Outline Fuler Formula RSA

Euler Formula Let integer a coprime to pa 9= gcd Cp-1, q-1) prof: Zpa ~ Zp* x Zg* $Q_{1} = Q_{1} = Q_{1} = Q_{1}$ $\frac{(p-n)(q-1)}{9} = \left(\frac{q-1}{2}\right)\frac{(p-1)}{9}$ = 1 mod q

Let p be prome Let a be an integer aprine to P. Fernat's: aP-1 = 1 mod p Let P, q, be distinct primes. Let a be an integer copine to pa Eule-51: (p-1)(q-1) = 1 mod p Eure's 2 - 0 9 = 1 mod P 9 = ged (P-4 y-1)

Jant Euler'S 1: QP-D(q-1) = 1 mod Pq $(a^{p-1})^{q-1} \equiv 1 \quad \text{and} \quad p \rightarrow p \mid a^{(p-1)(q-1)} \mid$ prof = $(a^{n-1})^{p+1} \equiv [\text{and } q \Rightarrow q | a^{(p-1)(q-1)}]$ $pq \mid q^{(p-1)(q-1)} - 1 \rightarrow q^{(p-1)(q-1)} \equiv 1 \text{ and } pq$ Q = Q = 1 Mod pqEulec's 2: 9 = 9cd (p-1, q-1) Z_{pq} , \sim $Z_p^* \times Z_q^*$ took: $b = q^{p-nq-1} \longrightarrow (q_1, q_2)$ $Q_{c} = b \mod p = Q \mod p = 1$ $q_2 = b \mod q = a^{q+p} \stackrel{p-p}{=} \mod q = 1$ $b \mapsto (1, 1)$

Diffie-Hellman Exchange: gx = h must p, sour x. RSA problem: m = c mod N, solve m "Frol the eth root of a modulo N". N=p prime, gcd(e,p-1)=1 (Easy) Case 1: Given me = C mod P since gcdce,p-r)=1, there exist d sur in that ed = 1 mod p-1. m=med=cd mad P So, use Extended Euclidean algorithm to find d and comprts m= cd mad P.

Case 2: N = PQ, P and a are district primes ard(e, (0-1)(9-1))=1 (Eusy if (9-1)(y-1) is Egor () compute of sun and ed = 1 mod (P-1) usma Extended Extiden Agoran and comple W= WEG = Cg wog bd RSA assumption: If m is unitarry distributed at random in This, given N.e, C, it is hard to recover m. ((computationally intractors le)

Pormality test:
Given an integer p, it takes polynomial time
check & P 15 prine.
Factoria losge integers
Given an integer on, find the prime
factors of n. No polynomial time
algorithm is thoun.
Shor's Quartum Algorithm
Factoria integer is easy in Quantum
Compate

to

RSA cyptosystem (textbook | Plyin RSA)

Bob	Alice	
Key creation		
Choose secret primes p and q .		
Choose encryption exponent e		
with $gcd(e, (p-1)(q-1)) = 1$.		
Publish $N = pq$ and e .		
Encryption		
	Choose plaintext m .	
	Use Bob's public key (N, e)	
	to compute $c \equiv m^e \pmod{N}$.	
	Send ciphertext c to Bob.	
Decryption		
Compute d satisfying		
$ed \equiv 1 \pmod{(p-1)(q-1)}.$		
Compute $m' \equiv c^d \pmod{N}$.		
Then m' equals the plaintext m .		

Table 3.1: RSA key creation, encryption, and decryption

Correctness: Prove that m'= cd mod N is equal to m prof: m' = cd mod N = med mod N = m mod N Easy: encypt = me mod N decropt: BOD Solves to dustra Extended Euclideon algorithms and compute and M Hard: break: Eve knows N, e, C, Based on RSA assumption it is howel to recover m.

N: modulus e: encyption exponent d: deempto exponent private P, q: primes
RSA in practice JEfficient Decemption: Cd mod N using Enler $ed = 1 \mod (P - 1)(q - 1)$, $Q = gd(P - 1, q - 1)$ Example: $P = 229$ $Q = 241$ $N = 64349$ $Q = 1380$ $Q = 17380$
Eicst compute $d: 17389.d = 1 mod 63840$
d = 53509 5629 $(0 move m = 43927 mud 64349)$
Ralghy log 5350g time Ly 5629 time

Efficient desoption using CRT m=cd mod pq Using Chinase Remarder Mesian Ipq a Zp × Zq, $m=C_q \longrightarrow (m_1, m_2)$ (Ompute m= m mod p = d mod p-1 m = m = cd md q-1 p Lon b = c d mod q-1 (Ompute m= m, up+ m> vg, Where put qu=1.

