Elliptic Curves, Bilinear Pairings & Multi-linear Maps

Ratna Dutta

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

November 9-13, 2020

Outline

- Brief review of
 - Elliptic curves
 - Cryptographic bilinear pairings
 - Cryptographic multilinear Maps

Why Elliptic Curve Cryptosystems?

- The points on an elliptic curve E over a finite field K form an abelian group.
- The addition operation of this abelian group involves a few arithmetic operations in the underlying field K, and is easy to implement, both in hardware and in software.
- The DLP in this group is believed to be very difficult, in particular, harder than the DLP in finite fields of the same size as K.

- The main motivation in studying Elliptic Curve Cryptosystems (ECC) is there is no known sub-exponential algorithm (like Index Calculus Method) to solve the DLP on a general elliptic curve.
 - The standard cryptographic protocols all have analogues in the elliptic curve case
 - potentially providing equivalent security, but with smaller key sizes and hence smaller memory and processor requirements.
 - This makes them ideal for use in smart cards and other environments where resources such as storage, time, or power are at a premium.

- Another potential advantage of using elliptic curves is the great diversity of elliptic curves available to provide the groups.
 - Each user may select a different curve E, even though all users use the same underlying field K.
 - Consequently, all users require the same hardware for performing the field arithmetic, and the curve E can be changed periodically for extra security.

- Finally, **Pairing Based Cryptography** (PBC)
 - A new idea which facilitates novel and attractive cryptographic constructions
 - And good solutions to some old problems!
- Two things are needed to do PBC:
 - Efficient algorithms for pairing implementations
 - Suitable elliptic curves
- Both are available and the technology is viable.

Elliptic Curves

- K be a field and \overline{K} its algebraic closure. (If $K = F_q$, then $\overline{K} = \bigcup_{m \ge 1} F_{q^m}$.)
- Weierstrass equation:

$$E/K: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

where $a_1, a_2, a_3, a_4, a_6 \in K$ with no singular point.

• The set of K-rational points

$$E(K) = \{(x, y) \in K \times K\} \cup \{\mathcal{O}\}\$$

where \mathcal{O} is called the identity (also point at infinity).

- Simplified Weierstrass equation:
 - 1. $\operatorname{char}(K) \neq 2, 3$: $y^2 = x^3 + ax + b, \ a, b \in K, 4a^3 + 27b^2 \neq 0.$
 - 2. char(K) = 2:

$$y^2 + xy = x^3 + ax^2 + b$$
, $a, b \in K, b \neq 0$ (non-supersingular)

or $y^2 + cy = x^3 + ax + b$, $a, b, c \in K, c \neq 0$ (supersingular)

3. char(K) = 3:

 $y^2 = x^3 + ax^2 + bx + c$, $a, b, c \in K$ (cubic on the right has no multiple roots)

Group Law

- $E = E(\overline{K})$ given by Weierstrass equation.
- For all $P, Q \in E$

(i)
$$\mathcal{O} + P = P + \mathcal{O} = P$$
 (so \mathcal{O} serves as the identity)

(ii)
$$-\mathcal{O} = \mathcal{O}$$

(iii) if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, then

$$-P = (x_1, -y_1 - a_1x_1 - a_3)$$

$$(P \text{ and } -P \text{ are the only points on } E \text{ with }$$

x-co-ordinates equal to x_1)

(iv) if
$$Q = -P$$
, then $P + Q = \mathcal{O}$

(v) if $P \neq \mathcal{O}, Q \neq \mathcal{O}, Q \neq -P$, then P + Q = -R, where R is the third point of intersection of the line PQ (tangent PQ if P = Q) with the curve E.

• \mathcal{O} is called point at infinity (if Q = -P, then $P + Q = \mathcal{O}$).

Adding two points P, Q on an elliptic curve

• Theorem:

- -(E,+) is an abelian group with identity element \mathcal{O} .
- If E is defined over K, then E(K) is a subgroup of E.

Addition Formulae

 \bullet E/K: Weierstrass equation

- if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, then $-P = (x_1, -y_1 - a_1x_1 - a_3)$.

