

SEQUENCE LISTING

<110> Wright, David A.
Voytas, Daniel F.

<120> Plant Retroelements and Methods Related Thereto

<130> P-1065A

<140>
<141>

<150> 60/087125
<151> 1998-05-29

<150> 09/322478
<151> 1999-05-28

<160> 165

<170> PatentIn Ver. 2.1

<210> 1
<211> 18
<212> DNA
<213> Glycine max

<400> 1
tggcgccgtt gccaaattg

18

<210> 2
<211> 18
<212> DNA
<213> Glycine max

<400> 2
tggcgccgtt gtcggggga

18

<210> 3
<211> 6
<212> DNA
<213> Glycine max

<400> 3
ttgggg

6

<210> 4
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 4
Met Ala Ser Arg Lys Arg Lys
1 5

<210> 5
<211> 1263
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 5
atggcctccc gtaaacgcaa agctgtgccc acacccgggg aagcgccaa ctggactct 60
tcacgttca ctttcgagat tgcttggcac agataccagg atagcattca gctccggAAC 120
atccttccag agaggaatgt agagcttggc ccagggatgt ttgatgagtt cctgcaggaa 180
ctccagaggc tcagatggc ccaggttctg acccgacttc cagagaagtg gattgatgtt 240
gctctggta aggagttta ctccaaccta tatgatccag aggaccacag tccgaagttt 300
tggagtgttc gaggacaggt tgtgagattt gatgctgaga cgattaatga tttcctcgac 360
accccggtca tcttggcaga gggagaggat tatccagcct actctcagta cctcagcact 420
cctccagacc atgatgccat cctttccgt ctgtgtactc cagggggacg atttgttctg 480
aatgttgata gtgccccctg gaagctgtc cggaaggatc tgatgacgct cgccgcagaca 540
tggagtgtgc tctcttattt taaccttgca ctgacttttc acacttctga tattaaatgtt 600
gacagggccc gactcaatta tggcttggtg atgaagatgg acctggacgt gggcagcctc 660
atttctcttc agatcagtca gatcgccag tccatcaattt ccaggcttgg gttcccagcg 720
ttgatcacaactt cactgtgtga gattcagggg gttgtctctg ataccctgat tttttagtca 780
ctcagtcctg tgatcaacact tgcctacatt aagaagaact gctggAACCC tgccgatcca 840
tctatcacat ttcaggggac ccggccgcacg cgccaccagag ctgcggcgac ggcacatctgag 900
gctcccttc catcccagca tccttctcag ccttttccc agagaccacg gcctccactt 960
ctatccacact cagcacctcc atacatgcat ggacagatgc tcagggctt gtaccagggt 1020
cagcagatca tcattcagaa cctgtatcga ttgtccctac atttgcagat ggatctgcca 1080
ctcatgactc cggaggccta tcgtcagcag gtcggcaagc taggagacca gccctccact 1140
gacagggggg aagagccttc tggagccgct gctactgagg atcctggcgt tgatgaagac 1200
ctcatagctg acttggctgg cgctgattgg agcccatggg cagacttggg cagaggcagc 1260
tga 1263

<210> 6
<211> 421
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 6
Met Ala Ser Arg Lys Arg Lys Ala Val Pro Thr Pro Gly Glu Ala Ser
1 5 10 15

Asn Trp Asp Ser Ser Arg Phe Thr Phe Glu Ile Ala Trp His Arg Tyr
20 25 30

Gln Asp Ser Ile Gln Leu Arg Asn Ile Leu Pro Glu Arg Asn Val Glu
35 40 45

Leu Gly Pro Gly Met Phe Asp Glu Phe Leu Gln Glu Leu Gln Arg Leu
50 55 60

Arg Trp Asp Gln Val Leu Thr Arg Leu Pro Glu Lys Trp Ile Asp Val
65 70 75 80

Ala Leu Val Lys Glu Phe Tyr Ser Asn Leu Tyr Asp Pro Glu Asp His
85 90 95

Ser Pro Lys Phe Trp Ser Val Arg Gly Gln Val Val Arg Phe Asp Ala
100 105 110

Glu Thr Ile Asn Asp Phe Leu Asp Thr Pro Val Ile Leu Ala Glu Gly
115 120 125

Glu Asp Tyr Pro Ala Tyr Ser Gln Tyr Leu Ser Thr Pro Pro Asp His
130 135 140

Asp Ala Ile Leu Ser Ala Leu Cys Thr Pro Gly Gly Arg Phe Val Leu
145 150 155 160

Asn Val Asp Ser Ala Pro Trp Lys Leu Leu Arg Lys Asp Leu Met Thr
165 170 175

Leu Ala Gln Thr Trp Ser Val Leu Ser Tyr Phe Asn Leu Ala Leu Thr
180 185 190

Phe His Thr Ser Asp Ile Asn Val Asp Arg Ala Arg Leu Asn Tyr Gly

195	200	205
Leu Val Met Lys Met Asp Leu Asp Val Gly Ser Leu Ile Ser Leu Gln		
210	215	220
Ile Ser Gln Ile Ala Gln Ser Ile Thr Ser Arg Leu Gly Phe Pro Ala		
225	230	235
240		
Leu Ile Thr Thr Leu Cys Glu Ile Gln Gly Val Val Ser Asp Thr Leu		
245	250	255
Ile Phe Glu Ser Leu Ser Pro Val Ile Asn Leu Ala Tyr Ile Lys Lys		
260	265	270
Asn Cys Trp Asn Pro Ala Asp Pro Ser Ile Thr Phe Gln Gly Thr Arg		
275	280	285
Arg Thr Arg Thr Arg Ala Ser Ala Ser Ala Ser Glu Ala Pro Leu Pro		
290	295	300
Ser Gln His Pro Ser Gln Pro Phe Ser Gln Arg Pro Arg Pro Pro Leu		
305	310	315
320		
Leu Ser Thr Ser Ala Pro Pro Tyr Met His Gly Gln Met Leu Arg Ser		
325	330	335
Leu Tyr Gln Gly Gln Gln Ile Ile Gln Asn Leu Tyr Arg Leu Ser		
340	345	350
Leu His Leu Gln Met Asp Leu Pro Leu Met Thr Pro Glu Ala Tyr Arg		
355	360	365
Gln Gln Val Ala Lys Leu Gly Asp Gln Pro Ser Thr Asp Arg Gly Glu		
370	375	380
Glu Pro Ser Gly Ala Ala Ala Thr Glu Asp Pro Ala Val Asp Glu Asp		
385	390	395
400		
Leu Ile Ala Asp Leu Ala Gly Ala Asp Trp Ser Pro Trp Ala Asp Leu		
405	410	415
Gly Arg Gly Ser Glx		
420		

<210> 7
<211> 1596
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 7

atgcgaggta gaactgcac tggagacgtt gttcctatta acttagaaat tgaagctacg 60
tgtcgccgta acaacgctgc aagaagaaga agggagcaag acatagaagg aagttagttac 120
acctcaccc tccttcctcc aaattatgct cagatggacg gggAACCGC acaaagagtc 180
acactagagg acttctctaa taccaccact cctcagttct ttacaagtat cacaaggccg 240
gaagtccaag cagatctcct tactcaaggg aacctttcc atggcttcc aaatgaagat 300
ccatatgcgc atctagcctc atacatacag atatgcagca ccgtaaaat cgccggagtt 360
ccaaaagatg cgatactcct taacctctt tcctttccc tagcaggaga ggcaaaaaga 420
tggttgcaact cctttaaagg caatagctt agaacatggg aagaagtatg gaaaaattc 480
ttaaagaagt atttcccaga gtcaaagacc gtcaacgaa agatggagat ttcttatttc 540
catcaatttc tggatgaatc ccttagcga gcactagacc atttccacgg attgctaaga 600
aaaacaccaa cacacagata cagcgagcca gtacaactaa acatattcat cgatgacttg 660
caactcttaa tcgaaaacagc tactagaggg aagatcaagc tgaagactcc cgaagaagcg 720
atggagctcg tcgagaacat ggcggctagc gatcaagcaa tccttcatga tcacacttat 780
gttcccacaa aaagaagcct cttggagctt agcacgcagg acgcaacttt ggtacaaaac 840
aagctgttga cgagggcagat agaaggccctc atcgaaaccc tcagcaagct gcctcaacaa 900
ttacaagcga taagttcttccactctt gtttgcagg tagaagaatg ccccacatgc 960
agagggacac atgagcctgg acaatgtcga agccaacaag acccctctcg tgaagtaaat 1020
tatataaggca tactaaatcg ttacggattt cagggctaca accagggaaa tccatctgga 1080
ttcaatcaag gggcaacaag atttaatcac gagccaccgg ggttaatca aggaagaaac 1140
ttcatgcaag gctcaagttg gacgataaaa ggaatcaat ataaggagca aaggaaccaa 1200
ccaccatacc agccaccata ccagcaccc agccaaggc cgaatcagca agaaaagccc 1260
acccaaatag aggaactgct gctcaattc atcaaggaga caagatcaca tcaaaagagc 1320
acggatgcag ccattcggaa tctagaagtt caaatgggcc aactggcgca tgacaaagcc 1380
gaacggccca ctagaacttt cggtgctaac atggagagaa gaaccccaag gaaggataaa 1440
gcagttactga cttagagggca gagaagagcg caggaggagg gtaaggttga aggagaagac 1500
tggccagaag aaggaaggac agagaagaca gaagaagaag agaaggtggc agaagaaccc 1560
aagcgtacca agagccagag agcaaggaa gccaaag 1596

<210> 8

<211> 532

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 8

Met Arg Gly Arg Thr Ala Ser Gly Asp Val Val Pro Ile Asn Leu Glu

1

5

10

15

Ile Glu Ala Thr Cys Arg Arg Asn Asn Ala Ala Arg Arg Arg Arg Glu
20 25 30

Gln Asp Ile Glu Gly Ser Ser Tyr Thr Ser Pro Pro Pro Ser Pro Asn
35 40 45

Tyr Ala Gln Met Asp Gly Glu Pro Ala Gln Arg Val Thr Leu Glu Asp
50 55 60

Phe Ser Asn Thr Thr Pro Gln Phe Phe Thr Ser Ile Thr Arg Pro
65 70 75 80

Glu Val Gln Ala Asp Leu Leu Thr Gln Gly Asn Leu Phe His Gly Leu
85 90 95

Pro Asn Glu Asp Pro Tyr Ala His Leu Ala Ser Tyr Ile Glu Ile Cys
100 105 110

Ser Thr Val Lys Ile Ala Gly Val Pro Lys Asp Ala Ile Leu Leu Asn
115 120 125

Leu Phe Ser Phe Ser Leu Ala Gly Glu Ala Lys Arg Trp Leu His Ser
130 135 140

Phe Lys Gly Asn Ser Leu Arg Thr Trp Glu Glu Val Val Glu Lys Phe
145 150 155 160

Leu Lys Lys Tyr Phe Pro Glu Ser Lys Thr Val Glu Arg Lys Met Glu
165 170 175

Ile Ser Tyr Phe His Gln Phe Leu Asp Glu Ser Leu Ser Glu Ala Leu
180 185 190

Asp His Phe His Gly Leu Leu Arg Lys Thr Pro Thr His Arg Tyr Ser
195 200 205

Glu Pro Val Gln Leu Asn Ile Phe Ile Asp Asp Leu Gln Leu Leu Ile
210 215 220

Glu Thr Ala Thr Arg Gly Lys Ile Lys Leu Lys Thr Pro Glu Glu Ala
225 230 235 240

Met Glu Leu Val Glu Asn Met Ala Ala Ser Asp Gln Ala Ile Leu His
245 250 255

Asp His Thr Tyr Val Pro Thr Lys Arg Ser Leu Leu Glu Leu Ser Thr
260 265 270

Gln Asp Ala Thr Leu Val Gln Asn Lys Leu Leu Thr Arg Gln Ile Glu
275 280 285

Ala Leu Ile Glu Thr Leu Ser Lys Leu Pro Gln Gln Leu Gln Ala Ile
290 295 300

Ser Ser Ser His Ser Ser Val Leu Gln Val Glu Glu Cys Pro Thr Cys
305 310 315 320

Arg Gly Thr His Glu Pro Gly Gln Cys Ala Ser Gln Gln Asp Pro Ser
325 330 335

Arg Glu Val Asn Tyr Ile Gly Ile Leu Asn Arg Tyr Gly Phe Gln Gly
340 345 350

Tyr Asn Gln Gly Asn Pro Ser Gly Phe Asn Gln Gly Ala Thr Arg Phe
355 360 365

Asn His Glu Pro Pro Gly Phe Asn Gln Gly Arg Asn Phe Met Gln Gly
370 375 380

Ser Ser Trp Thr Asn Lys Gly Asn Gln Tyr Lys Glu Gln Arg Asn Gln
385 390 395 400

Pro Pro Tyr Gln Pro Pro Tyr Gln His Pro Ser Gln Gly Pro Asn Gln
405 410 415

Gln Glu Lys Pro Thr Lys Ile Glu Glu Leu Leu Leu Gln Phe Ile Lys
420 425 430

Glu Thr Arg Ser His Gln Lys Ser Thr Asp Ala Ala Ile Arg Asn Leu
435 440 445

Glu Val Gln Met Gly Gln Leu Ala His Asp Lys Ala Glu Arg Pro Thr
450 455 460

Arg Thr Phe Gly Ala Asn Met Glu Arg Arg Thr Pro Arg Lys Asp Lys
465 470 475 480

Ala Val Leu Thr Arg Gly Gln Arg Arg Ala Gln Glu Glu Gly Lys Val
485 490 495

Glu Gly Glu Asp Trp Pro Glu Glu Gly Arg Thr Glu Lys Thr Glu Glu
500 505 510

Glu Glu Lys Val Ala Glu Glu Pro Lys Arg Thr Lys Ser Gln Arg Ala
515 520 525

Arg Glu Ala Lys

530

<210> 9
<211> 603
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 9
tgtgataaat gccagagaac agggggata tctcgaagaa atgagatgcc tttgcagaat 60
atcatggaag tagagatctt tgactgttg ggcataact tcataggcc ttttcattcg 120
tcatacgga atgtctacat cttggtagct gtggattacg tctccaaatg ggtggaaagcc 180
atagccacgc caaaggacga tgccaggta gtatcaaattt ttctgaagaa gaacattttt 240
tcccgtttt gagtcccacg agcattgatt agtataggg gaacgcactt ctgcaacaat 300
cagttgaaga aagtccctgga gcactataat gtccgacata aggtggccac accttatcac 360
cctcagacaa atggccaagc agaaatttct aacaggagc tcaagcgaat cctggaaaag 420
acagttgcat caacaagaaa ggattggtcc ttgaagctcg atgatgtct ctggccatat 480
aggacagcgt tcaagactcc catcggctta tcaccatttc agctatgtta tggaaaggca 540
tgtcatttac cagtggagct ggagtacaaa gcatattggg ctctcaagtt gctcaacttt 600
gac 603

<210> 10
<211> 201
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 10
Cys Asp Lys Cys Gln Arg Thr Gly Gly Ile Ser Arg Arg Asn Glu Met
1 5 10 15

Pro Leu Gln Asn Ile Met Glu Val Glu Ile Phe Asp Cys Trp Gly Ile
20 25 30

Asp Phe Met Gly Pro Phe Pro Ser Ser Tyr Gly Asn Val Tyr Ile Leu
35 40 45

Val Ala Val Asp Tyr Val Ser Lys Trp Val Glu Ala Ile Ala Thr Pro

50

55

60

Lys Asp Asp Ala Arg Val Val Ile Lys Phe Leu Lys Lys Asn Ile Phe
65 70 75 80

Ser Arg Phe Gly Val Pro Arg Ala Leu Ile Ser Asp Arg Gly Thr His
85 90 95

Phe Cys Asn Asn Gln Leu Lys Lys Val Leu Glu His Tyr Asn Val Arg
100 105 110

His Lys Val Ala Thr Pro Tyr His Pro Gln Thr Asn Gly Gln Ala Glu
115 120 125

Ile Ser Asn Arg Glu Leu Lys Arg Ile Leu Glu Lys Thr Val Ala Ser
130 135 140

Thr Arg Lys Asp Trp Ser Leu Lys Leu Asp Asp Ala Leu Trp Ala Tyr
145 150 155 160

Arg Thr Ala Phe Lys Thr Pro Ile Gly Leu Ser Pro Phe Gln Leu Val
165 170 175

Tyr Gly Lys Ala Cys His Leu Pro Val Glu Leu Glu Tyr Lys Ala Tyr
180 185 190

Trp Ala Leu Lys Leu Leu Asn Phe Asp
195 200

<210> 11

<211> 600

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 11

ttggaggctg ggctcatata ccccatctct gacagcgctt gggtaagccc agtacaggtg 60
gttcccaaga aagggtggaaat gacagtggta cgagatgaga ggaatgactt gataccaaca 120
cgaactgtca ctgggtggcg aatgtgtatc gactatcgca agctgaatga agcccacacgg 180
aaggaccatt tccccttacc tttcatggat cagatgctgg agagacttgc agggcaggca 240
tactactgtt tcttgatgg atactcgaaa tacaaccaga tcgcggtaga ccccagagat 300
caggagaaga cggcctttac atgccccttt ggcgtctttg cttacagaag gatgccattc 360
gggttatgta atgcaccaggc cacatttcag aggtgcattgc tggccatttt ttcagacatg 420
gtggagaaaa gcatcgaggt atttatggac gacttctcggtttttggacc ctcatttgac 480

agctgtttga ggaacctaga gagggtaactt cagaggtgcg aagagactaa cttggtaactg 540
aattgggaaa agtgtcattt catggttcga gagggcatag tccttaggccca caagatctca 600

<210> 12
<211> 200
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 12
Leu Glu Ala Gly Leu Ile Tyr Pro Ile Ser Asp Ser Ala Trp Val Ser
1 5 10 15

Pro Val Gln Val Val Pro Lys Lys Gly Gly Met Thr Val Val Arg Asp
20 25 30

Glu Arg Asn Asp Leu Ile Pro Thr Arg Thr Val Thr Gly Trp Arg Met
35 40 45

Cys Ile Asp Tyr Arg Lys Leu Asn Glu Ala Thr Arg Lys Asp His Phe
50 55 60

Pro Leu Pro Phe Met Asp Gln Met Leu Glu Arg Leu Ala Gly Gln Ala
65 70 75 80

Tyr Tyr Cys Phe Leu Asp Gly Tyr Ser Gly Tyr Asn Gln Ile Ala Val
85 90 95

Asp Pro Arg Asp Gln Glu Lys Thr Ala Phe Thr Cys Pro Phe Gly Val
100 105 110

Phe Ala Tyr Arg Arg Met Pro Phe Gly Leu Cys Asn Ala Pro Ala Thr
115 120 125

Phe Gln Arg Cys Met Leu Ala Ile Phe Ser Asp Met Val Glu Lys Ser
130 135 140

Ile Glu Val Phe Met Asp Asp Phe Ser Val Phe Gly Pro Ser Phe Asp
145 150 155 160

Ser Cys Leu Arg Asn Leu Glu Arg Val Leu Gln Arg Cys Glu Glu Thr
165 170 175

Asn Leu Val Leu Asn Trp Glu Lys Cys His Phe Met Val Arg Glu Gly

180

185

190

Ile Val Leu Gly His Lys Ile Ser
195 200

<210> 13

<211> 858

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 13

aaggaagaac cactagccct tccacaggat ctccccatatac ctatggcacc caccaagaag 60
aacaaggagc gttactttgc acgtttcttg gaaatattca aagggttaga aatcactatg 120
ccattcgaaaa aagccttaca gcagatgccc ctctactcca aatttatgaa agacatcctc 180
accaagaagg ggaagtatat tgacaacgag aatattgtgg taggaggcaa ttgcagtgcg 240
ataatacataaa ggattctacc caagaagttt aaagaccccg gaagtgttac catcccggtgc 300
accattggaa aggaagccgt aaacaaggcc ctcattgtatc taggagcaag tatcaatctg 360
atgcccttgtt caatgtgcaa aagaattggg aatttgaaga tagatcccac caagatgacg 420
cttcaactgg cagaccgctc aatcacaagg ccatatgggg tggtagaaaga tggcctggtc 480
aaggtacgcc acttcacttt tccgggtggac tttgttatca tggatatcga agaagacact 540
gagattcccc ttatcttagg cagacccttc atgctgactg ccaactgtgt ggtggatatg 600
gggaaaaggaa acttagagtt gactattgtt aatcagaaga tcaccttga ctttatcaag 660
gcaatgaagt acccacagga ggggttggaaag tgcttcagaa tagaggagat tggatggaa 720
gatgtcagtt ttctcgagac accaaagact tcgctagaaa aagcaatggt aaatcattta 780
gactgtctaa ccagtgaaga ggaagaagat ctgaaggctt gcttggaaaa cttggatcaa 840
gaagacagta ttcctgag 858

<210> 14

<211> 286

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 14

Lys Glu Glu Pro Leu Ala Leu Pro Gln Asp Leu Pro Tyr Pro Met Ala
1 5 10 15

Pro Thr Lys Lys Asn Lys Glu Arg Tyr Phe Ala Arg Phe Leu Glu Ile
20 25 30

Phe	Lys	Gly	Leu	Glu	Ile	Thr	Met	Pro	Phe	Gly	Glu	Ala	Leu	Gln	Gln
35														45	
Met	Pro	Leu	Tyr	Ser	Lys	Phe	Met	Lys	Asp	Ile	Leu	Thr	Lys	Lys	Gly
50														60	
Lys	Tyr	Ile	Asp	Asn	Glu	Asn	Ile	Val	Val	Gly	Gly	Asn	Cys	Ser	Ala
65														80	
Ile	Ile	Gln	Arg	Ile	Leu	Pro	Lys	Lys	Phe	Lys	Asp	Pro	Gly	Ser	Val
85														95	
Thr	Ile	Pro	Cys	Thr	Ile	Gly	Lys	Glu	Ala	Val	Asn	Lys	Ala	Leu	Ile
100														110	
Asp	Leu	Gly	Ala	Ser	Ile	Asn	Leu	Met	Pro	Leu	Ser	Met	Cys	Lys	Arg
115														125	
Ile	Gly	Asn	Leu	Lys	Ile	Asp	Pro	Thr	Lys	Met	Thr	Leu	Gln	Leu	Ala
130														140	
Asp	Arg	Ser	Ile	Thr	Arg	Pro	Tyr	Gly	Val	Val	Glu	Asp	Val	Leu	Val
145														160	
Lys	Val	Arg	His	Phe	Thr	Phe	Pro	Val	Asp	Phe	Val	Ile	Met	Asp	Ile
165														175	
Glu	Glu	Asp	Thr	Glu	Ile	Pro	Leu	Ile	Leu	Gly	Arg	Pro	Phe	Met	Leu
180														190	
Thr	Ala	Asn	Cys	Val	Val	Asp	Met	Gly	Lys	Gly	Asn	Leu	Glu	Leu	Thr
195														205	
Ile	Asp	Asn	Gln	Lys	Ile	Thr	Phe	Asp	Leu	Ile	Lys	Ala	Met	Lys	Tyr
210														220	
Pro	Gln	Glu	Gly	Trp	Lys	Cys	Phe	Arg	Ile	Glu	Glu	Ile	Asp	Glu	Glu
225														240	
Asp	Val	Ser	Phe	Leu	Glu	Thr	Pro	Lys	Thr	Ser	Leu	Glu	Lys	Ala	Met
245														255	
Val	Asn	His	Leu	Asp	Cys	Leu	Thr	Ser	Glu	Glu	Glu	Asp	Leu	Lys	
260														270	
Ala	Cys	Leu	Glu	Asn	Leu	Asp	Gln	Glu	Asp	Ser	Ile	Pro	Glu		
275														285	

<210> 15
<211> 192
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 15
tttgaactaa tgtgtgatgc cagtgattat gcagtaggag cagtttggg acagaggaaa 60
gacaaggat ttcacgccc ctattatgct agcaagggtcc tgaatgaagc acagttgaat 120
tatgcaacca cagaaaagga gatgcttagcc attgtcttg ccttggagaa gttcaggta 180
tacttgatag gg 192

<210> 16
<211> 64
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 16
Phe Glu Leu Met Cys Asp Ala Ser Asp Tyr Ala Val Gly Ala Val Leu
1 5 10 15

Gly Gln Arg Lys Asp Lys Val Phe His Ala Ile Tyr Tyr Ala Ser Lys
20 25 30

Val Leu Asn Glu Ala Gln Leu Asn Tyr Ala Thr Thr Glu Lys Glu Met
35 40 45

Leu Ala Ile Val Phe Ala Leu Glu Lys Phe Arg Ser Tyr Leu Ile Gly
50 55 60

<210> 17
<211> 12286
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 17

tgataactgc taaaataattg tgaattaata gtagaaaaatt agtcaaattt tggcttaaaa 60
ttaatttattt agcagttatt tgtgattaaa agtttagaaaa gcaattaagt tgaatttttg 120
gccatagata tgaaaactga aggtacaaca agcaaaaaggc agcagaaaagt gaagaaaaag 180
aataaaatct gaagcagacc cagcccaaca cgcgccctta gcgcgcgtca cgcgctaagc 240
ttgcaaggca gcacaggcac taagcgaggc gttaagcacf aagatgcagg attcggtacg 300
tgcgctaagc gcgaggcaca cgctaagcgc gcgatccaac agaagcacac gctaagcctg 360
cagcatgcgc taagcgcgc tacgaaggcc caaagcccatt ttctacaccc ataaatagag 420
atccaagcca agggagaatg tacaccctgc ctcagagcac ttctctcagc attccaagct 480
tgagctctcc ctttctctc tatattctt gcttttattt tccattctt ct当地cacc 540
agttgtaaag cccctcaatg gccatgagtg gttaatcccc tagtacggc ctggtaggcc 600
taaaaagcca atgatgtatg gtgtacttca agagttatca atgcaaagag gattcattcc 660
agttttatg ttcttaattct ttcctttta tcttcattt atgtcttaaa ttctgttgg 720
gttttattcg ctcggagag ggtatttcct aataagggtt taagaagtt tgcatgcac 780
agtttaggg gttatacgct tggtaaaggg taacacctaa tagaacaat taagaaaagg 840
atcgctggc tagcattgct aggcatagaa tgatggcca atgcccattgc atttagcaac 900
atctagaatt taaccttaat gcatttaat tattgaatct tcacaaaggc atttgggaga 960
taggttagtta aaataggctt gtcatcgta ggcattcaagg gcaagtaaaa ttaatagatg 1020
tgggtagaac taattcaact gcattgttaa tgaacatcat aaattcattc atcgtaggcc 1080
aatttagttt gtccggctt ggcattttca tcaattgtct tcctaaattt ttgtatctaa 1140
tagcaacaat ttattcttgccttatttgcatttgcattttacta ttactttta cttacaattt 1200
gaagagtatt caataaagtg caataaaatc cctatggaaa cgataactcgg acttccgaga 1260
attactactt agaacgattt ggtacacttg tcaaacadct caacaagttt ttggcgccgt 1320
tgtcgggat ttgttctcg cacttaatttgcattttacta ttactttta cttacaattt 1380
ttctttctt ggctcattct ttatttatttgcattttacta ttactttta cttacaattt 1440
tcttccttcca taaattgcac gggtagtgcc ttgttgcatttgcattttacta ttactttta cttacaattt 1500
ctggagacgt tggcattttacta ttactttttacta ttactttta cttacaattt 1560
caagaagaag aaggagcaaa gacatagaag gaagtagtttgcattttacta ttactttta cttacaattt 1620
caaattatgc tcagatggac ggggaaccgg cacaaagagt cacactagag gacttctcta 1680
ataccaccac tcctcattttacta ttactttttacta ttactttta cttacaattt 1740
ttactcaagg gaaccttccatggcttc caaatgaaga tccatgcgcattttacta ttactttta cttacaattt 1800
catacataga gatatgcagc accgttaaaa tgcggcggact tccaaagat ggcatactcc 1860
ttaacctctt ttcttttccatggcttc caaatgaaga tccatgcgcattttacta ttactttta cttacaattt 1920
gcaatagctt aagaacatgg gaagaagtagt tgaaaaatttgcattttacta ttactttta cttacaattt 1980
agtcaaagac cgtcgacatggcttc caaatgaaga tccatgcgcattttacta ttactttta cttacaattt 2040
cccttagcga agcactagac cattttccatggcttc caaatgaaga tccatgcgcattttacta ttactttta cttacaattt 2100
acagcgagcc agtacaacta aacatattca tcgatgcatttgcattttacta ttactttta cttacaattt 2160
ctacttaggg gaagatcaag ctgaagactc ccgaagaagc gatggagctc gtcgagaaca 2220
tggcggttag cgtcaagca atccttcatttgcattttacta ttactttta cttacaattt 2280
tcttggagct tagcactgcag gacgcaactt tggtacaaaa caagctttgcattttacta ttactttta cttacaattt 2340
tagaaggccct catcgaaacc ctcagcaagc tgcctcaaca attacaagcg ataagttctt 2400
cccactcttc tggcttcagc gtagaagaat gcccacatg cagagggaca catgagcctg 2460
gacaatgtgc aagccaaacaa qaccctctc gtgaagtaaa ttatataqqc atactaaatc 2520

gttacggatt tcagggctac aaccaggaa atccatctgg attcaatcaa gggcaacaa 2580
gatttaatca cgagccaccg gggtaatc aaggaagaaa cttcatcaa ggctcaagtt 2640
ggacgaataa aggaaatcaa tataaggagc aaaggaacca accaccatac cagccaccat 2700
accagcaccc tagccaaggt ccgaatcagc aagaaaagcc caccaaaata gaggaactgc 2760
tgctgcatt catcaaggag acaagatcac atcaaaaagag cacggatgca gccattcgga 2820
atctagaagt tcaaatagggc caactggcgc atgacaaagc cgaacggccc actagaactt 2880
tcggtgctaa catggagaga agaacccaa ggaaggataa agcagtactg actagagggc 2940
agagaagagc gcaggaggag ggtaaggttg aaggagaaga ctggccagaa gaaggaagga 3000
cagagaagac agaagaagaa gagaagggtgg cagaagaacc taagcgtacc aagagccaga 3060
gagcaaggga agccaagaag gaagaaccac tagcccttcc acaggatctc ccatatccta 3120
tggcaccac caagaagaac aaggagcgtt acttgcacg tttcttggaa atattcaaag 3180
ggtagaaat cactatgccca ttccgggaaag ctttacagca gatccccctc tactccaaat 3240
ttatgaaaga catcctcacc aagaaggaa agtatattga caacgagaat attgtggtag 3300
gaggcaattt cagtgcgata atacaaagga ttctacccaa gaagttaaa gaccccgaa 3360
gtgttaccat cccgtgcacc attgggaaagg aagccgtaaa caaggccctc attgtatctag 3420
gagcaagtat caatctgatg cccttgcata tgtgc当地 aattggaaat ttgaagatag 3480
atcccaccaa gatgacgctt caactggcag accgctcaat cacaaggcca tatggggtgg 3540
tagaagatgt cctggtaaag gtacgcccact tcactttcc ggtggactt gtatcatgg 3600
atatcgaaaga agacactgag attccctta tcttaggcag acccttcatg ctgactgcca 3660
actgtgttgtt ggtatgggg aaaggaaact tagagttgac tattgataat cagaagatca 3720
ccttgacact tatcaaggca atgaagtacc cacaggaggg ttggaaatgc ttccagaataag 3780
aggagattga tgaggaagat gtcagtttc tccggacacc aaagacttcg cttagaaaaag 3840
caatggtaaa tcatttagac tgtctaaccat gtgaagagga agaagatctg aaggcttgct 3900
tggaaaactt ggtatcaagaa gacagtattt ctgggggaga agccaaatttc gaggagctag 3960
agaaggaagt tccgtctgag aagccgaaga tagagttgaa gatattgcct gatcatctga 4020
agtatgtgtt cttggaggaa gataaaccta tagtgatcag taacgcactc acaacagagg 4080
aggaaaaatag gttggtagat gtcctcaaga aacacaggga agcaatttga tggcacatat 4140
cggtatctaa gggaaatttcg cctgcttact gcatgcacag gataatgtatc gaaaggact 4200
acaagccagt ccgacaaaccc cagaggccgc tgaatccaaat aatgaaggaa gaggtaaagaa 4260
aggaggtact caagctttt gaggctggc tcataaccat catctctgac agcgcttggg 4320
taagcccaactt acaggttgtt cccaaagaaag gtggaaatgac agtggatcga gatgagagga 4380
atgacttgat accaacacgaa actgtcactg gttggcgaat gtgtatcgac tatcgcaagc 4440
tgaatgaagc cacacggaaag gaccatttcc ctttacccat catggatcag atgctggaga 4500
gacttgcagg gcaggcatac tactgtttt tggatggata ctcgggatac aaccagatcg 4560
cggttagaccc cagagatcag gagaagacgg ctttacatg ccccttggc gtctttgtt 4620
acagaaggat gccattcggg ttatgtaatg caccagccac atttcagagg tgcattgtgg 4680
ccatccatcc agacatggtg gagaagaaagca tcgaggtatt tatggacgac ttctcggtt 4740
ttggacccttcc atttgacagc tggttgagga acctagagag ggtacttcg aggtgcgaag 4800
agactaactt ggtactgaat tggaaaatgt gtcatttcattt ggttcgagag ggcatagtcc 4860
taggccacaa gatctcagcc agagggattt aggttgcattt ggcataagata gacgtcatcg 4920
agaagctgcc accaccactg aatgttaaaag gggtagaaat tttcttaggg catgcaggtt 4980
tctacaggag gtttatcaag gacttctcga agattgccag gcccttaagc aatctgttg 5040
ataaaagacgt ggctttgtt tttgtatgaaat aatgttttgc agcatttcaa tcactgaaga 5100
ataagctcgt cactgcaccc gtaatgattt caccggactg gaataaagat tttgtactaa 5160
tgtgtatgc cagtgattat gcagtagggag cagttttggg acagaggaaa gacaaggat 5220
ttcacgcccatttacttgc agcaagggtcc tgaatgaagc acagttgaat tatgcacca 5280
cagaaaagga gatgcttagcc attgttttgc cttggagaa gttcaggtca tacttgatag 5340
ggtcgaggtt catcatttac acagatcatg ctggccatcaa gcacccctgctc gccaacaaacag 5400

actcaaagcc gaggttgcatt agatgggtcc tgctgttaca agaatttgac atcatcatca 5460
aggacaagaa aggatccgag aatgtggtag ccaatcatct atctcgatta aagaatgaag 5520
aagtccacaa ggaagaacca gaggtaaaag gtgaatttcc tgatgagttt ctttgcagg 5580
ttaccgaaag accttggttt gcagacatgg ctaactacaa agccacggga gtcattccag 5640
aggagtttaa ttggagtcag aggaagaaat tcttgcacga tgcacgcctc tatgtgtggg 5700
atgatcctca tttgttcaag gcaggagcag ataatttatt aaggagatgc gtcacaaagg 5760
aggaagcacg gagcattctt tggcactgcc acagttcacc ctatggcgga caccacagtg 5820
gggacagaaac agcagcaaaa gtgctacaat cagttttt ctggccctct atttttaaag 5880
atgctcacga gtttgtgcgt tgggtgtata aatgccagag aacagggggg atatctcgaa 5940
gaaatgagat gcctttgcag aatatcatgg aagtagagat ctttgactgt tggggcatag 6000
acttcatggg gcctttctt tcgtcatacg ggaatgtcta catcttgta gctgtggatt 6060
acgtctccaa atgggtggaa gccatagcca cgccaaagga cgatgccagg gtagtgcata 6120
aatttctgaa gaagaacatt tttcccgtt ttggagtccc acgagcctt attagtgata 6180
ggggAACGCA cttctgcaac aatcagttga agaaagtcct ggagcactat aatgtccgac 6240
ataaggtggc cacacccat caccctcaga caaatggcca agcagaaatt tctaacaggg 6300
agctcaagcg aatcctggaa aagacagttg catcaacaag aaaggattgg tccttgaagc 6360
tcgatgtgc tctctggcc tataggacag cgttcaagac tcccatcgcc ttatcaccat 6420
ttcagctagt gtatggaaag gcatgtcatt taccagtgg auctggagtac aaagcatatt 6480
gggctctcaa gttgctcaac tttgacaaca acgatgcgg ggaaaagagg aagctacagc 6540
tgctggaatt agaagagatg agactgaatg cctacgagtc atccaaaatt tacaaggaaa 6600
agatgaaggc atatcatgac aagaagctac tgagggaaaga attccagcca gggcagcagg 6660
tattacttt taactcaagg ctaaggctat tcccaaggtaa gctgaagtcc aagtggtcag 6720
ggccattcat aatcaaagaa gtcagacctt acggagcagt agaattggtg gaccctagag 6780
aagaggactt tgagaagaaa tggatcgta atggacagcg cttgaagcct tataacggag 6840
gacaactaga gcgattgcg accatcatct acttaaatga cccttgagaa ggcctactgt 6900
ctagctaaag acaataaaact aagcgctgg tgggaggcaa cccaaacatat ttgtaaaaaa 6960
tgttagttatc tttattctat gtaaaaaaaaaaaaaaagcc caatagggtc aaataggaaa 7020
caggaggtgc aaaaagcaaa ggcccaacag gtgaagacaa caataggagg ggtgccaata 7080
gcaaaaactga agtgggctgc acgaagccac gcccattt cttggcttt tcacacaaaa 7140
caatcactaa cgaaggtaaa gaattgcatt gtatggatgt tggtatgaat gcacaggtaa 7200
cagcacgcta agccctgctc gacgcttagc caatgaagac ggattgaagg ccataacgac 7260
gagctcgta agcgtgacga agcacgctaa gcaggcgcct gacaggacga gaaagcaaag 7320
cgcgcgctta gcccgcactt ccgcgctaag cgccgtcatg aacatcactg aacgcgctaa 7380
acgtgtgcca gaggcgctaa acgcgtgcca gaggcgctaa acgcgtgcat tagtcacagc 7440
aggatggtgc taagcgccgg gttgggcctc agggccatc aaccctcgca cttacttgc 7500
tgcacccctt ttttactat tcccaactccc ttcttaatttc tttttgcacc ccccttcttt 7560
actgactgca cctctatattt gattacttt tgacacccccctt ctgattgcta acttcagact 7620
atctttcttg tttttgttt ttgttgcatt ttgttgcagat ggccctccgt aaacgcaaag 7680
ctgtgcccac acccggggaa gcttccaaact gggactcttc acgtttcact ttgcagattt 7740
cttggcacag ataccaggat agcattcagc tccggaaacat cttccagag aggaatgttag 7800
agcttggacc agggatgttt gatgagttcc tgcaggaact ccagaggctc agatgggacc 7860
aggttctgac ccgacttcca gagaagttga ttgtatgtgc tctgttgcagag gagttttact 7920
ccaaacctata tgatccagag gaccacagtc cgaagtttg gagtgcgtca ggacaggttg 7980
tgagatttga tgctgagacg attaatgatt tcctcgacac cccggcgtatc ttggcagagg 8040
gagaggatata tccagcctac tctcagttacc tcagcactcc tccagaccat gatgcctatcc 8100
tttccgctct gtgtactcca gggggacat ttgttctgaa tggttgcattt gccccctggaa 8160
agctgctgctg gaaggatctg atgacgctcg cgcagacatg gagtgcgtc tcttattttta 8220
accttgcact gacttttac acttctgata ttaatgttga cagggcccgaa ctcattatg 8280

gcttgggtat gaagatggac ctggacgtgg gcagcctcat ttctcttcag atcagtcaga 8340
tcgcccagtc catcaacttcc aggcttgggt tcccagcggt gatcacaca ctgtgtgaga 8400
ttcagggggt tgtctctgat accctgatt ttgagtcact cagtcctgtg atcaaccttg 8460
cctacattaa gaagaactgc tggAACCTG ccgatccatc tatcacattt caggggaccc 8520
gccgcacgcg caccagagct tcggcgtcgg catctgaggc tcctcttcca tcccagcatc 8580
cttctcagcc ttttccccag agaccacggc ctccacttct atccacctca gcacctccat 8640
acatgcattt acagatgctc aggtccttgtt accagggtca gcagatcatc attcagaacc 8700
tgtatcgatt gtccctacat ttgcagatgg atctgccact catgactccg gaggcctatac 8760
gtcagcaggt cgccaaagcta ggagaccagc cctccactga cagggggaa gagcctctg 8820
gagccgctgc tactgaggat cctgcccgtt atgaagacct catagctgac ttggctggcg 8880
ctgattggag cccatgggca gacttgggca gaggcagctg atcttatgct ttaatgttt 8940
cttttatatt atgtttgtgt tctctttat gtttatgtt atgttttat gtgtctgtt 9000
tggtaattaa aaagaggttag tagaaaaat attagtattt cagtagtgtt tttctgagta 9060
ataagtgcattt gataactcaa gcaatcataa ttcttagct tgttcagaaa gttcaacac 9120
ttgagatgcc actgatcctt ggagaaacac tgggtctggaa agcaaaagtc aggtcaagaa 9180
atggaacatg aatagcacag agtggaaagg ttagcttgat ggaacaaggt cataactgg 9240
acgcccgaata cttgttaag tccctgtgag catgggtgtc aaactctaga gtcaactcat 9300
agactctcat gagtttaaga gtttacttca gtcccgcgag ttgactcgga agcaaaactcg 9360
ctttgagca aactcgtgga ctcggagtga actcatgtaa actcgtaaga gtctacgagt 9420
tgactctaga gttgacaac catgcataag tgttcaaaaat taaagcattt aaataattaa 9480
aaaaagcaca aatgtcttca aagaagcatg ttcaatcctc taatagagtc atcttcatga 9540
atatcatcac tttcatcatc atctccatct ccatcatcat catcaaggc ttcctcagat 9600
tgtgcattcat cattagttc cacaaagatt aaattatcta gatcaaaagc taaaataga 9660
tatcaaatat gctatattag aaatagttaa aactaaaaat aatacacaag caaattttaa 9720
atatgagaaa gttcagaaat tatacctttt cttgggttta taaaagttt attttatctt 9780
ctctttgca tttccatct cctcacatata gaaaagcata attctattga atttcagtaa 9840
caagttgtat ccaactccaa cattgttaagg tcagttgttg tgttttaaa tagactaata 9900
tgaagtatga agttagact atgaacttata tgcattctgt ttgcaatttg gtgcattttg 9960
aatatattta cttattatcc atttttttt ttttacgaag tagactctca cgagtctgcg 10020
tagactctcg atatcgataa ctttgcgat gagagtgtga acttaattgt gagagaaaaat 10080
gcctattttt aagttcctgg ttttgcattca ttcttagacg gttagaatag ttacttaagg 10140
tggatatgtat caaggccatg tttgttttt tacctactta gccaaaaagc caacctaaca 10200
tagtttacc ccttgcaccc atgattgagc caactgatta ttttgaatta accttgagcc 10260
aattaaacaa aatcctgacc ttttaggatt ttaagagagt aaaaatgggt tataaaggc 10320
ttaattttggg ggattttggg aaataggttag ccaagacaat aagtacagca cacaaagtag 10380
gacacctttt acaaacagta ggcccaattt cgaaaaaaaaa atgaaaaagaa ttaataaaag 10440
ggcagaaaca aaagagcaag agaggtgtca aaagaaaaagt gttgtgggaa aataaaagg 10500
ctaagtaaaa aggcttaggc agaattggaa atttttgttc tcttttaatc ctaactttga 10560
atttccaaga aaaaccatga tttttgtaa gccaggcccc gatacaagcc aataaaagtcc 10620
ttagtgtatcc accaaaggta actagagata actgtactg agatgaaatg caaaattttg 10680
aagtgttact tgcagggtgt tatcaaattt ccaacactaa actaggcact tgtgagcaga 10740
gggaaacacc agccttgcggaa ggaaagtaag gcaagccaaa tttgatttgat ttccagatga 10800
ctaactgattt caattcttct gttgtatgc tttcatatttta agatgttgac agatgcagaa 10860
aggaccagtg aaagaaggag gaactgagcc attgatagtg ttggaatatt taagaacttg 10920
cttgagaatt tactgtttt tgggtttttt ggggacaagc aaagtttcat ttggggaaatt 10980
ttgataactg ctaaataattt gtgaatttaat agtagaaaaat tagtcaaattt ttggcttaaa 11040
attaattatt tagcagttat ttgtgattaa aagtttagaaa agcaattaag ttgaattttt 11100
ggccatagat atgaaaaactg aaggtacaac aagcaaaaagg cagcagaaag tgaagaaaa 11160

gaataaaaatc tgaagcagac ccagcccaac acgcgcctt agcgcggtc acgcgctaag 11220
cttgcaggc agcacaggc ctaaqcgagg cgtaagcac gaagatgcag gattcgttac 11280
gtgcgctaag cgcgaggcac acgctaagcg cgcatccaa cagaagcaca cgctaagcct 11340
gcagcatgct ctaagcgcc ctacgaaggc ccaaagccc tttctacacc tataaataga 11400
gatccaagcc aaggagaat gtacacccgt cctcagagca cttctctcag cattccaagc 11460
tttagctctc cctttctct cstatatttt tgctttattt atccattttt tctttcaccc 11520
cagttgtaaa gcccctcaat ggccatgagt ggttaatccc ctagctacgg cctggtaggc 11580
ctaaaaagcc aatgatgtat ggtgtacttc aagagttatc aatgcaaaaga ggattcattc 11640
caggttttat gttctaattt tttccctttt atcttgcatt tatgtcttaa atttctgttg 11700
ggttttattt gctcgggaga gggtagttcc taataagggt ttaagaagta atgcatgcat 11760
cagttttagg ggttatacgc ttggtaaagg gtaacaccta atagaacaaa ttaagaaaaag 11820
gatcgctggg ctagcattgc taggcatacg atgatggccc aatgcccattt catttagcaa 11880
catctagaat ttaaccttaa tgcattttttaa ttattgaatc ttcacaaagg catttgggag 11940
atagtagtt aaaataggct tgtcatcggt aggcatcaag ggcaagtaaa attaataatagat 12000
gtgggttagaa ctaattcaac tgcattggta atgaacatca taaattcatt catcgtaggc 12060
caatttagtt tgtccggctc tggcattttc atcaattgtc ttcctaaattt atttgcattca 12120
atagcaacaa tttattctta tgcctattcc tggttttactt atttactttt acttacaaat 12180
tgaagagtat tcaataaaagt gcaataaaat ccctatggaa acgataactcg gacttccgag 12240
aattactact tagaacgatt tggtagactt gtcaaacacc tcaaca 12286

