End-to-End Challenges

End-to-End Challenges

Based basically on a reliable sliding window protocol, but it's challenging!

- Potentially different RTT
 - o need adaptive timeout mechanism
- Potentially long delay in network
 - need to be prepared for arrival of very old packets
- Potentially different buffering at destination
 - need to accommodate different amounts of buffering
- Potentially different network capacity
 - need to be prepared for network congestion

TCP Segment Format

- Demultiplexing; each connection identified with 4-tuple:
 - SrcPort, SrcIPAddr, DstPort, DstIPAddr>
 - o IP addresses obtained from IP layer! MSS,
- Basically, a sliding window operating at byte (not segment) level
 - Acknowledgment, SequenceNum, AdvertisedWindow
 - Piggybacking ACK on data segments destined for sender improves network utilization
- Flags
 - SYN, FIN, RESET, PUSH, URG, ACK

TCP Reliability & Flow Control

- □ Like SR with Explicit Rtx/cumulative ACKs:
 - ostoring out-of-order bytes
 - o using one timer for all unacked bytes
 - o using duplicate ACK to fast retransmit
 - On retransmission, only one segment retransmitted

TCP Reliability & Flow Control

- □ Like SR with Explicit Rtx/cumulative ACKs:
 - ostoring out-of-order bytes
 - o using one timer for all unacked bytes
 - o using duplicate ACK to fast retransmit
 - On retransmission, only one segment retransmitted
- A new version, with SACK option, is more like GBN with selective repeats!
- At sender:
 - o LastByteSent LastByteAcked ≤ AdvertizedWindow
 - o If zero, sender keeps sending 1-byte data segments smark sender dumb receiver

TCP Connection Establishment

Three-Way Handshake

TCP Closing

TCP Closing

Modified Three-Way Handshake

TCP State Transition Diagram

Moltee since