

Ülesanne BinSearch

Sisend stdin Väljund stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

On teada, et kui p on kasvavalt järjestatud, siis tagastab eeltoodud funktsioon true parajasti siis, kui target esineb massiivis p. Aga see ei tarvitse nii olla, kui p ei ole järjestatud.

Sulle on antud positiivne täisarv n ja jada $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. On teada, et $n = 2^k - 1$, kus k on mingi positiivne täisarv. Sa pead leidma hulga $\{1, \ldots, n\}$ permutatsiooni p, mis rahuldab teatud tingimusi. Olgu S(p) selliste indeksite $i \in \{1, \ldots, n\}$ arv, mille korral binary_search(n, p, i) ei tagasta b_i . Sinu ülesanne on leida p, mille korral S(p) on väike (täpsemalt on see kirjas lõigus Tingimused").

(Märkus: hulga $\{1, \ldots, n\}$ permutatsioon on n arvust koosnev jada, milles iga täisarv 1 kuni n esineb täpselt ühe korra.)

Sisend

Sisendis on mitu testi. Sisendi esimesel real on testide arv T. Selle järel on testide kirjeldused.

Iga testi esimesel real on täisarv n. Teisel real on n märki '0' ja '1', mille vahel ei ole tühikuid. Kui i. märk on '1', siis $b_i = \texttt{true}$, ja kui see on '0', siis $b_i = \texttt{false}$.

Väljund

Väljastada kõigi T testi vastused. Iga testi vastusena väljastada leitud permutatsioon p.

Tingimused

- Olgu $\sum n$ kõigi ühes sisendis olevate testide n väärtuste summa.
- $1 \le \sum n \le 100\,000$.
- $1 \leqslant T \leqslant 7000$.
- $n = 2^k 1$, kus $k \in \mathbb{N}$, k > 0.
- Kui mingi alamülesande kõigis testides $S(p) \leq 1$, saad sa 100% selle alamülesande punktidest.
- Vastasel juhul, kui mingi alamülesande kõigis testides $0 \le S(p) \le \lceil \log_2 n \rceil$ (s.t. $1 \le 2^{S(p)} \le n + 1$), saad sa 50% selle alamülesande punktidest.

#	Punkte	Tingimused
1	3	$b_i = { t true}.$
2	4	$b_i = { t false}.$
3	16	$1 \leqslant n \leqslant 7$.
4	25	$1 \leqslant n \leqslant 15.$
5	22	$n=2^{16}-1$ ja b_i on valitud hulgast $\{\mathtt{true},\mathtt{false}\}$ üksteisest sõltumatult juhuslikult.
6	30	Lisapiirangud puuduvad.

Näited

Sisend	Väljund
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Selgitus

Näide 1. Selle näite kahes esimeses testis S(p) = 0.

Kolmandas testis S(p)=1, sest binary_search(n, p, 2) tagastab true, aga $b_2=$ false.

Neljandas testis S(p) = 1, sest binary_search(n, p, 4) tagastab true, aga $b_4 = \mathtt{false}$.

Näide 2. Selle näite mõlemas testis S(p) = 0.