

ශී ලංකා විභාග දෙපාර්තමේන්තුව අ.පො.ස. (උ.පෙළ) විභාගය - 2020

16 - විදුලිය, ඉලෙක්ටොනික හා තොරතුරු තාක්ෂණවේදය

(නව/පැරණි නිර්දේශය)

ලකුණු දීමේ පටිපාටිය

මෙය උත්තරපතු පරීකෘකවරුන්ගේ පුයෝජනය සඳහා සකස් කෙරිණි. පුධාන/ සහකාර පරීකෘක රැස්වීමේ දී ඉදිරිපත්වන අදහස් අනුව මෙහි වෙනස්කම් කරනු ලැබේ.

අ.පො.ස. (උ.පෙළ) විභාගය - 2020

16 - විදුලිය, ඉලෙක්ටොනික හා තොරතුරු තාක්ෂණවේදය

(නව හා පැරණි නිර්දේශ)

ලකුණු බෙදී යාමේ ආකාරය

Iපතුය

- 1 x 50

= 50

IIපතුය

A කොටස - 40

B කොටස - 30

මුළු ලකුණු

 $50 + \frac{100}{2} = 100$

උත්තරපතු ලකුණු කිරීමේ පොදු ශිල්පීය කුම

උත්තරපතු ලකුණු කිරීමේ හා ලකුණු ලැයිස්තුවල ලකුණු සටහන් කිරීමේ සම්මත කුමය අනුගමනය කිරීම අනිවාර්යයෙන්ම කළ යුතුවේ. ඒ සඳහා පහත පරිදි කටයුතු කරන්න.

- උත්තරපතු ලකුණු කිරීමට රතුපාට බෝල් පොයින්ට් පැතක් පාවිච්චි කරන්න.
- 2. සෑම උත්තරපතුයකම මුල් පිටුවේ සහකාර පරීකෘක සංකේත අංකය සටහන් කරන්න. ඉලක්කම් ලිවීමේදී **පැහැදිලි ඉලක්කමෙන්** ලියන්න.
- 3. ඉලක්කම් ලිවීමේදී වැරදුණු අවස්ථාවක් වේ නම් එය පැහැදිලිව තනි ඉරකින් කපා හැර නැවත ලියා කෙටි අත්සන යොදන්න.
- 4. එක් එක් පුශ්නයේ අනු කොටස්වල පිළිතුරු සඳහා හිමි ලකුණු ඒ ඒ කොටස අවසානයේ \triangle ක් තුළ ලියා දක්වන්න. අවසාන ලකුණු පුශ්න අංකයත් සමඟ \square ක් තුළ, භාග සංඛාාවක් ලෙස ඇතුළත් කරන්න. ලකුණු සටහන් කිරීම සඳහා පරීක්ෂකවරයාගේ පුයෝජනය සඳහා ඇති තීරුව භාවිත කරන්න.

උදාහරණ :පුශ්න අංක 03

(ii)
$$\sqrt{\frac{4}{5}}$$
(iii)
$$\sqrt{\frac{3}{5}}$$
(iii)
$$\sqrt{\frac{3}{5}}$$
(iii)
$$\sqrt{\frac{3}{5}}$$
(iii)
$$\sqrt{\frac{3}{5}}$$
(iii)
$$\sqrt{\frac{3}{5}}$$

$$\sqrt{\frac{3}{5}}$$
03 (i)
$$\frac{4}{5}$$
 + (ii)
$$\frac{3}{5}$$
 + (iii)
$$\frac{3}{5}$$
 =
$$\frac{10}{15}$$

බනුවරණ උත්තරපතු : (කවුළු පතුය)

- 1. අ.පො.ස. (උ.පෙළ) හා තොරතුරු තාක්ෂණ විභාගය සඳහා කවුළු පතු දෙපාර්තමේන්තුව මගින් සකසනු ලැබේ. නිවැරදි වරණ කපා ඉවත් කළ සහතික කරන ලද කවුළුපතක් ඔබ වෙත සපයනු ලැබේ. සහතික කළ කවුළු පතුයක් භාවිත කිරීම පරීකෳකගේ වගකීම චේ.
- 2. අනතුරුව උත්තරපතු හොඳින් පරීඤා කර බලන්න. කිසියම් ප්‍ශ්නයකට එක් පිළිතුරකට වඩා ලකුණු කර ඇත්නම් හෝ එකම පිළිතුරක්වත් ලකුණු කර නැත්නම් හෝ වරණ කැපී යන පරිදි ඉරක් අඳින්න. ඇතැම් විට අයදුම්කරුවන් විසින් මුලින් ලකුණු කර ඇති පිළිතුරක් මකා වෙනත් පිළිතුරක් ලකුණු කර තිබෙන්නට ප්‍රඑවන. එසේ මකන ලද අවස්ථාවකදී පැහැදිලිව මකා නොමැති නම් මකන ලද වරණය මත ද ඉරක් අඳින්න.
- 3. කවුළු පතුය උත්තරපතුය මත නිවැරදිව තබන්න. නිවැරදි පිළිතුර ✓ ලකුණකින් ද, වැරදි පිළිතුර 0 ලකුණකින් ද වරණ මත ලකුණු කරන්න. නිවැරදි පිළිතුරු සංඛාාව ඒ ඒ වරණ තී්රයට පහළින් ලියා දක්වන්න. අනතුරුව එම සංඛාා එකතු කර මුළු නිවැරදි පිළිතුරු සංඛාාව අදාළ කොටුව තුළ ලියන්න.

වුසුනගත රචනා හා රචනා උත්තරපතු :

- 1. අයදුම්කරුවන් විසින් උත්තරපතුයේ හිස්ව තබා ඇති පිටු හරහා රේඛාවක් ඇඳ කපා හරින්න. වැරදි හෝ නුසුදුසු පිළිතුරු යටින් ඉරි අඳින්න. ලකුණු දිය හැකි ස්ථානවල හරි ලකුණු යෙදීමෙන් එය පෙන්වන්න.
- 2. ලකුණු සටහන් කිරීමේදී ඕවර්ලන්ඩ් කඩදාසියේ දකුණු පස තී්රය යොදා ගත යුතු වේ.
- 3. සෑම පුශ්නයකටම දෙන මුළු ලකුණු උත්තරපතුයේ මුල් පිටුවේ ඇති අදාළ කොටුව තුළ පුශ්න අංකය ඉදිරියෙන් අංක දෙකකින් ලියා දක්වන්න. පුශ්න පතුයේ දී ඇති උපදෙස් අනුව පුශ්න තෝරා ගැනීම කළ යුතුවේ. සියලු ම උත්තර ලකුණු කර ලකුණු මුල් පිටුවේ සටහන් කරන්න. පුශ්න පතුයේ දී ඇති උපදෙස්වලට පටහැනිව වැඩි පුශ්න ගණනකට පිළිතුරු ලියා ඇත්නම් අඩු ලකුණු සහිත පිළිතුරු කපා ඉවත් කරන්න.
- 4. පරීක්ෂාකාරීව මුළු ලකුණු ගණන එකතු කොට මුල් පිටුවේ නියමිත ස්ථානයේ ලියන්න. උත්තරපතුයේ සෑම උත්තරයකටම දී ඇති ලකුණු ගණන උත්තරපතුයේ පිටු පෙරළමින් නැවත එකතු කරන්න. එම ලකුණ ඔබ විසින් මුල් පිටුවේ එකතුව ලෙස සටහන් කර ඇති මුළු ලකුණට සමාන දයි නැවත පරීක්ෂා කර බලන්න.

ලකුණු ලැයිස්තු සකස් කිරීම :

සියලු ම විෂයන්හි අවසාන ලකුණු ඇගයීම් මණ්ඩලය තුළදී ගණනය කරනු නොලැබේ. එබැවින් එක් එක් පතුයට අදාළ අවසාන ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවලට ඇතුළත් කළ යුතු ය. I පතුය සඳහා බහුවරණ පිළිතුරු පතුයක් පමණක් ඇති විට ලකුණු ලැයිස්තුවට ලකුණු ඇතුළත් කිරීමෙන් පසු අකුරෙන් ලියන්න. අනෙකුත් උත්තරපතු සඳහා විස්තර ලකුණු ඇතුළත් කරන්න. 51 චිතු විෂයයේ I, II හා III පතුවලට අදාළ ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවල ඇතුළත් කර අකුරෙන් ද ලිවිය යුතු වේ.

Base 0 80กดี คนิอิติ (บุญบ่า เหมีเนเมืองเมนุเดนเมลูเ/All Rights Reserved)

re criicae **நடிக்கி நெற்ற தேட்டு நித்து கூற** இல் crixaesiae இரை இரை இரும் கடிக்கும் ramali un **நடிக்கும்.** பாட்சைத் மூக்குக்கிற இரை crixae பர்கள், நினைக்களம் aduent a **இலங்கைப் பர்ட்சைத்**று **திணைக்களம்.** Sri Lanka Department a Examinatoris. Sri Lanka de grande grande நடிக்கும் நிறைகள் நடிக்கும். இரும் மூர்களில் இலக்கைப் பரிக்கைக்களில் நக்கையுள்ள **Pepartment of Examinations**, **Sri Lanka** கொள் இலக்கைப் பரிக்கைத் இணைக்களில்

අධායන පොදු සහතික පතු (උසස් පෙළ) විහාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

ව්දුලිය. ඉලෙක්වොනික හා තොරතුරු තාක්ෂණවේදය மின். இலத்திரன். தகவல் தொழினுட்பவியல் Electrical, Electronic and Information Technology

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- 💥 සිගලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🔻 උත්කර පතුගේ පිටුපස දී ඇති උපදෙස් ද සැලකිල්ලෙන් කියවා පිළිපදින්න.
- * 1 සිට 50 තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ** පිළිතුර තෝරාගෙන, **එය උත්තර පතුයේ පසුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (X) යොද දක්වන්න**.
- 🔆 ගණක යන්නු භාවිතයට ඉඩ දෙනු නොලැබේ.
- NPN වුංන්සිස්වරය නිරූපණය කරන සංකේතය තෝරන්න.

