(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-165621

(43)公開日 平成9年(1997)6月24日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
C 2 1 D	8/10		9270 -4K	C 2 1 D	8/10		Λ
	8/02		9270 -4K		8/02		Λ
	9/08				9/08		E
C 2 2 C	38/00	301		C 2 2 C	38/00	301	Z
	38/12				38/12		
			審查請求	未辦求 請	求項の数 2	OL (全 8	頁) 最終頁に続く
(21)出願番号		特顧平7-325823		(71)出廊	人 0000041	23	
					日本鋼管	株式会社	
(22) 出顧日		平成7年(1995)12	月14日				- 丁目1番2号
				(72)発明	者 深井 英	を明	– .
					東京都千	F代田区丸の内	-丁目1番2号 门
					本鋼管模	株式会社内	
				(72)発明	者 長江 守	床	
					東京都千	F代田区丸の内	一丁目1番2号 日
					本鋼管模	株式会社内	
				(74)代理	1人 弁理士	鈴江 武彦	

(54) 【発明の名称】 低降伏比の建築用厚肉耐火鋼管の製造方法

(57)【要約】

【課題】経済性や生産性を損なうことなく、板厚各部に おいて高強度および低降伏比を達成することが可能で、 かつ高温においても強度低下の少ない厚肉の建築用鋼管 の製造方法を提供すること。

【特許請求の範囲】

【請求項1】 重量%で、C:0.05~0.25%、 $Si: 0.10\sim2.00\%$, $Mn: 0.5\sim2.0$ %, Mo: 0. 10~0. 60%, V: 0. 01~0. 1%, sol. Al: 0.002~0.20%, N: 0.001~0.02%を含有する鋼に、再結晶温度以 下かつAr。以上の温度域において累積圧下率が30% 以上の熱間圧延を施し、その後5~30℃/secの冷 却速度で変態が終了する温度以下まで冷却して鋼板に し、その鋼板をAc、以上でかつAc。以下の二相領域 に加熱し、Ar、以上の温度域から管状への加工を板端 部より開始し、板中央部にて終了して、その後、以下に 示す鋼のPcmの値をPとしたときに、P℃/sec以 上かつ100×P2 ℃/sec以下の速度で冷却して、 ミクロ組織を、フェライト+ベイナイトを主体とし、島 状マルテンサイトが5%以下の組織にすることを特徴と する低降伏比の建築用厚肉耐火鋼管の製造方法。

Pcm=[C]+[Si]/30+[Mn]/20+ [Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5×[B] (ただし[]は各元素の重量%で表した濃度を示す。)

【請求項2】 重量%で、C:0.05~0.25%、 $Si: 0.10\sim 2.00\%$, $Mn: 0.5\sim 2.0$ %, Mo: 0. 10~0. 60%, V: 0. 01~0. 1%, sol. Al: 0.002~0.20%, N: 0.001~0.02%を含有し、さらに(i)Nb+ V+Tiが0.2%以下となる範囲のNbおよびTiの うち少なくとも1種、(ii) Cu、NiおよびCrの少 なくとも1種を0.01~1.5%、(iii) B:0.0 005~0.005%、および(iV)Ca:0.000 5~0.005%の(i)~(iV)のうち少なくとも1 種を含有する鋼に、再結晶温度以下かつArc。以上の 温度域において累積圧下率が30%以上の熱間圧延を施 し、その後5~30℃/secの冷却速度で変態が終了 する温度以下まで冷却して鋼板にし、その鋼板をAc, 以上でかつAc。以下の二相領域に加熱し、Ar」以上 の温度域から管状への加工を板端部より開始し、板中央 部にて終了して、その後、以下に示す鋼のPcmの値を Pとしたときに、P℃/sec以上かつ100×P² ℃ /sec以下の速度で冷却して、ミクロ組織を、フェラ イト+ベイナイトを主体とし、島状マルテンサイトが5 %以下の組織にすることを特徴とする低降伏比の建築用 厚肉耐火鋼管の製造方法。

Pcm=[C]+[Si]/30+[Mn]/20+ [Cu]/20+[Ni]/60+[Cr]/20+ [Mo]/15+[V]/10+5×[B] (ただし[]は各元素の重量%で表した濃度を示す。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高層ビルや海洋構造物などに用いられる低降伏比でかつ高温において強度低下の少ない40~150mm程度の厚肉の建築用耐火鋼管の製造方法に関する。

[0002]

【従来技術】高層ビルや海洋構造物等に用いられる厚肉 鋼管には、高強度・高靭性・低降伏比・高溶接性等の性 能が要求される。そこで比較的薄肉の鋼管の場合、低成 分系の組成を採用して溶接性を確保するとともに、制御 圧延や制御冷却などの技術を駆使して高強度かつ高靭性 の鋼板を製造し、冷間加工によって管状に成形してい る。この場合、管状への成形時に加工硬化によって材質 変化が生じるので、所定の特性を達成するために、成形 後に応力除去処理等の熱処理が必要となる。

【0003】一方、建築物の高層化が進む現在、建築用 鋼管柱には厚肉化の傾向にある。厚肉鋼管の場合には、 加工時のプレス装置の荷重の観点から冷間成形は不可能 であり、温間成形や熱間成形が採用される。

【0004】しかし製管に熱間成形を採用した場合には、制御圧延等によって得られた強度への効果が消失してしまうため、高成分系の組成の材料が用いられることになるが、高成分系では靭性や溶接性の低下が生じ、この点で好ましくない。

【0005】また、温間成形に関して、特開昭62-54018号公報には、 $750\sim400$ $^{\circ}$ のA c_1 以下の温度域に再加熱して、直ちにあるいは放冷後 $750\sim2$ 50 $^{\circ}$ の温度域にて加工することにより、靭性などを優れたものにする旨開示されている。

【0006】一方、建築用鋼管柱の重要な特性の一つで ある低降伏比を得る方法として、以下に示す方法が提案 されている。特開平3-87318号公報には、鋼管を Ac₃ - 250℃~Ac₃ - 20℃の温度域に加熱しそ の後水冷するか、あるいはこれらの熱処理後に加工歪み を付与して焼き戻す方法が提案されている。また、特開 平3-87317号公報では、鋼管をAc。以上に加熱 した後に空冷し、Ar₃ -250℃~Ar₃ -20℃の 温度域から水冷するか、あるいはこれらの熱処理後に加 工歪みを付与して焼き戻す方法が提案されている。さら に、特開平4-321号公報には、鋼管をAc。-20 O℃以上の温度に加熱し、Ac3 -200℃以上で歪付 与を開始し、Ac₃ - 200℃~Ac₃ - 20℃の温度 域で歪付与を終了して、水冷した後に焼き戻す方法が提 案されている。しかしながら、これらの方法では鋼管に 複雑な処理を施すことになり、経済性および生産性を著 しく損なうことになる。

【0007】さらに、近年建設コスト削減の観点から耐火被覆の低減が求められており、600℃での降伏応力が常温の2/3以上を有する耐火特性も要求されている。耐火特性を確保する手段として、特開平4-128

315号、特開平4-168218号、特開平4-168219号、特開平4-176821号、特開平4-228521号の各公報に開示されているような、Mo、V、Nb等の成分元素を添加し、所定の温度で歪みを与えて、所定の速度で冷却を行う方法が提案されている。【0008】

【発明が解決しようとする課題】以上のように、厚肉の建築用鋼管柱の製造において、冷間加工では成形機の能力の観点から製造が困難であり、また熱間成形においては制御圧延の効果が失われるので組成を高強度の高成分系にしなければならず、そのため靭性や溶接性が損なわれるなどの不都合が生じる。

【0009】一方、温間成形の場合でも、Ac₁以下の温度に加熱後に温間成形する場合には、加工中の温度降下により変形抵抗が増大する傾向にあり、また温度降下とともに降伏比が上昇する傾向があり、低降伏比が達成されない問題が生ずる。また、低降伏比を達成するために鋼管に対して種々の熱処理を施すことが試みられているが、これらの方法は全て複雑で、経済性を損ねる不都合が生じる。

【0010】また、耐火性確保の手段として、特開平4-128315号、特開平4-168218号、特開平4-16821号、特開平4-16821号、特開平4-16821号、特開平4-228521号の各公報に開示されているような、Mo、V、Nb等の成分元素を添加し、所定の温度で歪みを与えて、所定の速度で冷却を行う方法の場合には、Moのような焼き入れ性を高め、また島状マルテンサイトを形成しやすくする元素の多量添加により、高降伏比や靭性低下の不都合を生じる。

