physik421 - Übung 1

Lino Lemmer 12@uni-bonn.de

Frederike Schrödel

Simon Schlepphorst s2@uni-bonn.de

21. April 2014

1.1 Komplexe Zahlen

Gegeben sind $z_1 = a_1 + ib_1$ und $z_2 = a_2 + ib_2$.

1.1.1 Summe und Produkt

$$z_1 + z_2 = a_1 + a_2 + i(b_1 + b_2)$$

 $z_1 \cdot z_2 = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)$

1.1.2 Absolutbetrag

$$|z_1| = \sqrt{(a_1 + ib_1)(a_1 - ib_1)}$$

= $\sqrt{a_1^2 + b_1^2}$

1.1.3 Konjungieren eines Produktes

$$(z_1 z_2)^* = (a_1 a_2 - b_1 b_2 + i (a_1 b_2 + a_2 b_1))^*$$

$$= a_1 a_2 - b_1 b_2 - i (a_1 b_2 + a_2 b_1)$$

$$= (a_1 - i b_1) (a_2 - i b_2)$$

$$= z_1^* z_2^*$$

1.1.4 Polare Darstellung

$$r_{j} = \left|z_{j}\right|$$

$$= \sqrt{a_{j}^{2} + b_{j}^{2}}$$
 $\phi_{j} = \operatorname{arc}\left(\frac{b_{j}}{a_{j}}\right)$

1.1.5 Komplex Konjungierte

$$z_{j} = r_{j} e^{i\phi_{j}}$$

$$z_{j}^{*} = r_{j} e^{-i\phi_{j}}$$

1.1.6 Produkt und Quotient

$$z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\phi_1 - \phi_2)}$$

1.1.7 Betrag einer Summe

$$|z_1 + z_2| = \sqrt{(z_1 + z_2)(z_1 + z_2)^*}$$

$$= \sqrt{(a_1 + a_2 + i(b_1 + b_2))(a_1 + a_2 - i(b_1 + b_2))}$$

$$= \sqrt{(a_1 + a_2)^2 + (b_1 + b_2)^2}$$

1.1.8 Eulersche Summe

Die Taylor-Entwicklungen sind

$$\cos x = \frac{x^{0}}{0!} - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots$$

$$= 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots$$

$$\sin x = \frac{x^{1}}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots$$

$$= x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots$$

$$e^{ix} = \frac{(ix)^{0}}{0!} + \frac{(ix)^{1}}{1!} + \frac{(ix)^{2}}{2!} + \frac{(ix)^{3}}{3!} + \frac{(ix)^{4}}{4!} + \frac{(ix)^{5}}{5!} + \dots$$

$$= 1 + ix - \frac{x^{2}}{2} - i\frac{x^{3}}{6} + \frac{x^{4}}{24} + i\frac{x^{5}}{120} + \dots$$

Man sieht sofort, dass gilt

$$e^{ix} = \cos x + i \sin x.$$

1.2 Interferenz ebener Wellen

Gegben sind zwei ebene Wellen der Form:

$$\Psi_1 = \vec{A}_1 e^{i\left(\omega t - \vec{k}_1 \vec{x}\right)}$$

$$\Psi_2 = \vec{A}_2 e^{i\left(\omega t - \vec{k}_2 \vec{x}\right)}$$

Es soll angenommen werden, diese seien kohärent.

1.2.1 Intensität

Es soll die Intensität I der beiden Wellen berechnet werden:

$$\begin{split} I &= \left| \Psi_1 + \Psi_2 \right|^2 \\ &= \left| \vec{A}_1 \mathrm{e}^{\mathrm{i} \left(\omega t - \vec{k}_1 \vec{x} \right)} + \vec{A}_2 \mathrm{e}^{\mathrm{i} \left(\omega t - \vec{k}_2 \vec{x} \right)} \right|^2 \\ &= \left(\vec{A}_1 \mathrm{e}^{\mathrm{i} \left(\omega t - \vec{k}_1 \vec{x} \right)} + \vec{A}_2 \mathrm{e}^{\mathrm{i} \left(\omega t - \vec{k}_2 \vec{x} \right)} \right) \left(\vec{A}_1 \mathrm{e}^{-\mathrm{i} \left(\omega t - \vec{k}_1 \vec{x} \right)} + \vec{A}_2 \mathrm{e}^{-\mathrm{i} \left(\omega t - \vec{k}_2 \vec{x} \right)} \right) \\ &= \vec{A}_1^2 + \vec{A}_2^2 + \vec{A}_1 \vec{A}_2 \left(\mathrm{e}^{\mathrm{i} \vec{x} \left(\vec{k}_1 - \vec{k}_2 \right)} + \mathrm{e}^{\mathrm{i} \vec{x} \left(\vec{k}_2 - \vec{k}_1 \right)} \right) \\ &= \vec{A}_1^2 + \vec{A}_2^2 + \vec{A}_1 \vec{A}_2 \left(\mathrm{e}^{\mathrm{i} \vec{x} \left(\vec{k}_1 - \vec{k}_2 \right)} + \mathrm{e}^{-\mathrm{i} \vec{x} \left(\vec{k}_1 - \vec{k}_2 \right)} \right) \\ &= \vec{A}_1^2 + \vec{A}_2^2 + \vec{A}_1 \vec{A}_2 \cos \left(\vec{x} \left(\vec{k}_1 - \vec{k}_2 \right) \right) \end{split}$$

