Evaluation & Validation

Credibility: Evaluating what has been learned

How predictive is a learned model?

- How can we evaluate a model
 - Test the model
 - Statistical tests
- Considerations in evaluating a Model
 - How was the model created, contributing factors
 - Amount of Data
 - "Quality" of data
 - Labeled data is usually limited
 - How will model perform on unseen data?
 - Training/Validation/Test Data sets
 - Splitting Data

Evaluation

- Significance tests Statistical reliability of estimated differences in performance
- Performance measures
 - Number of correct classifications
 - Accuracy of probability estimates
 - Error in numeric predictions
- Different costs assigned to different types of errors

Training and Testing

- Error rate performance measure for classification
 - Success vs. Error
 - Instance's class is predicted correctly vs. instance's class is predicted incorrectly
 - Error rate
 - proportion of errors made over the whole set of instances
- Re-substitution error
 - error rate obtained from the training data

Training and Testing

- Test set
 - set of independent instances that have not been used in formation of classifier in any way
 - Assumption
 - both training data and test data are representative samples of the underlying problem
- Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town in completely new town, test it on data from B

Parameter tuning

- Test data should NOT be used in any way to create the classifier!
- Some learning schemes operate in two stages
 - Build the basic model
 - Optimize parameters
- Test data can NOT be used for parameter tuning!
- Three sets
 - training data, validation data, and test data

Evaluation

- After evaluation is complete all the data can be used to build the final classifier
- If we have lots of data take a large sample and use for training – and another independent large sample for training
 - provided both samples are representative
- The larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

Evaluation

- In many situations the training data must be classified manually – and so must the test data
- How to make most of limited data set?
- Holdout procedure
 - splitting original data into training and test set
- We want both-large training and a large test set

Holdout Estimation Method

- What if the amount of data is limited?
- Reserve a certain amount for testing and uses the remainder for training
 - 1/3 for testing, the rest for training
- The samples might not be representative
 - Class might be missing in the test data
- Stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

Repeated Holdout Method

- More reliable estimates made by repeating the process with different sub-samples
- In each iteration
 - a certain proportion is randomly selected for training (stratified)
- The error rates on the different iterations are averaged to form an overall error rate
- Still not optimum: the different test set overlap
- Can we prevent overlapping?

Cross-validation

- Avoids overlapping test sets
- K-fold cross-validation:
 - First step
 - · data is split into k subsets of equal size
 - Second step
 - each subset in turn is used for testing and the remainder for training
- Subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to form an overall error estimate

Cross-validation

- Standard, very popular method for evaluation
 - stratified ten-fold cross-validation
- ▶ Why 10?
 - Extensive experiments
 - Some theoretical evidence
- Stratification reduces the estimate's variance
- Repeated stratified cross-validation
 - Ten-fold cross-validation is repeated ten times and results are averaged

Example of a 4-fold Cross-validation

Leave-one-out Method

- Makes maximum use of the data
 - The number of folds = number of training instances
 - I.e., a classifier has to be built n times
 - n is the number of training instances
- Judged by the correctness of the remaining instance 0 or 1
- No random sub-sampling, no repeating
- Very computationally expensive!

The Bootstrap Method

- CV uses sampling WITHOUT replacement
 - The same instance, once selected, can NOT be selected again for a particular training/test set
- Estimation method that uses sampling WITH replacement
 - A data set of n instances is sampled n times with replacement to form a new data set of n instances
 - This data is used as the training set
 - The instances from the original data set that do not occur in the new training set are used for testing

The 0.632 Bootstrap

- Where does the name come from?
 - A particular instance has a probability of 1-1/n of not being picked
 - Thus its probability of ending up in the test data is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 Training data will contain approximately 63.2% of the instances

Estimating Error With The Bootstrap

- A very pessimistic error estimate on the test data
- ▶ It contains only ~63% of the instances
- Combined with the re-substitution error
 - The re-substitution error gets less weight than the error on the test data
- Process is repeated several times
 - with different replacement samples
 - the results averaged

Comparing the Learning Methods

- Which one of learning schemes performs better?
- Domain dependent!
- Compare 10-fold CV estimates?
- Problem variance in estimate
 - Can be reduced using repeated CV
- Are the results reliable?

