



US005412735A

## United States Patent [19]

Engebretson et al.

[11] Patent Number: 5,412,735

[45] Date of Patent: May 2, 1995

[54] ADAPTIVE NOISE REDUCTION CIRCUIT FOR A SOUND REPRODUCTION SYSTEM

[75] Inventors: A. Maynard Engebretson, Ladue, Mo.; Michael P. O'Connell, Somerville, Mass.

[73] Assignee: Central Institute for the Deaf, St. Louis, Mo.

[21] Appl. No.: 842,566

[22] Filed: Feb. 27, 1992

[51] Int. Cl.<sup>6</sup> ..... H04B 15/00[52] U.S. Cl. ..... 381/94; 381/68.4;  
381/18.2[58] Field of Search ..... 381/68.2, 94, 68.4,  
381/68.7, 71

## [56] References Cited

## U.S. PATENT DOCUMENTS

3,927,279 12/1975 Nakamura et al. .... 179/107  
4,433,435 2/1984 David ..... 381/94  
4,548,082 10/1985 Engebretson ..... 73/585  
4,658,426 4/1987 Chabries et al. ..... 381/94  
4,833,719 5/1989 Carne et al. ..... 381/94  
5,018,202 5/1991 Takahashi et al. ..... 381/71

## OTHER PUBLICATIONS

A self-adaptive noise filtering system (about 1987) by D. Graupe, J. Grosspietsch, and R. Taylor.

Adaptive Noise Cancelling: Principles and Applications

(Dec., 1975) by B. Widrow, J. Glover, Jr., J. McCool, J. Kaunitz, C. Williams, R. Hearn, J. Zeidler, E. Dong, Jr., R. Goodlin.

Linear prediction: A Tutorial Review (Apr., 1975) by John Makhoul.

A Roundoff Error Analysis of the LMS Adaptive Algorithm (Feb., 1984) by Christos Caraiscos.

Primary Examiner—Forester W. Isen

Assistant Examiner—Ping W. Lee

Attorney, Agent, or Firm—Senniger, Powers, Leavitt & Roedel

## [57] ABSTRACT

A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

39 Claims, 2 Drawing Sheets



FIG. 1



FIG. 2



FIG. 3



FIG. 4



FIG. 5



## ADAPTIVE NOISE REDUCTION CIRCUIT FOR A SOUND REPRODUCTION SYSTEM

This invention was made with U.S. Government support under Veterans Administration Contract V674-P-857 and V674-P-1736 and National Aeronautics and Space Administration (NASA) Research Grant No. NAG10-0040. The U.S. Government has certain rights in this invention.

Copyright ©1988 Central Institute for the Deaf. A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document of the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

### BACKGROUND OF THE INVENTION

The present invention relates to a noise reduction circuit for a sound reproduction system and, more particularly, to an adaptive noise reduction circuit for a hearing aid.

A common complaint of hearing aid users is their inability to understand speech in a noisy environment. In the past, hearing aid users were limited to listening-in-noise strategies such as adjusting the overall gain via a volume control, adjusting the frequency response, or simply removing the hearing aid. More recent hearing aids have used noise reduction techniques based on, for example, the modification of the low frequency gain in response to noise. Typically, however, these strategies and techniques have not achieved as complete a removal of noise components from the audible range of sounds as desired.

In addition to reducing noise effectively, a practical ear-level hearing aid design must accommodate the power, size and microphone placement limitations dictated by current commercial hearing aid designs. While powerful digital signal processing techniques are available, they require considerable space and power such that most are not suitable for use in a hearing aid. Accordingly, there is a need for a noise reduction circuit that requires modest computational resources, that uses only a single microphone input, that has a large range of responses for different noise inputs, and that allows for the customization of the noise reduction according to a particular user's preferences.

### SUMMARY OF THE INVENTION

Among the several objects of the present invention may be noted the provision of a noise reduction circuit which estimates the noise components in an input signal and reduces them; the provision of such a circuit which is small in size and which has minimal power requirements for use in a hearing aid; the provision of such a circuit having a frequency response which is adjustable according to a user's preference; the provision of such a circuit having a frequency response which is adjustable according to an expected noise environment; the provision of such a circuit having a gain which is adjustable according to a user's preference; the provision of such a circuit having a gain which is adjustable according to an existing noise environment; and the provision of such a circuit which produces a noise reduced output signal.

Generally, in one form the invention provides a noise reduction circuit for a sound reproduction system hav-

ing a microphone for producing an input signal in response to sound in which noise components are present. The circuit includes an adaptive filter comprising a variable filter responsive to the input signal to produce a noise estimating signal and further comprising a first combining means responsive to the input signal and the noise-estimating signal to produce a composite signal. The parameters of the variable filter are varied in response to the composite signal to change its operating characteristics. The circuit further includes a second filter which responds to the noise-estimating signal to produce a modified noise-estimating signal and also includes means for delaying the input signal to produce a delayed signal. The circuit also includes a second combining means which is responsive to the delayed signal and the modified noise-estimating signal to produce a noise-reduced output signal. The variable filter may include means for continually sampling the input signal during predetermined time intervals to produce the noise-estimating signal. The circuit may be used with a digital input signal and may include a delaying means for delaying the input signal by an integer number of samples  $N$  to produce the delayed signal and may include a second filter comprising a symmetric FIR filter having a tap length of  $2N+1$  samples. The circuit may also include means for adjusting the amplitude of the modified noise-estimating signal.

Another form of the invention is a sound reproduction system having a microphone for producing an input signal in response to sound in which noise components are present and a variable filter which is responsive to the input signal to produce a noise-estimating signal. The system has a first combining means responsive to the input signal and the noise-estimating signal to produce a composite signal. The parameters of the variable filter are varied in response to the composite signal to change its operating characteristics. The system further comprises a second filter which responds responsive to the noise-estimating signal to produce a modified noise-estimating signal and also includes means for delaying the input signal to produce a delayed signal. The system additionally has a second combining means responsive to the delayed signal and the modified noise-estimating signal to produce a noise-reduced output signal and also has a transducer for producing sound with a reduced level of noise components as a function of the noise-reduced output signal. The variable filter may include means for continually sampling the input signal during predetermined time intervals to produce the noise-estimating signal. The system may be used with a digital input signal and may include a delaying means for delaying the input signal by an integer number of samples  $N$  to produce the delayed signal and may include a second filter comprising a symmetric FIR filter having a tap length of  $2N+1$  samples. The system may also include means for adjusting the amplitude of the modified noise-estimating signal.

An additional form of the invention is a method of reducing noise components present in an input signal in the audible frequency range which comprises the steps of filtering the input signal with a variable filter to produce a noise-estimating signal and combining the input signal and the noise-estimating signal to produce a composite signal. The method further includes the steps of varying the parameters of the variable filter in response to the composite signal and filtering the noise-estimating signal according to predetermined parameters to produce a modified noise-estimating signal. The method

also includes the steps of delaying the input signal to produce a delayed signal and combining the delayed signal and the modified noise-estimating signal to produce a noise-reduced output signal. The method may include a filter parameter varying step comprising the step of continually sampling the input signal and varying the parameters of said variable filter during predetermined time intervals. The method may be used with a digital input signal and may include a delaying step comprising delaying the input signal by an integer number of samples N to produce the delayed signal and may include a noise-estimating signal filtering step comprising filtering the noise-estimating signal with a symmetric FIR filter having a tap length of  $2N+1$  samples. The method may also include the step of selectively adjusting the amplitude of the modified noise-estimating signal.