<210> 18
<211> 1802
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plant
retroelement sequence

<400> 18
Met Arg Gly Arg Thr Ala Ser Gly Asp Val Val Pro Ile Asn Leu Glu
1 5 10 15

Ile Glu Ala Thr Cys Arg Arg Asn Asn Ala Ala Arg Arg Arg Glu
20 25 30

Gln Asp Ile Glu Gly Ser Ser Tyr Thr Ser Pro Pro Pro Ser Pro Asn
35 40 45

Tyr Ala Gln Met Asp Gly Glu Pro Ala Gln Arg Val Thr Leu Glu Asp
50 55 60

Phe Ser Asn Thr Thr Pro Gln Phe Phe Thr Ser Ile Thr Arg Pro
65 70 75 80

Glu Val Gln Ala Asp Leu Leu Thr Gln Gly Asn Leu Phe His Gly Leu
85 90 95

Pro Asn Glu Asp Pro Tyr Ala His Leu Ala Ser Tyr Ile Glu Ile Cys
100 105 110

Ser Thr Val Lys Ile Ala Gly Val Pro Lys Asp Ala Ile Leu Leu Asn
115 120 125

Leu Phe Ser Phe Ser Leu Ala Gly Glu Ala Lys Arg Trp Leu His Ser
130 135 140

Phe Lys Gly Asn Ser Leu Arg Thr Trp Glu Glu Val Val Glu Lys Phe
145 150 155 160

Leu Lys Lys Tyr Phe Pro Glu Ser Lys Thr Val Glu Arg Lys Met Glu
165 170 175

Ile Ser Tyr Phe His Gln Phe Leu Asp Glu Ser Leu Ser Glu Ala Leu
180 185 190

Asp His Phe His Gly Leu Leu Arg Lys Thr Pro Thr His Arg Tyr Ser
195 200 205

Glu Pro Val Gln Leu Asn Ile Phe Ile Asp Asp Leu Gln Leu Leu Ile
210 215 220

Glu Thr Ala Thr Arg Gly Lys Ile Lys Leu Lys Thr Pro Glu Glu Ala
225 230 235 240

Met Glu Leu Val Glu Asn Met Ala Ala Ser Asp Gln Ala Ile Leu His
245 250 255

Asp His Thr Tyr Val Pro Thr Lys Arg Ser Leu Leu Glu Leu Ser Thr
260 265 270

Gln Asp Ala Thr Leu Val Gln Asn Lys Leu Leu Thr Arg Gln Ile Glu
275 280 285

Ala Leu Ile Glu Thr Leu Ser Lys Leu Pro Gln Gln Leu Gln Ala Ile
290 295 300

Ser Ser Ser His Ser Ser Val Leu Gln Val Glu Glu Cys Pro Thr Cys
305 310 315 320

Arg Gly Thr His Glu Pro Gly Gln Cys Ala Ser Gln Gln Asp Pro Ser
325 330 335

Arg Glu Val Asn Tyr Ile Gly Ile Leu Asn Arg Tyr Gly Phe Gln Gly
340 345 350

Tyr Asn Gln Gly Asn Pro Ser Gly Phe Asn Gln Gly Ala Thr Arg Phe
355 360 365

Asn His Glu Pro Pro Gly Phe Asn Gln Gly Arg Asn Phe Met Gln Gly
370 375 380

Ser Ser Trp Thr Asn Lys Gly Asn Gln Tyr Lys Glu Gln Arg Asn Gln
385 390 395 400

Pro Pro Tyr Gln Pro Pro Tyr Gln His Pro Ser Gln Gly Pro Asn Gln
405 410 415

Gln Glu Lys Pro Thr Lys Ile Glu Glu Leu Leu Leu Gln Phe Ile Lys
420 425 430

Glu Thr Arg Ser His Gln Lys Ser Thr Asp Ala Ala Ile Arg Asn Leu
435 440 445

Glu Val Gln Met Gly Gln Leu Ala His Asp Lys Ala Glu Arg Pro Thr
450 455 460

Arg Thr Phe Gly Ala Asn Met Glu Arg Arg Thr Pro Arg Lys Asp Lys
465 470 475 480

Ala Val Leu Thr Arg Gly Gln Arg Arg Ala Gln Glu Glu Gly Lys Val
485 490 495

Glu Gly Glu Asp Trp Pro Glu Glu Gly Arg Thr Glu Lys Thr Glu Glu
500 505 510

Glu Glu Lys Val Ala Glu Glu Pro Lys Arg Thr Lys Ser Gln Arg Ala
515 520 525

Arg Glu Ala Lys Lys Glu Glu Pro Leu Ala Leu Pro Gln Asp Leu Pro
530 535 540

Tyr Pro Met Ala Pro Thr Lys Lys Asn Lys Glu Arg Tyr Phe Ala Arg
545 550 555 560

Phe Leu Glu Ile Phe Lys Gly Leu Glu Ile Thr Met Pro Phe Gly Glu
565 570 575

Ala Leu Gln Gln Met Pro Leu Tyr Ser Lys Phe Met Lys Asp Ile Leu
580 585 590

Thr Lys Lys Gly Lys Tyr Ile Asp Asn Glu Asn Ile Val Val Gly Gly
595 600 605

Asn Cys Ser Ala Ile Ile Gln Arg Ile Leu Pro Lys Lys Phe Lys Asp
610 615 620

Pro Gly Ser Val Thr Ile Pro Cys Thr Ile Gly Lys Glu Ala Val Asn
625 630 635 640

Lys Ala Leu Ile Asp Leu Gly Ala Ser Ile Asn Leu Met Pro Leu Ser
645 650 655

Met Cys Lys Arg Ile Gly Asn Leu Lys Ile Asp Pro Thr Lys Met Thr
660 665 670

Leu Gln Leu Ala Asp Arg Ser Ile Thr Arg Pro Tyr Gly Val Val Glu
675 680 685

Asp Val Leu Val Lys Val Arg His Phe Thr Phe Pro Val Asp Phe Val
690 695 700

Ile Met Asp Ile Glu Glu Asp Thr Glu Ile Pro Leu Ile Leu Gly Arg
705 710 715 720

Pro Phe Met Leu Thr Ala Asn Cys Val Val Asp Met Gly Lys Gly Asn
725 730 735

Leu Glu Leu Thr Ile Asp Asn Gln Lys Ile Thr Phe Asp Leu Ile Lys
740 745 750

Ala Met Lys Tyr Pro Gln Glu Gly Trp Lys Cys Phe Arg Ile Glu Glu
755 760 765

Ile Asp Glu Glu Asp Val Ser Phe Leu Glu Thr Pro Lys Thr Ser Leu
770 775 780

Glu Lys Ala Met Val Asn His Leu Asp Cys Leu Thr Ser Glu Glu Glu
785 790 795 800

Glu Asp Leu Lys Ala Cys Leu Glu Asn Leu Asp Gln Glu Asp Ser Ile
805 810 815

Pro Glu Gly Glu Ala Asn Phe Glu Glu Leu Glu Lys Glu Val Pro Ser
820 825 830

Glu Lys Pro Lys Ile Glu Leu Lys Ile Leu Pro Asp His Leu Lys Tyr
835 840 845

Val Phe Leu Glu Glu Asp Lys Pro Ile Val Ile Ser Asn Ala Leu Thr
850 855 860

Thr Glu Glu Glu Asn Arg Leu Val Asp Val Leu Lys Lys His Arg Glu
865 870 875 880

Ala Ile Gly Trp His Ile Ser Asp Leu Lys Glu Ile Ser Pro Ala Tyr
885 890 895

Cys Met His Arg Ile Met Met Glu Glu Asp Tyr Lys Pro Val Arg Gln
900 905 910

Pro Gln Arg Arg Leu Asn Pro Thr Met Lys Glu Glu Val Arg Lys Glu
915 920 925

Val Leu Lys Leu Leu Glu Ala Gly Leu Ile Tyr Pro Ile Ser Asp Ser
930 935 940

Ala Trp Val Ser Pro Val Gln Val Val Pro Lys Lys Gly Gly Met Thr
945 950 955 960

Val Val Arg Asp Glu Arg Asn Asp Leu Ile Pro Thr Arg Thr Val Thr
965 970 975

Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn Glu Ala Thr Arg
980 985 990

Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met Leu Glu Arg Leu
995 1000 1005

Ala Gly Gln Ala Tyr Tyr Cys Phe Leu Asp Gly Tyr Ser Gly Tyr Asn
1010 1015 1020

Gln Ile Ala Val Asp Pro Arg Asp Gln Glu Lys Thr Ala Phe Thr Cys
1025 1030 1035 1040

Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Pro Phe Gly Leu Cys Asn
1045 1050 1055

Ala Pro Ala Thr Phe Gln Arg Cys Met Leu Ala Ile Phe Ser Asp Met
1060 1065 1070

Val Glu Lys Ser Ile Glu Val Phe Met Asp Asp Phe Ser Val Phe Gly
1075 1080 1085

Pro Ser Phe Asp Ser Cys Leu Arg Asn Leu Glu Arg Val Leu Gln Arg
1090 1095 1100

Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys Cys His Phe Met
1105 1110 1115 1120

Val Arg Glu Gly Ile Val Leu Gly His Lys Ile Ser Ala Arg Gly Ile
1125 1130 1135

Glu Val Asp Arg Ala Lys Ile Asp Val Ile Glu Lys Leu Pro Pro Pro
1140 1145 1150

Leu Asn Val Lys Gly Val Arg Ser Phe Leu Gly His Ala Gly Phe Tyr
1155 1160 1165

Arg Arg Phe Ile Lys Asp Phe Ser Lys Ile Ala Arg Pro Leu Ser Asn
1170 1175 1180

Leu Leu Asn Lys Asp Val Ala Phe Val Phe Asp Glu Glu Cys Leu Ala
1185 1190 1195 1200

Ala Phe Gln Ser Leu Lys Asn Lys Leu Val Thr Ala Pro Val Met Ile
1205 1210 1215

Ala Pro Asp Trp Asn Lys Asp Phe Glu Leu Met Cys Asp Ala Ser Asp
1220 1225 1230

Tyr Ala Val Gly Ala Val Leu Gly Gln Arg Lys Asp Lys Val Phe His
1235 1240 1245

Ala Ile Tyr Tyr Ala Ser Lys Val Leu Asn Glu Ala Gln Leu Asn Tyr
1250 1255 1260

Ala Thr Thr Glu Lys Glu Met Leu Ala Ile Val Phe Ala Leu Glu Lys
1265 1270 1275 1280

Phe Arg Ser Tyr Leu Ile Gly Ser Arg Val Ile Ile Tyr Thr Asp His
1285 1290 1295

Ala Ala Ile Lys His Leu Leu Ala Lys Thr Asp Ser Lys Pro Arg Leu
1300 1305 1310

Ile Arg Trp Val Leu Leu Leu Gln Glu Phe Asp Ile Ile Ile Lys Asp
1315 1320 1325

Lys Lys Gly Ser Glu Asn Val Val Ala Asn His Leu Ser Arg Leu Lys
1330 1335 1340

Asn Glu Glu Val Thr Lys Glu Glu Pro Glu Val Lys Gly Glu Phe Pro
1345 1350 1355 1360

Asp Glu Phe Leu Leu Gln Val Thr Glu Arg Pro Trp Phe Ala Asp Met
1365 1370 1375

Ala Asn Tyr Lys Ala Thr Gly Val Ile Pro Glu Glu Phe Asn Trp Ser
1380 1385 1390

Gln Arg Lys Lys Phe Leu His Asp Ala Arg Phe Tyr Val Trp Asp Asp
1395 1400 1405

Pro His Leu Phe Lys Ala Gly Ala Asp Asn Leu Leu Arg Arg Cys Val
1410 1415 1420

Thr Lys Glu Glu Ala Arg Ser Ile Leu Trp His Cys His Ser Ser Pro
1425 1430 1435 1440

Tyr Gly Gly His His Ser Gly Asp Arg Thr Ala Ala Lys Val Leu Gln
1445 1450 1455

Ser Gly Phe Phe Trp Pro Ser Ile Phe Lys Asp Ala His Glu Phe Val
1460 1465 1470

Arg Cys Cys Asp Lys Cys Gln Arg Thr Gly Gly Ile Ser Arg Arg Asn
1475 1480 1485

Glu Met Pro Leu Gln Asn Ile Met Glu Val Glu Ile Phe Asp Cys Trp
1490 1495 1500

Gly Ile Asp Phe Met Gly Pro Phe Pro Ser Ser Tyr Gly Asn Val Tyr
1505 1510 1515 1520

Ile Leu Val Ala Val Asp Tyr Val Ser Lys Trp Val Glu Ala Ile Ala
1525 1530 1535

Thr Pro Lys Asp Asp Ala Arg Val Val Ile Lys Phe Leu Lys Lys Asn
1540 1545 1550

Ile Phe Ser Arg Phe Gly Val Pro Arg Ala Leu Ile Ser Asp Arg Gly
1555 1560 1565

Thr His Phe Cys Asn Asn Gln Leu Lys Lys Val Leu Glu His Tyr Asn
1570 1575 1580

Val Arg His Lys Val Ala Thr Pro Tyr His Pro Gln Thr Asn Gly Gln
1585 1590 1595 1600

Ala Glu Ile Ser Asn Arg Glu Leu Lys Arg Ile Leu Glu Lys Thr Val
1605 1610 1615

Ala Ser Thr Arg Lys Asp Trp Ser Leu Lys Leu Asp Asp Ala Leu Trp
1620 1625 1630

Ala Tyr Arg Thr Ala Phe Lys Thr Pro Ile Gly Leu Ser Pro Phe Gln
1635 1640 1645

Leu Val Tyr Gly Lys Ala Cys His Leu Pro Val Glu Leu Glu Tyr Lys
1650 1655 1660

Ala Tyr Trp Ala Leu Lys Leu Leu Asn Phe Asp Asn Asn Ala Cys Gly
1665 1670 1675 1680

Glu Lys Arg Lys Leu Gln Leu Leu Glu Leu Glu Glu Met Arg Leu Asn
1685 1690 1695

Ala Tyr Glu Ser Ser Lys Ile Tyr Lys Glu Lys Met Lys Ala Tyr His
1700 1705 1710

Asp Lys Lys Leu Leu Arg Lys Glu Phe Gln Pro Gly Gln Gln Val Leu
1715 1720 1725

Leu Phe Asn Ser Arg Leu Arg Leu Phe Pro Gly Lys Leu Lys Ser Lys
1730 1735 1740

Trp Ser Gly Pro Phe Ile Ile Lys Glu Val Arg Pro Tyr Gly Ala Val
1745 1750 1755 1760

Glu Leu Val Asp Pro Arg Glu Glu Asp Phe Glu Lys Lys Trp Ile Val
1765 1770 1775

Asn Gly Gln Arg Leu Lys Pro Tyr Asn Gly Gly Gln Leu Glu Arg Leu
1780 1785 1790

Thr Thr Ile Ile Tyr Leu Asn Asp Pro Glx
1795 1800

<210> 19
<211> 9829
<212> DNA
<213> Glycine max

<400> 19
tgataactgc taaataattg tgaattaata gtagaaaaatt agtcaaattt tggcttaaaa 60
ttaattattt agcagttatt tgtgattaaa agttagaaaa gcaattaagt tgaatttttg 120
gccatagata tgaaaactga aggtacaaca agcaaaaggc agcagaaagt gaagaaaaag 180
aataaaaatct gaaggcagacc cagcccaaca cgcgcctta gcgcgcgtca cgcgctaagc 240
ttgcaaggca gcacaggcac taagcgaggc gttaagcacg aagatgcagg attcggttacg 300
tgcgctaagc gcgaggcaca cgctaagcgc gcgatccaac agaagcacac gctaagcctg 360
cagcatgcgc taagcgcc tacgaaggcc caaagcccatttctacacat ataaatagag 420

atccaagcca agggagaatg tacacccctgc ctcagagcac ttctctcagc attccaagct 480
tgagctctcc ctttctctc tatattctt gcttttatta tccattctt ctttcacccc 540
agttgtaaag cccctcaatg gccatgagtg gttaatcccc tagctacggc ctggtaggcc 600
taaaaagcca atgatgtatg gtgtacttca agagttatca atgcaaagag gattcattcc 660
aggtttatg ttcttaattct ttctttta tcttcattt atgtctaaa ttctgttgg 720
gttttattcg ctcggagag ggtatttcct aataagggtt taagaagtaa tgcatgcac 780
agtttaggg gttatacgct tggtaaaggg taacacctaa tagaacaat taagaaaagg 840
atcgctggc tagcattgtc aggcatagaa tgatggccca atgcccattgc atttagcaac 900
atctagaatt taacctaatt gcatttaat tattgaatct tcacaaaaggc atttggaga 960
taggttgta aaataggctt gtcatcgta ggcattcaagg gcaagtaaaa ttaatagatg 1020
tgggtagaac taattcaact gcattggtaa tgaacatcat aaattcattc atcgtaggcc 1080
aatttaggtt gtccggctt ggcatttc tcaattgtct tcctaaatta ttgtatctaa 1140
tagcaacaat ttattcttgc ctcttattct gttttacta ttacttttta ctacaaatt 1200
gaagagtatt caataaagtg caataaaatc cctatggaaa cgatactcgg acttccgaga 1260
attactactt agaacgattt ggtacacttgc tcaacacactt caacaagttt ttggcgccgt 1320
tgtcgggat tttgttctcg cacttaatttgc ccatactata tttagtttgc agcttaattc 1380
ttctttctt ggctcattct ttatttatttgc ttacttttac tttttcttctt atcctttctt 1440
tcttcctcca taaattgcac gggtagtgc ttttttttatacggat agaactgcac 1500
ctggagacgt tgttcctatt aacttagaaa ttgaagctac gtgtcgccgt aacaacgctg 1560
caagaagaag aaggagcaa gacatagaag gaagtagtta cacctcacct cctccttctc 1620
caaattatgc tcagatggac ggggaacccgg cacaaggat cacactagag gacttctcta 1680
ataccaccac tcctcagttc ttacaagta tcacaaggcc ggaagtccaa gcagatctcc 1740
tactcaaggg aaccttttcc atggcttcc aaatgaagat ccatatgcgc atctagcctc 1800
atacatagag atatgcagca ccgttaaat ccgcggagtt caaaaagatg cgatactcct 1860
taacctctt tcctttccc tagcaggaga ggcaaaaaga tggttgcact cctttaaagg 1920
caatagctt agaacatggg aagaagtagt ggaaaaatttcaaaaggat atttcccaga 1980
gtcaaagacc gtcgaacgaa agatggagat ttcttatttc catcaatttc tggatgaatc 2040
ccttagcga gcactagacc atttccacgg attgctaaga aaaacacccaa cacacagata 2100
cagcgagcca gtacaactaa acatattcat cgatgacttgc caaccttaat cggaaacagct 2160
actagagggaa agatcaagct gaagactccc gaagaagcga tggagctcgt cgagaacatg 2220
gcggctagcg atcaagcaat cttcatgat cacacttgc ttcccacaaa aagaagcctc 2280
ttggagctt gcacgcagga cgcaactttgc gtacaaaaca agctgttgac gaggcagata 2340
gaagccctca tcgaaaccct cagcaagctg cctcaacaat tacaagcgat aagttttcc 2400
caactttctg tttgcaggt agaagaatgc cccacatgca gagggacaca tgagcctgga 2460
caatgtgcaaa gccaacaaga cccctctcgta gaagtaaattt atataggcat actaaatcgt 2520
tacggatttc agggctacaa ccagggaaat ccattggat tcaatcaagg ggcaacaaga 2580
ttaatcactg agccacccgg gtttaatcaa ggaagaaact tcatgcaagg ctcaagttgg 2640
acgaataaag gaaatcaata taaggagcaa aggaaccaac caccatacca gccaccatac 2700
cagcacccca gccaagggtcc gaatcagcaa gaaaagccca caaaaataga ggaactgctg 2760
ctgcaattca tcaaggagac aagatcacat caaaagagca cggatgcagc cattcgaaat 2820
ctagaagttc aaatggccca actggcgcat gacaaggccg aacggccac tagaactttc 2880
ggtgctaaca tggagaagaa ccccaaggaa gaatgaaaag cagtagtgc ttgagggcag 2940
agaagagcgc aggaggaggg taaggttgc gggaaagact ggccagaaga agaaggaca 3000
gagaagacag aagaagaaga gaaggtggca tcaccaccta agaccaagag ccagagagca 3060
agggaaagccca agaaggaaga accactagcc cttccacagg atctccata tcttatggca 3120
cccaccaaga agaacaagga gcgttactt agacgtttct tggaaatatt caaagggtta 3180
gaaatcacta tgccattcgg ggaagccctt cagcagatgc ccctctactc caaattttagt 3240
aaagacatcc tcaccaagaa ggggaagtat attgacaacg agaataattgt ggtaggagc 3300

cacttctgca ataatcagtt gaagaaaagtc ctggagcact ataatgtaa acataaggta 6240
gccacaccc ttccatca gacaaaatggc caagtagaaaa tttctaaacaa agagctcaag 6300
cgaatcctgg agaagacagt tgcatcatca agaaaagaatt gggcctgaa gctcgatgat 6360
actctttggg cctacaggc agcattcaaa actcccatcg gcttatcacc gtttcagcta 6420
gtgtatggg aggcatgtca tttaccatgt gagctggagc acaaaggata tttaggctctc 6480
gagttactca actttgataa caacgcattgc ggagaaaaaga ggaagctaca gttgctggaa 6540
ttagaagaga tgagactgaa tgccctacgag tcattccaaaa tttacaacca aaagatgtaa 6600
gcatatcatg acaagaagct acagagggaaa gaattccaac catggcagca ggtattactc 6660
tttaaatcaa ggctaaggct attcccaagggt aagctgaagt ccaagtggtt agggccgttc 6720
ataatcaatg aagtccagacc tcacggagca gttagattgg gggaccctag agaagagaac 6780
tttgagaaga aatggatcgt caatggacaa cgcttaaagc tttataacga aggacaacta 6840
gagcgattga cgaccatcat ctacttgaat gacccttgag gaggcctagt gtctagctaa 6900
agacaataaa ctaagcgctg gttgggaggc aacccaacat attttgcataa aatgttagtca 6960
ttttctgtt ttccttcaaa aaaaaaggaa aaagcccaat aggtgcaaat agaaaacacgc 7020
aggtgcagaa agtaaagacc cagtaggtga agtcagcaat aggagggtg ccaatagaag 7080
aagcgaagtgg ctgcacga agccacgcgc atctaggcgc taagcgctta ggttatatttt 7140
caatttttaa attttaaaaa ttctgagggaa aaccaaggaa cgcttcctt ggtatgctta 7200
gcccggcgcgat gcgcgctaa cgccgcgaaacc ataaaattgtt ggacagttt caaaactgtc 7260
ccaccctca gctgccctt tgtattttaa atttcaacca cctcattttt tttctcttc 7320
tgccgactcc cactccctat acccttttc tctacatttc ctctaaactt actcgctcc 7380
ctgtgccttc tcacgttagtt ttacggaaa tagtgagat tggaaatctg gactgttgct 7440
gtaataactt gcaggtacca tcacgctaa ccctacacaa aggcttagcg agaaaaagaa 7500
acatagaaag gaagaaaagaa gcatgcgcta agcctgcgc agacaggaca agaaaacaca 7560
gcatgcgtt agccggcacc tcgtgctaa cgccgcgtat agactcagt aacgcgctaa 7620
gcatggggct gggccttagg gcccattcagc cctcgtgcct tactttctgc accctctttt 7680
tcactaacta cactcccttc tgaatttctt tttgcaccct cctctattac taaccacaaat 7740
ctattttcc gtctttgttt ctttgtttt tcagatggcc tcccgcaaac gccgagctgt 7800
gcccacaccc gggaaagcat caagctgggat ctcttccgc ttcaccccg agatcatttgc 7860
gcatagatac caggataaca ttcaagctccg gaacattctt ctggagagga atgtcgagct 7920
cacacccagg atgtttgatg agttcccttca ggagctccag aggtgcagat gggaccagg 7980
gttaacccga ctccagaga agaggattga tgcgtctgt gtgaaggagt ttactccaa 8040
cttataatgtt ccagaggacc atagtccaaa gtttgttagg gttcaaggac aggtcatgtg 8100
gtttgatgca gagacgatta acgacttccct tgacacccca gtcacccctt cagatgtaga 8160
ggagtaccca gcctactctc agtacccctcg cactccctccc gatcatgatg ccacccctctc 8220
cactttgtt actccagggg gacggttgt tctgaatgtt gatggccccc cctagaagtt 8280
gctgcggaaag gatgtacgca cactcgctca gacatagatgt gtcccttctt attttaaccc 8340
tgttcttact tctcacactt ctgatattaa tggatggacagg gcccgtctca tatatggctt 8400
ggtgatgaaat atggacccgg acgtggacacg ttttatttcc cagcaaatca gtcagatcgc 8460
ccaaatccaaac acatccaggc tcgggttcccc agcggtgatc acggcactgt gtgacattca 8520
gggggttggc tctaaacaccc tgattttga gttactcaat cctatgatta accttgcgtt 8580
cattacacta ctaaaaaaaaaa gctatccatc gacgcgcgtt ccacatcgat tctgccaaaa 8640
atgtcgtaat aggatgtcg gttggcaattc cgtaaataag tgacgtttt atgtgcccatt 8700
tgcatggcgc gtgacacatt caacgcgtt ggcattgggt gcccgtctt gtaggtggcg 8760
cgctggtaac ttaagacggt gcactaaaa acatcgctgt tgaaattttt aatttcgaaag 8820
acgttgctct taagccaccg tcgttaaggt tgatgtat aatgttgtaa tttgcgttat 8880
ttcgtgaaca ctcgcctcgag ctccgccttc cctgtgtgtc tgaaatttct gtgtactgtg 8940
acctcgccat gacttggc gtttgcac acccccgatca cctcgtccgg catctcgatct 9000
tgtgggtggca ccggcgaagc cagtgatc acacggctgt 9060

gttttgaagg taagggttg cgaagattt atgctccata gttgttactt gctctgagtt 9120
tttcttttag tgatgtatct tttaccctc tttcagtgtc tcttcctca gaatttgatt 9180
gccggattta gaaccccact attcatcagg tccaaacaag cttaaatcat ggttaatgt 9240
cttcttgaca aatccaacat ttgcaaggtg gtttgacata tgagaaaatag cttaaaccta 9300
atgttcttaa atttattatg aagctctca gcgattacga aaatctctca atatcttctc 9360
tctctgtctc acatgcata ctgtaagata ggtgtcaaaa agaaaaggatt gaagttaaat 9420
ttaaacctaa tgtttgaaa tgaaggaaaa aaagaaaagag attaatgacg cttaggaaact 9480
tgaatgaaga aagagaaaagg aacataatta gtccttgaa ctgattgggg tggggagtg 9540
ggcacgaaac ataatttcta gttctatgga tttattcgta acactgttgtt aggaccaagc 9600
aaactctgcc cccagagtgc gcagtgtctt gcagtctgag aggttctttt gtgggctag 9660
tttgaggaat tcttcattgc agggttgagc acggtggcca atggccaagg agagaaaaga 9720
cagtaactgtc aaaatggta atggtaagat gaggtaagat gacatgtttt ttgtgtct 9780
ctttgtgtgt ttcctttgg tggaaaatg tgatgcata agagatcga 9829

<210> 20
<211> 12571
<212> DNA
<213> Glycine max

<400> 20
gatcttaaat tcttaaactt tgataacagt gcatacggag agaagagaaa gttgcagtta 60
ctggaactcg aagaaaatgag gttgaacgct tacgaatcat ctaggattta caagcagaag 120
gtaaaggcgt atcatgataa gaaattacaa aagaaaagaat tccagccagg gcagcaagta 180
ctactcttca actccagggtt gagattttc acaggaaagc tgaagtcaaa gtggtcagga 240
tcgttcattt ttaaggaaat cagacctcac ggagcggtag aattggtgg a ccttcgagaa 300
gaaaattatg agaagaaaatg gatcgtaac ggacaacgct taaaaattta caatggagga 360
caactagaga agttgacgac catcatgcat taaaagatt cttgaaagaa gcccttatgtc 420
tagctaaaga cattaaacta agcgctggtt gggaggcaac ccaacatact tatgttaaggt 480
atttataagt atttataattc tgtctttattt atattttgca gttgttattt caggtaaaaa 540
gaaaaaacag gggccctccg gactcgacacc agagtatcaa cgtccatatac tgagggacccc 600
cctacttctc agccttccgc tccatcacct actgatctc atgctcagat gttgcggct 660
attcacacac gacaggagac ccttatggag aacatgcaca agctgtccct tcatctacat 720
atggatccac cactgatcac tccataggc tatcgtcagc gggtcgtctg gccatgagac 780
cagctctcca ctgacagggg ggaagagccc tctggagatg ctgcagttga tgaagacctc 840
atagcagact tggctagtgc tgattgggtt ccatggcag atttggagg cggcacagga 900
caactggttt attttcttg atgttttgc ttatgtttaa tgtttatgtt ttatgtctt 960
atgttttatt tggtttctag ttattatgtt cttaattgtt gtttatgtt caaaatgaaa 1020
agcagtggta ataatattag atttgagcat atgcgtgaat aaataaattt catgataact 1080
tgagaaaatga caattttgag tttgttctaa aaggtccaac actggaaagg ctactagtca 1140
ttggaaagca ctggcttgg aagcaaaagt caaatcaagg aatgaaacat gattcacgg 1200
aaaggaaagg ttagcttgat ggaatgaaga cacatctggt acgccaatac tgaattaatc 1260
ccggtgagag tggaccta atttgagag aaaacgcctg ttttaagct cttagtttg 1320
catcattctt ggactgttaa aatttagttac ttaagggtgg tatgatcaag gccatgtttg 1380
ttttatcttta cccactcagc caaaaagcca acccaacata attttatccc ttgcacccat 1440
attgagccaa aaagaattat aatgattat ttgagtaaac ccctgagccca agaaatttgat 1500
attcctaacc ttgtgttagga ttctaaagaga gcagtagggt tccaaatgct tataaggcct 1560
tattttgggg gattttgaac aaatggtaa agtagccaag gtaataaacac acattagaac 1620

acctctaaat aattgtgagc ccattactat tattattatt attattatta ttattattat 1680
tattattatt attattatta ttattattat tattggttat aaaaaaaaaaaga agaaaaaaaaag 1740
agaaaagaata agaagagaaa gggcaaagaa aaaaaatgaa aaagagaggt ttcagtggaa 1800
agtgcgtgaag gcaaaaaagg ctaagtggga aataggtctt ggcaagacct taaattttg 1860
gaatgtatgc tctcttataa ccttatattt tgaatttcca agaaaaacca tgattcttg 1920
ttagccaggc cccattacaa ggcattgaaag tccttagtga cccaccgaag gtaattaagg 1980
ctaaccctaa ccaagatgaa gtacaaaact cttgagttt atttacaggt tgtaaaaatt 2040
gcaaacactt gaccaggcac ttgtgagtag agagaaaacac cagtttgta aggaagttaag 2100
gcaagccgga cctgttggaa ttccatataa ttgacttgtt tctgctttg tgtttatgct 2160
tttatttcaa gatcatgaca gatgcaaaga gaccagccaa aggatcaagg aattgaagtc 2220
atggagagtg ttgaaatgat ttgaaacttgc ttgagaaaat ttttgcttaa gaatggaata 2280
attttattct ttttatttgc ttggggacaa gcaaagtta atttggggga ttttgataac 2340
tgctaaataa tagtgaatta atagtggaaa attggctga aattaactta gaattaatta 2400
tttagtagtt atttatgctt taatttggaa agatttaatt aattttgaat tctgattgca 2460
gatgtgaaaa agggaggtac aacaagcaaa aaggagcaaa aataaaagaaa aagaagaaga 2520
aaatcagacg aagacccaag cccaaatttt caccataaa taagaaggc accttagcaa 2580
aacacacaca ctccagaga gtcagttt cagacttctg gcactcagtt ctctccttct 2640
ccttccctt ttcttatatt ttattacat ttctttcacc cccttcctat tgaaagccc 2700
tcttgactat gagtggtctaa acccctagct agggcctggc aggcctaaaa agccaatgat 2760
gtatggagca ttcaagagt tatcaataaa gagaggattt cttccaggt tctttattta 2820
ccgttcttc ttatttatcc ttttcccg accttatttt ctgttagggt ttagtccact 2880
cgggagaggg taaagcctaa ttaggggtaa ggaatgaata cttgaatcta ttttaagggt 2940
tagtccattc gggagagggt aaagcttaat agaacaataa aaggaagaaa ttatcgggtt 3000
atcatttagag gttttccctt ccaggttctt ttatctgctt ttctttctta ttctgcattct 3060
cagtctttat tttctgttag tcttttagtcc actcgggaga ggttaaagcc taattaagg 3120
taaggaatga ttgcgtgaat ctgttttaag gtttagttca ctcaggagag ggttaacgctt 3180
aatagaacaa taaaagaaaa aaatcacagg gttagcattt acccgatgcc catactttag 3240
caaacatata gaatttaatc ttaatgcattc ttagttattt agtcttgca aagggcattt 3300
ggaagatagg taattaagggt aggcttgca tcatgaggca tcagggcaaa gttagatggat 3360
agatgtgggg cagaatcagt tcactggat tgataacaga caaatcttga atccatatat 3420
ctaggctgat tagactttt aggttttagc aattttata tatagatttt atccctatt 3480
ttattgttt aagtttctta ttctattgtt gggtttctt agaagtagct attccttatt 3540
ttactgtttt gtttcttag aaatagttt tccttattgt tggtttctt agaagtaggt 3600
attccttatt ttactgtttt gtttatttag ggtactttt cccctgttta ggagtaggtt 3660
tttaggctta tttagatttt taatatttt tagactttt tctttattta ttgcttgagt 3720
ttcctttaat tttagaagtag ctgcttagat taaaattact ttatctttt ccttaatct 3780
tatctttaaa tctttatct ttcccttattc ttatctttt tctttcttta tctttatttt 3840
caaatttctt atcccttgct agatttaat tgcatttaat ttatacact aaatttacaa 3900
tttgc当地 aaaaagtagt tcacataagt gcaacaaaat ccctatggta cgatactcga 3960
cttaccgaga gattattact acgagcgatt tggtagactt gccaaagagc taacaaagat 4020
attgcctgat catctaaagt atgtgttctt ggaggaagat aaacctatag taatcgttaa 4080
cgcaactcaca acaaaggagg aaaataggtt ggtttagtgc ctcaagaaat acagggaaagc 4140
aattggatgg catatatcgg atctcaagga aattagccct gcttactaca tgcacagaat 4200
aatgatggaa gagaactaca agccagtcg acaaccccag aggccgctga atccaacaaat 4260
gaaggaagag gtaagaaagg aggtactcaa gctttggag gctgggctca tataccctt 4320
ctctaaactg gcttgggtaa gcccagtaca ggtggttccc aagaaagggtt aaatgacagt 4380
ggtagaaat gagaagaatg acttgataacc cagacgaact atcactggtt ggcgaatgtg 4440
tatcaactat cgcaagctga atgaagccac acgaaaggac catttccct tactttcat 4500

