SUBROUTINE QUEST(NOBS, VREF, WOBS, DEV, QUIBBL, FIBBL, QUACC, NEWT, 1 IMETH, QOPT, COVAR, SIGTOT, RESIDU, TASTE, ICON, IOPT)

C	1	⊥ 1•1	LIN, QUE	1, COVAR, SIGIOI, RESIDO, IASIE, ICON, IOFI)	
C	-VERSION DATE	- JANUA	RY 19,	1987	
C C C C C	R(V) U) Q1	OTATION ECTORS NIT VEC	CARRYI INTO A TORS AN ON. THE	THE QUATERNION OF THE OPTIMAL NG A SET OF REFERENCE UNIT SET OF CORRESPONDING OBSERVATION D THE COVARIANCE MATRIX OF THE ROTATION MINIMIZES A QUADRATIC	0000000
0 0 0 0	Al	M. D. FAST 78-12	SHUSTE OPTIMAL 49, AIA	IS ALGORITHM IS GIVEN IN R, APPROXIMATE ALGORITHMS FOR ATTITUDE COMPUTATION, PAPER NO. A GUIDANCE AND CONTROL CONFER- LTO, CALIF., AUGUST 1978	000000
C	-ARGUMENT LIS	r			С
C C	NAME	TYPE		DESCRIPTION	C C
C C	NOBS	I*4	I	NUMBER OF OBSERVATIONS	CCC
C	VREF(3, NOBS)	R*4	I	REFERENCE UNIT VECTORS	C
C	WOBS (3, NOBS)	R*4	I	OBSERVATION UNIT VECTORS	C
C C C C	DEV (NOBS)	R*4	I	STANDARD DEVIATIONS PER AXIS OF UNIT VECTOR MEASUREMENTS (IN RAD) QUEST WILL SET AN ERROR CODE (ICON=3) IF ANY OF THE STANDARD DEVIATIONS IN THE COMPUTATION ARE SET EQUAL TO ZERO	C C C
0 0	QUIBBL	R*4	I	CRITICAL VALUE FOR TESTING QUALITY OF QUATERNION COMPUTATION	CCC
C C	FIBBL	R*4	I	CRITICAL VALUE FOR TESTING CONDITION OF OBSERVABILITY MATRIX	CCC
0 0	QUACC	R*4	I	DESIRED ACCURACY IN COMPUTING OVERLAP EIGENVALUE (ALAM)	CCC
0 0	NEWT	I*4	I	NUMBER OF NEWTON-RAPHSON ITERATIONS IN QUATERNION COMPUTATION	CCC
C C C C	IMETH	I*4	I	ALGORITHM SELECTION FLAG (IF IMETH = 0, THE METHOD OF SEQUENTIAL ROTATIONS IS NOT IMPLEMENTED	
0 0	QOPT(4)	R*4	0	OPTIMAL QUATERNION (DEFAULT VALUE = (999.,999.,999.,999.)	CCC
C C	COVAR (3,3)	R*4	0	COVARIANCE MATRIX (UNITLESS) (DEFAULT VALUE = 999. IN EVERY ELEMENT)	C C
C C C	SIGTOT	R*4	0	TOTAL STANDARD DEVIATION OF OBSERVATION MEASUREMENTS	CCC

