Дискретная математика 1 семестр ПИ, Лекция, 10/09/21

Собрано 11 октября 2021 г. в 16:23

Содержание

1.	Теория вероятности	1
	1.1. Основы теории вероятности]
	1.2. Условная вероятность	
	1.3. Независимость событий	
	1.4. Формула полной вероятности	f

1.1. Основы теории вероятности

Def. 1.1.1. $\Omega = \{a_1, a_2, ..., a_n\}$ – множество всех взаимо-исключающих исходов эксперимента (пространство элементарных событий)

 $X \subseteq A$ – событие

Def. 1.1.2. Дано $\Omega, \mathscr{A} \subset 2^{\Omega}$. Тогда \mathscr{A} называется алгеброй, если

- 1. $\Omega \in \mathscr{A}$
- 2. $A \in \mathcal{A}, B \in \mathcal{B} \Rightarrow A \cup B \in \mathcal{A}$
- 3. $A \in \mathscr{A} \Rightarrow \overline{A} \in \mathscr{A}$

Утверждение 1.1.3. Если \mathscr{A} – алгебра, то

- 1. $\varnothing \in \mathscr{A}$
- 2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$
- 4. $A_i \in \mathcal{A} \Rightarrow \bigcup A_i \in \mathcal{A}, \bigcap A_i \in \mathcal{A}$

Доказательство. 1. $\Omega \in \mathscr{A} \Rightarrow \overline{\Omega} \in \mathscr{A} \Rightarrow \overline{\Omega} = \varnothing \Rightarrow \varnothing \in \mathscr{A}$

- 2. $\overline{A\cap B}=\overline{A}\cup\overline{B}\in\mathscr{A}$. Тогда $\overline{\overline{A\cap B}}=A\cap B\in\mathscr{A}$
- 3. $A \setminus B = A \cap \overline{B} \in \mathscr{A}$
- 4. Доказывается по индукции.

Def. 1.1.4. \mathscr{A} называется σ -алгеброй, если

- 1. $\Omega \in \mathscr{A}$
- 2. $A_i \in \mathcal{A}, i = 1, ..., n \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- 3. $A \in \mathscr{A} \Rightarrow \overline{A} \in \mathscr{A}$

Def. 1.1.5. Пусть есть пространство Ω , определенная на нём $\mathscr{A} - \sigma$ -алгебра $u \ f : \mathscr{A} \to \mathbb{R} - \phi$ ункция над множеством. Тогда вероятностью называется функция из \mathscr{A} в \mathbb{R} такая, что

- 1. $P(A) \geqslant 0 \ \forall A \in \mathscr{A}$
- 2. $P(\Omega) = 1$
- 3. $A_1, A_2, \dots : A_i \cap A_j = \emptyset \ \forall i, j \Rightarrow P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Перечисленные выше свойства называются аксиомами теории вероятности (Ω, \mathscr{A}, P) – вероятностное пространство.

Свойства вероятности:

1. $P(\Omega) = 1$

2.
$$P(\emptyset) = 0$$

3. Если $A_1, A_2 \in \mathscr{A}, A_1 \cap A_2 = \varnothing$, то

$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

4. Если $A_1,...,A_n\in\mathscr{A},A_i\cap A_j=\varnothing$ $\forall i,j,$ то

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

5. $P(\overline{A}) = 1 - P(A)$

Доказательство.

$$P(\overline{A} \cup A) = P(\Omega) = P(A) + P(\overline{A})$$

6. Если $A, B \in \mathscr{A}$, то

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Доказательство.

$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(B \setminus A) + P(A \cap B) = P((A \setminus B) \cup (A \cap B)) + P((B \setminus A) \cup (A \cap B)) - P(A \cap B) =$$
$$= P(A) + P(B) - P(A \cap B)$$

7. $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i,j=1}^{n} (A_i \cap A_j) + \dots$

8. $A_1 \subset A_2 \subset ... \subset A_n \subset ...$

$$\lim_{n \to \infty} P(A_n) = P(\bigcup_{i=1}^{\infty} A_i)$$

Доказательство. $A_{k-1} \subset A_k$. Рассмотрим $A_k \setminus A_{k-1}$. Пусть $A_0 = \emptyset$.

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{k=1}^{\infty} P(A_k \setminus A_{k-1}) = \lim_{n \to \infty} \sum_{k=1}^{n} P(A_k \setminus A_{k-1}) \lim_{n \to \infty} \sum_{k=1}^{n} P(A_k) - P(A_{k-1}) = \lim_{n \to \infty} P(A_n) - P(\emptyset) = \lim_{n \to \infty} P(A_n)$$

9. $A_1 \supset A_2 \supset ... \supset A_n \supset$ Тогда

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{i=1}^{\infty} A_i)$$

Пример 1.1.6. Два человека приходят на место в промежуток от 12 до 13ч и ждут 10 минут прежде чем уйти. Найти вероятность того, что они встретятся.

