

10/23/98

JC408 U.S. PTO

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 35.C13035

First Named Inventor or Application Identifier:

YOSHIHIRO TERASHIMA

Express Mail Label No.

JC511 09/17/572 PRO 10/23/98

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

<p>1. <input type="checkbox"/> Fee Transmittal Form <i>(Submit an original, and a duplicate for fee processing)</i></p> <p>2. <input checked="" type="checkbox"/> Specification Total Pages 21</p> <p>3. <input checked="" type="checkbox"/> Drawings (35 USC 113) Total Sheets 4</p> <p>4. <input checked="" type="checkbox"/> Oath or Declaration Total Pages 2</p> <p>a. <input type="checkbox"/> Newly executed (original or copy)</p> <p>b. <input checked="" type="checkbox"/> Unexecuted for information purposes</p> <p>c. <input type="checkbox"/> Copy from a prior application (37 CFR 1.63(d)) <i>(for continuation/divisional with Box 17 completed)</i> [Note Box 5 below]</p> <p>i. <input type="checkbox"/> DELETION OF INVENTOR(S) <i>Signed Statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b).</i></p> <p>5. <input type="checkbox"/> Incorporation By Reference <i>(useable if Box 4c is checked)</i> <i>The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4c, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.</i></p>	<p>6. <input type="checkbox"/> Microfiche Computer Program (Appendix)</p> <p>7. Nucleotide and/or Amino Acid Sequence Submission <i>(if applicable, all necessary)</i></p> <p>a. <input type="checkbox"/> Computer Readable Copy</p> <p>b. <input type="checkbox"/> Paper Copy (identical to computer copy)</p> <p>c. <input type="checkbox"/> Statement verifying identity of above copies</p>
---	---

ACCOMPANYING APPLICATION PARTS

<p>8. <input type="checkbox"/> Assignment Papers (cover sheet & document(s))</p> <p>9. <input type="checkbox"/> 37 CFR 3.73(b) Statement <i>(when there is an assignee)</i> <input type="checkbox"/> Power of Attorney</p> <p>10. <input type="checkbox"/> English Translation Document <i>(if applicable)</i></p> <p>11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449 <input type="checkbox"/> Copies of IDS Citations</p> <p>12. <input type="checkbox"/> Preliminary Amendment</p> <p>13. <input checked="" type="checkbox"/> Return Receipt Postcard (MPEP 503) <i>(Should be specifically itemized)</i></p> <p>14. <input type="checkbox"/> Small Entity Statement(s) <input type="checkbox"/> Statement filed in prior application Status still proper and desired</p> <p>15. <input type="checkbox"/> Certified Copy of Priority Document(s) <i>(if foreign priority is claimed)</i></p> <p>16. <input type="checkbox"/> Other: _____</p>
--

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:

 Continuation Divisional Continuation-in-part (CIP) of prior application No. / _____
18. CORRESPONDENCE ADDRESS

<input checked="" type="checkbox"/> Customer Number or Bar Code Label	05514 (Insert Customer No. or Attach bar code label here)		or <input type="checkbox"/> Correspondence address below
NAME			
Address			
City		State	Zip Code
Country		Telephone	Fax

+

CLAIMS	(1) FOR	(2) NUMBER FILED	(3) NUMBER EXTRA	(4) RATE	(5) CALCULATIONS
	TOTAL CLAIMS (37 CFR 1.16(c))	12-20 =	0	X \$ 22.00 =	\$ -0-
	INDEPENDENT CLAIMS (37 CFR 1.16(b))	3-3 =	0	X \$ 82.00 =	\$ -0-
	MULTIPLE DEPENDENT CLAIMS (if applicable) (37 CFR 1.16(d))			\$270.00 =	\$ -0-
				BASIC FEE (37 CFR 1.16(a))	\$ 790.00
				Total of above Calculations =	\$ 790.00
	Reduction by 50% for filing by small entity (Note 37 CFR 1.9, 1.27, 1.28).				
				TOTAL =	\$ 790.00

19. Small entity status

- a. A Small entity statement is enclosed
- b. A small entity statement was filed in the prior nonprovisional application and such status is still proper and desired.
- c. Is no longer claimed.

20. A check in the amount of \$ 790.00 to cover the filing fee is enclosed.21. A check in the amount of \$ _____ to cover the recordal fee is enclosed.

