

Normas para la conexión síncrona:

- 1. La clases tiene un back-up garantizado (Grabación disponible en la nube de Zoom).
- 2. Ingresar a la clase con la cámara del equipo de computo encendida.
- 3. La cámara deberá permanecer encendida a lo largo de la clase.
- 4. Al ingresar a la clase deben silenciar el micrófono del equipo de computo.
- 5. Levantar la mano es una opción cuando se quiere preguntar algo durante la sesión de clase, pero les recomiendo que mejor hagamos uso intensivo del chat del canal general para hacer preguntas.
- 6. En caso de necesitar hacer una pregunta, puede interrumpir la clase sin problema, activando el micrófono de vuestro equipo de computo, luego de la pregunta desactívelo nuevamente.
- 7. Para una buena clase online es indispensable el debate, así que foméntelo!!!.
- 8. Toda la información se gestiona en CANVAS LMS.

Cronograma de trabajo:

Sesiones	Contenidos	Actividad		Fecha
1	Información general del curso	Utility of classification algorithms		Martes 18/04
2	Algoritmo de regresión logística	Ejecutar script		Martes 25/04
3	Algoritmo Naïve Bayes	Ejecutar script	Solución caso: Retention modelling at Scholastic Travel Company (A) and (B)	Martes 02/05
4	Algoritmo k-nearest-neighbors (KNN)	Ejecutar script		Martes 09/05
5	Algoritmo Support vector machine	Ejecutar script		Martes 16/05
6	Algoritmo Decision Trees	Ejecutar script		Martes 23/05
7	Algoritmo Random Forest	Ejecutar script		Martes 30/05
8	Modelo RFM	Ejecutar script	Solución caso:	Martes 06/06
9	Modelo valor de vida del cliente (I)	Ejecutar script	CD Now	Martes 13/06
10	Modelo valor de vida del cliente (II)	Ejecutar script] [Martes 20/06
11	Análisis de series de tiempo	Ejecutar script		Martes 27/06
12	Proyecto final	Presentación en equipos		Martes 04/07
	Evaluación final			

Calificación:

Assignment 1 (Utility of classification algorithms)	15%
Assignment 2 (Forum I)	10%
Assignment 3 (Forum II)	10%
Assignment 4 (Forum III)	10%
Final project (Retention Modeling at STC (A) and (B))	30%
Final exam	25%

Deliverable	Due Date	% of grade
Assignment 1	April 20 th , 2023	15%
Assignment 2	May 09-10 th , 2023	10%
Assignment 3	May 23-24 th , 2023	10%
Assignment 4	May 30-31 th , 2023	10%
Final project	Jun 20 th , 2023	30%
Final exam	Jul 04 th , 2023	25%

Introducción al análisis de datos.

20% visibles (Datos estructurados) Hojas de cálculo

Formularios Digitales

Bases de datos

JSON; Python

DATOS OCULTOS

80% Ocultos (Datos semiestructurados o no estructurados) RRSS

Órdenes de compra Fa

Solicitudes

Imágenes y vídeo

Mensajería

Chatbot

Facturas

Contratos

Emails

Voz y audio

Minería de datos Vs Minería de textos

Se busca determinar patrones y relaciones.

Convertir documentos de texto no estructurados en información.

Revelar patrones de negocios a partir de datos numéricos.

Revelar características léxico semánticas en el texto.

Conocimiento a partir de datos estructurados, homogéneos y de "fácil" acceso.

Conocimiento a partir de datos no estructurados, heterogéneos y más diversos.

Cómo aprenden las maquinas?

Workflow de Aprendizaje Supervisado

Base de datos Entrenamiento Test Entrenamiento Predicción

Workflow de Aprendizaje No Supervisado

⟨ Dónde estamos ?

Una digresión....

1990 2000 2010 2015

Las herramientas de IN están diseñadas principalmente para decirle lo que ha sucedido y lo que está sucediendo ahora. Es más descriptivo.

Las herramientas de AN, por otra parte, es un tipo de analítica **predictiva**. Identifica tendencias en los datos que sugieren por qué están sucediendo las cosas y si se producirán resultados parecidos en el futuro.

≠

3

Algoritmos: tipos

Clasificación de las técnicas Machine/Deep learning

Mapa de algoritmos

Mapa del curso

REQUISITOS

