¹Bocconi University, Milano

Trees of random probability measures and Bayesian nonparametric modelling.

Ascolani, F. ¹ Lijoi, A. ¹ Prünster, I. ¹

July, 2022

Outline

A crucial question in Statistics is how to combine data from different sources:

- ► Homogeneity within each group.
- ► Heterogeneity across groups.
- ⇒ partial exchangeability.

Patients coming from **different hospitals**.

Outline

A crucial question in Statistics is how to combine data from different sources:

- ► Homogeneity within each group.
- ► Heterogeneity across groups.
- ⇒ partial exchangeability.

Books belonging to the **same corpus**.

Outline

A crucial question in Statistics is how to combine data from different sources:

- ► Homogeneity within each group.
- ► Heterogeneity **across** groups.
- \Rightarrow partial exchangeability.

Images of similar subjects.

A first example

A popular model for incorporating heterogeneous information is given by **hierarchical Dirichlet processes**.

The model:

$$X_{i,j} \mid p_i \stackrel{\text{i.i.d.}}{\sim} p_i,$$
 $p_i \mid p_0 \sim \mathsf{DP}(\theta, p_0),$
 $p_0 \sim \mathsf{DP}(\theta, P_0),$

with P_0 diffuse measure.

A first example

A popular model for incorporating heterogeneous information is given by **hierarchical Dirichlet processes**.

The model:

$$X_{i,j} \mid p_i \stackrel{\text{i.i.d.}}{\sim} p_i,$$
 $p_i \mid p_0 \sim \mathsf{DP}(\theta, p_0),$
 $p_0 \sim \mathsf{DP}(\theta, P_0),$

with P_0 diffuse measure.

- ► Each node is a **discrete** random measure.
- ▶ Often convolved with a suitable **kernel** $k(y \mid x)$.
- ▶ In **topic modelling**, the clusters correspond to different **topics**.

A more complex problem...

- Data: abstracts accepted at the NeurIPS conference from 2009 to 2019.
- Goal: find suitable topics (i.e. probability distribution on words) that describe the abstracts.
- ► *Problem*: incorporate the **temporal dynamics**.
- ⇒ hierarchical structure is no more appropriate!

...with a more complex structure.

- \triangleright $p_0 = \mathbf{root}$ of the tree.
- \triangleright p_j = node associated to year 2008 + j.
- ▶ $p_{j,i}$ = node associated to abstract i in year 2008 + j.

⇒ **tree** structure!

Another example

- ► A book can be seen as a **sequence of chapters**.
- Later chapters may have **similar topics** than the previous ones.
- ► How to introduce dependence between chapters?

Another example

- ► A book can be seen as a **sequence of chapters**.
- Later chapters may have **similar topics** than the previous ones.
- ► How to introduce dependence between chapters?

 \Rightarrow another special tree!

Existing literature

Many proposals for such structure:

- ► Extensions of Hierarchical Dirichlet processes (Teh et al., 2006, Caron et al., 2007, 2017)
- ► Other stick breaking priors (Qi et al, 2008)
- ► Other classess of priors, e.g. Pólya trees (Wang et al., 2021)

Existing literature

Many proposals for such structure:

- ► Extensions of Hierarchical Dirichlet processes (Teh et al., 2006, Caron et al., 2007, 2017)
- ► Other stick breaking priors (Qi et al, 2008)
- ► Other classess of priors, e.g. Pólya trees (Wang et al., 2021)

What's new?

- General framework for constructing trees of random probability measures.
- Impact of the shape of the tree.
- Induced clustering properties.

Setting and terminology

The tree is described as follows:

- \blacktriangleright $X_{i,j}$ denotes the j-th observation at node i and $X_{i,j} \mid p_i \stackrel{\text{i.i.d.}}{\sim} p_i$.
- We call MRCA(i, j) the Most Recent Common Ancestor of nodes i and j.
- When talking about a specific level, we may omit the subscript k.

Setting and terminology

As a building block we consider Discrete RPMs, that is

$$p \stackrel{\text{a.s.}}{=} \sum_{k \ge 1} W_k \delta_{Z_k}$$
, with $\begin{cases} Z_k \stackrel{\text{i.i.d.}}{\sim} Q & \text{random atoms} \\ W_k & \text{random weights} \end{cases}$

where Q is a probability distribution. We say $p \sim \mathsf{DRPM}(Q)$.

- 1. **Root**: $p_0 \sim \text{DRPM}(P_0)$, with P_0 diffuse measure.
- 2. **Edges**: $p_{i,k} \mid p_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{DRPM}(p_i)$.

Completely random measures

It is a notion due to Kingman (1967).

Definition

A random variable μ is a **completely random measure** (CRM) if for any A_1, \ldots, A_n measurable, with $A_i \cap A_j = \emptyset$ for any $i \neq j$, the random variables $\mu(A_1), \ldots, \mu(A_n)$ are mutually independent.

Completely random measures

It is a notion due to Kingman (1967).

Definition

A random variable μ is a **completely random measure** (CRM) if for any A_1, \ldots, A_n measurable, with $A_i \cap A_j = \emptyset$ for any $i \neq j$, the random variables $\mu(A_1), \ldots, \mu(A_n)$ are mutually independent.

Key property (**Lévy–Khintchine** representation):

$$E\left[e^{-\lambda\mu(A)}\right] = e^{-\theta P_0(A)\psi(\lambda)}, \quad \psi(\lambda) = \int_{\mathbb{R}_+} (1 - e^{-\lambda s}) \, \rho(\mathrm{d}s),$$

where $\theta > 0$, P_0 is a probability distribution and ρ is a measure on \mathbb{R}_+ such that

$$\int_{\mathbb{R}_+} \min \left\{ \mathsf{1}, s \right\} \,
ho(\mathrm{d} s) < \infty.$$

Normalized version

Under some technical conditions a CRM can be normalized (Regazzini et al. (2003)).

Definition

Let μ be a completely random measure, identified by (ρ, θ, P_0) . Then $p(\cdot) = \mu(\cdot)/\mu(\mathbb{X})$ is called **normalized random measure with independent increments** (NRMI) and we say $p \sim \text{NRMI}(\rho, \theta, P_0)$.

Normalized version

Under some technical conditions a CRM can be normalized (Regazzini et al. (2003)).

Definition

Let μ be a completely random measure, identified by (ρ, θ, P_0) . Then $p(\cdot) = \mu(\cdot)/\mu(\mathbb{X})$ is called **normalized random measure with independent increments** (NRMI) and we say $p \sim \text{NRMI}(\rho, \theta, P_0)$.

Notable examples:

- 1. Dirichlet process (DP): $\rho(ds) = s^{-1}e^{-s}ds$.
- 2. Normalized stable process (NSP): $\rho(ds) = \frac{\sigma}{\Gamma(1-\sigma)} s^{-1-\sigma}$, with $\sigma \in (0,1)$.

Final definition

The model becomes:

- 1. **Root**: $p_0 \sim \text{NRMI}(\rho, \theta, P_0)$, with P_0 diffuse measure.
- 2. Edges: $p_{\mathbf{i},k} \mid p_{\mathbf{i}} \stackrel{\text{i.i.d.}}{\sim} \text{NRMI}(\rho, \theta, p_{\mathbf{i}})$.

Final definition

The model becomes:

1. **Root**: $p_0 \sim \text{NRMI}(\rho, \theta, P_0)$, with P_0 diffuse measure.

2. **Edges**: $p_{\mathbf{i},k} \mid p_{\mathbf{i}} \stackrel{\text{i.i.d.}}{\sim} \text{NRMI}(\rho, \theta, p_{\mathbf{i}})$.

- Main advantage: analytical tractability, many prior and posterior results available.
- Probability of a tie:

$$\gamma = -\theta \int_{\mathbb{R}^+} u \left\{ \frac{\mathrm{d}^2}{\mathrm{d} u^2} \psi(u) \right\} e^{-\theta \psi(u)} \, \mathrm{d} u \in (0,1).$$

Prior properties: correlation structure

Proposition

Let i and j be two nodes at level i and j, with MRCA at level k. Then

$$Corr\left(p_{i}(A), p_{j}(A)\right) = \frac{1 - (1 - \gamma)^{k+1}}{\sqrt{1 - (1 - \gamma)^{i+1}}\sqrt{1 - (1 - \gamma)^{j+1}}}$$

and

$$Corr(X_i, X_j) = 1 - (1 - \gamma)^{k+1}.$$

- As we move along the tree, the random measures become more and more correlated.
- ► As regards the DP and NSP we have:

$$\operatorname{Corr}_{\mathcal{DP}}\left(X_{\mathbf{i}}, X_{\mathbf{j}}\right) = 1 - \left(\frac{\theta}{1+\theta}\right)^{k+1}, \quad \operatorname{Corr}_{\mathcal{NSP}}\left(X_{\mathbf{i}}, X_{\mathbf{j}}\right) = 1 - \sigma^{k+1}.$$

Prior properties: asymptotic clusters

► Call K_n the number of distinct clusters in n observations. For simplicity, we focus on DP and NSP.

