本节内容

补充:数字电路基础知识

逻辑门电路

本节总览

Tips: 本科期间学过《数字电路》的同学可以跳过本视频

算数运算 V.S. 逻辑运算

算数运算——对我们熟悉的数字进行运算,如:加、减、乘、除、幂次方

基本算 数运算 复合算 数运算

逻辑运算——对逻辑值 真/假(二进制 1/0)进行运算,如: 与、或、非、异或

基本逻 辑运算 复合逻 辑运算

注1: 无论是算数运算、还是逻辑运算,都要有输入、输出。

注2: 《离散数学》是专门研究逻辑运算的一门数学学科。

基本逻辑运算:与

逻辑运算

与 AND

表达式

Y = A · B 也可简写为 Y = AB

真值表

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

门电路图形符号

A _ & _ Y

 $B \longrightarrow Y$

国标画法 GB/T 4728.02-1996 国际常 用画法

$$\begin{array}{c} A \stackrel{1}{=} \\ 0 \end{array} \begin{array}{c} 0 \\ \end{array}$$

基本逻辑运算:或

逻辑运算

或 OR

表达式

Y = A + B

真值表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

$$A \longrightarrow 1$$
 $Y \longrightarrow Y$

$$A \xrightarrow{0} 1$$

$$A \xrightarrow{1} B \xrightarrow{1} Y$$

$$A \xrightarrow{1} Y$$

基本逻辑运算: 非

逻辑运算

非 NOT

表达式

 $Y = \overline{A}$

真值表

Α	Υ
0	1
1	0

$$A = \begin{bmatrix} 1 \\ \bigcirc -Y \end{bmatrix} A = \begin{bmatrix} \bigcirc -Y \end{bmatrix}$$

复合逻辑运算:与非

NOT-AND

表达式

 $Y = \overline{A \cdot B}$

与非 NAND

也可简<u>写</u>为 Y = AB

#	/+ :	#
目 .	1自.	灭
\rightarrow	ш	へ

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

复合逻辑运算:或非

或非 NOR

NOT-OR

表达式

 $Y = \overline{A + B}$

真值表

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

$$A \longrightarrow 1$$
 $\longrightarrow Y$ $A \longrightarrow Y$

复合逻辑运算: 异或

 $Y = A \oplus B = \overline{A}B + A\overline{B}$

逻辑运算

exclusive OR

表达式

真值表

S	Α	В	Υ
	0	0	0
	0	1	1
	1	0	1
Ī	1	1	0

异或 XOR

 $Y = A \oplus B$

门电路图形符号

异或门:两个输入相"异"时,输出为1

Tips: 对比程序的"封装"思想→函数

复合逻辑运算: 同或

 $Y = A \odot B = \overline{A \oplus B}$ В 有的地方会翻 译为"异或非门"

同或门:两个输入相"同"时,输出为1

逻辑门电路基础总结

逻辑运算	与	或	非	与非	或非	异或	同或
逻辑表达式	Y=A·B	Y=A+B	$Y = \overline{A}$	$Y = \overline{A \cdot B}$	$Y = \overline{A + B}$	Y=A⊕B	Y = A⊙B
英文缩写	AND	OR	NOT	NAND	NOR	XOR	XNOR
门电路						#>-	#>>-
真值表	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	A Y 0 1 1 0	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	A B Y 0 0 0 0 1 1 1 0 1 1 1 0	A B Y 0 0 1 0 1 0 1 0 0 1 1 1
门电路符号 特征	门电路输入 端是直线	门电路输入 端为曲线	小三角+小 圆圈	与门的输出 端加个小圆 圈	或门的输出 端加个小圆 圈	或门的输入 端加条曲线	异或门的输 出端加小圆 圈
门电路逻辑 运算特征	当且仅当输 入全1时,输 出才为1	当且仅当输 入全0时, 输出才为0	0变1, 1变0	仅当输入全1 时,输出才 为0	当输入全0 时,输出才 为1	输入相异时 输出为1	输入相同时 输出为1

题外话: 异或运算的妙用

异或运算的妙用: n bit 进行异或,若有奇数个 1,则异或结果为 1;若有偶数个 1,则异或结果为 0

 $\mathbf{1}\oplus\mathbf{0}\oplus\mathbf{0}\oplus\mathbf{1}\oplus\mathbf{1}\oplus\mathbf{0}\oplus\mathbf{1}=\mathbf{0}$

 $1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 1$

可用于实现奇偶校 验、二进制加法

补充1: 门电路的变形画法

多输入"或门"

Y=A+B+C+D,当且 仅当所有输入都 为0时,输出才为

多输入"与门"

Y=A·B·C·D,当且 仅当所有输入都 为1时,输出才为 1

多输入"或非门"

Y= A+B+C+D, 当且 仅当所有输入都为 0时,输出才为1

多输入"与非门"

Y= A·B·C·D 当且仅当 所有输入都为1时, 输出才为0

补充2: 逻辑运算的优先级、常见公式

三种基本逻辑运算的优先级: 非>与>或

注1: 与、或可以类比乘法、加法

注2: 如果有括号,括号的优先级更高

注3: 非运算符下面,可理解为"隐含一个括号"

Eg 1: Y=AB+CD → 先与后或

Eg 2: Y= A(B+C)D → 先算括号内的或、再算两个与

Eg 3: Y= AB+C → 先非、再与、最后或

Eg 4: $Y=\overline{AB}+C$ → 先与、再非、最后或。等价于 $\overline{(AB)}+C$

逻辑运算的常见公式(祥见离散数学):

A(C+D) = AC+ AD ——分配律

ABC=A(BC) ——与运算的结合律

A+B+C=A+(B+C) ——或运算的结合律

 $\overline{A + B} = \overline{A} \cdot \overline{B}$ ——反演律

 $\overline{A \cdot B} = \overline{A} + \overline{B}$ ——反演律

有何意义?

Eg: 用电路实现复合逻辑运算 AC+AD

拓展: 芯片制程

门电路:使用门电路设计电路,可实现二进制运算

门电路由"晶体管"实现

关键制造设备: 光刻机

某芯片采用 10nm制程——意味着该芯片内部的晶体管栅极宽度为 10nm。晶体管越小,功耗越低、单位面积内晶体管数量更多(可实现更复杂的硬件功能)

注: 头发丝直径约为 0.1mm = 100,000nm

△ 公众号: 王道在线

b站: 王道计算机教育

抖音:王道计算机考研