Phosphine Ligand Exchange at a Phosphine Lewis Acceptor: The First Structural Characterization of **Homoleptic Phosphinophosphonium Salts**

Neil Burford,* T. Stanley Cameron, and Paul J. Ragogna

Department of Chemistry, Dalhousie University Halifax, Nova Scotia B3H 4J3, Canada

Edgar Ocando-Mavarez

Instituto Venezolano Investigaciones Cientificas Centro de Quimica, Caracas 1020A, Venezuela

Myrlene Gee, Robert McDonald, and Roderick E. Wasylishen

Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2, Canada

Received April 27, 2001

Coordination chemistry usually refers to bonding interactions involving donation from electron-rich nonmetals (ligands) to electron-deficient metals (Lewis acceptors). Reports of metal complexes behaving as ligands toward other metals¹ and of compounds involving electron-rich (lone-pair bearing) phosphinic centers as Lewis acceptors²⁻²¹ introduce novel bonding possibilities and new synthetic opportunities. In this context, a phosphinophosphonium^{2,3,6,16,22} **1** cation can be represented by **2**, involving a coordinate (phosphine) $P \rightarrow P(phosphine)$ interaction.

The distinct ³¹P chemical shifts ¹⁶ indicate that chlorine cation exchange and access to a chloronium cation 3 are restricted. Therefore, R₂(Cl)P of 2 is available for ligand exchange, which

- (1) Liu, Y.; Leong, K.; Pomeroy, R. K. Organometallics 1998, 17, 3387-3389.
- (2) Schultz, C. W.; Parry, R. W. *Inorg. Chem.* **1976**, *15*, 3046–3050. (3) Thomas, M. G.; Schultz, C. W.; Parry, R. W. *Inorg. Chem.* **1977**, *16*, 994-1001.
- (4) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 63–64.
- (5) Schmidpeter, A.; Lochschmidt, S.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1986, 24, 226–227.
- (6) Shagvaleev, F. S.; Zykova, T. V.; Tarasova, R. I.; Sitdikova, T. Sh.;
 Moskva, V. V. J. Gen. Chem. USSR 1990, 60, 1585–1589.
 (7) Kaukorat, T.; Neda, I.; Schmutzler, R. Coord. Chem. Rev. 1994, 137,
- (8) David, G.; Niecke, E.; Nieger, M.; Radseck, J.; Schoeller, W. W. J. Am. Chem. Soc. 1994, 116, 2191-2192.
- (9) Bouhadir, G.; Reed, R. W.; Reau, R.; Bertrand, G. Heteroat. Chem. **1995**, 6, 371–375.
- (10) Romanenko, V. D.; Rudzevich, V. L.; Rusanov, E. B.; Chernega, A. N.; Senio, A.; Sotiropoulos, J. M.; Pfister-Guillouzo, G.; Sanchez, M. J. Chem. Soc., Chem. Commun. 1995, 1383–1385.
- (11) Alder, R. W.; Ellis, D. D.; Hogg, J. K.; Martin, A.; Orpen, A. G.; Taylor, P. N. *J. Chem. Soc.*, *Chem. Commun.* **1996**, 537–538.
 (12) Alder, R. W.; Ellis, D. D.; Orpen, A. G.; Taylor, P. N. *J. Chem. Soc.*,
- Chem. Commun. 1996, 539-540.
- (13) Burford, N.; Cameron, T. S.; Clyburne, J. A. C.; Eichele, K.; Robertson, K. N.; Sereda, S.; Wasylishen, R. E.; Whitla, W. A. Inorg. Chem. 1996, 35,
- (14) Burford, N.; Losier, P.; Bakshi, P. K.; Cameron, T. S. J. Chem. Soc., Chem. Commun. 1996, 307–308.
 - (15) Gudat, D. Coord. Chem. Rev. 1997, 163, 71-106.
- (16) Burford, N.; Cameron, T. S.; LeBlanc, D. J.; Losier, P.; Sereda, S.; Wu, G. Organometallics 1997, 16, 4712-4717.
- (17) Plack, V.; Münchenberg, J.; Jones, P. G.; Schmutzler, R. Eur. J. Inorg. Chem. 1998, 865-875.
 - (18) Burford, N.; LeBlanc, D. J. Inorg. Chem. 1999, 38, 2248-2249.

Figure 1. Crystallographic view of [Ph₃P-PPh₂][SO₃CF₃], **5**[SO₃CF₃]; selected bond lengths (Å): P1-P2 2.2302(13), P2-O1 4.415(16), S1-O1 1.432(3), S1-O2 1.423(3), S1-O3 1.430(3); and angles (deg): C11-P1-P2 108.86(12), C21-P1-P2 105.46(11), C31-P1-P2 116.20(12), C41-P2-P1 100.38(11), C51-P2-P1 100.73(12), C41-P2-C51 104.25-

has facilitated the synthesis and structural characterization of the first penta-phenylphosphinophosphonium salts.

