

Contenido

INTR	ODUCCIÓN	3
MAT	ERIALES UTILIZADOS	4
	o Pantalla LCD Modulo Verde Indicadores 2 x 16 caracteres para Arduino	4
•	 SODIAL(R) Modulo MPU-6050 de 3 ejes giroscopio + 3 Modulo Acelerómetro GY-521 Eje pa Arduino 	
	o ALITOVE For Arduino WS2812B LED Rainbow Matrix 16x16 256 Pixels	4
	o Pedales (2 Potenciómetros)	5
	o 830 Protoboard Placa Breadboard PCB Circuito Sin Soldadura MB -102	5
	o Cables Puente para Placas Prototipo (Protoboard) para Arduino, Kit de Cables para Arduino	5
(o WINGONEER MB102 Tablero 3.3V/5V la fuente de alimentación del módulo 3.3V/5V para A	
	o POWERBANK	6
	o BUZZER	6
ESQl	JEMA DE CONEXIONES	8
EXPL	ICACIÓN DEL CÓDIGO	9
•	Declaración de objetos:	9
•	Funciones:	10
0	void movimiento(monstruo *m)	10
0	void imprimirMonstruo(monstruo m)	10
0	void imprimirBalas()	11
0	int detectarColision(int x, int y, monstruo m)	11
0	void moverBalas()	11
0	int main()	12
INICI	IALIZACION DE COMPONENTES:	13
FUN	CIOAMIENTO DEL JUEGO	14

INTRODUCCIÓN

Hemos creado un juego basado en el juego clásico de "SPACE INVADERS" el cual consiste en manejar una nave espacial y disparar a unos alienígenas.

Los alienígenas son de diferentes colores y tamaños, descienden desde la parte de arriba de la matriz de led hacia abajo y nosotros debemos de dispararle para eliminarlos.

Cada monstruo según su velocidad y tipo nos da una puntuación u otra al matarlo.

El juego termina cuando un alienígena nos toca.

El jugador interactúa con el juego de la siguiente forma:

- o Pedal izquierdo: Para disparar.
- o Pedal derecho: Para subir y bajar.
- Volante: Derecha e izquierda para movernos e intentar esquivar a los alienígenas.

MATERIALES UTILIZADOS

Pantalla LCD Modulo Verde Indicadores 2 x 16 caracteres para Arduino

- Uso: La usamos para mostrar datos:
 - o Al comienzo mostramos el proceso de calibración.
 - o Durante el juego mostramos la puntuación.
 - o Al final muestra "GAME OVER".

SODIAL(R) Modulo MPU-6050 de 3 ejes giroscopio + 3 Modulo Acelerómetro GY-521 Eje para Arduino

- Uso:
 - o Calculamos los grados de inclinación del volante.
 - En función de los grados calculados con el giroscopio, nos movemos en el eje X de la matriz de leds.

ALITOVE For Arduino WS2812B LED Rainbow Matrix 16x16 256 Pixels

- Uso:
 - o Mostrar jugador.
 - o Mostrar enemigos.
 - Mostrar disparos.

Pedales (2 Potenciómetros)

- Uso:
 - o El pedal izquierdo lo usamos para disparar.
 - El pedal derecho lo usamos para movernos en el eje Y.

830 Protoboard Placa Breadboard PCB Circuito Sin Soldadura MB -102

- Uso:
 - o Para hacer las conexiones necesarias.

Cables Puente para Placas Prototipo (Protoboard) para Arduino, Kit de Cables para Arduino

- Uso:
 - o Para hacer las conexiones necesarias.

WINGONEER MB102 Tablero 3.3V/5V la fuente de alimentación del módulo 3.3V/5V para Arduino

- Uso:
 - o Para alimentar la matriz de leds.

POWERBANK

- Uso:
 - o Para alimentar la PSOC 5.

BUZZER

- Uso:
 - o Pitido corto cuando matamos a un monstruo.
 - o Pitido largo cuando matan al personaje.

