

盐酸与氢氧化钠

日期:	时间:	姓名:	
Date:	Time:	Name:	

\		
4		
	Y	

初露锋芒

2016 年的奥运会在巴西的首都里约热内卢举行,跳水女子双人 10 米台决赛中,跳水池里的水忽然变绿了。 里约奥委会大咧咧地表示,他们也不知道这是为什么。周二上午,池子还是清澈的蓝色,但到了下午就成了浑 浊的绿色,网友吐槽就像是亚马逊河的河水。其中原因究竟是什么,网友总说纷纭。有网友认为,池水变绿可 能是因为水里氯气不足,导致海藻爆发,而跳水池里的水温比游泳池高了 5~10℃,更加适宜海藻的生长,此 外,跳水池是露天的,阳光直射也会加速海藻的生长。

- 一般来说,游泳池消毒有两种方法:
- 1、用氯系消毒剂,比如用像自来水厂一样用少量的氯气,或者用漂白粉次氯酸钙等等……总之原理原理就是在水中产生次氯酸离子消毒灭菌
 - 2、用双氧水消毒。利用双氧水的强氧化性来消毒

其实这两种消毒方式,单独用都有效果,然而,里约官方称所谓的临时工把这两个弄混了,这个哥们万万没搞懂,这两个池子之前并没有用双氧水来消毒,而用的是氯。双氧水一加,刚刚好抵消掉了池水中氯的杀菌作用。没了杀菌消毒剂,自然导致池水中绿藻繁殖,这才变绿了。

敲黑板, 咳咳……大胆预测今年年化学考试题:

里约奥运会的跳水池先是使用了氯系消毒剂做池水消毒,后来又往池水中加入双氧水,请问为何池水会变绿? (试写出其中的化学反应原理并解释)

答:因为次氯酸和双氧水反应生成盐酸,水和氧气,而盐酸没有消毒作用,促进了藻类的繁殖和疯长。

	1. 氯化氢和盐酸的性质
	2. 喷泉实验
学习目标	3. 氯化氢气体的制备方法:工业制法和实验室制法
&	4. 常见气体的制备方法
重难点	5. 氢氧化钠
<u>=</u>	1. 喷泉实验
	2. 氯化氢的实验室制法

根深蒂固

一、氯化氢和盐酸的性质

1. 氯化氢的性质	
(1)物理性质: 氯化氢是色气味的气体,密度约为相同条件下空气的 1.26	倍,
氯化氢	
(2) 氯化氢可以使湿润的蓝色石蕊试纸变蓝,露置于空气中可以形成,	
原因是。	
2. 盐酸的性质	
(1) 盐酸是的水溶液,人体胃液里含有盐酸。	
(2) 盐酸是	
置,瓶口会出现由(填"小液滴"、"固体小颗粒")形成的。	
(3) 酸的通性	
盐酸使紫色石蕊试剂变红,(填"能"或"不能")使酚酞试剂变色;盐酸可与活泼	
金属如	或如
【答案】	
无 有刺激性 极易 500	
白雾 氯化氢吸收空气中的水蒸气,形成盐酸小液滴,悬浮在空气中	
HCl 无色 有刺激性 易 小液滴 白雾	
能 不能 Zn. Fe Fe ₂ O ₂ , CuO NaOH, Ca(OH) ₂ CaCO ₂ , Na ₂	CO

二、喷泉实验

在圆底烧瓶里充满氯化氢气体如图所示,用带有玻璃导管和滴管(滴管里预先吸入水)的双孔塞塞 紧瓶口,倒置烧瓶,使玻璃管伸进盛有紫色石蕊溶液的烧杯里,挤压滴管的胶头,使水射入烧瓶中。

现象:						0
原理:	因为HCl	极易溶于水,	烧瓶中的 HCl 溶	于胶头滴管射入的少量	量水中,使得烧	瓶压强减小,
在大气压的	内作用下,	将烧杯里的	水从玻璃导管喷入	烧瓶中;且 HCl 溶于	水形成盐酸, 岛	显酸性。
实验师	战功的关键	!:			0	
常见司	可以形成呀	京泉的组合:				

烧瓶中的气体	烧杯中的溶液
HC1	水、NaOH 溶液、NaCl 溶液
NH ₃	水、HCL溶液
CO ₂ , SO ₂ , H ₂ S, Cl ₂	NaOH 溶液

