

관계 중심의 사고법

쉽게 배우는 알고리즘

2장. 알고리즘 설계와 분석의 기초

학습목표

- 알고리즘을 설계하고 분석하는 몇 가지 기초 개념을 이해한다
- 아주 기초적인 알고리즘의 수행 시간을 분석할 수 있도록 한다
- 점근적 표기법을 이해한다

(퀴즈) 수업내용 평가

알고리즘이란 무엇인가?

- 문제 해결 절차를 체계적으로 기술한 것
- 문제의 요구조건
 - 입력과 출력으로 명시할 수 있다
 - 알고리즘은 입력으로부터 출력을 만드는 과정을 기술

Step-by-step list of instructions for solving problem

입출력의 예

- 문제
 - 100명의 학생의 시험 점수의 최댓값을 찾으라
- 입력
 - 100명의 학생들의 시험 점수
- 출력
 - 위 100개의 시험 점수들 중 최댓값

바람직한 알고리즘

- 명확해야한다
 - 이해하기 쉽고 가능하면 간명하도록
 - 지나친 기호적 표현은 오히려 명확성을 떨어뜨림
 - 명확성을 해치지 않으면 일반언어의 사용도 무방
- 효율적이어야 한다
 - 같은 문제를 해결하는 알고리즘들의 수행 시간이 수백만 배 이상 차이날 수 있다

1부터 n까지 연속한 숫자의 합

두개의 방법

def sum_A(n):
 sum = 0
 for i in range(1, n+1):
 sum += i
 return sum

def sum_B(n): sum = n * (n + 1) // 2 return sum

필요한 계산횟수가 입력크기 n 과 무관함

필요한 계산횟수가 입력크기 n과 비례함

알고리즘 분석

- 입력 크기와 계산 횟수
 - 10000 까지 합

sum (A) ran: 0.8322909750004328 milliseconds

sum (B) ran: 0.00029702899882977363 milliseconds

- 1000000 까지 합

sum (A) ran: 91.97638053299852 milliseconds

sum (B) ran: 0.00033955800063267816 milliseconds

 계산 복잡도 표현을 위해 빅오 표기를 사용함(뒤에서 설명)

두개의 방법

```
// 방법 1
int n, res = 0;
for (int i = 1; i <= n;, i++) {
    res += i;
}
System.out.println(res);
```

```
// 방법 2
int n, res = 0;
res = n*(n+1)/2;
System.out.println(res);
```

수행시간측정

- 수행시간 측정 방법의 문제점
 - 프로그램을 해야 함
 - 성능 측정이 어려운 경우,블랙박스로 소스 공개가 안되는 경우 알고리즘 평가가 쉽지 않음
 - 두 개 알고리즘 비교 시 공정한 평가를 위해 동등한 조건을 만들어야 함(동일 컴퓨터, 동일 OS, 동일한 시스템 상황)

이진 로그

위키백과, 우리 모두의 백과사전.

수학에서 이진 로그 (binary logarithm)는 밑이 2인 로그이다. \log_2 또는 $lb^{[1]}$ 로 표기하며, 2의 거듭제곱의 역함수이다. 양의 실수 n과 실수 x에 대하여 $x = \log_2 n$ 은 $2^x = n$ 이라는 것과 같다.

$$x = \log_2 n \iff 2^x = n.$$

예를 들어 $\log_2 1 = 0$, $\log_2 2 = 1$, $\log_2 4 = 2$, $\log_2 32 = 5$ 이다.

각주 [편집]

1. ↑ ISO 31-11과 ISO 80000-2

같이 보기 [편집]

- 로그
- 자연로그
- 상용로그

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	103	104	105	10 ⁶
n ∗log₂n	30	664	9,965	105	10 ⁶	10 ⁷
n ²	10 ²	104	106	108	10 10	10 ¹²
n ³	10³	10 ⁶	10 ⁹	1012	10 15	10 ¹⁸
2 ⁿ	10³	1030	1030	103,0	10 10 30,	103 10 301,030

- 알고리즘의 수행 시간을 좌우하는 기준은 다양하게 잡을 수 있다
 - 예: for 루프의 반복횟수, 특정한 행이 수행되는 횟수, 함수의 호출횟수, ...
- 몇 가지 간단한 경우의 예를 통해 알고리즘의 수행 시간을 살펴본다

```
sample1(A[], n)
{
k = \lfloor n/2 \rfloor;
return A[k];
}
```

