北京林业大学 2020--2021学年第二学期试卷 A

试卷名称:	线性代数	(56 学时)	课程所在院系:_	理学院	
考试班级		学号		成绩	
试卷说明:					
1. 本次考试为 闭 卷考试。认真审题,请勿漏答;					
2. 考试时间为 120 分钟,请掌握好答题时间;					
3. 本试卷所有试题答案写在 试卷 纸上,其它无效;					
4. 答题完毕,请将试卷纸正面向外对叠交回,不得带出考场;					
一、判断题(下列命题你认为正确的在题后括号内打"√",错的打"×")					
(每小题 3 分,共 12 分)					
1、若方程组 $Ax=0$ 含有自由未知量,则方程组 $Ax=b$ 将有无穷多解.(\times)					
2、一个 n 阶矩阵 A 为非奇异的,当且仅当 A 相抵于 I (I 是单位矩阵. (↓)					
3 、任何两个迹相同的 n 阶矩阵是相似的. (\times)					
4、设 A 是 $m \times n$ 矩阵,则 $r(A) = r(A_T)$. (✓)					
二、单项选择题(在每小题四个备选答案中选出一个正确答案,填在题中括号内)					
(每题 3 分, 共 15 分)					
(1/2 -		•			
1. 已知 $\begin{vmatrix} a & a \\ a_{11} & a_{22} \\ a_{21} & a_{22} \end{vmatrix} = M$, 则 $\begin{vmatrix} ka & ka \\ a_{11} & a_{12} \\ ka & ka \\ a_{21} & a_{22} \end{vmatrix} = ($ A $)$					
$(A) k^2 M ;$		(B) kM;	$(C) k_4M$	$(D) kM^2 ,$	
2 、 A,B 均为 $n(n \ge 2)$ 阶方阵,且 $AB = O$,则(\mathbf{c}).					
(A) A, B	为零矩阵	;	(C) A,B 至少有一·	个矩阵为奇异矩阵;	
$(B) A, B \stackrel{?}{=}$	至少有一个	为零矩阵;	(D) A,B 均为奇异知	巨阵.	
\mathbf{a} 、 $m > n$ 是 n 维向量组 α_{l} , α_{2} , α_{m} 线性相关的(\mathbf{A})条件.					
(A) 充分;	((B)必要;	(C)充分必要;	(D)必要而不充分的;	
4、设 ξ_1 , ξ_2 为齐次线性方程组 $Ax=0$ 的解, η_1 , η_2 为非齐次线性方程组 $Ax=b$ 的解,则(\boldsymbol{c}).					
$(A) 2\xi_{1} + \eta$	\int_1 为 $Ax = 0$	0的解;	$(B) \eta_1 + \eta_2 + Ax = b$	b的解;	

(*C*)
$$\xi_1 + \xi_2$$
 为 $Ax = 0$ 的解;

$$(D)$$
 $\eta_1 - \eta_2$ 为 $Ax = b$ 的解.

- 5、 设A是正交矩阵, α_{i} 是A的第j列,则 α_{i} 与 α_{i} 的内积等于(B)
 - (A) 0;
- (B) 1;
- (C) 2;
- (*D*) 3

三、填空(将正确答案填在题中横线上,每题 3 分,共 21 分)

- **2**、设 α_1 , α_2 , β_1 , β_2 , γ 都是³ 维行向量,且行列式

3、设A是4阶矩阵,若齐次线性方程组Ax=0的基础解系中含有一个解向量,

4、设矩阵
$$D = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$$
,若 A 、 B 可逆,则 D 也可逆且 $D^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix}$

- **6、**设 $\alpha_1 = (k,1,1), \alpha_2 = (0,2,3), \alpha_3 = (1,2,1),$ 则当 k = 1/4 时, $\alpha_1, \alpha_2, \alpha_3$ 线性相关。
- **7、** t 满足 $-\sqrt{2} < t < \sqrt{2}$ 时,二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2tx_1 x_2 + 2x_1 x_3$ 是正定的.

解
$$AX = B + X \Rightarrow (A - I)X = B$$
, $|A - I| = \begin{vmatrix} 4 & 1 & -2 \\ 2 & 2 & 1 \\ 3 & 1 & -1 \end{vmatrix} = -\begin{vmatrix} 10 & 5 \\ 5 & 3 \end{vmatrix} \neq 0$, ⇒ 可逆,

$$\therefore X = (A-I)^{-1}B \Rightarrow ((A-I),B) = \begin{pmatrix} 4 & 1 & -2 & 1 & -3 \\ 2 & 2 & 1 & 2 & 2 \\ 3 & 1 & -1 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -3 & -4 & -3 & -7 \\ 2 & 2 & 1 & 2 & 2 \\ 1 & -1 & -2 & 1 & -3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & -2 & 1 & -3 \\ 2 & 2 & 1 & 2 & 2 \\ 0 & -3 & -4 & -3 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 & 1 & -3 \\ 0 & 1 & 1 & -3 & 1 \\ 0 & -3 & -4 & -3 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 & 1 & -3 \\ 0 & 1 & 1 & -3 & 1 \\ 0 & 0 & 1 & 12 & 4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 & 25 & 5 \\ 0 & 1 & 0 & -15 & -3 \\ 0 & 0 & 1 & 12 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 & 2 \\ 0 & 1 & 0 & -15 & -3 \\ 0 & 0 & 1 & 12 & 4 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 10 & 2 \\ -15 & -3 \\ 12 & 4 \end{pmatrix}$$

五、设
$$\alpha_1 = (1,-1,2,4), \alpha_2 = (0,3,1,2), \alpha_3 = (3,0,7,14), \alpha_4 = (2,1,5,6), \alpha_5 = (1,-1,2,0)$$

