# problem staement:predict and analyze

# In [5]:

```
import numpy as np
import pandas as pd
from sklearn import preprocessing
import matplotlib.pyplot as plt
# plt.rc("font", size=14)
import seaborn as sns
sns.set(style="white") #white background style for seaborn plots
sns.set(style="whitegrid", color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
```

#### In [6]:

```
df = pd.read_csv(r"C:\Users\sowmika\Downloads\framingham.csv")
df
```

#### Out[6]:

|      | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalent |
|------|------|-----|-----------|---------------|------------|--------|-----------------|-----------|
| 0    | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               |           |
| 1    | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               |           |
| 2    | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               |           |
| 3    | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               |           |
| 4    | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               |           |
|      |      |     |           |               |            |        |                 |           |
| 4235 | 0    | 48  | 2.0       | 1             | 20.0       | NaN    | 0               |           |
| 4236 | 0    | 44  | 1.0       | 1             | 15.0       | 0.0    | 0               |           |
| 4237 | 0    | 52  | 2.0       | 0             | 0.0        | 0.0    | 0               |           |
| 4238 | 1    | 40  | 3.0       | 0             | 0.0        | 0.0    | 0               |           |
| 4239 | 0    | 39  | 3.0       | 1             | 30.0       | 0.0    | 0               |           |
|      |      |     |           |               |            |        |                 |           |

4240 rows × 16 columns

# In [7]:

df.head()

# Out[7]:

|   | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp |
|---|------|-----|-----------|---------------|------------|--------|-----------------|--------------|
| 0 | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 1 | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 2 | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               | 0            |
| 3 | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               | 1            |
| 4 | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               | 0            |
|   |      |     |           |               |            |        |                 |              |

In [8]:

df.tail()

# Out[8]:

|      | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalent |
|------|------|-----|-----------|---------------|------------|--------|-----------------|-----------|
| 4235 | 0    | 48  | 2.0       | 1             | 20.0       | NaN    | 0               |           |
| 4236 | 0    | 44  | 1.0       | 1             | 15.0       | 0.0    | 0               |           |
| 4237 | 0    | 52  | 2.0       | 0             | 0.0        | 0.0    | 0               |           |
| 4238 | 1    | 40  | 3.0       | 0             | 0.0        | 0.0    | 0               |           |
| 4239 | 0    | 39  | 3.0       | 1             | 30.0       | 0.0    | 0               |           |
|      |      |     |           |               |            |        |                 |           |

In [9]:

df.shape

Out[9]:

(4240, 16)

# In [10]:

# df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4240 entries, 0 to 4239
Data columns (total 16 columns):

| #  | Column          | Non-Null Count | Dtype   |
|----|-----------------|----------------|---------|
|    |                 |                |         |
| 0  | male            | 4240 non-null  | int64   |
| 1  | age             | 4240 non-null  | int64   |
| 2  | education       | 4135 non-null  | float64 |
| 3  | currentSmoker   | 4240 non-null  | int64   |
| 4  | cigsPerDay      | 4211 non-null  | float64 |
| 5  | BPMeds          | 4187 non-null  | float64 |
| 6  | prevalentStroke | 4240 non-null  | int64   |
| 7  | prevalentHyp    | 4240 non-null  | int64   |
| 8  | diabetes        | 4240 non-null  | int64   |
| 9  | totChol         | 4190 non-null  | float64 |
| 10 | sysBP           | 4240 non-null  | float64 |
| 11 | diaBP           | 4240 non-null  | float64 |
| 12 | BMI             | 4221 non-null  | float64 |
| 13 | heartRate       | 4239 non-null  | float64 |
| 14 | glucose         | 3852 non-null  | float64 |
| 15 | TenYearCHD      | 4240 non-null  | int64   |
|    |                 |                |         |

dtypes: float64(9), int64(7)

memory usage: 530.1 KB

# In [11]:

df.describe()

# Out[11]:

|       | male        | age         | education   | currentSmoker | cigsPerDay  | BPMeds      | pre |
|-------|-------------|-------------|-------------|---------------|-------------|-------------|-----|
| count | 4240.000000 | 4240.000000 | 4135.000000 | 4240.000000   | 4211.000000 | 4187.000000 |     |
| mean  | 0.429245    | 49.580189   | 1.979444    | 0.494104      | 9.005937    | 0.029615    |     |
| std   | 0.495027    | 8.572942    | 1.019791    | 0.500024      | 11.922462   | 0.169544    |     |
| min   | 0.000000    | 32.000000   | 1.000000    | 0.000000      | 0.000000    | 0.000000    |     |
| 25%   | 0.000000    | 42.000000   | 1.000000    | 0.000000      | 0.000000    | 0.000000    |     |
| 50%   | 0.000000    | 49.000000   | 2.000000    | 0.000000      | 0.000000    | 0.000000    |     |
| 75%   | 1.000000    | 56.000000   | 3.000000    | 1.000000      | 20.000000   | 0.000000    |     |
| max   | 1.000000    | 70.000000   | 4.000000    | 1.000000      | 70.000000   | 1.000000    |     |
| 4     |             |             |             |               |             |             |     |

# In [12]:

# df.isnull().sum()

#### Out[12]:

male 0 0 age education 105 currentSmoker 0 29 cigsPerDay **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 diabetes 0 50 totChol sysBP 0 diaBP 0 19 BMI heartRate 1 388 glucose TenYearCHD 0 dtype: int64

# In [13]:

# df.describe().any()

# Out[13]:

True male True age education True currentSmoker True cigsPerDay True BPMeds True prevalentStroke True True prevalentHyp diabetes True totChol True sysBP True diaBP True BMI True heartRate True True glucose TenYearCHD True dtype: bool

# In [14]:

```
ax = df["education"].hist(bins=15, density=True, stacked=True, color='cyan', alpha=0.6)
df["education"].plot(kind='density', color='teal')
ax.set(xlabel='Age')
plt.xlim(-0,15)
plt.show()
```



#### In [15]:

```
print(df["education"].mean(skipna=True))
print(df["education"].median(skipna=True))
```

#### 1.9794437726723095

2.0

#### In [16]:

```
print((df['glucose'].isnull().sum()/df.shape[0]*100))
```

#### 9.150943396226415

#### In [17]:

```
print((df['totChol'].isnull().sum()/df.shape[0]*100))
```

# In [18]:

```
print(df['totChol'].value_counts())
sns.countplot(x='totChol', data=df, palette='Set2')
plt.show()
totChol
240.0
         85
220.0
         70
260.0
         62
210.0
         61
232.0
         59
392.0
          1
405.0
          1
359.0
          1
398.0
          1
119.0
          1
Name: count, Length: 248, dtype: int64
    80
    70
    60
    50
   40
```

# In [19]:

30

20

10

0

```
print(df['totChol'].value_counts().idxmax())
```

totChol

```
In [20]:
```

```
data = df.copy()
data["education"].fillna(df["education"].median(skipna=True), inplace=True)
data["totChol"].fillna(df['totChol'].value_counts().idxmax(), inplace=True)
data.drop('glucose', axis=1, inplace=True)
```

# In [21]:

```
data.isnull().sum()
```

# Out[21]:

male 0 0 age education 0 currentSmoker 0 cigsPerDay 29 **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 diabetes 0 totChol 0 0 sysBP diaBP 0 19 BMI heartRate 1 TenYearCHD 0 dtype: int64

# In [22]:

```
data.head()
```

# Out[22]:

|   | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp |
|---|------|-----|-----------|---------------|------------|--------|-----------------|--------------|
| 0 | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 1 | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 2 | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               | 0            |
| 3 | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               | 1            |
| 4 | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               | 0            |
| 4 | _    | _   |           |               |            |        |                 |              |

### In [23]:

```
ax = df["cigsPerDay"].hist(bins=15, density=True, stacked=True, color='cyan', alpha=0.6)
df["cigsPerDay"].plot(kind='density', color='teal')
ax.set(xlabel='cigsPerDay')
plt.xlim(-10,85)
plt.show()
```



#### In [24]:

```
print(df["cigsPerDay"].mean(skipna=True))
print(df["cigsPerDay"].median(skipna=True))
```

# 9.005936832106388

0.0

#### In [25]:

```
print((df['BPMeds'].isnull().sum()/df.shape[0]*100))
```

1.25

# In [26]:

```
print((df['BMI'].isnull().sum()/df.shape[0]*100))
```

# In [27]:

```
print((df['heartRate'].isnull().sum()/df.shape[0]*100))
```

#### 0.02358490566037736

#### In [28]:

```
print(df['BPMeds'].value_counts())
sns.countplot(x='BPMeds', data=df, palette='Set2')
plt.show()
```

#### **BPMeds**

0.0 40631.0 124

Name: count, dtype: int64



# In [29]:

```
print(df['heartRate'].value_counts().idxmax())
```

```
In [32]:
```

```
data = df.copy()
data["cigsPerDay"].fillna(df["cigsPerDay"].median(skipna=True), inplace=True)
data["BPMeds"].fillna(df['BPMeds'].value_counts().idxmax(), inplace=True)
data["education"].fillna(df["education"].median(skipna=True), inplace=True)
data["totChol"].fillna(df['totChol'].value_counts().idxmax(), inplace=True)
data.drop('glucose', axis=1, inplace=True)
data.drop('BMI', axis=1, inplace=True)
data.drop('heartRate', axis=1, inplace=True)
```

