Advanced Probabilistic Machine Learning SSY316

Graphical Models (3)

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

November 24, 2023

Inference in graphical models

Inference in graphical models: Computing posterior probabilities of unobserved variables given observed ones.

- Discriminative probabilistic models: Obtain $p(t|\mathcal{D}, x)$ by evaluating $p(w|\mathcal{D})$
- Generative probabilistic models: Obtain $p(t|x, \theta)$ from learned model $p(x, t|\theta)$
- Bayesian supervised learning: Obtain $p(t|\mathcal{D}, x, \beta)$ by evaluating $p(w|\mathcal{D}, \beta)$

Can exploit graph structure to devise efficient algorithms for inference.

Marginal $p(x_4)$?

Direct approach:

(assume x discrete taking on K values)

$$p(x_4) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3, x_4)$$

Complexity: $\mathcal{O}(K^4)$ (General case $\mathcal{O}(K^N)$)

Can exploit factorization!

$$p(x_4) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1) p(x_2|x_1) p(x_3|x_2) p(x_4|x_3)$$

$$= \sum_{x_2} \sum_{x_3} \left[\sum_{x_1} p(x_1) p(x_2|x_1) \right] p(x_3|x_2) p(x_4|x_3)$$

$$= \sum_{x_3} \left[\sum_{x_2} \frac{\mu_2(x_2) p(x_3|x_2)}{\mu_3(x_3)} \right] p(x_4|x_3)$$

$$= \sum_{x_3} \mu_3(x_3) p(x_4|x_3)$$

$$= \sum_{x_3} \mu_3(x_3) p(x_4|x_3)$$

Can exploit factorization!

$$p(x_4) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1) p(x_2|x_1) p(x_3|x_2) p(x_4|x_3)$$

$$= \sum_{x_3} \left[\sum_{x_2} \left[\sum_{x_1} p(x_1) p(x_2|x_1) \right] p(x_3|x_2) \right] p(x_4|x_3)$$

Complexity: $\mathcal{O}(3K^2)$ (General case $\mathcal{O}(NK^2)$)

A message passing interpretation

$$p(x_4) = \sum_{x_2} \sum_{x_3} \left[\sum_{x_1} p(x_1) p(x_2 | x_1) \right] p(x_3 | x_2) p(x_4 | x_3)$$

$$= \sum_{x_3} \left[\sum_{x_2} \mu_2(x_2) p(x_3 | x_2) \right] p(x_4 | x_3) = \sum_{x_3} \mu_3(x_3) p(x_4 | x_3)$$

$$= \sum_{x_3} \left[\sum_{x_2} \mu_2(x_2) p(x_3 | x_2) \right] p(x_4 | x_3) = \sum_{x_3} \mu_3(x_3) p(x_4 | x_3)$$

 $\mu_2(x_2)$: Message from x_2 to x_3

 $\mu_3(x_3)$: Message from x_3 to x_4 (obtained multiplying $\mu_2(x_2)$ with local function)

 $\mu_4(x_4)$: Message computed by x_4 (obtained multiplying $\mu_3(x_3)$ with local function)

Marginalization can be performed by message passing along the chain!

Message passing and factor graphs

Idea of message passing on a chain can be generalized to more general graphical models.

Directed and undirected graphs: Allow to express global function as product of factors over subsets of variables

Factor graphs: Make decomposition explicit by introducing additional factor nodes.

• We will discuss message passing using the formalism of factor graphs

Factor graphs

- A powerful graphical model to represent explicitly the factorization of a joint distribution as a product of local factors
- Lead naturally to a message passing algorithm (sum-product algorithm, belief propagation) for efficient inference
- Exact inference if the factor graph is a tree (or polytree)

Introduced by Frey, Kschischang, Loeliger and Wiberg (1997)

Factor graphs

- A collection of variables $x = (x_1, \dots, x_n)$, $x_i \in \mathcal{A}_i$
- A real-valued function $g(x_1, \ldots, x_n)$,

$$g: \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathbb{R}$$

• Assume $g(x_1, \ldots, x_n)$ can be factored as

$$g(x_1,\ldots,x_n)=\prod_{j\in\mathcal{J}}f_j(\mathcal{X}_j),$$

 $g(\cdot)$: Global function

 $f_j(\cdot)$: Local function

 \mathcal{J} : Discrete index set

 \mathcal{X}_{j} : Subset of variables

Factor graphs

Factor graph: A bipartite graph that expresses the structure of the factorization

$$g(x_1,\ldots,x_n)=\prod_{j\in\mathcal{J}}f_j(\mathcal{X}_j)$$

The factor graph has one variable node for each variable x_i , one factor node for each local function f_j , and an undirected edge connecting a variable node x_i with a factor node f_i if and only if x_i is an argument of f_i .

Different types of elements:

- Variable nodes (circles): represent RVs
- Factor nodes (filled squares): represent factors of the joint distribution
- Undirected edges: Assign variables to factors

Factor graphs: An example

$$g(x_1, x_2, x_3, x_4, x_5) = f_A(x_1) f_B(x_2) f_C(x_1, x_2, x_3) f_D(x_3, x_4) f_E(x_3, x_5)$$

From directed graphs to factor graphs

- 1. Add one factor for each node
- 2. Connect variable nodes to factor nodes according to edges

From undirected graphs to factor graphs

- 1. Add one factor for each maximal clique
- 2. Connect variable nodes to clique factors

Factor graphs can represent more general factorizations.

