IAP15 Rec'd PCT/PTO 23 MAR 2006

Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen

- Die Erfindung betrifft ein Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen durch in situ-Hybridisierung. Weiter betrifft die Erfindung spezifische Oligonukleotidsonden, die im Rahmen des Nachweisverfahrens eingesetzt werden sowie Kits, die diese Oligonukleotidsonden enthalten.
- Unter dem Oberbegriff "Alkoholfreie Getränke" (AfG) werden Getränkegruppen wie Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer zusammengefasst.
- Generell können alkoholfreie Getränke aufgrund ihrer sehr vielseitigen

 Zusammensetzung aus Nähr- und Wuchsstoffen als potenziell gefährdet durch das
 Wachstum eines breiten Spektrums von Mikroorganismen eingestuft werden.
 - Nach heutigem Kenntnisstand werden hauptsächlich Hefen, Schimmelpilze, Milchsäurebakterien, Essigsäurebakterien, Bazillen und Alicyclobazillen im AfG-
- Bereich vorgefunden und somit als "getränkeschädliche Mikroorganismen" beschrieben.
 - Die Kontaminationen mit diesen Mikroorganismen führen in der Regel nicht zu gesundheitlichen Schäden des Konsumenten, sie gehen aber meist mit Trübungen, Geschmacks- und Geruchsveränderungen des Endprodukts einher und führen durch
- einen daraus resultierenden Imageverlust zu hohen wirtschaftlichen Einbußen für die produzierende Industrie.
 - In Fruchtsäften und Fruchtnektaren können sich aufgrund der meist natürlicherweise hohen Konzentration an Fruchtsäuren und einem damit verbundenen niedrigen pH-
- Wert (pH-Bereich 2,5 bis 4,5) i.d.R. nur acidophile oder acidotolerante
 Mikroorganismen (z.B. Milchsäurebakterien, Alicyclobazillen, säuretolerante Hefe-

und Schimmelpilzarten) vermehren und somit zu einer Schädigung dieser Getränke führen.

Eine Maßnahme zur Einschränkung des Verderbs durch Mikroorganismen stellt die Carbonisierung von Getränken dar. Dieses Verfahren wird sehr häufig bei der Herstellung von Erfrischungsgetränken eingesetzt. Durch die Zugabe von CO₂ wird im Produkt ein nahezu anaerobes Milieu geschaffen und nur mikroaerophile, fakultativ anaerobe und anaerobe Mikroorganismen (z.B. Milchsäurebakterien, Essigsäurebakterien und Hefen) sind in der Lage, dieses Milieu zu tolerieren.

10

15

25

5

Stille Getränke werden in den meisten Fällen einem Pasteurisierungsprozess unterzogen, um eine lange Stabilität und Qualität dieser Produkte zu gewährleisten. Durch die Pasteurisierung sollen möglichst umfassend alle vegetativen Mikroorganismen abgetötet werden. Allerdings findet dadurch keine Eliminierung der durch Bazillen und Alicyclobazillen gebildeten Sporen statt. Zudem sind auch einige Schimmelpilzarten in der Lage, diesen Prozess ohne Schaden zu überstehen und nachfolgend Produktschäden hervorzurufen.

Ein entscheidender Faktor in der Gewährleistung der biologischen Qualität von

Getränken ist die Fahndung nach der Ursache der Kontamination, um diese endgültig
zu beseitigen.

Im Allgemeinen werden dabei zwei Kontaminationswege unterschieden: Als Primärkontamination werden Kontaminationen bezeichnet, bei denen Mikroorganismen durch die Rohstoffe oder durch Verunreinigungen im Prozess in das Produkt eingetragen werden.

Sekundärkontaminationen sind Kontaminationen, die nach der eigentlichen Produktion des Getränks im Abfüllbereich auftreten.

Die Herausforderung, die sich durch diese verschiedenen Faktoren an die 30 mikrobiologische Qualitätskontrolle stellt, besteht darin, umfassend und schnell alle im Produkt vorhandenen Keime zu identifizieren, um möglichst rasch entsprechende Gegenmaßnahmen einleiten zu können.

Bislang erfolgt der konventionelle Nachweis von AfG-Schädlingen durch mehrtägige

Anreicherung der Untersuchungsprobe in einem Selektivmedium und anschließende
Lichtmikroskopie. Zudem müssen zur genauen Bestimmung des AfG-Verderbers
weitere physiologische Tests (wie Gram-Färbung, Zuckerverwertungsreihen)
durchgeführt werden.

Die Nachteile dieser ausschließlich kultivierungsabhängigen Methode liegen in der langen Analysedauer, welche erhebliche logistische Kosten in den getränkeproduzierenden Betrieben verursacht. Darüber hinaus droht nach der Auslieferung von Produkten, deren mikrobiologischer Befund noch nicht einwandfrei feststand ein beträchtlicher Imageverlust für das betreffende Unternehmen, wenn im Fall von Kontaminationen Rückholaktionen von verdorbenen Produktchargen nötig werden.

Im Folgenden werden die getränkeschädlichen Mikroorganismen und deren Nachweis, wie er im Stand der Technik erfolgt, im Detail beschrieben.

20 <u>Hefen und Schimmelpilze</u>:

Zu denjenigen Mikroorganismen, die eine Hitzebehandlung überleben und anschließend Probleme in den Getränken verursachen können, zählen vor allem die Schimmelpilze Byssochlamys fulva und B. nivea, Neosartorya fischeri und Talaromyces flavus sowie einige Hefen. In carbonisierten Getränken sind die säuretoleranten, fermentativen Vertreter der Hefen (Saccharomyces spp., Dekkera spp. und Zygosaccharomyces bailii) vorherrschend. Neben der Beeinträchtigung der Produkte durch Geschmacksveränderungen und Trübung geht von diesen "gärfähigen Hefen" eine potenzielle Gefahr durch fallweise Explosion ("Bombagen") der Abfüllbehältnisse aus.

5

20

Der Nachweis von Hefen und Schimmelpilzen im AfG-Bereich erfolgt derzeit über die Kultivierung auf entsprechenden Nährmedien (z.B. SSL-Bouillon, OFS-Medium, Malzextrakt-Medium, Würze-Agar) und dauert zwischen 2 und 7 Tagen. Ein Nachweis auf Gattungs- oder gar Artebene ist sehr zeitaufwendig und wird in der Regel nicht durchgeführt.

Milchsäurebakterien:

Die Vertreter der Milchsäurebakterien sind gram-positive, nicht sporenbildende, Katalase-negative Stäbchen oder Kokken, die sich durch einen sehr hohen

Nährstoffanspruch (vor allem an Vitaminen, Aminosäuren, Purinen und Pyrimidinen) auszeichnen. Wie der Name schon andeutet, sind alle Milchsäurebakterien in der Lage, als Gärprodukt Milchsäure herzustellen.

Aufgrund ihres anaeroben Wachstums und der für anaerobe Mikroorganismen
atypische hohe Toleranz und Unempfindlichkeit gegenüber Sauerstoff werden sie als
aerotolerante Anaerobier bezeichnet.

Bis dato werden u.a. die Gattungen Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Carnobacterium, Bifidobacterium, Enterococcus, Pediococcus, Weissella und Streptococcus unter dem Begriff "Milchsäurebakterien" geführt.

Milchsäurebakterien haben in der Lebensmittelindustrie eine ambivalente Rolle.
Einerseits ist ihr Vorhandensein in manchen Prozessen, wie z.B. der Herstellung von Sauerkraut, erwünscht und somit nicht wegzudenken. Andererseits kann ihr
Vorkommen in Bier oder Fruchtsäften zu einem Verderb dieser Produkte führen. Das Wachstum dieser Bakterien äußert sich vornehmlich durch Trübung, Säuerung, Gasund Schleimbildung.

- 5 -

In der AfG-Industrie sind hauptsächlich die Bakteriengattungen Leuconostoc, Lactococcus, Lactobacillus, Oenococcus, Weissella und Pediococcus als Kontaminanten von Bedeutung.

Milchsäurebakterien werden durch 5- bis 7-tägige Inkubation bei 25 °C auf MRS-

5 Agar (pH 5,7) nachgewiesen.

Essigsäurebakterien:

Mit dem Trivialnamen "Essigsäurebakterien" werden Bakterien der Gattungen Acetobacter, Gluconobacter, Gluconobacter und Acidomonas bezeichnet.

Bakterien dieser Gattungen sind gram-negative, obligat aerobe, Oxidase-negative Stäbchen, deren optimale Vermehrungstemperatur um 30 °C liegt.

Essigsäurebakterien sind in der Lage, sich auch bei pH-Werten um 2,2 bis 3,0 zu vermehren und können daher in Getränken mit diesem pH-Wert Produktschäden hervorrufen.

15

Phylogenetisch werden Bakterien dieser Gattung als Mitglieder der Alphaproteobakterien eingestuft.

Die Produktschädigungen gehen zumeist mit Trübungen und

20 Geschmacksveränderungen durch die Bildung von Essigsäure und Gluconsäure einher.

Für den Nachweis von Essigsäurebakterien haben sich vor allem ACM-Agar (Inkubationszeit: 14 Tage) und DSM-Agar (Inkubationszeit: 3 bis 5 Tage) bewährt.

25

Bazillen:

Bazillen sind gram-positive aerobe, z.T. fakultativ anaerobe, zumeist Katalasepositive sporenbildende Stäbchen. In der AfG-Industrie wurde bis dato hauptsächlich Bacillus coagulans als Verderbniserreger identifiziert.

- 6 -

Der Nachweis erfolgt durch Ausstrich des Untersuchungsmaterials auf Dextrose-Caseinpepton-Agar oder Hefeextrakt-Pepton-Dextrose-Stärke-Agar und anschließender Inkubation bei 55 °C (Inkubationszeit: 3 Tage). Um eine Aktivierung bzw. eine Auskeimung der B. coagulans-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Alicyclobazillen:

5

10

Alicyclobazillen sind gram-positive, aerobe, thermophile und Katalase-positive sporenbildende Stäbchen. Vertreter dieser Gattung bilden ω -alicyclische Fettsäuren als zelluläre Hauptfettsäuren.

In der AfG-Industrie wurde bis dato weltweit hauptsächlich Alicyclobacillus acidoterrestris als Verderbniserreger nachgewiesen. In seltenen Fällen wurden auch A. acidocaldarius und A. acidiphilus in verdorbenen Getränken identifiziert.

Der optimale Wachstumstemperaturbereich für *Alicyclobacillus spp.* liegt zwischen 26 und 55 °C. Der pH-Bereich, in dem sich Bakterien dieser Gattung vermehren können, liegt zwischen 2,2 und 5,8.

Das Wachstum von A. acidoterrestris führt in Fruchtsäften zu Verderb, der sich infolge der Bildung von Guajakol und Di-Bromphenol in Geruchs- und Geschmacksveränderungen äußert. Eine Kontamination mit diesem Organismus verläuft zumeist inapparent, was bedeutet, dass nur in seltenen Fällen eine Trübung in den infizierten Getränken auftritt.

Alicyclobazillen können über mehrtägige Kultivierung bei 44 bis 46 °C auf
Orangenserum-Agar, Kartoffel-Dextrose-Agar, K-Agar, YSG-Agar oder BAM-Agar
nachgewiesen werden. Zudem ist zur sicheren Bestätigung des Befundes eine Reihe
physiologischer Tests notwendig. Um eine Aktivierung bzw. eine Auskeimung der
Alicyclobacillus ssp.-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine
Erwärmung der Probe bei 80 °C für 10 min empfohlen.

-7-

Die bisher in der Routineanalytik eingesetzten Nachweisverfahren für getränkeschädliche Mikroorganismen sind sehr langwierig und teilweise zu ungenau und verhindern somit schnelle und wirkungsvolle Gegenmaßnahmen zum Erhalt des kontaminierten Produktes. Die Ungenauigkeit resultiert beim Nachweis aus einer fehlenden Differenzierung bis auf Gattungs- und/oder Artebene.

5

10

Als logische Konsequenz aus den Schwierigkeiten, welche bei traditionellen Kultivierungsverfahren beim Nachweis von getränkeschädlichen Mikroorganismen auftreten, bieten sich daher Nachweisverfahren auf Nukleinsäurebasis zur schnellen, sicheren und spezifischen Identifizierung von Verderbniserregern in alkoholfreien Gertränken an.

Bei der PCR, der Polymerase-Kettenreaktion, wird mit spezifischen Primern ein charakteristisches Stück des jeweiligen Mikroorganismengenoms amplifiziert. Findet der Primer seine Zielstelle, so kommt es zu einer millionenfachen Vermehrung eines 15 Stücks der Erbsubstanz. Bei der anschließenden Analyse, z.B. mittels eines DNA-Fragmente auftrennenden Agarose-Gels, kann eine qualitative Bewertung stattfinden. Im einfachsten Fall führt dies zu der Aussage, dass die Zielstellen für die verwendeten Primer in der untersuchten Probe vorhanden waren. Weitere Aussagen sind nicht möglich; diese Zielstellen können sowohl von einem lebenden Bakterium, . 20 als auch von einem toten Bakterium oder von nackter DNA stammen. Da die PCR-Reaktion auch bei Anwesenheit eines toten Bakteriums oder nackter DNA positiv ausfällt, kommt es hier häufig zu falsch positiven Ergebnissen. Eine Weiterführung dieser Technik stellt die quantitative PCR dar, bei der versucht wird, eine Korrelation 25 zwischen der Menge an vorhandenen Mikroorganismen und der Menge an amplifizierter DNA herzustellen. Vorteile der PCR liegen in ihrer hohen Spezifität, leichten Anwendbarkeit und im geringen Zeitaufwand. Wesentliche Nachteile sind ihre hohe Anfälligkeit für Kontaminationen und damit falsch positive Ergebnisse sowie die bereits erwähnte fehlende Möglichkeit, zwischen lebenden und toten 30 Zellen bzw. nackter DNA zu unterscheiden.

Einen einzigartigen Ansatz, die Spezifität der molekularbiologischen Methoden wie der PCR mit der Möglichkeit der Mikroorganismenvisualisierung, wie sie die Antikörper-Methoden ermöglichen, zu verbinden, bietet die Methode der Fluoreszenz-In-Situ-Hybridisierung (FISH; Amann, R. I., W. Ludwig und K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59, S. 143-169). Hierbei können

Mikroorganismenarten, -gattungen oder -gruppen hochspezifisch identifiziert und

10

visualisiert werden.

5

WO 2005/031004

Die FISH-Technik basiert auf der Tatsache, dass es in Mikroorganismenzellen bestimmte Moleküle gibt, die aufgrund ihrer lebenswichtigen Funktion im Laufe der Evolution nur wenig mutiert sind: Die 16S, 18S, 23S und 26S ribosomale Ribonukleinsäure (rRNA). Sie sind Bestandteile der Ribosomen, den Orten der Proteinbiosynthese, und können aufgrund ihrer ubiquitären Verbreitung, ihrer Größe, und ihrer strukturellen und funktionellen Konstanz als spezifische Marker dienen (Woese, C. R., 1987. Bacterial evolution. Microbiol. Rev. 51, S. 221-271). Ausgehend von einer vergleichenden Sequenzanalyse können phylogenetische Beziehungen allein aufgrund dieser Daten aufgestellt werden. Dazu müssen diese Sequenzdaten in ein Alignment gebracht werden. Im Alignment, welches sich auf Kenntnisse über die Sekundärstruktur und Tertiärstruktur dieser Makromoleküle stützt, werden die homologen Positionen der ribosomalen Nukleinsäuren in Einklang miteinander gebracht.

Ausgehend von diesen Daten können phylogenetische Berechnungen durchgeführt werden. Der Einsatz modernster Computertechnologie macht es möglich, auch großangelegte Berechnungen schnell und effektiv auszuführen, sowie große Datenbanken, welche die Alignment-Sequenzen der 16S, 18S, 23S und 26S rRNA beinhalten, anzulegen. Durch den schnellen Zugriff auf dieses Datenmaterial können neu erhaltene Sequenzen in kurzer Zeit phylogenetisch analysiert werden. Diese

-9-

rRNA Datenbanken können dazu verwendet werden, art- und gattungsspezifische Gensonden zu konstruieren. Hierbei werden alle verfügbaren rRNA Sequenzen miteinander verglichen und für bestimmte Sequenzstellen Sonden entworfen, die spezifisch eine Mikroorganismenart, -gattung oder -gruppe erfassen.

5

10

30

Bei der FISH (Fluoreszenz-In-Situ-Hybridisierung)-Technik werden diese Gensonden, die zu einer bestimmten Region auf der ribosomalen Zielsequenz komplementär sind, in die Zelle eingeschleust. Die Gensonden sind i.d.R. kleine, 16 bis 20 Basen lange, einzelsträngige Desoxyribonukleinsäurestücke und richten sich gegen eine Zielregion, welche typisch für eine Mikroorganismenart oder eine Mikroorganismengruppe ist. Findet die fluoreszenzmarkierte Gensonde in einer Mikroorganismenzelle ihre Zielsequenz, so bindet sie daran und die Zellen können aufgrund ihrer Fluoreszenz mit Hilfe eines Fluoreszenzmikroskops detektiert werden.

Die FISH-Analyse wird grundsätzlich auf einem Objektträger durchgeführt, da die Mikroorganismen bei der Auswertung durch Bestrahlung mit einem hochenergetischen Licht visualisiert, also sichtbar gemacht werden. Hierin liegt allerdings einer der Nachteile der klassischen FISH-Analyse: da auf einem Objektträger naturgemäß nur relativ kleine Volumina analysiert werden können, ist die Sensitivität der Methode unbefriedigend und für eine verlässliche Analyse nicht ausreichend.

Mit der vorliegenden Erfindung werden daher die Vorteile der klassischen FISHAnalyse mit denen der Kultivierung verknüpft. Durch einen vergleichsweise kurzen
Kultivierungsschritt wird sichergestellt, dass die nachzuweisenden Mikroorganismen in ausreichender Zahl vorliegen, bevor der Nachweis der Mikroorganismen mittels spezifischer FISH durchgeführt wird.

Die Durchführung der in der vorliegenden Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

20

Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei

- 5 (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der
- Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der
- Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius umfasst somit die folgenden Schritte:
 - Kultivieren der in der untersuchten Probe enthaltenen getränkeschädlichen Mikroorganismen
 - Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen
 - Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde, um eine Hybridisierung herbeizuführen,
- 25 Entfernen bzw. Abwaschen der nicht hybridisierten Oligonukleotidsonden und
 - Detektieren der mit den Oligonukleotidsonden hybridisierten getränkeschädlichen Mikroorganismen.

Im Rahmen der vorliegenden Erfindung wird unter "Kultivieren" die Vermehrung der in der Probe enthaltenen Mikroorganismen in einem geeigneten Kultivierungsmedium verstanden.

Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich B. coagulans, kann die Kultivierung z.B. auf Dextrose-Caseinpepton-Agar für 48 h bei 55 °C erfolgen.

Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.

15

20

Der Fachmann kann die geeigneten Kultivierungsverfahren für jeden zu untersuchenden Mikroorganismus bzw. jede Mikroorganismengruppe dem Stand der Technik entnehmen.

Im Rahmen der vorliegenden Erfindung wird unter "Fixieren" der Mikroorganismen eine Behandlung verstanden, mit der die Hülle der Mikroorganismen für Nukleinsäuresonden durchlässig gemacht wird. Zur Fixierung wird üblicherweise Ethanol verwendet. Kann die Zellwand trotz dieser Behandlung nicht von den Nukleinsäuresonden penetriert werden, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zu demselben Ergebnis führen. Dazu zählen beispielsweise der Einsatz von Methanol, Mischungen von Alkoholen, einer niederprozentigen Paraformaldehydlösung oder einer verdünnten Formaldehydlösung, enzymatische

25 Behandlungen oder ähnliches. Es kann sich in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ein enzymatischer Schritt zum vollständigen Aufschluss der Mikroorganismen anschließen. Als Enzyme sind hier bspw. Lysozym, Proteinase K und Mutanolysin zu nennen. Dem Fachmann sind hier genügend geeignete Verfahren bekannt, und er wird auf einfache Weise feststellen

können, welches Mittel für den Zellaufschluss eines bestimmten Mikroorganismus besonders geeignet ist.

Im Rahmen der vorliegenden Erfindung werden für die "Hybridisierung" die fixierten Mikroorganismen mit fluoreszenzmarkierten Oligonukleotidsonden inkubiert. Diese Oligonukleotidsonden können nach dem Fixieren die Zellhülle penetrieren und an die der Oligonukleotidsonde entsprechende Zielsequenz im Zellinneren binden. Die Bindung ist als Ausbildung von Wasserstoffbrücken zwischen komplementären Nukleinsäurestücken zu verstehen.

10

15

5

Die Oligonukleotidsonde kann dabei komplementär zu einer chromosomalen oder episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden Mikroorganismus. Von Vorteil ist es, eine Oligonukleotidsonde zu wählen, die zu einem Bereich komplementär ist, der in einer Kopienzahl von mehr als 1 im nachzuweisenden Mikroorganismus vorhanden ist. Die nachzuweisende Sequenz liegt bevorzugt 500 bis 100.000 mal pro Zelle vor, besonders bevorzugt 1.000 bis 50.000 mal. Aus diesem Grunde wird bevorzugt eine Sequenz aus der rRNA als Zielsequenz verwendet, da die Ribosomen in der Zelle als Orte der Proteinbiosynthese viele tausendmal in jeder aktiven Zelle vorliegen.

20

25

Bei der Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder RNA-Sonde handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25 Nukleotide. Die Auswahl der Nukleinsäuresonden geschieht unter dem Gesichtspunkt, ob eine komplementäre Sequenz in dem nachzuweisenden Mikroorganismus vorliegt. Durch diese Auswahl einer definierten Sequenz kann eine Mikroorganismenart, eine Mikroorganismengattung oder eine ganze Mikroorganismengruppe erfasst werden. Komplementarität sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei Oligonukleotiden mit

mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Zur Erhöhung der Spezifität von Nukleinsäuresonden können Kompetitorsonden eingesetzt werden. Unter dem Begriff "Kompetitorsonden" werden im Rahmen der vorliegenden Erfindung insbesondere Oligonukleotide verstanden, die eventuell auftretende ungewollte Bindungen der Nukleinsäuresonden abdecken und dabei eine höhere Sequenzähnlichkeit zu nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies aufweisen als zu den nachzuweisenden Mikroorganismengattungen bzw. -spezies. Durch den Einsatz von Kompetitorsonden kann verhindert werden, dass die Nukleinsäuresonde an die Nukleinsäuresequenz der nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies bindet und zu falschen Signalen führt. Die unmarkierte Kompetitorsonde wird immer zusammen mit der entsprechenden markierten Oligonukleotidsonde eingesetzt.

15

5

10

Die Kompetitorsonde sollte komplementär sein zu einer Nukleinsäuresequenz mit hoher Sequenzähnlichkeit zur Nukleinsäuresequenz der nachzuweisenden Mikroorganismengattungen bzw. -spezies. Besonders bevorzugt ist die Kompetitorsonde komplementär zur rRNA von nicht nachzuweisenden

20 Mikroorganismengattungen bzw. -spezies.

Bei der Kompetitorsonde kann es sich im Sinne der Erfindung um eine DNA- oder RNA-Sequenz handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25

Nukleotide. Durch die Auswahl einer definierten Sequenz kann die Hybridisierung der markierten Oligonukleotidsonde an die Nukleinsäuresequenz einer Bakterienart, einer Bakteriengattung oder einer ganzen Bakteriengruppe abgeblockt werden. Komplementarität zu der abzublockenden Nukleinsäuresequenz sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei

Oligonukleotiden mit mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Im Rahmen der erfindungsgemäßen Verfahren haben die erfindungsgemäßen

Nukleinsäuresondenmoleküle die nachstehend angegebenen Längen und Sequenzen
(alle Nukleinsäuresondenmoleküle sind in 5'-3'-Richtung notiert).

Die erfindungsgemäßen Nukleinsäuresondenmoleküle sind zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und 10 Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, 15 Saccharomycodes ludwigii oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen 20 Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. 25

erfindungsgemäßen Nachweisverfahren eingesetzt.

Im Rahmen der vorliegenden Erfindung können Sonden, die unterschiedliche Arten

cycloheptanicus und A. herbarius geeignet und werden dementsprechend in dem

Im Rahmen der vorliegenden Erfindung können Sonden, die unterschiedliche Arten
 von Mikroorganismen nachweisen, zusammen eingesetzt werden, um dadurch den

gleichzeitigen Nachweis von unterschiedlichen Arten von Mikroorganismen zu ermöglichen. Dies führt ebenfalls zu einer Beschleunigung des Nachweisverfahrens.

a) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Hefen nachweisen:

SEQ ID No. 1:

5'- GTTTGACCAGATTCTCCGCTC

Die Sequenz SEQ ID No. 1 ist vor allem zum Nachweis von Mikroorganismen der Gattung Zygosaccharomyces geeignet.

SEQ ID No. 2:

5'- GTTTGACCAGATTTTCCGCTCT

SEQ ID No. 3:

5'- GTTTGACCAAATTTTCCGCTCT

SEQ ID No. 4:

5'- GTTTGTCCAAATTCTCCGCTCT

15

5

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 2 bis SEQ ID No. 4 werden als unmarkierte Kompetitorsonden für den Nachweis von Mikroorganismen der Gattung *Zygosaccharomyces* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1 eingesetzt, um das Binden der markierten, für Mikroorganismen der Gattung *Zygosaccharomyces* spezifischen Oligonukleotidsonde an

Gattung Zygosaccharomyces spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Mikroorganismen der Gattung Zygosaccharomyces sind, zu verhindern.

SEQ ID No. 5:

.

5'- CCCGGTCGAATTAAAACC

25 SEQ ID No. 6:

5'- GCCCGGTCGAATTAAAAC

SEQ ID No. 7:

5'- GGCCCGGTCGAATTAAAA

SEQ ID No. 8:

5'- AGGCCCGGTCGAATTAAA

SEQ ID No. 9:

5'- AAGGCCCGGTCGAATTAA

SEQ ID No. 10:

5'- ATATTCGAGCGAAACGCC

30 SEQ ID No. 11:

5'- AAAGATCCGGACCGGCCG

	SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 14	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
5	SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 17	5'- GAAAGGCCCGGTCGAATT
	SEQ ID No. 18	5'- AAAGGCCCGGTCGAATTA
	SEQ ID No. 19	5'- GGAAAGGCCCGGTCGAAT
	SEQ ID No. 20	5'- AGGAAAGGCCCGGTCGAA
10	SEQ ID No. 21	5'- AAGGAAAGGCCCGGTCGA

Die Sequenzen SEQ ID No. 5 bis SEQ ID No. 21 sind vor allem zum Nachweis von Zygosaccharomyces bailii geeignet.

15 SEQ ID No. 22: 5'- ATAGCACTGGGATCCTCGCC

Die Sequenz SEQ ID No. 22 ist vor allem zum Nachweis von Zygosaccharomyces fermentati geeignet.

20 SEQ ID No. 23: 5'- CCAGCCCCAAAGTTACCTTC SEQ ID No. 24: 5'- TCCTTGACGTAAAGTCGCAG

Die Sequenzen SEQ ID No. 23 und SEQ ID No. 24 sind vor allem zum Nachweis von Zygosaccharomyces microellipsoides geeignet.

SEQ ID No. 25: 5'- GGAAGAAAACCAGTACGC
SEQ ID No. 26: 5'- CCGGTCGGAAGAAAACCA
SEQ ID No. 27: 5'- GAAGAAAACCAGTACGCG
SEQ ID No. 28: 5'- CCCGGTCGGAAGAAAACC
30 SEQ ID No. 29: 5'- CGGTCGGAAGAAAACCAG

	SEQ ID No. 30:	5'- GGTCGGAAGAAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
5	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
10	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
	SEQ ID No. 40:	5'- GGCCCGGTCGGAAGAAA
	SEQ ID No. 41:	5'- ATAAACACCACCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
15	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCAGTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
20	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'-GAAAACCAGTACGCGGAA
	SEQ·ID·No.·52:	- 5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
25	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG
	SEQ ID No. 56:	
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	
30	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG

20

	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
5	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
10	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
15	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC

Die Sequenzen SEQ ID No. 25 bis SEQ ID No. 75 sind vor allem zum Nachweis von Zygosaccharomyces mellis geeignet.

SEQ ID No. 76: 5'- GTCGGAAAAACCAGTACG SEQ ID No. 77: -5'- GCCCGGTCGGAAAACCA SEQ ID No.-78:--- 5'--CCGGTCGGAAAAACCAGT SEQ ID No. 79: 5'- CCCGGTCGGAAAAACCAG 25 SEQ ID No. 80: 5'- TCGGAAAAACCAGTACGC SEQ ID No. 81: 5'- CGGAAAAACCAGTACGCG SEQ ID No. 82: 5'- GGAAAAACCAGTACGCGG SEQ ID No. 83: 5'- GTACGCGGAAAAATCCGG SEQ ID No. 84: 5'- AGTACGCGGAAAAATCCG 30 SEQ ID No. 85: 5'- GCGGAAAAATCCGGACCG

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95: "	5'- GGCCCGGTCGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAACCAGTACGCGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG

	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCCG
5	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCCGTC
	SEQ ID No. 121:	5'- AGTGGTGCCCTTCCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
10	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC

Die Sequenzen SEQ ID No. 76 bis SEQ ID No. 126 sind vor allem zum Nachweis von Zygosaccharomyces rouxii geeignet.

