Mars Lander

Simulations for Easy on the right test: ~17600

Forward model details

 Action's description contains differences between previous and next thrust power and rotation so it's easier to make crossovers and mutations.

RHEA

The algorithm described below passed all tests.

- · Population size: 50,
- Action sequence length: 20,
- New populations for computing each move: 20,

Creating new population

- 6 bests individuals proceed to next population.
- The rest is made up as follows:
 - 1. 2 parents are selected with roulette wheel.
 - 2. 2 children are created with 1-point crossover
 - 3. Every gene of each child can mutate with probability of 1/2L, where L sequence length

Fitness function

I evaluated only last state of each sequence. There are several features of state that I use to calculate it's value:

- distance to landing zone should be as small as possible
- vertical and horizontal speed lander shouldn't fly too fast
- if landing zone is above lander's position, it should fly up.

For each feature I create part of evaluation function:

- For distance it's just `7000 ds`, where ds distance to landing zone in straight line (7000 because it's more than maximum possible distance and I want my function to be always >= 0)
- For speed I have 2 functions (1 for vertical speed, 1 for horizontal). They can be described as follows:

```
\circ f(v) = 1 if v <= v_{min}
```

$$\circ$$
 f(v) = 0 if v >= v_{max}

$$\circ f(v) = 1/(v_{min} - v_{max}) \text{ if } v_{min} < v < v_{max}$$

- For going up
 - if landing is below lander then f(state) = 1
 - else f(state) = 1 / distance_to_landing

Multiplying these 3 functions gives my fitness function.

Program variations

I tried different approaches for fitness function and evolution but they didn't give satisfying results.

I left some unused evaluation function in my code. I tried, for example

- Evaluate somehow lander rotation it turned out to be unnecessary
- Calculate ground distance from crash point to landing zone it was too slow

I also tried crossover from https://www.codingame.com/blog/genetic-algorithm-mars-lander/, and different values of population size, sequence length etc. It didn't give better results.