Математическая статистика

Михайлов Максим

20 сентября 2021 г.

Оглавление

Лекци	ия 1	6 сентября	2
1	Орга	низационные вопросы	2
		ение	
	2.1	Выборочная функция распределения	3
3		оначальная обработка статданных	
Лекци	ия 2	13 сентября	6
4	Точе	чные оценки	6
	4.1	Свойства статистических оценок	6
	4.	.1 Состоятельность	6
	4.	.2 Несмещённость	6
	4.	3 Эффективность	7
	4.2	Точечные оценки моментов	
		Метод моментов	

Лекция 1

6 сентября

1 Организационные вопросы

Большая часть баллов зарабатывается индивидуальными заданиями, выполняемыми в Excel-30 баллов. Тест с большим числом вопросов -20 или 25 баллов.

2 Введение

Теория вероятности состоит в следующем: исследуется случайная величина с заданным распределением. Математическая статистика занимается обратным — даны данные, нужно приближенно найти числовые характеристики случайной величины и с некоторой уверенностью найти вид распределения. Матстатистика также исследует связанность случайных величин, их корреляцию. В идеале есть цель построить модель, которая по значениям одних случайных величин предсказывает другие.

Пусть проводится некоторое количество экспериментов, в ходе которых появились некоторые данные.

Определение. **Генеральная совокупность** — набор всех исходов проведенных экспериментов.

В реальности наблюдается некоторая выборка генеральной совокупности, ибо рассматривать всю совокупность нецелесообразно.

Определение. Выборочная совокупность — исходы наблюдаемых экспериментов.

Определение. Выборка называется **репрезентативной**, если её распределение совпадает с распределением генеральной совокупности.

Выборка может быть нерепрезентативной, как в примере с ошибкой выжившего. Мы считаем, что таких ошибок у нас нет и все выборки репрезентативны, ибо исправление

этих ошибок — задача конкретной области, в которой используется матстатистика.

Определение (после опыта). Пусть проведено n наблюдаемых независимых экспериментов, в которых случайная величина приняла значение $X_1, X_2 \dots X_n$. Набор¹ этих данных называется выборкой объема n.

Определение (до опыта). **Выборкой объема** n называется набор из n независимых одинаково распределенных случайных величин.

Пусть имеется выборка в смысле "после опыта" объема n. Её можно интерпретировать как следующую дискретную случайную величину:

Средневыборочное:

$$\overline{X} := \sum_{i=1}^{n} \frac{1}{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Выборочная дисперсия:

$$S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

2.1 Выборочная функция распределения

$$F_n^*(z) \coloneqq rac{1}{n} \sum_{i=1}^n I(X_i < z) = rac{$$
число $X_i \in (-\infty,z)}{n}$

Примечание. I — индикатор:

$$I(X_i < z) = \begin{cases} 1, & X_i < z \\ 0, & X_i \ge z \end{cases}$$

Теорема 1.

$$\forall x \in \mathbb{R} \quad F_n^*(z) \xrightarrow[n \to \infty]{P} F(z)$$

Доказательство. Заметим, что

$$\mathbb{E}I(X_1 < z) = 1 \cdot P(X_1 < z) + 0 \cdot P(X_1 \ge z) = P(X_1 < z) = F(z)$$

¹ Или вектор.

, где F(z) — функция распределения X_1 . Заметим, что $F(z) \le 1 < \infty$, следовательно применим ЗБЧ Хинчина:

$$F_n^*(z) = \frac{\sum_{i=1}^n I(X_i < z)}{n} \xrightarrow{P} \mathbb{E}I(X_1 < z) = F(z)$$

Примечание. На самом деле имеется даже равномерная сходимость по вероятности — это теорема Гливенко-Кантелли:

$$\sup_{z \in \mathbb{R}} |F_n^*(z) - F(z)| \xrightarrow[n \to \infty]{P} 0$$

3 Первоначальная обработка статданных

Если отсортировать данные, то получим вариационный ряд: $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. Если учесть повторяющиеся экземпляры, то получим частотный вариационный ряд:

$X_{(i)}$	$X_{(1)}$	$X_{(2)}$	 $X_{(k)}$	\sum
n_i	n_1	n_2	 n_k	n
p_i^*	$\frac{n_1}{n}$	$\frac{n_2}{n}$	 $\frac{n_k}{n}$	1

Определение. $h\coloneqq X_{\max}-X_{\min}$ — размах выборки

Допустим, что разбили интервал (X_{\min}, X_{\max}) на k интервалов, чаще всего одинаковой длины. Тогда $l_i = \frac{h}{k}$ — длина каждого интервала и интервальный ряд можно заменить интервальным вариационным рядом.

$$\begin{array}{c|ccccc}
i & l_1 & l_2 & \dots & l_k & \sum \\
m_i & m_1 & m_2 & \dots & m_k & n \\
\frac{m_i}{n} & \frac{m_1}{n} & \frac{m_2}{n} & \dots & \frac{m_k}{n} & 1
\end{array}$$

 m_i — число попавших в i-тый интервал данных.

По такой таблице можно построить **гистограмму**. На координатной плоскости построим прямоугольники с основаниями l_i и высотами $\frac{m_i}{nl_i}$. В результате получаем ступенчатую фигуру площади 1, которая и называется гистограммой.

Теорема 2. При $n\to\infty, k(n)\to\infty$, причем $\frac{k(n)}{n}\to 0$, гистограмма будет стремиться к плотности распределения:

$$\frac{m_i}{n} \xrightarrow{P} P(X_i \in l_i) = \int_{l_i} f(x) dx$$

² Применяются и другие разбиения, например равнонаполненное.

Чаще всего число интервалов берется по формуле Стёрджесса: $k\approx 1+\log_2 n$. Иногда $k\approx \sqrt[3]{n}$.

Примечание. Иногда выборка изображается в виде **полигона**: отображаются точки, соответствующие серединам интервалов и ставим точки на высоте $\frac{m_i}{n}$.

Лекция 2

13 сентября

4 Точечные оценки

Пусть имеется выборка объема $n{:}~X = \begin{pmatrix} X_1 & \dots & X_n \end{pmatrix}$

Определение. Статистикой называется измеримая функция $\theta^* = \theta^*(X_1, \dots, X_n)$.

Пусть требуется найти значение параметра θ случайной величины X по данной выборке. Оценку будем считать с помощью некоторой статистики θ^* .

4.1 Свойства статистических оценок

4.1.1 Состоятельность

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется состоятельной оценкой параметра θ , если:

$$\theta^* \xrightarrow[n \to \infty]{P} \theta$$

4.1.2 Несмещённость

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется несмещенной оценкой параметра θ , если

$$\mathbb{E}\theta^* = \theta$$

Примечание. То есть с равной вероятностью можем ошибиться как в меньшую, так и в большую сторону. Нет систематической ошибки.

Определение. Статистика $\theta^* = \theta^*(X_1, \dots, X_n)$ называется асимптотически несмещенной оценкой параметра θ , если

$$\mathbb{E}\theta^* \xrightarrow[n\to\infty]{} \theta$$

Примечание. То есть при достаточно большом объеме выборки ошибка исчезает, но при малом она может существовать.

4.1.3 Эффективность

Определение. Оценка θ_1^* не хуже оценки θ_2^* , если

$$\mathbb{E}(\theta_1^* - \theta)^2 \le \mathbb{E}(\theta_2^* - \theta)^2$$

или, если оценки несмещенные,

$$\mathbb{D}\theta_1^* \leq \mathbb{D}\theta_2^*$$

Определение. Оценка θ^* называется эффективной, если она не хуже всех остальных оценок.

