03/10/2023 Recitation #2 Handout

Professor: P.J. Healy

TA: Han Wang

1. Public Goods

1.0. Setting:

- The set of agents $N = \{1, 2, \dots, n\}$.
- \bullet Public good consumption y
- Private good consumption $\mathbf{x} = (x_1, \dots, x_n)$
- Agent i's utility $u_i(x_i, y) = v_i(y) + x$ (assume $v_i'' \le 0$)
- The cost of producing public good c(y) (assume c' > 0, $c'' \ge 0$)

1.1. Pareto optimal level of public good

Pareto optimality (+ interior solution) \implies Samuelson condition $\sum_i v_i'(y) = c'(y)$.

1.2. Private provision of public good

Consider case where public good provided by means of private purchases by consumers. A Walrasian equilibrium is a price vector $(p^*, 1)^1$ and an allocation (y^*, \mathbf{x}^*) :

1. Consumers optimize:

$$y_i^* \in \underset{y_i \ge 0}{\operatorname{argmax}} \ v_i \left(y_i + \sum_{j \ne i} y_j \right) - p^* y_i + \theta_i \Pi_0(y_0^*, p^*) \implies v_i' \left(y_i^* + \sum_{j \ne i} y_j^* \right) \le p^*$$

2. Firm optimizes:

$$y_0^* \in \underset{y_0 > 0}{\operatorname{argmax}} \ \Pi_0(y_0, p^*) := p^* y_0 - c(y_0) \implies p^* \le c'(y_0^*)$$

3. Market clears: $y_0^* = \sum_i y_i^*$ (and $x_i^* = \omega_i - p^* y_i^* + \theta_i \Pi_0(y_0^*, p^*), \forall i$)

To sum up, $v_i'(y^*) \leq p^*$, $\forall i$. Draw a graph to illustrate the free-rider issue.

1.3. Internalizing the externality

Consider case where every consumer reports the total amount of the public good she will consume. A Lindahl equilibrium is a price vector $(\mathbf{p}^*, 1)$ such that $\mathbf{p}^* = (p_1^*, p_2^*, \dots, p_n^*)$ and an allocation (y^*, \mathbf{x}^*) :

1. Consumers optimize:

$$y_i^* \in \underset{y_i \ge 0}{\operatorname{argmax}} v_i(y_i) - p_i^* y_i + \theta_i \Pi_0(y_0^*, \mathbf{p}^*) \implies v_i'(y_i^*) \le p_i^*$$

2. Firm optimizes:

$$y_0^* \in \underset{y_0 \ge 0}{\operatorname{argmax}} \ \Pi_0(y_0, \mathbf{p}^*) := \sum_i p_i^* y_0 - c(y_0) \implies \sum_i p_i^* \le c'(y_0^*)$$

3. Market clears: $y_0^* = y_1^* = \dots = y_n^*$ (and $x_i^* = \omega_i - p_i^* y_i^* + \theta_i \Pi_0(y_0^*, \mathbf{p}^*), \forall i$)

To sum up, with interior solution, $\sum_i v_i'(y^*) = c'(y^*)$. [Nice outcome: P.O. & IR] Draw a graph.

¹WLOG, we can normalize the price for the private good to be 1.

2. Social Choice

2.0. Definitions

Example 1. Two teaching assistants decide the color of printing papers for the midterm exam.

- SWF vs SCF/SCC
- Axioms on SWF: Paretian, IIA
- Axioms on SCF: Weak Paretian, monotonicity
- dictatorial

2.1. Arrow's impossibility theorem

We've proved Muller-Satterthwaite theorem (in terms of SCF) during the lecture. Refer to Reny (2000) Arrow's Theorem and the Gibbard-Satterthwaite Theorem: A Unified Approach. Key assumptions:

URIP3: U(niversal domain) - R(ational) - I(IA) - P(aretian) - 3 (alternatives)

- U: think about majority rule under single-peaked preferences
- R: think about Condorcet cycles
- I: think about Borda count
- P: think about constant SCF
- 3: think about majority rule with |X|=2

3. Exercises

- 1. (HW) Consider the problem of public goods. Prove that at the Walrasian equilibrium, the only contributor is the agent with highest $v'_i(y^*)$.
- 2. (HW) Check that in the Kolm triangle, if $p_1 + p_2 = 1$, then price hyperplanes coincide.
- 3. (HW) Consider the domain of single-peaked preferences and let F be the SWF under pairwise majority voting. Is F transitive? (What happens if n is odd/even?) Could F have cycles "below the top"?
- 4. (HW) How to construct from F (SWF) to f (SCF) and to F' (SWF)? Is F the same as F'?