

சடப்பொருள்களின் இயல்புகள், பயன்பாடுகள், இடைத்தாக்கங்கள்

இப்பாட அலகைக் கற்பதன் மூலம் உங்களால்

- இரசாயனத் தாக்கம் நிகழ்ந்தமைக்கான சான்றுகளைக் காட்டி விளக்குவதற்கும்
- அணுக்களின் நடத்தை தொடர்பாக நுணுகி ஆய்வதற்கும் மூலகங்களுக்கான இரசாயனக் குறியீடுகளைப் பயன்படுத்துவதற்கும்
- வளி, நீர், அமிலங்கள், மூலங்கள் என்பவற்றுடன் உலோகங்கள், அல்லுலோகங்கள் காட்டும் இடைத்தாக்கங்களை அறிந்துகொள்ளவும்
- கலப்புலோகங்கள், அவற்றின் பயன்பாடுகள் என்பன பற்றி அறியவும்
- உணவில் காணப்படும் போசணைப் பொருள்களை இனங்காண்பதற்கான எளிய பரிசோதனைகளை மேற்கொள்ளவும்
- பொருத்தமான நுகர்வுப் பொருள்களைத் தெரிவு செய்வதற்கான தர நிர்ணயம், பண்புத் தரம் தொடர்பான நியதிகளைப் பயன்படுத்தவும்
- பல்பகுதியங்களினதும் கூட்டுத் திரவியங்களினதும் இயல்புகளையும் பயன்களையும் நுணுகி ஆய்வதற்கும்
- தேவைக்குப் பொருத்தமான வகையில் கரைசல்களைத் தயாரிக்கவும்
- மின்னைப் பிறப்பிப்பதற்கான முறைகளை அறிந்துகொள்ளவும்
- நனோ தொழினுட்பவியலின் பயன்பாடு தொடர்பாக அறிந்துகொள்ளவும்

தேவையான தேர்ச்சிகளை அடைய முடியும்.

4.1 இரசாயனத் தாக்கம் நிகழ்ந்தமைக்கான சான்றுகள்

4.1.1 பௌதிக மாற்றங்களுக்கும் இரசாயன மாற்றங்களுக்கும் இடையிலான வேறுபாடுகள்

பனிக்கட்டி உருகுதல், நீர் கொதித்து கொதிநீராவியாக வெளியேறுதல், குளுக்கோசு நீரில் கரைதல், நன்றாக வெப்பமேற்றப்படும்போது சீனிக் கரைசல் கபில நிறமாதல், தீக்குச்சி எரிதல், இரும்பு துருப்பிடித்தல் போன்ற எமது அன்றாட வாழ்வில் காணும் சில மாற்றங்களைப் பற்றிக் கலந்துரையாடுவோம்.

மேலே விவரிக்கப்பட்ட சில மாற்றங்களில் இலகுவில் மீளக்கூடிய (ஆரம்பநிலையை அடையக்கூடிய) மாற்றங்களைக் கூறுங்கள். பனிக்கட்டி உருகி வரும் நீரைக் குளிரேற்றியில் வைத்தால் அது மீண்டும் பனிக்கட்டியாக மாறும். எனினும், ளிந்து முடிந்த தீக்குச்சியைப் பழைய நிலைக்கு மாற்ற முடியாது. இவ்வாறான மாற்றங்களைப் பற்றி விளங்கிக்கொள்ளச் செயற்பாடுகள் 4.1.1, 4.1.2 ஆகியவற்றில் ஈடுபடுங்கள்.

செயற்பாடு 4.1.1

- 250 ml கண்ணாடி முகவை ஒன்றில் 50 ml நீரை எடுங்கள்.
- ஒரு கரண்டி உப்புத்தூளை அதில் இட்டுக் கரையுங்கள்.
- முக்காலியில் வைக்கப்பட்டுள்ள கம்பிவலை மீது முகவையை வையுங்கள்.
- முகவையிலுள்ள நீர் முழுமையாக ஆவியாகி வெளியேறும்வரை வெப்பமேற்றுங்கள்.
- உங்களது அவதானிப்புகளை அறிக்கைப்படுத்துங்கள்.

உப்புத் தூளை நீரில் கரைக்கும்போது அது கரைந்து கரைசல் உருவாகின்றது. உப்பின் தோற்றத்தில் (appearance) / நிலையில் மாற்றம் ஏற்பட்டுள்ளது. எனினும், நீரை ஆவியாக்கியபோது, மீண்டும் உப்புப் பெறப்பட்டது. நீரை ஆவியாக்கிப் பெறப்பட்ட உப்பும் நீரில் கரைத்த உப்புத் தூளும் இரசாயன இயல்பில் ஒத்தவை. அதாவது, அங்கு புதிய பதார்த்தங்கள் தோன்றவில்லை.

இவ்வாறு, யாதேனும் ஒரு பதார்த்தத்தின் இரசாயன அமைப்பிலும் இயல்பிலும் மாற்றங்கள் ஏற்படாது அவற்றின் நிலையில் ஏற்படும் மாற்றங்கள் பௌ**திக மாற்றங்கள்** (physical changes) எனப்படும். பௌதிக மாற்றங்கள் பொதுவாக இலகுவாக மீளச்செய்யத்தக்கவை. அதாவது, பௌதிக மாற்றத்திற்கு உள்ளான பதார்த்தத்தை வெப்பமேற்றல், குளிரச்செய்தல், ஆவியாக்குதல், ஒடுக்குதல் போன்ற முறைகள் மூலம் மீண்டும் பழைய நிலையை அடையச் செய்ய முடியும். இது பௌதிக மாற்றத்தின் ஓர் இயல்பாகும்.

செயற்பாடு 4.1.2

- மக்னீசிய நாடாத் துண்டு ஒன்றை நன்றாகச் சுரண்டித் தூய்மையாக்குங்கள்.
- அதனைச் சுவாலையில் பிடித்துத் தகனமடையச் செய்யுங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கைப்படுத்துங்கள்.

மக்னீசிய நாடா வெப்பமேற்றுமுன் மினுமினுப்பான உலோகப் பதார்த்தமாகும். வெப்பமேற்றும்போது, அது பிரகாசமான ஒளியுடன் தகனமடையும். தகனத்தின் பின் வெள்ளை நிறத் திண்மப் பதார்த்தம் மீதியாகப் பெறப்படும். இது உலோக மக்னீசியத்திலும் வேறுபட்ட இரசாயன அமைப்பையும் இயல்பையும் கொண்டதாகும்.

யாதேனும் ஒரு பதார்த்தம் அல்லது பதார்த்தங்கள் இரசாயன இயல்பில் வேறுபட்ட புதிய பதார்த்தமாக அல்லது பதார்த்தங்களாக மாறுதல் **இரசாயன மாற்றங்கள்** (chemical changes) அல்லது இரசாயனத் தாக்கங்கள் (chemical reactions) எனப்படும்.

இரசாயன மாற்றத்திற்கு உள்ளாகும் பொருள்களைப் பொதுவாக, இலகுவாக மீளப் பெறமுடியாது. இது இரசாயன மாற்றத்திற்குரிய முக்கிய இயல்பாகும்.

ஒப்படை 1

நீங்கள் அவதானித்த பல்வேறு மாற்றங்களைப் பட்டியற்படுத்தி அவற்றைப் பௌதிக மாற்றங்கள், இரசாயன மாற்றங்கள் என வேறுபடுத்தி எழுதுங்கள்.

4.1.2 இரசாயனத் தாக்கங்களுக்கான அதாரங்கள்

தீக்குச்சி ஒன்றை எரியச்செய்து அவதானியுங்கள். தீக்குச்சியின் தலையில் உள்ள பதார்த்தம் இரசாயன மாற்றத்திற்கு உள்ளாகி இருப்பதை நீங்கள் காண்பீர்கள்.

தீக்குச்சியின் தலையிலுள்ள பதார்த்தம் எரிவதற்கு முன் கறுப்பு அல்லது கபில நிறமானது. அது எரியும்போது மஞ்சள் நிறச் சுவாலை தோன்றுவதையும் 'ஸ்' என்ற ஒலி ஏற்படுவதையும் வெண்ணிறப் புகை தோன்றுவதையும் காணலாம். அத்துடன் ஒரு வகை மணத்தையும் உணர முடியும். இறுதியில் கரிய பதார்த்தம் மீதியாகக் காணப்படுவதையும் அவதானிக்கலாம்.

நீங்கள் அவதானித்த விடயங்கள் தீக்குச்சி இரசாயனத் தாக்கத்திற்கு உள்ளாகியுள்ளமைக்கான சில ஆதாரங்களாகும். இரசாயனத் தாக்கம் நிகழும்போது இவ்வாறான மாற்றங்கள் அல்லது வேறு மாற்றங்கள் ஒன்று அல்லது பலவற்றைக் காணக்கூடியதாக இருக்கும். மேலும், இது தொடர்பான அனுபவங்களைப் பெறுவதற்குப் பின்வரும் செயற்பாட்டைச் செய்து பாருங்கள்.

செயற்பாடு 4.1.3

- முகவை ஒன்றினுள் நீரை எடுத்து, ஒரு கரண்டி அப்பச் சோடாத் தூளை அதில் இட்டுக் கரையுங்கள்.
- குளிர்ப்பானங்களுக்கு அமிலத்தன்மையை வழங்கப் பயன்படுத்தப்படும் சித்திரிக் அமிலத் தூளின் தேக்கரண்டி அளவை அக்கரைசலினுள் இட்டு அவதானியுங்கள்.
- முகவையின் வெளிப்புறமாகத் தொட்டுணருங்கள்.
- உங்கள் அவதானிப்புகளை எழுதுங்கள்.

இங்கு வாயுக்குமிழிகள் வெளியேறுவதையும் சித்திரிக்கமிலத்தூள் மறைவதையும் காணலாம். மேலும், முகவை குளிர்ச்சியடைந்திருப்பதையும் உணரலாம்.

செயற்பாடு 4.1.4

- சிறிய முகவை ஒன்றினுள் நீரை எடுத்து அதனுள் செப்புச் சல்பேற்றுப் பளிங்கை இட்டுக் கரையுங்கள். அப்போது நீல நிறக் கரைசல் பெறப்படும்.
- அச்செப்புசல்பேற்றுக் கரைசலினுள் தூய நாகத்தை அல்லது மக்னீசியத் துண்டை இடுங்கள்.
- முகவையின் வெளிப்புறத்தைத் தொட்டு உணருங்கள்.
- உங்கள் அவதானிப்புகளை எழுதுங்கள்.

மக்னீசியம் _____ செப்புச் _____ சல்பேற்றுக் கரைசல்

இங்கு செங்கபில நிற வீழ்படிவு தோன்றுவதையும் செப்புச் சல்பேற்றுக் கரைசலின் நீல நிறம் குறைவடைந்து செல்வதையும் அவதானிக்கலாம். முகவையின் வெளிப்புறம் சூடாகியிருப்பதையும் உணரலாம்.

செயற்பாடு 4.1.5

- சிறிய முகவை ஒன்றினுள் செப்புச் சல்பேற்றுக் கரைசலைத் தயாரித்துக் கொள்ளுங்கள்.
- அதனுள் அமோனியாக் கரைசல் சிறிதளவைச் சேர்த்துக்கொள்ளுங்கள்.
- உங்கள் அவதானிப்புகளைக் குறித்துக்கொள்ளுங்கள்.

இங்கு ஆரம்பத்தில் நீல நிறப் பதார்த்தம் வீழ்படிவாவதையும் மேலதிகமாக, அமோனியாக் கரைசலைச் சோக்கும்போது வீழ்படிவு கரைந்து மறைந்து போவதையும் கடும் நீல நிறக் கரைசல் தோன்றுவதையும் காணலாம்.

செயற்பாடு 4.1.6 (ஆசிரியர் செய்துகாட்டல்)

- முகவை ஒன்றினுள் செப்புத் தூளை இடுங்கள்.
- அதற்குச் செறிந்த நைத்திரிக்கமிலத்தைச் சேர்த்துக் கொள்ளுங்கள்.
- உங்கள் அவதானிப்புகளைக் குறித்துக்கொள்ளுங்கள்.

இங்கு செப்புத் தூள் கரைந்து செங்கபில நிற வாயு வெளியேறுவதை அவதானிக்கலாம்.

மேலே செய்யப்பட்ட செயற்பாடுகளின் அவதானிப்புகளிலிருந்து இரசாயனத் தாக்கங்களின்போது பொதுவாக ஏற்படும் மாற்றங்களாகப் பின்வருவனவற்றைக் குறிப்பிடலாம்.

பெரும்பாலான இரசாயனத் தாக்கங்கள் மேற்படி மாற்றங்களில் ஒன்றை அல்லது பலவற்றை ஏற்படுத்தும்.

- வெப்பநிலையில் ஏற்படும் மாற்றம்
- நிறத்தில் ஏற்படும் மாற்றம்
- வீழ்படிவு (precipitate) தோன்றுதல்
- ஒலி, ஒளி தோன்றுதல்
- வாயு வெளியேறுதல்
- மணம் தோன்றுதல்

மேலே தரப்பட்ட அவதானிப்புகளில் ஒன்று அல்லது பல ஏற்படும்போது இரசாயனத் தாக்கம் நிகழ்ந்துள்ளது என்பதைத் தீர்மானித்துக்கொள்ளலாம்.

4.2 அணுக்களின் நடத்தை

4.2.1 क्रिक्की आकं का पंप बीक्री

இரசாயனத் தாக்கங்களின்போது அவற்றில் பங்குகொள்ளும் பதார்த்தங்களின் மொத்தத் திணிவில் எவ்வாறான மாற்றங்கள் ஏற்படுகின்றன என்பதைப் பற்றி நீங்கள் சிந்தித்துப் பார்த்ததுண்டா? இவை பற்றிய அனுபவங்களைப் பெற்றுக்கொள்ளப் பின்வரும் செயற்பாடுகளில் ஈடுபடுவோம்.

செயற்பாடு 4.2.1

- ஒரே திணிவைக் கொண்ட மெல்லிய இரும்பு நார் உருண்டைகள் இரண்டைப் படத்தில் காட்டியவாறு சீரான கோல் ஒன்றில் கட்டித் தொங்க விடுங்கள்.
- கோலைக் கிடையாகச் சமநிலைப் படுத்தி ஒரு இரும்பு நார் உருண்டையை நேரடியாகச் சுவாலையில் பிடித்து வெப்பமேற்றுங்கள்.
- உங்கள் அவதானிப்பை அறிக்கைப்படுத்துங்கள்.

இங்கு இரும்பு நார் உருண்டை செந்நிறச் சுவாலையுடன் எரியும். அதே வேளை, கோல் சமநிலையை இழந்து படிப்படியாக எரியும் உருண்டையின் பக்கம் கீழ்நோக்கிச் செல்வதை அவதானிக்கலாம். இங்கு இரும்பு நார் உருண்டை எரியும்போது அதன் திணிவு (விளைபொருளின் திணிவு) அதிகரித்துள்ளது.

செயற்பாடு 4.2.2

தீக்குச்சிகள் சிலவற்றை அவற்றின் தலைப் பகுதிகள் கீழ்நோக்கியிருக்குமாறு கொதிகுழாயினுள் இட்டு, கொதிகுழாயின் திணிவை அளந்துகொள்ளுங்கள். பின் கொதிகுழாயைச் சுவாலையில் பிடித்துத் தீக்குச்சியின் தலைப் பகுதி எரியும்வரை வெப்பமேற்றுங்கள். கொதிகுழாய் குளிர்ச்சியடைந்த பின், மறுபடியும் கொதிகுழாயின் திணிவை அளந்துகொள்ளுங்கள். கொதிகுழாயின் ஆரம்பத் திணிவுக்கும் இறுதித் திணிவுக்கும் இடையில் காணப்படும் வேறுபாட்டைக் கணித்துக்கொள்ளுங்கள்.

இங்கு வெப்பமேற்று முன் காணப்பட்ட திணிவிலும் பார்க்க வெப்பமேற்றிய பின் திணிவு குறைவடைந்து இருப்பதை அவதானிக்கலாம்.இங்கு இரு செயற்பாடுகளிலும் பதார்த்தங்கள் திறந்த சூழலில் (திறந்த தொகுதி) தாக்கமடைந்துள்ளன. இங்கு தாக்கத்தின் பின் செயற்பாடு 4.2.1 இல் திணிவு அதிகரித்தமைக்கும் செயற்பாடு 4.2.2 இல் திணிவு குறைந்தமைக்கும் காரணம் என்ன? செயற்பாடு 4.2.1 இல் நிகழ்ந்த இரசாயனத் தாக்கத்தின்போது சூழலிலுள்ள பதார்த்தங்கள் சேர்வதால் திணிவு அதிகரித்துள்ளது. அவ்வாறே, செயற்பாடு 4.2.2 இல் நிகழ்ந்த இரசாயனத் தாக்கத்தின்போது சூழலுக்குப் பதார்த்தங்கள் வெளியேறுவதால் திணிவு குறைவடைந்துள்ளது.

ஆகவே, இரசாயனத் தாக்கத்தின்போது பங்குகொள்ளும் பதார்த்தங்களின் முழுமையான திணிவு மாற்றத்தை அறிந்துகொள்வதற்குச் சூழலிலிருந்து பதார்த்தங்கள் சேர்வதையோ சூழலுக்குப் பதார்த்தங்கள் வெளியேறுவதையோ தவிர்க்க வேண்டும். ஆகவே, இரசாயனத் தாக்கத்தை முடிய தொகுதியில் செய்தல் வேண்டும். இதனைக் கருத்திற்கொண்டு திட்டமிடப்பட்ட பின்வரும் செயற்பாடுகள் 4.2.3, 4.2.4 ஆகியவற்றில் ஈடுபடுவோம்.

செயற்பாடு 4.2.3

செயற்பாடு 4.2.2 ஐ மூடிய தொகுதி ஒன்றில் செய்து பார்ப்போம். தீக்குச்சிகளின் தலைகள் கீழிருக்குமாறு கொதிகுழாயினுள் சில தீக்குச்சிகளை இட்டு, படத்திற் காட்டியவாறு இறப்பர்ப் பலூன் ஒன்றைக் கொதிகுழாயின் வாயில் வளியிறுக்கமாகப் பொருத்துங்கள். கொதிகுழாயின் திணிவை அளந்துகொள்ளுங்கள். தீக்குச்சியின் தலைப் பகுதி எரியும் வரை கொதிகுழாயைச் சுவாலையில் பிடித்து தீக்குச்சீத் தலை வெப்பமேற்றுங்கள். கொதிகுழாய் குளிர்ச்சியடைந்த பின் மீண்டும் திணிவை அளந்துகொள்ளுங்கள்.

தீக்குச்சித் தலைகள் எரியும்போது பலூன் விரிவடைவதைக் காணலாம். இங்கு இரசாயனத் தாக்கமான தகனம் நடைபெறும்போது சூழலுக்குப் பதார்த்தங்கள் வெளியேறவில்லை. இதனால், தாக்கத்தின் முன்னும் பின்னும் திணிவில் மாற்றம் ஏற்படவில்லை.

செயற்பாடு 4.2.4

கூம்புக் குடுவையினுள் 1g ஈய நைத்திரேற்றை 20 ml நீர் இட்டுக் கரைத்துக்கொள்ளுங்கள். பிறிதொரு சோதனைக் குழாயில் 1 g சோடியம் சல்பேற்றை 5 ml நீரில் கரைத்துப் பெறும் கரைசலை எரிகுழாய்க்கு மாற்றிக்கொள்ளுங்கள். பின் எரிகுழாயின் வாயில் நூல் ஒன்றைக் கட்டி ஈய நைத்திரேற்றுக் கரைசல் உள்ள கூம்புக் குடுவையினுள் தக்கை ஒன்றின் துணையுடன், படத்தில் காட்டியவாறு பொருத்திக்கொள்ளுங்கள்.

தக்கையும் கூம்புக்குடுவையும் சந்திக்கும் இடத்தை கிறீஸ் இட்டு வளியிறுக்கமாக்கிக் கொள்ளுங்கள். இப்பரிசோதனை அமைப்பின் திணிவை அளந்துகொள்ளுங்கள். பின் கூம்புக்குடுவையை மெதுவாகச் சரித்து, கரைசல்கள் இரண்டும் கலப்பதற்குச் சந்தர்ப்பம் வழங்குங்கள். உங்கள் அவதானிப்புகளைக் குறித்துக்கொள்ளுங்கள். மீண்டும் பரிசோதனை அமைப்பின் திணிவை அளந்துகொள்ளுங்கள்.

கரைசல்கள் ஒன்றுடன் ஒன்று கலக்கப்படும்போது வெள்ளை நிற வீழ்ப்படிவு தோன்றுவதால் அங்கு இரசாயன மாற்றம் நடைபெற்றுள்ளது என்பது உறுதியாகின்றது. இரசாயனத் தாக்கத்தின் முன்பும் பின்பும் மொத்தத் திணிவில் மாற்றம் ஏற்டவில்லை என்பது பரிசோதனை முடிபிலிருந்து தெளிவாகின்றது.

இவ்வாறான பல்வேறு இரசாயனத் தாக்கங்களை நடாத்திய பிரான்ஸ் நாட்டு விஞ்ஞானியான அன்ரனி லாவோசியர் (கி.பி. 1743 - கி.பி. 1794), இரசாயனத் தாக்கங்களின் முன்பும் பின்பும் அங்கு காணப்படும் கூறுகளின் மொத்தத் திணிவில் மாற்றம் ஏற்படாதென முதன்முறையாக முன்மொழிந்தார். பின், இது திணிவுக் காப்பு விதி என முன்வைக்கப்பட்டது.

திணிவுக் காப்பு விதி (Law of Conservation of Mass) மூடிய தொகுதியில் நடைபெறும் இரசாயனத் தாக்கம் ஒன்றில் தாக்கிகளின் மொத்தத் திணிவு, தாக்கத்தின் விளைவுகளின் மொத்தத் திணிவிற்குச் சமமானது.

அதாவது, இரசாயனத் தாக்கத்தின்போது மொத்தத் திணிவில் மாற்றமேற்படாது. அதாவது, திணிவு மாறிலியாகக் காணப்படும்.

4.2.2 தாற்றனின் அணுக்கொள்கை

சடப்பொருள்களின் தன்மைபற்றித் திணிவுக் காப்பு விதியுடன் முன்வைக்கப்பட்ட கருத்துகளையும் அக்காலத்தில் வெளியிடப்பட்டிருந்த ஏனைய கருத்துகளையும் விளக்குவதற்குப் பிரித்தானிய நாட்டு விஞ்ஞானியான ஜோன் தாற்றன் (கி.பி. 1766 -கி.பி. 1848) என்பவரால் அணுக் கொள்கை ஒன்று முன்வைக்கப்பட்டது. அது தாற்றனின் அணுக் கொள்கை (Dalton's Atomic Theory) என அழைக்கப்பட்டது. தாற்றனின் அணுக் கொள்கையின் மூலம் நீங்கள் அறிந்து வைத்துள்ள சடப்பொருள், மூலகம், சேர்வை, அணு, மூலக்கூறு, இரசாயனத் தாக்கம் என்பவற்றைப் பற்றி மேலும் விளங்கிக்கொள்ள முடியும். தாற்றனின் அணுக் கொள்கையைச் சுருக்கமாக ஆராய்வோம்.

உரு 4.2.1 ஜோன் தாற்றன்

- (i) சடப்பொருள்கள் யாவும் அணுக்களால் ஆக்கப்பட்டவை. அணுக்கள் மிகச்சிறிய துணிக்கைகளாகும். இவை மேலும் பிரிக்கப்பட முடியாதவை.
- (ii) யாதேனும் ஒரு மூலகத்தின் அணுக்கள் யாவும் எல்லா வகையிலும் ஒத்தவை. எனினும், ஒன்றிலிருந்து ஒன்று வேறுபட்ட மூலகங்களின் அணுக்கள் வேறுபட்டவையாகும். உதாரணமாக, காபன் மூலகத்தின் அணுக்கள் யாவும் ஒன்றையொன்று ஒத்தவை. அவ்வாறே அலுமினிய மூலகம் ஒன்றையோன்று ஒத்த அலுமினிய அணுக்களால் ஆனது. எனினும், காபன் அணுவும் அலுமினிய அணுவும் ஒன்றிலிருந்து ஒன்று வேறுபட்டவையாகும்.

(iii) இரண்டு அல்லது இரண்டுக்கு மேற்பட்ட மூலகங்கள் எளிய முழு எண் விகிதங்களில் இரசாயன ரீதியாகச் சேர்வதனால் சேர்வைகள் உருவாகின்றன. யாதேனும் சேர்வையொன்றை உருவாக்குவதில் பங்குகொள்ளும் மூலகங்களின் அணுக்களின் எண்ணிக்கையும் அச்சேர்வையில் அடங்கியுள்ள மூலகங்களின் அணுக்களின் எண்ணிக்கையும் எப்போதும் மாறாத எண்ணிக்கையில் காணப்படும்.

ஐதரசன், ஒட்சிசன் ஆகிய மூலகங்கள் சேர்ந்து உருவாகும் நீர் மூலக்கூறில் ஐதரசன், ஒட்சிசன் ஆகியன 2:1 என்ற எளிய முழு எண் விகிதத்தில் காணப்படுகின்றன. ஆகவே, நீர் மூலக்கூறில் எப்பொழுதும் இரு ஐதரசன் அணுக்களும் ஓர் ஒட்சிசன் அணுவும் சேர்ந்து காணப்படும்.

(iv) இரசாயனத் தாக்கத்தின்போது புதிய அணுக்கள் தோன்றவோ, காணப்படும் அணுக்கள் அழியவோ மாட்டா. அதாவது, அணுக்களை ஆக்கவோ, அழிக்கவோ முடியாது.

இங்கு தாக்கத்தில் ஈடுபடும் அணுக்கள் வேறு முறையில் ஒழுங்கமைக்கப்படுதலே நடைபெறுகின்றது.

4.2.3 அணு தொடர்பான புதிய கண்டுபிடிப்புகள்

தாற்றனினால் முன்வைக்கப்பட்ட கொள்கை மூலகம், சேர்வை, அணு, மூலக்கூறு என்பவை தொடர்பாக முன்பிருந்த கருத்துகளை விளக்கியது. எனினும், பின் வந்த விஞ்ஞானிகளால் அணு தொடர்பாகத் தாற்றனின் அணுக் கொள்கையிலிருந்து வேறுபட்ட கொள்கைகள் முன்வைக்கப்பட்டன.

(i) இலத்திரன், புரோத்தன், நியூத்திரன் என்னும் உப துணிக்கைகளினால் அணு ஆக்கப்பட்டது (தாற்றன் அணுவை மேலும் பிரிக்க முடியாது என கூறியிருந்தார்).

உங்களுக்குத் தெரியுமா ?

அணுக்கள் வெறுங்கண்ணால் அவதானிக்க முடியாத மிகச் சிறிய துணிக்கைகளாகும். எனினும், நவீன விஞ்ஞானக் கண்டுபிடிப்புகளான அலகிடல் - குடைபாதையிடல் நுணுக்குக்காட்டி (scanning - tunnelling microscope), கணினி என்பவற்றின் துணையுடன் அணுக்களின் அமைப்பை இலகுவாகப் பெற்றுக்கொள்ள முடியும். (ii) யாதேனும் ஒரு மூலகத்தின் அணுவில் காணப்படும் இலத்திரன், புரோத்தன் ஆகியவற்றின் எண்ணிக்கை மாறாத பெறுமானத்தைக் கொண்டதாகும். ஆகவே, யாதேனும் அணு ஒன்று கொண்டுள்ள புரோத்தன், இலத்திரன் ஆகியவற்றின் எண்ணிக்கை மூலம் அது எந்த மூலகத்தின் அணுவெனக் கூறமுடியும். உதாரணமாக, ஐதரசன் அணுவில் ஓர் இலத்திரனும் ஒரு புரோத்தனும் உண்டு. குளோரீன் அணுவில் 17 இலத்திரன்களும் 17 புரோத்தன்களும் உள்ளன. எனினும், யாதேனும் மூலகம் ஒன்றில் நியூத்திரன்களின் எண்ணிக்கை வேறுபட்டுக் காணப்படும். (இது தாற்றனின் அணுக் கொள்கையிலிருந்து வேறுபட்டுக் காணப்படும் கருத்தாக அமைகின்றது).

அணு தொடர்பான கரு மாதிரியுரு

அணுக்களில் இலத்திரன், புரோத்தன், நியூத்திரன் என்பன கண்டுபிடிக்கப்பட்ட பின்னர் அவை அணுக்களில் எவ்வாறு அமைந்துள்ளன என்பதை அறிந்துகொள்ளும் தேவை ஏற்பட்டது. இவற்றின் அமைப்புப் பற்றிய புதிய கருத்துகள், மாதிரியுருக்கள் என்பன பல விஞ்ஞானிகளால் முன்வைக்கப்பட்டுள்ளன.

நியூசிலாந்து விஞ்ஞானியான ஏர்னஸ்ட் இரதபோர்ட் (கி.பி. 1871 - கி.பி. 1937) அணு பற்றிய முக்கிய மாதிரியுரு ஒன்றை முன்வைத்தார்.

உரு 4.2.2 ஏர்னஸ்ட் இரதபோர்ட்

உரு 4.2.3 இரதபோர்ட்டின் அணு மாதிரியுரு

இரதபோர்ட்டின் கருத்துப்படி இலத்திரன் தவிர்ந்த ஏனைய பகுதிகள் (புரோத்தன் என்னும் உப அணுத் துணிக்கைகள் உட்பட) அணுவின் மத்தியில் செறிந்து காணப்படுகின்றன. இது அணுவின் கரு (nucleus) என அழைக்கப்படுகின்றது. இவ்வணுக் கருவைச் சூழ்ந்து இலத்திரன்கள் அசைவதாக இரதபோர்ட் எடுத்துக் கூறினார். இது இரதபோர்ட்டின் அணு தொடர்பான கரு மாதிரியுரு என அழைக்கப்படுகின்றது. இம்மாதிரியுரு அணுவின் கனவளவின் மிகச் சிறிய பகுதியில் கரு அமைந்துள்ளமையை விளக்குகின்றது. மீதியாகவுள்ள ஏனைய பகுதிகளில் இலத்திரன்கள் அசைகின்றன. அணுக் கரு, அணுவின் மிகச் சிறிய பகுதியில் செறிந்திருந்தாலும் அணுத் திணிவின் பெரும் பகுதியைக் கருவே ஆக்குகின்றது.

