gly	Ser	Asn	Asp	Lys	Glu
				340					345					350		
	Ile	Met	Lys	Glu	Leu	Met	Glu	Asn	Gly	Pro	Val	Gln	Ala	Leu	Met	Glu
20			355					360					365			
	Val	His	Glu	Asp	Phe	Phe	Leu	Tyr	Lys	Gly	Gly	Ile	Tyr	Ser	His	Thr
		370					375					380				
	Pro	Val	Ser	Leu	Gly	Arg	Pro	Glu	Arg	Tyr	Arg	Arg	His	Gly	Thr	His
	385					390					395					400
25	Ser	Val	Lys	Ile	Thr	Gly	Trp	Glv	Glu	Glu	Thr	Leu	Pro	Asp	Glv	Arg

285/346

405 . Thr Leu Lys Tyr Trp Thr Ala Ala Asn Ser Trp Gly Pro Ala Trp Gly Glu Arg Gly His Phe Arg Ile Val Arg Gly Val Asn Glu Cys Asp Ile Glu Ser Phe Val Leu Gly Val Trp Gly Arg Val Gly Met Glu Asp Met Gly His His <210> 126 <211> 476 <212> PRT <213> Homo sapiens <400> 126 Met Ala Gly Ser Asp Thr Ala Pro Phe Leu Ser Gln Ala Asp Asp Pro Asp Asp Gly Pro Val Pro Gly Thr Pro Gly Leu Pro Gly Ser Thr Gly Asn Pro Lys Ser Glu Glu Pro Glu Val Pro Asp Gln Glu Gly Leu Gln Arg Ile Thr Gly Leu Ser Pro Gly Arg Ser Ala Leu Ile Val Ala Val . 50 Leu Cys Tyr Ile Asn Leu Leu Asn Tyr Met Asp Arg Phe Thr Val Ala

	65					70					75					80
	Gly	Val	Leu	Pro	Asp	Ile	Glu	Gln	Phe	Phe	Asn	Ile	Gly	Asp	Ser	Ser
					85					90	-				95	
·	Ser	Gly	Leu	Ile	Gln	Thr	Val	Phe	Ile	Ser	Ser	Tyr	Met	Val	Leu	Ala
5				100					105					110		
	Pro	Val	Phe	Gly	Tyr	Leu	Gly	Asp	Arg	Tyr	Asn	Arg	Lys	Tyr	Leu	Met
			115				•	120					125			
	Cys	Gly	Gly	Ile	Ala	Phe	Trp	Ser	Leu	Val	Thr	Leu	Gly	Ser	Ser	Phe
		130					135					140				
10	Ile	Pro	Gly	Glu	His	Phe	Trp	Leu	Leu	Leu	Leu	Thr	Arg	Gly	Leu	Val
	145					150					155					160
	Gly	Val	. Gly	Glu	Ala	Ser	Tyr	Ser	Thr	Ile	Ala	Pro	Thr	Leu	Ile	Ala
					165					170					175	
	Asp	Leu	ı Phe	Val	Ala	Asp	Gln	Arg	Ser	Arg	Met	Leu	Ser	: Ile	Phe	Tyr
15				180)				185				•	190		
	Phe	a Ala	a Ile	Pro	val	. Gly	Ser	Gly	Leu	Gly	y Tyr	: Ile	Ala	a Gly	' Ser	Lys
			195					200	1		·		205	5		
	۷a]	L Lys	s Asp) Met	: Ala	ı Gly	/ Asp	Trp	His	: Trp) Ala	. Leu	ı Arç	y Val	Thr	Pro
		210	0	•			215					220)			
20	Glv	y Lei	u Gly	/ Val	l Val	L Ala	a Val	Leu	ı Lev	ı Leı	ı Phe	e Lei	ı Val	l Val	L Arç	g Glu
	22!					230					235					240
			o Arg	g Gl	y Ala	a Vai	l Glu	ı Arç	g His	s Se	r Ası	o Let	ı Pr	o Pro	o Lei	ı Asr
	•		•		24!					25					255	
	Pro	o Th	r Se:	r Tr			a Ası	Lei	ı Ard			u Ala	a Ar	g As	n Lei	u Ile
25		~ ~		26			•		26					27		

	Phe	Gly	Leu	Ile	Thr	Суз	Leu	Thr	Gly	Val	Leu	Gly	Val	Gly	Leu	Gly
			275					280			•		285			
	Val	Glu	Ile	Ser	Arg	Arg	Leu	Arg	His	Ser	Asn	Pro	Arg	Ala	Asp	Pro
		290					295			,		300				
5	Leu	Val	Cys	Ala	Thr	Gly	Leu	Leu	Gly	Ser	Ala	Pro	Phe	Leu	Phe	Leu
	305					310					315					320
	Ser	Leu	Ala	Cys	Ala	Arg	Gly	Ser	Ile	Val	Ala	Thr	Tyr	Ile	Phe	Ile
					325	•	,		•	330					335	
	Phe	Ile	Gly	Glu	Thr	Leu	Leu	Ser	Met	Asn	Trp	Ala	Ile	Val	Ala	Asp
10				340					345					350		
	Ile	Leu	Leu	Tyr	Val	Val	Ile	Pro	Thr	Arg	Arg	Ser	Thr	Ala	Glu	Ala
			355					360					365			
	Phe	Gln	Ile	Val	Leu	Ser	His	Leu	Leu	Gly	Asp	Ala	Gly	Ser	Pro	Tyr
		370					375					380	٠			
15	Leu	Ile	Gly	Leu	Ile	Ser	Asp	Arg	Leu	Arg	Arg	Asn	Trp	Pro	Pro	Ser
	385					390					395		•			400
	Phe	Leu	Ser	Glu	Phe	Arg	Ala	Leu	Gln	Phe	Ser	Leu	Met	Leu	Cys	Ala
					405				•	410					415	
	Phe	Val	Gly	Ala	Leu	Gly	Gly	Ala	Ala	Phe	Leu	Gly	Thr	Ala	Ile	Phe
20				420					425					430		
	Ile	Glu	Ala	Asp	Arg	Arg	Arg	Ala	Gln	Leu	His	Val	Gln	Gly	Leu	Leu
			435	•				440					445			
_	His	Glu	Ala	Gly	Ser	Thr	Asp	Asp	Arg	Ile	Val	Val	Pro	Gln	Arg	Gly
		450					455					460				
25	Arg	Ser	Thr	Arg	Val	Pro	Val	Ala	Ser	Val	Leu	Ile				

288/346

<210> 127 <211> 449 <212> PRT <213> Homo sapiens <400> 127 Met Ser Asp Ile Arg His Ser Leu Leu Arg Arg Asp Ala Leu Ser Ala 5. Ala Lys Glu Val Leu Tyr His Leu Asp Ile Tyr Phe Ser Ser Gln Leu Gln Ser Ala Pro Leu Pro Ile Val Asp Lys Gly Pro Val Glu Leu Leu Glu Glu Phe Val Phe Gln Val Pro Lys Glu Arg Ser Ala Gln Pro Lys Arg Leu Asn Ser Leu Gln Glu Leu Gln Leu Leu Glu Ile Met Cys Asn Tyr Phe Gln Glu Gln Thr Lys Asp Ser Val Arg Gln Ile Ile Phe Ser Ser Leu Phe Ser Pro Gln Gly Asn Lys Ala Asp Asp Ser Arg Met Ser Leu Leu Gly Lys Leu Val Ser Met Ala Val Ala Val Cys Arg Ile Pro 120 .

Val Leu Glu Cys Ala Ala Ser Trp Leu Gln Arg Thr Pro Val Val Tyr

		130					135					140				
	Cys	Val	Arg	Leu	Ala	Lys	Ala	Leu	Val	Asp	Asp	Tyr	Cys	Cys	Leu	Val
	145					150					155					160
	Pro	Gly	Ser	Ile	Gln	Thr	Leu	Lys	Gln	Ile	Phe	Ser	Ala	Ser	Pro	Arg
5					165					170					175	
	Phe	Cys	Cys	Gln	Phe	Ile	Thr	Ser	Val	Thr	Ala	Leu	Tyr	Asp	Leu	Ser
				180					185					190		
	Ser	Asp	Asp	Leu	Ile	Pro	Pro	Met	Asp	Leu	Leu	Glu	Met	Ile	Val	Thr
	•		195					200					205			
10	Trp	Ile	Phe	Glu	Asp	Pro	Arg	Leu	Ile	Leu	Ile	Thr	Phe	Leu	Asn	Thr
		21 0					215					220				
	Pro	Ile	Ala	Ala	Asn	Lèu	Pro	Ile	Gly	Phe	Leu	Glu	Leu	Thr	Pro	Leu
	225					230					235					240
	Val	Gly	Leu	Ile	Arg	Trp	Cys	Val	Lys	Ala	Pro	Leu	Ala	Tyr	Lys	Arg
15					245	•				250					255	
	Lys	Lys	Lys	Pro	Pro	Leu	Ser	Asn	Gly	His	Val	Ser	Asn	Lys	Val	Thr
				260					265					270		
	Lys	Asp	Pro	Gly	Val	Gly	Met	Asp	Arg	Asp	Ser	His	Leu	Leu	Tyr	Ser
			275					280					285			
20	Lys	Leu	His	Leu	Ser	Val	Leu	Gln	Val	Leu	Met	Thr	Leu	Gln	Leu	His
•		290					295					300				
	Leu	Thr	Glu	Lys	Asn	Leu	Tyr	Gly	Arg	Leu	Gly	Leu	Ile	Leu	Phe	Asp
	305		•			310					315					320
	His	Met	Val	Pro	Leu	۷al	Glu	Glu	Ile	Asn	Arg	Leu	Ala	Asp	Glu	Leu
25					325					330					335	

290/346

Asn Pro Leu Asn Ala Ser Gln Glu Ile Glu Leu Ser Leu Asp Arg Leu Ala Gln Ala Leu Gln Val Ala Met Ala Ser Gly Ala Leu Leu Cys Thr - 355 Arg Asp Asp Leu Arg Thr Leu Cys Ser Arg Leu Pro His Asn Asn Leu Leu Gln Leu Val Ile Ser Gly Pro Val Gln Gln Ser Pro His Ala Ala Leu Pro Pro Gly Phe Tyr Pro His Ile His Thr Pro Pro Leu Gly Tyr Gly Ala Val Pro Ala His Pro Ala Ala His Pro Ala Leu Pro Thr His Pro Gly His Thr Phe Ile Ser Gly Val Thr Phe Pro Phe Arg Pro Ile Arg <210> 128 <211> 105 <212> PRT <213> Homo sapiens <400> 128 Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Leu Phe 10 .

291/346

:

	Leu	Leu	Leu	Leu	Leu	Ile	Ala	Leu	Glu	Ile	Met	Val	Gly	Gly	His :	Ser
				20					25	•		•		30	į	
	Leu	Cys	Phe	Asn	Phe	Thr	Ile	Lys	Ser	Leu	Ser	Arg	Pro	Gly	Gln	Pro
			35					40					45			
5	Trp	Cys	Glu	Ala	Gln	Val	Phe	Leu	Asn	Lys	Asn	Leu	Phe	Leu	Gln	Tyr
		50					55					60				
	Asn	Ser	Asp	Asn	Asn	Met	Val	Lys	Pro	Leu	Gly	Leu	Leu	Gly	Lys	Lys
	65					70					75					80
	Val	Asn	Ala	Thr	Ser	Thr	Trp	Gly	Glu	Asn	Pro	Asn	Ala	Gly	Arg	Ser
10					85					90					95	
	Gly	Ala	Arg	Pro	Gln	Asp	Ala	Pro	Leu						•	
				100					105							
•	<210	0> 12	29													
15	<21	1> _8:	1													
	<212	2> PI	RT													
	<213	3> H	omo :	sapi	ens										!	
	<400	0> 1:	2,9													
20	Met	Ser	Pro	Asp	Val	Arg	Phe	Leu	Pro	Leu						
	1				5					10					15	
	Arg	Arg	Pro	Val	Pro	Val	Ala	Ala	Gly	Pro	Gly	Asp	Thr	Arg	Pro	Ala
				20					25					30		
	Leu	Leu	Ser	Phe	Glu	Ala	Pro	Val	Phe	Val	Pro	Thr	Leu	Thr	Pro	Gly
25			35					40					45			

292/346

Cys Leu Gln Gln Pro Arg Gly Arg Asn Gly Ala Ser Pro Arg Gly Leu Leu Pro Gln Pro Leu Asp Gly Thr Ala Ala Ser Pro Val Cys His His Val <210> 130 <211> 552 <212> PRT <213> Homo sapiens <400> 130 Met Arg Arg Leu Thr Arg Arg Leu Val Leu Pro Val Phe Gly Val Leu Trp Ile Thr Val Leu Leu Phe Phe Trp Val Thr Lys Arg Lys Leu Glu Val Pro Thr Gly Pro Glu Val Gln Thr Pro Lys Pro Ser Asp Ala Asp Trp Asp Asp Leu Trp Asp Gln Phe Asp Glu Arg Arg Tyr Leu Asn Ala Lys Lys Trp Arg Val Gly Asp Asp Pro Tyr Lys Leu Tyr Ala Phe Asn Gln Arg Glu Ser Glu Arg Ile Ser Ser Asn Arg Ala Ile Pro Asp Thr

	Arg	His	Leu	Arg	Cys	Thr	Leu	Leu	Val	Tyr	Cys	Thr	Asp	Leu	Pro	Pro
				100					105		•			110		
	Thr	Ser	Ile	Ile	Ile	Thr	Phe	His	Asn	Glu	Ala	Arg	Ser	Thr	Leu	Leu
			115					120					125			
5	Arg	Thr	Ile	Arg	Ser	Val	Leu	Asn	Arg	Thr	Pro	Thr	His	Leu	Ile	Arg
		130					135					140				
	Glu	Ile	Ile	Leu	Val	Asp	Asp	Phe	Ser	Asn	Asp	Pro	Asp	Asp	Cys	Lys
	145					150					155					160
•	Gln	Leu	Ile	Lys	Leu	Pro	Lys	Val	Lys	Cys	Leu	Arg	Asn	Asn	Glu	Arg
10					165					170					175	*
	Gln	Gly	Leu	Val	Arg	Ser	Arg	Ile	Arg	Gly	Ala	Asp	Ile	Ala	Gln	Gly
	•			180			·		185					190		
	Thr	Thr	Leu	Thr	Phe	Leu	Asp	Ser	His	Cys	Glu	Val	Asn	Arg	Asp	Trp
			195					200					205			
15	Leu	Gln	Pro	Leu	Leu	His	Arg	Val	Lys	Glu	Asp	Tyr	Thr	Arg	Val	Val
		210					215					220				
	Суз	Pro	Val	Ile	Asp	Ile	Ile	Asn	Leu	Asp	Thr	Phe	Thr	Tyr	Ile	Glu
	225					230					235					240
	Ser	Ala	Ser	Glu	Leu	Arg	Gly	Gly	Phe	Asp	Trp	Ser	Leu	His	Phe	Gln
20					245					250					255	
	Trp	Glu	Gln	Leu	Ser	Pro	Glu	Gln	Lys	Ala	Arg	Arg	Leu	Asp	Pro	Thr
				260					265					270		
	Glu	Pro	Ile	Arg	Thr	Pro	Ile	Ile	Ala	Gly	Gly	Leu	Phe	Val	Ile	Asp
			275					280					285			
25	Lys	Ala	Trp	Phe	Asp	Tyr	Leu	Gly	Lys	Tyr	Asp	Met	Asp	Met	Asp	Ile

	•	290					295					300	•			
	Trp	Gly	Gly	Glu	Asn	Phe	Glu	Ile	Ser	Phe	Arg	Val	Trp	Met	Cys	Gly
	305					310					315					320
	Gly	Ser	Leu	Glu	Ile	Val	Pro	Суѕ	Ser	Arg	Val	Gly	His	Val	Phe	Arg
5					325					330			•		335	
	Lys	Lys	His	Pro	Tyr	Val	Phe	Pro	Asp	Gly	Asn	Ala	Asn	Thr	Tyr	Ile
				340					345					350		
	Lys	Asn	Thr	Lys	Arg	Thr	Ala	Glu	Val	Trp	Met	Asp	Glu	Tyr	Lys	Gln
			355					`360					365			
10	Tyr	Tyr	Tyr	Ala	Ala	Arg	Pro	Phe	Ala	Leu	Glu	Arg	Pro	Phe	Gly	Asn
		370		•			375			·		380				
	Val	Glu	Ser	Arg	Leu	Asp	Leu	Arg	Lys	Asn	Leu	Arg	Cys	Gln	Ser	Phe
`	385					390					395					400
	Lys	Trp	Tyr	Leu	Glu	Asn	Ile	Tyr	Pro	Glu	Leu	Ser	Ile	Pro	Lys	Ģlu
15				٠	405					410					415	
	Ser	Ser	Ile	Gln	Lys	Gly	Asn	Ile	Arg	Gln	Arg	Gln	Lys	Cys	Leu	Glu
				420					425					430		
	Ser	Gln	Arg	Gln	Asn	Asn	Gln	Glu	Thr	Pro	Asn	Leu	Lys	Leu	Ser	Pro
		÷	435	,				440)				445	5		
20	Суз	: Ala	Lys	Val	. Lys	Gly	Glu	Asp	Ala	a Lys	Ser	Glr	ı Val	L Trp	Ala	Phe
		450)				455	5				460)			
	Thr	туг	Thr	Glr	Gln	ıle	e Leu	ı Glr	ı Glu	ı Glı	ı Lev	ı Cys	s Lei	ı Ser	· Val	Ile
	465	; ·				470)				475	5				480
	Thi	Leu	ı Phe	e Pro	Gly	/ Ala	a Pro	Val	l Vai	l Lei	ı Va]	l Lei	ı Cy:	s Lys	s Ası	n Gly
25					485					490	1				495	5

