```
In [1]: import pandas as pd
import numpy as np
```

In [2]: import matplotlib.pyplot as plt
 plt.style.use('fivethirtyeight')
 plt.show()

In [3]: df = pd.read_csv("amazon_stock.csv")
df

Out[3]:

	None	ticker	Date	Open	High	Low	Close	Volume	Adj_Close
0	0	AMZN	3/27/2018	1572.40	1575.9600	1482.320	1497.0500	6793279	1497.0500
1	1	AMZN	3/26/2018	1530.00	1556.9900	1499.250	1555.8600	5547618	1555.8600
2	2	AMZN	3/23/2018	1539.01	1549.0200	1495.360	1495.5600	7843966	1495.5600
3	3	AMZN	3/22/2018	1565.47	1573.8500	1542.400	1544.1000	6177737	1544.1000
4	4	AMZN	3/21/2018	1586.45	1590.0000	1563.170	1581.8600	4667291	1581.8600
1311	1311	AMZN	01-08-2013	267.07	268.9800	263.567	266.3800	3010700	266.3800
1312	1312	AMZN	01-07-2013	262.97	269.7250	262.670	268.4592	4910000	268.4592
1313	1313	AMZN	01-04-2013	257.58	259.8000	256.650	259.1500	1874200	259.1500
1314	1314	AMZN	01-03-2013	257.27	260.8800	256.370	258.4800	2750900	258.4800
1315	1315	AMZN	01-02-2013	256.08	258.0999	253.260	257.3100	3271000	257.3100

1316 rows × 9 columns

In [4]: df.head(10)

Out[4]:

	None	ticker	Date	Open	High	Low	Close	Volume	Adj_Close
0	0	AMZN	3/27/2018	1572.40	1575.96	1482.32	1497.05	6793279	1497.05
1	1	AMZN	3/26/2018	1530.00	1556.99	1499.25	1555.86	5547618	1555.86
2	2	AMZN	3/23/2018	1539.01	1549.02	1495.36	1495.56	7843966	1495.56
3	3	AMZN	3/22/2018	1565.47	1573.85	1542.40	1544.10	6177737	1544.10
4	4	AMZN	3/21/2018	1586.45	1590.00	1563.17	1581.86	4667291	1581.86
5	5	AMZN	3/20/2018	1550.34	1587.00	1545.41	1586.51	4507049	1586.51
6	6	AMZN	3/19/2018	1554.53	1561.66	1525.35	1544.93	6376619	1544.93
7	7	AMZN	3/16/2018	1583.45	1589.44	1567.50	1571.68	5145054	1571.68
8	8	AMZN	3/15/2018	1595.00	1596.91	1578.11	1582.32	4026744	1582.32
9	9	AMZN	3/14/2018	1597.00	1606.44	1590.89	1591.00	4164395	1591.00

In [11]: df1=df.drop(['None','ticker'],axis=1)
 df1

Out[11]:

	Date	Open	High	Low	Close	Volume	Adj_Close
0	3/27/2018	1572.40	1575.9600	1482.320	1497.0500	6793279	1497.0500
1	3/26/2018	1530.00	1556.9900	1499.250	1555.8600	5547618	1555.8600
2	3/23/2018	1539.01	1549.0200	1495.360	1495.5600	7843966	1495.5600
3	3/22/2018	1565.47	1573.8500	1542.400	1544.1000	6177737	1544.1000
4	3/21/2018	1586.45	1590.0000	1563.170	1581.8600	4667291	1581.8600
1311	01-08-2013	267.07	268.9800	263.567	266.3800	3010700	266.3800
1312	01-07-2013	262.97	269.7250	262.670	268.4592	4910000	268.4592
1313	01-04-2013	257.58	259.8000	256.650	259.1500	1874200	259.1500
1314	01-03-2013	257.27	260.8800	256.370	258.4800	2750900	258.4800
1315	01-02-2013	256.08	258.0999	253.260	257.3100	3271000	257.3100

1316 rows × 7 columns

In [12]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1316 entries, 0 to 1315
Data columns (total 7 columns):

