Research Record (Non-equilibrium Physics)

SungBin LEE (이성빈 | 李誠彬)

Undergraduate Student Dept. of Physics and Astronomy Seoul National University

Contents

1	Fall	2023 (4	$4^{ ext{th}}$ Sem	ester)									2
	1.1	August	2023 .					 						2
					(Sat), 2023									
		1.1.2	August	28th	(Mon), 2023	3		 						2
		1.1.3	August	29th	(Tue), 2023			 						2

1 Fall 2023 (4th Semester)

1.1 August 2023

1.1.1 August 26th (Sat), 2023

- 1. After discussion with professor, we decided to search for negative drag on AOUP particles in quartic polynomial external potential, unlike linear potential which we have been doing so far.
- 2. We make this decision after referring to an article which shows that the AOUP reaches equilibrium if their smooth interaction potential has zero third derivatives.[1]
- 3. The revised external potential with nth-order polynomial is as follows

$$\begin{cases} V(x) = \frac{f\Lambda}{2} \left[1 - \left| \frac{2x}{\Lambda} \right|^n \right] & |x| < \Lambda/2 \\ V(x) = 0 & \text{else} \end{cases}$$
 (1.1.1.1)

4. Running simulation under following parameters:

# ptcl	# ens	bound	Γ	Т	τ	D_a	δt	init	sample	gap	order
1000	1000	5.0	1.0	1.0	1.0	1.0	0.001	10,000	100	1,000	4

slope f	lambda λ	velocity v				
$0.1 \sim 0.5$	$0.1 \sim 0.5$	$0.001 \sim 10.0$				

- 5. Markov process is independent of history and depends only on the current status
- 6. The dimensionless parameter is as follows

characteristic time	propulsion force	persistence length	typical velocity
au	$\Gamma\sqrt{\frac{D_a}{\tau}}$	$\sqrt{D_a \cdot \tau}$	$\sqrt{rac{D_a}{ au}}$

1.1.2 August 28th (Mon), 2023

1. Running simulation for 1000 ensembles with 4th-order external potential, no sign of negative drag

1.1.3 August 29th (Tue), 2023

- 1. Running simulation for 5000 ensembles with 4th-order external potential, no sign of negative drag
- 2. After consulting with Prof. Yongjoo Baek, we decided to change the external potential from concave to convex.

3. The revised n^{th} -polynomial potential is given as follows:

$$V(x) = \begin{cases} \frac{F\Lambda}{2} \left(1 - \left| \frac{2x}{\Lambda} \right| \right)^n & |x| \le \Lambda/2 \\ 0 & |x| > \Lambda/2 \end{cases}$$
 (1.1.3.1)

References

[1] L. L. Bonilla. Active ornstein-uhlenbeck particles. *Phys. Rev. E*, 100:022601, Aug 2019.