HACL* High-Assurance Cryptographic Library

Marina Polubelova

PROSECCO, INRIA Paris

VeriCrypt @ IndoCrypt December 11, 2020

HACL*: a verified C crypto library

- A growing library of verified crypto algorithms
 - AEAD: Chacha20-Poly1305, AES-GCM
 - Hashes: SHA2, SHA3, Blake2
 - HMAC and HKDF
 - ECC: Curve25519, Ed25519, P256
 - High-level APIs: Box and HPKE coming soon: generic bignum library, RSAPSS, FFDHE
- Developed as a collaboration between the Prosecco team at INRIA Paris, Microsoft Research, and Carnegie Mellon University

HACL*: a verified C crypto library

- Implemented and verified in F* and compiled to C
 - Memory safety proved in the C memory model
 - Secret independence ("constant-time") enforced by typing
 - Functional correctness against a mathematical spec written in F*
- Generates readable, portable, standalone C code
 - Performance comparable to hand-written C crypto libraries
 - Used in Mozilla Firefox, WireGuard VPN, Tezos Blockchain, etc

CRYPTO STANDARD (IETF/NIST)

Obsoleted by: 8439	INFORMATIONAL Errata Exist
Internet Research Task Force (IRTF) Request for Comments: 7539 Category: Informational ISSN: 2070-1721	Y. Nir Check Point A. Langley Google, Inc.
	May 2015

ChaCha20 and Poly1305 for IETF Protocols

Abstract

This document defines the ChaCha20 stream cipher as well as the use of the Poly1305 authenticator, both as stand-alone algorithms and as a "combined mode", or Authenticated Encryption with Associated Data (AEAD) algorithm.

This document does not introduce any new crypto, but is meant to serve as a stable reference and an implementation guide. It is a product of the Crypto Forum Research Group (CFRG).

2.5.1. The Poly1305 Algorithms in Pseudocode

```
 \begin{array}{lll} \text{clamp(r): } r \&= 0 \text{x0ffffffc0ffffffc0fffffff} \\ \text{poly1305 mac(msg, key):} \\ r &= \{le \text{bytes\_to\_num(key[0..15])} \\ \text{clamp(r)} \\ s &= le \text{num(key[16..31])} \\ \text{accumulator} &= 0 \\ p &= (1 << 130) - 5 \\ \text{for } i = 1 \text{ upto ceil(msg length in bytes } / 16) \\ n &= le \text{ bytes\_to\_num(msg[((i-1)*16)..(i*16)]} \mid [0 \times 01])} \\ a &+= n \\ a &= (r*a) \% p \\ \text{end} \\ a &+= s \\ \text{return num\_to\_16\_le\_bytes(a)} \\ \text{end} \end{array}
```



```
void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
#ifdef POLY1305 ASM
     * As documented, poly1305 blocks is never called with input
     * longer than single block and padbit argument set to \theta. This
     * property is fluently used in assembly modules to optimize
     * padbit handling on loop boundary.
   poly1305 blocks f poly1305 blocks p = ctx->func.blocks;
#endif
    size t rem, num;
   if ((num = ctx->num)) {
        rem = POLY1305 BLOCK SIZE - num;
        if (len >= rem) {
            memcpy(ctx->data + num, inp, rem);
            poly1305 blocks(ctx->opaque, ctx->data, POLY1305 BLOCK SIZE, 1);
            inp += rem:
            len -= rem:
        } else {
            /* Still not enough data to process a block. */
            memcpy(ctx->data + num, inp, len);
            ctx->num = num + len:
            return:
   rem = len % POLY1305 BLOCK SIZE:
   len -= rem:
    if (len >= POLY1305 BLOCK SIZE) {
        poly1305 blocks(ctx->opaque, inp, len, 1);
        inp +- len;
        memcpv(ctx->data, inp, rem);
    ctx->num = rem;
```


HACL* programming and verification workflow

Agenda

How to write a formally verified implementation of cryptographic algorithms in F^* ?

- Example: Poly1305
- Field operations
 - Unsaturated and saturated bignum representations
 - Modulo-specific optimizations
- Polynomial evaluation
- Demo
 - F* specification
 - Low* implementation
- Do you want to give it a try? 🙂

Poly1305

- a one-time MAC¹ function
- takes a 32-byte *key* and a *message* of arbitrary length and produces a 16-byte *tag*
- standardized as IETF RFC 7539 "ChaCha20 and Poly1305 for IETF Protocols" in 2015
- designed by Bernstein in 2005

Poly1305

How to compute a 16-byte tag?

- split a 32-byte *key* into two 128-bit integers *r* and *s*, where *r* should be clamped
- split an input *message* into 16-byte blocks encoded to the field elements m_1, \ldots, m_n
- evaluate the following polynomial over \mathbb{F}_p , where $p=2^{130}-5$ $acc=m_1\times r^n+m_2\times r^{n-1}+\ldots+m_n\times r \mod p$ in practice, Horner's method is used: $acc=(\ldots((0+m_1)\times r+m_2)\times r+\ldots+m_n)\times r \mod p$
- finally, compute $tag = acc + s \mod 2^{128}$

Poly1305

How to compute a 16-byte tag?

- split an input *message* into 16-byte blocks encoded to the field elements m_1, \ldots, m_n
- evaluate the following polynomial over \mathbb{F}_p , where $p=2^{130}-5$

$$acc = (\dots((0+m_1)\times r + m_2)\times r + \dots + m_n)\times r \mod p$$


```
let prime = pow2 130 - 5
let felem = x:nat\{x < prime\}
let zero : felem = 0
let one : felem = 1
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) \% prime
let blocksize = 16
let block = Ibytes blocksize
let block_last (len:nat{len < blocksize}) = lbytes len</pre>
val encode block: b:block → felem
val encode_last: len:nat{len < blocksize} \rightarrow b:block_last len \rightarrow felem
```

12 / 27

Polynomial evaluation

```
acc = (\dots((acc0 + m_1) \times r + m_2) \times r + \dots + m_n) \times r \mod p,
where + is fadd and \times is fmul
```

```
let poly_update1 (r:felem) (b:block) (acc:felem) : felem =
  (acc 'fadd' encode_block b) 'fmul' r

let poly_update_last (r:felem) len (b:block_last len) (acc:felem) : felem =
  if len = 0 then acc else (acc 'fadd' encode_last len b) 'fmul' r

let poly_update (msg:bytes) (acc0:felem) (r:felem) : felem =
  repeat_blocks #uint8 #felem #felem blocksize msg
  (poly_update1 r)
  (poly_update_last r)
  acc0
```

F* specification

• F* specification:

```
https://github.com/aseemr/
Indocrypt-VerifiedCrypto-Tutorials/blob/main/FStar/
exercises/lowstar/example-poly/Spec.Poly.fst
```

• For simplicity, we ignore the last block if it is partial

F* specification

• F* specification:

```
https://github.com/aseemr/
Indocrypt-VerifiedCrypto-Tutorials/blob/main/FStar/
exercises/lowstar/example-poly/Spec.Poly.fst
```

- For simplicity, we ignore the last block if it is partial
- Are we ready for the Low* implementation?
- Not yet, since we are dealing with 130-bit integers!

Representing large integers

- Any number can be represented as $a = (a_n \ a_{n-1} \ \dots \ a_0)_r$, where r is called **radix** or **base**
- evaluation function as_nat $a = \sum_{i=0}^{n} a_i \cdot r^i$

r	numeral systems	r	unsigned machine integers
2	binary octal decimal	28	uint8 uint16
8	octal	2^{16}	uint16
10	decimal	2^{32}	uint32 uint64
16	hexadecimal	2^{64}	uint64

- if $0 \le a_i < r$
 - + such a representation is unique
 - some arithmetic operations may require to handle carries
- if a_i might be $\geq r$
 - + we can postpone carry propagation!
 - a is in a reduced form if $0 \le a_i < r$

- Let's stick with radix-2²⁶ representation of a field element
- as_nat $a = \sum_{i=0}^{4} a_i \cdot 2^{26 \cdot i}$
- bignum addition

as_nat
$$a + as_nat b ==$$

$$\sum_{i=0}^4 a_i \cdot r^i + \sum_{i=0}^4 b_i \cdot r^i ==$$

$$\sum_{i=0}^4 (a_i + b_i) \cdot r^i ==$$
as_nat $(a \text{ 'fadd' } b)$

multiplication by a scalar

as_nat
$$a \cdot b_i ==$$

$$\left(\sum_{i=0}^4 a_i \cdot r^i\right) \cdot b_i ==$$

$$\sum_{i=0}^4 (a_i \cdot b_i) \cdot r^i ==$$
as_nat $(a \text{ 'smul' } b_i)$

16 / 27

multiplication by a scalar and then bignum addition

as_nat
$$a \cdot b_i$$
 + as_nat $c ==$

$$\left(\sum_{i=0}^4 a_i \cdot r^i\right) \cdot b_i + \sum_{i=0}^4 c_i \cdot r^i ==$$

$$\sum_{i=0}^4 (a_i \cdot b_i + c_i) \cdot r^i ==$$
as_nat $\left(\left(a \cdot \text{sfmul}' \cdot b_i\right) \cdot \text{fadd}' \cdot c_i\right)$

bignum multiplcation

as_nat
$$a \cdot$$
 as_nat $b ==$ as_nat $a \cdot \left(\sum_{i=0}^4 b_i \cdot r^i\right) ==$ as_nat $a \cdot b_0$ + as_nat $a \cdot (b_1 \cdot r)$ + as_nat $a \cdot (b_2 \cdot r^2)$ + as_nat $a \cdot (b_3 \cdot r^3)$ + as_nat $a \cdot (b_4 \cdot r^4) ==$

. . .