#### In [33]:

```
data.isnull().sum()
```

# Out[33]:

male 0 age 0 education 0 currentSmoker 0 cigsPerDay 0 **BPMeds** prevalentStroke 0 prevalentHyp 0 0 diabetes totChol 0 sysBP 0 diaBP 0 TenYearCHD 0 dtype: int64

#### In [34]:

```
data.head()
```

#### Out[34]:

|   | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp |
|---|------|-----|-----------|---------------|------------|--------|-----------------|--------------|
| 0 | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 1 | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               | 0            |
| 2 | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               | 0            |
| 3 | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               | 1            |
| 4 | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               | 0            |

#### In [37]:

```
plt.figure(figsize=(15,8))
ax = df["education"].hist(bins=15, density=True, stacked=True, color='teal', alpha=0.6)
df["education"].plot(kind='density', color='teal')
ax =data["education"].hist(bins=15, density=True, stacked=True, color='orange', alpha=0)
data["education"].plot(kind='density', color='orange')
ax.legend(['education', 'age'])
ax.set(xlabel='education')
plt.xlim(-0,10)
plt.show()
```



#### In [41]:

```
data['Disease']=np.where((data["prevalentHyp"]+data["prevalentStroke"])>0, 0, 1)
data.drop('prevalentHyp', axis=1, inplace=True)
data.drop('prevalentStroke', axis=1, inplace=True)
```

#### In [43]:

```
#create categorical variables and drop some variables
training=pd.get_dummies(data, columns=["currentSmoker","totChol","sysBP"])
training.drop('TenYearCHD', axis=1, inplace=True)
training.drop('male', axis=1, inplace=True)
training.drop('diaBP', axis=1, inplace=True)
final_train = training
final_train.head()
```

# Out[43]:

|   | age | education | cigsPerDay | BPMeds | diabetes | Disease | currentSmoker_0 | currentSmoker |
|---|-----|-----------|------------|--------|----------|---------|-----------------|---------------|
| 0 | 39  | 4.0       | 0.0        | 0.0    | 0        | 1       | True            | Fal           |
| 1 | 46  | 2.0       | 0.0        | 0.0    | 0        | 1       | True            | Fal           |
| 2 | 48  | 1.0       | 20.0       | 0.0    | 0        | 1       | False           | Tr            |
| 3 | 61  | 3.0       | 30.0       | 0.0    | 0        | 0       | False           | Tr            |
| 4 | 46  | 3.0       | 23.0       | 0.0    | 0        | 1       | False           | Tr            |

5 rows × 490 columns

# **Exploratory Data Analysis**

#### In [49]:

```
plt.figure(figsize=(15,8))
ax=sns.kdeplot(final_train["age"][final_train.Disease == 1], color="green", shade=True)
sns.kdeplot(final_train["age"][final_train.Disease == 0], color="lightcoral", shade=True
plt.legend(['Disease', 'Died'])
ax.set(xlabel='age')
plt.xlim(10,100)
plt.show()
```



#### In [73]:

```
plt.figure(figsize=(20,8))
avg_survival_byage = final_train[["age", "Disease"]].groupby(['age'], as_index=False).me
g = sns.barplot(x='age', y='Disease', data=avg_survival_byage, color="LightSeaGreen")
plt.show()
```



#### In [57]:

```
final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)
print(final_train['IsMinor'])</pre>
```

```
0
         0
         0
1
2
         0
3
         0
4
         0
         . .
4235
         0
         0
4236
4237
         0
4238
         0
4239
         0
```

Name: IsMinor, Length: 4240, dtype: int32

#### In [60]:

```
final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)
print(final_train['IsMinor'])</pre>
```

```
0
        0
1
        0
2
        0
3
        0
4
        0
4235
        0
4236
        0
4237
        0
4238
        0
4239
Name: IsMinor, Length: 4240, dtype: int32
```

# In [62]:

sns.barplot(x='Disease', y='education', data=final\_train, color="mediumturquoise")
plt.show()



# In [64]:

```
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming 'train_df' is your DataFrame containing the data
sns.barplot(x='diabetes', y='age', data=df, color='aquamarine')
plt.show()
```



# In [ ]: