

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
T _a =	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	<u>Rear</u>	
Tensile Load =	<u>1988.51</u>	<u>6646.05</u>	k
Compressive Load =	<u>4912.26</u>	<u>5085.66</u>	k
Lateral Load =	<u> 269.88</u>	<u>2376.67</u>	k
Moment (Weak Axis) =	<u>0.54</u>	<u>0.35</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Weight of Concrete = 145 pcf
Compressive Strength = 2500 psi
Yield Strength = 60000 psi $\frac{Overturning\ Check}{M_O\ =\ 159549.3\ in-lbs}$

Concrete Properties

Resisting Force Required = 2417.41 lbs S.F. = 1.67

Weight Required = 4029.02 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs

Sliding
Force = 548.33 lbs
Friction = 0.4
Weight Required = 1370.81 lbs

Resisting Weight = 7177.50 lbs Additional Weight Required = 0 lbs

Cohesion
Sliding Force = 548.33 lbs
Cohesion = 130 psf

Area = 33.00 ft^2 Resisting = 3588.75 lbsWeight Required = 0 lbs

Additional Weight Required =

Shear Key

Additional Force = 0 lbs
Lateral Bearing Pressure = 200 psf/ft
Required Depth = 0.00 ft $f'_{c} = 2500 \text{ psi}$

 $f'_c = 2500 \text{ psi}$ Length = 8 in Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Use a 132in long x 36in wide x 18in tall ballast foundation to resist sliding. Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

 $\frac{\text{Ballast Width}}{\underline{36 \text{ in}}} \quad \underline{37 \text{ in}} \quad \underline{38 \text{ in}} \quad \underline{39 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) = \quad \underline{7178 \text{ lbs}} \quad \underline{7377 \text{ lbs}} \quad \underline{7576 \text{ lbs}} \quad \underline{7776 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D +	+ 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	- 0.6W	
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1463 lbs	1463 lbs	1463 lbs	1463 lbs	1956 lbs	1956 lbs	1956 lbs	1956 lbs	2454 lbs	2454 lbs	2454 lbs	2454 lbs	-909 lbs	-909 lbs	-909 lbs	-909 lbs
F _B	1511 lbs	1511 lbs	1511 lbs	1511 lbs	2025 lbs	2025 lbs	2025 lbs	2025 lbs	2539 lbs	2539 lbs	2539 lbs	2539 lbs	-3059 lbs	-3059 lbs	-3059 lbs	-3059 lbs
F _V	123 lbs	123 lbs	123 lbs	123 lbs	960 lbs	960 lbs	960 lbs	960 lbs	804 lbs	804 lbs	804 lbs	804 lbs	-1097 lbs	-1097 lbs	-1097 lbs	-1097 lbs
P _{total}	10151 lbs	10351 lbs	10550 lbs	10750 lbs	11158 lbs	11358 lbs	11557 lbs	11756 lbs	12170 lbs	12370 lbs	12569 lbs	12768 lbs	338 lbs	458 lbs	577 lbs	697 lbs
М	3557 lbs-ft	3557 lbs-ft	3557 lbs-ft	3557 lbs-ft	5936 lbs-ft	5936 lbs-ft	5936 lbs-ft	5936 lbs-ft	6852 lbs-ft	6852 lbs-ft	6852 lbs-ft	6852 lbs-ft	1474 lbs-ft	1474 lbs-ft	1474 lbs-ft	1474 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.53 ft	0.52 ft	0.51 ft	0.50 ft	0.56 ft	0.55 ft	0.55 ft	0.54 ft	4.36 ft	3.22 ft	2.55 ft	2.12 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	248.8 psf	248.0 psf	247.2 psf	246.4 psf	240.0 psf	239.4 psf	238.8 psf	238.3 psf	255.5 psf	254.5 psf	253.5 psf	252.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	366.4 psf	362.4 psf	358.6 psf	355.0 psf	436.2 psf	430.3 psf	424.7 psf	419.4 psf	482.0 psf	474.9 psf	468.1 psf	461.7 psf	66.0 psf	43.4 psf	41.2 psf	42.2 psf

Maximum Bearing Pressure = 482 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 3085.7 \text{ ft-lbs}$

Resisting Force Required = 2057.17 lbs

S.F. = 1.67

Weight Required = 3428.61 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		36 in		36 in				36 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	226 lbs	553 lbs	195 lbs	822 lbs	2422 lbs	799 lbs	77 lbs	162 lbs	46 lbs	
F _V	184 lbs	181 lbs	185 lbs	137 lbs	133 lbs	142 lbs	184 lbs	182 lbs	184 lbs	
P _{total}	9111 lbs	9439 lbs	9081 lbs	9281 lbs	10881 lbs	9257 lbs	2675 lbs	2760 lbs	2645 lbs	
М	729 lbs-ft	723 lbs-ft	733 lbs-ft	551 lbs-ft	547 lbs-ft	568 lbs-ft	726 lbs-ft	721 lbs-ft	728 lbs-ft	
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.27 ft	0.26 ft	0.28 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	231.9 psf	242.2 psf	230.8 psf	247.8 psf	296.5 psf	246.1 psf	37.1 psf	39.9 psf	36.0 psf	
f _{max}	320.3 psf	329.8 psf	319.6 psf	314.6 psf	362.9 psf	314.9 psf	125.1 psf	127.3 psf	124.2 psf	

Maximum Bearing Pressure = 363 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.779 k	Maximum Axial Load = 4.655 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>51%</u>	Utilization = 63%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.724 k 12.808 k 7.421 k <u>23%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.372 \text{ in} \\ \end{array}$

 $0.372 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 27.9 \text{ ksi}$$

S2 = 1701.56

Weak Axis:

3.4.14

$$L_{b} = 102$$

$$J = 0.432$$

$$179.449$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.0$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_L = \phi b[Bbr-mDbr*h/t]$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$
 $M_{max}St = 2.788 \text{ k-ft}$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

S1 = 12.21 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$Bt - \frac{\theta_y}{\theta_b} Fcy$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b =$ 88.9 in

$$J = 1.08$$
152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_{L} = 29.2$$

$$D/t = 7.4$$

$$\theta_{x}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{Db}$$

$$S2 = mDbr$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ks}^2$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ ly = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*/(Cb^*/(Cb)/(Cb^*\sqrt{(LbSc)/(Cb^*/(Cb)/(Cb^*/(Cb^*/(Cb)/(Cb)/(Cb^*/(Cb)/(Cb)/(Cb)/(Cb)/(Cb)})})}}$	$yJ)/2))]$ $\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

20.2 101

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L St = 28.2 \text{ ksi}$

lx =	279836 mm ²
	0.672 in ⁴
y =	27.5 mm
Sx =	0.621 in ³

 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $\varphi cc = 0.86047$
 $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$
 $\varphi F_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L =$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-112.091	-112.091	0	0
2	M14	V	-112.091	-112.091	0	0
3	M15	V	-179.345	-179.345	0	0
4	M16	V	-179.345	-179.345	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	257.809	257.809	0	0
	2	M14	V	199.522	199.522	0	0
	3	M15	V	112.091	112.091	0	0
	4	M16	У	112.091	112.091	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												ı
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												ĺ
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	459.907	2	1227.249	2	.759	1	.003	1	0	1	0	1
2		min	-584.66	3	-1581.817	3	-69.327	5	264	4	0	1	0	1
3	N7	max	.023	9	1253.899	1	281	12	0	12	0	1	0	1
4		min	154	2	-458.695	3	-207.597	4	419	4	0	1	0	1
5	N15	max	.02	9	3778.661	2	0	1	0	1	0	1	0	1
6		min	-1.802	2	-1529.624	3	-200.885	5	41	4	0	1	0	1
7	N16	max	1646.89	2	3912.049	2	0	3	0	3	0	1	0	1
8		min	-1828.206	3	-5112.349	3	-69.27	5	266	4	0	1	0	1
9	N23	max	.025	14	1253.899	1	5.457	1	.012	1	0	1	0	1
10		min	154	2	-458.695	3	-204.148	4	413	4	0	1	0	1
11	N24	max	459.907	2	1227.249	2	049	12	0	12	0	1	0	1
12		min	-584.66	3	-1581.817	3	-69.708	5	266	4	0	1	0	1
13	Totals:	max	2564.592	2	12591.847	2	0	1						
14		min	-2998.605	3	-10722.997	3	-817.7	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	66.3	4	507.684	1	-4.548	12	0	3	.14	1	0	4
2			min	3.266	12	-805.345	3	-114.918	1	016	2	.008	12	0	3
3		2	max	58.943	1	354.774	1	-3.675	12	0	3	.059	4	.648	3
4			min	3.266	12	-566.747	3	-88.129	1	016	2	.002	10	407	1
5		3	max	58.943	1	201.864	1	-2.802	12	0	3	.033	5	1.071	3
6			min	3.266	12	-328.149	3	-61.34	1	016	2	027	1	67	1
7		4	max	58.943	1	48.954	1	-1.929	12	0	3	.018	5	1.268	3
8			min	3.266	12	-89.551	3	-34.551	1	016	2	072	1	789	1
9		5	max	58.943	1	149.046	3	195	10	0	3	.004	5	1.24	3
10			min	3.266	12	-103.956	1	-15.765	4	016	2	092	1	763	1
11		6	max	58.943	1	387.644	3	19.027	1	0	3	003	12	.986	3
12			min	3.266	12	-256.867	1	-12.511	5	016	2	087	1	592	1
13		7	max	58.943	1	626.242	3	45.816	1	0	3	003	12	.507	3
14			min	-4.192	5	-409.777	1	-11.16	5	016	2	056	1	277	1
15		8	max	58.943	1	864.839	3	72.605	1	0	3	.002	2	.182	1
16			min	-13.886	5	-562.687	1	-9.809	5	016	2	03	4	197	3
17		9	max	58.943	1	1103.437	3	99.395	1	0	3	.081	1	.785	1
18			min	-23.581	5	-715.597	1	-8.458	5	016	2	038	5	-1.126	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

