ρ (1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See our mini-review under the $\rho(1700)$.

ρ (1450) MASS

VALUE (MeV) DOCUMENT ID

1465±25 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

$\eta \rho^0$ MODE

 $^{^1}$ Using the data of AKHMETSHIN 01B on ${\rm e^+\,e^-}\to\eta\gamma$, AKHMETSHIN 00D and ANTONELLI 88 on ${\rm e^+\,e^-}\to\eta\pi^+\pi^-$.

$\omega\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not	use the fol	lowing data for ave	erages	, fits, lin	nits, etc. • • •
1510 ± 7	10.2k	$^{ m 1}$ ACHASOV	16 D	SND	1.05–2.00 $e^+e^- \to \pi^0\pi^0\gamma$
$1544\pm22^{igoplus 11}_{-46}$	821	² MATVIENKO	15	BELL	$\overline{B}{}^0 \rightarrow D^{*+} \omega \pi^-$
1491 ± 19	7815	³ ACHASOV	13	SND	1.05–2.00 $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma$ $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}\gamma$
$1582 \pm 17 \pm 25$	2382	⁴ AKHMETSHIN	103 B	CMD2	$e^+e^- o \pi^0\pi^0\gamma$
$1349\pm25{+10\atop -5}$	341	⁵ ALEXANDER	01 B	CLE2	$B \rightarrow D^{(*)}\omega\pi^-$
1523 ± 10		⁶ EDWARDS	00A	CLE2	$ au^- ightarrow \omega \pi^- u_{ au}$
$1463\!\pm\!25$		⁷ CLEGG	94	RVUE	•
1250		⁸ ASTON			20–70 $\gamma p \rightarrow \omega \pi^0 p$
1290 ± 40		⁸ BARBER	80C	SPEC	$3-5 \gamma p \rightarrow \omega \pi^0 p$

¹ From a phenomenological model based on vector meson dominance with interfering $\rho(770)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13.

² Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

² Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \to \pi\pi$ and $\rho(1450) \to \omega\pi$ decays.

³ From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.

⁴ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega\pi^0$ and $\pi^+\pi^-$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV, respectively.

⁵ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega\pi^-$ mass dependence for the total width.

4π MODE

ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$
1435 \pm 40 ABELE 01B CBAR 0.0 \overline{p} $n \rightarrow 2\pi^{-}2\pi^{0}\pi^{+}$
1350 \pm 50 ACHASOV 97 RVUE $e^+e^- \rightarrow 2(\pi^+\pi^-)$
1449 \pm 4

$\pi\pi$ MODE VALUE (MaV)

VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT				
• • • We do not use the following data for averages, fits, limits, etc. • •							
1350 $\pm 20 \begin{array}{c} +20 \\ -30 \end{array}$ 63.5k	¹ ABRAMOWICZ12	ZEUS	$e p \rightarrow e \pi^+ \pi^- p$				
1493 ± 15	² LEES 120	BABR	$e^+e^- ightarrow \pi^+\pi^-\gamma$				
1446 \pm 7 \pm 28 5.4M	^{3,4} FUJIKAWA 08		$ au^- ightarrow \; \pi^- \pi^0 u_{\mathcal{T}}$				
1328 ± 15	⁵ SCHAEL 050	ALEP	$ au^- ightarrow ~\pi^- \pi^0 \stackrel{\cdot}{ u_T}$				
1406 ± 15 87k	3,6 ANDERSON 00	CLE2	$ au^- ightarrow ~\pi^- \pi^0 \stackrel{\cdot}{ u_T}$				
\sim 1368	⁷ ABELE 990	CBAR	$0.0 \overline{p} d \rightarrow \pi^+ \pi^- \pi^- p$				
1348 ± 33	BERTIN 98		$0.05 – 0.405 \ \overline{n}p \rightarrow 2\pi^{+}\pi^{-}$				
1411 ± 14	⁸ ABELE 97	CBAR	$\overline{p}n \rightarrow \pi^-\pi^0\pi^0$				
$1370 \begin{array}{c} +90 \\ -70 \end{array}$	ACHASOV 97	RVUE	$e^+e^- ightarrow \pi^+\pi^-$				
1359 ± 40	⁶ BERTIN 970		$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$				
1282 ± 37	BERTIN 971		$0.05 \; \overline{p} p \rightarrow \; 2\pi^+ 2\pi^-$				
1424 ± 25	BISELLO 89		$e^+e^- ightarrow \ \pi^+\pi^-$				
1265.5 ± 75.3	DUBNICKA 89		$e^+e^- \rightarrow \pi^+\pi^-$				
1292 ± 17	⁹ KURDADZE 83	OLYA	$0.64 – 1.4 e^+e^- \rightarrow \pi^+\pi^-$				

 $^{^1}$ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.

⁶ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁷ Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.

⁸ Not separated from $b_1(1235)$, not pure $J^P = 1^-$ effect.

¹ Not clear whether this observation has l=1 or 0.

 $^{^2}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

³ From the GOUNARIS 68 parametrization of the pion form factor.

 $^{^{4}|}F_{\pi}(0)|^{2}$ fixed to 1.

 $^{^5}$ From the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. $\rho(1700)$ mass and width fixed at 1713 MeV and 235 MeV, respectively. Supersedes BARATE 97M. $\frac{6}{\rho}(1700)$ mass and width fixed at 1700 MeV and 235 MeV, respectively.

 $^{^{7}\}rho(1700)$ mass and width fixed at 1780 MeV and 275 MeV respectively.

⁹ Using for $\rho(1700)$ mass and width 1600 ± 20 and 300 ± 10 MeV respectively.

$K\overline{K}$ MODE

VALUE (MeV) ___EVTS DOCUMENT ID ___TECN__CHG__COMMENT

• • We do not use the following data for averages, fits, limits, etc.

1208 ± 8 ± 9 190k ¹ AAIJ 16N LHCB $D^0 \to K_S^0 K^{\pm} \pi^{\mp}$ 1422.8 ± 6.5 27k ² ABELE 99D CBAR \pm 0.0 $\overline{p}p \to K^+ K^- \pi^0$

$K\overline{K}^*$ (892) + c.c. MODE

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 1505±19±7
 AUBERT
 08S
 BABR
 10.6 $e^+e^- → K\overline{K}^*(892)γ$

ρ (1450) WIDTH

VALUE (MeV) DOCUMENT ID

400\pm60 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

$\eta \rho^0$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	owing data for average	es, fits, lir	nits, etc. • • •
226±44	¹ AKHMETSHIN 01		
211 ± 31	² AKHMETSHIN 00	CMD2	$e^+e^- ightarrow ~\eta \pi^+\pi^-$
230 ± 30			$e^+e^- ightarrow \eta \pi^+ \pi^-$
$60\!\pm\!15$	FUKUI 88	SPEC	8.95 $\pi^- p \to \eta \pi^+ \pi^- n$

 $^{^1}$ Using the data of AKHMETSHIN 01B on $e^+e^-\to\eta\gamma$, AKHMETSHIN 00D and ANTONELLI 88 on $e^+e^-\to\eta\pi^+\pi^-$.

$\omega\pi$ MODE

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not u	se the following	data for averages	, fits,	limits, e	etc. • • •
440± 40	10.2k	¹ ACHASOV	16 D	SND	$1.05 - 2.00_{\pi}^{0} e^{+} e^{-} \rightarrow$
$303 + 31 + 69 \\ -52 - 7$	821	² MATVIENKO	15	BELL	$\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$
$429 \pm 42 \pm 10$	2382	³ AKHMETSHIN	103 B	CMD2	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
$547 \pm 86 {+46 \atop -45}$	341	⁴ ALEXANDER	01 B	CLE2	$B \rightarrow D^{(*)}\omega\pi^-$
400± 35 311± 62		⁵ EDWARDS ⁶ CLEGG	00A 94	CLE2 RVUE	$ au^- ightarrow \omega \pi^- u_{ au}$
300 320±100		⁷ ASTON ⁷ BARBER			$20-70 \gamma p \rightarrow \omega \pi^{0} p$ $3-5 \gamma p \rightarrow \omega \pi^{0} p$

¹ From a phenomenological model based on vector meson dominance with interfering $\rho(770)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13.

¹Using the GOUNARIS 68 parameterization with fixed width.

 $^{^2}$ K-matrix pole. Isospin not determined, could be $\omega(1420)$.

² Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

4π MODE

VALUE (MeV)	DOCUMENT II	D	TECN	COMMENT	
• • • We do not use the followin	g data for averag	ges, fits,	limits, e	etc. • • •	
325 ± 100	ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	$2\pi^{-}2\pi^{0}\pi^{+}$

$\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

$460\pm30^{+40}_{-45}$	63.5k	¹ ABRAMOWIC	Z12	ZEUS	$e p \rightarrow e \pi^+ \pi^- p$
$427\!\pm\!31$		² LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
$434 \pm 16 \pm 60$	5.4M	^{3,4} FUJIKAWA	80	BELL	$ au^- ightarrow \left. \pi^- \pi^0 ight{ au}$
468 ± 41		⁵ SCHAEL			$ au^- ightarrow ~\pi^- \pi^0 u_{ au}$
$455\!\pm\!41$	87k	^{3,6} ANDERSON	00A	CLE2	$ au^- ightarrow ~\pi^- \pi^0 \stackrel{\cdot}{ u_T}$
~ 374		⁷ ABELE	99 C	CBAR	$0.0 \overline{p} d \rightarrow \pi^+ \pi^- \pi^- p$
275 ± 10		BERTIN			$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$
$343\!\pm\!20$		⁸ ABELE			$\overline{p}n \rightarrow \pi^- \pi^0 \pi^0$
310 ± 40		⁶ BERTIN			$0.0 \; \overline{p}p \rightarrow \; \pi^+\pi^-\pi^0$
236 ± 36		BERTIN	97 D		$0.05 \; \overline{p} p \rightarrow 2\pi^+ 2\pi^-$
$269\!\pm\!31$		BISELLO	89		$e^+e^- ightarrow \pi^+\pi^-$
$391\!\pm\!70$		DUBNICKA	89		$e^+e^- ightarrow \pi^+\pi^-$
218 ± 46		⁹ KURDADZE	83	OLYA	$0.64 – 1.4~e^+e^- \rightarrow ~\pi^+\pi^-$

¹ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference.

² Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \to \pi\pi$ and $\rho(1450) \to \omega\pi$ decays.

³ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega\pi^0$ and $\pi^+\pi^-$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV, respectively.

⁴ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega\pi^-$ mass dependence for the total width.

⁵ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁶ Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.

⁷ Not separated from $b_1(1235)$, not pure $J^P = 1^-$ effect.

² Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

³ From the GOUNARIS 68 parametrization of the pion form factor.

 $^{^{4}|}F_{\pi}(0)|^{2}$ fixed to 1.

⁵ From the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. $\rho(1700)$ mass and width fixed at 1713 MeV and 235 MeV, respectively. Supersedes BARATE 97M.

 $^{^6}ho(1700)$ mass and width fixed at 1700 MeV and 235 MeV, respectively.

 $^{^{7}\}rho(1700)$ mass and width fixed at 1780 MeV and 275 MeV respectively.

⁸T-matrix pole.

 $^{^9}$ Using for ho(1700) mass and width 1600 ± 20 and 300 ± 10 MeV respectively.

$K\overline{K}$ MODE

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 CHG
 COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹Using the GOUNARIS 68 parameterization with fixed mass.

$K\overline{K}^*(892) + \text{c.c.} MODE$

VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

418±25±4 AUBERT 08s BABR 10.6 $e^+e^- \rightarrow K\overline{K}^*(892)\gamma$

ρ (1450) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi\pi$	seen
Γ_2	4π	seen
Γ3	$\omega\pi$	
	$a_1(1260)\pi$	
	$h_1(1170)\pi$	
Γ_6	π (1300) π	
Γ_7	ho ho	
Γ ₈	$ ho(\pi\pi)_{S ext{-wave}}$	
-	e^+e^-	seen
Γ_{10}		seen
	$a_2(1320)\pi$	not seen
	$K\overline{K}$	not seen
	$K\overline{K}^*$ (892) $+$ c.c.	possibly seen
Γ_{14}		seen
	$f_0(500)\gamma$	not seen
	$f_0(980)\gamma$	not seen
	$f_0(1370)\gamma$	not seen
Γ ₁₈	$f_2(1270)\gamma$	not seen

ρ (1450) Γ (i) Γ (e^+e^-)/ Γ (total)

 $\Gamma_1\Gamma_9/\Gamma$

Created: 5/30/2017 17:21

$\Gamma(\pi\pi) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

HTTP://PDG.LBL.GOV

Page 5

² K-matrix pole. Isospin not determined, could be $\omega(1420)$.

