Kryptografia z elementami algebry, wykład 1

Maciej Grześkowiak

10 grudnia 2021

Elementy algebry

Algebra zajmuje się badaniem działań określonych w pewnych zbiorach.

Definicja: Działaniem wewnętrzym (dwuargumentowym) w zbiorze *A* nazywamy dowolne odwzorowanie

$$*: A \times A \rightarrow A, \qquad (a, b) \rightarrow *(a, b).$$

Będziemy zapisywać *(a, b) = a * b.

Działania¹

Przykłady

$$ullet$$
 $\mathbb{N}^+=(\mathbb{N},+)$, $\mathbb{Z}^*=(\mathbb{Z},*)$, $\mathbb{Q}^*=(\mathbb{Q},*)$, ...,

• Niech
$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

•
$$\mathbb{Z}_n^+ = (\mathbb{Z}_n, +_n)$$
, $\mathbb{Z}_n^* = (\mathbb{Z}_n, *_n)$, gdzie $+_n = + \pmod{n}$,

•
$$\Phi(n) = \{a \in \mathbb{Z}_n^* : (a, n) = 1\}, (\Phi(n), *_n),$$

• . . .

Algebra zajmuje się badaniem działań określonych w pewnych zbiorach.

Definicja: Działaniem wewnętrzym (dwuargumentowym) w zbiorze *A* nazywamy dowolne odwzorowanie

$$*: A \times A \rightarrow A, \qquad (a, b) \rightarrow *(a, b).$$

Będziemy zapisywać *(a, b) = a * b.

Niech * będzie działaniem wewnętrzym w niepustym zbiorze A.

Definicja Mówimy, że działanie * jest łączne, gdy

$$a*(b*c) = (a*b)*c,$$
 $a, b, c \in A.$

$$a,b,c\in A$$

Działania¹

Przykład:

Dodawanie i mnożenie w $\mathbb N$ jest łączne.

Potęgowanie liczb naturalnych nie jest łączne tzn, działanie

$$\diamond: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \qquad \diamond(a,b) \to a^b.$$

Mamy,

$$2 \diamond (3 \diamond 5) = 2 \diamond 3^5 = 2^{243},$$

 $(2 \diamond 3) \diamond 5 = 8 \diamond 5 = 8^5 = 2^{15}.,$

Działania¹

Definicja Mówimy, że działanie * jest przemienne, gdy

$$a*b=b*a$$
, $a,b\in A$.

Przykład:

Dodawanie i mnożenie w $\mathbb N$ jest przemienne.

Potęgowanie liczb naturalnych nie jest przemienne. Mamy,

$$a \diamond b = a^b$$
,

$$b \diamond a = b^a$$
.

Definicja Mówimy, że e jest elementem neutralnym działania * jeśli

$$a*e=e*a=a, a\in A.$$

Przykład:

Elementy neutralne dodawania i mnożenia w \mathbb{N} to 0 i 1.

Potęgowanie liczb naturalnych nie posiada elementu neutralnego. Mamy,

$$a \diamond e = a^e$$
,

$$e \diamond a = e^a$$
?

Definicja Niech działanie * ma element neutralny. Mówimy, że $b \in A$ jest elementem przeciwnym do $a \in A$, gdy

$$a * b = b * a = e$$
.

Stwierdzenie 1 Element neutralny, o ile istnieje, jest wyznaczony jednoznacznie. Jeżeli działanie jest łączne, to każdy element posiada co najwyżej jeden element przeciwny.

Dowód Niech e i e' będą dwoma elementami neutralnymi działania *. Wtedy,

$$e' = e * e'$$
.

ponieważ e jest elementem neutralnym. Podobnie,

$$e = e * e'$$
.

Stąd, e=e', co dowodzi pierwszej tezy. Niech b i c będą dwoma elementami przeciwnymi do a. Wtedy,

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c.$$

Stad, b = c.

Definicja Grupą nazywamy spełniające następujące warunki:

- (łączność działania) $\forall a, b, c \in G$ a(bc) = (ab)c,
- ② (istnienie elementu neutralnego) $\exists e \in G \quad \forall a \in G \quad ae = ea = a$,
- (istnienie elementu odwrotnego) $\forall a \in G \quad \exists b \in G \quad ab = ba = e$.

Definicja Grupę, w której działanie jest przemienne nazywany przemienną lub abelową.