- 2. ශී් ලංකාවේ ගෘහස්ථ විදුලි සැපයුමේ නාමික සංඛ්යාතය කුමක් ද?
 - (1) 49.5 Hz
- (2) 50 Hz
- (3) 50.5 Hz
- (4) 55 Hz
- (5) 60 Hz
- 3. රසදිය වල විශිෂ්ට ගුරුත්වය 13.6 වේ. 700 mm දිග රසදිය කඳක පතුලේ ඇතිවන පීඩනය සමාන වන්නේ, $(g=9.81 \text{ m s}^{-2} බව සලකන්න.)$
 - (1) 1 atm co.
- (2) 100 kN as.
- (3) 100 kPa cs.
- (4) 93391 Pa co.
- (5) 101396 Pa cs.
- 4. උස ගොඩනැගිල්ලක මුදුනේ සිට බෝලයක් අත් හරිනු ලැබේ. වාතය තුල බෝලයේ චලිකය පහත සඳහන් කුමන ත්වරණ-කාල පුස්ථාරය මගින් දක්වන්නේ ද? (වාතයේ පුතිරෝධය නොමැති බව සලකන්න.)

5. මයිකොමීටර් ඉස්කුරුප්පු ආමානයකින් ගත් වැඩ කොටසක මිනුමක් රූපයේ දැක්වේ. මයිකොමීටර් ඉස්කුරුප්පු ආමානයේ ශූතාානා දෝෂ නොමැත. මෙම ආමානයේ කුඩාම මිනුම 0.01 mm වේ. පහත රූපයේ දැක්වෙන මයිකොමීටර් ඉස්කුරුප්පු ආමානයේ පාඨාංකය කුමක් ද?

- (1) 20.33 mm
- (2) 20.66 mm
- (3) 22.33 mm
- (4) 25.30 mm
- (5) 22.00 mm
- 6. පරිගණක ඒකකයක දෘඪාංගයක් නොවන උපාංගය මින් කුමක් ද?
 - (1) දෘඪ තැටිය

(2) යතුරු පුවරුව

(3) මූසිකය

(4) මොතිටරය

- (5) මාර්ගගත ආවයන ඉඩ (online storage space)
- 7. පහත පරිපථ සටහන් සලකන්න.

ඉහත පරිපථ අතුරෙන් අවම ධාරාවක් සහිත පරිපථය/පරිපථ කුමක් ද?

(1) A පමණි.

(2) B පමණි.

(3) D පමණි.

- (4) A සහ B පමණි.
- (5) C සහ D පමණි.
- 8. යන්නු කොටසක පුක්ෂේපිත පෙනුමක් රූපයේ දැක්වේ.

පිළිවෙළින් A,B,C,D හා E මගින් දක්වා ඇති රේඛා වර්ග වන්නේ,

- (1) මායිම් රේඛාව, මධා රේඛාව, සැඟි රේඛාව, විස්තාරිත රේඛාව සහ මාන රේඛාව වේ.
- (2) මායිම් රේඛාව, මධා රේඛාව, සැඟි රේඛාව, මාන රේඛාව සහ විස්තාරික රේඛාව වේ.
- (3) මායිම් රේඛාව, සැඟි රේඛාව, මධා රේඛාව, විස්තාරිත රේඛාව සහ මාන රේඛාව වේ.
- (4) මායිම් රේඛාව, සැඟි රේඛාව, මධා රේඛාව, මාන රේඛාව සහ විස්තාරික රේඛාව වේ.
- (5) විස්තාරිත රේඛාව, මධා රේඛාව, සැඟි රේඛාව, මායිම් රේඛාව සහ මාන රේඛාව වේ.

 $oldsymbol{9}$. පහත පරිපථයේ $oldsymbol{A}$ තා $oldsymbol{B}$ ලක්ෂා අතර පුතිරෝධය කුමක් ද?

- (1) $1.5 \text{ k}\Omega$
- (2) $3 k\Omega$
- (3) $6 k\Omega$
- (4) $9 k\Omega$
- (5) 12 kΩ

10. පහත පුස්ථාර සලකන්න.

ආදාන A හා ආදාන B තර්ක ද්වාරයකය ආදානවලට සම්බන්ධ කර ඉහත දැක්වෙන තර්ක පුතිදානය නිරීක්ෂණය කරන ලදී. මෙහි $5\,\mathrm{V}$ හා $0\,\mathrm{V}$ මගින් පිළිවෙළින් තර්ක $^11'$ හා තර්ක $^10'$ දක්වනු ලැබේ. ඉහත පුස්ථාර ඇසුරෙන් තර්ක ද්වාරය හඳුනාගන්න.

- (I) AND
- (2) OR
- (3) NOT
- (4) NOR
- (5) NAND
- 11. රූපයේ දක්වා ඇති ආකාරයට $100~{
 m kg}$ ස්කන්ධයක් ඝර්ෂණය රහිත කප්පි පද්ධතියක එල්ලා ඇත. මෙම පද්ධතිය සමතුලිතව පවත්වා ගැනීම සඳහා නිදහස් කෙළවර P හි යෙදිය යුතු බලය නිව්ටත්, (කප්පි පද්ධතියේ බර නොසලකා හරින්න, ගුරුත්වජ ත්වරණය (g) $\simeq 9.81~{
 m m}~{
 m s}^{-2}$ ලෙස සලකන්න.)
 - (1) 10g වේ.
- (2) 25g මේ.
- (3) 33g වේ.

- (4) 50g වේ.
- (5) 100g @D.

12. A දෙසින් පුක්ෂේපණය කලවිට නිවැරදි පෙනුම දක්වන්නේ මින් කුමක් ද?

- පාලමක යොදා ඇති බැල්වීමෝර් කාප්ප හැටුමක් රූපයේ දැක්වේ.
 මෙම කාප්ප හැටුම සම්බන්ධ ප්‍රකාශ කිහිපයක් පහත දැක්වේ.
 - A LE කොටසේ බලය 5 kN වලට වඩා වැඩිය.
 - B ML හා LK කොටස්වල බල සම්පීඩන බල වේ.
 - C පතුල් කොටස් වල බල ආතතික වේ.

(4)

- ${
 m D}$ NB හා NC කොටස් කාප්ප හැටුමේ ආරක්ෂාව වැඩි කරයි. ඉහත පුකාශ අතුරෙන් නිවැරදි පුකාශ වන්නේ
- (1) A, B com C col 8元.
- (2) A, B සහ D පමණි.

(5)

- (3) A, C සහ D පමණි.
- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.

- රූපයේ දැක්වෙන සාමානා දොර සරනේරුවක භාවිත කරන පිත්තල ඉස්කුරුප්පු ඇණයක් සම්බන්ධ පහත ප්‍‍රකාශ සලකන්න.
 - A එහි හුලස් හැඩය, ඉස්කුරුප්පු නියනක් භාවිකයෙන් ඇණය ඇතුල් කිරීමට උපකාරී වේ.
 - B හෙලික්සීය පොවේ ඝර්ෂණ පුතිරෝධය මගින් ඉස්කුරුප්පු ඇණය කදින් අල්ලාගෙන සිටිනු ලැබේ.
 - C ඉස්කුරුප්පු කඳ ආතනා පුතිරෝධයක් සපයනු ඇතැයි අපේක්ෂා කෙරේ.
 - D දොරේ බර නිසා ඇතිවන බලය ඉස්කුරුප්පු කඳ මගින් දරා සිටිනු ඇතැයි අපේක්ෂා කෙරේ.

එහි භාවිතය සම්බන්ධයෙන් සතා වන්නේ ඉහත කිනම් පුකාශ ද?

- (1) A, B ⇔∞ C ⇔®ã.
- (2) A, B cos D co® 85.
- (3) A, C සහ D පමණි.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.
- 15. පහත පුකාශ සලකන්න.
 - A සියුම් කාබන් අංශු මිනිස් පෙනහළු තුල ශ්වසන අපහසුතා ඇති කරයි.
 - B මන්සාායින් තුල රසදිය ඒකරාබ් වේ.
 - C ගල් අඟුරු පිළිස්සීම නිසා තමන අළු (fly ash) කඳු කුළ බැර ලෝහ ඒකරාශී වේ.
 - D මෝටර් වෘතන වීමෝඩන (emissions) පක්ෂීන් තුළ ඒකරාශී වීම.

ඉහත කිනම් පුකාශ මගින් ජෛව සමායචනයේ (bioaccumulation) බලපෑම් විස්තර කරනු ලබයි ද?

- (I) A, B con C coe 65.
- (2) A, B con D co &.
- (3) A, C & D & &.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම

 $17.\,\,800~\mathrm{N}$ බර ඇති AB දණ්ඩ රූපයේ දැක්වෙන ආකාරයකට රඳවා තිබේ. B හි ස්පර්ශ පෘෂ්ඨය සුමට වේ. බිත්තියේ A ස්ථානයේ ස්ථිතික ඝර්ෂණ සංගුණකය (බික්තිය හා දණ්ඩ අතර) 0.2 වේ. දණ්ඩ රූටා යාමකින් තොරව තුබා ගැනීම සඳහා යෙදිය යුතු අවම බලය P වන්නේ.

- (1) 221 N @O.
- (2) 321 N ⊕0,
- (3) 421 N @O.

- (4) 433 N ⊕0.
- (5) 533 N ⊚0.
- 18. පහත පුකාශ සලකන්න.
 - A දිගක් මැතීම සඳහා මිටර් කෝදුව භාවිත කරන විට කුඩාම මිනුම 0.0005 m වේ.
 - B ශක්තිය (energy) මැනීම සඳහා SI ඒකකය කැලරි වේ.
 - C වොල්ටීයතාවය 1.5 V වන දීප්ත කෝෂ වල SI ඒකකය කැන්ඩෙලා (Cd) වේ.
 - D සින්ක්-කාබන් AA බැටරිවල නාමික කෝෂ චොල්ටීයකාව 1.5 V වේ.

ඉහත කිතම් පුකාශ සකා වේ ද?

- (1) A, B සහ C පමණි.
- (2) A, B සහ D පමණි.
- (3) A, C සහ D පමණි.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.
- 19. පහත පුකාශ සලකන්න.
 - A උපාංග සවිකිරීමට හෝ ගැලවීමට හෝ පෙර මෝටරයේ බල සැපයුම කිුිියා විරහිත කිරීම.
 - B හදිසි නැවතුම් බොත්තම කිුියාත්මක වන බව තහවුරු කරගැනීම.
 - C ගෙබීම පිරිසිදු හා නොලිස්සන සුළු වීම.
 - D මිනුම් ගැනීමේ දී හුමණ වේගය අඩු කිරීම.

ලියවන පට්ටලයක් (lathe machine) කුියාත්මක කිරීමේ දී අදාළ ආරක්ෂක,පියවර ඉහත කිනම් පුකාශ මගින් විස්තර කරනු ලබයි ද?

