Stat314 /461 Term 4: Gibbs sampling

Patrick Graham

October, 2021

A reminder about our computation problem

Let $\theta = (\theta_1, \theta_2, \dots, \theta_K)$ We are interested in the posterior distribution

$$p(\boldsymbol{\theta}|\text{data}) = \frac{p(\text{data}|\boldsymbol{\theta}p(\boldsymbol{\theta}))}{\int p(\text{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})\,d\boldsymbol{\theta}}.$$
 (1)

We should always be able to write down the numerator of (1). But the integral in the denominator may not be friendly (it is also K-dimensional). We also need to be able integrate $p(\theta|\text{data})$ to compute useful things, e.g. posterior mean, variance, marginal tail probabilities etc.

Some methods for sampling from the posterior in multi-parameter problems

$$\boldsymbol{\theta} = (\theta_1, \theta_2, \theta_3, \dots, \theta_K)$$

- ullet We have studied the Metropolis-Hastings algorithm for sampling from $p(ullet | \mathrm{data})$ by jumping through the k dimensional space in a manner guided by the posterior sample more points from areas of high posterior density.
- For small dimensional problems we may be able to apply rejection or importance sampling.

Sampling $p(\theta|\text{data})$ by breaking θ into components

Recall that

$$p(\theta|\text{data}) = p(\theta_1|\text{data})p(\theta_2|\theta_1, \text{data}) \times \dots \times p(\theta_q|\theta_{K-1}, \dots, \theta_1|\text{data})$$
(2)

In complex problems some components of this decomposition may be difficult to obtain or simulate. Metropolis-Hastings or Rejection sampling may help with some components.

• Gibbs sampling is another method of posterior simulation that involves breaking θ into components but instead of sampling from the sequence of conditionals in (2) Gibbs Sampling proceeds over a series of iterations and samples from the posterior of each component conditionally on the most-recently sampled value of all other components.

Gibbs sampler - background

- Gelfand et al (1990) two JASA articles, introduced the Gibbs sampler to a general statistical audience.
- Tanner and Wong (1987) (missing data problems)
- Geman and Geman (1984) Image analysis,
- A special case of Metropolis-Hastings

The Gibbs sampler: General Statement

- The Gibbs sampler proceeds by
 - **1** assigning (K-1) component of $\theta = \theta_1, \dots, \theta_K$ an initial value;
 - 2 alternately sampling from the "full conditional posterior" distribution of each component given not only the data but all other components of heta
 - repeating step (2) for some number of draws until the sampling process converges to the desired joint distribution ("burn-in")
 - ullet repeating step (2) a further M times until to obtain M simulations from the desired joint distribution.

If each of the "full-conditionals" is easy to sample from we have a readily implemented algorithm. Sometimes the full-conditionals correspond to conjugate models so sampling from the full conditionals is straightforward.

Simple Example: Posterior for mean and precision of a normal distribution

$$Y_i | \mu, \tau \stackrel{\text{indep}}{\sim} \text{Normal}(\mu, \tau), i = 1, \dots, n$$

where τ is the precision (inverse of the variance). $\mathbf{Y}=Y,\ldots,Y_n$ We adopt a prior of the form

$$p(\mu,\tau) = p(\mu)p(\tau) \tag{3}$$

where

$$\mu \sim \text{Normal}(m_{prior}, \kappa_{prior})$$
 $\tau \sim \text{Gamma}(a, b)$ (4)

A Gibbs sampler for this problem alternates between the following steps

- (i) draw μ from $p(\mu|\tau, \mathbf{Y})$
- (ii) draw τ from $p(\tau|\mu, \mathbf{Y})$

Gibbs for Normal cont'd; full conditionals

From Elena's notes we know that given our prior (normal for μ , Gamma for τ , $p(\mu,\tau)=p(\mu)p(\tau)$

$$[\mu|\tau, \mathbf{Y}] \sim \text{Normal}\left(\frac{\tau n \overline{Y} + \kappa_{prior} m_{prior}}{\tau n + \kappa_{prior}}, \tau n + \kappa_{prior}\right)$$
$$[\tau|\mu, \mathbf{Y}] \sim \text{Gamma}\left(a + n/2, b + 0.5 \sum_{i=1}^{i=n} (Y_i - \mu)^2\right)$$
(5)

where
$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{i=n} Y_i$$
.

