Алгоритмы и структуры данных-1 Лекция 3

Дата: 18.09.2023

Программная инженерия, 2 курс 2023-2024 учебный год

Нестеров Р.А., PhD, ст. преподаватель департамент программной инженерии ФКН

SET 1. Домашняя работа

Тематический модуль Инвариант цикла. Асимптотический анализ алгоритмов. Линейный контейнер

SET 1. Домашняя работа

Тематический модуль Инвариант цикла. Асимптотический анализ алгоритмов. Линейный контейнер

Блок А – Разработка, анализ корректности и сложности

Блок Р — Реализация и обработка линейных контейнеров

SET 1. Домашняя работа

Тематический модуль Инвариант цикла. Асимптотический анализ алгоритмов. Линейный контейнер

Блок А – Разработка, анализ корректности и сложности

Блок Р – Реализация и обработка линейных контейнеров

18.09.2023 15:00 - 02.10.2023 22:00

План

Асимптотический анализ функции T(n) временной сложности алгоритмов. Символы Ландау

Сортировка выбором: рекурсивный алгоритм

Сортировка слиянием: разделяй-и-властвуй (DaC)

Рекуррентное соотношение

Асимптотический анализ временной сложности

Время работы INSERTION SORT в худшем случае составляет $\Theta(n^2)$

Время работы INSERTION SORT в худшем случае составляет $\Theta(n^2)$

Время работы INSERTION SORT в худшем случае составляет $\Theta(n^2)$

Символ О обозначает асимптотически точную границу для функции временной сложности алгоритма

$$\Theta(g(n)) = \{f(n) | \exists c_1, c_2, n_0 > 0 \forall n \ge n_0 : c_1 g(n) \le g(n) \le c_2 g(n) \}$$

Время работы INSERTION SORT в худшем случае составляет $\Theta(n^2)$

$$\Theta(g(n)) = \{f(n) | \exists c_1, c_2, n_0 > 0 \forall n \ge n_0 : c_1 g(n) \le f(n) \le c_2 g(n) \}$$

$$\Theta$$
 определяет множество функций
$$T(n) \in \Theta\big(g(n)\big) \Leftrightarrow T(n) = \Theta(g(n))$$

Показать, что
$$T(n) = \frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Показать, что
$$T(n)=\frac{1}{2}n^2-3n=\Theta(n^2).$$
 По определению, $c_1n^2\leq \frac{1}{2}n^2-3n\leq c_2n^2.$

Показать, что
$$T(n)=\frac{1}{2}n^2-3n=\Theta(n^2).$$
 По определению, $c_1n^2\leq \frac{1}{2}n^2-3n\leq c_2n^2.$ $c_1\leq \frac{1}{2}-\frac{3}{n}\leq c_2$

Показать, что
$$T(n)=\frac{1}{2}n^2-3n=\Theta(n^2).$$
По определению, $c_1n^2\leq \frac{1}{2}n^2-3n\leq c_2n^2.$ $c_1\leq \frac{1}{2}-\frac{3}{n}\leq c_2$ $c_1\leq \frac{1}{2}-\frac{3}{n},c_1>0$ $c_2\geq \frac{1}{2}-\frac{3}{n},c_2>0$

Показать, что
$$T(n)=\frac{1}{2}n^2-3n=\Theta(n^2).$$
По определению, $c_1n^2\leq \frac{1}{2}n^2-3n\leq c_2n^2.$

$$c_1\leq \frac{1}{2}-\frac{3}{n}\leq c_2$$

$$c_1\leq \frac{1}{2}-\frac{3}{n},c_1>0 \qquad \qquad c_2\geq \frac{1}{2}-\frac{3}{n},c_2>0$$
 $n\geq 7,c_1\leq \frac{1}{14} \qquad \qquad n\geq 1,c_2\geq \frac{1}{2}$

Показать, что
$$T(n)=\frac{1}{2}n^2-3n=\Theta(n^2).$$
По определению, $c_1n^2\leq \frac{1}{2}n^2-3n\leq c_2n^2.$

$$c_1\leq \frac{1}{2}-\frac{3}{n}\leq c_2$$

$$c_1\leq \frac{1}{2}-\frac{3}{n},c_1>0 \qquad \qquad c_2\geq \frac{1}{2}-\frac{3}{n},c_2>0$$

$$n\geq 7,c_1\leq \frac{1}{14} \qquad \qquad n\geq 1,c_2\geq \frac{1}{2}$$

$$n_0=7,c_1=\frac{1}{14},c_2=\frac{1}{2}$$

АиСД-1 2023-2024. Лекция 3

Повысить или понизить порядок роста при анализе асимптотически точной границы нельзя!

Повысить или понизить порядок роста при анализе асимптотически точной границы нельзя!

Например,
$$T(n) = 3n + 2 \neq \Theta(n^2)$$

Hапример, $T(n) = 3n + 2 \neq \Theta(n^2)$

Символ О обозначает асимптотическую верхнюю границу функции временной сложности алгоритма

Символ 0 обозначает асимптотическую верхнюю границу функции временной сложности алгоритма

Фактически, соответствует худшему случаю работы алгоритма

Символ 0 обозначает асимптотическую верхнюю границу функции временной сложности алгоритма

Фактически, соответствует худшему случаю работы алгоритма

$$O(g(n)) = \{f(n) | \exists c, n_0 > 0 \forall n \ge n_0 : f(n) \le cg(n) \}$$

```
int sum = 0;
for ( size_t i = 0; i < n; ++i )
    for ( size_t j = 0; j < i; ++j )
        for ( size_t k = 0; k < j; ++k )
        sum += i + j + k;</pre>
```

Вложенный цикл	Время
int sum = 0;	
for (size_t i = 0; i < n; ++i)	
for (size_t j = 0; j < i; ++j)	
for (size_t k = 0; k < j; ++k)	
sum += i + j + k;	c_1

Вложенный цикл	Время
int sum = 0;	
for (size_t i = 0; i < n; ++i)	
for (size_t j = 0; j < i; ++j)	
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	c_1

Вложенный цикл	Время
int sum = 0;	
for (size_t i = 0; i < n; ++i)	
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j \cdot c_1$
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	c_1

Вложенный цикл	Время
int sum = 0;	
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k) sum += i + j + k;	$j \cdot c_1$ c_1

Вложенный цикл	Время
int sum = 0;	
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	c_1

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	c_1

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	c_1

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1$$

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k)	$j \cdot c_1$
sum += i + j + k;	Θ(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1$$

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\sum_{j=0}^{i} j c_1 = \frac{i^2 + i}{2} c_1$
for (size_t k = 0; k < j; ++k)	$\Theta(j)$
sum += i + j + k;	Θ(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1$$

Вложенный цикл Время	
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\sum_{i=0}^{n} \frac{i^2 + i}{2} c_1 = \frac{n^3 + n^2 + n}{4} c_1$
for (size_t j = 0; j < i; ++j)	$\Theta(i^2)$
for (size_t k = 0; k < j; ++k)	$\Theta(j)$
sum += i + j + k;	Θ(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1$$

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\Theta(n^3)$
for (size_t j = 0; j < i; ++j)	$\Theta(i^2)$
for (size_t k = 0; k < j; ++k)	$\Theta(j)$
sum += i + j + k;	Θ(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1$$

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$\Theta(n^3)$
for (size_t j = 0; j < i; ++j)	$\Theta(i^2)$
for (size_t k = 0; k < j; ++k)	$\Theta(j)$
sum += i + j + k;	Θ(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1 = \Theta(n^3)$$

Вложенный цикл	Время
int sum = 0;	1
for (size_t i = 0; i < n; ++i)	$O(n^3)$
for (size_t j = 0; j < i; ++j)	$O(i^2)$
for (size_t k = 0; k < j; ++k)	O(j)
sum += i + j + k;	0(1)

$$T(n) = \frac{1}{4}c_1(n^3 + n^2 + n) + 1 = 0(n^3)$$

Если
$$T(n) = \Theta(g(n))$$
, то $T(n) = O(g(n))$

Если
$$T(n) = \Theta(g(n))$$
, то $T(n) = O(g(n))$

Для верхней границы временной сложности можно повысить порядок, т.е. $T(n) = 3n + 2 = O(n^2)$

Для верхней границы временной сложности можно повысить порядок, т.е. $T(n) = 3n + 2 = O(n^2)$

Нижняя граница и Ω

Символ Ω обозначает асимптотическую нижнюю границу функции временной сложности алгоритма

Hижняя граница и Ω

Символ Ω обозначает асимптотическую нижнюю границу функции временной сложности алгоритма

Фактически соответствует лучшему случаю работы алгоритма

Нижняя граница и Ω

Символ Ω обозначает асимптотическую нижнюю границу функции временной сложности алгоритма

Фактически соответствует лучшему случаю работы алгоритма

T(n) для INSERTION SORT в лучшем случае является линейной функцией, $T(n) = \Omega(n)$

Связь символов O, Θ , Ω

$$T(n) = \Theta(g(n)) \Leftrightarrow \begin{cases} T(n) = O(g(n)) \\ T(n) = \Omega(g(n)) \end{cases}$$

SELECTION SORT и временная сложность рекурсии

Найти максимальный элемент в заданной последовательности

Найти максимальный элемент в заданной последовательности

Обменять значения последнего элемента и максимального

Найти максимальный элемент в заданной последовательности длины n

Обменять значения последнего элемента и максимального

Повторить для последовательности длины n-1

```
selectionSort(A, n)
    if n <= 1 return
    pos = 0
    max = A[pos]
    for i = 0 to n
        if (A[i] > max)
            pos = i;
            max = A[pos]
    swap(A[n - 1], A[pos])
    selectionSort(A, n - 1)
```

	Время
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$
if <i>n</i> <= 1 return	
pos = 0	
max = A[pos]	
for $i = 0$ to n	
if (A[i] > max)	
pos = i;	
max = A[pos]	
swap(A[n - 1], A[pos])	
selectionSort(A , $n - 1$)	

	Время
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$
if <i>n</i> <= 1 return	$T(0) = T(1) = \Theta(1)$
pos = 0	
max = A[pos]	
for $i = 0$ to n	
if (A[i] > max)	
pos = i;	
max = A[pos]	
swap(A[n - 1], A[pos])	
selectionSort(A , $n - 1$)	

	Время
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$
if <i>n</i> <= 1 return	$T(0) = T(1) = \Theta(1)$
pos = 0	$\Omega(1)$
max = A[pos]	$\Theta(1)$
for $i = 0$ to n	
if (A[i] > max)	
pos = i;	
max = A[pos]	
swap(A[n - 1], A[pos])	
selectionSort(A , $n - 1$)	

	Время
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$
if <i>n</i> <= 1 return	$T(0) = T(1) = \Theta(1)$
pos = 0	Ω(1)
max = A[pos]	$\Theta(1)$
for $i = 0$ to n	
if (A[i] > max)	
pos = i;	$\Theta(1)$
max = A[pos]	
swap(A[n - 1], A[pos])	
selectionSort(A , $n - 1$)	

	Время	
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$	
if <i>n</i> <= 1 return	$T(0) = T(1) = \Theta(1)$	
pos = 0	$\Theta(1)$	
max = A[pos]		
for $i = 0$ to n		
if (A[i] > max)	Θ(1)	$\Theta(n)$
pos = i;		
max = A[pos]		
swap(A[n - 1], A[pos])		
selectionSort(A , $n - 1$)		

	Время	
selectionSort(<i>A</i> , <i>n</i>)	$T(n) = \dots$	
if <i>n</i> <= 1 return	$T(0) = T(1) = \Theta(1)$	
pos = 0	Θ(1)	
max = A[pos]		
for $i = 0$ to n		
if (A[i] > max)	Θ(1)	$\Theta(n)$
pos = i;		
max = A[pos]		
swap(A[n - 1], A[pos])	Θ(1)	
selectionSort(A, n - 1)	T(n-1)	

$$T(n) = \Theta(1) + \Theta(n) + \Theta(1) + T(n-1)$$

$$T(n) = \Theta(1) + \Theta(n) + \Theta(1) + T(n-1)$$
$$T(n) = T(n-1) + \Theta(n)$$