20		Member	Sec		Axial[lb]	LC	y Shear[lb]			LC				LC		_LC_
11			10	max	58.943	1	1342.035	3	126.184		.016	2	.188		1.534	$\overline{}$
22				min										12		
12			11							12						
24																
26			12													
26			40							-						
28			13													
28			1.1													_
15			14													
30			15											_		
32			10													
1			16													
34			10													
35			17													_
36			- 17													
36			18											_		_
19 max 58,943 1 805,345 3 114,918 1 0.016 2 1.14 1 0 1 1 1 1 1 1 1 1			-10													
38			19			_										
M14														_		
40		M14	1													
41																3
Main Main			2													
43 3 max 30,396 1 247,795 1 -2,936 12 0.011 3 .05 5 8,77 3 44 min 1,444 12 -280,559 3 -65.4 1 014 2 012 1 757 1 46 min 1,444 12 -97,011 3 -38.61 1 014 2 061 1 -919 1 47 5 max 30.396 1 86.538 3 547 10 .011 3 .006 5 1.06 3 48 min 1,444 12 -58,025 1 -24,48 4 014 2 084 1 936 1 49 6 max 30.396 1 250,008 1 -10 3 1 -0.08 1 -809 1 50 min -52,655 5 -210,366						12		3		1	014	2		10		
44 min 1.444 12 -280.559 3 -65.4 1 -0.14 2 -0.12 1 -7.57 1 45 4 max 30.396 1 94.885 1 -2.063 12 .011 3 .027 5 1.055 3 46 min 1.444 12 -97.011 3 -38.61 1 -0.014 2 -0.061 1 -919 1 47 5 max 30.396 1 86.538 3 -547 10 .011 3 .006 5 1.06 3 48 min 1.444 12 -58.025 1 -24.48 4 -0.014 2 -0.084 1 -936 1 49 6 max 30.396 1 453.636 3 41.757 1 .011 3 .003 12 .953 50 min -14.959 5 -363.846 <td>43</td> <td></td> <td>3</td> <td>max</td> <td>30.396</td> <td>1</td> <td></td> <td></td> <td>-2.936</td> <td>12</td> <td>.011</td> <td>3</td> <td>.05</td> <td>5</td> <td>.877</td> <td>3</td>	43		3	max	30.396	1			-2.936	12	.011	3	.05	5	.877	3
46	44					12		3		1	014	2	012	1	757	1
47	45		4	max	30.396	1	94.885	1	-2.063	12	.011	3	.027	5	1.055	3
Max Min 1.444 12 -58.025 1 -24.48 4 014 2 084 1 936 1	46			min		12	-97.011	3		1	014	2		1	919	_
49 6 max 30.396 1 270.087 3 14.968 1 .011 3 .003 12 .891 3 50 min -5.265 5 -210.936 1 -20.254 5 014 2 083 1 809 1 51 7 max 30.396 1 453.636 3 41.757 1 .011 3 005 1 538 1 52 min -14.959 5 -363.846 1 -18.903 5 014 2 056 1 538 1 53 8 max 30.396 1 820.734 3 95.335 1 .011 3 .00 10 .035 3 54 min -24.654 5 -516.756 1 -17.522 5 .014 2 -055 4 -137 2 55 9 max 30.396			5					3						5		3
50 min -5.265 5 -210.936 1 -20.254 5 014 2 083 1 809 1 51 7 max 30.396 1 453.636 3 41.757 1 .011 3 003 12 .55 3 52 min -14.959 5 -363.846 1 -18.903 5 014 2 056 1 538 1 53 8 max 30.396 1 637.185 3 68.546 1 .011 3 0 10 .035 3 54 min -24.654 5 -516.756 1 -17.552 5 014 2 051 4 137 2 55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 .438 1 56 min 1.444 12																
51 7 max 30.396 1 453.636 3 41.757 1 .011 3 .003 12 .55 3 52 min -14.959 5 -363.846 1 -18.903 5 014 2 056 1 538 1 53 8 max 30.396 1 637.185 3 68.546 1 .011 3 0 10 .035 3 54 min -24.654 5 -516.756 1 -17.552 5 014 2 051 4 137 2 55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 .438 1 56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079			6													
52 min -14.959 5 -363.846 1 -18.903 5 014 2 056 1 538 1 53 8 max 30.396 1 637.185 3 68.546 1 .011 3 0 10 .035 3 54 min -24.654 5 -516.756 1 -17.552 5 -014 2 051 4 137 2 55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 438 1 56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .055 5 654 3 58 11 max 43.384														_		
53 8 max 30.396 1 637.185 3 68.546 1 .011 3 0 10 .035 3 54 min -24.654 5 -516.756 1 -17.552 5 014 2 051 4 137 2 55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 .438 1 56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .176 1 1.143 1 58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 33.849 </td <td></td> <td></td> <td>7</td> <td></td>			7													
54 min -24.654 5 -516.756 1 -17.552 5 014 2 051 4 137 2 55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 .438 1 56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .176 1 1.143 1 58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 43.384 4 669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3																
55 9 max 30.396 1 820.734 3 95.335 1 .011 3 .073 1 .438 1 56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .176 1 1.143 1 58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 43.384 4 669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3 -95.335 1 011 3 .00 3 654 3 61 12 max 36.368<			8													
56 min -34.349 5 -669.666 1 -16.2 5 014 2 065 5 654 3 57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .176 1 1.143 1 58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 43.384 4 .669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3 -95.335 1 011 3 .0 3 654 3 61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.444 12<														_		
57 10 max 53.079 4 1004.283 3 122.124 1 .014 2 .176 1 1.143 1 58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 43.384 4 669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3 -95.335 1 011 3 0 3 654 3 61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.444 12 -637.185 3 -68.546 1 011 3 004 1 -1.37 2 63 3 33 33.466 <td></td> <td></td> <td>9</td> <td></td>			9													
58 min 1.444 12 -822.576 1 -74.866 14 011 3 .002 12 -1.516 3 59 11 max 43.384 4 669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3 -95.335 1 011 3 0 3 654 3 61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.4444 12 -637.185 3 -68.546 1 011 3 004 1 -1.37 2 63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12			40													
59 11 max 43.384 4 669.666 1 -2.303 12 .014 2 .088 4 .438 1 60 min 1.444 12 -820.734 3 -95.335 1 011 3 0 3 654 3 61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.444 12 -637.185 3 -68.546 1 011 3 004 1 137 2 63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396			10								-					
60 min 1.444 12 -820.734 3 -95.335 1 011 3 0 3 654 3 61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.444 12 -637.185 3 -68.546 1 011 3 004 1 137 2 63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.444 12			11													
61 12 max 33.689 4 516.756 1 -1.43 12 .014 2 .049 5 .035 3 62 min 1.444 12 -637.185 3 -68.546 1 011 3 004 1 137 2 63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.444 12 -270.087 3 -25.034 4 011 3 083 1 809 1 67 15 max 30.396			11	_												
62 min 1.444 12 -637.185 3 -68.546 1 011 3 004 1 137 2 63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.444 12 -270.087 3 -25.034 4 011 3 083 1 809 1 67 15 max 30.396 1 58.025 1 11.821 1 .014 2 002 12 1.06 3 68 min -1.487 5			12	_												
63 13 max 30.396 1 363.846 1 557 12 .014 2 .026 5 .55 3 64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.4444 12 -270.087 3 -25.034 4 011 3 083 1 809 1 67 15 max 30.396 1 58.025 1 11.821 1 .014 2 002 12 1.06 3 68 min -1.487 5 -86.538 3 -20.366 5 011 3 084 1 936 1 70 min -1.182 5			12													
64 min 1.444 12 -453.636 3 -41.757 1 011 3 056 1 538 1 65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.444 12 -270.087 3 -25.034 4 011 3 083 1 809 1 67 15 max 30.396 1 58.025 1 11.821 1 .014 2 002 12 1.06 3 68 min -1.487 5 -86.538 3 -20.366 5 011 3 084 1 936 1 69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -1.182 5			13													
65 14 max 30.396 1 210.936 1 .604 3 .014 2 .005 5 .891 3 66 min 1.444 12 -270.087 3 -25.034 4011 3083 1809 1 67 15 max 30.396 1 58.025 1 11.821 1 .014 2002 12 1.06 3 68 min -1.487 5 -86.538 3 -20.366 5011 3084 1936 1 69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -11.182 5 -94.885 1 -19.015 5011 3061 1919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5 -247.795 1 -17.664 5011 3054 4757 1 73 18 max 30.396 1 464.108 3 92.189 1 .014 2 .063 1 .525 3			13													
66 min 1.444 12 -270.087 3 -25.034 4 011 3 083 1 809 1 67 15 max 30.396 1 58.025 1 11.821 1 .014 2 002 12 1.06 3 68 min -1.487 5 -86.538 3 -20.366 5 011 3 084 1 936 1 69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -11.182 5 -94.885 1 -19.015 5 011 3 061 1 919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5			14											_		_
67 15 max 30.396 1 58.025 1 11.821 1 .014 2 002 12 1.06 3 68 min -1.487 5 -86.538 3 -20.366 5 011 3 084 1 936 1 69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -11.182 5 -94.885 1 -19.015 5 011 3 061 1 919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5 -247.795 1 -17.664 5 011 3 054 4 757 1 73 18 max 30.396			17													
68 min -1.487 5 -86.538 3 -20.366 5 011 3 084 1 936 1 69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -11.182 5 -94.885 1 -19.015 5 011 3 061 1 919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5 -247.795 1 -17.664 5 011 3 054 4 757 1 73 18 max 30.396 1 464.108 3 92.189 1 .014 2 .063 1 .525 3 74 min -30.572 5			15													_
69 16 max 30.396 1 97.011 3 38.61 1 .014 2 0 12 1.055 3 70 min -11.182 5 -94.885 1 -19.015 5 011 3 061 1 919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5 -247.795 1 -17.664 5 011 3 054 4 757 1 73 18 max 30.396 1 464.108 3 92.189 1 .014 2 .063 1 .525 3 74 min -30.572 5 -400.705 1 -16.312 5 011 3 067 5 451 1																
70 min -11.182 5 -94.885 1 -19.015 5 011 3 061 1 919 1 71 17 max 30.396 1 280.559 3 65.4 1 .014 2 .003 3 .877 3 72 min -20.877 5 -247.795 1 -17.664 5 011 3 054 4 757 1 73 18 max 30.396 1 464.108 3 92.189 1 .014 2 .063 1 .525 3 74 min -30.572 5 -400.705 1 -16.312 5 011 3 067 5 451 1			16			_								-		_
71																
72 min -20.877 5 -247.795 1 -17.664 5 011 3 054 4 757 1 73 18 max 30.396 1 464.108 3 92.189 1 .014 2 .063 1 .525 3 74 min -30.572 5 -400.705 1 -16.312 5 011 3 067 5 451 1			17													
73						_		1								
74 min -30.572 5 -400.705 1 -16.312 5011 3067 5451 1			18					3								3
														5		
75 19 max 30.396 1 647.657 3 118.978 1 .014 2 .163 1 0 1	75		19			1	647.657	3	118.978	1	.014	2	.163	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-40.267	5	-553.616	1	-14.961	5	011	3	082	5	0	3
77	M15	1	max	68.394	5	741.162	2	-4.622	12	.014	2	.177	4	0	2
78			min	-31.617	1	-369.438	3	-118.981	1	01	3	.008	12	0	3
79		2	max	58.699	5	533.109	2	-3.748	12	.014	2	.122	4	.301	3
80			min	-31.617	1	-268.463	3	-92.192	1	01	3	.004	10	602	2
81		3	max	49.004	5	325.056	2	-2.875	12	.014	2	.075	5	.507	3
82			min	-31.617	1	-167.488	3	-65.403	1	01	3	012	1	-1.007	2
83		4	max	39.309	5	117.003	2	-2.002	12	.014	2	.043	5	.618	3
84			min	-31.617	1	-66.513	3	-41.406	4	01	3	061	1	-1.216	2
85		5	max	29.614	5	34.462	3	577	10	.014	2	.012	5	.633	3
86			min	-31.617	1	-91.05	2	-34.704	4	01	3	085	1	-1.228	2
87		6	max	19.92	5	135.438	3	14.965	1	.014	2	003	12	.553	3
88			min	-31.617	1	-299.103	2	-30.473	5	01	3	083	1	-1.044	2
89		7	max	10.225	5	236.413	3	41.754	1	.014	2	003	12	.377	3
90			min	-31.617	1	-507.156	2	-29.122	5	01	3	057	4	663	2
91		8	max	.53	5	337.388	3	68.543	1	.014	2	0	10	.106	3
92			min	-31.617	1	-715.209	2	-27.771	5	01	3	074	4	096	1
93		9	max	-1.817	12	438.363	3	95.332	1	.014	2	.073	1	.688	2
94			min	-31.617	1	-923.262	2	-26.42	5	01	3	098	5	26	3
95		10	max	-1.817	12	539.338	3	122.121	1	.01	3	.176	4	1.658	2
96			min	-31.617	1	-1131.315	2	-80.046	14	014	2	.003	12	722	3
97		11	max	5.773	5	923.262	2	-2.365	12	.01	3	.121	4	.688	2
98			min	-31.617	1	-438.363	3	-95.332	1	014	2	0	3	26	3
99		12	max	-1.817	12	715.209	2	-1.491	12	.01	3	.072	5	.106	3
100			min	-31.617	1	-337.388	3	-68.543	1	014	2	004	1	096	1
101		13	max	-1.817	12	507.156	2	618	12	.01	3	.04	5	.377	3
102			min	-31.617	1	-236.413	3	-41.97	4	014	2	056	1	663	2
103		14	max	-1.817	12	299.103	2	.503	3	.01	3	.009	5	.553	3
104			min	-31.617	1	-135.438	3	-35.268	4	014	2	083	1	-1.044	2
105		15	max	-1.817	12	91.05	2	11.824	1	.01	3	002	12	.633	3
106			min	-39.81	4	-34.462	3	-30.586	5	014	2	085	1	-1.228	2
107		16	max	-1.817	12	66.513	3	38.613	1	.01	3	0	12	.618	3
108			min	-49.505	4	-117.003	2	-29.235	5	014	2	061	4	-1.216	2
109		17	max	-1.817	12	167.488	3	65.403	1	.01	3	.002	3	.507	3
110			min	-59.199	4	-325.056	2	-27.884	5	014	2	079	4	-1.007	2
111		18	max	-1.817	12	268.463	3	92.192	1	.01	3	.063	1	.301	3
112			min	-68.894	4	-533.109	2	-26.532	5	014	2	101	5	602	2
113		19	max	-1.817	12	369.438	3	118.981	1	.01	3	.163	1	0	2
114		1	min	-78.589	4	-741.162	2	-25.181	5	014	2	126	5	0	5
115	M16	1	max	67.912	5	695.208	2	-4.342	12	.012	1	.141	1	0	2
116	.,,,,					-333.232	3			013	3	.007	12		3
117		2	max		5	487.155	2	-3.469	12	.012	1	.088	4	.267	3
118		_	min	-62.421	1	-232.257	3	-88.365	1	013	3	.003	10	558	2
119		3	max		5	279.102	2	-2.595	12	.012	1	.054	5	.439	3
120			min	-62.421	1	-131.282	3	-61.576	1	013	3	026	1	92	2
121		4	max	38.827	5	71.048	2	-1.722	12	.012	1	.031	5	.515	3
122			min	-62.421	1	-30.307	3	-34.787	1	013	3	072	1	-1.086	2
123		5	max		5	70.668	3	321	10	.012	1	.009	5	.496	3
124		Ť	min	-62.421	1	-137.005	2	-24.178	4	013	3	092	1	-1.054	2
125		6	max	19.437	5	171.644	3	18.792	1	.012	1	003	12	.382	3
126			min	-62.421	1	-345.058	2	-20.853	5	013	3	087	1	827	2
127		7	max	9.742	5	272.619	3	45.581	1	.012	1	003	12	.172	3
128			min	-62.421	1	-553.111	2	-19.502	5	013	3	056	1	403	2
129		8	max	.075	15	373.594	3	72.37	1	.012	1	.001	2	.218	2
130			min	-62.421	1	-761.164	2	-18.151	5	013	3	049	4	133	3
131		9	max	-3.126	12	474.569	3	99.159	1	.012	1	049 .08	1	1.035	2
132		3		-62.421	1	-969.217	2	-16.8	5	013	3	064	5	534	3
132			min	-02.421		-909.217		-10.0	ິນ	013	J	004	ວ	334	」 ວ

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	_LC_
133		10	max	-3.126	12	575.544	3	125.948	1	.013	3	.187	1	2.049	2
134			min	-62.421	1_	-1177.27	2	-77.19	14	012	1	.003	12	-1.03	3
135		11	max	3.328	5	969.217	2	-2.644	12	.013	3	.089	4	1.035	2
136			min	-62.421	_1_	-474.569	3	-99.159	1	012	1	0	3	534	3
137		12	max	-3.126	<u>12</u>	761.164	2	-1.771	12	.013	3	.048	4	.218	2
138			min	-62.421	1_	-373.594	3	-72.37	1	012	1	003	3	133	3
139		13	max	-3.126	12	553.111	2	898	12	.013	3	.024	5	.172	3
140		4.4	min	-62.421	1_	-272.619		<u>-45.581</u>	1	012	1	056	1	403	2
141		14	max	-3.126	12	345.058	2	.058	3	.013	3	.002	5	.382	3
142		4.5	min	-62.421	1_	-171.644	3	-26.701	4	012	1	087	1	827	2
143		15	max	-3.126	12	137.005	2	7.998	1	.013	3	003	12	.496	3
144		4.0	min	-62.421	1_	-70.668	3	-21.365	5	012	1	092	1	-1.054	2
145		16	max	-3.126	12	30.307	3	34.787	1	.013	3	002	12	.515	3
146		4-	min	-62.421	1_	-71.048	2	-20.014	5	012	1	072	1	-1.086	2
147		17	max	-3.126	12	131.282	3	61.576	1	.013	3	0	3	.439	3
148		4.0	min	-68.053	4	-279.102	2	-18.663	5	012	1	062	4	92	2
149		18	max	-3.126	12	232.257	3	88.365	1	.013	3	.045	1	.267	3
150		40	min	-77.748	4_	-487.155		-17.312	5	012	1	073	5	558	2
151		19	max		12	333.232	3	115.154	1	.013	3	.141	1	0	2
152	140	4	min	-87.443	4_	-695.208	2	-15.961	5	012	1	089	5	0	5
153	M2	1		1128.593	1_	2.338	4	.842	1	0	3	0	3	0	1
154			min	-1440.93	3	.574	15	-64.328	4	0	4	0	1	0	1
155		2		1128.921	1_	2.323	4	.842	1	0	3	0	1	0	15
156			min	-1440.684	3	.571	15	-64.613	4	0	4	014	4	0	4
157		3	max	1129.25	1_	2.308	4	.842	1	0	3	0	1	0	15
158			min	-1440.438	3	.567	15	-64.897	4	0	4	029	4	001	4
159		4		1129.578	1_	2.293	4	.842	1	0	3	0	1	0	15
160		_	min	-1440.191	3_	.564	15	-65.182	4	0	4	043	4	002	4
161		5		1129.907	1_	2.277	4	.842	1	0	3	0	1	0	15
162		_	min	-1439.945	3	.56	15	-65.467	4	0	4	058	4	002	4
163		6		1130.235	1	2.262	4	.842	1	0	3	0	1	0	15
164		-	min	-1439.699	3	.556	15	-65.752	4	0	4	072	4	003	4
165		7		1130.564	1_	2.247	4	.842	1	0	3	.001	1	0	15
166		_	min	-1439.452	3_	.553	15	-66.037	4	0	4	087	4	003	4
167		8		1130.892	1	2.232	4	.842	1	0	3	.001	1	0	15
168		_	min	-1439.206	3	.549	15	-66.321	4	0	4	101	4	004	4
169		9		1131.22	1	2.216	4	.842	1	0	3	.001	1	0	15
170		40	min	-1438.96	3_	.546	15	-66.606	4	0	4	<u>116</u>	4	004	4
171		10		1131.549	1	2.201	4	.842	1	0	3	.002	1	001	15
172		11	min	-1438.713 1131.877	<u>3</u>	.542	15	-66.891	1	0	3	<u>131</u>	1	005	15
173		11				2.186	4	.842		0		.002		001	
174		10	min		3	.539	15	-67.176	4	0	3	<u>146</u>	4	005	4
175		12		1132.206 -1438.221	1	2.171	4	.842	1	0		.002	1	001	15
176		12			3	.535	15	-67.461	4	0	3	161	4	005	4
177 178		13		1132.534 -1437.974	1	2.1 <u>55</u> .531	4 15	.842 -67.746	1	0	4	.002 176	1	001	15
179		1.1	min	1132.863	3			.842	4	0	3		4	006	4
		14			1	2.14	4		1	0		.002	1	002	15
180		4.5	min		3_	.528	15	-68.03	4	0	4	<u>191</u>	4	006	4
181		15		1133.191	1	2.125	4	.842	1	0	3	.003	1	002	15
182		16	min	-1437.482 1133.519	3	.524	15	-68.315	4	0	3	206	4	007	15
183		16			1	2.11	4	.842	1	0		.003	1	002	15
184		47	min		3	.52	12	-68.6	4	0	4	221	4	007	15
185		17		1133.848	1	2.094	4	.842	1	0	3	.003	1	002	15
186		4.0		-1436.989	3	.514	12	-68.885	4	0	4	236	4	008	4
187		18		1134.176	1	2.079	4	.842	1	0	3	.003	1	002	15
188		10	min		3	.508	12	-69.17	4	0	4	251	4	008	4
189		19	тах	1134.505	1	2.064	4	.842	1	0	3	.003	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
190			min	-1436.496	3	.502	12	-69.455	4	0	4	267	4	009	4
191	M3	1	max	436.451	2	8.108	4	.019	1	0	3	0	1	.009	4
192			min	-552.843	3	1.919	15	-1.152	5	0	4	01	4	.002	15
193		2	max	436.28	2	7.336	4	.019	1	0	3	0	1	.006	4
194			min	-552.971	3	1.737	15	609	5	0	4	01	4	.001	12
195		3	max	436.11	2	6.563	4	.028	14	0	3	0	1	.003	2
196			min	-553.099	3	1.556	15	067	5	0	4	011	4	0	3
197		4	max	435.94	2	5.791	4	.523	4	0	3	0	1	0	2
198			min	-553.226	3	1.374	15	.001	12	0	4	01	4	002	3
199		5	max	435.769	2	5.019	4	1.065	4	0	3	0	1	0	15
200			min	-553.354	3	1.193	15	.001	12	0	4	01	4	003	3
201		6	max		2	4.246	4	1.608	4	0	3	0	1	0	15
202				-553.482	3	1.011	15	.001	12	0	4	009	4	004	6
203		7	max	435.429	2	3.474	4	2.15	4	0	3	0	1	001	15
204			min	-553.61	3	.83	15	.001	12	0	4	009	5	006	6
205		8	max	435.258	2	2.701	4	2.692	4	0	3	0	1	002	15
206			min	-553.738	3	.648	15	.001	12	0	4	008	5	007	6
207		9	max		2	1.929	4	3.234	4	0	3	0	1	002	15
208		9		-553.865	3	.466	15	.001	12	0	4	006	5	002	6
209		10	max	434.917	2	1.156	4	3.776	4	0	3	000 0	1	002	15
210		10		-553.993	3	.285	15	.001	12	0	4	005	5	002	6
		11		434.747			2				_	005 0	1		
211		11			2	.456		4.318	4	0	3		_	002	15
212		40	min	-554.121	3	038	3	.001	12	0	4	003	5	009	6
213		12	max	434.577	2	078	15	4.86	4	0	3	0	1	002	15
214		40	min	-554.249	3	49	3	.001	12	0	4	001	5	009	6
215		13	max		2	26	15	5.402	4	0	3	0	4	002	15
216			min	-554.376	3	-1.162	6	.001	12	0	4	0	12	009	6
217		14	max		2	441	15	5.945	4	0	3	.003	4	002	15
218			min	-554.504	3	-1.934	6	.001	12	0	4	0	12	008	6
219		15	max	434.066	2	623	15	6.487	4	0	3	.006	4	002	15
220				-554.632	3	-2.707	6	.001	12	0	4	0	12	007	6
221		16	max		2	805	15	7.029	4	0	3	.009	4	001	15
222			min	-554.76	3	-3.479	6	.001	12	0	4	0	12	006	6
223		17	max	433.725	2	986	15	7.571	4	0	3	.012	4	0	15
224			min	-554.887	3	-4.252	6	.001	12	0	4	0	12	004	6
225		18	max	433.555	2	-1.168	15	8.113	4	0	3	.015	4	0	15
226			min	-555.015	3	-5.024	6	.001	12	0	4	0	12	002	6
227		19	max	433.384	2	-1.349	15	8.655	4	0	3	.019	4	0	1
228			min	-555.143	3	-5.797	6	.001	12	0	4	0	12	0	1
229	M4	1		1250.833	1	0	1	279	12	0	1	.01	4	0	1
230			min	-460.994	3	0	1	-206.041	4	0	1	0	10	0	1
231		2		1251.003	1	0	1	279	12	0	1	0	12	0	1
232				-460.867	3	0	1	-206.188	4	0	1	014	4	0	1
233		3	_	1251.174	1	0	1	279	12	0	1	0	12	0	1
234				-460.739	3	0	1	-206.336	4	0	1	037	4	0	1
235		4		1251.344	1	0	1	279	12	0	1	0	12	0	1
236				-460.611	3	0	1	-206.483		0	1	061	4	0	1
237		5		1251.514	1	0	1	279	12	0	1	0	12	0	1
238				-460.483	3	0	1	-206.631	4	0	1	085	4	0	1
239		6		1251.685	1	0	1	279	12	0	1	0	12	0	1
240				-460.356	3	0	1	-206.779		0	1	109	4	0	1
241		7		1251.855	<u> </u>	0	1	279	12	0	1	109 0	12	0	1
241				-460.228			1	-206.926			1				1
		0			3_1	0	-			0	1	132	4	0	
243		8		1252.025	1	0	1	279	12	0	-	0	12	0	1
244			min	-460.1	3	0	1	-207.074	4	0	1	156	4	0	1
245		9		1252.196	1	0	1	279	12	0	1	0	12	0	1
246			min	-459.972	3	0	1	-207.222	4	0	1	18	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1252.366	1	0	1	279	12	0	1	0	12	0	1
248			min	-459.845	3	0	1	-207.369	4	0	1	204	4	0	1
249		11	max	1252.536	1	0	1	279	12	0	1	0	12	0	1
250			min	-459.717	3	0	1	-207.517	4	0	1	228	4	0	1
251		12	max	1252.707	1	0	1	279	12	0	1	0	12	0	1
252			min	-459.589	3	0	1	-207.665	4	0	1	251	4	0	1
253		13	max	1252.877	1	0	1	279	12	0	1	0	12	0	1
254			min	-459.461	3	0	1	-207.812	4	0	1	275	4	0	1
255		14	max	1253.047	1	0	1	279	12	0	1	0	12	0	1
256			min	-459.334	3	0	1	-207.96	4	0	1	299	4	0	1
257		15	max	1253.218	1	0	1	279	12	0	1	0	12	0	1
258			min	-459.206	3	0	1	-208.107	4	0	1	323	4	0	1
259		16	max	1253.388	1	0	1	279	12	0	1	0	12	0	1
260			min	-459.078	3	0	1	-208.255	4	0	1	347	4	0	1
261		17	max	1253.558	1	0	1	279	12	0	1	0	12	0	1
262			min	-458.95	3	0	1	-208.403	4	0	1	371	4	0	1
263		18	max	1253.729	1	0	1	279	12	0	1	0	12	0	1
264			min	-458.822	3	0	1	-208.55	4	0	1	395	4	0	1
265		19	max	1253.899	1	0	1	279	12	0	1	0	12	0	1
266			min	-458.695	3	0	1	-208.698	4	0	1	419	4	0	1
267	M6	1	max	3577.027	1	2.974	2	0	1	0	1	0	4	0	1
268			min	-4654.965	3	146	3	-64.868	4	0	4	0	1	0	1
269		2	max	3577.355	1	2.963	2	0	1	0	1	0	1	0	3
270			min	-4654.719	3	155	3	-65.152	4	0	4	014	4	0	2
271		3	max	3577.684	1	2.951	2	0	1	0	1	0	1	0	3
272			min	-4654.472	3	163	3	-65.437	4	0	4	029	4	001	2
273		4		3578.012	1	2.939	2	0	1	0	1	0	1	0	3
274			min	-4654.226	3	172	3	-65.722	4	0	4	043	4	002	2
275		5		3578.341	1	2.927	2	0	1	0	1	0	1	0	3
276			min	-4653.98	3	181	3	-66.007	4	0	4	058	4	003	2
277		6		3578.669	1	2.915	2	0	1	0	1	0	1	0	3
278			min	-4653.733	3	19	3	-66.292	4	0	4	073	4	003	2
279		7		3578.998	1	2.903	2	0	1	0	1	0	1	0	3
280			min	-4653.487	3	199	3	-66.576	4	0	4	087	4	004	2
281		8		3579.326	1	2.891	2	0	1	0	1	0	1	0	3
282			min	-4653.241	3	208	3	-66.861	4	0	4	102	4	005	2
283		9		3579.655	1	2.879	2	0	1	0	1	0	1	0	3
284			min	-4652.994	3	217	3	-67.146	4	0	4	117	4	005	2
285		10		3579.983	1	2.867	2	0	1	0	1	0	1	0	3
286		1	min		3	226	3	-67.431	4	0	4	132	4	006	2
287		11		3580.311	1	2.855	2	0	1	0	1	0	1	0	3
288			min		3	235	3	-67.716	4	0	4	147	4	006	2
289		12		3580.64	1	2.844	2	0	1	0	1	0	1	0	3
290			min		3	244	3	-68.001	4	0	4	162	4	007	2
291		13		3580.968	1	2.832	2	0	1	0	1	0	1	0	3
292		1	min	-4652.009	3	253	3	-68.285	4	0	4	177	4	008	2
293		14		3581.297	1	2.82	2	0	1	0	1	0	1	0	3
294			min		3	262	3	-68.57	4	0	4	192	4	008	2
295		15		3581.625	1	2.808	2	0	1	0	1	0	1	0	3
296			min		3	27	3	-68.855	4	0	4	207	4	009	2
297		16		3581.954	1	2.796	2	0	1	0	1	0	1	0	3
298		'	min		3	279	3	-69.14	4	0	4	223	4	01	2
299		17	+	3582.282	1	2.784	2	0	1	0	1	0	1	0	3
300		17	min		3	288	3	-69.425	4	0	4	238	4	01	2
301		12		3582.61	1	2.772	2	0	1	0	1	0	1	0	3
302		10	min		3	297	3	-69.71	4	0	4	253	4	011	2
303		19		3582.939		2.76	2	0	1	0	1	0	1	0	3
SUS		l 19	шах	<u>ააი∠.ყაყ</u>		2.10		U		U			<u> </u>	U	<u> </u>

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

304 min -4650.531 3 306 3 -69.994 4 0 4 305 M7 1 max 1581.091 2 8.112 6 0 1 0 1 306 min -1721.343 3 1.904 15 -1.222 5 0 4 307 2 max 1580.92 2 7.339 6 0 1 0 1 308 min -1721.47 3 1.722 15 68 5 0 4	0 01 0 01 0	1 0 3 1 .009 2
306 min -1721.343 3 1.904 15 -1.222 5 0 4 307 2 max 1580.92 2 7.339 6 0 1 0 1	01 0 01 0	1 0 3 1 .009 2
307 2 max 1580.92 2 7.339 6 0 1 0 1	0 01 0	.009 2
	01 0	
308	0	
		1002 3
309 3 max 1580.75 2 6.567 6 0 1 0 1		.000 2
310 min -1721.598 3 1.541 15138 5 0 4		1004 3
311 4 max 1580.58 2 5.794 6 .445 4 0 1	0 '	
312 min -1721.726 3 1.359 15 0 1 0 4		1005 3
313 5 max 1580.409 2 5.022 6 .987 4 0 1	0	
314 min -1721.854 3 1.178 15 0 1 0 4		1006 3
315 6 max 1580.239 2 4.25 6 1.53 4 0 1	0 '	
316 min -1721.981 3 .996 15 0 1 0 4		1007 3
317 7 max 1580.069 2 3.477 6 2.072 4 0 1	0 .	
318 min -1722.109 3 .814 15 0 1 0 4		1007 3
319 8 max 1579.898 2 2.71 2 2.614 4 0 1	0 '	
320 min -1722.237 3 .575 12 0 1 0 4		1008 3
321 9 max 1579.728 2 2.108 2 3.156 4 0 1	0 ,	
322 min -1722.365 3 .274 12 0 1 0 4		1008 4
323 10 max 1579.558 2 1.507 2 3.698 4 0 1	0 '	
324 min -1722.492 3119 3 0 1 0 4		5009 4
325 11 max 1579.387 2 .905 2 4.24 4 0 1		l002 15
326 min -1722.62 357 3 0 1 0 4		5009 4
327	0 '	
328 min -1722.748 3 -1.021 3 0 1 0 4	002	5009 4
329 13 max 1579.047 2275 15 5.324 4 0 1	0 4	1002 15
330 min -1722.876 3 -1.473 3 0 1 0 4	0 ,	1009 4
331	.003	1002 15
332 min -1723.003 3 -1.93 4 0 1 0 4	0	1008 4
333 15 max 1578.706 2638 15 6.409 4 0 1	.005	1002 15
334 min -1723.131 3 -2.702 4 0 1 0 4	0	1007 4
335 16 max 1578.536 282 15 6.951 4 0 1	.008	1001 15
336 min -1723.259 3 -3.475 4 0 1 0 4	0	l006 4
337 17 max 1578.365 2 -1.001 15 7.493 4 0 1	.011 4	1 0 15
338 min -1723.387 3 -4.247 4 0 1 0 4	0 .	1004 4
339 18 max 1578.195 2 -1.183 15 8.035 4 0 1	.014	1 0 15
340 min -1723.514 3 -5.019 4 0 1 0 4	0 .	1002 4
341 19 max 1578.025 2 -1.364 15 8.577 4 0 1	.018	1 0 1
342 min -1723.642 3 -5.792 4 0 1 0 4	0	0 1
343 M8 1 max 3775.595 2 0 1 0 1 0 1	.01	1 0 1
344 min -1531.924 3 0 1 -201.71 4 0 1	0 .	1 0 1
345 2 max 3775.765 2 0 1 0 1 0 1	0 .	0 1
346 min -1531.796 3 0 1 -201.857 4 0 1	014	1 0 1
347 3 max 3775.935 2 0 1 0 1 0 1	0	0 1
348 min -1531.668 3 0 1 -202.005 4 0 1	037	1 0 1
349 4 max 3776.106 2 0 1 0 1 0 1	0	l 0 1
350 min -1531.541 3 0 1 -202.152 4 0 1	06	1 0 1
351 5 max 3776.276 2 0 1 0 1 0 1	0	I 0 1
352 min -1531.413 3 0 1 -202.3 4 0 1	083	1 0 1
353 6 max 3776.446 2 0 1 0 1 0 1		0 1
354 min -1531.285 3 0 1 -202.448 4 0 1	106	1 0 1
355 7 max 3776.617 2 0 1 0 1 0 1		I 0 1
356 min -1531.157 3 0 1 -202.595 4 0 1	13	
357 8 max 3776.787 2 0 1 0 1 0 1	0	
358 min -1531.03 3 0 1 -202.743 4 0 1	153	
359 9 max 3776.957 2 0 1 0 1 0 1		0 1
360 min -1530.902 3 0 1 -202.891 4 0 1	176	1 0 1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10		3777.128	2	0	1	0	_1_	0	_1_	0	1	0	1
362			min	-1530.774	3	0	1	-203.038	4	0	1_	2	4	0	1
363		11	max	3777.298	2	0	1	0	_1_	0	1_	0	1	0	1
364			min	-1530.646	3	0	1	-203.186	4	0	1	223	4	0	1
365		12		3777.468	2	0	1	0	1_	0	1_	0	1	0	1
366				-1530.519	3	0	1	-203.334	4	0	1	246	4	0	1
367		13	max	3777.639	2	0	1	0	1	0	1	0	1	0	1
368			min	-1530.391	3	0	1	-203.481	4	0	1	27	4	0	1
369		14	max	3777.809	2	0	1	0	1	0	1	0	1	0	1
370			min	-1530.263	3	0	1	-203.629	4	0	1	293	4	0	1
371		15		3777.979	2	0	1	0	1	0	1	0	1	0	1
372				-1530.135	3	0	1	-203.776	4	0	1	316	4	0	1
373		16	max	3778.15	2	0	1	0	1	0	1	0	1	0	1
374			min	-1530.008	3	0	1	-203.924	4	0	1	34	4	0	1
375		17	max	3778.32	2	0	1	0	1	0	1	0	1	0	1
376			min	-1529.88	3	0	1	-204.072	4	0	1	363	4	0	1
377		18	max	3778.49	2	0	1	0	1	0	1	0	1	0	1
378			min	-1529.752	3	0	1	-204.219	4	0	1	387	4	0	1
379		19	max	3778.661	2	0	1	0	1	0	1	0	1	0	1
380			min	-1529.624	3	0	1	-204.367	4	0	1	41	4	0	1
381	M10	1	max	1128.593	1	2.229	6	043	12	0	1	0	1	0	1
382			min	-1440.93	3	.501	15	-64.754	4	0	5	0	3	0	1
383		2	max	1128.921	1	2.214	6	043	12	0	1	0	10	0	15
384			min	-1440.684	3	.497	15	-65.038	4	0	5	014	4	0	6
385		3	max	1129.25	1	2.198	6	043	12	0	1	0	10	0	15
386				-1440.438	3	.493	15	-65.323	4	0	5	029	4	0	6
387		4	max	1129.578	1	2.183	6	043	12	0	1	0	10	0	15
388			min	-1440.191	3	.49	15	-65.608	4	0	5	043	4	001	6
389		5	max	1129.907	1	2.168	6	043	12	0	1	0	12	0	15
390			min	-1439.945	3	.486	15	-65.893	4	0	5	058	4	002	6
391		6	max	1130.235	1	2.153	6	043	12	0	1	0	12	0	15
392			min	-1439.699	3	.483	15	-66.178	4	0	5	073	4	002	6
393		7	max	1130.564	1	2.137	6	043	12	0	1	0	12	0	15
394				-1439.452	3	.479	15	-66.463	4	0	5	087	4	003	6
395		8	max	1130.892	1	2.122	6	043	12	0	1	0	12	0	15
396				-1439.206	3	.476	15	-66.747	4	0	5	102	4	003	6
397		9	max	1131.22	1	2.107	6	043	12	0	1	0	12	0	15
398				-1438.96	3	.472	15	-67.032	4	0	5	117	4	004	6
399		10		1131.549	1	2.092	6	043	12	0	1	0	12	0	15
400			min	-1438.713	3	.468	15	-67.317	4	0	5	132	4	004	6
401		11		1131.877	1	2.076	6	043	12	0	1	0	12	001	15
402				-1438.467	3	.465	15	-67.602	4	0	5	147	4	005	6
403		12		1132.206	1	2.061	6	043	12	0	1	0	12	001	15
404				-1438.221	3	.461	15	-67.887	4	0	5	162	4	005	6
405		13	max	1132.534	1	2.046	6	043	12	0	1	0	12	001	15
406				-1437.974	3	.458	15	-68.172	4	0	5	177	4	006	6
407		14		1132.863	1	2.031	6	043	12	0	1	0	12	001	15
408				-1437.728	3	.454	15	-68.456	4	0	5	192	4	006	6
409		15		1133.191	1	2.015	6	043	12	0	1	0	12	001	15
410				-1437.482	3	.45	15	-68.741	4	0	5	207	4	007	6
411		16		1133.519	1	2	6	043	12	0	1	0	12	002	15
412				-1437.235	3	.447	15	-69.026	4	0	5	222	4	007	6
413		17		1133.848	1	1.985	6	043	12	0	1	0	12	002	15
414				-1436.989	3	.443	15	-69.311	4	0	5	238	4	007	6
415		18		1134.176	1	1.97	6	043	12	0	1	0	12	002	15
416				-1436.743	3	.44	15	-69.596	4	0	5	253	4	008	6
417		19		1134.505	1	1.954	6	043	12	0	1	0	12	002	15
TII		10	παλ	1107.000		1.007	J	.070	14				14	.002	_ I U