Other objects and features will be in part apparent and in part pointed out hereinafter.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a noise reduction circuit of the present invention.

FIG. 2 is a block diagram of a sound reproduction system of the present invention.

FIG. 3 illustrates the present invention embodied in a headset.

FIG. 4 illustrates a hardware implementation of the block diagram of FIG. 2.

FIG. 5 is a block diagram of an analog hearing aid adopted for use with the present invention.

#### DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

A noise reduction circuit of the present invention as it would be embodied in a hearing aid is generally indicated at reference numeral 10 in FIG. 1. Circuit 10 has an input 12 which may be any conventional source of an input signal such as a microphone, signal processor, or the like. Input 12 also includes an analog to digital converter (not shown) for analog inputs so that the signal transmitted over a line 14 is a digital signal. The input signal on line 14 is received by an N-sample delay circuit 16 for delaying the input signal by an integer number of samples N, an adaptive filter within dashed line 18, a delay 20 and a signal level adjuster 36.

Adaptive filter 18 includes a signal combiner 22, and a variable filter 24. Delay 20 receives the input signal from line 14 and outputs a signal on a line 26 which is similar to the input signal except that it is delayed by a predetermined number of samples. In practice, it has been found that the length of the delay introduced by delay 20 may be set according to a user's preference or in anticipation of an expected noise environment. The delayed signal on line 26 is received by variable filter 24. Variable filter 24 continually samples each data bit in the delayed input signal to produce a noise-estimating signal on a line 28 which is an estimate of the noise components present in the input signal on line 14. Alternatively, if one desires to reduce the signal processing requirements of circuit 10, variable filter 24 may be set to sample only a percentage of the samples in the delayed input signal. Signal combiner 22 receives the input signal from line 14 and receives the noise-estimating signal on line 28. Signal combiner 22 combines the two signals to produce an error signal carried by a line 30. Signal combiner 22 preferably takes the difference between the two signals.

Variable filter 24 receives the error signal on line 30. Variable filter 24 responds to the error signal by varying the filter parameters according to an algorithm. If the product of the error and delayed sample is positive, the filter parameter corresponding to the delayed sample is increased. If this product is negative, the filter parameter is decreased. This is done for each parameter. Variable filter 24 preferably uses a version of the LMS filter algorithm for adjusting the filter parameters in response to the error signal. The LMS filter algorithm is commonly understood by those skilled in the art and is more fully described in Widrow, Glover, McCool, Kaunitz, Williams, Hearn, Ziedler, Dong and Goodlin, *Adaptive Noise Cancelling: Principles and Applications*, Proceedings of the IEEE, 63(12), 1692-1716 (1975), which is incorporated herein by reference. Those skilled in the art will recognize that other adaptive filters and algorithms could be used within the scope of the invention. The invention preferably embodies the binary version of the LMS algorithm. The binary version is similar to the traditional LMS algorithm with the exception that the binary version uses the sign of the error signal to update the filter parameters instead of the value of the error signal. In operation, variable filter 24 preferably has an adaption time constant on the order of several seconds. This time constant is used so that the output of variable filter 24 is an estimate of the persisting or stationary noise components present in the input signal on line 14. This time constant prevents the system from adapting and cancelling incoming transient signals and speech energy which change many times during the period of one time constant. The time constant is determined by the parameter update rate and parameter update value.

A filter 32 receives the noise estimating signal from variable filter 24 and produces a modified noise-estimating signal. Filter 32 has preselected filter parameters which may be set as a function of the user's hearing impairment or as a function of an expected noise environment. Filter 32 is used to select the frequencies over which circuit 10 operates to reduce noise. For example, if low frequencies cause trouble for the hearing impaired due to upward spread of masking, filter 32 may allow only the low frequency components of the noise estimating signal to pass. This would allow circuit 10 to remove the noise components through signal combiner 42 in the low frequencies. Likewise, if the user is troubled by higher frequencies, filter 32 may allow only the higher frequency components of the noise-estimating signal to pass which reduces the output via signal combiner 42. In practice, it has been found that there are few absolute rules and that the final setting of the parameters in filter 32 should be determined on the basis of the user's preference.

When circuit 10 is used in a hearing aid, the parameters of filter 32 are determined according to the user's preferences during the fitting session for the hearing aid. The hearing aid preferably includes a connector and a data link as shown in FIG. 2 of U.S. Pat. No. 4,548,082 for setting the parameters of filter 32 during the fitting session. The fitting session is preferably conducted as more fully described in U.S. Pat. No. 4,548,082, which is incorporated herein by reference.

Filter 32 outputs the modified noise-estimating signal on a line 34 which is received by a signal level adjuster 36. Signal level adjuster 36 adjusts the amplitude of the modified noise-estimating signal to produce an amplitude adjusted signal on a line 38. If adjuster 36 is manu-

ally operated, the user can reduce the amplitude of the modified noise-estimating signal during quiet times when there is less need for circuit 10. Likewise, the user can allow the full modified-noise estimating signal to pass during noisy times. It is also within the scope of the invention to provide for the automatic control of signal level adjuster 36. This is done by having signal level adjuster 36 sense the minimum threshold level of the signal received from input 12 over line 14. When the minimum threshold level is large, it indicates a noisy environment which suggests full output of the modified noise-estimating signal. When the minimum threshold level is small, it indicates a quiet environment which suggests that the modified noise-estimating signal should be reduced. For intermediate conditions, intermediate adjustments are set for signal level adjuster 36.

N-sample delay 16 receives the input signal from input 12 and outputs the signal delayed by N-samples on a line 40. A signal combiner 42 combines the delayed signal on line 40 with the amplitude adjusted signal on line 38 to produce a noise-reduced output signal via line 43 at an output 44. Signal combiner 42 preferably takes the difference between the two signals. This operation of signal combiner 42 cancels signal components that are present both in the N-sample delayed signal and the filtered signal on line 38. The numeric value of N in N-sample delay 16 is determined by the tap length of filter 32, which is a symmetric FIR filter with a delay of N-Samples. For a given tap length L,  $L=2N+1$ . The use of this equation ensures that proper timing is maintained between the output of N-sample delay 16 and the output of filter 32.

When used in a hearing aid, noise reduction circuit 10 may be connected in series with commonly found filters, amplifiers and signal processors. FIG. 2 shows a block diagram for using circuit 10 of FIG. 1 as the first signal processing stage in a hearing aid 100. Common reference numerals are used in the figures as appropriate. FIG. 2 shows a microphone 50 which is positioned to produce an input signal in response

PATENT to sound external to hearing aid 100 by conventional means. An analog to digital converter 52 receives the input signal and converts it to a digital signal. Noise reduction circuit 10 receives the digital signal and reduces the noise components in it as more fully described in FIG. 1 and the accompanying text. A signal processor 54 receives the noise reduced output signal from circuit 10. Signal processor 54 may be any one or more of the commonly available signal processing circuits available for processing digital signals in hearing aids. For example, signal processor 54 may include the filter-limit-filter structure disclosed in U.S. Pat. No. 4,548,082. Signal processor 54 may also include any combination of the other commonly found amplifier or filter stages available for use in a hearing aid. After the digital signal has passed through the final stage of signal processing, a digital to analog converter 56 converts the signal to an analog signal for use by a transducer 58 in producing sound as a function of the noise reduced signal.

