# Городская (районная) олимпиада по информатике среди школьников Минской области, 2012-2013 учебный год

#### Задача 1. Медовый запас

Винни Пух решил подсчитать, сколько горшков мёда запасено на зиму. Горшки находятся в кладовке, каждый горшок либо полный, либо пустой. Винни Пух разделил горшки на 3 равные части и позвал на помощь Пятачка и Кролика, но не сумел правильно сформулировать для них задачу. В результате у него оказалось 3 числа: количество полных горшков в первой части **X**, количество пустых горшков во второй части **Y**, и средний уровень мёда по горшкам третьей части **Z**. Помогите Винни Пуху определить количество полных горшков **P**, если известно общее количество горшков **N** (натуральное число, не превышающее **255** и делящееся на **3**).

Средний уровень мёда задан с точностью до 2 знаков после запятой.

Входные данные (файл IN. ТХТ):

NXYZ

Выходные данные (файл ООТ. ТХТ):

P

Пример:

Входной файл

6 2 2 0.50

Выходной файл

3

Пояснение к примеру:

Обозначим полный горшок за 1, пустой за 0. Тогда возможным расположением горшков может быть  $11\ 00\ 01$  (не учитывая порядок горшков), то есть 3 полных горшка.

### Задача 2. Неповоротливый робот

Прямоугольная площадка разделена на квадратные ячейки, и состоит из N строк и M столбцов. В левой нижней ячейке находится робот, направленный вверх. Робот может двигаться вперёд на 1 клетку либо поворачивать налево или направо на 90 градусов. Какое минимальное число поворотов необходимо сделать роботу, чтобы посетить все ячейки площадки по 1 разу?

N и M – натуральные числа, не превышающие longint.

Входные данные (файл IN. ТХТ):

N M

Выходные данные (файл ООТ. ТХТ):

X

Пример:

Входной файл

4 4

Выходной файл

6

Пояснение к примеру:

Повороты в ячейках (1,1), (1,4), (4,4), (4,2), (2,2), (2,3).



# Задача 3. Типография

После выхода в печать очередной энциклопедии в типографии остались лишние копии страниц. Вычислить максимальную длину последовательности из подряд идущих страниц, которую можно из них сложить.

Известно общее количество оставшихся страниц **N** и их номера. Все значения являются натуральными числами и не превышают 60000.

Входные данные (файл IN. ТХТ):

N

X1 ... XN

Выходные данные (файл ООТ. ТХТ):

K

Пример:

Входной файл

5

4 7 3 2 3

Выходной файл

3

Пояснение к примеру:

Можно собрать набор из 3 страниц: 2,3 и 4.

#### Городская (районная) олимпиада по информатике среди школьников Минской области, 2012-2013 учебный год

# Задача 4. Левая подстрока

Даны две строки, состоящие из строчных символов латинского алфавита. Подсчитать длину максимальной левой подстроки (начинающейся с первого символа) первой строки, которую можно получить вычеркиванием символов из второй строки. Первая строка хранится в файле **IN1.TXT**, вторая — в **IN2.TXT**. Длины строк не менее 1 и не более 1000000 символов.

Входные данные (файлы IN1. ТХТ и IN2. ТХТ)

S1

S2

Выходные данные (файл ООТ. ТХТ):

N

Пример:

Входной файл IN1.ТХТ

digger

Входной файл IN2. ТХТ

biggerdiagram

Выходной файл

3

Пояснение к примеру:

Целиком слово получить не удастся, но можно получить первые три символа dig. Подстрока igger не подходит, так как она не является левой подстрокой первой строки.

# Задача 5. Улицы разбитых фонарей

Карта города состоит из квадратных ячеек и состоит из N строк и M столбцов.

Значение ячейки может быть равно:

- 0, если это проходимая ячейка (дорога);
- 1, если это непроходимая ячейка (здание);
- 2, если это дорога, на которой расположен фонарь.

Фонарь устроен таким образом, что освещает все дороги, находящиеся на той же вертикали или горизонтали, и не загорожены зданием.

Уровень освещенности дороги обозначается целым числом и равен расстоянию до ближайшего фонаря, освещающего эту дорогу. Так, самое лучшее освещение на клетке с фонарем (равно 0), на соседних

клетках освещение равно 1, через одну 2 и т.д.). Чем больше число, тем хуже освещенность. Необходимо рассчитать количество дорог, уровень освещенности которых хуже  $\mathbf{K}$ .

**N**, **M**, **K** – натуральные числа, не превышающие 200.

Входные данные (файл IN. ТХТ):

NMK

A11 ... A1M

... ... ... AN1 ... ANM

Выходные данные (файл ООТ. ТХТ):

K

# Пример:

Входной файл

4 4 2

0 0 1 2

0 1 1 0

2 0 0 0

0 0 1 0

Выходной файл

3

Пояснение к примеру:

Дороги в ячейках (1,2) и (4,2) не освещены вовсе, в ячейке (4,4) - недостаточно.

| 2 | ∞  |   | 0 |
|---|----|---|---|
| 1 |    |   | 1 |
| 0 | 1  | 2 | 2 |
| 1 | 00 |   | 3 |

Уровни освещенности