大学数学实验

第7讲

优化方法I线性规划

(linear programming)

优化问题的一般形式

优化问题三要素:决策变量;目标函数;约束条件

 $\min f(x)$

$$s.t.$$
 $h_i(x) = 0, i = 1,..., m$

$$g_{j}(x) \leq 0, j = 1,..., l$$

决策变量

$$x \in D \subset \Re^n$$

目标函数

约束条件

约束优化的分类

s.t.
$$h_i(x) = 0, i = 1,..., m$$

 $g_j(x) \le 0, j = 1,..., l$
 $x \in D \subset \Re^n$

f(x)

连 续 优 化

• 线性规划(LP) 目标和约束均为线性函数

• 非线性规划(NLP) 目标或约束中存在非线性函

min

离 散 优

· 整数线性规划(ILP)

- ·整数非线性规划(INLP)
- 0-1规划整数决策变量只取 0 或 1

本实验基本内容

- 1. 线性规划实例及其数学模型
- 2. 基本原理和算法
- 3. MATLAB实现

实例1: 食谱问题

背景 营养需求 / 人 / 天

50g蛋白质 4000IU维生素A 1000mg钙

食物	单位	蛋白质(g)	维生素A(IU)	钙(mg)	价格
苹果	个 (138g)	0.3	73	9.6	10
香蕉	个 (118g)	1. 2	96	7	15
胡萝卜	个 (72g)	0.7	20253	19	5
枣汁	杯(178g)	3. 5	890	57	60
鸡蛋	个 (44g)	5. 5	279	22	8

确定每种食物的用量,以最小费用满足营养需求

- 维生素A的需求增加1单位,是否改变食谱?成本增加多少?
- 胡萝卜价格增1单位,是否改变食谱?成本增加多少?

实例1: 食谱问题

决策 变量

5种食品数量:

$$x_1, x_2, x_3, x_4, x_5$$

$$x = (x_1, x_2, x_3, x_4, x_5)^{\mathrm{T}}$$

 $c = (10, 15, 5, 60, 8)^{\mathrm{T}}$

$$b = (50, 4000, 1000)^{\mathrm{T}}$$

目标函数

费用 $Min z = 10x_1 + 15x_2 + 5x_3 + 60x_4 + 8x_5$

约束 条件

满足 $0.3x_1 + 1.2x_2 + 0.7x_3 + 3.5x_4 + 5.5x_5 \ge 50$ 需求 $73x_1 + 96x_2 + 20253x_3 + 890x_4 + 279x_5$

$$73x_1 + 96x_2 + 20253x_3 + 890x_4 + 279x_5 \ge 4000$$

$$9.6x_1 + 7x_2 + 19x_3 + 57x_4 + 22x_5 \ge 1000$$

非负约束 $x_1, \dots, x_5 \ge 0$

$$A = \begin{pmatrix} 0.3 & 1.2 & 0.7 & 3.5 & 5.5 \\ 73 & 96 & 20253 & 890 & 279 \\ 9.6 & 7 & 19 & 57 & 22 \end{pmatrix}$$

$$\min \quad z = c^T x$$

$$s.t.$$
 $Ax \ge b$

$$x \ge 0$$

至9100公斤 A_1 制订生产计划,使每天净利润最大

- •15元可增加1桶牛奶,应否投资?
- 聘用临时工人增加劳动时间,工资最多每小时几元?
- \cdot B₁,B₂的获利经常有10%的波动,对计划有无影响?

求解线性规划(LP)的基本原理

基本模型

max(or min)
$$z = c^T x$$
, $x \in \mathbb{R}^n$
s.t. $Ax = b$, $x \ge 0$

$$c \in R^n$$
, $A \in R^{m \times n}$, $b \in R^m$

- 二维线性规划的图解法
- 一般线性规划的单纯形算法
- 线性规划的敏感性分析
- 线性规划的对偶问题
- 线性规划的其他算法

二维线性规划的图解法

起作用约束: L2;L3

最优解(4,1),最优值 z_{max} =13

求解LP的特殊情形 $\max z = 3x_1 + x_2$

s.t.
$$x_1 - x_2 \ge -2$$
 ~L₁
 $x_1 - 2x_2 \le 2$ ~L₂
 $3x_1 + 2x_2 \le 14$ ~L₃

$$x_1, x_2 \geq 0$$

$$-3x_1 + 2x_2 \ge 14 \sim L_3$$

 $\mathbf{X_2}$

$$3x_1 + x_2 \le 14 \sim L_3$$

无可行解

无最优解(无界)

