Algorismia

Estudi Experimental de Connectivitat i Percolació de Grafs

Pau Belda, Guillem Cabré, Marc Peñalver, Prisca Oleart

Curs 2024-25, Quatrimestre de tardor

Continguts

1	Def	Definicions										
	1.1	Percolació	2									
	1.2	Transició de Fase	2									
	1.3	Objectius de la Experimentació	2									
2	Grafs Seleccionats 4											
	2.1	Erdős-Rényi	4									
	2.2	Graella Quadrada	5									
	2.3	Graella Triangular	5									
	2.4	Graf Geomètric Aleatori	6									
	2.5	Graf de Barabási-Albert	7									
3	Alg	oritmes	9									
	3.1	Percolació per Arestes	9									
	3.2	Percolació per Nodes	10									
	3.3	Càlcul de Components Connexes	10									
4	Experimentació 12											
	4.1	Metodologia	12									
		4.1.1 Programa Main	13									
	4.2	Graella quadrada	13									
		4.2.1 Percolació per arestes	14									
		4.2.2 Percolació per nodes	14									
	4.3	Graella triangular	14									
		4.3.1 Mida petita	14									
		4.3.2 Mida gran	16									
5	Con	nclusions	18									
6	Bib	liografia	19									
7	Anr		20									

1 Definitions

1.1 Percolació

La percolació en un graf G consisteix en eliminar o desactivar nodes o arestes, i posteriorment es mesura com això afecta una certa propietat global del graf. Quan desactivem una aresta o un node, direm que ha tingut una fallida.

En termes generals, l'objectiu és estudiar com el graf passa d'estar completament connectat a parcialment o totalment desconnectat a mesura que es treuen alguns dels seus components. Quan parlem de percolació, considerem una probabilitat p que determina si una component del graf (node o aresta) es desactiva aleatòriament. Aquest mecanisme és especialment rellevant per a l'estudi de xarxes complexes, ja que ens ajuda a comprendre com de robust o vulnerable és el sistema que volem analitzar.

- Percolació per nodes: Cada node té una probabilitat p de ser desactivat. Un cop fet això, s'analitza com ha canviat la connectivitat del graf.
- Percolació per arestes: En aquest cas, les arestes es desactiven en lloc dels nodes. Això també afecta la connectivitat, ja que les connexions directes entre nodes es perden.

Després d'aplicar el procés de percolació (sobre nodes o arestes), s'obté un graf percolat, que és la versió modificada del graf original, amb una connectivitat reduïda i, possiblement, components desconnectats. Aquest graf l'anomenarem $G_{\rm p}$.

1.2 Transició de Fase

Una transició de fase d'un graf per a una propietat concreta Π fa referència a un resultat satisfactori d'un procés de percolació aplicat al graf. En el nostre cas aquesta propietat Π serà la connectivitat del graf.

Definim un resultat com a satisfactori si, donat que es troba una probabilitat de valor q tal que es compleix la propietat Π al graf G_q (definim aquesta probabilitat com q_{Π}), per als grafs $G_{q'}$ on $q' > q_{\Pi}$, aquests verifiquen la propietat Π , i als grafs $G_{q'}$ on $q' < q_{\Pi}$, no la verifiquen (ambdues afirmacions són vàlides si es compleixen amb una probabilitat prou alta).

Quan s'ha obtingut aquest resultat, diem que la propietat Π presenta una transició de fase al voltant de q_{Π} .

1.3 Objectius de la Experimentació

En aquest projecte, realitzem un estudi experimental sobre la transició de fase en grafs sotmesos a un procés de percolació, modelat mitjançant un paràmetre $p \in [0,1]$ que representa la probabilitat que un node o aresta falli. L'objectiu principal és analitzar com varia el nombre de components connexes d'un graf durant el procés de percolació, avaluant l'existència d'un valor crític, conegut com a threshold o umbral de transició de fase, al voltant del qual el graf experimenta canvis significatius en la seva connectivitat.

Per a aquest anàlisi, considerem diversos models de grafs, incloent xarxes quadrades, grafs geomètrics aleatoris i altres models paramètrics. Els experiments es realitzaran per grafs de diferents mides, enfocantnos en el comportament asimptòtic a mesura que el nombre de nodes creix. L'estudi es complementarà
amb la implementació d'algorismes per a generar aquests grafs, aplicar percolació i calcular el nombre de
components connexes.

