CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 16 GIUGNO 2023

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. In ciascuna delle quattro forme proposizionali che seguono, si stabilisca quali tra i connettivi ' \Rightarrow ' e ' \Leftarrow ' (ovvero ' \rightarrow ' e ' \leftarrow ') possono essere sostituiti all'asterisco in modo da ottenere una tautologia (risposte possibili: ' \Rightarrow ', ' \Leftarrow ', 'entrambi', 'nessuno dei due'):

(a) $(p \wedge (\neg p)) * q$; (b) $q * ((p \wedge q) \vee q)$; (c) $(p \vee q) * ((p \wedge q) \vee q)$; (d) $(p \Rightarrow (q \wedge p)) * (p \Rightarrow q)$.

Esercizio 2. Siano α , β , γ e δ le relazioni binarie definite in \mathbb{Z} da: $\forall a, b \in \mathbb{Z}$,

$$a \alpha b \iff 5a + 8 \equiv_{15} 5b - 7$$
 $a \beta b \iff 5a + 8 \equiv_{15} 8b + 5$
 $a \gamma b \iff 5a + 8 \equiv_{15} 5b - 8$ $a \delta b \iff (\forall p \in \mathbb{P})(p|a \Leftrightarrow p|b)$

dove \mathbb{P} è l'insieme dei numeri primi positivi. Per ciascuna di esse decidere se è o non è di equivalenza e, nel caso lo sia, descrivere la classe di equivalenza di 0.

Esercizio 3. Si consideri la relazione d'ordine ρ definita in \mathbb{Z} ponendo, per ogni $a, b \in \mathbb{Z}$,

$$a \rho b \iff \left((a \le 0 \le b) \lor (a, b < 0 \land a | b) \lor (a, b > 0 \land a \le b) \right)$$

- (i) Determinare gli eventuali minimo, massimo, elementi minimali ed elementi massimali in (\mathbb{Z}, ρ) .
- (ii) (\mathbb{Z}, ρ) è un reticolo?
- (iii) Posto $A = \{n \in \mathbb{Z} \mid -4 \le n \le 1\}$, disegnare il diagramma di Hasse di (A, ρ) , stabilire se (A, ρ) è un reticolo e, nel caso, se è distributivo e se è complementato.

Esercizio 4. Indicando, per ogni $n \in \mathbb{Z}$, con \bar{n} la classe $[n]_{24} \in \mathbb{Z}_{24}$,

(i) giustificare, senza fare calcoli, le uguaglianze: $\bar{9} \cdot \overline{16} = \bar{0}$, $(\bar{9})^2 = \bar{9}$ e $(\overline{16})^2 = \overline{16}$. Per farlo utilizzare le uguaglianze $24 = 3 \cdot 8$, $9^2 = 9 + 9 \cdot 8$ e $16^2 = 16 + 16 \cdot 15$.

Sia * l'operazione binaria definita in \mathbb{Z}_{24} da: $\forall a, b \in \mathbb{Z}_{24}$ $(a * b = \overline{16}(a + b) + \overline{9}ab)$.

- (ii) Stabilire se * è commutativa e, usando quanto al punto precedente, se è associativa.
- (iii) $(\mathbb{Z}_{24}, *)$ ammette elemento neutro? Nel caso, calcolarlo. [Suggerimento: per quali $c \in \mathbb{Z}_{24}$ si ha $\bar{1} * c = \bar{1}$?]
- (iv) Se la domanda ha senso, di ciascuno di $\bar{0}$ e $\bar{1}$ decidere se è simmetrizzabile in ($\mathbb{Z}_{24}, *$) e, nel caso, determinarne il simmetrico.

Esercizio 5. Per ogni intero primo positivo p, sia f_p il polinomio $x^2(\bar{3}x-\bar{1})(x^2-\bar{1})-\bar{2}x^3+\bar{2}x+\bar{2}\bar{1}\in\mathbb{Z}_p[x]$.

- (i) Determinare l'insieme A degli interi primi positivi p per i quali f_p abbia sia $\bar{1}$ che $-\bar{1}$ come radice
- (ii) Detto q il massimo elemento di A, si scriva f_q come prodotto di polinomi irriducibili in $\mathbb{Z}_q[x]$.