Notação Assintótica e Complexidade SCC201/501 - Introdução à Ciência de Computação II

Prof. Moacir A. Ponti www.icmc.usp.br/~moacir

Instituto de Ciências Matemáticas e de Computação - USP

2020/2

Sumário

Eficiência assintótica

- O comportamento assintótico é aquele para o qual o tamanho da entrada tende ao infinito.
- Representa a eficiência em termos da ordem de crescimento, ou apenas ordem, do algoritmo.

Crescimento de funções

Análise assintótica de algoritmos

- parte da contagem de operações e uma função de eficiência
- caracteriza a complexidade como uma função do tamanho da entrada, e.g. n
- um algoritmo assintoticamente mais eficiente é a melhor escolha para todas as entradas, *a partir de um certo n*.
- analisar a complexidade independente do sistema computacional utilizado

Sumário

Notação assintótica: O (big oh)

• Para uma dada função g(n), O(g(n)) é um <u>conjunto</u> de funções:

$$O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que}$$

 $0 \le f(n) \le c \cdot g(n) \text{ para todo } n \ge n_0 \}$

• f(n) pertence a O(g(n)) se existe c > 0 de forma a estar limitada por $c \cdot g(n)$ para um valor de n suficientemente grande

Notação assintótica: O

- com $n > n_0$, valores de f(n) residem em $c \cdot g(n)$ ou abaixo desse.
- g(n) é um limite superior para f(n)
- Exemplo: $2n^2 \notin O(n^3)$
 - $-2n^2$ é limitado superiormente por $O(n^3)$
 - a taxa de crescimento de $2n^2$ é menor ou igual à taxa de n^3

Fonte da figura: CORMEN et al.(2002)

Notação assintótica: O (big oh) — exemplos

- Exemplo 1: $2n + 10 \in O(n)$
 - podemos realizar uma manipulação para encontrar c e n_0 :

$$2n + 10 \le c \cdot n$$

$$c \cdot n - 2n \ge 10$$

$$(c - 2)n \ge 10$$

$$n > \frac{10}{2}$$

- a afirmação é válida para c = 3 e $n_0 = 10$.
- Exemplo 2: $n^2 \in O(n)$
 - é preciso encontrar c que seja sempre maior ou igual a n para todo valor de um n_0 :

$$n^2 \le c \cdot n \Rightarrow n \le c$$

• é impossível pois c deve ser constante.

Notação assintótica: O (big oh) — exemplos

- Exemplo 3: $3n^3 + 20n^2 + 5 \notin O(n^3)$
 - é preciso encontrar c>0 e $n_0\geq 1$ tais que $3n^3+20n^2+5\leq c\cdot n^3$ para $n\geq n_0$
 - como $3n^3 + 20n^2 + 5 \le (3 + 20 + 5) \cdot n^3$, podemos tomar c = 28 e qualquer $n_0 > 1$
- Exemplo 4: $3 \log n + 5 \in O(\log n)$
 - é preciso encontrar c>0 e $n_0\geq 1$ tais que $3\log +5\leq c\cdot \log n$ para todo $n\geq n_0$
 - note que $3 \log n + 5 \le (3+5) \cdot \log n$ se $n > 1 (\log 1 = 0)$
 - basta tomar, por exemplo, c = 8 e qualquer $n_0 = 2$
- Exemplo 5: $2^{n+2} \notin O(2^n)$
 - é preciso c>0 e $n_0\geq 1$ tais que $2^{n+2}\leq c\cdot 2^n$ para todo $n\geq n_0$
 - note que $2^{n+2} = 2^n + 2^2 = 4 \cdot 2^n$
 - assim, basta tomar, por exemplo, c = 4 e qualquer n_0

Notação de igualdade para conjuntos de funções: O

- a igualdade é utilizada no sentido de "representatividade" e pode ser lida como "é".
- um conjunto em uma fórmula representa uma função anônima.
- Exemplo 6:

$$f(n) = n^3 + O(n^2)$$

significa que existe um $h(n) \in O(n^2)$ de forma que $f(n) = n^3 + h(n)$.

