

9	المعامل:	الرياضيات الرياضيات	المــــادة:
4	مدة الإنجاز:	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعب(ة) أو المسلك:

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte trois exercices et un problème tous indépendants deux à deux.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
 - -Le premier exercice se rapporte aux structures algébriques .
 - Le deuxième exercice se rapporte aux nombres complexes .
 - Le troisième exercice se rapporte au calcul des probabilités .
 - -Le problème se rapporte à l'analyse.

Les calculatrices programmables sont strictement interdites.

0.5

0.5

0.5

0.5

0.5

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 1020 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)

Exercice 1 : (3 points)

On rappelle que $(M_3(\Box),+,\times)$ est un anneau unitaire non commutatif.

On considère l'ensemble $E = \left\{ M(x) = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x^2 & 2x & 1 \end{pmatrix} \middle/ x \in \Box \right\}$

- 1) Montrer que E est une partie stable $\operatorname{de}(M_3(\square),\times)$ 0.5
 - 2) a-Montrer que l'application φ qui à tout nombre réel x associe la matrice M(x) est un isomorphisme de $(\Box,+)$ vers (E,\times) .
 - b- en déduire que (E,\times) est un groupe commutatif.
 - c- Pour x réel , déterminer $M^{-1}(x)$ l'inverse de la matrice M(x)
 - d-résoudre dans l'ensemble E l'équation $A^5X = B$ où A = M(2) et B = M(12)

et
$$A^5 = \underbrace{A \times ... \times A}_{5 \text{ fois}}$$

3) Montrer que l'ensemble $F = \{M(\ln(x))/x \in \square^*_+\}$ est sous-groupe $de(E,\times)$

Exercice 2 : (4 points)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$

- 1)On considère dans l'ensemble \Box l'équation : (E) $z^2 4iz 2 + 2i\sqrt{3} = 0$
- 0.5 a- vérifier que le nombre $a = 1 + i(2 - \sqrt{3})$ est une solution de l'équation (E)
- 0.5 b- En déduire b la deuxième solution de l'équation (E)
- 2) a-Montrer que : $a^2 = 4(2 \sqrt{3})e$ 0.5
- 0.75 b- Ecrire a sous forme trigonométrique
 - 3)On considère les points A, B et C dont les affixes sont respectivement a, b et $c = 2i + 2e^{i\frac{\pi}{7}}$ Soit (Γ) le cercle de diamètre AB
- 0.5 a- Déterminer ω , l'affixe du point Ω centre du cercle (Γ)
- 0.5 b- Montrer que les points O et C appartiennent au cercle (Γ)
- c- Montrer que le nombre complexe $\frac{c-a}{c-b}$ est imaginaire pur. 0.75

Exercice 3:(3 points)

Une urne contient 10 boules blanches et deux boules rouges.

On extrait les boules de l'urne 1'une après l'autre et sans remise jusqu'à l'obtention pour la première fois d'une boule blanche, puis on arrête l'expérience.

Soit X la variable aléatoire égale au nombre de boule tirée.

0.25 1) a-Déterminer l'ensemble des valeurs prises par X 0.5 b-calculer la probabilité de l'événement [X=1]

0.5 c-Montrer que :
$$p[X = 2] = \frac{5}{33}$$

- 0.5 d-calculer la probabilité de l'événement [X = 3]
- 2) a-Montrer que l'espérance mathématique de la variable aléatoire X est : $E(X) = \frac{13}{11}$ 0.5
- 0.75 $\text{b-Calculer}\,E\big(X^2\big) \text{ ,et en déduire la valeur de la variance } V\big(X\big) \text{ de la variable aléatoire } X\,.$

Problème: (10 points)

I- On considère la fonction numérique f définie sur l'intervalle I = [0,1] par :

$$\begin{cases} f(x) = \frac{1}{1 - \ln(1 - x)} & ; \quad 0 \le x < 1 \\ f(1) = 0 & \end{cases}$$

 $\operatorname{Soit}(C)$ la courbe représentative de f dans le plan muni d'un repère orthonormé (O; i; j)

- 1)Montrer que f est continue à gauche au point 1. 0.5
- 0.5 2) Etudier la dérivabilité de f à gauche au point 1.
- 3) Etudier les variations de la fonction f sur l'intervalle I puis donner son tableau de variations. 0.75
- 0.5 4)a-Montrer que la courbe (C) admet un point d'inflexion unique d'abscisse $\frac{e-1}{c}$
- b-Construire la courbe (C) en précisant sa demi-tangente au point d'abscisse 0. 0.75 (on prendra $\|\vec{i}\| = \|\vec{j}\| = 2cm$)
- 0.5 5) Montrer qu'il existe un nombre réel unique α de l'intervalle I vérifiant : $f(\alpha) = \alpha$
- 6) a-Montrer que f est une bijection de l'intervalle I vers I0.25
- 0.5 b-Déterminer $f^{-1}(x)$ pour tout x de l'intervalle I.

II-on pose : $I_0 = \int_0^1 f(t)dt$, et pour tout entier naturel n non nul ; $I_n = \int_0^1 t^n f(t)dt$

- 0.75 1) Montrer que la suite $(I_n)_{n\geq 0}$ est décroissante et en déduire qu'elle est convergente.
- 2) Montrer que : $(\forall n \ge 0)$: $0 \le I_n \le \frac{1}{n+1}$, puis déterminer la limite de la suite $(I_n)_{n \ge 0}$ 0.75

III-Pour tout nombre réel x de l'intervalle J = [0;1[et pour tout entier naturel n non nul on pose :

$$F_0(x) = \int_0^x f(t)dt \quad \text{et } F_n(x) = \int_0^x t^n f(t)dt \quad \text{et } F(x) = \int_0^x \frac{f(t)}{1-t}dt \quad \text{et } S_n(x) = \sum_{k=0}^{k=n} F_k(x)$$

0.5 2) a-Montrer que la fonction $x \to (1-x)(1-\ln(1-x))$ est strictement décroissante sur J

4	تحان الوطني الموحد للبكالوريا -الدورة الاستدراكية معه الفرنسية) (أ) و (ب) RS25 (الترجمة الفرنسية)			
5	b-Montrer que la fonction $t \to \frac{f(t)}{1-t}$ est strictement croissante $\sup[0,x]$ pour tout x élément de J 3)a- Montrer que : $(\forall n \in \Box)$ $(\forall x \in J)$ $0 \le F(x) - S_n(x) \le \frac{1}{n+2} \left(\frac{1}{1-x}\right)$			
5	b- En déduire que pour tout x de l'intervalle J on a : $\lim_{n\to+\infty} S_n(x) = F(x)$			
	4) a-Déterminer $F(x)$ pour $x \in J$			
25	b- Déterminer la limite : $\lim_{x \to 1^{-}} F(x)$			
L				