NTIN071 A&G: Tutorial 3 – Equivalent and minimal representations, testing properties, nondeterminism, subset construction

Teaching goals: After this tutorial the student is able to

- define reachable states, state equivalence, reduced automaton, automata homomorphism, NFA, ϵ -NFA
- apply the reachable states and state equivalence algorithms to reduce a DFA
- design efficient algorithms to test basic properties of automata
- apply the subset construction to convert an NFA or ϵ -NFA to a DFA

IN-CLASS PROBLEMS

Problem 1 (Equivalent and minimal representations). For the automata below:

- (a) Find and remove all unreachable states.
- (b) Determine the state equivalence (indistinguishability) relations. (Moreover, for any distinguishable pair of states find all minimal-length distinguishing words.)
- (c) Construct their reducts.

Problem 2 (Testing properties). Consider finite automata A, B. Design an algorithm that decides the following properties. (Can you estimate the time complexity?)

(a)
$$L(A) = \emptyset$$
, (b) $L(A) = L(B)$, (c) $L(A) \subseteq L(B)$, (d) $L(A)$ is finite.

Apply the algorithm to the automata A, B from the previous problem.

Problem 3 (Subset construction). Given a nondeterministic finite automaton with ϵ -transitions, construct an equivalent reduced DFA.

	a	b	ϵ
$\rightarrow A$	$\{E\}$	<i>{B}</i>	Ø
B	Ø	$\{C\}$	$\{D\}$
$\rightarrow C$	Ø	$\{D\}$	Ø
*D	Ø	Ø	Ø
E	$\{F\}$	Ø	$\{B,C\}$
F	$ \{D\} $	Ø	Ø

EXTRA PRACTICE AND THINKING

Problem 4 (Reducing a DFA). Reduce the following DFA:

С	a	b
$\rightarrow 1$	2	3
2	2	4
* 3	3	5
4	2	7
* 5	6	3
* 6	6	6
7	7	4
8	2	3
9	9	4

Problem 5 (Subset construction). Construct an equivalent reduced DFA.

	a	b	ϵ
*A	$ \begin{cases} A, C \\ B, D \end{cases} $	$\{B\}$	Ø
B	$\{B,D\}$	Ø	Ø
*C	$\{E\}$	$\{D\}$	Ø
D	$\{A\}$	$\{C, D\}$	Ø
$\to *E$	Ø	Ø	$\{A,C\}$

Problem 6 (Automata homomorphism). Find DFA A, B such that:

- (a) Both are reduced and they are not isomorphic.
- (b) A is homomorphic onto B but they are not isomorphic.
- (c) They are equivalent but not isomorphic.
- (d) They are both homomorphic onto C but not isomorphic with it. Moreover, A is not homomorphic onto B and B is not homomorphic onto A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$

Problem 7 (Regular? Reduce). Let L be a language over the alphabet $\{a,b\}$ consisting of words that do not contain three consecutive occurrences of the same letter. Decide if L is regular. If it is, find a reduced DFA accepting L.

Problem 8 (Subset construction reduced). Is the result of the subset construction (where we only generate reachable states) always a reduced DFA? Prove or disprove.