Object Detection in Sterile Compounding Areas

MSCS Final Group #2 Team: Andrew Waggoner, Kyle Russell, and Bob Owens Deep Learning Spring 2023

Motivation/Background

- Intravenous medications (IV) are prepared in especially controlled, highly regulated, sterile environments in hospital pharmacies
- In most hospital pharmacies, pharmacists must verify all doses before they leave the pharmacy
- Several technologies have been developed and employed to ensure accuracy with minimal disruption in the sterile environment
- Current gold standard methods include some or all of the following:
 - Gravimetric analysis
 - Barcode scanning
 - Remote camera viewing
- Related works focus on identification with RCNN, FCNN, or combination and none of them were oriented towards verification
- Can computer vision add an additional verification check that lessens the pharmacists burden in the IV room?

Data Set – Examples

Methods

- Obtained approximately 4,700 images taken in hospital IV rooms
- Labeled the images with Roboflow and then Label Studio
- Trained a YOLO (version 8) model on 1,000 labeled images
 - O Model summary: 225 layers, 3,018,648 parameters, 3,018,632 gradients, 8.2GFLOPs
- Used the trained model to label more images with ML assisted labeling
- Adjusted labeling when needed, i.e. rotating the bounding boxes
- Retrained model, added more labels via predictive labeling, etc.
- We tested the model versus a validation set and unlabeled images not used in the previous steps
 - Train/test/validation split 80/10/10

Initial Findings

- Initial classifications with the COCO dataset put a bounding box around vials, but incorrectly labeled them as bottles
- With a few custom (#20) labeled images, training accuracy improved significantly
- With #50 custom labeled images the model was able to detect vials and syringes on a fairly consistent basis
 - Some of the less commonly labeled items in the images still had a low hit rate (mAP)
 - Additional labeled data was needed

Findings (cont.)

- We passed correctly classified images back in as additional training data
- We also decided to use the ML-assisted labeling to increase our labeled data set dramatically (ended up with 1,000 labeled images)
- We experimented with different numbers of epochs and more than 100 showed no improvement
- Many classes had few labels in the images we trained. (40 different classes)
- After 700 labeled images, YOLO became much better at classifying certain objects, (bags, syringes, common medicines in bottles)

Results-Validation

Model summary (fused): 168 la	yers, 301383	38 para	meters, 0 gr	adients, 8.1	GFLOPs	
Class Im	ages Instar	nces	Box (P	R	mAP50 mAE	50-95):
100%						
all	93	170	0.942	0.922	0.99	0.897
0.9% Sodium Chloride Injectio	n USP	93	12	0.909	0.917	0.933
0.766						
5% Dextrose Injection USP	93	5	0.805	0.832	0.962	
0.747						
Arsenic Trioxide	93	1	1	1	0.995	0.895
Azacitidine	93	1	0.912	1	0.995	0.895
Cyclophosphamide	93	2	1	0.596	0.995	0.895
Folic Acid	93	1	0.904	1	0.995	0.995
Iron Sucrose	93	1	0.905	1	0.995	0.995
Leucovorin Calcium	93	17	1	0.909	0.958	0.881
Levemir	93	4	0.968	1	0.995	0.968
Levetiracetam	93	1	0.91	1	0.995	0.995
Ogivri	93	2	1	0	0.995	0.703
Ondansetron	93	1	0.901	1	0.995	0.995
Oxaliplatin	93	3	1	0.958	0.995	0.56
Paclitaxel	93	1	0.914	1	0.995	0.995
PhaSeal	93	13	0.996	1	0.995	0.852
Potassium Phosphates	93	1	0.927	1	0.995	0.995
Sterile Water	93	3	0.954	1	0.995	0.908
Thiamine HCl	93	9	0.985	1	0.995	0.955
Vancomycin HCl	93	2	0.936	1	0.995	0.995
carboplatin	93	2	0.885	1	0.995	0.995
exactamix bag	93	3	1	0.838	0.995	0.805
flourouracil	93	1	0.811	1	0.995	0.995
irinotecan hydrochloride	93	1	0.961	1	0.995	0.895
needle	93	29	1	0.922	0.995	0.805
small_syringe	93	3	0.96	1	0.995	0.871
syringe	93	50	1	0.934	0.983	0.879
vedolizumab	93	1	0.898	1	0.995	0.995
Speed: 1.8ms preprocess, 0.4m	s inference,	, 0.0ms	loss, 0.7ms	postprocess	per image	

Results-Validation

Examples of results

Conclusion/Future Work

- Results can be further improved with additional labeled data
- Testing with real time classification using a handheld device like a smartphones
- Using segmentation prior to classification to see if we can determine how much liquid is in the syringe
- See if a model can be specific enough to detect changes in light refractivity of the resulting solutions.