SOC 4015/5050: Lab-15 - Chi-Squared

Christopher Prener, Ph.D.

Fall 2018

Directions

Please complete all steps below. All work should be uploaded to your GitHub assignment repository by 4:00pm on Monday, December 17th, 2018. All data can be obtained from the testDriveR package's auto17 data set.

Analysis Development

Using RStudio and your operating system's file manager, create an R Project in the *existing* directory in your assignments repository named Lab-14. Add a README.md file, notebook, and all necessary folders before beginning.¹

¹ This initial section follows the project workflow that is available in the lecture-03 repo!

Data Preparation

- Create a new logical variable that is TRUE if the vehicle is a "German" vehicle (i.e. one made by BMW, Mercedes, Porsche, and Volkswagen) and FALSE otherwise.
- 2. Subset your data so that it contains only the id, your new logical variable, and the driveStr variables.

Create Tables

Using the data created in Part 1, answer the following questions.

- 3. Create a two-way table of the logical variable you created above and driveStr using janitor that includes
 - (a) a total row at the bottom and a total column,
 - (b) properly formatted row percents that are display three decimal places,
 - (c) and frequency values in the "front" position.

Fit the Chi-Square and Check Assumptions

Using the data created in Part 1, answer the following questions.

- 4. Fit and interpret the results of a chi-squared test comparing the relationship of German vehicles to drivetrains. Is there a meaningful relationship between these two variables?
- 5. Does this model violate the Cochran conditions assumption?
- 6. Regardless of your answer above, fit a Fisher's Exact Test on these same data. Does this change your interpretation of question 6?