

Flower Classification: Analysis of Data Augmentation Strategies

Diego Acevedo, Samantha Colbert-Neal, Pallav Kamojjhala

AAI 501: Introduction to Artificial Intelligence

Introduction

- Project Overview: Developing a model to classify 16 species of flowers utilizing data augmentation techniques.
- Objective: Improving our model performance through implementing augmentation techniques.
- Dataset: We selected a dataset from Kaggle consisting of 16 species of flowers.

Random Flip

Random Crop

Random Translation

Random Rotation

Random Zoom

Random Contrast

Random Brightness

All Data Augmentation Layers

Validation Accuracy Across Models

Training Accuracy Across Models

Conclusion & Improvements

- Key Findings: Random
 Translation provided the highest accuracy of 72.5%.
 Combining all of the augmentations decreased the models performance.
- Our work emphasizes the importance of strategic data augmentation in improving CNN performance in real world applications.

Contributions

- Project Proposal
 - Dataset Selection
- Code
 - Approach
 - Data Prep
 - Data Augmentation Models
- Technical Report
 - Introduction
 - Analysis / Interpretation
 - Conclusion
- PowerPoint Presentation
 - Slides + Voiceovers

We all decided to work on the project together rather than delegating tasks or portions of the assignment.

All team members contributed equally to the group work requirements.