

HOJO et al. Appln. No. 10/771, 396 Conf. No. 3830 Filed 02/05/2004 2 of 3

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed ith this Office.

出願年月日 Date of Application:

2003年 2月 6日

出願番号

特願2003-029404

Application Number: ST. 10/C]:

[JP2003-029404]

願 人 oplicant(s):

株式会社ブリヂストン

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2004年 1月27日

【書類名】

特許願

【整理番号】

P238090

【提出日】

平成15年 2月 6日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

B60C 1/00

COSK 5/00

C08L 21/00

【発明の名称】

ゴム組成物及びそれを用いた空気入りタイヤ

【請求項の数】

9

【発明者】

【住所又は居所】

東京都小平市小川東町3-1-1 株式会社 ブリヂス

トン 技術センター内

【氏名】

北條 将広

【特許出願人】

【識別番号】

000005278

【氏名又は名称】

株式会社 ブリヂストン

【代理人】

【識別番号】

100072051

【弁理士】

【氏名又は名称】 杉村 興作

【選任した代理人】

【識別番号】

100059258

【弁理士】

【氏名又は名称】 杉村 暁秀

【手数料の表示】

【予納台帳番号】

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

074997

【物件名】

要約書

【包括委任状番号】 9

9712186

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 ゴム組成物及びそれを用いた空気入りタイヤ

【特許請求の範囲】

【請求項1】 (1) ビニル結合量が30%以上であるポリブタジエンゴム及びス チレン・ブタジエン共重合体ゴムの少なくとも一方を含むゴム成分に、

- (2) 下記式(I)で表されるジチオリン酸金属塩と、
- (3) 下記式(II)で表される有機チオスルフェート化合物と を配合してなるゴム組成物。

【化1】

$$\begin{pmatrix} R^{1} O & S & \\ \parallel & \parallel & \\ R^{2} O & \end{pmatrix} P - S \longrightarrow M^{1} \cdots (I)$$

(式中、 R^1 及び R^2 は、それぞれ独立に炭素数 $1\sim 18$ の直鎖若しくは分岐鎖ア ルキル基又は炭素数 $5\sim12$ のシクロアルキル基を表し、 M^1 は亜鉛、銅又は鉄 であり、nは M^1 の原子価に等しい数である。)

$$M^{2}O_{3}S - S - (CH_{2})_{m} - S - SO_{3}M^{2}$$
 . . (II)

(式中、mは3~10を表し、 M^2 はリチウム、カリウム、ナトリウム、マグネ シウム、カルシウム、バリウム、亜鉛、ニッケル又はコバルトの1当量を表す。 また、該化合物は、結晶水を含有していてもよい。)

【請求項2】 前記式(I)で表されるジチオリン酸金属塩において、 R^{1} BU R^{2} が、それぞれ独立に炭素数2~8の直鎖又は分岐鎖アルキル基であることを特徴 とする請求項1に記載のゴム組成物。

【請求項3】 前記式(I)で表されるジチオリン酸金属塩において、 R^1 及び R^2

が、それぞれ独立にイソプロピル基又はn-ブチル基であることを特徴とする請求項2に記載のゴム組成物。

【請求項4】 前記スチレン・ブタジエン共重合体ゴムは、結合スチレン含有率が20~60質量%であることを特徴とする請求項1に記載のゴム組成物。

【請求項5】 前記ゴム成分中の前記スチレン・ブタジエン共重合体ゴムの含有率が50~100質量%であることを特徴とする請求項1に記載のゴム組成物。

【請求項6】 前記式(II)で表される有機チオスルフェート化合物が1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物であることを特徴とする請求項1に記載のゴム組成物。

【請求項7】 上記式(I)で表されるジチオリン酸金属塩の配合量が、前記ゴム成分100質量部に対し0.1~5質量部であることを特徴とする請求項1に記載のゴム組成物。

【請求項8】 上記式(II)で表される有機チオスルフェート化合物の配合量が、前記ゴム成分100質量部に対し1~10質量部であることを特徴とする請求項1に記載のゴム組成物。

【請求項9】 請求項 $1 \sim 8$ の何れかに記載のゴム組成物をトレッドに使用した空気入りタイヤ。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、ゴム組成物及びそれを用いた空気入りタイヤに関し、特にタイヤのトレッドに用いることにより、乾燥路面における高い操縦安定性 (ドライグリップ性)を低下させることなく、耐熱疲労性を向上させることが可能なゴム組成物に関するものである。

