AAE550: HW1

Rahul Deshmukh deshmuk5@purdue.edu

PUID: 0030004932

October 15, 2018

I Engineering Problem in N Variables

For this problem, We will be assuming small value of displacements u_1 and u_2 . With this assumption we now have that ϕ will remain constant through out the problem and the lengths of the bars also remain constant. As shown in the following figure, We can estimate the angle ϕ using simple geometry.

Given, $L_1 = L_2$, therefore perpendicular dropped from their point of intersection will bisect the base. Thus, we obtain the length of bar 3 as $L_3 = 5 - \frac{2.75}{2}$ ft and $\phi = \frac{\pi}{2} - \cos^{-1}(\frac{2.75/2}{3})$

1) Analytic Gradient and Hessian of the Potential energy function

$$\Pi(u) = \frac{1}{2}u^T K u - p^T u$$

$$\Rightarrow \Pi(\vec{u}) = \frac{1}{2}u_i K_{ij} u_j - p_i u_i$$

$$\begin{aligned} \mathbf{Gradient} \quad \vec{\nabla}(\Pi(\vec{u})) &= \frac{\partial \Pi(u)}{\partial u_k} \vec{e_k} \\ \\ \vec{\nabla}(\Pi(\vec{u})) &= \frac{\partial}{\partial u_k} (\frac{1}{2} u_i K_{ij} u_j - p_i u_i) \vec{e_k} \\ &= \frac{1}{2} \frac{\partial}{\partial u_k} (u_i K_{ij} u_j) \vec{e_k} - \frac{\partial}{\partial u_k} (p_i u_i) \vec{e_k} \\ &= \frac{1}{2} (\delta_{ki} K_{ij} u_j + u_i K_{ij} \delta_{jk}) \vec{e_k} - (p_i \delta_{ik}) \vec{e_k} \\ &= \frac{1}{2} (K_{kj} u_j + u_i K_{ik}) \vec{e_k} - (p_k) \vec{e_k} \\ \\ &\Rightarrow \vec{\nabla}(\Pi(\vec{u})) = \frac{1}{2} (K + K^T) \vec{u} - \vec{p} \end{aligned}$$

Hessian $H(\vec{u}) = \vec{\nabla} \otimes \vec{\nabla} (\Pi(\vec{u}))$

$$H(\vec{u}) = \frac{\partial}{\partial u_k} (\frac{1}{2} (K_{lj} u_j + u_i K_i l) + p_l) \vec{e_k} \otimes \vec{e_l}$$

$$= (\frac{1}{2} (K_{lj} \delta_{jk} + \delta_{ki} K_{il})) \vec{e_k} \otimes \vec{e_l}$$

$$= \frac{1}{2} (K_{lk} + K_{kl}) \vec{e_k} \otimes \vec{e_l}$$

$$\Rightarrow H(\vec{u}) = \frac{1}{2} (K + K^T)$$

Note: For this problem, $K = K_1 + K_2 + K_3$ and all K_i are of the form $K_i = \alpha v v^T$ which means that all K_i will be symmetric (outer product of same vector gives as symmetric matrix) and therefore our global stiffness matrix K will also be a symmetric matrix.

So we can further reduce our gradient and Hessian using the property $\mathrm{that} K^T = K$

$$\Rightarrow \vec{\nabla}(\Pi(\vec{u})) = K\vec{u} - \vec{p}$$

$$H(\vec{u}) = K$$

2) Matlab snippet for $\Pi(\vec{u})$ and gradient $\vec{\nabla}(\Pi(\vec{u}))$ and hessian $H(\vec{u})$

Function for evaluating only the Potential Energy

```
1 %HW1 problem (1)
2 %Rahul Deshmukh PUID: 0030004932
3 %deshmuk5@purdue.edu
4 %------begin------%
5 %energy function
6 function PE=hw1_p1_PEfun(u)
7 %input: u is a col vector
8 %output: PE: scalar value for potential energy function
```

```
10 %definition of constants: E,A,L,phi,P
11 E=17.3*10^6; %psi
12 d1=0.65;%in
13 A1=pi*(d1/2)^2; sq in
14 A2=A1;
15 d3=0.8;%in
16 \text{ A3=pi*}(d3/2)^2; sq in
17 fttoin=12;% conversion factor
18 L1=3*fttoin;
19 L2=L1;
L3 = (5 - (2.75/2)) * fttoin;
_{21} phi=90-(180/pi)*acos((2.75/2)/3);
22 P=14000; %lbs
24 theta=32; %degrees
25 p=P*[sind(theta);cosd(theta)];
27 K1=[\cos d(-1*phi); \sin d(-1*phi)]*(E*A1/L1)*[\cos d(-1*phi), \sin d(-1*phi)];
28 K2 = [\cos d(phi); \sin d(phi)] * (E*A2/L2) * [\cos d(phi), \sin d(phi)];
29 K3=[0; sind(90)] * (E*A3/L3) * [0, sind(90)];
30
_{31} K=K1+K2+K3;
33 PE=(1/2)*u'*K*u-p'*u;
35 end
```

Function for evaluating only the Potential Energy and its gradient

```
1 %HW1 problem (1)
2 %Rahul Deshmukh PUID: 0030004932
3 %deshmuk5@purdue.edu
4 %-----%
5 %gradient of enrgy function
6 function [PE, gradPE] = hwl_pl_PEwtgrad(u)
7 %input: u is a col vector
8 %output: PE: scalar value of potential energy
           gradPE: gradient of potential energy function
11 %definition of constants: E,A,L,phi,P
12 E=17.3*10^6; %psi
13 d1=0.65;%in
14 A1=pi*(d1/2)^2;%sq in
15 A2=A1;
16 d3=0.8; %in
17 \text{ A3=pi*}(d3/2)^2; sq in
18 fttoin=12;% conversion factor
19 L1=3*fttoin;
20 L2=L1;
L3 = (5 - (2.75/2)) * fttoin;
phi=90-(180/pi)*acos((2.75/2)/3);
23 P=14000; %lbs
25 theta=32;%degrees
```

```
26  p=P*[sind(theta); cosd(theta)];
27
28  K1=[cosd(-1*phi); sind(-1*phi)]*(E*A1/L1)*[cosd(-1*phi), sind(-1*phi)];
29  K2=[cosd(phi); sind(phi)]*(E*A2/L2)*[cosd(phi), sind(phi)];
30  K3=[0; sind(90)]*(E*A3/L3)*[0, sind(90)];
31
32  K=K1+K2+K3;
33
34  PE=(1/2)*u'*K*u-p'*u;
35  gradPE=(1/2)*(K+K')*u-p;
36
37  end
```

Function for evaluating Potential Energy, its gradient and Hessian

```
1 %HW1 problem (1)
2 %Rahul Deshmukh PUID: 0030004932
3 %deshmuk5@purdue.edu
4 %-----%
5 %PE, gradient of PE, and Hessian of PE
6 function [PE, gradPE, H] = hw1_p1_HessianPEfun(u)
7 %input: u is a col vector
8 %output: PE: scalar value of potential energy
            gradPE: gradient of potential energy function
10 %
            H: Hessina of potential energy function: tensor
12 %definition of constants: E,A,L,phi,P
E=17.3*10^6; %psi
14 d1=0.65;%in
15 A1=pi*(d1/2)^2;%sq in
16 A2=A1;
17 d3=0.8;%in
18 A3=pi*(d3/2)^2; sq in
19 fttoin=12;% conversion factor
20 L1=3*fttoin;
21 L2=L1;
L3 = (5 - (2.75/2)) * fttoin;
_{23} phi=90-(180/pi)*acos((2.75/2)/3);
24 P=14000; %lbs
26 theta=32;%degrees
27 p=P*[sind(theta);cosd(theta)];
29 K1=[\cos d(-1*phi); \sin d(-1*phi)]*(E*A1/L1)*[\cos d(-1*phi), \sin d(-1*phi)];
30 K2 = [\cos d(phi); \sin d(phi)] * (E*A2/L2) * [\cos d(phi), \sin d(phi)];
31 K3 = [0; sind(90)] * (E*A3/L3) * [0, sind(90)];
33 K=K1+K2+K3;
34
35 PE=(1/2)*u'*K*u-p'*u;
36 \text{ gradPE} = (1/2) * (K+K') * u-p;
_{37} H= (1/2) * (K+K');
38 end
```

3) Using "fminunc" with different options:

The script for this task is:

```
1 %HW1 problem (1)
2 %Rahul Deshmukh PUID: 0030004932
3 %deshmuk5@purdue.edu
5 % main file for problem 1
6 %-----%
7 clc; clear all; close all;
8 format long;
9 %%
10 % (3)
11 % using BFGS
12 u0=[0;0]; %initial guess: assuming at no displacement
13 %-----%
14 % using finite diffrence gradients and BFGS solver
15 options_3a=optimoptions('fminunc','Algorithm','quasi-newton',...
     'SpecifyObjectiveGradient', false, 'Display', 'iter');
17 [u_star,pe_star,exitflag,output,grad,hessian]=fminunc(@hw1_p1_PEfun,...
    u0,options_3a)
18
19 %-----%
20 % u0=[0;0];u_star=[0.029448184643855;0.044483086047248];
u + u = -3.733027694338580e + 02;
22 % grad= 1.0e-05*[0;-0.762939453125000]; num_iter=3; funcCount=18; ...
     exitflag=1;
23 %-----
25 %-----%
26 % solve using analytic gradients
27 options_3b=optimoptions(@fminunc,'Algorithm','quasi-newton',...
      'SpecifyObjectiveGradient', true, 'Display', 'iter');
29 [u_star,pe_star,exitflag,output,grad,hessian]=fminunc(@hw1_p1_PEwtgrad,...
   u0,options_3b)
31 %------
32 % u0=[0;0];u_star=[0.029448192103366;0.044483093518566];
33 % f(u_star) = -3.733027694338724e+02;
34 % grad=[0;0]; num_iter=3; funcCount=6; exitflag=1;
```

4) Using "fminunc" with different options:

The script for this task is:

```
u0,options_4a)
12 %-----%
13 % u0=[0;0];u_star=[0.029448192103366;0.044483093518566];
14 \% f(u_star) = -3.733027694338725e+02;
15 % grad=[0;0]; num_iter=3; funcCount=6; exitflag=1;
17
18 %-----%
19 % solve using analytic gradients with Steepest Descent
20 options_4b=optimoptions(@fminunc,'Algorithm','quasi-newton',...
21 'SpecifyObjectiveGradient', true, 'Display', 'iter', 'HessUpdate', 'steepdesc');
22 [u_star,pe_star,exitflag,output,grad,hessian]=fminunc(@hw1_p1_PEwtgrad,...
     u0,options_4b)
24 %-----%
25 % u0=[0;0];u_star3a=[0.029448178767296;0.044483073374022];
_{26} % f(u_star3a) = -3.733027694337959e+02;
27 % grad=[-0.003359750103300;-0.005376640310715]; num_iter=4; ...
     funcCount=25; exitflag=1;
```

5) Using "fminunc" with different options:

The script for this task is:

```
1 응응
2 % (5)
3 % using newtons method
4 u0=[0;0]; %initial guess: assuming at no displacement
6 % using newtons mehod with specified hessian and gradient
7 options_5=optimoptions(@fminunc,'Algorithm','trust-region',...
      'SpecifyObjectiveGradient', true, 'Display', 'iter', ...
      'HessianFcn', 'objective');
10 [u_star,pe_star,exitflag,output,grad,hessian]=fminunc(@hw1_p1_HessianPEfun,...
  u0,options_5)
12 %-----%
13 % u0=[0;0];u_star=[0.029448192103366;0.044483093518566];
14 \% f(u_star) = -3.733027694338725e+02;
15 % grad= 1.0e-11*[-0.090949470177293;-0.363797880709171]; num_iter=1; ...
     funcCount=2; exitflag=1;
16 %-----%
```

6) Excel results Problem setup screen shots:

B6	i	* : × ✓	fx =(0.5)*(\$D\$15*\$B\$3^2+	(\$D\$16+\$E\$15)*	(\$B\$3*\$B\$4)+\$E	\$16*\$B\$4^2)-(\$D\$3*\$B	\$3+\$D\$4*\$B\$4)			
A	А	В	С	D	E	F	G	н	1.0	J	K
1						HW1 P	roblem 1 part (6)				
2		u (in)		p (lbf)					constants		
3	u1	0.029448192035596	p1	=\$J\$7*SIN(\$J\$6)		E	=17.3*10^6	psi	d1	0.65	in
4	u2	0.044483093342771	p2	=\$J\$7*COS(\$J\$6)	I	A1	=PI()*(\$J\$3/2)^2	sq in	d3	0.8	in
5						A2	=PI()*(\$J\$3/2)^2	sq in	phi	=PI()/2-ACOS((2.75/2)/3)	radians
6	Pi(u)	=(0.5)*(\$D\$15*\$B\$	foot pound force			A3	=PI()*(\$J\$4/2)^2	sq in	theta	=32*(PI()/180)	radians
7						L1	=3*12	in	P	14000	lbf
3						L2	=3*12	in	EA1/L1	=\$G\$3*\$G\$4/\$G\$7	
9						L3	=12*(5-(2.75/2))	in	EA3/L3	=\$G\$3*\$G\$6/\$G\$9	
0	u0										
1	0					sin(phi)	=SIN(\$J\$5)				
2	0					cos(phi)	=COS(\$J\$5)				
13											
14				K			K1	K2			K3
5				=F15+H15+J15	=G15+I15+K15	=\$J\$8*\$G\$12^2	=-\$J\$8*\$G\$11*\$G\$12	=\$J\$8*\$G\$12^2	=\$J\$8*\$G\$	0	0
16				=F16+H16+J16	=G16+I16+K16	=\$G\$15	=\$J\$8*\$G\$11^2	=\$1\$15	=\$J\$8*\$G\$	0	=\$J\$9

