Chapitre 2 : Groupes symétriques

I Permutations

Définition : Soient X un ensemble et S(X) l'ensemble des bijections de X dans X. On appelle permutation de X tout élément de S(X).

Propriété : Ensemble des permutations (admise)

 $(S(X), \circ)$ est un groupe (en général non commutatif).

Vocabulaire : C'est le groupe symétrique sur X.

Démonstration :

- La composée de deux bijections est une bijection, donc \circ est une loi interne sur S(X).
- La loi ∘ est associative.
- L'élément neutre est l'identité id_X .
- L'inverse d'une bijection est une bijection (la bijection réciproque). □

Proposition:

Soit Y un ensemble avec une bijection $b: X \to Y$.

L'application $\varphi_b: S(X) \to S(Y)$ définie par $\sigma \mapsto b \circ \sigma \circ b^{-1}$ est un isomoprhisme de groupe.

1 Remarque: Donc S(Y) est isomorphe à S(X).

Démonstration:

 φ_b est bien définie : comme b et σ sont bijectives, $b \circ \sigma \circ b^{-1}$ est bijective.

 φ_b est un morphisme $\forall \sigma, \sigma' \in S(X)$. On a :

$$\varphi_b(\sigma \circ \sigma') = b \circ (\sigma \circ \sigma') \circ b^{-1} = b \circ \sigma \circ b^{-1} \circ b \circ \sigma' \circ b^{-1} = (b \circ \sigma \circ b^{-1}) \circ (b \circ \sigma' \circ b^{-1}) = \varphi_b(\sigma) \circ \varphi_b(\sigma')$$

 φ_b est bijective car sa réciproque est donnée par $\tau=b^{-1}\circ \tau\circ b.$ \square

Définition: Supposons X fini de cardinal n.

Il existe une bijection $1, 2, ..., n \rightarrow X$ (numérotation de X).

On prend $S_n = S(1, 2, ...n)$: c'est le groupe symétrique sur n lettres. Il est isomorphe à S(X)

Notation par tableau : σ

Définition : Soit $\sigma \in S(X)$.

Le support de σ est $x \in X \mid \sigma(x) \neq x$

Exemple: Prenons $S(X) = S_6$.

 σ a pour support 1, 3, 4, 6.

Proposition:

Soient $\sigma, \sigma' \in S(X)$ de supports disjoints. Alors σ et σ' commutent, *i.e.* $\sigma \circ \sigma' = \sigma' \circ \sigma$

Démonstration :

```
Soient S et S' les supports de \sigma et \sigma'. On a \sigma \circ \sigma'(x) = \sigma'(\sigma(x)) = \sigma'(x). On a \sigma'(x) \notin S, sinon \sigma'(x) \notin S' et \sigma'(\sigma'(x)) = \sigma'(x) donc \sigma'(x) = x, donc \sigma'(x) \notin S. Donc \sigma \circ \sigma'(x) = \sigma'(x) = \sigma' \circ \sigma(x).
```

```
De même, si x \in X - S', on a : \sigma \circ \sigma'(x) = \sigma' \circ \sigma(x). Comme S \cap S' = \emptyset, on a : \sigma \circ \sigma'(x) = \sigma' \circ \sigma(x) \ \forall x \in X. \square
```

```
Propriété : Ordre de S_n
```

Le groupe S_n est d'ordre n!.

Démonstration :

Soient X,Y deux ensembles à n éléments.

Montrons que $\#\{bijectionsX \rightarrow Y\} = n!$.

En effet, si $X = x_1, ..., x_n$ et $f: X \to Y$ est une bijection, il y a :

- n possibilités pour $f(x_1)$
- n-1 possibilités pour $f(x_2)$:
- 1 possibilité pour $f(x_n)$

II Cycles

```
Définition : Soit X un ensemble et soit k \geq 2 un entier. Un k-cycle de S(X) est donné par a_1, a_2, \ldots, a_k \in X \mid a_i \neq a_j sii \neq j. et \sigma(a_i) = a_{i+1} pour 1 \leq i < k et \sigma(a_k) = a_1 et \sigma de support a_1, a_2, \ldots na_k. On le note (a_1 \cdots a_k).
```

X Attention **X** La notation n'est pas unique : $(a_i a_{i+1} \cdots a_k a_1 a_2 \cdots a_{i-1}) = (a_1 \cdots a_k)$

Solution Vocabulaire: On dit qu'une permutation c est un cycle s'il existe $k \geq 2 \mid c$ est un k-cycle. Alors k s'appelle la longueur de c.

Proposition:

Comme élément du groupe S(X) un k-cycle c est d'ordre k.

Démonstration :

```
Posons c=(a_1\cdots a_k).
On a \varepsilon(a_1)=a_{1+j}\neq a_1.
Donc ordre(c)\geq k. On a c^k(a_i)=a_i \forall i, donc c est d'ordre k. \square
```

1 Remarque : Rappel

Des cycles à supports disjoints communtent.

```
Soient c=(a_1\cdots a_k) et c'=(a'_1\cdots a'_{k'}) deux cycles de S(X) tels que S(c)\cap S(c')=\emptyset. avec a_1,\ldots,a_k\cap a'_1,\ldots,a'_{k'}=\emptyset. On a c\circ c'=c'\circ c
```

Définition : Soit $x \in X$, l'orbite de x sous σ est $\{\sigma^m(x) \mid m \in Z\}$.

1 Remarque: On a $x \notin Support(\sigma)$ si $\sigma(x) = x \Leftrightarrow$ orbite de x est un singleton. Si σ est un k-cycle de support S et $x \in S$, l'orbite de x a k éléments, c'est S.

Théorème:

Si X est fini, tout élément de S(X) s'écrit comme produit de cycles à supports disjoints. Cette écriture est unique à l'ordre des facteurs près.

Démonstration :

• Existence : (par récurrence)

Si $Support(\sigma) = \emptyset$, on a $\sigma = id_X$: c'est bien un produit (vide) de cycles.

Supposons maintenant que $Support(\sigma) \neq \emptyset$. Soit $x \in Support(\sigma)$.

Soit $\sigma' \in S(X)$ donnée par $\sigma'(y) = \sigma(y)$ si $y \notin \text{orbite de } x, \sigma'(y) = y \text{ sinon.}$

Considérons le cycle c donné par : $(x\sigma(x)\sigma^2(x) - \sigma^k(x))$ avec $k = min\{m \mid \sigma^m(x) = x\}$.

C'est un k-cycle de support l'orbite de \hat{x} .

Si $y \in$ orbite de x on a $\sigma(y) = c(y)$.

Alors σ et c sont de supports disjoints et on a : $\sigma = \sigma'c = c\sigma'$.

En effet, soit $y \in X$,

 $y \notin \text{orbite de } x \text{ on a } \sigma'(y) = c(y)$

X Attention X Démonstration non terminée (le prof n'écrivait pas clair au tableau)

© Exemple : Soit $X = \{1, 2, 3, 4, 5\}$ et $\sigma \in S(X)$ défini par :

$$\sigma(1) = 3$$
, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 4$, $\sigma(5) = 2$

Alors σ s'écrit comme produit de cycles à supports disjoints :

$$\sigma = (1\ 3)(2\ 5)$$

Cette écriture est unique à l'ordre des facteurs près.