

DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

Liangbin Xie*, XintaoWang*, Xiangyu Chen*, Gen Li, Ying Shan, Jiantao Zhou, Chao Dong University of Macau; Shenzhen Institutes of Advanced Technology; Tencent ARC Lab; Shanghai AI lab

GAN-SR Models in Real World Scene

- > GAN-SR methods often generate perceptually unpleasant artifacts, which would seriously affect the user experience.
- > These artifacts appear in the real-world unseen data during inference, which can be defined as GAN-inference artifacts. They are typically out of training distribution and do not appear in the training phase. Solving GAN-inference artifacts has great practical value.

☐ We deal with GAN-inference artifacts with two characteristics

- The artifacts do not appear in the pretrained MSE-SR model.
- The artifacts are obvious and have a large area, which can be observed at the first glance.

Automatically Detect GAN-inference Artifacts

- > We adopt the MSE-based results as the reference
- > We calculate the difference between standard deviations of GAN-SR patch and MSE-SR patch to measure the texture difference d as

$$d(x,y) = (\sigma_x - \sigma_y)^2$$

> We calculates the relative difference of local variance D between MSE-SR and GAN-SR patches:

$$D = \frac{2\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + C}$$

- > We further introduce semantic-aware adjustment to enlarge the difference in perceptually artifact-sensitive regions (e.g., building, sea) while suppressing the difference in textured regions (e.g., foliage, animal fur).
- We then filter out detection noises and perform morphological manipulations to generate the final artifact mask.

Delete GAN-inference Artifacts

- ➤ We use MSE-SR results to replace the regions where artifacts were detected in GAN-SR results.
- We then use a small amount of data to generate the data pairs (LR & pseudo GT) from real data to finetune the model.

We only need to finetune the model for a few iterations (about 1K iterations) and the updated model would produce perceptually pleasant results without obvious artifacts. Moreover, it does not influence other fine details in regions without artifacts.

☐ Artifact Detection Results

Table 1. Artifact detection results based on Real-ESRGAN (Wang et al., 2021c). LDL* represents the modified detection method in LDL (Liang et al., 2022b).

Method	IoU (†)	Precision	Recall
NIQE	2.9	0.0494	0.1054
PAL4Inpainting	8.4	0.0855	0.0992
LDL*(threshold=0.01)	29.9	0.3504	0.3485
LDL*(threshold=0.005)	36.2	0.2618	0.5442
LDL*(threshold=0.001)	35.3	0.1410	0.8391
DeSRA-det (ours)	51.1	0.7055	0.6081

☐ Improved GAN-SR Results

Table 3. Artifact detection results of GAN-SR models with and without using DeSRA finetuning.

Method	IoU (↓)	Removal rate	Addition rate
Real-ESRGAN	51.1	-	-
Real-ESRGAN-DeSRA	12.9	75.43%	0%
LDL	-44.5		
LDL-DeSRA	13.9	74.97%	0%

□ User Study

- Our method largely removes the artifacts generated by the original model.
- The finetuned GAN-SR model generates more detailed results than the MSE-SR model.

code: https://github.com/TencentARC/DeSRA