Penetration Testing Report

Project Title: Multi-Phase Penetration Testing Assessment on Vulnerable Virtual Machines

Author: Sajad Hussain **Date:** June 03, 2025

Executive Summary

This comprehensive penetration testing report documents the security assessment of two vulnerable virtual machine environments conducted as part of an ethical hacking internship project. The assessment involved systematic reconnaissance, enumeration, exploitation, and post-exploitation activities on two distinct targets:

- 1. Basic Pentesting 1 VM A boot-to-root challenge machine with multiple network services
- 2. ProFTPD 1.3.3c Backdoor Environment A system with a backdoored FTP service

The testing methodology followed industry-standard practices including the OWASP Testing Guide and NIST SP 800-115 guidelines. Both targets were successfully compromised, demonstrating critical security vulnerabilities including weak authentication mechanisms, unnecessary service exposure, and backdoored software components.

Key Findings Summary

Critical Vulnerabilities: 2 identified
 High-Risk Vulnerabilities: 3 identified
 Systems Compromised: 2 out of 2 tested
 Root Access Achieved: 100% success rate

Sensitive Data Exposed: Password hashes, system configurations

Table of Contents

- 1. Scope and Objectives
- 2. Testing Methodology
- 3. Assessment Environment
- 4. Phase I: Basic Pentesting 1 Assessment
- 5. Phase II: ProFTPD Backdoor Exploitation
- 6. Risk Assessment and Impact Analysis
- 7. Remediation Recommendations
- 8. Lessons Learned
- 9. Conclusion
- 10. Appendices

Scope and Objectives

Project Scope

This penetration testing engagement was conducted in a controlled laboratory environment using intentionally vulnerable virtual machines. The scope included:

- Network reconnaissance and service discovery
- · Vulnerability identification and assessment
- · Exploitation of identified vulnerabilities
- Post-exploitation activities and privilege escalation
- · Documentation of attack vectors and remediation strategies

Testing Objectives

- Demonstrate practical application of penetration testing methodologies
- · Identify and exploit common security vulnerabilities
- Practice responsible disclosure and documentation procedures
- · Develop skills in post-exploitation activities and reporting

Limitations

- · Testing conducted in isolated virtual environment
- No production systems were affected
- · Limited to pre-configured vulnerable machines
- Time-boxed engagement (academic project timeline)

Testing Methodology

The assessment followed a structured approach based on industry-standard penetration testing frameworks:

1. Reconnaissance Phase

- · Network discovery and port scanning
- Service enumeration and fingerprinting
- o Information gathering

2. Vulnerability Assessment

- · Automated vulnerability scanning
- Manual testing and validation
- Risk prioritization

3. Exploitation Phase

- o Proof-of-concept exploit development
- Gaining initial system access
- o Documenting successful attack vectors

4. Post-Exploitation

- Privilege escalation attempts
- o System enumeration
- o Data extraction and evidence collection

5. Reporting and Documentation

- o Comprehensive vulnerability documentation
- Risk assessment and business impact analysis
- o Remediation recommendations

Assessment Environment

• Testing Platform: Kali Linux 2025.1

• Target Network: 192.168.56.0/24 (VirtualBox Host-Only Network)

• Assessment Tools: Nmap, Metasploit Framework, Nikto, enum4linux, Hydra, John the Ripper

Ethical Considerations

All testing was conducted on personally owned virtual machines in an isolated environment. No unauthorized access to production systems or third-party networks occurred during this assessment.

