- 1. Graph 3i+4 and graph the circle centered at the origin that contains it. (1)
- 2. Find the magnitude and argument of $\frac{\sqrt{3}}{3} + i$. (1)
- 3. Prove that |x||y| = |xy|. (1)
- 4. Find $\sin(\frac{\pi}{3}) + \sin(\frac{2\pi}{3}) + \sin(\pi) + \cos(\pi) + \cos(\frac{2\pi}{3}) + \cos(\frac{\pi}{3})$. (2)
- 5. Prove that $|z| + |w| \ge |z + w|$ with equality when z, w have equivalent arguments. (This means that their angle when expressed in polar form is identical, or that the line through z, w passes the origin.) (2)
- 6. Prove that $\cosh^2(\theta) \sinh^2(\theta) = 1$. (2)
- 7. Simplify $\sin(\frac{2\pi}{n}) + \sin(2\frac{2\pi}{n}) + ... + \sin(n\frac{2\pi}{n})$. (3)
- 8. Create a polynomial with integer coefficients that has a root of $3 + \sqrt[4]{2}$. (3)
- 9. Create a polynomial with integer coefficients with a root of $\sqrt{3} + \sqrt[4]{2}$. (\star 6)
- 10. Prove that $31|5^{31} + 5^{17} + 1$. (3)
- 11. Prove that $x^2 + x + 1|x^{31} + x^{17} + 1$. (5)
- 12. Prove that for positive integers $a, b, c, x^2 + x + 1|x^{3a} + x^{3b+1} + x^{3c+2}$. (5)
- 13. Find $\sin(\frac{\pi}{2} + i\frac{2\pi}{3})$. (3)
- 14. Find all possible values of i^i . (3)
- 15. Find all possible values of $(-1)^i$. (2)
- 16. Find the form all values of $\ln(\frac{e^3\sqrt{3}}{2} + i\frac{e^3}{2})$ can take. (4)

17. Find $\Re(\log_2(2+2\sqrt{3}i))$. (4)

18. Find $\Im((\cos 12^{\circ} + i \sin 12^{\circ} + \cos 48^{\circ} + i \sin 48^{\circ})^{6}).$ (5)

19. Evaluate $\sum_{n=0}^{\infty} \frac{\cos(n\theta)}{2^n}$ where $\cos(\theta) = \frac{1}{5}$. (\star 6)