Junyu Wang jw6602

1.

Let's start. Below we have a table with the current **Old** and the proposed **New**.

Old	New
$AC \rightarrow E$	$AC \rightarrow E$
$AC \rightarrow CB$	$AC \rightarrow B$
$\mathbf{E} \to \mathbf{D}\mathbf{E}$	$\mathbf{E} o \mathbf{D}$
$D \rightarrow B$	$D \rightarrow B$

New was obtained by removing the "defective" parts of **Old** and therefore there is nothing to do for proving equivalence. New now becomes **Old**.

Old	New
$AC \rightarrow E$	$AC \rightarrow E$
$AC \rightarrow B$	$E \rightarrow D$
$E \rightarrow D$	$D \rightarrow B$
$D \rightarrow B$	

We compute $AC^+ = AC + E \rightarrow D = ACE + D \rightarrow B = ACEDB$, and as it contains B, we prove equivalence.

Therefore, our minimal cover ω is

$$AC \rightarrow E$$

 $E \rightarrow D$

 $D \rightarrow B$

2.

Let's start. Below we have a table with the current **Old** and the proposed **New**.

Old	New
$AB \rightarrow C$	$AB \rightarrow C$
$A \rightarrow E$	$A \rightarrow E$
$DE \rightarrow F$	$DE \rightarrow F$
$\mathbf{E} \to \mathbf{E}\mathbf{F}$	$\mathbf{E} o \mathbf{F}$
$F \rightarrow B$	$F \rightarrow B$

New was obtained by removing the "defective" parts of Old and therefore there is

nothing to do for proving equivalence. New now becomes Old.

Old	New
$AB \rightarrow C$	$AB \rightarrow C$
$A \rightarrow E$	$A \rightarrow E$
$\mathbf{DE} \to \mathbf{F}$	$E \rightarrow F$
$E \rightarrow F$	$F \rightarrow B$
$F \rightarrow B$	

We compute $E^+ = E + F \rightarrow B = EFB$, and as it contains F, we prove equivalence. **New** becomes **Old**.

Old	New
$AB \rightarrow C$	$A \rightarrow C$
$A \rightarrow E$	$A \rightarrow E$
$E \rightarrow F$	$E \rightarrow F$
$F \rightarrow B$	$F \rightarrow B$

We compute $A^+ = AC + E \rightarrow F = ACE + F \rightarrow B = ACEFB$, and as it contains C, we prove equivalence. **New** becomes **Old**.

Old	New
$A \rightarrow C$	$A \rightarrow CE$
$\mathbf{A} \rightarrow \mathbf{E}$	$E \rightarrow F$
$E \rightarrow F$	$F \rightarrow B$
$F \rightarrow B$	

This is an application of the union rule, which always produces an equivalent set.

Therefore, our minimal cover ω is

$$A \rightarrow CE$$

$$E \rightarrow F$$

$$F \rightarrow B$$

3.

(a)

- 1. Let's try with trivial removal and union rule. We can see that both operations are unavailable.
- 2. Let's try to simplify the LHS or RHS.

Attempt 1.

Old	New
$AB \rightarrow CD$	$AB \rightarrow C$
$C \rightarrow EF$	$C \to EF$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $AB^+ = ABCEFG$, and as it does not contain D, we prove non-equivalence.

Attempt 2.

Old	New
$AB \rightarrow CD$	$AB \rightarrow D$
$C \rightarrow EF$	$C \to EF$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $AB^+ = ABD$, and as it does not contain C, we prove non-equivalence.

Attempt 3.

Old	New
$AB \rightarrow CD$	$A \rightarrow CD$
$C \rightarrow EF$	$C \to EF$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $A^+ = ACDEFG$, and as it does not contain B, we prove non-equivalence.

Attempt 4.

Old	New
$AB \rightarrow CD$	$\mathbf{B} \to \mathbf{C}\mathbf{D}$
$C \rightarrow EF$	$C \to EF$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $B^+ = BCDEFG$, and as it does not contain A, we prove non-equivalence.

Attempt 5.

Old	New
$AB \rightarrow CD$	$AB \rightarrow CD$

$C \rightarrow EF$	$\mathbf{C} \to \mathbf{E}$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $C^+ = CE$, and as it does not contain F, we prove non-equivalence.

Attempt 6.

Old	New
$AB \rightarrow CD$	$AB \rightarrow CD$
$\mathbf{C} \to \mathbf{E}\mathbf{F}$	$\mathbf{C} \to \mathbf{F}$
$E \rightarrow C$	$E \rightarrow C$
$F \rightarrow G$	$F \rightarrow G$

We compute $C^+ = CFG$, and as it does not contain E, we prove non-equivalence.

We prove that we cannot simplify the LHS or RHS. Therefore, the given set of FDs is already a minimal cover.

(b)

We classify the attributes based on where they appear in the FDs:

On both sides: C, E, F
On left side only: A, B
On right side only: D

4. Nowhere: H

ABH appear in every key. D does not appear in any key. CEF may appear in any key. We start with ABCEFH, which must contain a key. We cannot remove ABH but may try to remove CEF.

We attempt to remove C. We compute $ABEFH^+ = ABCDEFGH$. We can remove C and we continue with ABEFH.

We attempt to remove E. We compute $ABFH^+ = ABCDEFGH$. We can remove E and we continue with ABFH.

We attempt to remove F. We compute $ABH^+ = ABCDEFGH$. We can remove F and we continue with ABH.

As nothing else can be done, ABH is a global key. We can remove CE because it's a subset of CEF.

Therefore, our final decomposition is

ABCD

CEF

FG

ABH