# 600.315 Databases Final Project

Tianyi Lin (tlin44@jhu.edu) Yang Cao (<u>ycao29@jhu.edu</u>)

1) Description of application domain: Our database describes the locations of crashes involving bikes and cars in the Chapel Hill Region of North Carolina. We download the data online, and the original source is "from police-reported bicycle-motor vehicle and pedestrian-motor vehicle collisions that occurred on the public roadway network, public vehicular areas and private properties (if reported)", as stated on the website.

## 2) View our reseults (all steps start from the Crashes\_NC folder):

- Please follow the instruction in section 6 (User's Guide) to populate the database and add stored procedures
- To view the website, first initiate apache server, and go to webpage:
  - "chmod 704 index.html"
  - "php -S 127.0.0.1:8080"
  - open Google Chrome (browser), type in the url: "http://localhost:8080/index.html"
  - now you can play with the questions we listed and try out each options in the drop down list:)
- To return to the main page (index.html), you could simply click the return button on the left top corner of the browser (for Chrome)

#### 3. Change after phase 1

- We attach our new phase 1 at the end of the report, with the updated sql entries, database table examples, etc. But for questions that are overlapped with the questions asked here, we explain more details in here. Thus, we hope you can based mostly on this phase 2 report.
- After looking more in depth with our data sets, we decided to use the two out of three candidate datasets. Instead of including bike crashes, pedestrian crashes, and criminal records, we choose only the first two, as they both come from the same city in North Carolina, and the entries within are very similar. Therefore, we choose to analyze these two types of crashes and their factors over a more general yet too-scattered data.

## 4. Source of data & extraction

- We download the csv files from these online sources: <a href="https://catalog.data.gov/dataset/bicycle-crashes">https://catalog.data.gov/dataset/pedestrian-crashes</a> and save them in the folder "raw\_data".
- First, we use "Numbers" (an apple spreadsheet software that comes with mac) to change the csv files to encoding of UTF-8, and save them as "pedestrianData.csv" and "bikeCrash.csv"
- Then, we take 2 approaches to extract the data from the csvs.

- 1. We use java to extract data from the csv file for tables: PedInjParser and ReasonPed.
  - The reason we choose these two tables is because we want to add some columns to both tables, which are not originally in the csv but require some extra calculation. So we use java to pre-process the datasets.
  - We write our own Java classes for each object in the table. For example, for table pedInjure, we first write the file PedInjure.java which is the object class, and the variables within are the columns in the table. Then we use PedInjParser.java to read in the csv, parse the table, store the variables we care into the PedInjure object, and finally write the corresponding sql statement to create the table PedInjure as well as populating the table.
- 2. Considering the size and amounts of our tables, we use the online csv converter for the rest of datasets, the link to the webpage is <a href="http://www.convertcsv.com/csv-to-sql.htm">http://www.convertcsv.com/csv-to-sql.htm</a>.

#### 5. Software & hardware

- We use the MySQL dbase on our JHU ugrad machine.

#### 6. User's guide

- Step 1, for our data pre-processing part, please follow the instructions below:
  - "cd dataProcess"
  - "javac \*.java", then run "java PedInjParser" and "java ReasonPedParser" to construct "pedInjure.sql and "reasonPed.sql"
  - pipe in the two sql files to the database with
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < //pedInjure.sql"</li>
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < ./reasonPed.sql"</p>
    - Note: the password is "wyxjaycqli"
  - Now the two tables PedInjure and ReasonPed are stored in our database.
- Step 2, in order to populate the rest of the dataset, please follow the instructions below:
  - "cd sql"
  - fill our database by inserting all the entries with
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < ./BikeCrash.sql"</li>
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < ./PedestrianCrash.sql"
  - split the datasets into smaller tables that we'll make operations on:
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < ./CleanTableProcedures.sql"</li>
  - load in the 15 procedures we write:
    - "mysql -h dbase.cs.jhu.edu -u ycao29 -D cs41518\_ycao29\_db -p -t -f -vvv < ./Procedures.sql"
- Step 3, initiate apache server, and go to webpage:
  - "chmod 704 index.html"
  - "php -S 127.0.0.1:8080"

- open Google Chrome (browser), type in the url: "http://localhost:8080/index.html"
- now you can play with the questions we listed and try out each options in the drop down list:)
- Note: to return to the main page (index.html), you could simply click the return button on the left top corner of the browser (for Chrome)

## 7. Major/minor areas of specialization

- Preprocessing of data
  - We downloaded original data in CSV format. For BikeCrash data, we populated our database table BikeCrash by converting CSV data to SQL file through online conversion website <a href="http://www.convertesv.com/csv-to-sql.htm">http://www.convertesv.com/csv-to-sql.htm</a>
  - For PedestrianCrash data, we applied knowledge in object-oriented design to parse
    the original CSV data. We create objects for each table, and use the dot operation (as
    explained in class) to access the variables.
  - We also manually created primary key for our big tables before dividing them into smaller ones, using the AUTO INCREMENT SQL statement.
  - We then wrote stored procedures (see CleanTableProcedures.sql) such as
     *DivideBikeCrashTable()* to divide a huge table into smaller ones with related
     attributes. Before division, we also checked all attributes related to our future queries
     carefully, deleting and combining columns if necessary (see CombineColumns() in
     CleanTableProcedures.sql)

#### - Complex stored procedures

- Although we have only 15 queries, each query usually requires 2-3 mysql queries, where one retrieves information from PedestrianCrash data, one retrieves information from BikeCrash data, and another one returns a table that acts like a legend should information be too complex for users to interpret.
- Additionally, we attempted to analyze and retrieve complex information. For
  example, for some queries, we have to display the most frequent value for multiple
  attributes during the user-specified time (from and to) in one single table. We also
  attempted and succeeded in displaying two lists, one displaying pedestrian crash types
  and one displaying bike crash types, as two columns in one table.

#### - MySQLi Language

- At first, when we use MySQL database system with our php files, we had trouble displaying multiple, separate tables in one php. After doing some research, we learned that MySQLi extension supports multiple statements (and prepared statements, etc.), so we quickly switched to MySQLi and successfully displayed as many tables as we would like in one php.

## 8. Strengths

- Combined queries. When we wrote our queries, we realized that some queries require the same type of user input, such as time range and age range, so we combined queries with the same type of user input together so that the user only has to enter the input once and get all corresponding query results together.
- Complex stored procedures. As mentioned in part (7), we wrote many procedures that, although only return a few lines, require complex sql manipulations.

- Check valid input using html. For hw3, we do check on php and sql side, but this time, as we
  do some more research on html, we use different forms and constraints on them to check
  whether the input is valid.
- Provide several related factors for each question. For instance, in question 3 (Select a condition(weather, light condition, etc.) and see how it correlates with pedestrian and bike crashes), we not only present the data related to user's input, but also give the most frequent type of other factors. If the user choose "road surface", we also shows the "most frequent victim severity" and "Most Frequent Weather" for each type of road surface.

#### 9. Limitations

- More polished user interface. We only had time to use the most basic html language that displays a very simple interface for users to interact with.
- Graph analysis. Since both our pedestrian and bike crash data contain time information, we could draw and display graphs that shows patterns of how time correlates with certain attributes.
- Server. Now our project can only run on ugrad server. If we had more time, we might be able to setup a public server through Heroku.
- 10. Everything was done on our own and NOT for any other project/course/research.

