_	_				
\sim	Can	oratu	latione	I Vali	passed!

Grade received 90%

∠⁷ Expand

Latest Submission Grade 90% To pass 80% or higher

Go to next item

1.	What is stored in the 'cache' during forward propagation for latter use in backward propagation?	0/1 point
	 ● A^[i] ○ W^[i] 	
	○ ₽ _N i	
	∠ ⁿ Expand	
	$ \underbrace{\hbox{No. In the equations for backward propagation we see that } }_{No. \ \hbox{In the equations for backward propagation we see that } } dA^{[l]} \ \hbox{and finally } dW^{[l]} \ \hbox{depends on } Z^{[l]} \ \hbox{not on } A^{[l]}. $	
2.	During the backpropagation process, we use gradient descent to change the hyperparameters. True/False?	1/1 point
	○ True	2/20000
	False	
	∠ ² Expand	
	\odot correct. During backpropagation, we use gradient descent to compute new values of $W^{[l]}$ and $b^{[l]}$. These are the parameters of the network.	
	of the photoceta of the near of the	
3.	Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?	1/1 point
	Input layer of the deep neural network.	
	Early layers of the deep neural network.	
	Middle layers of the deep neural network.	
	Later layers of the deep neural network.	
	∠ ² Expand	
	Correct Correct. The deep layers of a neural network are typically computing more complex features such as the ones shown in the figure.	
	Vectorization allows you to compute forward propagation in an L -layer neural network without an explicit for- loop (or any other explicit iterative loop) over the layers $l=1,2,,L$. True/False?	1/1 point
	○ True	
	False	

\odot correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},]$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$.	
Suppose W[i] is the array with the weights of the i-th layer, b[i] is the vector of biases of the i-th layer, and g is the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.	1/1 point
for i in range(1, L+1): Z[1] = W[i]*A[i-1] + b[i] A[i] = g(Z[i)	
or i in range(L): Z[i] = W[i]*X + b[i] A[i] = g(Z[i])	
of for in range(L): Z[i+1] = W[i+1]*A[i+1] + b[i+1] A[i+1] = g(Z[i+1])	
∠ [∧] Expand	
Correct Yes. Remember that the range omits the last number thus the range from 1 to L+1 gives the L necessary values.	
Consider the following neural network.	1/1 point
χ_1	
x_2 \hat{y}	
x_3	
How many layers does this network have?	
The number of layers \underline{L} is 4. The number of hidden layers is 4. The number of layers \underline{L} is 5. The number of hidden layers is 4.	
 The number of layers L is 4. The number of hidden layers is 3. The number of layers L is 3. The number of hidden layers is 3. 	
_e [∞] Expand	
Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.	
During forward propagation, for the value of $A^{[l]}$ the value is used of $Z^{[l]}$ with the activation function $g^{[l]}$. During	1/1 point
backward propagation we calculate $dA^{[l]}$ from $Z^{[l]}$. $lacksquare$	
○ True	
∠ [∧] Expand	
\odot correct Correct. During backward propagation we are interested in computing $dW^{[l]}$ and $db^{[l]}$. For that we use $g^{'L}$, $dZ^{[l]}$, $Z^{[l]}$, and $W^{[l]}$.	
A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?	1/1 point
False True	
Expand	

Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

9. Consider the following 2 hidden layers neural network:

∠ Expand

 $b^{[1]}$ will have shape (1, 4) $W^{[2]}$ will have shape (4, 3)

Correct
 Great, you got all the right answers.

10. Whereas the previous question used a specific network, in the general case what is the dimension of $b^{[l]}$, the bias vector associated with layer Ω

1/1 point

1/1 point

- $\bigcirc \ \ b^{[l]}$ has shape $(n^{[l+1]},1)$
- $igotimes b^{[l]}$ has shape $(n^{[l]},1)$
- $\bigcirc \ \ b^{[l]}$ has shape $(1,n^{[l]})$
- $\bigcirc \ \ b^{[l]}$ has shape $(1,n^{[l-1]})$

∠⁷ Expand

 \bigcirc **correct**True, $b^{[i]}$ is a column vector with the same number of rows as units in the respective layer.