Design an addler circuit cusing an op-amp to get the output expression as
$$V_0 = -\left[0.1V_1 + V_2 + 10V_3\right]^{\frac{1}{2}}$$
 where V_1 , V_2 and V_3 are the inputs.

For inverting suming amplifies $V_0 = -\left[\frac{R_F}{R_0} V_0 + \frac{R_F}{R_0} V_0 + \frac{R_F}{R_0} V_0\right]$

That $R_F = 10 \, \text{k}^{-1}$ and $R_0 = 10 \, \text{k}^{-1}$ and $R_0 = 1$, $R_0 = \frac{10 \, \text{k}^{-1}}{10 \, \text{k}^{-1}} = 10 \, \text{k}^{-1}$ and $R_0 = 1$, $R_0 = \frac{10 \, \text{k}^{-1}}{10 \, \text{k}^{-1}} = 10 \, \text{k}^{-1}$ and $R_0 = 10 \,$

in the circuit of schmitt tragger $R_1 = 100-1$. $R_2 = 56 \, \text{km}$, $V_{in} = 10 \, \text{pp}$ sine wave, and the opening is type ± 41 with supply voltages $\pm 15 \, \text{V}$. Debimine the threshold. Voltages V_{int} and V_{int} are V_{int} and V_{int} and V_{int} and V_{int} are V_{int} are V_{int} are V_{int} and V_{int} are V_{int}

