Unit 3.3 More on Divide and Conquer Algorithms

Algorithms

EE/NTHU

Apr. 9, 2020

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

1/34

Selection Algorithm

- The selection problem is to find the k'th smallest element of an array A and place all elements less than or equal to A[k] in A[1:k-1] and the rest in A[k+1:n].
- Divide and conquer can be applied to this problem as well.
 - The Partition algorithm can be effective in this selection problem.

Algorithm 3.3.1. Selection

```
// Partition the array into A[1:k-1] \leq A[k] \leq A[k+1:n].
   // Input: A, int n, k
   // Output: k-th smallest element of A, and with A rearranged.
 1 Algorithm Select 1(A, n, k)
 2 {
 3
        low := 1; high := n+1; A[n+1] := \infty; // Initialize ranges and j.
        repeat \{ / / \text{Loop until value found by Partition is } k.
 5
             j := Partition(A, low, high);
             if (j > k) then high := j; // j \neq k then update range for search.
 6
             else if (j < k) then low := j + 1;
         \} until (j=k);
 8
 9
        return A[k];
10 }
```

Selection Algorithm – Complexity

- Note that the Partition (A, low, high) decrease the range of the array A by at least 1.
- Thus, the worst-case complexity of the Select1 algorithm is $\mathcal{O}(n^2)$.
- ullet Let $T_A^k(n)$ be the average time to find the k'th smallest element in A[1:n]
 - The average is taken over all n! different permutations.
- Define

$$T_A(n) = \frac{1}{n} \sum_{k=1}^n T_A^k(n)$$

$$R(n) = \max_k T_A^k(n)$$
(3.3.1)
(3.3.2)

$$R(n) = \max_{k} T_{A}^{k}(n)$$
 (3.3.2)

- $T_A(n)$ is the average execution time of Select1 algorithm,
- And it is obvious that $T_A(n) \leq R(n)$.

Unit 3.3 More on Divide and Conquer Algorithms

Selection Algorithm – Complexity, II

Theorem 3.3.2.

The average execution time $T_A(n)$ of Select1 algorithm is $\mathcal{O}(n)$.

Proof. The complexity of Partition algorithm is $\mathcal{O}(n)$ and hence there is a constant c such that

$$T_A^k(n) \le c \cdot n + \frac{1}{n} \Big(\sum_{i=1}^{k-1} T_A^k(n-i) + \sum_{i=k+1}^n T_A^k(i-1) \Big).$$

Define $R(n) = \max_{k} T_A^k(n)$, then

$$R(n) \le c \cdot n + \frac{1}{n} \max_{k} \Big(\sum_{i=1}^{k-1} R(n-i) + \sum_{i=k+1}^{n} R(i-1) \Big),$$

= $c \cdot n + \frac{1}{n} \max_{k} \Big(\sum_{i=n-k+1}^{n-1} R(i) + \sum_{i=k}^{n-1} R(i) \Big).$

To show by induction that $R(n) \leq 4c \cdot n$.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Selection Algorithm - Complexity, III

For n=2,

$$R(n) \le 2 \cdot c + \frac{1}{2} \max \left(R(1), R(1) \right) = 2 \cdot c + \frac{1}{2} \max(4c, 4c)$$

= $2 \cdot c + 2 \cdot c < 4 \cdot c \cdot n$

Next assume $R(n) \leq 4 \cdot c \cdot n$ for $2 \leq n < m$. For n = m,

$$R(m) \le c \cdot m + \frac{1}{m} \max_{k} \Big(\sum_{i=m-k+1}^{m-1} R(i) + \sum_{i=k}^{m-1} R(i) \Big).$$

Since R(n) is a nondecreasing function of n, the term

$$\sum_{i=m-k+1}^{m-1} R(i) + \sum_{i=k}^{m-1} R(i)$$

is maximum when k=m/2 when m is even, and k=(m+1)/2 when m is odd.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

