tobiitech

Stereo Vision Based Distance Estimation in G6

Pravin Kumar Rana

Algorithm Team

Outline

- Importance of Distance Information
- Stereo Glint Based
 Distance Estimation
- Benefits, Challenges, and Beyond 15

Brief Overview of Eye Tracking

Brief Overview of Eye Tracking

Stereo Glints Based Eye Position Estimation in G6

G6 Eye Tracker

G6 Base Geometry

G6 Eye Tracker

G6 Base Geometry

High Resolution Image

Eye Classification and Detection

High Resolution Image

High Resolution ROI Image

Bright Pupil
Illuminator

High Resolution

Image

Camera

Eye

tobii tech

Low Resolution

Camera

Dark Pupil

Illuminator

High Resolution ROI Image Patch

Glint Detector on Image Patch

High Resolution ROI Image Patch

Glint Detector on Image Patch

High Resolution ROI Image Patch

Bright Pupil Illuminator

High Resolution

Camera

Image

Eye

tobii tech

Low Resolution

Camera

Dark Pupil

Illuminator

Low Resolution Image

 No eye classification, detection, and tracking in low resolution image

 Let us assume, a good initial guess of eye distance from tracker

Bright Pupil

Illuminator

 Let us assume, a good initial guess of eye distance from tracker

Let us assume, a good initial guess of eye distance from tracker

Position of the low resolution camera and both of the illuminators are known

Bright Pupil Illuminator

Camera

 Let us assume, a good initial guess of eye distance from tracker

 Position of the low resolution camera and both of the illuminators are known

 Using pin-hole camera model, project the glint in low resolution camera

Bright Pupil Illuminator

High Resolution Camera

Eye

Dark Pupil Illuminator

Low Resolution

Camera

 Let us assume, a good initial guess of eye distance from tracker

 Position of the low resolution camera and both of the illuminators are known

 Using pin-hole camera model, project the glint in low resolution camera

Bright Pupil Illuminator

High Resolution Camera

Eye

Dark Pupil Illuminator
Low Resolution

Low

Resolution

Image

w Resolution Camera

 Let us assume, a good initial guess of eye distance from tracker

 Position of the low resolution camera and both of the illuminators are known

 Using pin-hole camera model, project the glint in low resolution camera

Bright Pupil Illuminator

Low Resolution Image **Expected** Glint **Position** Dark Pupil Illuminator Low Resolution Camera **High Resolution** tobii tech Camera

Eye

High Resolution ROI Image

Expected glint position in low resolution image

 No eye classification and detection is required in low resolution image

High Resolution ROI Image

 Crop image patch around the expected glint position in low resolution image

 No eye classification and detection is required in low resolution image

Low Resolution ROI Image Patch

Low Resolution ROI Image Patch

Low Resolution ROI Image Patch

Glint in Low

High Resolution Camera

Stereo Glint Pair

High Resolution ROI Image Patch

Low Resolution ROI Image Patch

 Assume double glint as a big single glint

Bright Pupil

Illuminator

Point of intersection gives distance of the tracker from the eye

For next frame, initialize the stereo algorithm with the estimated stereo distance

Benefits, Challenges, and Beyond 15

Benefits

- Stable distance estimation when compare to temporal glints based position information
- Only one glint is required to estimate distance information
 - Improve gaze at large gaze angles
 - Distance information is even when temporal glint based distance estimation fails
 - Help to improve temporal glints based distance estimates
- Improves gaze accuracy and precision with estimated cornea radius, instead of a fixed default value

Challenges

- Unsynchronized stereo system
 - Acquisition time will be different for the low and high resolution images
 - Double glints in low resolution images
- Asymmetric stereo system
 - Detected glint position in low resolution will have limited accuracy and precision
- Highly sensitive to camera calibration parameters

Develop Beyond 15

Online self-calibration for the stereo camera rig

Thank You