

Aprendizagem automática

Sessão 9 - T

Modelos baseados em instâncias e probabilísticos

2023/2024

Aprendizagem baseada em instâncias

- Os modelos baseados em instâncias são uma classe de algoritmos de aprendizagem automática que efectuam previsões com base em semelhanças entre instâncias.
- Ideia: exemplos semelhantes têm rótulos semelhantes.
 - O que é que se entende por semelhante?
 - Semelhante significa "próximo" / valores de características semelhantes.

Algoritmo:

- Dado um novo exemplo X para o qual queremos prever o rótulo Y;
- Encontrar os exemplos de formação mais semelhantes (mais próximos);
- Prever a etiqueta Y de X com base nas etiquetas dos exemplos mais semelhantes.

Aprendizagem baseada em instâncias • Perguntas:

- Como determinar a semelhança?
- Que medidas de semelhança utilizar?
- Como é que o modelo aprende?
- Quantos exemplos semelhantes há a considerar?
- Como resolver as incoerências entre os exemplos semelhantes?

Aprendizagem baseada em instâncias • Perguntas:

Como determinar a semelhança?

 A semelhança é determinada utilizando uma medida de semelhança, que quantifica a proximidade entre instâncias no espaço de características.

• Que medidas de semelhança utilizar?

■ As medidas comuns incluem as distâncias euclidianas e de Manhattan, a semelhança de cosseno e o coeficiente de correlação de Pearson, dependendo do tipo e das características dos dados.

Como é que o modelo aprende?

 O modelo não "aprende" (lazy-learner), armazena todo o conjunto de dados de treino e faz previsões com base nas semelhanças entre as novas instâncias e os exemplos armazenados.

Aprendizagem baseada em instâncias Perguntas:

- Quantos exemplos semelhantes há a considerar?
 - É um parâmetro que precisa de ser afinado com base nas características específicas do conjunto de dados e do problema em causa.
- Como resolver as incoerências entre os exemplos semelhantes?
 - Para problemas de classificação, o rótulo previsto é determinado por votação maioritária.
 - Para problemas de regressão, o rótulo previsto é determinado pela média (ou média ponderada) dos valores-alvo dos exemplos semelhantes.

Aprendizagem baseada em instâncias

- Vantagens:
 - Flexibilidade: Os modelos baseados em instâncias podem lidar com relações complexas e não-linearidades nos dados.
 - **Sem formação de modelos:** Estes modelos não requerem uma formação explícita tornando-as fáceis de implementar e atualizar.
 - Eficiência computacional: Embora o tempo de previsão possa ser lento com grandes conjuntos de dados, a fase de formação é normalmente rápida, uma vez que não há formação explícita de modelos envolvida.
 - Interpretável: As previsões podem muitas vezes ser explicadas através da análise das instâncias mais próximas nos dados de treino.

Aprendizagem baseada em instâncias Limitações:

instâncias de treino.

- Complexidade computacional: As previsões podem ser lentas, especialmente com grandes conjuntos de dados, uma vez que envolvem o cálculo de distâncias entre a nova instância e todas as
- Sensibilidade ao ruído: Os modelos baseados em instâncias podem ser sensíveis a ruídos ou características irrelevantes no conjunto de dados.
- Requisitos de memória: O armazenamento de todo o conjunto de dados de treino pode ser impraticável para conjuntos de dados muito grandes.

Aprendizagem baseada em instâncias

- Melhores práticas:
 - Dimensionamento de elementos: O dimensionamento das características é importante para garantir que todas as contribuem igualmente para o cálculo da distância.
 - Validação cruzada: Avaliar o desempenho do modelo utilizando técnicas como a validação cruzada k- fold para escolher hiperparâmetros óptimos (por exemplo, número de exemplos semelhantes a utilizar) e avaliar o desempenho da generalização.
 - Tratamento de dados desequilibrados: Resolver os desequilíbrios de classe ajustando o ponderação das instâncias.

K-Nearest Neighbors (KNN)

- O KNN é um algoritmo de aprendizagem simples baseado em instâncias, utilizado para tarefas de classificação e regressão.
- Na fase de treino, armazena todo o conjunto de dados de treino;
- Durante a previsão, calcula a distância entre os pontos de dados de entrada e todos os exemplos de treino utilizando uma métrica de distância (por exemplo, a distância euclidiana).
- O algoritmo identifica os K vizinhos mais próximos dos pontos de dados de entrada e utiliza as suas etiquetas para efetuar previsões. Utiliza a votação por maioria para a classificação e o cálculo da média para a regressão.

