Digit Classification

for Receipts and Invoices

Xingliang Shu

Outline

- 1. Business Problem
- 2. Techniques to Classify Digits
 - a. Dataset
 - b. Data Visualization
 - c. Models
 - d. Comparison Table
 - e. Misclassified data
- 3. Summary
- 4. Q&A
- 5. Appendix

Business Problem

- Account Payable & Account Receivable
- Supply Chain Management

Source from <u>https://nanonets.com/blog/receipt-ocr/</u>

Techniques to Classify Digits

Dataset

- 10 categories
- Training: 60k
- Testing: 10k
- Metrice: accuracy

Data Visualization (Means 2D)

Data Visualization (Variances 2D)

Data Visualization (Covariance Matrix)

Multivariate Gaussian NB Version 1

- Parameters
 - Mean
 - Variance
- 4 ⇒ 9
- $5 \Rightarrow 3$

Multivariate Gaussian NB Version 2

- Parameters
 - Mean
 - Covariance matrix

Binomial NB

Parameters

- Frequencies of 1
- Frequencies of 0

Comparison Table

Model	Train acc	Val acc	Test acc
MVGNB 1	80.4%	80.4%	81.7%
BNB	82.7%	82.7%	83.8%
MVGNB 2	95.9%	95.3%	95.4%

• Best model: MVGNB 2

Misclassified Data (2 \Rightarrow 7)

Misclassified Data (3 \Rightarrow 5)

Misclassified Data $(5 \Rightarrow 3)$

Misclassified Data $(4 \Rightarrow 9)$

Classify 4 as 9

Summary

- Usage of digit classifier
- Insights of parameters
- Best: MVGNB 2
- Misclassification
- Next
 - Digitize receipts
 - Study receipts
 - Advanced model
 - Automate digital process

Q&A

Appendix: for Technicians

Data Visualization (Means 3D)

Data Visualization (Variances 3D)

Algorithm

- What it does: given a sample predict its category.
- P(y|X)

 argmax{P(X|y)P(y)} respect to y
- X represents a sample with F features, F = [f1, f2, f3, f4, fF]
- y represents a category.
- P(y) is the prior.
- Choose a model for P(X|y): Gaussian, Binomial, etc.
- For each category k:
 - 1. Calculate its P(y) where P(y)=(#of samples in k)/(entire dataset)
 - 2. Obtain **parameters** based on the selected model.
 - a. If it's Gaussian, then (μ and σ^2) or (μ and Σ).
 - b. If it's Binomial, then the frequencies of ones and zeros.
 - c. Etc.

Multivariate Gaussian Version 1

- How to predict?
 - Given a sample: X
 - \circ X = [x1, x2, x3, ..., xi, ...]
 - \circ gi(xi) = $(2*pi*\sigma^2)^{-1/2}$ exp $(-0.5*(xi-\mu i)^2/\sigma^2)$
 - o P_k = ∏gi * prior_k
 - o P = [P_0, P_1, ... P_k ..., P_9]
 - argmax(P)

Multivariate Gaussian Version 2

- How to predict?
 - Given a sample: X
 - \circ X = [x1, x2, x3, ..., xi, ...]
 - For each category k
 - \circ g_k(X) = det(\sum_k)^{-1/2}(2*pi*)^{-D/2}exp(-0.5*(X- μ_k)^T \sum_k (X- μ_k))
 - \circ P_k = g(X) * prior_k
 - P = [P_0, P_1, ... P_k ..., P_9]
 - argmax(P)

Binomial

- Learned parameters: frequencies of 1s and 0s
- p denotes as the probability of 1
- $P(y|X) = p^X(1-p)^(1-X)$
- How to predict?
 - o Given a sample: X
 - \circ X = [0, 1, 1, 0, 1, ... xi ..., 1]
 - \circ P_k = p^X(1-p)^(1-X)*prior_k
 - P = [P_0, P_1, ... P_k ..., P_9]
 - argmax(P)