Lecture Notes in Stochastic Process

Kaizhao Liu

September 2022

Contents

1	Discrete Space Discrete Time Markov Chain 1.1 Theory	1
2	Discrete Space Continuous Time Markov Chain 2.1 Review: Properties of Exponential Distribution	3 3
3	Continuous Time Martingale 3.1 Stopping Times	3 3 5 5
4	$\mathbf{B}\mathbf{M}$	6
5	Stochastic Integration5.1 Martingale Characterization of BM5.2 Representations of Martingales by BM5.3 The Girsanov Theorem	6 6 6
6	The PDE Connection	6
7	Stochastic Differential Equations	6

1 Discrete Space Discrete Time Markov Chain

1.1 Theory

We begin by summarizing the concepts mathematicans are most interested in, and introducing their notations.

Definition 1.1 (initial distribution).

Definition 1.2 (transition matrix).

Remark. Transition matrix provides a way to calculate the probability that after n steps the Markov chain is in a given state.

Now we focus on the class structure of markov chain.

Definition 1.3 (lead to). We say i leads to j and write $i \to j$ if $P_i(X_n = j \text{ for some } n \ge 0) > 0$.

Definition 1.4 (communicate with). We say i communicate with j and write $i \leftrightarrow j$ if both $i \to j$ and $j \to i$.

Theorem 1.1 (communicating classes). Communication is an equivalence relation on I, thus partition I into communicating classes.

Definition 1.5 (closed class). We say a class C is closed if

$$i \in C, i \to j \Longrightarrow j \in C$$

A state i is called absorbing if $\{i\}$ is a closed class.

Definition 1.6 (irreducibility). A markov chain with only one class is called irreducible.

Definition 1.7 (hitting time). Let $(X_n)_{n\geq 0}$ be a Markov chain with transition matrix P. The hitting time of a subset A of I is the random variable

$$H^A(\omega) = \inf \{ n \ge 0 : X_n(\omega) \in A \}$$

.

Definition 1.8 (first passage time). The first passage time to state i is the random variable T_i defined by

$$T_i(\omega) = \inf \{ n \ge 1 : X_n(\omega) = i \}$$

Definition 1.9 (rth passage time). We define rth passage time inductively by $T_i^{(0)}(\omega) = 0, T_i^{(1)}(\omega) = T_i(\omega)$ and for $r = 0, 1, 2, \dots$,

$$T_i^{(r+1)}(\omega) = \inf\left\{n \ge T_i^{(r)}(\omega) + 1 : X_n(\omega) = i\right\}$$

Definition 1.10 (absorption probability). The probability starting from i that $(X_n)_{n\geq 0}$ ever hits A is then

$$h_i^A = P_i(H^A < \infty)$$

When A is a closed class, h_i^A is called the absorption probability.

Remark. A less formal notation is $h_i^A = P(hit A)$.

Definition 1.11. The mean time taken for $(X_n)_{n\geq 0}$ to reach A from i is given by

$$k_i^A = E_i(H^A) = \sum_{n < \infty} nP(H^A = n) + \infty P(H^A = \infty)$$

Remark. A less formal notation is $k_i^A = E_i(time\ to\ hit\ A)$.

Definition 1.12 (recurrent). We say a state i is recurrent if $P_i(X_n = i \text{ i.o.}) = 1$.

Definition 1.13 (transient). We say a state i is transient if $P_i(X_n = i \text{ i.o.}) = 0$.

Definition 1.14 (positive recurrent). A state i is postive recurrent if the expected return time $m_i = E_i(T_i)$ is finite. A recurrent state which fails to have this stronger property is called null recurrent.

Definition 1.15 (invariant measure). A measure is any row vector $(\lambda_i : i \in I)$ with non-negative entries. We say λ is invariant if

$$\lambda P = \lambda$$

Definition 1.16 (detailed balance).

2 Discrete Space Continuous Time Markov Chain

Definition 2.1 (continuous-time random process). Let I be a countable set. A continuous-time random process

$$(X_t)_{t>0} = (X_t : 0 \le t \le \infty)$$

with values in I is a family of random variables $X_t: \Omega \to I$.

We are going to consider ways in which we might specify the probabilistic behavior of $(X_t)_{t\geq 0}$. To avoid uncountable union, we shall restrict our attention to processes $(X_t)_{t\geq 0}$ which are right-continuous.

Definition 2.2 (right continuous). In the context of discrete space continuous time, a right-continuous process means $\forall \omega \in \Omega$ and $t \geq 0$, $\exists \epsilon > 0$ s.t.

$$X_s(\omega) = X_t(\omega) \quad t \le s \le t + \epsilon$$

Definition 2.3 (increment). If $(X_t)_{t\geq 0}$ is a real-valued process, we can consider its increment $X_t - X_s$ over any interval (s, t].

Definition 2.4 (stationary). We say that $(X_t)_{t\geq 0}$ has stationary increments if the distribution of $X_{s+t} - X_s$ depends only on $t \ge 0$.

Definition 2.5 (independent). We say that $(X_t)_{t>0}$ has independent increments if its increments over amy finite collection of disjoint intervals are independent.

Definition 2.6 (Q-matrix). A Q-matrix on I is a matrix $Q = (q_{ij} : i, j \in I)$ satisfying the following

- (i) $\forall i \quad 0 \le -q_{ii} < \infty$
- (ii) $\forall i \neq j$ $q_{ij} \geq 0$ (iii) $\forall i$ $\sum_{j \in I} q_{ij} = 0$

2.1Review: Properties of Exponential Distribution

Definition 2.7.

Theorem 2.1 (memoryless property).

Theorem 2.2 (infimum). Let I be a countable set and let $T_k k \in I$ be independent random variables with $T_k \sim E(q_k)$ and $0 < q := \sum_{k \in I} q_k < \infty$. Set $T = \inf_k T_k$. Then this infimum is attained at a unique random value K of k a.s.. Moreover, T and K are independent, with $T \sim E(q)$ and $P(K=k) = \frac{q_k}{q}.$

2.2Poisson Process

We begin with a definition of Poisson process in terms of jump chain and holding times, and then relate it to the infinitesimal definition and transition probability definition.

Definition 2.8. A right-continuous process $(X_t)_{t\leq 0}$ with values in $\mathbb{N}_{\geq 0}$ is a Poisson process of rate $\lambda \in (0, \infty)$ if its holding times S_1, S_2, \cdots are i.i.d. exponential random variables of mean λ and its jump chain is given by $Y_n = n$.

Theorem 2.3. Let $(X_t)_{t\geq 0}$ be an increasing, right-continuous integer-valued process starting from 0. Let $\lambda \in (0, \infty)$. TFAE:

- (i) (jump chain holding time definition) the holding times S_1, S_2, \cdots of $(X_t)_{t\geq 0}$ are i.i.d. exponential random variables of mean λ and the jump chain is given by $Y_n = n$.
- (ii) (infinitesimal definition) $(X_t)_{t>0}$ has independent increments and as $h\downarrow 0$, uniformly in t,

$$P(X_{t+h} - X_t = 0) = 1 - \lambda h + o(h), \quad P(X_{t+h} - X_t = 1) = \lambda h + o(h)$$

(iii) (incremental definition) $(X_t)_{t>0}$ has stationary independent increments and for each t, X_t has Poisson distribution of parameter λt .

Theorem 2.4. Let $(X_t)_{t\geq 0}$ be a Poisson process. Then, conditional on $(X_t)_{t\geq 0}$ having exactly one jump in the interval [s, s+t], the time at which that jump occurs is uniformly distributed on [s, s+t].

Theorem 2.5. Let $(X_t)_{t\geq 0}$ be a Poisson process. Then, conditional on the event $\{X_t = n\}$, the jump times J_1, \dots, J_n have joint density function

$$f(t_1, \dots, t_n) = n! 1_{0 < t_1 < \dots < t_n < t}$$

Remark. Thus, conditional on $\{X_t = n\}$, the jump times J_1, \dots, J_n have the same distribution as an ordered sample of size n from the uniform distribution on [0,t].

3 Continuous Time Martingale

3.1Stopping Times

Definition 3.1 (stopping time). Let τ be a random time. If $\{\tau \leq t\} \in \mathcal{F}_t$ for every $t \geq 0$, then τ is called a stopping time.

Definition 3.2 (optional time). Let T be a random time. If $\{T < t\} \in \mathcal{F}_t$ for every $t \ge 0$, then T is called a stopping time.

Lemma 3.1. T is an optional time of the filtration $\{\mathcal{F}_t\}$ if and only if it is a stopping time of the right-continuous filtration $\{\mathcal{F}_{t^+}\}$.

Corollary 3.0.1. Every stopping time is optional, and the two concepts coincide if the filtration is right-continuous.

Lemma 3.2. If T is optional and θ is a positive constant, then $T + \theta$ is a stopping time.

Lemma 3.3. If τ, σ are stopping times, then so are $\tau \wedge \sigma$, $\tau \vee \sigma$, $\tau + \sigma$.

Proof. The first two assertions are trivial. For the third, start with the decomposition

Lemma 3.4. Let T, S be optional times; then T + S is optional. Moreover, it is a stopping time if

Lemma 3.5. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of optional times; then the random times

$$\sup_{n\geq 1} T_n \quad \inf_{n\geq 1} T_n \quad \limsup_{n\to \infty} T_n \quad \liminf_{n\to \infty} T_n$$

are all optional.

Moreover, if the T_n 's are stopping times, then so is $\sup_{n>1} T_n$.

Definition 3.3 (σ -field of events determined prior to a stopping time). Let τ be a stopping time of the filtration $\{\mathcal{F}_t\}$. The σ -field of events determined prior to the stopping time T consists of those events $A \in \mathcal{F}$ for which $A \cap \{\tau \leq t\} \in \mathcal{F}_t$ for every $t \geq 0$.

Lemma 3.6. τ is \mathcal{F}_{τ} -measurable.

Proof.
$$\{\tau \leq t\} \cap \{\tau \leq t\} = \{\tau \leq t\} \in \mathcal{F}_t$$
, so $\{\tau \leq t\} \in \mathcal{F}_\tau$.

Theorem 3.1. For any two stopping time and τ, σ a random time s.t. $\sigma \leq \tau$ on Ω , we have $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Proof. For every stopping time τ and positive constant $t, \tau \wedge t$ is an \mathcal{F}_t -measurable random variable because $\mathcal{F}_{\tau \wedge t} \subset \mathcal{F}_t$. Therefore, $\{\sigma \wedge t \leq \tau \wedge t\} \in \mathcal{F}_t$. Then for any $A \in \mathcal{F}_{\sigma}$ we have $A \cap \{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$, because

$$A \cap \{\sigma \le \tau\} \cap \{\tau \le t\} = (A \cap \{\sigma \le t\}) \cap \{\tau \le t\} \cap \{\sigma \land t \le \tau \land t\}$$

Finally notice that $\{\sigma \leq \tau\} = \Omega$.

Remark. We have proved a stronger result, namely for any $A \in \mathcal{F}_{\sigma}$ we have $A \cap \{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$.

Theorem 3.2. Let σ and τ be stopping times. Then $\mathcal{F}_{\tau \wedge \sigma} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$. Moreover, $\{\tau < \sigma\}$, $\{\tau > \sigma\}$, $\{\tau \leq \sigma\}$, $\{\tau \geq \sigma\}$, $\{\tau = \sigma\}$ belongs to $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.

Proof. From the above theorem,
$$\mathcal{F}_{\tau \wedge \sigma} \subset \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$$
.
For $A \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$, $A \cap \{\tau \wedge \sigma \leq t\} = A \cap (\{\tau \leq t\} \cup \{\sigma \leq t\}) \in \mathcal{F}_{t}$.

Theorem 3.3. Let τ, σ be stopping times and X an integrable random variable. We have (i) $E(X|\mathcal{F}_{\tau}) = E(X|\mathcal{F}_{\sigma \wedge \tau})$ a.s. on $\{\tau \leq \sigma\}$. (ii) $E(E(X|\mathcal{F}_{\tau})|\mathcal{F}_{\sigma}) = E(X|\mathcal{F}_{\sigma \wedge \tau})$ a.s..

Proof. (i) Let $A \in \mathcal{F}_{\tau}$, then $A \cap \{\tau \leq \sigma\}$ belongs to both \mathcal{F}_{τ} and \mathcal{F}_{σ} , and therefore to $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$. So

$$\int_A 1_{\tau \le \sigma} E(X|\mathcal{F}_{\tau \wedge \sigma}) dP = \int E(1_A 1_{\tau \le \sigma} X|\mathcal{F}_{\tau \wedge \sigma}) dP = \int_A 1_{\tau \le \sigma} X dP$$

(ii) On $\{\tau \leq \sigma\}$ we have $E(X|\mathcal{F}_{\tau}) = E(X|\mathcal{F}_{\sigma \wedge \tau})$ a.s. by (i), so $E(E(X|\mathcal{F}_{\tau})|\mathcal{F}_{\sigma}) = E(E(X|\mathcal{F}_{\sigma \wedge \tau})|\mathcal{F}_{\sigma}) = E(X|\mathcal{F}_{\sigma \wedge \tau})$. Similarly on $\{\sigma \leq \tau\}$ we have $E(E(X|\mathcal{F}_{\tau})|\mathcal{F}_{\sigma}) = E(E(X|\mathcal{F}_{\tau})|\mathcal{F}_{\sigma \wedge \tau}) = E(X|\mathcal{F}_{\sigma \wedge \tau})$. \square

Theorem 3.4. Let $X = \{X_t, \mathcal{F}_t\}$ be a progressively measurable process, and let τ be a stopping time of the filtration \mathcal{F}_t . Then the random variable X_τ defined on $\{\tau < \infty\}$ is \mathcal{F}_τ -measurable, and the stopped process $\{X_{\tau \wedge t}, \mathcal{F}_t\}$ is progressively measurable.

3.2 From Discrete to Continuous

In this subsection, we generalize inequalities and convergence results for discrete time martingales to continuous time martingales.

Let X_t be a submartingale adapted to $\{\mathcal{F}_t\}$ whose paths are right-continuous. Let $[\sigma, \tau]$ be a subinterval of $[0, +\infty)$, and let a < b, $\lambda > 0$ be real numbers.

Theorem 3.5 (Doob's inequality). Let $A = \{\sup_{\sigma \le t \le \tau} X_t^+ \ge \lambda\}$, then

$$\lambda P(A) \leq EX_{\tau}1_A \leq EX_{\tau}^+$$

Proof. Let the finite set S consist of σ, τ and a finite subset of $[\sigma, \tau] \cap \mathbb{Q}$.

By considering an increasing sequence $\{S_n\}_{n=1}^{\infty}$ of finite sets whose union is the whole of $([\sigma, \tau] \cap \mathbb{Q}) \cup \{\sigma, \tau\}$, we may replace S by this union in the preceding discrete version of the inequality. \square

Theorem 3.6 (upcrossing inequality).

$$(b-a)EU_{[\sigma,\tau]} \le E(X_{\tau}-a)^{+} - E(X_{\sigma}-a)^{+}$$

Theorem 3.7 (L^p maximum inequality). $\bar{X}_{\tau} = \sup_{\sigma < t < \tau} X_t^+$, then for 1 ,

$$E(\bar{X}_{\tau}^p) \le \left(\frac{p}{p-1}\right)^p E(X_{\tau}^+)^p$$

For the remainder of this subsection, we deal only with right-continuous processes, usually imposing no condition on the filtration \mathcal{F}_t .

Theorem 3.8 (submartingale convergence). Assume $\sup_{t\geq 0} E(X_t^+) < \infty$. Then $X_\infty = \lim_{t\to\infty} X_t$ exists a.s., and $E|X_\infty| < \infty$.

Theorem 3.9 (optional sampling). Assume the submartingale has a last element X_{∞} , and let $S \leq T$ be two optional times of the filtration. We have

$$E(X_T|\mathcal{F}_{S^+}) \ge X_S$$
 a.s.

If S is a stopping time, then \mathcal{F}_S can replace \mathcal{F}_{S^+} above.

Proof. Consider the sequence of random times

$$S_n(\omega) = \begin{cases} +\infty & S(\omega) = +\infty \\ \frac{k}{2^n} & \frac{k-1}{2^n} \le S(\omega) < \frac{k}{2^n} \end{cases}$$

and similarly defined sequences $\{T_n\}$. These are stopping times. For every fixed integer $n \geq 1$, both S_n and T_n take on a countable number of values and we also have $S_n \leq T_n$.

3.3 Doob-Meyer Decomposition

Definition 3.4 (increasing process). An adapted process A is called increasing if for P-a.e. $\omega \in \Omega$ we have

- (i) $A_0(\omega) = 0$
- (ii) $t \mapsto A_t(\omega)$ is a nondecreasing, right-continuous function, and $EA_t < \infty$ holds for every $t \in [0, \infty)$. An increasing process is called integrable if $EA_{\infty} < \infty$.

Definition 3.5. An increasing process A is called natural if for every bounded, right-continuous martingale $\{M_t, \mathcal{F}_t; 0 \leq t < \infty\}$ we have

$$E \int_{(0,t]} M_s dA_s = E \int_{(0,t]} M_{s-} dA_s \quad \forall 0 < t < \infty$$

Lemma 3.7. If A is an increasing process and $\{M_t, \mathcal{F}_t; 0 \leq t < \infty\}$ is a bounded right-continuous martingale, then

$$E(M_t A_t) = E \int_{(0,t]} M_s \mathrm{d}A_s$$

The following concept is a strengthening of the notion of uniform integrablity for submartingales.

Definition 3.6 (class DL).

Theorem 3.10. Let $\{\mathcal{F}_t\}$ satisfies the usual conditions. If the right-continuous submartingale X = is of class DL, then it admits the decomposition as the summation if a right-continuous martingale

3.4 Square Integrable Martingales

4 BM

Definition 4.1 (d-dimensional Brownian motion). A d-dimensional Brownian motion $B = (B_t)_{t \geq 0}$ is a stochastic process indexed by $[0, \infty)$ taking values in \mathbb{R}^d s.t. (i) $B_0(\omega) = 0$

5 Stochastic Integration

5.1 Martingale Characterization of BM

Theorem 5.1 (Levy).

5.2 Representations of Martingales by BM

Theorem 5.2 (time-change for martingales).

Theorem 5.3 (representation of square-integrable martingales by BM via Ito's integral).

5.3 The Girsanov Theorem

6 The PDE Connection

7 Stochastic Differential Equations