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-1436.496	3	.436	15	-69.881	4	0	5	268	4	008	6
419	M11	1	max	436.451	2	8.051	6	001	12	0	1	0	12	.008	6
420			min	-552.843	3	1.88	15	-1.153	5	0	4	01	4	.002	15
421		2	max	436.28	2	7.278	6	001	12	0	1	0	12	.005	2
422			min	-552.971	3	1.699	15	611	5	0	4	01	4	.001	12
423		3	max	436.11	2	6.506	6	.008	14	0	1	0	12	.003	2
424			min	-553.099	3	1.517	15	069	5	0	4	011	4	0	3
425		4	max	435.94	2	5.733	6	.514	4	0	1	0	12	0	2
426			min	-553.226	3	1.335	15	019	1	0	4	01	4	002	3
427		5	max	435.769	2	4.961	6	1.056	4	0	1	0	12	0	15
428			min	-553.354	3	1.154	15	019	1	0	4	01	4	003	3
429		6	max	435.599	2	4.189	6	1.598	4	0	1	0	12	001	15
430			min	-553.482	3	.972	15	019	1	0	4	01	4	005	4
431		7	max	435.429	2	3.416	6	2.141	4	0	1	0	12	002	15
432			min	-553.61	3	.791	15	019	1	0	4	009	4	006	4
433		8	max	435.258	2	2.644	6	2.683	4	0	1	0	12	002	15
434			min	-553.738	3	.609	15	019	1	0	4	008	4	007	4
435		9	max	435.088	2	1.871	6	3.225	4	0	1	0	12	002	15
436			min	-553.865	3	.428	15	019	1	0	4	007	4	008	4
437		10	max	434.917	2	1.099	6	3.767	4	0	1	0	12	002	15
438			min	-553.993	3	.246	15	019	1	0	4	005	4	009	4
439		11	max	434.747	2	.456	2	4.309	4	0	1	0	12	002	15
440			min	-554.121	3	038	3	019	1	0	4	003	4	009	4
441		12	max	434.577	2	117	15	4.851	4	0	1	0	12	002	15
442			min	-554.249	3	49	3	019	1	0	4	001	5	009	4
443		13	max	434.406	2	299	15	5.393	4	0	1	0	4	002	15
444			min	-554.376	3	-1.219	4	019	1	0	4	0	1	009	4
445		14	max		2	48	15	5.935	4	0	1	.003	4	002	15
446			min	-554.504	3	-1.992	4	019	1	0	4	0	1	008	4
447		15	max	434.066	2	662	15	6.478	4	0	1	.006	4	002	15
448			min	-554.632	3	-2.764	4	019	1	0	4	0	1	007	4
449		16	max	433.895	2	843	15	7.02	4	0	1	.009	4	001	15
450			min	-554.76	3	-3.537	4	019	1	0	4	0	1	006	4
451		17	max	433.725	2	-1.025	15	7.562	4	0	1	.012	4	001	15
452			min	-554.887	3	-4.309	4	019	1	0	4	0	1	004	4
453		18	max	433.555	2	-1.206	15	8.104	4	0	1	.015	4	0	15
454			min	-555.015	3	-5.082	4	019	1	0	4	0	1	002	4
455		19	max	433.384	2	-1.388	15	8.646	4	0	1	.018	4	0	1
456			min	-555.143	3	-5.854	4	019	1	0	4	0	1	0	1
457	M12	1	max	1250.833	1	0	1	5.678	1	0	1	.01	4	0	1
458			min	-460.994	3	0	1	-203.162	4	0	1	0	1	0	1
459		2	max	1251.003	1	0	1	5.678	1	0	1	0	1	0	1
460			min	-460.867	3	0	1	-203.31	4	0	1	014	4	0	1
461		3	max	1251.174	1	0	1	5.678	1	0	1	.001	1	0	1
462			min	-460.739	3	0	1	-203.458	4	0	1	037	4	0	1
463		4	max	1251.344	1	0	1	5.678	1	0	1	.002	1	0	1
464			min	-460.611	3	0	1	-203.605	4	0	1	06	4	0	1
465		5	max	1251.514	1	0	1	5.678	1	0	1	.002	1	0	1
466			min	-460.483	3	0	1	-203.753	4	0	1	084	4	0	1
467		6		1251.685	1	0	1	5.678	1	0	1	.003	1	0	1
468			min		3	0	1	-203.901	4	0	1	107	4	0	1
469		7	max	1251.855	1	0	1	5.678	1	0	1	.004	1	0	1
470			min			0	1	-204.048		0	1	13	4	0	1
471		8		1252.025	1	0	1	5.678	1	0	1	.004	1	0	1
472			min	-460.1	3	0	1	-204.196	4	0	1	154	4	0	1
473		9		1252.196	1	0	1	5.678	1	0	1	.005	1	0	1
474			min		3	0	1	-204.344	4	0	1	177	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1252.366	1	0	1	5.678	1	0	1	.006	1	0	1
476			min	-459.845	3	0	1	-204.491	4	0	1	201	4	0	1
477		11	max	1252.536	1	0	1	5.678	1	0	1	.006	1	0	1
478			min	-459.717	3	0	1	-204.639	4	0	1	224	4	0	1
479		12	max	1252.707	1	0	1	5.678	1	0	1	.007	1	0	1
480			min	-459.589	3	0	1	-204.786	4	0	1	248	4	0	1
481		13	max	1252.877	1	0	1	5.678	1	0	1	.008	1	0	1
482			min	-459.461	3	0	1	-204.934	4	0	1	271	4	0	1
483		14	max	1253.047	1	0	1	5.678	1	0	1	.008	1	0	1
484			min	-459.334	3	0	1	-205.082	4	0	1	295	4	0	1
485		15		1253.218	1	0	1	5.678	1	0	1	.009	1	0	1
486			min	-459.206	3	0	1	-205.229	4	0	1	318	4	0	1
487		16	max	1253.388	1	0	1	5.678	1	0	1	.01	1	0	1
488			min		3	0	1	-205.377	4	0	1	342	4	0	1
489		17	max	1253.558	1	0	1	5.678	1	0	1	.01	1	0	1
490			min	-458.95	3	0	1	-205.525	4	0	1	366	4	0	1
491		18	max	1253.729	1	0	1	5.678	1	0	1	.011	1	0	1
492			min	-458.822	3	0	1	-205.672	4	0	1	389	4	0	1
493		19	max	1253.899	1	0	1	5.678	1	0	1	.012	1	0	1
494			min	-458.695	3	0	1	-205.82	4	0	1	413	4	0	1
495	M1	1	max	114.921	1	805.321	3	47.979	5	0	1	.14	1	0	3
496			min	-7.628	5	-506.571	1	-58.897	1	0	3	052	5	016	2
497		2	max	115.292	1	804.283	3	49.22	5	0	1	.109	1	.253	1
498			min	-7.455	5	-507.955	1	-58.897	1	0	3	027	5	425	3
499		3	max	330.473	3	588.386	1	-3.22	12	0	3	.078	1	.508	1
500			min	-198.981	2	-603.5	3	-58.19	1	0	1	001	5	832	3
501		4	max		3	587.002	1	-3.22	12	0	3	.047	1	.198	1
502			min	-198.61	2	-604.538	3	-58.19	1	0	1	008	5	513	3
503		5	max		3	585.619	1	-3.22	12	0	3	.016	1	004	15
504			min	-198.24	2	-605.576	3	-58.19	1	0	1	013	5	194	3
505		6	max		3	584.235	1	-3.22	12	0	3	0	12	.126	3
506			min	-197.869	2	-606.613	3	-58.19	1	0	1	021	4	447	2
507		7	max		3	582.852	1	-3.22	12	0	3	002	12	.446	3
508		-	min	-197.498	2	-607.651	3	-58.19	1	0	1	045	1	754	2
509		8	max	331.863	3	581.468	1	-3.22	12	0	3	004	12	.767	3
510			min	-197.128	2	-608.689	3	-58.19	1	0	1	076	1	-1.06	2
511		9	max		3	53.443	2	34.938	5	0	9	.046	1	.894	3
512			min	-151.489	2	.417	15	-88.605	1	0	3	099	5	-1.212	2
513		10	max	339.573	3	52.06	2	36.18	5	0	9	0	10	.873	3
514			min	-151.119	2	001	5	-88.605	1	0	3	08	4	-1.24	2
515		11		339.851		50.676	2	37.421	5	0	9	003	12	.852	3
516				-150.748	2	-1.746	4	-88.605	1	0	3	07	4	-1.267	2
517		12		347.181	3	409.502	3	110.34	5	0	2	.075	1	.745	3
518				-105.066	2	-690.727	2	-57.002	1	0	3	151	5	-1.124	2
519		13		347.459	3	408.465	3	111.581	5	0	2	.045	1	.529	3
520				-104.696	2	-692.111	2	-57.002	1	0	3	093	5	759	2
521		14		347.737	3	407.427	3	112.823	5	0	2	.015	1	.313	3
522			min		2	-693.495		-57.002	1	0	3	033	5	394	2
523		15		348.015	3	406.389	3	114.064	5	0	2	.026	5	.099	3
524			min	-103.954	2	-694.878	2	-57.002	1	0	3	015	1	054	1
525		16		348.293	3	405.351	3	115.305	5	0	2	.087	5	.34	2
526				-103.583	2	-696.262	2	-57.002	1	0	3	045	1	115	3
527		17		348.571	3	404.314	3	116.547	5	0	2	.148	5	.707	2
528				-103.213	2	-697.645		-57.002	1	0	3	075	1	329	3
529		18			5	696.988	2	-3.126	12	0	5	.129	5	.356	2
530			min		1	-332.24	3	-88.703	4	0	2	108	1	163	3
531		19	max		5	695.604	2	-3.126	12	0	5	.089	5	.013	3
001		10	παλ	10.001		000.004		0.120	14					.010	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-115.152	1	-333.278	3	-87.461	4	0	2	141	1_	012	1
533	M5	1	max	252.362	1	2684.018	3	72.557	5	0	1	0	1_	.032	2
534			min	6.622	12	-1731.15	1	0	1	0	4	111	4	0	3
535		2	max		1	2682.98	3	73.799	5	0	1	0	_1_	.943	1
536			min	6.808	12	-1732.533	1	0	1	0	4	073	4	-1.416	3
537		3	max	1049.191	3	1731.675	1	13.831	4	0	4	0	1	1.816	1
538			min	-674.948	2	-1876.801	3	0	1	0	1	035	4	-2.777	3
539		4	max	1049.469	3	1730.291	1	15.072	4	0	4	0	1_	.903	1
540			min	-674.577	2	-1877.839	3	0	1	0	1	027	4	-1.786	3
541		5	max	1049.747	3	1728.907	1	16.314	4	0	4	0	1	.024	9
542			min	-674.207	2	-1878.876	3	0	1	0	1	019	4	795	3
543		6	max	1050.025	3	1727.524	1	17.555	4	0	4	0	1	.197	3
544			min	-673.836	2	-1879.914	3	0	1	0	1	01	5	988	2
545		7	max	1050.303	3	1726.14	1	18.797	4	0	4	0	14	1.189	3
546			min	-673.465	2	-1880.952	3	0	1	0	1	002	5	-1.891	2
547		8	max	1050.582	3	1724.757	1	20.038	4	0	4	.01	4	2.182	3
548			min	-673.094	2	-1881.99	3	0	1	0	1	0	1	-2.794	2
549		9	max	1060.131	3	179.801	2	112.311	4	0	1	0	1	2.509	3
550			min	-576.741	2	.417	15	0	1	0	1	131	4	-3.184	2
551		10	max	1060.409	3	178.417	2	113.552	4	0	1	0	1	2.432	3
552			min	-576.371	2	0	15	0	1	0	1	072	5	-3.278	2
553		11	max	1060.687	3	177.033	2	114.794	4	0	1	0	1	2.356	3
554			min	-576	2	-1.656	6	0	1	0	1	012	5	-3.372	2
555		12	max	1070.438	3	1245.104	3	149.81	4	0	1	0	1	2.068	3
556			min	-479.734	2	-2072.587	2	0	1	0	4	209	4	-3.02	2
557		13		1070.716	3	1244.066	3	151.051	4	0	1	0	1	1.411	3
558			min	-479.363	2	-2073.971	2	0	1	0	4	13	4	-1.926	2
559		14	+	1070.994	3	1243.028	3	152.293	4	0	1	0	1	.755	3
560			min	-478.993	2	-2075.355	2	0	1	0	4	05	4	842	1
561		15		1071.272	3	1241.991	3	153.534	4	0	1	.031	4	.264	2
562			min	-478.622	2	-2076.738	2	0	1	Ö	4	0	1	002	13
563		16	max		3	1240.953	3	154.775	4	0	1	.113	4	1.361	2
564			min	-478.251	2	-2078.122	2	0	1	0	4	0	1	556	3
565		17	+	1071.828	3	1239.915	3	156.017	4	0	1	.195	4	2.458	2
566			min	-477.88	2	-2079.505	2	0	1	0	4	0	1	-1.211	3
567		18	max	-7.22	12	2357.923	2	0	1	0	4	.197	4	1.266	2
568			min	-252.271	1	-1150.254	3	-33.635	5	0	1	0	1	633	3
569		19	max	-7.035	12	2356.539	2	0	1	0	4	.18	4	.024	1
570		10	min	-251.9	1	-1151.292	3	-32.394	5	0	1	0	1	025	3
571	M9	1	max		1	805.321	3	66.356	4	0	3	008	12	0	3
572	1010		min	4 = 40	12			3.266	12	0	4	14	1	016	2
573		2	max		1	804.283	3	67.598	4	0	3	006	12	.253	1
574			min	4.734	12	-507.955		3.266	12	0	4	109	1	425	3
575		3		330.473	3	588.386	1	58.19	1	0	1	004	12	.508	1
576			min		2	-603.5	3	-6.79	5	0	3	078	1	832	3
577		4		330.751	3	587.002	1	58.19	1	0	1	003	12	.198	1
578			min	-198.61	2	-604.538	3	-5.549	5	0	3	047	1	513	3
579		5		331.029	3	585.619	1	58.19	1	0	1	0	12	004	15
580		J	min		2	-605.576	3	-4.307	5	0	3	018	4	194	3
581		6		331.307	3	584.235	1	58.19	1	0	1	.015	1	.126	3
582		0		-197.869	2	-606.613		-3.066	5	0	3	017	5	447	2
		7				582.852			1		<u> </u>	.045		.446	
583		/		331.585	3		1	58.19 -1.824	5	0		018		754	3
584		0	min		2	-607.651	3			_	3		5		2
585		8		331.863	3	581.468	1	58.19	1	0	1	.076	1	.767	3
586		0	min		2	-608.689	3	583	5	0	3	019	5	-1.06	2
587		9		339.295	3	53.443	2	88.605	1	0	3	002	12	.894	3
588			min	-151.489	2	.422	15	4.662	12	0	9	113	4	-1.212	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	339.573	3	52.06	2	88.605	1	0	3	0	1	.873	3
590			min	-151.119	2	.005	15	4.662	12	0	9	08	4	-1.24	2
591		11	max	339.851	3	50.676	2	88.605	1	0	3	.047	1	.852	3
592			min	-150.748	2	-1.706	6	4.662	12	0	9	056	5	-1.267	2
593		12	max	347.181	3	409.502	3	128.894	4	0	3	004	12	.745	3
594			min	-105.066	2	-690.727	2	2.847	12	0	2	175	4	-1.124	2
595		13	max	347.459	3	408.465	3	130.135	4	0	3	002	12	.529	3
596			min	-104.696	2	-692.111	2	2.847	12	0	2	107	4	759	2
597		14	max	347.737	3	407.427	3	131.377	4	0	3	0	12	.313	3
598			min	-104.325	2	-693.495	2	2.847	12	0	2	038	4	394	2
599		15	max	348.015	3	406.389	3	132.618	4	0	3	.032	4	.099	3
600			min	-103.954	2	-694.878	2	2.847	12	0	2	0	12	054	1
601		16	max	348.293	3	405.351	3	133.86	4	0	3	.102	4	.34	2
602			min	-103.583	2	-696.262	2	2.847	12	0	2	.002	12	115	3
603		17	max	348.571	3	404.314	3	135.101	4	0	3	.173	4	.707	2
604			min	-103.213	2	-697.645	2	2.847	12	0	2	.004	12	329	3
605		18	max	-4.527	12	696.988	2	62.466	1	0	2	.163	4	.356	2
606			min	-115.523	1	-332.24	3	-69.218	5	0	3	.005	12	163	3
607		19	max	-4.342	12	695.604	2	62.466	1	0	2	.141	1	.013	3
608			min	-115.152	1	-333.278	3	-67.977	5	0	3	.007	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.133	2	.006	3	1.07e-2	2	NC	1	NC	1
2			min	387	4	034	3	003	2	-2.602e-3	3	NC	1	NC	1
3		2	max	0	1	.2	3	.017	1	1.205e-2	2	NC	5	NC	1
4			min	387	4	008	9	008	5	-2.605e-3	3	873.672	3	NC	1
5		3	max	0	1	.389	3	.04	1	1.339e-2	2	NC	5	NC	2
6			min	387	4	101	1	01	5	-2.608e-3	3	482.883	3	5119.885	1
7		4	max	0	1	.503	3	.06	1	1.473e-2	2	NC	5	NC	3
8			min	387	4	154	1	007	5	-2.611e-3	3	379.9	3	3427.262	1
9		5	max	0	1	.529	3	.07	1	1.608e-2	2	NC	5	NC	3
10			min	387	4	151	1	002	5	-2.614e-3	3	362.282	3	2945.783	1
11		6	max	0	1	.469	3	.067	1	1.742e-2	2	NC	5	NC	3
12			min	387	4	095	1	0	10	-2.617e-3	3	405.732	3	3082.07	1
13		7	max	0	1	.34	3	.052	1	1.877e-2	2	NC	5	NC	2
14			min	387	4	012	9	001	10	-2.62e-3	3	545.433	3	3992.754	1
15		8	max	0	1	.177	3	.029	1	2.011e-2	2	NC	1	NC	2
16			min	387	4	.003	15	004	10	-2.623e-3	3	968.454	3	7204.322	1
17		9	max	0	1	.244	2	.018	3	2.145e-2	2	NC	4	NC	1
18			min	387	4	.005	15	007	2	-2.626e-3	3	1846.275	2	NC	1
19		10	max	0	1	.287	2	.018	3	2.28e-2	2	NC	3	NC	1
20			min	387	4	038	3	012	2	-2.629e-3	3	1326.052	2	NC	1
21		11	max	0	12	.244	2	.018	3	2.145e-2	2	NC	4	NC	1
22			min	387	4	.005	15	007	2	-2.626e-3	3	1846.275	2	NC	1
23		12	max	0	12	.177	3	.029	1	2.011e-2	2	NC	1	NC	2
24			min	387	4	.003	15	007	5	-2.623e-3	3	968.454	3	7204.322	1
25		13	max	0	12	.34	3	.052	1	1.877e-2	2	NC	5	NC	2
26			min	387	4	012	9	002	5	-2.62e-3	3	545.433	3	3992.754	1
27		14	max	0	12	.469	3	.067	1	1.742e-2	2	NC	5	NC	3
28			min	387	4	095	1	0	10	-2.617e-3	3	405.732	3	3082.07	1
29		15	max	0	12	.529	3	.07	1	1.608e-2	2	NC	5	NC	3
30			min	387	4	151	1	.002	10	-2.614e-3	3	362.282	3	2945.783	1
31		16	max	0	12	.503	3	.06	1	1.473e-2	2	NC	5	NC	3
32			min	387	4	154	1	.002	10	-2.611e-3	3	379.9	3	3427.262	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

