Text as Data

Justin Grimmer

Professor Department of Political Science Stanford University

April 30th, 2019

Stylometry Who Wrote Disputed Federalist Papers?

Federalist papers → Mosteller and Wallace (1963)

- Persuade citizens of New York State to adopt constitution
- Canonical texts in study of American politics
- 77 essays
 - Published from 1787-1788 in Newspapers
 - And under the name Publius, anonymously

Who Wrote the Federalist papers?

- Jay wrote essays 2, 3, 4,5, and 64
- Hamilton: wrote 43 papers
- Madison: wrote 12 papers

Disputed: Hamilton or Madison?

- Essays: 49-58, 62, and 63
- Joint Essays: 18-20

Task: identify authors of the disputed papers.

Task: Classify papers as Hamilton or Madison using dictionary methods

Setting up the Analysis

Training → papers Hamilton, Madison are known to have authored Test → unlabeled papers Preprocessing:

- Hamilton/Madison both discuss similar issues
- Differ in extent they use stop words
- Focus analysis on the stop words

Setting up the Analysis

- $\mathbf{Y} = (Y_1, Y_2, ..., Y_N) = (Hamilton, Hamilton, Madison, ..., Hamilton)$ $N \times 1$ matrix with author labels
- Define the number of words in federalist paper i as num_i

$$\mathbf{X} = \begin{pmatrix} \frac{1}{\mathsf{num}_1} & \frac{2}{\mathsf{num}_1} & \frac{0}{\mathsf{num}_1} & \cdots & \frac{3}{\mathsf{num}_1} \\ \frac{0}{\mathsf{num}_2} & \frac{1}{\mathsf{num}_2} & \frac{0}{\mathsf{num}_2} & \cdots & \frac{0}{\mathsf{num}_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{0}{\mathsf{num}_N} & \frac{0}{\mathsf{num}_N} & \frac{1}{\mathsf{num}_N} & \cdots & \frac{0}{\mathsf{num}_N} \end{pmatrix}$$

 $N \times J$ counting stop word usage rate

-
$$\theta = (\theta_1, \theta_2, \dots, \theta_J)$$

Word weights.

Objective Function

Heuristically: find $\theta^* = (\theta_1^*, \theta_2^*, \dots, \theta_I^*)$ used to create score

$$p_i = \sum_{j=1}^J \theta_j^* X_{ij}$$

that maximally discriminates between categories

Objective Function

Define:

$$oldsymbol{\mu}_{\mathsf{Madison}} = rac{1}{N_{\mathsf{Madison}}} \sum_{i=1}^{N} I(Y_i = \mathsf{Madison}) oldsymbol{X}_i$$
 $oldsymbol{\iota}_{\mathsf{Hamilton}} = rac{1}{N_{\mathsf{Hamilton}}} \sum_{i=1}^{N} I(Y_i = \mathsf{Hamilton}) oldsymbol{\chi}_i$

Objective Function

We can then define functions that describe the "projected" mean and variance for each author

$$g(\theta, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Madison}) = \frac{1}{N_{\mathsf{Madison}}} \sum_{i=1}^{N} I(Y_i = \mathsf{Madison}) \boldsymbol{\theta}' \boldsymbol{X}_i = \boldsymbol{\theta}' \boldsymbol{\mu}_{\mathsf{Madison}}$$

$$g(\theta, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Hamilton}) = \frac{1}{N_{\mathsf{Hamilton}}} \sum_{i=1}^{N} I(Y_i = \mathsf{Hamilton}) \boldsymbol{\theta}' \boldsymbol{X}_i = \boldsymbol{\theta}' \boldsymbol{\mu}_{\mathsf{Hamilton}}$$

$$s(\theta, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Madison}) = \sum_{i=1}^{N} I(Y_i = \mathsf{Madison}) (\boldsymbol{\theta}' \boldsymbol{X}_i - \boldsymbol{\theta}' \boldsymbol{\mu}_{\mathsf{Madison}})^2$$

$$s(\theta, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Hamilton}) = \sum_{i=1}^{N} I(Y_i = \mathsf{Hamilton}) (\boldsymbol{\theta}' \boldsymbol{X}_i - \boldsymbol{\theta}' \boldsymbol{\mu}_{\mathsf{Hamilton}})^2$$

