ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ $\{|fg|\leq \|f\|$ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ(5)

 $p(X=x)=\langle x\rangle$ $||fg| \leq ||f||_2 + ||g||_2$ $||f|| = 0 \implies ||F||_2 = 0$ $||f|| = 0 \implies ||F||_2 = 0$ f(t)dt = f(b) - f(a) $f = f(t)(u(a)) = \frac{\partial f}{\partial a} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial a} \frac{\partial u}{\partial a}$ $f(t) = \sqrt{2\pi}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$

$$\frac{\partial}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

f (8)

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2c^n+3l^n=2^n$ TI TOS = III Частные производные и дифференциалы высших порядков [\fs\ ≤\\! Инвариантность формы дифференциалов второго порядка Формула Тейлора для функций нескольких переменных Экстремумы функции нескольких переменных C 077-1 = T-7 Необходимые условия экстремума функции нескольких переменных Достаточные условия экстремума $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$

HF. BAS = IIIVEW

ein =

f (8)

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Рассмотрим дифференцируемую функцию z=f(x,y).

Очевидно, что выполнив частное дифференцирование, найдем $\frac{\partial z(x,y)}{\partial x} = f_1(x,y), \quad \frac{\partial z(x,y)}{\partial y} = f_2(x,y), \quad \text{где } f_1(x,y) \text{ и } f_2(x,y) - \text{ некоторые}$ функции, и если они в свою очередь дифференцируемы, то можно найти $\frac{\partial f_1(x,y)}{\partial x}, \quad \frac{\partial f_1(x,y)}{\partial y}, \quad \text{а также } \frac{\partial f_2(x,y)}{\partial x} \text{ и } \frac{\partial f_2(x,y)}{\partial y}; \quad \text{в этом случае говорят}$ о частных производных второго порядка функции z = f(x,y).

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

NT TAS = III VEW

2 (12) an- 12 bh

{\fs\ ≤\\!

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \delta x$$

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

ЭТОМ ИОТ 3.5 = 111 TF (V) При этом используются следующие обозначения

Іри этом используются следующие обозначения
$$\frac{\partial}{\partial x} \left(\frac{\partial z(x,y)}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = f''_{xx}(x,y);$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z(x,y)}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x,y);$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z(x, y)}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x, y);$$

ein =

[\fg\≤\\!

$$\frac{\partial}{\partial x} \left(\frac{\partial z(x, y)}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} = f''_{xx}(x, y);$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z(x, y)}{\partial x} \right) = \frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x, y);$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z(x, y)}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x} = f''_{yx}(x, y);$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z(x, y)}{\partial y} \right) = \frac{\partial^2 z}{\partial y \partial x} = f''_{yy}(x, y);$$

$$(z) = \sqrt{2\pi}e^{-\frac{\pi}{2}}$$

$$II = \sqrt{2\pi}e^{-\frac{\pi}{2}}$$

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

налогично вводятся в рассмотрение частные производные
$$3^{\text{ro}}, 4^{\text{ro}}, ..., n^{\text{ro}}$$

Аналогично вводятся в рассмотрение частные производные 3^{ro} , 4^{ro} ,..., n^{ro} порядка.

Аналогично вводятся в рассмотрение частные производные
$$3^{ro}$$
, 4^{ro} ,..., порядка.

Например,
$$\frac{\partial^n z}{\partial x^n} \stackrel{def}{=} \frac{\partial}{\partial x} \left(\frac{\partial^{n-1} z}{\partial x^{n-1}} \right),$$

$$\frac{\partial^n z}{\partial y^{n-1} \partial x} \stackrel{def}{=} \frac{\partial}{\partial x} \left(\frac{\partial^{n-1} z}{\partial y^{n-1}} \right)$$
и т.п.
$$\frac{\partial^n z}{\partial x^n} \stackrel{def}{=} \frac{\partial}{\partial x} \left(\frac{\partial^{n-1} z}{\partial x^{n-1}} \right)$$

$$1 - r$$

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

ein =

f (8)

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \lambda x$$

$$x^n + y^n = x^n$$

Остановимся на так называемых смешанных производных второго порядка $\frac{\partial^2 z}{\partial x \partial y} \ ^{\text{U}} \frac{\partial^2 z}{\partial y \partial x}.$

$$\frac{\partial^2 z}{\partial x \partial y} \ \mathbf{u} \ \frac{\partial^2 z}{\partial y \partial x} \,.$$

Очевидно, что эти смешанные производные отличаются только порядком выполнения операции дифференцирования. Возникает вопрос, при выполнении каких условий эти смешанные производные совпадают, т.е. не зависят от порядка дифференцирования.

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

Ecm Ecm 2 (12) an-abh 1/fg/ 5/11 Если в данной точке $x^{(0)}$ существуют смешанные производные

 $\frac{\partial^2 f}{\partial x_1 \partial x_2}$ и $\frac{\partial^2 f}{\partial x_2 \partial x_1}$,

то они не обязательно равны, в чем можно убедиться на

то они не обязательно равны, в чем можно убедиться на примере функции двух переменных
$$x,y$$

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & \text{при } (x,y) \neq (0,0), \\ 0 & \text{при } (x,y) = (0,0), \end{cases}$$

$$f(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} dS = \int_{\mathbb{R}^n} \int_{$$

in a

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Если у функции z = f(x,y) в некоторой области существуют непрерывные смешанные производные $\frac{\partial^2 z(x,y)}{\partial x \partial y}$ и $\frac{\partial^2 z(x,y)}{\partial y \partial x}$, то они совпадают в каждой точке этой области, т.е. $z_{xy}''(x,y) = z_{yx}''(x,y)$ $\forall (x,y) \in D$.

ein =

f (8)

[\fs\ ≤\\!

f(t)dt = f(b) - f(a) f(t)dt = f(b) f $\nabla = \frac{n}{2} + y^n = x^n$ $= \frac{n}{2} \left(\frac{n}{2} \right) a^{n-k} b^k$ HET TAS = IIIVEW

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $2^n + 2^n = 2^n$ $2^n + 2^n = 2^n$ $3^n + 3^n = 2^n$ $3^n + 3^n = 2^n$

Доказательство. Обозначим символами $\Delta_x f$, $\Delta_y f$ приращения функции f в точке (x_0, y_0) , вызванные приращением соответственно Δx аргумента x и Δy аргумента y при достаточно малых $|\Delta x|$, $|\Delta y|$. Легко убедиться, что

 $\Delta_x(\Delta_y f(x_0,y_0)) = \Delta_y(\Delta_x f(x_0,y_0))$ (каждая из частей равенства совпадает с $f(x_0,y_0)$ — $f(x_0,y_0+\Delta y)-f(x_0+\Delta x,y_0)+f(x_0+\Delta x,y_0+\Delta y)$).

 $\partial t \partial u \qquad f(z) = \sqrt{2\pi} e^{-\frac{z^2}{2}}$

WF. BAS = JJJ VEW

 $x^n + y^n = x^n$

n (n) an-hah

T-r

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Из условий теоремы следует существование частных производных $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ в некоторой окрестности точки (x_0, y_0) . Применяя к левой части равенства теорему Лагранжа о конечных приращениях по аргументу x, а к правой — эту же теорему Лагранжа по y, имеем

$$\Delta_y \frac{\partial f}{\partial x} (x_0 + \theta_1 \Delta x, y_0) \Delta x = \Delta_x \frac{\partial f}{\partial y} (x_0, y_0 + \theta_2 \Delta y) \Delta y.$$

$$f(t) dt = f(t) dt$$

 $\frac{\partial}{1-i}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(f(u(x))) \Rightarrow \partial x$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

Применяя к обеим частям последнего равенства ту же теорему Лагранжа соответственно по аргументу y и x, имеем

$$\frac{\partial^2 f}{\partial y \partial x} (x_0 + \theta_1 \Delta x, y_0 + \theta_3 \Delta y) \Delta y \Delta x =
= \frac{\partial^2 f}{\partial x \partial y} (x_0 + \theta_4 \Delta x, y_0 + \theta_2 \Delta y) \Delta x \Delta y,$$

где $0 < \theta_i < 1 \ (i = 1, 2, 3, 4)$.