33	Member	Sec 17	may	x [in]	LC	y [in] .389	LC 3	z [in] .04	LC 1	x Rotate [r 1.339e-2	LC 2	(n) L/y Ratio		(n) L/z Ratio	LC 2
34		17	max	387	4	101	1	.04	10	-2.608e-3	3	482.883	<u>5</u> 3	5119.885	
35		18	max	<u>367</u> 0	12	.2	3	.017	1	1.205e-2	2	NC	5	NC	1
36		10	min	387	4	008	9	0	10	-2.605e-3	3	873.672	3	NC	1
37		19	max	<u>567</u>	12	.133	2	.006	3	1.07e-2	2	NC	1	NC	1
38		13	min	387	4	034	3	003	2	-2.602e-3	3	NC	1	NC	1
39	M14	1	max	<u>.567</u>	1	.267	3	.005	3	6.162e-3	2	NC	1	NC	1
40	IVIT		min	314	4	405	2	003	2	-4.761e-3	3	NC	1	NC	1
41		2	max	0	1	.523	3	.012	1	7.287e-3	2	NC	5	NC	1
42			min	314	4	651	2	012	5	-5.707e-3	3	798.39	3	NC	1
43		3	max	0	1	.742	3	.032	1	8.411e-3	2	NC	5	NC	2
44		T .	min	314	4	867	2	015	5	-6.653e-3	3	429.573	3	6542.563	
45		4	max	0	1	<u></u> .9	3	.051	1	9.536e-3	2	NC	5	NC	2
46			min	314	4	-1.034	2	01	5	-7.599e-3	3	319.914	1	4075.942	1
47		5	max	0	1	.985	3	.061	1	1.066e-2	2	NC	15	NC	3
48			min	314	4	-1.139	2	002	5	-8.545e-3	3	275.469	1	3366.795	1
49		6	max	0	1	.996	3	.06	1	1.179e-2	2	NC	15	NC	2
50		Ť	min	314	4	-1.181	2	0	10	-9.49e-3	3	262.201	1	3433.23	1
51		7	max	0	1	.945	3	.048	1	1.291e-2	2	NC	15	NC	2
52			min	314	4	-1.169	2	0		-1.044e-2	3	266.964	2	4364.228	
53		8	max	0	1	.855	3	.027	1	1.403e-2	2	NC	15	NC	2
54		T -	min	314	4	-1.12	2	003	10	-1.138e-2	3	285.143	2	7734.688	
55		9	max	0	1	.765	3	.016	3	1.516e-2	2	NC	5	NC	1
56		 	min	314	4	-1.062	2	007	2	-1.233e-2	3	310.127	2	NC	1
57		10	max	0	1	.721	3	.016	3	1.628e-2	2	NC	5	NC	1
58			min	314	4	-1.033	2	011	2	-1.327e-2	3	324.585	2	NC	1
59		11	max	0	12	.765	3	.016	3	1.516e-2	2	NC	5	NC	1
60			min	314	4	-1.062	2	012	5	-1.233e-2	3	310.127	2	NC	1
61		12	max	0	12	.855	3	.027	1	1.403e-2	2	NC	15	NC	2
62			min	314	4	-1.12	2	014	5	-1.138e-2	3	285.143	2	7734.688	
63		13	max	0	12	.945	3	.048	1	1.291e-2	2	NC	15	NC	2
64			min	314	4	-1.169	2	009	5	-1.044e-2	3	266.964	2	4364.228	
65		14	max	0	12	.996	3	.06	1	1.179e-2	2	NC	15	NC	2
66			min	314	4	-1.181	2	0	5	-9.49e-3	3	262.201	1	3433.23	1
67		15	max	0	12	.985	3	.061	1	1.066e-2	2	NC	15	NC	3
68			min	314	4	-1.139	2	.002	10	-8.545e-3	3	275.469	1	3366.795	
69		16	max	0	12	.9	3	.051	1	9.536e-3	2	NC	5	NC	2
70			min	314	4	-1.034	2	.001	10	-7.599e-3	3	319.914	1	4075.942	1
71		17	max	0	12	.742	3	.032	1	8.411e-3	2	NC	5	NC	2
72			min	314	4	867	2	0	10	-6.653e-3	3	429.573	3	6542.563	1
73		18	max	0	12	.523	3	.016	4	7.287e-3	2	NC	5	NC	1
74			min	314	4	651	2	001	10	-5.707e-3	3	798.39	3	NC	1
75		19	max	0	12	.267	3	.005	3	6.162e-3	2	NC	1	NC	1
76			min	314	4	405	2	003	2	-4.761e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.273	3	.005	3	4.059e-3	3	NC	1	NC	1
78			min	268	4	404	2	002	2	-6.363e-3	2	NC	1	NC	1
79		2	max	0	12	.449	3	.012	1	4.863e-3	3	NC	5	NC	1
80			min	268	4	713	2	019	5	-7.525e-3	2	660.99	2	NC	1
81		3	max	0	12	.604	3	.032	1	5.667e-3	3	NC	5	NC	2
82			min	268	4	98	2	024	5	-8.688e-3	2	354.275	2	6518.878	
83		4	max	0	12	.724	3	.051	1	6.47e-3	3	NC	5	NC	2
84			min	268	4	-1.177	2	017	5	-9.85e-3	2	263.941	2	4062.843	
85		5	max	0	12	.801	3	.062	1	7.274e-3	3	NC	15	NC	3
86			min	268	4	-1.289	2	005	5	-1.101e-2	2	230.486	2	3355.544	1
87		6	max	0	12	.834	3	.06	1	8.078e-3	3	NC	15	NC	2
88			min	268	4	-1.316	2	.001	10	-1.218e-2	2	223.804	2	3419.516	
89		7	max	0	12	.828	3	.048	1	8.882e-3	3	NC	15	NC	2

