Declarative language

Before building system

before there can be learning, reasoning, planning, explanation ...

need to be able to express knowledge

Want a precise declarative language

- declarative: believe P = hold P to be true. Assignment P without some sense of what it would mean for the world to satisfy P
- · precisations: // prowexender.com
 - what strings of symbols count as sentences
 - what it he are to be true; (but without having to specify which ones are true)

What does it mean to have a language?

- syntax
- · semantics
- pragmatics

Here: language of first-order logic

again: not the only choice

Alphabet

Logical symbols:

- Punctuation: (,), .
- Connectives: ¬, ∧, v, ∀, ∃, =
- Variables: $x, x_1, x_2, ..., x', x'', ..., y, ..., z, ...$

Fixed meaning and use

Assignment Project Exam Help

Non-logical symbols powcoder.com

- · Predicate symbols dike that powcoder
- Function symbols (like bestFriendOf)
 Domain-dependent meaning and use
 like identifiers in a programming language

Have arity: number of arguments

arity 0 predicates: propositional symbols

arity 0 functions: constant symbols

Assume infinite supply of every arity

Note: not treating = as a predicate

Grammar

Expressions: terms and formulas (wffs)

Terms

- 1. Every variable is a term.
- 2. If $t_1, t_2, ..., t_n$ are terms and f is a function of arity n, then $f(t_1, t_2, ..., t_n)$ is a term.

Atomic wffs

- 1. If t_1, t_2, \dots, t_n are termspand P is a predicate of prity p, then $P(t_1, t_2, \dots, t_n)$ is an atomic wif.
- 2. If t_1 and t_2 are terms, then $(t_1=t_p)$ is an atomic wff. https://powcoder.com

Wffs

- 1. Every at Artibour Me Cothat powcoder
- 2. If α and β are wffs, and v is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\exists v.\alpha$, $\forall v.\alpha$ are wffs.

The propositional subset:

No terms

Atomic wffs: only predicates of 0-arity

No variables and no quantifiers

$$(p \land \neg (q \lor r))$$

Notation

Occasionally add or omit (,), .

Use [,] and {, } also.

Abbreviations:

$$(\alpha \supset \beta)$$
 for $(\neg \alpha \lor \beta)$
 $(\alpha = \beta)$ for $((\alpha \supset \beta) \land (\beta \supset \alpha))$

Non-logical symbols: Assignment Project Exam Help Predicates: Person, Happy, Older Than

Functions: father of successor john Smith NUT POWCO CO.

Add WeChat powcoder

Lexical scope for variables

free

occurrences of variables bound

Sentence: wff with no free variables (closed)

Substitution: $\alpha[v/t]$ means α with all free

occurrences of v replaced by term t

(also α^{v}_{t})...

Semantics

How to interpret sentences?

- what do sentences claim about the world?
- what does believing one amount to?

Without answers, cannot use sentences to represent knowledge

Problem:

caAnosiuty specify interpretation of seatences because nonlogical symbols reach outside the language

So: https://powcoder.com

make clear dependence of interpretation on non-logical classification by eChat powcoder

Logical interpretation:

specification of how to understand predicate and function symbols

Can be complex!

DemocraticCountry, IsABetterJudgeOfCharacterThan, favouriteIceCreamFlavourOf, puddleOfWater27

Simple case

There are objects

some satisfy predicate P; some do not

Each interpretation settles <u>extension</u> of *P*

borderline cases ruled in separate interpretations

Each interpretation assigns to function f a mapping from objects to objects

functioniscativansematil-Paringe and Sincternal Indelp

https://powcoder.com

Main assumption:

Add WeChat powcoder

this is all you need to know about the non-logical symbols to understand which sentences of FOL are true or false

In other words, given a specification of

- what objects there are
- which of them satisfy P
- what mapping is denoted by f

it will be possible to say which sentences of FOL are true and which are not

Interpretations

Two parts: $I = \langle D, \Phi \rangle$

D is the domain of discourse

__can be any set

not just formal / mathematical objects

e.g. people, tables, numbers, sentences, chunks of peanut butter, situations, the universe

Assignment Project Exam Help

Φ is an interpretation mapping.com

If P is a predicate symbol of arity n,

an n-ary relation over D

Can view interpretation of predicates

in terms of characteristic function

$$\Phi(P) \in [D \times D \times ... \times D \rightarrow \{0, 1\}]$$

If f is a function symbol of arity n,

$$\Phi(f) \in [D \times D \times ... \times D \rightarrow D]$$

an n-ary function over D

For constants, $\Phi(c) \in D$

Denotation

In terms of interpretation *I*, terms will denote elements of *D*.

will write element as I||t||

For terms with variables, denotation depends on the values of wariables roject Exam Help

will write as $I,\mu||t||$

htters: #/plaviplesder. Com called a variable assignment

Add WeChat powcoder

Rules of interpretation:

1.
$$I, \mu \|v\| = \mu(v)$$
.
2. $I, \mu \|f(t_1, t_2, ..., t_n)\| = H(d_1, d_2, ..., d_n)$
where $H = \Phi(f)$
and $d_i = I, \mu \|t_i\|$, recursively

Satisfaction

In terms of I, wffs will be true for some values of the free variables and false for others

will write as $I, \mu \models \alpha$ " α is satisfied by I and μ " where $\mu \in [Variables \rightarrow D]$, as before or $I \models \alpha$, when α is a sentence or $I \models S$, when S is a set of sentences (all sentences in S are true in I).

