INFO0947: FLAMME OLYMPIQUE

Groupe 26: Franck Duval HEUBA BATOMEN, Bilali ASSALNI

Contents

1 Introduction

la flamme Olympique arrive dans le pays hôte c'est l'esprit des Jeux qui débarque. Avant la cérémonie d'ouverture, la flamme, portée par une multitude de relayeurs, réalise un parcours jusqu'à la ville hôte des Jeux. Ainsi, elle devra parcourir un ensemble de villes, constituant ainsi un itinéraire jusqu'à la ville pour la cérémonie d'ouverture. Ainsi, le travail que nous avons réalisé à consisté à numériser ce parcours de ville en ville, region en region.

2 Spécifications Abstraites

Nous avons principalement deux types abstraits de données:

- Region
- ItineraireFlame

2.1 TAD Region

2.1.1 Syntaxe

Type: Region

Utilise:

- Integer
- String
- Double

Opérations:

- create: Double \times Double \times String \rightarrow Region
- get $x: Region \rightarrow Double$
- get y: Region \rightarrow Double
- get nb people: Region \rightarrow Integer
- get headquater: Region \rightarrow String
- get name: Region \rightarrow String
- get speciality: Region \rightarrow String
- distance: Region \times Region \to Double
- set x: Region \times Double \rightarrow Region
- set y: Region \times Double \rightarrow Region
- set_head quater: Region \times String \rightarrow Region
- set speciality: Region \times String \rightarrow Region
- set nb people: Region \times Integer \rightarrow Region
- destroy: Region $\rightarrow \emptyset$

2.1.2 Sémantique

Préconditions:

$$\begin{aligned} &\forall j \in \text{Integer}, \, \forall k \in \text{Region} \\ &\forall j \geq 0, \, \text{set_nb_people}(\mathbf{k}, \, \mathbf{j}) \end{aligned}$$

Axiomes:

$$\begin{split} \forall r \in \text{Region, } \forall i \in \text{Double, } \forall j \in \text{Integer, } \forall s \in \text{String} \\ get_x(set_x(r,i)) &= i \\ get_y(set_y(r,i)) &= i \\ get_speciality(set_speciality(r,s)) &= s \\ get_headquater(set_headquater(r,s)) &= s \end{split}$$

		Opérations Internes				
		$create(\cdot)$	$set_x(\cdot)$	$set_y(\cdot)$	$\underline{set_headquater(\cdot)}$	
Observateurs	$get_x(\cdot)$	\checkmark	\checkmark	\checkmark	\checkmark	
	$get_y(\cdot)$	\checkmark	\checkmark	\checkmark	\checkmark	
	$get_headquater(\cdot)$	\checkmark	\checkmark	\checkmark	\checkmark	
	$get_name(\cdot)$	\checkmark	\checkmark	\checkmark	\checkmark	
	$get_speciality(\cdot)$	\checkmark	\checkmark	\checkmark	\checkmark	

	Opérations Internes					
		$set_nb_people(\cdot)$	$set_speciality(\cdot)$	$destroy(\cdot)$		
Observateurs	$get_x(\cdot)$	\checkmark	\checkmark	Ø		
	$get_y(\cdot)$	\checkmark	\checkmark	Ø		
	$get_headquater(\cdot)$	\checkmark	\checkmark	Ø		
	$get_name(\cdot)$	\checkmark	\checkmark	Ø		
	$get_speciality(\cdot)$	\checkmark	\checkmark	Ø		

2.2 TAD ItineraireFlame

2.2.1 Syntaxe

Type: ItineraireFlame

Utilise:

- Region
- Boolean
- Integer

Opérations:

- create: Region \times Region \rightarrow ItineraireFlame
- ullet is circuit: ItineraireFlame o Boolean
- count region: ItineraireFlame \rightarrow Integer
- count_people: ItineraireFlame \rightarrow Integer
- add region: ItineraireFlame \times Region \rightarrow ItineraireFlame
- remove region: ItineraireFlame \times Region \rightarrow ItineraireFlame
- destroy: ItineraireFlame $\rightarrow \emptyset$

2.2.2 Sémantique

Préconditions:

$$\forall i, j \in \text{Region}$$

 $\forall i, j, \text{create}(i, j)$

Axiomes:

$$\forall r_0, r \in \text{Region}, \forall j \in \text{Integer}, \forall k \in \text{ItineraireFlame}$$

$$count_region(add_region(k,r)) = count_region(k) + 1$$

$$is_circuit(add_region(create(r_0,r),r)) = True$$

$$is_circuit(add_region(create(r_0,r),r_0)) = True$$

$$is_circuit(create(r_0,r)) = False$$

	Opérations Internes						
		$create(\cdot)$	$add_region(\cdot)$	$remove_region(\cdot)$	$destroy(\cdot)$		
Observateurs	$is_circuit(\cdot)$	\checkmark	\checkmark	\checkmark	Ø		
	$count_region(\cdot)$	\checkmark	\checkmark	\checkmark	Ø		
	$count_people(\cdot)$	\checkmark	\checkmark	\checkmark	Ø		

3 Specifications

4 Invariants

Pour inclure vos Invariants Graphique dans le rapport, nous vous rappelons que l'outil GLIDE (https://cafe.uliege.be) permet d'exporter au format PDF vos dessins d'Invariants.

- 5 Implémentations Récursives
- 6 Complexité
- 7 Tests Unitaires
- 8 Conclusion