Licence 2^{ème} année, Physique Mécanique Semestre 1

Anthony LOUVAT-SEGURA, Vigrile CHEMINOT

November 2022

Table des matières

Première partie

Mat-304 : Calcul matriciel et fonctions de plusieurs variables

Chapitre 1 Repérage dans \mathbb{R}^3

Fonctions de plusieurs variables

Dérivation en plusieurs variables

Définition et premières propriétés 3.1

En dimension 1, la dérivée ne peut être approchée par uniquement 2 directions (par la gauche et par la droite). A partir de la dimension 2, il y a infinité de directions par lesquelles approchée la dérivée.

Schéma

On peut commencer par dérivée selon les vecteurs de bases de \mathbb{R}^n (les vecteurs $\overrightarrow{u_n}$), les vecteurs

La dérivée partielle de $f: \mathbb{R}^n \to \mathbb{R}$ par rapport à x_i , $1 \geq i \geq n$, en $\overrightarrow{d} \in \mathscr{D}_f$, noté $\frac{\partial f(\overrightarrow{d})}{\partial x_i}$ ou $f'_{x_i}(\overrightarrow{d})$ est la valeur de la limite suivante quand elle existe :

$$\frac{\partial f(\overrightarrow{a})}{\partial x_i} = \lim_{t \to 0} \frac{f(a_1, ..., a_i + t, ..., a_n) - f(a_1, ..., a_n)}{t}$$

Définition Dans le cas d'une fonction défini comme $f: \mathbb{R}^2 \to \mathbb{R}$, on a :

$$\frac{\partial f(x,y)}{\partial x} = \lim_{t \to 0} \frac{f(x+t,y) - f(x,y)}{t}$$
$$\frac{\partial f(x,y)}{\partial y} = \lim_{s \to 0} \frac{f(x+s,y) - f(x,y)}{s}$$

De manière pratique, on choisit la variable par rapport à laquelle on dérive l'expression, on considère toutes les autres constantes et on dérive "normalement".

1. Soit
$$f(\overrightarrow{x}) = 3x_1^3x_3 + 2x_1x_2^2 - 5x_3^4$$
, on a:

$$\frac{\partial f(\overrightarrow{x})}{\partial x_1} = 9x_1^2x_3 + 2x_2^2$$

$$\frac{\partial f(\overrightarrow{x})}{\partial x_2} = 4x_1x_2$$
$$\frac{\partial f(\overrightarrow{x})}{\partial x_3} = 3x_1^3 - 20x_3^3$$

2. Soit $f(x, y) = e^{xy^2}$, on a:

$$\frac{\partial f(x,y)}{\partial x} = y^2 e^{xy^2}$$
$$\frac{\partial f(x,y)}{\partial y} = 2xy e^{xy^2}$$

Il possible de dérivée selon une direction quelconque, pour cela on définit la dérivée directionnelle.

Soient $f: \mathbb{R}^n \to \mathbb{R}, \ \overrightarrow{a} \in \mathscr{D}_f \ \mathrm{et} \ \overrightarrow{h} \in \mathbb{R}^n$.

La dérivée directionnelle de f en \overrightarrow{a} suivant la direction \overrightarrow{h} est la quantité défini par la limite suivante si elle existe :

$$\frac{\partial f}{\partial \overrightarrow{h}}(\overrightarrow{a}) = \lim_{\epsilon \to 0} \frac{f(\overrightarrow{a} + \epsilon \overrightarrow{h}) - f(\overrightarrow{a})}{\epsilon}$$

3.1.1 Gradient et matrice jacobienne

On définit pour les fonction

Soit un champ de vecteur $f: \mathbb{R}^n \to \mathbb{R}^p$, on considère les dérivées partielles selon chacune des variables.

Selon la valeur de p, on créé deux objets :

— Si p=1, on définit le gradient de la fonction scalaire f en \overrightarrow{a} :

$$\overrightarrow{\operatorname{grad}} f(\overrightarrow{a}) = \overrightarrow{\nabla} f(\overrightarrow{a}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\overrightarrow{a}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\overrightarrow{a}) \end{pmatrix}$$

— Si p > 1, on défini la matrice jacobienne $J_f(\overrightarrow{a})$ (de dimension $n \times p$) de la fonction **Définition**

f en \overrightarrow{a} :

$$J_f(\overrightarrow{a}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\overrightarrow{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\overrightarrow{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(\overrightarrow{a}) & \dots & \frac{\partial f_p}{\partial x_n}(\overrightarrow{a}) \end{pmatrix}$$

- 3.2 Différentielle
- 3.3 Dérivées d'ordres supérieurs

Opérateurs différentielles

Attention, l'expression des opérateurs changent selon le système de coordonnées.

4.1 Le gradient $\overrightarrow{\nabla}$

Nous avons déjà définit le gradient d'une fonction évalué en un point, on va maintenant définir l'opérateur gradient.

On appelle gradient, l'opérateur définit comme il suit :

$$\overrightarrow{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$$

Le gradient d'une fonction scalaire $f: \mathbb{R}^n \to \mathbb{R}$ est donc :

$$\overrightarrow{\nabla} f = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \times f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} = \overrightarrow{grad(\overrightarrow{f})}$$

Soit un champ scalaire \overrightarrow{f} dans l'espace \mathbb{R}^3 , nous avons pour expression du gradient :

— En coordonnées cartésiennes (par définition) :

$$\overrightarrow{\nabla} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

— En coordonnées cylindriques :

$$\overrightarrow{\nabla} f = \frac{1}{r} \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$

— En coordonnées sphériques :

$$\overrightarrow{\nabla} f = \frac{\partial r}{\partial x} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \overrightarrow{u_\phi}$$

ÖDémonstration

4.2 La divergence div

Soit un champ de vecteurs $\overrightarrow{f}: \mathbb{R}^n \mapsto \mathbb{R}^n$ de classe \mathscr{C}^1 sur \mathscr{D}_f . La divergence de \overrightarrow{f} est donné par :

$$div(\overrightarrow{f}) = \overrightarrow{\nabla} \cdot \overrightarrow{f} = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}$$

La divergence est également égale à la trace de la matrice jacobienne.

$$div(\overrightarrow{f}) = \text{Tr}(J_f)$$

Remarque

Soit un champ scalaire \overrightarrow{f} dans l'espace \mathbb{R}^3 , nous avons pour expression de la divergence :

— En coordonnées cartésiennes (par définition) :

$$div(\overrightarrow{f}) = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$

— En coordonnées cylindriques :

$$div(\overrightarrow{f}) = \frac{1}{r} \frac{\partial (rf_r)}{\partial r} + \frac{1}{r} \frac{\partial f_{\theta}}{\partial \theta} + \frac{\partial f_z}{\partial z}$$

— En coordonnées sphériques :

$$\overrightarrow{\nabla} f = \frac{\partial r}{\partial x} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \overrightarrow{u_\phi}$$

✓ Théorème de Green-Ostrogradski

4.3 Le rotationnel rot

Soit un champ de vecteurs $\overrightarrow{f}: \mathbb{R}^3 \mapsto \mathbb{R}^3$ de classe \mathscr{C}^1 sur \mathscr{D}_f , de coordonnées $f = (f_1, f_2, f_3)$.

