MSiA400 Assignment 1

EXERCISE 1

The data in tensiles.txt is a table, so we have to to convert it to two vectors of data and group labels, as below.

```
vector1 = list()
vector2 = list()
for(nam in names(tens)){
   vector1 <- append(vector1, tens[[nam]]) #vector of data
   vector2 <- append(vector2, rep(nam, length(tens[[nam]]))) #vector of group names
}
vector1 <- unlist(vector1)
vector2<- unlist(vector2)</pre>
```

Function definition

```
useraov<- function(vec1,vec2){</pre>
  dat = list()
  means = list()
  lenlist = list()
  sdlist = list()
  #Dividing the data into individual groups
  for(grp in unique(vec2)){
    dat[[grp]] <- vec1[vec2==grp]</pre>
    means[[grp]] <- mean(dat[[grp]])</pre>
    lenlist[[grp]] <- length(dat[[grp]])</pre>
    sdlist[[grp]] <- sd(unlist(dat[[grp]]))</pre>
  #Flattening to vectors again
  dat <- unlist(dat)</pre>
  means<- unlist(means)
  lenlist <- unlist(lenlist)</pre>
  sdlist <- unlist(sdlist)</pre>
  xbar <- sum(means*lenlist)/sum(lenlist)</pre>
  S.b <- sum(lenlist*((means - xbar)^2))/(length(unique(vec2)) - 1)
```

```
S.w <- (sum((lenlist-1)*(sdlist^2)))/(sum(lenlist) -length(unique(vec2)))
  Fval = S.b/S.w #F statistic
  print(paste("F-statistic", Fval, sep = " "))
  Pval = pf(q = Fval, df1 = (length(unique(vec2)) - 1), df2 = (sum(lenlist) -length(unique(vec2))), low
  print(paste("P-Value", Pval, sep = " "))
  if(Pval < 0.05){
    print("Reject Null Hypothesis")
  } else{
    print("Do not reject Null Hypothesis")
  }
}
Function Call for the given data
useraov(vector1, vector2)
## [1] "F-statistic 19.6052069995732"
## [1] "P-Value 3.59257825847426e-06"
## [1] "Reject Null Hypothesis"
We can confirm the calculated values using the built in anova function, and see that they match:
fit <- lm(vector1 ~ vector2, data = tens)</pre>
anova(fit)
## Analysis of Variance Table
## Response: vector1
             Df Sum Sq Mean Sq F value
## vector2
              3 382.79 127.597 19.605 3.593e-06 ***
## Residuals 20 130.17 6.508
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Problem 2
a)
Reading in the data, and printing the model summary with all predictors
bostdata <- read.table("bostonhousing.txt", header = T, sep = "\t")</pre>
reg <- lm(MEDV ~ ., data = bostdata)
summary(reg)
##
## Call:
## lm(formula = MEDV ~ ., data = bostdata)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -15.595 -2.730 -0.518
                             1.777 26.199
```

##

```
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               3.646e+01 5.103e+00
                                       7.144 3.28e-12 ***
## CRIM
               -1.080e-01
                           3.286e-02
                                       -3.287 0.001087 **
## ZN
                4.642e-02
                           1.373e-02
                                        3.382 0.000778 ***
## INDUS
                2.056e-02
                           6.150e-02
                                       0.334 0.738288
                                        3.118 0.001925 **
## CHAS
                2.687e+00
                           8.616e-01
## NOX
               -1.777e+01
                           3.820e+00
                                       -4.651 4.25e-06 ***
## RM
                3.810e+00
                           4.179e-01
                                       9.116 < 2e-16 ***
## AGE
                6.922e-04
                           1.321e-02
                                       0.052 0.958229
## DIS
               -1.476e+00
                           1.995e-01
                                      -7.398 6.01e-13 ***
                                       4.613 5.07e-06 ***
## RAD
                3.060e-01
                           6.635e-02
               -1.233e-02
                           3.760e-03
                                      -3.280 0.001112 **
## TAX
## PTRATIO
               -9.527e-01
                           1.308e-01
                                      -7.283 1.31e-12 ***
                           2.686e-03
                                        3.467 0.000573 ***
## B
                9.312e-03
## LSTAT
               -5.248e-01
                          5.072e-02 -10.347 < 2e-16 ***
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 4.745 on 492 degrees of freedom
## Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
## F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
```

