# Selected Solutions to Lang's *Algebra*

Swayam Chube

May 5, 2025

## **CONTENTS**

#### V Algebraic Extensions

1

## VI Galois Theory

2

## **§V ALGEBRAIC EXTENSIONS**

**EXERCISE V.28.** *Part 1.* Let  $f(X_1,...,X_n)$  be a homogeneous polynomial of degree 2 over k, i.e., a quadratic form. Suppose f is *anisotropic* over k, i.e., the only non-trivial zero of f over k is the vector (0,...,0). Let K/k be an extension of odd degree. Using induction on the degree we shall show that f is anisotropic when viewed as a quadratic form over K. In literature, this is a theorem attributed to Springer.

Throughout, we shall fix an algebraic closure  $k^a$  of k and consider all extensions to be embedded inside  $k^a/k$ . The base case K=k is clear. Suppose now that  $[K:k] \ge 3$  and that the hypothesis has been proven for all odd degrees less than [K:k]. If the extension K/k admits a proper intermediate field, say L, then due to the inductive hypothesis, f is anisotropic when viewed over L and then again due to the inductive hypothesis, f is anisotropic when viewed over K. Suppose henceforth that K/k admits no proper intermediate fields. In particular, due to the Primitive Element Theorem, this means that the extension K/k is simple, i.e., there exists  $\alpha \in K$  such that  $K = k(\alpha)$ .

Let  $d = [K : k] \ge 3$  and let p(X) be the minimal polynomial of  $\alpha$  over k. Suppose f is not anisotropic over K, which means that there is a non-zero vector in  $K^n$  on which f vanishes. Thus, there exist polynomials  $g_1, \ldots, g_n \in k[T]$  such that  $\deg g_i \le d-1$  for  $1 \le i \le n$  and

$$f(g_1(\alpha),\ldots,g_n(\alpha))=0.$$

Consider the polynomial

$$h(T) = f(g_1(T), \dots, g_n(T)).$$

Since k[T] is a PID, we can further impose the condition that  $(g_1(T), \ldots, g_n(T)) = (1)$ . Indeed, if their gcd is some polynomial g(T), then  $g(\alpha) \neq 0$ , and hence, dividing all the  $g_i$ 's by g(T), we obtain the desired tuple.

Let  $M = \max \deg g_i \leq d-1$ . The coefficient of  $T^{2M}$  on the left hand side is  $f(a_{1m}, \ldots, a_{nm})$  where  $a_{im}$  is the coefficient of  $T^m$  in  $g_i(T)$ . Since the vector  $(a_{1m}, \ldots, a_{nm})$  is not identically zero, and f is anisotropic over k, it is clear that  $\deg h(T) = 2M \leq 2d-2$ .

Next, since  $h(\alpha) = 0$ , we can write h(T) = p(T)q(T) for some polynomial  $q(T) \in k[T]$ . Note that  $\deg q = 2M - d \le d - 2$  and is an odd number. As a result, q has an irreducible factor  $\widetilde{q}$  of odd degree, and let  $\beta \in k^a$  be a root of  $\widetilde{q}$ . Due to the inductive hypothesis and the fact that  $h(\beta) = 0$ , we must have that  $g_1(\beta) = \cdots = g_n(\beta) = 0$ , and hence,  $\widetilde{q}$  divides  $g_1, \ldots, g_n$  in k[T], which is absurd. Thus f is anisotropic over K.

**Part 2.** Let  $f(X_1,...,X_n)$  be a homogeneous polynomial of degree 3 over k and K/k a quadratic extension. Note that  $K = k(\alpha)$  for any  $\alpha \in K \setminus k$ . Let  $p(T) \in k[T]$  be the minimal polynomial of  $\alpha$  over k. This is clearly a quadratic polynomial. Suppose f were isotropic over K, then one can find linear polynomials  $g_1,...,g_n \in k[T]$  such that

$$f(g_1(\alpha),\ldots,g_n(\alpha))=0.$$

As in Part 1, since k[T] is a PID, we can further impose the condition that  $(g_1(T), \ldots, g_n(T)) = (1)$ . Let

$$h(T) = f(g_1(T), \dots, g_n(T)) \in k[T].$$

Again, since f is anisotropic over k, just as argued in Part 1, it follows that h(T) is a cubic polynomial in k[T]. Note that  $h(\alpha) = 0$ , and thus  $h(T) = Ap(T)(T - \beta)$  for some  $A, \beta \in k$ . It follows that  $h(\beta) = 0$ , i.e.,  $g_i(\beta) = 0$  for all  $1 \le i \le n$ . But this is absurd, since  $T - \beta$  cannot divide all the  $g_i$ 's simultaneously. Thus f is anisotropic over K, as desired.