ggatcagatg ctagagagac ttgtaggca ggcatactac tatttcttgg atggatactc 4560
gggatataat cagatcgccg tggaccagg agatcaagag aaggcggcct ttacatgcc 4620
tttggcggtt tttgttata gaaggatgcc attcgggtta tgtaatgcac cagccacatt 4680
tcagagggttc atgctggcca tttttcaga catgggttag aaaagcattg aggtatttat 4740
ggacgacttc tgggttttg gaccctcatt taacagttt aggaacctag agatggtact 4800
ttagagttga gtagagacta acttggtaact gaactggag aagtgtcaact tcattgttca 4860
agagggcatc gtcctaggcc acaagatctc agcaagaggg attgaggtcg atcgggcaaa 4920
gatagacgtc atcgagaagc tgccaccacc actgaatgtt aaagggttta gaagtttctt 4980
agggcatgca gggttctaca agaggttat caaggacttc tcaaagattt ccaggcccct 5040
aagtaacctg ttgaataaag acatggttt caagttttagt gaagaatgtt caacagcatt 5100
ccaatcattt aagaataaagc ttaccactgc acctgtaatg attgcaccccg actggaataa 5160
agattttgaa ctaatgtgtg atgccaatga ttatgcagta ggagcagttc tgggatagag 5220
gcacgacaag gtatttcacg ccatctatta tgctagcaag gtcctgaatg aagcatagtt 5280
gaattatgca accatagaaa aggagatgtc agccattgtc tttgccttgg agaaattcaa 5340
gtcatacttg atagggttga gggtcaccat tttcacagat catgtgttca tcaagcacct 5400
gcttgcata acagactcaa aaccgaggtt gattagatgg gtcctactgt tacaagaatt 5460
tgacatcatc atcaaggaca agaaaggatc cgagaatgtg gtagccaatc atctatctcg 5520
attgaagaat gaagaagtca ccaaggaaga accagaggtt aaaggtaat ttccctgtatga 5580
gtttctttt caggttaccg cttagatctt gtttgcagac atggccaatt acaaagccac 5640
gggagtcatt ccagaggagc ttaattggag tcaaaggaag aaattttgc acaatgcacg 5700
cttctatgtg tgggatgatc ctcattgtt caaggcagga gcagataatt tactaaggag 5760
atgcgtcaca aaggaggaag cacggagcat tctttggcac tgccacagtt caccctatgg 5820
cggtcaccac agtggggaca gaacagcagc aaaagtcta caatcaggtt tttctggcc 5880
ctctatTTT aaagatgctc acgagttgt gcgttgttgc gataatgcc aaagaacagg 5940
ggggatatct cgaagaaatg agatgccttt gaaaaatatc atggaaatgt agatcttga 6000
ctgttgggc atagacttca tcggggccct gccttcgtt tatggaaatg tctacatctt 6060
ggtagtttg gattacgtct ccaaattgggt ggaagtcata gctacccaa aggatgtatc 6120
caaggttagta atcaaatttc tgaagaagaa catttttcc cggttggag tcccacgagc 6180
cttgatttagt gatagggaa cgcacttctg caacaatcag ttgaagaaag tcttggagca 6240
ctataatgtc cgacataagg tggccacacc ttatcatcct cagacaaatg gccaaggcaga 6300
aatctctaac agggagctca aggcgaatct tggaaaagac aattgcata tcaagaaagg 6360
attgggcctt gaagctcgat gatactctt tggctatag ggcagcgtt aagactctca 6420
tcggcttatac gccatttcag ctatgtatg ggaaggcatg ccatttacca gtggagctag 6480
agcacaaagc atattggct ctcaagttgc tcaacttcga caacaacgc tgcggggaaa 6540
agaggaagct acagatgtt gaattagaag agatgagact gaatgcctac gagtcatcca 6600
gaatttacaa gcaaaagatg aaggcatatc atgataaaaaa gtcacagagg aaagaattcc 6660
atccagggaa gcaggttata ctctttaact cgaggctaaag gctattccca ggttaagctga 6720
agtccaagtg gtcaaggcca ttatcataa aagaatgtcgtt acctcatgga gcagtagaaat 6780
tggtggaccc ttgagaagag aactttaaga agaaaatggat cgtcaatcga cagcgcttga 6840
agccctacaa cggaggacaa ctcgagcgat tgacgaccat catctactta aatgatcctt 6900
gagaaggcct actgtctagc taaagacaat aaactaagca ctgggtggaa ggcaccccaa 6960
catatTTT taaaaatgtt gttatTTT ttttatgtt aaaaaaaaaa gagggcccaa 7020
taggtgcacaa tagcaaacag gaggtgcacaa aagcaaaggc ccaacaggtg aagacaacaa 7080
taggaagggt gccaatagca aaactgaagt gggctgcgt aagccgcgc ctaagcgccc 7140
aggtatgtt taaaaatctg atggcaacc aaggacgtt ttccttgggtg cgcttagcgg 7200
ccacatgcgc gctaagcgcc taagtctaa attactggac agtttcgaa actgccccaa 7260
ccctcagctg ctcctccgc gttattaaat tacaaccatt tcatttcatt atccttctt 7320
tcttcgcaatcaccctt ctgttgcacccctt ctgtactgt aaccctgaa ttcttgggtct 7380

tttcacacaa aacaatcaact aacgaaggta aagaattgct ttgtatggat gtttatga 7440
atgcacaggta aacagcacgc taagccctgc tcgacgctta gccaatgaag acggattgaa 7500
ggccataacg acgagctcgtaa agcgtgac gaagcacgtaa aagcaggcgc ctgacaggac 7560
gagaaagcaa agcgcgcgcta tagccggcac ttccgcgcta agcgcgccta tgaacatcac 7620
tgaacgcgcta aaacgtgtgc cagaggcgcta aaacgcgtgc cagaggcgcta aaacgcgtgc 7680
attagtca aca gcaggatggta gctaagcgcg gggggggcc tcagggccca tcaaccctcg 7740
caccttacccgtt gttgcacccctt tatttctactt attcccactc ccttctaatt tcttttgca 7800
cccccccttctt tactgactg cacctctatt ttgattactt ttgcacccctt ccctgattgc 7860
taacttcaga ctatcttctt tgtttttgtt tttttgggtt ttttggtcag atggcctcct 7920
gtaaaacaccg agctgtgccc acacccgggg aagcgtccaa ctgggactct tcacgttca 7980
ctttcgagat tgcttggcac agataccagg atagcattca gctccgaaac atccttccag 8040
agaggaatgt agagcttggta ccagggatgtt ttgatgagtt cctgcaggaa ctccagaggc 8100
tcagatggga ccaggttctg accccacttc cagagaagtg gattgatgtt gctctggta 8160
aggagtttta ctccaaccta tatgatccag aggaccacag tccgaagttt tggagtgttc 8220
gaggacaggt tgtgagattt gatgctgaga cgattaatga tttcctcgac accccggtca 8280
tcttggcaga gggagaggat tatccagcct actctcagta cctcagcact cctccagacc 8340
atgatgccat ccttccgct ctgtgtactc cagggggacg atttgttctg aatgttata 8400
gtgccccctg gaagctgctg cgaaaggatc tgatgacgta cgccagaca tggagtgtgc 8460
tctcttattt taaccttgca ctgacttttca acacttctga tattaatgtt gacagggccc 8520
gactcaattt tggcttggta atgaagatgg acctggacgt gggcagccctc atttctctt 8580
agatcagtcgatcgtccatccactt ccaggcttgg gttccagcg ttgatcacaa 8640
caactgtgtga gattcagggg gttgtctctg ataccctgtat tttttagtca ctcatgctg 8700
tgatcaacct tgcctacatt aagaagaact gctggaaaccc tgccgatcca tctatcacat 8760
ttcaggggac ccgcgcgcacg cgccaccagag cttcggcgctc ggcacatcgat gctcctctt 8820
catcccagca tcctctcgat ccttttccca agtaccacgcg gcctccactt ctatccacat 8880
cagcacctcc atacatgcat ggacagatgc tcaggtcctt gtaccagggt cagcagatca 8940
tcattcagaa cctgtatcgtt ttgtccctac atttgcagat ggatctgcca ctcatgactc 9000
cgaggcccta tcgtcagcag gtcgcctagc taggagacca gcccctccact gacagggggg 9060
aagagccctc tggagccgct gctactgagg atcctgcgt tgatgaagac ctcatagctg 9120
acttggctgg cgctgattgg agcccatggg cagacttggg cagaggcage tgatctttag 9180
ctttaatgtt ttctttata ttatgtttgtt gttctttttt atgtttatgtt ttagttttt 9240
atgttagtctg tttgtaatt aaaaagaggt agtagtaaaa atatttagtat ttcagttatgt 9300
gttttctgag taataagtgc atgataactc aagaatcat aattctttag ctgttcaga 9360
aagggtcaac acttgagatg ccactgatcc ttggagaaac actggttctg gaagcaaaag 9420
tcaggtaagaa aatggaaaca tgaatagcac agagtggaaa ggttagcttgc atgaaacaag 9480
gtcataactg gtacgcgcgaa tactgttta agtccctgtg agcatggtttcaactcta 9540
gagtcaactc atagactctc atgagttaa gagttactt cagtcggcg agttgactcg 9600
gaagcaactc cgctttttag gaaactcggt gactcggtt gaaactcatgtt aactcgtaa 9660
gagtctacga gttgactcta gagtttgcata accatgcata agtggtaaaa attaaagcat 9720
ttaaataatt aaaaaaaagca caaatgtctt caaagaagca tggtaatcc tctaataaggta 9780
tcatcttcat gaatatcatc actttcatca tcacatccat ctccatcatc atcatcaagg 9840
tcttcctcag attgtgcatac atcatttagt tccacaaaga ttaaattatc tagatcaaaa 9900
gcttaaaata gatataat atgctatatt agaaatagtt aaaaacttaaa ataatacaca 9960
agcaaaattt aaatatgaga aagttcagaa attataccctt ttcttgggtt tattaaagtt 10020
tcatcttcatc ttctcttttgcatttcacat ctccatcatc atgaaaagca taattcttatt 10080
gaatttcagtaa aacaagtttgcataccactc aacattgtaa ggtcagggtt gttgtttgtt 10140
aatagactaa tatgaagtttgcataccactt attgtcatct gtttgcaaat 10200
tggtgcatatt tgaatatatt tacttattt ccattttttt tttttacga agtagactct 10260

cacgagactcg cgttagactct cgatatcgat aacttgccg atgagagtgt gaacttaatt 10320
gtgagagaaa atgccttattt ttaagttcct ggtttgcat cattcttaga cggttagaat 10380
agttacttaa ggtggatatg atcaaggcca tgtttgggg tttacctact tagccaaaaaa 10440
gccaacctaa catagttta ccccttgcac ccatgattga gccaaactgat tattttgaat 10500
taacctttag gccaattaaac aaaatcctga ccttttagga tttaagaga gtaaaaatgg 10560
gttataaagg tcttaatttgg ggggattttg ggaaataggt agccaagaca ataagtacag 10620
cacacaaagt aggacacccctt ttacaaacag taggcccattt tcgaaaaaaaaaaatgaaaag 10680
aatttaataa agggcagaaa caaaagagca agagagggtt caaaagaaaaa gtgttgtggg 10740
gaaataaaag ggctaagtaa aaaggcttag gcagaatttgg aaattttgt tctcttttaa 10800
tccttaactttt gaatttccaa gaaaaaccat gattttttgt aagccaggcc ccgatacaag 10860
ccaataaaagt ccttagtcat ccaccaaagg taactagaga taactgtaac tgagatgaaa 10920
tgcaaaattt tgaagtgtta cttgcagggtt gttatcaaattt tgcaaaacact aaactaggca 10980
cttgcgagca gagggaaaca ccagccctgtt gaggaaagta aggcaagccaaatttgcattt 11040
agttccagat gactaactga ttcaatttctt ctgttgaat gctttcattt taagatgtt 11100
acagatgcag aaaggaccag tgaaagaagg aggaactgag ccattgatag ttttggaaa 11160
tttaagaact tgcttgagaa ttacttgcattt ttgggttttcc ttggggacaa gcaaagtttc 11220
atttggggaa ttttgataac tgctaaataa ttgtgaatta atagtaaaga attattcaaa 11280
ttttggcctg aaattaatta tttagcagttt atttgcattt aaaagtttaga aaattaatta 11340
aattgaattt ttgggtgcag ataagaaaat tggagttaca ttaagcaaaaaaaggcaacaa 11400
aaaatgaagg aaaagaagaa gtctgaagca ggcccagccc aacacgcacg ctaagcgcgt 11460
gtcacgcgct aagcgtgcaa ggcagttacag gcgctaagcg aggcttaag ctcgaagatg 11520
cagaatccgt tacgcgcgct aagcaaggc cacgcgcctaa gcgtgcgatc caacagaaac 11580
acacgctaag cctgcatttc gcgctaagcg cgcatctga acgcgctaag cgcgagggtt 11640
cgcgctaagc gcgcttacga aggccccaaa cccacttttag cagctataaa tagagagtca 11700
gtccaaggga aacaacacat ctcgcctcag agcacttccc tcagcattct aagcctaagc 11760
tctccctttt ctctttgttt ttattatcct cattctttctt ttcaccccca gttgtaaagc 11820
cctcaatggc catgagtggc taatcttaga gctagggcctt ggcaggccta aaaagccaaac 11880
gatatatggt gtacttcaag agttatcaat gcaaaagaaga ttcatccag gttttttgtt 11940
tctaattattt ttcttttat cttgcattca tttcttgcattt ttctttttggg ttttatttgc 12000
tcgggagagg gtatcccta ataagggttt aaggattat gcatgcatca gtttttagggg 12060
ttatacgctt gggaaagggt aacacctaata agaacatctt aagaaaaagaa tcatacggtt 12120
agcattgcta ggcataagaat gataactcaa tgcccacgca tttagcaaca tctagaattt 12180
taccttaatg cattttattt attgagtctt cgcaaaggca ttggggagat aggtatcaa 12240
aataggctt tcatcgtag gcatcagggg caagttaaat taatagatgt gggtagaaact 12300
gttacaaatg cattggtaat gaatatcata ttatcatgca tcgttaggcca attgggttt 12360
tccggcttttgcattttat taattgtctt tctaaaactt tttgtcttag taatagcaat 12420
ctattcttgc acttactcctt gttttacta ttttactctt acaaattgaa aagtattcga 12480
taaagtgc当地 taaaatccctt gtggaaacgta tactcgact tccgagggtt actactttaga 12540
gcgattttgtt acacttgc当地 aagtctcaac a 12571

<210> 21
<211> 4609
<212> DNA
<213> Glycine max

<400> 21
gatctcccat atcctatgg acccaccaag aagaacaagg aacattactt ctgacgttc 60

ttggaaatat tcaaaggact ggaaatcacc atgccattcg gggaagcctt acagcagatg 120
cccctctact ccaaatttat gaaggacatc ctcaccaaga aggggaagta tattgacaat 180
gagaatattg tggttaggggg caactgttgt gcaataatac agaggaagct acccaagaag 240
tttaaggacc ccggaaagtgt taccatcccg tgcaccatag gaaaggaaga ggtaaacaag 300
gccctcattt atctaggagc aagtataat ctaatgcctt tgtcaatgtg cagaagaatc 360
aggaatttga agatagatcc caccaagatg acacttcaac tggcagaccg ctcgatcaca 420
agaccataca gggtagtgc agatgtcctg gtcaaggtac accacttcac tttccggtg 480
gactttgtta tcattggatat cgaagaagac acagagattc cccttatctt aggccagaccc 540
ttcatgctga ttgccaactg tgggttgat atggggatg ggaacttgg ggtgagtatt 600
gacaatcaga agatcacctt tgacctttc aaggcaataa agtaccata ggagggttgg 660
aagtgcatttta gaatggagga gattgataag gaagatgtca gtattctcga gacaccacag 720
tcttcgctgg gaaaagcaat ggttaaatgt ttagactgtc taaccagtga agaggaagaa 780
gatctaaagg cttgcttgg aagacttgat tgacaagaca gtattcctaa gggagaagcc 840
agatttgcata ctctagaaaa ggaagttccg tccgagaaga agaagataga gttgaagata 900
ttgcccgtc atctgaagta tgggttctt gaggaaagata aacctgttgt gatcagtaac 960
gtactcaca cagaggagga aaacaggta gtagatgtcc tcaagaaaca caggaaatca 1020
attggatggc acacatcgga tctcaaggga attagccctg cttactgcac gcacaggata 1080
atgatggaaag aggactacaa gccagtctga caaccccaga ggcggctgaa tccaacaatg 1140
aaggaagagg taagaaaaga ggtactcaag ctcttggagg ttgggctcat atacccatc 1200
tctgacaacg cttggtaag cccagtacag gtggttccca agaaagggtgg aatgacagtg 1260
gtacaaaatg agagaatga cttgatacca acacgaacag tcactggctg gcaatgtgt 1320
attgactatc acaagctgaa tgaagctaca cggaaggacc atttccccctt acctttcatg 1380
gatcagatgc tggagagact tgcagggcag gcatactact gtttcttgg tggatactcg 1440
ggatacaacc agatcgccgt agacccata gatcaggaga agacggctt tacatgcccc 1500
tttggcgctt ttgcttacag aaggatgtca ttgggttat gtaatgtacc agccacattt 1560
cagaggtgca tgctgaccat ttttcagac atggggaga aaagcatcga ggtattttatg 1620
gacgacttct cggttttgg accctcattt gacagctgtt tgaggaacct agaaatggta 1680
cttcagaggt gcgttagagac taacttggta ctgaatttggg aaaagtgtca ttttattgg 1740
cgagagggca tagtcctagg ccacaagatc tcaacttagag ggattgaggt tgatcgccg 1800
aagatagacg tcatcgagaa gctgccacca ccactgaatg taaaagggtt tagaagttc 1860
ttagggcatg cagtttcta taggaggattt atcaaggatt tctcgaagat tgccaggccc 1920
ttaagcaatc tgctgaataa agacatgatt ttaagttt gatgaaatg ttcagcagca 1980
tttcagacac tgaaaaataa gtcaccaact gcacccgtaa tgattgcacc cgactggaaat 2040
aaagatttt aactaatgtg tgatgttgt gattatgcag taggagcagt ttgggacag 2100
aggcagcaca aggtatttca caccatctat tatgttagca aggtcctgaa tgaagcacag 2160
ttgaattatg caaccacaga aaaggagatg ctggcatttgc tctttgcctt ggagaagttt 2220
aggtcatact agatagggtc gagggtcacc atttcacag atcatgtgc catcaagcac 2280
ctgctcgcca aaacagactc aaagctgagg ttgatttagat gggctatgct attacaagag 2340
tttgacatca ttattaagga caagaaagga tccgagaatg tggtagctga tcatctatct 2400
cgattaaaga atgaagaagt caccaaggaa gaaccagagg taaaagggtga atttcctgtat 2460
gagtttctt tgcagggtac cgcttagaccc tgggttgcag acatggctaa ctacaaagcc 2520
atgggaatca tccagagga gtttaattgg agtcagagga agaaattttt gcacgtgca 2580
cgcttataatg tgtggatga tcctcatttgc ttcaaggcg gagaataa ttattaaagg 2640
agatgcgtca caaaggagga agcacgaagc atttttggc actgcccacag ttcaccctat 2700
ggcatacatc acagcgagga tagaacaaca gcaaaagtgc tacaatcaag tttttcttag 2760
ccctttat ttaaagatgc tcacgagttt gtgcattgtt gtgataatg tcagagaaca 2820
agggggatat ctcgaagaaa tgagatgcct ttgcagaata tcatggaggt agagatctt 2880
gatagttggg gcatagactt catggggctt cttccatcat catacaggaa tgtctacatc 2940

ttggtagctg tggattacgt ctccaaatgg gtggaagcca tagccacgct gaaggacgat 3000
gccagggtag tgatcaaatt tctgaagaag aacatTTTT cccatttcgg agtcccacga 3060
gccttgatta gtgatggggg aacgcacttc tgcaacaatc agttgaagaa agtcctggag 3120
caactataatg tccgacacaa ggtggccaca ccttatacaca ctcagacgaa tggccaagca 3180
gaaatttcta acagggagct caagcgaatc ctggaaaaga cagttgcata atcaagaaag 3240
gattggcct tgaagctcgta tgatactctc tggcctata ggacagcggt caagactccc 3300
atcggcttat caccattca gctagtatat gggaggcat gtcatttacc agtagagctg 3360
gagcacaagg catattggc tctcaagtttgc ctcaacttttgc acaacaacgc atgcggggaa 3420
aagaggaagc tacaactgct ggaatttagaa gagatgagac tgaatgccta cgagtcatcc 3480
aaaatttaca agcaaaagac aaaggcatat catgacaaga agtacaaag gaaagaattc 3540
cagccaggc agcaggtatt actcgtaac tcaaggctaa ggcttattccc aagtaagctg 3600
aagtccatt ggtcaggcc attcataatc aaagaagtca gacctcacag agcagtagaa 3660
ttggtgacc ctagagaaga gaactttgat aaaaaatgga tcatcaatgg acagcgctt 3720
aagccttata acggaggaca actagagcga ttgacgacca tcatctactt aaatgaccct 3780
tgagaaggcc tactgtcgag ctaaagacaa taaaactaagc gctggttggg aggcaaccc 3840
acatattttg taaaaatgta gttatctca ttctatgtaa aaaaaaagcc caacaggtgc 3900
aaataggaaa cacgaggtgc aaaaagcaaa ggcccaacat gtgaagacaa caataggagg 3960
ggtgccaata gcaaaactga agtgggctac acgaagctac gtgcttagct cgctgtccgc 4020
cgctaagcgc ccagattgca caaaaatagg tgagacttgg aatctggact attgctgtaa 4080
tatcttgcag gtaccattac gctaaggcc acacagaggc tttagcgagaa caggcagcat 4140
ggaaaaagg aaggaggagc gcgctaaGCC acaacaagta atagaagaaa acgaagcacg 4200
cgcttagcgg gcactgccgc gctaagcgc ctcttcaaca tcagtgaacg cgctaaagcgc 4260
gtgccagaag cgctaagcgc gtgtcaccgt caccaggcagg aaggcctaa ggcgaggtt 4320
gggccttagg gcccatcagc ctgcgcct tacttttgc acaccccttc ttactaact 4380
gcacccctat ttgtatttct ttttgcaccc cctctgttta ctaactgcag ttgtttctg 4440
ctgtttctg ttttgttgc agatggcctc ctgcaaacgc cgagccgtgc ccacacccag 4500
ggaagcgtct aattggact ctccccgtt cacttcagag attgcattggc acagatata 4560
ggacaacatt cagctctgga acatccttc ggagaggaat gtcgagctc 4609

<210> 22
<211> 9139
<212> DNA
<213> Glycine max

<400> 22
acctgggtgt ttgtatgctt gtcttaatgc ggataggttg tcaagtagct ttagtgctaa 60
caactgagaag aatccgaagg aagaatgtaa agtttaatg acaaagagca gaatggaaat 120
tcaagttgtat gaagtttagag ctgaagagaa ggtggaggga tataaaacaac agtcgatagc 180
tgagcctgca ctggaactag tttccgatct tattgaactt gaggaagttt tggaagagga 240
agatgaccaa caggagagag agacaccaat aaaagatagt caagaaggaa taaagatgaa 300
ggaagagcat gaaaaagaaa aacaaaaaaga aaaagaagaa atagaaaaag aaaataataa 360
aaaaaaatgaa aaataaaaaa agatgggtga tgaggagaaa aaaaagagca agagtggaggt 420
ttcaagagaa aaaaagagag agattacttc agctgaaggc aaggaagtttcatatctt 480
ggtaccttcc aagaaggata aagagcaaca cttagccaga tttcttgaca tcttcaagaa 540
actggaaatt acttgcctt ttggagaagc tctccaacag atgccactct atgccaattt 600
tttaaaagac atgctgacaa agaagaacta gtatatccac agtgcacacaa tagttgtgga 660
aggaaattgt agtgcgttca ttcaacacat cttccccca aatcataagg atcccgaaag 720

tgtcactata ttatgttcca ttagcgaggt tgggttgggt aaagctctca tagacttggg 780
agctagtatac aatttaatgc ctctctcaat gtgtcgacga cttggagaga tagagataat 840
gcccacacgc atgacccttc agttgggtga tcactccatc acaagaccat atggagtgtat 900
tgaggatatg ttgatttcagg tcaagcaact tgtattccct gtagattcg tggttatgg 960
tatagaggag gatcctgaca ttcccataat cttgggacgt cctttcatgt ccgcgaccaa 1020
ctatatagtat gatataggga aaggcaagtt agaattgggt gtggaggatc agaaaagtctc 1080
attcgactta tttgaagcaa ataagcatcc aaatgataag aaagcttgct ttgatctaga 1140
caaggtagaa caataaatag aattagctac tatagccatg gtactgaact ctcccttgg 1200
aaaagcatttg attaataatcatg tagaatgtct tactaaagag gaggaacatg aagtgcacaa 1260
ttgttattaa gagttggatg gtgcaggaga aaattctgag ggacaggatg catttcaaga 1320
attgaagaat ggtgggcaaa tagaaaaacc aaaagttagaa ttgaagacct tgccctgcaca 1380
tttgaagtat gtatttctcg aagacaatga ctccaaacca gtgatttatta gcagctcg 1440
gaagaaaata gaagatcaac tggtaagat tttgaagaga cacaagctg caattggatg 1500
gcacatatct gacttgcaag gaatttagtcc atcttattgc atgcacaaaa tcaatatgg 1560
agctgattac aaaccagtga gagagcctca aagaagactg aacccaatca taaaagaaga 1620
gatgcataag gaggtgctt aattgttaga agcaggcctt atttaccctt cctcgatag 1680
tgcatgggtt agccttgc aggttgc 1740
tgataaaagat gagtaatccataaggac tggtaaccggg tggagaatgt gcattgacta 1800
tcggaagctg aatgatgcc tctcggaaagga ccattatcca cttcccttca tggaccaa 1860
gcttggaaaga cttgttaggt aatccttattt ttgtttctc gatgagactt ctggctataa 1920
tttagattttt gttgatccata aagatcaaga gaagactgtt ttcacccatc cttttgggtt 1980
attcgcatat cgccacatgc cttttgggtt gtgcattgc ccagctacat ttcagagggt 2040
tattatggca atttttctg atatgggtt aaaaatgcac gaagtttca tggatgattt 2100
ctcttattttt gggccatcct ttaagggtt ctttattttt ctttgggtt 2160
atgtgaagag tccaatcttag ttctcaattt ggagaaattt catttcatgg ttcaagaagg 2220
aatagtgcgtt gggcataaaaa ttccatgtt gggaaatagag gtggacaagg caaagatttga 2280
tgtaattttagtggaaatccctc ctccaaatgaa tgccaaagaa gtggaaatgtt tctttagtgc 2340
tgcaggattt tacagatgtt tcataaaaga ttctcaaaaa gtcgcccagc cacttagcaa 2400
tctgttgaat aaagatgtt cttttgtt caatcaagag tgcatggaaag catttataatga 2460
tctgaaaacc agatttgtt ctgtccatgtt aagtagatca ccagattggg gacaagaattt 2520
tgagttgtt gttgttgc gttgttgc gttgttgc gttgttgc aacggaaagg 2580
aaaactttt catgttat tttttttt actacgcctt caagggttcta aatgtgcac aggtgaacta 2640
tgctaccata gaaaaagaaaa tgctggcaat tgcttatgca cttggaaatgtt ttagatctt 2700
tttggtaggt tcaagatgtt tcatctacat cgatcacgca gctattttt atttgttca 2760
caaggcttat tccaaaccta gattgataag atggatctt ttgttgcag aatttggattt 2820
ggtgatttgc gataaaaaagg gatcggaaaa ttgttgc gttgttgc gttgttgc 2880
gaatgagggaa gtcacatttga aagaagcaga agtggagat gttgttgc gttgttgc 2940
attcttagt gttgttgc cttgggttgc cttgggttgc aacttcaatgtt ctacaagaat 3000
catccaaag gacttaactt ggtgttgc gttgttgc gttgttgc 3060
tatctgggtt gatcctcatt tggttgc gttgttgc aatcttgcattt gttgttgc 3120
gacacaagaa gaggccaaaga acatattatg aaatttgcac aatttgcattt gttgttgc 3180
ttatgggtt gataagacga tgaccaaggt tttgttgc gttgttgc 3240
tttcaaaat gttgttgc atgttgc aatgttgc 3300
atcaagaaga aatgaaatgc ctctacagaa tattatggag gttgttgc 3360
ggggattgtt tttgttgc cttcccttc gttgttgc aatgttgc 3420
gattgttgc gttgttgc 3480
tgggttgc gttgttgc 3540
taacgttgc ggcacacact tctgttgc 3600

tgtgacacaa agtagcatca ctttatcacc cccagaccaa tggcaagca gaagtatcaa 3660
acagggaatt gaaaaagatt ttggagaaga ctatagcttc tactagaaaa gactagtcta 3720
tcaaattaga tgatgctta tggcataca gaacaacatt caagactccg ataggattat 3780
ctccatttca gatgggtac ggcaaggctt gtcaattacc agtggagatg gaatataaag 3840
catactaggc cttgaagttt ttgaacttg atgaagccgc atccagagaa caaaggaggc 3900
tgcaacttt ggagttggga gatatgagat taactactta tgaatctca aggctataca 3960
aagaaagggt caaaaagtat catgacaaga agctgctcaa gaaggactt cagccaggac 4020
gacaagagtt gctttcaac tcaagactta aattgttccc tggaaagctt acatcgaaat 4080
ggtctggacc atttaccatc aagaaagtcc gccatatacg agcagtggag cttgtgatc 4140
ctcaatctaa agatcctgac aggacatgg tagtgaacgg acaaagttt aatcaatatc 4200
atggttcatg caatcctacc cctcaagggtt attggataga agactccaag aggattggc 4260
tagagctgct aaagaaggcc ttggggttct catgaacccc agggtaaatt tctgagccca 4320
tggaccaagg ttgggtcctc tcttcttgc aaatattaga ataggtttt ctttcttctc 4380
aggctaagca ccaatatgct tctgttttc agtcccttga ataaggctaa gcgcagctgc 4440
tgcactaagc ctttgttg tgcaggag gttgagctaa gcgtccctt ctgcgctaag 4500
ctcaactatc tcactatccc tgcgttttgc tggcaggct aagcgcgccc tatgtgctaa 4560
gcctaagggtt cattctggc agcgtgagct aagcgcgcca tgctgcacta agcttagacc 4620
ctttttgtt ttgaaaattt tagacttagg ctaagcccaa catgctacgc taagcctatc 4680
tacagaaaaa tattttgtgt cttaggcta agctcgagtc tactgcgtt agctcatgag 4740
taatatttta taaggcgcgc taagcccagc ctgctgcgtt aagtgcctt ttcagtttc 4800
agcttaattt ttttgtttt gatagaata atcttattta accttgcgtt ttgatattat 4860
tctttcagat agcatcaaag aagagaaaagg cacctgcccac accttcccag gtctgatatc 4920
gccgatcgag gttacttct cttgtggctt agggaaaggta cactgatatt gtggtaccca 4980
ggaagataact ccctgagttt aatgtggtaa tctaccacac tgagttgtt gagtttaagg 5040
aagaactaga gagaagaaaa tggatgagg aattgaccag ttttgcgtt ggcacacattt 5100
atgttgcctt tctgaaagag ttttgcgtt acctctatgc ttccgcgtt aaatcaccta 5160
agcaggtgag ggtgagagggc cattttggtaa agtttgcgtt agacactctg aacactttct 5220
tgaagacccc tgcataattt gaagagggggg aaaagctgcc tgcctacttct agatggcact 5280
tcttgatgtt tgcataatc ttttgcgtt ctaagctctg catcccaggagggaggatattt 5340
agcttaatgt tgacgacttgc ccactaaaga tcctcaggaa gaaaatgacc acactcgctc 5400
agacttaggatg tttttttttt tactccaaact tggcccttac ctccccacact tctcacatca 5460
cactggatcg ggccaaagttt atttatggca ttatcatgaa gatggacatg aatttggcgtt 5520
acctcatctc ccaccagatt tttatcattt cccagcatgc ctcccttgcgtt ctggattttt 5580
caaccttaat catacgatgg tttaaagctt aaggagtcac attagattcc aaatctttgg 5640
agagtcttag ccctgcccattt aacatggcat atataaagaa gaactgttgg aatcttagatg 5700
atccaacagt gacattcaga gagccaaaggaa aggccagggggg taaaagaatc gaggctcccc 5760
ctacttcaggc agcaccaggt gtttgcgtt ctttttcattt ttcttacca gatccttcag 5820
caccatccac ttgcacttca cattttccat gtttacttagc ttgcgttccc actcccttac 5880
cagcttcaat tgcgttccctt ctacaggacc ctcccttaccc acctctaaaga cattatttgc 5940
tatgtgcataa agcctgcaca aaggccagat catcatcata cagagggtt agagctctgg 6000
ccagaaacca accatgagta tagaggagtt cttgcacaa gtggcttgc caggagtcga 6060
gccttcttctt tctgggggggg gtttgcgtt cttttttttt ttcttacca gatccttcag 6120
cctgtgcaccc aagcagagggta tgagttttttt cttttttttt cttttttttt ttcttacca gatccttcag 6180
ccagtcgttc aggagggatc agcagctcag gagtttgcgtt cttttttttt ttcttacca gatccttcag 6240
ctgcctatcg caccaggattt ggagtaagag cttttttttt ttcttacca gatccttcag 6300
ccaatgctgg atctgaacga gcatgcacaa gatcagtcgtt aggtatgtca tgagttttttt 6360
attctacata gttttttttttt tttttttttttt ttcttacca gatccttcag 6420
ttcatgtcaat ttattttttttt ttcttacca gatccttcag 6480

<211> 10482
<212> DNA
<213> Glycine max

<400> 23

tgttagtcgt cttatatacgac taacttttgt atagaaaaaac ctttttcaaa acatgtatag 60
tttccccaat ttataattct tttgttagaa tttgtaaata aatcttgata tgttttgata 120
cctgccatTA gagtatctt agttggagtt aatgagaaaaa tttgtacaat ttcaggtcaa 180
aaggaggctaa aatcttgaag tgctaaaagg agcagtcgtg ctaaatagag cctgtggct 240
cagtgcacat ccaccgctaa gtgcagcttc agcatgctta gcgtgacaag ggaacctgaa 300
agagcacaag aatcaaggTC gcgcgctaag cgagacgtt gtctttgcc aggctcagcg 360
cacgactggc gccaagccc aatccactt ctcgcgtAA gcgcgatgtc gcgatttcag 420
agcctatttA agcctgaatt gtcagaatta gggatgatt ttaagagacc agagctgtat 480
atTTTgcac aaacttcgag aatagtgcT tggaggcagc agagaggcag cagctaagca 540
gggaagctag ggTTcatcac tttgagagat tagagagtgt tttagtgatt gtgaggtgcc 600
aagaagacga ggagggatcc ccTTccgtt gtaagcaaca attgtctgtt actttctgtc 660
tcatttgcAT tagggttcct tgtatggctt ggtaaaaacc ctatTTgggg atttctaAtg 720
aacagttgat gtaattactt ttcatatcta attaattgtt tttagtggtt tcagtgcTT 780
tttcaataCT taattactgc atgctctgg cctgatcacc ctcttgcgtg tactattagg 840
tgactttAGC attggaaat gtagtgctgc catagaacat gatagaagca aggctaaata 900
actgcattAC ctaggatggA ttgtgggTT tttagtttCT tattatgctg tgatgataat 960
gttGTTtaag ttaagcctAG tccaacaaga gggatctgag gatgaagctt gggTTaaatt 1020
agtctaaACT tatgagggat cgaggTTAG tactttAGGC ttcaGcatAG aacacaagaa 1080
catgattaAT tagagaaATA tcttcataATG cattaACTCG ttgttagAA agacccaaca 1140
ctttatacCT attgctgtCA actttttaAT tacttgCATT tactgCTTT taacatAGCA 1200
tctagtttAC ttTTGTTtAttctcaATT atcaatgtt ttcaCACACAA tgCCatATTT 1260
ctaaataAAA ctTTGtCTAA taaacaAGtT ccctgAGTT gataACTCGGA ttattccGTT 1320
ttaatttAA atgcttgata acctggTgcG ttTCCGata ttcaTTCC CTTGAatATA 1380
ctgcttgtaA atttgataga aaggAACTGT gttGAAGGGT aaacaaaaAT ttgacacaaa 1440
gcatttatGG cgccGTTGTC gggGAactGG attcattAGA agatTCAGt tcagTTtAA 1500
ggcattGCTT tatttGTT tctttaATTc attgattCTT ttgctAAca tttagttAC 1560
tgcacattt ATTGTTCTT ggaattggat aattttgtt ttGTTCTT tGtATGCAA 1620
ggagatCTGT tGtaggtgat ttaattCCA tagatttGGA gattaAtGCT acttgcAGGA 1680
gacaaaATGC agagagaATT agaaaATTtT tgcaggACTT agaAGTAGCA gcaACTCTAG 1740
gagagtGACC ctagaAGATT actcaAGTT aggCCACAGT ccaAGCAGt attAGAtGCT 1800
tctgctggg gaaaaataAA gttAAAGACC CCCGAAGAAG ccatGGAact cattgaaaAT 1860
atgactgcaa gtGacattAC tattttgaga gatAGAGCCC acattCCAAC aaaaAGAAGC 1920
ctactagAGC ttTcatcaca agatGATTG ttGcacaAAA acaAGtGAT gtCCAAGCAA 1980
ttGGAAGCAT tgaccaAAAC actaAGTAAG ttTCCAGCTC aattacATTc tgcaCAATCT 2040
ttaccatcta ctatttgcA ggtcacAGtG tGtGCCATCT gtggTggAGC tcacGATTCT 2100
gttGTTGTA tccccatGA agaACCAACA actcatGAAG tcaattACAT ggttaACCAA 2160
cctagaaaATA attttaATGC aggtggATTtT cccGAATTCC agcatGGACA gtaatACAAC 2220
caacaacagg gacaatggag gaccACCTG ggaatttAAAT caatAGAGAC caggGTggAC 2280
cgtccacaAG gcccGtaACAA caaggGcTA gtctctatGA gcgtacaACG aagttGGAAG 2340
agactctAGC tcaatttATG caggtttCTA tGtCTAAcCA aaAGAGCACG gagTTTgCCA 2400
taaagaATTtT ggaAGTCCAA gtggGACAGC ttGCAAACAA gttggTggAT aggCCGTCAA 2460
agagctttag tgctaACACT gagaAAAATT cgaAGGGGGA atgtAAAGCT gtcAtGACAA 2520
gaagcagaAT ggcaACCCAT gttGatGAAG gaaaAGCTT gaagaAGGTG gaggAGCATA 2580

acccacggaa acgttacgga agcacctcg 5520
tcactaattt taagtgaatc tcagatacca ggagggtcg 5580
ttcccttatt tataggaaaa ggaaggagat gctgccacc 5640
ggttgcttcc tccagaagca aatcctgaa ggcccaagtg 5700
ccccaaattt actaaatata ccccctgcct tttttgg 5760
tggaaactta cgaatttcgt aacgataactt gtttcttc 5820
cggttacgt aatcatccct ttttgcctt ccgaacgtt 5880
cactaacaact tcctttaat ttccggcatg tcacgaactt 5940
tttctttg gcttccgaca tgtctcgaa cttcacaaat 6000
atacctcgaa gtggtaaac gacggtcgca tcccaacaac 6060
tagggtatga cacaagagaa gacaacttc acttccctt 6120
tgcatgcctt tcggctatg caatgccta gctacatttc 6180
ttttctgata tggtggaaaa atgcattgaa gtttcatgg 6240
ccatcttga tggttgctt tcaaattctgg aaagagtatt 6300
acctggtaact taattggaa aatgtcattt catggtaaa 6360
taaaatatca gtaaggggaa ttgaggtgaa taaggtgaag 6420
tcctcctcca atgaatgtca aacgaatgag aagttctta 6480
gtgacttata aaagattttt caaaagtgc 6540
tggtctttt gtgtcaatg gaaaagtgtat tgaagcattt 6600
agtgtctgct ccagtaatta ctacaccaga ttggggtaa 6660
cgcgagcgat tatgtatag gtgcagtgc 6720
tatctactac gccagcaag ttttaatga tgcacaggtt 6780
agaaatgtg gcaattgtt atgcacttga aaagttcaaa 6840
agtcatcatc tacattgatc atgcaactat taaaatattt 6900
aaccctgctt aataagatgg atttgctgc tgcaagaatt 6960
aaaaggatc ggaaaatgtt gtagctaacc aattgtcta 7020
atgtcgaaag aagctgaaat tagagatgaa ttccctaattg 7080
gagagacctt gatttgctga tatggccaaac ttcaaagccg 7140
ctaaacttggc agtagaggaa gcaattcctg catgatgctc 7200
ccgcacttgt tcaagattgg agttgacaat ctctccgaa 7260
gccaagaaca tattatggca ctgtcacaat tctccatgtg 7320
aagacgacga ccaaggaaaa gcaatctgga ttctttggc 7380
catcagaata tgctgcattt tgatcaatgt caaaggatgg 7440
gaaatgcctt tacagaatat tatggaggtt gaggtattt 7500
gtaggtccct tccctttgtc ttttggcaat gaatacatac 7560
tctaaatggg ttgaagcagt ggctaccctg cataatgatg 7620
ctaaagacga acatttctc cagatttggg gtggccagag 7680
acacatttct gcaataataa gatacagaag gtgtgaagc 7740
gtagcatcag cttatcaccc ccaaaccat gggcaagcag 7800
aaaaagattt tagagaagac tatggcttct actagaaagg 7860
gatgctttat gggcgatag gactgcattc aagactccga 7920
atggtgtatg gcaagtcttgc tcacttacca gtggagatga 7980
ttgaagttgt tgaactttga tgaagccaa tccagagaac 8040
gagttggaaag agataaaaatt aactgcttat gaatcttcac 8100
aaaaagtatc atgataaaaaa actgctcaag agggattttc 8160
ctttcacctt caagacttaa attgttccctt gggaaagctt 8220
tttaccatca agaaagtccg aacatatgga gcagtggagc 8280
ggtaacgga caaaggctaa agcaatatac tggtggagct 8340

tctacacttc aatccaggat aacaggacga tgcgtcaagc taatgacgtt aaccgagcgc 8400
 ttacggggag gcaacccagg tctctttta tttcttattt tcttgcattt aatttagtta 8460
 gtttaattgc ttgtgattgt aaatgattc taagcttggg tagtattgag aaaagggtt 8520
 caaagttta gtaaagagat ggatagaaaa gacttagaga aaaaatttc agttgtccat 8580
 ccgctaagcg cagcccttgt gctaagtgcc atgtcttaat gcactaagca tgcgttgct 8640
 tgcgtcaagc actttgaccc ttcaccagtt ggcttagatgg ttcagctaa cgcacatcac 8700
 tgcgtcaaac ctaagttctt ctctggattt gaacttcatg acttgggctt agaggagttg 8760
 atgcgctaag cgcaactcct tctctgtga aaaattattt taatagcatt aagcttaatt 8820
 tcctctctgg aattgaactt tcaggaattt ggcttagcag caggataacgc taagcgccaa 8880
 tccttcacta tttgaaata cttggaaattt cgctaagcct ggaaccatca ctgtaagtag 8940
 agcttggttt agtgcctaagc ctaacatctt aggctaaatg aaaattgcag gaccaatcag 9000
 agttgcagac agtgcctaagc gcgtgtcctc gcactaagct tgaataaccc tctggaaattt 9060
 gaaattattt aattaggctt aacgcgagag gtggcgctaa ggcgcatttgc cttaaactca 9120
 aatgtcatgt tggcatgcta agcgcaacta tgcgtctaagt ggcgcacaca aaaatgcctaa 9180
 aataaaatag aactaccaat ggcagttacc attacactt caaagctttt actcccttat 9240
 gcttgcgcc acattcgtgc ttttgcattt tttgccttgc ttgcctcaag ttattcctgc 9300
 tttcttgctc tcatcttgca tttccatcac aatccaagta agtttcatg ttatatttca 9360
 tttctttta taagcttaaa ccttaggta gatgatttag tgcttttag ttgcattttt 9420
 ttttaggtt tagtgcgtt aggttagttt ttagttaagg taggtttagg gtttacaatg 9480
 taggttttag gttaggttt tgagccccctt agggcaatg cctgaaaaag gggtaaaaac 9540
 ccgtgagtaa tttcttagaa tagcgatgaa cgtgcataagc gcacctgctg tgcttagcca 9600
 gttcatcgca acttccttctt aatgagtttcc aatgatgagc tcgataagcg cggttgcgc 9660
 ctaagtgaga caagtgtttt agacacttag tatttttttca aattttgtt cagcactaaa 9720
 gcctggcttc tcaggtctaa gcacaattct gtcttttattt ttcaattgtt ggaataaggc 9780
 taagtgcagc ttgttgcattt aagcccatgt tatgtcttag tgaggttgag ctaagcgtgc 9840
 cctactgcgc taagctcaat tcctccactg tttccaaaag tgtggatttta ggataagccc 9900
 agcttgcgtgc gctaaggccta gtctatgaa aaacattttc tgagtactca cgctaaagcgt 9960
 gtggctatcg ggcttagccc atgagtaat tttcataaaag cgcgctaaagc ccagccttct 10020
 gtgcataagca cccagtccta ctttcagttt tatttttttgc ttgttgcatttataatcctgt 10080
 tttaactctg ttgttgcattt taattctttt cagatggcat ctaggaagag aaaggccccat 10140
 gcctcaacat cccaggccccg ctatgataga tccagattca catctcagga ggctgggat 10200
 cggttattctt gtgttgcattt tggcaggaaa atattacctg aaagaaatgt catgctctat 10260
 tacacagagt ttgtatgaaattt cactgaagag ttagagagaa gaaacaggca caaggagttt 10320
 acaaatttttca tggatggcaa cattgtatgtt gccattatga aggagttcta tgctaacccctc 10380
 tatgacccttggcaggatataatc acctaaggcag gtgaggttca gaggtcattt agtgaatattt 10440
 gatgcagatg ctctgaacac tttttttatg acccctgtga tc 10482