- if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, $Q = (x_2, y_2) \neq \mathcal{O}$, $P \neq -Q$, then $P + Q = (x_3, y_3)$ with

$$x_3 = \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$$

$$y_3 = -(\lambda + a_1)x_3 - \beta - a_3$$

where

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q\\ \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} & \text{if } P = Q \end{cases}$$

and $\beta = y_1 - \lambda x_1$.

•
$$E/K : y^2 = x^3 + ax + b$$

- if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, then $-P = (x_1, -y_1)$

- if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, $Q = (x_2, y_2) \neq \mathcal{O}$, $P \neq -Q$, then $P + Q = (x_3, y_3)$ with

$$x_3 = \lambda^2 - x_1 - x_2,$$

$$y_3 = \lambda(x_1 - x_3) - y_1$$

where

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q\\ \frac{3x_1^2 + a}{2x} & \text{if } P = Q \end{cases}$$

•
$$E/K: y^2 + xy = x^3 + ax^2 + b$$
 (non-supersingular)

$$- \text{ if } P = (x_1, y_1) \neq \mathcal{O}, \text{ then } -P = (x_1, y_1 + x_1)$$

$$- \text{ if } P = (x_1, y_1) \neq \mathcal{O}, Q = (x_2, y_2) \neq \mathcal{O}, P \neq -Q, \text{ then}$$

 $P + Q = (x_3, y_3)$ with

$$x_3 = \begin{cases} \left(\frac{y_1 + y_2}{x_1 + x_2}\right)^2 + \frac{y_1 + y_2}{x_1 + x_2} + x_1 + x_2 + a & \text{if } P \neq Q \\ x_1^2 + \frac{b}{x_1^2} & & \text{if } P = Q \end{cases}$$

and

$$y_3 = \begin{cases} \left(\frac{y_1 + y_2}{x_1 + x_2}\right)(x_1 + x_3) + x_3 + y_1 & \text{if } P \neq Q \\ x_1^2 + \left(x_1 + \frac{y_1}{x_1}\right)x_3 + x_3 & \text{if } P = Q \end{cases}$$

•
$$E/K: y^2 + cy = x^3 + ax + b$$
 (supersingular)

$$- \text{ if } P = (x_1, y_1) \neq \mathcal{O}, \text{ then } -P = (x_1, y_1 + c)$$

- if
$$P = (x_1, y_1) \neq \mathcal{O}$$
, $Q = (x_2, y_2) \neq \mathcal{O}$, $P \neq -Q$, then $P + Q = (x_3, y_3)$ with

$$x_3 = \begin{cases} \left(\frac{y_1 + y_2}{x_1 + x_2}\right)^2 + x_1 + x_2 & \text{if } P \neq Q\\ \frac{x_1^4 + a^2}{c^2} & \text{if } P = Q \end{cases}$$

and

$$y_3 = \begin{cases} \left(\frac{y_1 + y_2}{x_1 + x_2}\right)(x_1 + x_3) + y_1 + a_3 & \text{if } P \neq Q \\ \left(\frac{x_1^2 + a}{c}\right)(x_1 + x_3) + y_1 + c & \text{if } P = Q \end{cases}$$

Example: Point counting

- \bullet $E/Z_{11}: y^2 = x^3 + x + 6$
- Quadratic residue modulo p: Let p be an odd prime and x be an integer, $1 \le x \le p-1$. x is defined to be a quadratic residue or square modulo p if the congruence

$$y^2 \equiv x \pmod{p}$$

has a solution $y \in \mathbb{Z}_p$.

• Example: $QR_{11} = \{1, 3, 4, 5, 9\}.$

x	$x^3 + x + 6 \bmod 11$	quadratic residue?	y
0	6	no	-
1	6	no	_
2	6	yes	4,7
3	6	yes	5,6
4	6	no	_
5	6	yes	2,9
6	6	no	_
7	6	yes	2,9
8	6	yes	3,8
9	6	no	_
10	6	yes	2,9

- E/Z_{11} has 13 points on it including \mathcal{O}
- We take a point $\alpha = (2,7)$ and compute the power of α (which we will write as multiples of, since the group operation is additive).
- To compute $2\alpha = (2,7) + (2,7)$, we use the point doubling (Tangent law) and get $2\alpha = (5,2)$.
- To compute $3\alpha = 2\alpha + \alpha = (5, 2) + (2, 7)$, we use the point addition (Chord law) and get $3\alpha = (8, 3)$.