5/3

Selection Algorithm - Complexity, IV

When m is even

$$R(m) \le c \cdot m + \frac{2}{m} \sum_{i=m/2}^{m-1} R(i) = c \cdot m + \frac{8c}{m} \frac{(3m/2 - 1)(m/2)}{2}$$
$$= c \cdot m + c(3m - 2) = 4 \cdot c \cdot m - 2c < 4 \cdot c \cdot m$$

Similarly, when m is odd

$$R(m) \le c \cdot m + \frac{2}{m} \sum_{i=(m+1)/2}^{m-1} R(i) = c \cdot m + \frac{8c}{m} \frac{(3m-1)/2 \cdot (m-1)/2}{2}$$
$$= c \cdot m + \frac{c}{m} (3m^2 - 4m + 1) = 4 \cdot c \cdot m - 4c + c/m < 4 \cdot c \cdot m$$

Since $T_A(n) \leq R(n)$, therefore $T_A(n) \leq 4 \cdot c \cdot n$ and $T_A(n)$ is $\mathcal{O}(n)$.

- The space complexity of the Select1 algorithm is $\mathcal{O}(n)$ for the array A.
- The Select1 algorithm can also be randomized as RQuickSort algorithm.
 - The expected time complexity is still $\mathcal{O}(n)$.
 - But the average performance is expected to be better.

Selection Algorithm - Complexity, V

- The execution time of Select1 in the worst-case is $\mathcal{O}(n^2)$.
 - The worst-case can happen if the partition element, A[low], is close to extreme.
 - If the partition element is close to the median, A[(low + high)/2], then the number of iterations can be reduced significantly.
 - Using this argument, the selection algorithm is modified to have worst-case linear time complexity.
- The array A is divided into subarrays each has r elements
 - $\lceil n/r \rceil$ groups
 - A small r is usually preferred (r = 5, for example).
- ullet Then the median of each group is found and move to the front array A
- ullet The median of the medians, mm, is then found using Partition function
- Now, this mm can be used to partition array A.
- Since mm is used for each partition step in the selection algorithm, worst-case linear time can be guaranteed.
- Note that though Select2 is worst-case linear, it has a much larger coefficient, as compared to Select1, thus for small to median-size problems, Select2 may not be faster in execution.
 - Select2 returns the position j such that A[j] is the k'th smallest element.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

7/3

Selection Algorithm – Worst-case Linear

Algorithm 3.3.3. Selection – Worst-case Linear

```
// Partition the array into A[1:k-1] \leq A[k] \leq A[k+1:n].
   // Input: A, int k, low, high, r
   // Output: k-th element of A.
 1 Algorithm Select2(A, k, low, high, r)
 2 {
 3
          j := k + low - 1;
          while (k \neq j - low) do {
 4
 5
                n := high - low + 1;
                if (n \le r) then \{ // \text{ small array } \}
 7
                      InsertionSort(A, low, high);
                      return low + k;
 8
 9
10
                for i := 1 to \lceil n/r \rceil do \{ // \text{ find median of each group and move to front } \rceil
11
                      InsertionSort(A, low + (i-1) * r, low + i * r - 1);
                      Swap(low + i - 1, low + (i - 1) * r + \lceil r/2 \rceil - 1);
12
13
                j := Select2(A, \lceil \lfloor n/r \rfloor/2 \rceil, low, low + \lceil n/r \rceil -1); // find median of medians
14
                Swap(low, j); // move median of median to A[low]
15
16
                j := Partition(A, low, high + 1);
17
                if (k < j - low) high := j; // reduce to A[low : j]
                else if (k>j-low) { // reduce to A[j+1:high]
18
                      k := k - (j - low + 1);
19
                      low := j + 1;
20
21
22
23
          return j;
24 }
```

Matrix Multiplication

• Given two $n \times n$ matrices **A** and **B**, $\mathbf{A}[i,j] \in \mathbb{R}$, $\mathbf{B}[i,j] \in \mathbb{R}$, $1 \leq i,j \leq n$, then $n \times n$ matrix C is the product of A and B, $(C = A \cdot B)$,

$$\mathbf{C}[i,j] = \sum_{k=1}^{n} \mathbf{A}[i,k] \times \mathbf{B}[k,j], \qquad 1 \le i, j \le n.$$
 (3.3.3)

- ullet Note that to calculate ${f C}[i,j]$, one needs n multiplications and n-1additions.
- Thus to calculate ${\bf C}$, which has n^2 elements, the time complexity is $\Theta(n^3)$.

