Linear Equations Ex 8A

Definition of a Linear Equation

- A linear equation in one variable x is an equation that can be written in the form
- ax + b = 0
- where a and b are real numbers and $a \neq 0$.

Equation is a mathematical sentence indicating that two expressions are equal. The symbol "=" is used to indicate equality.

Ex.

2x + 5 = 9 is a conditional equation since its truth or falsity depends on the value of x

2 + 9 = 11 is identity equation since both of its sides are identical to the same number 11.

Solution Set of a Linear Equation

Example

4x + 2 = 10 this statement is either true of

false

If x = 1, then 4x + 2 = 10 is false because 4(1) + 2 is $\neq 10$ If x = 2, then 4x + 2 = 10 is true because 4(2) + 2 = 10

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

The value which makes the equation true is 200.

x - 4 = 7	Original problem
x <u>- 4</u> = 7	We want to remove the minus 4.
x - 4 + 4 = 7 + 4	The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
x = 11	-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
Check:	
x - 4 = 7	This is a correct statement, so my
11 – 4 = 7	answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

Solve 2x + 3 = 13

x = 5 <

This means:
$$\chi \times 2 + 3 = 13$$

To solve, we reverse the process:

Solve
$$4x + 6 = 14$$

$$4x + 6 = 14$$
 $4x = 8$
 $\div 4$

Solve
$$3x - 8 = 19$$

 $3x - 8 = 19$
 $3x = 27$
 $x = 9$

Q1

Answer:

$$8\mathbf{x} + 3 = 27 + 2\mathbf{x}$$

$$\Rightarrow 8\mathbf{x} - 2\mathbf{x} = 27 - 3$$

$$\Rightarrow 6\mathbf{x} = 24$$

$$\Rightarrow \mathbf{x} = \frac{24}{6} = 4$$

$$\therefore \mathbf{x} = 4$$

Q2

Answer:

$$5x + 7 = 2x - 8$$

$$\Rightarrow 5x - 2x = -8 - 7$$

$$\Rightarrow 3x = -15$$

$$\Rightarrow x = \frac{-15}{3} = -5$$

$$\therefore x = -5$$

Q3.

Answer:

$$2z - 1 = 14 - z$$

$$\Rightarrow 2z + z = 14 + 1$$

$$\Rightarrow 3z = 15$$

$$\Rightarrow z = \frac{15}{3} = 5$$

$$\therefore z = 5$$

Q4.

Answer:

$$9x + 5 = 4(x-2) + 8$$

$$\Rightarrow 9x + 5 = 4x - 8 + 8$$

$$\Rightarrow 9x + 5 = 4x$$

$$\Rightarrow 9x - 4x = -5$$

$$\Rightarrow 5x = -5$$

$$\Rightarrow x = \frac{-5}{5} = -1$$

$$\therefore x = -1$$

Q5.

Answer:

$$\frac{7y}{5} = y - 4$$

By cross multiplication:

By cross multiplication
$$\Rightarrow 7y = 5\left(y - 4\right)$$

$$\Rightarrow 7y = 5y - 20$$

$$\Rightarrow 7y - 5y = -20$$

$$\Rightarrow 2y = -20$$

$$\Rightarrow y = \frac{-20}{2} = -10$$

$$\therefore y = -10$$

Q6.

Answer:

$$3x + \frac{2}{3} = 2x + 1$$

$$\Rightarrow 3x - 2x = 1 - \frac{2}{3}$$

$$\Rightarrow x = \frac{1}{1} - \frac{2}{3} \qquad \text{(L.C.M. of 1 and 3 is 3)}$$

$$\Rightarrow x = \frac{1}{3}$$

Q7.

Answer:

$$15 (y - 4) - 2 (y - 9) + 5 (y + 6) = 0$$

$$\Rightarrow 15y - 60 - 2y + 18 + 5y + 30 = 0$$

$$\Rightarrow 15y - 2y + 5y - 60 + 18 + 30 = 0$$

$$\Rightarrow 18y - 12 = 0$$

$$\Rightarrow 18y = 12$$

$$\Rightarrow y = \frac{12}{18} = \frac{2}{3}$$

$$\therefore y = \frac{2}{3}$$

Q8.

Answer:

$$3(5x - 7) - 2(9x - 11) = 4(8x - 13) - 17$$

$$\Rightarrow 15x - 21 - 18x + 22 = 32x - 52 - 17$$

$$\Rightarrow 15x - 18x - 21 + 22 = 32x - 69$$

$$\Rightarrow -3x + 1 = 32x - 69$$

$$\Rightarrow 1 + 69 = 32x + 3x$$

$$\Rightarrow 70 = 35x$$

$$\Rightarrow 35x = 70 \qquad (by \text{ transposition})$$

$$\Rightarrow x = \frac{70}{35} = 2$$

$$\therefore x = 2$$

09.

Answer:

$$\frac{x-5}{2} - \frac{x-3}{5} = \frac{1}{2}$$

$$\Rightarrow 10 \left(\frac{x-5}{2}\right) - 10 \left(\frac{x-3}{5}\right) = 10 \left(\frac{1}{2}\right) \qquad \text{(multiplying throughout by 10, which is the L.C.M. of 2, 2 and 5)} \Rightarrow 5 \left(x-5\right) - 2 \left(x-3\right) = 5 \Rightarrow 5x - 25 - 2x + 6$$

$$= 5 \Rightarrow 5x - 2x - 25 + 6 = 5 \Rightarrow 3x - 19 = 5 \Rightarrow 3x = 5 + 19 \Rightarrow 3x = 24 \Rightarrow x$$

$$= \frac{24}{3} = 8 \therefore x = 8$$

$$\begin{array}{l} \frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t \\ \Rightarrow \frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2-3t}{3} & \left(3 \text{ is the L.C.M. of 1 and 3}\right) \\ \Rightarrow 12\left(\frac{3t-2}{4}\right) - 12\left(\frac{2t+3}{3}\right) = 12\left(\frac{2-3t}{3}\right) & \left(\text{multiplying throughout by 12, which is the L.C.M. of 4, 3 and 3}\right) \\ \Rightarrow 3\left(3t-2\right) - 4\left(2t+3\right) = 4\left(2-3t\right) \\ \Rightarrow 9t-6-8t-12=8-12t \\ \Rightarrow 9t-8t-6-12=8-12t \\ \Rightarrow t-18=8-12t \\ \Rightarrow t+12t=18+8 \\ \Rightarrow 13t=26 \\ \Rightarrow t=\frac{26}{13}=2 \\ \therefore t=2 \end{array}$$

Q11.

