Introduction to Statistics

Sampling Populations

Populations have PARAMETERS

Samples have ESTIMATES

- Represented by Greek Letters
- μ; σ

- Represented by Roman Letters
 - \overline{X} ; s

- Bags of colored marbles
- Election polling

Bias:

a systematic discrepancy between estimates and the true population characteristic

A few types of bias

- The sample of convenience
 - Example: cats falling
 - Counter-intuitively higher falls seem to result in lower injury rates

Number of stories fallen

What makes a 'good' sample?

What makes a good sample?

What makes a good sample?

1. Sufficiently large

Larger samples have a smaller sampling error

$$SE_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

 The above equation makes clear the inverse relationship of SE and N

What makes a good sample?

$$n = 100$$

$$n = 1000$$

What makes a good sample?

- Sufficiently large
 - Larger samples have a smaller sampling error
- 2. Randomly sampled
 - Equal chance of selection
 - unbiased
 - Independent
 - The selection of one unit does not influence the selection of any other unit
 - Sample size is smaller than we think if the individuals measured are not independent
 - Random number generator is one way to pick a sample

Random Variable

- The numerical outcome of a random experiment
- Differs between individuals
- Population parameters are constants versus estimates which are also random variables which means that they change from one random sample to the next
- Categorical or numerical
- Ex: Draw a student from the student body
 - Weight, height, grade point average, SAT score are all numerical random variables
- Ex: Toss two dice and allow **Y** to represent the sum of sum of the dots on the two dice. **Y** can then be any value between 2 and 12.