Сферическая геометрия №4 Фигуры.

№ 1

Пусть n - число углов в фигуре, какое минимальное n возможно на евклидовой плоскости? А на сферической? Дайте ее определение, найдите площадь такой сферической фигуры, если для нее известны все углы.

№ 2

Дайте определение сферического треугольника, его сторон, углов, вершин. Найдите его площадь.

№ 3

Сравните сумму углов треугольника на сфере и на евклидовой плоскости. Выведите формулу, вычисляющую сферический «дефект». Возможен ли треугольник, у которого все углы 90°, а треугольник все стороны которого лежат на экваторе? Найдите их стороны и площади.

№ 4

Выведите формулу для площади сферического n-угольника и формулу сферического дефекта для него.

№ 5

На сфере дан треугольник $\triangle ABC$, на уго сторонах AB и AC взяли точки P и Q так, что $\angle APQ = \angle ABC$ и $\angle AQP = \angle ACB$. Найдите площадь PQCB.

№ 6

Проверьте, всегда ли медианы сферического треугольника пересекаются в одной точке? А высоты и биссектрисы?

№ 7

Когда для сферического треугольника существует описанная окружность?

№ 8

Две сферические прямые пересекаются под углом $\frac{\pi}{6}$. Найдите чему равны площади каждого двуугольника, образованного этими прямыми, и посчитайте их сумму, если радиус сферы R=12 см.

№ 9

Две сферические прямые пересекаются под углом α , третья прямая пересекает две проведенных прямых под одинаковыми углами. Найдите эти углы, если радиус сферы равен R, а площадь сферического треугольника, образованного этими прямыми S.

№ 10

Чему равна площадь сферического треугольника, образованного полюсом и двумя сопряженными с ним точками, если сферическое расстояние между этими точками равно h, а радиус сферы равен R.

№ 11

Дан сферический треугольник с площадью S. Найдите площадь треугольника с такими же углами на сфере с радиусом в два раза больше.

№ 12

Два диаметра, соединяющих пары полюсов пересекаются под углом $\frac{\pi}{6}$, чему равны площади двуугольников, образованных их полярами, если радиус сферы равен 19?

№ 13

На сфере даны два равнобедренных треугольника, имеющих один равный угол. Отношение углов при основании первого треугольника ко второму равно δ . Найдите отношение площадей этих треугольников

№ 14

На сфере дан треугольник, все углы которого равны 90° . На одну из сторон опустили медиану. Найдите чему равна площадь получившихся треугольников, если площадь изначального треугольника равна S.