【0011】さらに、鋼板から鋼管への成形に際しては、鋼管外面で引張応力が、鋼管内面で圧縮応力が働き、応力の中立軸となる板厚中心で応力が働かないという現象が生じるので、温間あるいは熱間成形の場合、同じ加工温度でも板厚中心では内外表面に比較して低降伏比となるが強度が著しく低く、また逆に内外表では所定の強度を達成するが低降伏比を達成しない傾向にある。また、温間成形や熱間成形の場合には、鋼板内の各部によって加工を受ける温度が異なり、比較的高温で加工を受ける部位では低降伏比となるが強度が低く、逆に低温で加工を受ける部位では低降伏比となるが強度が低く、逆に低温で加工を受ける部位では所定の強度を達成することが可能だが低降伏比が達成されない傾向にある。このため、温間成形や熱間成形による製管において、板厚方向での機械的特性の分布は加工温度がもっとも低くなる最終加工部で最大となる。

【0012】本発明はかかる事情に鑑みてなされたものであって、経済性や生産性を損なうことなく、板厚各部において高強度および低降伏比を達成することが可能で、かつ高温においても強度低下の少ない厚肉の建築用耐火鋼管の製造方法を提供することを目的とする。

[0013]

【課題を解決するための手段】本願発明者らは、製管に 際して大きい加工能力を有する設備を必要とせず、靭性 の劣化を引き起こすことなく、板厚各部において高強度 および低降伏比を達成し、かつ高温においても強度低下 の少ない鋼管の製造方法について詳細に検討した結果、 特定の成分組成の鋼を特定の圧延条件で圧延し、その鋼 板を二相域に加熱して、その温度域から製管のための曲 げ加工を板端部より開始し、板中央部にて終了させ、そ の後所定の冷却速度で冷却して、ミクロ組織を制御する ことにより、上記の課題を解決することが可能であるこ とを見出した。すなわち、従来から二相域への加熱によ り低降伏比が得られることは知られていたが、同時に靭 性の低下を招くため、この温度域での加工は行われてい なかった。しかし、上述のように成分や圧延条件、さら に温間での製管順序および冷却速度を制御することによ って、ミクロ組織を調整して靭性劣化を抑制し、板厚各 部において室温および高温における高強度、ならびに低 降伏比を達成することができる。

【0014】本発明はこのような知見に基づいて完成さ れたものであり、第1に、重量%で、C:0.05~ 0. 25%, Si: 0. 10~2. 00%, Mn: 0. 5~2.0%, Mo: 0.10~0.60%, V: 0. $01\sim0.1\%$, sol. Al: 0.002 ~0.20 %、N:0.01~0.02%を含有する鋼に、再結晶 温度以下かつAr3 以上の温度域において累積圧下率が 30%以上の熱間圧延を施し、その後5~30℃/se cの冷却速度で変態が終了する温度以下まで冷却して鋼 板にし、その鋼板をAc」以上でかつAc。以下の二相 領域に加熱し、Ar」以上の温度域から管状への加工を 板端部より開始し、板中央部にて終了して、その後、鋼 のPcmの値をPとしたときに、P℃/sec以上かつ 100×P² ℃/sec以下の速度で冷却して、ミクロ 組織を、フェライト+ベイナイトを主体とし、島状マル テンサイトが5%以下の組織にすることを特徴とする低 降伏比の建築用厚肉耐火鋼管の製造方法を提供するもの である。

【0015】第2に、重量%で、C:0.05~0.25%、Si:0.10~2.00%、Mn:0.5~2.0%、Si:0.10~0.60%、V:0.01~0.1%、sol.Al:0.002~0.20%、N:0.01~0.02%を含有し、さらに(i)Nb+V+Tiが0.2%以下となる範囲のNbおよびTiのうち少なくとも1種、(ii)Cu、NiおよびCrの少なくとも1種を0.01~1.5%、(iii)B:0.0005~0.005%、および(iV)Ca:0.0005~0.005%の(i)~(iV)のうち少なくとも1種を含有する鋼に、再結晶温度以下かつAr3以上の温度域において累積圧下率が30%以上の熱間圧延を施し、その後5~30℃/secの冷却速度で変態が終了する温度以下まで冷却して鋼板にし、その鋼板をAc1

以上でかつ Ac_3 以下の二相領域に加熱し、 Ar_1 以上の温度域から管状への加工を板端部より開始し、板中央部にて終了して、その後、鋼のPc mの値をPc したときに、P C / sec 以上かつ $100 \times P^2$ C / sec 以下の速度で冷却して、sec 力和織を、 $\sqrt{2}$ $\sqrt{2}$

[0016] $Pcm = [C] + [Si]/30 + [M]/20 + [Cu]/20 + [Ni]/60 + [Cr]/20 + [Mo]/15 + [V]/10 + 5 \times [B]$

(ただし[]は各元素の重量%で表した濃度を示す。)

[0017]

【発明の実施の形態】以下、本発明に係る厚肉耐火鋼管の製造方法について、組成、圧延条件、成形条件、ミクロ組織に分けて作用とともに詳細に説明する。

(組成)本発明では、基本成分元素としてC、Si、Mn、Mo、V、solAl、およびNを含有し、選択成分として、(i) Nb、Tiの少なくとも1種、(ii) Cu、NiおよびCrの少なくとも1種、(iii) B、および(iV) Caの(i)~(iV)のうち少なくとも1種が添加される

【0018】これら成分元素の限定理由を以下に説明する。なお、以下の説明において%表示はすべて重量%を示す。

C: この種の鋼の強度を安価にかつ効果的に確保するためにはCはO.05%は必要である。しかし、O.25%を超えると低温割れや高温割れ等が発生し、溶接性や靭性を損なう。このため、C含有量をO.05~O.25%の範囲とする。

【0019】Si: Siは脱酸剤として添加されるが、0.10%未満では十分な脱酸効果が得られず、一方2.00%を越えて添加されると靭性や溶接性の劣化を招く。このため、Si含有量を0.10 \sim 2.00%の範囲とする。

【0020】Mn: Mnは鋼の強度および靭性の向上に有効な鋼の基本元素として添加されるが、0.5%未満ではその効果が小さく、また2.0%を超えると溶接性や靭性が著しく劣化する。このため、Mn含有量を0.5~2.0%の範囲とする。

【0021】Mo: Moは固溶強化による板厚各部において室温および高温にて高強度化を達成する効果を有するとともに、微量添加では焼き入れ性の増大による組織変化により靭性の劣化を抑制する効果がある。しかし、その含有量が0.10%未満ではこれらの効果が十分ではなく、高強度化および靭性劣化抑制が不十分となる。また、0.60%を越えて多量に添加されると溶接性や靭性を損なうとともに、経済性をも損なってしま

う。このため、Mo含有量を0.10~0.60%の範囲とする。

【0022】V: Vは窒化物を形成して高温強度を向上させるが、0.01%未満ではその効果が小さく、また0.1%を超えると靭性低下につながる。このため、V含有量を0.01~0.1%の範囲とする。

【0023】sol.Al: sol.Alは脱酸剤として添加されるが、0.002%未満では十分な脱酸効果が得られず、scl.20%程度の添加でその効果が飽和し、それより多く添加することは経済的な面から望ましくない。このため、sol.Al含有量を0.002~0.20%の範囲とする。

【0024】N: Nは窒化物を形成して高温強度を向上させるが、0.001%未満ではその効果が小さく、また0.02%を超えると朝性低下につながる。このため、N含有量を0.001~0.02%の範囲とする。【0025】以上が基本成分であるが、以下に示すNb、Ti、Cu、Ni、Cr、B、およびCaを選択成分として添加することによって、高温強度の向上、朝性改善、介在物の形態制御が可能となり、溶接性も改善される。

【0026】Nb、Ti: NbおよびTiはVと同様に、析出硬化により高温にて高強度化を達成する効果がある。しかし、これらNbおよびTi、ならびに必須成分として添加されるVの含有量が、Nb+V+Tiで0.20%を超えるような範囲になると、室温において極めて高強度となり、また靭性の低下につながる。このため、NbおよびTiは、Nb+V+Tiが0.20%以下となるような範囲で含有される。

【0027】Cu、Ni、Cr: Cu 、Ni、Crt 固溶強化や焼き入れ性改善により靭性を大きく損なわずに高強度化を計ることができるが、溶接性や経済性の観点から、これらの含有量はCu、Ni およびCr の少なくとも1 種を0.01~1.5%に範囲とする。

【0028】Ca: Caは介在物の形態を球状化させ、これにより水素誘起割れやラメラテアなどを防止する効果があるが、0.0005%未満ではその効果が得られず、0.005%程度の添加で効果は飽和し、それより多量に添加することは経済的な面から好ましくない。このため、Ca含有量を0.0005~0.005%の範囲とする。

【0029】B: Bは焼き入れ性改善により靭性を大きく損なわずに高強度化を図ることができるが、その含有量が0.0005%未満ではその効果が十分に得られず、また0.005%程度の添加でその効果は飽和し、それより多量に添加することは経済的な面から好ましくない。このため、B含有量を0.0005~0.005%の範囲とする。

【0030】(圧延条件)本発明においては、上述のような組成を有する鋼に対し、再結晶温度以下かつAr3

以上の温度域において累積圧下率が30%以上の熱間圧 延を施して鋼板とする。

【0031】ここで、再結晶温度以下で30%以上の累積圧下率の熱間圧延を施すこととしたのは、未再結晶域で十分な圧延を行うことにより、制御圧延の効果を十分に発揮させて微細なオーステナイト粒を得るためである。また、Ar₃以上の温度域で熱間圧延を行うため、圧延終了温度も当然にAr₃以上となるが、このようにしたのは、圧延によって伸展した組織の形成を抑制するためである。

【0032】なお、再結晶温度は成分系によって異なるが、目安としてNb無添加系で900℃程度、Nb添加系で950℃程度である。また、Ar₃もCやMn含有量によって変化するが、750℃程度が目安となる。

【0033】そして、本発明では熱間圧延後に5~30 ℃/secの冷却速度で変態が終了する温度以下まで冷却するが、これはベイナイトを含有する組織を得るためである。

【0034】(成形条件)本発明においては、以上のようにして圧延した鋼板を Ac_1 以上でかつ Ac_3 以下の二相領域の温度範囲に加熱し、 Ar_1 以上の温度域から管状への加工を板端部より開始し、板中央部にて終了して、その後、鋼のPcmの値をPcとしたときに、PC/sec以上かつ $100 \times P^2$ C/sec以下の速度で冷却して、ミクロ組織をフェライト+ベイナイトを主体とし、島状マルテンサイトが5%以下の組織にする。

【0035】なお、ここでPcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B] (ただし[]は各元素の重量%で表した 濃度を示す。) である。

【0036】ここで鋼板を Ac_1 以上でかつ Ac_3 以下の二相領域の温度範囲に加熱して、 Ar_1 以上の温度域から管状への加工を開始することとしたのは、変形抵抗を低下させ、大きな設備能力を必要とせずに管状に成形するためと、二相域での加工により低降伏比を達成するためである。

【0037】また、その後P℃/sec以上かつ100×P²℃/sec以下の速度で冷却することとしたのは、この範囲で冷却することにより鋼板のミクロ組織を調整し、高降伏比化および低靭性化を抑制する効果があるからである。冷却速度がP℃/sec未満では組織の粗大化を招き低靭性となり、100×P²℃/secより速いとフルベイナイト組織となって高降伏比化を招く。

【0038】さらに、板端部より加工を開始し、板中央部にて加工を終了することとしたのは、加工中の温度低下の速い板端部を初期に成形し、温度低下の比較的遅い板中央部を後から成形することによって、板各部における加工の際の温度差を縮小する効果が得られるからであ

る。

【0039】(ミクロ組織)ミクロ組織を、フェライト +ベイナイトを主体とし、島状マルテンサイトを5%以 下にした組織に制御することとしたのは、このようにす ることにより低降伏比化と朝性を確保する効果が得られ るためである。フルベイナイト組織では高降伏比とな り、また島状マルテンサイトが5%より多いと朝性が著 しく低下する。このため、ミクロ組織を、島状マルテン サイトを5%以下含有するフェライト+ベイナイト組織 に制御する。特に低降伏比化のためには、島状マルテン サイトを1%以上とすることが好ましい。

【0040】なお、管状への成形は、プレスベンド等の 円筒に加工する際に通常用いられる方法を用いて行うこ とが好適であるが、その方法は限定されるものではな い。

(作用)ここで本発明を用いることにより、板厚各部に おいて室温および高温における高強度、ならびに室温で の低降伏比を達成することができるのは以下の作用によ る。

【0041】基本成分としてC、Si、Mn、Mo、 V、sol. Al、およびNを含有し、または、さらに (i) Nb、Tiの少なくとも1種、(ii) Cu、Ni およびCrの少なくとも1種、(iii) B、および (iV) $Cao(i) \sim (iV)$ のうち少なくとも 1 種を選択成分 として含有し、これらを特定の含有量に制御し、さらに 温間での製管の条件および順序を制御することによっ て、板厚各部において室温および高温で高強度を達成す る。つまり、鋼管の製造において、管状への成形時の歪 み分布によって材質の変化が生じることにより、板厚中 心部で低強度化が生じ、内外表で高降伏比化が生じる が、本発明では、基本成分のうちMoおよびVあるいは 選択的に添加される元素による大きな固溶強化の効果、 および温間での製管の順序の制御による鋼板内での加工 温度の分布の縮小化により、板厚方向における材質の変 化が小さく、かつ高強度を達成することができる。