22. The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Account No. 06-1205:

- a. Fees required under 37 CFR 1.16.
- b. Fees required under 37 CFR 1.17.
- c. Fees required under 37 CFR 1.18.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

NAME | Abigail F. Cousins (29,292)

SIGNATURE | *Abigail Cousins*

DATE | October 23, 1998

MEMORY CONTROLLER AND LIQUID CRYSTAL DISPLAY APPARATUS
USING THE SAME

BACKGROUND OF THE INVENTION

5 Field of the Invention

This invention relates to a memory controller adapted to temporarily store input video signals and read them out as occasion calls and also to a liquid crystal display apparatus using such a control.

10 Related Background Art

Known systems for temporarily storing video signals input from, for example, a personal computer and reading them out as occasion calls operate in a manner as described below by referring to FIG. 2 of the accompanying drawings. Firstly, the video input through input terminal 5 for the first frame is temporarily stored in frame memory 1 selected by multiplexer 9. Then, the multiplexer 9 switches to frame memory 8 to store the video input for the second frame there. At the same time, multiplexer 10 selects the frame memory 1 and reads out the video input for the first frame from there to output terminal 6.

Then, the multiplexer 9 switches back to the frame memory 1 to store another video signal there and, at the same time, the multiplexer 10 selects the frame memory 8 and reads out the video input stored there to the output terminal 6. In this way, video signals are

00000000000000000000

- 2 -

output continuously on a frame by frame basis by using two frame memories.

When a same image is to be displayed twice for flicker prevention and/or other purposes, each video 5 signal is read out twice from the frame memory storing it at a rate twice as high as the rate of receiving image signals.

However, with such an arrangement, at least two frame memories, which is costly, have to be used to 10 raise the cost of the entire system. When an image signal is read out twice, the rate of reading image signals is required to be twice as high as that of storing them in frame memories but it will be 15 impossible to realize such a high rate particularly when image signals have to be received at an enormously high rate to improve the resolution of the displayed image.

Known techniques for controlling frame memories include the following.

20 Japanese Patent Application Laid-Open No. 6-275069 describes a method of carrying out a serial/parallel conversion for each input signal before it is written into a memory and then the signal read out from the memory is subjected to a parallel/serial 25 conversion before it is output in order to achieve an FIFO operation. Japanese Patent Application Laid-Open Nos. 58-16343 and 60-159789 describe a technique of

interposing an FIFO memory between an image memory and a parallel/serial converter. Japanese Patent Application Laid-Open No. 63-240620 describes a display technique using a buffer between an image memory and a parallel/serial converter. Japanese Patent Application Laid-Open No. 4-259079 describes an image reader comprising an FIFO memory and a parallel/serial converter. Japanese Patent Application Laid-Open No. 5-158447 describes a technique of improving the signal transfer rate by arranging an FIFO memory in a display data transfer section for transferring signals from a memory to a liquid crystal display in order to prevent flickers from appearing on the display screen.

Finally, Japanese Patent Application Laid-Open No. 2-33672 describes an FIFO memory for inputting data to and outputting data from a serial read/write port.

However, it is not possible to realize a continuous signal writing/reading operation by means of a memory having a relatively small memory capacity with any of the above described known techniques.

SUMMARY OF THE INVENTION

In view of the above identified existing technological problem, it is therefore the object of the present invention to provide a technique of continuously writing signals into and reading signals from a memory.

According to the invention, the above object is achieved by providing a memory controller comprising a serial/parallel converter section to be used for converting serial input data into parallel data, an FIFO memory section for temporarily storing converted data, a memory section connected to the FIFO memory section to store data for a frame and another FIFO memory section for temporarily storing the data read out from the frame memory section.

With the above arrangement, the operation of writing data into and reading data from the frame memory section can be conducted continuously if the memory has a capacity only for a frame and a frame memory having a relatively low operating speed can be used for the operation to reduce the total cost of an image display system comprising such a memory controller.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of an embodiment of memory controller according to the invention.

FIG. 2 is a schematic block diagram of a known memory controller of the category under consideration.

FIG. 3 is a timing chart that can be used for the frame memory of the embodiment of FIG. 1.

FIG. 4 is a schematic block diagram of the

drive system of a projection type liquid crystal display apparatus adapted to use a memory controller according to the invention.

5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
(First Embodiment)

Now, a first embodiment of memory controller according to the invention will be described by referring to FIG. 1.

