专业: 电气工程及其自动化

姓名:_____潘谷雨

学号: 3220102382

日期: _____2024.11.19

地点: 教二 213

浙江大学实验报告

一、实验目的和要求

- 1、根据所测量的频率特性,作出伯德图。
- 2、进一步掌握电子模拟线路的设计方法。

二、实验内容和原理

- 1、系统动态性能分析方法: 时域分析与频域分析
- (1) 时域分析

在时间域中对系统进行分析,提供系统响应的全部信息,直观、准确,测试简单,抗干扰能力差。

(2) 频域分析

以传递函数为基础的分析方法,测试相对复杂, 抗干扰能力强。有效利用频率特性图表, 不必求解复杂解析式, 对无法取得数学模型的复杂对象尤为适用, 因而在工程上普遍应用。对最小相位系统, 在未知系统传递函数的情况下, 可对感兴趣的频率范围内, 以实验测试系统对数频率特性, 作出对数频率特性曲线, 即可求出具有一定精度的系统开环传递函数。

2、对于稳定的线性定常系统或环节,当其输入端加入一正弦信号 $x(t) = X_m sin\omega t$ 。它的稳定输出是与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号频率 ω 的变化而变化。

$$y(t) = Y_m \sin(\omega t + \varphi) = X_m |G(j\omega)| \sin(\omega t + \varphi)$$

幅值比:
$$|G(j\omega)| = \frac{Y_m}{X_m}$$
, 相位差: $\varphi(\omega) = argG(j\omega)$

李沙育图形法:以时间为参变量,逐点绘制输入输出波形采取逐点,形成一个椭圆(或直线)。频率特性可以通过测量椭圆上的相应参数获得。

$$\varphi(\omega_i) = -\left(d_o * 360^o / d\right)$$

3、李沙育图

$$t = 0, x(0) = 0, y(0) = Y_m \sin(\varphi(\omega))$$

$$\varphi(\omega) = \sin^{-1} \frac{2Y_0}{2Y_m} = \sin^{-1} \frac{2X_0}{2X_m}$$

 X_0 为椭圆和X轴交点间的长度的一半; Y_0 为椭圆和Y轴交点间的长度的一半。

$$|G(j\omega)| = \frac{2Y_m}{2X_m}, L(\omega) = 20 \lg |G(j\omega)| = 20 \lg \left(\frac{2Y_m}{2X_m}\right)$$

三、主要仪器设备

示波器、实验箱、导线若干。

四、操作方法和实验步骤

1、RC 网络的频率特性测试

实验电路图如图 1.1 所示,满足 R1=R2=10k, C1=0.01uF, C2=0.1uF。

图 1.1 RC 网络电路图

2、二阶闭环系统幅频特性

传递函数满足 $G(s)=-\frac{10}{s(0.2s+1)}$,实验电路图如图 2.1 所示,其中选用 R0=R3=100k,R1=R2=1M, C1=0.2uF,C2=1uF。

图 2.1 二阶闭环系统电路图

3、实验报告要求

- (1) 画出被测环节和系统的模拟电路图,并写出它们的传递函数(见上1、2)。
- (2) 分别列出实验中测得的数据和理论计算数据,绘出对应 Bode 图,并分析实测的 Bode 图产生误差的原因。
- (3) 根据测量得到 RC 网络幅频对数曲线,求出该系统的开环传递函数。

五、实验数据记录和处理

1、RC 网络的频率特性测试

输入正弦波峰峰值为5V,改变频率得到实测数据如表1.1所示。

ω(rad/s)	f(Hz)	2Xm(V)	2Ym(V)	φ(ω)(°)	2Ym/2Xm	L(w)
62.831852	10.0	5.04	5.04	1	1	0
125.663704	20.0	5.04	4.96	4	0.984127	-0.1389772
188.495556	30.0	5.04	4.88	8	0.968254	-0.2802143
251.327408	40.0	5.04	4.64	11	0.9206349	-0.7182511
314.15926	50.0	5.04	4.56	14	0.9047619	-0.8693139
376.991112	60.0	5.04	4.40	15	0.8730159	-1.1795572
439.822964	70.0	5.04	4.24	16	0.8412698	-1.5012936