Objective Function --> Optimization

$$\begin{split} f(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y}) &= \frac{\left(g(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Hamilton}) - g(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Madison})\right)^2}{s(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Hamilton}) + s(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y}, \mathsf{Madison})} \\ &= \frac{\left(\boldsymbol{\theta}'(\boldsymbol{\mu}_{\mathsf{Hamilton}} - \boldsymbol{\mu}_{\mathsf{Madison}})\right)^2}{\mathsf{Scatter}_{\mathsf{Hamilton}} + \mathsf{Scatter}_{\mathsf{Madison}}} \end{split}$$

Optimization \rightsquigarrow find $\boldsymbol{\theta}^*$ to maximize $f(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{Y})$, assuming independence across dimensions.

(Fisher's) Linear Discriminant Analysis

Optimization >>> Word Weights

For each word j, construct weight θ_j^* ,

$$\begin{array}{ll} \mu_{j,\mathsf{Hamilton}} & = & \frac{\sum_{i=1}^{N} I(Y_i = \mathsf{Hamilton}) X_{ij}}{\sum_{j=1}^{J} \sum_{i=1}^{N} I(Y_i = \mathsf{Hamilton}) X_{ij}} \\ \mu_{j,\mathsf{Madison}} & = & \frac{\sum_{i=1}^{N} I(Y_i = \mathsf{Madison}) X_{ij}}{\sum_{j=1}^{J} \sum_{i=1}^{N} I(Y_i = \mathsf{Madison}) X_{ij}} \\ \sigma_{j,\mathsf{Hamilton}}^2 & = & \mathsf{Var}(X_{i,j} | \mathsf{Hamilton}) \\ \sigma_{j,\mathsf{Madison}}^2 & = & \mathsf{Var}(X_{i,j} | \mathsf{Madison}) \end{array}$$

We can then generate weight θ_i^* as

$$\theta_{j}^{*} = \frac{\mu_{j, \text{Hamilton}} - \mu_{j, \text{Madison}}}{\sigma_{j, \text{Hamilton}}^{2} + \sigma_{j, \text{Madison}}^{2}}$$

Optimization >>> Trimming the Dictionary

- Trimming weights: Focus on discriminating words (very simple regularization)
- Cut off: For all $|\theta_i^*| < 0.025$ set $\theta_i^* = 0$.

Classification → Determining Authorship

For each disputed document i, compute discrimination statistic

$$p_i = \sum_{j=1}^J \theta_j^* X_{ij}$$

 $p_i \rightsquigarrow \text{classification (linear discriminator)}$

- Above midpoint in training set \rightarrow Hamilton text
- Below midpoint in training set \rightarrow Madison text

Findings: Madison is the author of the disputed federalist papers.

Inferring Separating Words Classification → Custom Dictionaries

Classification → Custom Dictionaries

- Stylometry → Classify Authors

- Stylometry → Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant

- Stylometry → Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting

- Stylometry → Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group

- Stylometry → Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words

- Stylometry \leadsto Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words
 - Difference in Liberal, Conservative language → Ideological Language

- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words
 - Difference in Liberal, Conservative language \rightsquigarrow Ideological Language
 - Difference in Secret/Not Secret Language

 Secretive Language (Gill and Spirling 2014)

- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words
 - Difference in Liberal, Conservative language \rightsquigarrow Ideological Language
 - Difference in Secret/Not Secret Language

 Secretive Language (Gill and Spirling 2014)
 - Difference in Toy advertising

- Stylometry → Classify Authors
- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words
 - Difference in Liberal, Conservative language \rightsquigarrow Ideological Language
 - Difference in Secret/Not Secret Language

