This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F-021

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-124795

(43)公開日 平成8年(1996)5月17日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示簡所

H01G 4/30 301 A 7924-5E

4/38

7924-5E

H01G 4/38

Α

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出顯番号

特願平6-262452

(71)出顧人 000006264

三菱マテリアル株式会社

(22)出顧日

平成6年(1994)10月26日

東京都千代田区大手町1丁目5番1号

(72)発明者 内田 彰

埼玉県秩父郡横瀬町大字横瀬2270番地 三

菱マテリアル株式会社生産技術センター内

(74)代理人 介理士 小杉 佳男 (外2名)

(54) 【発明の名称】 積層コンデンサ

(57)【要約】

【目的】回路基板への実装密度の向上が図られた積層コ ンデンサを提供する。

【構成】誘電体シート10に形成された導電膜12、1 3と導電膜31との間に2個のコンデンサを形成し、誘 電体シート20に形成された導電膜22、23と導電膜 31との間に2個のコンデンサを形成する。

【特許請求の範囲】

【請求項1】 グラウンドに接続される第1の導電膜 ٤.

該第1の導電膜を挟持する第1および第2の誘電体シー トと、

該第1および第2の誘電体シートそれぞれの、前記第1 の導電膜側とは反対側の面上それぞれに形成された、前 記第1の導電膜との間にコンデンサを形成する複数の第 2の導電膜、および骸第2の導電膜どうしの間に介在す る、グラウンドに接続される第3の導電膜とを備えたこ 10 とを特徴とする積層コンデンサ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高密度実装に用いられ る積層コンデンサに関する。

[0002]

【従来の技術】従来より、例えば電子機器の高周波ノイ ズ対策として、その電子機器の回路基板に形成された複 数の信号ラインとグラウンドとの間に、コンデンサ素子 がそれぞれ1つずつ内蔵された積層コンデンサが多数実 20 装されており、これら多数の積層コンデンサで高層波ノ イズをグラウンドにパイパスすることにより電子機器の 誤動作等が防止される。このような電子機器の回路基板 の実装密度を向上させるために、これら多数の積層コン デンサとして小型のものが使用されている。

[0003]

【発明が解決しようとする課題】しかし、積層コンデン サを小型に製造する際、現状の製造工程において、例え ば積層コンデンサの外形寸法が1.0mm(幅)×0. 精度の管理が困難となり、積層コンデンサの生産性が低 下する。またこのような外形寸法の積層コンデンサを回 路基板に実装するにあたっては、その積層コンデンサ の、回路基板に対する取付寸法特度の管理が困難とな り、回路基板の生産性も低下する。このため回路基板に 積層コンデンサを高密度に実装するのは容易でなく、問 題がある。

【0004】本発明は、上配事情に鑑み、回路基板への コンデンサの実装密の向上が図られた度積層コンデンサ を提供することを目的とする。

[0005]

【課題を解決するための手段】上記目的を達成する本発 明の積層コンデンサは、

- (1) グラウンドに接続される第1の導電膜
- (2) その第1の導電膜を挟持する第1および第2の誘 徴体シート
- (3) その第1 および第2の誘電体シートそれぞれの、 上記第1の導電膜側とは反対側の面上それぞれに形成さ れた、上記第1の導電膜との間にコンデンサを形成する 複数の第2の導電膜、およびその第2の導電膜どうしの 50 の導電膜 $1\,1$, $1\,2$, $1\,3$ を含めた大きさを有する導電

間に介在する、グラウンドに接続される第3の導電膜 を備えたことを特徴とするものである。

[0006]

【作用】本発明の積層コンデンサは、上記構成により、 第1および第2の誘電体シートそれぞれに形成された複 数の第2の導電膜と、第1の導電膜との間に、複数のコ ンデンサが形成される。この積層コンデンサを回路基板 に実装すると複数のコンデンサが実装されることとな り、例えば従来の、1個のコンデンサが形成された積層 コンデンサで複数実装する場合と比較し、回路基板の、 **積層コンデンサが占める面積が小さくて済む。このた** め、コンデンサの、回路基板への実装密度の向上が容易 に図られる。また、1個の積層コンデンサを回路基板に 実装すると、複数のコンデンサが一度に実装されるた め、実装の手間が軽減され、回路基板の生産性が向上す

【0007】また、本発明の積層コンデンサでは、コン デンサを形成する第2の導電膜どうしの間にグラウンド に接続される第3の導電膜が配置されているため、コン デンサ間のクロストークも防止される。

[0008]

【実施例】以下、本発明の実施例について説明する。図 1は、本発明の積層コンデンサの一実施例としての4素 子積層コンデンサの、誘電体シートを積層順に並べた図 である。図1に示す5枚の誘電体シート10,20,3 0, 40, 50それぞれは、互いに同形同大の方形状の 誘電体シートである。

【0009】誘電体シート10には、互いに電気的に絶 録され3分割されたうちの中央の部分に、誘電体シート $5 \, \text{mm}$ (奥行き) 以下になると、ハンドリング性、寸法 $30 - 10 \, \text{の後手方向の2辺に延出された蟾部<math>11 \, \text{a}$, $11 \, \text{b}$ を有する導策膜11が形成されている。この導策膜11 は、本発明にいう第3の導電膜に対応しており、グラウ ンドと接続される。また、この導電膜11の両側に導電 膜12、13がそれぞれ形成されている。それら導策膜 12、13は、誘電体シート10の、互いに対向する角 に端部12a、13aをそれぞれ有している。これらの 導電膜12.13は、本発明にいう第2の導電膜に相当 する.

> 【0010】誘電体シート20には、誘電体シート10 の導電膜11、12、13に対応する位置に導電膜2 1. 22. 23がそれぞれ形成されている。導電膜21 は、本発明にいう第3の導電膜に相当し、誘電体シート 20の長手方向の2辺に延出された端部21a、21b を有している。この導電膜21はグラウンドに接続され る。また導電膜22,23は、本発明にいう第2の導電 膜に相当し、端部12a、13aが形成された角とは異 なる角に対応する、誘電体シート20の角に端部22 a, 23 aをそれぞれ有している。

> 【0011】誘策体シート30には、誘策体シート10

膜31が形成されている。この導電膜31は、導電膜1 1の幅寸法と同じ寸法の端部31a,31bを有している。また導電膜31はグラウンドに接続される。尚この 導電膜31は、本発明にいう第1の導電膜に相当する。

3

【0012】誘電体シート40,50は、導電膜が形成されていない誘電体シートである。図2は、図1に示す誘電体シートが互いに積層され、電極が形成された4素子積層コンデンサの外観斜視図、図3は、その4素子積層コンデンサの等価回路図である。図2に示す4案子積層コンデンサを図1に示す誘電体シート10,20,30,40,50と対照すると、導電膜11の熔部11aと導電膜30の熔部31aと、さらに導電膜21の熔部21aとが電極63で接続されている。また、導電膜11の熔部11bと導電膜30の熔部31bと、さらに導電膜21の熔部21bとが電極73で接続されている。さらに導電膜12の端部12a、導電膜13の13aが電極61,62にそれぞれ接続されており、導電膜22の端部22a、導電膜23の熔部23aが電極71,72にそれぞれ接続されている。

【0013】このような4素子積層コンデンサを図3に 20 示す等価回路と対照すると、導電膜12および導電膜13と、導電膜31とからコンデンサ81およびコンデンサ82が形成される。また、導電膜22および導電膜23と、導電膜31とからコンデンサ83およびコンデンサ84が形成される。また、導電膜11、21は導電膜31と接続され、クロストークを防止する役割を担っている。

【0014】この実施例では、1個の積層コンデンサに4個のコンデンサ81,82,83,84が形成されているため、1個のコンデンサ素子が形成された積層コンデンサを回路基板に4個実装する場合と比べ、積層コンデンサ3個分の実装スペースが不要となり、その分、回路基板へのコンデンサの実装密度が向上する。

[0015]

【図面の簡単な説明】

【図1】本発明の積層コンデンサの一実施例としての4 素子積層コンデンサの、誘電体シートを積層順に並べた 図である。

【図2】図1に示す誘電体シートが互いに積層され、電 極が形成された4素子積層コンデンサの外観斜視図である。

20 【図3】4素子積層コンデンサの等価回路図である。【符号の説明】

10、20、30、40、50 誘電体シート
11、12、13、21、22、23、31 導電膜
11a、11b、12a、13a、21a、21b、2
2a、23a、31a、31b 端部
61、62、63、71、72、73 電極
81、82、83、84 コンデンサ

【図2】

【図3】

