REMARKS/ARGUMENTS

Favorable reconsideration of this application in view of the remarks below and the amendments to the claims and the specification is respectfully requested.

In the specification, paragraphs on pages 5, 6 and 11 have been amended to incorporate generic terminology with the trademarks used in the specification. While Applicants believe the proprietary nature of the trademarks was respected in the specification as filed, the amendments have been made in order to conform to the requirements of the Examiner.

Claims 1-13 remain in this application. Claims 1 and 3 have been amended as more fully discussed below.

Claims 1-13 are rejected under 35 USC 112, second paragraph as being indefinite for failing to particularly point out and distinctly claim the subject matter which Applicants regard as the invention. The basis of the rejection is the use of several phrases including "at a level up to about", "at a level of at least about" and "fewer that about", as well as certain constituents of a Markush listing. These rejections are discussed serially below.

The terms "at a level up to about" and "at a level of at least about" in claim 1 have been amended by incorporating the suggestion of the Examiner.

The term "fewer than about" in claim 3 has been amended by deleting the term "about".

The Examiner asserts that the Markush listing of anionic surfactants in claim 9 renders the claim vague and indefinite since not all of the surfactants listed are anionic. This rejection is respectfully traversed.

More specifically, amine oxides have a polarized nature with an anionic portion.

March Exhibit1). Soaps are by definition, salts of a higher fatty acid with an alkali or metal. See Hackh's Chemical Dictionary Exhibit 2. Thus they have anionic properties.

Similarly, betaines are dionic compounds (March, Exhibit 3). Since all the surfactants listed have anionic properties they are considered anionic surfactants and are property included in claim 9 as written. Reconsideration of this rejection is respectfully requested.

Claims 1, 5-10, 12 and 13 are rejected under 35 USC 102(b) as being anticipated by Tanner, U.S. Patent No. 3,749,682. The basis of this rejection is that Tanner discloses a detergent composition that is encompassed by the claims of the instant invention. This rejection is respectfully traversed.

Claim 1 of the instant application requires that the nonionic surfactants have a cloud point of less than 60° C. The nonionic surfactant used in Example 13 of Tanner is nonylphenol-11-ethylene oxide. It has a cloud point greater than 60° C. as can be seen from the enclosed technical bulletin. (Exhibit 4) This bulletin shows that nonylphenol-10-ethylene oxide (one ethylene oxide unit smaller that the example in Tanner) has a cloud point of

ca 60° C and that nonylphenol-14 ethylene oxide has a cloud point of ca. 94° C. Since the cloud point rises with the increasing length, the Tanner surfactant cannot have a cloud

Appl. No. 09/655,972

Amdt. Dated October 17, 2003

Reply to Office Action of February 28, 2003

point below 60° C. Thus the Tanner example is not encompassed by the claimed compositions of the instant application.

Tanner also does not recognized the criticality of the ratio of anionic to ionic surfactants as called for in the instant claims. Accordingly Tanner does not either teach or suggest the instant claimed invention. Reconsideration of this rejection is respectfully requested.

Should the Examiner believe that a telephone call would narrow any outstanding issues or favorably advance the prosecution of this application, he is respectfully invited to call the undersigned at the telephone number indicated below.

Respectfully submitted,

Barbara V. Maurer

Registration Number 31,278

BASF Corporation

3000 Continental Drive-North Mount Olive, NJ 07828-1234

(973) 426-3638

EXHIBIT 1

ADVANCEL ORGANIC CHEMISTRY

REACTIONS, MECHANISMS, AND STRUCTURE

FOURTH EDITION

Jerry March

Professor of Chemistry Adelphi University

A Wiley-Interscience Publication

JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto • Singapore

Z.12.

3.71

œ.

ne ring was still stable solid, and end of the boat ound too is aroo bent,44 but in erately distorted. (the smallest yet; s. All these com-

zene compounds.

overlap of parallel p orbitals). However, there is another type of double bond that is particularly common for the second row atoms, sulfur and phosphorus. For example, such particularly collision for the second for all second H₂SO₃, as written on the left. Like an ordinary

$$\mathbf{H} - \underline{\overline{\mathbf{O}}} - \underline{\overline{\mathbf{S}}} - \underline{\overline{\mathbf{O}}} - \mathbf{H} \longleftrightarrow \mathbf{H} - \underline{\overline{\mathbf{O}}} - \underline{\overline{\mathbf{S}}} \oplus \underline{\overline{\mathbf{O}}} - \mathbf{H}$$