表 1.1 RC 网络的频率特性实测数据

502.654816	80.0	5.04	4.08	16	0.8095238	-1.8354075
565.486668	90.0	5.04	3.92	17	0.777778	-2.1828894
628.31852	100.0	5.04	3.76	17	0.7460317	-2.5448538
691.150372	110.0	5.04	3.6	17	0.7142857	-2.9225607
942.47778	150.0	5.04	3.28	15	0.6507937	-3.7311339
1256.63704	200.0	5.04	3.12	11	0.6190476	-4.1655188
1884.95556	300.0	5.04	2.88	8	0.5714286	-4.860761
2513.27408	400.0	5.04	2.8	0	0.555556	-5.1054501
3141.5926	500.0	5.04	2.72	0	0.5396825	-5.3572326
4398.22964	700.0	5.04	2.8	0	0.555556	-5.1054501
5026.54816	800.0	5.04	2.8	-10	0.555556	-5.1054501
6283.1852	1000.0	5.04	2.88	-14	0.5714286	-4.860761
12566.3704	2000.0	5.04	3.44	-17	0.6825397	-3.3174419
18849.5556	3000.0	5.04	3.93	-17	0.7797619	-2.1607597
25132.7408	4000.0	5.04	4.24	-14	0.8412698	-1.5012936
43982.2964	7000.0	5.04	4.64	-10	0.9206349	-0.7182511
62831.852	10000.0	4.96	4.72	-7	0.9516129	-0.4307936
125663.704	20000.0	4.96	4.88	-5	0.983871	-0.1412371
251327.408	40000.0	4.96	4.96	-2	1	0
628318.52	100000.0	5.04	5.04	0	1	0

2、二阶闭环系统幅频特性

输入正弦波峰峰值为5V,改变频率得到实测数据如表2.1 所示。

表 2.1 二阶闭环系统的频率特性实测数据

ω(rad/s)	f(Hz)	2Xm	2Ym	L(w)
1.25663704	0.2	5.04	5.2	0.271456
1.88495556	0.3	5.04	5.4	0.599264
2.51327408	0.4	5.04	5.6	0.91515
3.1415926	0.5	5.04	5.96	1.456314
4.39822964	0.7	5.04	6.76	2.550323
5.02654816	0.8	5.04	6.56	2.289466
5.65486668	0.9	5.04	5.96	1.456314
6.2831852	1	5.04	5.36	0.534685
6.91150372	1.1	5.04	4.84	-0.3517
7.53982224	1.2	5.04	4.44	-1.10095
8.16814076	1.3	5.04	4.04	-1.92098
10.05309632	1.6	5.04	3.08	-4.2776
12.5663704	2	5.04	1.96	-8.20349
31.415926	5	5.04	0.266	-25.551
43.9822964	7	5.04	0.126	-32.0412

六、实验结果与分析

1、RC 网络的频率特性测试

RC 网络的频率特性理论值与实际值如表 1.2 所示,据此绘出频率特性曲线如图 1.2、图 1.3。

表 1.2 RC 网络的频率特性

10(0)	$lg(\omega)$ $\varphi(\omega)(^{\circ})$		L(w)		
Ig(w)	理论值	实际值	理论值	实际值	
1.79818	-3.56605	-1	-0.05431	0	
2.09921	-6.92644	-4	-0.21081	-0.13898	
2.275301	-9.91596	-8	-0.45228	-0.28021	
2.40024	-12.4335	-11	-0.75547	-0.71825	
2.49715	-14.4433	-14	-1.09637	-0.86931	
2.576331	-15.9609	-15	-1.45393	-1.17956	
2.643278	-17.0339	-16	-1.81181	-1.50129	
2.70127	-17.725	-16	-2.15852	-1.83541	
2.752422	-18.0994	-17	-2.48678	-2.18289	
2.79818	-18.2189	-17	-2.79251	-2.54485	
2.839573	-18.1375	-17	-3.07397	-2.92256	
2.974271	-16.6004	-15	-3.9656	-3.73113	
3.09921	-13.6584	-11	-4.66692	-4.16552	
3.275301	-8.02563	-8	-5.32945	-4.86076	
3.40024	-3.59878	0	-5.56121	-5.10545	
3.49715	-0.103	0	-5.61649	-5.35723	
3.643278	5.157355	0	-5.5017	-5.10545	
3.70127	7.209232	10	-5.38738	-5.10545	
3.79818	10.51046	14	-5.10221	-4.86076	
4.09921	17.67638	17	-3.48873	-3.31744	
4.275301	17.92628	17	-2.30666	-2.16076	
4.40024	16.36419	14	-1.57358	-1.50129	
4.643278	11.53261	10	-0.63412	-0.71825	
4.79818	8.57414	7	-0.33035	-0.43079	
5.09921	4.489562	5	-0.08658	-0.14124	
5.40024	2.271739	2	-0.02191	0	
5.79818	0.911766	0	-0.00352	0	

