T 7			
1/1	TA AT	^	٠
\boldsymbol{x}	. IVI	C	٠

отговорите на $1,\,3,\,5$ и 6 се попълват на този лист, за $2,\,4,\,7,\,11,\,12,\,13$ и 15 се използват само допълнителни листа, за $8,\,9,\,10,\,14$ се използват допълнителни листа, като крайните резултати се нанасят и на този лист

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^{\infty}$ се нарича сходяща, ако съществува число l такова, че за всяко

- **2.** продължение $(9 \ mov \kappa u)$ Формулирайте и докажете теоремата за граница на произведение на две сходящи редици.
- 3. $(4+4\ moч\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x): \mathbb{R} \to \mathbb{R}$ клони към $+\infty$ когато x клони към $+\infty$, ако: (Коши)

(Хайне)

- 4. продължение (10 точки) Докажете, че двете дефиниции (условия) са еквивалентни.
- **5.** (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 6. продължение (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания):
- 7. продължение (10 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x) \leq 0$ за всяко $x \in \mathbb{R}$.
- 8. продължение (5 точки) Нека $g(x) = \sqrt[5]{x^2}$. Определете точките, в които g(x) е диференцируема. отговор:

- **9.** продължение (5 точки) Определете точките, в които G(x) = x.g(x) е диференцируема. *отговор:*
- **10.** продължение (5 moчku) Определете точките, в които G(x) = x.g(x) има втора производна. omzosop:
- **11.** продължение *(7 точки)* Докажете, че $|g(x) g(y)| \le |x y|$ за $x \in [1, +\infty)$ и $y \in [1, +\infty)$.
- **12.** продължение (7 точки) Докажете, че g(x) е равномерно непрекъсната в \mathbb{R} .
- **13.** (8 точки) Формулирайте и докажете правилото за смяна на променливите за неопределени интеграли.
 - **14.** (6 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{x^4 + 5}{x^6 + x^4 + 1}$ в \mathbb{R} .

Пресметнете
$$\lim_{x\to 0} \frac{F(2x) - F(x)}{x} =$$

rime:

отговорите на 1, 3, 5 и 6 се попълват на този лист, за 2, 4, 7, 11, 12, 13 и 15 се използват само допълнителни листа, за 8, 9, 10, 14 се използват допълнителни листа, като крайните резултати се нанасят и на този лист

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^{\infty}$ се нарича сходяща, ако съществува число l такова, че за всяко

- **2.** продължение $(9 \ mou \kappa u)$ Формулирайте и докажете теоремата за граница на частно на две сходящи редици.
- 3. $(4+4\ moч\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x): \mathbb{R} \to \mathbb{R}$ клони към $-\infty$ когато x клони към $-\infty$, ако: (Коши)

(Хайне)

- 4. продължение (10 точки) Докажете, че двете дефиниции (условия) са еквивалентни.
- **5.** (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a , ако е дефинирана в

И

- 6. продължение (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания):
- 7. продължение (10 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f е растяща в \mathbb{R} тогава и само тогава, когато $f'(x) \geq 0$ за всяко $x \in \mathbb{R}$.
- 8. продължение (5 moчки) Нека $g(x) = \sqrt[5]{x^4}$. Определете точките, в които g(x) е диференцируема. отговор:

- **9.** продължение (5 точки) Определете точките, в които G(x) = x.g(x) е диференцируема. *отговор:*
- **10.** продължение (5 moчku) Определете точките, в които G(x) = x.g(x) има втора производна. omzosop:
- **11.** продължение (7 точки) Докажете, че $|g(x) g(y)| \le |x y|$ за $x \in [1, +\infty)$ и $y \in [1, +\infty)$.
- **12.** продължение (7 точки) Докажете, че g(x) е равномерно непрекъсната в \mathbb{R} .
- **13.** (8 точки) Формулирайте и докажете правилото интегриране по части за неопределени интеграли.
 - **14.** (6 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{2x^4 + 3}{x^6 + x^4 + 1}$ в \mathbb{R} .

Пресметнете
$$\lim_{x\to 0} \frac{F(2x) - F(x)}{x} =$$

T T	
1/1	TAC.
$\boldsymbol{\nu}$	we.