- (1) A, B සහ C පමණි.
- (2) A, B සහ D පමණි.
- (3) A, C සහ D පමණි.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.
- 20. පහත සුකාශ සලකන්න.
 - A ටර්පන්ටයින් වල දියවන ස්වාභාවික දුම්මල_ුදැව සංරක්ෂණය සඳහා භාවිත වාර්නිෂ් වල අඩංගු විය හැකි ය.
 - B ඇලුම්නියම් සල්ෆේට් ජලයේ අවලම්බිත ඝන දුවා ඉවත් කිරීම සඳහා භාවිත කළ හැකි කැටියම් දුවායකි.
 - C විදුරු නිෂ්පාදනයේ දී භාවිත වන පුධාන සංඝටකයක් වන්නේ සිලිකා ය.
 - D වස්තු දෙකක් මැලියම් ගා ඇලවීමේ දී හොඳ බන්ධනයක් ඇතිවීමට අධික පෘෂ්ඨිය රඑ බව හේතු වේ.

ඉහත පුකාශ අතුරෙන් රසායනික සංයෝග භාවිතය සම්බන්ධයෙන් සතා වන්නේ මොනවාද?

- (1) A, B සහ C පමණි.
- (2) A, B as D as 50.
- (3) A, C සහ D පමණි.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.
- 21. කීඩකයෙක් $150~{
 m g}$ ක ටෙනිස් බෝලයකට ටෙනිස් පින්තකින් පහරක් එල්ල කරනු ලබයි. රූපයේ දක්වා ඇති ආකාරයට එම බෝලයේ පුවේග වෙනස්වීම සිදු වේ. මෙහි ගමාතා වැඩිවීම කුමක් ද?

(4) 7.5 kgm s^{-1} (5) 10.0 kgm s^{-1}

- A ඇණවුම නිරීක්ෂණය (track) කිරීමේ හැකියාව හා භාරදෙන දිනය සඳහන් කිරීම.
- B නිෂ්පාදනයේ පවතින තොග, මිල හා ආදේශ දුවා පිළිබඳ තොරතුරු සැපයීම.
- C නිෂ්පාදන සම්බන්ධ පාරිභෝගික අදහස් ලබාදීම.
- D ගණුදෙනු කාලය හා සම්බන්ධිත පිරිවැය අඩු වීම.

ඉහත කිනම් පුකාශ මගින් පිළිගත් මාර්ගගත සාප්පු වනපාරයක වෘවසායික ගති ලක්ෂණ විස්තර වන්නේ ද?

- (1) A, B con C colo.
- (2) A, B සහ D පමණි.
- (3) A, C සහ D පමණි.

- (4) B, C සහ D පමණි.
- (5) A, B, C සහ D සියල්ලම.

 ${f 23}$. පහත පරිපථය සලකන්න. මෙම පරිපථයට පරිපූර්ණ ඇමීටර සම්බන්ධ කර ඇති අතර ඒවායේ පාඨාංක $M_1,M_2,$ M_3 සහ M_4 වේ.

පහත පුකාශ අතුරෙන් වැරදි පුකාශය කුමක් ද?

- (1) $M_1 \otimes \text{qua} = M_2 + M_3 + M_4$
- (2) M_3 හි අගය= 1A
- (3) $M_{_{A}}$ කුඩාම පාඨාංකය වේ.
- (4) M_1 වැඩිම පාඨාංකය වේ.
- (5) M_1 \otimes $\Leftrightarrow \otimes > (M_2 + M_3 + M_4)$
- ${f 24}$. නිවසක ${f 5}$ ${
 m W}$ ${
 m LED}$ පහන් දහයක් භාවිත කරනු ලැබේ. සෑම පහනක් ම දිනකට පැය ${f 5}$ ක් බැගින් දැල්වේ. මෙම නිවසේ දෛනික විදුපුත් ශක්ති පරිභෝජනය කීයද?

 - (1) 0.025 kW h (2) 0.25 kW h (3) 2.5 kW h
- (4) 25 kW h
- (5) 250 kW h
- 25. වේරළාසන්න පුදේශයේ යකඩ වසූතයක ව්බෑදනය වේගවත් කිරීම (corrosion) සඳහා හේතුව නිවැරදි ව පැහැදිලි කරනුයේ කුමන පුකාශය මගින් ද?
 - (1) වේරළාසන්න පුදේශවල ඔක්සිජන් සැපයීම සඳහා පුමාණවත් ශාක නොමැත.
 - (2) විබාදනය වේගවත් කිරීම සඳහා උපකාරී වන ලවණ වෙරළාසන්න පුදේශවල සුලඟේ අන්තර්ගත වේ.
 - (3) වේරළාසන්න පුදේශවල පවතින අධික තාපය විබාදනය ඓගවත් කිරීමට හේතු වේ.
 - (4) වෙරළාසන්න පුදේශවල පවතින අධික සූර්ය පුවිකිරණය (irradiation) විබාදනය වේගවත් කිරීමට හේතු වේ.
 - (5) සාහරයේ උදම් රළ ලෝහවල විබාදනය වේගවත් කිරීමට හේතු වේ.
- 26. රූපයේ දී ඇති ගෘහස්ථ පරිපථයක රේඛා සටහන සලකා එය අයත් වන නිවැරදි පරිපථ වර්ගය තෝරන්න.

- (1) පහනක් හා වහරුවක් සහිත පරිපථයක් 🦠
- (2) ඉදමං වහරු සැකසුමක් සහිත පරිපථයක්
- (3) කෙචෙනි පිටවාන් තුනක් හා පහනක් සහිත පරිපථයක්
- (4) පහන් තුනක් සහිත පරිපථයක්
- (5) කෙවෙනි පිටවාන් තුනක් සහිත පරිපථයක්
- 27. සරල ධාරා (DC) ශුේණිගත මෝටර පරිපථය තෝරන්න.

28. පහත රූපයේ දැක්වෙන ආකාරයට ධාරිතුක දෙකක් සම්බන්ධ කර ඇත.

	හරස්කඩ වර්ගඑලය	තහඩු අතර දුර	පාරවේ ද නතා ව
C ₁	A	d	Ę
C_2	2 <i>A</i>	2 <i>d</i>	10ε

P හා Q ජාලය හරහා සමක ධාරණාව කුමක් ද?

 $(1) \quad \frac{\mathcal{E}A}{d}$

(2) $\frac{2\varepsilon A}{d}$

(3) $\frac{4\varepsilon A}{d}$

(4) $\frac{11\varepsilon A}{d}$

 $(5) \quad \frac{40\varepsilon A}{d}$

29. නිවැරදි ඉතකලා තරංග හැඩය තෝරන්න.

LEASE MUMULEUIS TREETERS TELEVISION

30. පහත සැකසුම පරිපථයකට යොදා විභව අන්තරය (V) හා ධාරාව (I) නිරීක්ෂණය කරන ලදී. තරංග හැඩ පහත පුස්තාරයේ ආකාරයට නිරීක්ෂණය විය.

ඉහත උපාංගය වන්නේ,

- (1) පුතිරෝධකයයි.
- (2) පරිපූර්ණ ධාරිතුකයයි.
- (3) පරිපූර්ණ පේරකයයි.

- (4) වුාන්සිස්ටරයයි.
- (5) ඩගෙන්ඩයයි.

31. මාර්ගගත පාඩම් පැවැත්වීම (online delivery of lessons) සම්බන්ධ පහත පුකාශ සලකන්න.

- A ඉගැන්වීම සඳහා විඩියෝ සම්මන්තුණ පහසුකම් භාවිත කළ හැකි ය.
- B පරිගණක සඳහා මයිකෝෆෝන සහ වීඩියෝ කැමරා වැනි දෘඪාංග අවශා වේ.

C - කණ්ඩායම් කියාකාරකම් සඳහා මාර්ගගත ලියවිලි (online documents) භාවිත කළ හැකි ය. මේවායින් නිවැරදි පුකාශය/පුකාශ සහිත වරණය තෝරන්න.

(1) A පමණි.

(2) B පමණි.

(3) A සහ B පමණි.

- (4) A සහ C පමණි.
- (5) A, B සහ C සියල්ලම.

32. තරංග හැඩ තුනක් පහත රූපවල දක්වා ඇත.

පිළිවෙළින් x(t),y(t) සහ z(t) වල සාමානා අගය කුමක් ද?

- (1) 2.5 V, 2.5 V, 2.5 V
- (2) 0 V, 2.5 V, -2.5 V
- (3) 0 V, 0 V, 0 V

- (4) 0 V, -2.5 V, 2.5 V
- (5) -2.5 V, -2.5 V, 0 V

33. පනන තාර්කික පරිපථය සඳහා සමාන වන තාර්කික ද්වාරය කුමක් ද?

- (1) NOR
- (2) NAND
- (3) XOR
- (4) OR
- (5) AND

34. පහත කාර්කික පරිපථයේ පුතිදානය කුමක් ද?

- (1) $AB + \overline{C}$
- (2) $(A + B) + \overline{C}$ (3) $\overline{AB} + \overline{C}$ (4) $\overline{AB} + C$
- (5) $\overline{AB+C}$

- 35. අර්ධ සන්නායක සම්බන්ධ පහත පුකාශ සලකන්න.
 - A බාහා අර්ධ සන්නායක වලට අපදුවා එක් කිරීමෙන් නිසඟ අර්ධ සන්නායක සාදනු ලබයි.
 - B Si සමග As මානුණය කිරීමෙන් n වර්ගයේ අර්ධ සන්නායකයක් සැදිය හැකි ය.
 - C Si සමග P මාතුණය කිරීමෙන් p වර්ගයේ අර්ධ සන්නායකයක් සෑදිය හැකි ය. මේවායින් අර්ධ සන්නායක සම්බන්ධයෙන් නිවැරදි පුකාශ/පුකාශය තෝරන්න.
 - (1) A cod.
- (2) B = 36.
- (3) A සහ B පමණි.

- (4) B සහ C පමණි.
- (5) A, B සහ C සියල්ලම.
- 36. පිළිවෙළින් NPN ද්විධුැවිය සන්ධි (BJT) ටුාන්සිස්ටරයක්, n-නාලි සන්ධි ක්ෂේතු ආචරණ ටුාන්සිස්ටරයක් (JFET), n-නාලි වර්ධක ලෝහ ඔක්සයිඩ අර්ධ සන්නායක ක්ෂේනුඑල ආචරණ ටුාන්සිස්ටරයක් (MOSFET) දැක්වෙන්නේ කුමනා වරණමය් ද?

