```
my_tuple = (1, 2, 4, 5)
print(my tuple)
mytuple = (1,"Anna", True, 3002)
print(mytuple)
print(type(mytuple))
print(mytuple[0])
print(mytuple[-1])
#Slicing a tupke
print(mytuple[1:4])
#Unpack allows assigning tuple elements to multiple variables
id , name , isEmployed , salary = mytuple
print(name)
print(isEmployed)
for ele in mytuple:
   print(ele)
# Built in methods
tuple numbers = (1,2,3,2,1,4,2,1)
print(tuple_numbers.count(1))
#index --> first occurencce
print(tuple numbers.index(1))
my_tuple = (1, (2,3), (4,5))
```

```
print(my_tuple)
lst = list(my_tuple)
print(lst)
tuple1 = tuple(lst)
print(tuple1)
Lsttuples = [(),(),(),('''),('a','b'),('a','b','c')]
removeemppty = [t for t in Lsttuples if t]
print(removeemppty)
#compare two tuples lexiographically
a = (1, 2, 3)
b = (1, 2, 4)
print(a < b)</pre>
# sum built in method
print(sum(a))
# reverse a tuple
reversed_tuple = tuple(reversed(a))
print(reversed tuple)
print(max(a))
```

Create a tuple with different data types and print it.

Access the second element in a tuple.

Try modifying a tuple element and observe the error.

Convert a list to a tuple.

Find the length of a tuple.

Concatenate two tuples.

Use + operator

Repeat a tuple 3 times.

Check if an element exists in a tuple.

Unpack a tuple into variables.

Slice a tuple from index 1 to 3.

Find the index of an element in a tuple.

Count the occurrences of an element in a tuple.

Convert a tuple into a string.

Create a nested tuple.

Iterate through a tuple using a loop.

Find the maximum and minimum values in a numeric tuple.

Reverse a tuple.

Find the sum of elements in a numeric tuple.

Convert a tuple of tuples into a dictionary.

Compare two tuples lexicographically.

SETS

```
# Python sets
# no duplicate values
# mutable(can add/remove elements)
#undordered --> do not have definite order

my_set = {1 , 3,1,5}
print(my_set)
print(type(my_set))
# set methods

#add
my_set.add(4)
print(my_set)

my_set.update([5,6,7])
print(my_set)
```

```
# my set.remove(10) # throw key error
my_set.discard(10) # does not throw error
print(my_set)
#pop
ele = my_set.pop()
print(f"removed : {ele} , Remaining set {my_set}")
my_set.clear()
print(my set)
my dict = {}
print(my_dict)
# Set Operations
# union --> combines (OR | operator)
a = \{1, 2, 3\}
b = \{2, 3, 6\}
print(a.union(b))
print(a|b)
print(a)
print(b)
print(a.intersection(b))
print(a & b)
# differnece
print(a-b)
print(a.difference(b))
print(a.issubset(b))
# print(a.isproperset(b))
c = \{2, 3, 4\}
```

```
d = \{6\}
print(c.issuperset(d))
print(c.isdisjoint(d))
print(a.symmetric difference(b))
a = \{2, 3\}
b = \{2, 3\}
def is proper set(a,b):
    return b.issubset(a) and a!=b
print(is_proper_set(a,b))
# copy() creates copy
copy_set = c.copy()
print(copy set)
# Frozen sets (immutable)
frozen = frozenset([1,2,3])
frozen.add(5)
a.update(b)
print(a)
```

1. Create a set

Create a set with elements {1, 2, 3, 4, 5} and print it.

2. Add an element

Add the element 6 to the set and print the updated set.

3. Remove an element

Remove the element 3 from the set and print the updated set.

4. Discard an element (no error if not present)

Discard the element 10 from the set and print the updated set.

5. Check if elements exist

Check if elements 3 and 6 exist in the set and print the results.

6. Find the length of the set

Create a set {1, 2, 3, 4, 5, 5, 6}, print its length, and observe how duplicates are handled.

7. Set difference

Find the difference between sets $\{1, 2, 3, 4\}$ and $\{3, 4, 5, 6\}$ and print the result.

8. Set union

Find the union of sets {1, 2, 3, 4} and {3, 4, 5, 6} and print the result.

9. Set intersection

Find the intersection of sets $\{1, 2, 3, 4\}$ and $\{3, 4, 5, 6\}$ and print the result.

10. Symmetric difference

Find the symmetric difference between sets $\{1, 2, 3, 4\}$ and $\{3, 4, 5, 6\}$ and print the result.

11. Subset check

Check if $\{1, 2\}$ is a subset of $\{1, 2, 3, 4\}$ and print the result.

12. Superset check

Check if $\{1, 2, 3, 4\}$ is a superset of $\{1, 2\}$ and print the result.

13. Disjoint sets check

Check if sets {1, 2, 3} and {4, 5, 6} are disjoint and print the result.

14. Copy a set

Copy set {1, 2, 3, 4} into another variable and check if they are different objects.

15. Pop an element

Remove a random element from the set {10, 20, 30, 40, 50} using pop() and print the removed element.

16. Clear a set

Clear all elements from a set and print the empty set.

17. Update a set

Update the set {1, 2, 3} with elements {4, 5, 6} and print the updated set.

18. Difference update

Remove elements from $\{1, 2, 3, 4, 5\}$ that are also present in $\{3, 4, 5, 6, 7\}$ using difference_update().

19. Intersection update

Retain only elements in $\{1, 2, 3, 4, 5\}$ that are also in $\{3, 4, 5, 6, 7\}$ using intersection_update().

20. Symmetric difference update

Update set $\{1, 2, 3\}$ to contain only elements that are in either $\{1, 2, 3\}$ or $\{2, 3, 4\}$ but not both.