$[0\ 0\ 0\ 2]$

【従来の技術】

タイヤのトレッドには、乾燥路面における高い操縦安定性(ドライグリップ性)が要求される。従来から、ドライグリップ性を向上させるために、トレッド用ゴム組成物においては、ゴム組成物中の樹脂や、アロマチックオイル、液状ポリ

マー等のオイル成分を増量することが行われている。しかしながら、オイル成分を増量すると、特に動的な耐熱疲労性が低下し、走行中にタイヤ内部の発熱と変形とにより亀裂が発生しやすくなるという問題がある。

[0003]

この問題に対して、主に架橋の熱的な安定性を向上させる目的で、モノスルフィドを増加させることが可能な加硫促進剤としてチウラム化合物、ジチオカルバミン酸金属塩、ジチオリン酸金属塩の適用が考えられる(特許文献1参照)。しかしながら、これらの化合物の配合量を増やし過ぎると、静的な耐熱性は向上するものの、耐疲労性が低下し、その結果、耐熱疲労性が向上しないという問題がある。

[0004]

また、フェニレンビスマレイミド、PK900、1,6-ヘキサメチレンジチオ 硫酸ナトリウム・2水和物等の耐熱架橋剤の使用も考えられるが(特許文献2参照)、これらの化合物は天然ゴム及びイソプレンゴムとの反応性に優れるものの、ビニル結合量の高いポリブタジエンゴム及びスチレン・ブタジエン共重合体ゴムとの反応性が低く、単独の配合では、これらビニル結合量の高いゴム成分に大量に配合しても耐熱疲労性が向上しないという問題があった。

[0005]

以上のように、これまでに、高いドライグリップ性能を維持しながら、タイヤ の耐熱疲労性を大きく向上し得る技術は未だ提供されていない。

[0006]

【特許文献1】

特開2001-316527号公報

【特許文献2】

特開2000-301908号公報

[0007]

【発明が解決しようとする課題】

そこで、本発明の目的は、上記従来技術の問題を解決し、タイヤのトレッドに 用いることにより、高いグリップ性能を維持しながら、タイヤの耐熱疲労性を向 上させることが可能なゴム組成物、及び該ゴム組成物をトレッドに用いた高性能 タイヤを提供することにある。

[0008]

【課題を解決するための手段】

本発明者は、上記目的を達成するために鋭意検討した結果、特定のゴム成分に対し、特定の加硫促進剤と特定の加硫剤とを組み合わせて配合することにより、高いグリップ性能を維持しつつ、タイヤの耐熱疲労性を向上させることが可能なゴム組成物が得られることを見出し、本発明を完成させるに至った。

[0009]

即ち、本発明のゴム組成物は、(1)ビニル結合量が30%以上であるポリブタジエンゴム及びスチレン・ブタジエン共重合体ゴムの少なくとも一方を含むゴム成分に、(2)下記式(I)で表されるジチオリン酸金属塩と、(3)下記式(II)で表される有機チオスルフェート化合物とを配合してなることを特徴とする。ここで、上記ビニル結合量は、40%以上であるのが好ましい。

【化2】

(式中、 R^1 及び R^2 は、それぞれ独立に炭素数 $1\sim 1$ 8の直鎖若しくは分岐鎖アルキル基又は炭素数 $5\sim 1$ 2のシクロアルキル基を表し、 M^1 は亜鉛、銅又は鉄であり、nは M^1 の原子価に等しい数である。)

 $M^2O_3S-S-(CH_2)_m-S-SO_3M^2$ ・・・ (II) (式中、mは3~10を表し、 M^2 はリチウム、カリウム、ナトリウム、マグネ

5/

シウム、カルシウム、バリウム、亜鉛、ニッケル又はコバルトの1当量を表す。 また、該化合物は、結晶水を含有していてもよい。)

[0010]

本発明のゴム組成物の好適例においては、前記式(I)で表されるジチオリン酸 金属塩の R^1 及び R^2 が、それぞれ独立に炭素数 $2\sim 8$ の直鎖又は分岐鎖アルキル 基である。ここで、該 R^1 及び R^2 は、それぞれ独立にイソプロピル基又はn-ブチル基であるのが特に好ましい。

$[0\ 0\ 1\ 1]$

本発明のゴム組成物の他の好適例においては、前記スチレン・ブタジエン共重合体ゴムは、結合スチレン含有率が20~60質量%である。ここで、該結合スチレン含有率は、30~45質量%であるのが更に好ましい。

[0012]

本発明のゴム組成物の他の好適例においては、前記ゴム成分中の前記スチレン・ブタジエン共重合体ゴム(SBR)の含有率が50~100質量%である。ここで、ゴム成分中の上記SBRの含有率は、70~100質量%であるのが更に好ましい。

