

Using the Rmpi package on the MFCF biglinux machines (and a list of useful unix shell commands).

Marco Y. S. Shum

University of Waterloo

October 2015

Walkthrough

- Basics of MPI technology and Rmpi library in R.
- Accessing your files on biglinux.
- ► An (embarrassingly) simple example: Monte Carlo integration.
- Ideas for modelling applications.
- Appendix: useful commands on Unix shell.

▶ MPI: Message Passing Interface.

- ▶ MPI: Message Passing Interface.
- Performing multiple tasks in parallel.

- ▶ MPI: Message Passing Interface.
- Performing multiple tasks in parallel.
- ▶ Computers participating in parallel processing (called slaves) use MPI to communicate with each other. A special slave called master serves as leader. Your source code is usually run on the master node.

- ▶ MPI: Message Passing Interface.
- Performing multiple tasks in parallel.
 - Computers participating in parallel processing (called slaves)
 use MPI to communicate with each other. A special slave
 called master serves as leader. Your source code is usually run
 on the master node.
 - Master will pass instructions to slaves.
 - ▶ A piece of data or command passed to all slaves (including Master) is called a broadcast.
 - ▶ Tell slaves to run their procedures.
 - ▶ Master will gather/reduce the results from working slaves once they finish.

- ▶ MPI: Message Passing Interface.
- Performing multiple tasks in parallel.
- ▶ Computers participating in parallel processing (called slaves) use MPI to communicate with each other. A special slave called master serves as leader. Your source code is usually run on the master node.
 - Master will pass instructions to slaves.
 - ► A piece of data or command passed to all slaves (including Master) is called a broadcast.
 - ▶ Tell slaves to run their procedures.
 - ▶ Master will gather/reduce the results from working slaves once they finish.
- Rmpi is a library of commands which simplify the overall message passing mechanism. It also has some parallel versions of vectorisation (such as an MPI version of apply).

Accessing your files on biglinux.

When you first log in, you will likely be in the directory, /u1/my_user_name. Your usual MacProfile directory on the Mac Mini is /u1/my_user_name/MacProfile, so you can also place your files in your MacProfile directory to upload as well.

If you do not have access to your MacMini, to upload your files (e.g. R scripts and data sets), type **at your own terminal, not biglinux:**

> scp /path/to/your/file/on/local/machine/file.ext
my_user_name@biglinux.math.uwaterloo.ca:/destination/

Similarly, to pull files from the biglinux machine,

```
> scp
my\_user\_name@biglinux.math.uwaterloo.ca:
    /path/to/your/file/on/biglinux/file.ext
/destination/on/local/
```

Consider the Monte Carlo integration of $I = \int_{X_{\min}}^{X_{\max}} f(u) du$.

$$\widehat{I}_{\mathrm{MC}} = \frac{1}{n} \sum_{i=1}^{n} f(U_i),$$

where $U_i \overset{\mathrm{i.i.d.}}{\sim} \mathrm{Unif}(x_{\min}, x_{\max})$. The algorithm is,

- 1. Sample $\{u_1, \ldots, u_n\}$ from Unif (x_{\min}, x_{\max}) .
- 2. Compute the mean.

Consider the Monte Carlo integration of $I = \int_{X_{\min}}^{X_{\max}} f(u) du$.

$$\widehat{I}_{\mathrm{MC}} = \frac{1}{n} \sum_{i=1}^{n} f(U_i),$$

where $U_i \overset{\text{i.i.d.}}{\sim} \mathrm{Unif}(x_{\min}, x_{\max})$. The algorithm is,

- 1. Sample $\{u_1, \ldots, u_n\}$ from Unif (x_{\min}, x_{\max}) .
- 2. Compute the mean.

In R, this is easily done for, say, $f:[0,1]\to\mathbb{R}:x\longmapsto e^x$ and N <-1E8.

> sum(sapply(runif(N, 0.0, 1.0), function(x)
return(exp(x));)) / N

Consider the Monte Carlo integration of $I = \int_{x_{min}}^{x_{max}} f(u) du$.

$$\widehat{I}_{\mathrm{MC}} = \frac{1}{n} \sum_{i=1}^{n} f(U_i),$$

where $U_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(x_{\min}, x_{\max})$. The algorithm is,

- 1. Sample $\{u_1, \ldots, u_n\}$ from Unif (x_{\min}, x_{\max}) . (Slave work to run parallel!)
- 2. Compute the mean. (Master gathers from slaves and aggregate).

In R, this is easily done for, say, $f:[0,1]\to\mathbb{R}:x\longmapsto e^x$ and N <-1E8.

So, we can speed it up: the sapply can be split to work amongst many slaves.

What are the steps in R to do so?

Start MPI and create n_slaves slaves.

- Start MPI and create n_slaves slaves.
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.

- Start MPI and create n_slaves slaves.
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.
- ▶ Broadcast f, x_min, x_max and n to the slaves. Also pass n_slaves to slaves, since they do not know this.

- Start MPI and create n_slaves slaves.
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.
- ▶ Broadcast f, x_min, x_max and n to the slaves. Also pass n_slaves to slaves, since they do not know this.
- Broadcast instruction to slaves to tell them to each,
 - Generate p <- n / n_slaves samples, say u <- c(u_1,...,u_p).</p>
 - sapply the method f upon u.
 - ► Compute the sum s <- sum(sapply(u, f)).

- Start MPI and create n_slaves slaves.
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.
- ▶ Broadcast f, x_min, x_max and n to the slaves. Also pass n_slaves to slaves, since they do not know this.
- ▶ Broadcast instruction to slaves to tell them to each,
 - Generate p <- n / n_slaves samples, say u <- c(u_1,...,u_p).</p>
 - sapply the method f upon u.
 - ► Compute the sum s <- sum(sapply(u, f)).
- Master will gather/reduce the sums and divide by n to obtain estimate.

