Examination Center DGAC

Examination Date		
Name		
Firstname		
Birthday		

- 1 The angle of attack (aerodynamic angle of incidence) of an aerofoil is the angle between the: (1.00 P.)
 - [A] chord line and the relative undisturbed airflow.
 - [B] bottom surface and the chord line.
 - [C] bottom surface and the relative airflow.
 - [D] bottom surface and the horizontal

- In a stationary subsonic streamline flow pattern, if the streamlines converge, in this part of the pattern, the static pressure (I) will ...and the velocity (II) will ...: (1.00 P.)
 - [A] (I) increase, (II) increase.
 - [B] (I) increase, (II) decrease.
 - [C] (I) increase, (II) decrease.
 - [D] (I) decrease, (II) increase.
- The SI units of air density (I) and force (II) are: (1.00 P.)
 - [A] (I) kg / m3, (II) N.
 - [B] (I) N / m3, (II) N.
 - [C] (I) N / kg, (II) kg.
 - [D] (I) kg / m^2 , (II) kg.
- 4 The units of wing loading (I) W / S and (II) dynamic pressure q are: (1.00 P.)
 - [A] (I) kg / m, (II) N / m^2 .
 - [B] (I) N/m, (II) kg.
 - [C] $(I) N / m^2$, $(II) N / m^2$.
 - [D] (I) N / m3, (II) kg / m^2 .
- Which formula or equation describes the relationship between force (F), acceleration (a) and mass (m)? (1.00 P.)
 - [A] F=m. a
 - [B] F=m/a
 - [C] a=F. m
 - [D] m=F.a

- 6 Static pressure acts: (1.00 P.)
 - [A] only in direction of the flow.
 - [B] only in the direction of the total pressure.
 - [C] only perpendicular to the direction of the flow.
 - [D] in all directions.

- 7 Lift is generated when: (1.00 P.)
 - [A] a certain mass of air is retarded.
 - [B] a certain mass of air is accelerated in its flow direction.
 - [C] a symmetrical aerofoil is placed in a high velocity air stream at zero angle of attack.
 - [D] the flow direction of a certain mass of air is changed.

- 8 Consider the steady flow through a stream tube where the velocity of the stream is V. An increase in temperature of the flow at a constant value of V will: (1.00 P.)
 - [A] increase the mass flow when the tube is divergent in the direction of the flow.
 - [B] decrease the mass flow.
 - [C] increase the mass flow.
 - [D] not affect the mass flow.
- 9 Which one of the following statements about Bernoulli's theorem is correct? (1.00 P.)
 - [A] The dynamic pressure increases as static pressure decreases.
 - [B] The total pressure is zero when the velocity of the stream is zero.
 - [C] The dynamic pressure is maximum in the stagnation point.
 - [D] The dynamic pressure decreases as static pressure decreases.
- 10 If in a two-dimensional incompressible and subsonic flow, the streamlines converge the static pressure in the flow will: (1.00 P.)
 - [A] increase initially, then decrease.
 - [B] not change.
 - [C] decrease.
 - [D] increase.
- 11 Bernoulli's equation can be written as:

(pt= total pressure, ps = static pressure and q=dynamic pressure) (1.00 P.)

- [A] pt = ps q
- [B] pt = q ps
- [C] pt = ps / q
- [D] pt = ps + q

- Which of the following statements about boundary layers is correct? (1.00 P.)
 - [A] The turbulent boundary layer is thinner than the laminar boundary layer.
 - [B] The turbulent boundary layer gives a lower skin friction than the laminar boundary layer.
 - [C] The turbulent boundary layer has more kinetic energy than the laminar boundary layer.
 - [D] The turbulent boundary layer will separate more easily than the laminar boundary layer.
- Where on the surface of a typical aerofoil will flow separation normally start at high angles of attack? (1.00 P.)
 - [A] upper side leading edge.
 - [B] lower side leading edge.
 - [C] lower side trailing edge.
 - [D] upper side trailing edge.

- On an asymmetrical, single curve aerofoil, in subsonic airflow, at low angle of attack, when the angle of attack is increased, the centre of pressure will (assume a conventional transport aeroplane): (1.00 P.)
 - [A] remain unaffected.
 - [B] remain matching the airfoil aerodynamic centre.
 - [C] move forward.
 - [D] move aft.

- The angle of attack of a two dimensional wing section is the angle between: (1.00 P.)
 - [A] the chord line of the aerofoil and the free stream direction.
 - [B] the fuselage centreline and the free stream direction.
 - [C] the chord line and the camber line of the aerofoil.
 - [D] the chord line of the aerofoil and the fuselage centreline.

- 16 The angle between the airflow (relative wind) and the chord line of an aerofoil is: (1.00 P.)
 - [A] angle of attack.
 - [B] same as the angle between chord line and fuselage axis.
 - [C] glide path angle.
 - [D] climb path angle.

- 17 The angle between the aeroplane longitudinal axis and the chord line is the: (1.00 P.)
 - [A] angle of attack.
 - [B] glide path angle.
 - [C] angle of incidence.
 - [D] climb path angle.

- With increasing angle of attack, the stagnation point will move (I) ...and the point of lowest pressure will move (II) ...Respectively (I) and (II) are: (1.00 P.)
 - [A] (I) down, (II) forward.
 - [B] (I) down, (II) aft.
 - [C] (I) up, (II) forward.
 - [D] (I) up, (II) aft.

- 19 The aerodynamic centre of the wing is the point, where: (1.00 P.)
 - [A] the aeroplane's lateral axis intersects with the centre of gravity.
 - [B] changes of lift due to variations in angle of attack are constant.
 - [C] the pitching moment coefficient does not vary with angle of attack.
 - [D] aerodynamic forces are constant.

- 20 "Flutter" may be caused by: (1.00 P.)
 - [A] roll control reversal.
 - [B] high airspeed aerodynamic wing stall.
 - [C] low airspeed aerodynamic wing stall.
 - [D] distortion by bending and torsion of the structure causing increasing vibration in the resonance frequency.

- 21 On a swept wing aeroplane at low airspeed, the "pitch up" phenomenon: (1.00 P.)
 - [A] is caused by boundary layer fences mounted on the wings.
 - [B] never occurs, since a swept wing is a "remedy" to pitch up.
 - [C] is caused by extension of trailing edge lift augmentation devices.
 - [D] is caused by wingtip stall.
- 22 Low speed pitch up is caused by the: (1.00 P.)
 - [A] spanwise flow on a swept back wing.
 - [B] spanwise flow on a swept forward wing.
 - [C] Mach trim system.
 - [D] wing tip vortex.

- The lift coefficient (CL) of an aeroplane in steady horizontal flight is 0.42. An increase in angle of attack of 1 degree increases CL by 0.1. A vertical up gust instantly changes the angle of attack by 3 degrees. The load factor will be: (1.00 P.)
 - [A] 1.49
 - [B] 2.49
 - [C] 0.74
 - [D] 1.71

- 24 The aeroplane drag in straight and level flight is lowest when the: (1.00 P.)
 - [A] induced drag is lowest.
 - [B] induced drag is equal to zero.
 - [C] parasite drag is equal to the induced drag.
 - [D] parasite drag equals twice the induced drag.

- Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: (1.00 P.)
 - [A] negative (nose-down).
 - [B] infinite
 - [C] equal to zero.
 - [D] positive (nose-up).
- On a symmetrical aerofoil, the pitching moment for which Cl=0 is: (1.00 P.)
 - [A] equal to the moment coefficient for stabilized angle of attack.
 - [B] zero
 - [C] negative (pitch-down)
 - [D] positive (pitch-up)

- On a un-swept wing, when the aerofoil is accelerated from subsonic to supersonic speeds, the aerodynamic centre: (1.00 P.)
 - [A] remains unchanged.
 - [B] slightly shifts forward.
 - [C] shifts aft by about 10%.
 - [D] shifts from 25% to about 50% of the aerofoil chord.

