

Logistic Regression 2

Lecture 23

STA 371G

Should pot be legal?

(Map source)

- The General Social Survey is an annual survey of attitudes and behaviors that has been conducted since the 1970s
- Let's use the GSS to examine the question of whether Americans think pot should be legalized
- An increasing number of states have done so already!

Response variable:

• **legal**: Answer to "Do you think the use of marijuana should be made legal or not?"

Response variable:

• legal: Answer to "Do you think the use of marijuana should be made legal or not?" This is binary (yes/no), so we'll need to use logistic regression.

Response variable:

 legal: Answer to "Do you think the use of marijuana should be made legal or not?" This is binary (yes/no), so we'll need to use logistic regression.

Predictor variables:

- year: The year of the survey (1975-2014)
- age: The age of the respondent
- schooling: Number of years of schooling (e.g., 12 = HS degree, 16 = bachelor's)
- philosophy: Political philosophy (on the spectrum of liberal to conservative)

Let's start by building a model using only the year variable:

```
model1 <- glm(legal ~ year, data=pot, family=binomial)</pre>
summarv(model1)
Call:
glm(formula = legal ~ year, family = binomial, data = pot)
Deviance Residuals:
   Min
             10 Median 30
                                     Max
-1.1202 -0.8596 -0.7330 1.3005 1.8827
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -75.022369  2.368408  -31.68  <2e-16 ***
year
             Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 34665 on 28335 degrees of freedom
Residual deviance: 33646 on 28334 degrees of freedom
AIC: 33650
Number of Fisher Scoring iterations: 4
```


Our baseline prediction percentage is 69.9% (this is how many cases we'd predict correctly if we just predicted legal = 0 for everyone).

Our baseline prediction percentage is 69.9% (this is how many cases we'd predict correctly if we just predicted legal = 0 for everyone).

How well do we do by using the model?

```
predicted.legal <- (predict(model1, type='response') >= 0.5)
actual.legal <- (pot$legal == 1)
sum(predicted.legal == actual.legal) / nrow(pot)

[1] 0.6990401</pre>
```

Our baseline prediction percentage is 69.9% (this is how many cases we'd predict correctly if we just predicted legal = 0 for everyone).

How well do we do by using the model?

```
predicted.legal <- (predict(model1, type='response') >= 0.5)
actual.legal <- (pot$legal == 1)
sum(predicted.legal == actual.legal) / nrow(pot)
[1] 0.6990401</pre>
```

No better than a naive model that just predicts the same for everyone!

Let's also try computing McFadden's pseudo-R²:

Pseudo-
$$R^2 = 1 - \frac{\text{residual deviance}}{\text{null deviance}} = 1 - \frac{33645.96}{34664.87} = 0.03$$

Let's also try computing McFadden's pseudo-R²:

Pseudo-
$$R^2 = 1 - \frac{\text{residual deviance}}{\text{null deviance}} = 1 - \frac{33645.96}{34664.87} = 0.03$$

Both metrics show us that year does not help us predict attitude towards legalization very well (but we wouldn't expect it to — why not?)

Improving the model

Let's add more predictors to the model:

- Years of schooling
- Age of respondent
- Political philosophy
- Gender

Interpreting the coefficients

Let's interpret the coefficients:

Fotimoto Ctd	Fnnon		Dry (Lal)
ESTIMATE STO.	ELLOL	z vatue	PI (> 2)
-80.242	2.560	-31.343	0.00
0.039	0.001	30.663	0.00
-0.018	0.001	-20.956	0.00
0.061	0.005	12.524	0.00
1.730	0.085	20.412	0.00
-0.009	0.097	-0.089	0.93
1.414	0.055	25.645	0.00
0.605	0.046	13.047	0.00
0.372	0.053	6.954	0.00
0.974	0.054	17.987	0.00
-0.016	0.030	-0.549	0.58
	-80.242 0.039 -0.018 0.061 1.730 -0.009 1.414 0.605 0.372 0.974	-80.242 2.560 0.039 0.001 -0.018 0.005 1.730 0.085 -0.009 0.097 1.414 0.055 0.605 0.046 0.372 0.053 0.974 0.054	0.039 0.001 30.663 -0.018 0.001 -20.956 0.061 0.005 12.524 1.730 0.085 20.412 -0.009 0.097 -0.089 1.414 0.055 25.645 0.605 0.046 13.047 0.372 0.053 6.954 0.974 0.054 17.987

Interpreting the coefficients

	Estimate	Std.	Error	z value	Pr(> z)
(Intercept)	-80.242		2.560	-31.343	0.00
year	0.039		0.001	30.663	0.00
age	-0.018		0.001	-20.956	0.00
schooling	0.061		0.005	12.524	0.00
philosophyExtremely liberal	1.730		0.085	20.412	0.00
philosophyExtrmly conservative	-0.009		0.097	-0.089	0.93
philosophyLiberal	1.414		0.055	25.645	0.00
philosophyModerate	0.605		0.046	13.047	0.00
philosophySlghtly conservative	0.372		0.053	6.954	0.00
philosophySlightly liberal	0.974		0.054	17.987	0.00
genderMale	-0.016		0.030	-0.549	0.58

All else being equal, being a year older decreases the predicted odds that you will support marijuana legalization by 1.8% (since $e^{-0.018} = 0.982$ and 1 - 0.982 = 0.018).

Recall that our baseline prediction percentage is 69.9% (this is how many cases we'd predict correctly if we just predicted legal = 0 for everyone).

Recall that our baseline prediction percentage is 69.9% (this is how many cases we'd predict correctly if we just predicted legal = 0 for everyone).

How well do we do by using the model?

```
predicted.legal <- (predict(model2, type='response') >= 0.5)
actual.legal <- (pot$legal == 1)
sum(predicted.legal == actual.legal) / nrow(pot)

[1] 0.721</pre>
```

Pseudo-
$$R^2 = 1 - \frac{\text{residual deviance}}{\text{null deviance}} = 1 - \frac{31593.96}{34664.87} = 0.09$$

Pseudo-
$$R^2 = 1 - \frac{\text{residual deviance}}{\text{null deviance}} = 1 - \frac{31593.96}{34664.87} = 0.09$$

Is it surprising that our measures of model fit are fairly low?

Like with linear regression, there is an overall null hypothesis for the model that all coefficients (except the intercept) are 0 in the population.

Like with linear regression, there is an overall null hypothesis for the model that all coefficients (except the intercept) are 0 in the population.

To test this, we can use a *likelihood-ratio test* (the likelihood measures how likely we are to see a particular set of data if a particular model is correct).

Like with linear regression, there is an overall null hypothesis for the model that all coefficients (except the intercept) are 0 in the population.

To test this, we can use a *likelihood-ratio test* (the likelihood measures how likely we are to see a particular set of data if a particular model is correct).

We first have to define a null model (with no predictors), just like we did for stepwise regression:

```
null <- glm(legal ~ 1, data=pot, family=binomial)</pre>
```

Now we can test our current model against the null model:

```
library(lmtest)
lrtest(null, model2)
Likelihood ratio test
Model 1: legal ~ 1
Model 2: legal ~ year + age + schooling + philosophy + gender
 #Df LogLik Df Chisq Pr(>Chisq)
1 1 - 17332
2 11 -15797 10 3071 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Now we can test our current model against the null model:

```
library(lmtest)
lrtest(null, model2)
Likelihood ratio test
Model 1: legal ~ 1
Model 2: legal ~ year + age + schooling + philosophy + gender
 #Df LogLik Df Chisq Pr(>Chisq)
1 1 - 17332
2 11 -15797 10 3071 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0,1 ' ' 1
```

Since $p < 2 \times 10^{-16}$, we can reject the overall model null hypothesis (not surprising since we had many significant coefficients).