F70TS2: Time Series

Exercises 4 - Solutions

1. The asymptotic normality of \bar{x} is a very important property. By means of this property we can construct an approximate confidence interval for μ with a given confidence level α (the so-called interval estimation). For instance, the approximate 95% confidence interval for μ is

$$\mu \in [\bar{x} - 2SD_{\bar{x}}, \bar{x} + 2SD_{\bar{x}}].$$

For our question we have $\bar{x}=1.65$ and $SD_{\bar{x}}=\sqrt{Var(\bar{x})}=0.1$. Inserting these values into the above formula, we have

$$\mu \in [1.56 - 0.2, 1.56 + 0.2] = [1.36, 1.76].$$

2. The general formula for the asymptotic variance of \bar{x} is

Assignment $P_{roje}^{1} = \frac{(\sum_{i=0}^{q} \psi_{i})^{2}}{\sqrt{k}} \times \text{am Help}$

because $\sigma_{\epsilon}^2 = 1$ by assumption.

For a) we have Var(https://powcoder.com

For b) we have $Var(\bar{x}) \approx (1 + 0.3 + 0.6)^2/(1 - 0.2)^2/900 = 0.00627$.

For c) we have Var(\$\bar{x}\approx d1d 0\bar{w}=C1\bar{1}2900\bar{p}000625\bar{c}0der

For the above examples, n and σ_{ϵ}^2 are the same. But the asymptotic variances change from case to case. We can see that, for both MA and AR parts, the larger the sums $\sum_{i=1}^{q} \psi_i$ and/or $\sum_{i=1}^{p} \phi_i$ (without ψ_0 and ϕ_0), the larger the asymptotic variance of \bar{x} , and vice versa.

Remark: Again, it is easy to see that as $\sum_{i=1}^{q} \psi_i$ tends to -1 then $\text{Var}(\bar{x})$ vanishes. On the other hand, as $\sum_{i=1}^{p} \phi_i$ tends to 1, then $\text{Var}(\bar{x})$ diverges.

3. This is similar to the solution to the last question.

For a) we have $Var(\bar{x}) \approx (1 - 0.7)^{-2}/400 = 0.02778$.

For b) we have $\text{Var}(\bar{x}) \approx (1 + 0.3)^{-2}/400 = 0.00148$.

For c) we have $Var(\bar{x}) \approx (1 - 0.45 - 0.3)^{-2}/400 = 0.040$.

Furthermore, we have to calculate $Var(X_t) = \gamma(0)$ in each case to obtain $Var(\bar{y})$.

For a) (an AR(1)), $\gamma(0) = 1/(1-\phi^2) = 1.961$ and $\text{Var}(\bar{y}) = \gamma(0)/n = 0.0049 << \text{Var}(\bar{x})$.

For b) (an AR(1)), $\gamma(0) = 1/(1-\phi^2) = 0.1.099$ and $Var(\bar{y}) = \gamma(0)/n = 0.002754 > Var(\bar{x})$.

1

For c) (an AR(2))

also not be uncorrelated.

$$\gamma(0) = \frac{1 - \phi_2}{(1 + \phi_2)[(1 - \phi_2)^2 - \phi_1^2]} = \frac{1 - 0.3}{(1 + 0.3)[(1 - 0.3)^2 - 0.45^2]} = 1.873$$

and
$$Var(\bar{y}) = \gamma(0)/n = 0.00468 << Var(\bar{x})$$
.

The above models show that the sample mean of a time series may have much larger variance compared with that obtained from independent data with the same variance. However, sometimes the variance of the sample mean of a time series can also be much smaller than that for corresponding i.i.d. data.

4. For n=400, the $\pm \frac{2}{\sqrt{n}}$ bounds are ± 0.1 . And 5% or more out of 20 are one or more estimates. Hence, in case a) we can say that X_t is probably not an i.i.d. white noise. *Indeed,* X_t *should*

In case b), we can only say that X_t are probably uncorrelated. However, whether or not they are i.i.d. is not clear. Further diagnosis is required to answer this question. For example, to display the ACF of x_t^2 . If X_t are i.i.d., then X_t^2 are also i.i.d.. But, if X_t are only uncorrelated, X_t^2 may be correlated to each other.

For n=1600 the above bounds are $\pm \frac{2}{\sqrt{2}} = \pm 0.05$. And 5% out of 40 are 2 estimates. Further decisions are small golf decisions are small golf decisions are small golf decisions. We have the processing the larger n, the better the estimation quality.

https://powcoder.com

Add WeChat powcoder