<210> 24
 <211> 1857
 <212> DNA
 <213> *Arabidopsis thaliana*

<400> 24
 atgagcaatt acagtggcag ttcttctgtt gatcctgact acaacatgga tgagacagaaa 60
 tcgtcatctt caaggccaga gagagaacag agagaatacg aaagtttcag aaggaaagct 120
 gagatagccc gagggaaagag agcgatgaga gagaggtatg agcttataga cgaagatctg 180
 gaggacgagt acatgcctga acagactcgc agagctacca aacttctgca caagccccac 240

atattgcctg ctgaggaata tgtaggctt ttcaagctga atgagttctg tagcacgagg 300
tatccctgct cgacacctact tgcacaactc ggattgttg aagatgtca gcacctgtac 360
caaagttgtc atctggacac tttgatggct tattcgatgt tagcatatga agatgagaca 420
atacaattcc tctccacact acaagttagag ctctaccaag gtatgacctc ttagtggat 480
gattgtgaag gattggatt cttgcgat tctgtgtatg gtcatgagta caggttatca 540
atcaagcgat tggaaggatt gtttgatTTT cccagtgaa cgggatctaa gccaaggat 600
gaaagagaag agttgaaaga cttgtggatc accatggca gctctgtacc gttgaatgct 660
tccaggtcaa agagcaatca gatacgcagc cctgtcatca ggtacttcca gcgttctgt 720
gccaacgtac tctactcccg agagattaca gggactgtca ctaactctga tatggagat 780
atcgcaatgg ccctcaaagg aactctccgc caaactaaaa atggcatgtc cctccagggt 840
gaagtcaatg acacacctct ctctatactt ctgtgtatcc atctgtgtgg atacaaaaac 900
tggcggtca gcaataaccg caagagagca cgaggcgctc tggcatagg tggcggtgt 960
acacctatTC tgatagctt tggagtccca ctcatTTCTG ctggactcga gccacgagca 1020
atggatatcg agcacctacg tcactgcca ttctgtggagt ttgcaatggg tgacgatttc 1080
cacaggttca ggttgagca ctctacagac aggagagcta acatccttct ccctagccct 1140
gaggtcacac ggataatcga gggagataac attgatTTT ggcctgagat tggacgcctc 1200
tactatgaga acgctccacc attagatgag gacgatctt ttgaagaagc tgcttcggat 1260
gggatggatg aagatggagc agtaaaggTC gacactagca tggatctt tgctgaacat 1320
gtacctccag cgaggcagag caagagctt actgaagctc ataagaatta cagtaaattt 1380
cagaagtggt gcaagaagca ggacaggctg atcgccaagt gttcaagct tctgacagac 1440
aagctgagtt gctttccctc caccactgtt attccacagg tacaacctcc tatggaaat 1500
ccatcgagga gaattaatgc acctgcgcac aggctgagc ttacgcgagca gagagtccc 1560
catgtccagg cttagcattt gtcattcgaa tcccgaaac acaagagaag aaggaaggct 1620
acactcactc gatcttagcag cagatcacgc ctcatTTCTG cgaggagatc actcgaccgt 1680
ggtgctggcc gcagcagaag gagagatgtc gagttccctc agagcgggtc tggccgccc 1740
agagctgatg aggtcgagta cccatctgtt ggagctgata cagaacaagg agttcgtct 1800
atggcctggg agcaatcgca ggcagccatt gacgagcaac tacgttcatt ctgcac 1857

<210> 25
<211> 1254
<212> DNA
<213> Pisum sativum

<400> 25
atggaatcca ggtccggagc ttggaaaaag agaaaggcg ggaatagttc ccgtccccgt 60
cccatacaat tcgacaccga caaatttgc gggccaaagc aagcagtaag atatgttgct 120
ttggaaaagc gaaagatTTT gccggaaaag agatttataa tcaaccctga aggcacgaac 180
cgtacattcg ccgggtctgtat taacagcaaa aagtgggacc ggttaatatac ccccttgaag 240
cattacgaca tcgcaacagt gcgtgagttc tacgcgaacg cactgcccga cgacgacgag 300
ccattcacat ggacgtcttag agtgtccggc cgtcctgttg cggtcgatcg ggatgcaatt 360
aaccgtgtcc tgggtgaacc gtcacatctg ggagccatg agagagacac ttaccaccaa 420
gatTTAAGGC ttccacggga taccgatcg atttctactg ccctgctttt ggaaggaaaa 480
tcagttgagc tgaacccatc tgggttccg atgagatacc atagggagga catgattccc 540
ttggctcaac tgatccTTT gttgggttctt acaaacatca aacccaaatc tcacacttct 600
accgtgccga tcccagtgcc acacttggtt cacatcatcc tcacgaatat ccagattgt 660
gtggcaagga ttattgcttt ggagttgaag tccgtgattg aaagcgggtc aaagtcgggg 720
gaacgagtga attgtccct tgctttccct tgcataatca tggcttgcgtt ccaacaagcg 780

agggtgaggg tacccctcaa gggtaagta agatcccgc cggccattga tgaccgatac 840
gtggccaagt actgcaaacc gaagaatgta agaagtagtt cagctgctga ggttaccggg 900
gcttctgatg gtcctggta tttactcta ggatccgatc cttccagca ggctgtctgc 960
aactacaact gggattggat ggcggcaact cagcgcgtca tgctcgatat gcacgattct 1020
atgcagctgt tacagttgca gatgcgcgac ccctccggtg agcattctat gatgtcacgt 1080
gaggcagttc tgcagcacgc tagctggcct gtggacaggc ctgtgttgg agagggggcg 1140
ggtgctggtg caactggtgc tggtgcttt tctggtgctg ctgatgatga tggatgatgat 1200
gaggctaccg gttctgaagc cggttagtcatg gagggttatg agtccttggaa gggc 1254

<210> 26
<211> 564
<212> DNA
<213> Arabidopsis thaliana

<400> 26
tgtgattcat gccagagaaa aggcaacatc aatagaagaa atgagatgcc tcagaatcca 60
atcttggaaag ttgagatctt tggatgtatgg gggattgatt ttatgggtcc attcccatct 120
tcatacggta ataaatatat actggtcgcc gtagactacg tatcaaagtg ggtcgaagct 180
attgctagtc ctaccaacga tgcaaaagtt gtgctgaagt tggtcaaaac cataatcttc 240
ccaagatttg gagtcccag ggttagtaatc agtggatggcg gaaagcattt catcaacaag 300
gttttggaga acctcttggaa gaagcatggg gttaaaggcagg ttgagatctc caatagggag 360
ataaaaaacaa ttctggaaaaa gactgttggg attacaagga aagactggtc tgcaaagcta 420
gatgatgcat tatgggctta caggacagct ttcaagaccc ccataggtac aactcccttc 480
aatcttctct atggaaaatt atgtcatcta cccgttgagc tcgagtacaa agcaatgtgg 540
gcggtaaaac ttctgaactt tgac 564

<210> 27
<211> 180
<212> DNA
<213> Arabidopsis thaliana

<400> 27
atcgaggaga tggtgaggt tttcatggac gattttcgg tctatggccc ctctttctcc 60
tcatgttgt tgaatcttgg cagggtattt actaggtgcg aagagacgaa tcttggatctc 120
aattggaaaa agtgcattt catggtaag gaaggcatag tattggacca caagatatca 180

<210> 28
<211> 192
<212> DNA
<213> Arabidopsis thaliana

<400> 28
tttgaatca tgtgtgatgc atcagattac gcagtagggc ctgttcttagg ccagaaaata 60
gacaagaagc ttcatgtcat atattacgcc agccgaacgt tggatgacgc tcagggaa 120
tatgcacaa ctgagaagga gcttcttagt gttgtattcg catttgagaa gttcagaagc 180

tatttggtg ga

192

<210> 29
<211> 597
<212> DNA
<213> Pisum sativum

<400> 29
ttggatgcga gaatgattta cccgatctcg gatagtccat gggtcagtcc cgtagcatgtg 60
gttccgaaga aagggtggaaa taccgtcatc cgaaatgaca aggtgaatt gatccctacc 120
aaagttgcaa cgggggtggag aatgtgtatt gaatataggc gggtgaatac cgcaactcga 180
aaggaccatt ttccactccc gttcatggat caaatgctgg aaagactctc cgggcaacaa 240
tactattgtt tcttggatgg ctattccggg tataaccaaa ttgccgttga cccggccgat 300
cattaaaaaga cggctttcac atgtccgtt ggagtgttcg cataccgaaa aatgtccctt 360
gggttgcga atgcaccgac gactttccaa cgatgtgtgc aagccattt tgccgacctt 420
aatgagaaaaa caatggaagt cttcatggat gacttctcg tatttggtgt atcccttagt 480
tatgtctgg caaacttgaa aacggtgctt gaaagatgtg tgaagaccaa tcttgcgtt 540
aattggtaga agtgcacccatggtgacc gaggggatag tgcttgcca taaagtc 597

<210> 30
<211> 192
<212> DNA
<213> Pisum sativum

<400> 30
tttgagctaa tgtgtgatgc gagcaactat gcaatcgag cggattttagg ccaaagaaaa 60
gagaaaaaat ttcatgcgt acattacgca agtaaagttc ttaatgaggc tcaaattaac 120
tatgccacca ctgaaaaaga attacttgcg atagtgtatg cacttgaaaa gtttaggtct 180
tatcttatacg gg 192

<210> 31
<211> 581
<212> DNA
<213> Pisum sativum

<400> 31
tgtgatagtt gccagagaag cgggtggatt ggtaagagag acgagatgtc tctccaaaac 60
atccaaagagg tcgaagtatt tgattgttgg ggcatcgatt ttgttaggacc attcccccc 120
cttatggtaa cgagttatcg cttgtcgcag ttgaggcgat tgcctcacct cggcggtatg 180
cgaaaaacggt aataattttt ttgaagaaaa acatatttc ccgttgcga accccccgag 240
tgttgataag tgacggaggg tcacactttt gtaatgcacc gttggaaagc attttaaaac 300
attacggtgt atcacacaga gtggcaactc cgtatcaccc acaggctaattt ggacaagccg 360
aggctctaa tcgtgagatt aagagaattc tcgaaaaaac tgtgtcaaattt tcgaaaaaaag 420
agtggtcaca aaaattggat gaagcggtat gggcataccg taccgcctt aaagctccaa 480
ttgggctcac tcctttcaa ttgggtttt gtaaaaacttg ccatttgccg gtcgaatttg 540

agcacaaaagc cttgtggct ttgaaaatta ataatttga a

581

<210> 32
<211> 1362
<212> DNA
<213> Glycine max

<400> 32
atggcctcct gtaaacacccg agctgtgccc acacccgggg aagcgccaa ctggactct 60
tcacgttca cttcgagat tgctggcac agataccagg atagcattca gctccggAAC 120
atccttccag agaggaatgt agagcttggc ccagggatgt ttgatgagtt cctgcaggAA 180
ctccagaggc tcagatgggA ccaggttctg acccgactc cagagaagtg gattgatgtt 240
gctctggta aggagttta ctccaaccta tatgatccag aggaccacag tccgaagttt 300
tggagtgttc gaggacaggt tgtgagattt gatgctgaga cgattaatga ttccctcgac 360
accccccgtca tcttggcaga gggagaggat tatccagcct actctcagta cctcagcact 420
cctccagacc atgatgccat ccttccgct ctgtgtactc cagggggacg atttgttctg 480
aatgttgata gtgcggccctg gaagctgctg cggaggatc tgatgacgct cgccgcagaca 540
tggagtgtgc tctcttattt taaccttgca ctgacttttc acacttctga tattaatgtt 600
gacagggccc gactcaatta tggcttggtg atgaagatgg acctggacgt gggcagcctc 660
atttctctt agatcagtca gatgcggccag tccatcaattt ccaggcttgg gtcccgagcg 720
ttgatcacaa cactgtgtga gattcagggg gttgtctctg ataccctgat tttttagtca 780
ctcagtcctg tgatcaacct tgcctacatt aagaagaact gctggAACCC tgccgatcca 840
tctatcacat ttcaggggac ccggccgcacg cgccaccAGG cttcggcgct ggcatctgag 900
gtcctcttc catcccagca tccttctcag ccttttccc agtgaccacg gcctccactt 960
ctatccacct cagcacctcc atacatgcat ggacagatgc tcaggtcctt gtaccagggt 1020
cagcagatca tcattcagaa cctgtatcga ttgtccctac atttgcagat ggatctgcca 1080
ctcatgactc cggaggccctt tcgtcagcag gtcgcctagc taggagacca gcctccact 1140
gacagggggg aagagcctt tggagccgt gctactgagg atcctggcgt tgatgaagac 1200
ctcatagctg acttggctgg cgctgattgg agcccatggg cagacttggg cagaggcagc 1260
tgatcttatg cttaatgtt ttctttata ttatgtttgt gttctttttt atgttttatg 1320
ttatgtttt atgtgtctg ttggtaatt aaaaagaggt ag 1362

<210> 33
<211> 192
<212> DNA
<213> Glycine max

<400> 33
tttgagttga tgtgtgacgc gagcgattat gctataggtg cagtgcctgg acaaaggaag 60
ggcaaaattt ttcatgctat ctactacccc agcaaagttt taaatgatgc acaggttaac 120
tatgctacca cagaaaaaga aatgttgca attgtttatg cacttgaaaa gttcaaattct 180
tatttggtag gc 192

<210> 34
<211> 597

<212> DNA

<213> Glycine max

<400> 34

ttggagggtg ggctcatata cccatctct gacaacgctt gggtaagccc agtacaggtg 60
gttcccaaga aagggtggaaat gacagtggta caaaaatgaga ggaatgactt gataccaaca 120
cgaacagtca ctggctggcg aatgtgtatt gactatcaca agctgaatga agctacacgg 180
aaggaccatt tccccttacc tttcatggat cagatgctgg agagacttgc agggcaggca 240
tactactgtt tcttggatgg atactcgaaaa tacaaccaga tcgcggtaga ccccatagat 300
caggagaaga cggtctttac atgccccttt ggcgtcttg cttacagaag gatgtcattc 360
gggttatgtt atgtaccagc cacatttcag aggtgcattgc tgaccatttt ttcagacatg 420
gtggagaaaa gcatcgaggt atttatggac gacttctcg ttttggacc ctcatttgac 480
agctgtttga ggaacctaga aatggtactt cagaggtgcg tagagactaa cttggactg 540
aattgggaaa agtgcattt tatggttcga gagggcatag tcctaggcca caagatc 597

<210> 35

<211> 603

<212> DNA

<213> Glycine max

<400> 35

tgtgataaat gtcagagaac aagggggata tctcgaagaa atgagatgcc tttgcagaat 60
atcatggagg tagagatctt tgatagtgg ggcataact tcatacgatggcc tcttcattca 120
tcatacaga atgtctacat cttggtagct gtggattacg tctccaaatg ggtggaaagcc 180
atagccacgc tgaaggacga tgccagggtt gtatcaaattt ttctgaagaa gaacattttt 240
tcccatttcg gagtcccacg agcattgtt agtgtatgggg gaacgcactt ctgcaacaat 300
cagttgaaga aagtcccttga gcactataat gtccgacaca aggtggccac accttattcac 360
actcagacga atggccaacg agaaatttct aacaggggac tcaagcgaat cctggaaaag 420
acagttgcacatcaagaaaa ggattggcc ttgaagctcg atgataactct ctgggcctat 480
aggacagcgt tcaagactcc catcggttca tcaccatttc agcttagtata tggaaaggca 540
tgtcatttac cagtagagct ggagcacaag gcatattggg ctctcaagtt gctcaacttt 600
gac 603

<210> 36

<211> 150

<212> DNA

<213> Glycine max

<400> 36

cctaaaatac tacaacgaca tgattgggtt tttaggataa ttgactgaaa aacctattat 60
caatttggcg ccgttgccaa ttgggtttt gtttggatca tttgagattt cagacttgct 120
tagatcaagt tcttttcaa ttttctttt 150

<210> 37

<211> 11

<212> DNA
<213> Glycine max

<400> 37
tggcgccgtt g

11

<210> 38
<211> 15
<212> DNA
<213> Glycine max

<400> 38
tggcgccgtt gccgg

15

<210> 39
<211> 27
<212> DNA
<213> Glycine max

<400> 39
ttttggcgc cgttgtcgaa gattttg

27

<210> 40
<211> 9
<212> DNA
<213> Glycine max

<400> 40
tttggggga

9

<210> 41
<211> 16
<212> DNA
<213> Glycine max

<400> 41
tttaatttgg gggatt

16

<210> 42
<211> 775
<212> DNA
<213> Nicotiana tabacum

<400> 42

gtgcgttaaag aggttttaa actggagatt atcaagtatgat tggatgccgg ggttatctac 60
cccatttacg atagttcatg aacttctccg gtgcataatgtc tcccaaagaa ggtggcatga 120
cggtggtcac caatgagaag aatgagttga ttccatacaag aatggtgacc ggttggagag 180
tgtgcataatgca ctatcgcaag tcacaacaaac tcacaaggaa ggatcatttc ccatttccat 240
tccttgacca aatgcttgcatttggatcatgatggatgtttt ctattgcattt ctagatgtat 300
agtccggcta tagccaaatc tttattgctc cgtaggatca cgagaaaata cctttacatg 360
tccctatggt acttttgcct acaagcggat gccatttggt ttgtgtaatg cactagcgaa 420
cttttatagg tgtatgtatgg ctatcttcac ggacatggtg aaggactacc ttaaagtttt 480
catggatgac ttctcgatgg ttggggattc ctggatgtatggatgtttt tgcttgaaa atttggataa 540
agtattggca agatatgaag aaacgaattt ggtactaaat tgggagaagt gtcatttcat 600
gatcgaggaa ggcattgttc ttggccacaa gatctcaaat aatggcattt aagtcgacaa 660
ggcaaagattt aaggtgattt ctaaacttac acctccaact ttggtaaag gcgtgcggag 720
tttcttaggc cacgcggggtt ttaccaatt cttcataaaaa gatttcacaa agttt 775

<210> 43

<211> 259

<212> PRT

<213> Nicotiana tabacum

<400> 43

Val Arg Lys Glu Val Phe Lys Leu Glu Ile Ile Lys Glx Leu Asp Ala
1 5 10 15

Gly Val Ile Tyr Pro Ile Tyr Asp Ser Ser Glx Thr Ser Pro Val Gln
20 25 30

Cys Val Pro Lys Lys Gly Gly Met Thr Val Val Thr Asn Glu Lys Asn
35 40 45

Glu Leu Ile Pro Thr Arg Met Val Thr Gly Trp Arg Val Cys Met Asp
50 55 60

Tyr Arg Lys Leu Asn Lys Leu Thr Arg Lys Asp His Phe Pro Phe Pro
65 70 75 80

Phe Leu Asp Gln Met Leu Asp Arg Leu Ala Cys Arg Ala Phe Tyr Cys
85 90 95

Phe Leu Asp Val Glx Ser Gly Tyr Ser Gln Ile Phe Ile Ala Pro Glx
100 105 110

Asp His Glu Lys Thr Thr Phe Thr Cys Pro Tyr Gly Thr Phe Ala Tyr
115 120 125

Lys Arg Met Pro Phe Gly Leu Cys Asn Ala Leu Ala Asn Phe Tyr Arg
130 135 140

Cys Met Met Ala Ile Phe Thr Asp Met Val Lys Asp Tyr Leu Lys Val
 145 150 155 160

 Phe Met Asp Asp Phe Ser Met Val Gly Asp Ser Phe Asp Asp Cys Leu
 165 170 175

 Glu Asn Leu Asp Lys Val Leu Ala Arg Tyr Glu Glu Thr Asn Leu Val
 180 185 190

 Leu Asn Trp Glu Lys Cys His Phe Met Ile Glu Glu Gly Ile Val Leu
 195 200 205

 Gly His Lys Ile Ser Asn Asn Gly Ile Glu Val Asp Lys Ala Lys Ile
 210 215 220

 Lys Val Ile Ser Lys Leu Thr Pro Pro Thr Leu Val Lys Gly Val Arg
 225 230 235 240

 Ser Phe Leu Gly His Ala Gly Phe Tyr Gln Phe Phe Ile Lys Asp Phe
 245 250 255

 Thr Lys Val

<210> 44
 <211> 761
 <212> DNA
 <213> Nicotiana tabacum

<400> 44
 gtgcgtaaag aggtggtaaa gctgttgat gtcgggttg tgtacccat ctctgataggc 60
 tcttggactt cgccggtgca atgtgtacca aagaagggtt gcatgactgt ggtaaaaat 120
 tccaaaaatg agttgattcc gacaagaacc atcacccgtt ggagggtatg catggactac 180
 cgcaagttaa ataaaatgtac ctgcaaggat cactttcctt tgccatttctt gatatcagatg 240
 ctagatcgac ttgctggcg tgccttctat tgcttcttgg atgaatattc tgggtataac 300
 caaatcttga ttgctccgaa agatccgaa aagaccacat tcacttgtcc gtatggcaca 360
 tttgtttctt ctagatgcc ttttaggtt tgtaatgcac cagctacatt tcagcgggtgt 420
 atgatggcca ttttcttctat tatggtaaa gacatgggtt aggtgttcat ggacgatttt 480
 agtgttgtgg ggcactcatt tgatgaatgc ttgaagaatc ttgatagggt gttggcccat 540
 tgtgaagaaa ccaatcttgc cctcaattgg gagaaatgcc actttatggt agaagaagga 600
 atcaatcttgc ggcataaaaat ttcaaaaacat ggcattgagg tggataaaca aagatagatg 660
 tgatttcaag gctccctccc cctacatccg tcaagggagt ccgatgtttt ctgggcattt 720
 cggggttcta ttggagattc ataaaagact tctccaagggt t 761

<210> 45

<211> 254

<212> PRT

<213> Nicotiana tabacum

<400> 45

Val Arg Lys Glu Val Val Lys Leu Leu Asp Val Gly Val Val Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ser Trp Thr Ser Pro Val Gln Cys Val Pro Lys Lys
20 25 30

Val Gly Met Thr Val Val Lys Asn Ser Lys Asn Glu Leu Ile Pro Thr
35 40 45

Arg Thr Ile Thr Gly Trp Arg Val Cys Met Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Val Thr Cys Lys Asp His Phe Pro Leu Pro Phe Leu Asp Gln Met
65 70 75 80

Leu Asp Arg Leu Ala Gly Arg Ala Phe Tyr Cys Phe Leu Asp Glu Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Leu Ile Ala Pro Glu Asp Pro Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Phe Val Phe Ser Arg Met Pro Phe
115 120 125

Arg Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile
130 135 140

Phe Ser Tyr Met Val Lys Asp Ile Phe Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Val Gly His Ser Phe Asp Glu Cys Leu Lys Asn Leu Asp Arg
165 170 175

Val Leu Ala His Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Glu Glu Gly Ile Asn Leu Trp His Lys Ile Ser
195 200 205

Lys His Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Ser Arg
210 215 220

Leu Pro Pro Pro Thr Ser Val Lys Gly Val Arg Cys Phe Leu Gly His

225

230

235

240

Ala Gly Phe Tyr Trp Arg Phe Ile Lys Asp Phe Ser Lys Val

245

250

<210> 46

<211> 762

<212> DNA

<213> Nicotiana tabacum

<400> 46

gtgcgttaagg aggtgtttaa gttgttggat gttggggttg tgtaccccat ctctgatagc 60
tcctgcattt cgccggtgca atgtgtaccg aagaagggtg gcatgaccgt gttgcaaata 120
tcgcaaaatg ggttattcc taccaggatc gtcaccgggt ggaaggatg catggattac 180
cgaaaagttga ataaaagtgc acgcaggat cactttccat tgcctttct tgatcagatg 240
ttagatcgac ttgctggcg tgccttctac tttttcttgg atgggtattc tggatacaac 300
caaatacttca ttactccgga agatcaggag aagacaacat tcacttgtcc atatggcacc 360
tttgctttt ctaggatgcc ttttgggttg tgtaatgcac cgactacatt ctagcggtat 420
atgatggcca ttttcaactga tatggtgaa gatattttgg aggtgttcat ggacgacttt 480
agtgttgggt gtgattcatt tgatgaatgt ttgaataatc ttgatagagt gttggcccat 540
tgtaaagaaaa ccaatcttgc tcttaattgg gagaatgcc acttcatggc tgaggaggc 600
atagttcttg ggcataaaaat tttaaagcat ggtatagagg tggacaaagc aaaaattgtat 660
gtgatttcaa ggctccctcc ccctacttct gtcaagggag tgagaagttt tcttaggcat 720
gcggggttct accggagatt catcaaagat ttcaccaaag tt 762

<210> 47

<211> 254

<212> PRT

<213> Nicotiana tabacum

<400> 47

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Val Gly Val Val Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ser Cys Ile Ser Pro Val Gln Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Ala Asn Ser Gln Asn Gly Leu Ile Pro Thr
35 40 45

Arg Ile Val Thr Gly Trp Lys Val Cys Met Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Val Thr Arg Lys Asp His Phe Pro Leu Pro Phe Leu Asp Gln Met
65 70 75 80

<210> 48
<211> 760
<212> DNA
<213> Nicotiana tabacum

```
<400> 48
gcggaaggag gtcgtcaagc tgttggatgt cggtgttgt taccccatat ttgatagctc 60
ttggactttg ccggtgcaat atgtgccgaa gaagggttgt atgaccgtgg ttaccaatgt 120
aaaaaatgag ttgattccta ccaggactgt caccgggtgg agggtgtgca tggattacca 180
caaattgaat aaagtgaccc gcaaggatca ctccattt cctttctt atcagatgtt 240
agacagactt gctgggtgtg cttctactg ttcttgat gggtattctg ggtgcaacaa 300
aattttgatt gcacaaaag atcaggagaa gaccacctt acttgtacgt atggtaacctt 360
tgtctttct agatgtcat ttgggttgtg taatgcaccc actacattct agaggtgtat 420
gatggccata ttacactaca tggtgaggaa catttggag gtgttatgg atgacttcag 480
```

tgttgggt gactagttg atgaatgtt gaaaaatctt gatagagtgt tggcccggtt 540
tgaagaagcc aaccctgtgc ttaattggga gaaatgccac ttcatgggtt aggagggcat 600
agtcccttagc cataaaattt caaagcatgg tatagaggtg gacaaagcaa aaattgaagt 660
gatttcaagg ctccttcccc ctacttctgt caagggagtt agaagtttc ttgggcattc 720
ggggttctac tggagattca tcaaagactt cacgaagggtt 760

<210> 49

<211> 253

<212> PRT

<213> Nicotiana tabacum

<400> 49

Arg Lys Glu Val Val Lys Leu Leu Asp Val Gly Val Val Tyr Pro Ile
1 5 10 15

Phe Asp Ser Ser Trp Thr Leu Pro Val Gln Tyr Val Pro Lys Lys Gly
20 25 30

Gly Met Thr Val Val Thr Asn Val Lys Asn Glu Leu Ile Pro Thr Arg
35 40 45

Thr Val Thr Gly Trp Arg Val Cys Met Asp Tyr His Lys Leu Asn Lys
50 55 60

Val Thr Arg Lys Asp His Phe Pro Leu Pro Phe Leu Asp Gln Met Leu
65 70 75 80

Asp Arg Leu Ala Gly Cys Ala Phe Tyr Cys Phe Leu Asp Gly Tyr Ser
85 90 95

Gly Cys Asn Lys Ile Leu Ile Ala Pro Lys Asp Gln Glu Lys Thr Thr
100 105 110

Phe Thr Cys Thr Tyr Gly Thr Phe Val Phe Ser Arg Met Ser Phe Gly
115 120 125

Leu Cys Asn Ala Pro Thr Thr Phe Glx Arg Cys Met Met Ala Ile Phe
130 135 140

Thr Tyr Met Val Glu Asp Ile Leu Glu Val Phe Met Asp Asp Phe Ser
145 150 155 160

Val Val Gly Asp Glx Phe Asp Glu Cys Leu Lys Asn Leu Asp Arg Val
165 170 175

Leu Ala Arg Cys Glu Glu Ala Asn Leu Val Leu Asn Trp Glu Lys Cys
180 185 190

His Phe Met Val Glu Glu Gly Ile Val Leu Ser His Lys Ile Ser Lys
195 200 205

His Gly Ile Glu Val Asp Lys Ala Lys Ile Glu Val Ile Ser Arg Leu
210 215 220

Leu Pro Pro Thr Ser Val Lys Gly Val Arg Ser Phe Leu Gly His Ala
225 230 235 240

Gly Phe Tyr Trp Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 50

<211> 762

<212> DNA

<213> Oryza sativa

<400> 50

gtgcgttaagg aggtgtttaa gttcctgtat gccaggatta tttatctcgat accatacagc 60
gagtgggtta gcccagttca ggtcgtgcca aagaaggag gaatgacggc cgttgcataat 120
gctcaaaatg aactaatccc gcaacgaacc gtaaccggat ggagaatgtg catcgattac 180
aggaaaactta acaaggctac aaaaaaggat catttcccgcc tacccttcat tgatgaaatg 240
tttggaaacggc tggcaaatac ttcccttc tggatgttcc atgggtattc aggatatcat 300
caaattccca tccatccgga ggaccagagt aagactacgt tcacatgtcc atatggcacc 360
tatgcgtatc gtaggatgcc ctttggactg tgcacactc ctgcacatctt ccaaagggtgt 420
atgatgtcta ttttctcgga catgatcgag gatatcatgg aagtcttcat ggatgacttc 480
tcggctatg gaaagacttt gggtcattgt ctgcagaatc tagacaaatgt ctacaacga 540
tgccaaagaaa aggacctgt gcttaactgg gaaaagtgcc atttcatggt ctgtgaagg 600
atagttcttg ggcacatcgagt gtccgaacga ggagtcgaag ttgatcgtgc taaaattgtat 660
gtgatagatc agcttcctcc acccgtgaac atcaaaggaa tccgcagctt cttggtcac 720
gctggcttt atagaagggtt catcaaggac ttccacaaaag tt 762

<210> 51

<211> 254

<212> PRT

<213> Oryza sativa

<400> 51

Val Arg Lys Glu Val Phe Lys Phe Leu Tyr Ala Arg Ile Ile Tyr Leu
1 5 10 15

Val Pro Tyr Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Ala Val Ala Asn Ala Gln Asn Glu Leu Ile Pro Gln

35

40

45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr His Gln Ile Pro Ile His Pro Glu Asp Gln Ser Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Thr Pro Ala Ser Phe Gln Arg Cys Met Met Ser Ile
130 135 140

Phe Ser Asp Met Ile Glu Asp Ile Met Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Lys Thr Leu Gly His Cys Leu Gln Asn Leu Asp Lys
165 170 175

Val Leu Gln Arg Cys Gln Glu Lys Asp Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Cys Glu Gly Ile Val Leu Gly His Arg Val Ser
195 200 205

Glu Arg Gly Val Glu Val Asp Arg Ala Lys Ile Asp Val Ile Asp Gln
210 215 220

Leu Pro Pro Pro Val Asn Ile Lys Gly Ile Arg Ser Phe Phe Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 52

<211> 761

<212> DNA

<213> Oryza sativa

<400> 52

gtgcgcaagg aggtttgaa attgctgcat gccaggatta tctatcccg accatacagt 60
 gagagggtta gcccagtcca gggttgcgc aagaaggag gaatggcggt cgttgc当地 120
 gtcagaatg aactaattac gcaacaaacc gtaaccggat ggaggatgtg tatcgattac 180
 aggaaaactca acaaggctac aaaaaaggat cattccccgc tacccttcat tggtgaaatg 240
 ttggAACGGC tggcaaatca ttccttctt tggttcccttg atggatattt cgatcatcat 300
 caaattccca tccatccgga ggactagagt aagactacgt tcacatgtcc atatggcacc 360
 tatgcgtatc ataggatgtc ctggactg tgcaacgctc ctgc当地ctt ccaagggtgta 420
 tgatgtctat tttctcgac atgatcgagg atatcatgga agtcttcatg gatgacttct 480
 cggctatgg aaagacttgc ggtcattgtc tgcaaaatct agacaaaagtc ttacaacgat 540
 gccaagaaaa ggacctggtg cttaactggg aaaagtgaca tttcatggtc cgtgaaggga 600
 tagttcttgg gcatcgagtg ttgc当地acaag gaatcgaagt tgatcatgct aaaattgatg 660
 tgatagatca gcttcctcct cccgtgaaca tcaaaggat cc当地cagctc ttgggtcatg 720
 tcggctttta tagaaggatc atcaaggact tcactaaagt t 761

<210> 53

<211> 254

<212> PRT

<213> Oryza sativa

<400> 53

Val	Arg	Lys	Glu	Val	Leu	Lys	Leu	Leu	His	Ala	Arg	Ile	Ile	Tyr	Pro
1				5											

Val	Pro	Tyr	Ser	Glu	Arg	Val	Ser	Pro	Val	Gln	Val	Val	Pro	Lys	Lys
20														30	

Gly	Gly	Met	Ala	Val	Val	Ala	Asn	Ala	Gln	Asn	Glu	Leu	Ile	Thr	Gln
35							40							45	

Gln	Thr	Val	Thr	Gly	Trp	Arg	Met	Cys	Ile	Asp	Tyr	Arg	Lys	Leu	Asn
50							55							60	

Lys	Ala	Thr	Lys	Lys	Asp	His	Phe	Pro	Leu	Pro	Phe	Ile	Val	Glu	Met
65							70							80	

Leu	Glu	Arg	Leu	Ala	Asn	His	Ser	Phe	Phe	Cys	Phe	Leu	Asp	Gly	Tyr
85														95	

Phe	Gly	Tyr	His	Gln	Ile	Pro	Ile	His	Pro	Glu	Asp	Glx	Ser	Lys	Thr
100							105							110	

Thr	Phe	Thr	Cys	Pro	Tyr	Gly	Thr	Tyr	Ala	Tyr	His	Arg	Met	Ser	Phe
115							120							125	

Gly	Leu	Cys	Asn	Ala	Pro	Ala	Ser	Phe	Gln	Arg	Cys	Met	Met	Ser	Ile
130							135							140	

Phe Ser Asp Met Ile Glu Asp Ile Met Glu Val Phe Met Asp Asp Phe
 145 150 155 160

 Ser Val Tyr Gly Lys Thr Phe Gly His Cys Leu Gln Asn Leu Asp Lys
 165 170 175

 Val Leu Gln Arg Cys Gln Glu Lys Asp Leu Val Leu Asn Trp Glu Lys
 180 185 190

 Glx His Phe Met Val Arg Glu Gly Ile Val Leu Gly His Arg Val Phe
 195 200 205

 Glu Gln Gly Ile Glu Val Asp His Ala Lys Ile Asp Val Ile Asp Gln
 210 215 220

 Leu Pro Pro Pro Val Asn Ile Lys Gly Ile Arg Ser Phe Leu Gly His
 225 230 235 240

 Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
 245 250

<210> 54
 <211> 762
 <212> DNA
 <213> Oryza sativa

<400> 54
 gtgcggaaag aggttttaa gtcctgcat gccggatta tttataccgt tccatgcagt 60
 gagtggttca gcacagtcca gggtggccg aagatggat gaatgacggt cgttgc当地 120
 gctcaaaaata aacttatccc gcaaccaacc ataaccggat ggaggatgtg catagactac 180
 aggaaaactca acaaggctac aaaagaggat cattttccgc tacccttcat tgatgaaatg 240
 ttggAACGGA tgacaaatca ttcccttctc tgttccttg atgggtattc cgatatcat 300
 caaattccca tccgtccaga ggaccagagt aagactacgt tcacatgtcc atatggcacc 360
 tatgcgtatc gttagatgtc ctccggactg tgcaacgctc ctgc当地ctt ccaaagggtgt 420
 atgttgc当地 ttttctcgga catgatcgaa gatatcatga aagtcttcat ggatgacttc 480
 tcagttatg gaaagacttt cggtcattgt ctgtagaatc tagacaaaatg cttacaacga 540
 tgccaaagaaa atgaccttagt gtttaatgg gaaaagtgcc attttatggt ccgtgaagg 600
 atagttcttg ggc当地cgagt atccgaatga ggaatc当地ag ttgatc当地gc当地 taaaatcgat 660
 gttatagatc aaattc当地tcc tcctgc当地at atcaaaggaa tccgc当地gtt cttgggacat 720
 gccggcttt atagaaggat cctcaaggac ttccacaaaag tt 762