[0013]

本発明のゴム組成物の他の好適例においては、前記式(II)で表される有機チオスルフェート化合物が1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物である。

[0014]

本発明のゴム組成物の他の好適例においては、上記式(I)で表されるジチオリン酸金属塩の配合量が、前記ゴム成分100質量部に対し0.1~5質量部である。ここで、上記式(I)で表されるジチオリン酸金属塩の配合量は、前記ゴム成分100質量部に対し0.2~2質量部であるのが更に好ましい。

[0015]

本発明のゴム組成物の他の好適例においては、上記式(II)で表される有機チオスルフェート化合物の配合量が、前記ゴム成分100質量部に対し1~10質量部である。ここで、該式(II)で表される有機チオスルフェート化合物の配合量は、2~6質量部であるのが更に好ましい。

[0016]

また、本発明の空気入りタイヤは、上記のゴム組成物をトレッドに使用したことを特徴とする。ここで、本発明のタイヤにおいて、タイヤ内に充填する気体としては、通常の若しくは酸素分圧を変えた空気、又は窒素等の不活性なガスが挙げられる。

[0017]

【発明の実施の形態】

以下に、本発明を詳細に説明する。本発明のゴム組成物は、(1)ビニル結合量が30%以上であるポリブタジエンゴム及びスチレン・ブタジエン共重合体ゴムの少なくとも一方を含むゴム成分に、(2)上記式(I)で表されるジチオリン酸金属塩と、(3)上記式(II)で表される有機チオスルフェート化合物とを配合してなる。式(II)で表される有機チオスルフェート化合物は、天然ゴムやシス-1,4-ポリブタジエンゴムとは反応性が高いが、ビニル結合量の高いポリブタジエンゴムやスチレン・ブタジエン共重合体ゴムとは反応性が低いため、これらビニル結合量の高いゴム成分に対しては加硫剤として充分に機能せず、ゴム組成物の耐熱疲労性を向上させることができなかった。しかしながら、本発明のゴム組成物には、加硫促進剤として上記式(I)で表されるジチオリン酸金属塩が配合されており、該ジチオリン酸金属塩が上記ビニル結合量の高いゴム成分と有機チオスルフェート化合物との反応を促進するため、耐熱疲労性が著しく向上している。

$[0\ 0\ 1\ 8]$

本発明のゴム組成物に用いるゴム成分は、耐熱性を向上させる観点から、ビニル結合量が30%以上、好ましくは40%以上であるポリブタジエンゴム(BR)及びスチレン・ブタジエン共重合体ゴム(SBR)の少なくとも一方を含む。ここで、該スチレン・ブタジエン共重合体ゴムは、結合しているスチレン単位の含有率、即ち、結合スチレン含有率が20~60質量%であるのが好ましい。スチレン・ブタジエン共重合体ゴムの結合スチレン含有率が20質量%未満では、低温域及び高温域における所望のグリップ力を得ることができず、60質量%を超えると、ブロック剛性が必要以上に高くなり、路面へのトレッドゴムの食い込み量が減少し、所望のグリップ力を得ることができない。また、これらの効果が顕著となることか

7/

ら、上記スチレン・ブタジエン共重合体ゴムは、結合スチレン含有率が30~45質量%であるのがより好ましい。なお、ビニル結合量は、赤外法(モレロ法)でミクロ構造を分析することにより求めることができ、結合スチレン含有率は、¹H-NMRでスペクトルの積分比を算出することにより求めることができる。該スチレン・ブタジエン共重合体ゴムは、乳化重合、溶液重合等の如何なる重合法によって合成したものであってもよい。また、上記ビニル結合量の高いBR及びSBRとしては、油展されているものを好適に使用することができる。高ビニル結合量のBR及びSBRが油展されていると、バンバリーミキサー等を用いて混練する際、滑りが生じず、容易且つ確実に混練を行うことができる。上記ゴム成分中の上記SBRの含有率は、50~100質量%が好ましく、70~100質量%が更に好ましい。

[0019]

また、上記ゴム成分には、上記ビニル結合量の高いBR及びSBRの他、天然 ゴム(NR)、イソプレンゴム(IR)、アクリロニトリルブタジエンゴム(NBR) 、クロロプレンゴム、エチレン・プロピレンゴム(EPM)、エチレン・プロピレ ンターポリマー、ブチルゴム、アクリルゴム等をブレンドしてもよい。

[0020]

