Operational Amplifiers, Single Supply 3.0 V to 44 V, Low Power

Quality bipolar fabrication with innovative design concepts are employed for the MC33171/72/74, NCV33172/74 series of monolithic operational amplifiers. These devices operate at 180 μA per amplifier and offer 1.8 MHz of gain bandwidth product and 2.1 V/ μ s slew rate without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage includes ground potential (V $_{\rm EE}$). With a Darlington input stage, these devices exhibit high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33171/72/74, NCV33172/74 are specified over the industrial/automotive temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic as well as the surface mount packages.

Features

- Low Supply Current: 180 µA (Per Amplifier)
- Wide Supply Operating Range: 3.0 V to 44 V or ±1.5 V to ±22 V
- Wide Input Common Mode Range, Including Ground (V_{EE})
- Wide Bandwidth: 1.8 MHz
- High Slew Rate: 2.1 V/us
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14.2 V to +14.2 V (with ±15 V Supplies)
- Large Capacitance Drive Capability: 0 pF to 500 pF
- Low Total Harmonic Distortion: 0.03%
- Excellent Phase Margin: 60°
- Excellent Gain Margin: 15 dB
- Output Short Circuit Protection
- ESD Diodes Provide Input Protection for Dual and Quad
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

PDIP-8 P SUFFIX CASE 626

SO-8 D, VD SUFFIX CASE 751

PDIP-14 P, VP SUFFIX CASE 646

SO-14 D, VD SUFFIX CASE 751A

TSSOP-14 DTB SUFFIX CASE 948G

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

PIN CONNECTIONS

Figure 1. Representative Schematic Diagram (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC} /V _{EE}	±22	V
Input Differential Voltage Range	V_{IDR}	(Note 1)	V
Input Voltage Range	V _{IR}	(Note 1)	V
Output Short Circuit Duration (Note 2)	tsc	Indefinite	sec
Operating Ambient Temperature Range	T _A	(Note 3)	°C
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, R_L connected to ground, $T_A = +25 ^{\circ}C$, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage ($V_{CM} = 0 \text{ V}$) $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +5.0 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)}$	V _{IO}	- - -	2.0 2.5 –	4.5 5.0 6.5	mV
Average Temperature Coefficient of Offset Voltage	$\Delta V_{IO}/\Delta T$	_	10	_	μV/°C
Input Bias Current ($V_{CM} = 0 V$) $T_A = +25$ °C $T_A = T_{low}$ to T_{high} (Note 3)	I _{IB}	- -	20 -	100 200	nA
Input Offset Current ($V_{CM} = 0 \text{ V}$) $T_A = +25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)}$	I _{IO}	- -	5.0 -	20 40	nA
Large Signal Voltage Gain ($V_O = \pm 10 \text{ V}$, $R_L = 10 \text{ k}$) $T_A = +25^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)}$	A _{VOL}	50 25	500 -	- -	V/mV
Output Voltage Swing $ \begin{array}{l} V_{CC} = +5.0 \text{ V}, \ V_{EE} = 0 \text{ V}, \ R_L = 10 \text{ k}, \ T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \text{ V}, \ V_{EE} = -15 \text{ V}, \ R_L = 10 \text{ k}, \ T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \text{ V}, \ V_{EE} = -15 \text{ V}, \ R_L = 10 \text{ k}, \ T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)} \\ \end{array} $	V _{OH}	3.5 13.6 13.3	4.3 14.2 –	- - -	V
$\begin{split} &V_{CC} = +5.0 \text{ V}, V_{EE} = 0 \text{ V}, R_L = 10 \text{ k}, T_A = +25^{\circ}\text{C} \\ &V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L = 10 \text{ k}, T_A = +25^{\circ}\text{C} \\ &V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L = 10 \text{ k}, T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)} \end{split}$	V _{OL}	- - -	0.05 -14.2 -	0.15 -13.6 -13.3	
Output Short Circuit (T _A = +25°C) Input Overdrive = 1.0 V, Output to Ground Source Sink	I _{SC}	3.0 15	5.0 27	- -	mA
Input Common Mode Voltage Range $T_A = +25$ °C $T_A = T_{low}$ to T_{high} (Note 3)	V _{ICR}		to (V _{CC} –		V
Common Mode Rejection Ratio (R _S ≤ 10 k), T _A = +25°C	CMRR	80	90	_	dB
Power Supply Rejection Ratio (R _S = 100 Ω), T _A = +25°C	PSRR	80	100	-	dB
Power Supply Current (Per Amplifier) $V_{CC} = +5.0 \text{ V}, V_{EE} = 0 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C}$ $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{low} \text{ to } T_{high} \text{ (Note 3)}$	I _D	- - -	180 220 –	250 250 300	μΑ

Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.
 MC3317x T_{low} = -40°C T_{high} = +85°C T_{high} = +125°C

 $\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_L \ connected \ to \ ground, \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics	Symbol	Min	Тур	Max	Unit
Slew Rate ($V_{in} = -10 \text{ V to } +10 \text{ V}, R_L = 10 \text{ k}, C_L = 100 \text{ pF}$) $A_V +1$	SR	1.6	2.1	-	V/μs
A _V –1		_	2.1	_	
Gain Bandwidth Product (f = 100 kHz)	GBW	1.4	1.8	-	MHz
Power Bandwidth $A_V = +1.0 R_L = 10 k$, $V_O = 20 V_{pp}$, THD = 5%	BWp	_	35	_	kHz
Phase Margin $R_L = 10 \text{ k}$ $R_L = 10 \text{ k}, C_L = 100 \text{ pF}$	Фт	- -	60 45	- -	Deg
Gain Margin $R_L = 10 \text{ k}$ $R_L = 10 \text{ k}, C_L = 100 \text{ pF}$	A _m	_ _	15 5.0	- -	dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0 \text{ kHz}$	e _n	-	32	-	nV/√ <u>Hz</u>
Equivalent Input Noise Current (f = 1.0 kHz)	I _n	-	0.2	_	pA/√Hz
Differential Input Resistance V _{cm} = 0 V	R _{in}	-	300	-	МΩ
Input Capacitance	C _{in}	_	0.8	_	pF
Total Harmonic Distortion $A_V = +10$, $R_L = 10$ k, 2.0 $V_{pp} \le V_O \le 20$ V_{pp} , $f = 10$ kHz	THD	-	0.03	-	%
Channel Separation (f = 10 kHz)	CS	_	120	-	dB
Open Loop Output Impedance (f = 1.0 MHz)	z _o	-	100	-	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 2. Input Common Mode Voltage Range versus Temperature

Figure 3. Split Supply Output Saturation versus Load Current

Figure 4. Open Loop Voltage Gain and Phase versus Frequency

Figure 5. Phase Margin and Percent Overshoot versus Load Capacitance

Figure 6. Normalized Gain Bandwidth Product and Slew Rate versus Temperature

Figure 7. Small and Large Signal Transient Response

Figure 8. Output Impedance and Frequency

Figure 9. Supply Current versus Supply Voltage

APPLICATIONS INFORMATION - CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC33171/72/74 amplifier family is similar to low power op amp products utilizing JFET input devices, these amplifiers offer additional advantages as a result of the PNP transistor differential inputs and an all NPN transistor output stage.

Because the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to ±44 V, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between V_{CC} and V_{EE} supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the V_{CC} voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source up to 5.0 mA of current from V_{EE} through either inputs' clamping diode without damage or latching, but phase reversal may again occur. If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state.

Since the input capacitance associated with the small geometry input device is substantially lower (0.8 pF) than that of a typical JFET (3.0 pF), the frequency response for a given input source resistance is greatly enhanced. This becomes evident in D-to-A current to voltage conversion applications where the feedback resistance can form a pole with the input capacitance of the op amp. This input pole creates a 2nd Order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 10 k Ω of feedback resistance, the MC33171/72/74 family can typically settle to within 1/2 LSB of 8 bits in 4.2 µs, and within 1/2 LSB of 12 bits in 4.8 µs for a 10 V step. In a standard inverting unity gain fast settling configuration, the symmetrical slew rate is typically ± 2.1 V/ μ s. In the classic noninverting unity gain configuration the typical output positive slew rate is also 2.1 V/µs, and the corresponding negative slew rate will usually exceed the positive slew rate as a function of the fall time of the input waveform.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 k Ω load resistance can typically swing within

0.8~V of the positive rail (V_{CC}) and negative rail (V_{EE}), providing a 28.4~Vpp swing from $\pm 15~V$ supplies. This large output swing becomes most noticeable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q7, the V_{BE} of the NPN pull-up transistor Q17, and the voltage drop associated with the short circuit resistance, R5. For sink currents less than 0.4 mA, the negative swing is limited by the saturation voltage of the pull-down transistor Q15, and the voltage drop across R4 and R5. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{EE} . For sink currents (> 0.4 mA), diode D3 clamps the voltage across R4. Thus the negative swing is limited by the saturation voltage of Q15, plus the forward diode drop of D3 (\approx V_{EE} +1.0 V). Therefore an unprecedented peak-to-peak output voltage swing is possible for a given supply voltage as indicated by the output swing specifications.

If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull–up capability.

