Úloha 3: Markovské řetězce a nástroj PRISM

1. úkol

Zadaná reakční síť byla namodelována v nástroji PRISM. Výsledný model se nachází v souboru uloha3.sm.

Sémantika modelu odpovídá Markovskému řetězci ve spojitém čase (CTMC). Model obsahuje modul cov20, který implementuje danou reakční síť. Nachází se zde 3 proměnné — z: počet zdravých jedinců, n: počet naka-žených jedinců, u: počet uzdravených jedinců. Každá z těchto proměnných může nabývat až celkového počtu jedinců v populaci. Iniciální hodnoty těchto proměnných jsou nastaveny konstantně podle zadání. Dále jsou v modulu implementovány dvě reakce, které ovlivňují vývoj epidemie viru — nákaza, respektive uzdravení. Rychlosti těchto reakcí jsou dány parametry k_i , respektive k_r , které jsou definovány jako konstanty nastavované při provádění experimentů s modelem. Protože model vychází z mass-action kinetiky pro populační modely, jsou rychlosti reakcí nákaza, respektive uzdravení nastaveny následovně: $r_i = z \cdot n \cdot k_i$, respektive $r_r = n \cdot k_r$.

2. a 3. úkol

Uvedené grafy jsou ve vektorovém formátu, takže je možné si je hezky zvětšit.

Jednotlivé vlastnosti byly formulovány PCTL formulemi a ověřeny v nástroji PRISM. Tyto formule jsou specifikovány v souboru **uloha3.pctl**.

Vlastnost "Jaká je pravděpodobnost, že infekce eventuálně vymizí?" byla formulována následující formulí: $P_{=?}$ [$F_n = 0$]. Výsledný graf, který ukazuje odpověď na tuto otázku pro různé přípustné parametry k_i a k_r je na obrázku 1. Je zřejmé, že tato pravděpodobnost je pro všechny uvažované parametry 1.

Obrázek 1: Analýza vlastnosti "Jaká je pravděpodobnost, že infekce eventuálně vymizí?".

Vlastnost "Jaká je pravděpodobnost, že infekce trvá aspoň 100 časových jednotek a vymizí během 120 časových jednotek?" byla formulována následující formulí: $P_{=?}$ [n>0 $U^{[100,120]}$ n=0]. Výsledný graf, který ukazuje odpověď na tuto otázku pro různé přípustné parametry k_i a k_r je na obrázku 2.

Obrázek 2: Analýza vlastnosti "Jaká je pravděpodobnost, že infekce trvá aspoň 100 časových jednotek a vymizí během 120 časových jednotek?".

4. úkol

V této nově zkonstruované reakční síti se budou vyskytovat následující parametry:

- k_i : rychlost nákazy od nakažených jedinců (stejné jako v předchozím modelu),
- k_j : rychlost *nákazy* od *částečně vyléčených* jedinců (je dvakrát pomalejší, tj. $k_j = \frac{k_i}{2}$),
- $k_{r'}$: rychlost *úplného uzdravení* (stejné jako k_r v předchozím modelu s odečtením k_s , protože s rychlostí k_s dochází místo toho k *částečnému uzdravení*, tj. $k_{r'} = k_r k_s$),
- k_s : rychlost *částečného uzdravení* (např. $k_s = \frac{k_r}{10}$).

Reakční síť v této variantě bude potom vypadat následovně (množiny Z, N, U mají stejný význam jako v původním modelu, množina C obsahuje *částečně vyléčené* jedince):

- nákaza od nakažených jedinců: $Z + N \xrightarrow{k_i} N + N$,
- nákaza od částečně vyléčených jedinců: $Z+C \xrightarrow{k_j} N+N$,
- úplné uzdravení: $N \xrightarrow{k_{r'}} U$,
- částečné uzdravení: $N \xrightarrow{k_s} C$.