最优解不唯一

LP的约束和目标函数均为线性函数

2维

可行域 线段组成的凸多边形目标函数 等值线为直线 最优解 凸多边形的某个顶点

n维

超平面组成的凸多面体 等值线是超平面 凸多面体的某个顶点

求解LP的基本思想

从可行域的某一顶点开始,只需在有限多个顶点中 一个一个找下去,一定能得到<mark>最优解</mark>。

算法: 怎样从一点转到下一点,尽快找到最优解。

划的标准形式和基本性质

$$\max z = 3x_{1} + x_{2}$$

$$s.t. \quad x_{1} - x_{2} \ge -2$$

$$x_{1} - 2x_{2} \le 2 \qquad \Rightarrow$$

$$3x_{1} + 2x_{2} \le 14$$

$$x_{1}, x_{2} \ge 0$$

min
$$z = -3x_1 - x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5$$

s.t. $-x_1 + x_2 + x_3 = 2$, $x_3 \ge 0$
 $x_1 - 2x_2 + x_4 = 2$, $x_4 \ge 0$
 $3x_1 + 2x_2 + x_5 = 14$, $x_5 \ge 0$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

加入松弛变量/剩余变量将不等式变为等式

标 min
$$z = c^T x$$

准 $s.t.$ $Ax = b, x \ge 0$

$$A \in \mathbb{R}^{m \times n}, m \leq n$$

假设: A行满秩

b非负

基本可行解

定义: 设B 是秩为m 的约束矩阵A 的一个 m 阶满秩子方阵,则称B 为一个基; B 中 m 个线性无关的列向量称为基向量,变量 x 中与之对应的 m 个分量称为基变量,其余的变量为

非基变量,令所有的非基变量取值为 $\mathbf{0}$,得到的解 $\mathbf{x} = \begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix}$

称为相应于B 的基本解。当 $B^{-1}b \ge 0$ 则称基本解为基本可行解,这时对应的基阵B 为可行基。

如果 $B^{-1}b>0$,则称该基本可行解为非退化的,如果一个线性规划的所有基本可行解都是非退化的,则称该规划为非退化的。

消華大学

$$-x_1 + x_2 + x_3 = 2$$

$$x_1 - 2x_2 + x_4 = 2$$

$$3x_1 + 2x_2 + x_5 = 14$$

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 - 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$=[p_1 \ p_2 \ p_3 \ p_4 \ p_5]$$

$$A \Rightarrow [A_B, A_N], A_B$$
可逆

$$x^T \Rightarrow [x_B, x_N]^T$$

$$Ax = A_B x_B + A_N x_N = b$$

$$x_N = 0 \Longrightarrow x_B = A_B^{-1}b$$

A_R: 基(矩阵)

x: 基(本)解

 x_R : 基变量 x_N : 非基变量

$$A_B = [p_3 \ p_4 \ p_5] \Rightarrow x = (0,0,2,2,14)^T$$
O

$$A_B = [p_1 \ p_3 \ p_5] \Rightarrow x = (2,0,4,0,8)^T$$

$$A_B = [p_2 \ p_3 \ p_5] \Rightarrow x = (0,-1,3,0,16)^T$$

$$A_B = [p_1 \ p_2 \ p_3] \Rightarrow x = (4,1,5,0,0)^T$$
 P

基(本)可行解 $x: Ax=b, x \ge 0 (x_B \ge 0, x_N=0)$

LP基本性质

可行域存在时,必是凸多面体; 最优解存在时,必在可行域的顶点取得; 基本可行解对应于可行域的顶点。

基本解数量不超过

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

最优解只需在有限个可行解(基本可行解)中寻找

LP的通常解法是单纯形法(G. B. Dantzig, 1947)

