ISIS1105 DEFINICIONES TAREA 4

SECCIÓN 3

1. Basics

Definition 1. A graph is a pair $\langle N, A \rangle$ such that A consists of subsets of N of size 2. We call N the set of nodes and A the set of edges.

Definition 2. Let $G = \langle N, A \rangle$ be a graph.

- (1) The order of G is #N.
- (2) The degree of $v \in N$ is $\#\{e \in A \mid v \in e\}$.

Example 1. Let $N=\{1,2,3\}$ and let $A=\{\{1,2\},\{1,3\}\}$. Then $\langle N,A\rangle$ can be dawn as

Node 1 has degree 2, and the other nodes have degree 1. If now $A' = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$, then $\langle N, A' \rangle$ can be drawn as

Now all three nodes have degree 2.

Definition 3.

- (1) A k-path is a sequence of nodes $\mathbf{p} = v_0, ..., v_{k-1}, v_k$ Such that $v_i \neq v_j$ and $\{v_i, v_{i+1}\} \in A$ for all i = 0, ..., k-1. We also say that \mathbf{p} is a v_0v_k -path of length k, since it involves that many edges.
- (2) A k-cycle is a sequence of nodes $\mathbf{c} = v_0, ..., v_{k-2}, v_{k-1}$ Such that $v_i \neq v_j$ except for $v_0 = v_{k-1}$, and $\{v_i, v_{(i+1) \bmod k}\} \in A$ for all i = 0, ..., k-1.

Definition 4.

(1) The nodes u, v are said to be *connected* if they are equal or there exists a uv-path, and we denote this by $u \sim v$. Notice that the resulting relation \sim is an equivalence relation. Given the node u, its *connected component* is the subgraph induced by the edges connected to it. We use the notation C_u for the connected component of the node u.

SECCIÓN 3

- (2) In general $G = C_{u_1} \sqcup C_{u_2} \sqcup ... \sqcup C_{u_t}$ with $1 \leq t \leq n$, where n is the order of G. Namely, a graph is the disjoint union of the connected components of its nodes. We also say that " C_v is a connected component of G".
- (3) The graph G is said to be *connected* if there exists a path between any two different nodes. Equivalently, G has a single connected component. If G has n nodes called $0, 1, \ldots, n-1$ and is connected, then $G = C_0 = C_1 = \cdots = C_{n-1}$.

Example 2. Let $G = \langle N, A \rangle$ with

2

$$\begin{cases} N = \{0, 1, \dots, 8\}. \\ A = \{\{0, 1\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{5, 6\}, \{5, 7\}, \{6, 7\}, \{6, 8\}, \{7, 8\}, \}. \end{cases}$$

Then G has three connected components:

$$C_0 = C_1$$

$$C_2 = C_3 = C_4$$

$$C_5 = C_6 = C_7 = C_8$$

This can be visualized in the following picture of G:

The degrees of the nodes are

$$\deg(0) = \deg(1) = 1$$
$$\deg(2) = \deg(3) = \deg(4) = \deg(5) = \deg(8) = 2$$
$$\deg(6) = \deg(7) = 3.$$

Definition 5. A graph is *acyclic* if there is at most one path joining any two different nodes.