Лабораторная работа №2

Преобразование типов данных в МАТLAВ

Цель работы: Изучение возможностей преобразования типов данных в MATLAB для решения прикладных задач.

Как отмечалось ранее, основными типами данных в MATLAB являются числовые, логические и символьные. Зачастую, при написании программы необходимо преобразовать данные из одного типа в другой. Например, для того, чтобы подписать график функции текст подписи должен представлять собой строковую переменную. Данное из числовой переменной а с помощью функции num2str преобразуется в строку b.

```
>> a=sin(pi/2)+2*cos(pi/4)
a =
    2.4142
>> b=num2str(a)
b =
    2.4142
>> c=(a>0)
c =
```

В рабочей области было создано три переменные — а типа double, b типа char и c типа logical.

Следует обратить внимание, что для обозначения каждого из перечисленных типов данных в рабочей области MATLAB существует свой значок (иконка): ☐ - тип double, ______ - тип logical.

Так же удобно использовать функции преобразования типов данных для проверки типов переменных. В частности, при организации диалога с пользователем удобно использовать преобразование типов для оценки корректности ввода данных. По результату преобразования можно судить о том, содержит ли строка только цифры или так же и символы. Например, функция str2double(s)(см. таблицу 4 приложения) преобразует строку s в число (скаляр) типа double. Если строка s содержала символы, математические выражения или представляла собой вектор или матрицу, функция str2double(s) вернет Nan (Not-a-number). Следует так же отметить, что при преобразовании с помощью функции str2double символ запятая ', ' опускается.

```
>> a='23.2';
>> str2double(a)
ans =
        23.2000

>> b='hello';
>> str2double(b)
ans =
        NaN
>> c='12,4';
>> str2double(c)
ans =
        124
```

Так же MATLAB обладает возможностями вычисления математических выражений, содержащихся в символьной переменной или строке. В частности, это реализуется с помощью функции eval().

```
>> str='sin(pi/2)';
>> eval(str)
ans =
    1

>> x = 0 : 0.5 : pi;
>> str = '( sin( 2 * x ) + 1 ) .* ( x .^ 2 )';
>> y=eval (str)
```

Задание на лабораторную работу №2

- 1. Создать строковые переменные, содержащие данные согласно номеру варианта (таблица 1)
- 2. Преобразовать строковые переменные в числовые с помощью функции str2double. Объяснить полученные результаты.
- 3. Преобразовать строковые переменные в числовые с помощью функции str2num. Объяснить полученные результаты.
- 4. Применить к строковым переменным функцию eval. Объяснить полученные результаты.

Таблица 1. Варианты заданий на лабораторную работу №2

Номер	Переменные					
варианта	a	b	С	d		
1	'1 2 3 4'	'8.87'	'2*sin(pi/4)+8'	'hello'		
2	'1,2,3,4'	'3,1'	'1.2*5+2'	'clc'		
3	'1;2;3;4'	'35.6'	'3*cos(pi/3)'	'Good evening'		
4	'1 2;2 2;3 2'	'5.89'	'8/150+0.24'	'Bonjour'		
5	'[2 3 8 9]'	'7,67'	'4*tan(pi/8)-1'	'Error'		
6	'[2,3,8,9]'	'1.01'	'2*sin(pi/4)+8'	'a!'		
7	'[2;3;8;9]'	'23.4'	'4*tan(pi/8)-1'	'Спасибо'		
8	'[3 2;1 4;3 1]'	'88'	'2*sin(pi/4)+8'	'Ошибка!'		
9	'[[1;4] [2;5] [3;6]]'	'0'	'2*sin(pi/4)+8'	'Good night'		
10	'[3;4] [9;7.7] [5;0]'	'0.45'	'1.2*5+2'	'Hello, World'		
11	'5 6 7 8'	'0,42'	'3*cos(pi/3)'	'hello'		
12	'5,6,7,8'	'3.55'	'3*cos(pi/3)'	'Good morning'		
13	' 5;6;7;8'	'11'	'8/150+0.24'	'Good evening'		
14	'5 6;6 7;7 8'	'16'	'4*tan(pi/8)-1'	'help'		
15	'[9 8 7 6]'	'100'	'2*sin(pi/4)+8'	'Error'		
16	'[9,8,7,6]'	'2.3'	'1.2*5+2'	'Здравствуйте! '		

Номер	Переменные				
варианта	a	b	С	d	
17	'[9;8;7;6]'	'12,2'	'3*cos(pi/3)'	'Спасибо'	
18	'[1 0;4 6;4 1]'	'2'	'8/150+0.24 '	'Ошибка!'	
19	'[[7;4] [3;7] [0;8]]'	' 5'	'4*tan(pi/8)-1'	'Good night'	
20	'[2;3] [7;6] [8;9]'	'0'	'2*sin(pi/4)+8'	'a+b'	
21	'5;6;7;8'	'0.45'	'3*cos(pi/3)'	'Hello, World'	
22	'5 6;6 7;7 8'	'0,42'	' 8/150+0.24 '	'hello'	
23	'[9 8 7 6]'	'3.55'	'4*tan(pi/8)-1'	'Good morning'	
24	'[9,8,7,6]'	'11'	'2*sin(pi/4)+8'	'help help'	
25	'[9;8;7;6]'	'16'	'4*tan(pi/8)-1'	'Bonjour'	
26	'[1 0;4 6;4 1]'	'100'	'2*sin(pi/4)+8'	'Error'	
27	'[[7;4] [3;7] [0;8]]'	'2.3'	'2*sin(pi/4)+8'	'close'	
28	'[2;3] [7;6] [8;9]'	'12,2'	'3*cos(pi/3)'	'Hello, World'	

Контрольные вопросы

- 1. Что означает Nan в MATLAB.
- 2. Что выполняет функция str2double, какие особенности ее работы?
- 3. Что выполняет функция str2num, какие особенности ее работы?
- 4. Что выполняет функция eval, какие особенности ее работы?
- 5. Как определить тип данных переменной в МАТLAB?

Требования к содержанию отчета

Отчет по лабораторной работе оформляется в любом текстовом редакторе и предоставляется в электронном виде. Отчет должен состоять из следующих разделов:

- 1. Титульный лист. На титульном листе необходимо указать номер и название лабораторной работы, номер варианта, ФИО и группу исполнителя, ФИО преподавателя.
- 2. Цель работы.
- 3. Задание на лабораторную работу в соответствии с номером варианта.

- 4. Ход работы, где указывается последовательность команд для командной строки для каждого подпункта задания и результат их исполнения. После выполнения каждого из заданий необходимо объяснить полученные результаты
- 5. Выводы по работе.

К отчету прилагается файл с текстом отчета, который необходимо разместить в личном кабинете.