Przykłady

- **1** Zbióry $\mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+, \mathbb{C}^+$ są grupami abelowymi,
- 2 Zbióry $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ (bez zera) są grupami abelowymi,
- 3 Zbiór reszt modulo n, $\mathbb{Z}_n^+ = \{0, 1, \dots, n-1\}$ z działaniem dodawania (mod n),
- ② Zbiór zredukowanych reszt modulo n, $\Phi(n) = \{a \in \mathbb{Z}_n : (a, n) = 1\}$ z działaniem mnożenia (mod n), jest grupą abelową,

Oznaczenia Przy zapisie addytywnym:. Element neutralny, to 0, a przeciwny do a, to -a. Przy zapisie multiplikatywnym:. Element neutralny, to 1, a odwrotny do a, to a^{-1} .

Definicja Rzędem grupy G nazywamy ilość jej elementów i oznaczamy |G| lub $\sharp G$.

Przykład

- $|\mathbb{Z}_n^+| = n,$
- $|\Phi(n)| = \varphi(n)$, gdzie

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Definicja Niepusty podzbiór H grupy G nazywamy podgrupą, gdy dla dowolnych $a,b\in H$ element $ab^{-1}\in H$. Piszemy wtedy H< G

Przykłady

- **3** \mathbb{Q}^* jest podgrupą \mathbb{R}^* ,
- \bullet \mathbb{R}^* jest podgrupą \mathbb{C}^* ,
- $\{0,6\}$ jest podgrupą \mathbb{Z}_{12}^+ ,
- **1** $\{1,5\}$ jest podgrupą $\Phi(8)$,

Stwierdzenie 2 Niech G będzie grupą, $H \subset G$ niepustym podzbiorem. Wtedy następujące warunki są równoważne:

- H jest podgrupą grupy G.
- ② $e \in H$ oraz podzbiór H jest zamknięty ze względu na mnożenie i operacje brania odwrotności tzn. $ab, b^{-1} \in H$ dla dowolnych $a, b \in H$.
- H wraz ze mnożeniem, które jest działaniem grupowym grupy G, jest grupą.

Dowód (1. \Rightarrow 2) Niech *a* będzie dowolnym elementem H. Ponieważ H \neq \emptyset takie *a* istnieje. Zgodnie z definicją podgrupy $e = aa^{-1} \in H$.

Podobnie korzystając z definicji podgrupy dla e=a dostajemy $b^{-1}=eb^{-1}\in \mathsf{H}$. Ponieważ $b^{-1}\in \mathsf{H}$ mamy $ab=a(b^{-1})^{-1}\in \mathsf{H}$.

Implikacje (2. \Rightarrow 3) i (3. \Rightarrow 1) są oczywiste.

Zobaczymy w jaki sposób H wyznacza rozbicie G na rozłączne podzbiory.

Definicja Niech H będzie podgrupą grupy G. Warstwą lewostronną podgrupy H wyznaczoną przez element $a \in G$ nazywamy zbiór

$$a\mathsf{H}=\{ah:h\in\mathsf{H}\}.$$

Każdy element warstwy lewostronnej nazywamy jej reprezentantem.

Przykład Niech H = $\{0,6\}$. Wiemy, że H < \mathbb{Z}_{12}^+ . Weźmy $9\in\mathbb{Z}_{12}^+$. Mamy,

$$9+H=\{9+h:h\in H\}=\{9+0,9+6\}=\{9,3\}$$

Stwierdzenie 3 Warstwy lewostronne są albo identyczne albo rozłączne. Suma mnogościowa wszystkich warstw lewostronnych jest równa całej grupie. Dwie warstwy lewostronne aH i bH są sobie równe wtedy i tylko wtedy, gdy $b^{-1}a \in H$.

Dowód Niech $aH \cap bH \neq \emptyset$ i niech ah = bh', gdzie $h, h' \in H$ są dowolnymi elementami. Wtedy $a = bh'h^{-1}$, a więc

$$ah'' = (bh'h^{-1})h'' = b(h'h^{-1}h'') \in bH.$$

Stąd $aH \subset bH$. Z symetrii założenia wynika, że $bH \subset aH$. Mamy więc aH = bH i pierwsza teza jest udowodniona.

Ponieważ $a \in aH$ więc teza o sumie warstw lewostronnych jest oczywista.

Niech teraz aH=bH. Wtedy a=bh dla pewnego $h\in H$. Mnożąc obustronnie przez b^{-1} otrzymujemy $b^{-1}a=h\in H$. Załóżmy, że $b^{-1}a\in H$. Wtedy,

$$b^{-1}a = h \in H \Rightarrow a = bh \Rightarrow a \in bH \Rightarrow aH \cap bH \neq \emptyset \Rightarrow aH = bH.$$

Analogicznie definiujemy warstwy prawostronne, są to podzbiory postaci

$$Ha = \{ha : h \in H\}.$$

Definicja Indeksem podgrupy H w grupie G nazywamy ilość (moc zbioru) różnych warstw lewostronnych H w G. Indeks oznaczamy symbolem (G : H).

