ECE 35, Fall 2022 – Section A Your sequence number				
Final				
Grade	Last name			
/ 31	First + middlo name(s)	e		
	PID			

Instructions:

- Do not look at the questions or start writing until it is announced that you can do so.
- You must follow the Final Exam Procedures that were posted on Canvas. If you are unsure of anything, ask. As a reminder:
 - Your phone should be turned off and put inside your bag
 - Calculators are not allowed.
 - This is a closed book exam.
 - Follow the Academic Integrity standards
- These pages contain the exam questions.
 - Do not write any of your work here except for scratch work. It will not be graded.
 - You need to <u>write your final answer in the answer boxes</u> here. Make sure you list units.
 - Keep these question pages stapled together. The last page is the equation sheet; you may detach this if you want.
 - o Make sure you write your PID on EACH page.
 - o Read each problem completely and thoroughly before beginning.

(1) (7 points)

(a) In the circuit below, the ammeter and voltmeter are ideal.

What is the reading X of the voltmeter?

X

What is the reading Y of the ammeter?

Y

What is the voltage v_a ?

 v_a

What is the power P <u>received</u> by the <u>4 A current source</u>?

P

(b) What is the Thevenin resistance R_{th} between A and B ?

R_{th}	
CIL	

- (2) (7 points) For this question, you should make reasonable numerical approximations if needed.
 - (a) Consider the circuit below. For t < 0 s, the switch is closed, and the system has reached steady state. At time t = 0 s, the switch <u>opens</u>.

Find the current i_a at time $t=0^-{\rm s}\,$ (i.e., immediately before the switch opens).

 $i_a(0^-s)$

Find the current i_a at time $t=0^+s$ (i.e., immediately after the switch opens).

(b) Consider the circuit below. For t < 0 s, the switch is in position 1, and the system has reached steady state. At time t = 0 s, the switch moves to position 2 (and stays there). Just before the switch moves, i_x is 4 A.

Find the current i_b at time $t=0^+{\rm s}\,$ (i.e., immediately after the switch moves to position 2).

 $i_b(0^+s)$

Find the current i_b at time t=2 s.

 $i_b(2 s)$

Find the current i_b at time $t = \infty$.

$i_b(\infty)$	
· <i>U</i> ()	

- (c) Consider the circuit below. For t < 2 s, the switch is open, and the system may not have reached steady state. At <u>time t = 2</u> s, the switch <u>closes</u>. Just after the switch closes, i_c is 5 A.
- $i_c(4 \text{ s})$

Find the current i_c at time t=4 s.

 $i_c(6 s)$

Find the current i_c at time t = 6 s.

- (3) (6 points) Consider the circuit below. You may assume it is in steady-state.
 - (a) Find the current of current source i_{S1} at time $t=\frac{\pi}{20}\,\mathrm{s}.$
- $i_{S1}\left(\frac{\pi}{20} \text{ s}\right)$

(b) Find the voltage v_a at time $t=\frac{\pi}{20}\,\mathrm{s}$.

- $v_a\left(\frac{\pi}{20} \text{ s}\right)$
- (c) Find the maximum value of the waveform $i_a(t)$.

i _{a max}	

$$i_{S1} = 3 + 5\cos(10t) \text{ A}$$

$$i_{S2} = 6\sin\left(20t + \frac{\pi}{4}\right)A$$

$$i_{S3} = 3\sqrt{2}\cos(20t) \text{ A}$$

- (4) (6 points) The circuit below represents an AC circuit in steady-state in the phasor domain (for the complex numbers, you may assume units are V, A, Ω , etc. as appropriate). The voltage source v_S is an AC source with $\omega=5$ rad/s. Each box represents the impedance of a single circuit element (a resistor, capacitor or inductor).
 - (a) Find the average power P_s supplied by the voltage source.

 $P_{\mathcal{S}}$

(b) Find the average power P_1 <u>received</u> by the element with impedance ${\bf Z_1}$.

(c) Find the RMS value of i_x .

PID	1
	ı

(5) *(5 points)*

- (a) Consider the circuit below. You are not given the values of k and V_s (but you are told that all sources are DC sources). We are considering the circuit after the switch closes.
 - The time constant τ associated with $i_L(t)$ during this transition is τ = 2 s.
 - You also measure that when current i_L reaches 4 A, the voltage v_L drops to 0 V.

What is the current i_L when the system reaches steady state?

Find the Norton equivalent resistance R_N between A and B if we were to remove the inductor from the circuit.

During the transition (in our original circuit with the inductor in there), when the current i_L has a value of 1 A, what is the value of the voltage v_L ?

(b) Consider the circuit below. The unknown values of k and V_s are the same as in the circuit above. The switch closes at time t = 400 s (you do not know if the system has reached steady state before the switch closes).

Find the time constant τ_1 associated with $v_c(t)$ for t > 400 s.

Find the time constant τ_2 associated with $i_a(t)$ for t > 400 s.

-	
$ au_2$	

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{l}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

$$sin(\pi - \alpha) = sin(\alpha)$$
 $cos(\pi - \alpha) = -cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha) \cdot \sin(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha) \cdot \sin(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): 0 \qquad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3}$$
$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$