# On the decomposition of a strong epimorphism into regular epimorphisms

Yuto Kawase

RIMS, Kyoto University

February 12, 2025. Kyoto Category Theory Meeting

← Today's slides

This work is supported by JSPS KAKENHI Grant Numbers JP24KJ1462.

Strong and regular epimorphisms

2 The decomposition number

Partial Horn theories

Main results

# Strong and regular epimorphisms

Strong epimorphisms = morphisms having the left lifting property w.r.t. every monomorphisms.



Regular epimorphisms = morphisms being the coequalizer of some parallel pair of morphisms.

$$\cdot \underbrace{\hspace{1cm}}_{\text{regular epi}} \cdot \underbrace{\hspace{1cm}}_{\text{regular epi}}^{\text{regular epi}} \cdot$$

# Fact [GU71]

In a locally presentable category,

strong epis = transfinite composites of regular epis

# Example Cat: the category of small categories. $A_0 \xrightarrow{p} A_2 \text{ in Cat}$

# Example

2Cat: the category of small 2-categories.



#### Actually...

#### Fact I

The length of the regular epi chains in the previous slides can NOT be shorter.

#### Fact II

- In Cat, every strong epimorphism is decomposed into <u>two</u> regular epimorphisms.
- In 2Cat, every strong epimorphism is decomposed into three regular epimorphisms.

How to prove?

- Strong and regular epimorphisms
- 2 The decomposition number

Partial Horn theories

Main results

#### **Definition**

A decomposition (of length  $\alpha$ ) of  $A \stackrel{p}{\longrightarrow} X$  in  $\mathscr C$  is a cocontinuous functor D such that the following commutes:



Here,  $\mathbbm{1}$  denotes the terminal category, and  $\alpha+1$  denotes the category obtained by regarding the ordinal number  $\alpha+1$  as a poset  $\{0<1<\cdots<\alpha\}$ .

$$A \xrightarrow{p} X$$

$$D0 = D1 \xrightarrow{D\alpha} I \text{ in } \mathscr{C}$$

$$D\alpha = D\alpha \qquad I$$

#### **Definition**

A decomposition D (of length  $\alpha$ ) is called regular if  $D_{\beta,\beta+1}$  is a regular epimorphism for any  $0 \le \beta < \alpha$ .

# The decomposition number

#### **Definition**

A: a locally presentable category.

• The decomposition number  $\delta(f)$  of  $A \stackrel{f}{\longrightarrow} B$  in  $\mathscr A$  is the smallest ordinal number  $\alpha$  s.t. there is a factorization  $f = m \circ p$  by a morphism p with its regular decomposition of length  $\alpha$  and by a monomorphism m.



# Theorem ([GU71])

 $\mathscr{A}$ : a locally  $\lambda$ -presentable category.

 $\implies$  For every morphism f in  $\mathscr{A}$ ,  $\delta(f) \leq \lambda$ . Therefore,  $\delta(\mathscr{A}) \leq \lambda + 1$ .

# The decomposition number

#### Example

Pos: the category of posets.



In this case,  $\delta(f) = 1$  and  $\delta(\mathbf{Pos}) = 2$ .

# The small object argument

 $\mathscr{A}$ : locally  $\lambda$ -presentable category.



 $A_{\omega}$  : the confinit of the chain  $(A_n)_{n<\omega}$   $A_{\omega+1}$  : the coequalizer of the kernel pair of  $f_{\omega}$ 

At least  $f_{\lambda}$  becomes monic. Let  $\sigma(f)$  denote the smallest ordinal number  $\alpha$  s.t.  $f_{\alpha}$  is monic.

# Corollary

$$\delta(f) \le \sigma(f)$$

In a locally presentable category,  $\delta(f) = \sigma(f).$ 

In a locally presentable category,  $\delta(f) = \sigma(f).$ 

# Proof.

In a locally presentable category,  $\delta(f) = \sigma(f).$ 

# Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

# Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.

In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.

$$X_0 \xrightarrow{p_1} X_1 \xrightarrow{p_2} X_2 \xrightarrow{p_3} \cdots \xrightarrow{p_n} X_n$$

$$\downarrow q_{01} \downarrow \qquad \qquad \downarrow e^{i} \qquad \qquad p.o. \qquad e^{i} \qquad p.o. \qquad p.o.$$

$$A_1 \xrightarrow{g_1} \cdots \xrightarrow{g_n} \cdots \xrightarrow$$

In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.



In a locally presentable category,  $\delta(f) = \sigma(f).$ 

#### Proof.

For simplicity, we assume  $\delta(f) = n < \omega$ .



Thus, we have  $\sigma(f) \leq n$ .





Strong and regular epimorphisms

2 The decomposition number

Partial Horn theories

4 Main results

# Multi-sorted signature

#### **Definition**

S: the set of sorts.  $\lambda$ : an infinite regular cardinal.

An S-sorted ( $\lambda$ -ary) signature  $\Sigma$  consists of:

- function symbols  $f, f', f'', \dots$
- relation symbols  $R, R', R'', \dots$

# Multi-sorted signature

#### **Definition**

S: the set of sorts.  $\lambda$ : an infinite regular cardinal.

An S-sorted ( $\lambda$ -ary) signature  $\Sigma$  consists of:

- function symbols  $f, f', f'', \ldots$
- relation symbols  $R, R', R'', \ldots$
- arity of each function symbol  $f: \sqcap_{i<\alpha} s_i \to s, f': \sqcap \cdots$
- arity of each relation symbol  $R: \sqcap_{j<\beta} s_j, R': \sqcap \cdots$

where  $\alpha, \beta < \lambda$  and  $s_i, s_j, s \in S$ .

# Multi-sorted signature

#### **Definition**

S: the set of sorts.  $\lambda$ : an infinite regular cardinal.

An S-sorted ( $\lambda$ -ary) signature  $\Sigma$  consists of:

- function symbols  $f, f', f'', \ldots$
- relation symbols  $R, R', R'', \ldots$
- arity of each function symbol  $f: \sqcap_{i<\alpha} s_i \to s, f': \sqcap \cdots$
- arity of each relation symbol  $R: \sqcap_{j<\beta} s_j, R': \sqcap \cdots$

where  $\alpha, \beta < \lambda$  and  $s_i, s_j, s \in S$ .

From now on, we fix  $\lambda$ .

# Partial Horn theory

 $\Sigma$ : an S-sorted signature.

- A term  $\tau ::= x \mid f(\tau_i)_{i < \alpha}$ ;
- A ( $\lambda$ -ary) Horn formula  $\varphi ::= \top \mid \bigwedge_{i < \alpha} \varphi_i \mid \tau = \tau' \mid R(\tau_i)_{i < \alpha}$ ;
- A ( $\lambda$ -ary) context  $\cdots$   $\vec{x} = (x_i)_{i < \alpha}$  (a family of distinct variables).

Here,  $\alpha < \lambda$ . The notation  $\vec{x}.\varphi$  (resp.  $\vec{x}.\tau$ ) means that all variables of  $\varphi$  (resp.  $\tau$ ) are in the context  $\vec{x}$ . (Horn formula (resp. term)-in-context)

# Partial Horn theory

 $\Sigma$ : an S-sorted signature.

- A term  $\tau ::= x \mid f(\tau_i)_{i < \alpha}$ ;
- A ( $\lambda$ -ary) Horn formula  $\varphi ::= \top \mid \bigwedge_{i < \alpha} \varphi_i \mid \tau = \tau' \mid R(\tau_i)_{i < \alpha}$ ;
- A  $(\lambda$ -ary) context  $\cdots$   $\vec{x} = (x_i)_{i < \alpha}$  (a family of distinct variables).

Here,  $\alpha < \lambda$ . The notation  $\vec{x}.\varphi$  (resp.  $\vec{x}.\tau$ ) means that all variables of  $\varphi$  (resp.  $\tau$ ) are in the context  $\vec{x}$ . (Horn formula (resp. term)-in-context)

#### Definition

**1** A  $(\lambda$ -ary) Horn sequent over  $\Sigma$  is an expression of the form

$$\varphi \vdash \vec{x} \psi$$
 (" $\varphi$  implies  $\psi$ ")

 $(\varphi, \psi \text{ are } \lambda\text{-ary Horn formulas over } \Sigma \text{ in the same } \lambda\text{-ary context } \vec{x}.)$ 

**②** A  $(\lambda$ -ary) partial Horn theory  $\mathbb T$  over  $\Sigma$  is a set of  $(\lambda$ -ary) Horn sequents over  $\Sigma$ .