In addition to use in a traditional hearing aid, the present invention may be used in other applications requiring the removal of stationary noise components from a signal. For example, the work environment in a factory may include background noise such as fan or motor noise. FIG. 3 shows circuit 10 of FIG. 1 installed in a headset 110 to be worn over the ears by a worker or in the worker's helmet for reducing the fan or motor

noise. Headset 110 includes a microphone 50 for detecting sound in the work place. Microphone 50 is connected by wires (not shown) to a circuit 112. Circuit 112 includes the analog to digital converter 52, noise reduction circuit 10 and digital to analog converter 56 of FIG. 2. Circuit 112 thereby reduces the noise components present in the signal produced by microphone 50. Those skilled in the art will recognize that circuit 112 may also include other signal processing as that found in signal processor 54 of FIG. 2. Headset 110 also includes a transducer 58 for producing sound as a function of the noise reduced signal produced by circuit 112.

FIG. 4 shows a hardware implementation 120 of an embodiment of the invention and, in particular, it shows an implementation of the block diagram of FIG. 2, but simplified to unity gain function with the omission of signal processor 54. Hardware 120 includes a digital signal processing board 122 comprised of a TMS 32040 14-bit analog to digital and digital to analog converter 126, a TMS 32010 digital signal processor 128, and an EPROM and RAM memory 130, which operates in real time at a sampling rate of 12.5 khz. Component 126 combines the functions of converters 52 and 56 of FIG. 2 while 128 is a digital signal processor that executes the program in EPROM program memory 130 to provide the noise reduction functions of the noise reduction circuitry 10. Hardware 120 includes an ear module 123 for inputting and outputting acoustic signals. Ear module 123 preferably comprises a Knowles EK 3024 microphone and preamplifier 124 and a Knowles ED 1932 receiver 134 packaged in a typical behind the ear hearing aid case. Thus microphone and preamplifier 124 and receiver 134 provide the functions of microphone 50 and transducer 58 of FIG. 2.

Circuit 130 includes EPROM program memory for implementing the noise reduction circuit 10 of FIG. 1 through computer program "NRDEF.320" which is set forth in Appendix A hereto and incorporated herein by reference. The NRDEF.320 program preferably uses linear arithmetic and linear adaptive coefficient quantization in processing the input signal. Control of the processing is accomplished using the serial port communication routines installed in the program.

In operation, the NRDEF.320 program implements noise reduction circuit 10 of FIG. 1 in software. The reference characters used in FIG. 1 are repeated in the following description of FIG. 4 to correlate the block from FIG. 1 with the corresponding software routine in the NRDEF.320 program which implements the block. Accordingly, the NRDEF.320 program implements a 6 tap variable filter 24 with a single delay 20 in the variable filter path. Variable filter 24 is driven by the error signal generated by subtracting the variable filter output from the input signal. Based on the signs of the error signal and corresponding data value, the coefficient of variable filter 24 to be updated is incremented or decremented by a single least significant bit. The error signal is used only to update the coefficients of variable filter 24, and is not used in further processing. The noise estimate output from the variable filter 24 is low pass filtered by an 11 tap linear phase filter 32. This lowpass filtered noise estimate is then scaled by a multiplier (default=1) and subtracted from the input signal delayed 5 samples to produce a noise-reduced output signal.

FIG. 5 illustrates the use of the present invention with a traditional analog hearing aid. FIG. 5 includes an analog to digital converter 52, an acoustic noise reduc-

tion circuit 10, and a digital to analog converter 56, all as described above. Circuit 10 and converters 52 and 56 are preferably mounted in an integrated circuit chipset by conventional means for connection between a microphone 50 and an amplifier 57 in the hearing aid.

In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.

As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

## APPENDIX A

PROGRAM 'nrdef.320'

Michael P. O'Connell

Copyright 1988  
Central Institute for the Deaf  
818 S. Euclid  
Saint Louis, Missouri 63110

This program is based on the 50 tap adaptive filter program 'nr'. In this program the noise estimate is low passed filtered with X tap linear phase lowpass filter, scaled and used to cancel an appropriately delayed input signal. The error term used in the adaptive filter update remains the same. The coefficient update uses a leaky coefficient form such that:

$$w(k,n+1) = w(k,n) * [1-leak] + delta$$

where leak and delta are programmable.

This program also includes the serial port communication protocol to allow the program parameters to be adjusted through the serial communication port.

The dc offset from the input is removed using an adaptive null which subtracts an offset from the input to generate a zero mean input stream.

50 tap adaptive filter using the sign-update method

This program implements a 50 tap (or smaller) adaptive filter using the sign bit update method. The program is designed to use the 32010 DSP board with the AIC acting as both A/D and D/A.

The adaptive structure implemented is



The output signal is



The default conditions for this program are:

- 6 tap adaptive filter
- non-leaking coefficients
- 1 LSB update of adaptive coefficients
- unity sensitivity term ( 32767 where 32768 is unity)

## DATA AREAS

page 0

0 - 50 input samples  
51 - 100 adaptive filter coefficients

page 1

0 - 11 noise estimate samples

## page 0 data locations

```

d0    equ    0      input data x(n)
d5    equ    5      input data x(n-5)
d49   equ    49     input data x(n-49)
d50   equ    50     input data x(n-50)
*
w0    equ    51    adaptive FIR coefficient w(0)
w49   equ    100   adaptive FIR coefficient w(49)
*
y     equ    101   adaptive filter output (estimate)
err   equ    102   estimate error [ err = x(n) - y(n) ]
*
temp  equ    103   temporary working location
delta  equ    104   coefficient update magnitude / 2
*
lpest equ    105   low pass filtered noise estimate
sens   equ    106   noise reduction sensitivity term
*
dcoff equ    107   adaptive dc offset nulling term
*
taps   equ    108   number of adaptive filter taps - 1
*
leak   equ    109   leaky coefficient multiplier
*
*      serial communication locations