$$\begin{array}{|c|c|c|c|c|} \alpha = (2,7) & 2\alpha = (5,2) & 3\alpha = (8,3) \\ 4\alpha = (10,2) & 5\alpha = (3,6) & 6\alpha = (7,9) \\ 7\alpha = (7,2) & 8\alpha = (3,5) & 9\alpha = (10,9) \\ 10\alpha = (8,8) & 11\alpha = (5,9) & 12\alpha = (2,4) \end{array}$$

- $\alpha = (2,7)$ is a primitive element.
- We can implement ElGamal encryption scheme using elliptic curve group $G = \langle \alpha \rangle$ with operation +

Group Structure

- E/F_q , $q=p^m$, p is prime, char (F_q) .
- $\#E(F_q)$: number of points on $E(F_q)$.
- $t = q + 1 \#E(F_q)$
- **Theorem** (Hasse, conjectured by E. Artin):

(i)
$$\phi \circ \phi - [t] \circ \phi + [q] = \mathcal{O}$$
 and

(ii)
$$|t| \le 2\sqrt{q}$$

where $[m]: P \to mP$ and $\phi: E \to E$ is the Frobenius endomorphism on E defined by

 $\phi(a,b)=(a^q,b^q), t \text{ is the trace of the Frobenius}$

endomorphism.

• **Theorem** (Schoof's Algorithm):

 $\#E(F_q)$ can be computed in polynomial time.

• **Theorem** (Weil, proved by Hasse):

Let
$$t = q + 1 - \#E(F_q)$$
. Then $\#E(F_{q^k}) = q^k + 1 - \alpha^k - \beta^k$, where α, β are complex numbers determined from the factorization of $1 - tT + qT^2 = (1 - \alpha T)(1 - \beta T)$.

• **Theorem** (Fundamental theorem of abelian groups):

$$E(F_q) \cong Z_{n_1} \oplus Z_{n_2}$$
, where $n_2|n_1$ and $n_2|q-1$.
Moreover, $E(F_q)$ is cyclic if and only if $n_2 = 1$.

• Theorem:

If
$$gcd(n,q) = 1$$
, then $E[n] \cong Z_n \oplus Z_n$ where $E[n] = \{P \in E | nP = \mathcal{O}\}$, set of all n-torsion points.

Supersingular Elliptic Curve

- E/F_q is supersingular if p|t where $t = q + 1 \#E(F_q), q = p^m, p$ is the char (F_q) , prime.
- **Theorem** (Waterhouse):

 E/F_q is supersingular if and only if $t^2 = 0, q, 2q, 3q$ or 4q.

• Untill constructive applications of pairings were found, from 2000, supersingular curves were considered bad for cryptography (MOV attack)

• **Theorem** (Schoof):

Let E/F_q be a supersingular elliptic curve with $t = q + 1 - \#E(F_q)$. Then

- 1. if $t^2 = q$, 2q or 3q, then $E(F_q)$ is cyclic.
- 2. if $t^2 = 4q$ and $t = 2\sqrt{q}$, then $E(F_q) \cong Z_{\sqrt{q}-1} \oplus Z_{\sqrt{q}-1}$
- 3. if $t^2 = 4q$ and $t = -2\sqrt{q}$, then $E(F_q) \cong Z_{\sqrt{q}+1} \oplus Z_{\sqrt{q}+1}$
- 4. if t = 0 and $q \neq 3 \mod 4$, then $E(F_q)$ is cyclic
- 5. if t = 0 and $q = 3 \mod 4$, then $E(F_q) \cong Z_{\frac{q+1}{2}} \oplus Z_2$.

What's a Pairing?

• Pairings are functions which map a pair of elliptic curve points to an element of a multiplicative group of an underlying finite field.

 $\hat{e}(P,Q)$ where P and Q are points on an elliptic curve.

• It has the property of bilinieaity.

$$\hat{e}(aP, bQ) = \hat{e}(bP, aQ) = \hat{e}(P, Q)^{ab}$$

• Examples: Weil pairing, Tate pairing, Ate pairing, Eta pairing etc.

