Data Exploration Part 2

Lesson 2

Schedule

Part 1

Lesson 1
Data Exploration 1

Lesson 2
Data Exploration 2

Milestone 1
Data Visualization

Part 2

Lesson 3
Combinatorics

Lesson 4 Hypothesis Testing

> Lesson 5 Intro to Bayes

Milestone 2 Hypothesis Sim Part 3

Lesson 6 Intro to Regression

Lesson 7Regularization

Lesson 8Time Series Analysis

Milestone 3
Regression Models

Part 4

Lesson 9 Näive Bayes

Lesson 10Basic Text Analysis

Milestone 4
Independent Project

Housekeeping

- Should have turned in Quiz 1 and HW 1
- Assignment 02 and Quiz 02 are posted- due January 20th
- Milestone 01 is posted due January 20th

Recap of Lesson 01 - Data Exploration Part 1

- Descriptive statistics:
 - Mean / median
 - Standard deviation / IQR
 - Covariance / correlation
 - Frequency (categorical)
- Visualization (univariate):
 - Bar plot
 - Histogram
 - Boxplot
 - KDE plot
 - Violin plot

What We'll Cover Today

- Review Homework
- Multivariate Visualizations
 - Two dimensional plots
 - Scatter plots
 - 2D KDE plots
 - Hexbin plots
 - Heat maps
 - Line plot
 - Correlation and covariance plots (seaborn)
 - Using Aesthetics
 - Color
 - Shape
 - Size
 - Faceted (conditioned plotting)

Scatter Plots - Overview

- Show relationship between two variables, one on the x-axis and the other on the y-axis.
- Notice that many points overlap, making it difficult to know how many data points are in each region.

Scatter Plots - Transparency

- To deal with overplotting, one option is to use transparency.
- Use the *alpha* parameter in the plot function:
 - Accepts values between 0-1
 - 0 = completely transparent
 - 1 = not transparent
- Transparency is additive, so not good for large number of overlapping points

Scatter Plots - Large Number of Overlaps

- Two options for dealing with large number of overlaps:
 - Hexbin plot (discrete)
 - 2D KDE (continuous)

Hexbin Plots

- Use when you have a lot of data points
- Represents relationship between two numerical variables
- Similar to histogram, instead of bar height, color is used.
- Hexbine = number of points per bin
- Number of bins can be set and adjusted as needed

2D Kernel Density Estimation Plots

- Similar to 1D KDE, Gaussian (aka normal distribution) is a common kernel choice.
- Kernel = type of dist at each point
- More accurate representation of distribution
- Gaussian 1D:

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

• Gaussian function 2d (one Guassia component per point):

$$f(x,y) = A \exp\Biggl(-\left(rac{(x-x_o)^2}{2\sigma_x^2} + rac{(y-y_o)^2}{2\sigma_y^2}
ight)\Biggr).$$

Heat Maps

- Similar to histogram and hexbins, instead of bar height, color is used.
- Here a categorical variable is shown in the x-axis
- Shows relative intensity of a value within an array
- Darker colors = great intensity
- Intensity could be counts, correlation, etc.

Line Plots

- Shows relationship between dependent variables
- Good for things like time series
- X axis = independent variable
- Y axis = dependent variable
- Line connects individual data points
- Line = "trend line"
- Easy to view high and low points in data

Plotting Relationships

Covariance and Correlation Plots

- Heat maps are useful for showing correlation visually.
- Pairwise scatter plot (scatter matrix) is another powerful plot for showing the relationship between variables

Faceted Plots

- Show relationship between sets of variables
- Split your data into one or more varialbes and plot together
- Variables that vary on x or y axis
- Allows for columns and rows

Aesthetics

- To display more than 2 variables on a 2 dimensional screen, aesthetics are one choice.
- We will look at three common plot aesthetics that can achieve this goal:

Asthetic	Data Types
Color	categorical
Size	numeric, ordered categorical
Marker shape	categorical

Aesthetics (Color)

- Color can be used to display an additional categorical variable or intensity of the variable
- Here we're displaying 3 variables: price, city MPG, and fuel type.

Summary

- Multivariate Visualizations
 - Two dimensional plots
 - Scatter plots
 - 2D KDE plots
 - Hexbin plots
 - Heat maps
 - Line plot
 - Correlation and covariance (seaborn)
 - Using Aesthetics
 - Color
 - Shape
 - Size
 - Faceted (conditioned plotting)

Aesthetics (Marker Size)

- Marker size is primarily used for numeric data
- Here we're displaying 4
 variables: price, city MPG,
 engine size, and fuel type.

Aesthetics (Marker Shape)

- Marker shape is primarily used for categorical data
- This plot displays 5 variables: price, city MPG, engine size, aspiration type, and fuel type.
- Note how this plot uses all three aesthetics and may be getting overly complex for a single plot

Auto Price vs. City MPG engine size by marker size fuel-type by color aspiration as marker shape

Aspect Ratio

- Plot aspect ratio (height vs width of plot area) can be important when displaying data.
- There's no magic aspect ratio formula, try a few and make sure to select one that clearly represents the data