Answer:

$$\begin{array}{l} \frac{2x+7}{5} - \frac{3x+11}{2} = \frac{2x+8}{3} - 5 \\ \Rightarrow \frac{2x+7}{5} - \frac{3x+11}{2} = \frac{2x+8-15}{3} \quad \left(\text{L.C.M. of 3 and 1 is 3}\right) \\ \Rightarrow 30 \left(\frac{2x+7}{5}\right) - 30 \left(\frac{3x+11}{2}\right) = 30 \left(\frac{2x+8-15}{3}\right) \\ \left(\text{multiplyin g throughout by 30, which is the L.C.M. of 5, 2 and 3}\right) \\ \Rightarrow 6 \left(2x+7\right) - 15 \left(3x+11\right) = 10 \left(2x+8-15\right) \Rightarrow 12x+42-45x-165 \\ = 20x-70 \Rightarrow 12x-45x+42-165 = 20x-70 \Rightarrow -33x-123 = 20x-70 \Rightarrow -33x-20 \ x = 123-70 \Rightarrow -53x=53 \Rightarrow x=\frac{53}{-53} \Rightarrow x=-1 \therefore x=-1 \end{array}$$

Q12.

Answer:

$$\begin{array}{l} \frac{5x-4}{6} &= 4x \,+\, 1 \,-\, \frac{3x+10}{2} \\ \Rightarrow & \frac{5x-4}{6} \,=\, \frac{2\,(4x+1)-3x-10}{2} \\ \Rightarrow & \frac{5x-4}{6} \,=\, \frac{8x+2-3x-10}{2} \\ \Rightarrow & \frac{5x-4}{6} \,=\, \frac{8x-3x+2-10}{2} \\ \Rightarrow & \frac{5x-4}{6} \,=\, \frac{8x-3x+2-10}{2} \\ \Rightarrow & \frac{5x-4}{6} \,=\, \frac{5x-8}{2} \\ \Rightarrow & 2\left(\,5x-4\,\right) \,=\, 6\left(\,5x-8\,\right) \\ \Rightarrow & 10x-8 \,=\, 30x-48 \\ \Rightarrow & 10x-30x \,=\, -48+8 \\ \Rightarrow & -20x \,=\, -40 \\ \Rightarrow & x \,=\, \frac{-40}{-20} \,=\, 2 \\ \therefore & x \,=\, 2 \end{array}$$

Q13.

$$5x - \frac{1}{3}\left(x+1\right) = 6\left(x+\frac{1}{30}\right)$$

$$\Rightarrow 5x - \frac{1(x+1)}{3} = 6\left(\frac{30x+1}{30}\right) \qquad \text{(L.C.M. of 1 and 30 is 30)}$$

$$\Rightarrow 5x - \frac{(x+1)}{3} = \frac{30x+1}{5}$$

$$\Rightarrow \frac{15x-x-1}{3} = \frac{30x+1}{5} \qquad \text{(L.C.M. of 1 and 3 is 3)}$$

$$\Rightarrow \frac{14x-1}{3} = \frac{30x+1}{5}$$

$$\Rightarrow 5\left(14x-1\right) = 3\left(30x+1\right) \qquad \text{(by cross multiplication)}$$

$$\Rightarrow 70x-5 = 90x+3$$

$$\Rightarrow 70x-90x=3+5$$

$$\Rightarrow -20x=8$$

$$\Rightarrow x = \frac{8}{-20} = \frac{-2}{5}$$

$$\therefore x = -\frac{2}{5}$$

Q14.

Answer:

$$4 - \frac{2(z-4)}{3} = \frac{1}{2} \left(2z+5\right)$$

$$\Rightarrow \frac{12-2(z-4)}{3} = \frac{1(2z+5)}{2} \quad \text{(L. C. M. of 1 and 3 is 3)}$$

$$\Rightarrow \frac{12-2z+8}{3} = \frac{2z+5}{2}$$

$$\Rightarrow \frac{20-2z}{3} = \frac{2z+5}{2}$$

$$\Rightarrow 2\left(20-2z\right) = 3\left(2z+5\right) \quad \text{(by cross multiplication)}$$

$$\Rightarrow 40 - 4z = 6z + 15$$

$$\Rightarrow 40 - 15 = 6z + 4z$$

$$\Rightarrow 25 = 10z$$

$$\Rightarrow 10z = 25 \quad \text{(by transposition)}$$

$$\Rightarrow z = \frac{25}{10} = \frac{5}{2}$$

$$\therefore z = \frac{5}{2}$$

Q15.

Answer:

$$\begin{array}{l} \frac{3(y-5)}{4} - 4y = 3 - \frac{(y-3)}{2} \\ \Rightarrow \frac{3y-15}{4} - 4y = 3 - \frac{y-3}{2} \\ \Rightarrow \frac{3y-15-16y}{4} = 3 - \frac{y-3}{2} \quad \left(\text{L.C.M. of 4 and 1 is 4} \right) \\ \Rightarrow \frac{-13y-15}{4} = \frac{6-y+3}{2} \\ \Rightarrow \frac{-13y-15}{4} = \frac{9-y}{2} \\ \Rightarrow 2\left(-13y-15\right) = 4\left(9-y\right) \\ \Rightarrow -26y - 30 = 36 - 4y \\ \Rightarrow -26y + 4y = 36 + 30 \\ \Rightarrow -22y = 66 \\ \Rightarrow 22y = -66 \quad \left(\text{multiplying both the sides with a - ve sign} \right) \\ \Rightarrow y = -\frac{66}{22} = -3 \\ \therefore y = -3 \end{array}$$

Q16.

