

Mr. Nuttapong Pantong
Thai Meteorological
Department
www.tmd.go.th

- Introduction
- SWAT Model Component
- Data required SWAT
- SWAT set-up

Hydrologic Cycle

www.tmd.go.th

Soil and Water Assessment Tool

- A river basin/watershed/scale model
- To predict the impact of land management practices on water, sediment and agricultural chemical yields over long period of time

Developed by USDA-Agricultural Research Service (ARS)

CREAMS
USLE (CLEANWATERACT)

EPIC

SWRRB

SWAT

1960's

1970's

1980's

1990's

GLEAMS WEPP ANN AGNPS
AGNPS

AVSWAT AVSWAT-X ARCSWAT

2000's 2003,2005's 2007's

ArcSWAT

- Extension of Arcgis
- Freeware (<u>http://swatmodel.tamu.edu</u>)

www.tmd.go.th

Continuous Time

Daily Time Step

One Day — Hundreds of Years

(Depend on Input Weather Data)

Distributed Parameter

Unlimited Number of Sub watersheds

Management

SA COLOGICAL DEPAR

- Crop Rotations
- Removal of Biomass as Harvest/Conversion of Biomass to Residue
- Tillage / Bio mixing of Soil
- Fertilizer Applications
- Grazing
- Pesticide Applications
- Irrigation
- Subsurface (Tile) Drainage
- Water Impoundment (e.g. Rice)
- Urban Areas (Pervious/Impervious Areas, Street Sweeping, Lawn Chemicals)

SWAT Model Component

SWAT Model Component

Land Phase

- Weather
- Hydrology
- Sedimentation
- Plant Growth
- Nutrient Cycling
- Pesticide Dynamics
- Management
- Bacteria

Routing Phase

- Flood Routing
- Transmission Losses, Evaporation
- Sediment Routing
- Nutrient
- Pesticide

Routing Phase

Hydrologic Cycle

$$SW_t = Sw_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - w_{seep} - Q_{gw})$$

Where:

 \mathbf{SW}_{t} = the soil water content after time step t of day \mathbf{i}

 SW_0 = the initial soil water content on day i

t =the time

 $\mathbf{R}_{\mathbf{day}}$ = the amount of precipitation on day i

 Q_{surf} = the amount of surface runoff

 $\mathbf{E_a}$ = the amount of evaporation

W_{seep} = the amount of water entering the unsaturated zone from the soil profile

 Q_{gw} = the amount of return flow as drainage to the surface water.

^{*}All parameters have the unit mm.

Routing Phase

Routing Phase

Estimation

- 1.Surface Runoff: SCS Curve Number Procedure and Green & Amptinfiltration depend on Land use, Land cover, Soil characteristic, Soil moisture.
- 2. Peak Runoff Rate: Approximate by Modified Rational Formula
- 3. Lateral Subsurface Flow
- 4. Groundwater Flow Shallow Aquifer & Deep

Routing Phase

Routing Phase

- 1. Routing in Main Channel or Reach
- 2. Routing in the Reservoir

Manning's Equation:

$$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [U.S.]$$

$$Q = VA = \left(\frac{1.00}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [SI]$$

Where:

 $Q = Flow Rate, (ft^3/s)$

v = Velocity, (ft/s)

 $A = Flow Area, (ft^2)$

n = Manning's Roughness Coefficient

R = Hydraulic Radius, (ft)

S = Channel Slope, (ft/ft)

www.tmd.go.th

SWAT Strengths

Land phase

- Comprehensive Hydrologic Balance
- Physically-Based Inputs
- Plant Growth Rotations, Crop Yields
- Nutrient Cycling in Soil
- Land Management BMP
 Tillage, Irrigation, Fertilizer, Pesticides,
 Grazing, Rotations, Subsurface Drainage,
 Urban-Lawn Chemicals, Street Sweeping

SWAT Strengths

Routing Phase

- Flexible Watershed Configuration
- Water Transfer—Irrigation Diversions
- Sediment Deposition/Scour
- Nutrient/Pesticide Transport
- Pond, Wetland and Reservoir Impacts

Data required SWAT Model

Spatial Data

- Digital Elevation Model
- Land use /Land cover
 - map
- ☐ Soil classification map

Reservoir Data

- □ Reservoir characteristics
- Release data

Crop Data

□ Crop calendar

Data required SWAT Model

Time Series Data

Weather Data

- Maximum / Minimum Temperature (°C)
- \Box Solar radiation (MJ/m²)
- ☐ Wind speed (m/s)
- □ Relative humidity (fraction)
- □ Rainfall (mm)
- □ Evaporation (including the locations of stations)

Hydrological Data

□ River flow for calibrating the model

SWAT set-up

Prepare Database: Land use, Soil, Weather

Process of model set-up

www.tmd.go.th

Study Area: Nam-Mae-Ing basin

Exercise

- preparing weather data
- set up SWAT model
- run and see results

Contract

Email: Nuttapong34@gmail.com