The Lagrange dual function The Lagrange dual problem Geometric interpretation

Duality (I)

Lecture 9, Convex Optimization

National Taiwan University

May 6, 2021

Table of contents

- The Lagrange dual function
 - The Lagrangian
 - The Lagrange dual function
 - Examples
 - The Lagrange dual function and conjugate functions
- 2 The Lagrange dual problem
 - The Lagrange dual problem
 - Weak Duality
 - Strong duality and Slater's constraint qualification
 - Examples
- Geometric interpretation
 - Weak and strong duality via set of values
 - Proof of Strong Duality
 - Summary

The Lagrangian of an optimization problem (1/2)

 Consider an optimization problem, not necessarily convex, in the standard form:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p,$

with variable $x \in \mathbf{R}^n$, with a nonempty domain

$$\mathcal{D} = \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \cap \left(\bigcap_{i=1}^{p} \operatorname{dom} h_{i}\right),$$

and the optimal value being p^* .

The Lagrangian of an optimization problem (2/2)

• The Lagrangian associated with the problem is defined as $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x),$$

with **dom** $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$.

- We refer to λ_i and ν_i as the Lagrange multiplier associated with the *i*th inequality constraint $f_i(x) \leq 0$ and that with the *i*th equality constraint $h_i(x) = 0$, respectively.
- The vectors λ and ν are called the **dual variables** or Lagrange multiplier vectors associated with the original problem.

The Lagrange dual function

• The Lagrange dual function (or just dual function) is defined as the minimum value of the Lagrangian over x: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ and for $\lambda \in \mathbb{R}^m$, $\nu \in \mathbb{R}^p$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right).$$

- When the Lagrangian is unbounded below in x, the dual function takes on the value $-\infty$.
- The domain of the dual function is set to be

$$\mathbf{dom}\ g = \{(\lambda, \nu) \mid g(\lambda, \nu) > -\infty\}.$$

• The dual function is always concave.

The Dual Function Gives Lower Bounds on Optimal Value

• For any $\lambda \succeq 0$ and any ν we have

$$g(\lambda,\nu)\leq p^*$$
.

• Proof: Suppose \tilde{x} is a feasible point for the original problem, i.e., $f_i(\tilde{x}) \leq 0$ and $h_i(\tilde{x}) = 0$, and $\lambda \succeq 0$. Then we have

$$\sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x}) \leq 0,$$

and therefore

$$L(\tilde{x},\lambda,\nu)=f_0(\tilde{x})+\sum_{i=1}^m\lambda_if_i(\tilde{x})+\sum_{i=1}^p\nu_ih_i(\tilde{x})\leq f_0(\tilde{x}).$$

So, $g(\lambda, \nu) < f_0(\tilde{x})$ holds for every feasible point \tilde{x} .

Example

• A simple problem with $x \in \mathbf{R}$ and one inequality constraint.

- The objective function f_0 : in solid curve.
- The constraint function f_1 : in dashed curve.
- The feasible set = [-0.46, 0.46].
- The optimal point and value: $x^* = -0.46$, $p^* = 1.54$.
- The dotted curves show $L(x, \lambda)$ for $\lambda = 0.1, 0.2, ..., 1.0$.

The Lagrange dual function

• When $g(\lambda, \nu) = -\infty$, the inequality

$$g(\lambda, \nu) \leq p^*$$

holds, but is vacuous.

- The dual function gives a nontrivial lower bound on p^* only when $\lambda \succeq 0$ and $(\lambda, \nu) \in \operatorname{dom} g$, i.e., $g(\lambda, \nu) > -\infty$.
- We refer to a pair (λ, ν) with $\lambda \succeq 0$ and $(\lambda, \nu) \in \operatorname{dom} g$ as dual feasible.

Example

- Left figure: The objective function f_0 : in solid curve. The constraint function f_1 : in dashed curve. Neither f_0 nor f_1 is convex.
- Right figure: The dual function g for the problem in the left figure. It is concave. The horizontal dashed line shows p^* , the optimal value of the problem.