15

SEQ ID No. 127: 5'- CTCGCCTCACGGGGTTCTCA

Die Sequenz SEQ ID No. 127 ist vor allem zum gleichzeitigen Nachweis von Zygosaccharomyces mellis und Zygosaccharomyces rouxii geeignet.

20

SEQ ID No. 128: 5'- GGCCCGGTCGAAATTAAA SEQ ID No. 129: - --5'- AGGCCCGGTCGAAATTAA SEQ ID:No. 130:----5"-- AAGGCCCGGTCGAAATTA SEQ ID No. 131: 5'- AAAGGCCCGGTCGAAATT 25 SEQ ID No. 132: 5'- GAAAGGCCCGGTCGAAAT SEQ ID No. 133: 5'- ATATTCGAGCGAAACGCC SEQ ID No. 134: 5'- GGAAAGGCCCGGTCGAAA SEQ ID No. 135: 5'- AAAGATCCGGACCGGCCG SEQ ID No. 136: 5'- GGAAAGATCCGGACCGGC 30 SEQ ID No. 137: 5'- GAAAGATCCGGACCGGCC

- 21 -

SEQ ID No. 138: 5'- GATCCGGACCGGCCGACC
SEQ ID No. 139: 5'- AGATCCGGACCGGCCGAC
SEQ ID No. 140: 5'- AAGATCCGGACCGGCCGA
SEQ ID No. 141: 5'- AGGAAAGGCCCGGTCGAA
SEQ ID No. 142: 5'- AAGGAAAGGCCCGGTCGA

Die Sequenzen SEQ ID No. 128 bis SEQ ID No. 142 sind vor allem zum Nachweis von Zygosaccharomyces bisporus geeignet.

10 SEQ ID No. 143: 5'-CGAGCAAAACGCCTGCTTTG SEQ ID No. 144: 5'-CGCTCTGAAAGAGAGTTGCC

Die Sequenzen SEQ ID No. 143 und SEQ ID No. 144 sind vor allem zum Nachweis von *Hanseniaspora uvarum* geeignet.

SEQ ID No. 145: 5'-AGTTGCCCCCTACACTAGAC
SEQ ID No. 146: 5'-GCTTCTCCGTCCCGCGCCG

Die Sequenzen SEQ ID No. 145 und SEQ ID No. 146 sind vor allem zum Nachweis von Candida intermedia geeignet.

SEQ ID No. 147: 5'- AGATTYTCCGCTCTGAGATGG

Das Nukleinsäuresondenmoleküle gemäß SEQ ID No. 147 wird als unmarkierte Kompetitorsonde für den Nachweis von Candida intermedia gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 146 eingesetzt, um das Binden der markierten, für Candida intermedia spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Candida intermedia sind, zu verhindern.

5

15

SEQ ID No. 148: 5'- CCTGGTTCGCCAAAAAGGC

Die Sequenz SEQ ID No. 148 ist vor allem zum Nachweis von Candida parapsilosis geeignet.

5

SEQ ID No. 149: 5'-GATTCTCGGCCCCATGGG

Die Sequenz SEQ ID No. 149 ist vor allem zum Nachweis von Candida crusei (Issatchenkia orientalis) geeignet.

10

SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT

Die Sequenz SEQ ID No. 150 ist vor allem zum gleichzeitigen Nachweis von Dekkera anomala und Brettanomyces (Dekkera) bruxellensis geeignet.

15

SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA

Die Sequenz SEQ ID No. 151 ist vor allem zum Nachweis von Brettanomyces (Dekkera) bruxellensis geeignet.

20

SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT

Die Sequenz SEQ-ID No.-1-52 ist vor allem zum Nachweis von Brettanomyces (Dekkera) naardenensis geeignet.

25

SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG

Die Sequenz SEQ ID No. 153 ist vor allem zum Nachweis von *Pichia membranaefaciens* geeignet.

- 23 -

SEQ ID No. 154: 5'- TCATCAGACGGGATTCTCAC

Die Sequenz SEQ ID No. 154 ist vor allem zum gleichzeitigen Nachweis von *Pichia minuta* und *Pichia anomala* geeignet.

5

SEQ ID No. 155:

5'- CTCATCGCACGGGATTCTCACC

SEQ ID No. 156:

5'- CTCGCCACACGGGATTCTCACC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 155 und SEQ ID No. 156

werden als unmarkierte Kompetitorsonden für den gemeinsamen Nachweis von
Pichia minuta und Pichia anomala gemeinsam mit der Oligonukleotidsonde gemäß
SEQ ID No. 154 eingesetzt, um das Binden der markierten, für Pichia minuta und
Pichia anomala spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die
nicht spezifisch für Pichia minuta und Pichia anomala sind, zu verhindern.

15

SEQ ID No. 157: 5'-AGTTGCCCCCTCTAAGC

Die Sequenz SEQ ID No. 157 ist vor allem zum Nachweis von Saccharomyces exiguus geeignet.

20

SEQ ID No. 158:

5'-CTGCCACAAGGACAAATGGT

SEQ ID No. 159:

5'-TGCCCCCTCTTCTA'AGCAAAT

Die Sequenzen SEQ ID No. 158 und SEQ ID No. 159 sind vor allem zum Nachweis von Saccharomycodes ludwigii geeignet.

SEQ ID No. 160:

5'-CCCCAAAGTTGCCCTCTC

Die Sequenz SEQ ID No. 160 ist vor allem zum Nachweis von Saccharomyces cerevisiae geeignet.

SEQ ID No. 161:

5'-GCCGCCCAAAGTCGCCCTCTAC

SEQ ID No. 162:

5'-GCCCCAGAGTCGCCTTCTAC

- Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 161 und SEQ ID No. 162 werden als unmarkierte Kompetitorsonden für den Nachweis von Saccharomyces cerevisiae gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 160 eingesetzt, um das Binden der markierten, für Saccharomyces cerevisiae spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
- 10 Saccharomyces cerevisiae sind, zu verhindern.
 - b) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Schimmelpilze nachweisen:
- 15 SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT

Die Sequenz SEQ ID No. 163 ist vor allem zum Nachweis von *Mucor racemosus* geeignet.

20 SEQ ID No. 164: 5'- CATCATAGAACACCGTCC

Die Sequenz SEQ ID No. 164 ist vor allem zum Nachweis von Byssochlamys nivea geeignet.

25 SEQ ID No. 165: 5'- CCTTCCGAAGTCGAGGTTTT

Die Sequenz SEQ ID No. 165 ist vor allem zum spezifischen Nachweis von *Neosartorya fischeri* geeignet.

30 SEQ ID No. 166: 5'- GGGAGTGTTGCCAACTC

Die Sequenz SEQ ID No. 166 ist vor allem zum gleichzeitigen Nachweis von Aspergillus fumigatus und A. fischeri geeignet.

5 SEQ ID No. 167: 5'- AGCGGTGGTTCGCAACCCT

Die Sequenz SEQ ID No. 167 ist vor allem zum Nachweis von *Talaromyces flavus* geeignet.

10 SEQ ID No. 168: 5'- CCGAAGTCGGGGTTTTGCGG

Die Sequenz SEQ ID No. 168 ist vor allem zum gleichzeitigen Nachweis von *Talaromyces bacillisporus* und *T. flavus* geeignet.

15 c) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Milchsäurebakterien nachweisen:

SEQ ID No. 169: 5'- GATAGCCGAAACCACCTTTC SEQ ID No. 170: 5'- GCCGAAACCACCTTTCAAAC 20 SEQ ID No. 171: 5'- GTGATAGCCGAAACCACCTT SEQ ID No. 172: 5'- AGTGATAGCCGAAACCACCT SEQ ID No. 173: 5'- TTTAACGGGATGCGTTCGAC SEQ ID No. 174: 5'- AAGTGATAGCCGATACCACC SEQ ID No. 175: 5'- GGTTGAATACCGTCAACGTC 25 SEQ ID No. 176: 5'- GCACAGTATGTCAAGACCTG SEQ ID No. 177: 5'- CATCCGATGTGCAAGCACTT SEQ ID No. 178: 5'- TCATCCGATGTGCAAGCACT SEQ ID No. 179: 5'- CCGATGTGCAAGCACTTCAT SEQ ID No. 180: 5'- CCACTCATCCGATGTGCAAG 30 SEQ ID No. 181: 5'- GCCACAGTTCGCCACTCATC

- 26 -

	SEQ ID No. 182:	5'- CCTCCGCGTTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGO
	SEQ ID No. 185:	5'- CCAGTTCGCCACAGTTCGCC
5	SEQ ID No. 186:	5'- CTCATGGGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTCGCCACAGTTCGCCA
	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
10	SEQ ID No. 191:	5'- CGCCACAGTTCGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTCGCCACT
	SEQ ID No. 194:	5'- TCCTCCGCGTTTGTCACCGG
	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
15	SEQ ID No. 196:	5'- AGTTCGCCACAGTTCGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTCGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
	SEQ ID No. 200:	5'- CCACAGTTCGCCACTCATCC
20	SEQ ID No. 201:	5'- GATTTAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
25	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCGCGTTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
	SEQ ID No. 210:	5'- CACCAGTTCGCCACAGTTCG
30	SEQ ID No. 211:	5'- ACGGGATGCGTTCGACTTGC

	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
5	SEQ ID No. 216:	5'- TCCGCGTTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTTGTCACCGGCAGT
	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
10	SEQ ID No. 221:	5'- CATTTAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTCGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTTGTCACCGGCA
	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
15	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
20	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
25	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCGGGTCCTTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTCGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
	SEQ ID No. 240:	5'- CTCACCAGTTCGCCACAGTT
30	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG

- 28 -

	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
5	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTTCGCCACTCATCCGATG
	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
10	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTTGTCACC
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTTGTCAC
15	SEQ ID No. 256:	5'- ACGCCGCGGGTCCTTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTTCCAGAAGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAAGTGATAGCCGA
	SEQ ID No. 260:	5'- GCCTTGGTGAACCATTACTC
20	SEQ ID No. 261:	5'- ACAGTTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTTGGGTGTTGC
	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTTG
25	SEQ ID No. 266:	5'- ACCGAACCGACTTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTTGGG

- 29 -

Die Sequenzen SEQ ID No. 169 bis SEQ ID No. 269 sind vor allem zum Nachweis von Lactobacillus collinoides geeignet.

SEQ ID No. 270: 5'- CCTTTCTGGTATGGTACCGTC SEQ ID No. 271: 5'- TGCACCGCGGAYCCATCTCT

5

Die Sequenzen SEQ ID No. 270 und SEQ ID No. 271 sind vor allem zum Nachweis von Mikroorganismen der Gattung Leuconostoc geeignet.

10	SEQ ID No. 272:	5'- AGTTGCAGTCCAGTAAGCCG
	SEQ ID No. 273:	5'- GTTGCAGTCCAGTAAGCCGC
	SEQ ID No. 274:	5'- CAGTTGCAGTCCAGTAAGCC
	SEQ ID No. 275:	5'- TGCAGTCCAGTAAGCCGCCT
	SEQ ID No. 276:	5'- TCAGTTGCAGTCCAGTAAGC
15	SEQ ID No. 277:	5'- TTGCAGTCCAGTAAGCCGCC
	SEQ ID No. 278:	5'- GCAGTCCAGTAAGCCGCCTT
	SEQ ID No. 279:	5'- GTCAGTTGCAGTCCAGTAAG
	SEQ ID No. 280:	5'- CTCTAGGTGACGCCGAAGCG
•	SEQ ID No. 281:	5'- ATCTCTAGGTGACGCCGAAG
20	SEQ ID No. 282:	5'- TCTAGGTGACGCCGAAGCGC
	SEQ ID No. 283:	5'- TCTCTAGGTGACGCCGAAGC
	SEQ ID No. 284:	5'- CCATCTCTAGGTGACGCCGA
	SEQ ID No. 285:	5'- CATCTCTAGGTGACGCCGAA
	SEQ ID No. 286:	5'- TAGGTGACGCCGAAGCGCCT
25	SEQ ID No. 287:	5'- CTAGGTGACGCCGAAGCGCC
	SEQ ID No. 288:	5'- CTTAGACGGCTCCTTCCTAA
	SEQ ID No. 289:	5'- CCTTAGACGGCTCCTTCCTA
	SEQ ID No. 290:	5'- ACGTCAGTTGCAGTCCAGTA
	SEQ ID No. 291:	5'- CGTCAGTTGCAGTCCAGTAA
30	SEQ ID No. 292:	5'- ACGCCGAAGCGCCTTTTAAC

- 30 -

SEQ ID No. 293: 5'- GACGCCGAAGCGCCTTTTAA SEQ ID No. 294: 5'- GCCGAAGCGCCTTTTAACTT SEQ ID No. 295: 5'- CGCCGAAGCGCCTTTTAACT SEQ ID No. 296: 5'- GTGACGCCGAAGCGCCTTTT SEQ ID No. 297: 5'- TGACGCCGAAGCGCCTTTTA SEQ ID No. 298: 5'- AGACGGCTCCTTCCTAAAAG SEQ ID No. 299: 5'- ACGGCTCCTTCCTAAAAGGT SEQ ID No. 300: 5'- GACGGCTCCTTCCTAAAAGG SEQ ID No. 301: 5'- CCTTCCTAAAAGGTTAGGCC

10

Die Sequenzen SEQ ID No. 272 bis SEQ ID No. 301 sind vor allem zum gleichzeitigen Nachweis von Leuconostoc mesenteroides und L. pseudomesenteroides geeignet.

15 SEQ ID No. 302: 5'- GGTGACGCCAAAGCGCCTTT SEQ ID No. 303: 5'- AGGTGACGCCAAAGCGCCTT SEQ ID No. 304: 5'- TAGGTGACGCCAAAGCGCCT SEQ ID No. 305: 5'- CTCTAGGTGACGCCAAAGCG SEQ ID No. 306: 5'- TCTAGGTGACGCCAAAGCGC 20 SEQ ID No. 307: - 5'- CTAGGTGACGCCAAAGCGCC SEQ ID No. 308: 5'- ACGCCAAAGCGCCTTTTAAC SEQ ID No. 309: 5'- CGCCAAAGCGCCTTTTÄACT SEQ ID No. 310: 5'- TGACGCCAAAGCGCCTTTTA SEQ ID No. 311: 5'- TCTCTAGGTGACGCCAAAGC 25 SEQ ID No. 312: 5'- GTGACGCCAAAGCGCCTTTT SEQ ID No. 313: 5'- GACGCCAAAGCGCCTTTTAA SEQ ID No. 314: 5'- ATCTCTAGGTGACGCCAAAG SEQ ID No. 315: 5'- CATCTCTAGGTGACGCCAAA SEQ ID No. 316: 5'- TCCATCTCTAGGTGACGCCA 30 SEQ ID No. 317: 5'- CCATCTCTAGGTGACGCCAA

		•
	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
5	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
	SEQ ID No. 325:	5'- AGACGGCTCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCCTAAAAG
10	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCTAAAAGGTTAG
	SEQ ID No. 330:	5'- CTCCCCTAAAAGGTTAGGC
	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
15	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCTAAAAGGTTA
	SEQ ID No. 335:	5'- CCCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCCTAAA
20	SEQ ID No. 337:	5'- TTAGACGGCTCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCTAA
	SEQ ID No. 340:	5'- ACGGCTCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT
25		

Die Sequenzen SEQ ID No. 302 bis SEQ ID No. 341 sind vor allem zum Nachweis von *Leuconostoc pseudomesenteroides* geeignet.

SEQ ID No. 342: 5'- ACGCCGCAAGACCATCCTCT
SEQ ID No. 343: 5'- CTAATACGCCGCAAGACCAT

30

	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
5	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA'
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
10	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
15	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG
	SEQ ID No. 361:	5'- GCCATCCCTTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
20	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
25	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
30	SEQ ID No. 373:	5'- CCATCCCTTTCTGGTAAGGT

	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
5	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
10	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
15	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
	SEQ ID No. 390:	5'- CCCGAAGATCAATTCAGCGG
	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
20	SEQ ID No. 393:	5'- TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
25	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCAGCGGCT
	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
30	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG

- 34 -

	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCAGCG
•	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
5	SEQ ID No. 408:	5'- GCACCCATCGTTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTTACGGTATG
	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
10	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
15	SEQ ID No. 418:	5'- CAAGCTAATACGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
	SEQ ID No. 420:	5'- CCGAAGATCAATTCAGCGGC
	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
•	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
20	SEQ ID No. 423:	5'- GCGTTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
25	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTTACCTTAGGCACCGG
30	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA

	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
	SEQ ID No. 435:	5'- GCCAAGCGACTTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTTC
5	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
	SEQ ID No. 440:	5'- GGCCGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
10	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTTCTGG

Die Sequenzen SEQ ID No. 342 bis SEQ ID No. 444 sind vor allem zum Nachweis von *Oenococcus oeni* geeignet.

15 SEQ ID No. 445: 5'- AACCCTTCATCACACACG SEQ ID No. 446: 5'- CGAAACCCTTCATCACAC SEQ ID No. 447: 5'- ACCCTTCATCACACACGC SEQ ID No. 448: 5'- TACCGTCACACACTGAAC 5'- AGATACCGTCACACACTG . __ 20 SEQ ID No. 449: SEQ ID No. 450: 5'- CACTCAAGGGCGGAAACC SEQ ID No. 451: 5'- ACCGTCACACACTGAACA SEQ ID No. 452: 5'- CGTCACACACTGAACAGT SEQ ID No. 453: 5'- CCGAAACCCTTCATCACA 25 SEQ ID No. 454: 5'- CCGTCACACACTGAACAG SEQ ID No. 455: 5'- GATACCGTCACACACTGA SEQ ID No. 456: 5'- GGTAAGATACCGTCACAC SEQ ID No. 457: 5'- CCCTTCATCACACACGCG SEQ ID No. 458: 5'- ACAGTGTTTTACGAGCCG 30 SEQ ID No. 459: 5'- CAGTGTTTTACGAGCCGA

	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
5	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACA
	SEQ ID No. 465:	5'- TGAGGGCTTTCACTTCAG
	SEQ ID No. 466:	5'- AGGGCTTTCACTTCAGAC
	SEQ ID No. 467:	5'- GAGGGCTTTCACTTCAGA
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
10	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
15	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
	SEQ ID No. 475:	5'- TCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCTTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCTTTCTGGTAA
20	SEQ ID No. 479:	5'- AGCCGTTCCTTTCTGGTA
	SEQ ID No. 480:	5'- GCACGTATTTAGCCGTTC
	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
	SEQ ID No. 483:	5'- CACTTTCCTCTACTGCAC
25	SEQ ID No. 484:	5'- CCACTTTCCTCTACTGCA
	SEQ ID No. 485:	5'- TCCACTTTCCTCTACTGC
	SEQ ID No. 486:	5'- CTTTCCTCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCTTTCTGGT
	SEQ ID No. 488:	5'- TTAGCCGTTCCTTTCTGG
30	SEQ ID No. 489:	5'-TTATCCCCTGCTAAGAGG

- 37 -

Die Sequenzen SEQ ID No. 445 bis SEQ ID No. 495 sind vor allem zum Nachweis von Bakterien der Gattung Weissella geeignet.

10

SEQ ID No. 496: 5' CCCGTGTCCCGAAGGAAC SEQ ID No. 497: 5' GCACGAGTATGTCAAGAC SEQ ID No. 498: 5' GTATCCCGTGTCCCGAAG SEQ ID No. 499: 5' TCCCGTGTCCCGAAGGAA 15 SEQ ID No. 500: 5' ATCCCGTGTCCCGAAGGA SEQ ID No. 501: 5' TATCCCGTGTCCCGAAGG SEQ ID No. 502: 5' CTTACCTTAGGAAGCGCC SEQ ID No. 503: 5' TTACCTTAGGAAGCGCCC 5' CCTGTATCCCGTGTCCCG SEQ ID No. 504: SEQ ID No. 505: 20 5' CCACCTGTATCCCGTGTC SEQ ID No. 506: 5' CACCTGTATCCCGTGTCC SEQ ID No. 507: 5' ACCTGTATCCCGTGTCCC SEQ ID No. 508: 5' CTGTATCCCGTGTCCCGA SEQ ID No. 509: 5' TGTATCCCGTGTCCCGAA 25 SEQ ID No. 510: 5' CACGAGTATGTCAAGACC SEQ ID No. 511: 5' CGGTCTTACCTTAGGAAG SEQ ID No. 512: 5' TAGGAAGCGCCCTCCTTG SEQ ID No. 513: 5' AGGAAGCGCCCTCCTTGC SEQ ID No. 514: 5' TTAGGAAGCGCCCTCCTT 30 SEQ ID No. 515: 5' CTTAGGAAGCGCCCTCCT

	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGO
	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
5	SEQ ID No. 520:	5' ACCACCTGTATCCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGCGGTTAGGCAACCTAC
10	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
15	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTTGCGG
	SEQ ID No. 533:	
	SEQ ID No. 534:	5' CGTCCCTTTCTGGTTAGA
20	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTTACA
25	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG
	SEQ ID No. 541:	5' GGTCGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATCGCC
	SEQ ID No. 544:	
30	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG

SEQ ID No. 546: 5' TCTTACCTTAGGAAGCGC

Die Sequenzen SEQ ID No. 496 bis SEQ ID No. 546 sind vor allem zum Nachweis von Bakterien der Gattung Lactococcus geeignet.

5'- GTACAAACCGCCTACACGCC

5

SEQ ID No. 547:

d) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Essigsäurebakterien nachweisen:

10 SEQ ID No. 548: 5'- TGTACAAACCGCCTACACGC SEQ ID No. 549: 5'- GATCAGCACGATGTCGCCAT SEQ ID No. 550: 5'- CTGTACAAACCGCCTACACG SEQ ID No. 551: 5'- GAGATCAGCACGATGTCGCC SEQ ID No. 552: 5'- AGATCAGCACGATGTCGCCA 15 SEQ ID No. 553: 5'- ATCAGCACGATGTCGCCATC SEQ ID No. 554: 5'- TCAGCACGATGTCGCCATCT SEQ ID No. 555: 5'- ACTGTACAAACCGCCTACAC SEQ ID No. 556: 5'- CCGCCACTAAGGCCGAAACC SEQ ID No. 557: 5'- CAGCACGATGTCGCCATCTA SEQ ID No. 558: 20 5'- TACAAACCGCCTACACGCCC SEQ ID No. 559: 5'- AGCACGATGTCGCCATCTAG SEQ ID No. 560: 5'- CGGCTTTTAGAGATCAGCAC SEQ ID No. 561: 5'- TCCGCCACTAAGGCCGAAAC SEQ ID No. 562: 5'- GACTGTACAAACCGCCTACA 25 SEQ ID No. 563: 5'- GTCCGCCACTAAGGCCGAAA SEQ ID No. 564: 5'- GGGGATTTCACATCTGACTG SEQ ID No. 565: 5'- CATACAAGCCCTGGTAAGGT SEQ ID No. 566: 5'- ACAAGCCCTGGTAAGGTTCT SEQ ID No. 567: 5'- ACAAACCGCCTACACGCCCT 30 SEQ ID No. 568: 5'- CTGACTGTACAAACCGCCTA

	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT
	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
5	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCCACTGT
10	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCCACTG
	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTC
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
15	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
20	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
25	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
30	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCCA

	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT
	SEQ ID No. 601:	5'- GCCGAAACCTTCGTGCGACT
	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
5	SEQ ID No. 603:	5'- CGAAACCTTCGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
	SEQ ID No. 605:	5'- GAAACCTTCGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACCTTCGTGCGAC
	SEQ ID No. 607:	5'- AAACCTTCGTGCGACTTGCA
10	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC

Die Sequenzen SEQ ID No. 547 bis SEQ ID No. 608 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter und Gluconobacter geeignet.

SEQ ID No. 609: 5'- GCTCACCGGCTTAAGGTCAA SEQ ID No. 610: 5'- CGCTCACCGGCTTAAGGTCA SEQ ID No. 611: 5'- TCGCTCACCGGCTTAAGGTC SEQ ID No. 612: 5'- CTCACCGGCTTAAGGTCAAA 20 SEQ ID No. 613: 5'- CCCGACCGTGGTCGGCTGCG SEQ ID No. 614: 5'- GCTCACCGGCTTAAGGTCAA SEQ ID No. 615: 5'- CGCTCACCGGCTTAAGGTCA SEQ ID No. 616: 5'- TCGCTCACCGGCTTAAGGTC SEQ ID No. 617: 5'- CTCACCGGCTTAAGGTCAAA 25 SEQ ID No. 618: 5'- CCCGACCGTGGTCGGCTGCG SEQ ID No. 619: 5'- TCACCGGCTTAAGGTCAAAC SEQ ID No. 620: 5'- CAACCCTCTCTCACACTCTA SEQ ID No. 621: 5'- ACAACCCTCTCTCACACTCT SEQ ID No. 622: 5'- CCACAACCCTCTCTCACACT 30 SEQ ID No. 623: 5'- AACCCTCTCTCACACTCTAG

15

SEQ ID No. 624: 5'- CACAACCCTCTCTCACACTC

- 42 -

	-	
	SEQ ID No. 625:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
5	SEQ ID No. 628: -	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
10	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTTCGCTCACCGGCTTAAG
15	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCTTCGC
20	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 645:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 646:	-5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
25	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 652:	5'-TCGCTGACCCGACCGTGGTC
30	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG

- 43 -

	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTTGA
5	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
10	SEQ ID No. 663:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 665:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 667:	5'-TTTGACCCTCAGGTGTCATG
15	SEQ ID No. 668:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 670:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'-TTGACCCTCAGGTGTCATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTCATGCGGTA
20	SEQ ID No. 673:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	=5'-CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
25	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
30	SEQ ID No. 683:	5'- TCGATCATCGCCTTGGTAGG

PCT/EP2004/010695

	SEQ ID No. 684:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 685:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCGCCT
5	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
15	SEQ ID No. 698:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 700:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 701:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCTCTCTCACACTC
20	SEQ ID No. 703:	5'- TCCACAACCCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 705:	5'-ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	"5"-GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
25	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
30	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT

- 45 -

	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 715:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
5	SEQ ID No.+718:-	5'-CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
10	SEQ ID No. 723:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
15	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
20	SEQ ID No733:	5'GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 736:	~5~TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
25	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTTGACCCTCAGGTGT
30	SEQ ID No. 743:	5'- ACCCTCAGGTGTCATGCGGT

	SEQ ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
5	SEQ ID No. 748:	
	SEQ ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 750:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 751:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTTGACCCTCAGGTGTCAT
10	SEQ ID No. 753:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATCGCCTTG
15	SEQ ID No. 758:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATCGCCTTGGTAG
20	SEQ ID No. 763:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 765:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 766:	5'-TCCTCCACAGGCGACTTGCG
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGCGC
25	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 769:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
30	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT

	SEQ ID No. 774:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAACCCTCTCTCACA
5	SEQ ID No. 778:	- 5'ACGGTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
10	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
15	SEQ ID No. 788:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCTCTCTC
20	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 795:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 796: -	-5=:GGGAATTECACAACCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
25	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCCAACATCCAGCACACAT
30	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC

	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
5	SEQ ID No. 808:	5%- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
10	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 815:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTCATGCGGTAT
15	SEQ ID No. 818:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 821:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'-TTGACCCTCAGGTGTCATGC
20	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGTA.
	SEQ ID No. 824:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 826:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
25	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 830:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATCGCCTTGGT
30	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT

	SEQ ID No. 834:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 835:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGCGCCTT
5	SEQ ID No. 838:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 842:	5'- ACAGGCGACTTGCGCCTTTG
_		

10

Die Sequenzen SEQ ID No. 609 bis SEQ ID No. 842 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter geeignet.

e) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Bazillen nachweisen:

	SEQ ID No. 843:	5'- AGCCCCGGTTTCCCGGCGTT
	SEQ ID No. 844:	5'- CGCCTTTCCTTTTTCCTCCA
20	SEQ ID No. 845:	5'- GCCCGGTTTCCCGGCGTTA
	SEQ ID No. 846:	5'- GCCGCCTTTCCTTTTTCCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCGGCGT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
	SEQ ID No. 849:	5'- AAGCCGCCTTTCCTTTTTCC
25	SEQ ID No. 850:	5'- CCCCGGTTTCCCGGCGTTAT
	SEQ ID No. 851:	5'- CCGGCGTTATCCCAGTCTTA
	SEQ ID No. 852:	5'- AGCCGCCTTTCCTTTTTCCT
	SEQ ID No. 853:	5'- CCGCCTTTCCTTTTTCCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCGGCG
30	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT

- 50 -

	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'-TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
5	SEQ ID No. 860:	5'- GAAGCCGCCTTTCCTTTTTC
	SEQ ID No. 861:	5'- CCCGGTTTCCCGGCGTTATC
	SEQ ID No. 862:	5'- CGGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
10	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
15	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG
	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTTACGAC
20	SEQ ID No. 875:	5'-GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
25	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'-TCTTCCCCGGCAACAGAGTT
30	SEQ ID No. 885:	5'-TTGTTCTTCCCCGGCAACAG

- 51 -

	SEQ ID No. 886:	5 - ACTIGITUTICCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
5	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
10	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTTCCTTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTTCCTTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTTCCTT
15	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG
	SEQ ID No. 901:	5'- CCGTGGCTTTCTGGCCGGGT
	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTTCTGGCCGGGTACCG
20	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTTCTGGCCGGGTA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
25	SEQ ID No. 910:	5'- GGGAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCTGTTCGAACG
30	SEQ ID No. 915:	5'- AGGCGCCCCCTGTTCGAAC

	SEQ ID No. 916:	5'- AAGGCGCCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
5	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
10	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTTT
15	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT
	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTTT
	Die Sequenzen SEO	ID No. 843 bis SEQ ID No. 932 sind vor allem zum Nachweis
20		ms geeignet
	, 01. 240	8-4-8
	f) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Alicyclobazillen	
	nachweisen:	=
25	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC

SEQ ID No. 938: 5'- CCGACTTACGCCGGCAGTCA

30

	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
5	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
10	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCAAC
	SEQ ID No. 950:	5'- CACTGGGGTGTGTCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCCCC
15	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
20	SEQ ID No. 958:	_5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG
	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
25	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
30	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA

	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
5	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCGCAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
10	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCCC
15	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCCCAACAC
	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
20	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC
	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
25	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCCAACACC
30	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT

	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCAACACCT
5	SEQ ID No. 1003:	5'- GTGTGTCCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'-TCGCGGGCGTATCCGGCATT
10	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATTA
15	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCTCAGCGGCC
	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
20	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT-
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
	SEQ ID No. 1020:	5'- GCGGGCGTATCCGGCATTAG
	SEQ ID No. 1021:	5'- CGAGCGGCTTTTTGGGTTTC
	SEQ ID No. 1022:	5'- CTTTCACTCCAGACTTGCTC
25	SEQ ID No. 1023:	5'-TTCCTTCGGCACTGGGGTGT
	SEQ ID No. 1024:	5'- CCGCCTTCCTCCGACTTACG
	SEQ ID No. 1025:	5'- CCCGCCTTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC

30 SEQ ID No. 1028: 5'- CATTAGCGCCCGTTTCCGGG

- 56 -

SEQ ID No. 1029: 5'- GCATTAGCGCCCGTTTCCGG

SEQ ID No. 1030: 5'- GGCATTAGCGCCCGTTTCCG

SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTTCCA

SEQ ID No. 1032: 5'- GCCATGGACTTTCACTCCAG

5 SEQ ID No. 1033: 5'- CATGGACTTTCACTCCAGAC

Die Sequenzen SEQ ID No. 933 bis SEQ ID No. 1033 sind vor allem zum Nachweis von Bakterien der Gattung Alicyclobacillus geeignet.

