- 1. Banque CCINP 2024: 63 Adjoints
- 2. Banque CCINP 2024 : 66 "racines carrées", classique
- 3. Banque CCINP 2024: 76 Cauchy Schwarz, minimisation
- 4. Banque CCINP 2024: 77 Orthogonalité, cours
- 5. Banque CCINP 2024: 78 Cours isométries *
- 6. [CCP] Sur l'adjoint d'un projecteur

Soit E un espace vectoriel euclidien et soit $f \in \mathcal{L}(E)$ un projecteur.

- (a) Démontrer que f^* est un projecteur.
- (b) Montrer que $f^* = f$ si et seulement si f est la projection orthogonale sur Im(f).
- (c) On suppose que f et f^* commutent.
 - i. Démontrer que $f \circ f^*$ est une projection orthogonale.
 - ii. Démontrer que $\operatorname{Ker}(f \circ f^*) \cap \operatorname{Im}(f) = \{0\}.$
 - iii. En déduire que $\operatorname{Ker}(f \circ f^*) = \operatorname{Ker}(f)$ et que $\operatorname{Im}(f \circ f^*) = \operatorname{Im}(f)$.
- (d) En déduire que f et f^* commutent si et seulement si $f = f^*$.
- 7. [CCP] On définit les conditions : $M^2 + 4I_n = 0$ et $M^T M = MM^T$ (*) pour $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$.
 - (a) On suppose que $M \in \mathcal{M}_n(\mathbb{R})$ respecte (*). Trouver un polynôme annulateur de $S = MM^T$. En déduire que M/2 est orthogonale.
 - (b) Quel est l'ensemble des matrices $M \in \mathcal{M}_2(\mathbb{R})$ qui respectent (*)?
 - (c) Quel est l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ qui respectent (*)?
- 8. [Centrale] Soit E un espace euclidien muni du produit scalaire (.|.) et $u \in \mathcal{M}(E)$.
 - (a) Supposons qu'il existe deux valeurs propres réelles λ et μ de u de signes opposés. Montrer qu'il existe un vecteur non nul z de E tel que (u(z)|z)=0.
 - (b) Supposons u symétrique et Tr(u) = 0, montrer qu'il existe un vecteur $z \neq 0_E$ de E tel que (u(z)|z) = 0.
 - (c) Supposons Tr(u) = 0, montrer qu'il existe un vecteur $z \neq 0_E$ de E tel que (u(z)|z) = 0.
 - (d) Supposons Tr(u) = 0, montrer qu'il existe une base orthonormale \mathcal{B} de E telle que $Mat_{\mathcal{B}}(u)$ ait tous ses coefficients diagonaux nuls.(indication :récurrence sur la dimension).
- 9. [Centrale]

Soit $n \in \mathbb{N}^*$ et B_n l'ensemble des matrices $A = (a_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$ telles que $\chi_A = \prod_{k=1}^n (X - a_{k,k})$.

- (a) Montrer que $B_n \neq \emptyset$.
- (b) L'ensemble B_n est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
- (c) Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est symétrique, alors $\sum_{1 \leq i,j \leq n} a_{i,j}^2 = \sum_{\lambda \in \operatorname{Sp}(A)} m_{\lambda}(A) \lambda^2$.
- (d) Déterminer $B_n \cap S_n$ (S_n est l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$).
- (e) Trouver $B_n \cap A_n$ (A_n est l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$).
- **10.** [Mines] Soit $n \in \mathbb{N}^*$ et U et V deux matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

On munit $E = \mathcal{M}_{n,1}(\mathbb{R})$ de sa structure euclidienne canonique.

On suppose que $\forall X \in E$, $(UX|X) \ge 0$ et $(VX|X) \ge 0$.

On se propose de montrer l'inégalité (I): $\det(U+V) \geqslant \det(U) + \det(V)$.

- (a) Montrer (I) si U et V ne sont inversibles ni l'une ni l'autre.
- (b) Montrer (I) si U inversible. Indication : on pourra commencer par le cas $U = I_n$. Conclure.
- (c) Étudier le cas d'égalité dans (I).