Figure 1: Problem setup with formulas (Note: The formula for the objective function can be seen in the formula bar)

			_	HW1	Problen	n 1 part (6)				
	u (in)		p (lbf)		55			constants		
u1	0.029448192	p1	7418.87	,	E	17300000	psi	d1	0.65	in
u2	0.044483093	p2	11872.7	į.	A1	0.3318307	sq in	d3	0.8	in
					A2	0.3318307	sq in	phi	0.47611906	radians
Pi(u)	-373.3027694	foot pound force			А3	0.5026548	sq in	theta	0.55850536	radians
					L1	36	in	P	14000	lbf
					L2	36	in	EA1/L1	159463.098	
					L3	43.5	in	EA3/L3	199906.401	
u0										
0					sin(phi)	0.4583333				
0					cos(phi)	0.8887804	8			
			K			K1		K2		K3
			251930	0	125965	-64958.52	125965	64958.52	0	(
			0	266903	-64959	33498.324	64959	33498.32	0	199906.4015

Figure 2: Problem setup after running the solver

Figure 3: Answer report

Figure 4: Sensitivity report

7) Comparison Table:

Method / Program	$x^0(in)$	$x^*(in)$	$f(x^*)$	$\nabla f(x^*)$	No.	No.	exitflag
			(foot pound force)		iterations	f^n evals	
BFGS / Matlab	0	0.029448184643855		0			
fminunc,	0	0.044483086047248	-3.733027694338580e+02	-0.762939453125000 e-05	3	18	1
numerical gradient							
BFGS / Matlab	0	0.029448192103366		0			
fminunc,	0	0.044483093518566	-3.733027694338724e+02	0	3	6	1
userdefined gradient							
DFP / Matlab	0	0.029448192103366		0			
fminunc,	0	0.044483093518566	-3.733027694338725e+02	0	3	6	1
userdefined gradient							
Steepest Descent /	0	0.029448178767296		-0.003359750103300			
Matlab fminunc	0	0.044483073374022	-3.733027694337959e+02	-0.005376640310715	4	25	1
user-defined							
gradient							
Modified	0	0.029448192103366		-0.090949470177293e-11			
Newton's method/	0	0.044483093518566	-3.733027694338725e+02	-0.363797880709171e-11	1	2	1
Matlab fminunc,							
user-defined							
gradient							
Quasi-Newton	0	0.029448192077456		0			
method / Excel	0	0.044483093495682	-373.3027694	0	7	N/A	N/A
Solver							

Conclusions for Unconstrained Minimization

Comparison for 1^{st} order methods: BFGS & DFP can be seen to produce the same result with identical number of iterations and function calls. However, when using Steepest Descent we have poor performance as the gradient is still not $\vec{0}$ and the method took 4 iterations with 25 function calls to give a result. Steepest descent is the mostly costly 1^{st} order method.

Gradient- Numerical Vs User-Defined: On comparing the performance of BFGS for the two cases, as expected we get better results with less computational cost for User-Defined gradient. When using numerical gradient, our final gradient value has not reached absolute 0 and evaluating numerical gradient is costly because of which we have 18 function evaluations.

Out of all the methods, the 2nd order method is the fastest as we have a gradient value at absolute 0 with only 1 iteration and 2 function evaluations.

Specifically for this problem, as we are able to find out an analytic gradient and hessian for the function, we should have approach the minimization problem directly with a second order method with user defined gradient. However, this is not always the case in general for all the problems.

8) Solution by solving $K\vec{u} = \vec{p}$:

Conditions for Optimality for unconstrained minimization:

- (i) Condition on Gradient: $\vec{\nabla} f = \vec{0}$,
- (ii) Condition on Hessian $x^T H x \ge 0 \ \forall x \in \Re^n$ i.e. Hessian should be positive definite to have a minima.

For our problem, using the first condition we have:

$$\vec{\nabla}(\Pi(\vec{u})) = \vec{0}$$

$$\Rightarrow K\vec{u} - \vec{p} = \vec{0}$$

$$\Rightarrow K\vec{u} = \vec{p}$$

and as for the second condition, we have $H(\vec{u}) = K$, where K is a symmetric matrix and therefore positive definite. Therefore on solving the equation $K\vec{u} = \vec{p}$, we will get our optimum solution $u^* = \begin{bmatrix} 0.029448192103366 \\ 0.044483093518566 \end{bmatrix}$ (in) and $\Pi(\vec{u^*}) = -3.733027694338724e + 02$ (foot pound force)

The script for this task is:

```
1 %%
2 % (8)
```

```
3 % solving for u using Ku=p
4 [K,p]=hw1_p1_tangent();
5 u_star=K\p
6 %------%
7 % u_star=[0.029448192103366;0.044483093518566];
8 % in one step.
9 %-------%
```

Comments on single step method : The solution obtained with this method is identical to that obtained with BFGS/DFP with user-defined Gradient.

