Package 'dREG'

January 18, 2018

•				
Version 1.2.0				
Date 2017-12-19				
Title Detection of Regulatory DNA using PRO-seq, GRO-seq Data(dREG)				
Author Charles G. Danko <dankoc@gmail.com></dankoc@gmail.com>				
Maintainer Charles G. Danko <dankoc@gmail.com></dankoc@gmail.com>				
Depends R (>= 2.14), bigWig (>= 0.2-9), e1071, rphast, snowfall, data.table, rmutil, mvtnorm, methods				
LinkingTo				
Suggests data.table, Rgtsvm				
Description This package is an analysis pipeline for the analysis of GRO-seq data.				
License GPL-3				
biocViews Sequencing, Analysis				
LazyLoad yes				
R topics documented: combine.roc				
get_informative_positions get_test_set logreg.roc.calc peak_calling read_genomic_data 1 regulatory_svm 1 roc.auc 1 roc.calc 1 roc.plot 1				
Index 1				

2 combine.roc

combine.roc

Combines ROC plots

Description

Combines ROC plots, interpolating and weighting by nTP.

Usage

```
combine.roc(list.roc,
    weight = rep(1, NROW(list.roc)),
    interp.corners = FALSE,
    use.max = FALSE,
    nvals = 100)
```

Arguments

list.roc List including multiple ROC data frame weight Weight vector for each ROC dataframe

interp.corners Logical value indicating if the header(1,1) and tail values(0,0) are interpolated

to each ROC data frame.

use.max Logical value indicating if maximum value of muliple ROCs at same point are

used as TPF values.

nvals Integer value indicating interval number for ROC plot.

Value

A data frame with 2 columns is returned

FPR False Positive Rate
TPR True Positive Rate

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, roc.auc, roc.plot
```

Examples

```
list.roc<-list();

true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
list.roc[[1]] <- logreg.roc.calc( true, scores );</pre>
```

eval_reg_svm 3

```
true <- c(rep(1, 120), rep(0, 110));
scores <- c( rnorm(120, 1, 0.8 ), rnorm(110, 0, 1.2 ) );
list.roc[[2]] <- logreg.roc.calc( true, scores );

r <- combine.roc(list.roc);
roc.plot(r)</pre>
```

eval_reg_svm Evaluates a set of

Evaluates a set of genomic coordinates for regulatory potential using P/GRO-seq data

Description

Evaluates a set of genomic coordinates for regulatory potential using P/GRO-seq data

Usage

Arguments

gdm	Genomic data model return by genomic_data_model.
asvm	A pre-trained SVM model from the e1071 package returned by regulatory_svm.
positions	Data frame with 2 columns indicating the universe of positions to test and evaluate(chrom,chromCenter). It can be returned by get_informative_positions.
bw_plus_path	String value indicating file path to bigWig file representing the plus strand.
bw_minus_path	String value indicating file path to bigWig file representing the minus strand
batch_size	Number of positions to evaluate at once (more might be faster, but takes more memory).
ncores	Number of CPU cores in parallel computing
use_rgtsvm	Indictating whether the predict will be performed on GPU through the Rgtsvm package.
debug	Logical value indicating the process detail is outputted.

Value

Returns the value of the SVM for each genomic coordinate specified.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions, get_test_set, read_genomic_data, regulatory_svm
```

Examples

```
## The following codes cannot run without the bigWig files

# ps_plus_path <- "bigwig.plus.bw"

# ps_minus_path <- "bigwig.minus.bw"

## Now scan all positions in the genome ...

# positions <- get_informative_positions(ps_plus_path, ps_minus_path,
# depth= 0, step=50, use_ANDOR=TRUE, use_OR=FALSE);

# pred_val<- eval_reg_svm( gdm, asvm, inf_positions, ps_plus_path, ps_minus_path, batch_size=50000)
# write.table( data.frame(inf_positions, pred_val), file="eval.tab",
# row.names=FALSE, col.names=FALSE, quote=FALSE, sep="\t")</pre>
```

genomic_data_model

Creates a genome data model.

Description

Creates a genome data model.