 Secretive Language (Gill and Spirling 2014)
 - Difference in Toy advertising
 - Difference in Language across groups → Labeling output from Clustering/Topic Models

Classification → Custom Dictionaries

- Dictionary based classification → Gentzkow and Shapiro (2010) and measures of media slant
- Dictionary based classification → Customized to particular setting Fictitious Prediction Problem → Infer words that are indicative of some class/group
 - Difference in Republican, Democratic language → Partisan words
 - Difference in Liberal, Conservative language \rightsquigarrow Ideological Language
 - Difference in Secret/Not Secret Language

 Secretive Language (Gill and Spirling 2014)
 - Difference in Toy advertising
 - Difference in Language across groups → Labeling output from Clustering/Topic Models

Vague and Difficult to derive before hand

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?
 - Yes: press releases have different purposes, targets, and need not relate to official business

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?
 - Yes: press releases have different purposes, targets, and need not relate to official business
 - No: press releases are just reactive to floor activity, will follow floor statements

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?
 - Yes: press releases have different purposes, targets, and need not relate to official business
 - No: press releases are just reactive to floor activity, will follow floor statements
- Deeper question: what does it mean for two text collections to be different?

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?
 - Yes: press releases have different purposes, targets, and need not relate to official business
 - No: press releases are just reactive to floor activity, will follow floor statements
- Deeper question: what does it mean for two text collections to be different?
- One Answer: texts used for different purposes

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000 during same time)?
 - Yes: press releases have different purposes, targets, and need not relate to official business
 - No: press releases are just reactive to floor activity, will follow floor statements
- Deeper question: what does it mean for two text collections to be different?
- One Answer: texts used for different purposes
- Partial answer: identify words that distinguish press releases and floor speeches

Mutual Information

Mutual Information

- Unconditional uncertainty (entropy):

Mutual Information

- Unconditional uncertainty (entropy):
 - Randomly sample a press release

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_j

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_j
 - Randomly sample a press release

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_j
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty
 - Unrelated: Conditional uncertainty = uncertainty

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty
 - Unrelated: Conditional uncertainty = uncertainty
 - Perfect predictor: Conditional uncertainty = 0

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty
 - Unrelated: Conditional uncertainty = uncertainty
 - Perfect predictor: Conditional uncertainty = 0
- Mutual information(X_j): uncertainty conditional uncertainty (X_j)

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty
 - Unrelated: Conditional uncertainty = uncertainty
 - Perfect predictor: Conditional uncertainty = 0
- Mutual information(X_j): uncertainty conditional uncertainty (X_j)
 - Maximum: Uncertainty $o X_j$ is perfect predictor

- Unconditional uncertainty (entropy):
 - Randomly sample a press release
 - Guess press release/floor statement
 - Uncertainty about guess
 - Maximum: No. press releases = No. floor statements
 - Minimum : All documents in one category
- Conditional uncertainty (X_j) (conditional entropy)
 - Condition on presence of word X_i
 - Randomly sample a press release
 - Guess press release/floor statement
 - Word presence reduces uncertainty
 - Unrelated: Conditional uncertainty = uncertainty
 - Perfect predictor: Conditional uncertainty = 0
- Mutual information(X_j): uncertainty conditional uncertainty (X_j)
 - Maximum: Uncertainty $\rightarrow X_i$ is perfect predictor
 - Minimum: $0 \rightarrow X_i$ fails to separate speeches and floor statements

- $Pr(Press) \equiv Probability$ selected document press release

- Pr(Press) ≡ Probability selected document press release
- $Pr(Speech) \equiv Probability$ selected document speech

- Pr(Press) ≡ Probability selected document press release
- Pr(Speech) ≡ Probability selected document speech
- Define entropy H(Doc)

- $Pr(Press) \equiv Probability$ selected document press release
- Pr(Speech) ≡ Probability selected document speech
- Define entropy H(Doc)

$$H(\mathsf{Doc}) = -\sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t) \log_2 \mathsf{Pr}(t)$$

