CLAIMS

What is claimed is:

1	1.	A system for generating a map of a surface, comprising:
2		a global position transmitter;
3		a vehicle, disposed over the surface;
4		an elevation measurement unit, secured to the vehicle;
5		a global positioning antenna, secured to the vehicle;
6		an attitude measurement unit, secured to the vehicle;
7		an imaging array, secured to the vehicle, comprising:
8		a housing;
9		an aperture, disposed in the housing, having an intersection area therein;
10		a first imaging sensor, coupled to the housing, having a first focal axis passing
11		through the aperture within the intersection area; and
12		a second imaging sensor, coupled to the housing and offset from the first imaging
13		sensor, having a second focal axis passing through the aperture and intersecting the first
14		focal axis within the intersection area;
15		a computer, connected to the elevation measurement unit, the global positioning antenna,
16	the at	titude measurement unit and first and second imaging sensors; correlating at least a portion
17	of the	image data from the first and second imaging sensors to a portion of the surface based on
18	input	from one or more of: the elevation measurement unit, the global positioning antenna and
19	the at	titude measurement unit.

- 1 2. The system of claim 1 further comprising a third imaging sensor, coupled to the housing
- 2 and offset from the first imaging sensor, having a second focal axis passing through the aperture
- 3 and intersecting the first focal axis within the intersection area.
- 1 3. The system of claim 2 wherein the focal axis of the third imaging sensor lies in a
- 2 common plane with the focal axes of the first and second imaging sensors.
- 1 4. The system of claim 2 wherein 2 wherein the focal axes of the first and second imaging
- 2 sensors lie in a first common plane and the focal axis of the third imaging sensor lies in a plane
- 3 orthogonal to the first common plane.
- 1 5. The system of claim 1 wherein the focal axis of the first imaging sensor is disposed
- 2 vertically.
- 1 6. The system of claim 5 wherein the focal axis of the second imaging sensor is disposed in
- a first plane with, and at a first angle to, the focal axis of the first imaging sensor and a focal axis
- 3 of a third imaging sensor is disposed opposite the second imaging sensor from the first imaging
- 4 sensor in the first common plane and at a second angle having the same magnitude as the first
- 5 angle.
- 1 7. The system of claim 6 further comprising fifth and sixth imaging sensors disposed on
- 2 opposite sides of the first imaging sensor, having focal axes disposed in a second plane common
- 3 with the focal axis of the first imaging sensor orthogonal to the first common plane and at third
- 4 and fourth angles from the focal axis of the first imaging sensor having the same magnitude.

1

- 1 8. A system for generating a map of a surface, comprising:
- 2 a global position transmitter;
- a vehicle, disposed over the surface;
- an elevation measurement unit, secured to the vehicle;
- 5 a global positioning antenna, secured to the vehicle;
- an attitude measurement unit, secured to the vehicle;
- a first imaging sensor, secured to the vehicle, having a focal axis disposed in the direction
- 8 of the surface, generating an image comprising an array of pixels;
- a computer, connected to the elevation measurement unit, the global positioning antenna,
- 10 the attitude measurement unit and the first imaging sensor; generating a calculated longitude and
- calculated latitude value for a coordinate corresponding to at least one pixel in the array based on
- input from one or more of: the elevation measurement unit, the global positioning antenna and
- the attitude measurement unit.
- 1 9. The system of claim 8 wherein the global position transmitter is satellite-based.
- 1 10. The system of claim 8 wherein the global position transmitter is ground-based.
- 1 11. The system of claim 8 wherein the elevation measurement is a LIDAR apparatus.
- 1 12. The system of claim 8 wherein the attitude measurement unit is a gyroscope.

1

1	13.	The system of claim 8 wherein the focal axis of the first imaging sensor is vertical and
2	passes	s through an aperture, and wherein the system further comprises:

a second imaging sensor, coupled to the vehicle and offset from the first imaging
sensor, having a second focal axis passing through the aperture and intersecting the first
focal axis within an intersection area, and

a third imaging sensor, coupled to the vehicle and offset from the first imaging sensor opposite the second imaging sensor, having a third focal axis passing through the aperture and intersecting the first focal axis within the intersection area.

14. The system of claim 13 wherein the vehicle has a direction vector, and wherein the focal axis of the second imaging sensor lies in a plane orthogonal to the direction vector of the vehicle.

1	15.	A system for generating a map of a surface, comprising:
2		a global position transmitter;
3		a vehicle, disposed over the surface;
4		an elevation measurement unit, secured to the vehicle;
5		a global positioning antenna, secured to the vehicle;
6		an attitude measurement unit, secured to the vehicle;
7		an imaging array, secured to the vehicle, comprising:
8		a housing;
9		an aperture, disposed in the housing, having an intersection area therein;
10		a first imaging sensor, coupled to the housing, having a focal axis passing through
11		the aperture within the intersection area, generating a first array of pixels; and
12		a second imaging sensor, coupled to the housing and offset from the first imaging
13		sensor, having a second focal axis passing through the aperture and intersecting the first
14		focal axis within the intersection area, generating a second array of pixels;
15		a computer, connected to one or more of: the elevation measurement unit, the global
16	positio	oning antenna, the attitude measurement unit, the first imaging sensor and the second
17	imagii	ng sensor; calculating the true longitude and true latitude of at least one point on the
18	surfac	e corresponding to at least one pixel in the array based on the input from one or more of:
19	the ele	evation measurement unit, the global positioning antenna and the attitude measurement
20	unit.	

- 1 16. The system of claim 15 wherein further comprising a third imaging sensor, coupled to the
- 2 housing and offset from the first imaging sensor, having a second focal axis passing through the
- 3 aperture and intersecting the first focal axis within the intersection area.
- 1 17. The system of claim 16 wherein the focal axis of the third imaging sensor lies in a
- 2 common plane with the focal axes of the first and second imaging sensors.
- 1 18. The system of claim 16 wherein the focal axes of the first and second imaging sensors lie
- 2 in a first common plane and the focal axis of the third imaging sensor lies in a plane orthogonal
- 3 to the first common plane.
- 1 19. The system of claim 16 wherein the focal axis of the third imaging sensor lies in a first
- 2 common plane with the focal axes of the first and second imaging sensors and wherein the
- 3 system further comprises a fourth imaging sensor having a focal axis lying in a plane orthogonal
- 4 to the first common plane.
- 1 20. The system of claim 16 wherein the focal axis of the third imaging sensor lies in a first
- 2 common plane with the focal axes of the first and second imaging sensors and the system further
- 3 comprises fourth and fifth imaging sensors having focal axes lying in the first common plane and
- 4 intersecting the focal axis of the first imaging sensor within the intersection area.