明細書

血管形状測定装置、血流速度測定装置、および血流量測定装置技術分野

[000₁] 本発明は、生体の表示下に位置する血管の形状を超音波を用いて測定する装置、 その血管内の血流速度を測定する血流速度測定装置、およびそれを用いてその血 管内の血流量を測定する血流量測定装置に関するものである。

背景技術

- [000] 生体の状態を把握するために、非侵襲でその生体の血管の径や断面積、血流速度、血流量を正確に測定することが要請されている。たとえば、血管の内皮機能検査に際しては、内径4 mm ゅの動脈において、1%の精度で血管径や断面積、血流速度、血流量を測定することが求められる。
- [000] これに対し、特許文献1には、非侵襲で生体表皮下の血管の長手方向の2位置に、一方向に彫刻された複数の第1超音波素子を有する第1アレイと、該第1超音波素子の配列方向と平行な方向に彫刻された複数の第2超音波素子を有する第2アレイとを配置し、それら第1アレイおよび第2アレイの直下の2位置において血管の断面形状を検出する技術が提案されている。これによれば、超音波を用いているため、非侵襲にて血管の断面形状が検出される。

特許文献::特開平11-76233号公報

発明の開示

発明が解決しよっとする課題

[000] しかしながら、上記従来の血管の断面形状を検出する装置は、第1アレイの複数の第1超音波素子の配列方向を含む測定断面内および第2アレイの複数の第1超音波素子の配列方向を含む測定断面内における血管の断面形状を検出するものであることから、必ずしも血管の長手方向とその測定断面とは直交するものではないので、十分な精度が得られないれづ問題があった。生体の皮膚下の血管上に上記第1アレイおよび第2アレイが固定された超音波プローブが装着されるとき、動脈の位置は目視し難いことから第1アレイおよび第2アレイがその動脈に直交するように装着した

としても必ずしも正確ではなく、しかも、動脈は皮膚に対して平行でない場合が殆どであるので、動脈血管の長手方向と上記第1アレイや第2アレイの測定断面とは直交しないので、その測定断面内で測定される血管の径や断面積等の断面形状、それに基づく血流速度や血流量を正確に測定することができなかった。

- [0006] 本発明は以上の事情を背景として為されたもので、その目的とするところは、高精度で血管の形状、その血管内の血流速度や血流量を測定することができる血管形状測定装置、血流速度測定装置、および血流量測定装置を提供することにある。 課題を解決するための手段
- [0006] 上記 目的を達成 するための請求項1に係る発明の血管形状測定装置の要 旨とする ところは、一方向に彫刻された複数の第1超音波素子を有する第1アレイと、その第1 超音波素子の配列方向と平行な方向に配列された複数の第2超音波素子を有する 第2アレイとを備え、生体の表皮下に位置する血管に交差して該表皮上に配置され た該第1アレイおよび第2アレイから検出されるエコー信号に基づいて該血管の形状 を測定する血管形状測定装置であって、(a) 前記第1アレイの各第1超音波素子から 検出される反射信号に基づいて、前記血管の該第1アレイの直下に位置する部分の 血管壁のうち該各第1超音波素子に対応する部位の位置をそれぞれ算出する第1血 管壁位置演算手段と、(b) 前記第2アレイの各第2超音波素子から検出されるエコー 信号に基づいて、前記血管の該第2アレイの直下に位置する部分の血管壁のうち該 各第2超音波素子に対応する部位の位置をそれぞれ算出する第2血管壁位置演算 手段と、(c) 前記第1血管壁位置演算手段により算出された各第1超音波素子に対応 する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音 波素子に対応する血管壁部位の位置とに基づいて、前記血管の直交断面における 形状を算出する血管形状算出手段とを、含むことにある。
- [0007] また、請求項2に係る発明では、上記請求項1にかかる発明において、(a) 前記第1 血管壁位置演算手段は、各第1超音波素子から放射される放射信号と該各第1超音波素子により検出される前記血管壁からの反射信号との時間差に基づいて該血管壁までの距離をそれぞれ算出し、その距離に基づいて前記第1アレイの測定断面内における血管壁の位置を決定するものであり、(b) 前記第2血管壁位置演算手段は、

各第2超音波素子から放射される放射信号と各第2超音波素子により検出される前記血管壁からの反射信号との時間差に基づいて該血管壁までの距離をそれぞれ算出し、その距離に基づいて前記第2アレイの測定断面内における血管壁の位置を決定するものである。

- [0008] また、請求項3に係る発明では、上記請求項2にかかる発明において、前記血管形状算出手段は、(a) 前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心点と長軸径および/または短軸径とをそれぞれ算出する測定断面内形状算出手段と、(b) その測定断面内形状算出手段により算出された第1アレイの測定断面と前記第2アレイの測定断面とにおける血管壁の断面の中心点に基づいて該血管の中心軸を算出する中心軸算出手段と、(c) その中心軸算出手段により算出された血管の中心軸に基づいて、該血管の直交断面と前記測定断面との交差角度を算出する交差角度算出手段と、(d) その交差角度算出手段により算出された交差角度に基づいて、前記血管の直交断面の長軸径および/または短軸径となるよっに、前記形状算出手段により算出された長軸径および/または短軸径となるよっに、前記形状算出手段により算出された長軸径および/または短軸径を補正する補正手段とを、含むものである
- [0009] また、請求項4にかかる発明では、上記請求項3に係る発明において、前記血管形状算出手段は、前記補正手段によって補正された長軸径および短軸径に基づいて前記血管の直交断面における断面積を算出する直交断面積算出手段を、さらに含むものである。
- [0010] 前記目的を達成するための請求項5に係る発明の血流速度測定装置の要旨とするところは、(a) 一方向に配列された複数の第1超音波素子を有する第1アレイと、該第1超音波素子の配列方向と平行な方向に配列された複数の第2超音波素子を有する第2アレイと、侍ソプラ用超音波素子とを備え、該第1アレイおよび第2アレイが前記生体の表皮下に位置する血管と交差し且つ該注ソプラ用超音波素子からの超音波を放射方向が該血管に対して鋭角を成すよっに装着される超音波プローブと、(b) 前記

ドップラ用超音波素子から前記血管に向かって超音波を放射したときに得られる、該 血管内の血流速度に基づく世ソプラ効果により変化させられる注ソプラ反射波に基づ いて該血流速度を算出する血流速度算出手段と、(c) 前記第1アレイの各第1超音波 素子から検出される反射信号に基づいて、前記血管の該第1アレイの直下に位置す る部分の血管壁の⁵5該各第1超音波素子に対応する部位の位置をそれぞれ算出 する第1血管壁位置演算手段と、(d) 前記第2アレイの各第2超音波素子から検出さ れるエコー信号に基づいて、前記血管の該第2アレイの直下に位置する部分の血管 壁のうち該各第2超音波素子に対応する部位の位置をそれぞれ算出する第2血管壁 位置演算手段と、(e) 前記第1血管壁位置演算手段により算出された各第1超音波 素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出され た各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1アレイの 測定 断面 内と前記第2アレイの測定 断面 内とにおける血管壁の断面の 中心点 を算 出 し、該第1アレイの測定断面と前記第2アレイの測定断面とにおける血管壁の断面の 中心点に基づいて該血管の中心軸を算出する中心軸算出手段と、(f) その中心軸算 出手段により算出された前記血管の中心軸と前記侍ソプラ用超音波素子から該血管 に向かって超音波を放射する方向との実際の相対角度を算出する相対角度算出手 段と、(9) その相対角度算出手段により算出された実際の相対角度に基づいて前記 血流速度算出手段により算出された血流速度を補正する血流速度補正手段とを、含 むことにある。