#### 11.

Our main html page:



- The user can choose which factor they want to see, and the factor's correlation with our dataset. As for the output, we not only present the road surface type and their number of crashes & rate, but also the most frequent severity and the most frequent weather. This intuitively makes sense, since a user might be curious about under what weather does each surface condition causes crash the most, or what's the most probable injure one will get when being hit on a certain type of road.

## 

#### Pedestrian crashes:

| Surface Condition | Count | Percentage | Most Frequent Severity | Most Frequent Weather |
|-------------------|-------|------------|------------------------|-----------------------|
| Smooth Asphalt    | 222   | 69.3750    | B: Evident Injury      | Clear                 |
| Coarse Asphalt    | 81    | 25.3125    | B: Evident Injury      | Clear                 |
| Concrete          | 11    | 3.4375     | B: Evident Injury      | Clear                 |
| Gravel            | 5     | 1.5625     | B: Evident Injury      | Clear                 |
| Unknown           | 1     | 0.3125     | B: Evident Injury      | Clear                 |

#### Bike crashes:

| Surface Condition | Count | Percentage | Most Frequent Severity | Most Frequent Weather |
|-------------------|-------|------------|------------------------|-----------------------|
| Smooth Asphalt    | 131   | 79.3939    | B: Evident Injury      | Clear                 |
| Coarse Asphalt    | 29    | 17.5758    | B: Evident Injury      | Clear                 |
| Concrete          | 3     | 1.8182     | B: Evident Injury      | Clear                 |
| Other             | 1     | 0.6061     | B: Evident Injury      | Clear                 |
| Gravel            | 1     | 0.6061     | B: Evident Injury      | Clear                 |

 Here, we display the age group and the pedestrian position, injury type, etc. for each victim in the database.

Note1: Since the entries within each age group is very limited, we present the entire dataset below.

Note2: If the table is empty, it means there are no crashes within this age group.

Info about pedestrian crash victims:

| Count | Age Group | Pedestrian Position               | Pedestrian Race | Pedestrian Injury   | Pedestrian Sex |
|-------|-----------|-----------------------------------|-----------------|---------------------|----------------|
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | White           | B: Evident Injury   | Female         |
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | Hispanic        | C: Possible Injury  | Male           |
| 11    | 6-10      | Driveway / Alley                  | Asian           | C: Possible Injury  | Female         |
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | Black           | C: Possible Injury  | Male           |
| 11    | 6-10      | Crosswalk Area                    | White           | C: Possible Injury  | Male           |
| 11    | 6-10      | Travel Lane                       | Black           | B: Evident Injury   | Female         |
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | Black           | C: Possible Injury  | Female         |
| 11    | 6-10      | Travel Lane                       | White           | A: Disabling Injury | Male           |
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | White           | O: No Injury        | Female         |
| 11    | 6-10      | Non-Roadway - Parking Lot / Other | Hispanic        | C: Possible Injury  | Female         |
| 11    | 6-10      | Crosswalk Area                    | Black           | B: Evident Injury   | Male           |

#### Info about bike crash victims:

| Count | Age Group | Biker Position                           | Biker Race | Biker Injury       | Biker Sex | Biker Drink Alcohol |
|-------|-----------|------------------------------------------|------------|--------------------|-----------|---------------------|
| 6     | 6-10      | Travel Lane                              | Black      | B: Evident Injury  | Male      | No                  |
| 6     | 6-10      | Driveway / Alley                         | White      | C: Possible Injury | Male      | No                  |
| 6     | 6-10      | Driveway / Alley                         | White      | B: Evident Injury  | Male      | No                  |
| 6     | 6-10      | Sidewalk / Crosswalk / Driveway Crossing | White      | C: Possible Injury | Male      | No                  |
| 6     | 6-10      | Travel Lane                              | Black      | B: Evident Injury  | Male      | No                  |
| 6     | 6-10      | Sidewalk / Crosswalk / Driveway Crossing | Black      | B: Evident Injury  | Female    | No                  |

- For question 5 (Display analysis on both bike and pedestrian crash related to the severity of injury, frequency of crashes at intersection/non-intersection and traffic control), we combine several stored procedure in the output of this one question. And we label the parts with corresponding potential questions. In addition, we list out all injury types for user's reference,

since we only show the highest crash severity type for pedestrian and bike, it'll be better for user to understand the condition better when knowing the whole criteria.

-

Part 1: which type of crash (pedestrian or bike) has higher severity of injury? Pedestrian crash:

| Crash Severity Level | Percentage |
|----------------------|------------|
| B: Evident Injury    | 40.6250    |
| C: Possible Injury   | 40.6250    |

#### Bike crash:

| Crash Severity Level | Percentage |
|----------------------|------------|
| B: Evident Injury    | 51.5152    |

#### A list of all injury types:

| Crash Severity Leve |
|---------------------|
| A: Disabling Injury |
| B: Evident Injury   |
| C: Possible Injury  |
| K: Killed           |
| O: No Injury        |

Part 2: for both pedestrian and bike crashes, do crashes happen more often at intersection/non-intersection?

| Crash Location   | Percentage | Most Frequent Weather | Most Frequent Light Condition |
|------------------|------------|-----------------------|-------------------------------|
| Intersection     | 36.2887    | Clear                 | Daylight                      |
| Non-Intersection | 36.0825    | Clear                 | Daylight                      |
| Non-Roadway      | 19.3814    | Clear                 | Daylight                      |

- For the last problem, we present the driver information. We show the category of driver on the left, and the counts on the right. Thus, the user can easily compare the number within each category (ex. sex, race, etc.)

To give the idea of distribution of driver's sex, race, age, etc. we display the count of each category below:

| Category             | Count For Each Category |
|----------------------|-------------------------|
| Female               | 125                     |
| Male                 | 148                     |
| Unknown              | 47                      |
| Asian                | 15                      |
| Black                | 58                      |
| Hispanic             | 20                      |
| Native American      | 1                       |
| Other                | 6                       |
| Unknown/Missing      | 47                      |
| White                | 173                     |
| 0-19                 | 25                      |
| 20-24                | 37                      |
| 25-29                | 28                      |
| 30-39                | 52                      |
| 40-49                | 43                      |
| 50-59                | 35                      |
| 60-69                | 24                      |
| 70+                  | 27                      |
| Unknown              | 49                      |
| Assault with Vehicle | 2                       |
|                      |                         |

```
12.
1)
CREATE TABLE BikeCrashTime (
       BikeCrashID
                    INT NOT NULL,
       crash time
                    VARCHAR(5) NOT NULL,
       crash hour
                    DECIMAL(4,1) NOT NULL,
       crashday
                    VARCHAR(9) NOT NULL,
       crash mont
                    VARCHAR(9) NOT NULL,
       crash year
                    INT(11) NOT NULL,
       PRIMARY KEY (BikeCrashID)
);
# INSERT INTO
BikeCrashTime(BikeCrashID,crash time,crash hour,crashday,crash mont,crash year) VALUES (1,
"10:12", 10.0, "Saturday", "July", 2011);
```