```

```

*
serin equ 118      serial input data from uart
serout equ 119     serial output data to uart
value  equ 120     hex value of valid input
cadd   equ 121     address from serial port communication
cdata  equ 122     data from serial port communication
word   equ 123     working location used in building a word
*
one   equ 124     data memory address containing 1
mask  equ 125     data memory address of 14 high order bit mask
din   equ 126     a/d input sample
dout  equ 127     d/a output sample
*
*    page 1 data locations
*
y0    equ 0         current noise estimate y(n)
y10   equ 10        noise estimate y(n-10)
*
*
*    AORG 0
b      start hard reset vector
*
*    AIC interrupt routine
*
sint  in  din,0    read a/d input sample
      out dout,0   output d/a sample
      pop          load return address into accumulator
      add one,1    add offset to return address
      push         store new return address
      eint         enable interrupts and clear intf
      ret          return from interrupt call
*
*
bmask data >ffffc  output bit mask
fsrta data >0c18   ra/ta data for 12.25 kHz sampling
fsrtb data >448a   rb/tb data for 12.25 kHz sampling
ksens  data 32767  default noise reduction sensitivity
*
*
*    Program initialization
*
start dint        disable interrupts from AIC
      ldpk 0       load data page pointer to page 0
      sovm          set overflow clipping mode
      lack ksens   default noise reduction sensitivity
      tblr sens    read noise reduction sensitivity
      lack 2       load coefficient delta value
      sacl delta   store coefficient delta value
      lack 5       load number of taps - 1
      sacl taps   store the desired number of taps - 1
      lack >0      default coefficient leak term [1 - leak/2^16]
      sacl leak   store default leak term
*
*
*    clear coefficients and data areas
*    (start at cldat to clear filter taps without resetting
*    model parameters)
*
cldat larp 0       use aux reg. 0
      lark 0,100   set word counter to 100
      zac          clear accumulator
      cld  sacl *    clear lower 100 data locations
      cld  banz cld  branch until all locations clear
*
lark  0,50    initialize AR0 to 50

```

lark 1,0 initialize ARI to 0

\*  
 \* start point for resetting parameters  
 \* (this does not set delta, sens, or the number of taps)  
 \* (does not clear filter taps)  
 \*

start1 dint disable interrupts from AIC  
 ldpk 0 load data page pointer to page 0  
 scvm set overflow clipping mode  
 lack bmask output bit mask  
 tbir mask read bit mask  
 lack 1 load one (1) in accumulator  
 sacl one store value of 1 in one

\* This code is used to set the sampling rate and AIC configuration

\*  
 zac clear accumulator  
 sacl dout zero output data to AIC  
 cut dout,0 clear AIC serial register  
 out dout,7 reset AIC  
 cut dout,7 reset AIC  
 cut dout,0 clear AIC serial register

\* eint enable interrupts

\*  
 h1 b h1 ignore first interrupt  
 \*  
 c0 b  
 lack 3 data to initiate secondary communication  
 sacl dout store data in interrupt region  
 c0 b c0 wait for interrupt  
 lack fsrta ta/ra settings  
 tbir dout read ta/ra settings  
 c1 b c1 wait for interrupt  
 lack 3 data to initiate secondary communication  
 sacl dout store data in interrupt region  
 c2 b c2 wait for interrupt  
 lack fsrtb tb/rb settings  
 tbir dout read tb/rb settings  
 c3 b c3 wait for interrupt  
 lack 3 data to initiate secondary communication  
 sacl dout store data in interrupt region  
 c4 b c4 wait for interrupt  
 lack >63 AIC data for no aa / 3V FS / int+ input  
 sacl dout store AIC settings  
 c5 b c5 wait for interrupt  
 zac clear accumulator  
 sacl dout store output sample of 0  
 c6 b c6 wait for interrupt

\*  
 \* This is the region in which the main program sampling loop is  
 \* executed.  
 \*

\* null the input dc offset

\*  
 loop lac din,12 load new input sample  
 sub dcoff,3 subtract dc offset  
 sacn din,4 store input with dc term nulled  
 bge incdff branch if offset input signal positive  
 \*  
 lac dcoff load adaptive dc offset term  
 sub one reduce offset term  
 sacl dcoff store new offset

```

b      filter  barch to adaptive filter code
*
incdff lac      dcdff  load adaptive dc offset term
add     one     increase offset term
sac1    dcdff  store new offset
*
*      calculate the adaptive filter output
*
filter zac      clear accumulator
lt      d49    load x(n-49) into T register
mpy    w49    P reg. = x(n-49)*w(49)
ltd    48     Load x(n-48) in T reg., accumulate, Z**-1
          P reg. = x(n-48)*w(48)
ltd    47
mpy    98
ltd    46
mpy    97
ltd    45
mpy    96
ltd    44
mpy    95
ltd    43
mpy    94
ltd    42
mpy    93
ltd    41
mpy    92
ltd    40
mpy    91
ltd    39
mpy    90
ltd    38
mpy    89
ltd    37
mpy    88
ltd    36
mpy    87
ltd    35
mpy    86
ltd    34
mpy    85
ltd    33
mpy    84
ltd    32
mpy    83
ltd    31
mpy    82
ltd    30
mpy    81
ltd    29
mpy    80
ltd    28
mpy    79
ltd    27
mpy    78
ltd    26
mpy    77
ltd    25
mpy    76
ltd    24
mpy    75
ltd    23
mpy    74
ltd    22
mpy    73
ltd    21

