Engineering Physics (2025) Course code 25PY101 Unit 1: Metals and Semiconductors

Course Instructor:
Dr. Sreekar Guddeti
Assistant Professor in Physics
Department of Science and Humanities
Vignan's Foundation for Science, Technology and Research

September 23, 2025

Unit 1 Plan

Condensed matter

2 Metals

Unit 1 Plan

Condensed matter

2 Metals

Lecture plan

Learning Objectives

- Condensed matter at macroscopic scale
- Classification of condensed matter based on conductivity
- Nature of metals
- Classical electron theory of metals Assumptions
- Ohm's law for metals Conductivity
- Application of metallic conductivity

Discovery of material

Civilization spacetimeline: Copper o Bronze o Iron o Steel o Silicon

Key Insight Material defines the age.

Condensed matter

- Material in the liquid or solid form is called condensed matter.
- Condensed matter is further sub-classified based on electrical, optical, magnetic, thermal, mechanical properties at the **macroscopic** scale.
 In the case of electrical property, we apply electric field and classify the materials based on their conductivity.
- The macroscopic behaviour is related to the **microscopic** behaviour of electrons under applied "forces".

Learning Objectives

To relate the macroscopic properties with the microscopic behaviour of electrons in condensed matter.

Classification of Condensed Matter by Conductivity

- (a) Gold, a metal, (b) Silicon, a semiconductor, (c) Diamond, an insulator
- Conductivity is the measure of how easily electrons move under applied electric field. Its unit is $\Omega^{-1}\,\mathrm{m}^{-1}$ or S m⁻¹ (S for Siemens).

- **1** Metals: High ($\sigma \sim 10^7$ S/m).
- **2 Semiconductors**: Intermediate ($\sigma \sim 10^{-4} \text{ S/m}$).
- **1 Insulators**: Negligible ($\sigma \sim 10^{-10}$ S/m).

W. Siemens [1816-1892]

Elemental phases

 The electrical state of condensed matter is also called a phase – similar to solid phase, liquid phase, etc.

Key Insight

Most elemental phases are metals.

Conductivity of phases

• Conductivity σ is inversely related to resistivity ρ by $\rho = \frac{1}{\sigma}$

	ρ
	Ωm
Cu	10^{-7}
Si	10^{4}
SiO_2	10^{10}

Key Insight

Early experiments: Avogadro number and Electron charge

Electrochemical cell

Oil drop experiment

Macroscopic → microscopic

cell

Oil drop experiment

Macroscopic Copper

Microscopic Copper

Estimate: Avogadro number N_A

To electroplate 63.5 g of copper, it takes 2 F of charge. [Hint: 1F (F for Faraday)= 96.485 C, charge of electron $e = 1.602 \times 10^{-19} \, \text{Cl}$

Faraday, Millikan

Estimate: Radius of atom

The density of copper is $8.96 \,\mathrm{g}\,\mathrm{cm}^{-3}$.

Unit 1 Plan

Condensed matter

2 Metals

Lecture Plan

Learning Objectives Learn the concept of electrical conductivity, mobility, and relaxation time

Nature of Metal

- Lustre (Shine)
- 2 Solid with high 1000 °C melting points
- Malleable (capable of being shaped)
- Good electrical conductor
- Good thermal conductor
- Ductile (easy to draw wires)

Chemistry

- Metallic bonding
- Screening

Na atom

$$Z_{eff} = +e$$

Metallic bonding \leftrightarrow electron gas

Valence electrons to electron "gas"

Key Insight The properties of electron "gas" determines the nature of metal.

Electron theories of metals

- Classical free electron theory
- Quantum free electron theory [M2 U3]
- Quantum band theory [M2 U3]