- The lift coefficient (CL) of an aeroplane in steady horizontal flight is 0.4. An increase in angle of attack of 1 degree will increase CL by 0.09. A vertical up gust instantly changes the angle of attack by 5 degrees. The load factor will be: (1.00 P.)
 - [A] 3.18
 - [B] 1.09
 - [C] 2.0
 - [D] 2.13

- An aeroplane maintains straight and level flight while the IAS is doubled. The change in lift coefficient will be: (1.00 P.)
 - [A] x 0.5
 - [B] x 0.25
 - [C] x 4.0
 - [D] x 2.0

- The effect of a positive wing sweep on static directional stability is as follows: (1.00 P.)
 - [A] Destabilizing dihedral effect
 - [B] Negative dihedral effect
 - [C] Stabilizing effect
 - [D] No effect

- 31 The effect on static stability of an aeroplane with a high wing as compared to a low wing is: (1.00 P.)
 - [A] zero dihedral effect
 - [B] no effect as it is only used to improve aeroplane loading
 - [C] a negative dihedral effect
 - [D] a positive dihedral effect

- The lift coefficient (CL) of an aeroplane in steady horizontal flight is 0.35. An increase in angle of attack of 1 degree would increase CL by 0.079. If a vertical gust instantly changes the angle of attack by 2 degrees, the load factor will be: (1.00 P.)
 - [A] 0.45
 - [B] 1.45
 - [C] 1.9
 - [D] 0.9

- When an aeroplane is flying at an airspeed which is 1.3 times its basic stalling speed, the coefficient of lift as a percentage of the maximum lift coefficient (CLmax) would be: (1.00 P.)
 - [A] 77%.
 - [B] 130%.
 - [C] 59%.
 - [D] 169%.

- 34 The lift formula is: (1.00 P.)
 - [A] L=nW
 - [B] $L=CL 2 RHO V^2 S$
 - [C] L=W
 - [D] $L=CL 1/2 RHO V^2 S$

An aeroplane is in a level turn, at a constant TAS of 300 kt, and a bank angle of 45° . Its turning radius is:

(given: $g = 10 \text{ m/s}^2$) (1.00 P.)

- [A] 2381 metres.
- [B] 9000 metres.
- [C] 4743 metres.
- [D] 3354 metres.

- Which one of the following statements about the lift-to-drag ratio in straight and level flight is correct? (1.00 P.)
 - [A] The highest value of the lift/drag ratio is reached when the lift is equal to the aircraft weight.
 - [B] At the highest value of the lift/drag ratio the total drag is lowest.
 - [C] The lift/drag ratio always increases as the lift decreases.
 - [D] The highest value of the lift/drag ratio is reached when the lift is zero.

- 37 Drag is in the direction of and lift is perpendicular to the: (1.00 P.)
 - [A] chord line.
 - [B] relative wind/airflow.
 - [C] horizon.
 - [D] longitudinal axis.

- 38 If the nose of an aeroplane yaws left, this causes: (1.00 P.)
 - [A] a roll to the right.
 - [B] an increase in lift on the left wing.
 - [C] a decrease in relative airspeed on the right wing.
 - [D] a roll to the left.

- 39 At an aeroplane's minimum drag speed, what is the ratio between induced drag Di and parasite drag Dp? Di/Dp= (1.00 P.)
 - [A] 1/2
 - [B] 2/1
 - [C] It varies between aeroplane types.
 - [D] 1/1

- 40 The correct drag formula is: (1.00 P.)
 - [A] $D=CD 1/2 RHO V^2 S$
 - [B] $D = CD 2 RHO V^2 S$
 - [C] D=CD 1/2 RHO V S
 - [D] $D = CD 1/2 1/RHO V^2 S$

- The value of the parasite drag in straight and level flight at constant weight varies linearly with the: (1.00 P.)
 - [A] square of the speed.
 - [B] speed.
 - [C] angle of attack.
 - [D] square of the angle of attack.

- An aeroplane accelerates from 80 kt to 160 kt at a load factor equal to 1. The induced drag coefficient (i) and the induced drag (ii) alter with the following factors: (1.00 P.)
 - [A] (i) 1/4 (ii) 2
 - [B] (i) 1/16 (ii) 1/4
 - [C] (i) 4 (ii) 1/2
 - [D] (i) 1/2 (ii) 1/16

- What is the effect of high aspect ratio of an aeroplane's wing on induced drag? (1.00 P.)
 - [A] It is reduced because the effect of wing-tip vortices is reduced.
 - [B] It is increased because high aspect ratio produces greater downwash.
 - [C] It is unaffected because there is no relation between aspect ratio and induced drag.
 - [D] It is increased because high aspect ratio has greater frontal area.

- In what way do (1) induced drag and (2) parasite drag alter with increasing speed in straight and level flight ? (1.00 P.)
 - [A] (1) decreases and (2) increases.
 - [B] (1) increases and (2) decreases.
 - [C] (1) increases and (2) increases.
 - [D] (1) decreases and (2) decreases.

- Which of the following wing planforms produces the lowest induced drag? (all other relevant factors constant) (1.00 P.)
 - [A] Circular.
 - [B] Tapered.
 - [C] Elliptical.
 - [D] Rectangular.

- 46 If flaps are deployed at constant IAS in straight and level flight, the magnitude of tip vortices will eventually: (flap span less than wing span) (1.00 P.)
 - [A] remain the same.
 - [B] increase or decrease, depending on the initial angle of attack.
 - [C] decrease.
 - [D] increase.

- The value of the induced drag of an aeroplane in straight and level flight at constant weight varies linearly with: (1.00 P.)

 [A] V²

 [B] 1/V

 [C] V

 [D] 1/V²
- Induced drag at constant IAS is affected by: (1.00 P.)aeroplane weight.
 - [B] aeroplane wing location.[C] angle between wing chord and fuselage centre line.
 - [D] engine thrust.
- Which of the following will reduce induced drag? (1.00 P.)
 - [A] Elliptical lift distribution.
 - [B] Flying at high angles of attack.
 - [C] Low aspect ratio.
 - [D] Extending the flaps.
- Induced drag is created by the: (1.00 P.)
 - [A] spanwise flow pattern resulting in the tip vortices.
 - [B] propeller wash blowing across the wing.
 - [C] interference of the air stream between wing and fuselage.
 - [D] separation of the boundary layer over the wing.

- Vortex generators: (1.00 P.)
 - [A] take kinetic energy out of the boundary layer to reduce separation.
 - [B] change the turbulent boundary layer into a laminar boundary layer.
 - [C] transfer energy from the free airflow into the boundary layer.
 - [D] reduce the spanwise flow on swept wing.

- How does the total drag vary as speed is increased from stalling speed (VS) to maximum IAS (VNE) in a straight and level flight at constant weight? (1.00 P.)
 - [A] Increasing, then decreasing.
 - [B] Increasing.
 - [C] Decreasing, then increasing.
 - [D] Decreasing.

- A boundary layer fence on a swept wing will: (1.00 P.)
 - [A] improve the high speed characteristics.
 - [B] increase the critical Mach Number.
 - [C] improve the lift coefficient of the trailing edge flap.
 - [D] improve the low speed characteristics.

- In order to perform a steady level turn at constant speed in an aeroplane, the pilot must: (1.00 P.)
 - [A] increase thrust/power and keep angle of attack unchanged.
 - [B] increase thrust/power and decrease angle of attack.
 - [C] increase angle of attack and keep thrust/power unchanged.
 - [D] increase thrust/power and angle of attack.

- When an aeroplane with the centre of gravity forward of the centre of pressure of the combined wing / fuselage is in straight and level flight, the vertical load on the tailplane will be: (1.00 P.)
 - [A] upwards.
 - [B] downwards because it is always negative regardless of the position of the centre of gravity.
 - [C] downwards.
 - [D] zero because in steady flight all loads are in equilibrium.

- In a twin engine jet aeroplane (engines mounted below the low wings) the thrust is suddenly increased. Which elevator deflection will be required to maintain the pitching moment zero ? (1.00 P.)
 - [A] No elevator movement will required because the thrust line of the engines remains unchanged.
 - [B] Down.
 - [C] Up.
 - [D] It depends on the position of the centre of gravity.

- In which situation would the wing lift of an aeroplane in straight and level flight have the highest value ? (1.00 P.)
 - [A] Forward centre of gravity and idle thrust.
 - [B] Aft centre of gravity and take-off thrust.
 - [C] Forward centre of gravity and take-off thrust.
 - [D] Aft centre of gravity and idle thrust.

- An aeroplane, with a C.G. location behind the centre of pressure of the wing can only maintain a straight and level flight when the horizontal tail loading is: (1.00 P.)
 - [A] upwards.
 - [B] upwards or downwards depending on elevator deflection.
 - [C] downwards.
 - [D] zero.

- 59 The centre of gravity moving aft will: (1.00 P.)
 - [A] increase or decrease the elevator up effectiveness, depending on wing location.
 - [B] decrease the elevator up effectiveness.
 - [C] not affect the elevator up or down effectiveness.
 - [D] increase the elevator up effectiveness.

