boites-robotisees-a-double-embrayage-22/

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement en utilisant les méthodes énergétiques.

Sciences Industrielles de l'Ingénieur

Chapitre 1

Approche énergétique

Savoirs et compétences :

Cours

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.
- Res1.C3.SF1 : Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre.
- Mod1.C4.SF1 : Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance.
- □ Mod1.C5.SF1 : Identifier les pertes d'énergie .
- □ Mod1.C6.SF1 : Évaluer le rendement d'une chaîne d'énergie en régime permanent.
- Mod1.C5.SF2: Déterminer la puissance des actions mécaniques extérieures à un solide ou à un ensemble de solides, dans son mouvement rapport à un autre solide.
- ☐ Mod1.C5.SF3 : Déterminer la puissance des actions mécaniques intérieures à un ensemble de solides.

	Introduction 2
1.1	Objectif de la modélisation 2
2	Puissance 2
2.1	Puissance d'une action mécanique extérieure à un ensemble matériel
2.2	Puissance d'une action mécanique extérieure à un solide 2
2.3	Puissance d'actions mutuelles entre deux solides 2
2.4	Puissances d'actions mutuelles dans les liaisons 3
3	Travail 3
3.1	Définition
3.2	Travail conservatif
4	Énergie cinétique 4
4.1	Définition
4.2	Propriétés
4.3	Énergie cinétique équivalente5
5	Théorème de l'énergie cinétique 5
5.1	Introduction 5
5.2	Énoncé pour un solide
5.3	Énoncé pour un ensemble de solides5
6	Notion de rendement énergétique 5
6.1	Définition du rendement d'une chaîne fonctionnelle 5
6.2	Détermination d'une puissance dissipée 6

1 Introduction

1.1 Objectif de la modélisation

Dans ce chapitre nous aborderons les notions de **puissance**, **travail**, et **énergie**. Ces notions sont fondamentales pour :

- dimensionner des composants d'une chaîne d'énergie en terme de puissance transmissible;
- déterminer des équations de mouvement pour prévoir les performances d'un système;
- estimer le rendement d'une chaîne complète d'énergie.

2 Puissance

2.1 Puissance d'une action mécanique extérieure à un ensemble matériel

Définition On définit la **puissance d'une action mécanique extérieure** à un ensemble matériel (E) en mouvement par rapport à un référentiel R subissant une densité d'effort $\overrightarrow{f}(M)$ (où M est un point courant de (E)) comme :

$$\mathscr{P}(\operatorname{ext} \to E/R) = \int_{M \in E} \overrightarrow{f}(M) \cdot \overrightarrow{V(M \in E/R)} dV.$$

On appellera **puissance galiléenne**, la puissance d'un ensemble matériel (E) en mouvement dans un **référentiel galiléen** $R_g: \mathscr{P}(\operatorname{ext} \to E/R_g)$.

Dimensions et homogénéité.

- Une puissance est une **grandeur scalaire** s'exprimant en *Watt*.
- Elle est homogène à un produit entre un effort et une vitesse et peut donc s'exprimer en unité SI en Nms⁻¹.
- Historiquement on a utilisé longtemps les « chevaux » ou « cheval vapeur » (1 ch = 736 W).

Propriété — Calcul des actions mécaniques s'appliquant sur un ensemble E. On considère un ensemble matériel E composé de n solides S_i .

Dans la pratique pour calculer la puissance totale des actions mécaniques s'appliquant sur E dans son mouvement par rapport à R il faut sommer toutes les puissances s'appliquant sur les S_i venant de l'extérieur de E:

$$\mathscr{P}(\operatorname{ext} \to E/R) = \sum_{\forall S_i \in E} \mathscr{P}(\operatorname{ext} \to S_i/R).$$

2.2 Puissance d'une action mécanique extérieure à un solide

Définition — Puissance d'une action mécanique extérieure à un solide (S). La puissance d'une action mécanique extérieure à un solide (S) en mouvement dans un référentiel R peut s'écrire comme le comoment entre le torseur des actions mécaniques que subit (S) et le torseur cinématique du mouvement de S dans le référentiel R.

$$\mathscr{P}(\operatorname{ext} \to S/R) = \{\mathscr{T}(\operatorname{ext} \to S)\} \otimes \{\mathscr{V}(S/R)\}.$$