【答案】烧杯里的溶液由玻璃管喷入烧瓶,形成美丽的红色喷泉

装置气密性良好、烧瓶要干燥、氯化氢的纯度要高

三、氯化氢的制法

1. 氯化氢的工业制法

工业上	常用	在	中燃烧的7	方法来制	间取氯化氢	气体 (如图)),氯气在	E氢气中燃烧时
		被过量的_		过围,在	吏	充分反应,	并发出_	的火焰。
注意:	工业生产	的原则是使原	兼价或无毒的	的原料证	过量,确保	价格较昂贵	或有毒的原	原料充分反应。
【答案	】氯气	氢气	有毒的氯气	氢气	氯气	苍白色		

- 2. 氯化氢的实验室制法
- (1) 实验原理:难挥发性酸制易挥发性酸(高沸点酸制低沸点酸),实验室使用加热_____ 和 的混合物制取氯化氢气体,微热时,化学方程式:

(2) 实验装置:

(3)	收集方法:		;
		Va.	

- (4) 检验方法: _____;
- (5) 尾气处理: _____
- (6) 其他的氯化氢制备方法: _____。

【答案】

(1)	氯化钠	浓硫酸	NaCl	H SO	微 恭	HC1†	
			NaHSC	2 4			4

- (3) 向下排空气法
- (4) 湿润的蓝色石蕊试纸(变蓝)
- (5) 水或 NaOH 溶液吸收(注意防倒吸)

(6)	NaC1	NaHSO	HC1	Na
	SO			
	Ni .	A	2	4

四、常见气体的制法

1. 常见气体的制取方法

气体	化学方程式	反应物状态	反应条件	发生装置
O ₂				
H ₂				
CO ₂				
HC1				
Cl ₂				

气体		化学	方程式)	反应物状态	反应条件	发生装置
O ₂	2K	ClO M n	2KCl	30		固体	加热	
		A 3 2		2				
H_2	Zn	H ₂ SO ₄	H_2	ZnSO ₄		固体和液体	常温	B, C, I
CO_2	CaCO ₃	2HCl	CaCl ₂	CO ₂	H_2O	固体和液体	常温	B, C,

HC1	NaCl H ₂ SO ₄	微器	HC1†	NaHSO ₄	固体和液体	加热	Е
Cl ₂	MnO ₂ 4HCl	\mathbf{MnCl}_2	Cl_2	2H ₂ O			-6
	100			72	固体和	液体加	热]

2. 常见的气体发生装置

3. 常见的气体净化和干燥方法

4. 常见的气体收集方法

多功能瓶的使用

5. 常见的防倒吸装置

6. 常见的尾气处理装置

- (1) 实验室制取 Cl2时, 尾气的处理可采用 装置。
- (2)制取 CO 时,尾气处理可采用 装置。
- (3)制取 H₂时,是否需尾气处理?____。若需要可采取____装置。

【答案】b ac 需要 ac

五、氢氧化钠

- 1、氢氧化钠,俗名烧碱、火碱、苛性钠,是一种强碱,极易溶解于水,且溶于水放出大量的热, 具有强烈腐蚀性。
- - 3、氢氧化钠的电离方程式: _____。
 - 4、碱的通性:

- (1) 使酸碱指示剂变色
- (2) 与酸性氧化物反应生成盐和水
- (3) 与酸反应生成盐和水
- (4) 与某些盐反应生成另一种碱和另一种盐
- 5、烧碱的用途:烧碱是一种极其重要的化工用品,用于造纸、制皂、精炼石油、印染、纺织等工业。
 - 6、烧碱的制备:
 - (1) 工业制法: 电解饱和食盐水______;
 - (2) 实验室制法: ______

【答案】 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$ NaOH \rightarrow Na+ + OH- $2NaCl \quad 2H \quad O \quad ** \quad ** \quad H \quad Cl \quad 2NaOH$

 $Ca(OH)_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaOH$

枝繁叶茂

考点一:	氯化氢和盐酸的性质	į
J ///\	※リロエい 中皿ロスロココン	٠.