: Schletter, Inc. : HCV

Job Number : Standar

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r		(n) L/y Ratio			LC
90			min	268	4	-1.27	2	0	10 -1.334e-2	2	235.78	2	4339.501	1
91		8	max	0	12	.796	3	.032	4 9.686e-3	3	NC	<u>15</u>	NC 0.400.007	2
92			min	268	4	<u>-1.177</u>	2	003	10 -1.45e-2	2	263.856	2	6400.907	4
93		9	max	0	12	.757	3	.022	4 1.049e-2	3_	NC	5_	NC 0405.040	1
94		40	min	269	4	<u>-1.08</u>	2	006	2 -1.566e-2	2	301.7	2	9105.842	4
95		10	max	0	1	.737	3	.015	3 1.129e-2	3	NC	5_	NC NC	1
96		4.4	min	269	4	<u>-1.033</u>	2	01	2 -1.683e-2	2	324.302	2	NC NC	1
97		11	max	0	1	.757	3	.015	3 1.049e-2	3	NC	5_	NC NC	1
98		4.0	min	268	4	<u>-1.08</u>	2	018	5 -1.566e-2	2	301.7	2	NC NC	1
99		12	max	0	1	.796	3	.027	1 9.686e-3	3_	NC 000,050	<u>15</u>	NC	2
100		40	min	268	4	<u>-1.177</u>	2	021	5 -1.45e-2	2	263.856	2	7651.457	1
101		13	max	0	1	.828	3	.048	1 8.882e-3	3	NC	<u>15</u>	NC 1000 F04	2
102		4.4	min	268	4	-1.27	2	015	5 -1.334e-2	2	235.78	2	4339.501	1
103		14	max	0	1	.834	3	.06	1 8.078e-3	3_	NC	15	NC 0.140.540	2
104		4.5	min	268	4	<u>-1.316</u>	2	002	5 -1.218e-2	2	223.804	2	3419.516	1
105		15	max	0	1	.801	3	.062	1 7.274e-3	3	NC	<u>15</u>	NC	3
106		4.0	min	268	4	<u>-1.289</u>	2	.002	10 -1.101e-2	2	230.486	2	3355.544	1
107		16	max	0	1	.724	3	.051	1 6.47e-3	3	NC	5_	NC 1000 0 10	2
108		4-7	min	268	4	<u>-1.177</u>	2	.002	10 -9.85e-3	2	263.941	2	4062.843	1
109		17	max	0	1	.604	3	.034	4 5.667e-3	3	NC 054.075	5_	NC 5000,000	2
110		40	min	268	4	98	2	0	10 -8.688e-3	2	354.275	2	5906.929	4
111		18	max	0	1	.449	3	.023	4 4.863e-3	3	NC 000.00	5	NC 0000 054	1
112		40	min	268	4	713	2	0	10 -7.525e-3	2	660.99	2	8630.954	
113		19	max	0	1	.273	3	.005	3 4.059e-3	3	NC	_1_	NC	1
114	1440		min	268	4	404	2	002	2 -6.363e-3	2	NC	1_	NC NC	1
115	M16	1	max	0	12	.117	1	.004	3 7.282e-3	3	NC	1_	NC	1
116			min	125	4	092	3	002	2 -9.057e-3	1_	NC	_1_	NC	1
117		2	max	0	12	.002	13	.017	1 8.341e-3	3	NC	5	NC	1
118			min	125	4	069	2	014	5 -1.007e-2	1_	1105.029	2	NC	1
119		3	max	0	12	.046	3	.041	1 9.399e-3	3_	NC	5_	NC	2
120			min	125	4	215	2	<u>018</u>	5 -1.108e-2	1	616.575	2	5118.787	1
121		4	max	0	12	.076	3	.06	1 1.046e-2	3	NC	5	NC .	3
122		<u> </u>	min	125	4	297	2	014	5 -1.209e-2	1_	493.783	2	3417.538	1
123		5	max	0	12	.069	3	.07	1 1.152e-2	3	NC	_5_	NC	3
124			min	125	4	304	2	006	5 -1.31e-2	1_	486.019	2_	2929.186	1
125		6	max	0	12	.028	3	.067	1 1.258e-2	3	NC	5_	NC	3
126		_	min	125	4	237	2	.002	10 -1.411e-2	1	578.126	2	3052.284	1
127		7	max	0	12	.001	13	.053	1 1.363e-2	3	NC	5	NC	2
128			min	125	4	113	2	0	10 -1.512e-2	1_	892.262	2	3923.766	
129		8	max	0	12	.068	1	.03	1 1.469e-2	3	NC	4_	NC	2
130			min		4	118	3	002	10 -1.613e-2		2647.188		6930.695	
131		9	max	0	12	.189	1	.015	4 1.575e-2	3	NC	_4_	NC	1
132			min	125	4	<u>187</u>	3	005	2 -1.714e-2	_1_	2151.758	3_	NC	1
133		10	max	0	1	.243	1	.013	3 1.681e-2	3	NC	_5_	NC	1
134			min	125	4	218	3	009	2 -1.816e-2	1_	1621.238	1_	NC	1
135		11	max	0	1	.189	1	.013	3 1.575e-2	3	NC	4_	NC	1
136			min	125	4	187	3	011	5 -1.714e-2	1_	2151.758	3	NC	1
137		12	max	0	1	.068	1	.03	1 1.469e-2	3	NC	4_	NC	2
138			min	125	4	118	3	012	5 -1.613e-2	1	2647.188	2	6930.695	
139		13	max	0	1	.001	13	.053	1 1.363e-2	3	NC	_5_	NC	2
140			min	125	4	113	2	006	5 -1.512e-2	1_	892.262	2_	3923.766	
141		14	max	0	1	.028	3	.067	1 1.258e-2	3	NC	5	NC	3
142			min	125	4	237	2	.002	10 -1.411e-2	1_	578.126	2	3052.284	
143		15	max	0	1	.069	3	.07	1 1.152e-2	3	NC	5	NC	3
144			min	125	4	304	2	.003	10 -1.31e-2	1	486.019	2	2929.186	
145		16	max	0	1	.076	3	.06	1 1.046e-2	3	NC	5_	NC	3
146			min	125	4	297	2	.003	10 -1.209e-2	1_	493.783	2	3417.538	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
147		17	max	0	1	.046	3	.041	1	9.399e-3	3	NC	5	NC	2
148			min	125	4	215	2	.001	10	-1.108e-2	1_	616.575	2	5118.787	1
149		18	max	0	1	.001	13	.02	4	8.341e-3	3	NC	5_	NC	1
150		40	min	1 <u>25</u>	4	069	2	0	10	-1.007e-2	1_	1105.029	2	NC	1
151		19	max	0	1	.117	1	.004	3	7.282e-3	3_	NC	1_	NC NC	1
152	140		min	125	4	092	3	002	2	-9.057e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.005	1	.004	2	.005	1	1.093e-3	5_	NC	1	NC 400.047	1
154		<u> </u>	min	007	3	008	3	368	4	-1.124e-4	<u>1</u>	NC	1_	130.017	4
155		2	max	.005	1	.004	2	.004	1	1.158e-3	5_	NC	1_	NC 4.44.000	1
156		_	min	006	3	007	3	338	4	-1.041e-4	1_	NC NC	1_	141.662	4
157		3	max	.005	1	.003	2	.004	1	1.224e-3	5_	NC	1	NC	1
158		-	min	006	3	007	3	308	4	-9.591e-5	<u>1</u>	NC	1_	155.507	4
159		4	max	.004	1	.003	2	.003	1	1.289e-3	5_	NC	1	NC 470.400	1
160		-	min	006	3	007	3	278	4	-8.769e-5	1_	NC	1_	172.129	4
161		5	max	.004	1	.002	2	.003	1	1.354e-3	5_	NC	1_	NC 400,040	1
162			min	005	3	006	3	249	4	-7.946e-5	<u>1</u>	NC NC	1_	192.312	4
163		6	max	.004	1	.002	2	.003	1	1.42e-3	5_	NC	1_	NC 047.445	1
164		-	min	005	3	006	3	22	4	-7.123e-5	1_	NC	1_	217.145	4
165		7	max	.003	1	.001	2	.002	1	1.485e-3	_5_	NC	_1_	NC 040.474	1
166			min	004	3	006	3	1 <u>93</u>	4	-6.3e-5	1_	NC NC	1_	248.174	4
167		8	max	.003	1	0	2	.002	1	1.552e-3	4	NC	1	NC 007.050	1
168			min	004	3	005	3	<u>166</u>	4	-5.477e-5	1_	NC	1_	287.659	4
169		9	max	.003	1	0	2	.002	1	1.62e-3	4_	NC		NC	1
170		10	min	004	3	005	3	141	4	-4.654e-5	1_	NC	1_	339.009	4
171		10	max	.003	1	0	2	.001	1	1.688e-3	4_	NC	1_	NC 407.505	1
172		1.4	min	003	3	005	3	<u>117</u>	4	-3.831e-5	1_	NC	1_	407.565	4
173		11	max	.002	1	0	2	.001	1	1.756e-3	4	NC	1_	NC	1
174		1.0	min	003	3	004	3	<u>095</u>	4	-3.008e-5	_1_	NC	1_	502.088	4
175		12	max	.002	1	0	15	0	1	1.824e-3	4_	NC	_1_	NC	1
176		10	min	003	3	004	3	075	4	-2.185e-5	1_	NC NC	1_	637.788	4
177		13	max	.002	1	0	15	0	1	1.893e-3	4	NC	1	NC 040.040	1
178		111	min	002	3	003	3	0 <u>57</u>	4	-1.362e-5	1_	NC	1_	843.018	4
179		14	max	.001	1	0	15	0	1	1.961e-3	4	NC	1	NC	1
180		4.5	min	002	3	003	3	041	4	-5.394e-6	1_	NC NC	1_	1175.795	
181		15	max	.001	1	0	15	0	1	2.029e-3	4_	NC NC	1_	NC 4770.04	1
182		10	min	<u>001</u>	3	002	3	027	4	-4.583e-7	3	NC	1_	1770.91	4
183		16	max	0	1	0	15	0	1	2.097e-3	4	NC	1	NC	1
184		47	min	<u>001</u>	3	002	3	016	4	1.944e-7	12	NC	1_	3005.271	4
185		17	max	0	1	0	15	0	1	2.166e-3	4	NC NC	1_	NC	1
186		40	min	0	3	001	3	008	4	6.558e-7	12	NC NC	1_	6302.698	
187		18	max	0	1	0	15	0	1	2.234e-3		NC	1	NC NC	1
188		10	min	0	3	0	3	002	4	1.117e-6	12	NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	2.302e-3	4	NC	1	NC NC	1
190	140	-	min	0	1	0	1	0	1	1.579e-6	12	NC NC	1_	NC NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	-5.079e-7	12	NC NC	1_	NC NC	1
192			min	0		0		0	1	-5.148e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.011	4	1.197e-5	4	NC	1_	NC NC	1
194		_	min	0	2	001	6	0	12	1.797e-7	12	NC NC	1_	NC NC	1
195		3	max	0	3	0	15	.022	4	5.387e-4	4	NC	1_	NC	1
196		1	min	0	2	003	6	0	12	8.673e-7	<u>12</u>	NC NC	1	NC NC	1
197		4	max	0	3	001	15	.032	4	1.065e-3	4	NC NC	1_	NC NC	1
198		-	min	0	2	005	6	0	12	1.555e-6	<u>12</u>	NC NC	1_	NC NC	1
199		5	max	.001	3	001	15	.042	4	1.592e-3	4	NC	1_	NC	1
200			min	0	2	007	6	0	12	2.242e-6	12	NC NC	1_1	NC NC	1
201		6	max	.001	3	002	15	.051	4	2.119e-3	4	NC NC	1_1	NC NC	1
202		7	min	001	2	008	6	0	12	2.93e-6	12	NC NC	1	NC NC	1
203		7	max	.002	3	002	15	.06	4	2.646e-3	4	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) L/v Ratio	I C	(n) I /z Ratio	I.C.
204	WICHIBOI		min	001	2	01	6	0	12	3.618e-6	12	9482.052	6	NC NC	1
205		8	max	.002	3	002	15	.068	4	3.172e-3	4	NC	1	NC	1
206			min	001	2	011	6	0	12	4.305e-6	12	8438.298	6	NC	1
207		9	max	.002	3	003	15	.077	4	3.699e-3	4	NC	1	NC	1
208			min	002	2	012	6	0	12	4.993e-6	12	7813.35	6	NC	1
209		10	max	.002	3	003	15	.084	4	4.226e-3	4	NC	1	NC	1
210			min	002	2	012	6	0	12	5.68e-6	12	7495.559	6	NC	1
211		11	max	.003	3	003	15	.092	4	4.753e-3	4	NC	2	NC	1
212			min	002	2	012	6	0	12	6.368e-6	12	7437.044	6	NC	1
213		12	max	.003	3	003	15	.099	4	5.279e-3	4	NC	1	NC	1
214			min	002	2	012	6	0	12	7.056e-6	12	7635.133	6	NC	1
215		13	max	.003	3	002	15	.107	4	5.806e-3	4	NC	1	NC	1
216			min	003	2	011	6	0	12	7.743e-6	12	8133.557	6	NC	1
217		14	max	.004	3	002	15	.114	4	6.333e-3	4	NC	1	NC	1
218			min	003	2	01	6	0	12	8.431e-6	12	9045.932	6	NC	1
219		15	max	.004	3	002	15	.122	4	6.859e-3	4	NC	1	NC	1
220			min	003	2	009	6	0	12	9.118e-6	12	NC	1	NC	1
221		16	max	.004	3	001	15	.13	4	7.386e-3	4	NC	1	NC	1
222			min	003	2	007	1	0	12	9.806e-6	12	NC	1	NC	1
223		17	max	.004	3	0	15	.138	4	7.913e-3	4	NC	1_	NC	1_
224			min	003	2	006	1	0	12	1.049e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.147	4	8.44e-3	4_	NC	_1_	NC	1
226			min	004	2	004	1	0	12	1.118e-5	12	NC	1_	NC	1
227		19	max	.005	3	0	5	.156	4	8.966e-3	4	NC	_1_	NC	1
228			min	004	2	003	1	0	12	1.187e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	12	6.302e-8	3	NC	_1_	NC	2
230			min	001	3	005	3	<u>156</u>	4	-5.649e-4	4	NC	1_	158.797	4
231		2	max	.003	1	.003	2	00	12	6.302e-8	3_	NC	_1_	NC	2
232			min	001	3	004	3	143	4	-5.649e-4	4	NC	1	172.848	4
233		3	max	.003	1	.003	2	0	12	6.302e-8	3_	NC	_1_	NC	2
234			min	0	3	004	3	131	4	-5.649e-4	4	NC	1_	189.559	4
235		4	max	.002	1	.003	2	0	12	6.302e-8	3	NC	_1_	NC	2
236			min	0	3	004	3	118	4	-5.649e-4	4_	NC	1_	209.624	4
237		5	max	.002	1	.002	2	0	12	6.302e-8	3	NC	1_	NC	2
238			min	0	3	004	3	106	4	-5.649e-4	4	NC	1_	233.984	4
239		6	max	.002	1	.002	2	0	12	6.302e-8	3	NC	_1_	NC	2
240			min	0	3	003	3	<u>094</u>	4	-5.649e-4	4_	NC	_1_	263.945	4
241		7	max	.002	1	.002	2	0	12	6.302e-8	3_	NC	1	NC NC	1
242			min	0	3	003	3	082	4	-5.649e-4	4_	NC	1_	301.359	4
243		8	max	.002	1	.002	2	0	12	6.302e-8	3_	NC	1	NC 0.40,000	1
244		_	min	0	3	003	3	071	4	-5.649e-4		NC NC	1_	348.932	4
245		9	max	.002	1	.002	2	0	12	6.302e-8	3_4	NC NC	1	NC	1
246		40	min	0	3	003	3	06	4	-5.649e-4	4	NC NC	1_1	410.731	4
247		10	max	.001	1	.002	2	0	12	6.302e-8	3	NC NC	1_1	NC	1
248		4.4	min	0	3	002	2	<u>05</u> 0	4	-5.649e-4	4	NC NC	1	493.121	4
249		11	max	.001	1	.001			12	6.302e-8	3	NC NC	1	NC COC F4	1
250		40	min	0	3	002	3	<u>041</u>	4	-5.649e-4	4	NC NC	1	606.51	4
251		12	max	.001	3	.001	2	0	12	6.302e-8	3_4	NC NC	1	NC 769 000	1
252		40	min	0		002	3	032	4	-5.649e-4 6.302e-8	4			768.909	4
253 254		13	max	0	3	.001	3	0 024	12		3_4	NC NC	1	NC 1012 747	4
		1.1	min	_		002	2		12	-5.649e-4	4	NC NC		1013.747	
255		14	max	0	3	0 001	3	0	12	6.302e-8	3_4	NC NC	<u>1</u> 1	NC	1
256		15	min	0	1	<u>001</u> 0	2	018 0	12	-5.649e-4	4	NC NC		1409.044 NC	
257 258		15	max	0	3	001	3	012	12	6.302e-8	3_4	NC NC	<u>1</u> 1	2111.624	1
259		16	min	0	1	<u>001</u> 0	2	012 0	12	-5.649e-4 6.302e-8	3	NC NC	1	NC	1
260		10	max	0	3	0	3	007				NC NC	1		_
200			min	U	S	U	J	007	4	-5.649e-4	4	INC		3555.089	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	6.302e-8	3	NC NC	1	NC 70.47.50.4	1
262		10	min	0	3	0	3	003	4	-5.649e-4	4	NC	1_	7347.584	4
263		18	max	0	1	0	2	0	12	6.302e-8	3	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-5.649e-4	4	NC	1_	NC	1
265		19	max	00	1	00	1	0	1_	6.302e-8	3_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-5.649e-4	4	NC	1_	NC	1
267	M6	1	max	.016	1	.016	2	0	1	1.134e-3	4_	NC	4_	NC	1
268			min	021	3	024	3	371	4	0	1	2031.27	3	128.987	4
269		2	max	.016	1	.014	2	0	1	1.198e-3	4	NC	4	NC	1
270			min	02	3	022	3	34	4	0	1	2153.445	3	140.541	4
271		3	max	.015	1	.013	2	0	1	1.263e-3	4	NC	4	NC	1
272			min	019	3	021	3	31	4	0	1	2291.211	3	154.277	4
273		4	max	.014	1	.012	2	0	1	1.327e-3	4	NC	4	NC	1
274			min	018	3	02	3	28	4	0	1	2447.702	3	170.77	4
275		5	max	.013	1	.011	2	0	1	1.391e-3	4	NC	4	NC	1
276			min	017	3	018	3	251	4	0	1	2626.945	3	190.795	4
277		6	max	.012	1	.009	2	0	1	1.455e-3	4	NC	1	NC	1
278			min	015	3	017	3	222	4	0	1	2834.21	3	215.434	4
279		7	max	.011	1	.008	2	0	1	1.519e-3	4	NC	1	NC	1
280			min	014	3	016	3	194	4	0	1	3076.52	3	246.222	4
281		8	max	.01	1	.007	2	0	1	1.583e-3	4	NC	1	NC	1
282			min	013	3	014	3	168	4	0	1	3363.457	3	285.401	4
283		9	max	.009	1	.006	2	0	1	1.647e-3	4	NC	1	NC	1
284			min	012	3	013	3	142	4	0	1	3708.435	3	336.355	4
285		10	max	.008	1	.005	2	0	1	1.711e-3	4	NC	1	NC	1
286		10	min	011	3	012	3	118	4	0	1	4130.829	3	404.382	4
287		11	max	.007	1	.004	2	0	1	1.776e-3	4	NC	1	NC	1
288		+ ' '	min	01	3	01	3	096	4	0	1	4659.707	3	498.18	4
289		12	max	.006	1	.003	2	<u>.030</u>	1	1.84e-3	4	NC	1	NC	1
290		12	min	008	3	009	3	076	4	0	1	5340.746	3	632.845	4
291		13	max	.005	1	.002	2	0	1	1.904e-3	4	NC	1	NC	1
292		10	min	007	3	008	3	057	4	0	1	6250.076	3	836.52	4
293		14	max	.005	1	.002	2	0	1	1.968e-3	4	NC	1	NC	1
294		17	min	006	3	006	3	041	4	0	1	7524.737	3	1166.798	4
295		15	max	.004	1	.001	2	0	1	2.032e-3	4	NC	1	NC	1
296		13	min	005	3	005	3	027	4	0	1	9438.811	3	1757.503	4
297		16	max	.003	1	<u>003</u> 0	2	0	1	2.096e-3	4	NC	1	NC	1
298		10		004	3	004	3	016	4	0	1	NC NC	1	2982.901	4
299		17	min	.002	1	004 0	2	<u>016</u> 0	1	2.16e-3	•	NC NC	1	NC	1
		17	max		3		3		4		<u>4</u> 1	NC NC	1		4
300		10	min	002	1	003		008	4	0			1	6257.242	4
301		18		0	2	0	2	0	1	2.225e-3	4	NC	1	NC NC	4
302		10	min	001	3	001	3	002	4	2 2000 2	1_1	NC NC	1	NC NC	1
303		19	max	0	1	0	1	<u> </u>	1	2.289e-3	4	NC NC	1		1
304	N / -7	4	min	0		0	-		1	0	1_1		<u>1</u> 1	NC NC	
305	<u>M7</u>	1	max	0	1	0	1	0	-	•	1_4	NC NC	1	NC NC	1
306			min	0	1	0	1	0	1	-5.102e-4	4	NC NC		NC NC	1
307		2	max	0	3	0	2	.011	4	6.714e-6	4_	NC NC	1_	NC NC	1
308		_	min	0	2	002	3	0	1	0	1_1	NC NC	1_	NC NC	1
309		3	max	.002	3	0	15	.022	4	5.237e-4	4	NC NC	1_	NC NC	1
310		-	min	002	2	005	3	0	1	0	1_1	NC NC	1_	NC NC	1
311		4	max	.003	3	001	15	.032	4	1.041e-3	4	NC NC	1_	NC NC	1
312		-	min	002	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5	max	.003	3	002	15	.042	4	1.558e-3	4	NC NC	1	NC NC	1
314			min	003	2	008	3	0	1	0	1_	NC	1_	NC	1
315		6	max	.004	3	002	15	.051	4	2.075e-3	4	NC	1_	NC NC	1
316		-	min	004	2	01	3	0	1	0	1_	9229.817	3	NC NC	1
317		7	max	.005	3	002	15	.059	4	2.591e-3	4	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
318			min	005	2	011	3	0	1	0	1	8216.541	3	NC	1
319		8	max	.006	3	003	15	.068	4	3.108e-3	4	NC	_1_	NC	1
320			min	005	2	012	3	0	1	0	<u>1</u>	7612.693	3	NC	1
321		9	max	.007	3	003	15	.076	4	3.625e-3	4	NC	1_	NC	1
322		10	min	006	2	<u>013</u>	3	0	1	0	<u>1</u>	7294.277	3	NC	1
323		10	max	.008	3	003	15	.083	4	4.142e-3	4	NC	1_	NC NC	1
324		44	min	007	2	013	3	0	1	0	1_	7205.079	3	NC NC	1
325		11	max	.008	3	003	15	.091	4	4.659e-3	4	NC	1_	NC NC	1
326		40	min	008	2	013	4	0	1	0	1_1	7329.838	3	NC NC	1
327		12	max	.009	3	003	15	.098	1	5.176e-3	<u>4</u> 1	NC 7653.321	1_1	NC NC	1
328 329		13	min	008 .01	3	013 003	15	<u> </u>	4	0	4	NC	<u>4</u> 1	NC NC	1
330		13	max	009	2	003 012	4	0	1	5.693e-3 0	1	8152.082	4	NC NC	1
331		14	min	.011	3	012	15	.113	4	6.21e-3	4	NC	1	NC NC	1
332		14	max min	01	2	003 011	1	0	1	0.216-3	1	9065.755	4	NC	1
333		15	max	.012	3	002	15	.12	4	6.727e-3	4	NC	1	NC	1
334		10	min	011	2	011	1	0	1	0.7276-3	1	NC	1	NC	1
335		16	max	.013	3	002	15	.127	4	7.244e-3	4	NC	1	NC	1
336		10	min	012	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.013	3	001	15	.135	4	7.761e-3	4	NC	1	NC	1
338		<u> </u>	min	012	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.014	3	0	15	.144	4	8.278e-3	4	NC	1	NC	1
340			min	013	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.015	3	0	15	.153	4	8.795e-3	4	NC	1	NC	1
342			min	014	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	2	.012	2	0	1	0	1	NC	1	NC	1
344			min	004	3	015	3	153	4	-5.888e-4	4	NC	1	162.102	4
345		2	max	.009	2	.011	2	0	1	0	1	NC	1	NC	1
346			min	003	3	014	3	141	4	-5.888e-4	4	NC	1	176.448	4
347		3	max	.008	2	.011	2	0	1	0	1_	NC	1_	NC	1
348			min	003	3	013	3	128	4	-5.888e-4	4	NC	1_	193.51	4
349		4	max	.008	2	.01	2	0	1	0	1	NC	1_	NC	1
350			min	003	3	012	3	116	4	-5.888e-4	4	NC	1_	213.996	4
351		5	max	.007	2	.009	2	0	1	0	_1_	NC	_1_	NC	1
352			min	003	3	011	3	104	4	-5.888e-4	4_	NC	1_	238.866	4
353		6	max	.007	2	.009	2	0	1	0	_1_	NC	_1_	NC	1
354		<u> </u>	min	003	3	<u>011</u>	3	092	4	-5.888e-4	4	NC	1_	269.455	4
355		7	max	.006	2	.008	2	0	1	0		NC	1_	NC NC	1
356			min	002	3	01	3	081	4	-5.888e-4	4_	NC	1_	307.654	4
357		8	max	.006	2	.007	2	0	1	0	1	NC NC	1_	NC 250,000	1
358			min		3	009	3	07		-5.888e-4		NC NC	1	356.223	
359		9	max	.005	2	.007	2	0	1	0	1_1	NC NC	1	NC	1
360		10	min	002	3	008	2	059	1	-5.888e-4 0	4	NC NC	<u>1</u> 1	419.318	1
361		10	max	.005	2	.006	3	0		_	1	NC NC	1	NC 503.434	
362 363		11	min max	002 .004	2	007 .005	2	049 0	1	-5.888e-4 0	<u>4</u> 1	NC NC	1	NC	1
364				002	3	007	3	04	4	-5.888e-4	4	NC	1	619.2	4
365		12	min max	.002	2	.007	2	04 0	1	0	_ 4 _	NC NC	1	NC	1
366		14	min	001	3	005 006	3	032	4	-5.888e-4	4	NC NC	1	785.002	4
367		13	max	.003	2	.004	2	032 0	1	0	_ 4 _	NC NC	1	NC	1
368		13	min	001	3	005	3	024	4	-5.888e-4	4	NC NC	1	1034.972	
369		14	max	.003	2	.003	2	0	1	0	1	NC	1	NC	1
370			min	001	3	004	3	017	4	-5.888e-4	4	NC	1	1438.556	_
371		15	max	.002	2	.003	2	0	1	0	1	NC	1	NC	1
372		10	min	0	3	003	3	012	4	-5.888e-4	4	NC	1	2155.866	4
373		16	max	.002	2	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	007	4	-5.888e-4	4	NC	1	3629.604	
U1 T			1111111			.002		.001		J.0000 T		110		JULU.UUT	r

