Two-Phase Method

Maximize
$$Z = 4x_1 + x_2$$

subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Modified problem

Maximize
$$Z = 4x_1 + x_2$$

subject to $3x_1 + x_2 + \bar{x}_5 = 3$
 $4x_1 + 3x_2 - x_3 + \bar{x}_6 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, ..., x_4, \bar{x}_5, \bar{x}_6 \ge 0$

• Phase I: Problem

Minimize
$$Z' = \bar{x}_5 + \bar{x}_6$$
 \Rightarrow $Maximize, -Z' = -\bar{x}_5 - \bar{x}_6$ $subject to$ $3x_1 + x_2 + \bar{x}_5 = 3$ $4x_1 + 3x_2 - x_3 + \bar{x}_6 = 6$ $x_1 + 2x_2 + x_4 = 4$ $x_1, x_2, ..., x_4, \bar{x}_5, \bar{x}_6 \ge 0$

Apply simplex procedure for Phase I

•	Basis	x ₁	x ₂	x ₃	X ₄	$\overline{\mathbf{x}}_{5}$	\overline{x}_6	RHS	Ratio	•
Iteration 0	\overline{X}_5	3	1	0	0	1	0	3	1	novy is not in muon on form
	$\overline{\mathbf{x}}_{6}$	4	3	-1	0	0	1	6	3/2	row is not in proper form (coefficient of basic
	X_4	1	2	0	1	0	0	4	4	variable must be zero)
	-Z'	0	0	0	0	1	1	0	_	
	-Z'	-7	-4	1	0	0	0	-9		$R_0 \rightarrow R_0 - R_1 - R_2$
Iteration 1	\mathbf{x}_1	1	1/3	0	0	1/3	0	1	3	
	\overline{x}_6	0	5/3	-1	0	-4/3	1	2	6/5	
	X_4	0	5/3	0	1	-1/3	0	3	9/5	_
	-Z'	0	-5/3	1	0	7/3	0	-2		
Iteration 2	\mathbf{x}_1	1	0	1/5	0	3/5	-1/5	3/5		
	\mathbf{x}_2	0	1	-3/5	0	-4/5	3/5	6/5		Indicates that
	X_4	0	0	1	1	1	-1	1		artificial
	-Z'	0	0	0	0	1	1	0		variables left the basis.

• If minimum value of sum of artificial variables is positive, then LP has no feasible solution. Otherwise, proceed for phase II

• Now, Phase II could be started from the final constraints row manipulation at phase I and original objective function.

• Phase II

•	Basis	x ₁	x ₂	x ₃	X_4	RHS
Iteration 0	x ₁	1	0	1/5	0	3/5
	\mathbf{x}_2	0	1	-3/5	0	6/5
	X_4	0	0	1	1	1
	Z	-4	-1	0	0	0
	Z	0	0	1/5	0	18/5

Z row in not in proper form (coefficient of basic variable must be zero)

$$R_o \to R_o + 4R_1 + R_2$$

• Optimal solution : $(x_1 = 3/5, x_2 = 6/5, z = 18/5)$

Dealing with unrestricted variables

- Convert such variable as difference of two non-negative variables.
- Example:
 - x_k unrestricted in sign
 - $\bullet \quad x_k = x_k^+ x_k^-$

• Assignment

Minimize,
$$z = x_1 + 2x_2 + x_3$$

subject to, $2x_1 + 3x_2 + 4x_3 \ge -4$
 $3x_1 + 5x_2 + 2x_3 \ge 7$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted