HÁZI FELADAT

Programozás alapjai 2.

Feladatválasztás/feladatspecifikáció

Dézsi Bálint Loránd NINN8B

2024. március 22.

TARTALOM

1.	. Digitáli	<mark>s áramkör</mark>	2
2.		specifikáció	
3.		1	
	3.1. Obj	jektum terv	5
		orogram működése/algoritmusai	
		Üzenet	
	3.2.2.	Forrás	5
	3.2.3.	Vezeték	5
		Invereter	
	3.2.5.	Norgate	6
	3.2.6.	Kombhál	6
	3.2.7.	Áramköri elem	6
	3.3. A to	esztprogram	6

1. Digitális áramkör

Készítsen egyszerű objektummodellt digitális áramkör szimulálására! A modell minimálisan tartalmazza a következő elemeket:

- ■NOR kapu
- vezérelhető forrás
- ●összekötő vezeték
- •inverter

A modell felhasználásával szimulálja egy olyan 5 bemenetű kombinációs hálózat működését, amely akkor ad a kimenetén hamis értéket, ha bementén előálló kombináció 5!

Demonstrálja a működést külön modulként fordított tesztprogrammal! A megoldáshoz ne használjon STL tárolót!

2. Feladatspecifikáció

A program képes digitális áramköri elemek modellezésére és azokból kombinációs hálózatot létrehozni.

Az áramköri elemeket össze lehet kötni vezeték felhasználásával,vagy vezeték használata nélkül közvetlenül A választott bemenetére lehet kötni B kimenetét. A modellezet hálózat a feladatleírás szerint akkor fog hamis(logikai 0) értéket adni amikor a bemeneti 5 változó értéke bináris 5(00101), vagyis minden más esetben igazat ad vissza. A működést demonstráló kombinációs hálózat igazságtáblája, és függvénye(diszjunktív normál alakban):

E	D	С	В	A	Y	
0	0	0	0	0	1	
0	0	0	0	1	1	
0	0	0	1	0	1	
0	0	0	1	1	1	
0	0	1	0	0	1	
0	0	1	0	1	0	
0	0	1	1	0	1	
0	0	1	1	1	1	
0	1	0	0	0	1	
0	1	0	0	1	1	
0	1	0	1	0	1	
0	1	0	1	1	1	
0	1	1	0	0	1	
0	1	1	0	1	1	
0	1	1	1	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	0	0	1	1	
1	0	0	1	0	1	
1	0	0	1	1	1	
1	0	1	0	0	1	
1	0	1	0	1	1	
1	0	1	1	0	1	
1	0	1	1	1	1	
1	1	0	0	0	1	
1	1	0	0	1	1	
1	1	0	1	0	1	
1	1	0	1	1	1	
1	1	1	0	0	1	
1	1	1	0	1	1	
1	1	1	1	0	1	
1	1	1	. 1	. 1	1	
		a + b	+ ! c + d +	! e		

1.

A hálózat megvalósítása "felépítése" a programon belül történik, konzol felületen lesz lehetőség a már felépített hálózat bemeneti változóinak (EDCBA) megadására.

A program nem fogad el csak 1 est vagy 0-át, mást karakternél const char* kivétel keletkezik,amit a program jelezni is fog a felhasználó felé, hogy érvénytelen bemenetet adott meg.

3. Terv

A feladatban 6+1.db objektumra van szükség. 6db áramköri elem és +1 db kombinációs hálózat, ami felépíti a példában megadott hálózatot.

3.1. Objektum terv

A digitális áramkör a fent látható objektumokkal lesz megvalósítható. Ezen objektumokkal minden kombinációs hálózat felépíthető és szimulálható. Későbbiekben bővítésre is van lehetőség pl. sima vagy kapu felépíthető egy nor kapu és egy inverter segítségével. A kombhal objektumban valósítja meg a feladat leírásban kért, 1. ábrán látható hálózat.

3.2. A program működése/algoritmusai

A program alap működése a következő: Minden áramköri elem egy objektum, mindannyian üzenet objektumokat tárolnak, kompozícióban tehát rendelkeznek az üzenet élettartama felett.

3.2.1. Üzenet

2 bool privát adattaggal rendelkezik:

- defined: Adtunk e már értéket neki(true), vagy még csak létre lett hozva(false)azaz undefined.
- value: Az üzenet értéke 1(true) vagy 0 (false)

3.2.2. Forrás

Vezérelhető forrás, csak kimenettel rendelkező áramköri elem. Kimenete std::osstremmel állítható létrehozásakor.

3.2.3. Vezeték

Egyszerű áramköri elem, amilyen üzenetet kap a bemenetére azt továbbítja a kimenetére.

3.2.4. Invereter

A vezetéknél eggyel bonyolultabb áramköri elem,1 be és 1 kimenete van, negálja a bemenetére érkező üzenetet.

3.2.5. Norgate

Nem-vagy kapcsolatot megvalósító áramköri elem. Tetszőleges bemenettel rendelkezik. Amikor minden bemenetére kötöttünk egy áramköri elemet, elvégzi a nem-vagy kapcsolatot.

 A nem-vagy kapcsolat megvalósítása: Egy áramköri elem csatlakoztatásakor, alapértelmezetten 1(true) értéket ad vissza, de végigmegy az összes láb állapotán, ha talál már definiált 1(true) állapotú lábat, visszatér 0(false) értékkel hiszen ilyenkor a vagy kapcsolat az összes többi láb értékétől függetlenül igazat adna, tehát a nem-vagy kapu hamisat.

3.2.6. Kombhál

Megvalósítja a feladatban megadott kombinációs hálózatot. (1.ábra) Default konstruktorral létrehozza.

3.2.7. Áramköri elem

Ez az alaposztály.

A legtöbb függvénye önleíró egyedül a connect igényel leírást.

A connect, virtuális függvény valósítja meg az elemek csatlakoztatását, de nem közvetlenül áramköri elemet adjuk meg paraméterként, hanem a csatlakoztatni kívánt áramköri elem kimenetén lévő üzenetet (ezt az out tagfüggvénnyel tesszük), valamint paraméternűként megadjuk, hogy melyik lábra szeretnénk csatlakoztatni. Ezt a függvényt írják felül (override) a leszármazottak.

3.3. A tesztprogram

A tesztprogramban létre lesz hozva minden egyes áramköri elem egyesével, funkcióik ki lesznek próbálva, valamint a tesztelve lesz a belőlük felépített kombinációs hálózat.