Assignment Project Exam Help Rules of interpretation:

1. $I, \mu \models P(h, tt_ps, t_n) \not= P(h, tt_n) \not= P(h, t$

2.
$$I,\mu \models (t_1 = t_2)$$
 iff $I,\mu \parallel t_1 \parallel$ is the same as $I,\mu \parallel t_2 \parallel$

3.
$$I,\mu \models \neg \alpha \text{ iff } I,\mu \not\models \alpha$$

4.
$$I,\mu \models (\alpha \wedge \beta)$$
 iff $I,\mu \models \alpha$ and $I,\mu \models \beta$

5.
$$I,\mu \models (\alpha \lor \beta)$$
 iff $I,\mu \models \alpha$ or $I,\mu \models \beta$

6.
$$I,\mu \models \exists v.\alpha$$
 iff for some $d \in D$, $I,\mu\{d,v\} \models \alpha$

7.
$$I,\mu \models \forall v.\alpha \text{ iff for all } d \in D, I,\mu\{d;v\} \models \alpha$$
 where $\mu\{d;v\}$ is just like μ , except on v , where $\mu(v)=d$.

For propositional subset:

$$I \models p$$
 iff $\Phi(p) = 1$ and the rest as above

Logical consequence

Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of non-logical symbols involved.

e.g. If α is true under I, then so is $\neg(\beta \land \neg \alpha)$, no matter what I is, why α is true, what β is, ...

Assignatento Project s Expansion Melp

 ${\cal S}$ entails α or α is a logical consequence of ${\cal S}$: https://powcoder.com

$$S = \alpha$$
 iff for every I , if $I = S$ then $I = \alpha$.

Add WeChat powcoder

In other words: for no I, $I = S \cup \{\neg \alpha\}$. Say that $S \cup \{\neg \alpha\}$ is <u>unsatisfiable</u>

Special case: S is empty $|= \alpha$ iff for every I, $I |= \alpha$. Say α is <u>valid</u>.

Note: $\{\alpha_1, \alpha_2, ..., \alpha_n\} \mid = \alpha \text{ iff } \mid = (\alpha_1 \land \alpha_2 \land ... \land \alpha_n) \supset \alpha$ finite entailment reduces to validity

Why do we care?

We do not have access to user-intended interpretation of non-logical symbols

But, with <u>entailment</u>, we know that if S is true in the intended interpretation, then so is α .

If the user's view has the world satisfying S, then it must also satisfy α .

There may be other sentences true also; but α is logically guaranteed ASSIGNMENT Project Exam Help

So what about:

Dog(fido) https://pawcoder.com

Not entailment!

There are logical interpretations where r
Φ(Dog)
Φ(Mammal)

Key idea of KR:

include such connections $\underline{\text{explicitly}}$ in S

 $\forall x[Dog(x) \supset Mammal(x)]$

Get: $S \cup \{Dog(fido)\} \mid = Mammal(fido)$

The rest is just the details...

Knowledge Bases

KB is set of sentences

explicit statement of sentences believed (including assumed connections among non-logical symbols)

KB
$$\mid = \alpha$$

 α is a further consequence of what is believed

- · exalisis knowledgent Project Exam Help
- implicit knowledge: $\{ \alpha \mid KB = \alpha \}$

https://powcoder.com

Often non travital: Verollhiat pompliciter

Example:

Three blocks stacked.

Top one is green.

Bottom one is not green.

A green
B non-green

Is there a green block directly on top of a non-green block?

A formalization

$$S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$$

all that is required

$$\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$$

Claim: $S = \alpha$

Proof:

Let I be any interpretation such that L = S. Assignment Project Exam Help

Case 1: I https://powcoder.com

- \therefore $I = Green(b) \land \neg Green(c) \land On(b,c).$
- $I = \alpha$ Add WeChat powcoder

Case 2: $I \neq Green(b)$.

- \therefore $I = \neg Green(b)$
- \therefore $I = Green(a) \land \neg Green(b) \land On(a,b).$
- $| I | = \alpha$

Either way, for any I, if $I \models S$ then $I \models \alpha$.

So
$$S = \alpha$$
. QED

Knowledge-based system

Start with (large) KB representing what is explicitly known

e.g. what the system has been told

Want to influence behaviour based on what is <u>implicit</u> in the KB (or as close as possible)

Assignment Project Exam Help

Requires reasoning powcoder.com

deductive inference:

processor can testing antal ments of the r

i.e given KB and any $\alpha,$ determine if KB $\mid=\alpha$

Process is <u>sound</u> if whenever it produces α , then KB \mid = α does not allow for plausible assumptions that may be true in intended interpretation

Process is <u>complete</u> if whenever KB $\models \alpha$, it produces α does not allow for process to miss some α or be unable to determine the status of α