Linear approximation interpretation (1/3)

- The Lagrangian and lower bound property can be given a simple interpretation, based on a linear approximation of the indicator functions of the sets {0} and -R₊ (defined below).
- We rewrite the original problem as an unconstrained problem,

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{i=1}^p I_0(h_i(x)),$$

where $I_-: \mathbf{R} \to \mathbf{R}$ is the indicator function for $-\mathbf{R}_+$, with dom $I_- = -\mathbf{R}_+$ and its extended-value extension being

$$\tilde{I}_{-}(u) = \left\{ \begin{array}{ll} 0 & u \leq 0 \\ \infty & u > 0 \end{array} \right.,$$

and similarly, I_0 is the indicator function of $\{0\}$, with **dom** $I_0 = \{0\}$ and its extended-value extension being

$$\tilde{l}_0(u) = \left\{ egin{array}{ll} 0 & u = 0 \\ \infty & u \neq 0 \end{array} \right.$$

Linear approximation interpretation (2/3)

Now, in the unconstrained problem

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{i=1}^p I_0(h_i(x)),$$

suppose we replace

- the function $I_{-}(u)$ with the linear function $\lambda_i u$, where $\lambda_i \geq 0$,
- and the function $I_0(u)$ with $\nu_i u$.
- Then, the objective becomes the Lagrangian function $L(x,\lambda,\nu)$, and the dual function value $g(\lambda,\nu)$ is the optimal value of the problem

minimize
$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$
.

Linear approximation interpretation (3/3)

- In the above formulation, we use a linear or "soft" displeasure function in place of I_- and I_0 .
- For an inequality constraint (i.e., $f_i(x)$ for some i > 0), our displeasure is zero when $f_i(x) = 0$, and is positive when $f_i(x) > 0$ (assuming $\lambda_i > 0$); our displeasure grows as the constraint becomes "more violated". Further, we derive pleasure from constraints that have margin, i.e., from $f_i(x) < 0$.
- Although such a linear approximation of the indicator function $I_{-}(u)$ is rather poor, it is at least an underestimator of the indicator function.
- Since $\lambda_i u \leq I_-(u)$ and $\nu_i u \leq I_0(u)$ for all u, we see immediately that the dual function yields a lower bound on the optimal value of the original problem.

Least-squares solution of linear equations (1/2)

Consider the problem

minimize
$$x^T x$$

subject to $Ax = b$,

where $A \in \mathbb{R}^{p \times n}$. This problem has no inequality constraints and p (linear) equality constraints.

- The Lagrangian is $L(x, \nu) = x^T x + \nu^T (Ax b)$, with domain $\mathbb{R}^n \times \mathbb{R}^p$.
- The dual function is given by $g(\nu) = \inf_x L(x, \nu)$. Since $L(x, \nu)$ is a convex quadratic function of x, we can find the minimizing x from the optimality condition

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \nu) = 2\mathbf{x} + \mathbf{A}^{\mathsf{T}} \nu = \mathbf{0},$$

which yields $x = -(1/2)A^T \nu$.

Least-squares solution of linear equations (2/2)

• Therefore, the dual function is

$$g(\nu) = L(-(1/2)A^T\nu, \nu) = -(1/4)\nu^T AA^T\nu - b^T\nu,$$

which is a concave quadratic function, with domain \mathbf{R}^p .

The lower bound property

$$g(\lambda, \nu) \leq p^*$$

states that for any $\nu \in \mathbb{R}^p$, we have

$$-(1/4)\nu^T A A^T \nu - b^T \nu \le \inf \left\{ x^T x \mid Ax = b \right\}.$$

Standard form LP (1/2)

• Consider an LP in standard form,

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$,

which has inequality constraint functions $f_i(x) = -x_i, i = 1, ..., n$. Here $A \in \mathbf{R}^{p \times n}$.

The Lagrangian is

$$L(x,\lambda,\nu) = c^T x - \sum_{i=1}^n \lambda_i x_i + \nu^T (Ax - b) = -b^T \nu + (c + A^T \nu - \lambda)^T x.$$

Standard form LP (2/2)

The dual function is

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

$$= -b^{T} \nu + \inf_{x} (c + A^{T} \nu - \lambda)^{T} x$$

$$= \begin{cases} -b^{T} \nu, & A^{T} \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{cases}$$

- Note that the dual function g is finite only on a proper affine subset of $\mathbb{R}^n \times \mathbb{R}^p$.
- The lower bound property $g(\lambda, \nu) \leq p^*$ is nontrivial (i.e., $(\lambda, \nu) \in \operatorname{dom} g$) only when λ and ν satisfy $\lambda \succeq 0$ and $A^T \nu \lambda + c = 0$.
- When this occurs, $-b^T \nu$ is a lower bound on the optimal value of the LP in standard form.

Two-way partitioning problem (1/3)

We consider the (nonconvex) problem

minimize
$$x^T W x$$

subject to $x_i^2 = 1, i = 1, ..., n$,

where $W \in \mathbf{S}^n$.

