Pairwise Composite Likelihood

Sam Morris 18 May 2015

Likelihood for the data

The bivariate likelihood for the data is given as

$$f(Y_1, Y_2) = \begin{cases} 1 - \exp\left\{-\frac{1}{z_1}\right\} - \exp\left\{-\frac{1}{z_2}\right\} + \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 1, Y_2 = 1\\ \exp\left\{-\frac{1}{z_2}\right\} - \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 1, Y_2 = 0\\ \exp\left\{-\frac{1}{z_1}\right\} - \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 0, Y_2 = 1\\ \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 0, Y_2 = 0 \end{cases}$$
(1)

where
$$z_i = \left(1 - \xi \mathbf{X}_i^T \boldsymbol{\beta}\right)^{1/\xi}$$
, and $\vartheta(\mathbf{s}_1, \mathbf{s}_2) = \sum_{l=1}^L \left[\left(\frac{w_l(\mathbf{s}_1)}{z_1}\right)^{1/\alpha} + \left(\frac{w_l(\mathbf{s}_2)}{z_2}\right)^{1/\alpha} \right]^{\alpha}$

Pairwise composite likelihood

We initially tried using optim on the likelihood with four parameters: a) α , b) ρ , c) ξ , and d) β , but it appears to be challenging for optim to find the true values. So, we decided to make a grid of α and ρ and run optim to only fit ξ and β

Data settings

Right now, we're fitting n=200 observations with one replication. In the future, we plan to allow for multiple replications. In each plot, we give the optimized value for the negative log likelihood when conducting a grid search. To examine accuracy, the true values for α and ρ are given by the circle, and the optimized values for α and ρ are given by the triangle.

$$\alpha = 0.3, \pi = 0.05, \rho = 0.1$$

nll grid search ($\pi = 0.05$)

 $\alpha=0.3, \pi=0.01, \rho=0.1$

simulated dataset

nll grid search ($\pi = 0.01$)

$$\alpha = 0.3, \pi = 0.05, \rho = 0.2$$

nll grid search ($\pi = 0.05$)

 $\alpha=0.3, \pi=0.01, \rho=0.2$

simulated dataset

nll grid search ($\pi = 0.01$)

$$\alpha = 0.5, \pi = 0.05, \rho = 0.1$$

0.0 0.2 0.4 0.6 0.8 1.0

nll grid search ($\pi = 0.05$)

 $\alpha=0.5, \pi=0.01, \rho=0.1$

simulated dataset

nll grid search ($\pi = 0.01$)

$$\alpha = 0.5, \pi = 0.05, \rho = 0.2$$

nll grid search ($\pi = 0.05$)

 $\alpha=0.5, \pi=0.01, \rho=0.2$

simulated dataset

nll grid search ($\pi = 0.01$)

$$\alpha = 0.7, \pi = 0.05, \rho = 0.1$$

0.0 0.2 0.4 0.6 0.8 1.0

nll grid search ($\pi = 0.05$)

 $\alpha=0.7, \pi=0.01, \rho=0.1$

simulated dataset

nll grid search ($\pi = 0.01$)

$$\alpha = 0.7, \pi = 0.05, \rho = 0.2$$

nll grid search ($\pi = 0.05$)

 $\alpha=0.7, \pi=0.01, \rho=0.2$

simulated dataset

nll grid search ($\pi = 0.01$)