Unit 3.3 More on Divide and Conquer Algorithms

Matrix Multiplication – Divide and Conquer

- Suppose $n=2^k$, we can apply divide and conquer approach to matrix multiplication problem.
- Divide each matrix into 4 submatrices with $\frac{n}{2} \times \frac{n}{2}$ dimensions each, then

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix}$$
(3.3.4)

where

$$\mathbf{C}_{11} = \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21}
\mathbf{C}_{12} = \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22}
\mathbf{C}_{21} = \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21}
\mathbf{C}_{22} = \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22}$$
(3.3.5)

- To calculate matrix ${\bf C}$, we need Eight matrix multiplications $(\frac{n}{2} \times \frac{n}{2})$,
 - Four matrix additions $(\mathcal{O}(n^2)$ complexity due to n^2 elements in \mathbb{C}).
- Let T(n) be the complexity, then

$$T(n) = \begin{cases} b, & n \le 2 \\ 8 \cdot T(n/2) + c \cdot n^2, & n > 2. \end{cases}$$
 (3.3.6)

where b and c are constants.

Matrix Multiplication - Divide and Conquer, II

• If $n = 2^k$

$$T(n) = 8T(n/2) + c \cdot n^{2}$$

$$= 8\left[8T(n/4) + c \cdot \left(\frac{n}{2}\right)^{2}\right] + c \cdot n^{2}$$

$$= 8^{2}T(n/4) + c \cdot n^{2}(2+1)$$

$$= 8^{3}T(n/8) + c \cdot n^{2}(4+2+1)$$

$$= 8^{k-1}T(n/2^{k-1}) + c \cdot n^{2}\sum_{i=0}^{k-2} 2^{i}$$

$$= 2^{3k-3}b + c \cdot n^{2}(2^{k-1})$$

$$= \frac{n^{3}}{8}b + c \cdot n^{2}\left(\frac{n}{2}\right)$$

$$= \left(\frac{b}{8} + \frac{c}{2}\right)n^{3}$$

$$= \mathcal{O}(n^{3})$$

 Thus, this divide and conquer approach does not improve the computational complexity

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithm

Apr. 9, 2020

11/3

Strassen's Matrix Multiplication

• Given Equations (3.3.4) and (3.3.5), define the following

$$\begin{array}{lll} \mathbf{P} & = & (\mathbf{A}_{11} + \mathbf{A}_{22})(\mathbf{B}_{11} + \mathbf{B}_{22}) \\ \mathbf{Q} & = & (\mathbf{A}_{21} + \mathbf{A}_{22})\mathbf{B}_{11} \\ \mathbf{R} & = & \mathbf{A}_{11}(\mathbf{B}_{12} - \mathbf{B}_{22}) \\ \mathbf{S} & = & \mathbf{A}_{22}(\mathbf{B}_{21} - \mathbf{B}_{11}) \\ \mathbf{T} & = & (\mathbf{A}_{11} + \mathbf{A}_{12})\mathbf{B}_{22} \\ \mathbf{U} & = & (\mathbf{A}_{21} - \mathbf{A}_{11})(\mathbf{B}_{11} + \mathbf{B}_{12}) \\ \mathbf{V} & = & (\mathbf{A}_{12} - \mathbf{A}_{22})(\mathbf{B}_{21} + \mathbf{B}_{22}) \end{array} \tag{3.3.7}$$

Then

$$\mathbf{C}_{11} = \mathbf{P} + \mathbf{S} - \mathbf{T} + \mathbf{V}$$

$$\mathbf{C}_{12} = \mathbf{R} + \mathbf{T}$$

$$\mathbf{C}_{21} = \mathbf{Q} + \mathbf{S}$$

$$\mathbf{C}_{22} = \mathbf{P} + \mathbf{R} - \mathbf{Q} + \mathbf{U}$$

$$(3.3.8)$$

- To find matrix ${\bf C}$, we need 7 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ and 18 matrix additions.
- Since matrix multiplications, $\mathcal{O}(n^3)$, is more expensive than matrix addition, $\mathcal{O}(n^2)$, for large n this approach might be more efficient.