Gibbs for Normal cont'd - The sampling algorithm

- 1 set $\tau = \tau^{(0)}$ (usually by drawing from an approximation)
- 2 For t in 1 : T {
 2.1 draw $\mu^{(t)}$ from

$$\operatorname{Normal}\left(\frac{\tau^{(t-1)} n \overline{Y} + \kappa_{\textit{prior}} m_{\textit{prior}}}{\tau^{(t-1)} n + \kappa_{\textit{prior}}}, \tau^{(t-1)} n + \kappa_{\textit{prior}}\right)$$

2.2 draw $\tau^{(t)}$ from

Gamma
$$\left(a + n/2, b + 0.5 \sum_{i=1}^{i=n} (Y_i - \mu^{(t)})^2\right)$$
 (6)

}

3 discard first L draws (burn-in)

Example see Gibbs_example1_normalmodel.Rmd

Aside about the Normal distribution (1)

Term 3: Normal density parameterised with mean μ and precision (as in WinBugs)

$$p(Y = y | \mu, \tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau(y - \mu)^2}{2}\right)$$
 (7)

Term 4: (Mostly) Normal density parameterised with mean and standard deviation (as in R and Gelman et al BDA)

$$p(Y = y | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$
(8)

Conditionally conjugate prior for this parameterisation is:

$$p(\mu, \sigma) = p(\mu)p(\sigma)$$

$$\mu \sim \text{Normal}(m_0, s_0^2)$$

$$\sigma^2 \sim \text{Inv}\chi^2(c, d)$$
(9)

No time (or need) to derive the corresponding "full-conditionals" here —

see Gelman et al BDA)

Asides about the normal distribution (2)

- It is probably mildly annoying that the two parameterisations of the Normal are used in the course.
- But do not worry about this. Just think of the normal distribution parameterised by mean and precision as one model; the normal distribution parameterised by mean and standard deviation or variance as another model.
- We try to make clear which parameterisation we are using.

Asides about the normal distribution (3)

- Thinking in terms of the normal distribution parameterised by mean and precision: No prior of the form $p(\mu,\tau)=p(\mu)p(\tau)$, can be conjugate for the normal model. Consider the form of the normal density.
- Similarly, if working with the normal distribution parameterised by mean and standard deviation, σ , no prior of the form $p(\mu, \sigma) = p(\mu)p(\sigma)$ can be conjugate
- The priors $p(\mu, \tau) = p(\mu)p(\tau)$, $p(\mu, \sigma) = p(\mu)p(\sigma)$, where $p(\mu)$ is Normal, $p(\tau)$ is Gamma and $p(\sigma^2)$ is inverse-Gamma are only conditionally conjugate.
- The Gibbs sampler takes advantage of conditional conjugacy.
- However in more complex problems conditional conjugacy is not guaranteed and more advanced methods are required to simulate the full conditionals (e.g. Metropolis-Hastings)

More general statement of the Gibbs sampler

- initialise $\theta_1, \theta_2, \dots, \theta_K$ to $\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_K^{(0)}$ • for (t in 1 : T) {
- draw $heta_1^{(t)}$ from $p(heta_1| heta_2^{(t-1)},\dots, heta_K^{(t-1)}, ext{data})$
 - draw $\theta_2^{(t)}$ from $p(\theta_2|\theta_1^{(t)},\theta_3^{(t-1)},\dots,\theta_K^{(t-1)},\mathrm{data})$

:

- draw $\theta_K^{(t)}$ from $p(\theta_1|\theta_1^{(t)},\theta_2^{(t)},\dots,\theta_{K-1}^{(t)},\mathrm{data}),$ }
- discard the first L iterations

General comments on the Gibbs sampler

- It is a MCMC procedure, in fact it can be shown to be a special-case of Metropolis-Hastings.
- Usual MCMC good practices therefore apply
 - Discard burn-in sample
 - 2 run multiple chains from over-dispersed starting points
 - ③ Use Gelman-Rubin Rhat to check for convergence; Increase burn-in period if Rhat too big (e.g Rhat > 1.1 for important analyses).

Gibbs sampler for problems of the "missing data type"

The Gibbs sampler deals easily with problems of the "missing data" type e.g

- non-response
- mis-measured variables
- latent variables a relevant variable is not directly observable

The general idea is to alternate between

- i simulating the "missing" data from their conditional posterior (predictive) distribution given the current value of the model parameters
- ii drawing from the conditional posterior of the parameters given the observed data and most recent imputations of the missing data.

This is the idea behind the "data-augmentation" approach developed by Tanner and Wong (1987).