```

|      |        |                                                                                                                  |
|------|--------|------------------------------------------------------------------------------------------------------------------|
| mpy  | 72     |                                                                                                                  |
| ltd  | 20     |                                                                                                                  |
| mpy  | 71     |                                                                                                                  |
| ltd  | 19     |                                                                                                                  |
| mpy  | 70     |                                                                                                                  |
| ltd  | 18     |                                                                                                                  |
| mpy  | 69     |                                                                                                                  |
| ltd  | 17     |                                                                                                                  |
| mpy  | 68     |                                                                                                                  |
| ltd  | 16     |                                                                                                                  |
| mpy  | 67     |                                                                                                                  |
| ltd  | 15     |                                                                                                                  |
| mpy  | 66     |                                                                                                                  |
| ltd  | 14     |                                                                                                                  |
| mpy  | 65     |                                                                                                                  |
| ltd  | 13     |                                                                                                                  |
| mpy  | 64     |                                                                                                                  |
| ltd  | 12     |                                                                                                                  |
| mpy  | 63     |                                                                                                                  |
| ltd  | 11     |                                                                                                                  |
| mpy  | 62     |                                                                                                                  |
| ltd  | 10     |                                                                                                                  |
| mpy  | 61     |                                                                                                                  |
| ltd  | 9      |                                                                                                                  |
| mpy  | 60     |                                                                                                                  |
| ltd  | 8      |                                                                                                                  |
| mpy  | 59     |                                                                                                                  |
| ltd  | 7      |                                                                                                                  |
| mpy  | 58     |                                                                                                                  |
| ltd  | 6      |                                                                                                                  |
| mpy  | 57     |                                                                                                                  |
| ltd  | 5      |                                                                                                                  |
| mpy  | 56     |                                                                                                                  |
| ltd  | 4      |                                                                                                                  |
| mpy  | 55     |                                                                                                                  |
| ltd  | 3      |                                                                                                                  |
| mpy  | 54     |                                                                                                                  |
| ltd  | 2      |                                                                                                                  |
| mpy  | 53     |                                                                                                                  |
| ltd  | 1      |                                                                                                                  |
| mpy  | 52     |                                                                                                                  |
| ltd  | d0     | load t reg. x(n), accumulate, $z^{n-1}$                                                                          |
| mpy  | w0     | p reg. = $x(n)*w(n)$                                                                                             |
| apac |        | accumulate final product                                                                                         |
| sach | y,1    | store estimate y(n)                                                                                              |
| add  | y,15   | add result for gain of 6 dB                                                                                      |
| add  | one,14 | round result                                                                                                     |
| sach | y,1    | store estimate + 6 dB (prevent overflow in filt                                                                  |
| *    |        |                                                                                                                  |
| *    |        | calculate estimate error (assume delay of one)                                                                   |
| *    |        |                                                                                                                  |
| lac  | din    | load current input x(n+1)                                                                                        |
| sac1 | d0     | store new input sample in array                                                                                  |
| sub  | y      | subtract estimate err = $x(n+1) - y(n)$                                                                          |
| sac1 | err    | store error                                                                                                      |
| *    |        |                                                                                                                  |
| *    |        | update a single filter coefficient using the sign bit method                                                     |
| *    |        |                                                                                                                  |
| *    |        | -AR0 counts from 50 to 1, w(k) to be updated has address<br><AR0> + 50, applicable data x(n-k) has address <AR0> |
| *    |        |                                                                                                                  |
| sar  | 0,temp | store x(n-k) pointer in location temp                                                                            |
| lack | 50     | load w(k) offset in accumulator                                                                                  |
| add  | temp   | add coefficient pointer value                                                                                    |
| sac1 | temp   | store w(k) coefficient address in temp                                                                           |
| lar  | 1,temp | load w(k) address in AR1                                                                                         |

```

*      lt      *,1      load x(n-k) in to T register, set ARP=1
*      mpy     err      err * x(n-k) in P reg.
*      pac     load accumulator with product
*      blz     nprd    branch if err * x(n-k) is negative
*
*      add delta to w(k)
*
*      lac     delta,15   coefficient delta in accumulator
*      b       updat   branch to update code
*
*      subtract delta from w(k)
*
nprd  zac      clear accumulator
*      sub     delta,15   negative coefficient delta in accumulat
*
*      update w(k) using address stored in AR1
*
*      updat  add     *,15   add w(k) to current delta
*      add     *,15   add w(k) again to make use of overflow processi
*      lt      *      load w(k) in T reg. for leak term
*      mpy     leak    multiply by leak term
*      spac   sub     scaled w(k) for leak
*      sach   *,0,0   store updated w(k), set ARP=0
*
*
*      update the coefficient pointer ARO
*
*      mar     *-,0      subtract one from ARO to offset count (49-0)
*      banz   cntok   branch if coefficient counter not zero
*      lar    0,taps  reset coefficient counter
cntok mar     *+,0      add one to ARO to use again as address pointer
*
*      low pass filter and scale the noise estimate
*
*      lac     y      load current noise estimate in accumulator
*      ldpk   1      change to data page 1
*      sacl   y0     store current noise estimate in page 1
*
*      lowpass filter ( 1 kHz BW, -40 dB at 3kHz)
*
*      zac     clear accumulator
*      lt      y10    load y(n-10) in T register
*      mpyk   -59    multiply by h(10)
*      ltd    9      load y(n-9) in T register, accumulate, Z**-1
*      mpyk   -68    multiply by h(9)
*      ltd    8
*      mpyk   113
*      ltd    7
*      mpyk   545
*      ltd    6
*      mpyk   1036
*      ltd    5
*      mpyk   1255
*      ltd    4
*      mpyk   1036
*      ltd    3
*      mpyk   545
*      ltd    2
*      mpyk   113
*      ltd    1
*      mpyk   -68
*      ltd    y0     load y(n) in T register, accumulate, Z**-1
*      mpyk   -59    multiply by h(0)
*      apac   acum    accumulate last product
*      ldpk   0      return to data page 0

```

```

*
* sach lpest,4 store lowpass estimate of noise
* lt    lpest   lowpass noise estimate in T register
* mpy   sens    multiply by noise reduction sensitivity
* pac   accumulate result
* sach lpest,1 store filtered, scaled, noise estimate
*
*
* output desired data
*
dac lac d5      load x(n-5) into lower accumulator
sub lpest  subtract lowpass, scaled noise estimate
and mask  mask off 14 high order bits
saci dout   store output data
*
*
wait b      wait for interrupt
b1oz loop   continue loop if no serial input present
*
*
*
program gencom.320
*
* This program contains routines for communication via an
* RS232 line and the TMS32010 board. It contains routines to read
* and write to the data and program memory, and begin execution at
* the 32010 code at a given location.
*
*
* The command formats are as follows:
*
/0xxxxx          start execution at address xxxx
/1xxxxxddddcccc...  write data to program memory starting
*                   at address xxxx
* /2xxxxx (XXXX returned)  read data from program memory address x
* /3xxxxxddddcccc...  write data to data memory starting at
*                   address xxxx
* /4xxxxx (XXXX returned)  read data from data memory address xxxx
* /5xxxxx           write data xxxx to WDHA interface
* /6                read data XXXX from WDHA interface
* /7                read WDHA serial output line,
*                   0000 if low, 0001 if high
*
*
*
*
* communication routines for the log DEA evaluation system
*
* At this point a character has been received through the serial
* interrupting program execution.. The subroutine used to service
* serial port will be called. If program control returns to this
* from 'getch' a character other than '/' has been received. Program
* execution will halt until a valid character has been received.
*
charin dint          disable AIC interrupts
call getch           call character input routine
b      charin        Wait for valid '/' character
*
*
* This portion begins the command interpretation portion of the
* Program control passes to this point whenever an '/' character
* received.
*
command call      getch          get command character
lac     value         load received command value
bz     exec          branch to execute routine
sub     one           check for 1 command

```

|      |                             |                                         |
|------|-----------------------------|-----------------------------------------|
| bz   | lpm                         | branch to load program memory           |
| sub  | one                         | check for 2 command                     |
| bz   | rpm                         | branch to read program memory           |
| sub  | one                         | check for 3 command                     |
| bz   | ldm                         | branch to load data memory routine      |
| sub  | one                         | check for 4 command                     |
| bz   | rdm                         | branch to read data memory routine      |
| sub  | one                         | check for 5 command                     |
| bz   | wwdha                       | branch to write wdha routine            |
| sub  | one                         | check for 6 command                     |
| bz   | rwdha                       | branch to read wdha routine             |
| sub  | one                         | check for 7 command                     |
| bz   | cwdha                       | branch to check wdha serial output bit  |
| b    | charin                      | branch to get valid control sequence    |
| *    |                             |                                         |
| *    |                             |                                         |
| *    | execute routine             |                                         |
| *    |                             |                                         |
| exec | call gword                  | call word input routine to get address  |
|      | lac word                    | load starting address                   |
|      | cala                        | jump to desired starting location       |
| *    |                             |                                         |
| *    |                             |                                         |
| *    | load program memory routine |                                         |
| *    |                             |                                         |
| lpm  | call gword                  | call word input routine to get address  |
|      | lac word                    | load new word                           |
|      | sac1 cadd                   | store command address                   |
| lpml | call gword                  | call word input to get data             |
|      | lac word                    | load new word                           |
|      | sac1 cdata                  | store command data                      |
|      | lac cadd                    | load write address                      |
|      | tblw cdata                  | write data                              |
|      | add one                     | increment address                       |
|      | sac1 cadd                   | store new address                       |
|      | b lpml                      | branch for new word                     |
| *    |                             |                                         |
| *    |                             |                                         |
| *    | read program memory routine |                                         |
| *    |                             |                                         |
| rpm  | call gword                  | call word input routine to get address  |
|      | lac word                    | load address in accumulator             |
|      | tblr word                   | read memory contents                    |
|      | call sword                  | send word to host                       |
|      | b charin                    | read next command                       |
| *    |                             |                                         |
| *    |                             |                                         |
| *    | load data memory routine    |                                         |
| *    |                             |                                         |
| ldm  | call gword                  | call word input routine to get address  |
|      | lac word                    | load address in accumulator             |
|      | sac1 cadd                   | store starting address for write to mem |
| ldml | call gword                  | call word input to get data             |
|      | lac word                    | load data into accumulator              |
|      | lar <sub>p</sub> 1          | select aux register 1                   |
|      | lar 1,cadd                  | load program memory address in aux reg. |
|      | sac1 *+                     | store new data increment, increment add |
|      | sar 1,cadd                  | store updated address in cadd           |
|      | lar <sub>p</sub> 0          | select aux register 0                   |
|      | b ldml                      | branch for next data input              |
| *    |                             |                                         |
| *    |                             |                                         |
| *    | read data memory routine    |                                         |
| *    |                             |                                         |
| rdm  | call gword                  | call word input routine to get address  |
|      | lac 1,word                  | load address in aux. reg. 1             |

|       |                              |                                 |                                         |
|-------|------------------------------|---------------------------------|-----------------------------------------|
| larp  | 1                            | select aux reg. 1               |                                         |
| lac   | *                            | read data memory location       |                                         |
| sac1  | word                         | store data from memory location |                                         |
| larp  | 0                            | select aux reg. 0               |                                         |
| call  | sword                        | call send word routine          |                                         |
| b     | charin                       | read next command               |                                         |
| *     |                              |                                 |                                         |
| *     |                              |                                 |                                         |
| *     | write to wdha routine        |                                 |                                         |
| *     |                              |                                 |                                         |
| wwdha | call                         | gword                           | word input routine to get data for wdha |
|       | lac                          | one,15                          | set wdha datain high for leading 1      |
|       | sac1                         | cadd                            | use cadd for working location           |
|       | out                          | cadd,6                          | clear wdha clocks to 0                  |
|       | lac                          | one,15                          | set wdha datain high for leading 1      |
|       | add                          | one,14                          | set wdha clkin high                     |
|       | sac1                         | cadd                            | store wdha output signals               |
|       | out                          | cadd,6                          | clock in leading 1                      |
|       | zac                          |                                 | clear accumulator                       |
|       | sac1                         | cadd                            | low clock signals                       |
|       | out                          | cadd,6                          | output low clock signals                |
|       | larp                         | 1                               | select aux reg 0                        |
|       | lark                         | 1,15                            | store bit shift counter                 |
| wr0   | lac                          | one,15                          | mask for data bit                       |
|       | and                          | word                            | mask off high order bit                 |
|       | sac1                         | cdata                           | store output data bit                   |
|       | out                          | cdata,6                         | output data bit to wdha, clkin low      |
|       | lac                          | one,14                          | set clkin high                          |
|       | or                           | cdata                           | add data bit                            |
|       | sac1                         | cdata                           | store data bit, clkin high              |
|       | out                          | cdata,6                         | clock in data to wdha                   |
|       | lac                          | word,1                          | shift data word                         |
|       | sac1                         | word                            | store shifted output word               |
|       | banz                         | wr0                             | branch for next bit output              |
|       | larp                         | 0                               | select aux. register 0                  |
|       | b                            | charin                          | branch for next command                 |
| *     |                              |                                 |                                         |
| *     | wdha read word routine       |                                 |                                         |
| *     |                              |                                 |                                         |
| rwdha | zac                          |                                 | clear accumulator                       |
|       | sac1                         | word                            | clear input data word                   |
|       | out                          | word,6                          | set clkout low                          |
|       | larp                         | 1                               | select aux reg 0                        |
|       | lark                         | 1,15                            | store bit shift counter                 |
| r0    | lac                          | word,1                          | shift building input word               |
|       | sac1                         | word                            | store shifted word                      |
|       | in                           | cdata,6                         | read dataout bit                        |
|       | lac                          | cdata,1                         | shift data by 1 left                    |
|       | sac1                         | cdata                           | store new bit                           |
|       | lac                          | one                             | set low order bit                       |
|       | and                          | cdata                           | mask off new bit                        |
|       | or                           | word                            | add bit to low order bit of word        |
|       | sac1                         | word                            | store word                              |
|       | lac                          | one,13                          | set clkout bit                          |
|       | sac1                         | cdata                           | store clkout bit                        |
|       | out                          | cdata,6                         | set clkout high, generate leading edge  |
|       | zac                          |                                 | clear accumulator                       |
|       | sac1                         | cdata                           | clear clkout bit                        |
|       | out                          | cdata,6                         | set clkout low                          |
|       | banz                         | r0                              | branch until all bits read              |
|       | larp                         | 0                               | select aux reg. 0                       |
|       | call                         | sword                           | call word send routine                  |
|       | b                            | charin                          | wait for next command                   |
| *     |                              |                                 |                                         |
| *     | check wdha serial output bit |                                 |                                         |
| *     |                              |                                 |                                         |

```

cwdxha in cdata,6
       lac one,15
       and cdata
       bz bitlow
       lac one
       sacl word
       b cw0
bitlow zac
       sacl word
cw0 call sword
       b charin

*
*      word send routine (output word passed in word)
*
sword lac word,4
       sach cdata
       lack 15
       and cdata
       sacl cdata
       call sendch
       lac word,3
       sach cdata
       lack 15
       and cdata
       sacl cdata
       call sendch
       lac word,12
       sach cdata
       lack 15
       and cdata
       sacl cdata
       call sendch
       lac 15
       and word
       sacl cdata
       call sendch
       ret

*
*      send character routine (output nibble in cdata)
*
sendch larp 1
       lack 9
       sub cdata
       blz saf
       lack 48
       add cdata
       sacl cdata
       b sc0
saf   lack 55
       add cdata
       sacl cdata
       b sc0
delay lark 1,40
del0  banz del0
       larp 0
sc0   bi0z tbechk
       b charin
tbechk in serin,1
       lac one,10
       and serin
       bz delay
       out cdata,1
       ret

*
*      word construct routine (results returned in word)
*

```

```

gword call getch      read bits 15-12
lac   value       load input data value
blz   charin     branch if invalid character received
lac   value,12    load hex nibble in bits 15-12
sacl  word        store building word
call  getch      read bits 11-8
lac   value       load input data value
blz   charin     branch if invalid character received
lac   value,8     load hex nibble in bits 11-8
or   word        or with word
sacl  word        store building word
call  getch      read bits 7-4
lac   value       load input data value
blz   charin     branch if invalid character received
lac   value,4     load hex nibble in bits 7-4
or   word        or with word
sacl  word        store building word
call  getch      read bits 3-0
lac   value       load input data value
blz   charin     branch if invalid character received
lac   value       load hex nibble in bits 3-0
or   word        or with word
sacl  word        store building word
ret

```

\*

\*

\*

## serial input routine

\*

\*

\*

```

getch bioz getch    wait for serial input
larp  1          select aux reg 1
lark  1,10       store delay counter
cwait banz cwait   wait for uart registers
*      larp  0          select aux reg 0
*      in   serin,1    read serial input register
*      check for '/' ([ESC])

```

\*

```

lack  >ff      load 8 bit low order mask
and   serin     load input data into accumulator
sacl  serin     store data only
sacl  serout    store input data (prepare for echo)
lack  47      load '/' ([ESC]) code in accumulator
sub   serin     compare input
bz   escin      branch if '/' ([ESC]) command character

```

\*

\*

## check for 0-9 hex character

\*

```

lack  48      ascii code for 0
sacl  temp     store ascii offset
lac   serin    load serin in accumulator
sub   temp     subtract offset for ascii 0
blz   inarr    branch (<0) to invalid character routine
sacl  serin    store shifted serin
lack  9       ascii code offset for 9
sacl  temp     store ascii offset
lac   serin    load input data
sub   temp     subtract 9
bgz   not09    branch if serin > 9
lac   serin    load value 0-9 in accumulator
sacl  value    store input character value
b    good      branch to character echo routine

```

\*

\*

## check for A-F hex character

\*

|        |      |          |                                          |
|--------|------|----------|------------------------------------------|
| not09. | lack | 17       | additional offset for A-F                |
|        | sac1 | temp     | store offset                             |
|        | lac  | serin    | load input data                          |
|        | sub  | temp     | subtract new offset                      |
|        | blz  | inerr    | branch (<0) to invalid character routine |
|        | sac1 | serin    | store shifted serin                      |
|        | lack | 5        | ascii code offset                        |
|        | sac1 | temp     | store ascii offset                       |
|        | lac  | serin    | load input data                          |
|        | sub  | temp     | subtract 5                               |
|        | bgz  | inerr    | branch if serin > 5                      |
|        | lack | 10       | load value for hex A                     |
|        | add  | serin    | add input data                           |
|        | sac1 | value    | store input character value              |
|        | b    | good     | branch to character echo routine         |
| *      |      |          |                                          |
| *      |      |          | valid character echo                     |
| *      |      |          |                                          |
| good   | out  | serout,1 | output valid character                   |
|        | ret  |          | return from character input              |
| *      |      |          |                                          |
| *      |      |          | invalid character echo                   |
| *      |      |          |                                          |
| inerr  | lack | 33       | ascii code for !                         |
|        | sac1 | serout   | store character to be echoed             |
|        | out  | serout,1 | output character                         |
|        | zac  |          | clear accumulator                        |
|        | sub  | one      | -1 in accumulator                        |
|        | sac1 | value    | store -1 in value                        |
|        | ret  |          | return from character input              |
| *      |      |          |                                          |
| *      |      |          | '/' character echo                       |
| *      |      |          |                                          |
| escin  | out  | serout,1 | output '/' character                     |
|        | pop  |          | clear return address                     |
|        | b    | commam   | branch to command interpretation         |
| *      |      |          |                                          |
| *      |      |          |                                          |
| bell   | larp | 1        | select aux reg. 1                        |
|        | lark | 1,127    | store delay counter                      |
| waitb  | banz | waitb    | wait for uart registers                  |
|        | larp | 0        | select aux reg. 0                        |
| *      |      |          |                                          |
|        | bioz | bell2    | branch if no pending character           |
|        | b    | charin   | branch to serial input handler           |
| bell2  | in   | serin,1  | read serial input register               |
|        | lac  | one,10   | mask for the bit                         |
|        | and  | serin    | check the bit                            |
|        | bz   | bell     | if buffer full branch to bell            |
| *      |      |          |                                          |
|        | lack | 7        | ascii bell in accumulator                |
|        | sac1 | serout   | store bell character                     |
|        | out  | serout,1 | send bell character                      |
|        | b    | bell     | send another bell                        |
| *      |      |          |                                          |
| *      |      |          |                                          |
|        | end  |          |                                          |
| <      |      |          |                                          |

What is claimed is:

1. A noise reduction circuit for a sound reproduction system having a microphone for producing an input signal in response to sound in which a noise component is present, said circuit comprising:

an adaptive filter including a variable filter responsive to the input signal for producing a noise-estimating signal and further including a first combining means responsive to the input signal and the noise-estimating signal for producing a composite signal; 10  
said variable filter having parameters which are varied in response to the composite signal to change the operating characteristics thereof;  
a second filter for filtering the noise-estimating signal to produce a filtered noise-estimating signal; means for delaying the input signal to produce a delayed signal; and  
second combining means for combining the delayed signal and the filtered noise-estimating signal to attenuate noise components in the delayed signal and for producing a noise-reduced output signal.

2. The circuit of claim 1 wherein the variable filter comprises means for sampling a percentage of the input signal to produce the noise-estimating signal which is a function of the noise components during said time intervals.

3. The circuit of claim 1 or 2 wherein the input signal is a digital signal; wherein the delaying means comprises means for delaying the input signal by an integer number of samples N to produce the delayed signal; and wherein the second filter comprises a symmetric FIR filter having a tap length of  $2N+1$  samples.

4. The circuit of claim 1 or 2 further comprising means for adjusting the amplitude of the filtered noise-estimating signal to produce an amplitude adjusted signal, and wherein the second combining means is responsive to the delayed input signal and the amplitude adjusted signal.

5. The circuit of claim 4 wherein the input signal is a digital signal and wherein the circuit further comprises means for delaying the input signal by a preset number of samples to produce a preset delayed signal; and wherein the variable filter is responsive to the preset delayed signal to produce the noise-estimating signal.

6. The circuit of claim 1 or 2 wherein the first combining means comprises means for taking the difference between the input signal and the noise-estimating signal and wherein the second combining means comprises means for taking the difference between the delayed input signal and the filtered noise-estimating signal.

7. The circuit of claim 1 or 2 wherein the input signal is a digital signal and wherein the circuit further comprises means for delaying the input signal by a preset number of samples to produce a preset delayed signal, and wherein the variable filter is responsive to the preset delayed signal to produce the noise-estimating signal.

8. The circuit of claim 1 or 2 wherein the sound reproduction system is a hearing aid for use by the hearing impaired and wherein the second filter has filter parameters which are selected as a function of a user's hearing impairment.

9. The circuit of claim 1 or 2 wherein the second filter has filter parameters which are selected as a function of expected noise components.

10. A sound reproduction system comprising:  
a microphone for producing an input signal in re-

sponse to sound in which noise components are present;

a variable filter responsive to the input signal to produce a noise-estimating signal;

a first combining means responsive to the input signal and the noise-estimating signal for producing a composite signal;

said variable filter having parameters which are varied in response to the composite signal to change the operating characteristics thereof;

a second filter for filtering the noise-estimating signal to produce a filtered noise-estimating signal; means for delaying the input signal to produce a delayed signal;

second combining means for combining the delayed signal and the filtered noise-estimating signal to attenuate noise components in the delayed signal and for producing a noise-reduced output signal; and

a transducer for producing sound with a reduced level of noise components as a function of the noise-reduced output signal.

11. The system of claim 10 wherein the variable filter comprises means for sampling a percentage of the input signal to produce the noise-estimating signal which is a function of the noise component during said time intervals.

12. The system of claim 10 or 11 wherein the input signal is a digital signal; wherein the delaying means comprises means for delaying the input signal by an integer number of samples N to produce the delayed signal; and wherein the second filter comprises a symmetric FIR filter having a tap length of  $2N+1$  samples.