- 37. පොදු වීමෝවක විනපාසය සහිත වර්ධකයක් ලෙස NPN BJT ටුාත්සිස්ටරයක් යොදා ඇත. ටුාත්සිස්ටරය සකුීය කලාපයේ පවතින අතර I_B = $20~\mu\mathrm{A}$ සහ β =100 වේ. සංගාහක ධාරාව I_c නිශ්චය කරන්න.
 - (1) 200 nA

(2) $.20 \,\mu\text{A}$

(3) 2 mA

(4) $200 \mu A$

- (5) I_c නිශ්චය සදහා දක්ක පුමාණවක් නොවේ.
- 38. සිලිකන් වලින් සාදන ලද ඩයෝඩ සහිත පහත පරිපථයට ආදානය වශයෙන් පහත දක්වා ඇති සයිනාකාර වෝල්ටීයතා සැපයුමක් දෙන ලදී. ධාරිතුකය හරහා චෝල්ටීයතාවය $V_{\rm c}$ කුමක් ද?

39. පරිපුර්ණ කාරකාත්මක වර්ධකයක් සම්බන්ධ පහත පුකාශ සලකන්න.

- A වීවෘත-පුඩු වෝල්ට්යතා ලාභය අනන්න වේ.
- B පුදාන පුතිරෝධය අනන්ත වේ.
- C පුතිදාන පුතිරෝධය $100~\Omega$ වේ.
- D අපවර්තිත හා අපවර්කිත නොවන ආදාන අතර චෝල්ටීයතාව 1 mV වේ.

ඉහත පුකාශ වලින් නිවැරදි වන්නේ කුමක් ද/කුමන ඒවා ද?

- (1) A 50 8.
- (2) A සහ B පමණි.
- (3) C සහ D පමණි.

- (4) A, B සහ D පමණි.
- (5) B, C සහ D පමණි.

පතන විස්තරය හා රුප සටහන සැලකීමෙන් පුශ්න අංක 40 සහ 41 සඳහා පිළිතුරු සපයන්න.

"්ශී ලංකාවේ පූර්ණ විදුලි සැපයුම් බිඳ වැටීමක් සම්බන්ධයෙන් අධායනය කිරීම සඳහා වූ කාර්යයක දී විදුලි ඉංජිනේරු කණ්ඩායමක් පහත දැක්වෙන ජාලක උප පොලක (Grid substation) තනි රේඛා සටහන සැලකිල්ලට ගනිති. ඔවුන්ගේ නිරීක්ෂණයට භාජනය වන්නේ තෙකලා පරිණාමකයේ තත්ත්වය, පරිපථ බිඳින, වෙන්කරණ සහ නියදඬු"

 $oldsymbol{40}$. ඉහත තනි රේඛා රූප සටහනේ $oldsymbol{A}$ යනු,

- (1) පරිපථ බිඳිනය වේ.
- (3) වායු පරිපථ බිඳිනය වේ.
- (4) නිය දඬුව වේ.

(2) SF₆ පරිපථ බිඳිනය වේ.

(5) වෙන්කරණය වේ.

f 41. ඉහත තනි රේබා රූප සටහනේ m B යනු,

- (1) පරිපථ බිඳිනය වේ.
- (2) නිය දඬුව වේ.

(3) පරිණාමකය වේ.

(4) විදුලි බුබුල වේ.

(5) පුතිරෝධකය වේ.

- (1) -30 V
- (2) -25 V
- (3) 2 V
- (4) 10 V
- (5) 30 V

43. පහත බූලිය පුකාශනයට බූලිය පුමේයය යෙදීමෙන් ලබා ගත හැකි සමතුලා පුකාශනය කුමක් ද?

 $f(x,y,z) = xyz + \overline{x}yz + \overline{y}\overline{z} + y\overline{z}$

- (1) xy + yz
- (2) $yz + \overline{y}\overline{z}$ (3) $x + \overline{z}$
- (4) $yz + \overline{z}$
- (5) $xyz + \overline{y}\overline{z}$

44. 1100 W තාපකයක් දිනපතා පැය 1 ක් ජලය රත් කිරීම සදහා යොදා ගැනේ. විදුලි බීල අඩු කිරීම සදහා සූර්ය පුකාශ මෝල්ටීයතා පද්ධතියක් ද ස්ථාපනය කර ඇත. සූර්ය බල ඒකකයෙන් දිනපතා සැපයෙන 100 W අඩු කලවිට මාසික (දින 30) ව්දුලි පරිභෝජනය කොපමණ ද?

- (1) 0.3 kW h
- (2) 3 kWh
- (3) 30 kWh
- (4) 33 kWh (5) 66 kWh

CREATING THE LATE LA CAP RESIDENCE SERVICE SERVICES

45. පේරණ මෝටරයක් සඳහා වන පිරිවිතර වගුව කුමක් ද?

(1)	an Co	1 φ
	ඇම්පිගර	1 A
	ඇම්පියර වෝල්ට්	230 V
	සංඛනාතය	50 Hz
	ජවය	0.5 kW
	මිනින්තුවක චාර	1200

(2) සංඛ්ෂාතය 50 Hz අනූපාතය 230 V/12 V ජවය 0.5 kW

(3) මෙරීල්ට් $1 - 24 \text{ V} \pm 1\%$ ධාරාව 0 - 10 A

වෝල්ට් 0 – 230 V AC ධාරාව 10 A සංඛ්‍යාතය 50, 60 Hz

(5) ජවය 5 W ආලෝක පුතිදානය 1000 ආයු කාලය 1000 h

- 46. අධි චෝල්ටීයතා ස්ථාපන සදහා භාවිත උපකරණ සහිත වරණය තෝරන්න.
 - (1) ${
 m SF}_6$ ධාරා පරිපථ බිඳිනය, කෙල් පරිපථ බිඳිනය සහ වායු පරිපථ බිඳිනය
 - (2) ක්ෂේතු ධාරා පරිපථ බිඳිනය, ටුාන්සිස්ටරය සහ ඩයෝඩය
 - (3) ධාරිතුකය, දෝලනේක්ෂය සහ වුංන්සිස්ටරය
 - (4) SF₆ ධාරා පරිපථ බිඳිනය, දෝලනේක්ෂය සහ ටුාන්සිස්ටරය
 - (5) තෙල් පරිපථ බිඳිනය, දෝලනේක්ෂය සහ වුංන්සිස්ටරය.
- 47. පහත දක්වා ඇති පරිපථය සම්බන්ධ පුකාශ සලකන්න. මෙම LDR හි පුතිරෝධය අඳුරේ දී $1~{
 m M}\Omega$ සහ හිරුඑළියේ දී $100~{
 m \Omega}$ වේ.

(4)

- A කාරකාත්මක වර්ධකය සංසන්දකයක් ලෙස කිුයා කරයි.
- B කාරකාත්මක වර්ධකය අපවර්තිත නොවන වර්ධකයක් ලෙස කිුයා කරයි.
- C LDR ය අඳුරේ තිබිය දී LED ය දැල්වේ.

නිවැරදි පුකාශය/පුකාශ සහිත වරණය කුමක් ද?

- (1) A පමණි.
- (2) C පමණි.
- (3) A සහ B පමණි.

- (4) A සහ C පමණි.
- (5) B සහ C පමණි.

LEARNING MONOR CONTINUES THE STREET

48. රූපයේ දක්වා ඇති ආකාරයට A සහ B සන්නායක දෙකක් හා R_1 සහ R_2 පුතිරෝධක දෙකක් සම්බන්ධ කර ඇත. R_1 සහ R_2 සඳහා ඇමුණුම් රැහැන් පුතිරෝධය ශුතා වූ පරිපූර්ණ සන්නායක ලෙස සලකන්න.

සන්නායකය	හරස් කැපුම	දිග	පුතිරෝධකතාව
A	2 a	1	ρ
В	a	2 /	ρ

පුතිරෝධකය	පුතිරෝධය
R_1	10 Ω
R_2	100 Ω

P සහ Q අතර සමස්ත පුතිරෝධය කුමක් ද?

(1)
$$\frac{\rho l}{a} + 110$$

(2)
$$\frac{2\rho l}{a} + 110$$

(3)
$$\frac{5\rho l}{2a} + 110$$

(4)
$$\frac{5\rho l}{2a} + 100$$

(5)
$$\frac{\rho l}{a} + 10$$

ප්‍රශ්න අංක 49 සහ 50 පහත ක්‍රියාවලිය මත පදනම් වේ.

වාහකයක් මගින් පහත දක්වා ඇති ආකාරයට දුවා චලනය කරනු ලබයි. දුවා වල පුමාණ හඳුනා ගැනීම සඳහා S_1 , S_2 සහ S_3 යන සංවේදක ස්ථාන ගත කර ඇත. සංවේදක හරහා දුවා ගමන් කරන විට ඒවායේ පුතිදානය තාර්කික '1' වේ.

49. ඉහත පෙන්වා ඇති දුවා තුනේ අනුපිළිවෙල සඳහා සංචේදක පුතිදාන වල නිවැරදි අනුපිළිවෙළ තෝරන්න.

 $oxed{50}$. දුවා වල වෙනත් අනුපිළිවෙළක් සඳහා S_1,S_2 හා S_3 හි පහත පුනිදාන සලකන්න.

නිවැරදි දුවා අනුපිළිවෙළ සහිත පිළිතුර තෝරත්න.

(5) (5)

* * *

ශී් ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம்

අ.පො.ස.(උ.පෙළ) විභාගය/க.பொ.த. (உயர் தர)ப் பரீட்சை- 2020 නව හා පැරණි නිර්දේශ/ புதிய / பழைய பாடத்திட்டம

විෂයය අංකය பாட இலக்கம்

16

විෂයය பாடம்

විදුලිය, ඉලෙක්ටොනික හා තොරතුරු තාක්ෂණවේදය

ලකුණු දීමේ පට්පාටිය/புள்ளி வழங்கும் திட்டம் I පතුය/பத்திரம் I

පුශ්න අංකය	පිළිතුරු අංකය	පුශ්න අංකය	පිළිතුරු අංකය	පුශ්න අංකය	පිළිතුරු අංකය	පුශ්න අංකය	පිළිතුරු අංකය	පුශ්න අංකය	පිළිතුරු අංකය
வினா இல.	ഖിത ட இல	வினா இல.	ഖി ടെ ∟ இல.	வினா இல.	ഖി ചെ இல.	வினா இல.	ഖിതഥ இல.	வினா இல.	ഖിതഥ இல.
01.	2	11.	22	21.	4	31.	5	41.	1
02.	2	12.	4	22.	1	32.	22	42.	4
03.	4	13.	44	23.	5	33.	55	43.	44
04.	1	14.	5	24.	2	34.	3	44.	All
05.	3	15.	2	25.	2	35.	2	45.	1
06.	5	16.	44	26.	11	36.	55	46.	11
07.	3	17.	3	27.	2	37.	3	47.	1
08.	1	18.	All	28.	44	38.	2	48.	3
09.	1	19.	1	29.	44	39.	2	49.	1
10.	2	20.	5	30.	3	40.	55	50.	2
101									

🗘 විශේෂ උපදෙස්/ඛ්රිපட அறிவுறுத்தல் :

එක් පිළිතුරකට/ஒரு சரியான விடைக்கு ලකුණු 01 බැගින්/புள்ளி வீதம்

1 × 50= 50 මුළු ලකුණු/மொத்தப் புள்ளிகள்

A කොටුයා - වනුගයක රවකා

සියලු ම පුන්නවලට පිළිතුරු **මෙම පතුයේ ම** සපයන්න. (එක් එක් පුන්නය සඳහා නියමිත ලකුණු පුමාණය **10** කි.) a sout office, of so districted among construct and districted

1. සැහැල්ලු වාහේ වලින් සාදන ලද අල්ලවන තමාංගක පෙනුමක් රූප සටහනේ දැක්වේ. X-X හරහා යන සිරස් හලය වටා අල්ලුව සමමිනික වේ. නොදක්වා ඇති මාන උපකල්පනය කරමින් සුදුසු පරිමාණයක් යොදා පුරම කෝණ සාජු පුක්ෂේපණ මූලධර්ම භාවිතා කොට පහත සදහන් පෙනුම අඳින්න. සියලු අදාළ මිනුම් දක්වන්න, ප්‍රශ්න වලට පිළිතුරු සැපයීම සඳහා 3 සහ 4 පිටුවල ඇති ප්‍රස්තර කඩදාසි භාවිත කරන්න. (සියලු මිනුම මිලිමීටරවලින් දක්වා ඇත.)

