Misr University for Science and Technology College of Engineering Mechatronics Department

MTE 506 Digital Control

Sheet: 1

Due Date: before 29/03/2020

Sheet 1

Section 1: Final value theorem

1. Based on your understanding of lab 3 tutorials:

If
$$G(s) = \frac{6}{(3s+0.12)(3s+0.06)}$$

What is the steady state error if the excitation signal if:

- I. R(s) is a unit step
- II. R(s) is a ramp input
- III. R(s) is a parabolic input
- 2. If an integrator is added, repeat question 1 with all stated excitation signals

3. If another integrator is added, repeat question 1 with all stated excitation signals

Kindly write all the steps in your solutions sheet, then fill in the below table

R(s)	G(s)	$\frac{G(s)}{s}$	$\frac{G(s)}{s^2}$

4. Find the steady state error for the following PID controlled plant

Given:
$$G(s) = \frac{5}{s^2 + 7s + 10}$$
, $G(s) = \frac{10}{0.3s + 1}$

Section 2: System response of continuous system by Laplace transform

5. Find the inverse Laplace transform of the following systems

1.
$$\frac{Y(s)}{R(s)} = \frac{2s-8}{s^2-5s+6}$$
, $R(s) = 1$

I.
$$\frac{Y(s)}{R(s)} = \frac{2s-8}{s^2-5s+6}, R(s) = 1$$
II.
$$\frac{Y(s)}{R(s)} = \frac{2s-8}{s^2-5s+6}, R(s) = \frac{1}{s}$$

III.
$$\frac{Y(s)}{R(s)} = \frac{2s-8}{s^2-5s+6}$$
, $R(s) = \frac{1}{s^2}$

Solve all questions in detailed steps

Section 3: Computer exercises

Model the RC circuit as a function of time in the form:

$$\boldsymbol{v}_c(\boldsymbol{t}) = \boldsymbol{f}(v_s(t), R, C, v_c(t - \Delta t))$$

Where:

 $v_s(t)$... source voltage

R ... resistence in ohms

C ... capacitance in farad

 Δt ... stepping time

Develop a MATLAB model, run it and include the result in your report.

Notes:

- Use Microsoft equations editor to write your answers.
- Don't share your answer with your colleagues to avoid discarding your report.
- Upload your report and code under folder assignment 1 in your repository.
- MAKE your repository private not public and invite me to it.