Cryptographic Bilinear Pairing

- G_1, G_2 two groups of same prime order n
- $G_1 = \langle P \rangle$, G_1 is additive group, identity \mathcal{O}
- G_2 is a multiplicative group with identity 1
- DLP is hard in both G_1, G_2

- Cryptographic bilinear pairing $\hat{e}: G_1 \times G_1 \to G_2$
 - 1. Bilinearity: for all $R, S, T \in G_1$

$$\hat{e}(S+R,T) = \hat{e}(S,T) \cdot \hat{e}(R,T)$$

$$\hat{e}(S, T + R) = \hat{e}(S, T) \cdot \hat{e}(S, R)$$

In other words, $\hat{e}(aS, bT) = \hat{e}(S, T)^{ab}$ for all $a, b \in \mathbb{Z}_n^*$

- 2. Non-degeneracy: $\hat{e}(P, P) \neq 1$
- 3. Computability: \hat{e} can be efficiently computed.
- 4. Symmetry: $\hat{e}(S,T) = \hat{e}(T,S)$.
- can be constructed from Weil, Tate pairing

Some Important Consequences

- **D**ecision **D**iffie-**H**ellman (DDH) Problem in $G_1 = \langle P \rangle$:
 - Given $P, aP, bP, cP \in G_1$ for some $a, b, c \in \mathbb{Z}_n^*$, decide whether $c = ab \mod n$.

Theorem : DDH Problem is easy in G_1 . proof:

- Pairings help us to solve DDH problem in G_1
- Easy to check if $\hat{e}(aP, bP) = \hat{e}(P, cP)$

$$\hat{e}(aP, bP) = \hat{e}(P, P)^{ab}$$
 and $\hat{e}(P, cP) = \hat{e}(P, P)^{c}$
 $\hat{e}(P, P)^{ab} = \hat{e}(P, P)^{c}$ iff $c = ab \mod n$

- Computational **D**iffie-**H**ellman (CDH) Problem in $G_1 = \langle P \rangle$:
 - Given $P, aP, bP \in G_1$ for some $a, b \in Z_n^*$, compute the value abP.
- Pairings do not help us to solve CDH problem (except by perhaps making the discrete log problem a bit simpler!)
- Bilinear Diffie-Hellman (BDH) Problem in $\langle G_1, G_2, \hat{e} \rangle$:
 - Given $P, aP, bP, cP \in G_1$ for some $a, b, c \in \mathbb{Z}_n^*$, compute the value $\hat{e}(P, P)^{abc}$.

- Theorem : If CDH problem in G_1 is easy, then BDH problem in $\langle G_1, G_2, \hat{e} \rangle$ is easy.
- Theorem : If CDH problem in G_2 is easy, then BDH problem in $\langle G_1, G_2, \hat{e} \rangle$ is easy.

Pairing computation

- Let P be a point of prime order r on a (supersingular) elliptic curve $E(F_q)$
- Let k be the smallest positive integer such that r divides $q^k 1$ (k is called the embedding degree)
- Then the pairing $\hat{e}(P,Q)$ can be calculated, and evaluates as an element in F_{q^k} (via Miller's algorithm or Elliptic Nets)

Extension Fields

- An element in F_{q^k} can be represented as a polynomial with coefficients in F_q , modulo an irreducible polynomial of degree k.
- Simple example, q = p, k = 2
- Assume $p = 3 \mod 4$
- Then $x^2 + 1$ is a suitable irreducible polynomial
- An element in F_{q^k} can be written as a + xb, where x is a root of the irreducible polynomial.
- In fact $x = \sqrt{-1} \mod p$, so $a + b \cdot \sqrt{-1}$ written as (a, b) just like complex numbers!

Pairings for Cryptanalysis

• MOV Reduction :(Menezes, Okamoto, Vanstone, 1993)

Theorem : DLP in G_1 is no harder that DLP in G_2 . proof:

- Consider the DLP on G_1 (an elliptic curve group): Given P and Q, where Q = xP, find x.
- $-\hat{e}(P,Q) = \hat{e}(P,P)^x$ by bilinearity.
- Solve this DLP over finite field F_{ak} using index calculus.
- Relatively easy (if k is small)

Making it Secure

- If r is 160 bits, then Pohlig-Hellman attacks will take $\sim 2^{80}$ steps
- If $k \log(q) \sim 1024$ bits, Discrete Log attacks will also take $\sim 2^{80}$ steps
- So we can achieve appropriate levels of cryptographic security
- We have to deal with "RSA-sizes" values in the extension field F_{a^k}