295/346

Asp Asp Arg Gln Gln Trp Thr Lys Thr Gly Ser His Ile Glu His Ile
500 505 510

Ala Ser His Leu Cys Leu Asp Thr Asp Met Phe Gly Asp Gly Thr Glu
515 520 525

5 Asn Gly Lys Glu Ile Val Val Asn Pro Cys Glu Ser Ser Leu Met Ser 530 535 540

Gln His Trp Asp Met Val Ser Ser

545 550

10 <210> 131

<211> 1188

<212> DNA

<213> Homo sapiens

15 <400> 131

20

25

atgtcaggga tggaagaata caccactgtc tcaggtgaag ttctacagag atggaaaatt 60 ccttcattta aggaaaacca gactctgtcc atgggagcag caacagtgca gagccgtggc 120 cagtacagct gctctgggca ggtgatgtat attccacaga cattcacaca aacttcagag 180 actgccatgg ttcaagtcca agagctgttt ccacctcctg tgctgagtgc catccctct 240 cctgagcccc gagagggtag cctggtgacc ctgagatgtc agacaaagct gcacccctg 300 aggtcagcct tgaggctcct tttctccttc cacaaggacg gccacacctt gcaggacagg 360 ggccctcacc cagaactctg catcccggga gccaaggagg gagactctgg gctttactgg 420 tgtgaggtgg cccctgaggg tggccaggtc cagaagcaga gcccccagct ggaggtcaga 480 gtgcaggctc ctgtatcccg tcctgtgctc actctgcacc acgggcctgc tgaccctgct 540 gtgggggaca tggtcagct cctctgtgag gcacagaggg gctcccctcc gatcctgtat 600

tccttctacc ttgatgagaa gattgtgggg aaccactcag ctccctgtgg tggaaccacc 660
tccctcctct tcccagtgaa gtcagaacag gatgctggga actactcctg cgaggctgag 720
aacagtgtct ccagagagag gagtgagccc aagaagctgt ctctgaaggg ttctcaagtc 780
ttgttcactc ccgccagcaa ctggctggtt ccttggcttc ctgcgagcct gcttggcctg 840
atggttattg ctgctgcact tctggtttat gtgagatcct ggagaaaagc tgggcccctt 900
ccatcccaga taccacccac agctccaggt ggagagcagt gcccactata tgccaacgtg 960
catcaccaga aagggaaaga tgaaggtgtt gtctactctg tggtgcatag aacctcaaag 1020
aggagtgaag ccaggtctgc tgagttcacc gtggggagaa aggacagttc tatcatctgt 1080
gcggaggtga gatgcctgca gcccagtgag gtttcatcca cggaggtgaa tatgagaagc 1140
aggactctcc aagaacccct tagcgactgt gaggaggttc tctgctag 1188

<210> 132

5

10

20

25

<211> 1653

<212> DNA

15 <213> Homo sapiens

<400> 132

atggcgttct cgaagctctt ggagcaagcc ggaggcgtgg gcctcttcca gaccctgcag 60 gtgctcacct tcatcctcc ctgcctcatg ataccttccc agatgctcct ggagaacttc 120 tcagccgcca tcccaggcca ccgatgctgg acaccatgc tggacaatgg ctctgcggtt 180 tccacaaaca tgaccccaa ggcccttctg accatctcca tcccgccagg ccccaaccag 240 gggccccacc agtgccgccg cttccgccag ccacagtggc agctcttgga ccccaatgcc 300 acggccacca gctggagcga agctgacacg gagccgtgt tggacggctg ggtctatgac 360 cgcagcgtct tcacctccae catcgtggc aagtgggacc tggtgtgcag ctcccagggc 420 ttgaagcccc taagccagtc catcttcatg tccgggatcc tggtgggctc ctttatctgg 480

ggcctcctct cctaccggtt tgggaggaag ccgatgctga gctggtgctg cctgcagttg 540 gccgtggcgg gcaccagcac catcttcgcc ccaacattcg tcatctactg cggcctgcgg 600 ttcgtggccg cttttgggat ggccggcatc tttctgagtt cactgacact gatggtggag 660 tggaccacga ccagcaggag ggcggtcacc atgacggtgg tgggatgtgc cttcagcgca 720 5 ggccaggcgg cgctgggcgg cctggccttt gccctgcggg actggaggac tctccagctg 780 gcagcatcag tgcccttctt tgccatctcc ctgatatcct ggtggctgcc agaatccgcc 840 cggtggctga ttattaaggg caaaccagac caagcacttc aggagctcag aaaggtggcc 900 aggataaatg gccacaagga ggccaagaac ctgaccatag aggtgctgat gtccagcgtg 960 aaggaggagg tggcctctgc aaaggagccg cggtcggtgc tggacctgtt ctqcqtgccc 1020 10 gtgctccgct ggaggagctg cgccatgctg gtggtgaatt tctctctatt gatctcctac 1080 tatgggctgg tettegacet geagageetg ggeegtgaca tetteeteet ceaggeeete 1140 ttcggggccg tggacttcct gggccgggcc accactgccc tcttgctcag tttccttggc 1200 cgccgcacca tecaggeggg ttcccaggec atggccggcc tegccattet agccaacatg 1260 ctggtgccgc aagatttgca gaccctgcgt gtggtctttg ctgtgctggg aaagggatgt 1320 15 tttgggataa gcctaacctg cctcaccatc tacaaggctg aactctttcc aacgccagtg 1380 cggatgacag cagatggcat tctgcataca gtgggccggc tgggggctat gatgggtccc 1440 ctgatectga tgageegeea ageeetgeee etgetgeete eteteeteta tggegttate 1500 tccattgctt ccagcctggt tgtgctgttc ttcctcccgg agacccaggg acttccgctc 1560 cctgacacta tccaggacct ggagagccag aaatcaacag cagcccaggg caaccggcaa 1620 20 gaggccgtca ctgtggaaag tacctcgctc tag 1653

<210> 133

<211> 657

<212> DNA

25 <213> Homo sapiens

<400> 133

atgaagcaca cactggctct getggctcce ctgctgggcc tgggcctggg getggccctg 60
agtcagctgg ctgcaggggc cacagactgc aagttccttg geccggcaga gcacctgaca 120

5 ttcaccccag cagccagggc ccggtggctg gcccctcgag ttcgtgcgcc aggactcctg 180
gactccctct atggcaccgt gcgccgcttc ctctcggtgg tgcagctcaa tcctttccct 240
tcagagttgg taaaggccct actgaatgag ctggcctccg tgaaggtgaa tgaggtggtg 300
cggtacgagg cgggctacgt ggtatgcgct gtgatcgcgg gcctctacct gctgctggtg 360
cccactgccg ggctttgctt ctgctgctgc cgctgccacc ggcgctgcgg gggacgagtg 420

10 aagacagagc acaaggcgct ggcctgtgag cgcgcggccc tcatggtctt cctgctgctg 480
accaccctct tgctgctgat tggtgtggtc tgtgcctttg tcaccaacca gcgcacgcat 540
gaacagatgg gccccagcat cgaggccatg cctgagaccc tgctcagcc ctggggcctg 600
gtctctgatg tcccccaagt gagcactgtt acccctcacc ctcatggtcc cctgtga 657

15 <210> 134

<211> 1791

<212> DNA

<213> Homo sapiens

20 <400> 134

25

atggccgcca actccaccag cgacctccac actcccggga cgcagctgag cgtggctgac 60 atcatcgtca tcactgtgta ttttgctctg aatgtggccg tgggcatatg gtcctcttgt 120 cgggccagta ggaacacggt gaatggctac ttcctggcag gccgggacat gacgtggtgg 180 ccgattggag cctccctctt cgccagcagc gagggctctg gcctcttcat tggactggcg 240 ggctcaggcg cggcaggagg tctggccgtg gcaggcttcg agtggaatgc cacgtacgtg 300

	ctgctggcac	tggcatgggt	gttcgtgccc	atctacatct	cctcagagat	cgtcacctta	360
	cctgagtaca	ttcagaagcg	ctacgggggc	cagcggatcc	gcatgtacct	gtctgtcctg	420
	tecetgetae	tgtctgtctt	caccaagata	tcgctggacc	tgtacgcggg	ggctctgttt	480
	gtgcacatct	gcctgggctg	gaacttctac	ctctccacca	tcctcacgct	cggcatcaca	540
5	gccctgtaca	ccatcgcagg	gggcctggct	gctgtaatct	acacggacgc	cctgcagacg	600
	ctcatcatgg	tggtgggggc	tgtcatcctg	acaatcaaag	cttttgacca	gatcggtggt	660
ı	tacgggcagc	tggaggcagc	ctacgcccag	gccattccct	ccaggaccat	tgccaacacc	720
	acctgccacc	tgccacgtac	agacgccatg	cacatgtttc	gagaccccca	cacaggggac	780
	ctgccgtgga	ccgggatgac	ctttggcctg	accatcatgg	ccacctggta	ctggtgcacc	840
10	gaccaggtca	tcgtgcagcg	atcactgtca	gcccgggacc	tgaaccatgc	caaggcgggc	900
	tccatcctgg	ccagctacct	caagatgctc	cccatgggcc	tgatcataat	gccgggcatg	960
	atcagccgcg	cattgttccc	agatgatgtg	ggctgcgtgg	tgccgtccga	gtgcctgcgg	1020
	gcctgcgggg	ccgaggtcgg	ctgctccaac	atcgcctacc	ccaagctggt	catggaactg	1080
	atgcccatcg	gtctgcgggg	gctgatgatc	gcagtgatgc	tggcggcgct	catgtcgtcg	1140
15 .	ctgacctcca	tcttcaacag	cagcagcacc	ctcttcacta	tggacatctg	gaggcggctg	1200
	cgtccccgct	ccggcgagcg	ggagctcctg	ctggtgggac	ggctggtcat	agtggcactc	1260
	atcggcgtga	gtgtggcctg	gatccccgtc	ctgcaggact	ccaacagcgg	gcaactcttc	1320
	atctacatgo	agtcagtgac	cagctccctg	gccccaccag	tgactgcagt	ctttgtcctg	1380
	ggcgtcttct	ggcgacgtgc	caacgagcag	ggggccttct	ggggcctgat	agcagggctg	1440
20.	gtggtggggg	ccacgaggct	ggtcctggaa	ttcctgaaco	cagececace	gtgcggagag	1500
	ccagacacgo	: ggccagccgt	cctggggagc	atccactacc	: tgcacttcgc	: tgtcgccctc	1560
	tttgcactca	gtggtgctgt	tgtggtggct	ggaageetge	tgaccccacc	: cccacagagt	1620
	gtccagattg	g agaaccttac	ctggtggaco	ctggctcagg	g atgtgccctt	. gggaactaaa	1680
	gcaggtgatg	g gccaaacacc	ccagaaacac	geettetggg	g cccgtgtctg	tggcttcaat	1740
25	gccatcctcc	c tcatgtgtgt	caacatatto	tttatgcct	acttcgcctg	, a	1791

<210> 135

<211> 1404

<212> DNA

5 <213> Homo sapiens

<400> 135

10

15

20

25

atgtggcgat gtccactggg gctactgctg ttgctgccgc tggctggcca cttggctctg 60 ggtgcccagc agggtcgtgg gcgccgggag ctagcaccgg gtctgcacct gcggggcatc 120 cgggacgcgg gaggccggta ctgccaggag caggacctgt gctgccgcgg ccgtgccgac 180 qactqtqccc tqccctacct qgqcqccatc tqttactqtq acctcttctq caaccqcacg 240 gtctccgact gctgccctga cttctgggac ttctgcctcg gcgtgccacc cccttttccc 300 ccgatccaag gatgtatgca tggaggtcgt atctatccag tcttgggaac gtactgggac 360 aactgtaacc gttgcacctg ccaggagaac aggcagtggc agtgtgacca agaaccatgc 420 ctggtggatc cagacatgat caaagccatc aaccagggca actatggctg gcaggctggg 480 aaccacageg cettetgggg catgaceetg gatgagggca ttegetaceg cetgggcace 540 atccgcccat cttcctcggt catgaacatg catgaaattt atacagtgct gaacccaggg 600 gaggtgette ceacageett egaggeetet gagaagtgge ceaacetgat teatgageet 660 cttgaccaag gcaactgtgc aggctcctgg gccttctcca cagcagctgt ggcatccgat 720 cgtgtctcaa tccattctct gggacacatg acgcctgtcc tgtcgcccca gaacctgctg 780 tettgtgaca eccaecagea geagggetge egeggtggge gtetegatgg tgeetggtgg 840 ttcctgcgtc gccgaggggt ggtgtctgac cactgctacc ccttctcggg ccgtgaacga 900 gacgaggetg gecetgegee eccetgtatg atgeacagee gagecatggg teggggeaag 960 cgccaggcca ctgcccactg ccccaacagc tatgttaata acaatgacat ctaccaggtc 1020 actcctgtct accgcctcgg ctccaacgac aaggagatca tgaaggagct gatggagaat 1080

301/346

ggecetgtec aageeeteat ggaggtgeat gaggaettet teetatacaa gggaggeate 1140
tacageeaca egecagtgag eettgggagg eeagaggat aeegeeggea tgggaeeeac 1200
teagteaaga teacaggatg gggagaggag aegetgeeag atggaaggae geteaaatae 1260
tggaetgegg eeaacteetg gggeeeagee tggggegaga ggggeeactt eegeategtg 1320
egeggegtea atgagtgega eategagage ttegtgetgg gegtetgggg eegegtggge 1380
atggaggaea tgggteatea etga

<210> 136

<211> 1431

10 <212> DNA

5

15

20

25

<213> Homo sapiens

<400> 136

atggccgggt ccgacaccgc gcccttcctc agccaggcgg atgacccgga cgacgggcca 60 gtgcctggca ccccggggtt gccagggtcc acggggaacc cgaagtccga ggagcccgag 120 gtcccggacc aggaggggct gcagcgcatc accggcctgt ctcccggccg ttcggctctc 180 atagtggcgg tgctgtgcta catcaatctc ctgaactaca tggaccgctt caccgtggct 240 ggcgtccttc ccgacatcga gcagttcttc aacatcgggg acagtagctc tgggctcatc 300 cagaccgtgt tcatctccag ttacatggtg ttggcacctg tgtttggcta cctgggtgac 360 aggtacaatc ggaagtatct catgtgcggg ggcattgcct tctggtccct ggtgacactg 420 gggtcatcct tcatccccgg agagcatttc tggctgctc tcctgacccg gggcctggtg 480 ggggtcgggg aggccagtta ttccaccatc gcgcccactc tcattgccga cctctttgtg 540 gccgaccagc ggagccggat gctcagcatc ttctactttg ccattccggt gggcagtggt 600 ctgggctaca ttgcaggctc caaagtgaag gatatggctg gagactggca ctgggctctg 660 agggtgacac cgggtctagg agtggtggcc gttctgctgc tgttcctggt agtgcggag 720

tgggcagatc tgagggctt ggcaagaaat ctcatctttg gactcatcac ctgcctgacc 840
ggagtcctgg gtgtgggct gggtgtggag atcagccgc ggctccgcca ctccaacccc 900
cgggctgatc ccctggtctg tgccactggc ctcctgggct ctgcaccett cctcttcctg 960

tcccttgcct gcgcccgtgg tagcatcgtg gccacttata ttttcatctt cattggagag 1020
accctcctgt ccatgaactg ggccatcgtg gccgacattc tgctgtacgt ggtgatccct 1080
acccgacgct ccaccgccga ggccttccag atcgtgctgt cccacctgct gggtgatgct 1140
gggagcccct acctcattgg cctgatctct gaccgcctgc gccggaactg gccccctcc 1200
ttcttgtccg agttccggc tctgcagttc tcgctcatgc tctgcggtt tgttggggca 1260

ctgggcggcg cagccttcct gggcaccgcc atcttcattg aggccgaccg ccggcgggca 1320
cagctgcacg tgcagggcct gctgcacgaa gcagggtcca cagacgaccg gattgtggtg 1380
ccccagcggg gccgctccac ccgcgtgccc gtggccagtg tgctcatctg a 1431

<210> 137

15 <211> 1350

<212> DNA

<213> Homo sapiens

<400> 137

atgagegaca teegeeacte getgetgege egegatgege tgagegeege caaggaggtg 60
ttgtaccace tggacateta etteageage eagetgeaga gegegeeget geecategtg 120
gacaagggee eegtggaget getggaggag ttegtgttee aggtgeeaa ggagegeage 180
gegeageeca agagaetgaa tteeetteag gagetteaac ttettgaaat eatgtgeaat 240
tatteeagg ageaaaceaa ggactetgtt eggeagatta ttttteate eettteage 300
ceteaaggga acaaageega tgacageegg atgagettgt tgggaaaact ggteteeatg 360

geggtggctg tgtgtcgaat cccggtgttg gagtgtgctg cctcctggct tcagcggacg 420 cccgtggttt actgtgtgag gttagccaag gcccttgtag atgactactg ctgtttggtg 480 ccgggatcca ttcagacgct gaagcagata ttcagtgcca gcccgagatt ctgctgccag 540 ttcatcacct ccgttaccgc gctctatgac ctgtcatcag atgacctcat tccacctatg 600 gacttgcttg aaatgattgt cacctggatt tttgaggacc caaggttgat tctcatcact 660 5 tttttaaata ctccgattgc ggccaatctg ccaataggat tcttagagct caccccgctc 720 gttggattga tccgctggtg cgtgaaggca cccctggctt ataaaaggaa aaagaagccc 780 cccttatcca atggccatgt cagcaacaag gtcacaaagg acccgggcgt ggggatggac 840 agagactece acetettgta etcaaaacte caceteageg teetgeaagt geteatgacg 900 10 ctgcagctgc acctgaccga gaagaatctg tatgggcgcc tggggctgat cctcttcgac 960 cacatggtcc cgctggtaga ggagatcaac aggttggcgg atgaactgaa ccccctcaac 1020 gcctcccagg agattgagct ctcgctggac cggctggcgc aggctctgca ggtggccatg 1080 qcctcaggag ctctgctgtg cacgagagat gacctgagaa ccttgtgctc caggctgccc 1140 cataataacc tectecaget ggtgateteg ggtecegtge ageagtegee teaegeegeg 1200 ctcccccgg ggttctaccc ccacatccac acgcccccgc tgggctacgg ggctgtcccg 1260 15 gcccacccg ccgcccaccc cgccctgccc acgcaccccg gccacacctt catctccggc 1320 gtgacctttc ccttcaggcc catccgctag 1350

<210> 138

20 <211> 318

<212> DNA

<213> Homo sapiens

<400> 138

25 atgcgaagaa tatccctgac ttctagccct gtgcgccttc ttttgtttct gctgttgcta 60

ctaatagcct	tggagatcat	ggttggtggt	cactctcttt	gcttcaactt	cactataaaa	120
tcattgtcca	gacctggaca	gccctggtgt	gaagcgcagg	tcttcttgaa	taaaaatctt	180
ttccttcagt	acaacagtga	caacaacatg	.gtcaaacctc	tgggcctcct	ggggaagaag	240
gtaaatgcca	ccagcacttg	gggagaaaac	ccaaacgctg	ggagaagtgg	ggcgagacct	300
caggatgete	ctttgtga					318

<210> 139

. 5

15

<211> 246

<212> DNA

10 <213> Homo sapiens

<400> 139

atgagecetg atgtgegett tetgeteetg etectgetee tgeecetteg gaggeetgtg 60 ceagtggeag etgggeegg agacaceagg eeggeactge tetetttega ggeaceegtg 120 tttgtgeega egetgaetee eggttgtetg eageageeae gtggeegaaa tggageetet 180 eeaeggggge teetteeea geecetggat ggeacageag eeteteetgt etgteaceae 240 gtgtga

<210> 140

20 <211> 1659

<212> DNA

<213> Homo sapiens

<400> 140

25 atgeggegec tgactegteg getggttetg ceagtetteg gggtgetetg gateaeggtg 60

5

10

15

20

25

305/346

ctgctgttct tctgggtaac caagaggaag ttggaggtgc cgacgggacc tgaagtgcag 120 acccctaagc cttcggacgc tgactgggac gacctgtggg accagtttga tgagcggcgg 180 tatctgaatg ccaaaaagtg gcgcgttggt gacgacccct ataagctgta tgctttcaac 240 cagcgggaga gtgagcggat ctccagcaat cgggccatcc cggacactcg ccatctgaga 300 tgcacactgc tggtgtattg cacggacctt ccacccacta gcatcatcat caccttccac 360 aacgaggccc gctccacgct gctcaggacc atccgcagtg tattaaaccg cacccctacg 420 catctgatcc gggaaatcat attagtggat gacttcagca atgaccctga tgactgtaaa 480 cageteatea agttgeecaa ggtgaaatge ttgegeaata atgaaeggea aggtetggte 540 eggtecegga tteggggege tgacategee cagggeacea etetgaettt eetegaeage 600 cactgtgagg tgaacaggga ctggctccag cctctgttgc acagggtcaa agaggactac 660 acqcqqqtqq tqtqccctqt qatcqatatc attaacctgq acaccttcac ctacatcgag 720 tetgeetegg ageteagagg ggggtttgae tggageetee aetteeagtg ggageagete 780 tecceagage agaaggeteg gegeetggae eecaeggage eeateaggae teetateata 840 gacatggaca tctggggtgg ggagaacttt gaaatctcct tccgagtgtg gatgtgcggg 960 ggcagcctag agatcgtccc ctgcagccga gtggggcacg tcttccggaa gaagcacccc 1020 tacqttttcc ctqatqqaaa tgccaacacg tatataaaga acaccaagcg gacagctgaa 1080 gtgtggatgg atgaatacaa gcaatactat tacgetgeee ggecattege eetggagagg 1140 cccttcqqqa atqttqaqaq cagattqqac ctqaqqaaqa atctqcqctq ccaqaqcttc 1200 aagtggtacc tggagaatat ctaccctgaa ctcagcatcc ccaaggagtc ctccatccag 1260 aagggcaata teegacagag acagaagtge etggaatete aaaggcagaa caaccaagaa 1320 accccaaacc taaagttgag cccctgtgcc aaggtcaaag gcgaagatgc aaagtcccag 1380 gtatgggcct tcacatacac ccagcagatc ctccaggagg agctgtgcct gtcagtcatc 1440 accttqttcc ctqqcqcccc aqtqqttctt qtcctttqca aqaatqqaqa tgaccqacaq 1500 caatggacca aaactggttc ccacatcgag cacatagcat cccacctctg cctcgataca 1560

306/346

gatatgttcg gtgatggcac cgagaacggc aaggaaatcg tcgtcaaccc atgtgagtcc 1620 tcactcatga gccagcactg ggacatggtg agctcttga 1659

<210> 141

5 <211> 1961

<212> DNA

<213> Homo sapiens

<220>

10 <221> CDS

15

<222> (185)..(1372)

<400> 141

acacacccac aggacctgca gctgaacgaa gttgaagaca actcaggaga tctgttggaa 60
agagaacgat agaggaaaat atatgaatgt tgccatcttt agttccctgt gttgggaaaa 120
ctgtctggct gtacctccaa gcctggccaa accctgtgtt tgaaggagat gccctgactc 180
tgcg atg tca ggg atg gaa gaa tac acc act gtc tca ggt gaa gtt cta 229
Met Ser Gly Met Glu Glu Tyr Thr Thr Val Ser Gly Glu Val Leu

1 5 10 15

20 cag aga tgg aaa att cct tca ttt aag gaa aac cag act ctg tcc atg 277
Gln Arg Trp Lys Ile Pro Ser Phe Lys Glu Asn Gln Thr Leu Ser Met

20 25 30

gga gca gca aca gtg cag agc cgt ggc cag tac agc tgc tct ggg cag 325 Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly Gln

25 35 40 45

	gtg	atg	tat	att	cca	cag	aca	ttc	aca	caa	act	tca	gag	act	gcc	atg	3/3
	Val	Met	Tyr	Ile	Pro	Gln	Thr	Phe	Thr	Gln	Thr	Ser	Glu	Thr	Ala	Met	
			50					55		•			60				
	gtt	caa	gtc	caa	gag	ctg	ttt	cca	cct	cct	gtg	ctg	agt	gcc	atc	ccc	421
5	Val	Gln	Val	Gln	Glu	Leu	Phe	Pro	Pro	Pro	Val	Leu	Ser	Ala	Ile	Pro	
		65					70					75					
	tct	cct	gag	ccc	cga	gag	ggt	agc	ctg	gtg	acc	ctg	aga	tgt	cag	aca	469
	Ser	Pro	Glu	Pro	Arg	Glu	Gly	Ser	Leu	Val	Thr	Leu	Arg	Суѕ	Gln	Thr	
	80	•				85			,		90					95	
10	aag	ctg	cac	ccc	ctg	agg	tca	gcc	ttg	agg	ctc	ctt	ttc	tcc	ttc	cac	517
	Lys	Leu	His	Pro	Leu	Arg	Ser	Ala	Leu	Arg	Leu	Leu	Phe	Ser	Phe	His	
					100					105					110		
	aag	gac	ggc	cac	acc	ttg	cag	gac	agg	ggc	cct	cac	cca	gaa	ctc	tgc	565
	Lys	Asp	Gly	His	Thr	Leu	Gln	Asp	Arg	Gly	Pro	His	Pro	Glu	Leu	Суз	
15				. 115					120					125			
	atc	ccg	gga	gcc	aag	gag	gga	gac	tct	ggg	ctt	tac	tgg	tgt	gag	gtg	613
	Ile	Pro	Gly	Ala	Lys	Glu	Gly	Asp	Ser	Gly	Leu	Tyr	Trp	Cys	Glu	Val	
			130					135					140				
	gcc	cct	gag	ggt	ggc	cag	gtc	cag	aag	cag	agc	ccc	cag	ctg	gag	gtc	661
20	Ala	Pro	Glu	Gly	Gly	Gln	Val	Gln	Lys	Gln	Ser	Pro	Gln	Leu	Glu	Val	
		145					150					155					
	aga	gtg	cag	gct	cct	gta	tcc	cgt	cct	gtg	ctc	act	ctg	cac	cac	ggg	709
	Arg	Val	Gln	Ala	Pro	Val	Ser	Arg	Pro	Val	Leu	Thr	Leu	His	His	Gly	
	160					165					170					175	
25	cct	gct	gac	cct	gct	gtg	ggg	gac	atg	gtg	cag	ctc	ctc	tgt	gag	gca	757

	Pro	Ala	Asp	Pro	Ala	Val	Gly	Asp	Met	Val	Gln	Leu	Leu	Cys	Glu	Ala	
					180					185					190		
	cag	agg	ggc	tcc	cct	ccg	atc	ctg	tat	tcc	ttc	tac	ctt	gat	gag	aag	805
	Gln	Arg	Gly	Ser	Pro	Pro	Ile	Leu	Tyr	Ser	Phe	Tyr	Leu	Asp	Glu	Lys	
5				195					200					205			
	att	gtg	ggg	aac	cac	tca	gct	ccc	tgt	ggt	gga	acc	acc	tcc	ctc	ctc	853
	Ile	Val	Gly	Asn	His	Ser	Ala	Pro	Cys	Gly	Gly	Thr	Thr	Ser	Leu	Leu	
			210					215					220				
	ttc	cca	gtg	aag	tca	gaa	cag	gat	gct	ggg	aac	tac	tcc	tgc	gag	gct	901
10	Phe	Pro	Val	Lys	Ser	Glu	Gln	Asp	Ala	Gly	Asn	Tyr	Ser	Cys	Glu	Ala	
		225					230					235					
	gag	aac	agt	gtc	tcc	aga	gag	agg	agt	gag	ccc	aag	aag	ctg	tct	ctg	949
	Glu	Asn	Ser	Val	Ser	Arg	Glu	Arg	Ser	Glu	Pro	Lys	Lys	Leu	Ser	Leu	
	240					245					250					255	
15	aag	ggt	tct	caa	gtc	ttg	ttc	act	ccc	gcc	agc	aac	tgg	ctg	gtt	cct	997
	Lys	Gly	Ser	Gln	Val	Leu	Phe	Thr	Pro	Ala	Ser	Asn	Trp	Leu	Val	Pro	
					260					265					270		
	tgg	ctt	cct	gcg	agc	ctg	ctt	ggc	ctg	atg	gtt	att	gct	gct	gca	ctt	1045
	Trp	Leu	Pro	Ala	Ser	Leu	Leu	Gly	Leu	Met	Val	Ile	Ala	Ala	Ala	Leu	
. 20		,		275					280					285			
	ctg	gtt	tat	gtg	aga	tcc	tgg	aga	aaa	gct	ggg	ccc	ctt	cca	tcc	cag	1093
	Leu	Val	Tyr	Val	Arg	Ser	Trp	Arg	Lys	Ala	Gly	Pro	Leu	Pro	Ser	Gln	
			290					295					300				
	ata	сса	ccc	aca	gct	cca	ggt	gga	gag	cag	tgc	cca	cta	tat	gcc	aac	1141
25	Ile	Pro	Pro	Thr	Ala	Pro	Gly	Gly	Glu	Gln	Cys	Pro	Leu	Tyr	Ala	Asn	

		305					310					315					
	gtg	cat	cac	cag	aaa	ggg	aaa	gat	gaa	ggt	gtt	gtc	tac	tct	gtg	gtg	1189
	Val	His	His	Ġln	Lys	Gly	Lys	Asp	Glu	Gly	Val	Val	Tyr	Ser	Val	Val	
	320		٠			325					330					335	
5	cat	aga	acc	tca	aag	agg	agt	gaa	gcc	agg	tct	gct	gag	ttc	acc	gtg	1237
•	His	Arg	Thr	Ser	Lys	Arg	Ser	Glu	Ala	Arg	Ser	Ala	Glu	Phe	Thr	Val	
,					340					345					350		
	ggg	aga	aag	gac	agt	tct	atc	atc	tgt	gcg	gag	gtg	aga	tgc	ctg	cag	1285
•	Gly	Arg	Lys	Asp	Ser	Ser	Ile	Ile	Cys	Ala	Glu	Val	Arg	Cys	Leu	Gln	
10				355			•		360					365	•		
	ccc	agt	gag	gtt	tca	tcc	acg	gag	gtg	aat	atg	aga	agc	agg	act	ctc	1333
	Pro	Ser	Glu	Val	Ser	Ser	Thr	Glu	Val	Asn	Met	Arg	Ser	Arg	Thr	Leu	
			370					375					380				
	caa	gaa	ccc	ctt	agc	gac	.tgt	gag	gag	gtt	ctc	tgc	tag	tga	tggt	gtt	1382
15	Gln	Glu	Pro	Leu	Ser	Asp	Cys	Glu	Glu	Val	Leu	Cys					
		385					390					395					
	ctc	ctate	caa (caca	egee	ca c	cccc	agtc	t cc	agtg	ctcc	tca	gġaa	gac	agtg	gggtcc	1442
	tca	actc	ttt	ctgt	gggt	cc t	tcag	ttcc	c aa	gccc	agca	tca	caga	gcc	ccct	gagece	1502
	ttg	tcct	ggt (cagg	agca	cc t	gaac	cctg	g .gt	tctt	ttct	tag	caga	aga	ccaa	ccaatg	1562
20	gaa	tggg	aag (ggag	atgc	tc c	cacc	aaca	c ac	acac	ttag	gtt	caat	cag	tgac	actgga	1622
	cac	ataa	gcc (acag	atgt	ct t	cttt	ccata	a ca	agca	tgtt	agt	tcgc	ccc	aata	tacata	1682
	tat	atat	gaa (atag	tcat	gt g	ccgc	ataa	c aa	catt	tcag	tca	gtga	tag	actg	cataca	1742
	caa	cagt	ggt	ccca	taag	ac t	gtaa	tgga	g tt	taaa	aatt	cct	actg	cct	agtg	atatca	1802
	tag	ttgc	ctt	aaca	tcat	aa c	acaa	caca	t tt	ctca	cgcg	ttt	gtgg	tga	tgct	ggtaca	1862
25	aac	aagc	tac .	agcg	ccgc	ta g	tcat	atac	a aa	tata	gcac	ata	caat	tat	gtac	agtaca	1922

