Restoring Greek Sculptures with Inpainting and 3D Reconstruction

Alejandro Campayo Fernández Sai Suresh Macharla Vasu Aishwarya Kshirsagar

> High Level Computer Vision August 7th, 2024

Motivation

The idea behind this project comes from a tweet:

Motivation

 The Institute for Digital Archaeology (IDA) wants to add colour to 3D scanned sculptures.

We want to recover broken
limbs (arms) of ancient
sculptures and get 3D
reconstruction without need
of 3D scanning.

British Museum facing legal action over Parthenon marbles 3D scan refusal

Institute for Digital Archaeology says it intends to serve injunction against museum imminently

□ Parthenon marbles at the British Museum in London. Photograph: Neil Hall/EPA

3

Related Work

- Master's thesis: Restoration of Damaged Face Statues Using Deep Generative Inpainting Model.
- We drew inspiration from it.
- Its code is not publicly available.

Overview

Data processing

- Data collection
- Pose estimation for joints annotation
- Arm masking
- Segmentation

Image inpainting

Training DL architectures on our data:

- U-Net
- GAN

Inference on dust3r

3D reconstruction

reconstruction

Data processing

Collection of public datasets

Pose estimation for joints annotation

MoveNet

Masking and filtering

Thresholding on arm joints

Inpainting

U-Net

- As a baseline.
- Blurred results.
- UNet [12]

GANs

- As an improvement of the U-Net architecture.
- Context-Encoder [13]

UNET: Results

Context Encoders: Results

Sampling after 24999 steps. L1: 0.092373, PSNR: 17.671551, SSIM: 0.526113

Limitations with RGB Images

Inpainting sculptures with human skin tone.

Greyscale Images: Results

Sampling after 24999 steps. L1: 0.121197, PSNR: 15.187092, SSIM: 0.420290

Limitations with Static Mask

Results with Black and White (static central mask)

Movement of Mask: Results

Results with Black and White

(after changing the masks movement within 30 pixel radius)

3D Reconstruction with Dust3r

[11]

3D reconstruction on High Resolution Image

3D reconstruction on Low Resolution Image

3D reconstruction on Inpainted Image

Future work

Body segmentation with BodyPix model. [10]

Future work

Body segmentation on our dataset.

Conclusions

- U-Net gives poor results compared to GAN architecture.
- Training on human data results in inpainted statues with skin tone.
- Moving the mask slightly around the center helps the model generalize.
- 3D reconstruction with dust3r gives poor results for low quality images and even worse for grayscale.

References

Motivation

- 1. ABC iview. (2024). Recreating the Parthenon Marbles using 3D scans | Stuff The British Stole. YouTube. https://www.youtube.com/watch?v=v-9Ggz4wOzQ&t=62s
- 2. Brown, M. (2022). British Museum facing legal action over Parthenon Marbles 3D scan refusal. The Guardian. https://www.theguardian.com/artanddesign/2022/mar/29/british-museum-facing-legal-action-parthenon-marbles-3d-scan-refusal.

Related work

3. Theodorus, A. (2020, August). Restoration of damaged face statues using deep generative inpainting model. University of Twente. http://essay.utwente.nl/82706/

Datasets

- 4. Johnson, S., & Everingham, M. (2010). Leeds Sports Pose Dataset. Retrieved from https://paperswithcode.com/dataset/lsp
- 5. Niharika. (2024). Yoga Poses Dataset. Retrieved from https://www.kaggle.com/datasets/niharika41298/yoga-poses-dataset
- 6. Papers with Code. (2024). Yoga-82 Dataset. Retrieved from https://paperswithcode.com/dataset/yoga-82
- 7. Dataset Ninja. (2024). Human Parts Dataset. Retrieved from https://datasetninja.com/human-parts
- 8. ThatGeeman. (2024). Sculptures of Greek Olympians Dataset. Retrieved from https://www.kaggle.com/datasets/thatgeeman/sculptures-of-greek-olympians-dataset

Code and models

- 9. TensorFlow. (n.d.). MoveNet: Ultra fast and accurate pose detection model. Retrieved from https://www.tensorflow.org/hub/tutorials/movenet
- 10. De-code. (2024). Python-TF-BodyPix. GitHub. https://github.com/de-code/python-tf-bodypix
- 11. Naver. (2024). Dust3r for 3D Reconstruction. GitHub. https://github.com/naver/dust3r
- 12. JASON. (2024). Context Encoder PyTorch. GitHub. https://github.com/xyfJASON/context-encoder-pytorch
- 13. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. CoRR. http://arxiv.org/abs/1505.04597

Questions

MoveNet Architecture

TensorFlow. (n.d.). MoveNet: Ultra fast and accurate pose detection model. Retrieved from https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflow].html

Dust3r Architecture

Wang, S., Leroy, V., Cabon, Y., Chidlovskii, B., & Revaud, J. (2023). **DUSt3R: Geometric 3D Vision Made Easy**. arXiv. https://arxiv.org/abs/2312.14132

U-Net Architecture

GANs Architecture

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context Encoders: Feature Learning by Inpainting. CoRR, abs/1604.07379. http://arxiv.org/abs/1604.07379

GANs Architecture

Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context Encoders: Feature Learning by Inpainting. CoRR, abs/1604.07379. http://arxiv.org/abs/1604.07379

Metrics and Losses

Grayscale:

```
[Train] step: 24999, <u>loss_adv_D</u>: 0.033320, <u>lr_D</u>: 0.000200
```

[Train] step: 24999, loss_rec: 0.041915, loss_adv_G: 6.895699, lr_G:

0.002000

[Eval] step: 24999, <u>I1</u>: 0.121197, <u>psnr</u>: 15.187092, <u>ssim</u>: 0.420290

RGB:

```
[Train] step: 24999, loss_adv_D: 0.914082, lr_D: 0.000200
```

[Train] step: 24999, loss_rec: 0.008003, loss_adv_G: 0.828666, lr_G:

0.002000

[Eval] step: 24999, <u>I1</u>: 0.092373, <u>psnr</u>: 17.671551, <u>ssim</u>: 0.526113