- 例 1: 下列叙述中,正确的是 ()
 - A. 液态氯化氢和盐酸都是混合物
 - B. 浓盐酸和浓硫酸混合可制备少量氯化氢气体
 - c. 用湿润的蓝色石蕊试纸可区别氯化氢和盐酸
 - D. 氯化氢和盐酸都用 HCI 表示, 故它们是完全相同的物质

【难度】★

【答案】B

- 例 2: 下列说法正确的是 (
 - A. 氯化氢气体不能用 NaOH 溶液做喷泉实验
 - B. 纯净的盐酸能导电, 所以盐酸是电解质
 - C. 久置于空气中的氢氧化钠溶液,加盐酸时有气体产生
 - D. 少量二氧化碳通入浓的氯化钙溶液能生成白色沉淀

【难度】★★

【答案】B

考点二: 喷泉实验

- 例 3: 做氯化氢喷泉实验后,烧瓶内的液体只占烧瓶容积的三分之一,其原因可能是 ()
 - A. HCI 气体没有完全溶解
 - B. 装置漏气, 进入空气
 - C. 集气时有空气混入
 - D. 从胶头滴管挤入烧瓶的水太少

【难度】★★

【答案】C

- 例 **4**: 用一充满氯化氢气体的烧瓶做喷泉实验,当水充满整烧瓶后,所得溶液的物质的量浓度是(按标准状况计算) ()
 - A. 1.000mol/L
 - B. 0.125mol/L
 - C. 0.045mol/L
 - D. 0.090mol/L

【难度】★★【答案】C

例 5: 根据下图,回答问题:

(1) (AB) L X N II N II C	(1)	甲装置中产生喷泉的原因是	
-------------------------------	-----	--------------	--

(2)	图甲的烧瓶中充满干燥气体,	胶头滴管及烧杯中分别盛有液体。	下列组合中不可能形成喷泉
的是	0		

A.	HC1	和	H ₂ O

B. HCl和AgNO3

C. Clo和饱和食盐水

D. CO₂和 NaOH

(3) 在图乙的锥形瓶中,分别加入足量的下列物质,反应后可能产生喷泉的是。

A. 氨水和浓盐酸

B. CuCl2和 NaOH 溶液

C. CaCO3与稀盐酸

D. Na₂CO₃溶液与盐酸

(4) 在图乙的锥形瓶中外放一水槽,锥形瓶中加入酒精,水槽中加入冷水后,再加入足量的下列物 质,结果也产生了喷泉。水槽中加入的物质不可能是。

A. 浓硫酸

B. 生石灰

C. 硝酸铵

D. 烧碱

这种方法产生喷泉的原理是

(5) 比较图甲和图乙两套装置,以产生喷泉的原理来分析。

图甲是 上部烧瓶内压强;图乙是 下部锥形瓶的压强(填"增大"或"减小")。城市 中有些人造喷泉及火山喷发的原理可能与上述 (填图 A 或图 B)装置的原理相似。

(6) 如果只提供如图丙(烧瓶内充满 HCl)的装置,引发喷泉的方法是

【难度】★★★

【答案】

(1) 气体大量溶解,烧瓶内外产生压强差 (2) C

(3) D

(4) C 利用物质溶于水放出的大量热,使酒精挥发,增大了锥形瓶内的压强

(5) 减小 增大 图乙

(6) 打开止水夹,用手(或热毛巾等)将烧瓶捂热,氨气受热膨胀,赶出玻璃导管内的空气,氨 气与水接触,即发生喷泉或烧瓶上覆盖冷毛巾或淋洒冷水,使烧瓶内温度降低,压强减小,从而引 发喷泉或在烧瓶上涂抹无水乙醇,由于乙醇挥发带走热量使烧瓶内温度降低,压强减小,引发喷泉。

考点三: 氯化氢的制法

例 6: 下列装置中,不适宜用做 HCl 气体尾气吸收的是(

【难度】★★

【答案】C

例 7: 实验室利用下列装置和试剂制取少量氯化氢气体。

试剂: ①浓硫酸

②浓盐酸 ③食盐固体 ④硫酸氢钠固体 ⑤二氧化锰固体

请用实验装置编号(A、B.....)回答:

(1) 若选用试剂①③,则应选择的装置是; 写出反应的方程式

- (2) 若选用试剂③④,则可选择的装置是。
- (3) 要制得干燥的氯化氢气体,可选用 做干燥剂。
- (4) 用如图装置进行实验,烧瓶内充满干燥的 HCl 气体,挤压预先装满水的胶头滴管后,还应该进 行的操作是______,能观察到 现象。