Strassen's Matrix Multiplication, II

• The recurrence relation for the computation time T(n) is

$$T(n) = \begin{cases} b, & n \le 2, \\ 7 \cdot T(n/2) + c \cdot n^2, & n > 2. \end{cases}$$
 (3.3.9)

where b and c are two constants.

• If $n=2^k$, then

$$T(n) = 7 \cdot T(n/2) + c \cdot n^{2}$$

$$= 7^{2} \cdot T(n/4) + 7 \cdot c \cdot (n/2)^{2} + c \cdot n^{2}$$

$$= 7^{2} \cdot T(n/4) + c \cdot n^{2} (7/4 + 1)$$

$$= 7^{k-1} \cdot T(n/2^{k-1}) + c \cdot n^{2} \sum_{i=0}^{k-2} (7/4)^{i}$$

$$= 7^{k-1} \cdot b + c \cdot n^{2} \left((7/4)^{k-1} - 1 \right) / (3/4)$$

$$\approx n^{\lg 7} \cdot \frac{b}{7} + c' n^{\lg 4 + \lg 7 - \lg 4}$$

$$= \mathcal{O}(n^{\lg 7}) \approx \mathcal{O}(n^{2.807})$$

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

13/3

Strassen's Matrix Multiplication, III

- Compared to direct matrix multiplication, $\mathcal{O}(n^3)$, Strassen's approach can be faster for large n.
 - But, coding is much more complex

Convex Hull Problem

- Given a set S that contains points on a 2-D plane, the convex hull is defined as the smallest convex polygon that contains all the points in S.
- A polygon is convex if for any two points p_1, p_2 inside of the polygon, the straight line segment connecting p_1 and p_2 is fully contained in the polygon.
- ullet The vertices of the convex hull of a set S is a subset of S.
 - But, not necessarily a proper subset.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

15/34

Convex Hull - Direct Implementation

- ullet The convex hull of S can be found using the definition above
 - For any $p_1 \in S$, if p_1 is inside the triangle formed by $p_2, p_3, p_4 \in S$, with $p_1 \notin \{p_2, p_3, p_4\}$, then p_1 is not a vertex of the convex hull.
- This direct implementation has the time complexity of $\mathcal{O}(n^4)$.
 - n points to be tested, n^3 for all possible triangles.

Convex Hull – Direct Implementation, II

- To test if a point p_1 is inside of a triangle $\triangle p_2 p_3 p_4$
 - Let L be the horizontal line passing through $p_1 = (x_1, y_1)$, note that L can be described by the linear equation $y = y_1$, then check if L intersects with any of the line segments, $\overline{p_2p_3}$, $\overline{p_3p_4}$, $\overline{p_4p_2}$. If not, then p_1 is outside of $\triangle p_2p_3p_4$. Otherwise let (x_a, y_1) and (x_b, y_1) be the intersect points, if $x_a \le x_1 \le x_b$ then p_1 is inside of the triangle. (Note that it is possible $x_a = x_b$.)