Gibbs for missing data: Theory (1)

- Suppose θ is the model parameter of interest, \mathbf{D}^{obs} the data actually observed and \mathbf{D}^{mis} the missing data. We define the full data, that we would have liked to observed, by $\mathrm{data} = (\mathbf{D}^{obs}, \mathbf{D}^{mis})$
- Assume we know how to compute $p(\theta|\text{data})$, the posterior given the full data- a standard Bayesian inference problem.
- Since we only observe \mathbf{D}^{obs} the posterior we need to compute is $p(\theta|\mathbf{D}^{obs})$ we can only condition on the data actually observed.
- However

$$p(\theta|\mathbf{D}^{obs}) = \int p(\theta, \mathbf{D}^{mis}|\mathbf{D}^{obs}) d\mathbf{D}^{mis}$$
 (11)

Gibbs for missing data: Theory (2)

- want: $p(\theta|\mathbf{D}^{obs}) = \int p(\theta, \mathbf{D}^{mis}|\mathbf{D}^{obs}) d\mathbf{D}^{mis}$
- We can use the Gibbs Sampling algorithm to, effectively, do the integration for us by simulating $p(\theta, \mathbf{D}^{mis}|\mathbf{D}^{obs})$ by sampling alternately from:

```
i p(\theta|\mathbf{D}^{mis},\mathbf{D}^{obs}) = p(\theta|\mathrm{data}) (standard) ii p(\mathbf{D}^{mis}|\theta,\mathbf{D}^{obs})
```

• For inference we can ignore the generated \mathbf{D}^{mis} values and treat the generated θ values as a sample from $p(\theta|\mathbf{D}^{obs})$

Gibbs sampler for missing data problems: Zero-inflated models

see .Rmd file Gibbs_example2_ZIPmodel.Rmd

Gibbs sampler: Example 3 random rounding

For example suppose $\mathbf{Y} = (Y1, \dots, Y_n)$ is a vector of counts and we adopt the model

$$Y_i \stackrel{\text{indep}}{\sim} \text{Poisson}(\theta)$$

 $\theta \sim \text{Gamma}(\alpha, \beta)$ (12)

for fixed α, β . Instead of observing the counts we see only a randomly rounded version of the counts, $\mathbf{R} = R_1, R_2, \ldots, R_n$ Our inferential task is then to compute $p(\theta|\mathbf{R})$ since \mathbf{R} is the observed data. Since

$$p(\theta|\mathbf{R}) = \int p(\theta, \mathbf{Y}|\mathbf{R}) d\mathbf{Y}$$
 (13)

if we can compute the joint posterior $p(\theta, \mathbf{Y}|\mathbf{R})$ we are done. Given a sample from the *joint* posterior we can just focus on the generated θ values for inference.

Gibbs sampler for inference under random rounding

- 1 initialise θ to $\theta^{(0)}$
- 2 for t in 1 to Ki draw $\mathbf{Y}^{(t)}$ from

$$p(\mathbf{Y}|\mathbf{R},\theta^{(t-1)}) \propto p(\mathbf{R}|\mathbf{Y})p(\mathbf{Y}|\theta=\theta^{(t-1)})$$
 (14)

$$= \prod_{i} p(R_i|Y_i) \prod_{i} poisson(Y_i|\theta = \theta^{(t-1)})$$
 (15)

$$= \prod_{i} p(R_i|Y_i) poisson(Y_i|\theta = \theta^{(t-1)})$$
 (16)

ii

draw
$$\theta^t \sim \text{Gamma}(\alpha + \sum_i Y_i^{(t)}, \beta + n)$$
 (17)

(16) can be simulated easily by direct simulation or (rejection sampling); (17) follows from the conjugate Poisson-Gamma model.

Random Rounding

For details see: Gibbs_example3_RR3.Rmd

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm

• recognise the full conditional posterior distributions as a special jumping distribution in which the only jumps allowed are to values of θ which match the current value of θ wrt to elements except the one currently being updated.

$$J_{j,t}^{Gibbs}(\boldsymbol{\theta}^{new}|\boldsymbol{\theta}^{(t-1)}) = \begin{cases} p(\theta_j^{new}|\boldsymbol{\theta}_{-j}^{(t-1)*}, \text{data}) \text{ if } \boldsymbol{\theta}_{-j}^{new} = \boldsymbol{\theta}_{-j}^{(t-1)*} \\ 0 \text{ otherwise} \end{cases}$$
(18)

• plug $J_{i,t}^{Gibbs}$ into the M-H acceptance ratio formula

$$r_{MH,j}(\boldsymbol{\theta}^{new}, \boldsymbol{\theta}^{(t-1)*}) = \frac{p(\boldsymbol{\theta}^{new}|\mathrm{data})/J_{j,t}^{Gibbs}(\boldsymbol{\theta}^{new}|\boldsymbol{\theta}^{(t-1)*})}{p(\boldsymbol{\theta}^{(t-1)*}|\mathrm{data})/J_{j,t}^{Gibbs}(\boldsymbol{\theta}^{(t-1)*}|\boldsymbol{\theta}^{new})}$$

see notes for explanation of (t-1)* superscript (all elements except θ_j set to their most recently updated value.

