# CSI 445/660 — Part 6 (Centrality Measures for Networks)

## References

- L. Freeman, "Centrality in Social Networks: Conceptual Clarification", Social Networks, Vol. 1, 1978/1979, pp. 215–239.
- S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, New York, NY, 1994.
- M. E. J. Newman, *Networks: An Introduction*, Oxford University Press, New York, NY, 2010.
- Wikipedia entry on Centrality Measures: https://en.wikipedia.org/wiki/Centrality

# Some Pioneers on the Topic



- Alex Bavelas (1913–1993) (??)
- Received Ph.D. from MIT (1948) in Psychology.
- Dorwin Cartwright was a member of his Ph.D. thesis committee.
- Taught at MIT, Stanford and the University of Victoria (Canada).



- Harold Leavitt (1922–2007)
- Received Ph.D. from MIT.
- Authored an influential text ("Managerial Psychology") in 1958.
- Taught at Carnegie Mellon and Stanford.

# Centrality Measures for Networks

## Centrality:

- Represents a "measure of importance".
  - Usually for nodes.
  - Some measures can also be defined for edges (or subgraphs, in general).
- Idea proposed by Alex Bavelas during the late 1940's.
- Further work by Harold Leavitt (Stanford) and Sidney Smith (MIT) led to qualitative measures.
- Quantitative measures came years later. (Many such measures have been proposed.)

# Point Centrality - A Qualitative Measure

## Example:



■ The **center** node is "structurally more important" than the other nodes.

## Reasons for the importance of the center node:

- The center node has the maximum possible degree.
- It lies on the shortest path ("geodesic") between any pair of other nodes (leaves).
- It is the closest node to each leaf.
- It is in the "thick of things" with respect to any communication in the network.

## Degree Centrality – A Quantitative Measure

- For an undirected graph, the degree of a node is the number of edges incident on that node.
- For a directed graph, both indegree (i.e., the number of incoming edges) and outdegree (i.e., the number of outgoing edges) must be considered.

## Example 1:



- Degree of x = 6.
- $\blacksquare$  For all other nodes, degree = 1.

## Example 2:



- Indegree of b = 1.
- Outdegree of d = 2.

# Degree Centrality (continued)

## When does a large indegree imply higher importance?



- Consider the Twitter network.
- Think of x as a **celebrity** and the other nodes as followers of x.
- For a different context, think of each node in the directed graph as a web page.
- Each of the nodes  $y_1, y_2, ..., y_n$  has a link to x.
- The larger the value of n, the higher is the "importance" of x (a crude definition of **page rank**).

# Degree Centrality (continued)

#### When does a large outdegree imply higher importance?



- Consider the hierarchy in an organization.
- Think of x as the manager of  $y_1, y_2, \ldots, y_n$ .
- Large outdegree may mean more "power".

#### **Undirected graphs:**

- High degree nodes are called hubs (e.g. airlines).
- High degree may also also represent higher risk.

**Example:** In disease propagation, a high degree node is more likely to get infected compared to a low degree node.

## Normalized Degree

**Definition:** The **normalized degree** of a node x is given by

Normalized Degree of 
$$x = \frac{\text{Degree of } x}{\text{Maximum possible degree}}$$

 Useful in comparing degree centralities of nodes between two networks.

**Example:** A node with a degree of 5 in a network with 10 nodes may be relatively more important than a node with a degree of 5 in a network with a million nodes.

## Weighted Degree Centrality (Strength):



• Weighted degree (or strength) of  $v = w_1 + w_2 + ... + w_r$ .

# Degree Centrality (continued)

#### Assuming an adjacency list representation

- for an undirected graph G(V, E), the degree (or weighted degree) of all nodes can be computed in **linear** time (i.e., in time O(|V| + |E|)) and
- for a directed graph G(V, E), the indegree or outdegree (or their weighted versions) of all nodes can be computed in **linear** time.

Combining degree and strength: ([Opsahl et al. 2009])

#### **Motivating Example:**



- A and B have the same strength.
- However, B seems more central than A.

# Combining Degree and Strength (continued)

## Proposed Measure by Opsahl et al.:

- Let d and s be the degree and strength of a node v respectively.
- Let  $\alpha$  be a parameter satisfying the condition  $0 \le \alpha \le 1$ .
- The combined measure for node  $v = d^{\alpha} \times s^{1-\alpha}$ .
- When  $\alpha = 1$ , the combined measure is the **degree**.
- When  $\alpha = 0$ , the combined measure is the **strength**.
- lacksquare A suitable value of  $\alpha$  must be chosen for each context.

## Farness and Closeness Centralities

#### **Assumptions:**

- Undirected graphs. (Extension to directed graphs is straightforward.)
- Connected graphs.
- No edge weights. (Extension to weighted graphs is also straightforward.)

#### **Notation:**

- Nodes of the graph are denoted by  $v_1, v_2, ..., v_n$ .
- For any pair of nodes  $v_i$  and  $v_j$ ,  $d_{ij}$  denotes the number of edges in a shortest path between  $v_i$  and  $v_j$ .

The farness centrality  $f_i$  of node  $v_i$  is given by

$$f_i$$
 = Sum of the distances between  $v_i$  and the other nodes 
$$= \sum_{v_j \in V - \{v_i\}} d_{ij}$$

# Farness and Closeness Centralities (continued)

The closeness centrality (or nearness centrality)  $\eta_i$  of node  $v_i$  is given by  $\eta_i = 1/f_i$ .