$\frac{8x-3}{3x} = 2$ $\Rightarrow 8x - 3 = 2(3x) \text{ (by cross multiplication)}$ $\Rightarrow 8x - 3 = 6x$ $\Rightarrow 8x - 6x = 3$ $\Rightarrow 2x = 3$ $\Rightarrow x = \frac{3}{2}$

Q17.

Answer:

 $\therefore x = \frac{3}{2}$

Answer:

$$\frac{9x}{7-6x} = 15
\Rightarrow \frac{9x}{7-6x} = \frac{15}{1}
\Rightarrow 1 (9x) = 15 (7-6x)$$
 (by cross multiplication)

$$\Rightarrow 9x = 105 - 90x
\Rightarrow 9x + 90x = 105
\Rightarrow 99x = 105
\Rightarrow x = $\frac{105}{99} = \frac{35}{33}$

$$\therefore x = \frac{35}{33}$$$$

Q18.

Answer:

$$\frac{3x}{5x+2} = -4$$

$$\Rightarrow \frac{3x}{5x+2} = \frac{-4}{1}$$

$$\Rightarrow 1\left(3x\right) = -4\left(5x+2\right) \text{ (by cross multiplication)}$$

$$\Rightarrow 3x = -20x - 8$$

$$\Rightarrow 3x + 20x = -8$$

$$\Rightarrow 23x = -8$$

$$\Rightarrow x = \frac{-8}{23}$$

$$\therefore x = \frac{-8}{23}$$

Q20.

Answer:

$$\frac{2-9z}{17-4z} = \frac{4}{5}$$

$$\Rightarrow 5\left(2-9z\right) = 4\left(17-4z\right) \quad \text{(by cross multiplication)}$$

$$\Rightarrow 10 - 45z = 68 - 16z$$

$$\Rightarrow 10 - 68 = 45z - 16z$$

$$\Rightarrow -58 = 29z$$

$$\Rightarrow 29z = -58 \quad \text{(by transposition)}$$

$$\Rightarrow z = \frac{-58}{29} = -2$$

$$\therefore z = -2$$

Q21.

Answer:

$$\frac{4x+7}{9-3x} = \frac{1}{4}$$

$$\Rightarrow 4\left(4x+7\right) = 1\left(9-3x\right) \quad \text{(by cross multiplication)}$$

$$\Rightarrow 16x+28=9-3x$$

$$\Rightarrow 16x+3x=9-28$$

$$\Rightarrow 19x=-19$$

$$\Rightarrow x=\frac{-19}{19}=-1$$

$$\therefore x=-1$$

Q22.

$$\frac{7y+4}{y+2} = \frac{-4}{3}
\Rightarrow 3(7y+4) = -4(y+2)
\Rightarrow 21y+12 = -4y-8
\Rightarrow 21y+4y=-8-12
\Rightarrow 25y=-20
\Rightarrow y = \frac{-20}{25} = \frac{-4}{5}
\therefore y = \frac{-4}{5}$$
(by cross multiplication)

Q23.

Answer:

$$\frac{15(2-y)-5(y+6)}{1-3y} = 10$$

$$\Rightarrow \frac{30-15y-5y-30}{1-3y} = 10$$

$$\Rightarrow \frac{-20y}{1-3y} = 10$$

$$\Rightarrow 1\left(-20y\right) = 10\left(1-3y\right)$$

$$\Rightarrow -20y = 10 - 30y$$

$$\Rightarrow -20y + 30y = 10$$

$$\Rightarrow 10y = 10$$

$$\Rightarrow y = \frac{10}{10} = 1$$

$$\therefore y = 1$$

Q24.

Answer:

$$\frac{2x - (7 - 5x)}{9x - (3 + 4x)} = \frac{7}{6}$$

$$\Rightarrow \frac{2x - 7 + 5x}{9x - 3 - 4x} = \frac{7}{6}$$

$$\Rightarrow \frac{7x - 7}{5x - 3} = \frac{7}{6}$$

$$\Rightarrow 6\left(7x - 7\right) = 7\left(5x - 3\right) \quad \text{(by cross multiplication)}$$

$$\Rightarrow 42x - 42 = 35x - 21$$

$$\Rightarrow 42x - 35x = 42 - 21$$

$$\Rightarrow 7x = 21$$

$$\Rightarrow x = \frac{21}{7} = 3$$

$$\therefore x = 3$$

Q25.

Answer:

$$m - \frac{(m-1)}{2} = 1 - \frac{(m-2)}{3}$$

$$\Rightarrow \frac{2m - m + 1}{2} = 1 - \frac{(m-2)}{3} \qquad \left(L.C.M. \text{ of } 1 \text{ and } 2 \text{ is } 2\right)$$

$$\Rightarrow \frac{m+1}{2} = \frac{3 - m + 2}{3} \qquad \left(L.C.M. \text{ of } 1 \text{ and } 3 \text{ is } 3\right)$$

$$\Rightarrow \frac{m+1}{2} = \frac{5 - m}{3}$$

$$\Rightarrow 3\left(m+1\right) = 2\left(5 - m\right) \qquad \left(\text{by cross multiplication}\right)$$

$$\Rightarrow 3m + 3 = 10 - 2m$$

$$\Rightarrow 3m + 2m = 10 - 3$$

$$\Rightarrow 5m = 7$$

$$\Rightarrow m = \frac{7}{5}$$

$$\therefore m = \frac{7}{5}$$

Q26.

$$\begin{array}{l} \frac{3x+5}{4x+2} \ = \ \frac{3x+4}{4x+7} \\ \Rightarrow \ \left(4x+7\right)\left(3x+5\right) \ = \ \left(4x+2\right)\left(3x+4\right) \qquad \left(\ \ \text{by cross multiplication} \right) \\ \Rightarrow \ 12x^2 + \ 20x + \ 21x + \ 35 = \ 12x^2 + \ 16x + \ 6x + \ 8 \\ \Rightarrow \ 12x^2 + \ 41x + \ 35 = \ 12x^2 + \ 22x + \ 8 \\ \Rightarrow \ 12x^2 - \ 12x^2 + \ 41x - \ 22x = \ 8 - \ 35 \\ \Rightarrow \ 19x = \ -27 \\ \Rightarrow \ x \ = \ \frac{-27}{19} \\ \therefore \ x \ = \ \frac{-27}{19} \end{array}$$

Q27.

