

دانشکده مهندسی کامپیوتر مباحث ویژه ۱ (یادگیری عمیق) تمرین ۳

على صداقي

97271777

الف) نمودار loss به ازای epoch بهینه سازهای مختلف مقایسه شده که درباره هریک می توان به نکات زیر اشاره کرد.

SGDNesterov: در واقع همان SGD همراه با Momentum است که به جای گذشته به آینده نگاه می کند. مشکل این روش این است که طول گام (learning rate) در همه جهات یکسان است و ممکن است در فیچرهایی که تاثیر زیادی روی کم شدن loss حرکت زیادی کنیم یا در جهتهای مناسب حرکت کمی داشته باشیم. همه این موارد باعث می شود زمان همگرایی زیاد شود و در مدت تعیین شده نتوانیم به خوبی در نقطه Global Optimum همگرا شویم.

AdaGrad: این روش مشکل ثابت بودن طول قدم در جهات مختلف را حل می کند و با ارائه "نرخ یادگیری بر پارامتر" یا "نرخ یادگیری تطبیقی" باعث می شود در هر جهت طول قدم مناسبی داشته باشم. این کار باعث می شود در جهت های نامناسب حرکت کمی داشته باشیم و بیشتر حرکتمان به سمت نقطه min باشد. مشکلی که دارد در واقع این است که از کار مثبت Momentum بهره نبرده و نمی تواند مفهوم شتاب و سرعت را همزمان داشته باشد. در نتیجه عملکردش حتی از SGDNesterov بدتر است زیرا سریعا در نقطه Local Minima گیر می کند.

RMSprop: مشابه روش AdaGrad می باشد با این تفاوت که برای تعیین نرخ یادگیری تطبیقی از نوع خاصی از میانگین گیری استفاده می کند (EMA) این کار باعث می شود تنها به گرادیان حال حاضر نگاه نکنیم و با توجه به گرادیان نقاط گذشته و اکنون حرکت کنیم. در نتیجه احتمال پرش از Global Optimum کاهش می یابد. مشکل آن این است که از روش Momentum استفاده نمی کند. در نتیجه عملکردش از SGDNesterov بدتر است.

AdaDelta: بسیار شبیه به RMSprop میباشد یعنی از EMA استفاده می کند تنها تفاوتش در RMSprop های اولیه میباشد زیرا در این روش از bias correction که در سوال ۲ توضیح دادم استفاده می کنیم این امر باعث می شود در میباشد زیرا در این روش از smooth که در سوال ۲ توضیح دادم استفاده می کنیم و در ادامه این epoch های اولیه طول حرکت زیادی نداشته باشیم و smooth تر حرکت کنیم. در RMSprop های جلوتر و در ادامه این روش همانند روش RMSprop رفتار می کند و ضابطه ی آنها با هم برابر می شود (در سوال ۲ اثبات شد)

Adam: از ترکیب تمامی روشهای بالا به دست می آید. از Momentum به عنوان ممان اول، از RMSprop به عنوان ممان دوم استفاده می کند. همچنین bias correction که در روش AdaDelta نیز داشتیم را نیز بر روی هر دو ممان اعمال می کند. در نتیجه بهترین عملکرد را برای ما خواهد داشت.

مزایای دیگر Adam به صورت زیر است:

- پیادهسازی راحت
- سربار محاسباتی کم
- نیاز به حافظه زیادی ندارد
- o هاییر یارامتر های آن مقدار مشخصی دارند و نیاز به tuning نیست (به جز learning rate)

ب)

به نوع دیتاست بستگی دارد برای مثال Adam بهترین عملکرد را در دیتاهای با Noise بالا و گرادیان Sparse دارد.

همچنین هر کدام از این بهینه سازها دارای هایپر پارامترهایی هستند که باید Fine Tune شوند و عملکرد شبکه بستگی به آن دارد.

اینکه بگوییم همیشه Adam نتیجه بهتری می دهد اشتباه است زیرا مقالات State of the art بسیاری را می بینیم که از گونه های SGD استفاده کرده اند.

همچنین در مقالهای که لینک آن در ادامه آورده شده یک روش Hybrid پیشنهاد شده که ابتدا با Adam آموزش را شروع کنیم سپس هنگامی که یک شرطی رخ داد آن را به SGD تغییر دهیم. این کار باعث می شود که Generalization بهتری داشته باشیم.

یکی دیگر از عوامل تاثیرگذار متریک و هدف ما میباشد. برای مثال اگر Convergence برای ما اهمیت بیشتری دارد بهتر است از Adam استفاده کنیم. اما اگر هدف Generalization است بهتر است از Adam استفاده کنیم. (مطالعه مقاله)

https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f

https://arxiv.org/abs/1712.07628

الف)

تا اندیس ۱۰۰ همهی مقادیر برابر ۱ میباشند پس مقدار میانگین نیز ثابت و برابر ۱ خواهد بود. بعد از آن زمان با توجه به اینکه مقادیر d برابر -۱ میباشند میانگین به صورت اکیدا نزولی شروع به کاهش می کند.

ب - ج)

در واقع m1 همان Exponential moving average یا EMA میباشد و نحوه عملکرد آن به این صورت است که با توجه به مقدار کنونی آن به صورت زیر میدهد. در واقع مقدار کنونی آن به صورت زیر محاسبه می شود:

$$ext{EMA}_{ ext{today}} = rac{p_1 + (1-lpha)p_2 + (1-lpha)^2p_3 + (1-lpha)^3p_4 + \cdots}{1 + (1-lpha) + (1-lpha)^2 + (1-lpha)^3 + \cdots},$$

در این روش با توجه به اینکه نقطه جدید وزن 0.1 را دارد پس اثر آن به قدری خواهد بود تا بتواند اثر نقاط قبلی را جبران کند چون نقاط آخر d برابر -1 میباشند پس سرعت کاهش زیاد خواهد و میانگین به سرعت همگرا می شود.

مى توان مقدار EMA را با توجه به beta به صورت ميانگين n نقطه آخر تقريب زد. كه n به صورت زير محاسبه مى شود:

$$n = \frac{1}{1 - \beta} = \frac{1}{1 - 0.9} = 10$$

پس می توان گفت مقدار m1 تخمینی از مقدار میانگین در ۱۰ روز آخر می باشد.

است. هنگامی که t مقادیر کمی دارد (نقاط اولیه) مقدار m1 وابستگی m2 بسیار زیادی به عبارت زیر دارد:

if t is little:
$$\beta \times m_1[t-1] \approx 0$$

 $m_1[t] \propto (1-\beta) \times d[t]$

با توجه به اینکه مقدار eta = 1 کوچک است پس مقدار m1 در ابتدا بسیار اختلاف زیادی با مقدار معنادار خواهد داشت. برای حل این مشکل حاصل m1 را در عبارتی ضرب می کنیم تا این bias اصلاح شود:

$$m_2[t] = \frac{m_1[t]}{(1 - \beta^t)}$$
if t is little $\Rightarrow (1 - \beta^t) \approx 0 \Rightarrow m_2[t]$ is high
if t is high $\Rightarrow (1 - \beta^t) \approx 1 \Rightarrow m_2[t] \approx m_1[t]$

همانطور که در نمودار ها دیده می شود مقدار m2 در ابتدا مقدار و شیب بالایی دارد و سپس همانند مقدار d می شود. نمودار m1 در ابتدا دارای bias زیادی است و در نقاط ابتدایی با شکل d کمی متفاوت است.

در این حالت وزن نقاط جدید برابر 0.001 میباشد و ارزشش نسبت به حالت قبل کمتر است. پس الگوریتم دیرتر میتواند اثر نقاط مثبت قبلی را خنثی کند در نتیجه میانگین همگرا نمی شود.

مقدار n که بیانگر تقریبی از میانگین n روز آخر بود را محاسبه می کنیم:

$$n = \frac{1}{1 - \beta} = \frac{1}{1 - 0.999} = 1000$$

در واقع مقدار m1 برابر میانگین d در ۱۰۰۰ روز اخیر میباشد اما به دلیل بالا بودن bias در نقاط ابتدایی نمودار آن مشابه نمودار Mean در قسمت اول نمی شود.