	ctatacttga taatgataat	aaacaactat	gttactggt		1961
	<210> 142				
	<211> 2194				
5	<212> DNA				
	<213> Homo sapiens				
•					
	<220>				
	<221> CDS				
10	<222> (58)(1710)				
					•
	<400> 142		•		
	aatcggttcc aaacagcag	t taggtcagc	a gtccgctcag ccga	ggcagc tctgttc	57
	atg gcg ttc tcg aag	ctc ttg gag	caa gcc gga ggc	gtg ggc ctc ttc	105
15	Met Ala Phe Ser Lys	Leu Leu Glu	Gln Ala Gly Gly	Val Gly Leu Phe	
	1 5		10	15	
	cag acc ctg cag gtg	ctc acc ttc	ate ctc ccc tgc	ctc atg ata cct	153
	Gln Thr Leu Gln Val	Leu Thr Phe	Ile Leu Pro Cys	Leu Met Ile Pro	
	20		25	30	
20	tcc cag atg ctc ctg	gag aac tto	tca gcc gcc atc	cca ggc cac cga	201
	Ser Gln Met Leu Leu	Glu Asn Phe	e Ser Ala Ala Ile	Pro Gly His Arg	
	35	40)	45	
	tgc tgg aca cac atg	ctg gac aat	ggc tct gcg gtt	tcc aca aac atg	24
	Cys Trp Thr His Met	Leu Asp Ası	n Gly Ser Ala Val	Ser Thr Asn Met	
25	50	55	60		

	acc	ccc	aag	gcc	ctt	ctg	acc	atc	tcc	atc	ccg	cca	ggc	ccc	aac	cag	297
	Thr	Pro	Lys	Ala	Leu	Leu	Thr	Ile	Ser	Ile	Pro	Pro	Gly	Pro	Asn	Gln	
	65					70					75					80	
	ggg	ccc	cac	cag	tgc	cgc	cgc	ttc	cgc	cag	cca	cag	tgg	cag	ctc	ttg	345
5 .	GŢĀ	Pro	His	Gln	Cys	Arg	Arg	Phe	Arg	Gln	Pro	Gln	Trp	Gln	Leu	Leu	
					85					90					95		
	gac	ccc	aat	gcc	acg	gcc	acc	agc	tgg	agc	gaa	gct	gac	acg	gag	ccg	393
	Asp	Pro	Asn	Ala	Thr	Ala	Thr	Ser	Trp	Ser	Glu	Ala	Asp	Thr	Glu	Pro	
				100					105					110			
10	tgt	gtg	gac	ggc	tgg	gtc	tat	gac	cgc	agc	gtc	ttc	acc	tcc	acc	atc	441
	Cys	Val	Asp	Gly	Trp	Val	Tyr	Asp	Arg	Ser	Val	Phe	Thr	Ser	Thr	Ile	
			115					120					125°				
	gtg	gcc	aag	tgg	gac	ctg	gtg	tgc	agc	tcc	cag	ggc	ttg	aag	ccc	cta	489
	Val	Ala	Lys	Trp	Asp	Leu	Val	Cys	Ser	Ser	Gln	Gly	Leu	Lys	Pro	Leu	
15		130					135					140					
	agc	cag	tcc	atc	ttc	atg	tcc	ggg	atc	ctg	gtg	ggc	tcc	ttt	atc	tgg	537
	Ser	Gln	Ser	Ile	Phe	Met	Ser	Gly	Ile	Leu	Val	Gly	Ser	Phe	Ile	Trp	
	145					150					155					160	
	ggc	ctc	ctc	tcc	tac	cgg	ttt	ggg	agg	aag	ccg	atg	ctg	agc	tgg	tgc	585
20	Gly	Leu	Leu	Ser	Tyr	Arg	Phe	Gly	Arg	Lys	Pro	Met	Leu	Ser	Trp	Cys	
					165					170					175		
	tgc	ctg	cag	ttg	gcc	gtg	gcg	ggc	acc	agc	acc	atc	ttc	gcc	cca	aca	633
	Cys	Leu	Gln	Leu	Ala	Val	Ala	Gly	Thr	Ser	Thr	Ile	Phe	Ala	Pro	Thr	
		•		180					185					190			
25	ttc	gtc	atc	tac	tgc	ggc	ctg	cgg	ttc	gtg	gcc	gct	ttt	ggg	atg	gcc	681

	Phe	Val	Ile	Tyr	Суѕ	Gly	Leu	Arg	Phe	Val	Ala	Ala	Phe	Gly	Met	Ala	
			195					200					205				
	ggc	atc	ttt	ctg	agt	tca	ctg	aca	ctg	atg	gtg	gag	tgg	acc	acg	acc	729
	Gly	Ile	Phe	Leu	Ser	Ser	Leu	Thr	Leu	Met	Val	Glu	Trp	Thr	Thr	Thr	
5		210					215					220					•
	agc	agg	agg	gcg	gtc	acc	atg	acg	gtg	gtg	gga	tgt	gcc	ttc	agc	gca .	777
	Ser'	Arg	Arg	Ala	Val	Thr	Met	Thr	Val	۷al	Gly	Суѕ	Ala	Phe	Ser	Ala	
	225					230					235					240	
	ggc	cag	gcg	gcg	ctg	ggc	ggc	ctg	gcc	ttt	gcc	ctg	cgg	gac	ţgg	agg	825
10	Gly	Gln	Ala	Ala	Leu	Gly	Gly	Leu	Ala	Phe	Ala	Leu	Arg	Asp	Trp	Arg	
					245					250					255		
	act	ctc	cag	ctg	gca	gca	tca	gtg	ccc	ttc	ttt	gcc	atc	tcc	ctg	ata	873
	Thr	Leu	Gln	Leu	Ala	Ala	Ser	Val	Pro	Phe	Phe	Ala	Ile	Ser	Leu	.Ile	
				260					265					270			
15	tcc	tgg	tgg	ctg	cca	gaa	tcc	gcc	cgg	tgg	ctg	att	att	aag	ggc	aaa	921
	Ser	Trp	Trp	Leu	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Ile	Ile	Lys	Gly	Lys	
			275					280	,				285				
	cca	gac	caa	gca	ctt	cag	gag	ctc	aga	aag	gtg	gcc	agg	ata	aat	ggc	969
	Pro	Asp	Gln	Ala	Leu	Gln	Glu	Leu	Arg	Lys	Val	Ala	Arg	Ile	Asn	Gly	
20		290					295					300					
	cac	aag	gag	gcc	aag	aac	ctg	acc	ata	gag	gtg	ctg	atg	tcc	agc	gtg	1017
	His	Lys	Glu	Ala	Lys	Asn	Leu	Thr	Ile	Glu	Val	Leu	Met	Ser	Ser	Val	
	305					310					315					320	
	aag	gag	gag	gtg	gcc	tct	gca	aag	gag	ccg	cgg	tcg	gtg	ctg	gac	ctg	1065
25	Lys	Glu	Glu	Val	Ala	Ser	Ala	Lys	Glu	Pro	Arg	Ser	Val	Leu	Asp	Leu	

					325					330					335		
	ttc	tgc	gtg	ccc	gtg	ctc	cgc	tgg	agg	agc	tgc	gcc	atg	ctg	gtg	gtg	1113
	Phe	Cys	Val	Pro	Val	Leu	Arg	Trp	Arg	Ser	Cys	Ala	Met	Leu	Val	Val	
				340					345					350			
5	aat	ttc	tct	cta	ttg	atc	tcc	tac	tat	ggg	ctg	gtc	ttc	gac	ctg	cag	1161
	Asn	Phe	Ser	Leu	Leu	Ile	Ser	Tyr	Tyr	Gly	Leu	Val	Phe	Asp	Leu	Gln	
			355					360					365				
	agc	ctg	ggc	cgt	gac	atc	ttc	ctc	ctc	cag	gcc	ctc	ttc	ggg	gcc	gtg	1209
	Ser	Leu	Gly	Arg	Asp	Ile	Phe	Leu	Leu	Gln	Ala	Leu	Phe	Gly	Ala	Val	
10		370					375					380					
	gac	ttc	ctg	ggc	cgg	gcc	acc	act	gcc	ctc	ttg	ctc	agt	ttc	ctt	ggc	1257
	Asp	Phe	Leu	Gly	Arg	Ala	Thr	Thr	Ala	Leu	Leu	Leu	Ser	Phe	Leu	Gly	
	385					390					395					400	
	cgc	cgc	acc	atc	cag	gcg	ggt	tcc	cag	gcc	atg	gcc	ggc	ctc	gcc	att	1305
15	Arg	Arg	Thr	Ile	Gln	Ala	Gly	Ser	Gln	Ala	Met	Ala	Gly	Leu	Ala	Ile	
					405		,			410					415		
	cta	gcc	aac	atg	ctg	gtg	ccg	caa	gat	ttg	cag	acc	ctg	cgt	gtg	gtc	1353
	Leu	Ala	Asn	Met	Leu	Val	Pro	Gln	Asp	Leu	Gln	Thr	Leu	Arg	Val	Val	
				420					425					430		•	
20	ttt	gct	gtg	ctg	gga	aag	gga	tgt	ttt	ggg	ata	agc	·cta	acc	tgc	ctc	1401
	Phe	Ala	Val	Leu	Gly	Lys	Gly	Cys	Phe	Gly	Ile	Ser	Leu	Thr	Cys	Leu	
			435					440					445				
																gca	1449
	Thr		Tyr	Lys	Ala	Glu	Leu	Phe	Pro	Thr	Pro	Val	Arg	Met	Thr	Ala	
25		450					455					460					

	gat	ggc	att	ctg	cat	aca	gtg	ggc	cgg	ctg	ggg	gct	atg	atg	ggt	ccc	1497
	Asp	Gly	Ile	Leu	His	Thr	Val	Gly	Arg	Leu	Gly	Ala	Met	Met	Gly	Pro	
	465	,				470					475					480	
	ctg	atc	ctg	atg	agc	cgc	caa	gcc	ctg	ccc	ctg	ctg	cct	cct	ctc	ctc	1545
5	Leu	Ile	Leu	Met	Ser	Arg	Gln	Ala	Leu	Pro	Leu	Leu	Pro	Pro	Leu	Leu	
					485					490					495		
	tat	ggc	gtt	atc	tcc	att	gct	tcc	agc	ctg	gtt	gtg	ctg	ttc	ttc	ctc	1593
	Tyr	Gly	Val	Ile	Ser	Ile	Ala	Ser	Ser	Lėu	Val	Val	Leu	Phe	Phe	Leu	
				500					505					510			
10	ccg	gag	acc	cag	gga	ctt	ccg	ctc	cct	gac	act	atc	cag	gac	ctg	gag	1641
	Pro	Glu	Thr	Gln	Gly	Leu	Pro	Leu	Pro	Asp	Thr	Ile	Gln	Asp	Leu	Glu	
			515					520					525				
	agc	cag	aaa	tca	aca	gca	gcc	cag	ggc	aac	cgg	caa	gag	gcc	gtc	act	1689
	Ser	Gln	Lys	Ser	Thr	Ala	Ala	Gln	Gly	Asn	Arg	Gln	Glu	Ala	Val	Thr	
15		530	,				535					540					
	gtg	gaà	agt	acc	tcg	ctc	tag	aaa	ttgt	gcc	tgca	tgga	gc c	cctt	tagt	C	1740
	Val	Glu	Ser	Thr	Ser	Leu											•
	545					550											
	aaa	gact	cct	ggaa	agga	gt t	gcct	cttc	t cc	aatc	agag	cgt	ggag	gcg	agtt	gggcga	1800
20	ctt	caag	ggc	ctgg	catg	gc a	gagg	ccag	g ca	gccg	tggc	cga	gtgg	aca	gcgt	ggccgt	1860
	ctg	ctgt	ggc	tgaa	ggca	gc t	tcca	cage	t ca	ctcc	tctt	ctc	cctg	ccc	tgat	cagatt	1920
	ccc	cacc	tta	cccg	ggcc	ct a	cagg	agcc	t gt	gcag	atgg	cca	tgcc	caa	ccaa	taacga	1980
	gac	ggtt	ccc	ctcc	cttt	cc c	tgcc	aggc	t ca	tgtc	ttta	cac	cttc	act	cagc	cacgcc	204
	aac	caga	gac	tggg	ttcc	aa t	ctca	cccc	a cc	acat	acag	ago	cctc	atc	tgtg	aaatga	210
25	gaa	tgat	cac	gtga	ccca	cc c	ccca	gggc	a gg	tatc	aggg	tga	actg	atc	ttag	caccgg	216

315/346

ccaaataaat ggaacctgct gagagagctg ccag 2194 <210> 143 <211> 2753 5 <212> DNA <213> Homo sapiens <220> <221> CDS 10 <222> (109)..(765) <400> 143 aggttttgag agctgtggag agagggacag aggctggaga aggatgtatg gcctgccctg 60 ggettgtctg ttccctcctg agcctgagcc ccttaccttc ctgacccc atg aag cac 117 15 Met Lys His aca ctg gct ctg gct ccc ctg ctg ggc ctg ggc ctg ggc ctg gcc Thr Leu Ala Leu Leu Ala Pro Leu Cly Leu Gly Leu Gly Leu Ala 5 10 15 20 ctg agt cag ctg gct gca ggg gcc aca gac tgc aag ttc ctt ggc ccg Leu Ser Gln Leu Ala Ala Gly Ala Thr Asp Cys Lys Phe Leu Gly Pro 20 . 25 30 35

gca gag cac ctg aca ttc acc cca gca gcc agg gcc cgg tgg ctg gcc

Ala Glu His Leu Thr Phe Thr Pro Ala Ala Arg Ala Arg Trp Leu Ala

45

50

40

25

	cct	cga	gtt	cgt	gcg	cca	gga	ctc	ctg	gac	tcc	ctc	tat	ggc	acc	gtg	309
	Pro	Arg	Val	Arg	Ala	Pro	Gly	Leu	Leu	Asp	Ser	Leu	Tyr	Gly	Thr	Val	
				55					60					65			
	cgc	cgc	ttc	ctc	tcg	gtg	gtg	cag	ctc	aat	cct	ttc	cct	tca	gag	ttg	357
5	Arg	Arg	Phe	Leu	Ser	Val	Val	Gln	Leu	Asn	Pro	Phe	Pro	Ser	Glu	Leu	
			70					75					80				
	gta	aag	gcc	cta	ctg	aat	gag	ctg	gcc	tcc	gtg	aag	gtg	aat	gag	gtg	405
	Val	Lys	Ala	Leu	Leu	Asn	Glu	Leu	Ala	Ser	Val	Lys	Val	Asn	Glu	Val	
		85					90					95					
10	gtg	cgg	tac	gag	gcg	ggc	tac	gtg	gta	tgc	gct	gtg	atc	gcg	ggc	ctc	453
	Val	Arg	Tyr	Glu	Ala	Gly	Tyr	Val	Val	Cys	Ala	Val	Ile	Ala	Gly	Leu	
	100					105					110					115	
	tac	ctg	ctg	ctg	gtg	ccc	act	gcc	ggg	ctt	tgc	ttc	tgc	tgc	tgc	cgc	501
	Tyr	Leu	Leu	Leu	Val	Pro	Thr	Ala	Gly	Leu	Cys	Phe	Cys	Cys	Cys	Arg	
15					120					125					130		
	tgc	cac	cgg	cgc	tgc	ggg	gga	cga	gtg	aag	aca	gag	cac	aag	gcg	ctg	549
	Cys	His	Arg	Arg	Cys	Gly	Gly	Arg	Val	Lys	Thr	Glu	His	Lys	Ala	Leu	
				135					140					145			
	gcc	tgt	gag	cgc	gcg	gcc	ctc	atg	gtc	ttc	ctg	ctg	ctg	acc	acc	ctc	597
20	Ala	Cys	Glu	Arg	Ala	Ala	Leu	Met	Val	Phe	Leu	Leu	Leu	Thr	Thr	Leu	
			150					155					160				
	ttg	ctg	ctg	att	ggt	gtg	gtc	tgt	gcc	ttt	gtc	acc	aac	cag	cgc	acg	645
	Leu	Leu	Leu	Ile	Gly	Val	Val	Cys	Ala	Phe	Val	Thr	Asn	Gln	Arg	Thr	
		165					170					175					
25	cat	gaa	cag	atg	ggc	ccc	agc	atc	gag	gcc	atg	cct	gag	acc	ctg	ctc	693

317/346

His Glu Gln Met Gly Pro Ser Ile Glu Ala Met Pro Glu Thr Leu Leu

180 185 190 195

age etc tgg gge etg gte tet gat gte eec caa gtg age act gtt acc 741

Ser Leu Trp Gly Leu Val Ser Asp Val Pro Gln Val Ser Thr Val Thr

5 200 205 210

cct cac cct cat gtg ccc ctg tga gcactgggcc cgggcaggac agagccgagt 795 Pro His Pro His Val Pro Leu