- $Pr(Press) \equiv Probability$ selected document press release
- Pr(Speech) ≡ Probability selected document speech
- Define entropy H(Doc)

$$H(\mathsf{Doc}) = -\sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t) \log_2 \mathsf{Pr}(t)$$

- log₂? Encodes bits

- $Pr(Press) \equiv Probability$ selected document press release
- Pr(Speech) ≡ Probability selected document speech
- Define entropy H(Doc)

$$H(\mathsf{Doc}) = -\sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t) \log_2 \mathsf{Pr}(t)$$

- log₂? Encodes bits
- Maximum: Pr(Press) = Pr(Speech) = 0.5

- $Pr(Press) \equiv Probability$ selected document press release
- Pr(Speech) ≡ Probability selected document speech
- Define entropy H(Doc)

$$H(\mathsf{Doc}) = -\sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t) \log_2 \mathsf{Pr}(t)$$

- log₂? Encodes bits
- Maximum: Pr(Press) = Pr(Speech) = 0.5
- Minimum: $Pr(Press) \rightarrow 0 \text{ (or } Pr(Press) \rightarrow 1)$

- Consider presence/absence of word X_j

- Consider presence/absence of word X_j
- Define conditional entropy $H(Doc|X_j)$

- Consider presence/absence of word X_j
- Define conditional entropy $H(Doc|X_j)$

$$H(\mathsf{Doc}|X_j) = -\sum_{s=0}^{1} \sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t,X_j=s) \log_2 \mathsf{Pr}(t|X_j=s)$$

- Consider presence/absence of word X_j
- Define conditional entropy $H(Doc|X_j)$

$$H(\mathsf{Doc}|X_j) = -\sum_{s=0}^{1} \sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t,X_j = s) \log_2 \mathsf{Pr}(t|X_j = s)$$

- Maximum: X_j unrelated to Press Releases/Floor Speeches

- Consider presence/absence of word X_j
- Define conditional entropy $H(Doc|X_j)$

$$H(\mathsf{Doc}|X_j) = -\sum_{s=0}^{1} \sum_{t \in \{\mathsf{Pre},\mathsf{Spe}\}} \mathsf{Pr}(t,X_j=s) \log_2 \mathsf{Pr}(t|X_j=s)$$

- Maximum: X_j unrelated to Press Releases/Floor Speeches
- Minimum: X_j is a perfect predictor of press release/floor speech

- Define Mutual Information (X_j) as

- Define Mutual Information (X_j) as

Mutual Information
$$(X_j) = H(Doc) - H(Doc|X_j)$$

- Define Mutual Information (X_j) as

Mutual Information
$$(X_j) = H(Doc) - H(Doc|X_j)$$

- Maximum: entropy $\Rightarrow H(\mathsf{Doc}|X_j) = 0$

- Define Mutual Information (X_j) as

Mutual Information
$$(X_j) = H(Doc) - H(Doc|X_j)$$

- Maximum: entropy $\Rightarrow H(\mathsf{Doc}|X_j) = 0$
- Minimum: $0 \Rightarrow H(Doc|X_j) = H(Doc)$.

- Define Mutual Information (X_j) as

Mutual Information
$$(X_j) = H(Doc) - H(Doc|X_j)$$

- Maximum: entropy $\Rightarrow H(\mathsf{Doc}|X_j) = 0$
- Minimum: $0 \Rightarrow H(Doc|X_j) = H(Doc)$.

Bigger mutual information \Rightarrow better discrimination

- Define Mutual Information (X_j) as

Mutual Information
$$(X_j) = H(Doc) - H(Doc|X_j)$$

- Maximum: entropy $\Rightarrow H(\mathsf{Doc}|X_j) = 0$
- Minimum: $0 \Rightarrow H(Doc|X_j) = H(Doc)$.

