Susceptibility of the Two-Dimensional Ising Model

Craig A. Tracy UC Davis

September 2014

1. Definition of 2D Ising Model

- 1. Definition of 2D Ising Model
- 2. Why is the nearest neighbor zero-field 2D Ising model exactly solvable? (Lars Onsager and Bruria Kaufman, 1944–1949)

- 1. Definition of 2D Ising Model
- 2. Why is the nearest neighbor zero-field 2D Ising model exactly solvable? (Lars Onsager and Bruria Kaufman, 1944–1949)
- 3. Spontaneous magnetization—some interesting history of mathematics

- 1. Definition of 2D Ising Model
- 2. Why is the nearest neighbor zero-field 2D Ising model exactly solvable? (Lars Onsager and Bruria Kaufman, 1944–1949)
- 3. Spontaneous magnetization—some interesting history of mathematics
- 4. Toeplitz determinants and spin-spin correlation functions

- 1. Definition of 2D Ising Model
- 2. Why is the nearest neighbor zero-field 2D Ising model exactly solvable? (Lars Onsager and Bruria Kaufman, 1944–1949)
- 3. Spontaneous magnetization—some interesting history of mathematics
- 4. Toeplitz determinants and spin-spin correlation functions
- 5. Massive scaling limit and connection with Painlevé III

- 1. Definition of 2D Ising Model
- 2. Why is the nearest neighbor zero-field 2D Ising model exactly solvable? (Lars Onsager and Bruria Kaufman, 1944–1949)
- 3. Spontaneous magnetization—some interesting history of mathematics
- 4. Toeplitz determinants and spin-spin correlation functions
- 5. Massive scaling limit and connection with Painlevé III
- 6. The Ising susceptibility and the natural boundary conjecture

Only #6 reports on new developments—joint with Harold Widom

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *Gibbs measure* gives the probability of configuration σ in box Λ at inverse temperature β :

$$\mathbb{P}_{\Lambda}(\sigma) := \frac{\exp(-\beta \mathbb{E}(\sigma))}{Z_{\Lambda}(\beta, h)}, \ Z_{\Lambda} \text{ is called the partition function}$$

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *Gibbs measure* gives the probability of configuration σ in box Λ at inverse temperature β :

$$\mathbb{P}_{\Lambda}(\sigma) := \frac{\exp(-\beta \mathbb{E}(\sigma))}{Z_{\Lambda}(\beta, h)}, \ Z_{\Lambda} \text{ is called the partition function}$$

Remarks:

▶ We assume $J_i > 0$ so the system is *ferromagnetic*, i.e. like spins favored.

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *Gibbs measure* gives the probability of configuration σ in box Λ at inverse temperature β :

$$\mathbb{P}_{\Lambda}(\sigma) := \frac{\exp(-\beta \mathbb{E}(\sigma))}{Z_{\Lambda}(\beta, h)}, \ Z_{\Lambda} \text{ is called the partition function}$$

Remarks:

- ▶ We assume $J_i > 0$ so the system is *ferromagnetic*, i.e. like spins favored.
- ► The coefficient *h* gives the coupling of the system to an external magnetic field.

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *Gibbs measure* gives the probability of configuration σ in box Λ at inverse temperature β :

$$\mathbb{P}_{\Lambda}(\sigma) := \frac{\exp(-\beta \mathbb{E}(\sigma))}{Z_{\Lambda}(\beta, h)}, \ Z_{\Lambda} \text{ is called the partition function}$$

Remarks:

- ▶ We assume $J_i > 0$ so the system is *ferromagnetic*, i.e. like spins favored.
- ► The coefficient *h* gives the coupling of the system to an external magnetic field.
- ▶ In practice we will take periodic boundary conditions which means the system is defined on a torus with *m* rows and *n* columns.

The *energy* of a configuration σ in box Λ is

$$\mathcal{E}_{\Lambda}(\sigma) = -J_1 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{ij+1} - J_2 \sum_{i,j \in \Lambda} \sigma_{ij} \sigma_{i+1j} - h \sum_{i,j \in \Lambda} \sigma_{ij}$$

The *Gibbs measure* gives the probability of configuration σ in box Λ at inverse temperature β :

$$\mathbb{P}_{\Lambda}(\sigma) := \frac{\exp(-\beta \mathbb{E}(\sigma))}{Z_{\Lambda}(\beta, h)}, \ Z_{\Lambda} \text{ is called the partition function}$$

Remarks:

- ▶ We assume $J_i > 0$ so the system is *ferromagnetic*, i.e. like spins favored.
- ► The coefficient *h* gives the coupling of the system to an external magnetic field.
- ▶ In practice we will take periodic boundary conditions which means the system is defined on a torus with *m* rows and *n* columns.
- ► This defines the 2D Ising model with nearest neighbor interactions on the square lattice in a magnetic field.

► Free energy per lattice site

$$-\beta f(\beta,h) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \log Z_{\Lambda}(\beta,h)$$

Free energy per lattice site

$$-\beta f(\beta, h) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \log Z_{\Lambda}(\beta, h)$$

Magnetization and spontaneous magnetization

$$M(\beta, h) := -\frac{\partial f}{\partial h}, \quad M_0(\beta) := \lim_{h \to 0^+} M(\beta, h)$$

Free energy per lattice site

$$-\beta f(\beta, h) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \log Z_{\Lambda}(\beta, h)$$

Magnetization and spontaneous magnetization

$$M(\beta, h) := -\frac{\partial f}{\partial h}, \quad M_0(\beta) := \lim_{h \to 0^+} M(\beta, h)$$

Susceptibility

$$\chi(\beta, h) = \frac{\partial M}{\partial h}(\beta, h)$$

▶ Free energy per lattice site

$$-\beta f(\beta, h) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \log Z_{\Lambda}(\beta, h)$$

Magnetization and spontaneous magnetization

$$M(\beta,h) := -\frac{\partial f}{\partial h}, \quad M_0(\beta) := \lim_{h \to 0^+} M(\beta,h)$$

Susceptibility

$$\chi(\beta, h) = \frac{\partial M}{\partial h}(\beta, h)$$

► Spin-spin correlation function

$$\langle \sigma_{00}\sigma_{MN}\rangle = \lim_{|\Lambda| \to \infty} \mathbb{E}_{\Lambda} \left(\sigma_{00}\sigma_{MN}\right) = \lim_{|\Lambda| \to \infty} \frac{\sum_{\sigma} \sigma_{00}\sigma_{MN} e^{-\beta \mathcal{E}(\sigma)}}{\sum_{\sigma} e^{-\beta \mathcal{E}(\sigma)}}$$

Why is the zero-field h = 0 2D Ising model exactly solvable?

Or stated differently, what's the problem for $h \neq 0$?

Why is the zero-field h = 0 2D Ising model exactly solvable?

Or stated differently, what's the problem for $h \neq 0$?

Since we don't know $f(\beta, h)$ as a function of h, how do we find M_0 and $\chi(\beta, 0)$?

Why is the zero-field h = 0 2D Ising model exactly solvable?

Or stated differently, what's the problem for $h \neq 0$?

Since we don't know $f(\beta, h)$ as a function of h, how do we find M_0 and $\chi(\beta, 0)$?

Second question a bit easier to answer:

$$M_0^2(\beta) = \lim_{N \to \infty} \langle \sigma_{00} \sigma_{NN} \rangle$$

zero-field susceptibility:
$$\chi(\beta) = \sum_{M,N \in \mathbb{Z}} \left[\langle \sigma_{00} \sigma_{MN} \rangle - M_0^2 \right]$$

Method of Transfer Matrices

On a torus of *m* rows and *n* columns can write

$$Z_{mn}(\beta,h) = \operatorname{Tr}(V^m) \tag{*}$$

where V is a $2^n \times 2^n$ matrix.

Method of Transfer Matrices

On a torus of m rows and n columns can write

$$Z_{mn}(\beta, h) = \text{Tr}(V^m) \tag{*}$$

where V is a $2^n \times 2^n$ matrix.

To see this let \vec{s}_{α} represent the configuration of row α , $\vec{s}_{\alpha}=(s_1,s_2,\ldots,s_n)$, $s_j=\pm 1$. Define the $2^n\times 2^n$ matrix V_1 by incorporating the Boltzmann factors in row α :

$$V_1(\vec{s}, \vec{s}') = \delta_{\vec{s}, \vec{s}'} \cdot \prod_{\alpha=1}^{n} e^{\beta J_1 s_{\alpha} s'_{\alpha+1}}$$

For Boltzmann factors on columns we introduce

$$V_2(\vec{s}, \vec{s}') = \prod_{i=1}^n e^{\beta J_2 s_i s_j'}$$

and for the magnetic field

$$V_3(\vec{s},\vec{s}') = \delta_{\vec{s},\vec{s}'} \cdot \prod_{i=1}^n e^{\beta h s_j}$$

Defining

$$V = V_1 V_2 V_3$$

it is easy to check that

$$Z_{mn}(\beta,h) = \operatorname{Tr}(V^m)$$
 (*)

Thus the problem "reduces" to the spectral theory of V; or more precisely, the largest eigenvalue of V in computing $f(\beta, h)$ in the thermodynamic limit.

For $h \neq 0$ this is an open problem.

Defining

$$V = V_1 V_2 V_3$$

it is easy to check that

$$Z_{mn}(\beta, h) = \text{Tr}(V^m) \tag{*}$$

Thus the problem "reduces" to the spectral theory of V; or more precisely, the largest eigenvalue of V in computing $f(\beta, h)$ in the thermodynamic limit.

For $h \neq 0$ this is an open problem.

For h=0; namely, $V_3=I$, a diagonalization was first accomplished by Lars Onsager (1944). His analysis was subsequently simplified by Bruria Kaufman (1949).

It is Kaufman's point of view which we now summarize.

Kaufman's Analysis

Stated concisely here is what Kaufman realized:

The $2^n \times 2^n$ matrices V_1 and V_2 ; and hence $V = V_1V_2$, are spin representations of rotations in the orthogonal group $\mathcal{O}(2n)$. Furthermore, V is a spin representative of a product of commuting plane rotations. Thus the spectral analysis is reduced to that of a $2n \times 2n$ orthogonal matrix. Indeed, due to the translational invariance of the interaction energy, the spectral theory reduces to solving quadratic equations! 1

V is not a spin-representative of a rotation when $h \neq 0$.

¹Actually, this statement is true for a certain direct sum decomposition $V=V^+\oplus V^-$. The statements apply to V^\pm .

Combinatorial Approach to 2D Ising Model

Kasteleyn's theory (1963) of dimers on planar lattices: Partition function is expressible as a Pfaffian. 2

Fisher (1966) building on work of Kac and Ward (1952) showed the 2D Ising model (as defined above) is equivalent to a dimer problem.

Figure: A six-site cluster that may be used to convert the Ising problem into a dimer problem. See McCoy & Wu, *The Two-Dimensional Ising Model* for details.

²For modern treatment see work of Rick Kenyon.

The Spontaneous Magnetization: Some history³

Onsager, well-known for being cryptic, announced in a discussion section at a conference in Florence $(1949)^4$ that he and Kaufman had recently obtained an exact formula for the spontaneous magnetization:

$$M_0 = (1 - k^2)^{1/8}, \quad k := (\sinh 2\beta J_1 \sinh 2\beta J_2)^{-1}$$
 (**)

Onsager gave no details to how he and Kaufman obtained (**).

Figure: Spontaneous magnetization. k = 1 defines the critical temperature.

³See, P. Deift, A. Its and I. Krasovsky, Toeplitz Matrices and Toeplitz Determinants under the Impetus of the Ising Model: Some History and Some Recent Results.

⁴And on a blackboard at Cornell on 23 August 1948.

$$\langle \sigma_{00}\sigma_{NN}\rangle = \det\left(\varphi_{m-n}\right)_{m,n=0,\dots,N-1}$$

with

$$\varphi_m = \frac{1}{2\pi} \int_0^{2\pi} e^{-im\theta} \, \varphi(e^{i\theta}) \, d\theta, \ \ \varphi(z) = \left[\frac{1 - k/z}{1 - kz} \right]^{1/2}$$

$$\langle \sigma_{00}\sigma_{NN}\rangle = \det\left(\varphi_{m-n}\right)_{m,n=0,\dots,N-1}$$

with

$$arphi_m = rac{1}{2\pi} \int_0^{2\pi} \mathrm{e}^{-\mathrm{i}\,m\theta}\, arphi(\mathrm{e}^{\mathrm{i}\,\theta})\, d heta, \ \ arphi(z) = \left[rac{1-k/z}{1-kz}
ight]^{1/2}$$

Today we know the *strong Szegö limit theorem* (plus some conditions on φ)

$$\lim_{N \to \infty} \frac{\det(\varphi_{m-n})}{\mu^N} = \exp\left(\sum_{k=1}^{\infty} k(\log \varphi)_k (\log \varphi)_{-k}\right)$$

and a simple application gives M_0^2 .

$$\langle \sigma_{00}\sigma_{NN}\rangle = \det\left(\varphi_{m-n}\right)_{m,n=0,\dots,N-1}$$

with

$$\varphi_m = \frac{1}{2\pi} \int_0^{2\pi} e^{-im\theta} \varphi(e^{i\theta}) d\theta, \ \varphi(z) = \left[\frac{1 - k/z}{1 - kz}\right]^{1/2}$$

Today we know the *strong Szegö limit theorem* (plus some conditions on φ)

$$\lim_{N \to \infty} \frac{\det(\varphi_{m-n})}{\mu^N} = \exp\left(\sum_{k=1}^{\infty} k(\log \varphi)_k (\log \varphi)_{-k}\right)$$

and a simple application gives M_0^2 .

But Szegö had not yet proved his strong limit theorem (1952)!

▶ Onsager had, in fact, derived (nonrigorously) the limit formula. He communicated this result to *Shizuo Kakutani* who communicated the result to Szegö. (I verified this story when I met, many years later, Kakutani at Yale.)

- Onsager had, in fact, derived (nonrigorously) the limit formula. He communicated this result to Shizuo Kakutani who communicated the result to Szegö. (I verified this story when I met, many years later, Kakutani at Yale.)
- ▶ Before all this was revealed(!), *C. N. Yang* (1952) gave an independent derivation which is a subtle perturbation argument.

- ▶ Onsager had, in fact, derived (nonrigorously) the limit formula. He communicated this result to Shizuo Kakutani who communicated the result to Szegö. (I verified this story when I met, many years later, Kakutani at Yale.)
- ▶ Before all this was revealed(!), *C. N. Yang* (1952) gave an independent derivation which is a subtle perturbation argument. To quote Yang from his *Selected Works* 1945–1980:

I was thus led to a long calculation, the longest in my career. Full of local, tactical tricks, the calculation proceeded by twists and turns. There were many obstructions. But always, after a few days, a new trick was somehow found that pointed to a new path. The trouble was that I soon felt I was in a maze and was not sure whether in fact, after so many turns, I was anywhere nearer the goal than when I began. This kind of strategic overview was very depressing, and several times I almost gave up. But each time something drew me back, usually a new tactical trick that brightened the scene, even though only locally.

Finally, after six months of work off and on, all the pieces suddenly fitted together, producing miraculous cancellations, and I was staring at the amazingly simple final result ...

Spin-spin correlation functions

▶ Though both the row and diagonal correlations are expressible as Toeplitz determinants, there is no Toeplitz representation for the general case $\langle \sigma_{00}\sigma_{MN}\rangle$.

⁵See, *Planar Ising Correlations* by John Palmer, Progress in Mathematical Physics, 2007.

Spin-spin correlation functions

- ▶ Though both the row and diagonal correlations are expressible as Toeplitz determinants, there is no Toeplitz representation for the general case $\langle \sigma_{00}\sigma_{MN}\rangle$.
- If we use the *Case-Geronimo-Borodin-Okounkov* (CGBO) formula that expresses a Toeplitz determinant as a Fredholm determinant (times a normalization constant), we arrive at new representations for these correlations. It is this type of expression that generalizes. For $T < T_c$ it takes the form

$$\langle \sigma_{00}\sigma_{MN}
angle = \mathcal{M}_0^2\det(I-K_{MN})$$

This was first derived by Wu, McCoy, Barouch & CT (1976) and then put on a rigorous footing by Palmer and CT (1981).⁵

⁵See, *Planar Ising Correlations* by John Palmer, Progress in Mathematical Physics, 2007.

Most interest lies for T, the temperature, close to the critical temperature T_c . It is in this limit we expect to see *universality*.

⁶We state this for the case $J_1 = J_2$.

- Most interest lies for T, the temperature, close to the critical temperature T_c . It is in this limit we expect to see *universality*.
- Precisely, let $\xi(T)$ denote the correlation length, which is known to diverge at $T \to T_c^{\pm}$, then the massive scaling limit⁶ from below T_c is

$$F_{-}(r) := \lim_{\text{scaling}} \frac{\langle \sigma_{00} \sigma_{MN} \rangle}{M_0^2} = \det(I - K_{<})$$

where " $lim_{scaling}$ " is

$$M,N \to \infty, \xi(T) \to \infty$$
 such that $r := \sqrt{M^2 + N^2}/\xi(T)$ is fixed.