Proposition

Let k be a node at level k at which we collect n observations. Then

$$K_{n,DP} \approx \underbrace{\log \ldots \log}_{k+1 \text{ times}} n, \quad K_{n,NSP} \approx n^{\sigma^{k+1}},$$

as $n \to \infty$.

Prior properties: asymptotic clusters

► Call K_n the number of distinct clusters in n observations. For simplicity, we focus on DP and NSP.

Proposition

Let k be a node at level k at which we collect n observations. Then

$$K_{n,DP} \approx \underbrace{\log \ldots \log}_{k+1 \text{ times}} n, \quad K_{n,NSP} \approx n^{\sigma^{k+1}},$$

as $n \to \infty$.

Proposition

Assume to collect $m \ge 1$ observations at each level. Then

$$\limsup K_{n,DP} < \infty$$
, $\limsup K_{n,NSP} < \infty$,

as the number of levels diverges.

Consequences

- We can obtain the whole range of clustering behaviours.
- ► The **shape of the tree** is very relevant.

Figure: Average proportion of distinct values for groups of 20 observations.

In black: NSP with $\sigma=0.9$. In red: hierarchical NSP with $\sigma=0.9$. In blue: sequence of NSPs with $\sigma=0.9$.

How are the observations generated at a generic level k?

1. At level k, n observations are sampled from $p_k \mid p_{k-1} \sim \textit{NRMI}(\rho, \theta, p_{k-1})$. Since $p_k \mid p_{k-1}$ is **discrete**, they are **grouped** in $l_k \leq n$ clusters.

How are the observations generated at a generic level k?

- 1. At level k, n observations are sampled from $p_k \mid p_{k-1} \sim NRMI(\rho, \theta, p_{k-1})$. Since $p_k \mid p_{k-1}$ is **discrete**, they are **grouped** in $l_k \leq n$ clusters.
- 2. At level k-1, I_k observations are sampled from $p_{k-1} \mid p_{k-2} \sim \textit{NRMI}(\rho, \theta, p_{k-2})$. Since $p_{k-1} \mid p_{k-2}$ is **discrete**, they are **grouped** in $I_{k-1} \leq I_k$ clusters.

How are the observations generated at a generic level k?

- 1. At level k, n observations are sampled from $p_k \mid p_{k-1} \sim NRMI(\rho, \theta, p_{k-1})$. Since $p_k \mid p_{k-1}$ is **discrete**, they are **grouped** in $l_k \leq n$ clusters.
- 2. At level k-1, I_k observations are sampled from $p_{k-1} \mid p_{k-2} \sim NRMI(\rho, \theta, p_{k-2})$. Since $p_{k-1} \mid p_{k-2}$ is **discrete**, they are **grouped** in $I_{k-1} \leq I_k$ clusters.

3. At level 0, I_1 observations are sampled from p_0 , with $I_0 \le I_1$ unique values from P_0 .

How are the observations generated at a generic level k?

- 1. At level k, n observations are sampled from $p_k \mid p_{k-1} \sim NRMI(\rho, \theta, p_{k-1})$. Since $p_k \mid p_{k-1}$ is **discrete**, they are **grouped** in $l_k \leq n$ clusters.
- 2. At level k-1, I_k observations are sampled from $p_{k-1} \mid p_{k-2} \sim NRMI(\rho, \theta, p_{k-2})$. Since $p_{k-1} \mid p_{k-2}$ is **discrete**, they are **grouped** in $I_{k-1} \leq I_k$ clusters.

3. At level 0, I_1 observations are sampled from p_0 , with $I_0 \le I_1$ unique values from P_0 .

- ► All the unique values come from the root.
- \blacktriangleright We have a **hidden clustering structure**. We only observe l_0 .

In terms of the **Chinese Restaurant metaphor**:

- ➤ At each level the observations are subdivided in different **tables** (i.e. clusters).
- ► The **dishes** (i.e. unique values) come from the previous levels.
- ▶ Different tables may **share** the same dish.

In terms of the Chinese Restaurant metaphor:

- ➤ At each level the observations are subdivided in different **tables** (i.e. clusters).
- ► The **dishes** (i.e. unique values) come from the previous levels.
- ▶ Different tables may **share** the same dish.