[0011] 前記目的を達成するための請求項6に係る発明の血流量測定装置の要旨とするところは、(a) ア記請求項5に係る発明の血流速度測定装置と、(b) 前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心点と長軸径および/または短軸径とをそれぞれ算出する測定断面内形状算出手段と、(c) 前記中心軸算出手段により算出された血管の中心軸に基づいて、該血管の直交断面と前記測定断面との交差角度を算出する交差角度算出手段と、(d) その交差角度算出手段により算出された交差角度に基

づいて、前記血管の直交断面の長軸径および/または短軸径となるよっに、前記形 状算出手段により算出された長軸径および/または短軸径を補正する補正手段と、(e) その補正手段によって補正された長軸径および短軸径に基づいて前記血管の直 交断面における断面積を算出する直交断面積算出手段と、の その直交断面積算出 手段により算出された前記血管の直交断面における断面積と前記血流速度補正手 段により補正された血流速度とに基づいて、前記血管内の血流量を算出する血流量 算出手段とを、含むことにある。

発明の効果

- [0012] 前記請求項1に係る発明によれば、生体の表皮下に位置する血管に交差して該表皮上に配置された該第1アレイおよび第2アレイから検出されるエコー信号に基づいて、その第1アレイおよび第2アレイの直下に位置する部分の血管壁のうち各第1超音波素子および第2超音波素子に対応する部位の位置がそれぞれ算出され、それら血管壁の第1超音波素子および第2超音波素子に対応する部位の位置に基づいて、血管の直交断面における形状が算出されるので、生体皮膚下の血管の方向が上記第1アレイおよび第2アレイと直交していなくても、或いは皮膚に平行でなくても、その血管の血管径、血管断面形状、或いは断面積等の断面形状が正確に得られる
- [0013] また、請求項2に係る発明によれば、第1血管壁位置演算手段および第2血管壁位置演算手段によって、各第1超音波素子および各第2超音波素子から放射される放射信号とその各第1超音波素子および各第2超音波素子により検出される前記血管壁からの反射信号との時間差に基づいて該血管壁までの距離がそれぞれ算出され、その距離に基づいて前記第1アレイの測定断面内における血管壁の位置が決定されるので、第1アレイおよび第2アレイの測定断面内において各血管壁の位置が正確に得られる。
- [0014] また、請求項3に係る発明によれば、前記血管形状算出手段において、第1アレイおよび第2アレイの測定断面内の血管壁の部位の位置に基づいて、その第1アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心点と長軸径および/または短軸径とがそれぞれ算出され、その第1アレイの測定断面内と

前記第2アレイの測定断面内とにおける血管壁の断面の中心点に基づいて血管の中心軸が算出され、その血管の中心軸に基づいて前記血管の直交断面と前記測定断面との交差角度が算出され、その交差角度に基づいて前記血管の直交断面の長軸径および/または短軸径となるように、長軸径および/または短軸径が補正されるので、生体皮膚下の血管の方向が上記第1アレイおよび第2アレイと直交していなくても、或いは皮膚に平行でなくても、その血管の断面形状が正確に得られる。

- [0015] また、請求項4に係る発明によれば、前記血管形状算出手段は、前記補正手段によって補正された長軸径および短軸径に基づいて前記血管の直交断面における断面積を算出する直交断面積算出手段を含むものであるので、生体皮膚下の血管の方向が上記第1アレイおよび第2アレイと直交していなくても、或いは皮膚に平行でなくても、その血管の断面積が正確に得られる。
- [0016] また、請求項5に係る発明の血流速度測定装置によれば、(a) 一方向に配列された 複数の第1超音波素子を有する第1アレイと、該第1超音波素子の配列方向と平行な 方 向に彫刻された複数の第2超音波素子を有する第2アレイと、前記 ドップラ用超音 波素子とを備え、該第1アレイおよび第2アレイが前記生体の表皮下に位置する血管 と交差し且つ該ドップラ用超音波素子からの超音波を放射方向が該血管に対して鋭 角を成すよっに装着される超音波プローブと、(b) 前記ドップラ用超音波素子から前 記血管 に向かって超音波を放射 したときに得られる、該血管 内の血流速度 に基づく ドップラ効果により変化させられる侍ソプラ反射波に基づいて該血流速度を算出する 血流速度算 出手段と、(c) 前記第1アレイの各第1超音波素子から検 出される反射信 号に基づいて、前記血管の該第1アレイの直下に位置する部分の血管壁のっち該各 第1超音波素子に対応する部位の位置をそれぞれ算出する第1血管壁位置演算手 段と、(d) 前記第2アレイの各第2超音波素子から検出されるエコー信号に基づいて、 前記血管の該第2アレイの直下に位置する部分の血管壁のうち該各第2超音波素子 に対応する部位の位置をそれぞれ算出する第2血管壁位置演算手段と、(e) 前記第 1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の 位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する 血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2アレイの

測定断面内とにおける血管壁の断面の中心点を算出し、該第1アレイの測定断面と前記第2アレイの測定断面とにおける血管壁の断面の中心点に基づいて該血管の中心軸を算出する中心軸算出手段と、(f) その中心軸算出手段により算出された前記血管の中心軸と前記侍ソプラ用超音波素子から該血管に向かって超音波を放射する方向との実際の相対角度を算出する相対角度算出手段と、(9) その相対角度算出手段により算出された実際の相対角度に基づいて前記血流速度算出手段により算出された血流速度を補正する血流速度補正手段とが、設けられているので、生体皮膚下の血管の方向が上記第1アレイおよび第2アレイと直交していなくても、或いは皮膚に平行でなくても、その血管内の血流速度が正確に得られる。

また、請求項6に係る発明の血流量測定装置によれば、(a) ア記請求項5に係る発 [0017] 明の血流速度測定装置と、(b) 前記第1血管壁位置演算手段により算出された各第 1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により 算 出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1 アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心 点と長軸径および/または短軸径とをそれぞれ算出する測定断面内形状算出手段 と、(c) 前記中心軸算出手段により算出された血管の中心軸に基づいて、その血管 の直交断面と前記測定断面との交差角度を算出する交差角度算出手段と、(d) その 交差角度算 出手段により算出された交差角度に基づいて、前記血管の直交断面の 長軸径および/または短軸径となるよっに、前記形状算出手段により算出された長軸 径 および/または短軸径 を補正する補正手段と、(e) その補正手段によって補正さ れた長軸径 および短軸径 に基づいて前記血管 の直交 断面 における断面積を算出す る直交断面積算出手段と、の その直交断面積算出手段により算出された前記血管 の直交断面における断面積と前記血流速度補正手段により補正された血流速度と に基づいて、前記血管内の血流量を算出する血流量算出手段とが、設けられている ので、生体皮膚下の血管の方向が上記第1アレイおよび第2アレイと直交していなく ても、或いは皮膚 に平行でなくても、その血管 内の血流量が正確 に得られる。

発明を実施するための最良の形態

[0018] ここで、好適には、前記血管は、生体の皮膚下に位置する動脈たとえば上腕動脈、

撲骨動脈、足背動脈、頸動脈、浅側頭動脈等である。FMD (nOw-medeated dilation: 内皮依存性血管拡張反応)検査の場合には、たとえば上腕動脈、撲骨動脈、足背動脈が対象となり、頭部への血流把握の場合には、たとえば頸動脈、浅側頭動脈が対象となる。