С	RESIDU	R*4 O	OVE	RIAP D	EFECT	r (=1.0 -	- OVERLAP)	С	
С							·	С	
C C	TASTE	R*4 O					(IF VALUES OF TASTE WILL	C C	
C							DISTRIBUTION	C	
С			WIT	H 2*NV	EC DE	EGREES OF	F FREEDOM)	С	
С								С	
C C	ICON	I*4 O		DITION			OR POOR CONDI-	C C	
C			10	ON-0 -		ERRORS C ONS DETE		C	
C			IC	ON=1 -			COUNT CHECK	C	
С					•	EWER THAN		С	
C C			TC	ON - 2		SERVATION	IS) EIGHT CHECK	C C	
C			10	ON-2 -			IIGHI CHECK VEIGHT DETECTED)		
C			IC	ON=3 -	•		GIGHT CHECK	С	
C					•		ONE STANDARD	C	
C C			T.C.	ON-4 -		/IATION I RM CHECK	IS ZERO)	C C	
C			10	ON-4 -			NE REFERENCE	C	
С							CION VECTOR	С	
С				_		S ZERO NO	•	С	
C C			IC	ON=5 -			TY CHECK LITY MATRIX ILL-	C	
C					•	NDITIONEL		C	
С			IC	ON=6 -	- FIF	RST QUATE	ERNION FAILURE	С	
С							TERNION INACCU-	С	
C C			TC	ON=7 -		MI DNA 31 CAUO DNOS	TETH=U) TERNION FAILURE	C C	
C			10	011 /			FOUR QUATERNION		
С					CON	MPUTATION	NS FAILED)	С	
C	IOPT	I*4 O	O.D.III	TMT777	TON I	7.T. 7. C		C C	
C C	1011	1^4 0	~	'IMIZAT PT=0 -			COMPUTATION	C	
C					~		ON FIRST COM-	С	
С					PUT	TATION		С	
C C			ΤΛ	·DΨ=1 -	_ 72 (SIICCESSEI	JL QUATERNION	C C	
C			10	11-1			WAS OBTAINED	C	
С							F SEQUENTIAL	С	
C C			Τ.Ο	רשת ב		FATIONS	ITONI COMDIIMAMION	C	
C			10	P1-2 -			NION COMPUTATION ST QUATERNION IS		
C						TPUT.	~ -	С	
С								С	
C	EXTERNAL	REFERENCES	QUACOV -			QUATERNIC E MATRIX)N	C C	
C				COVAR	IANCI	2 MAINIX		C	
С			QUOMP -				ZED QUATERNION,		
C				OVERL PARAM		COMPUTATI	ON QUALITY	С	
C C				PARAM	LILK			C C	
C			VEX -	COMPU	TES A	A NORMALI	ZED VECTOR	С	
С		/				~ 4/45/4	0.770	С	
C	DESIGNER,	/PROGRAMMER	M. D. SHU	STER	C.S.(C. 1/17/1	.979	C C	
	MODIFICAT	TIONS F. L.	MARKLEY	GSFC C	ODE 5	552.2 1/1	9/87	C	
С		REMOV	E LIMITAT	ION ON	NOBS	S.LT.10.	ALSO TEST FOR	С	
С							D POSSIBLE	С	
C C		KEAL	ONDERLTOM	FOLLO	wed F	סו או	ON BY ZERO.	C C	
	Comment-	- M. D. SHUST	ER 4/03/	2005				C	
С						•	DED THE VALUES	С	
C	OF DEV(NVEC) ARE CORRECT, TASTE WILL POSSESS A C								
C C	CHI-SQUARE DISTRIBUTION WITH (2*NVEC-3) DEGREES OF C FREEDOM.								
