

Протоколи с преброяване на байтовете

- DDCMP (остарял протокол)
 - Началото на кадъра се определя както при другите протоколи
 - Т.е. чрез флаг
 - Краят на кадъра се определя по значението на полето «дължина на кадъра»
 - Отделен цикличен код се използва в заглавната част на кадъра за защита специално на това поле от грешки.
- ATM (с ограничено използване днес)
 - Asynchronous Transfer Mode
 - Кадри с фиксиран размер
- Прозрачност за данните се осъществява чрез преброяване на байтовете

ATM • Опростена обработка на кадрите - За високоскоростни мрежи • Кадри, наречени клетки -Фиксиран размер • 53B • 5В загл. част + 48В пренасяни данни Virtual Header error Generic flow Virtual path Information Control bits channel control identifier control identifier

16

8

384

8

Битово-ориентирани протоколи

- Използват дефинирани *шаблони от битове* като сигнал за начало и край на кадъра
- Получателят претърва потока от битове с цел откриване на тези шаблони (*start-of-frame* и *end-of-frame*) и определяне границите на пристигащите кадри

Битово-ориентирани протоколи: HDLC

- · High-level Data Link Control
- Модифицирана версия на IBM протокола SDLC (Synchronous Data Link Control)
 ISO 4335 standard (1979)
- Полудуплексно или пълнодуплексно предаване
- Конфигурации тип 'от точка до точка' или многоточкови конфигурации
- ARQ с плъзгащ се прозорец
- · Piggybacking

HDLC: Функциониране ■ Чрез обмен на I, S и U кадри ■ Включва 3 фази Initialization **Data Transfer** Disconnect · With flow- and Requested by Requested by any side on its one side by error control issuing one of Using both own initiative the 6 set-mode When serious I frames for commands data (and fault noted or (U-frame) piggybacking) at request of Logical and S-frames higher-laver connection (RR, RNR, REJ, user to end established if SREJ) for flowcommunication operation and error Disconnect accepted by control (DISC) frame other side

Други протоколи: LLC/MAC За локални мрежи (LAN) В тях каналният слой е разделен на 2 подслоя: • Полслой за контрол IEEE 802 на логическата връзка (Logical Link Control, LLC) Session • Подслой за контрол на достъпа до средата (Medium Access Control, MAC) <u>Различен формат на кадъра</u> <u>от HDLC</u> Няма първични и вторични мрежови възли • Всички възли са Physical равнопоставени 2 адреса са необходими За изпращача и получателя

LAN: MAC подслой

- Предаване
 - Групиране на данните в кадри със съответни адресни полета и поле за откриване на грешки
- - Откриване на грешки в кадрите
 - Разпознаване на адреса си
 - Разглобяване на кадри
- Контрол на достъпа до споделения канал по ефективен, справедлив и стабилен начин.
 - Обработка на конфликти между възлите (шинна топология)
 - Работа с жетон (кръгова топология)
- НЕ съществува в традиционния OSI канален слой!

LAN: MAC подслой (прод.)

• Как да се контролира достъпът до канала?

- Статично

- Времето е разделено на дискретни интервали
- По 1 за всеки възел
- Всеки възел може да предава само в отредения му интервал
- Разход на комуникационен капацитет
 - Ако дален възел няма нишо за изпрашане

– Динамично

- Целият канал се предоставя за използване на 1 възел
- По заявка (при необходимост)
- За ограничен период от време
- 2 вида
 - Централизирано
 - Разпределено

LAN: MAC подслой (прод.)

- Къде да се контролира?
 - Централизирано
 - Централен възел определя кой е следващият
 - Например, точка за достъп до безжична локална мрежа (WLAN access point)
 - Приема заявки от другите възли и взема решение по зададен алгоритъм
 - По-голям контрол
 - Проста логика (в мрежовите възли) за достъп до канала
 - Предотвратява проблеми с координацията
 - Единична точка за отказ
 - Потенциално `тясно място` (bottleneck)

Разпределено

- Няма централен възел
- Всеки възел решава кога ще предава (сам за себе си)
- Широко приложение в практиката

LAN: Динамични разпределени MAC

- Изчакване по кръг (round robin)
 - Подходящ, ако много възли имат данни за предаване в течение на продължителен период от време.
 - <u>Стандарти:</u> IEEE 802.4, 802.5, 802.12, FDDI
- С резервация
 - Подходящ за мултимедиен трафик (аудио, видео)
 - Стандарт: IEEE 802.6 (MAN DQDB), 802.11 (Wi-Fi)
- С конкуренция
 - Подходящ за трафик, който внезапно възниква и изчезва (bursty traffic).
 - Всички възли се съревновават за достъп до канала
 - Лесен за реализиране
 - Ефективен при умерено натоварване
 - Склонен към колапсиране при голямо натоварване
 - Стандарти: IEEE 802.3 (Ethernet), 802.11

LAN MAC подслой: Функциониране Подател

- - Получава данни от LLC подслоя
- Конструира МАС кадър със следните полета:
 - МАС контрол (ако има такъв)
 - МАС адрес на получателя
 - МАС адрес на подателя • Поле за данни (LLC PDU)
 - Поле за откриване на грешки (CRC)

MAC MAC Destination LLC PDU CRC Frame Control MAC Address MAC Addres

Получател

- Открива грешки в получения кадър
 - Отхвърля калъра
 - Изпраща съобщение за грешка към LLC подслоя LLC може да заяви повторно предаване на кадъра
- Разпознава МАС адреса си (ако няма грешки в кадъра)
- Декапсулира LLC PDU и го изпраща на LLC подслоя

LAN: LLC подслой

- Скрива разликите между различните видове локални мрежи
 - Единен формат и интерфейс към мрежовия слой
- Може да контролира потока
 - Плъзгащ се прозорец
- Може да контролира грешките
 - ARQ

LAN LLC подслой: Услуги

- Без потвърждение и без изграждане на съединение (unacknowledged connectionless service)
 - LLC тип 1
- С изграждане на съединение (connection-oriented service)
 - LLC тип 2
 - Подобно на HDLC протокола (ABM режим)
 - Без анкетиране (polling)
 - Балансирана конфигурация
 - Всеки от два комуникиращи възела може да започне предаване без необходимост от разрешение от страна на другия
- С потвърждение, но без изграждане на съединение (acknowledged connectionless service)
 - LLC тип 3

LLC тип 1:

Услуга без потвърждение и без изграждане на съединение

- Прост, дейтаграмен тип услуга.
- Без механизми за контрол на потока и контрол на грешките
- Доставката на данни НЕ е гарантирана!
- Подходящ за:
 - Приложения за мониторинг
 - Доставка на IP пакети

LLC тип 2:

Услуга с изграждане на съединение

- Изгражда и конфигурира логическо съединение между два LLC обекта
- Предава данни чрез използване на контрол на потока и контрол на грешките
- Възможност за възстановяване на съединението при неочаквано прекъсване (connection reset)
- Разпадане на съединението (след употреба)
- Приложения:
 - Терминални контролери
 - Безжични локални мрежи (WLAN)

LLC тип 3:

Услуга с потвърждение, но без изграждане на съединение

- Изпращане на дейтаграми, но с потвърждение.
- Няма предварително изграждане на съединение
- Подходящ за:
 - Системи за управление на процеси
 - Аларми, критични към времето.
 - Системи за аварийно управление и контрол
- Рядко използван

