

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all the prior versions and listings of claims in the application.

Claim 1. (Currently amended). A compound of the formula I,

I

in which

R1, R2, R3, R4, independently of one another, are H, F, Cl, Br, I, C [O] N, N₃, NO₂, OH, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CH₂-phenyl, O-phenyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, where in the alkyl radicals up to seven hydrogen atoms may be replaced by fluorine; S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, where in the alkyl radicals up to seven hydrogen atoms may be replaced by fluorine; NH₂, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, N[(C₁-C₈)-alkyl]₂, N[(C₃-C₈)-cycloalkyl]₂, NH-CO-(C₁-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl; SO₃H, SO₂-NH₂, SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl; SO₂-(C₁-C₆)-alkyl; NH-SO₂-NH₂, NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₃-C₈)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, COO(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO-NH₂, CO-NH(C₁-C₈)-alkyl, CON[(C₁-C₈)-alkyl]₂; (C₁-C₈)-alkyl, (C₃-C₈)cycloalkyl, (C₂-C₈)-alkenyl, or (C₂-C₈)-alkynyl, where in the alkyl, alkenyl, and alkynyl groups one to seven hydrogen atoms may be replaced by fluorine;

or one hydrogen may be replaced by OH, OC(O)CH₃, O-CH₂-Ph, NH₂, NH-CO-CH₃ or N(COOCH₂Ph)₂
 phenyl, 1- or 2-naphthyl,
 where the aryl radical may be substituted up to two times by
 F, Cl, Br, CN,
 OH, (C₁-C₄)-alkyl, CF₃, O-(C₁-C₄)-alkyl, S(O)₀₋₂(C₁-C₆)-alkyl, NH₂, NH-SO₂-(C₁-C₄)-alkyl; COOH, CO-O-(C₁-C₄)-alkyl, CO-NH₂ and where in the alkyl groups one to seven hydrogen atoms may be replaced by fluorine;

X is SO;

Y is (CH₂)_p, where p maybe 0,1, 2 or 3;

R5 is (C₁-C₁₈)-alkyl, (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl,
 where in the alkyl groups up to seven hydrogen atoms may be replaced
 by fluorine;
 (CH₂)₁₋₆-COOH, (CH₂)₁₋₆-COO-(C₁-C₆)-alkyl, (CH₂)₁₋₆-CONH₂
 CH₂-CH(NHR10)-COR11, where R10 maybe H or C(O)-(C₁-C₆)-alkyl and R11
 may be OH, O-(C₁-C₆)-alkyl or NH₂;

phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems are in each case substituted up to three times by

F, Cl, Br, I, CN, OH, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CO-(C₁-C₈)-alkyl,
 O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, NH₂,
 NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, N[(C₁-C₈)-alkyl]₂, N[(C₃-C₈)-
 cycloalkyl]₂, NH-CO-(C₁-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl, SO₃H; SO₂-NH₂,
 SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl, NH-SO₂-NH₂; NH-SO₂-(C₁-
 C₈)-alkyl, NH-SO₂-(C₃-C₈)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-
 alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO-NH₂, CO-
 NH(C₁-C₈)-alkyl, CO-N[(C₁-C₈)-alkyl]₂;

(C₁-C₈)-alkyl, (C₃-C₈)-cycloalkyl, where in the alkyl groups in each case
 one to seven hydrogen atoms may be replaced by fluorine;

- R6 is $(CH_2)_{0-6}$ -R9, $(CH_2)_{0-6}$ -COOH, $(CH_2)_{0-6}$ COO-(C₁-C₆)-alkyl, $(CH_2)_{0-6}$ -CONH₂, $(CH_2)_{0-6}$ -CH(NHR15)-COR16, F, Cl, Br, CN, (C₁-C₁₈)-alkyl, (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl, where in the alkyl radicals or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine;
- R15 is H, C(O)-(C₁-C₆)-alkyl;
- R16 is OH, O-(C₁-C₆)-alkyl, NH₂
- R7 is $(CH_2)_{0-4}$ -R12, H, (C₁-C₁₂)-alkyl, (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl, COO(C₁-C₆)-alkyl, COO(C₃-C₈)-cycloalkyl, where in the alkyl radicals or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine;
- R8 is $(CH_2)_{0-4}$ -R14, (C₁-C₁₂)-alkyl, (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl, where in the alkyl or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine atoms;
- R9, R12, R14 independently of one another are phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems are in each case substituted up to three times by F, Cl, Br, I, CN, OH, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, NH₂, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, N[(C₁-C₈)-alkyl]₂, N[(C₃-C₈)-cycloalkyl]₂, NH-CO-(C₁-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl, SO₃H; SO₂-NH₂, SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl, NH-SO₂-NH₂; NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₃-C₈)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO-NH₂, CO-NH(C₁-C₈)-alkyl, CO-N[(C₁-C₈)-alkyl]₂; (C₁-C₈)-alkyl, (C₃-C₈)-cycloalkyl, where in the alkyl groups in each case one to seven hydrogen atoms may be replaced by fluorine;

and its physiologically acceptable salts.

Claim 2. (Previously presented). A compound of the formula I as claimed in claim 1 in which

R1, R2, R3, R4, independently of one another, are H, F, Cl, Br, N3, O(C₁-C₈)-alkyl, or (C₁-C₈)-alkyl and where in the alkyl groups one to seven hydrogen atoms may be replaced by fluorine; where in each case at least one of the radicals R1, R2, R3 and R4 is different from hydrogen;

X is SO;

Y is (CH₂)_p, where p may be 0, 1, 2, or 3;

R5 is (C₁-C₁₈)-alkyl, (C₃-C₄)-cycloalkyl, (C₆-C₈)-cycloalkyl, where in the alkyl groups up to seven hydrogen atoms may be replaced by fluorine;

(CH₂)₁₋₆-COOH, (CH₂)₁₋₆-COO-(C₁-C₆)-alkyl, (CH₂)₁₋₆-CONH₂

CH₂-CH(NHR10)-COR11, where R10 may be H or C(O)-(C₁-C₆)-alkyl and R11 may be OH, O-(C₁-C₆)-alkyl or NH₂;

phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems are in each case substituted up to three times by

F, Cl, Br, I, CN, OH, O(C₁-C₈)-alkyl, O(C₃-C₈)-cycloalkyl, O-CO-(C₁-C₈)-alkyl, O-CO-(C₃-C₈)-cycloalkyl, S(O)₀₋₂(C₁-C₈)-alkyl, S(O)₀₋₂(C₃-C₈)-cycloalkyl, NH₂, NH-(C₁-C₈)-alkyl, NH-(C₃-C₈)-cycloalkyl, N[(C₁-C₈)-alkyl]₂, N[(C₃-C₈)-cycloalkyl]₂, NH-CO-(C₁-C₈)-alkyl, NH-CO-(C₃-C₈)-cycloalkyl, SO₃H; SO₂-NH₂, SO₂-NH-(C₁-C₈)-alkyl, SO₂-NH-(C₃-C₈)-cycloalkyl, NH-SO₂-NH₂; NH-SO₂-(C₁-C₈)-alkyl, NH-SO₂-(C₃-C₈)-cycloalkyl; O-CH₂-COOH, O-CH₂-CO-O(C₁-C₈)-alkyl, COOH, CO-O(C₁-C₈)-alkyl, CO-O-(C₃-C₈)-cycloalkyl, CO-NH₂, CO-NH(C₁-C₈)-alkyl, CO-N[(C₁-C₈)-alkyl]₂; (C₁-C₈)-alkyl, (C₃-C₈)-cycloalkyl, where in the alkyl groups in each case one to seven hydrogen atoms may be replaced by fluorine;

R6 (CH₂)₀₋₆-R9, (CH₂)₀₋₆-COOH, (CH₂)₀₋₆-COO-(C₁-C₆)-alkyl, C₀₋₆-

CONH_2 , $(\text{CH}_2)_{0-6}-\text{CH}(\text{NHR15})-\text{COR16}$, F, Cl, Br, CN, $(\text{C}_1-\text{C}_{18})$ -alkyl, (C_3-C_4) -cycloalkyl, (C_6-C_8) -cycloalkyl, where in the alkyl radicals or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine;

R15 is H, $\text{C}(\text{O})-(\text{C}_1-\text{C}_6)$ -alkyl;

R16 is OH, $\text{O}-(\text{C}_1-\text{C}_6)$ -alkyl, NH_2 ;

