Análise

1. Para cada uma das figuras escreva, usando coordenadas polares, $\iint_D f \, dA$ como um integral iterado.

2. Seja D o disco unitário: $x^2 + y^2 \le 1$. Calcule

$$\iint_D e^{x^2 + y^2} \, dx \, dy$$

recorrendo a uma mudança para coordenadas polares.

3. Esboce a região de integração de cada um dos seguintes integrais iterados.

(a)
$$\int_0^4 \int_{-\pi/2}^{\pi/2} f(r,\theta) r \, d\theta \, dr;$$
 (b) $\int_{\pi/2}^{\pi} \int_0^1 f(r,\theta) r \, dr \, d\theta;$ (c) $\int_0^{2\pi} \int_1^2 f(r,\theta) r \, dr \, d\theta$

4. Usando coordenadas polares, calcule o integral da função $f:\mathbb{R}^2ackslash\{(0,0)\}\longrightarrow\mathbb{R}$ dada por

$$f(x,y) = \frac{1}{(x^2 + y^2)^{3/2}}$$

sobre a região indicada na figura.

5. Converta os seguintes integrais para coordenadas polares e determine o seu valor.

(a)
$$\int_{-1}^{0} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} x \, dy \, dx;$$
 (b) $\int_{0}^{\sqrt{6}} \int_{-x}^{x} dy \, dx;$

(c)
$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} dx \, dy$$
.

6. Cada uma das seguintes figuras representa um domínio de integração dupla. Para cada uma delas, indique o tipo de coordenadas (cartesianas ou polares) mais indicado a usar na integração. Escreva o respetivo integral para uma função arbitrária $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$.

7. Recorrendo a coordenadas cilíndricas, descreva a região indicada na figura.

8. Usando coordenadas cilíndricas, calcule $\iiint_U f \, dV$ onde $f:\mathbb{R}^3 \longrightarrow \mathbb{R}$ é definida por

$$f(x, y, z) = x^2 + y^2 + z^2$$

e a descrição de U em coordenadas cilíndricas, U^* , é $0 \le r \le 4,\,\pi/4 \le \theta \le 3\pi/4$ e $-1 \le z \le 1.$

9. Esboce a região de integração do seguinte integral triplo

$$\int_0^{\pi/2} \int_{\pi/2}^{\pi} \int_0^1 f(\rho, \phi, \theta) \rho^2 \operatorname{sen} \phi \ d\rho \, d\phi \, d\theta$$

10. Usando coordenadas esféricas, calcule $\iiint_U f \, dV$ sendo $f: \mathbb{R}^3 \setminus \{(0,0,0)\} \longrightarrow \mathbb{R}$ definida por

$$f(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^{1/2}}$$

e U a região inferior da esfera de centro na origem e raio 5.

- 11. Calcule o volume de um cone de gelado compreendido entre a superfície definida por $z=\sqrt{8-x^2-y^2}$ e o cone definido por $z=\sqrt{x^2+y^2}$.
- 12. Para cada figura, indique qual o tipo de coordenada mais indicada para descrever a região U. Escreva um integral triplo iterado sobre U para uma função arbitrária f.

13. Recorrendo a uma mudança de variáveis adequada, calcule cada um dos seguintes integrais

(a)
$$\iint_D (x^2 + y^2) dx dy \text{ onde } D \text{ \'e o disco } x^2 + y^2 \le 4;$$

(b)
$$\iiint_B ze^{x^2+y^2} dx dy dz$$
 onde $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 4, 2 \le z \le 3\};$

(c)
$$\iiint_E \frac{dx\,dy\,dz}{\sqrt{2+(x^2+y^2+z^2)^{3/2}}}$$
 onde E é a esfera unitária.