本発明のゴム組成物に用いる上記式(I) で表されるジチオリン酸金属塩は、加硫促進剤として機能する。式(I) において、 R^1 及び R^2 は、それぞれ独立に炭素数 $1\sim 1$ 8の直鎖若しくは分岐鎖アルキル基又は炭素数 $5\sim 1$ 2のシクロアルキル基を表し、この中でも、 R^1 及び R^2 としては、炭素数 $2\sim 8$ の直鎖若しくは分岐鎖アルキル基が好ましく、炭素数 $3\sim 4$ の直鎖若しくは分岐鎖アルキル基が好ましく、炭素数 $3\sim 4$ の直鎖若しくは分岐鎖アルキル基が好ましく、イソプロピル基、n-ブチル基が特に好ましい。また、式(I)中、 M^1 は亜鉛、銅又は鉄であり、この中でも、 M^1 としては亜鉛が好ましい。なお、n は M^1 の原子価に等しい数である。上記 ジチオリン酸金属塩は、一種単独で使用してもよいし、2種以上を併用してもよい。 上記式(I) で表されるジチオリン酸金属塩としては、高い耐熱疲労性を付与し得る点で、ジチオリン酸亜鉛類が好ましく、更に高い耐熱疲労性を付与し得る点で、 R^1 及び R^2 が炭素数 $2\sim 8$ の直鎖若しくは分岐鎖アルキル基であるジチオリン酸亜鉛類が最も好ま

LVIO

[0021]

式(I) の R^1 及び R^2 において、炭素数 $1\sim 18$ の直鎖若しくは分岐鎖アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、4-メチルペンチル基、2-エチルヘキシル基、オクチル基、オクタデシル基等が挙げられ、一方、炭素数 $5\sim 12$ のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。

[0022]

具体的に、上記ジチオリン酸亜鉛としては、O, O'- ジブチルジチオリン酸亜鉛、O, O'- ジイソプロピルジチオリン酸亜鉛、O, O'- ジメチルジチオリン酸亜鉛、O, O'- ジメチルジチオリン酸亜鉛、O, O'- ジメチルジチオリン酸亜鉛、O, O'- ビス(2- エチルヘキシル) ジチオリン酸亜鉛、O, O'- ビス(4- メチルペンチル) ジチオリン酸亜鉛、O, O'- ジオクタデシルジチオリン酸亜鉛、O, O'- ジオクチルジチオリン酸亜鉛、O, O'- ジシクロヘキシルジチオリン酸亜鉛等が挙げられ、これらの中でも、O, O'- ジブチルジチオリン酸亜鉛、O, O'- ジイソプロピルジチオリン酸亜鉛、O, O'- ジオクチルジチオリン酸亜鉛が好ましい。

[0023]

上記ジチオリン酸銅としては、O, O'- ジオクタデシルジチオリン酸銅、O, O'- ジブチルジチオリン酸銅、O, O'- ジイソプロピルジチオリン酸銅、O, O'- ジエチルジチオリン酸銅、O, O'- ジメチルジチオリン酸銅、O, O'- ビス(2- エチルヘキシル) ジチオリン酸銅、O, O'- ビス(4- メチルペンチル) ジチオリン酸銅、O, O'- ジシクロヘキシルジチオリン酸銅等が挙げられる。

[0024]

上記ジチオリン酸鉄としては、O, O'- ジブチルジチオリン酸鉄、O, O'-ジイソプロピルジチオリン酸鉄、O, O'- ジプロピルジチオリン酸鉄、O, O'-'- ジエチルジチオリン酸鉄、O, O'- ジメチルジチオリン酸鉄、O, O'- ビス(2- エチルヘキシル) ジチオリン酸鉄、O, O'- ビス(4- メチルペンチ ル) ジチオリン酸鉄、O, O'- ジオクタデシルジチオリン酸鉄、O, O'- ジシクロヘキシルジチオリン酸鉄等が挙げられる。

[0025]

上記式(I) のジチオリン酸金属塩の配合量は、前記ゴム成分100 質量部に対し0.1~5 質量部であり、好ましくは0.2~2 質量部である。該ジチオリン酸金属塩の配合量が0.1 質量部未満では、後述する有機チオスルフェート化合物を充分活性化させる効果が得られず、5 質量部を超えると、ジチオリン酸金属塩の添加効果が飽和する上、ゴム組成物のスコーチタイム(焦げ時間)が短縮され、作業性が低下するため好ましくない。

[0026]