Теорема 3. Не существует эффективной оценки в классе всех возможных оценок.

Теорема 4. В классе несмещённых оценок существует эффективная оценка.

4.2 Точечные оценки моментов

Определение. Выборочным средним $\overline{X_B}$ называется величина

$$\left[\overline{X_B} = \frac{1}{n} \sum_{i=1}^n X_i\right]$$

Определение. Выборочной дисперсией \mathbb{D}_B называется величина

$$\left[\mathbb{D}_B = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_B})^2\right]$$

Определение. Исправленной выборочной дисперсией S^2 называется величина

$$S^2 = \frac{n}{n-1} \mathbb{D}_B$$

или

$$S^{2} = \frac{1}{n-1} \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{B})^{2}$$

Определение. **Выборочным средним квадратическим отклонением** называется величина

$$\sigma_B = \sqrt{\mathbb{D}_B}$$

Определение. Исправленным выборочным средним квадратическим отклонением называется величина

$$S = \sqrt{S^2}$$

Определение. Выборочным k-тым моментом называется величина

$$\boxed{\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k}$$

Определение. Модой M_0^* вариационного ряда называется варианта с наибольшей частотой:

$$M_0^* = X_i : n_i = \max_{1 \le j < n} n_j$$

Определение. Медианой M_e^* вариационного ряда называется значение варианты в середине ряда:

- 1. Если n=2k-1, то $M_e^*=X_k$
- 2. Если n=2k, то $M_e^*=rac{X_k+X_{k+1}}{2}$

Величина	Команда в Excel			
	Русский	Английский		
$\overline{X_B}$	СРЗНАЧ	AVERAGE		
\mathbb{D}_B	ДИСПР	VARP		
S^2	ДИСП	VAR		
σ_n	СТАНДОТКЛОНП	STDEVP		
S	СТАНДОТКЛОН	STDEV		
M_0^*	МОДА	MODE		
M_e^*	МЕДИАНА	MEDIAN		

Теорема 5. Выборочное среднее $\overline{X_B}$ является несмещенной состоятельной оценкой для математического ожидания, то есть:

- 1. $\mathbb{E}\overline{X_B} = \mathbb{E}X = a$ несмещенность
- 2. $\overline{X_B} \xrightarrow[n \to \infty]{P} \mathbb{E}X \text{состоятельность}$

Доказательство.

1.

$$\mathbb{E}\overline{X} = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}X_{i} = \frac{1}{n}\cdot n\mathbb{E}X_{i} = \mathbb{E}X$$

2.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow[n \to \infty]{P} \mathbb{E}X$$

Это верно по закону больших чисел.

Теорема 6. Выборочный k-тый момент является несмещенной состоятельной оценкой для теоретического k-того момента, то есть:

- 1. $\mathbb{E}\overline{X^k} = X^k$
- 2. $\overline{X^k} \xrightarrow{P} \mathbb{E} X^k$

Доказательство. Следует из предыдущей теоремы, если в качестве случайной величины взять X^k .

Теорема 7.

- \mathbb{D}_B смещённая состоятельная оценка дисперсии
- S^2 несмещённая состоятельная оценка дисперсии

Доказательство.

$$\mathbb{D}_B = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \overline{X^2} - (\overline{X})^2$$

$$\mathbb{E}\mathbb{D}_{B} = \\ \mathbb{E}(\overline{X^{2}} - (\overline{X})^{2}) = \\ \mathbb{E}\overline{X^{2}} - \mathbb{E}(\overline{X})^{2} = \\ \mathbb{E}X^{2} - \mathbb{E}(\overline{X})^{2} = \\ \mathbb{D}\overline{X} = \\ \mathbb{E}(\overline{X})^{2} - (\mathbb{E}\overline{X})^{2} = \\ \mathbb{E}X^{2} - (\mathbb{D}\overline{X} + (\mathbb{E}\overline{X})^{2}) = \\ \mathbb{E}X^{2} - (\mathbb{E}X)^{2} - \mathbb{D}\overline{X} = \\ (\mathbb{E}X^{2} - (\mathbb{E}X)^{2}) - \mathbb{D}\overline{X} = \\ (\mathbb{E}X^{2} - (\mathbb{E}X)^{2}) - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}\overline{X} = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X - \mathbb{D}X = \\ \mathbb{D}X -$$

