CSE565 Reliability Prediction Tools

Yu Chang ychan175@asu.edu

I. Tool 1: SFRAT

- 1. The Software Failure and Reliability Assessment Tool (SFRAT) is a software reliability modeling tool designed to estimate and predict the reliability of a software system. It creates reliability growth curves and provides tools for visualization and modeling to aid decision-making.
- 2. SFRAT accepts the following input
 - i. Inter-failure Times: Failure Number (FN), Interval Time (IF), and Total Time (FT). It is applicable to models such as Moranda's Geometric Model and Jelinski-Moranda Model.

FN	IF	FT
1	3	3
2	30	33
3	113	146
4	81	227
5	115	342

ii. Failure Counts: Test Time (T), Failures in Interval (FC), and Cumulative Failures (CFC). It is applicable to models such as Inflection S-Shape Model.

T	FC	CFC
1	6	6
3	1	7
4.5	1	8
6	0	8
7	1	9

- SFRAT analyzes failure data trends and applies data to various reliability models for failure predictions and evaluating model performance.
- 4. All models provided by SFRAT are reliability growth models, which assume that fixing defects

improves reliability over time without introducing new issues. Some other models, like Jelinski-Moranda Model, assume that the number of errors is fixed.

II. Tool 2: SMERFS Cubed

- SMERFS Cubed is the newest evolution of Statistical Modeling and Estimation of Reliability
 Functions for Systems. It allows the user to do hardware, software, and/or total systems reliability
 analyses.
- 2. SMERFS includes 11 models, of which six models use the time between error occurrences as input data and five models use the number of errors detected per testing period. SMERFS Cubed adds 6 models for Hardware Reliability Analysis and 2 models for System Reliability Assessment.
- SMERFS provides preliminary model analysis to identify suitable candidate models, and can also perform model fitting and assess model adequacy.
- 4. Similar to SFRAT, many models assume that failure rates are homogeneous or follow specific trends over time.

III. Using tool: SFRAT

 Goel-Okumoto model assumes that fixing defects improves reliability over time without introducing new issues, while the Jelinski-Moranda model assume that the number of errors is fixed.

2. Input data

FN	IF	FT	FN	IF	FT	FN	IF	FT
1	3	3	26	180	3278	51	148	10237
2	30	33	27	10	3288	52	21	10258
3	113	146	28	1146	4434	53	233	10491
4	81	227	29	600	5034	54	134	10625
5	115		30	15	5049	55	357	10982
6	9	351	31	36	5085	56	193	11175
7	2	353	32	4	5089	57	236	11411
8	91	444	33	0	5089	58	31	11442
9	112	556	34	8	5097	59	369	11811
10	15	571	35	227	5324	60	748	12559
11	138	709	36	65	5389	61	0	12559
12	50	759	37	176	5565	62	232	12791
13	77	836	38	58	5623	63	330	13121
14	24	860	39	457	6080	64	365	13486
15	108	968	40	300	6380	65	1222	14708
16	88	1056	41	97	6477	66	543	15251
17	670	1726	42	263	6740	67	10	15261
18	120	1846	43	452	7192	68	16	15277
19	26	1872	44	255	7447	69	529	15806
20	114	1986	45	197	7644	70	379	16185
21	325	2311	46	193	7837	71	44	16229
22	55	2366	47	6	7843	72	129	16358
23	242	2608	48	79	7922	73	810	17168
24	68	2676	49	816	8738	74	290	17458
25	422	3098	50	1351	10089	75	300	17758

3. Result

Model	Time for R = 0.9 (mission length 300)	Failures for next 300 time units		
Goel-Okumoto	15104.326	0.449	76	3678.953
Jelinski-Moranda	21099.706	0.566	76	744.838

Model	AIC	PSSE 90% Data
Goel-Okumoto	964.53	48.166
Jelinski-Moranda	962.157	72.247

IV. References

1 L. Fiondella, "Research on Software Reliability," [Online]. Available:

https://lfiondella.sites.umassd.edu/research/software-reliability/. [Accessed: Dec. 1, 2024].

2 NASA, "Software Reliability Assessment Tools," NASA Technical Report, 2019. [Online]. Available:

https://ntrs.nasa.gov/api/citations/20190002488/downloads/20190002488.pdf. [Accessed: Dec. 1, 2024].

3 L. Fiondella, "SFRAT User Guide," GitHub Repository, [Online]. Available: https://github.com/LanceFiondella/DSSL-

Resources/blob/main/SFRAT/SFRAT_user_guide.pdf. [Accessed: Dec. 1, 2024].

4 L. Fiondella, "SFRAT: Software Reliability Assessment Tool," GitHub Repository, [Online]. Available:

https://github.com/LanceFiondella/SFRAT. [Accessed: Dec. 1, 2024].

5 "SMERFS: Statistical Modeling and Estimation of Reliability Functions for Systems," Slingcode, [Online]. Available:

https://www.slingcode.com/smerfs/. [Accessed: Dec. 1, 2024].

6 "SMERFS Overview," Slingcode, [Online]. Available: https://www.slingcode.com/smerfs/overview.php. [Accessed: Dec.

1, 2024].

7 "SMERFS Comparison," Slingcode, [Online]. Available: https://www.slingcode.com/smerfs/compare.php. [Accessed:

Dec. 1, 2024].