<210> 55
 <211> 254
 <212> PRT
 <213> Oryza sativa

<400> 55

Val Arg Lys Glu Val Phe Lys Leu Leu His Ala Gly Ile Ile Tyr Thr
1 5 10 15

Val Pro Cys Ser Glu Trp Val Ser Thr Val Gln Val Gly Pro Lys Met
20 25 30

Gly Glx Met Thr Val Val Ala Asn Ala Gln Asn Lys Leu Ile Pro Gln
35 40 45

Pro Thr Ile Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Glu Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Met Thr Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr His Gln Ile Pro Ile Arg Pro Glu Asp Gln Ser Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Tyr Arg Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Leu Ser Ile
130 135 140

Phe Ser Asp Met Ile Glu Asp Ile Met Lys Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Lys Thr Phe Gly His Cys Leu Glx Asn Leu Asp Lys
165 170 175

Val Leu Gln Arg Cys Gln Glu Asn Asp Leu Val Phe Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Leu Gly His Arg Val Ser
195 200 205

Glu Glx Gly Ile Glu Val Asp Arg Ala Lys Ile Asp Val Ile Asp Gln
210 215 220

Ile Arg Pro Pro Ala Asn Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Leu Lys Asp Phe Thr Lys Val
245 250

<210> 56
<211> 762
<212> DNA
<213> Oryza sativa

<400> 56

gtgcgttaagg aggtcttcaa gctcttgcattccgat gcccggat tttatccgt accatataga 60
gagtgggtta gccccgtcta ggttatgccg aagaagggac gaatgacggt cattgcaaat 120
gctcaaaatg aacttattcc gcaacgaaca gtaaccggat ggaggatgtg catagattac 180
atgaaactta acaaggctac gaaaaaggat catttccac tacccttcattt tgatgaaaatg 240
tttggAACGGC tggccaaatca ttctttcttc cgtttcccttg atgggtattc taggtatgtat 300
caaattccca tccatccgga ggaccaaagt aagactacgt tcacatgttc gtatgataacc 360
tatgcttatac gtaggatgtc ctccggactg tgcaacgctc ctgcattttt ccaaagggtgt 420
atgatgtcta ttttctccga catgattaag gacattatgg aagtcttcattt gcatgacttc 480
tctatttatg gaaagacctc cggtcattgt ctacaaaatt tagacaaaat tttgcaacga 540
tgccaagaga aggacctggt acttaatgg gaaaagtgtc atttcatggt ccgtgaaggg 600
atagttctta gtcatcgagt gtccgaataa ggaatcgaag ttgatcgtgc taaaaactat 660
gtaatagatt agcttccttc tcctgtgaac attaagggga tccgcaattt tttgggacat 720
gctggctttt atagaagggtt catcaaagac ttcacaaagg tt 762

<210> 57
<211> 254
<212> PRT
<213> Oryza sativa

<400> 57

Val Arg Lys Glu Val Leu Lys Leu Leu His Ala Glu Ile Ile Tyr Pro
1 5 10 15

Val Pro Tyr Arg Glu Trp Val Ser Pro Val Glx Val Met Pro Lys Lys
20 25 30

Gly Arg Met Thr Val Ile Ala Asn Ala Gln Asn Glu Leu Ile Pro Gln
35 40 45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Met Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Leu Ala Asn His Ser Phe Phe Arg Phe Leu Asp Gly Tyr
85 90 95

Ser Arg Tyr Asp Gln Ile Pro Ile His Pro Glu Asp Gln Ser Lys Thr

100	105	110
Thr Phe Thr Cys Ser Tyr Asp Thr Tyr Ala Tyr Arg Arg Met Ser Phe		
115	120	125
Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Met Ser Ile		
130	135	140
Phe Ser Asp Met Ile Lys Asp Ile Met Glu Val Phe Met His Asp Phe		
145	150	155
Ser Ile Tyr Gly Lys Thr Ser Gly His Cys Leu Gln Asn Leu Asp Lys		
165	170	175
Ile Leu Gln Arg Cys Gln Glu Lys Asp Leu Val Leu Asn Trp Glu Lys		
180	185	190
Cys His Phe Met Val Arg Glu Gly Ile Val Leu Ser His Arg Val Ser		
195	200	205
Glu Glx Gly Ile Glu Val Asp Arg Ala Lys Asn Tyr Val Ile Asp Glx		
210	215	220
Leu Pro Ser Pro Val Asn Ile Lys Gly Ile Arg Asn Phe Leu Gly His		
225	230	235
Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val		
245	250	

<210> 58
 <211> 762
 <212> DNA
 <213> Hordeum vulgare

<400> 58
 gtgcgcagg aggttagaa gttcctggaa gcaggtatca tctatcggt tgctcatagt 60
 gattgggtga gtcgggtgca ttgtgtccct aagaagggag gcattaccgt tggcccta 120
 gataaggatg aattgatccc acagaggact attactggct ataggatggt gattgatttt 180
 aggaaattga ataaagccac taggaaagat cattaccctt tgccttttat cgaccaa 240
 cgagaaaggc tgtctaaaca cacacacttc tgcttctaa acggtttattt tggtttctcc 300
 caaataccag ttgcacaatc tgatcaggag aaaaccactt tcacctgccc ttttggtaca 360
 tttgcttata gacgtatgac ttttggctt tgtaatgcac ctgcctccctt tcaaagatgt 420
 atgatggcta tattccctga cttttgtgaa aagattgtt aggttttcat ggatgacttc 480
 tccatattacg gatttccctt tgatgatgc ctcagcaacc ttgatcgagt cttgcagaga 540
 tgtaaagaca ccaatctttt cttgaattgg aagaagtgcc actttatggt taatgacggc 600
 atcgctttag gacataaatt ttctgaaaga ggtattgaag tcgataaggc taaggttgat 660
 ggaatcgaga aaatgccata cccccacagat atcaaaggga taagaagttt cttgggtcat 720

gctggtttct atagaagggtt cataaaaagac ttcactaagg tt

762

<210> 59

<211> 254

<212> PRT

<213> Hordeum vulgare

<400> 59

Val Arg Lys Glu Val Glx Lys Phe Leu Glu Ala Gly Ile Ile Tyr Arg
1 5 10 15

Val Ala His Ser Asp Trp Leu Ser Arg Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Arg Thr Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Arg Glu Arg Leu Ser Lys His Thr His Phe Cys Phe Leu Asn Gly Tyr
85 90 95

Phe Gly Phe Ser Gln Ile Pro Val Ala Gln Ser Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Thr Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Met Ala Ile
130 135 140

Phe Pro Asp Phe Cys Glu Lys Ile Val Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Ile Tyr Gly Ser Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Lys Asp Thr Asn Leu Phe Leu Asn Trp Lys Lys
180 185 190

Cys His Phe Met Val Asn Asp Gly Ile Val Leu Gly His Lys Phe Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Gly Ile Glu Lys
210 215 220

Met Pro Tyr Pro Thr Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 60

<211> 762

<212> DNA

<213> Hordeum vulgare

<400> 60

gtgcgttaag aggtcctaaa gttcctggaa gcgggttatta tctatcctgt tgctcacaac 60
gattgggtga gtccggtgca ttgcgtccct aagaaggat gcattaccgt tgcctcta 120
gataaggatg aattgatccc acataggatt attactggct ataggatggt gatcgatttt 180
aggaaaatga ataaagccac taggaaagaa cattaccctt tgccttttag cgaccaaatg 240
ctagaaaagt tgtctaaaca cacacacttc tgctttctag acggttattc tagttctcc 300
caaatactag ttgcacaatc tgatcaggag aaaaccactt tcacacctt gttcggtacc 360
tttgcttata gacgtatgcc ttttggctt tgtaatgcac ctgcccac 420
atgatggcta tattctctga cttttgtgaa aagtttgc aggtttcat ggatgacttt 480
tccggttacg gatccctt tgatgattgc ctcaacaacc ttgatcgggt ctgcagaga 540
tgtaaagata ctaatctgt cttgaattgg gagaagtgcc actttatggt taatgaaggc 600
atcgtcttag gacataaaat ttccgaaaga ggtattgaat tcgataaggc taaggttgg 660
gcaatcaaga aaatgccata cccccacagat atcaaaggta taagaagg 720
gctggtttct atagaagg 762
tttacaaagg tt

<210> 61

<211> 254

<212> PRT

<213> Hordeum vulgare

<400> 61

Val Arg Lys Glu Val Leu Lys Phe Leu Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala His Asn Asp Trp Val Ser Pro Val His Cys Val Pro Lys Lys
20 25 30

Gly Cys Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro His
35 40 45

Arg Ile Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Met Asn
50 55 60

Lys	Ala	Thr	Arg	Lys	Glu	His	Tyr	Pro	Leu	Pro	Phe	Ser	Asp	Gln	Met
65															80
Leu	Glu	Arg	Leu	Ser	Lys	His	Thr	His	Phe	Cys	Phe	Leu	Asp	Gly	Tyr
85															95
Ser	Ser	Phe	Ser	Gln	Ile	Leu	Val	Ala	Gln	Ser	Asp	Gln	Glu	Lys	Thr
100															110
Thr	Phe	Thr	Tyr	Pro	Phe	Gly	Thr	Phe	Ala	Tyr	Arg	Arg	Met	Pro	Phe
115															125
Gly	Leu	Cys	Asn	Ala	Pro	Ala	Thr	Phe	Gln	Arg	Cys	Met	Met	Ala	Ile
130															140
Phe	Ser	Asp	Phe	Cys	Glu	Lys	Phe	Val	Glu	Val	Phe	Met	Asp	Asp	Phe
145															160
Ser	Val	Tyr	Gly	Ser	Ser	Phe	Asp	Asp	Cys	Leu	Asn	Asn	Leu	Asp	Arg
165															175
Val	Leu	Gln	Arg	Cys	Lys	Asp	Thr	Asn	Leu	Val	Leu	Asn	Trp	Glu	Lys
180															190
Cys	His	Phe	Met	Val	Asn	Glu	Gly	Ile	Val	Leu	Gly	His	Lys	Ile	Ser
195															205
Glu	Arg	Gly	Ile	Glu	Phe	Asp	Lys	Ala	Lys	Val	Gly	Ala	Ile	Lys	Lys
210															220
Met	Pro	Tyr	Pro	Thr	Asp	Ile	Lys	Gly	Ile	Arg	Ser	Phe	Leu	Val	His
225															240
Ala	Gly	Phe	Tyr	Arg	Arg	Phe	Ile	Lys	Asp	Phe	Thr	Lys	Val		
245															

<210> 62
<211> 757
<212> DNA
<213> Hordeum vulgare

<400> 62
gaaaagagggt tgtgaagctc ctggatgaag gtattatcta tcatgttgct catagcgatt 60
gggtgagtcc ggtgcatagc gttcctaaga agggaggcat taccgttgtc cctaattgata 120
aggatgaatt gatcccgcag aggattatca ctggctatag gatggtgatc gatttcagga 180
aactgaataa agccactagg aaagatcatt accctttgcc ttttatcgac catatgctag 240

aaagggttgc caaactcaca cacttctgct ttcttagacgg ttattctagt ttctccaaa 300
taccagggtgc acaatctgat caggagaaaa ccacccac ctgcccttc ggtacccccc 360
cttatagacg tatgccttt ggcttatgta atgcacctgc caccccaa agatgtatga 420
tggctatatt ctctaacttt tgtgaaaata ttgtcgaggt tttcatggat gactttccg 480
tttacgggtc ttctttgtat gattgcctca gcaacccctga tcgagttca cagagatgt 540
aagacaccaa tcttgtcttg aatggggaga agtgcaccc tattggtaat gaaggcatcg 600
tcttaggaca taaaattct gaaagaggtt ttgaagtcga taaggctaag gtgtatgcaa 660
tcgacaaaat gccatcccc acagatatca aaggtataag aagttccctt ggtcatggtg 720
gtttctatag aaggtttatac aaagattca caaaggt 757

<210> 63
<211> 251
<212> PRT
<213> *Hordeum vulgare*

<400> 63
Lys Glu Val Val Lys Leu Leu Asp Glu Gly Ile Ile Tyr His Val Ala
1 5 10 15

His Ser Asp Trp Val Ser Pro Val His Ser Val Pro Lys Lys Gly Gly
20 25 30

Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln Arg Ile
35 40 45

Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn Lys Ala
50 55 60

Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Ile Asp His Met Leu Glu
65 70 75 80

Arg Leu Ser Lys Leu Thr His Phe Cys Phe Leu Asp Gly Tyr Ser Ser
85 90 95

Phe Ser Gln Ile Pro Val Ala Gln Ser Asp Gln Glu Lys Thr Thr Phe
100 105 110

Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Pro Phe Gly Leu
115 120 125

Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile Phe Ser
130 135 140

Asn Phe Cys Glu Asn Ile Val Glu Val Phe Met Asp Asp Phe Ser Val
145 150 155 160

Tyr Gly Ser Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg Val Leu

165

170

175

Gln Arg Cys Lys Asp Thr Asn Leu Val Leu Asn Gly Glu Lys Cys His
180 185 190

Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Ile Ser Glu Arg
195 200 205

Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Ile Asp Lys Met Pro
210 215 220

Tyr Pro Thr Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His Gly Gly
225 230 235 240

Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys
245 250

<210> 64

<211> 740

<212> DNA

<213> Hordeum vulgare

<400> 64

gtgcgtaaag aggtgattaa attcctagaa gaaggtatta tctatcctgt tgctcacagc 60
gattgggtga gtccggtgca ttgcattcct aagaaaggag gcattaccgt tgtcccta 120
gataaggatg aattgatccc atagaggatt attactggct ataggatggt gattgatttt 180
aggaagttaa ataaagccac taggaaagat cattaccctt tgccttttat cgaccaa 240
ctagaaaggc tgtctaaaca cacacacttc ttgtttctgg acggttatac tggttctcc 300
caaataccag ttgcacaatt tgatcaggag aaaaccactt taacctgaca tttcggtacc 360
tttgcttata tacgtatgcc ttttggctt tgtaatgcac ctgccacctt tcaaagatgt 420
atgatggcta tattctccga cttctgtgaa aagattgtca atgtttcat ggataacttc 480
tccgtttacg ggtgttccctt tgatgatgc ctcaacaacg ttgatcgagt cttacagaga 540
tgtaaggaca ccaatgttgt cttgaattgg gagaagtgtc actttatggtaatgaaggc 600
atcgctttag gacataagat ttctgaaaaga ggtattaaag ttgataaggc taagggtt 660
gcaatcgaga aaatgccata tccacagata tcaaaggat aagaagttt cttggcata 720
ctggtttcta tagaagg 740

<210> 65

<211> 247

<212> PRT

<213> Hordeum vulgare

<400> 65

Val Arg Lys Glu Val Ile Lys Phe Leu Glu Glu Gly Ile Ile Tyr Pro
1 5 10 15

Val	Ala	His	Ser	Asp	Trp	Val	Ser	Pro	Val	His	Cys	Ile	Pro	Lys	Lys
					20			25					30		
Gly	Gly	Ile	Thr	Val	Val	Pro	Asn	Asp	Lys	Asp	Glu	Leu	Ile	Pro	Glx
					35			40					45		
Arg	Ile	Ile	Thr	Gly	Tyr	Arg	Met	Val	Ile	Asp	Phe	Arg	Lys	Leu	Asn
					50			55				60			
Lys	Ala	Thr	Arg	Lys	Asp	His	Tyr	Pro	Leu	Pro	Phe	Ile	Asp	Gln	Met
					65			70			75		80		
Leu	Glu	Arg	Leu	Ser	Lys	His	Thr	His	Phe	Leu	Phe	Leu	Asp	Gly	Tyr
					85				90				95		
Thr	Gly	Phe	Ser	Gln	Ile	Pro	Val	Ala	Gln	Phe	Asp	Gln	Glu	Lys	Thr
					100				105				110		
Thr	Leu	Thr	Glx	His	Phe	Gly	Thr	Phe	Ala	Tyr	Ile	Arg	Met	Pro	Phe
					115			120			125				
Gly	Leu	Cys	Asn	Ala	Pro	Ala	Thr	Phe	Gln	Arg	Cys	Met	Met	Ala	Ile
					130			135			140				
Phe	Ser	Asp	Phe	Cys	Glu	Lys	Ile	Val	Asn	Val	Phe	Met	Asp	Asn	Phe
					145			150			155		160		
Ser	Val	Tyr	Gly	Cys	Ser	Phe	Asp	Asp	Cys	Leu	Asn	Asn	Val	Asp	Arg
					165				170			175			
Val	Leu	Gln	Arg	Cys	Lys	Asp	Thr	Asn	Val	Val	Leu	Asn	Trp	Glu	Lys
					180				185			190			
Cys	His	Phe	Met	Val	Asn	Glu	Gly	Ile	Val	Leu	Gly	His	Lys	Ile	Ser
					195			200			205				
Glu	Arg	Gly	Ile	Lys	Val	Asp	Lys	Ala	Lys	Val	Asp	Ala	Ile	Glu	Lys
					210			215			220				
Met	Pro	Tyr	Pro	Thr	Asp	Ile	Lys	Gly	Ile	Arg	Ser	Phe	Leu	Gly	His
					225			230			235		240		
Ala	Gly	Phe	Tyr	Arg	Arg	Phe									
					245										

<210> 66

<211> 762

<212> DNA

<213> Avena sativa

<400> 66

gtgcgaaagg aggtttcaa gctcatggat gctggatttta tttaccctat tgctgatagt 60
gaatgggtta gtcatgttca ttgtgttccct aaaaagggag gtattaccgt tgtcccta 120
gataatgatg agcttattcc tcaaagaata gtggtaggct ataggatgtg catcgatttt 180
aggaaaagtca ataaaagttac taagaaaat cactacccgc ttccctttat tgcataatg 240
ttggaaaat tttctaaaaa gaccatttt tggttcttg atggtttattc tggttctct 300
caaattgttgc taaaacaaca agatcaagaa aaaactactt ttacttgccc ttatgaaact 360
tatgcttata gatgtatgcc ttgtgttta tgtaatgctc ctctacttt cctaagggtgc 420
atgtctgcata tccttcattgg ttgtgtgag gaaattgttag aagtgttcat ggacgacttt 480
tctgtctacg gaacctcttt tgataattgt ctgcacaacc ttgataaagt ttacagaga 540
tgtgaaggaa ctaatcttgc tcttaattgg gagaaatgcc acttcatggta taatgaaggg 600
attgttcttg ggcataaagt ttctaaaaga ggcatagaag ttgatagagc taagggttag 660
gcaattgaga agatgccatg tccaagagac atcaaaggta ttctgtat ccttggtcat 720
gctggtttct ataggaggaa catcaaagac ttccacaaagg tt 762

<210> 67

<211> 254

<212> PRT

<213> Avena sativa

<400> 67

Val Arg Lys Glu Val Phe Lys Leu Met Asp Ala Gly Ile Ile Tyr Pro
1 5 10 15

Ile Ala Asp Ser Glu Trp Val Ser His Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Asp Asn Asp Glu Leu Ile Pro Gln
35 40 45

Arg Ile Val Val Gly Tyr Arg Met Cys Ile Asp Phe Arg Lys Val Asn
50 55 60

Lys Val Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Phe Ser Lys Lys Thr His Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Phe Ser Gln Ile Val Val Lys Gln Gln Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Tyr Arg Cys Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ser Thr Phe Leu Arg Cys Met Ser Ala Ile
130 135 140

Phe His Gly Phe Cys Glu Glu Ile Val Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Thr Ser Phe Asp Asn Cys Leu His Asn Leu Asp Lys
165 170 175

Val Leu Gln Arg Cys Glu Gly Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Lys Arg Gly Ile Glu Val Asp Arg Ala Lys Val Glu Ala Ile Glu Lys
210 215 220

Met Pro Cys Pro Arg Asp Ile Lys Gly Ile Arg Ser Ile Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 68
<211> 762
<212> DNA
<213> Avena sativa

<400> 68
gtgcgcaaag aggtctttaa gttccttgat gctggtatta tttaccctat tgctgatagt 60
caatgggtta gccttgttca ttgtgtcccc aagaaagggg gaataactgt tgtgcctaatt 120
gaagataatg agcttataacc ccaaagagta gtgggtgtgt atagaatgtg cattgatttt 180
agaaggatta ataaaagttaggaaagat cattatcctt tgccctttat tgatcaaatg 240
cttgagaggt tgtccaaaaa gactcacttt tgtttcttg atggtcattc tgggtttct 300
caaattgttg tgaaagcaca agaccaagag aaaactactt tcacttgtcc ttatggtaact 360
tatgattata ggcgtatgcc ttttggttta tgtaatgctc ctgctacctt tcagagatgt 420
atgtctgcta tatttcatgg ttttggtaa gaaattgtgg aggtttcat ggacgatttt 480
tctgtctatg gaacttcttt tgataactgt ttgcacaacc ttgataaaatt ttgcagaga 540
tttgaagaaa ccaacccctgt tcttaattgg gagaaatgcc atttcatggta taatgaaggg 600
attgttcttg gacacaaagat ctcagaaaga ggcattgaag ttgacagagc caaaattgaa 660
gcaattgaga acatgccttg cccttagagat attaaaggta ttcgtagtat ccttggcat 720
gctggttct atagtaggtt catcaaagac tttacaaaag tt 762

<210> 69

<211> 254

<212> PRT

<213> Avena sativa

<400> 69

Val Arg Lys Glu Val Phe Lys Phe Leu Asp Ala Gly Ile Ile Tyr Pro
1 5 10 15

Ile Ala Asp Ser Gln Trp Val Ser Leu Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Glu Asp Asn Glu Leu Ile Pro Gln
35 40 45

Arg Val Val Val Val Tyr Arg Met Cys Ile Asp Phe Arg Arg Ile Asn
50 55 60

Lys Val Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ser Lys Lys Thr His Phe Cys Phe Leu Asp Gly His
85 90 95

Ser Gly Phe Ser Gln Ile Val Val Lys Ala Gln Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Asp Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Ser Ala Ile
130 135 140

Phe His Gly Phe Cys Glu Glu Ile Val Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Thr Ser Phe Asp Asn Cys Leu His Asn Leu Asp Lys
165 170 175

Phe Leu Gln Arg Phe Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Arg Ala Lys Ile Glu Ala Ile Glu Asn
210 215 220

Met Pro Cys Pro Arg Asp Ile Lys Gly Ile Arg Ser Ile Leu Gly His

225

230

235

240

Ala Gly Phe Tyr Ser Arg Phe Ile Lys Asp Phe Thr Lys Val

245

250

<210> 70

<211> 756

<212> DNA

<213> Avena sativa

<400> 70

aaggaggtt ttaaactcct ttagtgttgg attatattacc ctattgctga tagtgaatgg 60
gttagtcttg ttcatgtgt tcctaaaaag ggaggtatta ccgttgttcc taatgataat 120
gatgagctt ttcctcaaag aatagtggta ggctatagga tgcgtataga ttttaggaaa 180
gttaataaaag ttactaagaa agatcaactac ccgccttcctt ttattgatca aatgttgaa 240
aggttgtcta aaaagaccca ttttgtttt cttgtatggtt actctagctt ctctcaaatt 300
gctgttaaac aacaagatca agaaaaact actttactt gcccattatgg aacttttgct 360
tatagacgta tgcctattgg tttatgtaat gctcctgcta ctttcaaag gtgtatgtct 420
gctatatttc atgggttttg tgagggaaatt gtagaagtgt tcatggatga cttttctgtc 480
tatggaaactt ctttgataa ttgcctgcac aaccttgata aagtttgca gagatgtgaa 540
gaaactaata ttgttcttaa ttgggagaaa ttccacttca tggtaatga agggattgtc 600
cttgggcata aagttctaa aagaggcata gaagttgata gagctaaggt tgaggcaatt 660
gagaagatgc catgcccaag agacatcaaa ggtatacgta gtatccttgg tcatgctgg 720
ttctatagaa ggtttatcaa agacttcaca aaggtt 756

<210> 71

<211> 252

<212> PRT

<213> Avena sativa

<400> 71

Lys Glu Val Phe Lys Leu Leu Asp Val Gly Ile Ile Tyr Pro Ile Ala
1 5 10 15

Asp Ser Glu Trp Val Ser Leu Val His Cys Val Pro Lys Lys Gly Gly
20 25 30

Ile Thr Val Val Pro Asn Asp Asn Asp Glu Leu Ile Pro Gln Arg Ile
35 40 45

Val Val Gly Tyr Arg Met Cys Ile Asp Phe Arg Lys Val Asn Lys Val
50 55 60

Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met Leu Glu
65 70 75 80

Arg	Leu	Ser	Lys	Lys	Thr	His	Phe	Cys	Phe	Leu	Asp	Gly	Tyr	Ser	Ser
					85					90					95
Phe Ser Gln Ile Ala Val Lys Gln Gln Asp Gln Glu Lys Thr Thr Phe															
					100					105					110
Thr Cys Pro Tyr Gly Thr Phe Ala Tyr Arg Arg Met Pro Ile Gly Leu															
					115					120					125
Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Ser Ala Ile Phe His															
					130					135					140
Gly Phe Cys Glu Glu Ile Val Glu Val Phe Met Asp Asp Phe Ser Val															
					145					150					160
Tyr Gly Thr Ser Phe Asp Asn Cys Leu His Asn Leu Asp Lys Val Leu															
					165					170					175
Gln Arg Cys Glu Glu Thr Asn Ile Val Leu Asn Trp Glu Lys Phe His															
					180					185					190
Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser Lys Arg															
					195					200					205
Gly Ile Glu Val Asp Arg Ala Lys Val Glu Ala Ile Glu Lys Met Pro															
					210					215					220
Cys Pro Arg Asp Ile Lys Gly Ile Arg Ser Ile Leu Gly His Ala Gly															
					225					230					240
Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val															
					245					250					

<210> 72
<211> 748
<212> DNA
<213> Secale cereale

<400> 72
gtgcggaaag aggtcttaa actccttagag gcaggtatta actatccat tgctgata 60
cagcggtaa gtcatgtcca ttgtgtccct aagaaaggag gtatgactgt cgtccctaag 120
gataaaatgt aatttatccc gcaaagaata gttacaggtt ataggatgtt aattgatttt 180
cgtaagttaa ataaagctac tatgaaagat cattaccct tgccatttat tgatcaaatg 240
ccagacaggt tatccaaaca tactcattc tgcttctag atggttattc tggttctct 300
caaataccctt tgtcaaagggg ggatcaagaa aagaccacct ttacttgtcc tttcggtacc 360
tttgcttata gaggtatgcc ttttggttta tgtaatgcac ctgctacctt tcaaagatgt 420
atgatcgatgtt aattctctgtt ctttttggaa aagattgttg aggtattcat ggatgattc 480

tccgttatg gaacttctt tcatgtatgc ttaagcaacc ttgatcgagt tttgcagaga 540
tgtgaagata ctaaccttgc cttgaattgg gagaagtgcc actttatggc taatgaaggc 600
attttcttgg gacataaaaat ttctgaaaga ggtactgaag ttgagaaagc taaagtggat 660
gctattgaaa agatgccatg ccctaaggat atgaaaggta tacgaagttt ccttggtcac 720
gctgggtttt ataggaggtt cataaaaag 748

<210> 73
<211> 249
<212> PRT
<213> Secale cereale

<400> 73
Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Ile Asn Tyr Pro
1 5 10 15

Ile Ala Asp Ser Gln Arg Val Ser His Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Pro Lys Asp Lys Asp Glu Phe Ile Pro Gln
35 40 45

Arg Ile Val Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Met Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Pro Asp Arg Leu Ser Lys His Thr His Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Phe Ser Gln Ile Pro Leu Ser Lys Gly Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Gly Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Ile Val Ile
130 135 140

Phe Ser Val Phe Phe Glu Lys Ile Val Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Thr Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Asp Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Phe Leu Gly His Lys Ile Ser
195 200 205

Glu Arg Gly Thr Glu Val Glu Lys Ala Lys Val Asp Ala Ile Glu Lys
210 215 220

Met Pro Cys Pro Lys Asp Met Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys
245

<210> 74

<211> 762

<212> DNA

<213> Secale cereale

<400> 74

gtgcggaaagg aggtcgtaa gcttccagag gcaggtatta tctatcccgt tgctgatacg 60
cagtggtaa gtcatgtcca ttgtgtccct aagaagggag gtatgactgt cgttccta 120
gacaaacatg aattgatccc gcaaagaata gttacagggtt ataggatggt aattgatttc 180
cgtaagttaa ataaagctac taagaaagat cattaccct tgccatttat tgatcaa 240
ctagacaggt tatccaaaca tactcattt tgcttctag atggttatta tggttctct 300
caaatacctg tgtcaaaagg gnatcaagaa aagaccactt tcacttgtcc tttcggtacc 360
tttgcttata gacgtatgcc ttttggttt tgaatgcac ctgctacctt tcaaagatgt 420
atgatggcta tattatctga tttttgagaa aagattgtt aggttttcat ggatgatttc 480
tccgtttacg gaacctctt tcatgactac ttaagcaaca atgatcgagt tttgcagaga 540
tgtgaagaca ctaatcttgc tttgaattgg gagaagtgcc actttatggt taatgaaggc 600
attgtcttgg gacaaaaat ttctgaaaga ggtattgaag ttgacaaagc taaagtcgat 660
gctggtgaaa agatgccatg ccccaaggac atcaaaggta tacgaagttt cttggcgtcat 720
gttggggtttt ataggaggtt catcaaagac ttcacgaaag tt 762

<210> 75

<211> 254

<212> PRT

<213> Secale cereale

<400> 75

Val Arg Lys Glu Val Val Lys Leu Pro Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala Asp Ser Gln Trp Val Ser His Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Pro Asn Asp Lys His Glu Leu Ile Pro Gln

35

40

45

Arg Ile Val Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn		
50	55	60
Lys Ala Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met		
65	70	75
Leu Asp Arg Leu Ser Lys His Thr His Phe Cys Phe Leu Asp Gly Tyr		
85	90	95
Tyr Gly Phe Ser Gln Ile Pro Val Ser Lys Gly Asp Gln Glu Lys Thr		
100	105	110
Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Pro Phe		
115	120	125
Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile		
130	135	140
Leu Ser Asp Phe Glx Glu Lys Ile Val Glu Val Phe Met Asp Asp Phe		
145	150	155
Ser Val Tyr Gly Thr Ser Phe Asp Asp Tyr Leu Ser Asn Asn Asp Arg		
165	170	175
Val Leu Gln Arg Cys Glu Asp Thr Asn Leu Val Leu Asn Trp Glu Lys		
180	185	190
Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly Gln Lys Ile Ser		
195	200	205
Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Val Glu Lys		
210	215	220
Met Pro Cys Pro Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His		
225	230	235
Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val		
245	250	

<210> 76

<211> 762

<212> DNA

<213> Secale cereale

<400> 76

gtgcgtaagg aggtggtaa gctcctagaa gcaggtatta tctatccagt tgctgatagt 60
cagtggtaa gtcatgtcca ttatgttctt aagaaaaggag gtatgactgt tgcctaat 120
gataaaagatg aattgatccc gcaaagaata gttacaggtt ataggatggt aagtgattc 180
cgtaagttga ataaagccac taagaaagat cattaccct tgccatttat tgcataatg 240
ctagaaaagt tatccaaaca tactcattc ttcttcttag atggtttattc tggtttctct 300
caaatacctg tgtcaaaaagg ggatcaagaa aagaccacct ttacttgac tttcggtacc 360
tttgcttata gacgtatgcc tttggttta tgtaatgcac ctgctacctt tcaaagatgc 420
atgatggcta tattctctga ctttgtgaa aagattgtg aggtattcat ggatgattc 480
tccgttacg gaaccttctt tcatgattgc ttaagcaacc ttgatcgagt tttgcagaga 540
tgtgaagaca ctaaccttgt cttgaattgc gagaagtgcc actttatggt taatgaaggc 600
attgtcttgg gacataaaat ttctgaaata ggtattgaag ttgacaaagc taaagttgat 660
gctattgaaa agatgccatg cgcaaaggac atcaaaggta tacggagttt cttggcat 720
gccgggtttt ataggaggtt catcaaagat ttctcaaagg tt 762

<210> 77

<211> 254

<212> PRT

<213> Secale cereale

<400> 77

Val Arg Lys Glu Val Val Lys Leu Leu Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala Asp Ser Gln Trp Val Ser His Val His Tyr Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Arg Ile Val Thr Gly Tyr Arg Met Val Ser Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ser Lys His Thr His Phe Phe Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Phe Ser Gln Ile Pro Val Ser Lys Gly Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Thr Phe Gly Thr Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile
130 135 140

Phe Ser Asp Phe Cys Glu Lys Ile Val Glu Val Phe Met Asp Asp Phe
 145 150 155 160

 Ser Val Tyr Gly Thr Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg
 165 170 175

 Val Leu Gln Arg Cys Glu Asp Thr Asn Leu Val Leu Asn Cys Glu Lys
 180 185 190

 Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Ile Ser
 195 200 205

 Glu Ile Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Ile Glu Lys
 210 215 220

 Met Pro Cys Ala Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
 225 230 235 240

 Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Ser Lys Val
 245 250

<210> 78
 <211> 759
 <212> DNA
 <213> Secale cereale

<400> 78
 gtgcgcagg aagttttaa gtttctagag gcaggtataa tctatccagt tgctgatagc 60
 cagtggtaa gtcctgtcca ttgtgtccct aagaaggtag gtatgactgt agttccta 120
 gataaagatg aattgatctc gcaaagaatt gttacaggtt ataggatggt aattgatttt 180
 cgcaaattaa ataaagccac taagaaagat caataccctt tgccctttat tgcataatg 240
 cttagaaaggt tatccaaaca cacccatttt tgcttctag atggttattc tagttctct 300
 caaataccta tgtcaaaagg ggataaagaa aagaccactt ttacttgtcc ctttgtact 360
 ttgcttatag acgtatgcct tttggtttat gtaatgcatt tgctaccctt caaacatgca 420
 tgcataatgactctatgat ttttgtaaaa gaatgttgat gtttcatgg atgattttg 480
 tatttacgaa acttctttg atgattgctt gagcaacctt gatcgagtt tgcagagatg 540
 tgaagaaaact aatcttgtct tgaactggaa aaagtcccac tttatggta atgaaggcat 600
 tgcttgggac ataaaatttc taaaagaggt accgaagttg acaaagctaa agttgatgct 660
 gttgaaaaga tgccatgtcc caaggacatc aaaggtataa gaagttcct tggcatgcc 720
 gggtttataa ggaggtttat caaggactc accaagggtt 759

<210> 79
 <211> 254
 <212> PRT
 <213> Secale cereale

<400> 79

Val Arg Lys Glu Val Phe Lys Phe Leu Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala Asp Ser Gln Trp Val Ser Pro Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Ser Gln
35 40 45

Arg Ile Val Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp Gln Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ser Lys His Thr His Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Ser Phe Ser Gln Ile Pro Met Ser Lys Gly Asp Lys Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Ser Ala Thr Phe Gln Thr Cys Met Met Ala Ile
130 135 140

Leu Tyr Asp Phe Cys Glu Arg Ile Val Asp Val Phe Met Asp Asp Phe
145 150 155 160

Cys Ile Tyr Glu Thr Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Ser His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Glu Arg Gly Thr Glu Val Asp Lys Ala Lys Val Asp Ala Val Glu Lys
210 215 220

Met Pro Cys Pro Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 80
<211> 761
<212> DNA
<213> *Triticum aestivum*

<400> 80
gtgcgtaagg aggttctcaa gtttctggag gtaggtataa tttatcccgt tgctgatagt 60
cagtggtaa gtcctgtcca ttgtgtccct aagaaggag gtattactgt tgtcccta 120
gataaaagatg aattgattcc tcaaagaatt attacggta taggatggta attgattcc 180
gcaaattaaa taaagccact aagagagatc attaccctt accttttatt gatcaaattc 240
tagaaagatt atgcaaacat acacattatt gctccaaga tggttatcct ggttttctc 300
aaatacctgt gtcggctaaa gatcaatcaa agactactt tacatgccct tttggta 360
ttgcttataag atgtatgcct tttggtttat gtaatgcacc tgctaccctt caaagatgca 420
tgatggctat attctctgat ttttgtaaa agattgtga gggtttcatg gatgacttt 480
ccgtctatgg ttccctttt gatgattgct tgagcaatct tgatcgagtt ttgcagagat 540
gtgaagaaac taatcttgc ttgaattggg aaaagtgtca ctttatggtt aatgaaggta 600
ttgtcttggg gcacaaagtt tctgaaagag gtattgaagt tgataaagcc aagggtgaca 660
ctattgaaaa gataccatgt cccaggaca tcaaaggta aagaagttc ctggtcacg 720
ccggattttta taggaggttc ataaaagatt tcacaaagg 761

<210> 81
<211> 254
<212> PRT
<213> *Triticum aestivum*

<400> 81
Val Arg Lys Glu Val Leu Lys Phe Leu Glu Val Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala Asp Ser Gln Trp Val Ser Pro Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Arg Ile Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Arg Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Ile
65 70 75 80

Leu Glu Arg Leu Cys Lys His Thr His Tyr Cys Phe Gln Asp Gly Tyr
85 90 95

Pro Gly Phe Ser Gln Ile Pro Val Ser Ala Lys Asp Gln Ser Lys Thr

100	105	110
Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Cys Met Pro Phe		
115	120	125
Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile		
130	135	140
Phe Ser Asp Phe Cys Glu Lys Ile Cys Glu Val Phe Met Asp Asp Phe		
145	150	155
Ser Val Tyr Gly Ser Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg		
165	170	175
Val Leu Gln Arg Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys		
180	185	190
Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser		
195	200	205
Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Thr Ile Glu Lys		
210	215	220
Ile Pro Cys Pro Lys Asp Ile Lys Gly Thr Arg Ser Phe Leu Gly His		
225	230	235
Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val		
245	250	

<210> 82
 <211> 780
 <212> DNA
 <213> Triticum aestivum

<400> 82
 gtgcggaagg aggtgtttaa gtccttgag gcaggtataa ttatccgt tgctgatagt 60
 aagtggtaa ttcctgtcca ttaagtgatc gtgattactg ttgtcctaa gaaggaggt 120
 attaccgttgc ttccatatga taaagatgaa ttgattcctc aaagaaccat tactggttat 180
 agatggtaa ttgattccg caaattaaat aaggctacta aaaaatatca ttacccctta 240
 cctttatcg atcaaatgct agaaagatta tccaaacata cacatcccc 300
 gtttactctg gtttctctca aataccgttg tcagccaaag atcaatcaa gactactttt 360
 acatgccctt ttggacttt tgcttataga cgtatgcctt ttggttatg taatgcacct 420
 gtttcatgg acgactcttc catctatgaa tcttctttt atgattgctt gagcaacctt 480
 gatcgagtt tgcagagatg tgaagaaact tatcttgtct tgaattggaa aaagtgccaa 540
 tttatggta atgaaggtat tgtcctgggg cataaaagttt ctgaaagagg tattcgagtt 600
 gataaaagcca aggttgatgc tattgaaaag atgccatgct ccatggacat caaaggtata 720

agaagtttcc ttggcatgc cggttttat aggaggttca taaaagactt cacgaagg 780

<210> 83
<211> 260
<212> PRT
<213> Triticum aestivum

<400> 83

Val	Arg	Lys	Glu	Val	Phe	Lys	Leu	Leu	Glu	Ala	Gly	Ile	Ile	Tyr	Pro
1				5					10					15	

Val Ala Asp Ser Lys Trp Val Ile Pro Val His Glx Val Ile Val Ile

20				25					30						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Thr Val Val Pro Lys Lys Gly Gly Ile Thr Val Val Pro Asn Asp Lys

35				40					45						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Asp Glu Leu Ile Pro Gln Arg Thr Ile Thr Gly Tyr Arg Met Val Ile

50				55					60						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Asp Phe Arg Lys Leu Asn Lys Ala Thr Lys Lys Tyr His Tyr Pro Leu

65				70					75					80	
----	--	--	--	----	--	--	--	--	----	--	--	--	--	----	--

Pro Phe Ile Asp Gln Met Leu Glu Arg Leu Ser Lys His Thr His Phe

85				90					95						
----	--	--	--	----	--	--	--	--	----	--	--	--	--	--	--

Cys Phe Leu Asp Gly Tyr Ser Gly Phe Ser Gln Ile Pro Val Ser Ala

100				105					110						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Lys Asp Gln Ser Lys Thr Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala

115				120					125						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Tyr Arg Arg Met Pro Phe Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln

130				135					140						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Arg Tyr Met Met Ala Ile Leu Ser Asp Phe Cys Glu Lys Ile Cys Glu

145				150					155					160	
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	-----	--

Val Phe Met Asp Asp Ser Ser Ile Tyr Gly Ser Ser Phe Asp Asp Cys

165				170					175						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Leu Ser Asn Leu Asp Arg Val Leu Gln Arg Cys Glu Glu Thr Tyr Leu

180				185					190						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Val Leu Asn Trp Glu Lys Cys Gln Phe Met Val Asn Glu Gly Ile Val

195				200					205						
-----	--	--	--	-----	--	--	--	--	-----	--	--	--	--	--	--

Leu Gly His Lys Val Ser Glu Arg Gly Ile Arg Val Asp Lys Ala Lys
210 215 220

Val	Asp	Ala	Ile	Glu	Lys	Met	Pro	Cys	Pro	Met	Asp	Ile	Lys	Gly	Ile
225				230						235					240

Arg Ser Phe Leu Gly His Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp
245 250 255

Phe Thr Lys Val
260

<210> 84
<211> 762
<212> DNA
<213> *Triticum aestivum*

<400> 84
gtgcgttaagg aggtattcaa gcttctggag gcaggtataa tttatcccgt tgttgatagt 60
caatgggtaa gtccgtccta ttgtgtcctt aagaagggag gtattactgt tgtccctaata 120
gataaaagatg aattgattcc gcaaagaatt atcacaggtt ataggatggt aattgatttc 180
cgtaagttaa ataaagctac taagaaagat cattaccctt tacctttat tgatcaaatg 240
ttagaaagat tatgcaaaca tacacattat tgctttctag atggttattc tggttctct 300
caaataacctg tgcagctaa ggtcaatca aagactactt ttacatgccc ttttgttact 360
tttgttata gacgtatgcc ttgcattta tgtaatgcac ctgctacctt tcaaatatgc 420
atgatggcta tattctctga ctttgcgaa aagatttg aggtttcat ggacgacttt 480
tccgtctatg gtcctctta tgatgattgc ttgagcaatc ttaatcgagt tttgcagaga 540
tgtgaagaaa ctaatcttgc cttgaattgg gaaaagtgc actttatggt taatgaaggt 600
attgtcttgg ggcacaaaagt ttctgaacga ggtattgaag ttgataaggc caaggttgat 660
gctattgaaa agatgacatg tcccaaggac atcaaaggta taagaagttt cttggtcac 720
gccagattt ataggagggtt cataaaagac ttcacaaagg tt 762

<210> 85
<211> 254
<212> PRT
<213> *Triticum aestivum*

<400> 85
Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Val Asp Ser Gln Trp Val Ser Pro Val His Cys Val Leu Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Arg Ile Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
 50 55 60

Lys Ala Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
 65 70 75 80

Leu Glu Arg Leu Cys Lys His Thr His Tyr Cys Phe Leu Asp Gly Tyr
 85 90 95

Ser Gly Phe Ser Gln Ile Pro Val Ser Ala Lys Asp Gln Ser Lys Thr
 100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Gly Tyr Arg Arg Met Pro Phe
 115 120 125

Asp Leu Cys Asn Ala Pro Ala Thr Phe Gln Ile Cys Met Met Ala Ile
 130 135 140

Phe Ser Asp Phe Cys Glu Lys Ile Cys Glu Val Phe Met Asp Asp Phe
 145 150 155 160

Ser Val Tyr Gly Ser Ser Tyr Asp Asp Cys Leu Ser Asn Leu Asn Arg
 165 170 175

Val Leu Gln Arg Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
 180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser
 195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Ile Glu Lys
 210 215 220

Met Thr Cys Pro Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
 225 230 235 240

Ala Arg Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
 245 250

<210> 86
 <211> 762
 <212> DNA
 <213> Triticum aestivum

<400> 86
 gtgcggaaag aggtgctcaa gcttctggag gcaggtataa tttatccgt tgctgagagt 60

cagtggtaa gtcctgtcca ttgtgtccct aagaagggag gtattactgt tgtcccta 120
gataaaagatg aattgattcc tcaaagaatt attacagggtt ataggatggt aattgattc 180
cgcaaaattaa ataaaagccac caagaaagat cattaccct tacctttat tgatcaaatg 240
ctagaaagat tatgcaaaca tacacattat tgcttcctag atggttattc tggttctct 300
caaatacctg tgccggctaa agatcaatca aagactactt ttacatgccc tttggta 360
tttgcttata gacgtatgcc ttttggtta tgtaatgcac cttctacctt tcaaagatgc 420
atgatggcta tattctctga ttttgtgaa aagatttg aggtttcat ggacgaattt 480
tccgtctatg gttcctctt tgatgattgc ttgagcaatc ctgatcgagt ttgcagaga 540
tgtgaagaaa ctaatcttgc cttgaattgg gaaaagtgc actttatggtaatgaaggt 600
attgtcttgg ggcacaaagt ttctgaaaga ggtattgaag ttgataaagc caagggtgac 660
gctattgaaa agatgccatg tccccaggac atcaaaggta taagaagttt ccttggcac 720
gccggatttt ataggagggtt cataaaagac ttcaccaaagg tt 762

<210> 87

<211> 254

<212> PRT

<213> Triticum aestivum

<400> 87

Val Arg Lys Glu Val Leu Lys Leu Leu Glu Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Ala Glu Ser Gln Trp Val Ser Pro Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Pro Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Arg Ile Ile Thr Gly Tyr Arg Met Val Ile Asp Phe Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Tyr Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Cys Lys His Thr His Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Phe Ser Gln Ile Pro Val Ser Ala Lys Asp Gln Ser Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ser Thr Phe Gln Arg Cys Met Met Ala Ile
130 135 140

Phe Ser Asp Phe Cys Glu Lys Ile Cys Glu Val Phe Met Asp Glu Phe

145

150

155

160

Ser Val Tyr Gly Ser Ser Phe Asp Asp Cys Leu Ser Asn Pro Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Ile Glu Lys
210 215 220

Met Pro Cys Pro Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 88

<211> 762

<212> DNA

<213> Triticum aestivum

<400> 88

gtgcgttaagg aggtttcaa gttcctttag gcaggttata cttatccgt tgctgatagt 60
gaatggtaa gcccttcctt ttgtgttcctt aaaaaggtag gtattaccgt tggcttaat 120
gataaaagatg aatttgcattt gcaaaataattt attacagggtt ataggatgggt aatttgcattt 180
cataagttaa ataaagctac taagaaagat cattaccctt tacctcttat tgatcaaatt 240
ctagaaaagac tatccaaaca cacacattt tgctttcttag atggttatac tggtttctct 300
caaatacctg tgtcagtgaa ggatcaatct aaaactactt ttacttgccc ttttggtaact 360
tttgcttata gacttatgcc ttttggttta tgtaatgcac ctacttcctt tcaaagatgc 420
atgtatggctta tatttcttgtt tttttgtgaa aatatttgcgtt aggtattcat ggatgatttc 480
tccgtttatg gatcctcttt tgatgatgtt ttgagcaacc ttgatcgagt tttgcagaga 540
tgcgaaagaca ctagtctcat cctgaattgg gaaaaagtgtc actttatgggt taatgaaggc 600
attgtcttgg ggcataagat ttccgagaga ggtattgaag ttgacaaagc caaagttgat 660
gctattgaaa agattccatg tccccaggac ataaaaggta taagaagttt cttggatcat 720
gctggttttt ataggaggtt catcaaagac ttctcaaagg tt 762

<210> 89

<211> 254

<212> PRT

<213> Triticum aestivum

<400> 89

Val Arg Lys Glu Val Phe Lys Phe Leu Glu Ala Gly Ile Thr Tyr Pro
1 5 10 15

Val Ala Asp Ser Glu Trp Val Ser Pro Leu His Cys Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Val Leu Asn Asp Lys Asp Glu Leu Ile Pro Gln
35 40 45

Ile Ile Ile Thr Gly Tyr Arg Met Val Ile Asp Phe His Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Tyr Pro Leu Pro Leu Ile Asp Gln Ile
65 70 75 80

Leu Glu Arg Leu Ser Lys His Thr His Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Thr Gly Phe Ser Gln Ile Pro Val Ser Val Lys Asp Gln Ser Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Leu Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Thr Ser Phe Gln Arg Cys Met Met Ala Ile
130 135 140

Phe Ser Val Phe Cys Glu Asn Ile Cys Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Ser Ser Phe Asp Asp Cys Leu Ser Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Asp Thr Ser Leu Ile Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Asn Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ala Ile Glu Lys
210 215 220

Ile Pro Cys Pro Lys Asp Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Ser Lys Val
245 250

<210> 90
<211> 791
<212> DNA
<213> Gossypium hirsutum

<400> 90

gtgcgcagg aggtttaaa gctacttgat gacgggatga tctatcccat atctaacagt 60-
aattgggta gcccagtaca catagtagcca aaaaagacca gtgcaaccgt aatcgagaat 120
tcggcagggtg agatagttcc cactcgggtc caaaacgggt ggagagttatg catcgattac 180
aggaagttga attccttaac tcggaaggat cacttccac ttccctttat tgaccagatg 240
ttagaacgtt tagctggaaa gtctcattat ttagaacgtt tagctggaaa gtctcattat 300
tgttgggg atggttacta aggttttc cagatcccag tggcaccgga ggtcaagaa 360
agacaatgtt tacgtgccca tttggcacgt tttcttacag acggatgccc ttcggactct 420
gtaatgcacc agccagttt cataggtgca tggtaagtat atttcagac tacgtcgata 480
aaattatcga ggtgttcatg gacgacttta ctgttatatgg tgagtccctc gaggttaagtc 540
tgacgaacct tgcaaaaatt ttggaaagat gcttagaatt taatcttgc ttcaaattatg 600
agaaaatgcca ttttatggta gacaaggat tagttctagg tcatattatt tctgctgatg 660
gaatttctgt tgataaaagca aaaatcaaca tcattaaactc actaccatac cccacaactg 720
tgagggagat ttggtcttcc cttggtcatg caggttcta caagtgggatc atcaaagact 780
tttcaaaaagt t 791

<210> 91
<211> 264
<212> PRT
<213> Gossypium hirsutum

<400> 91

Val Arg Lys Glu Val Leu Lys Leu Leu Asp Asp Gly Met Ile Tyr Pro
1 5 10 15

Ile Ser Asn Ser Asn Trp Val Ser Pro Val His Ile Val Pro Lys Lys
20 25 30

Thr Ser Ala Thr Val Ile Glu Asn Ser Ala Gly Glu Ile Val Pro Thr
35 40 45

Arg Val Gln Asn Gly Trp Arg Val Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Ser Leu Thr Arg Lys Asp His Phe Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Lys Ser His Tyr Leu Glu Arg Leu Ala Gly
85 90 95

Lys Ser His Tyr Cys Cys Leu Asp Gly Tyr Glx Gly Phe Phe Gln Ile

100	105	110
Pro Val Ala Pro Glu Asp Gln Glu Lys Thr Met Phe Thr Cys Pro Phe		
115	120	125
Gly Thr Phe Ser Tyr Arg Arg Met Pro Phe Gly Leu Cys Asn Ala Pro		
130	135	140
Ala Ser Phe His Arg Cys Met Val Ser Ile Phe Ser Asp Tyr Val Asp		
145	150	155
Lys Ile Ile Glu Val Phe Met Asp Asp Phe Thr Val Tyr Gly Glu Ser		
165	170	175
Phe Glu Val Ser Leu Thr Asn Leu Ala Lys Ile Leu Glu Arg Cys Leu		
180	185	190
Glu Phe Asn Leu Val Leu Asn Tyr Glu Lys Cys His Phe Met Val Asp		
195	200	205
Lys Gly Leu Val Leu Gly His Ile Ile Ser Ala Asp Gly Ile Ser Val		
210	215	220
Asp Lys Ala Lys Ile Asn Ile Ile Asn Ser Leu Pro Tyr Pro Thr Thr		
225	230	235
Val Arg Glu Ile Trp Ser Phe Leu Gly His Ala Gly Phe Tyr Lys Trp		
245	250	255
Phe Ile Lys Asp Phe Ser Lys Val		
260		

<210> 92
 <211> 763
 <212> DNA
 <213> *Gossypium hirsutum*

<400> 92
 gtgcgtaaaag aggtcgtaaa gctacttgat tccggatga tctatcccat atctgacaat 60
 aattgggta gtccagtcca catagtaccc aaaaagaccg gtgttaaccgt aattgagaat 120
 tcagcagggtg agatggttcc cacttaagtc cgaaacggtc ggagagtagatg catcgattac 180
 aggaagttga attcctaac tcggaaagat cacttccac ttcttttat tgatcagatg 240
 ttagaacatt tagccagaaa gtctcattat tgttgtctgg atggttactc aggtttttc 300
 cagatcccaa tggcactaaa ggatcaagaa aagatgacat ttacgtgccc atttggcatg 360
 ttgcgttata gaaggatgtc gtttcagact ttgcaatgca ccaaccatgt ttcagaggtg 420
 catgataagt atatttttg actatgttaa gaaaataatt gaggtgttca tggacgaatt 480
 tactgtatat agttagtcct tcgaggatata tttgtcaat ctagaaaaat ttttggaaag 540

atgcttagaa tttaatcttg ttctaaatatta tgagaattgc tatttaatgg tagacaaggg 600
attagttcta ggtcatatca tttctgctaa gggaaatttct gtcgataaaag taaaaattaa 660
catcataagc tcaataccat accccacaaac tgtgagggag attcggttctt tccttagtca 720
tatagtttc tataggcgat tcatcaagga cttttcaaaa gtt 763

<210> 93
<211> 254
<212> PRT
<213> Gossypium hirsutum

<400> 93
Val Arg Lys Glu Val Val Lys Leu Leu Asp Ser Gly Met Ile Tyr Pro
1 5 10 15

Ile Ser Asp Asn Asn Trp Val Ser Pro Val His Ile Val Pro Lys Lys
20 25 30

Thr Gly Val Thr Val Ile Glu Asn Ser Ala Gly Glu Met Val Pro Thr
35 40 45

Glx Val Arg Asn Gly Arg Arg Val Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Ser Leu Thr Arg Lys Asp His Phe Pro Leu Leu Phe Ile Asp Gln Met
65 70 75 80

Leu Glu His Leu Ala Arg Lys Ser His Tyr Cys Cys Leu Asp Gly Tyr
85 90 95

Ser Gly Phe Phe Gln Ile Pro Met Ala Leu Lys Asp Gln Glu Lys Met
100 105 110

Thr Phe Thr Cys Pro Phe Gly Met Phe Ala Tyr Arg Arg Met Ser Phe
115 120 125

Arg Leu Cys Asn Ala Pro Thr Met Phe Gln Arg Cys Met Ile Ser Ile
130 135 140

Phe Phe Asp Tyr Val Lys Lys Ile Ile Glu Val Phe Met Asp Glu Phe
145 150 155 160

Thr Val Tyr Ser Glu Ser Phe Glu Val Tyr Leu Ser Asn Leu Glu Lys
165 170 175

Phe Leu Glu Arg Cys Leu Glu Phe Asn Leu Val Leu Asn Tyr Glu Asn
180 185 190

Cys Tyr Leu Met Val Asp Lys Gly Leu Val Leu Gly His Ile Ile Ser
195 200 205

Ala Lys Gly Ile Ser Val Asp Lys Val Lys Ile Asn Ile Ile Ser Ser
210 215 220

Ile Pro Tyr Pro Thr Thr Val Arg Glu Ile Arg Ser Phe Leu Ser His
225 230 235 240

Ile Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Ser Lys Val
245 250

<210> 94

<211> 723

<212> DNA

<213> Gossypium hirsutum

<400> 94

gtgcgtaagg aggtttgaa attgttggat gctggaatga tataactcgat ctttgacagt 60
gattgggtta gctgggttca tgtcgtgcc aaaaaactg gcgtgacagt ggtgaaaac 120
tcatcaggag agctagtccc tacccgagtc cagaatcgat ggaggggttg catcgattac 180
aggaagttga acgcagctac ccgaaatgac cattttccac ttcccttcat tgatcaaatg 240
ctcgagcgat tagctaataa gaccattat tgttgtctcg atgggtactc aggactttc 300
caaattccgg tggcacctga gnatcaagac aaaacaacct tcacgtgcc ctttggaaacg 360
tttgcgtata gaagaatgtc gtttggactc tgtaatgctc cggccacttt ccagagatgt 420
atggtgagca tattctctga ttatgtcgag aaaatcattt aattcttcat gnatgacttc 480
acgggtgtacg gtaactctt taacgaatgt ctgcataatc ttgctaagat attacagaga 540
tgcctagaat ttaatcttgt tttaaattat gaaaaatgcc acttcatggg tgacaaagga 600
ttaattttgg gtcataatgt ttottcagaa ggtattgagg tcaataaagc aaaaacgaat 660
attattgact cattacctt ccccagattt tacagacgat tcataaaagga cttcacaaaa 720
gtt 723

<210> 95

<211> 241

<212> PRT

<213> Gossypium hirsutum

<400> 95

Val Arg Lys Glu Val Leu Lys Leu Leu Asp Ala Gly Met Ile Tyr Ser
1 5 10 15

Ile Phe Asp Ser Asp Trp Val Ser Trp Val His Val Val Pro Lys Lys
20 25 30

Thr Gly Val Thr Val Val Lys Asn Ser Ser Gly Glu Leu Val Pro Thr
35 40 45

Arg Val Gln Asn Arg Trp Arg Val Cys Ile Asp Tyr Arg Lys Leu Asn
 50 55 60

Ala Ala Thr Arg Asn Asp His Phe Pro Leu Pro Phe Ile Asp Gln Met
 65 70 75 80

Leu Glu Arg Leu Ala Asn Lys Thr His Tyr Cys Cys Leu Asp Gly Tyr
 85 90 95

Ser Gly Leu Phe Gln Ile Pro Val Ala Pro Glu Asp Gln Asp Lys Thr
 100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Ser Phe
 115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Val Ser Ile
 130 135 140

Phe Ser Asp Tyr Val Glu Lys Ile Ile Glu Phe Phe Met Asp Asp Phe
 145 150 155 160

Thr Val Tyr Gly Asn Ser Phe Asn Glu Cys Leu Asp Asn Leu Ala Lys
 165 170 175

Ile Leu Gln Arg Cys Leu Glu Phe Asn Leu Val Leu Asn Tyr Glu Lys
 180 185 190

Cys His Phe Met Val Asp Lys Gly Leu Ile Leu Gly His Ile Val Ser
 195 200 205

Ser Glu Gly Ile Glu Val Asn Lys Ala Lys Thr Asn Ile Ile Asp Ser
 210 215 220

Leu Pro Tyr Pro Arg Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys
 225 230 235 240

Val

<210> 96

<211> 762

<212> DNA

<213> Lycopersicon esculentum

<400> 96

gtgcggaaag aggttgtgaa gctgttagat acgggtattg tctagccaat ttccggacaac 60

aagttaggtta gtccagtaca atgtgaacct aaaaagggag acataacggt gatcactaat 120
gaaaaaaaaatg agttgatccc aaccatgata gtcacataat ggagaatatg catggattac 180
aggaaattga atgaagccac caggaaggac cattaccgg tccctttat tgatcagatg 240
ttggaccggt tggctgggaa ataatattat tggttctta atggctattt acggtacaac 300
caaattgtga tttcaccaaa ggattaagag aaaaccactt tcacttgccc gtatggtaca 360
tatgcttca aaaagatacc ttttgggta tgaaatgcct cggtacttt ccaatgatgc 420
atgatggcta ttttcatga tatggttgaa gatggttg agatattcat gaatgatttc 480
tcagtgttg gggattctt tgatatgtgc ttggagaatt tggacagtgt gtggctagt 540
tgtgaagaaa ctaatcttt cctaaaactgg gaataatagc aatttctagt aaaggaaggg 600
attatgctag gacataaggt gtcaaagaga ggtatggaag ttgatagtgc caaagtggag 660
gttattgaaa agctcccccc tcctatatct gttaaaggga tgcaaagttt tctgggtcat 720
gttgggttct ataggagatt cataaaagac ttcacaaagg tt 762

<210> 97

<211> 254

<212> PRT

<213> Lycopersicon esculentum

<400> 97

Val Arg Lys Glu Val Val Lys Leu Leu Asp Thr Gly Ile Val Glx Pro
1 5 10 15

Ile Ser Asp Asn Lys Glx Val Ser Pro Val Gln Cys Glu Pro Lys Lys
20 25 30

Gly Asp Ile Thr Val Ile Thr Asn Glu Lys Asn Glu Leu Ile Pro Thr
35 40 45

Met Ile Val Thr Glx Trp Arg Ile Cys Met Asp Tyr Arg Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Tyr Pro Val Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Asp Arg Leu Ala Gly Glu Glx Tyr Tyr Cys Phe Leu Asn Gly Tyr
85 90 95

Leu Arg Tyr Asn Gln Ile Val Ile Ser Pro Lys Asp Glx Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Phe Lys Lys Ile Pro Phe
115 120 125

Gly Leu Glx Asn Ala Ser Ala Thr Phe Gln Glx Cys Met Met Ala Ile
130 135 140

Phe His Asp Met Val Glu Asp Phe Val Glu Ile Phe Met Asn Asp Phe

145

150

155

160

Ser Val Phe Gly Asp Ser Phe Asp Met Cys Leu Glu Asn Leu Asp Ser
165 170 175

Val Leu Ala Ser Cys Glu Glu Thr Asn Leu Phe Leu Asn Trp Glu Glx
180 185 190

Glx Gln Phe Leu Val Lys Glu Gly Ile Met Leu Gly His Lys Val Ser
195 200 205

Lys Arg Gly Met Glu Val Asp Ser Ala Lys Val Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Ile Ser Val Lys Gly Met Gln Ser Phe Leu Gly His
225 230 235 240

Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 98

<211> 689

<212> DNA

<213> Lycopersicon esculentum

<400> 98

cgaaaggagg tggtaaaact ggaaattatc aagtagttgg atgctagagt aatctatcca 60
atcgccgata gtagttgggt atgcctagtt cagtggtac caaagaaaagg gggaatgact 120
gtggtccccca acgaaaagaa tgaacttgtt cgaatgagac cggttactgg atggagggtg 180
tgcattggatt accgtaaact gaactcatag actaaaaaag actatttca tatgcccttc 240
atggatcaga tggatggatag acttgccgga aaagggtggg attgtttct tggatggat 300
tcggggatata atcagatttc tattgcacca gaagatcaag agaaaaccac tttcacttgt 360
ccatacggga ctttgcatt cagaagaatg tcgtttgggt tgtgcaatgc acccgcaacc 420
tttcagagat ggatgatgtc aatattttct gacatgatgg aggataactat agagggtttt 480
atggatgatt ttctgtggg tggatgttca ttgcagcggt gcttgcacaa ttatctgag 540
gttcttaaga gatgtgaaga ctgcaatttg gtactaaact gggaaaagtg tcatttcatg 600
gtgaaagagg gtattgtgtt gggatcgatc atttcagaaa agggcatgca tggttttact 660
ggatcatcaa acaagacttc acaaaagg 689

<210> 99

<211> 229

<212> PRT

<213> Lycopersicon esculentum

<400> 99

Arg Lys Glu Val Val Lys Leu Glu Ile Ile Lys Glx Leu Asp Ala Arg

1

5

10

15

Val Ile Tyr Pro Ile Ala Asp Ser Ser Trp Val Cys Leu Val Gln Cys
20 25 30

Val Pro Lys Lys Gly Gly Met Thr Val Val Pro Asn Glu Lys Asn Glu
35 40 45

Leu Val Arg Met Arg Pro Val Thr Gly Trp Arg Val Cys Met Asp Tyr
50 55 60

Arg Lys Leu Asn Ser Glx Thr Glu Lys Asp Tyr Phe His Met Pro Phe
65 70 75 80

Met Asp Gln Met Leu Asp Arg Leu Ala Gly Lys Gly Trp Tyr Cys Phe
85 90 95

Leu Asp Gly Tyr Ser Gly Tyr Asn Gln Ile Ser Ile Ala Pro Glu Asp
100 105 110

Gln Glu Lys Thr Thr Phe Thr Cys Pro Tyr Gly Thr Phe Ala Phe Arg
115 120 125

Arg Met Ser Phe Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Trp
130 135 140

Met Met Ser Ile Phe Ser Asp Met Met Glu Asp Thr Ile Glu Val Phe
145 150 155 160

Met Asp Asp Phe Ser Val Val Gly Asp Ser Phe Glu Arg Cys Leu Ser
165 170 175

Asn Leu Ser Glu Val Leu Lys Arg Cys Glu Asp Cys Asn Leu Val Leu
180 185 190

Asn Trp Glu Lys Cys His Phe Met Val Lys Glu Gly Ile Val Leu Gly
195 200 205

His Arg Ile Ser Glu Lys Gly Met His Val Phe Thr Gly Asp Ser Ser
210 215 220

Lys Thr Ser Gln Arg
225

<210> 100
<211> 760
<212> DNA

<213> Lycopersicon esculentum

<400> 100

gtgcgtaagg aggtgtttaa gcttctagat gcgggtattg tctacccaat taggacaaca 60
agtgggttag tctagtacaa tgtgtaccta aaaagggagg catggcaatg attactaatg 120
aaaacaatga gtttatccca accagcacag tcacaagatg gcgaatatgc atgaattaca 180
cgaagttaat gaagccacta ggaagaatca ttacccaatt ctttttattg attatatgtt 240
ggaccggtaa gctggcaag aatattattt ttttttgat tactaatcag ggtacaacta 300
aattttgatt gcaccagagg atcaagagaa aacaacttc acttgcggcg atggatcata 360
tgcttcaga aggatacctt ttgggttatg caatgctcg tctaattcc aaagatgcat 420
gatgactatt tttcatgata tggttgaata ttttgaggat atattcatgg atgatttctt 480
agtgtttgg gagtcgtttg atagatgctt ggagaattt aacaggttgt tagcttaggtg 540
cgaacaaact aatcttgc tgaactggaa aaaatgtcat ttttagtaa aggaaggaa 600
ttttcgggg cataaggtgt aaaagatagg gctggaagtt gatcatgaca aagtggaagt 660
aattgaaaag atctcccttc ccattttgt gaaacgggtg agaagttac taggtcatgc 720
tgagtttac aggatattca tcaaggactt ctcaaagggtt 760

<210> 101

<211> 254

<212> PRT

<213> Lycopersicon esculentum

<400> 101

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Ala Gly Ile Val Tyr Pro
1 5 10 15

Ile Ser Asp Asn Lys Trp Val Ser Leu Val Gln Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Ala Met Ile Thr Asn Glu Asn Asn Glu Phe Ile Pro Thr
35 40 45

Ser Thr Val Thr Arg Trp Arg Ile Cys Met Asn Tyr Thr Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asn His Tyr Pro Ile Leu Phe Ile Asp Tyr Met
65 70 75 80

Leu Asp Arg Leu Ala Gly Gln Glu Tyr Tyr Cys Phe Leu Asp Tyr Glx
85 90 95

Ser Gly Tyr Asn Glx Ile Leu Ile Ala Pro Glu Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Phe Lys Arg Ile Pro Phe
115 120 125

Gly Leu Cys Asn Ala Leu Ser Asn Phe Gln Arg Cys Met Met Thr Ile
 130 135 140

 Phe His Asp Met Val Glu Tyr Phe Glu Asp Ile Phe Met Asp Asp Phe
 145 150 155 160

 Leu Val Phe Trp Glu Ser Phe Asp Arg Cys Leu Glu Asn Leu Asn Arg
 165 170 175

 Leu Leu Ala Arg Cys Glu Gln Thr Asn Leu Val Leu Asn Trp Glu Lys
 180 185 190

 Cys His Phe Leu Val Lys Glu Gly Asn Phe Ser Gly His Lys Val Glx
 195 200 205

 Lys Ile Gly Leu Glu Val Asp His Asp Lys Val Glu Val Ile Glu Lys
 210 215 220

 Ile Ser Ser Pro Ile Phe Val Lys Arg Val Arg Ser Leu Leu Gly His
 225 230 235 240

 Ala Glu Phe Tyr Arg Ile Phe Ile Lys Asp Phe Ser Lys Val
 245 250

<210> 102
 <211> 776
 <212> DNA
 <213> Lycopersicon esculentum-

<400> 102
 gtgcggaaag aagtgtttaa actggaatca ttaaatgggtt ggatgctgga gtaatatatc 60
 cgatctccga tagtagttgg gtatgcccta ttcaagtgtgt acctaagaaa gggggatga 120
 ctgtggtccc caataagaaa aatgaacttg ttctaattgag accggttact ggagggtggg 180
 tgtgtatgga ttaccgtaaa ttaaatgcat ggactgaaaa agaccatttt cctatgccct 240
 tcattggatca gatgttggat agacttgcgg aaaaagggtg gtactgtttt cttgatggat 300
 agtcagggtta taatttagatt tctattgcac cagaagatca agagaaaacc acatttactt 360
 gtccatatgg gaccttgca ttgaagagaa tgtcgtttgg gttgtgcaat gcaccgcaca 420
 catttcacag atgtaaaaat gttgatattc ttgcacatgg tggatgatac tattgtatgt 480
 tttatggatg attttctct tggatggtaa tcattcgaga ggtgtttgaa ccatttatct 540
 gatgtcctta agagatgtga agactgcaat ttagtactaa attggggaaaa atgccacttc 600
 atggtgaaaa aaggatttgt tttgggtcat cgcattccag aaaagggtcat agagggttcat 660
 cgagctaaag tagaggtaat agagagactt cccccactat ctctgtaaaa ggtgtgagaa 720
 gctttcttgg gcatgcaagt tttaccgga gattcatcaa agacttcaca aaagtt 776

<210> 103
 <211> 258

<212> PRT

<213> Lycopersicon esculentum

<400> 103

Ala Glu Arg Ser Val Glx Thr Gly Ile Ile Lys Trp Leu Asp Ala Gly
1 5 10 15

Val Ile Tyr Pro Ile Ser Asp Ser Ser Trp Val Cys Pro Ile Gln Cys
20 25 30

Val Pro Lys Lys Gly Gly Met Thr Val Val Pro Asn Lys Lys Asn Glu
35 40 45

Leu Val Leu Met Arg Pro Val Thr Gly Gly Trp Val Cys Met Asp Tyr
50 55 60

Arg Lys Leu Asn Ala Trp Thr Glu Lys Asp His Phe Pro Met Pro Phe
65 70 75 80

Met Asp Gln Met Leu Asp Arg Leu Ala Glu Lys Gly Trp Tyr Cys Phe
85 90 95

Leu Asp Gly Glx Ser Gly Tyr Asn Glx Ile Ser Ile Ala Pro Glu Asp
100 105 110

Gln Glu Lys Thr Thr Phe Thr Cys Pro Tyr Gly Thr Phe Ala Leu Lys
115 120 125

Arg Met Ser Phe Gly Leu Cys Asn Ala Pro Ala Thr Phe His Arg Cys
130 135 140

Lys Met Leu Ile Phe Phe Asp Met Val Asp Asp Thr Ile Asp Ala Phe
145 150 155 160

Met Asp Asp Phe Ser Leu Val Gly Glu Ser Phe Glu Arg Cys Leu Asn
165 170 175

His Leu Ser Asp Val Leu Lys Arg Cys Glu Asp Cys Asn Leu Val Leu
180 185 190

Asn Trp Glu Lys Cys His Phe Met Val Lys Lys Gly Ile Val Leu Gly
195 200 205

His Arg Ile Pro Glu Lys Gly Ile Glu Val Asp Arg Ala Lys Val Glu
210 215 220

Val Ile Glu Arg Leu Pro Pro Pro Ile Ser Val Lys Gly Val Arg Ser
225 230 235 240

Phe Leu Gly His Ala Ser Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr
 245 250 255

Lys Val

<210> 104
<211> 761
<212> DNA
<213> *Solanum tuberosum*

<400> 104
gtgcggaaagg aggtacttaa attgttggat gcacggattg tgtacccaat atcagacagt 60
aatgggtaa gtccagtaaa gtgtgtcccc aagaagggca gaatgacggt gttgactaat 120
gagaagaatg aggtaatccc cacaagaaca gtgactgggt gacggatttgcatggactac 180
atgaagttga acgacgccac cagaaaggac cattatcogg taccttcattgataaaaata 240
ttggataggt tggcaggaca tgagtactat tggtttcttg gtgtctactc agggtacaat 300
cagattgtta ttgcaataga ggacttaggtg aaaaccacct tcacccgttc gtatggcaca 360
tatgcgttca agcacatgcc attcggcttg tgcaatgcc tggccacatt tcagagatgc 420
atgttggcaa tcttccatga tatggtggag gattttgttg aagtttcattgatgacttc 480
ttggtgtttg gtgagtcttt tgaaccttgc ttgactaatt ttgacagatt tcttgcgttgc 540
tgtgaagaga cgaatctggat gataaaactga tagaaagtgtc actttctggat tcgagagggaa 600
attgtgttgg gacacaagat ctccaaaaat gggctgaaag ttgacaaagc caacgttagag 660
gttattgaga aattgccacc cccatcacag tgaaggtaat taaaagcttac taggacatg 720
cttggttta tacgagggttc atcaaagact tcacaaaggat t 761

<210> 105
<211> 254
<212> PRT
<213> *Solanum tuberosum*

```

<400> 105
Val Arg Lys Glu Val Leu Lys Leu Leu Asp Ala Arg Ile Val Tyr Pro
      1           5           10          15

```

Ile Ser Asp Ser Lys Trp Val Ser Pro Val Lys Cys Val Pro Lys Lys
20 25 30

Arg Thr Val Thr Gly Glx Arg Ile Cys Met Asp Tyr Met Lys Leu Asn
50 55 60

Asp Ala Thr Arg Lys Asp His Tyr Pro Val Pro Phe Ile Asp Lys Ile

65

70

75

80

Leu Asp Arg Leu Ala Gly His Glu Tyr Tyr Cys Phe Leu Gly Val Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Val Ile Ala Ile Glu Asp Glx Val Lys Thr
100 105 110

Thr Phe Thr Cys Ser Tyr Gly Thr Tyr Ala Phe Lys His Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Leu Ala Thr Phe Gln Arg Cys Met Leu Ala Ile
130 135 140

Phe His Asp Met Val Glu Asp Phe Val Glu Val Phe Met Asp Asp Phe
145 150 155 160

Leu Val Phe Gly Glu Ser Phe Glu Leu Cys Leu Thr Asn Phe Asp Arg
165 170 175

Phe Leu Ala Arg Cys Glu Glu Thr Asn Leu Val Ile Asn Glx Glx Lys
180 185 190

Cys His Phe Leu Val Arg Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Lys Asn Gly Leu Lys Val Asp Lys Ala Asn Val Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Ile Thr Val Lys Val Ile Lys Ser Leu Leu Gly His
225 230 235 240

Ala Trp Phe Tyr Thr Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 106

<211> 760

<212> DNA

<213> Solanum tuberosum

<400> 106

gtgcgtaaag aggtttcaa actgctagat gtcggtattg tatatccat ttcagaaaac 60
aatgggtca gcccagttt gtgtgtgcct aaaaaaagag gcatgccgt gatcaccaat 120
aaaaaaaaatg agttgattcc aaccaggaca gtgacagggt ggcgaatatg catggattat 180
aggaaattga atgaggccac cagaaaggat cactgccccg ttcctttat tgatcagatg 240
ctggacaggt tagtggcga agaatattat tgttcctgg aaggctattc aggataacaac 300
caaattgtga ttgcaccaga ggaccaggag aaaactacat tcacttgtct gtatggaca 360

tatgcttc a gtgactgcc gtttggcta tgcaatgctc cagccaccc ttccaaagatga 420
atgatggcta tcttcatga tatgggtgaa gattttgtgg agatattcat ggatgacttc 480
tcagtctta gggagtctt tgataggtgt ttggagaatt gggacagggt gctggctaga 540
tgcgaggaaa ctaatctcat cctaaactgg aaaaaatgtc atttcctagt aaatgaaggg 600
attgtattgg gccataaggt gtcaaagaga gggctgaaag ttgatcgtgc caaagtggaa 660
gttattgaaa aactacctcc tccaatctgt taaaggggtg agaagcttc tgggtcatgc 720
tggttttac aggagattta taaaggactt cacaaagggtt 760

<210> 107

<211> 254

<212> PRT

<213> Solanum tuberosum

<400> 107

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Val Gly Ile Val Tyr Pro
1 5 10 15

Ile Ser Glu Ser Lys Trp Val Ser Pro Val Glx Cys Val Pro Lys Lys
20 25 30

Arg Gly Met Pro Val Ile Thr Asn Glu Lys Asn Glu Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Ile Cys Met Asp Tyr Arg Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Cys Pro Val Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Asp Arg Leu Val Gly Gln Glu Tyr Tyr Cys Phe Leu Glu Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Val Ile Ala Pro Glu Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Leu Tyr Gly Thr Tyr Ala Phe Lys Glx Leu Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Glx Met Met Ala Ile
130 135 140

Phe His Asp Met Val Glu Asp Phe Val Glu Ile Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Arg Glu Ser Phe Asp Arg Cys Leu Glu Asn Trp Asp Arg
165 170 175

Val Leu Ala Arg Cys Glu Glu Thr Asn Leu Ile Leu Asn Trp Lys Lys
180 185 190

Cys His Phe Leu Val Asn Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Lys Arg Gly Leu Glu Val Asp Arg Ala Lys Val Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Ile Ser Val Lys Gly Val Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 108

<211> 761

<212> DNA

<213> Solanum tuberosum

<400> 108

gtgcgtaaag aggtttcaa gctctggatg caggtattgt ctatccaatt tcagacagca 60
agtgggtcag tccagttcag tgtgtgccta aaaagggagg catgacggtg atcactaatg 120
aaaaaaaaatga gttgattcca accaggacag tgacaggatg gcgaatatgc atggattaca 180
gaaaattaaa tgaagctacc agaaaggatc actaccgggt tccttttatt gatcagatgc 240
tggacaggtt ggctggacaa gaatattatt gtttcttggta tggttattca ggatacaacc 300
aaatagtgtat tgcaccagag gaccagggga aaactacatt cacttgcatt tatggacat 360
atgtttccaa gagaatgtcg tttggctat gcaatgctcc atccatttc caaagatgca 420
tgatggccat cttccatgt aagggttgaag attttatgga aatattcatg gatgacttct 480
cagtatttgg ggagtctttt gacaggtgct tggagaattt agacagagtg ttggctagat 540
gcgagggaaac taattttgtc ctaaaacttggg aaaaatgtca tttccttagt aaggaaggga 600
ttgtgttggg tcataagggtg tcaaagagag ggctggaagt tgatcgtgcc agagtggaaa 660
taatcaaaaaa gctacctccc ccaatttctg ttaaagggtt gcgaagttt ttgggtcatg 720
ttagttctta cggaaaggattc ataaaggact tcaccaaggt t 761

<210> 109

<211> 254

<212> PRT

<213> Solanum tuberosum

<400> 109

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Ala Gly Ile Val Tyr Pro
1 5 10 15

Ile Ser Asp Ser Lys Trp Val Ser Pro Val Gln Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Ile Thr Asn Glu Lys Asn Glu Leu Ile Pro Thr
 35 40 45