¹ Using total width = 235 MeV.

² Using for ho(1700) mass and width 1600 \pm 20 and 300 \pm 10 MeV respectively.

 $\Gamma(\eta \rho) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{10}\Gamma_{9}/\Gamma$ TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • 1 AKHMETSHIN 00D CMD2 $e^{+}e^{-} \rightarrow \eta \pi^{+}\pi^{-}$ 74 ± 20 91 ± 19 $^{
m 1}$ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energyindependent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed. $\Gamma(\eta \gamma) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{14}\Gamma_{0}/\Gamma$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AKHMETSHIN 05 CMD2 0.60-1.38 $e^+e^- \rightarrow \eta \gamma$ <16.4 ² AKHMETSHIN 01B CMD2 $e^+e^- \rightarrow \eta \gamma$ $2.2 \pm 0.5 \pm 0.3$ 1 From 2γ decay mode of η using 1465 MeV and 310 MeV for the ho(1450) mass and width. Recalculated by us. ²Using the data of AKHMETSHIN 01B on $e^+e^- \rightarrow \eta \gamma$, AKHMETSHIN 00D and ANTONELLI 88 on $e^+e^- \rightarrow \eta \pi^+\pi^-$. Recalculated by us using width of 226 MeV. $\Gamma(K\overline{K}^*(892) + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{13}\Gamma_{9}/\Gamma$ DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • 08S BABR 10.6 $e^+e^- \rightarrow K\overline{K}^*(892)\gamma$ $127 \pm 15 \pm 6$ **AUBERT** ρ (1450) Γ (i)/ Γ (total) $\times \Gamma$ (e^+e^-)/ Γ (total) $\Gamma(\omega\pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_3/\Gamma \times \Gamma_0/\Gamma$ VALUE (units 10^{-6}) EVTSDOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • ¹ ACHASOV 16D SND 10.2k 2.1 ± 0.4 ² ACHASOV **SND** 5.3 ± 0.4 7815 ¹ From a phenomenological model based on vector meson dominance with interfering $\rho(770)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13. ² From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated. $\Gamma(\eta \rho)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{10}/\Gamma \times \Gamma_{9}/\Gamma$ VALUE (units 10^{-7}) EVTSDOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ¹ AULCHENKO 15 SND $1.22-2.00 e^+e^- \rightarrow n\pi^+\pi^-$ 4.9k

¹ From a fit to the $e^+e^- \rightarrow \eta \pi^+\pi^-$ cross section with vector meson dominance model including $\rho(770)$, $\rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real.

