# Dialog Formation from the Extracted Clusters of Dendrograms

&

Perfomance Measurment

#### **Clustering Information**

- Clustering is based on similarity of transmission pairs:
  - speaker/channel characteristics
  - recognized word or phoneme sequence
- Agglomerative clustering is performed to create tree-structured groupings ("dendrograms")

## Distance Measure Between two Transmissions

- Symmetric
  - No training and test
- Depends on number of samples in each of the transmissions

Current Distance Measure  $dist = d_{COV} + d_{MEAN}$ 

$$d_{COV} = \frac{N}{2}log|W| - \frac{N_1}{2}\log|S_1| - \frac{N_2}{2}\log|S_2|$$

$$d_{MEAN} = \frac{N}{2}log[1 + \frac{N_1N_2}{N}(\overline{x}_1 - \overline{x}_2)'W^{-1}(\overline{x}_1 - \overline{x}_2)]$$

#### **Dendrogram-Based Clustering**

- Cutting a dendrogram forms a partition of the data
- Larger clusters are generally less "pure"



 Cuts can be based on threshold on similarity or on structure of the dendrogram

#### **Combining Clusters**

- Problem: several separate sources of information are available for dialog formation.
   How can they be combined?
- Goal: "pure" clusters with high confidence of containing only one pilot or controller
- Approach: form clusters independently from separate sources and the search for consistency

# Combining Information is Generic



#### **Consistency of Clusters**

Pilot and controller transmissions from a single dialog are almost always adjacent

#### **Forming Consistent Clusters**

- Cut pilot and controller dendrograms to get almost-single-speaker clusters
  - structural criterion (e.g., 2 merges from bottom of tree)
  - distance-based cut (e.g., mean distance at top of tree)
- Cuts are equivalent to partition of pilots into sets  $P_1, \ldots, P_M$  and controllers into sets  $C_1, \ldots, C_N$ .

#### **Intersecting Clusters**

 $\bullet$  For each  $C_i$  for each  $P_j$   $\tilde{C}_{ij} = \{c|c \in C_i, c \text{ is adjacent to some } p \in P_j\}$ 



• Let  $C_1', \ldots, C_{N'}'$  be the sets  $\tilde{C}_{ij}$  with more than one element where no set is a subset of another

### Three Parameters for Forming Dialogs from Clusters



#### Performance Measurement

#### How Dialogs Are Arrayed in Time