K-Nearest Neighbors (KNN)

Como classificarias o novo exemplo?

○ Com **k=3**?

○ Com **k=7**?

KNN - Limites de decisão

 O algoritmo do vizinho mais próximo não calcula diretamente os limites de decisão; no entanto, estes podem ser inferidos a partir dos dados de treino.

• Diagrama de Voronoi:

- Mostrar como o espaço de entrada é divididos em classes
- Cada linhaé equidistantea pontos de diferentes classes

KNN - Limites de decisão

• Impacto de k

KNN - Como escolher k?

- Um k maior pode melhorar potencialmente o desempenho.
- No entanto, a definição de k excessivamente grande pode implicar a consideração de amostras que não são verdadeiros vizinhos, levando a uma diminuição da exatidão.
- Os métodos de estimativa de erros (como o holdout e a validação cruzada) podem ajudar a encontrar o **k ótimo**.
- É comum utilizar $k=\sqrt{n}$, onde n é o número de exemplos de treino.

KNN - Limites de decisão

Modelos probabilísticos

• Os modelos probabilísticos são quadros matemáticos utilizados para representar a incerteza.

 Estes modelos têm por objetivo captar as distribuições de probabilidade subjacentes aos dados.

• O Naive Bayes é um classificador probabilístico baseado no teorema de Bayes. Assume que as características são condicionalmente independentes, dada a etiqueta da classe.

Teorema de Bayes

Naive-Bayes

Baseado em probabilidades condicionais (Teorema de Bayes);

 Calcula as probabilidades associadas à pertença de um exemplo a cada classe possível;

- Pressupostos (que raramente se verificam na realidade):
 - Todas as características têm a mesma importância;
 - Os valores das várias características ocorrem de forma independente.

Naive-

Bayes

- Tipos de Naive Bayes:
 - Multinomial Naive Bayes: Adequado para classificação com características discretas.
 - Gaussian Naive Bayes: assume que as características seguem uma distribuição normal.
 - Bernoulli Naive Bayes: funciona com características binárias.

Vantagens:

- Simplicidade: Fácil de compreender e implementar.
- Eficiência: Computacionalmente eficiente, especialmente com dados de elevada dimensão.
- Robustez: Tem um bom desempenho mesmo com pequenos conjuntos de dados e na presença de dados irrelevantes características.

Limitações:

- Pressuposto de independência: O pressuposto "ingénuo" da independência das características pode não se manter em conjuntos de dados do mundo real, conduzindo potencialmente a classificações incorrectas.
- Sensível à qualidade dos dados de entrada: O Naive Bayes pode ser sensível a

Naive-

Baye características irrelevantes ou a características com elevada correlação, o que pode egradar o desempenho da classificação.

• Passo 1: Obter os dados

Outlook	Humidity	Wind	Run
Sunny	High	Weak	No
Overcast	High	Strong	No
Rainy	High	Weak	Yes
Rainy	Normal	Weak	No
Sunny	Normal	Weak	Yes
Sunny	High	Weak	Yes
Sunny	High	Weak	Yes
Rainy	Normal	Strong	No
Overcast	High	Weak	Yes
Sunny	High	Weak	Yes
Rainy	High	Weak	No
Overcast	Normal	Strong	No
Overcast	High	Weak	Yes
Sunny	High	Weak	Yes

• Passo 2: Converter os dados em tabelas de frequência

Frequency Table		Ru	ın
Freque	ncy rable	Yes	No
Outlook	Sunny	5	1
	Overcast	2	2
	Rainy	1	3

Fraguena	v Toblo	Run	
Frequency Table		Yes	No
Humidity	High	7	3
	Normal	1	3

Frequency Table		Run	
Freque	ency rable	Yes	No
Wind	Strong	0	3
	Weak	9	2

• Passo 3: Calcular a probabilidade prévia e a verosimilhança

Likelihood Table		Ru	n	
Likelillo	ou rable	Yes	No	
Outlook	Sunny	5/8	1/6	6/14
	Overcast	2/8	2/6	4/14
	Rainy	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
Likelinoo	u rabie	Yes	No	
Humidity	High	7/8	3/6	10/14
	Normal	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
		Yes	No	
Wind	Strong	0/9	3/5	3/14
	Weak	9/9	2/5	11/14
		9/14	5/14	

• Passo 4: Aplicar o Teorema de Bayes

 Digamos que quer concentrar-se na probabilidade de ir correr, uma vez que está sol lá fora.

• P(Sim|Sol) = P(Sol|Sim) * P(Sim) / P(Sol) = 0,625 * 0,571 / 0,428 = 0,834

Cuidado com as probabilidades
de 0. Geralmente, é adicionada
uma constante a todas as

contagens					

Likelihood Table		Ru	n	
Likelino	od rabie	Yes	No	
Outlook	Sunny	5/8	1/6	6/14
	Overcast	2/8	2/6	4/14
	Rainy	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
Likelinoo	d Table	Yes	No	
Humidity	High	7/8	3/6	10/14
	Normal	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Ru	ın	
		Yes	No	
Wind	Strong	0/9	3/5	3/14
vvina	Weak	9/9	2/5	11/14
		9/14	5/14	

- Perspectivas: Chuvoso
- Humidade: Normal
- Vento: fraco
- Executar: ?

Podemos eliminar o denominador da fórmula, assumindo a independência das características

- P(Sim|Chuvoso, Normal, Fraco) = P(Chuvoso|Sim)*P(Normal|Sim)*P(Fraco/Sim)*P(Sim) * 9/9* 8/14= 0.0089 = 1/8 * 1/8
- P(Não | Chuvoso, Normal, Fraco) = P(Chuvoso | Não)*P(Normal | Não)*P(Fraco/Não)*P(Não)

P(Sim) = 0.0089 / (0.0089 + 0.042) = 0.175

$$P(Não) = 0.042/(0.0089 + 0.042) = 0.825$$

Likelihood Table		Run		
		Yes	No	
Outlook	Sunny	5/8	1/6	6/14
	Overcast	2/8	2/6	4/14
	Rainy	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
		Yes	No	
Humidity	High	7/8	3/6	10/14
	Normal	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
		Yes	No	
Wind	Strong	0/9	3/5	3/14
	Weak	9/9	2/5	11/14
		9/14	5/14	

Bayes Theorem
$$\longrightarrow P(A \mid x_1, \ldots, x_n) = \frac{P(x_1, \ldots, x_n \mid A) \, P(A)}{P(x_1, \ldots, x_n)}$$

Perspectivas: Sol

Humidade: elevada

• Vento: fraco

Executar: ?

Naïve Bayes
$$\longrightarrow P(A \mid x_1, \ldots, x_n) = P(x_1 \mid A) \cdot P(x_2 \mid A) \cdot P(x_i \mid A) \ P(A)$$

Likelihood Table		Run		
		Yes	No	
Outlook	Sunny	5/8	1/6	6/14
	Overcast	2/8	2/6	4/14
	Rainy	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
		Yes	No	
Humidity	High	7/8	3/6	10/14
	Normal	1/8	3/6	4/14
		8/14	6/14	

Likelihood Table		Run		
		Yes	No	
Wind	Strong	0/9	3/5	3/14
	Weak	9/9	2/5	11/14
		9/14	5/14	

Perspectivas: Sol

Humidade: elevada

Vento: fraco

Executar: ?

0,0143 / (0,3125 +0.0143) =0,044

 $P(N\tilde{a}o) =$

Naïve Bayes
$$\longrightarrow P(A \mid x_1, \ldots, x_n) = P(x_1 \mid A) \cdot P(x_2 \mid A) \cdot P(x_i \mid A) P(A)$$

P(Sim|Sol, Alta, Fraca) = P(Sol|Sim)*P(Alta|Sim)*P(Fraca/Sim)*P(Sim) = 5/8

0.3125

* 7/8

* 9/9* 8/14=

P(Não|Sol, Alta, Fraca) = P(Sol|Não)*P(Alta|Não)*P(Fraca/Não)*P(Não)

= 1/6

0.0143

* 3/6

* 2/5*

6/14=

P(Sim) = 0.3125 / (0.3125 + 0.0143) = 0.956

Mutimo mi ano Narive Bayes ndependência das características

Recursos

- Webb, G. I. (2011). Naïve Bayes. Em Encyclopedia of Machine Learning (pp. 713-714). Springer US. https://doi.org/10.1007/978-0-387-30164-8 576
- Kramer, O. (2013). K-Nearest Neighbors. Em Dimensionality Reduction with Unsupervised Nearest Neighbors (Redução de dimensionalidade com vizinhos mais próximos não supervisionados) (pp. 13-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38652-7_2
- https://www.youtube.com/watch?v=HVXime0nQel
- https://www.youtube.com/watch?v=O2L2Uv9pdDA