 Arg Thr Val Thr Gly Trp Arg Ile Cys Met Asp Tyr Arg Lys Leu Asn
 50 55 60

 Glu Ala Thr Arg Lys Asp His Tyr Pro Val Pro Phe Ile Asp Gln Met
 65 70 75 80

 Leu Asp Arg Leu Ala Gly Gln Glu Tyr Tyr Cys Phe Leu Asp Gly Tyr
 85 90 95

 Ser Gly Tyr Asn Gln Ile Val Ile Ala Pro Glu Asp Gln Gly Lys Thr
 100 105 110

 Thr Phe Thr Cys Leu Tyr Gly Thr Tyr Val Ser Lys Arg Met Ser Phe
 115 120 125

 Gly Leu Cys Asn Ala Pro Ser Ile Phe Gln Arg Cys Met Met Ala Ile
 130 135 140

 Phe His Asp Lys Val Glu Asp Phe Met Glu Ile Phe Met Asp Asp Phe
 145 150 155 160

 Ser Val Phe Gly Glu Ser Phe Asp Arg Cys Leu Glu Asn Leu Asp Arg
 165 170 175

 Val Leu Ala Arg Cys Glu Glu Thr Asn Phe Val Leu Asn Trp Glu Lys
 180 185 190

 Cys His Phe Leu Val Lys Glu Gly Ile Val Leu Gly His Lys Val Ser
 195 200 205

 Lys Arg Gly Leu Glu Val Asp Arg Ala Arg Val Glu Ile Ile Lys Lys
 210 215 220

 Leu Pro Pro Pro Ile Ser Val Lys Gly Val Arg Ser Phe Leu Gly His
 225 230 235 240

 Val Ser Phe Tyr Glu Arg Phe Ile Lys Asp Phe Thr Lys Val
 245 250

<210> 110
 <211> 762
 <212> DNA
 <213> Solanum tuberosum

<400> 110
gtgcgttaagg aggtcctcaa gctgtctgat gcaggaattt ttttacccat ttatgtata 60
aagtggatca gcccgatcca ctgtgtgccg aaaaagggag gcatgacgat tattactaat 120
aaaaagaagg agttgatttc agctagaacg gtgatagagt ggcacatatg aatggactat 180
aggagactaa atgaggcaac tagaaaaggaa cactacccag ttcccttcat tgatcaaatg 240
ttggacaggt ttattggca agagtattat tgtttcctag atggctattc agatataat 300
caaattgtga ttgcgcata agataaagag aaaactacat ttacttctct atatggaca 360
tatgccttca agagaatgtc gtttggccg tgcaatgctc caaccacatt ccaaagatgc 420
atgacagcca ttttcatga tatggtaaaa tattttgtgg agatattcat ggatgaattc 480
ttagtcttg gggagtctt tgacacgtgt ctagaatatt tggacaatgt gcttgcaga 540
tgtgaggaaa ctaatcccgt cctcaactgg gaaaaatgtc attttcttagt gaagaagggg 600
attgtactag gccacaaggt ttcagaggaa ggactggaag ttgatcgtgg aaaagttagag 660
gtaatttaaa agctaccccc tcaagtctc gttaaagggg tgagaaggaa ctttggcat 720
tcttagttcg aaatgagatt cataaaagac ttcacaaaag tt 762

<210> 111
<211> 254
<212> PRT
<213> Solanum tuberosum

<400> 111
Val Arg Lys Glu Val Leu Lys Leu Ser Asp Ala Gly Ile Val Tyr Pro
1 5 10 15

Ile Tyr Asp Ile Lys Trp Ile Ser Pro Val His Cys Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Ile Ile Thr Asn Glu Lys Lys Glu Leu Ile Ser Ala
35 40 45

Arg Thr Val Ile Glu Trp His Ile Glx Met Asp Tyr Arg Arg Leu Asn
50 55 60

Glu Ala Thr Arg Lys Glu His Tyr Pro Val Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Asp Arg Phe Ile Gly Gln Glu Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Val Ile Ala Pro Glx Asp Lys Glu Lys Thr
100 105 110

Thr Phe Thr Ser Leu Tyr Gly Thr Tyr Ala Phe Lys Arg Met Ser Phe
115 120 125

Gly Pro Cys Asn Ala Pro Thr Thr Phe Gln Arg Cys Met Thr Ala Ile

130	135	140
Phe His Asp Met Val Lys Tyr Phe Val Glu Ile Phe Met Asp Glu Phe		
145	150	155
		160
Leu Val Phe Gly Glu Ser Phe Asp Thr Cys Leu Glu Tyr Leu Asp Asn		
165	170	175
Val Leu Ala Arg Cys Glu Glu Thr Asn Pro Val Leu Asn Trp Glu Lys		
180	185	190
Cys His Phe Leu Val Lys Lys Gly Ile Val Leu Gly His Lys Val Ser		
195	200	205
Glu Glu Gly Leu Glu Val Asp Arg Gly Lys Val Glu Val Ile Glx Lys		
210	215	220
Leu Pro Pro Gln Val Phe Val Lys Gly Val Arg Arg Phe Leu Gly His		
225	230	235
Ser Arg Phe Glu Met Arg Phe Ile Lys Asp Phe Thr Lys Val		
245	250	

<210> 112
 <211> 762
 <212> DNA
 <213> Solanum tuberosum

<400> 112
 gtgcggaagg aggttttaa gctgctggat gcgggtattt tataccagat ttcagatagc 60
 aaagggttct acccgattt aaaaaatgca gcatgacagt gatcaccaat 120
 gaaaagaatg agctgattcc aaccaggaca gtgacagggt ggcgaatatg catggattat 180
 atgaagttga atgaggccac cagaaaggat cactacccga ttcatttat tgatcagatg 240
 ttggacaagt tagctgagta aaaatattat tggcttctgg ctgttattc aagataacaac 300
 caatttctca ttgcaccaca ggaccaggag gaaactacat tcacttgtcc ttatggaca 360
 tatgcttca agcgaatgtc gtttggctt tgcaatgctc caaccacctt ccaaagatgc 420
 ataagggtcta tcttcatga tatgggtgaa gattttgtgg agatattcat ggatgacttc 480
 tcagtctttt ggttagtctt tgagaggtgt ctggaaaatt ttgacagggt gctggctgtt 540
 tgcgaggaaa ctaattttt cctaaactgg gaaaaatgtc attttcttagt gaaggaagg 600
 attgtattgg gacataaggt gtcaaagtga aggcttgaag ttgatcgtgc caaagtggaa 660
 gtcgttggaa acctaccttc cccattctt gttaaagggg tgagaagttt ttgggtcat 720
 gctggttct ataggagatt tatcaaagac ttcactaagg tt 762

<210> 113
 <211> 254
 <212> PRT

<213> Solanum tuberosum

<400> 113

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Ala Gly Ile Val Tyr Gln
1 5 10 15

Ile Ser Asp Ser Lys Gly Val Tyr Pro Ile Glx Phe Val Pro Lys Lys
20 25 30

Cys Ser Met Thr Val Ile Thr Asn Glu Lys Asn Glu Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Ile Cys Met Asp Tyr Met Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Tyr Pro Ile His Phe Ile Asp Gln Met
65 70 75 80

Leu Asp Lys Leu Ala Glu Glx Lys Tyr Tyr Cys Phe Leu Ala Cys Tyr
85 90 95

Ser Arg Tyr Asn Gln Phe Leu Ile Ala Pro Gln Asp Gln Glu Glu Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Phe Lys Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Pro Thr Thr Phe Gln Arg Cys Ile Arg Ala Ile
130 135 140

Phe His Asp Met Val Glu Asp Phe Val Glu Ile Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Gly Glx Ser Phe Glu Arg Cys Leu Glu Asn Phe Asp Arg
165 170 175

Val Leu Ala Val Cys Glu Glu Thr Asn Phe Phe Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Leu Val Lys Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Lys Glx Arg Leu Glu Val Asp Arg Ala Lys Val Glu Val Val Glu Asn
210 215 220

Leu Pro Ser Pro Phe Ser Val Lys Gly Val Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 114
<211> 793
<212> DNA
<213> Solanum tuberosum

<400> 114
aacttttgc aagtcttaa tgaaggatgt tgctcagagaa gaagtcataca agtggctgga 60
tacagggatt gtgtacccaa tatctgacaa taaatggca agtccagtgc agtgtgtgcc 120
taaaaaggaa ggaatgacag ttgtgaccaa tgagaaaaat gagttgatcc ccacaagaac 180
agtaactggg tggaggctat gcatggacta cagaaaaactc aatgaagcca ccaggaagga 240
ccactattcg gtaccgttca ttgatcaa at gtagacagg ttggctggcc aagagtatta 300
ctgtttcctt gatggttatt caaggtataa ttagatcgatc attgcacctg aggtcaaga 360
gaatacgcaca ttcacttgcc catatggcac gtatgcattc aaacgcttgc cattcggctt 420
gtgcaatgcc ccaaccctat ttcagagatg tatgatggca atcttccatg atatggtgg 480
agattttgg aaagtataca tggacgattt ctccggttt ggtgagtcgt tcgaactttg 540
tttatcta at cgtgatagag ttcttactag gtgtgaggag accaatttgg tgctgaactg 600
ggagaagtgt cacttctgg tcagagaagg aattatgtt gggcagaaga tctccaaaag 660
tgggctagaa gtagacaagg cgaagggttga agtgatttgg aagttgccac caccaatata 720
agtaaaggaa gtgcgaagct tccttggaca tgctggttt tacaagaggt tcataaaggaa 780
cttttcaaaag gtt 793

<210> 115
<211> 264
<212> PRT
<213> Solanum tuberosum

<400> 115
Thr Phe Val Lys Ser Leu Met Lys Asp Val Val Arg Glu Glu Val Ile
1 5 10 15

Lys Trp Leu Asp Thr Gly Ile Val Tyr Pro Ile Ser Asp Asn Lys Trp
20 25 30

Ala Ser Pro Val Gln Cys Val Pro Lys Lys Gly Gly Met Thr Val Val
35 40 45

Thr Asn Glu Lys Asn Glu Leu Ile Pro Thr Arg Thr Val Thr Gly Trp
50 55 60

Arg Leu Cys Met Asp Tyr Arg Lys Leu Asn Glu Ala Thr Arg Lys Asp
65 70 75 80

His Tyr Ser Val Pro Phe Ile Asp Gln Met Leu Asp Arg Leu Ala Gly

85	90	95
Gln Glu Tyr Tyr Cys Phe Leu Asp Gly Tyr Ser Arg Tyr Asn Glx Ile		
100	105	110
Val Ile Ala Pro Glu Asp Gln Glu Asn Thr Thr Phe Thr Cys Pro Tyr		
115	120	125
Gly Thr Tyr Ala Phe Lys Arg Leu Pro Phe Gly Leu Cys Asn Ala Pro		
130	135	140
Thr Leu Phe Gln Arg Cys Met Met Ala Ile Phe His Asp Met Val Glu		
145	150	155
Asp Phe Val Lys Val Tyr Met Asp Asp Phe Ser Val Phe Gly Glu Ser		
165	170	175
Phe Glu Leu Cys Leu Ser Asn Arg Asp Arg Val Leu Thr Arg Cys Glu		
180	185	190
Glu Thr Asn Leu Val Leu Asn Trp Glu Lys Cys His Phe Leu Val Arg		
195	200	205
Glu Gly Ile Met Leu Gly Gln Lys Ile Ser Lys Ser Gly Leu Glu Val		
210	215	220
Asp Lys Ala Lys Val Glu Val Ile Glu Lys Leu Pro Pro Pro Ile Glx		
225	230	235
Val Lys Gly Val Arg Ser Phe Leu Gly His Ala Gly Phe Tyr Lys Arg		
245	250	255
Phe Ile Lys Asp Phe Ser Lys Val		
260		

<210> 116
 <211> 761
 <212> DNA
 <213> Platanus occidentalis

<400> 116
 gtgcgttaagg aggtttcaa acttctaaa gtttgagtga tttatcctat ttaggatagg 60
 aattgggtca gcccggttca agtggttcct aaaaagattg gaataaccgt tgtaaaaat 120
 tagaatgatg agttgggtcc taccagtgtt cagaatgggt ggaggggtgt atagattata 180
 gaaaattgaa tggtaacc cgcaaggatc acttcccttt accttttatt gatcaaatgc 240
 ttgaaagggtt agttgggtcat tcctactatt gttcctaga tggttattca agttatttcc 300
 agattgtaat tactccagag gattaagaaa agacaacttt tacatgtcca tttgggactt 360

ttgcatacg ttgcatgccc tttggccctt gcaatgcccc aaccacttc caaagggtga 420
tggtagcat atttcatat tacattgaga atatcataga agttttatg gatgattca 480
tagttatgg agactcctt aataatttc tgcataacct tacactgtt cttcaaagat 540
gcatagaaac taaccttgtg ttaaattatg aaaaatgtca ttttatggtt gaacaaggta 600
tagtttggg tcatgttatt tcatactaaag gaattgaggt agataaagct aaagttgata 660
ttattcaatc ttaccttat ctcattagta tgccgaaagt tcattcttt ctggacatg 720
caggttctta ccgaagattc attaaagact ttacaaaggt t 761

<210> 117

<211> 254

<212> PRT

<213> Platanus occidentalis

<400> 117

Val Arg Lys Glu Val Phe Lys Leu Leu Lys Val Glx Val Ile Tyr Pro
1 5 10 15

Ile Glx Asp Arg Asn Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Ile Gly Ile Thr Val Val Lys Asn Glx Asn Asp Glu Leu Val Pro Thr
35 40 45

Ser Val Gln Asn Gly Trp Arg Val Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Val Val Thr Arg Lys Asp His Phe Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Val Gly His Ser Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Ser Tyr Phe Gln Ile Val Ile Thr Pro Glu Asp Glx Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Cys Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Thr Thr Phe Gln Arg Cys Met Val Ser Ile
130 135 140

Phe Ser Tyr Tyr Ile Glu Asn Ile Ile Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ile Val Tyr Gly Asp Ser Phe Asn Asn Phe Leu His Asn Leu Thr Leu
165 170 175

Val Leu Gln Arg Cys Ile Glu Thr Asn Leu Val Leu Asn Tyr Glu Lys
180 185 190

Cys His Phe Met Val Glu Gln Gly Ile Val Leu Gly His Val Ile Ser
195 200 205

Ser Lys Gly Ile Glu Val Asp Lys Ala Lys Val Asp Ile Ile Gln Ser
210 215 220

Leu Pro Tyr Leu Ile Ser Met Arg Lys Val His Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 118

<211> 762

<212> DNA

<213> Platanus occidentalis

<400> 118

gtgcgttaagg aagtttcaa gcttcttcaa gttggagtga tttatcttat ttcaataggc 60
aattgggta gcccagttca agtggctcct aaaaagactg gaataaccgt tggaaaaat 120
cagaatgtg agtttgttcc tacccatgtt cagaatgggt ggtgggttg tataaattat 180
agaaaaattaa atgttataac ctgcaaggat cacttccctt tacctttat tgataaaatg 240
cttggaaagg tagctggta ttcttactat tgtttccttg atggttatggg 300
caaattgcaa ttacttcgga ggttcaagaa aagatgattt ttaagtgcctt attcgggact 360
tttgcataatc gtcacatgcc ctttggcctt tgcaatgcctt caaccacttt ctaaagggtgt 420
atggtttagca tattttcaga ttacatttgg aatatcatag aagtctttat ggatgatttc 480
acagtttatg gagactccctt tgataattgtt ctgcataacc ttacacttgtt tattcaaaaga 540
tgcataagaaa ctaaccttagt gttaaattct taaaaatgtc attttatgggt tgaacaagg 600
atagttttgg gtcatgttgtt ttcatctagg ggaatttgggg tagataaaacc taaagttgtat 660
attattcaaa cttaaccta ttccacttagt gtgcgagaag ttcggttctt tcttggacat 720
gttagttttt actgaagatt cataaaagac ttccacaaagg tt 762

<210> 119

<211> 254

<212> PRT

<213> Platanus occidentalis

<400> 119

Val Arg Lys Glu Val Phe Lys Leu Leu Glu Val Gly Val Ile Tyr Leu
1 5 10 15

Ile Ser Asn Ser Asn Trp Val Ser Pro Val Gln Val Ala Pro Lys Lys
20 25 30

Thr	Gly	Ile	Thr	Val	Val	Lys	Asn	Gln	Asn	Asp	Glu	Leu	Val	Pro	Thr
35														45	
His Val Gln Asn Gly Trp Trp Val Cys Ile Asn Tyr Arg Lys Leu Asn															
50				55								60			
Val	Ile	Thr	Cys	Lys	Asp	His	Phe	Pro	Leu	Pro	Phe	Ile	Asp	Lys	Met
65												75		80	
Leu	Glu	Arg	Leu	Ala	Gly	His	Ser	Tyr	Tyr	Cys	Phe	Leu	Asp	Gly	Tyr
							85					90		95	
Leu	Gly	Tyr	Phe	Gln	Ile	Ala	Ile	Thr	Ser	Glu	Asp	Gln	Glu	Lys	Met
							100					105		110	
Ile	Phe	Lys	Cys	Pro	Phe	Gly	Thr	Phe	Ala	Tyr	Arg	His	Met	Pro	Phe
							115					120		125	
Gly	Leu	Cys	Asn	Ala	Pro	Thr	Thr	Phe	Glx	Arg	Cys	Met	Val	Ser	Ile
							130					135		140	
Phe	Ser	Asp	Tyr	Ile	Glu	Asn	Ile	Ile	Glu	Val	Phe	Met	Asp	Asp	Phe
145								150				155		160	
Thr	Val	Tyr	Gly	Asp	Ser	Phe	Asp	Asn	Cys	Leu	His	Asn	Leu	Thr	Leu
													165	170	175
Val	Ile	Gln	Arg	Cys	Ile	Glu	Thr	Asn	Leu	Val	Leu	Asn	Ser	Glx	Lys
												180	185	190	
Cys	His	Phe	Met	Val	Glu	Gln	Gly	Ile	Val	Leu	Gly	His	Val	Val	Ser
								195				200		205	
Ser	Arg	Gly	Ile	Glu	Val	Asp	Lys	Pro	Lys	Val	Asp	Ile	Ile	Gln	Thr
								210			215		220		
Leu	Pro	Tyr	Ser	Thr	Ser	Val	Arg	Glu	Val	Arg	Ser	Phe	Leu	Gly	His
								225			230		235		240
Val	Gly	Phe	Tyr	Glx	Arg	Phe	Ile	Lys	Asp	Phe	Thr	Lys	Val		
								245			250				

<210> 120
<211> 759
<212> DNA
<213> Platanus occidentalis

<400> 120

gtgcggaaag aggttttaa gctttggat gtagggatta tatacccaat tttttagt 60
aattaggtaa gtcccactca agtggaccca agaattctgg tgtgactgta gtaaaaatg 120
caaatgatga attgattcca aatagactca ctattggtt gcgtgtatgc attaactata 180
agaagttgaa ctcagtact aggaaggacc attccctt accattcatg actaaatcct 240
agaaagggtt gctggtcaca aattttatta tttcctatat gtttattcta gatataacta 300
aatagagatt gcacctgagg actaagaaaa taccacttt acatgtccat ttggacttt 360
tgcttatcga aggatgtcat ttggattatg taatgctttt gccacgttct aaagatgtcat 420
gtttagtata ttttagtata tggtagaaca tttcttgag gtgttatgg atttttttg 480
tttttgtaa ttcatttgc gattgttgc ataatttcaa aaaagtgtt aatagatgtg 540
aaggaaaaaa acatcattt gaattgagag aagtgtcatt tcattgtc taaaagaatt 600
gtacttggtc acattgtc tcccaagga attaaagtgg tcaaagccaa aattgaattt 660
atagtcaatt tgcctagccc aaagactttt aaagacattc gatctttt aggtcatgca 720
ggatttaaca aaaggttcat caaagacttc acgaaagtt 759

<210> 121

<211> 254

<212> PRT

<213> Platanus occidentalis

<400> 121

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Val Gly Ile Ile Tyr Pro
1 5 10 15

Ile Phe Tyr Ser Asn Glx Val Ser Pro Thr Gln Val Val Pro Lys Asn
20 25 30

Ser Gly Val Thr Val Val Lys Asn Ala Asn Asp Glu Leu Ile Pro Asn
35 40 45

Arg Leu Thr Ile Gly Trp Arg Val Cys Ile Asn Tyr Lys Lys Leu Asn
50 55 60

Ser Val Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Glx Ile
65 70 75 80

Leu Glu Arg Val Ala Gly His Lys Phe Tyr Tyr Phe Leu Tyr Gly Tyr
85 90 95

Ser Arg Tyr Asn Glx Ile Glu Ile Ala Pro Glu Asp Glx Glu Asn Thr
100 105 110

Thr Phe Thr Cys Pro Phe Gly Thr Phe Ala Tyr Arg Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Leu Ala Thr Phe Glx Arg Cys Met Leu Ser Ile

130

135

140

Phe Ser Asp Met Val Glu His Phe Leu Glu Val Phe Met Asp Asp Phe
145 150 155 160

Phe Val Phe Gly Asn Ser Phe Asp Asp Cys Leu His Asn Leu Lys Lys
165 170 175

Val Leu Asn Arg Cys Glu Glu Lys Asn Ile Ile Leu Asn Glx Glu Lys
180 185 190

Cys His Phe Met Val Ser Lys Arg Ile Val Leu Gly His Ile Val Ser
195 200 205

Ser Gln Gly Ile Lys Val Val Lys Ala Lys Ile Glu Leu Ile Val Asn
210 215 220

Leu Pro Ser Pro Lys Thr Leu Lys Asp Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Asn Lys Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 122

<211> 761

<212> DNA

<213> Platanus occidentalis

<400> 122

tgcgtaaaga ggtggtaaag cttcttgaag ttggagtgtat ttatcctatt tcggatagca 60
attgggttag cccggttcaa gtgggtccta aaaagactgg aataaccgtt gtaaaaatc 120
aaaatgatga gttagttcct acccgtgttc agaatgggtg gcagggttgt atagattata 180
taaaattaaa tggtaacc cgcaaggatc acttccctt acctttatt gatcaaatgt 240
ttgaaagggtt agctggcat tcttactatt gttccttga tggatattca tggatattttt 300
agattgcaat tactccagag gatcaagaaa agacgacttt tacgtgccca ttcggactt 360
tttcatatcg ttgcatgccccc tttggccccc gcaacgcccc agccactttc caaagggtgt 420
tggtagcat atttcagat tacattgaga atatcataga agtctttatg gatgattca 480
tagtttatga agactccccc gataattgtc tgcatcaccc tacacttggtt tttaaagat 540
gcatagaaac taaccttgc taaaatttg aaaaatgtca tggtatgggtt gaataaggta 600
tagttttggg tcatgttgc tcatctatgg gaattgaggt agataaaagtt aaagttgata 660
ttattcaatc tttacccat cccatttagtgc tgcatggaaatg tcgttctttt ctggacatg 720
cgggtttta ccaaagattc attaaagact tcacgaaagt t 761

<210> 123

<211> 253

<212> PRT

<213> Platanus occidentalis

<400> 123

Arg	Lys	Glu	Val	Val	Lys	Leu	Leu	Glu	Val	Gly	Val	Ile	Tyr	Pro	Ile
1			5					10						15	
Ser	Asp	Ser	Asn	Trp	Val	Ser	Pro	Val	Gln	Val	Val	Pro	Lys	Lys	Thr
				20				25					30		
Gly	Ile	Thr	Val	Val	Lys	Asn	Gln	Asn	Asp	Glu	Leu	Val	Pro	Thr	Arg
				35				40					45		
Val	Gln	Asn	Gly	Trp	Gln	Val	Cys	Ile	Asp	Tyr	Ile	Lys	Leu	Asn	Val
					50		55				60				
Val	Thr	Arg	Lys	Asp	His	Phe	Pro	Leu	Pro	Phe	Ile	Asp	Gln	Met	Phe
				65		70				75			80		
Glu	Arg	Leu	Ala	Gly	His	Ser	Tyr	Tyr	Cys	Phe	Leu	Asp	Gly	Tyr	Ser
				85				90					95		
Cys	Tyr	Phe	Glx	Ile	Ala	Ile	Thr	Pro	Glu	Asp	Gln	Glu	Lys	Thr	Thr
				100				105				110			
Phe	Thr	Cys	Pro	Phe	Gly	Thr	Phe	Ser	Tyr	Arg	Cys	Met	Pro	Phe	Gly
				115				120			125				
Leu	Cys	Asn	Ala	Pro	Ala	Thr	Phe	Gln	Arg	Cys	Met	Val	Ser	Ile	Phe
				130				135			140				
Ser	Asp	Tyr	Ile	Glu	Asn	Ile	Ile	Glu	Val	Phe	Met	Asp	Asp	Phe	Ile
				145				150			155		160		
Val	Tyr	Glu	Asp	Ser	Phe	Asp	Asn	Cys	Leu	His	Asn	Leu	Thr	Leu	Val
				165				170			175				
Phe	Glx	Arg	Cys	Ile	Glu	Thr	Asn	Leu	Val	Leu	Asn	Phe	Glu	Lys	Cys
				180				185			190				
His	Val	Met	Val	Glu	Glx	Gly	Ile	Val	Leu	Gly	His	Val	Val	Ser	Ser
				195				200			205				
Met	Gly	Ile	Glu	Val	Asp	Lys	Val	Lys	Val	Asp	Ile	Ile	Gln	Ser	Leu
				210				215			220				
Pro	Tyr	Pro	Ile	Ser	Val	Gln	Glu	Val	Arg	Ser	Phe	Leu	Gly	His	Ala
				225				230			235		240		

Gly Phe Tyr Gln Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 124
<211> 761
<212> DNA
<213> Sorghum bicolor

<400> 124
gtgcgtaaag aggtcttcaa gctctatcat gctgggatta tttatcctgt gccgcatagt 60
gagtgggtta gccctgttca agtagtgcca aagaaggag gaatgacggt cgtaggaat 120
gagaagaatg aactcatccc tcaacgaatt gtcaactgggt ggcgtatgtg tattgactat 180
caaaaactca acacggctac aaagaaaagat aaccttccgt tacccttcat tgatgaaaatg 240
ttggaacggc ttgcaaacc a cttttcttc tttttcttg atggttattc tgatgatcac 300
caaattccaa tccacccaga tgaccaagaa aagactacct ttacatgccc gtatgaaact 360
tatgcataac gacgaatgtc gttcggactg tgcaatgctc cagttcttt ccaacggtgc 420
atgatgtcta ttttctcgga catgatttag aagatcatgg aggtttcat ggatgatttt 480
accgtctatg gtaaaacctt cgatcattgt ttggagaatt tagatagagt ctgcagcga 540
tgtgaagaaa agcacttaat cctgaactgg gaaaaatgcc attttatggt tcaggaagga 600
atagtgttag gacataaaagt gtccgaacgt ggtatagagg tggacaaagc aaagattgaa 660
gttattgaaa aacttccacc tccccacgaat gtgaaaggat ccgtagctc ttgggacatg 720
cagggttcta tagatgctc ataaaagact tcacaaaggt t 761

<210> 125
<211> 254
<212> PRT
<213> Sorghum bicolor

<400> 125
Val Arg Lys Glu Val Phe Lys Leu Tyr His Ala Gly Ile Ile Tyr Pro
1 5 10 15

Val Pro His Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Arg Asn Glu Lys Asn Glu Leu Ile Pro Gln
35 40 45

Arg Ile Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Gln Lys Leu Asn
50 55 60

Thr Ala Thr Lys Lys Asp Asn Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr His Gln Ile Pro Ile His Pro Asp Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Glx Arg Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Met Ser Ile
130 135 140

Phe Ser Asp Met Ile Glu Lys Ile Met Glu Val Phe Met Asp Asp Phe
145 150 155 160

Thr Val Tyr Gly Lys Thr Phe Asp His Cys Leu Glu Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Lys His Leu Ile Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Thr Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Cys Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 126

<211> 762

<212> DNA

<213> Sorghum bicolor

<400> 126

gtgcggaaagg aggtccttaa attgctgcat gcagggatta tatatcctgt gccgcacagt 60
gagtgggtga gcccagtaca agttgtgcct aaaaaaggag gcatgactgt tattataaat 120
aaaaagaacg agctaattcc gcaacgcacc gtcacaggat ggcagatgtg catagactat 180
aaaaaactaa acaaagccac gagaaaggat cacttcctt tacctttat agatgagatg 240
ctagagcggt tagcaaaccac ttctgttttc tgtttcttag atggatattc agggtatcat 300
cagatcccga tccatcccga tgatcaaagc aaaaccactt ttacatgccc ttatgaaact 360
tatgcttacc gtagaatgtc ttttgggta tgtaatgcac cagttcttt tcaaagatgc 420
atgatgtcta tattttctga tatgattgaa gagattatgg aagttttcat ggatgatttc 480
tctgtttatg gaaaagctt tgatagttgt cttgaaaaact tagacaaggt ttgcaaagt 540
tgtgaagaaa agcacttaat ccttaattgg gaaaatgtc attttatggt taggaaagga 600

atagtgctag gacacttagt gtctgaaagg ggtattgagg tagacaaagc taaaattgaa 660
gtaattgaac aactacctcc acctgtaat ataaaaggaa ttcaagctt tcttggccat 720.
gctggtttt atcgttagatt catcaaagat ttcacgaaag tt 762

<210> 127
<211> 254
<212> PRT
<213> Sorghum bicolor

<400> 127

Val	Arg	Lys	Glu	Val	Leu	Lys	Leu	Leu	His	Ala	Gly	Ile	Ile	Tyr	Pro
1				5				10						15	

Val Pro His Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Ile Ile Asn Glu Lys Asn Glu Leu Ile Pro Gln
35 40 45

Arg Thr Val Thr Gly Trp Gln Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr His Gln Ile Pro Ile His Pro Asp Asp Gln Ser Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Gly Thr Tyr Ala Tyr Arg Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Met Ser Ile
130 135 140

Phe Ser Asp Met Ile Glu Glu Ile Met Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Lys Ala Phe Asp Ser Cys Leu Glu Asn Leu Asp Lys
165 170 175

Val Leu Gln Ser Cys Glu Glu Lys His Leu Ile Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Leu Gly His Leu Val Ser

195

200

205

Glu Arg Gly Ile Glu Val Asp Lys Ala Glu Ile Glu Val Ile Glu Gln
210 215 220

Leu Pro Pro Pro Val Asn Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 128

<211> 762

<212> DNA

<213> Sorghum bicolor

<400> 128

gtgcggaagg aagtcttaaa gctttacac actaggatta tttatctcggt tcctcatagt 60
gagtgggtta gcacggtaca agttgtgccca aagaaaggag gaatgtcggt tgtaggaat 120
gagaagaacg aattcatccc tcaacaaact gtcactgggt ggcgtatgtc cattgactac 180
caaaaaactca acaaggccac aaggaaagat cactcccggt tacctttcat tgatgaaatg 240
ttgtaatggc ttacaaatca ctcgttctt tgttccttg aagggtattc cagatatcat 300
caaattccga tccaccacga tgaccaaagt aagactactt tcacatgacc ctatgaaact 360
tacgcataacc gacgaatgtc gttcaggta tgtaatgctc cagcttctt tcaacgggtgc 420
atgatgtcta tttttccaa tatgatttag aaaaatcatgg aggtattcac ggatgatgtt 480
accgtatatg gcaaaacctt tgatgattgt ttagagaatt tggacaaagt cttacaattg 540
tgtgaaggaa agcacttaat cgtaaactag gagaatgcc attttatggc ccgagaagga 600
atagtgttag ggcacaaggt gtccgaacgt gggatagagg tggatagagc caagattgaa 660
gttattgaaa aacttccacc tcccacaaat gtgaaagaca tccgcagttt tcttggacat 720
gcagggttct ataggcgctt catcaaagat ttccaccaagg tt 762

<210> 129

<211> 254

<212> PRT

<213> Sorghum bicolor

<400> 129

Val Arg Lys Glu Val Leu Lys Leu Leu His Thr Arg Ile Ile Tyr Leu
1 5 10 15

Val Pro His Ser Glu Trp Val Ser Thr Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Ser Val Val Arg Asn Glu Lys Asn Glu Phe Ile Pro Gln
35 40 45

<210> 130
<211> 761
<212> DNA
<213> Sorghum bicolor

```
<400> 130  
gtgcgttaagg aggttttaa gctgctgcat gcagagatta tataatcatgt gccgcacagt 60  
qaqtqqqtaaa qcccaqttca aqttatqcct aaaaqqqqaq qcatgattqt tgttacqaat 120
```

gaaaagaacg agctaattcc gcaacgcacc gtcacagggt ggccggatgtg catagactat 180
agaaaaactaa acaaagccac gagaaaggat cattttcctt tacctttcat agatgagatg 240
ctagagcgat tagcaaaccat ttcgttcttc tgtttcttag atggataatt agggtatcac 300
cagatcccaa tcaatcttga tgatcaaagc aaaaccactt ttccatgccc acatggaact 360
tatgcttacc gtagaatgtc ttttgggta tgtaatgcac cagcttctt tcaaagatgc 420
atgatgtctg tattttctaa tatgattgaa gagattatgg aattttcatg gatgatttct 480
ctgttatgg aaaaactttt gatagttgtc ttgaaaactt agacagggtt ttgcaaagat 540
gtgaagaaaa gtacttagtc cttaatttga aaaaatgtca ttttatggtt agggaaaggaa 600
tagtgctggg acacccatgtc tctgaaagag gtattgaggt cgacaaagct aaaaattgaag 660
taattgaaca actaccccca cctttgaata taaaaggaat tcgaagctt cttggccatg 720
ctggtttta tcgttagattc attaaggact ttacaaaggt t 761

<210> 131

<211> 254

<212> PRT

<213> Sorghum bicolor

<400> 131

Val Arg Lys Glu Val Phe Lys Leu Leu His Ala Glu Ile Ile Tyr His
1 5 10 15

Val Pro His Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Ile Val Val Thr Asn Glu Lys Asn Glu Leu Ile Pro Gln
35 40 45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Arg Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Glx
85 90 95

Leu Gly Tyr His Gln Ile Pro Ile Asn Leu Asp Asp Gln Ser Lys Thr
100 105 110

Thr Phe Pro Cys Pro His Gly Thr Tyr Ala Tyr Arg Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Ser Phe Gln Arg Cys Met Met Ser Val
130 135 140

Phe Ser Asn Met Ile Glu Glu Ile Met Glu Ile Phe Met Asp Asp Phe
145 150 155 160

Ser Val Tyr Gly Lys Thr Phe Asp Ser Cys Leu Glu Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Lys Tyr Leu Val Leu Asn Trp Lys Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Leu Gly His Leu Val Ser
195 200 205

Glu Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Glu Val Ile Glu Gln
210 215 220

Leu Pro Pro Pro Leu Asn Ile Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 132

<211> 763

<212> DNA

<213> Sorghum bicolor

<400> 132

gtgcggaaag aggtcgtcaa gctctatcat gctgggatta tttatccgt gccacatagt 60
gagtgggtta gccctgttca agtagtgcca aagaaaagaag gaatgacggt cgtaggaat 120
gagaagaatg aactcatccc tcaacaatt gtcactagat ggcgtatgtg tattgactat 180
cgaaaaactca acaaagctac aaagaaaagat cactttccgt tacccttcat tgatgaaatg 240
ttggaatggc ttgcaaaccac ctctttcttc tgtttccttg atggttattc tggatatcac 300
caaatcccaa tccacccaga tgaccaagaa aagactacct ttacatgccc gtattgaact 360
tatgcatact gacgaatgtc gttcggattt tgcaatgctc tagcttcttt tccagcggtg 420
catgatgtct attttctcgg acatgattga gaagatcatg gaggtttca tggatgattt 480
taccgtctat ggcaaaacct tcgatcattt tttggagaat ttagatagag tcttgcagcg 540
atgtgaggaa aatcaactaa tcttgaactg ggagaaatgt cattttatgg ttcaggaagg 600
aatagtgcata ggacataaag tgtccgaacg tggatagat gtggacaaag caaagattaa 660
agtttattgaa aaacttccac ctcacacagaa tgtgaaagga atccatagct ttttgggaca 720
tgcagggttc tataagacgct tcatcaagga tttcacaaag gtt 763

<210> 133

<211> 254

<212> PRT

<213> Sorghum bicolor

<400> 133

Val Arg Lys Glu Val Val Lys Leu Tyr His Ala Gly Ile Ile Tyr Pro

1

5

10

15

Val Pro His Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Glu Gly Met Thr Val Val Arg Asn Glu Lys Asn Glu Leu Ile Pro Gln
35 40 45

Gln Ile Val Thr Arg Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Lys Ala Thr Lys Lys Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met
65 70 75 80

Leu Glu Trp Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr His Gln Ile Pro Ile His Pro Asp Asp Gln Glu Lys Thr
100 105 110

Thr Phe Thr Cys Pro Tyr Glx Thr Tyr Ala Tyr Glx Arg Met Ser Phe
115 120 125

Gly Leu Cys Asn Ala Leu Ala Ser Phe Gln Arg Cys Met Met Ser Ile
130 135 140

Phe Ser Asp Met Ile Glu Lys Ile Met Glu Val Phe Met Asp Asp Phe
145 150 155 160

Thr Val Tyr Gly Lys Thr Phe Asp His Cys Leu Glu Asn Leu Asp Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Asn His Leu Ile Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Glu Arg Gly Ile Asp Val Asp Lys Ala Lys Ile Lys Val Ile Glu Lys
210 215 220

Leu Pro Pro His Thr Asn Val Lys Gly Ile His Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 134
<211> 756
<212> DNA
<213> Sorghum bicolor

<400> 134
aaggagggtt tcaagttgct gcatgcaggg attatatatc ttgtgccgca tagtgagtgg 60
gtaagcccag ttcaagttgt gcctaaaaag ggaggcatga ctattattat gaatgaaaag 120
aacgagctaa ttccgcaacg caccgttaca gtatggcgga tgtgcataga ctatagaaaa 180
ctaaacaaag ccacgagaga ghatcacattt ccttacatt tcatacatga gatgcttagag 240
tggtagcaa accattcggtt cttctgttcc ttagatggat attgagggtt tcatcagatc 300
ccgatccatc ccgatgatca aagcaaaacc actttacat gcccataatgg aacttatgct 360
taccgttagaa tgtctttgg gttatgtaat gcactagctt ctttcaaag atgcatgatg 420
tctatatttt ctgatatgtat tgaagagatt atgaaagttt tcatggatga tttctctgtt 480
tatggaaaaa ctttgatag ttgtcttaaa aacttagaca aggtttgca aagatgtgaa 540
gaaaagcaact tagtccttaa ttggggaaaaa tgtcattca tggtaggga aggaatagtg 600
ctgggacact tagtgtctga aagagctatt gaggtagata aagctaaaat tgaagtaatt 660
gaacaactac gtccacctgtt gaacataaaa ggaatttgaa gctttcttgg ccatgctggt 720
tttcatcgta gattcataaaa agactttaca aagttt 756

<210> 135
<211> 252
<212> PRT
<213> Sorghum bicolor

<400> 135
Lys Glu Val Phe Lys Leu Leu His Ala Gly Ile Ile Tyr Leu Val Pro
1 5 10 15

His Ser Glu Trp Val Ser Pro Val Gln Val Val Pro Lys Lys Gly Gly
20 25 30

Met Thr Ile Ile Met Asn Glu Asn Glu Leu Ile Pro Gln Arg Thr
35 40 45

Val Thr Val Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn Lys Ala
50 55 60

Thr Arg Glu Asp His Phe Pro Leu Pro Phe Ile Asp Glu Met Leu Glu
65 70 75 80

Trp Leu Ala Asn His Ser Phe Phe Cys Phe Leu Asp Gly Tyr Glx Gly
85 90 95

Tyr His Gln Ile Pro Ile His Pro Asp Asp Gln Ser Lys Thr Thr Phe
100 105 110

Thr	Cys	Pro	Tyr	Gly	Thr	Tyr	Ala	Tyr	Arg	Arg	Met	Ser	Phe	Gly	Leu
		115					120							125	
Cys	Asn	Ala	Leu	Ala	Ser	Phe	Gln	Arg	Cys	Met	Met	Ser	Ile	Phe	Ser
		130					135							140	
Asp	Met	Ile	Glu	Glu	Ile	Met	Glu	Val	Phe	Met	Asp	Asp	Phe	Ser	Val
		145				150				155				160	
Tyr	Gly	Lys	Thr	Phe	Asp	Ser	Cys	Leu	Lys	Asn	Leu	Asp	Lys	Val	Leu
		165						170						175	
Gln	Arg	Cys	Glu	Glu	Lys	His	Leu	Val	Leu	Asn	Trp	Glu	Lys	Cys	His
		180					185						190		
Phe	Met	Val	Arg	Glu	Gly	Ile	Val	Leu	Gly	His	Leu	Val	Ser	Glu	Arg
		195					200						205		
Ala	Ile	Glu	Val	Asp	Lys	Ala	Lys	Ile	Glu	Val	Ile	Glu	Gln	Leu	Arg
		210				215					220				
Pro	Pro	Val	Asn	Ile	Lys	Gly	Ile	Glx	Ser	Phe	Leu	Gly	His	Ala	Gly
		225					230			235				240	
Phe	His	Arg	Arg	Phe	Ile	Lys	Asp	Phe	Thr	Lys	Val				
		245						250							

<210> 136
<211> 762
<212> DNA
<213> Glycine max

<400> 136
gtgcgttaagg aggttgtcaa gctttggag gttgggctca tataacctcat ctctgacagc 60
gcttggtaa gcctagtaca ggtggctccc aagaaatgcg gaatgacagt ggtacaaaaat 120
gagaggaatg acttgatacc aacacgaact gtcactggct agcggatgtg tatcgactac 180
tgcaagttga atgaagccac acggaaggac cattccccct tacctttcat ggatcagatg 240
ctggagagggc ttgcaggggca ggcatactac tgtttcttgg atagatattc aggataacaac 300
caaatcgccgg tagaccccg agatcaggag aagatggcct ttacatgccc cttggcgtc 360
tttgcttaca gaaggatgtc attcaggatgtt tgtaacgcac cagccacatt tcagagggtgc 420
gtgctggcca tttttcaga catggtgag aagagcatcg aggtatttat ggatgaattc 480
tcgatttttgc accccttatt tgacagtgc ttaaggaact tagagatggt actacagagg 540
tgcgtataga ctaacttggt actaaattag gaaaaatgtc atttcatgggt tcgagaggga 600
atagtgtatgg accacaatat ctcagctaga gggattgagg ttgatcaggc aaagatagac 660
gtcattgaga agttgccacc accactgaat gttaaaggcg tcagaagttt ctttagggcat 720
gcaggttct acaggaggtt tatcaaggac ttcaccaagg tt 762

