Welcome to Psy 652 Lab!
Module 6:
Merging Datasets, Correlation,
Partial Correlation, &
Simple Linear Regression (SLR)

Objectives

- A quick note on merging datasets (Via *_join())
- Correlations, Partial & Semi-partial correlations
- R tutorial

Merging (Joining) datasets

Joining datasets via tidyverse's _join()

- General format:
 - *_join(left, right, by = "id")
 - * = fill in left, right, inner, or full
 - *left* = left dataset
 - *right* = right dataset
 - By = "id" = The id to match on (change to variable you want to match on)
 - left join() keeps all id's on the left dataset
 - right_join() keeps all id's on the right dataset
 - inner_join keeps only id's present on both dataset
 - full_join keeps every id in both datasets

ID	X1	ID
1	a1	2
2	a2	3

X2

b1

b2

inner_join				left_join				right_join				full_join			
	ID	X1	X2		ID	X1	X2		ID	X1	X2		ID	X1	X2
	2	a2	b1		1	a1	NA		2	a2	b1		1	a1	NA
					2	a2	b1		3	NA	b2		2	a2	b1
									3	NA	b2				

Partial and semi-partial correlations

Partial and semi-partial correlations

- Partial and semipartial correlations are easily confused!
 - Both are correlations that control for a 3rd variable (a confounder)
 - However, the way they control for the variables is different
- **Partial correlation** = Removes part the effect of a confounder from both the predictor AND the outcome
- Semi-partial correlation = removes the effect of a confounder from ONLY the predictor variable

Partial and semi-partial correlations

The venn diagram is for illustrative purposes and not drawn to perfect scale.

Partial Correlation

For a predictor (alcexp) and outcome (alc_gm) of interest, partial correlation first removes from both alcexp and alc_gm all variance which may be accounted for by the other predictors (in this case, just one, typ_drks), then correlates the remaining variance of alcexp (the residual) with the remaining variance of alc_gm (the residual). Here, the partial correlation between alcexp and alc_gm is .292. Notice that this is the correlation of the two residuals that we obtained in our previous activity.

Semi-Partial (Part) Correlation

For a predictor (alcexp) and outcome (alc_gm) of interest, semi-partial correlation first removes from the predictor (alcexp) all variance which may be accounted for by the other predictors (in this case typ_drks), then correlates the remaining variance of alcexp (the residual) with y. Here the semi-partial (part) correlation between alcexp and alc_gm is .215.

Let's code!