Both Indus and Age are numerical variables (not categorical) with low t-values and high corresponding p values, indicating that they are least likely to be in the best model as they explain very little of the variance of the output.

b)

We remove these two variables from the model and look again.

```
reg.picked <- lm( MEDV~ . -AGE - INDUS, data = bostdata)
summary(reg.picked)</pre>
```

```
##
## Call:
## lm(formula = MEDV ~ . - AGE - INDUS, data = bostdata)
## Residuals:
##
        Min
                  1Q
                        Median
                                     3Q
                                              Max
                      -0.5046
   -15.5984 -2.7386
                                 1.7273
                                          26.2373
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                36.341145
                             5.067492
                                        7.171 2.73e-12 ***
## CRIM
                -0.108413
                             0.032779
                                       -3.307 0.001010 **
## ZN
                 0.045845
                             0.013523
                                        3.390 0.000754 ***
                             0.854240
## CHAS
                                        3.183 0.001551 **
                 2.718716
## NOX
               -17.376023
                             3.535243
                                       -4.915 1.21e-06 ***
                             0.406316
                                        9.356 < 2e-16 ***
## RM
                 3.801579
## DIS
                -1.492711
                             0.185731
                                       -8.037 6.84e-15 ***
                             0.063402
                                        4.726 3.00e-06 ***
## RAD
                 0.299608
## TAX
                -0.011778
                             0.003372
                                       -3.493 0.000521 ***
## PTRATIO
                -0.946525
                             0.129066
                                       -7.334 9.24e-13 ***
```

In this model, all the remaining variables are significant, and there is an improvement in the adjusted R^2 .

c)

```
SSE1 = sum(resid(reg)^2)
MSE1 = SSE1/(length(bostdata$MEDV) - (length(reg$coefficients))) #length(coeffs) = p+1
SSE2 = sum(resid(reg.picked)^2)
MSE2 = SSE2/(length(bostdata$MEDV) - (length(reg.picked$coefficients)))
MSE1

## [1] 22.51785

MSE2

## [1] 22.43191

SAE1 = sum(abs(resid(reg)))
SAE2 = sum(abs(resid(reg.picked)))
MAE1 = SAE1/(length(bostdata$MEDV) - (length(reg$coefficients)))
MAE2 = SAE2/(length(bostdata$MEDV) - (length(reg.picked$coefficients)))
MAE1

## [1] 3.363936

MAE2
```

[1] 3.351519

Based on both MSE and MAE, the model reg.picked is preferred as the results are lower.

d)

```
reg.step <- step(reg, direction = "back")</pre>
## Start: AIC=1589.64
## MEDV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD +
      TAX + PTRATIO + B + LSTAT
##
##
##
            Df Sum of Sq
                           RSS
## - AGE
                     0.06 11079 1587.7
              1
## - INDUS
                     2.52 11081 1587.8
## <none>
                          11079 1589.6
## - CHAS
              1
                  218.97 11298 1597.5
## - TAX
                  242.26 11321 1598.6
              1
## - CRIM
                  243.22 11322 1598.6
              1
## - ZN
            1
                257.49 11336 1599.3
## - B
             1 270.63 11349 1599.8
```

```
## - RAD
                   479.15 11558 1609.1
              1
## - NOX
                   487.16 11566 1609.4
              1
## - PTRATIO
             1
                  1194.23 12273 1639.4
## - DIS
                  1232.41 12311 1641.0
              1
## - RM
              1
                  1871.32 12950 1666.6
## - LSTAT
                  2410.84 13490 1687.3
              1
##
## Step: AIC=1587.65
## MEDV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + DIS + RAD + TAX +
##
       PTRATIO + B + LSTAT
##
##
             Df Sum of Sq
                            RSS
                                    AIC
## - INDUS
                     2.52 11081 1585.8
## <none>
                           11079 1587.7
## - CHAS
                   219.91 11299 1595.6
              1
## - TAX
              1
                   242.24 11321 1596.6
## - CRIM
                   243.20 11322 1596.6
              1
## - ZN
              1
                   260.32 11339 1597.4
## - B
                   272.26 11351 1597.9
              1
## - RAD
              1
                   481.09 11560 1607.2
## - NOX
              1
                   520.87 11600 1608.9
## - PTRATIO
             1
                  1200.23 12279 1637.7
## - DIS
                  1352.26 12431 1643.9
              1
## - RM
                  1959.55 13038 1668.0
              1
## - LSTAT
              1
                  2718.88 13798 1696.7
## Step: AIC=1585.76
## MEDV ~ CRIM + ZN + CHAS + NOX + RM + DIS + RAD + TAX + PTRATIO +
       B + LSTAT
##
##
##
             Df Sum of Sq
                            RSS
                                    AIC
## <none>
                           11081 1585.8
## - CHAS
                   227.21 11309 1594.0
## - CRIM
                   245.37 11327 1594.8
              1
## - ZN
              1
                   257.82 11339 1595.4
## - B
                   270.82 11352 1596.0
              1
## - TAX
              1
                   273.62 11355 1596.1
## - RAD
                   500.92 11582 1606.1
              1
## - NOX
              1
                   541.91 11623 1607.9
## - PTRATIO
                  1206.45 12288 1636.0
             1
## - DIS
                  1448.94 12530 1645.9
              1
## - RM
                  1963.66 13045 1666.3
              1
                  2723.48 13805 1695.0
## - LSTAT
```

