海明码编码方法

假设现在对原码 10010011 进行编码,可按以下过程步骤处理:

1.确定应当加多少校验位:

现在数据位为8位,需加r位的校验位,必须满足以下公式

$8+r \le 2^{r}-1$

可以得出 2^r-r≥9, 现可解出 r=4。

即需要给原码,亦即数据码 10010011 中添加 4 个校验码,组成一个码字。

2. 确定校验位的位置:

根据海明码添加的位置,即必须为 2° 的位置,即分别添加在 2° 、 2° 、 2° 、 2° 、 2° 的位置,即加在码字中的 w1、w2、w4、w8 位置,现将码字表示为

W1	W2	W 3	W4	W5	W 6	W7	W 8	W9	W10	W11	W12
?	?	1	?	0	0	1	?	NO.	0	1	1

3. 确定每个校验位分别是 1 还是 0:

由于海明码的校验位和采用的校验方式是奇校验还是偶次等,所以必须先确定是奇校验还是偶校验,这里我们假设采用奇校验,即所有的校验位,位于治奇数个。现分别确定各个校验位如下:

(1)W1 的确定:

Ī	W 1	W3	W5	W7	W9	W11
Ī	?	1	0	1	0	1

从上面的列表中可以看出,现有 3 个 、即奇数个 1 ,那么 W1 只能为 0 。因为假如 W1 为 1 ,那么 W1 、W3 、W5 、W7 、W9 、W11 村公时,就有 4 个 1 ,就不符合奇校验的要求了。所以 W1 = 0 。

(2)W2 的确定:

即从码字的 W2 开始,校验 V立, K过 2 位, 再校验 2 位, 再跳过 2 位… , 直到码字结尾, 操作后, 可知 W2、W3、 6、W、W10、W11 进行校验, 现列表如下:

W 2	W3	₩6	W7	W10	W11
?	1	0	1	0	1

同样,可知 W2=0。

(3)W4 的确定

同样列表如下

W4	W 5	W 6	W7	W12
?	0	0	1	1

可确定 W4=1。

(4)W8 的确定

W8	W 9	W10	W11	W12
?	0	0	1	1

W8 = 1.

这样,知道了该码字中的所有的校验位,即知道了海明码为001100110011。