10

30

SEQ ID No. 1045:

SEQ ID No. 1034: 5'- CCTTCCTCCGGCTTACGCCGGC SEQ ID No. 1035: 5'- CCTTCCTCCGACTTGCGCCGGC SEQ ID No. 1036: 5'- CCTTCCTCCGACTTTCACCGGC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1034 bis SEQ ID No. 1036 werden als unmarkierte Kompetitorsonden für den Nachweis von Bakterien der Gattung Alicyclobacillus gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 933 eingesetzt, um das Binden der markierten, für Bakterien der Gattung Alicyclobacillus spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Bakterien der Gattung Alicyclobacillus sind, zu verhindern.

5'- TCTCACAAGGAGCTTTCCAC

SEQ ID No. 1037: 5'- ACCGTCTCACAAGGAGCTTT SEQ ID No. 1038: 5'- TACCGTCTCACAAGGAGCTT 5'- GTACCGTCTCACAAGGAGCT SEQ ID No. 1039: 25 SEQ ID No. 1040: 5'- GCCTACCCGTGTATTATCCG SEQ ID No. 1041: 5'- CCGTCTCACAAGGAGCTTTC SEQ ID No. 1042: 5'- CTACCCGTGTATTATCCGGC SEQ ID No. 1043: 5'- GGTACCGTCTCACAAGGAGC SEQ ID No. 1044: 5'- CGTCTCACAAGGAGCTTTCC

	SEQ ID No. 1046:	5'- TACCCGTGTATTATCCGGCA
	SEQ ID No. 1047:	5'- GTCTCACAAGGAGCTTTCCA
	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAGG
5	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAG
	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
	SEQ ID No. 1053:	5'- ACAAGTAGATGCCTACCCGT
	SEQ ID No. 1054:	5'- TGGCTCCATAACGGTTACCT
10	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
	SEQ ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
15	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA
	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA
-	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
20	SEQ ID No. 1065:	5'- TGCCTACCCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAGGA
	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTTCCACT
	SEQ ID No. 1068:	5'- GTAGATGCCTACCCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCCGTGTATTATCCGG
25	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
	SEQ ID No. 1072:	5'- AGTAGATGCCTACCCGTGTA
	SEQ ID No. 1073:	5'- GCGGCTGGCTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCCAAGGTTG
30	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCACC

- 58 -

	SEQ ID No. 1076:	5'- CCCGTGTATTATCCGGCATT
	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
5	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG
	SEQ ID No. 1084:	5'- CACAAGGAGCTTTCCACTCT
10	SEQ ID No. 1085:	5'- ACAAGGAGCTTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTTCCACTC
	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
	SEQ ID No. 1088:	5'- CAAGGAGCTTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
15	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT
	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
20	SEQ ID-No. 1095:	5'CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
25	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTTCACTTCAG
	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
	SEQ ID No. 1103:	5'- CTCCTCTCAGCGATGCAG
	SEQ ID No. 1104:	5'- TCGGCGGCTGGCTCCATAAC
30	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC

	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
5	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
	SEQ ID No. 1113:	5'- CTAGCCCCGAAGGGCTCGCT
	SEQ ID No. 1114:	5'- CGCTAGCCCCGAAGGGCTCG
10	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCCGAAGGGCTCGCTCGA
15	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTTCACTTC
	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT
	SEQ ID No. 1123:	5'- GAGCTTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
20	SEQ ID No. 1125: -	5'- CGGGCTCCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTTCCACTCTCCTTG
	SEQ ID No. 1127:	5'- GGGCTCCTCTCTCAGCGATG
	SEQ ID No. 1128:	5'- TCTCCTTGTCGCTCTCCCCG
	SEQ ID No. 1129:	5'-TCCTTGTCGCTCTCCCGAG
25	SEQ ID No. 1130:	5'- AGCTTTCCACTCTCCTTGTC
	SEQ ID No. 1131:	5'- CCACTCTCCTTGTCGCTCTC
	SEQ ID No. 1132:	5'- GGCTCCTCTCAGCGATGC
	SEQ ID No. 1133:	5'- CCTTGTCGCTCTCCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTCGCTCTCC
30	SEQ ID No. 1135:	5'- ACTCTCCTTGTCGCTCTCCC

- 60 -

SEQ ID No. 1136: 5'- CTCTCCTTGTCGCTCTCCCC

SEQ ID No. 1137: 5'- GCGGGCTCCTCTCAGCGA

SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC

5 Die Sequenzen SEQ ID No. 1037 bis SEQ ID No. 1138 sind vor allem zum Nachweis von *Alicyclobacillus acidoterrestris* geeignet.

SEQ ID No. 1139: 5'- CCGTCTCCTAAGGAGCTTTCCA

10 Das Nukleinsäuresondenmolekül gemäß SEQ ID No. 1139 wird als unmarkierte Kompetitorsonde für den Nachweis von Alicyclobacillus acidoterrestris gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1044 eingesetzt, um das Binden der markierten, für Alicyclobacillus acidoterrestris spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Alicyclobacillus acidoterrestris sind,

15 zu verhindern.

SEQ ID No. 1140: 5'- TCCCTCCTTAACGGTTACCTCA

SEQ ID No. 1141: 5'- TGGCTCCATAA(A/T)GGTTACCTCA

20 Die Nukleinsäuresondenmoleküle-gemäß SEQ ID-No. 1140 bis SEQ ID No. 1141 werden als unmarkierte Kompetitorsonden für den Nachweis von Alicyclobacillus acidoterrestris gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1057 eingesetzt, um das Binden der markierten, für Alicyclobacillus acidoterrestris spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für

25 Alicyclobacillus acidoterrestris sind, zu verhindern.

SEQ ID No. 1142: 5'- CTTCCTCCGGCTTGCGCCGG

SEQ ID No. 1143: 5'- CGCTCTTCCCGA(G/T)TGACTGA

SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

Die Sequenzen SEQ ID No. 1142 bis SEQ ID No. 1144 sind vor allem zum gleichzeitigen Nachweis von *Alicyclobacillus cycloheptanicus* und *A. herbarius* geeignet.

Gegenstand der Erfindung sind auch Abwandlungen der obigen Oligonukleotidsequenzen, die trotz der Abweichungen in der Sequenz und/oder Länge eine spezifische Hybridisierung mit Ziel-Nukleinsäuresequenzen des jeweiligen Mikroorganismus zeigen und sich dadurch für den Einsatz des erfindungsgemäßen Verfahrens eignen und einen spezifischen Nachweis des jeweiligen Mikroorganismus gewährleisten. Hierunter fallen insbesondere

15

20

25

30

a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivėa, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc,

15

20

Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter,
Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies

Lactobacillus collinoides, Leuconostoc mesenteroides, L.

pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus

ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius ermöglichen.

Dabei bedeutet "spezifische Hybridisierung", dass unter den hier

beschriebenen oder dem Durchschnittsfachmann im Zusammenhang mit in

situ-Hybridisierungstechniken bekannten stringenten

Hybridisierungsbedingungen nur die ribosomale RNA der Ziel-Organismen,

nicht aber die rRNA von Nicht-Ziel-Organismen an das Oligonukleotid

bindet.

- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von Ziel-Organismen ermöglichen.

Ebenso sind Gegenstand der Erfindung Abwandlungen der obigen

Kompetitorsondensequenzen, die trotz der Abweichungen in der Sequenz und/oder

Länge eine spezifische Hybridisierung mit Nukleinsäuresequenzen von nicht

nachzuweisenden Mikroorganismengattungen bzw. -spezies gewährleisten und

dadurch das Binden der Oligonukleotidsonde an die Nukleinsäuresequenzen der

nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies verhindern. Sie

eignen sich für den Einsatz des erfindungsgemäßen Verfahrens und gewährleisten

einen spezifischen Nachweis des jeweiligen Mikroorganismus. Hierunter fallen insbesondere

5

10

- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.
- Der Grad der Sequenzidentität eines Nukleinsäuresondenmoleküls mit den Oligonukleotidsonden mit der SEQ ID No. 1 bis SEQ ID No. 1144 kann mit üblichen Algorithmen bestimmt werden. Geeignet ist hierzu beispielsweise das Programm zur Bestimmung der Sequenzidentität, das unter http://www.ncbi.nlm.nih.gov/BLAST (auf dieser Seite z.B. der Link "Standard nucleotide-nucleotide BLAST [blastn]") zugänglich ist.

- 64 -

"Hybridisieren" kann im Rahmen dieser Erfindung gleichbedeutend sein mit "komplementär". Im Rahmen dieser Erfindung sind auch solche Oligonukleotide umfasst, die mit dem (theoretischen) Gegenstrang eines erfindungsgemäßen Oligonukleotids, einschließlich der erfindungsgemäßen Abwandlungen der SEQ ID No. 1 bis SEQ ID No. 1144, hybridisieren.

Der Begriff "stringente Bedingungen" steht allgemein für Bedingungen, unter denen eine Nukleinsäuresequenz präferenziell an ihre Zielsequenz hybridisieren wird, und zu einem deutlich geringeren Ausmaß oder gar nicht an andere Sequenzen.

- Stringente Bedingungen sind z.T. Sequenz-abhängig und werden unter verschiedenen Umständen unterschiedlich sein. Längere Sequenzen hybridisieren spezifisch bei höheren Temperaturen. Im Allgemeinen werden stringente Bedingungen so ausgewählt, dass die Temperatur etwa 5°C unter dem thermischen Schmelzpunkt (T_m) für die spezifische Sequenz bei einer definierten Ionenstärke und einem definierten pH liegt. Die T_m ist die Temperatur (unter definierter Ionenstärke, pH und Nukleinsäurekonzentration), bei der 50 % der zu der Zielsequenz komplementären Moleküle zu der Zielsequenz im Gleichgewichtszustand hybridisieren.
- Die erfindungsgemäßen Nukleinsäuresondenmoleküle können im Rahmen des Nachweisverfahrens mit verschiedenen Hybridisierungslösungen eingesetzt werden. Verschiedene organische Lösungsmittel können hierbei in Konzentrationen von 0 % bis 80 % eingesetzt werden. Durch das Einhalten von stringenten Hybridisierungsbedingungen wird gewährleistet, dass das
- Nukleinsäuresondenmolekül auch tatsächlich mit der Zielsequenz hybridisiert.

 Moderate Bedingungen im Sinne der Erfindung sind z.B. 0 % Formamid in einem Hybridisierungspuffer wie er nachfolgend beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20 % bis 80 % Formamid im Hybridisierungspuffer.

5

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. 5 microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 20 % bis 60 % Formamid, besonders bevorzugt 40 % Formamid. Sie hat außerdem eine 10 Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, 15 besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die 20 besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von

Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und
Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea,
Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T.
bacillisporus und T. flavus enthält eine typische Hybridisierungslösung 0 % bis 80 %
Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 %

Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l,

bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

10

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und 15 Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 % Formamid. Sie hat-außerdem eine 20 Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, 25 besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die 30

besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Es versteht sich, dass der Fachmann die angegebenen Konzentrationen der

Bestandteile des Hybridisierungspuffers derart auswählen kann, dass die gewünschte Stringenz der Hybridisierungsreaktion erzielt wird. Besonders bevorzugte Ausführungsformen geben stringente bis besonders stringente Hybridisierungsbedingungen wieder. Unter Einsatz dieser stringenten Bedingungen kann der Fachmann feststellen, ob ein bestimmtes Nukleinsäuremolekül einen spezifischen Nachweis von Nukleinsäuresequenzen von Ziel-Organismen ermöglicht und somit im Rahmen der Erfindung zuverlässig eingesetzt werden kann.

Die Konzentration der Nukleinsäuresonde im Hybridisierungspuffer ist abhängig von der Art ihrer Markierung und der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Nukleinsäuresondenmoleküle die Anzahl der Zielstrukturen um mehrere Größenordnungen überschreiten. Allerdings ist bei der Fluoreszenz in situ-Hybridisierung (FISH) darauf zu achten, dass eine zu hohe Menge an fluoreszenzmarkierten Nukleinsäuresondenmolekülen zu erhöhter

Hintergrundfluoreszenz führt. Die Konzentration der Nukleinsäuresondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Nukleinsäuresondenmoleküls pro µl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml

liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 μ l.

Die Konzentration der Kompetitorsonde im Hybridisierungspuffer ist abhängig von der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Kompetitorsondenmoleküle die Anzahl der

30

Zielstrukturen um mehrere Größenordnungen überschreiten. Die Konzentration der Kompetitorsondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Kompetitorsondenmoleküls pro µl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 µl.

5

20

25

Die Dauer der Hybridisierung beträgt üblicherweise zwischen 10 Minuten und 12

Stunden; bevorzugt erfolgt die Hybridisierung für etwa 1,5 Stunden. Die Hybridisierungstemperatur beträgt bevorzugt zwischen 44 °C und 48 °C, besonders bevorzugt 46 °C, wobei der Parameter der Hybridisierungstemperatur, wie auch die Konzentration an Salzen und Detergenzien in der Hybridisierungslösung in Abhängigkeit von den Nukleinsäuresonden, insbesondere deren Längen und dem

Grad der Komplementarität zur Zielsequenz in der nachzuweisenden Zelle optimiert werden kann. Der Fachmann ist mit einschlägigen Berechnungen hierzu vertraut.

Nach erfolgter Hybridisierung sollten die nicht hybridisierten und überschüssigen Nukleinsäuresondenmoleküle entfernt bzw. abgewaschen werden, was üblicherweise mittels einer herkömmlichen Waschlösung-erfolgt. Diese Waschlösung kann, falls gewünscht, 0,001 % bis 0,1 % eines Detergens wie SDS, bevorzugt 0,005 % bis 0,05 %, besonders bevorzugt 0,01 %, sowie Tris-HCl in einer Konzentration von 0,001 Mol/l bis 0,1 Mol/l, bevorzugt 0,01 Mol/l bis 0,05 Mol/l, besonders bevorzugt 0,02 Mol/l enthalten, wobei der pH-Wert von Tris-HCl im Bereich von 6,0 bis 9,0, vorzugsweise bei 7,0 bis 8,0, besonders bevorzugt bei 8,0 liegt. Ein Detergens kann enthalten sein, ist aber nicht zwingend erforderlich. Weiter enthält die Waschlösung üblicherweise NaCl, wobei die Konzentration je nach benötigter Stringenz von 0,003 Mol/l bis 0,9 Mol/l, bevorzugt von 0,01 Mol/l bis 0,9 Mol/l, beträgt. Des weiteren kann die Waschlösung EDTA enthalten, wobei die Konzentration vorzugsweise

0,005 Mol/l beträgt. Ferner kann die Waschlösung auch dem Fachmann geläufige Konservierungsmittel in geeigneten Mengen enthalten.

Allgemein kommen bei dem Waschschritt Pufferlösungen zum Einsatz, die prinzipiell sehr ähnlich aussehen können wie die Hybridisierungspuffer (gepufferte Natriumchloridlösung), nur dass der Waschschritt in der Regel in einem Puffer mit niedrigerer Salzkonzentration bzw. bei höherer Temperatur durchgeführt wird. Zur theoretischen Abschätzung der Hybridisierungsbedingungen kann folgende Formel verwendet werden:

10

5

$$Td = 81,5 + 16,6 lg[Na+] + 0,4 x (% GC) - 820/n - 0,5 x (% FA)$$

Td = Dissoziationstemperatur in °C

[Na+] = Molarität der Natriumionen

15 % GC = Anteil der Guanin- und Cytosinnukleotide an der Anzahl der Basen

n = Länge des Hybrids

%FA = Formamidgehalt

Mit Hilfe dieser Formel kann z.B. der Formamidanteil (der wegen der Toxizität des Formamids möglichst gering sein sollte) des Waschpuffers durch einen entsprechend niedrigeren Natriumchloridgehalt ersetzt werden. Allerdings ist dem Fachmann aus der umfangreichen Literatur zu in situ-Hybridisierungsmethoden bekannt, dass und auf welche Weise die genannten Bestandteile variiert werden können. Bezüglich der Stringenz der Hybridisierungsbedingungen gilt das oben im Zusammenhang mit dem Hybridisierungspuffer Gesagte.

Das "Abwaschen" der nicht gebundenen Nukleinsäuresondenmoleküle erfolgt üblicherweise bei einer Temperatur im Bereich von 44 °C bis 52 °C, bevorzugt von 44 °C bis 50 °C und besonders bevorzugt bei 46 °C für eine Dauer von 10 bis 40

30 Minuten, vorzugsweise für 15 Minuten.

Die spezifisch hybridisierten Nukleinsäuresondenmoleküle können anschließend in den jeweiligen Zellen detektiert werden. Voraussetzung hierfür ist, dass das Nukleinsäuresondenmolekül nachweisbar ist, z.B. dadurch dass das 5 Nukleinsäuresondenmolekül durch kovalente Bindung mit einem Marker verknüpft ist. Als detektierbare Marker werden z.B. fluoreszierende Gruppen wie z.B. CY2 (erhältlich von Amersham Life Sciences, Inc., Arlington Heights, USA), CY3 (ebenfalls erhältlich von Amersham Life Sciences), CY5 (ebenfalls zu beziehen von Amersham Life Sciences), FITC (Molecular Probes Inc., Eugene, USA), FLUOS 10 (erhältlich von Roche Diagnostics GmbH, Mannheim, Deutschland), TRITC (erhältlich von Molecular Probes Inc. Eugene, USA), 6-FAM oder FLUOS-PRIME verwendet, die dem Fachmann alle wohlbekannt sind. Auch chemische Marker, radioaktive Marker oder enzymatische Marker wie Meerrettich-Peroxidase, saure Phosphatase, alkalische Phosphatase und Peroxidase können verwendet werden. Für 15 jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrates umgesetzt werden können und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können. Beispiele für solche Chromogene sind in der nachfolgenden Tabelle angegeben:

- 20

Tabelle

Enzyme

Chromogen

25 1. Alkalische Phosphatase und saure Phosphatase

4-Methylumbelliferylphosphat (*),
Bis(4-Methylumbelliferylphosphat), (*) 3-OMethylfluoreszein, Flavon-3Diphosphattriammoniumsalz (*),
p-Nitrophenylphosphatdinatriumsalz

	2. Peroxidase	Tyraminhydrochlorid (*), 3-(p-Hydroxyphenyl)-
		Propionsäure (*), p-Hydroxy-
		phenethylalkohol(*),
•		2,2'-Azino-di-3-ethylbenzthiazolinsulfonsäure
5	موسيدين والمائد	(ABTS), ortho-Phenylendiamindihydrochlorid,
		o-Dianisidin, 5-Aminosalicylsäure,
		p-Ucresol (*),
		3,3'-dimethyloxybenzidin, 3-Methyl-2-
		benzothiazolinhydrazon, Tetramethylbenzidin
10	3. Meerrettichperoxidase	H_2O_2 + Diammoniumbenzidin
		H ₂ O ₂ + Tetramethylbenzidin
	4. β-D-Galaktosidase	o-Nitrophenyl-β-D-galaktopyranosid,
		4-Methylumbelliferyl-β-D-galaktosid
	5. Glukoseoxidase	ABTS, Glukose und Thiazolylblau
15		•
	*Fluoreszenz	

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, dass an ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeigneteNukleinsäuresequenz vorhanden ist. Diese Nukleinsäuresequenz umfasst wiederum ca. 15 bis 100, bevorzugt 15 bis 50 Nukleotide. Dieser zweite Nukleinsäurebereich kann wiederum von einem Nukleinsäuresondenmolekül erkannt werden, welches durch eines der oben erwähnten Mittel nachweisbar ist.

25

30

Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren Nukleinsäuresondenmoleküle mit einem Hapten, das anschließend mit einem das Hapten erkennenden Antikörper in Kontakt gebracht werden kann. Als Beispiel für solch ein Hapten kann Digoxigenin angeführt werden. Dem Fachmann sind über die angegebenen Beispiele hinaus noch weitere wohlbekannt.

Die abschließende Auswertung ist in Abhängigkeit von der Art der Markierung der verwendeten Sonde mit einem Lichtmikroskop, Epifluoreszenzmikroskop, Chemoluminometer, Fluorometer u.a. möglich.

5

Ein wichtiger Vorteil der in dieser Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies

- Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder zum
- spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen
- 20 Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius gegenüber den weiter oben
- 25 beschriebenen Nachweismethoden ist die außergewöhnliche Schnelligkeit. Im Vergleich zu herkömmlichen Kultivierungsverfahren, die bis zu zehn Tage benötigen, liegt das Ergebnis bei Anwendung der erfindungsgemäßen Verfahren innerhalb von 24 bis 48 Stunden vor.

Ein weiterer Vorteil liegt in der Befähigung, eine genaue Unterscheidung der nachzuweisenden, getränkerelevanten Mikroorganismen vorzunehmen. Mit bislang geläufigen Verfahren wurde beim Nachweis keine Differenzierung der Mikroorganismen bis auf Gattungs- und/oder Artebene vorgenommen, da die Differenzierung entweder gar nicht möglich oder zu zeitaufwendig war.

5

Ein weiterer Vorteil liegt in der Spezifität dieser Verfahren. Durch die verwendeten Nukleinsäuresondenmoleküle können hochspezifisch getränkeschädliche Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, 10 Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei (Issatchenkia orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, 15 Saccharomyces exiguus, S. cerevisiae, Saccharomycodes ludwigii oder getränkeschädliche Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus oder getränkeschädliche 20 Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella; Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius

25 nachgewiesen werden. Durch die Visualisierung der Mikroorganismen kann eine gleichzeitige visuelle Kontrolle stattfinden. Falsch positive Ergebnisse, wie sie häufig bei der Polymerase-Ketten-Reaktion auftreten, sind somit ausgeschlossen.

- 74 -

Ein weiterer Vorteil der erfindungsgemäßen Verfahren liegt in der leichten Handhabbarkeit. So können durch die Verfahren leicht große Mengen an Proben auf das Vorhandensein der genannten Mikroorganismen getestet werden.

Schließlich stellt die Möglichkeit des gleichzeitigen Nachweises mehrerer der genannten Keime durch den Einsatz von entsprechenden Mischungen von Sonden einen wesentlichen Vorteil gegenüber dem Stand der Technik dar. Dadurch können alle in der Praxis relevanten getränkeschädlichen Mikroorganismen in wenigen Versuchsansätzen nachgewiesen werden.

10

Verschiedene Sonden können dabei mit unterschiedlichen Markierungen versehen sein, so dass die verschiedenen, nachgewiesenen Mikroorganismen auf einfache und zuverlässige Weise diskriminiert werden können. Z. B. kann ein erstes Oligonukleotid spezifisch mit einem grünen Fluoreszenzfarbstoff markiert werden und zum

Nachweis einer ersten Mikroorganismengattung oder –art dienen. Ein zweites Oligonukleotid wird ebenfalls spezifisch, etwa mit einem roten Fluoreszenzfarbstoff, markiert und dient dem Nachweis einer zweiten Mikroorganismengattung oder –art. Die als Kompetitorsonden bezeichneten Oligonukleotide bleiben unmarkiert und verhindern das Binden des markierten ersten und/oder zweiten Oligonukleotids an Bakterien, die nicht zur nachzuweisenden Gattung oder Spezies gehören-Die verschiedenen Marker, z.B. ein grüner Fluoreszenzfarbstoff einerseits und ein roter Fluores-

25 Die erfindungsgemäßen Verfahren können vielfältig angewendet werden.

durch den Einsatz verschiedener Filter in der Fluoreszenzmikroskopie.

So können beispielsweise alkoholfreie Getränke (z.B. Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer) auf die Anwesenheit der nachzuweisenden Mikroorganismen untersucht werden.

zenzfarbstoff andererseits, sind voneinander auf einfache Weise unterscheidbar, z.B.

Auch können beispielsweise Umweltproben auf das Vorhandensein der nachzuweisenden Mikroorganismen untersucht werden. Diese Proben können hierzu z.B. aus dem Boden entnommen oder auch Teile von Pflanzen sein.

- Das erfindungsgemäße Verfahren kann weiter zur Untersuchung von Abwasserproben oder Silageproben eingesetzt werden.
 - Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben, z.B. von Stuhlproben, Blutkulturen, Sputum, Gewebeproben (auch Schnitte),
- Wundmaterial, Urin, Proben aus dem Respirationstrakt, Implantate und Katheteroberflächen eingesetzt werden.
- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmitteln. In bevorzugten Ausführungsformen werden die

 Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Käse, Quark, Butter, Buttermilch), Trinkwasser, alkoholischen Getränken (z.B. Bier, Wein, Spirituosen), Backwaren oder Fleischwaren entnommen.
- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die

 20 Untersuchung pharmazeutischer und kosmetischer Produkte, z.B. Salben, Cremes,
 Tinkturen, Säfte, Lösungen, Tropfen etc.
 - Erfindungsgemäß werden weiterhin Kits zur Durchführung der entsprechenden Verfahren zur Verfügung gestellt. Die in diesen Kits enthaltene
- Hybridisierungsanordnung ist z.B. in der deutschen Patentanmeldung 100 61 655.0 beschrieben. Auf die in diesem Dokument enthaltene Offenbarung bezüglich der in situ-Hybridisierungsanordnung wird hiermit ausdrücklich Bezug genommen.
- Außer der beschriebenen Hybridisierungsanordnung (als VIT-Reaktor bezeichnet)
 30 umfassen die Kits als wichtigsten Bestandteil die jeweilige Hybridisierungslösung

mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen (VIT-Lösung). Weiterhin ist jeweils enthalten der entsprechende Hybridisierungspuffer (Solution C) und ein Konzentrat der entsprechenden Waschlösung (Solution D). Weiterhin sind enthalten gegebenenfalls Fixierungslösungen (Solution A und Solution B) sowie gegebenenfalls eine Einbettlösung (Finisher). Gegebenenfalls sind Lösungen zur parallelen Durchführung einer Positivkontrolle (Positive Control) sowie einer Negativkontrolle (Negative Control) enthalten.

Das folgende Beispiel soll die Erfindung erläutern, ohne sie einzuschränken:

Beispiel

Spezifischer Schnellnachweis getränkeschädlicher Mikroorganismen in einer Probe

15

5

Eine Probe wird in geeigneter Weise 20 bis 48 h kultiviert. Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von

Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich B. coagulans kann die Kultivierung z.B. auf Dextrose-Caseinpepton Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.

25

30

Zu einem Aliquot der Kultur wird dasselbe Volumen Fixierungslösung (Solution B, Ethanol absolut) zugegeben. Alternativ kann auch ein Aliquot der Kultur zentrifugiert werden (4 000 g, 5 min, Raumtemperatur) und – nach Verwerfen des Überstandes – das Pellet in 4 Tropfen Fixierungslösung (Solution B) aufgenommen werden.

- 77 -

Zur Durchführung der Hybridisierung wird ein geeignetes Aliquot der fixierten Zellen (bevorzugt 5 µl) auf einen Objektträger aufgebracht und getrocknet (46 °C, 30 min oder bis vollständig trocken). Alternativ können die Zellen auch auf andere Trägermaterialien (z. B. eine Mikrotiterplatte oder einen Filter) aufgebracht werden. Anschließend werden die getrockneten Zellen vollständig dehydratisiert durch

Anschließend werden die getrockneten Zellen vollständig dehydratisiert durch erneuten Zusatz der Fixierungslösung (Solution B). Der Objektträger wird erneut getrocknet (Raumtemperatur, 3 min oder bis vollständig trocken).