Le rotationnel de \overrightarrow{f} de ce champ est défini par :

$$rot(\overrightarrow{f}) = \overrightarrow{\nabla} \wedge \overrightarrow{f} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \\ \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \\ \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \end{pmatrix}$$

4.4 Le laplacien Δ

Soit une champ scalaire $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathscr{C}^2 sur \mathscr{D}_f . Le laplacien, noté Δ ∇^2 , est donné par :

$$\Delta \overrightarrow{f} = \nabla \cdot \overrightarrow{\nabla} f = div(\overrightarrow{grad}f) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}$$

4.5 Équations aux dérivées partielles

Intégration en plusieurs variables

Calcul matriciel

Une matrice $n \times m$ à coefficients réels est un tableau de nombres réels de n lignes et m colonnes.

On note a_{ij} le coefficient à la i-ème et à la j-ème colonne.

On représente une matrice de la manière suivante :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Une matrice $n \times m$ à valeurs réelles appartient à l'ensemble des matrices $n \times m$, noté $\mathbb{M}^{n \times m}(\mathbb{R})$.

Définition

Toute application linéaire ou système d'équation linéaire peut être écrit sous forme matricielle.

ex de base On considère l'application

6.1 Calcul matriciel

On commence par définir l'addition de deux matrices.

Soient deux matrices A et B de dimension $n \times m$.

L'addition de ces deux matrices est donnée par :

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

Soient deux matrices A de dimension $n \times m$ et B de dimension $m \times p$. La multiplication de ces deux matrices nous donnera une matrice C de dimension $n \times p$. Le calcul des coefficients de la matrice C est donné par la formule :

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \times b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$$

Définition matricielle n'est pas commutative

On considère les matrices A = et B = **Exemple**

Soit une matrice A de dimension $n \times m$.

L'opération de transposition de cette matrice nous renverra la matrice transposée de A, B de dimension $m \times n$.

Cet opération est défini comme il suit :

Définition

Soit une matrice A de dimension $n \times m$.

On appelle trace de la matrice A la somme de tous ses termes diagonaux.

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Soient A et B de matrice et $\alpha \in \mathbb{R}$.

- $\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$ - $\operatorname{Tr}(\alpha A) = \alpha \operatorname{Tr}(A)$ - $\operatorname{Tr}(A^{\mathrm{T}}) = \operatorname{Tr}(A)$ - Si A et B sont multipliable : $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ **Propriété**

- Si A et B sont semblables : Tr(A) = Tr(B)
- 6.1.1 Multiplication matricielle
- 6.1.2 Transposition matricielle
- 6.1.3 Propriétés et caractéristiques de matrices
- 6.2 Matrices particulières
- 6.2.1 Matrice carrée et rectangulaire
- 6.2.2 Matrice élémentaire et algorithme de Gaus-Jordan
- 6.2.3 Matrices de passage
- 6.2.4 Matrices triangulaires
- 6.3 Déterminants et inversion de matrices
- 6.3.1 Comatrice et matrice adjointe

Diagonalisation

La diagonalisation est le second "problème principal" d'algèbre, le premier étant la résolution de systèmes linéaires. Diagonaliser une matrice revient à la "simplifier".

L'intérêt d'un tel procédé est qu'il simplifie certains calculs tel que la multiplication ou l'exponentiation.

La diagonalisation consiste à chercher une base $\mathcal B$ de l'espace, dans laquelle la matrice A est diagonale.

Dans la suite de ce chapitre nous ne considérerons que des matrices carrées.

Une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^n$ est dite diagonalisable si et seulement si $\exists \mathscr{B}$ une base de \mathbb{R}^n tel que sa matrice représentative $A_{\mathscr{B},\mathscr{B}}(f)$ est diagonale.

7.1 Éléments propres

Il convient dans un premier temps de définir les différents objets qui servirons à la diagonnalisation, ces objets sont appelés éléments propres.

Soit A une matrice $n \times n$.

- On dit que $\lambda \in \mathbb{C}$ est une valeur propre de A s'il existe $x \in \mathbb{C}^n$ avec $x \neq 0$ tel que $Ax = \lambda x$.
- On appelle alors le vecteur x le vecteur propre de A associé à la valeur propre λ .
- On appelle spectre de A l'ensemble des valeurs propres de A.
- On appelle sous espace propre de A (associé à la valeur propre λ), noté E_{λ} , l'ensemble de tous les vecteurs x tel que $Ax = \lambda x \Leftrightarrow (A \lambda I_n)x = 0$. Autrement dit, $E_{\lambda} = \ker(A - \lambda I_n) = \{x \in E | Ax = \lambda x\}$

Soit la matrice $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$

Par définition d'une valeur propre λ , nous cherchons un vecteur x tel que $Ax = \lambda x$. Dans le cas présent, on a :

$$\begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \times \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Il nous faut donc résoudre le système suivant :

$$\begin{cases} 5x_1 + 2x_2 = \lambda x_1 \\ 4x_1 + 3x_2 = \lambda x_2 \end{cases}$$

Sa résolution nous renvoie notamment le vecteur x=(7,7) et il se trouve que $Ax=7\times x$. On a donc que $\lambda=7$ une valeur propre de la matrice A et x=(1,1) est vecteur un propre de la matrice A associé à la valeur propre $\lambda=7$.

Exemple

 \bar{L} 'utilisation de la définition d'une valeur propre pour son calcul est une opération assez fastidieuse, c'est pour cela que l'on passe par d'autres moyens pour les déterminer. On utilise pour cela le polynôme caractéristique de la matrice A.

7.2 Polynôme caractéristique et calcul des éléments propres

Le calcul des éléments propres est plus facile en passant par le polynôme caractéristique.

Soit une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^n$ et sa matrice représentative dans la base \mathscr{B} $A_{\mathscr{B}}(f)$. On appelle polynôme caractéristique de l'application f, le polynôme défini de la façon suivante :

$$P_f(\lambda) = P_A(\lambda) = \det(A - \lambda I_n) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} - \lambda \end{vmatrix}$$

Les valeurs propres λ de A sont les racines du polynôme caractéristique.