Esquema de conexiones fritzing

EXPLICACIÓN DEL CÓDIGO

• Declaración de objetos:

Los monstruos los vamos a representar con un struct que contienen:

```
    int posx; //Representa la coordenada x donde se encuentra
    int posy; //Representa la coordenada y donde se encuentra
    int tipo; //Representa el tipo de monstruo (1-4)
    int velocidad; //Velocidad del monstruo
    int muerto; //Si está muerto o no
    int contador;
    uint32 color; //Color del monstruo
```

Las balas las vamos a representar con un struct que contienen:

```
    int posx; //Representa la coordenada x donde se encuentra
    int posy; //Representa la coordenada y donde se encuentra
    int disparada; //Entero que representa si dicha bala está disparada o en la recámara; 0 no está disparada y 1 si está disparada
```

• Funciones:

void movimiento(monstruo *m)

Esta función hace descender al monstruo y dependiendo de una variable aleatoria solo desciende, desciende y gira a la derecha o desciende y gira a la izquierda.

void imprimirMonstruo(monstruo m)

Le pasamos el monstruo por parámetro y lo primero que hacemos es comprobar si el monstruo está muerto o no.

Si está vivo pintamos el monstruo, si está muerto no (0 muerto; 1 vivo).

Tenemos 3 tipos de monstruos:

Según que monstruo sea lo pintamos de una forma o de otra.

Si es de tipo 1 dibujamos un pixel azul;

Si es de tipo 2 dibujamos dos pixeles rojos;

Si es de tipo 3 dibujamos 4 pixeles naranjas.

void imprimirBalas()

Recorremos el array de balas comprobando en que cada posición el valor de la variable disparada.

En caso de valer 1 pintamos la bala en el lugar que le corresponde en la matriz de leds según "posx" y "posy", en caso contrario, se pinta en la parte de abajo de forma ordenada (recámara).

int detectarColision(int x, int y, monstruo m)

Comprobamos si la "x" y la "y" pasadas por parámetro coinciden con la "posx" y "posy" del monstruo.

En caso afirmativo, devuelve un 1, en caso contrario, devuelve 0.

void moverBalas()

Recorremos el array de balas comprobando en que cada posición el valor de la variable disparada.

En caso de valer 1 incrementamos la variable "posy", si "posy" supera el valor 63 marcamos la variable disparada y "posy" a 0.

int main()

Antes de llegar al bucle infinito a modo de resumen, lo que hacemos es inicializar todos los componentes, los monstruos y las balas.

Además, realizamos la calibración del giroscopio para asegurarnos así unos valores correctos.

Dentro del bucle infinito:

- 1. Tomamos valores del giroscopio y de los potenciómetros.
- 2. Imprimimos en la LCD los puntos que va obteniendo el jugador.
- 3. Tenemos un switch donde vemos en que rango se encuentra el valor del giroscopio (ángulo Y). En función del valor del ángulo Y incrementamos o decrementamos la posición X del jugador.
- 4. Llamamos a detectar colisión pasándole cada uno de los monstruos y las coordenadas del jugador. En caso de valer 1 ponemos la variable muerto a 1.
- 5. Comprobamos el valor de la variable muerto y en caso de ser 1, imprimimos una cruz roja en la matriz de leds. Además, hacemos sonar un zumbador.
- Comprobamos si hay balas en la recámara, en caso afirmativo, las disparamos.
- 7. Recorremos el array de balas haciendo en cada posición una llamada a la función de detectarColisión() pasando como parámetros las coordenadas de la bala y un monstruo. En caso de haber colisión ponemos la variable muerto del monstruo a 1 y aumentamos la puntuación en función del tipo de monstruo.
- 8. Por último, llamamos a las funciones de imprimir y de movimiento. Y realizamos un delay de 50ms.