Anschließend wird auf die fixierten, dehydratisierten Zellen die Hybridisierungslösung (VIT-Lösung, Hybridisierungspuffer mir markierten Sondenmolekülen) mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen aufgebracht. Das bevorzugte Volumen beträgt 40 μl. Der Objektträger wird anschließend in einer mit Hybridisierungspuffer (Solution C) befeuchteten Kammer, bevorzugt dem VIT-Reaktor (siehe DE 100 61 655.0), inkubiert (46 °C, 90 min).

Anschließend wird der Objektträger aus der Kammer entnommen, die Kammer mit Waschlösung befüllt (Solution D, 1:10 verdünnt in destilliertem Wasser) und der Objektträger in dieser-inkubiert (46 °C, 15 min).

Anschließend wird die Kammer mit destilliertem Wasser befüllt, der Objektträger kurz eingetaucht und anschließend in seitlicher Stellung luftgetrocknet (46 °C, 30 min oder bis vollständig trocken).

Anschließend wird der Objektträger in einem geeigneten Medium (Finisher) eingebettet.

Abschließend wird die Probe mit Hilfe eines Fluoreszenzmikroskops analysiert.

25

20

5

- 78 -

PATENTANSPRÜCHE

Verfahren zum Nachweis von getränkeschädlichen Mikroorganismen in einer Probe, wobei der Nachweis mittels mindestens einer Oligonukleotidsonde
 erfolgt, die eine Nukleinsäuresequenz aufweist, ausgewählt aus der Gruppe bestehend aus (sämtliche Sequenzen in 5' → 3'-Richtung):

```
SEQ ID No. 1:
                     5'- GTTTGACCAGATTCTCCGCTC
     SEQ ID No. 5:
                     5'- CCCGGTCGAATTAAAACC
10
     SEQ ID No. 6:
                     5'- GCCCGGTCGAATTAAAAC
     SEQ ID No. 7:
                     5'- GGCCCGGTCGAATTAAAA
     SEQ ID No. 8:
                     5'- AGGCCCGGTCGAATTAAA
     SEQ ID No. 9:
                     5'- AAGGCCCGGTCGAATTAA
     SEQ ID No. 10:
                     5'- ATATTCGAGCGAAACGCC
15
    SEQ ID No. 11:
                     5'- AAAGATCCGGACCGGCCG
     SEQ ID No. 12
                     5'- GGAAAGATCCGGACCGGC
    SEQ ID No. 13
                     5'- GAAAGATCCGGACCGGCC
    SEQ ID No. 14
                    .5'- GATCCGGACCGGCCGACC
    SEQ ID No. 15
                     5'- AGATCCGGACCGGCCGAC
20
    SEQ ID<sup>-</sup>No. 16
                     5'- AAGATCCGGACCGGCCGA
    SEQ ID No. 17
                     5'- GAAAGGCCCGGTCGAATT
    SEQ ID No. 18
                     5'- AAAGGCCCGGTCGAATTA
    SEQ ID No. 19
                    5'- GGAAAGGCCCGGTCGAAT
    SEQ ID No. 20
                    5'- AGGAAAGGCCCGGTCGAA
25
    SEQ ID No. 21
                    5'- AAGGAAAGGCCCGGTCGA
    SEQ ID No. 22:
                    5'- ATAGCACTGGGATCCTCGCC
    SEQ ID No. 23:
                    5'- CCAGCCCCAAAGTTACCTTC
    SEQ ID No. 24:
                    5'- TCCTTGACGTAAAGTCGCAG
```

5'- GGAAGAAAACCAGTACGC

SEQ ID No. 25:

- 79 -

	SEQ ID No. 26:	5'- CCGGTCGGAAGAAACCA
	SEQ ID No. 27:	5'- GAAGAAAACCAGTACGCG
	SEQ ID No. 28:	5'- CCCGGTCGGAAGAAACC
	SEQ ID No. 29:	5'- CGGTCGGAAGAAAACCAG
5	SEQ ID No. 30:	5'- GGTCGGAAGAAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
10	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
15	SEQ ID No. 40:	5'- GGCCCGGTCGGAAGAAAA
	SEQ ID No. 41:	5'- ATAAACACCACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
 	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
 20	SEQ ID No45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCAGTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
25	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
30	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG

	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG
5	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
10	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
15	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
20	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC-
	SEQ ID No. 76:	5'- GTCGGAAAAACCAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCAGT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAG
25	SEQ ID No. 80:	5'- TCGGAAAAACCAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

- 81 -

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCGGTCGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAACCAGTACGCGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG

- 82 -

	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCCG
5	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCCGTC
	SEQ ID No. 121:	5'- AGTGGTGCCCTTCCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
10	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC
	SEQ ID No. 127:	5'- CTCGCCTCACGGGGTTCTCA
	SEQ ID No. 128:	5'- GGCCCGGTCGAAATTAAA
	SEQ ID No. 129:	5'- AGGCCCGGTCGAAATTAA
15	SEQ ID No. 130:	5'- AAGGCCCGGTCGAAATTA
	SEQ ID No. 131:	5'- AAAGGCCCGGTCGAAATT
	SEQ ID No. 132:	5'- GAAAGGCCCGGTCGAAAT
	SEQ ID No. 133:	5'- ATATTCGAGCGAAACGCC
	SEQ ID No. 134:	5'- GGAAAGGCCCGGTCGAAA
20	SEQ-ID No. 135:	- 5'AAAGATCCGGACCGGCCG
	SEQ ID No. 136:	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 137:	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 138:	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 139:	5'- AGATCCGGACCGGCCGAC
25	SEQ ID No. 140:	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 141:	5'- AGGAAAGGCCCGGTCGAA
	SEQ ID No. 142:	5'- AAGGAAAGGCCCGGTCGA
	SEQ ID No. 143:	5'-CGAGCAAAACGCCTGCTTTG
	SEQ ID No. 144:	5'-CGCTCTGAAAGAGAGTTGCC
30	SEQ ID No. 145:	5'-AGTTGCCCCCTACACTAGAC

	SEQ ID No. 146:	5'-GCTTCTCCGTCCCGCGCCG
	SEQ ID No. 148:	5'- CCTGGTTCGCCAAAAAGGC
	SEQ ID No. 149:	5'-GATTCTCGGCCCCATGGG
	SEQ ID No. 150:	5'- ACCCTCTACGGCAGCCTGTT
5	SEQ ID No. 151:	5'- GATCGGTCTCCAGCGATTCA
	SEQ ID No. 152:	5'- ACCCTCCACGGCGGCCTGTT
	SEQ ID No. 153:	5'- GATTCTCCGCGCCATGGG
	SEQ ID No. 154:	5'- TCATCAGACGGGATTCTCAC
	SEQ ID No. 157:	5'-AGTTGCCCCCTCCTCTAAGC
10	SEQ ID No. 158:	5'-CTGCCACAAGGACAAATGGT
	SEQ ID No. 159:	5'-TGCCCCCTCTTCTAAGCAAAT
	SEQ ID No. 160:	5'-CCCCAAAGTTGCCCTCTC
	SEQ ID No. 163:	5`-AAGACCAGGCCACCTCAT
	SEQ ID No. 164:	5'- CATCATAGAACACCGTCC
15	SEQ ID No. 165:	5'- CCTTCCGAAGTCGAGGTTTT
	SEQ ID No. 166:	5'- GGGAGTGTTGCCAACTC
	SEQ ID No. 167:	5'- AGCGGTCGTTCGCAACCCT
	SEQ ID No. 168:	5'- CCGAAGTCGGGGTTTTGCGG
	SEQ ID No. 169:	5'- GATAGCCGAAACCACCTTTC
20	SEQ ID No170:-	5.'GCCGAAACCACCTTTCAAAC
	SEQ ID No. 171:	5'- GTGATAGCCGAAACCACCTT
	SEQ ID No. 172:	5'- AGTGATAGCCGAAACCACCT
	SEQ ID No. 173:	5'- TTTAACGGGATGCGTTCGAC
	SEQ ID No. 174:	5'- AAGTGATAGCCGAAACCACC
25	SEQ ID No. 175:	5'- GGTTGAATACCGTCAACGTC
	SEQ ID No. 176:	5'- GCACAGTATGTCAAGACCTG
	SEQ ID No. 177:	5'- CATCCGATGTGCAAGCACTT
	SEQ ID No. 178:	5'-TCATCCGATGTGCAAGCACT
	SEQ ID No. 179:	5'- CCGATGTGCAAGCACTTCAT
30	SEQ ID No. 180:	5'- CCACTCATCCGATGTGCAAG

	SEQ ID No. 181:	5'- GCCACAGTTCGCCACTCATC
	SEQ ID No. 182:	5'- CCTCCGCGTTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
5	SEQ ID No. 185:	5'- CCAGTTCGCCACAGTTCGCC
	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTCGCCACAGTTCGCCA
10	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
	SEQ ID No. 191:	5'- CGCCACAGTTCGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTCGCCACT
	SEQ ID No. 194:	5'- TCCTCCGCGTTTGTCACCGG
15	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
	SEQ ID No. 196:	5'- AGTTCGCCACAGTTCGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTCGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
20	SEQ ID No. 200:	5'- CCACAGTTCGCCACTCATCC-
	SEQ ID No. 201:	5'- GATTTAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
25	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCGCGTTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
30	SEQ ID No. 210:	5'- CACCAGTTCGCCACAGTTCG

PCT/EP2004/010695

	SEQ ID No. 211:	5'- ACGGGATGCGTTCGACTTGC
	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
5	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
	SEQ ID No. 216:	5'- TCCGCGTTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTTGTCACCGGCAGT
10	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
	SEQ ID No. 221:	5'- CATTTAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTCGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTTGTCACCGGCA
15	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
20	SEQ ID-No. 230:	5' CTTGGTGAACCGTTACTCCA
	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
25	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCGGGTCCTTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTCGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
30	SEQ ID No. 240:	5'- CTCACCAGTTCGCCACAGTT

- 86 -

	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG
	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
5	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTTCGCCACTCATCCGATG
10	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTTGTCACC
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
15	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTTGTCAC
	SEQ ID No. 256:	5'- ACGCCGCGGGTCCTTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTTCCAGAAGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAAGTGATAGCCGA
20	SEQ ID No. 260:	5'GCCTTGGTGAACCATTACTC
	SEQ ID No. 261:	5'- ACAGTTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTTGGGTGTTGC
25	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTTG
	SEQ ID No. 266:	5'- ACCGAACCGACTTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTTGGG
30	SEQ ID No. 270:	5'- CCTTTCTGGTATGGTACCGTC

	SEQ ID No. 271:	5'- TGCACCGCGGAYCCATCTCT
	SEQ ID No. 272:	5'- AGTTGCAGTCCAGTAAGCCG
	SEQ ID No. 273:	5'- GTTGCAGTCCAGTAAGCCGC
	SEQ ID No. 274:	5'- CAGTTGCAGTCCAGTAAGCC
5	SEQ ID No. 275:	5'- TGCAGTCCAGTAAGCCGCCT
	SEQ ID No. 276:	5'- TCAGTTGCAGTCCAGTAAGC
	SEQ ID No. 277:	5'-TTGCAGTCCAGTAAGCCGCC
	SEQ ID No. 278:	5'- GCAGTCCAGTAAGCCGCCTT
	SEQ ID No. 279:	5'- GTCAGTTGCAGTCCAGTAAG
10	SEQ ID No. 280:	5'- CTCTAGGTGACGCCGAAGCG
	SEQ ID No. 281:	5'- ATCTCTAGGTGACGCCGAAG
	SEQ ID No. 282:	5'- TCTAGGTGACGCCGAAGCGC
	SEQ ID No. 283:	5'- TCTCTAGGTGACGCCGAAGC
	SEQ ID No. 284:	5'- CCATCTCTAGGTGACGCCGA
15	SEQ ID No. 285:	5'- CATCTCTAGGTGACGCCGAA
	SEQ ID No. 286:	5'- TAGGTGACGCCGAAGCGCCT
	SEQ ID No. 287:	5'- CTAGGTGACGCCGAAGCGCC
	SEQ ID No. 288:	5'- CTTAGACGGCTCCTTCCTAA
	SEQ ID No. 289:	5'- CCTTAGACGGCTCCTTCCTA
20	SEQ ID No. 290: -	- 5'- ACGTCAGTTGCAGTCCAGTA
	SEQ ID No. 291:	5'- CGTCAGTTGCAGTCCAGTAA
	SEQ ID No. 292:	5'- ACGCCGAAGCGCCTTTTAAC
	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTTAACTT
25	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTTAACT
	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTTT
	SEQ ID No. 297:	5'- TGACGCCGAAGCGCCTTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTTCCTAAAAGGT
30	SEQ ID No. 300: -	5'- GACGGCTCCTTCCTAAAAGG

- 88 -

	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC
	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCTT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
5	SEQ'ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
	SEQ ID No. 306:	5'- TCTAGGTGACGCCAAAGCGC
	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTTAACT
10	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTTA
	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
15	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAAA
	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA
	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
20	SEQ ID No. 320: -	-5'GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
25	SEQ ID No. 325:	5'- AGACGGCTCCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCCTAAAAG
	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCCTAAAAGGTTAG
30	SEQ ID No. 330: - ·	- 5'CTCCCCCTAAAAGGTTAGGC

- 89 -

	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCTAAAAGGTTA
5	SEQ ID No. 335:	5'- CCCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCTAAA
	SEQ ID No. 337:	5'- TTAGACGGCTCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
10	SEQ ID No. 340:	5'- ACGGCTCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCTAAAAGGT
	SEQ ID No. 342:	5'- ACGCCGCAAGACCATCCTCT
	SEQ ID No. 343:	5'- CTAATACGCCGCAAGACCAT
	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
15	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
20	SEQ-ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
25	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
30	SEQ ID No. 360:	-5'- TTTGCTACGTCACTAGGAGG

	SEQ ID No. 301:	5 - GCCATCCCTTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
5	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
10	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
	SEQ ID No. 373:	5'- CCATCCCTTTCTGGTAAGGT
	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
15	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
20	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
25	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
30	SEQ ID No. 390:	5'- CCCGAAGATCAATTCAGCGG

	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
	SEQ ID No. 393:	5'-TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
5	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCAGCGGCT
10	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG
	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
15	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
	SEQ ID No. 408:	5'- GCACCCATCGTTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTTACGGTATG
20	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'-TCACTAGGAGGCGGAAACCT
25	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
	SEQ ID No. 418:	5'- CAAGCTAATACGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
30	SEQ ID No. 420:	5'- CCGAAGATCAATTCAGCGGC

	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
	SEQ ID No. 423:	5'- GCGTTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
5	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
10	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTTACCTTAGGCACCGG
	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA
	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
15	SEQ ID No. 435:	5'- GCCAAGCGACTTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTTC
	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
20	SEQ ID No. 440:	5'- GGCCGGCCAGTCTCTCAACT-
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
	SEQ ID No. 443:	5'CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTTCTGG
25	SEQ ID No. 445:	5'- AACCCTTCATCACACACG
	SEQ ID No. 446:	5'- CGAAACCCTTCATCACAC
	SEQ ID No. 447:	5'- ACCCTTCATCACACACGC
	SEQ ID No. 448:	5'- TACCGTCACACACTGAAC
	SEQ ID No. 449:	5'- AGATACCGTCACACACTG
30	SEQ ID No. 450:	5'- CACTCAAGGGGGGAAACC

	SEQ ID No. 451:	5'- ACCGTCACACACTGAACA
	SEQ ID No. 452:	5'- CGTCACACACTGAACAGT
	SEQ ID No. 453:	5'- CCGAAACCCTTCATCACA
	SEQ ID No. 454:	5'- CCGTCACACACTGAACAG
5	SEQ ID No. 455:	5'- GATACCGTCACACACTGA
	SEQ ID No. 456:	5'- GGTAAGATACCGTCACAC
	SEQ ID No. 457:	5'- CCCTTCATCACACACGCG
	SEQ ID No. 458:	5'- ACAGTGTTTTACGAGCCG
	SEQ ID No. 459:	5'- CAGTGTTTTACGAGCCGA
10	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACA
15	SEQ ID No. 465:	5'- TGAGGGCTTTCACTTCAG
	SEQ ID No. 466:	5'- AGGGCTTTCACTTCAGAC
	SEQ ID No. 467:	5'- GAGGGCTTTCACTTCAGA
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
20	SEQ ID No. 470: -	5' TCCGGATAACGCTTGGAA-
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
25	SEQ ID No. 475:	5'- TCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCTTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCTTTCTGGTAA
	SEQ ID No. 479:	5'- AGCCGTTCCTTTCTGGTA
30	SEQ ID No. 480:	5'- GCACGTATTTAGECGTTC

	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
	SEQ ID No. 483:	5'- CACTTTCCTCTACTGCAC
	SEQ ID No. 484:	5'- CCACTTTCCTCTACTGCA
5	SEQ ID No. 485: —	5°-TCCACTTTCCTCTACTGC
	SEQ ID No. 486:	5'- CTTTCCTCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCTTTCTGGT
	SEQ ID No. 488:	5'- TTAGCCGTTCCTTTCTGG
	SEQ ID No. 489:	5'- TTATCCCCTGCTAAGAGG
10	SEQ ID No. 490:	5'- GTTATCCCCTGCTAAGAG
	SEQ ID No. 491:	5'- CCCGTTCGCCACTCTTTG
	SEQ ID No. 492:	5'- AGCTGAGGGCTTTCACTT
	SEQ ID No. 493:	5'- GAGCTGAGGGCTTTCACT
	SEQ ID No. 494:	5'- GCTGAGGGCTTTCACTTC
15	SEQ ID No. 495:	5'- CTGAGGGCTTTCACTTCA
	SEQ ID No. 496:	5' CCCGTGTCCCGAAGGAAC
	SEQ ID No. 497:	5' GCACGAGTATGTCAAGAC
	SEQ ID No. 498:	5' GTATCCCGTGTCCCGAAG
	SEQ ID No. 499:	5' TCCCGTGTCCCGAAGGAA
20	SEQ ID No. 500:	5' ATCCCGTGTCCCGAAGGA -
	SEQ ID No. 501:	5' TATCCCGTGTCCCGAAGG
	SEQ ID No. 502:-	5' CTTACCTTAGGAAGCGCC
	SEQ ID No. 503: · · ·	5' TTACCTTAGGAAGCGCCC
	SEQ ID No. 504:	5' CCTGTATCCCGTGTCCCG
25	SEQ ID No. 505:	5' CCACCTGTATCCCGTGTC
	SEQ ID No. 506:	5' CACCTGTATCCCGTGTCC
	SEQ ID No. 507:	5' ACCTGTATCCCGTGTCCC
	SEQ ID No. 508:	5' CTGTATCCCGTGTCCCGA
	SEQ ID No. 509:	5' TGTATCCCGTGTCCCGAA
30	SEQ ID No. 510:	5' CACGAGTATGTCAAGACC

SEQ ID No. 511: 5' CGGTCTTACCTTAGGAAG

PCT/EP2004/010695

	DEQ 12 1.0.012.	
	SEQ ID No. 512:	5' TAGGAAGCGCCCTCCTTG
	SEQ ID No. 513:	5' AGGAAGCGCCCTCCTTGC
	SEQ ID No. 514:	5' TTAGGAAGCGCCCTCCTT
5	SEQ ID No. 515:"	~~ 5′~CTTAGGAAGCGCCCTCCT
	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
10	SEQ ID No. 520:	5' ACCACCTGTATCCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGCGGTTAGGCAACCTAC
15	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
20	SEQ ID No. 530:	5'-CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTTGCGG
	SEQ ID No. 533:	5' GGAAGCGCCCTCCTTGCG
	SEQ ID No. 534:	5' CGTCCCTTTCTGGTTAGA
25	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTTACA
30	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG

- 96 -

	SEQ ID No. 541:	5' GGTCGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATCGCC
	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
5	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG
	SEQ ID No. 546:	5' TCTTACCTTAGGAAGCGC
	SEQ ID No. 547:	5'- GTACAAACCGCCTACACGCC
	SEQ ID No. 548:	5'- TGTACAAACCGCCTACACGC
	SEQ ID No. 549:	5'- GATCAGCACGATGTCGCCAT
10	SEQ ID No. 550:	5'- CTGTACAAACCGCCTACACG
	SEQ ID No. 551:	5'- GAGATCAGCACGATGTCGCC
	SEQ ID No. 552:	5'- AGATCAGCACGATGTCGCCA
	SEQ ID No. 553:	5'- ATCAGCACGATGTCGCCATC
	SEQ ID No. 554:	5'- TCAGCACGATGTCGCCATCT
15	SEQ ID No. 555:	5'- ACTGTACAAACCGCCTACAC
	SEQ ID No. 556:	5'- CCGCCACTAAGGCCGAAACC
	SEQ ID No. 557:	5'- CAGCACGATGTCGCCATCTA
	SEQ ID No. 558:	5'- TACAAACCGCCTACACGCCC
	SEQ ID No. 559:	5'- AGCACGATGTCGCCATCTAG
20	SEQ ID No. 560:	5'- CGGCTTTTAGAGATCAGCAC
	SEQ ID No. 561:	5'- TCCGCCACTAAGGCCGAAAC
	SEQ ID No. 562:	5'- GACTGTACAAACCGCCTACA
	SEQ ID No. 563:	5'- GTCCGCCACTAAGGCCGAAA
	SEQ ID No. 564:	5'- GGGGATTTCACATCTGACTG
25	SEQ ID No. 565:	5'- CATACAAGCCCTGGTAAGGT
	SEQ ID No. 566:	5'- ACAAGCCCTGGTAAGGTTCT
	SEQ ID No. 567:	5'- ACAAACCGCCTACACGCCCT
	SEQ ID No. 568:	5'- CTGACTGTACAAACCGCCTA
	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
30	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT

PCT/EP2004/010695

- 97 **-**

	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
5	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCCACTGT
	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCCACTG
10	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTC
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
15	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
	SEQ ID No. 588:	5'-TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
20	SEQ ID No. 590: —	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
25	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCCA
	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
30	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT-

- 98 -

	SEQ ID No. 601:	5'- GCCGAAACCTTCGTGCGACT
	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
	SEQ ID No. 603:	5'- CGAAACCTTCGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
5	SEQ ID No. 605:	5'- GAAACCTTCGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACCTTCGTGCGAC
	SEQ ID No. 607:	5'- AAACCTTCGTGCGACTTGCA
	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC
	SEQ ID No. 609:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 610:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 611:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 612:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 613:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 614:	5'- GCTCACCGGCTTAAGGTCAA
15	SEQ ID No. 615:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 616:	5'- TCGCTCACCGGCTTAAGGTC
	SEQ ID No. 617:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 618:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 619:	5'- TCACCGGCTTAAGGTCAAAC
20	SEQ ID No. 620:-	- 5'- CAACCETCTCACACTCTA
	SEQ ID No. 621:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 622:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 623:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 624:	5'- CACAACCCTCTCTCACACTC
25	SEQ ID No. 625:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
30	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT

- 99 -

	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
5	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
10	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
15	SEQ ID No. 645:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACC
20	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
25	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
30	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT

	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 663:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTTGACCCTCAGGTGT
5	SEQ ID No. 665:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 667:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 668:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGTCATGCG
10	SEQ ID No. 670:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 673:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
15	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
20	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG-
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT.
	SEQ ID No. 683:	5'-TCGATCATCGCCTTGGTAGG
	SEQ ID No. 684:	5'- ATCGATCATCGCCTTGGTAG
25	SEQ ID No. 685:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCGC
30	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCGCC

- 101 -

	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTC
5	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 698:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
10	SEQ ID No. 700:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 701:	5'- AACCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 703:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAACCCTCTCTCACA
15	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
20	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
25	SEQ ID No. 715:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAACCCTCTCTC
30	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC

- 102 -

	•	
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 723:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCCACAGG
5	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCCAACATCCAGCACACAT
10	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
15	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
20	SEQ ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 743:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
25	SEQ ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 748:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
30	SEQ ID No. 750:	5'- CCCTCAGGTGTCATGCGGTA -

	SEQ ID No. 751:	5'- CCTTTGACCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 753:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
5	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 758:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATCGCCTTGGT
10	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATCGCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 763:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGCGCCTT
15	SEQ ID No. 765:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGCG
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGCGC
	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 769:	5'- ACAGGCGACTTGCGCCTTTG
20	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 774:	5'- AACCCTCTCTCACACTCTAG
25	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 778:	5'- ACCCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
30	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG

PCT/EP2004/010695

	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
5	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 788:	5'- GGTTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCTCTCTCAC
10	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
15	SEQ ID No. 795:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 796:	5'- GGGAATTCCACAACCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
20	SEQ ID No800:-	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCCAACATCCAGCACACAT
	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
25	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
30	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG

- 105 -

	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
5	SEQ ID No. 815:	5'- CGCCTTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 818:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
10	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 821:	5'- GCCTTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGTA
	SEQ ID No. 824:	5'- CCTTTGACCCTCAGGTGTCA
15	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTCAT
	SEQ ID No. 826:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
20	SEQ-ID No. 830:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 834:	5'- TCGATCATCGCCTTGGTAGG
25	SEQ ID No. 835:	5'- ATCGATCATCGCCTTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGCGCCTTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGCGCCTT
	SEQ ID No. 838:	5'- TCCACAGGCGACTTGCGCCT
	SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGCG
30	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCGC

- 106 -

	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCGCC
	SEQ ID No. 842:	5'- ACAGGCGACTTGCGCCTTTG
	SEQ ID No. 843:	5'- AGCCCCGGTTTCCCGGCGTT
	SEQ ID No. 844:	5'- CGCCTTTCCTTTTTCCTCCA
5	SEQ ID No. 845:	5'- GCCCCGGTTTCCCGGCGTTA
	SEQ ID No. 846:	5'- GCCGCCTTTCCTTTTTCCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCGGCGT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
	SEQ ID No. 849:	5'- AAGCCGCCTTTCCTTTTTCC
10	SEQ ID No. 850:	5'- CCCCGGTTTCCCGGCGTTAT
	SEQ ID No. 851:	5'- CCGGCGTTATCCCAGTCTTA
	SEQ ID No. 852:	5'- AGCCGCCTTTCCTTTTCCT
	SEQ ID No. 853:	5'- CCGCCTTTCCTTTTTCCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCGGCG
15	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT
	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
20	SEQ ID No. 860:	5'-GAAGCCGCCTTTCCTTTTC-
	SEQ ID No. 861:	5'- CCCGGTTTCCCGGCGTTATC
	SEQ ID No. 862:	5'- CGGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
25	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
30	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG

	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTTACGAC
5	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
10	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'- TCTTCCCCGGCAACAGAGTT
15	SEQ ID No. 885:	5'- TTGTTCTTCCCCGGCAACAG
	SEQ ID No. 886:	5'- ACTTGTTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
20	SEQ ID No. 890:	5' GTCCGCCGCTAACCTTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
25	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTTCCTTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTTCCTTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTTCCTT
30	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG

- 108 -

	SEQ ID No. 901:	5'- CCGTGGCTTTCTGGCCGGGT
	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTTCTGGCCGGGTACCG
5	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTTCTGGCCGGGTA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
10	SEQ ID No. 910:	5'- GGGAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
15	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC
	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
20	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
25	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTTT
30	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT

- 109 -

	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTTT
	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
5	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC
	SEQ ID No. 938:	5'- CCGACTTACGCCGGCAGTCA
	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
10	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
15	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCCAAC
20	SEQ ID No. 950;	_5'-CACTGGGGTGTGTCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCCCC
	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
25	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
	SEQ ID No. 958:	5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
30	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG

- 110 -

	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
5	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA
	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
10	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
15	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCGCAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
	SEQ ID No. 978:	5'-TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
20	SEQ ID No. 980:	5'TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCCC
	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCCCAACAC
25	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
30	SEQ ID No. 990:-	5'- CTCCAGACTTGCTCGACCGC

- 111 -

	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
5	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGŤA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCCAACACC
	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT
	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
10	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCCAACACCT
	SEQ ID No. 1003:	5'- GTGTGTCCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
15	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGGCGTATCCGGCATT
	SEQ ID No. 1008:	5'-TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
20	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATTA
	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCAGCGGCC
25	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
30	SEQ ID No. 1020:	-5'- GCGGGCGTATCCGGCATTAG