- [0019] また、好適には、前記第1アレイおよび第2アレイを構成する複数の超音波素子は、振動子と受信子とが共通の振動子から構成されたものであってもよいし、一対の発信子と受信子とからそれぞれ構成されていてもよい。
- [000 0] また、好適には、ドップラ用超音波素子は、送信子と受信子とが共通の1個の振動子であってもよいし、一対の発信子と受信子とから構成されていてもよい。また、このドップラ用超音波素子は、前記血管の方向に対して交差する方向に配列された複数個の振動子アレイから構成されてもよい。

図面の簡単な説明

- [0021] [図1]本発明の一実施例の超音波装置に備えられた超音波プローブが上腕に装着された状態を示す斜視図である。
 - [図2]図1の実施例の超音波装置の超音波プローブに設けられた第1アレイの測定断面および第2アレイの測定断面と上腕動脈との関係を示す斜視図である。
 - [図3]図1の実施例の超音波装置の要部構成を概略説明する図である。
 - [図4]図3の電子制御装置の制御機能の要部を説明する機能ブロック線図である。
 - [図5]図1の実施例において、第1アレイの測定断面における各超音波素子の送信波 および受信波を説明する図である。
 - [図6]図5の第1血管壁位置演算手段により図5の送信波と受信波との時間差に基づいて算出された第1アレイの測定断面における各測定点の座標と、それらを接続した閉曲線である上腕動脈の内腔の形状を説明する図である。
 - [図7]図5の中心線算出手段により求められた中心線CLに直交する直交断面B'と第2アレイの測定断面Bとの、接触面に平行な平面内の交差角度はを示す図である。
 - [図8]図5の中心線算出手段により求められた中心線CLに直交する直交断面B'と第2アレイの測定断面Bとの、接触面に垂直な面内の交差角度 v を示す図である。
 - [図9]図5の中心線算出手段により求められた中心線CLとドップラ用超音波素子の放

射方 向線 USL との、接触面に垂直な面内の相対角度 $\mathrm{0}_{_2}$ を示す図である。

[図10]図5の中心線算出手段により求められた中心線CLとドップラ用超音波素子の放射方向線USLとの、接触面に平行な平面内の相対角度 θ_1 と、中心線CLと侍yプラ用超音波素子の受波方向線RSLとの、接触面に平行な平面内の相対角度 θ_2 とを示す図である。

[図11]図3の電子制御装置の制御作動の要部を説明するフローチャートである。

[図12]図皿のS10の直交断面内における血管形状を算出するためのルーチンを示す図である。

符号の説明

[0022] 10:超音波測定装置(血管形状測定装置、血流速度測定装置、血流量測定装置)

12:超音波プローブ

14:生体の一部(ア腕部)

18:上腕動脈(血管)

26:第1アレイ

26 :第1超音波素子

28:第1アレイ

28:第2超音波素子

48:第1血管壁位置演算手段

50:第2血管壁位置演算手段

52:血管断面内形状算出手段

54: 中心軸算 出手段

56:交差角算出手段

58:形状補正手段

60: 直交断面積算出手段

62:血管形状算出手段

66:血流速度算出手段

68:相対角度算出手段

70:血流速度補正手段

72:血流量算出手段

実施例

- [0023] 以下、本発明の好適な実施の形態について図面を参照しつつ詳細に説明する。 図1は、本発明の一実施例の超音波測定装置10に備えられた超音波プローブ12の 生体14に対する装着状態を示している。この超音波プローブ12は、図2或いは図3 に示すよっに、装着バンド16によって生体の一部たとえば上腕部において上腕動脈 18の真上に位置するよっに装着される。この上腕動脈18は、上腕二頭筋の下端部 下側か6表皮20に向かって接近する形状を有している。
- [0024] 上記超音波プローブ12は、その表皮2 0と接触する接触面22を有し、アクリル樹脂等の合成樹脂、セラミックス、金属などの超音波透過性材料から構成された本体24と、その本体24内に所定の間隔Lを隔てて互いに平行となるように埋設され且つ上記上腕動脈18と交差する長手方向の第1アレイ26および第2アレイ28と、その第2アレイ28から下流側に位置するように配設され且つ上記上腕動脈18と交差する長手方向の第3アレイ3 0とを備えている。第1アレイ26および第2アレイ28は、上記一方向すなわち上記長手方向に配列された複数個の超音波素子26 および28 (nは整数)をそれぞれ備えている。上記第3アレイ3 0も、上記の第1アレイ26および第2アレイ28と平行な一方向すなわち上記長手方向に彫刻された複数個の超音波素子3 0を備えている。上記超音波素子26 および28 は、測定対象となる上腕動脈18の径よりも十分に小さい間隔たとえば0.2乃至 0.5mm程度となるように配置されている。超音波素子3 0 もそれと同等であるかそれよりも大きい間隔で配置されている。超音波素子3 0 もそれと同等であるかそれよりも大きい間隔で配置されている。
- [0025] 上記第1アレイ26の超音波素子26 および第2アレイ28の超音波素子28 は、圧電素子などから構成されることによって超音波の発信子および受信子として機能するものであり、真下に向かって超音波を発信するように接触面22に対して垂直に設けられている。上記第3アレイ3 0の超音波素子3 0 も、圧電素子などから構成されることによって超音波の発信子および受信子として機能するものであり、上流部位の上腕動脈18に向かって超音波を発信するように接触面22に対して超音波放射面が斜めにたとえば45度程度傾斜して設けられている。上記第1アレイ26の超音波素子26 および第2アレイ28の超音波素子28 は、X-Z平面として設定される接触面22内に

略位置するよ $^{\circ}$ に配置され、第1アレイ26の超音波素子 $26_{_{n}}$ の $^{\circ}$ ちの端部に位置する素子 $26_{_{i}}$ が上記X-Y-Z三次元直交座標の原点として設定されている。

- [0026] 第1アレイ26の複数個の超音波素子26 および第2アレイ28の複数個の超音波素子28 は、それぞれ、上記接触面22に対して垂直方向に超音波を放射し、その超音波の伝播過程に存在する界面からの反射波をエコー信号として受信するので、図2に示すよっに、第1アレイ26および第2アレイ28の直下には、互いに平行であって上記上腕動脈18がそれぞれ貫通させられる測定断面Aおよび測定断面Bが形成されるよっになっている。それらの測定断面Aおよび測定断面Bは前記X一Y一Z三次元直交座標のX一Y平面に平行な面となり、それら測定断面Aおよび測定断面Bの面内の位置は座標値により表される。
- [0027] 図3に示すように、上記超音波測定装置1 Oは、第1アレイ26、第2アレイ28、第3アレイ3 Oを駆動制御するための超音波駆動制御回路 32と、アナログ信号およびデジタル信号の一方から他方へ変換するための信号変換器 34と、電子制御装置 36と、数字および画像を表示するための表示器 38とを備えている。上記電子制御装置 36はCPU4 O、ROM42、山文M44、図示しない記憶装置やインターフェース等から成る所謂マイクロコンピュータから構成されており、CPU4 OはRAM44の一時記憶機能を利用しつつ予めROM42に記憶されたプログラムにしたがって人力信号を処理して、血管形状測定装置、血流速度測定装置、および血流量を算出し、演算結果を表示器 38に表示させ、或いは他の機器へ出力する。このため、超音波測定装置1 Oは、血管形状測定装置、血流速度測定装置、および血流量測定装置として機能している。
- [0028] 図4は、上記電子制御装置36の演算制御機能の要部を説明する機能ブロック線図である。図4において、第 * 管壁位置演算手段48および第2管壁位置演算手段5 Oは、第1アレイ26の直下の測定断面Aおよび第2アレイ28の直下の測定断面Bにおける上腕動脈18の断面形状を、各超音波素子26 および各超音波素子28 がそれぞれ受信したエコー信号に基づいて算出する。図5は、第1アレイ26の各超音波素子26 毎に示す送信信号S と上腕動脈18の管壁からのエコー信号E の波形を示すタイムチャートであり、その送信信号S とエコー信号E との時間差が第1アレイ26から

