EXPERIMENT 5

O NEGATIVE IMPEDANCE CONVERTOR

NEGATIVE CAPACITOR

OBSERVATION TABLE (C=1MF)					
Tacequency	Applied voltage Magnitude		Cuesant	Phose Gawsent w.s. & the voltage	Calculatech complese impedance
(Hy)					
0,	(v)	27	(A)	(degrees)	(2)
100	5	56	3.14×10 ⁻³	-90	1592.36j
200	5	96 Î	6.28×10 ³	-90	796.185
300	5	οż	9.42×103	-90	\$30.79
400	5	74	1.26×10 ⁻²	-90	396.83;
500	5	$\mathcal{A}_{\mathbb{R}}^{1}$	1.57×10-2	-90	318.47;
1000	5	4.5	3.14×10 ⁻²	-90	159.24
2000	5		6.28×10-2	-90	79.62
3500	5		1.10×10-1	-90	45.45;
5000	5		1.57×10-1	-90	31.85
6500	5		2.04×10-1	-90	24.51
8000	5		2.51×10-1	-90	19.92
10000	5		3.14×10-1	-90	15.92

Trong

(1)

It is indeed possible to create an inductor using a capacitor using this negative impedance convertor with some slight modifications.

First, we will oreste a regative inductor. Consider the following

$$\Rightarrow i_{1} = \frac{v_{A}}{R} = \frac{v_{in}}{R}$$

$$\Rightarrow \qquad \Theta_A + \frac{j_A}{C8} = \Theta_B$$

$$=) \quad 9 \text{ in } + \frac{9 \text{ in }}{RCS} = 9 \text{ in } -iR$$

$$= \frac{9 \text{ in}}{i} = \frac{2 \text{ in}}{-1} = -\frac{R^2 \text{ Cs}}{-1}$$

We can assume the above to be a two terminal network P1 - L8 - P2

Now using over initial regative impedance convertor we can change this to a positive inductor.

Now, the following retwork between T, & T2 behaves as a positive inductor with inductance $L = R^2C$

2 GYRATOR

SIMULATING INDUCTOR USING A CAPACITOR

For a gyrator we can write $v_2 = RI_1$ and $v_1 = -RI_2$ Now $v_2 = v_{in}$ and $v_3 = v_c = \frac{-I_1}{cs}$

Hence
$$G_1 = -RI_2 = -I_1 \Rightarrow I_1 = RCsI_2$$

$$\Rightarrow \quad \psi_2 = \psi_{in} = RI_1 = R^2 C R I_2$$

$$=) Z_{in} = \frac{9_{in}}{I_2} = R^2 C s$$

If we take $R^2C = L$ then Zin can be treated as an inductor, whose inductonce $L = R^2C$.

Kisony.

1.59×10-4 -90 5000 31446.541 1.33×10-4 -90 6000 37593.98; 1.14×10-4 -90 43859 .651 7000 9.95×10-5 -90 8000 50251.26; 8.84×105 -90 9000 56561.09; 7.96 × 105 -90 5 62814.07; 10000

المان

Name: Nisarg Upadhyaya Roll No: 19CS30031