On veillera bien, pour effectuer le **comoment** de deux torseurs, à les avoir exprimé au préalable **en un même point.**

- Le comoment des torseurs est défini par $\{\mathcal{T}(\text{ext} \to S)\} \otimes \{\mathcal{V}(S/R)\} = \left\{\begin{array}{c} \overline{R(\text{ext} \to S)} \\ \overline{\mathcal{M}(P, \text{ext} \to S)} \end{array}\right\}_{P} \otimes \left\{\begin{array}{c} \overline{\Omega(S/R)} \\ \overline{V(P \in S/R)} \end{array}\right\}_{P}$
- Lorsque le torseur cinématique de S/R est un couple (mouvement de translation) alors en tout point A la puissance est alors donnée par $\mathscr{P}(\text{ext} \to S/R) = \overrightarrow{R(\text{ext} \to S)} \cdot \overrightarrow{V(P \in S/R)} \, \forall P$.
- Lorsque le torseur des actions mécaniques est un torseur couple alors la puissance est donnée par $\mathscr{P}(\text{ext} \to S/R) = \overline{\mathscr{M}(P, \text{ext} \to S)} \cdot \overline{\Omega(S/R)} \ \forall P.$

2.3 Puissance d'actions mutuelles entre deux solides

Définition — **Puissance d'actions mutuelles entre deux solides**. Soient deux solides (S_1) et (S_2) distincts, en mouvement par rapport à un référentiel galiléen R_g , et exerçant une action mécanique l'un sur l'autre. **La puissance des actions mutuelles** entre (S_1) et (S_2) , dans leur mouvement par rapport au repère R, est :

$$\mathscr{P}(S_1 \longleftrightarrow S_2/R_g) = \mathscr{P}(S_1 \to S_2/R_g) + \mathscr{P}(S_2 \to S_1/R_g).$$

La puissance des actions mutuelles entre (S_1) et (S_2) est indépendante du repère R. Ainsi,

$$\mathscr{P}(S_1 \longleftrightarrow S_2/R) = \mathscr{P}(S_1 \longleftrightarrow S_2).$$

- On peut parler parfois de puissance des inter-efforts.
- Pour un ensemble *E*, on peut exprimer l'ensemble de la puissance des inter-effort comme la puissance intérieure à l'ensemble *E* :

$$\mathscr{P}_{\mathrm{int}}(E) = \sum_{j=1}^{n} \sum_{i=1}^{j-1} \mathscr{P}(S_i \longleftrightarrow S_j).$$

2.4 Puissances d'actions mutuelles dans les liaisons

Définition — Puissances d'actions mutuelles dans les liaisons. Si deux solides S_1 et S_2 sont en liaison, on a :

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = \{\mathscr{T}(S_1 \to S_2)\} \otimes \{\mathscr{V}(S_2/S_1)\}.$$

La **liaison parfaite** si et seulement si quel que soit le mouvement de S_2 par rapport à S_1 autorisé par la liaison entre ces deux solides, la **puissance des actions mutuelles entre** S_1 **et** S_2 **est nulle**.

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = 0.$$

- La notion de **liaison parfaite** s'étend facilement à une liaison équivalente à plusieurs liaisons placées en parallèle et en série entre deux solide S_1 et S_2 . Pour cela il suffit de considérer les torseurs d'action mécanique transmissible et cinématique de la liaison équivalente.
- L'hypothèse d'une liaison parfaite a pour avantage de mettre en place le théorème de l'énergie cinétique (qui est une conséquence du principe fondamental de la dynamique) sans préjuger de la technologie de la liaison.

3 Travail

3.1 Définition

Définition — **Travail**. Le travail entre deux instants t_1 et t_2 d'une action mécanique s'exerçant sur un ensemble matériel E dans son mouvement par rapport au repère R est donné par :

$$W_{t_1}^{t_2}(\operatorname{ext} \to E/R) = \int_{t_1}^{t_2} \mathscr{P}(\operatorname{ext} \to E/R) \, \mathrm{d}t.$$

On peut également définir le travail élémentaire par :

$$dW(\text{ext} \rightarrow E/R) = \mathcal{P}(\text{ext} \rightarrow E/R) dt$$
.

- · Le travail est une grandeur scalaire.
- L'unité de travail est le Joule.
- Le travail est homogène au produit entre une force et une distance.

