Introdução à Probabilidade e Estatística

Universidade de Évora

Departamento de Matemática

Ano lectivo 2015/16

Ana Isabel Santos

Aula 6

Distribuições de Probabilidade

Distribuições de probabilidade contínuas

Distribuição Normal

Definição 5: Diz-se que v. a. contínua X segue uma **distribuição Normal,** com média μ e desvio padrão σ e denota-se por $X \sim N(\mu; \sigma)$ se e só se a sua função densidade de probabilidade é dada por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2},$$
$$-\infty < x < +\infty, \quad -\infty < \mu < +\infty, \quad \sigma > 0.$$

Os parâmetros caraterizadores desta distribuição são μ e σ .

Teorema 2: Se X é uma v. a. contínua que segue uma distribuição Normal, então

$$E(X) = \mu$$
 e $Var(X) = \sigma^2$.

Distribuição Normal Reduzida

Para o cálculo de probabilidades, uma variável aleatória X que segue uma distribuição $N(\mu;\sigma)$ qualquer é transformada numa variável aleatória Z que segue a **distribuição normal reduzida** ou **normal padrão** N(0;1), através da seguinte mudança de variável:

Distribuição Normal Reduzida

Existem valores tabelados da função distribuição da variável aleatória normal padrão N(0;1).

A consulta das Tabela da Normal (disponível no Moodle) permite obter os valores da **função distribuição normal padrão** para pontos não negativos, ou seja, a tabela apresenta os valores de

$$\Phi(z) = P(Z \le z), \quad z \ge 0.$$

A consulta da tabela permite concluir, por exemplo, que

$$P(Z \le 0) = \Phi(0) = 0,5.$$

Além disso, como consequência da simetria, temos que

$$\Phi(-z)=1-\Phi(z).$$

N(0;1)

Distribuição Normal Reduzida

Propriedades da normal reduzida ou padronizada

1.
$$P(Z \le -z) = P(Z \ge z) = 1 - P(Z < z) = 1 - \Phi(z);$$

2.
$$P(Z \ge -z) = P(Z \le z) = \Phi(z);$$

3.
$$P(Z > z) = 1 - P(Z \le z) = 1 - \Phi(z);$$

Distribuição Normal

Teorema da Aditividade: Se X_i , i=1,2,...,n, são variáveis aleatórias independentes tais que $X_i \sim N(\mu_i \; ; \; \sigma_i)$. Então, a variável aleatória

$$Y = \sum_{i=1}^{n} a_i X_i \sim N(\mu; \sigma), \text{ com } \mu = \sum_{i=1}^{n} a_i \mu_i \text{ e } \sigma = \sqrt{\sum_{i=1}^{n} a_i^2 \sigma_i^2}$$

Corolários: Se X_i , i=1,2,...,n, são variáveis aleatórias independentes tais que $X_i \sim N(\mu; \sigma)$. Então:

1.
$$\sum_{i=1}^{n} X_i \sim N\left(n\mu \; ; \; \sqrt{n}\,\sigma\right);$$

2.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu; \frac{\sigma}{\sqrt{n}}\right)$$
.

Aproximações à distribuição Normal

Aproximação da distribuição Binomial pela Normal

Se $X \sim B(n;p)$, com n grande (n > 50) e 0.1< p < 0.9, então

$$X \stackrel{\circ}{\sim} N(\mu = np; \sigma = \sqrt{npq}), \text{ logo, } Z = \frac{X - np}{\sqrt{npq}} \stackrel{\circ}{\sim} N(0; 1).$$

Aproximação da distribuição Poisson pela Normal

Se $X \sim \mathcal{P}(\lambda)$, com λ grande ($\lambda > 20$), então

$$X \stackrel{\circ}{\sim} N(\mu = \lambda; \sigma = \sqrt{\lambda}), \text{ logo, } Z = \frac{X - \lambda}{\sqrt{\lambda}} \stackrel{\circ}{\sim} N(0; 1).$$

Distribuição Normal

Exemplo 3: Seja X é a v. a. que representa o número de utilizadores de que está insatisfeito com um determinado programa informático. Sabe-se que, numa amostra de 100 utilizadores, 20% está insatisfeito com o programa informático.

Calcule a probabilidade de:

- a) Pelo menos 15 utilizadores estarem insatisfeitos com o programa.
- b) Entre 16 e 45 utilizadores estarem insatisfeitos com o programa.
- c) No máximo 10 utilizadores estarem insatisfeitos com o programa.