Universal Conjuting Devices
Turing Machine; Any Computable computation can be
inplemented by some machine
feat/write "one" symbol on a time
Select one action from fixed set of
rules
Universa Turing Machine: One that can "sixulate
any other Turing Machines by inputting
on docviption within there' repe
This is just an <u>idea</u> , not physical machines
Ex. [A computer is a UTM (minus infinite nemory)]
AA Theory: A computer can compute anything given enough
memory and time

Issues Raised: Computation is limited to constraints

Time / Cost / Power

'Speed' of Computers given enough time:

L. Faster "clock"

2. More paraile structures

3, More complicated hardware

4. Faster / closer / Larger nenory unit

Arth Time + Cost + Power are 3 major
constraints cafferting computing

Design +rade-offs

Trends and Incleasing Complexity

1965 Moore's Law: Doubling Capacity Every 2 years

[Liteld True)

Corollary to the law: Cost halves every 2 years

Example Computing System:

Processor: Consputes the instructions

DRAM: Temporary information during a computation

Flash Storge: Retains information ceven power off)

Processor: Executes applications that have been broken down into sequences of simple instructions

E.g: Add value in location 1 to location 2,

Put the result in location 3.

Transistors: Think of "Switches"

(Electricity flows in different ways)

They are really "small"!!!

Ruestion: How to create programs that

contils there many transistors?

Abstraction

Abstraction Layers

Consputers can be broadly cotegorized as "Hardware"

and "software"

Transistors / Machines in

Description of UTM theory

Tequired behaviors

in UTM theory

The Instruction Set Architecture (ISA):

- Bridge Letwern hardware and software

- A specification of how software controls hardware

*We use laxers of abstraction to ficus on a piece of it at a time

Main Abstraction Laxers:

Problem statement Layer: Stated using human language"

Algorithm Layer: Procedure to finish the task

Program Layer: Express the alsorithm using a computer language

ISA Layer:	Sperifies	ડ્રસ ર્મ	inst Yustians	whater	Can
		ertory		,	·
	F	•			
Microarchitectur	e Layer:	Drg	anization of	a proce	nol
	/			•	
	Different	insple <i>nse</i>	ntations f	a single	ISA)
		•	•	2 0	
Logic Circuits	: Condi	ne basic	- Deveti ^o ns	to Yeal	ize
0					
mi	LYo aychitecth	ye	(2eYo	s and an	<i>es</i>)
			_		
Devices Laye	Y' TYah	sidu - b	sed inole	nent cotion	æf
Vevies Poly			11 1710	7- 20/0. 7	l
	logic circ	uits			
	J U CXV	/			
ργο	perties of	materiel	, need t	o decl w	ith
			we/		•
	J— (•		

Idea: Transtymation Between Lagers Proylers statement Software Design Choose algos and Later struthres to solve Algorithm Programaing Using programming language to implenent program Compilation Compiler converts to machine instructions ISA

[Lectrica] Information
Analog Vs. Disital:
A A most an computing systems are disital
Difference between 'Analog' and 'Digital'
Continuous Discrete set of Values values
EX: Light suitch:
Analug -> 1 (More upside and down)

Digital Information:

Voltage's is used to process and store information inside our puters

Different voltages représent different values

Binary Digital Information:

- 2 voltage levels represent 1 and D

	tlansnits	a voltage	representing	o/l at a	
tine.					
			Cone bit)		
A CM	altiple mires	used to	transnit	nuttiple lits	

(Digital is the abstraction of Analys)

Binary Information:

All information in computer is represented by binary numbers

Additional Concepts in Educational Objectives:

· Requirement of a good algorithm; Definithess

(2) Effective computarbility

3) Finiteness

Steps need to be specific and clear

Each step must be possible

the algorithm must be oble to finish and stop