Thus:

- $ightharpoonup I_k = \text{number of tables at level } k.$
- ► The levels share the same dishes.
- ▶ The root p_0 becomes the **common menu**.

Posterior properties: the internal nodes

We consider a sample $\mathbf{X} = \{X_{\mathbf{i},j}\}$, with \mathbf{i} in the tree.

- ▶ Let X_1^*, \ldots, X_r^* denote the distinct observations in sample **X**.
- ► We call **T** the (latent) labels of the tables.

For a fixed level k, we can then define

```
l_{i,j} = number of tables at node i with dish j.

q_{i,j,t} = number of customers at node i in table t eating dish j.
```

Conditional on T, the posterior distribution becomes accessible!

Posterior properties: the root

Let **U** be a positive random vector with density depending on **T**.

Theorem

We have

$$\mu_0 \mid (\mathbf{X}, \mathbf{T}, U_0) \stackrel{d}{=} \hat{\mu}_0 + \sum_{j=1}^r J_{0,j} \delta_{X_j^*},$$

where

1. $\hat{\mu}_0$ is a CRM with intensity

$$\hat{\rho}_0(\mathrm{d}s) = e^{-U_0s} \rho(s) \mathrm{d}s.$$

2. The $J_{0,j}$'s are independent and non-negative jumps with density

$$f_{0,j}(s \mid X, T) \propto s^{l_{1,j}} e^{-sU_0} \rho(s).$$

Posterior properties: the internal nodes

Theorem

At level k, with ancestor p*, we have

$$(\mu_{\mathbf{k},1}, \dots, \mu_{\mathbf{k},d}) \mid (p^*, \mathbf{X}, \mathbf{T}, \mathbf{U}) \stackrel{d}{=} (\hat{\mu}_1, \dots, \hat{\mu}_d) + \left(\sum_{j=1}^r \sum_{t=1}^{l_{1,j}} J_{1,j,t} \delta_{X_j^*}, \dots, \sum_{j=1}^r \sum_{t=1}^{l_{d,j}} J_{d,j,t} \delta_{X_j^*} \right),$$

where

1. $\hat{\mu}_i$ is a CRM with baseline distribution p^* and intensity

$$\hat{\rho}_i(\mathrm{d}s) = e^{-U_i s} \rho(s) \mathrm{d}s.$$

2. The $J_{i,j,t}$'s are independent and non-negative jumps with density

$$f_{i,j,t}(s \mid \mathbf{X}, \mathbf{T}) \propto s^{q_{i,j,t}} e^{-sU_i} \rho(s).$$

Alice in Wonderland

- ► We want to incorporate **chapters**' **specific information**.
- Two different structures.

Tree

Hierarchy

 p_i is the random measure associated to chapter i.

Specifications

The model:

- ► Each *p* is a Dirichlet process, whose baseline distribution is given by the hierarchical structure.
- The hyperparameters at each node are endowed with vague priors.
- ▶ The root has the Dirichlet distribution as a baseline distribution, with common rate $\alpha = 50/V$.

Specifications

The model:

- ► Each *p* is a Dirichlet process, whose baseline distribution is given by the hierarchical structure.
- ► The hyperparameters at each node are endowed with vague priors.
- ▶ The root has the Dirichlet distribution as a baseline distribution, with common rate $\alpha = 50/V$.

The data:

- We consider the initial three chapters: standard pre-processing is applied.
- We randomly eliminate words from the second chapter and see whether the two methods are able to recover them.
- We measure goodness of fit in terms of the perplexity associated to the held-out words.

Results

- ► The **lower** the perplexity the **better**.
- ► Results are averaged over 20 runs.
- ► The tree always behaves better and has good performances even with a high proportion of missing data.

Conclusions

Summary:

- ▶ Many BNP models can be described using trees.
- ► If the nodes are given by NRMI, prior and posterior properties are available.
- ► We can use trees to make our learning process **explicit**.

Conclusions

Summary:

- Many BNP models can be described using trees.
- If the nodes are given by NRMI, prior and posterior properties are available.
- We can use trees to make our learning process explicit.

What's next?

- Construct a tree based on covariates.
- Study the asymptotic properties.
- ▶ Develop **efficient samplers** for posterior inference.

Bibliography

- Camerlenghi, F., Lijoi, A. and Prünster, I. (2019). Distribution theory for hierarchical processes. Ann. Statist. 47, 67–92.
- Kingman, J. F. C. (1967). Completely random measures. *Pacific J. Math.* **21**, 59–78.
- Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. *Ann. Statist.* **31**, 560–585.