Objectius específics:

- Estudiar la possible transició de fase en graelles quadrades $n = m \times m$, sent n el nombre de nodes, sota un procés de percolació per nodes i arestes amb probabilitat p.
- Estudiar la possible transició de fase en grafs geomètrics aleatoris connexes (*Random geometric graphs*), sota un procés de percolació d'arestes.
- Estudiar la possible transició de fase sota un procés de percolació de nodes i un d'arestes en el graf de tipus *Hub Graph* o graf Barabási-Albert.

Els resultats obtinguts permetran caracteritzar el comportament de diferents models de grafs sota condicions de percolació i explorar la robustesa d'aquestes xarxes davant de fallades aleatòries. També explicarem per què aquests grafs han estat considerats els més rellevants per al nostre estudi.

2 Grafs Selectionats

En aquesta secció s'exposen els grafs seleccionats per a l'estudi experimental. Concretament, explicarem les peculiaritats de cada graf. Així mateix, es detallaran els algorismes utilitzats per a la generació de cada tipus de graf. Posteriorment, exposarem per que aquests son els que mes ens han semblat interresants per fer l'estudi.

2.1 Erdős-Rényi

```
Algorisme 1 Generació de graf Erdős-Rényi G(n, p)
   Entrada: n (dimensió de la graella), p (probabilitat d'establir aresta entre nodes)
   Sortida: Graf g
 1: Inicialitzar el graf g amb n nodes
 2: for i = 0 fins a n - 1 do
 3:
       for j = i + 1 fins a n - 1 do
          if rand01() < p then
 4:
              Afegir una aresta entre i i j al graf g
 5:
 6:
 7:
       end for
 8: end for
 9: Retornar el graf g
```

El generador de grafs Erdős-Rényi crea un graf aleatori
itzant la connexió entre nodes. Sigui p la probabilitat d'establir una aresta entre qual
sevol parell de nodes del graf. Per a cada parell de nodes (i,j), es genera un nombre aleatori mitjançant la funció rand01(), que retorna un valor entre 0 i 1. Si aquest valor és menor que p, s'estableix una aresta entre i i j. Aquest procés es repeteix per a tots els parells possibles de nodes.

La instrucció j=i+1 en el bucle interior assegura que només es considerin les arestes entre nodes diferents i evita la duplicació d'arestes. Això és important perquè en un graf no dirigit, l'aresta entre i i j és la mateixa que l'aresta entre j i i. D'aquesta manera, es redueix el nombre de connexions a calcular i s'assegura que cada aresta es consideri només una vegada.

2.2 Graella Quadrada

Algorisme 2 Generació de Graf de Graella Quadrada $G(m \times m)$

```
Entrada: m (dimensió de la graella)
   Sortida: Graf g
1: Inicialitzar n = m \times m (nombre de nodes del graf)
2: Crear un graf buit g amb n nodes
3: for i = 0 fins a m - 1 do
       for j = 0 fins a m - 1 do
5:
          nodeActual = i \times m + j
          if i < m-1 then
6:
              nodeFilaInferior = (i+1) \times m + j
 7:
              Afegir una aresta entre nodeActual i nodeFilaInferior
8:
          end if
9:
          if j < m - 1 then
10:
              nodeColumnaDreta = i \times m + (j + 1)
11:
              Afegir una aresta entre nodeActual i nodeColumnaDreta
12:
          end if
13:
       end for
14:
   end for
16: Retornar el graf q
```

El generador de grafs de graella quadrada crea un graf amb una estructura regular en què cada node és adjacent als nodes de la fila superior, inferior, esquerra i dreta, si aquests existeixen. Aixó s'aconsegueix comprovant per cada node si existeixen nodes a la fila inferior i a la columna dreta, i si és així, s'afegeixen les arestes corresponents.