• Exemplo 7:

$$n^2 + O(n) = O(n^2)$$

significa que, para qualquer $f(n) \in O(n)$ existe $h(n) \in O(n^2)$ de forma que $n^2 + f(n) = h(n)$.

• Para uma dada função g(n), denotamos $\Theta(g(n))$ o conjunto de funções:

$$\Theta(g(n))=\{f(n): \text{ existem constantes positivas } c_1,\ c_2 \in n_0 \text{ tais que } 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \text{ para todo } n \geq n_0 \}$$

- basta multiplicar g(n) por duas constantes diferentes para obtermos um limite superior e inferior para f(n).
- uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existem constantes positivas c_1 e c_2 tais que ela possa estar limitada entre $c_1g(n)$ e $c_2g(n)$ para um valor de n suficienemente grande
- podemos dizer que $f(n) \in \Theta(g(n))$, enquanto $f(n) = \Theta(g(n))$ é abuso da notação de igualdade (não é simétrico)

- Para $n > n_0$, f(n) reside em $c_1g(n)$ ou acima dele e em $c_2g(n)$ ou abaixo desse.
- para todo $n > n_0$, $f(n) \approx g(n)$ dentro de um fator constante.
- g(n) é um limite "estreito" para f(n)

Fonte da figura: CORMEN et al.(2002)

Para mostrar formalmente que, por exemplo, $\frac{1}{2}n^2 - 3n = \Theta(n^2)$:

• definiremos constantes positivas c_1 , c_2 e n_0 tais que:

$$c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2,$$

para todo $n \ge n_0$. Dividindo por n^2 :

$$c_1\leq \frac{1}{2}-\frac{3}{n}\leq c_2,$$

- a desigualdade do lado direito pode ser considerada válida para $n \ge 1$ escolhendo $c_2 \ge 1/2$, e a do lado esquerdo pode ser considerada válida para $n \ge 7$ escolhendo $c_1 \ge 1/14$.
- para $c_2 = 1/2$, n = 7 e $c_1 = 1/14$, temos: $\frac{1}{2}n^2 3n = \Theta(n^2)$

• também é possível mostrar que $6n^3 \neq \Theta(n^2)$, para isso devemos encontrar:

$$c_1 n^2 \leq 6n^3 \leq c_2 n^2,$$

• dividindo os termos por n^2 , temos:

$$c_1 \leq 6n \leq c_2$$

- e assim chegamos a: $n \le \frac{c_2}{6}$
 - ullet mas c_2 é constante e n não poderia ser suficientemente grande
 - ullet não podemos encontrar também c_1 que atenda à condição.
- ullet assim, por contradição, provamos que $6n^3
 eq \Theta(n^2)$

Sumário

Notação assintótica: Ω (omega)

- Na maiora dos casos estamos interessados no limite superior, pois queremos a complexidade no pior caso
- Também podemos analisar o limite assintótico inferior para expressar algo que esteja "pelo menos" em um dado comportamento.
- Para g(n), $\Omega(g(n))$ é o conjunto de funções:

$$\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que} \\ 0 \le c \cdot g(n) \le f(n) \text{ para todo } n \ge n_0 \}$$

• f(n) pertence a $\Omega(g(n))$ se existem $c, n_0 > 0$ tais que ela seja esteja limitada inferiormente por $c \cdot g(n)$ para um valor de n suficienemente grande

Notação assintótica: Ω (omega)

- Para $n > n_0$, f(n) reside em $c \cdot g(n)$ ou acima desse.
- Exemplo: 3n² + n = Ω(n)
 n é um limite inferior para 3n² + n,
 a taxa de crescimento de 3n² + n é maior ou igual à de n

Fonte da figura: CORMEN et al.(2002)

Notação de igualdade para conjuntos de funções: Ω

Exemplo:

$$\sqrt{n} = \Omega(\lg(n))$$

podemos ler: "raiz de n é, pelo menos, omega de $\lg(n)$ " para um n suficientemente grande $(n \ge n_0)$.