$\Gamma(f_0(500)\gamma)/\Gamma_{\text{total}}$	× Γ(e ⁺ e ⁻	-)/Γ _{total}			$\Gamma_{15}/\Gamma imes \Gamma_{9}/\Gamma$
VALUE (units 10^{-9})	CL%	DOCUMENT ID		TECN	COMMENT
<4.0	90	ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
$\Gamma(f_0(980)\gamma)/\Gamma_{total}$	× Γ(e ⁺ e ⁻	-)/Γ _{total}			$\Gamma_{16}/\Gamma imes \Gamma_{9}/\Gamma$
VALUE (units 10^{-9})	CL%	DOCUMENT ID		TECN	COMMENT
<2.6	90	ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
$\Gamma(f_0(1370)\gamma)/\Gamma_{\rm total}$	× Γ(e ⁺ ε	$e^-)/\Gamma_{total}$			$\Gamma_{17}/\Gamma imes \Gamma_9/\Gamma$
VALUE (units 10^{-9})	CL%	DOCUMENT ID			
<3.5	90	ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
$\Gamma(f_2(1270)\gamma)/\Gamma_{\text{total}}$	× Γ(e ⁺ ε	e ⁻)/Γ _{total}			$\Gamma_{18}/\Gamma imes \Gamma_{9}/\Gamma$
VALUE (units 10^{-9})	CL%	DOCUMENT ID		TECN	COMMENT
<0.8	90	¹ ACHASOV	11	SND	$e^+e^- ightarrow \pi^0\pi^0\gamma$
¹ Using Breit-Wigner	parametriza	tion of the $ ho$ (14	50) w	ith mass	s and width of 1465 MeV
and 400 MeV, respe	ectively.				
	ho(1450)) BRANCHING	G RA	TIOS	
$\Gamma(\pi\pi)/\Gamma(4\pi)$					Γ_1/Γ_2
VALUE		DOCUMENT ID		TECN	COMMENT
• • • We do not use the	ne following	data for averages	s, fits,	, limits, e	etc. • • •
0.37 ± 0.10	1,	² ABELE	01 B	CBAR	$0.0 \; \overline{p} n \rightarrow \; 5\pi$
$\frac{1}{2}\omega\pi$ not included. $\frac{2}{2}$ Using ABELE 97.					
Γ(··-) /Γ					F /F
$\Gamma(\omega\pi)/\Gamma_{\text{total}}$ VALUE	FVTS	DOCUMENT ID		TECN	Γ ₃ /Γ
seen	_	1 MATVIENKO	15		$\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$
seen	1.6k	ACHASOV	12		$e^+e^- \rightarrow \pi^0\pi^0\gamma$
~ 0.21	1.010	CLEGG	94	RVUE	
1 Using Breit-Wigner the $ ho(1450) ightarrow \pi\pi$	parameteriza	ation of the $\rho(14)$	∮50) a	nd assur	ning equal probabilities of
	anα ρ(1+30) / wh decays	•		F /F
$\Gamma(\pi\pi)/\Gamma(\omega\pi)$		DOCUMENT ID		TECN	Γ_1/Γ_3
• • • We do not use th	o following	DOCUMENT ID			otc • • •
	ie ioliowilig (sic. • • •
~ 0.32		CLEGG	94	RVUE	
$\Gamma(\omega\pi)/\Gamma(4\pi)$					Γ_3/Γ_2
VALUE		DOCUMENT ID			
• • • We do not use th	ne following	data for averages	s, fits,	, limits, e	etc. • • •
< 0.14					
(0.21		CLEGG	88	RVUE	

$\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$					Γ_4/Γ_2
VALUE	DOCUMENT ID				
• • • We do not use the following		s, fits,	limits,	etc. • • •	
0.27 ± 0.08	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	5π
$^1\omega\pi$ not included.					
$\Gamma(h_1(1170)\pi)/\Gamma(4\pi)$	DOCUMENT ID		TECN	COMMENT	Γ_5/Γ_2
VALUE• • We do not use the following					
0.08±0.04	3			$0.0 \overline{p}n \rightarrow$	5π
$1_{\omega\pi}$ not included.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010	CD, II C	ο.ο μπ	<i>57</i> .
					- /-
$\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$					Γ_6/Γ_2
VALUE• • We do not use the following	DOCUMENT ID				
_	¹ ABELE			$0.0 \ \overline{p} n \rightarrow$	E
0.37 ± 0.13 $^{1}\omega\pi$ not included.	ADELE	OIB	CDAR	0.0 <i>pn</i> →	5π
$\Gamma(ho ho)/\Gamma(4\pi)$					Γ_7/Γ_2
VALUE	DOCUMENT ID			COMMENT	
• • • We do not use the following					
0.11 ± 0.05	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	5π
$^1\omega\pi$ not included.					
$\Gamma(ho(\pi\pi)_{S ext{-wave}})/\Gamma(4\pi)$	DOCUMENT ID		TECN	COMMENT	Γ_8/Γ_2
0.17±0.09	¹ ABELE			$0.0 \overline{p}n \rightarrow$	5π
$^{1}\omega\pi$ not included.				,	
Γ(··· ··) /Γ					F /F
$\Gamma(\eta \rho)/\Gamma_{\text{total}}$ VALUE EVTS	DOCUMENT ID		TECN	COMMENT	Γ_{10}/Γ
	DOCUMENT ID ACHASOV		SND		$e^+e^- \rightarrow \eta \gamma$
• • • We do not use the following					$e e \rightarrow \eta \gamma$
<0.04	DONNACHIE				
1 From a phenomenological mod $\phi(1680)$ masses and widths from	el based on vect m the PDG 12.	tor me	son don	ninance with	ho $ ho$ (1450) and
$\Gamma(\eta ho)/\Gamma(\omega\pi)$					Γ_{10}/Γ_3
	MENT ID	TECN	СОММ	ENT	•
• • • We do not use the following					
0.081±0.020 ^{1,2} AULO	CHENKO 15 S NACHIE 91 I	SND	1.22-2	$2.00 e^{+}e^{-}$	$\rightarrow \eta \pi^+ \pi^-$
	NACHIE 91	RVUE			0
>2 FUKU					
1 From a fit to the $e^{+}e^{-} \rightarrow \eta \pi$ including $\rho(770)$, $\rho(1450)$, and widths of vector states are fixed 2 Reports the inverse of the quot 3 Using data from BISELLO 91B,	ho(1700) decayii I to PDG 14. Co ed value as 12.3	ng exc upling $\pm~3.1$	lusively constar	via $\eta ho (770)$ its are assum	. Masses and
HTTP://PDG.LBL.GOV	Page 8		Crea	ted: 5/30/	2017 17:21