double bond, this double bond contains one σ orbital, but the second orbital is not a π orbital formed by overlap of half-filled p orbitals; instead it is formed by overlap of a filled p orbital from the oxygen with an empty d orbital from the sulfur. It is called a $p\pi - d\pi$ orbital.49 Note that we can represent this molecule by two canonical forms but the bond is nevertheless localized, despite the resonance. Some other examples of $p\pi$ - $d\pi$ bonding are

$$R_{3}P = \overline{O}I \longleftrightarrow R_{3}P - \overline{O}I \overset{|\overline{O}|}{\bigcirc} \qquad R - \overset{|\overline{O}|}{\bigcirc} - R \longleftrightarrow R - \overset{|\overline{O}|}{\bigcirc} - R \overset{|\overline{O}|}{\bigcirc}$$
Sulfones

Phosphine oxides

Hypophosphorous acid

Sulfoxides

Nitrogen analogs are known for some of these phosphorus compounds, but they are less stable because the resonance is lacking. For example, amine oxides, analogs of phosphine oxides, can only be written $R_3N - O$. The $p\pi - d\pi$ canonical form is impossible since nitrogen

In all the examples given above the atom that donates the electron pair is oxygen and, indeed, oxygen is the most common such atom. But in another important class of compounds, called ylides, this atom is carbon. There are three main types of ylides—phosphorus, 51

$$R_3P = CR_2 \longleftrightarrow R_3P - \overline{C}R_2$$

Phosphorus ylides

For a monograph, see Kwart; King d-Orbitals in the Chemistry of Silicon, Phosphorus, and Sulfur; Springer:

For a monograph, see Johnson Ylid Chemistry; Academic Press: New York, 1966. For reviews, see Morris, Surv. Prog. Chem. 1983, 10, 189-257; Hudson Chem. Br. 1971, 7, 287-294; Lowe Chem. Ind. (London) 1970, 1070-1079. New York, 1977. For a review on the formation of ylides from the reaction of carbenes and carbenoids with heteroatom lone pairs, see

Padwa; Hornbuckle Chem. Rev. 1991, 91, 263-309. known where other atoms, e.g., oxygen, replace one or more of these R groups. When the three groups are all alkyl or aryl, the phosphorus ylide is also called a phosphorane.

corannulene (20),45 🖁 61).

of the periodic table π bonds formed by

obe; Kakiuchi; Odaira J. 85, 1301; Kostermans; de an; de Wolf; Bickelhaupt n. Chem. Soc. 1987, 109,

ıgl. 1984, 23, 238 [Angew. 44; Tobe; Ueda; Kakiuchi;

J. Am. Chem. Soc. 1991,

: Kasai J. Am. Chem. Soc.

HACKH'S CHEMICAL **DICTIONARY**

[American and British Usage]

Containing the Words Generally Used in Chemistry, and Many of the Terms Used in the Related Sciences of Physics, Astrophysics, Mineralogy, Pharmacy, Agriculture, Biology, Medicine, Engineering, etc.

Based on Recent Chemical Literature

FOURTH EDITION Completely Revised and Edited by

JULIUS GRANT

M.SC., PH.D., F.R.I.C. CHEMICAL CONSULTANT

McGRAW-HILL BOOK COMPANY

New York San Francisco

Sydney

snow. A crystalline, finely divided form of water. carbon dioxide- Dry Ice. Frozen carbon dioxide obtained by rapid evaporation of liquid carbon dioxide; temperature -110; a refrigerant, sometimes mixed with ether. nitrous oxide- The s. formed by the rapid evaporation of liquid nitrous oxide.

Snyder reagent. 4,7-Dihydroxy-1,10-phenanthroline. A reagent for ferrous iron (stable red compound). soap. A salt of a higher fatty acid with an alkali or metal. Soaps exist in 2 microcrystalline forms, viz., hexagonal plates and curd fibers, and in 3 types of solution, viz., isotropic solutions (including lyes and nigre), and neat and middle soaps, the 2 latter being conic, anisotropic "liquid crystal" forms. castile- A s. made from sodium carbonate and olive oil. essence of- An alcoholic s. solution, used in pharmacy. green-S. liniment. hard-An ordinary s., made with soda, giving a poor lather. invert- q.v. marine- Salt water s. medicinal-Sapo mollis. A soft s. that yields not less than 44.0% fatty acids (U.S.P., B.P.). metallic- The salts of heavy metals with oleic, stearic, palmitic, erucic, and lauric acids. Used as paint and ink driers (Pb, Co, Mn), and fungicides (Cu, Hg); for decolorizing varnish (Zn, Fe, Ni, Co, Cr), and waterproofing textiles (Al, Mg), and leather. middle- A phase sometimes formed in s. boiling at concentrations intermediate between those of neat s. and isotropic solutions. A conic, anisotropic, plastic solution, darker in color than neat s... neat- The upper layer in the s. pan; an anisotropic solution (63% fatty acid for sodium, and 40% fatty acid for potassium, soaps). potash- A soft s. made with potassium hydroxide. salt water- S. containing caproic, caprylic, capric, and myristic acids. not readily precipitated by Ca++ and Mg++ ions; made from coconut oil. soda- A hard s. made with sodium hydroxide. soft- Potash s. toilet- S. containing 70% or more of fatty and resin acids. transparent-S. made transparent by adding methyl alcohol. white curd-S. made from tallow.