Notação assintótica

- <u>Exemplo</u>: para dois algoritmos quaisquer, considere as funções de eficiência:
 - f(n) = 1000n
 - $g(n) = n^2$
- ullet f é maior do que g para valores pequenos de n
- g cresce mais rapidamente, e finalmente resultará em maiores valores, sendo o ponto de mudança n=1.000
- segundo as notações vistas, se existe um n_0 a partir do qual $c \cdot f(n)$ é pelo menos tão grande quanto g(n), então, desprezando os fatores constantes e considerando $n_0 = 1.000$ e c = 1:
 - $1000n = O(n^2)$
 - ou $f(n) = O(n^2)$
- o mesmo aconteceria para $n_0 = 10$ e c = 100.

Notação assintótica: relações e teorema

Analogias

$$O \qquad \Omega \qquad \in$$

Teorema (1)

para duas funções g(n) e f(n), $f(n) = \Theta(g(n))$ se e somente se:

- f(n) = O(g(n)) e
- $f(n) = \Omega(g(n))$.

Utilidade

• utilizamos o teorema para demonstrar limites assintoticamente restritos a partir de limites assintóticos superiores e inferiores.

Sumário

Notações o e ω : limite estritamente superior ou inferior

- Muito parecidas com as notações O e Ω , respectivamente. No entanto possui uma relação do tipo *menor* e *maior*.
 - ao invés de menor ou igual e maior ou igual.
- Não representam limites próximos, mas apenas estritamente superiores e inferiores.
- O limite pode até mesmo ser distante. Exemplos:

 - $n^3 \in \omega(n).$
- No entanto, como são estritamente superiores e inferiores
 - $\bullet n \notin o(n).$

Notações o e ω

• Para uma função g(n), o(g(n)) é o conjunto de funções:

$$o(g(n)) = \{f(n) : \text{ para qualquer } c > 0 \text{ e } n_0 > 0 \text{ tais que}$$

 $0 \le f(n) < c \cdot g(n) \text{ para todo } n \ge n_0 \}$

• e $\omega(g(n))$ o conjunto de funções:

$$\omega(g(n)) = \{f(n) : \text{ para qualquer } c > 0 \text{ e } n_0 > 0 \text{ tais que} \\ 0 \le c \cdot g(n) < f(n) \text{ para todo } n \ge n_0 \}$$

- $f(n) \in \omega(g(n))$ se e somente se $g(n) \in o(f(n))$
- Intuitivamente, (se o limite existe),

para
$$\omega(g(n))$$
, $\lim_{n\to 0}\frac{f(n)}{g(n)}=\infty$, e para $o(g(n))\lim_{n\to \infty}\frac{f(n)}{g(n)}=0$

Notações o e ω

- Exemplo 1 : $2n^2 = o(n^3)$
 - n^2 é sempre menor que n^3 para um n suficientemente grande.
 - ullet é preciso apenas determinar n_0 em função de c
- Exemplo 2 : $2n^3 \neq o(n^3)$
 - ignorando as constantes, não podemos dizer que n^3 é sempre menor que n^3 para um n suficientemente grande.
- Exemplo 3: $\frac{1}{2}n^2 = \Theta(n^2)$, mas
 - $\frac{1}{2}n^2 \neq o(n^2)$, e
 - $\bullet \ \ \frac{1}{2}n^2 \neq \omega(n^2)$

Sumário

Notação assintótica

Algumas regras

- Se $T_1(n) = O(f(n))$ e $T_2(n) = O(g(n))$, então: $T_1(n) + T_2(n) = \max[O(f(n)), O(g(n))]$ e $T_1(n) \cdot T_2(n) = O(f(n) \cdot g(n))$.
- $log_k n = o(n)$ para qualquer k pois logaritmos crescem muito lentamente

Notação assintótica

... Algumas regras

• Se T(x) é um polinômio de grau n, então: $T(x) = \Theta(x^n)$.