$\Gamma(\pi\pi)/\Gamma(\eta ho)$	DOC	CUMENT ID	TECN	COMMENT	Γ_1/Γ_{10}			
		g data for averag			•			
1.3 ± 0.4	¹ AUI	_CHENKO 15	SND	1.22-2.00 e ⁺ e	$^- \rightarrow \eta \pi^+ \pi^-$			
¹ From a fit to the $e^+e^- \to \eta \pi^+\pi^-$ cross section with vector meson dominance model including $\rho(770)$, $\rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real.								
$\Gamma(a_2(1320)\pi)/$	$\Gamma_{ ext{total}}$	<u>DOCUMENT ID</u>)	TECN COMMEN	Γ ₁₁ /Γ			
• • • We do not	use the followin			<u> </u>	<u> </u>			
not seen		AMELIN	00	VES 37 $\pi^- p$	$ ho \rightarrow \eta \pi^+ \pi^- n$			
$\Gamma(K\overline{K})/\Gamma(\omega\pi)$		DOCUMENT IE)	TECN_	Γ_{12}/Γ_3			
• • • We do not	use the followin	g data for averag	es, fits, I	imits, etc. • •	•			
< 0.08		$^{ m 1}$ Donnachie	91	RVUE				
$^{ m 1}$ Using data fro	om BISELLO 91	в, DOLINSKY 86	and AL	BRECHT 87L.				
Γ(<i>K</i> K *(892)+	$-c.c.)/\Gamma_{total}$	DOCUMENT ID)	TECN COMMEN	Γ ₁₃ /Γ			
• • • We do not	use the followin				-			
possibly seen		COAN	04	CLEO $ au^- o$	$K^-\pi^-K^+ u_ au$			
$\Gamma(\eta\gamma)/\Gamma_{total}$					Γ ₁₄ /Γ			
VALUE		DOCUMENT ID						
seen	35	¹ ACHASOV			. ,			
1 From a phenomenological model based on vector meson dominance with $ ho(1450)$ and $ ho(1680)$ masses and widths from the PDG 12.								
ho(1450) REFERENCES								
AAIJ 16N ACHASOV 16D AULCHENKO 15 MATVIENKO 15 ACHASOV 14 PDG 14 ACHASOV 13 ABRAMOWICZ 12 ACHASOV 12 LEES 12G PDG 12 ACHASOV 11 AUBERT 08S FUJIKAWA 08 AKHMETSHIN 05 ALOISIO 05 SCHAEL 05C AKHMETSHIN 04 COAN 04 AKHMETSHIN 03B ABELE 01B AKHMETSHIN 01B	PR D93 052018 PR D94 112001 PR D91 052013 PR D92 012013 PR D90 032002 CP C38 070001 PR D88 054013 EPJ C72 1869 JETPL 94 734 Translated from Z PR D86 032013 PR D86 010001 JETP 113 75 Translated from Z PR D77 092002 PR D78 072006 PL B605 26 PL B606 12 PRPL 421 191 PL B578 285 PRL 92 232001 PL B562 173 EPJ C21 261 PL B509 217	J.P. Lees <i>et</i> J. Beringer <i>e</i> M.N. Achaso	v et al. nko et al. o et al. v et al. al. v et al. cz et al. v et al. et al. et al. et al. shin et al. al. shin et al. t al. shin et al.	(B) (Novosibirsk (A) (Novosibirsk (A) (Novosibirsk (A) (Novosibirsk (A) (Novosibirsk (A) (Novosibirsk (A)	(LHCb Collab.) (SND Collab.) (ZEUS Collab.) (ABAR Collab.) (SND Collab.) (SND Collab.) (SND Collab.) (SND Collab.) (SND Collab.) (SND Collab.) (CLEC Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CMD-2 Collab.) (CMD-2 Collab.) (CLEO Collab.) (CLEO Collab.) (CMD-2 Collab.)			
HTTP://PDG.	LBL.GOV	Page 9		Created: 5/3	0/2017 17:21			

