Московский авиационный институт

(Национальный исследовательский университет)

Факультет информационных технологий и прикладной математики Кафедра математической кибернетики

Курсовая работа

Нахождение компоненты сильной связности

Студент: Белоносов К.А.

Группа: М8О-103Б-21

Преподаватель: Смерчинская С.О.

Оценка:

Дата:

Содержание

1	Связность в орграфе														
	1.1	Матрица односторонней связности	3												
	1.2	Матрица сильной связности	5												
	1.3	Компоненты сильной связности	5												
	1.4	Матрица контуров	5												
2	Алг	Алгоритм Тэрри													
3	Алгоритм "фронта волны"														
4 Алгоритм Форда															
5	Остовое дерево минимальной длины														
6	Деревья и циклы														
7	Транспортные сети														
	7.1	Построение полного потока	18												
	7.2	Построение максимального потока	19												
8	Индивидуальное задание														
	8.1	Теоритические сведения. Описание работы алгоритма	21												
	8.2	Алгоритм Косарайю	22												
	8.3	Логическая блок схема	23												
	8.4	Оценка сложности алгоритма	24												
	8.5	Тестовые примеры	24												
	8.6	Пример прикладной задачи	26												
И	сточн	ики	27												

1. Связность в орграфе

Определить для орграфа заданного матрицей смежности:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- а) Матрицу односторонней связности;
- б) Матрицу сильной связности
- в) Компоненты сильной связности;
- г) Матрицу контуров.

1.1. Матрица односторонней связности

1)
$$A^{2} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

2)
$$A^{3} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

3)
$$T = E \lor A \lor A^2 \lor A^3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \lor \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \lor$$

Найдем матрицу односторонней связности по итерационному алгоритму Уоршалла.

1.2. Матрица сильной связности

1.3. Компоненты сильной связности

Одна компонента сильной связности: $\{v_1, v_2, v_3, v_4\}$

1.4. Матрица контуров

2. Алгоритм Тэрри

Рис. 2.1. Граф

Маршрут обхода: 1 - 2 - 3 - 5 - 4 - 2 - 5 - 3 - 1 - 3 - 2 - 4 - 5 - 2 - 1

3. Алгоритм "фронта волны"

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$W_0 = v_1$$

$$\Gamma W_0(v_1) = \{v_4, v_7\} = W_1(v_1)$$

$$\Gamma W_1(v_1) \setminus \{W_0 \cap W_1\} = \{v_3, v_5, v_6\} = W_2(v_1)$$

$$\Gamma W_2(v_1) \setminus \{W_0 \cap W_1 \cap W_2\} = \{v_2\} = W_3(v_1)$$

$$\Gamma W_3(v_1) \setminus \{W_0 \cap W_1 \cap W_2 \cap W_3\} = \{v_8\} = W_4(v_1)$$

$$W_4 = v_8$$

$$W_3 = W_3(v_1) \cap \Gamma^{-1}(W_4) = \{v_2\}$$

$$W_2 = W_2(v_1) \cap \Gamma^{-1}(W_3) = \{v_3, v_5, v_6\}$$

$$W_1 = W_1(v_1) \cap \Gamma^{-1}(W_2) = \{v_4, v_7\}$$

$$W_0 = W_0(v_1) \cap \Gamma^{-1}(W_1) = \{v_1\}$$

Кратчайшие пути = 6:

$$v_{1} - v_{4} - v_{3} - v_{2} - v_{8}$$

$$v_{1} - v_{4} - v_{5} - v_{2} - v_{8}$$

$$v_{1} - v_{4} - v_{6} - v_{2} - v_{8}$$

$$v_{1} - v_{7} - v_{3} - v_{2} - v_{8}$$

$$v_{1} - v_{7} - v_{5} - v_{2} - v_{8}$$

$$v_{1} - v_{7} - v_{6} - v_{2} - v_{8}$$

Рис. 3.1. Алгоритм Фронта волны

4. Алгоритм Форда

$$C = \begin{pmatrix} \infty & 4 & 5 & 3 & \infty & \infty & \infty \\ 10 & \infty & 2 & \infty & 3 & \infty & \infty \\ \infty & 2 & \infty & 3 & 1 & 4 & 7 \\ \infty & \infty & 2 & \infty & \infty & 7 & \infty \\ \infty & \infty & 1 & \infty & \infty & \infty & 4 \\ \infty & \infty & 4 & \infty & \infty & \infty & 2 \\ 2 & \infty & 3 & \infty & 5 & 7 & \infty \end{pmatrix}$$

