Impact of Model Numerics on Weather Depiction 1.2

Updated: November 21, 2000

Objective

 Given access to meteorological data, interpret numerical weather prediction products IAW an evaluation checklist. Meas: PC/W

Topics Overview

- 1. Model Type
 - Grid point and Spectral
- 2. Vertical Coordinates
- 3. Horizontal Coordinates
- 4. Vertical Resolution
- 5. Domain & Boundary Conditions

Model Type Overview

- 1. Numerical Weather Prediction
- 2. The Primitive Equations
- 3. Approximations of Weather Features
- 4. How Models Solve the Forecast Equations
 - Grid point and Spectral
- 5. Hydrostatic/Non-Hydrostatic Models

Numerical Weather Prediction

Primitive Equations (PE): The Magic Five

- Wind Forecast Equations
- Continuity Equation
- Temperature Forecast Equation
- Moisture Forecast Equation
- Hydrostatic Equation

Primitive Equation Ultimate Aim!

- Understand,
 - All the primitive equations input and output data between the other formulas
 - If one equation has a problem it might skew another formula's solution
 - Knowing this concept helps make assessments easier

Approximations of Weather Features

- Why Approximate?
 - Forecast equations cannot contain all details
 - Some features are too small
 - Current model resolution are too low
 - Therefore, atmospheric fields will be missing or misrepresented
- NWPs estimate the existence of events by solving other elements of an equations.

How Models Solve the Forecast Equations

Numerical models solve the forecast equations using one of two basic model formulations:

- 1. Grid Point
- 2. Spectral

Grid Point Models

The forecast variables are specified on a set of evenly spaced grid points.

Grid Point Models

- Equations must be computed at all vertical levels for every point
- All forecast times must repeat the computation process

Spectral Models

- Use continuous waves to solve forecast equations
- Smooth waveform of a constant field
- Similar to handanalysis of upper level height charts

Grid Point: Data Representation

- In the real atmosphere, weather features change in a smooth, continuous way
- Grid points are an average of the grid box, not exact values.

Grid Point 3-D Cubes

 Grid point models actually represent the atmosphere in threedimensional grid cubes

Grid Point: Truncation Errors

- Some weather features are very small scale
 - Sea Breeze
 - Temperature Variations
- Model grid point spacing is a factor in its accuracy
- Any lack of resolution introduces errors into the solution

Spectral Models: How Data are Represented

- Use continuous waves to solve forecast equations
- Smooth waveform of a constant field
- Similar to handanalysis of upper level height charts

Hydrostatic/Non-Hydrostatic Models

- Hydrostatic no vertical accelerations are calculated
 - Can not forecast for large scale thunderstorms
 - NOGAPS, MRF, and ECMWF
- Non-Hydrostatic can calculate for convection
 - Can forecast for thunderstorms if grid size is small enough to depict the area.
 - COAMPS and AFWA's MM5

Example of a Grid Point, Non-Hydrostatic Model

- Mesoscale
 Convective Cell
 forecast by
 COAMPS
 Southwest Asia
 9km nest
- 18 hour forecast showed gust front from maturing cells

Summary

1. The concept for NWPs

 Initial conditions + forces that affect change = forecast

2. There are Five Primitive Equations

 Wind, Continuity, Temperature, Moisture, Hydrostatic

3. Approximations of Weather Features

 Forecast equations cannot contain all details at all resolutions

4. Grid Point and Spectral models

 Two different techniques for computing the equations

Grid Point Model Summary

- 1. Data are represented on a fixed set of grid points
- 2. Resolution is a function of the grid point spacing
- 3. All calculations are performed at grid points
- 4. Approximations are used for solving the equations
 - Error is introduced through approximations

Spectral Summary

- 1. Data are represented by wave functions
- 2. Originally designed for global domains
- 3. Generally not designed for higher resolution regional and mesoscale applications
- 4. Require less computing resources

Non-Hydrostatic Summary

- 1. Used for forecasting small-scale phenomena
- 2. Capable of predicting convection and mountain waves
- 3. Account for cloud and precipitation processes and their contribution to vertical motions
- 4. Take longer to run than hydrostatic models with the same resolution and domain size

- What characteristics of the model forecast equations limit the accuracy of the forecast? (Select all choices that apply)
 - 1. They have approximations in the physics terms.
 - 2. Approximations are used in deriving the forecast equations.
 - 3. They cannot be solved accurately in either spectral or grid point models at any resolution
 - 4. The equations contain complex terms for which initial values cannot be determined accurately.

• The use of either grid point or spectral methods in NWP models makes it possible to...

(Select all choices that correctly complete the following sentence)

- 1. Solve the model equations without producing errors.
- 2. Produce mathematical representation of the full atmosphere.
- 3. Completely represent all details of the atmosphere.
- 4. Derive and solve the model equations using a mathematical framework.

- Both grid point and spectral methods have errors as a result of having to equation values.
 - 1. Ignore
 - 2. Estimate
 - 3. Specify
 - 4. Intensify

- Both methods leave out information, but in different ways. Spectral methods provide nearly perfect representation but are limited by the of the phenomena.
 - 1. Grid Spacing
 - 2. Strength
 - 3. Wave Length
 - 4. Type

- The errors in spectral methods are 'errors of omission,' whereas those in the grid point method are computational in nature. Both errors contribute to what is known as
 - 1. Approximations
 - 2. Wavelength effects
 - 3. Finite errors
 - 4. Truncation errors/effects

(Fill in either Non-hydrostatic or hydrostatic) models can explicitly forecast vertical motion. 2. models are used especially for forecasting smaller-scale phenomena, such as convection. 3. models are used in global and regional models. models are used only over small 4. domains.

- Spectral models use ______ in its equation values, while grid point models use ______ to define meteorological fields.
 - 1. Wave lengths, linear terms
 - 2. Grid boxes, wave functions
 - 3. Continuous wave, grid boxes

Which model type is best for forecasting each phenomenon? (Fill in either Spectral, Grid Point (Non-hydrostatic) or Grid Point (hydrostatic) Planetary wave pattern for the next 7 days. 2. Development and evolution of a mesoscale convective system. 3. Outflow boundary propagation 24-hr boundary layer wind forecast.

References

- 1. MetEd: Numerical Weather Prediction Unit 1 *Model Fundamentals* http://meted.ucar.edu/nwp/pcu1/ic1/frameset.htm
- 2. Isentropic Meteorology

http://soo.wilm.noaa.gov/isentropic/