- 60 If the total sum of moments about one of its axes is not zero, an aeroplane would: (1.00 P.)
 - [A] experience an angular acceleration about that axis.
 - [B] not be affected because the situation is normal.
 - [C] be difficult to control.
 - [D] fly a path with a constant curvature.

- During landing of a low-winged jet aeroplane, the greatest elevator up deflection is normally required when the flaps are: (1.00 P.)
 - [A] up and the centre of gravity is fully forward.
 - [B] up and the centre of gravity is fully aft.
 - [C] fully down and the centre of gravity is fully forward.
 - [D] fully down and the centre of gravity is fully aft.

62

	[A]	rolling.
	[B]	pitching.
	[C]	slipping.
	[D]	yawing.
63	Rolling is the rotation of the aeroplane about the: (1.00 P.)	
	[A]	vertical axis.
	[B]	longitudinal axis.
	[C]	wing axis.
	[D]	lateral axis.

Rotation about the lateral axis is called: (1.00 P.)

- An aeroplane has static directional stability; in a side-slip to the right, initially the: (1.00 P.)
 - [A] nose of the aeroplane tends to move to the right.
 - [B] nose of the aeroplane will remain in the same direction.
 - [C] right wing tends to go down.
 - [D] nose of the aeroplane tends to move to the left.

- The centre of gravity of an aeroplane is in a fixed position forward of the neutral point. Speed changes cause a departure from the trimmed position. Which of the following statements about the stick force stability is correct? (1.00 P.)
 - [A] Stick force stability is not affected by trim.
 - [B] Aeroplane nose up trim decreases the stick force stability.
 - [C] An increase of 10kt from the trimmed position at low speed has more effect on the stick force than an increase of 10kt from the trimmed position at high speed.
 - [D] Increase of speed generates pull forces.

- The (1) stick force stability and the (2) manoeuvre stability are positively affected by: (1.00 P.)
 - [A] (1) trimming the aeroplane nose up (2) trimming the aeroplane nose up.
 - [B] (1) aft C.G. movement (2) aft CG. movement.
 - [C] (1) forward C.G. movement (2) trimming the aeroplane nose up.
 - [D] (1) forward C.G. movement (2) forward CG. movement.

- The value of the manoeuvre stability of an aeroplane is 150 N/g. The stick force required to achieve a load factor of 2,5 from steady level flight is: (1.00 P.)
 - [A] 450 N.
 - [B] 150 N.
 - [C] 375 N.
 - [D] 225 N.

- 68 For a normal stable aeroplane, the centre of gravity is located: (1.00 P.)
 - [A] with a sufficient minimum margin ahead of the neutral point of the aeroplane.
 - [B] between the aft limit and the neutral point of the aeroplane.
 - [C] aft of the neutral point of the aeroplane.
 - [D] at the neutral point of the aeroplane.
- The maximum aft position of the centre of gravity is, amongst others, limited by the: (1.00 P.)
 - [A] inability to achieve maximum rotation rate during take-off.
 - [B] required minimum value of the stick force per g.
 - [C] maximum elevator deflection.
 - [D] maximum longitudinal stability of the aeroplane.

- 70 Longitudinal static stability is created by the fact that the: (1.00 P.)
 - [A] centre of gravity is located in front of the leading edge of the wing.
 - [B] aeroplane possesses a large trim speed range.
 - [C] wing surface is greater than the horizontal tail surface.
 - [D] centre of gravity is located in front of the neutral point of the aeroplane.

- Positive static stability of an aeroplane means that following a disturbance from the equilibrium condition: (1.00 P.)
 - [A] the initial tendency is to return towards its equilibrium condition.
 - [B] the tendency is to move with an oscillatory motion of decreasing amplitude.
 - [C] the tendency is to move with an oscillatory motion of increasing amplitude.
 - [D] the initial tendency is to diverge further from its equilibrium condition.
- Following a disturbance, an aeroplane oscillates about the lateral axis at a constant amplitude. The aeroplane is: (1.00 P.)
 - [A] statically stable dynamically unstable
 - [B] statically unstable dynamically neutral
 - [C] statically stable dynamically neutral
 - [D] statically unstable dynamically stable
- Which statement on dynamic longitudinal stability of a conventional aeroplane is correct? (1.00 P.)
 - [A] Speed remains constant during one period of the phugoid.
 - [B] Period time of the phugoid is normally 5 sec.
 - [C] Damping of the short period oscillation is normally very weak.
 - [D] Damping of the phugoid is normally very weak.
- 74 The "short period mode" is an: (1.00 P.)
 - [A] oscillation about the longitudinal axis.
 - [B] oscillation about the vertical axis.
 - [C] unstable movement of the aeroplane, induced by the pilot.
 - [D] oscillation about the lateral axis.

- 75 An aeroplane that has positive static stability: (1.00 P.)
 - [A] is always dynamically unstable.
 - [B] is never dynamically stable.
 - [C] is always dynamically stable.
 - [D] can be dynamically stable, neutral or unstable.
- A statically unstable aeroplane is: (1.00 P.)
 - [A] sometimes dynamically stable.
 - [B] never dynamically stable.
 - [C] sometimes dynamically unstable.
 - [D] always dynamically stable.
- One of the requirements for positive dynamic stability is: (1.00 P.)
 - [A] an effective elevator.
 - [B] a small cg range.
 - [C] a large deflection range of the stabilizer trim.
 - [D] positive static stability.

- Which of the following statements about dihedral is correct? (1.00 P.)
 - [A] Dihedral contributes to dynamic but not to static lateral stability.
 - [B] Dihedral is necessary for the execution of slip-free turns.
 - [C] The "effective dihedral" of an aeroplane component means the contribution of that component to the static lateral stability.
 - [D] Effective dihedral is the angle between the 1/4-chord line and the lateral axis of the aeroplane.

- How does positive camber of an aerofoil affect static longitudinal stability? It has (1.00 P.)
 - [A] no effect, because camber of the aerofoil produces a constant pitch down moment coefficient, independent of angle of attack.
 - [B] positive effect, because the centre of pressure shifts rearward at increasing angle of attack.
 - [C] negative effect, because the lift vector rotates forward at increasing angle of attack.
 - [D] positive effect, because the lift vector rotates backward at increasing angle of attack.

- Which of the following lists contain aeroplane design features that all increase static lateral stability? (1.00 P.)
 - [A] Fuselage mounted engines, dihedral, T-tail.
 - [B] High wing, sweep back, large and high vertical fin.
 - [C] Sweep back, under wing mounted engines, winglets.
 - [D] Low wing, dihedral, elliptical wing planform.
- Which wing design feature decreases the static lateral stability of an aeroplane? (1.00 P.)
 - [A] Anhedral.
 - [B] High wing.
 - [C] Increased wing span.
 - [D] Dihedral.

- 82 The manoeuvrability of an aeroplane is best when the: (1.00 P.)
 - [A] C.G. position is on the forward C.G. limit.
 - [B] flaps are down.
 - [C] C.G. is on the aft C.G. limit.
 - [D] speed is low.

- The effect of a ventral fin on the static stability of an aeroplane is as follows: (1=longitudinal, 2=lateral, 3=directional) (1.00 P.)
 - [A] 1: positive, 2: negative, 3: negative
 - [B] 1: no effect, 2: negative, 3: positive
 - [C] 1: no effect, 2: positive, 3: negative
 - [D] 1: negative, 2: positive, 3: positive

- Which of the following statements about static lateral and directional stability is correct? (1.00 P.)
 - [A] The effects of static lateral and static directional stability are completely independent of each other because they take place about different axes.
 - [B] An aeroplane with an excessive static directional stability in relation to its static lateral stability, will be prone to "Dutch roll".
 - [C] An aeroplane with an excessive static directional stability in relation to its static lateral stability, will be prone to spiral dive (spiral instability).
 - [D] Static directional stability can be increased by installing more powerful engines.

- Which moments or motions interact in a dutch roll? (1.00 P.)
 - [A] Pitching and rolling.
 - [B] Pitching and adverse yaw.
 - [C] Rolling and yawing.
 - [D] Pitching and yawing.

- 86 Extension of FOWLER type trailing edge lift augmentation devices, will produce: (1.00 P.)
 - [A] a force which reduces drag.
 - [B] a nose-up pitching moment.
 - [C] no pitching moment.
 - [D] a nose-down pitching moment.