 λ est une valeur propre de la matrice $A \Leftrightarrow P_A(\lambda) = 0$ Proposition

Soit la matrice A définie comme $A = \begin{pmatrix} 7 & 4 \\ 3 & 6 \end{pmatrix}$.

On commence par chercher les valeurs propres de A. Par la proposition précédente, on a :

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 7 - \lambda & 4 \\ 3 & 6 - \lambda \end{vmatrix} = (7 - \lambda)(6 - \lambda) - 12$$

On cherche donc les racines de $P_A(\lambda)$.

$$P_A(\lambda) = 0$$

$$\Leftrightarrow \lambda^2 - 13\lambda + 30 = 0$$

$$\Leftrightarrow \lambda_1 = 3 \text{ et } \lambda_2 = 10$$

Les valeurs propres de la matrice A sont donc $\lambda_1 = 3$ et $\lambda_2 = 10$

$\mathbf{\mathscr{R}}$ Exemple

On constate, assez aisément, que la détermination des valeurs propres à l'aide du polynôme caractéristique est beaucoup plus facile et rapide.

Soit la matrice A et son polynôme caractéristique $P_A(\lambda)$.

— Si l'on injecte 0 dans le polynôme caractéristique il nous renverra la valeur du déterminant de cette matrice :

$$P_A(0) = \det(A)$$

- Le polynôme caractéristique possède n racines dans l'ensemble $\mathbb C$
- Deux matrices semblables ont le même polynôme caractéristique.
- Le polynôme caractéristique d'une matrice est égale à celui de sa transposée $P_A(\lambda) = P_{A^T}(\lambda)$.

▶ Propriétés

Le polynôme caractéristique nous donne un moyen simple de déterminer les valeurs propres. De ces valeurs propres, on peut déduire le reste des éléments propres de la matrice.

Afin de pouvoir continuer sereinement, nous allons introduire les multiplicités algébriques et géométriques, qui seront utiles pour la suite.

- On appelle multiplicité géométrique d'une valeur propre λ : la dimension du sous espace propre associé à la valeur propre λ .
- On appelle multiplicité algébrique d'une valeur propre λ : la multiplicité de λ en tant que racine du polynôme caractéristique.

Soit $A \in \mathbb{M}^{n \times n}$, la trace de A est égale à la somme des valeurs propres multipliées avec leur multiplicité propre.

$$Tr(A) = \sum_{i=1}^{n} \lambda_i \times a_i$$

/Propriété

- 1. Déterminer le polynôme caractéristique
- 2. Trouver les valeurs propres de A, en déduire le spectre de A
- 3. Rechercher les vecteurs propres associés au valeurs propres λ
- 4. Déterminer les sous espaces propres E_{λ} associés aux valeurs propres λ . Pour ce faire, il suffit de trouver le noyau de la matrice $A - \lambda I_n \Leftrightarrow \ker(A - \lambda I_n)$.

- Méthode : Détermination des éléments propres

On se donne la matrice $A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$

On commence par poser $A - \lambda I_3$:

$$A - \lambda I_n = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -1 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & -1 & 3 - \lambda \end{pmatrix} = B$$

Le polynôme caractéristique nous est donné par le déterminant de cette nouvelle matrice B.

$$P_A(\lambda) = \det(A - \lambda I_3) = \det(B) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & -1 & 3 - \lambda \end{vmatrix}$$

On choisi de développer le déterminant selon la deuxième ligne, en effet celui-ci nous serra plus facile a calculer. On a donc :

$$P_A(\lambda) = \det(A - \lambda I_3) = (2 - \lambda)((3 - \lambda)^2 - 1)$$

On sait que les racines du polynôme caractéristique, sont les valeurs propres de A, donc :

$$\Leftrightarrow P_A(\lambda) = 0$$

$$\Leftrightarrow (2 - \lambda)((3 - \lambda)^2 - 1) = 0$$

$$\Leftrightarrow (2 - \lambda)(\lambda^2 - 6\lambda + 8) = 0$$

Le premier facteur nous renvoie $\lambda=2$ et le deuxième facteur nous donne $\lambda_1=2$ et $\lambda_2=4$. On a donc les valeurs propres de A qui sont : $\lambda_1=2$ valeur propre de multiplicité algébrique $2, \lambda_2=4$ valeur propre de A de multiplicité algébrique 1.

On en déduit le spectre de $A: Spec(A) = \{2, 4\}$

On souhaite maintenant déterminer les vecteurs propres x associées aux valeurs propres λ .

Pour une valeur propre λ donnée, la recherche du vecteur propre associée passe par la résolution de l'égalité $(A - \lambda I_3)x = 0$.

Pour la valeur propre $\lambda_1 = 2$ on a $(A - 2I_3)x = 0$.On commence par poser $A - 2I_3$:

$$A - 2I_3 = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} = C$$

Il nous faut donc résoudre :

$$\Leftrightarrow (A - 2I_3)x = 0$$

$$\Leftrightarrow Cx = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \overrightarrow{0}$$

$$\Leftrightarrow \begin{cases} x_1 - x_2 + x_3 = 0 \\ 0 = 0 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

$$\Leftrightarrow x_1 - x_2 + x_3 = 0$$

On peut décomposer le vecteur :

$$\begin{pmatrix} x_2 - x_3 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -x_3 \\ 0 \\ x_3 \end{pmatrix} = x_2 \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_2 \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Il y a donc deux vecteurs propres $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ associées a la valeur propre $\lambda_1 = 2$.

Pour la valeur propre $\lambda_2 = 4$ on pose $(A - 4I_3)x = 0$. On effectue un raisonnement analogue au précédent :

$$A - 4I_3 = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & -1 \end{pmatrix} - \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 0 & -2 & 0 \\ 1 & -1 & -1 \end{pmatrix} = D$$

On cherche $ker(A - 4I_3)$:

$$\Leftrightarrow \ker(A - 4I_3)$$

$$\Leftrightarrow \ker D$$

$$\Leftrightarrow Dx = 0$$

$$\Leftrightarrow \begin{pmatrix} -1 & -1 & 1 \\ 0 & -2 & 0 \\ 1 & -1 & -1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -x_1 - x_2 + x_3 = 0 \\ -2x_2 = 0 \\ x_1 - x_2 - x_3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x_1 + x_3 = 0 \\ x_2 = 0 \\ x_1 - x_3 \end{cases}$$

$$\Leftrightarrow x_1 - x_3 = 0$$

$$\Leftrightarrow x_1 = x_3 \Rightarrow \begin{pmatrix} x_1 \\ 0 \\ x_1 \end{pmatrix}$$

Ici il y a un vecteur propre associé à la valeur propre $\lambda_2 = 4$ qui est $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Et enfin, a partir des vecteurs propres on déduit les sous espaces propres, ici :

$$E_{\lambda_1} = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}\right)$$
$$E_{\lambda_2} = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}\right)$$

7.3 Diagonalisation

Revenons sur la définition d'une matrice diagonalisable, pour en donner une définition plus mathématique.

