Math 31AH: Fall 2021 Homework 7 Due 5:00pm on Friday 11/19/2021

Problem 1: General Projections. Let \mathbb{F} be an arbitrary field and let V be an \mathbb{F} -vector space. A linear projection $P:V\to V$ is a projection if $P\circ P=P$. If $P:V\to V$ is a projection, prove that $V=\operatorname{Image} P\oplus\operatorname{Ker} P$.

Problem 2: Trace. The *trace* of an $n \times n$ matrix $A = (a_{ij})$ is

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}$$

If A, B are $n \times n$, prove that tr(AB) = tr(BA). Deduce that

- (1) Similar matrices have the same trace.
- (2) If A is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_r$, then

$$\operatorname{tr}(A) = \dim E_{\lambda_1} \cdot \lambda_1 + \dots + \dim E_{\lambda_r} \cdot \lambda_r$$

You will learn the full importance of trace when you take representation theory.

Problem 3: Projections and trace. Let $P: V \to V$ be a projection, where V is a finite-dimensional vector space over an arbitrary field \mathbb{F} . We define $\operatorname{tr}(P)$, the trace of P, as follows. Given an ordered basis \mathcal{B} of V we set

$$\operatorname{tr}(P) := \operatorname{tr}[P]_{\mathcal{B}}^{\mathcal{B}}.$$

- (1) Show that $\operatorname{tr}(P)$ is well-defined (i.e. independent of the choice of \mathcal{B}). Your proof should work for any linear map $V \to V$, not just a projection.
- (2) Prove that $tr(P) = \dim Image(P)$.

Problem 4: Polynomial Gram-Schmidt. Let V_3 be the vector space of polynomials of degree ≤ 3 and coefficients in \mathbb{R} . Endow V_3 with the inner product

$$\langle f(t), g(t) \rangle := \int_{-1}^{1} f(t)g(t)dt$$

The basis $\mathcal{B} = (1, t, t^2, t^3)$ of V_3 is not orthonormal. Apply Gram-Schmidt orthogonalization to \mathcal{B} to get an orthonormal basis $\mathcal{C} = (f_0, f_1, f_2, f_3)$ of V_3 .

Problem 5: Legendre Polynomials. Let V be the infinite-dimensional vector space of polynomials with real coefficients. Endow V with the

inner product

$$\langle f(t), g(t) \rangle := \int_{-1}^{1} f(t)g(t)dt$$

For $n \geq 0$, let $P_n(t)$ be the Legendre polynomial defined by

$$P_n(t) := \frac{1}{2^n \cdot n!} \frac{d^n}{dt^n} (t^2 - 1)^n$$

Prove that $\langle P_n(t), P_m(t) \rangle = 0$ for $n \neq m$. (Hint: Integration by parts.)

Problem 6: Inner products and dual spaces. Let V be a finite-dimensional inner product space over \mathbb{F} . Given a fixed vector $\mathbf{v} \in V$, we have two functions

$$\varphi_{\mathbf{v}}: V \to \mathbb{F} \qquad \psi_{\mathbf{v}}: V \to \mathbb{F}$$

given by $\varphi_{\mathbf{v}}(\mathbf{w}) := \langle \mathbf{v}, \mathbf{w} \rangle$ and $\psi_{\mathbf{v}}(\mathbf{w}) := \langle \mathbf{w}, \mathbf{v} \rangle$.

When $\mathbb{F} = \mathbb{R}$, prove that that we have well-defined maps

$$\varphi: V \to V^* \qquad \psi: V \to V^*$$

given by $\varphi(\mathbf{v}) := \varphi_{\mathbf{v}}$ and $\psi(\mathbf{v}) := \psi_{\mathbf{v}}$ which are both isomorphisms. What happens when $\mathbb{F} = \mathbb{C}$?

Problem 7: Matrices and Inner Products. Let $V = \mathbb{R}^n$ and let A be an $n \times n$ real matrix. Define a function

$$\langle -, - \rangle : V \times V \to \mathbb{R}$$

by the rule

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^T A^T A \mathbf{w}$$

Prove that $\langle -, - \rangle$ is an inner product on \mathbb{R}^n if and only if A is invertible.

Problem 8: Symmetric and Orthogonal. Consider the \mathbb{R} -vector space M_n of $n \times n$ real matrices. We have two subsets

$$S \subseteq M_n$$
 and $O \subseteq M_n$

consisting of symmetric (i.e. $A = A^T$) and orthogonal (i.e. $AA^T = I_n$) operators.

Which (if either) of S and O forms an \mathbb{R} -vector space? If either of them do, find their dimension.

Problem 9: (Optional; not to be handed in.) Let V be the infinite-dimensional vector space of continuous functions $[-\pi, \pi] \to \mathbb{R}$ which are **even**, i.e. f(x) = f(-x) for all x. For any integer $n \geq 0$, define a function

$$f_n(x) := c_n \cos(nx)$$

where $c_n \in \mathbb{R}$ is a to-be-determined constant. Endow V with the inner product

 $\langle f,g\rangle:=\int_{-\pi}^{\pi}f(x)g(x)dx$ Prove that $\langle f_n,f_m\rangle=0$ for $n\neq m$. Find values of c_n so that $\{f_0,f_1,f_2,\dots\}$ is orthonormal.