Answer:

$$\frac{9x-7}{3x+5} = \frac{3x-4}{x+6}
\Rightarrow (x+6)(9x-7) = (3x+5)(3x-4)
(by cross multiplication)
\Rightarrow 9x^2 - 7x + 54x - 42 = 9x^2 - 12x + 15x - 20
\Rightarrow 9x^2 + 47x - 42 = 9x^2 + 3x - 20
\Rightarrow 9x^2 - 9x^2 + 47x - 3x = -20 + 42
\Rightarrow 44x = 22
\Rightarrow x = \frac{22}{44} = \frac{1}{2}
\therefore x = \frac{1}{2}$$

Q28.

Answer:

$$\frac{2-7x}{1-5x} = \frac{3+7x}{4+5x}
\Rightarrow (4+5x)(2-7x) = (1-5x)(3+7x)$$
 (by cross multiplication)

$$\Rightarrow 8 - 28x + 10x - 35x^2 = 3 + 7x - 15x - 35x^2
\Rightarrow -35x^2 - 18x + 8 = -35x^2 - 8x + 3
\Rightarrow -35x^2 + 35x^2 - 18x + 8x = -8 + 3
\Rightarrow -10x = -5
\Rightarrow x = \frac{-5}{-10} = \frac{1}{2}
\therefore x = \frac{1}{2}$$

Linear Equations Ex 8B

Definition of a Linear Equation

- A linear equation in one variable x is an equation that can be written in the form
- ax + b = 0
- where a and b are real numbers and $a \neq 0$.

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

The value which makes the equation true is 200.

x - 4 = 7	Original problem
x - 4 = 7	We want to remove the minus 4.
x – 4 +4 = 7 +4	The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
x = 11	-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
Check:	
x - 4 = 7	This is a correct statement, so my
11 – 4 = 7	answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

get to a single value of x (here, x = 5).

Solve
$$4x + 6 = 14$$

 $4x + 6 = 14$
 $4x = 8$
 $x = 2$

Solve
$$3x - 8 = 19$$

 $3x - 8 = 19$
 $3x = 27$
 $x = 9$

Q1

Answer:

Let the numbers be 8x and 3x.

$$8x + 3x = 143$$

$$\Rightarrow 11x = 143$$

$$\Rightarrow x = \frac{143}{11}$$

$$\Rightarrow x = 13$$

 \therefore One number $= 8x = 8 \times 13 = 104$ Other number $= 3x = 3 \times 13 = 39$

Q2.

Answer:

Let the original number be x.

 $\frac{2}{3}$ of the number is 20 less than the original number.

$$\therefore \frac{2}{3}x = x - 20$$

$$\Rightarrow \frac{2x}{3} = x - 20$$

$$\Rightarrow 2x = 3\left(x - 20\right) \qquad \text{(by cross multiplication)}$$

$$\Rightarrow 2x = 3x - 60$$

$$\Rightarrow 2x - 3x = -60$$

$$\Rightarrow -x = -60$$

$$\Rightarrow x = 60$$

Therefore, the original number is 60.

Q3.

Answer:

Let the number be x.

Four fifths of the number is 10 more than two thirds of the number.

$$\therefore \frac{4}{5}x = 10 + \frac{2}{3}x$$

$$\Rightarrow \frac{4x}{5} = 10 + \frac{2x}{3}$$

$$\Rightarrow \frac{4x}{5} = \frac{30 + 2x}{3} \qquad (L.C.M. \text{ of } 1 \text{ and } 3 \text{ is } 3)$$

$$\Rightarrow 3\left(4x\right) = 5\left(30 + 2x\right) \qquad \text{(by cross multiplication)}$$

$$\Rightarrow 12x = 150 + 10x$$

$$\Rightarrow 12x - 10x = 150$$

$$\Rightarrow 2x = 150$$

$$\Rightarrow x = \frac{150}{2} = 75$$

Therefore, the number is 75.

Q4.

Let one part be x.

7 times the first part = 7x

Let the other part be (24-x).

5 times the second part = 5 (24-x)

$$\therefore 7x + 5\left(24 - x\right) = 146$$

$$\Rightarrow 7x + 120 - 5x = 146$$

$$\Rightarrow 7x + 120 - 5x = 140$$

 $\Rightarrow 7x - 5x = 146 - 120$

$$\Rightarrow 2x = 26$$

$$\Rightarrow x = \frac{26}{2} = 13$$

Therefore, one part is 13.

Other part =
$$(24 - x) = (24 - 13) = 11$$

رح. : Answer

Let the number be x.

Fifth part increased by $5 = \frac{x}{5} + 5$

Fourt part diminished by $5 = \frac{x}{4} - 5$

$$\therefore \ \frac{\mathbf{x}}{5} + 5 = \frac{\mathbf{x}}{4} - 5$$

$$\Rightarrow 5 + 5 = \frac{x}{4} - \frac{x}{5}$$

$$\Rightarrow 10 = \frac{5x-4x}{20}$$

$$\Rightarrow 10 = \frac{x}{20}$$

$$\Rightarrow 200 = x$$

$$\Rightarrow x = 200$$

Therefore, the number is 200.

Q6. Answer:

Let the common multiple for the given three numbers be \mathbf{x} .

Then, the three numbers would be 4x, 5x and 6x.

$$\therefore 4x + 6x = 5x + 55$$

$$\Rightarrow 10x = 5x + 55$$

$$\Rightarrow 10x - 5x = 55$$

$$\Rightarrow 5x = 55$$

$$\Rightarrow x = \frac{55}{5} = 11$$

$$\therefore$$
 Smallest number = $4x = 4(11) = 44$

Largest number is
$$= 6x = 6(11) = 66$$

Third number
$$= 5x = 5(11) = 55$$

Therefore, the three numbers are 44, 55 and 66.