4.3 முலகங்களுக்கான இரசாயனக் குறியீடுகள்

4.3.1 இரசாயனவியலில் குறியீடுகளின் பயன்பாடு

விஞ்ஞானத்தில் பல்வேறு பதார்த்தங்களை இனங்கண்டுகொள்வதில் அவற்றின் பெயர்களும் குறியீடுகளும் முக்கியத்துவம் பெறுகின்றன. இவ்வாறு சில மூலகங்களைக் குறிப்பிடுவதற்குப் பயன்படும் பெயர்களையும் குறியீடுகளையும்பற்றி முன்னைய வகுப்புகளில் கற்றவற்றை ஞாபகப்படுத்திப் பாருங்கள்.

மூலகங்களை அவற்றின் குறியீடுகளைக் கொண்டு இனங்காணல் இரசவாத / அல்கெமி (Alchemy) யுகத்திலிருந்து ஆரம்பமானது. கி.பி. 7 ஆவது நூற்றாண்டில் எகிப்து நாட்டினர் பெறுமதி குறைந்த உலோகங்களைத் தங்கமாக (பொன்) மாற்றும் முறையை அறிய முயற்சித்தனர். இச்செயன்முறை இரசவாதம் (கெமியா - Chemia) எனப்பட்டது. இச்செயன்முறையில் ஈடுபட்டவர்கள் இரசவாதிகள் (அல்கெமிஸ்ட் - Alchemist) எனவும் அழைக்கப்பட்டனர்.

இக்காலப் பகுதியில் பெறுமதி குறைந்த உலோகங்களைத் தங்கமாக மாற்றும் செயன்முறைகளை ஏனையவர்கள் அறியாதிருப்பதற்காகத் தகவல்களைக் குறியீட்டு வடிவில் மாற்றிப் பயன்படுத்தினர். அவர்களால் முன்வைக்கப்பட்ட சில மூலகங்களின் குறியீடுகள் உரு 4.3.1 இல் தரப்பட்டுள்ளன.

பொன்	வெள்ளி	த ரும்பு	வெள்ளியம்
ஈயம்	மேக்கூரி	சல்பர்	கொப்பர்
நிக்கல்	ஆசனிக்கு	ூ ந்திமனி	நீர்

உரு 4.3.1 அல்கெமி யுகத்தில் பயன்படுத்தப்பட்ட சில குறியீடுகள்

புதிதாக மூலகங்கள் கண்டறியப்பட அவற்றுக்கான குறியீடுகளை உருவாக்குவதற்கான தேவையும் ஏற்பட்டது. இவ்வாறு புதிய குறியீடுகளை உருவாக்குவதிலும் அவற்றைப் பயன்படுத்துவதிலும் சிக்கல்கள் காணப்பட்டன. இவ்வாறான குறியீடுகளை உருவாக்குவதற்கு விஞ்ஞான ரீதியான அடிப்படைகளும் கோலங்களும் பயன்படுத்தப்பட்டிருக்கவில்லை.

இதில் தோன்றிய பிரச்சினைகள் அனைத்தையும் வெற்றிகொள்ளும் வகையில் மேற்கொள்ளப்பட்ட முயற்சிகளின் பலனாக ஜோன் தாற்றனினால் உரு 4.3.2 இல் தரப்பட்ட குறியீடுகள் முன்வைக்கப்பட்டன.

தாற்றன் பெயரிட்ட அசோட் (Azote) என்றழைக்கப்படும் மூலகம் தற்போது நைதரசன் என அழைக்கப்படுகிறது.

இங்கு அட்டவணையில் Elements என்பது மூலகங்களைக் குறிக்கின்றது. தாற்றன் முன்வைத்த குறியீடுகளுக்கு மேலதிகமாகச் சேர்வைகளுக்கும் குறியீடுகள் உண்டு என்பதை நீங்கள் அறிவீர்களா?

தாற்றனின் குறியீடுகள்

மூலகங்கள் சேர்வதனால் சேர்வைகள் தோன்றுகின்றன. இதனால், சேர்வை ஒன்றின் குறியீடு அச்சேர்வையை ஆக்கும் மூலகங்களின் குறியீடுகளுக்கமைய அமைகின்றது.

மேன்மேலும் புதிய மூலகங்கள் கண்டுபிடிக்கப்பட்டதன் காரணமாகத் தாற்றனின் முறைப்படி அவற்றிற்கான குறியீடுகளை உருவாக்குவதும் அவற்றைப் பயன்படுத்திச் சேர்வைகளின் குறியீடுகளை எழுதுவதும் கடினமாயிற்று. இதனால், பயன்படுத்தலுக்கு இலகுவான இரசாயனக் குறியீடுகளைக் கண்டுபிடிப்பதில் விஞ்ஞானிகள் கவனஞ் செலுத்தினர்.

ஆரம்ப காலத்தில் அருமையாகப் பயன்படுத்தப்பட்ட குறியீடுகளினால் ஏற்பட்ட பிரச்சினைகளைத் தீர்ப்பதற்கு முயற்சிகள் மேற்கொள்ளப்பட்டன. இதன் பலனாக ஜே.ஜே. பசிலியஸ் (J.J.Berzelius) என்னும் இரசாயனவியல் விஞ்ஞானியினால் எழுத்துகள் மூலம் மூலகங்களின் குறியீடுகள் முன்வைக்கப்பட்டன. இதற்கு ஆங்கில அரிச்சுவடியிலுள்ள எழுத்துகள் (இலத்தீன் எழுத்துகள்) பயன்படுத்தப்பட்டன. இற்றைவரை உலகம் முழுவதும் பசிலியஸ் முன்வைத்த குறியீடுகளே பயன்படுத்தப்படுகின்றன.

4.3.2 சர்வதேசக் குறியீட்டு நியமங்கள் (குறிவழக்குகள்)

ஏற்கெனவே நீங்கள் தரம் 8 இல் சில மூலகங்களையும் அவற்றின் குறியீடுகளையும் பற்றிக் கற்றுள்ளீர்கள்.

மூலகங்களுக்குக் குறியீடுகள் வழங்கப்படும்போது பின்பற்றப்படும் முறைகள்

• பொதுவாக மூலகத்தின் ஆங்கிலப் பெயரின் முதலெழுத்து அதன் குறியீடாகப் பயன்படுத்தப்படும். அது பேரெழுத்தாகக் (Capital letter) குறிப்பிடப்படும்.

உதாரணம் : Carbon (காபன்) - C Nitrogen (நைதரசன்) - N Oxygen (ஒட்சிசன்) - O Boron (போரன்) - B Phosphorus (பொஸ்பரஸ்) - P Sulphur (சல்பர்) - S

• ஒன்றுக்கு மேற்பட்ட மூலகங்களுக்கு ஆங்கிலப் பெயரின் முதலெழுத்து ஒன்றாக அமையும்போது அவற்றின் ஆங்கிலப் பெயரின் முதலெழுத்துடன் இரண்டாவது எழுத்து அல்லது வேறோர் எழுத்து சேர்க்கப்பட்டு குறியீடாகப் பயன்படுத்தப்படும். முதல் எழுத்தை விட மற்றைய எழுத்து சிற்றெழுத்தாக (Simple letter) எழுதப்படும்.

உதாரணம் : Berylium (பெரிலியம்) - Be Aluminium (அலுமினியம்) - Al Magnesium (மக்னீசியம்) - Mg - Li Lithium (இலித்தியம்) Argon (ஆர்கன்) - Ar - Ne Neon (நெயோன்) Manganese (மங்கனீசு) - Mn Helium (ஈலியம்) - He

முதல் இரு எழுத்துகள் சமனாக அமையும் மூலகங்களின் குறியீட்டில் இரண்டாவது எழுத்து ஒருபோதும் சமனாக அமையாது.

உதாரணம் : Chlorine (குளோரீன்) - Cl Calcium (கல்சியம்) - Ca Cobalt (கோபால்ற்று) - Co Cadmium (கட்மியம்) - Cd Chromium (குரோமியம்) - Cr

 சில மூலகங்களில் குறியீடுகள் அவற்றின் இலத்தீன் பெயரின் அடிப்படையில் அமைந்திருக்கும். இவ்விலத்தீன் பெயர்களை ஆங்கிலத்தில் எழுதும்போது பயன்படுத்தப்படும் ஆங்கில எழுத்துகள் குறியீடுகளாகப் பயன்படும் (அட்டவணை 4.3.2).

	மூலகத்தின் ஆங்கிலப் பெயர்	மூலகத்தின் இலத்தீன் பெயர் (ஆங்கிலத்தில் எழுதப்படும்போது)	குறியீடு
1.	கொப்பர்	Cuprum (கியூபிரம்)	Cu
2.	சோடியம்	Natrium (நேற்றியம்)	Na
3.	பொற்றாசியம்	Kalium (கல்லியம்)	K
4.	அயன்	Ferrum (பெரம்)	Fe
5.	மேக்கூரி	Hydrogyrum (ஹைரோகைரம்)	Hg
6.	ரின்	Stannum (ஸ்ரனம்)	Sn
7.	அந்திமனி	Stibium (ஸ்ரிபியம்)	Sb
8.	கோல்ட்	Aurum (அவ்ரம்)	Au
9.	சில்வர்	Argentum (ஆர்ஜென்ரம்)	Ag
10	லெட்	Plumbum (பிளம்பம்)	Pb

அட்டவணை 4.3.2 இலத்தீன் பெயர் கொண்ட மூலகங்களும் அவற்றின் குறியீடுகளும்

உங்களுக்குத் தெரியுமா?

மூலகங்களுக்கான குறியீடுகளை ஆக்கும்போது பொதுவாக அவற்றின் ஆங்கிலப் பெயரோ, இலத்தின் பெயரோ பயன்படுத்தப்படுகிறது. எனினும், ஜேர்மன் பெயரைக் கொண்ட மூலகம் ஒன்றும் உள்ளது. மின்குமிழ்களின் இழையாகப் பயன்படுத்தப்படும் தங்கிதன் மூலகமே அதுவாகும். அதன் ஜேர்மன் பெயர் 'வோல்பிரம்' (Wolfram). அதன் குறியீடு W.

4.3.3 குறியீடுகளின் பயன்பாட்டின் முக்கியத்துவம்

மேலே தரப்பட்ட குறியீடுகளைப் பயன்படுத்தி இரசாயனச் சேர்வைகளின் சூத்திரங்களை எழுத முடியும். இச்சூத்திரங்களிலிருந்து அதிலுள்ள மூலகங்களின் குறியீடுகளையும் அவை சேர்ந்துள்ள விகிதங்களையும் கூற முடியும்.

உதாரணம் : நீர் -
$$\mathrm{H_{2}O}$$
 சோடியங் குளோரைட்டு - NaCl காபனீரொட்சைட்டு - $\mathrm{CO_{2}}$

சர் வதேசரீதியாகத் தற்பொழுது உலகில் எல்லா நாடுகளிலும் மூலகங்களையும் சேர்வைகளையும் இனங்காணப் பொதுவான இரசாயனக் குறியீடுகள் பயன்படுத்தப்படுகின்றன. ஆகவே, பயன்படுத்தப்படும் மொழிவழக்கு எவ்வாறாயினும் குறியீடுகளைக் கொண்டு மூலகங்களை இனங்காண முடியும். இரசாயன விஞ்ஞானத்தில் கணிப்பீடுகளை மேற்கொள்ளவும் இரசாயனத் தாக்கங்களை முன்வைக்கவும் குறியீடுகள் முக்கியமானவையாகும். இதனால், இரசாயன விஞ்ஞானம் படிப்பதற்கு இலகுவாக அமைகிறது.

விவசாய, இரசாயன உற்பத்திப் பொருள்கள், மருந்துப் பொருள்கள், உணவுப் பதார்த்தங்கள் ஆகியவற்றில் அடங்கியுள்ள இரசாயனப் பதார்த்தங்கள் அவை அடைக்கப்பட்ட கொள்கலங்களில் குறியீடுகள் மூலம் காட்டப்பட்டிருப்பதைக் கண்டிருப்பீர்கள். ஆகவே, இரசாயனக் குறியீடுகளை அறிந்திருப்பதால் இரசாயனப் பதார்த்தங்களை இனங்காண்பது இலகுவாகவிருக்கும் என்பதை நீங்கள் விளங்கிக் கொள்ளலாம்.

செயற்பாடு 4.3.1

எமது அன்றாடத் தேவைகளுக்குப் பயன்படுத்தப்படும் சில இரசாயனச் சேர்வைகளின் பெயர்களும் சூத்திரங்களும் கீழே தரப்பட்டுள்ளன.

- சூத்திரத்தைக் கொண்டு ஒவ்வொரு சேர்வையிலுமுள்ள மூலகங்களைக் கண்டறியுங்கள் (சூத்திரங்களை மனப்பாடம் செய்யத் தேவையில்லை).
- மூலகத்தின் குறியீடுகள், பெயர்கள் என்பவற்றைக் காட்டும் அட்டவணை ஒன்றைத் தயாரியுங்கள்.

1.	குளுக்கோசு -	$C_6H_{12}O_6$
2.	கொண்டிசு (பொற்றாசியம் பரமங்கனேற்று) -	$KMnO_4$
3.	யூரியா -	$CO(NH_2)_2$
4.	பல்மாணிக்கம் (செப்புச் சல்பேற்று) -	CuSO ₄
5.	போமிக்கமிலம் -	НСООН
6.	அசற்றிக்கமிலம் -	CH ₃ COOH
7.	சுண்ணாம்பு நீர் (கல்சியம் ஐதரொட்சைட்டு)-	Ca(OH) ₂
8.	ஐதரசன் பரவொட்சைட்டு -	H_2O_2
9.	கறியுப்பு (சோடியங் குளோரைட்டு) -	NaCl
10.	பற்றரி அமிலம் (ஐதான சல்பூரிக்கமிலம்) -	H ₂ SO ₄

இப்போது நீங்கள் எமது அன்றாடத் தேவைகளுக்குப் பயன்படுத்தப்படும் சில இரசாயனச் சேர்வைகளின் சூத்திரங்களையும் அச்சேர்வைகளிலுள்ள மூலகங்களையும் அறிந்துகொண்டுள்ளீர்கள்.

4.4 உலோகங்கள், அல்ஹலோகங்கள் ஆகியவை வளி, நீர், அமிலம், மூலம் என்பவற்றடன் காட்டும் தாக்கங்கள்

நீங்கள் மூலகங்களை உலோகங்கள், அல்லுலோகங்கள் எனப் பாகுபடுத்துவதையும் அவ்வாறாகப் பாகுபடுத்துவதற்கு அடிப்படையான பௌதிக இயல்புகளையும் அறிந்துள்ளீர்கள். அவ்வாறான பௌதிக இயல்புகள் சிலவற்றைப் பின்வருமாறு தொகுத்துக் கூறலாம் (அட்டவணை 4.4.1).

இயல்பு உலோகம்		அல் லுலோகம்	
• மினுமினுப்பு	மேற்பரப்பு மினுமினுப்பானது	மேற்பரப்பு மினுமினுப்பு	
• அடர்த்தி	ஒப்பீட்டளவில் உயர்வானது	அற்றது ஒப்பீட்டளவில் குறைவானது	
• வாட்டத்தகுமியல்பு	தகடுகளாக்க முடியும்	தகடுகளாக்க முடியாது	
• நீட்டத்தகுமியல்பு	கம்பிகளாக்கலாம்	கம்பிகளாக்க முடியாது	
• மின், வெப்பக்	நன் மின், வெப்பக் கடத்தி	நலிவான மின், வெப்பக்	
கடத்தாறு • உருகுநிலை	ஒப்பீட்டளவில் உயர்வானது	கடத்தி ஒப்பீட்டளவில் தாழ்வானது	

அட்டவணை 4.4.1 **உ**லோகங்கள், அல்லுலோகங்கள் ஆகியவற்றுக்கிடையிலான வேறுபாடு

உங்களுக்குத் தெரியுமா?

மேற்படி பௌதிக இயல்புகளைக் கொண்டு மூலகங்களை உலோகங்கள், அல் லுலோகங்கள் என வேறுபடுத்த முடியுமாயினும் இவற்றிலிருந்து விதிவிலக்கானவையும் காணப்படுகின்றன.

- உலோகமான இரசம் (Hg) அறைவெப்பநிலையில் திரவமாகக் காணப்படும்.
- அல்லுலோகமான காபனின் பிறதிருப்பமான காரீயம் மின்னைக் கடத்தும்.
- காபனின் பிறதிருப்பமான வைரம் உயர் அடர்த்தியைக் கொண்டது.

இப்பொழுது நாம் மூலகங்களின் இரசாயன இயல்புகளின் அடிப்படையில் அவற்றை உலோகங்களாகவும் அல்லுலோகங்களாகவும் வேறுபடுத்துவோம்.

மக்னீசியம் (Mg)

மக்னீசியம் மினுமினுப்பான மேற்பரப்பைக் கொண்ட உலோகமாகும். ஆய்கூடத்தில் மக்னீசியம் நாடாவைப் பயன்படுத்தும்போது அதன் மீதுள்ள ஒட்சைட்டுப் படலத்தை அகற்றுவதற்காக அல்லது

உரு 4.4.1

அதன் மீது பூசப்பட்ட காப்புப் பதார்த்தத்தை அகற்றுவதற்காக மக்னீசிய நாடா மண் அரத்தாளினால் தேய்க்கப்படும்.

♦ மக்னீசியம் வளியுடன் காட்டும் தாக்கம்

மண் அரத்தாளினால் தேய்க்கப்பட்ட மினுமினுப்பான மக்னீசிய நாடாத் துண்டு ஒன்றை வளியில் திறந்து வைத்து சில நாட்களின் பின் அவதானித்தால், அதன் மேற்பரப்பின் மினுமினுப்புக் குறைவடைந்திருப்பதைக் காணலாம். இதற்குக் காரணம், வளியில் உள்ள ஒட்சிசன், மக்னீசியத்துடன் இரசாயன தாக்கம்புரிந்து அதன் மேற்பரப்பில் மினுமினுப்பு அற்ற மக்னீசிய ஒட்சைட்டுப் படலம் ஒன்று உருவாகுவதே ஆகும். இது **மங்குதல்** (tarnish) எனப்படும்.

♦ மக்னீசியத்தின் தகனம்

தூய்மையாக்கப்பட்ட 3 cm நீளமான மக்னீசிய நாடாத் துண்டு ஒன்றைச் சுவாலையில் பிடித்து வெப்பமேற்றும்போது மக்னீசிய நாடா பிரகாசமான சுவாலையுடன் எரியும். வெண்நிறத் தூளாகத் திண்ம மீதி ஒன்று ஏற்படும். இது மக்னீசியம் ஒட்சைட்டு ஆகும். இவ்விரசாயனத் தாக்கத்தினைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

ந்நிறத் தூளாகத் ட்சைட்டு ஆகும். சமன்பாட்டினால் ம் ஒட்சைட்டு உரு 4.4.2

மக்னீசியம் + ஓட்சிசன்

______ _____ மக்னீசியம் ஒட்சைட்டு

செயற்பாடு 4.4.1

மக்னீசியம் நாடா எரிந்து தோன்றிய வெண்ணிறத் திண்ம மீதிக்கு நீரைச் சேர்த்துக் கரையுங்கள். அக்கரைசலுக்கு நீலப் பாசிச்சாயத் தாளையும் செம் பாசிச்சாயத் தாளையும் இட்டுச் சோதித்தறியுங்கள்.

கரைசலுக்குச் செம் பாசிச்சாயத் தாளைச் சேர்க்கும்போது அது நீல நிறமாக மாறுவதனையும் நீலப் பாசிச்சாயத் தாளைச் சேர்க்கும்போது மாற்றம் எதுவும் ஏற்படாது இருப்பதனையும் அவதானிக்கலாம். இதன் அடிப்படையில் மக்னீசியம் வளியில் எரிந்து தோன்றும் திண்மம் நீரில் கரைவதால் தோன்றும் கரைசல் காரத் தன்மையானது என்ற முடிவிற்கு வரலாம்.

♦ மக்னீசியம் நீருடன் காட்டும் தாக்கம்

சுத்தமாக்கப்பட்ட மக்னீசியம் நாடாவைக் குளிர் நீர் கொண்ட சோதனைக் குழாயினுள் இட்டால் எந்தவித மாற்றத்தையும் அவதானிக்க முடியாது. சுத்தமாக்கப்பட்ட மக்னீசியம் நாடாவைக் கொதிநீர் கொண்ட சோதனைக் குழாயினுள் இட்டால் சிறிதளவு நிறமற்ற வாயுக் குமிழிகள் உருவாகி வெளியேறுவதை அவதானிக்கலாம். இங்கு மக்னீசியம் கொதிநீருடன் இரசாயன தாக்கமடைவதே இவ்வவதானத்திற்குக் காரணமாகும். இவ்விரசாயனத் தாக்கத்தைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

மக்னீசியம் + கொதிநீர் — → மக்னீசியம் ஐதரொட்சைட்டு + ஐதரசன் வாயு

♦ மக்னீசியம் அமிலங்களுடன் காட்டும் தாக்கம்

சுத்தமாக்கப்பட்ட மக்னீசிய நாடாத் துண்டு ஒன்றை ஐதான ஐதரோகுளோரிக் அமிலம் கொண்ட கொதிகுழாயில் இட்டு அவதானிக்கும்போது வாயுக் குமிழிகள் விரைவாகத் தோன்றுவதனை அவதானிக்கலாம். அத்துடன் மக்னீசிய நாடா மறைந்து போவதையும் காணலாம். இவ்விரசாயனத் தாக்கத்தினைப் பின்வரும் இரசாயனச் சமன்பாட்டினால் காட்டலாம். (இப்பரிசோதனையை ஆசிரியரின் துணையுடன் நடாத்த வேண்டும்).

ஐதரசன் வாயுவைக் கொண்ட வாயுச் சாடியினுள் எரியும் குச்சி ஒன்றினைச் செலுத்தும்போது வாயு எரிந்து, 'பொப்' என்னும் சத்தத்துடன் சுவாலை அணையும். இது ஐதரசன் வாயுவை இனங்காணப் பயன்படுத்தப்படும் சோதனையாகும்.

♦ மக்னீசியம் காரங்களுடன் காட்டும் தாக்கம்

சுத்தமாக்கப்பட்ட மக்னீசியம் நாடாத் துண்டு ஒன்றை ஐதான சோடியம் ஐதரொட்சைட்டுக் கரைசலைக் கொண்ட சோதனைக்குழாய் ஒன்றினுள் இட்டால் எந்த விதமான மாற்றத்தையும் அவதானிக்க முடியாது. இதிலிருந்து மக்னீசியம் காரங்களுடன் இரசாயனத் தாக்கங்களில் ஈடுபடுவதில்லை என அறியமுடிகிறது.

இரும்பு (Fe)

தூய இரும்பு ஆனது வெள்ளி போன்ற மினுமினுப்பான தோற்றமுடையது. அன்றாடப் பயன்பாட்டில் நாம் இரும்பு ஆணி, இரும்புத் தகடு, இரும்புக் கம்பி போன்றவற்றைப் பயன்படுத்துகிறோம். ஆய்கூடத்தில் இரும்புத் தூள், இரும்பு நார் (iron wool) போன்றவை காணப்படுகின்றன. இரும்பு ஒரு விசேடமான உலோகமாகும். இதற்குக் காரணம் அதன் காந்தமாகும் இயல்பாகும்.

♦ இரும்பு வளியுடன் காட்டும் தாக்கம்

தூய இரும்பை வளியில் திறந்து வைக்கும்போது, வளியில் உள்ள ஒட்சிசன், நீராவி என்பவற்றுடன் இரும்பு இரசாயனத் தாக்கம்புரிந்து நீரேற்றப்பட்ட இரும்பு ஒட்சைட்டைத் (துரு) தோற்றுவிக்கும். இதனால், இரும்பின் மினுமினுப்புக் குறைந்து இரும்பு மங்கலடையும். இது இரும்பு துருப்பிடித்தல் எனப்படும். மேலும், இவ்வொட்சைட்டு இரும்புடன் இறுக்கமான படையாக இல்லாதிருப்பதனால் இரும்பிற்குப் பாதுகாப்பை அளிப்பதில்லை. ஆகவே, இரும்பு தொடர்ந்து அரிப்படையும்.

♦ இரும்பின் தகனம்

இரும்புத் தூளை அல்லது இரும்பு நாரை சுவாலையில் பிடிக்கும்போது அது மஞ்சள் நிறச் சுவாலையுடன் எரிந்து இரும்பு ஒட்சைட்டை உருவாக்கும். இவ்விரசாயனத் தாக்கத்தைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

♦ இரும்பு நீருடன் காட்டும் தாக்கம்

மேற்பரப்பு சுத்தமாக்கப்பட்ட இரும்பு ஆணி ஒன்றைக் குளிர் நீர் கொண்ட கொதிகுழாயினுள் இட்டால் எவ்விதமான மாற்றத்தையும் உடனடியாக அவதானிக்க முடியாது. மேற்பரப்பு சுத்தமாக்கப்பட்ட இரும்பாணி ஒன்றைக் கொதிநீர் கொண்ட சோதனைக் குழாயில் இட்டு அவதானித்தாலும் எந்த விதமான மாற்றத்தையும் அவதானிக்க முடியாது.

எனினும், தூய இரும்புத் தூளை அல்லது இரும்பு நாரை வெப்பமேற்றியவாறு அதன் மீது கொதிநீராவியைச் செலுத்தும்போது அங்கு இரசாயனத் தாக்கம் நிகழ்ந்து இரும்பு ஒட்சைட்டுத் தோன்றும். இத்தாக்கத்தைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

♦ இரும்பு அமிலங்களுடன் காட்டும் தாக்கம்

தூய இரும்புத் தூள் கொண்ட கொதிகுழாயினுள் ஐதான ஐதரோ குளோரிக் அமிலம் சிறிதளவைச் சேர்த்தால், இரும்புத் தூள் ஐதான ஐதரோகுளோரிக் அமிலத்துடன் நுரைத்தலுடன் இரசாயன ரீதியில் தாக்கம்புரிந்து இரும்புக் குளோரைட்டை உருவாக்குவதுடன், ஐதரசன் வாயுவினையும் தோற்றுவிக்கும். இத்தாக்கத்தைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

♦ இரும்பு காரங்களுடன் காட்டும் தாக்கம்

தூய இரும்புத் தூளினை ஐதான சோடியம் ஐதரொட்சைட்டுக் கரைசலைக் கொண்ட சோதனைக் குழாயில் இட்டால் எந்த விதமான மாற்றத்தையும் காணமுடியாது.

உங்களுக்குத் தெரியுமா?

அலுமினியம் (Al), நாகம் (Zn), வெள்ளீயம் (Sn) ஆகியவை உலோகங்களாக இருந்தபோதும் அமிலங்களுடனும் காரங்களுடனும் தாக்கம் புரிந்து ஐதரசன் வாயுவை வெளிவிடுகின்றன.

காபன் (C)

காபன் இயற்கையில் பல்வேறு வடிவங்களில் காணப்படுகின்றது. உதாரணமாக: கற்கரி, கரி, காரீயம், வைரம் என்பன. இவ்வியற்கை வடிவங்களில் காரீயம், வைரம் என்பன பெரிய சாலக வடிவங்களாகும். காரீயம் மின்னைக் கடத்தக்கூடியதாகும். வைரம் மிகவும் உயர்வான ஒளி முறிவுச் சுட்டியைக் கொண்ட வன்மையான சாலகமாகும்.

♦ காபன் வளியுடன் காட்டும் தாக்கம், காபனின் தகனம்

காபன் வளியில் திறந்து வைக்கப்படும்போது எந்தவித மாற்றத்தையும் காட்டுவதில்லை. காபன் தூளைச் சுவாலையின்மீது விசிறும்போது அவை நெருப்புப் (தீப்பொறி) பொறிகளாகப் பறப்பதனை அவதானிக்கலாம். அத்துடன், நிறமற்ற காபனீரொட்சைட்டு வாயுவும் உருவாகும். இத்தாக்கத்தைப் பின்வரும் சமன்பாட்டினால் காட்டலாம்.

காபனீரொட்சைட்டு நிறமற்ற, மணமற்ற வாயுவாகும். காபனீரொட்சைட்டு வாயுவைத் தெளிந்த, நிறமற்ற சுண்ணாம்பு நீரினூடாகச் செலுத்தும்போது அங்கு பால் நிறமான கலங்கல் தோன்றும். மேலும், தொடர்ந்து காபனீரொட்சைட்டு வாயுவைச் செலுத்தும்போது பால் நிறம் அற்றுப்போவதனை அவதானிக்கலாம்.

காபன் நீருடன் காட்டும் தாக்கம்

காபன் துண்டு ஒன்றை அல்லது காபன் தூளைக் குளிர் நீர் கொண்ட சோதனைக் குழாயினுள் இட்டால் அவதானிக்கக்கூடிய மாற்றம் எதனையும் காணமுடியாது. அதேபோன்று கொதிநீர் கொண்ட சோதனைக் குழாயினுள் அவற்றை இட்டாலும் எந்தவித மாற்றத்தையும் அவதானிக்க முடியாது.

உங்களுக்குத் தெரியுமா?

செஞ் சூடான காபன் மீது நீராவியைச் செலுத்தும்போது உருவாகும் காபனோரொட்சைட்டு வாயுவும் ஐதரசன் வாயும் கலந்த கலவை, நீர் வாயு (water gas) எனப்படும். இவ்வாயுக் கலவையை எரிபொருளாகப் பயன்படுத்தலாம்.

♦ காபன் அமிலங்களுடனும் காரங்களுடனும் காட்டும் தாக்கம்

காபன் தூளினை ஒரு சோதனைக் குழாயில் இட்டு, அதற்கு ஐதான ஐதரோகுளோரிக் அமிலத்தைச் சேர்க்கும்போது அவதானிக்கக்கூடிய மாற்றம் எதனையும் காணமுடியாது.

காபன் தூளினை ஒரு சோதனைக் குழாயில் இட்டு அதனுள் ஐதான சோடியம் ஐதரொட்சைட்டினைச் சேர்க்கும்போது அங்கு அவதானிக்கக்கூடிய மாற்றம் எதனையும் காண முடியாது.

சல்பர் - கந்தகம் (S)

இது மஞ்சள் நிறமான திண்மமாகக் காணப்படும். சல்பர் ஒரு சிறப்பான அல்லுலோகமாகும். இது வளியில் தகனமடையும்போது வெளிவரும் கந்தகவீரொட்சைட்டு சூழலை மாசுபடுத்தும்.

♦ கந்தகம் வளியுடன் காட்டும் தாக்கம், கந்தகத்தின் தகனம்

கந்தகத்தை வளியில் திறந்து வைக்கும்போது அவதானிக்கக்கூடிய மாற்றம் ஏதும் ஏற்படாது. கந்தகத்தினை எரிகரண்டியில் எடுத்துச் சுவாலையில் பிடிக்கும்போது அது உருகி, பின் நீல நிறச் சுவாலையுடன் எரிந்து, விரும்பத்தகாத மணமுள்ள, நிறமற்ற வாயு ஒன்றை வெளியேற்றும். அதனைக் கீழ்வரும் சமன்பாட்டினால் காட்டலாம்.

உங்களுக்குத் தெரியுமா?

கந்தகவீரொட்சைட்டு நச்சுத்தன்மையான ஒரு வாயு; சூழலை மாசுபடுத்தும்; வளியை விட அடர்த்தி கூடியது; நீரில் கரைந்து சல்பூரஸ் அமிலத்தையும் பின் சல்பூரிக் அமிலத்தையும் கொடுப்பது அமில மழைக்குக் காரணமாகும்.

♦ கந்தகம் நீருடன் காட்டும் தாக்கம்

குளிர் நீர் கொண்ட சோதனைக் குழாயில் கந்தகத் துண்டு ஒன்றை இட்டால் அவதானிக்கக்கூடிய மாற்றம் ஏதும் ஏற்படாது. அவ்வாறே, கொதிநீர் கொண்ட சோதனைக் குழாயினுள் கந்தகத்தை இட்டபோதும் எவ்வித மாற்றமும் ஏற்படாது.

♦ கந்தகம் அமிலங்களுடனும் காரங்களுடனும் காட்டும் தாக்கம்

ஐதான ஐதரோகுளோரிக் அமிலம் கொண்ட சோதனைக் குழாயினுள் கந்தகத் துண்டு ஒன்றை இட்டால் அவதானிக்கக்கூடிய மாற்றம் ஏதும் ஏற்படாது. அவ்வாறே ஐதான சோடியம் ஐதரொட்சைட்டைக் கொண்ட சோதனைக் குழாயினுள் கந்தகத் துண்டு ஒன்றை இட்டால் அங்கும் அவதானிக்கக்கூடிய மாற்றம் ஏதும் ஏற்படாது.

4.5 கலப்புலோகங்களும் பயன்பாடுகளும்

4.5.1 கலப்புலோகங்கள் என்றால் என்ன?

மூலகங்களை உலோகங்கள், அல்லுலோகங்கள் என இருவகைப்படுத்தலாம். எமது அன்றாடத் தேவைகளுக்காக அவை பல வழிகளில் பயன்படுத்தப்படுகின்றன.

மூலகங்கள் தூய பதார்த்தங்கள் ஆகும். மூலகம் ஒத்த வகையான அணுக்களால் ஆக்கப்பட்டுள்ளது. பொதுவாகப் பயன்படும் மூலகங்களான இரும்பு (அயன்), செம்பு (கொப்பர்) ஆகியன தூய உலோகங்களாகப் பயன்படும் சந்தர்ப்பங்கள் வரையறுக்கப்பட்டனவாகும். இரும்பு உருக்காகவும் செம்பு பித்தளையாகவும் மாற்றப்பட்டுப் பயன்படுத்தப்படுகின்றன. பல்வேறுபட்ட நிர்மாணங்கள், உபகரணங்கள், கருவிகள் என்பவற்றின் ஆக்கத்திற்குப் பயன்படும் உருக்கு, பித்தளை மற்றும் வெண்கலம் போன்றன கலப்புலோகங்களாகும். ஆபரணக் கைத்தொழிலில் பயன்படும் 22 கரட் தங்கம், தூய பொன் உலோகத்திற்குச் செம்பு கலந்து பெறப்படும் கலப்புலோகமாகும். தற்போது கலப்புலோகங்களே பொதுவாக உலோகங்களுக்குப் பதிலாகப் பயன்படுத்தப்படுகின்றன.

உரு 4.5.1 பித்தளையினாலான பொருள்கள் உரு 4.5.2 தங்க ஆபரணங்கள்

எமது பல்வேறு தேவைகளைப் பூர்த்தி செய்வதற்காக வெவ்வேறு இயல்புகளையும் பண்பையும் கொண்ட அடிப்படைப் பொருள்களை உற்பத்தி செய்வதற்குக் கலப்புலோகங்கள் பயன்படுத்தப்படுகின்றன. இவை ஒரு உலோகத்துடன் வேறு உலோகத்தை அல்லது உலோகத்தன்மையற்ற திரவியங்களைக் கலந்து பெறப்படும் ஏகவின உலோகக் கலவைகளாகும். கலப்புலோகங்களின் இயல்புகள் அவற்றினை ஆக்கும் தூய உலோகங்களின் இயல்புகளிலிருந்து வேறுபட்டவையாகும்.

உலோகங்களுக்கு வேறு உலோகங்களை அல்லது உலோகங்கள் அல்லாத பதார்த்தங்களைக் கலந்து பெறப்படும் உலோக இயல்புள்ள பதார்த்தங்கள் கலப்புலோகங்கள் (alloys) என்றழைக்கப்படும்.

பல்வேறு தேவைகளுக்குப் பொருத்தமான வகையில் வெவ்வேறு சிறப்பியல்புகளைக் கொண்ட நூற்றுக்கணக்கான கலப்புலோகங்கள் ஆக்கப்பட்டுள்ளன. அவ்வாறு பொதுவாகப் பயன்படுத்தப்படும் கலப்புலோகங்கள் சிலவற்றைப் பற்றிப் பார்ப்போம்.

4.5.2 பொதுவான சில கலப்புலோகங்கள் - சிறப்பியல்பு, பயன்பாடு

கலப்புலோகம்	அடங்கியுள்ள கூறுகள்	சிறப்பியல்புகள்	பயன்பாடுகள்
பித்தளை (Brass)	செம்பு (Cu) நாகம் (Zn)	ஓரளவு உறுதியானது, பொன்நிறம் சார்ந்தது, இலகுவில் மங்காது.	பிணைச்சல், தாழ்ப்பாள், நீர்த் திருகுபிடி, குத்துவிளக்கு, மணி, பெரிய பூச்சாடி, மின்னுபகரணங்களின் கடத்தும் பாகங்கள் என்பவற்றின் உற்பத்தி.
வெண்கலம் (Bronze)	செம்பு (Cu) வெள்ளீயம் (Sn) ஈயம் (Pb)	மிக உறுதியானது, வளையும், நெளியும் இயல்பு குறைந்தது, துருப்பிடிக்காது, இலகுவில் தேய்வடையாது.	சிலைகள், பெரிய மணிகள் போன்றவற்றின் ஆக்கம்.
டியூரலுமின் (Duralumin)	அலுமினியம் (Al) செம்பு (Cu) மங்கனிசு (Mn) மக்னீசியம் (Mg) சிலிக்கன் (Si) நாகம் (Zn) சிறிதளவு	உறுதியானது, இலேசானது, துருப்பிடிக்காது.	ஆகாயவிமானங்களின் புறச்சட்டகம், யன்னற் சட்டகம் என்பவற்றின் தயாரிப்பு.
மென்பற்றாசு/ ஒட்டீயம் (Solder)	ஈயம் (Pb) வெள்ளீயம் (Sn)	குறைந்த கொதி நிலை, இலகுவில் சூடாகும்.	உலோகங்களைப் பற்றாசு பிடித்தல் (soldering)
22 கரட் தங்கம் (22 Karat gold)	பொன் (Au) 22 பங்கு, செம்பு (Cu) 2 பங்கு	வலிமையானது, மங்காது, பளபளக்கும் மஞ்சள் நிறமும் பிரகாசமும் கொண்டது	ஆபரணங்களின் தயாரிப்பு.
பியூற்றர் (Pewter)	நாகம் (Zn) அந்திமனி (Sb) செம்பு (Cu)	இலேசானது, வலிமையானது.	நீர்த் திருகுபிடி, சிறிய வாகனங்களின் பிஸ்ரன் (முசலம்), கூசா போன்றவற்றின் ஆக்கம்.
நிக்கிரோம் (Nichrome)	நிக்கல் (Ni) குரோமியம் (Cr)	மின் தடை அதிகம்.	வெப்பச் சுருள்களின் தயாரிப்பு.

அட்டவணை 4.5.1 இரும்பைக் கொண்டிராத கலப்புலோகங்களும் அவற்றின் பயன்பாடுகளும்

உரு 4.5.3 டியூரலுமினால் ஆகாயவிமானம் ஆக்கப்படும்

உரு 4.5.4 வெண்கலச் சிவை

உரு 4.5.5 பித்தளையினாலான பொருள்கள்

குறித்த ஓர் உலோகத்திற்கு வெவ்வேறு உலோகங்களைக் கலப்பதன் மூலம் ஒன்றிலிருந்தொன்று வேறுபட்ட தன்மை, இயல்புகள் கொண்ட கலப்புலோகங்கள் தயாரிக்கப்படும். இரும்பைக் கொண்ட சில கலப்புலோகங்களும் (ferro alloys) அவற்றின் சிறப்பியல்புகளும் பயன்பாடுகளும் கீழே தரப்பட்டுள்ளன.

4.5.3 இரும்பை கொண்ட சில கலப்புலோகங்கள்

இரும்பு அடங்கிய கலப்புலோகங்கள் பல காணப்படுகின்றன. நாம் பயன்படுத்தும் இக்கலப்புலோகங்களில் மிகவும் முக்கியமானதும் பெருமளவு பயன்படுத்தப்படுவதும் உருக்கு ஆகும். நிர்மாணப் பணிகளுக்கும் பல்வேறு இயந்திரங்கள், உபகரணங்கள், ஆயுதங்கள், வீட்டில் பயன்படும் பொருள்கள் என்பவற்றைச் செய்வதற்கும் உருக்கு பயன்படுத்தப்படுகின்றது. இரும்புடன் வெவ்வேறு அளவுகளில் காபனைச் சேர்ப்பதன் மூலம் பலவகையான உருக்கு வகைகள் தயாரிக்கப்படுகின்றன. காபன் கலந்த சில உருக்குகளைப் பற்றிப் பார்ப்போம்.

மெல்லுருக்கு (Mild steel) :- மெல்லுருக்கு, இரும்புடன் மிகக் குறைந்த அளவு காபன் கலந்து பெறப்பட்டதாகும். இது உறுதியானது; வாட்டத்தக்கது; பாலங்கள், உயர்ந்த கோபுரங்கள், கட்டடங்கள், வாகனத்தின் வெளிப்புறச் சட்டகம் போன்றவற்றை உருவாக்கப் பயன்படும்.

வல்லுருக்கு (Hard steel) :- வல்லுருக்கு, இரும்புடன் மெல்லுருக்கைவிடக் கூடிய அளவு காபன் கலந்து பெறப்பட்டதாகும். இது வலிமையானது (உறுதியானது); தேய்மானம் குறைவானது; வாட்டத்தகுமியல்பு, நீட்டத்தகுமியல்பு என்பன குறைவானது; வெட்டுவாள், உளி, சீவுளி போன்ற ஆயுதங்கள் செய்யப் பயன்படும்.

வார்ப்பிரும்பு (Cast iron) :- வார்ப்பிரும்பு இரும்புடன் அதிக அளவு காபன் கலக்கப்பட்டுப் பெறப்பட்டதாகும். இது மிகவும் உறுதியானது; வாட்டத்தகுமியல்பு மிகக் குறைவானது. எஞ்சின் சட்டகங்களைத் தயாரிக்கப் பயன்படும்.

கறையில் உருக்கு (Stainless steel) :- இரும்புடன் காபன் மற்றும் குரோமியம் (Cr), நிக்கல் (Ni) கலந்து பெறப்பட்ட ஒரு கலப்புலோகமாகும். துருப்பிடிக்காது; பளபளப்பானது; வலிமையானது; கத்தி, முள்ளுக் கரண்டி, நீர்த் திருகுபிடி, நீர்த்தாழி, அறுவைச் சிகிச்சை உபகரணங்கள் என்பவற்றை உற்பத்தி செய்யப் பயன்படும்.

உரு 4.5.6 கத்தி, கரண்டி, முள்ளுக்கரண்டி

உரு 4.5.7 அறுவைச் சிகிச்சை உபகரணங்கள்

தங்கிதன் உருக்கு (Tungsten steel) :- இது மிக உறுதியானது, வலிமையானது. துரிதமாக வெட்டும் ஆயுதங்கள் ஆகியவற்றின் உற்பத்திக்குப் பயன்படும்.

உங்களது மேலதிக அறிவிற்காக!

நூற்றுக்கணக்கான கலப்புலோகங்களிடையே நீங்கள் அறிந்துகொள்ள வேண்டிய மேலும் சில கலப்புலோகங்கள் தொடர்பான தகவல்கள் அட்டவணையில் தரப்பட்டுள்ளன.

கலப்புலோகம்	பிரதான கூறுகள்	இயல் புகள்	பயன்பாடுகள்
இன்வார் (Invar)	இரும்பு (Fe) நிக்கல் (Ni)	மிகக் குறைவாக விரிவடையும்.	கடிகாரம், வெப்பக் கட்டுப்படுத்திகளின் ஈருலோகச் சட்டம் ஆகியவற்றின் ஆக்கம்.
அல்னிகோ (Alnico)	அலுமினியம் (Al) நிக்கல் (Ni) இரும்பு (Fe) கோபால்ற்று (Co)	மிக நன்றாகக் காந்தமாகும்.	நிலையான காந்தங்களை ஆக்குதல்.
ஒஸ்மிரிடியம் (Osmiridium)	ஒஸ்மியம் (Os) இரிடியம் (Ir)	துருப்பிடிக்காது, இலகுவில் தேய்வடையாது.	பேனா முனைகளை ஆக்குதல்.
ஸ்டர்லிங் சில்வர் (Sterling silver)	வெள்ளி (Ag) செம்பு (Cu)	தூய வெள்ளியை விட வலிமையானது	ஆபரணங்களின் தயாரிப்பு.

ஒப்படை 1

உங்கள் பாடசாலை நூலகத்திலிருந்தும் வேறு புத்தகங்கள், சஞ்சிகைகள், பத்திரிகைகள் என்பவற்றிலிருந்தும் உலோகங்கள், கலப்புலோகங்கள் தொடர்பான தகவல்களை இயன்ற அளவு சேகரியுங்கள். கலப்புலோகங்களின் பெயர், அவற்றில் அடங்கியுள்ள கூறுகள், இயல்புகள், பயன்பாடுகள் என்பன பற்றிய புகைப்படங்கள் மற்றும் சான்றுகளைச் சேகரித்து விஞ்ஞானக் கண்காட்சிக்கு உகந்த ஆக்கம் ஒன்றைத் தயார் செய்யுங்கள்.

4.6 உணவில் அடங்கியுள்ள போசணைப் பொருள்கள்

4.6.1 முக்கிய போசணைப் பொருள்கள்

பச்சைத் தாவரங்கள் சூரிய ஒளிச் சக்தியைப் பயன்படுத்தித் தமது உணவை உற்பத்தி செய்கின்றன. ஆகவே, தாவரங்கள் தற்போசணிகள் எனப்படும். மனிதன் உட்பட விலங்குகளுக்கு அவ்வாற்றல் இல்லை. எனவே, விலங்குகள் உணவிற்காகத் தாவரங்களை நேரடியாக அல்லது மறைமுகமாகச் சார்ந்திருக்கின்றன. இதனால், விலங்குகள் பிறபோசணிகள் எனப்படும்.

விலங்குகள் உட்கொள்ளும் உணவுகளில் பரந்த பல்வகைமை உண்டு. நீங்கள் உட்கொள்ளும் உணவு வகைகள் பற்றி ஒருவர் உங்களிடம் வினவினால், அவை சோறு, பாண், உருளைக்கிழங்கு, வத்தாளை, கீரை, காய்கறிகள், பழங்கள், முட்டை, இறைச்சி, பருப்பு, மீன், மாஜரின், பல்வேறு வகைத் தானியங்கள் எனப் பதிலளிப்பீர்கள். நீங்கள் இவ்வினாவிற்கு விஞ்ஞானரீதியாகவும் பதிலளிக்க இயலும். அதாவது, நீங்கள் மேலே குறிப்பிட்ட உணவு வகைகளில் உள்ள போசணைப் பொருள்களுக்கேற்பவும் பதிலளிக்கலாம்.

நாம் உட்கொள்ளும் உணவுகளை முக்கியமாக ஐந்து வகைப்படுத்தலாம். அவை காபோவைதரேற்று, புரதம், இலிப்பிட்டு, விற்றமின்கள், கனியுப்புகள் என்பனவாகும். இவற்றுக்கு மேலதிகமாக நீர், நார்ப்பொருள்கள் ஆகியனவும் உணவில் உள்ளன. மனிதன் உட்பட எல்லா விலங்குகளும் தமக்குத் தேவையான சக்தியைப் பெறுவதற்கும் உடல் வளர்ச்சிக்கும் இழையங்களைப் புதுப்பிப்பதற்கும் நோய்களிலிருந்து பாதுகாப்பைப் பெறுவதற்கும் இப்போசணைப் பொருள்கள் அவசியமாகும். இப்போசணைப் பொருள்கள் அடங்கியுள்ள உணவுகளை உட்கொள்ளல் உடனலத்துடன் வாழ்வதற்கு இன்றியமையாததாகும். ஆகவே, நாம் உட்கொள்ளும் உணவுகளில் உள்ள போசணைப் பொருள்களையும் அவற்றின் முக்கியத்துவத்தையும் பற்றி அறிந்திருக்க வேண்டும். உணவுகளில் உள்ள போசணைப் பொருள்கள் பற்றி அறிந்திருக்க வேண்டும். உணவுகளில் உள்ள போசணைப் பொருள்கள் பற்றி அறிந்திருக்க வேண்டும்.

காபோவை தரேற்றுகள் (Carbohydrates)

சோறு, பாண், உருளைக்கிழங்கு, வத்தாளை, பலாக்காய், பருப்பு ஆகிய உணவுகளில் காபோவைதரேற்று அதிக அளவில் அடங்கியுள்ளது. காபோவைதரேற்று அடங்கிய உணவுகளிலிருந்து உடற் தொழிற் பாடுகளுக்குத் தேவையான சக்தி கிடைக்கின்றது. ஆகவே, அத்தகைய உணவுகள் சக்தியைப் பிறப்பிக்கும்

உரு 4.6.1 காபோவைதரேற்று அடங்கியுள்ள சில உணவுகள்

உணவுகளாகவும் அழைக்கப்படும். காபோவைதரேற்றானது காபன், ஐதரசன், ஒட்சிசன் என்னும் மூலகங்களாலானது.

காபோவைதரேற்றுகளினுள் வெல்லங்களும் வெல்லமல்லாத பதார்த்தங்களும் அடக்கப்படுகின்றன. அதாவது, காபோவைதரேற்றுகள் ஒருசக்கரைட்டுகள், இரு சக்கரைட்டுகள், பல்சக்கரைட்டுகள் ஆக உள்ளன. ஒருசக்கரைட்டு எளிய வெல்லமாகும் (உதாரணம்: குளுக்கோசு). ஒருசக்கரைட்டின் இரு மூலக்கூறுகள் சேரும்போது இருசக்கரைட்டு உண்டாகின்றது. உதாரணமாக: மோல்றோசு, சுக்குரோசு, இலற்றோசு ஆகியன. நீங்கள் பருகும் தேநீருக்கு இனிப்புச் சுவையூட்டுவதற்குச் சுக்குரோசு (சீனி) பயன்படுகின்றது. பாலில் இலற்றோசும் தானியங்களில் மோல்றோசும் காணப்படுகிறது.

வெல்லமற்ற பதார்த்தமாகப் பல்சக்கரைட்டுகள் காணப்படுகின்றன. ஒரு சக்கரைட்டின் பல மூலக்கூறுகள் சேரும்போது பல்சக்கரைட்டு உண்டாகின்றது. குளுக்கோசின் பல மூலக்கூறுகள் ஒன்றோடொன்று சேரும்போது உருவாகும் மாப்பொருள் ஒரு பல்சக்கரைட்டாகும். சோறு, பலாக்காய், பாண், உருளைக்கிழங்கு, வத்தாளை ஆகியவற்றில் மாப்பொருள் உண்டு. மாப்பொருள், வெல்லம் ஆகியவற்றின் இயல்புகள் வேறுபட்டவை. வெல்லம் இனிப்புச் சுவைமிக்கது. ஆனால், மாப்பொருள் அவ்வாறானதன்று. வெல்லம் நீரில் கரையும். ஆனால், மாப்பொருள் நீரில் கரைவதில்லை.

♦ உணவில் காபோவைதரேற்று இருக்கின்றதாவெனச் சோதித்தல்

உணவில் காபோவைதரேற்றுகளான எளிய வெல்லம், மாப்பொருள் ஆகியன இருக்கின்றனவாவெனச் சோதிப்பதற்கு செயற்பாடுகள் 4.6.1, 4.6.2 என்பவற்றில் ஈடுபடுங்கள்.

செயற்பாடு 4.6.1

உணவில் எளிய வெல்லம் இருக்கின்றதாவெனச் சோதித்தல்

- சோதனைக்குழாய்கள், குளுக்கோசு, பழச்சாறு, ரொபி, பயறு, கருவாடு, மாஜரின், சோறு, சோயா, மீன், தேங்காய், வத்தாளை போன்ற உணவு வகைகள், பெனடிற்றின் கரைசல், பன்சன் சுடரடுப்பு அல்லது மதுசார விளக்கு ஆகியவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- மேற்குறித்த உணவுகள் ஒவ்வொன்றிலும் சிறிதளவு வீதம் தனித்தனியாக எடுத்துத் தேவைக்கேற்பத் தூளாக்கி அல்லது வெட்டி அல்லது அரைத்து, சோதனைக் குழாய்களில் இட்டு வடித்து, தெளிவான கரைசலைப் பெற்றுக் கொள்ளுங்கள்
- அந்த உணவுகள் ஒவ்வொன்றும் உள்ள சோதனைக் குழாய்களில் நீல நிறமுள்ள பெனடிற்றின் கரைசலில் சிறிதளவைச் சேர்த்து வெப்பமாக்குங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கையிடுங்கள்.

பெனடிற்றின் கரைசலுடன் வெப்பமாக்கும்போது செங்கற் செந்நிற வீழ்படிவு கிடைக்குமெனின், அவ்வுணவில் எளிய வெல்லம் இருக்கின்றதென முடிபு செய்யலாம். சிறிதளவு குளுக்கோசு இருக்கும்போது கரைசல் மஞ்சள் அல்லது பச்சை நிறமுள்ளதாக இருக்கும்.

செயற்பாடு 4.6.2

உணவில் மாப்பொருள் இருக்கின்றதாவெனச் சோதித்தல்

- செயற்பாடு 4.6.1 இல் குறிப்பிட்ட உணவுப் பொருள்களைப் போன்ற சில உணவுப்பொருள்கள், வெள்ளைப் பீங்கான் ஓடு, அயடீன் கரைசல் ஆகியவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- ஒவ்வொரு வகை உணவுப்பொருள்களிலும் சிறிதளவை எடுத்து வெள்ளைப் பீங்கான் ஓட்டின் மீது வைத்து அவ்வுணவுப் பொருளின் மீது அயடீன் கரைசலின் (கபில நிற) சில துளிகளை இடுங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கையிடுங்கள்.

அயடீன் கரைசலுடன் உணவுப் பொருள் கருநீல நிறத்தைக் காட்டுமெனின், அவ்வுணவில் மாப்பொருள் இருக்கின்றதென முடிபு செய்யலாம். அதாவது, மாப்பொருள் அயடீன் கரைசலுடன் கருநீல நிறத்தைத் தரும்.

இலிப்பிட்டுகள் (Lipids)

இலிப்பிட்டு என்பது சக்தியைப் பிறப்பிக்கும் உணவாகும். விலங்குக் கலத்தில் பெரும்பாலும் மாப்பொருள் தவிர இலிப்பிட்டுகளாகவும் சக்தி சேமித்து வைக்கப்படும்.

கொழுப்புகள், எண்ணெய்கள் என இலிப்பிட்டுகள் இரு வகைப்படும். கொழுப்பு அறை வெப்பநிலையிலே திண்ம நிலையில் இருக்கும். உதாரணமாக: வெண்ணெய் (பட்டர்), மாஜரின் ஆகியவற்றைக் குறிப்பிடலாம்.

எண்ணெய் அறை வெப்பநிலையிலே திரவமாக இருக்கும். உதாரணமாக: தேங்காய் எண்ணெய், சோயா எண்ணெய், நல்லெண்ணெய், காய்கறி எண்ணெய் ஆகியவற்றைக் குறிப்பிடலாம். இலிப்பிட்டானது காபன், ஐதரசன், ஒட்சிசன் என்னும் மூலகங்களாலானது.

உரு 4.0.2 இலிப்பீட்டு அடங்கியுள்ள சில உணவுகள்

உங்களுக்குத் தெரியுமா?

- காபோவைதரேற்று மூலக்கூற்றிலும் பார்க்க இலிப்பிட்டு மூலக்கூறு அதிக அளவு சக்தியை உற்பத்தி செய்யத்தக்கது. ஒரு கிராம் இலிப்பிட்டிலிருந்து 39 kJ சக்தியை உற்பத்தி செய்யலாம். பக்க விளைபொருளாக நீர் உண்டாகும். எனினும், 1 g காபோவைதரேற்றிலிருந்து உற்பத்தி செய்யத்தக்க சக்தியின் அளவு 17 k J மாத்திரமே ஆகும்.
- எமது தோலின் கீழும் கொழுப்புப் படை உண்டு. திமிங்கிலம் போன்ற நீர்வாழ் பாலூட்டிகளில் அக்கொழுப்புப் படை மிகவும் தடித்தது. உடலின் வெப்பநிலையைக் கட்டுப்படுத்துவதற்கு இக்கொழுப்புப் படை வெப்பக் காவலியாகச் செயற்படுகின்றது.
- பாலைவனத்தின் கப்பல் எனப்படும் ஒட்டகத்தின் ஏரியில் சேமித்து வைக்கப்படும் கொழுப்பிலிருந்து கிடைக்கும் சக்தியைப் போன்று, பக்க விளைபொருளாகக் கிடைக்கும் நீரும் ஒட்டகத்திற்குப் (பாலைவனத்தில் கடினமான பயணத்தின்போது) பயன்படும்.
 ஒட்டகத்தின் ஏரியில் நீர் சேமித்து வைக்கப்பட்டுள்ளது என்னும் தவறான

கருத்து உருவாவதற்கு இச்செயன்முறை ஏதுவாக உள்ளது.

♦ உணவில் இலிப்பிட்டு இருக்கின்றதாவெனச் சோதித்தல்

உணவில் இலிப்பிட்டுகள் இருக்கின்றதாவெனச் சோதிப்பதற்குக் கீழ் தரப்பட்டுள்ள செயற்பாடுகளில் ஈடுபடுங்கள்.

செயற்பாடு 4.6.3 (A)

- செயற்பாடு 4.6.1 இல் குறிப்பிட்ட உணவுப் பொருள்கள், தூய உலர்ந்த கடதாசி என்பவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- ஒவ்வொரு உணவுப் பொருள் துண்டையும் எடுத்துக் கடதாசி மீது தனித்தனியாக நன்றாக நசித்துத் தேயுங்கள்.
- ஒளியை நோக்கிக் கடதாசியை பிடித்து அவதானியுங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கையிடுங்கள்.

கடதாசி மீது ஒளி கசியும் கறை இருப்பின் அவ்வுணவில் இலிப்பிட்டு உள்ளதென முடிபு செய்யலாம்.

செயற்பாடு 4.6.3 (B)

- ஒரு சோதனைக் குழாயில் சிறிதளவு நீரை எடுத்து அதற்குள் முட்டையின் மஞ்சள் கரு / தேங்காய் எண்ணெய் சிறிதளவை இடுங்கள்.
- பின் சோதனைக் குழாயினுள் சூடான் III கரைசலின் சில துளிகளைச் சேர்த்து நன்றாகக் குலுக்குங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கையிடுங்கள்.

தேங்காய் எண்ணெய்ப் சிவப்பு நிறச் சிறுமணிகளாகக் காணப்படும். இதற்கேற்பத் தேங்காயில் கொழுப்பு இருக்கின்றதென முடிபு செய்யலாம்.

புரதங்கள் (Proteins)

உடல் வளர்ச்சிக்கும் இழையங்களைப் புதுப்பிப்பதற்கும் புரதம் அவசியம். இறைச்சி, மீன், முட்டை, சோயா, பால் போன்ற உணவுப் பொருள்களில் புரதம் உண்டு. புரதம் முக்கியமாகக் காபன், ஐதரசன், ஒட்சிசன், நைதரசன் என்னும் மூலகங்களினாலானது. இவற்றுடன் கந்தகமும் இருக்கலாம்.

புரதம் அடங்கியுள்ள சில உணவுகள்

♦ உணவில் புரதம் இருக்கின்றதாவெனச் சோதித்தல்

உணவில் புரதம் இருக்கின்றதாவெனச் சோதிப்பதற்குக் கீழ் தரப்பட்டுள்ள செயற்பாடுகளில் ஈடுபடுங்கள்.

செயற்பாடு 4.6.4

- செயற்பாடு 4.6.1 இல் குறிப்பிடப்பட்ட உணவுப் பொருள்களைப் பெற்றுக் கொள்ளுங்கள். பையூரேற்றுக் கரைசல், சில சோதனைக் குழாய்கள் ஆகியவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- அவ்வுணவுப் பொருள்கள் ஒவ்வொன்றையும் நன்றாக நசித்துச் சோதனைக் குழாய்களில் தனித்தனியே இட்டு, சிறிதளவு நீரையும் சேர்த்துத் தொங்கல் கரைசல் ஒன்றைத் தயாரித்துக்கொள்ளுங்கள்.
- உணவு உள்ள சோதனைக் குழாய்களுக்குள்ளே பையூரேற்றுக் கரைசலை (சோடியம் ஐதரொட்சைட்டு + செப்புச் சல்பேற்று) இட்டு, சிறிது கலக்குங்கள்.
- உங்கள் அவதானிப்புகளை அறிக்கையிடுங்கள்.

உணவு உள்ள கரைசல் ஊதா நிறமுள்ளதாக இருப்பின் அவ்வுணவில் புரதம் இருக்கின்றதென முடிவு செய்யலாம்.

உங்களுக்குத் தெரியுமா?

- புரத மூலக்கூறு நீண்ட சங்கிலி வடிவத்தில் இருக்கும். புரதம், சிறிய பல மூலக்கூறுகள் ஒன்றோடொன்று இணைவதனால் உண்டாகின்றது. இச்சிறிய மூலக்கூறுகள் அமினோ அமிலங்கள் எனப்படும். அவை பல்வேறு முறைகளில் இணைகின்றமையால் பல்வேறு வகைப் புரதங்கள் உருவாக்கப்படுகின்றன.
- சில வகைப் புரதங்கள் நீரில் கரையும். இதற்கு உதாரணமாக ஈமோகுளோபினைக் குறிப்பிடலாம். சில புரதங்கள் நீரில் கரைவதில்லை. நகத்திலும் தலைமயிரிலும் உள்ள கெரற்றீனை இதற்கு உதாரணமாகக் காட்டலாம். எல்லாப் புரதங்களும் 50 0 C இற்கு மேற்பட்ட வெப்பநிலையில் அமைப்பழிந்துபோகும்.

4.7 பொருத்தமான நுகர்வுப் பொருள்களின் தரத்தை இனங்காண உதவும் நியதிகள்

எமக்கு அவசியமான பொருள்களை வாங்கும்போது நாம் எவற்றில் கவனம் செலுத்துகிறோம்? இது தொடர்பாகத் தரம் 8 இல் கற்கும் ஜனனிக்கும் அவளது நண்பியான அம்னாவிற்கும் இடையில் நடந்த ஓர் உரையாடல் கீழே தரப்பட்டுள்ளது. அதில் உங்கள் கவனத்தைச் செலுத்துங்கள்.

ஜனனி : ''அம்னா, நீங்கள் நேற்று வாங்கிவந்த சவர்க்காரத்தினால் உடையைத் துவைத்ததால் எனது கைகளில் அரிப்பும் எரிவும் ஏற்பட்டன. அம்னா, அதை எங்கே வாங்கினீர்கள்?"

அம்னா : ''எப்போதும் வாங்கும் கடையில்தான் வாங்கினேன். ஆனால், அச் சவர்க்காரம் புது ரகமாகவும் விலை குறைவானதாகவும் பார்வைக்கு நன்றாகவும் இருந்தது. அதனால், தரமானதாக இருக்கும் என நினைத்து வாங்கினேன்."

ஜனனி : ''இலாபமாகக் கிடைக்கின்ற, பார்வைக்கு நன்றாகத் தெரிகின்ற எல்லாப் பொருள்களும் நல்லவை என நினைத்து விட முடியாது. அச்சவர்க்காரத்தில் தரம் பற்றிய எவ்வித சான்றுப்படுத்தல்களும் இல்லையே அம்னா."

அம்னா : ''ஜனனி, தரம் தொடர்பான சான்றுப்படுத்தல் என்றால் என்ன? "

ஜனனி: ''அதுதான் அம்னா ஒரு பொருள் உரிய முறையில் தயாரிக்கப்பட்டுள்ளது என்பதைக் காட்டுவதற்கு அதிலுள்ள இலச்சினை.''

அம்னா : ''நாம் அதனை அறிந்துகொள்வது எவ்வாறு? பொருளைப் பார்த்தவுடன் அதனை இனங்காண முடியுமா?'' SLS Sri Lanka Standards இலச்சீனை ISO - Interanational Standards Organisation இலச்சீனை

உரு 4.7.1 இலங்கைக் கட்டளைகள் நிறுவகத்தினால் வழங்கப்படும் தரச் சான்றிதழ் சீன்னங்கள்

ஜனனி : ''ஏன் முடியாது? சவர்க்காரத்தின் சுட்டுத்துண்டின் மீது அல்லது மேலுறையின் மீது SLS இலச்சினை அல்லது ISO இலச்சினை இருந்தால் சிறந்த தரத்தையுடைய சவர்க்காரம் என்ற தீர்மானத்திற்கு வரலாம்."

அம்னா : ''சவர்க்காரத்தில் மட்டும் தானா அந்த இலச்சினை காணப்படுகின்றது? "

ஜனனி: ''இல்லை, இன்னும் பல பொருள்களிலும் அந்த இலச்சினை காணப்படுகிறது."

மேலே தரப்பட்டுள்ள உரையாடலிலிருந்து தரமான பொருள்களில், தரம் தொடர்பான இலச்சினை காணப்படும் என்பதை விளங்கியிருப்பீர்கள். அப்பொருள்கள் இலங்கைக் கட்டளைகள் நிறுவகத்தினால் தரச் சான்றிதழ்கள் வழங்கப்பட்ட பொருள்களாக இருக்கும். தரச் சான்றிதழுடன் கூடிய பொருள்களை விலைகொடுத்து வாங்குவதன் முக்கியத்துவம் இப்போது உங்களுக்கு விளங்கியிருக்கும். தரச் சான்றிதழ் அற்ற பொருள்களைக் கொள்வனவு செய்வதன் மூலம் பிரதிகூலமான விளைவுகள் ஏற்பட வாய்ப்பு உண்டு என்பதும் உங்களுக்கு விளங்கியிருக்கும். தர நிர்ணயத்துடன் கூடிய பொருள்களுக்கு மட்டுமே தரச் சான்றிதழ்கள் வழங்கப்படுகின்றன.

4.7.1 நுகர்வுப் பொருள்களின் தர நிர்ணயம் என்றால் என்ன?

யாதேனும் ஒரு பொருள், அது உற்பத்தி செய்யப்படுவதன் நோக்கத்தை நிறைவு செய்வதற்காகக் கொண்டிருக்கும், ஏற்றுக்கொள்ளப்பட்ட பண்புத் தரத்துக்குரிய காரணிகள், தர நிர்ணயம் என அழைக்கப்படும். உள்ளடக்கம், பொதியிடும் பதார்த்தங்கள், மேலுறையின் இயல்பு, தேறிய நிறை, கனவளவு, பருமன் (size), உறை மீது அல்லது மேலுறை மீது குறிக்கப்பட்டிருக்க வேண்டிய வேறு காரணிகள் என்பன இதில் அடங்கும். அந்தந்தக் காரணிகள் தொடர்பான இழிவளவான தேவைகள் மட்டுமன்றிச் சோதனைக்காக மாதிரிகளைப் (sample) பெற்றுக்கொள்ளும் விதம், அவற்றின் சோதனை முறைகள் என்பனவும் தரநிர்ணயத்துக்குள் உள்வாங்கப்படும். சர்வதேச தர நிர்ணய நிறுவனத்தின் இலங்கை அங்கத்தவராகத் தொழிற்படும் நிறுவனம் இலங்கைக் கட்டளைகள் நிறுவகம் ஆகும்.

எந்தத் தர நிர்ணயத்திற்கும் குறியீட்டு இலக்கம் இருக்கும். பொருள் ஒன்றின் SLS இலச்சினைக்குக் கீழாக அந்தச் சான்றிதழ் இலங்கையின் எந்தத் தர நிர்ணயத்திற்கு ஏற்ப வழங்கப்பட்டது என்பதைக் காட்டும் குறியீட்டு இலக்கம் இடப்பட்டிருக்கும் (உரு 4.7.2). அத்துடன் தர நிர்ணயம் வழங்கப்பட்ட ஆண்டும் சில சந்தர்ப்பங்களில் குறிப்பிடப்பட்டிருக்கும்.

உரு 4.7.2 சில பொருள்களின் SLS இலச்சினைகள்

ஒரு பொருளில் வெவ்வேறு வகைகள் காணப்படின், அது பயன்படுத்தப்படும் சந்தர்ப்பத்துக்கேற்பத் தர நிர்ணயமும் வேறுபடும். அதனை SLS இலச்சினையுடன் இருக்கும் இலக்கத்தின் மூலம் இனங்கண்டுகொள்ளலாம். இது தொடர்பாக மேலதிக விளக்கத்தைப் பெறுவதற்காகக் கீழே தரப்பட்டுள்ள உதாரணங்களைப் பாருங்கள்.

- சவர்க்கார வகைகளில், துணி துவைப்பதற்குப் பயன்படுத்தும் சவர்க்காரம் (laundry soap), குழந்தைகளுக்கான சவர்க்காரம் (baby soap), முகச்சவரம் செய்வதற்குப் பயன்படுத்தும் சவர்க்காரம் (shaving soap) என்பவற்றின் தர நிர்ணயம் ஒன்றிலிருந்தொன்று வேறுபட்டது. அவற்றின் தர நிர்ணயம் முறையே SLS 554, SLS 547, SLS 36 என்பனவாகும். அவற்றில் காணப்படும் கூறுகளுக்கு அமைய SLS இலச்சினையும் வேறுபடுகின்றது.
- சாந்து பூசுவதற்குப் பயன்படுத்தப்படும் மேசன் சீமெந்தின் தர நிர்ணயம் SLS 515 ஆகும். கொங்கிறீற்றுத் தளங்களையும் கட்டுமானங்களையும் (bond) கட்டப் பயன்படுத்தும் ''போட்லன்ட்" சீமெந்தின் தர நிர்ணயம் SLS 107 ஆகும்.

தரச் சான்றிதழ் என்பது பொருள் ஒன்றின் பண்புத் தரம் தொடர்பாகக் கிடைக்கும் ஒரு நம்பகமான சான்றுப்படுத்தல் ஆகும். இலங்கையில், 2009 ஆம் ஆண்டில் SLS தரச் சான்றுப்படுத்தல் இலச்சினை கட்டாயமாக இருக்க வேண்டிய 33 பொருள்களின் பெயர்கள் குறிப்பிடப்பட்டுள்ளன. இது தொடர்பான மேலதிக விவரங்களுக்கு www.nsf.ac.lk/slsi என்ற இணையத்தளத்தைப் பார்வையிடுங்கள். இலங்கையில் தரச் சான்றிதழை வழங்கும் அதிகாரம் பெற்ற நிறுவனம் இலங்கைக் கட்டளைகள் நிறுவகமாகும்.

யப்பான், இந்தியா, பிரித்தானியா போன்ற நாடுகளிலுள்ள மக்கள் (நுகர்வோர்) தரச் சான்றிதழ் அற்ற பொருள்களை விலை கொடுத்து வாங்குவதில்லை. பொருள்களின் பண்புத்தரம், நுகர்வோர் பாதுகாப்பு, நுகர்வோர் உரிமைகள் என்பன தொடர்பாக அவர்கள் மிகுந்த கவனத்துடன் உள்ளனர். எனினும், எமது நாட்டில் நுகர்வோர் இது தொடர்பாகக் கவனஞ் செலுத்துவது மிகக் குறைவாகவே காணப்படுகின்றது.

உங்களுக்குத் தெரியுமா?

உற்பத்தி செய்யப்பட்ட பொருளுக்குத் தர நிர்ணயம் எவ்வளவு முக்கியமோ, அதேபோல் உற்பத்திச் செயன்முறைகளின் தரமும் முக்கியமானதாகும். உதாரணமாக, பழப்பாகு (jam) உற்பத்தியில் பயன்படுத்தப்படும் பழங்கள், பாத்திரங்கள், இயந்திரங்கள், உற்பத்திச் சூழல் போன்றனவும் ஊழியர்களால் அவை சுத்தமாகப் பேணப்படுகின்ற முறைகள் என்பனவும் நுகர்வோரால் அறிந்து கொள்ள முடியாதவையாகும். எனவே, நிறுவனத்தின் உற்பத்திச் செயன்முறைகள் தொடர்பாக இலங்கை மற்றும் சர்வதேச நாடுகளுக்குரிய தர நிர்ணயங்கள் உள்ளன. இவ்வாறான தர நிர்ணயத்திற்கான இலச்சினைகளும் இலக்கங்களும் நுகர்வுப் பொருள்களில் அல்லது அவற்றின் மேலுறைகள்/ பெட்டிகளில் காட்சிப்படுத்தப்பட்டிருக்கும்.

- ISO 9001 நிறுவனத்தினுள் சிறந்த முகாமைத்துவ அமைப்புப் பேணப்படுகிறது என்பதற்குக் கிடைக்கும் தரச் சான்றிதழ்.
- HACCP உணவு பதனிடும்போது பல்வேறு பொருள்களின் சேர்க்கையால் நோய்த் தொற்று/ மாசுபடுத்தல் (contamination) நடைபெறவில்லை என்பதற்கான தரச் சான்றிதழ்.
- ISO 22000 பௌதிக, இரசாயன, உயிரியல், விஞ்ஞான ரீதியான பாதிப்புகளின்றி, உணவின் அல்லது மருந்து வகைகளின் உற்பத்திச் செயன்முறையின் ஒவ்வொரு படிமுறையிலும் சுகாதாரப் பாதுகாப்புடன் சிறந்த முறையில் முகாமைத்துவம் செய்யப்பட்டுள்ளது என்பதற்குக் கிடைக்கும் தரச் சான்றிதழ்.
- ISO 14001 உற்பத்தி நிலையத்தில் அல்லது அதற்கு வெளியிலும் சூழலைச் சிறந்த முறையில் முகாமைத்துவம் செய்துகொள்வதற்காக வழங்கப்படும் தரச் சான்றிதழ்.
- Energy Rating மின்னுபகரணம் ஒன்றின் சக்தி மாற்ற வினைத்திறன் தொடர்பான தரச் சான்றிதழ். இங்கு வினைத்திறனுக்கேற்ப நட்சத்திர எண்ணிக்கை 1 இலிருந்து 5 வரை வேறுபடும்.

வர்த்தகச் சந்தையில் உள்ள நுகர்வுப் பொருள்களில் தரமான பொருள்களை இனங்கண்டுகொள்ள நீங்கள் விரும்புவீர்கள். அது தொடர்பாக ஒப்படை 1 இல் காட்டப்பட்டுள்ள ஆய்வில் ஈடுபடுவோம்.

ஒப்படை 1

உங்கள் வீட்டுக்குக் கொண்டுவரப்படும் மருந்துப் பொருள்கள், உணவுப் பண்டங்கள், பானங்கள், துப்புரவாக்கிகள், கட்டடப் பொருள்கள் மற்றும் வேறு பொருள்களில் உள்ள மேலுறைகள், சுட்டுத்துண்டுகள் மீது தரப்பட்டுள்ள விவரங்களை அல்லது பொருள்கள் தொடர்பாக விளம்பரங்களினூடாகப் பெறப்படும் தகவல்களைப் பட்டியற்படுத்துங்கள் (வர்த்தகச் சந்தை ஒன்றை மேற்பார்வை செய்வதன் மூலம் தகவல்களைப் பெற்றுக்கொள்ளலாம்).

- செலவிடும் பணத்துக்கு ஏற்றதாகப் பொருள் தரத்துடன் காணப்படுகின்றதா என்ற முடிபுக்கு வரக்கூடிய சந்தர்ப்பங்களை இனங்காணுங்கள்.
- அப்பொருள்கள் தொடர்பாக அவற்றைப் பொதியிடும் உறைகள், பெட்டிகள் என்பவற்றின் பொருத்தப்பாடு பற்றி ஆராய்ந்து அறியுங்கள்.
- உங்கள் எதிர்வுகூறல்களை உள்ளடக்கியதாகச் சிறு நூல் ஒன்றை ஆக்குங்கள்.

உணவுப் பண்டங்கள், பானங்கள், மருந்து வகைகள், துப்புரவாக்கிகள் (சவர்க்காரம், ஷாம்பூ) போன்றவற்றின் மேலுறைகளின் / சுட்டுத்துண்டுகளின் மீது திணிவு, கனவளவு, அவற்றில் அடங்கியுள்ள பதார்த்தங்கள், விலை, உற்பத்தித் தேதி, காலாவதியாகும் தேதி, உற்பத்தியாளர் தொடர்பான தகவல், தரச் சான்றுப்படுத்தல் இலச்சினை என்பன குறிப்பிடப்பட்டிருப்பதை நீங்கள் அவதானித்திருப்பீர்கள். எனினும், தரம் தொடர்பான இலச்சினை எல்லாப் பொருள்களிலும் காணப்படுவதில்லை. தரச் சான்றுபடுத்தல் இலச்சினையுடன் கூடிய உயர்தரத்திலான பொருள்களை மட்டும் விலை கொடுத்து வாங்குவதன் மூலம், தரச் சான்றிதழ் முறைமையைப் பின்பற்றச் செய்யும் வகையில் உற்பத்தியாளரை ஊக்குவிக்கும் பொறுப்பு உங்களைச் சார்ந்ததாகும்.

4.7.2 நுகர்வுப் பொருளின் பண்புத்தரம்

பொருளின் மேலுறை அல்லது சுட்டுத்துண்டு மீது அதன் தரம் தொடர்பான அநேக தகவல்கள் குறிப்பிடப்பட்டிருப்பதை நாம் அறிவோம். தகரத்தில் அடைக்கப்பட்ட மீன், பால்மாப் பொதி, மருந்து அடைக்கப்பட்ட பெட்டி, சவர்க்கார மேலுறை, குடிநீர் அடைக்கப்பட்ட போத்தல் ஆகியவற்றில் காணப்படும் பொதுவான தகவல்களை இனங்காண்போம் (உரு 4.7.3).

உரு 4.7.3 பல்வேறு நுகர்வுப் பொருள்களில் காணப்படும் மேலுறைகள்

மேலுறைகள் / சுட்டுத்துண்டுகள் மீது காணப்படும், கீழே தரப்பட்டுள்ள விடயங்கள் தொடர்பாகக் கவனஞ் செலுத்துவோம்.

- தரச் சான்றுப்படுத்தல் இலச்சினை (symbol of standards)
- உற்பத்தித் தேதி (date of manufacture)
- காலவதியாகும் தேதி (date of expiry)

- உள்ளடக்கங்கள் (ingredients) பொதுவான சேர்மானங்கள் (average composition), உற்பத்திக்காகப் பயன்படுத்தப்பட்ட பொருள்கள், போசணைப் பதார்த்தங்கள், நிறமூட்டிகள், சுவையூட்டிகள், நற்காப்புப் பதார்த்தங்கள் போன்றவை இவற்றுள் அடங்கும்.
- தேறிய நிறை (net weight).
- உற்பத்தி செய்த நாடு / நிறுவனம் / நபர் தொடர்பான விவரங்கள்.
- மனித நேயம் / சூழல் நட்புத் தொடர்பான தகவல்கள் என்பன அடங்கியிருக்கும்.

இந்தத் தகவல்கள் பொருளின் பண்புத் தரத்தை அளவிடும் நியதிகளாகக் கொள்ளப்படும். இப்போது நாம் அந்த நியதிகள் தொடர்பான சுருக்கமான பகுப்பாய்வு ஒன்றில் ஈடுபடுவோம்.

தரச் சான்றுப்படுத்தல் இலச்சினை

ஏதேனும் பொருள் ஒன்று இலங்கைக் கட்டளைகள் நிறுவகத்தின் நியதிகளுக்கு ஏற்ப உற்பத்தி செய்யப்பட்டு, அது தொடர்பான தரச் சான்றிதழ் பெற்றுக்கொள்ளப்பட்டிருந்தால் அப்பொருளின் மீது SLS இலச்சினையும் அதற்குரிய இலக்கமும் இடப்பட்டிருக்கும். சர்வதேச தர நிர்ணயத்துக்கேற்ப உற்பத்தி செய்யப்பட்டிருப்பின் ISO இலச்சினையை இட்டுக் காட்சிப்படுத்தலாம். ISO இலச்சினையுடன், தர நிர்ணயத்தைக் காட்டும் இலக்கமும் அது வழங்கப்பட்ட வருடமும் குறிப்பிடப்படும்.

பொருள் ஒன்றுக்காகத் தரச் சான்றிதழ் வழங்கப்பட்ட பின்னரும்கூட இடையிடையே வர்த்தகச் சந்தையிலிருந்து அப்பொருளின் மாதிரிகளை எழுந்தமானமாகப் பெற்று, அப்பொருளின் பண்புத் தரத்தைப் பரிசீலனைக்கு உட்படுத்துவதன் மூலம் தரச் சான்றுப்படுத்தல் இலச்சினைகளைத் தொடர்ந்து பயன்படுத்த அனுமதிப்பது பற்றித் தீர்மானிக்கப்படும்.

உங்களுக்குத் தெரியுமா?

நுகர்வோரான உங்களுக்கும் பல்வேறு உரிமைகள் உள்ளன. நுகர்வோர் பாதுகாப்பு அதில் முக்கியத்துவம் பெறுகின்றது. ஆரோக்கிய வாழ்க்கைக்குத் தீங்கு விளைவிக்கும் பொருள்களைக் கொள்வனவு செய்வதைத் தவிர்த்துக்கொள்வது நுகர்வோர் பாதுகாப்பு ஆகும். பொருள்கள் தொடர்பான தகவல்களைத் தெரிந்து கொள்வது நுகர்வோர் உரிமையாகும். தரச் சான்றிதழ், இலச்சினை, பொருள்கள் தொடர்பான தகவல்களைக் குறிப்பிடுதல் போன்றவற்றில் சட்டத்தின் செல்வாக்கின் மூலம் இந்த உரிமை உறுதிப்படுத்தப்படுகின்றது.

வர்த்தகச் சந்தையில் நிலவும் போட்டி காரணமாக, சில வர்த்தகர்கள், தரம் குறைந்த பொருள்களை நுகர்வோருக்கு விற்பனை செய்வதற்காகப் பல்வேறு தந்திரங்களைக் கையாளுகின்றனர். ஏதேனும் ஒரு பொருள் தொடர்பாகச் சரியான தகவல்களைப் பெற்றுக்கொள்ளக்கூடிய ஒரே முறை தரச் சான்றுப்படுத்தல் இலச்சினையாகும். எனவே, தரச் சான்றுப்படுத்தல் இலச்சினையுடன் கூடிய

பொருள்களைக் கொள்வனவு செய்வதன் மூலம் கொடுக்கும் பணத்துக்குப் பெறுமதியான, தீங்கற்ற, உயர்தரத்திலான பொருள் ஒன்றைப் பெற்றுக்கொள்வதற்கான சந்தர்ப்பம் கிடைக்கின்றது.

தூச் சான்றிதழைப் பெற்றுக்கொள்ளாத, தயாரிக்கப்பட்ட உணவு வகைகளின் உள்ளடக்கங்கள் பற்றியும் அவற்றின் தூய்மைபற்றியும் உத்தரவாதமளிப்பது கடினமானது. இலாப நோக்கத்திற்காக விலை குறைந்த பொருள்களைக் கலப்படம் செய்யும் சில வர்த்தகர்களைப் போலவே சில உற்பத்தியாளரும் மனித நேயமின்றி நடந்துகொள்வது வருந்தத்தக்க விடயமாகும். அவ்வாறான உணவுப் பொருள்களை இனங்கண்டு தவிர்ப்பது நுகர்வோரது கடமையாகும். உணவுப் பொருள்களைக் கலப்படம் செய்யப் பயன்படுத்தும் சில பொருள்கள் பற்றி அறிந்துகொள்ள ஒப்படை 2 இல் ஈடுபடுங்கள்.

ஒப்படை 2

- கலப்படம் செய்வதன் மூலம் தயாரிக்கப்பட்ட தரம் குறைந்த உணவுப் பொருள்களின் பட்டியல் ஒன்றை உங்கள் குடும்ப உறுப்பினர்களின் அல்லது நண்பர்களின் துணையுடன் தயாரியுங்கள் (உதாரணம் : கருப்பட்டி).
- இவ்வாறு பொருள்களைக் கலப்படம் செய்வதற்குப் பயன்படுத்தப்படும் பொருள்கள் பற்றிய தகவல்களைச் சேகரியுங்கள்.
- நீங்கள் கண்டறிந்த விடயங்களை விளக்கும் பொருத்தமான கடிதம் ஒன்றைச் சுவர்ப் பத்திரிகைக்கு எழுதுங்கள்.

தூளாக்கப்பட்ட உணவுப் பொருள்கள் பெருமளவில் கலப்படத்துக்கு உள்ளாகின்றன. கலப்படஞ் செய்யப்பட்ட உணவுப் பொருள்களை இனங்காண நீங்கள் கற்ற விஞ்ஞான முறைகளைப் பயன்படுத்தலாம். அது தொடர்பான தகவல்களைத் திரட்டுங்கள்.

நுகர்வுப் பண்டங்கள் சிலவற்றின் பொதியிடும் பதார்த்தங்களின் பொருத்தப்பாடு பற்றி ஒப்படை 1 இல் பார்த்திருப்பீர்கள். உணவுப் பொருள்கள், மருந்து வகைகள் என்பவற்றைப் பொருத்தமான முறையில் பேணுவதற்கும் இலத்திரனியல் உபகரணங்கள், மின்னுபகரணங்கள், கண்ணாடிப் பொருள்கள் போன்றவற்றைச் சேதமடையாது பாதுகாப்பதற்கும் பொதி செய்தல் அவசியமாகின்றது. நுகர்வுப் பொருளுக்கேற்பப் பொதியிடும் பதார்த்தம் வேறுபடுவதை நீங்கள் அவதானித்திருப்பீர்கள். இதற்கெனப் பலவகையான பதார்த்தங்கள் பயன்படுத்தப்படுகின்றன. அவற்றுள் சிலவற்றைப் பார்ப்போம்.

- இரும்புக் கொள்கலம் (பாத்திரம்)
- (i) வெள்ளீயம் பூசப்பட்ட தகரத்திலடைத்த மீன், பழவகை, மரக்கறி வித்துகள், ஒட்டும் பசை வகைகள் போன்றவற்றை அடைப்பதற்குப் பயன்படும்.

- (ii) பொலித்தீன் மேற்பூச்சிடப்பட்ட பால்மா, விசுக்கோத்து, தேயிலைத் தூள் அலுமினிய உறை போன்றவற்றைப் பொதியிடுவதற்குப் பயன்படும்.
- (iii) பல்பகுதிய உறைகளும் எமல்சன் நிறப் பூச்சு வகைகள், குடிநீர், யோகட், கொள்கலங்களும் ஐஸ்கிறீம் உணவு வகைகள், மின்னுபகரணங்கள் போன்றவற்றை அடைப்பதற்குப் பயன்படும்.
- (iv) அலுமினிய டியூப் பற்பசை வகைகள், ஒட்டும் பசை வகைகள், கிறீம் வகைகள் ஆகியவற்றை அடைப்பதற்குப் பயன்படும்.

இப்பொதியிடும் பதார்த்தங்கள் மூலம் வளி, ஈரலிப்பு என்பன உட்செல்வதும் வெளியேறுவதும் தடுக்கப்படுவதுடன், நுண்ணங்கிகள் உட்செல்வதும் தடுக்கப்படுகின்றது. அத்துடன் பொருளுக்கான பாதுகாப்பும் வழங்கப்படுகிறது.

தர நிர்ணயத்துடன் கூடிய பொருள்களின் பொதியிடும் பதார்த்தங்களின் இயல்புகள் தொடர்பாகவும் தர நிர்ணயம் உள்ளது. உதாரணமாக, பற்பசை ஒன்றின் மேலுறையானது (டியூப்), பற்பசையுடன் தொடர்புறும்போது துருப்பிடிக்காததாகவும் மடியக்கூடியதாகவும் (collapsible) இருக்க வேண்டும். மூடியானது வெளியிலிருந்து திருகி இணைக்கக்கூடியவாறு புரிகளைக் கொண்டதாகவும் துருப்பிடிக்காததாகவும் இருக்க வேண்டும். டியூப்பும் கூடப் பொருத்தமான பெட்டி ஒன்றில் அல்லது உறை ஒன்றில் இடப்பட்டிருக்க வேண்டும். உங்கள் வீட்டிலுள்ள பற்பசை டியூப் ஒன்றை எடுத்து, அதில் மேலே கூறப்பட்ட அமைப்புகள் காணப்படுகின்றனவா எனப் பாருங்கள்.

உற்பத்தித் தேதியும் காலாவதியாகும் தேதியும்

உணவுகள், பானங்கள், மருந்துகள் போன்றவற்றுக்கு இந்த நியதிகள் முக்கியமானவை. உணவின் போசணைப் பெறுமானம் குறையாமலும் உணவு பழுதடைந்து போகாமலும் ஒரு குறிப்பிட்ட காலத்துக்கே பொதி செய்து பேணலாம். காலப்போக்கில், உணவில் பௌதிக, இரசாயன மாற்றங்கள் ஏற்படலாம். அதேபோல் குறிப்பிட்ட காலத்தில் நுண்ணங்கிகளின் செயற்பாட்டிற்கு அவசியமான காரணிகள் கிடைப்பதால் உணவு பழுதடையவும் கூடும். எனவே, உற்பத்தியாளர்கள் தமது உற்பத்தியின் பரிசோதனைப் பேறுகளைப் பயன்படுத்திக் காலாவதியாகும் தேதியைப் பொதியின் மீது குறிப்பிட வேண்டும்.

மருந்துகளும் காலப்போக்கில் இரசாயன மாற்றங்களுக்கு உள்ளாகலாம் என்பதால் அவற்றின் தரமும் குறைவடையலாம். எனவே, மருந்துகளும் காலாவதியாகும் தேதி கடந்துவிட்டால் இரசாயன மாற்றங்களுக்கு உட்பட்டு உடலுக்குத் தீங்கை விளைவிக்கலாம். மருந்து வகைகளின் தரத்தைப் பேணுவதற்காக அவற்றைக் களஞ்சியப்படுத்துவதற்கு உகந்த வெப்பநிலையைப் பெற்றுக்கொடுப்பதும் உற்பத்தியாளர், வர்த்தகர்கள் என்ற இருசாராரினதும் பொறுப்பாகும்.

உள்ள டக்கங்கள்

தகவல்களைப் பெற்றுக்கொள்ளும் உரிமை என்பது சர்வதேசரீதியாக ஏற்றுக்கொள்ளப்பட்ட நுகர்வோர் உரிமையாகும். உணவு அல்லது மருந்து வகைகளைத் தயாரிப்பதற்காகப் பயன்படுத்தப்பட்ட பதார்த்தங்கள், சுவையூட்டிகள், நிறமூட்டிகள், பளிங்காக்கிகள், நற்காப்புப் பதார்த்தங்கள், போசணைப் பொருள்கள் போன்றவை தொடர்பான தகவல்கள் பொதிகளின் மேலுறைகளில் அல்லது சுட்டுத்துண்டுகளின் மீது குறிப்பிடப்பட்டிருக்க வேண்டியது அவசியமாகும்.

சில உற்பத்தியாளர்கள், அடங்கியுள்ள பொருள்கள் பற்றிய விவரங்களைக் குறிப்பிட்டிருந்தாலும் நுகர்வோரைத் திசைதிருப்பும் வகையில் படங்களை இட்டுச் சுட்டுத்துண்டுகளைத் தயார் செய்வர். உதாரணமாக, செயற்கைப் பழப்பானப் போத்தல்களின் சுட்டுத்துண்டுகளில் பழங்களின் படங்கள் பெரிதாகவும் பழப்பானம் செயற்கையானது எனச் சிறிதாகவும் போடப்படும் சந்தர்ப்பங்களும் உள்ளன. இது நுகர்வோரை ஏமாற்றும், நுகர்வோர் உரிமையை மீறும் செயலாகும். இவ்வாறான சந்தர்ப்பங்களில் விழிப்புடன் இருப்பது நுகர்வோரது பொறுப்பாகும்.

கேறிய நிறை

மீன் அடைக்கப்பட்ட தகரப்பேணி ஒன்றில் உள்ள மீனின் அளவை உங்களால் நிறுத்துப் பார்க்க முடியாது. எனவே, மீனின் நிறை, அதன் கொள்கலம் மீதுள்ள சுட்டுத்துண்டில் குறிப்பிடப்பட்டிருப்பது அத்தியாவசியமானதாகும். வேறு பொருள்கள் தொடர்பாகவும் தேறிய நிறை அல்லது கனவளவு சுட்டுத்துண்டில் அல்லது மேலுறை மீது குறிப்பிடப்பட்டிருக்க வேண்டும். ஏதேனும் பொருளின் தேறிய நிறையானது அது தொடர்பான தர நிர்ணயத்தில் குறிப்பிடப்பட்டிருக்கும். எப்படியாயினும் காலம் செல்லும்போது சில நுகர்வுப் பண்டங்களிலிருந்து நீர் ஆவியாவதன் காரணமாக அவற்றின் தேறிய நிறை குறைவடையலாம்.

உற்பத்தி செய்த நாடு/நிறுவனம்/உற்பத்தியாளர் தொடர்பான விபரங்கள்

ஏதேனும் பொருள் ஒன்றை நுகர்வதன் மூலம் எதிர்பாராத விளைவுகள் ஏற்பட்டால் அது தொடர்பான சட்டரீதியான நடவடிக்கைகளை மேற்கொள்வதற்காக இந்த விவரங்கள் அவசியமாகின்றன.

மனித நேயம் / கூழல் நட்புத்தன்மை

2010 இற்குப் பின் இலங்கையில் குளோரோ புளோரோ காபன் (CFC) பயன்படுத்தப்படும் குளிரேற்றிகள், ஏரோசொல் (வளிச்சொல்) என்பவற்றின் உற்பத்தியும் பயன்பாடும் தடைசெய்யப்பட்டுள்ளன. CFC வாயு, ஓசோன் படலத்தைப் பாதிப்பதே இதற்குக் காரணமாகும். அதற்குப் பதிலாக ஐதரோ புளோரோ காபன் (HFC) ஐக்

கொண்ட குளிரேற்றிகளின் உற்பத்தி ஊக்குவிக்கப்பட்டுள்ளது. அவற்றில் சூழல் நட்புத்தன்மையைக் காட்டும் 'Ozone Friendly', 'Eco Friendly' போன்ற வாசகங்கள் குறிப்பிடப்பட்டுள்ளன.

பொதியிடும் பதார்த்தமாகப் பயன்படுத்தப்படும் பிரிந்தழியாத பொலித்தீன் சூழல் நட்புத் தன்மை அற்றதால், சூரிய ஒளிபடும்போது பிரிந்தழியும் தன்மை கொண்ட பொலித்தீனின் பயன்பாடு ஊக்குவிக்கப்பட்டுள்ளது. அதே போல், பொலித்தீன் உறைகளுக்குள் தலையை உட்செலுத்துவதைத் தவிர்த்துக்கொள்ளுமாறு சிறு பிள்ளைகளுக்கும் அவற்றைக் கொடுப்பதிலிருந்து தவிர்த்துக்கொள்ளுமாறு பெரியவர்களுக்கும் அறிவிக்கும் குறியீடுகள் பொலித்தீன் உறைகள் மீது இருப்பதை நீங்கள் பார்த்திருக்கக்கூடும்.

மனித நட்புத்தன்மை அற்ற உற்பத்திகளின் மேலுறைகளின் மீது அவற்றின் சூழல் நட்புத்தன்மை அற்ற தன்மையை எடுத்துக் காட்டுவதற்காகக் குறியீடுகள் அல்லது வாசகங்கள் பொறிக்கப்பட்டுள்ளன.

உதாரணமாக: 'டிப்பெக்ஸ்' (tipex) கொள்கலம் மீது காணப்படும் கீழே காட்டப்பட்டுள்ள வாசகத்தைப் பாருங்கள்.

Caution - Misuse by inhaling content can be harmful. Keep out of childerns' reach

பொருள்களைக் கொள்வனவு செய்யும்போது அவற்றின் பண்புத்தரம் தொடர்பாக நுகர்வோர் எந்த அளவுக்குக் கவனம் செலுத்துகின்றார்கள், விழிப்புடன் இருக்கின்றார்கள் என்பது கேள்விக்குரிய விடயமாகும். இது தொடர்பாகக் கண்டறிவதற்காக ஒப்படை 3 இல் ஈடுபடுங்கள்.

ஒப்படை 3

- பொருள்களை வாங்கும்போது பின்பற்ற வேண்டிய நியதிகள் தொடர்பாக நுகர்வோர் கவனம் செலுத்துகின்றார்களா என்பதைக் கண்டறியும் பொறுப்பு உங்களிடம் ஒப்படைக்கப்பட்டிருந்தால், அது தொடர்பான விஞ்ஞானரீதியான ஆய்வு ஒன்றை எவ்வாறு மேற்கொள்ளலாம் என்பதைத் திட்டமிடுங்கள்.
- நுகர்வோர் அடிக்கடி விலைகொடுத்து வாங்கும் தகரத்திலடைக்கப்பட்ட மீன் தொடர்பான ஆய்வை மேற்கொண்டு முடிபுகளை அறிக்கையாகச் சமர்ப்பியுங்கள்.

அநேகமான நுகர்வோர் பொருள்களின் காலாவதியாகும் தேதி பற்றிக் கவனஞ் செலுத்துகின்ற போதிலும், சான்றுப்படுத்தல் இலச்சினை தொடர்பாகச் சிலரே கவனஞ் செலுத்துகின்றனர் என்பதை நீங்கள் அவதானித்து இருப்பீர்கள். எனவே, எப்போதும் தரச் சான்றுப்படுத்திய இலச்சினையுடன் கூடிய பொருள்களையே வாங்க வேண்டும்.

4.8 கூட்டுத் திரவியங்கள்

நாகரிகத்தின் தொடக்க காலத்திலேயே எகிப்திய மக்கள் களிமண்ணினால் செங்கற்களைச் செய்து பயன்படுத்தினர். எனினும், செங்கற்களை உலர வைக்கும்போது அதில் வெடிப்புகள் ஏற்பட்டன. இதனைத் தவிர்ப்பதற்காக அவர்கள் களிமண்ணுடன் வைக்கோலைச் சேர்த்துப் பயன்படுத்தினர். மேலும், இறந்தவர்களின் உடலை (மம்மி) நீண்ட காலம் பாதுகாத்து வைத்திருப்பதற்கு அல்லது அடக்கம் செய்து கல்லறையில் வைத்திருப்பதற்கு களிக் கலவையில் தோய்க்கப்பட்ட பருத்தித் துணியைப் பயன்படுத்தினர்.

பண்டைய இலங்கையில் கட்டடங்களை அமைப்பதற்குச் சுண்ணாம்பு, மணல் என்பன கலந்து தயாரித்த சுண்ணாம்புச் சாந்து பயன்படுத்தப்பட்டது (உரு 4.8.1). சீகிரியக் கல் ஓவியங்களுக்குக் களியுடன் தேனைக் கலந்து தயாரித்த சாந்தும், மேலும், குகைச் சித்திரங்களை வரை வதற்காகக் கருங்கற் சுவரைத் தயார்ப்படுத்தும்போது பல திரவியங்கள் கலந்து பெறப்பட்ட சாந்தும் பயன்படுத்தப்பட்டன. தற்போதும் எமது கிராமங்களில் வீட்டுத் தரையை மெழுகுவதற்குக் களிமண், மாட்டுச்சாணம் என்பவற்றின் கலவை பயன்படுத்தப்படுகிறது.

உரு 4.8.1 பொலன்னறுவ யுகத்தில் அமைக்கப்பட்ட சாந்து பூசப்பட்ட கட்டடம்

இவ்வாறு, குறித்த பணிக்குத் தேவையான மிகச் சரியான இயல்பைப் பெறுவதற்காக, ஒன்றிலிருந்து ஒன்று வேறுபட்ட இயல்புகளைக் கொண்ட இரண்டு அல்லது இரண்டுக்கு மேற்பட்ட பதார்த்தங்களைத் தேவையான விகிதங்களில் கலந்து பெறப்படும் திரவியங்களே கூட்டுத் திரவியங்களாகும். இயற்கையான கூட்டுத் திரவியங்களும் உள்ளன. உதாரணம் : அரிமரம், என்பு.

4.8.1 இயற்கையான கூட்டுத் திரவியங்களும் செயற்கையான கூட்டுத் திரவியங்களும்

கூட்டுத் திரவியங்களைப் பயன்படுத்துவதற்கான காரணம் யாது? குறிப்பிட்ட தேவைகளுக்கு உகந்த இயல்புள்ள எல்லாத் திரவியங்களையும் இயற்கையில் பெற முடியாது. இதனால், இயற்கையில் பெறக்கூடிய திரவியங்களைக் குறிப்பிட்ட விகிதங்களில் கலப்பதன் மூலம் தேவையான இயல்புகளைக் கொண்ட கூட்டுத் திரவியங்கள் தயாரிக்கப்பட்டுப் பயன்படுத்தப்படுகின்றன.

விஞ்ஞான தொழினுட்ப விருத்தியின் விளைவாக அதிகரித்துள்ள தேவைகளை நிறைவு செய்யும் பொருட்டுப் பல்வேறு தொழினுட்ப உபகரணங்களையும் பொருள்களையும் உருவாக்குவதற்கான அவசியம் ஏற்பட்டுள்ளது. பொதுவாகப் பயன்படுத்தப்படும் உலோகங்கள், கலப்புலோகங்கள், செரமிக் (வெண்களி) பொருள்கள், பிளாத்திக்கு போன்றவற்றை மட்டும் பயன்படுத்தி இத் தேவைகளை நிறைவேற்ற முடியாது. இதனால், புதிய திரவியங்களை உற்பத்தி செய்யவேண்டிய தேவை ஏற்பட்டது. இதன் விளைவாகத் தற்போது பல கூட்டுத் திரவியங்கள் உற்பத்தி செய்யப்பட்டுப் பயன்படுத்தப்படுவதுடன் மேலும் பல தேவைகளைப் பூர்த்தி செய்யக்கூடிய கூட்டுத் திரவியங்களை உற்பத்தி செய்வதற்கான பரிசோதனைகளும் ஆராய்ச்சிகளும் மேற்கொள்ளப்பட்டு வருகின்றன.

உங்களுக்குத் தெரியுமா?

கூட்டுத் திரவியங்கள் ஆங்கிலத்தில் composite materials அல்லது composites என்றழைக்கப்படும். இது, ஒன்றுடன் ஒன்று கலத்தல் என்னும் பொருளைத் தரும் compovene என்னும் சொல்லிலிருந்து உருவானதாகும்.

வீடுகள், பாலங்கள், மதகுகள் ஆகியவற்றை அமைப்பதற்குப் பயன்படுத்தப்படும் சீமெந்துச் சாந்தை கூட்டுத் திரவியங்களுக்கு ஓர் உதாரணமாகக் கொள்ளலாம். சீமெந்துச் சாந்தில் உள்ள கூறுகள் மணல், சீமெந்து என்பன ஆகும். இங்கு மணல், உறுதியையும் வடிவத்தையும் வழங்குவதுடன், சீமெந்து, மணல் துணிக்கைகளை ஒன்றுடன் ஒன்று பிணைத்து வைத்திருக்கவும் உதவும்.

உரு 4.8.2 சீமெந்துச் சாந்து

கதிரை, மேசை, இயற்று அறை / சமையலறைச் சிற்றலுமாரி (pantry) என்பவற்றை அமைப்பதற்குப் பயன்படுத்தப்படும் ஓட்டுப் பலகையும் ஒரு கூட்டுத் திரவியமாகும். மரத் தூளுடன் விசேடமான ஒரு பசையைக் கலந்து அது தயாரிக்கப்படுகிறது. இங்கு மரத்தூள் உறுதியையும் வடிவத்தையும் வழங்குவதுடன் பசையானது மரத்தூளை ஒன்று பிணைத்து வைத்திருக்க உதவுகின்றது.

உரு 4.8.3 ஒட்டுப் பலகை (Plywood)

மின்விளக்குக் கவசம், கதிரை, படகு போன்றவற்றைத் தயாரிக்கப் பயன்படும் நார்க் கண்ணாடி (fibre glass), தலையணை, மெத்தை போன்றவற்றைத் தயாரிக்கப் பயன்படும் தென்னந்தும்பு கலந்த இறப்பர் (rubberized fibre), பால்மா பொதியுறை தயாரிக்கப் பயன்படும் விசேட பதார்த்தம், வாகனங்களின் பாதுகாப்புக் கண்ணாடி போன்றவை கூட்டுத் திரவியங்களுக்குச் சில உதாரணங்களாகும்.

மேலே தரப்பட்டுள்ள பல்வேறு கூட்டுத் திரவியங்களை வெறுங் கண்ணால் அல்லது கை வில்லையால் அவதானிக்கும்போது அவை ஒவ்வொன்றிலும் வேறுபட்ட இயல்புகள் கொண்ட இரண்டு அல்லது இரண்டுக்கு மேற்பட்ட திரவியங்கள் கலந்திருப்பதைக் கண்டறிந்துகொள்ள முடியும்.

ஒப்படை 1

மேலேயுள்ள கூட்டுத் திரவியங்களை நன்றாக அவதானித்து அவை ஒவ்வொன்றிலுமுள்ள கூறுகளையும் (திரவியங்களையும்) அவற்றின் இயல்புகளையும் அறிந்து அட்டவணைப்படுத்துங்கள். மேலும், இக்கூறுகள் உள்ளதால் கிடைக்கும் நன்மைகளையும் குறிப்பிடுங்கள்.

கூட்டுத் திரவியங்களுக்கான சில உதாரணங்கள் கீழுள்ள அட்டவணையில் தரப்பட்டுள்ளன.

கூட்டுத் திரவியங்கள்	கூறுகள்	கூறுகளின் இயல்புகள்	கூறுகளைச் சேர்ப்பதால் கிடைக்கும் நன்மைகள்
சீமெந்துச் சாந்து	(i) மணல் (ii) சீமெந்து	பல்வேறு வடிவங்களில் அமைந்துள்ள சிறு மணல் துணிக்கைகள் நுண்ணிய	உறுதியையும் கட்டமைப்பையும் வழங்கும். மண் கூறுகளை ஒன்றாகப்
	(11) വയനിയി	மென்மையான தூள்	பிணைக்க உதவும்.
நார்க் கண்ணாடி	(i) கண்ணாடி நாரிழை	பல்வேறு நீளங்களைக் கொண்ட நார்கள்	உறுதியை, வடிவத்தை வழங்கும்.
	(ii) குளிர்ச்சி அடைந்த பசைபோன்ற பதார்த்தம்	கண்ணாடி நாரிழைகளிடையே காணப்படும் பதார்த்தம்	கண்ணாடி நாரிழைகளை ஒன்றோடொன்று இறுக்கமாகப் பிணைத்து வைத்திருக்கும்.
பால்மா உறை	(i) உலோகப் பளபளப்புக் கொண்ட மெல்லிய படை	பளபளப்பானது, மிக மெல்லிய உலோகப் படலம்	ஒளி உட்செல்வதைத் தடுக்கும்.
	(ii) ஒளி ஊடுகாட்டும் மெல்லிய படலம்	உலோகப் படலத்தின் மேற்புறமாகக் காணப்படும் பொலித்தீன் போன்ற பதார்த்தம்	நீர், வளி உட்செல்வதைத் தடுக்கும்.

⊌∟്∟ഖഞ്ഞെ 4.8.1

4.8.2 கூட்டுத் திரவியங்களின் பாகுபாடு

கூட்டுத் திரவியங்கள் அனைத்தும் ஒன்றிலிருந்து ஒன்று வேறுபட்ட இயல்புகளைக் கொண்ட இரண்டு பொருள்களை ஒன்று சேர்ப்பதன் மூலம் உருவாக்கப்படும். அநேகமான கூட்டுத் திரவியங்களின் ஒரு கூறு அதன் உறுதியை அதிகரிக்கச் செய்யப் (reinforcement material) பயன்படுகையில், மற்றையது உரிய இடத்தில் நிறுத்தி ஒன்று சேர்த்து (பிணைத்து) வைத்திருக்கும் தாயப் பதார்த்தமாகையால் (matrix material) கட்டமைப்பைத் தோற்றுவிக்கப் பயன்படுகிறது. இதற்கு அநேகமாக பல்பகுதியப் பதார்த்தங்கள் பயன்படுத்தப்படுகின்றன.

கீழே தரப்பட்டுள்ள உதாரணங்கள் மூலம் கூட்டுத் திரவியத்தில் அடங்கியிருக்கும் அடிப்படைத் திரவியக் கூறுகள் பற்றிய விளக்கத்தைப் பெற்றுக் கொள்ள முடியும்.

கூட்டுத் திரவியம்	உறுதியை அதிகரிக்கும் கூறு	பிணைத்து வைத்திருக்கும் கூறு
சீமெந்துச் சாந்து	மணல்	சீமெந்து
நார்க் கண்ணாடி (பைபர் கண்ணாடி)	கண்ணாடி நாரிழை	பல்பகுதியப் பதார்த்தம்
ஒட்டுப் பலகை	மரத்தூள் அல்லது மரக் கீலம்	பல்பகுதியப் பதார்த்தம்
பாதுகாப்புக் கண்ணாடி	கண்ணாடி	பல்பகுதியப் பதார்த்தம்

ചെപ്പഖത്തെ 4.8.2

இதுவரை நீங்கள் செயற்கையாக மனிதனால் தயாரிக்கப்பட்ட கூட்டுத் திரவியங்கள் பற்றிக் கற்றுக்கொண்டீர்கள். இனி, இயற்கையாகக் காணப்படும் கூட்டுத் திரவியங்கள் பற்றிக் கற்போம். விசேடமாகத் தாவர, விலங்குகளின் உடலில் காணப்படும் கூட்டுத் திரவியங்களை இனங்காண்போம்.

இயற்கையான கூட்டுத் திரவியம்	உறுதியை அதிகரிக்கும் கூறு	பிணைத்து வைத்திருக்கும் கூறு
காதுச் சிற்றென்புகள்	ஐதரொக்சி அயடைட்டு என்னும் கூட்டுத் திரவியப் பளிங்கு	கொலாஜன்
மரப் பலகை	செலுலோசு நார்	இலிக்னின்
என்புகள்	கல்சியம் பொசுபேற்று	கொலாஜன்

ലட്டഖത്തെ 4.8.3

உரு 4.8.4 மனித வேன்கூடு உரு 4.8.5 இலிக்னினால் பிணைக்கப்பட்ட செலுலோசு நார்கள் பொதுவாகப் பார்க்குமிடத்து இயற்கையான கூட்டுத் திரவியங்களில் காணப்படும் உறுதியைக் கூட்டும் திரவியக் கூறுகளான நார்கள் அல்லது துணிக்கைகள் வெறுங் கண்ணால் பார்க்க முடியாத அளவு மிகவும் நுண்ணியதாக அமைந்திருப்பது விசேட அம்சமாகும்.

கூட்டுத் திரவியத்தின் உறுதியை அதிகரிக்கச் செய்வதற்காகப் பயன்படுத்தப்படும் திரவியக் கூறின் இயல்புகளுக்கு ஏற்பவும் அடங்கியுள்ள திரவியக் கூறுகளின் விகிதத்திற்கேற்பவும் கூட்டுத் திரவியங்களை வகைப்படுத்தலாம்.

துணிக்கைகள் மூலம் உறுதி பெற்றவை

இவற்றைப் பெரிய துணிக்கைகள் மூலம் உறுதி பெற்றவை (உரு 4.8.6), சிறிய துணிக்கைகள் மூலம் உறுதி பெற்றவை (உரு 4.8.7) என இரண்டு வகைகளாகப் பிரிக்கலாம். கொங்கிறீற்று பெரிய துணிக்கைகள் மூலம் உறுதி பெற்றதாகும். அதில் வெறுங் கண்ணால் அவதானிக்கக்கூடிய பெரிய துணிக்கைகள் காணப்படும். சிறிய துணிக்கைகள் மூலம் உறுதி பெற்ற கூட்டுத் திரவியங்களில் மிக நுண்ணிய துணிக்கைகள் பயன்படுத்தப்படும். தற்பொழுது கலப்புலோகங்களுடன் உலோக ஒட்சைட்டுகளைச் சேர்த்து இவ்வாறான கூட்டுத் திரவியங்கள் தயாரிக்கப்படுகின்றன. எமது உடலில் உள்ள என்புகளும் இதற்கோர் உதாரணமாகும். மேலும், துணிக்கைகளின் வடிவம், பருமன், உள்ளடக்கப்படும் சதவீதம், துணிக்கைகள் பரவியிருக்கும் ஒழுங்குமுறை போன்ற காரணிகளுக்கு அமையவும் கூட்டுத் திரவியத்தின் இயல்பு வேறுபடும்.

உரு 4.8.6 பெரிய துணிக்கைகள் மூலம் உறுதி பெற்ற கூட்டுத் திரவியம்

> உரு 4.8.7 சிறிய துணிக்கைகள் மூலம் உறுதி பெற்ற கூட்டுத் திரவியம்

நார்கள் முலம் உறுதி பெற்றவை

உரு 4.8.8 உரு 4.8.9 நீண்ட நார்கள் உரு 4.8.10 நீண்ட நார்கள் குறுகிய நார்கள் (ஒழுங்கற்ற முறையில்) (ஒழுங்கான முறையில்)

நார்கள் மூலம் உறுதி பெற்ற கூட்டுத் திரவியங்களை நீண்ட நார்கள் மூலம் உறுதி பெற்றவை, குறுகிய நார்கள் மூலம் உறுதி பெற்றவை என இரண்டு வகைகளாகப் பிரிக்கலாம். நீண்ட நார்கள் மூலம் உறுதி பெற்றவற்றை ஒழுங்கற்ற முறையில் நார்கள் அமைந்து காணப்படுபவை, ஒழுங்கான முறையில் நார்கள் அமைந்து காணப்படுபவை என இரு வகைப்படுத்தலாம். நார்க் கண்ணாடியில் ஒழுங்கற்ற முறையிலும் கன்வஸ் பொருள்களில் ஒழுங்கான முறையிலும் நார்கள் அமைந்து காணப்படுகின்றன. குறுகிய நார்களைப் பயன்படுத்தித் தயாரிக்கப்படும் கூட்டுத் திரவியங்களிலும் ஒழுங்கற்ற முறையிலோ அல்லது ஒழுங்கான முறையிலோ நார்கள் பயன்படுத்தப்படுகின்றன. கடதாசி, தேங்காய் நாரைப் பயன்படுத்தித் தயாரிக்கப்பட்ட இறப்பர் மெத்தை என்பன இதற்கு உதாரணங்களாகும்.

படையாக அமைக்கப்பட்ட கூட்டுத் திரவியங்கள்

மெல்லிய படைகளாக அமைக்கப்பட்ட கூட்டுத் திரவியங்களுக்கு உதாரணமாகப் பால்மா உறை, முப்படை லமினேட்டிங் படலம் (உரு 4.8.11), புகைப்பட லமினேட்டிங் படலம், ஒலி நாடா போன்றவற்றைக் கூறலாம். இவற்றில் வெவ்வேறு இயல்பு கொண்ட திரவியங்கள் ஒன்றின் மீது ஒன்று இறுகப் பிணைக்கப்பட்டுக் காணப்படுகின்றன.

சன்விச் முறையில் அமைக்கப்பட்ட கூட்டுத் திரவியங்களில் மெல்லிய தட்டுகளுக்கிடையில், ஒப்பீட்டளவில் தடித்த வேறுபட்ட படை அடங்கியிருக்கும். சூரிய வெப்பம் உட்செல்வதை இழிவளவாக்குவதற்குப் பயன்படுத்தப்படும் மெல்லிய அலுமினியப் படைகள் இரண்டுக்கிடையில் பல்பகுதியத் திரவியங்களை உள்ளடக்கி அமைக்கப்பட்ட வளிக் குமிழிகள் போன்ற கட்டமைப்புகள் கொண்ட தகடு (உரு 4.8.12a), சுருக்குகள் கொண்ட கடதாசிகளை மத்தியில் கொண்ட தடித்த கடதாசி மட்டைகள் (உரு 4.8.12b) என்பவற்றை இதற்கு உதாரணங்களாகக்கொள்ளலாம்.

உரு 4.8.11 பெல்லிய படை
 உரு 4.8.12 (a)
 உரு 4.8.12 (b)
 கொண்ட கூட்டுத் திரவியம் சன்வீச் வடிவில் அமைக்கப்பட்ட கூட்டுத் திரவியங்கள்

செயற்பாடு 4.8.1

- (i) தேங்காய் நார், வாழை நார் மற்றும் வேறு பொருத்தமான நார் வகைளைப் பெற்றுக்கொள்ளுங்கள். அவற்றின் ஒரு பகுதியைச் சிறுதுண்டுகளாக வெட்டிக் கொள்ளுங்கள். பின் ஒட்டுப்பசை பூசப்பட்ட தாளின் மீது பல்வேறு திசைகளில் அமைந்திருக்குமாறு வைத்து, அதன் மீது பிறிதொரு கடதாசியால் ஒட்டுங்கள்.
- (ii) சம அளவான தாவர நார்களை எடுத்து, ஒட்டுப்பசை பூசப்பட்ட கடதாசியின் மீது மேலே குறிப்பிட்டவாறு வெவ்வேறு முறைகளில் ஒழுங்குபடுத்தி மேற்குறிப்பிட்டவாறு அமைத்துக்கொள்ளுங்கள்.
- (iii) அம்முறைகளில் மிகவும் உறுதியானது எது எனக் கண்டறியுங்கள்.
- (iv) சமதிணிவு கொண்ட மூன்று களி உருண்டைகளைத் தயாரித்துக் கொள்ளுங்கள். வைக்கோல், உமி, மரத்தூள் என்பவற்றின் சம திணிவுகளைத் தனித்தனியாக களி உருண்டைகளுடன் சேர்த்துக் கலந்துகொள்ளுங்கள். ஒரே அச்சில் இட்டுச் செவ்வக வடிவக் கட்டிகளைத் தயாரித்து உலர விடுங்கள். ஒவ்வொன்றினதும் உறுதித் தன்மையைக் கண்டறியுங்கள்.

4.8.3 கூட்டுத் திரவியங்களின் பயன்பாடு

விண்வெளி ஓடங்கள், விமானங்கள், நீர்மூழ்கிக் கப்பல்கள் மற்றும் வேறு பல நவீன வாகனங்களைத் தயாரிப்பதற்காக அவற்றின் உறுதி, இலேசான தன்மை, அதிர்ச்சியைத் தாங்கும் தன்மை போன்ற இயல்புகள் கொண்ட கூட்டுத் திரவியங்கள் உற்பத்தி செய்யப்படுகின்றன. இவை உருக்கு போன்ற கலப்புலோகங்களுடன் ஒப்பிடும்போது அதிக உறுதித் தன்மையையும் விசேடமாக இலேசான தன்மையையும் கொண்டவை. மேலும், இவை அரிப்புக்குள்ளாகாததால் நீண்ட காலம் பயன்படுத்தலாம்.

கட்டடப் பொருள்கள், வீட்டு உபகரணங்கள், பூந்தோட்ட உபகரணங்கள், ரயர், பொதியுறைகள், இறப்பர் கலந்த துணி, செயற்கைத் துணி வகைகள், செருப்பு, இறுவட்டு, மின்சுற்றுப் பலகை, சக்தி ஊடுகடத்தும் நாடாக்கள், கடற்றொழில் உபகரணங்கள், விளையாட்டு உபகரணங்கள் போன்றவற்றை உற்பத்தி செய்யவும் கூட்டுத் திரவியங்கள் பயன்படுத்தப்படுகின்றன.

4.9 பல்பகுதியங்களின் இயல்புகளும் பயன்களும்

எமது அன்றாட வாழ்வில் விசேட தேவைகளுக்குப் பயன்படுத்தப்படும் சில பொருள்களை உரு 4.9.1 காட்டுகின்றது. படத்திலுள்ள பலூன் இறப்பரினால் ஆக்கப்பட்டது. செயற்கைப் பூக்கள் பிளாத்திக்கினால் ஆக்கப்பட்டுள்ளன. இப்பொருள்களின் இரசாயன இயல்பு பற்றி இதற்கு முன்னர் நீங்கள் சிந்தித்ததுண்டா?

உரு 4.9.1

4.9.I ஒருபகுதியங்களும் பல்பகுதியங்களும்

மேலே கூறப்பட்ட இறப்பர், பிளாத்திக்கு என்பன பல்பகுதியங்களாகும். பல்பகுதியங்கள் பாரிய மூலக்கூறுகளாகும். இவை மிகச் சிறிய (எளிய) முலக்கூறுகளான ஒருபகுதியங்கள் சங்கிலி அமைப்பில் ஒழுங்குபடுத்தப்படுவதால் உருவாக்கப்பட்டவையாகும். பல்பகுதியங்களிலுள்ள மீண்டும் மீண்டும் வரும் ஒரே மாதிரியான அமைப்புகள் 'மீண்டும் வரும் அலகுகள்' எனப்படும்.

ஒருபகுதியமானது சிறிய முலக்கூறு ஆகையால், அதன் முலக்கூற்றுத் திணிவு குறைவானதாகும். எனினும், ஒருபகுதிய மூலக்கூறுகள் பல ஒன்றிணைவதால் பெறப்படும் பல்பகுதியங்களின் மூலக்கூற்றுத் திணிவு பெரிய பெறுமானத்தைக் கொண்டதாக இருக்கும்.

செயற்பாடு 4.9.1

வெவ்வேறு நிறங்களாலான தடித்த கடதாசி அட்டைகளைப் பயன்படுத்தி உரு 4.9.2 இல் உள்ளவாறு அல்லது வேறுவடிவங்களில் வளையங்களைச் செய்து இணைத்துக்கொள்ளுங்கள் (எப்போதும் ஒரே விதமான கோலம் தொடர்ந்து உங்கள் ஆக்கத்தில் பேணப்பட வேண்டும் என்பதை மனத்திற்கொள்க). தேவைப்படின் ஆசிரியரின் உதவியை நாடுங்கள். உங்கள் ஆக்கத்தில் உள்ள ஒருபகுதியம் (monomer), மீண்டும் வரும் அலகு (repeating unit), பல்பகுதியம் (polymer) என்பவற்றை இனங்காணுங்கள்.

மாதிரியுருவிலுள்ள அடிப்படை அலகுகள் மீண்டும் வரும் அலகுகள் எனவும் அவை இணைத்து உருவாக்கிய மாதிரியுரு பல்பகுதியம் எனவும் மாதிரியுருவை உருவாக்கப் பயன்படுத்திய தனிவளையங்கள் ஒருபகுதியங்கள் எனவும் அழைக்கப்படும். கிரேக்க மொழியிலிருந்து பிறந்த 'Polymer' என்ற பதத்தில் 'Poly' என்பது பல (many) என்ற கருத்தையும் 'mer' என்பது அலகுகள் (unit) என்ற கருத்தையும் தரும். 'mono' என்பது ஒன்று என்ற கருத்தைத் தரும்.

உங்களுக்குத் தெரியுமா?

 பல்பகுதியம் என்ற சொல்லை அறிமுகம் செய்தவர் சுவீடன் நாட்டைச் சேர்ந்த இரசாயனவியல் விஞ்ஞானியாகிய ஜேகப் பசீலியஸ் (கி.பி. 1832) ஆவார். பல்பகுதியம் என்பது 'polymeric' என்பதிலிருந்து கட்டியெழுப்பப்பட்ட கருத்தாகும்.

இந்த முறையில் கட்டியெழுப்பப்படும் பல்பகுதியங்கள் கிளைகள் அற்ற அல்லது கிளைகள் கொண்ட நீண்ட சங்கிலிகளின் அமைப்பைப் பெறுகின்றன. இனி நாம் பொதுவாகப் பயன்பாட்டிலுள்ள சில பல்பகுதியங்களையும் அவற்றின் ஆக்க அலகான ஒருபகுதியங்களையும் இனங்காண்போம்.

ஒருபகுதியம்	பல்பகுதியம்
எதிலீன்	பொலிஎதிலீன் (பொலித்தீன்)
புரொப்பலீன்	பொலிபுரொப்பலீன்
ஸ்ரைரீன்	பொலிஸ்ரைரீன் (ஸ்ரைரபோம்)
வைனைல் குளோரைட்டு	பொலிவைனைல் குளோரைட்டு (PVC)
ரெற்றா புளோரோ எதிலீன்	பொலிரெற்றா புளோரோ எதிலீன் (PTFE - டெப்லோன்)
ஐசோபிரின்	பொலிஐசோபிரின் (இயற்கை இறப்பர்)
குளுக்கோசு	மாப்பொருள், செலுலோசு
அமினோ அமிலம்	புரதம்

அட்டவணை 4.9.1 சில ஒருபகுதியங்களும் அவற்றின் பல்பகுதியங்களும்

4.9.2 இயற்கைப் பல்பகுதியங்களும் செயற்கைப் பல்பகுதியங்களும்

பல்பகுதியங்களை இரு வகைகளாகப் பிரிக்கலாம்.

- (i) இயற்கைப் பல்பகுதியங்கள்
- (ii) செயற்கைப் பல்பகுதியங்கள்

இயற்கைப் பல்பகுதியங்கள் என்பவை, இயற்கையில் காணப்படுகின்ற பல்பகுதியங்களாகும். செயற்கைப் பல்பகுதியங்கள் மனிதனால் உருவாக்கப்பட்ட பல்பகுதியங்கள் ஆகும். இவ்வாறான சில பல்பகுதியங்களின் பெயர்கள் கீழே தரப்பட்டுள்ளன.

இயற்கைப் பல்பகுதியம்	செயற்கைப் பல்பகுதியம்
• மாப்பொருள்	• பொலித்தீன்
• செலுலோசு	• பொலிபுரொப்பலீன்
• புரதம்	• பொலிஸ்ரைரீன்
• கிளைக்கோசன்	• பொலிவைனைல் குளோரைட்டு (PVC)
• இயற்கை இறப்பர்	• பொலிரெற்றா புளோரோ எதிலீன் (PTFE)
• தாவர ரெசின்	• பேர்ஸ்பெக்ஸ்
• கைற்றின்	• பொலியுருத்தின்
	• பேக்லைட்டு
	• நைலோன்
	• ரெரிலீன் (பொலியெஸ்டர்)

அட்டவணை 4.9.2 சில இயற்கைப் பல்பகுதியங்களும் செயற்கைப் பல்பகுதியங்களும்

உங்களுக்குத் தெரியுமா?

உயிரங்கிகளின் இயல்புகளை அடுத்த பரம்பரைக்குக் கொண்டு செல்வதற்குக் காரணமான, நிறமூர்த்தத்தில் உள்ள பரம்பரையலகுகள் டீ ஒட்சி ரைபோசு நியூக்கிளிக் அமிலம் (DNA) எனப்படும் இயற்கைப் பல்பகுதிய மூலக்கூறுகளால் ஆக்கப்பட்டுள்ளன.

> உரு 4.9.3 DNA முலக்கூறின் கட்டமைப்பு மாதிரியுரு

இயற்கைப் பல்பகுதியங்களினதும் செயற்கைப் பல்பகுதியங்களினதும் பயன்பாடுகளையும் அவற்றின் இயல்புகளையும் பற்றிப் பார்ப்போம்.

பல்பகுதியம்	விசேட இயல்புகள்	பயன்பாடு
பொலிஎதிலீன்	மின்காவலி; நீர் உறிஞ்சாது; வளியை உறிஞ்சாது; இலேசானது; அழுத்தத்திற்கு ஈடுகொடுக்கும்; நீடித்த பயன்பாடு	பிளாத்திக்குப் போத்தல், விளையாட்டுப் பொருள்கள், பொலித்தீன் உறை, குப்பை வாளி, பிளாத்திக்கு நார் ஆகியவற்றின் தயாரிப்பு.
பொலி புரொப்பலீன்	மின்காவலி; அழுத்தத்திற்கு ஈடுகொடுக்கும்; உக்காது; நீடித்த பயன்பாடு	பசளை உறை செய்வதற்கான நார், நிலவிரிப்பு (கம்பளம்), பிளாத்திக்குத் தகடு, மின் காவலி என்பவற்றின் தயாரிப்பு.
பொலிஸ்ரைரீன்	மின்காவலி, வெப்பக் காவலி, இலேசானது, நீரை உறிஞ்சாது; அதிர்வுகளுக்கு ஈடுகொடுக்கும்; நீடித்த பயன்பாடு	பொதியிடல் திரவியங்கள், உபகரணங்களின் வெப்பக் காவலி, குமிழ் முனைப் பேனாக் குழாய்த் தயாரிப்பு.
டெப்லோன்	வெப்பத் திற்கு ஈடு கொடுத்தல்; மின் காவலி	உணவு சமைக்கும் அடிப் பிடிக்காத(non stick) பாத்திரம் தயாரிப்பு.
நைலோன் நார்	மின்காவலி; கடினமானது; நீரை உறிஞ்சாது	செயற்கைத் துணிகள், பித்தளை, விளையாட்டு உபகரணங்கள், பற்றூரிகை நார் ஆகியவற்றின் உற்பத்தி.
டெரிலீன் (பொலியெஸ்டர்)	மின்காவலி	செயற்கைத் துணிகள், காந்தப் பட்டி (magnetic tape) தயாரிப்புக்கான அடிப்படையாக்கி, புகைப்படச்சுருள் என்பவற்றின் தயாரிப்பு.
பொலிவைனைல் குளோரைட்டு (PVC)	வெப்பத்தைத் தாங்கும்; மின்காவலி; நீரை அகத்துறிஞ்சாது; இலேசானது.	மின்காவலிப் பதார்த்தம், பீலிகள், நீர்க்குழாய், நீர் பாய்ச்சும் குழாய் (hose pipe) ஆகியவற்றின் தயாரிப்பு.

பல்பகுதியம்	விசேட இயல்புகள்	பயன்பாடு
பேக்லைற்று	மின்காவலி;	தொலைபேசி, லெமினேட்டிங்
	வெப்பத்தால்	கடதாசி, கென்வஸ் துணி,
	உருமாறாது	மின்காவலி உபகரணங்களின்
		தயாரிப்பு, சமையல்
		பாத்திரங்களின் கைப்பிடி.
பேர்ஸ்பெக்ஸ்	ஊடுகாட்டும்; மின் காவலி; அதிர்வைத்	ஊடுகாட்டும் பொருள்கள், வாகனத்தின் முற்பக்கக் கண்ணாடி,
	தாங்கும்	மூக்குக் கண்ணாடி, ஒளியியல் நார்கள் (optic fibres) தயாரிப்பு.

அட்டவணை 4.9.3 சில பல்பகுதியங்கள் பயன்படும் சந்தர்ப்பங்களும் அவற்றின் இயல்புகளும்

உங்களுக்குத் தெரியுமா?

நொமெக்ஸ் எனப்படும் செயற்கைப் பல்பகுதியம் பரசூட்டின் வீழ்காவலியின் மேலுறை, விண்வெளிப் பயணத்தின்போது பயன்படும் வெப்பத்தைத் தாங்கக்கூடிய வெப்ப எதிர்ப்பு ஆடைகள் என்பவற்றைத் தயாரிப்பதற்குப் பயன்படும்.

ஒப்படை 1

- உங்கள் சூழலில் இருந்து பின்வரும் பொருள்களைப் பெற்றுக்கொள்ளுங்கள். பொலித்தீன் உறை, பிளாத்திக்காலான வெற்றுத் தண்ணீர்ப் போத்தல், பசளைப் பொதி உறையிலிருந்து பெறப்பட்ட ஒரு துண்டு, நைலோன் துணி, பொலித்தீன் உறை, பொலிஸ்ரைரீன் துண்டு, காந்தப் பட்டி, மின்காவலிக் குழாய் (கொன்டியூட் குழாய்) அல்லது நீர்க்குழாய்த் துண்டு, இறப்பர் நாடாத் துண்டு, இறப்பர் ஒட்டுப்பால் துண்டு, மின்சுற்று ஆளி, மாப்பொருள் சிறிதளவு.
- இப்பொருள்களில் உள்ள விசேட இயல்புகளை இனங்காணுங்கள்.
- அவற்றை இயற்கை, செயற்கைப் பல்பகுதியங்கள் என வேறுபடுத்துங்கள்.
- இயலுமாயின் அவற்றின் ஒருபகுதியங்களையும் இனங்காணுங்கள்.
- நீங்கள் பெற்றுக்கொண்ட தகவல்களை அட்டவணை 4.9.1, அட்டவணை 4.9.2 என்பவற்றுடன் ஒப்பிட்டுப் பாருங்கள்.

(a) (b)

52

4.9.3 செயற்கைப் பல்பகுதியங்களைப் பயன்படுத்துவது தொடர்பான பிரச்சினைகளும் தீர்வுகளும்

பிரச்சினைகள்

- நுண்ணங்கிகளினால் பிரிந்தழிக்க முடியாததாகையால் அவை மண்ணில் சேர்கின்றன.
- தகனமடையும்போது நச்சுத்தன்மையான வாயுக்கள் சூழலுக்கு விடுவிக்கப்படும்.
 இதன் காரணமாக சுவாசத்தொகுதி தொடர்பான நோய்களும் பரம்பரை அலகு தொடர்பான நோய் நிலைமைகளும் ஏற்படும்.
- நீர்நிலைகளில் தேக்கமடைந்து நீர் வடிந்து செல்வதைத் தடுக்கும்.
- விலங்குகள் பொலித்தீன் வகைகளை உட்கொள்வதால் உணவுக்கால்வாயில் அடைப்பேற்படல், மூச்சுத் திணறல் போன்றவை காரணமாக அவை இறந்து போகும். இதனால், உயிர்ப் பல்வகைமைக்குப் பாதிப்பு ஏற்படுத்தும்.

தீர்வுகள்

- பிளாத்திக்குப் பொருள்களை மீள் பயன்பாட்டுக்கு ஏற்ற வகையில் தயாரித்தல்.
- மீள்சுழற்சி செய்யக்கூடிய வகையில் பல்பகுதியங்களை ஆக்குதல்.
- பொலித்தீன் வகைகளுக்குப் பதிலாகப் பிரதியீட்டுப் பொருள்களான கடதாசி, தாவர நார் போன்றவற்றாலான தாவரப் பெறுதிகளைப் பயன்படுத்தல்.
- பிரிந்தழியக்கூடிய பிளாத்திக்கு (bio degradable plastics)ப் பொருள்களை உற்பத்தி செய்தல்.

உங்களுக்குத் தெரியுமா?

மீள்சுழற்சி (recycle) செய்யக்கூடிய பிளாத்திக்குப் பொருள்களில் அதற்கான குறியீடுகள் வழங்கப்படுகின்றன. உதாரணமாக, சில பிளாத்திக்குப் போத் தல் களின் கீழ்ப்பகு தியில் இவ்வாறான குறியீடுகள் அடையாளமிடப்பட்டுள்ளன. அவற்றுள் சில குறியீடுகளும் அதற்கான விளக்கங்களும் தரப்பட்டுள்ளன.

- அம்புக்குறியின் மூலம் மீள்சுழற்சி செய்ய முடியும் என்பது குறிப்பிடப்படுகிறது.
- பொருள் ஆக்கப்பட்டுள்ள பல்பகுதியத்தின் இரசாயனப் பெயர், இலக்கம் மூலம் சுட்டிக் காட்டப்படுகிறது.

PET

(Poly Ethene Terephthalate) பொலி எதீன் டெரப்தலேற்று

HDPE (High Density Poly Ethene) உயர் அடர்த்தி பொலி

(Poly Propelene) பொலி புரப்பலீன்

PVC (Poly Vinyl Chloride) பொலி வைனைல் குளோரைட்டு

(Poly Styrine) பொலி ஸ்ரைரீன்

LDPE (Low Density Poly Ethene) தாழ் அடர்த்தி பொலி எகீன்

Others வேறு

ஒப்படை 2

பிளாத்திக்குக் கழிவுகள் சூழலுக்கு விடுவிக்கப்படுவதானது, இன்று எமது நாட்டில் நிலவும் பாரிய சூழற் பிரச்சினை ஆகும். அதனை இழிவளவாக்குவதற்கு தரம் 9 மாணவர் என்ற வகையில் உங்களால் முன்வைக்கக்கூடிய ஆலோசனைகளையும் விஞ்ஞானரீதியான தீர்வுகளையும் உட்படுத்திய கடிதம் ஒன்றைச் சுவர்ப் பத்திரிகையில் காட்சிப்படுத்துவதற்காகத் தயாரியுங்கள்.

4.10 பொருத்தமான வகையில் தேவையான கரைசல்களைத் தயாரித்தல்

உங்களைச் குழவுள்ள சடப்பொருள்கள் மீது உங்கள் கவனத்தைச் செலுத்துங்கள். அவை குறித்த ஒரு பதார்த்தத்தால் ஆனவையா, அவ்வாறான பதார்த்தங்கள் பல சேர்ந்து உருவானவையா? குறித்த ஒரு பதார்த்தத்தினால் ஆன சடப்பொருள்கள் தூய பதார்த்தங்கள் எனப்படும். மூலகங்களும் சேர்வைகளும் தூய பதார்த்தங்களாகும்.

எனினும், எம்மைச் சூழவுள்ள பெரும்பாலான சடப்பொருள்கள் குறித்த ஒரு பதார்த்ததால் மட்டும் ஆக்கப்பட்டிருப்பதில்லை. அவை ஒன்றிற்கு மேற்பட்ட மூலகங்கள் அல்லது சேர்வைகள் கொண்டதாகக் காணப்படும். எனவே, சடப்பொருள்களைப் பின்வருமாறு பாகுபடுத்தலாம்.

இப்பாடத்தில் நாம் கலவைகள் பற்றிக் கலந்துரையாடுவோம்.

4.10.1 கலவைகள் (Mixtures)

கலவையின் இயல்புகளை அறிந்துகொள்ளப் பின்வரும் செயற்பாட்டில் ஈடுபடுங்கள்.

செயற்பாடு 4.10.1

- நீருள்ள முகவையினுள் சிறிதளவு சீனியை இட்டு நன்றாகக் கலங்குங்கள்.
- கடிகாரக் கண்ணாடியில் சிறிதளவு உப்புத் தூளையும் மணலையும் இட்டு நன்றாகக் கலக்குங்கள்.
- கடிகாரக் கண்ணாடியில் சிறிதளவு கந்தகத் தூளையும் இரும்புத் தூளையும் இட்டு நன்றாகக் கலக்குங்கள்.
- மேலே தரப்பட்ட கலவைகள் மூன்றையும் நன்றாக அவதானித்து இயல்புகளைக் குறித்துக்கொள்ளுங்கள்.
- அக்கலவைகளின் கூறுகளை எவ்வாறு வேறாக்கலாம் என்பதை எடுத்துக் கூறுங்கள்.

சீனியை நீரில் கரைத்த பின் சீனியையும் நீரையும் வெவ்வேறாக அவதானிக்க முடியாது. இவ்வாறு கூறுகளை இனங்காணமுடியாத கலவைகள் **ஏகவினக்** கலவைகள் (homogeneous mixtures) அல்லது **கரைசல்கள்** (solutions) என அழைக்கப்படும். இவ்வாறான கலவைகளில் எல்லா இடங்களிலும் அதன் அமைப்பு, கூறுகள், இயல்புகள் என்பன ஒரே மாதிரியாக (ஒத்து)க் காணப்படும்.

உப்பு - மணல் கொண்ட கலவையிலும் கந்தகத் தூள், இரும்புத் தூள் கொண்ட கலவையிலும் அவற்றின் கூறுகளை இலகுவாக அவதானிக்கலாம். இவ்வாறான கலவைகள், **பல்லினக் கலவைகள்** (heterogeneous mixtures) என அழைக்கப்படும். பல்லினக் கலவைகளில் அமைப்பு, கூறுகள், இயல்புகள் என்பன கலவையில் இடத்திற்கிடம் வேறுபட்டுக் காணப்படும்.

சீனிக் கரைசலை ஆவியாக்கற் கிண்ணத்தில் இட்டுச் சூடாக்கினால் அதிலுள்ள நீர் ஆவியாகிச் செல்ல, சீனி எஞ்சும். அதாவது சீனிக் கரைசலின் கூறுகளை பௌதிக முறைகளின் மூலம் வேறு பிரிக்கலாம். உப்பு - மணல் கலவையை நீரில் கரைக்கும்போது உப்பு நன்றாகக் கரையும். வடிகட்டிய பின், மணலை அகற்றி விட்டுக் கரைசலை ஆவியாக்கினால், நீர் ஆவியாகிச் செல்ல உப்புத்தூள் எஞ்சும். இரும்புத் தூள் - கந்தகத் தூள் கலவையின் அருகே காந்தத்தைக் கொண்டு செல்லும் போது இரும்புத்தூள் காந்தத்தினால் கவரப்பட கந்தகத் தூள் எஞ்சும் (உரு 4.10.1).

இவ்வாறு கூறுகளைப் பௌதிக முறைகள் மூலம் வேறாக்கக்கூடியதாக இருப்பது கலவையின் ஓர் இயல்பாகும்.

உரு 4.10.1 கந்தகத் தூள் - இரும்புத்தூள் கலவையைக் காந்தத்தின் மூலம் வேறுபடுத்தல்

இரண்டு அல்லது இரண்டிற்கு மேற்பட்ட கூறுகள் யாதேனும் விகிதத்தில், இரசாயனத் தாக்கத்துக்கு உட்படாது கலந்து காணப்படுவது கலவை எனப்படும். கலவையில் அதன் கூறுகள் ஒவ்வொன்றும் தமது இயல்புகளை வெளிக்காட்டும். பொதுவாகக் கலவையின் கூறுகளைப் பௌதிக முறையில் இலகுவாக வேறுபடுத்த முடியும்.

ஏகவினக் கலவைகள், பல்லினக் கலவைகள் என்பன பற்றிய மேலதிக அறிவைப் பெறுவதற்குப் பின்வரும் செயற்பாட்டில் (4.10.2) ஈடுபடுங்கள்.

செயற்பாடு 4.10.2

பின்வரும் கலவைகளை அவதானித்து அவற்றை ஏகவினக் கலவையா, பல்லினக் கலவையா என வேறுபடுத்தி எழுதுங்கள்.

கல் - மண் கலவை, சீனிக் கரைசல், சீனி கலந்த தேநீர், ஐஸ்கிறீம், கந்தகத் தூள் - இரும்புத் தூள் கலவை, பித்தளை, வளி, எதயில் அற்ககோல் கரைசல், வினாகிரி, கொங்கிறீற்றுக் கலவை, குருதி, உமி கலந்த அரிசி.

உங்கள் அட்டவணையைப் பின்வரும் அட்டவணையுடன் (4.10.1) ஒப்பிட்டுப் பாருங்கள்.

பல்லினக் கலவை	ஏகவினக் கலவை (கரைசல்)
• கல் - மண் கலவை	• சீனிக் கரைசல்
• உமி கலந்த அரிசி	• தேநீர்
• கந்தகத் தூள் - இரும்புத் தூள் கலவை	• எதயில் அற்ககோல்
• கொங்கிறீற்றுக் கலவை	• பித்தளை
• ஐஸ்கிறீம்	 ഖബി
• குருதி	• வினாகிரி

அட்டவணை 4.10.1 பல்லினக் கலவைகளும் ஏகவினக் கலவைகளும்

4.10.2 கரைசல்கள் (Solutions)

சீனி - நீர்க் கலவை, உப்பு - நீர்க் கலவை போன்ற ஏகவினக் கலவைகள் கரைசல்கள் என்று அழைக்கப்படும். கரைசலில் இரண்டு அல்லது அதற்கு மேற்பட்ட கூறுகள் காணப்படும்.

திண்மம், திரவம், வாயு ஆகிய எந்தவொரு பௌதிக நிலையிலுமுள்ள கூறுகளைக் கலப்பதன் மூலம் கரைசல்களை உருவாக்கலாம். அட்டவணை 4.10.2 இலிருந்து இதனை மேலும் விளங்கிக்கொள்ளலாம்.

	கூறு	
கரைசல்	கரையம்	கரைப்பான்
கறியுப்புக் கரைசல்	உப்பு (திண்மம்)	நீர் (திரவம்)
செப்புச் சல்பேற்றுக் கரைசல்	செப்புச் சல்பேற்று (திண்மம்)	நீர் (திரவம்)
மதுசாரக் கரைசல் (20%)	மதுசாரம் (20%) (திரவம்)	நீர் (80%) (திரவம்)
மதுசாரக் கரைசல் (80%)	நீர் (20%) (திரவம்)	மதுசாரம் (80%) (திரவம்)
பித்தளை	நாகம் (40%) (திண்மம்)	செம்பு (60%) (திண்மம்)
சோடா நீர்	காபனீரொட்சைட்டு (வாயு)	நீர் (திரவம்)
உருக்கு	காபன் (0.5%) (திண்மம்)	இரும்பு (99.5%) (திண்மம்)

அட்டவணை 4.10.2 சில கரைசல்களும் அவற்றின் கூறுகளும்

கரைசலில் குறைந்த அளவில் காணப்படும் கூறு கரையம் (solute) என்றும் அதிகளவில் காணப்படும் கூறு கரைப்பான் (solvent) என்றும் அழைக்கப்படும்.

சீனிக் கரைசலில் கரையம் (சீனி) எவ்வாறு கரைப்பானுடன் (நீர்) சேர்ந்துள்ளது என்பதைக் காட்டும் துணிக்கை மாதிரி அமைப்பைப் பார்ப்போம்.

4.10.2 சீனிக் கரைசலில் காணப்படும் துணிக்கைகளின் அமைப்பு

கரைசலில் உள்ள கரையத் துணிக்கைகளுக்கிடையில் கரைப்பான் துணிக்கைகள் பரந்து காணப்படுகின்றன என்பதை மேலுள்ள படங்கள் விளக்குகின்றன.

யாதேனும் ஒரு கரையத்தின் எந்த அளவையும் அது கரையக்கூடிய கரைப்பானில் கரைக்க முடியுமா? இதனை ஆராய்ந்து பார்ப்பதற்குத் திண்ம - திரவ கரைசலைப் பயன்படுத்திப் பின்வரும் செயற்பாட்டைச் செய்து பாருங்கள்.

செயற்பாடு 4.10.3

- 100 ml முகவை, செப்புச் சல்பேற்றுப் பளிங்குகள், கண்ணாடிக் கோல், கம்பி வலை, நீர் ஆகியவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- முகவையினுள் 50 ml நீரை எடுத்து அதனுள் செப்புச் சல்பேற்றுப் பளிங்குகள் சிறிதளவை இடுங்கள். பின் கண்ணாடிக் கோலினால் கலக்குங்கள். அது கரைந்தபின் மேலும் செப்புச் சல்பேற்றைக் கரையுங்கள். செப்புச் சல்பேற்று கரையாமல் கீழே காணப்படும் வரை இச்செயற்பாட்டைச் செய்யுங்கள்.

முகவையில் 50 ml நீரை எடுத்து செப்புச் சல்பேற்றைச் சிறிது சிறிதாகச் சேர்த்துக் கரைக்கும்போது குறிப்பிட்ட அளவுக்கு மேல் செப்புச் சல்பேற்றைச் சேர்க்கையில் அது கரையாது முகவையின் அடியில் எஞ்சும். ஆகவே, குறித்த கனவளவு கரைப்பானில், குறித்த வெப்பநிலையில், குறித்தளவு கரையமே கரையும் எனக் கூறலாம்.

- குறித்த வெப்பநிலையில், குறித்த கனவளவு கரைப்பானில் கரையக்கூடிய உச்ச அளவு கரையம் கரைந்துள்ள கரைசல் நிரம்பிய கரைசல் எனப்படும் (saturated solution).
- குறித்த கனவளவு கரைப்பானில் கரையக்கூடிய உச்ச அளவு கரையத்தை விடவும் குறைந்த அளவு கரையம் கரைந்துள்ள கரைசல் நிரம்பாத கரைசல் (unsaturated solution) எனப்படும்.

4.10.3 கரைப்பான்கள் (Solvents)

நீர் ஒரு சிறந்த கரைப்பானாகும். அன்றாட வாழ்க்கையில் பல்வேறு பொருள்களைக் கரைக்க நீர் பயன்படுகிறது. ஆய்கூடத்திலும் பல்வேறு கரைசல்களைத் தயாரிக்க நீர் பயன்படும். எனினும், எல்லாப் பொருள்களும் நீரில் கரையுமா? கத்தியில் ஒட்டிய பலாப்பிசின், நிலத்தில் சிந்திய எனாமல் நிறப்பூச்சு என்பவற்றை நீரைப் பயன்படுத்தி அகற்ற முடியாது. ஆகவே, வெவ்வேறு பொருள்களைக் கரைப்பதற்கு வேறுபட்ட கரைப்பான்கள் தேவைப்படுகின்றன எனலாம். அது பற்றி அறிந்துகொள்ளப் பின்வரும் செயற்பாட்டில் (உரு 4.10.4) ஈடுபடுங்கள்.

செயற்பாடு 4.10.4

- நீர், மண்ணெண்ணெய், தெரப்பந்தைலம் என்பவற்றைக் கரைப்பானாகவும் கறியுப்பு, பலாப்பிசின், கிறீஸ் போன்றவற்றைக் கரையமாகவும் தெரிவு செய்து கொள்ளுங்கள்.
- சோதனைக்குழாய்கள் சிலவற்றைப் பெற்றுக்கொள்ளுங்கள்.
- வெவ்வேறு சோதனைக்குழாய்களினுள் சம கனவளவில் கரைப்பான்களைத் தனித்தனியாக எடுத்து அதனுள் கரையங்களைத் தனித்தனியாக இட்டுக் கரைக்க முயற்சியுங்கள்.
- உங்களுடைய அவதானிப்புகளைக் குறித்துக்கொள்ளுங்கள்.

உப்பு, நீரில் கரைந்தபோதும் மண்ணெண்ணெய், தெரப்பந்தைலம் என்பவற்றில் கரையாது. கிறீஸ், பலாப்பிசின் என்பன நீரில் கரையாது. எனினும், அவை தெரப்பந்தைலம், தேங்காய் எண்ணெய், மண்ணெண்ணெய் ஆகியவற்றில் கரைவதை அவதானிக்கலாம்.

மேலேயுள்ள பரிசோதனைகளில் இருந்து வேறுபட்ட கரையங்களைக் கரைப்பதற்கு வேறுபட்ட கரைப்பான்கள் அவசியம் என்பதை அறியலாம். இதனைக் கீழே உள்ள அட்டவணையைக் கொண்டு விளங்கிக்கொள்ளுங்கள்.

கரையம்	கரைப்பான்
உப்பு, சீனி	நீர்
இறப்பர்	பெற்றோல், அசற்றோன்
எனாமல் நிறப்பூச்சு	மெலிதாக்கி (தின்னர்)
அயடீன்	எதயில் அற்ககோல்
கிறீஸ்	மண்ணெண்ணெய்
பச்சையம்	எதயில் அற்ககோல்

அட்டவணை 4.10.3 சில கரையங்களும் அவற்றின் கரைப்பான்களும்

மேலே பெற்ற அவதானிப்புகளிலிருந்து குறித்த கரையத்தின் கரைசலைத் தயாரிப்பதற்கு அக்கரையம் கரையக்கூடிய, அதற்குப் பொருத்தமான கரைப்பான்களைத் தெரிவு செய்வது அவசியமானது என்பதை அறிந்துகொள்ளலாம்.

4.11 மின் பிறப்பிக்கப்படும் முறைகள்

4.11.1 மின்கலங்களின் கட்டமைப்பும் தொழிற்பாடும்

நாங்கள், மின்னை மின்முதல்களில் இருந்து பெறுகின்றோம். இலங்கையில் அநேகமான வீடுகளில் பயன்படுத்தப்படும் மின்முதல் ஒன்றை உங்களால் கூற முடியுமா?

பொதுவாக வீடுகளில் பயன் படுத்தப்படுகின்ற ஒரு மின்முதல் உலர் மின்கலமாகும். இவ்வுலர் மின்கலங்களில் காணப்படும் இரசாயனப் பதார்த்தங் களுக்கிடையில் நடைபெறும் இரசாயனத் தாக்கங்களினாலேயே மின் உற்பத்தியாக்கப் படுகின்றது. இங்கு இரசாயனச் சக்தி மின்சக்தியாக மாற்றப்படுகின்றது.

இரசாயனச் சக்தி — மின் சக்தி

உரு 4.11.1 பல்வேறு வகையான உலர் மின்கலங்கள்

வப்படை 1

வெவ்வெறு பருமன்களில் உள்ள உலர் மின்கலங்களில் காணப்படும் குறியீடுகளையும் அலகுகளையும் வோல்ற்றளவையும் கண்டறியுங்கள். Um 1, Um 2, Um 3, A A, AAA, D, C ஆசிரியரின் உதவியுடன் இக்குறியீடுகளின் விளக்கத்தைக் கண்டறியுங்கள்.

மின்கலங்களைப் பிரதானமாக இரு வகைகளாகப் பிரிக்கலாம்.

- (i) முதன்மைக் கலங்கள்
- (ii) துணைக் கலங்கள்

முதன்மைக் கலம்

முதன்மைக் கலங்களில் காணப்படும் இரசாயனப் பதார்த்தங்கள் அவற்றில் இருந்து மின்னைப் பெறும் செயன்முறைகளின்போது முற்றாக விரயமாகின்றன. மாற்றத்துக்குள்ளான அவ்விரசாயனப் பதார்த்தங்களை மீண்டும் ஆரம்ப நிலைக்கு மாற்ற முடியாது. அதாவது, அம்மின்கலத்தை ஒருமுறை பயன்படுத்திய பின்னர் மீண்டும் பயன்படுத்த முடியாது. எளிய மின்கலம், உலர் மின்கலம் என்பன முதன்மைக் கலங்களுக்கு உதாரணங்களாகும்.

♦ எளிய மின்கலம்

முதலில் கண்டறியப்பட்ட மின்கலம் எளிய மின்கலமாகும்.

செயற்பாடு 4.11.1

Zn, Cu தகடுகளைப் பெற்றுக்கொள்ளுங்கள். உப்பு நீரில் தோய்க்கப்பட்ட கடதாசி அட்டையை அத்தகடுகளுக்கிடையில் வைத்து அழுத்திப் பிடியுங்கள். செவிபன்னியுடன் தொடர்புள்ள இரண்டு இணைக்கும் கம்பிகளில் ஒன்றை நாகத் தகட்டுடன் இணைத்து இரண்டாவது கம்பியை செப்புத் தகட்டுடன் விட்டுவிட்டுத் தொடுகையுறச் செய்யுங்கள். அப்போது செவிபன்னியில் ஒலி எழுப்பப்படுகின்றதா?

இச்செயற்பாட்டின் மூலம் எளிய மின்கலம் ஒன்று உருவாக்கப்பட்டது. அதனால், பிறப்பிக்கப்பட்ட மின்னின் காரணமாக செவிபன்னியினூடாக ஒலி கேட்டது.

ஆய்கூடத்தில் அமைக்கப்பட்ட எளிய மின்கலத்தின் அமைப்பை உரு 4.11.2 காட்டுகின்றது. எளிய மின்கலத்தில் ஐதான சல்பூரிக்கமிலக் கரைசலும் நாகம், செம்பு ஆகிய இரண்டு உலோகங்களும் பயன்படுத்தப்படுகின்றன (இங்கு பயன்படுத் தப்படும் மின்கு மிழ் குறைந் த அளவு வோல்ற்றளவில் ஒளிர்வடையக்கூடியதாக இருக்க வேண்டும்).

எனினும், இவ்வெளிய மின்கலத்தில் மின்குமிழ் சிறிதளவு நேரம் ஒளிர்ந்த பின் அணைந்துவிடும். இதன்போது செப்புத் தகட்டின் மீது வாயுக் குமிழிகள் படிந்திருப்பதைக் காணலாம். இவ்வாயுக் குமிழிகளை அகற்றியதும் மீண்டும் மின்குமிழ் ஒளிர்வதை அவதானிக்கலாம். இக் கலத்தின் நேர் முடிவிடம் செப்புத் தகடாகவும் மறை முடிவிடம் நாகத் தகடாகவும் காணப்படுகின்றன.

உரு 4.11.2 எளிய மின்கலம்

உங்களுக்குத் தெரியுமா?

- எளிய மின்கலத்தை முதலில் அமைத்தவர்
 இத்தாலி நாட்டைச் சேர்ந்த விஞ்ஞானியான
 அலெக்ஸ்சான்டர் வோல்ற்றா என்பவராவார்.
- மின்கலத்தின் முடிவிடங்கள் இரண்டுக்கிடையே காணப்படும் மின்னழுத்த வேறுபாட்டை அளக்கும் அலகான வோல்ற்று (volt), அவரது பெயரை நினைவாகக் கொண்டு இடப்பட்டதாகும்.

அலெக்ஸ்சான்டர் வோல்ற்றா

எளிய மின்கலத்தின் குறைபாடுகள்

- திரவத்தைக் கொண்டிருப்பதால் இம்மின்கலத்தை அங்குமிங்கும் கொண்டு செல்லல் சிரமமானதாயிருத்தல்.
- தொடர்ச்சியாக மின்னைப் பெற முடியாமை.
- நாகத் தகடு விரைவில் கரைந்து விடுதல்.

♦ உலர் மின்கலம் (Dry cell)

எளிய மின்கலத்தின் குறைபாடுகள் காரணமாக சாதாரண நடைமுறைத் தேவைகளுக்கு அதனைப் பயன்படுத்த முடியாதுள்ளது. இதனால், நடைமுறைத் தேவைகளுக்குப் பொருத்தமான மின்கலங்களை உற்பத்தி செய்யும் தேவை ஏற்பட்டது. அத்தகைய குறைபாடுகள் நீக்கப்பட்டு அமைக்கப்பட்ட மின்கலமே உலர் மின்கலமாகும். உலர் மின்கலத்தின் அமைப்பை உரு 4.11.3 காட்டுகிறது.

உலர் மின்கலத்தின் நேர் முடிவிடம் காபனாகும். அதனைச் சூழ் ந்து மங்கனீசீரொட்சைட்டு, காபன் தூள் கலந்த கலவை என்பன காணப்படுகின்றன. இக்கலவை ஈரலிப்பாக்கப்பட்டுக் காணப்படும். மறை முடிவிடம் நாகக் கொள்கலமாகும். நாகக் கொள்கலத்துடன் தொடுகையில் உள்ளவாறு அமோனியங் குளோரைட்டுப் பதார்த்தம் பசை நிலையில் காணப்படும். உலர் மின்கலத்தில் காணப்படும் இரசாயனப் பதார்த்தங்கள் தாக்கமடைவதால் மின் உற்பத்தியாக்கப்படுகின்றது.

உரு 4.11.3 உலர் மின்கலத்தின் நெடுக்குவெட்டு முகம்

மின்குள், சிறிய மின்னோட்டத்தில் இயங்கும் திரான்சிஸ்டர் ரேடியோ, இலத்திரனியல் கடிகாரம் போன்ற கருவிகளைத் தொழிற்படுத்த உலர் மின்கலம் பயன்படுத்தப்படுகிறது. உலர் மின்கலத்திலிருந்து அதிக அளவு மின்னோட்டத்தைத் தொடர்ச்சியாகப் பெற்றுக்கொள்ள முடியாது. ஆனால், தொடர்ச்சியாகப் பயன்படுத்தப்படாததால் அதிக அளவு மின்னோட்டத்தில் இயங்கும் மின்குளைத் தொழிற்படுத்தவும் உலர் மின்கலம் பயன்படுத்தப்படுகிறது. உலர் மின்கலத்தின் மின்னியக்க விசை 1.5 V ஆகும்.

உங்களுக்குத் தெரியுமா?

உலர் மின்கலத்தில் காணப்படும் இரசாயனப் பதார்த்தங்கள் (அமோனியங் குளோரைட்டு) பசை நிலையில் காணப்படும். அதனால், அவை கலத்திலிருந்து வெளியே கசிவதில்லை. எனவே, உலர் மின்கலம் என அழைக்கப்பட்டாலும் உண்மையில் அது உலர்ந்ததாகக் காணப்படுவதில்லை. விளையாட்டு மோட்டர் ஊர்தி, ஒலிப் பதியி போன்றவற்றுக்கு ஓரளவு அதிகமான மின்னோட்டம் தொடர்ச்சியாக வழங்கப்பட வேண்டும். இதற்குப் பொருத்தமான உலர் மின்கலங்கள் தற்போது உற்பத்தியாக்கப்பட்டுள்ளன (அவற்றில் heavy duty எனக் குறிப்பிடப்பட்டிருக்கும்). இங்கு மங்கனீசீரொட்சைட்டுக்குப் பதிலாக நாகக் குளோரைட்டுப் பதார்த்தம் இடப்பட்டிருக்கும்.

உலர் மின்கலங்களில் குறித்த அளவு இரசாயனப் பதார்த்தங்களே காணப்படும். இவ்விரசாயனப் பதார்த்தங்கள் ஒன்றோ, பலவோ முடிவடைந்ததும் உலர் மின்கலம் செயலிழந்துவிடும்.

உலர் மின்கலத்தைப் பயன்படுத்தும்போது நாக உறை கரைவதால் அதில் துளைகள் ஏற்படும். உலர் மின்கலத்தினுள் காணப்படும் இரசாயனப் பதார்த்தங்கள் இத்துளைகளினூடாக வெளியில் கசியும். மின்சூள், ரேடியோ போன்ற உபகரணங்களுக்கு இப்பதார்த்தங்களினால் பாதிப்பு ஏற்படும். ஆகவே, உலர் மின்கலங்களினால் இயங்கும் சாதனங்களை நீண்ட காலம் பயன்படுத்தாவிடின் அவற்றில் உள்ள உலர் மின்கலங்களை அகற்றிவிட வேண்டும்.

ஒப்படை 2

உலர் மின்கலத்தில் காணப்படும் இரசாயனப் பதார்த்தங்கள் நச்சுத் தன்மையானவையாகும். செயலிழந்த உலர் மின்கலங்கள் அழிவடையும்போது அதில் காணப்படும் நச்சுப் பதார்த்தங்கள் மண்ணுடன் அல்லது நிலத்தடி நீருடன் சேர்வது ஆபத்தானதாகும். ஆகவே, உலர் மின்கலங்களைப் பயன்படுத்திய பின் அவற்றை அகற்றுவதற்கான பல வழிமுறைகள் கையாளப்படுகின்றன. அவை தொடர்பான தகவல்களை அறிந்து அறிக்கை ஒன்றைத் தயாரியுங்கள்.

நீண்ட நாட்கள் பயன்படுத்தப்படாமல் உள்ள உலர் மின்கலங்களில் காணப்படும் பசை உலர்ந்து செல்வதனாலும் இரசாயனப் பதார்த்தங்கள் மெதுவாகத் தாக்கத்தில் ஈடுபடுவதனாலும் அவற்றிலிருந்து மின்னைப் பெற்றுக்கொள்ள முடிவதில்லை. சில உலர் மின்கலங்களில் SLS குறியீடு இடப்பட்டிருக்கும். அவ்வாறான உலர் மின்கலங்களின் மீது நுகர்வோர் நம்பிக்கைகொள்ள முடியும்.

துணைக் கலங்கள்

எளிய மின்கலங்கள், உலர் மின்கலங்கள் ஆகியவற்றில் காணப்படும் இரசாயனப் பதார்த்தங்கள் முடிவடைந்ததும் அவை செயலிழந்துவிடும். இத்தகைய மின்கலங்கள் மீண்டும் புதுப்பிக்கப்பட முடியாதவையாகும். ஆனால், இதற்கு மாறாகச் செயலிழந்தாலும் மீண்டும் மின்னேற்றிப் பயன்படுத்தக்கூடிய மின்கலங்களும் உள்ளன. இவ்வாறான மின்கலங்கள், துணைக் கலங்கள் எனப்படும். இங்கு மின் சேமிக்கப்பட்டுப் பயன்படுத்தப்படுவதனால் இவை சேமிப்புக்கலங்கள் (அகியுமிலேடர்ஸ் - accumulators) என்றும் அழைக்கப்படும்.

♦ ஈய — அமிலச் சேமிப்புக்கலம்

வாகனங்களில் பயன்படுத்தப்படும் பற்றரி இதற்கு உதாரணமாகும். ஈய-அமிலச் சேமிப்புக்கலங்கள் பலவற்றை இணைப்பதன் மூலம் ஈய - அமில மின்கல அடுக்கு (பற்றரி) தயாரிக்கப்படுகின்றது.

உங்களுக்குத் தெரியுமா?

பல மின்கலங்களைத் தொடராக இணைத்து பற்றரி பெறப்படுகின்றது. குறியீட்டைப் பயன்படுத்தி அதனை இவ்வாறு காட்ட முடியும்.

ஈய - அமிலச் சேமிப்புக் கலத்தின் செயற்பாட்டை அறிந்துகொள்ளப் பின்வரும் செயற்பாட்டில் ஈடுபடுங்கள்.

செயற்பாடு 4.11.2

 ஐதான சல் பூரிக்கமிலத் தில் சிறிதளவை (பற்றரி அமிலம்) கண்ணாடி அல்லது பிளாத்திக்குக் குவளையில் இடுங்கள். அவற்றுள் ஈயத் தகடுகள் இரண்டை அமிழ்த் துங்கள். படத் தில் காட்டியவாறு உலர் மின் கலங்களை இணைத்து அதனை மின்னேற்றுங்கள். சல்பூரிக் அமிலம்

• ஈயத் தகட்டில் ஏதேனும் மாற்றங்கள் ஏற்பட்டுள்ளனவா என அவதானியுங்கள். பின் உலர் மின்கலத்தை அகற்றிச் சிறிய மின்குமிழை இரண்டு தகடுகளுடனும் படத்தில் காட்டியவாறு இணைத்துக்கொள்ளுங்கள். மின்குமிழ் சிறிது நேரம் ஒளிர்வதை அவதானிக்கலாம்.

மோட்டர்க் காரில் ஆறு ஈயச் சேமிப்பு கலங்கள் இணைந்த பற்றரி பயன்படுத்தப்படும். ஒவ்வொரு மின்கலத்தினதும் வோல்ற்றளவு இரண்டாகும் (2V). இதன் மொத்த வோல்ற்றளவு 12V ஆகும். ஆகவே, இங்கு மின்கலங்கள் தொடராக இணைக்கப்பட்டுள்ளன. இக்கலங்களில் ஈயத் தகடுகளும் ஐதான சல்பூரிக்கமிலமும் பயன்படுத்தப்படுவதால் இவை ஈய - அமிலச் சேமிப்புக்கலங்கள் எனப்படும்.

ஈய - அமிலச் சேமிப்புக் கலத்தை மின்னேற்றல்

உரு 4.11.4 ஈய - அமில சேமிப்புக்கலம் (மின்கலவடுக்கு)

உங்களுக்குத் தெரியுமா?

ஈய அமிலச் சேமிப்புக்கலம் (மின்கலவடுக்கு) கி.பி. 1860 ஆம் ஆண்டு கஸ்டன் பிளான்டே என்பவரால் உருவாக்கப்பட்டதாகும். இது இன்றும் மோட்டர் ஊர்திகளில் பயன்படுத்தப்படுகின்றது.

ஈய - அமில மின்கலவடுக்கைப் பயன்படுத்தும்போது கவனிக்க வேண்டியவை.

- அமிலச் செறிவு கவனிக்கப்பட வேண்டும்.
- கலத்தினுள் குறிப்பிட்ட மட்டத்திற்குக் கீழாக அமில (திரவ) மட்டம் குறையும்போது நீர் சேர்க்கப்பட வேண்டும்.
- பற்றரியின் பிரதான முடிவிடங்களைத் தூய்மையாக வைத்திருக்க வேண்டும்.
- பற்றரியை நீண்டகாலம் பயன்படுத்தாமல் வைத்திருக்கக்கூடாது.
- வாகனங்களில் காணப்படும் இவ்வாறான பற்றரிகளின் மூடியை இறுக்கமாக மூடி வைத்திருத்தல் வேண்டும்.
- அதிக வெப்பமடைவதைத் தவிர்க்க வேண்டும்.

ஒழுங்கான முறையில் பயன்படுத்தப்படும் ஈய - அமில மின்கலவடுக்கைப் பொதுவாக நான்கு வருடங்கள் தொடர்ச்சியாகப் பயன்படுத்த முடியும். அதாவது, பற்றரிகளின் வாழ்க்கைக் காலம் அண்ணளவாக 4 வருடங்களாகும்.

4.11.2 மின்பிறப்பாக்கி

எமது அன்றாடத் தேவைகளுக்கு மின் அவசியமாகும். அதனால், மின்னை உற்பத்தி செய்யும் மின்பிறப்பாக்கிகள் அவசியமாகின்றன. மின்பிறப்பாக்கி செயற்படும் முறையை விளங்கிக்கொள்ளப் பின்வரும் செயற்பாட்டைச் செய்து பார்ப்போம்.

செயற்பாடு 4.11.3

- கம்பிச் சுருள், கம்பிச் சுருளினுள் செலுத்தப்படக்கூடிய தடித்த ஆணி, வலிமையான காந்தம், கடத்திக் கம்பி, நூல், கல்வனோமானி (உணர்திறன் மிக்க) என்பவற்றைப் பெற்றுக் கொள்ளுங்கள்.
- படத்தில் காட்டிவாறு உபகரணத்தை அமைத்துக் கொள்ளுங்கள்.
- கம்பிச் சுருளுடன் கூடிய ஆணிக்கு மேலாக அதற்கு அண்மையில் அசையக்கூடியவாறு காந்தத்தை நூலில் கட்டித் தொங்கவிடுங்கள்.

- காந்தத்தை அலையவிடுங்கள். காந்தம் சுருளுக்கு அண்மையில் செல்லும்போது கல்வனோமானியில் உள்ள காட்டியின் அசைவை அவதானியுங்கள்.
- பின் காந்தத்தை மேசையின் மீது வைத்துச் சுருளை அலையவிட்டு கல்வனோமானியில் உள்ள காட்டியை அவதானியுங்கள்.

மேலே செய்த செயற்பாட்டிலிருந்து பெற்ற அவதானிப்புகள் மூலம் பின்வரும் முடிவுக்கு வரமுடியும். அசைகின்ற காந்தத்திற்கு அண்மையில் கம்பிச் சுருள் இருக்கும்போதும் அசைகின்ற கம்பிச் சுருளுக்கு அண்மையில் காந்தம் இருக்கும்போதும் மின் உருவாகின்றது.

இத்தோற்றப்பாட்டை அடிப்படையாகக் கொண்டு மின்பிறப்பாக்கியை உருவாக்க முடியும். ஆடலோட்ட மின்பிறப்பாக்கியின் வரிப்படத்தை உரு 4.11.5 காட்டுகின்றது.

> உரு 4.11.5 ஆடலோட்ட மின்பிறப்பாக்கி

இந்த மின்பிறப்பாக்கியினால் பிறப்பிக்கப்படும் மின்னின் அளவை அதிகரிக்கச் செய்வதற்கு

- (i) சுருள்களின் எண்ணிக்கையை அதிகரிக்கச் செய்ய வேண்டும்.
- (ii) சுழற்சி வேகத்தை அதிகரிக்கச் செய்ய வேண்டும்.
- (iii) காந்தத்தின் வலிமையை அதிகரிக்கச் செய்ய வேண்டும்.

உங்களுக்குத் தெரியுமா?

• மின்பிறப்பாக்கிக்குரிய அடிப்படைத் தத்துவத்தை முதலில் முன்வைத்தவர் மைக்கல் பரடேயாவார் (கி.பி 1831).

மைக்கல் பரடே

4.11.3 சைக்கிள் டைனமோ

சைக்கிள் டைனமோவில் காந்தமும் கம்பிச் சுருளினுள் காணப்படும். இங்கு கம்பிச் சுருளினுள் காந்தம் சுழல விடப்படுகின்றது.

இங்கு வலிமையான காந்தம் பயன்படுத்தப்படுகிறது. டைனமோ ஆடலோட்ட மின்னை உற்பத்தியாக்குகின்றது. அதாவது, இங்கு தோன்றும் மின்னோட்டத்தின் திசை கணத்துக்குக் கணம் மாறுகின்றது. இம்மின், கம்பிச் சுருளின் இரு முனைகளினூடாகவும் சைக்கிளின் முகப்பு விளக்கிற்குக் கொண்டுவரப்பட்டு அதில் உள்ள மின்குமிழ் ஒளிரச் செய்யப்படுகின்றது.

உரு 4.11.6 சைக்கிள் டைனமோ

சைக்கிளை வேகமாகச் செலுத்தும்போது டைனமோவின் காந்தம் வேகமாகச் சுழல்கின்றது. இதனால், அதிக அளவு மின் உற்பத்தியாக்கப்பட்டு மின்குமிழ் பிரகாசமாக ஒளிர்கின்றது.

4.11.4 சூரியக் கலம்

சூரியனின் ஒளிச் சக்தி சூரியக் கலத்தில் மின்சக்தியாக மாற்றமடைகிறது.

ஒளிச் சக்தி —→ மின் சக்தி

பெரும்பாலான சூரியக் கலங்கள் சிலிக்கன் என்னும் மூலகத்தினால் ஆக்கப்பட்டுள்ளன. சூரியக் கலத்திலுள்ள சிலிக்கனின் ஒரு பகுதி போரன் (B) முலகத்தைக் கலந்து வகை p சிலிக்கனாகவும் மறுபகுதி ஆசனிக்கு (As) முலகத்தைக் கலந்து n சிலிக்கனாகவும் மாற்றப்படுவதால் p - n சந்தி உருவாகும். இந்த p - n சந்தியில் சூரிய ஒளி படும்போது சிறிய மின்னோட்டம் உற்பத்தி ஆக்கப்படும்.

உரு 4.11.7

ஒரு மின்கலத்திலிருந்து மிகச் சிறிய மின்னோட்டம், அழுத்த வேறுபாடு (வோல்ற்றளவு) என்பன உருவாகின்றன. அதிக எண்ணிக்கையான சூரியக் கலங்களைத் தொடராக இணைப்பதன் மூலம் அதிக வோல்ற்றளவு பெறப்படுகின்றது. இவற்றைச் சமாந்தரமாக இணைப்பதன் மூலம் அதிக மின்னோட்டம் பெறப்படுகின்றது. இதனால், சூரியக் கலங்களை சமாந்தரமாக இணைப்பதன் மூலம் அதிக மின்னைப் பெறமுடியும். சூரியக் கலங்களை சமாந்தரமாக இணைப்பதன் மூலம் அதிக மின்னைப் பெறமுடியும். சூரியக் கலங்களைப் பொருத்தமான முறையில் தொடராகவோ, சமாந்தரமாகவோ இணைத்துச் சூரியப் படல் உற்பத்தி செய்யப்படுகிறது. இயங்குகின்ற பகுதிகளும் விரயமாகின்ற பகுதிகளும் இல்லாமையால் சூரியக் கலங்களை நீண்டகாலம் பயன்படுத்தலாம்.

ஆரம்ப காலத்தில் உற்பத்தி செய்யப்பட்ட சூரியக் கலத்தின் வினைத்திறன் (கலத்திற்குக் கிடைக்கும் சூரிய ஒளியை மின்னாக மாற்றுதல்) 6% 8 % ஆகும். எனினும், தற்போது பயன்படுத்தப்படும் சூரியக் கலத்தின் வினைத்திறன் 25% 30 % அளவுக்கு அதிகரித்துள்ளது.

சூரியக் கலம் பயன்படும் சந்தர்ப்பங்கள்

- (i) இலத்திரனியல் கணிப்பான்
- (ii) செயற்கைக் கோள்
- (iii) இலத்திரனியல் கடிகாரம்
- (iv) பிரதான மின் வழங்கல் இல்லாத கிராமங்கள்

உரு 4.11.8 செயற்கைக் கோளில் காணப்படும் சூரியப் படல்

4.12 நனோ தொழினட்பவியலின் பயன்பாடு

புற்றுநோய் வைத்தியர் நோய்த் தடுப்பு மருந்தைப் புகுத்தி (syringe) மூலம் நோயாளியின் குருதிக்குள் செலுத்துகின்றார். அம்மருந்தில் உள்ள இயந்திர மனிதர்கள் (ரோபோக்கள்) குருதியினூடாகப் புற்றுநோய்க் கலங்களைத் தேடிச் செல்கின்றன. ஏனைய கலங்களுக்குச் சேதம் ஏற்படாத வகையில் புற்று நோய்க் கலங்களை மாத்திரம் அழிக்கின்றன.

நீங்கள் மேலே வாசித்தது விஞ்ஞானப் புனைகதையின் ஒரு பகுதி என நினைத்திருப்பீர்கள். எனினும், எதிர்காலத்தில் நனோ தொழினுட்பவியலின் வளர்ச்சியினால் இது சாத்தியமாகக்கூடிய வாய்ப்பு உள்ளதை நீங்கள் அறிவீர்களா?

உங்களுக்குத் தெரியுமா?

'நனோ' என்னும் சொல்லானது கிரேக்க மொழியில் குள்ளன் என்ற பொருளைத் தருகின்றது. இதிலிருந்து நனோ தொழினுட்பவியல் என்பது மிகச் சிறிய பொருளுடன் தொடர்புபடுத்திச் செய்யப்படும் ஒரு செயன்முறை என விளங்கிக் கொள்ளலாம்.

4.12.1 நனோ தொழினட்பவியலின் எண்ணக்கரு

எம்மைச் குழவுள்ள அனைத்துப் பொருள்களும் வெறும் கண்ணுக்குப் புலப்படுவதில்லை. இவ்வாறான, கண்ணுக்குப் புலப்படாத சிறிய பொருள்களின் பருமனை அளப்பதற்கு நனோமீற்றர் பயன்படுத்தப்படுகிறது. நனோமீற்றர் என்பது ஒரு மீற்றரின் பில்லியனின் ஒரு பகுதியாகும் (0.000 000 00 1m / 10 ¬°m). நனோமீற்றர் பரிமாணத்தில் ஆரம்பித்து நடைபெறும் உற்பத்திச் செயன்முறை நனோதோழினுட்பவியல் எனப்படும். 1 - 100 நனோமீற்றர் அளவுள்ள துணிக்கைகள் உற்பத்திச் செயன்முறைக்குப் பயன்படுத்தப்படும். இவை நனோ நுண்துணிக்கைகள் என அழைக்கப்படும். சடப்பொருளின் கட்டமைப்பு அலகான அணு, மூலக்கூறுகள் என்பன நனோமீற்றர் பரிமாணத்தில் (பருமன்) உள்ள துணிக்கைகள் ஆகும். நனோதோழினுட்பவியலில் நனோ துணிக்கைகளைத் தேவைக்கேற்பப் பயன்படுத்தி நனோ உலோகம், நனோ பல்பகுதியங்கள், மருந்துகள் என்பவை தயாரிக்கப்படுவதுடன் நனோ ரோபோக்கள், நனோ கணினிகள் போன்ற செயற்திறன் மிக்க பொருள்களும் உற்பத்தி செய்யப்படும்.