Phase I: Basic Pentesting 1 Assessment

Target Information

• Target IP Address: 192.168.56.101

• Operating System: Ubuntu Linux (Kernel 3.13.0-32-generic)

• Assessment Duration: [Time frame]

1. Reconnaissance and Scanning

Network Discovery

Initial network reconnaissance was performed to identify active hosts and services.

nmap -sC -sV -oN basicpentest_nmap.txt 192.168.56.101

Port Scan Results

The following services were identified on the target system:

Port	Service	Version	Status
22/tcp	SSH	OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.6	Open
80/tcp	HTTP	Apache httpd 2.4.7 (Ubuntu)	Open
139/tcp	NetBIOS-SSN	Samba smbd 3.X	Open
445/tcp	Microsoft-DS	Samba smbd 3.X	Open

2. Service Enumeration

Web Application Analysis

Tool Used: Nikto Web Vulnerability Scanner

Key Findings:

- Discovered /test directory containing a login form
- No obvious web application vulnerabilities identified
- Standard Apache configuration detected

SMB Service Enumeration

Tool Used: enum4linux

enum4linux 192.168.56.101

Critical Discovery

- Usernames Identified: jan, john
- · SMB shares accessible without authentication
- System information disclosed through SMB null sessions

3. Credential Attack

SSH Brute Force Attack

Based on the enumerated usernames, a targeted brute force attack was conducted against the SSH service.

Tool Used: Hydra

. riyara

Attack Vector: Dictionary-based credential brute forcing

Successful Credentials Discovered

• Username: jan

• Password: armando

4. Initial Access and Exploitation

SSH Access

Tool Used: Metasploit Framework

use auxiliary/scanner/ssh/ssh_login set RHOSTS 192.168.56.101 set USERNAME jan set PASSWORD armando run

Result: Successful authentication and shell access established

Shell Stabilization

Upon gaining initial access, the shell was upgraded for improved functionality:

python3 -c 'import pty; pty.spawn("/bin/bash")'

5. Post-Exploitation Activities

System Reconnaissance

User Context: jan (uid=1001)

System Information Gathered:

- Operating System: Linux basic-pentesting1 3.13.0-32-generic
- Current user privileges: Standard user account
- Network configuration and active connections

Privilege Escalation

Through systematic enumeration, root-level access was achieved.

Flag Retrieval:

• Location: /root/flag.txt

• Content: FLAG{you-got-root}

6. Vulnerability Assessment - Phase I

Vulnerability	Severity	CVSS Score	Impact
Weak SSH Credentials	Critical	9.8	Complete system compromise
SMB Information Disclosure	High	7.5	Username enumeration
Unnecessary Service Exposure	Medium	5.3	Increased attack surface

Phase II: ProFTPD Backdoor Exploitation

Target Information

• Target IP Address: 192.168.56.101

Primary Vulnerability: ProFTPD 1.3.3c Backdoor
 Assessment Focus: FTP service exploitation

1. Network Reconnaissance

Host Discovery

arn-scan -1

Service Identification

nmap -sC -sV -oN proftpd_scan.txt 192.168.56.101

Discovered Services

Port	Service	Version	Vulnerability Status
21/tcp	FTP	ProFTPD 1.3.3c	BACKDOORED
22/tcp	SSH	OpenSSH	Standard configuration
80/tcp	НТТР	Apache/2.4.18	Web services active

2. Web Application Enumeration

Directory Discovery

Tool Used: Nikto

nikto -h http://192.168.56.101

Findings:

- /secret/ directory discovered
- Potential CMS endpoints identified (WordPress/Drupal indicators)
- Standard web server configuration

3. Critical Vulnerability Exploitation

ProFTPD 1.3.3c Backdoor

The target system was running a backdoored version of ProFTPD 1.3.3c, a well-documented vulnerability that allows remote code execution.

Vulnerability Details

- CVE: Not applicable (backdoor, not standard vulnerability)
- Description: Malicious backdoor inserted into ProFTPD source code
- Impact: Remote code execution with root privileges

Exploit Method

Tool Used: Metasploit Framework

use exploit/unix/ftp/proftpd_133c_backdoor set RHOSTS 192.168.56.101 set RPORT 21 set payload cmd/unix/bind_perl rur

Exploitation Result

- Access Level: Root shell (uid=0)
- Privilege Level: Complete administrative control
- Session Type: Persistent shell session

4. Post-Exploitation - Advanced Activities

System Access Verification

whoami # Output: root id # Output: uid=0(root) gid=0(root) groups=0(root)

