Name:	
Pledge:	
Signature:	
To get credit for a problem, you must show all of you	r reasoning and calculations.

\mathbf{Pr}	Score
1	
2	
3	
4	
5	
6	
7	
8	

1. Suppose $f:[0,1]\to\mathbb{C}$ is continuous. Find

$$\lim_{k \to \infty} \int_0^1 k \, x^{k-1} f(x) dx.$$

Prove your result.

2. (a) Show that any open subset of $\mathbb R$ is a countable disjoint union of open intervals (a,b) (where $-\infty \le a < b \le \infty$).

(b) Show that the σ -algebra generated by the open subsets of $\mathbb R$ is the same as the σ -algebra generated by the intervals [a,b) with $-\infty < a < b < \infty$.

3. Suppose (X, Σ) is a measurable space, and ν and μ are two measures on the σ -algebra Σ with ν absolutely continuous with respect to μ . Suppose ν is a finite measure. Show that $\nu(E) \to 0$ as $\mu(E) \to 0$. (In other words, given $\epsilon > 0$ there exists $\delta > 0$ such that if $E \in \Sigma$ with $\mu(E) < \delta$, then $\nu(E) < \epsilon$.)

[Hint: If not show $\exists \ \epsilon > 0$ and $E_j \in \Sigma$ such that $\bigcup_{j=1}^{\infty} E_j < \infty$ and $\nu(E_j) \ge \epsilon$. Proceed from there.]

4. (a) Use the Monotone Convergence Theorem and $\int_1^t \frac{dx}{x} = \log t$ to show

$$\lim_{n\to\infty} n\log\left(1+\frac{t}{n}\right) = t \text{ for } t \ge 0.$$

(b) Show $\lim_{n\to\infty} \int_0^n \left(1+\frac{t}{n}\right)^n e^{-2t} dt = 1.$

(c) Let
$$\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt$$
 for $x > 0$. Show that
$$\Gamma(x) = \lim_{n \to \infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1}dt$$
$$= \lim_{n \to \infty} n^x n! (x(x+1)\cdots(x+n))^{-1}.$$

5. (a) State the Mean Value Property for analytic functions, then use the Cauchy Integral Formula to prove it.

(b) TRUE or FALSE: If u is a harmonic function on a domain in \mathbb{R}^2 , then u has a harmonic conjugate.

(c) Find a fractional linear transformation (also called a Möbius transformation) f that takes the first quadrant to the top half of the unit disk and satisfies f(2) = i. (You must explain some comprehensible procedure and not simply produce an f out of thin air.) Under your map, what is the image of the vertical ray $\{\text{Re }z=c>0,\ \text{Im }z>0\}$?

6. Let f(z) be a bounded analytic function in the upper half-plane that extends continuously to the real axis. If $|f(z)| \leq M$ for real z, show that $|f(z)| \leq M$ for all z in the upper half-plane.

[Suggestion: for the top half of an arbitrary disk centered at the origin, consider an appropriate branch of the function $(z+i)^{-\varepsilon}f(z)$ for small enough $\varepsilon > 0$.]

7. Use the argument principle to determine the number of roots of $p(z) = z^9 + 4z^5 - 3z^4 + 4z + \alpha$ in the right half-plane. The answer may depend on the value of α , which is assumed real.

8. Let a and b be unequal positive numbers. By integrating an appropriate branch of $\frac{(\log z)^2}{(z+a)(z+b)}$ around a keyhole contour, find

$$\int_0^\infty \frac{\log x}{(x+a)(x+b)} \, dx.$$