Marginal functions

Factor graphs: Tool for efficient computation of marginal functions when $g(x_1, \ldots, x_n)$ represents a probability distribution and corresponding factor graph is cycle-free (exact marginalization).

Marginalization computed by message passing over the factor graph

Marginal with respect to x_i ,

$$g_i(x_i) = \sum_{x_1} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_n} g(x_1, \dots, x_n)$$
$$= \sum_{x_i} g(x_1, \dots, x_n)$$

Idea: Perform marginalization via message passing over the factor graph by

- Exploiting factorization and the distributive law
- Reusing partial sums

Distributive law

Let $\mathcal F$ be a set of elements on which two binary operations, "+" and "·," are defined. Operation "·" is said to be distributive over "+" if for all $a,b,c\in\mathcal F$,

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

and

$$(b+c)\cdot a = b\cdot a + c\cdot a$$

Marginal functions: An example

$$g(x_1, x_2, x_3, x_4, x_5) = f_A(x_1) f_B(x_2) f_C(x_1, x_2, x_3) f_D(x_3, x_4) f_E(x_3, x_5)$$

Marginal with respect to x_1 :

$$\begin{split} g_1(x_1) &= \sum_{\sim x_1} g(x_1, \dots, x_7) \\ &= \sum_{\sim x_1} f_A(x_1) f_B(x_2) f_C(x_1, x_2, x_3) f_D(x_3, x_4) f_E(x_3, x_5) \\ &= f_A(x_1) \left(\sum_{x_2} f_B(x_2) \left(\sum_{x_3} f_C(x_1, x_2, x_3) \left(\sum_{x_4} f_D(x_3, x_4) \right) \left(\sum_{x_5} f_E(x_3, x_5) \right) \right) \right) \\ &= f_A(x_1) \left(\sum_{\sim x_1} f_C(x_1, x_2, x_3) f_B(x_2) \left(\sum_{\sim x_3} f_D(x_3, x_4) \right) \left(\sum_{\sim x_3} f_E(x_3, x_5) \right) \right) \end{split}$$

Marginal functions: An example

$$g_1(x_1) = f_A(x_1) \left(\sum_{x_1} f_C(x_1, x_2, x_3) f_B(x_2) \left(\sum_{x_3} f_D(x_3, x_4) \right) \left(\sum_{x_3} f_E(x_3, x_5) \right) \right)$$

- Factor graph: unambiguously characterizes marginalization
- Marginalization with respect to x_i: x_i root of tree
- Nodes ≡ processors
- Edges ≡ channels

Message passing

A message passing algorithm to compute marginalization.

- Computation of marginal begins at leaves of tree
- Operations:
 - Variable node: product of incoming messages from children; forwards result to parent
 - Factor node: product of incoming messages and local function $f_i(\mathcal{X}_i)$, applies to it not-sum operator; forwards result to parent
- Marginalization terminates at root node: $g_i(x_i)$ obtained as product of all incoming messages to root node x_i

Message passing

Operations:

- Variable node: product of incoming messages from children; forwards result to parent
- Factor node: product of incoming messages and local function $f_j(\mathcal{X}_j)$, applies to it not-sum operator; forwards result to parent

Notation:

- $\mu_{x \to f}$: message from VN x to FN f
- $\mu_{f o x}$: message from FN f to VN x

Operations:

- Leaf VN: $\mu_{x\to f}=1$
- Single-child VN: forwards incoming message
- Leaf FN: $\mu_{f_B \to x_2} = \sum_{\sim x_2} f_B(x_2) = f_B(x_2)$
- Single-child FN: $\mu_{f_E \to x_3} = \sum_{\sim x_3} f_E(x_3, x_5)$

$$g_1(x_1) = f_A(x_1) f_B(x_2) f_C(x_1, x_2, x_3) f_D(x_3, x_4) f_E(x_3, x_5)$$

$$= f_A(x_1) \left(\sum_{\sim x_1} f_C(x_1, x_2, x_3) f_B(x_2) \left(\sum_{\sim x_3} f_D(x_3, x_4) \right) \left(\sum_{\sim x_3} f_E(x_3, x_5) \right) \right)$$

$$f_A = f_C(x_1, x_2, x_3) f_B(x_2) \left(\sum_{\sim x_3} f_D(x_3, x_4) \right) \left(\sum_{\sim x_3} f_E(x_3, x_5) \right)$$

$$f_B = f_D(x_3, x_4) f_B(x_2) f_D(x_3, x_4) f_B(x_3, x_4) f_D(x_3, x_4) f_D(x_4, x_4) f_$$

$$\mu_{f_A \to x_1} = f_A(x_1), \quad \mu_{f_B \to x_2} = f_B(x_2), \quad \mu_{x_4 \to f_D} = 1, \quad \mu_{x_5 \to f_E} = 1$$

Step 2:

Step 2.
$$\mu_{x_2 \to f_C} = \mu_{f_B \to x_2} = f_B(x_2), \quad \mu_{f_D \to x_3} = \sum f_D(x_3, x_4), \quad \mu_{f_E \to x_3} = \sum f_E(x_3, x_5)$$

Step 3:

$$\mu_{x_3 \to f_C} = \mu_{f_D \to x_3} \cdot \mu_{f_E \to x_3} = \left(\sum_{x_2} f_D(x_3, x_4) \right) \left(\sum_{x_3} f_E(x_3, x_5) \right)$$

Step 4:

$$\mu_{f_C \to x_1} = \sum f_C(x_1, x_2, x_3) \mu_{x_2 \to f_C} \mu_{x_3 \to f_C}$$

Final step:

$$g_1(x_1) = f_A(x_1) \left(\sum_{C \in \mathcal{C}} f_C(x_1, x_2, x_3) f_B(x_2) \left(\sum_{C \in \mathcal{C}} f_D(x_3, x_4) \right) \left(\sum_{C \in \mathcal{C}} f_E(x_3, x_5) \right) \right)$$

SSY316, Graphical models (3) | Alexandre Graell i Amat

The sum-product algorithm: Computing all marginal functions

How to compute several (or all) marginals $g_i(x_i)$?

- Message passing separately for each marginal $g_i(x_i) \to \text{wasteful}!$
- Message passing to simultaneously compute the marginals

The sum-product algorithm: Computing all marginal functions

- Algorithm initiates at the leaves of the tree: Leaf VN x sends $\mu_{x\to f}=1$; leaf FN f sends $\mu_{f\to x}=f(x)$
- A message from a node to one of its neighbors computed once all messages from all other neighbors are received
- Variable node update:

$$\mu_{x \to f} = \prod_{f' \in \mathcal{N}(x) \setminus \{f\}} \mu_{f' \to x}$$

Factor node update:

$$\mu_{f \to x} = \sum_{\sim x} \left(f(\mathcal{X}) \prod_{x' \in \mathcal{N}(f) \setminus \{x\}} \mu_{x' \to f} \right)$$

- Algorithm terminates once two messages have been passed over every edge
- $g_i(x_i)$ obtained as the product of all incoming messages to VN x_i

The sum-product algorithm with observed variables

In most applications: Some variables are observed, and want to compute posterior conditioned on observed variables.

• For each observed variable, add a Dirac delta factor:

Factor graph describes

$$p(\boldsymbol{x}) \prod_{x \in \mathcal{X}} \delta(x - x_{\text{obs}}) = p(\boldsymbol{x} \backslash \mathcal{X}, \mathcal{X} = \mathcal{X}_{\text{obs}}) \propto p(\boldsymbol{x} \backslash \mathcal{X} | \mathcal{X} = \mathcal{X}_{\text{obs}})$$

 \mathcal{X} : set of all observed variables

• Posterior marginals $p(x_i|\mathcal{X} = \mathcal{X}_{\sf obs})$ can be computed by sum-product algorithm $(x_i \in \mathcal{A})$

A: set of non-observed variables

Bayes' theorem through a message passing lens

Latent variable: x

Observed variable: $y = y_{\text{obs}}$

Goal: Infer p(x|y)

Bayes' theorem:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} \propto p(y|x)p(x)$$

• p(x,y) = p(y|x)p(x)

$$p(x) = \underbrace{\begin{array}{c} \mu_1 \\ x \end{array}} \underbrace{\begin{array}{c} \mu_3 \\ x \end{array}} \underbrace{\begin{array}{c} p(y|x) \\ \mu_2 \end{array}} \underbrace{\begin{array}{c} \mu_2 \\ y \end{array}} \underbrace{\begin{array}{c} \mu_2 \\ x \end{array}} \underbrace{\begin{array}{c} \delta(y - y_{\text{obs}}) \\ y \end{array}}$$

$$\mu_1(x) = p(x)$$
 $\mu_2(y) = \delta(y - y_{\text{obs}})$ $\mu_3(x) = \int p(y|x)\mu_2(y) dy = p(y_{\text{obs}}|x)$

$$p(x|y_{\text{obs}}) \propto \mu_1(x)\mu_3(x) = p(x)p(y_{\text{obs}}|x)$$
 Bayes theorem!

The sum-product algorithm in factor graphs with cycles

Sum-product algorithm: provides exact marginals for cycle-free factor graphs.

What if factor graph has cycles?

- No natural termination of the algorithm → iterative algorithm
- Sum-product algorithm strictly suboptimal, but gives excellent performance in many cases!

The max-product (max-sum) algorithm

Finding a configuration of the variables with largest probability can be performed via the max-sum algorithm.

$$\boldsymbol{x}_{\mathsf{max}} = \arg\max_{\boldsymbol{x}} p(\boldsymbol{x})$$

Reference

Z. Zhang, F. Wu, W. Sun Lee, "Factor Graph Neural Network," NeurIPS, 2020.

Reading

"Pattern recognition and machine learning," Chapter 8 (8.4)