What is the difference between ordinary Horn theory and partial Horn theory?

What is the difference between ordinary Horn theory and partial Horn theory?  $\rightsquigarrow$  It lies in the concept of models.

What is the difference between ordinary Horn theory and partial Horn theory? It lies in the concept of models.

|                                                            | (ordinary) Horn theory                                                | partial Horn theory                                                                                                 |
|------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Axiom                                                      | Horn sequent $\varphi \stackrel{\vec{x}}{ \longleftarrow} \psi$       | Horn sequent $arphi dash rac{ec{x}}{} \psi$                                                                        |
| Interpretation of func.symb.                               | total map $M_{ec{s}} \xrightarrow{ \llbracket f  rbracket_{M}} M_{s}$ | partial map $M_{ec s}$ $\llbracket f  rbracket_{M_{\lambda}} M_s$                                                   |
| Interpretation of rel.symb.                                | subset $[\![R]\!]_M\subseteq M_{\vec{s}}$                             | subset $[\![R]\!]_M\subseteq M_{\vec{s}}$                                                                           |
| Validity of $\varphi$                                      | " $arphi$ holds."                                                     | "All terms in $arphi$ are defined and $arphi$ holds."                                                               |
| Validity of $\varphi \stackrel{\vec{x}}{\longmapsto} \psi$ | "If $arphi$ holds then $\psi$ holds."                                 | "If all terms in $\varphi$ are defined and $\varphi$ holds, then all terms in $\psi$ are defined and $\psi$ holds." |

What is the difference between ordinary Horn theory and partial Horn theory?  $\rightsquigarrow$  It lies in the concept of models.

|                                                                       | (ordinary) Horn theory                                                     | partial Horn theory                                                                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Axiom                                                                 | Horn sequent $\varphi \stackrel{\overrightarrow{x}}{ \longleftarrow} \psi$ | Horn sequent $arphi dash ec{ec{x}} \psi$                                                                            |
| Interpretation of func.symb.                                          | total map $M_{ec{s}} \xrightarrow{ \llbracket f  rbracket_{M}} M_{s}$      | partial map $M_{ec s}$ $\llbracket f  rbracket_{M_{\lambda}} M_s$                                                   |
| Interpretation of rel.symb.                                           | subset $[\![R]\!]_M\subseteq M_{\vec{s}}$                                  | subset $[\![R]\!]_M\subseteq M_{\vec{s}}$                                                                           |
| Validity of $\varphi$                                                 | " $arphi$ holds."                                                          | "All terms in $arphi$ are defined and $arphi$ holds."                                                               |
| Validity of $\varphi \stackrel{\overrightarrow{x}}{\longmapsto} \psi$ | "If $arphi$ holds then $\psi$ holds."                                      | "If all terms in $\varphi$ are defined and $\varphi$ holds, then all terms in $\psi$ are defined and $\psi$ holds." |

#### Especially,

An equation  $\tau=\tau$  holds iff the value of the partial map  $[\![\tau]\!]_M$  is defined.

So, we will use the abbreviation  $\tau \downarrow$  for  $\tau = \tau$ .

# Categories of partial models

#### Notation

 $\mathbb{T}$ : a partial Horn theory.

 $\mathbf{PMod}\,\mathbb{T}$ : the category of (partial) models of  $\mathbb{T}$ .

#### Fact

A category  $\mathscr{A}$  is locally  $\lambda$ -presentable  $\iff \mathscr{A} \simeq \mathbf{PMod}\,\mathbb{T}$  for some  $\lambda$ -ary partial Horn theory  $\mathbb{T}$ .