【0042】また、鋼板を Ac_1 以上でかつ Ac_3 以下の二相領域の温度範囲に加熱して、 Ar_1 以上の温度域から管状への加工を開始することは、変形抵抗を低下させ、大きな設備能力を必要とせずに管状に成形すること、および二相域での加工により低降伏比を達成する作用がある。また、その後PC/sec以上かつ100× P^2 C/sec以下の速度で冷却して、ミクロ組織を、フェライト+ベイナイトを主体とし、島状マルテンサイトが5%以下とした組織に制御することは、組織の微細化や島状マルテンサイト+フェライト+ベイナイトとすることで低降伏比を達成する効果がある。

[0043]

【実施例】以下、本発明の具体的な実施例について説明 する。

(実施例1)表1に示す組成の鋼を、1150℃に加熱

して粗圧延後、900~800℃の温度域で累積圧下率40%の仕上げ圧延を行い、その後5℃/secで冷却して、板厚70mmの鋼板を製造した。これらの鋼板を800℃に加熱後、直ちにプレスベンドによって管状への成形を板端部より開始し、板中央部にて終了し、その後0.5℃/secの速度で冷却した。このときの鋼管の外径Dと板厚tとの比D/tは10とした。

【0044】このようにして成形した鋼管において、加工温度が最も低く板厚方向での機械的性質の分布が大きい最終加工部での機械的性質、板厚中央の600℃での降伏強度(YS)、および表層近傍での島状マルテンサイトの体積分率を測定した結果を表2に示す。

[0045]

【表1】

	化 学 成 分(wt%)														
符号	С	S i	Мп	Cu	Ni	Сr	Мо	Νb	٧	Тi	В	Sa1, A1	T. N.	Ca	Nb+ V +T1
A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15	0.11 0.17 0.11 0.12 0.12 0.13 0.12 0.06 0.10 0.09 0.11 0.10	0.30 0.36 0.28 0.27 0.31 0.29 0.35 0.32 0.29 0.33 0.31 0.28 0.27 0.32	1.01 1.15 0.99 1.03 1.01 1.04 0.98 1.00 1.11 0.98 1.12 1.04 1.03 1.01 0.98	0. 04 0. 03 0. 01 0. 01 0. 05 0. 02	0. 02 0. 02 0. 04	0. 09 0. 06 0. 50 0. 20 0. 30	0.03 0.11 0.34 0.48 0.51 0.53 0.56 0.57 0.58 0.72 0.13 0.48 0.51 0.49 0.52	0. 09 0. 11 0. 08 0. 07 0. 08 0. 05 0. 06	0.049 0.051 0.053 0.058 0.055 0.055 0.055 0.052 0.053 0.048 0.003 0.055 0.058	0. 007 0. 005 0. 004 0. 005 0. 008 0. 001 0. 008 0. 008 0. 008 0. 008 0. 008 0. 008	0. 0008 0. 0005	0.025 0.021 0.025 0.019 0.022 0.023 0.028 0.031 0.019 0.025 0.027 0.026 0.024 0.024	0.008 0.005 0.006 0.007 0.004 0.006 0.004 0.005 0.005 0.004 0.008 0.005 0.005	0.0007 0.0011 0.0009	0.056 0.146 0.167 0.063 0.063 0.093 0.125 0.061 0.144 0.057 0.011 0.112 0.064 0.163 0.210

[0046]