| BikeCrashID | crash_time | crash_hour | crashday   | crash_mont | crash_year |
|-------------|------------|------------|------------|------------|------------|
| 1           | "10:12"    | 10.0       | "Saturday" | "July"     | 2011       |

```
2)
CREATE TABLE BikeCrashLoc (
                    INT NOT NULL,
      BikeCrashID
      lat
                    DECIMAL(12,10) NOT NULL,
      lon
                    DECIMAL(12,10) NOT NULL,
      county
                    VARCHAR(7) NOT NULL,
      city
                    VARCHAR(18) NOT NULL,
                    VARCHAR(5) NOT NULL,
      rural urba
      crash loc
                    VARCHAR(20) NOT NULL,
      developmen
                    VARCHAR(22) NOT NULL,
      PRIMARY KEY (BikeCrashID)
);
# INSERT INTO BikeCrashLoc(BikeCrashID,lat,lon,county,city,rural_urba,crash_loc,developmen)
VALUES (1, 35.9100670923, -79.0745027481, "Orange", "Carrboro", "Urban", "Non-Intersection",
```

| BikeCras<br>hID | lat               | lon                | county   | city      | rural_urb<br>a | crash_lo<br>c       | developm<br>en |
|-----------------|-------------------|--------------------|----------|-----------|----------------|---------------------|----------------|
| 1               | 35.91006<br>70923 | -79.07450<br>27481 | "Orange" | "Carrboro | "Urban"        | "Non-Inte rsection" | "Commer cial   |

"Commercial");

#### CREATE TABLE BikeCrashRdCond (

BikeCrashID INT NOT NULL, rd defects VARCHAR(7) NOT NULL, rd feature VARCHAR(23) NOT NULL, rd charact VARCHAR(20) NOT NULL, rd\_surface VARCHAR(14) NOT NULL, rd conditi VARCHAR(24) NOT NULL, speed\_limi VARCHAR(12) NOT NULL, traff entr VARCHAR(35) NOT NULL, weather VARCHAR(6) NOT NULL, rd config VARCHAR(41) NOT NULL, num lanes VARCHAR(15) NOT NULL, developmen VARCHAR(22) NOT NULL, light cond VARCHAR(26) NOT NULL,

PRIMARY KEY (BikeCrashID)

);

#### # INSERT INTO BikeCrashRdCond

(BikeCrashID,rd defects,rd feature,rd charact,rd surface,rd conditi,speed limi,traff cntr,weather,rd config,num lanes,developmen,light cond) VALUES (1, "None", "No Special Feature", "Straight -Level", "Smooth Asphalt", "Dry", "20 - 25 MPH", "No Control Present", "Clear", "Two-Way, Not Divided", "Unknown", "Commercial", "Daylight");

| Bike<br>Cras<br>hID | rd_d<br>efec<br>ts | rd_f<br>eatu<br>re                 | rd_c<br>hara<br>ct               | rd_s<br>urfa<br>ce          | rd_c<br>ondi<br>ti | spe<br>ed_li<br>mi      | traff<br>_cnt<br>r                 | weat<br>her | rd_c<br>onfi<br>g                        | num<br>_lan<br>es | deve<br>lopm<br>en  | light<br>_co<br>nd |
|---------------------|--------------------|------------------------------------|----------------------------------|-----------------------------|--------------------|-------------------------|------------------------------------|-------------|------------------------------------------|-------------------|---------------------|--------------------|
| 1                   | "No<br>n"e         | "No<br>Spec<br>ial<br>Feat<br>ure" | "Stra<br>ight<br>-<br>Leve<br>I" | "Sm<br>ooth<br>Asph<br>alt" | "Dry<br>"          | "20 -<br>25<br>MP<br>H" | "No<br>Cont<br>rol<br>Pres<br>ent" | "Cle<br>ar" | "Tw<br>o-W<br>ay,<br>Not<br>Divi<br>ded" | "Un<br>kno<br>wn" | "Co<br>mme<br>rcial | "Day<br>light      |

4)

#### CREATE TABLE BikeCrashResult (

INT NOT NULL, BikeCrashID ambulancer VARCHAR(3) NOT NULL, crash type VARCHAR(62) NOT NULL, crsh\_sevri VARCHAR(19) NOT NULL, hit run VARCHAR(3) NOT NULL,

bike\_injur VARCHAR(19) NOT NULL, drvr injur VARCHAR(18) NOT NULL,

PRIMARY KEY (BikeCrashID)

);

#### # INSERT INTO BikeCrashResult

(BikeCrashID,ambulancer,crash\_type,crsh\_sevri,hit\_run,bike\_injur,drvr\_injur) VALUES (1, "Yes", "Motorist Overtaking - Bicyclist Swerved", "K: Killed", "No", "K: Killed", "O: No Injury");

| BikeCrash<br>ID | ambulanc<br>er | crash_typ<br>e                                     | crsh_sevri  | hit_run | bike_injur     | drvr_injur        |
|-----------------|----------------|----------------------------------------------------|-------------|---------|----------------|-------------------|
| 1               | "Yes"          | "Motorist<br>Overtaking<br>- Bicyclist<br>Swerved" | "K: Killed" | "No"    | "K:<br>Killed" | "O: No<br>Injury" |

## 5)

## CREATE TABLE Biker (

BikeCrashID INT NOT NULL, bike\_injur VARCHAR(19) NOT NULL,

bike\_race VARCHAR(15) NOT NULL,
bike\_dir VARCHAR(14) NOT NULL,
bike\_age VARCHAR(7) NOT NULL,
bikeage\_gr VARCHAR(7) NOT NULL,
bike\_sex VARCHAR(7) NOT NULL,
bike\_pos VARCHAR(40) NOT NULL,
bike\_alc\_d VARCHAR(7) NOT NULL,

PRIMARY KEY (BikeCrashID)

);

## # INSERT INTO Biker

(BikeCrashID,bike\_injur,bike\_race,bike\_dir,bike\_age,bikeage\_gr,bike\_sex,bike\_pos,bike\_alc\_d) VALUES (1, "K: Killed", "White", "With Traffic", "70+", "70+", "Male", "Travel Lane", "No");

| BikeCra | bike_inj       | bike_ra | bike_dir          | bikeage_ | bike_ag | bike_se | bike_po          | bike_al |
|---------|----------------|---------|-------------------|----------|---------|---------|------------------|---------|
| shID    | ur             | ce      |                   | gr       | e       | x       | s                | c_d     |
| 1       | "K:<br>Killed" | "White" | "With<br>Traffic" | "70+"    | "70+"   | "Male"  | "Travel<br>Lane" | "No"    |

#### 6)

## CREATE TABLE Driver\_BikeCrash(

BikeCrashID INT NOT NULL,

drvr\_vehty VARCHAR(34) NOT NULL, drvr\_injur VARCHAR(18) NOT NULL, drvr\_sex VARCHAR(7) NOT NULL, drvr\_race VARCHAR(15) NOT NULL,

```
drvr_age VARCHAR(7) NOT NULL,
drvrage_gr VARCHAR(7) NOT NULL,
drvr_estsp VARCHAR(9) NOT NULL,
drvr_alc_d VARCHAR(7) NOT NULL,
PRIMARY KEY (BikeCrashID)
);
# INSERT INTO Driver_BikeCrash
(BikeCrashID,drvr_vehty,drvr_injur,drvr_sex,drvr_race,drvr_age,drvrage_gr,drvr_estsp,drvr_alc_d)
VALUES (1, "Passenger Car", "O: No Injury", "Male", "White", "70+", "70+", "11 - 15 mph",
"No");
```

| BikeCra | drvr_ve             | drvr_inj          | drvr_se | drvr_ra | drvr_ag | drvrage_ | drvr_est         | drvr_alc |
|---------|---------------------|-------------------|---------|---------|---------|----------|------------------|----------|
| shID    | hty                 | ur                |         | ce      | e       | gr       | sp               | _d       |
| 1       | "Passen<br>ger Car" | "O: No<br>Injury" | "Male"  | "White" | "70+"   | "70+"    | "11 - 15<br>mph" | "No"     |