• Inicialización de los componentes:

- StripLights_Pixel(jugador,col,StripLights_LTBLUE);
 - //Para pintar cada pixel de la matriz de leds
- o I2C_MPU6050_Start();
 - //Para iniciar el I2C del giroscopio
- o StripLights_Start();
 - //Iniciar matriz de leds
- o MUX_Start();
 - //Iniciar multiplexor
- o MPU6050_init();
 - //Iniciar giroscopio
- o LCD Start();
 - //Iniciar la LCD
- LCD_ClearDisplay();
 - //Limpiar la LCD
- o ADC_Start();
 - //Iniciar el conversor analógico-digital
- o ADC_StartConvert();
 - //Iniciar la conversión
- o PWM_Init();
 - //Iniciar el PWM

Funcionamiento del juego

Lo primero que hará nuestro juego es calibrar el giroscopio y nos muestra el porcentaje por pantalla:

Una vez calibrado ya podemos empezar a jugar.

Durante el juego la pantalla LCD nos va mostrando la puntuación actual.

Cada vez que matamos un alienígena suena un pitido.

Cuando nos matan y acaba el juego, suena un pitido constante y en la pantalla LCD nos muestra la puntuación total y un mensaje de "Game Over".

Además, en la matriz de leds aparecerá una cruz roja.


```
#include <mpu6050.h>
 3
     #include <stdio.h>
     #include <math.h>
 5
     #include<stdlib.h>
 6
 7
     uint16 ADCResult;
8
     int16_t CAX, CAY, CAZ; //current acceleration values
9
     int16_t CGX, CGY, CGZ; //current gyroscope values
10
     int16_t CT;
                             //current temperature
11
     int h=0, i=0, dato=0;
12
13
     int vel_bala=0;
14
     int balas_activas = 0;
15
    int jugador=0;
16
17
    int col=0;
18
19
    int puntuacion=0;
20
     int muerto = 0;
21
    int reset = 0;
22
23
24
    void imprimirJugador(){
         StripLights_Pixel(jugador,col,StripLights_LTBLUE);
25
26
     }
27
28
     typedef struct monstruo monstruo;
29
     struct monstruo{
30
      int posx;
31
       int posy;
32
       int tipo;
       int velocidad;
33
34
       int muerto;
35
       int contador;
36
       uint32 color;
37
38
     };
39
     typedef struct structbalas structbalas;
40
     struct structbalas{
41
42
       int posx;
43
       int posy;
44
       int disparada;
45
     };
46
47
     structbalas balas[16];
48
49
    void movimiento(monstruo *m){
50
51
         if(m->contador==m->velocidad){
52
             m->posy--;
53
             if(m->posy==1){
54
                 m->posy=15;
55
                 m->tipo=(rand()%3)+1;
56
                 m->muerto=0;
57
             }
58
             int dir = rand()%3;
59
60
61
             switch (dir){
62
                 case 0:
63
                     if((m->posx%4)==0){
64
                         m->posx++;
65
66
                     else if(m->tipo==1 && m->posx%4==1)
67
                         m->posx++;
68
69
                         m->posx--;
70
                     break;
71
```

```
72
                   case 2:
 73
                       if(m->posx%4==3)
 74
                            m->posx--;
 75
                        }
                       else
 76
 77
                            m->posx++;
 78
                       break;
               }
 79
 80
 81
               m->contador=0;
          }
 82
 83
          else{
 84
               m->contador++;
 85
 86
      }
 87
 88
      void imprimirMonstruo(monstruo m){
 89
          if(m.muerto == 0){
 90
               if(m.tipo == 1 || m.tipo==2)
 91
                  StripLights_Pixel(m.posx,m.posy-1,m.color);
 92
               if(m.tipo == 1){
 93
                   StripLights_Pixel(m.posx-1,m.posy-1,m.color);
 94
                   StripLights_Pixel(m.posx-1,m.posy,m.color);
 95
               }
 96
 97
               StripLights_Pixel(m.posx,m.posy,m.color);
 98
          }
 99
100
      }
101
102
      void imprimirBalas(){
103
          int j=0;
104
          for(int i=0; i<16; i++){
105
               if(balas[i].disparada==1 && balas[i].posy<15)</pre>
106
                   StripLights_Pixel(balas[i].posx,balas[i].posy,StripLights_LTGREEN);
107
               else if(balas[i].posy==0){
108
                   StripLights_Pixel(j,0,StripLights_LTGREEN);
109
                   j++;
110
               }
111
          }
112
      }
113
114
      int detectarColision(int x, int y, monstruo m){
115
          if(m.muerto == 0){
116
               if(m.tipo == 1){
117
                   if(x == m.posx | | x == m.posx -1)
118
                       if(y == m.posy | y == m.posy -1)
119
                            return 1;
120
121
                   }
122
                   return 0;
123
124
               if(m.tipo == 2){
