Data Mining

Frequent Itemset Mining and Association Rules

Yannis Velegrakis

University of Trento & Utrecht University

https://velgias.github.io

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Want to discover association rules

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

- People who bought {x,y,z} tend to buy {v,w}
 - ◆Amazon!

Applications – (1)

- Items = products; Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no \$\$'s
- Amazon's people who bought X also bought Y

Applications – (2)

- Baskets = sentences; Items = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - But requires extension: Absence of an item needs to be observed as well as presence

Applications – (3)

- Baskets = documents; Items = words
 - Usual words appearing together in a large number of documents, e.g., Brad and Angelina may indicate that some interesting relationship exists between them.

More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among "items", not "baskets"
- For example:
 - Finding communities in graphs (e.g., Twitter)

Example:

- Finding communities in graphs (e.g., Twitter)
- Baskets = nodes; Items = outgoing neighbors
 - lacktriangle Searching for complete bipartite subgraphs $K_{s,t}$ of a big graph

• How?

- View each node i as a basket B_i of nodes i it points to
- $K_{s,t}$ = a set Y of size t that occurs in s buckets B_i
- Looking for $K_{s,t}$ → set of support s and look at layer t all frequent sets of size t

Outline

- First: Define
 - Frequent itemsets
 - Association rules:
 - Confidence, Support, Interestingness
- Then: Algorithms for finding frequent itemsets
 - Finding frequent pairs
 - A-Priori algorithm
 - PCY algorithm + 2 refinements

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

- **Items** = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$\mathbf{B_1} = \{m, c, b\}$$
 $\mathbf{B_2} = \{m, p, j\}$ $\mathbf{B_3} = \{m, b\}$ $\mathbf{B_4} = \{c, j\}$ $\mathbf{B_5} = \{m, p, b\}$ $\mathbf{B_6} = \{m, c, b, j\}$ $\mathbf{B_7} = \{c, b, j\}$ $\mathbf{B_8} = \{b, c\}$

• Frequent itemsets: {m}, {c}, {b}, {j},

 ${m,b} {b,c} {c,j}.$

Association Rules

- Association Rules:
 If-then rules about the contents of baskets
- $\{i_1, i_2,...,i_k\} \rightarrow j$ means: "if a basket contains all of $i_1,...,i_k$ then it is *likely* to contain j''
- In practice there are many rules, want to find significant/interesting ones!
- *Confidence* of this association rule is the probability of j given $I = \{i_1,...,i_k\}$

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \rightarrow milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Interest of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j
 - Interesting rules are those with high positive or negative interest values (usually above 0.5)

$$Interest(I \rightarrow j) = conf(I \rightarrow j) - Pr[j]$$

Example: Confidence and Interest

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$ $B_3 = \{m, b\}$ $B_4 = \{c, j\}$ $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$ $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Association rule: {m, b} →c
 - **Confidence =** 2/4 = 0.5
 - Interest = |0.5 5/8| = 1/8
 - ◆Item c appears in 5/8 of the baskets
 - ◆Rule is not very interesting!

Finding Association Rules

- Problem: Find all association rules with support
 ≥ s and confidence ≥ c
 - **Note:** Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j\}$ will be "frequent"

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

Mining Association Rules

- Step 1: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - lacktriangle Since I is frequent, A is also frequent
 - **♦ Variant 1:** Single pass to compute the rule confidence
 - \diamond confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - **♦Variant 2:**
 - **\diamond Observation:** If **A**,**B**,**C** \rightarrow **D** is below confidence, so is **A**,**B** \rightarrow **C**,**D**
 - Can generate "bigger" rules from smaller ones!
 - Output the rules above the confidence threshold

Example

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

■ **b** → **m**:
$$c = 4/6$$
 b → **c**: $c = 5/6$ **b**, **c** → **m**: $c = 3/5$ **b**, **m** → **c**: $c = 3/4$ **b** → **c**, **m**: $c = 3/6$

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - Maximal frequent itemsets:

No immediate superset is frequent

Gives more pruning

or

■ Closed itemsets:

No immediate superset has the same count (> 0)

◆Stores not only frequent information, but exact counts

Example: Maximal/Closed

More details

Finding Frequent Itemsets

Itemsets: Computation Model

- Back to finding frequent itemsets
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are small but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - ◆Use *k* nested loops to generate all sets of size *k*

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.

Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os
- In practice, association-rule algorithms read the data in passes all baskets read in turn
- We measure the cost by the number of passes an algorithm makes over the data

Main-Memory Bottleneck

- For many frequent-itemset algorithms,
 main-memory is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster (why?)

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items $\{i_1, i_2\}$
 - Why? Freq. pairs are common, freq. triples are rare
 - ◆Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- Let's first concentrate on pairs, then extend to larger sets
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of *n* items, generate its *n(n-1)/2* pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - ♦Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - ◆Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Counting Pairs in Memory

Two approaches:

- Approach 1: Count all pairs using a matrix
- Approach 2: Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c."
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- Approach 1 only requires 4 bytes per pair
- Approach 2 uses 12 bytes per pair (but only for pairs with count > 0)

Comparing the 2 Approaches

Comparing the two approaches

- Approach 1: Triangular Matrix
 - \blacksquare **n** = total number items
 - Count pair of items $\{i, j\}$ only if i < j
 - Keep pair counts in lexicographic order:

$$\{1,2\}$$
, $\{1,3\}$,..., $\{1,n\}$, $\{2,3\}$, $\{2,4\}$,..., $\{2,n\}$, $\{3,4\}$,...

