ALGORITMA, PEMROGRAMAN, PBO dan SISTEM BILANGAN

Akmal, S.Si, MT

Mata Kuliah: Pemrograman Berorientasi Objek

Tujuan

- Mahasiswa mengerti tentang konsep algoritma dan Pemrograman
- Mahasiswa mengerti tentang konsep sistem bilangan dan tipe data

Materi Perkuliahan

- Algoritma
- Pemrograman dan Proses pengembangannya
- PBO
- Sistem Bilangan dan Konversi

Algoritma dan Pemrograman

- Algoritma adalah rangkaian terurut instruksi-instruksi yang logis yang disusun untuk menyelesaikan suatu masalah
- Komputer digunakan sbg alat bantu penyelesaian suatu persoalan
 Problematika --> komputer --> penyelesaian (?)
 => harus ditanamkan dalam bentuk program
- Program secara umum adalah : kumpulan instruksi atau perintah yang disusun sedemikian rupa sehingga mempunyai urutan nalar yang logis untuk menyelesaikan suatu persoalan yang dimengerti oleh komputer.

3 Skema Dasar Algoritma

- 1. Runtunan
- 2. Pemilihan / Seleksi
- 3. Pengulangan

Penulisan algoritma:

- a. Diagram Alir / Flow Chart
- b. Kode Semu / Pseudo Code

Flow Chart

- Penulisan algoritma dilakukan dengan menggunakan diagram-diagram.
- Setiap diagram mewakili satu instruksi / perintah tertentu.
- Urutan perintah dalam suatu algoritma digambarkan dengan anak panah (dari suatu diagram ke diagram lain).
- □ Tidak cocok untuk penulisan algoritma yang panjang karena menimbulkan kerumitan.
- Dari segi struktur pemograman tidak dianjurkan untuk dipakai karena bentuk penulisannya jauh berbeda dengan implementasinya pada bahasa pemrograman tertentu.
- Sejak tahun 1980-an penulisan dengan diagram alir mulai ditinggalkan, kecuali untuk menuliskan langkah-langkah global sebuah algoritma.

Bahasa Pemrograman

- Bahasa pemrograman adalah teknik komunikasi standar untuk mengekspresikan instruksi kepada komputer.
- Layaknya bahasa manusia, setiap bahasa memiliki tata tulis dan aturan tertentu.
- Bahasa pemrograman memfasilitasi seorang programmer secara tepat menetapkan :
 - data apa yang sedang dilakukan oleh komputer selanjutnya,
 - bagaimana data tersebut disimpan dan dikirim, dan
 - apa yang akan dilakukan apabila terjadi kondisi yang variatif.
- Bahasa pemrograman dapat diklasifikasikan menurut kedekatan terhadap "bahasa manusia": tingkat rendah, menengah, dan tingkat tinggi

Alur Pembuatan Program

Langkah – langkah sistematis dasar dalam penyelesaikan permasalahan pemrograman :

- Mendefinisikan masalah
- Menganalisa dan membuat rumusan pemecahan masalah
- 3. Desain Algoritma dan Representasi
- Pengkodean, Uji Coba dan pembuatan dokumentasi

Definisi OOP

- OOP (Object Oriented Programming) merupakan teknik membuat suatu program berdasarkan objek dan apa yang bisa dilakukan objek tersebut.
- OOP terdiri dari objek-objek yang berinteraksi satu sama lain untuk menyelesaikan sebuah tugas.
- Kode-kode di-breakdown agar lebih mudah di-manage. Breakdown berdasarkan objek-objek yang ada pada program tersebut.
- Dianjurkan diimplementasikan untuk program dengan berbagai ukuran karena lebih mudah untuk men-debug

Figure 1-1: Interaction between Benjamin and Sean.

Figure 1-2: Object interactions in object-oriented programming terms.

