Analyzing of Seattle road collisions and predicting their severity

Analyzing and predicting road collisions is valuable for the City of Seattle

• Collisions impact many people: up to 480k people in 15 years in Seattle (610k inhabitants)

It can lead to major properties damage and serious injuries

Data acquisition and cleaning

 Data were acquired from the City of Seattle website: https://data.seattle.gov/Land-Base/Collisions/9kas-rb8d

 Data were formatted, continuous features were binned, new features were created, missing values were whether dropped or filled with the most common value, dummies variable were then created

• Finally, 31 features were used, with 134,843 instances for the train set and 33,863 for the test set

As we might think, collisions happen where there is traffic

Because of the place

 Collisions mostly happen downtown and on big streets or avenues

Because of the moment

Collisions happen less on weekend or during the night

Collisions also happen when people pay less attention

Because they are tired

- Collisions happen more on Fridays, at the end of the work-week
- Collisions happen more at 17h, at the end of the work-day

Because the driving conditions are good

- More than 80% of the collisions happen when the weather is good
- More than 70% of the collisions happen when the road conditions are good
- More than 65% of the collisions happen in daylight

⇒ when driving conditions are good, people pay less attention than when they are bad, leading to more collisions

Collisions also happen more on June, October and November

Collisions are not uniformly distributed across month (chi-squared test)

This statement stands for each severity-type collisions, except for the deadly ones (due to small amount of data)

- They happen more on June, October and November
- And less on December

Predicting collision's severity to propose policies to prevent them

- 2 models used: a SGDClassifier (the best model here) and a DecisionTree (the easiest recommendation-giving model)
- Both gives the same results
- The most severe collisions can be characterized by:
 - involving pedestrians or cyclists, or
 - involving only 1 vehicle, or
 - happening at intersection, or
 - being head-on

Features of importance for the two models

Impact and magnitude of features to predict most severe collisions with SGDClassifier

Importance of features to predict severity of collisions with DecisionTree

Tree of decisions

Conclusion

Policy proposals to reduce collisions

- Deploy police force more downtown or on big avenues, rather than on small streets
- Deploy police force more on Friday, rather than the weekend
- Deploy police force more around 17h, rather than around 4h
- Deploy police force more in June, October and November, rather than in December

Policy proposals to prevent most severe collisions

Deploy police force more, or/and create/develop urban amenities to:

- Improve sidewalk safety
- Create specific cycle paths
- Develop speed radars on head-on collision-prone blocks
- Improve safety of intersections (e.g. with radars)