II Engineering Application of SUMT Approach

1) Problem Formulation For this problem, our objective is to minimize the Induced drag with c_r, b, α as design variables. With the list of formulas given in the problem description, I have found out the expressions for objective function and constraints using symbolics in MATLAB. The script for the task is as follows:

```
1 % AAE:550 HW1 P2
2 % Rahul Deshmukh
3 % PUID: 0030004932
4 응응
5 clc; clear all;
6 format long;
7 %-----begin-----
8 %define symbols for design variables
9 syms cr b a; %root chord, wing span, angle of attack
11 %define related independent terms
12 V=53.6;% m/sec
13 rho=1.134; %kg/m<sup>3</sup>
15 Tr=0.4; %taper ratio
16 ct=Tr*cr; % tip chord
17 C_la=2*pi;% lift curve slope
18 e=0.9; %efficiency
19 \quad a_L0 = -3;
S = ((ct+cr)/2)*b;
21 AR=b^2/S;
22
a1=0.14;
k = (1 - (1 + (pi*AR/C_la))*a1)/((1 + (pi*AR/C_la))*a1);
26 \text{ C_La=C_la/( (1+ (C_la/(pi*AR)))*(1+k));}
  C_L=C_L=(pi/180)*(a-a_L0); %need to convert angles to radians here
28
29
q=0.5*rho*V^2;
31
C_Di = (C_L^2) / (pi*AR*e);
33
34 %find symbolic expressions for objective and constraints
35 %objective function min Di
36 Di=q*S*C_Di;
37 vpa(simplify(Di)) % 0.033949298754935466466210448881266*b^2*(a + 3.0)^2
39 % constraint on L \ge 9500 \text{ N}
L=q*S*C_L;
41 vpa(simplify(L)) % 12.50454558912777413506277959447*b^2*(a + 3.0)
43 %constraint on 0.7 = < C_L \le 0.9
44 vpa(simplify(C_L)) % (0.01096622711232150957648276777764*b*(a + 3.0))/cr
```

By executing the above script we get the following expressions:

$$D_{i} = \gamma_{f} * b^{2} * (\alpha + 3.0)^{2}$$

$$L = \gamma_{L} * b^{2} * (\alpha + 3.0)$$

$$C_{L} = \gamma_{lc} * b * (\alpha + 3.0)/cr$$

where, γ_f , γ_L , γ_{lc} are constants with values, $\gamma_f = 0.033949298754935466466210448881266$, $\gamma_L = 12.50454558912777413506277959447$, $\gamma_{lc} = 0.01096622711232150957648276777764$

As we can see from the above equations, for the expression of Lift coefficient (C_L) we have c_r in the denominator, therefore we need to remove the design variable from the denominator as for some of the penalty methods we might have a value of 0 for c_r and then the Lift coefficient (C_L) expression cannot be evaluated.

To avoid the above stated issue I have formulated the problem with new design variable

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{c_r} \\ b \\ \alpha \end{bmatrix}$$

The Optimization problem for design variable \vec{x} then becomes:

a) Objective function

$$\min_{\vec{x}} f(x) = \gamma_f * x_2^2 * (x_3 + 3.0)^2$$

- b) Inequality Constraints $(g_i(x))$:
 - i) Lift Coefficient bounds

$$g_7(x) = \gamma_{lc} x_2(x_3 + 3) x_1 / 0.9 - 1 \le 0$$

$$g_8(x) = 1 - (\gamma_{lc} x_2(x_3 + 3) x_1) / 0.7 \le 0$$

ii) Lift Constraint

$$g_9(x) = 1 - \gamma_L(x_2^2)(x_3 + 3)/9500 \le 0$$

c) Design variable Bounds Bound on $x_1 = 1/c_r$

$$g_1(x) = 1 - 3x_1 \le 0$$

$$g_2(x) = 0.8x_1 - 1 \le 0$$

Bound on $x_2 = b$

$$g_3(x) = x_2/14 - 1 \le 0$$
$$g_4(x) = 1 - x_2/8 \le 0$$

Bound on $x_3 = \alpha$

$$g_5(x) = x_3/10 - 1 \le 0$$

 $g_6(x) = -1 - x_3/5 \le 0$

d) Matlab script for evaluating objective function and constraints:

Script for Objective function:

```
1 % AAE:550 HW1 P2
2 % Rahul Deshmukh
3 % PUID: 0030004932
4 %%
5 function f = hw1SUMTfun(x)
6 % funciton computes the objective function value
7 % input: x is a col vector
8 % output: f is a scalar value of the objective function
9
10 % x=[1/cr,b,a]
11 % objective function
12 y_f=0.033949298754935466466210448881266;%scalar multiplier
13 f = y_f*(x(2)^2)*(x(3)+3)^2;
14 end
```

Script for Constraints:

```
1 % AAE:550 HW1 P2
2 % Rahul Deshmukh
3 % PUID: 0030004932
5 function g = hw1SUMTcon(x)
_{6} % this function computes the inequality constraint function values
7 % input: x is a column vector
8 % output: g: col vector of constraint values [bounds; gj]
10 % x=[x1, x2, x3]=[1/cr, b, a]
11 % constraints
12 g=zeros(9,1);%col vector
13 % bounds
q(1) = 1 - 3 * x(1); % for cr
15 g(2) = 0.8 * x(1) - 1;
g(3)=x(2)/14-1; %for b
18 g(4)=1-x(2)/8;
g(5) = x(3)/10-1; %for alpha
g(6) = -1 - x(3)/5;
23 % inequality constraints
24 % for lift coeff
25 y_lc=0.01096622711232150957648276777764;
g(7) = y_1 c * x(2) * (x(3) + 3) * x(1) / 0.9 - 1;
g(8)=1-(y_1c*x(2)*(x(3)+3)*x(1))/0.7;
29 % for Lift
30 y_L=12.50454558912777413506277959447;
31 g(9) = 1 - y_L * (x(2)^2) * (x(3) + 3) / 9500;
32 end
```

2) Optimization using different penalty function approaches:

For all these methods, I have used *fminunc* with default BFGS update and numerical gradients was chosen. Also the tolerance on relative error of objective function and error in constraint function value was chosen as $\epsilon = 10^{-6}$ for all cases.

a) Exterior Penalty Method

The script for evaluating the pseudo-objective function is:

			SUMT Exterior	Penalty		
Р	1	2	3	4	5	6
rp	1	5	25	125	625	3125
	0	1.276757470185778	1.367313681237115	1.506572258345380	1.427422323989274	1.303404309890892
x ⁰	0	14.282241785987278	15.246682636432020	16.838371086757036	16.206891583266160	14.966946773637224
	0	-2.921714161272035	-2.644356099023211	-1.870468397277544	-0.802253513342547	0.119199519530206
	1.276757470185778	1.367313681237115	1.506572258345380	1.427422323989274	1.303404309890892	1.245616259723662
x*	14.282241785987278	15.246682636432020	16.838371086757036	16.206891583266160	14.966946773637224	14.388663156694799
	-2.921714161272035	-2.644356099023211	-1.870468397277544	-0.802253513342547	0.119199519530206	0.561694734918270
f(x*)	0.042441427986762	0.998187804502612	12.280830393731572	43.071049159105527	73.991792246489879	89.163085342838670
g1(x*)	-2.830272410557335	-3.101941043711345	-3.519716775036141	-3.282266971967823	-2.910212929672675	-2.736848779170986
g2(x*)	0.021405976148623	0.093850944989692	0.205257806676304	0.141937859191420	0.042723447912713	-0.003506992221070
g3(x*)	0.020160127570520	0.089048759745144	0.202740791911217	0.157635113090440	0.069067626688373	0.027761654049628
g4(x*)	-0.785280223248410	-0.905835329554002	-1.104796385844629	-1.025861447908270	-0.870868346704653	-0.798582894586850
g5(x*)	-1.292171416127204	-1.264435609902321	-1.187046839727754	-1.080225351334255	-0.988080048046979	-0.943830526508173
g6(x*)	-0.415657167745593	-0.471128780195358	-0.625906320544491	-0.839549297331491	-1.023839903906041	-1.112338946983654
g7(x*)	-0.982605869505924	-0.909661346819279	-0.650857147798434	-0.380495404354177	-0.258569839380015	-0.222185320500602
g8(x*)	0.977636117936188	0.883850303053359	0.551102047169415	0.203494091312514	0.046732650631447	-0.000047445070655
g9(x*)	0.978980601697539	0.891179580663644	0.578456062297739	0.240161390982396	0.080283680647589	0.029396406892983
No.						
or	28	11	12	12	11	16
inter						
exit-	1	1	1	1	1	1
flag	1	, 1 ,	1	1	, ± _%	1

