Differential Expression with DESeq2

Laura Pikkupeura

5/31/2019

Teachers and slides

- Laura Pikkupeura
- ▶ PhD studenst in Sandelin and Jensen Labs
- ▶ Mail: laura.pikkupeura@bric.ku.dk
- ► Background:
 - MSc Molecular Biomedicine
 - PhD in Stem Cell Biology, Genomics and Transcriptomics

Lecture Outline

The plan:

- ▶ Walkthrough of DESeq2 core functionalities using the yeast dataset.
- ▶ You will analyze the IBD dataset on your own afterwards.
- ▶ If time allows, we will see how Salmon > tximport > DESeq2 can form a complete DE pipeline

Background

- ▶ Dataset from the paper: A global non-coding RNA system modulates fission yeast protein levels in response to stress by Leng et al.
- ▶ URL to paper: http://www.ncbi.nlm.nih.gov/pubmed/24853205
- ▶ RNA-Seq data for **6** fission yeast samples.
- ▶ Biological triplicates before/after stress treatment
- ► The data is a genes-by-samples count matrix.

Loading the needed packages

First we load the packages we need for the analysis:

```
library(DESeq2)
```

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
##
       clusterApply, clusterApplyLB, clusterCall,
##
       clusterEvalQ, clusterExport, clusterMap,
##
       parApply, parCapply, parLapply, parLapplyLB,
##
       parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
```

Looking at the data

First we load the files into R:

```
# Information about samples
design <- read_tsv("yeast_study_design.tab")</pre>
## Parsed with column specification:
## cols(
##
    Sample = col_character(),
    Replicate = col_character(),
##
    Minute = col_character()
##
## )
# Count matrix (This is not a tibble!)
EM <- read.table("yeast_count_matrix.tab") %>% as.matrix
```

Looking at the data

design contains information about the study setup:

design

```
## # A tibble: 6 x 3
##
    Sample Replicate Minute
##
    <chr>
            <chr>
                        <chr>>
## 1 GSM1368273 r1
                        minO
## 2 GSM1368274 r2
                        min0
## 3 GSM1368275 r3
                     min0
## 4 GSM1368279 r1
                    min30
## 5 GSM1368280 r2
                        min30
## 6 GSM1368281 r3
                        min30
```

Looking at the data

EM is the expression matrix, quantified as counts:

head(EM)

##		GSM1368273	GSM1368274	GSM1368275	GSM1368279
##	SPAC212.11	8	4	25	9
##	SPAC212.09c	23	31	49	91
##	SPNCRNA.70	0	0	0	0
##	SPAC212.12	1	0	0	6
##	${\tt SPAC212.04c}$	37	5	21	33
##	SPAC212.01c	2	0	2	2
##		GSM1368280	GSM1368281		
##	SPAC212.11	7	10		
##	SPAC212.09c	73	75		
##	SPNCRNA.70	0	1		
##	SPAC212.12	0	0		
##	${\tt SPAC212.04c}$	32	54		
##	SPAC212.01c	0	2		

Preparing the data for DESeq2

DESeq2 is NOT based on the tidyverse, but on Bioconductors elaborate S4-system.

That means we have to do a little bit of preparation to set up our data for analysis:

- A matrix-object containing counts.
- ▶ A data.frame-object containing information on the samples.
- ▶ A formula-object pointing to the column in the design holding the groups.

Preparing the data for DESeq2

First we must save the data as DESeqDatSet-object:

```
colData = design, # Study design
                              design = ~ Minute) # Groups
## Warning in DESeqDataSet(se, design = design, ignoreRank):
## some variables in design formula are characters, converting
## to factors
dds
## class: DESegDataSet
## dim: 6642 6
## metadata(1): version
## assays(1): counts
## rownames(6642): SPAC212.11 SPAC212.09c ...
##
    SPMITTRNAGLU.01 SPMIT.11
## rowData names(0):
## colnames(6): GSM1368273 GSM1368274 ... GSM1368280
##
    GSM1368281
## colData names(3): Sample Replicate Minute
```

dds <- DESeqDataSetFromMatrix(countData = EM, # Count matrix</pre>

Running DESeq2

DESeq2 can now be run with a magical one-liner:

```
dds <- DESeq(dds)</pre>
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
```

Running DESeq2

What on earth is going on?!

The DESeq-function runs the following series of functions:

- estimateSizeFactors: Calculate normalization or size factors
- estimateDispersion: Estimate dispersion using information sharing
- ▶ nbinomWaldTest: Testing each gene using the Wald Test

Running all of these adds new information to the DESeqDataSet:

dds

```
## class: DESeqDataSet
## dim: 6642 6
## metadata(1): version
## assays(4): counts mu H cooks
## rownames(6642): SPAC212.11 SPAC212.09c ...
## SPMITTRNAGLU.01 SPMIT.11
## rowData names(22): baseMean baseVar ... deviance
## maxCooks
## colnames(6): GSM1368273 GSM1368274 ... GSM1368280
## GSM1368281
## colData names(4): Sample Replicate Minute sizeFactor
```

Inspecting results

Now we can inspect the results, returned as DESeq2Results-object:

```
res <- results(dds)
head(res)
## log2 fold change (MLE): Minute min30 vs min0
## Wald test p-value: Minute min30 vs min0
## DataFrame with 6 rows and 6 columns
##
                       baseMean
                                    log2FoldChange
##
                      <numeric>
                                         <numeric>
## SPAC212.11 10.0109632255266 -0.126118196529359
## SPAC212.09c 60.4782840168949 1.48254964538345
## SPNCRNA.70 0.194571047885225 1.27572753497477
## SPAC212.12 0.892558500282679 2.3621339611395
## SPAC212.04c 30.5572252350283 1.45684488478917
## SPAC212.01c 1.1370313450568
                                  0.38321099262347
##
                          1fcSE
                                              stat
                      <numeric>
                                         <numeric>
##
  SPAC212.11
              0.783799781633654 -0.160906138894928
  SPAC212.09c 0.416326151875937
                                  3.56102934851241
## SPNCRNA.70 4.08008003243857 0.312672184082697
## SPAC212.12 2.92014920712879
                                  0.80890865280889
## SPAC212.04c 0.530281333523057
                                  2.74730561438068
```

Inspecting results

summary(res)

Let us use the built in overall summary:

```
##
## out of 6642 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 1283, 19%
## LFC < 0 (down) : 1071, 16%
## outliers [1] : 1, 0.015%
## low counts [2] : 129, 1.9%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results</pre>
```

[2] see 'independentFiltering' argument of ?results

Customizing results

Take notice of the default settings:

- ▶ By default DESeq2 used min30 vs min0 as the comparison: We might want to change this!
- By default DESeq2 used a p-value threshold of 0.1: We might want to change this!
- By default DESeq2 used a logFC treshold of 0: We might want to change this!

Customizing results

Pass more arguments to results:

Customizing results

What happened to the amount of DE genes?

```
summary(res2)
```

```
##
## out of 6642 with nonzero total read count
## adjusted p-value < 0.05
## LFC > 0.25 (up) : 650, 9.8%
## LFC < -0.25 (down) : 393, 5.9%
## outliers [1] : 1, 0.015%
## low counts [2] : 258, 3.9%
## (mean count < 1)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

Exporting to the tidyverse

In many cases, we want to continue working on the results produced by DESeq2 using the tidyverse. This can be done in two ways:

Manually coerce the DESeqResults-object to a data.frame or tibble:

```
res3 <-res2 %>%
   as.data.frame %>%
   rownames_to_column("Gene") %>%
   as_tibble
res3
```

```
## # A tibble: 6,642 x 7
##
     Gene
          baseMean log2FoldChange lfcSE stat pvalue
             <dbl>
                         <dbl> <dbl> <dbl>
##
     <chr>
                                              <dbl>
   1 SPAC~ 10.0
##
                        -0.126 0.784 0
##
   2 SPAC~ 60.5
                         1.48 0.416 2.96 0.00307
   3 SPNC~ 0.195
                         1.28 4.08 0.251
                                           0.802
##
##
   4 SPAC~ 0.893
                         2.36 2.92
                                     0.723 0.469
   5 SPAC~ 30.6
                         1.46 0.530
                                     2.28
##
                                            0.0229
##
   6 SPAC~ 1.14
                       0.383 1.98
                                     0.0673 0.946
   7 SPAC~ 0.225
                       -0.655 4.08 -0.0992 0.921
##
##
   8 SPNC~
             8.40
                       -0.781 0.913 -0.581 0.561
##
   9 SPAC~
             0.317
                        -1.70
                               4.03
                                     -0.361
                                            0.718
```

