MCMC

Azmain Biswas

April 2023

Contents

1	Introduction Generating Random Variables			
2				
	2.1	Gener	ating Discrete Random Variables	4
		2.1.1	Pseudorandom Number Generation	4
		2.1.2	The Inverse Transform Method	4
	2.2	Gener	ating Continuous Random Variables	6
		2.2.1	The Inverse Transform Algorithm	6
		2.2.2	Accept - Reject Method	8
	2.3	The P	olar Method for Generating Normal Random	
		Variab	bles	11

List of Figures

2.1	Inverse Transform method for generating Bernoulli random numbers with $p=0.5$.	5
2.2	Generating binomial random numbers with $n=5$ and $p=0.5$	6
2.3	Inverse Transform method for generating $Exp(2)$	7
2.4	G(10,5) generated by summing of $Exp(5)$	8
2.5	Generating $N(0,1)$ with Accept - Reject method	9
2.6	Generating $Beta(5,2)$ with accept-reject method	10
2.7	Generating independent $X, Y \sim N(0, 1)$ with polar method	11

Chapter 1

Introduction

In the ever-evolving landscape of mathematical and statistical research and application, the integration of simulation techniques has emerged as a powerful tool to unravel complex phenomena, validate theoretical frameworks, and facilitate a deeper understanding of intricate mathematical structures. Simulation techniques are usually used when any problem is heard to calculate with the help of traditional analytical method like simulation of a Solitaire Card game, to analysis this traditionally we have to deal with the number like $52! = 8.06 \times 10^{67}$ this number is beyond astronomically large so, dealing with this number is very hard even for a high performant computer, to deal with this problem Polish-American mathematician and nuclear physicist Stanistaw Ulam with the help of Von Neumann develope Monte Carlo Simulation.

Chapter 2

Generating Random Variables

2.1 Generating Discrete Random Variables

Main component of a simulation study is the ability to generate random number, where a random number represents the value of random variable uniform distribution on (0,1).

2.1.1 Pseudorandom Number Generation

Random numbers were originally either manually or mechanically generated, by using spinning wheels or dice rolling or card shuffling but the modern approach is to use a computer to successively generate pseudorandom numbers.

One of the common approaches to generate pseudorandom numbers starts with an initial value x_0 , called seed, and then recursively computes successive values $x_n, n \ge 1$, by letting

$$x_n = ax_{n-1} \text{ modulo } m \tag{2.1}$$

where a and m are given positive integers, and where the equation (2.1) means that ax_{n-1} is divided by m and remainder is taken as the value of x_n . Thus, each value of x_n is either $0, 1, \ldots, m-1$ and the quantity x_n/m is pseudorandom number and follows an approximation to the value of a uniform (0,1) random variable.

The approach specified by equation (2.1) to generate random numbers is called the Multiplicative Congruential Method.

Another method is

$$x_n = (ax_{n-1} + c) \text{ modulo } m$$

this method is known as Mixed Congruential Generators or Linear congruential Generations (LCGs) where c is a non-negative integer.

2.1.2 The Inverse Transform Method

Suppose we want to generate the value of a discrete random variable X having probability mass function

$$P(X = x_i) = p_i, i = 0, 1, \dots, \sum_i p_i = 1$$

To do this, we generate a random number from a uniform distribution (0,1) U, and set

$$X = \begin{cases} x_0 & \text{if } U < p_0 \\ x_1 & \text{if } p_0 \le U \le p_0 + p_1 \\ \vdots \\ x_j & \text{if } \sum_{i=0}^{j-1} p_i \le U \le \sum_{i=0}^{j} p_i \\ \vdots \end{cases}$$

Since, for 0 < a < b < 1, $P(a \le U < b) = b - a$, we have,

$$P(X = x_j) = P\left(\sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i\right) = p_j.$$

So, X has the desired distribution.

Example 2.1.1 (Bernoulli Distribution). Let, $X \sim Ber(p)$ where p is success probability i.e. P(X = 0) = 1 - p and P(X = 1) = p and $0 \le p \le 1$. Then, to generate X we first generate $U \sim U[0, 1]$ then, we set

$$X = \begin{cases} 1, & \text{if } U \le p \\ 0, & \text{if } U > p \end{cases}$$

Hence, X follows Bernoulli Distribution with the parameter p.

Algorithm for Inverse Transform Algorithm for Generating Bernoulli Distribution:

STEP 1: Generate a random variable $U \sim U[0, 1]$.