	V1	V2	V3	V4	V5	V6	V7	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$
V1	∞	4	5	3	8	8	8	0	0	0	0	0	0	0
V2	10	8	2	8	8	8	8	∞	4	4	4	4	4	4
V3	∞	2	8	3	1	4	7	8	5	(5)	5	5	5	5
V4	∞	8	2	8	8	7	8	∞	3	$\sqrt{3}$	3	3	3	3
V5	∞	8	1	8	8	8	4	∞	∞	6	6	6	6	6
V6	∞	8	4	8	8	8	2	∞	∞	9	9	9	9	9
V7	2	8	3	8	5	7	8	∞	∞	12	70	10	10	10

Рис. 4.1. Алгоритм Форда

1. Минимальный путь из v1 в v2:

$$v1 - v2$$

$$\lambda_1^{(0)} + C_{12} = 0 + 4 = \lambda_2^{(1)}$$

2. Минимальный путь из v1 в v3:

$$v1 - v3$$

$$\lambda_1^{(0)} + C_{13} = 0 + 5 = \lambda_3^{(1)}$$

3. Минимальный путь из v1 в v4:

$$v1 - v4$$

$$\lambda_1^{(0)} + C_{14} = 0 + 3 = \lambda_4^{(1)}$$

4. Минимальный путь из v1 в v5:

$$v1 - v3 - v5$$

$$\lambda_1^{(0)} + C_{13} = \lambda_3^{(1)}$$

$$\lambda_3^{(1)} + C_{35} = \lambda_5^{(2)}$$

5. Минимальный путь из v1 в v6:

$$v1 - v3 - v6$$

$$\lambda_1^{(0)} + C_{13} = \lambda_3^{(1)}$$

$$\lambda_3^{(1)} + C_{36} = \lambda_6^{(2)}$$

6. Минимальный путь из v1 в v7:

$$v1 - v3 - v5 - v7$$

$$\lambda_1^{(0)} + C_{13} = \lambda_3^{(1)}$$

$$\lambda_3^{(1)} + C_{35} = \lambda_5^{(2)}$$

$$\lambda_5^{(2)} + C_{57} = \lambda_7^{(3)}$$

5. Остовое дерево минимальной длины

Рис. 5.1. Исходный граф

Рис. 5.2. Остовое дерево минимальной длины

Минимальный вес остового дерева ${\cal L}(D)=40$

6. Деревья и циклы

Рис. 6.1. 1) Зададим произвольную ориентацию

Рис. 6.2. 2) Построим произвольное остовое дерево D заданного графа

3) Найдем базис циклов, добавляя к остовному дереву по одному не вошедшему в него ребру. Затем найдем соответствующие вектор-циклы.

$$(D + q_1) \mu_1: v_1 \to v_2 \to v_3 \to v_4 \to v_5 \to v_6 \to v_1 \Rightarrow c(\mu_1) = (1, 1, 1, 1, 0, 1, 1, 0, 0, 0)$$

$$(D + q_5) \mu_2: v_3 \to v_4 \to v_5 \to v_3 \Rightarrow c(\mu_2) = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0)$$

$$(D + q_9) \mu_3: v_3 \to v_4 \to v_5 \to v_6 \to v_3 \Rightarrow c(\mu_3) = (0, 1, 1, 1, 0, 0, 0, 0, -1, 0)$$

$$(D + q_{10}) \mu_4: v_2 \to v_3 \to v_4 \to v_5 \to v_2 \Rightarrow c(\mu_4) = (0, 0, 1, 1, 0, 1, 0, 0, 0, -1)$$

$$(D + q_8) \mu_5: v_2 \to v_3 \to v_4 \to v_5 \to v_6 \to v_2 \Rightarrow c(\mu_5) = (0, 1, 1, 1, 0, 1, 0, 1, 0, 0)$$