- With increasing altitude and constant IAS the static lateral stability (1) and the dynamic lateral/directional stability (2) of an aeroplane with swept-back wing will: (1.00 P.)
 - [A] (1) increase (2) decrease.
 - [B] (1) decrease (2) decrease.
 - [C] (1) decrease (2) increase.
 - [D] (1) increase (2) increase.

- Which one of the following systems suppresses the tendency to "Dutch roll"? (1.00 P.)
 [A] Spoiler mixer.
 [B] Roll spoilers.
 [C] Rudder limiter.
 [D] Yaw damper.
- Which aeroplane behaviour will be corrected by a yaw damper ? (1.00 P.)
 - [A] Spiral dive.
 - [B] Dutch roll.
 - [C] Buffeting.
 - [D] Tuck under.

- Compared with level flight prior to the stall, the lift (1) and drag (2) in the stall change as follows: (1.00 P.)
 - [A] (1) decreases (2) increases.
 - [B] (1) decreases (2) decreases.
 - [C] (1) increases (2) increases.
 - [D] (1) increases (2) decreases.
- 91 Entering the stall the centre of pressure of a straight (1) wing and of a strongly swept back wing (2) will: (1.00 P.)
 - [A] (1) move aft, (2) move aft.
 - [B] (1) move aft, (2) not move.
 - [C] (1) move aft, (2) move forward.
 - [D] (1) not move (2) move forward.

92 081-001.jpg

A jet transport aeroplane weighing 100 tons carries out a steady level 50 degree bank turn at FL350. The buffet free speed range from low speed to high speed buffet extends from: (1.00 P.)

Siehe Anlage 1

- [A] M 0.72 to > M 0.84
- [B] M 0.69 to > M 0.84
- [C] M 0.74 to M 0.84
- [D] M 0.65 to > M 0.84

- Which of the following statements about stall speed is correct ? (1.00 P.)
 - [A] Increasing the angle of sweep of the wing will decrease the stall speed.
 - [B] Use of a T-tail will decrease the stall speed..
 - [C] Decreasing the angle of sweep of the wing will decrease the stall speed.
 - [D] Increasing the anhedral of the wing will decrease the stall speed.
- 94 Which of the following statements about the spin is correct? (1.00 P.)
 - [A] An aeroplane is prone to spin when the stall starts at the wing root.
 - [B] During spin recovery the ailerons should be kept in the neutral position.
 - [C] In the spin, airspeed continuously increases.
 - [D] Every aeroplane should be designed such that it can never enter a spin.

- 95 Which of the following statements about a Mach trimmer is correct? (1.00 P.)
 - [A] A straight wing aeroplane always needs a Mach trimmer for flying at Mach numbers close to MMO.
 - [B] The Mach trimmer corrects the natural tendency of a swept wing aeroplane to pitch-up.
 - [C] A Mach trimmer reduces the stick force stability of a straight wing aeroplane to zero at high Mach numbers.
 - [D] A Mach trimmer corrects the change in stick force stability of a swept wing aeroplane above a certain Mach number.

- 96 During an erect spin recovery: (1.00 P.)
 - [A] the control stick is moved side ways, in the direction of the angle of bank.
 - [B] the control stick is moved side ways, against the angle of bank.
 - [C] the ailerons are held in the neutral position.
 - [D] the control stick is pulled to the most aft position.

- 97 Which of the following statements about the stall of a straight wing aeroplane is correct? (1.00 P.)
 - [A] The nose down effect is the result of increasing downwash, due to flow separation.
 - [B] Buffeting is the result of tailplane flow separation..
 - [C] The horizontal tail will stall at a higher speed than the wing.
 - [D] Just before the stall the aeroplane will be have an increased nose-down tendency.

- How is stall warning presented to the pilots of a large transport aeroplane? (1.00 P.)
 - [A] stick pusher.
 - [B] stall warning light only.
 - [C] stick shaker and/or aerodynamic buffet.
 - [D] aural warning only.
- 99 The vane of a stall warning system with a flapper switch is activated by the change of the: (1.00 P.)
 - [A] point of lowest pressure.
 - [B] stagnation point.
 - [C] centre of gravity.
 - [D] centre of pressure.

- 100 Which combination of design features is known to be responsible for deep stall? (1.00 P.)
 - [A] Straight wings and a T-tail.
 - [B] Swept back wings and a T-tail.
 - [C] Straight wings and aft fuselage mounted engines
 - [D] Swept back wings and wing mounted engines.
- When a strongly swept back wing stalls and the wake of the wing contacts the horizontal tail, the effect on the stall behaviour can be a(n): (1.00 P.)
 - [A] nose down tendency.
 - [B] increase in sensitivity of elevator inputs.
 - [C] nose up tendency and/or lack of elevator response.
 - [D] tendency to increase speed after initial stall.

- 102 By what percentage does the lift increase in a level turn at 45° angle of bank, compared to straight and level flight? (1.00 P.)
 - [A] 19%.
 - [B] 31%.
 - [C] 52%.
 - [D] 41%.

- 103 In a steady level, co-ordinated turn, the load factor n and the stalling speed VS will be: (1.00 P.)
 - [A] n smaller than 1, VS lower than in straight and level flight.
 - [B] n greater than 1, VS lower than in straight and level flight.
 - [C] n smaller than 1, VS higher than in straight and level flight.
 - [D] n greater than 1, VS higher than in straight and level flight.

104	On a wing fitted with a "fowler" type trailing edge flap, the "Full extended" position will produce: (1.00 P.)			
	[A]	an unaffected wing area and increase in camber.		
	[B]			
		an increase in wing area only.		
	[C]	an increase in wing area and camber.		
	[D]	an unaffected CD, at a given angle of attack.		
105	When flaps are extended in a straight and level flight at constant IAS, the lift coefficient will eventually: (1.00 P.)			
	[A]	first increase and then decrease.		
	[B]	decrease.		
	[C]	remain the same.		
	[D]	increase.		
106	Whe P.)	When flaps are deployed at constant angle of attack the lift coefficient will: (1.0 P.)		
	[A]	decrease.		
	[B]	increase.		
	[C]	vary as the square of IAS.		
	[D]	remain the same.		

- 107 Trailing edge flap extension will: (1.00 P.)
 - [A] increase the critical angle of attack and decrease the value of CLmax.
 - [B] increase the critical angle of attack and increase the value of CLmax.
 - [C] decrease the critical angle of attack and increase the value of CLmax.
 - [D] decrease the critical angle of attack and decrease the value of CLmax.

- 108 Which of the following statements about the difference between Krueger flaps and slats is correct? (1.00 P.)
 - [A] Deploying a Krueger flap will increase critical angle of attack, deploying a slat does not.
 - [B] Deploying a Krueger flap will form a slot, deploying a slat does not.
 - [C] Deploying a slat will form a slot, deploying a Krueger flap does not.
 - [D] Deploying a slat will increase critical angle of attack, deploying a Krueger flap does not.

109	What is the most effective flap system? (1.00 P.)			
	[A]	Split flap.		
	[B]	Plain flap.		
	[C]	Single slotted flap.		
	[D]	Fowler flap.		
110	Deploying a Fowler flap, the flap will: (1.00 P.)			
	[A]	just move aft.		
	[B]	move aft, then turn down.		
	[C]	just turn down.		
	[D]	turn down, then move aft.		
111	A slotted flap will increase the CLmax by: (1.00 P.)			
	[A]	increasing only the camber of the aerofoil.		
	[B]	increasing the camber of the aerofoil and re-energising the airflow.		
	[C]	decreasing the skin friction.		
	[D]	increasing the critical angle of attack.		
112	In order to maintain straight and level flight at a constant airspeed, whilst the flaps are being retracted, the angle of attack must be: (1.00 P.)			
	[A]	held constant		
	[B]	increased		
	[C]	increased or decreased depending upon the type of flap		
	[D]	decreased		

- 113 The function of the slot between an extended slat and the leading edge of the wing is to: (1.00 P.)
 - [A] reduce the wing loading.
 - [B] cause a venturi effect which energizes the boundary layer.
 - [C] allow space for vibration of the slat.
 - [D] slow the air flow in the slot so that more pressure is created under the wing.

- An aeroplane has the following flap settings: 0°, 15°, 30° and 45°. Slats can also be selected. Which of the following selections will most adversely affect the CL/CD ratio? (1.00 P.)
 - [A] Flaps from 0° to 15° .
 - [B] Flaps from 15° to 30° .
 - [C] The slats.
 - [D] Flaps from 30° to 45° .
- 115 After take-off the slats (when installed) are always retracted later than the flaps. Why ? (1.00 P.)
 - [A] Because VMCA with SLATS EXTENDED is more favourable compared to the FLAPS EXTENDED situation.
 - [B] Because SLATS EXTENDED provides a better view from the cockpit than FLAPS EXTENDED.
 - [C] Because SLATS EXTENDED gives a large decrease in stall speed with relatively less drag.
 - [D] Because FLAPS EXTENDED gives a large decrease in stall speed with relatively less drag.

