Conversion between Number Systems

Theory

We use positional Number Systems. $N = \sum_{i=1}^{n} a_i R^{i}$

Decimal

• Base: 10

• Symbols: 0,1,2,3,4,5,6,7,8,9• $197_{10} = 1*10^2 + 9*10^1 + 7*10^0$

Binary

• Base: 2

• Symbols: 0,1

• $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5_{10}$

Octal

Base: 8

Symbols: 0,1,2,3,4,5,6,7

Each octal digit is equivalent to three binary digits.

Hexadecimal

Base: 16

Symbols: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Each hexadecimal digit is equivalent to four binary digits.

Decimal	Binario	Octal	Hexa
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Exercise:

- Why do we use decimal?
- Why do we use binary?
- Why do we use Octal?
- Why do we use Hexadecimal?

Joke:

 There are only 10 kinds of people, those who understand binary and those who don't."

Conversions

- Decimal → Binary
- Octal →Binary
- Hexadecimal → Binary
- Binary → Decimal

Binary Arithmetic

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

When you add two ones, the result is cero and we get a carry. This is very important when we add numbers with several digits.

$$\begin{array}{ccc}
 & 011_2 & 3_{10} \\
 & & 101_2 & 5_{10} \\
\hline
 & 1000_2 & 8_{10}
\end{array}$$

Example: We add bit by bit, but we have to keep in mind the carry.

Binary Logic

A	В	A AND B	A OR B
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

A	NOT A
0	1
1	0

Exercises

1. Convert the following numbers to binary

```
49_{(10} = 153_{(10} = 736_{(8} = 428_{(8} = A2E_{(h} = 600))
```

2. Convert the following numbers to decimal

```
1011_{(2} = 126_{(8} = 3B_{(16} =
```

3. Write the results of the following operations in binary.

```
10110_{(2} + 11_{(2} = 11001 \\ 4A_{(16} + F1_{(16} = 01001010+11110001=100111011)
```

4. Write the results of the following logic operations.