Olimpiada Națională de Matematică 2007 Etapa județeană și a Municipiului București 3 martie 2007

CLASA A XI-A

Subiectul 1. Fie $a_1 \in (0,1)$ și $(a_n)_{n\geq 1}$ șirul de numere reale dat de următoarea relație de recurență:

$$a_{n+1} = a_n(1 - a_n^2),$$

pentru orice $n \in \mathbb{N}^*$.

Să se calculeze $\lim_{n\to\infty} \sqrt{n} \cdot a_n$.

Subiectul 2. Fie $A \in \mathcal{M}_n(\mathbb{R}^*)$. Dacă $A \cdot^t A = I_n$, arătaţi că:

- a) $|\operatorname{tr}(A)| \le n$;
- b) Pentru n impar avem $\det(A^2 I_n) = 0$.

 $Cu \operatorname{tr}(X)$ s-a notat urma matricei X, adică suma elementelor de pe diagonala principală iar tX este trnspusa matricei X

Subjectul 3. Fie $a, b \in \mathbb{R}$. Să se calculeze:

$$\lim_{n \to \infty} (\sqrt{a^2 n^2 + bn} - an).$$

Fie şirul $(x_n)_{n\geq 1}$ dat de $x_n = \sqrt{n} - [\sqrt{n}]$. Se notează cu A mulţimea punctelor sale limită, i.e. mulţimea punctelor $x \in \mathbb{R}$ pentru care există un subşir al lui $(x_n)_n$ cu limita x.

- a) Să se arate că $\mathbb{Q} \cap [0,1] \subset A$;
- b) Să se determine A.

(Cu [x] s-a notat partea întreagă a numărului real x)

Subiectul 4. Fie $A, B \in \mathcal{M}_n(\mathbb{R})$ cu proprietatea că $B^2 = I_n$ şi $A^2 = AB + I_n$. Să se demonstreze că $\det(A) \leq \left(\frac{1+\sqrt{5}}{2}\right)^n$

Timp de lucru 3 ore

Toate subiectele sunt obliqatorii