- (i) A දෙසින් පෙනෙන ඉදිරි පෙනුම
- (ii) B දෙසින් පෙනෙන පැති පෙනුම
- (iii) ararde

an can a rain an ann an Aireann an Airean 2. කොවීඩ්-19 වසංගත කාල සීමාව තුළ පාසැලක මාර්ගගත පන්ති පැවැත්වීම සඳහා නොරතුරු තාක්ෂණ 0000000000000 0489-0880 යටිතල පහසුකම් සංවර්ධනය කිරීමට ඔබට පැවරී ඇතැයි සිතන්න. ඒ සඳහා අවශනනා පහත දක්වා ඇත. 🕸 පාසැල් වෙබ් අඩවියට උඩුගත කිරීම සඳහා නියමිත වීඩියෝ පාඩම පටිගත කිරීමේ කාමරයක් 🔻 මාර්ගගත පන්ති තථා කාලව (realtime) පැවැත්වීම සඳහා ගුරු භවතුන්ට කාමරයක්. සිසුන්ට අන්තර්-කියාකාරී ලෙස පන්ති වලට සහභාගී වීමට හැකි විය යුකුය. 🔻 ඉගැන්වීම අංධාරක සකස් කිරීම සඳහා පරිගණක ස්ථානයක්, උදා. පවර් පොයින්ට් කදා (Power point) ඉදිරිපත් කිරීම 🍀 මාර්ගගක දන්න ගබඩා සහ මාර්ගගන ලෝබන පන්ති පැවැත්වෙන අතරතුරේ දී භාවිත කිරීමේ හැකියාව පාසැල් කළමණාකංරිත්වය විසින් තොරහුරු තෘක්ෂණ පහසුකම් සහිත කාමරයක් සැලසුම් කරන්නේ යැයි උපහල්පනය කරන්න. (a) කාමරය තුළ මේස පරිගණක (පුධාන මධාම සැකසුම් ඒකක-CPU, මොනිටරය, යතුරු පුවරුව හ මුසිකය) සහිත ස්ථාන ඇත. එම එක් එක් ස්ථාන සඳහා අවශා වන අමතර දෘඪාංග අයිකම දෙකක් සඳහන් කරන්න. විඩියෝ කැමරා, ජාල ගත කළහැකි කැමරා (10x2=20) මයිකුෆෝන්, Head Set/ ස්පීකර්, Head Set (ii) මාර්ගගත පන්ති නථා කාලව පැවැත්වීම හා පටිගත කිරීම සඳහා භාවිත කළ හැකි මෘදකාංගයක් නම් කරන්න. ★ දෘඪාංග සමඟ ලැබෙන මෘදුකාංග ★ පැකේජය සමඟ ලැබෙන මෘදුකාංග \star තුන්වන පාර්ශවයේ මෘදුකාංග (20x1=20)40 ඉහත. කාණ්ඩ, තුනෙන්, ඕනෑම, එකක ,උදාහරණයක්, සදහා ,ලකුණු ,ලබා ,දෙන්න....... (i) සිසුන්ට මාර්ගගත පන්ති සමග කථා කාලව සම්බන්ධවීමට අවශා අමතර දෘඪාංග දෙකක් නම් - කරන්න. Router, Modem /ADSL Modem /Wire/RSS Router/Dongle (Internet) (10x2=20)මයිකුෆෝන්, Head Set (ii) ඉහත (i) හි සඳහන් දෘඪාංග වලට අමතරව මාර්ගගත පන්ති සමග සම්බන්ධ වීම සඳහා සිසුන්ට අවශා වන එක් පහසුකමක් සඳහන් කරන්න. 30 (10x1=10)Internet සම්බන්ධතාවක් /Internet Connection. (c) ඉගෙනුම් කියාකාරකම්වල දී කණ්ඩායම් වසාපෘති වාර්තාවක් සිසුන්ගේ අන්තර් කියාකාරීත්වය ඇව්ව මෘර්ගගතව සකස් කිරීමට අවශාව ඇත්නම් ඒ සඳහා භාවිත කළ හැකි එක් මාර්ගගත පහසුකමක් යෝජනා කරන්න. වලාකුළු පරිගණක සංකල්පයේ යටිතල පහසුකම් භාවිතය (Google Class/Google Presentation / Google Doc) 10 ඉගෙනුම් කළමණාකරණ පද්ධතියක් මගින් (LMS) (10x1=10)(Ex : E- තක්ෂලාව,වෙබ් පාඨශාලා වැනි) (d) ගුරුවරයකු විසින් අමතර කියවීම් උපකරණ සිසුන් සමග බෙදා ගැනීමට අවශා බවට ඉල්ලීමක් කර ඇත. මෙම අරමුණ සඳහා ඔබ යෝජනා කරන කුම **දෙකක්** සඳහන් කරන්න. 20 වෙබ් පිටු PDF ලබා දීම (10x2=20)100 රූප (image) ආකාරයේ

ලංකා	විභාග දෙපාතර්මේන්තුව රභසා ලේඛනයකි.	
	$^{ m PN}$ ටුාන්සිස්ටරයක් සහිත පරිපථයක් පහත දැක්වේ. X යනු පුදානය හා Y යනු පුතිදානය වේ. මෙම න්සිස්ටරය සිලිකන් වලින් සාදා ඇති බව සහ $eta=50$ බව උපකල්පනය කරන්න $ R_c \cite{R_c} \cite{R_c}$	යමක් නිරුවේ නිසිවක් නොලියන්න පරිස්තකරරුන් සඳහා පරිකි.
	$\begin{array}{c c} V_X & R_B \\ X & WW \\ \hline 20 \text{ k}\Omega \end{array}$	
(a	$V_\chi\!=\!0\mathrm{V}$ නම්, ටුාන්සිස්ටරය කපාහැරුම් කලාපයේ පවතින බව පෙන්වන්න.	
	**	
	V _X = V _{RB} +V _{BE} මෙහිදී V _X = 0 හා V _{RB} ≥ 0 වේ.	
	ු මෙව්ට	
	V _{BE} ≃·0V·⊚833· 5	
	V _{BE} නැඹුරු වොල්ට්යතාව OV වන බැවින් ටුන්සිස්ටරය කැපී ගිය කලාපයේ	15
	කියාත්මක වෙයි.	
(b) ඉහත (a) හි තත්ත්වය සඳහා V_{γ} පුතිදාන චෝල්ටීයතාව සොයන්න. $f 5$	
	ඉහත (a) අනුව ටුාන්සිස්ටරය කැපී ගිය කලාපයේ පවතින බැවින් lc = 0 වෙයි.	
		15 \
		<u> </u>
(c) V_χ = $5~{ m V}$ නම්, ටුාන්සිස්ටරය සන්තෘප්ත කලාපයේ පවතින බව උපකල්පනය කරමින් I_g නිශ්චය කරන්න.	
	$V_{RB} = I_B R_B$ තා $V_{BE} = 0.7V$ (5)	

20

(d) ඉහත (c) තත්ත්වය සඳහා පුතිදාන චෝල්ටීයතාව $V_{_{V}}$ සොයන්න.	මෙම මිරුවේ කිසිවත් කොලියක්ත
ඉහතු (c) අනුව ටුාන්සිස්වරය සංතෘප්ත කලාපයේ පවතින අතර V _{CE} = 0.2V වේ.	దవిజిశానుగ్రాగ జంగా అడిటి.
300.101, 400.000, 00000000, 0000000000000000000	\wedge
චමනිසා V _Y = 0.2V (5)	
	/ 10 \
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Appropriate Approp
(e) ඉහත (c) හි තත්ත්වය සඳහා I_c හා I_g අගයන් භාවිතයෙන් ටුංත්සිස්ටරය සතා වශයෙන් ම සංතෘප්ත කලාපයේ බව පෙන්වන්න.	stopping and the stopping from the stopping of the stopping from the stopping of the stopping
සවහන: මෙහි $R_C=1~k\Omega$ විය යුතුය. නමුත් ඒය දී නොමැත. මෙහි I_C සදහා සමීකරණය ලියා ඇති විටද, සහ R_C සදහා අගයක් උපකල්පනය කර සාදා ඇති විටද,	
මුළු ලකුණු ලබා. දෙන්න	
$R_{ m C}=1~{ m k}\Omega$ විට පිළිතුර	
l _c = <u>V_{cc} - V_{ce}</u> 5	
R_{c} $I_{c} = 5 - 0.2 \text{ V}$	
1x10 ³	
Ic= 4:8mA: 5	
$I_B = 50 \times 0.215 \text{mA}$ = 1.75mA (5)	
ගනනයට අනුව βI _B > I _C වේ. මේ අනුව ටුාන්සිස්ටරය	$ / \setminus $
සතෳ වශයෙන්ම සංතෘප්ත කලාපයේ පවතියි.	25
(f) තාර්කික '0' සඳහා චෝල්ටීයතා පරාසය $0 V$ සිට $0.5 V$ සහ තාර්කික '1' සඳහා චෝල්ටීයතා පරාසය $4.5 V$ සිට $5 V$ නම් මෙම පරිපථය NOT ද්වාරයක් ලෙස යොදා ගත හැකි ද? කෙටියෙන් පැහැදිලි කරන්න.	/
$V_X = \mathbf{OV}$ (තාර්කික 0) වන විට $V_Y = 5V$ (තාර්කික1) වේ. \mathbf{G}	
	15
	13
ඉහත සම්බන්ධතාව අනුව ටුාන්නිස්ටරය NOT ද්වාරයක් ලෙස හැසිරෙන	
බැවින් NOT ද්වාරයක් ලෙස යොදාගත හැක .	100
	and a second sec

 පරීක්ෂණාගාර පාඩමක දී මිනුම් ආදර්ශනය කිරීම සඳහා ගුරුවරයකු විසින් පහත දැක්වෙන පරිපථය සකස් කරන ලදී.

