ALGEBRA

Logarithm

If
$$a^x = M$$
, then $x = \log_a M$

Rules of Logarithm:-

(1)
$$\log_a 1 = 0$$

(2)
$$\log_a a = 1$$

$$(3) a^{\log_a M} = M$$

$$(4) \log_a MN = \log_a M + \log_a N$$

$$(5)\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

(6)
$$\log_a M^n = n \log_a M$$

(7)
$$\log_a M = \log_b M \times \log_a b$$

(8)
$$\log_b a \times \log_a b = 1$$

(9)
$$\log_b a = \frac{1}{\log_a b}$$

$$(10) \log_b M = \frac{\log_a M}{\log_a b}$$

$$(11) \log_a M = \frac{\log M}{\log a}$$

(12)
$$\log e = 1$$

Note: *If base of logarithm is not mentioned, then it is taken* 10.

Complex Number

$$z = x + iy$$

where,

$$i = \sqrt{-1} \& x, y \in R.$$

x is called the real part & iy is called the imaginary part.

Properties of Complex Number

(1)
$$|z| = |x + iy| = \sqrt{x^2 + y^2}$$

(2)
$$Amp\ z\ (or\ Arg\ z) = \tan^{-1}\left(\frac{y}{x}\right) = \theta$$

If $-\pi < \theta \le \pi$, then θ is called the Principal value of the argument.

(3) If
$$z = x + iy$$
 & in complex plane,

$$(x,y)$$
 is in 1st quadrant, then $0 < P.V.$ of $\theta < \frac{\pi}{2}$

$$(x,y)$$
 is in 2nd quadrant, then $\frac{\pi}{2} < P.V.$ of $\theta < \pi$