2.3 Graella Triangular

Algorisme 3 Generació de Graf de Graella Triangular G(rows)

```
Entrada: rows (nombre de files)
   Sortida: Graf g
1: Inicialitzar n = \frac{rows \times (rows + 1)}{2} (nombre de nodes del graf)
 2: Crear un graf buit g amb n nodes
3: nodeActual = 0
4: for i = 0 fins a rows - 1 do
       for j = 0 fins a i do
5:
          if j < i then
6:
7:
              nodeDreta = nodeActual + 1
              Afegir una aresta entre nodeActual i nodeDreta
8:
9:
          end if
          if i < rows - 1 then
10:
              nodeInferiorEsquerra = nodeActual + i + 1
11:
              Afegir una aresta entre nodeActual i nodeInferiorEsquerra
12:
              nodeInferiorDret = nodeActual + i + 2
13:
              Afegir una aresta entre nodeActual i nodeInferiorDret
14:
          end if
15:
          nodeActual = nodeActual + 1
16:
       end for
17:
18: end for
19: Retornar el graf g
```

El generador de grafs de graella triangular crea un graf amb n nodes, on $n=1+2+3+\ldots+rows=\frac{rows\times(rows+1)}{2}$. Aquests nodes tenen una estructura en què cada node està connectat als veïns de la dreta i l'esquerra, així com als nodes superiors i inferiors, tant a l'esquerra com a la dreta, sempre que aquests existeixin. Això s'aconsegueix comprovant per a cada node si hi ha nodes a la fila inferior i a la columna dreta, i si és així, s'afegeixen les arestes corresponents.

2.4 Graf Geomètric Aleatori

```
Algorisme 4 Generació de Graf Geomètric Aleatori G(n,r)
   Entrada: n (nombre de nodes), r (radi de connexió)
   Sortida: Graf g
1: Crear un graf buit g amb n nodes
2: Inicialitzar un vector de coordenades coords de longitud n
3: for i = 0 fins a n - 1 do
       coords[i].x = rand01()
       coords[i].y = rand01()
6: end for
7: for i = 0 fins a n - 1 do
       for j = i + 1 fins a n - 1 do
          dist_x = coords[i].x - coords[j].x
9:
          dist_y = coords[i].y - coords[j].y
10:
          if \sqrt{dist_x^2 + dist_y^2} < r then
11:
              Afegir una aresta entre i i j al graf g
12:
          end if
13:
       end for
14:
15: end for
16: Retornar el graf g
```

El generador de grafs geomètrics aleatoris crea un graf amb n nodes, on cada node es col·loca aleatòriament en un espai bidimensional unitari. Dos nodes estan connectats per una aresta si la distància entre ells és menor que un radi r especificat. Això es determina calculant la distància euclidiana entre tots els parells de nodes i afegint arestes quan la distància és inferior a r.

2.5 Graf de Barabási-Albert

Algorisme 5 Generació de Graf de Barabási-Albert $G(n, m_0, m)$

Entrada: n (nombre de nodes), m_0 (nombre de nodes inicials), m (grau de connexió per nou node) Sortida: Graf gı: Crear un graf buit gamb n nodes 2: Inicialitzar un vector $connection_degree$ de longitud n**for** i = 0 fins a $m_0 - 1$ **do for** j = i + 1 fins a $m_0 - 1$ **do** 4: Afegir una aresta entre i i j al graf g5: 6: 7: $connection_degree[i] = m_0 - 1$ 8: end for for $i = m_0$ fins a n - 1 do 9: Inicialitzar un vector buit candidates 10: while la longitud de candidates és menor que m do 11: $selectedNode = preferentialAttachment(connection_degree)$ 12: 13: if selectedNode no està en candidates then 14: Afegir selectedNode a candidates end if 15: end while 16: for cada j en candidates do 17: Afegir una aresta entre i i j al graf g18: 19: $connection_degree[j] + = 1$ end for 20: $connection_degree[i] = m$ 21: 22: end for 23: Retornar el graf g

El generador de grafs de Barabási-Albert crea un graf que segueix el model de creixement de xarxes, on s'afegeixen nodes nous que es connecten a nodes existents en funció del seu grau de connexió. Comença amb un conjunt inicial de m_0 nodes completament connectats, i cada nou node que s'afegeix selecciona m nodes existents per connectar-se, amb una probabilitat proporcional al seu grau de connexió.

