1.2.5 ∞ 亜群と古典的なホモトピー論

通常の圏論における亜群と同様に、高次圏論における ∞ 亜群を定義する. \mathcal{C} を ∞ 圏とする. ホモトピー圏 $h\mathcal{C}$ が通常の亜群 (つまり、 \mathcal{C} の任意の射が同値) のとき、 \mathcal{C} を ∞ 亜群 (∞ -groupoid) という. 1.1.1 節で、 ∞ 亜群の理論と古典的なホモトピー論が等価であることを見た. この考えは次のように定式化することができる.

命題 1.2.5.1. [℃] を単体的集合とする. このとき, 次はすべて同値である.

- (1) Cは∞ 亜群である.
- (2) $\mathfrak C$ は任意の $0 \leq i < n$ に対して、包含 $\Lambda_i^n \hookrightarrow \Delta^n$ は拡張を持つ.
- (3) \mathcal{C} は任意の $0 < i \le n$ に対して、包含 $\Lambda_i^n \hookrightarrow \Delta^n$ は拡張を持つ.
- (4) \mathcal{C} は任意の $0 \leq i \leq n$ に対して、包含 $\Lambda_i^n \hookrightarrow \Delta^n$ は拡張を持つ. つまり、 \mathcal{C} は Kan 複体である.

Proof. (1) と (2) の同値性は命題 1.2.4.3 より従う. (1) と (3) の同値性は \mathbb{C}^{op} において命題 1.2.4.3 を用いると分かる. (2) かつ (3) と (4) の同値性は明らかである.

注意 1.2.5.2. 高次圏論において、 ∞ 亜群を空間と同一視できるということは自明ではない。例えば、ホモトピー圏 $\mathrm{h}\mathfrak{C}$ が亜群であるような位相的圏 \mathfrak{C} を考える。簡単のため、 \mathfrak{C} は 1 つの対象 X からなるとする。このとき、 \mathfrak{C} は位相モノイド $M=\mathrm{Map}_{\mathfrak{C}}(X,X)$ と同一視できる。 $\mathrm{h}\mathfrak{C}$ が亜群であることと、離散モノイド $\pi_0 M$ が群であることは同値である。このとき、単位射 $M \to \Omega BM$ は弱ホモトピー同値である。ここで、BM は M の分類空間である。つまり、1 対象 X からなる位相的圏 \mathfrak{C} は分類空間 BM と同値である。

 ∞ 亜群から ∞ 圏への包含は、小 ∞ 亜群のなす ∞ 圏から小 ∞ 圏のなす ∞ 双圏への埋め込みを定めることを表している。逆に、任意の ∞ 圏から可逆でない射を捨てることで、 ∞ 亜群を得ることができる。

命題 1.2.5.3. $\mathfrak C$ を ∞ 圏, $\mathfrak C'$ を任意の辺が $\mathfrak C$ における同値であるような $\mathfrak C$ の最大部分単体的集合とする. このとき, $\mathfrak C'$ は Kan 複体である. また, 任意の Kan 複体 K に対して, $\mathrm{Hom}_{\mathrm{Set}_\Delta}(K,\mathfrak C') \to \mathrm{Hom}_{\mathrm{Set}_\Delta}(K,\mathfrak C)$ は全単射である.

命題 1.2.5.3 は次のようにまとめることができる。命題 1.2.5.3 で得られる Kan 複体 C' を C に含まれる最大 Kan 複体 (largest Kan complex) という。 C' は C に含まれる最大 Kan 複体である。構成 $\mathrm{C}\mapsto\mathrm{C}'$ は ∞ 圏の ∞ 圏から Kan 複体の ∞ 圏への関手を定める。この関手は Kan 複体から ∞ 圏への包含が定める関手の (高次圏的な意味の) 右随伴である。また, ∞ 圏の同値 $\mathrm{C}\to\mathrm{D}$ は Kan 複体の ホモトピー同値 $\mathrm{C}'\to\mathrm{D}'$ を定める。

注意 1.2.5.4. 位相的圏や単体的圏においては、この構成は簡単に表すことができる. 例として位相的圏の場合をみる. C を位相的圏とする. このとき、位相的圏 C' を次のように定義する.

- € ' の対象は © の対象と同じ.
- \mathfrak{C}' の任意の対象 X,Y に対して、 $\operatorname{Map}_{\mathfrak{C}'}(X,Y)$ は、 $\operatorname{Map}_{\mathfrak{C}}(X,Y)$ のすべてのホモトピー同値のなす部分空間 (に部分位相をいれた位相空間).

注意 1.2.5.5. 系 2.4.2.5 で命題 1.2.5.3 の構成の相対版を証明する.

 ∞ 亜群から ∞ 圏への包含は 1 圏的な随伴はもたないが,高次圏的な随伴をもつ.この左随伴は「ファイブラント置換」によって計算することができる.例えば,構成 $S\mapsto \mathrm{Sing}|S|$ である.単位射 $u:S\to \mathrm{Sing}|S|$ は弱ホモトピー同値であるが,一般に圏的同値ではない.例えば,S が ∞ 圏のとき,u が圏的同値であることと,S が Kan 複体であることは同値である.一般に, $\mathrm{Sing}|S|$ は S の任意の 射に対して逆射をつけ足したような ∞ 亜群とみなすことができる.

注意 **1.2.5.6.** Set $_\Delta$ 上の Kan-Quillen モデル構造に加えて、2.2.5 節では、 Set_Δ 上の Joyal モデル構造を定義する。両方のモデル構造において、コファイブレーションは共通して単体的集合のモノ射である。しかし、Joyal モデル構造における弱同値は圏的同値なので、Kan-Quillen モデル構造における弱同値よりも少ない。よって、Joyal モデル構造におけるファイブラント対象は、Kan-Quillen モデル構造におけるファイブラント対象よりも多い。