上記ジチオリン酸金属塩の製造方法は、特に制限されないが、通常、ジチオリン酸水溶液に、水酸化ナトリウムを徐々に加えて、系中でジチオリン酸ナトリウムとした後、亜鉛、銅、鉄のそれぞれの塩化物のアセトン溶液を滴下して、沈殿物とし、該沈殿物を精製し、乾燥して得られる。

[0027]

本発明のゴム組成物においては、加硫促進剤として、上記式(I)で表されるジチオリン酸金属塩を単独で用いてもよいが、ムーニースコーチタイムを長くできる点で、該ジチオリン酸金属塩と共にベンゾチアゾール誘導体を併用するのが好ましい。ここで、ベンゾチアゾール誘導体としては、2-ベンゾチアジルスルフェンアミド類及び2-ベンゾチアジルスルフェンイミド類が好ましい。上記ベンゾチアゾール誘導体として、具体的には、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N, N-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミド、N, N-ジナアジルスルフェンアミド、N- 1-ブチルークーペンゾチアジルスルフェンイミド、1-ブチルークーペンゾチアジルスルフェンイミド、1-ブチルークロヘキシルークェベンゾチアジルスルフェンイミド、1-ブチルジスルフェンイミド、1-ブチルジスルフェンイミド、1-ブチルジスルフィド、1-ブチルジスルフェンイミド、1-ブチルジスルフィド、1-ブチアジルスルフェンアミド等が挙げられる。これらの中でも、効果の点から、1-ブチルークーベンゾチアジルスルフェンアミド、1-ジャラロヘキシル-1-ベンゾチアジルスルフェンアミド、1-ジャラロヘキシル-1-ベンゾチアジルスルフェンアミド、1-ジャラロヘキシル-1-ベンゾチアジルスルフェンアミド、1-ジャラロヘキシル-1-ベンゾチアジルスルフェンアミド、1-ジャラロヘキシル-1-ベンゾチアジルスルフェンアミド、1-ジ

ルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンイミド、N-シクロヘキシル-2-ベンゾチアジルスルフェンイミド等が好ましい。

[0028]

本発明のゴム組成物は、加硫剤として硫黄と共に上記式(II)で表される有機チオスルフェート化合物を含有する。この混合物からなる加硫剤の総配合量は、前記ゴム成分100質量部に対して、合計量で1.0~10.0質量部の範囲であり、好ましくは2.0~6.0質量部の範囲である。加硫剤の総配合量が1.0質量部未満では、充分な弾性率を確保できず、10.0質量部を超えると、破断時伸びが低下し、耐リブ欠け性が著しく低下する。ここで、上記式(II)の化合物の配合量は、前記ゴム成分100質量部に対し1.0~10.0質量部であるのが更に好ましく、2.0~6.0質量部であるのが更に好ましい。式(II)の化合物の配合量が1.0質量部未満では、耐熱疲労性を充分に向上させることができず、10.0質量部を超えると、破断時伸びが低下し、耐リブ欠け性が著しく低下する。

[0029]

上記式(II)において、mで示されるメチレン鎖の数は3~10であることが必要であり、2以下では、耐熱疲労性を向上させる効果が充分に得られず、11以上では分子量が増えるわりに耐熱疲労性の向上効果が小さい。更に、分子内環化反応を抑制する観点から、該メチレン鎖の数は、3~6で有ることが好ましい。また、M²はリチウム、カリウム、ナトリウム、マグネシウム、カルシウム、バリウム、亜鉛、ニッケル又はコバルトの1当量を表すが、入手の容易性と効果を勘案すると、カリウム、ナトリウム等が好ましい。この化合物は分子内に結晶水を有する水和物であってもよい。具体的に、式(II)の化合物としては、ナトリウム塩一水和物、ナトリウム塩二水和物等が挙げられ、経済的理由から、チオ硫酸ナトリウムからの誘導体、例えば1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物が最も好ましい。上記有機チオスルフェート化合物は、一種単独で使用してもよいし、2種以上を併用してもよい。

[0030]

本発明のゴム組成物には、更に、充填剤として窒素吸着比表面積 (N_2SA) が8 $0\sim280m^2/g$ であるカーボンブラックを配合するのが好ましい。カーボンブラック

の窒素吸着比表面積が80m²/g未満では、充分な弾性率が得られず耐摩耗性が悪化し、280m²/gを超えると、グリップ力及び耐摩耗性の向上が望めない割りに混練作業性が悪化してしまう。該カーボンブラックとしては、HAF、ISAF、SAF等が挙げられ、市販品を使用することができる。これらの中でも、低温域のウェット路面でのグリップ力と、高温域のウェット路面又はセミウェット路面でのグリップ力との両立の観点から、SAFが好ましい。上記カーボンブラックは、一種単独で使用してもよいし、2種以上を併用してもよい。

