Lexical Translation Alignment IBM Models Assignment References

CMPE 409 Machine Translation Lexical Translation and Alignment

Murat ORHUN (most of them adapted from the original slides of Prof. Philipp Koehn)

Istanbul Bilgi University

March 30, 2022

- 1 Lexical Translation
 - Lexical Translation
- 2 Alignment
 - Alignment
- IBM Models
 - IBM Model 1
 - IBM Model 1 and EM
- 4 Assignment
- 6 References

Lexicon

- Words in a language (maybe many dialects)
- Words in a dictionary
- Domain related words
- Lexicon & Words

Word Translation

- Numbers and letters
- Literal translation
- Bilingual dictionary
- Sign language
- Disabled alphabet
- more

Word-Based Modules

- The models stem from the original work on statistical machine translation by the IBM Candide project in the late 1980s and early 1990s.
- Generative modeling
- The expectation maximization algorithm
- The noisy-channel model

Lexical Translation

- How to translate a word \rightarrow look up in dictionary
 - **Haus** house, building, home, household, shell.
- Note: In all lectures, we translate from a foreign language into English
- Multiple translations
 - some more frequent than others
 - for instance: house, and building most common
 - special cases: Haus of a snail is its shell
- How can we learn about word frequencies?

Collect Statistics

Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Collect Statistics

- The word Haus occurs 10,000 times in our hypothetical text collection.
- It is translated 8000 times into house
- 1600 times into building, and so on.

Collect Statistics

- Ignore context
- Simple translation
- Other possible translations are not considered

Estimate Translation Probabilities

Maximum likelihood estimation

$$p_f(e) = \begin{cases} 0.8 & \text{if } e = \text{house,} \\ 0.16 & \text{if } e = \text{building,} \\ 0.02 & \text{if } e = \text{home,} \\ 0.015 & \text{if } e = \text{household,} \\ 0.005 & \text{if } e = \text{shell.} \end{cases}$$

Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other

• Word positions are numbered 1–4

Alignment Function

- Formalizing alignment with an alignment function
- \bullet Mapping an English target word at position i to a German source word at position j with a function $a:i\to j$
- Example

$$a:\{1\rightarrow 1,2\rightarrow 2,3\rightarrow 3,4\rightarrow 4\}$$

Reordering

Words may be reordered during translation

$$a: \{1 \to 3, 2 \to 4, 3 \to 2, 4 \to 1\}$$

One-to-Many Translation

A source word may translate into multiple target words

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4, 5 \to 4\}$$

Dropping Words

Words may be dropped when translated (German article das is dropped)

$$a:\{1\rightarrow 2,2\rightarrow 3,3\rightarrow 4\}$$

Inserting Words

- Words may be added during translation
 - The English just does not have an equivalent in German
 - We still need to map it to something: special NULL token

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 0, 5 \to 4\}$$

IBM Model 1

- Generative model: break up translation process into smaller steps
 - IBM Model 1 only uses lexical translation
- Translation probability
 - for a foreign sentence $\mathbf{f} = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $\mathbf{e} = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a:j\to i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

- parameter ϵ is a normalization constant

Example

das

e	t(e f)
the	0.7
that	0.15
which	0.075
who	0.05
this	0.025

Haus

TIGGS			
e	t(e f)		
house	0.8		
building	0.16		
home	0.02		
household	0.015		
shell	0.005		

ist

e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

klein

Klein			
e	t(e f)		
small	0.4		
little	0.4		
short	0.1		
minor	0.06		
petty	0.04		

$$p(e, a|f) = \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$$
$$= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4$$
$$= 0.0028\epsilon$$

Learning Lexical Translation Models

- ullet We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
 - if we had the alignments,
 - ightarrow we could estimate the *parameters* of our generative model
 - if we had the parameters,
 - ightarrow we could estimate the *alignments*

- Incomplete data
 - if we had complete data, would could estimate model
 - if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
 - 1. initialize model parameters (e.g. uniform)
 - 2. assign probabilities to the missing data
 - 3. estimate model parameters from completed data
 - 4. iterate steps 2–3 until convergence

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

... la maison ... la maison blue ... la fleur ...

the house ... the blue house ... the flower ...

- After one iteration
- Alignments, e.g., between la and the are more likely

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower ar likely (pigeon hole principle)

- Convergence
- Inherent hidden structure revealed by EM

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM: Pseudocode

```
Input: set of sentence pairs (e, f)
                                                            // collect counts
                                                   14:
Output: translation prob. t(e|f)
                                                             for all words e in e do
                                                   15:
  1: initialize t(e|f) uniformly
                                                                for all words f in f do
                                                   16:
                                                                  \operatorname{count}(e|f) += \frac{t(e|f)}{\operatorname{s-total}(e)}
 2: while not converged do
                                                   17.
       // initialize
                                                                  total(f) += \frac{t(e|f)}{s-total(e)}
                                                   18:
       count(e|f) = 0 for all e, f
                                                                end for
                                                   19:
       total(f) = 0 for all f
 5:
                                                             end for
                                                   20.
       for all sentence pairs (e,f) do
 6:
                                                          end for
                                                   21.
          // compute normalization
                                                         // estimate probabilities
                                                   22:
          for all words e in e do
 8.
                                                          for all foreign words f do
                                                   23:
             s-total(e) = 0
 g.
                                                             for all English words e do
                                                   24:
             for all words f in f do
10:
                                                               t(e|f) = \frac{\operatorname{count}(e|f)}{\operatorname{total}(f)}
                                                   25.
                s-total(e) += t(e|f)
11:
                                                             end for
                                                   26:
             end for
12:
                                                          end for
                                                   27:
          end for
13:
```


e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

Video: Machine Translation - IBM Model 1 and the EM Algorithm

https://www.youtube.com/watch?v=5etGx8OZE7I&t=1326s

Recourse

- Jurafsky, D. and J. H. Martin. Speech and language processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Second Edition, Upper Saddle River, NJ: Prentice-Hall, 2008.
- Koehn, P. (2009). Statistical Machine Translation. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511815829