# Example: small categories

#### Example (small categories)

We can define the partial Horn theory  $\mathbb{T}_{\mathrm{cat}}$  of small categories as follows:

The  $S:=\{\mathrm{ob},\mathrm{mor}\}$ -sorted signature  $\Sigma_{\mathrm{cat}}$  consists of:

 $\mathrm{id}\colon \mathrm{ob}\to \mathrm{mor},\quad \mathrm{d}\colon \mathrm{mor}\to \mathrm{ob},\quad \mathrm{c}\colon \mathrm{mor}\to \mathrm{ob},\quad \circ\colon \mathrm{mor}\sqcap \mathrm{mor}\to \mathrm{mor}.$ 

# Example: small categories

## Example (small categories)

We can define the partial Horn theory  $\mathbb{T}_{\mathrm{cat}}$  of small categories as follows:

The  $S:=\{\mathrm{ob},\mathrm{mor}\}$ -sorted signature  $\Sigma_{\mathrm{cat}}$  consists of:

$$\mathrm{id}\colon \mathrm{ob}\to \mathrm{mor},\quad \mathrm{d}\colon \mathrm{mor}\to \mathrm{ob},\quad \mathrm{c}\colon \mathrm{mor}\to \mathrm{ob},\quad \circ\colon \mathrm{mor}\sqcap \mathrm{mor}\to \mathrm{mor}.$$

The partial Horn theory  $\mathbb{T}_{cat}$  over  $\Sigma_{cat}$  consists of:

$$\top \vdash \underline{x:ob} \operatorname{id}(x) \downarrow$$
, ( id is total. )

# Example: small categories

## Example (small categories)

We can define the partial Horn theory  $\mathbb{T}_{\mathrm{cat}}$  of small categories as follows:

The  $S := \{ob, mor\}$ -sorted signature  $\Sigma_{cat}$  consists of:

$$\mathrm{id}\colon \mathrm{ob}\to \mathrm{mor},\quad \mathrm{d}\colon \mathrm{mor}\to \mathrm{ob},\quad \mathrm{c}\colon \mathrm{mor}\to \mathrm{ob},\quad \circ\colon \mathrm{mor}\sqcap \mathrm{mor}\to \mathrm{mor}.$$

The partial Horn theory  $\mathbb{T}_{cat}$  over  $\Sigma_{cat}$  consists of:

# Example: small categories

## Example (small categories)

We can define the partial Horn theory  $\mathbb{T}_{\mathrm{cat}}$  of small categories as follows:

The  $S:=\{\mathrm{ob},\mathrm{mor}\}$ -sorted signature  $\Sigma_{\mathrm{cat}}$  consists of:

$$id: ob \to mor, \quad d: mor \to ob, \quad c: mor \to ob, \quad \circ: mor \cap mor \to mor.$$

The partial Horn theory  $\mathbb{T}_{cat}$  over  $\Sigma_{cat}$  consists of:

and so on.

 $\leadsto$  We have  $\mathbf{PMod}\,\mathbb{T}_{\mathrm{cat}}\cong\mathbf{Cat}.$ 

# Example: small 2-categories

## Example (small 2-categories)

There is an  $S:=\{0,1,2\}$ -sorted signature  $\Sigma_{2\mathrm{cat}}$  and a finitary PHT  $\mathbb{T}_{2\mathrm{cat}}$  over  $\Sigma_{2\mathrm{cat}}$  s.t.

 $\mathbf{PMod}\,\mathbb{T}_{2\mathrm{cat}}\cong\mathbf{2Cat}.$ 

## Example: posets

## Example (posets)

We present the partial Horn theory  $\mathbb{T}_{pos}$  of posets. Let  $S := \{*\}$ ,  $\Sigma_{pos} := \{\leq : * \sqcap *\}$ . The partial Horn theory  $\mathbb{T}_{pos}$  over  $\Sigma_{pos}$  consists of:

$$\top \vdash x x \le x, \quad x \le y \land y \le x \vdash x, y x = y, \quad x \le y \land y \le z \vdash x, x \le z.$$

Then, we have  $\operatorname{\mathbf{PMod}}\nolimits \mathbb{T}_{\operatorname{pos}} \cong \operatorname{\mathbf{Pos}}\nolimits$ .

## Representing models

 $\mathbb{T}$ : a  $\lambda$ -ary partial Horn theory.

#### Construction

 $\vec{x}.\varphi$ : a  $\kappa(\geq \lambda)$ -ary Horn formula (in a  $\kappa$ -ary context).