# CREATE TABLE BikeCrashReason(

BikeCrashID INT NOT NULL, crashalcoh VARCHAR(3) NOT NULL, excsspdind VARCHAR(3) NOT NULL, drvr alc d VARCHAR(7) NOT NULL, bike\_alc\_d VARCHAR(7) NOT NULL, bike\_pos VARCHAR(40) NOT NULL, bike dir VARCHAR(14) NOT NULL, VARCHAR(9) NOT NULL, drvr estsp

on\_rd VARCHAR(23), PRIMARY KEY (BikeCrashID)

); # INSERT INTO BikeCrashReason

(BikeCrashID,crashalcoh,excsspdind,drvr\_alc\_d,bike\_alc\_d,bike\_pos,bike\_dir,drvr\_estsp,on\_rd) VALUES (1, "No", "No", "No", "No", "Travel Lane", "With Traffic", "11 - 15 mph", NULL);

## BikeCrashReason

| BikeCra<br>shID | crashal<br>coh | excssp<br>dind | drvr_alc<br>_d | bike_al<br>c_d | bike_po<br>s     | bike_dir          | drvr_est<br>sp   | on_rd |
|-----------------|----------------|----------------|----------------|----------------|------------------|-------------------|------------------|-------|
| 1               | "No"           | "No"           | "No"           | "No"           | "Travel<br>Lane" | "With<br>Traffic" | "11 - 15<br>mph" | NULL  |

8)
CREATE TABLE PedCrashRdCond (
BikeCrashID INT NOT NULL,

| rd_defects | VARCHAR(22) NOT NULL, |
|------------|-----------------------|
| rural_urba | VARCHAR(5) NOT NULL,  |
| city       | VARCHAR(18) NOT NULL, |
| locality   | VARCHAR(28) NOT NULL, |
| rd_feature | VARCHAR(32) NOT NULL, |
| light_cond | VARCHAR(26) NOT NULL, |
| rd_charact | VARCHAR(20) NOT NULL, |
| rd_surface | VARCHAR(14) NOT NULL, |
| developmen | VARCHAR(22) NOT NULL, |
| traff_cntr | VARCHAR(35) NOT NULL, |
| rd_conditi | VARCHAR(7) NOT NULL,  |

```
region VARCHAR(8) NOT NULL,
rd_class VARCHAR(22) NOT NULL,
weather VARCHAR(40) NOT NULL,
num_lanes VARCHAR(15) NOT NULL,
rd_config VARCHAR(41) NOT NULL,
PRIMARY KEY (BikeCrashID)
```

);

## # INSERT INTO PedCrashRdCond

(BikeCrashID,rd\_defects,rural\_urba,city,locality,rd\_feature,light\_cond,rd\_charact,rd\_surface,develop men,traff\_cntr,rd\_conditi,region,rd\_class,weather,num\_lanes,rd\_config) VALUES (1, "None", "Urban", "Chapel Hill", "Urban (>70% Developed)", "No Special Feature", "Dark - Roadway Not Lighted", "Straight - Level", "Smooth Asphalt", "Commercial", "No Control Present", "Dry", "Piedmont", "Public Vehicular Area", "Clear", "Unknown", "Unknown");

| PedCras<br>hID | rd_defec<br>ts | rural_urb<br>a | city             | locality                           | rd_featur<br>e             | light_con<br>d                        | rd_chara<br>ct     |
|----------------|----------------|----------------|------------------|------------------------------------|----------------------------|---------------------------------------|--------------------|
| 1              | "None"         | "Urban"        | "Chapel<br>Hill" | "Urban<br>(>70%<br>Develope<br>d)" | "No<br>Special<br>Feature" | "Dark -<br>Roadway<br>Not<br>Lighted" | "Straight - Level" |

| rd_surf<br>ace      | develop<br>men | traff_cnt<br>r             | rd_cond<br>iti | region         | rd_clas<br>s                   | weather | num_la<br>nes | rd_confi<br>g |
|---------------------|----------------|----------------------------|----------------|----------------|--------------------------------|---------|---------------|---------------|
| "Smooth<br>Asphalt" | "Comme rcial"  | "No<br>Control<br>Present" | "Dry"          | "Piedmo<br>nt" | "Public<br>Vehicula<br>r Area" | "Clear" | "Unkno<br>wn" | "Unkno<br>wn" |

9)

```
CREATE TABLE DiverBiker_PedCrash (
```

BikeCrashID INT NOT NULL, drvr\_age VARCHAR(7) NOT NULL, VARCHAR(7) NOT NULL, drvrage gr drvr estsp VARCHAR(9) NOT NULL, speed limi VARCHAR(12) NOT NULL, drvr vehty VARCHAR(36) NOT NULL, drvr injur VARCHAR(19) NOT NULL, drvr\_sex VARCHAR(7) NOT NULL, drvr race VARCHAR(15) NOT NULL, VARCHAR(7) NOT NULL, drvr\_alc\_d PRIMARY KEY (BikeCrashID)

#### # INSERT INTO DiverBiker PedCrash

(BikeCrashID,drvr\_age,drvrage\_gr,drvr\_estsp,speed\_limi,drvr\_vehty,drvr\_injur,drvr\_sex,drvr\_race,dr vr\_alc\_d) VALUES (2, "46", "40-49", "Unknown", "30 - 35 MPH", "Passenger Car", "O: No Injury", "Female", "White", "No");

| BikeC<br>rashI<br>D | drvr_a<br>ge | drvrag<br>e_gr | drvr_e<br>stsp    | speed<br>_limi      | drvr_<br>vehty         | drvr_i<br>njurdr<br>vr_se<br>x | drvr_a<br>lc_d | drvra<br>ge_gr | drvr_<br>estsp |
|---------------------|--------------|----------------|-------------------|---------------------|------------------------|--------------------------------|----------------|----------------|----------------|
| 1                   | "46"         | "40-4<br>9"    | "Unk<br>nown<br>" | "30 -<br>35<br>MPH" | "Pass<br>enger<br>Car" | "O:<br>No<br>Injury            | "Fem<br>ale    | "Whit<br>e"    | "No"           |

# 10) CREATE TABLE PedCrashDetail(

BikeCrashID INT NOT NULL, crsh\_sevri VARCHAR(19), ambulancer VARCHAR(3) NOT NULL,

crash\_time VARCHAR(5) NOT NULL,
crash\_year INT(11) NOT NULL,
county VARCHAR(7) NOT NULL,
longitude DECIMAL(5,1) NOT NULL,
latitude DECIMAL(4,1) NOT NULL,

crash\_mont vARCHAR(9) NOT NULL,
crash\_type vARCHAR(50) NOT NULL,
city vARCHAR(18) NOT NULL,
locality vARCHAR(28) NOT NULL,
ped\_pos vARCHAR(46) NOT NULL,
drvr\_injur vARCHAR(19) NOT NULL,

crash\_loc crash\_hour VARCHAR(19) NOT NULL,

VARCHAR(9) NOT NULL,

VARCHAR(20) NOT NULL,

DECIMAL(4,1) NOT NULL,

geo\_shape VARCHAR(74) NOT NULL, crash\_date DATE NOT NULL,

crash\_grp VARCHAR(45) NOT NULL, hit run VARCHAR(3) NOT NULL,

PRIMARY KEY (BikeCrashID)

#### # INSERT INTO PedCrashDetail

);

(BikeCrashID,crsh\_sevri,ambulancer,crash\_time,crash\_year,county,longitude,latitude,crash\_mont,crash\_type,city,locality,ped\_pos,drvr\_injur,crashday,crash\_loc,crash\_hour,geo\_shape,crash\_date,crash\_grp,hit\_run) VALUES (1, "B: Evident Injury", "Yes", "1:52", 2007, "Orange", -79.0, 36.0,

"November", "Assault with Vehicle", "Chapel Hill", "Urban (>70% Developed)", "Non-Roadway - Parking Lot / Other", "Unknown Injury", "Saturday", "Non-Roadway", 1.0, {"type": "Point", "coordinates": [-79.02140273340797, 35.93761709952935]}, 0000-00-00, "Unusual Circumstances", "No");

| PedCr | crsh_s                    | ambul | crash_ | crash_ | county       | longitu | latitud | crash_         | crash_                       |
|-------|---------------------------|-------|--------|--------|--------------|---------|---------|----------------|------------------------------|
| ashID | evri                      | ancer | time   | year   |              | de      | e       | mont           | type                         |
| 1     | "B:<br>Evident<br>Injury" | "Yes" | "1:52" | 2007   | "Orang<br>e" | -79.0   | 36.0    | "Nove<br>mber" | "Assau<br>lt with<br>Vehicle |

| city                 | localit                                | ped_p                                                 | drvr_i                      | crash          | crash                 | crash | geo_s                                                                            | crash      | crash                                  | hit_ru |
|----------------------|----------------------------------------|-------------------------------------------------------|-----------------------------|----------------|-----------------------|-------|----------------------------------------------------------------------------------|------------|----------------------------------------|--------|
|                      | y                                      | os                                                    | njur                        | day            | _loc                  | _hour | hape                                                                             | _date      | _grp                                   | n      |
| "Chap<br>el<br>Hill" | "Urba<br>n<br>(>70%<br>Devel<br>oped)" | "Non-<br>Road<br>way -<br>Parkin<br>g Lot /<br>Other" | "Unkn<br>own<br>Injury<br>" | "Satur<br>day" | "Non-<br>Road<br>way" | 1.0   | {"type": "Point"; "coord inates": [-79.0 21402 73340 797, 35.937 61709 95293 5]} | 0000-00-00 | "Unus<br>ual<br>Circu<br>mstan<br>ces" | "No"   |

# 11) CREATE TABLE PedInjure (

BikeCrashID INT NOT NULL,

ped\_pos VARCHAR(46) NOT NULL,
ped\_race VARCHAR(15) NOT NULL,
pedage\_grp VARCHAR(7) NOT NULL,
ped\_age VARCHAR(7) NOT NULL,
ped\_injury VARCHAR(19) NOT NULL,
ped\_sex VARCHAR(7) NOT NULL,

PRIMARY KEY (BikeCrashID)

```
);
# INSERT INTO PedInjure
(BikeCrashID,ped_pos,ped_race,pedage_grp,ped_age,ped_injury,ped_sex) VALUES (1,
"Non-Roadway - Parking Lot / Other", "Black", "25-29", "29", "B: Evident Injury", "Male");
```

| PedCrashI<br>D | ped_pos                                       | ped_race | pedage_gr<br>p | ped_age | ped_injury             | ped_sex |
|----------------|-----------------------------------------------|----------|----------------|---------|------------------------|---------|
| 1              | "Non-Road<br>way -<br>Parking Lot<br>/ Other" | "Black"  | "25-29"        | "29"    | "B: Evident<br>Injury" | "Male"  |

12)

# CREATE TABLE ReasonPed( BikeCrashID INT NO

crashalcoh VARCHAR(60) NOT NULL, excsspdind VARCHAR(30) NOT NULL, ped\_pos VARCHAR(60) NOT NULL, drvr\_injur VARCHAR(30) NOT NULL, hit\_run VARCHAR(5) NOT NULL, drvr\_estsp VARCHAR(30) NOT NULL,

INT NOT NULL,

exceedSpeed VARCHAR(30) NOT NULL,

speed\_limi INT(11) NOT NULL, PRIMARY KEY (BikeCrashID)

);

## # INSERT INTO ReasonPed

(BikeCrashID,crashalcoh,excsspdind,ped\_pos,drvr\_injur,hit\_run,drvr\_estsp,exceedSpeed\_speed\_limi) VALUES (1, "No", "No", "Non-Roadway - Parking Lot", "Unknown Injury", "No", "Unknown", -1, 5);

| BikeCra<br>shID | crashalc<br>oh | excsspd ind | ped_po                                              | drvr_inj<br>ur          | hit_run | drvr_est<br>sp | exceed<br>Speed | speed_l<br>imi |
|-----------------|----------------|-------------|-----------------------------------------------------|-------------------------|---------|----------------|-----------------|----------------|
| 1               | "No"           | "No"        | "Non-R<br>oadway<br>-<br>Parking<br>Lot /<br>Other" | "Unkno<br>wn<br>Injury" | "No"    | "Unkno<br>wn"  | -1              | 5              |

#### Database Phase 1

- 1.Members: Tianyi Lin, Yang Cao
- 2. Target domain: crimes in Baltimore area (and other cities) from 2001 to present 3.
  - 1) What is the crime rate for a specific neighborhood?
  - 2) What areas have higher crime rate at night and what areas have higher crime rate at day?
  - 3) What kind of crime (e.g. murder, rape, robbery, b & e) is the most frequent around certain area?
  - 4) What areas have higher accident rate (e.g. bicycle crash)?
  - 5) What kind of accident is the most frequent around certain area?
  - 6) What areas have higher accident rate at night and what areas have higher accident rate at day?
  - 7) What neighborhood have caught more gun offenders?
  - 8) Does weather correlate with accident rate?
  - 9) Does weather correlate with bicycle crash rate?
  - 10) Does light condition correlate with bicycle crash rate?
  - 11) Does road condition correlated with bicycle crash rate?
  - 12) What is the rate of car accidents that are caused by driver exceeding speed limit?
  - 13) For bicycle crashes, how many of the Drivers have Alcohol Detected?
  - 14) For people who committed crimes, how many of them are also gun offenders?
  - 15) What age range (10 years, for example) has highest number of gun offenders?