Q7. Answer:

Let the number be x.

$$\therefore 10 + 4x = 5x - 5$$

$$\Rightarrow 10 + 5 = 5x - 4x$$

$$\Rightarrow$$
 15 = x

$$\Rightarrow x = 15$$
 (by transposition)

Therefore, the number is 15.

Q8.

Answer

Let us consider x as the common multiple of both the number.

Then, first number = 3x

Second number = 5x

$$\therefore \frac{3x+10}{5x+10} = \frac{5}{7}$$

$$\Rightarrow 7\left(3x+10\right) = 5\left(5x+10\right) \qquad \text{(by cross multiplication)}$$

$$\Rightarrow 21x + 70 = 25x + 50$$

$$\Rightarrow 21x - 25x = 50 - 70$$

$$\Rightarrow -4x = -20$$

$$\Rightarrow -4x = -20$$
$$\Rightarrow x = \frac{-20}{-4} = 5$$

Therefore, the common multiple of both the numbers is 5.

First number =
$$3x = 3 \times 5 = 15$$

Second number =
$$5x = 5 imes 5 = 25$$

Let the first odd number be x.

Let the second odd number be (x+2).

Let the third odd number be (x+4).

$$\therefore x + \left(x+2\right) + \left(x+4\right) = 147$$

$$\Rightarrow x + x + 2 + x + 4 = 147$$

$$\Rightarrow 3x + 6 = 147$$

$$\Rightarrow 3x = 147 - 6$$

$$\Rightarrow 3x = 141$$

$$\Rightarrow x = \frac{141}{3} = 47$$

Therefore, the first odd number is 47.

Second odd number =
$$(x+2)$$
 = $(47+2)$ = 49

Third odd number =
$$(x+4) = (47+4) = 51$$

Q10.

Answer:

Let the first even number be x.

Let the second even number be x + 2.

Let the third even number be x+4.

$$\therefore x + x + 2 + x + 4 = 234$$

$$\Rightarrow x + x + 2 + x + 4 = 234$$

$$\Rightarrow 3x + 6 = 234$$

$$\Rightarrow 3x = 234 - 6$$

$$\Rightarrow 3x = 234$$

 $\Rightarrow 3x = 228$

$$\Rightarrow x = \frac{228}{3} = 76$$

 $\therefore F$ irst even number = x = 76

 $S \, {\rm econd \ even \ number} \ = \ x+2 \ = \ 76+2 \ = \ 78$

 $T {\rm hird \ even \ number} \ = \ x + 4 = \ 80$

Q11. Answer:

Let the digit in the units place be x.

$$D$$
igit in the tens place = $(12-x)$

$$\therefore$$
 Original number = $10(12 - x) + x = 120 - 9x$

On reversing the digits, we have x at the tens place and (12-x) at the units place.

: New number =
$$10x + 12 - x = 9x + 12$$

New number - Original number = 54

$$\Rightarrow 9x + 12 - (120 - 9x) = 54$$

$$\Rightarrow 9x + 12 - 120 + 9x = 54$$

$$\Rightarrow 18x - 108 = 54$$

$$\Rightarrow 18x = 54 + 108$$

$$\Rightarrow 18x = 162$$

$$\Rightarrow x = \frac{162}{18} = 9$$

Therefore, the digit in the units place is 9.

Digit in tens place =
$$(12-x)$$
 = $(12-9)$ = 3

Therefore, the original number is 39.

Check:

The original number is 39.

Sum of the digits in the original number
$$= (3+9) = 12$$

New number obtained on reversing the digits = 93

New number - Original number =
$$(93 - 39) = 54$$

Thus, both the given conditions are satisfied by 39.

Hence, the original number is 39.

Let the digit in the units place be \mathbf{x} .

Digit in the tens place = 3x

Original number =
$$10(3x) + x = 30x + x$$

On reversing the digits, we have x at the tens place and (3x) at the units place.

$$\therefore New number = 10(x) + 3x = 10x + 3x$$

New number = Original number - 36

$$\Rightarrow 10x + 3x = 30x + x - 36$$

$$\Rightarrow 13x = 31x - 36$$

$$\Rightarrow$$
 36 = 31 x - 13 x

$$\Rightarrow 36 = 18x$$

$$\Rightarrow 18x = 36$$

$$\Rightarrow x = \frac{36}{18} = 2$$

Therefore, the digit in the units place is 2.

Digit in the tens place =
$$(3x)$$
 = $3 \times 2 = 6$

Therefore, the original number is 62.

Check:

New number + 36 = Original Number

$$26 + 36 = 62$$

Hence, both the conditions are satisfied.

Therefore, the original number is 62.

Q13.

Answer:

Let the numerator be x.

The denominator is greater than the numerator by 7.

$$\therefore \left(\mathbf{x}+7\right)$$

$$\therefore \frac{x+17}{(x+7)-6} = 2$$

$$\Rightarrow \frac{x+17}{x+1} = 2$$

$$\Rightarrow x+17=2\left(x+1\right) \qquad \text{(by cross multiplication)}$$

$$\Rightarrow x+17=2x+2$$

$$\Rightarrow x-2x=2-17$$

$$\Rightarrow -x=-15$$

$$\Rightarrow x=15$$

Therefore, the numerator is 15.

Denominator =
$$\left(x+7\right)$$
 = $\left(15+7\right)$ = 22

 \therefore Original number = $\frac{15}{22}$

Q14.

Denominator, d = x

It is given that twice the numerator is equal to two more than the denominator.

- \therefore Twice of numerator, 2n = x + 2
- \therefore Numerator, $n = \frac{x+2}{2}$

$$\therefore \frac{n+3}{d+3} = \frac{2}{3}$$

$$\Rightarrow 3 (n + 3) = 2 (d + 3)$$
 (by cross multiplication)

$$\Rightarrow 3n + 9 = 2d + 6$$

$$\Rightarrow 3n - 2d = 6 - 9$$
$$\Rightarrow 3n - 2d = -3$$

$$\Rightarrow 3n - 2d = -3$$

On replace d by x and n by $\frac{x+2}{2}$:

$$\Rightarrow 3\left(\frac{x+2}{2}\right) - 2x = -3$$

$$\Rightarrow \frac{3x+6-4x}{2} = -3$$
 (taking the L.C.M. of 2 and 1 as 2)

$$\Rightarrow$$
 6 - $x = -6$ (by cross multiplication)

$$\Rightarrow -x = -6 - 6$$

$$\Rightarrow x = 12$$

The denominator is 12.

