\mathbf{x} $\log_2(P(\mathbf{x}))$	
11111111	-50.1
1111111	-37.3
111111	-65.9
1.11	-56.4
11	-53.2
	-43.7
11	-46.8
1.1.1	-56.4
11111	-37.3
1	-43.7
11	-56.4
1.1.111111	-37.3
.1111111	-56.4
11111111	-59.5
1.1.1111111	-46.8
	-15.2
111111111111111111111111111111111111111	-332.1

Book by David MacKay

Figure 4.10. The top 15 strings are samples from X^{100} , where $p_1=0.1$ and $p_0=0.9$. The bottom two are the most and least probable strings in this ensemble. The final column shows the log-probabilities of the random strings, which may be compared with the entropy $H(X^{100})=46.9$ bits.

The 'asymptotic equipartition' principle is equivalent to:

Shannon's source coding theorem (verbal statement). N i.i.d. random variables each with entropy H(X) can be compressed into more than NH(X) bits with negligible risk of information loss, as $N \to \infty$; conversely if they are compressed into fewer than NH(X) bits it is virtually certain that information will be lost.

Figure 4.12. Schematic diagram showing all strings in the ensemble X^N ranked by their probability, and the typical set $T_{N\beta}$.

Book by David MacKay

at least $H-\epsilon$ bits. These two extremes tell us that regardless of our specific allowance for error, the number of bits per symbol needed to specify \mathbf{x} is H bits; no more and no less.

Book by David MacKay