La matrice $A \in \mathbb{M}^{n \times n}$ est diagonalisable, s'il existe une matrice diagonale D et une matrice P inversible telles que $A = PDP^{-1}$, où P est la matrice de passage entre la base canonique et la base \mathscr{B} où la matrice D existe.

Définition :

Une propriété qui viens directement a l'esprit est que les matrices A et D sont semblables (par définition).

Tout l'enjeu sera donc de déterminer la matrice de passage P.

Néanmoins, il peut être intéressant de savoir si une matrice est diagonalisable.

Soit $A \in \mathbb{M}^{n \times n}(\mathbb{R})$.

La matrice A est diagonalisable \Leftrightarrow

- 1. toutes les racines $\lambda_1, \ldots, \lambda_k$ de $P_A(\lambda)$ sont contenues dans \mathbb{R} .
- 2. $\forall i = 1, ..., k$ on a dim (E_{λ_i}) = multiplicité algébrique de λ_i

Si $P_A(\lambda)$ admet n racines réelles distinctes $\Leftrightarrow A$ est diagonalisable \nearrow Corollaire

Une fois le critère de diagonalisation ou son corollaire vérifié on peut déduire la matrice diagonale D ainsi que le la matrice de passage P

Soit la matrice $A \in \mathbb{M}^{n \times n}$ et ses valeurs propres $\lambda_1, \dots, \lambda_k$ et leurs multiplicités a_1, \dots, a_k associées. La matrice diagonale D est donné par :

/Propriété

où les valeurs propres λ_i se répète autant fois que la valeur de leur multiplicité a_i .

Nous avons la matrice diagonale, maintenant il nous faut trouver la matrice de passage P.

/Propriété

L'ordre des valeurs propres n'influe pas sur le résultat, mais bien faire attention a garder l'ordre choisi sinon les calculs seront faux.

- 1. Déterminer le polynôme caractéristique
- 2. Trouver les valeurs propres de A. \rightarrow Si $\lambda_i \in \mathbb{R}$ alors A est diagonalisable sinon elle ne l'est pas, on peut s'arrêter.
- 3. Factoriser le polynôme caractéristique.
- 4. Rechercher les sous espaces propres et leurs dimensions (multiplicité géométrique)
- 5. Trouver les bases \mathcal{B}_i de tous les sous espaces propres.
- 6. Déduire la base \mathcal{B} à partir des bases \mathcal{B}_i , ainsi que la matrice de passage a cette base.

$$\mathscr{B} = \bigcup_{i}^{k} \mathscr{B}_{i}$$

Méthode: Diagonalisation d'une matrice

7.4 Matrices symétriques et formes quadratiques

Une matrice A est semi-définie (définie) positive si et seulement si tous ses mineurs principales sont positifs, c'est à dire :

$$\begin{vmatrix} a_{11} \ge 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \ge 0, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \ge 0, \dots$$

Extremums en plusieurs variables

Deuxième partie

Mat-307 : Courbes paramétrées et équations différentielles pour la physique

Troisième partie Courbes

Courbes paramétrées

La trajectoire d'un corps dans un plan est déterminé par le couple de coordonnées (x,y)dépendant du temps t, c'est une équation paramétrique.

Soient f et q deux fonctions définies sur $I \subseteq \mathbb{R}$.

Le point M(t) de coordonnées (f(t),g(t)) décrit une courbe du plan C appelée courbe paramétrée (de paramètre t). La fonction de I sur (C) qui à t associe M(t) est un paramétrage de (C).

Les équations $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$ définissent une représentation paramétrique de \mathscr{C} . Notations : (x = x(t), y = y(t)) ou $t \mapsto (x(t), y(t))$

EDéfinition

Nous étudierons les propriétés des courbes paramétrées, qui peuvent être de deux natures :

- Cinématique : dépendantes du paramètre t.
 - ex : vitesse, accélération, ...
- Géométrique : indépendante du paramètre t.

ex: tangentes, ...

Par convention, on nomme le paramètre t le temps, bien que ce dernier peut n'avoir aucun rapport avec ce dernier.

De même, les vecteurs correspondants aux dérivées première et seconde, sont appelés respectivement vitesse et accélération.

Remarque

Paramétrage et représentation graphique 1.1

La paramétrisation d'une courbe n'est jamais unique et il est possible de passer d'un paramétrage a l'autre.

1.2 Étude analytique d'une courbe paramétrée

1.2.1 Domaine de définition et intervalle d'étude

Le domaine de définition I du paramétrage est l'intersection des domaines de définition des fonctions x(t) et y(t).

$$\mathscr{D}_{\mathscr{C}} = \mathscr{D}_x \cap \mathscr{D}_y$$

OEfinition

Une fois le domaine de définition déterminée, on cherche à réduire le domaine de définition à un intervalle d'étude afin de simplifier l'étude. Pour ce faire, on utilise les propriétés de périodicité et de parités.

Soit la courbe \mathscr{C} défini par (x(t), y(t)). On étudie la périodicité des deux coordonnées. La coordonnée x(t) est périodique si $x(t+T_1)=x(t)$ et la coordonnée y(t) est périodique si $y(t+T_2)=y(t)$.

Si $T_1 = T_2 = T$ la période commune est T.

Si $T_1 \neq T_2$ alors il faut déterminer la période commune T.

Pour ce faire, on a $T = PPCM(T_1, T_2)$.

La réduction de l'intervalle pour une courbe périodique de période T est [a, a + T] avec a = 0 ou $a = \frac{T}{2}$.

/Propriété

On rappelle que les fonctions sinus et cosinus sont 2π périodique, et la tangente est π périodique.

Dans la plupart des cas, on fait en sorte que 0 soit dans l'intervalle pour pouvoir exploiter les propriétés de symétries.

Soit la courbe \mathscr{C} défini par (x(t), y(t)).

On étudie les propriétés de parités de chacune des coordonnées.

- Si x et y sont impaires, pour tout t la courbe est symétrique par rapport au centre O.
- Si x est impaire et y est paire, pour tout t la courbe est symétrique par rapport à l'axe (O_y) .
- Si x est paire et y est impaire, pour tout t la courbe est symétrique par rapport à l'axe (O_x)
- Si x et y sont paires, pour tout t la courbe revient sur ces pas.