✔ n에 관계없이 상수 시간이 소요된다.

```
sample2(A[], n)
{

sum \leftarrow 0;

for i \leftarrow 1 to n

sum \leftarrow sum \leftarrow sum + A[i];

return sum;
}
```

✓ n에 비례하는 시간이 소요된다.

```
sample3(A[], n)

{

sum \leftarrow 0;

for i \leftarrow 1 to n

for j \leftarrow 1 to n

sum \leftarrow sum \leftarrow A[i]*A[j];

return sum;
}
```

✔ n^2 에 비례하는 시간이 소요된다.

```
sample4(A[], n) {
    sum \leftarrow 0;
    for i \leftarrow 1 to n
        for j \leftarrow 1 to n {
            k \leftarrow A[1 ... n]에서 임의로 \lfloor n/2 \rfloor개를 뽑을 때 이들 중 최댓값;
            sum \leftarrow sum +k;
        }
    return sum;
}
```

✓ n^3 에 비례하는 시간이 소요된다.

```
sample5(A[], n)

{

sum \leftarrow 0;

for i \leftarrow 1 to n-1

for j \leftarrow i+1 to n

sum \leftarrow sum \leftarrow sum + A[i]*A[j];

return sum;
}
```

✓ n^2 에 비례하는 시간이 소요된다.

```
factorial(n)
{
    if (n=1) return 1;
    return n*factorial(n-1);
}
```

✓ n에 비례하는 시간이 소요된다.

재귀와 귀납적 사고

- 재귀=자기호출(recursion)
- 재귀적 구조
 - 어떤 문제 안에 크기만 다를 뿐 성격이 똑같은 작은 문제(들)가 포함되어 있는 것
 - 예1: factorial
 - $N! = N \times (N-1)!$
 - 예2: 수열의 점화식
 - $a_n = a_{n-1} + 2$

재귀와 귀납적 사고

- Divide-and-Conquer 설계 전략
 - 분할(Divide): 해결하기 쉽도록 문제를 여러 개의 작은 부분으로 나눈다
 - 각 작은 부분의 문제는 원래의 문제와 같은 속성을 지님
 - 정복(Conquer): 나눈 작은 문제를 각각 해결한다
 - 작은 부분에서 정복이 어렵거나 불가능하면 더 작은 부분으로 나눈다
 - 즉, 분할 단계로 다시 이동한다 (재귀호출 사용 가능)
 - 통합(Combine): (필요하다면) 해결된 해답을 모은다
- → 이러한 문제 해결 방법을 하향식(top-down) 접근방법이라고 함

재귀의 예: Merge sort

- 문제: n개의 정수를 (오름차순으로) 정렬하시오.
- 입력: 정수 *n*, 크기가 *n*인 배열 A[1..*n*]
- 출력: (오름차순으로) 정렬된 배열 *A*[1..*n*]
- 알고리즘 개요: 각 단계별로 두 그룹의 정렬된 데이터를 서로 합쳐서 정렬된 더 큰 그룹으로 만들어 나아가는 정렬

재귀의 예: 병합 정렬

```
mergeSort(A[], p, r) \triangleright A[p ... r]을 정렬한다.
   if (p < r) then {
       q ← [(p + r)/2]; ------ ① ▷ p, q의 중간 지점 계산
       merge(A, p, q, r); ----------------- ④ ▷ 병합
merge(A[], p, q, r)
   정렬되어 있는 두 배열 A[p \dots q]와 A[q+1 \dots r]을 합쳐
   정렬된 하나의 배열 A[p ... r]을 만든다.
```


mergeSort(A, 0, 7)

- 설계 전략
 - [분할] 배열을 반으로 나누어서
 2 개의 부분배열로 분할한다.
 각 부분 배열의 크기가 1일 될
 때까지 계속하여 분할한다.
 - [정복] 가장 작은 수의 인접한 부분 배열 2개로 부터 정렬된 1개의 배열을 얻어낸다.
 - [통합] 정렬된 부분 배열들을 합병하여 하나의 정렬된 배열로 만든다.

