LECTURE 14 - GENERALIZED SDOF SYSTEMS CE 225

Prof DeJong

UC Berkeley

October 14, 2025

STRUCTURES WITH DISTRIBUTED MASS (E.G. BEAM)

- ▶ Continuous system $\rightarrow \infty$ modes.
- \blacktriangleright Create SDOF "system" for each mode by defining a shape function: $\psi(x)$

KINETIC ENERGY

System I: System II:

$$\therefore M_{eq} = \int_0^L m(\psi(x))^2 dx = \widetilde{m}$$

POTENTIAL ENERGY

System I:

PE =Strain energy caused by bending moment (M) causing a rotation of: $d\theta$

Beam Theory:

POTENTIAL ENERGY

► System I (cont.)

System II:

$$\therefore K_{eq} = \int_0^L EI\left(\frac{d^2\psi}{dx^2}\right)^2 dx = \widetilde{k}$$

EXTERNAL WORK

System I:

System II:

$$\therefore F_{eq} = \int_0^L f(x,t)\psi(x)dx = \widetilde{p}$$

Choosing a Shape Function: $\psi(x)$

- Exact solution: Structural Mode (later in the course)... math can be complicated.
- ▶ Approximate solution: Choose $\psi(x)$
 - Must satisfy: Geometric boundary conditions (displacement, rotation).
 - Optional, but useful:
 - Satisfy "force" boundary conditions.
 - Choose $\psi(x)$ based on static deflection from a given loading.

EXAMPLE 1

Cantilever Beam: Find SDOF equivalent and the natural frequency ω_n .

EXAMPLE 1

EXAMPLE 1

EXAMPLE 1 - APPLY TO METER STICK

Given:

$$E = 1.75 \text{ x } 10^6 \text{ lb/in}^2$$
 ; $I = 0.0011 \text{ in}^4$
 $\therefore EI = 1925 \text{ lb-in}^2$ $m_{total} = mL = \frac{0.180 \text{ lb}}{386 \text{ in/s}^2}$ $L = 95 \text{ cm} = 37.4 \text{ in}$

EXAMPLE 2 - BETTER SHAPE FUNCTION?

**Assume $\psi(x)$ is the deflected shape under self-weight: $\frac{d^4\psi}{dx^4} = \frac{w}{EI} = \text{ constant}$

EXAMPLE 2 - BETTER SHAPE FUNCTION?

Solve from BC's:
$$\psi(x) = 2\left(\frac{x}{L}\right)^2 - \frac{4}{3}\left(\frac{x}{L}\right)^3 + \frac{1}{3}\left(\frac{x}{L}\right)^4$$

$$\left. \begin{array}{l} \widetilde{m} = 0.257 \ mL \\ \widetilde{k} = 3.20 \ EI/L^3 \\ \widetilde{p} = 0.4 \ P_0L \end{array} \right\} \longrightarrow \omega_n = 3.53 \sqrt{\frac{EI}{mL^4}}$$

Exact solution (Euler-Bernoulli Beam Theory): $\omega_n = 3.518 \sqrt{\frac{EI}{mL^4}}$

*Note: As long as all solutions obey BC's (displacement), the solution with the lowest natural frequency gives the most accurate approximation.

S.S. Beam

NOTE ON SHAPE FUNCTIONS TO APPROXIMATE MODE SHAPES

Mode # Cantilever Beam

NOTE ON SHAPE FUNCTIONS TO APPROXIMATE MODE SHAPES

Mode # Cantilever Beam

S.S. Beam