CIS 511: Theory of Computation

Feb 23, 2017

Lecture 13: Wrapping up NP and Beginning Space Complexity

Professor Sampath Kannan

Zach Schutzman

NB: These notes are from CIS511 at Penn. The course followed Michael Sipser's Introduction to the Theory of Computation (3ed) text.

More NP-Completeness

Other problems are NP-Complete, the reduction for 3COLOR creates gadgets from each clause and each variable (see any Algorithms book).

There is an obvious reduction from 3COLOR to 4COLOR (and beyond). Add a new vertex, connect it to every vertex in your original graph.

SUBSETSUM, the question of whether a set of numbers contains a subset that sums to a particular value k is NP-Complete. The reduction is from 3SAT. Given a formula ϕ with m clauses and n variables, we create 2n numbers with n+m base 7 digits. Each variable gets a 1 in positions indicating the index of the variable and the clauses it appears in. ϕ is satisfiable if and only if there is a subset that sums to 11...111 in the first n positions, and 4...44 in the remaining m positions, by introducing some dummy numbers which are all zeros in the first n positions and 1 or 2 in the corresponding clause position.

We know that $P \subseteq NP$, NP-Complete $\subset NP$

Definition 13.1 A language L is in Co-NP if its complement is in NP. Equivalently, given $x \notin L$, a verifier can check non-membership given the right certificate (easy to check that something is not a solution).

Example: $TAUT = \{\phi | \phi \text{ is satist fied by every assignment} \}$ is in Co-NP. If a ϕ is not in L, then any non-satisfying assignment can be quickly checked.

We don't know if NP = Co-NP.

If P = NP, then NP = Co-NP.

If $NP \neq Co$ -NP, then $P \neq NP$.

Space Complexity

Definition 13.2 Space complexity refers to the number of cells of tape scanned by the head of a Turing machine in running an input.

Definition 13.3 DSPACE(s(n)) is the set of languages recongized by a deterministic TM in O(s(n)) space.

Definition 13.4 NSPACE(s(n)) is the set of languages recognized by a non-deterministic TM in O(s(n)) space.

Let's look at $SAT \in NP$. What is its space complexity? Let's say n is the length of the input and k is the number of variables. If we don't care about time, we can represent the assignment as a k-bit number and try one assignment at a time. We only need n + k + c (where c is some small fixed workspace). Therefore, $SAT \in DSPACE(n)$.

Let $L_{NANFA} = \{\langle M \rangle | M \text{ is an NFA, } L(M) \neq \Sigma^* \}.$