Aquesta selecció es realitza mitjançant la funció preferential Attachment, que s'encarrega de seleccionar un node existent basant-se en el seu grau de connexió. La funció funciona de la següent manera:

Algorisme 6 Preferential Attachment

```
Entrada: connection_degree (vector de graus de connexió)
   Sortida: chosen (node seleccionat)
1: Inicialitzar degree\_sum = 0, temp\_sum = 0
   for cada i en connection_degree do
       degree\_sum += i
3:
 4: end for
5: random\_num = rand() \mod degree\_sum
6: for i = 0 fins a length(connection_degree) - 1 do
7:
       temp\_sum += connection\_degree[i]
       if random\_num < temp\_sum then
8:
          chosen \leftarrow i
9:
10:
       end if
11:
12: end for
13: Retornar chosen
```

Aquesta funció calcula la suma total dels graus de connexió de tots els nodes existents i selecciona

aleatòriament un node, on la probabilitat de seleccionar cada node és proporcional al seu grau de connexió. Així, els nodes amb més connexions tenen una major probabilitat de ser seleccionats, promovent el creixement de xarxes amb característiques d'escala.

3 Algoritmes

En aquesta secció es presenten els principals algorismes emprats en l'estudi de la transició de fase. A continuació, detallarem cada algorisme i donarem una breu explicació d'aquests. Els algorismes abordats són els següents:

3.1 Percolació per Arestes

```
Algorisme 7 Percolació d'Arestes en un Graf
   Entrada: Graf G = (V, E) amb n nodes, probabilitat p
   Sortida: Graf percolat G' = (V, E') on E' \subseteq E
 1: Crear un nou graf buit G' amb n nodes (còpia profunda de G)
   for cada node u en V do
       for cada node v en la llista d'adjacència d'u d'el graf G do
 3:
          if u < v \land rand01() > p then
 4:
              Afegir l'aresta (u, v) al graf G'
 5:
 6:
          end if
       end for
 7:
   end for
 9: Retornar el graf G'
```

Aquest algorisme retorna el graf percolat a partir del graf original. Això s'aconsegueix eliminant les arestes amb una probabilitat p. Per evitar processar una mateixa aresta més d'una vegada, s'utilitza la condició u < v, ja que en grafs no dirigits una aresta (u, v) és equivalent a (v, u). Tal com s'ha mencionat prèviament, la funció ${\tt rand01}$ () genera un nombre aleatori entre 0 i 1, que es compara amb la probabilitat p per decidir si es manté o s'elimina una aresta.

3.2 Percolació per Nodes

Algorisme 8 Percolació de Nodes en un Graf

```
Entrada: Graf G = (V, E) amb n nodes, probabilitat p
   Sortida: Graf percolatG'=(V',E') on V'\subseteq V i E'\subseteq E
 1: Inicialitzar un vector posicioNodes de longitud n
 2: Assignar nbNodesVius = n
   for cada node u en V do
       Generar un valor aleatori r = rand01()
 4:
       if r < p then
5:
          Marcar el node u com a fallat
6:
 7:
          Decrementar nbNodesVius
8:
       else
          Actualitzar la posició del node viu posicioNodes[u] = u - n + nbNodesVius
9:
       end if
10:
11: end for
12: Crear un graf buit G' amb nbNodesVius nodes
   for cada node u en V do
       if u no ha fallat then
14:
          for cada node v en la llista d'adjacència de u en G do
15:
16:
              if v no ha fallat \wedge u < v then
17:
                 Afegir l'aresta (posicioNodes[u], posicioNodes[v]) a G'
              end if
18:
          end for
19:
       end if
20:
21: end for
22: Retornar el graf G'
```

Aquest algorisme retorna el graf percolat a partir del graf original eliminant nodes amb una probabilitat p. Per a cada node, es genera un valor aleatori entre 0 i 1 mitjançant la funció rand01(). Si aquest valor és inferior a p, el node es considera eliminat (fallat) i no es conservarà en el graf resultant.

Els nodes que sobreviuen són reindexats per assegurar que el nou graf té una numeració consecutiva de nodes. Les arestes només es conserven si ambdós nodes que connecten han sobreviscut, i es manté la condició u < v per evitar afegir la mateixa aresta dues vegades, ja que en els grafs no dirigits una aresta (u, v) és equivalent a (v, u). Així, el resultat és un graf amb una mida reduïda en funció de la probabilitat p, mantenint només els nodes i arestes que han "sobreviscut" al procés de percolació.