3.2 Travail conservatif

Définition — **Travail conservatif.** On dit que le **travail est conservatif** (noté $W_c \frac{t_2}{t_1}(\text{ext} \to E/R))$ s'il est indépendant du chemin suivi pour passer de l'état initial (instant t_1) à l'état final (instant t_2). Dans ce cas là il existe une grandeur appelée énergie potentielle de l'action mécanique extérieure à E dans son mouvement par rapport à R qui vérifie :

$$dW_c(\text{ext} \to E/R) = -dE_p(\text{ext} \to E/R)$$
 avec $dW_c(\text{ext} \to E/R) = \mathcal{P}(\text{ext} \to E/R) dt$.

On peut également l'écrire sous la forme :

$$\mathscr{P}(\operatorname{ext} \to E/R) = -\frac{\mathrm{d}E_p(\operatorname{ext} \to E/R)}{\mathrm{d}t}$$

- On dit que la puissance à travail conservatif dérive d'une énergie potentielle (au signe près).
- L'énergie potentielle est une primitive de la puissance. Elle est donc définie à une constante près arbitraire.

3.2.1 Énergie potentielle de la pesanteur

Définition — Énergie potentielle de la pesanteur. L'énergie potentielle associée à l'action de la pesanteur sur un ensemble matériel (E) de masse m dans son mouvement par rapport à R est donnée par :

$$E_n(g \to E/R) = m g z_G + k$$
.

Où z_G correspond à la position du centre de gravité G de S suivant la verticale ascendante \overrightarrow{z} (colinéaire au champs de pesanteur \overrightarrow{g}) et k une constante.

3.2.2 Énergie potentielle associée à un ressort

Définition — Énergie potentielle associée à un ressort.

L'énergie potentielle associée à l'action d'un ressort r de raideur K et de longueur à vide L_0 situé entre deux solides S_1 et S_2 dans son mouvement par rapport à R est donnée par :

$$E_p(r \to S_1, S_2/R) = \frac{K}{2}(L - L_0)^2 + k$$
 où k est une constante.

4 Énergie cinétique

4.1 Définition

Définition — Énergie cinétique. On définit l'énergie cinétique E_c d'un système matériel S en mouvement dans un référentiel R comme la somme des carrés de la vitesse en chaque point courant P de S pondéré de la masse élémentaire :

$$E_c(S/R) = \frac{1}{2} \int_{P=S} \left(\overrightarrow{V}(P/R) \right)^2 dm.$$

4.2 Propriétés

Propriété — **Expression avec les comoments.** L'énergie cinétique peut s'exprimer comme le comoment du torseur cinématique et du torseur cinétique :

$$E_c(S/R) = \frac{1}{2} \left\{ \mathcal{V}(S/R) \right\} \otimes \left\{ \sigma(S/R) \right\}.$$

Il faudra bien veiller à ce que chacun des torseurs soit exprimé en un même point.

Propriété — Cas particuliers.

• Solide S de masse M de centre d'inertie G en mouvement de **translation** par rapport à R :

$$E_c(S/R_0) = \frac{1}{2}M \overrightarrow{V(G \in S/R)^2}.$$

• Solide S de moment d'inertie $I_{Oz}(S)$ en mouvement de rotation par rapport à l'**axe fixe** (O, \overrightarrow{z}) par rapport R:

$$E_c(S/R) = \frac{1}{2}I_{Oz}(S)\overrightarrow{\Omega(S/R)}^2.$$

4.3 Énergie cinétique équivalente

Définition — Énergie cinétique équivalente. Lorsqu'un problème ne comporte qu'un seul degré de liberté et pour simplifier les calculs, on peut exprimer l'énergie cinétique galiléenne d'un ensemble E composé de n solides S_i en fonction d'un seul paramètre cinématique. On peut alors écrire $E_c(E/R)$

• avec son inertie équivalente $J_{eq}(E)$ (en kg m²) rapportée à un paramètre de rotation $\dot{\theta}(t)$:

$$E_c(E/R_g) = \frac{1}{2} J_{eq}(E) \dot{\theta}^2.$$

• avec sa masse équivalente $M_{eq}(E)$ (en kg) rapportée à un paramètre de translation $\dot{x}(t)$:

$$E_c(E/R_g) = \frac{1}{2} M_{eq}(E) \dot{x}^2.$$

5 Théorème de l'énergie cinétique

5.1 Introduction

Le théorème de l'énergie cinétique est la traduction du Principe Fondamental de la Dynamique d'un point de vue énergétique.

