The Courant–Fischer theorem yields the following useful result about perturbing the eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 17.28. Given two $n \times n$ symmetric matrices A and $B = A + \Delta A$, if $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$ are the eigenvalues of A and $\beta_1 \leq \beta_2 \leq \cdots \leq \beta_n$ are the eigenvalues of B, then

$$|\alpha_k - \beta_k| \le \rho(\Delta A) \le ||\Delta A||_2, \quad k = 1, \dots, n.$$

Proof. Let \mathcal{V}_k be defined as in the Courant–Fischer theorem and let V_k be the subspace spanned by the k eigenvectors associated with $\alpha_1, \ldots, \alpha_k$. By the Courant–Fischer theorem applied to B, we have

$$\beta_k = \min_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^\top B x}{x^\top x}$$

$$\leq \max_{x \in V_k} \frac{x^\top B x}{x^\top x}$$

$$= \max_{x \in V_k} \left(\frac{x^\top A x}{x^\top x} + \frac{x^\top \Delta A x}{x^\top x} \right)$$

$$\leq \max_{x \in V_k} \frac{x^\top A x}{x^\top x} + \max_{x \in V_k} \frac{x^\top \Delta A x}{x^\top x}.$$

By Proposition 17.23, we have

$$\alpha_k = \max_{x \in V_k} \frac{x^\top A x}{x^\top x},$$

so we obtain

$$\beta_k \le \max_{x \in V_k} \frac{x^\top A x}{x^\top x} + \max_{x \in V_k} \frac{x^\top \Delta A x}{x^\top x}$$
$$= \alpha_k + \max_{x \in V_k} \frac{x^\top \Delta A x}{x^\top x}$$
$$\le \alpha_k + \max_{x \in \mathbb{R}^n} \frac{x^\top \Delta A x}{x^\top x}.$$

Now by Proposition 17.23 and Proposition 9.9, we have

$$\max_{x \in \mathbb{R}^n} \frac{x^{\top} \Delta A x}{x^{\top} x} = \max_i \lambda_i(\Delta A) \le \rho(\Delta A) \le \|\Delta A\|_2,$$

where $\lambda_i(\Delta A)$ denotes the ith eigenvalue of ΔA , which implies that

$$\beta_k \le \alpha_k + \rho(\Delta A) \le \alpha_k + \|\Delta A\|_2$$
.

By exchanging the roles of A and B, we also have

$$\alpha_k \le \beta_k + \rho(\Delta A) \le \beta_k + \|\Delta A\|_2$$

and thus,

$$|\alpha_k - \beta_k| \le \rho(\Delta A) \le ||\Delta A||_2, \quad k = 1, \dots, n,$$

as claimed.