## Examen de recuperació de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 1 de febrer de 2024

## Grup, cognoms i nom: 1,

Marca cada requadre amb una única opció. Puntuació:  $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/6)$ .

1 A Donada la següent taula de probabilitats:

| B                 | 0     | 0     | 1     | 1     |
|-------------------|-------|-------|-------|-------|
| $P(A=0 \mid B,C)$ | 0.921 | 0.900 | 0.378 | 0.273 |
| P(B,C)            | 0.322 | 0.412 | 0.108 | 0.157 |

Quin és el valor de  $P(A = 1, B = 1 \mid C = 1)$ ?  $P(A = 1, B = 1 \mid C = 1) = 0.201$ 

A) 
$$P(A=1, B=1 \mid C=1) \le 0.25$$

B) 
$$0.25 < P(A=1, B=1 \mid C=1) \le 0.50$$

C) 
$$0.50 < P(A=1, B=1 \mid C=1) \le 0.75$$

D) 
$$0.75 < P(A=1, B=1 \mid C=1) \le 1.00$$

2 B Donat el classificador en dues classes definit per la seua frontera i regions de decisió de la figura de la dreta, ¿quin dels següents vectors de pesos (en notació homogènia) defineix un classificador equivalent al donat?



1.0

A) 
$$\mathbf{w}_1 = (-0.5, 0, 0)^t$$
 i  $\mathbf{w}_2 = (0, 0, -1)^t$ .

B) 
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 i  $\mathbf{w}_2 = (0, 0, 1)^t$ .

C) 
$$\mathbf{w}_1 = (0,0,1)^t$$
 i  $\mathbf{w}_2 = (0.5,0,0)^t$ .

- D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.
- 3 D Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge  $\alpha=1$  i marge b=0.1, a un conjunt de 4 mostres bidimensionals d'aprenentatge per a un problema de 4 classes, c=1,2,3,4. En un moment donat de l'execució de l'algorisme s'han obtés els vectors de pesos  $\mathbf{w}_1=(-2,-3,-9)^t$ ,  $\mathbf{w}_2=(-2,-5,-5)^t$ ,  $\mathbf{w}_3=(-2,-7,-11)^t$ ,  $\mathbf{w}_4=(-2,-3,-5)^t$ . Suposant que a continuació es va a processar la mostra  $(\mathbf{x},c)=((3,4)^t,3)$ , quants vectors de pesos es modificaran?
  - A) 0
  - B) 2
  - C) 3
  - D) 4

- 4 C La probabilitat d'error d'un classificador s'estima que és del 7%. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95% del dit error no supere el  $\pm 1\%$ ; açò es, I = [6%, 8%]: M = 2501
  - A) M < 1000.
  - B)  $1000 \le M < 2000$ .
  - C)  $2000 \le M < 3000$ .
  - D)  $M \ge 3000$ .
- 5 A Siga el següent conjunt de dades utilitzat per a entrenar un arbre de classificació amb 5 mostres bidimensionals que pertanyen a 2 classes:

| n        | 1 | 2 | 3 | 4 | 5 |
|----------|---|---|---|---|---|
| $x_{n1}$ | 2 | 3 | 5 | 5 | 3 |
| $x_{n2}$ | 1 | 1 | 1 | 5 | 4 |
| $c_n$    | 1 | 2 | 2 | 2 | 2 |

Quantes particions diferents es podrien generar en el node arrel? No consideres les particions en les quals totes les dades s'assignen al mateix node fill.

- A) 4
- B) 5
- C) 2
- D) 3
- $6\,\overline{\mathrm{A}}\,$  La figura següent mostra una partició de  $6\,$  punts bidimensionals en dos clústers,  $\bullet$  i  $\circ$ :



Quin punt al ser transferit de clúster minimitza la variació de la suma d'errors quadràtics (SEQ),  $\Delta J = J - J'$  (SEQ després de l'intercanvi menys SEQ abans de l'intercanvi)?  $\Delta J = 7.2 - 13.3 = -6.1$ 

- A)  $(3,0)^t$
- B)  $(6,2)^t$
- C)  $(4,0)^t$
- D)  $(2,2)^t$

## Examen de recuperació de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 1 de febrer de 2024

Grup, cognoms i nom: 1,

## Problema sobre regressió logística

La següent taula presenta per fileres un conjunt de 2 mostres d'entrenament de 2 dimensions procedents de 2 classes:

| n | $x_{n1}$ | $x_{n2}$ | $c_n$ |
|---|----------|----------|-------|
| 1 | 0        | 1        | 1     |
| 2 | 0        | 0        | 2     |

Addicionalment, la següent taula representa una matriu de pesos inicials amb els pesos de cadascuna de les classes per columnes::

| $\mathbf{w}_1$ | $\mathbf{w}_2$ |
|----------------|----------------|
| 0.             | 0.             |
| 0.             | 0.             |
| 0.25           | -0.25          |

Es demana:

- 1. (0.5 punts) Calcula el vector de logits associat a cada mostra d'entrenament.
- 2. (0.25 punts) Aplica la funció softmax al vector de logits de cada mostra d'entrenament.
- 3. (0.25 punts) Classifica cadascuna de les mostres d'entrenament. En cas d'empat, tria qualsevol classe.
- 4. (0.5 punts) Calcula el gradient de la funció NLL en el punt de la matriu de pesos inicials.
- 5. (0.5 punts) Actualitza la matriu de pesos inicials aplicant descens per gradient amb factor d'aprenentatge  $\eta = 1.0$ .

Solució:

1. Vector de logits per a cada mostra d'entrenament:

| n | $a_{n1}$ | $a_{n2}$ |
|---|----------|----------|
| 1 | 0.25     | -0.25    |
| 2 | 0.       | 0.       |

2. Aplicació de la funció softmax:

$$\begin{array}{c|ccc} n & \mu_{n1} & \mu_{n2} \\ \hline 1 & 0.62 & 0.38 \\ 2 & 0.5 & 0.5 \\ \end{array}$$

3. Classificació de cada mostra:

$$\begin{array}{c|c} n & \hat{c}(x_n) \\ \hline 1 & 1 \\ 2 & 2 \end{array}$$

4. Gradient:

5. Matriu de pesos actualitzada:

$$\begin{array}{c|cc} \mathbf{w}_1 & \mathbf{w}_2 \\ \hline -0.06 & 0.06 \\ 0. & 0. \\ 0.44 & -0.44 \\ \end{array}$$