Introduction to Computational Thinking and Programming for CFD ("CFD 0") Module 13251

Dr. rer. nat. Marten Klein

Numerical Fluid and Gas Dynamics, BTU Cottbus - Senftenberg

Organizational details

Contact

```
Marten Klein AZFD Room 3.02 marten.klein@b-tu.de
Heiko Schmidt AZFD Room 3.06 heiko.schmidt@b-tu.de
```

Moodle

 $\texttt{https://www.b-tu.de/elearning/btu} \quad \rightarrow \quad 13251 \ldots$

Dates and places

Lecture	Tue	11:30 – 13:00	LG1A, HS 1	
Exercise	Tue	13:45 - 15:15	AZFD, 2.32	
or	Tue	09:15 - 10:45	LG3A, 338	

Exams

Final module examination (MAP)

Dates: Written: **4 Aug. 2025** (P1) / Oral: individual date in P1/P2

Duration: 30 min oral / 90 min written

oral/written mode is fixed after week 3 based on registered students

Organizational details (cont'd)

2 important points

- ► The exercise is primarily offered as consultation, in particular when there are more than 40 participants.
- ▶ Please **bring your laptop** with you to the lecture/exrcise.
- ▶ Please do not hesitate to ask me about **hybrid teaching** options.

Obtain professional & methods competence

- ➤ You will acquire basic **hands-on programming** skills in **Python**, but only if you *practice*, *practice*, *practice*, . . . !
- ➤ You will learn to design and write **own** computer programs for **simple** problems. On this basis, you will be put in the position to work yourself into more complex tasks in the future.
- This is <u>not yet</u> a course in CFD! The course aims to <u>prepare</u> you for forthcoming courses in CFD (like CFD I, II, III etc.).

Target group

Primarily Bachelor, but also Master students from . . .

- Engineering and Computer Sciences
- Natural Sciences
- Mathematics

Planned content (subject to prioritization)

- Fundamentals of scientific computing
- Data types, conversions, input, and output
- Branching and iteration
- Gridded data, interpolation/extrapolation
- Numerical differentiation and integration
- Numerical errors and their quantification
- Random sampling, distribution functions, and statistical moments
- Computational efficiency
- Functional programming and recursion
- Object-oriented programming
- Plotting and visualization

Module description 13251 via module search: https://www.b-tu.de/qisserver3/rds?state=user&type=0&topitem=modules

Planned schedule

	#	CW	SW	Topics of Lecture	Topics of Exercise (preliminary)
Х	1	15	В	Course overview; What is CFD?	
	2	16	Α	Introduction to Python I	Data types, control structures
	3	17	В	Introduction to Python II	Modules, functions, plotting
Х	4	18	Α	Complex task (double block)	Taylor expansion
	5	19	В	Complex task (double block)	Algebraic grid generation
	6	20	Α	Numerical differentiation: FDM	First and second derivative
	7	21	В	Numerical integration: Quadrature rules	Newton-Cotes formulas, numerical errors
	8	22	Α	Complex task (double block)	Lorenz attractor, ODE integration
	9	23	В	Random sampling	Random walk
Х	10	24	Α	Statistical analysis	Statistical moments, distribution functions
	11	25	В	Root finding	Intersection, minimum, maximum
	12	26	Α	Minimization	Curve fitting based on least squares
	13	27	В	Object-oriented programming	Tracer advection
	14	28	Α	Complex task (double block)	Tracer advection
	15	29	В	Summary and outlook	Exam preparation
		32	P1	Written exam or oral exams	
		39	P2	Alternative appointments for oral exams	
		39	72	Alternative appointments for oral exams	

Computing facilities

Prerequisites

- We will use the programming language Python 3.8 (or higher) https://www.python.org/
- Recommended comprehensive Python package: Anaconda (Windows, Linux, Mac) – https://www.anaconda.com/
- Recommended integrated development environment (IDE):
 Spyder (Windows, Linux, Mac) https://www.spyder-ide.org/

Mode of operation

- Own laptop: Work anywhere. You have full control over our Python environment.
- ▶ BTU server account (only as backup): Work here on terminals in a predefined environment. Remote access is possible, but means notable technical overhead for beginners.

Chair of Numerical Fluid and Gas Dynamics

Prof. Dr.-Ing. Heiko Schmidt

https://www.b-tu.de/en/fg-stroemungsmodellierung

Subject areas of numerical fluid and gas dynamics

Interest in Computational Fluid Mechanics (CFD)?

(Traffic, Motors, Gasturbines, Climate, Renewable Energies, Pollution, Hydrology, Energy Storage)

Thesis	Bachelor or Master Thesis				
Projekts/Seminars	CFD-Projekt 2.8. 5. Semester CFD-Projekt 2.8. 5. Semester Bachelor	CFD-Seminar	SoSe/WiSe 2 SWS VL+ÜB Master Bachelor		
Advanced Topics	?? 2+2 SWS VL+ÜB Master	CFD III (in prep)	WiSe 2 SWS VL Master		
	Flow Modeling with Machine Learning SoSe 2+2 SWS VL+ÜB Master	Stochastic Methods for flow simulations	SoSe/WiSe 2+2 SWS VL+ÜB Master		
•	Turbulence Modelling WiSe; 2+2 SWS VL+ÜB Master	CFD II	SoSe 2+2 SWS VL+ÜB Master		
Basic Modules	Introduction to Gasdynamics e.g. 4. Semester B.Sc. Master SoSe; 2+2 SWS VL+UB Bachelor	CFD I e.g. 5. Semester B.Sc.	WiSe; 2+2 SWS VL+ÜB Master Bachelor		
Practical Introduction	Introduction to Computational Thinking & Programming for CFD e.g. 3/4. Semester B.Sc.				

Lehrstuhl für Numerische Strömungs- und Gasdynamik AZFD, Raum 3.06

Prof. Dr.-Ing. Heiko Schmidt heiko.schmidt@b-tu.de

Research focus - Numerical Fluid and Gas Dynamics

And now to you ...

- ▶ What is your motivation & expectation for this course?
- ▶ What is your field of study? Bachelor/Master?
- ▶ Do you already have knowledge of numerics, fluid mechanics, CFD?