Exporting to the tidyverse

Or have results return a normal data.frame:

```
results(dds, tidy = TRUE) %>%
    as_tibble
```

```
## # A tibble: 6,642 x 7
          baseMean log2FoldChange lfcSE stat pvalue
##
     row
##
    <chr> <dbl>
                    <dbl> <dbl> <dbl> <dbl> <dbl>
   1 SPAC~ 10.0
##
                      -0.126 0.784 -0.161 8.72e-1
   2 SPAC~ 60.5
                      1.48 0.416 3.56 3.69e-4
##
##
   3 SPNC~ 0.195
                        1.28 4.08 0.313 7.55e-1
##
   4 SPAC~ 0.893
                        2.36 2.92 0.809 4.19e-1
   5 SPAC~ 30.6
                      1.46 0.530 2.75 6.01e-3
##
   6 SPAC~ 1.14
                      0.383 1.98 0.194 8.46e-1
##
## 7 SPAC~ 0.225
                      -0.655 4.08 -0.160 8.73e-1
## 8 SPNC~ 8.40
                     -0.781 0.913 -0.855 3.93e-1
## 9 SPAC~ 0.317
                      -1.70 4.03 -0.423 6.72e-1
## 10 SPAC~ 83.0
                     -0.0855 0.265 -0.322 7.48e-1
## # ... with 6,632 more rows, and 1 more variable: padj <dbl>
```

Looking at top genes

Have a look at the top few genes:

```
arrange(res3, padj)
```

```
## # A tibble: 6,642 x 7
##
     Gene
          baseMean log2FoldChange lfcSE stat pvalue
## <chr>
            <dbl>
                         <dbl> <dbl> <dbl>
                                              <dbl>
## 1 SPAC~ 21418.
                           8.22 0.162 49.3 0.
## 2 SPCC~ 14009.
                           6.01 0.132 43.8 0.
   3 SPBC~ 5899.
                           5.17 0.145 33.8 9.98e-251
##
##
   4 SPAC~ 4700.
                           7.80 0.228 33.2 2.20e-241
   5 SPBC~ 6758.
                           6.50 0.189 33.0 1.56e-238
##
   6 SPAC~ 9670.
                           7.83 0.259 29.2 6.75e-188
##
## 7 SPBC~ 6834.
                           7.71 0.269 27.8 1.02e-169
##
   8 SPCP~ 4574.
                           6.79 0.242 27.1 1.90e-161
   9 SPBC~ 8371.
##
                           3.63 0.125 27.0 1.78e-160
## 10 SPAC~ 6658.
                           5.30 0.188 26.9 3.25e-159
## # ... with 6,632 more rows, and 1 more variable: padj <dbl>
```


Diagnostics

It is important to make sure the DESeq2 analysis was appropriate by inspecting some key diagnostic plots:

- ▶ Dispersion-plot
- ► MA-plot
- ▶ p-value distribution
- ► Independent filtering plot
- ▶ Volcano plot

Dispersion plot:

We use the built-in function to inspect to dispersion estimation:

plotDispEsts(dds)

MA-plot

Similarly, we can use the built-in function for generating an MA-plot:

MA-plot

Or make our own using the tidyverse (Why are we using the res3 object?):

```
ggplot(res3, aes(x=baseMean, y=log2FoldChange)) +
   geom_point(alpha=0.5) + geom_smooth() + scale_x_log10() +
   geom_hline(yintercept = 0, alpha = 0.75, color="red")
```

```
## geom_smooth() using method = gam' and formula y \sim s(x, bs = cs')
```


p-value distribution

This plot is easy to do with the tidyverse:

```
ggplot(as.data.frame(res), aes(x=pvalue)) +
   geom_histogram(binwidth = 0.05, fill="hotpink", color="black")
```

```
## Warning: Removed 1 rows containing non-finite values
## (stat_bin).
```


p-value distribution

Note, if you use a logFC threshold other than zero, the distribution will not be uniform:

```
ggplot(res3, aes(x=pvalue)) +
   geom_histogram(binwidth = 0.05, fill="hotpink", color="black")
```

Warning: Removed 1 rows containing non-finite values
(stat_bin).

Independent filtering

Warning: Removed 1 rows containing missing values
(geom_point).

Volcano plot

This plot is easy to do with the tidyverse:

Warning: Removed 1 rows containing missing values
(geom_point).

