

ACEMS Forecasting Workshop

Rob J Hyndman

1 Forecast Evaluation

Outline

- 1 Introduction
- 2 Benchmark methods
- **3** Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Resources

robjhyndman.com/acemsforecasting2018

- Slides
- Exercises
- Textbook
- Useful links

Key reference

Hyndman, R. J. & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd ed.

OTexts.org/fpp2/

- Free and online
- Data sets in associated R package
- R code for examples

Outline

Topic	Chapter
1 Forecast evaluation	3
2 ARIMA models	8
3 Dynamic regression	9
4 Hierarchical forecasting	10

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- **5** Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \ldots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k is integer part of (h-1)/m.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts: $\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t y_{t-1})$ = $y_T + \frac{h}{T-1} (y_T - y_1)$.
- Equivalent to extrapolating a line drawn between first and last observations.

- Mean: meanf(y, h=20)
- Naïve: naive(y, h=20)
- Seasonal naïve: snaive(y, h=20)
- Drift: rwf(y, drift=TRUE, h=20)

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_t .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
 - $\{e_t\}$ are normally distributed.

Example: Google stock price

```
autoplot(goog200) +
  xlab("Day") + ylab("Closing Price (US$)") +
  ggtitle("Google Stock (daily ending 6 December 2013)")
```


Example: Google stock price

```
fits <- fitted(naive(goog200))
autoplot(goog200, series="Data") +
  autolayer(fits, series="Fitted") +
  xlab("Day") + ylab("Closing Price (US$)") +
  ggtitle("Google Stock (daily ending 6 December 2013)")</pre>
```


checkresiduals function

checkresiduals(naive(goog200), test=FALSE)

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Lab Session 1

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters.
- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Forecast errors

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are *true* forecast errors as the test data is not used in computing $\hat{y}_{T+h|T}$.


```
y_{T+h} = (T+h)th observation, h = 1, ..., H

\hat{y}_{T+h|T} =  its forecast based on data up to time T.

e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}
```

MAE = mean(
$$|e_{T+h}|$$
)

MSE = mean(e_{T+h}^2)

RMSE = $\sqrt{\text{mean}(e_{T+h}^2)}$

MAPE = 100mean($|e_{T+h}|/|y_{T+h}|$)

```
y_{T+h} = (T+h)th observation, h = 1, ..., H

\hat{y}_{T+h|T} =  its forecast based on data up to time T.

e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}
```

```
MAE = mean(|e_{T+h}|)

MSE = mean(e_{T+h}^2) RMSE = \sqrt{\text{mean}(e_{T+h}^2)}

MAPE = 100mean(|e_{T+h}|/|y_{T+h}|)
```

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_t \gg 0$ for all t, and y has a natural zero.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T - 1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.


```
googtrain <- window(goog200,end=180)
googfc1 <- meanf(googtrain,h=20)
googfc2 <- rwf(googtrain,h=20)
googfc3 <- rwf(googtrain,h=20,drift=TRUE)
accuracy(googfc1, goog200)
accuracy(googfc2, goog200)
accuracy(googfc3, goog200)</pre>
```

RMSE	MAE	MAPE	MASE
82.89	82.43	15.93	21.61
18.29	16.04	3.08	4.21
11.34	9.71	1.86	2.55
	82.89 18.29	82.89 82.43 18.29 16.04	RMSE MAE MAPE 82.89 82.43 15.93 18.29 16.04 3.08 11.34 9.71 1.86

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Lab Session 2

Outline

- 1 Introduction
- 2 Benchmark methods
- 3 Residual diagnostics
- 4 Lab Session 1
- 5 Evaluating forecast accuracy
- 6 Lab Session 2
- **7** Forecast densities

Sample futures

- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.
- A prediction interval gives a region within which we expect y_{T+h} to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a 95% PI is

$$\hat{\mathbf{y}}_{T+h|T} \pm 1.96\hat{\sigma}_{h}$$

where $\hat{\sigma}_h$ is the st dev of the *h*-step distribution.

■ When h = 1, $\hat{\sigma}_h$ can be estimated from the residuals.

Drift forecasts with prediction interval:

```
rwf(goog200, level=95, drift=TRUE)
       Point Forecast Lo 95 Hi 95
##
                532.2 520.0 544.3
## 201
## 202
                532.9 515.6 550.1
                533.6 512.4 554.7
## 203
## 204
                534.3 509.8 558.7
## 205
                535.0 507.5 562.4
## 206
                535.7 505.5 565.8
## 207
                536.4 503.7 569.0
```

E27 1 EA2 1 E72 A

- Point forecasts are often useless without prediction intervals.
- Prediction intervals require a stochastic model (with random errors, etc).
- Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).
- Check residual assumptions before believing them.
- Usually too narrow due to unaccounted uncertainty.

Assume residuals are normal, uncorrelated, sd = $\hat{\sigma}$:

Mean forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{1 + 1/T}$$

Naïve forecasts:
$$\hat{\sigma}_h = \hat{\sigma}\sqrt{h}$$

Seasonal naïve forecasts
$$\hat{\sigma}_h = \hat{\sigma}\sqrt{k+1}$$

Drift forecasts:
$$\hat{\sigma}_h = \hat{\sigma} \sqrt{h(1+h/T)}$$
.

where k is the integer part of (h-1)/m.

Note that when h = 1 and T is large, these all give the same approximate value $\hat{\sigma}$.

Evaluating prediction intervals

Winkler score

If the 100(1 $-\alpha$)% prediction interval is given by [ℓ , u], and the observed value is y, then the Winkler interval score is

$$(u - \ell) + \frac{2}{\alpha}(\ell - y)1(y < \ell) + \frac{2}{\alpha}(y - u)1(y > u).$$

- penalizes for wide intervals (since $u \ell$ will be large);
- penalizes for non-coverage with observations well outside the interval being penalized more heavily.

Evaluating quantile forecasts

Let q_p be the quantile forecast with probability 1 - p of exceedance.

Pin-ball loss function

$$L(q_p,y) = (1-p)(q_p-y)1(y < q_p) + p(y-q_p)1(y \ge q_p).$$

- average over all target quantiles (e.g., 0.01, 0.02, ..., 0.99) and all forecast horizons.
- Reference: Gneiting and Raftery (JASA, 2007)

Evaluating quantile forecasts