<210> 137
<211> 254
<212> PRT
<213> Glycine max

<400> 137

Val Arg Lys Glu Val Val Lys Leu Leu Glu Val Gly Leu Ile Tyr Leu
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Leu Val Gln Val Ala Pro Lys Lys
20 25 30

Cys Gly Met Thr Val Val Gln Asn Glu Arg Asn Asp Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Gly Glx Arg Met Cys Ile Asp Tyr Cys Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ala Tyr Tyr Cys Phe Leu Asp Arg Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Ala Val Asp Pro Arg Asp Gln Glu Lys Met
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Ser Phe
115 120 125

Arg Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Val Leu Ala Ile
130 135 140

Phe Ser Asp Met Val Glu Lys Ser Ile Glu Val Phe Met Asp Glu Phe
145 150 155 160

Ser Ile Phe Gly Pro Leu Phe Asp Ser Cys Leu Arg Asn Leu Glu Met
165 170 175

Val Leu Gln Arg Cys Val Glx Thr Asn Leu Val Leu Asn Glx Glu Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Met Asp His Asn Ile Ser
195 200 205

Ala Arg Gly Ile Glu Val Asp Gln Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Leu Asn Val Lys Gly Val Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 138
<211> 763
<212> DNA
<213> Glycine max

<400> 138
gtgcgttaagg aggtctttaa gttcttgag gctgggctca tatatcccat ctctaatacg 60
acttaggtaa gcccagtaca ggtggttccc aagaaaagggtg gaatgacagt agtacagaat 120
gagaagaatg acttgatacc aacacgaact gtcactagct ggccaatatg catcgattat 180
cgcaagctga atgaggccac ccggaaaggac cacttccctc taccttctat ggatcagatg 240
ttggagagac ttgcagggca ggcgtattat tgtttcttgg atggatactc gagatataat 300
cagattgcgg tggaccctag agaccaagag aagacgacat tcacatgcc ttttggcgt 360
ctttgcttac agaaggatgc cattcgggtt atgtaatgca ccagccacat ttcagaggtg 420
catgctggcc attttttcag acatggtgg aaaaaatatc gaggtattca tggatgactt 480
ttcagttttt gggccctcat ttgacagttt tttgaggaac ctagagatgg tacttttagag 540
gtgcgttagag actaatttag tgctgaactg ggagaagtgt catttatgg ttcgagaggg 600
catagtcctg agccacaaga tctcagctag aggatttag gttgaccggg caaagataga 660
cgtcatagag aagctgccac caccattgaa tattaaagggt gtcagaagtt tcttagggca 720
tgcaggattc tacaggagat tcataaaagga ctttacaaag gtt 763

<210> 139
<211> 254
<212> PRT
<213> Glycine max

<400> 139
Val Arg Lys Glu Val Phe Lys Phe Leu Glu Ala Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asn Ser Thr Glx Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Gln Asn Glu Lys Asn Asp Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Ser Trp Arg Ile Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met

65

70

75

80

Leu Glu Arg Leu Ala Gly Gln Ala Tyr Tyr Cys Phe Leu Asp Gly Tyr
 85 90 95

Ser Arg Tyr Asn Gln Ile Ala Val Asp Pro Arg Asp Gln Glu Lys Thr
 100 105 110

Thr Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Pro Phe
 115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Leu Ala Ile
 130 135 140

Phe Ser Asp Met Val Glu Lys Asn Ile Glu Val Phe Met Asp Asp Phe
 145 150 155 160

Ser Val Phe Gly Pro Ser Phe Asp Ser Cys Leu Arg Asn Leu Glu Met
 165 170 175

Val Leu Glx Arg Cys Val Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
 180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Leu Ser His Lys Ile Ser
 195 200 205

Ala Arg Gly Ile Glu Val Asp Arg Ala Lys Ile Asp Val Ile Glu Lys
 210 215 220

Leu Pro Pro Pro Leu Asn Ile Lys Gly Val Arg Ser Phe Leu Gly His
 225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
 245 250

<210> 140

<211> 762

<212> DNA

<213> Glycine max

<400> 140

gtgcgcaagg aggtttgaa gcttctagag gttggctta tctacccat ctccgacagc 60
 gcttggtaa gcccagtctt ggtggtgtcg aagaaagagg gcatgacagt cattcgaaat 120
 gaaaagaatg acctgatacc aacacgaact gtcaacttagtt ggaaattatg catcgattac 180
 cgcaagctca acgaagccac aaggaaagac cattccctc tacccttcat ggatcagatg 240
 ttggagagac ttgcaggaca cgcttattat tgcttcttgg atgcatactt tggatataat 300
 cagattgtg tagaccccaa ggatcaggag aagatggcct tcacatgccccc ttttgggtgtc 360

tttgcctata gacggattcc atttgggttg tgcaatgcac ctaccacatt ccaaatgtgc 420
atgttggcca ttttgcaga tatagtggag aaaagcatcg aagtattcat ggatgacttt 480
tcagtatttg tgccctcatt agaaagttgt ttgaagaagt tggagatggt actacaaaga 540
tgcgtggaaa caaacttagt actaaattgg gagaagtgtc acttcatggt tcgagaaggc 600
atagtcttag gccataaaaat ttgcaccga ggaattgagg tagaccaaacc aaagattgat 660
gtcattgaaa agttgccacc accatcaaattt gttaaaggca tcaggagctt cctaggacaa 720
gccaggttct acagaagatt catcaaggac ttcacaaaag tt 762

<210> 141
<211> 254
<212> PRT
<213> Glycine max

<400> 141
Val Arg Lys Glu Val Leu Lys Leu Leu Glu Val Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Pro Val Leu Val Val Ser Lys Lys
20 25 30

Glu Gly Met Thr Val Ile Arg Asn Glu Lys Asn Asp Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Ser Trp Lys Leu Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly His Ala Tyr Tyr Cys Phe Leu Asp Ala Tyr
85 90 95

Phe Gly Tyr Asn Gln Ile Val Val Asp Pro Lys Asp Gln Glu Lys Met
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Arg Ile Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Thr Thr Phe Gln Met Cys Met Leu Ala Ile
130 135 140

Phe Ala Asp Ile Val Glu Lys Ser Ile Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Val Pro Ser Leu Glu Ser Cys Leu Lys Lys Leu Glu Met
165 170 175

Val Leu Gln Arg Cys Val Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Thr Arg Gly Ile Glu Val Asp Gln Thr Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Ser Asn Val Lys Gly Ile Arg Ser Phe Leu Gly Gln
225 230 235 240

Ala Arg Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 142

<211> 762

<212> DNA

<213> Glycine max

<400> 142

gtgcggaaagg aggttattaa gttgctagag gcagggctca tttaccta at ctcagatagt 60
tcataggtta gtcctgttca tggtgctctg aaaaagggag gtatgacagt gataaagaat 120
gatagagatg agttaattcc tacaagaata gttactggat ggaggatggg tattgattac 180
aagaagctaa atgaagccac caggaaagac cattacccgc ttccccttcat ggatcaaatg 240
cttgagagac ttgcagggca atcttcctac tatttattag atggatactc gggctacaat 300
caaattgcag tggatcctca ggaccaagaa aagacagctt tcacatgtcc ttttgggtga 360
tttgcttatac gccgcatgtc gttcggttta tgtaatgccc caactactt ccagagatgt 420
atgatggcaa ttttgctga catggtaaag aaatgtattg aagttttat ggacgatttc 480
tctgtcttg gtgcatttt tgaaaattgc ctagcaaatt tagagaaagt gttacaacgc 540
tatgaagaat ctaatttgtt gctcaactgg gaaaaatgtc actttatggt tcaagaaggt 600
atcatgctgg gacacaagat ttctagaaga ggaattaagg tggataaggc aaagattgag 660
gttattgata aacttccacc tctagttat gtttagaggca tacgaagttt ttgggtcat 720
gctagattct atcgatgatt tatcaaggac ttcaccaaaag tt 762

<210> 143

<211> 254

<212> PRT

<213> Glycine max

<400> 143

Val Arg Lys Glu Val Ile Lys Leu Leu Glu Ala Gly Leu Ile Tyr Leu
1 5 10 15

Ile Ser Asp Ser Ser Glx Val Ser Pro Val His Val Ala Leu Lys Lys
20 25 30

Gly	Gly	Met	Thr	Val	Ile	Lys	Asn	Asp	Arg	Asp	Glu	Leu	Ile	Pro	Thr
		35					40				45				
Arg	Ile	Val	Thr	Gly	Trp	Arg	Met	Gly	Ile	Asp	Tyr	Lys	Lys	Leu	Asn
		50				55				60					
Glu	Ala	Thr	Arg	Lys	Asp	His	Tyr	Pro	Leu	Pro	Phe	Met	Asp	Gln	Met
		65				70			75			80			
Leu	Glu	Arg	Leu	Ala	Gly	Gln	Ser	Ser	Tyr	Tyr	Leu	Leu	Asp	Gly	Tyr
		85					90				95				
Ser	Gly	Tyr	Asn	Gln	Ile	Ala	Val	Asp	Pro	Gln	Asp	Gln	Glu	Lys	Thr
		100					105				110				
Ala	Phe	Thr	Cys	Pro	Phe	Gly	Val	Phe	Ala	Tyr	Arg	Arg	Met	Ser	Phe
		115					120			125					
Gly	Leu	Cys	Asn	Ala	Pro	Thr	Thr	Phe	Gln	Arg	Cys	Met	Met	Ala	Ile
		130				135				140					
Phe	Ala	Asp	Met	Val	Lys	Lys	Cys	Ile	Glu	Val	Phe	Met	Asp	Asp	Phe
		145				150			155			160			
Ser	Val	Phe	Gly	Ala	Ser	Phe	Glu	Asn	Cys	Leu	Ala	Asn	Leu	Glu	Lys
		165					170				175				
Val	Leu	Gln	Arg	Tyr	Glu	Glu	Ser	Asn	Leu	Val	Leu	Asn	Trp	Glu	Lys
		180				185				190					
Cys	His	Phe	Met	Val	Gln	Glu	Gly	Ile	Met	Leu	Gly	His	Lys	Ile	Ser
		195					200			205					
Arg	Arg	Gly	Ile	Lys	Val	Asp	Lys	Ala	Lys	Ile	Glu	Val	Ile	Asp	Lys
		210				215				220					
Leu	Pro	Pro	Leu	Val	Asn	Val	Arg	Gly	Ile	Arg	Ser	Phe	Leu	Gly	His
		225				230			235			240			
Ala	Arg	Phe	Tyr	Arg	Glx	Phe	Ile	Lys	Asp	Phe	Thr	Lys	Val		
					245				250						

<210> 144

<211> 761

<212> DNA

<213> Glycine max

<400> 144

gtgcggaaagg aggtctttaa gttgctggaa gcaggcccta tttatcccat ttcggatagt 60
gcatgggtta gccctatgca agttgtccct aagaaggag gtatgacagt cattaagaat 120
gataaagatg agttgatatc cacaaggacc gtcaccgggt ggagaatgtg cattgactat 180
cgaaaagctga atgatgcacc cggaaggacc attatccact cccttcatg gcccataatgc 240
ttgaaagact tggtggcaa tcctattatt gtttctaga tggatattat ggttataatc 300
agattgttgt agatccaaa gatcaagaga agacagctt cacctaccct tttggtgtat 360
tcgcataatca gtgcattgcct tttggctat gcaatgcccc agctacattt cagaggtgta 420
tgatggctat ttttctgtat atggtgaaa tatgcattga agtttcatg gacgatttct 480
ctatTTTgg gccatcctt gaagggtgct tatcaaatct tgaaaaagta taaaagagat 540
gtgaagagtc caatctagtt ctcaattgga agaaatgcca tttcatggtt caagaaggaa 600
taatgttgg gcataaaatt tcagtaagag ggatagaggt ggacaaggca aagattgtat 660
taattgagaa actacttgct cccatgaatg tcaaggaaat aagaagcttc tttaggacatg 720
cagggttcta caggcgattc ataaaagact tcacccaaagt t 761

<210> 145

<211> 254

<212> PRT

<213> Glycine max

<400> 145

Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Pro Met Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Ile Lys Asn Asp Lys Asp Glu Leu Ile Ser Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Asp Ala Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Met Gly His Met
65 70 75 80

Leu Glu Arg Leu Val Gly Gln Ser Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Tyr Gly Tyr Asn Gln Ile Val Val Asp Pro Lys Asp Gln Glu Lys Thr
100 105 110

Ala Phe Thr Tyr Pro Phe Gly Val Phe Ala Tyr Gln Cys Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Ala Ile

130

135

140

Phe Ser Asp Met Val Glu Ile Cys Ile Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Ile Phe Gly Pro Ser Phe Glu Gly Cys Leu Ser Asn Leu Glu Lys
165 170 175

Val Leu Lys Arg Cys Glu Glu Ser Asn Leu Val Leu Asn Trp Lys Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Met Leu Gly His Lys Ile Ser
195 200 205

Val Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Leu Ala Pro Met Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 146

<211> 762

<212> DNA

<213> Glycine max

<400> 146

gtgcgttaagg aggtggtaaa gttgcttcaa gtaggactaa tttatccaa ctctgatagt 60
gcttgggtga gttcgaacta ggtggtcct aagaaaggtg gtatgacggt gatccacaat 120
gataagaatg atcttattcc tacacagaca atcattaggt ggcaaatgtg tattgactat 180
cacaagttga atgatgtcac caagaaggac catttcctc tgccattcat ggaccaaatg 240
ttagagaggt tagctggcca agcttttat tgtttttg aggttattc tgggtataac 300
caaatacgcc tgcatttcaa agatcaagag aagactacta tcatacgccc atttgggtgc 360
tttgcttaca gacaaatgtc atttgaactg tgtaatgccc ctaccacctt ctagagattc 420
atgatggcca ttttgctga ccttggag aaatgcatacg aggtgttcat gaatgatttc 480
tctatttcg gctttccctt ttatcattgt ttatccaaacc tggaatttagt gttacaacgg 540
tgtgcggaaa ccaatttggt gatgaactgg gagaaatgtc atttcatggt ccaagagggg 600
attgtcttag gccacaagat ctcttccaga gggttggaaag tggacaaggc aaaaattgat 660
gttattgaga agttgcctcc acctatgaat gtgaaaggca tccgaagttt tctcgaatat 720
gttggatttt ataggaggtt catcaaagac ttcacgaaag tt 762

<210> 147

<211> 254

<212> PRT

<213> Glycine max

<400> 147

Val Arg Lys Glu Val Val Lys Leu Leu Glu Val Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Ser Asn Glx Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Ile His Asn Asp Lys Asn Asp Leu Ile Pro Thr
35 40 45

Gln Thr Ile Ile Arg Trp Gln Met Cys Ile Asp Tyr His Lys Leu Asn
50 55 60

Asp Val Thr Lys Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ala Phe Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Ala Val His Leu Lys Asp Gln Glu Lys Thr
100 105 110

Thr Ile Ile Cys Pro Phe Gly Val Phe Ala Tyr Arg Gln Met Ser Phe
115 120 125

Glu Leu Cys Asn Ala Pro Thr Thr Phe Glx Arg Phe Met Met Ala Ile
130 135 140

Phe Ala Asp Leu Val Glu Lys Cys Ile Glu Val Phe Met Asn Asp Phe
145 150 155 160

Ser Ile Phe Gly Ser Ser Phe Tyr His Cys Leu Ser Asn Leu Glu Leu
165 170 175

Val Leu Gln Arg Cys Ala Glu Thr Asn Leu Leu Met Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Ser Arg Gly Leu Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Met Asn Val Lys Gly Ile Arg Ser Phe Leu Glu Tyr
225 230 235 240

Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 148
<211> 762
<212> DNA
<213> Glycine max

<400> 148
gtgcgttaagg aggttctcaa gctttggag gttggctca tataacctat ctctgacagc 60
gcttggtaa gcctagtaca ggtggctccc aagaaatgcg gaatgacagt ggtacaaaat 120
gagaggaatg acttgatacc aacacgaact gtcactggct agcggatgtg tatcgactac 180
tgcaagttga atgaagccac acggaaggac cattccccct taccttcat ggatcagatg 240
ctggagggc ttgcagggca ggcataactac tgtttcttgg atagatattc agataacaac 300
caaatcgccg tagacccccag agatcaggag aagatggcct ttacatgccc cttggcgtc 360
tttgcttaca gaaggatgtc attcaggta tgtaacgcac cagccacatt tcagaggtgc 420
atgctggcca tttttcaga catggtggag aagagcatcg aggtatttat ggatgaattc 480
tcgatttttgc acccatttatt tgacagttgc ttaaggaact tagagatggt actacagagg 540
tgcgtataga ctaacttgtt actaaattag gaaaaatgtc atttcattgtt tcgagaggga 600
atagtgtatgg gccacaatat ctcagctaga gggattgagg ttgatcagac aaagatagac 660
gtcattgaga agttgccacc accactgaat gttaaaggcg tcagaagttt ctttagggcat 720
gcaggtttct acaggaggtt cataaaagac ttcacaaaagg tt 762

<210> 149
<211> 254
<212> PRT
<213> Glycine max

<400> 149
Val Arg Lys Glu Val Leu Lys Leu Leu Glu Val Gly Leu Ile Tyr Leu
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Leu Val Gln Val Ala Pro Lys Lys
20 25 30

Cys Gly Met Thr Val Val Gln Asn Glu Arg Asn Asp Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Gly Glx Arg Met Cys Ile Asp Tyr Cys Lys Leu Asn
50 55 60

Glu Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ala Tyr Tyr Cys Phe Leu Asp Arg Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Ala Val Asp Pro Arg Asp Gln Glu Lys Met
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Ser Phe
115 120 125

Arg Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Leu Ala Ile
130 135 140

Phe Ser Asp Met Val Glu Lys Ser Ile Glu Val Phe Met Asp Glu Phe
145 150 155 160

Ser Ile Phe Gly Pro Leu Phe Asp Ser Cys Leu Arg Asn Leu Glu Met
165 170 175

Val Leu Gln Arg Cys Val Glx Thr Asn Leu Val Leu Asn Glx Glu Lys
180 185 190

Cys His Phe Met Val Arg Glu Gly Ile Val Met Gly His Asn Ile Ser
195 200 205

Ala Arg Gly Ile Glu Val Asp Gln Thr Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Leu Asn Val Lys Gly Val Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 150

<211> 761

<212> DNA

<213> Glycine max

<400> 150

gtgcgtaagg aggtttttaa gttgctggaa gcaggtctta tttatcccat ttccggatagt 60
gcatgggtta gccctgtgca gggtgtcccc aaaaaagaag gtaagacagt cattaaggat 120
aaaaaggatg agttgatatac cacaaggact atcacccgggt ggagaatgtg cattgactat 180
cagaagctga atgatgccac ccggaaaggac cattatccac tcccttcatt ggaccaaatg 240
cttgcggac ttgcgggca atcttattat tgtttctgg atggatattc tggttataat 300
cagattgatg tagatccaa ggatcaagag aagactgctt tcacctaccc tttgggtgta 360
ttcgctatc ggcgcattgc ctgggttg tgcaatgccc cagctacatt tcagaggtgt 420
atgatgacta tttttctga tatggtgaa aaatgaattg aagtttcat ggacgatttc 480
tctattttg ggccatctt tgaagggtgc ttatcaaatc ttgaaagagt attaaagaga 540
cgtgaagagt ccaaactagt tctcaattgg gagaatgcc atttcatggt tcaagaagga 600

atagtgtggg gcataaaatt tcagtaagag ggatagaggt ggacaaggca aagattgatg 660
taatagagaa actacctcct cccatgaat tcaaggaaat aagaagcttc cttagacatg 720
cagggttcta caagcgattc atcaaagatt tcacaaaggt t 761

<210> 151
<211> 254
<212> PRT
<213> Glycine max

<400> 151
Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Glu Gly Lys Thr Val Ile Lys Asp Glu Lys Asp Glu Leu Ile Ser Thr
35 40 45

Arg Thr Ile Thr Gly Trp Arg Met Cys Ile Asp Tyr Gln Lys Leu Asn
50 55 60

Asp Ala Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ser Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Asp Val Asp Pro Lys Asp Gln Glu Lys Thr
100 105 110

Ala Phe Thr Tyr Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Thr Ile
130 135 140

Phe Ser Asp Met Val Glu Lys Glx Ile Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Ile Phe Gly Pro Ser Phe Glu Gly Cys Leu Ser Asn Leu Glu Arg
165 170 175

Val Leu Lys Arg Arg Glu Glu Ser Lys Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser

195

200

205

Val Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Met Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Lys Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 152
<211> 762
<212> DNA
<213> Glycine max

<400> 152
gtgcggaaag aggtattcaa gttactagag gcagggctca tctacccaat ttcatatgc 60
tcctgggtta gtccgggtca agttgttcca aaaaaaggag ggatgacagt ggtaaaaat 120
gatagaaaatg agctaattcc tacaagaaga gtcaccagat ggagaatgtg tattgattat 180
aggaagctca atgaagccac aagaaaagac cattacccac ttcccttcat ggtcaaatg 240
cttaagagac ttgcaaggca atccttctac cgtttcttgg acggataactc agttacaat 300
cagattgcag tggatcctca ggtcaagaa aaaacagctt ttacatgtcc ttcatgttt 360
tttgcttatac gccgcattgc gttcggtta tgtaatgcct ctactactt tcagagatgt 420
atgatggcaa ttttgatga catggtagag aaatgtattt aagtctttat ggtgatgtt 480
tcgttcttg gtgcatttt tggaaattgc ttagcaaatt tagagaaagt gttacaacgt 540
tgtaaaaat ctaatttggt gcttaactgg gaaaaatgtc actttatggt acaagaaggt 600
attgtgctag gacacaaaat ctctaaaaga ggaattgagg tggtaaaga aaaactagat 660
gttattgata aacttccacc cccagttat gtaaaaggca tacacagttt ttgggtcat 720
gttggatttt atcggcgatt cataaaggac ttcaccaaaag tt 762

<210> 153
<211> 254
<212> PRT
<213> Glycine max

<400> 153

Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ser Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Val Lys Asn Asp Arg Asn Glu Leu Ile Pro Thr
35 40 45

Arg	Arg	Val	Thr	Arg	Trp	Arg	Met	Cys	Ile	Asp	Tyr	Arg	Lys	Leu	Asn
50							55						60		
Glu Ala Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Met Asp Gln Met															
65							70					75			80
Leu Lys Arg Leu Ala Arg Gln Ser Phe Tyr Arg Phe Leu Asp Gly Tyr															
							85					90			95
Ser Gly Tyr Asn Gln Ile Ala Val Asp Pro Gln Asp Gln Glu Lys Thr															
							100					105			110
Ala Phe Thr Cys Pro Phe Ser Val Phe Ala Tyr Arg Arg Met Pro Phe															
							115					120			125
Gly Leu Cys Asn Ala Ser Thr Thr Phe Gln Arg Cys Met Met Ala Ile															
							130					135			140
Phe Asp Asp Met Val Glu Lys Cys Ile Glu Val Phe Met Asp Asp Phe															
							145					150			160
Ser Phe Phe Gly Ala Ser Phe Gly Asn Cys Leu Ala Asn Leu Glu Lys															
							165					170			175
Val Leu Gln Arg Cys Glu Lys Ser Asn Leu Val Leu Asn Trp Glu Lys															
							180					185			190
Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser															
							195					200			205
Lys Arg Gly Ile Glu Val Val Lys Glu Lys Leu Asp Val Ile Asp Lys															
							210					215			220
Leu Pro Pro Pro Val Asn Val Lys Gly Ile His Ser Phe Leu Gly His															
							225					230			240
Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val															
							245					250			

<210> 154
<211> 761
<212> DNA
<213> Glycine max

<400> 154
gtgcgttaaag aagtttgaa gctgctagaa gcagacacctta tttatcccat ttcggatagt 60
acatgggtta gccttgttca agtttgtcccc gagaaaaggag gtatgacagt cattaaagaat 120

gataaagatg agttgatatac cacaaggact gtcaccgggt gagaatgtgc attgactatc 180
ggaagctgaa tcatgccacc cagaaggacc attattcaact cccttcatg gaccagatgc 240
ttgaaagact tgccggacaa tcctattatt gtttctgaa tggatactct ggctataatc 300
agattgttgt agatccaaa gatcaggaga aaactgctt cacctgcctt tttggtgtat 360
ttgcatacaa gcgtatgcat ttggcttgt gtaatgctcc aactacgtgt cagaggtgta 420
tgatgactat ttttctggt atcgtggaaa aatgcattga actttcatg gacgatttct 480
ctatTTTgg gccatctttt gaaggctact tatcaaacct tgaaagagta ttacagagat 540
gtgaagagtc taatctagtt ctcaattggg agaaatgcc a tttcatgggtt caagaaggaa 600
tagtgctggg gcataaaaatt tcagtaagag ggatagaggt ggacaaggca aagattgatg 660
taattgagaa actacctcct cccatgattt tcaaggaaat aagaagcctc ctaggacatg 720
tagggttcta caggcgattc atcaaagact tcacaaaggt t 761

<210> 155

<211> 254

<212> PRT

<213> Glycine max

<400> 155

Val Arg Lys Glu Val Leu Lys Leu Leu Glu Ala Asp Leu Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Thr Trp Val Ser Pro Val Gln Val Val Pro Glu Lys
20 25 30

Gly Gly Met Thr Val Ile Lys Asn Asp Lys Asp Glu Leu Ile Ser Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Asp Ala Thr Gln Lys Asp His Tyr Ser Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ser Tyr Tyr Cys Phe Leu Asn Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Val Val Asp Pro Lys Asp Gln Glu Lys Thr
100 105 110

Ala Phe Thr Cys Leu Phe Gly Val Phe Ala Tyr Lys Arg Met His Phe
115 120 125

Gly Leu Cys Asn Ala Pro Thr Thr Cys Gln Arg Cys Met Met Thr Ile
130 135 140

Phe Ser Gly Ile Val Glu Lys Cys Ile Glu Leu Phe Met Asp Asp Phe
145 150 155 160

Ser Ile Phe Gly Pro Ser Phe Glu Gly Tyr Leu Ser Asn Leu Glu Arg
165 170 175

Val Leu Gln Arg Cys Glu Glu Ser Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Val Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Met Ile Val Lys Gly Ile Arg Ser Leu Leu Gly His
225 230 235 240

Val Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 156

<211> 762

<212> DNA

<213> Glycine max

<400> 156

gtgcgttaagg aggttttaa gttgctggaa gcaggtctta tttatcccat ttccggatagt 60
gcatgggtta gccctgtgca gggtgtcccc aagaaaagaag gtaagacagt cattaaggat 120
aaaaaaagatg agttgatatac cacaaggact atcacccgggt ggagaatgtg cattgactat 180
cagaagctga atgatgccac ccggaaaggac cattatccac tcccttcat ggaccaaatg 240
cttggaaagac ttgcgggca atcttattat tgtttctgg atggatattc tggttataat 300
cagattgatg tagatcccaa ggtatcaagag aagactgctt tcacctaccc ttttggtgta 360
ttcgcctatc ggcgcattgcc ctgggtttg tgcaatgccc cagctacatt tcagaggtgt 420
atgatgacta tttttctga tatggtgaa aaatgaattt aagtttcat ggacgatgtc 480
tctatttttgg ggcattttt tgaagggtgc ttatcaaattc ttgaaagagt attaaagaga 540
cgtgaagagt ccaaactagt tctcaattgg gagaaatgcc atttcatttgt tcaagaagga 600
atagtgttgg ggcataaaat ttcaagtaaga gggatagagg tggacaaggc aaagattgtat 660
gtaatagaga aactacctcc tcccatgaat gtcaaggaa taagaagctt cctaggacat 720
gcagggttct acaagcgatt catcaaagac ttctcaaaag tt 762

<210> 157

<211> 254

<212> PRT

<213> Glycine max

<400> 157

Val Arg Lys Glu Val Phe Lys Leu Leu Glu Ala Gly Leu Ile Tyr Pro

1

5

10

15

Ile Ser Asp Ser Ala Trp Val Ser Pro Val Gln Val Val Pro Lys Lys
20 25 30

Glu Gly Lys Thr Val Ile Lys Asp Glu Lys Asp Glu Leu Ile Ser Thr
35 40 45

Arg Thr Ile Thr Gly Trp Arg Met Cys Ile Asp Tyr Gln Lys Leu Asn
50 55 60

Asp Ala Thr Arg Lys Asp His Tyr Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly Gln Ser Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Asp Val Asp Pro Lys Asp Gln Glu Lys Thr
100 105 110

Ala Phe Thr Tyr Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Met Thr Ile
130 135 140

Phe Ser Asp Met Val Glu Lys Glx Ile Glu Val Phe Met Asp Asp Val
145 150 155 160

Ser Ile Phe Gly Pro Ser Phe Glu Gly Cys Leu Ser Asn Leu Glu Arg
165 170 175

Val Leu Lys Arg Arg Glu Glu Ser Lys Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

Val Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Met Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Lys Arg Phe Ile Lys Asp Phe Ser Lys Val
245 250

<210> 158
<211> 761
<212> DNA
<213> Glycine max

<400> 158
gtgcggaagg aggttcttaa gctcctggaa gcagggctca tctatcttat ctcagatagt 60
gttgggtgag tccagtgcattt gttgggtccca agaagggtgg gaagactgtg gtgagaaatg 120
agaaaaaatga cctcattcta acccgaactg tcacaggatg gagaatgtgc atagattatc 180
ggaagttgaa tgatgccatc aagaaggatc acttccctt accattcata gatcagatgc 240
ttgagaggtt agcaagccag tctttcttattt atttcttggaa tgaatattctt agataacaatc 300
agattgctat acatccaaag gaccaagaga agattgcatt tacatgccca tttgggtgtct 360
ttgcctatag aaggatgcca tttgaactat gcaatgctcc agtaccctt tagaggcata 420
tgctagccat attcgctaac atggtggaga aatgcatacgatg tgaatattttt 480
cggtgtttgg tccatccctt gtttgggtt tgaccaattt agagctagtg ttgaagtact 540
gtgaggagac aaatttagta ttgaattggg agaaatgtca tttcatggtc caagaaggaa 600
ttatgttggg gcataaaaattt tttgctagag gtattgaggt ggacaaggcc aaaattgatg 660
ttattgaaaa gctgcctcca ccagtcaatg taaaaggcat caggagttt cttggacaca 720
ctgggttctt caggcgtttc atcaaggact tcacaaaatgt t 761

<210> 159
<211> 254
<212> PRT
<213> Glycine max

<400> 159
Val Arg Lys Glu Val Leu Lys Leu Leu Glu Ala Gly Leu Ile Tyr Leu
1 5 10 15

Ile Ser Asp Ser Ala Trp Val Ser Pro Val His Val Val Pro Lys Lys
20 25 30

Gly Gly Lys Thr Val Val Arg Asn Glu Lys Asn Asp Leu Ile Leu Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Lys Leu Asn
50 55 60

Asp Ala Ile Lys Lys Asp His Phe Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Ser Gln Ser Phe Tyr Tyr Phe Leu Asp Glu Tyr
85 90 95

Ser Arg Tyr Asn Gln Ile Ala Ile His Pro Lys Asp Gln Glu Lys Ile
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Arg Met Pro Phe
 115 120 125

 Glu Leu Cys Asn Ala Pro Ala Thr Phe Glx Arg His Met Leu Ala Ile
 130 135 140

 Phe Ala Asn Met Val Glu Lys Cys Ile Glu Val Phe Ile Asp Asp Phe
 145 150 155 160

 Ser Val Phe Gly Pro Ser Phe Val Cys Cys Leu Thr Asn Leu Glu Leu
 165 170 175

 Val Leu Lys Tyr Cys Glu Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
 180 185 190

 Cys His Phe Met Val Gln Glu Gly Ile Met Leu Gly His Lys Ile Phe
 195 200 205

 Ala Arg Gly Ile Glu Val Asp Lys Ala Lys Ile Asp Val Ile Glu Lys
 210 215 220

 Leu Pro Pro Pro Val Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
 225 230 235 240

 Thr Gly Phe Phe Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
 245 250

<210> 160
 <211> 762
 <212> DNA
 <213> Pisum sativum

<400> 160
 gtgcgcagg aagtactcaa gttgttagat tcggaatga tttacccat ttctgacagc 60
 tcgtggtaa gtccagtgc a cgtggatcca a aaaaaggag gaacctca gttttaat 120
 gaaaagaatg aactgatccc aactcgaca gtgacagggt ggcgagttatg catcgatcac 180
 agaagactga acacagcaac a aaaaaggat catttcctc tccctttat tgatcaaatg 240
 ttagaaagac ttgcaggta tgagtattat tgctttctgg atggatattc gggatacaat 300
 caaattgtt tagccccgga agatcagggaa aaaactgcatttacatgtcc ttatggattt 360
 ttgccttaca gacggatgcc atttggctt tgcaatgccc cagctacttt tcagagggtt 420
 atgacatcta tattctccga catgcttggaa aagtatatga aggtgtttat ggatgatttc 480
 tctgtgttg gttcttcttt tgataattgt ttagcttaact tgtctttgt tttgcaaaga 540
 tgcaggaaa ctaacctgt tctcaattgg gagaatgtc atttcatggt gcagggaa 600
 attgtgctag gacacaaaat ttcccacaaa ggaattgaag tggacaaagc caaagtggag 660
 gttatagcta acctccacc tccggtaat gaaaaaggga taaggagttt tttgggtcat 720
 gcaggaaaa atcgcaggat catcaaagac ttcacaaagg tt 762

<210> 161
<211> 254
<212> PRT
<213> Pisum sativum

<400> 161
Val Arg Lys Glu Val Leu Lys Leu Leu Asp Ser Gly Met Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Ser Trp Val Ser Pro Val His Val Val Pro Lys Lys
20 25 30

Gly Gly Thr Ser Val Ile Leu Asn Glu Lys Asn Glu Leu Ile Pro Thr
35 40 45

Arg Thr Val Thr Gly Trp Arg Val Cys Ile Asp His Arg Arg Leu Asn
50 55 60

Thr Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Ile Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ala Gly His Glu Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Val Val Ala Pro Glu Asp Gln Glu Lys Thr
100 105 110

Ala Phe Thr Cys Pro Tyr Gly Ile Phe Ala Tyr Arg Arg Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Met Thr Ser Ile
130 135 140

Phe Ser Asp Met Leu Glu Lys Tyr Met Lys Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Gly Ser Ser Phe Asp Asn Cys Leu Ala Asn Leu Ser Leu
165 170 175

Val Leu Gln Arg Cys Gln Glu Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Gln Glu Gly Ile Val Leu Gly His Lys Ile Ser
195 200 205

His Lys Gly Ile Glu Val Asp Lys Ala Lys Val Glu Val Ile Ala Asn
210 215 220

Leu Pro Pro Pro Val Asn Glu Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250

<210> 162
<211> 762
<212> DNA
<213> Pisum sativum

<400> 162
gtgcgttaagg aggtctttaa actattggat gcgggaatga tttacccgat ctcggatagt 60
ccgtgggtta gtcccggtca cgtgggtccg aagaagggtg gaatgaccgt aatccgtaat 120
gacaaagacg aattgatccc gactaaagtt gcaacggggt ggagaatatg tataagattat 180
agacagttga ataccgcac tcgaaaggac cattttccac tcccatttat ggatcaaatg 240
cttggaaagac tatcgggcca acaatactat tgtttcttgg acggctactc cggttacaac 300
caaattgcgg ttgaccgggt tgatcatgag aagacggctt tcacgtgtcc gtttggagtg 360
ttcgcataca gaaaaatgcc ctggggctg tgcaatgcac cggcgacttt ccaacgatgc 420
gtccttagcca ttttgccga tctaatacgag aaaacaatgg acgtcttcat ggatgacttc 480
tcggtatttg gtggacggt tagtctatgc ttggcaaatt tgaagacggt gttggaaagg 540
tgtgtgaaga ccaatttggc gctaaatgg gaaaagtgtc acttcatggt gaccgagggg 600
atcgtcttag gccacaaagt ctctaaaagg gggcttgaag tggatagagc taaggttgaa 660
gtaattgaaa aattaccccc tccgggtgaat gtgaaaggca tccgttagctt tttggggcac 720
gcggggttt accggcgctt cattaaagac ttctcaaaag tt 762

<210> 163
<211> 254
<212> PRT
<213> Pisum sativum

<400> 163
Val Arg Lys Glu Val Phe Lys Leu Leu Asp Ala Gly Met Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Pro Trp Val Ser Pro Val His Val Val Pro Lys Lys
20 25 30

Gly Gly Met Thr Val Ile Arg Asn Asp Lys Asp Glu Leu Ile Pro Thr
35 40 45

Lys Val Ala Thr Gly Trp Arg Ile Cys Ile Asp Tyr Arg Gln Leu Asn
50 55 60

Thr Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met

65

70

75

80

Leu Glu Arg Leu Ser Gly Gln Gln Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Ala Val Asp Pro Val Asp His Glu Lys Thr
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Lys Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Val Leu Ala Ile
130 135 140

Phe Ala Asp Leu Ile Glu Lys Thr Met Asp Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Gly Gly Thr Phe Ser Leu Cys Leu Ala Asn Leu Lys Thr
165 170 175

Val Leu Glu Arg Cys Val Lys Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Thr Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Lys Arg Gly Leu Glu Val Asp Arg Ala Lys Val Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Val Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Ser Lys Val
245 250

<210> 164

<211> 762

<212> DNA

<213> Pisum sativum

<400> 164

gtgcggaagg aggtctttaa attgttgat gcggggatga tttacccat ctcggatagt 60
ccatgggtta gtcctgtca cggtgtccg aagaaggggg ggattaccgt aatccggaat 120
gacaaggatg aattgatccc cactaaagtt gaaacgggtt ggagaatgtg tattgattat 180
aggcggttga ataccgcgac tcgaaaagac cattttccac tccccattat ggatcaaatg 240
ctcggaaagac tatcgggcca acaatattat tggttttgg acggctactc cggttacaac 300
caaattgcgg ttgacccggc cgatcatgag aagacggctt tcacatgtcc gttggagtg 360

ttcgcatacc gaaaaatgcc ctttgggctg tgcaatgcac cgccgacctt ccaacgatgt 420
gtccaagcca ttttgtcga tctgatagag aaaacaatgg aagtcttcat ggatgacttc 480
tcggtatgg gtgggtctt tagtctatgc ttggcgaact tgaaaacggg gttggagaga 540
tgtgtgaaga ccaatttgtt gcttaattgg gagaagtgtc acttcatggt gaccgagggg 600
atcgtagctag gccacaaagt ctctagaagg gggcttgaag tggatagagc taaggttcaa 660
gtgatagaaa aattacctcc tccggtaat gtgaaggca tccgaagctt tttggggcac 720
gccgggttct accggcgctt cattaaagat ttcacaaagg tt 762

<210> 165

<211> 254

<212> PRT

<213> Pisum sativum

<400> 165

Val Arg Lys Glu Val Phe Lys Leu Leu Asp Ala Gly Met Ile Tyr Pro
1 5 10 15

Ile Ser Asp Ser Pro Trp Val Ser Pro Val His Val Val Pro Lys Lys
20 25 30

Gly Gly Ile Thr Val Ile Arg Asn Asp Lys Asp Glu Leu Ile Pro Thr
35 40 45

Lys Val Glu Thr Gly Trp Arg Met Cys Ile Asp Tyr Arg Arg Leu Asn
50 55 60

Thr Ala Thr Arg Lys Asp His Phe Pro Leu Pro Phe Met Asp Gln Met
65 70 75 80

Leu Glu Arg Leu Ser Gly Gln Gln Tyr Tyr Cys Phe Leu Asp Gly Tyr
85 90 95

Ser Gly Tyr Asn Gln Ile Ala Val Asp Pro Ala Asp His Glu Lys Thr
100 105 110

Ala Phe Thr Cys Pro Phe Gly Val Phe Ala Tyr Arg Lys Met Pro Phe
115 120 125

Gly Leu Cys Asn Ala Pro Ala Thr Phe Gln Arg Cys Val Gln Ala Ile
130 135 140

Phe Val Asp Leu Ile Glu Lys Thr Met Glu Val Phe Met Asp Asp Phe
145 150 155 160

Ser Val Phe Gly Gly Ser Phe Ser Leu Cys Leu Ala Asn Leu Lys Thr
165 170 175

Val Leu Glu Arg Cys Val Lys Thr Asn Leu Val Leu Asn Trp Glu Lys
180 185 190

Cys His Phe Met Val Thr Glu Gly Ile Val Leu Gly His Lys Val Ser
195 200 205

Arg Arg Gly Leu Glu Val Asp Arg Ala Lys Val Glu Val Ile Glu Lys
210 215 220

Leu Pro Pro Pro Val Asn Val Lys Gly Ile Arg Ser Phe Leu Gly His
225 230 235 240

Ala Gly Phe Tyr Arg Arg Phe Ile Lys Asp Phe Thr Lys Val
245 250