- The constraints restrict the values of x_i to 1 or −1, so the problem is equivalent to finding the vector x with components ±1 that minimizes x^T Wx.
- The feasible set here is finite (it contains 2^n points), so this problem can in principle be solved by simply checking the objective value of each feasible point.
 - However, for a large n, it is very difficult to solve.
- We can interpret the problem as a two-way partitioning problem on a set of n elements, say, $\{1, ..., n\}$: A feasible x corresponds to the partition

$$\{1,...,n\} = \{i \mid x_i = -1\} \bigcup \{i \mid x_i = 1\}.$$

Two-way partitioning problem (2/3)

• The Lagrangian is

$$L(x, \nu) = x^T W x + \sum_{i=1}^n \nu_i (x_i^2 - 1) = x^T (W + \text{diag } (\nu)) x - \mathbf{1}^T \nu.$$

We obtain the Lagrange dual function by minimizing over x:

$$g(\nu) = \inf_{x} x^{T} (W + \operatorname{diag}(\nu)) x - \mathbf{1}^{T} \nu$$
$$= \begin{cases} -\mathbf{1}^{T} \nu, & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty, & \text{otherwise} \end{cases}$$

where we use the fact that the infimum of a quadratic form $u^T A u$ is either zero (if $A \succeq 0$) or $-\infty$ (if $A \not\succeq 0$).

Two-way partitioning problem (3/3)

This dual function

$$g(\nu) = \begin{cases} -\mathbf{1}^T \nu, & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty, & \text{otherwise} \end{cases}$$

provides lower bounds on the optimal value of the two-way partitioning problem.

• For example, we can take the specific value of the dual variable $\nu = -\lambda_{min}(W)\mathbf{1}$, which is dual feasible, since

$$W + \operatorname{diag}(\nu) = W - \lambda_{min}(W)I \succeq 0.$$

This yields the bound on the optimal value p^*

$$p^* \geq -\mathbf{1}^T \nu = n \lambda_{min}(W).$$

The Lagrange dual function and conjugate functions (1/2)

• Recall that the conjugate f^* of a function $f: \mathbf{R}^n \to \mathbf{R}$ is given by

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^T x - f(x) \right).$$

• The conjugate function and Lagrange dual function are closely related. As a simple example, consider the trivial problem

minimize
$$f(x)$$

subject to $x = 0$.

• This problem has Lagrangian $L(x, \nu) = f(x) + \nu^T x$, and dual function

$$g(\nu) = \inf_{x} \left(f(x) + \nu^{T} x \right) = -\sup_{x} \left((-\nu)^{T} x - f(x) \right) = -f^{*}(-\nu),$$

with **dom** $g = -\mathbf{dom} \ f^*$.

The Lagrange dual function and conjugate functions (2/2)

 More generally, consider an optimization problem with linear inequality and equality constraints,

minimize
$$f_0(x)$$

subject to $Ax \leq b$
 $Cx = d$.

• Using the conjugate of f_0 we can write the dual function for the problem as

$$g(\lambda, \nu) = \inf_{x} \left(f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d) \right)$$

= $-b^T \lambda - d^T \nu + \inf_{x} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x \right)$
= $-b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu).$

• The domain of g follows from the domain of f_0^* :

$$\mathbf{dom}\ g = \{(\lambda, \nu) \mid -A^T \lambda - C^T \nu \in \mathbf{dom}\ f_0^* \}.$$

Example – Equality constrained norm minimization

Consider the problem

minimize
$$||x||_2$$
 subject to $Ax = b$.

• The conjugate of $f_0 = ||\cdot||_2$ is given by

$$f_0^*(y) = \left\{ egin{array}{ll} 0, & ||y||_2 \leq 1 \ \infty, & ext{otherwise} \end{array}
ight..$$

• The dual function for the problem is given by

$$g(\nu) = -b^T \nu - f_0^*(-A^T \nu) = \begin{cases} -b^T \nu, & ||A^T \nu||_2 \le 1 \\ -\infty, & \text{otherwise} \end{cases}.$$

The Lagrange dual problem (1/2)

• For each pair (λ, ν) with $\lambda \succeq 0$, the Lagrange dual function $g(\lambda, \nu)$ gives us a lower bound on the optimal value p^* of the optimization problem (called the **primal problem**)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1,...,m$
 $h_i(x) = 0, i = 1,...,p.$

 The Lagrange dual problem associated with the original problem, defined as

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succ 0$.

would give the best lower bound that can be obtained from the Lagrange dual function.