の深さ寸法に対応している。このため、上記第1管壁位置演算手段48は、上記送信信号S_nとエコー信号E_nとの間の時間差と、生体内の音速とに基づいて各超音波素子26_nに対応する管壁の深さ位置をそれぞれ算出する。第2管壁位置演算手段50年同様にして、測定断面Bにおける各超音波素子28_nに対応する管壁の深さ位置をそれぞれ逐次算出する。

- [0029] 次いで、測定断面形状算出手段52は、上記測定断面AおよびBにおいて、上記各超音波素子26 および28 に対応する管壁の深さ位置から、図6に示すようにX-Y 座標内の点で特定し、さらに、それらの各点から曲線補完を用いてそれら各点を結ぶ閉曲線Kを算出して上腕動脈18の内腔の形状とし、その閉曲線Kの長径軸寸法2 b、短軸径寸法2a、X軸に対する長径軸の傾斜角度 θ をそれぞれ逐次算出する。図6は測定断面Aにおける座標を示している。
- [003 0] 中心軸算出手段 54 は、測定断面形状算出手段 52 により測定断面AおよびBにおいて求められた閉曲線Kから、その各測定断面AおよびBにおける閉曲線Kの中心点C_A(X_A,Y_A,Z_A)およびC_B(X_{OB},Y_{OB},Z_B)をそれぞれ算出する。そして、それら各測定断面AおよびBにおける閉曲線Kの中心点C_A(X_{OA},Y_{OA},Z_A)およびC_B(X_{OB},Y_{OB},Z_B)を結ぶ直線を、上腕動脈18の中心軸CLとして逐次決定する。図7は接触面22 に平行な面(水平面)内の中心軸CLを示し、図8は接触面22 に垂直な面(垂直面)内の中心軸CLを示している。たとえば、上記中心点C_Aは、閉曲線Kに近似する楕円の式徇を利用した次式徇から、最小自乗法を用いて未知数であるX_OおよびYob を算出する。
- $[0031] \quad [(X_1 X_0)\cos \theta + (Y_1 Y_0)\sin \theta \mathcal{Y}/a^2 + [(X_1 X_0)\sin \theta + (Y_1 Y_0)\cos \theta \mathcal{Y}/b^2 = 1$ …何
- [0032] 交差角算出手段56は、図7に示す接触面22に平行な面内において、測定断面A或いはBについて、中心軸算出手段54により算出された上腕動脈18の中心軸CLに基づいて中心点CAを通ってその中心軸CLと直交する上腕動脈18の直交断面A、或いは中心点CBを通ってその中心軸CLと直交する上腕動脈18の直交断面B、を決定し、その直交断面A、或いはB、と測定断面A或いはBとの交差角度は(度)を逐次算出する。同様に、図8に示す接触面22に垂直な面内において、測定断面A或いは

Bについて、中心軸算 出手段 54 により算 出された上腕動脈 18 の中心軸 CL に基づいて中心点 C_A を通ってその中心軸 CL と直交する上腕動脈 18 の直交断面 A 、或いは中心点 C_B を通ってその中心軸 CL と直交する上腕動脈 18 の直交断面 B を決定し、その直交断面 A 、或いは B と測定断面 A 或いは B との交差角度 A 、(度)を逐次算出する。

- [0033] 補正手段 58 は、上記交差角度算出手段 56 により算出された交差角度 はおよび v に基づいて、測定断面形状算出手段 52 により算出された形状を直交断面A'および B'における形状となるように補正する。すなわち、上腕動脈 18 の直交断面A'および B'における長軸径 2b'および短軸径 2a'となるように、補正式(2)、(3) により測定断 面形状算出手段 52 により算出された長軸径 2bおよび短軸径 2aをそれぞれ逐次補正する。
- [0034] $a' \equiv a/\cos \beta \cdots (2)$ $b' \equiv b/\cos \gamma \cdots (3)$ 但 $\cup \cos \beta \equiv (X_0 A - X_0 B)/L$ $\cos \gamma \equiv (X_0 A - X_0 B)/L$
- [0035] 直交断面積算出手段6 Oは、直交断面A'およびB'における上腕動脈18の内腔面積S_A'およびS_B'を、上記補正手段58によって補正された長軸径2b'および短軸径2a'に基づいて逐次算出する。たとえば、直交断面A'およびB'における値に補正された長軸径2b'および短軸径2a'から特定される楕円の式(4)を用いて積分することにより、直交断面A'およびB'における面積S_A'およびS_B'が算出される。本実施例では、上記測定断面形状算出手段52、中心軸算出手段54、交差角算出手段56、補正手段58、および直交断面積算出手段60が、血管形状算出手段62に対応している。
- [0036] $((X_1'-X_0)/a')^2 + ((Y_1'-Y_0)/b')^2 = 1 \cdots (4)$
- [0037] アクティブ素子選択手段64は、第3アレイ3 0の複数の超音波素子3 0 の うち上腕動脈18 に最も近い素子或いは超音波放射方向線が上腕動脈18の中心軸CLと最も近いアクティブ素子を、中心軸算出手段54により求められた上腕動脈18の中心軸CLの位置に基づいて選択する。

- [008] 血流速度算出手段66は、予め記憶された式(5)から、上記アクティブ素子から放射 された超音波が血流によるドップラ効果によって位相変化或いは周波数変化させら れた侍ソプラ反射波の周波数付に基づいて1拍毎に発生する最大瞬時血流速度U を算出する。式(5) において、たは放射される超音波の波数、c は生体中の音速であ る。式(5) において、0₀は図9に示す接触面22に垂直な面内のアクティブ素子から の超音波放射方向線 USL と中心軸 CL との角度、heta は図1 0に示す接触面22 に垂 直な面内のアクティブ素子からの超音波放射方向線 U_SL と中心軸CLとの角度、 6 は図1 0に示す接触面22 に垂直な面内の受波素子の受波方向線RSLと中心軸CL との角度である。アクティブ素子が受波素子を兼ねる場合にはheta このとなる。それら の角度 0 、 0 、 0 な、既知のアクティブ素子の幾何的位置 c 前記中心軸算出手 段 54 により算 出された中心軸CLとに基づいて予め算 出されるとともに、上記式(5) は 度算出手段66は、式(5)を用いることにより超音波放射方向線USLと中心軸CLとの 間の相対角度 0 , 、 0 , 、 0 , に起因する最大瞬時血流速度ひ のずれを補正した最 大瞬時血流速度U を一挙に算出しているので、超音波放射方向線USLと中心軸 CLとの間の相対角度 0 、 、 0 、 c 算 出する相対角度算 出手段 6 8、およびその 相対角度 $heta_1$ 、 0_2 、 0_3 に起因する最大瞬時血流速度 U_{max} のずれを補正する血流 補正手段70を兼ねているが、血流速度算出手段66は最大瞬時血流速度U を基 本的に算出し、相対角度算出手段68は既知のアクティブ素子の幾何的位置と前記 中心軸算出手段54により算出された中心軸CLとに基づいて超音波放射方向線US Lと中心軸CLとの間の相対角度 $_1$ 、 $_2$ 、 $_3$ を算出し、血流補正手段 $_1$ 0はその相 対角度 0 $_1$ 、 0 $_2$ 、 0 $_3$ に起因する最大瞬時血流速度U のずれを補正するょ 5 に役 割を分担するよっに構成されてもよい。
- [0039] $\forall = -(f_C/C)(\cos \theta_{1}\cos \theta_{2} + \cos \theta_{3}\cos \theta_{2}) \cdots (5)$
- [004 0] 血流量算出手段72は、前記直交断面積算出手段6 0により求められた直交断面B 'における上腕動脈18 のS B'と、上記血流速度算出手段66 において求められた補 正後の最大瞬時血流速度U とに基づいて、直交断面B'における血流量Q (=S B '×U / 2)を逐次算出する。そして、出力手段74 は、上記のようにして求められた