- A term  $\vec{x}.\tau$  is defined under  $\vec{x}.\varphi$   $\stackrel{\text{def}}{\Leftrightarrow}$   $\varphi \vdash \vec{x} \tau \downarrow$  can be derived from  $\mathbb{T}$ .
- $\bullet$  The following gives an equivalence relation on the terms defined under  $\vec{x}.\varphi$  :

$$\tau \sim \tau' \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \varphi \mathrel{\mathop{\longmapsto}} \quad \tau = \tau' \text{ can be derived from } \mathbb{T}.$$

• Quotienting all of the terms defined under  $\vec{x}.\varphi$  by  $\sim$ , we obtain a  $\mathbb{T}$ -model  $\langle \vec{x}.\varphi \rangle_{\mathbb{T}}$ , called the representing  $\mathbb{T}$ -model.

### Fact

- For every  $\mathbb{T}$ -model M,  $[\![\vec{x}.\varphi]\!]_M \cong \mathbf{PMod}\,\mathbb{T}(\langle \vec{x}.\varphi \rangle_{\mathbb{T}}, M)$ .
- $\textbf{@} \ \ \mathsf{A} \ \mathbb{T}\text{-model} \ M \ \text{is} \ \kappa(\geq \lambda)\text{-presentable} \ \Longleftrightarrow \ M \cong \langle \vec{x}.\varphi \rangle_{\mathbb{T}} \ \text{for some} \ \kappa\text{-ary Horn}$  formula  $\vec{x}.\varphi.$

Strong and regular epimorphisms

2 The decomposition number

Partial Horn theories

4 Main results

# Gauges

### **Definition**

 $\mathbb{T}$ : a  $\lambda$ -ary PHT.

A gauge (of length  $\alpha$ ) for  $\mathbb T$  is an assignment to each term  $\vec x. \tau$  in a  $\lambda$ -ary context, of the following data:

- an ordinal number  $\sharp(\vec{x}.\tau) < \alpha$ ;
- a set  $Def(\vec{x}.\tau)$  of pairs  $(\sigma^0, \sigma^1)$  of terms in the context  $\vec{x}$  such that, for every  $\vec{x}.\tau$ ,
  - $\bullet \ \mathbb{T} \vDash \Big(\tau = \tau \overset{\overrightarrow{x}}{\longmapsto} \bigwedge_{(\sigma^0, \sigma^1) \in \mathrm{Def}(\overrightarrow{x}.\tau)} \sigma^0 = \sigma^1 \Big);$
  - $\forall (\sigma^0, \sigma^1) \in \text{Def}(\vec{x}.\tau)$ .  $\sharp (\vec{x}.\sigma^0), \sharp (\vec{x}.\sigma^1) < \sharp (\vec{x}.\tau)$ .

### Theorem

 $\mathbb{T}$ : a  $\lambda$ -ary PHT with a gauge of length  $\alpha$ .

 $\implies \delta(f) \le \alpha \ (\forall f \text{ in } \mathbf{PMod} \, \mathbb{T}), \text{ hence } \delta(\mathbf{PMod} \, \mathbb{T}) \le \alpha + 1.$ 

# How to construct a gauge

#### **Definition**

 $\mathbb{T}$ : a  $\lambda$ -ary partial Horn theory.

• Let  $\vec{x}$  be a  $\lambda$ -ary context.

$$\operatorname{Term}_{1}(\vec{x}) := \{\vec{x}.\tau \mid \mathbb{T} \vDash (\tau \downarrow \vdash \vec{x} \vdash \top)\}.$$

 $\operatorname{Term}_{\beta+1}(\vec{x}) := \operatorname{Term}_{\beta}(\vec{x}) \cup$ 

$$:=\operatorname{Term}_{eta}(ec{x})\cup$$

$$\left\{ \vec{x}.\tau \,\middle|\, \exists E \subseteq \operatorname{Term}_{\beta}(\vec{x})^{2} \text{ s.t. } \mathbb{T} \vDash (\tau \downarrow \, \vdash \stackrel{\vec{x}}{\underset{(\sigma^{0},\sigma^{1}) \in E}{}} \bigwedge_{\sigma^{0}} \sigma^{0} = \sigma^{1}) \right\}.$$

$$\operatorname{Term}_{\sup \beta}(\vec{x}) := \bigcup_{\alpha} \operatorname{Term}_{\beta}(\vec{x}).$$

- $\operatorname{\mathsf{dep}}(\vec{x}) := \min\{\alpha \mid \operatorname{Term}_{\alpha}(\vec{x}) = \operatorname{Term}_{\alpha+1}(\vec{x})\}.$
- $dep(\mathbb{T}) := min\{\alpha \mid \forall \vec{x} : \lambda \text{-ary. } dep(\vec{x}) < \alpha\}$  (the depth of  $\mathbb{T}$ ).

