TP d'algorithmique et structures de données

TP4 – Algorithme de Dijkstra

Exercice 1

On rappelle ci-dessous l'algorithme de Dijkstra :

Entrée : GrapheG = (V, E), fonction de coût associé aux arrêtes c et le sommet initial $s_{init} \in V$

- 1. Initialiser tous les sommets à non-marqué. Mettre $L(i) = +\infty$ pour tous les sommets i.
- 2. Mettre $L(s_{init}) = 0$ et $p(s_{init}) = 0$.
- 3. Choisir le sommet i non-marqué qui a le label (valeur de L(i)) le plus petit.
- 4. Marquer i.
- 5. Pour chaque sommet j non-marqué voisin de i si $L(j) > L(i) + c_{ij}$, alors mettre $L(j) = L(i) + c_{ij}$ et p(j) = i.
- 6. Répéter 3-5 jusqu'à ce qu'il n'y a plus de sommet non-marqué.

À faire:

- 1. Implantez cet algorithme en Javascool.
- 2. Testez cet algorithme sur le graphe suivant et afficher les chemins les plus courts entre « Seattle » et toutes les autres villes :

Exercice 2

Étant donné un graphe G=(V,E) qui représente la relation amis, écrivez un programme qui retrouvera le cercle d'amis pour une personne (c.-à-d. la clôture transitive de la relation amis).