Term Test 1 is on Wed. 10. October See the website

Today: - § 1.1 example

§ 1.2 matrix notation

§ 1.3 convexity

Eq. (standard and canonical form) Minimize Z=8x,+9x2 s.t.

> $x_1 + 2x_1 \ge 3$ $4x_1 + 5x_2 = 0$

 $6x_1+7X_2 < -5$ $X_1 > 0$, X_2 unvesticted

To get standard form: Maximize $Z=-8\pi_1-9\chi_2$ s.t. $-\chi_1-2\chi_2 \leq -3$ $+\chi_1+5\chi_2 \leq 10$ $-4\chi_1-5\chi_2 \leq -10$ $6\chi_1+7\chi_2 \leq -5$ $\chi_1 \geq 0$, χ_2 unrestricted

Standard form: Let $x = x^{+} - x^{-}$ Maximize $z = -9x_{1} - 9x_{2}^{+} + 9x_{2}^{-} = 3$ $-x_{1} - 2x_{2}^{+} + 2x_{2}^{-} = -3$ $4x_{1} + 5x_{2}^{+} - 5x_{2}^{-} = 10$ $-4x_{1} - 5x_{1}^{+} + 5x_{2}^{-} = -10$ $6x_{1} + 7x_{2}^{+} - 7x_{1}^{-} = -5$ $x_{1} \ge 0$, $x_{2}^{+} \ge 0$, $x_{2}^{-} \ge 0$ Could confinue with the standard problem to get the canonical form: get unnecessarily many constraints. We start from the given problem. The slack variables are χ_s and χ_t . Canonical form (again, $\chi_2 = \chi_2^+ - \chi_2^-$)

Maximize $\chi_1 = \chi_2^+ - \chi_2^- - \chi_3 = 3$ $\chi_1 + 2\chi_2^+ - 2\chi_2^- - \chi_3 = 3$ $\chi_1 + 3\chi_2^+ - 3\chi_2^- = 10$ $\chi_1 + 3\chi_2^+ - 3\chi_2^- + 3\chi_3^- = 3\chi_3^- + 3\chi_3^- + 3\chi_3^- = 3\chi_3^- + 3\chi_3^- + 3\chi_3^- + 3\chi_3^- = 3\chi_3^- + 3\chi_3^- + 3\chi_3^- = 3\chi_3^- + 3\chi_3^- + 3\chi_3^- + 3\chi_3^- = 3\chi_3^- + 3\chi_3^$

\$1.2 Matrix notation ≤and> for vectors

Definition If $\gamma = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m$, we say $x \leq y$ provided $y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m$.

X zy provided x, zy, 7m zym

Eg. If REIR and R=[x] with x=0 ER, then:

 $\chi_1 \geq 0, \cdots, \chi_n \geq 0$.

This is not a total order: In R2, [?] \$[']], and ['] \$[']

In motor's notation standard and canonical problems are presented as:

Maximize $Z = C^{T}x$ s.t. $Ax \leq b$ $7 \geq 0 \in \mathbb{R}^{n}$

standard form

Maximize $Z=C^Tx$ s.t. Ax=b $7 > 0 \in \mathbb{R}^n$

canonical form

(where $C \in \mathbb{R}^n$, $\pi \in \mathbb{R}^n$, A is an mxn matrix, be \mathbb{R}^n).

\$ 1.3 Geometry

Definitions: If $a \in [a] \in \mathbb{R}^n$, $a \neq 0 \in \mathbb{R}^n$, and $b \in \mathbb{R}$ the solution get of the equation $a^T x = b$ is a hyperplane in \mathbb{R}^n .

The solution sets of the inequalities at a shand at a >b are half spaces (in R, where AER)

Remarke The hyperplane at = b is the intersection of the half-spaces at = b and at > b.

Convexity

Definitions: If x, and $\chi_1 \in \mathbb{R}^n$ and $\chi_2 \neq \chi_2$, the line joining χ_1 and $\chi_2 \in \mathbb{R}^n$ $\{\chi_1 + \chi_1(\chi_2 - \chi_1) \in \mathbb{R}^n \mid s.t. \ \chi \in \mathbb{R}^n = \{(1-\chi_1)\chi_1 + \chi_2 \mid s.t. \ \chi \in \mathbb{R}^n \}$ If χ_1 and $\chi_2 \in \mathbb{R}^n$ (and $\chi_2 = \chi_2$ is possible)

the line segment joining γ , and γ_2 is $\{\gamma_1 + \lambda(\gamma_2 - \gamma_1) \in \mathbb{R}^2 \text{ s.t. } 0 \in \lambda \leq 1\}$ Definition $[0,1] = \{\lambda \in \mathbb{R} \text{ s.t. } 0 \leq \lambda \leq 1\}$ Remark: If $\chi_1 = \chi_2$, the line segment joining χ_1 and χ_2 is actually a single point: $\gamma_1 = \chi_2$