Usage

```
genomic_data_model(window_sizes, half_nWindows)
```

Arguments

side).

Value

A s4 object is returned with

n_zooms Number indicating zoom ratio. window_sizes Vector indicating window sizes.

half_nWindows Vector indicating number of half windows.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
read_genomic_data, regulatory_svm, eval_reg_svm
```

Examples

```
gdm \leftarrow genomic_data_model(c(10,20,30),c(10,10,10))
```

```
get_informative_positions
```

Gets center positions that pass a minimum depth filter

Description

Returns a data frame with center positions that pass a minimum depth filter

Usage

```
get_informative_positions(bw_path,
    bw_minus_path = NULL,
    depth = 0,
    window = 400,
    step = 50,
    use_OR = TRUE,
    use_ANDOR = TRUE,
    debug = TRUE)
```

Arguments

debug

bw_path	String indicating file path to bigwig file representing the plus strand.
<pre>bw_minus_path</pre>	String indicating file path to bigwig file representing the minus strand, If specified, takes the windows that pass the step in both bigWig files.(intersection)
depth	Integer value indicating minimum number of reads to return.
window	Integer value indicating window distance between to search for #depth reads [bp].
step	Integer value indicating step distance for window list.
use_OR	Logical value indicating if the center positions in minus bigwig file are merged into the results. If false, the intersection operation will be performed to the center positions of plus bigwig and from minus bigwig.
use_ANDOR	Logical value indicating if the center positions will be merged from the two results. a) Intersection operation with the conditions: window interval=1000 depth>=0. b) Union operation with with the conditions: window interval=100 depth>=2.

Logical value indication the process detail is outputted.

6 get_test_set

Details

The use_ANDOR and use_OR parameter are applied to two Bigwig files as following logical:

```
if(use_ANDOR){
    v1 <- get_window_Or (window=1000, depth=0);
    v2 <- get_window_and (window=100, depth=2);
    vals <- c(v1,v2);
}
else {
    if(use_OR){
        vals <- get_window_Or( window=window, depth=depth);
    }
    else {
        vals <- get_window_and( window=window, depth=depth);
    }
}</pre>
```

Value

A BED-style data frame will be returned with 3 columns

chrom Chromosome information

chromStart Start position
chromEnds End position

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_test_set, read_genomic_data, regulatory_svm, eval_reg_svm
```

get_test_set

Returns a genome loci of positive set and negative set for SVM training purpose.

Description

Returns a genome loci of positive set and negative set for SVM training purpose

get_test_set 7

Usage

```
get_test_set(positions,
    positive,
    n_samp,
    allow = NULL,
    enrich_negative_near_pos = 0.15,
    extra_enrich_bed = NULL,
    extra_enrich_frac = 0.1,
    avoid_dist = 100)
```

Arguments

positions Bed-style data frame indicating the universe of positions to test and evaluate

(chrom,chromCenter).

positive Bed-style data frame containing positive positions (chrom, chromStart, chromEnd).

n_samp Number of training examples

allow Bed-style data frame containing inverse negative set of positions (chrom,chromStart,chromEnd).

enrich_negative_near_pos

Fraction of training examples chosen to be nearby (<=5kb) a positive example

[0,1].

extra_enrich_bed

Bed-style data frame indicating extra bed file to enrich near.

extra_enrich_frac

Fraction of final positions sampled in the negative set which are in the bed file.

Unused if extra_enrich_bed is NULL.

avoid_dist Integer value indicating how long extend avoiding genomic loci.

Details

(1). The parameter of positions can be obtained by get_informative_positions.

