Exercice 1: devoir libre

Mohammed Khatiri

 $March\ 13,\ 2024$

1 Exercice 1:

Soit E un K-espace vectoriel de dimension finie n et soit B une base de E. Soient V = (v1,...,vp) une famille de vecteurs de E et v un vecteur de E. Soient T une forme échelon obtenue par la méthode de Gauss appliquée à Row_B^V et T_v la matrice à p+1 lignes, de p premières lignes, les lignes de T et de dernière ligne, la ligne des coordonnées de v dans B.

1.1 Question 1:

Montrer que la famille formée par les vecteurs de E dont les lignes des coordonnées correspondent aux lignes non nulles de T forme une base de Vect(V).

Réponse:

prenons v un vecteur de la famille de Vect(V), il s'écrit alors sous la forme : $\sum_{i=1}^n \alpha_i v_i.$

chaque vecteur des lignes non nulles de T, s'écrivent sous la forme: $u_i = \sum_{j=i}^p \beta_i v_i$; puisque chaque ligne de la matrice en forme échelonée est une combinaison linéaire des lignes initialle précédente de la matrice.

on peut montrer alors que les vecteurs v_i sont des combinaison linéaire des vecteur u_i :