COMS 4030A

Adaptive Computation and Machine Learning

LAB EXERCISE 6

- (1) Code up the k-MEANS ALGORITHM.
- (2) Code up the Online k-means Algorithm.
- (3)* Code up the HIERARCHICAL CLUSTERING ALGORITHM.

You can create test datasets that have natural clusters by sampling from normal distributions. To create a dataset of points in \mathbb{R}^2 , first choose some points $(a_1, b_1), \ldots, (a_\ell, b_\ell)$ in \mathbb{R}^2 ; these will be the means of distributions.

For the first point (a_1, b_1) , choose a standard deviation σ .

Randomly sample 2 points in the normal distribution $\mathcal{N}(0,\sigma)$, say c,d.

Create a new point $(a_1 + c, b_1 + d)$ in \mathbb{R}^2 .

This point goes into your dataset, and you can repeat this a number of times using the same mean (a_1, b_1) to get a number of datapoints.

Repeat the above process with the other means $(a_2, b_2), \ldots, (a_\ell, b_\ell)$; you can use the same standard deviation, or a different standard deviation for each mean.

(You can create test datasets in other \mathbb{R}^m 's similarly.)

The set of points you create should consist of ℓ clusters of points distributed around the means. When testing your algorithms on this dataset, if you set $k = \ell$, the final cluster centres produced by the k-means algorithms should correspond to the means of the distributions.

You can then try different values for k to see what happens.

For the k-means algorithms, after every loop over the dataset, calculate the sum-of-squares error and see if it decreases during training, and whether it converges or not.

You don't need to submit anything for this lab exercise, but Assignment 2 will be based on the k-means algorithms.