

Predicting Flight Delays through Machine Learning Classifiers at Scale Final Presentation

W261 Fall 2022 Section 5 Group 4: Nathan Chiu, Dominic Lim, Raul Merino, Javier Rondon **Executive Summary**

Exploratory Data Analysis

Data Lineage

Model Pipeline

Feature Selection

Hyperparameter Tuning

Model Results & Discussion

Gap Analysis

Conclusion

Executive Summary

Airlines should implement an **ensemble model** to better predict flight delays for resource allocation/customer service purposes

Problem		are delayed by more than costing tens of billions of		Feature Engineering			
		dollars	Modeling	Model Pipelines			
Data	_	ner, weather station, and from government agencies	Modeling Steps	Hyperparameter Tuning			
Strategy		for F2 performance and		Run Experiments & Gap Analysis			
	mili	nimai ron iime		F2 Score of .558, nearly 5x			
	BASELINE	Logistic Regression for Simplicity		the baseline			
Models	DECISION TREES	Efficiency and Performance at Scale	Project Outcomes	Sequential runtime of 33 minutes			
	RANDOM FORESTS	Collected Decision Trees		Most important feature of previous flight delay			
	MULTILAYER PERCEPTRON	Neural Network		Main pipeline ending with			
	ENSEMBLE	Combining Model Predictions		an ensemble model			

We used F2 Score as our primary metric of success because we want to focus more on recall to minimize false negatives

What is F2 Score?

$$F_2=rac{TP}{TP+0.2FP+0.8FN}$$

F2 is the weighted average of precision and recall and we selected the beta value of 2 to focus on recall, which refers to proportion of true positives that are correctly identified

Why use F2 Score?

We are using F2 for more focus on recall to **minimize false negatives**. False negatives occur when the flight is predicted to not be delayed, but ends up being delayed, which is the main driver in the costs in flight delays

With F1, the denominator would contain 0.5 FP and 0.5 FN

EDA

We conducted an exploratory data analysis of the flight and weather datasets, focusing on computing % of missing values per feature and understanding the features' distribution, scale, and range of values

Flights Dataset EDA

YEAR	Extreme Weather (%)	NAS - Weather (%)	Late Aircraft - Weather (%)	Total Weather (%)
2015	5.37	10.37	6.87	22.61
2016	4.70	11.26	6.85	22.81
2017	4.59	11.94	7.09	23.62
2018	6.13	12.10	7.92	26.14
2019	5.95	12.52	7.97	26.43
2020	7.86	7.23	4.97	20.06
2021	7.41	6.41	5.30	19.13

 Our EDA suggests that ~20% of total delays (in minutes) are attributable to weather conditions. The increasing average minutes of delay as time goes on suggests **network effects at play** i.e. delays accumulating as the day progresses and planes with delayed flights having their subsequent flights delayed

Data Lineage

We created a data lineage tracing how we turned the raw data files into our joined files and added in features that we plugged into our model pipelines

Joining Raw Data Files Into Joined Dataset

Models Pipeline

We focused on generalizing functions involved in the pipeline to make it easier to adjust parameters and run a multitude of experiments

* The modeling pipeline begins with ingesting the joined parquet files that were split by FL_DATE for our Blocked Time Series Cross Validation

We created new features to boost the predictive power of our models

Feature Name	Description
Previous Flight Delay	Airlines have a finite number of aircrafts, so each aircraft has a route that it follows every day, going from airport to airport often involving back to back scheduled flights. An earlier delay may affect subsequent flights for the same aircraft
Pagerank Features	PageRank describes an airport's importance and influence, which can describe how delays are spread throughout a network of airports.
Delay States	The delay state represents the network's delay patterns at a point in time
Weather Features	The categorical features indicate the presence of weather related to flight delays such as thunderstorms, snow, fog and ice
Average Airport Delay	We created a feature for the percentage of flights that are delayed in a given time window
Airport Capacity	The ratio of actual flights that depart over scheduled flights out of an airport

Feature Engineering EDA We conducted an exploratory data analysis of the newly engineered features, focusing on understanding the features' distribution, scale, and range of values

Conceptual Visualization

What and why use Previous Flight Delay?