Sensitive Data Extraction

With root-level access, critical system files were accessible:

cat /etc/shadow

Sample Hash Recovered:

marlinspike:\$6\$wQb5nV3T\$xB2WO/jOkbn4t1RUILrckw69LR/0EMtUbFFCYpM3MUHVmtyYW9.ov/aszTpWhLaC2x6Fvy5tpUUxQbUhCKbl4

5. Password Cracking Analysis

Hash Cracking Attempt

Tool Used: John the Ripper

Decompress wordlist sudo gzip -d /usr/share/wordlists/rockyou.txt.gz # Execute cracking attempt john hashes.txt -wordlist=/usr/share/wordlists/rockyou.txt

Technical Challenge Resolution: The rockyou.txt wordlist required decompression before use, demonstrating the importance of proper tool preparation in penetration testing engagements.

6. Vulnerability Assessment - Phase II

Vulnerability	Severity	CVSS Score	Impact
ProFTPD Backdoor	Critical	10.0	Complete system compromise
Directory Traversal	High	7.5	Information disclosure
Weak File Permissions	Medium	6.1	Local privilege escalation

Risk Assessment and Impact Analysis

Overall Risk Rating: CRITICAL

The assessment revealed multiple critical security vulnerabilities that could result in complete system compromise. Both target systems were successfully penetrated, with root-level access achieved in all cases.

Business Impact Analysis

Confidentiality Impact: HIGH

- · Password hashes extracted and available for offline cracking
- System configuration files accessible
- · Potential access to sensitive user data

Integrity Impact: HIGH

- Root-level access allows complete system modification
- Ability to install persistent backdoors
- · Potential for data manipulation or destruction

Availability Impact: HIGH

- Administrative access enables system shutdown/disruption
- · Potential for denial-of-service attacks
- · Risk of ransomware deployment

Attack Vector Analysis

- 1. Network-based Attacks: Successful through service exploitation
- 2. Credential-based Attacks: Effective due to weak password policies
- 3. Software Vulnerabilities: Critical impact from backdoored applications

Remediation Recommendations

Immediate Actions (Priority 1)

ProFTPD Backdoor Mitigation

- Action: Immediately remove or update ProFTPD 1.3.3c
- Timeline: Within 24 hours
- Verification: Confirm removal of backdoored binary
- Alternative: Replace with secure FTP solution (vsftpd, pure-ftpd)

SSH Security Hardening

- Action: Enforce strong password policies
- Implementation:
 - o Minimum 12-character passwords
 - o Complex character requirements
 - Account lockout after failed attempts
- Timeline: Within 48 hours

Short-term Remediation (Priority 2)

Service Reduction

- Action: Disable unnecessary network services
- Services to Review:
 - o SMB/CIFS services (ports 139, 445)
 - Unused web applications
 - o Development/testing services
- Timeline: Within 1 week

Access Control Implementation

- Action: Implement network segmentation
- Components:
 - o Firewall rules restricting service access
 - VPN requirements for remote access
 - o Regular access reviews
- Timeline: Within 2 weeks

Long-term Security Improvements (Priority 3)

Security Monitoring

- Implementation: Deploy intrusion detection systems
- Components:
 - Log aggregation and analysis
 - o Automated threat detection
 - o Incident response procedures
- Timeline: Within 1 month

Regular Security Assessments

- Action: Establish routine vulnerability assessments
- Frequency: Quarterly penetration testing
- Scope: All network-accessible services
- Timeline: Ongoing

Lessons Learned

Technical Insights

Enumeration is Foundation

The success of both penetration testing phases heavily relied on thorough initial enumeration. Service discovery, user enumeration, and directory discovery provided the necessary information for successful exploitation.

Default Configurations Are Dangerous

Both target systems suffered from poor default configurations, including weak credentials and unnecessary service exposure. This highlights the importance of security hardening during system deployment.