Value

Returns a data frame including double number of the _train set(2*n_samp), each sample includes 4 items.

chrom

chromStart

chromEnd

status 1 for positive and 0 for negative.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions, read_genomic_data, regulatory_svm, eval_reg_svm
```

8 logreg.roc.calc

logreg.roc.calc

Calculates the TPR and FPR for a ROC plot.

Description

Calculates the TPR and FPR for a ROC plot from the status and score vector.

Usage

```
logreg.roc.calc(true, scores)
```

Arguments

true Vector indicating the two status, 1 and 0.

scores Vector indicating the scores for each status calculated by the predict function.

Details

The function of roc.calc calculates a ROC matrix for the genomic loci, whereas the function of logreg.roc.calc calculates for a status vector.

Value

A data frame with 3 columns is returned, which is same as roc.calc.

FPR False Positive Rate.

TPR True Positive Rate.

threshold Threshold based on the score parameter.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, combine.roc, roc.auc,roc.plot
```

Examples

```
true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
roc_mat <- logreg.roc.calc( true, scores );
AUC<- roc.auc(roc_mat);
roc.plot(roc_mat, main=AUC );</pre>
```

peak_calling 9

peak_calling Peak calling based on dREG prediction
--

Description

This procedure calls SVR prediction for paired bigWig files using pre-trained SVM model and detects divergent peaks based on the predicted score.

Usage

```
peak_calling(asvm, gdm,
    bw_plus_path, bw_minus_path,
    infp_bed = NULL,
    use_rgtsvm = TRUE,
    min_score = NULL,
    pv_adjust="fdr",
    pv_threshold=0.05,
    smoothwidth = 4,
    cpu_cores=1,
    gpu_cores=1)
```

Arguments

asvm	SVR model pre-trained for dREG package, which can be downloaded from the dREG page in Github.
gdm	Genomic data model return by genomic_data_model. This data is binding with SVR model.
bw_plus_path	File name indicating file path to bigWig file representing the plus strand.
bw_minus_path	File name indicating file path to bigWig file representing the minus strand.
infp_bed	A BED data frame indicating informative sites and scores returned by eval_reg_svm. If NULL is specified, the peak calling starts from the informative sites finding and predicting.
use_rgtsvm	Logical value indictating whether the predict will be performed on GPU through the Rgtsvm package.
min_score	Numerical value indicating the minimum dREG score applied to the peak calling procedure. If NULL is specified, this value is calculated based on the predicted scores.
pv_adjust	String value indictating which correction method is used to do multiple comparison, see details in p.adjust, default is 'fdr'.
pv_threshold	Numerical value indicating the threshold is used to report the dREG peaks.
smoothwidth	Numerical value indicating the parameter of curve smooth in the moving average.
cpu_cores	Number of CPU cores in parallel computing.
gpu_cores	Number of GPU cores in parallel computing if Rgtsvm is used.

10 peak_calling

Value

This function returns a list containing 6 items, including:

1) dREG peaks: peak_bed

chr Chromosome start Start position end End position

score Maxmimum score in the peak region

prob Probability of multivariate Laplace distribution indicating the probability of the

peak points belonging to negative set (No divergent peak).

center the center position in original peak

2) Informative sites with score infp_bed

chr Chromosome
start Start position
end End position
score predicted score

infp indicating the informative site or dense site

3) Broad peak regions peak_broad

chr Chromosome start Start position end End position no index

min minimum score in this region
max maximum score in this region
mean score mean in this region
sum score um in this region

stdev standard deviation of scores in this region

count informative site in this region

- 4) Threshold of dREG score min_score
- 5) Raw results of peak calling raw_peak
- 6) Summary of peak calling peak_sum

adjust.none.0.05

The count of dREG peak withou p-value correction.

adjust.fdr.0.05

The count of dREG peak adjusted by the 'fdr' method.

adjust.BH.0.05 The count of dREG peak adjusted by the 'BH' method.

adjust.bonferroni.0.05

The count of dREG peak adjusted by the 'bonferroni' method.

read_genomic_data 11

```
adjust.holm.0.05
The count of dREG peak adjusted by the 'holm' method.
adjust.hochberg.0.05
The count of dREG peak adjusted by the 'hochberg' method.
adjust.BY.0.05 The count of dREG peak adjusted by the 'BY' method.
peak.sig.score The score range of significant dREG peaks.
peak.narrow100 The ignored narrow peaks which length are less than 100.
peak.narrow100.sig
The ignored narrow peaks which may be significant based on 'peak.sig.score'.
peak.narrow100.score
The score range of the ignored narrow peaks.
```

Examples

```
# load("../asvm.6.6M.20170828.rdata");
# gdm <- genomic_data_model(window_sizes= c(10, 25, 50, 500, 5000), half_nWindows= c(10, 10, 30, 20, 20) )
# bw_plus_path <- "K562.chr21.plus.bw"
# bw_minus_path <- "K562.chr21.minus.bw"
# x <- peak_calling( svm, gdm, bw_plus_path, bw_minus_path, cpu_cores=12, use_rgtsvm=T)
# show(x$peak_bed);</pre>
```

read_genomic_data

Gets read data from the specified genomic position.

Description

Gets read data from the specified genomic position.

Usage

Arguments

gdm Genomic data model return by genomic_data_model.

bed bed-style data frame of genomic regions.(at least 3 columns including chrom, start, end).

file_bigwig_plus

String value indicating file path to bigwig file representing GRO-seq/ PRO-seq reads on the plus strand.

12 regulatory_svm

file_bigwig_minus

String value indicating file path to bigwig file representing GRO-seq/PRO-seq

reads on the minus strand.

as_matrix Logical type,if true, returns a matrix object, otherwise returns a list() object,

where each element in the list is the zoom data.

scale.method String value indicating the normalize method of read counts. Two options are

available, "logistic" or "linear", default value is logistic. See details

takes more memory)

ncores Number of CPU cores in parallel computing

Details

Data normalize method:

```
(1): Logistic function: F(x) = 1/(1+exp(-a*(x-b)))
(2): Linear function: F(x) = x / tootal_reads
```

Value

A matrix of normalized read count, the columns are windows list specified by gdm object.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions, get_test_set, regulatory_svm, eval_reg_svm
```

Examples

```
file_bigwig_plus <- "";
file_bigwig_minus <- "";
gdm <- genomic_data_model(20, 10);
#mat <- read_genomic_data(gdm, bed, file_bigwig_plus, file_bigwig_minus);
#summary(mat);</pre>
```

regulatory_svm

Trains a SVM to recognize a certain pattern of regulatory positions

Description

Trains a SVM to recognize a certain pattern of regulatory positions.

regulatory_svm 13

Usage

```
regulatory_svm(gdm,
      bw_plus_path,
      bw_minus_path,
      positions, positive,
      allow = NULL,
      n_{train} = 25000,
      n_{eval} = 1000,
      pdf_path = "roc_plot.pdf",
      plot_raw_data = TRUE,
      extra_enrich_bed = NULL,
      extra_enrich_frac = 0.1,
      enrich_negative_near_pos = 0.15,
      use_rgtsvm = FALSE,
      svm_type = "SVR",
      ncores = 1,
      debug = TRUE)
```

Arguments

ncores

debug

Genomic data model returned by genomic_data_model. gdm String indicating file path to bigWig file representing the plus strand. bw_plus_path String indicating file path to bigWig file representing the minus strand. bw_minus_path Data frame with two columns(chrom,chromCenter), indicating the universe of positions positions to test and evaluate. It can be generated by get_informative_positions. positive Bed-style data frame containing positive positions(chrom,chromStart,chromEnd). allow Bed-style data frame containing positions to avoid in the negative set(chrom, chromStart, chromEnd). Number of training examples. n_train n eval Number of examples on which to test performance. String value indicating a PDF file. Set to NULL if no PDF should be printed. pdf_path If TRUE (default), and if a PDF file is specified, plots the raw data used to train plot_raw_data the model. extra_enrich_bed Bed-style data frame indicating extra bed file to enrich near. Used by get_test_set. extra_enrich_frac Fraction of final positions sampled in the negative set which are in the bed file. Unused if extra_enrich_bed is NULL. Used by get_test_set. enrich_negative_near_pos Fraction of training examples chosen to be nearby (<=5kb) a positive example [0,1].Indictating whether the predict will be performed on GPU through the Rgtsvm use_rgtsvm package. Two options, "SVR" for support vecctor regression (epsilon-regression). "P_SVM" svm_type for probabilistic SVM (C-classification).

Integer indicating how many cores are used to improve the performance.

Logical value indication the process detail is outputted.

The parameters for plot function

14 roc.auc

Value

A sym model trained by sym function in e1071 package.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
get_informative_positions, get_test_set, read_genomic_data, eval_reg_svm
```

roc.auc

Computes the AUC of a ROC plot.

