

UHER COMPACT DISC PLAYER

1200 CD

Figure 2

TO REMOVE TOP COVER

- 1. Remove 2 screws (A) from left and right sides of top cover. (See Fig. 1)
- 2. Remove 5 screws (B) from back panel of top cover. (See Fig. 2)
- 3. Top cover can now be removed.

Figure 3

Uher

1200 CI

MODEL NO. COMPACT 1200CD COMPACT DISC PLAYER

SPECIFICATIONS

PLAYBACK SYSTEM

TYPICAL AUDIO PERFORMANCE

FREQUENCY RANGE
OUTPUT IMPEDANCE
OUTPUT LEVEL
AMPLITUDE LINEARITY
SIGNAL-TO-NOISE RATIO
CHANNEL SEPARATION
T.H.D. (INCL. NOISE)
INTERMODULATION DISTORTION

COMPACT DISC DIGITAL AUDIO

20Hz - 20kHz 10k ohm//300pF 1.7 Vrms ±1.0dB > 84dB W/F > 78dB W/F (1kHz) <0.1% W/F (1kHz) -60dB (AT MAX. OUTPUT)

OPTICAL READOUT SYSTEM

LASER TYPE
NUMERICAL APERTURE
WAVE LENGHT

POWER SUPPLY

POWER SOURCE POWER CONSUMPTION

DIMENSION

WEIGHT

SEMICONDUCTOR AL CA AS 0.456 780 nm

AC 230V, 50Hz 8.5 WATT WITH 4 DIGIT LCD DISPLAY

 $W=41.9cm(16-1/2") \times H=8.5cm(3-3/8") \times D=35.4cm(13-15/16")$

4 kgs (8.8 lbs)

Test Points: TP5, TP6, TP7

- 1. Short TP.5 and TP6, in stop mode.
- 2. Frequency counter connect to TP7, adjust SFR005, let counter reading as 4.2418MHz±10KHz (4.2318-4.2518).
- 3. Open TP5 and TP6 after above procedures.

Focus Bias Adjustment

Test Points: TP1, TP2

- 1. In play mode.
- 2. Scope connect to TP1 (RF) and TP2 (GND).
- 2 Adjust SFR003 let RF waveform output to maximum.

EF Balance Adjustment

Test Points: TP2, TP3, TP4

- 1. In play mode, scope connect to TP4 and TP2 (GND), TP2 and TP3 short.
- 2. Adjust SFR004 symmetrize to DC OV.
- 3. See Fig. 4

Focus Servo Gain Adjustment

Figure 4

- Power OFF.
 - Disconnect CN009, and connect sony CDP servo analyzer.
- 3. Power ON and play the disc (YEDS-18)
- 4. Set servo analyzer in focus mode, and adjust SFR002.
- 5. Let the pointers in the center of the red area (GND to TP6).
- 6. Repeat the adjustment for the first and the last programs of the disc.

Track Servo Gain Adjustment

- 1. Set servo analyzer in track mode.
- 2. Adjust SFR001, let the pointers in the center of the red area (GND to TP6).
- 3. Repeat the adjustment for the first and the last programs of the disc.
- 4. Power OFF, re-connect CN009.

Remark: All the adjustment personnel should equipped with anti-static wristlet.

*ALL INTEGRATED CIRCUITS AND MAIN OTHER SEMICONDUCTOR DEVICES
ARE ELECTROSTATICALLY SEMSITIVE AND THEREFORE REQUIRE THE
SPECIAL HANDLING TECHNIQUES DESCRIBED UNDER THE "ELECTROSTATICALLY
SENSITIVEIES) DEVICES" SECTION OF THIS SERVICE MANUAL.*

2SC945P,Q

NOTE:

USE THIS DIAGRAM FOR REFERENCE ONLY. PARTS NOT AVAILABLE SEPARATELY.

(111) ESVIPLI R31E SBOK \$5.00 \$5.00 \$5.00 ROMIA. SAZA ROMEA. SAEA ROMEA X 4 R315 690K COLD . OZZU ESVIPLI C311-220F C307 4.7U50Y (17) -Q 18K 167(1/L) CS03 .027 1581 CSGL .00LU 2312 2303457.0 RE09 } PSS 1.7X (55) C397 4.7USB ** ** ** *** *** (30) (30) (30) TOTA WHEL .Z 7353 180K C350 4.7\/56 ROSE 47K (372 950 WET 6 7612 A614 1004 8.04 CE84 CE06 .027 .0098U (98) 16Y(NL) PORT LSOK 2344-308 LTL-4273(A-9ER) 150A BOR FOLUT DT 92 15 CD77 RG67 .61U 150K 16V(rL) 92 3 15V(rL) ME43 6.84 1017 **3000 A** (51) 10K 10K ICHS HO HOUSE CHEZ 5800 R374 SOVINLI 270K R203 22X C203 · C244 330P SENSOR PCB 151 Model No. COMPACT 1200CD