$$\mathbb{D}X - \frac{1}{n^2} \cdot n \mathbb{D}X =$$

$$\mathbb{D}X - \frac{1}{n} \mathbb{D}X =$$

$$\frac{n-1}{n} \mathbb{D}X \neq \mathbb{D}X$$

$$\mathbb{E}S^2 = \mathbb{E}\left(\frac{n}{n-1} \mathbb{D}_B\right) = \frac{n}{n-1} \cdot \frac{n-1}{n} \mathbb{D}X = \mathbb{D}X$$

$$\mathbb{D}_B = \overline{X^2} - (\overline{X})^2 \xrightarrow{P} \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{D}X$$

$$S^2 = \frac{n}{n-1} \mathbb{D}_B \xrightarrow{P} \underbrace{\frac{n}{n-1}}_{\rightarrow 1} \mathbb{D}X$$

Примечание. \mathbb{D}_B — асимптотически несмещённая оценка, т.к. при $n \to \infty$, $\frac{n-1}{n} \to 1$. Таким образом, при большой выборке можно игнорировать смещённость.

4.3 Метод моментов

Изобретен Карлом Пирсоном.

Пусть имеется выборка $(X_1 \dots X_n)$ неизвестного распределения, при этом известен тип² распределения. Пусть этот тип определяется k неизвестными параметрами $\theta_1 \dots \theta_k$. Теоретическое распределение задает теоретические k-тые моменты. Например, если распределение непрерывное, то оно задается плотностью $f(X,\theta_1\dots\theta_k)$ и $m_k=\int_{-\infty}^{+\infty}X^kf(x,\theta_1\dots\theta_k)dx=h_k(\theta_1\dots\theta_k)$. Метод моментов состоит в следующем: вычисляем выборочные моменты и подставляем их в эти равенства вместо теоретических. В результате получаем систему уравнений:

$$\begin{cases} \overline{X} = h_1(\theta_1 \dots \theta_k) \\ \overline{X^2} = h_2(\theta_1 \dots \theta_k) \\ \vdots \\ \overline{X^k} = h_k(\theta_1 \dots \theta_k) \end{cases}$$

Решив эту систему, мы получим оценки на $\theta_1 \dots \theta_k$. Эти оценки будут состоятельными³, но смещёнными.

Пример. Пусть $X \in U(a,b), \underline{a} < b.$ Обработав статданные, получили оценки первого и второго момента: $\overline{X} = 2.25; \overline{X^2} = 6.75$

П

 $^{^{}_{1}}$ $n \ge 100$, например.

² Нормальное, показательное и т.д.

³ Если не придумывать специально плохие примеры

Решение. Плотность
$$f(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x \le b \\ 0, & x > b \end{cases}$$

$$\mathbb{E}X = \int_a^b x f(x) dx = \int_a^b \frac{x}{b-a} = \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_a^b = \frac{b^2 - a^2}{2(b-a)} = \boxed{\frac{a+b}{2}}$$

$$\mathbb{E}X^2 = \int_a^b x^2 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3(b-a)} = \boxed{\frac{a^2 + ab + b^2}{3}}$$

$$\begin{cases} 2.25 = \frac{a+b}{2} \\ 6.75 = \frac{a^2 + ab + b^2}{3} \end{cases}$$

$$\begin{cases} a+b=4.5 \\ a^2 + ab + b^2 = 20.25 \end{cases}$$

$$\begin{cases} a+b=4.5 \\ ab=0 \end{cases}$$