

PROTOCOLO DE TESIS: MAPEOS PROYECTIVOS EN SISTEMAS DE VARIOS QUBITS

José Alfredo de León Garrido

Asesorado por M.Sc. Juan Diego Chang y Dr. Carlos Pineda Zorrilla

11

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

PROTOCOLO DE TESIS: MAPEOS PROYECTIVOS EN SISTEMAS DE VARIOS QUBITS

13	TRABAJO DE GRADUACIÓN
14	PRESENTADO A LA JEFATURA DEL
15	DEPARTAMENTO DE FÍSICA
16	POR
17	JOSÉ ALFREDO DE LEÓN GARRIDO
18	ASESORADO POR M.SC. JUAN DIEGO CHANG Y DR. CARLOS PINEDA
19	ZORRILLA
	AL COMPEDÍDODE DE MÍTHEO DE
20	AL CONFERÍRSELE EL TÍTULO DE

GUATEMALA, ENERO DE 2021

LICENCIADO EN FÍSICA APLICADA

ÍNDICE GENERAL

25 OBJETIVOS	III
26 INTRODUCCIÓN	V
27 1. METODOLOGÍA	1
28 2. DESCRIPCIÓN DE LOS CAPÍTULOS	3
29 3. CONTENIDOS	5
30 BIBLIOGRAFÍA	7

OBJETIVOS

$_{32}$ General

31

Estudiar los mapeos de borrado de componentes de Pauli (PCE por sus siglas ³⁴ en inglés) en sistemas de 2 y 3 qubits.

$_{ ext{35}}$ Específicos

- 1. Estudiar numéricamente la completa positividad de los mapeos PCE en sistemas de 2 y 3 qubits.
- 2. Estudiar las características de los canales PCE.
- 39 3. Comparar los canales PCE con otros canales de Pauli que han sido previamente estudiados.
- 4. Desarrollar una herramienta geométrica para entender los mapeos PCE.

INTRODUCCIÓN

43

42

- La mecánica cuántica y la limitación del formalismo que se aprende en la licenciatura para describir a los sistemas abiertos
- Teoría de los canales cuánticos
- Mapeos PCE y el estado del estudio, que sería lo de 1 qubit que se puso en el informe de prácticas
- Cuáles son las expectativas de lo que queremos encontrar para 2 y 3 qubits
- 50 Prueba: [1]

1. METODOLOGÍA

52

51

- Hacer un recordatorio del trabajo de prácticas porque es la base teórica de este trabajo
- Método numérico para 2 y 3 qubits
- Análisis los resultados del numérico
- Comparación con los mapeos de Ruskai
- Trabajo futuro

2. DESCRIPCIÓN DE LOS CAPÍTULOS

60

59

- Cap 1: Fundamentos teóricos (formalismo de la matriz de densidad y canales cuánticos)
- Cap 2: Mapeos de borrado de componentes de Pauli
- Cap 3: Resultados 2 y 3 qubits
- Cap 4: Canalés cuánticos de Pauli constantes sobre los ejes
- JA: El capítulo 4 será cortito: exposición de los mapeos de Ruskai y el argumento que tenemos para refutar que los PCE sean un subconjunto.

3. CONTENIDOS

- 69 LISTA DE FIGURAS
- 70 LISTA DE TABLAS
- 71 LISTA DE SÍMBOLOS
- 72 OBJETIVOS
- 73 INTRODUCCIÓN
- 74 Los capítulos que acordemos de la sección anterior
- 75 CONCLUSIONES
- 76 TRABAJO FUTURO

BIBLIOGRAFÍA

77

I. Bengtsson and K. Zyczkowski. Geometry of Quantum States: An Introduction
to Quantum Entanglement. Cambridge University Press, 2nd edition, 2017.

JA: Es requisito que aquí vayan 6 items como mínimo. Creo que le llegamos: 81 1. Chuang 2. Geometry of QS 3. Sakurai 4. Paper Ruskai 5. El otro paper sobre los 82 mapeos de Ruskai 6. Alguno más del informe de prácticas