Because the PNP output emitter–follower transistor has been eliminated, the MC33171/72/74 family offers a 15 mA minimum current sink capability, typically to an output voltage of ($V_{\rm EE}$ +1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for current switching applications.

In addition, the all NPN transistor output stage is inherently faster than PNP types, contributing to the bipolar amplifier's improved gain bandwidth product. The associated high frequency low output impedance (200 Ω typ @ 1.0 MHz) allows capacitive drive capability from 0 pF to 400 pF without oscillation in the noninverting unity gain configuration. The 60° phase margin and 15 dB gain margin, as well as the general gain and phase characteristics, are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The AC characteristics of the MC33171/72/74 family also allow excellent active filter capability, especially for low voltage single supply applications.

Although the single supply specification is defined at 5.0 V, these amplifiers are functional to at least 3.0 V @ 25°C. However slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

If power to this integrated circuit is applied in reverse polarity, or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

As usual with most high frequency amplifiers, proper lead dress, component placement and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input

pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ± 15 V supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

Figure 10. AC Coupled Noninverting Amplifier with Single +5.0 V Supply

Figure 12. DC Coupled Inverting Amplifier
Maximum Output Swing with Single
+5.0 V Supply

Figure 14. Active High-Q Notch Filter

Figure 11. AC Coupled Inverting Amplifier with Single +5.0 V Supply

Offset Nulling range is approximately ± 80 mV with a 10 k potentiometer, MC33171 only.

Figure 13. Offset Nulling Circuit

Figure 15. Active Bandpass Filter

ORDERING INFORMATION

Op Amp Function	Device	Operating Temperature Range	Package	Shipping [†]
	MC33171DG	, , , , , , , , , , , , , , , , , , , ,	SO-8 (Pb-Free)	98 Units/Rail
Single MC33171D	MC33171DR2G	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	SO-8 (Pb-Free)	2500 / Tape & Reel
	MC33171PG		PDIP (Pb-Free)	50 Units/Rail
	MC33172DG		SO-8 (Pb-Free)	98 Units/Rail
	MC33172DR2G	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	SO-8 (Pb-Free)	2500 / Tape & Reel
Dual	MC33172PG		PDIP (Pb-Free)	50 Units/Rail
MC33172VDG MC33172VDR2G NCV33172DR2G*	MC33172VDG	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SO-8 (Pb-Free)	98 Units/Rail
	MC33172VDR2G		SO-8 (Pb-Free)	2500 / Tape & Reel
		SO-8 (Pb-Free)	2500 / Tape & Reel	
	MC33174DG		SO-14 (Pb-Free)	55 Units/Rail
	MC33174DR2G		SO-14 (Pb-Free)	2500 / Tape & Reel
	MC33174DTBG	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	TSSOP-14 (Pb-Free)	96 Units/Rail
	MC33174DTBR2G		TSSOP-14 (Pb-Free)	2500 / Tape & Reel
Quad	MC33174PG		PDIP (Pb-Free)	25 Units/Rail
	MC33174VDG		SO-14 (Pb-Free)	55 Units/Rail
	MC33174VDR2G	T = 40° to 1425°C	SO-14 (Pb-Free)	2500 / Tape & Reel
	MC33174VPG	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	PDIP (Pb-Free)	25 Units/Rail
	NCV33174DTBR2G*		TSSOP-14 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV prefix for automotive and other applications requiring site and change controls.

MARKING DIAGRAMS

x = 1 or 2

A = Assembly Location

WL, L = Wafer Lot
 YY, Y = Year
 WW, W = Work Week
 G or • = Pb-Free Package

(Note: Microdot may be in either location)

PDIP-8 CASE 626-05 ISSUE P

DATE 22 APR 2015

TOP VIEW

NOTE 5

STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN

5. GROUND 6. OUTPUT 7. AUXILIARY 8. V_{CC}

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
- LEADS UNCONSTRAINED.

 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
- PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC 2.54 BSC		BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location WL = Wafer Lot

YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42420B	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 22 APR 2015

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
- NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION 6B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.

 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
- CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eB		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-14		PAGE 1 OF 2

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP-14 CASE 646-06 ISSUE S

DATE 22 APR 2015

STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE	STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE	STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 14. ANODE/CATHODE

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-14		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	1.27 BSC		0 BSC
Н	0.10	0.25	0.004	0.010
7	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

			DITTE TO LED 2
STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE
2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

△ 0.10

SOIC-14 NB CASE 751A-03 ISSUE L

DATE 03 FEB 2016

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
 - MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0 °	7°	0 °	7°

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year = Work Week

WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

C SEATING PLANE

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales