



### **Project Management for Managers**

Lec – 43 Simulation of Networks- I

### Dr. M.K. Barua

Department of Management Indian Institute of Technology Roorkee



# Simulation of PERT network.



The person in charge of the activity feels there is

a chance of 20 % that the activity 1-2 will be over in 5 days,

and a 30% chance of completion in 6 days,

a 30% chance of completion in 7 days and

a 20% chance of completion in 8 days.

Let  $T_{1-2}$  be the random variable which denotes the duration of activity 1-2. The probability distribution of  $T_{1-2}$  is shown in table.



| Find the durati | on of thi | s project | ? |
|-----------------|-----------|-----------|---|
|                 | 2-6       | Prob.     |   |

| _   |       |
|-----|-------|
| 1-3 | Prob. |
| 12  | .05   |
| 13  | 0.2   |
| 14  | 0.5   |
| 15  | 0.2   |
| 16  | 0.05  |
|     |       |

| 2-4 | Prob. |
|-----|-------|
| 6   | 0.2   |
| 7   | 0.6   |
| 8   | 0.2   |

| 3-5 | Prob.      |
|-----|------------|
| 4   | 0.15       |
| 5   | 0.7        |
| 6   | 0.15       |
|     |            |
|     | <b>D</b> 1 |

| 8        | 0.1   |
|----------|-------|
| 9        | 0.4   |
| 10       | 0.4   |
| 11       | 0.1   |
| 4-6      | Prob. |
|          |       |
| 13       | 0.1   |
| 13<br>14 | 0.1   |
|          |       |
| 14       | 0.2   |

| 4-5 | Prob. |
|-----|-------|
| 6   | 0.3   |
| 7   | 0.6   |
| 8   | 0.1   |

0.3

0.3

0.2

1-2

5

6

8

|  | 16 | 0.0 |
|--|----|-----|
|  |    |     |
|  |    |     |

| 5-6 | Prob. |
|-----|-------|
| 7   | 0.3   |
| 8   | 0.4   |
| 9   | 0.3   |
|     |       |



Now we generate random sample for Tij. Let F ij(x) denote the cumulative distribution function (cdf) of Tij that is 1-2 Prob.

6

8

0.2

0.3

0.3

0.2

$$\mathbf{F}\,\mathbf{ij}(\mathbf{x}) = \mathbf{P}(\mathbf{Tij} \le \mathbf{x})$$

$$= P(Tij \le x)$$

$$F_{12}(x) = 0$$
  $x < 5$   
= .2  $5 < x < 6$ 

$$= .2 \qquad \qquad 5 \le X < 0$$

$$= .5 \qquad 6 \le x < 7$$

$$= .8 7 \le x <$$

$$= .5 \qquad 7 \le x < 6$$

$$= 1.0 \qquad 8 \le x$$

$$8 \le x$$
 Equation (1)

Let "u" be the random variable which is distributed uniformly over (0,1). Since F ij(x) is uniformly distributed over (0,1) it can be proved that equation (1) implies  $0 \le u < .2$ corresponds to Tij = 5corresponds to Tij = 6 $.2 \le u < .5$ corresponds to Tij = 7  $.5 \le u < .8$ corresponds to Tij = 8 $.8 \le u < 1$ .07 .01 .85 .44 .72 .16 .79 .18 .24 .11

5

.96

5

.82

.82

.13 .62 .32 .74 .20 .96 .03

The following will the times for activity 1-2.

7

5

Similarly generate times for other activities.

6

5 5 8



| SN | RN  | T12 |
|----|-----|-----|
| 1  | .07 | 5   |
| 2  | .01 | 5   |
| 3  | .85 | 8   |
| 4  | .24 | 6   |
| 5  | .44 | 6   |
| 6  | .72 | 7   |
| 7  | .16 | 5   |
| 8  | .11 | 5   |
| 9  | .79 | 7   |
| 10 | .18 | 5   |
| 11 | .13 | 5   |
| 12 | .62 | 7   |
| 13 | .32 | 6   |
| 14 | .74 | 7   |
| 15 | .20 | 6   |
| 16 | .96 | 8   |
| 17 | .03 | 5   |
| 18 | .96 | 8   |
| 19 | .82 | 8   |
| 20 | .82 | 8   |

