Measure IDS-VGS with $V_S = V_B = 0$, $V_{DS} = 0.1V$, Sweep $V_{GS} = 0 \sim 2.5V$ $V_{GS} = V_{TH} + 0.5V_{DS}$

另一方法為固定電流法(constant current),較為簡化,是利用 log scale I_D vs. V_G 圖取固定汲極電流下的 V_G 值,由於簡化了複雜的參數,固定參考流會 因每一世代電晶體的製程而調整,如 $0.18\mu m$ 製程經常取 1E-7 A 汲極電流而 $0.25\mu m$ 製程經常取 0.4E-7A 作為固定汲極電流而對應之 V_G 值,即為臨界電壓 V_{TH} 。

2. 飽和電流 (Saturation Current)

一般來說,直流曲線的作圖都是以汲極電流(I_D)對汲極電壓(V_D)的形式來進行說明,而一般而言,若電晶體元件操作在水準電場很大的時候會發生速度飽和效應,當電場大於飽和電場(Esat)1.5V/m時載子速度會達到飽和而不再隨著水準電場的增加而加速,這就稱為速度飽和效應。此區域內電壓 V_{DS} 持續增加,但是汲極電流 I_D 並不隨著增加而幾乎保持定值。當 V_{DS} 漸增,靠近汲極附近的氧化層所跨的電壓減少,產生反轉電荷的能帶彎曲減少,故反轉電子減少, I_D - V_{DS} 圖的斜率漸減。當反轉電子密度為零時(稱為夾止pinch-off), I_D - V_{DS} 圖的斜率變為零,即電流維持不變,達到飽和。當汲極電壓大於 V_{DS} (sat),此時電子注入空間電荷區,在藉由電場掃至汲極。當 V_D > V_{DS} (sat),故 I_D 維持不變。

$$\begin{split} &MOSFET \text{ in the Saturation region } (V_{DS}\!>\!V_{GS}-V_T)\\ &I_{DS}\!=\!\frac{1}{2}\!\left(\!\frac{W_{eff}}{L_{eff}}\!\right)\!C_{OX}\,\mu_n\,\,(V_{GS}-V_T)^2\\ &Measure\,\,I_{DS}\,\,with\,\,V_S\!=\!V_B\!=\!0,\,V_{DS}\!=\!V_{GS}\!=\,Vcc \end{split}$$