Weil/Tate Pairing

How to construct Cryptographic Bilinear Pairing from Weil/Tate Pairing on Elliptic Curve

Divisors Theory

Divisors

- $\bullet E/F_q: C(x,y)=0.$
- \bullet $E = E(F_{q^n}).$
- The group of divisor Div(E) of E is the free abelian group generated by the points of E. For any $D \in Div(E)$,

$$D = \sum_{P \in E} n_P \langle P \rangle$$

where $n_P \in \mathbb{Z}$ and $n_P = 0$ except for finitely many $P \in \mathbb{E}$.

- $\bullet \ Supp(D) = \{ P \in E | n_P \neq 0 \}$
- $deg(D) = \Sigma_{P \in E} n_P \in Z$
- $Div^{\circ}(E)$: group of zero divisors: $\Sigma n_P = 0$.

Principal Divisor

- A rational function f on E is an element of the field of fractions of the ring $F_{q^n}[x,y]/(C(x,y))$
- f(P) = f(x, y) if P = (x, y)
- The divisor of a rational function f

$$div(f) = \sum_{P \in E} ord_P(f) \langle P \rangle$$

where $ord_P(f)$ is the order of zero/pole f has at P.

- Principal divisor: D = div(f) for some rational function f.
- $D_1 \sim D_2$ if $D_1 D_2$ is principal.

Theorem: Let $D = \sum_{P \in E} n_P \langle P \rangle$ be a divisor. D is principal if and only if $\sum n_P = 0$ and $\sum n_P P = \mathcal{O}$.

 \bullet Prin(E): set of all principal divisors

$$Prin(E) \subseteq Div^{\circ}(E)$$

 \bullet Picard group of E: the quotient group

$$Pic(E) = Div(E)/Prin(E)$$

• (degree zero part of the Picard group)

$$Pic^{\circ}(E) = Div^{\circ}(E)/Prin(E)$$

Theorem: $Pic^{\circ}(E)$ is in 1-1 correspondence with the points of E.

Theorem: For any $D \in Div^{\circ}(E)$, there exists a unique point $P \in E$ such that $D \sim \langle P \rangle - \langle \mathcal{O} \rangle$.

• Given a rational function f and a divisor $D = \sum_{P \in E} n_P \langle P \rangle \in Div(E)$ with f and D having disjoint supports, we define

$$f(D) = \prod_{P \in Supp(D)} f(P)^{n_P}$$

Weil Pairing

- \bullet E/F_q
- n be an integer with gcd(n,q) = 1
- F_{q^k} : smallest extension of F_q such that $E[n] \subseteq E(F_{q^k})$. $(i.e \ n^2 | \# E(F_{q^k}) \text{ and } n | (q^k 1))$
- μ_n : subgroup of order n in $F_{a^k}^*$.

- Weil Pairing $e_n: E[n] \times E[n] \to \mu_n$ is defined as follows:
 - Let $P, Q \in E[n]$
 - Let $D_P, D_Q \in Div(E)$ such that $D_P \sim \langle P \rangle \langle \mathcal{O} \rangle$ and $D_Q \sim \langle Q \rangle \langle \mathcal{O} \rangle$
 - Then $nD_P, nD_Q \in Prin(E)$.
 - So there exist rational functions f_P , f_Q such that $div(f_P) = nD_P$ and $div(f_Q) = nD_Q$.

$$e_n(P,Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$

Tate Pairing

$$e_n(P,Q) = f_P(D_Q)^{(q^k-1)/n}$$

Properties of Weil/Tate

1. Bilinearity: for all $R, S, T \in E[n]$,

$$e_n(S+R,T) = e_n(S,T) \cdot e_n(R,T)$$

$$e_n(S, T + R) = e_n(S, T) \cdot e_n(S, R)$$

- 2. Non-degeneracy: if $S \in E[n]$, then $e_n(S, \mathcal{O}) = 1$. Moreover, if $e_n(S, T) = 1$ for all $T \in E[n]$, then $S = \mathcal{O}$.
- 3. Computability: e_n can be computed in polynomial time (Miller's Algorithm, Elliptic Nets).
- 4. Identity: $e_n(S, S) = 1$ for all $S \in E[n]$.
- 5. Alternation: $e_n(S,T) = e_n(T,S)^{-1}$.

