Name: Nabira Khan Roll Number: 23K-0914

DB ASSIGNMENT#01 THEORY ANSWERS

QUESTION#01

PART A)

- Program—data dependence: programs must be modified if data storage format changes.
- No data security: no restriction on unauthorized access.
- Data inconsistency and lack of integrity: updates may apply to some files but not others.
- Not flexible: fixed queries, limited processing ability.
- Separation and isolation of data: hard to integrate across multiple files.
- Duplication of data: same data stored repeatedly, wastes storage, causes inconsistency.

PART B)

Composite key is a primary key made of two or more attributes, used when one attribute alone cannot uniquely identify a tuple.

Example: ENROLLMENT(Student_ID, Course_ID, Grade)

- A single student can enroll in multiple courses → Student_ID alone not unique.
- A single course can have many students → Course ID alone not unique.
- Combination (Student ID, Course ID) uniquely identifies each enrollment record.

PART C)

- Send queries to DBMS to retrieve/manipulate data.
- Perform transactions: read and write data into the database.
- Insertions, deletions, modifications of content.
- Generate reports from database queries.
- Concurrent processing support while keeping data consistent.
- Protection functions: prevent hardware/software malfunction and unauthorized access.
- Maintenance: keep database updated over long period.

PART D)

Logical Data Independence is more difficult than physical because changes to the conceptual schema (entities, attributes, constraints) often affect application programs.

Example: Adding Date_of_birth to STUDENT schema requires modifying conceptual schema; queries and programs that use STUDENT must adapt. Even though external schema should insulate users, in practice applications break, so logical independence is hard.

Name: Nabira Khan Roll Number: 23K-0914

PART E)

Superkey: Set of attributes SK of a relation R such that no two tuples in any valid state r(R) have the same SK value.

Key: A minimal superkey, if any attribute is removed, uniqueness is lost.

Example: CAR(State, Reg#, SerialNo, Make, Model, Year):

- {SerialNo} → Key (minimal, uniquely identifies each car).
- {State, Reg#} → Key (composite, minimal, together uniquely identify cars, since Reg# repeats across states).
- {SerialNo, Make} → Superkey (still unique, but not minimal because Make is unnecessary).
- {State, Reg#, SerialNo} → Superkey (unique but redundant, SerialNo alone is enough).

hence, every key is a superkey (uniqueness guaranteed), but not every superkey is a key (some have extra redundant attributes).

QUESTION#02 – PART 2 CATALOG DIAGRAM

COLUMNS

Column_name	Data_type	Belongs_to_relation	Constraints
MemberID	NUMBER	Members	PRIMARY KEY
Name	VARCHAR2(100)	Members	NOT NULL
Email	VARCHAR2(150)	Members	NOT NULL, UNIQUE
JoinDate	DATE	Members	DEFAULT SYSDATE
BookID	NUMBER	Books	PRIMARY KEY
Title	VARCHAR2(200)	Books	NOT NULL
Author	VARCHAR2(150)	Books	NOT NULL
CopiesAvailable	NUMBER	Books	NOT NULL, CHECK (>=0)
IssueID	NUMBER	IssuedBooks	PRIMARY KEY
MemberID	NUMBER	IssuedBooks	NOT NULL, FOREIGN KEY → Members
BookID	NUMBER	IssuedBooks	NOT NULL, FOREIGN KEY \rightarrow Books
IssueDate	DATE	IssuedBooks	DEFAULT SYSDATE
ReturnDate	DATE	IssuedBooks	-

RELATIONS

Relation_name	No_of_columns
Members	4
Books	4
IssuedBooks	5

Name: Nabira Khan Roll Number: 23K-0914

QUESTION#02 – PART 5 THEORY ANSWER

1. Due Date & Fine Management: The system can be improved by introducing a due date for issued books and implementing an automatic fine calculation feature for late returns. This will encourage timely returns and improve circulation efficiency.

2. Book Reservation System: Another improvement would be to add a reservation module that allows members to reserve books currently unavailable. This ensures fair access and better member satisfaction.

Adding Enhancements:

- Normalize the database further to reduce redundancy and improve data integrity.
- Add proper indexing and optimization to improve query speed and scalability.