s. bark. Quillais. s. liniment. Green s. solution of soft s. in 70% alcohol, containing camphor and rosemary oil or lavender oil (U.S.P.). s. root. Saponaria. s. tree. Quillaia. s. wort. Saponaria.

soapstone. Talc.

sobita. Bismuth sodium tartrate.

Sobrero, Ascanio. 1812-1888. Italian discoverer of nitroglycerin (1847). Cf. Nobel.

sobrerol. Pinol hydrate.

sobrerone. Pinol.

soda. Sodium carbonate. baking- Sodium bicarbonate. caustic- Sodium hydroxide (solution). chlorinated- Sodium hypochlorite. Sal-sodium carbonate. scotch- An impure grade of sodium carbonate, sesqui- A molecular mixture of NaHCO3 and Na2CO2. washing- Sodium carbonate.

s. alum. A double salt of aluminum and sodium sulfates. s. ash. Commercial anhydrous sodium carbonate (99% Na₂CO₃). Used widely in industry. World production (1966) 20.5 million tons. s. feldspar. Albite. s. lime. (1) See sodium hydroxide with lime. (2) A mixture of calcium and sodium hydroxides (U.S.P.). s. mint. Compound sodium bicarbonate. s. niter. Native sodium nitrate. s. powder. B-powder. An early. blasting powder made from Chile saltpeter glazed with graphite to prevent deliquescence. s. process: (1) A method of manufacturing sodium carbonate. See Le Blanc. (2) See soda pulp. s. pulp. Paper pulp obtained by digesting chipped wood with sodium hydroxide at about 7 atm pressure. s. slag. A slag obtained in the desulfurization of pig iron: chalcedony 35, sodium oxide 22, sulfur 7 pts.; used in bottle glass melts to oxidize the sulfides. s. water. A beverage made by injecting carbon dioxide into a solution of sodium carbonate Cf. aerated waters.

sodalite. Na4Al3Si3O12Cl. A silicate that contains salt.

sodamide. Sodium amide.

Soddy, Frederick. 1877-1956. British chemist, No. bel Prize winner (1921); noted for his researches on radioactive elements.

sodic. Containing sodium (obsolete). sodii. Official Latin for "of sodium."

sodiomalonic. Sodium malonic.

sodion. Sodium ion: Na+.

sodium. Na = 22.990. Natrium. An alkali-metal element, at. no. 11. A tetragonal, crystalline, soft metal, silvery white when freshly cut; rapidly dulling in air; stored under coal oil. Becomes brittle at low temperature, d₁₅0.9732, m.97, b.880, decomp. by water, insoluble in alcohol or ether. Isolated by Davy (1807). Used as a dehydrating agent, flux, reactor coolant, reducing agent, conductor in cables; and in organic synthesis. radio- The isotope of mass 24, half-life 15.5 hours, formed from s. by bombardment with deuterons; decomposes to magnesium with emission of β rays (electrons).

