Econ 7330, Problem Set 4

November 5, 2019

This is due by on Friday, 11/8 at the beginning of section. Feel free to work in groups, but write your solutions individually.

- 1. Let $X_1...X_n$ be a random sample with pdf $f(x) = \frac{\theta}{x^2}$ for $0 < \theta \le x < \infty$.
 - a) Derive the method of moments estimator for θ .
 - b) Derive the maximum likelihood estimator for θ .
- 2. f(x) is a differentiable function of x for which f'' < 0.
 - a) Let g() be a monotonically increasing, differentiable function. Using calculus, prove that $\arg \max g(f(x)) = \arg \max f(x)$.
 - b) Why does g() have to be monotonically increasing? What if it is monotonically decreasing? Where does the proof go wrong?
 - c) Now, suppose f(x) is not necessarily differentiable, but $\arg \max f(x)$ exists, and suppose that g(x) is a monotineally increasing, non-differentiable function. Prove that $\arg \max g(f(x)) = \arg \max f(x)$.
 - d) Given a random sample $X_1...X_n$ from a population with pdf f(x), argue that maximizing the likelihood function $L(\theta|x)$ is equivalent to maximizing the log likelihood function $\log L(\theta|x)$.
- 3. Let $X_1...X_n$ be iid $N(\mu, 1)$.
 - a) Derive the method of moments estimator for μ .
 - b) Derive the maximum likelihood estimator for μ .
 - c) Now suppose that $\mu \geq 0$ by assumption. Derive the maximum likelihood estimator for μ . (Hint: How does the likelihood function behave the in the restricted domain $\mu \geq 0$?)