215

10

15

20

25

gggccctcga tggcccataa ccagcgcatc tgaaagccgc ctcctctccc gcccttgcct 855 gagagtcgac caccctcagg gtggatgcca taggggcagg gaaggggcca gggagagaag 915 ggcgtaagga ctgtgggtga ccaggaaggg cagcctcagg gccttgtgtt tgcctaggag 975 ctgcaggccg tggcacagca attctccctg ccccaggagc aagtctcaga ggaqctqqat 1035 ggtgttggtg tgagcattgg gagcgcgatc cacactcagc tcaggagctc cgtgtacccc 1095 ttgctggcgg ccgtgggcag tttgggccag gtcctgcagg tctccqtgca ccacctqcaa 1155 accttgaatg ctacagtggt agagctgcaa gccgggcagc aggacctgga gccagccatc 1215 cgggaacacc gggaccgcct ccttgagctg ctgcaggagg ccaggtgcca gggagattgt 1275 gcaggggccc tgagctgggc ccgcaccctg gagctgggtg ctgacttcag ccaggtgccc 1335 tctgtggacc atgtcctgca ccagctaaaa ggtgtccccg aggccaactt ctccagcatg 1395 gtccaggagg agaacagcac cttcaacgcc cttccagccc tggctgccat gcagacatcc 1455 agcgtggtgc aagagctgaa gaaggcagtg gcccagcagc cggaaggggt gaggacactg 1515 gctgaagggt tcccgggctt ggaggcagct tcccgctggg cccaggcact gcaggaggtg 1575 gaggagagca gccgccccta cctgcaggag gtgcagagat acgagaccta caggtggatc 1635 gtgggctgcg tgctgtgctc cgtggtccta ttcgtggtgc tctgcaacct gctgggcctc 1695 aatetgggca tetggggeet gtetgeeagg gacgaeeeca geeacecaga ageeaaggge 1755 gaggetggag ceegetteet catggetata ceaacaaget aeggeaggag ttgcagagee 1815

tgaaagtaga cacacagagc ctggacctgc tgagctcagc cgcccgccgg gacctggagg 1875 ccctgcagag cagtgggctt cagcgcatcc actaccccga cttcctcgtt cagatccaga 1935 ggcccgtggt gaagaccagc atggagcagc tggcccagga gctgcaagga ctggcccagg 1995 cccaagacaa ttctgtgctg gggcagcggc tgcaggagga ggcccaagga ctcagaaacc 2055 5 ttcaccagga gaaggtcgtc ccccagcaga gccttgtggc aaagctcaac ctcagcgtca 2115 gggccctgga gtcctctgcc ccgaatctcc agctggagac ctcagatgtc ctagccaatg 2175 teacetacet gaaaggagag etgeetgeet gggeageeag gateetgagg aatgtgagtg 2235 agtgtttcct ggcccgggag atgggctact tctcccaqta cgtggcctgg gtgagagag 2295 aggtgactca gegeattgee acetgeeage eceteteegg agecetggae aacageegtg 2355 10 tgatectgtg tgacatgatg getgaeeect ggaatgeett etggttetge etggeatggt 2415 qeacettett cetqatecce ageateatet ttgccqteaa gacetecaaa tacttecqte 2475 ctatccggaa acgcctcagc tccaccagct ctgaggagac tcagctcttc cacatccccc 2535 gggttacctc cctgaagctg tagggccttg tgggagtgat ctggtggcca gaacaggatt 2595 ttgcacggcc ccttttatcc tgcgcatgtg gcctagggtc atccccagcc catccctgtg 2655 15 tcagccctga gtgctggaca ctgcgttcca gaaatgagga agaggagaga gaagagatgg 2715 . acagacctca gatccattaa agtgttctca cttccctg 2753

<210> 144

<211> 2085

20 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

25 <222> (42)..(1832)

319/346

<4	^	^		-	4	А
< 4	13	1 1	-	- 1	4	и

agtccctcgg	gctcatacct	agtgcctgcg	gcaggacagc	С	atg	gcc	gcc	aac	tcc	56
					Met	Ala	Aļa	Asn	Ser	

acc agc gac ctc cac act ccc ggg acg cag ctg agc gtg gct gac atc Thr Ser Asp Leu His Thr Pro Gly Thr Gln Leu Ser Val Ala Asp Ile atc gtc atc act gtg tat ttt gct ctg aat gtg gcc gtg ggc ata tgg Ile Val Ile Thr Val Tyr Phe Ala Leu Asn Val Ala Val Gly Ile Trp tec tet tgt egg gee agt agg aac aeg gtg aat gge tac tte etg gea Ser Ser Cys Arg Ala Ser Arg Asn Thr Val Asn Gly Tyr Phe Leu Ala ggc cgg gac atg acg tgg tgg ccg att gga gcc tcc ctc ttc gcc agc Gly Arg Asp Met Thr Trp Trp Pro Ile Gly Ala Ser Leu Phe Ala Ser age gag gge tet gge etc tte att gga etg geg gge tea gge geg gea Ser Glu Gly Ser Gly Leu Phe Ile Gly Leu Ala Gly Ser Gly Ala Ala qqa qqt ctq qcc qtq qca qqc ttc qaq tqq aat qcc acq tac qtq ctq Gly Gly Leu Ala Val Ala Gly Phe Glu Trp Asn Ala Thr Tyr Val Leu ctg gca ctg gca tgg gtg ttc gtg ccc atc tac atc tcc tca gag atc

Leu Ala Leu Ala Trp Val Phe Val Pro Ile Tyr Ile Ser Ser Glu Ile

				105					110					115			
	gtc	acc	tta	cct	gag	tac	att	cag	aag	cgc	tac	ggg	ggc	cag	cgg	atc	440
	Val	Thr	Leu	Pro	Glu	Tyr	Ile	Gln	Lys	Arg	Tyr	Gly	Gly	Gln	Arg	Ile	
			120					125					130				
5	cgc	atg	tac	ctg	tct	gtc	ctg	tcc	ctg	cta	ctg	tct	gtc	ttc	acc	aag	488
	Arg	Met	Tyr	Leu	Ser	Val	Leu	Ser	Leu	Leu	Leu	Ser	Val	Phe	Thr	Lys	
		135					140					145					
	ata	tcg	ctg	gac	ctg	tac	gcg	ggg	gct	ctg	ttt	gtg	cac	atc	tgc	ctg	536
	Ile	Ser	Leu	Asp	Leu	Tyr	Ala	Gly	Ala	Leu	Phe	Val	His	Ile	Cys	Leu	
10	150					155					160					165	
	ggc	tgg	aac	ttc	tac	ctc	tcc	acc	atc	ctc	acg	ctc	ggc	atc	aca	gcc	584
	Gly	Trp	Asn	Phe	Tyr	Leu	Ser	Thr	Ile	Leu	Thr	Leu	Gly	Ile	Thr	Ala	
					170			·		175					180		
	ctg	tac	acc	atc	gca	ggg	ggc	ctg	gct	gct	gta	atc	tac	acg	gac	gcc	632
15	Leu	Tyr	Thr	Ile	Ala	Gly	Gly	Leu	Ala	Ala	Val	Ile	Tyr	Thr	Asp	Ala	
				185					190					195			
,	ctg	cag	acg	ctc	atc	atg	gtg	gtg	ggg	gct	gtc	atc	ctg	aca	atc	aaa	680
	Leu	Gln	Thr	Leu	Ile	Met	Val	Val	Gly	Ala	Val	Ile	Leu	Thr	Ile	Lys	
			200					205					210				
20	gct	ttt	gac	cag	atc	ggt	ggt	tac	ggg	cag	ctg	gag	gca	gcc	tac	gcc	728
	Ala	Phe	Asp	Gln	Ile	Gly	Gly	Tyr	Gly	Gln	Leu	Glu	Ala	Ala	Tyr	Ala	
		215					220					225					
	cag	gcc	att	ccc	tcc	agg	acc	att	gcc	aac	acc	acc	tgc	cac	ctg	cca	776
	Gln	Ala	Ile	Pro	Ser	Arg	Thr	Ile	Ala	Asn	Thr	Thr	Cys	His	Leu	Pro	•
25	230					235					240				•	245	

	cgt	aca	gac	gcc	atg	cac	atg	ttt	cga	gac	CCC	cac	aca	ggg	gac	ctg	824
	Arg	Thr	Asp	Ala	Met	His	Met	Phe	Arg	Asp	Pro	His	Thr	Gly	Asp	Leu	
					250					255					260		
	ccg	tgg	acc	ggg	atg	acc	ttt	ggc	ctg	acc	atc	atg	gcc	acc	tgg	tac	872
5	Pro	Trp	Thr	Gly	Met	Thr	Phe	Gly	Leu	Thr	Ile	Met	Ala	Thr	Trp	Tyr	
				265					270					275			
	tgg	tgc	acc	gac	cag	gtc	atc	gtg	cag	cga	tca	ctg	tca	gcc	cgg	gac	920
	Trp	Cys	Thr	Asp	Gln	Val	Ile	Val	Gln	Arg	Ser	Leu	Ser	Ala	Arg	Asp	
			280					285					290				
10	ctg	aac	cat	gcc	aag	gcg	ggc	tcç	atc	ctg	gcc	agc	tac	ctc	aag	atg	968
	Leu	Asn	His	Ala	Lys	Ala	Gly	Ser	Ile	Leu	Ala	Ser	Tyr	Leu	Lys	Met	
		295					300					305					
	ctc	ccc	atg	ggc	ctg	atc	ata	atg	ccg	ggc	atg	atc	agc	cgc	gca	ttg	1016
	Leu	Pro	Met	Gly	Leu	Ile	Ile	Met	Pro	Gly	Met	Ile	Ser	Arg	Ala	Leu	
15	310					315					320					325	
	ttc	cca	gat	gat	gtg	ggc	tgc	gtg	gtg	ccg	tcc	gag	tgc	ctg	cgg	gcc	1064
	Phe	Pro	Asp	Asp	Val	Gly	Cys	Val	Val	Pro	Ser	Glu	Суз	Leu	Arg	Ala	
					330					335					340		
	tgc	ggg	gcc	gag	gtc	ggc	tgc	tcc	aac	atc	gcc	tac	ccc	aag	ctg	gtc	1112
20	Cys	Gly	Ala	Glu	Val	Gly	Cys	Ser	Asn	Ile	Ala	Tyr	Pro	Lys	Leu	Val	
				345					350					355			
	atg	gaa	ctg	atg	ccc	ato	ggt	ctg	cgg	ggg	ctg	atg	ato	gca	gtg	atg	1160
	Met	Glu	Leu	Met	Pro	Ile	Gly	Leu	Arg	Gly	Leu	Met	Ile	Ala	val	Met	
			360)				365					370	I			
25	ctg	gcg	gcg	ctc	atg	tcg	tcg	ctg	acc	tcc	ato	ttc	aac	ago	ago	agc	1208

	Leu	Ala	Ala	Leu	Met	Ser	Ser	Leu	Thr	Ser	Ile	Phe	Asn	Ser	Ser	Ser	
		375					380					385					
	acc	ctc	ttc	act	atg	gac	atc	tgg	agg	cgg	ctg	cgt	ccc	cgc	tcc	ggc	1256
	Thr	Leu	Phe	Thr	Met	Asp	Ile	Trp	Arg	Arg	Leu	Arg	Pro	Arg	Ser	Gly	
5	390					395					400				·	405	
	gag	cgg	gag	ctc	ctg	ctg	gtg	gga	cgg	ctg	gtc	ata	gtg	gca	ctc	atc	1304
	Glu	Arg	Glu	Leu	Leu	Leu	Val	Gly	Arg	Leu	Val	Ile	Val	Ala	Leu	Ile	
					410					415					420		
	ggc	gtg	agt	gtg	gcc	tgg	atc.	ccc	gtc	ctg	cag	gac	tcc	aac	agc	ggg	1352
10	Gly	Val	Ser	Val	Ala	Trp	Ile	Pro	Val	Leu	Gln	Asp	Ser	Asn	Ser	Gly	
				425					430			•		435			
	caa	ctc	ttc	atc	tac	atg	cag	tca	gtg	acc	agc	tcc	ctg	gcc	cca	cca	1400
	Gln	Leu	Phe	Ile	Tyr	Met	Gln	Ser	Val	Thr	Ser	Ser	Leu	Ala	Pro	Pro	
•			440					445					450				`
15	gtg	act	gca	gtc	ttt	gtc	ctg	ggc	gtc	ttc	tgg	cga	cgţ	gcc	aac	gag	1448
	Val	Thr	Ala	Val	Phe	Val	Leu	Gly	Val	Phe	Trp	Arg	Arg	Ala	Asn	Glu	
	•	455 ·					460	``				465					
	cag	ggg	gcc	ttc	tgg	ggc	ctg	ata	gca	ggg	ctg	gtg	gtg	ggg	gcc	acg	1496
	Gln	Gly	Ala	Phe	Trp	Gly	Leu	Ile	Ala	Gly	Leu	Val	Val	Gly	Ala	Thr	
20	470					475					480					485	
	agg	ctg	gtc	ctg	gaa	ttc	ctg	aac	cca	gcc	cca	ccg	tgc	gga	gag	cca	1544
	Arg	Leu	Val	Leu	Glu	Phe	Leu	Asn	Pro	Ala	Pro	Pro	Cys	Gly	Glu	Pro	
					490	•				495					500		
	gac	acg	cgg	cca	gcc	gtc	ctg	ggg	agc	atc	cac	tac	ctg	cac	ttc	gct	1592
25	Asp	Thr	Arg	Pro	Ala	Val	Leu	Gly	Ser	Ile	His	Tyr	Leu	His	Phe	Ala	

PCT/JP00/09359 WO 01/49728

323/346

510 505 515 gtc gcc ctc ttt gca ctc agt ggt gct gtt gtg gtg gct gga agc ctg 1640 Val Ala Leu Phe Ala Leu Ser Gly Ala Val Val Ala Gly Ser Leu 525 530 520 5 ctg acc cca ccc cca cag agt gtc cag att gag aac ctt acc tgg tgg 1688 Leu Thr Pro Pro Pro Gln Ser Val Gln Ile Glu Asn Leu Thr Trp Trp 535 540 545 acc ctg gct cag gat gtg ccc ttg gga act aaa gca ggt gat ggc caa 1736 Thr Leu Ala Gln Asp Val Pro Leu Gly Thr Lys Ala Gly Asp Gly Gln 10 555 560 565 550 aca ccc cag aaa cac gcc ttc tgg gcc cgt gtc tgt ggc ttc aat gcc 1784 Thr Pro Gln Lys His Ala Phe Trp Ala Arg Val Cys Gly Phe Asn Ala 580 570 575 atc etc etc atg tgt gtc aac ata tte ttt tat gec tac tte gec tga 1832 15 Ile Leu Leu Met Cys Val Asn Ile Phe Phe Tyr Ala Tyr Phe Ala 595 585 590 cactgccatc ctggacagaa aggcaggagc tctgagtcct caggtccacc catttccctc 1892 atggggatec egaageeeca agaggggeag atteceetea eagetgeaca geageteggt 1952 gcccaagaac tggccaagcc agcaaagcgg gagccctgaa aaattagggg ggaaatggga 2012 20 gaaaataatg tgacatttca aaaacagcac caaagcagtc agcattggaa ggaaaattag 2072 atttctgacg gac 2085

<210> 145

<211> 2208

25 <212> DNA

	<213> Homo sapiens	
	<220>	
	<221> CDS	
5	<222> (100)(1503)	
	<400> 145	
	cttgactttg agcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg	60
	ggccccagcc cacaccttca ccagggccca ggagccacc atg tgg cga tgt cca	114
10	Met Trp Arg Cys Pro	
	1 5	
	ctg ggg cta ctg ctg ttg ctg ccg ctg gct ggc cac ttg gct ctg ggt	162
	Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly His Leu Ala Leu Gly	
	10 15 20	
15	gcc cag cag ggt cgt ggg cgc cgg gag cta gca ccg ggt ctg cac ctg	210
	Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala Pro Gly Leu His Leu	
	25 30 35	
	cgg ggc atc cgg gac gcg gga ggc cgg tac tgc cag gag cag gac ctg	258
	Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys Gln Glu Gln Asp Leu	•
20	40 45 50	
	tgc tgc cgc ggc cgt gcc gac gac tgt gcc ctg ccc tac ctg ggc gcc	30
	Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu Pro Tyr Leu Gly Ala	
	55 60 65	
0.5	ate tgt tac tgt gac etc tte tgc aac ege aeg gte tee gac tge tge	35
25	Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr Val Ser Asp Cys Cys	