Bigger mutual information \Rightarrow better discrimination

Objective function and optimization \leadsto estimate probabilities that we then place in mutual information

Formula for mutual information (based on ML estimates of probabilities)

```
n_p = Number Press Releases
  n_s = Number of Speeches
   D = n_p + n_s
  n_j = \sum_{i=1}^D X_{i,j} (No. docs X_j appears)
 n_{-i} = No. docs X_i does not appear
 n_{i,p} = No. press and X_i
 n_{i,s} = No. speech and X_i
n_{-i,p} = No. press and not X_i
n_{-i,s} = No. speech and not X_i
```

A Method for Identifying Distinguishing Words

Formula for Mutual Information

$$MI(X_{j}) = \frac{n_{j,p}}{D} \log_{2} \frac{n_{j,p}D}{n_{j}n_{p}} + \frac{n_{j,s}}{D} \log_{2} \frac{n_{j,s}D}{n_{j}n_{s}} + \frac{n_{-j,p}}{D} \log_{2} \frac{n_{-j,p}D}{n_{-j}n_{p}} + \frac{n_{-j,s}}{D} \log_{2} \frac{n_{-j,s}D}{n_{-j}n_{s}}.$$

What's Different?

- Press Releases: Credit Claiming

- Press Releases: Credit Claiming
- Floor Speeches: Procedural Words

What's Different?

- Press Releases: Credit Claiming

- Floor Speeches: Procedural Words

- Validate: Manual Classification

- Press Releases: Credit Claiming
- Floor Speeches: Procedural Words
- Validate: Manual Classification
- Sample 500 Press Releases, 500 Floor Speeches

- Press Releases: Credit Claiming
- Floor Speeches: Procedural Words
- Validate: Manual Classification
- Sample 500 Press Releases, 500 Floor Speeches
- Credit Claiming: 36% Press Releases, 4% Floor Speeches

- Press Releases: Credit Claiming
- Floor Speeches: Procedural Words
- Validate: Manual Classification
- Sample 500 Press Releases, 500 Floor Speeches
- Credit Claiming: 36% Press Releases, 4% Floor Speeches
- Procedural: 0% Press Releases, 44% Floor Speeches

Monroe, Colaresi, and Quinn (2009) → what makes a word partisan?

Monroe, Colaresi, and Quinn (2009) → what makes a word partisan? Argue for using Log Odds Ratio, weighted by variance

$$P(E) = 1 - P(E^c)$$

$$P(E) = 1 - P(E^{c})$$

$$Odds(E) = \frac{P(E)}{1 - P(E)}$$

$$P(E) = 1 - P(E^{c})$$

$$Odds(E) = \frac{P(E)}{1 - P(E)}$$

$$Odds Ratio(E, F) = \frac{\frac{P(E)}{(1 - P(E))}}{\frac{P(F)}{1 - P(F)}}$$

$$P(E) = 1 - P(E^{c})$$

$$Odds(E) = \frac{P(E)}{1 - P(E)}$$

$$Odds \ Ratio(E, F) = \frac{\frac{P(E)}{(1 - P(E))}}{\frac{P(F)}{1 - P(F)}}$$

$$Log \ Odds \ Ratio(E, F) = \log\left(\frac{P(E)}{1 - P(E)}\right) - \log\left(\frac{P(F)}{1 - P(F)}\right)$$

Monroe, Colaresi, and Quinn (2009) \rightsquigarrow what makes a word partisan? Argue for using Log Odds Ratio, weighted by variance Recall: For some event E and F

$$P(E) = 1 - P(E^{c})$$

$$Odds(E) = \frac{P(E)}{1 - P(E)}$$

$$Odds \ Ratio(E, F) = \frac{\frac{P(E)}{(1 - P(E))}}{\frac{P(F)}{1 - P(F)}}$$

$$Log \ Odds \ Ratio(E, F) = \log\left(\frac{P(E)}{1 - P(E)}\right) - \log\left(\frac{P(F)}{1 - P(F)}\right)$$

