Chapter 2 Linear Transformation

§ 2-1 Linear transformation

Definition (Definition of Linear Transformation).

Let V and W be vector spaces (over F). We call a function $T:V\to W$ a linear transformation from V to W if, for all $x,y\in V$ and $c\in F$, we have

- (a) T(x + y) = T(x) + T(y)
- (b) T(cx) = cT(x)

<u>Definition</u> (Definition of nullity and rank).

Let V and W be vector spaces and let $T: V \to W$ be linear. If N(T) and R(T) are finite-dimensional, then we define the nullity of T, denoted nullity(T), and the rank of T, denoted rank(T), to be the dimensions of N(T) and R(T), respectively.

Theorem.

Let V and W be vector spaces and T : V \rightarrow W be linear. Then N(T) and R(T) are subspaces of V and W, respectively.

Theorem.

Let V and W be vector spaces, and let $T: V \to W$ be linear. If $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for V, then $R(T) = \text{span}(T(\beta)) = \text{span}(\{T(v_1), T(v_2), ..., T(v_n)\})$.

Example 11

Question:

Let $T: P_2(R) \to P_3(R)$ be the linear trans formation defined by

$$T(f(x)) = 2f'(x) + \int_0^x 3f(t)dt$$

solution:.

Now R(T) = Span({T(1), T(x), T(x^2)}) = Span({3x, 2 +
$$\frac{3}{2}x^2, 4x + x^3}).$$

Since $\{3x, 2+\frac{3}{2}x^2, 4x+x^3\}$ is linearly independent, $\mathrm{rank}(T)=3$. Since $2\dim(P_3(\mathbb{R}))=4$, T is not onto. From the dimension theorem (Thm 2.3), nullity(T) + 3 = 3. So nullity(T) = 0, and therefore, N(T) = 0. We conclude from Theorem 2.4 that T is one-to-one.

1

Example 12

Question:

Let $T:F^2\to F^2$ be the linear transformation defined by

$$T(a_1, a_2) = (a_1 + a_2, a_1)$$

solution:.

It is easy to see that $N(T) = \{0\}$; so T is one-to-one. Hence Theorem 2.5 tells us that T must be onto.

Theorem (2.3 Dimension Theorem).

Let V and W be vector spaces, and let $T: V \to W$ be linear.

If V is finite-dimensional, then

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V).$$

Theorem (2.4).

Let V and W be vector spaces, and let $T:V\to W$ be linear. Then T is one-to-one if and only if N(T) = 0 .

Theorem (2.5).

Let V and W be vector spaces of equal (finite) dimension, and let $T: V \to W$ be linear. Then the following are equivalent.

- (a) T is one-to-one.
- (b) T is onto.
- (c) rank(T) = dim(V).

Example

Let $T:\mathbb{R}^2\longrightarrow\mathbb{R}^3$, $T(a_1,a_2)=(a_1+a_2,0,2a_1-a_2)$, determine that T is linear , 1-1 , onto or not.

solution:.

• Calim: T is linear.

$$\begin{aligned} \text{Let } x &= (a_1, a_2) \,, \, y = (b_1, b_2) \\ \text{T}(\text{cx} + \text{y}) &= \text{T} \left(\text{c} \left(\mathbf{a}_1, \mathbf{a}_2 \right) + (\mathbf{b}_1, \mathbf{b}_2) \right) = \text{T} \left(\mathbf{c} \mathbf{a}_1 + \mathbf{b}_1, \mathbf{c} \mathbf{a}_2 + \mathbf{b}_2 \right) \\ &= \left(\mathbf{c} \mathbf{a}_1 + \mathbf{b}_1 + \mathbf{c} \mathbf{a}_2 + \mathbf{b}_2, \mathbf{0}, 2\mathbf{c} \mathbf{a}_1 + 2\mathbf{b}_1 - \mathbf{c} \mathbf{a}_2 - \mathbf{b}_2 \right) \\ &= \left(\text{c} \left(\mathbf{a}_1 + \mathbf{a}_2 \right) + \left(\mathbf{b}_1 + \mathbf{b}_2 \right), \mathbf{0}, \text{c} \left(2\mathbf{a}_1 - \mathbf{a}_2 \right) + \left(2\mathbf{b}_1 - \mathbf{b}_2 \right) \right) \\ &= \text{c} \left(\mathbf{a}_1 + \mathbf{a}_2, \mathbf{0}, 2\mathbf{a}_1 - \mathbf{a}_2 \right) + \left(\mathbf{b}_1 + \mathbf{b}_2, \mathbf{0}, 2\mathbf{b}_1 - \mathbf{b}_2 \right) \\ &= \text{cT}(\mathbf{x}) + \text{T}(\mathbf{y}) \end{aligned}$$

∴ T is linear

• 1-1 and onto

By Thm 2.2 in text book choose a basis for \mathbb{R}^2 , $\beta = \{(1,0), (0,1)\}$

$$\mathsf{R}(\mathsf{T}) = \mathsf{span}\,(\mathsf{T}(\beta)) = \mathsf{span}(\{\mathsf{T}(1,0),\mathsf{T}(0,1)\}) = \mathsf{span}\,((1,0,-1),(1,0,-2))$$

Clearly it is L.I. \implies rank(T) = 2, and apply the Dimension Theorem rank $(T) = 2 \neq 3 = \dim(\mathbb{R}^3)$, and nullitily(T) = 1, then it is not onto.

By Thm 2.4 it is not one to one.

Example

Let V and W be vector spaces, let T: V \rightarrow W be linear, and let $\{w_1, w_2, \dots, w_k\}$ be a linearly independent subset of R(T). Prove that if $S = \{v_1, v_2, \dots, v_k\}$ is chosen so that T $(v_i) = w_i$ for $i = 1, 2, \dots, k$, then S is linearly independent.

solution:. Calim:
$$\sum_{i=1}^{n} a_i v_i = 0 \implies a_1 = a_2 = a_3 = \dots = a_n = 0$$
 Let
$$\sum_{i=1}^{n} a_i v_i = 0 \text{ then } T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \text{ Since T is linear , } T\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i T\left(v_i\right) = \sum_{i=1}^{n} a_i w_i = 0 \text{ Since S is L.I.} \implies a_1 = a_2 = \dots = a_n = 0$$

Theorem (2.6).

Let V and W be vector spaces over F, and suppose that $\{v_1, v_2, ..., v_n\}$ is a basis for V.

For $w_1, w_2, ..., w_n$ in W, there exists exactly one linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for i = 1, 2, ..., n.