13. The system of claim 10 or 11 further comprising means for adjusting the amplitude of the filtered noise-estimating signal to produce an amplitude adjusted signal, and wherein the second combining means is responsive to the delayed input signal and the amplitude adjusted signal.

14. The system of claim 13 wherein the input signal is a digital signal and wherein the system further comprises means for delaying the input signal by one sample to produce a predetermined delayed signal; and wherein the variable filter is responsive to the predetermined delayed signal to produce the noise-estimating signal.

15. The system of claim 10 or 11 wherein the first combining means comprises means for taking the difference between the input signal and the noise-estimating signal and wherein the second combining means comprises means for taking the difference between the delayed input signal and the filtered noise-estimating signal.

16. The system of claim 10 or 11 wherein the input signal is a digital signal and wherein the system further comprises means for delaying the input signal by one sample to produce a predetermined delayed signal; and wherein the variable filter is responsive to the predetermined delayed signal to produce the noise-estimating signal.

17. The system of claim 10 or 11 wherein the sound reproduction system is a hearing aid for use by the hearing impaired and wherein the second filter has filter parameters which are selected as function of a user's hearing impairment.

18. The system of claim 10 or 11 wherein the second filter has filter parameters which are selected as a function of expected noise components.

19. A method of reducing noise components present in an input signal in the audible frequency range comprising the steps of:

- filtering the input signal with a variable filter to produce a noise-estimating signal;
- combining the input signal and the noise-estimating signal to produce a composite signal;
- varying the parameters of the variable filter in response to the composite signal;
- filtering the noise-estimating signal according to predetermined parameters to produce a filtered noise-estimating signal;
- delaying the input signal to produce a delayed signal; and
- combining the delayed signal and the filtered noise-estimating signal to attenuate noise components in the delayed signal to produce a noise-reduced output signal.

20. The method of claim 19 wherein the filter parameter varying step comprises the step of continually sampling the input signal and varying the parameters of said variable filter during predetermined time intervals, whereby said variable filter produces the noise-estimating signal which is a function of the noise components during said time intervals.

21. The method of claim 19 or 20 wherein the input signal is a digital signal; wherein the delaying step comprises delaying the input signal by an integer number of samples N to produce the delayed signal; and wherein the noise-estimating signal filtering step comprises filtering the noise-estimating signal with a symmetric FIR filter having a tap length of  $2N+1$  samples.

22. The method of claim 19 or 20 further comprising the step of selectively adjusting the amplitude of the filtered noise-estimating signal to produce an amplitude-adjusted signal, and wherein the second stated combining step comprises combining the delayed signal and the amplitude-adjusted signal.

23. The method of claim 22 wherein the input signal is a digital signal and wherein the method further comprises the step of delaying the input signal by a predetermined number of samples to produce a predetermined delayed signal; and wherein the first stated filtering step comprises filtering the predetermined delayed signal to produce the noise-estimating signal.

24. The method of claim 19 or 20 wherein the first stated combining step comprises taking the difference between the input signal and the noise-estimating signal and wherein the second stated combining step comprises taking the difference between the delayed input signal and the filtered noise-estimating signal.

25. The method of claim 19 or 20 wherein the input signal is a digital signal and wherein the method further comprises the step of delaying the input signal by a predetermined number of samples to produce a predetermined delayed signal; and wherein the first stated filtering step comprises filtering the predetermined delayed signal to produce the noise-estimating signal.

26. The method of claim 19 or 20 as utilized in a sound reproduction system for use by the hearing impaired and wherein the noise-estimating signal filtering step comprises selecting the predetermined filter parameters as a function of a user's hearing impairment.

27. The method of claim 19 or 20 wherein the noise-estimating signal filtering step comprises selecting the predetermined filter parameters as a function of expected noise components.

28. The method of claim 22 wherein the step of ad-

5

justing the amplitude of the filtered noise-estimating signal comprises the step of making the adjustment as a function of the amplitude of the input signal.

29. The system of claim 10 or 11 further comprising a headband for a user's head and wherein the transducer is positioned on the headband adjacent the user's ear.

30. A hearing aid comprising:  
a microphone for producing an input signal in response to sound in which noise components are present;

a variable filter responsive to the input signal to produce a noise-estimating signal;  
a first combining means responsive to the input signal and the noise-estimating signal for producing a composite signal;

said variable filter having parameters which are varied in response to the composite signal to change the operating characteristics thereof;

a second filter for filtering the noise-estimating signal to produce a filtered noise-estimating signal;  
means for delaying the input signal to produce a delayed signal;

second combining means for combining the delayed signal and the filtered noise-estimating signal to attenuate noise components in the delayed signal and for producing a noise-reduce output signal; and  
a transducer for producing sound with a reduced level of noise components as a function of the noise-reduced output signal.

31. The hearing aid of claim 30 wherein the variable filter comprises means for sampling a percentage of the input signal to produce the noise-estimating signal which is a function of the noise components during said time intervals.

32. The hearing aid of claim 30 or 31 wherein the input signal is a digital signal; wherein the delaying means comprises means for delaying the input signal by an integer number of samples N to produce the delayed signal; and wherein the second filter comprises a symmetric FIR filter having a tap length of  $2N+1$  samples.

33. The hearing aid of claim 30 or 31 further comprising means for adjusting the amplitude of the filtered noise-estimating signal to produce an amplitude adjusted signal, and wherein the second combining means is responsive to the delayed input signal and the amplitude adjusted signal.

34. The hearing aid of claim 33 wherein the input signal is a digital signal and wherein the hearing aid further comprises means for delaying the input signal by one sample to produce a predetermined delayed signal; and wherein the variable filter is responsive to the predetermined delayed signal to produce the noise-estimating signal.

35. The hearing aid of claim 30 or 31 wherein the first combining means comprises means for taking the difference between the input signal and the noise-estimating signal and wherein the second combining means comprises means for taking the difference between the delayed input signal and the filtered noise-estimating signal.

36. The hearing aid of claim 30 or 31 wherein the input signal is a digital signal and wherein the hearing aid further comprises means for delaying the input signal by one sample to produce a predetermined delayed signal; and wherein the variable filter is responsive to the predetermined delayed signal to produce the noise-estimating signal.

60

65

37. The hearing aid of claim 30 or 31 for use by the hearing impaired and wherein the second filter has filter parameters which are selected as a function of a user's hearing impairment.

38. The hearing aid of claim 30 or 31 wherein the second filter has filter parameters which are selected as a function of expected noise components.

39. A noise reduction circuit for a sound reproduction system having a microphone for producing an input signal in response to sound in which a noise component is present, said circuit comprising:

an adaptive filter including a variable filter responsive to the input signal for producing a noise-estimating signal and further including a first combining

5

15

means responsive to the input signal and the noise-estimating signal for producing a composite signal; said variable filter having parameters which are varied in response to the composite signal to change the operating characteristics thereof; means for adjusting the amplitude of the noise-estimating signal to produce an amplitude adjusted signal; and second combining means for combining the input signal and the amplitude adjusted signal to attenuate noise components in the input signal and for producing a noise-reduced output signal.

\* \* \* \* \*

20

25

30

35

40

45

50

55

60

65