:. Numerator =
$$\frac{x+2}{2} = \frac{12+2}{2} = \frac{14}{2} = 7$$

$$\therefore$$
 Original fraction = $\frac{7}{12}$

Q15.

Answer:

Let the breadth of the original rectangle be x cm.

Then, its length will be (x + 7) cm.

The area of the rectangle will be (x)(x + 7) cm².

$$(x + 3)(x + 7 - 4) = (x)(x + 7)$$

$$\Rightarrow (x + 3)(x + 3) = x^2 + 7x$$

$$\Rightarrow x^2 + 3x + 3x + 9 = x^2 + 7x$$

$$\Rightarrow x^2 + 6x + 9 = x^2 + 7x$$

$$\Rightarrow 9 = x^2 - x^2 + 7x - 6x$$

$$\Rightarrow 9 = x$$

$$\Rightarrow x = 9$$
 (by transposition)

Breadth of the original rectangle = 9 cm

Length of the original rectangle = (x+7) = (9+7) = 16 cm

Q16.

Answer:

Let the width of the rectangle be x cm.

It is $\frac{2}{3}$ of the length of the rectangle.

This means that the length of the rectangle will be $\frac{3}{2} x$.

Perimeter of the rectangle = $2(x) + 2(\frac{3}{2})x = 180 \,\mathrm{m}$

$$\therefore 2x + \frac{6x}{2} = 180$$

$$\Rightarrow \frac{4x+6x}{2} = 180$$
 (taking the L.C.M. of 1 on the L.H.S. of the equation)

$$\Rightarrow 10x = 2 \times 180$$
 (by cross multiplication)

$$\Rightarrow 10x = 360$$

$$\Rightarrow x = \frac{360}{10} = 36$$

Therefore, the width of the rectangle is 36 m.

Length of the rectangle will be $=\frac{3}{2}x=\frac{3}{2}(36)=54 \text{ m}$

Q17.

Let the length of the base of the triangle be x cm.

Then, its altitude will be $\frac{5}{2}x$ cm.

Area of the triangle
$$=\frac{1}{2}\left(x\right)\left(\frac{5}{3}\,x\right)=\frac{5}{6}\,x^2$$

$$\therefore \frac{1}{2} \left(x - 2 \right) \left(\frac{5}{3} x + 4 \right) = \frac{5}{6} x^2$$

$$\Rightarrow \left(rac{x-2}{2}
ight)\left(rac{5x+12}{3}
ight) \ = \ rac{5x^2}{6}$$

$$\Rightarrow \frac{(x-2)(5x+12)}{6} = \frac{5x^2}{6} \\ \Rightarrow \frac{5x^2+12x-10x-24}{6} = \frac{5x^2}{6}$$

$$\Rightarrow \frac{5x^2 + 12x - 10x - 24}{6} = \frac{5x^2}{6}$$

$$\Rightarrow 5x^2 + 2x - 24 = 5x^2$$

cancelling the denominators from both

the sides since they are same

$$\Rightarrow 5x^2 - 5x^2 + 2x = 24$$

$$\Rightarrow 2x = 24$$

$$\Rightarrow x = \frac{24}{2} = 12 m$$

Therefore, the bas e of the triangle is 12 m.

Altitude of the triangle $=\frac{5}{3}x=\frac{5}{3}\left(12\right)=20 m$

Q18

Answer:

Let the common multiple of all the three angles be x.

Then, the first angle will be 4x.

And the second angle will be 5x

In a triangle, sum of all the three angles will be equal to 180°.

:. Third angle =
$$180 - (4x + 5x) = 180 - 9x$$

$$\therefore 4x + 5x = 180 - 9x$$

$$\Rightarrow 9x = 180 - 9x$$

$$\Rightarrow 9x + 9x = 180$$

$$\Rightarrow 18x = 180$$

$$\Rightarrow x = \frac{180}{18} = 10$$

First angle = $4x = 4 \times 10 = 40^{\circ}$

Second angle = $5x = 5 \times 10 = 50^{\circ}$

Third angle = $4x + 5x = 9x = 9 \times 10 = 90^{\circ}$

Q19

Answer:

Let the speed of the steamer in still water be x km/h.

Speed (downstream) = (x + 1) km/h

Speed (upstream) =
$$(x-1) \text{ km/h}$$

Distance covered in 9 hours while going downstream = 9(x+1) km

Distance covered in 10 hours while going upstream = 10(x-1) km

But both of these distances will be same.

$$9(x + 1) = 10(x - 1)$$

$$\Rightarrow 9x + 9 = 10x - 10$$

$$\Rightarrow 9 + 10 = 10x - 9x$$

$$\Rightarrow 19 = x$$

$$\Rightarrow x = 19$$

Therefore, the speed of the steamer in still water is 19 km/h.

Distance between the ports = $9(x+1) = 9(19+1) = 9 \times 20 = 180 \text{ km}$

Q20

Let the speed of one motorcyclist be x km/h.

So, the speed of the other motorcyclist will be (x+7) km/h.

Distance travelled by the first motorcyclist in 2 hours = 2x km

Distance travelled by the second motorcyclist in 2 hours = 2(x+7) km

Therefore,

$$300 - \left(2x + \left(2x + 14\right)\right) = 34$$

$$\Rightarrow 300 - \left(2x + 2x + 14\right) = 34$$

$$\Rightarrow 300 - 4x - 14 = 34$$

$$\Rightarrow 286 - 4x = 34$$

$$\Rightarrow 286 - 34 = 4x$$

$$\Rightarrow 252 = 4x$$

$$\Rightarrow x = \frac{252}{4} = 63$$

Therefore, the speed of the first motorcyclist is 63 km/h.

The speed of the second motorcyclist is (x+7) = (63+7) = 70 km/h.