5.2 Énoncé pour un solide

Théorème — **Théorème de l'énergie cinétique**. La dérivée par rapport au temps de l'énergie cinétique d'un solide S dans son mouvement par rapport au référentiel galiléen R_g est égale à la puissance galiléenne des actions mécaniques extérieures à S. Soit :

$$\frac{\mathrm{d}E_c(S/R_g)}{\mathrm{d}t} = \mathscr{P}(\bar{S} \to S/R_g).$$

5.3 Énoncé pour un ensemble de solides

Théorème — **Théorème de l'énergie cinétique pour un ensemble de solides**. Soit (E) un ensemble de n solide $(S_1, S_2, ..., S_n)$ en mouvement par rapport à un repère galiléen R_g . Le théorème de l'énergie cinétique s'écrit alors :

$$\frac{\mathrm{d}E_c(E/R_g)}{\mathrm{d}t} = \mathscr{P}(\bar{E} \to E/R_g) + \sum_{i=1}^n \sum_{j=1}^{j-1} \mathscr{P}(S_i \longleftrightarrow S_j/R_g) = \mathscr{P}(\mathrm{ext} \to E/R_g) + \mathscr{P}_{\mathrm{int}}(E).$$

Avec:

- $\mathscr{P}_{int}(E)$ la puissance intérieure à E qui est nulle s'il n'y a pas d'apport d'énergie interne ni de dissipation (liaisons parfaites);
- $\mathscr{P}(\text{ext} \to E/R_g)$, la puissance galiléenne de E dans son mouvement par rapport à R_g .

- Dans le théorème de l'énergie cinétique, contrairement au principe fondamental de la dynamique, on tient compte de la puissance des actions mutuelles donc internes à l'ensemble matériel *E* que l'on considère.
- Ce théorème permet d'obtenir une seule équation scalaire. Cette méthode est donc moins riche que le principe fondamental de la dynamique mais permet d'obtenir quasiment directement les équations de mouvements.
- Pour obtenir une équation de mouvement (ie éliminer les inconnues en actions mécaniques) il faut alors combiner d'autres équations issues des théorèmes généraux de la dynamique.

6 Notion de rendement énergétique

6.1 Définition du rendement d'une chaîne fonctionnelle

Une étude dynamique d'une chaîne fonctionnelle peut se décomposer en deux parties :

• en **régime permanent** (variation d'énergie cinétique négligeable) : étude des effets dissipatifs pour estimer une puissance nominale des actionneurs;

• en **régime transitoire** : évaluation du complément de puissance pour permettre au système de fonctionner.

Définition — Rendement d'une chaîne fonctionnelle. Le rendement se définit **en régime permanent** comme la puissance utile sur la puissance d'entrée d'une chaîne fonctionnelle :

$$\eta = \frac{\mathscr{P}(\text{utile})}{\mathscr{P}(\text{entrée})}.$$

- $\eta \in [0,1]$;
- $\mathcal{P}(\text{entrée}) > 0$ définit la puissance fournie par l'actionneur **en régime permanent**;
- $\mathcal{P}(\text{utile}) > 0$ définit la puissance fournie à l'aval d'une chaîne fonctionnelle (effecteur par exemple) **en régime permanent**.

Propriété — Rendement global d'une chaîne d'énergie. Le rendement global d'une chaîne d'énergie comportant n éléments de rendements η_i est donné par :

$$\eta = \prod_{i=1}^{n} \eta_i \le 1.$$

Chacun des rendements successifs η_i étant au plus égale à 1, le rendement global est nécessairement inférieur ou égal au plus mauvais rendement.

6.2 Détermination d'une puissance dissipée

Propriété — **Estimation des dissipations.** On peut évaluer en régime permanent les pertes ou puissance dissipée à partir de la connaissance du rendement η :

$$\mathscr{P}(\text{dissip\'ee}) = (1 - \eta) \cdot \mathscr{P}(\text{entr\'ee}).$$

Références

[1] Émilien Durif, Approche énergétique des systèmes, Lycée La Martinière Monplaisir, Lyon.