WO 2005/031004

	SEQ ID No. 1021:	5'- CGAGCGGCTTTTTGGGTTTC
	SEQ ID No. 1022:	5'- CTTTCACTCCAGACTTGCTC
	SEQ ID No. 1023:	5'- TTCCTTCGGCACTGGGGTGT
	SEQ ID No. 1024:	5'- CCGCCTTCCTCCGACTTACG
5	SEQ ID No. 1025:	5'- CCCGCCTTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC
	SEQ ID No. 1028:	5'- CATTAGCGCCCGTTTCCGGG
	SEQ ID No. 1029:	5'- GCATTAGCGCCCGTTTCCGG
10	SEQ ID No. 1030:	5'- GGCATTAGCGCCCGTTTCCG
	SEQ ID No. 1031:	5'- GTCTCGCATGGGGCTTTCCA
	SEQ ID No. 1032:	5'- GCCATGGACTTTCACTCCAG
	SEQ ID No. 1033:	5'- CATGGACTTTCACTCCAGAC
	SEQ ID No. 1037:	5'- ACCGTCTCACAAGGAGCTTT
15	SEQ ID No. 1038:	5'- TACCGTCTCACAAGGAGCTT
	SEQ ID No. 1039:	5'- GTACCGTCTCACAAGGAGCT
	SEQ ID No. 1040:	5'- GCCTACCCGTGTATTATCCG
	SEQ ID No. 1041:	5'- CCGTCTCACAAGGAGCTTTC
	SEQ ID No. 1042:	5'- CTACCCGTGTATTATCCGGC
20	SEQ ID No. 1043:	5'- GGTACCGTCTCACAAGGAGC
	SEQ ID No. 1044:	5'- CGTCTCACAAGGAGCTTTCC
	SEQ ID No. 1045:	5'- TCTCACAAGGAGCTTTCCAC
	SEQ ID No. 1046:	5'- TACCCGTGTATTATCCGGCA
	SEQ ID No. 1047:	5'- GTCTCACAAGGAGCTTTCCA
25	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAGG
	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAG
	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
30	SEQ ID No. 1053: -	- 5'ACAAGTAGATGCCTACCCGT

	CEO ID No. 1054.	5'- TGGCTCCATAACGGTTACCT
	SEQ ID No. 1054:	
	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
5	SEQ'ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA
	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA
10	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
	SEQ ID No. 1065:	5'- TGCCTACCCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAGGA
	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTTCCACT
15	SEQ ID No. 1068:	5'- GTAGATGCCTACCCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCCGTGTATTATCCGG
	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
4	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
	SEQ ID No. 1072:	5'- AGTAGATGCCTACCCGTGTA
20	-SEQ-ID-No. 1073:-	5'- GCGGCTGGGTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCCAAGGTTG
	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCACC
	SEQ ID No. 1076:	-5'- CCCGTGTATTATCCGGCATT
	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
25	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
30	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG

	SEQ ID No. 1084:	5'- CACAAGGAGCTTTCCACTCT
	SEQ ID No. 1085:	5'- ACAAGGAGCTTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTTCCACTC
	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
5	SEQ ID No. 1088:	5'- CAAGGAGCTTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT
10	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
	SEQ ID No. 1095:	5'- CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
15	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTTCACTTCAG
	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
20	SEQ ID No1103: -	-5'-CTCCTCTCTCAGCGATGCAG-
	SEQ ID No. 1104:	5'- TCGGCGGCTGGCTCCATAAC
	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC
	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
25	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
30	SEQ ID No. 1113:	5'- CTAGECCCGAAGGGCTCGCT

	SEQ ID No. 1114:	5'- CGCTAGCCCCGAAGGGCTCG
	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
5	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCGAAGGGCTCGCTCGA
	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTTCACTTC
	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT
10	SEQ ID No. 1123:	5'- GAGCTTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
	SEQ ID No. 1125:	5'- CGGGCTCCTCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTTCCACTCTCCTTG
	SEQ ID No. 1127:	5'- GGGCTCCTCTCTCAGCGATG
15	SEQ ID No. 1128:	5'- TCTCCTTGTCGCTCTCCCCG
	SEQ ID No. 1129:	5'- TCCTTGTCGCTCTCCCCGAG
	SEQ ID No. 1130:	5'- AGCTTTCCACTCTCCTTGTC
	SEQ ID No. 1131:	5'- CCACTCTCCTTGTCGCTCTC
	SEQ ID No. 1132:	5'- GGCTCCTCTCTCAGCGATGC
20	SEQ ID No. 1133:	5'- CCTTGTCGCTCTCCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTCGCTCTCC
	SEQ ID No. 1135: -	5'- ACTCTCCTTGTCGCTCTCCC
	SEQ ID No. 1136:	5'- CTCTCCTTGTCGCTCTCCCC
	SEQ ID No. 1137:	5'- GCGGGCTCCTCTCTCAGCGA
25	SEQ ID No. 1138:	5'- GGCTCCATCATGGTTACCTC
	SEQ ID No. 1142:	5'- CTTCCTCCGGCTTGCGCCGG
	SEQ ID No. 1143:	5'- CGCTCTTCCCGA(G/T)TGACTGA
	SEQ ID No. 1144:	5'- CCTCGGGCTCCTCCATC(A/T)GC

- 2. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Zygosaccharomyces mittels der Oligonukleotidsonde SEQ ID No. 1 nachgewiesen werden.
- 5 3. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Zygosaccharomyces bailii mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 5 bis SEQ ID No. 21, nachgewiesen wird.
- 4. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Zygosaccharomyces fermentati mittels der Oligonukleotidsonde SEQ ID No. 22 nachgewiesen wird.
- Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces microellipsoides mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 23 bis SEQ ID No. 24, nachgewiesen wird.
- 6. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 20 Mikroorganismus Zygosaccharomyces-mellis mittels-mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 25 bis
 SEQ ID No. 75, nachgewiesen wird.
- Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Zygosaccharomyces rouxii mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 76 bis SEQ ID No. 126, nachgewiesen wird.

- 117 -

- 8. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Zygosaccharomyces mellis und Zygosaccharomyces rouxii gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 127 nachgewiesen werden.
- 9. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Zygosaccharomyces bisporus mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 128 bis SEQ ID No. 142, nachgewiesen wird.
- 10 10. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Hanseniaspora uvarum mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 143 und SEQ ID No. 144, nachgewiesen wird.
- 15 11. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Candida intermedia mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 145 und SEQ ID No. 146, nachgewiesen wird.
- 20 12. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus Candida parapsilosis mittels der Oligonukleotidsonde SEQ ID No. 148 nachgewiesen wird.
- 13. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 25 Mikroorganismus Candida crusei (Issatchenkia orientalis) mittels der
 Oligonukleotidsonde SEQ ID No. 149 nachgewiesen wird.

30

14. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Brettanomyces (Dekkera) anomala und Dekkera bruxellensis gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 150 nachgewiesen werden.

- 118 -

15. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces* (*Dekkera*) *bruxellensis* mittels der Oligonukleotidsonde SEQ ID No. 151 nachgewiesen wird.

5

- 16. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces (Dekkera) naardenensis* mittels der Oligonukleotidsonde SEQ ID No. 152 nachgewiesen wird.
- 10 17. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Pichia membranaefaciens* mittels der Oligonukleotidsonde SEQ ID No. 153 nachgewiesen wird.
- 18. Verfahren nach Anspruch 1, wobei die getränkeschädlichen
 15 Mikroorganismen *Pichia minuta* und *Pichia anomala* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 154 nachgewiesen werden.
- 19. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Saccharomyces exiguus mittels der Oligonukleotidsonde SEQ ID
 20 No. 157 nachgewiesen wird.
- 20. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Saccharomycodes ludwigii mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 158 und
 SEQ ID No. 159, nachgewiesen wird.
 - 21. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces cerevisiae* mittels der Oligonukleotidsonde SEQ ID No. 160 nachgewiesen wird.

- 119 -

- 22. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Mucor racemosus* mittels der Oligonukleotidsonde SEQ ID No. 163 nachgewiesen wird.
- 5 23. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Byssochlamys nivea* mittels der Oligonukleotidsonde SEQ ID No. 164 nachgewiesen wird.
- 24. Verfahren nach Anspruch 1, wobei der getränkeschädliche
 Mikroorganismus Neosartorya fischeri mittels der Oligonukleotidsonde SEQ ID No.
 165 nachgewiesen wird.
- 25. Verfahren nach Anspruch 1, wobei die getränkeschädlichen
 Mikroorganismen Aspergillus fumigatus und A. fischeri gleichzeitig mittels der
 Oligonukleotidsonde SEQ ID No. 166 nachgewiesen werden.
 - 26. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Talaromyces flavus* mittels der Oligonukleotidsonde SEQ ID No. 167 nachgewiesen wird.

20

٠.

- 27. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Talaromyces bacillisporus* und *T. flavus* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 168 nachgewiesen werden.
- 28. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Lactobacillus collinoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 169 bis SEQ ID No. 269, nachgewiesen wird.

- 120 -

29. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Leuconostoc mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 270 bis SEQ ID No. 271, nachgewiesen werden.

5

30. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen Leuconostoc mesenteroides und L. pseudomesenteroides gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 272 bis SEQ ID No. 301, nachgewiesen werden.

10

31. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Leuconostoc pseudomesenteroides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 302 bis SEQ ID No. 341, nachgewiesen wird.

15

32. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Oenococcus oeni* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 342 bis SEQ ID No. 444, nachgewiesen wird.

20

33. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Weissella mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 445 bis SEQ ID No. 495, nachgewiesen werden.

25

34. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung Lactococcus mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 496 bis SEQ ID No. 546, nachgewiesen werden.

- 121 -

35. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen Acetobacter und Gluconobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 547 bis SEQ ID No. 608, nachgewiesen werden.

5

10

15

25

30

- 36. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 609 bis SEQ ID No. 842, nachgewiesen werden.
- 37. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Bacillus coagulans* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 843 bis SEQ ID No. 932, nachgewiesen wird.
- 38. Verfahren nach Anspruch 1, wobei getränkeschädliche
 Mikroorganismen der Gattung Alicyclobacillus mittels mindestens einer
 Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 933 bis
 SEQ ID No. 1033, nachgewiesen werden.
 - 39. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Alicyclobacillus acidoterrestris* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1037 bis SEQ ID No. 1138, nachgewiesen wird.
 - 40. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Alicyclobacillus cycloheptanicus* und *A. herbarius* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1142 bis SEQ ID No. 1144, nachgewiesen werden.

- 122 -

41. Verfahren nach Anspruch 2,

dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

5

42. Verfahren nach Anspruch 41,

dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 2 bis SEQ ID No. 4, verwendet wird.

10

25

30

43. Verfahren nach Anspruch 11,

dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

15 44. Verfahren nach Anspruch 43,

dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 146 zusammen mit der Kompetitorsonde SEQ ID No. 147 verwendet wird.

- 45. Verfahren nach Anspruch 18,
- dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
 - 46. Verfahren nach Anspruch 45,

dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 154 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 155 bis SEQ ID No. 156, verwendet wird.

47. Verfahren nach Anspruch 21,

dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

- 123 -

48. Verfahren nach Anspruch 47, dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 160 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 161 bis SEQ ID No. 162, verwendet wird.

5

10

15

20

49. Verfahren nach Anspruch 38, dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

50. Verfahren nach Anspruch 49,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 933 zusammen
mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend
aus SEQ ID No. 1034 bis SEQ ID No. 1036, verwendet wird.

51. Verfahren nach Anspruch 39, dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

- 52. Verfahren nach Anspruch 51,—
 dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1044
 zusammen mit der Kompetitorsonde SEQ ID No. 1139 verwendet wird.
- 53. Verfahren nach Anspruch 51,
 dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1057
 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1140 und SEQ ID No. 1141, verwendet wird.

- 124 - 1

- 54. Verfahren nach einem der Ansprüche 1 bis 53, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
- a) Kultivieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
- b) Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
- 5 c) Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde,
 - d) Entfernen nicht hybridisierter Oligonukleotidsonden,
 - e) Detektieren und Visualisieren sowie ggf. Quantifizieren der getränkeschädlichen Mikroorganismen mit den hybridisierten Oligonukleotidsonden.

10

- 55. Verfahren nach einem der Ansprüche 1 bis 54, dadurch gekennzeichnet, dass es sich bei der Probe um eine Probe aus alkoholfreien Getränken handelt.
- 56. Kit zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis55, enthaltend mindestens ein Oligonukleotid nach Anspruch 1.

10/574717

IAP15 Rec'd PCT/PTO 03 APR 2006

WO 2005/031004

PCT/EP2004/010695

V7588.ST25.txt SEQUENCE LISTING

<110>	Vermicon AG	
<120>	Method for the specific fast detection of microorganisms which are harmful to beverages $\dot{\ }$	
<130>	V 7588	
<140> <141>	PCT/ 2004-09-23	
<150> <151>	DE 103 44 057.7 2003-09-23	
<160>	1144	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 21 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttga	1 ccag attctccgct c	21
<210> <211> <212> <213>	2 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttgad	2 ccag attttccgct ct	22
<210> <211> <212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttgad	3 ccaa attttccgct ct	22
<210> <211> <212> <213>	4 22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtttgto	4 ccaa attctccgct ct	22
<210>	5	

<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cccggt	5 cgaa ttaaaacc	18
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> gcccgg	6 tcga attaaaac	18
<210> <211> <212> <213>	7 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggcccg	7 gtcg aattaaaa	18
<210> <211> <212> <213>	8 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> aggccc	8 ggtc gaattaaa	18
<210> <211> <212> <213>	9 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> aaggcc	9 cggt cgaattaa	18
<210> <211> <212> <213>	10 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	10	

atatto	gagc gaaacgcc	V7300.3123.EXC	18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
	11 ccgg accggccg		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> ggaaag	12 patcc ggaccggc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
	13 tccg gaccggcc		18
<210> <211> <212> <213>	18		
~220> <223>	oligonucleotide		
<400> gatccg	14 . gacc ggccgacc		18
<210> <211> <212> <213>	15 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agatco	15 ggac cggccgac		18
<210> <211> <212> <213>	16 18 DNA Artificial		

222		V/300.3123.LXL	
<220> <223>	oligonucleotide		
	16 cgga ccggccga		18
<210> <211> <212> <213>	17 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gaaagg	17 cccg gtcgaatt		18
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> aaaggc	18 ccgg tcgaatta		18
<210> <211> <212> <213>	19 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggaaag	19 gccc ggtcgaat		18
<210> <211> <212> <213>	Artificial		 ٠
<220> <223>	oligonucleotide		
<400> aggaaa	20 ggcc cggtcgaa		18
<210> <211> <212> <213>	21 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aaggaa	21 aggc ccggtcga		18
<210>	22		

		V	7588.st	25.txt		
<211> <212> <213>	20 DNA Artificial					
<220> <223>	oligonucleotide					
<400> atagca	22 ctgg gatcctcgcc					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
	23 ccaa agttaccttc					20
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
<400> tccttg	24 acgt aaagtcgcag					20
<210> <211> <212> <213>	18					
<220> <223>	oligonucleotide					
 <400> ggaaga	25 aaac cagtacgc					18
<210> <211> <212> <213>	26 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400> ccggtc	26 ggaa gaaaacca					18
<210> <211> <212> <213>	27 18 DNA Artificial					
<220> <223>	oligonucleotide					
<400>	27					

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt 18 gaagaaaacc agtacgcg <210> 28 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 28 cccggtcgga agaaaacc 18 <210> 29 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 29 cggtcggaag aaaaccag 18 <210> 30 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 30 ggtcggaaga aaaccagt 18 <210> 31 <211> 18 <212> DNA <213> Artificial <400> . 31 aagaaaacca gtacgcgg 18 <210> 32 <211> 18 <212> DNA <213> Artificial

<210> 33 <211> 18 <212> DNA <213> Artificial

<220>

<400> 32

<223> oligonucleotide

gtacgcggaa aaatccgg

18

V7588.ST25.txt

	V/388.5123. LXL	
<220> <223>	oligonucleotide	
	33 cgga aaaatccg	18
<210> <211> <212> <213>	34 18 DNA Artificial	
<220> <223>	oligonucleotide	
	34 aaat ccggaccg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> cggaag	35 aaaa ccagtacg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> gcccgg	36 tcgg aagaaaac	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> cgcgga	37 aaaa tccggacc	18
<210> <211> <212> <213>	38 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cagtac	38 gcgg aaaaatcc	18
<210>	39	

en a e e e e e

		V/588.ST25.txt		
<211> <212> <213>	18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> agaaaa	39 ccag tacgcgga			18
<210> <211> <212> <213>	40 18 DNA Artificial			
<220> <223>	oligonucleotide			
	40 gtcg gaagaaaa			18
<210> <211> <212> <213>	18 DNA			
<220> <223>	oligonucleotide			
	41 acca cccgatcc			18
<210> <211> <212> <213>	18			
<220> <223>	oligonucleotide			
<400> acgcgg	42 aaaa atccggac		i .	18
<210> <211> <212> <213>	43 18 DNA Artificial			
<220> · <223>	oligonucleotide			
<400> gagagg	43 cccg gtcggaag			18
<210> <211> <212> <213>	18			
<220> <223>	oligonucleotide			
<400>	44			

agaggo	ccgg tcggaaga	V7588.ST25.txt	18	
<210> <211> <212> <213>	45 18 DNA Artificial			
<220> <223>	oligonucleotide			-
	45 cggt cggaagaa		18	
<211> <212>	46 18 DNA Artificial			
<220> <223>	oligonucleotide			
	46 ggtc ggaagaaa		18	
<211> <212>	47 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccgagt	47 gggt cagtaaat		18	
<212>	18			
<220> <223>	oligonucleotide			
<400> ccagta	48 . cgcg gaaaaatc		18	
<210> <211> <212> <213>	· 18			rise ne
<220> <223>	oligonucleotide			
<400> taaaca	49 ccac ccgatccc		18	
<210> <211> <212> <213>	50 18 DNA Artificial			

V7588.ST25.txt

	V7588.ST25.txt		
<220> <223>	oligonucleotide		
<400> ggagag	50 ggccc ggtcggaa	18	
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gaaaac	51 Écagt acgcggaa	18	
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> tacgcg	52 ggaaa aatccgga	18	
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> ggccac	53 caggg acccaggg	18	
<210> <211> <212> <213>	18	·	
<220>	oligonucleotide		
<400> tcacca	54 paggg ccacaggg	18 millionauc	٠ <u>.</u>
<210> <211> <212> <213>	55 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gggcca	55 acagg gacccagg	18	

10/203

<210> 56

V7588.ST25.txt

. -- ,--

	V/308.3123. LXC	
<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ttcacc	56 aagg gccacagg	18
<212>	57 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> acaggg	57 accc agggctag	18
<210> <211> <212> <213>	58 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	58 cacag ggacccag	18
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> gttcac	59 caag ggccacag	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> gccaca	60 ggga cccagggc	18
<210> <211> <212> <213>	61 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	61	

V7588.ST25.txt	40	
cagggaccca gggctagc	18	
<210> 62 <211> 18 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 62 agggacccag ggctagcc	18	•
<210> _63 <211> 18 <212> DNA <213> Artificial		, st
<220> <223> oligonucleotide		
<400> 63 accaagggcc acagggac	18	
<210> 64 <211> 18 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 64 ccacagggac ccagggct	18	
<210> 65 <211> 18 <212> DNA <213> Artificial		-
<pre><<220></pre>		
<400>65 cacagggacc cagggcta	18	
<210> 66 <211> 18 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 66 caccaagggc cacaggga	18	
<210> 67 <211> 18 <212> DNA <213> Artificial		

V7588.ST25.txt <220> <223> oligonucleotide <400> 67 gggacccagg gctagcca 18 <210> 68 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 68 aggagaggcc cggtcgga 18 <210> 69 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 69 aaggagaggc ccggtcgg 18 <210> 70 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 70 gaaggagagg cccggtcg 18 <210> 71 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide agggctagcc agaaggag -- --18 <210> 72 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 72 gggctagcca gaaggaga 18 <210> 73

V7588.ST25.txt

		V/300.5123.LXL	
<211> <212> <213>	18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> agaagg	73 Jagag gcccggtc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> caaggg	74 JCCac agggaccc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> ccaagg	75 gcca cagggacc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gtcgga	76 aaaa ccagtacg ··		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide	u≟	
<400> gcccgg	77 tcgg aaaaacca	·	18
<210> <211> <212> <213>	78 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	78		

... .

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt ccggtcggaa aaaccagt 18 <210> 79 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 79 cccggtcgga aaaaccag 18

<210> 80 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleoțide

<400> 80 tcggaaaaac cagtacgc 18

<210> 81 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 81 cggaaaaacc agtacgcg 18

<210> 82 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 82 ggaaaaacca gtacgcgg 18

<220> <223> oligonucleotide

<400> 83 gtacgcggaa aaatccgg 18

<210> 84 <211> 18 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 84 agtacgcgga aaaatccg 18 <210> 85 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 85 gcggaaaaat ccggaccg 18 <210> 86 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 86 ggtcggaaaa accagtac 18 <210> 87 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 87 actcctagtg gtgccctt 18 <210> 88 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 88 gctccactcc tagtggtg 18 <210> 89 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<210> 90

<400> 89

cactcctagt ggtgccct

18

<211> <212> <213>	18 DNA Artificial	
<220> <223>	oligonucleotide	
	90 tcct agtggtgc	18
<210> <211> <212> <213>	91 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tccact	91 ccta gtggtgcc	18
<210> <211> <212> <213>	92 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccactc	92 ctag tggtgccc	18
<210> <211> <212> <213>	93 18 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggctcc	93 actc ctagtggt	18
<210> <211> <212> <213>	94 18 DNA Artificial	
<220> <223>	oligonucleotide	
	94 cact cctagtgg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400>	95	

ggccc	ggtcg gaaaaacc	V/300.5123.LXL	18
<210> <211> <212> <213>	18 DNA		
<220> <223>	oligonucleotide		
<400> gaaaa:	96 accag tacgcgga		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> cgcgga	97 aaaaa tccggacc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> cagtao	98 gcgg aaaaatcc		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide	•	
<400> cggtcg	99 gaaa aaccagta		18
<210> <211> <212> <213>	100 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> aaggcc	100 cggt cggaaaaa		18
<210> <211> <212> <213>	101 18 DNA Artificial		

		V7588.ST25.txt	
<220> <223>	oligonucleotide		
<400> caggct	101 ccac tcctagtg		18
<210> <211> <212> <213>	102 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctccta	102 gtgg tgcccttc		18
<210> <211> <212> <213>	103 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tcctag	103 tggt gcccttcc		18
<210> <211> <212> <213>	104 18 DNA Artificial		
<220> <223>	oligonucleotide		
	104 tcca ctcctagt		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> aggcccq	105 ggtc ggaaaaac		18
<210> <211> <212> <213>	106 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> acgcgga	106 aaaa atccggac		18

<210> 107

V7588.ST25.txt

<211> <212> <213>	18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccagta	107 cgcg gaaaaatc			18
<210> <211> <212> <213>	108 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctagtg	108 gtgc ccttccgt			18
<210> <211> <212> <213>	109 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gaaagg	109 cccg gtcggaaa			18
<210> <211> <212> <213>	110 18 DNA Artificial			
<220> <223>	oligonucleotide			
	110 ccgg tcggaaaa			18
<210> <211> <212> <213>	111 18 DNA Artificial			
<220> <223>	oligonucleotide	•		
<400> tacgcgg	111 gaaa aatccgga			18
<210> <211> <212> <213>	112 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	112			

20/203

V7588.ST25.txt ggaaaggccc ggtcggaa 18 <210> 113 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 113 atctcttccg aaaggtcg 18 <210> 114 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 114 catctcttcc gaaaggtc 18 <210> 115 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 115 ctcttccgaa aggtcgag 18 <210> 116 <211> 18 <212> DNA <213> Artificial ··· -·· <220> <223> oligonucleotide <400> 116 cttccgaaag gtcgagat 18 <210> 117 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 117 tctcttccga aaggtcga 18 <210> 118 <211> 18 <212> DNA <213> Artificial

		V7588.ST25.txt	
<220> <223>	oligonucleotide	V/ 300.5123. LXL	
<400> tcttc	118 cgaaa ggtcgaga		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> cctag	119 Eggtg cccttccg		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> tagtgg	120 tgcc cttccgtc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> agtggt	121 gccc ttccgtca		18
<210> <211> <212> <213>	18 DNA		
<220> <223>	oligonucleotide		
<400> gccaag	122 gtta gactcgtt		18
<210> <211> <212> <213>	123 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggccaaç	123 ggtt agactcgt		18
<210>	124		

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 124 ccaaggttag actcgttg 18 <210> 125 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 125 caaggttaga ctcgttgg 18 <210> 126 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 126 aaggttagac tcgttggc 18 <210> 127 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 127 20 ctcgcctcac ggggttctca <210> 128 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 128 ggcccggtcg aaattaaa 18 <210> 129 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 129

V7588.ST25.txt

aggcc	cggtc gaaattaa	V/388.ST25.tXt	18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> aaggc	130 ccggt cgaaatta		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> aaaggo	131 ccgg tcgaaatt		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide	·	
<400> gaaagg	132 cccg gtcgaaat		18
<210> <211> <212> <213>	133 18 DNA Artificial		
	oligonucleotide		
<400> atattc	133 gagc gaaacgcc		18
<210> <211> <212> <213>	134 18 DNA Artificial	·	
<220> <223>	oligonucleotide		
<400> ggaaag	134 gccc ggtcgaaa		18
<210> <211> <212> <213>	135 18 DNA Artificial		

		V7588.ST25.txt	
<220> <223>	oligonucleotide	V/300.3123. (XC	
<400> aaagat	135 ccgg accggccg		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> ggaaag	136 atcc ggaccggc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gaaagat	137 cccg gaccggcc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gatccgg	138 acc ggccgacc		18
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
	139 gac cggccgac		18
<212> I	18		
<220> <223>	oligonucleotide		
<400> 1	L40 gga ccggccga		18
<210> 1	.41		

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 141 aggaaaggcc cggtcgaa 18 <210> 142 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 142 aaggaaaggc ccggtcga 18 <210> 143 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 143 cgagcaaaac gcctgctttg 20 <210> 144 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 144 -- cgctctgaaa gagagttgcc <210> 145 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 145 agttgccccc tacactagac 20 <210> 146 <211> 19 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 146

V7588.ST25.txt gcttctccgt cccgcgccg 19 <210> 147 <211> 21 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 147 agattytccg ctctgagatg g 21 <210> 148 <211> 19 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 148 cctggttcgc caaaaaggc 19 <210> 149 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 149 gattctcggc cccatggg 18 <210> 150 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 150 accctctacg gcagcctgtt 20 <210> 151 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 151 gatcggtctc cagcgattca 20 <210> 152 <211> 20 <212> DNA <213> Artificial

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> acccto	152 cacg gcggcctgtt	20
<210> <211> <212> <213>	18 DNA	
<220> <223>	oligonucleotide	
<400> gattct	153 ccgc gccatggg	18
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tcatca	154 gacg ggattctcac	20
<210> <211> <212> <213>	22	
<220> <223>	oligonucleotide	
<400> ctcatc	155 gcac gggattctca cc	22
<210> <211> <212> <213>	22	
<220> <223>	oligonucleotide	
	156 acac gggattctca cc	22
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	157 CCCC tcctctaagc	20
<210>	158	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 158 ctgccacaag gacaaatggt 20 <210> 159 <211> 21 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 159 tgcccctct tctaagcaaa t 21 <210> 160 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 160 ccccaaagtt gccctctc 18 <210> 161 <211> 23 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 161 ---- gccgccccaa agtcgccctc tac --- -- -- --<210> 162 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 162 gccccagagt cgccttctac 20 <210> 163 <211> 18 <212> DNA <213> Artificial

. . .

29/203

<223> oligonucleotide

<400> 163

ccgaagtcgg ggttttgcgg

20

.220.	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> gatago	169 ccgaa accacctttc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> gccgaa	170 acca cctttcaaac	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
	171 gccg aaaccacctt	20
<210> <211> <212> <213>	172 20 DNA Artificial	
<220> <223>	oligonucleotide	
	172 agcc gaaaccacct	20
<210> <211> <212> <213>	173 20 ····· ··· ··· ··· ··· ··· ··· ··· ···	
<220> <223>	oligonucleotide	
<400> tttaac	173 ggga tgcgttcgac	20
<210> <211> <212> <213>	174 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> aagtgat	174 cagc cgaaaccacc	20
<210>	175	

V7588.ST25.txt

<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ggttga	175 atac cgtcaacgtc		20	
<210> <211> <212> <213>	176 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gcacag	176 tatg tcaagacctg		20	
<210> <211> <212> <213>	177 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> catccg	177 atgt gcaagcactt		20	
<210> <211> <212> <213>	178 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tcatcc	178 gatg-tgcaagcact		 20	•
<210> <211> <212> <213>	179 20 DNA Artificial			
<220> <223>	oligonucleotide			(2 <u>.</u>)
<400> ccgatg	179 tgca agcacttcat		20	
<210> <211> <212> <213>	180 20 DNA Artificial			
<220> <223>	oligonucleotide	·		
<400>	180			

V7588.ST25.txt ccactcatcc gatgtgcaag 20 <210> 181 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 181 gccacagttc gccactcatc 20 <210> 182 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 182 cctccgcgtt tgtcaccggc 20 <210> 183 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 183 accagttcgc cacagttcgc 20 <210> 184 <211> 20 <212> DNA <213> Artificial <220> ······ oligonucleotide <400> 184 cactcatccg atgtgcaagc 20 <210> 185 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 185 ccagttcgcc acagttcgcc 20

33/203

<210> 186 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 186 ctcatccgat gtgcaagcac 20 <210> 187 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 187 tccgatgtgc aagcacttca 20 <210> 188 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 188 cgccactcat ccgatgtgca 20 <210> 189 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 189 cagttcgcca cagttcgcca 20 <210> 190 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 190 gccactcatc cgatgtgcaa 20 <210> 191 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 191 cgccacagtt cgccactcat 20

<210> 192

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 192 atccgatgtg caagcacttc 20 <210> 193 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 193 gttcgccaca gttcgccact 20 <210> 194 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 194 tcctccgcgt ttgtcaccgg 20 <210> 195 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide 20 <210> 196 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 196 agttcgccac agttcgccac 20 <210> 197

<211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 197

<220>

<223> oligonucleotide

<400> 202

taacgggatg cgttcgactt

<210> 203 <211> 20 <212> DNA <213> Artificial

20

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 203 aacgggatgc gttcgacttg 20 <210> 204 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 204 cgaaggttac-cgaaccgact 20 <210> 205 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 205 ccgaaggtta ccgaaccgac 20 <210> 206 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 206 cccgaaggtt accgaaccga 20 <220> <223> oligonucleotide <400> 207 ttcctccgcg tttgtcaccg 20 <210> 208 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 208 ccgccagggt tcatcctgag 20

....