10 Referring to FIG. 1, the illustrated embodiment
of memory controller comprises an input terminal 5 for
receiving a-bit serial digital video signals, an S/P
converter section 2 for converting serial digital video
signals into axn-bit parallel video signals, an FIFO
memory section 3 having a predetermined capacity for
temporarily storing a parallel video signal, a buffer
12 having a switch for receiving the video signal of
the FIFO memory section 3 and transmitting it as output
signal, a frame memory section 1 having a predetermined
capacity sufficient for storing at least a quantity of
signal good for a frame out of the axn-bit video
signal, an another buffer 13 for receiving the output
of the frame memory section 1, another FIFO memory
section 4 for temporarily storing the video signal from
the buffer 13 and an output control section 11 for
receiving the axn-bit video signal from the FIFO memory
section 4 and converting it into serial video signals

on a time series basis.

In a memory controller having the above described configuration, the frame memory 1 has a feature of continuously accessible in synchronism with a clock and may typically be an SDRAM. The bit width of the input/output data terminal of the frame memory section 1 is equal to n times of the bit width of the video signal input terminal 5. If, for example, the input terminal 5 is adapted to receive R, G and B serial signals, each of which is an 8-bit signal, the input/output data terminal 7 has at least a bit width of 24 bits as n is at least equal to 3. In this embodiment, the input terminal 5 has a bit width of 8 bits and the input/output data terminal has a bit width of $8 \times 4 = 32$.

The 8-bit data entered to the memory controller through the input terminal 5 are then converted into 32-bit data by the serial/parallel converter section 2 in order to make them fit to the bit width of the input/output terminal 7 of the frame memory section 1.

The converted data are then temporarily stored in the FIFO memory section 3. The capacity of the FIFO memory section 3 may be selected arbitrarily. When the FIFO memory section 3 is full, the data stored there are read out at the same rate as the video signal input. The data read out from there are then written into the frame memory section 1 on a real time basis.

The operation of reading data out of the FIFO memory section 3 is conducted with a bit width four times greater than the video signal input rate of the video signal input terminal so that the time required 5 for reading out the data will be only one fourth of the time required for writing the data. In other words, to write the data into the FIFO memory section 3 in full takes four times of the time to read them out of it.

Thus, the input/output terminal 7 of the frame memory section 1 will cyclically be set free for a period of time that is equal to three times of the period of time required for writing a given amount of data into the frame memory section 1. This time period is utilized to read the data stored in the frame memory section 1. Reading the data out of the frame memory section 1 can be conducted within the time period used to write them or within the doubled time period. With this technique, then, there still remains a period of time the frame memory section 1 is free, which is equal 15 to the time period required for writing, other than the time period required for writing and reading out. If the frame memory section 1 is an SDRAM, this period of time can be used to precharge the memory or execute active commands because such operations are necessary 20 to switch banks when accessing the memory continuously. The size of the FIFO 3 may be selected 25 depending on the time required for executing such

80204254790

commands.

An SDRAM (synchronous dynamic random access memory) is a DRAM that can take in instructions and/or input/output data in synchronism with the system clock.

5 While known DRAMs normally operate asynchronously relative to the system clock and hence require a cumbersome operation of designing the respective operation timings, an SDRAM is particularly adapted to burst operations for continuously outputting data in

10 synchronism with the system clock as well as other operations to be conducted efficiently at high speed by separating the inside into a plurality of banks. For the purpose of the invention, the SDRAM of the frame memory section 1 may be replaced by an SGRAM

15 (synchronous graphic RAM) that is realized by adding a block write feature of rewriting the amount of data of 8 columns in a single write cycle and a write per bit feature of writing image data on a bit by bit basis to an SDRAM as it performs excellently for processing

20 graphics.

FIG. 3 shows a timing chart that can be used to access the SDRAM of the frame memory section of the embodiment of FIG. 1. Referring to FIG. 3, if the write address and the read address for the current cycle are located in a same bank but in different rows, each of them requires a precharging operation and a row active period to switch from write to read.

80220P-2494760

- 9 -

Additionally, if the SDRAM is driven to operate at a maximum rate, CAS Latency=3 will be used.

For switching from a write operation to a read operation as shown in FIG. 3, a blank period equal to a total of 9 clock cycles will be required including 3 clock cycles from a precharge to an active command, 3 clock cycles from the active command to a read command and 3 clock cycles for getting to a read ready state.

For switching from a read operation to a write operation, on the other hand, a blank period equal to a total of 6 clock cycles will be required including 3 clock cycles from a precharge to an active command and 3 clock cycles from the active command to a write command. Thus, the total period of time required for the two switching operations will be $9+6=15$ clock cycles or more. The size of the FIFO memory section 3 will be minimized by making this time period equal to the time period for writing data into the frame memory section 1. If the burst length is 8, the time period for writing data into the frame memory section 1 will be equal to 16 clock cycles in view of the smallest multiple of the burst length and the time period necessary for the above commands.

Thus, the size of the FIFO memory section 3 will be at least 32 bits \times 16. Since the time for reading a given amount of data from the frame memory section 1 is twice of the time for writing that amount

of data into the frame memory section 1, 32 clock cycles will be needed. Then, the size of the FIFO memory section 4 will be at least 32 bits × 32. Therefore, the operation of reading data from and 5 writing data into the SDRAM will be repeated cyclically with a period equal to 64 clock cycles.

As for the side of reading the data stored in the frame memory section 1, the read out data will be temporarily stored in the FIFO memory section 4. 10 Thereafter, the data are converted into data having a bit width and a bit rate required to the output side by the output control section 11 before they are output through the video signal output terminal 6.

It will be appreciated that the above described 15 effect can be obtained if a different burst length is selected.

It will also be appreciated that the above described effect can be obtained if the frame memory 1 is made to comprise a plurality of memories.

20 (Second Embodiment)

Now, a second embodiment of memory controller according to the invention will be described also by referring to FIG. 1.

Referring to FIG. 1, the frame memory section 1 25 is a memory having a feature of continuously accessible in synchronism with a clock such as SDRAM. The bit width of the input/output data terminal of the frame

memory section 1 is equal to $2n$ times of the bit width of the video signal input terminal 5. In this embodiment, the input terminal 5 has a bit width of 8 bits and the input/output data terminal has a bit width of $8 \times 2n(n=4)=8 \times 8=64$.

The 8-bit data entered to the memory controller through the input terminal 5 are then converted into 64-bit data by the serial/parallel converter section 2 in order to make them fit to the bit width of the input/output terminal 7 of the frame memory section 1.

The converted data are then temporarily stored in the FIFO memory section 3. The capacity of the FIFO memory section 3 may be selected arbitrarily. When the FIFO memory section 3 is full, the data stored there are read out at a rate equal to a half of the video signal input rate. The data read out from there are then written into the frame memory section 1 on a real time basis. From then on, the rate of accessing the data in the frame memory section 1 will always be a half of the video signal input rate.

The operation of reading data out of the FIFO memory section 3 is conducted with a bit width eight times greater than the video signal input rate of the video signal input terminal so that the time required for reading out the data will be only one fourth of the time required for writing the data. In other words, to write the data into the FIFO memory section 3 in full

takes four times of the time to read them out of it.

Thus, the input/output terminal 7 of the frame memory section 1 will cyclically be set free for a period of time that is equal to three times of the 5 period of time required for writing a given amount of data into the frame memory section 1. This time period is utilized to read the data stored in the frame memory section 1. Reading the data out of the frame memory section 1 can be conducted within the time period used 10 to write them or within the doubled time period. With this technique, then, there still remains a period of time the frame memory section 1 is free, which is equal to the time period required for writing, other than the time period required for writing and reading out. If 15 the frame memory section 1 is an SDRAM, this period of time can be used to precharge the memory or execute active commands because such operations are necessary for switching banks when accessing the memory continuously. The size of the FIFO 3 may be selected 20 depending on the time required for executing such commands. The method of accessing the SDRAM as described above for the first embodiment is applicable to the second embodiment.

As for the side of reading the data stored in 25 the frame memory section 1, the read out data will be temporarily stored in the FIFO memory section 4. Thereafter, the data are converted into data having a

20252017202520252025

bit width and a bit rate required to the output side by the output control section 11 before they are output through the video signal output terminal 6.

It will be appreciated that the above described
5 effect can be obtained by making the period required for the commands of the frame memory 1 and the period required for writing the data in the frame memory 1 if a different burst length is selected.

It will also be appreciated that the above
10 described effect can be obtained if the frame memory 1 is made to comprise a plurality of memories.

(Third Embodiment)

FIG. 4 is a schematic block diagram of the drive system of a projection type liquid crystal display apparatus adapted to use a memory controller according to the invention. In FIG. 4, reference numeral 1310 denotes a panel driver for inverting the polarity of RGB video signals and generating liquid crystal drive signals subjected to a predetermined voltage boosting operation as well as drive signals for the counter electrode and various timing signals. It will be appreciated that the panel driver also operates to regulate the DC level as described above by referring to the preceding embodiments. Reference numeral 1312 denotes an interface adapted to decode video signals and control/transmission signals into standard video signals. Reference numeral 1311 denotes

a decoder for decoding/transforming standard video signals coming from the interface 1312 into video signals of the three primary colors of red (R), green (G) and blue (B) and synchronizing signals or video 5 signals adapted to the liquid crystal panel of the apparatus. By using a memory controller as described above by referring to the first and second embodiments for the decoder 1311, data can be written into and read out from a memory on a continuous basis without 10 suspending the input of video signals to enhance the level of freedom with which video signals can be processed and hence improve the quality and the resolution of the image displayed on the screen of the liquid crystal panel.