3.3 Càlcul de Components Connexes

Algorisme 9 Càlcul del Nombre de Components Connexes Entrada: Graf G = (V, E) amb n nodes Sortida: Nombre de components connexos componentCount1: Inicialitzar un vector visited de longitud n amb valors false2: Inicialitzar componentCount = 03: for cada node i = 0 fins a n - 1 do if el node i no ha estat visitat then 4: Incrementar componentCount 5: Realitzar una DFS a partir del node i, marcant els nodes visitats 6: 7: end if 8: end for 9: Retornar componentCount

L'algorisme utilitza una cerca en profunditat (DFS) per explorar cada component connex del graf. Cada vegada que es troba un node no visitat, es crida la funció dfs per explorar recursivament tots els nodes connectats a aquest node. Aquesta crida recursiva assegura que tots els nodes del mateix component quedin marcats com a visitats, evitant comptar-los més d'una vegada.

4 Experimentació

4.1 Metodologia

Per dur a terme l'experimentació del projecte, hem utilitzat diferents eines. Hem programat dos programes en C++, un llenguatge que ens ofereix molta eficàcia temporal i espacial. Aquests programes són el main i el runner. També hem dissenyat un fitxer de classe graph amb tots els atributs i funcions necessàries per operar amb els grafs. Aquesta classe representa els grafs com a llistes d'adjacència.

Per compilar aquests programes, hem fet ús del programari lliure make, que automatitza i paral·litza el compilatge i l'enllaç.

A més, hem dissenyat scripts per a l'interpret R, que és un programari de tractament de dades que ens analitzarà i generarà gràfics dels resultats dels estudis, que estaran en format .csv.

Més informació del procés d'experimentació es pot trobar en el GitHub del projecte, premeu aquí per accedir-hi. Allà, a part del codi, també podreu consultar més informació sobre la generació de grafs, les dependències del programa per compilar-lo i executar-lo, com inserir els paràmetres pels programes i més.

El programa main, mitjançant la classe graph, ens ha permès analitzar les propietats del canvi de fase a partir dels paràmetres inicials. Aquests paràmetres són els següents:

- RandomSeed: La llavor per al generador aleatori.
- NúmeroMínimNodes: El nombre mínim de nodes del graf.
- NúmeroMàximNodes: El nombre màxim de nodes del graf.
- NúmeroNodesStep: Increment dels nodes en cada iteració.
- Iteracions PerObtenir Resultat: El nombre de vegades que es provarà la configuració per probabilitat p de percolació i per nombre de vèrtex n.
- ModePercolació: Tipus de percolació per nodes o per arestes.
- PathResultat: Fitxer on es guardaran els resultats.
- AlgorismeGeneradorGraf: Algoritme utilitzat per generar el graf (per exemple, Erdős-Rényi, Square-Grid, etc.).
- Paràmetres Algorisme: Paràmetres addicionals per al generador de graf (opcional segons l'algorisme).

A partir d'aquests paràmetres, el programa main escriurà un fitxer PATH.csv que posteriorment serà analitzat mitjançant el software de tractament de dades R.

Per altra banda, tenim el programa runner, que rebrà com a input un fitxer de text. Aquest fitxer tindrà un llistat de paràmetres per diferents experiments del programa main. Un exemple d'això seria:

RGN	MIN	MAX	STEP	ITs	PERC-MODE	RESULT-PATH	GEN-ALGORITM	PARAMETERS-GEN
21312	10	100	10	1000	NODE_PERC	./data/test1.csv	Erdos-Renyi	0.1
35353	50	500	50	1000	EDGE_PERC	./data/test2.csv	Random-Geometric	0.3
72479	100	1000	100	100	EDGE_PERC	./data/test3.csv	Square-Grid	

El programa runner, per cada fila del fitxer que rep, inicialitzarà una instància del programa main, aconseguint d'aquesta manera automatitzar molt més els tests, podent córrer diferents programes main simultàniament.

