HW 1.6.1,4,10,12

- **1.6.1.** Let $M \subset Y$ where Y is a metric space. Assume that M has finitely many points. Let $d^* = \min_{x,y \in M, x \neq y} d(x,y)$. Let (x_n) be a Cauchy sequence in M. Then for $\epsilon > 0$, there exists an N such that $d(x_n, x_m) < \epsilon$ for m, n > N. Choose $\epsilon = \frac{d^*}{2}$. Since the minimum distance between any distinct points is d^* , and $d(x_n, x_m) < \frac{d^*}{2}$ for all m, n > N, this means that $x_n = x_m$ for all m, n > N. Thus, (x_n) converges to x_m . So M is complete.
- **1.6.4.** Let X_1 and X_2 be isometric metric spaces and let X_1 be complete. Let $T: X_2 \to X_1$ be an isometry. Let $(x_n) \in X_2$ be a Cauchy sequence. Then for $\epsilon > 0$, there exists an N such that $d(x_n, x_m) < \epsilon$ for all m, n > N. Since T is an isometry, then $d(Tx_n, Tx_m) < \epsilon$. So (Tx_n) is a Cauchy sequence in X_1 . Since X_1 is complete, there exists a $Tx \in X_1$ such that (Tx_n) converges to Tx (where $x \in X_2$). We note that every element in X_1 can be written as Ty where $y \in X_2$ since T is bijective. So there exists an ϵ^* such that $d(Tx_n, Tx) < \epsilon^*$. Since T is an isometry, $d(x_n, x) < \epsilon^*$. So (x_n) converges to x. So X_2 is complete.
- **1.6.10.** Let (x_n) and (x'_n) be convergent sequences in a metric space in a metric space (X,d) and have the same limit l. Thus for $\epsilon>0$, there exists an N such that when n>N, $d(x_n,x)<\frac{\epsilon}{2}$. There exists an N' such that when n'>N', $d(x'_n,x)<\frac{\epsilon}{2}$. Then we see that $d(x_n,x'_n)\leq d(x_n,x)+d(x,x'_n)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ by the triangle inequality for $n,n'>\max(N,N')$. Thus, $\lim_{n\to\infty}d(x_n,x'_n)=0$.
- **1.6.12.** Let (x_n) be a Cauchy sequence in (X,d) and let (x'_n) be such that $\lim_{n\to\infty} d(x_n,x'_n)=0$. Then for $\epsilon>0$, there exists N such that n,m>N $d(x_n,x_m)<\frac{\epsilon}{3}$. There exists an N' such that when n,n'>N', $d(x_n,x'_n)<\frac{\epsilon}{3}$. And there exists an N'' such that when m,m'>N'', $d(x_m,x'_m)<\frac{\epsilon}{3}$. So for $m,m',n,n'>\max(N,N'N'')$,

$$d(x_n', x_m') \le d(x_n', x_n) + d(x_n, x_m) + d(x_m, x_m') \le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$