Replacement Lines

Reading:

Jennings et al. 2001, section 7.8

Supplemental: Mace and Sissenwine 1993

Supplemental: Gabriel et al. 1989

"Tom, we're letting you go, but we'd like you to stay on and train your replacement so they know what not to do."

Background

 Dynamic pool models (YPR, SSB/R, EPR) did not account for stock-recruit relationships

Why is this potentially problematic?

Background

- <u>Replacement line</u> = Line on a stock-recruit plot indicating the amount of recruits per spawner needed to replenish the population on average
 - Semelparous species can use stock recruit models alone
 - Iteroparous species combine SSB/R models with stockrecruit models

Example of replacement lines

• Example: consider a semelparous species with a life span of 1 year (e.g., squid)

- Draw Ricker Curve with replacement line.
 Discuss:
 - Meaning
 - Equilibrium
 - Effect of fishing on replacement line

Example

- Ricker SR model
- 1:1 replacement line
 - 1:1 b/c dealing with annual species; assume all mortality occurs prior to recruitment
- If SR curve is above replacement line, we get a stable equilibrium (at intersection)

Example

- Steeper replacement line to accommodate fishing
- If SR curve is below the replacement line, population crashes

Replacement lines and MSY for semelparous species

- Area above the replacement line equates to surplus production
- Use this to calculate MSY from SR models
- Qualifications:
 - Semelparous species only
 - Recruitment is measured after all non-fishing mortality
 - Fixed timing of life cycle (ie non-overlapping generations)
 - Recruitment needs to be adjusted for years at large
- Best example: Pacific salmon
 - → Draw a Ricker S-R Model with a replacement line and use that to identify the following values: S_{MSY}, MSY

MSY from replacement lines in Stock-Recruitment Models

Escapement –

the number of fish that are not caught in the fishery and allowed to survive and reproduce

Salmon Spawning

Ricker Model – MSY calculations

- <u>Approximations</u> to estimate MSY reference points from SR parameters
- Side: can use numerical methods to get exact values

$$R = \alpha S e^{-\beta S} \qquad S_{MSY} \sim \frac{\log_e \alpha}{\beta} (0.5 - 0.07 \log \alpha)$$

$$MSY \sim \alpha S_{MSY} e^{-\beta S_{MSY}} - S_{MSY}$$

$$u_{MSY} \sim 0.5 \log_e \alpha - 0.07 (\log \alpha)^2$$

Beverton Holt Model – MSY calculations

• Analytic solutions for BH model: $R = \frac{\alpha S}{\beta + S}$

$$\begin{split} S_{MSY} &= \alpha \sqrt{\frac{\beta}{\alpha}} - \beta \\ MSY &= \frac{\alpha S_{MSY}}{\beta + S_{MSY}} - S_{MSY} \\ u_{MSY} &= 1 - \sqrt{\frac{\beta}{\alpha}} \end{split}$$

Replacement lines for iteroparous species

- Challenges determining the replacement line (e.g., iteroparous species):
 - Depends on maturation schedule, longevity, mortality rates
- Need to combine SR model with YPR and SSB/R models
- No easy analytical solution for MSY reference points

Relating SSB/R and R/SSB

- Select desired SSB/R for a given level of fishing
- The inverse (R/SSB) is the survival ratio for our stock-recruit model
- <u>Replacement line</u> = recruits per spawner needed to replenish the population on average
 - OR: line in a stock-recruit plot with a slope equal to the observed average survival ratio (R/SSB)

Relating SSB/R and R/SSB

- Slope on S-R curve depends on the fishing mortality rate
- Slope on S-R = inverse of SSB/R

Gabriel et al. 1989

Example with real data: haddock

- Replacement lines labeled as % of maximum spawning potential
- Points above a line = R/SSB sufficient to maintain or increase pop (on average)
- One meta-analysis recommend 30%SPR as guide

Benefits of replacement lines

- Explicitly account for the effect of fishing on future recruitment (ie accounts for stock-recruit relationship)
- Addresses recruitment overfishing
- Can be used to determine biological reference points
 - E.g., F_{MSY}, F_{rep}, replacement %SPR
 - (Mace and Sissenwine 1993)
- Estimates of MSY are possible:
 - Easier for semelparous species like Pacific salmon
 - For iteroparous species, see Shepherd 1982

Limitations of replacement lines

- Data limitations
 - S-R models may not fit observed data well
 - narrow range of S
 - imprecise estimates
- Don't account for changes in survival rates (R/S)
 - environmental effects
 - changes through time
- Only accounts for density dependence in production

Summary – Replacement lines

- Replacement lines represent the recruits per spawner needed to replenish a population on average
- Deals with <u>recruitment overfishing</u> (know def. from before)
- For semelparous species like Pacific salmon, they can be used with SR model to estimate MSY reference points
 - [know conceptually how to get MSY from stock recruitment model & replacement line]
- For most species, replacement lines can be drawn using SSB/R models in conjunction with Stock-Recruit models
 - Higher fishing → higher slope of replacement line
- Biological reference points for management can be derived from these concepts