Решение 1.1.7. Пусть t_1 – время, когда приходит первый, t_2 – время, когда приходит второй.

$$|t_1 - t_2 \leqslant \frac{1}{6} \Leftrightarrow \begin{cases} t_2 \geqslant t_1 - \frac{1}{6} \\ t_2 \leqslant t_1 + \frac{1}{6} \end{cases}$$

Тогда вероятность – площадь заштрихованной фигуры:

$$S = 1 - 2 \cdot \frac{\frac{5}{6} \cdot \frac{5}{6}}{2} = 1 - \frac{25}{36} = \frac{11}{36}$$

Пример 1.1.8. На [0,1] выбираются два числа x,y. Найти вероятность того, что их произведение меньше $\frac{1}{2}$

Решение 1.1.9.

$$f(x) = \begin{cases} 1, x \leqslant \frac{1}{2}, \\ \frac{1}{2x}, x > \frac{1}{2} \end{cases}$$

Тогда искомая вероятность:

$$P(x \cdot y < \frac{1}{2}) = \int_0^1 f(x)dx = \int_0^{\frac{1}{2}} f(x)dx + \int_{\frac{1}{2}}^1 f(x)dx = \frac{1}{2} + \int_{\frac{1}{2}}^1 \frac{1}{2x}dx = \frac{1}{2} + \frac{\ln 2}{2}$$

1.2. Условная вероятность

Def. 1.2.1. Вероятность события A при условии, что выполняется событие B равна

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Пример 1.2.2. Есть урна, в которой лежит m белых и n черных шаров. Вытащим из неё два шара. Какова вероятность того, что они оба белые?

Решение 1.2.3.

$$P(\text{первый}-\text{белый})=\frac{m}{m+n}, P(\text{второй}-\text{белый}|\text{первый}-\text{белый})=\frac{m-1}{m+n-1}$$

$$P(\text{оба белыe})=\frac{m-1}{m+n-1}\cdot\frac{m}{m+n}$$

Свойства условной вероятности:

- 1. $P(\Omega|B) = 1$
- 2. $P(\varnothing|B)0$
- 3. $0 \le P(A|B) \le 1$
- 4. $A \subset C \Rightarrow P(A|B) \leqslant P(C|B)$
- 5. $P(\overline{A}|B) = 1 P(A|B)$
- 6. $P(A \cup C|B) = P(A|B) + P(C|B) P(A \cap C|B)$
- 7. $P(A \cap B) = P(A|B) \cdot P(B)$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_2 \cap A_1) \cdot ... \cdot P(A_n | \bigcap_{i=1}^{n-1} A_i)$$

$$P((A_1 \cap ... \cap A_{n-1}) \cap A_n) = P(A_n | A_1 \cap ... \cap A_{n-1}) \cdot P(A_1 \cap ... \cap A_{n-1})$$

Пример 1.2.4. Бросаем 3 кубика. Найти вероятность того, что хотя бы на одном из них выпадет 1 при условии, что на всех выпали разные значения.

Решение 1.2.5.

$$P(A|B) = 1 - P(\overline{A}|B) = 1 - \frac{P(\overline{A} \cap B)}{P(B)} = 1 - \frac{1}{2} = \frac{1}{2}$$

1.3. Независимость событий

Def. 1.3.1. A независимо от $B(P(B) \neq \emptyset)$, если P(A|B) = P(A)

Утверждение 1.3.2. Если A независимо от $B \Rightarrow B$ независимо от A.

Доказательство.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B) \cdot P(B)}{P(A) \cdot P(B)} = P(A|B) \cdot \frac{P(B)}{P(A)} = P(B)$$

Def. 1.3.3. A, B – независимые, если

$$P(A \cap B) = P(A) \cap P(B)$$

Def. 1.3.4. $A_1, ..., A_n$ – независимы в совокупности, если

$$P(\bigcap_{i=1}^{n}) = \prod_{i=1}^{n} P(A_i)$$

Def. 1.3.5. $A_1, ..., A_n$ – попарно-независимы, если

$$\forall i, j \to P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$$

3амечание 1.3.6. Если $A_1, ..., A_n$ попарно-независимы, то они необязательно независимы в совокупности.

1.4. Формула полной вероятности

Def. 1.4.1. Пусть $H_1, ..., H_n$ – разбиение Ω . Тогда $H_1 \cup ... \cup H_n = \Omega$ называется полной группой событий.

Теорема 1.4.2. $H_1,...,H_n$ – полная группа событий и $P(H_i)>0 \ \forall i=1,...,n.$ Тогда

$$\forall A \to P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A|H_i)$$

Доказательство.

$$A = A \cap \Omega = A \cap (H_1 \cup \ldots \cup H_n) = (A \cap H_1) \cup (A \cap H_2) \cup \ldots \cup (A \cap H_n)$$

$$P((A \cap H_1) \cup ... \cup (A \cap H_n)) = \sum_{i=1}^n P(A \cap H_i) = \sum_{i=1}^n P(A|H_i) \cdot P(H_i)$$