Strategy Construct objective function on *proportions* (and then calculate log-odds)

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (P

Monroe, Colaresi, and Quinn (2009) \rightsquigarrow what makes a word partisan? Argue for using Log Odds Ratio, weighted by variance Recall: For some event E and F

$$P(E) = 1 - P(E^{c})$$

$$Odds(E) = \frac{P(E)}{1 - P(E)}$$

$$Odds \ Ratio(E, F) = \frac{\frac{P(E)}{(1 - P(E))}}{\frac{P(F)}{1 - P(F)}}$$

$$Log \ Odds \ Ratio(E, F) = \log\left(\frac{P(E)}{1 - P(E)}\right) - \log\left(\frac{P(F)}{1 - P(F)}\right)$$

Strategy Construct objective function on *proportions* (and then calculate log-odds)

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (P

Suppose we're interested in how a word separates partisan speech.

 $\mathbf{Y} = (Republican, Republican, Democrat, \dots, Republican)$

X =Unnormalized matrix of word counts $N \times J$ Define

$$\mathbf{x}_{\mathsf{Republican}} = (\sum_{i=1}^{N} I(Y_i = \mathsf{Republican}) X_{i1}, \sum_{i=1}^{N} I(Y_i = \mathsf{Republican}) X_{i2}, \dots, \sum_{i=1}^{N} I(Y_i = \mathsf{Republican}) X_{iJ})$$

with $N_{Republican} = Total$ number of Republican words

 $\pi_{\mathsf{Republican}} \ \sim \ \mathsf{Dirichlet}(lpha)$

```
m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha}) \ m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})
```

```
m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha}) \ m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})
```

This implies an objective function on π ,

$$m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha})$$
 $m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})$

This implies an objective function on π ,

$$p(\pi|lpha,oldsymbol{X},oldsymbol{Y}) \;\; \propto \;\; p(\pi|lpha)p(oldsymbol{x}_{\mathsf{Republican}}|\pilpha,oldsymbol{Y})$$

$$m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha})$$
 $m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})$

This implies an objective function on π ,

$$egin{array}{ll} p(m{\pi}|m{lpha},m{X},m{Y}) & \propto & p(m{\pi}|m{lpha})p(m{x}_{\mathsf{Republican}}|m{\pi}m{lpha},m{Y}) \ & \propto & rac{\Gamma(\sum_{j=1}^Jlpha_j)}{\prod_j\Gamma(lpha_j)}\prod_{j=1}^J\pi_j^{lpha_j-1}\pi_j^{\mathsf{x}_{\mathsf{Republican},j}} \end{array}$$

$$m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha})$$
 $m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})$

This implies an objective function on π ,

$$egin{array}{ll} p(m{\pi}|m{lpha},m{X},m{Y}) & \propto & p(m{\pi}|m{lpha})p(m{x}_{\mathsf{Republican}}|m{\pi}m{lpha},m{Y}) \ & \propto & rac{\Gamma(\sum_{j=1}^Jlpha_j)}{\prod_j\Gamma(lpha_j)}\prod_{j=1}^J\pi_j^{lpha_j-1}\pi_j^{\mathsf{x}_{\mathsf{Republican},j}} \end{array}$$

 $p(\boldsymbol{\pi}|\boldsymbol{\alpha},\boldsymbol{X},\boldsymbol{Y})$ is a Dirichlet distribution:

$$m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha}) \ m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})$$

This implies an objective function on π ,

$$egin{array}{ll}
ho(m{\pi}|m{lpha},m{X},m{Y}) & \propto &
ho(m{\pi}|m{lpha})
ho(m{x}_{\mathsf{Republican}}|m{\pi}m{lpha},m{Y}) \ & \propto & rac{\Gamma(\sum_{j=1}^Jlpha_j)}{\prod_j\Gamma(lpha_j)}\prod_{j=1}^J\pi_j^{lpha_j-1}\pi_j^{\mathsf{x}_{\mathsf{Republican},j}} \end{array}$$

