

generalized Riemann-Lebesgue lemma

 ${\bf Canonical\ name} \quad {\bf Generalized Riemann Lebesgue Lemma}$

Date of creation 2013-03-22 17:06:03 Last modified on 2013-03-22 17:06:03 Owner fernsanz (8869) Last modified by fernsanz (8869)

Numerical id 13

Author fernsanz (8869)

Entry type Theorem Classification msc 42A16

Related topic RiemannLebesgueLemma

Related topic FourierCoefficients

Related topic Integral2

Lemma 1. Let $h: \mathbb{R} \to \mathbb{C}$ be a bounded measurable function. If h satisfies the averaging condition

$$\lim_{c \to +\infty} \frac{1}{c} \int_0^c h(t) \, dt = 0$$

then

$$\lim_{\omega \to \infty} \int_{a}^{b} f(t)h(\omega t) dt = 0$$

with $-\infty < a < b < +\infty$ for any $f \in L^1[a, b]$

Proof. Obviously we only need to prove the lemma when both h and f are real and $0 = a < b < \infty$.

Let $\mathbf{1}_{[a,b]}$ be the indicator function of the interval [a,b]. Then

$$\lim_{\omega \to \infty} \int_0^b \mathbf{1}_{[a,b]} h(\omega t) dt = \lim_{\omega \to \infty} \frac{1}{\omega} \int_0^{\omega b} h(t) dt = 0$$

by the hypothesis. Hence, the lemma is valid for indicators, therefore for step functions.

Now let C be a bound for h and choose $\epsilon > 0$. As step functions are dense in L^1 , we can find, for any $f \in L^1[a,b]$, a step function g such that $||f-g||_1 < \epsilon$, therefore

$$\lim_{\omega \to \infty} \left| \int_a^b f(t)h(\omega t) \, dt \right| \quad \leqslant \quad \lim_{\omega \to \infty} \int_a^b |f(t) - g(t)| \, |h(\omega t)| \, dt + \lim_{\omega \to \infty} \left| \int_a^b g(t)h(\omega t) \, dt \right| \\ \quad \leqslant \quad \lim_{\omega \to \infty} C \, ||f - g||_1 < C\epsilon$$

because $\lim_{\omega\to\infty} \left| \int_a^b g(t)h(\omega t) dt \right| = 0$ by what we have proved for step functions. Since ϵ is arbitrary, we are done.