4.1.1 Programa Main

Per entendre els resultats també s'ha d'entendre les decisions que s'han pres per la recollida de dades. Analitzarem el programa main mitjançant un pseudocodi per no entrar en conceptes avançats de C++. A continuació vegeu una mostra del pseudocodi:

Algorisme 10 Descripció de l'experiment

```
1: Seleccionar opcions de configuració
2: Inicialitzar el generador de nombres aleatoris
   Obrir l'arxiu CSV i escriure la capçalera
   for n in range(MIN_NB_NODES, MAX_NB_NODES + 1, NB_NODES_STEP) do
       for p des de 0 fins a 1 amb pas 0.01 do
          Inicialitzar el comptador de grafs connexos
6:
 7:
          for i = 0 fins a TRIES_PER_P do
              repeat
8:
                 Generar el graf seleccionat(p, n, params)
9:
              until el graf és connex
10:
              Aplicar percolació (per nodes o arestes) al graf
11:
12:
             if el graf percolat és connex then
                 Incrementar el comptador de grafs connexos
13:
             end if
14:
          end for
15:
          Escriure entrada resultant al CSV
16:
17:
       end for
18: end for
```

Ara, analitzarem el codi. Per començar, el programa preguntarà per totes les opcions necessàries. D'aquesta manera, ens podem permetre tenir un sol programa que pugui fer tot el que necessitem i que sigui altament modular. S'utilitzarà la llavor per generar nombres aleatoris, i així l'experiment podrà ser repetit amb els mateixos resultats. Després, crearà el fitxer PATH.csv, al qual s'hi inseriran entrades que posteriorment s'analitzaran.

Ara analitzarem l'algorisme encarregat de generar els resultats. Vegeu com primerament iterarem sobre n tantes vegades com s'hagi indicat en la entrada. Alhora, també iterarem per cada n sobre una probabilitat de fallida de percolació. Aquest bucle tindrà 100 iteracions, $p \in \{0.00, 0.01, \dots, 1.00\}$. A més d'aquests dos bucles, iterarem una altra vegada sobre p i n tantes vegades com l'usuari hagi indicat en l'apartat IteracionsPerObtenirResultat. Així, es farà una mitjana amb més o menys mostres.

S'iniciarà un comptador a 0 que representarà el nombre de grafs percolats connexos. S'utilitzarà el generador de grafs seleccionat a les opcions per generar el graf que posteriorment serà percolat. Vegeu que aquí generarem grafs fins a aconseguir un graf connex. Aquesta decisió la vam prendre per tenir una representació més acurada de la transició de fase. Més endavant, es tornarà a considerar aquesta decisió, ja que hi ha grafs, com ara el $Random\ Geometric\ Graph$, que requereixen un paràmetre r, el qual, amb valors petits de r, acostuma a generar grafs no connexos.

Per acabar, percolarem el graf G(V,E) de la manera que s'hagi especificat a l'input, ja sigui per nodes o per arestes, obtenint $G_{\rm p}$. A $G_{\rm p}$ se li aplicarà un algorisme que determinarà si el graf és connex. Si ho és, s'incrementarà el comptador. Quan les IteracionsPerObtenirResultat s'hagin completat, s'escriurà l'entrada resultant al fitxer PATH.csv.

4.2 Graella quadrada

Per estudiar la possible transició de fase a graelles quadrades hem decidit fer proves amb grafs de mida petita, des de 2x2 nodes a 20x20, així com amb grafs de mida més gran, de 20x20 nodes a 200x200. Això ens servirà per estudiar el comportament de la percolació tant per node com per aresta en diferents escales de complexitat. Hem triat aquestes mides de grafs per poder comparar resultats en diferents dimensions i observar com la mida del graf influeix en la percolació, formació de components connexes i transició de fase.

4.2.1 Percolació per arestes

Figura 1: Comparativa de percolació per arestes del grafs quadrats amb mides diferents

4.2.2 Percolació per nodes

Figura 2: Comparativa de percolació per nodes del grafs quadrats amb mides diferents

4.3 Graella triangular

Ara estudiem la transició de fase en graelles triangulars. Per l'experimentació hem fet el mateix que en les graelles quadrades, estudiar la percolació per aresta i per node en grafs de mida petita i mida gran. En aquest cas, els grafs petits comencen amb 5 files fins a 55 files, amb increment de 5 files cada vegada, mentre que la mida gran son grafs de 50 a 150 files amb increments de 10 files.

4.3.1 Mida petita

Percolació per aresta

4.3.2 Mida gran

Percolació per aresta

Percentatge de grafs triangulars connexos segons rows i p

Percolació per node

5 Conclusions

6 Bibliografia

• Wikipedia. Model~d ' $Erd \Hos-R \Hef nyi$.

7 Annex