COMP441/541 Deep Learning, Fall 2025 **SELF-ASSESSMENT QUIZ (THEORY)**

Due Date: 23:59 Wednesday, October 8, 2025

Each student enrolled to COMP441/541 must complete this quiz on prerequisite math knowledge. The purpose is to self-assess whether you have the right background for the course. The topics covered in this problem set are very crucial so if you are having trouble with solving a problem, this indicates that you should spend a considerable amount of time to study that topic in its entirety.

Points and Vectors

1. Given two vectors $x = [a_1, a_2, a_3]$ and $y = [a_1, -a_2, a_3]$. Write down the equation for calculating the angle between x and y. When is x orthogonal to y?

Planes

2. Consider a hyperplane described by the d-dimensional normal vector $[\theta_1, \dots, \theta_d]$ and offset θ_0 . Derive the equation for the signed distance of a point x from the hyperplane, which is defined as the perpendicular distance between x and the hyperplane, multiplied by +1 if x lies on the same side of the plane as the vector θ points and by -1 if x lies on the opposite side x from the hyperplane.

Matrices

- 3. Suppose that $A^{T}(AB C) = 0$, where 0 is an $m \times 1$ vector of zeros, derive an expression for B. Assume that all relevant matrices needed for this calculation are invertible.
- 4. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 13 & 5 \\ 2 & A \end{bmatrix}$.

Probability

5. Let

$$p(X_1 = x_1) = \alpha_1 e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}}$$
$$p(X_2 = x_2 \mid X_1 = x_1) = \alpha e^{-\frac{(x_2 - x_1)^2}{2\sigma^2}}$$

where
$$X_1$$
 and X_2 are continuous random variables. Show that
$$p(X_2=x_2)=\alpha_2 e^{-\frac{(x_2-\mu_2)^2}{2\sigma_2^2}}$$

by explicitly calculating the values of α_2 , μ_2 and σ_2 .

MLE and MAP

- 6. Let p be the probability of landing head of a coin. You flip the coin 3 times and note that it landed 2 times on tails and 1 time on heads. Suppose p can only take two values: 0.3 or 0.6. Find the Maximum Likelihood Estimate of p over the set of possible values $\{0.3,0.6\}$
- 7. Suppose that you have the following prior on the parameter p: P(p = 0.3) = 0.3 and P(p = 0.6) = 0.7. Given that you flipped the coin 3 times with the observations described above, find the MAP estimate of p over the set $\{0.3, 0.6\}$, using the prior.

Optimization

Gradient ascent/descent methods are typical tools for maximizing/minimizing functions. Let $L(x, \theta)$ be a function of two vector arguments, $x = [x_1, x_2]^T$ and $\theta = [\theta_1, \theta_2]^T$. We would like to find the optimum value of vector θ which maximizes/minimizes $L(x, \theta)$ where x is assumed to be given.

The gradient $\nabla_{\theta} L(x, \theta)$ is a vector with two components corresponding to partial derivatives

$$\frac{\partial}{\partial \theta_j} L(x, \theta), \quad j = 1, 2$$

- 8. Evaluate the gradient when $L(x, \theta) = \log(1 + exp(-\theta^T x))$.
- 9. Into which direction does the gradient (viewed as a vector) point? Is the value of $L(x, \theta)$ larger or smaller if we evaluate it at $\theta' = \theta + \epsilon \nabla_{\theta} L(x, \theta)$ where ϵ is a small real number?