TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TD62304AFN, TD62305AFN

7ch LOW INPUT ACTIVE DARLINGTON SINK DRIVER

The TD62304AFN and TD62305AFN are non-inverting transistor arrays, which are comprised of seven NPN darlington output stages PNP input stages. These devices are Low Level input active drivers and are suitable for operations with TTL, 5V CMOS and 5V Microprocessor which have sink current output drivers. Applications include relay, hammer, lamp and led driver.

Package Type : SSOP16 pin

High Sustaining Voltage : $V_{CE}(SUS) = 50V (MIN.)$

Output Current (Single Output): IOUT = 500mA/ch (MAX.)

• Low Level Active Input

Input Compatible with TTL and 5V CMOS

Standard Supply Voltage

PIN CONNECTION (TOP VIEW)

Weight: 0.07g (Typ.)

SCHEMATICS (EACH DRIVER)

TD62304AFN

TD62305AFN

Note: The input and output parasitic diodes cannot be used as clamp diodes.

961001FBA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTE	RISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		Vcc	- 0.5 ∼ 7.0	V	
Output Sustaining Voltage		VCE (SUS)	- 0.5 ∼ 50	٧	
Output Current		IOUT	500	mA / ch	
Input Voltage	TD62304	\/\.	– 22 ~ V _{CC} + 0.5	٧	
	TD62305	V _{IN}	− 0.5 ~ 7		
Input Current		IN	– 10	mΑ	
Power Dissipation		PD	0.78 (+1)	W	
Operating Temper	ature	T _{opr}	− 40 ~ 85	°C	
Storage Temperature		T _{stg}	− 55 ~ 150	°C	

^{*1:} On Glass Epoxy PCB ($50 \times 50 \times 1.6$ mm Cu 40%)

RECOMMENDED OPERATING CONDITIONS (Ta = $-40 \sim 85$ °C)

CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT	
Supply Voltage		Vcc			4.5	5.0	5.5	V	
Output Sustaining Voltage		VCE (SUS)			0	_	50	V	
Output Current			DC 1 Circuit		0	1	400		
		^l ou⊤∗	T _{pw} ≦ 25ms 7 Circuit	Duty = 10%	0	-	260	mA / ch	
			T _j = 120°C Ta = 85°C	Duty = 50%	0	_	65		
Input Voltage	TD62304	V _{IN}		•	- 20	_	Vcc	v	
	TD62305				0	_	5.5	v	
Input Voltage	TD62304	V			- 22	_	V _C C – 3.5	v	
(Output On)	TD62305	VIN (ON)			- 0.5	_	V _{CC} – 3.7] '	
Input Voltage	TD62304	\/\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			V _{CC} – 0.4	_	Vcc	v	
(Output Off)	TD62305	VIN (OFF)			V _{CC} – 0.6	_	Vcc] '	
Power Dissipation		P _D *			_		0.325	W	

^{*:} On Glass Epoxy PCB ($50 \times 50 \times 1.6$ mm Cu 40%)

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACT	ERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX	UNIT
Output Leaka Current	ige	ICEX	1	$V_{CC} = 5.5V$, $V_{OUT} = 50V$ Ta = 85°C, $I_{IN} = 0$	_	_	100	μ A
Output Satura Voltage	ation	V _{CE} (sat)	2	$V_{CC} = 4.5V$ $V_{IN} = V_{IN} (ON) MAX.$ $V_{IN} = 0.8V$		1.4 1.4	2.0	>
Input Current	:	^I IN (ON)	3	$V_{CC} = 5.5V, V_{IN} = 0.4V$ $V_{CC} = 5.5V, V_{IN} = -20V$	_	- 0.32 	- 0.45 - 2.6	mA
Output Current		IN (OFF)	4			_	- 40	μΑ
Output Voltage	TD62304	V _{IN} (ON)	5		_		V _{CC} - 2.8	V
	TD62305					1	V _{CC} - 3.7	
Supply Current		I _{CC} (ON) 6		$V_{CC} = 5.5V, V_{IN} = 0V$	_	17	22	mA
Supply Current				$V_{CC} = V_{IN} = 5.5V$		_	100	μ A
Turn-On Delay		^t ON	7	$V_{CC} = 5V$, $C_L = 15pF$		0.1	_	μ s
Turn-Off Delay		tOFF	_ ′	$V_{OUT} = 50V$, $R_L = 125\Omega$	_	3		و بر

TEST CIRCUIT

1. I_{CEX}

3. I_{IN} (ON)

5. V_{IN} (ON)

7. ton, toff

2. VCE (sat)

4. IN (OFF)

6. ICC

- (Note 1) Pulse Width 50 μ s, Duty Cycle 10%, Output Impedance 50 Ω , $t_r \le$ 10ns, $t_f \le$ 5ns
- (Note 2) CL includes probe and jig capacitance

PRECAUTIONS for USING

Utmost care is necessary in the design of the output line, V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

Weight: 0.07g (Typ.)

OUTLINE DRAWING SSOP16-P-225-0.65B Unit:mm 0.23TYP 0.65 5.5MAX 5.0±0.2 0.45±0.2