- Most interest lies for T, the temperature, close to the critical temperature T_c . It is in this limit we expect to see *universality*.
- ▶ Precisely, let $\xi(T)$ denote the correlation length, which is known to diverge at $T \to T_c^{\pm}$, then the massive scaling limit⁶ from below T_c is

$$F_{-}(r) := \lim_{\text{scaling}} \frac{\langle \sigma_{00} \sigma_{MN} \rangle}{M_0^2} = \det(I - K_{<})$$

where " $lim_{scaling}$ " is

$$M, N \to \infty, \xi(T) \to \infty$$
 such that $r := \sqrt{M^2 + N^2}/\xi(T)$ is fixed.

▶ Somewhat similar formula exists for $F_+(r)$.

- Most interest lies for T, the temperature, close to the critical temperature T_c . It is in this limit we expect to see *universality*.
- ▶ Precisely, let $\xi(T)$ denote the correlation length, which is known to diverge at $T \to T_c^{\pm}$, then the massive scaling limit⁶ from below T_c is

$$F_{-}(r) := \lim_{\text{scaling}} \frac{\langle \sigma_{00} \sigma_{MN} \rangle}{M_0^2} = \det(I - K_{<})$$

where " $lim_{scaling}$ " is

$$M, N \to \infty, \xi(T) \to \infty$$
 such that $r := \sqrt{M^2 + N^2}/\xi(T)$ is fixed.

- ▶ Somewhat similar formula exists for $F_+(r)$.
- ▶ Note that the scaling functions are rotationally invariant.

- Most interest lies for T, the temperature, close to the critical temperature T_c . It is in this limit we expect to see *universality*.
- ▶ Precisely, let $\xi(T)$ denote the correlation length, which is known to diverge at $T \to T_c^{\pm}$, then the massive scaling limit⁶ from below T_c is

$$F_{-}(r) := \lim_{\text{scaling}} \frac{\langle \sigma_{00} \sigma_{MN} \rangle}{M_0^2} = \det(I - K_{<})$$

where " $lim_{scaling}$ " is

$$M, N \to \infty, \xi(T) \to \infty$$
 such that $r := \sqrt{M^2 + N^2}/\xi(T)$ is fixed.

- ▶ Somewhat similar formula exists for $F_+(r)$.
- Note that the scaling functions are rotationally invariant.
- ▶ The scaling functions F_{\pm} are expected to be universal for a large class of 2D ferromagnetic systems. There is no proof (as far as I know), but it is generally accepted by physicists using nonrigorous renormalization group arguments.

⁶We state this for the case $J_1 = J_2$.

There are alternative expressions for F_{\pm} (WMTB, 1976; MTW, 1977):

There are alternative expressions for F_{\pm} (WMTB, 1976; MTW, 1977):

$$F_{-}(r) = \cosh \psi(r)/2 \exp \left(\frac{1}{4} \int_{r}^{\infty} \left[m^{2} \sinh^{2} \psi(x) - \left(\frac{d\psi}{dx}\right)^{2} \right] x \, dx \right\}$$

$$F_{+}(r) = \left(\tanh \psi(r)/2\right) F_{-}(r)$$

where

$$\frac{d^2\psi}{dr^2} + \frac{1}{r}\frac{d\psi}{dr} = \frac{1}{2}\sinh(2\psi), \quad \psi(r) \sim 2K_0(r), r \to \infty.$$

There are alternative expressions for F_{\pm} (WMTB, 1976; MTW, 1977):

$$F_{-}(r) = \cosh \psi(r)/2 \exp \left(\frac{1}{4} \int_{r}^{\infty} \left[m^{2} \sinh^{2} \psi(x) - \left(\frac{d\psi}{dx}\right)^{2} \right] x \, dx \right\}$$

$$F_{+}(r) = \left(\tanh \psi(r)/2\right) F_{-}(r)$$

where

$$\frac{d^2\psi}{dr^2} + \frac{1}{r}\frac{d\psi}{dr} = \frac{1}{2}\sinh(2\psi), \quad \psi(r) \sim 2K_0(r), r \to \infty.$$

• $\eta(r) = e^{-\psi(r)}$ is a Painlevé III function.

There are alternative expressions for F_{\pm} (WMTB, 1976; MTW, 1977):

$$F_{-}(r) = \cosh \psi(r)/2 \exp \left(\frac{1}{4} \int_{r}^{\infty} \left[m^{2} \sinh^{2} \psi(x) - \left(\frac{d\psi}{dx}\right)^{2} \right] x \, dx \right\}$$

$$F_{+}(r) = \left(\tanh \psi(r)/2\right) F_{-}(r)$$

where

$$\frac{d^2\psi}{dr^2} + \frac{1}{r}\frac{d\psi}{dr} = \frac{1}{2}\sinh(2\psi), \quad \psi(r) \sim 2K_0(r), r \to \infty.$$

- $\eta(r) = e^{-\psi(r)}$ is a Painlevé III function.
- ▶ M. Sato, T. Miwa & M. Jimbo (1978–79) gave an *isomonodromy* deformation analysis interpretation for the appearance of Painlevé III in the 2D Ising model. They also derived a total system of PDEs for the *n*-point scaling functions. The asymptotic analysis of these PDEs is an open problem.

The problem of the Ising susceptibility

The zero-field susceptibility $\chi(T)$ is defined by

$$\chi(T) := \frac{\partial \mathcal{M}(T, H)}{\partial H} \bigg|_{H=0^+}.$$

To distinguish between $T < T_c$ and $T > T_c$ we write χ_- and χ_+ , respectively.

The problem of the Ising susceptibility

The zero-field susceptibility $\chi(T)$ is defined by

$$\chi(T) := \frac{\partial \mathcal{M}(T, H)}{\partial H} \bigg|_{H=0^+}.$$

To distinguish between $T < T_c$ and $T > T_c$ we write χ_- and χ_+ , respectively.

Since

$$eta^{-1}\chi(T) = \sum_{M,N \in \mathbb{Z}} \left[\left\langle \sigma_{00} \sigma_{MN} \right\rangle - \mathcal{M}_0^2 \right],$$

and

$$\langle \sigma_{00}\sigma_{MN}\rangle = \mathcal{M}_0^2 \det(I - K_{MN}), \ T < T_c,$$

we study

$$\sum_{M,N\in\mathbb{Z}} \left[\det(I - K_{MN}) - 1 \right]$$

But first some history of the problem

•M. FISHER in 1959 initiated the analysis of the analytic structure of χ near the critical temperature T_c by relating it to the long-distance asymptotics of the correlation function at T_c (a result known to Kaufmann and Onsager).

- ullet M. Fisher in 1959 initiated the analysis of the analytic structure of χ near the critical temperature T_c by relating it to the long-distance asymptotics of the correlation function at T_c (a result known to Kaufmann and Onsager).
- ulletWMTB (1973–76) derived the *exact form factor expansion* of χ and related the the coefficients C_{\pm} in the asymptotic expansion

$$\chi_{\pm}(T) = C_{\pm} |1 - T/T_c|^{-7/4} + O(|1 - T/T_c|^{-3/4}), T \to T_c^{\pm}$$

to integrals involving a Painlevé III function.

- ulletM. FISHER in 1959 initiated the analysis of the analytic structure of χ near the critical temperature T_c by relating it to the long-distance asymptotics of the correlation function at T_c (a result known to Kaufmann and Onsager).
- ulletWMTB (1973–76) derived the *exact form factor expansion* of χ and related the the coefficients C_{\pm} in the asymptotic expansion

$$\chi_{\pm}(T) = C_{\pm} |1 - T/T_c|^{-7/4} + O(|1 - T/T_c|^{-3/4}), T \to T_c^{\pm}$$

to integrals involving a Painlevé III function.

•The analysis of χ as a function of the complex variable T was initiated by GUTTMANN and ENTING (1996). By use of high-temperature expansions they conjectured that $\chi_+(T)$ has a natural boundary in the complex T-plane.

- ullet M. Fisher in 1959 initiated the analysis of the analytic structure of χ near the critical temperature T_c by relating it to the long-distance asymptotics of the correlation function at T_c (a result known to Kaufmann and Onsager).
- •WMTB (1973–76) derived the *exact form factor expansion* of χ and related the the coefficients C_+ in the asymptotic expansion

$$\chi_{\pm}(T) = C_{\pm} |1 - T/T_c|^{-7/4} + O(|1 - T/T_c|^{-3/4}), T \to T_c^{\pm}$$

to integrals involving a Painlevé III function.

- •The analysis of χ as a function of the complex variable T was initiated by GUTTMANN and ENTING (1996). By use of high-temperature expansions they conjectured that $\chi_+(T)$ has a natural boundary in the complex T-plane.
- •B. NICKEL (1999,2000) analyzed the n-dimensional integrals appearing in the form factor expansion and identified a class of complex singularities, now called *Nickel singularities*, that lie on a curve and which become ever more dense with increasing n. This provides very strong support for the existence of a natural boundary for χ_{\pm} —curve is |k|=1.

•ORRICK, NICKEL, GUTTMANN & PERK (2001) and CHAN, GUTTMANN, NICKEL & PERK (2011) on the basis of high- and low-temperature expansions (300+ terms!) give the following conjecture for the critical point behavior:

•Orrick, Nickel, Guttmann & Perk (2001) and Chan, Guttmann, Nickel & Perk (2011) on the basis of high- and low-temperature expansions (300+ terms!) give the following conjecture for the critical point behavior: Set $\tau=\frac{1}{2}(\sqrt{k}-1\sqrt{k})$

$$\tilde{\chi}_{\pm} := k_B T \chi_{\pm} = C_{0,\pm} |\tau|^{-7/4} \mathcal{F}_{\pm} + \mathcal{B}$$

•Orrick, Nickel, Guttmann & Perk (2001) and Chan, Guttmann, Nickel & Perk (2011) on the basis of high- and low-temperature expansions (300+ terms!) give the following conjecture for the critical point behavior: Set $\tau=\frac{1}{2}(\sqrt{k}-1\sqrt{k})$

$$\tilde{\chi}_{\pm} := k_B T \chi_{\pm} = C_{0,\pm} |\tau|^{-7/4} \mathcal{F}_{\pm} + \mathcal{B}$$

where $\ensuremath{\mathcal{B}}$ is of the form ("short-distance" terms)

$$\mathcal{B} = \sum_{q=0}^{\infty} \sum_{p=0}^{\lfloor \sqrt{q} \rfloor} b^{(p,q)} (\log | au|)^p au^q$$

with numerical approximations to $b^{(p,q)}$, $p \leq 5$,

•Orrick, Nickel, Guttmann & Perk (2001) and Chan, Guttmann, Nickel & Perk (2011) on the basis of high- and low-temperature expansions (300+ terms!) give the following conjecture for the critical point behavior: Set $\tau = \frac{1}{2}(\sqrt{k} - 1\sqrt{k})$

$$\tilde{\chi}_{+} := k_{B} T \chi_{+} = C_{0+} |\tau|^{-7/4} \mathcal{F}_{+} + \mathcal{B}$$

where \mathcal{B} is of the form ("short-distance" terms)