125
                   if(x == m.posx){
                       if(y == m.posy || y == m.posy -1){
126
127
                            return 1;
128
129
130
                   return 0;
               }
131
               else{
132
133
                   if(x == m.posx){
134
                       if(y == m.posy)
135
                            return 1;
136
137
                   return 0;
138
               }
139
          }
140
          else
141
               return 0;
142
      }
```

```
143
144
      void moverBalas(){
145
          for(int i=0; i<16; i++){
146
              if(balas[i].disparada==1){
147
                   if(balas[i].posy > 63){
                       balas[i].disparada=0;
148
149
                       balas[i].posy=0;
150
                       balas_activas--;
                   }
151
152
                  else{
153
                       balas[i].posy++;
154
155
156
              }
157
          }
158
      }
159
160
      int main()
161
162
          uint8_t canal = 0;
163
          int32 adcread;
164
          float voltaje;
165
          int j = 0; //for loop increment variable
166
          char buf[50]; //just to hold text values in for writing to LCD
167
168
169
          monstruo monstruol;
170
          monstruol.tipo=0;
171
          monstruol.posx=0;
172
          monstruol.posy=15;
173
          monstruo1.velocidad=3;
174
          monstruo1.muerto=0;
175
          monstruo1.contador=0;
          monstruo1.color=0 \times 009933;
176
177
178
          monstruo monstruo2;
179
          monstruo2.tipo=1;
180
          monstruo2.posx=4;
181
          monstruo2.posy=15;
182
          monstruo2.velocidad=5;
183
          monstruo2.muerto=0;
184
          monstruo2.contador=0;
185
          monstruo2.color=StripLights_LTYELLOW;
186
187
          monstruo monstruo3;
188
          monstruo3.tipo=2;
189
          monstruo3.posx=8;
190
          monstruo3.velocidad=4;
191
          monstruo3.contador=0;
192
          monstruo3.muerto=0;
193
          monstruo3.posy=15;
194
195
          monstruo3.color=StripLights_LTRED;
196
197
          monstruo monstruo4;
198
          monstruo4.tipo=0;
199
          monstruo4.posx=12;
200
          monstruo4.posy=15;
201
          monstruo4.velocidad=3;
202
          monstruo4.contador=0;
203
          monstruo4.muerto=0;
204
          monstruo4.color=0x221111;
205
206
207
          12C_MPU6050_Start();
208
209
          CyGlobalIntEnable;
210
2.11
          StripLights_Start();
212
          StripLights_DisplayClear(StripLights_BLACK);
213
```

```
214
          MUX Start();
215
216
          MPU6050 init();
217
          MPU6050_initialize();
218
219
          LCD_Start();
220
          LCD_ClearDisplay();
          ADC_Start();
221
222
          ADC_StartConvert();
223
          ADC_IsEndConversion(ADC_WAIT_FOR_RESULT);
224
225
          PWM_Init();
226
227
          LCD_Position(0,0);
228
          float accel_ang_x;
229
          float accel_ang_y;
230
          LCD_Position(0,0);
231
          sprintf(buf, "Calibrando:");
2.32
          LCD_PrintString(buf);
233
          LCD_Position(1,2);
234
          LCD_PrintString("Espere...");
235
236
          for(int i=0; i<16; i++){</pre>
237
              balas[i].posx=0;
238
              balas[i].posy=0;
239
              balas[i].disparada=0;
240
          }
241
242
2.43
          for(j=0; j<100; j++)</pre>
244
245
              MPU6050_getMotion6t(&CAX, &CAY, &CAZ, &CGX, &CGY, &CGZ, &CT);
246
247
              accel_ang_x=atan(CAX/sqrt(pow(CAY,2) + pow(CAZ,2)))*(180.0/3.14);
248
              accel_ang_y=atan(CAY/sqrt(pow(CAX,2) + pow(CAZ,2)))*(180.0/3.14);
249
250
              LCD_Position(0,12);
251
              sprintf(buf, "%d%c",j,'%');
252
              LCD_PrintString(buf);
253
254
              CyDelay(50);
255
          }
256
          LCD_ClearDisplay();
257
258
259
          for (;;){
260
261
              MUX_FastSelect(canal);
262
              adcread=ADC_GetResult32();
              voltaje=floor(((5.000/1048576)*adcread));
263
264
              MPU6050_getMotion6t(&CAX, &CAY, &CAZ, &CGX, &CGY, &CGZ, &CT);
265
266
              accel_ang_x=ceil(atan(CAX/sqrt(pow(CAY,^2) + pow(CAZ,^2)))*(180.0/3.14));
267
              accel_ang_y=ceil(atan(CAY/sqrt(pow(CAX,2) + pow(CAZ,2)))*(180.0/3.14));
268
269
              /*LCD_Position(0,0);
270
              sprintf(buf, "X:%2.0f",accel_ang_x);
271
              LCD_PrintString(buf);
272
273
              LCD_Position(0,8);
