Planejamento baseado em Decomposição em Células Convexas

Células Convexa

Planejamento baseado em Células Convexas

Princípio:

- Decomposição de C₁ em <u>células convexas</u>.
- Construção de um grafo de conectividade G de acordo com a adjacência entre as células.
- Busca de um <u>Canal</u> em G.
- Extração de um caminho entre q_{ini} e q_{fin} a partir do canal.

Planejamento baseado em Células Convexas

- <u>Canal</u>: sequência de células adjacentes , k_1 , ... , k_p , tais que $q_{ini} \in k_1$, $q_{fin} \in k_p$ e $\forall i \in [1, p-1]$, k_i e k_{i+1} são adjacentes, com int($\bigcup k_i$) $\subset C_L$.
- Um canal é menos restritivo que um caminho.

Espaço de Configuração Livre: Não Convexo

Decomposição do Espaço de Configuração:

Grafo de Conectividade:

- Seus nós são as células da decomposição.
- Dois nós são conexos por um arco se e somente se as células correspondentes são adjacentes.

Construção do Grafo:

Busca de um Canal:

Extração do Caminho a partir do Canal:

- Dados os segmentos limites β_i , entre duas células adjacentes k_i e k_{i+1} , determinar os pontos médios Q_i de β_i .
- Ligar q_{ini} a q_{fin} através da linha poligonal por Q₁, Q₂, ..., Q_{p-1}.
- Caso β_i e β_{i+1} estejam contidos na mesma reta suporte, criar um ponto intermediário $Q_{i,i+1}$ no interior de k_i .

Extração do Caminho a partir do Canal:

Decomposição em Células Convexas

Decomposição Exata

Decomposição Aproximada

Decomposição Exata

• Princípio:

Decomposição do Espaço de Configuração Livre em regiões não superpostas cuja união é exatamente igual a C_L.

Observações:

 Células são regiões não críticas, mudanças dentro delas ocorrem de forma contínua.

 Limites entre células correspondem a condições críticas, mudanças bruscas ocorrem ao atravessar um limite.

Método <u>Completo</u>.

Decomposição Exata em Espaço Poligonal

- $C = de \mathbb{R}$. $C_B = Região Poligonal$. $C_L = C \setminus CB limitado$.
- Decomposição Poligonal Convexa K de C_L = união de polígonos convexos (Células), tal que:
 - Não há superposição entre duas células quaisquer, k e k'.
 - A uni\(\tilde{a}\) de todas as c\(\tilde{e}\) lulas cobre exatamente C_L.

Decomposição Exata em Espaço Poligonal

- ⇒ Sempre existe um caminho livre entre duas configurações dentro de uma mesma célula, o qual é um segmento de reta.
- ⇒ Dadas duas configurações em duas células k e k' adjacentes, existe um caminho entre as mesmas passando pela região de adjacência.

- Aplicável a C = R², CB poligonal e robô com orientação fixa.
- Decomposição exata em espaço poligonal, não ótima.
- As células são trapézios ou triângulos (trapézios deformados, onde dois vértices se fundiram em um só).
- Baseada em algoritmo de varredura de linha.

Algoritmo de varredura de linha para decomposição trapezoidal:

- Ordenar os vértices de CB por abscissa.
- Varrer C_L, passando pelos vértices de CB, com uma linha reta vertical.
- Quando um vértice X de CB é encontrado, um máximo de dois segmentos de reta verticais, contidos em C_L, são criados de modo a conectar X aos eixos de CB imediatamente acima e abaixo do mesmo.
- Os limites de CB e os segmentos verticais determinam a <u>Decomposição Trapezoidal</u> de $C_L \Rightarrow$ Cada célula é um trapezóide ou um triângulo.
- Duas células são adjacentes se e somente se seus limites partilham um dos segmentos verticais gerados na varredura.

Observações:

- Durante a varredura, é possível computar de modo concorrente (com O(n.log(n)), n = número de vértices de CB) a criação dos segmentos verticais, a geração do grafo de conectividade, bem como a identificação das células que contém q_{ini} e q_{fin}.
- O método pode ser estendido para C = IR, com obstáculos poliédricos, varrendo o espaço com um plano de modo a criar células convexas tridimensionais. Duas células são adjacentes se e somente se partilham, em uma face, um trapezóide de área não nula.

Busca do Canal no Grafo de Conectividade:

- Busca baseada no Algoritmo A* produz o menor caminho, (em métrica euclidiana), entre q_{ini} e q_{fin} dentro do grafo de conectividade.
- A distância euclidiana a q_{fin} pode ser adotada como função heurística na busca.

Princípio:

- Decomposição de C_L em células, de formato padrão simples, cuja união é uma aproximação conservadora de C_L.
- ⇒ Não é possível representar C_L de maneira exata.

Características desejáveis da Decomposição:

- Geometria de célula simples, que permita computar caminhos com facilidade.
- Deve ser fácil testar a adjacência entre células.
- Deve ser fácil achar caminhos através dos limites entre células.

DECOMPOSIÇÃO EM GRADE REGULAR

DECOMPOSIÇÃO HIERÁRQUICA

R

(a)

(b)

Vantagens:

• Decomposição de C_L por processo iterativo simples.

Implementação mais fácil do que a decomposição exata.

Desvantagens:

- As relações de adjacência entre células são arbitrárias, não caracterizando descontinuidades nas restrições de movimento.
- Por ser baseado numa aproximação conservadora de C_L, em certos casos o método pode falhar na busca de um caminho livre, mesmo existindo um.
 - \Rightarrow O método é incompleto.