$$\mathcal{B} = \sum_{q=0}^{\infty} \sum_{p=0}^{\lfloor \sqrt{q} \rfloor} b^{(p,q)} (\log | au|)^p au^q$$

with numerical approximations to $b^{(p,q)}$, $p \le 5$, and

$$\mathcal{F}_{\pm} = k^{\frac{1}{4}} \left[1 + \frac{\tau^{2}}{2} - \frac{\tau^{4}}{12} + \left(\frac{647}{15360} - \frac{7C_{6\pm}}{5} \right) \tau^{6} - \left(\frac{296813}{11059200} - \frac{4973C_{6\pm}}{3600} \right) \tau^{8} + \left(\frac{23723921}{1238630400} - \frac{100261C_{6\pm}}{115200} - \frac{793C_{10\pm}}{210} \right) \tau^{10} + \cdots \right]$$

with high-precision decimal estimates for $C_{6\pm}$ and $C_{10\pm}$,

Diagonal susceptibility: A simpler problem⁷

From now on we restrict to $T < T_c$:

$$\beta \chi_d = \sum_{N \in \mathbb{Z}} \left[\langle \sigma_{00} \sigma_{NN} \rangle - \mathcal{M}_0^2 \right]$$

⁷First introduced by Assis, Boukraa, Hassani, van Hoeiji, Maillard & McCoy (2012).

Diagonal susceptibility: A simpler problem⁷

From now on we restrict to $T < T_c$:

$$\beta \chi_d = \sum_{N \in \mathbb{Z}} \left[\langle \sigma_{00} \sigma_{NN} \rangle - \mathcal{M}_0^2 \right]$$

$$\langle \sigma_{00}\sigma_{NN}\rangle = \det(T_N(\varphi)) \stackrel{\text{GCBO}}{=} \mathcal{M}_0^2 \det(I - K_N)$$

$$K_N = H_N(\Lambda)H_N(\Lambda^{-1}), \ \Lambda(\xi) = \varphi_-(\xi)/\varphi_+(\xi) = \sqrt{(1 - k\xi)(1 - k/\xi)}.$$

Here $\varphi = \varphi_+ \cdot \varphi_-$ is the Wiener-Hopf factorization of φ and $H_N(\psi)$ is the Hankel operator with entries $(\psi_{N+i+j+1})_{i,j\geq 0}$.

Sum to be analyzed:

$$\mathcal{S} := \sum_{N=1}^{\infty} \left[\det(I - K_N) - 1 \right].$$

⁷First introduced by Assis, Boukraa, Hassani, van Hoeiji, Maillard & McCoy (2012).

Proposition (T–Widom): Let $H_N(du)$ and $H_N(dv)$ be two Hankel matrices acting on $\ell^2(\mathbb{Z}^+)$ with i,j entries

$$\int x^{N+i+j} du(x), \quad \int y^{N+i+j} dv(y)$$

respectively, where u and v are measures supported inside the unit circle. Set $K_N = H_N(du)H_N(dv)$. Then

$$\sum_{N=1}^{\infty} \left[\det(I - K_N) - 1 \right] = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \int \cdots \int \frac{\prod_i x_i y_i}{1 - \prod_i x_i y_i} \times \left(\det \left(\frac{1}{1 - x_i y_j} \right) \right)^2 \prod_i du(x_i) dv(y_i)$$

Proposition (T–Widom): Let $H_N(du)$ and $H_N(dv)$ be two Hankel matrices acting on $\ell^2(\mathbb{Z}^+)$ with i,j entries

$$\int x^{N+i+j} du(x), \ \int y^{N+i+j} dv(y)$$

respectively, where u and v are measures supported inside the unit circle. Set $K_N = H_N(du)H_N(dv)$. Then

$$\sum_{N=1}^{\infty} \left[\det(I - K_N) - 1 \right] = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \int \cdots \int \frac{\prod_i x_i y_i}{1 - \prod_i x_i y_i} \times \left(\det \left(\frac{1}{1 - x_i y_j} \right) \right)^2 \prod_i du(x_i) dv(y_i)$$

Ideas in proof:

- 1. First use Fredholm expansion of $det(I K_N)$.
- 2. Then use the Andréief identity:

$$\int \cdots \int \det(\phi_j(x_k))_{j,k=1,\ldots,N} \cdot \det(\psi_j(x_k))_{j,k=1,\ldots,N} \, dx_1 \cdots dx_N = N! \det(\int \phi_j(x) \psi_k(x) \, dx)_{j,k=1,\ldots,N}$$

3. Symmetrization argument

$$S_{n} = \frac{1}{(n!)^{2}} \frac{\kappa^{2n}}{\pi^{2n}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\prod_{i} x_{i} y_{i}}{1 - \kappa^{n} \prod_{i} x_{i} y_{i}} \left(\det \left(\frac{1}{1 - \kappa x_{i} y_{j}} \right) \right)^{2} \times \prod_{i} \frac{\Lambda_{1}(x_{i})}{\Lambda_{1}(y_{i})} \prod_{i} dx_{i} dy_{i}$$

where

$$\kappa := k^2$$
 and $\Lambda_1(x) = \sqrt{\frac{(1-x)(1-\kappa x)}{x}}$

$$\mathcal{S}_{n} = \frac{1}{(n!)^{2}} \frac{\kappa^{2n}}{\pi^{2n}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\prod_{i} x_{i} y_{i}}{1 - \kappa^{n} \prod_{i} x_{i} y_{i}} \left(\det \left(\frac{1}{1 - \kappa x_{i} y_{j}} \right) \right)^{2} \times \prod_{i} \frac{\Lambda_{1}(x_{i})}{\Lambda_{1}(y_{i})} \prod_{i} dx_{i} dy_{i}$$

where

$$\kappa := k^2$$
 and $\Lambda_1(x) = \sqrt{\frac{(1-x)(1-\kappa x)}{x}}$

Alternate representation of S_n (Cauchy determinant identity):

$$\bigstar \frac{1}{(n!)^2} \frac{\kappa^{n(n+1)}}{\pi^{2n}} \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{1 - \kappa^n \prod_i x_i y_i} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

$$\mathcal{S}_{n} = \frac{1}{(n!)^{2}} \frac{\kappa^{2n}}{\pi^{2n}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\prod_{i} x_{i} y_{i}}{1 - \kappa^{n} \prod_{i} x_{i} y_{i}} \left(\det \left(\frac{1}{1 - \kappa x_{i} y_{j}} \right) \right)^{2} \times \prod_{i} \frac{\Lambda_{1}(x_{i})}{\Lambda_{1}(y_{i})} \prod_{i} dx_{i} dy_{i}$$

where

$$\kappa := k^2$$
 and $\Lambda_1(x) = \sqrt{\frac{(1-x)(1-\kappa x)}{x}}$

Alternate representation of S_n (Cauchy determinant identity):

$$\bigstar \frac{1}{(n!)^2} \frac{\kappa^{n(n+1)}}{\pi^{2n}} \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{1 - \kappa^n \prod_i x_i y_i} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

Theorem (T–Widom): The unit circle $|\kappa|=1$ is a natural boundary for \mathcal{S} .

$$\mathcal{S}_{n} = \frac{1}{(n!)^{2}} \frac{\kappa^{2n}}{\pi^{2n}} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\prod_{i} x_{i} y_{i}}{1 - \kappa^{n} \prod_{i} x_{i} y_{i}} \left(\det \left(\frac{1}{1 - \kappa x_{i} y_{j}} \right) \right)^{2} \times \prod_{i} \frac{\Lambda_{1}(x_{i})}{\Lambda_{1}(y_{i})} \prod_{i} dx_{i} dy_{i}$$

where

$$\kappa := k^2$$
 and $\Lambda_1(x) = \sqrt{\frac{(1-x)(1-\kappa x)}{x}}$

Alternate representation of S_n (Cauchy determinant identity):

$$\bigstar \frac{1}{(n!)^2} \frac{\kappa^{n(n+1)}}{\pi^{2n}} \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{1 - \kappa^n \prod_i x_i y_i} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

Theorem (T–Widom): The unit circle $|\kappa|=1$ is a natural boundary for $\mathcal{S}.$ Proof proceeds by four lemmas.

Let $\epsilon \neq 1$ be a *n*th root of unity and we wish to consider behavior of $\mathcal S$ as $\kappa \to \epsilon$ radially. Look at $d^\ell \mathcal S_n/d\kappa^\ell$ —main contribution will come from

$$\bigstar \bigstar \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{(1 - \kappa^n \prod_i x_i y_i)^{\ell+1}} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

Let $\epsilon \neq 1$ be a *n*th root of unity and we wish to consider behavior of $\mathcal S$ as $\kappa \to \epsilon$ radially. Look at $d^\ell \mathcal S_n/d\kappa^\ell$ —main contribution will come from

$$\bigstar \star \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{(1 - \kappa^n \prod_i x_i y_i)^{\ell+1}} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

Lemma 1: The integral $\bigstar \bigstar$ is bounded when $\ell < 2n^2 - 1$ and it is of order $\log(1 - |\kappa|)^{-1}$ when $\ell = 2n^2 - 1$.

Main idea: Various approximations bound ★★ by the integral

$$\int_0^{2n\delta} r^{2n^2-\ell-2} dr$$

which will give first part of lemma.

Let $\epsilon \neq 1$ be a *n*th root of unity and we wish to consider behavior of $\mathcal S$ as $\kappa \to \epsilon$ radially. Look at $d^\ell \mathcal S_n/d\kappa^\ell$ —main contribution will come from

$$\bigstar \star \int_0^1 \cdots \int_0^1 \frac{\prod_i x_i y_i}{(1 - \kappa^n \prod_i x_i y_i)^{\ell+1}} \frac{\Delta(x)^2 \Delta(y)^2}{\prod_{i,j} (1 - \kappa x_i y_j)^2} \prod_i \frac{\Lambda_1(x_i)}{\Lambda_1(y_i)} dx_i dy_i$$

Lemma 1: The integral $\bigstar \bigstar$ is bounded when $\ell < 2n^2 - 1$ and it is of order $\log(1 - |\kappa|)^{-1}$ when $\ell = 2n^2 - 1$.

Main idea: Various approximations bound ★★ by the integral

$$\int_0^{2n\delta} r^{2n^2-\ell-2} dr$$

which will give first part of lemma.

Lemma 2:

$$(\frac{d}{d\kappa})^{2n^2-1}\mathcal{S}_n \approx \log(1-\kappa)^{-1}$$

In differentiating \bigstar the other terms are O(1).

Lemma 3: If $\epsilon^m \neq 1$, then

$$\left(\frac{d}{d\kappa}\right)^{2n^2-1}\mathcal{S}_m=\mathrm{O}(1).$$

All integrals are bounded as $\kappa \to \epsilon$.

Lemma 3: If $\epsilon^m \neq 1$, then

$$\left(\frac{d}{d\kappa}\right)^{2n^2-1}\mathcal{S}_m=\mathrm{O}(1).$$

All integrals are bounded as $\kappa \to \epsilon$.

Lemma 4: (Main lemma)

$$\sum_{m>n} \left(\frac{d}{d\kappa}\right)^{2n^2-1} \mathcal{S}_m = \mathcal{O}(1)$$

For κ sufficiently close to ϵ , all integrals we get by differentiating the integrals for \mathcal{S}_m are at most $A^m m^m$. (A can depend upon n but not on m.) The extra $(m!)^2$ appearing in \bigstar gives a bounded sum.