## **§VI GALOIS THEORY**

#### EXERCISE VI.21.

**EXERCISE VI.23.** (a) The standard way to do this is to first write

$$G \cong \bigoplus_{i=1}^r \mathbb{Z}/n_i\mathbb{Z},$$

where  $n_i \ge 2$ . Using either Dirichlet's theorem on primes in AP or Exercise VI.21(b), choose primes  $p_i \equiv 1 \pmod{n_i}$ . Set  $N = \prod_{i=1}^r p_i$  and note that

$$\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \cong (\mathbb{Z}/N\mathbb{Z})^{\times} \cong \bigoplus_{i=1}^r \mathbb{Z}/(p_i-1)\mathbb{Z}.$$

Since G is a quotient of the above group, it is clear that G can be realized as a Galois group over  $\mathbb{Q}$ .

(b) Again, begin by writing

$$G \cong \bigoplus_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}.$$

Using either Dirichlet's theorem on primes in AP or Exercise VI.21, for each positive integer  $i \ge 1$ , choose a tuple of primes  $(p_{i1},\ldots,p_{ir})$  such that  $p_{ij} \equiv 1 \pmod{n_j}$ . Further, setting  $N_i = \prod_{j=1}^r p_{ij}$ , we may further impose the condition that  $\gcd(N_i,N_j)=1$  whenever  $i\ne j$ . In particular, this means that  $\mathbb{Q}(\zeta_{N_i})\cap\mathbb{Q}(\zeta_{N_j})=\mathbb{Q}$ . As in part (a), we can find a subfield  $E_i\subseteq\mathbb{Q}(\zeta_{N_i})$  such that  $\operatorname{Gal}(E_i/\mathbb{Q})\cong G$ .



We know that  $\operatorname{Gal}(kE_i/k) \cong \operatorname{Gal}(E_i/k \cap E_i)$  for all  $i \ge 1$ . We contend that  $k \cap E_i = \mathbb{Q}$  for infinitely many  $i \ge 1$ . Indeed, since  $k/\mathbb{Q}$  is separable, due to the Primitive Element Theorem, there are only finitely many intermediate fields in the extension  $k/\mathbb{Q}$ . Thus, there is an infinite subset  $I \subseteq \mathbb{N}$  such that  $k \cap E_i = k \cap E_j$  for all  $i, j \in I$ . Then, for  $i, j \in I$ , we have

$$k \cap E_i = (k \cap E_i) \cap (k \cap E_i) = k \cap (E_i \cap E_i) = k \cap \mathbb{Q} = \mathbb{Q}.$$

Thus,  $Gal(kE_i/k) \cong Gal(E_i/\mathbb{Q}) \cong G$ .

All that remains to be shown is that the set  $\{kE_i:i\in I\}$  is infinite. Suppose not, then there is an extension F/k and an infinite subset  $J\subseteq I$  such that  $kE_j=F$  for all  $j\in J$ . In particular,  $E_j\subseteq F$  for all  $j\in J$ . Note that  $F/\mathbb{Q}$  is a finite separable extension, and hence, due to the Primitive Element Theorem, has at most finitely many intermediate fields, but this is absurd, since  $E_i\neq E_j$  for  $i,j\in J$ . Thus, the set  $\{kE_i:i\in I\}$  is infinite, as desired.

**EXERCISE VI.25.** First note that every finite extension of k is Galois, and hence k is perfect. Further, since any algebraic extension of k is a union of finite subextensions (each of which is Galois), we have that every algebraic extension of k is Galois so we can freely talk about its Galois group. Finally, we make note of the fact that k can have at most one finite extension of a given degree in  $k^a$ . Indeed, if E and E are two finite extensions of E in E in the same degree, then E is E and E are subgroups of E is E is cyclic, it has at most one subgroup of a given order, and hence, E is E is E is E. Let

$$\Sigma := \left\{ (E, \sigma_E) \colon k \subseteq E \subseteq k^a \text{ and } \sigma_E \in \operatorname{Gal}(E/k) \text{ such that } E^{\sigma_E} = k \right\}.$$

This is clearly a poset under the relation  $(F, \sigma_F) \leq (E, \sigma_E)$  if and only if  $F \subseteq E$  and  $\sigma_E|_F = \sigma_F$ . Clearly, Zorn's lemma is applicable and let  $(M, \sigma_M)$  be a maximal element in  $\Sigma$ . We contend that  $M = k^a$ .