ALEXANDER	01B	PR D64 092001	J.P. Alexander et al.	(CLEO Collab.)		
AKHMETSHIN	00D	PL B489 125	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)		
AMELIN	00	NP A668 83	D. Amelin <i>et al.</i>	(VES Collab.)		
ANDERSON	00A	PR D61 112002	S. Anderson et al.	(CLEO Collab.)		
EDWARDS	00A	PR D61 072003	K.W. Edwards et al.	(CLEO Collab.)		
ABELE	99C	PL B450 275	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)		
ABELE	99D	PL B468 178	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)		
BERTIN	98	PR D57 55	A. Bertin <i>et al.</i>	(OBELIX Collab.)		
ABELE	97	PL B391 191	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)		
ACHASOV	97	PR D55 2663	N.N. Achasov et al.	(NOVM)		
BARATE	97M	ZPHY C76 15	R. Barate et al.	(ALEPH Collab.)		
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(ÒBELIX Collab.)		
BERTIN	97D	PL B414 220	A. Bertin <i>et al.</i>	(OBELIX Collab.)		
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	`(LANC, MCHS)		
BISELLO	91B	NPBPS B21 111	D. Bisello	`(DM2 Collab.)		
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	(NOVO)		
DONNACHIE	91	ZPHY C51 689	A. Donnachie, A.B. Clegg	(MCHS, LANC)		
FUKUI	91	PL B257 241	S. Fukui et al. (S	UGI, NAGO, KEK, KYOT+)		
KUHN	90	ZPHY C48 445	J.H. Kuhn <i>et al.</i>	(MPIM)		
ARMSTRONG	89E	PL B228 536	T.A. Armstrong, M. Benayou	ın (ATHU, BARI, BİRM+)		
BISELLO	89	PL B220 321	D. Bisello <i>et al.</i>	(DM2 Collab.)		
DUBNICKA	89	JP G15 1349	S. Dubnicka et al.	(JINR, SLOV)		
ANTONELLI	88	PL B212 133	A. Antonelli <i>et al.</i>	(DM2 Collab.)		
CLEGG	88	ZPHY C40 313	A.B. Clegg, A. Donnachie	(MCHS, LANC)		
DIEKMAN	88	PRPL 159 99	B. Diekmann	` (BONN)		
FUKUI	88	PL B202 441	S. Fukui et al. (S	UGI, NAGO, KEK, KYOT+)		
ALBRECHT	87L	PL B185 223	H. Albrecht <i>et al.</i>	(ARGUS Collab.)		
DONNACHIE	87B	ZPHY C34 257	A. Donnachie, A.B. Clegg	`(MCHS, LANC)		
DOLINSKY	86	PL B174 453	S.I. Dolinsky et al.	` (NOVO)		
BARKOV	85	NP B256 365	L.M. Barkov <i>et al.</i>	(NOVO)		
KURDADZE	83	JETPL 37 733	L.M. Kurdadze et al.	(NOVO)		
		Translated from ZETFP 37 613.				
ASTON	80C	PL 92B 211		ERN, EPOL, GLAS, LANC+)		
BARBER	80C	ZPHY C4 169	D.P. Barber <i>et al.</i>	(DARE, LANC, SHEF)		
GOUNARIS	68	PRL 21 244	G.J. Gounaris, J.J. Sakurai			