Отчет о выполненой лабораторной работе 2.1.1

Антон Хмельницкий, Б01-306

February 14, 2024

Измерение удельнои теплоемкости воздуха при постоянном давлении

1 Аннотация

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретичсекие сведения

Рисунок 1

Теплоемкость тела:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Удельная теплоемкость при постояном давлении:

$$c_p = \frac{N - N_{\text{not}}}{q\Delta T} \tag{2}$$

*Не зависит от перепада давлений. Главное условие - идеальность газа

Мощность нагрева:

$$N = UI \tag{3}$$

Для медно-константановой термопары ЭДС:

$$\varepsilon = \beta \Delta T \tag{4}$$

, $\beta=40,7\frac{\text{мкB}}{{}^{\circ}C}$ Массовый расход:

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

, где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Мощность потерь тепла:

$$N_{\text{not}} = \alpha \Delta T \tag{6}$$

$$N = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью ($\Delta T(N)$ — линейная функция).

3 Экспериментальная установка

В настоящем эксперименте предлагается провести измерение зависимости $\Delta T(N)$ разности температур ΔT концов термопары от мощности нагрева N=UI при нескольких фиксированных значениях расхода q воздуха. По результатам измерений проверить справедливость зависимости и определить удельную теплоёмкость воздуха при постоянном давлении c_p а также оценить величину тепловых потерь.

Рисунок 2: Схема экспериментальной установки

- 4 Результаты эксперимента
- 5 Обработка результатов
- 6 Вывод