The Lagrange dual problem (2/2)

- We use the term **dual feasible** to describe a pair (λ, ν) with $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$.
- We refer to (λ^*, ν^*) as **dual optimal** or optimal Lagrange multipliers if they are optimal for the dual problem.
- The Lagrange dual problem is a convex optimization problem, since the objective to be maximized is concave and the constraint is convex, regardless of the convexity of the primal problem.

Making dual constraints explicit

It is not uncommon for the domain of the dual function,

$$\mathbf{dom}\ g = \{(\lambda, \nu) \mid g(\lambda, \nu) > -\infty\},\$$

to have an affine dimension smaller than m + p.

 In many cases we can identify the affine hull of dom g, and describe it as a set of linear equality constraints. This means we can identify the equality constraints that are 'hidden' or 'implicit' in the objective g of the dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$.

• In this case we can form an equivalent problem, in which these equality constraints are given explicitly as constraints.

Example – Lagrange dual of standard form LP (1/2)

The Lagrange dual function for the standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$

is given by

$$g(\lambda, \nu) = \begin{cases} -b^T \nu, & A^T \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise.} \end{cases}$$

• Strictly speaking, the Lagrange dual problem of the standard form LP is to maximize this dual function g subject to $\lambda \succeq 0$:

$$\begin{array}{ll} \text{maximize} & g(\lambda,\nu) = \left\{ \begin{array}{ll} -b^T \nu, & A^T \nu - \lambda + c = 0 \\ -\infty, & \text{otherwise} \end{array} \right. \\ \text{subject to} & \lambda \succeq 0. \end{array}$$

Example – Lagrange dual of standard form LP (2/2)

• Here g is finite only when $A^T \nu - \lambda + c = 0$. So the Lagrange dual problem is equivalent to (but not the same as)

maximize
$$-b^T \nu$$
 subject to $A^T \nu - \lambda + c = 0$ $\lambda \succeq 0$.

• This problem, in turn, can be expressed as

maximize
$$-b^T \nu$$

subject to $A^T \nu + c \succ 0$,

which is an LP in inequality form.

 With some abuse of terminology, the above two problems are also referred to as the Lagrange dual of the standard form LP.

Example – Lagrange dual of inequality form LP (1/2)

 Conversely, let's find the Lagrange dual problem of an LP in inequality form

minimize
$$c^T x$$

subject to $Ax \leq b$.

The Lagrangian is

$$L(x,\lambda) = c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(Ax - b) = -b^{\mathsf{T}}\lambda + (A^{\mathsf{T}}\lambda + c)^{\mathsf{T}}x,$$

so the dual function is

$$g(\lambda) = \inf_{x} L(x, \lambda) = -b^{T}\lambda + \inf_{x} (A^{T}\lambda + c)^{T}x.$$

• The infimum of a linear function is $-\infty$, except in the special case when it is identically zero, so the dual function is

$$g(\lambda) = \begin{cases} -b^T \lambda, & A^T \lambda + c = 0 \\ -\infty, & \text{otherwise.} \end{cases}$$

Example – Lagrange dual of inequality form LP (2/2)

- The dual variable λ is dual feasible if $\lambda \succeq 0$ and $A^T \lambda + c = 0$.
- So, the dual problem can be written as

which is an LP in standard form.

 Note that the dual of a standard form LP is an inequality form LP (i.e., LP with only inequality constraints), and vice versa.

Weak Duality (1/3)

- The optimal value of the Lagrange dual problem, which we denote d^* , is the best lower bound on p^* that can be obtained from the Lagrange dual function.
- Therefore, we have the simple but important inequality

$$d^* \leq p^*$$
,

which holds even if the original problem is not convex. This property is called **weak duality**.

- The weak duality inequality holds even when d* and p* are infinite.
 - For example, if the primal problem is unbounded below, so that $p^*=-\infty$, we must have $d^*=-\infty$, i.e., the Lagrange dual problem is infeasible.
 - Conversely, if the dual problem is unbounded above, so that $d^*=\infty$, we must have $p^*=\infty$, i.e., the primal problem is infeasible.

Weak Duality (2/3)

- The difference $p^* d^*$ is called the **optimal duality gap** of the original problem, which is always nonnegative.
- The bound can sometimes be used to find a lower bound on the optimal value of a problem that is difficult to solve, since the dual problem is always convex, and in many cases can be solved efficiently, to find d^* .
 - As an example, consider the two-way partitioning problem

minimize
$$x^T W x$$

subject to $x_i^2 = 1, i = 1, ..., n$,

where $W \in \mathbf{S}^n$.

