Cours 4 à 12 Quelques informations condensées

Module préalable : Flux monétaires, TRI, etc. Note du cours

ATTENTION!!

Les pages qui suivent nécessitent d'avoir lu la matière du cours 4 à 12 et ne contiennent pas toute la matière.

- Point d'équivalence entre deux projets
- Séparations des coûts fixes et variables
- · Analyse marginale
- Flux monétaires pertinents
- Coûts annuels équivalents (CAÉ)
- Recouvrement du capital (RC)
- Annuité équivalente (AÉ)
- Valeur actuelle nette (VAN)
- Indice de rentabilité (IR)

- Taux de rendement interne (TRI)
- Taux de rendement interne modifié (TRIM)
- Durée économique d'un actif (DÉ)
- Calcul de la VAN après impôt
- Projets indépendantsSeuil de rentabilité économique
- Analyse de sensibilité
- Analyse de probabilités
- Analyse des scénarios

Point d'équivalence entre deux projets

	Projet A (Moteur	<u>Projet B</u> (Moteur à		
	électrique)	essence)		
Coûts fixes annuels			EXEMPLE (suite)	
Amortissement constant				
(27 000-3000)/6	4 000 \$		Trouver x qui rend les 2 projets équivalents	
(10 000-2000)/4		2 000 \$	en terme de coûts.	
Entretien	1 500 \$			
Total -	5 500 \$	2 000 \$	10X + 5500 \$ = 20X + 2000 \$	
<u>Coûts variables</u> :			X = 350 h	
électricité (10 \$/h * h)	10X		X = 330 II	
salaire $(12 \$/h * h)$		12,0X	Ainci nour una durás da fanctionnament	
entretien $(2.50 /h *h)$		2,5X	Ainsi pour une durée de fonctionnement égale à 350 h , les deux projets sont	
essence et huile $(5.50 \$/h * h)$		5,5X	équivalents.	
Total	10X	20,0X		
Coûts totaux	10X + 5 500 \$	20X + 2 000 \$		

X = nombre d'heures de fonctionnement annuel des moteurs.Les coûts totaux annuels dépendent de X.(On suppose l'hypothèse de répétition des projets).

Séparations des coûts fixes et variables (méthode des points extrêmes)

coût maximum - coût minimum Coût variable unitaire = niveau maximum - niveau minimum

Coût fixe = coût maximum - (coût variable unitaire \times niveau maximum) ou Coût fixe = coût minimum - $(coût \ variable \ unitaire \times \ niveau \ minimum)$

Analyse marginale

Seuil de rentabilité (point mort)

Point mort en Quantité

$$PM(Q) = \frac{CF}{PV_u - CV_u}$$

Seuil de rentabilité en Quantité

SR(Q) = PM(Q) arrondi à l'unité supérieur

Seuil de rentabilité en Revenu

$$SR(\$) = \frac{CF}{CM\%} = SR(Q) \times PV_u$$

Pourcentage des bénéfices (marge bénéficiaire nette)
$$B\acute{e}n\acute{e}fice(\%) = \frac{B\acute{e}n\acute{e}fice\ net}{Ventes(\$)} = CM(\%) \times MS(\%)$$

Marge bénéficiaire brute

Marge bénéficiaire brute =
$$\frac{Ventes(\$) - Coût \ des \ ventes}{Ventes(\$)}$$

Analyse marginale (suite)

Contribution Marginale

Contribution marginale unitaires (marge sur les coûts variables)

$$CM_u = PV_u - CV_u$$

Contribution marginale totale (marge sur les coûts variables)

$$CM(\$) = Ventes(\$) - CV_{totaux}$$

Contribution marginale en pourcentage

$$CM(\%) = \frac{CM_u}{PV_u} = \frac{CM(\$)}{Ventes(\$)}$$

Marge de sécurité

Marge de sécurité en \$

 $MS(\$) = Ventes \ prévues - SR(\$)$

Marge de sécurité en quantité

MS(Q) = Quantit'e d'unit'es pr'evues - SR(Q)

Pourcentage de marge de sécurité

$$MS(\%) = \frac{MS(\$)}{Ventes\ prévues}$$

Flux monétaires pertinents

- 1. Sélectionner les données pertinentes du projet analysé
- 2. Considérer les flux monétaires de début de période comme des flux monétaires de la fin de la période précédente. (début 2017 = fin 2016).
- 3. Dresser le diagramme des flux monétaires.

Les risques d'erreurs les plus communes

Début d'année = fin de l'année précédente L'identification du n (P/A, A/F, P/G, P/g, etc.) À quelle année nous amène le n dans le temps (F/A, ...)? La conversion des bénéfices nets en flux monétaires nets (plus amortissement?)

Coûts d'opportunité – Ce qu'on laisse tomber pour faire le projet

Coûts passés – Non récupérable

Les coûts pertinents à une analyse – Si on ne fait pas le projet, ils sont non présent

Bleu: Recettes d'exploitation Rouge: débours d'exploitation

Sélection des flux monétaires en fonction des données à analyser

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Coûts annuels équivalents (CAÉ)

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Recouvrement du capital (RC)

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Annuité équivalente (AÉ)

Transformation en annuité de tous les flux monétaires

*Les flux monétaires sont positifs si la VAN est positive et ils sont négatifs si la VAN est négative

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Valeur actuelle nette (VAN)

Actualisation de tous les flux monétaires

*Les flux monétaires sont positifs si la VAN est positive et ils sont négatifs si la VAN est négative

Si VAN > 0, le projet est justifié

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Indice de rentabilité (IR)

VA_{DI} = Débours d'investissement actualisés

Si *IR* > 1, le projet est¹justifié

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Taux de rendement interne (TRI)

FMN annuels uniformes

1.
$$P = A \times (P/A;TRI;n) \rightarrow \frac{P}{A} = (P/A;TRI;n)$$

2.
$$TRI = i_1 + \left(\frac{(P/A;TRI;n) - (P/A;i_1;n)}{(P/A;i_2;n) - (P/A;i_1;n)}\right)(i_2 - i_1)$$

1 2 3 4

Trouver le taux par interpolation qui

donne une VAN = 0

FMN annuels non uniformes

$$TRI = i_1 + \left(\frac{VAN_1}{VAN_1 - VAN_2}\right) \left(i_2 - i_1\right)$$

(trouver une VAN négative et une VAN positive et interpoler)

Flux monétaires Flux monétaires Flux pertinents

Flux monétaires nets

L'ensemble des FMN

du projet est considéré

Si TRI > TRAM, l'investissement est justifié

Bleu : Recettes d'exploitation Rouge : débours d'exploitation

Taux de rendement interne modifié (TRIM)

L'ensemble des FMN du projet est considéré

Gris: Coûts d'entretiens

Transformation en annuité des flux monétaires des <u>coûts d'entretiens</u>, des débours d'investissement et de la valeur de la revente en fonction de différente durée d'utilisation (1an, 2 ans, 3 ans, 4 ans, etc.).

Étape de calcul

- 1. TRAM après impôt (TRAM après impôt)
- 2. Flux monétaires nets après impôt actualisés (VA_{FMN-ap})
- 3. Débours d'investissement actualisés (VA_{DI})
- 4. Valeur de récupération actualisé (VA_R)
- 5. Valeur des économies d'impôt à perpétuité dues à la DPA actualisée (VA_{ÉI})
- 6. Valeur des ajustements d'impôts (économies d'impôt perdues) dus à la valeur de récupération actualisée (VA_{AI}) (fermeture ou non-fermeture)
- 7. Valeur de l'impôt sur gain en capital actualisée (VA_{IGC})
- 8. Calcul de la VAN après impôt

- 1- TRAM_{après impôt} = TRAM_{avant impôt} (1 T)

 n à chaque année de production

 2- Flux monétaires nets après impôt actualisés (VA_{FMN-ap}) $\sum_{n=1}^{N} \left(\text{Re} \, venus Ch \, \text{arg} \, es \right) \times \left(1 T \right) \times \left(P/F; TRAM_{après \, impôt}; n \right)$
- 3 Débours d'investissement actualisés (VA_{DI})
- 4- Valeur de récupération actualisé (VA_R)

VA_{DI} = DI (P/F;**TRAM**_{après impôt};n)

Souvent n=0

VA_R = R (P/F;TRAM_{après impôt};n)

n à la revente

5- Valeur des économies d'impôt à perpétuité dues à la DPA actualisée (VA_{ÉI})

i = TRAM_{après impôt}

$$VA_{\acute{E}i} = VA_{DI} \left(\frac{T \times d}{i+d} \right) \left(\frac{2+i}{2(1+i)} \right)$$

d = taux constant d'amortissement dégressif

T = taux d'imposition

d = taux dégressif de la catégorie

Règle de demi-année =
$$\left(\frac{2+i}{2(1+i)}\right)$$

$$VA_{\acute{E}i} = VA_{DI} \left(\frac{T \times d}{i+d} \right) \left(\frac{2+i}{2(1+i)} \right) (P/F;TRAM_{après\ impôt};1)$$

Si règle de mise-en service n égal toujours 1

Dans le cours, on considère que la règle de demi-année s'applique même lors de l'application de la règle de la mise en service.

Sinon:
$$VA_{\acute{E}i} = VA_{DI} \left(\frac{T \times d}{i + d} \right)$$
 (P/F;TRAM_{après impôt};1)

6- Valeur des ajustements d'impôts (économies d'impôt perdues) dus à la valeur de récupération actualisée (VA_{AI}) (**fermeture ou non-fermeture**)

$$VA_{AI(non\ fermeture)} = \min(DI,R) \times \left(\frac{T \times d}{i+d}\right) \times (P/F;i;n)$$
ou
$$VA_{AI(fermeture)} = \left[FNACC\left(\frac{T \times d}{i+d}\right) - \left(FNACC - \min(DI,R)\right) \times T\right] \times (P/F;i;n)$$

$$FNACC_n = DI \times \left(1 - \frac{d}{2}\right) \times \left(1 - d\right)^{n-1} \quad (fin\ d'ann\'ee\ n)$$

i = TRAM_{après impôt}

T = taux d'imposition

d = taux constant d'amortissement dégressif

7- Valeur de l'impôt sur gain en capital actualisée (VA_{IGC}) Si R > DI \rightarrow IGC

$$IGC = (R - DI) \times 50\% \times T$$

8- Calcul de la VAN après impôt

$$VAN_{après\ impôt} = VA_{FMN-ap} - VA_{DI} + VA_{R} + VA_{EI} - VA_{AI} - VA_{IGC}$$

Projets indépendants

On forme tous les ensembles de projets qui s'excluent mutuellement.

On fonde le choix des projets sur leur **VAN** respective. Le nombre total d'ensembles de projets = **2**^m. Si l'on **exclut celui du statu quo**, on obtient alors **2**^m – **1** ensembles de projets.

TRAM=	15%	n=	9	ans	
Ensemble	Projets	Investis-	Flux	Valeur	
	_	sement	monétaires	actualisée	
de projets j	IIICIUS	initial	nets annuels	nette	
		FMN_{j0} (\$)	FMN_j (\$)	VAN _j (15%)	
(1)	(2)	(3)	(4)	(5)	
1	Α	-10000	2870	3 694 \$	
2	В	-15000	2930	(1 019 \$) <	– – VAN négative
3	С	-8000	2680	4 788 \$,
4	D	-6000	2540	6 120 \$	
-5	ΛC	18000	5550	8 482 \$	
6	AD	-16000	5410	9 814 \$	
7	CD	-14000	5220	10 908 \$ <	VAN MAX - Ensemble de projet accepté
8	Statu quo	0	0 -	0	

Investissement maximum: 17 000 \$

Investissement supérieur au montant à investir

Seuil de rentabilité économique

Seuil de rentabilité économique – FERMETURE (suite)

Identifier les données affectées par la quantité et remplacer la quantité dans l'équation par X. Pour une VAN = 0, isoler X

Volume pour lequel VAN(15%)= 0

70.40X - 100331\$=0

X = 1 426 unités

Analyse de sensibilité

Analyse de probabilités

E = Espérance mathématique de la variable considérée

X = Valeur prise par la variable

P(X) = Probabilité attribuée à la valeur X de la variable

N = Nombres de valeurs ou de scénarios envisagés

Plus V est élevé, plus le risque du projet est élevé

Analyse des scénarios (ou analyse des scénarii)

- 1. On établit 3 estimations pour chaque scénario possible.
- 2. On dresse la liste des indicateurs et leurs effets possibles.
- 3. On élabore des stratégies qui tiennent compte du risque pour chaque scénario.
- 4. On reconnaît que les variables utilisées dans l'évaluation peuvent prendre différentes valeurs par rapport à celles estimées.
- 5. On se pose des questions du type: «Qu'adviendrait-il si ...?»
- 6. Les scénarios les plus communément utilisés sont: le meilleur (optimiste), le plus probable (réaliste) et le pire scénario (pessimiste).