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Convex Hull – Graham's Scan

Algorithm 3.3.4. Convex Hull

```
// Find the convex hull of a set of points.
  // Input: ptslist linked list of points
  // Output: convex hull of ptslist.
1 Algorithm ConvexHull(ptslist)
2 {
3
       Let the first element of ptrlist has the smallest y coordinate;
       Sort(ptrlist); // Sort by angle between p and x-axis.
4
5
       Scan(ptrlist);
       PrintList(ptrlist);
6
7 }
```


Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

Convex Hull – Graham's Scan, II

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

19 / 34

Convex Hull – Graham's Scan, III

Convex Hull – Graham's Scan, IV

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

21/3

Convex Hull – Graham's Scan Algorithm

Algorithm 3.3.5. Graham's Scan Algorithm

```
// Remove internal points while doing convex hull.
    // Input: list, linked list of points
    // Output: none, list modified.
 1 Algorithm Scan(list)
 2 {
          p1 := list; p2 := p1 \rightarrow next;
 3
          while (p2 \rightarrow next \neq NULL) do \{ // \text{ For all points on the sorted list.} \}
 4
                p3 := p2 \rightarrow next;
 5
                if (Area(p1, p2, p3) > 0) then // \overrightarrow{p_1 p_2 p_3} turning left, accept p_2.
 6
 7
                      p1 := p1 \rightarrow next;
                else {
 8
                      p1 \rightarrow next := p3; // Remove p_2 from the list.
 9
                      p3 \rightarrow prev := p1;
10
                      delete p2;
11
                      p1 := p1 \rightarrow prev; // Backtrack p_1.
12
13
14
                p2 := p1 \rightarrow next;
15
16 }
```

Convex Hull - Graham's Scan Algorithm, II

• In the preceding algorithm, the points are in linked list form consists

```
struct Point {
   double x, y;
   struct Point *next, *prev;
}
```

- Note that this is a double linked list.
- Let $p_1(x_1,y_1)$, $p_2(x_2,y_2)$ and $p_3(x_3,y_3)$ be three points in a plane the function $Area(p_1,p_2,p_3)$ is defined as

$$\det \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
(3.3.10)

- It can be shown that
 - If the area is positive then p_3 is located to the left of the vector $\overrightarrow{p_1p_2}$.
 - If the area is negative then p_3 is located to the right of the vector $\overrightarrow{p_1p_2}$.
 - If the area is zero then p_3 is colinear with $\overrightarrow{p_1p_2}$.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

23 / 3

Convex Hull – Graham's Scan Algorithm, Complexity

- The Algorithm (3.3.4) consists of 3 steps
 - (line 4) finding the first element with the smallest y coordinate can be done in $\mathcal{O}(n)$ time,
 - ullet (line 5) sort by the angle can be done in $\mathcal{O}(n\lg n)$ time,
 - (line 6) Graham's Scan can be done in $\mathcal{O}(n)$ time.
- Thus, the time complexity is $\mathcal{O}(n \lg n)$.

Quick Hull Algorithm

• Divide and conquer approach can be used to find the convex hull.

Algorithm 3.3.6. QuickHull

```
// Find Convex Hull for points in list.
   // Input: list, linked list of points
   // Output: CHull: convex hull of list.
 1 Algorithm QuickHull(list, CHull)
 2 {
 3
         Find p_1 \in list with the smallest x coordinate.
 4
         Find p_2 \in list with the largest x coordinate.
         Let X_1 := \{p | \text{Area}(p_1, p_2, p) > 0\}. // Upper half.
 5
 6
         Let X_2 := \{p | Area(p_1, p_2, p) < 0\}. // Lower half.
 7
         Hull(p_1, p_2, X_1, UpperHull); // Create upper hull.
 8
         Hull(p_2, p_1, X_2, LowerHull); // Lower hull.
 9
         CHull := Merge(UpperHull, LowerHull); // Merge them.
10 }
```

- Finding p_1 and p_2 takes $\mathcal{O}(n)$ time.
- Finding X_1 and X_2 takes $\mathcal{O}(n)$ time.
- Merge takes no more than $\mathcal{O}(n)$ time.
- The time complexity can be dominated by Hull function.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