Сокращая последнее равенство на $\Delta x \Delta y$ и переходя в нем к пределу при $(\Delta x, \Delta y) \to (0,0)$, получаем утверждение теоремы.

$$\frac{a}{1-r}$$

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$= \frac{1}{\sqrt{2\pi}} e^{\frac{\pi}{2}}$$

$$= \frac{$$

f (z)

ain z

fg \ \le \\!

Пример. Убедиться, что у функции $z = \sin xy^2$ совпадают смешанные $P(X = x) = \binom{x}{x} p^{x} (1 - p)$ производные.

 $x^n + y^n = z^n$

ein =

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Решение.

$$\frac{\partial z}{\partial x} = y^2 \cos xy^2$$
; $\frac{\partial^2 z}{\partial x \partial y} = 2y \cos xy^2 - 2xy^3 \sin xy^2$;

 $\frac{\partial^2 z}{\partial y \partial x} = 2y \cos xy^2 - 2xy^3 \sin xy^2$.

 Мы видим, что смешанные производные z''_{xy} и z''_{yx} совпадают. Их непре-

рывность на всей плоскости х0у очевидна.

$$= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$$

 $f(x) = \sqrt{n\pi}e^{-\frac{x^2}{2}}$

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{\pi}{2}}$$

$$f(x) = \sqrt{2\pi}$$

$$f(x) = \sqrt{2\pi}$$

$$f(x) = \sqrt{2\pi}$$

$$g(x) = \sqrt{2\pi}$$

$$g(x$$

Пример Шварца
$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 > 0 \\ 0, & x = y = 0 \end{cases} \Rightarrow \frac{\partial^2 f(0, 0)}{\partial x \partial y} = -1 \neq 1 = \frac{\partial^2 f(0, 0)}{\partial y \partial x}$$

То есть смешанные производные в примере Шварца не равны

Смешанные производные второго порядка равны всюду, однако, разрывны в точке (0,0). $f(z) = \sqrt{2\pi}e$

HE TAS = MINVEW

 $V = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{n}{n} \right) a^{n-k} b^k$

ein =

 $||fg|| \leq ||f||$

Дифференциалы высших порядков

Итак, рассмотрим дифференцируемую функцию двух независимых переменных z=z(x,y).

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = x^n$

Ее полный дифференциал равен $dz = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y$.

Очевидно, что приращения независимых переменных Δx и Δy не зависят от того, в какой точке выполняется дифференцирование функции z=z(x,y).

af at au da

IIF BUS = IIIVEW

n (n) an-table

|\fg\ ≤\\!

 $f(x) = \int_{2\pi}^{\pi} e^{-\frac{x^2}{2}}$ $f = f(f(u(x))) \Rightarrow \partial x$ $f(x) = \int_{2\pi}^{\pi} e^{-\frac{x^2}{2}}$ $f(x) = \int_{2\pi}^{\pi} e^{-\frac{x^2}{2}}$

Будем считать, что выбрав эти приращения, мы их зафиксировали.

Тогда полный дифференциал dz может рассматриваться как некоторая функция независимых переменных x и y, а тогда можно ставить вопрос о ее дифференцировании, т.е. о существовании дифференциала от дифференциала, т.е. d(dz).

Если дифференцируема не только функция z(x,y), но и ее частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, то тогда существует дифференциал от дифференциала, который называется вторым дифференциалом функции z(x,y), и

$$d^{2}z(x,y)$$
, T.e. $d^{2}z(x,y) = d(dz(x,y))$

MF. Ids = III VEW

обозначается

$$f(x) = \sqrt{2\pi}$$

$$f(x) = \sqrt{2\pi}$$

$$f(x) = \sqrt{2\pi}$$
Очевидно, что $x = x$

$$f(x) = x = x$$

$$f(x) = x$$

$$f(x)$$

Очевидно, что
$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \cdot \left(\frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y\right) \cdot \Delta x + \frac{\partial}{\partial y} \cdot \left(\frac{\partial z(x,y)}{\partial x} \cdot \Delta x + \frac{\partial z(x,y)}{\partial y} \cdot \Delta y\right) \cdot \Delta y = \frac{\partial^2 z(x,y)}{\partial x^2} \cdot \left(\Delta x\right)^2 + 2 \cdot \frac{\partial^2 z(x,y)}{\partial x \partial y} \cdot \Delta x \cdot \Delta y + \frac{\partial^2 z(x,y)}{\partial y^2} \cdot \Delta y\right)^2.$$

ein =

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Напомним, что что x и y — независимые переменные и $\Delta x = dx$, $\Delta y = dy$;

Обозначая их квадраты $(\Delta x)^2 = dx^2$, $(\Delta y)^2 = dy^2$, можем записать второй

 $d^2z(x,y) = \frac{\partial^2z}{\partial x^2} \cdot dx^2 + 2\frac{\partial^2z}{\partial x\partial y} \cdot dx \cdot dy + \frac{\partial^2z}{\partial y^2} \cdot dy^2$ $f(z) = \frac{1}{\sqrt{2\pi}} \int_{-2\pi}^{2\pi} dx \cdot dx \cdot dy + \frac{\partial^2z}{\partial y^2} \cdot dy^2$

ein =

 $V = \frac{n}{2} \left(\frac{n}{2} \right) a^{n-k} b^k$

HF. Eds = IIIVEN

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Совершенно аналогично, определяя полный дифференциал третьего порядка функции z = z(x, y) как полный дифференциал от дифференциала $d^3z(x,y) = d(d^2z(x,y))$ полнив аналогичные – второго порядка,

$$d^3z(x,y) \stackrel{def}{=} d(d^2z(x,y))$$

выполнив аналогичные преобразования, получим

ыполнив аналогичные преобразования, получим
$$d^3z = \frac{\partial^3z}{\partial x^3} \cdot dz^3 + 3\frac{\partial^3z}{\partial x^2\partial y} \cdot dx^2 \cdot dy + 3\frac{\partial^3z}{\partial x\partial y^3} \cdot dx \cdot dy^2 + \frac{\partial^3z}{\partial y^3} \cdot \partial y^3$$

$$f(z) = \sqrt{2\pi}^{6}$$

HT TAS = MINVEW

 $V = \sum_{n=1}^{\infty} \binom{n}{n} a^{n-k}b^k$

 $f(x) = \int_{0}^{\infty} \int_{0}^{$

Для удобства записи полного дифференциала любого порядка вводят такую символическую запись:

акую символическую запись:
$$d^nz = \left(\frac{\partial}{\partial x}\cdot dx + \frac{\partial}{\partial y}\cdot dy\right)^nz\;,$$
 которую следует понимать как некий "оператор", применение

которую следует понимать как некий "оператор", применение которого к функции z=z(x,y) предполагает выполнение частного дифференцирования функции z=z(x,y), причем порядок этих частных производных определяется степенью соответствующего слагаемого в правой части, которая раскрывается как формула бинома Ньютона

 $\frac{\partial}{1-\tau} = \frac{\partial}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial}{\partial t} \frac{\partial}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial}{\partial t} \frac{\partial}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$

n (n) an-habit

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

3. $\int |fg| \le ||f||_e + ||g||_q$ $\lim_{e \to 0} \vec{F} = 0 \implies \oint_{0} \vec{F} \cdot d\vec{F} = 0$

раз.

 $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$ Формулу для полного дифференциала, приведенную выше, можно доказать методом полной, т.е. математической индукции.

MT TAS = MIN VEW

 $x^n + y^n = x^n$ $x^n + y^n = x^n$

ein =

f(z)

[\f9\≤\!!

Нетрудно доказать, что если некоторая функция u=u(x,y,z) зависит от трех независимых аргументов, и ее полный дифференциал имеет вид

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

$$du = \frac{\partial u}{\partial x} \cdot dx + \frac{\partial u}{\partial y} \cdot dy + \frac{\partial u}{\partial z} \cdot dz,$$

то для обозначения полного дифференциала n^{ro} порядка такой функции, если он существует, имеет место такая символическая запись:

 $x^n + y^n = z^n$

твует, имеет место такая символическая запись:
$$d^n u(x,y,z) = \left(\frac{\partial}{\partial x} \cdot dx + \frac{\partial}{\partial y} \cdot dy + \frac{\partial}{\partial z} \cdot dz\right)^n \cdot u(x,y,z)$$

Taxm Пример. Найти третий дифференциал от функции двух переменных.

Решение. Пусть функция z = z(x, y) имеет непрерывные вторые частные производные. Для раскрытия скобок в выражении для третьего дифференциала

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

$$d^{3}z(x,y) = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{3}z$$

 $x^n + y^n = z^n$

| \fg\ ≤ \\!

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

воспользуемся алгебраической формулой сокращенного умножения
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$
 Получим
$$d^3z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^3z = \frac{\partial^3z}{\partial x^3}dx^3 + 3\frac{\partial^3z}{\partial x^2\partial y}dx^2dy + 3\frac{\partial^3z}{\partial x\partial y^2}dxdy^2 + \frac{\partial^3z}{\partial y^3}dy^3.$$

MF. Tas = MVEW

Инвариантность формы дифференциалов второго порядка

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

Рассмотрим полный дифференциал второго порядка:

$$d^{2}z = \frac{\partial^{2}z}{\partial x^{2}} \cdot dx^{2} + 2\frac{\partial^{2}z}{\partial x \partial y} \cdot dx \cdot dy + \frac{\partial^{2}z}{\partial y^{2}} \cdot dy^{2}$$

и выясним, сохраняется ли форма второго полного дифференциала, если переменные x и y не независимые, а являются функциями некоторого аргумента t, т.е $x=x(t),\ y=y(t);$

другими словами, выясним, обладает ли полный дифференциал второго порядка свойством инвариантности своей формы?

 $\frac{\partial}{1-r}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}}$ $= \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}}$

 $x^n + y^n = x^n$ $\sum_{k=1}^{n} \binom{n}{k} a^{n-k} b^k$

| \fg\ ≤\\!

$$f(t) = \frac{1}{\sqrt{2\pi}}$$

$$f = f(t)(u(x))$$

$$g_n + y^n = z^n$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$$

Итак, полагаем $z = z[x(t), y(t)]$. $P(X = a) = \binom{n}{x} p^{n-k}b^k$

(т.е. первый дифференциал свойством инвариантности своей формы обладает).

$$f(t) dt = f(b) - f(a)$$

$$f(t) dt = f(b)$$

$$f(t)$$

$$d^{2}z = d(dz) = \left[\frac{\partial z}{\partial x} \cdot dx + \frac{\partial z}{\partial y} \cdot dy\right]_{t}^{t} \cdot dt = \left[\frac{\partial z}{\partial x} \cdot x'_{t} \cdot dt + \frac{\partial z}{\partial y} \cdot y'_{t} \cdot dt\right]_{t}^{t} \cdot dt =$$

$$= \left[\frac{\partial z}{\partial x} \cdot x'_{t} + \frac{\partial z}{\partial y} \cdot y'_{t}\right]_{t}^{t} \cdot dt^{2} = \begin{bmatrix}\frac{\partial^{2}z}{\partial x^{2}} \cdot (x'_{t})^{2} + \frac{\partial^{2}z}{\partial x \partial y} \cdot x'_{t}y'_{t} + \frac{\partial z}{\partial x} \cdot x''_{tt} + \frac{\partial z}{\partial x} \cdot x''_{tt} + \frac{\partial z}{\partial y \partial x} \cdot y'_{t}x'_{t} + \frac{\partial^{2}z}{\partial y^{2}} (y'_{t})^{2} + \frac{\partial z}{\partial y} \cdot y''_{tt}\end{bmatrix} \cdot dt^{2} =$$

$$= \frac{\partial^{2}z}{\partial x^{2}} \cdot dx^{2} + 2\frac{\partial^{2}z}{\partial x \partial y} \cdot dx dy + \frac{\partial^{2}z}{\partial y^{2}} \cdot dy^{2} + \frac{\partial z}{\partial x} \cdot dx' + \frac{\partial z}{\partial y} \cdot dy' =$$

$$= d^{2}z(x,y) + \frac{\partial z}{\partial x} \cdot dx' + \frac{\partial z}{\partial y} \cdot dy' \neq d^{2}z$$

HT TAS = HT VEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Вывод: второй дифференциал не обладает свойством инвариантности своей формы. Аналогично не обладают такими свойствами дифференциалы более высоких порядков.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Исключение составляет тот случай, когда х и у являются линейными функциями аргумента t, т.е. $x = a_1 t + b_1$, $y = a_2 t + b_2$.

Причем это остается в силе для сложной функции любого числа аргументов, т.е. в этом случае полный дифференциал функции нескольких переменных порядка, выше второго, обладает свойством инвариантности своей формы.

 $f(z) = \sqrt{2\pi}$ MT TAS = MVEW

Формула Тейлора для функций нескольких переменных

[\fg\≤\\!

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ $P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$ Формула Тейлора для функции одного аргумента имеет вид

$$f(x) = f(a) + \frac{f'(a)}{1!} \cdot (x - a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!} \cdot (x - a)^{n-1} + \frac{f^{(n)}(\xi)}{n!} \cdot (x - a)^n$$
, где ξ лежит между x и a .

Напомним, что для представимости функции y = f(x) формулой Тейлора достаточно, чтобы в окрестности точки x = a функция y = f(x) была бы дифференцируема п раз.

MF. Ids = MVEW

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$ $x^n + y^n = z^n$ TRUS = IIIVEN

Рассмотрим случай функции двух переменных z=f(x,y).

Допустим, что эта функция дифференцируема *n* раз аргументам в окрестности $\boldsymbol{U}_{\varepsilon}(\boldsymbol{x}_{\!\scriptscriptstyle 0}, \! \boldsymbol{y}_{\!\scriptscriptstyle 0})$ точки $(x_{\!\scriptscriptstyle 0}, \! y_{\!\scriptscriptstyle 0})$, принадлежащей некоторой области D плоскости xOy.

| \fs\ ≤ \\!

Пусть точка $(x_0 + \Delta x, y_o + \Delta y)$ не выпадает из этой окрестности.

Зафиксируем Δx и Δy и введем в рассмотрение сложную функцию аргумента t, определенную следующим образом: F(t) = f(x, y), $x = x_0 + t\Delta x$, $y = y_0 + t\Delta y$, где $t \in [0,1]$.

 $f(z) = \sqrt{2\pi}$ MF. TAS = MVEW $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Нетрудно видеть, что параметрические уравнения $x = x_0 + t\Delta x$ дают $y = y_0 + t\Delta y$ нам уравнения отрезка прямой, соединяющей точки (x_0, y_0) и $(x_0 + \Delta x, y_o + \Delta y)$

ein =

Напомним, что при такой зависимости переменных x и y от параметра t, обладает свойством инвариантности не только первый полный дифференциал функции f(x,y), но и полные дифференциалы порядков

 $x^n + y^n = z^n$

ein =

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$d^2 f(x,y), d^3 f(x,y), ..., d^n f(x,y), \text{ r.e.}$$

$$d^k F(t) = d^k f(x, y) \Big|_{\substack{x = x_0 + t\Delta x \\ y = y_0 + t\Delta y}} = \left(\frac{\partial}{\partial x} \cdot dx + \frac{\partial}{\partial y} \cdot dy\right)^k \cdot f(x, y) \Big|_{\substack{x = x_0 + t\Delta x \\ y = y_0 + t\Delta y}}$$
При этом $dx = \Delta x \cdot dt$, $dy = \Delta y \cdot dt$.

