SC2001/CX2101 Algorithm Design and Analysis

Tutorial 4 Dynamic Programming (Weeks 10)

This tutorial helps you develop skills in the learning outcome of the course: "Able to design algorithms using suitable strategies (dynamic programming, etc) to solve a problem, able to analyse the efficiencies of different algorithms for problems like optimal sequencing for matrix multiplication, the longest common subsequence, etc".

Question 1

Find the length of the longest common subsequence and a longest common subsequence of CAGAG and ACTGG by the dynamic programming algorithm in the lecture notes.

	1	2	3	4	5
X	С	Α	G	Α	G
У	Α	C	Τ	O	G

С		Α	C	T	G	G	
	0	0	0	0	0	0	for i = 1 to n
C	0	0	1	1	1	1	for j = 1 to m
Α	0	1	1	1	1	1	if x[i] == y[j] {
G	0	1	1	1	2	2	c[i][j] = c[i-1][j-1] + 1;
Α	0	1	1	1	2	2	h[i][j] = '\';
G	0	1	1	1	2	3	c[i][j] = c[i-1][j];
h		A	С	т	G	G	h[i][j] = ' '; }
h	_	A	c	T	G	G	h[i][j] = ' '; } else {
h C	_ -	A — I	c\	T	G —	G —	h[i][j] = ' '; } else { c[i][j] = c[i][j-1];
	 - 	A — I	c - \	T	G - -	G — —	h[i][j] = ' '; } else {
С	- - - -	—	c - \ \	T — — — — — — — — — — — — — — — — — — —	G - - 	G - - 	h[i][j] = ' '; } else { c[i][j] = c[i][j-1];
C A	- - - -	—	C - \ \	T	_ _ _ I	_ _ _ I	h[i][j] = ' '; } else { c[i][j] = c[i][j-1];

The subsequence:

c G G

Question 2

The H-number H(n) is defined as follows:

H(0) = 1, and for n > 0:

$$H(n) = H(n-1) + H(n-3) + H(n-5) + + H(0)$$
 when n is odd

$$H(n) = H(n-2) + H(n-4) + H(n-6) + + H(0)$$
 when n is even.

- a) Give a recursive algorithm to compute H(n) for an arbitrary n as suggested by the recurrence equation given for H(n). Draw the tree that represents the recursive calls made when H(8) is computed.
- b) Draw the subproblem graph for H(8) and H(9).
- c) Write an iterative algorithm using the dynamic programming approach (bottom-up). What are the time and space required?

Question 2(a)

```
int hn(int n) {
{ if (n == 0) return 1;
  else {
       S = 0;
       if (n \mod 2) j=n-1; else j=n-2;
       for (k = 0; k \le j; k = k+2)
           S += hn(k);
   return S;
```


2(b)

The subproblem graph for H(8)

The subproblem graph for H(9)


```
int hn DP(int n)
2(c)
               // Make use of an array S[0..n]
                S[0]=1;
                for (i = 1; i<=n; i++) {
                    S[i] = 0;
                    if (i mod 2) j = i-1; else j=i-2;
                    while (j>=0) \{ S[i] += S[j]; j=2; \};
                return S[n];
```

Space Complexity: O(n). Time complexity: O(n²)

Question 3

The binomial coefficients can be defined by the recurrence equation:

$$C(n, k) = C(n - 1, k - 1) + C(n - 1, k)$$
 for $n > 0$ and $k > 0$
 $C(n, 0) = 1$ for $n > 0$
 $C(0, k) = 0$

C(n, k) is also called "n choose k". This is the number of ways to choose k distinct objects from a set of n objects.

3(a)

Give a recursive algorithm as suggested by the recurrence equation given for C(n, k).

```
int C(int n, int k)
{
    if (k == 0) return 1;
    if (n == 0) return 0;

    return C(n - 1, k - 1) + C(n - 1, k);
}
```

3(b) Draw the subproblem graph for C(5, 3).

3(c)

Write a recursive algorithm using the dynamic programming approach (top-down) stating the data structure used for the dictionary.

```
Use dictionary: int dic[n+1][k+1]; // initialised to -1 in all entries
```

```
int C(int n, int k, int [] [] dic)
    int c1, c2;
    if (k == 0) {
        dic[n][0] = 1;
        return 1; }
    if (n == 0) {
        dic[0][k] = 0;
        return 0; }
    if (dic[n-1][k-1] == -1)
        c1 = C(n-1, k-1);
    else c1 = dic[n-1][k-1];
    if (dic[n-1][k] == -1)
        c2 = C(n-1, k);
    else c2 = dic[n-1][k];
    dic[n][k] = c1 + c2;
    return dic[n][k];
```

Time complexity: O(nk)
Space complexity: O(nk)

3(d)

Write an iterative algorithm using the dynamic programming approach (bottom-up).

```
Time complexity: O(nk)
int C(int n, int k, int [] [] dic)
                                             Space complexity: O(nk)
   int dic[n+1][k+1];
   For (i = 1; i \le k; i++) dic[0][i] = 0;
   For (i = 0; i \le n; i++) dic[i][0] = 1;
   For (i = 1; i <= n; i++)
        For (i = 1; j <= k; j++)
             dic[i][i] = dic[i-1][i-1] + dic[i-1][i];
   Return dic[n][k];
```

```
int C(int n, int k, int [] [] dic) // more optimized
    int dic[n+1][k+1];
    For (i = 1; i \le k; i++) dic[0][i] = 0;
    For (i = 0; i \le n-k; i++) dic[i][0] = 1;
    For (i = 1; i <= n; i++)
        For (j = max(i-(n-k), 1); j <= k; j++)
            dic[i][j] = dic[i-1][j-1] + dic[i-1][j];
    Return dic[n][k];
```