- 116 Upon extension of a spoiler on a wing: (1.00 P.)
 - [A] CD is increased, while CL remains unaffected.
 - [B] both CL and CD are increased.
 - [C] only CL is decreased (CD remains unaffected).
 - [D] CD is increased and CL is decreased.
- 117 When "spoilers" are used as speed brakes: (1.00 P.)
 - [A] at same angle of attack, CD is increased and CL is decreased.
 - [B] CLmax of the polar curve is not affected.
 - [C] at same angle of attack, CL remains unaffected.
 - [D] they do not affect wheel braking action during landing.

- During initiation of a turn with speedbrakes extended, the roll spoiler function induces a spoiler deflection: (1.00 P.)
 - [A] downward on the upgoing wing and upward on the downgoing wing.
 - [B] on the upgoing wing only.
 - [C] upward on the upgoing wing and downward on the downgoing wing.
 - [D] on the downgoing wing only.

- 119 Stick forces, provided by an elevator feel system, depend on: (1.00 P.)
 - [A] elevator deflection, static pressure.
 - [B] elevator deflection, dynamic pressure.
 - [C] stabilizer position, static pressure.
 - [D] stabilizer position, total pressure.

- For a fixed-pitch propeller designed for cruise, the angle of attack of each blade, measured at the reference section: (1.00 P.)
 - [A] is optimum when the aircraft is in a stabilized cruising flight.
 - [B] is lower in ground run than in flight (with identical engine RPM).
 - [C] decreases when the aircraft speed decreases (with identical engine RPM).
 - [D] is always positive during idling descent.

- 121 Why is a propeller blade twisted from root to tip? (1.00 P.)
 - [A] To ensure that the tip produces most thrust.
 - [B] To ensure the angle of attack is greatest at the tip.
 - [C] To ensure that the root produces most thrust.
 - [D] To maintain a constant angle of attack along the whole length of the propeller blade.

- 122 Constant-speed propellers provide a better performance than fixed-pitch propellers because they: (1.00 P.)
 - [A] produce an almost maximum efficiency over a wider speed range.
 - [B] have more blade surface area than a fixed-pitch propeller.
 - [C] produce a greater maximum thrust than a fixed-pitch propeller.
 - [D] have a higher maximum efficiency than a fixed-pitch propeller.

- 123 If you pull back the RPM lever of a constant speed propeller during a glide with idle power and constant speed, the propeller pitch will: (1.00 P.)
 - [A] decrease and the rate of descent will increase.
 - [B] decrease and the rate of descent will decrease.
 - [C] increase and the rate of descent will increase.
 - [D] increase and the rate of descent will decrease.

- 124 If you push forward the RPM lever of a constant speed propeller during a glide with idle power and constant speed, the propeller pitch will: (1.00 P.)
 - [A] decrease and the rate of descent will decrease.
 - [B] increase and the rate of descent will increase.
 - [C] decrease and the rate of descent will increase.
 - [D] increase and the rate of descent will decrease.

- 125 Propeller efficiency may be defined as the ratio between: (1.00 P.)
 - [A] usable (power available) power of the propeller and shaft power.
 - [B] the usable (power available) power and the maximum power.
 - [C] the thrust and the maximum thrust.
 - [D] the thermal power of fuel-flow and shaft power.

- An engine failure can result in a windmilling (1) propeller and a feathered (2) propeller. Which statement about propeller drag is correct? (1.00 P.)
 - [A] (1) is larger than (2).
 - [B] (1) is equal to (2).
 - [C] impossible to say which one is largest.
 - [D] (2) is larger than (1).
- 127 When the blades of a propeller are in the feathered position: (1.00 P.)
 - [A] the windmilling RPM is the maximum.
 - [B] the RPM is then just sufficient to lubricate the engine.
 - [C] the drag of the propeller is then minimal.
 - [D] the propeller produces an optimal windmilling RPM.

- 128 Increasing the number of propeller blades will: (1.00 P.)
 - [A] increase the maximum absorption of power.
 - [B] decrease the torque in the propeller shaft at maximum power.
 - [C] increase the propeller efficiency.
 - [D] increase the noise level at maximum power.

- 129 The torque effect during the take off run in respect of a right hand propeller, when viewed from behind, will tend to: (1.00 P.)
 - [A] roll the aeroplane to the right.
 - [B] pitch the aeroplane nose down.
 - [C] pitch the aeroplane nose up.
 - [D] roll the aeroplane to the left.

- 130 Gyroscopic precession of a propeller is induced by: (1.00 P.)
 - [A] pitching and yawing.
 - [B] increasing RPM and rolling.
 - [C] pitching and rolling.
 - [D] increasing RPM and yawing.

- 131 Asymmetric propeller blade effect is mainly induced by: (1.00 P.)
 - [A] high speed.
 - [B] the inclination of the propeller axis to the relative airflow.
 - [C] large angles of yaw.
 - [D] large angles of climb.
- 132 A propeller is turning to the right when viewed from behind. The asymmetric blade effect in the climb at low speed will: (1.00 P.)
 - [A] roll the aeroplane to the right.
 - [B] yaw the aeroplane to the right.
 - [C] yaw the aeroplane to the left.
 - [D] roll the aeroplane to the left.

- A jet aeroplane cruises buffet free at high constant altitude. Which type of stall can occur if this aeroplane decelerates during an inadvertent increase in load factor ? (1.00 P.)
 - [A] Shock stall.
 - [B] Deep stall.
 - [C] Low speed stall.
 - [D] Accelerated stall.

- 134 Which type of stall has the largest associated angle of attack? (1.00 P.)
 - [A] Accelerated stall.
 - [B] Low speed stall.
 - [C] Deep stall.
 - [D] Shock stall.

- Which combination of speeds is applicable for structural strength in gust (clean configuration) ? (1.00 P.)
 - [A] 55 ft/sec and VB.
 - [B] 50 ft/sec and VC.
 - [C] 66 ft/sec and VD.
 - [D] 65 ft/sec at all speeds.
- 136 The extreme right limitation for both V-n (gust and manoeuvre) diagrams is created by the speed: (1.00 P.)
 - [A] VD
 - [B] VMO
 - [C] Vflutter
 - [D] VC

- 137 The most important problem of ice accretion on a transport aeroplane during flight is: (1.00 P.)
 - [A] increase in weight.
 - [B] reduction in CLmax.
 - [C] blocking of control surfaces.
 - [D] increase in drag.
- 138 The effects of very heavy rain (tropical rain) on the aerodynamic characteristics of an aeroplane are: (1.00 P.)
 - [A] decrease of CLmax and decrease of drag.
 - [B] increase of CLmax and decrease of drag.
 - [C] decrease of CLmax and increase of drag.
 - [D] increase of CLmax and increase of drag.

- While flying under icing conditions, the largest ice build-up will occur, principally, on: (1.00 P.)
 - [A] The frontal areas of the aircraft.
 - [B] The pitot and static probes only.
 - [C] The upper and lower surfaces on the rear of the wing.
 - [D] The upper and lower rudder surfaces.

- 140 The frontal area of a body, placed in a certain airstream is increased by a factor 3. The shape will not alter. The aerodynamic drag will increase with a factor: (1.00 P.)
 - [A] 9.
 - [B] 6.
 - [C] 1.5.
 - [D] 3.

- 141 How does stalling speed (IAS) vary with altitude? (1.00 P.)
 - [A] It increases with increasing altitude, because the density decreases.
 - [B] It remains constant at lower altitudes but decreases at higher altitudes due to compressibility effects.
 - [C] It remains constant.
 - [D] It remains constant at lower altitudes but increases at higher altitudes due to compressibility effects.

- 142 The aerodynamic drag of a body, placed in a certain airstream depends amongst others on: (1.00 P.)
 - [A] The weight of the body.
 - [B] The c.g. location of the body.
 - [C] The airstream velocity.
 - [D] The specific mass of the body.
- A body is placed in a certain airstream. The airstream velocity increases by a factor 4. The aerodynamic drag will increase with a factor: (1.00 P.)
 - [A] 8.
 - [B] 4.
 - [C] 16.
 - [D] 12.