[0031]

上記カーボンブラックの配合量は、前記ゴム成分100質量部に対し70~200質量部が好ましく、95~130質量部がより好ましい。該カーボンブラックの配合量が70質量部未満では、ゴム組成物のドライグリップ性及び弾性率(E')が充分でなく、また強度等の一般的な特性も充分でなく、接地性が悪化してラップタイムが悪化する。一方、該カーボンブラックの配合量が200質量部を超えると、ゴム組成物が硬くなり過ぎ、かえって耐摩耗性が低下してしまい、更にゴム組成物の加工性も極端に悪化する。

[0032]

本発明のゴム組成物には、更に、Cg芳香族系石油樹脂及び/又はアルキルフェノール系樹脂を配合するのが好ましい。ここで、Cg芳香族系石油樹脂とは、Cg芳香族系モノマーの重合体をいい、Cg芳香族系モノマーとしては、ビニルトルエン、α-メチルスチレン、クマロン、インデン等が挙げられる。該Cg芳香族系モノマーは、一種単独で使用してもよいし、二種以上を併用してもよい。一方、アルキルフェノール系樹脂としては、p-t-ブチルフェノール-アセチレン等のアルキルフェノール-アセチレン系樹脂、並びにクレゾール類、キシレノール類、p-t-ブチルフェノール、p-t-オクチルフェノール類を含むアルキルフェノール-ホルムアルデヒド系樹脂が挙げられる。これらの樹脂は、軟化点が60~150℃であるのが好ましい。該樹脂の軟化点が60℃未満では、高温域のウェット路面及びセミウェット路面における充分なグリップ力が得られず、150℃を超えると、混練の際に樹脂が均一に分散せず、耐摩耗性が著しく低下してしまう。これらCg芳香族系石油樹脂及びアルキルフェノール系樹脂は、一種単独で使用して

もよいし、二種以上を併用してもよい。これらの樹脂の配合量は、前記ゴム成分 100質量部に対し3~50質量部であり、5~40質量部であるのが好ましい。これら の樹脂の配合量が3質量部未満では、グリップ力等のウェット性能における添加 効果が充分に得られず、50質量部を超えると、ゴム組成物の混練における作業性 が著しく悪化する。

[0033]

本発明のゴム組成物は、加硫後のアセトン・クロロホルム抽出分が前記ゴム成分100質量部に対し30~270質量部であることを必要とする。該抽出分が30質量部未満又は270質量部を超えると、グリップ力や耐摩耗性の向上が望めない割りに混練作業性が悪化してしまう。該抽出分は、グリップ力及び耐摩耗性と混練作業性との両立の観点から、30~200質量部であるのが好ましい。

[0034]

本発明のゴム組成物には、上記ゴム成分、加硫促進剤、加硫剤、カーボンブラック、C9芳香族系石油樹脂、アルキルフェノール系樹脂の他、ゴム業界で通常使用される各種配合剤、例えば、プロセスオイル等の油分、無機充填剤、軟化剤、上記以外の加硫促進剤、加硫助剤、老化防止剤、酸化亜鉛、ステアリン酸、オゾン劣化防止剤、着色剤、帯電防止剤、滑剤、酸化防止剤、カップリング剤、発泡剤、発泡助剤等を、本発明の目的を害しない範囲で適宜配合することができる。これら配合剤としては、市販品を好適に使用することができる。

[0035]

上記プロセスオイル等の油分としては、特に制限はなく、目的に応じて適宜選択することができるが、アロマチックオイル、ナフテン系オイル、パラフィン系オイル、エステル系オイル、溶液状共役ジエンゴム、溶液状水素添加共役ジエンゴム等が好ましい。プロセスオイル等の油分が上記ゴム組成物に含まれていると、該ゴム組成物の流動性をコントロールすることができ、該ゴム組成物の加硫前の粘度を低下させ、その流動性を高めることができるため、極めて良好に押出しを行うことができる。

[0036]

上記プロセスオイル等の油分の上記ゴム組成物における含有量は、前記ポリブ

タジエンゴム及び/又はスチレン・ブタジエン共重合体ゴムが油展されている場合は、これらの油展分も含めて、前記ゴム成分100質量部に対し35~200質量部であるのが好ましく、40~150質量部であるのがより好ましい。プロセスオイル等の油分の含有量が35質量部未満では、未加硫ゴム組成物のムーニー粘度が極端に高くなって加工性が悪化したり、ドライグリップ性が悪化し、200質量部を超えると、未加硫ゴム組成物のムーニー粘度が極端に低くなって加工性が悪化したり、加硫後のゴムが軟らかくなり過ぎて、耐摩耗性が悪化する。