| SN | RN  | T12 | RN  | T13 | RN  | T24 | RN  | T35 | RN  | T26 | RN  | T45 | RN  | T46 | RN  | T56 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  | .07 | 5   | .54 | 14  | .41 | 7   | .19 | 5   | .34 | 9   | .09 | 6   | .17 | 14  | .21 | 7   |
| 2  | .01 | 5   | .26 | 14  | .78 | 7   | .19 | 5   | .96 | 11  | .23 | 6   | .29 | 14  | .33 | 8   |
| 3  | .85 | 8   | .26 | 14  | .69 | 7   | .34 | 5   | .89 | 10  | .71 | 7   | .55 | 15  | .89 | 9   |
| 4  | .24 | 6   | .62 | 14  | .56 | 7   | .90 | 6   | .96 | 11  | .10 | 6   | .93 | 17  | .88 | 9   |
| 5  | .44 | 6   | .90 | 15  | .27 | 7   | .17 | 5   | .96 | 11  | .07 | 6   | .38 | 15  | .88 | 9   |
| 6  | .72 | 7   | .53 | 14  | .98 | 8   | .76 | 5   | .55 | 10  | .60 | 7   | .31 | 15  | .21 | 7   |
| 7  | .16 | 5   | .34 | 14  | .73 | 7   | .94 | 6   | .28 | 9   | .62 | 7   | .17 | 14  | .47 | 8   |
| 8  | .11 | 5   | .83 | 15  | .87 | 8   | .15 | 5   | .23 | 9   | .27 | 6   | .26 | 14  | .72 | 9   |
| 9  | .79 | 7   | .44 | 14  | .52 | 7   | .54 | 5   | .13 | 9   | .99 | 8   | .56 | 15  | .75 | 9   |
| 10 | .18 | 5   | .82 | 15  | .14 | 6   | .30 | 5   | .37 | 9   | .73 | 7   | .25 | 14  | .44 | 8   |
| 11 | .13 | 5   | .99 | 16  | .73 | 7   | .33 | 5   | .94 | 11  | .71 | 7   | .57 | 15  | .39 | 8   |
| 12 | .62 | 7   | .26 | 14  | .90 | 8   | .02 | 4   | .12 | 9   | .08 | 6   | .29 | 14  | .04 | 7   |
| 13 | .32 | 6   | .89 | 15  | .43 | 7   | .38 | 5   | .80 | 10  | .00 | 6   | .97 | 17  | .44 | 8   |
| 14 | .74 | 7   | .53 | 14  | .33 | 7   | .73 | 5   | .65 | 10  | .99 | 8   | .50 | 15  | .27 | 7   |
| 15 | .20 | 6   | .42 | 14  | .29 | 7   | .37 | 5   | .11 | 9   | .23 | 6   | .71 | 15  | .58 | 8   |
| 16 | .96 | 8   | .38 | 14  | .66 | 7   | .81 | 5   | .69 | 10  | .63 | 7   | .76 | 15  | .98 | 9   |
| 17 | .03 | 5   | .55 | 14  | .36 | 7   | .77 | 5   | .98 | 11  | .09 | 6   | .16 | 14  | .71 | 9   |
| 18 | .96 | 8   | .63 | 14  | .46 | 7   | .37 | 5   | .12 | 9   | .41 | 7   | .59 | 15  | .59 | 8   |
| 19 | .82 | 8   | .91 | 15  | .83 | 8   | .42 | 5   | .37 | 9   | .98 | 8   | .75 | 15  | .71 | 9   |
| 20 | .82 | 8   | .59 | 14  | .49 | 7   | .79 | 5   | .01 | 8   | .06 | 6   | .34 | 15  | .78 | 9   |

# 

Te

T12

5

SN

RN

.07

| 0 |  |   |
|---|--|---|
|   |  | 5 |



RN

.54



 $T_{\Theta} = 5$ 

RN

.41

T/=5

**T13** 

14

**T24** 

For each case we find critical path and duration of completion of project.

RN

.19

Te = 12

**T35** 

5

RN

.34

**T26** 

9

RN

.09

TJ=25

 $T_{\rm e}=26$ 

7/=19

 $T_{e} = 19$ 

T45

6

RN

.17

**T46** 

14

RN

.21

**T56** 





Critical paths for sr. no. 1 are :1-2-4-6 and 1-3-5-6 Sr.No. 1-2 1-3 2-4 2-6 4-5 4-6 5-6 3-5  $\mathbf{T}$ Crit Ind. .65 .40 .65 .40 .00 .35 .45 .75 Avg:29.3

# Average duration of the project is 29.3 days .The critical index of the activity 5-6 is 0.75, it means that, if we under take this project 100 times, then 75 % of the times it will be a critical activity. From previous table. T (Days) 26 27 28 29 30 31 32 33

4/20

5/20

3/20

0/20

1/20

2/20

Prob.

1/20

4/20

P (project will take more than 29 days) = 9/20.

This approach is better than traditional PERT approach.

Gives information about critical and semi critical activities.

# A PERT network consists of five activities (1,2),(1,3),(2,3),(2,4) and (3,4) with following details.



# Simulate the network for five times and find

- (a) Distribution of T the project duration,
- (a) Distribution of 1 the project duration,
- $\mathbf{(b)} \quad \mathbf{E}\left(\mathbf{T}\right),$
- (c)  $P(T \le 14)$  and
- (d) Critical indexes of all the activities.
  - IIT ROORKEE CERTIFICATION COURSE