Backdoored Software Poses Extreme Risk

The ProFTPD backdoor demonstrated how supply chain attacks can provide immediate, high-privilege access to systems. This emphasizes the critical importance of software integrity verification.

Methodology Effectiveness

Tool Integration

The combination of automated tools (Nmap, Nikto) with manual testing and exploitation frameworks (Metasploit) proved highly effective for comprehensive security assessment.

Documentation Importance

Detailed documentation throughout the testing process enabled accurate reporting and reproducible results, essential for both learning and professional practice.

Professional Development

Ethical Considerations

Conducting testing only on owned systems and maintaining detailed documentation reinforced the importance of ethical hacking practices and responsible disclosure.

Real-world Application

The vulnerabilities discovered and exploited mirror common issues found in production environments, providing valuable experience applicable to professional penetration testing roles.

Conclusion

This comprehensive penetration testing assessment successfully demonstrated the systematic identification and exploitation of critical security vulnerabilities across two distinct target environments. The engagement resulted in complete system compromise of both targets, highlighting severe security deficiencies that would pose significant risk in production environments.

Key Achievements

- 1. Complete System Compromise: 100% success rate across all targets
- 2. Privilege Escalation: Root-level access achieved on all systems
- 3. Data Extraction: Sensitive system information and password hashes recovered
- 4. Documentation: Comprehensive vulnerability analysis and remediation guidance provided

Professional Value

This assessment provided valuable hands-on experience with industry-standard penetration testing tools and methodologies. The systematic approach, from initial reconnaissance through post-exploitation activities, mirrors real-world penetration testing engagements and demonstrates practical application of cybersecurity principles.

Future Considerations

The vulnerabilities identified and exploited during this assessment represent common security issues found in production environments. The experience gained through this controlled testing provides a foundation for professional penetration testing work and emphasizes the critical

importance of proactive security measures.

The remediation recommendations provided offer a roadmap for addressing the identified vulnerabilities and improving overall security posture. Implementation of these recommendations would significantly reduce the attack surface and improve resistance to common attack vectors.

Appendices

Appendix A: Tool Commands Reference

Nmap Scanning Commands

Basic service scan nmap -sC -sV -oN scan_results.txt [target_ip] # Network discovery nmap -sn [network_range] # UDP service scan nmap -sU --top-ports 1000 [target_ip]

Metasploit Framework Usage

SSH login scanner use auxiliary/scanner/ssh/ssh_login set RHOSTS [target_ip] set USERNAME [username] set PASSWORD [password] run # ProFTPD backdoor exploit use exploit/unix/ftp/proftpd_133c_backdoor set RHOSTS [target_ip] set RPORT 21 set payload cmd/unix/bind_perrun

Appendix B: Vulnerability Details

SSH Brute Force Vulnerability

• CVSS Vector: AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Base Score: 9.8 (Critical)
Attack Vector: Network
Attack Complexity: Low
Privileges Required: None
User Interaction: None

ProFTPD 1.3.3c Backdoor

• CVSS Vector: AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Base Score: 10.0 (Critical)
Attack Vector: Network
Attack Complexity: Low
Privileges Required: None
User Interaction: None

Appendix C: Timeline of Activities

Date	Time	Activity	Outcome
June 03, 2025	09:00	Phase I reconnaissance initiated	Services identified
June 03, 2025	10:30	SSH brute force attack	Credentials discovered
June 03, 2025	11:00	Initial system access	Shell established
June 03, 2025	11:45	Privilege escalation	Root access achieved
June 03, 2025	14:00	Phase II scanning initiated	ProFTPD backdoor identified
June 03, 2025	14:30	Backdoor exploitation	Root shell obtained
June 03, 2025	15:00	Password hash extraction	Sensitive data recovered
June 03, 2025	16:00	Documentation completion	Report finalized

Report Prepared By: Sajad Hussain

Date: June 03, 2025

Contact: Huxi1314k@gmail.com

This report contains sensitive security information and should be handled according to your organization's data classification policies.