Chapter 7 Notes - LA

John Yang

April 14, 2022

Contents

7	Dist	ance and Approximation	1
	7.1	Inner Product Spaces	1
	7.2	Norms and Distance Functions	5
		Least Squares Approximation	
		The Singular Value Decomposition	
		Applications	

7 Distance and Approximation

7.1 Inner Product Spaces

- An inner product on a vector space V is an operation that assigns to every pair of vectors \mathbf{u} and \mathbf{v} in V a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ such that the following properties hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and all scalars c:
 - $-\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ $-\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ $-\langle c\mathbf{u}, \mathbf{v} \rangle = c\langle \mathbf{u}, \mathbf{v} \rangle$ $-\langle \mathbf{u}, \mathbf{u} \rangle > 0 \text{ and } \langle \mathbf{u}, \mathbf{u} \rangle = 0 \text{ IFF } \mathbf{u} = \mathbf{0}$
- A vector space with an inner product is called an inner product space.
- ullet Let old u, old v, and old w be vectors in an inner product space V and let c be a scalar.
 - $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v} + \mathbf{w} \rangle$ $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$ $\langle \mathbf{u}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{v} \rangle = 0$
- Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.
 - The length (or norm) of \mathbf{v} is $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
 - The distance between **u** and **v** is $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$
 - \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- ullet Pythagoras' Theorem: Let old u and old v be vectors in an inner product space V. Then old u and old v are orthogonal IFF

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

 \bullet The Cauchy-Schwarz Inequality: Let ${\bf u}$ and ${\bf v}$ be vectors in an inner product space V.

7.2 Norms and Distance Functions

•

7.3 Least Squares Approximation

•

7.4 The Singular Value Decomposition

•

7.5 Applications

•