# Crime\_data

| accident<br>_id | States | Crime_ty<br>pe | Time | Police_st ation | People_i<br>nvolved            | First name of People commite d to crime | Last<br>name of<br>People<br>commite<br>d to<br>crime |
|-----------------|--------|----------------|------|-----------------|--------------------------------|-----------------------------------------|-------------------------------------------------------|
| 123             | MD     | Robbery        | 19   | Baltimor<br>e   | Stan<br>Lee,<br>Eddie<br>Brook | Eddie                                   | Brook                                                 |

Gun\_offenders

| case<br>Nun<br>ber | -                  | mod<br>ified<br>_dat<br>e | last<br>Nam<br>e | first<br>Nam<br>e | Date<br>_Of<br>_Birt<br>h | sex | full_<br>addr<br>ess                   | distri<br>ct      | neig<br>hbor<br>hoo<br>d | Poli<br>ce_s<br>tatio<br>n                     | casu<br>altie<br>s | race      |
|--------------------|--------------------|---------------------------|------------------|-------------------|---------------------------|-----|----------------------------------------|-------------------|--------------------------|------------------------------------------------|--------------------|-----------|
| 123                | 11/1<br>5/10<br>28 | 11/1<br>8/20<br>18        | Fak<br>e         | Nam<br>e          | 1/2/<br>200<br>0          | M   | Roo<br>m<br>123,<br>Stre<br>et<br>456. | Bad<br>Cou<br>nty | Hop<br>kins              | Balti<br>mor<br>e<br>Poli<br>ce<br>Stati<br>on | 1<br>injur<br>ed   | Blac<br>k |

# Crime\_mapping

| accident<br>_id | crime_c<br>ategory | district      | map_ref<br>erence | location_<br>category | lat     | lon     | location             |
|-----------------|--------------------|---------------|-------------------|-----------------------|---------|---------|----------------------|
| 123             | Robbery            | Bad<br>County | 123               | Highway               | 111.222 | 333.444 | 123<br>Street<br>345 |

# Bike\_crash

| City          | Crash<br>Date | Crash<br>Locati<br>on | Crash<br>Time | Crash<br>Severi<br>ty | accid<br>ent_i<br>d | Ambu<br>lance<br>Respo<br>nse | Light<br>Condi<br>tion | Numb<br>er of<br>Lanes | Road<br>Chara<br>cteris<br>tics/C<br>lass/C<br>onditi<br>on/Co<br>nfigur<br>ation | Road<br>Defec<br>ts/Fea<br>tures |
|---------------|---------------|-----------------------|---------------|-----------------------|---------------------|-------------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------|----------------------------------|
| baltio<br>mre | 1/1/2<br>018  | High<br>way           | 11:23<br>pm   | 2<br>injure<br>d      | 1231<br>23          | Yes                           | OK                     | 3                      | No<br>Speci<br>al<br>Featu<br>re                                                  | None                             |

Bike\_crash\_people

| acciden<br>t_id | Bike/Pe<br>destrian<br>Age<br>Group | Bike/Pe<br>destrian<br>Sex | Driver<br>Age<br>Group | Driver<br>Estimat<br>ed<br>Speed | Speed<br>Limit | Driver<br>Alcohol<br>Detecte<br>d | Driver<br>Injury | Crash<br>Type                                                    |
|-----------------|-------------------------------------|----------------------------|------------------------|----------------------------------|----------------|-----------------------------------|------------------|------------------------------------------------------------------|
| 123             | 20                                  | M                          | 30                     | 27                               | 20             | No                                | No               | Motoris<br>t<br>Overta<br>king -<br>Bicyclis<br>t<br>Swerve<br>d |

5.

#### SQL statments for 15 questinos

- 1) What is the crime rate for a specific neighborhood?
  - select neighborhood with the highest count of crime for a neighborhood
- 2) What areas have higher crime rate at night and what areas have higher crime rate at day?
  - night: select top 3 neighborhoods that have the highest count of crime at night
  - day: select top 3 neighborhoods that have the highest count of crime at day
- 3) What kind of crime (e.g. murder, rape, robbery, b & e) is the most frequent around certain area?
  - group by crime type (from all tuples with the input neighborhood) and select the crime type that has max count
- 4) What areas have higher accident rate (e.g. bicycle crash)?
  - Combine Bike\_crash with Crime\_mapping to get the neighborhood in which a bike crash happens. Group by neighborhood and select the one with max count of bike crash
- 5) Rate of severe injury bike crashing people accident?
  - select count of severe injury accident / count of all accident from Bike crash people
- 6) What areas have higher accident rate at night and what areas have higher accident rate at day?
  - Night: group by neighborhood, select the neighborhood from Bike\_crash and
     Crime mapping that has max count of night accidents
  - Day: group by neighborhood, select the neighborhood from Bike\_crash and Crime mapping that has max count of day accidents
- 7) What neighborhood have caught more gun offenders?
  - Group by neighorbood, select max count of tuples from Gun\_offenders
- 8) Does weather correlate with accident rate? (bad weather accident : all accident)
  - select count of accidents happening under bad weather / total count of accidents

- 9) Does weather correlate with bicycle crash rate? (bad weather bike crash: all crashes)
  - select count of bike crashes under bad weather / total count of bike crashes
- 10) Does light condition correlate with bicycle crash rate?
  - select count of bike crashes under bad light condition / total count of bike crashes
- 11) Does road condition correlated with bicycle crash rate?
  - select count of bike crashes under bad road condition / total count of bike crashes
- 12) What is the rate of car accidents that are caused by driver exceeding speed limit?
  - select exceed\_count / totalCount from (select count of bike crashes where drive\_speed > speed limit) as exceed\_count, (select count of accidents) as totalCount
- 13) For bicycle crashes, how many of the Drivers have Alcohol Detected?
  - select count(\*) where Driver\_Alcohol\_Detected = 'Yes'
- 14) For people who committed crimes, how many of them are also gun offenders?
  - select count(\*) where Crime\_data.First name of People committed to crime =
     Gun\_offenders.FirstName AND Crime\_data.Last name of People committed to
     crime = Gun\_offenders.LastName
- 15) What age range (10 years, for example) has highest number of gun offenders?
  - select max from (select count(\*) from gun\_offenders group by age)

#### 6. how to load database

- We first put all the csv files into Json objects and put it in a json file. Then, along with the raw data that is originally in Json format, we use JDBC to handle the object and establish connection with a heroku server. Then within the java file, we populate the data into the database.

#### 7.

- We expect the output to be table of data, and our work includes combine multiple rows of data and present it to the user in a user friendly view. Possibly some design on the table format to make the information easier to read.

#### 8.

- Since we are in section 315, we choose to minorly focus on complex data extraction.
   So far, our raw data consists of both csv and json files, and we also plan to do some statistical analysis/calculation on these files before we push all of the datasets to the database.
- We also plan to touch on JDBC to handle database connections and Json objects.

