

Lecture 7

Principal Component Analysis (PCA)

Dr. Le Huu Ton

Outline

PCA Introduction

PCA Implementation

Outline

PCA Implementation

Principal Component Analysis (PCA): A method to analysis and compressed data, to convert data from n-dimension space and converts it into smaller dimension space

Reduce data dimension with minimize lost in variability

Dimension reduction: data projection

Dimension reduction: how to find a good coordinate space to

present data?? **Variability**

Principal Component Analysis (PCA):

- 1. Defines a set of principal components:
- 1st: direction of greatest variability in the data
- 2^{nd:} perpendicular to 1st, greatest variability of what is left
- -... repeat n times (original dimensionality)
- 2. Select m first components as new dimension: convert data from original dimension to new one

Outline

PCA Implementation

1. Center the data at zero by subtracting it means

for
$$i = 1 : n$$

$$x_i = x_i - \mu_i$$

Where μ_i is the means of x_i

- 2. Compute the covariance matrix
- Covariant of dimension x₁ and x₂

x₁ increases as x₂ increases => covariant is positive

x₁ increases as x₂ decreases => covariant is negative

$$cov(x_1, x_2) = \frac{1}{m} \sum_{i=1}^{m} (x_1^i - \mu_1)(x_2^i - \mu_2)$$

1. Center the data at zero by subtracting it means

for
$$i = 1 : n$$

$$x_i = x_i - \mu_i$$

Where μ_i is the means of x_i

- 2. Compute the covariance matrix
- Covariant of dimension x₁ and x₂

x₁ increases as x₂ increases => covariant is positive

x₁ increases as x₂ decreases => covariant is negative

$$cov(x_1, x_2) = \frac{1}{m} \sum_{i=1}^{m} (x_1^i - \mu_1)(x_2^i - \mu_2)$$

Principal Component Analysis (PCA):

A vector, multiply by the covariance matrix will turn toward direction of invariance

$$\begin{pmatrix} 2 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} * \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} * \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix} = \begin{pmatrix} -2.5 \\ -1.0 \end{pmatrix}$$

$$cov(x_1, x_2)(\sum) = \begin{vmatrix} 2 & 0.8 \\ 0.8 & 0.6 \end{vmatrix} \quad slope \quad 0.4 \quad 0.45 \quad 0.454 \quad 0.454$$

$$cov(x_1, x_2)(\sum) = \begin{vmatrix} 2 & 0.8 \\ 0.8 & 0.6 \end{vmatrix}$$

Principal Component Analysis (PCA):

⇒ We want to find the converged vector (vector that does not change its direction when multiplied by the covariance matrix)

$$\sum *e = \lambda e$$

Those vectors that satisfy the above equation is called the eigenvectors

Principal Component Analysis (PCA):

1. Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

Principal Component Analysis (PCA):

2. Compute the eigenvectors

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$$

Compute "eigenvectors" of matrix Σ :

$$[U,S,V] = svd(Sigma);$$

U is a matrix made of eigenvectors, where each column of U present a eigenvectors

1st column of U => greatest variability in the data => first PCA component 2nd column of U => second PCA component

How to convert data to the new k-dimension space (k<n)

$$U = \begin{bmatrix} \begin{vmatrix} & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & \end{vmatrix} \in \mathbb{R}^{n \times n}$$

Take the first k column of U, called U_reduce

The coordinate of a data point x in new dimension space is

$$z = (u_reduce)^{T*}x$$

U_reduce is a n*k matrix X is a n*1 vector

=> z is a k*1 vector

Principal Component Analysis (PCA): Data reconstruction

 $x_{approx} = U_reduce*z$

Where z is the PCA transformation of data x

 x_{approx} is the reconstruction of x from z

16

Principal Component Analysis (PCA): PCA evaluation, how to choose k

Average squared projection error: $\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2$ Total variation in the data: $\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2$

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$

"99% of variance is retained"

Principal Component Analysis (PCA): PCA evaluation, how to choose k

Algorithm:

Try PCA with k=1

Compute
$$U_{reduce}, z^{(1)}, z^{(2)},$$

$$\dots, z^{(m)}, x^{(1)}_{approx}, \dots, x^{(m)}_{approx}$$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

[U,S,V]=svd(sigma)

$$S = \begin{vmatrix} s_{11} & 0 & \dots & 0 \\ 0 & s_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & s_{nn} \end{vmatrix}$$

s_{ii} tell how much variability (information) is stored on ith component of PCA

$$\frac{\sum_{i=1}^{n} S_{ii}}{\sum_{i=1}^{n} S_{ii}}$$

 $\overline{i=1}$ presents how much $\sum_{i}^{n} S_{ii}$ variability is retained

Principal Component Analysis (PCA): PCA evaluation, how to choose k

$$[U,S,V] = svd(Sigma)$$

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Exercise: Calculate the covariance matrix of the following data Use the 1st and 2nd component to transform the data

Data	x_1	x ₂
1	4	8
2	5	9
3	5	10
4	3	7
5	2	5
6	2	3

References

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?c
ourse=MachineLearning

http://www.svm-tutorial.com/2014/11/svm-understanding-math-part-2/

https://www.youtube.com/channel/UCs7alOMRnxhzfKAJ4JjZ7Wg