STEP 2: If $U \leq p$ set X = 1 or set X = 0.

STEP 3: Go to STEP 1.

Figure 2.1: Inverse Transform method for generating Bernoulli random numbers with p = 0.5

Example 2.1.2 (Binomial Distribution). Let, $X \sim Bin(n,p)$ then, X has probability mass function

$$f(r) = P(X = r) = \binom{n}{r} p^r (1-p)^{n-r}, \ i = 1, 2, \dots$$

The generation of $X \sim Bin(n,p)$ by Inverse Transform Algorithm can be tedious. We can use the relation between Binomial and Bernoulli distribution. If $x_i \sim Ber(p), \forall i = 1, 2, ..., n$ then, $\sum_{i=1}^{n} x_i \sim Bin(n,p)$.

Hence, by generating x_i n independent random variable from Bernoulli distribution and summing them we get binomial distribution

Empirical Expection Value: 2.4975 Theoretical Expection Value: 2.5

Figure 2.2: Generating binomial random numbers with n=5 and p=0.5

2.2 Generating Continuous Random Variables

2.2.1 The Inverse Transform Algorithm

To generate Continuous random variables The Inverse Transform Algorithm is very important method. It is based on a following theorem.

Theorem 2.2.1. Let U be a uniform (0,1) random variable. For any continuous distribution function F the random variable X defined by

$$X = F^{-1}(U)$$

 $has \ distribution \ F.$

Proof. Let, F_X denote the distribution function of $X = F^{-1}(U)$. Then,

$$F_X(x) = P(X \le x)$$
$$= P(F^{-1}(U) \le x)$$

Since, F is a cumulative distribution function it follows that F(x) is monotonic increasing function of x and range of F(x) is (0,1). Then,

$$F_X(x) = P\left(F\left(F^{-1}(U)\right) \le F(x)\right)$$
$$= P(U \le F(x))$$
$$= F(x) \text{ since } U \sim U(0, 1)$$

The above theory tells us we can generate a random variable X from the continuous distribution function F by generating a random number $U \sim U(0,1)$ and setting $X = F^{-1}(U)$.

Example 2.2.1 (Exponentian Distribution). Suppose we want to generate a random variable $x \sim Exp(\lambda)$, then its probability density function is

$$f(x) = \lambda e^{-\lambda x}.$$

Hence, The cumulative distribution function is,

$$F(x) = 1 - e^{\lambda x}$$

if we let $x = F^{-1}(u)$, then,

$$u = F(x) = 1 - e^{-\lambda x}$$
$$1 - u = e^{-\lambda x}$$
$$x = -\frac{\ln(1 - u)}{\lambda}$$

Hence, we can generate an exponential random variable with parameter 1 by generating a uniform (0,1) random number U and then setting

$$X = F^{-1}(U) = -\frac{\ln(1-U)}{\lambda}.$$

We see that if $U \sim U(0,1)$ then also $1-U \sim U(0,1)$ thus $\ln(1-U)$ has the same distribution as $\ln(U)$ so,

$$X = F^{-1}(U) = -\frac{\ln(U)}{\lambda}.$$

will also work. If we use second expression then the algorithm will take less computing power hence less time.

Figure 2.3: Inverse Transform method for generating Exp(2)

Example 2.2.2 (Gamma Distribution). Let $X \sim G(n, \lambda)$ Then, its probability mass function is given by,

$$f(x) = \frac{1}{\Gamma(n)} \lambda^n x^{n-1} e^{-\lambda x}$$

We know if $X_i \sim Exp(\lambda) \forall i = 1, 2, ..., n$ then $Y = \sum_i X_i \sim G(n, \lambda)$. As,

$$M_Y(t) = E\left[e^{tY}\right] = E\left[e^{\sum_{i=1}^n X_i t}\right] = E\left[\prod_{i=1}^n e^{X_i t}\right]$$

$$= \prod_{i=1}^n E\left[e^{X_i t}\right] \text{ As all } X_i \text{ are independent}$$

$$= \prod_{i=1}^n \frac{\lambda}{\lambda - t} = \left(\frac{\lambda}{\lambda - t}\right)^n$$

Then, Generating n number of $X_i \sim Exp(\lambda)$ and summing them we can easily generate a random variable which follows gamma distribution

Figure 2.4: G(10,5) generated by summing of Exp(5)

2.2.2 Accept - Reject Method

The accept-reject method is useful when it is difficult to directly simulate f(x) but we can generate another density g(x) such that f(x)/g(x) is uniformly bounded and it is much easier to simulate g(x). We simulate X from g, and retain it or toss it according to a probability proportional to f(x)/g(x). Because an X value is either retained or discarded, depending on whether it passes the admission rule, the method is called the accept-reject method. The density g(x) is called the envelope density.

