UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Homework 06

Fall 2023

1. Breaking a Stick

I break a stick n times, $n \ge 1$, in the following manner: the ith time I break the stick, I keep a fraction $X_i \sim \text{Uniform}((0,1])$ of the remaining stick. Suppose that X_1, X_2, \ldots, X_n are i.i.d. Let $P_n = \prod_{i=1}^n X_i$ be the fraction of the original stick that I end up with at time n.

- a. Show that $P_n^{1/n}$ converges almost surely, and find its limit.
- b. Compute $\mathbb{E}(P_n)^{1/n}$.
- c. Now compute $\mathbb{E}(P_n^{1/n})$. Do you find the same answer as in part b? Is the limit of $\mathbb{E}(P_n^{1/n})$ equal to the limit you found in part a?

2. The CLT Implies the WLLN

- a. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. Show that if X_n converges in distribution to a constant c, then X_n converges in probability to c.
- b. Now let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables with mean μ and finite variance σ^2 . Show that the CLT implies the WLLN: that is,

$$\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\stackrel{\mathrm{d}}{\to} Z\sim\mathcal{N}(0,1)\implies\frac{1}{n}\sum_{i=1}^nX_i\stackrel{\mathbb{P}}{\to}\mu,$$

where $\stackrel{\mathsf{d}}{\to}$ is short for "converges in distribution" and $\stackrel{\mathbb{P}}{\to}$ for "converges in probability."

3. Borel-Cantelli and the Strong Law

In this problem, we walk through a proof of the strong law (assuming finite 4th moments) that relies only on basic probability. In class we covered the *Borel-Cantelli lemma*, which states that for events $(A_n)_{n=1}^{\infty}$, if $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then

$$\mathbb{P}(A_n \text{ i.o.}) = 0,$$

where we define the event $\{A_n \text{ i.o.}\} = \bigcap_{n \geq 1} \bigcup_{m \geq n} A_n$ as the event where infinitely many A_n occur.

- a. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{E} X_i = 0$ and $\mathbb{E} X_i^4 < \infty$ (and so we also have finite second and third moments). Let $S_n = X_1 + \cdots + X_n$, and compute $\mathbb{E}[S_n^4]$. Write your answer in terms of the moments $\mathbb{E}[X_i^2], \mathbb{E}[X_i^3], \mathbb{E}[X_i^4]$.
- b. Fix an $\varepsilon > 0$, and use Markov's inequality to show that, for any n,

$$\mathbb{P}(|S_n/n| > \varepsilon) \le O(n^{-2}).$$

c. Finally, use Borel-Cantelli to conclude that $\mathbb{P}(\lim_{n\to\infty} S_n/n = 0) = 1$. This a weaker (the full theorem assumes only finite first moments) form of the *strong law of large numbers*.

4. Jensen's Inequality and Information Measures

Note: This problem set is designed to be worked on in the order that the questions appear. You may cite results from previous problems in your solutions.

- a. Prove **Jensen's inequality**: if φ is a convex function from \mathbb{R} to \mathbb{R} and Z is a random variable, then $\varphi(\mathbb{E}(Z)) \leq \mathbb{E}(\varphi(Z))$.
 - *Hint*: A convex function $\varphi \colon \mathbb{R} \to \mathbb{R}$ is lower bounded by all *tangent lines* ℓ that intersect φ at some point(s) and lie below φ everywhere else.
- b. Show that $H(X) \leq \log |\mathcal{X}|$ for any distribution p_X . Conclude that for random variables taking values in $[n] := \{1, \ldots, n\}$, the distribution which maximizes H(X) is Uniform([n]). Hint: log is a concave function, for which $\log \mathbb{E}(Z) \geq \mathbb{E}(\log Z)$.
- c. For two random variables X, Y, we define their mutual information to be

$$I(X;Y) = \sum_{x} \sum_{y} p_{X,Y}(x,y) \log \frac{p_{X,Y}(x,y)}{p_{X}(x) p_{Y}(y)},$$

where the sums are taken over all outcomes of X and Y. Show that $I(X;Y) \geq 0$.

d. The *conditional entropy* of X given Y is defined to be

$$H(X \mid Y) = \sum_{y} p_{Y}(y) \cdot H(X \mid Y = y)$$

$$= \sum_{y} p_{Y}(y) \sum_{x} p_{X|Y}(x \mid y) \log \frac{1}{p_{X|Y}(x \mid y)}.$$

Show that $H(X) \ge H(X \mid Y)$. Intuitively, conditioning will only ever reduce or maintain our uncertainty, never increase it. *Hint*: Use part c.

5. Compression of a Random Source

Suppose I'm trying to send a text message to a friend. In general, I need $\log_2(26)$ bits for every letter I want to send, as there are 26 letters in the English alphabet, but if I have some information on the distribution of the letters, I can do better. For example, I might give the most common letter 'e' a shorter bit representation. It turns out the number of bits needed on average is precisely the entropy of the distribution: let us see why that is.

Let $(X_i)_{i=1}^{\infty} \sim_{\text{i.i.d.}} p(\cdot)$, where p is a discrete PMF on a finite set \mathcal{X} . Recall that the entropy of a random variable X is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x).$$

a. Here, we extend the notation $p(\cdot)$ to denote the joint PMF of (X_1, \ldots, X_n) , so that $p(x_1, \ldots, x_n) = p(x_1) \cdots p(x_n)$. Show that

$$-\frac{1}{n}\log_2 p(X_1,\ldots,X_n) \xrightarrow{n\to\infty} H(X_1)$$
 almost surely.

b. Fix $\varepsilon > 0$ and define $A_{\varepsilon}^{(n)}$ to be the set of all sequences $(x_1, \ldots, x_n) \in \mathcal{X}^n$ such that

$$2^{-n(H(X_1)+\varepsilon)} < p(x_1,\ldots,x_n) < 2^{-n(H(X_1)-\varepsilon)}$$
.

Show that for all n sufficiently large,

$$\mathbb{P}((X_1,\ldots,X_n)\in A_{\varepsilon}^{(n)})>1-\varepsilon.$$

Consequently, $A_{\varepsilon}^{(n)}$ is called the **typical set**, because the observed sequences lie within $A_{\varepsilon}^{(n)}$ with high probability.

c. Show that for all n sufficiently large,

$$(1-\varepsilon)2^{n(H(X_1)-\varepsilon)} \le \left|A_{\varepsilon}^{(n)}\right| \le 2^{n(H(X_1)+\varepsilon)}.$$

Hint: Use the union bound.

Parts (b) and (c) are called the **asymptotic equipartition property** (AEP), because they state there are $\approx 2^{nH(X_1)}$ possible observed sequences, each with probability $\approx 2^{-nH(X_1)}$. Thus, by discarding the sequences outside of $A_{\varepsilon}^{(n)}$, we need only keep track of $2^{nH(X_1)}$ sequences, which means that a sequence of length n can be compressed into $\approx nH(X_1)$ bits, requiring $H(X_1)$ bits per symbol.

d. Now show that for any $\delta > 0$, and sets $B_n \subseteq \mathcal{X}^n$ with $|B_n| \leq 2^{n(H(X_1) - \delta)}$, $n \geq 1$, we have

$$\mathbb{P}((X_1,\ldots,X_n)\in B_n)\to 0 \text{ as } n\to\infty.$$

In other words, we cannot compress the possible observed sequences of length n into any set smaller than size $2^{nH(X_1)}$; the typical set is in this sense *minimal*.

 Hint : Consider the intersection of B_n and $A_{\varepsilon}^{(n)}$.

e. Finally, we turn towards using the AEP for compression. Recall that encoding a set of size n in binary requires $\lceil \log_2(n) \rceil$ bits, so a naïve encoding of the message sequence requires $\lceil \log_2|\mathcal{X}| \rceil$ bits per symbol.

From the previous parts, if we use $\log_2 |A_{\varepsilon}^{(n)}| \approx nH(X_1)$ bits to encode the sequences in the typical set, ignoring all other sequences, then the probability of error with this

encoding will tend to 0 as $n \to \infty$, and thus an asymptotically error-free encoding can be achieved using $H(X_1)$ bits per symbol.

Alternatively, we can create an error-free code using $1 + \lceil \log_2 |A_{\varepsilon}^{(n)}| \rceil$ bits to encode the sequences in the typical set and $1 + n \lceil \log_2 |\mathcal{X}| \rceil$ bits for other sequences, where the first bit is used to indicate whether the sequence belongs in $A_{\varepsilon}^{(n)}$ or not. Let L_n be the length of the encoding of (X_1, \ldots, X_n) using this error-free code. Show that

$$\lim_{n\to\infty} \frac{\mathbb{E}(L_n)}{n} \le H(X_1) + \varepsilon.$$

In other words, asymptotically, we can compress the message sequence so that the number of bits per symbol is arbitrary close to the entropy.

6. Crafty Bounds

We have an alphabet \mathcal{X} containing n letters $\{x_1, \ldots, x_n\}$, where each letter x_i occurs with probability p_i . We wish to *encode* the alphabet by assigning to each letter x_i a binary string of length ℓ_i . Let $L = \sum_{i=1}^n p_i \ell_i$ be the expected codeword length, and let H(p) be the entropy of the distribution on \mathcal{X} .

- a. Prove the lower bound $H(p) \leq L$. You may cite well-known results.
- b. A code is *prefix-free* if no codeword is a prefix of another codeword. For example, 011 is a prefix of 01101. Show that if we have a prefix-free code where each x_i is mapped to a codeword of length ℓ_i , then

$$\sum_{i=1}^{n} 2^{-\ell_i} \le 1.$$

Hint: Consider the codewords as sequences of coin flips that we can feed into a decoder to recover the original letters, and revisit midterm 1 question 2b.

c. Prove the converse of part b: If $\ell_1, \ell_2, \dots, \ell_n$ satisfy $\sum_{i=1}^n 2^{-\ell_i} \leq 1$, then there exists a prefix-free code where each x_i is mapped to a codeword of length ℓ_i .

Hint: Consider induction. Can you assume without loss of generality that $\sum_{i=1}^{n} 2^{-\ell_i} = 1$?

- d. Show that there exists a prefix-free code with $\ell_i = \lceil -\log_2 p_i \rceil$ for $i = 1, \ldots, n$.
- e. Conclude that there exists a prefix-free code such that $L \leq H(p) + 1$.