DESeq2 check-list

Make sure:

- You can assume most genes are not changing.
- You are comparing the correct groups.
- ▶ You are using the desired p-value and logFC thresholds.
- Shrink-plot indicating stable shrinkage procedure.
- MA-plot indicating appropriate normalization
- p-value histogram is uniform towards one, indicating well-specified model (i.e. no batch effects). Except if you use a logFC cutoff different from 0
- Check whether you are including many genes too lowly expressed to be DE using the independent filtering plot
- Look at the overall relation between effect sizes and significance using a volcano plot.
- If using Salmon (or Kallisto) use tximport together with DESeq2 more on this later!

Enjoy your well-calibrated DESeq2 results!

Background

- Dataset from the paper: Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies by Boyd et al.
- ▶ URL to paper: https://www.ncbi.nlm.nih.gov/pubmed/29695774
- CAGE-data for 12 Inflammatory Bowel Disease (IBD) patient colonic biopsies.
- ▶ The tissue samples have been categorized by pathologists:
 - con: Healthy individuals
 - ▶ CDa: Crohn's disease with active inflammation
 - UCa: Ulcerative Colitis with active inflammation
- ▶ The data contains gene-level CAGE counts.

Practical

Repeat the previous analysis on the CAGE data:

- Setup and fit the DESeq2 model
- Do two analyses: 1) p-value threshold of 0.05 and logFC treshold of 0 & 1) p-value threshold of 0.05 and logFC treshold of 0.5
- ▶ Produce and inspect all diagnostic plots.
- How many genes are DE between the groups? Are there more up- or downregulated genes?
- ▶ Which groups are more similar based on the number of DE genes?
- Manually inspect some of the top genes characterising: a) both CDa and UCa vs con and b) CDa vs UCa. What kinds of genes are they? What do they do?

tximport

Salmon and DESeq2 are developed by the same people (Primarily Michael Love).

- To improve interconnectivity between the packages, they released the tximport package which can read the output of Salmon (and Kallisto).
- ▶ DESeq2 can directly use data from tximport
- ► This allows DESeq2 to include the modelled effective lengths, GC-biases, etc. at both transcript- and gene-levels.

Below is a small example of how to use DESeq2 with the tximport package:

library(tximport)

tximport

The course website includes an example salmon output. We first load the design:

```
design <- read_tsv("salmon_study_design.tab")</pre>
## Parsed with column specification:
## cols(
##
     pop = col character(),
##
     center = col_character(),
##
     assay = col_character(),
     sample = col_character(),
##
##
     experiment = col_character(),
##
     run = col character(),
##
     condition = col_character()
## )
design
```

```
## # A tibble: 6 x 7
## pop center assay sample experiment run condition
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> ERS18~ ERX163094 ERR18~ A
## 2 TSI UNIGE NA20504.1~ ERS18~ ERX162972 ERR18~ A
```

tximport

```
Then we local all the files from the salmon folders:
```

```
quant_files <- file.path("salmon", design$run, "quant.sf.gz")</pre>
```

And read them in using tximport:

```
txi_transcripts <- tximport(quant_files, type="salmon", txOut = TRUE)
## reading in files with read tsv</pre>
```

1 2 3 4 5 6

tximport to DESeq2

Then we can use the specialized import function:

DESeqDataSetFromTximport(txi=txi_transcripts,

colData names(7): pop center ... run condition

```
colData=design,
                         design=~condition)
## Warning in DESeqDataSet(se, design = design, ignoreRank):
## some variables in design formula are characters, converting
## to factors
## using counts and average transcript lengths from tximport
## class: DESeqDataSet
## dim: 200401 6
## metadata(1): version
## assays(2): counts avgTxLength
## rownames(200401): ENST00000456328.2 ENST00000450305.2
     ... ENST00000387460.2 ENST00000387461.2
##
## rowData names(0):
## colnames: NULL
```

The rest of the analysis is the same!

Going further

tximport has many advantages:

- tximport can do sophisticated aggregation of transcripts to genes. This requires a transcript-to-gene map. The vignette of the tximport package shows how to do this.
- Using the DESeqDataSetFromTximport function carries over all information from Salmon and tximport into DESeq2. This information is seamlessly included in the DESeq2 analysis using the standard pipeline.
- tximport also works for other pseudoaligners such as Kallisto and other DE tools such as edgeR and limma.