Theorem: $A_n = (n > 0)[-\infty + n, \infty - n]$ or $\{x \in \mathbb{R} | -\infty + n \le x \le \infty - n\}$ has the properties $A_{n+1} \subset A_n$ for all n and their intersection is a single real number.

Proof:

Pick an arbitrary n. A_n will include ($-\infty + n + 1/2$) since:

$$(-\infty+n) \leq \bigl(-\infty+n+\frac{1}{2}\bigr) < \bigl(\infty-\bigl(n+\frac{1}{2}\bigr)\bigr) \leq \bigl(\infty-n\bigr)$$

Now the next interval in the family is is $(-\infty + (n+1), \infty - (n+1))$. Since $\neg((-\infty+n+1)<(-\infty+n+\frac{1}{2})<(\infty-(n+\frac{1}{2}))<(\infty-(n+1)))$ is true, then A_{n+1} will not contain the point $(-\infty+n+1/2)$.

Therefore a A_{n+1} is a subset of A_n .

Since the interval $A = [-\infty + \infty, \infty - \infty]$, which is the same as [0, 0], there is one real number (0) within the set since for $(0 \le x \le 0)$, the only number x can be is 0 (0 = x = 0). Since $A_{n+1} \subset A_n$ this means that every other interval will contain 0. Therefore the intersection for all intervals will be 0.

This proves the theorem.