	70					75					80					85	
	cct	gac	ttc	tgg	gac	ttc	tgc	ctc	ggc	gtg	cca	ccc	cct	ttt	ccc	ccg	402
	Pro	Asp	Phe	Trp	Asp	Phe	Cys	Leu	Gly	Val	Pro	Pro	Pro	Phe	Pro	Pro	
					90					95					100		
5	atc	caa	gga	tgt	atg	cat	gga	ggt	cgt	atc	tat	cca	gtc	ttg	gga	acg	450
	Ile	Gln	Gly	Cys	Met	His	Gly	Gly	Arg	Ile	Tyr	Pro	Val	Leu	Gly	Thr	
•				105				·	110					115			
	tac	tgg	gac	aac [.]	tgt	aac	cgt	tgc	acc	tgc	cag	gag	aac	agg	cag	tgg	498
	Tyr	Trp	Asp	Asn	Cys	Asn	Arg	Cys	Thr	Cys	Gln	Glu	Asn	Arg	Gln	Trp	
10		,	120					125					130				
	cag	tgt	gac	caa	gaa	cca	tgc	ctg	gtg	gat	cca	gac	atg	atc	aaa	gcc	546
	Gln	Cys	Asp	Gln	Glu	Pro	Cys	Leu	Val	Asp	Pro	Asp	Met	Ile	Lys	Ala	
		135					140					145					
	atc	aac	cag	ggc	aac	tat	ggc	tgg	cag	gct	ggg	aac	cac	agc	gcc	ttc	594
15	Ile	Asn	Gln	Gly	Asn	Tyr	Gly	Trp	Gln	Ala	Gly	Asn	His	Ser	Ala	Phe	
	150					155					160					165	
	tgg	ggc	atg	acc	ctg	gat	gag	ggc	att	cgc	tac	cgc	ctg	ggc	acc	atc	642
	Trp	Gly	Met	Thr	Leu	Asp	Glu	Gly	Ile	Arg	Tyr	Arg	Leu	Gly	Thr	Ile	
					170					175					180		
20	cgc	cca	tct	tcc	tcg	gtc	atg	aac	atg	cat	gaa	att	tat	aca	gtg	ctg	690
	Arg	Pro	Ser	Ser	Ser	Val	Met	Asn	Met	His	Glu	Ile	Tyr	Thr	Val	Leu	
				185					190					195)		
	aac	cca	ggg	gag	gtg	ctt	ccc	aca	gcc	ttc	gag	gcc	tct	gag	aag	tgg	738
	Asn	Pro	Gly	Glu	Val	Leu	Pro	Thr	Ala	Phe	Glu	Ala	Ser	Glu	Lys	Trp	
25			200					205					210	1			

	ccc	aac	ctg	att	cat	gag	cct	ctt	gac	caa	ggc	aac	tgt	gca	ggc	tcc	786
	Pro	Asn	Leu	Ile	His	Glu	Pro	Leu	Asp	Gln	Gly	Asn	Cys	Ala	Gly	Ser	
		215					220					225					
	tgg	gċc	ttc	tcc	aca	gca	gct	gtg	gca	tcc	gat	cgt	gtc	tca	atc	cat	834
5	Trp	Ala	Phe	Ser	Thr	Ala,	Ala	Val	Ala	Ser	Asp	Arg	Val	Ser	Ile	His	
	230					235					240					245	
	tct	ctg	gga	cac	atg	acg	cct	gtc	ctg	tcg	ccc	cag	aac	ctg	ctg	tct	882
	Ser	Leu	Gly	His	Met	Thr	Pro	Val	Leu	Ser	Pro	Gln	Asn	Leu	Leu	Ser	
					250					255					260		
10	tgt	gac	acc	cac	cag	cag	cag	ggc	tgc	cgc	ggt	ggg	cgt	ctc	gat	ggt	930
	Cys	Asp	Thr	His	Gln	Gln	Gln	Gly	Cys	Arg	Gly	Gly	Arg	Leù	Asp	Gly	
		,		265					270					275			
	gcc	tgg	tgg	ttc	ctg	cgt	cgc	cga	gġg	gtg	gtg	tct	gac	cac	tgc	tac	978
	Ala	Trp	Trp	Phe	Leu	Arg	Arg	Arg	Gly	Val	Val	Ser	Asp	His	Cys	Tyr	
15			280					285					290				
	ccc	ttc	tcg	ggc	cgt	gaa	cga	gac	gag	gct	ggc	cct	gcg	ccc	ccc	tgt	1026
	Pro	Phe	Ser	Gly	Arg	Glu	Arg	Asp	Glu	Ala	Gly	Pro	Ala	Pro	Pro	Cys	
		295					300					305					
	atg	atg	cac	agc	cga	gcc	atg	ggt	cgg	ggc	aag	cgc	cag	gcc	act	gcc	1074
20	Met	Met	His	Ser	Arg	Ala	Met	Gly	Arg	Gly	Lys	Arg	Gln	Ala	Thr	Ala	
•	310					315					320					325	
	cac	tgc	CCC	aac	agc	tat	gtt	aat	aac	aat	_gac	atc	tac	cag	gtc	act	1122
	His	Cys	Pro	Asn	Ser	Tyr	Val	Asn	Asn	Asn	Asp	Ile	Tyr	Gln	Val	Thr	
					330					335					340		
25	cct	gtc	tac	cgc	ctc	ggc	tcc	aac	gac	aag	gag	atc	atg	aag	gag	ctg	1170

	Pro	Val	Tyr	Arg	Leu	Gly	Ser	Asn	Asp	Lys	Glu	Ile	Met	Lys	Glu	Leu	
				345					350					355			
	atg	gag	aat	ggc	cct	gtc	caa	gcc	ctc	atg	gag	gtg	cat	gag	gac	ttc	1218
	Met	Glu	Asn	Gly	Pro	Val	Gĺn	Ala	Leu	Met	Glu	Val	His	Glu	Asp	Phe	
5			360					365					370				
	ttc	cta	tac	aag	gga	ggc	atc	tac	agc	cac	acg	cca	gtg	agc	ctt	ggg	1266
	Phe	Leu	Tyr	Lys	Gly	Gly	Ile	Tyr	Ser	His	Thr	Pro	Val	Ser	Leu	Gly	
		375					380					385					
	agg	cca	gag	aga	tac	cgc	cgg	cat	ggg	acc	cac	tca	gtc	aag	atc	aca	1314
10	Arg	Pro	Glu	Arg	Tyr	Arg	Arg	His	Gly	Thr	His	Ser	Val	Lys	Ile	Thr	
	390					395					400					405	
	gga	tgg	gga	gag	gag	acg	ctg	cca	gat	gga	agg	acg	ctc	aaa	tac	tgg	1362
	Gly	Trp	Gly	Glu	Glu	Thr	Leu	Pro	Asp	Gly	Arg	Thr	Leu	Lys	Tyr	Trp	
					410					415					420		
15	act	gcg	gcc	aac	tcc	tgg	ggc	cca	gcc	tgg	ggc	gag	agg	ggc	cac	ttc	1410
	Thr	Ala	Ala	Asn	Ser	Trp	Gly	Pro	Ala	Trp	Gly	Glu	Arg	Gly	His	Phe	
				425					430					435		•	
	cgc	atc	gtg	cgc	ggc	gtc	aat	gag	tgc	gac	ato	gag	ago	tto	gtg	ctg	1458
	Arg	Ile	Val	Arg	Gly	Val	Asn	Glu	Cys	Asp	Ile	Glu	Ser	Phe	Val	Leu	
20			440					445					450)			
	ggc	gtc	tgg	ggc	cgc	gtg	ggc	atg	gag	gac	atg	ggt	: cat	cac	: tga		1503
	Gly	Val	Trp	Gly	Arg	Val	Gly	Met	Glu	. Asp	Met	Gly	/ His	His	•		
		455					460)				465	5				
	ggc	tgcg	ggc	acca	cgcg	igg g	rtccg	gcct	g gg	atco	aggo	: taa	agggo	cgg	cgga	agaggc	1563
25	ccc	aatg	ggg	cggt	gaco	cc a	gcct	cgcc	c ga	caga	gcc	ggg	ggcgd	agg	cggg	cgccag	1623

328/346

	ggcgctaatc	ccggcgcggg	ttccgctgac	gcagcgcccc	gcctgggagc	cgcgggcagg	1683
	cgagactggc	ggagccccca	gacctcccag	tggggacggg	gcagggcctg	gcctgggaag	1743
	agcacagctg	cagatcccag	gcctctggcg	ccccactca	agactaccaa	agccaggaca	1803
	cctcaagtct	ccagccccac	taccccaccc	cactcctgta	ttctttttt	tttttttta	1863
5	.gacagggtct	tgctccgttg	cccaggttgg	agtgcagtgg	cccatcaggg	ctcactgtaa	1923
	cctccgactc	ctgggttcaa	gtgaccctcc	cacctcagcc	tctcaagtag	ctgggactac	1983
	aggtgcacca	ccacacctgg	ctaatttttg	tattttttgt	aaagaggggg	gtctcactgt	2043
	gttgcccagg	ctggtctcga	actcctgggc	tcaagcggtc	cacctgcctc	cgcctcccaa	2103
	agtgctggga	ttgcaggcat	gagccactgc	acccagccct	gtattcttat	tcttcagata	2163
10	tttatttttc	ttttcactgt	tttaaaataa	aaccaaagta	ttgat		2208

<210> 146

<211> 2044

<212> DNA

15 <213> Homo sapiens

<220>

<221> CDS

<222> (371)..(1801)

20

25

<400> 146

gaccggcttt aagcaacatg gcggctgccg tggtgcagcg cccgggctga gcgacagcaa 60 gtgcagcggg ctcctacccc gggtgagggg tggcctccgc gtgggatcgt gccctcttca 120 gcccgctcct gtccccgaca tcacgtgtat tccgcacgtc ccctccgcgc tgtgtgtcta 180 ctgagacggg gaggcgtgac agggcccggg tcccttctca gtggtgctct gtgcttcagg 240

	gcaa	gctc	cc c	gtct	ccgg	g cg	cact	tccc	tcg	cctg	tgt ·	tcgg	tcca	tc c	tcct	ttctc	300
	cago	cctcc	tc c	cctc	gcag	g tg	ggat	cgtc	ggt	ggga	ccg	gagc	gcąg	gc g	ggcg	cġgcc	360
	ccc	cggga	.cc a	itg g	cc g	gg t	cc g	ac a	cc g	cg c	cc t	tc c	tc a	gc c	ag g	cg	409
			M	Met A	la G	ly S	er A	sp T	hr A	la P	ro P	he L	eu S	er G	ln A	la	
5				1				5					10			•	
	gat	gac	ccg	gac	gac	ggg	cca	gtg	cct.	ggc	acc	ccg	ggg	ttg	cca	ggg	457
	Asp	Asp	Pro	Asp	Asp	Gly	Pro	Val	Pro	Gly	Thr	Pro	Gly	Leu	Pro	Gly	
		15					20					25					
	tcc	acg	ggg	aac	ccg	aag	tcc	gag	gag	ccc	gag	gtc	ccg	gac	cag	gag	505
10	Ser	Thr	Gly	Asn	Pro	Lys	Ser	Glu	Glu	Pro	Glu	Val	Pro	Asp	Gln	Ģlu	
	30					35					40				•	45	
	ggg	ctg	cag	cgc	atc	acc	ggc	ctg	tct	ccc	ggc	cgt	tcg	gct	ctc	ata	553
,	Gly	Leu	Gln	Arg	Ile	Thr	Gly	Leu	Ser	Pro	Gly	Arg	Ser	Ala	Leu	Ile	
			,		50					55					60		
15	gtg	gcg	gtg	ctg	tgc	tac	atc	aat	ctc	ctg	aac	tac	atg	gac	cgc	ttc	601
	Val	Ala	Val	Leu	Cys	Tyr	Ile	Asn	Leu	Leu	Asn	Tyr	Met	Asp	Arg	Phe	
			•	65					70					75			
	acc	gtg	gct	ggç	gtc	ctt	ccc	gac	atc	gag	cag	ttc	ttc	aac	atc	ggg	649
	Thr	. Val	Ala	Gly	Val	Leu	Pro	Asp	Ilė	Glu	Gln	Phe	Phe	Asn	Ile	Gly	
20			80	,				85					90			·	
	gad	agt	ago	tct:	ggg	ctc	atc	cag	acc	gtg	ttc	atc	tcc	agt	tac	atg	697
	Asp	Ser	Ser	Ser	Gly	Leu	Ile	Gln	Thr	Val	Phe	Ile	Ser	Ser	Tyr	Met	
		. 95)				100					105					
	gt	g ttg	gca	cct	gtg	r ttt	ggc	tac	ctg	ggt	. gac	agg	tac	aat	. cgg	aag	745
25	Va:	l Leu	ı Ala	Pro	val	. Phe	Gly	Tyr	Leu	Gly	Asp	Arg	Tyr	Asn	Arg	Lys	

	110					115					120					125	
٠	tat	ctc	atg	tgc	ggg	ggc	att	gcc	ttc	tgg	tcc	ctg	gtg	aca	ctg	ggg	793
	Tyr	Leu	Met	Cys	Gly	Gly	Ile	Ala	Phe	Trp	Ser	Leu	Val	Thr	Leu	Gly	
				•	130					135					140		
5	tca	tcc	ttc	atc	ccc	gga	gag	cat	ttc	tgg	ctg	ctc	ctc	ctg	acc	cgg	841
	Ser	Ser	Phe	Iḷe	Pro	Gly	Glu	His	Phe	Trp	Leu	Leu	Leu	Leu	Thr	Arg	
				145					150					155			
	ggc	ctg	gtg	ggg	gtc	ggg	gag	gcc	agt	tat	tcc	acc	atc	gcg	ccc	act	889
	Gly	Leu	Val	Gly	Val	Gly	Glu	Ala	Ser	Tyr	Ser	Thr	Ile	Ala	Pro	Thr	
10			160					165					170				
	ctc	att	gcc	gac	ctc	ttt	gtg	gcc	gac	cag	cgg	agc	cgg	atg	ctc	agc	937
	Leu	Ile	Ala	Asp	Leu	Phe	Val	Ala	Asp	Gln	Arg	Ser	Arg	Met	Leu	Ser	
		175					180	,				185					
	atc	ttc	tac	ttt	gcc	att	ccg	gtg	ggc	agt	ggt	ctg	ggc	tac	att	gca	985
15	Ile	Phe	Tyr	Phe	Ala	Ile	Pro	Val	Gly	Ser	Gly	Leu	Gly	Tyr	Ile	Ala	
	190					195					200					205	
	ggc	tcc	aaa	gtg	aag	gat	atg	gct	gga	gac	tgg	cac	tgg	gct	ctg	agg	1033
	Gly	Ser	Lys	Val	-	_	Met	Ala	Gly	Asp	Trp	His	Trp	Ala	Leu	Arg	
		•			210					215					220		
20							-			_						gta	1081
	Val	Thr	Pro			Gly	Val	. Val	Ala	Val	Leu	Leu	Leu			Val	
				225					230	1				235	•		
																cca	1129
	Val	Arg	g Glu		Pro	Arg	Gly	/ Ala	Val	Glu	Arg	His	Ser	Asp	Leu	Pro	
25			240	1				245					250	١.			

	ccc	ctg	aac	ccc	acc	tcg	tgg	tgg	gca	gat	ctg	agg	gct	ctg	gça	aga	1177
	Pro	Leu	Asn	Pro	Thr	Ser	Trp	Trp	Ala	Asp	Leu	Arg	Ala	Leu	Ala	Arg	
		255					260					265					
	aat	ctc	atc	ttt	gga	ctc	atc	acc	tgc	ctg	acc	gga	gtc	ctg	ggt	gtg	1225
5	Asn	Leu	Ile	Р̀ће	Gly	Leu	Ile	Thr	Cys	Leu	Thr	Gly	Val	Leu	Gly	Val	
	270					275		•			280					285	
	ggc	ctg	ggt	gtg	gag	atc	agc	cgc	cgg	ctc	cgc	cac	tcc	aac	ccc	cgg	1273
	Gly	Leu	Gly	Val	Glu	Ile	Ser	Arg	Arg	Leu	Arg	His	Ser	Asn	Pro	Arg	
					290					295					300		
10	gct	gat	ccc	ctg	gtc	tgt	gcc	act	ggc	ctc	ctg	ggc	tct	gca	ccc	ttc	1321
	Ala	Asp	Pro	Leu	Val	Cys	Ala	Thr	Gly	Leu	Leu	Gly	Ser	Ala	Pro	Phe	
	•			305					310					315			
	ctc	ttc	ctg	tcc	ctt	äcc	tgc	gcc	cgt	ggt	agc	atc	gtg	gcc	act	tat	1369
	Leu	Phe	Leu	Ser	Leu	Ala	Cys	Ala	Arg	Gly	Ser	Ile	Val	Ala	Thr	Tyr	
15	•		320					325					330				
	att	ttc	atc	ttc	att	gga	gag	acc	ctc	ctg	tcc	atg	aac	tgg	gcc	atc	1417
	Ile	Phe	Ile	Phe	Ile	Gly	Glu	Thr	Leu	Leu	Ser	Met	Asn	Trp	Ala	Ile	
		335					340					345					
	gtg	gcc	gac	att	ctg	ctg ·	tac	gtg	gtg	atc	cct	acc	cga	cgc	tcc	acc	1465
20			Asp	Ile	Leu		_	Val	Val	Ile			Arg	Arg	Ser		
	350					355					360					365	
																ggg	1513
	Ala	Glu	Ala	Phe			Val	Leu				Leu	Gly	Asp		Gly	
					370					375					380		
25	ago	ccc	tac	cto	att	. ggc	ctg	ato	tct	gac	cgc	: ctg	cgc	cgg	aac	tgg	1561

