

Pyrolysis of Methylal Revealed by Imaging Photoelectron Photoion Coincidence Spectroscopy

Tongpo Yu, Patrick Hemberger, Xiaoguo Zhou*, Shilin Liu*, Andras Bodi*

1.National Synchrotron Radiation Laboratory(NSRL), Hefei, Anhui 230026, China

2.Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, Villigen 5232, Switzerland.

Introduction

Methylal(CH₃OCH₂OCH₃) participate in the chemical process of combustion

Many fundamental questions remain open:

- •Pyrolysis mechanisms?
- •Dissociation channels under different conditions?

Experimental Method

imaging photoelectron photoion coincidence spectrometer, iPEPICO

The spectra of Methylal

TOF MS spectrum of Methylal under different conditions

Figure 1. Illustrative threshold photoionization mass spectra of methylal recorded at five photon energies.

Figure 2. Temperature-dependent photoionization mass spectra of methylal between 25and 970°C,taken at 11ev.

The unimolecular rate constant of each dissociation pathway, k(E), is obtained as:

$$k(E) = \frac{\sigma N^{\ddagger}(E - E0)}{h\rho(E)}$$

where σ is the reaction symmetry, $N^{\ddagger}(E-E0)$ is the sum of states of the transition state from 0 to E-E0, h is Planck's constant, and $\rho(E)$ is the density of states of the parent ion at energy E.

The pathway of formatin of m/z=45, m/z=31, m/z=30 m/z=32, m/z=28, m/z=15 and m/z=16.

Figure 4. Fragmentation pathways and potential energy surface of the adipic acid ion at the CBS-QB3 level of theory. The energies are given in electronvolts and are relative to the neutral methylal. red lines show minor reaction channels

Conclutions

- ♦ The 0 K appearance energy of m/z=45 and m/z=45 was determined to be $E_0(C_2H_5O) = 10.23 \pm 0.010 \text{ eV}$ and $E_0(CH_3O_2) = 12.87 \text{ eV}$.
- ◆ The low-energy breakdown diagram could only be reproduced well when a second process was included for the formation of the cation of m/z=75, namely a parall dissociation from the CH₃OCHOCH₃⁺ intermediate by C₂H₄-loss.
- ◆ Finally, the CH₃⁺ fragment ion can be formed by two processes: either as a simple dissociation of the methylal cation parent ion [1] by a CH₃ loss from CH₃OCH₂OCH₃ or as sequential decomposition of the CH₃OCH⁺ respectively.

Results & Discussion

Figure 3. Modeling of the breakdown curves of DMM. Markers show the experimental fractional ion abundances, whereas the solid lines show the modeled results. The fitted 0 K appearance energy are $E_0(C_2H_5O) = 10.23$ ev, $E_0(CH_3O_2) = 12.87$ ev.

references

[1] Heringa, M. F. Slowik, J. G. Prevot, A. S. Baltensperger, U.Hemberger, P. Bodi, *A.J Phys Chem A* 2016 **120**(20):3397-3405.

[2] Liang, S. Hemberger, P. Neisius, N. M. Bodi, A. Grutzmacher, H. Levalois-Grutzmacher, J. Gaan, S. *Chemistry* 2015 **21**(3): 1073-1080

[3] Voronova, K. Mozaffari Easter, C. M. Torma, K. G. Bodi, A. Hemberger, P. Sztaray, B. *Phys Chem Chem Phys* 2016 **18**(36): 25161-25168

[4] Winfough, M. Voronova, K. Muller, G. Laguisma, G. Sztaray, B. Bodi, A. Meloni, G. *J Phys Chem A* 2017 **121**(18): 3401-3410

[5] Wu, X. Zhou, X. Hemberger, P. Bodi, A. *J Phys Chem A* 2017 **121**(14): 2748-2759.