单纯形法的基本思路

用迭代法从一个顶点(基可行解)转换到另一个顶点(称为一次旋转),每一步转换只将一个非基变量(指一个分量)变为基变量,称为进基,同时将一个基变量变为非基变量,称为出基,进基和出基的确定需要使目标函数下降(至少不增加)。

- 选取初始基可行解(顶点);
- 判断当前解是否最优;
- 选择进基和出基变量;
- 防止迭代过程出现循环。

$$\min z = -3x_1 - x_2$$

$$s.t.\begin{cases} -x_1 + x_2 + x_3 & = 2\\ x_1 - 2x_2 + x_4 & = 2\\ 3x_1 + 2x_2 + x_5 & = 14 \end{cases}$$

$$x_j \ge 0; j = 1, 2, 3, 4, 5$$

第1步:找到一个基本可行解(顶点)

令 x_3, x_4, x_5 为基变量,得到一个基本可行解 $x^1 = (0, 0, 2, 2, 14)^T$

第2步: 判断当前的基本可行解是不是最优解

用当前的非基变量表示目标函数,得到 $z=-3x_1-x_2=0$,

当 x_1 从0开始增大时,目标值下降,所以希望 x_1 增大

$$\min z = -3x_1 - x_2
s.t. \begin{cases}
-x_1 + x_2 + x_3 & = 2 \\
x_1 - 2x_2 + x_4 & = 2 \\
3x_1 + 2x_2 + x_5 & = 14
\end{cases}$$

$$x_j \ge 0; j = 1, 2, 3, 4, 5$$

第 2 步: 让 x_1 增大, $x_2 = 0$ 不变;为了满足约束, x_3, x_4, x_5 将发生变化

第1个方程 x_1 增大时, x_3 也增大;

第 2 个方程 x_1 增大时, x_4 减小; 当 x_1 增大到 2 时, $x_3 = 0$

第 3 个方程 x_1 增大时, x_5 减小;当 x_1 增大到 14/3 时, $x_5=0$

$$\min z = -3x_1 - x_2$$

$$s.t.\begin{cases} -x_1 + x_2 + x_3 & = 2\\ x_1 - 2x_2 + x_4 & = 2\\ 3x_1 + 2x_2 + x_5 & = 14 \end{cases}$$

$$x_i \ge 0; j = 1, 2, 3, 4, 5$$

第 3 步: 确定使得目标值下降的新的基变量 x_1, x_3, x_5 , $(x_1 = 2)$

第 4 步: 确定新的基变量 x_1, x_3, x_5 对应的基本可行解(消去第 1,3 个方程及目标的 x_1)

$$\min z = -7x_2 + 3x_4 - 6$$

$$\begin{cases} 0 & - & x_2 & + & x_3 & + & x_4 & = & 4 \\ x_1 & - & 2x_2 & & + & x_4 & = & 2 \\ 0 & + & 8x_2 & & - & 3x_4 & + & x_5 & = & 8 \end{cases}$$

$$\min z = -7x_2 + 3x_4 - 6$$

$$\begin{cases}
0 - x_2 + x_3 + x_4 & = 4 \\
x_1 - 2x_2 + x_4 & = 2 \\
0 + 8x_2 - 3x_4 + x_5 & = 8
\end{cases}$$

重复刚才的过程

第 1 步: 确定基变量 x_1, x_3, x_5 对应的基本可行解 $x^2 = (2, 0, 4, 0, 8)^T$

第2步: 判断当前的基本可行解是不是最优解

用当前的非基变量表示目标函数, $z = -7x_2 + 3x_4 - 6 = 0$,

当x,从0开始增大时,目标值下降,所以希望x,增大

$$\min z = -7x_2 + 3x_4 - 6$$

$$\begin{cases} 0 - x_2 + x_3 + x_4 & = 4 \\ x_1 - 2x_2 + x_4 & = 2 \\ 0 + x_2 - \frac{3}{8}x_4 + \frac{1}{8}x_5 = 1 \end{cases}$$

$$\min z = -7x_2 + 3x_4 - 6$$

$$\begin{cases} 0 & - & x_2 & + & x_3 & + & x_4 & = & 4 \\ x_1 & - & 2x_2 & & + & x_4 & = & 2 \\ 0 & + & x_2 & & - & \frac{3}{8}x_4 & + & \frac{1}{8}x_5 & = & 1 \end{cases}$$

第 2 步: 让 x_2 增大, $x_4 = 0$ 不变; 为了满足约束, x_1, x_3, x_5 将发生变化

第1个方程 x_2 增大时, x_3 也增大; 第2个方程 x_2 增大时, x_1 也增大;

第3个方程 x_2 增大时, x_5 减小;当 x_2 增大到1时, $x_5=0$

$$\min z = \frac{3}{8}x_4 + \frac{7}{8}x_5 - 13$$

$$\begin{cases} 0 & + x_3 + \frac{5}{8}x_4 & \frac{1}{8}x_5 = 5 \\ x_1 & + \frac{1}{4}x_4 & \frac{1}{4}x_5 = 4 \\ 0 & + x_2 & - \frac{3}{8}x_4 + \frac{1}{8}x_5 = 1 \end{cases}$$

$$\min z = -3x_1 - x_2
\begin{cases}
-x_1 + x_2 + x_3 & = 2 \\
x_1 - 2x_2 + x_4 & = 2 \\
3x_1 + 2x_2 + x_5 & = 14
\end{cases}$$

$$x_j \ge 0; j = 1, 2, 3, 4, 5$$

$$\min z = \frac{3}{8} x_4 + \frac{7}{8} x_5 - 13$$

$$\begin{cases}
0 + x_3 + \frac{5}{8} x_4 & \frac{1}{8} x_5 = 5 \\
x_1 + \frac{1}{4} x_4 & \frac{1}{4} x_5 = 4 \\
0 + x_2 - \frac{3}{8} x_4 + \frac{1}{8} x_5 = 1
\end{cases}$$

单纯形算法的矩阵表示

min
$$z = C^T X$$

s.t. $AX = b$
 $X \ge 0$

$$\begin{array}{c|c} \mathbf{Z} & \mathbf{-C^T} & \mathbf{0} \\ & \mathbf{A} & \mathbf{b} \end{array}$$

min
$$z = C_B^T X_B + C_N^T X_N$$

s.t. $BX_B + NX_N = b$
 $X_B, X_N \ge 0$

$$\begin{bmatrix} \mathbf{Z} & \mathbf{-C_N}^T & \mathbf{0} \\ \mathbf{B} & \mathbf{N} & \mathbf{b} \end{bmatrix}$$

min
$$z = C_B^T X_B + C_N^T X_N$$

s.t. $X_B = B^{-1}b - B^{-1}NX_N$
 $X_B, X_N \ge 0$

$$\min z = -3x_1 - x_2$$

$$x_j \ge 0; j = 1, 2, 3, 4, 5$$

$$\min z = \frac{3}{8}x_4 + \frac{7}{8}x_5 - 13$$

$$\begin{cases} 0 & + x_3 + \frac{5}{8}x_4 & \frac{1}{8}x_5 = 5 \\ x_1 & + \frac{1}{4}x_4 & \frac{1}{4}x_5 = 4 \\ 0 & + x_2 & - \frac{3}{8}x_4 + \frac{1}{8}x_5 = 1 \end{cases}$$

标准单纯形表, 检验数

min
$$z = C_B^T B^{-1} b - (C_B^T B^{-1} N - C_N^T) X_N$$

s.t. $X_B = B^{-1} b - B^{-1} N X_N$
 $X_B, X_N \ge 0$

Z	0^{T}	$C_B^T B^{-1} N - C_N^T$	$\mathbf{C_B}^{T}\mathbf{B}^{-1}\mathbf{b}$
$ m X_B$	I	$B^{-1}N$	B ⁻¹ b

线性规划的敏感性分析

(当C, b有小的扰动时, 对解的影响)

