יחידה 7 - איזומטריות

סקירת המושגים והתכונות בנושא איזומטרית

(מותר להשתמש בכל הטענות שלהלן בפתרון שאלות)

הגדרה

A,B שתי נקודות אינ אם אם f שתי נקודות פונקציה אם לפגמו נקראת אינ נקראת f

 $\overline{f(A)f(B)} = \overline{AB}$: במישור, מתקיים

תכונות של איזומטריות הנובעות ישר מן ההגדרה

תכונה 1

כל איזומטריה היא פונקציה חד-חד-ערכית.

תכונה 2

הרכבה של איזומטריות היא איזומטריה.

תכונה 3

אם A,B,C נקודות אם איזומטריה של איזומטריה f

. f(A), f(B), f(C) חופף למשולש שקדקודיו A, B, C במישור, אז המשולש שקדקודיו

הגדרה

תהי f איזומטריה של המישור ויהיו A,B,C נקודות במישור. עוברים על קדקודי f המשולש f(A),f(B),f(C) החל מ- f(A),f(B),f(C)

$$I \qquad \frac{A \quad B \quad C}{f(A) \quad f(B) \quad f(C)}$$

$$II \qquad \frac{A \quad B \quad C}{f(A) \quad f(C) \quad f(B)}$$

במקרה הראשון נf -שומרת את מגמת המשולש

. A,B,C ובמקרה השני נאמר שf הופכת את מגמת המשולש A,B,C

תכונה 4

שתי איזומטריות שמתלכדות בשלוש נקודות לא קוויות הן איזומטריות שוות.

-במילים אחרות, אם A,B,C נקודות לא קוויות במישור ואם A,B,C במילים אחרות, אם

$$f(A)=g(A), f(B)=g(B), f(C)=g(C)$$

. $f(X)=g(X)$ אז לכל נקודה X מתקיים

מושגים המאפשרים להבחין בין האיזומטריות השונות

הגדרה

תהי f איזומטריה של המישור

אם f אם אבת שבת היא נקודה A היא נקודת אם .1

$$f(A) = A$$

אם f אם **קבוצה קבועה** אל (של נקודות במישור) היא אבוצה אם K אם .2

$$f(K) \subseteq K$$

(בלומר, $X \in K$ מתקיים $X \in K$ מתקיים אם לכל נקודה $X \in K$ מתקיים לבלומר, $X \in K$ היא קבוצה קבועה של $X \in K$ יהיו נקודות שבת של לב כי לא דרשנו שהנקודות של $X \in K$ יהיו נקודות שבת של לב

אם f שבת שבת היא היא קבוצה (של נקודות במישור) אם K אם 3.

$$f(K) = K$$

(f גם כאן לא דרשנו שהנקודות של K יהיו נקודות שבת של (גם כאן לא דרשנו (גם אונקודות (גם K

דוגמאות של איזומטריות

א. איזומטריית הזהות

1. נקודות שבת: כל נקודה במישור.

2. קבוצות קבועות: כל קבוצה של נקודות במישור.

3. קבוצות שבת: כל קבוצה של נקודות במישור.

4. מגמת משולשים: נשמרת.

טענה

. אם לאיזומטריה f יש שלוש נקודות שבת לא קוויות אז f היא הזהות.

ב. הזזה לא טריוויאלית

1. נקודות שבת: אין נקודות שבת

2. קבוצות שבת: כל ישר שמקביל לכיוון ההזזה או איחוד של ישרים

כאלה, ועוד...

3. קבוצות קבועות: למשל, כל קרן בכיוון ההזזה היא קבוצה קבועה שאינה

קבוצת שבת.

4. מגמת משולשים: נשמרת.

ג. סיבוב לא טריוויאלי

1. נקודות שבת: מרכז הסיבוב הוא נקודת השבת היחידה.

2. קבוצות שבת: כל מעגל, או איחוד של מעגלים שמרכזם בנקודת השבת

הנייל, ועוד...

3. קבוצות קבועות: יש גם כאלה שאינן קבוצות שבת אך הדוגמאות אינן

פשוטות, ולא נביא אותן כאן.

4. מגמת משולשים: נשמרת

ℓ שיקוף ביחס לישר נתון

1. נקודות שבת: כל נקודה על ציר השיקוף.

2. קבוצות שבת: כל קבוצה סימטרית ביחס לציר השיקוף.

3. קבוצות קבועות: אין קבוצות קבועות שאינן קבוצות שבת.

4. מגמת משולשים: שיקופים הופכים את מגמת המשולשים.

שאלה

כיצד ניתן לתאר את כל האיזומטריות של המישור?

טענה

אם המשולשים אז קיימת איזומטריה שהיא הם משולשים המשולשים א $\Delta A'B'C', \Delta ABC$ הרכבה של שלושה שיקופים לכל היותר, כך ש- f(A)=A', f(B)=B', f(C)=C'

משפט

כל איזומטריה של המישור היא הרכבה של שלושה או פחות שיקופים.

מסקנות

- : אם איזומטריה של המישור, אז מתקיימת (בדיוק) אחת מן הטענות הבאות .1
 - . שומרת את המגמה של כל משולש f
 - . הופכת את המגמה של כל משולש f = #
 - 2. כל איזומטריה היא פונקציה הפיכה (ולכן פונקציה חד-חד-ערכית ועל).
 - 3. איזומטריה מעתיקה קטע במישור לקטע חופף לו וישר לישר.
- 4. כדי לתאר את כל האיזומטריות של המישור, מספיק אם נדע לתאר את כל ההרכבות של שלושה או פחות שיקופים.

תיאור כל ההרכבות של שלושה או פחות שיקופים

הרכבות של שיקוף אחד - מקבלים שיקופים בלבד:

 $S_{\ell_2} \circ S_{\ell_1}$: הרכבות של שני שיקופים

(נעיר שכך מקבלים את כל האיזומטריות ששומרות מגמת משולשים)

- - .2 צירי שיקוף ℓ_1,ℓ_2 מקבלים הזזות.

הערות חשובות

- אז ההרכבה אז הוא d אוז ביניהם הוא והמרחק (בסדר ה ℓ_1,ℓ_2 שאז ההרכבה ℓ_1,ℓ_2 ישרים מקבילים . 2d היא היזה ל $\ell_2\circ S_{\ell_1}$
- m_1,m_2 ישרים מקבילים והמרחק ביניהם הוא d אז לכל שני ישרים מקבילים המרחק ביניהם $S_{m_2}\circ S_{m_1}=S_{\ell_2}\circ S_{\ell_1}:$ שמקבילים ל- ℓ_1,ℓ_2 (באותו סדר) והמרחק ביניהם d מתקיים: ℓ_1,ℓ_2 ל- כלומר, שתי ההרכבות מתארות אותה הזזה.
 - בים. מקבלים סיבובים: ℓ_1, ℓ_2 נחתכים בנקודה:

הערות חשובות

- היא (ℓ_2 ל- ל- ℓ_1 מ- בכיוון ביניהם (הזווית בינוח ל- ל- ℓ_1 ישרים ישרים ל- ℓ_1 אז ההרכבה O היא בכיוות היא הארכבה הנקודה אז הארכבה הוא היא א הארכבה היא א הארכבה הוא α ℓ_1 ל- ℓ_1
- אז לכל שני ישרים מחתכים ביניהם היא α אם ביניהם היא θ והזווית ביניהם לכל שני ישרים ℓ_1,ℓ_2 lpha אז: lpha שנחתכים ב- lpha (באותו סדר) והזווית ביניהם היא $m_1\,,m_2$. כלומר, שתי ההרכבות מתארות אותו סיבוב. $S_{m_2} \circ S_{m_1} = S_{\ell_2} \circ S_{\ell_1} = R_{O,2lpha}$

מסקנה

יש רק שלושה סוגי איזומטריות ששומרות מגמה:

- # הזהות
 - # הווה
- # סיבוב

.
$$S_{\ell_3} \circ S_{\ell_2} \circ S_{\ell_1}$$
 : הרככות של שלושה שיקופים

 $\ell_1 = \ell_2 = \ell_3 \quad \text{ בכל המקרים האלה תוצאת }.1$ בכל המקרים האלה תוצאת .2 בירי שיקוף $\ell_1, \ell_2, \ell_3 \quad \ell_1, \ell_2, \ell_3 \quad \ell_1, \ell_2, \ell_3$ נחתכים בנקודה .3

$$\ell_1 = \ell_2 = \ell_3$$
 צירי שיקוף זהים. 1

4. המקרה הכללי

טענה

בכל המקרים הנותרים ניתן למצוא ישרים מקבילים m_1 וישר וישר שמאונך להם כך בכל המקרים הנותרים ניתן למצוא ישרים שר כזו כהרכבה כזו כהרכבה לתאר לתאר כל כלומר, כלומר, כלומר, כ $S_{\ell_3} \circ S_{\ell_2} \circ S_{\ell_1} = S_{m_3} \circ S_{m_2} \circ S_{m_1}$ -ש M_1 של שיקוף מאונך לציר $S_{m_1} \circ S_{m_2}$ והזזה והזזה של שיקוף

הערה

האיזומטריה אך אין אין אין הופכת מגמת הופכת הוארנו קודם תיארנו אין אין אין אין איזומטריה איזומט שבת (ועל-כן אינה שיקוף).

הגדרה

איזומטריה שמתקבלת כהרכבה של שלושה שיקופים כנייל נקראת שיקוף מוזז.

מסקנה

כל איזומטריה שהופכת מגמת משולשים שייכת לאחד מן הסוגים הבאים:

- שיקוף -
- שיקוף מוזז-