17 / 27

• we have such a nice property for modular reduction:

$$2^{130} \mod p = 5$$
 or $r^5 \mod p = 5$

- as_nat $a \cdot r \mod p ==$ as_nat $(a_4 \ a_3 \ a_2 \ a_1 \ a_0)_r \cdot r \mod p ==$ $(a_0 \cdot p + a_1 \cdot p^2 + a_2 \cdot p^3 + a_3 \cdot p^4 + a_4 \cdot r^5) \mod p ==$ $(a_0 \cdot p + a_1 \cdot p^2 + a_2 \cdot p^3 + a_3 \cdot p^4 + a_4 \cdot 5) \mod p ==$ as_nat $(a_3 \ a_2 \ a_1 \ a_0 \ (5 \cdot a_4))_r \mod p$
- modular bignum multiplication

(as_nat
$$a \cdot as_nat b$$
) mod $p ==$
(as_nat $a \cdot b_0 + as_nat a \cdot (b_1 \cdot r) + \cdots$) mod p
(as_nat $a \cdot b_0 + as_nat (a_3 a_2 a_1 a_0 (5 \cdot a_4))_r \cdot b_1 + \cdots$) mod p

18 / 27

So far so good? In the real world, our coefficients are bounded with $2^{machine\ word\ size}$. So we need to make sure that all our computations won't "overflow"

bignum addition

as_nat
$$a + as_nat b ==$$

$$\sum_{i=0}^{4} a_i \cdot r^i + \sum_{i=0}^{4} b_i \cdot r^i ==$$

$$\sum_{i=0}^{4} (a_i + b_i) \cdot r^i == \{a_i + b_i < 2^{bits \ t}\}$$
as_nat $(a \text{ 'fadd' } b)$

• multiplication by a scalar

as_nat
$$a \cdot b_i ==$$

$$\left(\sum_{i=0}^4 a_i \cdot r^i\right) \cdot b_i ==$$

$$\sum_{i=0}^4 (a_i \cdot b_i) \cdot r^i == \{a_i \cdot b_i < 2^{bits \ t}\}$$
as_nat $(a \text{ 'smul'} \ b_i)$

19 / 27

So far so good? In the real world, our coefficients are bounded with 2^{machine word size}. So we need to make sure that all our computations won't "overflow"

multiplication by a scalar and then bignum addition

as_nat
$$a \cdot b_i$$
 + as_nat $c ==$

$$\left(\sum_{i=0}^4 a_i \cdot r^i\right) \cdot b_i + \sum_{i=0}^4 c_i \cdot r^i ==$$

$$\sum_{i=0}^4 (a_i \cdot b_i + c_i) \cdot r^i == \{a_i \cdot b_i + c_i < 2^{bits \ t}\}$$
as_nat $\left(\left(a \text{ 'sfmul' } b_i\right) \text{ 'fadd' } c_i\right)$

bignum multiplcation

as_nat
$$a \cdot$$
 as_nat $b ==$
as_nat $a \cdot \left(\sum_{i=0}^4 b_i \cdot r^i\right) ==$
as_nat $a \cdot b_0 +$ as_nat $a \cdot (b_1 \cdot r) +$ as_nat $a \cdot (b_2 \cdot r^2) +$
as_nat $a \cdot (b_3 \cdot r^3) +$ as_nat $a \cdot (b_4 \cdot r^4) ==$
... really?

20 / 27

Definition of machine integer base types in HACL*

```
type inttype =
  | U1 | U8 | U16 | U32 | U64 | U128 | S8 | S16 | S32 | S64 | S128
type secrecy_level =
    SEC | PUB
val sec_int_t: inttype → Type0 (* secret machine integers *)
let pub_int_t (t:inttype) = (* public machine integers *)
  match t with
   \mid U1 \rightarrow n:UInt8.t\{UInt8.v n < 2\}
   108 \rightarrow UInt8.t
   1 \text{ U16} \rightarrow \text{UInt16.t}
   U32 \rightarrow UInt32.t
let int_t (t:inttype) (l:secrecy_level) =
  match I with
   | PUB \rightarrow pub\_int\_t t
    SEC \rightarrow sec\_int\_t t
val add_mod: \#t:inttype\{unsigned\ t\} \rightarrow \#l:secrecy_level
  \rightarrow int t t l \rightarrow int t t l \rightarrow int t t l
```