- What: We built the previous delay by tracking the tail number of the plane and tagging whether or not the plane's previous flight was delayed or not
 - E.g. Plane ABC is flying from Canada to Eastern Europe, but the previous flight from Australia to Canada was delayed would be tagged as being previously delay i.e. has a value of 1
- Why: After an initial analysis, we saw that this had a relatively high correlation (> 0.3) with the current's flight delay
 - When conducting our initial EDA we thought that past flights would bear an impact on current flights so we decided to build this feature to test this hypothesis

We conducted an exploratory data analysis of the newly engineered features, focusing on understanding the features' distribution, scale, and range of values

 In the delay state cluster with the most delays stem from flights that involve DFW, ORD and LAX

 PageRank shows that the most important airports are ATL and DFW and changes in rank across time

We ran decision tree models with different categories of features and select top three features per category by feature importance

We selected the three most important features by feature category. Notable high performing features include:

- Previous Delay (PREV_DEP_DELAY)
- PER_DELAY_15_ORIGI N_LAST_3

Feature categories:

- Weather features
- Pagerank features
- Airport capacity
- Delay state
- Previous flight delay
- Other flight features

We utilized **feature importance**, a measure of the decrease in **node purity** weighted by the **probability of reaching that node** to score and rank features above

We compared primary metrics of success like F2 across tuned models and the Ensemble models performed the best

Experiment Results with Hyperparameters

Model	Layers	Max Bins	Max Depth	Max Iterations	Number of Trees	Train F2	Train ROC AUC	Train Precision	Train Recall Tes	st F2	Test ROC AUC	Test Precision	Test Recall
MLP	[44, 44, 2]	-	-	100	-	0.641	0.748	0.716	0.619	0.519	0.755	0.388	0.589
Decision Tree	-	350	10	-	-	0.617	0.765	0.760	0.589	0.540	0.764	0.411	0.586
Gradient Boosted Tree	-	100	10	6	-	0.630	0.772	0.756	0.605	0.546	0.771	0.405	0.599
Random Forest	-	50	10	-	100	0.642	0.765	0.737	0.622	0.547	0.765	0.384	0.612
Ensemble	-	-	-	-	-			-	-	0.558	-	0.366	0.643

Model Results Bar Chart

Voting Mechanism

*One Positive Voting: If one model suggests delay, predict DELAY

Vote by Majority: The majority prediction of DELAY or NO DELAY

One Negative Voting: If one model suggests no-delay, predict NO DELAY

^{*} Voting mechanism we ultimately selected for the ensemble model

New Model

We also wanted to implement novel approaches including the use of ensemble methods whereby all four models (hyper-parameterized Decision Tree, Random Forest, Gradient Boosted Tree, and Multilayer Perceptron) "vote" on the final prediction

Ensemble (Best Model) Confusion Matrix

Distribution of Flight Predictions by Models in Agreement

How to read chart: For 300K, none of the models correctly predicted them as delayed. For 500K flights, all models correctly predicted them as delayed

We compared primary metrics of success like F2 across tuned models and the Ensemble models performed the best

Experiment Wins

Experiment Areas of Opportunity / Next Steps

- Model Novelty: Experimented with ensemble model with varying voting mechanisms and found the positive voting drove the better recall and F2 metric
- 2. Scientific Approach to Feature
 Selection: Used relative importances
 i.e. key decision boundaries of the
 decision trees

- Altering Pipeline Inputs: Will explore ensemble model on other models besides the four specified earlier. Models with different inputs i.e. only weather features
- 2. Pull in Additional External Datasets: We explored several external datasets like airline ratings and natural disasters that we would like to join in if given more time
- 3. Further Investigate Poorly Predicted Flights: Some flights were not predicted well by any of our models, which was also true for our training data. We can isolate these data points and create models for this data

Gap Analysis

We performed a Gap Analysis comparing our best model results with models from peers and then identified strengths and opportunities for improvement to incorporate in our models

Our Best Model Performance

Comparable Best Model Performance

.558

.750

F2 Score

F2 Score

- One particular method that we did not explore was weighing our training data differently. We could have
 determined if a particular year was more relevant than others for the 2021 data, and weighed that year higher than the
 rest
- Another feature that we did not focus as much as we would have liked was **departure and arrival times**. We could have turned that "continuous" feature into a categorical ones. It's unlikely the relationship with the delay was linear, instead different times of day could have had a different result (as shown in our <u>initial EDA</u>)
- Since we explored a variety of different models, it doesn't seem that the gap came from not trying a particular model.