థలు తీస్కరి జీప్రం ఆటుట్స్ట్రాల్లు ఆటుజ్ఞుకున్నలో ఉందు రెలిమ్

පිළිවෙළින් R_1 හා R_2 පුතිරෝධ $100~{\rm k}\Omega$ හා $1~{\rm k}\Omega$ වේ. L_1 හා L_2 පහන් හරහා පුතිරෝධය පිළිවෙළින් $12~\Omega$ හා $10~\Omega$ ලෙස මැන ඇත.

(a) පහත මාන ලබාගැනීම සඳහා අවශා උපකරණ හා ඒවාට උචිත පරාස සඳහන් කරන්න.

	උපකරණය	පරාසය
(i) $R_{_{\parallel}}$ නරහා වෝල්ටීයතාව	වෝල්ට් මිටරය	30Vdc/50 Vdc ව වැඩි DC පරාසයක්
${ m (ii)}\ R_2$ හරහා චෝල්ටීයතාව	වෝල්ට් .මිටරය	30Vdc/50.Vdc ට වැඩි
(iii) R _I තරතා ධාරාව	ඇම්පියර් මීටරය	25 mA /30 mA ට වැඩි පරාසයක්
(iv) R_2 තරතා ධාරාව	ඇම්පියර් මීටරය	25 mA /30 mA ට වැඩි පරාස්යක්

40

සටහන: පුායෝගිකව භාවිතා කළ හැකි ඕනෑම පරාසයකට මුළු ලකුණු දෙන්න. (05x8=40) (b) පහත සපයා ඇති ඉඩෙහි පරිපථය ඇඳ, (a) හි සඳහන් කර ඇති එක් එක් මිනුම් උපකරණය සම්බන්ධ කළහැකි ආකාරය දක්වන්න.

(05x4=20)

- (c) පාසැලක ශිෂා කණ්ඩායමක් සඳහා පහත උපාංග ලබා දෙන ලදී.
 - 230 V සිට 30 V අවකර පරිණාමකය
 - 230 V සිට 12 V අවකර පරිණාමකය
 - BJT වුංන්සිස්ටරයක්
 - ඩගයා්ඩ අටක්
 - එක් කාරකාත්මක වර්ධකයක් K
 - 1000 μF ධාරිතුකයක්
 - (i) පරිපථයේ 24 V සරල ධාරා (DC) සැපයුමක් වෙනුවට 230 V පුතාගවර්ත ධාරා (AC) වලින් 24 V සරල ධාරා (DC) සැපයුමක් ලබාදීමට පූර්ණ ධාරා සෘජුකරණ (rectifier) පරිපථයක් සකස් කිරීමට අවශ්‍ය උපාංග ලැයිස්තුගත කරන්න.

(a) දියෝඩ - 2 (b) දියෝඩ 4 - 230/30V පරිනාමකය - 230/30V පරිනාමකය - 1000ųF ධාරිතුකය - 1000ųF ධාරිත

(ii) සාජුකාරක පරිපථයේ පරිපථ සටහනක් අඳින්න.

(05x5=25)

米米

100

B කොටස

- 5. කොවිඩ්-19 යනු මෑතක දී මුළු ලෝකයටම බලපා ඇති වසංගතයකි. මෙම වසංගත කාලය තුළ වෛරස ආසාදනය පැතිරීම වැළැක්වීම සදහා යම් යම් තාක්ෂණික හා තාක්ෂණික නොවන පියවර ගෙන තිබේ.
 - (a) කොවිඩ්-19 පැතිරීම වැළැක්වීම සඳහා 'සමාජ දුරස්ථකරණය' කෙසේ භාවිත කළේ දැයි කෙටියෙන් පැහැදිලි කරන්න.

සංචරන සීමා කිරීම, පුද්ගල පරතරය 1m කට වඩා පවත්වා ගැනීම, ආසාදිතයන් හා ඇසුරුකළ අය නිරෝධානයට යොමු කිරීම, පොදු හා පෞද්ගලික පුවාහන මාධ්‍ය තුළ ආසන සංඛ්‍යාවෙන් අර්ධයකට වඩා අඩු මගීන් සංඛ්‍යාවක් පුවාහනය කිරීම වැනි පිළිගත හැකි කරුණු 2 ක් මතුකර දැක්වීම මගින් පැහැදිලි කිරීම.

(ලකුණු 50 යි.)

- (b) වෛරසය පැතිරීම වැළැක්වීම සඳහා භාවිත කළ තවත් තාක්ෂණික නොවන කුම **දෙකක්** කෙටියෙන් පැහැදිලි කරන්න.
 - ★ මුඛ ආවරණ පැළදීම
 - ★ සමාජය තුළ ගැවසී නිවසට ඇතුළුවීමට පෙර ඇඳුම් මාරු කිරීම.
 - කිව්සීමේදී වැලමිටෙන් මුඛය ආවරණය කිරීම.
 - ★ මුහුණ,නාසය හා ඇස් අතින් ඇල්ලීම හා පිසදැමීමෙන් වැළකීම.
 - ★ පාරිභෝජන භාණ්ඩ හැකිතරම් පෞද්ගලික පරිහරණයේ තබා ගැනීම.
 - එ වායු හුවමාරුවක් ඇති නොවන වායු සමනය සහිත කාමර තුළ පුද්ගලයන් සමූහ වශයෙන් නොගැවසීම.

වැනි පිළිගත හැකි කරුණු 2ක් කෙට්යෙන් පැහැදිලි කිරීම.

(ලකුණු 20 x2 = 40)

- (c) වෛරසයේ වනප්තිය පාලනය කිරීම සඳහා භාවිත කළ හැකි නව තාක්ෂණ යෙදවුම් තුනක් විස්තර කරන්න.
 - ★ විෂබීජ නාශක දියර භාවිතයෙන් නිරතුරුව දෑත් පිරිසිදු කර ගැනීම.
 - ★ පොදු ස්ථානවල ඇති ජල කරාම ස්වයංකීයකරණය.
 - සෞඛ්‍ය රකුෂිත හා විෂඛිජ නාශක දියර ඉසින සවිකල කුට්ර තුලින් ආයතන තුලට ඇතුළුවීමට සැලැස්වීම.
 - 🛨 රෝගී පුද්ගලයනට පහසුකම් සැපයීමට දුරස්ථ පාලක සහිත රොබෝ භාවිතය
 - ★ විෂබ්ජ නාශක කිරණ සහිත කුට් තුලින් ගමන් කිරීම සැලස්සීම.

වැනි පිළිගත හැකි කරුණු 3ක් කෙටියෙන් පැහැදිලි කිරීම.

(ලකුණු 20 x3 = 60)

6. ශ්‍රි ලංකාවේ මිශු බලශක්ති සැපයුමේ, පුනර්ජනනීය බල ශක්ති සැපයුම් සංරචකය වැඩි කිරීම සඳහා සූර්ය ප්‍රකාශ වෝල්ටීය බලාගාර (Solar PV plants) සංවර්ධනය කරනු ලැබේ. සූර්ය බලාගාරවල අඩු ධාරිතාවක් සහිත සූර්ය පැනෙල ජකක විශාල සංඛාහවක් එකිනෙක සම්බන්ධ කර ඇත. ප්‍රකාශ චෝල්ටීය මොඩියුලයක ප්‍රතිදාන චෝල්ටීයතාවය, ලැබෙන සූර්යාලෝක ප්‍රමාණය මත රඳා පවතී. මොඩියුලයක තාමික ජවයක් හා උපරිම ප්‍රතිදාන චෝල්ටීයතාවක් ඇත. අවශා චෝල්ටීයතාවය හෝ ධාරා ප්‍රතිදාන ලබා ගැනීම සඳහා මෙම ඒකක ශ්‍රේණිගතව හෝ සමාන්තරගතව සම්බන්ධ කළ හැක. සූර්ය මොඩියුල රාශියක ප්‍රතිදානය සරල ධාරා ප්‍රකාවේර්ත ධාරා බවට හරවන පරිවර්තකයකට යොමුකර ඉන්පසු පරිණාමකයක් මගින් අදාළ ජාලක චෝල්ටීයතාවයට පරිවර්තනය කෙරේ. (පහත දක්වා ඇති විස්තරාත්මක රූප සටහන බලත්න.)

(a) 50 kW සූර්ය පුකාශ චෝල්ටීයතා බලාගාරයක් සඳහා සූර්ය පැනල කොපමණ සංඛනාවක් යොදාගත යුතු යන්න ගණනය කරන්න.

(ලකුණු 30 යි.)

(b) සූර්ය පුකාශ චෝල්ටීයතා ඒකකයක පළල හා දිග පිළිවෙළින් 34" හා 52" යැයි උපකල්පනය කරන්න. මෙම බලාගාරය සඳහා අවශාවන මුළු ක්ෂේතුඵලය ගණනය කරන්න.

(ලකුණු 30 යි.)

(c) සරල ධාරා පුතාාාවර්ත ධාරා පරිවර්තකයට 500~V සරල ධාරා විහව අන්තරයක් අවශා වේ. දී ඇති පුකාශ චෝල්ටීයතා (PV) මොඩියුල මගින් අවශා වන සරල ධාරා චෝල්ටීයතාව ලබා ගැනීමට කුමයක් යෝජනා කරන්න.

පැනලයක වොල්ට්යතාව	=	50V		
500V ලබා ගැනීමට අවශා ශේුණිගත කෝෂ ගණන	=	<u>500V</u> 50V	=	10
මුළු ශුේණිගත කෝෂ කට්ටල සංඛපාව	=	250 10	=	25
සමාන්තර කට්ටල ගණන	=	25		

(ලකුණු 25 යි.)

(d) රාතී කාලයේ පුධාන ජාලකයේ විදුලිය නොමැති විට සූර්ය බලාගාරය මගින් විදුලිය සැපයීමට කුමයක් යෝජනා කරන්න.

