Guía 2

1. Considere el espacio vectorial euclídeo \mathbb{R}^5 con el producto interno clásico ($\langle x,y\rangle=x^Ty$), y un subespacio $U\subset\mathbb{R}^5$ dado por el conjunto generador:

$$U = gen \left\{ \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ 5 \\ 0 \\ 7 \end{bmatrix} \right\}, \quad x = \begin{bmatrix} -1 \\ -9 \\ -1 \\ 4 \\ 1 \end{bmatrix}$$

Hallar la proyección ortogonal de x sobre U.

- 2. Sea \mathbb{R}^3 con producto interno dado por $\langle x,y\rangle=x^TAy,A=\begin{bmatrix}2&1&0\\1&2&-1\\0&-1&2\end{bmatrix}.$
 - a) Hallar la proyección ortogonal de $e_2 = [0, 1, 0]^T$ sobre el subespacio $S = gen\{[1, 0, 0]^T, [0, 0, 1]^T\}.$
 - b) Hallar la distancia de e_2 a S.
- 3. Sea $A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix}$.
 - $a) \,$ Demostrar que A es definida positiva.
 - b) Sea $V = \mathbb{R}^{2\times 1}$, con el producto interno $\langle X,Y \rangle = Y^TAX$. Hallar una base ortonormal de V aplicando el proceso de Gram-Schmidt a la base canónica de \mathbb{R}^2 .
- 4. Supongamos que el precio de casas en Boston se obtiene a partir del siguiente modelo:

$$p = \alpha x_1 + \beta x_2 + \gamma x_3 + \delta x_4,$$

donde p es el precio de la casa, x_1 es la cantidad de metros cuadrados, x_2 la cantidad de baños completos, x_3 la cantidad de medios baños y x_4 cantidad de habitaciones. Usando las columnas 'LotArea', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'SalePrice' de archivos houseprices.csv estimar los coeficientes $\alpha, \beta, \gamma, \delta$ del modelo.