[0037]

本発明のゴム組成物は、前記ゴム成分、加硫促進剤及び加硫剤と、必要に応じて適宜選択した各種配合剤とを、混練り、熱入れ、押出し、加硫等して製造される。

[0038]

前記混練りの条件としては、特に制限はなく、混練り装置への投入体積、ローターの回転速度、ラム圧、混練り温度、混練り時間、混練り装置の種類等の諸条件について目的に応じて適宜選択することができる。前記混練り装置としては、例えば、通常ゴム組成物の混練りに用いるバンバリーミキサー、インターミックス、ニーダー等が挙げられる。

[0039]

前記熱入れの条件としては、特に制限はなく、熱入れ温度、熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜選択することができる。前記熱入れ装置としては、例えば、通常ゴム組成物の熱入れに用いるロール機等が挙げられる。

[0040]

前記押出しの条件としては、特に制限はなく、押出時間、押出速度、押出装置、押出温度等の諸条件について目的に応じて適宜選択することができる。前記押出装置としては、例えば、通常タイヤ用ゴム組成物の押出しに用いる押出機等が挙げられる。前記押出温度は、適宜決定することができる。

$[0\ 0\ 4\ 1]$

前記加硫を行う装置、方式、条件等については、特に制限はなく、目的に応じ

て適宜選択することができる。前記加硫を行う装置としては、例えば、通常タイヤ用ゴム組成物の加硫に用いる金型による成形加硫機等が挙げられる。前記加硫の条件として、その温度は、通常100~190℃程度である。

[0042]

上述のように、本発明のゴム組成物は、高いグリップ性能を維持しつつ、耐熱 疲労性等の耐熱性が向上しているため、高性能タイヤのトレッドに好適である。

[0043]

本発明の空気入りタイヤは、前記本発明のゴム組成物をトレッドに使用してなることを特徴とする。本発明のタイヤは、前記ゴム組成物をトレッドに用いること以外は、特に制限はなく、公知のタイヤの構成をそのまま採用することができる。

[0044]

本発明の空気入りタイヤの一例としては、一対のビード部と、一対のサイド部と、トレッド部と、上記ビード部間にトロイド状に延在させたカーカスと、該カーカスのクラウン部に配したベルトとを備えたタイヤ等が好適に挙げられる。該タイヤは、ラジアル構造であっても、バイアス構造であってもよい。

$[0\ 0\ 4\ 5]$

前記トレッドの構造としては、特に制限はなく、一層構造であっても、多層構造であってもよく、直接路面に接地する上層のキャップ部と、このキャップ部のタイヤ径方向内側に隣接して配置される下層のベース部とから構成される、いわゆるキャップ・ベース構造を有していてもよい。本発明においては、少なくとも前記キャップ部が前記本発明のゴム組成物で形成されているのが好ましい。

[0046]

本発明の空気入りタイヤは、その製造方法に特に制限はないが、例えば、前記本発明のゴム組成物を調製し、該ゴム組成物を生タイヤケースのクラウン部に予め貼り付けられた未加硫のベース部の上に貼り付け、所定のモールドで所定温度・所定圧力の下で加硫成形することにより製造することができる。

[0047]

【実施例】

以下に、実施例を挙げて本発明を更に詳しく説明するが、 本発明は下記の実 施例に何ら限定されるものではない。

[0048]

(1) 耐熱疲労時間測定(ラボテスト)

表 1 に示す配合処方に従い、バンバリーミキサーを用いて、各種ゴム組成物を調製した。得られたゴム組成物を145 $\mathbb C$ で 45 分間加硫した後、 $\mathbf J$ $\mathbf I$ $\mathbf S$ $\mathbf K$ 6 2 6 5 に記載のフレクソメーターによる定応力測定を行い、サンプル内部に亀裂が発生するまでの時間を耐熱疲労時間とし、比較例 1 を 100 として指数表示した。結果を表 1 に示す。なお、指数値が大きい程、耐熱疲労時間が長く、耐熱疲労性が良好であることを示す。

[0049]

(2) 耐熱疲労性評価(実車テスト)

上記各ゴム組成物をトレッドに用いたサイズ225/40R18の乗用車用タイヤを試作し、各供試タイヤをテスト車両に装着し、テストコースで同一周回を走行させ、走行後におけるタイヤの内部及び外観観察をして下記の基準にて評価した。結果を表1に示す。

