NEURAL NETWORKS AND DEEP LEARNING

神经网络与深度学习

Recurrent Neural Networks 循环神经网络

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

1	Α	В	С	D	Е	F	
1	Date	Volume	Open	High	Low	Close	
2	1-Apr	423454	12.12	12.89	12	12.18	1
3	2-Apr	534535	13.12	13.55	12.98	13.2	Lookback
4	3-Apr	464255	11.16	12.04	11.11	11.3	5 days information
5	4-Apr	462163	17.12	17.12	17.06	17.1	<u>L</u>
6	5-Apr	724552	16.24	16.25	15.95	16.24	Next day,
7	6-Apr	452426	20.28	20.28	19.35	20.28	Up? Dowr
8	7-Apr	623562	14.12	14.53	13.75	14.2	ορ. <i>σ</i> ονν
9	8-Apr	245621	10.89	12.36	10.85	11.3	
10	9-Apr	631531	20.1	20.1	18.69	20.04	
11	10-Apr	222455	12.11	13.65	11.94	12.3	

- 传统DNN只能利用当前时刻的信息(i.e., 5-Apr)
- RNN能够回溯更多时间步的信息去改善预测结果

Humans don't start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words. You don't throw everything away and start thinking from scratch again.

Traditional neural networks can't do this, and it seems like a major shortcoming.

Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.

Recurrent Neural Networks have loops.

- h_t, x_t , 具有时间下标,沿着时间维度信息流动
- A不变(网络参数),说明在不同的时间步下是 共享参数的,回顾卷积核

沿着时间维度(时间步)将RNN展开

Recurrent Neural Networks have loops.

An unrolled recurrent neural network.

RNNs, are a class of neural networks that allow previous outputs to be used as inputs while having hidden states.

For each timestep t, the activation $a^{< t>}$ and the output $y^{< t>}$ are expressed as follows:

本质上还是矩阵运算,只 不过在时间维度上递归

$$oxed{a^{< t>} = g_1(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)} \quad ext{and} \quad oxed{y^{< t>} = g_2(W_{ya}a^{< t>} + b_y)}$$

where $W_{ax}, W_{aa}, W_{ya}, b_a, b_y$ are coefficients that are shared temporally and g_1, g_2 activation functions.

循环神经网络

本质上还是矩阵运算,只不过在时间维度 上递归,RNN中激活函数g可以有多种选择

 $\text{ and } \left| \, y^{< t>} = g_2(W_{ya}a^{< t>} + b_y) \, \right|$

☐ **Commonly used activation functions** — The most common activation functions used in RNN modules are described below:

Sigmoid	Tanh	RELU	
$g(z)=rac{1}{1+e^{-z}}$	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	$g(z) = \max(0,z)$	
$\begin{array}{c c} 1 \\ \hline \frac{1}{2} \\ \hline -4 & 0 \end{array}$	$ \begin{array}{c c} 1 \\ \hline -4 & 0 \\ \hline -1 \\ \end{array} $		

RNN Variants

Type of RNN	Illustration	Example
One-to-one $T_x=T_y=1$	$ \begin{array}{c} \hat{y} \\ \uparrow \\ \hline x \end{array} $	Traditional neural network
One-to-many $T_x=1, T_y>1$	$ \begin{array}{c} \hat{y}^{<1>} \\ \uparrow \\ \downarrow \\ x \end{array} $ $ \begin{array}{c} \hat{y}^{<2>} \\ \uparrow \\ \downarrow \\ x \end{array} $ $ \begin{array}{c} \hat{y}^{} \\ \uparrow \\ \downarrow \\ x \end{array} $	Music generation
Many-to-one $T_x>1, T_y=1$	$ \begin{array}{c} \hat{y} \\ \uparrow \\ \downarrow \\ x^{<1>} \end{array} $ $ \begin{array}{c} \uparrow \\ x^{<2>} \end{array} $ $ \begin{array}{c} \downarrow \\ x^{} \end{array} $	Sentiment classification

RNN Variants

沿着时间维度正向、反向分 别递归更新hidden state

某层(隐藏层)中是沿着时间维度递归更新,可以stack多层RNN

Advantages	Drawbacks
 Possibility of processing input of any length Model size not increasing with size of input Computation takes into account historical information Weights are shared across time 	 Computation being slow Difficulty of accessing information from a long time ago Cannot consider any future input for the current state

- **RNN Variants**
- GRU
- LSTM
- RNN w/ attention (todo)

 r_t 控制 h_t 的计算是否/多大程度依赖上一时刻的状态 h_{t-1} 。 这允许我们转换当前信息的时候一定程度上遗忘历史信息

 z_t 控制 h_t 的计算是如何融合当前信息与过去信息的。这允许我们在输出信息的时候一定程度上遗忘当前

GRU相比于LSTM去除了output gate,参数量更少,运算效率更高

CNN vs RNN

第二个时刻的hidden state不仅和 x_1 , x_2 相关,还和 x_3 相关(未来的时间步信息)

但是CNN能否对时间 序列数据建模?

第二个时刻的hidden state仅和 当前及过去时间步的信息相关

Figure 2: Visualization of a stack of causal convolutional layers.

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Dilated convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

Figure 3: Visualization of a stack of *dilated* causal convolutional layers.

可以在causal convolutional layers里面用空洞卷积(dilated convolution),在不显著增加计算成本的情况下增加网络的感受野范围。以这个layer构建的CNN model for time-series analysis称为Temporal Convolutional Networks (TCN)