Problem 12-14

A spherical carbon-steel tank with an inside diameter of 9 m will be subjected to a working absolute pressure of 310 kPa and a temperature of 27 °C. All of the welds on the tank are butt-welded with a backing strip. Assuming no corrosion allowance is required, what is the required wall thickness of the tank? Estimate the cost of steel for this tank if the cost of steel sheet is \$1.10 per kilogram. On the bases of the data in Figure 12-52, determine the fraction of the purchased cost of the tank that is due to the cost for the steel.

Solution:

Thickness is calculated from the spherical shell equations in Table 12-10 on page 554:

$$t = \frac{P \cdot r}{S \cdot E - 0.2P} + Cc = \frac{209 \cdot 4.5}{94500 \cdot .6 - .2 \cdot 209} + 0 = 0.0166 \text{ m}$$
 ans

t = thickness in meters

P = working pressure in kPa (gauge) = 310-101 = 209 kPa

r = inside tank radius in meters = 4.5 m, given

S = maximum allowable working stress in kPa = 94,500 kPa, Table 12-10, page 555

E = weld efficiency = 0.6, using low estimate for butt-welds, Table 12-10, page 555

Cc = corrosion allowance in m = 0, given

"Limiting conditions" are given in Table 12-10:

Thickness Condition: Is $0.0166 \text{ m} \le 0.356 \cdot 4.5 \text{ m} (=1.602 \text{ m})$? Yes

Pressure Condition: Is $209kPa > 0.665 \cdot S \cdot E (= 0.665 \cdot 94500 \cdot .6 = 37706)$? Yes

Cost of metal: To determine the cost of the metal in the tank, the mass of the metal must be determined from the density and volume of the metal in the spherical shell. The density of steel is found on page 959 in the PTW text, and is 7830 kg/m³. The metal volume is the spherical volume based on the outside radius minus the volume based on inside radius:

metal volume =
$$\frac{4}{3} \cdot \pi \cdot (4.5 + 0.0166)^3 - \frac{4}{3} \cdot \pi \cdot (4.5)^3 = 4.240 \text{ m}^3$$

metal mass = density × volume =
$$\frac{7830 \text{ kg}}{\text{m}^3}$$
 × 4.240 m³ = 33,199 kg

metal cost = 33,199 kg
$$\cdot$$
 \$1.10 / kg = \$36,519 \approx \$36,500 ans

Now, determine the fraction of cost due to steel:

The capacity of the vessel is equal to the internal volume:

capacity = volume =
$$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (4.5)^3 = 382 \text{m}^3$$

From Figure 12-52 on page 557, the cost of a 382m³ vessel is \$221,000. Figure 12-52 is shown below with this reading indicated with red lines. This cost along with the cost of the metal is used to calculate the desired fraction.

fraction of cost =
$$\frac{\$36,500}{\$221,000} = \frac{0.165}{\text{ans}}$$

(CE Price index does not need to be used since all prices are in 2002 dollars).

Cadet answers can vary depending on the reading from Figure 12-52 and the value chosen for weld efficiency. The answer shown here is for a tank cost of \$221,000 and weld efficiency of 0.6.

Figure 12-52. Purchased cost of mixing and storage tanks. Price for mixing tank includes the cost of the driving unit.

Limiting conditions are satisfied. Check using Table 12-10

Problem 12-15

Air at 15 °C and 275 kPa is admitted to the entrance of a horizontal steel pipe with an inside diameter of 0.0779 m. The entering velocity is 15 m/s. Spherical particles with a 60-mesh average particle size are picked up by the airstream immediately downstream from the entrance to the pipe; the weight ratio of solid particles to the air is 4:1, and the density of the particles is 2690 kg/m³. If the pipe is 50 m in length, what is the pressure loss in the pipe?

Solution

This problem is very similar to Example 12-8 on pages 570-572. Students should use this example as a guide to solving the problem. An excel solution to Example 12-8 is linked to the course web page and was discussed in class. This Excel solution was modified below to solve Problem 12-15.

In using this worksheet and a guide to solving the problem, it is important to realize that Example 12-8 uses a compressor, while Problem 12-15 does not. So the inlet pressure to the compressor in the worksheet must be assumed to be 101 kPa. Also, since the velocity in the pipe is 15 m/s, the entering air velocity needs to be set to \sim 39.7 m/s to allow the velocity in cell E23 to be 15 m/s. The Excel worksheet is shown below:

A	В	С	D	Е	F	G	Н	1
1	Design tool for pneumatic conveyor	Problem 12-15		input				
2								
3	Quantity	symbol	units					
4	entering air velocity	V _{feed}	m/s	40				
5	pipe diameter	D	m	0.0779				
6	pipe cross-sectional area	Α	m ²	0.004766	_	Density	of air at	101.3 kF
7	air volumetric flow rate	m _v	m ³ /s	0.190645		>	°C, calcı	
8	air entering density	ρ_{in}	kg/m ³	1.221	before co		C, Caret	natea.
9	air mass flow rate	ma	kg/s	0.232777				
LO	feed air pressure	P _{feed}	kPa	101.325	before co	mpressor		
11	feed air temperature in deg C	T_feed	С	15	assume is	othermal		
12	feed air temperature in K	T_{feed_K}	K	288.15				
13	molecular weight of air	MW	g/mol	28.88				
L4	air pressure after compressor	Pa	kPa	275	at beginning of conveyor			
15	presure drop (assume a value)	ΔP_{est}	kPa	12.21192				
16	air pressure at exit of conveyor (estimate)	P _b	kPa	262.7881	inlet P - P-	drop		
17	average pressure in pipe (calculate)	Pavg	kPa	268.894				
18	gas constant	R _{gas}	J/molK	8.3144				
19	density of air in pipe (estimate)	Pavg	kg/m ³	3.241372	ideal gas			
20	density of solid	ρ_{solid}	kg/m ³	2690	E	ntering a	ir veloci	ty adjuste
21	mass flow rate of solid	m _s	kg/s	0.931109	_	give 15		
22	density of mixture	ρ_{mix}	kg/m ³	16.12912		8-10		
23	average velocity of air in conveyor	Vavg	m/s	15.07285				
24	minimum air velocity (lift velocity)	V _{min}	m/s	80.10417	interp fro	m v_min; m	ust be < v _{av}	2

Cadets should think about the 80.1 m/s minimum lift velocity versus 15.0 m/s. In this problem, the average air velocity is less than the minimum air velocity needed to provide any vertical lift to the solids. What are the implications of this situation? How can it be corrected?

PROBLEM SET 3

57	total power requirement	$P=P_f+P_c/\eta$	kW	23.0688	Iterate cell E15 until this cell (E54) is close			
56	compressor efficiency	η	dimensionless	1				
55					.Z unu	ptably sma		20 10 8
54	difference between ΔP_{est} and ΔP_{calc}	$ \Delta p_{est} - \Delta p_{calc} $	DESCRIPTION OF THE PROPERTY OF	1.75E-07			or pressure	
53	calculated pressure drop	Δp_{calc}	kPa	12.21193	< ltera			
52			\$17.5 h	UUUULL				
51	total frictional losses	Pf	kW	0.88122		indic	ated!	
50	frictional contributions due to solid	$W_{KE} + W_L + W_{sf} + W_{el}$	kW	0.56384				De
19	centrifugal term due to elbows	Wel	kW	0	G. Carrier P.		ver must	he
18	coefficient of sliding friction	f _s	kW		given in problem			
47	sliding friction term	W _{sf}	kW	1000	given on page 569			
16	gravitational constant	g	m/s ²	9.8				
45	elevation (rise)	ΔΖ	m	0.2				
14	gravitational term	W _L	kW	0.00182				
43	kinetic energy term	WKE	kW	0.10577				
12	total frictional contributions due to air	$F_c + F_e + \Sigma F$	kW	0.31738				
41	equivalent length of conveyor	L+L ₀	m	50				
10	length of stright run pipe	N _{el}	m	11				
39	number of elbows	Le	dimensionless	0				
38	equivalent length of elbows		m	0.015	5 given on page 569; use Moo		se Moody P	ot tro
36 37	frictional loss due to straight pipe friction factor	ΣF f	kW dimensionless		use 12-7, Darcy-Weisbach ver			-
35	frictional loss due to expansion	Fe	kW	0.05288				
34	correction factor for turbulent flow	α	dimensionless	0.5				
33	constriction coefficient	K _c	dimensionless		use if/then statement beca		t because to	wo for
32	area ratio, assumed	A ₂ /A ₁	dimensionless	0.75	5 assumed			
31	frictional loss due to sudden constriction	F _c	kW	0.00992	Refer to Table 12-1 or		on page 490	secti
30							1	4
29	delivered compressor power	Pc	kW	22.1876	from Eq 12-22a			
28	heat capacity ratio	k	dimensionless	1.379405	=Cp/Cv			
27	heat capacity at constant volume	C _v	J/molK	21.9143	43 =Cp-R			
26	heat capacity at constant pressure	Cp	J/molK	30.2287	7 looked up in fig D-3, page 95		page 957; re	place

The average velocity in the pipe is less than the minimum required lift velocity, so this conveyor may not work as specified.

To correct for insufficient lift velocity, I used a feed velocity of 145 m/s and inlet pressure of 275 kPa to get an average velocity of 87.1 m/s.