재귀의 예: 병합 정렬

- ✓ ②, ③은 재귀호출
- ✓ ①, ④는 재귀적 관계를 드러내기 위한 오버헤드

Mergesort의 수행시간

```
Statement
                                                    Effort
MergeSort(A, left, right) {
                                                      T(n)
                                                      \Theta(1)
   if (left < right) {</pre>
      mid = floor((left + right) / 2);
                                                          \Theta(1)
      MergeSort(A, left, mid);
                                                          T(n/2)
                                                          T(n/2)
      MergeSort(A, mid+1, right);
                                                          \Theta (n)
      Merge(A, left, mid, right);
   So T(n) = \Theta(1) when n = 1, and
                 2T(n/2) + \Theta(n) when n > 1
• 위의 수식은 재귀(recurrence) 표현임
```

(보충)Mergesort의 수행시간

• 성능평가

- n개 자료의 merge sort 계산 시간을 T(n)이라고 함
- 정렬을 위해서 반으로 쪼개서 n/2개의 배열에 재귀함수를 호출
- 한 배열 당 T([n/2])의 시간이 걸리므로 2개의 배열은 T([n/2])+T([n/2])의 시간이 걸림
- 두 배열을 한번씩 비교하므로 merge의 시간은 n임

다양한 알고리즘의 적용 주제들

- 카네비게이션
- 스케쥴링
 - TSP, 차량 라우팅, 작업공정, ...
- Human Genome Project
 - 매칭, 계통도, functional analyses, ...
- 검색
 - 데이터베이스, 웹페이지들, ...
- 자원의 배치
- 반도체 설계
 - Partitioning, placement, routing, ...
- •

알고리즘을 왜 분석하는가

- 무결성 확인
- 자원 사용의 효율성 파악
 - _ 자원
 - 시간
 - 메모리, 통신대역, ...

알고리즘의 분석

- 동일 문제 해결을 위한 알고리즘 A와 B를 생각해 보자
 - 아래와 같은 A와 B 의 복잡도(Complexity)라면 A가 당연히 효율적
 - A: n

$$0.01n^2 > 100n \Leftrightarrow n > 10,000$$

- B: n²
- 그러나, 아래와 같은 A와 B 라면?
 - A: 100n
 - B: 0.01n²
 - 입력의 크기가 10,000 보다 적으면 알고리즘 A가 좋고 그렇지 않으면 알고리즘 B가 좋다.
 - 그렇다면 어느 알고리즘이 더 좋은 것인가?

알고리즘의 분석

- 크기가 작은 문제
 - 알고리즘의 효율성이 중요하지 않다
 - 비효율적인 알고리즘도 무방
- 크기가 충분히 큰 문제
 - 알고리즘의 효율성이 중요하다
 - 비효율적인 알고리즘은 치명적
- 입력의 크기가 충분히 큰 경우에 대한 분석을 점근적 분석이라 한다

점근적 분석Asymptotic Analysis

- 입력의 크기가 충분히 큰 경우에 대한 분석
- 이미 알고있는 점근적 개념의 예

$$\lim_{n\to\infty}f(n)$$

• O, Ω, Θ, ω, o 표기법

알고리즘의 점근적 복잡도와 차수

- 차수(Order) vs. 상수(Constant)
 - c₁n 와 c₂n² 비교(c₁ 과 c₂ 은 상수)

- 결과적으로…
 - 차수(Order) 중요
 - 상수 요소는 무시할 수 있음
 - 즉, N이 무한대로 갈 때를 기준으로 평가한다.
 입력 데이터가 최악일 때 알고리즘이 보이는 효율을 기준으로 한다.
- 낮은 차수를 제거
- 상수는 무시함

점근법 표기법Asymptotic Notations

O(g(n))

- 기껏해야 g(n)의 비율로 증가하는 함수
- e.g., O(n), $O(n \log n)$, $O(n^2)$, $O(2^n)$, ...
- Formal definition
 - $O(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, c \mathbf{g}(n) \ge \mathbf{f}(n) \}$
 - $-f(n) \in O(g(n))$ 을 관행적으로 f(n) = O(g(n))이라고 쓴다.
- 직관적 의미
 - $-f(n) = O(g(n)) \Rightarrow f = g$ 보다 빠르게 증가하지 않는다
 - 상수 비율의 차이는 무시
- 함수의 상한을 표시

- Θ , $O(n^2)$
 - $-3n^2+2n$
 - $-7n^2-100n$
 - $-n\log n + 5n$
 - -3n
- 알 수 있는 한 최대한 tight 하게
 - $n\log n + 5n = O(n\log n)$ 인데 굳이 $O(n^2)$ 으로 쓸 필요없다
 - 엄밀하지 않은 만큼 정보의 손실이 일어난다