отговорите на 1, 3, 5 и 6 се попълват на този лист, за 2, 4, 7, 11, 12, 13 и 15 се използват само допълнителни листа, за 8, 9, 10, 14 се използват допълнителни листа, като крайните резултати се нанасят и на този лист

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^{\infty}$ се нарича сходяща, ако съществува число l такова, че за всяко

- **2.** продължение $(9 \ mov \kappa u)$ Формулирайте и докажете теоремата за граница на произведение на две сходящи редици.
- 3. $(4+4\ moч\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x):\mathbb{R}\to\mathbb{R}$ клони към $-\infty$ когато x клони към $+\infty$, ако: (Коши)

(Хайне)

- **4.** продължение (10 точки) Докажете, че двете дефиниции (условия) са еквивалентни.
- **5.** (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a, ако е дефинирана в

и

- 6. продължение (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания):
- 7. продължение (10 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f е намаляваща в \mathbb{R} тогава и само тогава, когато $f'(x) \leq 0$ за всяко $x \in \mathbb{R}$.
- **8.** продължение (5 точки) Нека $g(x) = \sqrt[5]{x}$. Определете точките, в които g(x) е диференцируема. отговор:

- **9.** продължение (5 точки) Определете точките, в които G(x) = x.g(x) е диференцируема. *отговор:*
- **10.** продължение (5 moчku) Определете точките, в които G(x) = x.g(x) има втора производна. omzosop:
- **11.** продължение (7 точки) Докажете, че $|g(x) g(y)| \le |x y|$ за $x \in [1, +\infty)$ и $y \in [1, +\infty)$.
- **12.** продължение (7 точки) Докажете, че g(x) е равномерно непрекъсната в \mathbb{R} .
- **13.** (8 точки) Формулирайте и докажете правилото за смяна на променливите за неопределени интеграли.
 - **14.** (6 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{3x^4 + 4}{x^6 + x^4 + 2}$ в \mathbb{R} .

Пресметнете
$$\lim_{x\to 0} \frac{F(2x) - F(x)}{x} =$$

T 7			
1/1	TA AT	^	٠
\boldsymbol{x}	. IVI	C	٠

отговорите на 1, 3, 5 и 6 се попълват на този лист, за 2, 4, 7, 11, 12, 13 и 15 се използват само допълнителни листа, за 8, 9, 10, 14 се използват допълнителни листа, като крайните резултати се нанасят и на този лист

1. (4 точки) Довършете дефиницията: Редицата $\{a_n\}_1^{\infty}$ се нарича сходяща, ако съществува число l такова, че за всяко

- **2.** продължение $(9 \ mou \kappa u)$ Формулирайте и докажете теоремата за граница на частно на две сходящи редици.
- 3. $(4+4\ moч\kappa u)$ Довършете дефиницията (по два начина): Казваме, че функцията $f(x): \mathbb{R} \to \mathbb{R}$ клони към $+\infty$ когато x клони към $-\infty$, ако: (Коши)

(Хайне)

- 4. продължение (10 точки) Докажете, че двете дефиниции (условия) са еквивалентни.
- **5.** (4 точки) Довършете дефиницията: Функцията f(x) се нарича диференцируема в точката a , ако е дефинирана в

и

- 6. продължение (4 точки) Формулирайте теоремата на Лагранж (за крайните нараствания):
- 7. продължение (10 точки) Нека $f: \mathbb{R} \to \mathbb{R}$ е навсякъде диференцируема. Докажете, че f е растяща в \mathbb{R} тогава и само тогава, когато $f'(x) \geq 0$ за всяко $x \in \mathbb{R}$.
- 8. продължение (5 moчки) Нека $g(x) = \sqrt[5]{x^3}$. Определете точките, в които g(x) е диференцируема. отговор:

- **9.** продължение (5 точки) Определете точките, в които G(x) = x.g(x) е диференцируема. *отговор:*
- **10.** продължение (5 moчku) Определете точките, в които G(x) = x.g(x) има втора производна. omzosop:
- **11.** продължение *(7 точки)* Докажете, че $|g(x) g(y)| \le |x y|$ за $x \in [1, +\infty)$ и $y \in [1, +\infty)$.
- **12.** продължение (7 точки) Докажете, че g(x) е равномерно непрекъсната в \mathbb{R} .
- **13.** (8 точки) Формулирайте и докажете правилото за смяна на променливите за неопределени интеграли.
 - **14.** (6 точки) Нека F(x) е примитивна на функцията $f(x) = \frac{4x^4 + 5}{x^6 + x^4 + 5}$ в \mathbb{R} .

Пресметнете
$$\lim_{x\to 0} \frac{F(2x) - F(x)}{x} =$$