4) Цикломатическая матрица графа имеет вид:

$$C = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

5) Выпишем закон Кирхгова для напряжений:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \\ u_9 \\ u_{10} \end{pmatrix} = 0$$

Напряжения, соответствующие ребрам, не вошедшим в остовное дерево – базисные переменные системы.

$$\begin{cases} u_1 + u_2 + u_3 + u_4 + u_6 + u_7 = 0 \\ u_3 + u_4 + u_5 = 0 \\ u_2 + u_3 + u_4 - u_9 = 0 \\ u_3 + u_4 + u_6 - u_{10} = 0 \\ u_2 + u_3 + u_4 + u_6 + u_8 = 0 \end{cases} \Rightarrow \begin{cases} u_1 = -u_2 - u_3 - u_4 - u_6 - u_7 \\ u_5 = -u_3 - u_4 \\ u_9 = u_2 + u_3 + u_4 \\ u_{10} = u_3 + u_4 + u_6 \\ u_8 = -u_2 - u_3 - u_4 - u_6 \end{cases}$$

6) Выпишем закон Кирхгова для токов:

$$B \cdot I = 0$$

7) Выпишем уравнения Кирхгофа для токов.

Найдем матрицу инцендентности
$$B$$
 орграфа:
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 1 & 0 & -1 & 0 & 0 & -1 & 1 & 1 \end{pmatrix}$$

$$B \cdot I = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 1 & 0 & -1 & 0 & 0 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \\ I_8 \\ I_9 \\ I_{10} \end{pmatrix}$$

$$\begin{cases} I_1 - I_7 = 0 \\ -I_6 + I_7 + I_8 - I_{10} = 0 \\ -I_4 + I_5 + I_6 - I_9 = 0 \\ -I_3 + I_4 = 0 \\ -I_2 + I_3 - I_5 + I_{10} = 0 \\ -I_1 + I_2 - I_8 + I_9 = 0 \end{cases} \Rightarrow \begin{cases} I_1 - I_7 = 0 \\ -I_6 + I_7 + I_8 - I_{10} = 0 \\ -I_4 + I_5 + I_6 - I_9 = 0 \\ -I_3 + I_4 = 0 \\ -I_2 + I_3 - I_5 + I_{10} = 0 \end{cases}$$

8) Подставим закон Ома:

$$\begin{cases} E_1 = -I_2R_2 - I_3R_3 - I_4R_4 - I_6R_6 - I_7R_7 \\ E_2 = -I_3R_3 - I_4R_4 \\ 0 = I_2R_2 + I_3R_3 + I_4R_4 - I_9R_9 \\ 0 = I_3R_3 + I_4R_4 + I_6R_6 - I_{10}R_{10} \\ 0 = I_2R_2 + I_3R_3 + I_4R_4 + I_6R_6 + I_8R_8 \end{cases}$$

9) Совместная система имеет вид:

Совместная система имеет вид:
$$\begin{cases} I_1-I_7=0\\ -I_6+I_7+I_8-I_10=0\\ -I_4+I_5+I_6-I_9=0\\ -I_3+I_4=0\\ -I_2+I_3-I_5+I_{10}=0\\ E_1=-I_2R_2-I_3R_3-I_4R_4-I_6R_6-I_7R_7\\ E_2=-I_3R_3-I_4R_4\\ 0=I_2R_2+I_3R_3+I_4R_4-I_9R_9\\ 0=I_3R_3+I_4R_4+I_6R_6-I_{10}R_{10}\\ 0=I_2R_2+I_3R_3+I_4R_4+I_6R_6+I_8R_8 \end{cases}$$

7. Транспортные сети

Рис. 7.1. Транспортные сети

7.1. Построение полного потока

$$v_1 \to v_2 \to v_3 \to v_4 \to v_9 \ min\{3,3,10,12\} = 3$$

$$v_1 \to v_6 \to v_7 \to v_8 \to v_9 \ min\{4,4,9,12\} = 4$$

$$v_1 \to v_5 \to v_9 \ min\{7,6\} = 6$$

$$v_1 \to v_3 \to v_4 \to v_9 \ min\{11,10-3,12-3\} = 7$$

$$v_1 \to v_7 \to v_8 \to v_9 \ min\{9,9-4,12-4\} = 5$$

$$v_1 \to v_5 \to v_8 \to v_9 \ min\{7-6,2,12-9\} = 1$$
 Величина полного потока $\Phi = 6+10+10=26$