#### Lemma

Assume every  $\vec{x}.\tau$  belongs to  $\mathrm{Term}_{\alpha}(\vec{x})$  for some  $\alpha$  ( $\stackrel{\mathsf{def}}{\Leftrightarrow}$ :  $\mathbb{T}$  is essentially algebraic). Then,  $\mathbb{T}$  has a gauge of length " $\mathsf{dep}(\mathbb{T}) - 1$ ."

#### Theorem

 $\mathbb{T}$ : essentially algebraic  $\implies \delta(\mathbf{PMod}\,\mathbb{T}) \leq \begin{cases} \operatorname{dep}(\mathbb{T}) & \text{if } \operatorname{dep}(\mathbb{T}) \text{: a successor} \\ \operatorname{dep}(\mathbb{T}) + 1 & \text{else} \end{cases}$ 

## Example

$$\begin{split} &\delta(\mathbf{Pos}) \leq \mathsf{dep}(\mathbb{T}_{\mathrm{pos}}) = 2; \\ &\delta(\mathbf{Cat}) \leq \mathsf{dep}(\mathbb{T}_{\mathrm{cat}}) = 3; \\ &\delta(\mathbf{2Cat}) \leq \mathsf{dep}(\mathbb{T}_{\mathrm{2cat}}) = 4. \end{split}$$

Therefore,

$$\delta(\mathbf{Pos}) = 2;$$
  
 $\delta(\mathbf{Cat}) = 3;$   
 $\delta(\mathbf{2Cat}) = 4.$ 

# The decay number

### Definition

 $\mathbb{T}$ : a  $\lambda$ -ary partial Horn theory.

• L: a set of terms in a common context.

$$\operatorname{\sf eq}(L) := \left(igwedge_{ au, au' \in L} au = au'
ight).$$

•  $\vec{x}$ : a  $\lambda$ -ary context.

$$\mathsf{dec}(\vec{x}) := \min \left\{ \alpha \ \middle| \ \mathbb{T} \vDash \left( \mathsf{eq}(\mathrm{Term}_{\alpha}(\vec{x})) \vdash^{\vec{X}} - \mathsf{eq}(\mathrm{Term}_{\alpha+1}(\vec{x})) \right) \right\}.$$

•  $\operatorname{dec}(\mathbb{T}) := \min\{\alpha \mid \forall \vec{x} \colon \lambda \text{-ary. } \operatorname{dec}(\vec{x}) < \alpha\}$  (the decay number of  $\mathbb{T}$ ).

### Remark

 $\operatorname{dec}(\vec{x}) \leq \operatorname{dep}(\vec{x}), \text{ hence } \operatorname{dec}(\mathbb{T}) \leq \operatorname{dep}(\mathbb{T}).$ 

# Proposition

## Example

Let  $\mathbb{T}$  be the single-sorted finitary PHT defined as follows:

For  $\langle \vec{x}. \top \rangle \stackrel{!}{\longrightarrow} 1$  in  $\mathbf{PMod} \, \mathbb{T}$ ,  $\delta(!) = \mathsf{dec}(\vec{x})$ .

$$\Sigma:=\{\;b,c_n\colon {\sf constants}\;\;({\sf for}\;n\geq 1)\;\},$$
 
$$\top\longmapsto b=b\wedge c_1=c_1$$

 $\mathbb{T} := \left\{ \begin{array}{c} \top \longmapsto b = b \land c_1 = c_1 \\ b = c_n \longmapsto c_{n+1} = c_{n+1} \text{ (for } n \ge 1) \end{array} \right\}.$ Then,

 $Term_1() = \{b, c_1\}, Term_2() = \{b, c_1, c_2\}, Term_3() = \{b, c_1, c_2, c_3\}, \dots$ 

$$\operatorname{dec}() = \operatorname{dep}() = \omega.$$

$$(1) \top = \begin{cases} \mathcal{S} & \mathcal{S} \\ c_1 & \mathcal{S} \\ c_2 & \mathcal{S} \end{cases}$$
in **PMod**  $\mathbb{T}$ .