The method proceeds as follows,

STEP 1: Find a density g and a finite constant c such that $\frac{f(x)}{g(x)} \leq c \ \forall x$.

STEP 2: Generate $X \sim g$.

STEP 3: Generate $U \sim U(0,1)$, independent of X.

STEP 4: Retain this generated value X if $U \leq \frac{f(x)}{cq(x)}$.

STEP 5: Repeat the same until the required number of n values of X has been obtained.

The following theorem supports the method.

Theorem 2.2.2. Let $X \sim g$, and U, independent of, be a distributed as U[0,1]. Then the conditional density of X given that $U \leq \frac{f(X)}{cg(X)}$ is f.

Proof. Denote the CDF of f by F. Then,

$$\begin{split} P\left(X \leq x | U \leq \frac{f(X)}{cg(X)}\right) &= \frac{P\left(X \leq x, U \leq \frac{f(X)}{cg(X)}\right)}{P\left(U \leq \frac{f(x)}{cg(x)}\right)} \\ &= \frac{\int_{-\infty}^{x} \int_{0}^{\frac{f(t)}{cg(t)}} g(t) du dt}{\int_{-\infty}^{\infty} \int_{0}^{\frac{f(t)}{cg(t)}} g(t) du dt} \\ &= \frac{\int_{-\infty}^{x} f(t) dt}{\int_{-\infty}^{\infty} f(t) dt} = \frac{F(x)}{1} = F(x). \end{split}$$

Example 2.2.3 (Generating a Normal Random Variable). To generate a standard normal variable Z i.e. $Z \sim N(0,1)$, note first that the absolute value of Z has probability density function

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \ 0 \le x \le \infty.$$
 (2.2)

Then, we can choose g as the exponential density function with mean 1 i.e.

$$g(x) = e^{-x} \ 0 \le x \le \infty$$

Now,

$$\frac{f(x)}{g(x)} = \sqrt{\frac{2}{\pi}}e^{x - \frac{x^2}{2}}$$

and so the maximum value of f(x)/g(x) occurs at the value of x that maximize $x-x^2/2$ hence x=1 so we take

$$c = \max_{x} \frac{f(x)}{g(x)} = \frac{f(1)}{g(1)} = \sqrt{\frac{2e}{\pi}}.$$

Now,

$$\frac{f(x)}{cg(x)} = \exp\left(x - \frac{x^2}{2} - \frac{1}{2}\right) = \exp\left(\frac{-(x-1)^2}{2}\right)$$

Then, its follows that we can generate the absolute value of a standard normal random variable as follows:

STEP 1: Generate $X \sim Exp(1)$.

STEP 2: Generate $U \sim U(0,1)$, independent of X.

STEP 3: If $U \leq \exp(-(X-1)^2/2)$, retain X, Otherwise, return to Step 1.

Once, we have simulated a random variable X having density function as in Equation (2.2) we can obtain a standard normal Z by letting Z be equally likely to be either X or -X. In Step 3, the value X is accepted if $U \leq \exp\left(-(X-1)^2/2\right)$, which is equivalent to $-\ln U \geq (X-1)^2/2$. However, in Example (2.2.1) we have seen that $-\ln U \sim Exp(1)$ When $U \sim U(0,1)$.

So, summing up, we can generate the standard normal random variable Z as follows:

STEP 1: Generate independent $X_1, X_2 \sim Exp(1)$

STEP 2: If $X_2 \ge (X_1 - 1)^2/2$ retain X_1 . Otherwise, return to Step 1.

STEP 3: Generate $U \sim U(0,1)$ and set,

$$Z = \begin{cases} X_1 & \text{if } U \le \frac{1}{2}, \\ X_1 & \text{if } U > \frac{1}{2}. \end{cases}$$

Figure 2.5: Generating N(0,1) with Accept - Reject method

If we want to generate normal random variable to have mean μ and variance σ^2 , just take $\mu + \sigma Z$.