			SUMT Exterior Per	nalty (contd.)		
Р	7	8	9	10	11	12
r _p	15625	78125	390625	1953125	9765625	48828125
	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662
x ⁰	14.388663156694799	14.086828912272756	14.017801197861015	14.003578018675936	14.000715961212642	14.000141871099446
	0.561694734918270	0.804461916983293	0.861374375049149	0.873170186707270	0.875546689456223	0.876023217302232
	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662	1.245616259723662
х*	14.086828912272756	14.017801197861015	14.003578018675936	14.000715961212642	14.000141871099446	14.000028148183382
	0.804461916983293	0.861374375049149	0.873170186707270	0.875546689456223	0.876023217302232	0.876117920663847
f(x*)	97.508790704715992	99.465946895373833	99.871598089342427	99.953324735102143	99.969707396335551	99.972968423565220
g1(x*)	-2.736848779170986	-2.736848779170986	-2.736848779170986	-2.736848779170986	-2.736848779170986	-2.736848779170986
g2(x*)	-0.003506992221070	-0.003506992221070	-0.003506992221070	-0.003506992221070	-0.003506992221070	-0.003506992221070
g3(x*)	0.006202065162340	0.001271514132930	0.000255572762567	0.000051140086617	0.000010133649960	0.000002010584527
g4(x*)	-0.760853614034094	-0.752225149732627	-0.750447252334492	-0.750089495151580	-0.750017733887431	-0.750003518522923
g5(x*)	-0.919553808301671	-0.913862562495085	-0.912682981329273	-0.912445331054378	-0.912397678269777	-0.912388207933615
g6(x*)	-1.160892383396658	-1.172274875009830	-1.174634037341454	-1.175109337891244	-1.175204643460446	-1.175223584132769
g7(x*)	-0.186597549678368	-0.178474966383863	-0.176801461345889	-0.176464711465342	-0.176397224231205	-0.176383791316146
g8(x*)	-0.045803150413527	-0.056246471792176	-0.058398121126714	-0.058831085258847	-0.058917854559879	-0.058935125450669
g9(x*)	0.006280001254589	0.001274791082862	0.000255738700570	0.000051180151172	0.000010241746917	0.000002055002479
No.						
or	11	9	6	10	7	6
inter						
exit-	ĺ	1	1	2	2	2
flag	T	, ,	1	2	2	2

∞	

	SUM	T Exterior Penalty (contd.)	
Р	13	14	15
r _p	244140625	1.220703125000000e+09	6.103515625000000e+09
	1.245616259723662	1.245616259723662	1.245616259723662
x^0	14.000028148183382	14.000028468800194	13.999945578745367
	0.876117920663847	0.876124113338654	0.876171322149313
	1.245616259723662	1.245616259723662	1.245616259723662
x *	14.000028468800194	13.999945578745367	13.999945706938167
	0.876124113338654	0.876171322149313	0.876171575563591
f(x*)	99.973292446196567	99.974543837296977	99.974558740329954
g1(x*)	-2.736848779170986	-2.736848779170986	-2.736848779170986
g2(x*)	-0.003506992221070	-0.003506992221070	-0.003506992221070
g3(x*)	0.000002033485728	-0.000003887232474	-0.000003878075845
g4(x*)	-0.750003558600024	-0.749993197343171	-0.749993213367271
g5(x*)	-0.912387588666135	-0.912382867785069	-0.912382842443641
g6(x*)	-1.175224822667731	-1.175234264429863	-1.175234315112718
g7(x*)	-0.176382456604978	-0.176377301906091	-0.176377240518085
g8(x*)	-0.058936841507885	-0.058943468977884	-0.058943547905320
g9(x*)	0.000000411554760	0.000000073690674	-0.00000010000120
No. or	2	3	1
inter		,	_
exit-	2	2	2
flag	_	1-	_

```
cr = 0.802815467599828m

b = 13.999945706938167m

\alpha = 0.876171575563591 degree
```

and Minimum Drag $D_i = 99.974558740329954N$

b) Interior Penalty Method

For this problem, It was observed that the Log-Barrier method worked better than the classical barrier. The script for evaluating the pseudo-objective function is:

```
1 function phi = hw1SUMTphi_Int(x,r_p)
2 % This function is the pseudo-objective function using interior
3 % penalty method.
4 % input: x: col vector of design variables
           r_p: penalty multiplier, x are the variables.
  % does not include constraint scaling parameters, c_j.
  % compute values of objective function and constraints at current x
  f = hw1SUMTfun(x);
q = hw1SUMTcon(x);
12 % Interior penalty function
  % classic
13
14 \% P = sum(-1./g);
16 % Log barrier
17 P=sum(-loq(-q));
19 phi = f + r_p * P;
20 end
```

Also, for Interior Penalty Method we need an initial feasible solution, I found out this using random function in matlab. The script for finding an initial feasible solution is:

```
1 %AAE:550 HW1 P2
2 % Rahul Deshmukh
3 % PUID: 0030004932
5 %script to find x0 for interior penalty function
6 \% x = [1/cr, b, a]
7 clc; clear all;
8 format long;
9 notfound=1;
10 Nmax=10^4; %maximum number of iterations for the while loop
i i=0;%counter
12 while notfound && i≤Nmax
13
       % x = a + (b-a) *x_rand;
       %pick random value for cr,b,a conforming their bounds
14
      x1=0.8 + (3-0.8)*rand(1);%cr
15
       x2 = 8 + (14-8) * rand(1); %b
16
```

```
x3 = -5 + (10+5) * rand(1); %a
       if x1 \neq 0
18
          x1=1/x1;%1/cr
19
          x=[x1;x2;x3];
          g=hw1SUMTcon(x);
21
          %check if all are negative
22
          sat = find(g \le 0); %satisfied constraint
23
          if length(sat) == length(g)
              notfound=0;
25
              display(x);
          end
27
       end
       i=i+1;
29
30 end
31 i-1
32 % {
33 result
x0 = [0.475058013560474;...
  13.235315387885350;...
      9.002524127606579];
37 i=4
38 %}
```