/Propriété

On se donne un courbe $\mathscr C$ défini par :

$$\mathcal{C} : \mathcal{D}_{\mathcal{C}} \to \mathbb{R}$$

$$t \mapsto \begin{cases} x(t) = \sin(\frac{3t}{2}) \\ y(t) = \sin(\frac{t}{3}) \end{cases}$$

On recherche la période de chaque coordonnées :

$$x(t+T)$$

$$\Leftrightarrow \sin\left(\frac{3t}{2} + 2\pi\right)$$

$$\Leftrightarrow \sin\left(3t + 4\pi\right)$$

$$\Leftrightarrow \sin\left(t + \frac{4\pi}{3}\right)$$

On déduit donc que la période de x(t) est $T = \frac{4\pi}{3}$.

$$y(t+T)$$

$$\Leftrightarrow \sin\left(\frac{t}{3} + 2\pi\right)$$

$$\Leftrightarrow \sin(t+6\pi)$$

On déduit donc que la période de y(t) est $T = 6\pi$.

On cherche maintenant la période commune : en cherchant PPCM(4,6). On obtient une période commune $T=12\pi$

1.2.2 Étude des branches infinies

Une fois l'intervalle d'étude

Soit une courbe \mathscr{C} défini par ses coordonnées (x(t), y(t)) sur son domaine de définition $\mathscr{D}_{\mathscr{C}}$. On que dit que la courbe \mathscr{C} possède une branche infinie si au moins l'une des quantités suivantes : a, l ou m tend vers l'infini.

$$\lim_{t \to a} \mathscr{C} = \begin{cases} \lim_{t \to a} x(t) = l \\ \lim_{t \to a} y(t) = m \end{cases}$$

Péfinition

La définition ci-dessus, nous indique l'existence de branches infinies.

Mais il faut maintenant déterminer si la courbe $\mathscr C$ possède des asymptotes ou des branches paraboliques.

Cette information nous permet de tracer les courbes plus facilement.

Soit une courbe \mathscr{C} défini par ses coordonnées (x(t),y(t)) sur son domaine de définition $\mathscr{D}_{\mathscr{C}}$. On détermine la nature des branches infinies ainsi que son équation, en suivant les critères ci-après :

- Si $\lim_{t\to a} x(t) = \pm \infty$ et $\lim_{t\to a} y(t) = y_0$ avec $y_0 \in \mathbb{R}$, la courbe admet une asymptote horizontale d'équation $y = y_0$.
- Si $\lim_{t\to a} x(t) = x_0$ et $\lim_{t\to a} y(t) = \pm \infty$ avec $x_0 \in \mathbb{R}$, la courbe admet un asymptote verticale d'équation $x = x_0$
- Si $\lim x(t) = \pm \infty$ et $\lim y(t) = \pm \infty$, alors possible asymptote ou branche parabo-
 - Si $\lim_{t\to a}\frac{y(t)}{x(t)}=\pm\infty$, la courbe admet une branche parabolique de direction asymptotique O_y
 - Si $\lim_{t\to a} \frac{y(t)}{x(t)}^y = 0$, la courbe admet une branche parabolique de direction asymptotique O_x

 - Si $\lim_{t\to a} \frac{y(t)}{x(t)} = a$, il faut continuer l'étude : Si $\lim_{t\to a} y(t) ax(t) = \pm \infty$, la courbe admet une branche parabolique de direction asymptotique y = ax.
 - Si $\lim y(t) ax(t) = b$ avec $b \in \mathbb{R}$, la courbe admet une asymptote oblique d'équation y = ax + b

Propriété

SChéma et exemples

Étude locale et points singuliers 1.2.3

On commence dans un premier temps par définir le vecteur $\overrightarrow{OM(t)}$ (autrement appelé $\overrightarrow{M(t)}$), qui est défini par

Afin d'amorcer une étude locale d'une courbe paramétrée il convient de dériver ce vecteur, on a donc: $\overrightarrow{M'(t)} = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$, on obtient le vecteur vitesse.

Tout comme l'étude d'une fonction, tout ce qu'il de plus classique, l'essentiel de l'étude déroule au niveau des points d'annulations de ces dérivées.

Tangentes

Soit \mathscr{C} une courbe paramétrée par ses coordonnées x(t) et y(t). Nous considérons leurs dérivées, respectivement x'(t) et y'(t).

- Si $x'(t_0) = 0$ et $y'(t_0) \neq 0$, la courbe admettra une tangente verticale en $t = t_0$.
- Si $x'(t_0) \neq 0$ et $y'(t_0) = 0$, la courbe admettra une tangente horizontale en $t = t_0$.

/Propriété

On peut se convaincre assez facilement de la direction des tangentes à l'aide du petit raisonnement suivant.

En effet, si $x'(t_0) = 0$, la dérivée est entièrement portée par le vecteur unitaire \overrightarrow{y} , de ce fait la tangente ne peut être que verticale, et réciproquement.

On considère la courbe $\mathscr C$ définie par :

$$\mathcal{C}: \mathcal{D}_{\mathcal{C}} \to \mathbb{R}$$

$$t \mapsto \begin{cases} x(t) = \frac{4t^2 - 1}{t^3 + 1} \\ y(t) = \frac{4t^3 - t}{t^3 + 1} \end{cases}$$

On dérive la composante x(t):

$$x'(t) = \frac{x(-4x^3 + 3x + 8)}{(t^3 + 1)^2}$$

On résout l'équation x'(t) = 0.

On obtient $S = \{0, 1, 46\}$

La courbe admet deux tangentes verticales.

On dérive la composante y(t):

$$y'(t) = \frac{2t^3 + 12t^2 - 1}{(t^3 + 1)^2}$$

On résout l'équation y'(t) = 0.

On obtient $S = \{-5, 99; -0, 3; 0, 28\}$.

La courbe admet trois tangentes horizontales.

Points réguliers et singuliers

Soit \mathscr{C} une courbe paramétrée par ses coordonnées x(t) et y(t). Nous considérons le vecteur vitesse $\overrightarrow{v(t)}$ du point M(t).

- Si $v(t_0) \neq \overrightarrow{0}$ alors la courbe admet en $t = t_0$ un point régulier.
- Si $v(t_0) = \overrightarrow{0}$ alors la courbe admet en $t = t_0$ un point singulier.

