Application to 2016 Election Data

Load Data

```
## SURVEY DATA (PEW)
pew <- readRDS(paste0(path_data, "pew.rds"))</pre>
## AUXILIARY INFORMATION (CCES)
cces <- readRDS(paste0(path_data, "cces.rds"))</pre>
### Drop invalid cases
cces <- cces %>%
    filter((CC16_401 == "I definitely voted in the General Election.") &
               !is.na(commonweight_vv_post))
## make recode_educ_white column
cces <- cces %>%
 mutate(recode_educ_white =
           factor(case_when(recode_race == "White" ~ as.character(recode_educ),
                             TRUE ~ "No Split"),
                  levels = c(levels(cces$recode_educ), "No Split")),
         commonweight_vv_post = commonweight_vv_post / mean(commonweight_vv_post))
pew <- pew %>%
  mutate(recode_educ_white =
           factor(case_when(recode_race == "White" ~ as.character(recode_educ),
                             TRUE ~ "No Split"),
                  levels = c(levels(pew$recode_educ), "No Split")))
### Actual results
pres <- readRDS(paste0(path_data, "election.rds"))</pre>
```

```
natl_margin <- pres %>%
    summarise(margin = (sum(demtotal) - sum(reptotal)) /
                   (sum(demtotal) + sum(reptotal))) %>%
    as.numeric()
natl_margin
## [1] 0.02325013
formula rake demos noeduc <- ~recode age bucket + recode female +
    recode_race + recode_region + recode_pid_3way
formula_rake_demos_weduc <- ~recode_age_bucket + recode_female +</pre>
  recode_race + recode_region + recode_educ + recode_pid_3way
formula_ps <- ~recode_age_3way + recode_female + recode_race +</pre>
    recode_region + recode_educ_3way + recode_pid_3way
formula_retrospective <- ~recode_age_bucket:recode_pid_3way +</pre>
  recode_female:recode_pid_3way+
    recode_race_educ_reg:recode_pid_3way
## Find Missing Strata
## Make "strata" variable in CCES and Pew
cces <- bind_cols(cces, cces %>%
                    unite("strata", all.vars(formula_ps), remove = FALSE) %>%
                    unite("strata wage", c(all.vars(formula ps), "recode age"),
                           remove = FALSE) %>%
                    select(strata, strata_wage))
pew <- bind_cols(pew, pew %>%
                    unite("strata", all.vars(formula_ps), remove = FALSE) %>%
                    unite("strata_wage", c(all.vars(formula_ps), "recode_age"),
                          remove = FALSE) %>%
                    select(strata, strata_wage))
missing strata <- unique(cces$strata)[!(unique(cces$strata) %in% unique(pew$strata))]
## recode missing age
#####XXXXXX issue here: how to recode age and whether to recode age buckets
#pew$recode_age[is.na(pew$recode_age)] <- mean(pew$recode_age, na.rm = TRUE)</pre>
pew$recode age[is.na(pew$recode age)] <- mean(cces$recode age, na.rm = TRUE)</pre>
cces$recode_age[is.na(cces$recode_age)] <- mean(cces$recode_age, na.rm = TRUE)</pre>
## For Pew, since there are no design weights, assume SRS
pew_srs <- svydesign(ids = ~1, data = pew)</pre>
cces_awt <- svydesign(ids = ~1, weights = ~commonweight_vv_post, data = cces)</pre>
### Population targets
targets_rake_demos_noeduc <- create_targets(cces_awt, formula_rake_demos_noeduc)</pre>
targets_rake_demos_weduc <- create_targets(cces_awt, formula_rake_demos_weduc)</pre>
targets_retrospective <- create_targets(cces_awt, formula_retrospective)</pre>
## Raking on demographics, excluding education
rake_demos_noeduc <- calibrate(design = pew_srs,</pre>
                        formula = formula_rake_demos_noeduc,
                        population = targets_rake_demos_noeduc,
```

```
calfun = "raking")
rake_demos_noeduc <- svydesign(~1, data = pew, weights = weights(rake_demos_noeduc))</pre>
## Raking on demographics, including education
rake_demos_weduc <- calibrate(design = pew_srs,</pre>
                               formula = formula_rake_demos_weduc,
                               population = targets rake demos weduc,
                               calfun = "raking")
rake_demos_weduc <- svydesign(~1, data = pew, weights = weights(rake_demos_weduc))</pre>
## Post-stratification
targets_ps <- svytable(formula = ~strata,</pre>
                        design = subset(cces_awt, !(strata %in% missing_strata)))
post_stratification <- postStratify(design = pew_srs,</pre>
                          strata = ~strata,
                          population = targets_ps)
post_stratification <- svydesign(~1, data = pew,</pre>
                                  weights = weights(post_stratification))
## Retrospective weighting scheme
#failed to converge? XX
rake_retrospective <- calibrate(design = pew_srs,</pre>