	SUMT Interior Penalty									
Р	1,	2	3	4	5	6				
r _p	1	0.2000000000000000	0.040000000000000	0.008000000000000	0.001600000000000	3.200000000000000e- 04				
	0.475058013560474	1.242051716019787	1.21034451759675	1.211402342892526	1.211402819590726	1.211402860049516				
x ⁰	13.235315387885350	13.441551104374039	13.985678615012258	13.997185781437357	13.999439081569248	13.999886801893286				
	9.002524127606579	1.207219398288423	0.888073797550397	0.878480256183915	0.876607277522905	0.876235124597706				
	1.242051716019787	1.210344517596750	1.211402342892526	1.211402819590726	1.211402860049516	1.211402860049516				
x*	13.441551104374039	13.985678615012258	13.997185781437357	13.999439081569248	13.999886801893286	13.999886801893286				
	1.207219398288423	0.888073797550397	0.878480256183915	0.876607277522905	0.876235124597706	0.876235124597706				
f(x*)	1.085725163937203e+02	1.003845543265858e+02	1.000542248860218e+02	99.989798142317724	99.976995576143040	99.976995576143040				
g1(x*)	-2.726155148059362	-2.631033552790250	-2.634207028677577	-2.634208458772178	-2.634208580148548	-2.634208580148548				
g2(x*)	-0.006358627184170	-0.031724385922600	-0.030878125685979	-0.030877744327419	-0.030877711960387	-0.030877711960387				
g3(x*)	-0.039889206830426	-0.001022956070553	-0.000201015611617	-0.000040065602197	-0.000008085579051	-0.000008085579051				
g4(x*)	-0.680193888046755	-0.748209826876532	-0.749648222679670	-0.749929885196156	-0.749985850236661	-0.749985850236661				
g5(x*)	-0.879278060171158	-0.911192620244960	-0.912151974381608	-0.912339272247709	-0.912376487540229	-0.912376487540229				
g6(x*)	-1.241443879657685	-1.177614759510079	-1.175696051236783	-1.175321455504581	-1.175247024919541	-1.175247024919541				
g7(x*)	-0.144147441149831	-0.198060182424997	-0.198680986541584	-0.198938704839049	-0.198989963161419	-0.198989963161419				
g8(x*)	-0.100381861378789	-0.031065479739289	-0.030267303017964	-0.029935950921224	-0.029870047363890	-0.029870047363890				
g9(x*)	-0.000548728235836	-0.001027242204078	-0.000201145923403	-0.000040033071945	-0.000007989634798	-0.000007989634798				
No.										
or	45	28	16	8	8	1				
inter										
exit-	0	5	1	2	2	2				
flag		,	1	۷.	2					

```
cr = 0.825489218309362m b = 13.999886801893286m \alpha = 0.876235124597706degree
```

and Minimum Drag $D_i = 99.976995576143040N$

c) Extended Linear Interior Penalty Method The script for evaluating the pseudo-objective function is:

```
1 function phi = hwlSUMTphi_LinExt(x,r_p,tr_e)
2 % This function is the pseudo-objective function using Linear
3 % extended interior penalty method.
4 % input: x: col vector of design variables
          r_p: penalty multiplier
         tr_e: transition eps
7 % This does not include constraint scaling parameters, c_j.
  % compute values of objective function and constraints at current x
10 f = hw1SUMTfun(x);
g = hw1SUMTcon(x);
13 % Linear extended Interior Penalty function
15 for i=2:length(g)
      if g(i) ≤tr_e
16
           g_hat=-1/g(i);
17
18
           g_hat = - (2*tr_e-g(i))/tr_e^2;
19
      end
20
       P=P+g_hat;
21
22 end
_{24} phi = f + r_p * P;
25 end
```

			SUMT Linear Extended	Interior Penalty		
Р	1	2	3	4	5	6
rp	25.470164726578144	5.094032945315629	1.018806589063126	0.203761317812625	0.040752263562525	0.008150452712505
	0.475058013560474	0.834131139714169	1.000652394693517	1.115365666879351	1.170535609943452	1.194427876487765
x ⁰	13.235315387885350	11.963258962706560	12.236051713002341	13.021288169458897	13.539475377703932	13.797706316840070
	9.002524127606579	3.941625283990999	2.853394922611828	1.821546258167441	1.285556001618355	1.049162277714346
	0.834131139714169	1.000652394693517	1.115365666879351	1.170535609943452	1.194427876487765	1.204528077550375
x*	11.963258962706560	12.236051713002341	13.021288169458897	13.539475377703932	13.797706316840070	13.910737956511738
	3.941625283990999	2.853394922611828	1.821546258167441	1.285556001618355	1.049162277714346	0.951239741438898
f(x*)	2.341273493200837e+02	1.741522415104640e+02	1.338170291786038e+02	1.143006844268324e+02	1.059680557512164e+02	1.025646990423054e+02
g1(x*)	-1.502393419142507	-2.001957184080550	-2.346097000638052	-2.511606829830356	-2.583283629463295	-2.613584232651124
g2(x*)	-0.332695088228665	-0.199478084245187	-0.107707466496520	-0.063571512045238	-0.044457698809788	-0.036377537959700
g3(x*)	-0.145481502663817	-0.125996306214119	-0.069907987895793	-0.032894615878291	-0.014449548797138	-0.006375860249162
g4(x*)	-0.495407370338320	-0.529506464125293	-0.627661021182362	-0.692434422212991	-0.724713289605009	-0.738842244563967
g5(x*)	-0.605837471600900	-0.714660507738817	-0.817845374183256	-0.871444399838164	-0.895083772228565	-0.904876025856110
g6(x*)	-1.788325056798200	-1.570678984522365	-1.364309251633488	-1.257111200323671	-1.209832455542869	-1.190247948287779
g7(x*)	-0.155966408891668	-0.126732905568099	-0.146757879358040	-0.172423083865238	-0.186894804084932	-0.193294151858642
g8(x*)	-0.085186045710712	-0.122771978555302	-0.097025583682521	-0.064027463601837	-0.045420966176516	-0.037193233324603
g9(x*)	-0.307689036998923	-0.153545536283816	-0.076065102486295	-0.034082425370034	-0.014666412977479	-0.006417151777776
No.						
or	30	21	15	12	11	12
inter						
exit-	1	1	1	2	2	2
flag	,1	1	,1	2		2

