5 Papers

Title	Publication source	
Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)	ASE	
Modeling bug report quality	ASE	
Fault localization with nearest neighbor queries	ASE	
Lightweight fault-localization using multiple coverage types	ICSE	
The Probabilistic Program Dependence Graph and Its Application to Fault Diagnosis	TSE	

Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)

汇报人: 王昭丹

INTRODUCTION

statistics of **program** analysis information

- semantics of the program and/or its execution information
- with test cases

content of a given bug report

- information retrieval (IR) / machine learning (ML)
- extracting important features
- from the given bug report and source files

lexical mismatch between natural language texts in bug reports and technical terms in source code

HyLoc — Key Design Ideas

Bridge lexical gap

Using DNN to bridge the lexical gap.

Two DNNs

Feature combination

Using another DNN for feature combination.

Dimension reduction

Using another DNN to perform dimension reduction for feature vectors.

1

2

3

textual similarity feature computed from rVSM

relevancy feature from the DNNs

metadata features — bug-fixing recency score for a file

Three types of features

HyLoc Model Architecture

Fig. 1: HyLoc Bug Localization Model

DNN-BASED RELEVANCY ESTIMATION

Fig. 2: DNNs for Projection and Relevancy Estimation

Two DNNs

□ Bug Report-to-Code DNN

learn the relations for the text features from bug reports and the source code features

□ Bug Report-to-Text DNN

learn the relations between the textual features in the bug reports and those in comments and API descriptions

Experimental Setting

- Benchmark Dataset: provided by Ye et al.
- For training: text similarity measure; top 300 similar files negative samples
- For prediction: compute the scores and rank all the files in a project.

Three metrics for evaluation

Top-ranked accuracy

Mean Average Precision (MAP)

Mean inverse Rank (MRR)

Sorted the bug reports chronologically by their report **timestamps**.

Divided the bug reports into **10 folds** with equal sizes (fold1 - oldest and fold10 - newest).

Trained a model on **foldi** and **tested** it on **foldi+1**.

Impacts of Components and Parameters on Accuracy

a) Accuracy with Different Components

- DNN by itself does not give high accuracy
- DNN+rVSM > both DNN and rVSM individually

Fig. 3: Top-k Accuracy with Different Components

DNN, rVSM vs. DNN+rVSM Models

Fig. 4: Venn Diagrams for Correct Results of Approaches

b) Examples of Linking Terms in Two Spaces

1. Each of the textual tokens in all bug reports as the **input**.

2. **Paired** it with each of the code tokens in source files and the textual tokens in comments/documentations.

3. **DNN** to compute the score **output** for each of such pairs.

4. Produced **the list of "relevant" tokens** in source files ranked by the relevancy score between two tokens.

c) Feature combination comparison

- compare feature combination by DNN and by learn-to-rank approach
- built another experimental model — I RCombine
- HyLoc higher than LRCombine 22% at top-1 accuracy, at top-5 is 10%

non-linear combination better linear one

TABLE II: Linking Terms in Reports and Terms/Tokens in Files

BR	Token 1	Token 2	Token 3	Token 4
	virtualClasspath globalCacheSize	_	set Secure Class	asyncContext addLocalEjb charsWritten dir

Accuracy Comparison

Compare HyLoc to the stateof-the-art approaches:

- Naive Bayes (NB) approach ML
- LR (learn-to-rank) approach hybrid
- BugLocator —— IR-based

TABLE III: Accuracy Comparison

System	Model	1	2	3	4	5	10	15	20	MRR	MAP
TomCat	HyLoc	51.6	59.6	64.1	68.3	71.0	77.6	82.2	85.6	0.60	0.52
	LR	46.2	54.2	59.8	62.3	66.5	74.7	80.1	82.1	0.55	0.49
	BL	35.5	48.7	52.9	58.7	61.8	71.1	77.3	80.2	0.48	0.43
	NB	5.2	6.9	8.3	8.8	9.0	11.9	14.5	16.6	0.08	0.07
AspectJ	HyLoc	40.9	51.8	58.6	61.7	65.7	75.9	79.9	82.7	0.52	0.32
	LR	20.2	32.1	38.5	41.3	45.5	61.1	68.2	70.9	0.33	0.25
	BL	20.1	30.5	40.1	43.3	47.7	57.0	62.1	67.6	0.32	0.22
	NB	4.2	8.0	11.3	11.7	16.0	21.1	26.3	28.2	0.10	0.07
Birt	HyLoc	19.1	24.8	29.7	33.5	36.0	44.6	51.1	55.4	0.28	0.20
	LR	12.4	18.1	22.5	25.1	27.9	37.3	42.4	46.0	0.20	0.15
	BL	11.1	16.2	20.0	22.4	24.9	32.1	37.0	40.6	0.18	0.14
	NB	2.9	4.7	6.5	7.9	8.7	13.8	15.9	17.6	0.06	0.05
Eclipse	HyLoc	40.3	49.8	55.7	60.4	63.5	72.5	77.3	80.3	0.51	0.41
	LR	36.5	47.0	52.0	58.0	60.1	70.7	75.3	79.1	0.47	0.40
	BL	26.5	34.9	40.3	44.8	49.3	60.1	67.3	70.2	0.37	0.31
	NB	3.8	6.1	8.3	9.6	10.6	14.7	16.8	18.3	0.07	0.06
JDT	HyLoc	33.3	44.1	51.0	55.6	59.0	68.5	73.4	76.7	0.45	0.34
	LR	30.0	40.3	48.2	51.1	55.2	68.1	72.4	77.6	0.42	0.34
	BL	19.1	26.2	31.6	37.4	40.2	51.2	57.7	61.3	0.30	0.23
	NB	6.6	9.7	11.8	13.6	15.0	20.0	22.9	25.2	0.11	0.08
SWT	HyLoc	31.0	42.8	51.9	57.6	62.1	74.2	80.3	84.3	0.45	0.37
	LR	28.3	39.4	47.9	52.7	58.2	70.0	76.8	80.0	0.41	0.36
	BL	19.3	24.5	30.0	34.4	38.3	51.1	58.5	64.4	0.28	0.25
	NB	7.4	11.8	14.9	17.0	19.0	26.9	31.3	35.3	0.14	0.11

Time Efficiency

Training time is large for a solution involving one thread to run DNN.

- Parallel computing infrastructures for DNNs
- Incremental training techniques

Predicting time is reasonable.

TABLE IV: Training and Predicting Time in Minutes

System	Trainin Max	g for one fold Average	Predicting for one report Max			
Tomcat	70	65	1.5	1.0		
AspectJ	70	70	4.1	2.4		
Birt	98	84	4.5	3.1		
Eclipse	120	90	3.8	2.1		
JDT	122	94	4.8	3.3		
SWT	95	83	2.4	1.8		

学习进展&暑期计划

感谢您的聆听

汇报人: 王昭丹

