Hierarchical models in Stan

Daniel Lee
Columbia University, Statistics Department
bearlee@alum.mit.edu

Stan: Help

- User Guide: http://mc-stan.org/manual.html
- Homepage: http://mc-stan.org
- Stan Users group: https://groups.google.com/d/forum/stan-users

Motivation for Stan

- · Fit rich Bayesian statistical models
- · The Process
 - 1. Create a statistical model
 - 2. Perform inference on the model
 - 3. Evaluate
- Difficulty with models of interest in existing tools

Motivation (cont.)

- · Usability
 - general purpose, clear modeling language, integration
- · Scalability
 - model complexity, number of parameters, data size
- Efficiency
 - high effective sample sizes, fast iterations, low memory
- Robustness
 - model structure (i.e. posterior geometry), numerical routines

What is Stan?

- · Statistical model specification language
 - high level, probabilistic programming language
 - user specifies statistical model
 - easy to create statistical models
- 4 cross-platform users interfaces
 - CmdStan command line
 - RStan R integration
 - PyStan Python integration
 - MStan Matlab integration (user contributed)

Inference

- Hamiltonian Monte Carlo (HMC)
 - sample parameters on unconstrained space
 - → transform + Jacobian adjustment
 - gradients of the model wrt parameters
 - → automatic differentiation
 - sensitive to tuning parameters → No-U-Turn Sampler
- No-U-Turn Sampler (NUTS)
 - warmup: estimates mass matrix and step size
 - sampling: adapts number of steps
 - maintains detailed balance
- Optimization
 - BFGS, Newton's method

Stan to Scientists

- · Flexible probabilistic language, language still growing
- Focus on science: the modeling and assumptions
 - access to multiple algorithms (default is pretty good)
 - faster and less error prone than implementing from scratch
 - efficient implementation
- · Lots of (free) modeling help on users list
- · Responsive developers, continued support for Stan
- Not just for inference
 - fast forward sampling; lots of distributions
 - gradients for arbitrary functions

The Stan Language

- · Data Types
 - basic: real, int, vector, row_vector, matrix
 - constrained: simplex, unit_vector, ordered, positive_ordered, corr_matrix, cov_matrix
 - arrays

Bounded variables

- applies to int, real, and matrix types
- lower example: real<lower=0> sigma;
- upper example: real<upper=100> x;

The Stan Language

- · Program Blocks
 - data (optional)
 - transformed data (optional)
 - parameters (optional)
 - transformed parameters (optional)
 - model
 - generated quantities (optional)

Stan Example: basic structure

```
data {
  int<lower=0> N:
  vector[N] y;
  vector[N] x;
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
model {
  alpha \sim normal(0,10);
  beta \sim normal(0,10);
  sigma \sim cauchy(0,5);
  for (n in 1:N)
    v[n] \sim normal(alpha + beta * x[n], sigma);
```

Stan Example: vectorization

```
data {
  int<lower=0> N:
  vector[N] y;
  vector[N] x;
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
model {
  alpha \sim normal(0,10);
  beta \sim normal(0,10);
  sigma \sim cauchy(0,5);
  y \sim normal(alpha + beta * x, sigma);
```

Eight Schools: hierarchical example

- Educational Testing Service study to analyze effect of coaching
- · SAT-V in eight high schools
- No prior reason to believe any program was:
 - more effective than the others
 - more similar to others

Stan: Eight Schools Data

School

	Treatment	Treatment
	Effect	Effect
Α	28	15
В	8	10
C	-3	16
D	7	11

18

12

Estimated Standard Error of

10

18

Eight Schools: Model 0

· Make sure data can be read

Eight Schools: No Pooling

· Each school treated independently

Eight Schools: Complete Pooling

· All schools lumped together

Eight Schools: Partial Pooling

• Fit hyperparameter μ , but set $\tau = 25$

```
data {
 int<lower=0> J:
                          // # schools
 real y[J];
                         // estimated treatment
  real<lower=0> sigma[J]; // std err of effect
 real<lower=0> tau: // variance between schools
}
parameters {
                          // school effect
 real theta[J];
 real mu;
                           // mean for schools
model {
 theta ~ normal(mu, tau);
 y ~ normal(theta, sigma);
```

Eight Schools: Hierarchical Model

· Estimate hyperparameters μ and σ

```
data {
 int<lower=0> J:
                          // # schools
 real y[J];
                    // estimated treatment
 real<lower=0> sigma[]]; // std err of effect
parameters {
  real theta[]];
                          // school effect
 real mu;
                          // mean for schools
 real<lower=0> tau:
                    // variance between schools
model {
 theta ~ normal(mu, tau);
 y ~ normal(theta, sigma);
```

Eight Schools: Summary

Figure 5.8 Conditional posterior means of treatment effects, $E(\theta_j|\tau,y)$, as functions of the betweenschool standard deviation τ , for the educational testing example. The line for school C crosses the lines for E and F because C has a higher measurement error (see Table 5.2) and its estimate is therefore shrunk more strongly toward the overall mean in the Bayesian analysis.

Stan's Near Future (2014)

- · L-BFGS optimization
- · User specified functions
- Differential equations
- · Approximate inference
 - maximum marginal likelihood
 - expectation propagation
- · More efficient automatic differentiation
- · Refactoring, testing, adding distributions, etc.

Stan's Future

- · Riemann Manifold HMC
 - needs efficient implementation of Hessians
 - needs rewrite of current auto-diff implementation
- · Variational Bayesian Inference
 - non-conjugate
 - black-box
- · Stocastic Variational Bayes
 - needs stats / machine learning research
 - data partitioning

Limitations

- · no discrete parameters (can marginalize)
- no implicit missing data (code as parameters)
- not parallelized within chains
- · language limited relative to black boxes (cf., emcee)
- · limited data types and constraints
- C++ template code is complex for user extension
- sampling slow, nonscalable; optimization brittle or approx

How Stan Got its Name

- · "Stan" is not an acronym; Gelman mashed up
 - 1. Eminem song about a stalker fan, and
 - 2. Stanislaw Ulam (1909-1984), co-inventor of Monte Carlo method (and hydrogen bomb).

Ulam holding the Fermiac, Enrico Fermi's physical Monte Carlo simulator for random neutron diffusion