	X_B	X_N	RHS
Z	$-\mathbf{C_B}^{\mathrm{T}}$	$-\mathbf{C_N}^{\mathrm{T}}$	0
X B	I	B ⁻¹ N	B ⁻¹ b

Z	0^{T}	$\mathbf{C_B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} - \mathbf{C_N}^{\mathrm{T}}$	$\mathbf{C_B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
X_{B}	I	B ⁻¹ N	B ⁻¹ b

线性规划的敏感性分析

已知某线性规划问题,其初始及最优单纯形表如图一、图二

- (1) 求出对偶问题的最优解
- (2) 使最优解不变,c₁的变化范围
- (3) 如果b₁由12变为16,求最优解

x_1	\boldsymbol{x}_2	\boldsymbol{x}_3	x_4	X_5	
1	2	0	0	0	0
2	2	1	0	0	12
3	0	0	1	0	9
0	2	0	0	1	8

x_1	\boldsymbol{x}_2	x_3	x_4	\mathbf{x}_{5}	
0	0	-1/2	0	-1/2	-10
1	0	1/2	0	-1/2	2
0	0	-3/2	1	3/2	3
0	1	0	0	1/2	4

图一

图二

对偶问题

对偶是什么:对同一事物(或问题),从不同的角度(或立场)提出对立的两种不同的表述。

这种表述有利于加深对事物的认识和理解

例如

在平面内,矩形的面积与其周长之间的关系,有两种不同的表述方法。

- (1) 周长一定, 面积最大的矩形是正方形。
- (2) 面积一定, 周长最短的矩形是正方形。

线性规划的对偶举例

- 某工厂在计划期内要安排生产 | 、 || 两种产品, 已知生产单位产品所需的设备台时及A、B两种原 材料的消耗。
- 一件产品 | 获利2元, 一件产品 || 获利3元

资源产品	I	II	拥有量
设备	1	2	8台时
原材料 A	4	0	16 kg
原材料 B	0	4	12 kg

线性规划的对偶问题

对偶

 $\max \boldsymbol{b}^T \boldsymbol{y}$

原(始)

问题

问题

s.t. $A^T y \leq c$

 $\min z = c^T x$ $s.t. Ax = b, x \ge 0$

(P)

(D) S

定理:原问题和对偶问题互为对偶问题,即:

对偶问题的对偶问题就是原问题。

对偶定理:如果x是原问题的可行解(原可行解),

- y 是对偶问题的可行解(对偶可行解),则 $b^T y \le c^T x$
 - 若x和 y还满足 $b^Ty=c^Tx$,则分别是(P)和(D)的最优解
 - 若原问题 (P) 无下界,则对偶问题 (D) 不可行
 - 若对偶问题(D) 无上界,则原问题(P) 不可行

对偶问题的经济学解释: 影子价格

1、定 义 影子价格是最优配置下资源的理想价格

2. 含义 由于
$$f^* = c^T x^* = b^T y^* = y_1^* b_1 + y_2^* b_2 + \dots + y_m^* b_m$$

考虑在最优解处,右端项b;的微小变动对目标函数值的影响.

假设
$$b_1, b_2, \dots, b_m$$
是变化的,则 $\frac{\partial f^*}{\partial b_1} = y_1^*, \frac{\partial f^*}{\partial b_2} = y_2^*, \dots, \frac{\partial f^*}{\partial b_m} = y_m^*$

 y_i 可以理解成当资源 b_i 变化1单位时, 极小化(L)问题的目标函数值的变化量

影子价格

Z	0^{T}	$\mathbf{C_B}^{\mathrm{T}} \mathbf{B}^{\mathrm{-1}} \mathbf{N} \mathbf{-} \mathbf{C_N}^{\mathrm{T}}$	$\mathbf{C_B}^{\mathrm{T}} \mathbf{B}^{\mathrm{-1}} \mathbf{b}$
X_{B}	I	$B^{-1}N$	B ⁻¹ b

$$f^* = c^T x^* = b^T y^* = y_1^* b_1 + y_2^* b_2 + \dots + y_m^* b_m$$

 $B^{-1}b>0$,对充分小的需求增量 Δb , $B^{-1}(b+\Delta b)>0$ 仍为最优解,此时相应的最优费用变化为 $C_B{}^TB^{-1}\Delta b$ 对偶变量 $y^*=\left(C_B{}^TB^{-1}\right)^T$ 被称为边际价格或影子价格 $y^*{}_i$ 可以看成最优解时,为了第i种需求提供一个单位需求的边际费用,即当 达到最优时,为了满足附加的需求,必须向顾客索取的最小单位价格。