ODéfinition

Il est nécessaire de bien comprendre ce que sont ces deux points. Un point régulier est "un point normal de la courbe", c'est à dire que la courbe est tangente au vecteur vitesse $\overline{v(t)}$. Un point singuliers quant à lui est un point très particulier qui peut être de plusieurs natures. Néanmoins, son étude locale est, par définition, impossible en se cantonnant uniquement au vecteur vitesse.

Pour remédier à cela, on va faire un développement limité en t_0 , au minimum à l'ordre 3. On rappel la formule de Taylor, pour une fonction f en un point x_0 à l'ordre n:

$$P_n(x) = \sum_{i=1}^n f^{(i)}(x_0) \frac{(x-x_0)^i}{i!}$$

On calcul les développements limités des deux coordonnées.

$$x(t) = x(t_0) + v_x(t_0)(t - t_0) + x''(t_0)\frac{(t - t_0)^2}{2!} + x^{(3)}(t_0)\frac{(t - t_0)^3}{3!} + \dots + o((t - t_0)^n)$$

et

$$y(t) = y(t_0) + v_y(t_0)(t - t_0) + y''(t_0)\frac{(t - t_0)^2}{2!} + y^{(3)}(t_0)\frac{(t - t_0)^3}{3!} + \dots + o((t - t_0)^n)$$

Puis on rassemble ces deux développement limités en un vecteur :

$$\overrightarrow{M(t)} = \begin{pmatrix} x(t_0) \\ y(t_0) \end{pmatrix} + \begin{pmatrix} v_x(t_0) \\ v_y(t_0) \end{pmatrix} (t-t_0) + \begin{pmatrix} x''(t_0) \\ y''(t_0) \end{pmatrix} \frac{(t-t_0)^2}{2} + \begin{pmatrix} x^{(3)}(t_0) \\ y^{(3)}(t_0) \end{pmatrix} \frac{(t-t_0)^3}{6} + \ldots + o(\|\overrightarrow{M(t)}\|^n)$$

Or par définition d'un point singulier $(\overrightarrow{v(t_0)} = \overrightarrow{0})$, on a :

$$\overrightarrow{M(t)} = \begin{pmatrix} x(t_0) \\ y(t_0) \end{pmatrix} + \begin{pmatrix} x''(t_0) \\ y''(t_0) \end{pmatrix} \frac{(t-t_0)^2}{2} + \begin{pmatrix} x^{(3)}(t_0) \\ y^{(3)}(t_0) \end{pmatrix} \frac{(t-t_0)^3}{6} + \dots + o(\|\overrightarrow{M(t)}\|^n)$$

Une fois cela fait nous cherchons les deux premiers vecteurs (associées a des degrés supérieurs à 2 dans le développement limité), non colinéaires. Ces deux vecteurs nous permettrons de définir la nature du point singulier, ainsi que le sens de parcours de la courbe à travers celui-ci.

Soit une courbe $\mathscr C$ ayant un point singulier au point $t=t_0$. Le développement limité de la courbe $\mathscr C$ au point $t=t_0$ à l'ordre n est le suivant :

$$\overrightarrow{M(t)} = \begin{pmatrix} x(t_0) \\ y(t_0) \end{pmatrix} + \ldots + \underbrace{\begin{pmatrix} x^{(p)}(t_0) \\ y^{(p)}(t_0) \end{pmatrix}}_{\overrightarrow{r}} \underbrace{\frac{(t-t_0)^p}{p!}}_{ \overrightarrow{p}!} + \ldots + \underbrace{\begin{pmatrix} x^{(q)}(t_0) \\ y^{(q)}(t_0) \end{pmatrix}}_{\overrightarrow{m}} \underbrace{\frac{(t-t_0)^q}{q!}}_{ \overrightarrow{q}!} + \ldots + o(\|\overrightarrow{M(t)}\|^n)$$

Avec les vecteurs \overrightarrow{l} et \overrightarrow{m} , les deux premiers vecteurs non colinéaires.

La nature du point singulier est donnée par les critères suivants :

- Si p est impair et q est pair, alors il s'agit d'un point régulier.
- Si p est impair et q est impair, alors il s'agit d'un point d'inflexion.
- Si p est pair et q est impair, alors il s'agit d'un point de rebroussement de $1^{\text{ère}}$ espèce.
- Si p est pair et q est pair, alors il s'agit d'un point de rebroussement de 2^{nde} espèce.

Propriété

propriétés sur le sens de parcours demander à la prof Images à faires

Convexité

Dans le cas d'un point d'inflexion, il peut-être utile de chercher si avant et après lui la courbe est convexe ou concave.

1.2.4 Tableau de variation

1.2.5 Applications

Soit une courbe \mathscr{C} , voici le déroulement de son étude :

- 1. Détermination de son ensemble de définition
- 2. Étude de la périodicité et des symétries pour un éventuelle réduction de l'intervalle d'étude.
- 3. Étude des limites et des branches infinies, déterminer les asymptotes.
- 4. Étude locale, recherche des tangentes et des possibles points de rebroussements et d'inflexion.
- 5. Dressage du tableau de variation.
- 6. Dessin de la courbe \mathscr{C} .

-`ó-Méthode:

On considère la courbe $\mathscr C$ définie par :

$$\mathcal{C} : \mathcal{D}_{\mathcal{C}} \to \mathbb{R}$$

$$t \mapsto \begin{cases} x(t) = \frac{2t}{1+t^2} \\ y(t) = \frac{2+t^3}{1+t^2} \end{cases}$$

On commence dans un premier temps par définir l'ensemble de définition. Dans notre cas, le dénominateur est commun aux deux fonctions.

On cherche les valeurs interdites du dénominateur :

$$1 + t^2 = 0$$
$$\Leftrightarrow t^2 = -1$$
$$\Leftrightarrow S = \{\emptyset\}$$

En effet, une racine carrée ne pouvant être négative dans \mathbb{R} , les fonctions n'admettent aucune valeur interdite. On obtient : $\mathscr{D}_{\mathscr{C}} = \mathbb{R}$

1.3 Courbes en polaire

Cette section se concentrera sur l'étude des fonctions défini

Une courbe en polaire est une courbe paramétrée par :

$$\mathcal{C} : \mathcal{D}_f \to \mathbb{R}$$

$$\theta \mapsto r(\theta)$$

où $r(\theta)$ est la distance algébrique du point M à l'origine.

Autrement dit,
$$\overrightarrow{OM(\theta)} = r(\theta) \overrightarrow{u_r(\theta)} = r(\theta) \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Définition

Le fait que $r(\theta)$ soit une distance algébrique traduit le fait que ... Le point $M(\theta)$ est donc bien à une distance $|r(\theta)|$ mais dans la direction $-\overrightarrow{u_r(\theta)}$.