R7 is $(\text{CH}_2)_{0-4}-\text{R12}$, H, $(\text{C}_1-\text{C}_{12})$ -alkyl, (C_3-C_4) -cycloalkyl, (C_6-C_8) -cycloalkyl, $\text{COO}(\text{C}_1-\text{C}_6)$ -alkyl, $\text{COO}(\text{C}_3-\text{C}_8)$ -cycloalkyl, where in the alkyl radicals or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine;

R8 is $(\text{CH}_2)_{0-4}-\text{R14}$, $(\text{C}_1-\text{C}_{12})$ -alkyl, (C_3-C_4) -cycloalkyl, (C_6-C_8) -cycloalkyl, where in the alkyl or cycloalkyl radicals up to seven hydrogen atoms may be replaced by fluorine atoms;

R9, R12, R14 independently of one another are

phenyl, 1- or 2-naphthyl, or biphenyl, where the rings or ring systems are in each case substituted up to three times by

F, Cl, Br, I, CN, OH, $\text{O}(\text{C}_1-\text{C}_8)$ -alkyl, $\text{O}(\text{C}_3-\text{C}_8)$ -cycloalkyl, $\text{O}-\text{CO}-(\text{C}_1-\text{C}_8)$ -alkyl, $\text{O}-\text{CO}-(\text{C}_3-\text{C}_8)$ -cycloalkyl, $\text{S}(\text{O})_{0-2}(\text{C}_1-\text{C}_8)$ -alkyl, $\text{S}(\text{O})_{0-2}(\text{C}_3-\text{C}_8)$ -cycloalkyl, NH_2 , $\text{NH}-(\text{C}_1-\text{C}_8)$ -alkyl, $\text{NH}-(\text{C}_3-\text{C}_8)$ -cycloalkyl, $\text{N}[(\text{C}_1-\text{C}_8)-\text{alkyl}]_2$, $\text{N}[(\text{C}_3-\text{C}_8)-\text{cycloalkyl}]_2$, $\text{NH}-\text{CO}-(\text{C}_1-\text{C}_8)$ -alkyl, $\text{NH}-\text{CO}-(\text{C}_3-\text{C}_8)$ -cycloalkyl, SO_3H ; SO_2-NH_2 , $\text{SO}_2-\text{NH}-(\text{C}_1-\text{C}_8)$ -alkyl, $\text{SO}_2-\text{NH}-(\text{C}_3-\text{C}_8)$ -cycloalkyl, $\text{NH}-\text{SO}_2-\text{NH}_2$; $\text{NH}-\text{SO}_2-(\text{C}_1-\text{C}_8)$ -alkyl, $\text{NH}-\text{SO}_2-(\text{C}_3-\text{C}_8)$ -cycloalkyl; $\text{O}-\text{CH}_2-\text{COOH}$, $\text{O}-\text{CH}_2-\text{CO-O}(\text{C}_1-\text{C}_8)$ -alkyl, COOH, $\text{CO-O}(\text{C}_1-\text{C}_8)$ -alkyl, $\text{CO-O}-(\text{C}_3-\text{C}_8)$ -cycloalkyl, CO-NH_2 , $\text{CO-NH}(\text{C}_1-\text{C}_8)$ -alkyl, $\text{CO-N}[(\text{C}_1-\text{C}_8)-\text{alkyl}]_2$;

(C_1-C_8) -alkyl, (C_3-C_8) -cycloalkyl, where in the alkyl groups in each case one to seven hydrogen atoms may be replaced by fluorine;

and its physiologically acceptable salts.

Claim 3 (canceled)

Claim 4. (original) A pharmaceutical composition comprising one or more compounds as claimed in claim 1 and a pharmaceutically acceptable carrier.

Claim 5. (original) The pharmaceutical composition according to claim 4, further comprising one or more active compounds for reducing weight in mammals.

Claim 6. (original) A method for reducing weight in mammals, comprising administering to said mammal a compound of formula I as claimed in claim 1.

Claim 7. (original) A method of treating obesity, comprising administering to a subject in need thereof, an effective amount of a compound of formula I as claimed in claim 1.

Claim 8. (original) The method of claim 7, further comprising administering one or more active compounds for reducing weight in mammals.

Claims 9-10. (canceled)

Claim 11. (original) A method of maintaining weight loss, comprising administering to a subject in need thereof, an effective amount of a compound of formula I as claimed in claim 1.

Claim 12. (original) The method of claim 11, further comprising administering one or more active compounds for reducing weight in mammals.