	SUMT Linear Extended Interior Penalty (contd.)										
Р	7	8	9	10	11	12					
r _p	0.001630090542501	3.260181085002002e-04	6.520362170004005e-05	1.304072434000801e-05	2.608144868001602e-06	5.216289736003204e- 07					
	1.204528077550375	1.208901119373016	1.210840470509089	1.210847079236560	1.210847950693696	1.210848048770953					
x ⁰	13.910737956511738	13.960166023280568	13.982165326219759	13.992015030592004	13.996426312711483	13.998400279770372					
	0.951239741438898	0.909416823572248	0.890992681080089	0.882781309378108	0.879111128648261	0.877469908221259					
	1.208901119373016	1.210840470509089	1.210847079236560	1.210847950693696	1.210848048770953	1.210848059661707					
x*	13.960166023280568	13.982165326219759	13.992015030592004	13.996426312711483	13.998400279770372	13.999285769555806					
	0.909416823572248	0.890992681080089	0.882781309378108	0.879111128648261	0.877469908221259	0.876734896921222					
f(x*)	1.011197365889512e+02	1.004848299247179e+02	1.002021856974592e+02	1.000759162584386e+02	1.000194578080266e+02	99.994191487556009					
g1(x*)	-2.626703358119049	-2.632521411527267	-2.632541237709678	-2.632543852081089	-2.632544146312859	-2.632544178985120					
g2(x*)	-0.032879104501587	-0.031327623592729	-0.031322336610752	-0.031321639445043	-0.031321560983238	-0.031321552270635					
g3(x*)	-0.002845284051388	-0.001273905270017	-0.000570354957714	-0.000255263377751	-0.000114265730688	-0.000051016460300					
g4(x*)	-0.745020752910071	-0.747770665777470	-0.749001878824000	-0.749553289088935	-0.749800034971297	-0.749910721194476					
g5(x*)	-0.909058317642775	-0.910900731891991	-0.911721869062189	-0.912088887135174	-0.912253009177874	-0.912326510307878					
g6(x*)	-1.181883364714450	-1.178198536216018	-1.176556261875622	-1.175822225729652	-1.175493981644252	-1.175346979384244					
g7(x*)	-0.196088822665686	-0.197330979336961	-0.198456275204993	-0.198960889175684	-0.199186811785869	-0.199287959304693					
g8(x*)	-0.033600085144118	-0.032003026566764	-0.030556217593580	-0.029907428202692	-0.029616956275312	-0.029486909465395					
g9(x*)	-0.002853403964909	-0.001275497992858	-0.000570663546899	-0.000255284465680	-0.000114124394406	-0.000051050701659					
No.											
or	14	18	11	9	7	9					
inter											
exit-	2	1	2	2	2	2					
flag	2	1	2	2	2	2					

	SUMT Linear Extended Interior Penalty (contd.)										
P	13	14	15	16	17	18					
	1.043257947200641e-	2.086515894401282e-	4.173031788802563e-	8.346063577605127e-	1.669212715521025e-	3.338425431042051e-					
r _p	07	08	09	10	10	11					
	1.210848059661707	.210848060519287	1.210848060610322	1.210848060613061	1.210848060613061	1.210848060613061					
x ⁰	13.999285769555806	13.999680238393443	13.999856141842171	13.999935357586557	13.999933541764523	13.999933117801678					
	0.876734896921222	0.876407262920070	0.876260686095742	0.876195182975888	0.876186705813254	0.876183349749345					
	.210848060519287	1.210848060610322	.210848060613061	1.210848060613061	1.210848060613061	1.210848060613061					
x*	13.999680238393443	13.999856141842171	13.999935357586557	13.999933541764523	13.999933117801678	13.999932794893834					
	.876407262920070	0.876260686095742	.876195182975888	0.876186705813254	0.876183349749345	0.876182044674636					
f(x*)	99.982924965287467	99.977876251023361	99.975628700368688	99.975165477381864	99.974986302163842	99.974914369053806					
g1(x*)	-2.632544181557862	-2.632544181830967	-2.632544181839183	-2.632544181839183	-2.632544181839183	-2.632544181839183					
g2(x*)	-0.031321551584570	-0.031321551511742	-0.031321551509551	-0.031321551509551	-0.031321551509551	-0.031321551509551					
g3(x*)	-0.000022840114754	-0.000010275582702	-0.000004617315246	-0.000004747016820	-0.000004777299880	-0.000004800364726					
g4(x*)	-0.749960029799180	-0.749982017730271	-0.749991919698320	-0.749991692720565	-0.749991639725210	-0.749991599361729					
g5(x*)	-0.912359273707993	-0.912373931390426	-0.912380481702411	-0.912381329418675	-0.912381665025065	-0.912381795532536					
g6(x*)	-1.175281452584014	-1.175252137219148	-1.175239036595177	-1.175237341162651	-1.175236669949869	-1.175236408934927					
g7(x*)	-0.199333068828654	-0.199353284168184	-0.199362283678222	-0.199364138501386	-0.199364855950407	-0.199365143983386					
g8(x*)	-0.029428911506017	-0.029402920355192	-0.029391349556573	-0.029388964783933	-0.029388042349477	-0.029387672021360					
g9(x*)	-0.000022887989043	-0.000010203999392	-0.000004621901222	-0.000002175505821	-0.000001249121595	-0.000000866300566					
No.											
or	7	9	7	2	2	1					
inter											
exit-	2	2	2	2	2	2					
flag	-	-	-			~					

```
cr = 0.825867449871203m

b = 13.999932794893834m

\alpha = 0.876182044674636degree
```

and Minimum Drag $D_i = 99.974914369053806N$

d) Augmented Lagrange Multiplier Method The script for evaluating the pseudo-objective function is:

```
1 % AAE:550 HW1 P2
2 % Rahul Deshmukh
3 % PUID: 0030004932
5 function A = hw1SUMTalm(x,r_p,lambda)
6 % This function is the pseudo-objective function using the ALM.
7 %Input: x: column vector of design variables
          r_p: penalty multiplier
          lambda: col vector, lagrange multipliers[ineq, eq]
11 % compute values of the objective function and constraints at the ...
      current
12 % value of x
13 f = hw1SUMTfun(x);
g = hw1SUMTcon(x); %inequality constraints column vector of size len_g
15 % h = hw1SUMTcon_heq(x);% equaltiy constraints column vector of ...
      size len_h
17 len_g=length(g);
18 % Fletcher's substitution only for ineqaluti constraints
19 psi = max(g, -lambda(1:len_g) / (2 * r_p)); % col vec size len_g
20
  % Augmented Lagrangian function
22 A = f + (lambda(1:len_g))' * psi + r_p * ((psi')*psi);%+...
         (lambda(len_q+1:end))'*h+r_p*(h'*h);
24 end
```