• The dual problem is a semidefinite program (SDP),

$$\begin{array}{ll} \mathsf{maximize} & -\mathbf{1}^{\mathsf{T}} \nu \\ \mathsf{subject to} & W + \mathsf{diag} \ (\nu) \succeq 0, \end{array}$$

with variable $\nu \in \mathbf{R}^n$.

Weak Duality (3/3)

- This problem can be solved efficiently, even for relatively large values of n, such as n = 1000.
- The optimal value of the dual problem

is a lower bound on the optimal value of the two-way partitioning problem, and is always at least as good as the lower bound given as

$$p^* \geq d^* \geq n\lambda_{min}(W)$$
.

Strong duality

- If the equality $d^* = p^*$ holds, i.e., the optimal duality gap is zero, then we say that **strong duality** holds.
- This means that the best bound that can be obtained from the Lagrange dual function is tight.
- Strong duality does not always hold. But if the primal problem is convex, i.e., of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $Ax = b.$

with $f_0, ..., f_m$ convex, we usually (but not always) have strong duality.

Slater's Condition

Slater's Condition

Consider a convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1,..., m$
 $Ax = b,$

with the domain $\mathcal{D} = (\bigcap_{i=0}^m \operatorname{dom} f_i) \subseteq \mathbf{R}^n$. The problem is said to satisfy the **Slater's condition** if there exists an $x \in \operatorname{relint} \mathcal{D} \subseteq \mathbf{R}^n$ such that

$$f_i(x) < 0, i = 1, ..., m, Ax = b.$$

Such a point is sometimes called strictly feasible.

Slater's Theorem

Slater's Condition

A convex optimization problem is said to satisfy the **Slater's** condition if there exists an $x \in \text{relint } \mathcal{D} \subseteq \mathbb{R}^n$ such that

$$f_i(x) < 0, i = 1, ..., m, Ax = b.$$

Such a point is sometimes called strictly feasible.

Slater's Theorem

If the problem is convex and Slater's condition holds, then the strong duality holds.

Refined Slater's Condition

• Slater's condition can be refined when some of the inequality constraint functions f_i are affine.

Refined (Weaker) Slater's Condition

Suppose the first k constraint functions $f_1,...,f_k$ are affine in an optimization problem. Then the problem is said to satisfy the **refined** (weak) Slater's condition if there exists an $x \in \text{relint } \mathcal{D} \subseteq \mathbb{R}^n$ such that

$$f_i(x) \leq 0, i = 1, ..., k,$$

$$f_i(x) < 0, i = k + 1, ..., m, Ax = b.$$

(Refined) Slater's Theorem

If the problem is convex and the refined Slater's condition holds, then the strong duality holds.

Strong duality and Slater's Condition

- Note that the refined (weaker) Slater's condition reduces to feasibility when
 - the constraints are all linear equalities and inequalities, and,
 - **dom** f_0 is open.
- Slater's condition not only implies strong duality for convex problems. It also implies that the dual optimal value is attained when $d^* > -\infty$, i.e., there exists a dual feasible (λ^*, ν^*) with $g(\lambda^*, \nu^*) = d^* = p^*$.
- We will prove later on that strong duality obtains when the primal problem is convex and Slater's condition holds.

Examples – Least-squares solution for linear equations

• Recall the least-squares problem

minimize
$$x^T x$$

subject to $Ax = b$,

whose associated dual problem is

maximize
$$-(1/4)\nu^T A A^T \nu - b^T \nu$$
,

an unconstrained concave quadratic maximization problem.

• We always have strong duality. Slater's condition is simply that the primal problem is feasible, so $p^* = d^*$ provided $b \in \mathcal{R}(A)$, i.e., $p^* < \infty$.

Lagrange dual of LP

- By the weaker form of Slater's condition, we find that strong duality holds for any LP (in standard or inequality form) provided the primal problem is feasible (i.e., $p^* < \infty$).
- Applying this result to the dual problem, we conclude that strong duality holds for LPs if the dual problem is feasible (i.e., $d^* > -\infty$).
- This leaves only one possible situation in which strong duality for LPs can fail: both the primal and dual problems are infeasible.
 - Example:

$$\begin{array}{ll} \text{minimize} & x \\ \text{subject to} & \left[\begin{array}{c} 0 \\ 1 \end{array} \right] x \preceq \left[\begin{array}{c} -1 \\ 1 \end{array} \right].$$

Lagrange dual of QCQP (1/2)

We consider the QCQP

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, i = 1, ..., m,$

with $P_0 \in \mathbf{S}_{++}^n$, and $P_i \in \mathbf{S}_{+}^n$, i = 1, ..., m.