- 144 What data may be obtained from the Buffet Onset Boundary chart? (1.00 P.)
 - [A] The values of MMO at different weights and altitudes.
 - [B] The values of Mcrit at different weights and altitudes.
 - [C] The values of the Mach Number at which low speed and shock-stall occur at different weights and altitudes.
 - [D] The values of the Mach Number at which low speed and Mach Buffet occur at different weights and altitudes.

- 145 A body is placed in a certain airstream. The density of the airstream decreases to half of the original value. The aerodynamic drag will decrease with a factor: (1.00 P.)
 - [A] 4.
 - [B] 2.
 - [C] 8.
 - [D] 1.4.

- 146 Mcrit is the free stream Mach Number at which: (1.00 P.)
 - [A] somewhere about the airframe Mach 1 is reached locally.
 - [B] shockstall occurs.
 - [C] the critical angle of attack is reached.
 - [D] Mach buffet occurs.

- 147 Which of the following (1) aerofoils and (2) angles of attack will produce the lowest Mcrit values? (1.00 P.)
 - [A] (1) thick and (2) large.
 - [B] (1) thick and (2) small.
 - [C] (1) thin and (2) large.
 - [D] (1) thin and (2) small.

- 148 The point, where the aerodynamic lift acts on a wing is: (1.00 P.)
 - [A] the suction point of the wing.
 - [B] the centre of pressure.
 - [C] the centre of gravity location.
 - [D] the point of maximum thickness of the wing.

- 149 Which kind of flow separation occurs at the smallest angle of attack? (1.00 P.)
 - [A] Accelerated stall.
 - [B] shockstall.
 - [C] deep stall.
 - [D] low-speed stall.

- 150 The location of the centre of pressure of a positive cambered wing at increasing angle of attack will: (1.00 P.)
 - [A] shift aft.
 - [B] shift in spanwise direction.
 - [C] shift forward.
 - [D] not shift.

- 151 When the Mach number is slowly increased in straight and level flight the first shockwaves will occur: (1.00 P.)
 - [A] somewhere on the horizontal tail.
 - [B] on the upper surface at the wing root.
 - [C] somewhere on the fin.
 - [D] on the lower surface of the wing.

- 152 The unit of density is: (1.00 P.)
 - [A] kg/cm²
 - [B] psi
 - [C] Bar
 - [D] kg/m^3
- 153 The unit of measurement of pressure is: (1.00 P.)
 - [A] kg/m^3
 - [B] lb/gal
 - [C] kg/dm²
 - [D] psi

- 154 The consequences of exceeding Mcrit in a swept-wing aeroplane may be: (assume no corrective devices, straight and level flight) (1.00 P.)
 - [A] an increase in speed and a tendency to pitch up.
 - [B] engine unbalance and buffeting.
 - [C] buffeting of the aeroplane and a tendency to pitch down.
 - [D] buffeting of the aeroplane and a tendency to pitch up.

- 155 The boundary layer of a wing is: (1.00 P.)
 - [A] a turbulent flow around the wing.
 - [B] a layer on the wing in which the stream velocity is lower than the free stream velocity.
 - [C] caused by suction on the upper wing surface.
 - [D] created by the normal shock wave at transonic speeds.
- 156 A laminar boundary layer is a layer, in which: (1.00 P.)
 - [A] no velocity components exist, normal to the surface.
 - [B] the temperature varies constantly.
 - [C] the velocity is constant.
 - [D] the vortices are weak.

- 157 The maximum acceptable cruising altitude is limited by a minimum acceptable loadfactor because exceeding that altitude: (1.00 P.)
 - [A] turbulence may exceed the limit load factor.
 - [B] Mach buffet will occur immediately.
 - [C] turbulence may induce Mach buffet.
 - [D] a sudden necessary bankangle may exceed the limit load factor.

- 158 Total pressure is: (1.00 P.)
 - $[A] \quad {}^{1}\!\!/_{\!2} \text{ rho } V^2$
 - [B] static pressure plus dynamic pressure.
 - [C] measured at a small hole in a surface, parallel to the local stream.
 - [D] static pressure minus dynamic pressure.

- 159 If an aeroplane is accelerated from subsonic to supersonic speeds, the centre of pressure will move: (1.00 P.)
 - [A] forward.
 - [B] to a position near the leading edge.
 - [C] to the mid chord position.
 - [D] to a position near the trailing edge.

- 160 The (subsonic) static pressure: (1.00 P.)
 - [A] is the pressure in a point at which the velocity has become zero.
 - [B] is the total pressure plus the dynamic pressure.
 - [C] decreases in a flow in a tube when the diameter decreases.
 - [D] increases in a flow in a tube when the diameter decreases.

- 161 Vortex generators on the upper side of the wing surface will: (1.00 P.)
 - [A] increase the magnitude of the shock wave.
 - [B] decrease the intensity of shock wave induced air separation.
 - [C] increase the critical Mach Number.
 - [D] decrease the span wise flow at high Mach Numbers.

- 162 The true airspeed (TAS) is: (1.00 P.)
 - [A] lower than the speed of the undisturbed airstream about the aeroplane.
 - [B] equal to the IAS, multiplied by the air density at sea level.
 - [C] higher than the speed of the undisturbed airstream about the aeroplane.
 - [D] lower than the indicated airspeed (IAS) at ISA conditions and altitudes below sea level.

- 163 Vortex generators on the upper side of the wing: (1.00 P.)
 - [A] increase critical Mach Number.
 - [B] decrease wave drag.
 - [C] decrease critical Mach Number.
 - [D] increase wave drag.

- 164 The lift- and drag forces, acting on a wing cross section: (1.00 P.)
 - [A] vary linearly with the angle of attack.
 - [B] depend on the pressure distribution about the wing cross section.
 - [C] are proportional to each other, independent of angle of attack.
 - [D] are normal to each other at just one angle of attack.

- 165 The lift force, acting on an aerofoil: (1.00 P.)
 - [A] increases, proportional to the angle of attack until 40 degrees.
 - [B] is maximum at an angle of attack of 2 degrees.
 - [C] is mainly caused by suction on the upperside of the aerofoil.
 - [D] is mainly caused by overpressure at the underside of the aerofoil.

- 166 The aft movement of the centre of pressure during acceleration through the transonic range will: (1.00 P.)
 - [A] increase the static longitudinal stability.
 - [B] decrease the longitudinal stability.
 - [C] decrease the static lateral stability.
 - [D] increase the static lateral stability.
- 167 In supersonic flight aerofoil pressure distribution is: (1.00 P.)
 - [A] rectangular.
 - [B] irregular.
 - [C] triangular.
 - [D] the same as in subsonic flight.

- 168 The relative thickness of an aerofoil is expressed in: (1.00 P.)
 - [A] camber.
 - [B] meters.
 - [C] degrees cross section tail angle.
 - [D] % chord.

- 169 The aerofoil polar is: (1.00 P.)
 - [A] the relation between the horizontal and the vertical speed.
 - [B] a graph of the relation between the lift coefficient and the drag coefficient.
 - [C] a graph, in which the thickness of the wing aerofoil is given as a function of the chord.
 - [D] a graph of the relation between the lift coefficient and the angle of attack.

170 Shock stall is: (1.00 P.)

- [A] separation of the flow behind the bow wave.
- [B] separation of the boundary layer behind the shock wave.
- [C] separation of the flow at high angles of attack and at high Mach Numbers.
- [D] separation of the flow at the trailing edge of the wing at high Mach Numbers.

- 171 The aspect ratio of the wing: (1.00 P.)
 - [A] is the ratio between chord and root chord.
 - [B] is the ratio between the wing span and the mean geometric chord.
 - [C] is the ratio between the tip chord and the wing span.
 - [D] is the ratio between the wing span and the root chord.

- 172 In the transonic range the aeroplane characteristics are strongly determined by: (1.00 P.)
 - [A] the IAS.
 - [B] the CAS.
 - [C] the Mach Number.
 - [D] the TAS.

- 173 Dihedral of the wing is: (1.00 P.)
 - [A] the angle between the 0.25 chord line of the wing and the lateral axis.
 - [B] the angle between the 0.25 chord line of the wing and the horizon.
 - [C] the angle between the leading edge of the wing and the lateral axis.
 - [D] the angle between the 0.25 chord line of the wing and the vertical axis.

- 174 Which of the following flight phenomena can only occur at Mach numbers above the critical Mach number? (1.00 P.)
 - [A] Speed instability.
 - [B] Mach buffet.
 - [C] Elevator stall.
 - [D] Dutch roll.