Note Note

- For cryptographic bilinear map \hat{e} , $\hat{e}(P, P) \neq 1$ for all $P \in G_1$
- For Weil/Tate pairing e_n ,

$$e_n(P, P) = 1$$
 for all $P \in E[n]$.

 $e_n(P,Q) \neq 1$ if P,Q are linearly independent.

- Let $P \in E/F_q$ be of order n. Then a $Q \in E/F_{q^k}$ of order n can always be found such that P, Q are linearly independent.
- For supersingular elliptic curve, Q is found by means of a distorsion map ψ an automorphism on E/F_{a^k} .

Example

- E/F_p : $y^2 = x^3 + 1, p > 3, p = 2 \mod 3$
- $\#E(F_p) = p + 1$
- Let $P \in E/F_p$ be a point of order n where n|p+1
- E/F_{p^2} contains a point Q of order n which is linearly independent of points of E/F_p .
- E/F_{n^2} contains a subgroup E[n] isomorphic to Z_{n^2} .

- $\zeta \in F_{p^2}$ be a non trivial root of $x^3 1 = 0 \mod p$. Then $\psi(x, y) = (\zeta x, y)$ is an automorphism on E/F_{p^2} .
- ψ is called a distorsion map.
- For any elliptic curve, such a distorsion map can efficiently be found.
- $P, Q = \psi(P)$ are linearly independent.

Modified Weil Pairing

- E[n] is a group generated by P and $\psi(P)$.
- $P, \psi(P)$ are linearly independent, each of order n.
- $\bullet \ G_1 = \langle P \rangle$
- G_2 be a subgroup of $F_{n^2}^*$ of order n.
- $e_n : E[n] \times E[n] \to G_2$ be the weil pairing. Then the modified weil pairing $\hat{e} : G_1 \times G_1 \to G_2$ is defined by

$$\hat{e}(P,Q) = e_n(P,\psi(Q)).$$

Weil Pairing Computation

- Let $P, Q \in E[n]$
- To compute $e_n(P,Q) \in F_{n^2}^*$
- Let $P \neq Q$
- Let $R_1, R_2 \in E[n]$ be two random points
- Let $A_P = \langle P + R_1 \rangle \langle R_1 \rangle \sim \langle P \rangle \langle \mathcal{O} \rangle$
- Let $A_Q = \langle Q + R_2 \rangle \langle R_2 \rangle \sim \langle Q \rangle \langle \mathcal{O} \rangle$
- Then $nA_P, nA_O \in Prin(E)$.

- So there exist rational functions f_P , f_Q such that $div(f_P) = nA_P$ and $div(f_Q) = nA_Q$.

$$e_n(P,Q) = \frac{f_P(A_Q)}{f_Q(A_P)} = \frac{f_P(Q+R_2)f_Q(R_1)}{f_P(R_2)f_Q(P+R_1)}$$

- Compute $f_P(A_Q)$ and $f_Q(A_P)$

Computing $f_P(A_Q)$

- $-b \in Z_+$
- define $A_b = b\langle P + R_1 \rangle b\langle R_1 \rangle \langle bP \rangle + \langle \mathcal{O} \rangle$
- $-A_b \in Prin(E)$
- So there exist rational functions f_b such that $div(f_b) = A_b$
- $-div(f_P) = nA_P = n\langle P + R_1 \rangle n\langle R_1 \rangle$ = $n\langle P + R_1 \rangle - n\langle R_1 \rangle - \langle nP \rangle + \langle \mathcal{O} \rangle = A_n = div(f_n)$ as $P \in E[n]$
- $So f_P(A_Q) = f_n(A_Q)$

Computing $f_n(A_Q)$

- Given $f_b(A_Q)$, $f_c(A_Q)$, bP, cP, (b+c)P, b, $c \in Z_+$, we can compute $f_{b+c}(A_Q)$
- $-g_1(x,y)=0$ is the line through bP,cP
- $-g_2(x,y)=0$ be the vertical line through (b+c)P
- $-g_1, g_2$ are rational functions
- $-div(g_1) = \langle bP \rangle + \langle cP \rangle + \langle -(b+c)P \rangle 3\langle \mathcal{O} \rangle$
- $-div(g_2) = \langle (b+c)P \rangle + \langle -(b+c)P \rangle 2\langle \mathcal{O} \rangle$
- then $A_{b+c} = A_b + A_c + div(g_1) div(g_2)$