                               formula = formula_retrospective,
                               population = targets_retrospective,
                               calfun = "raking",
                               force = TRUE)
## Warning in grake(mm, ww, calfun, bounds = bounds, population =
## population, : Failed to converge: eps=0.00688873036014645 in 51 iterations
rake_retrospective <- svydesign(~1, data = pew, weights = weights(rake_retrospective))
kpop_data <- rbind(pew %>% select(recode_age,
                                   recode_female,
                                   recode race,
                                   recode region,
                                   recode_pid_3way,
                                   recode_educ,
                                   recode_age_bucket),
                    cces %>% select(recode_age,
                                    recode_female,
                                    recode_race,
                                    recode_region,
                                    recode_pid_3way,
                                    recode_educ,
                                    recode_age_bucket)) %>%
   model.matrix(as.formula("~. - 1"), .)
kpop_sampled <- c(rep(1, nrow(pew)), rep(0, nrow(cces)))</pre>
```

```
kpop_b.5x <- kbal(allx=kpop_data,</pre>
                    sampled = kpop_sampled,
                    b = 0.5 * ncol(kpop_data),
                    fullSVD = TRUE,
                    meanfirst = FALSE,
                    incrementby = 1,
   population.w = cces$commonweight_vv_post /mean(cces$commonweight_vv_post),
                    sampledinpop = FALSE,
                    printprogress = FALSE)
kpop_mf_b2x <- kbal(allx=kpop_data,</pre>
                      sampled = kpop_sampled,
                      b = 2 * ncol(kpop_data),
                      incrementby = 1.
                      fullSVD = TRUE,
                      meanfirst = TRUE,
                      ebal.convergence = TRUE,
        population.w = cces$commonweight_vv_post/mean(cces$commonweight_vv_post),
                      sampledinpop = FALSE,
                      printprogress = FALSE)
kpop <- svydesign(~1, data = pew, weights = kpop_b.5x$w[kpop_sampled] )</pre>
kpop_mf <- svydesign(~1, data = pew, weights = kpop_mf_b2x$w[kpop_sampled])</pre>
margin summary <- round(cbind(cces = svymean(formula rake demos weduc, cces awt),</pre>
                              unweighted = svymean(formula_rake_demos_weduc, pew_srs),
            rake_demos_noeduc = svymean(formula_rake_demos_weduc, rake_demos_noeduc),
            rake_demos_weduc = svymean(formula_rake_demos_weduc, rake_demos_weduc),
            post stratification = svymean(formula rake demos weduc, post stratification),
            rake_retrospective = svymean(formula_rake_demos_weduc, rake_retrospective),
            kpop = svymean(formula_rake_demos_weduc, kpop),
            kpop_mf = svymean(formula_rake_demos_weduc, kpop_mf)) * 100, 1) %>%
  data.frame() %>%
  rownames_to_column() %>%
  mutate(variable = case_when(str_detect(rowname, "age") ~ "4-way Age Bucket",
                             str_detect(rowname, "female") ~ "Gender",
                             str_detect(rowname, "race") ~ "Race/Ethnicity",
                             str_detect(rowname, "region") ~ "Region",
                             str_detect(rowname, "educ") ~ "Education Level",
                             str detect(rowname, "pid") ~ "Party Identification",
                             TRUE ~ "Empty"),
         level =
           gsub("recode_|age_bucket|female|race|region|educ|pid_3way", "", rowname)) %>%
  select(level, everything(), -rowname, -variable)
## Total missing strata
sum(cces$commonweight_vv_post[cces$strata %in% missing_strata])/sum(cces$commonweight_vv_post)
## [1] 0.08405765
round(cbind(cces = svymean(formula_rake_demos_weduc, cces_awt),
            not_missing = svymean(formula_rake_demos_weduc,
                                  subset(cces_awt, !(strata %in% missing_strata))),
            missing = svymean(formula_rake_demos_weduc,
```

```
subset(cces_awt, (strata %in% missing_strata)))) * 100, 1) %>%
  data.frame() %>%
  rownames_to_column() %>%
  mutate(variable = case_when(str_detect(rowname, "age") ~ "4-way Age Bucket",
                             str_detect(rowname, "female") ~ "Gender",
                             str_detect(rowname, "race") ~ "Race/Ethnicity",
                             str_detect(rowname, "region") ~ "Region",
                             str detect(rowname, "educ") ~ "Education Level",
