3.D Invertibility and Isomorphic Vector Spaces

```
Thursday 16 May 2024 15:54
```

definition: if $T \in L(V,W)$ is invertible, its inverse $T^{-1} \in L(W,V)$ is unique s.t. $TT^{-1} = T^{-1}T = I$

theorem: T is invertible \Leftrightarrow T injective and surjective proof: (\Rightarrow) suppose $T \in L(V,W)$ is invertible and $u,v \in V$ s.t. Tu = Tv $\Rightarrow u = T^{\dagger}Tu = T^{\dagger}Tv = V \Rightarrow u = V \Rightarrow T$ injective suppose $u \in W \Rightarrow u = T(T^{\dagger}u) \Rightarrow T^{\dagger}u \in V$ and $u \in I_{m}(T) \Rightarrow T$ surjective

(C=) T injective and surjective \Rightarrow we can define $w \in W$, $S \in L(W,V)$ $S \in L(S_W) = W$ \Rightarrow S w is unique for each w and $T \circ S = I$ on Wand $T((S \circ T)v) = T \circ S(Tv) = Tv \Rightarrow (S \circ T)v = v \Rightarrow S \circ T = I$ on V S is $[Theory: T(S(w_1 + w_2)) = T \circ S(w_1 + w_2) = w_1 + w_2 = T(S_{w_1}) + T(S_{w_2})$ $T(\lambda S w) = \lambda T \circ S(w) = \lambda w = T(S(\lambda w))$

theorem: 2 finite dinensional V, W over F $V \cong W \iff dim(V) = dim(W)$

 $proof: (\Rightarrow) suppose V \supseteq W \Rightarrow \exists invertible T \in L(V, W)$ $\Rightarrow ker(T) = \{0\}, Im(T) = W \Rightarrow d_{Tm}(V) = d_{Im}(ker(T)) + d_{Im}(Im(T))$ $= d_{Tm}(W)$

(=) suppose dm(V)=dm(W), $\{V_i\}$ busis of V, $\{w_i\}$ busis of W let $T:V\to W$, $T(C_iV_i):=C_jw_j \Rightarrow T\in L(V,W)$ $\Rightarrow lew(T)=\{0\}$ as $\{w_j\}$ is linearly independent $\Rightarrow T$ injective and $\{w_i\}$ spans $W=\Rightarrow Im(T)=W=\Rightarrow T$ surjective $\{w_i\}$

theorem: suppose $\{V_1,\dots,V_n\}$ basis of V and $\{W_1,\dots,W_m\}$ basis of W $\Rightarrow \mathcal{M} \text{ is isomorphism between } \mathcal{L}(V,W) \text{ and } \mathbb{F}^{m,n}$ $\Rightarrow \mathcal{L}(V,W) \cong \mathbb{F}^{m,n}$

proof: Mis linear

if $M(T) = 0 \Rightarrow T_{V_k} = 0$ $\forall k \in [1, n] \Rightarrow T = 0$ as $\{v_n\}$ is linearly independent $\Rightarrow \ker(M) = \{0\} \Rightarrow M$ injective

suppose $A \in \mathbb{F}^{m,n}$ Let $T \in \mathcal{L}(V,W)$ st. $T_{V_n} := A_{j_k W_j} \Rightarrow \mathcal{M}(T) = A$ => $A \in \mathcal{I}_m(\mathcal{M})$, $\mathcal{I}_m(\mathcal{M}) < \mathbb{F}^{m,n} \Rightarrow \mathcal{I}_m(\mathcal{M}) = \mathbb{F}^{m,n} \Rightarrow \mathcal{M}$ subjective

theorem: dim (L(V,W))=dim (V)·dim(W)

theorem: V finite dimensional and TEL(V) then,

proof; only need to prove 1st equivalence if T injective \Rightarrow | $\text{surjective} \subset T$ |