Regression Model

Problem Statement or Requirement: A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

Sample from the provided dataset -

age	sex	bmi	children	smoker	charges
19	female	27.9	0	yes	16884.92
18	male	33.77	1	no	1725.552
28	male	33	3	no	4449.462
33	male	22.705	0	no	21984.47
32	male	28.88	0	no	3866.855
31	female	25.74	0	no	3756.622

Inference – The data provided has four inputs dominated by numerical, hence the first decision goes to Machine Learning – Regression. Since we have more than one input that should be considered to derive a model, we can use either Multiple Linear Regression, Support Vector Machine (SVM) or Decision Tree algorithms to find a better model.

Multiple Linear Regression -

Changing nominal columns into numerical so that it can used for computation.

Parameters	Weight	Bias	R ² Score
LinearRegression(copy_X=Tru	array([[260.1423112 ,	array([-	0.756510809385388
e, fit_intercept=True,	315.22441969,	12013.76012735	3
n_jobs=None,	545.72248029,])	
normalize=False)	71.76915955,23252.13608407		
]])		
LinearRegression(copy_X=Tru	[[199.984996 <mark>3</mark>	<mark>0.0</mark>	<mark>0.786510809385388</mark>
<pre>e, fit_intercept=False,</pre>	<mark>34.80896984 342.96418146 -</mark>		<mark>3</mark>
n_jobs=None,	<mark>714.04772677</mark>		
normalize=False)	<mark>22616.98650384]]</mark>		
LinearRegression(copy_X=Tru	[[199.9849963	0.0	0.758451344921945
e, fit_intercept=False,	34.80896984 342.96418146 -		2
n_jobs=None,	714.04772677		
normalize=True)	22616.98650384]]		
LinearRegression(copy_X=Fals	[[199.9849963	0.0	0.758451344921945
e, fit_intercept=False,	34.80896984 342.96418146 -		2
n_jobs=None,	714.04772677		
normalize=False)	22616.98650384]]		

Multiple Linear Regression has a maximum R² Score of 78%. Hyper-tuning parameter of LinearRegression can optimise up to 78%. The default LinearRegression algorithm provides an accuracy of 75% only.

Support Vector Machine - Regression -

Parameters	R - Square Value		
SVR()	-0.098510883		
SVR(kernel = 'linear')	-0.14846453125202963		
SVR(kernel = 'rbf')	-0.09851088349819759		
SVR(kernel = 'sigmoid')	-0.0987122675639922		
SVR(C=0.1)	-0.0986921139451229		
SVR(C=1)	-0.09851088349819759		
SVR(C=5)	-0.09770963326717874		
SVR(C=0.001)	-0.09871206601107008		
SVR(gamma='auto')	-0.09851088349819759		

The R² Score obtained as a result of using multiple hyper-tuning parameters is not near to 1, hence **SVM** – **Regression** would not be considered to produce a stable model with the current data set behaviour and requirement.

Decision Tree -

Parameters	R – Squared Value
DecisionTreeRegressor()	0.698846999057871
DecisionTreeRegressor(splitter='random')	0.748204080083073
DecisionTreeRegressor(splitter='random', max_features="auto")	0.6950333262258626
DecisionTreeRegressor(splitter='random', max_features="sqrt")	0.6540393957314437
DecisionTreeRegressor(splitter='random', max_features="log2")	0.6305238584914996

Hyper-tuning the parameters of **Decision Tree** algorithm with different values to discover an accurate model. The best R^2 value obtained is 74%.

Considering the different algorithms that has been included in this **Regression** example, it has been found that **Multiple Linear Regression** provides the accuracy value of **78%**, hence the model is saved and can be used for future use.