

Advance Information

1.5 AND 2.0 MHz COMPONENTS FOR THE M6800 MICROCOMPUTER SYSTEM

The eight devices described in this data sheet extend the operating frequency of the M6800 Microcomputer Family. The block diagrams and device operation are the same as for the basic M6800-series components.

- Fully Hardware and Software Compatible with the M6800 Family
- Power Dissipation Approximately 20% Lower Than on Standard MC6800 Series
- Clock Specification Improved for Reduced Complexity of Clock Generator/Driver Circuitry
- The MC6821 and its higher-frequency versions provide drive capability of two TTL loads on all A- and B-side buffers, improving the drive capability of the MC6820.

1.5 MHz

2.0 MHz

MC68A00-MC68B00

MC68A21-MC68B21

MC68A50·MC68B50

MCM68A10 • MCM68B10

MOS

(N-CHANNEL, SILICON-GATE)

MICROPROCESSOR SYSTEM COMPONENTS

M6800 MICROCOMPUTER FAMILY BLOCK DIAGRAM

NOT SHOWN: L SUFFIX

CERAMIC PACKAGE

CASE 715

For additional information on these devices—including block diagrams, signal descriptions, device operation and pin assignments—refer to the M6800 Microcomputer System Design Data brochure.

MICROPROCESSING UNIT (MPU) MC68A00 • MC68B00

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}, \pm 5\%, V_{SS} = 0, T_A = 0 \text{ to } 70^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	<u> </u>	Symbol	Min	Тур	Max	Unit
Input High Voltage	Logic	VIH	V _{SS} +2.0	-	Vcc	Vdc
	ϕ 1, ϕ 2	VIHC	V _{CC} - 0.6	_	V _{CC} + 0.3	
Input Low Voltage	Logic	VIL	V _{SS} - 0.3	-	V _{SS} + 0.8	Vdc
	ϕ 1, ϕ 2	VILC	V _{SS} - 0.3	_	$V_{SS} + 0.4$	
Input Leakage Current		lin				μAdc
$(V_{in} = 0 \text{ to } 5.25 \text{ V}, V_{CC} = \text{max})$	Logic*		_	1.0	2.5	
$(V_{in} = 0 \text{ to } 5.25 \text{ V}, V_{CC} = 0.0 \text{ V})$	ϕ 1, ϕ 2		_	-	100	ļ
Three-State (Off State) Input Current	D0-D7	ITSI	_	2.0	10	μAdc
$(V_{in} = 0.4 \text{ to } 2.4 \text{ V, } V_{CC} = \text{max})$	A0-A15, R/W	'''	_	_	100	
Output High Voltage		VOH				Vdc
$(I_{Load} = -205 \mu Adc, V_{CC} = min)$	D0D7]	V _{SS} + 2.4	-	-	
$(I_{Load} = -145 \mu Adc, V_{CC} = min)$	A0-A15, R/W, VMA		V _{SS} + 2.4		_	
$(I_{Load} = -100 \mu Adc, V_{CC} = min)$	ВА		V _{SS} + 2.4	_		
Output Low Voltage		VOL		_	V _{SS} + 0.4	Vdc
(I _{Load} = 1.6 mAdc, V _{CC} = min)				1 m m	. , 55	
Power Dissipation		PD	_	0.5	1.0	W
Capacitance #		Cin				pF
$(V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 MHz)$	φ1		-	-	35	
	φ2	1	_	-	70	
	D0-D7		_	10	12.5	
	Logic Inputs		_	6.5	10	
	A0-A15, R/W, VMA	C _{out}	-	-	12	рF
Frequency of Operation	MC68A00	f	0.1	_	1.5	MHz
	MC68B00		0.1	-	2.0	
Clock Timing (Figure 1)	MC68A00	tcyc	0.666	_	10	μs
Cycle Time	MC68B00	'''	0.50	_	10	"
Clock Pulse Width	ϕ 1, ϕ 2 – MC68A00	$PW_{\phi H}$	230		9500	ns
(Measured at V _{CC} -0.6 V)	ϕ 1, ϕ 2 – MC68B00	· · · φΠ	180	_	9500	
Total ϕ 1 and ϕ 2 Up Time	MC68A00	+ .	600			ns
rotal & raila & 2 op rillio	MC68B00	tut	440	_	_	113
Rise and Fall Times		4. * 4	5.0	1	100	
(Measured between VSS + 0.4 and VCC -(0.6)	$t_{\phi r}, t_{\phi f}$	U.C	_	100	ns
Delay Time or Clock Separation	1	t _d	0	-	9100	ns
(Measured at $V_{OV} = V_{SS} + 0.6 V$)			-		, a	

^{*}Except $\overline{\mbox{IRQ}}$ and $\overline{\mbox{NMI}}$, which require a 3.0 k Ω pullup load resistor for wire-OR capability at optimum operation. #Capacitances are periodically sampled rather than 100% tested.

READ/WRITE TIMING

		MC68A00			MC68B00			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Address Delay	t _{AD}							ns
C = 90 pF		-		180	_	-	150	İ
C = 30 pF				165	_		135	
Peripheral Read Access Time	tacc	_	_	360	_	_	250	ns
$t_{ac} = t_{ut} - (t_{AD} + t_{DSR})$								
Data Setup Time (Read)	t DSR	60		_	40	_	_	ns
Input Data Hold Time	tH	10	_	_	10	_		ns
Output Data Hold Time	tн	10	25	_	10	25	_	ns
Address Hold Time (Address, R/W, VMA)	t _{AH}	10	75	-	10	75	<u> </u>	ns
Enable High Time for DBE Input	tEH	280	-	_	220	_	_	ns
Data Delay Time (Write)	t _{DDW}	_	165	200	_	-	160	ns
Processor Controls								
Processor Control Setup Time	tPCS	200	_		200	-	_	ns
Processor Control Rise and Fall Time	tPCr, tPCf	_		100	-	_	100	ns
Bus Available Delay	t _{BA}		<u>-</u>	270	_	_	270	ns
Three-State Enable	tTSE	_	-	40		_	40	ns
Three-State Delay	tTSD		_	270		_	270	ns
Data Bus Enable Down Time During ϕ 1 Up Time	†DBE	150	. –		70	_	_	ns
Data Bus Enable Rise and Fall Times	tDBEr, tDBEf	_	_	25	_	-	25	ns

FIGURE 1 - CLOCK TIMING WAVEFORM

FIGURE 2 - READ/WRITE TIMING WAVEFORM

PERIPHERAL INTERFACE ADAPTER (PIA) MC68A21 • MC68B21

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input High Voltage	VIH	V _{SS} + 2.0		V _{CC}	Vdc
Input Low Voltage	VIL	V _{SS} - 0.3		V _{SS} + 0.8	Vdc
Input Leakage Current R/W, Reset, RSO, RS1, CSO, CS2, CS1, (Vin = 0 to 5.25 Vdc) CA1, CB1, Enable	lin	_	1.0	2.5	μAdc
Three-State (Off State) Input Current D0-D7, PB0-PB7, CB2 (V _{in} = 0.4 to 2.4 Vdc)	^I TSI	_	2.0	10	μAdc
Input High Current PA0—PA7, CA2 (V _{IH} = 2.4 Vdc)	IIH	-200	-400		μAdc
Input Low Current PA0—PA7, CA2 (V _{IL} = 0.4 Vdc)	JIL	_	-1.3	-2.4	mAdc
Output High Voltage (I $_{\rm Load}$ = -205 μ Adc) D0-D7 (I $_{\rm Load}$ = -200 μ Adc) Other Outputs	Voн	V _{SS} + 2.4 V _{SS} + 2.4	_		Vdc
Output Low Voltage (ILoad = 1.6 mAdc) D0D7 (ILoad = 3.2 mAdc) Other Outputs	VOL	- -		V _{SS} + 0.4 V _{SS} + 0.4	Vdc
Output High Current (Sourcing) $(V_{OH} = 2.4 \text{ Vdc}) \\ Other Outputs \\ (V_{O} = 1.5 \text{ Vdc}, \text{ the current for driving other} \\ than TTL, e.g., Darlington Base) \\ D0-D7 \\ Other Outputs \\ PB0-PB7, CB2$	ГОН	-205 -100 -1.0	- - -2.5	 - -10	μAdc μAdc mAdc
Output Leakage Current (Off State) IRQA, IRQB (VOH = 2.4 Vdc)	ILOH	_	1.0	10	μAdc
Power Dissipation	PD	_	_	550	mW
Capacitance (V _{in} = 0, T _A = 25°C, f = 1.0 MHz) PA0-PA7, PB0-PB7, CA2, CB2 Enable, R/W, Reset, RS0, RS1, CS0, CS1, CS2, CA1, CB1	C _{in}	_ _ _	-	12.5 10 7.5	pF
IRQA, IRQB	Cout	-	_	5.0	pF

NOTE:

The PA0-PA7 Peripheral Data lines and the CA2 Peripheral Control line can drive two standard TTL loads. In the input mode, the internal pullup resistor on these lines represents a maximum of 1.5 standard TTL loads.

TIMING CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.)

		MC68A21		MC68B21			
Characteristic	Symbol	Min	Max	Min	Max	Unit	
Peripheral Data Setup Time	† PDSU	135	_	100	_	ns	
Peripheral Data Hold Time	^t PDH	0	_	0	_	ns	
Delay Time, Enable negative transition to CA2 negative transition	^t CA2	-	0.670	_	0.5	μs	
Delay Time, Enable negative transistion to CA2 positive transition	tRS1	_	0.670	-	0.5	μs	
Rise and Fall Times for CA1 and CA2 input signals	t _r , t _f	1 –	1.0		1.0	μs	
Delay Time from CA1 active transition to CA2 positive transition	tRS2		1.35	_	1.0	μs	
Delay Time, Enable negative transition to Peripheral Data Valid	tPDW		0.670	_	0.5	μs	
Delay Time, Enable negative transition to Peripheral CMOS Data Valid (VCC - 30%, VCC; Figure 6, Load C) PA0—PA7, CA2	tCMOS		1.35	-	1.0	μs	
Delay Time, Enable positive transition to CB2 negative transition	t CB2	_	0.670	_	0.5	μs	
Delay Time, Peripheral Data Valid to CB2 negative transition	t DC	20	_	20	_	ns	
Delay Time, Enable positive transition to CB2 positive transition	t RS1	-	0.670	. —	0.5	μs	
Peripheral Control Output Pulse Width, CA2/CB2	PWCT	550	_	550	_	ns	
Rise and Fall Time for CB1 and CB2 input signals	t _r , t _f		1.0	_	1.0	μs	
Delay Time, CB1 active transition to CB2 positive transition	t _{RS2}	_	1.35	-	1.0	μs	
Interrupt Release Time, IRQA and IRQB	tIR	_	1.1	_	0.85	μs	
Interrupt Response Time	t RS3		1.0	_	1.0	μs	
Interrupt Input Pulse Width	PWI	500		500		ns	
Reset Low Time*	^t RL	0.66	_	0.5	_	μs	

^{*}The Reset line must be high a minimum of 1.0 µs before addressing the PIA.

BUS TIMING CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.) READ

		MC68A21		MC68B21		
Characteristic	Symbol	Min	Max	Min	Max	Unit
Enable Cycle Time	tcycE	0.666	_	0.50		μs
Enable Pulse Width, High	PWEH	0.280		0.22	_	μs
Enable Pulse Width, Low	PWEL	0.280	_	0.21		μş
Setup Time, Address and R/W Valid to Enable positive transition	t AS	140	_	70		ns
Data Delay Time	t _{DDR}	-	220	- 1	180	ns
Data Hold Time	tH	10	_	10	-	ns
Address Hold Time	^t AH	10	_	10	_	ns
Rise and Fall Time for Enable input	t _{Er} , t _{Ef}	-	25	-	25	ns
WRITE				•		•
Enable Cycle Time	tcycE	0.666	_	0.50	_	μs
Enable Pulse Width, High	PWEH	0.280	_	0.22	_	μs
Enable Pulse Width, Low	PWEL	0.280	_	0.21	_	μs
Setup Time, Address and R/W Valid to Enable positive transition	t _{AS}	140	-	70		ns
Data Setup Time	t DSW	80	_	60		ns
Data Hold Time	t _H	10	<u> </u>	10	_	ns
Address Hold Time	^t AH	1,0		10	_	ns
Rise and Fall Time for Enable input	t _{Er} , t _{Ef}	_	25		25	ns

NOTES:

- 1. Figures shown are only those needed to define new measurements *not* specified on the MC6820 data sheet (page 39 of M6800 Microcomputer System Design Data). Refer to that data sheet, or to the new MC6821 data sheet, for further information.
- 2. On all tests, measurements on the Enable pulse are at 0.8 V and 2.0 V.

FIGURE 3 — PERIPHERAL DATA HOLD TIME (Read Mode)

FIGURE 4 - PERIPHERAL CONTROL OUTPUT PULSE WIDTH

FIGURE 5 - INTERRUPT PULSE WIDTH and IRQ RESPONSE

* Assumes Interrupt Enable Bits are set.

FIGURE 6 - BUS TIMING TEST LOADS

ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER (ACIA) MC68A50 • MC68B50

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V} \pm 5\%$, $V_{SS} = 0$, $T_A = 0$ to 70° C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input High Voltage	ν _{IH}	V _{SS} + 2.0	_	Vcc	Vdc
Input Low Voltage	٧ _{IL}	V _{SS} -0.3	_	V _{SS} + 0.8	Vdc
Input Leakage Current R/W,CS0,CS1,CS2,Enable (Vin = 0 to 5.25 Vdc)	lin	_	1.0	2.5	μAdc
Three-State (Off State) Input Current D0-D7 (V _{in} = 0.4 to 2.4 Vdc)	ITSI	_	2.0	10	μAdc
Output High Voltage D0-D7 ($I_{Load} = -205 \mu Adc$, Enable Pulse Width $<25 \mu s$) ($I_{Load} = -100 \mu Adc$, Enable Pulse Width $<25 \mu s$) Tx Data, RTS	V _{OH}	V _{SS} + 2.4 V _{SS} + 2.4	-		Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc, Enable Pulse Width $<$ 25 μ s)	VOL	_	_	V _{SS} + 0.4	Vdc
Output Leakage Current (Off State) (VOH = 2.4 Vdc)	LOH		1.0	10	μAdc
Power Dissipation	PD	_	300	525	mW
Capacitance	Cin				рF
$(V_{in} = 0, T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$ D0-D7 E, Tx Clk, Rx Clk, R/W, RS, Rx Data, CS0, CS1, $\overline{\text{CS2}}$, $\overline{\text{CTS}}$, $\overline{\text{DCD}}$		-	10 7.0	12.5 7.5	
RTS, Tx Data	C _{out}	<u> </u>	_	10 5.0	pF
Minimum Clock Pulse Width, Low ÷16, ÷64 Modes	PWCL	600	-	_	ns
Minimum Clock Pulse Width, High ÷16, ÷64 Modes	PWCH	600	_	-	ns
Clock Frequency	fC	_	_	500 800	kHz
Clock-to-Data Delay for Transmitter	tTDD	_	_	1.0	μs
Receive Data Setup Time ÷1 Mode	^t RDSU	500		_	ns
Receive Data Hold Time ÷1 Mode	^t RDH	500			ns
Interrupt Request Release Time	^t IR	-		1.2	μs
Request-to-Send Delay Time	^t RTS	_		1.0	μs
Input Transition Times (Except Enable)	t _r ,t _f	_		1.0*	μs

^{*1.0} μ s or 10% of the pulse width, whichever is smaller.

BUS TIMING CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.)

	•	MC68A50		MC68B50		
Characteristic	Symbol	Min	Max	Min	Max	Unit
Enable Cycle Time	tcycE	0.666	_	0.50	_	μs
Enable Pulse Width, High	PWEH	0.28	25	0.22	25	μs
Enable Pulse Width, Low	PWEL	0.28	-	0.21	_	μs
Setup Time, Address and R/W Valid to Enable positive transition	^t AS	140		70		ns
Data Delay Time	^t DDR	_	220		180	ns
Data Hold Time	tн	10		10		ns
Address Hold Time	^t AH	10	_	10		ns
Rise and Fall Time for Enable input	t _{Er} ,t _{Ef}	_	25	_	25	ns
WRITE						
Enable Cycle Time	tcycE	0.666		0.50	_	μs
Enable Pulse Width, High	PWEH	0.28	25	0.22	25	μs
Enable Pulse Width, Low	PWEL	0.28		0.21	_	μs
Setup Time, Address and R/W Valid to Enable positive transition	t AS	140	-	70	_	ns
Data Setup Time	t DSW	80	_	60	_	ns
Data Hold Time	tH	10	_	10		ns
Address Hold Time	^t AH	10	_	10	_	ns
Rise and Fall Time for Enable input	t _{Er} , t _{Ef}		25	-	25	ns

RANDOM ACCESS MEMORY (RAM) MCM68A10 ● MCM68B10

DC CHARACTERISTICS ($V_{CC} = 5.0 \text{ V} \pm 5\%$, $V_{SS} = 0$, $T_A = 0$ to 70° C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current $(A_n, R/W, CS_n, \overline{CS}_n)$ $(V_{in} = 0 \text{ to } 5.25 \text{ V})$	lin	_	-	2.5	μAdc
Output High Voltage ($I_{OH} = -205 \mu A$)	Voн	2.4	-	_	Vdc
Output Low Voltage (I _{OL} = 1.6 mA)	VOL		_	0.4	Vdc
Output Leakage Current (Three-State) (CS = $0.8 \text{ V or } \overline{\text{CS}} = 2.0 \text{ V}, \text{V}_{\text{out}} = 0.4 \text{ V to } 2.4 \text{ V})$	ILO		<u>-</u> '	10	μAdc
Supply Current ($V_{CC} = 5.25 \text{ V}$, all other pins grounded, $T_A = 0^{\circ}\text{C}$)	Icc	_		80	mAdc

AC CHARACTERISTICS

READ CYCLE (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70^{o} C unless otherwise noted.)

		MCM68		MCM	68B10	
Characteristic	Symbol	Min	Max	Min	Max	Unit
Read Cycle Time	t _{cyc(R)}	360	_	250		ns
Access Time	tacc		360	-	250	ns
Address Setup Time	t _{AS}	20		20		ns
Address Hold Time	t _A H	0		0		ns
Data Delay Time (Read)	t _{DDR}	_	220	_	180	ns
Read to Select Delay Time	tRCS	0	_	0	_	ns
Data Hold from Address	tDHA	10	_	10	_	ns
Output Hold Time	tH	10	-	10		ns
Data Hold from Write	tDHW	10	60	10	60	ns

WRITE CYCLE (V_{CC} = 5.0 V \pm 5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.)

Characteristic		MCM68A1		BA10 MCM68B10			
	Symbol	Min	Max	Min	Max	Unit	
Write Cycle Time	t _{cyc} (W)	360	-	250	_	ns	
Address Setup Time	tAS	20	-	20		ns	
Address Hold Time	t _A H	0		0	-	ns	
Chip Select Pulse Width	tcs	250		210	_	ns	
Write to Chip Select Delay Time	twcs	0		0	-	ns	
Data Setup Time (Write)	tDSW	80	_	60	<u> </u>	ns	
Input Hold Time	t _H	10	77 =	10	-	ns	

