Lywal 程序介绍:

电机部分: lywal 使用的电机是 Dynamixel Mx-28 数字舵机。共有两种模式,

一种是轮模式(wheel_mode, 顾名思义就是跟车轮一样给定速度就可以旋转),

另一种是关节模式(multi_mode),在关节模式下我们就可以对电机根据角度进行控制。

Lywal 的轮模式使用的是电机的轮模式,给定速度前行比较简单。足模式以及抓取使用的是关节模式,需要给定旋转的角度,需要足迹(init and trot)函数搭配使用。

移动速度

速度设定: 单位 rpm: 转每分

关节模式 可设定的值为 0-102 (**Ox3FF**) ,单位量为 **O.114rpm** 如果设定数值为 0,伺服马达会以无控制下以全速转动 如果设定数值为 1023,伺服马达转动速度约为 **117.07rpm**

例如: 如果设定数值为 **300**, 其转动速度为 **34.33rpm** 轮式模式

可设定的值为 0-1023 (Ox7FF) ,单位量为 O.144rpm

若把数值设为 0-1023 是逆时针转动,设置 0 值为停止转动

若把数值设为 1024-2047 是顺时针转动,设置 **1024** 值为停止转动

代码部分:

正逆解:

这部分代码是学长学姐们写的,数学原理我不太懂,我只负责将 MATLAB 转为 Python 代码。他的作用就是我们把坐标传给这个函数,返回电机下一步到达的位置(需要正/反转的度数)这部分内容单独写成了两个 pv 文件,可以直接调用。

- iywai_wiicci	2021/1/10 11:00	octorums i yenui	O IND
🖺 nijie	2021/7/16 16:32	JetBrains PyChar	5 KB
rot_new2	2021/7/16 17:35	JetBrains PyChar	1 KB
rot_new3	2021/7/16 18:15	JetBrains PyChar	1 KB
PC trot_new4	2021/7/16 18:06	JetBrains PyChar	1 KB
🗠 zhengjie	2021/7/5 16:06	JetBrains PyChar	2 KB

trot new:

这一部分是轨迹函数,轨迹大概就是 sin 函数的样子。人类走路,固定脚上一个点,走一步点所构成的图像就是 lywal 的轨迹的大体样子。 他的输出是坐标(x,y).

Init 函数初始化:

这函数就是初始化的过程。这个函数调用 trot_new.py 和 nijie.py 首先调用轨迹函数,算出完成一个动作所需要的的位置坐标(共 40 组可以自己调),然后 讲这个位置传给 nijie,求出电机需要转的角度。然后循环这个过程,lywal 就可以走起来了

```
import nijie
import trot_new2
import trot_new3
import trot_new4
import matplotlib.pyplot as plt
```

函数体部分:

```
### Control table address

ADDR.MX.CUM = 8

ADDR.MX.CUM = 8

ADDR.MX.COMY = 8

ADDR.MX.COMY.EVERLEW = 24 ## Control table address is different in Dynamizel model

ADDR.MX.FORDLE.MANGE.EVED = 32

ADDR.MX.FORDLE.MANGE.EVED = 32

ADDR.MX.FORDLE.MY.FORESENT.LOAD = 40

LEW.MX.COML.POSITION = 36

ADDR.MX.FORESENT.LOAD = 4

#### Protocol version

PROTOCOL.VERSION = 1.8 # See which protocol version is used in the Dynamizel

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BAURDATE = 15288 ## Dynamizel default boundret : 57688

### BA
```

这一部分是电机的控制地址,对应下图:

	18 (0X12)	Alarm Shutdown	关闭警报	RW	36 (0X24)
	24 (0X18)	Torque Enable	启动矩力	RW	0 (0X00)
	25 (0X19)	LED	LED 灯	RW	0 (0X00)
	26 (0X1A)	D Gain	D增益	RW	0 (0X00)
	27 (0X1B)	I Gain	I 増益	RW	0 (0X00)
	28 (0X1C)	P Gain	P增益	RW	32 (0X20)
	30 (0X1E)	Goal Position(L)	目标位置的低字节	RW	-
R A	31 (0X1F)	Goal Position(H)	目标位置的高字节	RW	-
M	32 (0X20)	Moving Speed(L)	移动速度的低字节	RW	-
	33 (0X21)	Moving Speed(H)	移动速度的高字节	RW	-
	34 (0X22)	Torque Limit(L)	转矩极限的低字节	RW	ADD14
	35 (0X23)	Torque Limit(H)	转矩极限的高字节	RW	ADD15
	36 (0X24)	Present Position(L)	现时位置的低字节	R	-
	37 (0X25)	Present Position(H)	现时位置的高字节	R	-
	38	Present Speed(L)	现时移动速度的低字	R	-

区域	位址 (十六进 制)	名称	说明	存取	初始值 (十六进 制)
	0 (0X00)	Model Number(L)	模组型号低位字节	R	29 (0X1D)
	1 (0X01)	Model Number (H)	模组型号高位字节	R	0 (0X00)
	2 (0X02)	Version of Firmware	固件版本数据	R	-
	3 (0X03)	ID	Dynamixel 序号	RW	1 (0X01)
	4 (0X04)	Baud Rate	Dynamixel 波特率	RW	34 (0X22)
	5 (0X05)	Return Delay Time	返回延迟时间	RW	250 (0XFA)
	6 (0X06)	CW Angle Limit(L)	顺时针方向角度限制 的低字节	RW	0 (0X00)
F	7 (0X07)	CW Angle Limit(H)	顺时针方向角度限制 的高字节	RW	0 (0X00)
E E P	8 (0X08)	CCW Angle Limit(L)	逆时针方向角度限制 的低字节	RW	255 (0XFF)
R O M	9 (0X09)	CCW Angle Limit(H)	逆时针方向角度限制 的高字节	RW	15 (0X0F)
, n	11 (0X0B)	the Highest Limit Temperature	最高温度限制	RW	80 (0X50)
	12 (0X0C)	the Lowest Limit Voltage	最低电压限制	RW	60 (0X3C)
	13 (0X0D)	the Highest Limit Voltage	最高电压限制	RW	160 (0XA0)
	14 (0X0E)	Max Torque(L)	最大矩力限制的低字 节	RW	255 (0XFF)
	15 (0X0F)	Max Torque(H)	最大矩力限制的高字 节	RW	3 (0X03)
	16 (0X10)	Status Return Level	状态传回水平	RW	2 (0X02)

(0X26)		节		
39 (0X27)	Present Speed(H)	现时移动速度的高字 节	R	-
40 (0X28)	Present Load(L)	现时负载的低字节	R	-
41 (0X29)	Present Load(H)	现时负载的高字节	R	-
42 (0X2A)	Present Voltage	现时电压	R	-
43 (0X2B)	Present Temperature	现时温度	R	-
44 (0X2C)	Registered	指令注册	R	0 (0X00)
46 (0X2E)	Moving	移动	R	0 (0X00)
47 (0X2F)	Lock	锁定 EEPROM	RW	0 (0X00)
48 (0X30)	Punch (L)	载入的低字节	RW	32 (0X20)
49 (0x31)	Punch (H)	载入的高字节	RW	0 (0X00)

其余函数都在代码中注释,理解就可。

Com 口需要在自己电脑上的设备管理器中查找