உங்கள் சிந்தனைக்கு!

ஒரு நனோமீற்றர் விட்டம் கொண்ட நுண் துணிக்கைக்கும் ஒரு மீற்றர் விட்டம் கொண்ட பொருள் ஒன்றுக்கும் இடையிலான விகிதம், காற்பந்தின் விட்டத்திற்கும் புவியினது விட்டத்திற்கும் இடையிலான விகிதத்திற்குச் சமனானதாகும்.

நனோ தொழினுட்பவியல் பற்றித் தமது கருத்துகளை முதலில் வெளியிட்டவர் நோபல் பரிசு பெற்ற பௌதிகவியல் விஞ்ஞானியான ரிச்சார்ட் பேர்மன் (கி.பி. 1959) ஆவார். உயிர்க்கலங்கள் மிகச் சிறியவை ஆயினும் அவற்றின் செயற்திறன் அதிகமானதாகையால் அவ்வாறான சிறிய அளவு கொண்ட பொருள்களிலிருந்து பல வியத்தகு உற்பத்திகளை ஆக்க முடியும் என பேர்மன் கூறினார்.

இயற்கை நனோ தொகுதி

உயிர்க் கலங்கள் இயற்கையான நனோ தொகுதிக்குச் சிறந்த உதாரணங்களாகும். உயிர்க் கலங்களில் காணப்படும் பல்வேறு புன்னங்கங்கள் பல்வேறு தொழிலுக்காக இசைவாக்கமடைந்துள்ளன. எனவே, இவற்றை இயற்கையான நனோ தொழிற்சாலைகளாகக் கருத முடியும்.

pendi sereni ini sa Armi Silveri (Ali sereni mina da Selezia) programa da manda in sereni da menanda da sereni Sereni	control and an amendment of a control of the contro
	கலச்சுவர்
கொல்கியுடல்	புன்வெற்றிடம்
	கலமென்சவ்வு
ி கக்கலவுருச்	
ச ് று ഖതെ	இ ரைபோசோம்
இழைமணி	
- 3	குழியவுரு
கரு	
புன்கரு	பச்சையவுருமணி

உரு 4.12.1 தாவரக் கலம் ஒன்றின் இலத்திரன் நுணுக்குக்காட்டிப் படம்

அங்கிகளின் அடிப்படை அலகான உயிர்க் கலத்தினுள் பல உயிர்ச் செயன்முறைகள் நடைபெறுகின்றன. சுவாசம், கழிவகற்றல், வளர்ச்சி, தொகுப்பு என்பன அவற்றுள் சிலவாகும். இச்செயன்முறைகள் அனைத்தும் நனோ பரிமாணத்திலான (மிகச் சிறிய) செயன்முறைகளாகும்.

தாவரக் கலத்தில் நடைபெறும் ஒளித்தொகுப்புச் செயன்முறையை நோக்குவோம். தாவரக் கலத்தில் காணப்படும் பச்சையத்தில் நடைபெறுகின்ற, ஒளிச் சக்தியைப் பயன்படுத்திக் காபனீரொட்சைட்டு, நீர் என்பவற்றைக் குளுக்கோசு, ஒட்சிசனாக மாற்றும் செயன்முறை இயற்கையில் நடைபெறும் நனோ பரிமாணத்திலான செயன்முறையாகும். எதிர்காலத்தில் நனோ தொழினுட்பவியலின் மூலம் செயற்கையாகவும் ஒளித்தொகுப்புச் செயன்முறையை நடத்த முடியுமாயின் உலகம் எதிர்நோக்குகின்ற உணவுத் தட்டுப்பாட்டுக்கு நிரந்தரத் தீர்வு காண முடியும்.

செயற்பாடு 4.12.1

தாமரை இலையின் மீது நீர்த் துளி ஒன்றை இட்டு அவதானியுங்கள். தாமரை இலையின் ஒரு பகுதியின் மேலுள்ள மெல்லிய புறத்தோற் படையை அகற்றிய பின் அவ்விடத்தில் ஒரு நீர்த் துளியை இட்டு அவதானியுங்கள். உங்கள் அவதானிப்புகளுக்கான காரணம் யாது?

முதலாவது சந்தர்ப்பத்தில் நீர்த்துளி இலை மேற்பரப்பின் மீது ஒட்டாது. இதனால், இலை ஈரமாகாது. இதற்கு காரணம், இயற்கையான நனோ மட்டத்திலான துணிக்கைகள் இணைந்துள்ள புறத்தோல் இலைமீது இருப்பதாகும். எனவேதான் எமது முன்னோர் உணவைப் பொதி செய்வதற்கு தாமரை இலையைப் பயன்படுத்தினர்.

இரண்டாவது சந்தர்ப்பத்தில் சுரண்டுவது மூலம் புறத்தோல் அகற்றப்படுவதால் நீர்த் துளியை இட்டபோது அது இலைமீது பரவி அதனை ஈரப்படுத்துகிறது.

உரு 4.12.2 தாமரை இலையில் நீர்த் துளிகள் ஒட்டாது, பரவாது காணப்படும் முறை

செயற்கை நனோ தொகுதி

பொதுவாக அன்றிலிருந்து இன்றுவரை மூலப்பொருள்களை வெட்டுதல், வளைத்தல், தகடாக்கல், ஒட்டுதல் போன்ற செயன்முறைகளினூடாக பொருள்கள் உற்பத்தி செய்யப்படுகின்றன. இம்முறை 'மேலிருந்து கீழ்நோக்கிச் செல்லுதல்' (top - down) என அழைக்கப்பட்டது. எனினும், பேர்மன் கருத்துப்படி நனோ தொழினுட்பவியலானது அணு மட்டத்தின் பகுதியிலிருந்து ஆரம்பித்து அதன் இறுதி முடிவான உற்பத்திப் பொருளை நோக்கிச் செல்வதாகும். இதனை பேர்மன் 'கீழிருந்து மேல்நோக்கிச் செல்லுதல்' (bottom - up) என்று அழைத்தார்.

உற்பத்திச் செயன்முறைகளின்போது நனோ பருமன் கொண்ட பகுதியிலிருந்து ஆரம்பித்துச் செல்லும்போது உயர்தரம் கொண்ட உற்பத்தி ஒன்றை ஆக்க முடியும் என பேர்மன் விளக்கினார். இவ்வுற்பத்திச் செயன்முறையில் அணுக்கள் குறித்த ஒழுங்கில் ஒழுங்குபடுத்தப்படுகின்றன. தற்பொழுது பயன்படுத்தப்படுகின்ற பெரும்பாலான பொருள்கள் 'மேலிருந்து கீழ்நோக்கிச் செல்லுதல்' செயன்முறை மூலம் உற்பத்தி செய்யப்படுகின்றன. இங்கு மூலப் பொருள்களில் அணுக்கள் தேவைக்கு ஏற்ப ஒழுங்குபடுத்தப்படுவதில்லை. இதனால், இவ்வுற்பத்திப் பொருள்கள் ஒப்பமில்லாததாக இருக்கும். இதனால், வெடிப்புகள் ஏற்படக்கூடியனவாகவும் விரைவில் நிறமாற்றம் அடையக்கூடியனவாகவும் காணப்படுகின்றன. எனினும், நனோ தொழினுட்பவியல் மூலம் உற்பத்தி செய்யப்பட்ட பொருள்களில் இவ்வாறான குறைபாடுகள் தோன்றுவதில்லை. இங்கு கீழிருந்து மேல்நோக்கிச் செல்லும் முறை பின்பற்றப்படுவதால் உயர்தரம் கொண்ட பொருள்களை உற்பத்தி செய்ய முடியும்.

நனோ தொழினுட்பவியலில் நனோ பருமன் (பரிமாணம்) கொண்ட இயந்திரங்கள் தேவைப்படுகின்றன. எனினும், இவ்வியந்திரங்களை அமைப்பது இன்னும் பரிசோதனை மட்டத்திலேயே உள்ளது. இவ்வியந்திரங்கள் மூலம் தேவையான மூலப்பொருள்களும் மாதிரி வடிவமும் வழங்கப்பட்டதும் எமக்குத் தேவையான பொருள்களை உற்பத்தி செய்ய முடியுமாயிருக்கும். இச்செயன்முறையின்போது இரசாயனச் செயற்பாடுகள் மூலம் நனோ துணிக்கைகள் தொடர்புபடுத்தப்படும். இங்கு எல்லா அணுக்களும் சரியான இடங்களில் நிலைநிறுத்தப்பட்டு உயர்தரம் கொண்ட உற்பத்திகள் பெறப்படுகின்றன.

நனோ தொழினுட்பவியலில் பயன்படுத்தப்படும் பிரதான மூலகம் காபனாகும். காரீயம், வைரம் என்பன காபனின் பிறதிருப்பங்களாகும். புளரீன் செயற்கையாக உற்பத்தி செய்யப்பட்ட காபனின் மூன்றாவது பிறதிருப்பமாகும்.

காபன் பக்கி பந்து, காபன் நனோ குழாய், காபன் நனோ ஊதுகுழாய் என்பன புளரீன் மூலம் உற்பத்தியாக்கப்பட்ட சில பொருள்களாகும்.

காபன் பக்கி பந்து

சமச்சீரான கட்டமைப்பில் ஒழுங்கமைக்கப்பட்டுச் செய்யப்பட்ட 60 காபன் துணிக்கைகளைக் கொண்டதாகும். இது தோற்றத்தில் காற்பந்தின் அமைப்பை ஒத்தது (உரு 4.12.3 a).

காபன் நனோ குழாய்

அறுகோண வடிவங் கொண்ட காபனினாலான, சிலிண்டர் அமைப்பைக் கொண்டது. சிறந்த கடத்தியாகப் பயன்படும் (உரு 4.12.3 b).

(b)

காபன் நனோ ஊதுகுழாய்

அறுகோண வடிவம் கொண்ட காபனினாலான, கூம்பக வடிவத்தைக் கொண்டது (உரு 4.12.3 c).

> (c) **உљ 4.12.3**

உங்களுக்குத் தெரியுமா?

நனோ தொழினுட்பவியலுக்கு அவசியமான கனிப்பொருள் வளம் இலங்கையில் காணப்படுகிறது. காரீயம், அப்பற்றைற்று, இல்மனைற்று, சேர்க்கோன், மொனோசைட்டு, படிகம் என்பன இதற்கு உதாரணங்களாகும்.

நனோ பரிமாணமுள்ள உபகரணங்களின் துணைப் பாகங்களை உற்பத்தி செய்வதற்கு உலகெங்கும் உள்ள விஞ்ஞானிகள் பரிசோதனைகள் மூலம் ஆய்வுகளை மேற்கொண்டு வருகின்றனர். இதன் மூலம் நனோ இயந்திர மனிதர்களை (ரோபோக்கள்) உருவாக்குவதே முக்கிய நோக்கமாகும். இங்கு விஞ்ஞானிகள் பல்வேறு வேலைகளைப் புரியக்கூடிய ரோபோக்களைத் தவிர்த்து ஒரு குறிப்பிட்ட வேலையை அல்லது சில வேலைகளை மாத்திரம் செய்யக்கூடிய நுண்ணிய ரோபோக் கூட்டங்களை உருவாக்க எண்ணியுள்ளனர்.

இவ்வாறு நனோ ரோபோக்களை உருவாக்குவதற்கு நனோ அளவுள்ள பகுதிகள் பல ஒன்று சேர்க்கப்பட வேண்டும். இவை வெறுங் கண்ணுக்குத் தெரியாதவை யாகையால், நுண்ணிய பொருள்களை அவதானிக்கக் கூடிய இலத் திரன் நுணுக்குக்காட்டி போன்ற ஒளியியல், இலத்திரனியல் உபகரணங்கள் பயன் படுத் தப் படும் . இவ் வுபகரணங்கள் விஞ்ஞானிகளை நனோ உலகத்திற்குள் பிரவேசித்து, அதனைக் கையாள்வதற்குரிய ஆற்றலை வழங்குகின்றன.

உரு 4.12.4 குருதிக் கலங்களுக்கிடையில் உலாவும் நனோ ரோபோக் கூட்டம் ஓவியரால் காட்டப்பட்டுள்ள விதம்

4.12.2 நனோ தொழினட்பவியலின் பயன்பாடு

நனோ தொழினுட்பவியலின் மூலம் உற்பத்தி செய்யப்படுகின்ற பொருள்கள் வைத் தியத் துறை, பொறியியல் துறை, சக் தி வலு, நுகர் வுப் பொருள், தொலைத்தொடர்புத் தொழினுட்பவியல் போன்ற பல்வேறு துறைகளில் பெரிய புரட்சியை ஏற்படுத்தும் என எதிர்பார்க்கப்படுகின்றது. நனோ தொழினுட்பவியலின் உற்பத்திப் பொருள்கள் பல இன்னும் பரீட்சார்த்த நிலையிலேயே உள்ளன. எனினும், நனோ தொழினுட்பவியலின் மூலம் தயாரிக்கப்பட்ட சில பொருள்கள் தற்போது பல துறைகளில் பயன்பாட்டில் உள்ளன.

மருத்துவத் துறை

நனோ தொழினுட்பவியலின் மூலம், காயங்களை மறைக்கும் பந்தனம் (bandage), சத்திரசிகிச்சை உபகரணங்களில் பூசப்படுகின்ற நுண்ணங்கித் தொற்று ஏற்படுவதைத் தடுக்கும் நனோ நுண்ணுயிர்கொல்லிப் பூச்சு, வடிகட்டுதல் போன்ற செயற்பாடுகளில் பயன்படுத்தப்படும் நனோ வடிகட்டி போன்றவை உற்பத்தியாக்கப்பட்டு, தற்பொழுது பயன்படுத்தப்படுகின்றன. அவற்றில் காணப்படும் நுண்ணிய துணிக்கைகளினூடாக நுண்ணங்கிகள் செல்ல முடியாது.

நனோ தொழினுட்பவியலினூடாக நோயாளிகளின் குருதியில் காணப்படும் குளுக்கோசின் அளவு, கொலஸ்ரரோல் அளவு என்பவற்றை இலகுவாகக் கணித்துக் கொள்ள முடியும். புற்றுநோய்க் கலங்களை அழிப்பதற்கும் நீரிழிவு நோயாளர்களுக்குச் சிகிச்சை அளிக்கவும் செயற்கையான என்புகளைத் தயாரிக்கவும் இத்தொழினுட்பவியலைப் பயன்படுத்த முயற்சிகள் மேற்கொள்ளப்படுகின்றன.

சக்தி வலு உற்பத்தி

தற்பொழுது சக்தியைப் பெறப் பயன்படுத்தப்படும் உயிர்ச் சுவட்டு எரிபொருள்கள் கூடிய விரைவில் தீர்ந்து விடும். இதனால், எதிர்காலத்தில் பாரிய சக்தி நெருக்கடி ஏற்படும். ஆகவே, மாற்றுச் சக்தி வளங்களின் மீது அதிக கவனம் செலுத்தப்படுகின்றது. சூரிய சக்தி, ஐதரசன் எரிபொருள் கலம் போன்றவை மாற்றுச் சக்தி மூலங்களுக்குச் சில உதாரணங்களாகும். சூரியக் கலம், சூரிய சக்தியை மின்சக்தியாக மாற்றுகின்றது. இதன் வினைத்திறன் மிகக் குறைவானதாகும். எனினும், அதன் விலை அதிகமானதாகும். இந்நிலைமையை மாற்றியமைக்கும் பொருட்டு நனோ தொழினுட்பவியலின் மூலம், வினைத்திறன்மிக்க, விலை குறைவான சூரியக் கலங்களைத் தயாரிக்கும் முயற்சிகள் மேற்கொள்ளப்பட்டு வருகின்றன.

ஐதரசன் எரிபொருள் கலம் ஒரு மாற்றுச் சக்தி முதலாகும். மோட்டர் வாகனங்களில் இதனைப் பயன்படுத்துவதற்கான பரிசோதனைகள் நடத்தப்பட்டு வருகின்றன. இக்கலங்களின் பயன்பாட்டில் இவற்றைக் களஞ்சியப்படுத்துவதும் கொண்டு செல்வதும் பிரச்சினைகளாக உள்ளன. ஆகவே, இப் பிரச்சினையைத் தீர்ப்பதற்கு நனோ தொழினுட்பவியலுடன் தொடர்புபட்ட புளரீனைப் பயன்படுத்துவது சிறந்தது எனக் கண்டறியப்பட்டுள்ளது. மேலும், மீயொடுக்கிகள் (super condensors), மீகடத்திகள் (super conductors) என்பவற்றைத் தயாரிக்கவும் நனோ தொழினுட்பவியல் பயன்படுகிறது.

நுகர்வுப் பொருள்களைத் தயாரித்தல்

சாதாரண துணிவகைகளில் காணப்படும் சிறிய துளைகளில் தூசித் துணிக்கைகள், எண்ணெய் என்பன படிவதனால் அவற்றைத் தூய்மையாக்கும் தேவை ஏற்படுகிறது. நனோ தொழினுட்பவியலின் மூலம் தூசுத் துணிக்கைகள், எண்ணெய் என்பவை படியாதவாறு துணிவகைகளும் ஆடைகளும் உற்பத்தி செய்யப்படுகின்றன (ஏனெனில், நனோ உற்பத்திகளில் துளைகள் மிகவும் சிறியவை). இதனால், இவற்றில் தூசுத் துணிக்கைகள் தங்குவதில்லை. மேலும், நிறம் மாறக்கூடிய உடை, குளிர், சூடு என்பவற்றைத் தாங்கக்கூடிய உடை, உயர்தரம் கொண்ட காலுறை (socks) என்பவற்றின் தயாரிப்புக்கும் இத்தொழினுட்பவியல் பயன்படுகிறது.

உரு 4.12.5 நனோ தொழினுட்பவியலின் மூலம் தயாரிக்கப்பட்ட டெனிஸ் மட்டை

நனோ தொழினுட்பவியலின் மூலம் தயாரிக்கப்பட்ட டெனிஸ் மட்டை (tennis racket), கொல்ப் மட்டை (golf club), பட்மின்ரன் மட்டை (badminton racket) என் பவை உறு தியானதாகவும் வளையாததாகவும் துல்லியமானதாகவும் காணப்படுவதால் இது விளையாட்டில் ஈடுபடுபவர்களுக்கு மிகவும் பயனுள்ளதாக அமைகிறது.

ஒப்பனை அலங்காரத் தொழிலிலும் நனோ தொழினுட்பவியலின் பங்களிப்பு மகத்தானதாக அமைந்துள்ளது. உடலுக்குப் பங்கம் விளைவிக்கும் சூரியக் கதிர்களிலிருந்து பாதுகாப்பைப் பெறப் பயன்படும் கீறீம் வகைகள், தோலில் ஈரலிப்பைப் பேணுவதற்குப் பயன்படுத்தப்படும் கீறிம் வகைகள் என்பவற்றில் நனோ துணிக்கைகளின் மூலம் அவற்றின் தரம் உயர்த்தப்பட்டுள்ளது.

நனோ தொழினுட்பவியலைப் பயன்படுத்தித் தயாரிக்கப்பட்ட நிறப் பூச்சுகள் (தீந்தை) சுவரின் மீது தூசுத்துணிக்கைகள் படியாது தடுப்பதால் நீண்டகாலம் நிறம் மங்காது காணப்படும். இப்பூச்சுகள் சுவரில் வெடிப்புகள் ஏற்படாது தடுக்கும்.

கண்ணாடியின் மீது பூசப்பட்ட நனோ நிறப் பூச்சு கண்ணாடியில் தூசுத் துணிக்கைகளைப் படியவிடாது. எனவே, இது 'தூய்மைப்படுத்தும் யன்னல்' என அழைக்கப்படும்.

ஓப்படை

நனோ தொழினுட்பவியல் பற்றி இணையத்தளம், பத்திரிகை, சஞ்சிகைகள் மூலம் தகவல்களைச் சேகரித்து கையேடு ஒன்றைத் தயாரியுங்கள்.

4.12.3 நனோ தொழினட்பவியலினால் ஏற்படும் பாதிப்புகள்

அநேக தொழினுட்ப முறைகளில் நன்மையான விளைவுகளைப் போல் தீமையான விளைவுகளும் தோன்றுகின்றன. நனோ தொழினுட்பவியலும் அம்மாதிரியானதே. எனினும், நன்மையான விடயங்கள் அதிகமானதாகக் காணப்படுவதால் பாதகமான விளைவுகளை முடியுமான அளவு குறைத்துக்கொண்டு இதனைப் பயன்படுத்தலாம்.

நனோ துணிக்கைகள் மண், நீர், வளி என்பவற்றுடன் சேரலாம். இதனால், இவை மனிதன் உட்பட ஏனைய அங்கிகளின் உடலினுள்ளும் செல்லலாம். இவ்வாறு அங்கிகளில் சுகாதாரப் பிரச்சினைகள் ஏற்பட வாய்ப்பு உள்ளமை பரிசோதனை மூலம் நிரூபிக்கப்பட்டுள்ளது.

நனோ தொழினுட்பவியல் மூலம் நச்சுத்தன்மையான இரசாயனப் பொருள்களை உற்பத்திசெய்து போர்களில் ஆயுதங்களாகப் பயன்படுத்தலாம்.

நனோ தொழினுட்பவியல் இன்னும் பரிசோதனைரீதியாகவே உள்ளது. இதன் பயன்பாடு விரிவாக்கப்படும்போது மேலும் பிரச்சினைகள் உதயமாகலாம். எதிர்காலத்தில் மனிதர்கள் எதிர்நோக்கும் பிரச்சினைகளுக்குத் தீர்வுகாண இத்தொழினுட்பவியல் பேருதவியாக அமையும். இவற்றினால் தோன்றும் பிரச்சினைகளை கட்டுப்படுத்துவதற்குப் ''பொறுப்புள்ள நனோ தொழினுட்பவியல் மத்திய நிலையம்" என்ற நிறுவனம் அமைக்கப்பட்டுள்ளது.

ஒப்படை 2

நனோ தொழினுட்பவியல் தொடர்பாக விளக்குவதற்கு பொருத்தமான நாடகமொன்றைத் திட்டமிட்டு பாடசாலை விஞ்ஞானக் கழகத்தில் அல்லது காலைக் கூட்டத்தில் அரங்கேற்றுங்கள்.

பயிற்சி

- 1. வெடி கொளுத்திய சந்தர்ப்பம் ஒன்றை நினைவுக்குக் கொண்டு வருக.
 - (i) வெடி கொளுத்தும்போது பௌதிக மாற்றமா அல்லது இரசாயன மாற்றமா ஏற்பட்டது?
 - (ii) மேலே (i) இல் வழங்கிய விடையை உறுதிப்படுத்தும் வகையில் வெடி கொளுத்தும்போது கிடைக்கும் அவதானிப்புகளைப் பட்டியற்படுத்துக.
- அணுக்கொள்கை மூலம் முன்வைக்கப்பட்ட கருத்துகளுக்குச் சார்பான கூற்றுகளுக்கு எதிரே (√) அடையாளமும் சார்பற்ற கூற்றுகளுக்கு எதிரே (✗) அடையாளமும் இடுக.
 - (i) மக்னீசிய அணுக்கள் யாவும் ஒத்தவை.
 - (ii) நீர் மூலக்கூறு உருவாகும்போது ஐதரசன், ஒட்சிசன் ஆகிய அணுக்களுக் கிடையிலான விகிதம் எப்போதும் 2:1 ஆகும்.
 - (iii) ஒட்சிசன் அணுவானது இலத்திரன், புரோத்தன், நியூத்திரன் என்னும் உபதுணிக்கைகளைக் கொண்டது.
 - (iv) காபன் அணுவானது ஒருபோதும் கந்தக அணுவை ஒத்திராது.
 - (v) எல்லா ஐதரசன் அணுக்களிலும் இலத்திரன், புரோத்தன் என்பன ஒவ்வொன்று வீதம் காணப்படுகின்றன. எனினும், நியூத்திரன்களின் எண்ணிக்கை ஒன்று அல்லது இரண்டு என்றவாறு காணப்படும்.
 - (iv) வளியில் மக்னீசியம் தகனமடையும்போது மக்னீசியம் அணு அழிவடைவதில்லை.
- 3. (அ)கலப்புலோகம் என்றால் என்ன?
 - (ஆ)கீழே தரப்பட்டுள்ள பொருள்களைத் தயாரிப்பதற்கு மிகப் பொருத்தமான கலப்புலோகத்தைப் பெயரிடுக.
 - (i) மின்னுபகரணங்களில் காணப்படும் கடத்தி
 - (ii) வெப்பச் சுருள்
 - (iii) மிக இலேசானதும் உறுதியானதுமான வாகனச் சட்டகம்
 - (iv) வெள்ளியைப் போன்று பளபளப்பானதும் துருப்பிடிக்காததுமான கரண்டி
 - (இ) உங்களுக்கு X,Y என்னும் உலோகத் துண்டுகள் (கோல்) தரப்பட்டுள்ளன. அவற்றுள் ஒன்று இரும்பினாலும் மற்றையது உருக்கினாலும் செய்யப்பட்டுள்ளது. அவை இரண்டையும் வேறுபடுத்தி இனங்காணப் பொருத்தமான செயற்பாடு ஒன்றைச் சுருக்கமாக விளக்குக.

- 4. (அ) வர்த்தக சந்தையிலிருந்து கீழே தரப்பட்டுள்ள ஒவ்வொரு பொருளையும் விலை கொடுத்து வாங்கும்போது கவனத்திற்கொள்ள வேண்டிய இரு நியதிகள் வீதம் எழுதுக.
 - (i) யோகட்
- (ii) பால்மா
- (iii) சவர்க்காரம்
- (iv) பழப்பானம்
- (ஆ) அந்த நியதிகளில் இரண்டைத் தெரிவு செய்து அவற்றில் உள்ள குறைபாடுகள் தொடர்பான காரணங்களை எழுதுக.
- 5. கூட்டுத் திரவியங்கள் பற்றி நீங்கள் கற்றுக் கொண்ட அறிவைப் பயன்படுத்தி பின்வரும் சட்டகத்தை நிரப்புக.

- 6. (அ) கீழே தரப்பட்டுள்ள பதங்களை விளக்குக.
 - (i) ஒருபகுதியம் (ii) பல்பகுதியம்
 - (ஆ)பல்பகுதியங்கள் சிலவற்றின் இயல்புகளையும் பயன்பாடுகளையும் உள்ளடக்கிய அட்டவணையை உங்கள் பயிற்சிப் புத்தகத்தில் பிரதி செய்து வெற்றிடங்களை நிரப்புக.

இயல்புகளும் பயன்பாடுகளும்	பல்பகுதியம்
1. நீரை, வளியை உறிஞ்சாது, பிளாத்திக்குப்	
போத்தல் தயாரிப்பதற்கு அவசியமானது	
2.	பொலிவைனைல் குளோரைட்டு
3. வெப்ப எதிர்ப்பு (வெப்பத்தைத் தாங்கும்)	
உடைகள் தயாரிப்பில் பயன்படுத்தப்படும்	
4. வெப்ப மின்காவலி, இலேசானது, பொதி	
செய்வதற்குப் பயன்படுத்தப்படும்	
5.	நைலோன் நார்

- 7. (அ) கலவை என்பதிலிருந்து நீங்கள் விளங்கிக்கொள்வது யாது?
 - (ஆ) 'கரைசல்' என்னும் தொடை, 'கலவை' என்னும் தொடையின் ஓர் உபதொடையாகும்.
 - (i) மேற்கூறிய கூற்றை விளக்குக.
 - (ii) கரைசல் அல்லாத கலவை எப்பெயர் கொண்டு அழைக்கப்படும்

- (இ) கீழே தரப்பட்டுள்ள ஒவ்வொரு கரைசலினதும் கரையம், கரைப்பான் எவை எனக் கூறுக.
 - (i) சீனிக் கரைசல்
 - (ii) 80 % மதுசாரக் கரைசல்
 - (iii) கொண்டிஸ் கரைசல்
 - (iv) அயடீன் கரைசல்
- (ஈ) ஆய்கூடத்தில் காணப்பட்ட சோடியங் குளோரைட்டு உப்புடன் கிறீஸ் கலந்திருந்தது. பல்வேறு கரைப்பான்கள் பற்றிய உங்களது அறிவைப் பயன்படுத்தி சோடியங் குளோரைட்டு உப்பை, கிறீஸை அகற்றுவதன் மூலம் தூய்மைப்படுத்தக்கூடிய செயற்பாடு ஒன்றைச் சுருக்கமாக விளக்குக.
- 8. (i) உலர் மின்கலத்தின் மின்னழுத்த வேறுபாடு யாது?
 - (ii) உலர் மின்கலத்தில் காணப்படும் இரசாயனப் பதார்த்தங்கள் மூன்றைப் பெயரிடுக.
 - (iii) உலர் மின்கலத்தின் நேர் முடிவிடமான காபன் கோலின் உச்சியில் பித்தளைக் கவசம் இடப்பட்டிருப்பதற்கான காரணம் யாது?
 - (iv) வாகனத்தில் பொருத்தப்பட்டுள்ள பற்றரியை அடிக்கடி மின்னேற்ற வேண்டியதில்லை. எனினும், அவ்வாறான பற்றரியை வீட்டில் பயன்படுத்தும்போது அடிக்கடி மின்னேற்ற வேண்டும். இதற்கான காரணம் யாது?
 - (v) மோட்டர் வாகனம் ஒன்றைச் செயற்படவைக்க அதிக நேரம் எடுத்ததாயின் அம்மோட்டர் வாகனத்தில் உள்ள பற்றரியின் தரம் பற்றி எவ்வாறான முடிவுக்கு வரலாம்?