Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов

Володин Сергей Евгеньевич

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 374, осень 2016

Цель исследования

Цель исследования

Решается задача предсказания биологической активности молекул протеинов (лиганд) с рецепторами. По признакам лиганда необходимо оценить вероятность связывания этой молекулы с одним или несколькими клеточными рецепторами и построить бинарный классификатор

Проблема

Экспертные знания в области биохимии и фармакологии дают основания пред- полагать, что факты связывания одних и тех же молекул с различными рецепторами не независимы.

Задача

Необходимо построить модель, учитывающую схожесть рецепторов. Модель должна предсказывать вероятность взаимодействия.

Проблема

Картинка с молекулами (жду)

Литература

- Olexandr Isayev Sherif Farag Stephen J. Capuzzi, Regina Politi and Alexander Tropsha. Qsar modeling of tox21 challenge stress response and nuclear receptor signaling toxicity assays.
- @ Geoff Holmes Eibe Frank Jesse Read, Bernhard Pfahringer. Classifier chains for multi-label classification.
- Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.

Постановка задачи

Задана выборка $\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\} = \mathfrak{L} \sqcup \mathfrak{T}. \ \mathbf{x}_i \in \mathbb{R}^n. \ \mathbf{y}_i \in \{0, 1, \square\}^I,$

 \square — пропуск в данных.

 ${f X}, {f Y}$ — случайные величины, между классами есть зависимости.

Модель классификации: функция f: $\mathbf{W} \times \mathbf{X} \times \mathbf{Y} \rightarrow [0,1]$,

$$f(\mathbf{w}, \mathbf{x}, \mathbf{y}) = P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}; \mathbf{w})$$

Функция потерь — логарифм правдоподобия

$$Q(f|\mathbf{w}, \mathcal{Z}) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}} \log f(\mathbf{w}, \mathbf{x}, \mathbf{y}) P(\mathbf{X} = \mathbf{x})$$

Требуется минимизировать Q:

$$\mathbf{w}^* = \operatorname*{arg\,min}_{\mathbf{w} \in \mathbf{W}} Q(\mathbf{f}|\mathbf{w},\mathfrak{L})$$

Для выбора конкретной модели используется AUC.

Решение

Распишем вероятность, ... Слайд появится после T, пока тут пусто

Вычислительный эксперимент

Цель эксперимента

Сравнение различных моделей по критерию AUC для различных классов.

Вычислительный эксперимент

Показать характерные графики ROC-кривой для разных моделей и классов (несколько слайдов).

Показать графики в зависимости от гиперпараметров

Вычислительный эксперимент Результаты эксперимента

Таблица модели \times рецепторы, сравнивающая их по AUC.

Заключение

- Предложена модель для предсказания взаимодействия, учитывающая зависимости между классами
- Проведено сравнение модели с другими по критерию AUC
- 3 РСС лучше BR для классов a, b, c по критерию AUC.