15 Reference numeral 1314 denotes a lightening circuit that operates as ballast and drives an arc lamp 1308 arranged within an elliptic reflector 1307 to turn it on and off. Reference numeral 1315 denotes a power source circuit for supplying power to the circuit 20 blocks. Reference numeral 1313 denotes a controller comprising a control unit (not shown) for controlling the operations of the circuit blocks in a coordinated manner. Particularly, it issues instructions to the panel driver 1310 for polarity inversion, for 25 indicating the number of fields by which the polarity is inverted to regulate the counter potential and for selecting the color to be used for the regulating

operation. Thus, a projection type liquid crystal display apparatus according to the invention comprises a single panel type projector having a drive circuit system for illuminating the liquid crystal panel 1302 with white light from the arc lamp 1308 such as a metal halide lamp and projecting the video signals of the reflection type liquid crystal panel 1302 onto a large screen by way of an optical lens system (not shown) to display large images. Since a liquid crystal display apparatus according to the invention is free from flicker and a sticking phenomenon of the liquid crystal panel, it can display large and high quality images on the display screen.

With the above described arrangement, two horizontal scanning operations can be conducted simultaneously and video signals for two rows can be fed to the liquid crystal panel simultaneously by means of the memory controller used for the decoder 1311 to drive the panel comprising a large number of densely arranged pixels to display clear and high quality images.

[Advantages of the Invention]

As described above, according to the invention, there is provided a memory controller comprising a frame memory having a capacity only for a single frame and a FIFO memory having a minimal capacity that is adapted to write data into and read data from the frame

memory on a continuous basis. Apparently such a memory controller costs minimally.

Then, the speed at which the data in the frame memory are accessed does not exceeds the video signal
5 input rate and data for two frames can be written within a time period required for writing data for a single frame.

Additionally, as described above by referring to the second embodiment, the speed at which the data
10 in the frame memory can be made less than a half of the video signal input rate to allow the use of a less costly frame memory that operates only at low speed so that the memory controller can be prepared at even more reduced cost.

15

WHAT IS CLAIMED IS:

1. A memory controller comprising a serial/parallel converter section for converting serial input data into parallel data, an FIFO memory section 5 for temporarily storing converted data, a memory section connected to the FIFO memory section to store data for a frame and a second FIFO memory section for temporarily storing the data read out from the frame memory section.

10

2. A memory controller according to claim 1, wherein said memory section can be accessed continuously in synchronism with the system clock according to said input data.

15

3. A memory controller according to claim 1, wherein the data bit width of said memory section is made equal to n times of the bit width of said input data and data for a number of frames up to as many as 20 (n-2) times of the number of input pixels can be read out of said memory section for said input data while the frequency of accessing said memory section can be reduced to a half or less than a half of the video signal input frequency.

25

4. A memory controller according to claim 1, wherein the size of said FIFO memory is minimized by

selecting a continuous write period for writing data into said memory section, taking the time period required for a command necessary for said memory section.

5

5. A memory controller according to claim 1, wherein the data bit width of said memory section is made equal to n times of the bit width of said input data and the frequency of accessing said memory section 10 is reduced to less than the video signal input frequency.

15 6. A memory controller comprising a serial/parallel converter section for performing a serial/parallel conversion of converting a-bit (a being a positive integer) input data into axn-bit data, an FIFO memory section for temporarily storing converted axn-bit data, a memory section connected to the FIFO memory section to store data for a frame and a second 20 FIFO memory section for temporarily storing the axn-bit data read out from the frame memory section.

25 7. A memory controller according to claim 6, further comprising a video signal output controlling section for receiving the output of said second FIFO memory section and converting them into output video signals according to instructions from the output side.

8. A memory controller according to claim 1,
wherein the data bit width of said memory section is
made equal to $2n$ times of the bit width of said input
data and data for a number of frames up to as many as
5 ($2n-2$) times of the number of input pixels can be read
out of said memory section for said input data while
the frequency of accessing said memory section can be
reduced to a half or less than a half of the video
signal input frequency.

