Analog details behind the digital abstraction

Vikas Dhiman for ECE275

May 9, 2024

Some of the material is out of the textbook. Additional resources include Appendix B of Brown and Vranesic book, "Fundamentals of digital logic."

1 Objectives

- 1. Describe how tri-state and open-collector outputs are different from totem-pole outputs
- 2. Compute noise margin of one device driving the same time

2 FPGA [1, Section B.6.5]

Figure B.37 A three-input LUT.

Figure B.38 Inclusion of a flip-flop in an FPGA logic element.

A section of a programmed FPGA.

Definition 1 (Random Access Memory (RAM)). Structure of a RAM is as follows:

Figure 5.39 4 × 3 memory

 $2^{10} = 1024$ words, width = 32 bits

An SRAM cell.

Figure B.66 A $2^m \times n$ SRAM block.

Definition 2 (Read Only Memory (ROM)). Structure of a ROM is as follows:

Figure B.72 A $2^m \times n$ read-only memory (ROM) block.

Example 1. Draw a Multiplexer using sum of products form.

3 Logic levels and Noise Margins

Definition 3 (Supply Voltage $(V_{DD}/V_{CC}/V_{SS})$).

Definition 4 (Ground Voltage (V_{GND})).

Definition 5 (Input high (V_{IH}) and Input Low (V_{IL}) of a gate).

Definition 6 (Output high (V_{OH}) and Output low (V_{OL}) of gate).

Definition 7 (Positive logic and Negative logic).

Definition 8 (Noise margins $(NM_L \text{ and } NM_H)$ of a channel).

Example 2.

If $V_{DD} = 5V$, $V_{IL} = 1.35V$, $V_{IH} = 3.15V$, $V_{OL} = 0.33V$ and $V_{OH} = 3.84V$ for both the "inverters", then what are the low and high noise margins? Can the circuit tolerate 1V of noise at the channel?

4 Semiconductors and Doping

Not in syllabus but good to know

5 MOSFET: Metal Oxide Field Effect Transistors

Not in syllabus but good to know

6 DC Transfer characteristic

(b) PMOS transistor

when $V_G = V_{DD}$

Open switch

Example 3. Draw a NOT gate using nMOS transistors.

 $V_D=V_{DD}$

Closed switch

when $V_G = 0 \text{ V}$

Example 9. Draw a three input NOR using CMOS.

Example 10. Draw a two input AND gate using CMOS.

6.1 Gates with floating output

Definition 10 (Transmission gate). Draw a schematic of transmission gate and truth table for transmission gate. What is its commonly used symbol?

Definition 11 (Tristate buffer). What is tristate buffer? Draw it's symbol and truth table? Where is it used?

Example 11. Draw a Multiplexer using transmission gates.

7 Verilog truth tables

Table 11-11—Bitwise binary AND operator Table 11-12—Bitwise binary OR operator

&	0	1	х	z
0	0	0	0	0
1	0	1	х	x
х	0	x	x	x
z	0	x	x	x

	0	1	x	z
0	0	1	х	х
1	1	1	1	1
x	х	1	х	х
z	х	1	x	x

References

[1] Brown Stephen and Vranesic Zvonko. Fundamentals of digital Logic with Verilog design. McGraw Hill, 2022.