、補正後の長軸径2b'および短軸径2a'、補正後の血流速度U、血流量Q_Bをそれぞれ数字、グラフにて表示器38に画像表示或いは印字表示させるとともに、図示しない記憶装置に記憶させる。

- [0041] 図皿 おょび図12は、前記電子制御装置36の制御作動の要部を説明するフローチャートであって、図11は測定開始操作判定後に実行される測定制御ルーチンであり、図12はその測定制御ルーチン内の直交断面内の血管形状算出ルーチンを示している。
- [0042] 図皿において、測定開始操作が判定されると、ステップ(以下、ステップを省略する)S1において、実際の測定実行時間Tが予め設定された最大測定時間Tmよりも小さいか否かが判断される。当初はこのS1の判断が肯定されるので、S2において走査素子番号nがクリアされた後、S3においてその走査素子番号nに「1」が加算される。次に、S4において、走査素子番号nがその最大番号n。よりも低いか否かが判断される。この走査素子番号nは、第1アレイ或いは第2アレイの超音波素子数に対応した値に設定される。当初はこのS4の判断が肯定されるので、S5においてn番目の超音波素子26。および28。から超音波は発信され、S6においてn番目の超音波素子26。および28。によりエコー信号が受信される。次いで、前記第1血管壁位置演算手段48および第2血管壁位置演算手段50に対応するS7において、上腕動脈18のっちの上記n番目の超音波素子26。および28。に対応するに部位の血管壁の深さ位置が算出される。そして、上記S4の判断が否定されるまで上記S3以下が繰り返し実行される。
- [0043] 1番目の超音波素子26 および28 からn 番目の超音波素子26 および28 までの送信受信が終了すると上記S4の判断が否定されるので、前記アクティブ素子選択手段64に対応するS8において、測定断Bにおける最大血管径位置或いは管壁の最大深さ位置が上記S7において算出された各超音波素子28 に対応するに部位の血管壁の深さ位置に基づいて決定されるとともに、第3アレイ3 0のっちの上記最大血管径位置或いは管壁の最大深さ位置に対応して位置する侍ソプラ用超音波素子3 0 が血流検出に用いられるアクティブ素子として決定される。次いで、前記血流算出手段66に対応するS9において、よく知られた前記の式(5) から、上記アクティブ

素子から放射された超音波が血流による侍ソプラ効果によって位相変心或いは周波数変化させられた侍ソプラ反射波の周波数付に基づいて最大瞬時血流速度U の選出される。

[0044] 次のS1 0では、図12に示す直交断面の血管形状算出ルーチンが実行される。図1 2において、前記測定断面内形状算出手段52に対応するSA1では、測定断面Aお ょびBにおいて各超音波素子26 および28 に対応する管壁の深さ位置が図6に示 すょ^ゥにX一Y座標 内の点で特定され、それらの各点から曲線補完を用いてそれら各 点を結ぶ閉曲線Kが算出されて上腕動脈18の内腔の形状とされ、測定断面Aの場 合の図6に示すよっに、その閉曲線Kの長径軸寸法2b、短軸径寸法2aが測定断面A およびBにおいてそれぞれ算出される。次に、前記中心軸算出手段54に対応するS A2では、SA1により求められた各測定断面AおよびB内の閉曲線Kから、その閉曲 線Kの中心点 $C_A(X_{\alpha_1},Y_{\alpha_1},Z_A)$ および $C_B(X_{0B},Y_{0B},Z_B)$ がそれぞれ算出され、そ れら各測定断面AおょびBにおける閉曲線Kの中心点 C_{A} $(X_{O_{A}},Y_{O_{A}},Z_{A})$ おょび C_{B} ($X_{_{
m OB}}$, $Y_{_{
m OB}}$, $Z_{_{
m B}}$) を結ぶ直線が、上腕動脈18の中心軸CLとして決定される。続いて、 前記交差角算出手段56に対応するSA3では、図7に示す接触面22に平行な面内 において、測定断面Bについて、SA2により算出された上腕動脈18の中心軸CLに 基 づいて中心点 ${
m C}_{
m B}$ を通ってその中心軸 ${
m CL}$ と直交する上腕動脈 ${
m 18}$ の直交断面 ${
m B}$ 'が 決定され、その直交断面B'と測定断面Bとの交差角度 ほ (度) が算出される。また、 図8に示す接触面22に垂直な面内において、測定断面Bについて、中心軸算出手 段 54 にょり算 出された上腕動脈18の中心軸CL に基 づいて中心点 $C_{_{\mathrm{B}}}$ を通ってその 中心軸CLと直交する上腕動脈18の直交断面B'が決定され、その直交断面B'と測 定断面Bとの交差角度 y (度) が算出される。次に、前記補正手段 58 に対応するSA 4では、上記SA3により算出された交差角度 # および v に基づいて、SA1により算 出された形状が直交断面B'における形状となるように補正する。すなわち、上腕動 脈18の直交断面B'における長軸径2b'および短軸径2a'となるよっに、補正式(2)、 (3) により測定断面形状算出手段52により算出された長軸径2bおよび短軸径2aが それぞれ補正される。そして、前記直交断面積算出手段60に対応するSA5では、 直交断面B'における上腕動脈18の内腔面積S。'が上記SA4によって補正された

長軸径2b'および短軸径2a'に基づいて算出する。たとえば、直交断面B'における値に補正された長軸径2b'および短軸径2a'から特定される楕円の式(4)を用いて積分することにより、直交断面B'における面積 S_B 'が算出される。本実施例では、上記SA1乃至SA5が、血管形状算出手段62に対応している。

- 図皿に戻って、前記相対角度算出手段68に対応するS11および前記血流速度補正手段70に対応するS12では、既知のP0ティブ素子の幾何的位置と前記中心軸算出手段54により算出された中心軸CLとに基づいて超音波放射方向線USLと中心軸CLとの間の相対角度 $_1$ 、 $_2$ 、 $_3$ が算出されるとともに、その相対角度 $_1$ 、 $_2$ 、 $_3$ に起因する最大瞬時血流速度U のずれが補正される。本実施例では、S9において角度 $_1$ 、 $_2$ 、 $_3$ による補正が加味された式(5)が用いられることによって最大瞬時血流速度U が算出されているので、上記S11およびS12は、S9において実行されていることになる。
- [0046] 以上のよっにして直交断面B'における上腕動脈18の内腔の直交断面積S_B'と最大瞬時血流速度U_{max}とが算出されると、前記血流量算出手段72に対応するS13において、上腕動脈18の血流量Q_B(=S_B'XU_{max}/2)が算出される。そして、前記出力手段74に対応するS14では、上記のよっにして求められた、補正後の長軸径2b'および短軸径2a'、補正後の最大瞬時血流速度U_{max}、血流量Q_Bがそれぞれ数字、グラフにて表示器38に画像表示出力或いは印字表示出力させられるとともに、図示しない記憶装置に記憶させられる。このよっにして、直交断面A'およびB'における上腕動脈18の内腔の長軸径2b'および短軸径2a'、その内腔の断面形状や、直交断面B'における直交断面積S_B、最大瞬時血流速度U_{max}、および血流量Q_Bが逐次求められるので、血流により血管壁に加えられるシェアストレスを計算できる。これは内皮機機能の評価に用いられ得る。
- [0047] 上述のよっに、本実施例によれば、血管形状算出手段62(S10)により、生体の一部14である上腕部の表皮20下に位置する上腕動脈18に交差してその表皮20上に配置された第1アレイ26および第2アレイ28から検出されるエコー信号に基づいて、その第1アレイ26および第2アレイ28の直下に位置する部分の血管壁のっち各第1超音波素子26。および第2超音波素子28。に対応する部位の位置がそれぞれ算出