اگر همانند سوال قبل این bias را اصلاح کنیم نمودار m2 دقیقا شبیه نمودار mean در قسمت اول می شود (به جز نقطه t=0)

دلیل این اتفاق این است که میانگین ۱۰۰۰ روز آخر در مسئلهای که کلا ۲۰۰ روز داریم برابر میانگین تجمعی می باشد. (۱۰۰۰ > ۲۰۰) بنابراین نمودار m2 باید مطابق نمودار Mean شود.

https://en.wikipedia.org/wiki/Moving_average

الف) این دیتاست شامل تصاویر grayscale با ابعاد ۲۸ پیکسل در ۲۸ پیکسل می باشد که شامل ۶۰۰۰۰ داده آموزشی و ۱۰۰۰۰ داده آزمون است. هر یک از تصاویر این دیتاست یکی از ۱۰ گونه مربوط به پوشاک (Fashion) می باشد. این ۱۰ کلاس عبارتند از:

شکل تنسورهای این دیتاست نیز به صورت زیر است:

x_train: (60000, 28, 28)
y_train: (60000,)

x_test: (10000, 28, 28)

y_test: (10000,)

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data

https://www.researchgate.net/figure/Sample-images-from-Fashion-MNIST-dataset_fig2_342801790

ب) با توجه به اینکه دیتاست اصلی دارای ۶۰۰۰۰ داده آموزشی و ۱۰۰۰۰ داده آزمون است (نسبت ۶ به ۱) مقدار بین 0.16 تا 0.25 برای Validation Split می تواند مناسب باشد. در ابتدا مقدار 0.2 را انتخاب کردیم چون توزیع قبلی داده آموزش و تست را خیلی بر هم نمی زند. هم چنین داده های آموزشی به ۴۸۰۰۰ می رسد که همچنان مقدار مناسبی برای Generalize کردن شبکه می باشد.

Number of train examples: 48000 Number of validation examples: 12000 Number of test examples: 10000 Train / Validation: 4

✓ در قسمت (د) این مقدار را ۳ بار تغییر می دهیم.

√ همانطور که می دانید تابع train_test_split در ابزار sklearn پیش فرض این مقدار را 0.25 در نظر می گیرد. (عدم استفاده)

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

ج) شبکه را با هایپرپارامترهای مشترک زیر آموزش و ارزیابی می کنیم:

BATCH_SIZE = 64
LOSS = "sparse_categorical_crossentropy"
LEARNING_RATE = 0.001
OPTIMIZER = SGD(learning_rate=LEARNING_RATE)
EPOCHS = 50
VAL SPLIT = 0.2

نتایج برای تعداد نورونهای مختلف لایه مخفی بهصورت زیر است:

Hidden Units	Train	Validation	Test
1/	loss: 1.2465	loss: 1.3133	loss: 1.3189
16	accuracy: 0.4728	accuracy: 0.4586	accuracy: 0.4650
22	loss: 0.6558	loss: 0.7129	loss: 0.7478
32	accuracy: 0.7656	accuracy: 0.7642	accuracy: 0.7738
64	loss: 0.4820	loss: 0.5902	loss: 0.6263
	accuracy: 0.8207	accuracy: 0.7912	accuracy: 0.7862
128	loss: 0.3869	loss: 0.5678	loss: 0.5752
	accuracy: 0.8595	accuracy: 0.8308	accuracy: 0.8196

✓ نتایج به صورت کامل در نوتبوک موجود است (به ازای هر Epoch)

تحلیل: مقدار loss و accuracy برای تعداد نورونهای مختلف به صورت زیر مقایسه میشود:

loss: 16 > 32 > 64 > 128

accuracy: 128 > 64 > 32 > 16

پس مى توان نتيجه گرفت براى ديتاست بالا تعداد ۱۲۸ نورون در لايه مخفى بهترين حالت است.

هم چنین اگر مقدار loss و accuracy را برای ۳ بخش Train و Validation و Test مقایسه کنیم داریم:

• 16 Hidden Units

loss: Test > Validation > Train

accuracy: Train = 47% > Test > Validation

حتی در حالت آموزش دقت و خطا مناسبی نداشتیم و شبکه دارای high bias بوده و underfit شده. پس اندازه شبکه یعنی ۱۶ نورون مناسب نبوده.

• 32 Hidden Units

loss: Test > Validation > Train

accuracy: Test = 77% > Train > Validation

نسبت به حالت قبلی مشکل high bias و underfit کمی حل شده اما همچنان دقت و خطای فاز آموزش مناسب نیست و باید شبکه را بزرگتر کرد.

• 64 Hidden Units

loss: Test > Validation > Train

accuracy: Train = 82% > Validation > Test

نسبت به حالات قبلی مشکل high bias و underfit کاملا حل شده و دیگر مشکل حالت قبلی که دقت آزمون بیشتر از آموزش بود را ندارد. اما همچنان می توانیم با بزرگ کردن شبکه دقت را بیشتر کنیم و bias را کاهش دهیم.