- Total number of pairs n(n-1)/2; total bytes= $2n^2$
- Triangular Matrix requires 4 bytes per pair
- Approach 2 uses 12 bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than 1/3 of possible pairs actually occur

Comparing the two approaches

- Approach 1: Triangular Matrix
 - \blacksquare **n** = total number items
 - \blacksquare Count pair of items $\{i, j\}$ only if i < j
 - Problem is if we have too many items so the pairs do not fit into
- App

(but

■ Be

Can we do better?

memory.

,4},...

2n²

Algorithms

A-Priori Algorithm

A-Priori Algorithm – (1)

- A two-pass approach called *A-Priori* limits the need for main memory
- Key idea: *monotonicity*
 - If a set of items I appears at least s times, so does every subset
- Contrapositive for pairs:
 If item i does not appear in s baskets, then no pair including i can appear in s baskets
- So, how does A-Priori find freq. pairs?

A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - ◆ Requires only memory proportional to #items
- Items that appear $\geq s$ times are the <u>frequent items</u>
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - $C_k = candidate k-tuples = those that might be frequent sets (support <math>\geq s$) based on information from the pass for k-1
 - \mathbf{L}_{k} = the set of truly frequent k-tuples

Example

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 .

But that one can be more careful with candidate generation. For example, in C_3 we know {b,m,j} cannot be frequent since {m,j} is not frequent

Hypothetical steps of the A-Priori algorithm

- Count the support of itemsets in C₁
- Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C₂
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- \blacksquare Count the support of itemsets in \mathbb{C}_3
- Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$

A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), k = 2 requires the most memory
- Many possible extensions:
 - Association rules with intervals:
 - ◆For example: Men over 65 have 2 cars
 - Association rules when items are in a taxonomy
 - ◆Bread, Butter → FruitJam
 - ◆BakedGoods, MilkProduct → PreservedGoods
 - Lower the support **s** as itemset gets bigger

Algorithms

PCY (Park-Chen-Yu) Algorithm

PCY (Park-Chen-Yu) Algorithm

- Observation:
 - In pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
 - Can we use the idle memory to reduce memory required in pass 2?
- Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - Keep a count for each bucket into which pairs of items are hashed
 - ◆For each bucket just keep the count, not the actual pairs that hash to the bucket!

PCY Algorithm – First Pass

```
FOR (each basket):

FOR (each item in the basket):

add 1 to item's count;

FOR (each pair of items):

hash the pair to a bucket;

add 1 to the count for that bucket;
```

• Few things to note:

- Pairs of items need to be generated from the input file; they are not present in the file
- We are not just interested in the presence of a pair, but we need to see whether it is present at least **s** (support) times

Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent
- However, even without any frequent pair,
 a bucket can still be frequent ⊗
 - So, we cannot use the hash to eliminate any member (pair) of a "frequent" bucket
- But, for a bucket with total count less than s, none of its pairs can be frequent ☺
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)
- Pass 2:
 Only count pairs that hash to frequent buckets

PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not
- 4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory
- Also, decide which items are frequent and list them for the second pass

PCY Algorithm – Pass 2

- Count all pairs {i, j} that meet the conditions for being a candidate pair:
 - **1.** Both i and j are frequent items
 - 2. The pair {i, j} hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)
 - Both conditions are necessary for the pair to have a chance of being frequent

Main-Memory: Picture of PCY

Main-Memory Details

- Buckets require a few bytes each:
 - \blacksquare Note: we do not have to count past s
 - #buckets is O(main-memory size)
- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, why?)
 - Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori

Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
 - **Remember:** Memory is the bottleneck
 - Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent
- Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - *i* and *j* are frequent, and
 - {i, j} hashes to a frequent bucket from Pass 1
- On middle pass, fewer pairs contribute to buckets, so fewer false positives
- Requires 3 passes over the data

Main-Memory: Multistage

Pass 1

Count items
Hash pairs {i,j}

Pass 2

Hash pairs {i,j} into Hash2 iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 Pass 3

Count pairs {i,j} iff: i,j are frequent, {i,j} hashes to freq. bucket in B1 {i,j} hashes to freq. bucket in B2

Multistage – Pass 3

- Count only those pairs $\{i, j\}$ that satisfy these candidate pair conditions:
 - **1.** Both i and j are frequent items
 - **2.** Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is **1**
 - **3.** Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is **1**

Important Points

1. The two hash functions have to be independent

- 2. We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket

Refinement: Multihash

- Key idea: Use several independent hash tables on the first pass
- Risk: Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s
- If so, we can get a benefit like multistage, but in only 2 passes

Main-Memory: Multihash

PCY: Extensions

- Either multistage or multihash can use more than two hash functions
- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory
- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts > s

Algorithms

Frequent Itemsets in < 2 Passes

Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes,
 but may miss some frequent itemsets
 - Random sampling
 - SON (Savasere, Omiecinski, and Navathe)

Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don't pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size

Copy of sample baskets

Space for counts

Random Sampling (2)

- Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)
- But you don't catch sets frequent in the whole but not in the sample
 - Smaller threshold, e.g., *s*/125, helps catch more truly frequent itemsets
 - ◆But requires more space

SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks
- An itemset becomes a candidate if it is found to be frequent in *any* one or more subsets of the baskets.

SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

SON – Distributed Version

- SON lends itself to distributed data mining
- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates

SON: Map/Reduce

- Phase 1: Find candidate itemsets
 - Map?
 - Reduce?
- Phase 2: Find true frequent itemsets
 - Map?
 - Reduce?