Einführung in die Neuroinformatik

Tim Luchterhand, Paul Nykiel

22. April 2018

1 Aufgabe

1.1 DGL

$$\tau \dot{u}_j(t) = -u_j(t) + \sum_{i=1}^n c_{ij} \cdot y_i(t - d_{ij}) + x_j(t)$$

Erstes Neuron:

$$\tau \dot{u}_1(t) = -u_1(t) + x_1(t)$$

Zweites Neuron:

$$\tau \dot{u}_2(t) = -u_2(t) + 0.8u_1(t)$$

1.2 Verlauf

13 Maximum

Erstes Neuron: $\max(y_1(t)) = 1$, da der maximale Eingangswert $\max(x_1(t)) = 1$ und das Neuron keine Energie erzeugt. Zweites Neuron: $\max(y_2(t)) = 0.8$, da der maximale Eingangswert $\max(u_1(t)) = 0.8$ und das Neuron keine Energie erzeugt.

1.4 Matlab

```
(a) Matlab Code:
1 %Constants
   tau = 1;
   deltaT = 0.1;
   tEnd = 30;
   weight = 0.8; %c {12}
   timestamps = 0:deltaT:tEnd;
  input = zeros (length (timestamps), 1);
   input (find (timestamps >= 5 & timestamps <= 15)) = 1;
10
  % Allocate memory
   derivative = zeros(1, length(timestamps));
   derivative2 = zeros(1, length(timestamps));
   potential = zeros(1, length(timestamps) + 1);
   potential 2 = zeros(1, length(timestamps) + 1);
15
16
  % First neuron
   for c = 1:length(timestamps)
       derivative(c) = (-potential(c) + input(c))/tau;
19
       potential(c+1) = potential(c) + deltaT * derivative(c);
20
   end
21
22
  % Second neuron
   for c = 1:length (timestamps)
       derivative2(c) = (-potential2(c) + 0.8 * potential(c))/
25
       potential2(c+1) = potential2(c) + deltaT * derivative2(
26
          c);
   end
  % Plots
  subplot (2,2,1)
   plot(timestamps, potential(1:end-1), "b");
   title ("Dendritischen Potenzial an Neuron 1");
   vlabel("t")
   xlabel("u 1(t)")
   subplot (2,2,3)
   plot(timestamps, derivative, "b");
   title ("Ableitung des dendritischen Potenzial an Neuron 1");
```

```
ylabel ("t")
  xlabel("u_1'(t)")
41
  subplot (2,2,2)
42
  plot(timestamps, potential2(1:end-1), "g");
43
   title ("Dendritischen Potenzial an Neuron 2");
44
  ylabel("t")
45
  xlabel("u 2(t)")
  subplot (2,2,4)
48
  plot(timestamps, derivative2, "g");
49
  title ("Ableitung des dendritischen Potenzial an Neuron 2");
   ylabel("t")
  xlabel("u 2'(t)")
52
53
  % Save the file
54
  print('Plot','-depsc')
```

(b) Plots:

Abbildung 1: Dendritischen Potentiale und deren jeweilige Ableitungen

(c) Ab t=15 fallen die Funktionswerte wieder ab, so dass sie für $t\to\infty$ wieder bei 0 sind...

1.5 Zeitkonstante

(a) Mit steigender Zeitkonstante nimmt die Flankensteigung am Ausgang ab, das Neuron reagiert langsamer. Bei geringerer Zeitkonstante reagiert das Neuron schneller.

Abbildung 2: Dendritischen Potentiale und deren jeweilige Ableitungen mit $\tau=0.5$

Abbildung 3: Dendritischen Potentiale und deren jeweilige Ableitungen mit $\tau=2$

(b) Erstes Neuron:

$$0 \cdot \dot{u}_1(t) = -u_1(t) + x_1(t)$$

$$\Leftrightarrow u_1(t) = x_1(t)$$

Zweites Neuron:

$$0 \cdot \dot{u}_2(t) = -u_2(t) + 0.8u_1(t)$$

$$u_2(t) = 0.8u_1(t)$$

Für $\tau = 0$ ist die Flankensteigung unendlich hoch und das Eingangssignal wird unverändert vom Neuron wieder ausgegeben, beziehungsweise nur skaliert.

1.6 Übertragungszeit

Eine Übertragungszeit führt dazu das die Antwort des zweiten Neurons auf das Signal des ersten Neurons verzögert wird, das heißt $u_2(t)$ wird nach rechts verschoben.