332/346

	Ser	Pro	Tyr	Leu	Ile	Gly	Leu	Ile	Ser	Asp	Arg	Leu	Arg	Arg	Asn	Trp	
				385					390					395		•	
	ccc	ccc	tcc	ttc	ttg	tcc	gag	ttc	cgg	gct	ctg	cag	ttc	tcg	ctc	atg	1609
	Pro	Pro	Ser	Phe	Leu	Ser	Glu	Phe	Arg	Ala	Leu	Gln	Phe	Ser	Leu	Met	
5			400					405					410				
	ctc	tgc	gcg	ttt	gtt	ggg	gca	ctg	ggc	ggc	gca	gcc	ttc	ctg	ggc	acc	1657
	Leu	Cys	Ala	Phe	Val	Gly	Ala	Leu	Gly	Gly	Ala	Ala	Phe	Leu	Gly	Thr	
		415					420					425					
-	gcc	atc	ttc	att	gag	gcc	gac	cgc	cgg	cgg	gca	cag	ctg	cac	gtg	cag	1705
10	Ala	Ile	Phe	Ile	Glu	Ala	Asp	Arg	Arg	Arg	Ala	Gln	Leu	His	Val	Gln	
	430					435					440					445	
	ggc	ctg	ctg	cac	gaa	gca	ggg	tcc	aca	gac	gac	cgg	att	gtg	gtg	ccc	1753
	Gly	Leu	Leu	His	Glu	Ala	Gly	Ser	Thr	Asp	Asp	Arg	Ile	Val	Val	Pro	
					450					455					460		
15	cag	cgg	ggc	cgc	tcc	acc	cgc	gtg	ccc	gtg	gcc	agt	gtg	ctc	atc	tga	1801
	Gln	Arg	Gly	Arg	Ser	Thr	Arg	Val	Pro	Val	Ala	Ser	Val	Leu	Ile		
				465					470					475			
	gag	gctg	ccg.	ctca	ccta	cc 't	gcac	atct	g cc	acag	ctgg	ccc	tggg	ccc	accc	cacgaa	1861
	ggg	cctg	ggc	ctaa	cccc	tt g	gcct	ggcc	c ag	cttc	caga	ggg	accc	tgg	gccg	tgtgcc	1921
20	agc	tccc	aga	cact	acat	gg g	tagc	tcag	g gg	agga	ggtg	ggg	gtcc	agg	aggg	ggatcc	1981
	ctc	tcca	cag	gggc	agcç	cc a	aggg	ctcg	g tg	ctat	ttgt	aac	ggaa	taa	aatt	tgtagc	2041
	cag																2044

<210> 147

25 <211> 2176

333/346

<212> DNA

<213> Homo sapiens

<220>

5 <221> CDS

<222> (263)..(1612)

<400> 147

tteggeeget gtteggetge geggeggeag etceeggegg etceetggegg egeegeagte 60

ggaeettegg gegeetgetg geeggeggea geagegatgg eeceetgage aggeagggag 120

caggeggegg caggegggea agegggeggg tgeegeagee eaggeeeggg tegegeetet 180

ttgttteeac gggtagegge geagteeegg geecegggeg gaagtgagae gegeteggeg 240

cgggggeege ggeggeegea ee atg age gae ate ege eac teg etg etg ege 292

Met Ser Asp Ile Arg His Ser Leu Leu Arg

15 1 5 10

cgc gat gcg ctg agc gcc gcc aag gag gtg ttg tac cac ctg gac atc 340 Arg Asp Ala Leu Ser Ala Ala Lys Glu Val Leu Tyr His Leu Asp Ile

15 20 25

tac ttc agc agc cag ctg cag agc gcg ccg ctg ccc atc gtg gac aag 388

20 Tyr Phe Ser Ser Gln Leu Gln Ser Ala Pro Leu Pro Ile Val Asp Lys

30 35 40

ggc ccc gtg gag ctg ctg gag gag ttc gtg ttc cag gtg ccc aag gag 436 Gly Pro Val Glu Leu Glu Glu Phe Val Phe Gln Val Pro Lys Glu

45 50 55

25 cgc agc gcg cag ccc aag aga ctg aat tcc ctt cag gag ctt caa ctt 484

	Arg	Ser	Ala	Gln	Pro	Lys	Arg	Leu	Asn	Ser	Leu	Gln	Glu	Leu	Gln	Leu	
		60					65					70					
	ctt	gaa	atc	atg	tgc	aat	tat	ttc	cag	gag	caa	acc	aag	gac	tct	gtt	532
	Leu	Glu	Ile	Met	Cys	Asn	Tyr	Phe	Gln	Glu	Gln	Thr	Lys	Asp	Ser	Val	
5	75					80					85					90	
	cgg	cag	att	att	ttt	tca	tcc	ctt	ttc	agc	cct	caa	ggg	aac	aaa	gcc	580
	Arg	Gln	Ile	Ile	Phe	Ser	Ser	Leu	Phe	Ser	Pro	Gln	Gly	Asn	Lys	Ala	
		•			95					100					105		
	gat	gac	agc	cgg	atg	agc	ttg	ttg	gga	aaa	ctg	gtc	tcc	atg	gcg	gtg	628
10	Asp	Asp	Ser	Arg	Met	Ser	Leu	Leu	Gly	Lys	Leu	Val	Ser	Met	Ala	Val	
				110					115					120			
	gct	gtg	tgt	cga	atc	ccg	gtg	ttg	gag	tgt	gct	gcc	tcc	tgg	ctt	cag	676
	Ala	Val	Суѕ	Arg	Ile	Pro	Val	Leu	Glu	Cys	Ala	Ala	Ser	Trp	Leu	Gln	
			125					130					135				
15	cgg	acg	ccc	gtg	gtt	tac	tgt	gtg	agg	tta	gcc	aag	gcc	ctt	gta	gat	724
	Arg	Thr	Pro	Val	Val	Tyr	Суз	Val	Arg	Leu	Ala	Lys	Ala	Leu	Val	Asp	
		140					145					150	1				
	gac	: tac	tgc	: tgt	ttg	gtg	ccg	gga	tcc	att	cag	aco	ctg	aaç	cag	ata	772
	Asp	Tyr	Cys	Cys	Leu	val	Pro	Gly	Ser	Ile	Gln	Thr	Leu	Lys	Gln	Ile	
20	155	•				160	١				165	Ò				170	
	ttc	agt	gcc	agc	ccg	g aga	tto	: tgc	tgc	cag	, ttc	ato	acc	tco	gtt	açc	820
	Phe	e Ser	: Ala	a Ser	Pro	Arg	Phe	e Cys	Cys	Gln	Phe	e Ile	e Thr	: Sei		. Thr	
					175		-			180					185		
																ttg:	
25	Ala	a Let	туз	c Asp	Let	ı Ser	Ser	: Asp	Asp	Leu	ı Ile	e Pro	Pro	Me	t Asp	Leu	

				190					195					200			
	ctt	gaa	atg	att	gtc	acc	tgg	att	ttt	gag	gac	cca	agg	ttg	att	ctc	916
	Leu	Glu	Met	Ile	Val	Thr	Trp	Ile	Phe	Glu	Asp	Pro	Arg	Leu	Ile	Leu	
			205		٠			210					215				
5	atc	act	ttt	tta	aat	act	ccg	att	gcg	gcc	aat	ctg	cca	ata	gga	ttc	964
	Ile	Thr	Phe	Leu	Asn	Thr	Pro	Ile	Ala	Ala	Asn	Leu	Pro	Ile	Gly	Phe	
		220					225					230					
	tta	gag	ctc	acc	ccg	ctc	gtt	gga	ttg	atc	cgc	tgg	tgc	gtg	aag	gca	1012
	Leu	Glu	Leu	Thr	Pro	Leu	Val	Gly	Leu	Ile	Arg	Trp	Cys	Val	Lys	Ala	
10	235					240					245					250	
	ccc	ctg	gct	tat	aaa	agg	aaa	aag	aag	ccc	ccc	tta	tcc	aat	ggc	cat	1060
	Pro	Leu	Ala	Tyr	Lys	Arg	Lys	Lys	Lys	Pro	Pro	Leu	Ser	Asn	Gly	His	
					255					260					265 [.]		
	gtc	agc	aac	aag	gtc	aca	aag	gac	ccg	ggc	gtg	ggg	atg	gac	aga	gac	1108
15	Val	Ser	Asn	Lys	Val	Thr	Lys	Asp	Pro	Gly	Val	Gly	Met	Asp	Arg	Asp	
				270					275					280		•	
	tcc	cac	ctc	ttg	tac	tca	aaa	ctc	cac	ctc	agc	gtc	ctg	caa	gtg	ctc	1156
	Ser	His	Leu	Leu	Tyr	Ser	Lys	Leu	His	Leu	Ser	Val	Leu	Gln	Val	Leu	
			285					290					295				
20	atg	acg	ctg	cag	ctg	cac	ctg	acc	gag	aag	aat	ctg	tat	ggg	cgc	ctg	1204
	Met	Thr	Leu	Gln	Leu	His	Leu	Thr	Glu	Lys	Asn	Leu	Tyr	Gly	Arg	Leu	
		300					305					310					
	ggg	ctg	atc	ctc	ttc	gac	cac	atg	gto	ccg	ctg	gta	gag	gag	ato	aac	1252
	Gly	Leu	Ile	Leu	Phe	Asp	His	Met	Val	Pro	Leu	Val	Glu	Glu	Ile	Asn	
25	315					320					325					330	

	agg	ttg	gcg	gat	gaa	ctg	aac	ccc	ctc	aac	gcc	tcc	cag	gag	att	gag	1300
	Arg	Leu	Ala	Asp	Glu	Leu	Asn	Pro	Leu	Asn	Ala	Ser	Gln	Glu	Ile	Glu	
					335					340		•	•		345		
	ctc	tcg	ctg	gac	cgg	ctg	gcg	cag	gct	ctg	cag	gtg	gcc	atg	gcc	tca	1348
5	Leu	Ser	Leu	Asp	Arg	Leu	Ala	Gln	Ala	Leu	Gln.	V <u>a</u> l	Ala	Met	Ala	Ser	
				350					355					360			
	gga	gct	ctg	ctg	tgc	acg	aga	gat	gac	ctg	aga	acc	ttg	tgc	tcc	agg	1396
	Gly	Ala	Leu	Leu	Суз	Thr	Arg	Asp	Asp	Leu	Arg	Thr	Leu	Cys	Ser	Arg	
			365					370		,			375				
10	ctg	ccc	cat	aat	aac	ctc	ctc	cag	ctg	gtg	atc	tcg	ggt	ccc	gtg	cag	1444
	Leu	Pró	His	Asn	Asn	Leu	Leu	Gln	Leu	Val	Ile	Ser	Gly	Pro	Val	Gln	
		380					385					390					
	cag	tcg	cct	cac	gcc	gcg	ctc	ccc	ccg	ggg	ttc	tac	ccc	cac	atc	cac	1492
	Gln	Ser	Pro	His	Ala	Ala	Leu	Pro	Pro	Gly	Phe	Tyr	Pro	His	Ile	His	
15	395					400					405					410	
	acg	ccc	ccg	ctg	ggc	tac	ggg	gct	gtc	ccg	gcc	cac	CCC	gcc	gcc	cac	1540
	Thr	Pro	Pro	Leu	Gly	Tyr	Gly	Ala	Val	Pro	Ala	His	Pro	Ala	Ala	His	
					415		•			420					425		
•	ccc	gcc	ctg	ccc	acg	cac	ccc	ggc	cac	acc	ttc	atc	tcc	ggc	gtg	acc	1588
20	Pro	Ala	Leu	Pro	Thr	His	Pro	Gly	His	Thr	Phe	Ile	Ser	Gly	Val	Thr	
				430					435					440			
	ttt	CCC	ttc	agg	ccc	atc	cgc	tag	gct	ggcc	cgt	gtgt	gcct	tc t	gcgc	tctcg	1642
	Phe	Pro	Phe	Arg	Pro	Ile	Arg										
	•		445					450									
25	ctg	gacg	aag	cctt	tcga	ga t	ggaa	gggg	t gg	ccgg	actc	cca	gaag	aga	acct	cgggga	1702

337/346

aggggteggg cagecetee eegeeggeag aacegtettg gtgteaegga gteeaggtge 1762
tteecaeceg gtegeattet ttgacatgea gattggatgg tggagggaag agteeageet 1822
etgeeggagg cetgetgegt geattttaa aagatgeega teetgggage etetgtete 1882
tgegeattte agacaeagee tgtgtggega ggagtgtgae ggeaggagee aegggtgeaa 1942
geeegtgtgt etggeetett teetegtgaa gaegatgtgt eeeegeeaga aaaagtggge 2002
teettetgea geeeegtgag etgageeeag getgegtagt gaeeaeaage ttatgtgeag 2062
caetgeteag ggaggetgte aggaatteee eteaeetegg aaaggaaett eteagttta 2122
ttgggggtgt etaaatttee ttteatatgt teaaataaat ttteetaaae agte 2176

10 <210> 148

5

<211> 1363

<212> DNA

<213> Homo sapiens

15 <220>

<221> CDS

<222> (16)..(333)

<400> 148

20 gttactctcc acagt atg cga aga ata tcc ctg act tct agc cct gtg cgc 51

Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg

1 5 10

ctt ctt ttg ttt ctg ctg ttg cta cta ata gcc ttg gag atc atg gtt 99
Leu Leu Leu Phe Leu Leu Leu Leu Ile Ala Leu Glu Ile Met Val

25 15 20 25

	ggt	ggt	cac	tct	ctt	tgc	ttc	aac	ttc	act	ata	aaa	tca	ttg	tcc	aga	14/
	Gly	Gly	His	Ser	Leu	Cys	Phe	Asn	Phe	Thr	Ile	Lys	Ser	Leu	Ser	Arg	
		30					35					40					
	cct	gga	cag	ccc	tgg	tgt	gaa	gcg	cag	gtc _.	ttc	ttg	aat	aaa	aat	ctt	195
5	Pro	Gly	Gln	Pro	Trp	Cys	Glu	Ala	Gln	Val	Phe	Leu	Asn	Lys	Asn	Leu	
	45			•		50					55					60	
	ttc	ctt	cag	tac	aac	agt	gac	aac	aac	atg	gtc	aaa	cct	ctg	ggc	ctc	243
	Phe	Leu	Gln	Tyr	Asn	Ser	Asp	Asn	Asn	Met	Val	Lys	Pro	Leu	Gly	Leu	
		·			65					70					75		
LO	ctg	gġg	aag	aag	gta	aat	gcc	acc	agc	act	tgg	gga	gaa	aac	cca	aac	291
	Leu	Gly	Lys	Lys	Val	Asn	Ala	Thr	Ser	Thr	Trp	Gly	Glu	Asn	Pro	Asn	
				80					85				•	90			
	gct	ggg	aga	agt	ggg	gcg	aga	cct	cág	gat	gct	cct	ttg	tga			333
	Ala	Gly	Arg	Ser	Gly	Ala	Arg	Pro	Gln	Asp	Ala	Pro	Leu				
15			95					100				•	105				
	cat	caaa	CCC	caga	taaa	ga c	cagt	gatc	c tt	ccac	tctg	caa	gtcg	aga	tgtt	ttgtca	393
	acg	tgaa	gca	gaac	ggtg	ca c	tggt	gcat	c ct	ggca	gttc	gcc	acca	atg	gaga	gaaatc	453
	cct	cctc	ttt	gacg	caat	ga a	.catg	acct	g ga	cagt	aatt	aat	catg	aag	ccag	taagat	513
	caa	ggag	aca	tgga	agaa	ag a	caga	gggc	t gg	aaaa	gtat	ttc	agga	agc	tctc	aaaggg	573
20	aga	ctgc	gat	cact	ggct	.ca g	ggaa	ttct	t ag	ggca	ctgg	gag	gcaa	tgc	caga	accgac	633
	agg	caga	aga	tcca	ccta	ga g	ıgtga	tacc	a cg	gcgg	cgca	gag	ttgt	tca	cctg	tggtcc	693
	tcg	atcg	ctg	acag	cctt	.gg c	tccc	actg	c tg	tgtg	ttcc	ctg	agto	aag	tgga	ggcgga	753
	gcc	tgca	atg	agcg	ıgaga	tc g	cgcc	tctg	c at	tcca	gtct	. tgg	caac	aga	gcaa	gactcc	813
	gto	tcaa	aaa	aaaa	aatt	tt t	tttc	agta	c at	attt	ttta	aaa	ıgata	ıggg	ctgg	gcacag	873
25	cag	ctca	içat	ctat	aato	cc a	acac	tttg	ıg ga	ggcc	tagg	caç	gagg	atc	actt	gagccc	933

aggaatctga agctgcagtg agcctttgct cgtgagattg tggacctatg atcctaccac 993
cagcccacct ggttctaaca ccccctcctc tatgtgtgag agggagagaa gaaaagtgag 1053
ggaagaaaaga gagataagca aagaacagag aggaaaaatg gaaaataaga ggaaattggg 1113
ggaattaaac agaggggagg gcatggatcc ccgggagtta gaagagtagc agcttgtgga 1173
ttactacgca gtggaggaag aagagttgtt ggaaattatt tgagaggtag tataatcatt 1233
tgtgaggcag ttttctgcat tcaccattc tcacagacta agttactcat aagcaaacgt 1293
gcaattcaca ttacactgaa attcttccct aatacatcat ttgcattgga ataaagtacg 1353
gttttcaaac 1363