され、それら血管壁の第1超音波素子26 および第2超音波素子28 に対応する部位の位置に基づいて、上腕動脈18の直交断面における形状が算出されるので、生体皮膚20下の上腕動脈18の方向が上記第1アレイ26および第2アレイ28と直交していなくても、或いは皮膚20に平行でなくても、その上腕動脈18の断面形状が正確に得られる。

- [0048] また、本実施例によれば、第1血管壁位置演算手段48(S7)および第2血管壁位置演算手段50(S7)によって、各第1超音波素子26点および各第2超音波素子28点から放射される放射信号とその各第1超音波素子26点および各第2超音波素子28点により検出される血管壁からのエコー(反射)信号との時間差に基づいてその血管壁までの距離がそれぞれ算出され、血管形状算出手段62(S10)により、その距離に基づいて前記第1アレイ26の測定断面A内および第2アレイ28の測定断面B内における血管壁の位置が決定されるので、第1アレイ26および第2アレイ28の測定断面A内および測定断面B内において各血管壁の位置が正確に得られる。
- [0049] また、本実施例によれば、血管形状算出手段62(S10)において、第1アレイ26および第2アレイ28の測定断面内の血管壁の部位の位置に基づいて、その第1アレイ26の測定断面A内および前記第2アレイ28の測定断面B内における血管壁の断面の中心点C。およびC。と長軸径2bおよび短軸径2aとがそれぞれ算出され、その第1アレイ26の測定断面A内と前記第2アレイ28の測定断面B内とにおける血管壁の断面の中心点C。とC。とに基づいて上腕動脈18の中心軸CLが算出され、その上腕動脈18の中心軸CLに基づいてその血管の直交断面B'と測定断面Bとの交差角度はおよび v が算出され、その交差角度はおよび v に基づいて上記血管の直交断面B'内の長軸径2b'および短軸径2a'となるよっに、長軸径2bおよび短軸径2aが補正されるので、生体皮膚20下の上腕動脈18の方向が上記第1アレイ26および第2アレイ28と直交していなくても、或いは皮膚20に平行でなくても、その血管18の断面形状が正確に得られる。
- [0000] また、本実施例によれば、血管形状算出手段62(S10)は、補正手段58(SA4)によって補正された長軸径2b'および短軸径2a'に基づいて血管18の直交断面B'における断面積S_R'を算出する直交断面積算出手段60(SA5)を含むものであるので

、生体皮膚20下の血管18の方向が上記第1アレイ26および第2アレイ28と直交していな<ても、或いは皮膚20に平行でな<ても、その血管18の断面積 S_B ,が正確に得られる。

[0051]また、本実施例によれば、(a) 一方向に配列された複数の第1超音波素子26 を有 する第1アレイ26と、その第1超音波素子26 の配列方向と平行な方向に配列された 複数の第2超音波素子28 を有する第2アレイ28と、ドップラ用超音波素子30を有 する第3アレイ3 0とを備え、その第1アレイ26および第2アレイ28が生体の表皮2 0下 に位置する上腕動脈18と交差し且つそのドップラ用超音波素子30からの超音波を 放射方向USLが上腕動脈18に対して鋭角を成すよっに装着される超音波プローブ 12と、(b) 侍yプラ用超音波素子30から上腕動脈18に向かって超音波を放射したと きに得られる、その上腕動脈18内の血流速度に基づく侍ょプラ効果により変化させら れるドップラ反射波に基づいてその血流速度ひを算出する血流速度算出手段66 & 9) と、(c) 第1アレイ26の各第1超音波素子26 か5検出されるエコー(反射)信号に 基づいて、上腕動脈18の第1アレイ26の直下に位置する部分の血管壁の 5 ち各第1超音波素子26_nに対応する部位の位置をそれぞれ算出する第1血管壁位置演算手 段48 S7)と、(d) 第2アレイ28の各第2超音波素子28_、か6検出されるエコー信号に 基づいて、上腕動脈18第2アレイ28の直下に位置する部分の血管壁のっち各第2超 音波素子28 に対応する部位の位置をそれぞれ算出する第2血管壁位置演算手段 50 S7)と、(e) 第1血管壁位置演算手段48 により算出された各第1超音波素子26 に対応する血管壁部位の位置と第2血管壁位置演算手段50により算出された各第2 超音波素子28 に対応する血管壁部位の位置とに基づいて、第1アレイ26の測定断 面A内と第2アレイ28の測定断面B内とにおける血管壁の断面の中心点C とC とを 算 出し、第1アレイ26の測定 断面Aと第2アレイ28の測定 断面Bとにおける血管壁の 断面の中心点 $\operatorname{C}_{_{\Lambda}}$ $^{\mathsf{LC}}$ $^{\mathsf{LE}}$ に基づいてその血管18の中心軸 CL $^{\mathsf{LE}}$ 第 出する中心軸算出 手段 54 SA2)と、(f) その中心軸算 出手段 54 により算出された血管 18 の中心軸 CL と侍yプラ用超音波素子30からその血管18に向かって超音波を放射する方向USL との実際の相対角度 0 、 θ 、0 を算出する相対角度算出手段68 (S11) と、(9) そ の相対角度算出手段68により算出された実際の相対角度 0 , 、0 。 に基づいて

血流速度算出手段66 にょり算出された血流速度を補正する血流速度補正手段70(S12) とが、設けられているので、生体皮膚20下の血管18の方向が上記第1アレイ26 および第2アレイ28と直交していなくても、或いは皮膚20に平行でなくても、その血管18内の最大瞬時血流速度U が正確に得られる。