Significance Tests

- How confident we can be that there really is a difference
- Example: 10 times 10-fold CV
 - Sample from a distribution of a CV experiment
 - Use different random partitions of the data set
 - Treat calculated error rates as different independent samples from a probability distribution
 - Are the two means of the 10 CV estimates significantly different?

The T-test

- Student's t-test
 - Are the means of two samples significantly different?
- The individual samples are taken from the set of all possible cross-validation estimates
- We can use a paired t-test because the individual samples are paired
- Student's distribution with k-1 degrees of freedom
 - Use table of confidence intervals for Student distribution (not normal distribution)

Interpreting Results

- All cross-validation estimates are based on the same data set
- The test only tells if a complete k-fold CV for this data set would show a difference
- Complete k-fold CV generates all possible partitions of the data into k folds and averages the results
- A different data set sample for each of the k-fold CV estimates used in the test to judge performance across different training sets would be ideal!

Calculating the cost

- There many other types of costs!
 - Cost of collecting training data
 - Cost of cleaning data
 - Cost of classification errors
- Different types of classification errors incur different costs
 - Examples:
 - Loan decisions
 - Oil–slick detection
 - Fault diagnosis
 - Promotional mailing
 - Cancerous Cells

Counting the Cost

The confusion matrix:

Predicted Class (expectation)						
		Yes	No			
Actual Class (observation)	Yes	True Positive (Correct Result)	False Negative (Missing Result)			
	No	False Positive (Unexpected Result)	True Negative (correct absence of Result)			

Counting the Cost

- Evaluation methods:
 - Overall Success Rate == (TP + TN) / (TP+TN+FP+FN)
 - Number of correct classifications divided by the total number of classifications
 - Error rate = 1 overall success rate
 - True Positive Rate (or recall or sensitivity) = TP /(TP + FN)
 - True positives, divided by the total number of positives
 - False Positive Rate = FP /(FP + TN) .
 - False Positives divided by the total number of negatives
 - Precision = TP / (TP+FP) == Positive predictive value
 - F-measure = 2 * ((precision * recall)/(precision + recall))
 - combines precision and recall using harmonic mean.

Lift charts

- Costs are rarely known
- Decisions made by comparing possible scenarios
- Example Promotional mail-out
 - Situation 1: classifier predicts that 0.1% of all households will respond
 - Situation 2: classifier predicts that 0.4% of the 10000 most promising households will respond
- A lift chart allows for a visual comparison

Generating a lift chart

Instances are sorted by their predicted probability of being a true positive:

Rank	Predicted Probability	Actual Class
1	0.95	Yes
2	0.93	Yes
3	0.93	No
4	0.88	Yes

In lift chart, x axis is sample size and y axis is number of true positives

Lift Chart Example

Cumulative Gains Chart

ROC curves

Similar to lift charts

- "ROC" stands for "receiver operation characteristic"
- Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel
- ROC curves depicts the performance of a classifiers without regard to class distribution or error costs
- ROC curves vs. lift chart:
 - y axis shows percentage of true positives in sample (rather than absolute number)
 - x axis shows percentage of false positives in sample (rather than sample size)

A sample ROC curve

ROC curves and Cross-validation

- Simple method of getting a ROC curve using cross-validation:
 - Collect probabilities for instances in test folds
 - Sort instances according to probabilities
- Method implemented in WEKA
 - Generates an ROC curve for each fold and averages them

ROC curves for two schemes

Recall-Precision Curves

- Web search engine example:
- Percentage of retrieved documents that are relevant: Precision=TP/TP+FP
- Percentage of relevant documents that are returned: Recall =TP/TP+FN
- Precision/recall curves have hyperbolic shape

Summary of Measures

	Domain	Plot	Explanation
Lift Chart	Marketing	TP vs.	# true positives
		Subset Size	TP(TP+FP)/(TP+FP +TN+FN)
ROC Curve	Communications	TP Rate vs.	tp = (TP/(TP+RN)) *100
		FP Rate	fp = (FP/(FP+TN))*100
Recall-Precision Curve	Information Retrieval	Recall vs.	Recall = TP Rate
		Precision	(TP/(TP+FP))*100

Single Measure to Characterize Performance

- Two that are used in information retrieval are:
 - Average recall
 - 3-point average recall
 - takes the average precision at recall values of 20%, 50% and 80%
 - 11-point average recall:
 - takes the average precision at recall values of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%
 - F-Measure = (2 x recall x precision)/(recall+precision)
- Success Rate
 - Success Rate: TP+TN/(TP+FP+TN+FN)

