### 進捗報告

### 1 今週やったこと

Virtual Adversarial Training(:VAT) と FixMatch の 実験をした.

## 2 実験1(VAT)

前回のVATのパラメータを調節した.表1にパラメータの設定を示す.

表 1: 実験パラメータ

| model           | 9層 CNN         |       |
|-----------------|----------------|-------|
| data set        | cifar10        |       |
| train data      | labeled        | 4000  |
|                 | unlabeled      | 46000 |
| batch size      | labeled        | 16    |
|                 | unlabeled      | 128   |
| validation data | 10000          |       |
| epoch           | 200            |       |
| optimizer       | Adam(lr=0.002) |       |
| loss            | VAT_loss       |       |
| param           | α              | 2.0   |
|                 | $\epsilon$     | 40    |
|                 | Ip             | 1     |
|                 | ξ              | 1e-6  |

#### 2.0.1 結果

図1,2に結果を示す.

元論文が88%で,またラベル厚き4000枚のみを用いた実験では70.3%であったので,まだパラメータの改善の余地はあるだろうがある程度運用できそうである.

# 3 実験 2(FixMatch)

#### 3.1 概要

FixMatch と VAT の違いについて, VAT では unlabeled\_data から得られる loss について, 元画像と



図 1: loss の推移



図 2: accuracy の推移

微小量のノイズによる変化させた画像とについて予測したものの kl\_divergence を付加している.

一方で、FixMatch では弱い変換 (translate や flip など) をした画像で得られた予測を疑似ラベルとし、強い変換 (autocontrast や brightness など) をした画像で得られた予測との cross\_entropy\_loss を付加している.

この手法を consistency\_regularization といい, GAN などにも用いられている.

#### 3.2 実験設定

表2に実験設定を示す.

表 2: 実験パラメータ

| model           | WideResNet28-2          |       |
|-----------------|-------------------------|-------|
| data set        | cifar10                 |       |
| train data      | labeled                 | 250   |
|                 | unlabeled               | 49750 |
| batch size      | labeled                 | 32    |
|                 | unlabeled               | 256   |
| validation data | 10000                   |       |
| num_iterations  | $2^{16}$                |       |
| optimizer       | SGD(lr=0.1,momntum=0.9) |       |
| loss            | cross_entropy_loss      |       |

### 3.3 結果

図3,4,5に示す.



図 3: train\_total\_loss の推移



図 4: validation\_loss の推移

最終的な accuracy は 93.20%で、元論文が 94.93% であり実験自体はうまく回っているので次から GA を絡めた実験を行っていく.



図 5: validation\_acc の推移

## 4 考えていること

GAを用いて、一部の unlabeled\_data について labeled\_data として取り扱えるものの選出をし学習の 安定性を図る.

validation\_data と labeled\_data の比率を考えた実験を行う.

上記二つのアンサンブル学習への転用.

# 5 来週の課題

• SSL の実験を進める