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	.001	2	.001	2	00	1_	0	1_	NC	_1_	NC	1
376			min	0	3	002	3	003	4	-5.888e-4	4	NC	1_	7501.657	4
377		18	max	0	2	0	2	0	1_	0	1_	NC	_1_	NC	1
378			min	0	3	0	3	001	4	-5.888e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	_1_	NC	1
380			min	0	1	0	1	0	1	-5.888e-4	4	NC	1_	NC	1
381	M10	1	max	.005	1	.004	2	0	12	1.131e-3	4	NC	_1_	NC	1
382			min	007	3	008	3	37	4	6.727e-6	12	NC	_1_	129.21	4
383		2	max	.005	1	.004	2	0	12	1.195e-3	4	NC	_1_	NC	1
384		_	min	006	3	007	3	34	4	6.265e-6	12	NC	1_	140.783	4
385		3	max	.005	1	.003	2	0	12	1.259e-3	4	NC	_1_	NC	1
386			min	006	3	007	3	31	4	5.804e-6	12	NC	1_	154.543	4
387		4	max	.004	1	.003	2	0	12	1.323e-3	4	NC	1_	NC	1
388			min	006	3	007	3	28	4	5.342e-6	12	NC	1_	171.064	4
389		5	max	.004	1	.002	2	0	12	1.387e-3	4	NC	_1_	NC 101 101	1
390			min	005	3	006	3	25	4	4.881e-6	12	NC NC	1_	191.124	4
391		6	max	.004	1	.002	2	0	12	1.451e-3	4	NC NC	1	NC 045,005	1
392		-	min	005	3	006	3	222	4	4.42e-6	12	NC	1_	215.805	4
393		7	max	.003	1	.001	2	0	12	1.515e-3	4	NC		NC	1
394			min	004	3	006	3	194	4	3.958e-6	12	NC NC	1_	246.646	4
395		8	max	.003	1	0	2	0	12	1.579e-3	4	NC NC	1_	NC	1
396		_	min	004	3	005	3	167	4	3.497e-6	12	NC NC	1_	285.892	4
397		9	max	.003	1	0	2	0	12	1.643e-3	4	NC NC	1_	NC 200,000	1
398		40	min	004	3	005	3	142	4	3.035e-6	12	NC NC	1_	336.933	4
399		10	max	.003	1	0	2	0	12	1.707e-3	4	NC NC	1	NC	1
400		4.4	min	003	3	005	3	118	4	2.574e-6	12	NC NC	_	405.077	4
401		11	max	.002	3	0	2	0	12	1.771e-3	4	NC NC	1_1	NC	1
402		40	min	003		004	3	096	4	2.06e-6	10	NC NC	<u>1</u> 1	499.036	4
403		12	max	.002	3	0	2	0	12	1.835e-3	4	NC	1	NC COO COO	1
404 405		13	min	003 .002	1	004 0	2	075 0	12	1.443e-6 1.9e-3	<u>10</u> 4	NC NC	1	633.931 NC	1
406		13	max	002	3	003	3	057	4	8.249e-7	10	NC NC	1	837.956	4
407		14	min	002 .001	1	003 0	15	<u>057</u> 0	12	1.964e-3	4	NC NC	1	NC	1
407		14	max min	002	3	003	3	041	4	2.071e-7	10	NC NC	1	1168.802	4
409		15		.002	1	<u>003</u> 0	15	<u>041</u> 0	12	2.028e-3	4	NC	1	NC	1
410		15	max min	001	3	002	3	027	4	-2.836e-6	1	NC	1	1760.523	4
411		16	max	0	1	0	15	0	12	2.092e-3	4	NC	1	NC	1
412		10	min	001	3	002	3	016	4	-1.106e-5	1	NC	1	2988.035	
413		17	max	0	1	<u>002</u> 0	15	<u>010</u> 0	12	2.156e-3	4	NC	1	NC	1
414		17	min	0	3	001	3	008	4	-1.929e-5	1	NC	1	6268.048	4
415		18	max	0	1	0	15	<u>000</u>		2.22e-3	4	NC	1	NC	1
416		10	min	0	3	0	4	002	4	-2.752e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.284e-3	4	NC	1	NC	1
418		10	min	0	1	0	1	0	1	-3.575e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.115e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-5.091e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.011	4	1.03e-5	4	NC	1	NC	1
422			min	0	2	002	4	0	1	-3.314e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	.022	4	5.297e-4	4	NC	1	NC	1
424			min	0	2	003	4	0	1	-1.778e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.032	4	1.049e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-3.225e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	.041	4	1.569e-3	4	NC	1	NC	1
428			min	0	2	007	4	0	1	-4.672e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	.051	4	2.088e-3	4	NC	1	NC	1
430			min	001	2	009	4	0	1	-6.118e-5	1	NC	1	NC	1
431		7	max	.002	3	003	15	.059	4	2.607e-3	4	NC	1	NC	1
		-													

