MATH 4324 CONTINUOUS MAPS

Hand in Friday, March 15.

1. Suppose that X and Y are topological spaces, that $A \subset X$, and that f and g are continuous maps from X to Y that satisfy, for all $x \in A$, f(x) = g(x). If Y is Hausdorff, show that, for all z in the closure of A, f(z) = g(z).

Proof. Assume X and Y are topological spaces, that $A \subset X$, and that f and g are continuous maps from X to Y that satisfy, for all $x \in A$, f(x) = g(x). Assuming Y is Hausdorff and that there there exists some point z in the closure of A where $f(z) \neq g(z)$. Then as Y is Hausdorff we have two neighborhoods U_f of f(z) and U_g of g(z) where $U_f \cap U_g = \emptyset$. As f, g are continuous we have that $f^{-1}(U_f)$ and $g^{-1}(U_g)$ are both open. We have that $z \in f^{-1}(U_f) \cap g^{-1}(U_g)$ but we have that z is a limit point as if $z \in A$ then that would be an immediate contraction on $f(z) \neq g(z)$ hence we have $A \cap f^{-1}(U_f) \cap g^{-1}(U_g) \setminus \{z\} \neq \emptyset$ hence we have for some $a \in A \cap f^{-1}(U_f) \cap g^{-1}(U_g) \setminus \{z\}$ then we have a neighborhood U_a of a with $U_a \subset f^{-1}(U_f) \cap g^{-1}(U_g)$ hence we have $f(a) \in U_f \cap U_g$ which contradicts U_f and U_g being disjoint.

- **2.** Let $f: X_1 \to Y_1$ and $g: X_2 \to Y_2$ be continuous maps between topological spaces. Give the products $X_1 \times X_2$ and $Y_1 \times Y_2$ their product topologies. Show that the map $H: X_1 \times X_2 \to Y_1 \times Y_2$ defined by $H((x_1, x_2)) = (f(x_1), g(x_2))$ is continuous.
- **3.** An injective (one-to-one) continuous map $f: X \to Y$ between topological spaces is a bijection from X to the image f(X). Give f(X) the subspace topology induced by Y's topology. We call such an f an imbedding if it is a homeomorphism from X to f(X).

In this context, let Y be $X \times X$ with the product topology. Let x_0 be an arbitrary element of X.

- **a.** Show that $f: X \to X \times X$ defined by $f(x) = (x, x_0)$ is an imbedding.
- **b.** Show that $g: X \to X \times X$ defined by g(x) = (x, x) is an imbedding.
- **4.** Suppose that $h: X \to Y$ is a homeomorphism of topological spaces. If Z is any other topological space and if $g: Y \to Z$ is a continuous map, we know that the composition $g \circ h$ is a continuous map from X to Z. Show that every continuous map $f: X \to Z$ arises this way, i.e. for any continuous $f: X \to Z$, there exists a continuous $G: Y \to Z$ for which $f = G \circ h$.
- **5. a.** Show that a linearly ordered set with the order topology is Hausdorff.
- **b.** Suppose that X is a topological space. Show that X is Hausdorff if and only if the diagonal subset $\{(x,x):x\in X\}$ of the product $X\times X$ is a closed subset of the product. Assume here that the topology on $X\times X$ is the product topology.
- **6.** text p. 111-112, problem 8.