Sistem Bilangan

- Bilangan dapat disajikan dalam beberapa cara. Cara penyajiannya tergantung pada Basis(Base) bilangan tersebut.
- Terdapat 4 cara utama dalam penyajian bilangan yaitu : Desimal, Biner, Oktal dan Heksadesimal

Contoh:

Desimal	Biner	Oktal	Heksadesimal
12610	11111102	1768	7E ₁₆
1110	1011 2	138	B ₁₆

Sistem Bilangan Desimal

- Bilangan desimal adalah sistem bilangan yang berbasis 10.
- Hal ini berarti bilangan bilangan pada sistem ini terdiri dari 0 sampai dengan 9.

- 126₁₀ (umumnya hanya ditulis 126)
- 1110 (umumnya hanya ditulis 11)

Sistem Bilangan Biner

- Bilangan dalam bentuk biner adalah bilangan berbasis 2.
- Ini menyatakan bahwa bilangan yang terdapat dalam sistem ini hanya 0 dan 1.

- **1111110**2
- **1011**2

Sistem Bilangan Oktal

- Bilangan dalam bentuk oktal adalah sistem bilangan yang berbasis 8.
- Hal ini berarti bilangan-bilangan yang diperbolehkan hanya berkisar antara 0 – 7.

- **176**8
- **13**8

Sistem Bilangan Heksadesimal

- Bilangan dalam sistem heksadesimal adalah sistem bilangan berbasis 16.
- Sistem ini hanya memperbolehkan penggunaan bilangan dalam skala 0 – 9, dan menggunaan huruf A – F, atau a – f karena perbedaan kapital huruf tidak memiliki efek apapun.

- 7E₁₆
- **B**16

Desimal ke Biner / Biner ke Desimal

- Untuk mengubah angka desimal menjadi angka biner digunakan metode pembagian dengan angka 2 sambil memperhatikan sisanya.
- Ambil hasil bagi dari proses pembagian sebelumnya, dan bagi kembali bilangan tersebut dengan angka 2.
- Ulangi langkah langkah tersebut hingga hasil bagi akhir bernilai 0 atau 1.
- Kemudian susun nilai-nilai sisa dimulai dari nilai sisa terakhir sehingga diperoleh bentuk biner dari angka bilangan tersebut

Desimal ke Oktal/Heksadesimal dan Oktal/Heksadesimal ke Desimal

- Konversi bilangan desimal ke bilangan oktal atau bilangan heksadesimal pada dasarnya sama dengan konversi bilangan desimal ke biner.
- Perbedaannya terletak pada bilangan pembagi.
- Jika pada konversi biner pembaginya adalah angka 2, maka pada konversi oktal pembaginya adalah angka 8, sedangkan pada konversi heksadesimal pembaginya adalah 16.

Biner ke Oktal dan Oktal ke Biner

- Untuk mengubah bilangan biner ke oktal, gunakan cara Representasi singkat (Shorthand Representation) yaitu kita pilah bilangan tersebut menjadi 3 bit bilangan biner dari kanan ke kiri.
- Tabel berikut ini menunjukkan representasi bilangan biner terhadap bilangan oktal :

Digit Oktal	Representasi Biner	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	
contoh:		
11111	102 = ? 8	
001	111	110
1	7	6

Biner ke Heksadesimal dan Heksadesimal ke Biner

- Pengubahan bilangan Biner ke Heksadesimal dilakukan dengan pengelompokan setiap empat bit Biner dimulai dari bit paling kanan.
- Kemudian konversikan setiap kelompok menjadi satu digit Heksadesimal.

Tabel berikut menunjukkan representasi bilangan Biner terhadap digit Heksadesimal:

kut menunjukkan representasi bilangan bilier t			
Digit Heksadesimal	Representasi Biner		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
A	1010		
В	1011		
С	1100		
D	1101		
E	1110		
F	1111		
<i>111111102 = ? 16</i>			
0111	1110		
7	E		

Latihan

1. Konversi Sistem Bilangan

- Konversikan bilangan bilangan berikut ini :
 - a. 198₁₀ ke sistem bilangan Biner, Heksadesimal dan Oktal
 - b. 1001001101_2 ke sistem bilangan Desimal, Heksadesimal dan Oktal
 - c. 76₈ ke sistem bilangan Biner, Heksadesimal dan Desimal
 - d. 43F₁₆ ke sistem bilangan Biner, Desimal dan Oktal