LP其他算法

内点算法(Interior point method)

- 1980年代人们提出的一类新的算法—内点算法
- 也是迭代法,但不再从可行域的一个顶点转换到另一个顶点,而是直接从可行域的内部逼近最优解。

MATLAB 求解 LP

$$\min z = c^T x$$

$$s.t.$$
 $A_1x \le b_1, A_2x = b_2, v_1 \le x \le v_2$

[x,fval,exitflag,output,lambda] =
linprog(c,A1,b1,A2,b2,v1,v2,x0,opt)

输入:

x0~初始解(缺省时为0)

opt ~ MATLAB控制参数

中间所缺参数项补[]

Exp07.m

输出:

lambda ~ Lagrange乘子,维数等于约束个数,非零分量对应于起作用约束

- lambda.ineqlin: 对应 $A_1x \leq b_1$
- lambda. eqlin: 对应 $A_2x = b_2$
- lambda. lower: 対应 $v_1 \leq x$
- lambda. upper: 对应 $x \le v_2$

z = -c * x

```
% 线性规划例1
\% \text{ max} \quad z=3*x1+x2
% s. t. -x1+x2 \langle =2 \langle == x1-x2 \rangle =-2
  x1-2*x2 <=2
\% 3*x1+2*x2 <=14
       x1, x2 = 0
c=-[3, 1]; A=[-1, 1; 1, -2; 3, 2]; b=[2, 2, 14];
v1=\begin{bmatrix}0 & 0\end{bmatrix};
[x, f, exitflag, output, lag]=linprog(c, A, b, [], [], v1)
zz=-f
```


$$\min z = c^T x$$

exitflag

$$s.t.$$
 $A_1x \le b_1, A_2x = b_2, v_1 \le x \le v_2$

1	Function converged to a solution x.
0	Number of iterations exceeded options. MaxIterations.
-2	No feasible point was found.
-3	Problem is unbounded.
-4	NaN value was encountered during execution of the algorithm.
-5	Both primal and dual problems are infeasible.
-7	Search direction became too small. No further progress could be made.

lambda—Lagrange乘子

lower	Lower bounds corresponding to <u>lb</u>
upper	Upper bounds corresponding to <u>ub</u>
ineqlin	Linear inequalities corresponding to A and b
eqlin	Linear equalities corresponding to Aeq and beq

实例1: 食谱问题

min
$$z = c^T x$$
 $x = (x_1, x_2, x_3, x_4, x_5)^T$ $x = (10, 15, 5, 60, 8)^T$ $x = (50, 4000, 1000)^T$ $x = (0.3 \ 1.2 \ 0.7 \ 3.5 \ 5.5)$ $x = (6.3 \ 1.2 \ 0.7 \ 3.5 \ 5.5)$ $x = (6.3 \ 1.2 \ 0.7 \ 3.5 \ 5.5)$ $y = (6.3 \ 1.2 \ 0.7 \ 3.5 \ 5.5)$ $y = (6.3 \ 1.2 \ 0.7 \ 3.5 \ 5.5)$

x=(0, 0, 49.3827, 0, 2.8058), 最优值z0 =269.36: 每天吃49.3827个胡萝卜和2.8058个鸡蛋,成本269.36美分

- 维生素A的需求增加1单位,是否改变食谱?成本增加多少? lag.ineqlin =(0.4714;0; 0.2458) 不改变;不增加
- 胡萝卜价格增1美分,是否改变食谱? 成本增加多少? 用MATLAB重新求解 不改变; 成本增加49.38

