II prova in itinere di FONDAMENTI DI AUTOMATICA

Si possono utilizzare **solo** articoli di cancelleria (penna, matita, etc.), fogli bianchi e un computer o tablet con una sola finestra aperta sulla pagina moodle con l'esame. Non si possono, in particolare, tenere fotocopie di alcun tipo, appunti, quaderni, etc.

Durata della prova: 60 minuti

Esercizio 1

Data la funzione di trasferimento $G(s) = \frac{(s^2 + s + 1)^4}{(s^3 - s^2 - s + 1)^3}$, si consideri lo schema a retroazione rappresentato in figura dove $K \geq 0$. Si indichi con W(s) la funzione di trasferimento del sistema a catena chiusa.

- 1. esiste \bar{K} tale che W(s) è BIBO stabile per ogni $K < \bar{K}$;
- 2. esiste \bar{K} tale che W(s) è BIBO stabile per ogni $K > \bar{K}$;
- 3. non esiste alcun valore di K > 0 tale che W(s) è BIBO stabile;
- 4. nessuna delle precedenti risposte è corretta.

Data la funzione di trasferimento

$$G(s) = \frac{(s+1)(s-5)}{s(s-7)(s+9)},$$

si consideri lo schema a retroazione rappresentato in figura dove $K \geq 0$. Si indichi con W(s) la funzione di trasferimento del sistema a catena chiusa. Si abbozzi il tracciato del luogo delle radici (che descrive i poli di W(s)) e si indichi con \mathcal{R} l'insieme dei punti dell'asse reale che appartengono al luogo.

1.
$$\mathcal{R} = (5,7] \cup (-1,0] \cup (-\infty,-9];$$

- 2. il luogo presenta esattamente 2 asintoti: entrambi verticali;
- 3. $\mathcal{R} = [-1, 7] \cup (-\infty, -9];$
- 4. nessuna delle precedenti risposte è corretta.

Nello schema di figura, sia

$$G(s) = \frac{s+1}{s+2}$$

e siano: $d(t) = \sin(t) \cdot 1(t)$ e $y_0(t) = 1(t)$.

- 1. l'errore a regime non può essere nullo;
- 2. se $C(s) = \frac{K(s+2)^3}{(s^2-1)s}$ allora l'errore a regime è nullo per valori di K sufficientemente elevati;
- 3. se $C(s) = 10 \frac{(s+4)^2}{(s^2+1)s}$ allora l'errore a regime è nullo;
- 4. nessuna delle precedenti risposte è corretta.

Si consideri la funzione di trasferimento

$$G(s) = \frac{1+2s}{(s+1)(s+2)(s+3)}.$$

- 1. il guadagno di Evans di G(s) è 2;
- 2. il guadagno di Evans di G(s) è 1;
- 3. il guadagno di Evans di G(s) è 1/3;
- 4. nessuna delle precedenti risposte è corretta.

Si consideri la funzione di trasferimento

$$G(s) = \frac{8}{90} \frac{1}{s(s+1)^3}.$$

- 1. la pulsazione alla quale il diagramma di Bode dell'argomento di G(s) interseca la retta orizzontale di ordinata pari a -180° (o $-\pi$ rad, se le ordinate sono in radianti) è $\omega_B := \sqrt{3}/3$ rad/s e il valore del diagramma del modulo a tale pulsazione è -20 dB;
- 2. la pulsazione alla quale il diagramma di Bode dell'argomento di G(s) interseca la retta orizzontale di ordinata pari a -180° (o $-\pi$ rad, se le ordinate sono in radianti) è $\omega_B := 1$ rad/s e il valore del diagramma del modulo a tale pulsazione è -40 dB;
- 3. il diagramma di Bode dell'argomento di G(s) non interseca la retta orizzontale di ordinata pari a -180° (o $-\pi$ rad, se le ordinate sono in radianti);
- 4. nessuna delle precedenti risposte è corretta.

Si consideri la funzione di trasferimento

$$G(s) = \frac{(s^2 + s + 1)(s - 5)}{s(s + 3)^2(s^2 + 4)}.$$

- 1. i punti di spezzamento dei diagrammi di Bode asintotici di G(s) sono: $\hat{\omega}_1 := 1, \, \omega_2 := 2, \, (1/|\tau_1|) = (1/|\tau_2|) := 3 \, \mathrm{e} \, (1/|\hat{\tau}_1|) := 5;$
- 2. i punti di spezzamento dei diagrammi di Bode asintotici di G(s) sono: $\hat{\omega}_1 := 1, \, \omega_2 := 2, \, (1/|\tau_1|) = (1/|\tau_2|) := 1/3 \, \mathrm{e} \, (1/|\hat{\tau}_1|) := 1/5;$
- 3. i punti di spezzamento dei diagrammi di Bode asintotici di G(s) sono: $\hat{\omega}_1 := 1, \, \omega_2 := 1/2, \, (1/|\tau_1|) = (1/|\tau_2|) := 1/3 \, \mathrm{e} \, (1/|\hat{\tau}_1|) := 1/5;$
- 4. nessuna delle precedenti risposte è corretta.

Data la funzione di trasferimento

$$G(s) = \frac{(s-1)^7}{s(s+3)^7}$$

si consideri lo schema a retroazione rappresentato in figura dove $K \geq 0$. Si indichi con W(s) la funzione di trasferimento del sistema a catena chiusa.

Ragionando sul luogo delle radici (che descrive i poli di W(s)) si può concludere che:

- 1. non esistono valori di K > 0 tali che W(s) è BIBO stabile;
- 2. esiste un valore $K_{cr} > 0$ tale che W(s) è BIBO stabile per ogni $K \in [0, K_{cr})$;
- 3. esiste un valore $K_{cr} > 0$ tale che W(s) è BIBO stabile per ogni $K > K_{cr}$;
- 4. nessuna delle precedenti risposte è corretta.

Nello schema di figura, sia G(s) una funzione di trasferimento, con guadagno di Evans positivo, di un sistema del terzo ordine e $K \geq 0$. È noto che:

- a) esistono valori di K > 0 in corrispondenza ai quali il sistema a catena chiusa garantisce reiezione asintotica perfetta di disturbi sinusoidali di pulsazione 1 rad/s;
- b) l'intersezione dell'asse reale con il luogo delle radici (che descrive i poli della funzione di trasferimento a catena chiusa) è il segmento [-2, -1) (chiuso a sinistra e aperto a destra);
- c) uno degli asintoti del luogo delle radici è verticale.

- 1. il luogo ha esattamente 2 asintoti che originano dal punto $\sigma_c = -1/2$;
- 2. gli asintoti del luogo originano dal punto $\sigma_c = -1$;
- 3. gli asintoti del luogo originano dal punto $\sigma_c = 1$;
- 4. nessuna delle precedenti risposte è corretta.