• 128 Hidden Units

loss: Test > Validation > Train

accuracy: Train = 86% > Validation > Test

از نظر دقت و خطا بهترین شبکه (در این مسئله) میباشد. نسبت به حالت ۶۴ نورون هم خطا کاهش یافته (چشمگیر) هم دقت افزایش.

- ✓ در هیچکدام از حالات مشکل high variance و overfit پیش نیامد زیرا باقی هایپر پارامتر ها مناسب انتخاب شده بودند.
- ✓ خطا در داده آزمون از داده های دیگر بیشتر است زیرا تعداد ورودی های آن از داده ارزیابی کمتر است و بر خلاف داده آموزش
 هیچ آموزشی روی آن صورت نمی گیرد.
 - ✓ نمودارهای Loss و Accuracy به ازای Epoch در قسمت (ح) رسم شده است.

د) مقدار Validation Split را ۳ بار به مقادیر زیر تغییر میدهیم و به ازای تعداد نورونهایی که در صورت سوال بود نتیجه را بررسی میکنیم. هاییرپارامترهای مشترک شبکه بهصورت زیر است:

```
BATCH_SIZE = 64
LOSS = "sparse_categorical_crossentropy"
LEARNING_RATE = 0.001
OPTIMIZER = SGD(learning_rate=LEARNING_RATE)
EPOCHS = 50
```

VAL_SPLIT = 0.15

Hidden Units	Train	Validation	Test
	loss: 1.2444	loss: 1.2937	loss: 1.2797
16	accuracy: 0.4986	accuracy: 0.4950	accuracy: 0.5070
32	loss: 0.6294	loss: 0.6947	loss: 0.6954
	accuracy: 0.7645	accuracy: 0.7409	accuracy: 0.7485
64	loss: 0.5302	loss: 0.6776	loss: 0.7026
	accuracy: 0.7986	accuracy: 0.7664	accuracy: 0.7664
128	loss: 0.3809	loss: 0.5509	loss: 0.5731
	accuracy: 0.8617	accuracy: 0.8280	accuracy: 0.8251

VAL_SPLIT = 0.20 Calculated in previous parts

Hidden Units	Train	Validation	Test
16	loss: 1.2465	loss: 1.3133	loss: 1.3189
16	accuracy: 0.4728	accuracy: 0.4586	accuracy: 0.4650
32	loss: 0.6558	loss: 0.7129	loss: 0.7478
32	accuracy: 0.7656	accuracy: 0.7642	accuracy: 0.7738
64	loss: 0.4820	loss: 0.5902	loss: 0.6263
	accuracy: 0.8207	accuracy: 0.7912	accuracy: 0.7862
128	loss: 0.3869	loss: 0.5678	loss: 0.5752
	accuracy: 0.8595	accuracy: 0.8308	accuracy: 0.8196

VAL SPLIT = 0.25

Hidden Units	Train	Validation	Test
16	loss: 1.5996	loss: 1.6443	loss: 1.6420
16	accuracy: 0.3580	accuracy: 0.3449	accuracy: 0.3503
32	loss: 0.8174	loss: 1.2648	loss: 1.2805
	accuracy: 0.6979	accuracy: 0.6074	accuracy: 0.6019
64	loss: 0.4617	loss: 0.5537	loss: 0.5700
	accuracy: 0.8288	accuracy: 0.8184	accuracy: 0.8168
128	loss: 0.3986	loss: 0.5456	loss: 0.5671
	accuracy: 0.8557	accuracy: 0.8302	accuracy: 0.8242

VAL SPLIT = 0.30

Hidden Units	Train	Validation	Test
16	loss: 1.3409	loss: 1.5924	loss: 1.5850
16	accuracy: 0.4479	accuracy: 0.3762	accuracy: 0.3747
32	loss: 0.6611	loss: 0.7440	loss: 0.7599
	accuracy: 0.7348	accuracy: 0.7302	accuracy: 0.7230
64	loss: 0.6592	loss: 0.8403	loss: 0.8245
	accuracy: 0.7478	accuracy: 0.7126	accuracy: 0.7096
128	loss: 0.3848	loss: 0.5337	loss: 0.5546
	accuracy: 0.8579	accuracy: 0.8354	accuracy: 0.8252