Relembrando

• um polinômio de grau *n* é uma função na forma:

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_0 \cdot x + a_0$$

- classificação em função do grau
 - 0: constante
 - 1: linear
 - 2: quadrático
 - 3: cúbico

Funções importantes (1/3)

- Constante: ≈ 1
 - independente do tamanho de n, operações executadas um número fixo de vezes.
- Logarítmica: $\approx \log_b n$
 - típica de algoritmos que resolvem um problema transformando-o em problemas menores.
 - para dobrar $\log_2 n$ é preciso fazer $\log_2 n^2$.
 - a base também muda pouco os valores: $\log_2 n \approx 20$ e $\log_{10} n \approx 6$ para n=1.000.000.
- Linear: $\approx n$
 - em geral, uma certa quantidade de operações é realizada sobre cada um dos elementos de entrada.
 - melhor situação para quando é preciso processar n elementos de entrada e obter n elementos de saída.

Funções importantes (2/3)

- Log linear (ou n-log-n): $\approx n \cdot \log_b n$
 - típico de algoritmos que resolvem um problema transformando-o em problemas menores, resolvem cada um de forma independente e depois ajunta as soluções.
 - para dobrar $n \cdot \log_2 n$ é preciso fazer aproximadamente $n \cdot \log_2 2n$.
- Quadrática: $\approx n^2$
 - ocorre frequentemente quando os dados são processados aos pares, com laços de repetição aninhados.
 - sempre que *n* dobra, o tempo de execução é multiplicado por 4.
 - podem ser úteis para resolver problemas de tamanho relativamente pequeno.
- Cúbica: $\approx n^3$
 - ocorre em multiplicações de matrizes, com três estruturas de repetição aninhadas.
 - sempre que *n* dobra, o tempo de execução é multiplicado por 8.
 - podem ser úteis para resolver problemas de tamanho relativamente pequeno (ou quando não se tem outra opção!).

Funções importantes (3/3)

- Exponencial: $\approx a^n$
 - geralmente ocorre quando se usa uma solução de força bruta.
 - para o caso 2ⁿ, sempre que n dobra, o tempo de execução é elevado ao quadrado.
 - não são úteis do ponto de vista prático.
- Fatorial: $\approx n!$
 - pode ser considerado "exponencial", mas tem um comportamento muito pior.
 - geralmente ocorre quando se usa uma solução de força bruta.
 - para n = 20, $n! \approx 2,4 \times 10^{18}$,
 - – para o dobro n = 40, $n! \approx 8, 2 \times 10^{47}$.
 - definitivamente, não são úteis do ponto de vista prático.

Funções e tempo cronológico

segundos
minutos
séculos

Características Aproximadas do Hardware			
Número de Instruções executadas por Ciclo do relógio (IPC)	8		
Freqüência (1 / período do ciclo em min.)	3E+09		
No. de Instruções por minuto	24E+09		

T(n)	n = 20	n = 40	n = 60	n = 80
n	5,3E-08	1,1E-07	1,6E-07	2,1E-07
n log n	2,3E-07	5,7E-07	9,5E-07	1,3E-06
n ²	1,1E-06	4,3E-06	9,6E-06	1,7E-05
n ³	2,1E-05	1,7E-04	5,8E-04	1,4E-03
2 ⁿ	2,8E-03	48,9	1,0	1,0E+06
3 ⁿ · · · · · · · · · · · · · · · · · · ·	0,2	5,4E+08	1,9E+18	6,6E+27

Fonte da figura: notas de aula do Prof. Ricardo Campello

Exercício

- Um algoritmo tradicional e muito utilizado possui complexidade $n^{1,5}$, enquanto um algoritmo novo proposto é da ordem de $n \log n$:
 - $f(n) = n^{1,5}$
 - $g(n) = n \log n$
- Qual algoritmo adotar?
- Uma possível solução:

$$f(n) = \frac{n^{1,5}}{n} = n^{0,5} \quad \Rightarrow (n^{0,5})^2 = n$$

$$g(n) = \frac{n \log n}{n} = \log n \implies (\log n)^2 = \log^2 n$$

 Como n cresce mais rapidamente do que qualquer potência de log, o algoritmo novo é mais eficiente.