 We could have however done more extensive hyperparameter tuning and more experimentation

Conclusion

Airlines should implement an **ensemble model** to better predict flight delays for resource allocation/customer service purposes

Problem		are delayed by more than costing tens of billions of		Feature Engineering				
		dollars		Model Pipelines				
Data		ner, weather station, and from government agencies	Modeling Steps	Hyperparameter Tuning				
Strategy		for F2 performance and		Run Experiments & Gap Analysis				
	11111	illinarion illine		F2 Score of .558, nearly 5x				
	BASELINE	Logistic Regression for Simplicity		the baseline				
Models	DECISION TREES Efficiency and Performance at Scale		Project Outcomes	Sequential runtime of 33 minutes				
	RANDOM FORESTS	Collected Decision Trees	Corcomos	Most important feature of previous flight delay				
	MULTILAYER PERCEPTRON	Neural Network		Main pipeline ending with				
	ENSEMBLE	Combining Model Predictions		an ensemble model				

Main Deck

Executive Summary

Project Metrics

Raw Data EDA

Data Lineage

Model Pipeline

Feature Engineering

Previous Delay Feature EDA

Delay State & Pagerank Feature Engineering EDA

Feature Importance

Ensemble Model Overview

Model Results

Model Discussions (Wins & Opportunities)

Gap Analysis

Conclusion

Appendix

Data Lineage Code

Model Pipeline Code

Model Pipeline Description

What is a MLP?

Weather Dataset EDA

Decision Tree F2 Scores

Random Forest F2 Scores

Data Lineage

We created a data lineage tracing how we turned the raw data files into our joined files and added in features that we plugged into our model pipelines

Composite Key Code

Create composite key to join weather and flights dataset

```
def create composite kev(code, timestamp):
  return f'{code} {timestamp}'
create composite key = udf(create composite key)
# Create composite key for both datasets
df weather icao needed tz = df weather icao needed tz.withColumn("CODE STATION TIMESTAMP", create composite key('icao', 'HOUR TIMESTAMP'))
flights_icao_tz = flights_icao_tz.withColumn("CODE_TIMESTAMP", create_composite_key('icao', 'HOUR_WEATHER_TIMESTAMP')) \
  .withColumn("TWO CODE TIMESTAMP", create composite key('icao', 'TWO HOUR WEATHER TIMESTAMP')) \
  .withColumn("THREE CODE TIMESTAMP", create composite key('icao', 'THREE HOUR WEATHER TIMESTAMP'))
# Update the datasets
flights icao tz.write.mode("overwrite").parquet(f"{blob url}/flights with icao tz")
df weather icao needed tz.write.mode("overwrite").parquet(f"{blob url}/weather with icao tz")
# Load the new datasets
flights icao tz = spark.read.parquet(f"{blob url}/flights with icao tz") # 42430592
df_weather_icao_needed_tz = spark.read.parquet(f"{blob_url}/weather_with_icao_tz") # 1057832
print(flights icao tz.count())
# Drop unnecessary columns
columns_to_drop = ['airport_name', 'airport_city', 'airport_country', 'airport_tz', 'year', 'airport_subd', 'country', 'elevation', 'iata', 'airport_lon', 'airport_lat', 'icao']
df_weather_icao_needed_tz = df_weather_icao_needed_tz.drop(*columns to drop)
```

Models Pipeline

We focused on generalizing functions involved in the pipeline to make it easier to adjust parameters and run a multitude of experiments