**Note:** If a node x has a larger closeness centrality value compared to a node y, then x is more central than y.

#### Example 1:



- $f_1 = 1 + 2 + 3 = 6$ . So,  $\eta_1 = 1/6$ .
- $f_2 = 1 + 1 + 2 = 4$ . So,  $\eta_2 = 1/4$ .
- $f_3 = 2 + 1 + 2 = 4$ . So,  $\eta_3 = 1/4$ .
- $f_4 = 3 + 2 + 1 = 6$ . So,  $\eta_4 = 1/6$ .

So, in the above example, nodes  $v_2$  and  $v_3$  are more central than nodes  $v_1$  and  $v_4$ .

# Farness and Closeness Centralities (continued)

#### Example 2:



- $f_1 = 4$ . So,  $\eta_1 = 1/4$ .
- For every other node, the farness centrality value = 7; so the closeness centrality value = 1/7.
- Thus, v<sub>1</sub> is more central than the other nodes.

#### Additional Remarks:

■ For any graph with n nodes, the farness centrality of each node is at least n-1.

**Reason:** Each of the other n-1 nodes must be at a distance of at least 1.

# Farness and Closeness Centralities (continued)

## Additional Remarks (continued):

■ Since the farness centrality of each node is at least n-1, the closeness centrality of any node must be at most 1/(n-1).



- For the star graph on the left, the closeness centrality of the center node  $\nu$  is exactly 1/(n-1).
- If G is an n-clique, then the closeness centrality of each node of G is 1/(n-1).

## **Eccentricity Measure**

 $\blacksquare$  Recall that **farness centrality** of a node  $v_i$  is given by

$$f_i = \sum_{v_j \in V - \{v_i\}} d_{ij}$$

■ The eccentricity  $\mu_i$  of node  $v_i$  is defined by replacing the summation operator  $\left(\sum\right)$  by the maximization operator; that is,

$$\mu_i = \max_{v_j \in V - \{v_i\}} \{d_{ij}\}$$

- This measure was studied by two graph theorists (Gert Sabidussi and Seifollah L. Hakimi).
- **Interpretation:** If  $\mu_i$  denotes the eccentricity of node  $v_i$ , then every other node is within a distance of **at most**  $\mu_i$  from  $v_i$ .
- If the eccentricity of node x is less than that of y, then x is more central than y.

# Examples for Eccentricity Measure

## Example 1:



- $\mu_1 = \max\{1, 2, 3\} = 3.$
- $\mu_2 = \max\{1, 1, 2\} = 2.$
- $\mu_3 = \max\{2,1,1\} = 2.$
- $\mu_4 = \max\{3, 2, 1\} = 3.$

#### Example 2:



- $\mu_1 = 1.$
- lacksquare For every other node, eccentricity = 2.

## Eccentricity – Additional Definitions

**Definition:** A node v of a graph which has the smallest eccentricity among all the nodes is called a **center** of the graph.

#### Example:



■ The center of this graph is  $v_1$ . (The eccentricity of  $v_1 = 1$ .)

**Note:** A graph may have two or more centers.

## Example:



- Both v and w are centers of this graph. (Their eccentricities are = 1.)
- If G is clique on n nodes, then every node of G is a center.

# Eccentricity – Additional Definitions (continued)

**Definition:** The smallest eccentricity value among all the nodes is called the **radius** of the graph.

**Note:** The value of the radius is the eccentricity of a center.

## Example:



■ The radius of this graph is 1 (since  $v_1$  is the center of this graph and the eccentricity of  $v_1 = 1$ .)

#### Facts:

- The largest eccentricity value is the diameter of the graph.
- For any graph, the diameter is at most twice the radius. (Students should try to prove this result.)

# Random Walk Based Centrality (Brief Discussion)

Ref: [Noh & Rieger 2004]

#### Motivation:

- Definitions of centrality measures (such as **closeness** centrality) assume that "information" propagates along shortest paths.
- This may not be appropriate for certain other types of propagation. For example, propagation of diseases is a **probabilistic** phenomenon.

## Idea of Random Walk Distance in a Graph:



**Note:** Assume that we want to do a random from u to v.

# Random Walk ... (Brief Discussion)

#### Random Walk Algorithm – Outline:

- Suppose we want to find the random walk distance from u to v.
- Initialize: Current Node = u. No. of steps = 0.
- Repeat
  - 1 Randomly choose a neighbor x of the Current Node.
  - 2 No. of steps = No. of steps + 1.
  - **3** Set Current Node = x.

**Until** Current Node = v.

**Note:** In Step 1 of the loop, if the Current Node has degree d, probability of choosing any neighbor is 1/d.

# Examples of Random Walks:



# Random Walk ... (Brief Discussion)

**Definition:** The **random walk distance** (or **hitting time**) from u to v is the expected number of steps used in a random walk that starts at u and ends at v.

- One can define farness/closeness centrality measures based on random walk distances.
- **Weakness:** Even for undirected graphs, the random walk distances are **not symmetric**; that is, the random walk distance from *u* to *v* may **not** be the same as the random walk distance from *v* to *u*.