10

9. A memory controller according to claim 3,
wherein the bit width of said input data is equal to 8
bits and said n is equal to 3, whereas said data bit
width of said memory section is equal to 24.

15

10. A memory controller according to claim 3,
wherein the bit width of said input data is equal to 8
bits and said n is equal to 4, whereas said data bit
width of said memory section is equal to 32.

20

11. A memory controller according to claim 1,
wherein said memory section comprises a plurality of
memory units.

25

12. A liquid crystal display apparatus comprising:

an interface for transforming various video

signals and transmission signals standard video
signals;

a decoder for transforming standard video signals into video signals for displaying images on liquid crystal;

a liquid crystal display panel; and
a drive section for driving said display panel
according to said video signals,
characterized in that

10 said decoder includes a memory controller comprising a serial/parallel converter section for converting serial input data into parallel data, an FIFO memory section for temporarily storing converted data, a memory section connected to the FIFO memory section to store data for a frame and a second FIFO memory section for temporarily storing the data read out from the frame memory section.

ABSTRACT OF THE DISCLOSURE

A system can be realized by using a single frame memory, that is costly, to allow data write and data read operations continuously without suspending
5 the video signal input. Such a memory controller comprises a serial/parallel converter section for converting serial input data into parallel data, an FIFO memory section for temporarily storing converted data, a memory section connected to the FIFO memory
10 section to store data for a frame and a second FIFO memory section for temporarily storing the data read out from the frame memory section. The data bit width of said memory section is made equal to n times of the bit width of said input data so that data for a number
15 of frames up to as many as (n-2) times of the number of input pixels can be read out of said memory section for said input data while the frequency of accessing said memory section can be reduced to a half or less than a half of the video signal input frequency.

00000000000000000000000000000000

FIG. 1

FIG. 2

FIG. 3

FRAME MEMORY TIMING IN FIG. 1

FIG. 4

**COMBINED DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION**

(Page 1)

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **MEMORY CONTROLLER AND LIQUID CRYSTAL DISPLAY APPARATUS USING THE SAME**

the specification of which is attached hereto was filed on _____ as United States Application No. or PCT International Application No. _____ and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR §1.56.

I hereby claim foreign priority benefits under 35 U.S.C. §119(a)-(d) or §365(b), of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT international application which designates at least one country other than the United States, listed below and have also identified below any foreign application for patent or inventor's certificate, or PCT international application having a filing date before that of the application on which priority is claimed:

<u>Country</u>	<u>Application No.</u>	<u>Filed (Day/Mo./Yr.)</u>	(Yes/No) <u>Priority Claimed</u>
Japan	9-292905	October 24, 1997	Yes

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT international application designating the United States, listed below, and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 C.F.R. § 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

<u>Application No.</u>	<u>Filed (Day/Mo./Yr.)</u>	Status <u>(Patented, Pending, Abandoned)</u>
------------------------	----------------------------	---

I hereby appoint the practitioners associated with the firm and Customer Number provided below to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, and direct that all correspondence be addressed to the address associated with that Customer Number:

FITZPATRICK, CELLA, HARPER & SCINTO
Customer Number: 05514

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

COMBINED DECLARATION AND POWER OF ATTORNEY

FOR PATENT APPLICATION

(Page 2)

Full Name of Sole or First Inventor YOSHIHIRO TERASHIMA

Inventor's signature _____

Date _____ Citizen/Subject of Japan

Residence 6-19-201, Hiratsuka 1-chome, Hiratsuka-shi, Kanagawa-ken, Japan

Post Office Address C/o CANON KABUSHIKI KAISHA

30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, Japan

Full Name of Second Joint Inventor, if any YUKIHIKO SAKASHITA

Second Inventor's signature _____

Date _____ Citizen/Subject of Japan

Residence 18-8-209, Tsurumaki Kita 1-chome, Hadano-shi, Kanagawa-ken, Japan

Post Office Address C/o CANON KABUSHIKI KAISHA

30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, Japan

Full Name of Third Joint Inventor, if any _____

Third Inventor's signature _____

Date _____ Citizen/Subject of _____

Residence _____

Post Office Address _____

Full Name of Fourth Joint Inventor, if any _____

Fourth Inventor's signature _____

Date _____ Citizen/Subject of _____

Residence _____

Post Office Address _____

Full Name of Fifth Joint Inventor, if any _____

Fifth Inventor's signature _____

Date _____ Citizen/Subject of _____

Residence _____

Post Office Address _____