求已知的向量组的一个含有 α_1 , α_5 的极大线性无关组,并将其余向量用它线性表示。

(8分)

$$\begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ -1 & 3 & 0 & 1 & -1 \\ 2 & 1 & 7 & 5 & 2 \\ 4 & 2 & 14 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 3 & 3 & 3 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

向量组的一个含有 α_1 , α_5 的极大线性无关组为 α_1 , α_2 , α_5 , $\alpha_3 = 3\alpha_1 + \alpha_2$; $\alpha_4 = \alpha_1 + \alpha_2 + \alpha_3$

六、求方程组
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0 \text{ 的基础解系, 并用它表示出方程组的通解. (10 分)} \\ x_1 - x_2 - 4x_3 - 3x_4 = 0 \end{cases}$$

解:对系数矩阵作初等变换:

$$A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & -2 & -2 \\ 1 & -1 & -4 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & -6 & -5 \\ 0 & 3 & 6 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{ \pm alimate \pm $alimate $\pm$$

...

通解为
$$\begin{pmatrix} x \\ 1 \\ x \\ 2 \\ x \\ 3 \\ x \end{pmatrix} = k_1 \begin{pmatrix} 2 \\ -2 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} \frac{5}{3} \\ -\frac{4}{3} \\ 0 \\ 1 \end{pmatrix}$$
 (k_3, k_4) 为任意常数)

七、 已知 $\alpha_1 = (1,1,0,0)$, $\alpha_2 = (0,0,1,1)$, $\alpha_3 = (1,0,0,4)$, $\alpha_4 = (0,0,0,2)$ 是 R 4 的一组基,设 $\epsilon_1 = (1,0,0,0)$, $\epsilon_2 = (0,1,0,0)$, $\epsilon_3 = (0,0,1,0)$, $\epsilon_4 = (0,0,0,1)$, (8 分)

- 1、求由基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到基 $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ 的过渡矩阵.
- 2、求 ϵ_3 在基 α_1 , α_2 , α_3 , α_4 下的坐标.

解:由基
$$\epsilon_1$$
, ϵ_2 , ϵ_3 , ϵ_4 到基 α_1 , α_2 , α_3 , α_4 的过渡矩阵为 $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 \end{pmatrix}$

所以由基
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
 到基 $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ 的过渡矩阵为 $A_{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ -2 & 2 & -0.5 & 0.5 \end{pmatrix}$

故向量 ε_3 在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为: $(0,1,0,-\frac{1}{2})$

八、用正交变换化二次型 $f(x_1,x_2,x_3) = -5x_1^2 + x_2^2 - x_3^2 + 4x_1x_2 + 6x_1x_3$ 为标准形, 并写出 所用正交变换。(12 分)

M:
$$f(x_1, x_2, x_3) = -5x_1^2 + x_2^2 - x_2^2 + 4x_1 x_2 + 6x_1 x_3 \Rightarrow \begin{pmatrix} -5 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & -1 \end{pmatrix}$$

$$\begin{vmatrix} \lambda I - A \end{vmatrix} = \begin{vmatrix} \lambda + 5 & -2 & -3 \\ -2 & \lambda - 1 & 0 \\ -3 & 0 & \lambda + 1 \end{vmatrix} = -3 \begin{vmatrix} -2 & -3 \\ \lambda - 1 & 0 \end{vmatrix} + (\lambda + 1) \begin{vmatrix} \lambda + 5 & -2 \\ -2 & \lambda - 1 \end{vmatrix}$$

$$= -9(\lambda - 1) + (\lambda + 1)[(\lambda - 1)(\lambda + 5) - 4] = -9(\lambda - 1) + (\lambda + 1)[\lambda_2 + 4\lambda - 9]$$

$$= -9\lambda + 9 + \lambda_3 + 4\lambda_2 - 9\lambda + \lambda_2 + 4\lambda - 9 = \lambda(\lambda_2 + 5\lambda - 14) = \lambda(\lambda + 7)(\lambda - 2)$$

$$\lambda_1 = 0$$
, $\lambda_2 = 2$, $\lambda_3 = -7$

$$e_1 = \left(\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)^T, e_2 = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^T, e_3 = \left(\frac{-4}{\sqrt{21}}, \frac{1}{\sqrt{21}}, \frac{2}{\sqrt{21}}\right)^T$$

正交矩阵 $P = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$ 经正交变换 x = Py, $f(x_1, x_2, x_3)$ 化为标准形: $2y_2 - 7y_3$

九、设A,B为 $n\times n$ 矩阵,证明:如果AB=O,那么秩(A)+秩 $(B)\leq n$. (6分)

证明:将B分块为: $B = (\beta_1, \beta_2, \beta_n)$,因为已知AB = O

所以
$$AB = A(\beta_1, \beta_2, , \beta_n) = (A\beta_1, A\beta_2, , A\beta_n) = (0,0, , 0)$$

$$\Rightarrow A\beta_i = 0; (i = 1, 2, , n) \Rightarrow \beta_i$$
 是方程组 $Ax = 0$ 的解 ...

取出方程组Ax = 0的一个基础解系: $\eta_1, \eta_2, \eta_{n-r}$, 其中 $r = \mathcal{K}(A)$

所以 $\beta_1, \beta_2, , \beta_n$ 可由 $\eta_1, \eta_2, , \eta_{n-r}$ 线性表出

故 秩(
$$B$$
) = 秩{ $\beta_1, \beta_2, , \beta_n$ } \leq 秩{ $\eta_1, \eta_2, , \eta_{n-r}$ } = $n - \xi(A)$

 \Rightarrow 秩(A)+秩(B)≤n

...