CHEM 361B - Lecture 13 Activity Spin

- 1. Consider a Hydrogen atom with an electron in the $\psi_{43-1}\alpha$ state. Apply the following operators and show that the value of their classical observable is.
 - (a) \hat{L}^2 Total extrinsic angular momentum is $\sqrt{12}\hbar$
 - (b) \hat{L}_z z-component of the extrinsic angular momentum is $-\hbar$
 - (c) \hat{S}^2 Total intrinsic angular momentum is $\frac{\sqrt{3}}{2}\hbar$
 - (d) \hat{S}_z z-component of the intrinsic angular momentum is $\frac{1}{2}\hbar$
- 2. The spin states, α and β , which represent spin up, and spin down, are normalised

$$\int \alpha^* \alpha \ d\sigma = \int \beta^* \beta \ d\sigma = 1$$

These two spin states are also orthogonal

$$\int \alpha^* \beta \ d\sigma = \int \beta^* \alpha \ d\sigma = 0$$

which means that the α and β states do not overlap. In general, testing if two states are orthogonal is a similar operation as normalisation, except the result of the integral is zero:

$$\int_{all\ space} \psi_m^* \psi_n \ d\Omega = 0 \quad \text{if } \psi_m \text{ and } \psi_n \text{ are orthogonal}$$

where $d\Omega$ is a generalised infinitesimal element that represents all dimensions that are being integrated.

- (a) Using the framework from above, let $\psi_m^* = \psi_{100}^* \alpha^*$, $\psi_n = \psi_{100} \beta$ and $d\Omega = r^2 \sin \theta \ dr \ d\theta \ d\phi \ d\sigma$. Show that the two states $\psi_{100} \alpha$ and $\psi_{100} \beta$ are orthogonal.
- (b) The Pauli Exclusion Principle states that no two electrons can be in the same state. What does the above result mean for the number of electrons in the 1s orbital?
- 3. Spin multiplicity is the number of ways a given state of a system can arrange their electrons in near-degenerate energy levels. It is calculated by adding the total spin from each electron:

$$S = \sum_{i} s_{i}$$

Note that s_i is a vector. S is the total spin for the atom and the atom's multiplicity is 2S + 1. For the ground state of an atom, S can alternatively be found by adding up all the unpaired electrons and multiplying the result by $\frac{1}{2}$

- (a) Show that the multiplicity of an atom in the ground state with all paired electrons (for example He) is 1. This is called a singlet state.
- (b) Show that the spin multiplicity of carbon in the ground state is 3. This is called a triplet state. To get the proper multiplicity, first, fill the orbitals with highest m_{ℓ} value with one electron each, and assign a maximal m_s to them (i.e. $+\frac{1}{2}$). Once all orbitals in a subshell have one electron, add a second one (following the same order), assigning $m_s = -\frac{1}{2}$ to them.
- (c) Show that the spin multiplicity of fluorine is 2. This is called a doublet state.