Soit $\mathscr C$ une courbe en polaire, un paramétrage de la courbe $\mathscr C$ serait :

$$r(\theta) \Leftrightarrow \begin{cases} x(\theta) = r(\theta)\cos(\theta) \\ y(\theta) = r(\theta)\sin(\theta) \end{cases}$$

/Propriété

1.4. CONIQUES 49

La plupart du temps, ramener une courbe en polaire en paramétrée n'est pas un choix judicieux pour son étude.

1.3.1 Domaine de définition et intervalle d'étude

Périodicité : Si la période n'est pas multiple de 2π , alors il faut faire des rotations pour déterminer la courbe dans son ensemble. Symétries :

1.3.2 Étude des branches infinies

- Si $r(\theta)$ est périodique :
 - Si $\lim_{\theta \to \theta_0} r(\theta) \sin \theta \theta_0 = l$ avec $l \in \mathbb{R}$, la courbe admet une asymptote oblique d'équation y = l dans le repère tourné d'angle θ_0 .
- Si $r(\theta)$ n'est pas périodique :
 - Si $\lim_{\theta \to \pm \infty} r(\theta) = \pm \infty$, la courbe tend vers l'infini en spiralant.
 - Si $\lim_{\theta \to \pm \infty} r(\theta) = 0$, la courbe tend vers 0 en spiralant.
 - Si $\lim_{\theta \to \pm \infty} r(\theta) = l$ avec $l \in \mathbb{R}^*$, la courbe s'enroule vers le cercle centré à l'origine et de rayon |l|.

Propriété

1.3.3 Étude locale

1.3.4 Tableau de variation

1.3.5 Applications

Soit la courbe \mathscr{C} défini par la fonction $r(\theta)$:

$$r(\theta)$$
 : $\mathscr{D}_r \to \mathbb{R}$
 $\theta \mapsto 1 + \frac{1}{\theta - \frac{\pi}{4}}$

1.4 Coniques

Propriétés métrique des courbes

Chapitre 3 Intégrales curvilignes

Quatrième partie Équations différentielles

58 CHAPITRE 1. 1

Méthodes numérique pour les équations différentielles

60 <i>CHAPITRE 2.</i>	MÉTHODES NUMÉRIQ	QUE POUR LES ÉQUA	TIONS DIFFÉRENTIELLES

Méthodes explicite pour les équations différentielles

62CHAPITRE 3.	MÉTHODES EXPLICITE I	POUR LES ÉQUATIONS	DIFFÉRENTIELLES

Cinquième partie

Mec-301 : Mécanique du solide indéformable

Torseurs

Le torseur est un objet français (Cocorico!), permettant de représenter toutes les actions que subit un solide.

C'est un outils qui facilite les calculs et la formulation des lois. En effet, il faudrait diviser les lois en plusieurs théorème pour complètement inclure les informations contenues dans un torseur.

1.1 Actions mécaniques

1.2 Moment d'une force

On appelle moment en A de la force \overrightarrow{F} passant par le point P, du solide Σ :

$$\overrightarrow{M_A(\overrightarrow{F})} = \overrightarrow{AP} \wedge \overrightarrow{A}$$

ODéfinition

Un moment représente la capacité d'une force a crée une rotation autour d'un axe.

On peut définir la formule de transport des moments qui permet, connaissant le moment en un point A du solide, de calculer le moments de cette force sur n'importe quel point du solide.

Soient A et B deux points de l'espace et $\overrightarrow{M_A}(\overrightarrow{F})$, $\overrightarrow{M_B}(\overrightarrow{F})$ leurs moments associés de la force \overrightarrow{F} appliquée en P au solide Σ .

On définit la formule de transport des moments :

$$\overrightarrow{M_B}(\overrightarrow{F}) = \overrightarrow{M_A}(\overrightarrow{F}) + \overrightarrow{BA} \wedge \overrightarrow{F}$$

/Propriété

Soit ODémonstration

Calcul d'un moment avec le bras de levier - Méthode:

1.3 Torseur force

$$\{\tau\}_A = \left\{\overrightarrow{R}_{M_A}\right\}_A = \left\{ \underbrace{\sum_{1}^{n} \overrightarrow{F_i}}_{\sum_{1}^{n} \overrightarrow{AP_i}} \wedge \overrightarrow{F_i} \right\}_A = \left\{ R_x \quad R_y \quad R_z \\ M_x \quad M_y \quad M_z \right\}_A$$

Définition

Dans le cas d'un point matériel le torseur force se réduit seulement à la résultante des forces.

Remarque

- 1.3.1 Éléments de réduction
- 1.4 Torseur de force répartie
- 1.5 Torseur cinématique

$$\left\{\chi\right\}_{A/R_0} = \left\{\overrightarrow{V}_{\Sigma/R_0}(A)\right\}_{A/R_0} = \left\{\begin{matrix}\omega_x & \omega_y & \omega_z\\ u_A & v_A & w_A\end{matrix}\right\}_{A/R_0}$$

Définition

- 1.6 Torseur de liaisons
- 1.7 Torseur déplacement infinitésimal

$$\left\{\delta\chi\right\}_{A/R_0} = \left\{\frac{\delta\overrightarrow{\omega}_{\Sigma/R_0}}{\delta\overrightarrow{l}_{\Sigma/R_0}(A)}\right\}_{A/R_0} = \left\{\begin{array}{ccc}\delta\omega_x & \delta\omega_y & \delta\omega_z\\\delta u_A & \delta v_A & \delta w_A\end{array}\right\}_{A/R_0}$$

Définition

1.8 Opérations sur les torseurs

Statique du solide

- 2.1 Principe fondamentale de la statique
- 2.2 Principe des actions réciproques
- 2.3 Applications aux cas usuelles
- 2.4 Frottements secs

Cinématique du solide

- 3.1 Composition des vitesses
- 3.2 Composition des accélérations

Cinétique du solide

En cinématique, les mouvements des corps sont considérés en omettant l'inertie des ces derniers. En réalité, les mouvements des systèmes sont liés aux causes d'une part et à leurs inertie d'autre part.

La notion d'inertie caractérise la propriété du système de changer plus ou moins rapidement sa vitesse sous l'effet des forces qui lui sont appliquées. On simplifie souvent les choses, en réduisant l'inertie à la masse. Or le mouvement d'un solide ne dépend pas que de sa masse et des forces exercées sur ce dernier. En effet il dépend également de sa géométrie, de la distribution de sa masse, ...

L'étude de l'inertie s'effectue dans le cadre de la cinétique.