<210> 209

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 209 tccttccaga agtgatagcc 20 <210> 210 <211> 20 <212> DNA <213> Artificial <220> _ _ _ _ _ _ _ _ . <223> oligonucleotide <400> 210 caccagttcg ccacagttcg 20 <210> 211 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 211 acgggatgcg ttcgacttgc 20 <210> 212 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 212 gtccttccag aagtgatagc 20 <210> 213 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 213 gccagggttc atcctgagcc 20 <210> 214 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 214

38/203

V7588.ST25.txt actcatccga tgtgcaagca

Section 1

20

<210> 215 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 215

atcattgcct tggtgaaccg

20

<210> 216 <211> 20 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 216

tccgcgtttg tcaccggcag

20

<210> 217 <211> 20 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 217

tgaaccgtta ctccaccaac

20

<210> 218 <211> 20 <212> DNA <213> Artificial

<220> - <223> oligonucleotide

<400> .218 . . . gaagtgatag ccgaaaccac

20

<220>

<223> oligonucleotide

<400> 219

ccgcgtttgt caccggcagt

20

<210> 220 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt	
<220> <223> oligonucleotide	
<400> 220 ttcgccactc atccgatgtg	20
<210> 221 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 221 catttaacgg gatgcgttcg	20
<210> 222 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 222 cacagttcgc cactcatccg	20
<210> 223 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 223 ttcgccacag ttcgccactc	20
<210> 224 <211> 20	
<220> <223> oligonucleotide	
<400> 224 ctccgcgttt gtcaccggca	20
<210> 225 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 225 acgccgccag ggttcatcct	20
<210> 226	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 226 ccttccagaa gtgatagccg 20 <210> 227 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 227 tcattgcctt ggtgaaccgt 20 <210> 228 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 228 cacagtatgt caagacctgg 20 <210> 229 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 229 20 <210> 230 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide · · · · · · <400> 230 cttggtgaac cgttactcca 20 <210> 231 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 231

V7588.ST25.txt gtgaaccgtt actccaccaa 20 <210> 232 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 232 ggctcccgaa ggttaccgaa 20 <210> 233 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 233 gaaggttacc gaaccgactt 20 <210> 234 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 234 tggctcccga aggttaccga 20 <210> 235 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 235 taatacgccg cgggtccttc 20 <210> 236 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 236 gaaccgttac tccaccaact 20 <210> 237 <211> 20 <212> DNA <213> Artificial

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> tacgco	237 :gcgg gtccttccag	20
<210> <211> <212> <213>	238 20 DNA Artificial	
<220> <223>	oligonucleotide	
	238 gttc gccacagttc	20
<210> <211> <212> <213>	239 20 DNA Artificial	
<220> <223>	oligonucleotide	
	239 tgaa ccgttactcc	20
<211> <212>	240 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ctcacc	240 agtt cgccacagtt	20
<210> <211> <212> <213>	241 20 ···· DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgccgc	241 cagg gttcatcctg	20
<210> <211> <212> <213>	242 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ccttgg1	242 tgaa ccattactcc	20
<210>	243	

V7588.ST25.txt

<211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 243 tggtgaacca ttactccacc 20 <210> 244 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 244 gccgccaggg ttcatcctga 20 <210> 245 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 245 ggtgaaccat tactccacca 20 <210> 246 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide 20 <210> 247 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 247 aatacgccgc gggtccttcc 20 <210> 248 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 248

V7588.ST25.txt cacgccgcca gggttcatcc 20 <210> 249 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 249 agttcgccac tcatccgatg 20 <210> 250 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 250 cgggatgcgt tcgacttgca 20 <210> 251 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 251 cattgccttg gtgaaccgtt 20 <210> 252 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 252 gcacgccgcc agggttcatc 20 <210> 253 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 253 cttcctccgc gtttgtcacc 20 <210> 254 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 254 tggtgaaccg ttactccacc 20 <210> 255 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 255 ccttcctccg cgtttgtcac 20 <210> 256 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 256 acgccgcggg tccttccaga 20 <210> 257 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 257 ggtgaaccgt tactccacca 20 <220> <223> oligonucleotide <400> 258 gggtccttcc agaagtgata 20 <210> 259 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 259 cttccagaag tgatagccga 20

<210> 260

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 260 gccttggtga accattactc 20 <210> 261 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 261 acagttcgcc actcatccga 20 <210> 262 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 262 accttcctcc gcgtttgtca 20 <210> 263 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide 20 cgaaccgact ttgggtgttg <210> 264 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 264 gaaccgactt tgggtgttgc 20 <210> 265 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 265

V7588.ST25.txt aggttaccga accgactttg 20 <210> 266 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 266 accgaaccga ctttgggtgt 20 <210> 267 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 267 ttaccgaacc gactttgggt 20 <210> 268 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 268 taccgaaccg actttgggtg 20 <210> 269 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 269 gttaccgaac cgactttggg 20 <210> 270 <211> 21 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 270 cctttctggt atggtaccgt c 21 <210> 271 <211> 20 <212> DNA <213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 271 tgcaccgcgg ayccatctct 20 <210> 272 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 272 agttgcagtc cagtaagccg 20 <210> 273 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 273 gttgcagtcc agtaagccgc 20 <210> 274 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 274 cagttgcagt ccagtaagcc 20 <210> 275 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 275 tgcagtccag taagccgcct 20 <210> 276 <211> 20 <212> DNA <213> Artificial

<210> 277

<400> 276

<223> oligonucleotide

tcagttgcag tccagtaagc

<220>

20

V7588.ST25.txt

.211.	20	V7588.ST25.txt	
<211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> ttgcag	277 gtcca gtaagccgcc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	278 ccagt aagccgcctt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> gtcagt	279 tgca gtccagtaag		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	280 gtga·cgccgaagcg		20
<210> <211> <212> <213>	281 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> atctct	281 aggt gacgccgaag		20
<210> <211> <212> <213>	282 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	282		

	WO 2005/031004		PCT/EP2004/01069
tcta	ggtgac gccgaagcgc	V7588.ST25.txt	20
<212:	> 283 > 20 > DNA > Artificial		
<220: <223:			
	> 283 taggtg acgccgaagc		20
<211> <212>	> 284 > 20 > DNA > Artificial		
<220> <223>			
<400> ccato	284 ctctag gtgacgccga		20
<211><212>	285 20 DNA Artificial		
<220> <223>			
	· 285 ctagg tgacgccgaa		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> taggt	286 gacgc cgaagcgcct		20
<210> <211> <212> <213>	20 DNA		
<220> <223>			
<400> ctagg	287 tgacg ccgaagcgcc		20

51/203

<210> 288 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 288 cttagacggc tccttcctaa 20 <210> 289 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 289 ccttagacgg ctccttccta 20 <210> 290 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 290 acgtcagttg cagtccagta 20 <210> 291 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 291 cgtcagttgc agtccagtaa 20 <210> 292 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 292 : . . . acgccgaagc gccttttaac 20 <210> 293 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 293

20

52/203

-gacgccgaag cgccttttaa

<210> 294

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 294 gccgaagcgc cttttaactt 20 <210> 295 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 295 cgccgaagcg ccttttaact 20 <210> 296 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 296 gtgacgccga agcgcctttt 20 <210> 297 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide tgacgccgaa gcgcctttta . 20 <210> 298 <211> 20 <212> DNA <213> Artificial <220>-<223> oligonucleotide <400> 298 agacggctcc ttcctaaaag 20 <210> 299 <211> 20 <212> DNA <213> Artificial

53/203

<220>

<400> 299

<223> oligonucleotide

V7588.ST25.txt

		V 7 588.ST25.txt		
acggc	cctt cctaaaaggt		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> gacggo	300 ctcct tcctaaaagg		20	
<210> <211> <212> <213>	301 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccttcc	301 taaa aggttaggcc		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	302 gcca aagcgccttt		. 20	
<210> <211> <212> <213>	303 20 DNA Artificial			
<220>· <223>	oligonucleotide			· • •
<400> aggtga	303 cgcc aaagcgcctt		20	-
<210> <211> <212> <213>	304 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> taggtg	304 acgc caaagcgcct		20	
<210> <211> <212> <213>	305 20 DNA Artificial			

V7588.ST25.txt <220> <223> oligonucleotide <400> 305 ctctaggtga cgccaaagcg 20 <210> 306 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 306 tctaggtgac gccaaagcgc 20 <210> 307 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 307 ctaggtgacg ccaaagcgcc 20 <210> 308 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 308 acgccaaagc gccttttaac 20 <220> <223> oligonucleotide <400> 309 cgccaaagcg ccttttaact 20 <210> 310 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 310 tgacgccaaa gcgcctttta 20 <210> 311

55/203

V7588.ST25.txt

.211.	V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tctcta	311 aggtg acgccaaagc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	312 gccaa agcgcctttt	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gacgco	313 caaag cgccttttaa	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> atctct	314 caggt gacgccaaag - · · · · · · · · · · · · · · · · · ·	20
<210> <211> <212> <213>	315 20 DNA Artificial	
<220> - <223>	oligonucleotide	
<400> catcto	315 rtagg tgacgccaaa	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400>	316	

3.

56/203

2/285c

V7588.ST25.txt tccatctcta ggtgacgcca 20 <210> 317 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 317 ccatctctag gtgacgccaa 20 <210> 318 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 318 ctgccttaga cggctccccc 20 <210> 319 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 319 cctgccttag acggctcccc 20 <210> 320 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 320 gtgtcatgcg acactgagtt 20 <210> 321 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide tgtgtcatgc gacactgagt 20 <210> 322 <211> 20

<212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 322 ctttgtgtca tgcgacactg 20 <210> 323 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 323 ttgtgtcatg cgacactgag 20 <210> 324 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 324 tgccttagac ggctcccct 20 <210> 325 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 325 agacggctcc ccctaaaagg 20 <210> 326 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 326 tagacggctc cccctaaaag 20 <210> 327 <211> 20 <212> DNA <213> Artificial <220>

<210> 328

<400> 327

<223> oligonucleotide

gccttagacg gctccccta

20

. . . .

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 328 gctccccta aaaggttagg 20 <210> 329 <211> 20 <212> DNA <213> Artificial <220> · <223> oligonucleotide <400> 329 ggctcccct aaaaggttag 20 <210> 330 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 330 ctcccctaa aaggttaggc 20 <210> 331 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 331 tccccctaaa aggttaggcc 20 <210> 332 <211> 20 <212> DNA <213> Artificial <220> to reconstruction <223> oligonucleotide <400> 332 ccctaaaagg ttaggccacc 20 <210> 333 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 333

V7588.ST25.txt cccctaaaag gttaggccac 20 <210> 334 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 334 cggctcccc taaaaggtta 20 <210> 335 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 335 cccctaaaa ggttaggcca 20 <210> 336 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 336 cttagacggc tccccctaaa 20 <210> 337 <211> 20 <212> DNA <213> Artificial ······· <220>··· <223> oligonucleotide <400> 337 ttagacggct ccccctaaaa 20 <220> <223> oligonucleotide <400> 338 gggttcgcaa ctcgttgtat 20 <210> 339 <211> 20 <212> DNA <213> Artificial

	V7588.ST25.	txt	
<220> <223>	> oligonucleotide		
<400> cctta	> 339 agacgg ctcccctaa		20
<210> <211> <212> <213>	> 20 > DNA		
<220> <223>			
<400> acggc	> 340 ctcccc ctaaaaggtt		20
<210> <211> <212> <213>	> 341 > 20 > DNA > Artificial		
<220> <223>			
	- 341 gctccc cctaaaaggt		20
<211> <212>	342 20 DNA Artificial		
<220> <223>			
	342 gcaag accatcctct		20
<210> <211> <212> <213>	· 120· · · · · · · · · · · · · · · · · · ·		-
<220> <223>	oligonucleotide		
<400> ctaata	343 acgcc gcaagaccat		20
<210> <211> <212> <213>	20 DNA		
<220> <223>			
<400> tacgco	344 cgcaa gaccatcctc		20
<210>	345		

.. . . .

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 345 gttacgatct agcaagccgc 20 <210> 346 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 346 aatacgccgc aagaccatcc 20 <210> 347 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 347 cgccgcaaga ccatcctcta 20 <210> 348 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 348 gctaatacgc cgcaagacca 20 <210> 349 <211> 20 <212> DNA <213> Artificial <220> <400> 349 accatcctct agcgatccaa 20 <210> 350 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 350

V7588.ST25.txt taatacgccg caagaccatc 20 <210> 351 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 351 agccatccct ttctggtaag 20 <210> 352 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 352 atacgccgca agaccatcct 20 <210> 353 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 353 agttacgatc tagcaagccg 20 <210> 354 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 354 agctaatacg ccgcaagacc 20 <210> 355 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 355 gccgcaagac catcctctag 20 <210> 356 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 356 ttacgatcta gcaagccgct 20 <210> 357 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 357 gaccatcctc tagcgatcca 20 <210> 358 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 358 ttgctacgtc actaggaggc 20 <210> 359 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 359 acgtcactag gaggcggaaa 20 <210> 360 <211>--20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 360 tttgctacgt cactaggagg 20 <210> 361 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 361 gccatccctt tctggtaagg 20

64/203

<210> 362

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 362 tacgtcacta ggaggcggaa 20 <210> 363 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 363 cgtcactagg aggcggaaac 20 <210> 364 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 364 aagaccatcc tctagcgatc 20 <210> 365 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 365 gcacgtattt agccatccct 20 <210> 366 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 366 ctctagcgat ccaaaaggac 20 <210> 367 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 367

V7588.ST25.txt cctctagcga tccaaaagga 20 <210> 368 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 368 ccatcctcta gcgatccaaa 20 <210> 369 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 369 ggcacgtatt tagccatccc 20 <210> 370 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 370 tacgatctag caagccgctt 20 <210> 371 <211> 20 <212> DNA <213> Artificial <220> cligonucleotide <400>- 371 cagttacgat ctagcaagcc 20 <210> 372 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 372 ccgcaagacc atcctctagc 20 <210> 373 <211> 20 <212> DNA <213> Artificial

66/203

220.	V7588.ST25.txt	
<220> <223> oligonucleotide		
<400> 373 ccatcccttt ctggtaaggt		20
<210> 374 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 374 agaccatcct ctagcgatcc		20
<210> 375 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 375 caagaccatc ctctagcgat		20
<210> 376 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 376 gctacgtcac taggaggcgg		20
<210> 377 <211> 20 - <212> DNA <213> Artificial	· · · · · · · · · · · · · · · · · · ·	
<220> <223> oligonucleotide		
<400> 377 tgctacgtca ctaggaggcg	va-n	20
<210> 378 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 378 ctacgtcact aggaggcgga		20
<210> 379		

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 379 cctcaacgtc agttacgatc 20 <210> 380 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 380 gtcactagga ggcggaaacc 20 <210> 381 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 381 tcctctagcg atccaaaagg 20 <210> 382 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide tggcacgtat ttagccatcc . . 20 <210> 383 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 383 acgatctagc aagccgcttt 20 <210> 384 <211> 20 <212> DNA <213> Artificial

68/203

<220>

<400> 384

<223> oligonucleotide

V7588.ST25.txt

gccag	tctct caactcggct	V/300.S125.TXT	20
<210> <211> <212> <213>	20		
<220> <223>			
<400> aagct	385 aatac gccgcaagac		20
<210><211><212><213>	20		
<220> <223>	oligonucleotide		
<400> gtttg	386 ctacg tcactaggag		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cgcca	387 ctcta gtcattgcct		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	388 ccag tctctcaact		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cagcca	389 gtct ctcaactcgg		20
<210> <211> <212> <213>	390 20 DNA Artificial		

69/203

V7588.ST25.txt <220> <223> oligonucleotide <400> 390 cccgaagatc aattcagcgg 20 <210> 391 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 391 ccggccagtc tctcaactcg 20 <210> 392 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 392 ccagccagtc tctcaactcg 20 <210> 393 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 393 tcattgcctc acttcacccg 20 <210> 394 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 394 gccagccagt ctctcaactc 20 <210> 395 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 395 cacccgaaga tcaattcagc 20

70/203

<210> 396

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 396 gtcattgcct cacttcaccc 20 <210> 397 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 397 cattgcctca cttcacccga 20 <210> 398 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 398 attgcctcac ttcacccgaa 20 <210> 399 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 399 20 · · · · · · · · · cgaagatcaa ttcagcggct <210> 400 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 400 agtcattgcc tcacttcacc 20 <210> 401 <211> 20 <212> DNA

71/203

<213> Artificial

<400> 401

<223> oligonucleotide

V7588.ST25.txt tcgccactct agtcattgcc 20 <210> 402 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 402 ttgcctcact tcacccgaag 20 <210> 403 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 403 cggccagtct ctcaactcgg 20 <210> 404 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 404 ctggcacgta tttagccatc 20 <210> 405 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 405 acccgaagat caattcagcg 20 <210> 406 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 406 tctagcgatc caaaaggacc 20 <210> 407 <211> 20 <212> DNA <213> Artificial

	V7588.ST25.txt	
<220> <223>		
<400> ctage	407 gatcc aaaaggacct	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> gcacco	408 Catcg tttacggtat	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> caccca	409 utcgt ttacggtatg	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> gccact	410 ctag tcattgcctc	20
<210> <211> <212> <213>	411 20 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	
<220> <223>	oligonucleotide	
<400> cgtttg	411 ctac gtcactagga	20
<210> <211> <212> <213>	412 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gcctcaa	412 acgt cagttacgat	20
<210>	413	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 413 gccggccagt ctctcaactc 20 <210> 414 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 414 tcactaggag gcggaaacct 20 <210> 415 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 415 agcctcaacg tcagttacga 20 <210> 416 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 416 agccagtctc tcaactcggc <210> 417 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 417 ggccagtctc tcaactcggc 20 <210> 418 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 418

V7588.ST25.txt caagctaata cgccgcaaga 20 <210> 419 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 419 ttcgccactc tagtcattgc 20 <210> 420 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 420 ccgaagatca attcagcggc . 20 <210> 421 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 421 cgcaagacca tcctctagcg 20 <210> 422 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 422 gcaagaccat cctctagcga 20 <210> 423 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 423 gcgtttgcta cgtcactagg 20 <210> 424 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 424 ccactctagt cattgcctca 20 <210> 425 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 425 cactctagtc attgcctcac 20 <210> 426 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 426 ccagtctctc aactcggcta 20 <210> 427 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 427 ttaccttagg caccggcctc 20 <210> 428 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 428 acaagctaat acgccgcaag 20 <210> 429 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 429 tttaccttag gcaccggcct 20

76/203

<210> 430

PCT/EP2004/010695

WO 2005/031004 V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 430 ttttacctta ggcaccggcc 20 <210> 431 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 431 attttacctt aggcaccggc 20 <210> 432 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 432 gattttacct taggcaccgg 20 <210> 433 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 433 20 <210> 434 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 434 acgccaccag cgttcatcct 20 <210> 435 <211> 20 <212> DNA

<213> Artificial <220> <223> oligonucleotide <400> 435

77/203

V7588.ST25.txt

gccaa	gcgac tttgggtact	V7300.3123. CXC	20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> cggaaa	436 aattc cctactgcag		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> cgatct	437 cagca agccgctttc		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> ggtaco	438 gtca agctgaaaac		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> tgcctc	439 actt cacccgaaga		20	
<210> <211> <212> <213>	20		· · · · · · · · · · · · · · · · · · ·	. •
<220> <223>	oligonucleotide			
<400> ggccgg	440 ccag tctctcaact		20	
<210> <211> <212> <213>	441 20 DNA Artificial			

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 441 ggtaaggtac cgtcaagctg 20 <210> 442 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 442 gtaaggtacc gtcaagctga 20 <210> 443 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 443 ccgcaagacc atcctctagg 20 <210> 444 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 444 atttagccat ccctttctgg 20 <210> 445 ----<211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 445 aacccttcat cacacacg Jacobbar 51 18 <210> 446 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 446

<210> 447

cgaaaccctt catcacac

18

V7588.ST25.txt

<211> <212> <213>	18 DNA Artificial	·				
<220> <223>	oligonucleotide					
<400> accctt	447 ccatc acacacgc				18	
<210> <211> <212> <213>	448 18 DNA Artificial					
<220> <223>	oligonucleotide					-7
	448 caca cactgaac				18	
<210> <211> <212> <213>	449 18 DNA Artificial					
<220> <223>	oligonucleotide					-
<400> agatac	449 cgtc acacactg				18	
<210> <211> <212> <213>	450 18 DNA Artificial		÷			
<220> <223>	oligonucleotide					
<400> cactca	450 aggg cggaaacc				 18	
<210> <211> <212> <213>	451 18 DNA Artificial					-
	oligonucleotide			•		Alaks in a cu
<400> accgtca	451 acac actgaaca				18	
<210> <211> <212> <213>	18					
<220> <223>	oligonucleotide					
<400>	452					

V758	8.ST25	.txt
------	--------	------

cgtca	cacac tgaacagt	V7588.ST25.txt		18	
<210> <211> <212> <213>	18		·		
<220> <223>	oligonucleotide				
<400> ccgaaa	453 accct tcatcaca			18	
<210> <211> <212> <213>	18 DNA				***
<220> <223>	oligonucleotide				
<400> ccgtca	454 acaca ctgaacag	·		18	
<210> <211> <212> <213>	18				
<220> <223>	oligonucleotide				
<400> gataco	455 gtca cacactga			18	
<210> <211> <212> <213>	18				
<220>· <223>	oligonucleotide				
<400> ggtaag	456 atac cgtcacac			18	· - ·
<210> <211> <212>* <213>	.:18				e de la companya de l
<220> <223>	oligonucleotide				
<400> cccttc	457 atca cacacgcg			18	
<210> <211> <212> <213>	18				

V7588.ST25.txt	
<220> <223> oligonucleotide	
<400> 458 acagtgtttt acgagccg	18
<210> 459 <211> 18 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 459 cagtgtttta cgagccga	18
<210> 460 <211> 18 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 460 acaaagcgtt cgacttgc	18
<210> 461 <211> 18 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 461 cggataacgc ttggaaca	18
<210> 462 <211> 18 · · · · · · · · · · · · · · · · · ·	
<220> <223> oligonucleotide	
<400> 462 agggcggaaa ccctcgaa	18
<210> 463 <211> 18 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 463 gggcggaaac cctcgaac	18
<210> 464	

· · /Lhighes, CCL

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 464 ggcggaaacc ctcgaaca 18 <210> 465 <211> 18 <212> DNA <213> Artificial <220>- ------<223> oligonucleotide <400> 465 tgagggcttt cacttcag 18 <210> 466 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 466 agggctttca cttcagac 18 <210> 467 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 467 gagggctttc acttcaga 18 <210> 468 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 468 actgcactca agtcatcc 18 <210> 469 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 469

.

18

<210> 475 <211> 18 <212> DNA

<213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 475 tcccctgcta agaggtag 18 <210> 476 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 476 atcccctgct aagaggta 18 <210> 477 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 477 ccgttccttt ctggtaag 18 <210> 478 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 478 gccgttcctt tctggtaa 18 <213> Artificial <220> <223> oligonucleotide <400> 479 agccgttcct ttctggta 18 <210> 480 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 480 gcacgtattt agccgttc 18

<210> 481

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 481

cacgtattta gccgttcc

18

<210> 482

<211> 18 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 482

ggcacgtatt tagccgtt

18

<210> 483 <211> 18 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 483

cactttcctc tactgcac

18

<210> 484 <211> 18 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 484

ccactttcct ctactgca

18

<210> 485

<211> 18 <212> DNA <213> Artificial

<220>

<223> oligonucleotide

<400> 485

tccactttcc tctactgc

18

<210> 486 <211> 18 <212> DNA

<213> Artificial

<223> oligonucleotide

<400> 486

V7588.ST25.txt

ctttc	ctcta ctgcactc	18
<210> <211> <212> <213>	18 DNA	
<220> <223>	oligonucleotide	
<400> tagcco	487 pttcc tttctggt	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> ttagco	488 gttc ctttctgg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> ttatco	489 cctg ctaagagg	18
<210> <211> <212> <213>	18	
<220> · <223>	oligonucleotide	
<400> gttatc	490 ccct gctaagag	18
<210> <211> <212> <213>	491 18 DNA	
<220> <223>	oligonucleotide	
<400> cccgtt	491 cgcc actctttg	18
<210> <211> <212> <213>	18	

V7588.ST25.txt

<220>		V/388.5125.TXT	
<223>	oligonucleotide		
<400> agctga	492 agggc tttcactt		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gagcto	493 gaggg ctttcact		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide	•	
<400> gctgag	494 ggct ttcacttc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> ctgagg	495 gctt tcacttca		18
<210> <211> <212> <213>	18 · · · · · · · · · · · · · · · · · · ·		
<220> <223>	oligonucleotide		
<400> cccgtg	496 tccc gaaggaac		18
<210> <211> <212> <213>	497 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gcacga	497 gtat gtcaagac		18
<210>	498		

88/203

<220> <223> oligonucleotide

<400> 498

gtatcccgtg tcccgaag 18

<210> 499 <211> 18 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 499

tcccgtgtcc cgaaggaa 18

<210> 500 <211> 18 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 500

atcccgtgtc ccgaagga 18

<210> 501
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<210> 502 <211> 18 <212> DNA <213> Artificial

<400> 502 cttaccttag gaag

cttaccttag gaagcgcc 18

<210> 503 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 503

89/203

V7588.ST25.txt

ttacct	tagg aagcgccc		V7588.ST25.tx	(t	18
<210> <211> <212> <213>	18				
<220> <223>	oligonucleotide				
<400> cctgta	504 itccc gtgtcccg				18
<210> <211> <212> <213>	18				
<220> <223>	oligonucleotide				
<400> ccacct	505 gtat cccgtgtc				18
<210> <211> <212> <213>	18				
<220> <223>	oligonucleotide				
<400> cacctg	506 tatc ccgtgtcc				18
<210> <211> <212> <213>	18				
<220> <223>	oligonucleotide				
<400> acctgt	507 atcc cgtgtccc				18
<210> <211> <212> <213>	508 18 DNA Artificial	N	*****		
<220> <223>	oligonucleotide				
<400> ctgtat	508 cccg tgtcccga				18
<210> <211> <212> <213>	509 18 DNA Artificial				

V7588.ST25.txt <220> <223> oligonucleotide <400> 509 tgtatcccgt gtcccgaa 18 <210> 510 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 510 cacgagtatg tcaagacc 18 <210> 511 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 511 cggtcttacc ttaggaag 18 <210> 512 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 512 taggaagcgc cctccttg 18 <210> 513 <211> 18 ··· ··· -... <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 513 aggaagcgcc ctccttgc 18 <210> 514 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 514 ttaggaagcg ccctcctt 18

<210> 515

V7588.ST25.txt <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 515 cttaggaagc gccctcct 18 <210> 516 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 516 ccttaggaag cgccctcc 18 <210> 517 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 517 accttaggaa gcgccctc 18 <210> 518 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 518 tgcacacaat ggttgagc 18 <210> 519 <211> 18 <212> DNA <213> Artificial <2·20> <223> oligonucleotide <400> 519 taccttagga agcgccct 18 <210> 520 <211> 18 <212> DNA <213> Artificial <223> oligonucleotide <400> 520

V7588.ST25.txt accacctgta tcccgtgt 18 <210> 521 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 521 gcaccacctg tatcccgt 18 <210> 522 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 522 caccacctgt atcccgtg 18 <210> 523 <211> 18 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 523 gcggttaggc aacctact 18 <210> 524 <211> 18 <212> DNA <213> Artificial ·· <220> <223> oligonucleotide <400> 524 tgcggttagg caacctac 18 <210> 525 <211> 18 <212> DNA <213> Artificial <223> oligonucleotide <400> 525 ttgcggttag gcaaccta 18 <210> 526 <211> 18 <212> DNA <213> Artificial

		V7588.ST25.txt	
<220> <223>	oligonucleotide	V7300.5123.LXL	
<400> ggtct	526 tacct taggaagc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> gctaat	527 acaa cgcgggat		18
<210> <211> <212> <213>	528 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctaata	528 caac gcgggatc		18
<210> <211> <212> <213>	18		
<220> <223>	oligonucleotide		
<400> atacaa	529 cgcg ggatcatc		18
<210> <211> <212> <213>	530 18		
<220> <223>	oligonucleotide		
<400> cggtta	530 ggca acctactt		18
<210> <211> <212> <213>	531 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tgcacca	531 cct gtatcccg		18
<210>	532		

.211.	10	V7588.	ST25.txt	
<211> <212> <213>	18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> gaagc	532 gccct ccttgcgg			18
<210> <211> <212> <213>	18			
<220> <223>	oligonucleotide			
<400> ggaago	533 cgccc tccttgcg			18
<210> <211> <212> <213>	18			
<220> <223>	oligonucleotide			
	534 tttc tggttaga			18
<210> <211> <212> <213>	535 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> agctaa	535 taca acgcggga -			 18
<210> <211> <212> <213>	536 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tagcta	536 atac aacgcggg			18
<210> <211> <212> <213>	537 18 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	537			

V7588.ST25.txt

ctagc	taata caacgcgg	V/388.5123.txt	18
<210> <211> <212> <213>	18 DNA		
<220> <223>	oligonucleotide	· · · · · · · · · · · · · · · · · · ·	
<400> ggcta1	538 tgtat catcgcct		18
<210> <211> <212> <213>	539 18 DNA Artificial	•	
<220> <223>	oligonucleotide		
<400> gagcca	539 actgc cttttaca		18
<210> <211> <212> <213>	540 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtcggc	540 statg tatcatcg		18
	541 18 DNA Artificial		
<220> <223>			
<400> ggtcgg	541 ctat gtatcatc		18
<210> <211> <212> <213>	542 18 DNA Artificial		
<220> <223>	oligonucleotide		
<400> caggtc	542 ggct atgtatca		18
<210> <211> <212> <213>	543 18 DNA Artificial		

V7588.ST25.txt

<220> <223>	V7588.ST25.txt oligonucleotide	
<400> cggcta	543 tgta tcatcgcc	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
	544 atgt atcatcgc	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
	545 cctt aggaagcg	18
<210> <211> <212> <213>	18	
<220> <223>	oligonucleotide	
<400> tcttaco	546 ctta ggaagcgc	18
 <210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gtacaaa	547 accg cctacacgcc	20
<212>	548 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tgtacaa	548 aacc gcctacacgc	20
<210>	549	

...