Acceptance probabilities for Gibbs sampler viewed as Metropolis-Hastings

The acceptance ratio at the j^{th} step of the t^{th} iteration is therefore

$$r_{MH,j}(\theta^{new}, \theta^{(t-1)*}) = \frac{p(\theta^{new}|\text{data})/J_{j,t}(\theta^{new}|\theta^{(t-1)*})}{p(\theta^{(t-1)*}|\text{data})/J_{j,t}(\theta^{(t-1)*}|\theta^{new})}$$
(19)
$$= \frac{p(\theta^{new}|\text{data})/p(\theta_{j}^{new}|\theta_{-j}^{(t-1)*},\text{data})}{p(\theta^{(t-1)*}|\text{data})/p(\theta_{j}^{(t-1)*}|\theta_{-j}^{(t-1)*},\text{data})}$$
(20)
$$= \frac{p(\theta_{-j}^{(t-1)*}|\text{data})}{p(\theta_{-j}^{(t-1)*}|\text{data})}$$
(21)

=1. (22)

see notes for explanation of steps.

Gibbs sampler when not all full conditionals can be directly simulated

- For difficult full conditionals we can use a Metropolis-Hastings step
- Suppose the difficult full conditional is for component j, and that this is the last component to be updated on each Gibbs iteration
 - (i) draw a proposal $\theta_i^{(t)}$ from $J_{j,t}(\theta_j|\theta_i^{(t-1)*})$
 - (ii) evaluate

$$r_{MH,j}(\theta^{(t)}, \theta^{(t-1)}) = \frac{q(\theta_j^{(t)}| \text{data}, \theta_{-j}^{(t-1)*}) / J_{j,t}(\theta_j^{(t)}| \theta_j^{(t-1)*})}{q(\theta_j^{(t-1)*}| \text{data}, \theta_{-j}^{(t)}) / J_{j,t}(\theta_j^{(t-1)*}| \theta_j^{(t)})}$$

(iii) accept $\theta_j^{(t)}$ with probability $\min(1, r_{MH,j}^{(t)})$. If $\theta_j^{(t)}$ is not accepted set $\theta_j^{(t)} = \theta_j^{(t-1)*}$, i.e stay at $\theta_j^{(t-1)*}$.

Hybrid Gibbs/Metropolis-Hastings samplers arise frequently in practice

 Reconsider our fishing example: Suppose instead of a just focussing on the expected number of fish caught (given that a party fished) we were interested in a Poisson regression relating catch to covariates.

$$[Y_i|Z_i = 1, \mathbf{X}_i, \boldsymbol{\beta}] \stackrel{\text{indep}}{\sim} \text{Poisson}(\theta_i), i = 1, \dots, n$$

 $\log(\theta_i) = \beta_0 + X_{1i}\beta_1 + X_{2i}\beta_2 + \dots, i = 1, \dots, n$

- There is no obvious conditionally conjugate prior for $\beta = (\beta_0, \beta_1, \beta_2, ...)$.
- A hybrid Gibbs / Metropolis-Hastings sampler would alternate between
 - i simulating **Z** from $p(\mathbf{Z}|\mathbf{Y},\mathbf{X},\phi,\beta)$
 - ii updating $oldsymbol{eta}$ using a Metropolis-Hastings step
 - iii simulating ϕ from $p(\phi|\mathbf{Z})$

Comment on Gibbs sampler with Metropolis-Hastings steps

- Used to be referred to as "Metropolis-Hastings within Gibbs"
- Given that Gibbs itself is a special case of Metropolis-Hastings, it is possibly easier to think of hybrid Gibbs / Metropolis-Hastings procedures simply as versions of Metropolis-Hastings.
- In problems with many parameters it is difficult to apply Metropolis-Hastings to the full parameter vector; some chunking of parameters into sub-groups seems inevitable.
- Hybrid Gibbs / Metropolis-Hastings algorithms provide a practical way to apply MCMC in problems without conditional conjugacy and/or many parameters.