Logica de primer orden

Prof. Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Motivación

- La logica es una de las herramientas más universales que hay para describir objetos formalmente. En nuestro caso, sistemas.
- Existen infinitas lógicas diferentes. Ejemplos:
 - Lógica de primer orden
 - Lógica de segundo orden
 - Lógica del 400^{avo} orden
 - Logica temporal lineal
 - Logica de Hoare
- La lógica nos permite traducir propiedades y hechos del mundo real a un lenguaje que entienden las computadoras.

Motivación

- La diferencia principal entre las logicas es su expresividad (más sobre eso despues).
- La *Logica de primer orden* ofrece un buen balance entre expresividad, practicalidad y simplicidad.
- La lógica de primer orden es una herramienta muy util en la inteligencia artificial. Sistemas expertos y bases de conocimiento como Watson y Cync son impulsadas por algúna variante de esta logica.

Ejemplo:

$$\forall h. \texttt{Humano} \ h \Rightarrow \texttt{Mortal} \ h$$

$$\forall x \forall y. (\texttt{Entero } x \land \texttt{Entero } y \land (\exists n. x = n + n) \land (\exists m. y = m + m)) \Rightarrow \exists q. x + y = q + q$$

Vocabulario

- La logica de primer orden en realidad es una familia de logicas.
- El vocabulario de la logica de primer orden viene de varios dominios.
 Ejemplo:
 - Si uno intenta describir numeros naturales, simbolos como: +, -, 0, ect.
 - Si uno intenta describir un sistema experto medico: diagnostico, tratamiento, ect.

Vocabulario

- Los simbolos que comparten todas las logicas de primer orden son:
 - **Variables:** $x_1, x_2, y, z, ...$
 - Conectivos lógicos: \land , \lor , \neg , \Rightarrow , \Leftrightarrow
 - Cuantificadores: \forall y \exists
 - La igualdad: =
 - parentesis: (x)
- Los simbolos especificos de un domino se definen as:
 - Por cada numero n, un conjunto de simbolos de predicados con aridad n. Ej. Mortal x
 - Por cada numero n, un conjunto de simbolos de funciones con aridad n. Ej. distancia x y
 - Un conjunto de simbolos constantes. Ej. 0, 1

Observaciones

- El conjunto de simbolos en una logica de primer orden puede ser infinito, incluso de cardinalidad arbitraria! le, todos los numeros reales podrian ser un simbolo.
- Los simbolos de la logica de primer orden se dividen en tres tipos: funciones, predicados y constantes.
- Los simbolos de la lógica de primer orden tienen una propiedad llamada aridad.
- Los simbolos constantes denotan objetos especificos al dominio.
- Los predicados de aridad 1 denotan propiedades de objetos.
- Los predicados de aridad mayor a 1 denotan relaciones entre objetos.

Sintaxis: Terminos

Un Termino en logica de primer orden se define recursivamente com:

- Un simbolo constante es un Termino
- Una variable es un termino.
- Si $t_1 ldots t_n$ son terminos y f es una función de aridad n, f $t_1 ldots t_n$ es un termino.

Ejemplos, dado el conjunto de simbolos $S := \{Alice, Bob\}$ y la funcion $padre_de$:

- Alice
- padre_de Alice
- padre_de padre_de Bob

Sintaxis: Expressiones

Las expresiones de definen como:

- Dados los terminos t_0 y t_1 , $t_0 = t_1$ es una expression.
- Dados los terminos $t_0 ldots t_n$ y un predicado P de aridad n, P $t_0 ldots t_n$ es una expression.
- Dada la expresión ψ , $\neg \psi$ es una expresión.
- Dadas las expresiones ψ_1 y ψ_2 , $(\psi_1 \wedge \psi_2)$, $(\psi_1 \vee \psi_2)$, $(\psi_1 \Rightarrow \psi_2)$ y $(\psi_1 \Leftrightarrow \psi_2)$ son expressiones.
- Dada la expresión ψ y una variable x, $(\exists x \ \psi)$ y $(\forall x \ \psi)$ son expresiones.

Ejempos:

- $\exists x \ padre_de \ Alice = x$
- $\forall y \; \exists x \; padre_de \; y = x \land \neg(x = y)$
- son_familia Alice Bob

Expresividad

- Un objeto, sistema, ect. puede tener infinitas propiedades y pueden haber infinitos hechos respecto a el.
- Una lógica (sea la que sea) no puede expresar todas las propiedades de un objeto (a pesar de poder expresar infinitas propiedades y enunciados).
- La medida de la cantidad de propiedades que puede expresar una lógica se llama expresividad.
- La lógica de primer orden permite expresar todas las propiedades parcialmente computables.
- Algunas logicas, como la logica de segundo orden tienen mayor expresividad. Ejemplo, principio de inducción: $\forall P ((P \ 0) \land (\forall n \ P \ n \Rightarrow P \ (n+1))) \Rightarrow \forall n \ P \ n$
- Las propiedades expresables por la lógica de segndo orden no son computables.