- また、本実施例によれば、(a) ア記の血流速度測定のための構成と、(b) 第1血管壁 [0052] 位置演算手段48により算出された各第1超音波素子26 に対応する血管壁部位の 位置と第2血管壁位置演算手段50により算出された各第2超音波素子28 に対応す る血管壁部位の位置とに基づいて、第1アレイ26の測定断面A内と第2アレイ28の 測定断面B内とにおける血管壁の断面の中心点C₁およびC₂と長軸径2bおよび短 軸径2とをそれぞれ算出する測定断面内形状算出手段52(SA1)と、(c) 中心軸算出 手段54により算出された血管18の中心軸CLに基づいて、その血管18の直交断面 B'と測定断面Bとの交差角度 β 、vを算出する交差角度算出手段56(SA3)と、(d)その交差角度算 出手段 56 に50 に50 出された交差角度 30 、30 に基づいて、血管 180直交断面B'内の長軸径2/b'および短軸径2/a'となるように、測定断面形状算出 手段 52 により算出された長軸径 2/bおよび短軸径 2/aを補正する補正手段 58 (S A4)と、(e) その補正手段58によって補正された長軸径2/bおょび短軸径2/aに 基 づいて血管18の直交断面B'における断面積S'を算 出する直交断面積算 出手段 60 (SA5)と、(f) その直交断面積算 出手段6 0により算 出された血管18の直交 断面B 'における断面積S'と血流速度補正手段70により補正された最大瞬時血流速度U_m とに基づいて、血管18内の血流量 Q_B を算出する血流量算出手段72(S13)とが、 設けられているので、生体皮膚20下の血管18の方向が上記第1アレイ26おょび第 2アレイ28と直交していなくても、或いは皮膚20に平行でなくても、その血管18内の 血流量Q」が正確に得られる。
- [0053] 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の 態様においても適用され得る。
- [0054] たとえば、前述の実施例では、血流量算出手段72 により直交断面B'における上腕動脈18の血流量 Q_B ($=S_B$ ' XU_{max} /2)が算出されていたが、直交断面A'における上腕動脈18の血流量 Q_A ($=S_A$ ' XU_{max} /2)が、直交断面積算出手段6 0により求

められた直交断面A'における上腕動脈18の直交断面積 S_Λ 'に基づいて算出されてもよい。また、直交断面 Λ 'と直交断面B'との平均値に対する血流量が求められてもよい。

- [0055] また、直交断面A'およびB'における上腕動脈18の内腔の長軸径2b'および短軸径2a'、その内腔の断面形状や、直交断面B'における直交断面積 S_B 等の変 12 の時間差に基づいて脈波伝播速度が算出されてもよい。
- [0066] また、前述の実施例において、血流量算出手段72により直交断面B'における上腕動脈18の平均の血流量 Q_B ($=S_B$ ' $\times U_{max}$ /2)が算出されていたが、血流速度算出手段66によって算出される血流速度Uが平均速度である場合には、上記血流量 Q_B は式($Q_B=S_B$ ' $\times U$)に基づいて算出される。また、血流量算出手段72により、最大血流量 Q_{Bons} ($=S_B$ ' $\times U_{max}$)が求められてもよい。
- [0057] また、前述の実施例において、第3アレイ3 0は複数のドップラ用超音波素子3 0 から構成されていたが、単一の怪ップラ用超音波素子から構成されていたもよい。
- [0058] また、前述の実施例では、たとえば第1アレイ26では、各超音波素子26 が、図5に示すよっに、個々に超音波の発信および受信を行っていたが、位相が異なる駆動信号を用いて数個の超音波素子から超音波を送信して細い超音波ビームを送信し、受信する場合も数個の超音波素子を用いて受信する所謂ビームフォーミング技術を採用することもできる。これによれば、所定の距離で収束するよっに超音波ビームを形成することができるので、検出精度が高められる。
- [0059] なお、上述したのは、あくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。

請求の範囲

[1] 一方向に配列された複数の第1超音波素子を有する第1アレイと、該第1超音波素子の配列方向と平行な方向に配列された複数の第2超音波素子を有する第2アレイとを備え、生体の表皮下に位置する血管に交差して該表皮上に配置された該第1アレイおよび第2アレイから検出されるエコー信号に基づいて該血管の形状を測定する血管形状測定装置であって、

前記第1アレイの各第1超音波素子から検出される反射信号に基づいて、前記血管の該第1アレイの直下に位置する部分の血管壁のうち該各第1超音波素子に対応する部位の位置をそれぞれ算出する第1血管壁位置演算手段と、

前記第2アレイの各第2超音波素子から検出されるエコー信号に基づいて、前記血管の該第2アレイの直下に位置する部分の血管壁のうち該各第2超音波素子に対応する部位の位置をそれぞれ算出する第2血管壁位置演算手段と、

前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記血管の直交断面における形状を算出する血管形状算出手段と

を、含むことを特徴とする血管形状測定装置。

[2] 前記第1血管壁位置演算手段は、各第1超音波素子から放射される放射信号と該各第1超音波素子により検出される前記血管壁からの反射信号との時間差に基づいて該血管壁までの距離をそれぞれ算出し、該距離に基づいて前記第1アレイの測定断面内における血管壁の位置を決定するものであり、

前記第2血管壁位置演算手段は、各第2超音波素子から放射される放射信号と各第2超音波素子により検出される前記血管壁からの反射信号との時間差に基づいて該血管壁までの距離をそれぞれ算出し、該距離に基づいて前記第2アレイの測定断面内における血管壁の位置を決定するものである請求項1の血管形状測定装置。

[3] 前記血管形状算出手段は、

前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管 壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に 対応する血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2 アレイの測定断面内とにおける血管壁の断面の中心点と長軸径および/または短軸径とをそれぞれ算出する測定断面内形状算出手段と、

該測定断面内形状算出手段により算出された第1アレイの測定断面と前記第2アレイの測定断面とにおける血管壁の断面の中心点に基づいて該血管の中心軸を算出する中心軸算出手段と、

該中心軸算出手段により算出された血管の中心軸に基づいて、該血管の直交断面と前記測定断面との交差角度を算出する交差角度算出手段と、

該交差角度算出手段により算出された交差角度に基づいて、前記血管の直交断面の長軸径および/または短軸径となるように、前記形状算出手段により算出された長軸径および/または短軸径を補正する補正手段と

を含むものである請求項2の血管形状測定装置。

- [4] 前記血管形状算出手段は、前記補正手段によって補正された長軸径および短軸径に基づいて前記血管の直交断面における断面積を算出する直交断面積算出手段を、さらに含むものである請求項3の血管形状測定装置。
- [5] 一方向に彫刻された複数の第1超音波素子を有する第1アレイと、該第1超音波素子の配列方向と平行な方向に彫刻された複数の第2超音波素子を有する第2アレイと、ドップラ用超音波素子とを備え、該第1アレイおよび第2アレイが前記生体の表皮下に位置する血管と交差し且つ該侍ソプラ用超音波素子からの超音波を放射方向が該血管に対して鋭角を成すよっに装着される超音波プローブと、

前記侍ソプラ用超音波素子から前記血管に向かって超音波を放射したときに得られる、該血管内の血流速度に基づくドップラ効果により変べさせられる侍ソプラ反射波に基づいて該血流速度を算出する血流速度算出手段と、

前記第1アレイの各第1超音波素子から検出される反射信号に基づいて、前記血管の該第1アレイの直下に位置する部分の血管壁のうち該各第1超音波素子に対応する部位の位置をそれぞれ算出する第1血管壁位置演算手段と、

前記第2アレイの各第2超音波素子から検出されるエコー信号に基づいて、前記血管の該第2アレイの直下に位置する部分の血管壁のっち該各第2超音波素子に対応

する部位の位置をそれぞれ算出する第2血管壁位置演算手段と、

前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心点を算出し、該第1アレイの測定断面と前記第2アレイの測定断面とにおける血管壁の断面の中心点に基づいて該血管の中心軸を算出する中心軸算出手段と、

該中心軸算出手段により算出された前記血管の中心軸と前記ドップラ用超音波素子から該血管に向かって超音波を放射する方向との実際の相対角度を算出する相対角度算出手段と、