			ALM			
Р	1	2	3	4	5	6
r _p	1	5	25	125	625	3125
	0.350113005416948	1.276756989556942	1.415339832204870	1.577158568494572	1.408995023308075	1.265605409167405
\mathbf{x}^{0}	8.217596212161899	14.282393517682941	15.759311463018443	17.658668240467161	16.087967822291439	14.591070975135302
	-2.530475785010287	-2.921714790819759	-2.577782321399998	-1.689690306605792	-0.481294436641496	0.444008032949034
	1.276756989556942	1.415339832204870	1.577158568494572	1.408995023308075	1.265605409167405	1.237628759681719
x *	14.282393517682941	15.759311463018443	17.658668240467161	16.087967822291439	14.591070975135302	14.185728965995825
	-2.921714790819759	-2.577782321399998	-1.689690306605792	-0.481294436641496	0.444008032949034	0.727283434437060
f(x*)	0.042441647159707	1.503066214958353	18.175845003904250	55.742698476949712	85.730125514583094	94.911527329259371
g1(x*)	-2.830270968670827	-3.246019496614610	-3.731475705483716	-3.226985069924226	-2.796816227502215	-2.712886279045156
g2(x*)	0.021405591645554	0.132271865763896	0.261726854795657	0.127196018646460	0.012484327333924	-0.009896992254625
g3(x*)	0.020170965548781	0.125665104501317	0.261333445747654	0.149140558735103	0.042219355366807	0.013266354713988
g4(x*)	-0.785299189710368	-0.969913932877305	-1.207333530058395	-1.010995977786430	-0.823883871891913	-0.773216120749478
g5(x*)	-1.292171479081976	-1.257778232140000	-1.168969030660579	-1.048129443664150	-0.955599196705097	-0.927271656556294
g6(x*)	-0.415657041836048	-0.484443535720000	-0.662061938678842	-0.903741112671701	-1.088801606589807	-1.145456686887412
g7(x*)	-0.982605831141177	-0.885250947470214	-0.555346221114698	-0.304330799695254	-0.225066608955370	-0.202649636798318
g8(x*)	0.977636068610084	0.852465503890276	0.428302284290326	0.105568171036755	0.003657068656904	-0.025164752687877
g9(x*)	0.978980324117700	0.861975812157810	0.462183456018077	0.141927293274670	0.034876690638764	0.012720671491172
No. or	1.4	11	10	12	44	15
inter	14	11	10	12	11	15
exit-	1	1	1	1	1	2
flag	1	1	1	1	.1 .	Ζ.

١	. •
L	\sim
1	\mathbf{x}
•	,

	ALM (contd.)				
P 7 8 9		9	10		
rp	15625	78125	390625	1953125	
	1.237628759681719	1.237628759681719	1.237628759681719	1.237628759681719	
\mathbf{x}^{0}	14.185728965995825	14.005500456065775	14.000029126364613	13.999999657710770	
	0.727283434437060	0.872171151912445	0.876120282958519	0.876141650918566	
	1.237628759681719	1.237628759681719	1.237628759681719	1.237628759681719	
x*	14.005500456065775	14.000029126364613	13.999999657710770	13.999999659075149	
	0.872171151912445	0.876120282958519	0.876141650918566	0.876141664870233	
f(x*)	99.847492383823834	99.973104250604877	99.973785629943563	99.973786369114805	
g1(x*)	-2.712886279045156	-2.712886279045156	-2.712886279045156	-2.712886279045156	
g2(x*)	-0.009896992254625	-0.009896992254625	-0.009896992254625	-0.009896992254625	
g3(x*)	0.000392889718984	0.000002080454615	-0.000000024449231	-0.000000024351775	
g4(x*)	-0.750687557008222	-0.750003640795577	-0.749999957213846	-0.749999957384394	
g5(x*)	-0.912782884808755	-0.912387971704148	-0.912385834908143	-0.912385833512977	
g6(x*)	-1.174434230382489	-1.175224056591704	-1.175228330183713	-1.175228332974047	
g7(x*)	-0.182178927944464	-0.181664664939527	-0.181661876210281	-0.181661873185027	
g8(x*)	-0.051484235499974	-0.052145430792037	-0.052149016301068	-0.052149020190679	
g9(x*)	0.000239168407692	0.000001305815426	0.000000002916323	-0.000000000877958	
No. or	11	4	4	1	
inter	11			1.	
exit-	1	2	5	F.	
flag	1	۷	5	5	

cr = 0.807996737452328m

b = 13.999999659075149m

 $\alpha = 0.876141664870233 degree$

and Minimum Drag $D_i = 99.973786369114805N$

3) Discussion

Comparison Table for all SUMT methods used:

Method	Exterior	Interior	Extended	ALM
	Penalty	Penalty	Linear Penalty	
fminunc	15	6	18	10
calls				
iters	145	106	197	93
cr (m)	0.802815467599828	0.825489218309362	0.825867449871203	0.807996737452328
b (m)	13.999945706938167	13.999886801893286	13.999932794893834	13.999999659075149
$\alpha(\text{Deg})$	0.876171322149313	0.876235124597706	0.876182044674636	0.876141664870233
$D_i(N)$	99.9745587403299	99.976995576143	99.9749143690538	99.9737863691148

From the above comparison table, We can see that out of all the SUMT methods, Augmented Lagrange Multiplier and Interior Penalty method has the minimum number of iterations and fminunc calls. However, with ALM we have a lower value of the induced Drag.

When comparing the final solution, we can see that for ALM we have the lowest value of induced Drag. Also, the values of the parameters b and α for all the methods are quite close, but not for c_r . Further, both exterior penalty and ALM gave us a value of c_r 0.81 and correspondingly have the lowest values of the induced drag.

In terms of ease of implementation of the pseudo objective function, the Exterior Penalty method was the easiest.

For this problem, I found that ALM method is the best tool at hand, even though constructing the pseudo function for ALM was difficult but that was the only work required. However, for Interior Penalty method, I had to write out a script to figure out a feasible initial solution and then try out classic vs log barrier performance, this required more effort in my opinion and even then we don't have a better solution (in fact it has the highest value of induced drag).

Furthermore, Extended Linear Penalty does help in giving a better solution than the interior penalty method but it turned out to be the most costly method.