【难度】★★

【答案】

(2) D(3) 浓硫酸或无水氯化钙(4) 打开止水夹

考点四: 常见气体的制法

例 8: 现有下列仪器或装置,请回答下列问题:

(2) 用上图仪器组装成气体发生装置:用 $KClO_3$ 和 MnO_2 制 O_2 应选的装置是______(填字母,下同);用 H_2O_2 与 MnO_2 制 O_2 ,并控制产生 O_2 的速率,应选的装置是_____。

(3) 著	告用装置 X 进行"	排空气法"收集制取的	9 O ₂ ,氧气应从	(填"b"或"c",	下
同)端通入。	若瓶中装满水,	用排水法收集氧气,	氧气应从	端通入。	

(4) 若用 F 装置进行 CO 还原 Fe₂O₃的实验,实验室制取 CO 的方法一般采取甲酸脱水法 (HCOOH ** ** CO + H₂O),用纯净的 CO 完成该实验。

①除 F、X 外还需要的装置有	, X中应加入的试剂是	,X 与其他导管
连接的顺序是	(填导管口的序号)。	
②实验时, a 处可能的现象为		; F装置中气球的作用
н		

【难度】★★

【答案】

- (1) 长颈漏斗 分液漏斗
- (2) AE BD
- (3) c b
- (4) ①DG 浓硫酸 dcbe ②红棕色粉末逐渐变黑 收集尾气中的一氧化碳,防止污染空气

考点五: 氢氧化钠

例 9: 氢氧化钠必须存放在干燥密闭容器中,原因是 ()

- A. 氢氧化钠易分解
- B. 氢氧化钠会腐蚀玻璃
- C. 氢氧化钠易与氧气反应
- D. 氢氧化钠易吸收水分和二氧化碳

【难度】★

【答案】D

例 10: 某氢氧化钠固体已露置在空气中一段时间,取该样品 4.3 克放入 50 克 7.3%的盐酸中恰好反应,并产生气泡,将生成的溶液蒸发至干,可以得到固体_____克。

【难度】★★

【答案】5.85

瓜熟蒂落

- 1. 下列说法中,正确的是 ()
 - A. 氯离子的电子层结构与氖原子相同
 - B. 氯原子与溶于水具有漂白作用
 - C. 氯原子与氯离子的电子层结构不同, 所以两者的化学性质不同
 - D. 氯原子与氯离子都是氯元素, 所以两者的化学性质相同

【难度】★

【答案】C

- 2. 某溶液中加入用硝酸酸化的硝酸银溶液,只看到白色沉淀,下列说法正确的是 ()
 - A. 该溶液一定是盐酸溶液
 - B. 溶液一定含有氯离子
 - C. 该溶液一定是氯化钠溶液
 - D. 溶液中可能含有氯离子,也可能含有碳酸根离子

【难度】★

【答案】D

- 3. 除去氯化氢中的水蒸气可以用 ()
 - A. 碱石灰
 - B. 生石灰
 - C. 硫酸铜粉末
 - D. 无水氯化钙

【难度】★

【答案】D

- 4. 天平的两托盘分别放有质量相等且装有相同量盐酸的烧杯,天平平衡。现在左盘烧杯中加入铁片,在右盘烧杯中加入与铁片等质量的锌片(盐酸过量),正确的判断是 ()
 - A. 放锌片的一端下降
 - B. 放铁片的一端下降
 - C. 天平仍然平衡
 - D、无法确定