$$T(n) = \Theta(1) + \Theta(n) + \Theta(1) + T(n-1)$$

$$T(n) = T(n-1) + \Theta(n)$$

Функция временной сложности представляет собой рекуррентное соотношение

$$T(n) = \Theta(1) + \Theta(n) + \Theta(1) + T(n-1)$$

$$T(n) = T(n-1) + \Theta(n)$$

Функция временной сложности представляет собой рекуррентное соотношение

Требуется определить верхнюю границу временной сложности

$$T(n) = T(n-1) + \Theta(n) = T(n-1) + O(n)$$

$$T(n) = T(n-1) + O(n) \le T(n-1) + cn$$

$$T(n) = T(n-1) + O(n) \le T(n-1) + cn$$

$$T(n) \le T(n-1) + cn \le T(n-2) + c(n-1) + cn \le T(n-3) + c(n-2) + c(n-1) + cn \le T(1) + c(2+3+\dots+n)$$

$$T(n) = T(n-1) + O(n) \le T(n-1) + cn$$

$$T(n) \le T(n-1) + cn \le T(n-2) + c(n-1) + cn \le T(n-3) + c(n-2) + c(n-1) + cn \le \cdots \le T(n-3) + c(2+3+\cdots+n) \stackrel{T(1) = \Theta(1)}{=} \Theta(1) + c \sum_{i=2}^{n} i = 0$$

$$T(n) = T(n-1) + O(n) \le T(n-1) + cn$$

$$T(n) \le T(n-1) + cn \le T(n-2) + c(n-1) + cn \le$$

$$\le T(n-3) + c(n-2) + c(n-1) + cn \le \cdots \le$$

$$\le T(1) + c(2+3+\cdots+n) = \Theta(1) + c\sum_{i=2}^{n} i =$$

$$= O(1) + O(n^2) = O(n^2)$$

Таким образом, имеем асимптотическую верхнюю границу рекуррентного соотношения

$$T(n) = T(n-1) + \Theta(n) = O(n^2)$$

MERGE SORT: разделяй-и-властвуй

Разделяй-и-властвуй (DaC)

Разделяй-и-властвуй (DaC)

Разделяй-и-властвуй (DaC)

Разделяй-и-властвуй (DaC)

Разделить последовательность из n элементов на две по n/2 элементов в каждой

DIVIDE

Разделить последовательность из n элементов на две по n/2 элементов в каждой

CONQUER

Рекурсивно отсортировать две полученные подпоследовательности

DIVIDE

Разделить последовательность из n элементов

на две по n/2 элементов в каждой

CONQUER

Рекурсивно отсортировать две полученные

подпоследовательности

COMBINE

Объединить две отсортированные

последовательности


```
mergeSort(A, l, r)
    if l < r
        m = (l + r) / 2
        mergeSort(A, l, m)
        mergeSort(A, m + 1, r)
        merge(A, l, m, r)</pre>
```

$$T(n) = \dots$$

```
mergeSort(A, L, r)

if L < r

m = (L + r) / 2

mergeSort(A, L, m)

mergeSort(A, L, m)

merge(A, L, m, r)
```

$$T(n) = \dots$$

$$\Theta(1)$$

```
mergeSort(A, l, r)

if l < r

m = (l + r) / 2

mergeSort(A, l, m)

mergeSort(A, l, m)

mergeSort(A, m + 1, r)

merge(A, l, m, r)

T(n) = ...

\Theta(1)

T(n/2)
```

```
mergeSort(A, L, r)

if l < r

m = (l + r) / 2

mergeSort(A, L, m)

mergeSort(A, L, m)

T(n) = ...

\Theta(1)

T(n/2)

T(n/2)

T(n/2)

T(n/2)

T(n/2)
```

Получено рекуррентное соотношение для оценки временной сложности

Получено рекуррентное соотношение для оценки временной сложности

$$T(n) = \begin{cases} \Theta(1) & \text{при } n = 1 \\ 2T(n/2) + C(n) & \text{при } n > 1 \end{cases}$$

Получено рекуррентное соотношение для оценки временной сложности

$$T(n) = \begin{cases} \Theta(1) & \text{при } n = 1 \\ 2T(n/2) + C(n) & \text{при } n > 1 \end{cases}$$

Нужны общие методы для решения подобных рекуррентных соотношений

Recap

Асимптотический анализ временной сложности алгоритмов – символы Θ , O, Ω

Рекуррентные соотношения для анализа сложности алгоритмов $T(n) = T(n-1) + \dots, T(n) = aT(n/b) + \dots$

Teaser – Лекция 4

Метод подстановки и дерево рекурсии для решения рекуррентных соотношений

Алгоритм умножения квадратных матриц

Алгоритм Карацубы