C								C	
С	C FURTHER INFORMATION ON THE QUEST ALGORITHM IS C								

```
С
                AVAILABLE IN M. D. SHUSTER AND S. D. OH, THREE-AXIS
                                                                          C
С
                ATTITUDE DETERMINATION FROM VECTOR OBSERVATIONS,
С
                JOURNAL OF GUIDANCE AND CONTROL, VOL. 4, NO. 1,
С
                JAN-FEB 1981, PP. 70-77.
С
C-
                                                                         --C
С
С
      REAL*8 V(3), W(3), SIG, SIG2, WT, QUALM, QNORM, DLAM, VNORM, WNORM,
             SIGTM2, SIGT2, SIGT, FIDDL, QUETCH, F(3,3), B(3,3), P(3,3), QUIP,
             Q(4), ALAM, QUAL, QQ(4,4), SALAM(4), SQUAL(4)
С
      DIMENSION VREF(3,*), WOBS(3,*), DEV(*), QOPT(4), COVAR(3,3)
С
С
      PERFORM OBSERVATION COUNT CHECK
С
      IF (NOBS.LT.2) THEN
         ICON = 1
         GO TO 999
      ENDIF
С
С
      SET DEFAULT VALUES FOR QUATERNION, COVARIANCE, CONDITION CODE,
С
      AND OPTIMIZATION FLAG
С
      DO 20 I=1,3
      DO 10 J=1,3
      COVAR(I,J) = 999.
   10 CONTINUE
      QOPT(I) = 999.
   20 CONTINUE
      QOPT(4) = 999.
С
      ICON = 0
С
      IOPT = 0
С
      CONVERT STANDARD DEVIATIONS TO REAL*8 AND PERFORM WEIGHT CHECKS.
С
С
      IF OK, COMPUTE TOTAL STANDARD DEVIATION. OTHERWISE,
C
      SET CONDITION CODE AND RETURN.
С
      SIGTM2 = 0.D0
С
      DO 80 I=1, NOBS
      IF(DEV(I).LT.O.) THEN
         ICON = 2
         GO TO 999
      ENDIF
      SIG = DEV(I)
      SIG2 = SIG**2
      IF(SIG2.EQ.0.D0) THEN
         ICON = 3
         GO TO 999
      ENDIF
      SIGTM2 = SIGTM2 + 1.D0/SIG2
   80 CONTINUE
С
      SIGT2 = 1.D0/SIGTM2
      SIGT = DSQRT(SIGT2)
      SIGTOT = SIGT
      FIDDL = FIBBL
      QUETCH = QUACC
      QUIP = QUIBBL
С
С
      CONVERT VECTORS TO REAL*8 AND PERFORM NORM CHECKS.
С
      IF OK COMPUTE WEIGHTS, OBSERVABILITY MATRIX, AND ATTITUDE
С
      PROFILE MATRIX. OTHERWISE, SET CONDITION CODE AND RETURN.
С
      DO 100 I=1,3
```

C

С

С

С

```
DO 90 J=1,3
      F(I,J) = 0.D0
      B(I,J) = 0.D0
   90 CONTINUE
      F(I,I) = 1.D0
  100 CONTINUE
С
      DO 130 I=1, NOBS
      CALL VEX(VREF(1,I), VREF(2,I), VREF(3,I), V(1), V(2), V(3), VNORM)
      IF(VNORM.LE.O.DO) THEN
         ICON = 4
         GO TO 999
      ENDIF
      CALL VEX(WOBS(1,I), WOBS(2,I), WOBS(3,I), W(1), W(2), W(3), WNORM)
      IF (WNORM.LE.O.DO) THEN
         ICON = 4
         GO TO 999
      ENDIF
      SIG=DEV(I)
      WT = SIGT2/(SIG**2)
C
      DO 120 J=1,3
      DO 110 K=1,3
      F(J,K) = F(J,K) - WT*W(J)*W(K)
      B(J,K) = B(J,K) + WT*W(J)*V(K)
  110 CONTINUE
  120 CONTINUE
  130 CONTINUE
С
C
С
      COMPUTE COVARIANCE MATRIX AND TEST PARAMETER
С
      CALL QUACOV (F, FIDDL, SIGT2, IDET, P)
C
С
      TEST CONDITION OF OBSERVABILITY MATRIX. IF OK, CONTINUE,
С
С
      OTHERWISE SET CONDITION CODE AND RETURN.
С
      IF(IDET.EQ.0)GO TO 140
      TCON = 5
      GO TO 999
С
С
С
      COMPUTE UNNORMALIZED OPTIMAL QUATERNION AND TEST PARAMETER
С
  140 CALL QUOMP (B, NEWT, QUETCH, Q, ALAM, QUAL)
С
С
С
      TEST QUATERNION COMPUTATION ACCURACY. IF OK, USE THIS FOR
С
      COMPUTING THE NORMALIZED QUATERNION. OTHERWISE, KEEP TRYING
С
      IF(QUAL.GT.QUIP)GO TO 900
С
С
С
      TEST WHETHER PROGRAM IS SPECIFIED TO USE METHOD OF SEQUENTIAL
С
      ROTATIONS TO TRY TO FIND A BETTER RESULT. IF SO, IMPLEMENT
С
      THIS METHOD. OTHERWISE, USE THE LAST COMPUTED QUATERNION.
С
      IF (IMETH.NE.0) GO TO 150
      ICON = 6
      GO TO 900
С
С
С
      IMPLEMENT METHOD OF SEQUENTIAL ROTATIONS. BY ROTATING REFERENCE
С
      VECTORS AND PERFORMING THE CORRESPONDING INVERSE TRANSFORMATION
      ON THE RESULTING QUATERNION, WE ATTEMPT TO OBTAIN A MORE ACCURATE
С
С
      RESULT
С
```

```
С
      FOR LATER REFERENCE.
  150 QQ(1,1) = Q(1)
      QQ(2,1) = Q(2)
      QQ(3,1) = Q(3)
      QQ(4,1) = Q(4)
C
      SALAM(1) = ALAM
      SQUAL(1) = QUAL
С
С
С
      SET OPTIMIZATION FLAG TO SHOW THAT METHOD OF SEQUENTIAL ROTATIONS
С
      IS BEING IMPLEMENTED.
С
      IOPT = 1
C
C
      FIRST ROTATION. UNNORMALIZED QUATERNION IS COMPUTED FOR A ROTA-
С
      TION OF THE REFERENCE VECTORS THROUGH 180. DEGREES ABOUT THE
С
      X-AXIS. THE FOLLOWING STEPS ARE PERFORMED:
C
С
      A NEW MEASUREMENT PROFILE MATRIX IS COMPUTED
С
      DO 160 I=1,3
      B(I,2) = -B(I,2)
      B(I,3) = -B(I,3)
  160 CONTINUE
С
С
      THE UNNORMALIZED QUATERNION IS RECOMPUTED FOR THIS NEW VECTOR SET
С
      CALL QUOMP (B, NEWT, QUETCH, Q, ALAM, QUAL)
С
С
      THE INVERSE TRANSFORMATION IS APPLIED TO THE QUATERNION, WHICH IS
С
      LOADED IN THE SECOND COLUMN OF THE ARRAY QQ. LIKEWISE FOR THE
С
      OTHER PARAMETERS.
С
      QQ(1,2) = Q(4)
      QQ(2,2) = -Q(3)

QQ(3,2) = Q(2)
      QQ(4,2) = -Q(1)
С
      SALAM(2) = ALAM
      SQUAL(2) = QUAL
C
      NOW WE TEST THIS QUATERNION FOR ACCURACY. IF IT IS OK, WE WILL
С
С
      SET A FLAG TO DENOTE THAT THE SECOND COLUMN OF QQ WILL BE USED
      TO COMPUTE THE NORMALIZED OPTIMAL QUATERNION AND PROCEED TO
С
      THAT PART OF THE COMPUTATION. OTHERWISE, WE TRY THE NEXT
С
      ROTATION.
С
      IF(QUAL.LT.QUIP)GO TO 170
С
      IQ = 2
      GO TO 800
С
С
      WE NOW TRY A ROTATION OF THE REFERENCE VECTORS THROUGH 180. DEG
С
      ABOUT THE Y-AXIS AND REPEAT THE SAME STEPS. NOTE THAT IN COMPUT-
      ING THE NEW MEASUREMENT PROFILE MATRIX WE MUST TAKE ACCOUNT OF
С
      PREVIOUS ROTATIONS.
C
  170 DO 180 I=1,3
      B(I,1) = -B(I,1)
      B(I,2) = -B(I,2)
  180 CONTINUE
С
      CALL QUOMP (B, NEWT, QUETCH, Q, ALAM, QUAL)
С
```