Suppose  $M \subseteq k^a$  and choose an element  $\alpha \in k^a \setminus M$  of minimum degree over M. Since  $M(\alpha)/k$  is Galois, we can extend  $\sigma_M$  to an automorphism  $\sigma_1 \in \operatorname{Gal}(M(\alpha)/k)$ . The maximality of  $(M, \sigma_M)$  implies the existence of some  $\beta \in M(\alpha) \setminus M$  which is fixed by  $\sigma_1$ . Note that the minimality of the degree of  $\alpha$  over M further implies that  $M(\alpha) = M(\beta)$ .



We contend that  $[M(\beta):M] = [k(\beta):k]$ . Indeed, let  $f(X) = \operatorname{Irr}(\beta,M,X)$  be the irreducible polynomial of  $\beta$  over M. Since  $\sigma_1$  fixes  $\beta$ , we see that  $\beta$  is a root of  $f^{\sigma_1} \in M[X]$ . Again, since  $\deg f = \deg f^{\sigma_1}$ , it follows that  $f = f^{\sigma_1}$ . In particular, the coefficients of f lie in the fixed field  $M^{\sigma_1} = M^{\sigma_M} = k$ . Thus,  $f(X) = \operatorname{Irr}(\beta,k,X)$ , so that  $[k(\beta):k] = [M(\beta):M]$ .

Now note that f(X) is a separable polynomial and has degree at least 2. Let  $\beta' \neq \beta$  be another root of f(X) in  $k^a$  and extend the automorphism  $\sigma_M$  to an automorphism  $\sigma_2$  of  $M(\beta)$  sending  $\beta \mapsto \beta'$ . Again, due to maximality,  $\sigma_2$  must fix some  $\gamma \in M(\beta) \setminus M$ . Furthermore, as we argued above, we must have  $M(\beta) = M(\gamma)$  and  $[k(\gamma):k] = [M(\gamma):M] = [M(\beta):M] = [k(\beta):k]$ .

Note that we cannot have  $k(\beta) = k(\gamma)$ , else  $\beta \in k(\gamma)$  would be fixed by  $\sigma_2$ , which is absurd, since  $\sigma_2 \beta = \beta'$ . Thus,  $k(\beta)$  and  $k(\gamma)$  are distinct Galois extensions of k having the same degree, a contradiction. In conclusion,  $M = k^a$ , and we have our desired automorphism in  $Gal(k^a/k)$ .

**EXERCISE VI.26.** Let  $\alpha \in \mathbb{Q}^a \setminus \mathbb{Q}$  be an algebraic irrational and E a maximal subfield of  $\mathbb{Q}^a$  not containing  $\alpha$ . We shall show that every finite extension of E contained in  $\mathbb{Q}^a$  is cyclic. Since every finite extension of E is contained in a finite Galois extension, and quotients of cyclic groups are cyclic, it suffices to show that every finite Galois extension of E is cyclic.

Let K be a finite Galois extension of E contained in  $\mathbb{Q}^a$  and let  $G = \operatorname{Gal}(K/E)$ . If F is an intermediate field properly containing E, then it must contain  $\alpha$  due to maximality of E, i.e.,  $E(\alpha) \subseteq F$ . Let  $H = \operatorname{Gal}(K/E(\alpha))$ . From the Galois correspondence, it is clear that H is *the* unique maximal subgroup of G. We shall be done by proving the following:

**CLAIM.** Let G be a finite group. If G admits a unique maximal subgroup H, then G is cyclic.<sup>1</sup>

To see this, let  $a \in G \setminus H$ . If  $G \neq \langle a \rangle$ , then  $\langle a \rangle$  is contained in a maximal subgroup M of G. But since H is the unique maximal subgroup of G, we must have M = H, that is,  $a \in H$ , a contradiction. Thus  $G = \langle a \rangle$ , as desired.

 $<sup>^{1}</sup>$ We can further say that G must be a p-group. This follows immediately from the fact that it has a unique maximal subgroup.

## EXERCISE VI.27.

**EXERCISE VI.34.** Consider two automorphisms  $\sigma \colon x \mapsto -x$  and  $\tau \colon x \mapsto 1-x$  of  $K \coloneqq \mathbb{C}(X)$  over  $\mathbb{C}$ . Let E and F denote the fixed fields of  $\sigma$  and  $\tau$  respectively. Since both  $\sigma$  and  $\tau$  are order 2 automorphisms, we have that  $[K \colon E] = [K \colon F] = 2$ . Let  $k = E \cap F$ . Note that k is invariant under the action of  $\varphi = \tau \circ \sigma \colon x \mapsto 1+x$ . It is clear that  $\varphi$  is an infinite order automorphism of K and that k is contained in the fixed field  $K^{\varphi}$ . Finally, since K is finite degree over any intermediate field properly containing  $\mathbb{C}$ , it follows that the fixed field  $K^{\varphi} = \mathbb{C}$ . Hence,  $k = \mathbb{C}$ , so that K is not algebraic over k.