	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name Dr		Dr.Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI(P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable t Batches	o 23CSBTB40	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Daily Farm – Organic Grocery	

Context:

Daily Farm runs newspaper ads to promote their fresh delivery boxes.

Newspaper Ads	Orders Received
(x)	(y)
1	35
2	48
3	60
1	40
2	50

Objective:

Analyze the effect of newspaper advertising on the number of orders received for DailyFarm by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - **Independent Variable (x):** Newspaper Ads
 - **Dependent Variable (y):** Orders Received

2. Calculate the Baseline Value

o Compute the **mean of all order values (y values)**.

3. Calculate SHAP Values

- For each record, calculate the difference between the **predicted value** and the **baseline**.
- This difference is the **SHAP value**, attributed to the number of newspaper ads.

4. Compute Final Prediction

- o Use the **linear regression model** to calculate predicted orders for each ad count.
- Confirm that:

Final Prediction=Baseline+SHAP Value\text{Final Prediction} = \text{Baseline} + \text{SHAP Value} Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- o Explain how the number of newspaper ads influenced each predicted order count.
- o Compare the predicted value to the actual value for each row.
- o Identify **underprediction** or **overprediction**, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - o Accuracy of the model
 - Trend analysis
 - SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	HealthFirst – Appointment Rate Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Analyze how doctor availability and SMS reminders influence appointment bookings using Multiple Linear Regression and interpret the model results using SHAP value analysis.

Given Dataset:

Doctors Available (x1)	Reminders Sent (1/0) (x ₂)	Appointmen ts (y)
3	1	40
2	1	35
4	0	30
1	0	20
2	1	38

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Use Doctors Available and Reminders Sent as independent variables
- Use Appointments as the dependent variable

2. Calculate the Baseline Value

o Compute the mean of all appointment values

3. Calculate SHAP Values

- Calculate SHAP Value
- o Distribute SHAP contributions between Doctors Available and Reminders Sent based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Doctors Available) + SHAP (Reminders Sent)

5. Interpret the Results

- o For each record, explain how doctor availability and reminders affected the prediction
 - o Compare predicted vs actual appointment values
- o Indicate if the model overpredicted or underpredicted and suggest potential reasons

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - o Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.