Data	columns (to	otai / columns):						
#	Column	Non-Null Count	Dtype					
0	Date	1316 non-null	object					
1	0pen	1316 non-null	float64					
2	High	1316 non-null	float64					
3	Low	1316 non-null	float64					
4	Close	1316 non-null	float64					
5	Volume	1316 non-null	int64					
6	Adj_Close	1316 non-null	float64					
<pre>dtypes: float64(5), int64(1), object(1)</pre>								
memory usage: 72.1+ KB								

```
In [14]: df1['Date'] = df1['Date'].apply(pd.to datetime)
          df1.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1316 entries, 0 to 1315
          Data columns (total 7 columns):
               Column
                          Non-Null Count
           #
                                           Dtype
               _____
                           _____
                                           datetime64[ns]
           0
               Date
                          1316 non-null
           1
               0pen
                          1316 non-null
                                           float64
           2
               High
                          1316 non-null
                                           float64
           3
                                           float64
               Low
                          1316 non-null
           4
               Close
                          1316 non-null
                                           float64
           5
                                           int64
               Volume
                          1316 non-null
           6
               Adj_Close 1316 non-null
                                           float64
          dtypes: datetime64[ns](1), float64(5), int64(1)
          memory usage: 72.1 KB
In [23]: df1.set_index('Date',inplace=True)
In [25]: df1.head()
Out[25]:
                      Open
                              High
                                       Low
                                             Close
                                                    Volume Adj_Close
               Date
          2018-03-27 1572.40 1575.96 1482.32 1497.05 6793279
                                                              1497.05
          2018-03-26 1530.00 1556.99
                                    1499.25
                                           1555.86
                                                   5547618
                                                             1555.86
          2018-03-23 1539.01 1549.02 1495.36
                                           1495.56 7843966
                                                              1495.56
          2018-03-22 1565.47 1573.85 1542.40
                                           1544.10 6177737
                                                              1544.10
          2018-03-21 1586.45 1590.00 1563.17 1581.86 4667291
                                                              1581.86
```

```
In [27]: df1['Adj_Close'].plot(figsize=(12,6),title='Adjusted Closing Price')
```

Out[27]: <AxesSubplot:title={'center':'Adjusted Closing Price'}, xlabel='Date'>


```
In [32]: from datetime import datetime
```

```
In [38]: my_year = 2020
   my_month = 5
   my_day = 1
   my_hour = 13
   my_minute = 36
   my_second = 45
   test_date =datetime(my_year, my_month, my_day)
   test_date
```

Out[38]: datetime.datetime(2020, 5, 1, 0, 0)

```
In [39]: test_date = datetime(my_year, my_month, my_day, my_hour, my_minute, my_second)
    print("The day is : ",test_date.day)
    print("The hour is : ", test_date.hour)
    print("The month is : ", test_date.month)
```

The day is: 1
The hour is: 13
The month is: 5

```
In [41]: print(df1.index.max())
```

2018-03-27 00:00:00

```
In [42]: print(df1.index.min())
```

2013-01-02 00:00:00

```
In [46]: df1.index.argmin()
```

Out[46]: 1315

In [48]: | df1.index.argmax()

Out[48]: 0

Out[58]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2013-12-31	297.877223	300.925966	294.656658	298.032235	2.967880e+06	298.032235
2014-12-31	332.798433	336.317462	328.545440	332.550976	4.083223e+06	332.550976
2015-12-31	478.126230	483.248272	472.875443	478.137321	3.797801e+06	478.137321
2016-12-31	699.669762	705.799103	692.646189	699.523135	4.122043e+06	699.523135
2017-12-31	967.565060	973.789752	959.991826	967.403996	3.466207e+06	967.403996
2018-12-31	1429.770000	1446.701017	1409.469661	1429.991186	5.586829e+06	1429.991186

In [60]: df1['Adj_Close'].resample('A').mean().plot(kind='bar', figsize=(10, 4)) plt.title('Yearly Mean Adj Close Price for Amazon') plt.show()


```
In [67]: df1['Adj_Close'].resample('MS').max().plot(kind='bar', figsize=(15, 4))
    plt.title('Monthly Maximum Opening Price for Amazon')
    plt.show()
```


In [72]: df1.head()

Out[72]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2018-03-27	1572.40	1575.96	1482.32	1497.05	6793279	1497.05
2018-03-26	1530.00	1556.99	1499.25	1555.86	5547618	1555.86
2018-03-23	1539.01	1549.02	1495.36	1495.56	7843966	1495.56
2018-03-22	1565.47	1573.85	1542.40	1544.10	6177737	1544.10
2018-03-21	1586.45	1590.00	1563.17	1581.86	4667291	1581.86

In [78]: shiftfor=df1.shift(1) shiftfor.head()