The Lagrangian is

$$L(x,\lambda) = (1/2)x^T P(\lambda)x + q(\lambda)^T x + r(\lambda),$$

where

$$P(\lambda) = P_0 + \sum_{i=1}^m \lambda_i P_i, \quad q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i, \quad r(\lambda) = r_0 + \sum_{i=1}^m \lambda_i r_i.$$

Lagrange dual of QCQP (2/2)

• If $\lambda \succeq 0$, we have $P(\lambda) \succ 0$ and the dual function can be written as

$$g(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda) = -(1/2)q(\lambda)^{\mathsf{T}} P(\lambda)^{-1} q(\lambda) + r(\lambda).$$

We can therefore express the dual problem as

maximize
$$-(1/2)q(\lambda)^T P(\lambda)^{-1}q(\lambda) + r(\lambda)$$
 subject to $\lambda \succeq 0$.

 The Slater's condition says that strong duality holds if the quadratic inequality constraints are strictly feasible, i.e., there exists an x with

$$(1/2)x^T P_i x + q_i^T x + r_i < 0, i = 1, ..., m.$$

Lagrange Dual of Inequality-form SDP

Consider the inequality-form SDP

minimize
$$c^T x$$

subject to $x_1 A_1 + \cdots + x_n A_n \leq B$,

with variable $x \in \mathbf{R}^n$, and parameters $B, A_1, ..., A_n \in \mathbf{S}^k$, $c \in \mathbf{R}^n$.

• What is the Lagrange dual problem of the problem above?

Weak and strong duality via set of values (1/5)

In this section, we will prove a special case of the Slater's theorem via a geometric interpretation of optimization problems.

• We first consider any given optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1,...,m$
 $h_i(x) = 0, i = 1,...,p.$

For this problem, we define the set

$$\mathcal{G} = \{(f_1(x), ..., f_m(x), h_1(x), ..., h_p(x), f_0(x)) \in \mathbf{R}^m \times \mathbf{R}^p \times \mathbf{R} \mid x \in \mathcal{D}\}.$$

• Then, the optimal value p^* of the problem is easily expressed in terms of $\mathcal G$ as

$$p^* = \inf \{ t \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0 \}.$$

Weak and strong duality via set of values (2/5)

• The value of the dual function at (λ, ν) can be written as

$$g(\lambda, \nu) = \inf \left\{ (\lambda, \nu, 1)^T (u, v, t) \mid (u, v, t) \in \mathcal{G} \right\}$$

by minimizing the affine function

$$(\lambda, \nu, 1)^T(u, v, t) = \sum_{i=1}^m \lambda_i u_i + \sum_{i=1}^p \nu_i v_i + t$$

over $(u, v, t) \in \mathcal{G}$.

 In particular, we see that if the infimum is finite, then the inequality

$$(\lambda, \nu, 1)^T (u, v, t) \ge g(\lambda, \nu)$$

defines a supporting hyperplane to \mathcal{G} . This is sometimes referred to as a nonvertical supporting hyperplane, because the last component of the normal vector is nonzero.

Weak and strong duality via set of values (3/5)

- Now suppose $\lambda \succeq 0$. Then, $t \geq (\lambda, \nu, 1)^T (u, v, t)$ if $u \leq 0$ and v = 0.
- Therefore,

$$\begin{split} \rho^* &= \inf \left\{ t \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0 \right\} \\ &\geq \inf \left\{ (\lambda, \nu, 1)^T (u, v, t) \mid (u, v, t) \in \mathcal{G}, u \leq 0, v = 0 \right\} \\ &\geq \inf \left\{ (\lambda, \nu, 1)^T (u, v, t) \mid (u, v, t) \in \mathcal{G} \right\} \\ &= g(\lambda, \nu), \end{split}$$

i.e., we have weak duality.

Weak and strong duality via set of values (4/5)

- Consider a problem with one (inequality) constraint. Given λ , we minimize $(\lambda, 1)^T(u, t)$ over $\mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$.
- This yields a supporting hyperplane with slope $-\lambda$. The intersection of this hyperplane with the u=0 axis gives $g(\lambda)$.

Weak and strong duality via set of values (5/5)

• The figure below depicts supporting hyperplanes corresponding to three dual feasible values of λ , including the optimum λ^* . Strong duality does not hold; the optimal duality gap $p^* - d^*$ is positive.