Model Pipeline Reusable Functions

General Functions

```
def read clean(parquet string):
    dataset = spark.read.parquet(f"{blob url}/{parquet string}")
    dataset = dataset.where("DEP_DELIS is not NULL")
    dataset = dataset.withColumn("PREV_DEP_DELAY", col("PREV_DEP_DELAY").cast('int'))
    dataset= dataset.withColumnRenamed("DEP_DELIS", "label")
    dataset= dataset.withColumn("HOUR DEPT", substring('DEP TIME BLK',1,4))
    for col name in cont feat
        dataset = dataset.withColumn(col_name, col(col_name).cast('float'))
    dataset = dataset.na.drop(subset=["ORIGIN HourlyStationPressure".
                                          "DEST HourlyStationPressure",
                                          "ORIGIN HourlyDryBulbTemperature".
                                          "DEST HourlyDryBulbTemperature",
                                          "ORIGIN_HourlyVisibility",
                                          "DEST HourlyVisibility"])\
                          .fillna(0. subset=["ORIGIN HourlyPrecipitation"
                                            "ORIGIN_HourlyWindDirection",
                                            "OPTGIN HourlyWindSpood"
                                            "DEST HourlyPrecipitation"
                                            "DEST MourlyWindDirection"
                                            "DEST_HourlyWindSpeed"])
    return dataset
def create parameters(parameter grid):
    param names = list(parameter grid.keys())
    param values = parameter grid.values()
    combinations = list(itertools.product(*param_values))
    return (param names, combinations)
    n delays = train df.filter(f.col("label") == 1).count()
    n no delays = train df.filter(f.col("label") == 0).count()
    total = n delays + n no delays
    keep percent = n delays / n no delays
    train delay = train df.filter(f.col('label') == 1)
    train_non_delay = train_df.filter(f.col('label') == 0).sample(withReplacement=False,fraction=keep_percent,seed=741)
    train downsampled = train delay.union(train non delay)
    return train downsampled
    preds_mc_rdd = pred_df.select(['prediction', 'label']).rdd
    preds_b_rdd = pred_df.select('label','probability').rdd.map(lambda row: (float(row['probability'][1]), float(row['label'])))
    metrics mc = MulticlassMetrics(preds mc rdd)
    metrics b = BinaryClassificationMetrics(preds b rdd)
    F2 = np.round(metrics_mc.fMeasure(label=1.0, beta=2.0), 4)
    au ROC = metrics b.areaUnderROC
    return F2, au ROC
```

Model Pipeline Code

Specify Model Pipelines

```
1 def tree pipeline(model):
        """Pipeline for tree models - DT, RF, GBT"""
        assembler_cont = VectorAssembler(inputCols=cont_feat,
                                       outputCol="cont features")
        indexer = StringIndexer(inputCols=columns categorical
                              outputCols=[c+"_indexed" for c in columns_categorical]).setHandleInvalid("keep")
14
        ohe = OneHotEncoder(inputCols=[c+" indexed" for c in columns categorical].
                          outputCols= [c+"_OHE" for c in columns_categorical]).setHandleInvalid("keep")
        assembler categ = VectorAssembler(inputCols= [x+" OHE" for x in columns categorical].
                                       outputCol="cat_features")
        assembler = VectorAssembler(inputCols= ["cat features", "cont features"].
                                       outputCol="features")
        pipeline = Pipeline(stages=[assembler_cont, #bucketizer.
                                    indexer, ohe, assembler cated, assembler, modell)
        return pipeline
```

Train Model (Decision Tree)

Evaluate Model (RF)

We focused on generalizing functions involved in the pipeline to make it easier to adjust parameters and run a multitude of experiments

Feature Selection

Hyperparameter Tuning

Model Selection

We began by running decision tree models with different categories of features:

- Weather Features
- Airport Capacity (QRN)
- Airport PageRank
- Clustered Delay States
- Previous Flight Feature (based on Tail Number)
- Other Flight Features (Airline Carrier, Seasonality)

Once features were selected, we experimented with combinations of parameters against cross validation data

- Decision Trees / MLP: VectorAssembler, MinMaxScaler
- Decision Tree Loss
 Function: Gini Impurity

Once we selected the best hyperparameters, we compared the primary metrics like F2 score, precision, and recall across all models:

 Used average F2 score to fit the full train dataset and evaluate the full test dataset

We implemented a multilayer perceptron (MLP), a fully connected neural network easily integrated into our model pipeline

What is a Multilayer Perceptron and why use it?

- The MLP utilizes an initial layer of *m* nodes, representing the number of features, with a final output layer of 2
- We had limited time to experiment with hyperparameter tuning, where we primarily changed the number of layers and the number of nodes per layer
- We ultimately found that a MLP architecture of (44

 Sigmoid 44 Sigmoid 2 Softmax) produced
 the best F2 score for our selected features.

EDA

We conducted an exploratory data analysis of the flight and weather datasets, focusing on computing % of missing values per feature and understanding the features' distribution, scale, and range of values

Weather Dataset EDA

 The distributions of the temperature, snowfall, rain, and percentage of delayed flights suggest that weather feature are highly correlated to certain flight delays

 Features such as wind speed and direction were reviewed to assess their usefulness to explain flight delays.

F2 Score by Decision Tree Model

Random Forest Overall Performance