4.1 Géométrie des masses

4.1.1 Notion de masse

A chaque solide Σ est associée un quantité (scalaire), noté m, qui représente la matière contenue dans ce dernier. On la définie comme il suit :

$$m = \int dm$$

avec dm l'élément infinitésimal de masse

Définition

Sachant cela il est possible de définit la masse à partir des distributions de masse :

- Masse volumique ρ (en $kq.m^{-1}$)
- Masse surfacique σ (en $kg.m^{-2}$)
- Masse linéique λ (en $kq.m^{-1}$)

Par définition de ces trois grandeurs, on peut écrire l'élément infinitésimal de masse dm comme :

- $-dm = \rho(M)dV$
- $-dm = \sigma(M)dS$
- $-dm = \lambda(M)dl$

où dV, dS et dl sont respectivement les éléments infinitésimaux de volume, de surface et le déplacement élémentaire autour d'un point M.

En définitive, on peut donc écrire :

- $m=\int \rho(M)dV$ Très utilisée pour les solides en 3 dimensions $m=\int \sigma(M)dS$ Utilisée pour les plaques
- $-m = \int \lambda(M) dl \rightarrow \text{Utilisée pour les tiges}$

Exemple

- Centre de Gravité et référentiel barycentrique 4.1.2
- 4.2 Torseur cinétique
- Matrice d'inertie 4.3

Sixième partie

Phy-301 : Électromagnétisme 1

Septième partie Electrostatique

Huitième partie Magnétisme et Electromgnétisme

Neuvième partie

Phy302: Thermodynamique

Chapitre 1

Transformations thermodynamiques

1.1 Description d'un système thermodynamique

1.1.1 Systèmes thermodynamiques

Afin d'amorcer une étude thermodynamique (tout comme n'importe quel domaine de la physique), il faut définir le système étudié.

On appelle système thermodynamique, l'ensemble des corps étudiés contenus dans un volume délimité par une enveloppe, réelle ou fictive.

On distingue donc un milieu intérieur (le système) et un milieu extérieur. Selon les échanges que peut avoir le système avec un milieu extérieur on peut le qualifier de différents adjectifs.

- On dit que le système est ouvert, s'il peut échanger avec le milieu extérieur de la matière et de l'énergie.
- On dit que le système est fermé, s'il peut échanger que de l'énergie avec le milieu extérieur.
- On dit que le système est isolé, s'il ne peut échanger ni énergie ni matière avec le milieu extérieur.

Définition

- Un verre d'eau est un système ouvert, il peut échanger de l'énergie et de la matière avec le milieu extérieur (évaporation, liquéfaction).
- Le circuit de refroidissement d'un réfrigérateur est un système fermé, il ne peut pas échanger de matière (liquide en circuit fermé) mais il peut échanger de l'énergie avec le milieu extérieur.
- L'univers est considéré comme un système isolé (il n'est pas censé avoir de milieu extérieur donc aucun échange n'est possible).

1.1.2 Grandeurs thermodynamiques et variables d'états

Une variable d'état est une grandeur physique (mesurable) caractérisant l'état d'un système.

Définition

On se sert de tels variables pour l'établissement d'équations d'état.

Ces variables peuvent-être qualifier :

- d'extensive, c'est à dire une grandeur qui dépend de la "taille".

 Pour le dire autrement, une grandeur est extensive si pour deux systèmes disjoints, leur réunion est la somme de ces grandeurs.
- d'intensive, c'est a dire une grandeur qui peut être mesuré de manière ponctuelle, elle ne dépend pas de la "taille" du système. Ces grandeurs ne sont pas additives.

Le volume V, la masse m et la quantité de matière n sont des grandeurs extensives.

La température T ou θ et la pression P sont des grandeurs intensives

À partir de ces grandeurs on définit l'équilibre d'un système thermodynamique.

Un système est à l'équilibre thermodynamique si toutes ses variables d'état sont invariantes dans le temps (constantes) sans transfert de matière ou d'énergie.

Pression

Température

1.1.3 Équations d'états

On appelle équation d'état une relation mathématique entre les différentes variables d'état caractérisant le système.

1.1.4 Coefficients thermoélastiques

On définit trois grandeurs intensives nommées coefficients thermoélastiques.

- Coefficient de dilatation isobare : $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$
- Coefficient de compression isochore : $\beta =$

— Coefficient de compressibilité isotherme : $\chi_T =$

L'intérêt de tels coefficients est qu'ils sont facilement accessibles de manière expérimentale, et permettent d'accéder très rapidement a une équation d'état de n'importe quel matériau.

1.2 Transformations

On appelle transformation thermodynamique l'évolution d'un système d'un état d'équilibre initial a un état d'équilibre final.

Définition

On peut qualifier une transformation thermodynamique de plusieurs adjectif, que sont les suivants :

- Selon les caractéristiques du système :
 - isotherme : température T constante constante
 - isochore : volume V constant isenthalpique : enthalpie H constante
 - isobare : pression P constante isentropique : entropie S constante
 - isoénergétique : énergie interne U
- Selon les caractéristiques du milieu extérieur :
 - monobare : pression extérieur constante constante
 - monotherme : température extérieur
- Selon le type d'échange avec le milieu extérieur :
 - adiabatique : aucun transfert thermique réversible : aucune création d'entropie $\delta Q = 0 \qquad \qquad \sigma_s = 0$

1.3 Modèles

1.3.1 Modèle du gaz parfait

Au prix de quelques approximations, il est possible d'étudier un gaz avec le modèle le plus simple qui soit, celui du gaz parfait.

Dans le modèle du gaz parfait on considère que :

— On suppose toutes les interactions internes du gaz (entre les molécule du gaz) sont négligeable .

Son équation d'état est :

$$PV = nRT$$

avec P: La pression du gaz en pascal, Pa

V: Le volume du gaz en mètres cubes, m^3

n: La quantité de matière contenue dans le gaz en mole, mol

R: La constante d'état des gaz parfait qui vaut $8,314\ J.mol^{-1}.K^{-1}$

T: La température du gaz en kelvin, K

Tout gaz peut se comporter comme un gaz parfait s'il suffisamment dilué ($V\to\infty$). Ou de manière analogue si la pression est suffisamment faible ($P\to0$).

Remarque

- 1.3.2 Modèle de Van der Waals, gaz réel
- 1.3.3 Modèle
- 1.4 Représentations graphique

Chapitre 2

Premier principe

- 2.1 Préliminaires
- 2.1.1 Chaleur
- 2.1.2 Travail
- 2.1.3 Énergie interne
- 2.2 Premier principe de la thermodynamique

Chapitre 3
Second principe

Chapitre 4 Machines thermiques

Chapitre 5

Transitions de phase des corps purs

Dixième partie Annexes