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 549 gatcagcacg atgtcgccat 20 <210> 550 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 550 ctgtacaaac cgcctacacg 20 <210> 551 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 551 gagatcagca cgatgtcgcc 20 <210> 552 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 552 'agatcagcac gatgtcgcca' 20 <210> 553 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 553 atcagcacga tgtcgccatc 20

<210> 554 <211> 20

<400> 554

<220>

<212> DNA <213> Artificial

<223> oligonucleotide

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt tcagcacgat gtcgccatct 20 <210> 555 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 555 actgtacaaa ccgcctacac 20 <210> 556 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 556 ccgccactaa ggccgaaacc 20 <210> 557 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 557 cagcacgatg tcgccatcta 20 <210> 558 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 558 tacaaaccgc ctacacgccc 20 <210> 559 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 559 agcacgatgt cgccatctag 20 <210> 560 <211> 20

<212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 560 cggcttttag agatcagcac 20 <210> 561 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 561 tccgccacta aggccgaaac 20 <210> 562 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 562 gactgtacaa accgcctaca 20 <210> 563 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 563 gtccgccact aaggccgaaa 20 <210> 564 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 564 ggggatttca catctgactg 20 <210> 565 <211> 20 <212> DNA <213> Artificial

catacaagcc ctggtaaggt

<210> 566

<400> 565

<220> <223> oligonucleotide

40 10 1

20

V7588.ST25.txt

<211>		V/ 300.5123.LXL		
<212> <213>	DNA Artificial			
<220> <223>	oligonucleotide			
<400> acaago	566 ccctg gtaaggttct		20	
<210> <211> <212> <213>	567 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> acaaac	567 cgcc tacacgccct		20	
<210> <211> <212> <213>	DNA			
<220> <223>	oligonucleotide			
	568 gtac aaaccgccta		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> tgactg	569 taca aaccgcctac	- · · · · · · · · · · · · · · · · · · ·	 20	
<210> <211> <212> <213>	570 20 DNA Artificial			-
	: oligonucleotide			
<400> acgatg	570 tcgc catctagctt		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400>	571			

101/203

. .

50.555	V7588.ST25.txt		
cacga	tgtcg ccatctagct	20	
<210> <211>			
<212>	DNA		
<213>			
<220> <223>	oligonucleotide		
<400>			
cgatgi	tcgcc atctagcttc	20	
<210>	573		
<211> <212>	20 DNA		
<213>	Artificial		
<220> <223>			
<400>			
gcacga	atgtc gccatctagc	20	
<210>	574		
<211> <212>	20 DNA		
<213>	Artificial		
<220>	-7477		
<223>	·		
<400> gatgto	574 Egcca tctagcttcc	20	
	-	,	
<210> <211>	575 20		
<212>	DNA		
<213>	Artificial		
<220> <223>	oligonucleotide		•••
<400>	575 gccat ctagcttccc	•	
ucyccy	getat etagetteet	20	
<210>	576 ·		
<211> <212>	DNA ·	<	
<213>	Artificial		
<220>	oligonus locatido		
<223>	oligonucleotide		
<400> tgtcgc	576 Catc tagcttccca	20	
- •	-	20	
<210> <211>	577 20		
<212>	DNA		
<213>	Artificial		

	V758	38.ST25.txt	
<220> <223>	oligonucleotide		
<400> gccato	577 ctagc ttcccactgt		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> tcgcca	578 tcta gcttcccact		20
<210> <211> <212> <213>	579 20 DNA Artificial		
<220> <223>	oligonucleotide		
	579 ctag cttcccactg		20
<210> <211> <212> <213>	580 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gtcgcc	580 atct agcttcccac		20
<210> <211> <212> <213>	581 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tacaag	581 - ccct ggtaaggttc 		20
<210> <211> <212> <213>	582 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gccacta	582 lagg ccgaaacctt		20
<210>	583		

toda.....

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 583 actaaggccg aaaccttcgt 20 <210> 584 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 584 ctaaggccga aaccttcgtg 20 <210> 585 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 585 cactaaggcc gaaaccttcg 20 <210> 586 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 586 aaggccgaaa ccttcgtgcg . 20 <210> 587 <211> 20 <212> DNA <213> Artificial <220> cligonucleotide · v.· ; <400> 587 ccactaaggc cgaaaccttc 20 <210> 588 <211> 20 <212> DNA <213> Artificial

104/203

<223> oligonucleotide

<400> 588

,	V	75	8	8	•	S	T	2	5	•	tx	t

taaggccgaa accttcgtgc	V/588.ST25.txt	20	
<210> 589 <211> 20 <212> DNA <213> Artificial			
<220> <223> oligonucleotide			
<400> 589 aggccgaaac cttcgtgcga		20	
<210> 590 <211> 20 <212> DNA <213> Artificial			government of the second
<220> <223> oligonucleotide			
<400> 590 tctgactgta caaaccgcct		20	
<210> 591 <211> 20 <212> DNA <213> Artificial			
<220> <223> oligonucleotide			
<400> 591 catctgactg tacaaaccgc		. 20	
<210> 592 <211> 20 <212> DNA <213> Artificial			
<pre><220> <223> oligonucleotide</pre>	- · · · · · · · · · · · · · · · · · · ·		
<400> 592 atctgactgt acaaaccgcc		20	-
<210> 593 <211> 20 <212> DNA <213> Artificial			alian di Language
<220> <223> oligonucleotide			
<400> 593 cttcgtgcga cttgcatgtg		20	
<210> 594 <211> 20 <212> DNA <213> Artificial			

<210> 600

Are to the second

Andrew Commence

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 600 ccgaaacctt cgtgcgactt 20 <210> 601 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 601 gccgaaacct tcgtgcgact 20 <210> 602 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 602 aaccttcgtg cgacttgcat 20 <210> 603 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 603 cgaaaccttc gtgcgacttg ······· . 20 <210> 604 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 604 accttcgtgc gacttgcatg 20 <210> 605 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

107/203

<400> 605

<213> Artificial

PCT/EP2004/010695

V7588.ST25.txt gaaaccttcg tgcgacttgc 20 <210> 606 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 606 ggccgaaacc ttcgtgcgac 20 <220> <223> oligonucleotide <400> 607 aaaccttcgt gcgacttgca 20 <210> 608 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 608 cacgtatcaa atgcagctcc 20 <210> 609 <211> 20 <212> DNA <213> Artificial <220> cligonucleotide <400> ...609 gctcaccggc ttaaggtcaa 20 <210> 610 <211>_ 20 <212>_ DNA <213>_ Artificial <220> <223> oligonucleotide <400> 610 cgctcaccgg cttaaggtca 20 <210> 611 <211> 20 <212> DNA

<220>	V7588.ST25.txt	
<223>		
<400> tcgct	611 caccg gcttaaggtc	20
<210> <211> <212> <213>	20	
<220> <223>		
<400> ctcaco	612 cggct taaggtcaaa	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
	613 ccgtg gtcggctgcg	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> gctcac	614 ccggc ttaaggtcaa	20
<212>	20	
<220> <223>	oligonucleotide	
<400> cgctca	615 - ccgg cttaaggtca	20
<210> <211> <212> <213>	616 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tcgctca	616 accg gcttaaggtc	20
<210>	617	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 617 ctcaccggct taaggtcaaa 20 <210> 618 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 618 cccgaccgtg gtcggctgcg 20 <210> 619 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 619 tcaccggctt aaggtcaaac 20 <210> 620 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 620 __caaccctctc tcacactcta 20 <210> 621 <211> 20 <212> DNA <213> Artificial <400> 621 acaaccctct ctcacactct 20 <210> 622 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 622

ccaca	v7588.ST25	.txt
<211>	DNA	
<220> <223>		
<400> aaccc	623 tctct cacactctag	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cacaa	624 ccctc tctëàcactc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tccaca	625 aaccc tctctcacac	20
<210> <211> <212> <213>	626 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ttccac	626 caacc ctctctcaca	20 .
<210> <211> <212> <213>	627 20 : ::: : DNA :	
<220> <223>	oligonucleotide	
<400> accctc	627 tctc acactctagt	.20 ." ·
<210> <211> <212> <213>	628 20 DNA Artificial	

	V7588.ST25.txt	
<220> <223> oligonucleotide	·	
<400> 628 gagccaggtt gccgccttcg	•	20
<210> 629 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 629 aggtcaaacc aactcccatg		20
<210> 630 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 630 atgagccagg ttgccgcctt		20
<210> 631 <211> 20 <212> DNA <213> Artificial	•	
<220> <223> oligonucleotide		
<400> 631 tgagccaggt tgccgccttc		20
<210> 632 <211> 20 <212> DNA <213> Artificial		٠
<220> <223> oligonucleotide		
<400> 632 aggctcctcc acaggcgact	en e	20
<210> 633 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 633 caggctcctc cacaggcgac		20
<210> 634		

V7588.ST25.txt

<211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> gcaggo	634 ctcct ccacaggcga	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	635 tcacc ggcttaaggt	20
<210> <211> <212> <213>	636 20	·
<220> <223>	oligonucleotide	
	636 ctcac cggcttaagg	20
<210> <211> <212> <213>	637 20 DNA Artificial	
<220> <223>	oligonucleotide	
	637 gctca ccggcttaag	20
<210> <211> <212> <213>	638 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> attcca	638 Icaac cctctctcac	20
<210> <211> <212> <213>	639 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	639	

PCT/EP2004/010695

WO 2005/031004

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 645 gggaattcca caaccctctc 20 <210> 646 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 646 aacgcaggct cctccacagg 20 <210> 647 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 647 cggcttaagg tcaaaccaac 20 <210> 648 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 648 ccggcttaag gtcaaaccaa 20 <210> 649 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 649

<210> 650
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<223> oligonucleotide
<400> 650
accggcttaa ggtcaaacca
20

<210> 651

20

∠ 211	> 20	V7588.ST25.txt	
<212	> DNA > Artificial		
<220 <223			
<400 accc	> 651 aacatc cagcacacat		20
<210: <211: <212: <213:	> 20 > DNA		
<220: <223:	• • oligonucleotide		
<400> tcgc1	- 652 gaccc gaccgtggtc		20
<211> <212>	653 20 DNA Artificial		
<220> <223>			
<400> cgctg	653 acccg accgtggtcg		20
<211>	DNA		
<220> <223>	oligonucleotide		
<400> gaccc	654 gaccg tggtcggctg .		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide	••	
<400> gctgad	655 ccga ccgtggtcgg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400>	656		

<213> Artificial

V7588.ST25.txt

		V/588.ST2	5.txt	
<220> <223> oligo	nucleotide			
<400> 662 acgcaggctc c	tccacaggc			20
<210> 663 <211> 20 <212> DNA <213> Artif	icial			
<220> <223> oligo	nucleotide			
<400> 663 ctcaggtgtc a	tgcggtatt			20
<210> 664 <211> 20 <212> DNA <213> Artif	icial			
<220> <223> oligo	nucleotide			
<400> 664 cgcctttgac co	ctcaggtgt			20
<210> 665 <211> 20 <212> DNA <213> Artif	icial			
<220> <223> oligor	nucleotide			
<400> 665 accctcaggt gi	tcatgcggt	·		20
<210> 666 <211> 20 <212> DNA <213> Artif	 icial			
<220> <223> oligor	nucleotide			
<400> 666 cctcaggtgt ca	atgcggtat			20
<210> 667 <211> 20 <212> DNA <213> Artifi	cial	·		-
<220> <223> oligor	nucleotide			
<400> 667 tttgaccctc ag	ggtgtcatg			20
<210> 668				

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 668 gaccctcagg tgtcatgcgg 20 <210> 669 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 669 tgaccctcag gtgtcatgcg 20 <210> 670 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 670 gcctttgacc ctcaggtgtc 20 <210> 671 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 671 <210> 672 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 672 ccctcaggtg tcatgcggta 20 <210> 673 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 673

PCT/EP2004/010695

WO 2005/031004

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 679 agctatcgat catcgccttg 20 <210> 680 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 680 gctatcgatc atcgccttgg 20 <210> 681 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 681 ctatcgatca tcgccttggt 20 <210> 682 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 682 ttcgtgcgac ttgcatgtgt 20 <210> 683 <211> 20 ... <212> DNA <213> Artificial . . . <220> <223> oligonucleotide <400> 683 tcgatcatcg ccttggtagg 20 <210> 684 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 684 atcgatcatc gccttggtag 20

<210> 685

V7588.ST25.txt

<211>	20	 •	
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>			20
cacagg	cgac ttgcgccttt		20
<210>	686		
<211> <212>	20		
<213>	Artificial		
<220>	oligonucleotide		
<223>	origonacieotide		
<400>			
ccacag	gcga cttgcgcctt		20
<210>	687		
<211>	20		
<212>	DNA Artificial		
\Z13 >	Altificial		
<220>			
<223>	oligonucleotide		
<400>	687		
	ggcg acttgcgcct		20
<210>	688		
<211>			
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
-400-	699		
	688 acag gcgacttgcg	 	20
	acag gegaeregeg		-0
.210	600		
<210> <	. 689 20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>			20
CCTCCa	cagg cgacttgcgc		20
<210>	690		
<211> <212>	20 DNA		
<213>	Artificial		
<220>	alimanual aasida		
<223>	oligonucleotide		
<400>	690		

WO 2005/031004		PCT/EP2004/010695
ctccacaggc gacttgcgcc	V7588.ST25.txt	20
<210> 691 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 691 acaggcgact tgcgcctttg		20
<210> 692 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 692 gctcaccggc ttaaggtcaa		20
<210> 693 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 693 cgctcaccgg cttaaggtca		20
<210> 694 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 694 tcgctcaccg~gcttaaggtc		20
<210> 695 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 695 ctcaccggct taaggtcaaa		20
<210> 696 <211> 20 <212> DNA <213> Artificial		

<400> 696 cccgaccgtg gtcggctgcg 20

<210> 697 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 697 tcaccggctt aaggtcaaac 20

<210> 698 <211> 20 <212> DNA <213> Artificial <220>

<223> oligonucleotide

<400> 698 caaccctctc tcacactcta 20

<210> 699 <211> 20

<212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 699 acaaccctct ctcacactct 20

<210> 700 <211> 20
<212> DNA
<213> Artificial <220>

<223> oligonucleotide <400> 700

ccacaaccct ctctcacact 20

<210> 701 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide <400> 701

aaccctctct cacactctag 20

<210> 702

. .

v7588.ST25.txt

		v7588.ST2	5.txt		
<211> <212> <213>	20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> cacaac	702 cctc tctcacactc				20
<210> <211> <212> <213>	703 20 DNA Artificial				
<220> <223>	oligonucleotide				•
	703 accc tctctcacac				20
<210> <211> <212> <213>	704 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400> ttccac	704 aacc ctctctcaca				20
<211> <212>					
<220> <223>	oligonucleotide				
	705 tctc acactctagt				20 .
<210> <211> <212> <213>	706 20 DNA Artificial				
<220> <223>	oligonucleotide			·	
<400> gagcca	706 ggtt gccgccttcg				20
<210> <211> <212> <213>	707 20 DNA Artificial				
<220> <223>	oligonucleotide				
<400>	707				

V7588.ST25.txt <220> <223> oligonucleotide

<400> 713 ttcgctcacc ggcttaaggt 20

<210> 714 <211> 20 <212> DNA <213> Artificial

<223> oligonucleotide

<400> 714

20 gttcgctcac cggcttaagg

<210> 715 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 715

20 ggttcgctca ccggcttaag

<210> 716 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 716

20 attccacaac cctctctcac

الاي العالم العملية العالم العالم العملية

<210> 717 <211> 20 <212> DNA <213> Artificial

<223> oligonucleotide

<400> 717 20 tgacccgacc gtggtcggct

<210> 718 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 718 ccctctctca cactctagtc 20

<210> 719

v7588.sT25.txt

244	V/388.5123.txt	
<211> <212> <213>		
<220> <223>	oligonucleotide	
<400> gaatto	719 caca accctctctc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> agccag	720 gttg ccgccttcgc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	721 ttgc cgccttcgcc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ggaatt	722 ccac aaccetetet	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gggaat	723 tcca caaccctctc	20
<210> <211> <212> <213>	724 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	724	

aacocao	ggct cctccacagg	7500.57251 CAC	20	
aacyca	get ceready			
<210> <211> <212> <213>	725 20 DNA Artificial			
<220> <223>	oligonucleotide			
	725 aagg tcaaaccaac		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	726 taag gtcaaaccaa		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	727 ctta aggtcaaacc		20	
<211> <212>	728 20 DNA Artificial			
<220> <223>	oligonucleotide			
	728 ttaa ggtcaaacca		20	
<210> <211> <212> <213>	729 20 DNA Artificial			indian digital and a second and a
<220> <223>	oligonucleotide			
<400> acccaa	729 catc cagcacacat		20	
<210> <211> <212> <213>	20			

. . .

	V/300.3123.CAC	
<220> <223>	oligonucleotide	
<400> tcgctg	730 accc gaccgtggtc	20
<210>	731	
<211> <212>	20 DNA	
<213>	Artificial	
<220> <223>	oligonucleotide	
<400> cgctga	731 cccg accgtggtcg	20
<210> <211>	732 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> gacccg	732 accg tggtcggctg	20
<210> <211>	733	
<212>	DNA Artificial	
<220> <223>	oligonucleotide	
<400>	733	20
gctgac	ccga ccgtggtcgg	20
<210> <211>	734 20 · · · · · · · · · · · · · · · · · · ·	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> ctgacc	734 cgac cgtggtcggc	20
<210> <211>	735 20	
<212> <213>	DNA Artificial	
<220> <223>	oligonucleotide	
<400> caggcg	735 actt gcgcctttga	20
<210>	736	

v7588.sT25.txt

	V/388.5123.CXC	
<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
	736 cggta ttagctccag	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
	737 ctaat cgaacgcagg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> catgcg	738 ggtat tagctccagt	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400> cgcagg	739 gctcc tceacaggcg	20
<210> <211> <212> <213>	20 DNA	
<220>. <223>	oligonucleotide	
<400> acgcag	740 ggctc ctccacaggc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
<400>	741	

<210> 747 <211> 20 <212> DNA <213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 747 20 tgaccctcag gtgtcatgcg <210> 748 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 748 20 gcctttgacc-ctcaggtgtc <210> 749 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 749 20 ttgaccctca ggtgtcatgc <210> 750 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 750 20 ccctcaggtg tcatgcggta <210> 751 <211> 20 · · · · · <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 751 cctttgaccc tcaggtgtca. 20 <210> 752 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<210> 753

<400> 752

ctttgaccct caggtgtcat

1. _ . 1.

20

	V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> agttat	753 cccc cacccatgga	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> ccagct	754 atcg atcatcgcct	20
<210> <211> <212> <213>	755 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> accago	755 ctatc gatcatcgcc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cagcta	756 atcga tcatcgcctt	20
<210> <211> <212> <213>	757 20 DNA Artificial	
<220> <223>	oligonucleotide and the control of t	
<400> agctat	757 ccgat catcgccttg	20
<210> <211> <212> <213>	758 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	758	

V7588.ST25.txt gctatcgatc atcgccttgg 20 <210> 759 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 759 ctatcgatca tcgccttggt 20 <210> 760 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 760 ttcgtgcgac ttgcatgtgt 20 <210> 761 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 761 tcgatcatcg ccttggtagg 20 <210> 762 <211> 20 <212> DNA <213> Artificial <220> cligonucleotide man and a second of the second <400> 762 atcgatcatc gccttggtag 20

<210> 763 <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 763 cacaggcgac ttgcgccttt 20

<210> 764 <211> 20 <212> DNA <213> Artificial

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> ccacag	764 ggcga cttgcgcctt	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
	765 aggcg acttgcgcct	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
	766 cacag gcgacttgcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cctcca	767 acagg cgacttgcgc	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> ctccać	768 taggc gacttgcgcc	20
<210> <211> <212> <213>	769 20	
<220> <223>	oligonucleotide	
<400> acaggo	769 Egact tgcgcctttg	20
<210>	770	

V7588.ST25.txt <211> 20 <212> DNA <213> Artificial <223> oligonucleotide <400> 770 tcaccggctt aaggtcaaac 20 <210> 771 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 771 20 caaccctctc tcacactcta <210> 772 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 772 20 acaaccctct ctcacactct <210> 773 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide 20 -- <210> 774 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 774 20 aaccctctct cacactctag <210> 775 <211> 20 <212> DNA <213> Artificial

137/203

<220>

<400> 775

<223> oligonucleotide

WO 2005/03	31004		PCT/EP2004/010695
cacaaccctc to	tcacactc	V7588.ST25.txt	20
<210> 776 <211> 20 <212> DNA <213> Artifi	cial		
<220> <223> oligon	ucleotide		
<400> 776 tccacaaccc tc	tctcacac		20
<210> 777 <211> 20 <212> DNA <213> Artifi	- cial		
<220> <223> oligon	ucleotide		
<400> 777 ttccacaacc ct	ctctcaca		20
<210> 778 <211> 20 <212> DNA <213> Artifi	cial		
<220> <223> oligon	ucleotide		
<400> 778 accctctctc ac	actctagt		20
<210> 779 <211> 20 <212> DNA <213> Artifi	cial		
<220> <223> oligon	ucleotide		
<400> 779 gagccaggtt gc	cgccttcg		20
<210> 780 <211> 20 <212> DNA <213> Artifi	cial		
<220> <223> oligon	ucleotide		
<400> 780 aggtcaaacc aa	ctcccatg		20
<210> 781 <211> 20 <212> DNA <213> Artifi	cial		

V7588.ST25.txt <220> <223> oligonucleotide <400> 781 atgagccagg ttgccgcctt 20 <210> 782 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 782 tgagccaggt tgccgccttc 20 <210> 783 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 783 aggctcctcc acaggcgact 20 <210> 784 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 784 caggeteete cacaggegae 20 <210> 785 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 785 gcaggctcct ccacaggcga 20 <210> 786 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<210> 787

<400> 786

ttcgctcacc ggcttaaggt

20

V7588.ST25.txt

		V75	88.ST25.tx	t		
<211> <212> <213>	DNA					
<220> <223>	oligonucleotide					
<400> gttcgc	787 ctcac cggcttaagg				20	0
<210> <211> <212> <213>	20					
<220> <223>	oligonucleotide					
<400> ggttcg	788 octca ccggcttaag				20)
<210> <211> <212> <213>	DNA					
<220> <223>	oligonucleotide					
	789 caac cctctctcac				20)
<210> <211> <212> <213>	20 ·					
<220> <223>	oligonucleotide					
	790 gacc gtggtcggct-				. 20)
<210> <211> <212> <213>	791 20 DNA Artificial					
<220> <223>	oligonucleotide					
<400> ccctct	791 ctca cactctagtc				20)
<210> <211> <212> <213>	792 20 DNA Artificial					
<220> <223>	oligonucleotide					
<400>	792					

140/203

gaatt	ccaca accctctctc	V/300.5123.txt	20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> agcca	793 ggttg ccgccttcgc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> gccago	794 gttgc cgccttcgcc		20
<210> <211> <212> <213>	795 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ggaatt	795 ccac aaccctctct		20
<210> <211> <212> <213>	796 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gggaat	796 ttcca caaccctctc		20
<210> <211> <212> <213>	797 20 DNA Artificial		·
<220> <223>	oligonucleotide		
<400> aacgca	797 ggct cctccacagg		20
<210> <211> <212> <213>	798 20 DNA Artificial		

v7588.sT25.txt

		V/300.5123.LXL	
<220> <223>	oligonucleotide		
<400>	798 aagg tcaaaccaac		20
<210> <211> <212>	799 20 DNA		
<213>	Artificial		
<220> <223>	oligonucleotide		
	799 taag gtcaaaccaa		20
<210> <211>			
<212>			
<220> <223>	oligonucleotide		
	800 ctta aggtcaaacc		20
<210> <211> <212>	20		
<213>	Artificial		
<220> <223>	oligonucleotide		
<400> accggc	801 ttaa ggtcaaacca		20
<210>			
<211> <212> <213>	20 DNA Artificial		
<220>	-		
<223>	oligonucleotide		
<400> acccaa	802 catc cagcacacat		20
<210> <211>	803 20		
<212> <213>			
<220> <223>	oligonucleotide		
<400> tcgctga	803 accc gaccgtggtc		20
<210>	804		

. . . .