- so
$$f_{b+c}(A_Q) = f_b(A_Q) f_c(A_Q) \frac{g_1(A_Q)}{g_2(A_Q)}$$
 as $div(f_b) = A_b$

- Apply double and add to compute $f_n(A_Q) = f_P(A_Q)$ (Miller's algorithm)
- needs to evaluate $f_1(A_Q) = \frac{g_2(A_Q)}{g_1(A_Q)}$ as

$$div(f_1) = A_1 = \langle P + R_1 \rangle - \langle R_1 \rangle - \langle P \rangle + \langle \mathcal{O} \rangle = \frac{div(g_2)}{div(g_1)}$$

where g_1 is the line passing through P and R_1 , g_2 is the vertical line passing through $P + R_1$

Miller's Algorithm

- Let \mathcal{D} be the algorithm that computes $f_{b+c}(A_Q)$ on input $f_b(A_Q), f_c(A_Q), bP, cP, (b+c)P$
- Let $n = b_m b_{m-1} \dots b_1 b_0$ binary representation of n
- Initially set $Z = \mathcal{O}, V = f_0(A_{\mathcal{O}}) = 1, k = 0$
- for $(i = m, m 1, \dots, 1, 0)$ do
 - if $(b_i = 1)$ then set $V = \mathcal{D}(V, f_1(A_O), Z, P, Z + P), Z = Z + P, k = k + 1$
 - if (i > 0) then set $V = \mathcal{D}(V, V, Z, Z, 2Z), Z = 2Z, k = 2k$

• Observe that at the end of each iteration, we have

$$Z = kP, V = f_k(A_Q)$$

- After the last iteration, we have $k = n, V = f_n(A_Q)$
- Time Complexity $O(\log p)$ arithmetic operations in F_{p^2} .

Why is pairing useful?

- Earlier bilinear pairings, namely Weil pairing and Tate pairing of algebraic curves were used in cryptography to reduce the DLP on some elliptic or hyperelliptic curves to the DLP in a finite field (MOV reduction).
- In recent years, bilinear pairings have found positive application in cryptography to construct new cryptographic primitives.

- The first introduction of pairings in the constructive sense were:
 - Joux's Key Agreement, 2000
 - Boneh-Franklin's Identity-Based Encryption (IBE), 2001
 - Boneh-Lynn-Shacham's Short Signature, 2001
- A multitude of pairing based protocols have been suggested.
- A handful of efficient pairing implementations have been developed.

Three-Party Key Agreement

(Joux, ANST IV 2000, LNCS, Springer)

• $G_1 = \langle P \rangle$ additive, G_2 multiplicative group of a large prime order $q, \hat{e}: G_1 \times G_1 \to G_2$ the bilinear map

- security: hardness of BDH problem.
- BDH (Bilinear Diffie-Hellman) Problem in $\langle G_1, G_2, e \rangle$: given $\langle P, aP, bP, cP \rangle$ for some $a, b, c \in \mathbb{Z}_q^*$, compute $e(P, P)^{abc}$.

(n+1)-party Key Agreement

(Boneh and Silverberg, 2003, Contemporary Mathematics, AMS)

• $G_1 = \langle P \rangle$ additive, G_2 multiplicative group of a large prime order $q, \hat{e}: G_1^n \to G_2$ the *n*-linear map

Multilinear Map

- extending bilinear elliptic curve pairings to multilinear maps is a long-standing open problem.
- amazingly powerful tool so useful that a body of work examined their applications even before any candidate constructions is known to realize them

- two recent breakthrough constructions
 - GGH: (Garg, Gentry and Halevi, EUROCRYPT 2013, LNCS) - based on ideal lattices
 - CLT: (Coron, Lepoint and Tibouchi, CRYPTO 2013, LNCS) - over the integers
- Reliance on cryptographic tools built from multilinear maps may be perilous as existing multilinear maps are still heavy tools to use and suffering from many non-trivial attacks.