The step function is seen to eliminate the same two predictor variables as reg.picked.

Problem 3

```
#reading in data
labdat <- read.table("labdata.txt", header = T)</pre>
```

Printing out the summary of the full model

```
reg <- lm(y~., data = labdat)</pre>
summary(reg)
##
## Call:
## lm(formula = y \sim ., data = labdat)
##
## Residuals:
##
       Min
                1Q Median
                                   3Q
                                           Max
## -25.7138 -7.3129 -0.1718
                              7.4281 23.8909
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 17.58565
                        5.10223
                                   3.447 0.000629 ***
                          0.05492 34.951 < 2e-16 ***
## x1
               1.91936
## x2
               0.89747
                          0.08389 10.699 < 2e-16 ***
## x3
               1.07895
                          0.08370 12.890 < 2e-16 ***
               0.23834
                          0.08759
                                   2.721 0.006798 **
## x4
                          0.03725
## x5
              0.10141
                                   2.723 0.006766 **
              0.29608
                          0.15153
                                   1.954 0.051421 .
## x6
## x7
              -0.06268
                          0.15824 -0.396 0.692262
## x8
              -0.01515
                          0.15846 -0.096 0.923860
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.01 on 391 degrees of freedom
## Multiple R-squared: 0.8113, Adjusted R-squared: 0.8074
## F-statistic: 210.1 on 8 and 391 DF, p-value: < 2.2e-16
b)
```

plot(labdat\$y, labdat\$x1)

plot(labdat\$y, labdat\$x2)

plot(labdat\$y, labdat\$x3)

plot(labdat\$y, labdat\$x4)

plot(labdat\$y, labdat\$x5)

plot(labdat\$y, labdat\$x6)

plot(labdat\$y, labdat\$x7)

plot(labdat\$y, labdat\$x8)

Based on the above plots, predictors x1, x2 and x3 look like candidates for piecewise linear regression. We can pick x1 as the predictor to build a piecewise regression on. The plot is attached in the submission.

```
png(filename = "x1plot.png")
plot(labdat$x1, labdat$y)
dev.off()

## pdf
## 2
c)
```

We can find the mean of x1 and use that as the guess for the segmentation point for the piecewise regression.

```
meanx1 <- mean(labdat$x1)
meanx1</pre>
```

```
## [1] 17.19417
```

The mean of the variable x1 is 17.19417

```
library(segmented)
reg.x1 <- lm(y ~ x1, data = labdat)
piecewisemodel <- segmented(reg.x1, seg.Z = ~x1, psi = meanx1)
summary(piecewisemodel)</pre>
```

```
##
## ***Regression Model with Segmented Relationship(s)***
```

```
##
## Call:
## segmented.lm(obj = reg.x1, seg.Z = ~x1, psi = meanx1)
## Estimated Break-Point(s):
##
      Est. St.Err
## 12.436 0.389
##
## Meaningful coefficients of the linear terms:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.4295
                            1.7465
                                     22.00
                                             <2e-16 ***
                 5.5022
                            0.2351
                                     23.40
                                             <2e-16 ***
## x1
## U1.x1
                -4.9830
                            0.2539 -19.63
                                                 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 9.119 on 396 degrees of freedom
## Multiple R-Squared: 0.8415, Adjusted R-squared: 0.8403
## Convergence attained in 5 iterations with relative change 4.419277e-16
```

The piecewise regression reg.piece against one variable x1 is superior to the entire multiple linear regression reg, since it has a higher R^2 .