June 26, 2023

Analysis in \mathbb{R}^n Homework 2

Problem 9 Let E° denote the set of all interior points of a set E. [See Definition 2.18(e); E° is called the *interior* of E.]

- (a) Prove that E° is always open.
- (b) Prove that E is open if and only if $E^{\circ} = E$.
- (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.

Solution.

- (a) We have shown in class that E° is open if and only if for every $p \in E^{\circ}$, there exists an r > 0 such that $B_r(p) \subset E^{\circ}$. Let $p \in E^{\circ}$. Since p is an interior point, by definition there exists a neighborhood N_p of p such that $N_p \subset E$. Let $x \in N$. We have showed in class that since N_p is an open ball, it is open in E, so there is a neighborhood N_x of x in E. Thus, x is an interior point in E so $x \in E^{\circ}$. Therefore, $N_p \subset E^{\circ}$ and E° is open.
- (b) (\Leftarrow) Suppose $E = E^{\circ}$. From (a), E° is open, so E is as well since $E = E^{\circ}$. (\Rightarrow) Suppose E is open. We have $E^{\circ} \subset E$ by definition, so it suffices to show $E \subset E^{\circ}$. Let $p \in E$. Since E is open, from the theorem in (a) there exists an r > 0 such that $B_r(p) \subset E$. Then, there is a neighborhood N of p in E, so p is an interior point and thus $p \in E^{\circ}$. So $E^{\circ} \subset E$ and $E = E^{\circ}$.
- (c) Suppose $G \subset E$ is open and let $p \in G$. Since G is open, there exists an r > 0 such that $B_r(p) \subset G \subset E$, so $B_r(p)$ must lie in E meaning p is an interior point of E. Since E° is the set of interior points, $p \in E^{\circ}$ and therefore $G \subset E^{\circ}$.

Problem 14 Give an example of an open cover of the segment (0,1) which has no finite sub-cover.

Solution.

Consider the set

$$C = \left\{ \left(x - \frac{x}{2}, x + \frac{x}{2} \right) : x \in (0, 1) \right\} = \left\{ \left(\frac{x}{2}, \frac{3x}{2} \right) : x \in (0, 1) \right\}.$$

This is an open cover for (0,1): every set in C is open because it is an open interval, and every $x \in (0,1)$ is in $\bigcup_{I \in C} I$ because x is in the interval $\left(\frac{x}{2}, \frac{3x}{2}\right)$. However, we claim there is no finite sub-cover $C_n \subset C$ that covers (0,1). Suppose toward contradiction that $C_n = \{I_1, I_2, \ldots, I_n\} \subset C$ is a cover for (0,1). Let $X_n = \{x_1, x_2, \ldots, x_n\}$ be the center points of the intervals, where $I_i = \left(\frac{x_i}{2}, \frac{3x_i}{2}\right)$ for $1 \le i \le n$. Let x be the least element in X_n (which is well defined because X_n is finite). Then, $\left(\frac{x}{2}, \frac{3x}{2}\right)$ is covered by C_n , but $(0, \frac{x}{2}]$ is not because x is the least element. This is a contradiction because we assumed C_n covered (0,1).

Problem 1 Let (X,d) be a metric space and $A \subset X$. Define $\mathcal{U} := \{U \subset A : U \text{ is open}\}$. Prove that $A^{\circ} = \bigcup_{U \in \mathcal{U}} U$.

Solution.

- (\subset) From 9(a), we know that $A^{\circ} \subset A$ is open, so $A^{\circ} \in \mathcal{U}$. Thus, we clearly have $A^{\circ} \subset \bigcup_{U \in \mathcal{U}} U$.
- (\supset) Let $x \in \bigcup_{U \in \mathcal{U}} U$. Then, $x \in U$ for some open set $U \subset A$. By the theorem from 9(a), there exists an r > 0 such that $B_r(x) \subset U$. Since $U \subset A$, $B_r(x) \subset A$ and thus there is a neighborhood N of x lying in A. So by definition, x is an interior point and thus is in A° , and therefore $\bigcup_{U \in \mathcal{U}} U \subset A^{\circ}$.

Problem 2 Prove that every open set in $(\mathbb{R}, |\cdot|)$ is a disjoint union of open intervals. I.e. if $U \subset \mathbb{R}$ is open, there exist open intervals $\{I_{\alpha}\}$ such that $U = \bigcup_{\alpha} I_{\alpha}$, and for all $\alpha \neq \alpha'$, $I_{\alpha} \cap I_{\alpha'} = \emptyset$.

Solution.

Let U be an open set in $(\mathbb{R}, |\cdot|)$. Since U is open, it contains no isolated points in \mathbb{R} (if there were an isolated point, then it would be a limit point in U^c but not in U^c , meaning U^c would not be closed). Thus, every point in U must be in some interval in \mathbb{R} , and so there exists some set of intervals in \mathbb{R} whose union equals U. Let I_{α} be such a set with each interval maximal (if it were any wider, it would contain points not in U). Then, every interval in $\{I_{\alpha}\}$ must be open. If it is not, then there must be some interval $I \in \{I_{\alpha}\}$ that includes an endpoint x. But then x is a limit point of $U^c = \mathbb{R} \setminus U$ but $x \notin U^c$ (because it is in I), so U^c is not closed, contradicting the openness of U. Additionally, the sets in I_{α} must be pairwise disjoint: if this is not the case, then we have $I_1 = (x_1, x_2), I_2 = (x_3, x_4) \in \{I_{\alpha}\}$ with $x_2 > x_3$ and $I_1 \cap I_2 \neq \emptyset$. But then (x_1, x_4) is a wider interval that contains only points in U, contradicting maximality.