تحلیل: در هر ۴ حالتی که برای Validation Split داشتیم مقدار loss و accuracy برای تعداد نورونهای مختلف به صورت زیر مقایسه میشود:

loss: 16 > 32 > 64 > 128

accuracy: 128 > 64 > 32 > 16

- پس در انتخاب بهترین تعداد نورونهای لایه مخفی تغییری ایجاد نشد. در واقع هایپرپارامتر Validation Split بر سایر هایپرپارامترها
 عمود است (Orthogonality) و تعداد نورون لایه مخفی به آن وابسته نیست و می توان بهترین مقدار آن را مستقل از Split
 Split
 - 💠 دقت فاز آزمون برای تعداد نورونهای مختلف و Validation Split های مختلف به صورت زیر مقایسه می شود:

• 16 Hidden Units

test accuracy: VS(0.15) > VS(0.20) > VS(0.30) >= VS(0.25)

test loss: VS(0.15) > VS(0.20) > VS(0.30) > VS(0.25)

• 32 Hidden Units

test accuracy: VS(0.20) > VS(0.15) > VS(0.30) > VS(0.25)

test loss: VS(0.15) > VS(0.20) > VS(0.30) > VS(0.25)

• 64 Hidden Units

test accuracy: VS(0.25) > VS(0.20) > VS(0.15) >= VS(0.30)

test loss: VS(0.25) > VS(0.20) > VS(0.15) > VS(0.30)

• 128 Hidden Units

test accuracy: VS(0.30) > = VS(0.15) > = VS(0.25) > = VS(0.20)

test loss: VS(0.30) > VS(0.25) > VS(0.15) > VS(0.20)

ترتیب و رابطهی مشخصی دیده نمی شود اما نکات زیر قابل توجه است:

۱- در حالت ۱۲۸ نورون نتایج بسیار نزدیک هستند و Validation Split تاثیر بسیار کمی دارد.

۲- دقت داده تست در حالت ۶۴ نورون با VS = 0.25 مقدار بسیار خوبی دارد (بسیار نزدیک به حالت ۱۲۸ نورون) پس می توان با انتخاب آن در این شبکه کوچک تر نتیجه مطلوب گرفت. همین موضوع باعث می شود مقدار Validation Split را برابر 0.25 در نظر بگیریم. دقیقا همان مقداری که کتاب خانه sklearn در تابع خودش به صورت پیش فرض در نظر گرفته.

تاثیر این پارامتر به این گونه است که اگر مقدار آن کم باشد اکثر داده ها به بخش آموزش منتقل می شود و شبکه آموزش بهتری می بیند ما با ضعیف بودن ارزیابی دقت داده آزمون کاهش می یابد.

اگر این مقدار بیش از اندازه بزرگ باشه شبکه داده آموزشی کمتری میبیند و ممکن است روی حجم داده آموزشی کم Overfit کند. و نتواند روی داده آزمون به خوبی Generalize کند.

ه) شبکه را با هایپر پارامترهای مشترک زیر و تنها با تغییر بهینهساز آموزش و ارزیابی می کنیم.

VAL_SPLIT = 0.25 HIDDEN_UNITS = 128 LEARNING_RATE = 0.001 EPOCHS = 50

EPOCHS = 50			
Optimizer	Train	Validation	Test
CCD	loss: 0.3986	loss: 0.5456	loss: 0.5671
SGD	accuracy: 0.8557	accuracy: 0.8302	accuracy: 0.8242
Adam	loss: 0.3469	loss: 0.5567	loss: 0.5576
	accuracy: 0.8778	accuracy: 0.8514	accuracy: 0.8457
RMSprop	loss: 0.4952	loss: 1.6664	loss: 1.7180
	accuracy: 0.8653	accuracy: 0.8326	accuracy: 0.8248
Adagrad	loss: 0.5100	loss: 1.7209	loss: 1.8189
	accuracy: 0.8640	accuracy: 0.8315	accuracy: 0.8208

مقايسه:

Train loss: Adam < SGD < RMSprop < Adagrad

Val loss: SGD < Adam < RMSprop < Adagrad

Test loss: Adam < SGD < RMSprop < Adagrad

Train accuracy: Adam > RMSprop > Adagrad > SGD

Val accuracy: Adam > RMSprop > Adagrad > SGD

Test accuracy:

Adam > RMSprop > SGD > Adagrad

Adam بهترین عملکرد را دارد. زیرا ترکیبی از تمامی حالت هاست و امکان دور افتادن از Global Optimum در آن کم است. همچنین نوسان در آن کمتر میباشد. نوسان زیاد را میتوان در نمودار سایر بهینهسازها مشاهده کرد.

