ОВИТМ

Хоружий Тимофей 16 января 2022 г.

1

Математическая модель в которой мы будем работать - это (Ω, \mathcal{F}, P) , где Ω - это пространство элементарных исходов, \mathcal{F} - это σ -алгебра событий, P - это σ -аддитивная вероятностная мера.

В этом курсе предмет нашего исследования - это случайный эксперемент.

- 1. повторяемость
- 2. отсутсвие детерминистической регулярности
- 3. статистическая устойчивость частот

Элементарный исход - это результат случайного эксперемента. (Ω)

События - это множество элементарных исходов (нам обычно интересно именно множество, например множество оценок на сессии, чтобы не упал средний балл) (\mathcal{F})

Вероятность - это частота события, если мы будем много раз повторять случайный эксперемент. Идеализация!

Не стоит воспринимать $P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$ потому что это не про жизн!

2

Опр будем называть модели дискретными, если $\#\Omega$ не более чем счетно.

Пример будем рассматривать модель где у нас есть мешок, в котором есть шарики (M - белых и N-M - черных)

Эксперементы могут быть с(без) возвращением(я) и с(без) учетом(а) порядка.

Тогда элементарный исход это или кортеж или множество. А возвращение влияет на мощность элементарных исходов. Комбу надо было учить!

Классическая теория вероятности занимается дискретными моделями в которых элементарные исходы равновероятны. *Замечание* классическая модель занимается только конечными моделями, так как сумма вероятностей должна равнятся 1.