දිවා කාලයේදී බැටරි පද්ධතියක් ආරෝපනය කරගෙන, රාතියේදී බැටරියෙන් ලබා ගන්නා විදුලිය අපවර්තයක් මගින් අවශා පුතාාවර්තන විදුලිය බවට පත්කර භාවිතය (ලකුණු 25 යි.)

- (e) සූර්ය පුකාශ චෝල්ටීයතා බලාගාර මගින් ශීු ලංකාවට ලැබෙන පුයෝජන **දෙකක්** විස්තර කරන්න.
 - ★ තාප හා ඩ්සල් බලාගාර සඳහා අවශ්‍ය ඉන්ධන වෙනුවෙන් වැය වන විදේශ විනිමය ඉතිරි කරගත හැකිවීම
 - ★ ඩිසල් හා තාප බලාගාර වලින් පිටවන වායු පරිසරය දුෂණය කිරීම, මෙන් පරිසර හානියක් සුර්ෳය පැනල මගින් ඇති නොකරයි.
 - ★ චීකකයක් සඳහා නිෂ්පාදන පිරිවැය අවම වීම.
 - නඩත්තුව පහසු වීම
 - ★ බිද වැටුම් අවම වීම.
 වැනි පිළිගත හැකි පිළිතුරු 2ක් සඳහා

(ලකුණු 20 x 2 = 40)

150

7. ප්ලාස්ටික් අප දුවා උත්පාදනය සහ අනාරක්ෂිත බැහැර කිරීම ශ්‍රී ලංකාවේ දැවෙන ප්‍රශ්නයක් බවට පත්ව ඇත. කෑම පාර්සල් එතීම සඳහා අප ආරක්ෂාකාරී ප්ලාස්ටික් භාවිත කළ ද පොලිකාබනේට් සංයෝග සහිත එම දුවා ද නියාමනයක් රහිත බැහැර ස්ථාන වල දී හානිදායක රසායනික දුවා සමග බත්ධනය වීමට ඉඩ ඇත. එයින් නිපදවෙන දියර අපදුවා හා ක්ෂුදු ප්ලාස්ටික්, පෘෂ්ඨිය හා භුගත ජල නිධි ද සාමුදික පරිසරය ද දූෂණය කිරීමට ඉඩ ඇත. මෙම අපවිතු දුවා මිනිස් හා සත්ව ආහාර දාම කුලට ඇතුල් විය හැකිය.

1988 වර්ෂයේ ප්ලාස්ටික් කර්මාන්ත සමාජය විසින් සකස් කරන ලද වර්ගීකරණ පද්ධතිය පහත රූපයේ දැක්වේ.

ප්ලාස්ටික් මත ඇති පුතිචකීුකරණ සංකේත කුමක් අර්ථවත් කරනුයේ ද?

PET, PETE

(Polyethylene Terephthalate)

- සිසිල් බිම, ජලය සහ සලාද සැරපිලි බෝහල්.
 රටකජු බවර නැවරුම, ජැම් භාජන
- ශීතල හෝ උණුසුම් පානයත් ගබඩා කිරීමට
 සුදුසු වේ. උෂ්ණ පානයන් සඳහා යෝගය නොවේ

(Polypropylene)

නැවස තෘවිත ක්ෂූදු තරංග උචාරණ, මූපතැන්ගෙයි උපකරණ යෝගව ඇසුරුම, ඉවත ගොස් බැඟැරකළ හැකි ක්ෂුදු තරංග ඇපුරුම, බැහැරකළ හැකි කේෂ්ප, පිහන්

HDPE

(High-density Polyethylene)

 ජලනල, කිරි, යුෂ හන ජල බෝකල්, සිල්ලර වෙළඳසැල් කවර, සමහර හිස් හේදුම් කාරක, බෝකල්...

(Polystyrene)

බින්නර ඇසුරුම්, රටකජු ඇසුරුම්, බැහැරකළ හැකි කෝප්ප, පිඟන්, හැටි, හැඳි ගැරුප්පු, පිහි, බැහැරකළ හැකි ඉවත ගෙන යන ඇසුරුම්, ආහාර ගබඩා කිරීම සඳහා ඇසුරුම්

PVC

(Polyvinyl Chloride)

ආයාර ඇසුරුම් කිරීමට භාවිත නොකෙරේ.
 නළ, වසර්, ගෘහ භාණ්ඩ, රෙදි, පෙල්ලම් ඔඩු ...

Other

(Often Polycarbonate or ABS)

අවකාශයන්!

 බීම බෝහල්, ළඳුරු කිරී බෝහල්, සංයුක්ත තැටී. බිඳිය නොහැකි වීදුරු, කාච, අවි කණ්නාවී, මාෂයීය කණ්නාඩි සහ මෝටර් රථ පුධාන පහත්, ආරක්ෂක පළිග, උපකරණ පුවරු

LDPE

(Low-density Polyethylene)

 ශීතකල ආකාර මළු, තෙරපිය හැකි බෝහල් උදා, මීපැණි, අඩ, ශක්තිමත් බැඳුම් සතික අපවරණ, සුනමා ඇසුරුම් මූඩි...

http://nowsaveouplanet.blogspot.com/2015/07/what-types-of-plastics-can-be-recycled.html

ඒ ඒ වර්ගය සඳහා වූ පුතිචකිකරණ අනුපාත වැඩිවන අංක සමඟ අඩුවේ. භාවිතය, එක් රැස්කිරීම, තාක්ෂණ කුමය හා එක් එක් වර්ගය සඳහා සැකසුම් වියදම මත මෙය රඳා පවතී. පුතිචකිකරණ එලය වෙනත් නිමි නිෂ්පාදනයක අමු දුවා ලෙස භාවිත කළ යුතුය. සංවර්ධිත ලෝකයේ සෑම වර්ගයක් සදහා ම පුතිචකිකරණ පුතිශතය 20-40% අතර වේ. කුඩා පුමාණයක් බල ශක්ති නිෂ්පාදනය සඳහා පුලුස්සනු ලබයි. බොහොමයක් නියාමනයකින් තොර බිම් ගොඩ කිරීම්, කසල ගොඩවල් හෝ මුහුදට බැහැර වෙයි.

(i) ඉහත රූපයේ දැක්වෙන වර්ගීකරණය පදනම් කරගෙන ඔබගේ පළාත් පාලන ආයතන (පුාදේශීය සභා, නගර සභා හෝ මහ නගර සභා) පුදේශයේ උත්පාදනය වන විවිධ කසළ වර්ගීකරණය කරන්න.

සම්පුදායික කසළ වර්ගීකරණයට වඩා පුතිචකීයකරණය කිරීම සඳහා ප්ලාස්ටික් වර්ග කිරීමේදී දුවෘත වර්ගය අනුව වෙන්කිරීම හා වෙන්කොට රැස්කර ගැනීම,මේ සඳහා ප්ලාස්ටික් නිෂ්පාදන වල සඳහන් අංකය පදනම් කරගනිමින් වෙන් කිරීම. අංකය හඳුනාගත නොහැකි ප්ලාස්ටික් වෙනමම රැස් කිරීම සැලැස්වීම, යන පැහැදිලි සඳහා

ඒ ඒ කසල වර්ග වලට උදාහරණ දී ඇති විටද මුළු ලකුණු ලබා දෙන්න.

(ලකුණු 30 යි.)

- (ii) විවිධ වර්ගයේ අපදුවා හැසිරව්ය යුතු ආකාරය පිළිබඳව ඔබගේ පළාත් පාලන ආයතනයට යෝජනා ඉදිරිපත් කරන්න. ඒ ඒ යෝජනාව කි්යාත්මක කිරීම සඳහා ප්‍රජාවට දැරීමට සිදුවිය හැකි පිරිවැය තත්ත්ව හඳුනාගන්න.
 - ඉවත ලන ආහාර, එළවළු, පළතුරු ආදිය ගෘහාශිතව කොම්පොස්ට් නිෂ්පාදනය සඳහා පුජාවට පහසුම් ලබාදීමට පලාත් පාලන ආයතනය කටයුතු කිරීම.
 - ★ කඩදාසි හා කාඩිබෝඩි වෙන්කර කඩදාසි නිෂ්පාදන ආයතන වෙත යැවීමට කටයුතු සැලැස්වීම.

- ඒලාස්ට්ක් වෙන් වෙන්ව වර්ගකර රැස් කිරීම හා සෝදා පිරිසිදු කර පුතිචකීය කරණය කිරීමේ අමුදුවන නිෂ්පාදන කර්මාන්තයක් ආරම්භ කිරීම.
- ★ වෙළඳ පොලවලින් බැහැර කෙරෙන එළවළු, පළතුරු හා එවැනි කසල ආයතනය මගින් කොම්පෝස්ට් නිෂ්පාදනයට යොදා ගැනීම.

එවැනි පිළිගත හැකි යෝජනා 3 ක් ද එක් එක් යෝජනාවේදී පුජාවට අත්වන ආදායම් හෝ පිරිවැය පිළිබඳ විස්තර කිරීම

(ලකුණු 20 x 3 = 60)

- (iii) සැලකිය යුතු මට්ටමකින් ප්ලාස්ටික් නොවන විකල්ප දුවා හාවිතයට හා ප්ලාස්ටික් භාවිතය අවම කිරීමට ඔබේ පුජාව පෙළඹවිය හැකි උපකුම තුනක් සාකච්ඡා කරන්න.
 - # ස්වභාවික අමුදවස වලින් තැනු ගමන් මළු හැ කඩදාසි අසුරණ පුවර්ධනයට ඒවා ආකර්ශනීය ලෙස හා කල්පවතින ලෙෂ නිපදවීම් තාකෂණයන් සුළු පිරිවැය නිෂ්පාදකයින්ට ලබා දීම.
 - ★ ප්ලාස්ටික් භාවිතයේ හානිකර තත්ත්ව හා අවාසි පිළිබඳව පාසල් මට්ටමින් තරඟ පැවැත්වීම මගින් දැනුවත් කිරීම.
 - * අපතේ දමන ප්ලාස්ටික් දුවා රැස්කරමින් ඒවායේ වට්නාකමට සර්ලන විකල්ප දුවායෙන් සෑදී භාණ්ඩ පුජාවට ලබාදීම වැනි යෝජනා 3 ක් සඳහා

(ලකුණු 20 x 3 = 60)

150

C කොටස

8. (a) පුදාන තුනක් හා පුතිදාන එකක් සහිත සංයෝජක තාර්කික පරිපථයක් (combinational logic circuit) පහත දැක් වේ.

(i) පරිපථයේ පුතිදානය f සඳහා බූලිය පුකාශනය ලබා ගන්න.