• 최고 차항의 최소 차수만을 사용하되, log n은 버리지 말 것!

$$8n^{2} \log n + 5n^{2} + n = O(n^{2} \log n)$$

• **0**(1): 상수형

• O(logn): 로그형

• O(n): 선형

• O(nlogn): 선형로그형

• O(n²): 2차형

• O(n³): 3차형

• O(n^k): k차형

• O(2ⁿ): 지수형

• O(n!): 팩토리얼형

시간복잡도	n					
	1	2	4	8	16	32
1	1	1	1	1	1	1
logn	0	1	2	3	4	5
n	1	2	4	8	16	32
nlogn	0	2	8	24	64	160
n²	1	4	16	64	256	1024
n³	1	8	64	512	4096	32768
2 ⁿ	2	4	16	256	65536	4294967296
n!	1	2	24	40326	20922789888000	26313 × 10 ³³

$\Omega(g(n))$

- 적어도 g(n)의 비율로 증가하는 함수
- O(g(n))과 대칭적
- Formal definition

$$-\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, c g(n) \le f(n) \}$$

- 직관적 의미
 - $-f(n)=\Omega(g(n))\Rightarrow f=g$ 보다 느리게 증가하지 않는다

$$\Theta(g(n))$$

- -g(n)의 비율로 증가하는 함수
- Formal definition
 - $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- 직관적 의미
 - $f(n) = \Theta(g(n)) \Rightarrow f = g$ 와 같은 정도로 증가한다

• $\Theta(n)$ 은 상수 k1 k2과 n이 충분히 큰 값을 가질 때 알고리즘의 수행시간이 $k1\cdot n$ 보다 크고 $k2\cdot n$ 보다 작은 경우를 만족하는 경우로 정의할 수 있음

$$f(n)=2n+3$$
 에 대해 다음을 만족하는 $k1$ 과 $k2$ 가 존재한다면 $f(n)=\Theta(n)$ 임

$$k1 * n < 2n+3 < k2 * n$$

각 점근적 표기법의 직관적 의미

- O(g(n))
 - Tight or loose upper bound
- $\Omega(g(n))$
 - Tight or loose lower bound
- $\Theta(g(n))$
 - Tight bound

연습문제

- 두개의 입력에 대해 n^2 에 비례, 나머지 $n\log n$ 에 비례해서 시간 소요
 - 점근적 수행시간 $\Theta(n^2)$ 아님, 대략 $n\log n$ 에 비례 $\Theta(n\log n)$
 - 점근적 수행시간 $O(n^2)$ 임
 - 최악의 경우 $\Theta(n^2)$ 는 맞지 않음, 대략적으로 최악의 시간은 $\Theta(n\log n)$
 - 최악의 경우 $O(n^2)$ 은 맞음

점근적 복잡도의 예

- 정렬 알고리즘들의 복잡도 표현 예 (4장에서 공부함)
 - _ 선택정렬
 - $\Theta(n^2)$
 - _ 힙정렬
 - $O(n\log n)$
 - _ 퀵정렬
 - $O(n^2)$
 - 평균 Θ(nlogn)

시간 복잡도 분석의 종류

- Worst-case
 - Analysis for the worst-case input(s)
- Average-case
 - Analysis for all inputs (전체에 대해 분석이 필요)
 - More difficult to analyze
- Best-case
 - Analysis for the best-case input(s)
 - 별로 유용하지 않음

저장/검색의 복잡도

- 배열
 - -O(n)
- Binary search trees
 - 최악의 경우 *O*(*n*)
 - 평균 $\Theta(\log n)$
- Balanced binary search trees
 - 최악의 경우 $\Theta(\log n)$
- B-trees
 - 최악의 경우 $\Theta(\log n)$
- Hash table
 - 평균 Θ(1)

크기 n인 배열에서 원소 찾기

- Sequential search
 - 배열이 아무렇게나 저장되어 있을 때
 - Worst case: $\Theta(n)$
 - Average case: $\Theta(n)$
- Binary search
 - 배열이 정렬되어 있을 때
 - Worst case: $\Theta(\log n)$
 - Average case: $\Theta(\log n)$

