Package 'parmigene'

October 21, 2024

Version 1.1.1

Title Parallel Mutual Information Estimation for Gene Network Reconstruction
Description Parallel estimation of the mutual information based on entropy estimates from k-nearest neighbors distances and algorithms for the reconstruction of gene regulatory networks (Sales et al, 2011 <doi:10.1093 bioinformatics="" btr274="">).</doi:10.1093>
License AGPL-3
<pre>URL https://github.com/sales-lab/parmigene</pre>
BugReports https://github.com/sales-lab/parmigene/issues
NeedsCompilation yes
Author Gabriele Sales [aut, cre], Chiara Romualdi [aut]
Maintainer Gabriele Sales <gabriele.sales@unipd.it></gabriele.sales@unipd.it>
Repository CRAN
Date/Publication 2024-10-21 13:50:07 UTC
Contents
aracne.a aracne.m clr knnmi knnmi.all knnmi.cross mrnet
Index 10

2 aracne.a

aracne.a

Algorithm for the Reconstruction of Accurate Cellular Networks

Description

A function that implements the ARACNE algorithm for the reconstruction of gene interaction networks (additive model).

Usage

```
aracne.a(mi, eps=0.05)
```

Arguments

mi matrix of the mutual information.

eps a positive numeric value used to remove the weakest edge of each triple of nodes.

Details

This algorithm considers each triple of edges independently and removes the weakest one if

$$MI(i;j) < MI(j;k) - \varepsilon$$

and

$$MI(i;j) < MI(i;k) - \varepsilon$$

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

Value

A square weighted adjacency matrix of the inferred network.

References

Adam A. Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. *Aracne : An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.* BMC Bioinformatics, 2006.

See Also

aracne.m clr mrnet aracne.m 3

Examples

```
mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- aracne.a(mi, 0.05)</pre>
```

aracne.m

Algorithm for the Reconstruction of Accurate Cellular Networks

Description

A function that implements the ARACNE algorithm for the reconstruction of gene interaction networks (multiplicative model).

Usage

```
aracne.m(mi, tau=0.15)
```

Arguments

mi matrix of the mutual information.

tau a positive numeric value used to remove the weakest edge of each triple of nodes.

Details

This algorithm considers each triple of edges independently and removes the weakest one if

$$MI(i; j) < MI(j; k) * (1 - \tau)$$

and

$$MI(i;j) < MI(i;k) * (1-\tau)$$

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

Value

A square weighted adjacency matrix of the inferred network.

References

Adam A. Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. *Aracne : An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.* BMC Bioinformatics, 2006.

4 clr

See Also

```
aracne.a
clr
mrnet
```

Examples

```
mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- aracne.m(mi, 0.15)</pre>
```

clr

Context Likelihood or Relatedness Network

Description

A function that infers the interaction network using the CLR algorithm.

Usage

clr(mi)

Arguments

mi

matrix of the mutual information.

Details

CLR computes the score

$$sqrt(z_i^2 + z_j^2)$$

for each pair of variables i, j, where

$$z_i = \max(0, (I(X_i; X_j) - \max(X_i)) / sd(X_i))$$

and $mean(X_i)$ and $sd(X_i)$ are the mean and the standard deviation of the mutual information values $I(X_i; X_k)$ for all k = 1, ..., n.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

Value

A square weighted adjacency matrix of the inferred network.

knnmi 5

References

Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gardner. *Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles.* PLoS Biology, 2007.

See Also

```
aracne.a
aracne.m
mrnet
```

Examples

```
mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- clr(mi)</pre>
```

knnmi

Parallel Mutual Information Estimation

Description

A function to perform a parallel estimation of the mutual information of vectors x and y using entropy estimates from K-nearest neighbor distances.

Usage

```
knnmi(x, y, k=3, noise=1e-12)
```

Arguments

X	a numeric vector.
у	a numeric vector with the same length of x.
k	the number of nearest neighbors to be considered to estimate the mutual information. Must be less than the number of elements of x .
noise	the magnitude of the random noise added to break ties.

Details

The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

6 knnmi.all

References

Kraskov, Alexander and Stogbauer, Harald and Grassberger, Peter. Estimating mutual information. Phys. Rev. E, 2004.

See Also

```
knnmi.cross
knnmi.all
```

Examples

```
x <- rnorm(100)
y <- rnorm(100)
knnmi(x, y, 5)
```

knnmi.all

Parallel Mutual Information Estimation Between All Matrix Rows

Description

A function that computes the mutual information between all pairs of rows of matrix mat using entropy estimates from K-nearest neighbor distances.

Usage

```
knnmi.all(mat, k=3, noise=1e-12)
```

Arguments

mat	a numeric matrix (for the reconstruction of gene regulatory networks, genes on
	rows and samples on columns).
k	the number of nearest neighbors to consider to estimate the mutual information.

the number of nearest neighbors to consider to estimate the mutual information.

Must be less than the number of columns of mat.

the magnitude of the random noise added to break ties. noise

Details

The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

References

Kraskov, Alexander and Stogbauer, Harald and Grassberger, Peter. Estimating mutual information. Phys. Rev. E, 2004.

knnmi.cross 7

See Also

```
knnmi
knnmi.cross
```

Examples

```
mat <- matrix(rnorm(1000), nrow=10)
knnmi.all(mat, 5)</pre>
```

knnmi.cross

Parallel Mutual Information Estimation Between the Rows of Two Matrices

Description

A function that estimates the mutual information between all pairs of rows of matrices mat1 and mat2 using entropy estimates from K-nearest neighbor distances.

Usage

```
knnmi.cross(mat1, mat2, k=3, noise=1e-12)
```

Arguments

mat2

mat1	a numeric matrix (for the reconstruction of gene regulatory networks, genes on
	rows and samples on columns).

a numeric matrix with the same number of columns as mat1.

k the number of nearest neighbors to consider to estimate the mutual information.

Must be less than the number of columns of mat1.

noise the magnitude of the random noise added to break ties.

Details

The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

References

Kraskov, Alexander and Stogbauer, Harald and Grassberger, Peter. *Estimating mutual information*. Phys. Rev. E, 2004.

See Also

```
knnmi
knnmi.all
```

8 mrnet

Examples

```
mat1 <- matrix(rnorm(1000), nrow=10)
mat2 <- matrix(rnorm(1000), nrow=10)
knnmi.cross(mat1, mat2, 5)</pre>
```

mrnet

Maximum Relevance Minimum Redundancy

Description

A function that infers the interaction network using the MRNET algorithm.

Usage

mrnet(mi)

Arguments

mi

matrix of the mutual information.

Details

The MRNET approach starts by selecting the variable X_i having the highest mutual information with the target Y.

Then, it repeatedly enlarges the set of selected variables S by taking the X_k that maximizes

$$I(X_k; Y) - mean(I(X_k; X_i))$$

for all X_i already in S.

The procedure stops when the score becomes negative.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

Value

A square weighted adjacency matrix of the inferred network.

References

H. Peng, F.long and C.Ding. *Feature selection based on mutual information: Criteria of max-dependency, max relevance and min redundancy.* IEEE transaction on Pattern Analysis and Machine Intelligence, 2005.

mrnet 9

See Also

```
aracne.a
aracne.m
clr
```

Examples

```
mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- mrnet(mi)</pre>
```

Index

```
aracne.a, 2, 4, 5, 9
aracne.m, 2, 3, 5, 9
clr, 2, 4, 4, 9
knnmi, 5, 7
knnmi.all, 6, 6, 7
knnmi.cross, 6, 7, 7
```