UJI HIPOTESIS PROPORSI

UJI HIPOTESIS (STATISTIK)

Suatu proses untuk melakukan penarikan kesimpulan dari suatu hipotesis tentang parameter populasi berdasarkan informasi (pengamatan) pada sampel.

HIPOTESIS

- Hipotesis adalah pernyataan yang masih lemah tingkat kebenarannya sehingga masih harus diuji menggunakan teknik tertentu
- Hipotesis dirumuskan berdasarkan teori, dugaan, pengalaman pribadi/orang lain, kesan umum, kesimpulan yang masih sangat sementara
- Hipotesis adalah jawaban teoritik atau deduktif dan bersifat sementara
- Hipotesis adalah pernyataan keadaan populasi yang akan diuji kebenarannya menggunakan data/informasi yang dikumpulkan melalui sampel
- Jika pernyataan dibuat untuk menjelaskan nilai parameter populasi, maka disebut hipotesis statistik

DUATIPE HIPOTESIS

- Hipotesis nihil/nol (H₀) yaitu hipotesis yang menyatakan tidak adanya hubungan antara dua variabel atau lebih atau tidak adanya perbedaan antara dua kelompok atau lebih
 - Hipotesis alternatif (H₁) yaitu hipotesis yang menyatakan adanya hubungan antara dua variabel atau lebih atau adanya perbedaan antara dua kelompok atau lebih

keputusan	Ho benar	Ho salah
Terima Ho	Tepat	Salah jenis II (β)
Tolak Ho	Salah jenis I (α)	tepat

Kesalahan jenis I. adalah kesalahan yg dibuat pd waktu menguji hipotesis di mana kita menolak Ho pd hal sesungguhnya Ho itu benar. Dengan kata lain adalah peluang menolak Ho yg benar

Kesalahan jenis II. adalah kesalahan yg dibuat pd waktu menguji hipotesis di mana kita menerima Ho pd hal sesungguhnya Ho itu salah. Dengan kata lain adalah peluang menolak Ho yg salah

Prosedur dalam UJI HIPOTESIS

Pengujian Dua Sisi dan Pengujian Satu Sisi

- Pengujian dua sisi (*two tail*) digunakan jika parameter populasi dalam hipotesis dinyata-kan sama dengan (=).
- Pengujian satu sisi (*one tail*) digunakan jika parameter populasi dalam hipotesis dinya-takan lebih besar (>) atau lebih kecil (<).

KURVA DISTRIBUSI NORMAL: PENGUJIAN DUA SISI

PEGUJIAN SATU SISI: SISI KANAN

PENGUJIAN SATU SISI: SISI KIRI Penerimaan Ho PenolakanHo - Z_{α}

PENGUJIAN HIPOTESIS SATU PROPORSI

1. Menentukan Hipotesis

a.H0:
$$\pi \ge p_0$$
 vs H1: $\pi < p_0$

b.H0:
$$\pi \le p_0$$
 vs H1: $\pi > p_0$

C.H0:
$$\pi = p_0$$
 vs H1: $\pi \neq p_0$

2. Statistik uji:

$$z_{h} = \frac{\hat{p} - p_{0}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n}}}$$

CONTOH 1

Suatu obat yang biasa dijual untuk mengurangi ketegangan syaraf diyakini manjur hanya 60 %. Hasil percobaan dengan obat baru yang dicobakan pada sampel berukuran 100 orang dewasa yang menderita ketegangan syaraf menunjukkan bahwa 70 merasa tertolong. Apakah kenyataan ini cukup untuk menyimpulkan bahwa obat baru tadi lebih unggul dari yang biasa? Gunakan taraf keberartian α = 0,05.

Diketahui:

$$p_0 = 0.6$$

 $p_0 = 0.6$
 $p_0 = 100$
 $p_0 = 70/100 = 0.7$

Penyelesaian

1. Hipotesis

$$H_0: \pi \le 0.6 \text{ vs} \quad H_1: \pi > 0.6$$

- 2. $\alpha = 5\% = 0.05$
- 3. Daerah penolakan : H_0 akan ditolak apabila $z_h > z_{0.05} = 1.645$
- 4. Statistik uji:

$$z_h = \frac{0.7 - 0.6}{\sqrt{\frac{0.6(1 - 0.6)}{100}}} = 2.04$$

5. Kesimpulan: karena z_h = 2.04 masuk pada daerah penolakan maka H_0 ditolak (belum cukup bukti untuk menerima H_0)

dengan kata lain berdasarkan informasi dari sampel yang ada belum menunjukkan obat tersebut lebih unggul

Contoh 2

- Dari hasil penelitian yg sudah dilakukan dinyatakan bahwa 40% murid SD di suatu daerah menderita cacingan.
- Pernyataan tersebut akan diuji dengan derajat kemaknaan 5%. Untuk itu diambil sampel sebanyak 250 murid SD dan dilakukan pemeriksaan tinja dan diperoleh 39% diantaranya terinfeksi cacing.

Diketahui:

$$p_0 = 0.4$$

 $p_0 = 250$
 $p_0 = 250$
 $p_0 = 250$

Penyelesaian

1. Hipotesis

$$H_0: \pi = 0.4 \text{ vs } H_1: \pi \neq 0.4$$

- 2. $\alpha = 5\% = 0.05$
- 3. Daerah penolakan:

 H_0 akan ditolak apabila $z_h > z_{0.025} = 1.96$ atau $z_h < -z_{0.025} = -1.96$

4. Statistik uji:

$$z_h = \frac{0.39 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{250}}} = -0.32$$

5. Kesimpulan: karena z_h =-0.32 tidak masuk pada daerah penolakan maka H_0 diterima (belum cukup bukti untuk Tolak H_0)

dengan kata lain berdasarkan informasi dari sampel yang ada menunjukkan daerah tersebut terkena cacingan

PENGUJIAN HIPOTESIS BEDA DUA PROPORSI

1. Menentukan Hipotesis

a.
$$H_0$$
: $\pi_1 - \pi_2 \ge p_0$ vs H_1 : $\pi_1 - \pi_2 < p_0$

b.
$$H_0: \pi_1 - \pi_2 \le p_0 \text{ vs } H_1: \pi_1 - \pi_2 > p_0$$

C.
$$H_0$$
: $\pi_1 - \pi_2 = p_0 \text{ vs } H_1$: $\pi_1 - \pi_2 \neq p_0$

2. Statistik uji:

$$z_h = \frac{(\hat{p}_1 - \hat{p}_2) - p_0}{\sqrt{(\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2})}}$$

Contoh 1

Sebuah penelitian dilakukan untuk menguji pengaruh obat baru untuk *viral infection*. 100 ekor tikus diberikan suntikan infeksi kemudian dibagi secara acak ke dalam dua grup masing-masing 50 ekor tikus. Grup 1 sebagai kontrol, dan grup 2 diberi obat baru tersebut. Setelah 30 hari, proporsi tikus yang hidup untuk grup 1 adalah 36% dan untuk grup 2 adalah 60%.

Apakah obat tersebut efektif? Obat dikatakan efektif jika perbedaan antara grup perlakuan dengan grup kontrol lebih dari 12%

Diketahui:

$$n_1 = 50, n_2 = 50$$

$$p_1=0.36$$
, $p_2=0.6$

Penyelesaian

1. Hipotesis

$$H_0$$
: $\pi_2 - \pi_1 \le 0.12$ vs H_1 : $\pi_2 - \pi_1 > 0.12$

- 2. $\alpha = 5\%$
- 3. Statistik uji:

$$z_h = \frac{(0.6 - 0.36) - 0.12}{\sqrt{\frac{0.6(1 - 0.6)}{50} + \frac{0.36(1 - 0.36)}{50}}} = 1.23$$

- 4. Wilayah kritik : Tolak H0 jika $z_h > z_{0.05} = 1.645$
- 5. Kesimpulan: karena $z_h=1.23 < z_{0.05}=1.645$ maka H_0 diterima (belum cukup bukti untuk Tolak H_0)

dengan kata lain berdasarkan informasi dari sampel yang ada belum menunjukkan bahwa obat tersebut efektif

Contoh 2

Seorang ahli farmakologi mengadaan percobaan dua macam obat anti hipertensi.

Obat pertama diberikan pada 100 ekor tikus dan ternyata 60 ekor menunjukkan perubahan tekanan darah. Obat kedua diberikan pada 150 ekor tikus dan ternyata 85 ekor berubah tekanan darahnya. Apakah kedua macam obat tersebut ada perbedaan. Pengujian dilakukan dengan $\alpha = 5\%$.

Diketahui:

$$n_1 = 100$$
 , $n_2 = 150$
 $p_1 = 60/100 = 0.6$, $p_2 = 85/150 = 0.57$

Penyelesaian

1. Hipotesis

$$H_0$$
: $\pi_2 - \pi_1 = 0$ vs H_1 : $\pi_2 - \pi_1 \neq 0$

- 2. $\alpha = 5\%$
- 3. Statistik uji:

$$z_h = \frac{(0.6 - 0.57) - 0}{\sqrt{\frac{0.6(1 - 0.6)}{100} + \frac{0.57(1 - 0.57)}{150}}} = 0.47$$

4. Wilayah kritik:

Tolak H0 jika
$$z_h > z_{0.025} = 1.96$$
 atau $z_h < z_{0.025} = -1.96$

 Kesimpulan: karena z_h=0.47 tidak masuk pada daerah penolakan maka H₀ diterima (belum cukup bukti untuk Tolak H₀)

dengan kata lain berdasarkan informasi dari sampel yang ada belum menunjukkan ada perbedaan kedua obat tersebut

Soal Latihan

- 1. Menurut suatu artikel suatu obat baru yang diekstrak dari suatu jamur, cyclosporin A, mampu meningkatkan tingkat kesuksesan dalam operasi transplantasi organ. Menurut artikel tersebut, 22 pasien yang menjalani operasi transplantasi ginjal diberikan obat baru tersebut. Dari 22 pasien tersebut, 19 diantaranya sukses dalam operasi transpalntasi ginjal. Sebagai informasi bahwa keberhasilan dengan menggunakan prosedur yang standar adalah sekitar 60%! Gunakan taraf nyata 5%
- 2. Sebuah pabrik rokok memproduksi dua merek rokok yang berbeda. Ternyata 56 orang diantara 200 perokok menyukai merek A dan 29 diantara 150 perokok menyukai merek B. Dapatkah kita menyimpulkan pada taraf nyata 0,06 bahwa merek A terjual lebih banyak daripada merek B? Gunakan taraf nyata 5%