점근적 복잡도의 예

- 정렬 알고리즘들의 복잡도 표현 예 (3장에서 공부함)
 - _ 선택정렬
 - $\Theta(n^2)$
 - _ 힙정렬
 - $O(n\log n)$
 - _ 퀵정렬
 - $O(n^2)$
 - 평균 Θ(nlogn)

<u>과제</u>

- 1. **②(n)** 시간복잡도를 갖는 검색알고리즘 (seqsearch)을 C/C++ (or Java, Python) 프로그램으로 작성하고, 자신만의 예제(숫자 50개 이상)를 만들어 그 실행 결과를 보이시오.
- 2. 피보나치 수열의 <u>재귀 알고리즘(fib)</u>과 <u>반복 알고리즘(fib2)</u>을 C/C++ (or Java, Python) 프로그램으로 작성하고, 다음 피보나치 수를 구하는데 걸리는 시간을 측정하여 그 결과를 제출하시오. (시간이 너무 오래 걸리면 중간에 중단해도 됨)

fib(10), fib(20), fib(50), fib(100)

- 주의1: 숙제 copy는 절대 안됩니다. 저는 여러 분 양심을 믿습니다.
- 주의2: 실행결과는 화면을 캡쳐 한 후 프린트하여 제출해야 합니다.

순차검색 (Sequential Search)

③ 알고리즘(의사코드)

```
// 입력(1)
int segsearch(int n,
               const keytype S[], // 입력(2)
                                  // 입력(3)
               keytype x,
   location = 1;
   while (location <= n && S[location] != x)</pre>
      location++;
   if (location > n)
      location = 0;
   return (location)
```

- 🥮 <u>while-루프</u>: **아직 검사할 항목이 있고**, x **를 찾지 못하였나**?
- <u>if-</u>문: 모두 검사하였으나, x를 찾지 못했나?

🥦 <u>피보나찌 수열의 정의</u>

$$f_0 = 0$$

 $f_0 = 0$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$, for $n \ge 2$

피보나치 [Leonardo Fibonacci, 1170?~1250?]

이탈리아의 수학자, 아라비아에서 발달한 수학을 섭렵하여 이를 정리·소개함으로써, 그리스도교 여러 나라의 수학을 부흥시킨 최초의 인물이 되었다. 1202년 저술한 《주판서(珠板書)》 는 당시의 수학서의 결정판이다.

국적 이탈리아 **활동분야** 수학

출생지 이탈리아 피사

주요저서 《주판서(珠板書)》(1202) 《기하학의 실용》(1220)

피보나찌 수 구하기 – 재귀 알고리즘

- 문제: n 번째 피보나찌 수를 구하라.
- 🚇 **입력: 양수** n
- 🖲 *출력: n 번째 피보나제 수*
- (recursive) **알고리즘**:

```
int fib(int n)
{
   if (n <= 1)
     return n;
   else
     return (fib(n-1) + fib(n-2));
}</pre>
```

피보나찌 수 구하기 – 반복 알고리즘

- 문제: n 번째 피보나제 수를 구하라.
- 🥦 **입력: 양수** n
- ⑤ 출력: n 번째 피보나제 수
- (iterative) **알고리즘**:

```
int fib2 (int n)
  index i;
  int f[0..n];
  f[0] = 0;
  if (n > 0)  {
    f[1] = 1;
    for (i = 2; i \le n; i++)
      f[i] = f[i-1] + f[i-2];
  return f[n];
```

• 참고자료

분할정복을 피해야 하는 경우

- 크기가 n인 입력이 2개 이상의 조각으로 분할되며, 분할된 부분들의 크기가 거의 n에 가깝게되는 경우 ⇒시간복잡도: 지수(exponential) 시간
- 크기가 n인 입력이 거의 n개의 조각으로 분할되며, 분할된 부분의 크기가 n/c인 경우. 여기서c는 상수이다. \Rightarrow 시간복잡도: $\Theta(n^{\lg n})$

수행시간측정(c언어로 작성)

 컴퓨터에서 수행시간을 측정하는 방법 clock 함수가 사용 clock_t clock(void);

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void main( void )
 clock t start, finish;
 double duration;
 start = clock();
  // 수행시간을 측정하고 하는 코드....
  // ....
 finish = clock();
 duration = (double)(finish - start) / CLOCKS PER SEC;
 printf("%f 초입니다.\n", duration);
```