25 / 3

Quick Hull Algorithm, II

Algorithm 3.3.7. QuickHull

```
// Find Convex Hull for p_1, p_2 and list.
    // Input: p_1, p_2, and list
    // Output: Convex Hull, CHull.
 1 Algorithm Hull(p_1, p_2, list, CHull)
 2 {
 3
            Find p_3 \in list with the largest | Area(p_1, p_2, p_3) |;
            Let X_1:=\{p|\operatorname{Area}(p_1,p_3,p)>0\}. // All points left to \overrightarrow{p_1p_3}/ if (X_1=\emptyset) then H_1:=\{p_1,p_3\}; // No more points.
            else \mathrm{HULL}(p_1, p_3, X_1, H_1); // Recursive call if more points.
 6
            Let X_2 := \{ p | \operatorname{Area}(p_3, p_2, p) > 0 \}.
 7
            if (X_2 = \emptyset) then H_2 := \{p_3, p_2\};
 9
            else HULL(p_3, p_2, X_2, H_2);
            CHull := Merge(H_1, H_2); // Combine those two hulls.
10
11 }
```

- Finding p_3 , X_1 , and X_2 take $\mathcal{O}(m)$ time, if list has m points.
- ullet Thus, if T(m) is the time for HULL algorithm we have

$$T(m) = T(m_1) + T(m_2) + \mathcal{O}(m),$$
 (3.3.11)

where $m_1 + m_2 \leq m$.

- This recurrence relationship is the same as QuickSort.
 - Worst-case complexity is $\mathcal{O}(m^2)$, and average-case is $\mathcal{O}(m \lg m)$.

Quick Hull Example

Time Complexity of Divide and Conquer Algorithms

- In Algorithm DandC (Algorithm 3.1.1) the problem is divided into k subproblems; each solved recursively; then the results are combined to form the final solution.
- The execution time can be assumed to have a general recurrence equation as

$$T(n) = a \cdot T(n/k) + f(n).$$
 (3.3.12)

where f(n) is the time to divide problem into k subsets and to combine the subsets to form the final solution.

• Let $n = k^m$, then

$$T(n) = a \cdot T(n/k) + f(n) = a \cdot T(k^{m-1}) + f(k^m)$$

$$= a \cdot \left(a \cdot T(k^{m-2}) + f(k^{m-1})\right) + f(k^m) = a^2 \cdot T(k^{m-2}) + a \cdot f(k^{m-1}) + f(k^m)$$

$$= a^m \cdot T(1) + \sum_{i=0}^{m-1} a^i \cdot f(k^{m-i}) = a^m \left(T(1) + \sum_{i=0}^{m-1} f(k^{m-i})/a^{m-i}\right)$$

$$= a^{\log_k n} \left(T(1) + \sum_{i=0}^{m-1} f(k^{m-i})/a^{m-i}\right) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} f(k^i)/a^i\right)$$

Time Complexity of Divide and Conquer Algorithms, II

• Let's assume further that $f(n) = \Theta(n^d) \approx n^d$, then

$$T(n) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} f(k^i) / a^i \right) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} k^{d \cdot i} / a^i \right)$$

$$= n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} (k^d / a)^i \right)$$
(3.3.13)

• If $k^d=a$, or $d=\log_k a$, then

$$T(n) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} (k^d/a)^i \right) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} 1 \right)$$

$$= n^{\log_k k^d} \left(T(1) + \log_k n \right) = n^d \left(T(1) + \log_k n \right) = \Theta(n^d \log_k n)$$
 (3.3.14)

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

29 / 3

Time Complexity of Divide and Conquer Algorithms, III

• If $k^d \neq a$, then

$$T(n) = n^{\log_k a} \left(T(1) + \sum_{i=1}^{\log_k n} (k^d/a)^i \right) = n^{\log_k a} \left(T(1) + \frac{(k^d/a)^{1 + \log_k n} - 1}{(k^d/a) - 1} \right)$$

