ISA 444: Business Forecasting

13 - Autocorrelation and Partial Autocorrelation

Fadel M. Megahed

Associate Professor
Department of Information Systems and Analytics
Farmer School of Business
Miami University

Email: fmegahed@miamioh.edu

Office Hours: Click here to schedule an appointment

Spring 2021

Outline

- 1 Preface
- 2 Explaining Sample ACF Plots
- 3 Partial Autocorrelation
- 4 Recap

What we Covered Last Class

Main Learning Outcomes

- \square Define the population mean, and variance of a random variable.
- ✓ Define the population covariance, and correlation between two random variables.
- \square Define the population autocovariance and autocorrelation of a random variable.
- ☐ Use sample estimates of the population mean, variance, covariance, and correlation.
- \square Explain the properties of the large sample distribution of the sample ACF.
- \square Use the large sample distribution of the sample ACF to identify significant autocorrelation in a time series.

Recap: ACF Definitions

We defined autocorrelation as the correlation between a time-series and its past values.

The ACF was defined as a function that captures the correlations between pairs of values at a certain lag. For example:

- Lag-1 autocorrelation captures the correlation between y_t and y_{t-1} .
- Lag-2 autocorrelation captures the correlation between y_t and y_{t-2} .

Recap: The ACF of Advance Retail Sales [RSCCAS]

Build on the example below and plot the ACF for:

- The RSCCAS series, which is stored in the retail df.
- The first differences of the RSCCAS series.

```
pacman::p_load(tidyverse, magrittr, fpp2, tidyquant, scales, ggpubr)
retail = read.csv("http://tiny.cc/megahed")
retail$DATE %<>% ymd()
```

Based on both plots, answer the following two questions:

- Are the limits for both ACF plots the same? Why? Why not?
- Comment on how their ACF plots are different.

Learning Objectives for Today's Class

Main Learning Outcomes

- Determine if a sample ACF plot "cuts off" or "dies down".
- Explain how sample partial autocorrelation is calculated.

Outline

- Preface
- 2 Explaining Sample ACF Plots
- 3 Partial Autocorrelation
- 4 Recap

Some Time Series and their ACF Plots [1]

Some Time Series and their ACF Plots [2]

Some Time Series and their ACF Plots [3]

Some Time Series and their ACF Plots [4]

Some Time Series and their ACF Plots [5]

Outline

- Preface
- 2 Explaining Sample ACF Plots
- Partial Autocorrelation
- 4 Recap

Definition: General

Statistical Definition: Let us say that we have three variables, X, Y, and Z, all correlated, and we want to know how X and Y are correlated after we remove the effects of Z on each.

Computation Approach:

$$\hat{X} = a_1 + b_1 Z;$$
 $X^* = X - \hat{X}$
 $\hat{Y} = a_2 + b_2 Z;$ $Y^* = Y - \hat{Y}$

 $Corr(X^*, Y^*)$ is the partial correlation between X and Y. It is the correlation that remains after we remove the effect of Z.

PACF in the Context of Time-Series Analysis

The Partial Autocorrelation between Y_t and Y_{t+k} is the correlation between Y_t and Y_{t+k} after removing the effects of Y_{t+1} , Y_{t+2} , Y_{t+3} , ..., Y_{t+k-1} .

- We plot the partial autocorrelation over multiple lags just like the autocorrelation function (ACF).
- We refer to the plotted partial autocorrelations as the PACF.

Some Time Series and their PACF Plots [1]

Some Time Series and their PACF Plots [2]

Some Time Series and their PACF Plots [3]

Some Time Series and their PACF Plots [4]

Some Time Series and their PACF Plots [5]

What we have learned from the GOOG Example [1]

What we have learned from the GOOG Example [2]

	$Dependent\ variable:$
	adjusted
lag1price	0.993***
	(0.006)
Constant	10.224
	(7.924)
Observations	503
\mathbb{R}^2	0.983
Adjusted R ²	0.983
Residual Std. Error	26.271 (df = 501)
F Statistic	$28,570.970^{***} (df = 1; 501)$
Note:	*p<0.1; **p<0.05; ***p<0.01

What we have learned from the GOOG Example [3]

What we have learned from the GOOG Example [4]

Outline

- Preface
- 2 Explaining Sample ACF Plots
- 3 Partial Autocorrelation
- 4 Recap

Summary of Main Points

Main Learning Outcomes

- Determine if a sample ACF plot "cuts off" or "dies down".
- Explain how sample partial autocorrelation is calculated.

Things to Do

- Thoroughly read Chapter 6.1-6.2.5 of our textbook.
- Go through the slides, examples and make sure you have a good understanding of what we have covered.
- Complete the assignment (see details in next slide).

Graded Assignment 13: Evaluating your Understanding

Please go to Canvas (click here) and answer the questions. The assignment is due March 15, 2021 [11:40 AM, Ohio local time], and will be posted by 8 AM on March 11, 2021.

What/Why/Prep? The purpose of this assignment is to evaluate your understanding and retention of autocorrelation and PACF. To reinforce your understanding of the covered material, I also suggest reading Chapter 6.1-6.2.5 of the book.

General Guidelines:

- Individual assignment.
- This is **NOT** a timed assignment.
- Proctorio is NOT required for this assignment.
- You will need to have R installed (or accessible through the Remote Desktop)

ISA 444: Business Forecasting

13 - Autocorrelation and Partial Autocorrelation

Fadel M. Megahed

Associate Professor
Department of Information Systems and Analytics
Farmer School of Business
Miami University

Email: fmegahed@miamioh.edu

Office Hours: Click here to schedule an appointment

Spring 2021