Problema 1. Asumiremos que las imagenes tienen el origen de coordenadadas situado en el centro.

Apartado A. Podemos aplicar la definición sobre la imagen B expresada en términos de la imagen A:

$$\mathcal{F}\left\{x_{B}[m,n]\right\}(F_{1},F_{2}) = \sum_{m=-\infty}^{\infty} e^{-j\tau F_{1}m} \sum_{n=-\infty}^{\infty} e^{-j\tau F_{2}n} x_{B}[m,n]$$
$$X_{B}(F_{1},F_{2}) = \sum_{m=-\infty}^{\infty} e^{-j\tau F_{1}m} \sum_{n=-\infty}^{\infty} e^{-j\tau F_{2}n} x_{A}[-m,n]$$

Aplicamos un cambio de variable en el sumatorio externo, manipulamos y reconocemos la transformada de x_A :

$$X_B(F_1, F_2) = \sum_{m'=-\infty}^{\infty} e^{-j\tau F_1(-m')} \sum_{n=-\infty}^{\infty} e^{-j\tau F_2 n} x_A[m', n]$$

$$X_B(F_1, F_2) = \sum_{m'=-\infty}^{\infty} e^{-j\tau(-F_1)m'} \sum_{n=-\infty}^{\infty} e^{-j\tau F_2 n} x_A[m', n]$$

$$X_B(F_1, F_2) = X_A(-F_1, F_2)$$

Apartado B. Para la imagen C seguimos un procedimiento análogo:

$$\mathcal{F}\left\{x_{C}[m,n]\right\}(F_{1},F_{2}) = \sum_{m=-\infty}^{\infty} e^{-j\tau F_{1}m} \sum_{n=-\infty}^{\infty} e^{-j\tau F_{2}n} x_{A}[-m,-n]$$

$$X_{C}(F_{1},F_{2}) = \sum_{m'=-\infty}^{\infty} e^{-j\tau F_{1}(-m')} \sum_{n=-\infty}^{\infty} e^{-j\tau F_{2}n} x_{A}[m',-n]$$

$$X_{C}(F_{1},F_{2}) = \sum_{m'=-\infty}^{\infty} e^{-j\tau F_{1}(-m')} \sum_{n'=-\infty}^{\infty} e^{-j\tau F_{2}(-n')} x_{A}[m',n']$$

$$X_{C}(F_{1},F_{2}) = X_{A}(-F_{1},-F_{2})$$

Apartado C. De nuevo usamos la definición de la antitransformada:

$$\mathcal{F}^{-1}\left\{X_A^*(F_1, F_2)\right\}(m, n) = \iint_{-\infty}^{\infty} X_A^*(F_1, F_2) e^{j\tau[F_1 m + F_2 n]} \, \mathrm{d}F_1 \, \mathrm{d}F_2$$

Y simplificamos hasta reconocer la antitransformada de $X_A(F_1, F_2)$:

$$= \iint_{-\infty}^{\infty} X_A^*(F_1, F_2) e^{-j\tau [F_1(-m) + F_2(-n)]} dF_1 dF_2$$

$$= \iint_{-\infty}^{\infty} X_A^*(F_1, F_2) \left(e^{j\tau [F_1(-m) + F_2(-n)]} \right)^* dF_1 dF_2$$

$$= \left(\iint_{-\infty}^{\infty} X_A(F_1, F_2) e^{j\tau [F_1(-m) + F_2(-n)]} dF_1 dF_2 \right)^*$$

$$= (x_A(-m, -n))^*$$

Sabiendo que ambas antitransformadas son secuencias de igual periodo y que son reales, la nueva secuencia es simplemente $x_A[-m, -n]$.

Problema 2.

Apartado A. Aplicando mentalmente la definición y simplificando:

$$X(F_1, F_2) = e^{-j\tau[1F_1 + 0F_2]} + e^{-j\tau[1F_1 + 1F_2]}$$

$$X(F_1, F_2) = e^{-j\tau[1F_1 + \frac{1}{2}F_2]} \left(e^{+j\tau\frac{1}{2}F_2} + e^{-j\tau\frac{1}{2}F_2} \right)$$

$$X(F_1, F_2) = 2\cos(\tau F_2/2)e^{-j\tau\left(F_1 + \frac{F_2}{2}\right)}$$

Apartado B. Una forma de hacerlo es aplicando la DFT por columnas:

$$\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

Y luego por filas:

$$\begin{bmatrix} 2 & -2 \\ 0 & 0 \end{bmatrix}$$

Esto coincide, si lo comprobamos, con la expresión obtenida en el apartado anterior muestreada adecuadamente.

Apartado C. La DFT es invariable delante de la transposición, así que el resultado es la misma matriz, transpuesta:

$$\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}$$

Apartado D. La DFT es lineal, así que el resultado es la misma matriz, multiplicada por 10:

$$\begin{bmatrix} 20 & -20 \\ 0 & 0 \end{bmatrix}$$

Problema 3.

Apartado A. El proceso pone a 0 el bin (0,0) de la DFT, con lo cual establece la media de la imagen a cero sin cambiar nada más. Es decir, sustrae una constante k a todos los píxeles de la imagen de forma que la suma de todos los nuevos píxeles sea nula:

$$x'[m, n] = x[m, n] - k$$

$$\sum_{m=0}^{M} \sum_{n=0}^{N} x'[m, n] = 0$$

$$\sum_{m=0}^{M} \sum_{n=0}^{N} x[m, n] - k = 0$$

$$\sum_{m=0}^{M} \sum_{n=0}^{N} x[m, n] = k \cdot MN$$

$$k = \frac{1}{MN} \sum_{m=0}^{M} \sum_{n=0}^{N} x[m, n]$$

En otras palabras: el proceso sustrae de cada píxel de la imagen, la media de dicha imagen.

Apartado B. Dado que el proceso solo suma una constante a todos los píxeles, el margen dinámico no cambia a menos que volvamos a cuantificar.

Apartado C. Se obtiene x[m,n]-x'[m,n]=x[m,n]-(x[m,n]-k)=k queda una imágen que tiene todos los píxeles establecidos a k, la media de x[m,n].

Problema 4.

Apartado A. La matriz es 1 salvo cuando m + n - (N - 1) = 0, en cuyo caso es 0. Para M = N, la matriz sería:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & & & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & & & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & & & 1 & 0 & 0 \\ \vdots & & & & \ddots & & & \vdots \\ 0 & 0 & 1 & 0 & & & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & & & \ddots & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \end{bmatrix}$$

Para obtener la matriz para M < N o M > N, sustraer columnas del final o añadir columnas nulas según convenga.

Apartado B. Tenemos la matriz:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Aplicamos DFT por filas:

$$\begin{bmatrix} 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Ahora aplicamos DFT por columnas:

$$\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4j & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4j \end{bmatrix}$$