

planetmath.org

Math for the people, by the people.

mutual recursion

Canonical name MutualRecursion
Date of creation 2013-03-22 19:06:31
Last modified on 2013-03-22 19:06:31

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771) Entry type Definition Classification msc 03D20

Synonym simultaneous recursion

Mutual recursion is a way of defining functions via recursion involving several functions simultaneously. In mutual recursion, the value of the next argument of *any* function involved depends on values of the current arguments of *all* functions involved. The following are two simple examples:

- the pair of functions f, g such that f(0) = 0 and g(0) = 1, with f(n+1) = f(n)g(n) and g(n+1) = f(n) + g(n) is defined via mutual recursion. It is easy to see that f(n) = 0 and g(n) = 1.
- Fibonacci numbers can be interpreted via mutual recursion: F(0) = 1 and G(0) = 1, with F(n+1) = F(n) + G(n) and G(n+1) = F(n).

Formally,

Definition. Functions $f_1, \ldots, f_m : \mathbb{N}^{k+1} \to \mathbb{N}$ are said to be defined by *mutual recursion* via functions $g_1, \ldots, g_m : \mathbb{N}^k \to \mathbb{N}$ and functions $h_1, \ldots, h_m : \mathbb{N}^{k+m+1} \to \mathbb{N}$, if

$$f_i(\boldsymbol{x},0) = g_i(\boldsymbol{x}),$$

 $f_i(\boldsymbol{x},n+1) = h_i(\boldsymbol{x},n,f_1(\boldsymbol{x},n),\dots,f_m(\boldsymbol{x},n)),$

for any $\boldsymbol{x} \in \mathbb{N}^k$, and $i = 1, \dots, m$.

Mutual recursion is an apparent generalization of primitive recursion, where the value of the next argument of a function depends on the value of the current argument of the same function, apparent because it is in fact equivalent to primitive recursion.

Proposition 1. As above, if all of g_i and h_i are primitive recursive, so are all of f_i .

Proof. We use the multiplicative encoding technique. Define function $F: \mathbb{N}^{k+1} \to \mathbb{N}$ as follows:

$$F(\boldsymbol{x},n) = \exp(p_1, f_1(\boldsymbol{x},n)) \cdots \exp(p_m, f_m(\boldsymbol{x},n)),$$

where p_i is the *i*-th prime number ($p_1 = 2$, etc...). Furthermore,

$$(F(\boldsymbol{x},n))_i = f_i(\boldsymbol{x},n),$$

where $(z)_i$ denotes the exponent of prime p_i in z. Then

$$F(\boldsymbol{x},0) = \prod_{i=1}^{m} \exp(p_i, g_i(\boldsymbol{x})) = G(\boldsymbol{x}), \text{ and}$$

$$F(\boldsymbol{x}, n+1) = \prod_{i=1}^{m} \exp(p_1, f_1(\boldsymbol{x}, n+1))$$

$$= \prod_{i=1}^{m} \exp(p_i, h_i(\boldsymbol{x}, n, f_1(\boldsymbol{x}, n), \dots, f_m(\boldsymbol{x}, n)))$$

$$= \prod_{i=1}^{m} \exp(p_i, h_i(\boldsymbol{x}, n, (F(\boldsymbol{x}, n))_1, \dots, (F(\boldsymbol{x}, n))_m))$$

$$= H(\boldsymbol{x}, n, F(\boldsymbol{x}, n))$$

where

$$G(\boldsymbol{x}) = \prod_{i=1}^{m} \exp(p_i, g_i(\boldsymbol{x})),$$

and

$$H(\boldsymbol{x}, y, z) = \prod_{i=1}^{m} \exp(p_i, h_i(\boldsymbol{x}, y, (z)_1, \dots, (z)_m))$$

Since each of the g_i is primitive recursive, G is primitive recursive. Since each of the h_i is primitive recursive, H is primitive recursive. So F is primitive recursive, as it is defined via primitive recursion by G and H. Therefore, each $f_i = (F)_i$ is primitive recursive.

Remark. The primitive recursiveness of mutual recursion can be derived from course-of-values recursion. The idea is the following: list the f_i 's in order, and construct a single function F so the its values correspond to the values of the f_i 's in the order given. For example, if two unary functions f_1 and f_2 defined by mutual recursion, then

$$f_1(0)$$
 $f_2(0)$ $f_1(1)$ $f_2(1)$ $f_1(2)$ \cdots $f_1(k)$ $f_2(k)$ $f_1(k+1)$ $f_2(k+1)$ \cdots $F(0)$ $F(1)$ $F(2)$ $F(3)$ $F(4)$ \cdots $F(2k)$ $F(2k+1)$ $F(2k+2)$ $F(2k+3)$ \cdots

Then it is not hard to see that F(k+1) depends on F(k), F(k-1), and F(k-2), and an explicit formula can be derived expressing the dependency. Furthermore, this formula is easily seen to be primitive recursive, and hence so is F(k).