超声波在固体中的传输 实验报告

姓名: 马恭瑞 学号: 2022010968 实验日期: 2024.5.21 实验台号: 9

一、实验目的

- a) 掌握超声波在固定中传输时的波速测量方法;
- b) 观察超声波不同波型的转换;
- c) 学习超声波探测的基本原理及应用。

二、实验仪器

示波器、超声波试验仪等。

三、 数据处理

a) 声速测量(纵波、横波):
 已知,试样(铝)密度ρ = 2700kg/m³
 该部分中声速的计算方法是,

$$c_{l} = \frac{2H}{t_{2} - t_{1}}$$

$$c_{s} = \frac{2(R_{2} - R_{1})}{t_{2} - t_{1}}$$

实验数据及计算结果如下表,

波	衰减分	示波器时间分	第1回波峰	第2回波峰	高度/半径	声速(m/s)
形	贝(dB)	度 M(μs/div)	位 t ₁ (μs)	位 t2(µs)	(mm)	
纵	85	25.0	0.0	19.0	H=60.00	$c_1 = 6315.8$
波						
横	70	25.0	24.0	43.0	$R_1 = 30.00$	c _s =3157.9
波					$R_2 = 60.00$	

由实验结果可以计算,

速度比值:

$$T = \frac{c_l}{c_s} = \frac{6315.8}{3157.9} = 2.0$$

弹性模量:

$$E = \frac{\rho c_s^3 (3T^2 - 4)}{T^2 - 1} = \frac{2700 \times 3157.9^2 \times (3 \times 2^2 - 4)}{2^2 - 1} \, kg/(m \cdot s^2)$$
$$= 7.2 \times 10^{10} kg/(m \cdot s^2)$$

泊松系数:

$$\sigma = \frac{T^2 - 2}{2(T^2 - 1)} = \frac{2^2 - 2}{2(2^2 - 1)} = \frac{1}{3}$$

- b) 波形转换观察及表面波测量:
 - 回波信号幅度、峰位岁入射角的变化现象: (衰减分贝 50dB)
 - 1. 输入角等于 0°, 示波器中显示一系列等间隔的回波信号, 幅 值较大且基本一致。此时回波为底面反射的纵波。
 - 2. 随着入射角的增大,靠后的回波幅值逐渐减小,当入射角大约 为 25° 时消失, 仅存在第二回波峰位。此时纵波消失, 回波信 号以横波为主。
 - 3. 入射角进一步增大,第二回波峰位减小至消失,即横波消失。 当入射角增加至 65°时,回波信号出现,改变试样表面状态, 回波消失,则此时为表面波。
 - 表面波波速: ii.

该部分中声速的计算方法是,

固定法:

$$c_R = \frac{2L_{EG}}{t_2 - t_1}$$

移动法:

$$c_R = \frac{2L_{EI}}{t_2 - t_1}$$

实验数据及计算结果如下表,

波	衰减分	示波器时间分	第1回波峰	第2回波峰	高度/半径	声速(m/s)
形	贝(dB)	度 M(μs/div)	位 t ₁ (μs)	位 t2(µs)	(mm)	
纵	50	25.0	29.0	72.0	$L_{EG} = 60.00$	$c_R = 2790.7$
波						
横	50	25.0	72.0	93.0	$L_{EI} = 60.00$	$c_R = 2857.1$
波						

c) 超声波探测缺陷:

直探头 i.

衰减分贝(dB): 85

示波器: 时间分度值 M=25.0 us/div 幅度分度值 500 mV/div

实验数据如下,

探头相对位置			缺陷回波幅	通孔 B 距测试面	缺陷回波	底面回波
x ₀ (mm)	x ₁ (mm)	x ₂ (mm)	值 U _{max} (V)	的距离 H _B (mm)	峰位 t ₁ (μs)	峰位 t ₂ (μs)
4.95	4.68	5.36	1.10	50.00	14.0	19.0

本部分测量的扩散角 θ 和竖孔深度 h 计算方法如下,

$$\theta = 2\arctan\frac{|x_2 - x_1|}{2H_B}$$

$$= 2\arctan \frac{|5.36 - 4.68| \times 10^{-2}}{2 \times 50.00 \times 10^{-3}}$$

$$= 7.8^{\circ}$$

$$h = R_2 \frac{t_2 - t_1}{t_2}$$

$$= 60.00 \times 10^{-3} \times \frac{19.0 - 14.0}{19.0} mm$$

$$= 15.8mm$$

ii. 45° 斜探头:

衰减分贝(dB): 70

示波器: 时间分度值 M=25.0μs/div 幅度分度值 500 mV/div 实验数据如下,

探头相对	对位置	试样参数		
$x_A(cm)$	x _B (cm)	$H_A = 20.00$ mm	$L_A = 20.00$ mm	
3.00	8.40	$H_B = 50.00$ mm	$L_B = 50.00$ mm	

本部分测量的折射角 β 计算方法如下,

$$\beta = \arctan \frac{x_B - x_A - (L_B - L_A)}{H_B - H_A}$$

$$= \arctan \frac{84.0 - 30.0 - (50.00 - 20.00)}{50.00 - 20.00}$$

$$= 38.66^{\circ}$$

四、 实验总结

- a) 本实验测量了超声波在固体中的横波和纵波的波速,纵波的波速大于横波:
- b) 观察了回波随超声波的入射角变化而变化(纵波-横波-表面波)的现 象:
- c) 测量了表面波的波速;
- d) 学习了超声波探伤的原理及一般步骤。

五、 原始数据