s. abietate. C20H29O2Na(?). The s. salt of abietic acid, produced when rosin is saponified for use as a size for paper. See colophony. s. abietinate: S. sylvate. s. acetate. CH₃COONa = 82.0. Colorless, monoclinic crystals, m.58, soluble in water. Used as a mordant, reagent for alkaloids; for filling thermophores; and in photography, and the manufacture of acetic acid, acetic ether, and pigments. $hydrated \cdot NaC_2H_3O_2 \cdot 3H_2O = 136.07.d$ Colorless, monoclinic crystals, m.58, soluble in water. s. acetotungstate. $Na_2(CH_3CO)WO_4 = 337.0$. S. acetwolframate. White crystals, soluble in water; a microscope reagent. s. acetrizoate. $C_9H_5NI_3NaNO_5$. A radiopaque, used as the injection (U.S.P., B.P.). s. acetsulfanilate. C_6H_4 -(SO,Na)·NH·COMe = 223.0. Cosaprin. Green crystals, soluble in water. s. acetwolframate. S. acetotungstate. s. acetyl arsanilate. NaAsO2: C_6H_4 ·NHCOCH₃ = 264.1. Yellow crystals. acetyl salicylate. C₂H₃O·OC₆H₄COONa = 202.06. Hydropirin, Pyranol; used medicinally. s. agaricinate. Colorless powder, soluble in water; used medicinally. s. alginate. The sodium salt of alginic acid-; a protective colloid for pharmaceuticals and cosmetics. s. alizarin sulfonate. NaC14- $H_5O_2(OH)_2SO_3 = 342.1$. Alizarin carmine. Orange powder, soluble in water; a dye, and indicator for strong acids (yellow) and strong alkalies (violet), except carbonates. s. alum. Aluminum sulfate. s. aluminate. $Na_2Al_2O_4 = 164.2$. Colorless powder, m. 1850, soluble in water. s. aluminum chloride. 2NaCl,AlCl₃ = 383.7. Colorless

EXHIBIT 3

ADVANCEL ORGANIC CHEMISTRY

REACTIONS, MECHANISMS, AND STRUCTURE

FOURTH EDITION

Jerry March

Professor of Chemistry Adelphi University

A Wiley-Interscience Publication

JOHN WILEY & SONS

New York • Chichester • Brisbane • Toronto • Singapore

'CHCHO.647 However, alt contains a potential t base gives elimination,

3, y-unsaturated acid:648

CH,COO

limination by any other mers. This is an illustraa double bond. Another g double bonds, e.g.,649

:CH2

kenones⁶⁵⁰ (see p. 160). pare 1,1-dihaloalkenes. ompound with a mixture without the addition of

ed ylides⁶⁵³ (see p. 421). her triarylphosphines,654 The Wittig reaction has ant being prepared from

$$\frac{1}{2} - R'' + (RO)_2 PO_2^{-1}$$

Ceruti; Degani; Fochi Synthesis Chem. Res. (S) 1987, 370.

vith references, see Ref. 64, pp

mirez; Desai; McKelvie J. Am. omis; Sawaya Tetrahedron Lett. Costero; Marco J. Chem. Soc

tzer Chem. Ber. 1962, 95, 1894 ; that is, the R₃AsO product is Org. Chem. 1989, 54, 2027. ippel; Klahre Chem. Ber. 1959, This method, sometimes called the Horner-Emmons, Wadsworth-Emmons, or Wittig-Horner reaction, 658 has several advantages over the use of phosphoranes. 659 These ylides are more reactive than the corresponding phosphoranes, and when R' is an electron-withdrawing group, these compounds often react with ketones that are inert to phosphoranes. In addition, the phosphorus product is a phosphate ester and hence soluble in water, unlike Ph₃PO, which makes it easy to separate it from the olefin product. Phosphonates are also cheaper than phosphonium salts and can easily be prepared by the Arbuzov reaction:660

$$(EtO)_3P + RCH_2X \longrightarrow (EtO)_2P - CH_2R$$

$$\parallel$$

$$O$$

formed from phosphinoxides Ar₂PCHRR', phosphonic acid

(R7N)2POCHRR',661 and alkyl phosphonothionates (MeO)2PSCHRR'662 share some of these advantages. Phosphonates Ph₂POCH₂NR'₂ react with aldehydes or ketones R²COR³ to give good yields of enamines R2R3C=CHNR2.663

The mechanism664 of the key step of the Wittig reaction is as follows:665

Oxaphosphetane

For many years it was assumed that a diionic compound, called a betaine, is an intermediate on the pathway from the starting compounds to the oxaphosphetane, and in fact it may be

$$\begin{array}{c|c}
\ominus_{|\overline{\underline{\mathbf{O}}} - \mathbf{C} - \mathbf{R}} \\
\mathbf{Ph_3P} - \mathbf{C} - \mathbf{R} \\
\mathbf{R'}
\end{array}$$

⁶³ For reviews, see Wadsworth Org. React. 1977, 25, 73-253; Stec Acc. Chem. Res. 1983, 16, 411-417; Walker, in Cadogan, Ref. 638, pp. 156-205; Dombrovskii; Dombrovskii Russ. Chem. Rev. 1966, 35, 733-741; Boutagy; Thomas Chem. Rev. 1974, 74, 87-99.