Out[78]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2018-03-27	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-26	1572.40	1575.96	1482.32	1497.05	6793279.0	1497.05
2018-03-23	1530.00	1556.99	1499.25	1555.86	5547618.0	1555.86
2018-03-22	1539.01	1549.02	1495.36	1495.56	7843966.0	1495.56
2018-03-21	1565.47	1573.85	1542.40	1544.10	6177737.0	1544.10

In [77]: shiftbac=df1.shift(-1) shiftbac.head()

Out[77]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2018-03-27	1530.00	1556.99	1499.25	1555.86	5547618.0	1555.86
2018-03-26	1539.01	1549.02	1495.36	1495.56	7843966.0	1495.56
2018-03-23	1565.47	1573.85	1542.40	1544.10	6177737.0	1544.10
2018-03-22	1586.45	1590.00	1563.17	1581.86	4667291.0	1581.86
2018-03-21	1550.34	1587.00	1545.41	1586.51	4507049.0	1586.51

In [79]: df1.head(10)

Out[79]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2018-03-27	1572.40	1575.96	1482.32	1497.05	6793279	1497.05
2018-03-26	1530.00	1556.99	1499.25	1555.86	5547618	1555.86
2018-03-23	1539.01	1549.02	1495.36	1495.56	7843966	1495.56
2018-03-22	1565.47	1573.85	1542.40	1544.10	6177737	1544.10
2018-03-21	1586.45	1590.00	1563.17	1581.86	4667291	1581.86
2018-03-20	1550.34	1587.00	1545.41	1586.51	4507049	1586.51
2018-03-19	1554.53	1561.66	1525.35	1544.93	6376619	1544.93
2018-03-16	1583.45	1589.44	1567.50	1571.68	5145054	1571.68
2018-03-15	1595.00	1596.91	1578.11	1582.32	4026744	1582.32
2018-03-14	1597.00	1606.44	1590.89	1591.00	4164395	1591.00

In [89]: timeshift=df1.tshift(periods=1, freq='D') timeshift.head()

<ipython-input-89-0d8fa9439a49>:1: FutureWarning: tshift is deprecated and will
be removed in a future version. Please use shift instead.
 timeshift=df1.tshift(periods=1, freq='D')

Out[89]:

	Open	High	Low	Close	volume	Adj_Close
Date						
2018-03-28	1572.40	1575.96	1482.32	1497.05	6793279	1497.05
2018-03-27	1530.00	1556.99	1499.25	1555.86	5547618	1555.86
2018-03-24	1539.01	1549.02	1495.36	1495.56	7843966	1495.56
2018-03-23	1565.47	1573.85	1542.40	1544.10	6177737	1544.10
2018-03-22	1586.45	1590.00	1563.17	1581.86	4667291	1581.86

```
In [110]: ROI = 100 * (df1['Adj_Close'].tshift(periods=-365, freq = 'D') / df1['Adj_Close']
    ROI.plot(figsize=(16,8))
    plt.ylabel('% Return on Investment')
```

<ipython-input-110-340b8dccb74b>:1: FutureWarning: tshift is deprecated and wil
l be removed in a future version. Please use shift instead.
ROI = 100 * (df1['Adj_Close'].tshift(periods=-365, freq = 'D') / df1['Adj_Close'] - 1)

Out[110]: Text(0, 0.5, '% Return on Investment')

In [114]: df1['Adj_Close'].plot(figsize = (12,8), color='green')

Out[114]: <AxesSubplot:xlabel='Date'>

In [117]: df1.rolling(7).mean().head(10)

Out[117]:

	Open	High	Low	Close	Volume	Adj_Close
Date						
2018-03-27	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-26	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-23	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-22	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-21	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-20	NaN	NaN	NaN	NaN	NaN	NaN
2018-03-19	1556.885714	1570.640000	1521.894286	1543.695714	5.987651e+06	1543.695714
2018-03-16	1558.464286	1572.565714	1534.062857	1554.357143	5.752191e+06	1554.357143
2018-03-15	1567.750000	1578.268571	1545.328571	1558.137143	5.534923e+06	1558.137143
2018-03-14	1576.034286	1586.471429	1558.975714	1571.771429	5.009270e+06	1571.771429

```
In [124]: df1["Open"].plot(kind="line")
df1["Open"].rolling(30).mean().plot(kind="line",figsize=(15,4))
```

Out[124]: <AxesSubplot:xlabel='Date'>


```
In [ ]:
```