$$Max z = 12x_1 + 8x_2 + 22x_3 + 16x_4 - 1.5x_5 - 1.5x_6$$

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

$$\Rightarrow$$
 $4x_1 + 3x_2$

$$+4x_5 + 3x_6 \le 600$$

$$4(x_1 + x_5) + 2(x_2 + x_6) + 2x_5 + 2x_6 \le 480 \Rightarrow 2x_1 + x_2$$

$$+3x_5 + 2x_6 \le 240$$

$$x_1 + x_5 \le 100$$

$$x_3 - 0.8x_5 = 0$$

$$x_4 - 0.75x_6 = 0$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$A1=[4\ 3\ 0\ 0\ 4\ 3;2\ 1\ 0\ 0\ 3\ 2;1\ 0\ 0\ 0\ 1\ 0];$$

$$A2=[0\ 0\ 1\ 0\ -0.8\ 0;0\ 0\ 0\ 1\ 0\ -0.75];$$

$$v1=[0\ 0\ 0\ 0\ 0\ 0];$$

[x,z0,ef,out,lag]=linprog(-c,A1,b1,A2,b2,v1)

$$x=(0,168,19.2,0,24,0)$$
; $z=-z0=1730.4$;

Exp07.m

lag.ineqlin =(1.58; 3.26; 0.00); ...

$$Max z = 12x_1 + 8x_2 + 22x_3 + 16x_4 - 1.5x_5 - 1.5x_6$$

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

$$\Rightarrow$$
 $4x_1 + 3x_2$

$$+4x_5 + 3x_6 \le 600$$

601

$$4(x_1 + x_5) + 2(x_2 + x_6) + 2x_5 + 2x_6 \le 480$$

$$x_1 + x_5 \le 100$$

$$x_3 = 0.8x_5$$

$$x_4 = 0.75x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$z1-z = 1731.98-1730.4=1.58$$

z1=lag.ineqlin(1)

x=(0,168,19.2,0,24,0); z = -z0 = 1730.4 lag.ineqlin =(1.58;3.26;0.00); ...

"影子价格"

•15元可增加1桶牛奶,应否投资?

应该投资!

$$Max z = 12x_1 + 8x_2 + 22x_3 + 16x_4 - 1.5x_5 - 1.5x_6$$

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

$$\Rightarrow$$
 $4x_1 + 3x_2$

$$+4x_5 + 3x_6 \le 600$$

$$4(x_1 + x_5) + 2(x_2 + x_6) + 2x_5 + 2x_6 \le 480 \implies 2x_1 + x_2$$

$$+3x_5 + 2x_6 \le 240$$

$$x_1 + x_5 \le 100$$

$$x_3 = 0.8x_5$$

$$x_4 = 0.75x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

$$x=(0,168,19.2,0,24,0)$$
; $z=-z0=1730.4$ lag.ineqlin = $(1.58;3.26;0.00)$; ...

lag.ineqlin(2)=3.26, 所以1小时劳动时间的影子价格应为3.26/2=1.63, 即单位劳动时间增加的利润是1.63(元)

• 聘用临时工人增加劳动时间,工资最多每小时几元?

$$Max z = 12x_1 + 8x_2 + 22x_3 + 16x_4 - 1.5x_5 - 1.5x_6$$

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

$$4(x_1 + x_5) + 2(x_2 + x_6) + 2x_5 + 2x_6 \le 480$$
$$x_1 + x_5 \le 100$$

$$x_3 = 0.8x_5$$

$$x_4 = 0.75x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

若每公斤B1的获利下降10%, 应将目标函数中x₃的系数改 为19.8,重新计算发现最优 解和最优值均发生了变化

若B2的获利向上波动10%,原计划也不再是最优的

x=(0,168,19.2,0,24,0); z=-z0=1730.4 lag.ineqlin =(1.58;3.26;0.00);

MATLAB没有给出这种 敏感性分析的结果

· B₁, B₂的获利经常有10%的波动,对计划有无影响?

布置实验内容

实验

目的

- •了解线性规划问题
- •理解单纯形算法的基本思想
- •掌握用MATLAB优化工具箱求解线性规划问题;
- 练习建立实际问题的线性规划模型。

实验

内容

课程作业

