MA 101 (Mathematics - I)

Differentiability: Exercise set 1

- 1. Discuss differentiability of $f: \mathbb{R} \to \mathbb{R}$, and continuity of f' wherever exists.
 - (i) f(x) = |x|.
 - (ii) $f(x) = |\sin x|$.

(iii)
$$f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

(iv)
$$n \in \mathbb{N}$$
 and $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & \text{if } x \neq 0. \\ 0, & \text{if } x = 0. \end{cases}$

- 2. Show that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable and is an even function, then f' is an odd function.
- 3. Let $f:(a,b)\to\mathbb{R}$ be differentiable at $c\in(a,b)$. Assume that $f'(c)\neq 0$. Show that there exists $\delta>0$ such that for $x \in (c - \delta, c + \delta) \cap (a, b)$, we have $f(x) \neq f(c)$. Can you say something more, if f'(x) > 0? Similarly, if f'(x) < 0?
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $|f(x) f(y)| \leq (x y)^2$. Show that f is a constant function.
- 5. If $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0$ for some real numbers a_i , then show that $a_0 + a_1x + a_2x^2 + \dots + a_nx^n = 0$ has a real root between 0 and 1.
- 6. Use the identity $1+x+\cdots+x^n=\frac{1-x^{n+1}}{1-x}$ for $x\neq 1$ to arrive at a formula for the sum $1+x+2x^2+\cdots+nx^n$.
- 7. Verify Chain Rule for $f,\,g$ and $g\circ f$ at the point 0, where

$$f(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q} \\ 0, & \text{otherwise,} \end{cases}$$
 $g(x) = \begin{cases} \sin x, & \text{if } x \in \mathbb{Q} \\ x, & \text{otherwise.} \end{cases}$

- 8. Find the number of real roots of the equation $x^4 + 2x^2 6x + 2 = 0$.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Show that f is a constant function.
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable at 0. If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, then find f'(0) and f''(0).
- 11. Let f be differentiable on $(0,\infty)$ and $\lim_{x\to\infty} f'(x)=0$. Put g(x)=f(x+1)-f(x). Show that $\lim_{x\to\infty} g(x)=0$.
- 12. If $f(x) = x^3 + x^2 5x + 3$ for $x \in \mathbb{R}$, then show that f is one-one on [1,5] but not one-one on \mathbb{R} .
- 13. Prove that for $x \ge -1$ and $\alpha > 1$, $(1+x)^{\alpha} \ge 1 + \alpha x$.
- 14. (1) For 0 < x < y, show that $\frac{y-x}{y} < \ln \frac{y}{x} < \frac{y-x}{x}$. (2) Deduce that if $e \le a < b$, then $a^b > b^a$. (In particular $e^\pi > \pi^e$.)
- 15. Show that $0 < \frac{1}{x} \ln \left(\frac{e^x 1}{x} \right) < 1$ for x > 0.
- 16. Find the points of local maximum and local minimum for $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 1 x^{2/3}$.