LOAD FIRST QUATERNION, QUALITY PARAMETER, AND OVERLAP EIGENVALUE

С

```
QQ(1,3) = Q(3)
      QQ(2,3) = Q(4)
      QQ(3,3) = -Q(1)
      QQ(4,3) = -Q(2)
С
      SALAM(3) = ALAM
      SQUAL(3) = QUAL
С
      IF(QUAL.LT.QUIP)GO TO 190
С
      IQ = 3
      GO TO 800
С
С
С
      NOW WE TRY A ROTATION OF THE REFERENCE VECTORS ABOUT THE Z-AXIS
С
  190 DO 200 I=1,3
      B(I,2) = -B(I,2)
      B(I,3) = -B(I,3)
  200 CONTINUE
С
      CALL QUOMP (B, NEWT, QUETCH, Q, ALAM, QUAL)
С
      QQ(1,4) = -Q(2)
      QQ(2,4) = Q(1)
      QQ(3,4) = Q(4)
      QQ(4,4) = -Q(3)
С
      SALAM(4) = ALAM
      SQUAL(4) = QUAL
С
      IF(QUAL.LT.QUIP)GO TO 210
С
      IQ = 4
      GO TO 800
С
С
      STATEMENT 210 IS REACHED IF THE METHOD OF SEQUENTIAL ROTATIONS
      FAILED TO FIND AN ACCEPTABLE QUATERNION. IF THIS IS A FREQUENT
С
      OCCURENCE, IT PROBABLY INDICATES THAT QUACC, NEWT, AND QUIBBL
С
С
      HAVE NOT BEEN CHOSEN PROPERLY. QUEST NOW SEARCHES FOR THE BEST
С
      QUATERNION AND SETS THE OPIMIZATION FLAG TO 2.
C
  210 IOPT = 2
      ICON = 7
      IQ = 1
      QUALM = 0.D0
С
      DO 220 I=1, 4
      IF(SQUAL(I).GT.QUALM) IQ = I
      IF(IQ.EQ.I) QUALM = SQUAL(I)
  220 CONTINUE
С
С
С
      CHOOSE BEST QUATERNION AND OVERLAP EIGENVALUE
С
  800 DO 230 I=1,4
      Q(I) = QQ(I,IQ)
  230 CONTINUE
С
      ALAM = SALAM(IQ)
С
  900 \text{ DLAM} = 1.D0 - \text{ALAM}
С
      QNORM = DSQRT(Q(1)**2 + Q(2)**2 + Q(3)**2 + Q(4)**2)
С
С
      RENORMALIZE QUATERNION. CONVERT OUTPUT ARRAYS TO REAL*4
С
```

```
DO 920 I=1,3
     DO 910 J=1,3
     COVAR(I,J) = P(I,J)
  910 CONTINUE
     QOPT(I) = Q(I)/QNORM
  920 CONTINUE
     QOPT(4) = Q(4)/QNORM
С
С
    COMPUTE QUALITY PARAMETERS
С
     RESIDU = DLAM
С
     TASTE = 2.D0*DLAM/SIGT2
С
С
 999 RETURN
     END
```

С

SUBROUTINE QUOMP (B, SIGTM2, NEWT, QUETCH, Q, ALAM, QUAL)

C	VERSION DATE	- JUNE	26, 199	0	-С С		
		-		AN UNNORMALIZED QUATERNION FOR THE	С		
С				N FROM THE NON-NORMALIZED ATTITUDE	С		
C	P	ROFILE	MATRIX		С		
С	7)	NIA T 37 O T C	, DOD MII	TO ALCODITION TO CITIZEN IN	С		
C C	A			IS ALGORITHM IS GIVEN IN R, APPROXIMATE ALGORITHMS FOR	C C		
C				ATTITUDE COMPUTATION, PAPER NO.	C		
C				A GUIDANCE AND CONTROL CONFER-	C		
C			•	LTO, CALIF., AUGUST 1978	C		
C		- ,		.,	С		
C	ARGUMENT LIS	ST			С		
С					С		
С	NAME	TYPE	I/O	DESCRIPTION	С		
С					С		
С					С		
C	B(3,3)	R*8	I	NON-NORMALIZED ATTITUDE PROFILE	С		
C				MATRIX	С		
С	0.7.0.7.4.0	D + 0	-		С		
C C	SIGTM2	R*8	I	SUMMATION OF INVERSE SQUARE OF THE STANDARD DEVIATIONS PER AXIS OF UNIT	C C		
C				VECTOR MEASUREMENTS	C		
C				VECTOR MEASUREMENTS	C		
C	NEWT	I * 4	I	NUMBER OF NEWTON-RAPHSON ITERATIONS	C		
C			_		C		
С	QUETCH	R*8	I	DESIRED ACCURACY IN DETERMINING	С		
С				OVERLAP EIGENVALUE (ALAM)	С		
С					С		
С	Q(4)	R*8	0	OUTPUT QUATERNION (UNNORMALIZED)	С		
С					С		
С	ALAM	R*8	0	OVERLAP EIGENVALUE (IF NEWT=0,	С		
C				THEN ALAM=1.D0)	С		
C	0113.1	D + 0	0		С		
C	QUAL	R*8	0	QUAL = DABS(Q(4)) IS A MEASURE OF	С		
C C				THE ACCURACY IN COMPUTING Q. QUAL IS LARGER THE MORE ACCURATE IS O.	C C		
C				15 DANGER THE MORE ACCURATE 15 Q.	C		
CEXTERNAL REFERENCESNONE							
C C							
CCALLED FROMBQUEST							

```
C----DESIGNER/PROGRAMMER--M. D. SHUSTER C.S.C. 1/17/1979
                                                                         С
C----MODIFICATIONS-- D. G. KUBITSCHEK JHU-APL 06/25/90
С
                      DECLARE ALL VARIABLES REAL*8. ALLOW FOR INPUT
                                                                         С
С
                                                                         С
                      OF NON-NORMALIZED ATTITUDE PROFILE MATRIX.
С
                                                                         С
      C--
С
С
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION B(3,3),Q(4),S(3,3),Z(3),SZ(3),SSZ(3)
С
C
      DO 6 I=1,3
      DO 5 J=1,3
     B(I,J) = B(I,J) / SIGTM2
    5 CONTINUE
    6 CONTINUE
С
С
С
С
      COMPUTE MATRIX S = B + TRANSPOSE
С
С
      DO 20 I=1,3
      DO 10 J=1,3
      S\left(\text{I,J}\right) \ = \ B\left(\text{I,J}\right) \ + \ B\left(\text{J,I}\right)
   10 CONTINUE
   20 CONTINUE
С
С
С
С
С
      COMPUTE TRACE, TRACE (ADJOINT), AND DETERMINANT OF S
С
      TRS = S(1,1) + S(2,2) + S(3,3)
С
      TRADJS = S(1,1) * S(2,2) + S(2,2) * S(3,3) + S(3,3) * S(1,1)
             -S(1,2)*S(2,1)-S(2,3)*S(3,2)-S(3,1)*S(1,3)
C
     DETS = S(1,1)*(S(2,2)*S(3,3)-S(2,3)*S(3,2))
           +S(1,2)*(S(2,3)*S(3,1)-S(2,1)*S(3,3))
            +S(1,3)*(S(3,2)*S(2,1)-S(3,1)*S(2,2))
С
С
      SIGMA = TRS/2.D0
С
С
С
      COMPUTE VECTOR Z
С
      Z(1) = B(2,3) - B(3,2)
      Z(2) = B(3,1) - B(1,3)
      Z(3) = B(1,2) - B(2,1)
С
С
С
      COMPUTE VECTORS SZ AND SSZ
С
      SZ(1) = S(1,1)*Z(1) + S(1,2)*Z(2) + S(1,3)*Z(3)
      SZ(2) = S(2,1)*Z(1) + S(2,2)*Z(2) + S(2,3)*Z(3)
      SZ(3) = S(3,1)*Z(1) + S(3,2)*Z(2) + S(3,3)*Z(3)
С
      SSZ(1) = S(1,1)*SZ(1) + S(1,2)*SZ(2) + S(1,3)*SZ(3)
      SSZ(2) = S(2,1)*SZ(1) + S(2,2)*SZ(2) + S(2,3)*SZ(3)
      SSZ(3) = S(3,1)*SZ(1) + S(3,2)*SZ(2) + S(3,3)*SZ(3)
С
С
С
      SET ALAM (CALLED X) TO UNPERTURBED VALUE (PERFECT OVERLAP)
С
```

```
X = 1.D0
С
С
С
      IF NEWT IS GREATER THAN ZERO, COMPUTE NEW VALUE OF ALAM
С
      USING NEWTON-RAPHSON METHOD NEWT TIMES. OTHERWISE, PROCEED
С
      DIRECTLY TO THE COMPUTATION OF THE QUATERNION USING THE
С
      STARTING VALUE FOR ALAM.
С
      IF (NEWT.LE.0) GO TO 40
С
С
      DETERMINE COEFFICIENTS OF CHARACTERISTC POLYNOMIAL FOR ALAM
С
                 X**4 + D1*X**2 + D2*X + D3
С
      B1 = SIGMA**2 - TRADJS
      B2 = SIGMA**2 + Z(1)*Z(1) + Z(2)*Z(2) + Z(3)*Z(3)
      B3 = DETS + Z(1)*SZ(1) + Z(2)*SZ(2) + Z(3)*SZ(3)
      B4 = Z(1)*SSZ(1) + Z(2)*SSZ(2) + Z(3)*SSZ(3)
C
      D1 = -B1-B2
      D2 = -B3
      D3 = B1*B2+SIGMA*B3-B4
C
С
     PERFORM NEWTON-RAPHSON ITERATIONS
С
      DO 30 I=1, NEWT
      X2 = X * X
      DX = -(((X2+D1)*X +D2)*X+D3)/((4.D0*X2+2.D0*D1)*X+D2)
      X = X + DX
С
С
      TEST IF ALAM COMPUTATION EXCEEDS DESIRED ACCURACY.
С
      IF SO, EXIT FROM LOOP
С
      IF (DABS (DX) .LT.QUETCH) GO TO 40
С
   30 CONTINUE
С
С
С
      COMPUTE UNNORMALIZED AXIS VECTOR
C
   40 ALPHA = X*X - SIGMA**2 + TRADJS
     BETA = X - SIGMA
      GAMMA = ALPHA*(X+SIGMA)-DETS
С
      COMPUTE UNNORMALIZED QUATERNION
C
С
      Q(1) = ALPHA*Z(1) + BETA*SZ(1) + SSZ(1)
      Q(2) = ALPHA*Z(2) + BETA*SZ(2) + SSZ(2)
      Q(3) = ALPHA*Z(3) + BETA*SZ(3) + SSZ(3)
      Q(4) = GAMMA
С
С
      SET VALUE OF OVERLAP EIGENVALUE AND QUALITY PARAMETER
С
С
      ALAM = X
С
      QUAL = DABS(GAMMA)
C
      DO 60 I=1,3
      DO 50 J=1,3
      B(I,J) = B(I,J) * SIGTM2
   50 CONTINUE
   60 CONTINUE
С
      RETURN
      END
```

```
SUBROUTINE QUACOV (F, FIBBL, VARTOT, IDET, P)
С
C----VERSION DATE- JUNE 25, 1990 ------C
С
C----FUNCTION-- QUACOV COMPUTES THE COVARIANCE MATRIX OF THE QUA-
С
                TERNION COMPUTED BY QUEST
С
                                                                      С
C----ARGUMENT LIST--
                                                                      С
С
                                                                      С
С
     NAME
                   TYPE I/O
                               DESCRIPTION
                                                                      С
C
                                                                      С
С
                                                                      С
С
     F(3,3)
                   R*8 I
                             OBSERVABILITY MATRIX
С
С
     FIBBL
                   R*8 I
                              CONDITION LIMIT ON F
                                (IF DABS (DET F) IS LESS THAN FIDDL,
С
С
                               THEN F IS ILL-CONDITIONED
С
С
     VARTOT
                  R*8
                               TOTAL VARIANCE OF THE OBSERVATION
С
                                                                      С
                                VECTOR MEASUREMENTS (IN RAD**2)
С
                                                                      C
С
     IDET
                   I * 4
                                CONDITION CODE
                                                                      С
С
                                (IDET=0, IF F IS WELL-CONDITIONED
                                (IDET=1, IF F IS ILL-CONDITIONED
С
С
                                                                      С
С
    P(3,3)
                  R*8
                                COVARIANCE MATRIX (UNITLESS)
                                                                      С
С
                                (DEFAULT VALUE = 999. IN EVERY
С
                                ELEMENT)
                                                                      С
                                                                      С
C
                                                                      С
C----EXTERNAL REFERENCES--NONE
C----CALLED FROM--BQUEST
                                                                      С
C----DESIGNER/PROGRAMMER--M. D. SHUSTER C.S.C. 1/17/1979
                                                                      С
C----MODIFICATIONS-- D. G. KUBITSCHEK JHU-APL 06/26/90
                     DECLARE ALL VARIABLES REAL*8.
                                                                      C
C
                                                                      C
C-
С
С
     IMPLICIT REAL*8 (A-H,O-Z)
     DIMENSION F(3,3), P(3,3)
С
С
     SET INITIAL VALUE OF IDET
С
С
     IDET = 0
С
С
С
     COMPUTE DETERMINANT OF F
С
С
     DETF = F(1,1) * (F(2,2) *F(3,3) -F(2,3) *F(3,2))
    1 +F(1,2)*(F(2,3)*F(3,1)-F(2,1)*F(3,3))
           +F(1,3)*(F(3,2)*F(2,1)-F(3,1)*F(2,2))
С
С
С
     TEST CONDITION OF F. IF F IS ILL-CONDITIONED, SET CONDITION
С
     CODE, COMPUTE DEFAULT COVARIANCE MATRIX, AND RETURN. OTHER-
С
     WISE, CONTINUE.
С
```

```
IF (DABS (DETF) .GT.FIBBL) GO TO 50
С
     IDET = 1
С
     DO 40 I=1,3
     DO 30 J=1,3
     P(I,J) = 999.D0
   30 CONTINUE
   40 CONTINUE
С
     GO TO 999
С
С
   50 \text{ FAC} = \text{VARTOT}/(4.D0*DETF)
С
С
С
     COMPUTE COVARIANCE MATRIX
С
     P(1,1) = FAC*(F(2,2)*F(3,3)-F(2,3)*F(3,2))
     P(1,2) = FAC*(F(1,3)*F(3,2)-F(1,2)*F(3,3))
      P(1,3) = FAC*(F(1,2)*F(2,3)-F(1,3)*F(2,2))
     P(2,1) = FAC*(F(2,3)*F(3,1)-F(2,1)*F(3,3))
     P(2,2) = FAC*(F(1,1)*F(3,3)-F(1,3)*F(3,1))
      P(2,3) = FAC*(F(2,1)*F(1,3)-F(2,3)*F(1,1))
      P(3,1) = FAC*(F(3,2)*F(2,1)-F(3,1)*F(2,2))
      P(3,2) = FAC*(F(3,1)*F(1,2)-F(1,1)*F(3,2))
      P(3,3) = FAC*(F(1,1)*F(2,2)-F(1,2)*F(2,1))
С
С
  999 RETURN
     END
      SUBROUTINE VEX (V1, V2, V3, DV1, DV2, DV3, DNORM)
С
C----VERSION DATE- JUNE 25, 1990 ------C
C----FUNCTION-- VEX NORMALIZES A GIVEN VECTOR. THE NULL VECTOR
                                                                       С
С
                IS RETURNED AS THE NULL VECTOR.
                                                                       С
С
                                                                       С
C----ARGUMENT LIST--
                                                                       С
                   TYPE I/O
С
                                 DESCRIPTION
                                                                       С
     NAME
С
                   ----
                                                                       С
С
                                                                       С
     V1, V2, V3
                   R*8 I
                                COMPONENTS OF THE INPUT VECTOR
С
                                                                       С
С
    DV1,DV2,DV3
                   R*8 0
                               COMPONENTS OF THE OUTPUT VECTOR
                                                                       С
С
                                                                       С
С
     DNORM
                   R*8 O NORM OF THE INPUT VECTOR
                                                                       С
C----EXTERNAL REFERENCES--NONE
                                                                       С
C
C----CALLED FROM--INQUEST
```

C

С

С

C

REAL*8 DV1, DV2, DV3, DNORM

C

C

С

C----DESIGNER/PROGRAMMER--M. D. SHUSTER C.S.C. 6/20/79

C----MODIFICATIONS-- D. G. KUBITSCHEK JHU-APL 06/25/90

DECLARE ALL VARIABLES REAL*8

C-----C