

SIÇANLARDA S1 ve M1 KORTEKSİ AKSİYON POTANSİYELİ KAYITLARINDAN DAVRANIŞSAL MOTOR ÇIKTISINI ÖNGÖRÜLEME

Sevgi Öztürk¹, Burak Güçlü¹

1. Biyomedikal Mühendisliği Enstitüsü, Boğaziçi Üniversitesi, İstanbul, Türkiye

GIRIŞ

- Nöroprotezlerin operasyonel performansı Beyin-Bilgisayar Arayüzü (BBA) üzerinde çalışan çözümleme algoritmalarına bağlıdır. Kortikal nöroprotezler, ideal nöral arayüz varlığında, çözümleme algoritmalarının ve korteks plastisitesinin karşılıklı uyumuna bağlı performans gösterirler.
- Bu tez çalışmasında, davranışsal motor çıktısını tahmin edebilmek için nöral yanıtları deşifrelemeyi planlıyoruz.
- Korteksin popülasyon yanıtları ve ağ özellikleri daha iyi anlaşılabilirse, biyolojimizin doğal karakteristiklerinin taklit edilmesi sonucunda, nöroprotezlerin çözümleme algoritmaları doğala yakın parametrelerle çalışacaktır ve BBA'leri daha iyi performans sergileyecektir.
- > Bu çalışmada, sıçan bedenduyusu korteksinden kayıt alınmıştır ve ham veriden izole edilen aksiyon potansiyellerinin sınıflandırılması için uygun kriterler belirlenmiştir. Sınıflandırma ve analiz sonuçları psikofiziksel davranışları öngörebilmek için tez çalışmamızda kullanılacaktır.

GEREC VE YÖNTEM

FBP lateral from bregma Adapted from [2]

GEREÇ ve YÖNTEM:

- > Ameliyat : Anestezi (ketamine:65 mg/kg ve ksilazine:10 mg/kg) sonrasında **stereotaksik** yerleştirme ve elektrot implantı:
 - **tekli elektrot** (Tungsten çap:50 μm, teflon kaplı çap:100 μm)
 - çoklu elektrot (4x4, platin-iridium, çap:25 µm, teller arası mesafe:250 µm)

> Mekanik titreşim uyaranı:

- anestezi altında (frekans: 5/40/250 Hz genlik: 100 μm süre: 0.5 sn)
- ayık durumda (frekans:40 Hz genlik:200 μm süre: 3sn)
- ➤ Wistar sıçanların **S1 korteksinden hücre dışı kayıtlar** toplandı
 - anestezi altında 2 sn (uyaran aralığı [1-1.5])
 - ayık durumda 5 sn (uyaran aralığı [0-3])
- ➤ Hücre dışından ölçülen aksiyon potansiyelleri 1,000 yada 10,000 kat kuvvetlendirildi ve band-geçiren (200 Hz - 10 kHz) süzgeç ile işlendi. Ham veri **TDT** işlemcisine aktarıldı ve Spike Pac modülünde gürültü seviyesini 6 kat geçen aksiyon potansiyelleri seçildi
- > Seçilen aksiyon potansiyelleri en büyük ilk üç varyansla temel bileşen uzayında temsil edildi ve Bayes ve K-means algoritmasıyla kümelendi (küme sayısı: 3, uçdeğer STD: 2)
- > Kümeler kendi içinde **tekil nöron** (refrakter özellik ve SNR>3) ve çoklu nöron olarak ayrıldı. Zaman ve aralık histogramları ile analizler yapıldı

X ham verisi üzerinde PCA uygulanır

ÖN BULGULAR

Anestezi altında tekli tungsten elektrot

Anestezi altında tekli karbon elektrot

Ayık durumda çoklu elektrot

TARTIŞMA/ SONUÇ

Aksiyon potansiyeli dizileri zaman ve aralık histogramları yardımıyla analiz edildi. Daha önceki çalışmalarda da görülen uyarılma-baskılanma tekrarları bazı çoklu-nöron aktivitelerinde gözlemlendi.

- > Derinin mekanik titreşimsel uyarılmasıyla oluşan korteks aktivitesini anlamak, hem daha iyi çözümleme algoritmalarının geliştirilmesi, hem de beden duyusuna işaretlerinin ilişkin doğru geribesleme bulunması açısından önemlidir.
- ➤ Bu çalışmada gözlemlenen uzun süreli baskılama etkisi nöroprotezin verdiği yapay hissin daha doğal olmasına yönelik tekrarlı korteks içi elektriksel uyaranlarını şekillendirmek için kullanılabilir.

TEŞEKKÜR/ KAYNAKÇA

Ameliyatlar sırasında verdiği destek için Bige Vardar'a teşekkür ederiz.

- [1] Vardar B. and Güçlü B. 2017 Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Somatosensory & motor research, 34(3), 189-203.
- [2] Chapin J. K. and Lin C. S. 1984 Mapping the body representation in the SI cortex of anesthetized and awake rats. Journal of Comparative Neurology, 229(2), 199-213.
- [3] İ. Devecioğlu and B. Güçlü, "A preliminary model for operant conditioning of rats in a detection task," 2016 20th National Biomedical Engineering Meeting (BIYOMUT), Izmir, 2016,pp. 1-6.