图 1.2 RC 网络幅频特性

图 1.3 RC 网络相频特性

实验实际值与理论值基本吻合,实际幅频曲线在谷值处略大于理论值,相频特性曲线基本重合。

2、二阶闭环系统幅频特性

二阶闭环系统的频率特性理论值与实际值如表 2.2 所示,据此绘出频率特性曲线如图 2.2。

表 2.2 二阶频率系统的幅频特性

1 ()	L(w)			
lg(ω)	理论值	实际值		
0.09921	0.206231	0.271456		
0.275301	0.465022	0.599264		
0.40024	0.827765	0.91515		
0.49715	1.29084	1.456314		
0.643278	2.446207	2.550323		
0.70127	3.033235	2.289466		
0.752422	3.47078	1.456314		
0.79818	3.574705	0.534685		
0.839573	3.190484	-0.3517		
0.877361	2.311753	-1.10095		
0.912123	1.084688	-1.92098		
1.0023	-3.12535	-4.2776		
1.09921	-7.94995	-8.20349		
1.49715	-25.5754	-25.551		
1.643278	-31.583	-32.0412		

图 2.2 二阶闭环系统幅频特性

实际值在增益峰值处稍小于理论值,其余部分基本重合,故实验验真二阶幅频特性与理论值相符。

误差产生的可能原因:

- (1) 示波器的存在较大的噪声误差, 毛刺较多, 尤其是当频率超过 2Hz 时, 示波器获得的波形受影响较大, 且波形不稳定, 不利于读数;
- (2) 电阻、电容、运放等元件的实际参数与标称值不完全相同, 电路不理想, 产生损耗减小增益;
- (3) 信号发生器实际发出的信号频率和幅值存在误差;
- (4) 数值计算时,保留小数位等出现了精度误差。

七、讨论、心得、体会

实验心得体会:

通过本次实验,我深刻认识到了在理论学习与实际应用之间架起桥梁的重要性。实验前的充分准备,包括对电路图的理解和传递函数的推导,为实验的顺利进行打下了坚实的基础。实验中,我将课堂上学到的理论知识应用于实际的电路测试中,加深了我对 RC 网络和二阶系统频率响应特性的理解。特别是通过

比较实测数据与理论计算数据,我学会了如何分析和解释实验中的误差,学会了如何使用 Bode 图来直观 地展示和比较实验结果。总结来说,这次实验不仅让我对 RC 网络和二阶闭环系统有了更深入的理解,也 锻炼了我的实验技能和问题解决能力。

思考题:

1、相频特性时,若把信号发生器的正弦信号送入 Y 轴,而把被测系统的输出信号送入 X 轴,试问这种情况下如何根据旋转的光点方向来确定相位的超前与滞后?

该情况下, 顺时针旋转代表输入信号滞后输出信号; 逆时针旋转代表输入信号超前输出信号。

2、请阐述开环与闭环伯德图的意义。

开环伯德图是评估系统稳定性和相对稳定性的主要工具。通过观察开环系统的幅值裕度和相位裕度, 可以判断系统是否稳定以及其对参数变化的敏感性。闭环伯德图直接显示了整个控制系统的输入输出关系, 包括带宽、谐振峰值等关键性能指标。两者结合使用,可以全面地理解和改善控制系统的性能。