# Database Phase 1 -- updated ver.

- 1.Members: Tianyi Lin, Yang Cao
- 2. Target domain: Our database describes the locations of crashes involving bikes and cars in the Chapel Hill Region of North Carolina. We download the data online, and the original source is "from police-reported bicycle-motor vehicle and pedestrian-motor vehicle collisions that occurred on the public roadway network, public vehicular areas and private properties (if reported)", as stated on the website.
- 3. List of queries (Note: for completion of phase 2, we also write the input & output and stored procedures name for each question)
  - 1) What kind of crash type (pedestrian AND bike) is the most frequent (top 5) around certain area?
    - a) input: city (drop down)
    - b) output:
      - i) tables (1 and 2): most frequent time of the crash, severity of ped/biker
      - ii) table 3 (legend): kind of crash type
    - c) procedures: CrashTypeRate\_Bike(city VARCHAR(18)),CrashTypeRate\_Ped(city VARCHAR(18)), ShowCrashTypes\_Comb()
  - 2) What areas have higher accident rate (e.g. bicycle crash)? What areas have higher accident rate at night and what areas have higher accident rate at day (based on time range)?
    - a) input: time range
    - b) output: accident rate, city, crash type, severity of injury
    - c) procedures: AccidentRate\_Bike(t\_from NUMERIC(4,1), t\_to NUMERIC(4,1)), AccidentRate\_Ped(t\_from NUMERIC(4,1), t\_to NUMERIC(4,1))
  - 3) Does light condition correlate with bicycle/pedestrian crash rate? (light\_bike, light\_ped)
    - a) input:condition
    - b) output: both table with columns of: type of light condition && corresponding # of crashes, % of light condition = && crash most frequent severity
  - 4) Does road surface correlated with bicycle/pedestrian crash rate? (road\_charact\_bike, road\_charact\_ped)
    - a) input:condition
    - b) output: road surface type, count of crash, weather, severity

- 5) Does weather correlated with bicycle/pedestrian crash rate? (weather\_bike,weather\_ped)
  - a) input:condition
  - b) output: type of weather & # of crashes, several frequent month...
- 6) Does exceeding the speed limit (driver) correlate with crash rate? (output: coordinate with highest rate, link: other factors, navigate to corresponding pages)?
  - a) input:condition
  - b) output: percentage of exceedLim/all, percentage of belowLim/all
  - c) procedures: ExceedSp Bike(), ExceedSp Ped()
- 7) For bicycle crashes, does Alcohol Detected for driver correlate with crash rate?
  - a) input:
  - b) output: percentage of alco/all for biker, percentage of alco/all for driver, time of the day, location
- 8) Do bike/pedestrian crashes have higher severity of injury?
  - a) input:
  - b) output:
    - i) all types of injury
    - ii) 2 tables, percentage of severe injury (level B/C), time, weather, alcohol, county
  - c) procedures: ShowInjuryTypes(), Injury\_Bike(), Injury\_Ped()
- 9) Correlation between ambulance response and severity of injury
  - a) input: time
  - b) output:
    - i) table 1 (ped): for ambulance=yes/no, the most frequent severity level
    - ii) table 2 (bike): for ambulance=yes/no, the most frequent severity level
  - c) procedures: AmbulanceSevri\_Bike(t\_from NUMERIC(4,1), t\_to NUMERIC(4,1)), AmbulanceSevri\_Ped(t\_from NUMERIC(4,1), t\_to NUMERIC(4,1))
- 10) For a selected age group, show all crashes data for the victim.
  - a) variable: time
  - b) input: age group (drop down?)
  - c) output:
    - i) table 1 (bike) count, Biker.bikeage\_gr, bike\_injur, bike\_race, bike\_dir, bike sex, bike pos, bike alc d
    - ii) table 2 (ped) count, pedInjure.pedage\_grp, ped\_pos, ped\_race, ped\_injury, ped\_sex #need to check

- d) procedures: AgeGpAccidentRate\_Bike(age VARCHAR(7)), AgeGpAccidentRate\_Ped(age VARCHAR(7))
- 11) correlation between time(input) and hit and run rate
  - a) input: time
  - b) output: hit and run rate, weather
  - c) procedures: HitRun\_Bike(t\_from NUMERIC(4,1), t\_to NUMERIC(4,1)), HitRun Ped(t from NUMERIC(4,1), t to NUMERIC(4,1))
- 12) which type of location (rural/urban) has more frequent crashes?
  - a) input: rural/urban (drop down)
  - b) output: hit and run rate, time, alcohol detected, weather, severity
  - c) procedures: LocAccidentRate\_Bike(loc VARCHAR(5)), LocAccidentRate Ped(loc VARCHAR(5)) # need to check
- 13) driver information
  - a) input: pedestrian/bike (drop down)
  - b) output: summary of driver info: sex, race, age, crash type, driver severity
  - c) procedures: DriverInfo(type VARCHAR(10))
- 14) do crashes happen more often at intersection/non-intersection
  - a) input:
  - b) output: 1 table (union ped and bike crashes), crash rate (intersection/all, or non-intersection/all), severity, weather, light cond, num lanes
  - c) procedures: IntersectAccidentRate()
- 15) do crashes happen more often when there's no traffic control?
  - a) input:
  - b) output: 2 tables, traffic control rate, severity, weather, light cond, num lanes
  - c) procedures: Traffic Bike(), Traffic Ped()

### 4. Relational data model:

- 1.PedCrashRdCond
  - rd\_defects,rural\_urba,city,locality,rd\_feature,light\_cond,rd\_charact.
     ,rd\_surface, developmen, traff\_cntr,rd\_conditi,region, rd\_class, weather, num\_lanes, rd\_config

| <u>PedCras</u> | rd_defect | rural_urb | city | locality | rd_featur | light_con | rd_chara |
|----------------|-----------|-----------|------|----------|-----------|-----------|----------|
| <u>hID</u>     | S         | a         |      |          | e         | d         | ct       |

| 1 | "None" | "Urban" | "Chapel | "Urban  | "No      | "Dark -  |           |
|---|--------|---------|---------|---------|----------|----------|-----------|
|   |        |         | Hill"   | (>70%   | Special  | Roadway  | "Straight |
|   |        |         |         | Develop | Feature" | Not      | - Level"  |
|   |        |         |         | ed)"    |          | Lighted" |           |

| rd_surf<br>ace         | develop<br>men   | traff_cn<br>tr            | rd_cond<br>iti | region         | rd_class                          | weather | num_la<br>nes | rd_conf<br>ig |
|------------------------|------------------|---------------------------|----------------|----------------|-----------------------------------|---------|---------------|---------------|
| "Smoot<br>h<br>Asphalt | "Comm<br>ercial" | "No<br>Control<br>Present | "Dry"          | "Piedm<br>ont" | "Public<br>Vehicul<br>ar<br>Area" | "Clear" | "Unkno<br>wn" | "Unkno<br>wn" |

# - 2.PedInjure

- for injured people profile
- ped\_pos,ped\_race,pedage\_grp,ped\_age, ped\_injury,ped\_sex

| PedCrashI<br>D | ped_pos                                       | ped_race | pedage_gr<br>p | ped_age | ped_injury             | ped_sex |
|----------------|-----------------------------------------------|----------|----------------|---------|------------------------|---------|
| 1              | "Non-Road<br>way -<br>Parking Lot<br>/ Other" | "Black"  | "25-29"        | "29"    | "B: Evident<br>Injury" | "Male"  |

# - 3. DiverBiker\_PedCrash

- driver/biker profile
- speed\_limi, drvr\_vehty, drvr\_injur, drvr\_sex, drvrage\_gr, drvr\_race, drvr\_age, drvr\_estsp, drvrage\_gr, drvr\_alc\_d

| BikeC<br>rashI<br>D | drvr_a<br>ge | drvrag<br>e_gr | drvr_e<br>stsp    | speed<br>_limi      | drvr_<br>vehty         | drvr_i<br>njurdr<br>vr_se<br>x | drvr_a<br>lc_d | drvra<br>ge_gr | drvr_<br>estsp |
|---------------------|--------------|----------------|-------------------|---------------------|------------------------|--------------------------------|----------------|----------------|----------------|
| 1                   | "46"         | "40-4<br>9"    | "Unk<br>nown<br>" | "30 -<br>35<br>MPH" | "Pass<br>enger<br>Car" | "O:<br>No<br>Injury            | "Fem<br>ale    | "Whit          | "No"           |