⁶⁵⁸For a convenient method of carrying out this reaction, see Seguineau; Villieras Tetrahedron Lett. 1988, 29, 477, and other papers in this series

Also known as the Michaelis-Arbuzov rearrangement. For reviews, see Petrov; Dogadina; Ionin; Garibina; Leonov Russ. Chem. Rev. 1983, 52, 1030-1035; Bhattacharya; Thyagarajan Chem. Rev. 1981, 81, 415-430. For related reviews, see Shokol; Kozhushko Russ. Chem. Rev. 1985, 53, 98-104; Brill; Landon Chem. Rev. 1984, 84, 577-585.

661 Corey; Kwiatkowski J. Am. Chem. Soc. 1968, 90, 6816; Corey; Cane J. Org. Chem. 1969, 34, 3053. 62 Corey; Kwiatkowski J. Am. Chem. Soc. 1966, 88, 5654

Broekhof; van der Gen Recl. Trav. Chim. Pays-Bas 1984, 103, 305; Broekhof; van Elburg; Hoff; van der Gen Recl. Trav. Chim. Pays-Bas 1984, 103, 317.

For a review of the mechanism, see Cockerill; Harrison, Ref. 209, pp. 232-240. For a thorough discussion, see

Vedejs; Marth J. Am. Chem. Soc. 1988, 110, 3948. it has been contended that another mechanism, involving single electron transfer, may be taking place in some cases: Olah; Krishnamurthy J. Am. Chem. Soc. 1982, 104, 3987; Yamataka; Nagareda; Hanafusa; Nagase Tetrahedron Lett. 1989, 30, 7187. A diradical mechanism has also been proposed for certain cases: Ward; McEwen J. Org. Chem. 1990, 55, 493.

Technical Bulletin

Iconol NP-10 is a water-soluble nonionic surfactant composed of a 10-mole ethylene oxide adduct of nonylphenol.

Applications:

The Iconol NP series of surfactants can be used as emulsifiers, wetting agents, dispersants, synthetic latex stabilizers and detergents in formulating cleaning products. They are also widely used as primary emulsifiers for acrylic and vinyl emulsion polymerization and for asphalt emulsion systems.

Iconol NP nonylphenol ethoxylates are chemically stable and effective over a wide pH range and in electrolyte solutions.

Standard packaging:

55-gallon, non-returnable steel drum (470 pounds net, 510 pounds gross)

Shelf Life:

BASF will endorse the results on the certificate of analysis for a period of up to two years from the date of manufacture for material in original, unopened, properly stored containers. Beyond two years, we recommend the quality of the material be confirmed prior to use, by retesting the certificate of analysis parameters.

Please refer to the Material Safety Data Sheet (MSDS) for this product for instructions on safe and proper handling and disposal.

Iconol[™] NP-10^{EXHIBIT 4} Nonylphenol Ethoxylate

Specifications	
Cloud point (1% aqueous °C)	60 – 65
pH (1% aqueous)	5 – 8
Water, weight %	0.3 max.
Color, APHA	50 max.

Typical physical properties	
Form at 25°C	Liquid
Average molecular weight	650
Specific gravity, 25°/25°C	1.06
Viscosity, cps at 25°C	250
Pour point	9°C
Surface tension (0.1% aqueous)	32 dynes/cm
	at 25°C
HLB	13.5

Iconol is a trademark of BASF Corporation

For More Information

Order Placement

To place orders for delivery in the United States please call our toll free number (800) 443-6460. To place orders for delivery in Canada please call BASF Canada at (800) 267-2955.

For Other Information

Including product literature and Material Safety Data Sheets please call (734) 324-6101.

Or Visit Our Website At:

www.performance.basf-corp.com

Important: While the information and data contained in this bulletin are presented in good faith and believed to be reliable, they do not constitute a part of our terms and conditions of sales unless specifically incorporated in our Order Acknowledgment. NOTHING HEREIN SHALL BE DEEMED TO CONSTITUTE A WARRANTY, EXPRESS OR IMPLIED, THAT SAID INFORMATION OR DATA ARE CORRECT OR THAT THE PRODUCTS DESCRIBED ARE MERCHANTABLE OR FIT FOR A PARTICULAR PURPOSE, OR THAT SAID INFORMATION, DATA OR PRODUCTS CAN BE USED WITHOUT INFRINGING PATENTS OF THIRD PARTIES.

© 2002 BASF Corporation. All rights reserved.

HELPING MAKE PRODUCTS BETTER™

BASF Corporation 3000 Continental Drive-North Mount Olive, New Jersey 07828-1234 800-443-6460