Evaluating Numeric Prediction

- Strategies used to evaluate are the same
 - independent test set, cross-validation, significance tests, etc.
- How they are evaluated will be different
 - errors are not present/absent they come in different sizes

- Actual target values: a1, a2,..., an
- Predicted target values: p1, p2,..., pn

Numeric Prediction Performance Measures

- Mean-squared error $\frac{(p_1-a_1)^2+\cdots+(p_n-a_n)^2}{n}$
- The root mean-squared error

$$\sqrt{\frac{(p_1-a_1)^2+...+(p_n-a_n)^2}{n}}$$

The mean absolute error

$$|p_1 - a_1| + ... + |p_n - a_n|$$

n

• is less sensitive to outliers then mean-squared error

Numeric Prediction Performance Measures

- Sometimes relative error values are more appropriate
 - Relative Squared Error
 - Root Relative Squared Error
 - Relative absolute error
- Correlation Coefficients
 - Measures statistical coefficients between actual and predicted values.

Evaluation in Scikit

http://scikitlearn.org/stable/modules/model_evaluation.html

Bias-Variance Trade-off

Bias and Variance

- No "best classifier" in general
 - Necessity for exploring a variety of methods
- How to evaluate if the learning algorithm "matches" the classification problem
- Bias: measures the quality of the match
 - High-bias implies poor match
 - Error rate of a particular learning algorithm
- Variance: measures the specificity of the match
 - High-variance implies a weak match
 - Comes from a particular data set used
- Bias and variance are not independent of each other

Bias Variance Dilemma

- Procedures with increased flexibility to adapt to training data have lower bias, but higher variance
 - Large number of parameters
 - Fits well and have low bias, but high variance
- Inflexible procedures have higher bias, but lower variance
 - Fewer number of parameters
 - May not fit well to data: have high bias, but low variance
- A large amount of training data generally helps improve performance of estimation if the model is sufficiently general to represent the target function

Model Loss (Error)

Squared loss of model on test case i:

$$(Learn(x_i,D) - Truth(x_i))^2$$

Expected prediction error:

$$\langle (Learn(x,D) - Truth(x))^2 \rangle_D$$

Bias/Variance Decomposition

$$\langle (L(x,D) - T(x))^2 \rangle_D = Noise^2 + Bias^2 + Variance$$

Noise² = lower bound on performance $Bias^{2} = \text{(expected error due to model mismatch)}^{2}$ Variance = variation due to train sample and randomization

Bias

Low bias

- linear regression applied to linear data
- 2nd degree polynomial applied to quadratic data
- ANN with many hidden units trained to completion

High bias

- constant function
- linear regression applied to non-linear data
- ANN with few hidden units applied to nonlinear data

Variance

- Low variance
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 - mean
 - median
- High variance
 - high degree polynomial
 - ANN with many hidden units trained to completion

Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set

Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- Often:
 - low bias => high variance
 - low variance => high bias
- Tradeoff:
 - bias² vs. variance

Bias-Variance Trade-off

- Model too simple: does not fit the data well
 - A biased soluJon
- Model too complex: small changes to the data, soluJ on changes a lot
 - A high-variance soluJon

Complexity of the model

Typically the bias is a decreasing function of the complexity

while variance is an increasing function of the complexity

Bias/Variance Tradeoff

Reduce Variance Without Increasing Bias

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

- Average models to reduce model variance
- One problem:
 - only one train set
 - where do multiple models come from?

Bias Variance Dilemma

- Bias/Variance considerations recommend that we gather as much prior information about the problem as possible to find a best match for the classifier, and as large a dataset as possible to reduce the variance
- We can virtually never get zero bias and zero variance

Questions?

Thank you!

Bias-Variance Dilemma Example

Each column is a different model. D_1

Each row is a different dataset of 6 points.

Col 1:

Poor fixed linear model; High bias, zero variance

Col 2:

Slightly better fixed linear model; Lower (but high) bias, zero variance.

Col 3:

Learned cubic model; Low bias, moderate variance.

Col 4:

Learned linear model; Intermediate bias and variance.

Histograms of mean-squared error of the fit.