                             str_detect(rowname, "pid") ~ "Party Identification",
                             TRUE ~ "Empty"),
         level =
           gsub("recode_|age_bucket|female|race|region|educ|pid_3way", "", rowname)) %>%
  select(level, everything(), -rowname, -variable)
##
                     level cces not_missing missing
## 1
                  18 to 35 34.8
                                       37.6
## 2
                  36 to 50 22.6
                                        24.5
                                                 2.0
## 3
                  51 to 64 28.9
                                        29.7
                                                20.6
## 4
                                        8.3
                                                73.4
                       65+ 13.7
## 5
                    Female 50.8
                                        50.8
                                                51.5
                      Male 49.2
                                       49.2
## 6
                                                48.5
## 7
                     Black 11.8
                                       11.5
                                                14.9
## 8
                  Hispanic 6.5
                                        6.2
                                                10.1
## 9
                     Other 6.8
                                        6.5
                                                10.3
                     White 74.9
                                       75.8
                                                64.8
## 10
## 11
                   Midwest 23.4
                                        23.2
                                                25.5
## 12
                 Northeast 19.7
                                       19.3
                                               24.4
## 13
                     South 35.5
                                       36.9
                                               19.9
## 14
                      West 21.4
                                        20.6
                                                30.2
## 15
                     No HS 6.8
                                        6.2
                                                13.2
## 16 High school graduate 30.6
                                        30.3
                                                32.9
                                        23.5
                                                17.6
## 17
              Some college 23.0
## 18
                    2-year 10.6
                                        10.8
                                                8.6
## 19
                    4-year 18.7
                                        19.0
                                                15.0
## 20
                 Post-grad 10.4
                                        10.1
                                                12.8
## 21
                                        38.5
                                                33.1
                       Dem 38.1
## 22
                       Ind 32.5
                                        32.5
                                                32.0
## 23
                       Rep 29.5
                                        29.0
                                                34.9
margin_summary_educ <- round(cbind(cces = svymean(~recode_educ_white, cces_awt),</pre>
                              unweighted = svymean(~recode_educ_white, pew_srs),
            rake_demos_noeduc = svymean(~recode_educ_white, rake_demos_noeduc),
            rake_demos_weduc = svymean(~recode_educ_white, rake_demos_weduc),
            post_stratification = svymean(~recode_educ_white, post_stratification),
            rake_retrospective = svymean(~recode_educ_white, rake_retrospective),
            kpop = svymean(~recode educ white, kpop),
            kpop_mf = svymean(~recode_educ_white, kpop_mf)) * 100, 1) %>%
  data.frame() %>%
  rownames_to_column() %>%
  mutate(variable = case_when(str_detect(rowname, "age") ~ "4-way Age Bucket",
                             str_detect(rowname, "female") ~ "Gender",
                             str_detect(rowname, "race") ~ "Race/Ethnicity",
                             str_detect(rowname, "region") ~ "Region",
                             str detect(rowname, "educ") ~ "Education Level",
```

```
str_detect(rowname, "pid") ~ "Party Identification",
                             TRUE ~ "Empty"),
         level =
