

Proposal on machine learning via DS

What and why?

ML is 'fancy' model fitting

 $\ensuremath{\mathbb{K}}$ Let z(T,x) be a solution to an ODE, evaluated at time T, initial condition x

 $\ensuremath{\mathbb{K}}$ Let z(T,x) be a solution to an ODE, evaluated at time T, initial condition x

$$\frac{\mathrm{d}z}{\mathrm{d}t} = f(A(t), z), \quad z(0) = x$$

 $\ensuremath{\mathbb{K}}$ Let z(T,x) be a solution to an ODE, evaluated at time T, initial condition x

$$\mathbf{k} \frac{\mathrm{d}z}{\mathrm{d}t} = f(A(t), z), \quad z(0) = x$$

$$u(x) = \mathbf{a} \cdot \mathbf{z} + b$$

 $\ensuremath{\,\nvDash\,}$ Let z(T,x) be a solution to an ODE, evaluated at time T, initial condition x

$$u(x) = \mathbf{a} \cdot \mathbf{z} + b$$

$$\swarrow \operatorname{argmin}_{\mathbf{a},b,A} \sum (y_i - u(x_i))^2$$

Finding a controller

$$\not \mathbf{k}$$
 performance = $\int \operatorname{error}^2 d\mu(x)$

$$\frac{\mathrm{d} \ \mathrm{performance}}{\mathrm{d} A} = \int \frac{\mathrm{d} \ \mathrm{error}^2}{\mathrm{d} A} \mathrm{d} \mu(x)$$

$$\frac{\mathrm{d} \ \mathrm{perturbation}}{\mathrm{d}\tau} = J_z \mathrm{perturbation}$$

$$\frac{\mathrm{d} \text{ output}}{\mathrm{d}A} = \mathrm{perturbation}(T)$$

Connection to deep NNs

✓ Deep NNs are a dynamical system that can change dimension

Continuous NNs can overcome issues with training deep NNs

Connection to deep resnets

Residual neural networks overcome vanishing gradients by selectively omitting layers

The dynamical systems viewpoint explains why this should help training

Resnets learn an Euler-discretisation of an ODE

Representability and controllability

We need to be sure that the flow map can process data as desired

★ This is a problem of controllability

Idealised problem: can the flow-map model arbitrary mappings on the data?

Continuum in space

✓ PDE models are useful when we have spatially structured data

Using a convolutional kernel gives CNN-like behaviours

Constraints, structure, and regularisation

We could add constraints to the system

We could add structure to the ODEs

We could add regularisation terms

Clustering and density estimation

A clustering model is presented

Not quite sure how it relates to the rest of the paper?

Lensity estimation can also be performed with the flow-map framework

Paper suggestion

Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." Journal of Computational Physics 378 (2019): 686-707.

Any volunteers?