What about χ ?

For $T < T_c$:

$$\begin{split} \beta^{-1}\chi_{-} &= \sum_{M,N\in\mathbb{Z}} \left[\langle \sigma_{00}\sigma_{MN} \rangle - \mathcal{M}_{0}^{2} \right] = \mathcal{M}_{0}^{2} \sum_{M,N\in\mathbb{Z}} \left[\det(I - K_{M,N}) - 1 \right] \\ &= \mathcal{M}_{0}^{2} \sum_{n=1}^{\infty} \chi^{(2n)} \end{split}$$

In the last equality we used the Fredholm expansion and product formulas for the determinants appearing in the integrands to find

What about χ ?

For $T < T_c$:

$$\begin{split} \beta^{-1}\chi_{-} &= \sum_{M,N\in\mathbb{Z}} \left[\langle \sigma_{00}\sigma_{MN} \rangle - \mathcal{M}_{0}^{2} \right] = \mathcal{M}_{0}^{2} \sum_{M,N\in\mathbb{Z}} \left[\det(I - K_{M,N}) - 1 \right] \\ &= \mathcal{M}_{0}^{2} \sum_{n=1}^{\infty} \chi^{(2n)} \end{split}$$

In the last equality we used the Fredholm expansion and product formulas for the determinants appearing in the integrands to find

$$\chi^{(n)}(s) = \frac{1}{n!} \frac{1}{(2\pi i)^{2n}} \int_{\mathcal{C}_r} \cdots \int_{\mathcal{C}_r} \frac{(1 + \prod_j x_j^{-1})(1 + \prod_j y_j^{-1})}{(1 - \prod_j x_j)(1 - \prod_j y_j)} \times \prod_{j < k} \frac{(x_j - x_k)(y_j - y_k)}{(x_j x_k - 1)(y_j y_k - 1)} \prod_j \frac{dx_j dy_j}{D(x_j, y_j; s)}$$

$$D(x, y; s) = s + s^{-1} - (x + x^{-1})/2 - (y + y^{-1})/2, \quad s := 1/\sqrt{k}$$

Nickel Singularities

Standard estimates show that $\chi_{-}(s)$ is holomorphic for |s| > 1 (|k| < 1).

Definition: A *Nickel singularity* of order n is a point s^0 on the unit circle such that the real part of s^0 is the average of the real parts of two nth roots of unity.

Note that D(x, y; s) vanishes when

$$\Re(s) = \frac{\Re(x) + \Re(y)}{2}$$

Theorem (T–Widom) When n is even $\chi^{(n)}$ extends to a C^{∞} function on the unit circle except at the Nickel singularities of order n.

▶ A partition of unity allows one to localize.

- A partition of unity allows one to localize.
- ▶ Each potential singular factor in the integrand of $\chi^{(n)}$ is represented as an exponential integral over \mathbb{R}^+ .

- A partition of unity allows one to localize.
- ▶ Each potential singular factor in the integrand of $\chi^{(n)}$ is represented as an exponential integral over \mathbb{R}^+ .
- ► The gradient of the exponent in the resulting integrand is approximately a linear combination with positive coefficients of certain vectors—one from each factor.

- A partition of unity allows one to localize.
- ▶ Each potential singular factor in the integrand of $\chi^{(n)}$ is represented as an exponential integral over \mathbb{R}^+ .
- ► The gradient of the exponent in the resulting integrand is approximately a linear combination with positive coefficients of certain vectors—one from each factor.
- ▶ Unless *s* is a Nickel singularity the convex hull of these vectors does not contain 0—this allows a lower bound for the length of the gradient.

- A partition of unity allows one to localize.
- ▶ Each potential singular factor in the integrand of $\chi^{(n)}$ is represented as an exponential integral over \mathbb{R}^+ .
- ► The gradient of the exponent in the resulting integrand is approximately a linear combination with positive coefficients of certain vectors—one from each factor.
- ▶ Unless *s* is a Nickel singularity the convex hull of these vectors does not contain 0—this allows a lower bound for the length of the gradient.
- ▶ Application of the divergence theorem gives the bound O(1)—same bound after differentiating with with respect to s any number of times.

- A partition of unity allows one to localize.
- ▶ Each potential singular factor in the integrand of $\chi^{(n)}$ is represented as an exponential integral over \mathbb{R}^+ .
- ► The gradient of the exponent in the resulting integrand is approximately a linear combination with positive coefficients of certain vectors—one from each factor.
- ▶ Unless *s* is a Nickel singularity the convex hull of these vectors does not contain 0—this allows a lower bound for the length of the gradient.
- ▶ Application of the divergence theorem gives the bound O(1)—same bound after differentiating with with respect to s any number of times.
- ▶ Follows that $\chi^{(n)}$ extends to a C^{∞} function excluding the Nickel singularities.

Remarks:

▶ What we don't have is a "Lemma 4" that says the sum of the other terms don't cancel the Nickel singularities.

Remarks:

- ▶ What we don't have is a "Lemma 4" that says the sum of the other terms don't cancel the Nickel singularities.
- It appears that $\chi^{(n)}$ satisfies a linear differential equation with only regular singular points. (This follows from work of Kashiwara.) Using this result we get that for n even $\chi^{(n)}$ extends analytically across the unit circle except at the Nickel singularities.

Remarks:

- ▶ What we don't have is a "Lemma 4" that says the sum of the other terms don't cancel the Nickel singularities.
- It appears that $\chi^{(n)}$ satisfies a linear differential equation with only regular singular points. (This follows from work of Kashiwara.) Using this result we get that for n even $\chi^{(n)}$ extends analytically across the unit circle except at the Nickel singularities.

Thank you for your attention!