Université de Grenoble École doctorale EEATS

THÈSE CIFRE PRÉSENTÉE PAR

JORY LAFAYE

LABORATOIRE : INRIA GRENOBLE RHÔNE-ALPES ENTREPRISE : ALDEBARAN

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles

Directeur : Dr. Bernard Brogliato, Inria

Encadrants :
Dr. Pierre-Brice Wieber, Inria
Dr. Cyrille Collette, Aldebaran
Dr. Sebastien Dalibard, Aldebaran

Table des matières

Ré	ésumé							
1	Intr	oductio	n					
	1.1	Présen	tation de la plateforme expérimentale					
		1.1.1	Pepper, un robot humanoïde à roues omnidirectionnelles					
		1.1.2	Capteurs et actionneurs					
		1.1.3	Propriétés mécaniques					
	1.2	État de	e l'art					
		1.2.1	Problématiques associées à Pepper					
		1.2.2	Commande et équilibre des robots à roues					
			1.2.2.1 Les robots à une et deux roues					
			1.2.2.2 Les robots à trois roues et plus					
		1.2.3	Commande et équilibre des robots bipèdes					
		1.2.4	Synthèse et conclusion					
	1.3	Organi	sation du document					
2	Modélisation et commande de Pepper							
	2.1	Modél	isation dynamique					
		2.1.1	Choix du modèle et conséquences					
		2.1.2	Équations de la dynamique					
		2.1.3	Linéarisation et approximations					
	2.2	Comm	ande prédictive					
		2.2.1	Modélisation de la dynamique future					
		2.2.2	Formulation du problème d'optimisation					
			2.2.2.1 Choix du type d'optimisation					
			2.2.2.2 Formulation des objectifs					
			2.2.2.3 Formulation des contraintes					

	2.3	Méthode	e de résolution du problème	8
		2.3.1	Principe de la programmation quadratique	8
		2.3.2	Application à la commande prédictive	8
			2.3.2.1 Linéarisation des contraintes	8
		4	2.3.2.2 Formulation mathématique finale	8
		2.3.3		8
	2.4	Résultat	s et expérimentations	8
		2.4.1	Protocole expérimental	8
		2.4.2	De l'importance du choix des pondérations	8
		2.4.3	Expérimentations	8
		2.4.4	Vers un choix automatique des pondérations	8
•	ъ.			_
3				9
	3.1		ation dynamique	
			Problématique supplémentaire	
			Équations de la dynamique	
	2.2		Linéarisation et approximations	
	3.2	Commai	nde prédictive	
			Choix du type d'optimisation	
			Formulation des objectifs	
	2.2		Formulation des contraintes	
	3.3		des deux modèles dynamiques exclusifs	
			Choix d'un superviseur et conséquences	
			Fonctionnement du superviseur	
	2.4		Fonctionnement de l'estimateur d'impact	
	3.4		s et expérimentations	
			Protocole expérimental	
			Expérimentations	
	2.5		Limites physiques et algorithmiques	
	3.5		e modélisation unifiée des deux dynamiques	
			Problème de complémentarité linéaire	
			Méthodes de résolution	
			3.5.2.1 Programmation quadratique avec contraintes non-linéaire 10	
			3.5.2.2 Linéarisation par <i>apriori</i>	
			3 3 / 3 - 1 (ABCHISIAN - 17	ı

4	Synthèse								
	4.1	Contributions	11						
	4.2 F	Perspectives	11						
	4.3 c	conclusion	11						
Bi	bliogra	phie	11						
Aı	nnexes		12						
A	A Optimisation du choix du modèle dynamique								
B Résolution d'un problème quadratique									

[1]

Introduction

- 1.1 Présentation de la plateforme expérimentale
- 1.1.1 Pepper, un robot humanoïde à roues omnidirectionnelles
- 1.1.2 Capteurs et actionneurs
- 1.1.3 Propriétés mécaniques
- 1.2 État de l'art
- 1.2.1 Problématiques associées à Pepper
- 1.2.2 Commande et équilibre des robots à roues
- 1.2.2.1 Les robots à une et deux roues
- 1.2.2.2 Les robots à trois roues et plus
- 1.2.3 Commande et équilibre des robots bipèdes
- 1.2.4 Synthèse et conclusion
- 1.3 Organisation du document

Modélisation et commande de Pepper

2.1 Modélisation dynamique2.1.1 Choix du modèle et conséquences

2.1.3 Linéarisation et approximations

Équations de la dynamique

2.2 Commande prédictive

2.1.2

- 2.2.1 Modélisation de la dynamique future
- 2.2.2 Formulation du problème d'optimisation
- 2.2.2.1 Choix du type d'optimisation
- 2.2.2.2 Formulation des objectifs
- 2.2.2.3 Formulation des contraintes

2.3 Méthode de résolution du problème

- 2.3.1 Principe de la programmation quadratique
- 2.3.2 Application à la commande prédictive
- 2.3.2.1 Linéarisation des contraintes
- 2.3.2.2 Formulation mathématique finale
- 2.3.3 Implémentation logicielle : "MPC-WalkGen"

2.4 Résultats et expérimentations

- 2.4.1 Protocole expérimental
- 2.4.2 De l'importance du choix des pondérations
- 2.4.3 Expérimentations
- 2.4.4 Vers un choix automatique des pondérations

Prise en compte du basculement de Pepper

3.1	Modélisation dynamique
3.1.1	Problématique supplémentaire
3.1.2	Équations de la dynamique
3.1.3	Linéarisation et approximations
3.2	Commande prédictive
3.2.1	Choix du type d'optimisation
3.2.2	Formulation des objectifs
3.2.3	Formulation des contraintes
3.3	Gestion des deux modèles dynamiques exclusifs
3.3.1	Choix d'un superviseur et conséquences
3.3.2	Fonctionnement du superviseur
3.3.3	Fonctionnement de l'estimateur d'impact
3.4	Résultats et expérimentations
3.4.1	Protocole expérimental
3.4.2	Expérimentations
3.4.3	Limites physiques et algorithmiques
3.5	Vers une modélisation unifiée des deux dynamiques
3.5.1	Problème de complémentarité linéaire
3.5.2	Méthodes de résolution
3.5.2.1	Programmation quadratique avec contraintes non-linéaire
3.5.2.2	Linéarisation par <i>apriori</i>

3.5.2.3 Conclusion

Synthèse

- 4.1 Contributions
- 4.2 Perspectives
- 4.3 conclusion

Bibliographie

[1] S Miasa, M Al-Mjali, A Al-Haj Ibrahim, and T A Tutunji. Fuzzy control of a two-wheel balancing robot using dspic. In 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pages 1–6, 2010.

Annexe A

Optimisation du choix du modèle dynamique

Annexe B

Résolution d'un problème quadratique