- 0 ・・・ 全くチャンクの発生がない状態
- -1 · · · · 内部に0.5mm未満の亀裂がある状態
- -2 · · · 内部に0.5mm以上の亀裂がある状態
- -3 · · · · 外部に亀裂がある状態

[0050]

【表1】

9]3					,							1
実施例3		150	70	1	15	1.5	0.5	1.2	9	126	0	
実施例2		120	0/	i	15	1.5	0.5	1.4	4	123	-1	
実施例1		150	0/	1	15	1.5	0.5	1.8	2	118	1-1	
比較例5	1	120	0/	12	12	1.5	0.5	2	l	107	-3	
比較例4	135		0/	<u> </u>	15	1.5	0.5	1.8	2	109	-5	
比較例3	135	-	0/	15	15	1.5	0.5	2	l	105	-3	
比較例2	135	-	0/	15	15	2	1	1.8	2	103	-3.	
比較例1	135	1	10	15	15	2	I	2	1	100	-3	
	質量部									指数	1	
	スチレン・プタジエン共重合体ゴムA *1	スチレン・プタジエン共重合体ゴムB *2	カーホンプラック *3	アロマチックオイル	樹脂A *4	加硫促進剤(CZ) *5	加硫促進剤(ジチオリン酸亜鉛) *6	硫黄	有機チオスルフェート化合物 *フ	ラボテスト 耐熱疲労時間	実車テスト 耐熱疲労性	

日本合成ゴム社製 0120 [結合スチレン含有率:35質量%, ビニル結合量:16%, ゴム成分100質量部に対し35質量部のアロマ系オイルで油展] 旭化成社製タフデン4350 [結合スチレン含有率:39質量%, ビニル結合量:38%, ゴム成分100質量部に対し50質量部のアロマ系オイルで油展] **%**

1,6-ヘキサメレンジチオ硫酸ナドリウム・2水和物 [(株)フレキシス社製] 0,0'-ジプチルジチオリン酸亜鉛[大内新興化学工業(株)製] **L***

9*

N-t-プチル-2-ペンゾチアジル-スルフェンアミド[大内新興化学工業(株)製] *

C。芳香族樹脂 [日本石油化学社製] SAF [N2SA:150m2/g] *4

က

[0051]

ビニル結合量が30%以上のSBRをゴム成分とし、ジチオリン酸金属塩と有機 チオスルフェート化合物とを配合してなる実施例1~3のゴム組成物は耐熱疲労 時間が長く、また、該ゴム組成物をトレッドに用いたタイヤは耐熱疲労性が高か った。一方、本願請求項1に規定する条件を満たさない比較例2~5のゴム組成 物は、比較例1と比べて耐熱疲労時間の向上が不充分であり、また、該ゴム組成 物をトレッドに用いたタイヤは、亀裂の発生が多く、耐熱疲労性が不充分であっ た。

[0052]

【発明の効果】

本発明によれば、タイヤのトレッドに用いることにより、高いグリップ性能を維持しながら、タイヤの耐熱疲労性等の耐久性を向上させることが可能なゴム組成物を提供することができる。また、該ゴム組成物をトレッドに用いた高性能タイヤを提供することができる。

【書類名】 要約書

【要約】

【課題】 タイヤのトレッドに用いることにより、高いグリップ性能を維持しながら、タイヤの耐熱疲労性を向上させることが可能なゴム組成物、及び該ゴム組成物をトレッドに用いた高性能タイヤを提供する。

【解決手段】 (1) ビニル結合量が30%以上であるポリブタジエンゴム及びスチレン・ブタジエン共重合体ゴムの少なくとも一方を含むゴム成分に、(2) 加硫促進剤として、特定構造のジチオリン酸金属塩を、(3) 加硫剤として、特定構造の有機チオスルフェート化合物を配合してなるゴム組成物、及び該ゴム組成物をトレッドに用いた空気入りタイヤである。

【選択図】 なし

特願2003-029404

出願人履歴情報

識別番号

[000005278]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住所

東京都中央区京橋1丁目10番1号

氏 名 株式会社ブリヂストン

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

December 24, 2003

Application Number:

Japanese Patent Application

No. 2003-426560

[ST. 10/C]:

[JP2003-426560]

Applicant(s):

BRIDGESTONE CORPORATION

Certified on March 2, 2004

Commissioner,

Japan Patent Office

Yasuo IMAI (sealed)

Certification No. 2004-3015913