- Se f(n) for um polinômio de grau d então f(n) é $O(n^d)$
 - despreze os termos de menor ordem
 - despreze os fatores constantes
- Use a menor classe de funções possível
 - $2n \in O(n)$, ao invés de $2n \in O(2n)$
- Use a expressão mais simples
 - 3n + 5 é O(n), ao invés de 3n + 5 é O(3n)

Exemplo: n^2 vs. $10^5 n^2 + 10^8 n$ e n vs. $10^2 n^2 + 10^5$

Fonte da figura: notas de aula do Prof. Ricardo Campello

- Há casos em que a análise assintótica ignora fatores assintoticamente irrelevantes, mas relevantes na prática: em especial quando temos interesse em entradas relativamente pequenas.
- Ao comparar dois algoritmos com tempo de execuçao:
 - $f(n) = 10^{100}n$, e
 - $g(n) = 10n \log n$

pela análise assintótica, o primeiro é mais eficiente

- ullet No entanto, 10^{100} é o número estimado (por alguns astrônomos) como o limite superior para a quantidade de átomos no universo observável
 - $10n \log n > 10^{100} n$ apenas para $n > 2^{10^{99}}$

- Repetições: o tempo de execução é pelo menos o tempo dos comandos dentro da repetição multiplicada pelo número de vezes que é executada.
 - o exemplo abaixo é O(n)
 para i de 1 ate n faca
 a = a*i
- Repetições aninhadas: análise feita de dentro para fora
 - o tempo total é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições.
 - o exemplo abaixo é $O(n^2)$

```
para i de 1 ate n faca
  para j de 0 ate n-1 faca
  a = a*(i+j)
```


- Condições: o tempo nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos dentro do bloco do "então" e do "senão"
 - o exemplo abaixo é O(n), mas não é $\Theta(n)$.

```
se (a < b) entao
   a = a + 1
senao
  para i de 1 ate n-1 faca
  a = a*i</pre>
```

- Chamadas à subrotinas:
 - a <u>subrotina</u> deve ser analisada <u>primeiro</u> e depois ter suas unidades de tempo incorporadas ao programa que a chamou

Exercício

 Quantas unidades de tempo s\(\tilde{a}\)o necess\(\tilde{a}\)rias para rodar o algoritmo abaixo? Qual a ordem de complexidade de tempo?

```
01
    inicio
02
       i, j: inteiro
03
       A: vetor inteiro de n posicoes
04 i = 1
05
06
       enquanto (i < n) faca
07
          A[i] = 0
08
          i = i + 1
09
10
       para i = 1 ate n faca
11
          para j = 1 ate n faca
12
             A[i] = A[i] + (i*j)
13
    fim
```


Bibliografia

- CORMEN, T.H. et al. Algoritmos: Teoria e Prática (Caps. 1–3).
 Campus. 2002.
- ZIVIANI, N. Projeto de algoritmos: com implementações em Pascal e C (Cap. 1). 2.ed. Thomson, 2004.
- FEOFILOFF, P. Minicurso de Análise de Algoritmos, 2010. Disponível em: http://www.ime.usp.br/~pf/livrinho-AA/.
- DOWNEY, A.B. Analysis of algorithms (Cap. 2), Em: Computational Modeling and Complexity Science. Disponível em: http://www.greenteapress.com/compmod/html/book003.html
- ROSA, J.L. Notas de Aula de Introdução a Ciência de Computação II.
 Universidade de São Paulo. Disponível em:
 http://coteia.icmc.usp.br/mostra.php?ident=639
- CAMPELLO, R. Notas de Aula de Introdução a Ciência de Computação II. Universidade de São Paulo. Disponível em: http://coteia.icmc.usp.br/mostra.php?ident=611