Рис. 7.2. Построение полного потока

7.2. Построение максимального потока

Рис. 7.3. Построение Максимального потока

 $v_1 o v_3 o v_2 o v_5 o v_4 o v_9 \ \Delta_1 = min\{7, \underbrace{3}, 2, 3, 10\} = 2$ $v_1 o v_7 o v_6 o v_5 o v_8 o v_9 \ \Delta_2 = min\{5, \underbrace{4}, 3, 1, 10\} = 1$ Величина максимального потока $\Phi_{max} = 26 + 2 + 1 = 29$

8. Индивидуальное задание

8.1. Теоритические сведения. Описание работы алгоритма.

Определение 1. Ориентированный граф $G = \langle V, X \rangle$ - односторонне связанный, если для любой пары вершин $u_i, u_j (i \neq j)$ существует путь из u_i в u_j и из u_i в u_i .

Определение 2. Матрица односторонней связности $T = \|t_{ij}\|$ орграфа - квадратная матрица порядка n с элементами

$$t_{ij} = egin{cases} 1$$
, если существует путь из u_i в u_j 0 в противном случае

Определени 3. Матрица сильной связности $\bar{S} = \|\bar{s_{ij}}\|$ орграфа - квадратная матрица порядка n с элементами

$$ar{s_{ij}} = egin{cases} 1$$
, если существует путь из u_i в u_j и из u_j в u_i 0 в противном случае

Определение 4. Сильно связной компонентой ориентированного графа $G = \langle V, X \rangle$ называется такое максимальное множество вершин $C \subseteq V$, что для каждой пары вершин u_i и u_j из C вершины u_i и u_j достижимы друг из друга.

Определение 5. Конденсацией орграфа G называют такой орграф G', вершинами которого служат компоненты сильной связности G, а дуга в G' присутствует только если существует хотя бы одно ребро между вершинами, входящими в соответствующие компоненты связности.

Определение 6. Транспонированный граф для графа G - ориентированного граф G' с тем же набором вершин и с теми же дугами, но ориентация дуг этого графа противоположна ориентации дуг графа G

8.2. Алгоритм Косарайю

Алгоритм предназначен для поиска компонент сильной связности в ориентированном графе и состоит из трёх шагов:

- 1) Выполнить поиск в глубину (DFS), пока не будут «помечены» все вершины. Вершина считается «помеченной», когда ей присвоен индекс в порядке завершения рекурсивных шагов тактов DFS (время выхода). Назовём одним тактом DFS поиск очередного дерева путей.
- 2) Транспонировать исходный граф.
- 3) Выполнить DFS в порядке убывания пометок вершин.

Полученные деревья каждого такта DFS последнего шага являются компонентами сильной связности

Небольшое, но важное уточнение: время выхода следует считать следующим образом: изначально счётчик времени нулевой, а увеличивается он в двух случаях:

- 1) Начало нового такта DFS
- 2) Прохождение по ребру (при том, не важно, рекурсивный проход или нет)

8.3. Логическая блок схема

Рис. 8.1. Блок схема

8.4. Оценка сложности алгоритма

Сложность алгоритма алгоритма Косарайю составляет O(n+m) где n - количество вершин, m - количество дуг.

8.5. Тестовые примеры

Для теста были взяты 2 примера из задания курсовой работы номер 1:

1) Вариант 3

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2) Вариант из методички

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Программа получила верные результаты

Рис. 8.2. Скриншоты программы

8.6. Пример прикладной задачи

Нахождение загруженных узлов дорожной-транспортной сети, состоящей из n транспортных узлов и m магистралей

Источники

Арнольд Кофман. <u>Введение в прикладную комбинаторику</u>. Главная редакция физико-математической литературы издательства "Наука", 1975.

Поиск компонент сильной связности, построение конденсации графа, 2008. URL https://e-maxx.ru/algo/strong_connected_components.