Representation an element of $\mathbb{F}_{2^{130}-5}$ in F^{\star}

• radix-2²⁶ representation

```
let felem5 = (uint64 & uint64 & uint64 & uint64 & uint64)
let as_nat5 (f:felem5) : GTot nat =
let (s0, s1, s2, s3, s4) = f in
v s0 + v s1 * pow26 + v s2 * pow52 + v s3 * pow78 + v s4 * pow104
```

Representation an element of $\mathbb{F}_{2^{130}-5}$ in F^{\star}

• radix-2²⁶ representation

```
let felem5 = (uint64 & uint64 & uint64 & uint64 & uint64)
let as_nat5 (f:felem5) : GTot nat =
let (s0, s1, s2, s3, s4) = f in
v s0 + v s1 * pow26 + v s2 * pow52 + v s3 * pow78 + v s4 * pow104
```

• f is in a reduced form if felem_fits5 f (1, 1, 1, 1, 1) holds

```
val fadd5: f:felem5 \rightarrow g:felem5 \rightarrow Pure felem5
  (requires
    felem_fits5 f (2, 2, 2, 2, 2) ∧
    felem_fits5 g (1, 1, 1, 1, 1))
  (ensures \lambda out \rightarrow
    felem_fits5 out (3, 3, 3, 3, 3) \land
    feval5 out == fadd (feval5 f) (feval5 g))
let fadd5 (f0, f1, f2, f3, f4) (g0, g1, g2, g3, g4) =
  let 00 = f0 + g0 in
  let o1 = f1 +! g1 in
  let o2 = f2 + ! g2 in
  let o3 = f3 +! g3 in
  let o4 = f4 + ! g4 in
  (00, 01, 02, 03, 04)
```

• No need to compute modular reduction immediately

Bignum multiplication over $\mathbb{F}_{2^{130}-5}$

```
val mul5: f:felem5 \rightarrow r:felem5 \rightarrow r5:felem5 \rightarrow Pure felem_wide5
  (requires
    felem_fits5 f (3, 3, 3, 3, 3) \land felem_fits5 r (1, 1, 1, 1, 1) \land
    felem_fits5 r5 (5, 5, 5, 5, 5) \wedge r5 == precomp_r5 r)
  (ensures \lambda out \rightarrow
    felem_wide_fits5 out (63, 51, 39, 27, 15) \times
    feval\_wide out == fmul (feval5 f) (feval5 r))
let mul5 (f0, f1, f2, f3, f4) (r0, r1, r2, r3, r4) (r50, r51, r52, r53, r54) =
  let out = smul5 f0 (r0, r1, r2, r3, r4) in
  let out = smul_add5 f1 (r54, r0, r1, r2, r3) out in
  let out = smul_add5 f2 (r53, r54, r0, r1, r2) out in
  let out = smul_add5 f3 (r52, r53, r54, r0, r1) out in
  let out = smul_add5 f4 (r51, r52, r53, r54, r0) out in
  out
```

Demo

- Low-level specification written in F*: example-poly/Hacl.Spec.Poly.fst example-poly/Hacl.Spec.Poly.Lemmas.fst example-poly/Hacl.Spec.Poly.Lemmas0.fst
- Low* implementation: example-poly/Hacl.Impl.Poly.Field.fst example-poly/Hacl.Impl.Poly.fst

Exercise

Write a verified implementation of Gimli² in F*!

What should you first look at?

- lowstar/gimli/Spec.Gimli.fst
- lowstar/gimli/Hacl.Impl.Gimli.fst

	F*	Low*	
	Lib.IntTypes.fsti Lib.RawIntTypes.fsti (BREAKS secret independence)		
lib/	Lib.Sequence.fsti	Lib.Buffer.fsti	
	Lib.ByteSequence.fsti	Lib.ByteBuffer.fsti	
	Lib. Loop Combinators. fsti	Lib.Loops.fsti	
	specs/	code/	
chacha20	Spec.Chacha20.fst	Hacl.Impl.Chacha20.Core32.fst	
CHaCHaZU		Hacl.Impl.Chacha20.fst	
SHA3	Spec.SHA3.fst	Hacl.Impl.SHA3.fst	

²Gimli: a cross-platform permutation https://gimli.cr.yp_to/spec.html

HACL* VeriCrypt 2020

26 / 27

Conclusion

Questions?

- HACL*: https://github.com/project-everest/hacl-star
- F*: https://www.fstar-lang.org
- INRIA PROSECCO: http://prosecco.inria.fr
- Microsoft Project Everest: https://project-everest.github.io