Scene-aware and Social-aware Motion Prediction for Autonomous Driving

Alfred Nguyen, Baris Sözüdogru

Technical University of Munich

January 06, 2024

- Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

- Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

- Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

- Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

Distance and Velocity Equations (Ballistic Integration):

Distance and Velocity Equations (Ballistic Integration):

$$s(k+1) = s(k) + dt \cdot v(k) + \frac{dt^2}{2}a(k)$$
$$v(k+1) = v(k) + dt \cdot a(k)$$

Practical Course **MPFAV** January 06, 2024 6 / 31

Distance and Velocity Equations (Ballistic Integration):

$$s(k+1) = s(k) + dt \cdot v(k) + \frac{dt^2}{2}a(k)$$
$$v(k+1) = v(k) + dt \cdot a(k)$$

Acceleration Equations (Rearranged):

From distance:
$$a(k) = \frac{2}{dt^2} \Big(s(k+1) - s(k) - dt \cdot v(k) \Big)$$
From velocity:
$$a(k) = \frac{1}{dt} \Big(v(k+1) - v(k) \Big)$$

Practical Course **MPFAV** January 06, 2024 6 / 31

Distance and Velocity Equations (Ballistic Integration):

$$s(k+1) = s(k) + dt \cdot v(k) + \frac{dt^2}{2}a(k)$$
$$v(k+1) = v(k) + dt \cdot a(k)$$

Acceleration Equations (Rearranged):

From distance:
$$a(k) = \frac{2}{dt^2} \Big(s(k+1) - s(k) - dt \cdot v(k) \Big)$$
From velocity:
$$a(k) = \frac{1}{dt} \Big(v(k+1) - v(k) \Big)$$

Problem: Accelerations don't add up!

Previous Integration Model - Accuracy

Our Distance and Velocity Equations:

ТΠ

Our Integration Model

Our Distance and Velocity Equations:

$$s(t+1) = s(t) + dt \cdot v(t) + c_1 a(t) + c_2 a(t-1)$$

$$v(t+1) = v(t) + c_3 a(t) + c_4 a(t-1)$$

Practical Course MPFAV January 06, 2024 8 / 31

Our Distance and Velocity Equations:

$$s(t+1) = s(t) + dt \cdot v(t) + c_1 a(t) + c_2 a(t-1)$$

$$v(t+1) = v(t) + c_3 a(t) + c_4 a(t-1)$$

Our Acceleration Equations:

$$a(k) = -\overline{c_1}a(k-1) + \overline{c_2}(s(k+1) - s(k) - dt \cdot v(k))$$

$$a(k) = -\overline{c_3}a(k-1) + \overline{c_4}(v(k+1) - v(k))$$

Practical Course MPFAV January 06, 2024 8 / 31

ТИП

Our Integration Model - Matrix Form

Acceleration from Distance formula:

$$\left[a(k-1)\right] = \left[-a(k) \quad v(k+1) - v(k)\right] \left[\frac{\overline{c_1}}{\overline{c_2}}\right]$$

Acceleration from Velocity formula:

$$[a(k-1)] = [-a(k) \quad s(k+1) - s(k) - dt \quad v(k)] \begin{bmatrix} \overline{c_3} \\ \overline{c_4} \end{bmatrix}$$

Practical Course MPFAV January 06, 2024 9 / 31

ТЛП

Our Integration Model - Matrix Form

Acceleration from Distance formula:

$$\left[a(k-1)\right] = \left[-a(k) \quad v(k+1) - v(k)\right] \left[\frac{\overline{c_1}}{\overline{c_2}}\right]$$

Acceleration from Velocity formula:

$$[a(k-1)] = [-a(k) \quad s(k+1) - s(k) - dt \quad v(k)] \begin{bmatrix} \overline{c_3} \\ \overline{c_4} \end{bmatrix}$$

 \Rightarrow This can be solved using linear regression.

- 1 Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

Video demo of the scenarios

- 1 Method
 - Data collection
 - Filtering process
 - Integration Model
- 2 Results
 - Scenario Filtering
 - Integration Method

Reminder: Our Integration Model - Matrix Form

Acceleration from Distance formula:

$$\left[a(k-1)\right] = \left[-a(k) \quad v(k+1) - v(k)\right] \left[\frac{\overline{c_1}}{\overline{c_2}}\right]$$

Acceleration from Velocity formula:

$$[a(k-1)] = [-a(k) \quad s(k+1) - s(k) - dt \quad v(k)] \begin{bmatrix} \overline{c_3} \\ \overline{c_4} \end{bmatrix}$$

 \Rightarrow This can be solved using linear regression.

Results: Integration Method

Results: Comparison to the old acceleration model

MSE: 4.3249e-02

MSE: 1.9220e-09

 Practical Course
 MPFAV
 January 06, 2024
 15 / 31

Results: Integration Method

Rearranging the formula to the distance and velocity gives us these results:

Video demo of predicted car

Questions?

Acceleration Modification in the Y-axis

ТΙΠ

Acceleration Modification in the Y-axis

Acceleration Modification in the Y-axis

Motivation for Set-Based Prediction [1]

^[1] M. Althoff and S. Magdici, "Set-based prediction of traffic participants on arbitrary road networks," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 2, pp. 187–202, 2016.

Practical Course MPFAV January 06, 2024 22/31

SPOT

SPOT: A tool for set-based prediction of traffic participants [2]

Initial configuration and $\mathcal{O}(t)$ for $t \in [1.5\,\mathrm{s}, 2.0\,\mathrm{s}]$

Practical Course MPFAV January 06, 2024 23 / 31

^[2] M. Koschi and M. Althoff, "SPOT: A tool for set-based prediction of traffic participants," in Proc. of the IEEE Intelligent Vehicles Symposium, pp. 1679–1686, 2017.

Conclusions

Item

Item

Item

beginframe

Distance and Velocity Equations:

$$s(k+1) = s(k) + dt \cdot v(k) + \frac{dt^2}{2}a(k)$$
 $v(k+1) = v(k) + dt \cdot a(k)$

onslide;2;

Acceleration Equations:

$$a(k) = \frac{2}{dt^2} \left(s(k+1) - s(k) - dt \cdot v(k) \right) \qquad a(k) = \frac{1}{dt} \left(v(k+1) - v(k) \right)$$
endframe

Practical Course **MPFAV** January 06, 2024 25 / 31

Results: Integration Method

Results: Integration Method

Video demo of predicted car

Our Distance and Velocity Equations:

Our Distance and Velocity Equations:

$$s(t+1) = s(t) + dt \cdot v(t) + c_1 a(t) + c_2 a(t-1)$$

$$v(t+1) = v(t) + c_3 a(t) + c_4 a(t-1)$$

Practical Course **MPFAV** January 06, 2024 27 / 31

Our Distance and Velocity Equations:

$$s(t+1) = s(t) + dt \cdot v(t) + c_1 a(t) + c_2 a(t-1)$$

$$v(t+1) = v(t) + c_3 a(t) + c_4 a(t-1)$$

Our Acceleration Equations:

$$a(k) = -\overline{c}_1 a(k-1) + \overline{c}_2 (s(k+1) - s(k) - dt \cdot v(k))$$

$$a(k) = -\overline{c}_3 a(k-1) + \overline{c}_4 (v(k+1) - v(k))$$

Practical Course **MPFAV** January 06, 2024 27 / 31

Model in matrix form:

$$\begin{bmatrix} a(k) \\ a(k) \end{bmatrix} = \begin{bmatrix} -a(k-1) & s(k+1) - s(k) - dt \cdot v(k) & 0 & 0 \\ 0 & 0 & -a(k-1) & v(k+1) - v(k) \end{bmatrix} \begin{bmatrix} \overline{c_1} \\ \overline{c_2} \\ \overline{c_3} \\ \overline{c_4} \end{bmatrix}$$

怬

Our Integration Model

Model in matrix form:

$$\begin{bmatrix} a(k) \\ a(k) \end{bmatrix} = \begin{bmatrix} -a(k-1) & s(k+1) - s(k) - dt \cdot v(k) & 0 & 0 \\ 0 & 0 & -a(k-1) & v(k+1) - v(k) \end{bmatrix} \begin{bmatrix} \overline{c_1} \\ \overline{c_2} \\ \overline{c_3} \\ \overline{c_4} \end{bmatrix}$$

⇒ This can be solved using linear regression.

Results: Integration Method

Accuracy of the prediction for the acceleration using the Ballistic Integration method (MSE): 4.3249e-02

Previous Integration Model - Accuracy

Accuracy of the prediction for the acceleration using the Ballistic Integration method (MSE): 4.3249e-02

Results: Integration Method

Accuracy of the prediction for the acceleration (MSE): 3.0955e-03