【表2】

		#	¥ ??	後の	概被	的(生質			表月近傍の急状			
	表層部			板	事 中	央		マルテンサイト					
	Y S	TS	Y R	v E	YS	T S	Y R	v K	3 Y 3000	の体徴分率	Pcn	100 × Pcm²	備考
	(NYA)	(MPa)	(*)	(1)	(EPS)	(KPa)	(x)	(1)	(Hra)	(%)			
A 0 1	330	500	66	315	321	485	67	324	97	1.0	0.178	3. 147	比較例
A 0 2	364	532	68	284	354	520	68	295	222	1.2	0. 262	6. 861	本発明例
A 0 3	386	551	70	261	371	547	68	287	231	1.5	0.198	3. 932	本発明例
A 0 4	405	574	71	248	392	568	69	265	243	1.8	0.209	4. 374	本発明例
A 0 5	425	594	72	220	412	584	71	246	256	2.2	0.223	4. 988	本発明例
A 0 6	421	591	71	221	417	584	71	245	254	2. 7	0. 223	4. 951	本発明例
A 0 7	428	593	72	222	414	582	71	241	258	2.1	0. 263	6. 913	本発明例
AU8	426	590	72	227	411	580	71	243	257	2.5	0. 237	5. 619	本発明例
A U 9	423	596	71	204	415	581	71	220	255	2. 5	0. 184	3. 391	本発明例
A10	455	634	72	19	444	629	71	25	278	5. 6	0. 213	4. 524	比較例
A11	341	512	G7	285	337	500	67	299	92	1,4	0.165	2. 732	比較例
A 1 2	424	586	72	213	417	577	73	231	256	1.6	0. 214	4. 594	本発明例
A 1.3	423	588	72	220	413	574	72	239	255	1. 2	0. 201	4. 052	本発明例
A 1.4	444	601	74	213	433	590	73	238	269	1.7	0. 213	4. 534	本発明例
A 1 5	469	625	75	22	452	613	74	25	285	5. 5	0. 253	6. 423	比較例

注1. v Eは0℃でのシャルピー吸収エネルギー

2. YRは降伏比

3. 組織は全てフェライト+ベイナイトを主体としたもの

【0047】表2に示すように、本発明の範囲内の成分 組成のものでは、0℃におけるシャルピー吸収エネルギーマEが200J以上の高靭性、および80%以下の低 降伏比が得られた。さらに、板厚中央にて600℃においても降伏強度(YS)が200MPa以上の高強度が 得られた。

【0048】これに対して、本発明の範囲を外れる成分

組成のものは、板厚表層部あるいは中央部にて0℃におけるシャルピー吸収エネルギーvEが100J未満の低靭性を示し、また板厚中央において600℃で降伏強度(YS)が100MPa未満の低強度となった。

【0049】(実施例2)表1の符号A05の組成の鋼を、1150℃に加熱して粗圧延後、表3に示すように、1000~650℃の温度域で累積圧下率20~5

0%の仕上げ圧延を行い、その後5℃/secの速度で冷却して、板厚70mmの鋼板を製造した。この鋼板を800℃に加熱後、直ちにプレスベンドによって管状への成形を板端部より開始し、板中央部にて終了して、その後0.5℃/secの速度で冷却した。このときの鋼管の外径Dと板厚tとの比D/tは10とした。

【0050】このようにして成形した鋼管において、最終加工部での機械的性質、板厚中央の600℃近傍での降伏強度(YS)、および表層近傍での島状マルテンサイトの体積分率を表3に示す。

【0051】

【表3】

					製質	後	の模	被的	性質	t		表層近傍			
	圧萬温度域	累積圧下率	#	ŧ /≣	局部		极厚中央					の 島 状 マルテン	備	考	Ļ
	(°C)	(%)	Y S	T S	Y R	vΕ	Y S	T S	YR	νE	a Y 7008	サイトの 体積分率			
			(MPa)	(Mya)	(%)	(1)	(MPa)	(WPa)	(K)	(1)	(MPa)	(%)			
B O 1	1000~900	40	410	470	87	19	399	459	87	84	247	0.7	比:	校	G
B 0 2	850~800	40	425	591	72	233	411	580	71	260	256	1.5	本発	明	в
B 0 3	900~800	40	425	594	72	220	412	584	71	246	256	2.2	本発	明	ß
B 0 4	900~850	40	420	595	71	221	408	583	70	257	253	1.9	本员	明	9
B 0 5	900~650	40	405	611	66	19	389	599	65	25	243	6.3	进.	収	Ð
B 0 6	900~800	50	419	622	67	213	405	614	66	253	252	1.3	本発	明	£
B U 7	900~800	20	435	587	74	16	425	572	74	23	283	5.4	此.	較	ę