Phosphorus-31 NMR spectra²³ of reactions between 4[A] (A = GaCl₄ or OSO₂CF₃) and Ph₃P indicate quantitative formation of 5[A] and free Ph₂(Cl)P ($\delta = 80.5$ ppm). Isolated solids have been characterized as 4[GaCl₄], 5[GaCl₄],²⁴ and 5[OSO₂CF₃],²⁵ which was also isolated from the reaction mixture of Ph₂PCl, Me₃SiOSO₂CF₃ and Ph₃P. Long interatomic distances between counterions are observed in the crystal structures of 5[GaCl₄] and 5[OSO₂CF₃] (Figure 1), indicating that they are best described as ionic in the solid state. Moreover, the structure of the

(19) Abrams, M. B.; Scott, B. L.; Baker, R. T. Organometallics 2000, 19, 4944–4956.

(20) Burford, N.; Cameron, T. S.; Robertson, K. N.; Phillips, A. D.; Jenkins, H. A. *J. Chem. Soc.*, *Chem. Commun.* **2000**, 2087–2088.

(21) Burford, N.; Cameron, T. S.; LeBlanc, D. J.; Phillips, A. D.; Concolino, T. E.; Lam, K. C.; Rheingold, A. L. J. Am. Chem. Soc. 2000, 122, 5413-5414.

5414.

(22) Noth, H. Z. Naturforsch. **1960**, 15B, 327–329.

(23) Using general procedures,³⁰ solutions of **4**[A] [A = GaCl₄, OSO₂CF₃] (0.25 g) in CH₂Cl₂ (10 mL) were prepared in situ,¹⁶ and 1.3 equiv of Ph₃P in CH₂Cl₂ (10 mL) was introduced. NMR data are listed in Table 1. (24) **4**[GaCl₄]: Using general procedures,³⁰ GaCl₃ (0.9 g 5.2 mmol) in CH₂Cl₂ (10 mL) added to Ph₂PCl (2.3 g, 10 mmol), stirred for 1 h. at rt, removal of solvent gave white solid (2.5 g, 77%); mp 103–105 °C; Anal. Calcd for C₂4H₂₀Cl₃GaP₂: C, 46.69; H, 3.27; Found: C, 46.79; H, 3.33; IR cm⁻¹ (ranked intensities): 367(4), 381(1), 496(7), 532(9), 681(5), 691(8), 745-(3), 752(6), 1105(10), 1436(2). **5**[GaCl₄]: Using general procedures,³⁰ 0.97 (0.25 g 0.97 mmol) in CH₂Cl₂ (15 mL) added to a solution of (0.60 g 0.97) (0.25 g 0.97 mmol) in CH₂Cl₂ (15 mL) added to a solution of (0.60 g 0.97 (0.25 g 0.97 mmol) in CH₂Cl₂ (15 mL) added to a solution of (0.00 g 0.97 mmol) in CH₂Cl₂ (20 mL), stirred for 1 h at rt, removal of solvent gave white solid (0.56 g, 88%); mp 153–155 °C; IR cm⁻¹ (ranked intensities): 374(3), 489(7), 503(6), 550(9), 690(5), 720(4), 746(2), 1101(8), 1439(1); Crystal data for C₃₀H₂₅P₂GaCl₄: M = 659.01 g mol⁻¹, monoclinic, C2/c, a = 24.656 ds b = 9.818(4) Å, c = 25.714(2) Å, b = 103.076(7)°, V = 6063(2) Å³, $T = 306 \pm 1$ K, Z = 8, μ (Mo K α) = 0.562 mm⁻¹, 5403 measured reflections, 1281 unique, 260 refined parameters, $R[P > 2\sigma(P)] = 0.049$, wR2(F^2) = 0.056 0.056.

0.056. (25) **5**[OSO₂CF₃]: Using general procedures, ³⁰ Ph₂PCl (1.0 g, 4.5 mmol) added to Me₃SiOSO₂CF₃ (1.2 g 5.4 mmol 20% excess) in CH₂Cl₂ (20 mL), stirred for 45 min at rt, added to Ph₃P (1.5 g, 5.4 mmol), stirred for 45 min. White solid recrystallized from CH₂Cl₂, cubes; 2.14 g, 80%; mp 163–164 °C; Anal. Calcd for C₃₁H₂₅O₃F₃P₅S: C, 62.42; H, 4.22; Found: C, 62.20; H, 4.01. IR cm⁻¹ (ranked intensities: 488(9), 636(2), 693(5), 741(6), 1029(4), 1124(8), 1150(7), 1222(10), 1260(1), 1439(3); Crystal data for C₃₁H₂₅F₃O₃P₂S: M = 596.51 g mol⁻¹, triclinic, P-1, a = 10.474(3) Å, b = 11.002(3) Å, c = 14.140(4) Å, α = 73.083(5)°, β = 73.302(5)°, γ = 68.632-(5)°, V = 1421.5(7) ų, T = 193(2) K, Z = 2, μ (Mo K α) = 0.278 mm⁻¹, 9489 measured reflections, 5723 unique, 361 refined parameters, $R[I^2$ > $2\sigma(I^2)$] = 0.0703, wR2(F^2) = 0.1723. $> 2\sigma(I^2)$] = 0.0703, wR2(F^2) = 0.1723.