- 175 The induced drag: (1.00 P.)
 - [A] increases as the lift coefficient increases.
 - [B] increases as the magnitude of the tip vortices decreases.
 - [C] increases as the aspect ratio increases.
 - [D] has no relation to the lift coefficient.

- 176 Which of the following flight phenomena can occur at Mach numbers below the critical Mach number? (1.00 P.)
 - [A] Shock stall.
 - [B] Dutch roll.
 - [C] Mach buffet.
 - [D] Tuck under.

- 177 Flap selection at constant IAS whilst maintaining straight and level flight will increase the: (1.00 P.)
 - [A] stall speed.
 - [B] lift and the drag.
 - [C] lift coefficient and the drag.
 - [D] maximum lift coefficient (CLmax) and the drag.

- 178 The Mach trim system will: (1.00 P.)
 - [A] pump the fuel from tank to tank, depending on the Mach Number.
 - [B] keep the Mach Number automatically constant.
 - [C] adjust the elevator trim tab, depending on the Mach Number.
 - [D] adjust the stabilizer, depending on the Mach Number.

- 179 If the sum of all the moments in flight is not zero, the aeroplane will rotate about the: (1.00 P.)
 - [A] neutral point of the aeroplane.
 - [B] aerodynamic centre of the wing.
 - [C] centre of pressure of the wing.
 - [D] centre of gravity.

- 180 The Mach trim system will prevent: (1.00 P.)
 - [A] tuck under.
 - [B] dutch roll.
 - [C] shock stall.
 - [D] buffeting.

- 181 Dihedral of the wing: (1.00 P.)
 - [A] is only positive for aeroplanes with high mounted wings.
 - [B] is the only way to increase the static lateral stability.
 - [C] increases the static lateral stability.
 - [D] decreases the static lateral stability.

- 182 When air has passed an expansion wave, the static pressure is: (1.00 P.)
 - [A] increased.
 - [B] decreased.
 - [C] unchanged.
 - [D] decreased or increased, depending on Mach Number.

- 183 The critical Mach Number of an aeroplane is the free stream Mach Number, which produces the first evidence of: (1.00 P.)
 - [A] local sonic flow.
 - [B] shock wave.
 - [C] supersonic flow.
 - [D] buffet.

- 184 A C.G location beyond the aft limit leads to: (1.00 P.)
 - [A] a too high pulling stick force during rotation in the take off.
 - [B] an unacceptable low value of the manoeuvre stability (stick force per g, Fe/g).
 - [C] a better recovery performance in the spin.
 - [D] an increasing static longitudinal stability.

- 185 If the elevator trim tab is deflected up, the cockpit trim indicator presents: (1.00 P.)
 - [A] nose-down.
 - [B] nose-up.
 - [C] neutral.
 - [D] nose-left.

- 186 The critical Mach Number of an aeroplane can be increased by: (1.00 P.)
 - [A] sweep back of the wings.
 - [B] vortex generators.
 - [C] control deflection
 - [D] dihedral of the wings.

- 187 Differential aileron deflection: (1.00 P.)
 - [A] increases the CLmax.
 - [B] is required to achieve the required roll-rate.
 - [C] equals the drag of the right and left aileron.
 - [D] is required to keep the total lift constant when ailerons are deflected.

- 188 In supersonic flight, all disturbances produced by an aeroplane are: (1.00 P.)
 - [A] outside the conical area depending on the Mach Number.
 - [B] in between a conical area, depending on the Mach Number.
 - [C] very weak and negligible.
 - [D] in front of the aeroplane.

- 189 In transonic flight the ailerons will be less effective than in subsonic flight because: (1.00 P.)
 - [A] aileron deflection only partly affects the pressure distribution around the wing.
 - [B] behind the shock wave pressure is lower.
 - [C] aileron deflection only affects the air in front of the shock wave.
 - [D] aileron down deflection moves the shock wave forward.

- 190 An example of differential aileron deflection during initiation of left turn is: (1.00 P.)
 - [A] Left aileron: 2° up Right aileron: 5° down
 - [B] Left aileron: 5° down Right aileron: 2° up
 - [C] Left aileron: 5° up Right aileron: 2° down
 - [D] Left aileron: 2° down Right aileron: 5° up

- 191 To be able to predict compressibility effects you have to determine the: (1.00 P.)
 - [A] IAS.
 - [B] TAS.
 - [C] EAS.
 - [D] Mach Number.

- 192 Does the pitch-angle of a constant-speed propeller alter in medium horizontal turbulence? (1.00 P.)
 - [A] Yes strongly.
 - [B] No.
 - [C] Yes slightly.
 - [D] Yes, but only if the pitch is full-fine.

- 193 When trailing edge flaps are selected down whilst maintaining straight and level flight at constant IAS: (1.00 P.)
 - [A] the stall speed increases.
 - [B] the centre of pressure moves aft.
 - [C] the total boundary layer becomes laminar.
 - [D] the lift coefficient and the drag coefficient increase.

- 194 The formula for the Mach Number is: (a= speed of sound) (1.00 P.)
 - [A] M=a/TAS
 - [B] M = TAS / a
 - [C] M = TAS*a
 - [D] M = IAS / a

- 195 Assuming ISA conditions, climbing at a constant Mach Number up to FL 350 the TAS will: (1.00 P.)
 - [A] increase.
 - [B] decrease.
 - [C] remain constant.
 - [D] first increase, then decrease.

- Which of the following situations leads to a decreasing stall speed (IAS)? (1.00 P.)
 - [A] decreasing weight.
 - [B] increasing altitude.
 - [C] increasing air density.
 - [D] increasing load factor.

- 197 The speed of sound is affected by the: (1.00 P.)
 - [A] density of the air.
 - [B] temperature of the air.
 - [C] pressure of the air.
 - [D] humidity of the air.

- 198 Two identical aircraft A and B, with the same mass, are flying steady level coordinated 20 degree bank turns. If the TAS of A is 130 kt and that of B is 200 kt: (1.00 P.)
 - [A] the lift coefficient of A is less than that of B.
 - [B] the load factor of A is greater than that of B.
 - [C] the rate of turn of A is greater than that of B.
 - [D] the turn radius of A is greater than that of B.

- 199 Which of the following statements about a constant speed propeller is correct? (1.00 P.)
 - [A] The propeller system keeps the aeroplane speed constant.
 - [B] The blade angle increases with increasing aeroplane speed.
 - [C] The selected RPM is kept constant by the manifold pressure.
 - [D] The RPM decreases with increasing aeroplane speed.

- 200 An aeroplane is flying through the transonic range. As the Mach Number increases the centre of pressure of the wing will move aft. This movement requires: (1.00 P.)
 - [A] a stability augmentation system to improve dynamic stability.
 - [B] much more thrust from the engine.
 - [C] a higher IAS to compensate the nose down effect.
 - [D] a pitch up input of the stabilizer.

Anlagen zu den Aufgaben

Anlage 1 zu Aufgabe 92

Titel: Anlage 1

Vom	Teil	neh	mer	aus	zufüllen												
Name:									Pri	üfNr	.:						
Prüfung	sdatu	m:							Un	tersch	rift						
T					1												
1.	Α	В	С	D		2.	Α	В	С	D		3.	Α	В	С	D	
4.	Α	В	С	D		5.	Α	В	С	D		6.	Α	В	С	D	
7.	Α	В	С	D		8.	Α	В	С	D		9.	Α	В	С	D	
10.	Α	В	С	D		11.	Α	В	С	D		12.	Α	В	С	D	
13.	Α	В	С	D		14.	Α	В	С	D		15.	Α	В	С	D	
16.	Α	В	С	D		17.	Α	В	С	D		18.	Α	В	С	D	
19.	Α	В	С	D		20.	Α	В	С	D		21.	Α	В	С	D	
22.	Α	В	С	D		23.	Α	В	С	D		24.	Α	В	С	D	
25.	Α	В	С	D		26.	Α	В	С	D		27.	Α	В	С	D	
28.	Α	В	С	D		29.	Α	В	С	D		30.	Α	В	С	D	
31.	Α	В	С	D		32.	Α	В	С	D		33.	Α	В	С	D	
34.	Α	В	С	D		35.	Α	В	С	D]	36.	Α	В	С	D	
37.	Α	В	С	D		38.	Α	В	С	D]	39.	Α	В	С	D	
40.	Α	В	С	D		41.	Α	В	С	D		42.	Α	В	С	D	
43.	Α	В	С	D		44.	Α	В	С	D		45.	Α	В	С	D	
46.	Α	В	С	D		47.	Α	В	С	D		48.	Α	В	С	D	
49.	Α	В	С	D		50.	Α	В	С	D		51.	Α	В	С	D	
52.	Α	В	С	D		53.	Α	В	С	D		54.	Α	В	С	D	
55.	A	В	С	D		56.	Α	В	С	D		57.	Α	В	С	D	
58.	Α	В	С	D		59.	Α	В	С	D		60.	Α	В	С	D	
61.	Α	В	С	D		62.	Α	В	С	D		63.	Α	В	С	D	
64.	Α	В	С	D		65.	Α	В	С	D		66.	Α	В	С	D	