10 <210> 149

5

<211> 1043

<212> DNA

<213> Homo sapiens

15 <220>

<221> CDS

<222> (227)..(472)

<400> 149

20 cagtegtett cacaggegae catagaecae acatactaae agtegtette acaggegaec 60 gegeaccaea gatactaaea gtegtettea caggegaecg tagaecaeae atactaaeag 120 tegtetteae aggegaecae geaccaeaa caetaaeagt egtetteaea ggegaecgeg 180 caccaeaeae actaaeggae gtgeecegaea tetteaeagg caeage atg age cet 235

Met Ser Pro

	gat	gtg	cgc	ttt	ctg	ctc	ctg	ctc	ctg	ctc	ctg	ccc	ctt	cgg	agg	cct	283
	Asp	Val	Arg	Phe	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Arg	Arg	Pro	
		5					10					15					
	gtg	cca	gtg	gca	gct	ggg	ccc	gga	gac	acc	agg	ccg	gca	ctg	ctc	tct	331
5	Val	Pro	Val	Ala	Ala	Gly	Pro	Gly	Asp	Thr	Arg	Pro	Ala	Leu	Leu	Ser	
	20					25					30			-		35	
	ttc	gag	gca	ccc	gtg	ttt	gtg	ccg	acg	ctg	act	ccc	ggt	tgt	ctg	cag	379
	Phe	Glu	Ala	Pro	Val	Phe	Val	Pro	Thr	Leu	Thr	Pro	Gly	Cys	Leu	Gln	
					40					45		·			50		
10	cag	cca	cgt	ggc	cga	aat	gga	gcc	tct	cca	cgg	ggg	ctc	ctt	ccc	cag	427
	Gln	Pro	Arg	Gly	Arg	Asn	Gly	Ala	Ser	Pro	Arg	Gly	Leu	Leu	Pro	Gln	
				55					60					65			
	ccc	ctg	gat	ggc	aca	gca	gcc	tct	cct	gtc	tgt	cac	cac	gtg	tga		472
	Pro	Leu	Asp	Gly	Thr	Ala	Ala	Ser	Pro	Val	Cys	His	His	Val			
15			70					75					80				
	cct	gctc	cct	tagt	cttc	ag c	cgct	catc	c ac	gtct	gcag	ggg	cato	taa	ctct	gtccca	532
	ggg.	tatc	cca	gacc	ctgg	ct c	acgc	ссса	g gc	tctc	catt	cag	gctc	cat	cgtc	caccto	592
	aga	ccat	ctc	gggt	ttgc	tg g	tctt	ctgg	a ct	agcg	cagc	cag	aaag	aac	ccag	gaagga	652
	ago	ctca	cgt	ctga	caca	ag a	.acct	tcgg	t gc	taac	ccga	ggg	cggt	atg	tgca	tcctca	712
20	gca	cctg	ccc	atco	ggca	.cc a	tcct	ctga	t co	aggg	actg	tga	igcaa	.cag	ggcc	ccgtgg	772
	cca	ggac	atc	tctc	acco	tc c	agtt	aaaa	t ct	.cgcc	agtt	gag	ıtctg	ccc	atga	aagtag	832
	gtg	ctga	act	gccc	aata	aa t	ccac	aagt	a ag	agtt	gcaa	gaa	ıggag	cca	aaaa	ıgggctg	892
	agc	tgaa	tga	ctca	tata	tg a	aata	attt	g at	aatt	aata	taa	atag	gaa	attt	aaagto	952
	tcc	agct	gag	tgac	agaa	aa c	acct	taaa	a ag	ctca	agag	aga	ıggaa	agg	aaga	aaataa	1012
25	acc	tata	att	gcaa	aata	aa a	igcat	tgaa	a g								1043

341/346

<210> 150

<211> 2435

<212> DNA

5 <213> Homo sapiens

<220>

<221> CDS

<222> (357)..(2015)

10

15

<400> 150

tagtttcct atcggcggca gcgggcaagg cggcggcgc ggcggcggca gccgcggtgg 60 cggcgtgggg aacatctcgg cagccaccgc gcttctcccg ctggagcggg cgtccagctt 120 ggctgccctc ggtcctccc tgccacgtt cgggtcgccc tgcaccccc acccaggctc 180 gcttctcttc gaagcgggaa gggcgccttg caggatcctg ccgcccctcc aaccggatcc 240 tgggtctaga gctcccaga gcgaggcgct cgccaggact cctgccccgc caaccctgac 300 cgccgggggg tgccccggg acgtagcgcc gcggagagga agcggcaaag gggacc atg 359

Met 1

20 cgg cgc ctg act cgt cgg ctg gtt ctg cca gtc ttc ggg gtg ctc tgg 407

Arg Arg Leu Thr Arg Arg Leu Val Leu Pro Val Phe Gly Val Leu Trp

5 10 15

atc acg gtg ctg ctg ttc ttc tgg gta acc aag agg aag ttg gag gtg 455

Ile Thr Val Leu Leu Phe Phe Trp Val Thr Lys Arg Lys Leu Glu Val

25 20 25 30

	ccg	acg	gga	cct	gaa	gtg	cag	acc	cct	aag	cct	tcg	gac	gct	gac	tgg	503
	Pro	Thr	Gly	Pro	Glu	Val	Gln	Thr	Pro	Lys	Pro	Ser	Asp	Ala	Asp	Trp.	
		35					40					45					
	gac	gac	ctg	tgg	gac	cag	ttt	gat	gag	cgg	cgg	tat	ctg	aat	gcc	aaa	551
5	Asp	Asp	Leu	Trp	Asp	Gln	Phe	Asp	Glu	Arg	Arg	Tyr	Leu	Asn	Ala	Lys	
	50					55					60					65	
•	aag	tgg	cgc	gtt	ggt	gac	gac	ccc	tat	aag	ctg	tat	gct	ttc	aac	cag	599
	Lys	Trp	Arg	Val	Gly	Asp	Asp	Pro	Tyr	Lys	Leu	Tyr	Ala	Phe	Asn	Gln	
					70					75					80		
10	cgg	gag	agt	gag	cgg	atc	tcc	agc	aat	cgg	gcc	atc	ccg	gac	act	cgc	647
	Arg	Glu	Ser	Glu	Arg	Ile	Ser	Ser	Asn	Arg	Mla	Ile	Pro	Asp	Thr	Arg	
•				85		•			90					95			
	cat	ctg	aga	tgc	aca	ctg	ctg	gtg	tat	tgc	acg	gac	ctt	cca	ccc	act	695
	His	Leu	Arg	Cys	Thr	Leu	Leu	Val	Tyr	Cys	Thr	Asp	Leu	Pro	Pro	Thr	
15			100					105					110				
	ago	ato	atc	atc	acc	ttc	cac	aac	gag	gcc	cgc	tcc	: acg	ctg	cto	agg	743
	Ser	: Ile	Ile	Ile	Thr	Phe	His	Asn	Glu	Ala	Arg	Ser	Thr	Lev	Leu	Arg	
		115					120					125	5				
	acc	ato	: cgc	: agt	gta	tta	aac	cgc	acc	cct	acg	cat	cto	g ato	cgg	gaa	791
20	Thr	: Ile	Arg	ser Ser	. Val	. Leu	Asn	Arg	Thr	. Pro	Thr	His	s Leu	ı Ile	e Arg	g Glu	
	130)				135					140)				145	
	ato	ata	ı tta	a gtg	gat	gac	ttc	ago	aat	gac	cct	gat	gad	c tgt	aaa	a cag	839
	Ile	e Ile	e Leu	ı Val	. Asp	Asp	Phe	e Ser	Asr	Asp	Pro	Asp	geA c	Cys	s Lys	s Gln	
					150)				155	5				160)	
25	cto	: ato	c aag	y tto	gcc	c aag	gto	g aaa	a tgo	tto	g cgo	aai	t aai	t gaa	a cgg	g caa	887

	Leu	Ile	Lys	Leu	Pro :	Lys `	Val	Lys	Cys :	Leu	Arg	Asn	Asn	GIU	Arg	GIII	
				165					170					175			
	ggt	ctg	gtc	cgg	tcc	cgg	att	cgg	ggc	gct	gac	atc	gcc	cag	ggc	acc	935
	Glv	Leu	Val	Arg	Ser	Arg	Ile	Arg	Gly	Ala	Asp	Ile	Ala	Gln	Gly	Thr	
5 ·			180					185					190				
J	act			ttc	ctc	gac	agc	cac	tat	gag	ata	aac	agg	gac	tgg	ctc	983
				Phe													
	Thr			Pne	цец	ASP		11113	Cys	014	1 02	205	9				
		195					200										1021
																f tgc	1031
10	Gln	Pro	Let	l Leu	His	Arg	Val	Lys	Glu	Asp	Tyr	Thr	Arg	Val	. Val	. Cys	
	210					215					220					225	
	cct	gto	g ato	gat	atc	att	aac	ctg	gac	acc	ttc	acc	tac	ato	gaq	g tct	1079
	Pro	va:	l Ile	e Asp	Ile	Ile	Asn	Leu	Asp	Thr	Phe	Thr	Tyr	: Ile	e Gl	ı Ser	
					230					235	,				24	0	
15	gco	t to	g ga	g cto	c aga	ggg	ggg	, ttt	gac	tgg	g ago	cto	cac	tto	c ca	g tgg	1127
																n Trp	
				24					250					25			
	~~	~ 00	a ot			a dad	r cac	n aac			a ca	c cto	g ga	c cc	c ac	g gag	1175
•																ır Glu	
	GI	u Gi			r Pro) GI	7 (3.1)			1 AL	9 111	9 110					
20			26					26					27				1000
																ac aaa	1223
	Pr	o II	le Ar	g Th	r Pr	o Il	e Il	e Al	a Gl	y Gl	y Le	u Ph	e Va	1 11	.e As	sp Lys	
		27	75				28	0				28	5			•	
	gc	t to	gg ti	t ga	it ta	c ct	g gg	g aa	a ta	t _. ga	t at	g ga	c at	g ga	ac af	tc tgg	1271
25	Al	а Т:	rp Pi	ne As	эр Ту	r Le	u Gl	у Гу	s Ty	r As	e Me	et As	p Me	et As	sp I	le Trp	•

	290					295					300					305	
	ggt	ggg	gag	aac	ttt	gaa	atc	tcc	ttc	cga	gtg	tgg	atg	tgc	ggg	ggc	1319 ·
	Gly	Gly	Glu	Asn	Phe	Glu	Ile	Ser	Phe	Arg	Val	Trp	Met	Cys	Gly	Gly	
					310					315					320		
5	agc	cta	gag	atc	gtc	ccc	tgc	agc	cga	gtg	ggg	cac	gtc	ttc	cgg	aag	1367
	Ser	Leu	Glu	Ile	Val	Pro	Cys	Ser	Arg	Val	Gly	His	Val	Phe	Arg	Lys	
				325	•				330					335			
	aag	cac	ccc	tac	gtt	ttc	cct	gat	gga	aat	gcc	aac	acg	tat	ata	aag	1415
	Lys	His	Pro	Tyr	Val	Phe	Pro	Asp	Gly	Asn	Ala	Asn	Thr	Tyr	Ile	Lys	
10			340					[′] 345					350				
	aac	acc	aag	cgg	aca	gct	gaa	gtg	tgg	atg	gat	gaa	tac	aag	caa	tac	1463
	Asn	Thr	Lys	Arg	Thr	Ala	Glu	Val	Trp	Met	Asp	Glu	Tyr	Lys	Gln	Tyr	
		355					360		•			365					
	tat	tac	gct	gcc	cgg	cca	ttc	gcc	ctg	gag	agg	ccc	ttc	ggg	aat	gtt	1511
15	Tyr	Tyr	Ala	Ala	Arg	Pro	Phe	Alạ	Leu	Glu	Arg	Pro	Phe	Gly	Asn	Val	
	370					375					380					385	
	gag	agc	aga	ttg	gac	ctg ·	agg	aag	aat	ctg	cgc	tgc	cag	agc	ttc	aag	1559
	Glu	Ser	Arg	Leu	Asp	Leu	Arg	Lys	Asn	Leu	Arg	Cys	Gln	Ser	Phe	Lys	•
					390					395					400		
20	tgg	tac	ctg	gag	aat	atc	tac	cct	gaa	ctc	agc	atc	ccc	aag	gag	tcc	1607
	Trp	Tyr	Leu	Glu	Asn	Ile	Tyr	Pro	Glu	Leu	Ser	Ile	Pro	Lys	Glu	Ser	
				405			•		410					415			
	tcc	atc	cag	aag	ggc	aat	atc	cga	cag	aga	cag	aag	tgc	ctg	gaa	tct	1655
	Ser	Ile	Gln	Lys	Gly	Asn	Ile	Arg	Gln	Arg	Gln	Lys	Суѕ	Leu	Glu	Ser	
25			420					425					430				

														٠.			
	caa	agg	cag	aac	aac	caa	gaa	acc	cça	aac	cta	aag	ttg	agc	CCC	tgt	1703
	Gln	Arg	Gln	Asn	Asn	Gln	Glu	Thr	Pro	Asn	Leu	Lys	Leu	Ser	Pro	Cys	
		435					440					445					
	gcc	aag	gtc	aaa	ggc	gaa	gat	gca	aag	tcc	cag	gta	tgg	gcc	ttc	aca	1751
5	Ala	Lys	Val	Lys	Gly	Glu	Asp	Ala	Lys	Ser	Gln	Val	Trp	Ala	Phe	Thr	
•	450				•	455					460					465	
	tac	acc	cag	cag	atc	ctc	cag	gag	gag	ctg	tgc	ctg	tca	gtc	atc	acc	1799
	Tyr	Thr	Gln	Gln	Ile	Leu	Gln	Glu	Glu	Leu	Cys	Leu	Ser	Val	Ile	Thr	
					470					475					480		
10	ttg	ttc	cct	ggc	gcc	сса	gtg	gtt	ctt	gtc	ctt	tgc	aag	aat	gga	gat	1847
	Leu	Phe	Pro	Gly	Ala	Pro	Val	Val	Leu	Val	Leu	Суз	Lys	Asn	Gly	Asp	
				485					490					495			
	gac	cga	cag	caa	tgg	acc	aaa	act	ggt	tcc	cac	atc	gag	cac	ata	gca	1895
	Asp	Arg	Gln	Gln	Trp	Thr	Lys	Thr	Gly	Ser	His	Ile	Glu	His	Ile	Ala	
15			500					505					510				
	tcc	cac	ctc	tgc	ctc	gat	aca	gat	atg	ttc	ggt	gat	ggc	acc	gag	aac	1943
	Ser	His	Leu	Cys	Leu	Asp	Thr	Asp	Met	Phe	Gly	Asp	Gly	Thr	Glu	Asn	
		515					520					525					
	ggc	aag	gaa	atc	gtc	gtc	aac	cca	tgt	gag	tcc	tca	ctc	atg	agc	cag	1991
20	Gly	Lys	Glu	Ile	Val	Val	Asn	Pro	Cys	Glu	Ser	Ser	Leu	Met	Ser	Gln	
	530					535					540	•				545	
	cac	tgg	gac	atg	gtg	agc	tct	tga	gga	ecect	tgc (caga	agca	gc aa	agggo	ccatg	2045
	His	Trp	Asp	Met	Val	Ser	Ser										
					550												
25	gggt	tggt	gct i	tccci	tggad	cc aq	gaaca	agaci	t gga	aaaci	tggg	cago	caago	cag o	cctgo	caacca	2105

5

346/346