Epigraph variation (1/3)

• We define the set $\mathcal{A} \subseteq \mathbf{R}^m \times \mathbf{R}^p \times \mathbf{R}$ as

$$\mathcal{A} = \mathcal{G} + (\mathbf{R}_{+}^{m} \times \{0\} \times \mathbf{R}_{+})
= \{(u, v, t) \mid \exists x \in \mathcal{D}, f_{i}(x) \leq u_{i}, i = 1, ..., m,
h_{i}(x) = v_{i}, i = 1, ..., p, f_{0}(x) \leq t\}.$$

ullet The set ${\cal A}$ is considered as an epigraph-like form of ${\cal G}$.

Epigraph variation (2/3)

ullet We can express the optimal value in terms of ${\cal A}$ as

$$p^* = \inf\{t \mid (0,0,t) \in A\}.$$

• The dual function at a point (λ, ν) with $\lambda \succeq 0$ is

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda, \nu) = \inf \left\{ (\lambda, \nu, 1)^T (u, v, t) \mid (u, v, t) \in \mathcal{A} \right\}.$$

Epigraph variation (3/3)

• If $g(\lambda, \nu)$ is finite, then

$$(\lambda, \nu, 1)^T (u, v, t) \ge g(\lambda, \nu)$$

defines a nonvertical supporting hyperplane to A.

• In particular, since $(0,0,p^*) \in \mathbf{bd} \ \mathcal{A}$, we have

$$p^* = (\lambda, \nu, 1)^T (0, 0, p^*) \ge g(\lambda, \nu),$$

the weak duality lower bound.

• Strong duality holds if and only if the equality holds for some dual feasible (λ, ν) .

Strong Duality Under Slater's Constraint Qualification

• We want to prove that Slater's constraint qualification, i.e., there exists an $\tilde{x} \in \mathbf{relint} \ \mathcal{D}$ such that

$$f_i(\tilde{x}) < 0, \quad i = 1, ..., m, \quad A\tilde{x} = b,$$

guarantees strong duality (and that the dual optimum is attained) for a convex problem.

- The following assumptions are made to simplify the proof:
 - \mathcal{D} has nonempty interior (hence, **relint** $\mathcal{D} = \text{int } \mathcal{D}$).
 - rank A = p. (Note that $A \in \mathbb{R}^{p \times n}$.)
 - p^* is finite. (Since there is a feasible point, we can only have $p^* = -\infty$ or p^* finite; if $p^* = -\infty$, then $d^* = -\infty$ by weak duality.)

The Proof (1/5)

 \bullet The set \mathcal{A} defined as

$$\mathcal{A} = \mathcal{G} + \left(\mathbf{R}_{+}^{m} \times \{0\} \times \mathbf{R}_{+} \right)$$

is convex if the underlying problem is convex.

- Proof idea: Any two points in \mathcal{A} can be expressed as $(f(x_1) + r_1, h(x_1), f_0(x_1) + s_1)$ and $(f(x_2) + r_2, h(x_2), f_0(x_2) + s_2)$, where $f: \mathbf{R}^n \to \mathbf{R}^m$ with its ith component being $f_i(x)$ (convex) and $h: \mathbf{R}^n \to \mathbf{R}^p$ with its ith component being $h_i(x)$ (affine), and $r_1, r_2 \succeq 0, s_1, s_2 \geq 0$.
- ullet We define a second convex set ${\cal B}$ as

$$\mathcal{B} = \{(0,0,s) \in \mathbf{R}^m \times \mathbf{R}^p \times \mathbf{R} \mid s < p^*\}.$$

• We have that $\mathcal{A} \cap \mathcal{B} = \phi$.

The Proof (2/5)

- To see that $A \cap B = \phi$, suppose $(u, v, t) \in A \cap B$. Since $(u, v, t) \in B$ we have u = 0, v = 0, and $t < p^*$.
- Since $(u, v, t) \in \mathcal{A}$, there exists an $x \in \mathcal{D}$ with $f_i(x) \le u_i = 0, i = 1, ..., m, Ax b = v = 0$, and $f_0(x) \le t < p^*$, which is impossible since p^* is the optimal value of the primal problem.

The Proof (3/5)

• By the separating hyperplane theorem, there exists $(\tilde{\lambda}, \tilde{\nu}, \mu) \neq 0$ and α such that

$$(u, v, t) \in \mathcal{A} \Longrightarrow \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \ge \alpha,$$

and

$$(u, v, t) \in \mathcal{B} \Longrightarrow \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t \leq \alpha.$$

- The first condition implies that $\tilde{\lambda} \succeq 0$ and $\mu \geq 0$.
- The second condition means that $\mu t \leq \alpha$ for all $t < p^*$, and hence, $\mu p^* \leq \alpha$ (Hint: suppose the otherwise: $\mu p^* \leq \alpha$ is wrong, then some contradiction can be found).
- Therefore, we conclude that for any $x \in \mathcal{D}$,

$$\sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(x) + \tilde{\nu}^{T} (Ax - b) + \mu f_{0}(x) \geq \alpha \geq \mu p^{*}.$$

The Proof (4/5)

• For any $x \in \mathcal{D}$,

$$\sum_{i=1}^{m} \tilde{\lambda}_i f_i(x) + \tilde{\nu}^{T} (Ax - b) + \mu f_0(x) \geq \alpha \geq \mu p^*.$$

• Assume that $\mu > 0$. Then

$$\mu L(x, \tilde{\lambda}/\mu, \tilde{\nu}/\mu) = \sum_{i=1}^{m} \tilde{\lambda}_{i} f_{i}(x) + \tilde{\nu}^{T} (Ax - b) + \mu f_{0}(x) \geq \mu p^{*}$$

for all $x \in \mathcal{D}$, from which it follows, by minimizing over x, that $g(\lambda, \nu) \ge p^*$, where we define $\lambda = \tilde{\lambda}/\mu, \nu = \tilde{\nu}/\mu$.

• By weak duality we have $g(\lambda, \nu) \leq p^*$, so in fact $g(\lambda, \nu) = p^*$. This shows that strong duality holds, and that the dual optimum is attained, when $\mu > 0$.

The Proof (5/5)

• Now consider the case $\mu = 0$. We have that for all $x \in \mathcal{D}$,

$$\sum_{i=1}^m \tilde{\lambda}_i f_i(x) + \tilde{\nu}^T (Ax - b) \ge 0.$$

ullet For any point \tilde{x} that satisfies the Slater's condition, we have

$$\sum_{i=1}^m \tilde{\lambda}_i f_i(\tilde{x}) \geq 0.$$

- Since $f_i(\tilde{x}) < 0$ and $\tilde{\lambda}_i \ge 0$, we obtain that $\tilde{\lambda} = 0$. Since $\tilde{\lambda} = 0$, $\mu = 0$ but $(\tilde{\lambda}, \tilde{\nu}, \mu) \ne 0$, we conclude that $\tilde{\nu} \ne 0$.
- Then we have that for all $x \in \mathcal{D}$, $\tilde{\nu}^T(Ax b) \ge 0$.
 - But \tilde{x} satisfies $\tilde{v}^T(A\tilde{x}-b)=0$, and since $\tilde{x}\in \operatorname{int}\mathcal{D}$, there are points in \mathcal{D} with $\tilde{v}^T(Ax-b)<0$ unless $A^T\tilde{v}=0$. This contradicts the assumption that rank A=p.

Geometric idea behind the proof

- The above figure illustrates a simple problem with one inequality constraint.
- The hyperplane separating \mathcal{A} and \mathcal{B} defines a supporting hyperplane to \mathcal{A} at $(0, p^*)$.
- Slater's constraint qualification is used to establish that the hyperplane must be nonvertical (i.e., has a normal vector of the form $(\lambda^*, 1)$).

An example in which Slater's condition does not hold

Consider the optimization problem

minimize
$$e^{-x}$$

subject to $x^2/y \le 0$

with variables x and y, and domain $\mathcal{D} = \{(x, y) \mid y > 0\}$.

- It is a convex optimization problem with the optimal value 1.
- Slater's condition does not hold for this problem since there does not exist $(x, y) \in \text{int } \mathcal{D} \text{ s.t. } x^2/y < 0.$
- The Lagrange dual function is

$$g(\lambda) = \inf_{x,y} L(x,y,\lambda) = \inf_{x,y} \left(e^{-x} + \lambda (x^2/y) \right) = \begin{cases} 0, & \lambda \ge 0 \\ -\infty, & \lambda < 0 \end{cases}.$$

- The optimal solution and optimal value of the dual problem is $\lambda^* \in [0, \infty)$ and $d^* = 0$, respectively.
- The optimal duality gap is $p^* d^* = 1$.

Summary of dual problems and Slater's condition

- Given an optimization problem (convex or nonconvex) with an optimal value p^* , we defined
 - The Lagrangian $L(x, \lambda, \nu)$.
 - The dual function $g(\lambda, \nu)$.
 - The dual problem.
- Weak duality: The optimal value of the dual problem is always a lower bound of the optimal value of the primal problem: d* ≤ p*.
- Strong duality: When certain conditions are met, we will have $d^* = p^*$. A sufficient (but not necessary) condition for strong duality is
 - The primal problem is convex.
 - The primal problem meets the Slater's condition.