該相対角度算出手段により算出された実際の相対角度に基づいて前記血流速度 算出手段により算出された血流速度を補正する血流速度補正手段と

を、含むことを特徴とする血流速度測定装置。

[6] 請求項5の血流速度測定装置を備えた血流量測定装置であって、

前記第1血管壁位置演算手段により算出された各第1超音波素子に対応する血管壁部位の位置と前記第2血管壁位置演算手段により算出された各第2超音波素子に対応する血管壁部位の位置とに基づいて、前記第1アレイの測定断面内と前記第2アレイの測定断面内とにおける血管壁の断面の中心点と長軸径および/または短軸径とをそれぞれ算出する測定断面内形状算出手段と、

前記中心軸算出手段により算出された血管の中心軸に基づいて、該血管の直交 断面と前記測定断面との交差角度を算出する交差角度算出手段と、

該交差角度算出手段により算出された交差角度に基づいて、前記血管の直交断面の長軸径および/または短軸径となるように、前記形状算出手段により算出された長軸径および/または短軸径を補正する補正手段と

該補正手段によって補正された長軸径および短軸径に基づいて前記血管の直交 断面における断面積を算出する直交断面積算出手段と、

該直交断面積算 出手段 により算 出された前記血管の直交断面 における断面積と前記血流速度補正手段 により補正された血流速度とに基づいて、前記血管内の血

流量を算出する血流量算出手段と を、含むことを特徴とする血流量測定装置。 WO 2006/011544

PCT/JP2005/013813

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[凶9]

6/8

[図10]

[図11]

[図12]

INTERNATIONAL SEARCH REPORT

Intarnkmonal applickmon No.

		PCT/JP.	2005/013813		
A. CLASSIFICATION OF SUBJECT MATTER Int . Cl ⁷ A61B8/06					
According & Inte	ternational P tent Classific tion (IPC) or to both national	l classification and IPC			
B. FIELDS SE					
M面imum docum	nentation searched (classific tion system Шllowed by cla	assific tion symbols)			
Int . Cl ⁷	⁷ A61B8/00- 8/15				
	searched other than minimum documentation to the exter				
Jitsuyo Kokai Jit	Shinan Koho 1922-1996 Jits tsuyo Shinan Koho 1971-2005 To	suyo Shinan Toroku Koho Toku Jitsuyo Shinan Kcho	1996-2005 1994-2005		
El∝ttonic d ta b	pase consulted dur面g the 面ternational search (name of d	lata base and, where practicable, search	terms used)		
	NTS CONSIDERED TO BE RELEVANT				
Category	Citation of document, with indication, where ap		Relevant to claim No.		
$\frac{\mathbf{X}}{\mathbf{A}}$	JP 10-192278 (Philips Electro 28 July, 1998 (28.07.98),	onics N.V.),	1,2,5 3,4,6		
	Full text; all drawings		3,4,0		
	1	0873716 Al			
A	JP 2002-011008 A (Tokushima-F	Ken) ,	1 - 6		
- -	15 January, 2002 (15.01.02),	. ,			
	Full text; all drawings (Family: none)				
A	JP 5-56971 A (Toshiba Corp.),		, ,		
A	09 March, 1993 (09.03.93),	,	1 - 6		
	Full text; all drawings				
	(Family: none)		1		
	ocumen _体 are listed m the cont面uation of Box C.	See p tent family annex.			
"A" document d	egories of cited documents: defining the general state of the art which is not considered	"T" later document published after the ir date and not in conflict with the appl	ication but cited to understand		
to be of part "E" earlier appli	ticular relevance ication or after the international	the pπnciple or theory underlying the "X" document of particular relevance; the	e invention e claimed invention cannot be		
filing date "L" document v	which may throw doubts on pπoπty claim(s) or which is	considered novel or cannot be constep when the document is taken along	sidered to involve an inventive		
sited to establish the multi-size that if a district it		"Y" document of particular relevance; the considered to involve an inventive	e claimed invention cannot be		
"O" document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such being obvious to a person skilled in t	ch documents, such combination		
"P" document published pπor to the international filing date but later than the pπoπty date claimed		"&" document member of the same paten			
Date of the actua	Date of the actual completion of the international search Date of mailing of the international search report				
12 Augus	· .	2 0 September, 2005	(20 . 09 . 05)		
	ng address of the ISA/	Authorized officer			
Japanese Patent Office					
Facsimile No.	0.6	Telephone No.			
Form PCT/ISA/21	10 (second sheet) (January 2004)				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/013813

		1 C 1/J1 20	003/013813
C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
А	JP 2002-505901 A (Commonwealth Scientific Industrial Research Organization), 26 February, 2002 (26.02.02), Full text; all drawings & wo 99/45839 Al	and	1-6
A	& US 6663568 Bl & wo 99/45839 Al JP 7-23951 A (Toshiba Corp.), 27 January, 1995 (27.01.95), Full text; all drawings & US 5515857 A		1-6
:			
Form PCT/ISA/2 I	0 (con nuation of second sheet) (January 2004)	et P	

国際出願番号 PCT/JP2005/013813

発明の属する分野の分類(国際特許分類 (IPC)) 血LCI 7 A61B8/06

調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

血 t.C1.7 A61B8/00-8/15

最小限資料以外の資料で調査を行った分野に含まれるもの

日本 国実用新案公報 日本 国公開実用新案公報 1922-1996年

日本国実用新案登録公報

1971-2005年 1996-2005年

日本 国登録 実用新案公報

1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

即本 オェ レ数 みらわっ 立む

じ. 関連 すると認められる文献			
引用文献の カテゴゥー _ホ	引用文献名 及び一部の箇所が関連するときほ、その関連する箇所の表示	関連 する 請求の範囲の番号	
<u>x</u>	JP 10-192278 (7ィけアス エレク仲 こクス 杣ローセ* クスノノー トャップ。) 1998. 07. 28 全文、全図	1, 2, 5	
Α	&us 5891039 A &EP 0873716 Al	3, 4, 6	
A	JP 2002-011008 A(徳島県) 2002. 01. 15 全文、全図 <i>(</i> ファミリーなし)	1-6	
A	JP 5-56971 A(株式会社東芝) 1993. 03. 09 全文、全図 <i>(7 ァ</i> ミリーなし)	1-6	

C棚の続きにも文献が列挙されている。

パテント7ァミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- IE 」国際出願日前の出願また注特許であるが、国際出願日 以後 に公表 されたもの
- □ □ □ 優先権主張に疑義を提起する文献又は他の文献の発行 日若 しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- IO」 ロ頭による開示、使用、展示等に言及する文献
- rpj 国際出願日前で、かつ優先権の主張の基礎となる出願

の日の役に公表された文献

- 「TJ国際出願 日又は優先日後に公表された文献であって 出願 t 矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- TX J 特に関連のある文献であって、当議文献のみで発明 の新規性又は進歩性がないと考えられるもの
- IY J 特に関連のある文献であって、当議文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- I&J 同─パテントファミリー文献

国際調査を完丁 した日

12.08.2005

国際調査報告の発送日

20.9.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

2 Q

3 1 0 1

後藤 順也

電話番号 03-3581-1101 内線 3290 国際調査報告

国際出願番号- PCT/JP20 05/013813

	国际间往和首	国际 UDG # 75- PCT/JP20	0 5 > 0 13813	
C (続き). 関連すると認められる文献				
引用文献の カテゴリー*		は、その関連する置所の表示	関連する 請求の範囲の番号	
A	ア 2002-505901 A やもカンパス J和バティフィック アト° 2002. 02. 26 全文、全図 &US 6663568 Bl &WO 99/45839 Al	心ダ外灯# リサーチ オ吋゚ セ゚ーシ3レ)	1-6	
A	JP 7-23951 A(株式会社東芝) 1995.01.27 全文、全図 &US 5515857 A		1-6	