Twierdzenie 1 (Lagrange) Niech G będzie grupą skończoną, a H jej podgrupą. Wtedy

$$|\mathsf{G}| = (\mathsf{G} : \mathsf{H})|\mathsf{H}|.$$

Dowód Udowodnimy najpierw, że każda warstwa lewostronna *a*H jest równoliczna z H. W tym celu rozważmy odwzorowanie

$$f: H \to aH, \qquad f(h) = ah.$$

Jeśli f(h)=f(h'), to ah=ah'. Mnożąc obustronnie przez a^{-1} dostajemy h=h'. Zatem f jest injekcją (różnowartoścowa). Z definicji warstwy lewostronnej wynika, że jest to też suriekcja. Więc zbiory aH i H są równoliczne. Teza jest teraz łatwa do uzyskanie. Zbiór G jest sumą (G:H) rozłącznych zbiorów, których każdy ma |H| elementów. Zatem |G|=(G:H)|H|.

Kryptografia, złożoność obliczeniowa

Notacja wielkie-O

Definicja Niech $f,g:\mathbb{N}\mapsto\mathbb{R}$. Mówimy, że

$$f(n) = O(g(n))$$

jeśli istnieje stała c>0 taka, że dla każdego $n\geq n_0$ mamy

$$|f(n)| \leq cg(n)$$
.

Własności:

Niech f(n) = O(g(n)), u(n) = O(w(n)), to

- **1** $f(n) \pm u(n) = O(g(n) + w(n)),$

Notacja wielkie-O, przykłady

Zadanie: Zabadaj czy f(n) = O(g(n)) lub g(n) = O(f(n)), gdzie

$$f(n) = n^2 + n + 1$$
, $g(n) = 50n + 30$.

Rozwiązanie:

Istnieje $n_0=10$ oraz c=6 takie, że dla każdego $n\geq n_0$ zachodzi

$$|50n_0+30|\leq c(n_0^2+n_0+1)$$

Stąd, $50n + 30 = O(n^2 + n + 1)$.

Ustalmy c > 0. Istnieje n_0 takie, że dla każdego $n \ge n_0$ zachodzi

$$|n_0^2 + n_0 + 1| \ge c(50n_0 + 30)$$

Notacja wielkie-O, przykłady

Zadanie: Niech LB(n) oznacza liczbę bitów n, dla $n \in \mathbb{N}$. Za pomocą notacji wielkie-O oszacuj funkcję LB(n).

Rozwiązanie:

Niech

$$n = (b_{k-1}b_{k-2}...b_0)_2, b_{k-1} = 1.$$

Stąd,

$$2^{k-1} \le n < 2^k,$$

oraz

$$LB(n) = [\log_2 n] + 1 = [\frac{\log n}{\log 2}] + 1 = O(\log n).$$

Operacje elementarne na bitach

р	0	0	0	0	1	1	1	1
r_1	0	0	1	1	0	0	1	1
<i>r</i> ₂	0	1	0	1	0	1	0	1
W	0	1	1	0	1	0	0	1
np	0	0	0	1	0	1	1	1

Operacje elementarne na bitach, przykład

Zadanie: Niech $a, b \in \mathbb{N}$, gdzie $a \ge b$. Ile elementarnych operacji na bitach potrzeba do obliczenia S(a, b) = a + b?

Zadanie: Niech $a, b \in \mathbb{N}$, gdzie $a \ge b$. Ile elementarnych operacji na bitach potrzeba do obliczenia I(a, b) = ab?

Operacje elementarne na bitach, przykład

Przykład: Niech
$$a = (1011)_2, b = (1001)_2$$
, to

Stąd, wykonujemy $O(\log a)$ operacji elementarnych na bitach.

Operacje elementarne na bitach, przykład

Przykład: Niech $a = (1011)_2, b = (1001)_2$, to

Stąd, wykonujemy $O(\log a)O(\log b) = O(\log^2 a)$ operacji elementarnych na bitach.

Maciej Grześkowiak

Notacja wielkie-O, przykłady

Zadanie 1: Zabadaj czy f(n) = O(g(n)) lub g(n) = O(f(n)), gdzie

- ② f(n) = n + 1, $g(n) = 5 \log(n)$,
- $(n) = n^2 + n + 1, g(n) = 5n^2 + 7.$