Example 2.2.4 (Generating Beta Distribution). If α and β are both getter then 1, then Beta density is uniformly bounded and its maximum attain at $\frac{\alpha-1}{\alpha+\beta-2}$. As a result the U[0,1] density can be

served as an envelope density for generating such Beta distribution by using accept-reject method. Precisely, generate $U, X \sim U[0,1]$ (independently), and retain the value if $U \leq \frac{f(X)}{\sup_x f(X)}$, where,

$$f(X) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 < x < 1.$$

Because

$$\sup_x f(X) = f\left(\frac{\alpha - 1}{\alpha + \beta - 2}\right) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{(\alpha - 1)^{\alpha - 1}(\beta - 1)^{\beta - 1}}{(\alpha + \beta - 2)^{\alpha + \beta - 2}}$$

The algorithm finally works out as follows:

STEP 1: Generate independent $U, X \sim U[0, 1]$.

STEP 2: Retain the value X if,

$$U \le \frac{X^{\alpha - 1} (1 - X)^{\beta - 1} (\alpha + \beta - 2)^{\alpha + \beta - 2}}{(\alpha - 1)^{\alpha - 1} (\beta - 1)^{\beta - 1}}.$$

Otherwise, return to STEP 1.

Figure 2.6: Generating Beta(5,2) with accept-reject method

An issue about an accept-reject method is the acceptance rate. Our goal make it as large as possible to increase the efficiency of the method. This can be achieved by choosing c to be smallest possible number, described in the result bellow.

Theorem 2.2.3 (Acceptance Rate). For an accept-reject scheme, the probability that an $X \sim g$ is acceded is $\frac{1}{c}$, and is maximized when c is chosen to be $c = \sup_x \frac{f(x)}{g(x)}$.

Proof.

$$\begin{split} P\left(U <= \frac{f(x)}{cg(x)}\right) &= \int_{-\infty}^{\infty} \int_{0}^{\frac{f(x)}{cg(x)}} g(t) du dt \\ &= \int_{-\infty}^{\infty} \frac{f(t)}{cg(t)} g(t) dt = \int_{-\infty}^{\infty} \frac{f(t)}{c} dt = \frac{1}{c}. \end{split}$$

Because any c that can be chosen must be at least as large as $\sup_x \frac{f(x)}{g(x)}$, obviously 1/c is maximized by choosing $c = \sup_x \frac{f(x)}{g(x)}$.

In the example (2.2.3) for N(0,1) the acceptance rate is $\sqrt{\frac{\pi}{2e}} = 0.7601$. And for example (2.2.4) for Beta(5,2) the acceptance rate is 0.4069

2.3 The Polar Method for Generating Normal Random Variables

Let X and Y be independent slandered normal random variable and let R and θ denote the polar coordinates of vector (X,Y). That is,

$$R^2 = X^2 + Y^2$$
$$\tan \theta = \frac{Y}{X}$$

Since X and Y are independent, their joint density is the product of their individual densities and thus given by

$$f(x,y) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-(x^2+y^2)/2}$$

To determine the joint density of \mathbb{R}^2 and Θ - call it $f(d,\theta)$ we make the change of variables

$$d = x^2 + y^2$$
, $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

Then the joint density function of \mathbb{R}^2 and Θ is,

$$f(d,\theta) = \frac{1}{2} \frac{1}{2\pi} e^{-d/2}, \quad 0 < d < \infty, 0 < \theta < 2\pi.$$
 (2.3)

As $f(d,\theta)$ is equal to product of the product of Exp(1/2) density and $U(0,2\pi)$, it follows that, R^2 and Θ are independent, with $R^2 \sim Exp(1/2)$ and $\Theta \sim U(0,2\pi)$

Hence to generate a pair of independent slandered normal random variables X and Y by generating R^2 and Θ in polar coordinates and then transform back to rectangular coordinates. Hence the algorithm is:

STEP 1: Generate random number $U_1, U_2 \sim U(0, 1)$.

STEP 2: $R^2 = -2 \ln U_1$ and $\Theta = 2\pi U_2$.

STEP 3: Now let,

$$X = R\cos\Theta = \sqrt{-2\ln U_1}\cos(2\pi U_2)$$

$$Y = R\sin\Theta = \sqrt{-2\ln U_1}\sin(2\pi U_2).$$
(2.4)

The transformation given by equitations (2.4) are known as Box-Muller transformation.

Figure 2.7: Generating independent $X, Y \sim N(0,1)$ with polar method