Numerical Methods for PDEs

Integral Equation Methods, Lecture 4
Formulating Boundary Integral Equations

Notes by Suvranu De and J. White

April 30, 2003

Outline

Laplace Problems

Exterior Radiation Condition

Green's function

Ansatz or Indirect Approach

Single and Double Layer Potentials

First and Second Kind Equations

Greens Theorem Approach

First and Second Kind Equations

3-D Laplace Problems

Differential Equation

Laplace's equation in 3-D

$$abla^2 u(ec x) = rac{\partial^2 u(ec x)}{\partial x^2} + rac{\partial^2 u(ec x)}{\partial y^2} + rac{\partial^2 u(ec x)}{\partial z^2} = 0$$

where

$$ec{x}=x,y,z\in\Omega$$

and Ω is bounded by Γ .

3-D Laplace Problems

Boundary Conditions

Dirichlet Condition

$$u(ec{x}) = u_{\Gamma}(ec{x}) \;\; ec{x} \in \Gamma$$

OR

$$rac{\partial u(ec{x})}{\partial n_{ec{x}}} = rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} \ \ ec{x} \in \Gamma$$

PLUS

A Radiation Condition

3-D Laplace Problems

Boundary Conditions

Radiation Condition

The Radiation Condition

$$lim_{||ec{x}|| o \infty} u(ec{x}) o 0$$

not specific enough! Need

$$lim_{||ec{x}||
ightarrow \infty} u(ec{x})
ightarrow O(||ec{x}||^{-1})$$

OR

$$lim_{ertec{x}ert
ightarrow\infty}u(ec{x})
ightarrow O(ertec{x}ert^{-2})$$

Greens Function

3-D Laplace Problems

Laplace's Equation Greens Function

$$abla^2 G(ec{x}) = 4\pi\delta(ec{x})$$

 $\delta(\vec{x}) \equiv \text{impulse in 3-D}$

Defined by its behavior in an integral

$$\int \delta(ec{x}')f(ec{x}')d\Omega' = f(0)$$

Not too hard to show

$$G(ec{x}) = rac{1}{\|ec{x}\|}$$

Single Layer Potential

Consider

$$u(ec{x}) = \int_{\Gamma} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma'$$

 $u(\vec{x})$ automatically satisfies $\nabla^2 u = 0$ on Ω .

Must now enforce boundary conditions

Single Layer Potential

Boundary Conditions

Dirichlet Problem

$$u_{\Gamma}(ec{x}) = \int_{\Gamma} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$

Neumann Problem

$$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = rac{\partial}{\partial n_{ec{x}}} \int_{\Gamma} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$

Single Layer Potential

Care Evaluating Integrals

On a smooth surface:

$$egin{aligned} &\lim_{x o\Gamma}rac{\partial}{\partial n_{ec{x}}}\int_{\Gamma}rac{1}{||ec{x}-ec{x}'||}\sigma(ec{x}')d\Gamma' \ &=2\pi\sigma(ec{x}')+\int_{\Gamma}rac{\partial}{\partial n_{ec{x}}}rac{1}{||ec{x}-ec{x}'||}\sigma(ec{x}')d\Gamma' \end{aligned}$$

Single Layer Potential

Neumann Problem 2nd Kind!

$$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = 2\pi \sigma(ec{x}') + \int_{\Gamma} rac{\partial}{\partial n_{ec{x}}} rac{1}{||ec{x}-ec{x}'||} \sigma(ec{x}') d\Gamma'$$

Single Layer Potential

Radiation Condition

$$lim_{\|ec{x}\|
ightarrow\infty}u(ec{x})=\int_{\Gamma}rac{1}{\|ec{x}-ec{x}'\|}\sigma(ec{x}')d\Gamma'
ightarrow O(\|ec{x}\|^{-1}).$$

Unless

$$\int_{\Gamma} \sigma(ec{x}') d\Gamma' = 0$$

Then

$$lim_{||ec{x}||
ightarrow \infty} u(ec{x})
ightarrow O(||ec{x}||^{-2})$$

Double Layer Potential

Consider

$$u(ec{x}) = \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{\|ec{x} - ec{x}'\|} \mu(ec{x}') d\Gamma'$$

 $u(\vec{x})$ automatically satisfies $\nabla^2 u = 0$ on Ω .

Must now enforce boundary conditions

Double Layer Potential

Boundary Conditions

Dirichlet Problem

$$u_{\Gamma}(ec{x}) = \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$

Neumann Problem

$$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = rac{\partial}{\partial n_{ec{x}}} \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma' \;\; ec{x} \in \Gamma$$

Neumann Problem generates Hypersingular Integral

Double Layer Potential

Dirichlet Problem 2nd Kind!

$$rac{\partial u_{\Gamma}(ec{x})}{\partial n_{ec{x}}} = 2\pi \sigma(ec{x}') + \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{||ec{x}-ec{x}'||} \sigma(ec{x}') d\Gamma'$$

Double Layer Potential

Radiation Condition

$$lim_{\|ec{x}\|
ightarrow \infty} u(ec{x}) = \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{\|ec{x} - ec{x}'\|} \sigma(ec{x}') d\Gamma'
ightarrow O(\|ec{x}\|^{-2})$$

Add Extra Term to slow decay

$$u(ec{x}) = \int_{\Gamma} rac{\partial}{\partial n_{ec{x}'}} rac{1}{||ec{x} - ec{x}'||} \sigma(ec{x}') d\Gamma' + lpha G(ec{x}^*) \;\; ec{x}^*
i \Omega$$

Green's Theorem Approach

Green's Second Identity

$$\int_{\Omega} \left[u
abla^2 w - w
abla^2 u
ight] d\Omega = \int_{\Gamma} \left[w rac{\partial u}{\partial n} - u rac{\partial w}{\partial n} d\Gamma
ight]$$

Now let
$$oldsymbol{w} = rac{1}{\|ec{x} - ec{x}'\|}$$

$$\mathbf{2}\pi u(ec{x}) = \int_{\Gamma} \left[rac{1}{||ec{x} - ec{x}'||} rac{\partial u}{\partial n} - u rac{\partial}{\partial n_{ec{x}'}} rac{1}{||ec{x} - ec{x}'||} d\Gamma
ight]$$

Easy to implement any boundary conditions!