(ii) අදාළ පුතාසේෂ නියම (axioms) හා පුමේය භාවිතයෙන්, ඉහත (i) හි ලබා ගන්නා ලද බුලිය පුකානෙය $\int = z$ ලෙස සුළු කළ හැකි බව පෙන්වන්න.

$$f = \bar{z} (\bar{x} + x)$$
 (5)

(ලකුණු 45 යි.)

(iii) මෙම පරිපථය සඳහා සතාාතා වගුව වනුත්පත්ත කරන්න.

Х	Υ	Z	f
0	0	0	1
0	0	1	Ō
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

💠 නිවැරදි පේලියක් සඳහා ලකුණු 2යි,

(ලකුණු 2 x 8 = 16)

- (iv) ඉහත පරිපථය භාවිත කර 0 හා 7 අතර ඉරට්ටේ සංඛxා සෙවිය හැකි දැයි කෙටියෙන් පැහැදිලි කරන්න.
 - (0) 2,4,6 යන ඉරට්ටේ සංඛ ${
 m m}$ සඳහා පුතිදානය ${
 m f}=1$ වෙයි.

එමෙන්ම අනෙකුත් ඔත්තේ සංඛන සඳහා පුතිදානය f=0 වෙයි. f 5

මේ අනුව f=1 අවස්ථා සැලකීමෙන් ඉරට්ටේ සංඛත සොයා ගත හැක.

(b) (i) NAND ද්වාර භාවිතයෙන් SR පිළිපොළක (flip-flop) පරිපථයක් අඳින්න.

(ii) ධන-කෙළවර පූරන D (positive-edge triggered) පිළිපොළක් සහ සෘණ-කෙළවර පූරණ T (negative-edge triggered) පිළිපොළක් සහිත සරල අනුකුමික තාර්කික පරිපථයක් පහත දක්වා ඇත. පිළිපොළ දෙකේ ම ආරම්භක අවස්ථා '0' නම්, ආදාන සංඥා A සහ ඝටික (clock signals) සංඥා 'CLK' සඳහා B හා C සංඥා අඳින්න.

(ලකුණු 40යි.)

150

9. කොවිඩ්-19 වසංගතය අතරතුර මාර්ගගත ඉගැන්වීම සඳහා පහසුකම් සැලසීමට පහත වෙබ් අතුරු මුහුණත සංවර්ධනය කර ඇත. 12 වන ශ්ලේණිය (A) හා 13 වන ශ්ලේණිය (B) පිමි (tab) හරහා තොරතුරු ලබා ගත හැකිය.

(a) ඉහත වෙබ් අතුරු මුහුණන සංවර්ධනය සඳහා HTML Tag මගින් කුමලේඛයක් (Program) ලියන්න.

සටහන: වෙනත් පායෝගික පිළිතුරු සදහාද ලකුණු දෙන්න

(ලකුණු 2 x 25 = 50)

- (b) PDF පාඩම් හා වීඩියෝ දේශන සහිත වෙනම වෙබ් පිටුවක් ඒ ඒ ශේණි සඳහා සංවර්ධනය කර ඇත.
 - (i) 12 ශේණියේ වෙනම පිටුවක් සඳහා පිරිසැලැස්මට (layout) කටු සටහනක් අඳින්න.

ඉහත උදාහරණයේ ආකාරයට ඕනෑම සැලැස්මක් නිර්මාණාත්මකව ඇඳිය හැක. මෙහි පහත දැක්වෙන
විශේෂ අංක A,B,C,D, අන්තර්ගත විය යුතු අතර ඒවායෙහි නිවැරදි බව මත අදාල ලකුණු පුදානය කරන්න.

- A- පිටුවේ Title පුදර්ශණය කිරීම.
- B- විඩියෝ ධාවකයන් ඇතුලත් කිරීම.
- C- Play, Pause, Stop, Rewind වැනි පාලක condralt කිහිපයක් සහිත.
- D- Text පුදාර්ශණය සඳහා pdf රාමුවක් හෝ පුදේඹවවත් නම්කර තිබ්ම
- E- පුධාන පිටුවට (Home Page) මාරුවීම සඳහා පුරාකන් Link යොදා තිබ්ම
- අවශා පාඩම හෝ විඩියෝ යොදා ගැනීමට (search) පහසුකම් සලකා තිබ්ම

(ලකුණු 05 x5 = 25)

(ii) 12 ශේණිය සඳහා වෙබ් පිටුවක් සංවර්ධනය කිරීමට HTML Tag සහිත කුමලේඛයක් ලියන්න.

සටහන: වෙනත් පායෝගික විකල්ප සදහාද මුළු ලකුණු දෙන්න

(ලකුණු 05 x4 = 20)

- (c) ශිෂපයින්ගේ පුශ්න හා පුතිපෝෂණය ලබා ගැනීම සදහා මාර්ගගත ආකෘතියක් (online form) යෝජනා කර ඇත.
 - (i) මාර්ගගත ආකෘතියේ පිරිසැලැස්ම සඳහා කටු සටහනක් අඳින්න.

🌣 සටහන

ඉහත උදාහරණයේ ආකාරයට ඕනෑම සැලැස්මක් නිර්මාණාත්මකව ඇඳිය හැක. මෙහි පහත දැක්වෙන විශේෂ අංක A,B,C,D, අන්තර්ගත විය යුතු අතර ඒවායෙහි නිවැරදි බව මත අදාල ලකුණු පුදානය කරන්න.

- A පිටුවේ Title පුදර්ශණය කිරීම.
- B පුශ්ණ හා අදහස් ඇතුල් කිරීම සඳහා "Inbox" ඇතුලත් කිරීම.
- C- Text පුදර්ශණය සඳහා pdf රාමුවක් හෝ පුදේශයක් නම්කර තිබ්ම
- D පුධාන පිටුවට (Home Page) මාරුවීම සඳහා පුරුකක් Link යොදා තිබිම
- අවශා පාඩම හෝ විඩියෝ යොදා ගැනීමට (search) පහසුකම් සලකා තිම්ම

(ලකුණු 05 x4 = 20)

- (ii) මාර්ගගත ආකෘතිය සඳහා එක් විකල්පයක් යෝජනා කරන්න.
 - ඉගෙනුම් කළමනාකරණ පද්ධති භාවිතය (LMS)
 - මාර්ගගත පන්තියේදීම සාකච්ජා කිරීම.
 - වෙනත් ආකාර Whatsapp, Viber

ඕනෑම එකක් සදහා ලකුණු ලබා දෙන්න.

(ලකුණු 10 x1 =10)

(iii) මාර්ගගත ආකෘතිය ඔබගේ වෙබ් පිටුවට සම්බන්ධ කරන ආකාරය පැහැදිලි කරන්න. HTML කුමලේබයේ අදාළ කොටස ලියන්න. (අදාළ කොටස පමණක්)

(5)

 12 වන ශේණය (A)

💠 ඉහත කේතය (tag-< HERF>)භාවිතය.

(ලකුණු 25)

150

- 10. (a) පුතිරෝධකයක් ප්‍රත්‍යාවර්ත ධාරා ප්‍රභවයකට සම්බන්ධ කල විට සක්‍රීය ජව උත්සර්ජනය වන නමුත් පරිපූර්ණ ධාරිතුකයක් හෝ පරිපූර්ණ ප්‍රේරකයක් ප්‍රතාාවර්ත ධාරා ප්‍රභවයකට සම්බන්ධ කිරීමේ දී සක්‍රීය ජව උත්සර්ජනයක් සිදු නොකරයි.
 - (i) පුතිරෝධකයක්, පරිපූර්ණ පුේරකයක් සහ පරිපූර්ණ ධාරිතුකයක් වෙන වෙනම පුතාභවර්ත ධාරා සැපයුමකට සම්බන්ධ කල විට එම එක් එක් උපාංගය හරහා සැපයුම් චෝල්ටීයතාව සහ ධාරාව දැක්වෙන දෛශික (Phasor diagram) සටහන අඳින්න.

(ලකුණු 25)

(ii) පුතාහාවර්ත ධාරා සැපයුමකට සම්බන්ධ කර ඇති පහත රූපයේ දැක්වෙන පුතිරෝධකය (R) සහ පරිපූර්ණ ජේරකය (L) සලකන්න. දෛශික සටහන ඇඳ සැපයුම් චෝල්ටීයතාව (V) සහ ධාරාව (I) දක්වන්න.

(iii) ඉහත (ii) හි සඳහන් පරිපථයේ සකීය ජවය සහ පුතිකිුයක ජව උත්සර්ජනය සඳහා පුකාශන ලියා දක්වන්න.

සකිුය ජවය

පුතිකුියක ජවය

 $P = Vlcos \Theta$

p =Vlsin Θ

(ලකුණු 05 x2 =10)

(iv) සකුීය ජවය සහ පුතිකිුයක ජවය මැනීමේ ඒකක මොනවා ද?

සකිුය ජවය

- වොට් W

පුතිකියක ජවය - VAR

(ලකුණු 05 x2 =10)

(b) පහත රූපයේ පරිදි පේරක විබැරක් (පරිපූර්ණ නොවන) පුතාහවර්ත ධාරා සැපයුමකට සම්බන්ධ කර ඇත.

(i) ලෛශික සටහන අඳින්න.

(ලකුණු 20)

(ii) ජව සාධකය අර්ථ දක්වන්න.

ජව සාදකය යනු ජවය සහ දෘශා ජවය අතර අනුපාතයයි. මෙම අගය සතා ජවය හා දෘශා ජවය අතර කෝණයේ කොස් අගය මගින් ද (Cos Θ) නිරූපනය කරයි.

(ලකුණු 20)

(iii) ජව සාධකය වර්ධනය කල හැකි ආකාරය පැහැදිලි කරන්න.

සතෳ ජවය හා දෘශෳ ජවය අතර අනුපාතය 1 සමාන කරගැනීමෙන් ($Cos\Theta=1$) ජව සාදකය දියුණු කළ හැක. මේ සඳහා පරිපථයට සුදුසු අගය සහිත ධාර්තුක යෙදවිය හැක.

(ලකුණු 20)

(iv) ජව සාධකය දියුණු කිරීම දක්වා වර්ධනය කිරීමේ පුධාන වාසිය කුමක් ද? (උදා: 1)

ජවයදකය දියුණු කිරීමෙන් පුතිකියක ජවය වශයෙන් වැය වන ශක්තිය ඉවත් කළ හැක. මෙවිට පද්ධතියෙන් වැය වන ශක්තිය අඩුවන බැවින් විදුලි බිල අඩුවෙයි.

(ලකුණු 20)
