

L'essentiel de la norme ISO 26262

2 jours (14 heures)

Tarif inter : de 1030 € HT à 1100 € HT

Tarif intra: nous consulter

FORMATION EN PRESENTIEL

Dates, lieux et tarifs sur sia.fr

Personnel concerné

Toute personne ayant à participer aux démarches de sécurité fonctionnelle, depuis la réponse à l'appel d'offres jusqu'à la vie série : chefs de projet, architectes et ingénieurs développement systèmes et composants EE hard/soft ; ingénieurs R&D, chargés de projet ou responsables d'affaires, responsables techniques métiers produit, process et production, responsables qualité, ingénieurs de sûreté de fonctionnement.

Prérequis

Avoir une formation générale de niveau ingénieur ou posséder une expérience équivalente.

Animateur

Jérôme GARCIN, ingénieur-consultant, expert en sécurité fonctionnelle. Membre de la Communauté d'Experts

« Fiabilité - Qualité - Sécurité » de la SIA.

Méthodes et moyens pédagogiques

Apports théoriques avec support Powerpoint. Mise en œuvre des pratiques et des méthodes exposées par des exercices applicatifs se rapprochant de situations réelles.

Séances de questions/réponses.

Échanges d'expérience.

Remise d'un support de cours, au format papier et électronique.

Moyens techniques

Salle de formation climatisée, équipée d'un vidéoprojecteur, d'un écran et d'un paper board.

Suivi et évaluation

Feuille d'émargement signée par demi-journée par les stagiaires et cosignée par le formateur. Évaluation de la formation par les participants Questionnaire en ligne permettant d'évaluer les acquis à l'issue de la formation. Remise d'une attestation de formation.

Délais d'accès

Inter-entreprises: inscription au plus tard 2 jours avant la formation Intra-entreprise: organisation sous deux semaines minimum.

Accessibilité aux personnes en situation de handicap

Contacter notre référent handicap : referenthandicap@sia.fr

OBJECTIFS

Être capable :

- D'identifier le besoin de sécurité fonctionnelle dans le monde automobile avec son échelle de risque associée, dans une démarche de sûreté de fonctionnement
- D'identifier les motivations de la norme ISO 26262 et ses interactions avec les autres normes de sécurité liées à l'automobile : IATF 16949, ISO 21448, ISO 21434 et Automotive SPICE V3.1
- D'appréhender l'impact de la norme ISO 26262 sur l'organisation des sociétés, des projets et sur les relations clients/fournisseurs,
- De définir les nouveaux concepts relatifs à la sécurité introduits par la norme ISO 26262 ainsi que la terminologie associée (Safety goal, ASIL, functional and technical safety concept, PMHF, SPFM, LFM...)
- De citer les livrables et les méthodes associés à chaque étape du cycle de vie permettant d'analyser et de réduire les risques : Hazard Assessment and Risk Analysis, ASIL decomposition, FMEDA.

PROGRAMME

Sûreté de fonctionnement et sécurité fonctionnelle dans l'automobile

- Besoin, domaine d'application et indicateurs (fiabilité, maintenabilité, disponibilité et sécurité) de la sûreté de fonctionnement
- Le besoin de sécurité fonctionnelle dans l'automobile et son échelle de risque associée (ASIL).

Périmètre d'application de la sécurité fonctionnelle : la norme ISO 26262 dans l'automobile

- Champ d'application de la norme ISO 26262 : produits, projets, clients, fournisseurs.
- Interactions avec les autres normes de sécurité liées à l'automobile :
 - IATF 16949 : Démarche Qualité dans l'industrie automobile,
 - ISO 21448 : Sécurité de la fonction attendue SOTIF,
 - ISO 21434 : Ingénierie de la cybersécurité,
 - Automotive SPICE V3.1 : Modèle de développement applicable aux systèmes E/E (logiciels embarqués).

Management de la sécurité fonctionnelle

- Organisation et responsabilités
- Planification (Safety Plan)
- Revues, audit et assessment (Confirmation measures).

Phase de concept fonctionnel

- Définition du produit (item definition)
- Analyse de risque et objectif sécurité associé (HARA, Safety Goal)
- Concept de sécurité fonctionnelle.

Développement du produit au niveau système

• Concept de sécurité technique

- Conception du système et lien vers Hardware (électrique et/ou électronique) et Software
- Analyses de sécurité fonctionnelle au niveau système : AMDEC, Arbre de défaillance
- Intégration et validation.

Développement du produit au niveau Hardware

- Spécification des exigences relatives au hardware
- · Conception du hardware
- Analyse de sécurité fonctionnelle (FMEDA) au niveau Hardware pour le calcul de la fiabilité
- Étude de la conformité aux objectifs de sécurité et métriques (PMHF, SPFM, LFM)
- Tests d'intégration et vérification.

Développement du produit au niveau Software

- Spécification des exigences relatives au software
- Conception du software
- Tests d'intégration et vérification.

Production et opération

- Sécurité fonctionnelle en production
- Sécurité fonctionnelle en opération, service et fin de vie.

Processus support

- Interfaces entre les parties prenantes (DIA)
- Gestion de la configuration
- Gestion des changements et des problèmes
- Gestion de la documentation
- Méthodes alternatives pour être conforme à l'ISO 26262 (qualification of SW components, evaluation of HW elements, Safety Element Out Of the Context, Proven in Use).

Larissa RIFFAUD

larissa.riffaud@sia.fr // 07 86 76 12 79