CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Fall 2014 Quiz # 6

First Name Last Name ID#

Question 1

Assume that you are solving a combinatorial <u>minimization</u> problem using a branch-and-bound method with a best first strategy.

• Recall the definition of the incumbent value as a function of some of the subproblem lower or upper bounds

$$z^{\text{\tiny BEST}} = \min_k \overline{z}_k.$$

• A representation of the current search tree associated with the branch-and-bound method is depicted in Figure 1. What is the incumbent value?

$$z^{\text{BEST}} = 40.$$

• Recall the test allowing to fathom a node (i.e., subproblem #k), which involves the incumbent value and the lower or upper bound of sub-problem #k

Prune subproblem associated with node k in the search tree if $z^{\text{BEST}} \leq \underline{z}_k$.

• Best first strategy: what is the selection rule of the next sub-problem to investigate further following the best first strategy that was discussed during the class.

Investigate node #k associated with the worst lower bound, i.e., with $\min_k \underline{z}_k$.

• Represent the max-min heap that is associated with the search tree of the branch-and-bound See Figure 2. Only consider the live nodes!

1

- Are there any subproblem that can be fathomed? Three subproblems can be pruned: #17 ($\underline{z}_{17} = 45$), #16 ($\underline{z}_{16} = 40$), #6 ($\underline{z}_{6} = 41$).
- If yes, provide the max-min heap after the fathoming step. See Figure 3.

Figure 1: Search tree of the branch-and-bound method

Figure 2: Max-min heap before the fathoming step

Figure 3: Max-min heap after the fathoming step

Question 2

Illustrate the KMP algorithm on the following example:

$$T=bacbabababacaca \qquad P=ababaca$$

In order to do,

- \bullet Provide the failure function for $P \leadsto \text{fill}$ the first table provided below
- ullet Indicate the successive positions of P to be considered in the second table that is provided below

	1	2	3	4	5	6	7
Р	a	b	a	b	a	С	a
Failure Function							

Т	b	a	c	b	a	b	a	b	a	b	a	c	a	c	a
Position 1															
Position 2															
Position 3															
Position 4															
Position 5															
•••															

What is the complexity of the KMP algorithm?