- 注1. ▼EはOででのシャルピー吸収エネルギー
 - 2. YRは降伏比
 - 3. 組織は全てフェライト+ペイナイトを主体としたもの

【0052】表3に示すように、本発明の範囲内の製造条件でかつ島状マルテンサイト体積分率が5%以下のものでは、板厚各部において0℃におけるシャルピー吸収エネルギーvEが200J以上の高靭性、および80%以下の低降伏比が得られた。さらに、板厚中央にて600℃において降伏強度(YS)が200MPa以上の高強度が得られた。

【0053】これに対して、本発明の範囲を外れる条件のものは、板厚表層部あるいは中央部にて0℃におけるシャルピー吸収エネルギーvEが100J未満の低靭性を示すか、または80%を超える高降伏比となった。

【0054】(実施例3)表1の符号A05の組成の鋼を、1150℃に加熱して粗圧延後、900~800℃の温度域で累積圧下率40%の仕上げ圧延を行い、その

後5℃/secの速度で冷却して、板厚70mmの鋼板を製造した。この鋼板を、表4に示すように、1000~700℃に加熱後、プレスベンドによって管状への成形を850~500℃で板端部より開始し、板中央部にて終了して、その後0.01~100℃/secの速度で冷却した。このときの鋼管の外径Dと板厚tとの比D/tは10とした。

【0055】このようにして成形した鋼管において、最終加工部での機械的性質、板厚中央の600℃近傍での降伏強度(YS)、および表層近傍での島状マルテンサイトの体積分率を表4に示す。

[0056]

【表4】

	田延	開始	冷却			1	y it	後の	機械	的自	生質		表層近傍			
	加熱		速度	#	E TE		æ		板川	革 中	中央		の 品 状 マルテン	4	1 2	ţ
	温度 (℃)	温度 (℃)	(7/sec)	YS	T S	ΥR	v E	Y \$	TS	YR	v E	Y s 600t	サイトの 体徴分率			
				(MPa)	(MPa)	(X)	(1)	(WPa)	(IPa)	(%)	(1)	(KPa)	(%)			
C 0 1	1000	850	0.5	294	442	66	45	284	431	66	55	171	0.9	比	权	例
C 0 2	850	830	0. 5	435	592	73	214	425	584	73	228	263	1.3	本:	発明	4
C 0 3	800	780	0. 01	477	553	85	217	431	521	83	233	290	ND	比	較	Ø
C 0 4	800	780	0. 1	409	581	70	200	395	569	69	203	246	3.3	本:	発明	例
C 0 5	800	780	0.5	425	594	72	220	412	584	71	246	258	2.2	本:	発明	例
COB	800	780	7.0	473	614	77	208	460	598	77	267	287	3.3	本:	免明	例
C 0 7	800	780	50	569	651	87	264	555	639	87	281	350	ND	比	較	例
C 0 8	770	760	0. 5	431	604	71	224	420	592	71	253	280	1. D	本	発明	例
C 0 9	800	500	0.5	565	612	92	219	548	600	91	263	347	O. 9	此	較	91
C 1 0	700	680	0. 5	577	613	84	215	569	602	95	266	355	ND	₩.	紋	<i>9</i> j

注1.vEは0℃でのシャルピー吸収エネルギー

- 2. YRは降伏比
- 3、組織は全てフェライト+ベイナイトを主体としたもの

【0057】表4に示すように、本発明の範囲内の製造条件でかつ島状マルテンサイト体積分率が5%以下のものでは、板厚各部において0℃におけるシャルピー吸収エネルギーvEが200J以上の高靭性、および80%以下の低降伏比が得られた。さらに、板厚中央にて600℃において降伏強度(YS)が200MPa以上の高強度が得られた。

【0058】これに対して、本発明の範囲を外れる条件のものは、板厚表層部あるいは中央部にて0℃におけるシャルピー吸収エネルギーvEが100J未満の低靭性を示すか、または80%を超える高降伏比となった。な

お、上記実施例では鋼管の外径Dと板厚tとの比D/tを10としたが、これに限定されるものではないことはいうまでもない。

[0059]

【発明の効果】以上説明したように、本発明によれば、大きな設備能力を必要としない経済性の高い工程により、靭性を損なうことなく、板厚各部において室温および高温で高強度であり、かつ室温で低降伏比である、板厚40mmを越える肉厚の建築用耐火鋼管を製造することが可能となる。

フロントページの続き

(51) Int. Cl. ⁶ C 2 2 C 38/14 識別記号 庁内整理番号

FI

技術表示箇所

C22C 38/14