## - 4. PedCrashDetail

- crash detail
- crsh\_sevri, "ambulancer", crash\_time, crash\_year, county, longitude,latitude, crash\_mont,crash\_type,city,locality,ped\_pos,drvr\_injur,crashday,crash\_loc, crash\_hour,geo\_shape, crash\_date, crash\_grp,hit\_run

| PedCr | crsh_s                    | ambul | crash_ | crash_ | county       | longitu | latitud | crash_         | crash_                       |
|-------|---------------------------|-------|--------|--------|--------------|---------|---------|----------------|------------------------------|
| ashID | evri                      | ancer | time   | year   |              | de      | e       | mont           | type                         |
| 1     | "B:<br>Evident<br>Injury" | "Yes" | "1:52" | 2007   | "Orang<br>e" | -79.0   | 36.0    | "Nove<br>mber" | "Assau<br>lt with<br>Vehicle |

| city                 | localit                                | ped_p                                                 | drvr_i                 | crash          | crash                 | crash | geo_s                                                                            | crash      | crash                                  | hit_ru |
|----------------------|----------------------------------------|-------------------------------------------------------|------------------------|----------------|-----------------------|-------|----------------------------------------------------------------------------------|------------|----------------------------------------|--------|
|                      | y                                      | os                                                    | njur                   | day            | _loc                  | _hour | hape                                                                             | _date      | _grp                                   | n      |
| "Chap<br>el<br>Hill" | "Urba<br>n<br>(>70%<br>Devel<br>oped)" | "Non-<br>Road<br>way -<br>Parkin<br>g Lot /<br>Other" | "Unkn<br>own<br>Injury | "Satur<br>day" | "Non-<br>Road<br>way" | 1.0   | {"type": "Point", "coord inates": [-79.0 21402 73340 797, 35.937 61709 95293 5]} | 0000-00-00 | "Unus<br>ual<br>Circu<br>mstan<br>ces" | "No"   |

## - 5. ReasonPed

- Bike/Pedestrian Alcohol Detected, Driver Estimated Speed, Speed Limit, Driver Alcohol Detected

| BikeCra | crashalc | excsspd | ped_po                                              | drvr_inj                | hit_run | drvr_est      | exceed | speed_l |
|---------|----------|---------|-----------------------------------------------------|-------------------------|---------|---------------|--------|---------|
| shID    | oh       | ind     | s                                                   | ur                      |         | sp            | Speed  | imi     |
| 1       | "No"     | "No"    | "Non-R<br>oadway<br>-<br>Parking<br>Lot /<br>Other" | "Unkno<br>wn<br>Injury" | "No"    | "Unkno<br>wn" | -1     | 5       |

# - 6.BikeCrashTime

| BikeCrashID | crash_time | crash_hour | crashday   | crash_mont | crash_year |
|-------------|------------|------------|------------|------------|------------|
| 1           | "10:12"    | 10.0       | "Saturday" | "July"     | 2011       |

# - 7.BikeCrashLoc

| BikeCras<br>hID | lat               | lon                | county  | city        | rural_urb<br>a | crash_lo           | develop<br>men |
|-----------------|-------------------|--------------------|---------|-------------|----------------|--------------------|----------------|
| 1               | 35.91006<br>70923 | -79.0745<br>027481 | "Orange | "Carrbor o" | "Urban"        | "Non-Int ersection | "Comme rcial   |

# - 8.BikeCrashRdCond

| Bike<br>Cras<br>hID | rd_d<br>efec<br>ts | rd_f<br>eatu<br>re                 | rd_c<br>hara<br>ct                | rd_s<br>urfa<br>ce         | rd_c<br>ondi<br>ti | spee<br>d_li<br>mi      | traff _cnt r                       | weat<br>her | rd_c<br>onfi<br>g                        | num<br>_lan<br>es | deve<br>lop<br>men       | light<br>_co<br>nd |
|---------------------|--------------------|------------------------------------|-----------------------------------|----------------------------|--------------------|-------------------------|------------------------------------|-------------|------------------------------------------|-------------------|--------------------------|--------------------|
| 1                   | "No<br>n"e         | "No<br>Spe<br>cial<br>Feat<br>ure" | "Str<br>aigh<br>t -<br>Lev<br>el" | "Sm<br>ooth<br>Asp<br>halt | "Dr<br>y"          | "20<br>- 25<br>MP<br>H" | "No<br>Con<br>trol<br>Pres<br>ent" | "Cle<br>ar" | "Tw<br>o-W<br>ay,<br>Not<br>Divi<br>ded" | "Un<br>kno<br>wn" | "Co<br>mm<br>erci<br>al" | "Da<br>ylig<br>ht" |

## - 9.BikeCrashResult

| BikeCrash<br>ID | ambulance<br>r | crash_type                                             | crsh_sevri     | hit_run | bike_injur     | drvr_injur        |
|-----------------|----------------|--------------------------------------------------------|----------------|---------|----------------|-------------------|
| 1               | "Yes"          | "Motorist<br>Overtakin<br>g -<br>Bicyclist<br>Swerved" | "K:<br>Killed" | "No"    | "K:<br>Killed" | "O: No<br>Injury" |

## - 10.Biker

| BikeCr<br>ashID | bike_inj<br>ur | bike_ra<br>ce | bike_di<br>r      | bikeage<br>_gr | bike_ag<br>e | bike_se | bike_po          | bike_al<br>c_d |
|-----------------|----------------|---------------|-------------------|----------------|--------------|---------|------------------|----------------|
| 1               | "K:<br>Killed" | "White        | "With<br>Traffic" | "70+"          | "70+"        | "Male"  | "Travel<br>Lane" | "No"           |

# - 11.Driver\_BikeCrash

| BikeCr | drvr_ve                | drvr_inj          | drvr_se | drvr_ra | drvr_ag | drvrage | drvr_est         | drvr_al |
|--------|------------------------|-------------------|---------|---------|---------|---------|------------------|---------|
| ashID  | hty                    | ur                |         | ce      | e       | _gr     | sp               | c_d     |
| 1      | "Passen<br>ger<br>Car" | "O: No<br>Injury" | "Male"  | "White  | "70+"   | "70+"   | "11 - 15<br>mph" | "No"    |

## - 12.BikeCrashReason

| BikeCr | crashalc | excsspd | drvr_al | bike_al | bike_po | bike_di | drvr_est | on_rd |
|--------|----------|---------|---------|---------|---------|---------|----------|-------|
| ashID  | oh       | ind     | c_d     | c_d     | s       | r       | sp       |       |
|        |          |         |         |         |         |         |          |       |

# 5. Sql statements are in Procedures.sql

# 6. how to load database

- We first put the variables and their corresponding value in a java object, we populate the data into the database.

- 7.
- We expect the output to be table of data, and our work includes combine multiple rows of data and present it to the user in a user friendly view. Possibly some design on the table format to make the information easier to read.
- 8.
- Since we are in section 315, we choose to minorly focus on complex data extraction. So far, our raw data consists of both csv and json files, and we also plan to do some statistical analysis/calculation on these files before we push all of the datasets to the database.