hw3.md 3/17/2022

DP-elimination

Matouš Mařík

One of the preprocessing steps can be to eliminate some of the variables using so-called DP-elimination (or DP-resolution). In particular, assume we have a CNF φ and a variable x which we want to eliminate. Denote

```
 \phi 0 = \{C \in \phi \mid \neg x \in C\} 
 \phi 1 = \{C \in \phi \mid x \in C\} 
 \phi r = \{C \in \phi \mid C \cap \{x, \neg x\} = \emptyset\}
```

Namely, $\phi 0$ consists of the clauses containing negative literal $\neg x$, $\phi 1$ consists of the clauses containing positive literal x, ϕr contains the rest of the clauses. Let us now define $\phi dp = \{Res(C0, C1) \mid C0 \in \phi 0, C1 \in \phi 1\}$ where Res(C0, C1) denotes the clauses originating from C0 and C1 by resolution. Show that ϕ is equisatisfiable with $\phi' = \phi r \wedge \phi dp$.

Nesplnitelná φ' => nesplnitelná φ

- pokud je
- •

Splnitelná $\varphi \setminus C$ => splnitelná φ

- l ... blokující literál C
- pokud φ obsahuje pouze jednu klauzuli C pak φ je vždy splněna a neprázdná C je vždy splnitelná
- l_D ... literál $C \setminus l$, pro který platí $\neg l_D \in D$
- pokud $\varphi \setminus C$ je splnitelná, pak existuje model (který je úplné ohodnocení všech literálů φ) a, takový, že:

```
1. buď a(l)=1 => a\models C => arphi je splnitelná
2. nebo a(l)=0
```

- existuje-li nějaký $l_D \in a$ pak $a \models C$
- jinak by pro všechny $D \in \varphi \setminus C$ jejich literál $\neg l_D$ (literál vyplývající z tautologie vznikající rezolucí, definovaný výše) byl v a, tedy $a(l_D)=0$
- a tedy model a' t.ž. pro každý literál $l' \neq l$ platí a'(l') = a(l') a zároveň a'(l) = 1 (tedy model, který se od a liší tím, že místo $\neg l$ obsahuje l), splňuje jak C, tak $\varphi \setminus C$
- tedy a' splňuje bod 1.