Vom	Teil	neh	mer	aus	zufüllen												
Name:									Pri	ifNr.	.:						
Prüfung	sdatu	m:							Un	tersch	rift						
67.	Α	В	С	D		68.	Α	В	С	D		69.	Α	В	С	D	
70.	Α	В	С	D		71.	Α	В	С	D		72.	Α	В	С	D	l
73.	Α	В	С	D		74.	Α	В	С	D		75.	Α	В	С	D	l
76.	Α	В	С	D		77.	Α	В	С	D		78.	Α	В	С	D	ļ
79.	Α	В	С	D		80.	Α	В	С	D		81.	Α	В	С	D	ļ
82.	Α	В	С	D		83.	A	В	С	D		84.	Α	В	С	D	ı
85.	Α	В	С	D		86.	Α	В	С	D		87.	Α	В	С	D	l
88.	Α	В	С	D		89.	Α	В	С	D		90.	Α	В	С	D	I
91.	Α	В	С	D		92.	Α	В	С	D		93.	Α	В	С	D	ı
94.	Α	В	С	D		95.	Α	В	С	D		96.	Α	В	С	D	I
97.	Α	В	С	D		98.	Α	В	С	D		99.	Α	В	С	D	ı
100	Α	В	С	D		101	Α	В	С	D		102	Α	В	С	D	I
103	Α	В	С	D		104	Α	В	С	D		105	Α	В	С	D	ı
106	Α	В	С	D		107	Α	В	С	D		108	Α	В	С	D	ı
109	Α	В	С	D		110	Α	В	С	D		111	Α	В	С	D	I
112	Α	В	С	D		113	Α	В	С	D		114	Α	В	С	D	ı
115	Α	В	С	D		116	Α	В	С	D		117	Α	В	С	D	ı
118	Α	В	С	D		119	Α	В	С	D		120	Α	В	С	D	I
121	Α	В	С	D		122	Α	В	С	D		123	Α	В	С	D	I
124	Α	В	С	D		125	Α	В	С	D		126	Α	В	С	D	l
127	Α	В	С	D		128	Α	В	С	D		129	Α	В	С	D	l
130	Α	В	С	D		131	Α	В	С	D		132	Α	В	С	D	I

Vom	Teil	lneh	mer	aus	zufül	llen													
Name:										Pr	üfNr	::							
Prüfung	gsdatu	ım:								Un	terscl	rift							
133	_	ь	_	<u> </u>			134	_	В	_	_		1	135	٨	ь	_	_	

																_
133	Α	В	С	D		134	Α	В	С	D		135	Α	В	С	
136	Α	В	С	D		137	Α	В	С	D		138	Α	В	С	
139	Α	В	С	D		140	Α	В	С	D		141	Α	В	С	<u> </u>
142	Α	В	С	D		143	Α	В	С	D		144	Α	В	С	
145	Α	В	С	D		146	Α	В	С	D		147	A	В	С	
148	A	В	С	D		149	A	В	С	D		150	A	В	С	
151						152			С			153	<u> </u>		С	<u> </u>
154	A	В	С	D		155	A	В		D		156	A	В		L
157	Α	В	С	D		158	Α	В	С	D		159	Α	В	С	<u> </u>
160	Α	В	С	D		161	Α	В	С	D		162	Α	В	С	
	Α	В	С	D	1		Α	В	С	D	1	-	Α	В	С	
163	Α	В	С	D		164	Α	В	С	D	1	165	Α	В	С	
166	Α	В	С	D		167	Α	В	С	D		168	Α	В	С	
169	Α	В	С	D		170	Α	В	С	D		171	Α	В	С	
172	Α	В	С	D		173	Α	В	С	D		174	Α	В	С	
175	Α	В	С	D		176	Α	В	С	D		177	Α	В	С	
178	Α	В	С	D		179	Α	В	С	D		180	Α	В	С	
181	Α	В	С	D		182	Α	В	С	D		183	Α	В	С	
184	Α	В	С	D		185	Α	В	С	D		186	Α	В	С	
187	Α	В	С	D		188	Α	В	С	D		189	Α	В	С	
190	Α	В	С	D		191	Α	В	С	D		192	Α	В	С	
193	Α	В	С	D		194	Α	В	С	D		195	Α	В	С	
196	Α	В	С	D		197	Α	В	С	D		198	Α	В	С	

Vom Teilnehmer auszufüllen	
Name:	PrüfNr.:
Prüfungsdatum:	Unterschrift

199 A B C D 200 A B C D

Nur f	ür d	len i	nter	nen	Gebrauc	eh 💮											
LÖSU	NGS	BOG	EN						Pri	ifNr	.:						
Prüfung	sdatu	m:															
1.	Α					2.				D		3.	Α				
4.			С			5.	Α					6.				D	I
7.				D		8.		В				9.	Α				l
10.			С			11.				D		12.			С		l
13.				D		14.			С			15.	Α				I
16.	Α					17.			С			18.	Α				ı
19.			С			20.				D		21.				D	I
22.	Α					23.				D		24.			С		I
25.	Α					26.		В				27.				D	I
28.				D		29.		В				30.			С		I
31.				D		32.		В				33.			С		I
34.				D		35.	Α					36.		В			l
37.		В				38.				D		39.				D	l
40.	Α					41.	Α					42.		В			l
43.	Α					44.	Α					45.			С		ı
46.			С			47.				D		48.	Α				ı
49.	Α					50.	Α					51.			С		ı
52.			С			53.				D		54.				D	ı
55.			С			56.		В				57.	Α				I
58.	Α					59.				D		60.	Α				I
61.			С			62.		В				63.		В			l
64.	Α					65.			С			66.				D	1

Nur f	ür d	len i	nter	nen	Gebrai	uch											
LÖSU	NGS	BOG	EN						Pri	ifNr	.:						
Prüfung	sdatu	m:															
67.				D		68.	A					69.		В			
70.				D		71.	Α					72.			С		
73.				D		74.				D		75.				D	
76.		В				77.				D		78.			С		
79.	Α					80.		В				81.	Α				
82.			С			83.		В				84.			С		
85.			С			86.				D		87.	Α				
88.				D		89.		В				90.	Α				
91.			С			92.		В				93.			С		
94.		В				95.				D		96.			С		
97.				D		98.			С			99.		В			
100		В				101			С			102				D	
103				D		104			С			105			С		
106		В				107			С			108			С		
109				D		110		В				111		В			
112		В				113		В				114				D	
115			С			116				D		117	Α				
118	Α					119		В				120	Α				
121				D		122	Α					123				D	
124			С			125	Α					126	Α				
127			С			128	Α					129				D	
130	Α					131		В				132			С		

Nur f	ür d	len i	inter	nen	Gebrau	ıch											
LÖSU			GEN						Pri	ifNr	.:						
Prüfung	sdatu	m:															
	•						•					-		•			
133				D		134			С			135		В			
136	Α					137		В				138			С		
139	Α					140				D		141				D	
142			С			143			С			144				D	
145		В]	146	Α					147	Α				
148		В]	149		В				150			С		
151		В				152				D		153				D	
154			С]	155		В				156	Α				
157			С		<u>.</u>	158		В				159			С		
160			С]	161		В				162				D	
163		В			j	164		В				165			С		
166	Α				j	167	Α					168				D	
169		В]	170		В				171		В			
172			С]	173	Α					174		В			
175	Α					176		В				177				D	
178				D]	179				D		180	Α				
181			С]	182		В				183	Α				
184		В]	185	Α					186	Α				
187			С		_	188		В				189	Α				
190			С		Ī	191				D		192			С		
193		В]	194		В				195		В			
196	Α					197		В				198			С		

Nur für den internen (Gebrauch	
LÖSUNGSBOGEN		PrüfNr.:
Prüfungsdatum:		
199 B	200	D