274
              sprintf(buf, "Y:%2.0f",accel ang y);;
275
              LCD PrintString(buf);
276
277
              LCD Position(1, canal*8);
278
279
              LCD_PrintString("V");
280
              LCD_PrintNumber(canal);
281
              LCD_PrintString(": ");
282
              LCD_PrintNumber(voltaje); */
283
284
              LCD_Position(0,0);
```

```
285
               LCD PrintString("Puntos: ");
286
               LCD_PrintNumber(puntuacion);
287
               canal=1-canal;
288
               LCD_Position(1,0);
289
               LCD_PrintNumber(balas_activas);
               LCD_PrintString(" ");
290
291
292
               voltaje++;
293
294
               switch((int) accel_ang_y){
295
                    case 39 ... 90:
296
                        jugador=15;
297
                        if(canal==0){
298
                             if(col<voltaje){</pre>
299
                                 col++;
300
301
                             else if(col>voltaje)
302
                                 col--;
303
304
                        break;
305
306
                    case 33 ... 38:
307
                        jugador=14;
308
                        if(canal==0){
309
                             if(col<voltaje)</pre>
310
                                 col++;
311
                             else if(col>voltaje)
312
                                 col--;
313
314
                        break;
315
316
                    case 27 ... 32:
317
                        jugador=13;
318
                        if(canal==0){
319
                             if(col<voltaje)</pre>
320
                                 col++;
321
                             else if(col>voltaje)
322
                                 col--;
323
                        }
324
                        break;
325
326
                    case 22 ... 26:
327
                        jugador=12;
328
                        if(canal==0){
329
                             if(col<voltaje)</pre>
330
                                 col++;
331
                             else if(col>voltaje)
332
                                 col--;
333
                        }
334
                        break;
335
336
                    case 16 ... 21:
337
                        jugador=11;
338
                        if(canal==0){
339
                             if(col<voltaje)</pre>
340
                                 col++;
341
                             else if(col>voltaje)
342
                                 col--;
343
344
                        break;
345
                    case 11 ... 15:
346
                        jugador=10;
347
                        if(canal==0){
348
349
                             if(col<voltaje)</pre>
350
                                 col++;
351
                             else if(col>voltaje)
352
                                 col--;
353
354
                        break;
355
```

```
356
                    case 6 ... 10:
357
                         jugador=9;
358
                        if(canal==0){
359
                             if(col<voltaje)</pre>
360
                                 col++;
361
                             else if(col>voltaje)
362
                                 col--;
363
364
                        break;
365
                    case 0 ... 5:
366
367
                         jugador=8;
368
                         if(canal==0){
369
                             if(col<voltaje)</pre>
370
                                 col++;
371
                             else if(col>voltaje)
372
                                 col--;
373
374
                        break;
375
376
                    case -6 ... -1:
377
                         jugador=7;
378
                         if(canal==0){
379
                             if(col<voltaje)</pre>
380
                                 col++;
381
                             else if(col>voltaje)
382
                                 col--;
383
384
                        break;
385
386
                    case -11 ... -7:
387
                         jugador=6;
388
                         if(canal==0){
389
                             if(col<voltaje)</pre>
390
                                 col++;
391
                             else if(col>voltaje)
392
                                 col--;
393
394
                        break;
395
396
                    case -16 ... -12:
397
                         jugador=5;
398
                         if(canal==0){
399
                             if(col<voltaje)</pre>
400
                                 col++;
401
                             else if(col>voltaje)
402
                                 col--;
403
                         }
404
                        break;
405
406
                    case -22 ... -17:
407
                         jugador=4;
408
                         if(canal==0){
409
                             if(col<voltaje)</pre>
410
                                 col++;
                             else if(col>voltaje)
411
412
                                 col--;
413
414
                        break;
415
416
                    case -27 ... -23:
                         jugador=3;
417
                         if(canal==0){
418
419
                             if(col<voltaje)</pre>
420
                                 col++;
421
                             else if(col>voltaje)
422
                                 col--;
423
424
                        break;
425
426
                    case -33 ... -28:
```

```
427
                        jugador=2;
428
                       if(canal==0){
429
                            if(col<voltaje)</pre>
430
                                col++;
431
                            else if(col>voltaje)
432
                                col--;
433
                        }
434
                       break;
435
436
                   case -37 ... -34:
437
                       if(canal==0){
438
                            if(col<voltaje)</pre>
439
                                col++;
440
                            else if(col>voltaje)
441
                                col--;
442
443
                       break;
444
445
                   default:
446
                       jugador=0;
447
                       if(canal==0){
448
                            if(col<voltaje)</pre>
449
                                col++;
450
                            else if(col>voltaje)
451
                                col--;
452
453
                       break;
               }
454
455
456
               if(detectarColision(jugador,col,monstruo1) == 1) muerto=1;
457
               if(detectarColision(jugador,col,monstruo2) == 1) muerto=1;
               if(detectarColision(jugador,col,monstruo3) == 1) muerto=1;
458
459
               if(detectarColision(jugador,col,monstruo4) == 1) muerto=1;
460
461
               if(muerto == 1){
462
                   PWM_Start();
463
                   StripLights_MemClear(StripLights_BLACK);
464
                   LCD_Position(0,0);
465
                   LCD PutChar(LCD CUSTOM 0); LCD PutChar(LCD CUSTOM 0); LCD PutChar(LCD CUSTOM
                   _0);
466
                   LCD_PrintString("Game Over!");
467
                   LCD_PutChar(LCD_CUSTOM_0); LCD_PutChar(LCD_CUSTOM_0); LCD_PutChar(LCD_CUSTOM
                   _0);
468
                   LCD_Position(1,0);
469
                   LCD_PrintString("Puntos: ");
470
                   LCD_PrintNumber(puntuacion);
471
472
                   while(true){
473
474
                       for(int i=0; i<8; i++){</pre>
                                StripLights_Pixel(i,i,StripLights_LTRED);
475
476
                                StripLights_Pixel(i,15-i,StripLights_LTRED);
477
                                StripLights_Pixel(15-i,i,StripLights_LTRED);
478
                                StripLights_Pixel(15-i,15-i,StripLights_LTRED);
479
                                StripLights_Trigger(1);
480
                                CyDelay(50);
481
482
                       CyDelay(500);
                       StripLights_MemClear(StripLights_BLACK);
483
484
                   }
485
               }
486
487
               if(canal==1 && balas_activas<16){</pre>
488
                   int libre=0;
489
                   while(balas[libre].disparada==1){
490
                       libre++;
491
492
                   if(voltaje == 2){
493
                       if(vel_bala < 4){</pre>
```

```
494
                            vel bala++;
495
                       }
                       else{
496
497
                            balas[libre].disparada =1;
498
                            balas[libre].posx = jugador;
499
                            balas[libre].posy = col + 1;
500
                            balas_activas++;
501
                            vel_bala=0;
                       }
502
503
504
                   if(voltaje == 3){
505