 $p(\boldsymbol{\pi}|\boldsymbol{\alpha},\boldsymbol{X},\boldsymbol{Y})$ is a Dirichlet distribution:

$$\pi_{\mathsf{Republican},j}^* \ = \ \frac{\mathit{x}_{\mathsf{Republican},j} + \alpha_j}{\mathit{N}_{\mathsf{Republican}} + \sum_{j=1}^J \alpha_j}$$

$$m{\pi}_{\mathsf{Republican}} \sim \mathsf{Dirichlet}(m{lpha})$$
 $m{x}_{\mathsf{Republican}} | m{\pi}_{\mathsf{Republican}} \sim \mathsf{Multinomial}(m{N}_{\mathsf{Republican}}, m{\pi}_{\mathsf{Republican}})$

This implies an objective function on π ,

$$egin{array}{ll} p(m{\pi}|m{lpha},m{X},m{Y}) & \propto & p(m{\pi}|m{lpha})p(m{x}_{\mathsf{Republican}}|m{\pi}m{lpha},m{Y}) \ & \propto & rac{\Gamma(\sum_{j=1}^Jlpha_j)}{\prod_j\Gamma(lpha_j)}\prod_{j=1}^J\pi_j^{lpha_j-1}\pi_j^{\mathsf{x}_{\mathsf{Republican},j}} \end{array}$$

 $p(\boldsymbol{\pi}|\boldsymbol{\alpha},\boldsymbol{X},\boldsymbol{Y})$ is a Dirichlet distribution:

$$\pi_{\mathsf{Republican},j}^* \ = \ \frac{\mathit{x}_{\mathsf{Republican},j} + \alpha_j}{\mathit{N}_{\mathsf{Republican}} + \sum_{j=1}^J \alpha_j}$$

Calculating Log Odds Ratio

Define log Odds Ratio; as

$$\log \mathsf{Odds} \; \mathsf{Ratio}_j \;\; = \;\; \log \left(\frac{\pi_{\mathsf{Republican},j}}{1 - \pi_{\mathsf{Republican},j}} \right) - \log \left(\frac{\pi_{\mathsf{Democratic},j}}{1 - \pi_{\mathsf{Democratic},j}} \right)$$

$$Var(\log Odds \ Ratio_j) \approx \frac{1}{x_{jD} + \alpha_j} + \frac{1}{x_{jR} + \alpha_j}$$

$$Std. \ Log \ Odds_j = \frac{\log Odds \ Ratio_j}{\sqrt{Var(\log Odds \ Ratio_j)}}$$

Applying the Model

https://gist.github.com/thiagomarzagao/5851207 How do Republicans and Democrats differ in debate? Condition on topic and examine word usage

- Press Releases (64,033)
- Topic Coded
- Given press release is about topic, what are the features that distinguish Republican and Democratic language?

Mutual Information, Standardized Log Odds

Mutual Information, Standardized Log Odds

Gas Prices, Partisan Words

Gentzkow, Shapiro, and Taddy (2017): Rhetorical Polarization

Figure 3: Average partisanship of speech, penalized estimates

Where do concepts/ideas/questions come from?

- Text as Data (machine learning) methods can suggest idea

- Text as Data (machine learning) methods can suggest idea
- Human in the loop: utility requires human presence

- Text as Data (machine learning) methods can suggest idea
- Human in the loop: utility requires human presence
- Goal specific validation: once you have an organization it is yours and where it came from

- Text as Data (machine learning) methods can suggest idea
- Human in the loop: utility requires human presence
- Goal specific validation: once you have an organization it is yours and where it came from does

- Text as Data (machine learning) methods can suggest idea
- Human in the loop: utility requires human presence
- Goal specific validation: once you have an organization it is yours and where it came from does.not

- Text as Data (machine learning) methods can suggest idea
- Human in the loop: utility requires human presence
- Goal specific validation: once you have an organization it is yours and where it came from does.not.matter