• In case of $k^d>a$, or $d>\log_k a$, then

$$T(n) = n^{\log_k a} \left(T(1) + \frac{(k^d/a)^{1 + \log_k n} - 1}{(k^d/a) - 1} \right) = \Theta(n^{\log_k a} \frac{(k^d/a)^{1 + \log_k n}}{(k^d/a)})$$

$$= \Theta(n^{\log_k a} (k^d/a)^{\log_k n}) = \Theta(a^{\log_k n} (k^d/a)^{\log_k n})$$

$$= \Theta(k^{d \log_k n}) = \Theta(k^{\log_k n}) = \Theta(n^d)$$
(3.3.15)

ullet In case of $k^d < a$, or $d < \log_k a$, then

$$T(n) = n^{\log_k a} \left(T(1) + \frac{(k^d/a)^{1 + \log_k n} - 1}{(k^d/a) - 1} \right) = n^{\log_k a} \cdot \Theta(1) = \Theta(n^{\log_k a})$$
 (3.3.16)

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithm

Apr. 9, 2020

• Combine Equations (3.3.14), (3.3.15), and (3.3.16) together, we have

Theorem 3.3.8. Master Method

Let $\mathit{T}(n)$ be an eventually nondecreasing function that satisfies the recurrence relationship

$$T(n) = a \cdot T(n/k) + f(n),$$
 for $n = k^i, i = 1, 2, ...$
 $T(1) = c.$

where $a \ge 1$, $k \ge 2$, c > 0. If $f(n) = \Theta(n^d)$ where $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d), & \text{if } d > \log_k a, \\ \Theta(n^d \lg n), & \text{if } d = \log_k a, \\ \Theta(n^{\log_k a}), & \text{if } d < \log_k a. \end{cases}$$

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

31/3

Master Method - Example

• Example 1, Algorithm MaxMin

$$T(n) = 2T(n/2) + 2$$

a=2, k=2, d=0, and $d<\log_2 2=1$.

Using Master Method, we have $\tilde{T}(n) = \Theta(n^{\log_2 2}) = \Theta(n)$.

• Example 2, Algorithm MaxSubArray

$$T(n) = 2T(n/2) + n$$

a = 2, k = 2, d = 1, and $d = \log_2 2$.

Using Master Method, we have $T(n) = \Theta(n \lg n)$.

• Example 3, MatrixMultiplication

$$T(n) = 8T(n/2) + n^2$$

a = 8, k = 2, d = 2, and $d < \log_2 8 = 3$.

Using Master Method, we have $T(n) = \Theta(n^{\log_2 8}) = \Theta(n^3)$.

Master Method - Example, II

Example 4, Strassen's matrix multiplication

$$T(n) = 7 \cdot T(n/2) + c \cdot n^2$$

a = 7, k = 2, d = 2 and $d < \log_2 7$.

Using Master Method, we have $T(n) = \Theta(n^{\lg 7})$

• Example 5,

$$T(n) = 2T(n/2) + n^2$$

a = 2, k = 2, d = 2 and $d > \log_2 2 = 1$.

Using Master Method, we have $T(n) = \Theta(n^d) = \Theta(n^2)$.

This can also be derived as follows.

$$T(n) = 2T(n/2) + n^2 = 2\left(2T(n/4) + (n/2)^2\right) + n^2$$

$$= 4T(n/4) + n^2(1+1/2) = 2^m T(n/2^m) + n^2 \sum_{i=0}^{m-1} 1/2^i$$

$$= n + n^2 \cdot 2 \cdot (1 - 2^{-m}) = \Theta(n^2)$$

 Thus, the Master method can be effective to find the complexity of divide and conquer algorithms.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Apr. 9, 2020

33 / 34

Summary

- Selection problem
 - Worst-case: $\mathcal{O}(n^2)$, average-case: $\mathcal{O}(n)$
- Matrix multiplication, $\mathcal{O}(n^3)$
 - Strassen's matrix multiplication, $\mathcal{O}(n^{\lg 7})$
- Convex hull problem $(\mathcal{O}(n^4))$
 - ullet Graham's scan algorithm, $\mathcal{O}(n\lg n)$
 - Quick hull algorithm, worst-case $\mathcal{O}(m^2)$, average-case $\mathcal{O}(m \lg m)$
- Time complexity of divide and conquer algorithms
 - Master method