1.2.2 Inkohärente Intensität

Nun soll die Intensität betrachtet werden, wenn die beiden Wellen nicht kohärent sind. In diesem Fall gilt für die Intensität:

$$I = |\Psi_1^2 + \Psi_2^2|$$
 $\Rightarrow |= |24 |^2 + |24 |^2$
tät $|\Psi_1^2 + \Psi_2^2|$ $\Rightarrow |= |24 |^2 + |24 |^2$
Champ Bet Lapjugieru, bess. Better
Quadratic Nicot occupeeses

1.2.3 Minima und Maxima der Intensität

Jetzt soll errechnet werden, für welche \vec{k}_j die Intensität minimal/maximal wird. Aufgrund der Cosinus-Abhängigkeit der Intensität ist diese minimal für

$$\cos\left(\vec{x}\left(\vec{k}_1 - \vec{k}_2\right)\right) = -1 \iff \vec{x}\left(\vec{k}_1 - \vec{k}_2\right) = (2n+1)\pi \qquad n \in \mathbb{N}$$

und maximal für

$$\cos\left(\vec{x}\left(\vec{k}_1 - \vec{k}_2\right)\right) = 1 \iff \vec{x}\left(\vec{k}_1 - \vec{k}_2\right) = 2n\pi \qquad n \in \mathbb{N}$$

Der demnach einfachste Fall für ein Maximum wäre bei $\vec{k}_1 = \vec{k}_2$ \checkmark

1.2.4 Aufheben der beiden Wellen

Nun soll gezeigt werden unter welchen Bedingungen sich die beiden Wellen exakt aufheben würden. Aus 2.3 ist bekannt, dass das Minimum der Intensität erreicht wird, wenn $\vec{x} \left(\vec{k}_1 - \vec{k}_2 \right) = (2n+1) \pi$. In diesem Fall ist die Intensität:

$$I = \vec{A}_1^2 + \vec{A}_2^2 - 2\vec{A}_1\vec{A}_2$$

Dabei heben sich die Wellen auf wenn I = 0 ist:

$$\vec{A}_1^2 + \vec{A}_2^2 - 2\vec{A}_1\vec{A}_2 = 0$$

Betrachtet man die Beträge $|\vec{A}_1|$ und $|\vec{A}_2|$ so folgt:

$$\left| \vec{A}_1 \right| = \left| \vec{A}_2 \right|$$

Die beiden Bedingungen dafür, dass sich die beiden Wellen aufheben sind also, dass die Intensität minimal wird und die Amplituden denselben Betrag haben.

1.3 Beugung am Einzelspalt

1.3.1 Gangunterschied benachbarter Bündel

Einzelspalt

Abbildung 1: Zwei benachbarte Bündel aus dem Mchtstrahl.

Der Gangunterschied Δ zwischen zwei benachbarten Bündeln ist, wie aus Abbildung 1 ersichtlich $\Delta = \frac{d}{2N} \sin \alpha$. Via Notation Anglabende Congression in Notation and Notation in Notation and Notation Anglabende Congression in Notation and Notation in Notation and Notation in Notation and Notation a

1.3.2 Intensitätsminimum

Für ein Intensitätsminimum müssen die beiden äußeren Strahlen einen Gangunterschied von

$$\Delta = k\lambda$$
,

mit $k \in \mathbb{N}$ haben, dann gibt es immer zwei Strahlen mit Gangunterschied $\frac{\lambda}{2}$. Beugungsminima treten daher unter

$$\alpha = \arcsin\left(\frac{2Nk\lambda}{d}\right)$$

1.3.3 Intensitätsmaximum

Für ein Intensitätsmaximum muss gelten

$$\Delta = \left(k + \frac{1}{2}\right)\lambda,$$

mit $k \in \mathbb{N}$. Beugungsminima treten daher unter

$$\alpha = \arcsin\left(\frac{\left(k + \frac{1}{2}\right)2N\lambda}{d}\right)$$

1.3.4 Bedingung an Spaltbreite

Damit Beugungsmuster beobachtet werden können muss $d>\lambda$ gelten.