## Corollary

$$dec(\mathbb{T}) \leq \delta(\mathbf{PMod}\,\mathbb{T}).$$

#### **Theorem**

lacktriangledown If  $\mathbb T$  is essentially algebraic,

$$\operatorname{dec}(\mathbb{T}) \leq \delta(\mathbf{PMod}\,\mathbb{T}) \leq \begin{cases} \operatorname{dep}(\mathbb{T}) & \text{if } \operatorname{dep}(\mathbb{T}) \text{: a successor} \\ \operatorname{dep}(\mathbb{T}) + 1 & \text{else} \end{cases}$$

② If  $dec(\mathbb{T}) = dep(\mathbb{T})$  and it is a successor additionally, then

$$\delta(\mathbf{PMod}\,\mathbb{T}) = \mathsf{dep}(\mathbb{T}).$$

# Thank you!

Today's slides

## References I

| [AH09]  | J. Adamek and M. Hebert. "Quasi-equations in locally presentable categories". In: <i>Cah. Topol. Géom. Différ. Catég.</i> 50.4 (2009), pp. 273–297.                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [BBP99] | M. A. Bednarczyk, A. M. Borzyszkowski, and W. Pawlowski. "Generalized congruences—epimorphisms in <i>Cat</i> ". In: <i>Theory Appl. Categ.</i> 5 (1999), No. 11, 266–280. |
| [Bör91] | R. Börger. "Making factorizations compositive". In: <i>Comment. Math. Univ. Carolin.</i> 32.4 (1991), pp. 749–759.                                                        |
| [GU71]  | P. Gabriel and F. Ulmer. <i>Lokal präsentierbare Kategorien</i> . Vol. Vol. 221. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1971, pp. v+200.         |
| [Kaw24] | Y. Kawase. Relativized universal algebra via partial Horn logic. 2024. arXiv: 2403.19661 [math.CT].                                                                       |
| [MS82]  | J. L. MacDonald and A. Stone. "The tower and regular decomposition". In: Cahiers Topologie Géom. Différentielle 23.2 (1982), pp. 197–213.                                 |
| [Ros21] | J. Rosický. "Metric monads". In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535–552.                                                                                  |
| [RT24]  | J. Rosický and G. Tendas. <i>Towards enriched universal algebra</i> . 2024. arXiv: 2310.11972 [math.CT]. URL: https://arxiv.org/abs/2310.11972.                           |
|         |                                                                                                                                                                           |

In abstract algebra (or universal algebra), the homomorphism theorem is fundamental. Categorically, it can be treated by *regular categories*.

### Recall

In a regular category,

- Every morphism can be decomposed into a regular epimorphism and a monomorphism.
- Such a decomposition is always given in the "canonical" way: taking a quotient by the *kernel pair*.



• The class of regular epimorphisms is stable under pullbacks.

### Example

The regular categories include various categories considered in classical universal algebra: groups, monoids, etc.

The above examples are captured by the following general fact:

### **Fact**

Monadic categories over Set are regular.

There are several directions to generalize classical universal algebra "syntactically." For example:

Enriching  $\mathscr{V}$ -enriched  $\lambda$ -ary monadic categories over  $\mathscr{V}$  [RT24].

Relativizing (Set-enriched)  $\lambda$ -ary monadic categories over a locally  $\lambda$ -presentable category [Kaw24].

Enr. & Rel.  $\mathscr{V}$ -enriched  $\lambda$ -ary monadic categories over a locally  $\lambda$ -presentable  $\mathscr{V}$ -category [Ros21].



### A problem

Monadic categories over a locally presentable category are NOT regular in general, even when the base category is regular.

### Example

 $\mathbf{Cat},$  the category of small categories, are finitary monadic over  $\mathbf{Quiv},$  the category of quivers (=directed graphs). However,  $\mathbf{Cat}$  is not regular even if  $\mathbf{Quiv}$  is regular.