【难度】★★

【答案】A

5. 氯化氢做了喷泉实验之后的烧瓶内液体进入烧瓶体积的三分之二,假设实验在标准状况下进行且
烧瓶内溶质不扩散,烧瓶中的盐酸溶液的物质的量浓度为 ()
A. 0.045mol/L
B. 0.030mol/L
C. 0.067mol/L
D. 0.089mol/L
【难度】★★
【答案】A
6. 在喷泉实验装置中,干燥烧瓶中盛有某种气体,烧杯和滴管内盛放某种溶液。挤压胶头滴管的胶
头,下列与实验事实不相符的是 ()
A. Cl ₂ (饱和 NaCl 溶液)
B. NH ₃ (H ₂ O 含酚酞) 红色喷泉
C. HI(AgNO3溶液) 黄色喷泉
D. HCl (AgNO₃溶液) 白色喷泉
【难度】★★
【答案】A
7. 在体积为 VL 的干燥烧瓶中,用排空气法充入 HCl 气体后,测得瓶中气体对 O_2 的相对密度为 1.082 ,
此气体进行喷泉实验,喷泉停止后,进入烧瓶的体积是 ()
A. 0.25V L
B. 0.50V L
C. 0.75V L
D. VL
【难度】★★
【答案】C
8. 如图为实验室制氢气的简易装置。若在加稀硫酸时,发现锌粒与稀硫酸没有接触而稀硫酸又不够
了,为使该反应顺利进行,可以从长颈漏斗中加入的试剂是 ()
有孔塑料板
① 食盐水 ②KNO3溶液 ③乙醇 ④Na2CO3溶液 ⑤CCl4 ⑥浓氨水
A. ①③⑤
B. ②⑥
C. 35
D. 1)24
【难度】★★【答案】A

- 9. 实验室准备制 HCl 气体, 在反应前有下面的操作:
 - ①烧瓶里放入食盐,分液漏斗盛入浓硫酸;
 - ②把酒精灯放在铁架台上;
 - ③将烧瓶夹在铁架上;
 - ④放好铁圈和石棉网:
 - ⑤将带分液漏斗和导管的橡皮管塞到烧瓶口上:
 - ⑥检查仪器装置的气密性。

正确操作的先后顺序是 ()

A. 1)62345

B. 1156234

C. 623415

D. 243561

【难度】★

【答案】D

- 10. 实验室制备装置相似的一组气体是 ()
 - A. HCl, O₂
 - B. H₂, CO₂
 - C. H₂, HCl
 - D. CO2, Cl2

【难度】★

【答案】B

11. 下图是实验室制取氯化氢的装置和选用的试剂,其中正确的是 ()

【难度】★★

【答案】B

12. 工业上常用氯气和氢气燃烧的方法制取氯化氢气体,由于氯气有毒,因此燃烧管的内管应该	通
入的气体是,需要过量的气体是,该过量的气体在电解饱和食盐水时产生在	
极,往该电极滴加酚酞,看到的现象是。	
【难度】★★	

【答案】氯气 氢气 阴 阴极附近的溶液变成红色

13. 小明同学利用如图所示的装置进行喷泉实验。已知 20℃、1 个标准大气压下,某些气体在水里的溶解度如下表:

气体	氢气	氧气	二氧化碳	氯化氢	氨气
1 体积水 溶解气体体积(VL)	0.018	0.031	0.88	442	680

(1) 上外气体中, 能与水形放喷泵现象的定	0	能与水形成喷泉现象的是	上述气体中,	(1)
------------------------	---	-------------	--------	-----

(2)	如果想用二氧化	化碳气体进行喷泉实验,	胶头滴管和烧杯中最好放入	0	(选填编号)
-----	---------	-------------	--------------	---	--------

A. 氯化钠溶液

B. 盐酸

C. 水

D. 氢氧化钠溶液

。(任意填一条)

(3)	小明同学利用上述装置和表中的气体做实验,	结果均未观察到喷泉,	可能的原因是_	

【难度】★★

【答案】

(1) 氯化氢 (HCl)、氨气 (NH₃)

(2) D

- (3) 装置漏气、烧瓶内不干燥、所选气体无法溶于烧杯中的溶液
- 14. 密度为ρg/mL 的盐酸中,逐滴加入 AgNO₃溶液,直到沉淀完全为止。已知沉淀的质量与原盐 酸溶液的质量相等,则原盐酸的物质的量浓度为多少?

【难度】★★【答

案】1000____/

mol L

15. 30.6 克碳酸钙和碳酸钠的混合固体投入 200 克稀盐酸中恰好完全反应,并收集到 13.2 克二氧化碳的气体。

求: (1) 碳酸钙的质量、碳酸钠的物质的量? (2) 稀盐酸的质量的分数?

 $[CaCO_3+2HCl\rightarrow CaCl_2+H_2O+CO_2\uparrow, Na_2CO_3+2HCl\rightarrow 2NaCl+H_2O+CO_2\uparrow]$

【难度】★★

【答案】(1) 20g 0.1mol(2) 10.95%