Planare Greath

A Plane greath is a greath dreawn in the plane in such a way that any paire of edges meet only at their end vertices (96 they onest at all).

A Plangre greath is a greath which can be readreamn as a Plane grath (ie.icomonphic to a plane grath).

A Plane greath G paretition the Plane into a number of regions called baces of G. In a Plane graph G, the bace which is not bounded by any obell is called the exterior bace. Otherwise it is known as an intercior bace.

Theorem (Euleri's Foremula)

denote the number of vertices, edges and baces of G, respectively. Then n-m+b=2

Part Induction on the number of baces.

36 6=1, then Ghas only one bace, the exterior bace.
36 G contains any cycle C, there there is atleast one interior bace, which is imposible. Thus G has no cycle.

Since it is connected so G is a tree. Hence, G has no! edges and therefore n-m+6=2.

Now Suppose that 6>1 and the theorem is trene for all connected Plane graphs with less than 6 baces. Since 6>1, so G has a cycle. Hence G has an edge e which is not a bridge. Then the subgraph G-e is still connected and also a plane graph. Since the edge e much be paret ob a cycle, it separates two baces of G from each adver and so in G-e, these two baces to baces combine to forem one bace of G-e.

n(G-e) - m(G-e) + b(G-e) = 2, So $n - (m-1) + b-1 = 2 \Rightarrow n - m + b = 2$

Corcellary: Let G be a Plane greath with h vertices, medses, to baces and k connected components.

Then n-m+t = k+1.

Let G be a plane graph. A triangulation of G is a plane green H that contains G as a stanning subgraph and to which no new edge. Can be added without crossing some existing edge.

ventices and m edges then m < 3n-6.

Suppose H is a divangulation of G having n vention and 80 + 1 edges. Cleanly H is connected. 96 H has dotal of 6 baces, then 36 = 2(m+1).

By substituting it into Eulen's equation, we have n + 2(m+1) = (m+1) + 2

=) on+l=3n-6 => on \(\frac{2}{3}n-6.

Example: The complete graph K5 is not planar.

Suppose G is a bipantile planare graph with m edges and on 3 yeatices. Then m < 2n-4.

no odd cycles. 3% may happen that some non adjacent pour of vertices of G can be joined by a new edge that cheers non ob the exicting edges and does not create an odd cycle. Suppose a maximum number to be such adges have been added to G. Call the resulting bipartite plane greath H.

Then by substituting it into Eulers's equation, we have $2(m+l) + n = (m+l) + 2 \cdot ie \cdot m+l = 2n-4$

Example: The Complete biparctite greath K3,3 is not planger.

and m edges then SG) < 5.

Prent Suppose the orinimal degree of G is alleaged.
Then 2m 46n. So on 43n, a contradiction.