CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1	1. (currently amended) A method of configuring a network security system,
2	comprising:
3	a. forming a registry data structure for defining roles within a
4	network;
5	b. mapping network security policies to the registry data structure,
6	said network security policies being contained in one or more policy
7	documents, the one or more policy documents being in a standard document
8	format language and being stored in machine readable form; and
9	c. using a document transformation algorithm to transform the
10	policy documents into one or more device-specific configuration documents
11	stored in machine-readable form.
1	2. (original) The method according to claim 1, further comprising generating
2	instances of the roles and associated security policies, each instance being
3	mapped to physical segments of the network.
1	3. (original) The method according to claim 1, further comprising distributing
2	the device-specific configuration documents to network entities for
3	implementing the network security policies.
1	4. (original) The method according to claim 1, wherein the registry data
2	structure comprises a collection of documents that include information
3	regarding the network roles and topology of the network.
1	5. (original) The method according to claim 1, wherein the registry data
2	structure comprises a hierarchy of network types, each type comprising a
3	definition of a network role.

1 6. (original) The method according to claim 5, wherein each network role is 2 representative of a set of applications to be supported by the network. 1 7. (original) The method according to claim 5, wherein when a parent 2 network type is mapped to a policy contained in one of the policy documents, 3 a child network type of the parent network type inherits the policy. 1 8. (currently amended) The method according to claim 7, wherein when the child network type is mapped to a policy contained in one of the policy 2 3 documents that is in conflict with the policy inherited from the parent, the policy mapped to the child takes precedence over the policy inherited from the 4 5 parent. 1 9. (original) The method according to claim 5, wherein an instance of one of 2 the network types is mapped to one or more physical network segments and 3 wherein the network type includes a set of data fields for defining the physical 4 network segments. 1 10. (currently amended) The method according to claim 6, wherein at least 2 one of the network types is an abstract type without an instance mapped to a 3 physical network segment. 1 11. (original) The method according to claim 5, wherein each network type 2 further comprises a data field for identifying a human administrator. 1 12. (original) The method according to claim 5, wherein each network type 2 further comprises a data field for providing a human readable description of 3 the network type. 1 13. (original) The method according to claim 1, wherein the network security 2 policies are representative of restrictions to be placed on one or more of the 3 network roles in the registry data structure.

1	14. (original) The method according to claim 1, wherein the policy
2	documents are in extensible markup language (XML).
1	15. (original) The method according to claim 1, wherein the document
2	transformation algorithm is specific to a network entity utilized for
3	implementing one or more of the security policies contained in the policy
4	documents.
1	16. (original) The method according to claim 15, wherein the document
2	transformation algorithm includes style sheet language for transformation
3	(XSLT) controlled by a script.
1	17. (original) The method according to claim 16, wherein the script is
2	specific to a network entity.
1	18. (original) The method according to claim 16, further comprising a step of
2	selecting the script from among a plurality of scripts, each being specific to a
3	different network entity.
1	19. (original) The method according to claim 16, wherein the device-specific
2	configuration documents are in plain text format.
1	20. (currently amended) A apparatus for configuring a network security
2	system, comprising:
3	a. a registry data structure including a plurality of network types,
4	each network type being stored within a document in the registry and
5	including a role definition and a set of fields defining segments of a network;
6	b. security policy documents mapped to the registry data
7	structure, each security policy document being in a standard document format
8	language and being representative of restrictions to be placed on a network
9	type in the registry data structure; and
10	c. a document transformation algorithm for transforming the
11	documents in the registry and the policy documents into device-specific
12	configuration documents stored in machine-readable form.