Description

Computes the AUC of a ROC plot.

Usage

roc.auc(ROC)

Arguments

ROC

A matrix with 3 columns (FPR, TPR and threshold) calculated by logreg.roc.calc.

Details

The parameter of ROC is a matrix or data frame including 3 columns, FPR(False Positive Rate), TPR(True Positive Rate) and threshold.

Value

AUC value is returned.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, combine.roc, roc.plot
```

roc.calc 15

Examples

```
roc_mat <- data.frame( FPR=c(0, 0.25, 0.5, 0.75, 1),
TPR=c(0, 0.5, 0.8, 0.95, 1),
threshold=c(1, 1, 1, 1, 1) );
AUC<- roc.auc( roc_mat );
roc.plot( roc_mat, main=AUC );</pre>
```

roc.calc

Calculates the TPR and FPR for a ROC plot.

Description

Calculates the TPR and FPR for a ROC plot.

Usage

```
roc.calc(true,
    possible,
    scores,
    filterPossible = TRUE,
    n_points = 100)
```

Arguments

true Bed-style data frame, a set of 'true' genomic intervals (e.g. ChIP-seq peaks).

possible Bed-style data frame, A set of 'possible' genomic intervals (e.g. DNAse-1

peaks).

scores Vector indicating the scores for each possibe genomic interval in parameter of

possible.

filterPossible Vector indicating indexes which be removed.

n_points Integer indicating how many points for the ROC plot.

Value

A data frame with 3 columns is returned

FPR False Positive Rate
TPR True Positive Rate

threshold Threshold based on the score parameter.

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
logreg.roc.calc, combine.roc, roc.auc, roc.plot
```

16 roc.plot

roc.plot

Draws a ROC figure.

Description

Draws a ROC figure.

Usage

```
roc.plot(ROC, ...)
```

Arguments

ROC Matrix or data frame with 3 columns, FPR, TPR and threshold.

... The parameters for plot function

Value

None

References

Danko, C. G., Hyland, S. L., Core, L. J., Martins, A. L., Waters, C. T., Lee, H. W., ... & Siepel, A. (2015). Identification of active transcriptional regulatory elements from GRO-seq data. Nature methods, 12(5), 433-438.

See Also

```
roc.calc, logreg.roc.calc, combine.roc, roc.auc
```

Examples

```
true <- c(rep(1, 100), rep(0, 100));
scores <- c( rnorm(100, 1, 1 ), rnorm(100, 0, 1 ) );
roc_mat <- logreg.roc.calc( true, scores );
AUC<- roc.auc(roc_mat);
roc.plot(roc_mat, main=AUC );</pre>
```

Index

```
*Topic function
    eval_reg_svm, 3
    genomic_data_model, 4
    get_informative_positions, 5
    get_test_set, 6
    {\sf peak\_calling}, \textcolor{red}{9}
    read\_genomic\_data, 11
    regulatory_svm, 12
*Topic plot
    \verb|combine.roc|, 2|\\
    logreg.roc.calc, 8
    roc.auc, 14
    roc.calc, 15
    roc.plot, 16
combine.roc, 2, 8, 14-16
eval_reg_svm, 3, 5-7, 9, 12, 14
genomic_data_model, 3, 4, 9, 11, 13
get\_informative\_positions, 3, 4, 5, 7,
         12–14
get_test_set, 4, 6, 6, 12-14
logreg.roc.calc, 2, 8, 8, 14-16
p.adjust, 9
peak_calling, 9
read_genomic_data, 4–7, 11, 14
regulatory_svm, 3–7, 12, 12
roc.auc, 2, 8, 14, 15, 16
roc.calc, 2, 8, 14, 15, 16
roc.plot, 2, 8, 14, 15, 16
```