${\bf Assignment~2} \\ {\bf Dew~point~Generator~/~Scientific~Data~Logger}$

James Cook University Cairns

Hunter Kruger-Ilingworth (14198489) Quentin Bouet (whatever your number is) Thomas Mehes (14259613)

September 7, 2024

Contents

1	Intro	2
2	Feature Demonstration	2
	2.1 Components	2
3	Discussion	3
4	Conclusion	4
5	Appendix	4
\mathbf{L}^{i}	ist of Figures	
	1 Block diagram of the system	2
	2 SDI-12 timing from SDI-12 Support Group (2019)	3

List of Tables

Intro

This report documents the design process for a RP2040 based embedded system that has the dual purpose of being a scientific datalogger, and a smart interface with an analogue dew point generator.

(explanation on the context)

Digital to analogue conversion and PWM Background (only a couple of sentences) Big Q did stuff on this (explanation of the dew point generator and how it functions and why it is important for ensuring there isnt any condensation or something like that)

Feature Demonstration

alsdkjfhasdlkdfjh

Components

Feel free to move and change the name of this subsection later

Fig. 1. Block diagram of the system

As seen in fig. 1 there were lots of blocks

Sensors

SDI-12

Fig. 2. SDI-12 timing from SDI-12 Support Group (2019)

we used the <code>uart_break()</code> function to send the break signal, and then used the <code>uart_read_stuff()</code> function to read the response from the sensor. The response was then parsed to get the data. The timing of the SDI-12 protocol is shown in fig. 2.

Load Cell (MT603) analogue signal, therefore requires ADC?

Sap Flow Sensor (SF5) uses SDI-12

Leaf thermistor uses SDI-12

Things to check:

- is 12V necessary?
- should we choose I2C or SPI (or both) as interface between RP2040 and DAC?
- do we want bluetooth or wifi?
- crystal like in assignment 1? ADC for load cell?

Discussion

We discuss.

CC3501 - Assignment 2 Dew point Generator / Scientific Data Logger

Conclusion

We conclude.

Appendix

References

SDI-12 Support Group, SDI-12: A Serial-Digital Interface Standard for Microprocessor-Based Sensors, SDI-12 Support Group, River Heights, Utah, Jan. 2019, version 1.4. [Online]. Available: http://www.sdi-12.org