3 A jet of water hits a vertical wall at right angles, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The water hits the vertical wall with a velocity of $5.0\,\mathrm{m\,s^{-1}}$ in a horizontal direction. The cross-sectional area of the jet is $1.5\times10^{-4}\,\mathrm{m^2}$. The density of the water is $1.0\times10^3\,\mathrm{kg\,m^{-3}}$.

The water runs down the wall after hitting it.

(a) Show that, over a time of 1.6 s, the mass of water hitting the wall is 1.2 kg.

[2]

- (b) Calculate:
 - (i) the decrease in the horizontal momentum of the mass of water in (a) due to hitting the wall

decrease in momentum =Ns [1]

(ii) the magnitude of the horizontal force exerted on the water by the wall.

force = N [1]

(c)	State and explain the magnitude of the horizontal force exerted on the wall by the water.
	[1]
(d)	Calculate the pressure exerted on the wall by the water.
	pressure = Pa [2]
	[Total: 7]