Search in Games

Chen-Yu Wei

Bernstein

Computer

Turn-Based Two-Player Game

You choose one of the three bins. I choose a number from that bin. Your goal is to maximize the chosen number.

If I am

- adversarial
- random
- benign/cooperative

Turn-Based Two-Player Zero-Sum Games

Terminal state values

Turn-Based Two-Player Zero-Sum Games

Example: PACMAN

Example: Tic-Tac-Toe

Calculating Minimax Values

def value(state):

```
if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
                                                             def min-value(state):
def max-value(state):
                                                                 initialize v = +\infty
   initialize v = -\infty
                                                                 for each successor of state:
   for each successor of state:
                                                                     v = min(v, value(successor))
       v = max(v, value(successor))
   return v
                                                                 return v
```

The Minimax Policy

"Policy" is mapping from state to action.

"Minimax policy" is the optimal policy against the most adversarial opponent.

MAX Player's minimax policy

MIN Player's minimax policy

Time / Space Complexity

Same as DFS

• Time: O(b^m)

• Space: O(bm)

- For chess
 - b≈35, m≈100
 - Too large to find the true minimax value/policy

Alpha-Beta Pruning and Evaluation Functions

Alpha-Beta Pruning

Alpha-Beta Pruning

α: MAX's best option on path to root β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state , \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
        v = \min(v, value(successor, \alpha, \beta))
        if v \le \alpha return v
        \beta = \min(\beta, v)
    return v
```

Alpha-Beta Pruning

- The pruning has no effect on the minimax value computed for the root.
- Child ordering affects the efficiency
 - If a MAX node finds a larger children value (or a MIN node finds a smaller children value) quicker, then more time can be saved.
- With perfect ordering, the time complexity drops to O(b^{m/2})
 - Doubles solvable depth
 - Full search of, e.g., chess, is still hopeless

Resource Limits

- In realistic games, cannot search to leaves
- Solution: depth-limited search
 - Search only to a limited depth
 - At the last layer of the search, call the evaluation function (heuristic function)

Example

- Suppose we have 100 seconds, can explore 10K nodes / sec
- So can check 1M nodes per move
- α-β reaches about depth 8 decent chess program
- Use iterative deepening for an anytime algorithm

Evaluation Functions

Evaluation functions score non-terminal nodes in depth-limited search

- E.g., weighted linear sum of features: $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$ where $f_1(s)$ = (num white queens num black queens), etc.
- Evaluation function can provide guidance to expand most promising nodes first (allowing alpha-beta pruning to prune more)

Expectimax

Two-Player Turn-Based Game

Two-Player Turn-Based Game

Expectimax Search

- When do we have randomness?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes.

Reminder: Probabilities

- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

0.25

0.50

0.25

Time:

20 min

+

30 min

+

0.25

Χ

60 min

35 min

Probability:

0.25

Χ

0.50

Χ

Expectimax

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def max-value(state):

initialize $v = -\infty$

for each successor of state:

v = max(v, value(successor))

return v

def exp-value(state):

initialize v = 0

for each successor of state:

p = probability(successor)

v += p * value(successor)

return v

Expectimax

Depth-Limited Expectimax

What Probabilities to Use?

- In expectimax search, we have a **probabilistic model** of how the opponent (or environment) will behave.
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment

- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes
- You'll get more ideas about how to produce such probabilistic models later in the semester when we talk about "learning from data"

Quiz: Informed Probabilities

- Suppose you know that your opponent is running a depth-2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Minimax search, on the other hand, has the nice property that it all collapses into one game tree

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Random Ghost – Expectimax Pacman

Adversarial Ghost – Minimax Pacman

Adversarial Ghost – Expectimax Pacman

Random Ghost – Minimax Pacman

Monte-Carlo Tree Search

Issues of Depth-limited Search

- When branching factor (i.e., number of possible actions) is large, the search cannot go deep
 - In Go, the branching factor could be > 300
 - α - β search would be limited to 4 or 5 layers
- Sometimes it's difficult to define a good evaluation function

- Selective search
 - Do not try to explore all possible actions
 - Only explore parts of the tree that has more potential to improve for the root
- Evaluation by rollouts
 - Play multiple games to termination from a state (using some rollout policy), and evaluate through win rate

Selection

- Starting from the root node, execute tree
 policy until reaching a leaf node
- One effective tree policy is given by UCB1, which chooses an action based on

$$\frac{W(n)}{N(n)} + C \times \sqrt{\frac{\log N(\operatorname{parent}(n))}{N(n)}}$$

W(n): total #wins of all playouts that went through node n

N(n): total #playouts that went through node n

Expand

 On some iterations, grow the search tree from selected leaf nodes by adding one or more child nodes

Simulation

- From the selected or expanded node (if any), execute the rollout policy to the end of the game
- Rollout policy
 - Could be heuristics, such as "consider capture moves" in chess
 - Could be learned through neural networks by self-play

Backup

 Update the #wins and #playouts on nodes along the tree policy

Finally,

- Choose the action from the root node that has the largest visit count.
 - Why not the action with the highest win rate?
- After the opponent's move, start the same procedure from the new state (can keep the statistics from the previous state)

Application of MCTS in AlphaGo and AlphaGo Zero

Check Section 16.6 of https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf