Dinamica #3

Forze vincolari

9 gennaio 2023

Su un corpo agisce una forza normale \vec{N} se questo è a contatto con una superficie.

Su un corpo agisce una forza normale \vec{N} se questo è a contatto con una superficie.

ightharpoonup La forza \vec{N} è *perpendicolare* alla superficie

Su un corpo agisce una forza normale \tilde{N} se questo è a contatto con una superficie.

- ightharpoonup La forza \vec{N} è *perpendicolare* alla superficie
- Esempio importante: reazione vincolare esercitata dal pavimento di un ascensore

In generale, se un corpo scivola lungo una superficie su di esso agisce una forza di attrito dinamico \vec{A}_d .

La forza \vec{A}_d è opposta alla velocità del corpo

- La forza \vec{A}_d è opposta alla velocità del corpo
- L'intensità della forza di attrito è $A_d = \mu_d \cdot N$, dove μ_d è il coefficiente di attrito dinamico

- La forza \vec{A}_d è opposta alla velocità del corpo
- L'intensità della forza di attrito è $A_d = \mu_d \cdot N$, dove μ_d è il coefficiente di attrito dinamico
- Il coefficiente μ_d è adimensionale e dipende dalla natura delle superfici a contatto

- La forza \vec{A}_d è opposta alla velocità del corpo
- L'intensità della forza di attrito è $A_d = \mu_d \cdot N$, dove μ_d è il coefficiente di attrito dinamico
- Il coefficiente μ_d è adimensionale e dipende dalla natura delle superfici a contatto
- ► Esempio importante: piano inclinato

L'intensità di \vec{A}_d dipende solo dal coefficiente μ_d e dall'intensità della forza normale

- L'intensità di \vec{A}_d dipende solo dal coefficiente μ_d e dall'intensità della forza normale
- L'intensità della forza di attrito statico \vec{A}_s dipende dalla condizione di equilibrio

- L'intensità di \vec{A}_d dipende solo dal coefficiente μ_d e dall'intensità della forza normale
- L'intensità della forza di attrito statico \vec{A}_s dipende dalla condizione di equilibrio
- ▶ Il valore di A_s può essere al massimo $\mu_s \cdot N$:

$$A_s \leq \mu_s \cdot N$$

Una fune ideale è una fune *inestensibile* e di *massa* trascurabile utilizzata per collegare due corpi.

Una fune ideale è una fune *inestensibile* e di *massa* trascurabile utilizzata per collegare due corpi.

► Ai due estremi di una fune ideale agiscono due forze opposte: la loro intensità è la tensione T della fune

Una fune ideale è una fune *inestensibile* e di *massa* trascurabile utilizzata per collegare due corpi.

- ▶ Ai due estremi di una fune ideale agiscono due forze opposte: la loro intensità è la tensione T della fune
- ▶ Una carrucola è un dispositivo in grado di modificare la direzione della tensione di una fune ideale

Applicazioni alla dinamica del moto circolare

Applicazioni alla dinamica del moto circolare

Dinamica di un veicolo in curva

$$v_{\mathsf{max}} = \sqrt{\mu_{\mathsf{s}}\,\mathsf{g}\,\mathsf{R}}$$

Applicazioni alla dinamica del moto circolare

Dinamica di un veicolo in curva

$$v_{\rm max} = \sqrt{\mu_{\rm s}\, g\, R}$$

► Dinamica della giostra a catene

$$\omega = \sqrt{\frac{g}{\ell \cos \theta}}$$