108 學年度第二學期 公衛系 801 20000 流行病學 課程表

時間: 週三上午 9:10-12:10

地點:公衛大樓 213 (正課)、214 (實習課)

負責教師:郭柏秀、范怡琴

課程助教:

張巧兒(e-mail: d03849010@ntu.edu.tw)、蔡凱翔(e-mail: r07849022@ntu.edu.tw)、曾洺澴(e-mail: r08849028@ntu.edu.tw)、林詩凱(e-mail: r08849032@ntu.edu.tw)

學分:3學分

課程概述

流行病學是公共衛生的一門基礎學問,很多關於疾病或健康行為的分布或決定因子的探討,都需要用到流行病學。這是個入門性課程,適合有一點生物統計基礎但尚未學過流行病學的人。上課方式以講演為主,輔以課後作業。講演內容可分成四大部分。第一部分是基本流行病學測量,介紹流行病學的簡史、測量原理、常用流行病學測量、與生命及死亡統計。第二部分是流行病學研究設計,介紹四類常見的研究,包括實驗性研究、描述流行病學、世代追蹤研究、病例對照研究。第三部分則是流行病學的分析策略,介紹類別資料的統計推論與存活分析、干擾作用、交互作用、分層分析、及模型建構與迴歸分析等。第四部分則是針對特定主題之流行病學予以簡介,包括基因流行病學、慢性流行病學、與傳染病流行病學等。

課程目標

透過對流行病學基本觀念及分析方法的介紹,激發同學進一步學習的興趣,並具備下列知能 (competencies):

- · 能夠清楚辨別流行病學探討所需要的關鍵資料來源
- · 能夠清楚描述一項公共衛生問題在幅度、人員、時間、與地點上的特徵
- · 能夠應用基本的流行病學名詞與定義
- · 能夠計算基本的流行病學測量指標
- · 能夠向外行人以及專業聽眾解釋流行病學的資訊
- · 能夠從流行病學資料的資訊得出適當的結論
- · 能夠評估不同流行病學報告的長處與其限制

課程要求

- 1. 本課程提供一本建議閱讀之教科書,此外另列有其他參考書籍。每次上課投影片會放在 Ceiba 課程網站上,並有四次紙筆作業。
- 2. 本學期預計進行分組討論四次,學生於課前先行閱讀指定章節,以個人為單位在 ceiba 上 提出問題,並於課堂上進行討論。
- 3. 本課程將有四次正課紙本作業。
- 4. 本課程將進行上機實習課程、期末上機考試,實習作業共三次。
- 5. Homework project 分為四個主題,以組為單位每組各報告兩次。

學期成績

期中考(25%)+期末考(25%)+SAS 上機考(10%)+ 實習及紙筆作業(15%)+ 專案報告(15%)+ 課堂參與及組內互評(10%)

Office Hours

另約時間。

参考書目

- 1. Gordis L: Epidemiology, 5th Edition. Elsevier, 2014 中文版(第五版)
- 2. 王榮德著 (2010 修訂):流行病學方法論。台北: 台大醫學院出版委員會。
- 3. Kenneth J. Rothman. Epidemiology: An Introduction. New York: Oxford University Press, 2012.
- 4. 陳建仁 (1999):流行病學:原理與方法。台北,聯經。
- 5. Aschengrau A, Seage GR, III: Essentials of Epidemiology in Public Health. Boston, Jones and Bartlett Pubishers, 2008
- 6. Ahrens and Pigeot (2014). Handbook of Epidemiology. Springer-Verlag (NTU e-book)

課程週次內容

日期	週次	講題	實習內容	授課教師
03/04	1	流行病學簡史與疾病模式	課程分組、IRS、資料簡介	郭柏秀
03/11	2	流行病學的基本測量 (討論課)	[SAS 複習 1] 作業環境、資料建立與整理 I	郭柏秀
03/18	3	公共衛生指標,測量原理之信度、效度	[SAS 複習 2] 資料整理 II 和描述性統計	郭柏秀
03/25	4	研究設計 I:描述流行病學	[SAS 複習 3] 推論性統計(t-test、ANOVA)	郭柏秀
04/01	5	研究設計 II:世代追蹤研究	HW Project 1 報告	郭柏秀
04/08	6	研究設計 III:病例對照研究	[SAS 複習 4] 推論性統計(Chi-square)與基本圖表製作	郭柏秀
04/15	7	流行病學的效應指標 (討論課)	[SAS 進度 1] 信效度分析	郭柏秀
04/22	8	死亡率、人口統計與預後指標	[SAS 進度 2] 推論性統計 Correlation、Strength of Association	郭柏秀
04/29	9	期中考	/	郭柏秀
05/06	10	研究設計 IV:實驗性研究	期中考卷檢討、 HW Project 2 報告	郭柏秀
05/13	11	流行病學的科學推論與假說形成 (討論課)	[SAS 進度 3] 推論性統計 Survival analysis	郭柏秀
05/20	12	偏差、干擾作用、交互作用	HW Project 3	郭柏秀
05/27	13	(本週先上討論課,後上實習課) 流行病學分析:模型建構與迴歸分析 (討論課)	[SAS 進度 4] 推論性統計 Regression I	郭柏秀
06/03	14	專題1:基因流行病學簡介	[SAS 進度 5] 推論性統計 Regression II	郭柏秀
06/10	15	專題 2:慢性流行病學	HW Project 4 報告	郭柏秀
06/17	16	專題 3: 傳染病流行病學	實習課 SAS 上機考	范怡琴
06/24	17	期末考	/	郭柏秀

[討論課大綱]

建議閱讀之教科書: Gordis L: Epidemiology, 5th Edition. Elsevier, 2014 (Kenneth J. Rothman. Epidemiology: An Introduction.)

課程主題	流行病學的基本測量
上課日期	2019.03.11
建議閱讀章節	CHAPTER 3 The Occurrence of Disease: I. Disease Surveillance and Measures of Morbidity
學習目標	 能夠區別發生率、累積發生率、盛行率和危險性 解釋不同疾病頻率指標間之數學關係

課程主題	流行病學的效應指標
上課日期	2019.04.15
建議閱讀章節	CHAPTER 11
	Estimating Risk: Is There an Association?
	CHAPTER 12
	More on Risk: Estimating the Potential for Prevention
學習目標	1. 能夠解釋絕對效應與相對效應的計算方法,包括RD, RR, OR等,並解
	釋絕對效應與相對效應在公共衛生上的涵義
	2. 能夠解釋可歸因危險性的的計算與涵義

課程主題	流行病學的科學推論與假說形成
上課日期	2019.05.13
建議閱讀章節	CHAPTER 14 From Association to Causation: Deriving Inferences from Epidemiologic Studies
學習目標	 能夠解釋因果關係與關聯的差別 能夠解釋充分一成分因果模型在流行病學上的用途

課程主題	流行病學分析:模型建構與迴歸分析
上課日期	2019.05.27
建議閱讀章節	CHAPTER 12 in Kenneth J. Rothman. Epidemiology: An Introduction.
學習目標	1. 能夠使用恰當的統計模型來評估兩變項間的相關
	2. 能夠使用統計模型來處理相關性中的交互作用與干擾因子