Check

The distance covered by the first motorcyclist in 2 hours = $63 \times 2 = 126$ km. The distance covered by the second motorcyclist in 2 hours = $70 \times 2 = 140$ km. The distance between the motorcyclists after 2 hours = 300 - (126 + 140) = 34 km (which is the same as given)

Therefore, the speeds of the motorcyclists are 63 km/h and 70 km/h, respectively.

Q21

Answer:

Let the first number be x.

Then, the second number will be $\frac{5}{6}x$.

Third numbe
$$r=\frac{4}{5}\left(\frac{5}{6}x\right)=\frac{2}{3}x$$

$$\therefore x+\frac{5x}{6}+\frac{2x}{3}=150$$

$$\Rightarrow \frac{6x+5x+4x}{6}=150 \qquad \text{(multiplying the L.H.S. by 6, which is the L.C.M. of 1,}$$

$$6$$
 and 3

$$\Rightarrow 15x = 150 \times 6 \qquad \qquad \text{(by cross multiplication)}$$

$$\Rightarrow 15x = 900$$

$$\Rightarrow x = \frac{900}{15} = 60$$

Therefore, the first number is 60.

Second number =
$$\frac{5}{6}x = \frac{5}{6}(60) = 50$$

Third number =
$$\frac{2}{3}x = \frac{2}{3}(60) = 40$$

Q22

Answer:

Let the first part be x.

Let the second part be (4500 - x).

$$\therefore 5\% \text{ of } x = 10\% \text{ of } \left(4500 - x\right)$$
$$\Rightarrow \left(\frac{5}{100}\right)x = \left(\frac{10}{100}\right)\left(4500 - x\right)$$

$$\Rightarrow \frac{5x}{100} = \frac{45000 - 10x}{100}$$

$$\Rightarrow$$
 5x = 45000 - 10x (by cancellation of same denominators from both the

sides)
$$\Rightarrow 5x + 10x = 45000 \Rightarrow 15x = 45000 \Rightarrow x = \frac{45000}{15} = 3000$$
 Therefore, the

first part is 3000. Second part =
$$\left(4500 - x\right) = \left(4500 - 3000\right) = 1500$$

Let the present age of Rakhi be x.

Then, the present age of Rakhi's mother will be 4x.

After five years, Rakhi's age will be (x + 5).

After five years, her mother's age will be (4x + 5).

$$4x + 5 = 3(x + 5)$$

 $\Rightarrow 4x + 5 = 3x + 15$

$$\Rightarrow 4x - 3x = 15 - 5$$

 $\Rightarrow x = 10$

Present age of Rakhi = 10 years

Present age of Rakhi's mother = $4(x) = 4 \times 10 = 40$ years

Q24

Answer:

Let the age of Monu's father be x years.

The age of Monu's grandfather will be (x+26).

Then, the age of Monu will be (x-29).

$$\therefore x + \left(x + 26\right) + \left(x - 29\right) = 135$$

$$\Rightarrow x + x + 26 + x - 29 = 135$$

$$\Rightarrow 3x - 3 = 135$$

$$\Rightarrow 3x = 135 + 3$$

$$\Rightarrow 3x = 138$$

$$\Rightarrow x = \frac{138}{3} = 46$$

 $\therefore A$ ge of Monu's father = 46 years

Age of Monu's grandfather
$$=$$
 $\left(\, \mathbf{x} + 26 \, \right) \, = \, \left(\, 46 + 26 \, \right) \, = 72$ years

Age of Monu =
$$(x-29)$$
 = 46 - 29 = 17 years

Q25

Answer:

Let the age of the grandson be x years.

Then, his grandfather's age will be 10x.

Also, the grandfather is 54 years older than his grandson.

$$\therefore$$
 Age of the grandson = $x + 54$

$$10x = x + 54$$

$$\Rightarrow 10x - x = 54$$

$$\Rightarrow 9x = 54$$

$$\Rightarrow x = \frac{54}{9} = 6$$

Therefore, the grandson's age is 6 years.

Grandfather's age =
$$10(x)$$
 = 10×6 = 60 years

026

Answer:

Let the age of the younger cousin be x.

Then, the age of the elder cousin will be (x+10).

15 years ago:

Age of the younger cousin = (x-15)

Age of elder cousin = (x + 10 - 15)

$$= (x - 5)$$

$$(x-5) = 2(x-15)$$

$$\Rightarrow x - 5 = 2x - 30$$

$$\Rightarrow x - 2x = -30 + 5$$

$$\Rightarrow -x = -25$$

$$\Rightarrow x = 25$$

Therefore, the present age of the younger cousin is 25 years.

Present age of elder cousin
$$=$$
 (x + 10) $=$ (25 + 10) $=$ 35 years

Let the number of deer in the herd be x.

The number of deer grazing in the field is $\left(\frac{1}{2}\right)x$.

Remaining deer
$$= x - \frac{x}{2} = \frac{x}{2}$$

$$N$$
umber of deer playing nearby $=\frac{3}{4}\left(\frac{x}{2}\right)=\frac{3}{8}x$

The number of deer drinking water from the pond is 9.

$$\therefore 9 + \frac{3}{8}x + \frac{1}{2}x = x$$

$$\Rightarrow rac{72+3x+4x}{8} = x$$

(multiplying the L.H.S. by 8, which is the L.C.M. of

$$\Rightarrow$$
 72 + 7 $x = 8x$

(by cross multiplication)
$$\Rightarrow$$
 72 = 8x - 7x \Rightarrow 72 =

$$x \Rightarrow x = 72T$$
 otal number of deer in the herd = 72

Linear Equations Ex 8C

Q1

Answer:

(c) 5

$$2x - 3 = x + 2$$

 $\Rightarrow 2x - x = 3 + 2$
 $\Rightarrow x = 5$

Q2

Answer:

$$\begin{array}{l} \left(b\right) - 5 \\ 5x + \frac{7}{2} = \frac{3}{2}x - 14 \\ \Rightarrow \frac{10x + 7}{2} = \frac{3x - 28}{2} \\ \Rightarrow 10x + 7 = 3x - 28 \\ \Rightarrow 10x - 3x = -28 - 7 \\ \Rightarrow 7x = -35 \\ \Rightarrow x = \frac{-35}{7} = -5 \end{array}$$

О3

Answer:

(a) 40

$$z = \frac{4}{5} \left(z + 10 \right)$$

$$\Rightarrow 5z = 4 \left(z + 10 \right)$$

$$\Rightarrow 5z = 4z + 40$$

$$\Rightarrow 5z - 4z = 40$$

$$\Rightarrow z = 40$$

Q4

Answer:

(c) $\frac{4}{5}$

$$3m = 5m - \frac{8}{5}$$

$$\Rightarrow 3m = \frac{25m - 8}{5}$$

$$\Rightarrow 15m = 25m - 8$$

$$\Rightarrow 15m - 25m = -8$$

$$\Rightarrow -10m = -8$$

$$\Rightarrow m = \frac{-8}{-10} = \frac{4}{5}$$

Q5

Answer:

(b) -1

$$5t - 3 = 3t - 5$$

 $\Rightarrow 5t - 3t = 3 - 5$
 $\Rightarrow 2t = -2$
 $\Rightarrow t = \frac{-2}{2} = -1$

Q6

Answer:

(d) $\frac{7}{3}$

$$2y + \frac{5}{3} = \frac{26}{3} - y$$

$$\Rightarrow \frac{6y + 5}{3} = \frac{26 - 3y}{3}$$

$$\Rightarrow 6y + 5 = 26 - 3y$$

$$\Rightarrow 6y + 3y = 26 - 5$$

$$\Rightarrow 9y = 21$$

$$\Rightarrow y = \frac{21}{9} = \frac{7}{3}$$

Q7 Answer: (b) -1 $\frac{6x+1}{3} + 1 = \frac{x-3}{6}$ $\Rightarrow \frac{6x+1+3}{3} = \frac{x-3}{6}$ $\Rightarrow 6 \left(6x + 4\right) = 3 \left(x - 3\right)$ $\Rightarrow 36x + 24 = 3x - 9$ $\Rightarrow 36x - 3x = -24 - 9$ $\Rightarrow 33x = -33$ $\Rightarrow x = \frac{-33}{33} = -1$ Q8 Answer: (c) 36 $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$ $\Rightarrow \frac{6n - 9n + 10n}{12} = 21$ $\Rightarrow 7n = 21 \times 12$ $\Rightarrow 7n = 252$ $\Rightarrow n = \frac{252}{7} = 36$ Q9 Answer: (d) $\frac{1}{2}$ $\frac{x+1}{2x+3} = \frac{3}{8}$ \Rightarrow 8 $\left(x+1\right) = 3\left(2x+3\right)$ $\Rightarrow 8x + 8 = 6x + 9$ $\Rightarrow 8x - 6x = 9 - 8$ $\Rightarrow 2x = 1$ $\Rightarrow x = \frac{1}{2}$ Q10 Answer: (c) 8 $\frac{4x+8}{5x+8} = \frac{5}{6}$ \Rightarrow 6 $\left(4x+8\right)=5\left(5x+8\right)$ $\Rightarrow 24x + 48 = 25x + 40$ $\Rightarrow 24x - 25x = -48 + 40$ $\Rightarrow -x = -8$ $\Rightarrow x = 8$ Q11 Answer: (d) 12 $\frac{n}{n+15} = \frac{4}{9}$ $\Rightarrow 9n = 4(n + 15)$ $\Rightarrow 9n = 4n + 60$ $\Rightarrow 9n - 4n = 60$ $\Rightarrow 5n = 60$ $\Rightarrow n = \frac{60}{5} = 12$ Q12 Answer: (a) -2

 $3\left(t-3\right) = 5\left(2t+1\right)$ $\Rightarrow 3t-9 = 10t+5$ $\Rightarrow 3t-10t = 9+5$ $\Rightarrow -7t = 14$ $\Rightarrow -t = \frac{14}{7} = 2$ $\Rightarrow t = -2$

(c) 80

Let the number be x.

$$\therefore \frac{4}{5}x = \frac{3}{4}x + 4$$

$$\Rightarrow \frac{4x}{5} = \frac{3x+16}{4}$$

$$\Rightarrow 16x = 15x + 80$$

$$\Rightarrow 16x - 15x = 80$$

$$\Rightarrow x = 80$$

Q14

Answer:

(b) 28 years

Let x be the common multiple of the ages of A and B. Then. the age s of A and B would be 5x and 7x, respectively.

Q15

Answer:

(b) 5 cm

Let the equal side of the isosceles triangle be x.

Then, the perimeter of the triangle would be (x + x + 6).

$$\therefore 2x + 6 = 16$$

$$\Rightarrow 2x = 16 - 6$$

$$\Rightarrow 2x = 10$$

$$\Rightarrow x = \frac{10}{2} = 5$$

 \therefore Length of each equal side = 5 cm

Q16

Answer:

(d) 17

Let the three consecutive integers be x, x+1 and x+2.

Equation = x + x + 1 + x + 2 = 51 $\Rightarrow 3x + 3 = 51$ $\Rightarrow 3x = 51 - 3$ $\Rightarrow 3x = 48$

 $\Rightarrow 3x = 46$ $\Rightarrow x = \frac{48}{3} = 16$

Middle integer = x + 1 = 16 + 1 = 17

Q17

Answer:

(a) 40

Let the numbers be x and x + 15.

∴
$$x + x + 15 = 95$$

⇒ $2x + 15 = 95$
⇒ $2x = 95 - 15$

$$\Rightarrow 2x = 80$$
$$\Rightarrow x = 40$$

The smaller number is 40.

(c) 48

Let the number of boys in the class be x.

Then, the number of girls will be (x-8).

The equation becomes:

$$\frac{x}{x-8} = \frac{7}{5}$$

$$\Rightarrow 5x = 7x - 56$$

$$\Rightarrow 5x - 7x = -56$$

$$\Rightarrow -2x = -56$$

$$\Rightarrow x = \frac{-56}{-2} = 28$$

Therefore, the number of boys is 28.

Number of girls =
$$(x-8) = 28 - 8 = 20$$

Total strength of the class = 28 + 20 = 48