Considerações sobre o tamanho da célula

- Tamanho grande ⇒ menor esforço computacional e maior probabilidade de falhar na busca de um caminho livre.
- No limite, o método pode ser tornado completo fazendo o tamanho da célula tender a zero, a expensas de um maior esforço computacional.
- Solução de compromisso: <u>Decomposição Hierárquica</u>. Começar com uma decomposição de baixa resolução e, progressivamente, refinar a decomposição localmente, em torno dos obstáculos.

 A decomposição é feita sobre uma região
Retangulóide, D, limitada e fechada de possíveis posições no espaço de trabalho:

Se o conjunto de possíveis posições do robô está é um retangulóide D, região R onde é feita a decomposição é definida como:

•
$$R = int(D)$$
 se $C = \mathbb{R}^2$ ou \mathbb{R}^3 .

•
$$R = int(D) \times [0,2\pi]$$
 se $C = \mathbb{R}^2 \times S^1$.

• R = int(D)×[0,2
$$\pi$$
]×[0, π] ×[0,2 π] se C = IR³×SO(3).

Descrição Geral

 Uma <u>Decomposição</u> P, do retangulóide R em C dimensão m, é a coleção finita de células retangulóides {k_i}, com i = 1,...r, tal que:

$$-R = \bigcup k_i$$
.

As células k_i's não se superpõem.

Adjacência entre Células

 Os retangulóides k_i's, denominados <u>células</u> da decomposição P, são adjacentes se e somente se sua interseção é um conjunto de tamanho não nulo em IRⁿ, levando em consideração que:

• Se C =
$$\mathbb{R}^2 \times S^1$$
 \Rightarrow $(x,y,2\pi) = (x,y,0)$

• Se C =
$$\mathbb{R}^3 \times SO(3)$$
 \Rightarrow $(x,y,z,2\pi,\theta,\psi) = (x,y,z,0,\theta,\psi)$ $(x,y,z,\phi,\pi,\psi) = (x,y,z,\phi,0,2\pi-\psi)$ $(x,y,z,\phi,\theta,2\pi) = (x,y,z,\phi,\theta,0)$

Descrição Geral

Uma célula k_i é classificada como:

- <u>Vazia, (célula-V)</u>: $\Leftrightarrow k_i \cap CB = \emptyset$.
- Cheia, (célula-C): $\Leftrightarrow k_i \subseteq CB$.
- Mesclada, (célula-M): $\Leftrightarrow k_i \cap CB \neq \emptyset$ e $k_i \cap C_L \neq \emptyset$.

Descrição Geral

Grafo de Conetividade

<u>Grafo de Conectividade</u>, G, associado à decomposição P de R é o grafo não direcional, tal que:

- Os nós de G são as células vazias e mescladas de P.
- Dois nós de G são conexos por um arco, se e somente se, as células correspondentes são adjacentes.

Busca de um Canal

- <u>Canal</u>: sequência de células-V e/ou células-M, consecutivas.
 - Canal-V: canal que contém apenas células-V. ⇒ Todo caminho é um caminho livre.
 - Canal-M: contém ao menos uma célula-M. ⇒ É possível, mas não garantida, a existência de um caminho.
- O objetivo é achar um canal-V, tal que $q_{ini} \in k_1$ e $q_{fin} \in k_p$.

Busca de um Canal

Extração de um Caminho contido no Canal

Planejamento Hierárquico

- Geração de um canal-V através da construção de decomposições sucessivas P_i de R.
- P_i é obtida a partir de P_{i-1} , (com $P_0 = R$), decompondo uma ou mais células-M.
- Busca de um canal entre k_{ini} e k_{fin} (com $q_{fin} \in k_{fin}$) no grafo de conectividade G_i associado a P_i .

Planejamento Hierárquico

Algoritmo de Planejamento por Primeiro Corte:

- 1. Computar P_1 de R. Fazer i = 1.
- 2. Buscar, em G_i de P_i, um canal entre k_{ini} e k_{fin}.
 - Se um canal-V é encontrado, sucesso. Retornar o canal.
 - Se um canal-M, Π_i , é encontrado, ir para o passo 3.
 - Caso contrário, reportar falha.
- 3. Fazer $P_i \leftarrow P_{i+1}$.
 - − Para cada célula-M, k, em Π_i , computar a decomposição P^k de k e fazer $P_{i+1} \leftarrow [P_{i+1} \setminus \{k\}] \cup P^k$.
 - i ← i+1 e voltar para o passo 2.

Planejamento Hierárquico

Observações:

- A busca em G_i pode ser guiada por várias heurísticas, Ex: buscar um canal-V antes de um canal-M, buscar canais mais curtos, etc.
- Um canal-V em P_i continuará a existir em P_i, com j>i.
- Critério de parada pode ser o tamanho mínimo das células:
 - rotular como cheias as células-M menores do que um tamanho especificado.

Decomposição por Divisão e Rotulagem

 Princípio: Decompor uma célula mesclada dividindo-a em células menores. Rotular as células resultantes de acordo com a sua interseção com CB.

Decomposição por Divisão e Rotulagem

Decomposição em Árvore-2m:

- Seja m = dim(W), a decomposição de R em árvore-2^m consiste em uma árvore onde cada nó, (célula V, C ou M), se não for folha, é pai de exatamente 2^m nós filhos.
- A raiz da árvore é R.
- Somente os nós que são células-M podem ter 2^m filhos.
- Todos os nós filhos possuem o mesmo tamanho. Obtidos dividindo a célula mãe ao meio em todos os seus eixos.
- Se m = 2, árvore <u>quádrupla</u>. Se m = 3, árvore <u>óctupla</u>.

1	2
4	3

Planejamento baseado em Decomposição em Células Convexas