Total No. of Questions: 8]

rgpvonline.com

[Total No. of Printed Pages: 2

Roll No

BE-3001 (CE/TX) (CBGS)

B.E., IV Semester

Examination, May 2018

Choice Based Grading System (CBGS) Mathematics - III

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions out of eight.

- ii) All questions carry equal marks.
- Obtain Fourier series of the function f(x) = x in the internal $(-\pi,\pi)$. rgpvonline.com
 - Obtain half range sine series for e^x in the internal 0 < x < l.
- Find the Fourier transform of f(x) defined by

$$f(x) = \begin{cases} 1, |x| < a \\ 0, |x| > a \end{cases}$$

- b) Find Fourier sine transform of $\frac{e^{-ax}}{x}$
- Find Laplace transform of the following functions:
 - i) $6\sin 2t 5\cos 2t$ ii) $\frac{e^{at} 1}{at}$
- - b) Find inverse Laplace transform of the following functions:

i)
$$\frac{1}{s^2 - 6s + 10}$$

i)
$$\frac{1}{s^2 - 6s + 10}$$
 ii) $\frac{3s - 2}{s^2 - 4s + 20}$

BE-3001 (CE/TX) (CBGS)

PTO

rgpvonline.com rgpvonline.com 4. a) Use convolution theorem to find

$$L^{-1}\left\{\frac{1}{(p+1)(p-2)}\right\}$$

- b) Find Laplace transform of the followings:

rgpvonline.com

- i) $L\{e^t \sin^2 t\}$ ii) $L\{t^2 \sin at\}$
- 5. a) Show that the function $e^x(\cos y + i \sin y)$ is an analytic function. Find its derivative.
 - b) Show that the function $u(x, y) = x^2 y^2 + 2y$ is harmonic and find its conjugate.
- 6. a) Evaluate $\int_{c} \frac{e^{z}}{(z-1)(z-4)} dz$ where c is the circle |z|=2

by using Cauchy's integral formula.

b) Find poles and residues of the function

$$\frac{z^2}{(z-1)(z-2)(z-3)}$$

- $\frac{z^2}{(z-1)(z-2)(z-3)}$ 7. a) Find the roof of the equation $x^3 = 5x 7 = 0$ which lies between 2 and 3 by the method of false position. (upto 3 iterations only).
 - b) Apply Newton Raphs on method to solve $3x - \cos x - y = 0$. (upto 3 iterations only).
- 8. a) Using bisection method, find the roof of the equation $x^3 + x - 1 = 0$ near x = 1. (upto three iterations only).
 - b) Find a Fourier series to represent $f(x) = x x^2$ from $x = -\pi$ to $x = \pi$.

BE-3001 (CE/TX) (CBGS)

rgpvonline.com rgpvonline.com