                       if(vel_bala < 3){</pre>
506
                            vel_bala++;
507
                        }
                       else{
508
509
                            balas[libre].disparada =1;
510
                            balas[libre].posx = jugador;
511
                            balas[libre].posy = col + 1;
512
                            balas_activas++;
513
                            vel_bala=0;
514
                        }
515
516
                   if(voltaje == 4){
517
                       if(vel_bala < 2){</pre>
518
                            vel_bala++;
519
                       }
                       else{
520
521
                            balas[libre].disparada =1;
522
                            balas[libre].posx = jugador;
523
                            balas[libre].posy = col + 1;
524
                            balas_activas++;
525
                            vel_bala=0;
                       }
526
527
                   if(voltaje >= 5){
528
529
                            balas[libre].disparada =1;
530
                            balas[libre].posx = jugador;
531
                            balas[libre].posy = col + 1;
532
                            balas_activas++;
533
                            vel bala=0;
534
535
                   }
536
               }
537
538
539
               for(int i=0; i<16; i++){</pre>
540
                   if(balas[i].disparada==1){
541
                       if(detectarColision(balas[i].posx,balas[i].posy,monstruo1) == 1){
542
                            monstruo1.muerto=1;
543
                            PWM_Start();
544
                            CyDelay(10);
545
                            PWM_Stop();
                            if(monstruo1.tipo==1)
546
                                puntuacion+=50;
547
548
                            else if(monstruo1.tipo==2)
549
                                puntuacion+=100;
550
                            else
551
                                puntuacion+=200;
552
553
                       if(detectarColision(balas[i].posx,balas[i].posy,monstruo2) == 1){
554
                            monstruo2.muerto=1;
555
                            PWM Start();
556
                            CyDelay(10);
557
                            PWM_Stop();
                            if(monstruo2.tipo==1)
558
559
                                puntuacion+=50;
560
                            else if(monstruo2.tipo==2)
561
                                puntuacion+=100;
562
                            else
563
                                puntuacion+=200;
                       }
564
```

```
if(detectarColision(balas[i].posx,balas[i].posy,monstruo3) == 1){
565
566
                           monstruo3.muerto=1;
567
                           PWM_Start();
568
                           CyDelay(10);
569
                           PWM_Stop();
570
                           if(monstruo3.tipo==1)
571
                               puntuacion+=50;
572
                           else if(monstruo3.tipo==2)
573
                               puntuacion+=100;
574
                           else
575
                               puntuacion+=200;
576
577
                       if(detectarColision(balas[i].posx,balas[i].posy,monstruo4) == 1){
578
                           monstruo4.muerto=1;
579
                           PWM_Start();
580
                           CyDelay(10);
581
                           PWM_Stop();
582
                           if(monstruo4.tipo==1)
583
                               puntuacion+=50;
584
                           else if(monstruo4.tipo==2)
585
                               puntuacion+=100;
586
                           else
587
                               puntuacion+=200;
588
                       }
                  }
589
              }
590
591
592
              StripLights_MemClear(StripLights_BLACK);
              imprimirJugador();
593
594
              imprimirBalas();
595
              imprimirMonstruo(monstruo1);
596
              imprimirMonstruo(monstruo2);
597
              imprimirMonstruo(monstruo3);
598
              imprimirMonstruo(monstruo4);
599
              StripLights_Trigger(1);
600
601
              movimiento(&monstruo1);
602
              movimiento(&monstruo2);
603
              movimiento(&monstruo3);
604
              movimiento(&monstruo4);
605
              moverBalas();
606
607
              CyDelay(50);
608
          }
609
      }
610
```