- Start MPI and create n_slaves slaves.
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.
- ▶ Broadcast f, x_min, x_max and n to the slaves. Also pass n_slaves to slaves, since they do not know this.
- ▶ Broadcast instruction to slaves to tell them to each,
 - Generate p <- n / n_slaves samples, say u <- c(u_1,...,u_p).</p>
 - sapply the method f upon u.
 - ► Compute the sum s <- sum(sapply(u, f)).
- ▶ Master will gather/reduce the sums and divide by n to obtain estimate.
- Clean up. (VERY IMPORTANT!)

What are the steps in R to do so?

- ► Start MPI and create n_slaves slaves. (mpi.spawn.Rslaves)
- ▶ Create in Master the function f, doubles x_{\min} and x_{\max} , and the integer n, called f, x_{\min} , x_{\max} and n, say.
- ▶ Broadcast f, x_min, x_max and n to the slaves. Also pass n_slaves to slaves, since they do not know this. (mpi.bcast.Robj2slave)
- Broadcast instruction to slaves to tell them to each,
 - Generate p <- n / n_slaves samples, say u <- c(u_1,...,u_p).</p>
 - sapply the method f upon u.
 - ► Compute the sum s <- sum(sapply(u, f)).

(mpi.remote.exec)

- ► Master will gather/reduce the sums and divide by n to obtain estimate. (mpi.reduce)
- Clean up. (VERY IMPORTANT!) (mpi.finalize)

```
library(Rmpi)
# Start MPI.
print("Starting MPI.")
n_slaves <- 20
mpi.spawn.Rslaves(nslaves = n_slaves)
# Function to be integrated.
integrand <- function(x) return(exp(x)):
x_min <- 0.0;
x_max <- 1.0;
# MC parameters.
n <- 1E8
n per node <- n / n slaves # Master does not do work here.
# Send slaves information.
print("Sending slaves information....")
mpi.bcast.Robj2slave(integrand)
mpi.bcast.Robj2slave(n_per_node)
mpi.bcast.Robi2slave(x min)
mpi.bcast.Robi2slave(x max)
# Tell slaves to run Monte Carlo
print("Telling slaves to run simulation.")
  slave_sum <- sum(sapply(runif(n_per_node, x_min, x_max), integrand))</pre>
# Slaves pass back to master.
print("Gathering results using reduce.")
slave sum <- 0.0
mpi.remote.exec(mpi.reduce(slave_sum, 2, "sum", 0, 1))
mc_estimate <- mpi.reduce(slave_sum, 2, "sum")
# Compute final MC estimate
print("Computing final MC estimate.")
mc estimate <- mc estimate / n
mpi.finalize()
```

```
Alternatively, you can use the MPI version of apply (mpi.apply):
# The function to be applied
fApply <- function(n_per_node, x_min, x_max)
    # This is what each core does in the apply.
    return(sum(
          sapply(
                  runif(n_per_node, x_min, x_max),
                  integrand
          ))
# Note that mpi.apply returns a list...
sum(
   unlist(mpi.apply(
         rep(n_per_node, n_slaves),
         fApply,
         x_min=x_min, x_max=x_max))
```


Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ▶ for loop \longrightarrow *apply, map, reduce \longrightarrow parallelise!

Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ▶ for loop → *apply, map, reduce → parallelise!

Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ▶ $for loop \longrightarrow *apply, map, reduce \longrightarrow parallelise!$

Not so embarrassingly parallel: when objects are not homogeneous amongst slaves, or requires synchronous updating

Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ightharpoonup for loop \longrightarrow *apply, map, reduce \longrightarrow parallelise!

Not so embarrassingly parallel: when objects are not homogeneous amongst slaves, or requires synchronous updating

Parallel MCMC

Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ightharpoonup for loop \longrightarrow *apply, map, reduce \longrightarrow parallelise!

Not so embarrassingly parallel: when objects are not homogeneous amongst slaves, or requires synchronous updating

- Parallel MCMC
- Parallel belief propagation

Embarrassingly parallel:

- Expectation calculations using i.i.d. samples
- Bootstrap/Bagging
- Independent instances of algorithms with independent starting points (optimisation. MCMC)
- ightharpoonup for loop \longrightarrow *apply, map, reduce \longrightarrow parallelise!

Not so embarrassingly parallel: when objects are not homogeneous amongst slaves, or requires synchronous updating

- Parallel MCMC
- Parallel belief propagation
- Swarm optimisation

Appendix: useful commands on Unix shells.

- man command: shows the manual (called "manpage") of the command.
- ▶ 1s directory: lists files and subdirectories of directory.
- ▶ echo \$PWD: shows which directory you are in currently.
- mv path/to/file path/to/destination/: moves (cut and paste, in Windows terms) file at path/to/ to path/to/destination/.
- cp path/to/file path/to/destination/: copy and paste, instead of cut.
- find directory -name "*search_string*": finds the files containing search_string in directory.
- rm -r /path/to/file_or_folder: removes either file or folder and its content.
- mkdir path/to/folder: creates folder in path/to/.
- cat path/to/file: prints file in terminal.
- ▶ nano path/to/file: opens file in the text editor nano.
- ps auwx -fu -|grep user_name: lists the processes running for user_name the currently logged on user (usually you...)
- kill pid: aborts and cleans up the process with process id pid.
- <Ctrl-c>: aborts and cleans up running process, and returns to prompt (frees up terminal for you to type again).
- exit: logs out of ssh (if jobs are still running, use ps to identify them, and kill to kill them first).

Thank you!

