Language Model Prompting

Wei-Rui Chen

Outline

- 1. What is prompt?
 - a. Formulation
 - b. Examples
- 2. Engineering toward better performance
 - a. Choosing suitable pre-trained language model (PLM)
 - b. Prompt engineering
 - c. Answer engineering
 - d. Multi-prompt
- 3. Recent Work (ACL 2022)
 - a. Jin et al 2022
 - b. Lu et al 2022

1. What is Prompt

Ways to do NLP tasks

Non-neural network: feature engineering

Neural network

architecture engineering - CNN, RNN, Transformer

Pretrained -> Fine-tuned - BERT, GPT

Pretrained -> Prompt

Formulation

Name	Notation	Example	Description	
Input	$oldsymbol{x}$	I love this movie.	One or multiple texts	
Output	$oldsymbol{y}$	++ (very positive)	Output label or text	
Prompting Function	$f_{ ext{prompt}}(oldsymbol{x})$	[X] Overall, it was a [Z] movie.	A function that converts the input into a specific form by inserting the input x and adding a slot $[Z]$ where answer z may be filled later.	
Prompt	$oldsymbol{x}'$	I love this movie. Overall, it was a [Z] movie.	A text where $[X]$ is instantiated by input x but answer slot $[Z]$ is not.	
Filled Prompt	$f_{\mathrm{fill}}(oldsymbol{x'},oldsymbol{z})$	I love this movie. Overall, it was a bad movie.	A prompt where slot [Z] is filled with any answer.	
Answered Prompt	$f_{\mathrm{fill}}(oldsymbol{x'},oldsymbol{z}^*)$	I love this movie. Overall, it was a good movie.	A prompt where slot [Z] is filled with a true answer.	
Answer	z	"good", "fantastic", "boring"	A token, phrase, or sentence that fills [Z]	

Table 2: Terminology and notation of prompting methods. z^* represents answers that correspond to true output y^* .

Formulation

$$\mathcal{Z} = \{\text{"excellent"}, \text{"good"}, \text{"OK"}, \text{"bad"}, \text{"horrible"}\}$$

$$\hat{\boldsymbol{z}} = \operatorname{search}_{\boldsymbol{z} \in \mathcal{Z}} P(f_{\operatorname{fill}}(\boldsymbol{x'}, \boldsymbol{z}); \theta)$$

Examples

Type	Task	Input([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

Table 3: Examples of *input*, *template*, and *answer* for different tasks. In the **Type** column, "CLS" is an abbreviation for "classification". In the **Task** column, "NLI" and "NER" are abbreviations for "natural language inference" (Bowman et al., 2015) and "named entity recognition" (Tjong Kim Sang and De Meulder, 2003) respectively.

2. Engineering toward better performance

Choosing suitable PLM

Autoregressive LM -> NLG

$$P(\boldsymbol{x}) = P(x_1) \times \cdots P(x_n | x_1 \cdots x_{n-1})$$

Masked LM -> NLU

$$P(x_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$$

Prompt Engineering - Prompt Shape

```
Prefix
... [X] ... [Z]
[X] The movie is [Z]
```

Cloze

```
...[X] ... [Z] ...
[X] is a [Z] entity
```

Prompt Engineering -Automatic/Manual Template Engineering

Manual Template Engineering

Pros: Simplicity

Cons: Human effort, can be suboptimal

Automatic Template Engineering

Pros: Less human effort

Cons: Relatively complicated

Prompt Engineering - Automatic Prompt Engineering

Prompt Mining

Let x (e.g. I like the movie) be input and y be target (e.g. great). Scrape large corpus and find "middle words" between these two terms. Design a template based on the observations.

Prompt Paraphrasing

Get paraphrases of a existing template, and select the template with highest training accuracy.

Answer Engineering - Answer Shape

Tokens

e.g. Text classification

Multi-token span

e.g. QA

Sentence

e.g. Summarization

Answer Engineering - Automatic/Manual

Manual

Unconstrained / constrained answer space (V or subset of V)

Automatic

Answer paraphrasing

$$P(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{z} \in \text{para}(\boldsymbol{z'})} P(\boldsymbol{z}|\boldsymbol{x})$$

Multi-Prompt - Prompt Ensembling

Prompt Ensembling: Make prediction with multiple unanswered prompts

Pros:

leverage the complementary advantages of different prompts

Reduce the effort to search for the best stabilize performance on downstream tasks

Multi-Prompt - Prompt Ensembling

How to take average among multiple unanswered prompts

Uniform averaging

$$P(oldsymbol{z}|oldsymbol{x})\coloneqq rac{1}{K}\sum_{i}^{K}P(oldsymbol{z}|f_{\mathsf{prompt},i}(oldsymbol{x}))$$

Weighted averaging

Weighted with each prompts' performance

Multi-Prompt - Prompt Augmentation

Show PLM a few answered prompt before asking it to predict

Great Britain's capital is London. Japan's capital is Tokyo. China's capital is [Z]

3. Recent Work

Jin et al 2022

Source: Jin et al. 2022

Lu et al. 2022 - Sample Order Matters

Lu et al. 2022 - Sample Order Matters

Increasing model size does not guarantee low variance

Performant permutation are not transferable across models

88.7% acc in GPT2-XL -> 51.6% acc in GPT2-Large

Lu et al. 2022 - Methodology

Error analysis: bad prompt <-> unbalanced predicted label distribution

Lu et al. 2022 - Methodology

Step 1: Find the best among n! probing sets with highest entropy

Step 2: inverse function to get the best sample ordering

Q & A