		/388.S123.TXT	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cgctga	804 cccg accgtggtcg		20
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400> gacccg	805 accg tggtcggctg		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> gctgac	806 ccga ccgtggtcgg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	807 cgac cgtggtcggc		20
<210> <211> <212> <213>	808 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> caggcg	808 actt gcgcctttga		20
<210> <211> <212> <213>	809 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	809		

V7588.ST25.txt tcatgcggta ttagctccag 20 <210> 810 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 810 actagctaat cgaacgcagg 20 <210> 811 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 811 catgcggtat tagctccagt 20 <210> 812 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 812 cgcaggctcc tccacaggcg 20 <210> 813 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 813 acgcaggctc ctccacaggc 20 <210> 814 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 814 ctcaggtgtc atgcggtatt 20 <210> 815 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 815 cgcctttgac cctcaggtgt 20 <210> 816 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 816 accctcaggt gtcatgcggt 20 <210> 817 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 817 cctcaggtgt catgcggtat 20 <210> 818 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 818 tttgaccctc aggtgtcatg 20 <210> 819 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 819 gaccctcagg tgtcatgcgg 20 <210> 820 <211> 20 <212> DNA <213> Artificial <220>

<210> 821

<400> 820

<223> oligonucleotide

tgaccctcag gtgtcatgcg

20

V7588.ST25.txt

<211>	20	
<212>	DNA	
<213>	Artificial	
<220> <223>	oligonucleotide	
<400>	821 gacc ctcaggtgtc	20
90000		20
<210>	822	
<211> <212>	20 DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
	822	
ttgacc	ctca ggtgtcatgc	20
<210>	873	
<211>	20	
<212> <213>	DNA Artificial	
<220>		
<223>	oligonucleotide	
<400>	823	
ccctca	ggtg tcatgcggta	20
.210.	074	
<210> <211>	20	
<212>	DNA Artificial	
	Artificial	
<220> <223>	oligonucleotide	
<400>		
	accc tcaggtgtca	20
<210> <211>	825 20	
<212>	DNA	
<213>	Artificial	
<220> <223>	oligonucleotide	
	-	
<400> ctttga	825 ccct caggtgtcat	20
J		
<210>	826	
<211> <212>	20 DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	826	

146/203

agttatcccc cacccatgga	V7 300.3123. LXC	20
<210> 827 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 827 ccagctatcg atcatcgcct		20
<210> 828 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 828 accagctatc gatcatcgcc		20
<210> 829 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 829 cagctatcga tcatcgcctt		20
<210> 830 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 830 agctatcgat catcgccttg		20
<210> 831 <211> 20 <212> DNA <213> Artificial		· Att
<220> <223> oligonucleotide		
<400> 831 gctatcgatc atcgccttgg		20
<210> 832 <211> 20 <212> DNA <213> Artificial		

V7588.ST25.txt <220> <223> oligonucleotide <400> 832 ctatcgatca tcgccttggt 20 <210> 833 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 833 ttcgtgcgac ttgcatgtgt 20 <210> 834 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 834 tcgatcatcg ccttggtagg 20 <210> 835 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 835 atcgatcatc gccttggtag 20 <210> 836 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 836 cacaggcgac ttgcgccttt 20 <210> 837 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 837 ccacaggcga cttgcgcctt

148/203

<210> 838

人名英伊亚马

20

	V/588.S125.TXT	
<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tccaca	838 ggcg acttgcgcct	20
<210> <211> <212> <213>	839 20 DNA Artificial	
<220> <223>	oligonucleotide	
	839 acag gcgacttgcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cctcca	840 cagg cgacttgcgc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ctccac	841 aggc-gacttgcgcc······························	20
<210> <211> <212> <213>	20	
<220> < <223>	oligonucleotide .	
	842 gact tgcgcctttg	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400>	843	

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt 20 agccccggtt tcccggcgtt <210> 844 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide cgcctttcct ttttcctcca 20 <210> 845 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 845 20 gccccggttt cccggcgtta <210> 846 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 846 gccgcctttc ctttttcctc 20 <210> 847 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 847 tagccccggt ttcccggcgt 20 <210> 848 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 848 20 ccgggtaccg tcaaggcgcc <210> 849 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt <220> <223> oligonucleotide <400> 849 aagccgcctt tcctttttcc 20 <210> 850 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 850 ccccggtttc ccggcgttat 20 <210> 851 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 851 ccggcgttat cccagtctta 20 <210> 852 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 852 agccgccttt cctttttcct 20 <210> 853 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 853 ccgcctttcc tttttcctcc 20

<220>
<223> oligonucleotide

<400> 854
ttagccccgg tttcccggcg 20

<210> 855

<210> 854 <211> 20 <212> DNA <213> Artificial

		388.5123.TXT		
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
	855 gtta tcccagtctt		:	20
<210> <211> <212> <213>	856 20 DNA Artificial			
<220> <223>	oligonucleotide			
	856 tacc gtcaaggcgc		:	20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> ggccgg	857 gtac cgtcaaggcg			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> tcccgg	858 cgtt atcccagtct		:	20 -
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> tggccg	859 ggta ccgtcaaggc			20
<210> <211> <212> <213>				
<220> <223>	oligonucleotide			
<400>	860			

V7588.ST25.txt

gaagco	gcct ttcctttttc	V/588.5125.tx	τ	20	
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> cccggt	861 ttcc cggcgttatc			20	
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> cggcgt	862 tatc ccagtcttac			20	
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> ggcgtt	863 atcc cagtcttaca			20	
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> gcgtta	864 tccc agtcttacag			20	
<210> <211> <212> <213>	20				
<220> <223>	oligonucleotide				
<400> cgggta	865 ccgt caaggcgccg			20	
<210> <211> <212> <213>	20				

153/203

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 866 attagccccg gtttcccggc 20 <210> 867 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 867 aaggggaagg ccctgtctcc 20 <210> 868 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 868 ggccctgtct ccagggaggt 20 <210> 869 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 869 aggccctgtc tccagggagg 20 <210> 870 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 870 aaggccctgt ctccagggag 20 <210> 871 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 871 gccctgtctc cagggaggtc 20

<210> 872

V7588.ST25.txt

			V/300.3123	CAC		
	<211> <212> <213>	20 DNA Artificial				
	<220> <223>	oligonucleotide				
	<400> cgttat	872 ccca gtcttacagg			20	
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> gggtac	873 cgtc aaggcgccgc			20	
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> cggcaa	874 caga gttttacgac			20	
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400> ggggaa	875 ggcc ctgtctccag	 		 20	
	<211> <212>	876 20 DNA Artificial				-
.	<220> <223>	oligonucleotide				s
	<400> agggga	876 aggc cctgtctcca			20	
	<210> <211> <212> <213>	20				
	<220> <223>	oligonucleotide				
	<400>	877				

155/203

<210> 883 <211> 20 <212> DNA <213> Artificial

gcacttgttc ttccccggca

<400> 882

20

V7588.ST25.txt	
<220> <223> oligonucleotide	
<400> 883 cacttgttct tccccggcaa	20
<210> 884 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 884 tcttccccgg caacagagtt	20
<210> 885 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 885 ttgttcttcc ccggcaacag	20
<210> 886 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 886 acttgttctt ccccggcaac	20
<210> 887 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 887 tgttcttccc cggcaacaga	20
<210> 888 <211> 20 <212> DNA <213> Artificial	
<220> <223> oligonucleotide	
<400> 888 cttgttcttc cccggcaaca	20
<210> 889	

.

v7588.sT25.txt

		v7588.sT2	5.txt	
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> acggca	889 cttg ttcttccccg			20
<210> <211> <212> <213>	890 20 DNA Artificial			
<220> <223>	oligonucleotide			
	890 cgct aaccttttaa			20
<210> <211> <212> <213>	891 20 DNA Artificial			
<220> <223>	oligonucleotide			
	891 gggt accgtcaagg			20
<210> <211> <212> <213>	892 20 DNA Artificial			
<220> <223>	oligonucleotide			
	892 cggg taccgtcaag			20 -
<210> <211> <212> <213>	893 20 DNA Artificial			
<220>. <223>	oligonucleotide			
<400> ttctgg	893 ccgg gtaccgtcaa			20
<210> <211> <212> <213>	894 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	894			

. :,

caatgctggc aactaaggtc	V/388.5125.TXT	20
<210> 895 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 895 cgtccgccgc taacctttta		20
<210> 896 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 896 cgaagccgcc tttccttttt		20
<210> 897 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 897 ccgaagccgc ctttcctttt		20
<210> 898 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 898 gccgaagccg cctttccttt		20
<210> 899 <211> -20 <212> DNA <213> Artificial		. (13.1)
<220> <223> oligonucleotide		
<400> 899 agccgaagcc gcctttcctt		20
<210> 900 <211> 20 <212> DNA <213> Artificial		

		V/388.5123.TXT	
<220> <223>	oligonucleotide		
<400> accgto	900 aagg cgccgccctg		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> ccgtgg	901 cttt ctggccgggt		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
	902 tggc cgggtaccgt		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> gccgtg	903 gctt tctggccggg		20
<210> <211> <212> <213>			•
<220> <223>	oligonucleotide		
<400> ggcttt	904 ctgg ccgggtaccg		20
<210> <211> <212> <213>	905 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctttct	905 ggcc gggtaccgtc		20
<210>	906		

<211> <212> <213>	DNA	7750751251CAC	
<220> <223>			
<400> tggct	906 ttctg gccgggtacc		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> gtggct	907 tttct ggccgggtac		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
	908 ctttc tggccgggta		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tttcto	909 ggccg ggtaccgtca		20
<210> <211> <212> <213>	910 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gggaag	910 ggccc tgtctccagg		20
<210> <211> <212> <213>	911 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	911		

<213> Artificial

<210> 923

<211> <212> <213>	DNA	V/366.5123.txt	
<220> <223>	oligonucleotide		
<400> tgtaag	923 jtggc agccgaagcc		20
<210> <211> <212> <213>	20	•	
<220> <223>	oligonucleotide		
<400> catcto	924 Itaag tggcagccga		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> atctgt	925 aagt ggcagccgaa		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	926 aagc cgcctttcct		20
<210> <211> <212> <213>	DNA		
<220>. <223>	oligonucleotide		
<400> ggcaac	927 agag ttttacgacc		20
<210> <211> <212> <213>	928 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	928		

ccggca	aacag agttttacga	:	20
<210> <211> <212> <213>	- 20		
<220> <223>			
<400> ttcccc	. 929 cggca acagagtttt	2	20
<210> <211> <212> <213>	- 20		
<220> <223>			
<400> cttccc	930 ccggc aacagagttt	2	20
<210> <211> <212>	- 20		
<220> <223>			
<400> tccccg	931 ggcaa cagagtttta	2	20
<210> <211> <212> <213>	· 20 · DNA		
<223>	oligonucleotide		
<400> ccgtcc	932 cgccg ctaacctttt	2	20
<210> <211> <212> <213>	933 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cttcct	933 tccga cttacgccgg	2	20
<210> <211> <212> <213>	20		

V7588.ST25.txt

<220>	V/588.5125.txt	
<223>	oligonucleotide	
<400> cctccg	934 actt acgccggcag	20
<210> <211> <212> <213>	935 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ttcctc	935 cgac ttacgccggc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tcctcc	936 gact tacgccggca	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tccgac	937 ttac gccggcagtc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ccgact	938 tacg_ccggcagtca	20
<210> <211> <212> <213>	939 20 DNA Artificial	
<220> <223>	oligonucleotide	
	939 ctcc gacttacgcc	20
<210>	940	

166/203

		8.ST25.TXT	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
	940 tccg acttacgccg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	941 cccg agcaacagag		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ctctcc	942 ccga gcaacagagc		20
<212>	20		
<220> <223>	oligonucleotide		
<400> cgctct	943 cccc gagcaacaga		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		•
<400> ctccga	944 ctta cgccggcagt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400>	945		

PCT/EP2004/010695

WO 2005/031004

	V7588.ST25.txt	
<220> <223>	oligonucleotide	
<400> actggg	951 gtgt gtcccccaa	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gcactg	952 gggt gtgtccccc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tggggt	953 gtgt cccccaaca	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cactcc	954 agac ttgctcgacc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
	955 caga cttgctcgac	20
<210> <211> <212> <213>	956 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cggcac	956 :tggg gtgtgtcccc	20
<210>	957	

		V7588.ST25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
	957 cctc cgacttacgc		20
<210> <211> <212> <213>	958 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctcccc	958 gagc aacagagctt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	959 gact tgctcgaccg		20
<210> <211> <212> <213>	20		
<220>. <223>	oligonucleotide		
	960 ccgc tctccccgag ·		 20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
	961 cgct ctccccgagc		20
<210> <211> <212> <213>	962 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	962		

ccccatgccg ctctccccga	٧/ ١٥٥٠ ١٤٥٠ ١٨٠	20
<210> 963 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 963 tcactcggta ccgtctcgca		20
<210> 964 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 964 catgccgctc tccccgagca		20
<210> 965 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 965 atgccgctct ccccgagcaa		20
<210> 966 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 966 ttcggcactg gggtgtgtcc		20
<210> 967 <211> 20 <212> DNA <213> Artificial	· · · ·	
<220> <223> oligonucleotide		
<400> 967 tgccgctctc cccgagcaac		20
<210> 968 <211> 20 <212> DNA <213> Artificial		

V7588.ST25.txt

			V	7588.ST25.1	txt		
	<220> <223>	oligonucleotide					
	<400> ttcacto	968 cag acttgctcga					20
<	<210> <211> <212> <213>	20					
< <	<220> <223>	oligonucleotide					
	<400> ccgcaa	969 Igaa gatgcctcct					20
<	<210> <211> <212> <213>	20					
< <	<220> <223>	oligonucleotide					
	<400> agaagat	970 gcc tcctcgcggg				·	20
<	<210> <211> <212> <213>	20					
	<220> <223>	oligonucleotide					
	<400> aagaaga	971 tgc ctcctcgcgg					20
	<212>	972 20 ············· DNA Artificial					
< <	<220> <223>	oligonucleotide					
		972 aga tgcctcctcg					20
<	<211> <212>	973 20 DNA Artificial					
<	<220> <223>	oligonucleotide					
		973 ctc ctcgcgggcg					20
<	<210>	974					

. . .

172/203

		V/588.ST2	o.txt	
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
	974 gaag atgcctcctc			20
<210> <211> <212> <213>	975 20 DNA Artificial			
<220> <223>	oʻligonucleotide			
	975 gcct cctcgcgggc			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	976 aaga agatgcctcc			20
<210> <211> <212> <213>	DNA			
<220> <223>	oligonucleotide			
<400> caagaa		••••		20
<210> <211> <212> <213>	978 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tccttc	978 ggca ctggggtgtg			20
<210> <211> <212> <213>	979 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	979			

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt ccgctctccc cgagcaacag 20 <210> 980 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 980 tgcctcctcg cgggcgtatc 20 <210> 981 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 981 gacttacgcc ggcagtcacc 20 <210> 982 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 982 ggctcctctc tcagcggccc 20 <210> 983 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 983 ccttcggcac tggggtgtgt 20 <210> 984 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 984 ggggtgtgtc cccccaacac 20

<210> 985 <211> 20 <212> DNA <213> Artificial

v7588.ST25.txt

		V7588.S1	r25.txt	
<220> <223>	oligonucleotide			
	985 ctcc ccgagcaaca			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> agatgc	986 ctcc tcgcgggcgt			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	987 gtac cgtctcgcat			20
<211> <212>				
<220> <223>	oligonucleotide			
<400> ctcact	988 cggt accgtctcgc			20
 <210> <211> <212> <213>			· · · ·	
<220> <223>	oligonucleotide			
<400> gcaaga	989 agat gcctcctcgc			20
<210> <211> <212> <213>	990 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ctccag	990 actt gctcgaccgc			20
<210>	991			

175/203

v7588.ST25.txt

	v7588.s	T25.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
	991 cggc agtcacctgt		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	992 gcact ggggtgtgtc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ctcgcg	993 gggcg tatccggcat		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> gcctco	994 ctcgc gggcgtatcc		20
<210> <211> <212> <213>	995 20 DNA Artificial		
<220> <223>	oligonucleotide		
	995 gtacc gtctcgcatg		20
<210> <211> <212> <213>	996 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	996		

. .

176/203

v7588.sT25.txt

	V/300.3123. CAC	
<220> <223>	oligonucleotide	
<400> ggtgt	1002 gtccc cccaacacct	20
<210> <211> <212> <213>	1003 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gtgtg	1003 tcccc ccaacaccta	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> cctcg	1004 cgggc gtatccggca	20
<210> <211> <212> <213>	20 DNA	
<220> <223>		
<400> cctca	1005 ctcgg taccgtctcg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tcctc	1006 actcg gtaccgtctc	20
<210> <211> <212> <213>	20 DNA	
<220> <223>		
<400> tcgcg	1007 ggcgt atccggcatt	20
<210>	1008	

V7588.ST25.txt

	V/388.5123. LXC	
<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
	1008 etcca gacttgctcg	20
<210> <211> <212> <213>	1009 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tacgcc	1009 ggca gtcacctgtg	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tccaga	1010 acttg ctcgaccgcc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ctcggt	1011 caccg tctcgcatgg	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
<400> cgcggg	1012 gcgta tccggcatta	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400>	1013	

179/203

·. : .

gggctc	ctct ctcagcggcc	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> tccccg	1015 agca acagagcttt	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ccccga	1016 gcaa cagagcttta	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	

<400> 1017 -20 ccgagcaaca gagctttaca <210> 1018 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1018

20 ccatcccatg gttgagccat

<210> 1019 <211> 20 <212> DNA <213> Artificial

<400> 1014

		V7588.ST25.txt		
<220> <223>	oligonucleotide			
	1019 cccc aacacctagc		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	1020 gtat ccggcattag		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> cgagcg	1021 gctt tttgggtttc		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
<400> ctttca	1022 ctcc agacttgctc		20	
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide			
	1023 cggc actggggtgt		20 ::	a, *• € .
<211> <212>	1024 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> ccgcct	1024 tcct ccgacttacg		20	
<210>	1025			

.. .

		V/388.5123.CXC	
<211> <212> <213>			
<220> <223>	oligonucleotide		
	1025 ttcc tccgacttac		20
<210> <211> <212> <213>	1026 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cctcct	1026 cgcg ggcgtatccg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> tcctcg	1027 cggg cgtatccggc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cattag	1028 cgcc cgtttccggg " ""		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> gcatta	1029 gcgc ccgtttccgg		20
<210> <211> <212> <213>	1030 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	1030 -		

..'.

ccttcctccg acttgcgccg gc

<210> 1036 <211> 22 <212> DNA <213> Artificial 22

20

20

20

20

20

and the same and

<210> 1038 <211> 20 <212> DNA <213> Artificial

<400> 1037

<220>

<220> <223> oligonucleotide <400> 1038

<223> oligonucleotide

accgtctcac aaggagcttt

taccgtctca caaggagctt

<210> 1039 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1039 gtaccgtctc acaaggagct

<210> 1040 <211> 20 <212> DNA <213> Artificial <220>

<223> oligonucleotide

<400> 1040 gcctacccgt gtattatccg

<210> 1041 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1041 ccgtctcaca aggagctttc

<210> 1042

<211> <212> <213>	20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ctaccc	1042 gtgt attatccggc	20
<210> <211> <212> <213>	1043 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggtacc	1043 gtct cacaaggagc	20
<210> <211> <212> <213>	1044 20 DNA Artificial	
<220> <223>	oligonucleotide	
	1044 acaa ggagctttcc	20
<210> <211> <212> <213>	1045 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tctcac	1045 aagg agctttccac	20
<210> <211> <212> <213>	1046 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> taccco	1046 ytgta ttatccggca	20
<210> <211> <212> <213>	1047 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	1047	

PCT/EP2004/010695

gtctcacaag gagctttcca	V7588.ST25.txt	20	
gicicacaag gagerrieea		20	
<210> 1048 <211> 20 <212> DNA <213> Artificial			
<220> <223> oligonucleotide			
<400> 1048 acccgtgtat tatccggcat		20	
<210> 1049 <211> 20 <212> DNA <213> Artificial	·		
<220> <223> oligonucleotide			
<400> 1049 ctcggtaccg tctcacaagg		20	
<210> 1050 <211> 20 <212> DNA <213> Artificial			
<220> <223> oligonucleotide			
<400> 1050 cggtaccgtc tcacaaggag		20	
<210> 1051 <211> 20 <212> DNA <213> Artificial			
<pre><220> <223> oligonucleotide</pre>		• • • • • • •	
<400> 1051 actcggtacc gtctcacaag		20	
<210> 1052 <211> 20 <212> DNA <213> Artificial	i		ম.
<220> <223> oligonucleotide			
<400> 1052 cggctggctc cataacggtt		20	
<210> 1053 <211> 20 <212> DNA <213> Artificial			

v7588.sT25.txt

		V/588.S[25.txt	
<22 <22		oligonucleotide	
<40 aca		1053 agat gcctacccgt	20
<21 <21	10> 11> 12> 13>	1054 20 DNA Artificial	
<27 <27		oligonucleotide	
<40 tgg)0> jctc	1054 cata acggttacct	20
<2: <2:	L1> L2>	1055 20 DNA Artificial	
	20> 23>	oligonucleotide	
		1055 gatg cctacccgtg	20
<2: <2:	11> 12>	1056 20 DNA Artificial	
<2: <2:	20> 23>	oligonucleotide	
		1056 taga tgcctacccg	20
<2	12>	1057 20 DNA Artificial	
	20> 23>	oligonucleotide	
<4 99	00> ctcc	1057 ataa cggttacctc	20
<2 <2	10> 11> 12> 13>	1058 20 DNA Artificial	
<2 <2	20> 23>	oligonucleotide	
<4 ac	00> acaa	1058 ugtag atgcctaccc	20
<2	10>	1059	

in the second second

		V/366.5123. LXL	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ctggct	1059 ccat aacggttacc		20
<210> <211> <212> <213>	1060 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> gctggc	1060 tcca taacggttac		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> ggctgg	1061 ctcc ataacggtta		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> gctcca	1062 taac ggttacctca		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide	-	
<400> aagtag	1063 patgc ctacccgtgt		20
<210> <211> <212> <213>	DNA		
<220> <223>	oligonucleotide		
<400>	1064		

<400> 1066
tcggtaccgt ctcacaagga 20

<210> 1067
<211> 20
<212> DNA
<213> Artificial

<223> Artificial
<220>
<223> oligonucleotide

<400> 1067 ctcacaagga gctttccact 20

<210> 1068
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide

<400> 1068 -gtagatgcct acccgtgtat 20

<210> 1069 <211> 20 <212> DNA <213> Artificial

<220>
<223> oligonucleotide

<400> 1069
cctacccqtq tattatccqq 20

cctacccgtg tattatccgg
<210> 1070

<210> 1070 <211> 20 <212> DNA <213> Artificial

	V/388.5125.txt	
<220> <223>	oligonucleotide	
<400> cactcg	1070 gtac cgtctcacaa	20
<210> <211> <212> <213>		
<220> <223>	oligonucleotide	
	1071 gatg cagttgcatc	20
<210> <211> <212> <213>	1072 20 DNA Artificial	
<220> <223>	oligonucleotide	
	1072 tgcc tacccgtgta	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> gcggct	1073 ggct ccataacggt	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> ccaaag	1074 caat cccaaggttg	20
<210> <211> <212> <213>	1075 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> tccata	1075 acgg ttacctcacc	20
<210>	1076	

		V/388.5123.txt	
<211> <212> <213>	20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> cccgtg	1076 tatt atccggcatt		20
<210> <211> <212> <213>	1077 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> tctcag	1077 cgat gcagttgcat		20
<210> <211> <212> <213>	1078 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400> ccataa	1078 cggt tacctcaccg		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> tcagcg	1079 atgc agttgcatct		20
<210> <211> <212> <213>			
<220> <223>	oligonucleotide		
<400> ggcggc	1080 tggc tccataacgg		20
<210> <211> <212> <213>	1081 20 DNA Artificial		
<220> <223>	oligonucleotide		
<400>	1081		

tcacaaggag ctttccactc

<210> 1087 <211> 20 <212> DNA <213> Artificial

V7588.ST25.txt

		V/386.5125.tac	
<220> <223>	oligonucleotide		
<400> cagcga	1087 tgca gttgcatctt		20
<210> <211> <212> <213>	1088 20 DNA Artificial	·	
<220> <223>	oligonucleotide		
	1088 gctt tccactctcc		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> ccagto	1089 tgaa aggcagattg		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
<400> cagtct	1090 gaaa ggcagattgc		20
<211><212>			
<220> <223>	oligonucleotide		
	1091 ctgg ctccataacg		20
<210> <211> <212> <213>	20 DNA		
<220> <223>	oligonucleotide		
<400> cctct	1092 ctcag cgatgcagtt		20
<210>	1093		

. . ..

-- . . .

193/203

V7588.ST25.txt

		V7588.ST25.txt		
<211> <212> <213>	20 DNA Artificial			
<220> <223>	oligonucleotide			
	1093 cagc gatgcagttg	•		20
<210> <211> <212> <213>	1094 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400> tctctc	1094 agcg atgcagttgc			20
<210> <211> <212> <213>	1095 20 DNA Artificial			
<220> <223>	oligonucleotide			
	1095 gcga tgcagttgca			20
<210> <211> <212> <213>	20			
<220> <223>	oligonucleotide		·	
	1096 caag gttgagcctt			20
<210> <211> <212> <213>	1097 20 DNA Artificial			
<220> <223>	oligonucleotide	. ~		
<400> aatccc	1097 aagg ttgagccttg			20
<210> <211> <212> <213>	1098 20 DNA Artificial			
<220> <223>	oligonucleotide			
<400>	1098			

194/203

agcaatccca aggttgagcc	V/588.ST25.txt	20
<210> 1099 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 1099 ctcactcggt accgtctcac		20
<210> 1100 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide		
<400> 1100 gcaatcccaa ggttgagcct		20
<210> 1101 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide	.	
<400> 1101 gccttggact ttcacttcag		20
<210> 1102 <211> 20 <212> DNA <213> Artificial		
<220> <223> oligonucleotide	·	•
<400> 1102 cataacggtt acctcaccga		20
<210> 1103 <211> 20 <212> DNA <213> Artificial	· ·	
<220> <223> oligonucleotide	2	
<400> 1103 ctcctctctc agcgatgcag		20
<210> 1104 <211> 20 <212> DNA <213> Artificial		

-

			V/388.5123.LXL	
	220> 223>	oligonucleotide		
		1104 ctg gctccataac	2	0
<2 <2	21 1> 212>			
	220> 223>	oligonucleotide		
		1105 aag gcagattgcc	2	0
<2 <2	210> 211> 212> 213>	20		
	220> 223>	oligonucleotide		
		1106 tca gcgatgcagt	2	20
<2 <2	210> 211> 212> 213>	20		
	220> 223>	oligonucleotide		
	400> ccaagg	1107 ttg agccttggac	2	20
· · · </td <td>212></td> <td>20</td> <td></td> <td></td>	212>	20		
	220> 223>	oligonucleotide		
<4 a1	400> taacgg	1108 tta cctcaccgac	2	0
	211> 212>	1109 20 DNA Artificial		
	220> 223>	oligonucleotide		
		1109 gtt gagccttgga	2	0
<	210>	1110		

Carried State of the Control of the

<212>	20		
	DNA Artificial		
<220> <223>	oligonucleotide		
<400> attato	1110 cggc attagcaccc		20
<211> <212>			
<220> <223>	oligonucleotide		
<400> ctacgt	1111 gctg gtaacacaga		20
<210> <211> <212> <213>	20		
<220> <223>	oligonucleotide		
	1112 agcc ccgaagggct		20
<210>	1113		
<211> <212>	DNA Artificial		
<211> <212>	DNA		
<211> <212> <213> <220> <223> <400>	DNA Artificial	• : • • • • • • • • • • • • • • • • • •	· · · · 20· · · · ·
<211> <212> <213> <220> <223> <400>	DNA Artificial oligonucleotide 1113	• • • • • • • • • • • • • • • • • • • •	· · · · 20· · · · ·
<211> <212> <213> <220> <223> <400> ctagco <210> <211> <211> <212>	DNA Artificial oligonucleotide 1113 ccga agggctcgct	· . · · · · · · · · · · · · · · · · · ·	· · · · 20· · · · ·
<211> <212> <213> <220> <223> <400> ctagco <211> <211> <212> <213> <400> <400>	DNA Artificial oligonucleotide 1113 ccga agggctcgct 1114 20 DNA Artificial		
<211> <212> <213> <220> <223> <400> ctagco <211> <211> <212> <213> <400> <400>	DNA Artificial oligonucleotide 1113 ccga agggctcgct 1114 20 DNA Artificial oligonucleotide 1114 cccc gaagggctcg		
<211> <212> <213> <220> <223> <400> ctagco <211> <211> <212> <213> <400> cgctag <210> <221> <213>	DNA Artificial oligonucleotide 1113 ccga agggctcgct 1114 20 DNA Artificial oligonucleotide 1114 cccc gaagggctcg		

WO 2005/031004 PCT/EP2004/010695 v7588.ST25.txt 20 agccccgaag ggctcgctcg <210> 1116 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1116 20 ccgctagccc cgaagggctc <210> 1117 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1117 20 tagccccgaa gggctcgctc <210> 1118 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1118 20 gctagcccg aagggctcgc <210> 1119 <211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1119 20 gccccgaagg gctcgctcga

<210> 1120 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide

<400> 1120 20 atcccaaggt tgagccttgg

<210> 1121 <211> 20 <212> DNA <213> Artificial

PCT/EP2004/010695

	V/588.ST25.txt	
<220> <223>	oligonucleotide	
<400> gagcct	1121 tgga ctttcacttc	20
<210> <211> <212> <213>	1122 20 DNA Artificial	
<220> <223>	oligonucleotide	
<400> caaggt	1122 tgag ccttggactt	20
<210> <211> <212> <213>	20 DNA	
<220> <223>	oligonucleotide	
	1123 tcca ctctccttgt	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> ccaagg	1124 ttga gccttggact	20
<210> <211> <212> <213>	20	
<220> <223>	oligonucleotide	
<400> cgggct	1125 cctc tctcagcgat	20
<210> <211> <212> <213>	DNA	
<220> <223>	oligonucleotide	
<400> ggagct	1126 ttcc actctccttg	20
<210>	1127	

PCT/EP2004/010695

<211>	20	***************************************	
<212> <213>	DNA Artificial		
	Alciticia		
<220> <223>	oligonucleotide		
	1127		20
gggccc	ctct ctcagcgatg		20
<210>	1128		
<211> <212>	20		
<213>			
<220>			
<223>	oligonucleotide		
<400>	1128 tgtc gctctccccg		20
ccccc	tgte geteteeteg		20
<210>	1129		
<211> <212>	20 DNA		
<213>	Artificial		
<220>	7. 7		
<223>	oligonucleotide		
<400>	1129 tcgc tctccccgag		20
ccccg			
<210>	1130		
<211> <212>	DNA		
<213>	Artificial		
<220> <223>	oligonucleotide		
<400>	1130 ccac tctccttgtc		20
	_		
<210>	1131 20		
<211> <212>	DNA		
<213>	Artificial		
<220> <223>	oligonucleotide		
<400>			
ccactc	tcct tgtcgctctc		20
<210>	1132		
<211>	20		
<212> <213>	DNA Artificial		
<220>	oligonyelostida		
<223>	oligonucleotide		
<400>	1132		

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt ggctcctctc tcagcgatgc 20 <210> 1133 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1133 ccttgtcgct ctccccgagc 20 <210> 1134 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1134 cactctcctt gtcgctctcc 20 <210> 1135 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1135 actctccttg tcgctctccc 20 <210> 1136 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1136 ctctccttgt cgctctcccc 20 <210> 1137 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1137 gcgggctcct ctctcagcga 20

<210> 1138 <211> 20 <212> DNA <213> Artificial

WO 2005/031004 PCT/EP2004/010695 V7588.ST25.txt <220> <223> oligonucleotide <400> 1138 ggctccatca tggttacctc 20 <210> 1139 <211> 22 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1139 ccgtctccta aggagctttc ca 22 <210> 1140 <211> 22 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1140 tccctcctta acggttacct ca 22 <210> 1141 <211> 22 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1141 tggctccata awggttacct ca 22 <210> 1142 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1142 cttcctccgg cttgcgccgg 20

<210> 1143 <211> 20 <212> DNA <213> Artificial <220> <223> oligonucleotide <400> 1143 cgctcttccc gaktgactga

<210> 1144

V7588.ST25.txt

<211> 20 <212> DNA <213> Artificial

<220> <223> oligonucleotide

<400> 1144 cctcgggctc ctccatcwgc

20

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
·

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.