و) شبکه را با هایپر پارامترهای مشترک زیر و تنها با تغییر نرخ آموزش، آموزش و ارزیابی می کنیم.

VAL_SPLIT = 0.25
HIDDEN_UNITS = 128
OPTIMIZER = Adam(learning_rate=LEARNING_RATE)
EPOCHS = 50

Learning Rate	Train	Validation	Test
0.001	loss: 0.3544	loss: 0.5554	loss: 0.5788
0.001	accuracy: 0.8736	accuracy: 0.8467	accuracy: 0.8383
0.0001	loss: 0.2129	loss: 0.6215	loss: 0.6339
0.0001	accuracy: 0.9187	accuracy: 0.8632	accuracy: 0.8589
0.01	loss: 2.2262	loss: 2.2202	loss: 2.2004
	accuracy: 0.1521	accuracy: 0.1356	accuracy: 0.1412
0.1	loss: 2.3048	loss: 2.3684	loss: 2.2972
	accuracy: 0.1042	accuracy: 0.0983	accuracy: 0.1037

در حالت 0.1 و 0.01 شبکه دارای bias بسیار زیاد می باشد و عملا fit نمی شود زیرا این مقدار قدم های گرادیان کاهشی را بسیار بزرگ در نظر می گیرد و باعث می شود مدام از نقطه بهینه بپریم. عدم همگرایی

حالت 0.001 نسبت به 0.0001 دارای Loss کمتری است. Accuracy نیز کمتر می باشد (نوسان زیاد). پس انتخاب بهترین نرخ آموزش بستگی به Metric ما دارد که در صورت سوال دقت (Accuracy) مورد پرسش است پس مقدار 0.0001 را انتخاب می کنیم.

ز) شبکه را با هایپر پارامترهای زیر و Epoch برابر ۱۰ آموزش و ارزشیابی می کنیم.

VAL_SPLIT = 0.25
HIDDEN_UNITS = 128
LEARNING_RATE = 0.0001
OPTIMIZER = Adam(learning_rate=LEARNING_RATE)

Epochs	Train	Validation	Test
50	loss: 0.2129	loss: 0.6215	loss: 0.6339
	accuracy: 0.9187	accuracy: 0.8632	accuracy: 0.8589
10	loss: 1.4732	loss: 2.1958	loss: 2.3087
	accuracy: 0.8510	accuracy: 0.8141	accuracy: 0.8077

با توجه به نمودار Loss می توان گفت شبکه به طور کامل همگرا نشده. از مقایسه نتایج داخل جدول نیز می توان به این نکته پی برد زیرا مقدار Loss بزرگ است.

```
BATCH_SIZE = 64

LOSS = "sparse_categorical_crossentropy"

LEARNING_RATE = 0.001

OPTIMIZER = SGD(learning_rate=LEARNING_RATE)

EPOCHS = 50

VAL SPLIT = 0.2
```


۱۶ نورون: حتی در حالت آموزش دقت و خطا مناسبی نداشتیم و شبکه دارای high bias بوده و underfit شده. پس اندازه شبکه یعنی ۱۶ نورون مناسب نبوده. (شبکه بسیار سریع همگرا شده)

۳۲ نورون: نسبت به حالت قبلی مشکل high bias و underfit کمی حل شده اما همچنان دقت و خطای فاز آموزش مناسب نیست و باید شبکه را بزرگتر کرد. همچنین نوسان و پرش در این حالت بسیار زیاد است و احتمالا مشکل high variance هم داریم.

۶۴ نورون: نسبت به حالات قبلی مشکل high bias و underfit کاملا حل شده و دیگر مشکل حالت قبلی را ندارد. اما هم چنان می توانیم با بزرگ کردن شبکه دقت را بیشتر کنیم و bias را کاهش دهیم. در این حالت همگرایی به خوبی رخ داده و نوسانات نیز کم است.

۱۲۸ نورون: از نظر دقت و خطا بهترین شبکه (در این مسئله) میباشد. نسبت به حالت ۶۴ نورون هم خطا کاهش یافته (چشمگیر) هم دقت افزایش. همچنین همگرایی حفظ شده و نوسانات نیز کم میباشد.