Table 1. Solid- and solution-state ${}^{31}P$ NMR spectroscopic data for $\underline{\bf 4}[A]$ and $\underline{\bf 5}[A]$ ($A = GaCl_4$ or OSO_2CF_3). ${}^{1}J_{PP}$ coupling was not observed for pure materials redissolved

compound	in CH ₂ Cl ₂ (CP-MAS)		$\begin{array}{c} \text{reaction mix in} \\ \text{CH}_2\text{Cl}_2 \left(\text{CP-MAS}\right) \end{array}$
P_1-P_2	δP_1	δ P ₂	$^{-1}J_{ m PP}$
$\begin{array}{l} \hline [Ph_2(Cl)P-PPh_2][GaCl_4] \\ [Ph_2(Cl)P-PPh_2][SO_3CF_3]^a \\ [Ph_3P-PPh_2][GaCl_4] \\ [Ph_3P-PPh_2][SO_3CF_3] \end{array}$	` /	3 (3) -4 (a) -10 (-18) -10 (-22)	b (406) a 340 (323) b (350)

^a Not isolated. ^b Not observed.

homoleptic phosphinophosphonium cation $\underline{\mathbf{5}}$ is independent of the anion. The P–P bond length {e.g. $\underline{\mathbf{5}}[OSO_2CF_3]$: 2.220(6) and 2.2302(13) Å} compares with that of the parent diphosphine $[Ph_2P-PPh_2, 2.217(1) \ \text{Å}],^{26}$ as well as those observed for other Ph_3P complexes of phosphorus acceptors, $\underline{\mathbf{6}}$ [2.267(2) Å], $\underline{\mathbf{8}}$ 7 [2.137(6), and 2.128(6) Å]⁵ and $\underline{\mathbf{8}}$ [2.206(1) Å]. An anomalously long interaction is observed for $\underline{\mathbf{9}}$ [2.625(2) Å].

The solution- and solid-state²⁷ ³¹P NMR chemical shifts correlate well for salts of $\underline{\mathbf{4}}$ and $\underline{\mathbf{5}}$ (Table 1), and are consistent with data obtained for reaction mixtures. Nevertheless, $^1J_{PP}$ coupling is observed in spectra of solid samples and in reaction mixture solutions, but not in solutions of isolated samples. An estimate of the P–P bond length (2.25 \pm 0.02 Å) from the dipolar coupling constant measured for $\mathbf{5}$ [GaCl₄] and using first principle

calculations²⁸ is consistent with 2.220(6) Å determined from X-ray diffraction data.

Phosphine exchange at a phosphorus center has been previously observed by NMR spectroscopy.⁵ The isolation and characterization of otherwise synthetically inaccessible pentaphenylphosphinophosphonium salts described here highlights ligand exchange at a phosphine acceptor as a new synthetic methodology in phosphorus chemistry that is potentially applicable across the electron-rich elements of the p block. The versatility of coordinate element-P bond formation is further demonstrated by ³¹P NMR spectra of reactions between $5[OSO_2CF_3]$ and carbene (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene), which show only Ph₃P and 10 ($\delta = -26.9$ ppm, cf. -27.1 ppm²⁹). We are currently

assessing the potential extent and diversity of this synthetic procedure.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada, the Killam Foundation (N.B.) and the Canada Research Chair Program (REW) for funding, the Atlantic Region Magnetic Resonance Center for the use of instrumentation, and IVIC for a sabbatical leave.

Supporting Information Available: Atomic co-ordinates, isotropic displacement parameters, bond lengths and angles, and crystal data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA011075L

- (28) Bryce, D.; Wasylishen, R. E. J. Am. Chem. Soc. 2000, 122, 3197–3205.
- (29) Kuhn, N.; Fahl, J.; Blaser, D.; Boese, R. Z. Anorg. Allg. Chem. 1999, 625, 807–809.
- (30) Burford, N.; Müller, J.; Parks, T. M. J. Chem. Educ. **1994**, 71, 807–809.

⁽²⁶⁾ Dashti-Mommertz, A.; Neumueller, B. Z. Anorg. Allg. Chem. 1999, 625, 954–960.

⁽²⁷⁾ Values obtained from the analysis of ³¹P CP/MAS NMR spectra acquired at applied magnetic fields of 4.7 and 9.4 T for powder samples.