           gsub("recode_|age_bucket|female|race|region|educ|pid_3way|educ_3way|_white",
                "", rowname)) %>%
  select(level, everything(), -rowname, -variable)
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas:
##
    # Simple named list:
##
##
     list(mean = mean, median = median)
##
     # Auto named with `tibble::lst()`:
##
##
    tibble::lst(mean, median)
##
##
     # Using lambdas
    list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once per session.
target_margin <- svycontrast(svymean(~recode_vote_2016, cces_awt, na.rm = TRUE),</pre>
                       vote_contrast)[1]
svymean(~recode_vote_2016, rake_demos_noeduc, deff = TRUE)
## Warning in svymean.survey.design2(~recode_vote_2016, rake_demos_noeduc, :
## Sample size greater than population size: are weights correctly scaled?
                                               SE DEff
                                   mean
## recode vote 2016Democrat
                              0.5152342 0.0137716
                                                    NΑ
## recode vote 20160ther
                              0.0610503 0.0068547
                                                     NΑ
## recode vote 2016Republican 0.4237155 0.0135460
comp df <- data.frame(</pre>
    cces = svycontrast(svymean(~recode_vote_2016,
                               cces awt, na.rm = TRUE),
                       vote_contrast),
    unweighted = svycontrast(svymean(~recode_vote_2016,
                                     pew_srs, na.rm = TRUE),
                        vote contrast),
   rake_demos_noeduc = svycontrast(svymean(~recode_vote_2016,
                                            rake_demos_noeduc, na.rm = TRUE),
                        vote_contrast),
   rake_demos_weduc = svycontrast(svymean(~recode_vote_2016,
                                           rake_demos_weduc, na.rm = TRUE),
                        vote contrast),
    post_stratification = svycontrast(svymean(~recode_vote_2016,
                                               post_stratification, na.rm = TRUE),
                        vote_contrast),
   rake retrospective = svycontrast(svymean(~recode vote 2016,
                                             rake retrospective, na.rm = TRUE),
                        vote_contrast),
    kpop = svycontrast(svymean(~recode_vote_2016,
                               kpop, na.rm = TRUE),
                        vote_contrast),
```

```
kpop_mf = svycontrast(svymean(~recode_vote_2016,
                                 kpop_mf, na.rm = TRUE),
                       vote_contrast)) %>%
   pivot_longer(cols = everything(),
                names_to = c("source", ".value"),
                names_pattern = "(.*)\\.(.*)") %>%
   rename(est = nlcon) %>%
   mutate(est = est * 100,
          SE = SE * 100,
          err_target = est - target_margin * 100,
          source = str_replace(source, "_", " "),
          source_name = factor(source, labels = c("Target (CCES)",
                                             "KPop",
                                             "KPop + Mean First",
                                             "Post-Stratification",
                                             "Raking\nDemographics\nwithout Education",
                                             "Raking\nDemographics\nwith Education",
                                             "Raking\nRetrospective",
                                             "Pew\nUnweighted"),
                          ordered = TRUE))
comp_df
## # A tibble: 8 x 5
## source
                              SE err_target source_name
                       est
                                      <dbl> <ord>
##
                    <dbl> <dbl>
   <chr>
## 1 cces
                     2.64 0.740
                                            Target (CCES)
## 2 unweighted
                     5.60 2.26
                                      2.96 "Pew\nUnweighted"
## 3 rake demos_noed~ 9.75 2.81
                                      7.11 "Raking\nDemographics\nwithout E~
## 4 rake demos_weduc 5.29 3.11
                                      2.65 "Raking\nDemographics\nwith Educ~
                                      2.39 Post-Stratification
## 5 post stratifica~ 5.03 3.04
## 6 rake retrospect~ 5.17 3.39
                                      2.53 "Raking\nRetrospective"
                                      1.45 KPop
## 7 kpop
                      4.09 3.10
## 8 kpop mf
                      2.47 3.41
                                     -0.168 KPop + Mean First
```

Estimates of Clinton National Popular Vote Margin


```
ggsave("./plots/weighted_pew_results.pdf", width = 6, height = 4)
```

Note from survey package:

The design effect compares the variance of a mean or total to the variance from a study of the same size using simple random sampling without replacement. Note that the design effect will be incorrect if the weights have been rescaled so that they are not reciprocals of sampling probabilities. To obtain an estimate of the design effect comparing to simple random sampling with replacement, which does not have this requirement, use deff="replace". This with-replacement design effect is the square of Kish's "deft".

```
lapply(list(rake_demos_noeduc, rake_demos_weduc, post_stratification, rake_retrospective, kpop, kpop_mf
     function(x) {
        svymean(~recode_vote_2016, x, deff = "replace")
    })
```

```
##
  [[1]]
##
                                                 SE
                                                      DEff
                                    mean
## recode_vote_2016Democrat
                               0.5152342 0.0137716 1.5741
## recode_vote_20160ther
                               0.0610503 0.0068547 1.6992
  recode_vote_2016Republican 0.4237155 0.0135460 1.5578
##
##
   [[2]]
##
##
                                               SE
                                                    DEff
                                   mean
## recode_vote_2016Democrat
                               0.492440 0.015599 2.0182
## recode vote 20160ther
                               0.064585 0.010645 3.8881
## recode_vote_2016Republican 0.442974 0.015397 1.9917
##
## [[3]]
##
                                    mean
                                                 SE
                                                      DEff
```

```
## recode_vote_2016Democrat
                              0.4951602 0.0146016 1.7681
## recode_vote_20160ther
                              0.0570701 0.0064833 1.6192
## recode vote 2016Republican 0.4477697 0.0147349 1.8202
##
## [[4]]
##
                                                SE
                                                     DEff
                                   mean
## recode vote 2016Democrat
                              0.4955713 0.0162761 2.1968
## recode vote 20160ther
                              0.0575692 0.0077328 2.2847
## recode_vote_2016Republican 0.4468595 0.0165905 2.3084
##
## [[5]]
##
                                                SE
                                                     DEff
                                   mean
## recode_vote_2016Democrat
                              0.4911832 0.0149371 1.8507
## recode_vote_20160ther
                              0.0562514 0.0062328 1.5170
## recode_vote_2016Republican 0.4525654 0.0149954 1.8815
##
## [[6]]
##
                                              SE
                                                   DEff
                                  mean
## recode_vote_2016Democrat
                              0.482228 0.016914 2.3751
## recode vote 20160ther
                              0.058803 0.010303 3.9758
## recode_vote_2016Republican 0.458969 0.016838 2.3668
```

Weights

Looking at the average weight in margins.

```
load("cleaned data/Full SVD/weights wPid full.Rdata")
#optimal choice w pid: no mf = 0.5, mf = 2
weights <- pew %>% select(recode_age_bucket,
                          recode_age_3way,
                          recode_female,
                          recode_race,
                          recode_region,
                          recode_educ,
                          recode_educ_3way,
                          recode_pid_3way,
                          recode_race_educ_reg) %>%
   mutate(rake_demos_noeduc_wt = weights(rake_demos_noeduc)/
                                 mean(weights(rake demos noeduc)),
           rake_demos_weduc_wt = weights(rake_demos_weduc)/
                                 mean(weights(rake demos weduc)),
           post_stratification_wt = weights(post_stratification)/
                                 mean(weights(post_stratification)),
           rake retrospective wt = weights(rake retrospective)/
                                 mean(weights(rake_retrospective)),
           k_wt = wts_wPid$wtkbal_b.5x,
           k_mf_wt = wts_wPid$wtkbal_mf_b2x)
#just checking everything is internally consistent
#sum(weights$rake_demos_noeduc_wt != wts_wPid$wt1_pid)
age <- weights %>%
    group_by(recode_age_bucket) %>%
```

```
summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
female <- weights %>%
    group_by(recode_female) %>%
    summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
race <- weights %>%
   group_by(recode_race) %>%
    summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
region <- weights %>%
   group_by(recode_region) %>%
    summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
education <- weights %>%
    group_by(recode_educ) %>%
    summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
pid <- weights %>%
    group_by(recode_pid_3way) %>%
    summarise(mu_1 = mean(rake_demos_noeduc_wt),
              mu_2 = mean(rake_demos_weduc_wt),
              mu_3 = mean(post_stratification_wt),
              mu_4 = mean(rake_retrospective_wt),
              mu_kpop = mean(k_wt),
              mu_kpop_mf = mean(k_mf_wt)) %>% ungroup()
```

```
colnames(age) <- c("Variable", colnames(age)[-1])
colnames(female) <- c("Variable", colnames(female)[-1])
colnames(race) <- c("Variable", colnames(race)[-1])
colnames(region) <- c("Variable", colnames(region)[-1])
colnames(education) <- c("Variable", colnames(education)[-1])
colnames(pid) <- c("Variable", colnames(pid)[-1])
weights_summary <- rbind(age, female, race, region, education, pid)</pre>
```

 $\begin{tabular}{ll} Table 1: Marginal distribution, in precentage points, of important demographics under different weighting $$ \underline{models}$. \end{tabular}$

	Target (CCES)	Unweighted Pew	Raking: Demographics	Raking: Demographics + Education	Post- Stratification	Raking: Retrospective	KPop	KPop Mean First
4-way Age Bucket								
18 to 35	34.8	43.7	34.8	34.8	35.4	34.8	34.4	34.8
36 to 50	22.6	32.6	22.6	22.6	26.7	22.6	23.6	22.6
51 to 64	28.9	21.0	28.9	28.9	29.7	28.9	29.5	28.9
65+	13.7	2.7	13.7	13.7	8.3	13.7	12.5	13.7
Gender								
Female	50.8	47.3	50.8	50.8	50.8	50.8	50.8	50.8
Male	49.2	52.7	49.2	49.2	49.2	49.2	49.2	49.2
Race/Ethnicity								
Black	11.8	8.9	11.8	11.8	11.5	13.4	11.7	11.8
Hispanic	6.5	7.6	6.5	6.5	6.2	6.5	5.9	6.5
Other	6.8	7.1	6.8	6.8	6.5	6.8	6.2	6.8
White	74.9	76.4	74.9	74.9	75.8	73.2	76.3	74.9
Region								
Midwest	23.4	22.3	23.4	23.4	23.2	24.7	23.6	23.4
Northeast	19.7	18.2	19.7	19.7	19.3	19.7	19.5	19.7
South	35.5	37.9	35.5	35.5	36.9	34.8	36.0	35.5
West	21.4	21.6	21.4	21.4	20.6	20.8	20.8	21.4
					_0.0	20.0	_0.0	
Education Level No HS	6.8	1.8	1.8	6.8	2.4	3.6	1.9	6.8
High school	30.6	1.8	21.5	30.6	$\frac{2.4}{28.8}$	$\frac{3.0}{29.4}$	$\frac{1.9}{31.2}$	30.6
Some college	23.0	16.7	$\frac{21.3}{17.7}$	23.0	24.5	$\frac{29.4}{23.0}$	$\frac{31.2}{24.4}$	23.0
2-year	10.6	11.3	10.6	10.6	9.5	$\frac{23.0}{11.7}$	10.9	10.6
4-year	18.7	28.6	26.2	18.7	22.2	20.2	20.3	18.7
Post-grad	10.4	21.9	22.3	10.4	12.6	12.2	11.3	10.4
_	10.1			1011	12.0		11.0	10.1
Party Identification Dem	38.1	34.4	38.1	38.1	38.5	38.1	37.6	38.1
Ind	32.5	$34.4 \\ 35.2$	32.5	32.5	32.5	$\frac{36.1}{32.5}$	$\frac{37.0}{32.8}$	32.5
Rep	$\frac{32.5}{29.5}$	30.4	$\frac{32.5}{29.5}$	$\frac{32.5}{29.5}$	$\frac{32.5}{29.0}$	$\frac{32.5}{29.5}$	$\frac{32.6}{29.5}$	$\frac{32.5}{29.5}$
	29.0	90.4	49.0	23.0	49.0	49.0	43.0	

Note:

Cells present the percentage of the population represented by each variable level.

Table 2: Marginal distribution of education level for white voters under different weighting models.

	Target (CCES)	Unweighted Pew	Raking: Demographics	Raking: Demographics + Education	Post- Stratification	Raking: Retrospective	KPop	KPop Mean First
Education Level for White	Voters							
No HS	4.6	1.1	1.1	4.5	1.8	3.0	1.2	4.8
High school	22.6	14.6	15.5	22.9	23.1	22.6	23.6	21.9
Some college	16.9	11.5	12.1	16.3	19.5	16.9	18.3	17.7
2-year	7.8	8.3	7.0	7.3	6.1	7.8	7.7	7.2
4-year	14.8	23.0	20.7	15.2	17.1	14.8	16.3	14.8
Post-grad	8.3	18.0	18.5	8.8	8.2	8.3	9.1	8.4
Error								
Mean Absolute Error	_	6.6	5.8	0.4	1.6	0.1	1.2	0.5

Note:

Cells present the percentage of the population represented by each variable level. Mean absolute error is the absoluate error in each cell, relative to the target (CCES), weighted by the education level's proportion among white voters in the target population.

Table 3: Mean weights of important demographics under different weighting models .

	Raking Demographics without Education	Raking Demographics with Education	Post- Stratification	Raking Retrospective	KPop	KPop Mean First
4-way Age Bucket						
18 to 35	0.795	0.795	0.809	0.795	0.787	0.795
36 to 50	0.692	0.692	0.818	0.692	0.722	0.692
51 to 64	1.378	1.378	1.415	1.378	1.406	1.378
65+	5.183	5.183	3.117	5.183	4.732	5.183
Gender						
Female	1.076	1.076	1.075	1.076	1.075	1.076
Male	0.932	0.932	0.933	0.932	0.933	0.932
	0.00_	0.00=	0.000	0.00_	0.000	0.00
Race/Ethnicity Black	1.326	1.326	1.293	1.515	1.318	1.326
Hispanic	0.857	0.857	0.815	0.857	0.770	0.857
Other	0.057 0.955	0.857 0.955	0.911	0.955	0.770 0.865	0.955
White	0.981	0.935 0.981	0.911 0.993	0.959	0.999	0.935 0.981
	0.501	0.501	0.550	0.505	0.555	0.501
Region	1.050	1.050	1.040	1 110	1 001	1.050
Midwest	1.052	1.052	1.043	1.110	1.061	1.052
Northeast	1.081	1.081	1.057	1.081	1.071	1.081
South	0.935	0.935	0.972	0.916	0.949	0.935
West	0.994	0.994	0.956	0.965	0.966	0.994
Education Level						
No HS	1.000	3.823	1.320	2.030	1.062	3.823
High school	1.091	1.553	1.463	1.492	1.586	1.553
Some college	1.059	1.374	1.467	1.374	1.457	1.374
2-year	0.937	0.936	0.840	1.029	0.963	0.936
4-year	0.915	0.653	0.777	0.707	0.711	0.653
Post-grad	1.017	0.474	0.575	0.556	0.516	0.474
Party Identification						
Dem	1.105	1.105	1.119	1.105	1.093	1.105
Ind	0.922	0.922	0.924	0.922	0.933	0.922
Rep	0.971	0.971	0.954	0.971	0.973	0.971

Note:

Cells present the average weight used to reweight the Pew sample to the CCES target population in each variable level.