MF. Tas = MVEW

При этом $dx = \Delta x \cdot dt$, $dy = \Delta y \cdot dt$.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ 1 F TOS = 111 VEN

[\fg\≤\!! Напишем формулу Тейлора для функции F(t) заменив в ней a на t, а x на $t + \Delta t$. Тогда получим

ein =

$$F(t+\Delta t)=F(t)+rac{F'(t)}{\alpha 1!}\cdot\Delta t+...+rac{F^{(n-1)}(t)}{(n-1)!}\cdot(\Delta t)^{n-1}+rac{F^{(n)}(c)}{n!}\cdot(\Delta t)^n,$$
 где $c=t+ heta\cdot\Delta t$, $(0< heta<1)$, т.е. c есть точка, лежащая между t и $t+\Delta t$.

$$f(z) = \sqrt{2\pi}$$

$$f(z) = \sqrt{2\pi}$$

$$x^{n} + y^{n} = x^{n}$$

Эту формулу можно переписать так:

Эту формулу можно переписать так:
$$F(t+\Delta t) - F(t) = dF(t) + \frac{1}{2!} \cdot d^2 F(t) + ... + \frac{1}{(n-1)!} \cdot d^{n-1} F(t) + \frac{1}{n!} \cdot d^n F(t+\theta \cdot \Delta t)$$
 (0 < \theta < 1).

ein =

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Положим теперь здесь t=0, $\Delta t=1$ и напомним, что при t=0 мы имеем точку (x_0,y_0) , а при $\Delta t=1$ точку $(x_0+\Delta x,y_o+\Delta y)$, кроме того $F(0)=f(x_0,y_o)$, $F(1)=(x_0+\Delta x,y_o+\Delta y)$,

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

тогда получим
$$f\left(x_0+\Delta x,y_o+\Delta y\right)=f\left(x_0,y_0\right)+df\left(x,y\right)\Big|_{\substack{x=x_0\\y=y_0}}+\frac{1}{2!}\cdot d^2f\left(x,y\right)\Big|_{\substack{x=x_0\\y=y_0}}+\dots$$

$$\dots+\frac{1}{(n-1)!}\cdot d^{n-1}f\left(x,y\right)\Big|_{\substack{x=x_0\\y=y_0}}+\frac{1}{n!}\cdot d^nf\left(x,y\right)\Big|_{\substack{x=x_0+\theta\Delta x\\y=y_0+\theta\Delta y}},$$
 Здесь следует положить $\Delta x=dx$, $\Delta y=dy$.
 т.к. $\Delta t=dt$,а мы положили $\Delta t=1$, следовательно, действительно из соотношений $dx=\Delta x\cdot dt$, $dy=\Delta y\cdot dt$ сле-

... +
$$\frac{1}{(n-1)!} \cdot d^{n-1} f(x,y) \Big|_{\substack{x=x_0 \ y=y_0}} + \frac{1}{n!} \cdot d^n f(x,y) \Big|_{\substack{x=x_0+\theta \Delta x \ y=y_0+\theta \Delta y}}$$

следовательно, действительно из соотношений $dx = \Delta x \cdot dt$, $dy = \Delta y \cdot dt$ следует, что в данном случае $\Delta x = dx$, $\Delta y = dy$. f(z) = \sqrt{217

HT TAS = IIIVEW

ein =

Итак, здесь в правой части равенства дифференциалы dx и dy совпали с заранее взятыми приращениями Δx и Δy переменных x и y, т.е. в правой части стоят полные дифференциалы различных порядков функции f(x,y)двух независимых переменных x и \hat{y} .

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Введем полное приращение этой функции

Введем полное приращение этой функции
$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_o + \Delta y) - f(x_0, y_0),$$

тогда выведенную формулу можно переписать так:
$$\Delta f\left(x_{0},y_{0}\right) = df\left(x_{0},y_{0}\right) + \frac{1}{2!}d^{2}f\left(x_{0},y_{0}\right) + \ldots + \frac{1}{(n-1)!} \cdot d^{n-1}f\left(x_{0},y_{0}\right) + \ldots + \frac{1}{n!} \cdot d^{n}f\left(x_{0} + \theta\Delta x, y_{0} + \theta\Delta y\right), \qquad (0 < \theta < 1).$$

WATEN Полученная формула называется формулой **Тейлора** $n^{\text{го}}$ порядка. Последнее слагаемое, как и ранее, называется остаточным членом в форме Лагранжа.

 $x^n + y^n = z^n$

Лагранжа.
$$R_n = \frac{1}{n!} \bigg(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y \bigg)^n \bigg|_{(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}$$
 Таким образом , справедлива

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Теорема 16.1.

 $f_{-f(a)} = f(b) - f(a)$ Пусть $\delta > 0$ и функция f n раз непрерывно дифференцируема на δ -окрестности точки (x_0,y_0) . Тогда для функции f при $|\Delta x| < \delta$ справедлива формула Тейлора

HF. RAS = III VEW

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow \partial x$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

Отбрасывая остаточный член, мы получаем приближенное равенство, точность которого следует оценить, оценивая сверху модуль отброшенного остаточного члена. И в частности, заменяя полное приращение функции двух независимых переменных ее дифференциалом, мы можем оценить погрешность, оценивая модуль отброшенного остаточного члена

$$R = \frac{1}{2!} \cdot \begin{bmatrix} f_{xx}''(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x^2 + 2 \cdot f_{xy}''(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \cdot \Delta x \cdot \Delta y + \\ + f_{yy}''(x_0 + \Delta x, y_0 + \Delta y) \cdot \Delta y^2 \end{bmatrix}$$

Аналогичная формула Тейлора имеет место для функции любого числа независимых переменных.

= af at au dac

IIF TAS = IIIVEN

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Замечание . Каждое слагаемое в разложении есть бесконечно малая величина по сравнению с предыдущим слагаемым при $\Delta x \to 0$, $\Delta y \to 0$. Для обоснования этого факта найдем отношение k -го слагаемого a_k к (k-1)-му a_{k-1} .

ein =

лошение k -го слагаемого k $\frac{1}{a_{k+1}} = \frac{1}{k!} \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)^{k-1}$ $\frac{1}{(k-1)!} \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)^{k-1}$ $\frac{1}{(k-1)!} \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)^{k-1}$ $\frac{1}{(k-1)!} \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)^{k-1}$ $\frac{1}{(k-1)!} \left(\frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y\right)^{k-1}$ HF. BUS = IIIVEW

$$f = f(t(u(x))) \Rightarrow \overline{dx}$$

$$f = f(t(u(x))) \Rightarrow \overline{dx}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

числитель и эт [\fg\≤\\! и умножим знаменатель на величину $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$. Получим

делим и умножим числитель и знаменатель на величину
$$\sqrt{(\Delta x)^2 + (\Delta y)^2} \cdot \Pi \text{ Олучим}$$

$$\frac{1}{a_k} = \frac{1}{k!} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\rho} + \frac{\partial z}{\partial y} \frac{\Delta y}{\rho} \right)^k \cdot \rho^k$$

$$\frac{1}{(k-1)!} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\rho} + \frac{\partial z}{\partial y} \frac{\Delta y}{\rho} \right)^{k-1} \cdot \rho^{k-1} = 0$$

$$f(x) = \frac{1}{k!} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\rho} + \frac{\partial z}{\partial y} \frac{\Delta y}{\rho} \right)^{k-1} \cdot \rho^{k-1} = 0$$

$$f(x) = \frac{1}{k!} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\rho} + \frac{\partial z}{\partial y} \frac{\Delta y}{\rho} \right)^{k-1} \cdot \rho^{k-1} = 0$$

$$f(x) = \frac{1}{k!} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\rho} + \frac{\partial z}{\partial y} \frac{\Delta y}{\rho} \right)^{k-1} \cdot \rho^{k-1} = 0$$

ein =

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ При условий

$$rac{\partial z}{\partial x} rac{\Delta x}{
ho} + rac{\partial z}{\partial y} rac{\Delta y}{
ho}
eq 0$$

4. $\Delta x o 0$. $\Delta y o 0$ величина $ho o 0$. Таки

ein =

[\fs\≤\\]

величина *K* конечна. При $\Delta x \to 0$, $\Delta y \to 0$ величина $\rho \to 0$. Таким образом, каждый последующий член разложения, включая и остаточный, в $\rho(\rho \to 0)$ раз меньше предыдущего, т.е. представляет собой бесконечно малую функцию по отношению к предыдущему члену

чина
$$K$$
 конечна. При $\Delta x \to 0$, $\Delta y \to 0$ величина $\rho \to 0$. Таким общьй последующий член разложения, включая и остаточный, в ρ (меньше предыдущего, т.е. представляет собой бесконечно кщию по отношению к предыдущему члену
$$a_k \approx K \cdot \rho \cdot a_{k-1} \text{ или } a_k = o(a_{k-1}) = o(\rho^{k-1}).$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

 $+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ [\fs\ ≤\\! членом в форме Пеано

ein =

$$\Delta z|_{(x_0,y_0)} = dz|_{(x_0,y_0)} + \frac{1}{2!}d^2z|_{(x_0,y_0)} + \dots + \frac{1}{(n-1)!}d^{(n-1)}z|_{(x_0,y_0)} + o(\rho^{n-1}).$$

Замечание . Формулу Тейлора можно записать с остаточным леном в форме Пеано
$$\Delta z|_{(x_0,y_0)} = dz|_{(x_0,y_0)} + \frac{1}{2!} d^2 z|_{(x_0,y_0)} + \dots + \frac{1}{(n-1)!} d^{(n-1)} z|_{(x_0,y_0)} + o\left(\rho^{n-1}\right).$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ пы Тейного $2^k = \binom{n}{k} p^2 (1-p)^{n-2}$

Замечание. Из формулы Тейлора легко получается, как частный случай, формула Маклорена, когда рассматривается разложение в окрестности точки (0,0). Положив $x_0 = 0$, $y_0 = 0$, $\Delta x = x$, $\Delta y = y$, напишем формулу разложения в ряд Маклорена до третьего порядка

 $z(x,y)-z(0,0)=z'_{x}(0,0)\cdot x+z'_{y}(0,0)\cdot y+\frac{1}{2!}\left[z''_{xx}(0,0)\cdot x^{2}+2z''_{xy}(0,0)xy+z''_{yy}(0,0)\cdot y^{2}\right]+o(\rho^{2})$

MF. Tas = MVEW

ein =

| \fs\ \le \\!

Экстремумы функции нескольких переменных

Аналогично тому, как это было сделано для функции одной переменной, вводятся определения экстремума функции нескольких переменных. Рассмотрение проведем для функции двух независимых переменных.

{\fg\≤\!!

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

Пусть функция z=f(x,y) определена в некоторой области D плоскости xОy, и пусть точка $M_0(x_0,y_0)$ является внутренней точкой этой области.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ LATIN

Определение 16.1. В точке $M_0(x_0, y_0)$ функция f(x, y) имеет максимум, если существует ε – окрестность точки \boldsymbol{M}_0 $\boldsymbol{U}_{\varepsilon}(\boldsymbol{x}_0,\boldsymbol{y}_0)$ такая, что для всех точек M из этой окрестности (причем $M \neq M_0$) имеет место неравенство $f(M) < f(M_0)$.

Определение 16.2. В в точке $M_0(x_0, y_0)$ функция f(x, y) имеет минимум, если существует ε – окрестность точки \boldsymbol{M}_0 $\boldsymbol{U}_{\varepsilon}(\boldsymbol{x}_0,\boldsymbol{y}_0)$ такая, что для всех точек M из этой окрестности имеет место неравенство $f(M) > f(M_0) (M \neq M_0).$

Максимальное и минимальное значение функции в точке $M_0(x_0, y_0)$ называют просто максимум и минимум функции f(x, y) и обозначают $\max f(x, y)$ и $\min f(x, y)$.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Максимумы и минимумы, как и ранее, называют экстремумами.

$$ig(\max fig(x,yig)=fig(x_0,y_0ig)ig)$$
 \Leftrightarrow ($\exists arepsilon>0$, что $orall ig(x,yig)\in oldsymbol{U}_arepsilonig(x_0,y_0ig)$, $M
eq M_0$: $fig(x,yig)< fig(x_0,y_0ig)$);

$$M
eq M_0$$
: $f(x,y) < f(x_0,y_0)$);
$$\left(\min f(x,y) = f(x_0,y_0)\right) \Leftrightarrow (\exists \varepsilon > 0 \text{ , что } \forall (x,y) \in U_\varepsilon(x_0,y_0), \\ M \neq M_0$$
: $f(x,y) > f(x_0,y_0)$).

HF. Eds = III VEW

n (n) an-hab

Теорема 16.2. 1 d.S (Необходимые условия экстремума функции нескольких переменных).

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Если функция f(x,y), определенная в области D плоскости xOy, имеет в точке $(x_0, y_0) \in D$ экстремум, то ее частные производные первого порядка в этой точке обращаются в ноль, т.е.

ивого порядка в этой точке обращаются в ноль, т.е.
$$\frac{\partial f(x,y)}{\partial x}\bigg|_{\substack{x=x_0\\y=y_0}}=0$$

$$\frac{\partial f(x,y)}{\partial y}\bigg|_{\substack{x=x_0\\y=y_0}}=0$$
 Или, что то же самое, в точке (x_0,y_0) обращается в ноль полн

{\f9\≤\!!

Или, что то же самое, в точке (x_0, y_0) обращается в ноль полный дифференциал первого порядка данной функции.

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}$ Допустим, что эта функция z = f(x, y) дифференцируема в окрестности точки $u_{\varepsilon}(x_0, y_0)$ и имеет в ней экстремумы (max и min).

| \fg\ \le \\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Пусть для определенности в этой точке функция z = f(x, y) имеет максимум.

Это означает, что $\forall (x,y) \in U_{\varepsilon}(x_0,y_0) : f(x,y) < f(x_0,y_0)$ и, в частности, $f(x, y_0) < f(x_0, y_0)$.

Отсюда следует, что функция одной переменной $f(x,y_0)$ в точке (x_0) имеет максимум.

Но тогда в этой точке $f'_x(x_0,y_0)=0$. Совершенно аналогично в этой точке $f'_v(x_0, y_0) = 0$.

Если бы мы положили, что в точке $M_0(x_0,y_0)$ функция имеет минимум, то получили бы точно такой же вывод. [[百.甘dS=]]

Замечание. Отметим, что не всякая точка, в которой обращаются в нуль все частные производные первого порядка данной функции, является точкой, в которой функция имеет экстремум.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Иными словами, равенство нулю частных производных первого порядка в точке (x_0, y_0) есть необходимое, но не достаточное условие экстремума.

Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Например, функция

$$z = 1 - \sqrt{x^2 + y^2}$$

имеет максимум в точке O(0;0) но не имеет в этой точке частных производных.

Точка, в которой частные производные первого порядка функции z = f(x; y) равны нулю называется *стационарной точкой* функции z.

Однородные функции

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ называется $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ Функция z = z(x, y) называется однородной функцией степени p, если для любой точки (x, y) из области определения и переменной tвыполняется равенство $z(tx,ty) = t^p z(x,y)$. Это равенство является гочки (x,y). Е льляется однородной функцией 5-й $z(tx,ty)=(tx)(ty)^4-(tx)^3(ty)^2=t^5(xy^4-x^3y^2)=t^5z(x,y)$. тождеством, так как справедливо для любой точки (x, y). Например, функция $z = xy^4 - x^3y^2$ является однородной функцией 5-й степени. Действительно,

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

$$z(tx,ty) = (tx)(ty)^4 - (tx)^3(ty)^2 = t^5(xy^4 - x^3y^2) = t^5z(x,y)$$

MF. Ids = MVEW

[\fs\ ≤\\!

Соотношение Эйлера для дифференцируемых однородных функций.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Если функция z = z(x, y) на некотором множестве дифференцируема и является однородной степени p, то выполняется равенство

$$\frac{\partial z(x,y)}{\partial x} \cdot x + \frac{\partial z(x,y)}{\partial y} \cdot y = p \cdot z(x,y)$$

Скалярное произведение градиента дифференцируемых однородных функций на вектор своих переменных пропорционально самой функции с коэффициентом, равным порядку однородности

Достаточные условия экстремума

По-прежнему для большей компактности изложения будем рассматривать функцию двух переменных z = f(x,y).

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $2^n+3^n=2^n$

Итак, допустим, что мы нашли точку $M_0(x_0,y_0)$, в которой выполнены необходимые условия экстремума, т.е. точку, в которой обращаются в нуль частные производные $\frac{\partial f(x,y)}{\partial x}$ и $\frac{\partial f(x,y)}{\partial y}$.

Как и ранее, точку $M_0(x_0,y_0)$ мы можем назвать подозрительной на экстремум.

= af at au das

MF. TAS = MVEW

n (n) an-hah

| \fg\ ≤ \\!

Каковы же достаточные условия, при выполнении которых в этой точке функция будет иметь максимум или минимум?

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $p(X=x) = \langle x \rangle$ Допустим, что функция f(x,y) в точке $M_0(x_0,y_0)$ дифференцируема трижды. Напишем формулу Тейлора третьего порядка для этой функции в точке $M_{\,0}$:

 $2n+3^n=2^n$

[\fs\ ≤\\!

$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = df(x_0, y_0) + \frac{1}{2!} \cdot d^2 f(x_0, y_0) + \frac{1}{3!} d^3 f(x_0 + \theta_1 \Delta x, y_0 + \theta_2 \Delta y), \quad (0 < \theta_1 < 1), (0 < \theta_2 < 1),$$

произвольные приращел но малыми по абсолютной величине. Δx и Δy — произвольные приращения, которые предполагаются достаточ-

| F. Ids = | VEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $f(t)^{(3)} = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$ $x^n + y^n = z^n$

В силу того, что необходимые условия экстремума выполнены, $p(X = x) = \binom{n}{x} p^{x} (1 - p)$ очевидно, что $df(x_0, y_0) = 0$, а тогда

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{1}{2!} \cdot d^2 f(x_0, y_0) +$$

ein =

$$f(z) = \sqrt{2\pi}$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z}{2}}$$

$$a^{n} + y^{n} = a^{n}$$

$$a^{n} + y^{n} = a^{n}$$

$$a^{n} + a^{n} + b^{n}$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Ясно, что если Δx и Δy достаточно малы по модулю, то знак правой части этого равенства определяется знаком его первого слагаемого,

т.е. знаком $\frac{1}{2!} \cdot d^2 f(x_0, y_0)$, т.к. здесь в правой части стоят однородные многочлены относительно Δx и Δy соответственно второй и третьей степени.

многочлены относительно
$$\Delta x$$
 и Δy соответственно второй и третьей степен Рассмотрим подробнее выражение для этого слагаемого:
$$\frac{1}{2!} \cdot d^2 f(x_0, y_0) = \frac{1}{2!} \cdot \begin{bmatrix} f_{xx}''(x_0, y_0) \cdot (\Delta x)^2 + 2 \cdot f_{xy}''(x_0, y_0) \cdot \Delta x \Delta y + \\ + f_{yy}''(x_0, y_0) \cdot (\Delta y)^2 \end{bmatrix}$$

MF. HAS = MIVEN

Если $d^2f(x_0,y_0)>0$, то в точке $M_0(x_0,y_0)$ функция имеет минимум, т.к. в этом случае $f(x_0,y_0)< f(x_0+\Delta x,y_o+\Delta y)$.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Если $d^2f(x_0,y_0)<0$, то максимум, т.к. тогда $\Delta f(x_0,y_0)<0$, т.е. $f(x_0,y_0)>f(x_0+\Delta x,y_o+\Delta y)$.

Может, однако, оказаться, что при одних сочетаниях Δx и Δy $d^2 f(x_0,y_0)>0$, а при других <0.

Это означает, что в точке M_0 у функции f(x,y) экстремума нет.

Говорят, что в этом случае функция имеет "минимакс".

|| F. Has = || VEW

$$f(x) = \sqrt{2\pi}$$

$$f(x)$$

 $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$ $f = f(f(u(zz))) \Rightarrow \partial_t z$ $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$ $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$ $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$

Если же это выражение знака не меняет, но может обращаться в нуль, то это означает лишь то, что по знаку $d^2f(x_0,y_0)$ нельзя судить о наличии экстремума у функции f(x,y) в точке M_0 .

В этом случае следует рассмотреть формулу Тейлора четвертого порядка и провести аналогичные исследования.

Аналогичные результаты справедливы для функции, зависящей от любого числа независимых переменных.

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$

Попытаемся теперь получить простые и удобные в применении достаточные условия экстремума для функции f(x,y), выраженные через значения частных производных второго порядка функции f(x,y) в точке $M_0(x_0,y_0)$.

Для этого обозначим $f''_{xx}(x_0,y_0)=A$, $f''_{xy}(x_0,y_0)=B$, $f''_{yy}(x_0,y_0)=C$ обозначим $\frac{\Delta x}{\Delta y} = t$ (для определенности считаем, что $\Delta y \neq 0$). f (8)

MT TAS = MIN VEW

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \lambda x$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

Очевидно, что
$$\frac{1}{2!} \cdot d^2 f(x_0, y_0) = \frac{1}{2!} \cdot \left(At^2 + 2 \cdot Bt + C\right) \cdot (\Delta y)^2.$$

ein =

[\fs\≤\!!

 $||fg|| \le ||f||_2 + ||g||_2$ Ясно, что знак этого выражения определяется знаком квадратного трехчлена $\varphi(t) = At^2 + Bt + C$.

ехчлена
$$\varphi(t) = At^2 + Bt + C$$
.

Его дискриминант $D = B^2 - AC$.

 $f(t) = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Если $D\!<\!0$, то график функции $\phi(t)$ не пересекает ось Ot (корни комплексные);

если D > 0, то график функции $\varphi(t)$ пересекает ось Ot в двух точках (корни вещественные);

Введем теперь в рассмотрение величину $\Delta = AC - B^2 = -D$. вещественные и равные).

WF. TAS = MINVEW

ein =

Принимая во внимание все вышесказанное, можем сделать следующие воды: выводы:

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

Если $\Delta > 0$, то для всех Δx и Δy Δf сохраняет знак.

При этом, если A>0, то и $\Delta\,f>0$. Следовательно, в точке $\left(x_0,y_0\right)$ функция $f\left(x,y\right)$ имеет минимум.

Если же A < 0, то и $\Delta f < 0$, следовательно, в точке (x_0, y_0) функция (x, y) имеет максимум. f(x,y) имеет максимум.

Если $\Delta < 0$, **то** для различных Δx и Δy функция $\varphi(t)$ имеет различные знаки, в силу чего Δf изменяет знак в окрестности точки (x_0, y_0) .

Следовательно, в точке (x_0, y_0) функция экстремума не имеет

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2c^n+3l^n=2^n$

Если $\Delta=0$, то Δf знака не меняет, но может обращаться в нуль.

 $(a+b)^n = \underset{k=0}{\text{Lin}}(k)$ открытым.

Заметим, тепери, ито функции нескониких пороходим и може (x_0, y_0) остается

Заметим теперь, что функции нескольких переменных могут иметь экстремум не только в тех точках, где частные производные в нуль, но и в точках, где функция недифференцируема, лишь бы только в этих точках она была непрерывна.

 $f(z) = \sqrt{2\pi}$ MT TAS = MIVEN

[\fs\ ≤\\!

наибольшее и наименьшее значение функции

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Пусть функция f(x,y) определена и непрерывна в некоторой замкнутой ограниченной области \overline{D} .

|\f9\≤\\!

Тогда заведомо функция в этой области имеет наибольшее и наименьшее значение.

Для их отыскания нужно исследовать точки, подозрительные на экстремум и лежащие внутри области D.

Затем нужно исследовать поведение функции на границе области, т.е. найти на границе наибольшее и наименьшее значение функции.

V в заключение следует сравнить экстремальные значения, которые функция принимает в области V с ее значениями на границе.

MT. TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ MARIN

Пример. Найти наибольшее и наименьшее функции $_{\parallel f \parallel} \setminus \leq \parallel 1$ значение $z=3-x^2-y^2$ в области \vec{D} , ограниченной прямыми $x=\pm 1$, $y=\pm 1$.

ein =

f(z)

$$Pewehue.$$

$$\frac{\partial z}{\partial x}=-2x\,,\,\frac{\partial z}{\partial y}=-2y\,.$$
 Приравниваем к нулю частные производные : $-2x=0\,,\,-$

C arr-1 = T-r Приравниваем к нулю частные производные : -2x = 0 , -2y = 0 . Получаем точку (0,0) – точку, подозрительную на экстремум.

 $V = \frac{n}{2} \left(\frac{n}{2} \right) a^{n-\frac{n}{2}b^{\frac{n}{2}}}$ HF. BAS = IIIVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ 2n+3n=2n

Вычисляем
$$\frac{\partial^2 z}{\partial x^2} = -2$$
, $\frac{\partial^2 z}{\partial y^2} = -2$, $\frac{\partial^2 z}{\partial x^2} = -2$.

Следовательно $\Delta = A \cdot C - B^2 = 4 > 0$, A < 0.

Значит, в точке (0, 0) филис

Значит, в точке (0,0) функция имеет максимум.

. 五月一十二〇 Исследуем теперь поведение функции на границе области, т.е. на

ein =

[\fs\≤\!!

 $f(x) = \int_{2\pi}^{\pi} e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow \partial x$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

f (8)

На AB: y=-1, $z_1=z(x,y)\big|_{y=-1}=2-x^2, x\in[-1,1]$; $z_1'(x)=-2x$; точка x=0 подозрительна на экстремум: $z_1(0)=2$; $z_1(A)=z_1(-1)=1$, $z_1(B)=z_1(1)=1$.

На BC: x=1, $z_2=z(x,y)_{x=1}=2-y^2$, $y\in[-1,+1]$; $z_2'(y)=-2y$; точка y=0 подозрительна на экстремум: $z_2(0)=2$; $z_2(B)=z_1(B)=1$, $z_2(C)=z_2(1)=1$.

На DC: y=1, $z_3=z(x,y)\big|_{y=1}=2-x^2$; $z_3'=-2x$; точка x=0 подозрительна на экстремум: $z_3(0)=2$; $z_3(C)=z_2(C)=1$; $z_3(D)=z_3(-1)=1$.

На AD: x = -1, $z_4 = z(x,y)_{x=-1} = 2 - y^2$; $z_4'(x) = -2y$; точка y = 0 подозрительна на экстремум: $z_4(0) = 2$; $z_4(A) = z_1(A) = 1$; $z_4(D) = z_3(D) = 1$.

 $f(x) = \int_{0}^{\infty} f(t)^{\alpha x} dt$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \int_{0}^{\infty} e^{-t^{2}} dt$ $f(x) = \int_{0}^{\infty} e^{-t^{2}} dt$ $f(x) = \int_{0}^{\infty} e^{-t^{2}} dt$

Вывод. Внутри квадрата функция z(x,y) имеет максимум в точке (0,0): $z_{\rm max}=3$.

На границе области функция принимает наименьшее значение в точках A,B,C,D: z(A)=z(B)=z(C)=z(D)=1, а наибольшее в точках (0,-1),(1,0),(0,1),(-1,0), причем z(0,-1)=z(1,0)=z(0,1)=z(D-1,0)=2.

Ответ. наибольшее значение функция принимает в точке (0,0), оно совпадает с максимальным значением функции $z_{\max} = z_{\text{наиб.}} = z(0,0) = 3$; наименьшее значение функция принимает в точках A,B,C,D; причем $z_{\text{наим.}}=1$.

(2) = V2# [[F.] 18 =]]] VFW

n (n) an-table

Carn-1 = 1-1

УСЛОВНЫЙ ЭКСТРЕМУМ. МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА

 $f = f(t(u(x))) \Rightarrow \overline{\lambda}x$

Мы рассмотрели экстремумы функции нескольких переменных, считая только, что эти точки лежат внутри некоторой области D.

Такие экстремумы называются безусловными.

[\fg| ≤ ||f||2+ ||9||a

Однако часто приходится отыскивать экстремумы функции f(x,y) в области D в предположении, что кроме того выполняются условия вида:

$$\varphi(x,y)=0$$

Экстремумы, удовлетворяющие таким условиям, называются условными. случае аргументы x и y данной функции f(x,y) нельзя считать независимыми переменными.

Очевидно, что их связывает уравнение $\varphi(x,y) = 0$, которое и называется уравнением связи.

Будем предполагать , что для фукции ф выполняются условия для неяно заданной функции

IIF TAS = IIIVEW

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Геометрически это означает, что условный экстремум отыскивается не для всех точек (x,y), принадлежащих области D, а для точек, принадлежащих области D, и лежащих на некоторой кривой l, уравнение которой $\varphi(x,y)=0$.

Например, очевидно, что функция $z = \sqrt{1-x^2-y^2}$ достигает безусловного максимума в точке 0(0,0): $z_{\rm max}=1$ (рис. 3.10.1)

Если же потребовать: найти условный экстремум функции $z=\sqrt{1-x^2-y^2}$ на прямой $y=\frac{1}{2}$, то очевидно, что он достигается в точке функции

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $\left(0,\frac{1}{2}\right)$ и равен $\frac{\sqrt{3}}{2}$.

Отыскание условного экстремума функции можно свести к отысканию безусловного экстремума некоторой другой функции.

 $x^n + y^n = z^n$

n (n) an-habit

|\fs\ \le \\!

Например, в данном случае достаточно исследовать функцию

$$z(x,y)\big|_{y=\frac{1}{2}} = \sqrt{\frac{3}{4}-x^2} \; .$$
 Однако такой способ не всегда бывает удобен

[[京·五d8

Рассмотрим другой способ отыскания условного экстремума, который называется методом множителей Лагранжа.

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

зывается методом множителей Лагранжа.
Итак, допустим, что нам нужно найти условный экстремум функции $\varphi(x,y) = 0$ z(x,y), причем уравнение связи

$$\varphi(x,y) = 0 \tag{1}$$

 $x^n + y^n = z^n$

Допустим, что точка $M_0(x_0,y_0)$ — точка условного экстремума, значит, в этой точке производная по x от функции z = f(x, y) с учетом уравнения связи должна быть равна нулю, что равносильно равенству нулю df(x,y) в точке $= \frac{\partial f}{\partial t} \frac{\partial f}{\partial u} \frac{\partial f}{\partial u} = \sqrt{2\pi}$

MT. TAS = MIVEN

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \lambda x$$

$$f = f(t(u(x))) \Rightarrow \lambda x$$

$$x^n + y^n = x^n$$

Итак в точке
$$M_0(x_0, y_0)$$

$$df(x, y) = \frac{df(x, y)}{\partial x} \cdot dx + \frac{df(x, y)}{\partial y} \cdot dy = 0$$
 (2)

ein =

f (8)

[\fs\ ≤\\!

[|fg| ≤ ||f||_e + ||g||_e

||fg|| ≤ ||f||_e + ||g||_e

||f|| = ||f||_e + ||f||_e

||f|| = ||f|| + ||f|| + ||f|| + ||f|| + ||f|| + ||f||

С другой стороны, продифференцируем уравнение связи $\phi(x,y)=0$, по-ЛУЧИМ

С другой стороны, продифференцируем уравнение связи
$$\phi(x,y)=0$$
, почим
$$d\phi(x,y)=\frac{d\phi(x,y)}{\partial x}\cdot dx+\frac{d\phi(x,y)}{\partial y}\cdot dy=0 \tag{3}$$

HET TAS = IIIVEW

n (n) an-hab

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Умножим соотношение (3) почленно на некоторый множитель λ и ибавим к соотношению $\omega(x,v)=0$.

умножим соотношение (3) почленно на некоторыи множитель
$$\lambda$$
 и прибавим к соотношению $\varphi(x,y)=0$:
$$\left(\frac{\partial f(x,y)}{\partial x} + \lambda \frac{\partial \varphi(x,y)}{\partial x}\right) \cdot dx + \left(\frac{\partial f(x,y)}{\partial y} + \lambda \frac{\partial \varphi(x,y)}{\partial y}\right) \cdot dy = 0 \tag{4}$$

ein =

Выберем теперь число
$$\lambda$$
 так, чтобы выполнялось условие:
$$\frac{\partial f(x,y)}{\partial y} + \lambda \frac{\partial \phi(x,y)}{\partial y} = 0 \tag{5}$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$ Иетим ит

~ (n) an-bbh Заметим, что это возможно, т. к. мы предполагаем, что выполняются усовия теоремы существования теоремы существования теоремы существования теоремы. ловия теоремы существования неявно заданной функции в силу которой $\varphi_y'(x,y)\neq 0.$

e^{in z}

f (8)

 $\int |fg| \le ||f||_p + ||g||_q$ $\operatorname{curl} \overrightarrow{F} = 0 \Longrightarrow \oint \overrightarrow{F} \cdot d\overrightarrow{F} = 0$

и второе условие: $\frac{\partial f(x,y)}{\partial x} + \lambda \frac{\partial \phi(x,y)}{\partial x} = 0 \quad \text{if } dx \text{ for } dx$ (6) $\nabla = \frac{n}{2} + y^n = 2^n$ $= \frac{n}{2} \left(\frac{n}{2} \right) a^{n-k} b^k$ HE TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2c^n+3l^n=2^n$ Рассмотрим теперь функцию $F(x,y)=f(x,y)+\lambda\cdot\phi(x,y)$.

 $P(X = x) = \binom{\pi}{x} p^{x} (1 - p)$

Очевидно, что условия $\frac{\partial f(x,y)}{\partial y} + \lambda \frac{\partial \phi(x,y)}{\partial y} = 0$ и $\frac{\partial f(x,y)}{\partial x} + \lambda \frac{\partial \phi(x,y)}{\partial x} = 0$

e^{i#} =

[\fs\ ≤\\!

дают нам необходимые условия экстремума функции F(x,y), которая называется функцией Лагранжа, параметр λ при этом называется $f = f(t(u(x))) \Rightarrow \frac{1}{dx}$ множителем Лагранжа.

 $f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$ $V = \frac{n}{2} \left(\frac{n}{n} \right) a^{n-k} b^k$ HT TAS = IIIVEW

Итак, для того, чтобы найти точки, в которых данная функция z = f(x,y)может иметь условный экстремум, определенный уравнением $\varphi(x,y) = 0$, необходимо решить систему таких трех уравнений:

 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$F_x'(x,y) = \frac{\partial f(x,y)}{\partial x} + \lambda \cdot \frac{\partial \phi(x,y)}{\partial x} = 0$$

$$\phi(x,y) = 0$$

$$F_y'(x,y) = \frac{\partial f(x,y)}{\partial y} + \lambda \cdot \frac{\partial \phi(x,y)}{\partial y} = 0$$
 Найденные таким образом точки, естественно, по дополнительному исследованию.

подлежат $y = x^n + y^n = x^n$ $= x^n + y^n = x^n$ $= x^n + y^n = x^n$ дополнительному исследованию.

HT TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ 2n+3n=2n

Пример. Найти наибольшее значение функции $u = \sqrt[3]{xyz}$ при условии, $P(X = x) = \binom{n}{x} p^{x} (1 - p)$ что x + y + z = a, (a > 0).

ein =

Решение. Итак, необходимо найти условный максимум функции $u = \sqrt[3]{xyz}$, если уравнение связи x + y + z - a = 0.

Рассмотрим вспомогательную функцию $F = \sqrt[3]{xyz} + \lambda \cdot (x + y + z - a)$. MF TAS = MVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ Winer.

{\fg\≤\!! Найдем ее частные производные по x, y и z и приравняем их к нулю, а

e^{in z}

Найдем ее частные производные по
$$x$$
, y и z и приравняем их к нулю, а также добавим к ним уравнение связи:
$$F_x' = \frac{1}{3}(xyz)^{\frac{2}{3}} \cdot yz + \lambda = \frac{1}{3}\frac{\sqrt[3]{xyz}}{x} + \lambda = 0$$

$$F_y' = \frac{1}{3}(xyz)^{\frac{2}{3}} \cdot xz + \lambda = \frac{1}{3}\frac{\sqrt[3]{xyz}}{x} + \lambda = 0$$

$$F_z' = \frac{1}{3}(xyz)^{\frac{2}{3}} \cdot xy + \lambda = \frac{1}{3}\frac{\sqrt[3]{xyz}}{z} + \lambda = 0$$

$$x + y + z - a = 0$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ [] 京·豆BS=[]]

Решая эту систему и исключая параметр λ , получим $x=y=z=\frac{a}{3}$.

Следовательно, данная функция $\sqrt[3]{xyz}$ имеет максимум в точке $\left(\frac{a}{3},\frac{a}{3},\frac{a}{3}\right)$ и при этом $u_{\max}=\frac{a}{3}$.

Таким образом, для любых положительных чисел x, y, z связанных соотношением x + y + z = a, выполняется неравенство $\sqrt[3]{xyz} \le \frac{a}{2}$,

HO
$$a = x + y + z$$
.

HO a = x + y + z. MF TAS = MINVEW

 $V = \frac{n}{2} \left(\frac{n}{n} \right) a^{n-k} b^k$

e^{i#} =

[\fs\ ≤\\1

 $f(x) = \int_{0}^{\infty} \int_{0}^{$

Следовательно, имеем $\sqrt[3]{xyz} \le \frac{x+y+z}{3}$.

Обобщая полученный результат на любое число переменных, можем сделать полезный вывод:

Среднее геометрическое нескольких чисел не превосходит их среднего арифметического.

ein =

[\f9\≤\!!

$$\frac{\partial}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$\frac{1}{\sqrt{2\pi}} e^{-\frac{\pi^2}{3}}$$

$$\frac$$