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
432			min	001	2	01	4	001	1	-7.565e-5	1	9106.261	4	NC	1
433		8	max	.002	3	003	15	.068	4	3.127e-3	4	NC	_1_	NC	1
434			min	001	2	012	4	001	1	-9.012e-5	1_	8129.649	4_	NC	1
435		9	max	.002	3	003	15	.076	4	3.646e-3	_4_	NC	_1_	NC	1
436		40	min	002	2	<u>013</u>	4	002	1	-1.046e-4	<u>1</u>	7547.203	4_	NC	1
437		10	max	.002	3	003	15	.083	4	4.166e-3	4	NC 7055.0	1_	NC NC	1
438		4.4	min	002	2	013	4	002	1	-1.191e-4	1_1	7255.9	4_	NC NC	1
439		11	max	.003	3	003	15	.091	4	4.685e-3	4_	NC 7040.05	2	NC NC	1
440		40	min	002	2	013	4	002	1	-1.335e-4	1_1	7212.25	4_	NC NC	1
441		12	max	.003	3	003	15	.098	4	5.204e-3	4	NC 7415.529	1_1	NC NC	1
443		13	min	002	3	013	15	002	4	-1.48e-4 5.724e-3	1_1	NC	<u>4</u> 1	NC NC	1
444		13	max	.003 003	2	003 012	4	.106 003	1	-1.625e-4	<u>4</u> 1	7909.567	4	NC NC	1
444		14	min max	.003	3	012	15	.113	4	6.243e-3	4	NC	1	NC NC	1
446		14	min	003	2	003 011	4	003	1	-1.769e-4	1	8805.981	4	NC	1
447		15	max	.004	3	002	15	.12	4	6.763e-3	4	NC	1	NC	1
448		10	min	003	2	002	4	003	1	-1.914e-4	1	NC	1	NC	1
449		16	max	.003	3	002	15	.128	4	7.282e-3	4	NC	1	NC	1
450		10	min	003	2	008	4	003	1	-2.059e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	.136	4	7.801e-3	4	NC	1	NC	1
452			min	003	2	006	1	004	1	-2.203e-4	1	NC	1	NC	1
453		18	max	.005	3	0	15	.145	4	8.321e-3	4	NC	1	NC	1
454			min	004	2	004	1	004	1	-2.348e-4	1	NC	1	NC	1
455		19	max	.005	3	0	12	.154	4	8.84e-3	4	NC	1	NC	1
456			min	004	2	003	1	004	1	-2.493e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.004	1	4.713e-6	1	NC	1	NC	2
458			min	001	3	005	3	154	4	-5.624e-4	4	NC	1	161.077	4
459		2	max	.003	1	.003	2	.004	1	4.713e-6	1	NC	1	NC	2
460			min	001	3	004	3	141	4	-5.624e-4	4	NC	1	175.328	4
461		3	max	.003	1	.003	2	.004	1	4.713e-6	_1_	NC	_1_	NC	2
462			min	0	3	004	3	129	4	-5.624e-4	4	NC	1_	192.278	4
463		4	max	.002	1	.003	2	.003	1	4.713e-6	_1_	NC	_1_	NC	2
464			min	0	3	004	3	117	4	-5.624e-4	4_	NC	_1_	212.629	4
465		5	max	.002	1	.002	2	.003	1	4.713e-6	_1_	NC	_1_	NC	2
466			min	0	3	004	3	<u>105</u>	4	-5.624e-4	4_	NC	1_	237.336	4
467		6	max	.002	1	.002	2	.003	1	4.713e-6	1	NC	1_	NC 007.704	2
468		_	min	0	3	003	3	093	4	-5.624e-4	4_	NC	1_	267.724	4
469		7	max	.002	1	.002	2	.002	1	4.713e-6	1	NC	1	NC	1
470			min	0	3	003	3	081	4	-5.624e-4	4_	NC NC	1_	305.672	4
471 472		8	max	.002	3	.002	3	.002 07	1	4.713e-6 -5.624e-4	1_1	NC NC	<u>1</u> 1	NC 353.923	4
			min			003	2					NC NC			
473		9	max	.002	3	.002	3	.002	4	4.713e-6 -5.624e-4	1_1	NC NC	<u>1</u> 1	NC 416 604	1
474 475		10	min max	.001	1	003 .002	2	06 .001	1	4.713e-6	<u>4</u> 1	NC NC	1	416.604 NC	4
476		10	min	0	3	002	3	05	4	-5.624e-4	4	NC	1	500.169	4
477		11	max	.001	1	.002	2	.001	1	4.713e-6	1	NC	1	NC	1
478			min	0	3	002	3	04	4	-5.624e-4	4	NC	1	615.175	4
479		12	max	.001	1	.002	2	0	1	4.713e-6	1	NC	1	NC	1
480		14	min	0	3	002	3	032	4	-5.624e-4	4	NC	1	779.889	4
481		13	max	0	1	.002	2	<u>032</u> 0	1	4.713e-6	1	NC	1	NC	1
482		10	min	0	3	002	3	024	4	-5.624e-4	4	NC	1	1028.217	
483		14	max	0	1	0	2	0	1	4.713e-6	1	NC	1	NC	1
484			min	0	3	001	3	017	4	-5.624e-4	4	NC	1	1429.148	
485		15	max	0	1	0	2	0	1	4.713e-6	1	NC	1	NC	1
486			min	0	3	001	3	012	4	-5.624e-4	4	NC	1	2141.74	4
487		16	max	0	1	0	2	0	1	4.713e-6	1	NC	1	NC	1
488			min	0	3	0	3	007	4	-5.624e-4	4	NC	1	3605.77	4
400			1111111	U	J	U	J	007	4	-5.0246-4	4	INC		3003.77	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	4.713e-6	1	NC	_1_	NC	1
490			min	0	3	0	3	003	4	-5.624e-4	4	NC	1_	7452.276	4
491		18	max	0	1	0	2	0	1	4.713e-6	_1_	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-5.624e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	4.713e-6	_1_	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-5.624e-4	4	NC	1_	NC	1
495	M1	1	max	.006	3	.133	2	.387	4	1.169e-2	_1_	NC	_1_	NC	1
496			min	003	2	034	3	0	12	-2.139e-2	3	NC	1_	NC	1
497		2	max	.006	3	.065	2	.377	4	6.697e-3	4	NC	4	NC	1
498			min	003	2	017	3	003	1	-1.058e-2	3	1699.503	2	NC	1
499		3	max	.006	3	.009	3	.368	4	1.129e-2	4_	NC	5_	NC	1
500			min	003	2	008	2	005	1	-1.125e-4	3	820.691	2	NC	1
501		4	max	.006	3	.05	3	.358	4	9.866e-3	4	NC	5_	NC	1
502			min	003	2	089	2	004	1	-4.384e-3	3	519.524	2	7089.271	5
503		5	max	.006	3	.102	3	.349	4	8.438e-3	4	NC	5	NC	1
504			min	003	2	174	2	003	1	-8.656e-3	3	375.841	2	5420.969	5
505		6	max	.006	3	.157	3	.34	4	1.257e-2	_1_	NC	<u>15</u>	NC	1
506			min	003	2	256	2	001	1	-1.293e-2	3	296.557	2	4437.122	5
507		7	max	.005	3	.21	3	.33	4	1.678e-2	1_	NC	15	NC	1
508			min	003	2	329	2	0	3	-1.72e-2	3	249.69	2	3798.822	4
509		8	max	.005	3	.254	3	.319	4	2.099e-2	_1_	9447.615	15	NC	1
510			min	003	2	387	2	0	12	-2.147e-2	3	221.938	2	3364.743	4
511		9	max	.005	3	.282	3	.307	4	2.33e-2	2	8837.749	<u>15</u>	NC	1
512			min	003	2	424	2	0	1	-2.181e-2	3	207.48	2	3109.258	4
513		10	max	.005	3	.293	3	.294	4	2.509e-2	2	8651.725	<u>15</u>	NC	1
514			min	003	2	436	2	0	12	-1.953e-2	3	203.241	2	3032.407	4
515		11	max	.005	3	.286	3	.278	4	2.688e-2	2	8837.522	<u>15</u>	NC	1
516			min	002	2	424	2	0	12	-1.726e-2	3	208.185	2	3097.867	4
517		12	max	.005	3	.261	3	.261	4	2.59e-2	2	9447.09	15	NC	1
518			min	002	2	386	2	0	1	-1.472e-2	3	224.064	2	3320.224	5
519		13	max	.005	3	.222	3	.242	4	2.076e-2	2	NC	15	NC	1
520			min	002	2	326	2	0	1	-1.178e-2	3	254.823	2	3897.489	4
521		14	max	.005	3	.173	3	.22	4	1.562e-2	2	NC	15	NC	1
522			min	002	2	25	2	0	12	-8.851e-3	3	307.452	2	5095.909	4
523		15	max	.005	3	.117	3	.198	4	1.049e-2	2	NC	5_	NC	1
524			min	002	2	167	2	0	12	-5.917e-3	3	398.121	2	7682.729	4
525		16	max	.004	3	.059	3	.176	4	7.735e-3	4	NC	5_	NC	1
526			min	002	2	082	2	0	12	-2.982e-3	3	566.163	2	NC	1
527		17	max	.004	3	.003	3	.157	4	8.679e-3	4	NC	_5_	NC	1
528			min	002	2	005	2	0	12	-4.838e-5	3	925.63	2	NC	1
529		18	max	.004	3	.06	1	.14		8.435e-3		NC	4	NC	1
530			min	002	2	046	3	0	12	-3.569e-3	3	1959.664	<u>1</u>	NC	1
531		19	max	.004	3	.117	1	.125	4	1.697e-2	2	NC	_1_	NC	1
532			min	002	2	092	3	0	1	-7.24e-3	3	NC	<u>1</u>	NC	1
533	<u>M5</u>	1_	max	.018	3	.287	2	.387	4	0	_1_	NC	_1_	NC	1
534			min	012	2	038	3	0	1	-2.769e-6	4	NC	1_	NC	1
535		2	max	.018	3	.141	2	.38	4	5.779e-3	_4_	NC	5_	NC	1
536			min	012	2	02	3	0	1	0	1_	796.027	2	NC	1
537		3	max	.018	3	.028	3	.371	4	1.138e-2	4	NC	5_	NC	1
538			min	012	2	023	2	0	1	0	1	374.425	2	8771.817	4
539		4	max	.018	3	.127	3	.361	4	9.273e-3	4	NC	<u>15</u>	NC	1
540			min	012	2	219	2	0	1	0	1_	229.107	2	6368.521	4
541		5	max	.017	3	.262	3	.351	4	7.164e-3	4	7856.171	15	NC	1
542			min	011	2	432	2	0	1	0	1_	161.219		5131.215	
543		6	max	.017	3	.413	3	34	4	5.056e-3	4	6040.715	<u>15</u>	NC	1
544			min	011	2	642	2	0	1	0	1_	124.596	2	4363.811	4
545		7	max	.017	3	.56	3	.329	4	2.948e-3	4	4993.843	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

546	Member	Sec	min	x [in] 011	LC 2	y [in] 833	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 2	(n) L/z Ratio	
547		8	min max	.016	3	<u>633</u> .683	3	.319	4	8.399e-4	4	4385.814	15	NC	1
548		0	min	011	2	987	2	0	1	0.5996-4	1	90.953	2	3403.973	
549		9	max	.016	3	.762	3	.307	4	0	1	4074.255	15	NC	1
550			min	01	2	-1.084	2	0	1	-1.618e-6	5	84.582	2	3109.548	_
551		10	max	.016	3	.791	3	.293	4	0	1	3980.413	15	NC	1
552		10	min	01	2	-1.117	2	0	1	-1.531e-6	5	82.718	2	3055.874	4
553		11	max	.015	3	.771	3	.278	4	0	1	4074.356	15	NC	1
554			min	01	2	-1.085	2	0	1	-1.444e-6	5	84.882	2	3130.509	
555		12	max	.015	3	.704	3	.262	4	6.257e-4	4	4386.049	15	NC	1
556		'-	min	01	2	985	2	0	1	0.2070	1	91.94	2	3273.878	4
557		13	max	.015	3	.596	3	.242	4	2.197e-3	4	4994.311	15	NC	1
558			min	01	2	824	2	0	1	0	1	105.918	2	3829.609	
559		14	max	.014	3	.459	3	.22	4	3.767e-3	4	6041.613	15	NC	1
560			min	01	2	625	2	0	1	0	1	130.406	2	5197.376	
561		15	max	.014	3	.307	3	.197	4	5.338e-3	4	7857.921	15	NC	1
562			min	009	2	409	2	0	1	0	1	173.919	2	8743.46	4
563		16	max	.014	3	.153	3	.174	4	6.909e-3	4	NC	15	NC	1
564			min	009	2	199	2	0	1	0	1	257.897	2	NC	1
565		17	max	.013	3	.01	3	.153	4	8.48e-3	4	NC	5	NC	1
566			min	009	2	015	2	0	1	0	1	439.827	1	NC	1
567		18	max	.013	3	.126	1	.137	4	4.306e-3	4	NC	5	NC	1
568			min	009	2	11	3	0	1	0	1	964.106	1	NC	1
569		19	max	.013	3	.243	1	.125	4	0	1	NC	1	NC	1
570			min	009	2	218	3	0	1	-1.137e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.133	2	.387	4	2.139e-2	3	NC	1	NC	1
572			min	003	2	034	3	0	1	-1.169e-2	1	NC	1	NC	1
573		2	max	.006	3	.065	2	.379	4	1.058e-2	3	NC	4	NC	1
574			min	003	2	017	3	0	12	-5.697e-3	1	1699.503	2	NC	1
575		3	max	.006	3	.009	3	.37	4	1.135e-2	4	NC	5	NC	1
576			min	003	2	008	2	0	12	-3.573e-5	10	820.691	2	9096.994	4
577		4	max	.006	3	.05	3	.361	4	8.958e-3	5	NC	5	NC	1
578			min	003	2	089	2	0	12	-4.145e-3	2	519.524	2	6501.02	4
579		5	max	.006	3	.102	3	.351	4	8.656e-3	3_	NC	5_	NC	1
580			min	003	2	174	2	0	12	-8.355e-3	_1_	375.841	2	5167.639	
581		6	max	.006	3	.157	3	.34	4	1.293e-2	3	NC	<u>15</u>	NC	1
582		_	min	003	2	256	2	0	12	-1.257e-2	1_	296.557	2	4352.748	
583		7	max	.005	3	.21	3	.33	4	1.72e-2	3	NC	<u>15</u>	NC	1
584			min	003	2	329	2	0	1	-1.678e-2	1_	249.69	2	3797.021	4
585		8	max	.005	3	.254	3	.319	4	2.147e-2	3	9434.927	<u>15</u>	NC 2000 404	1
586			min	003	2	387	2	0	1	-2.099e-2	1	221.938		3383.184	
587		9	max	.005	3	.282	3	.307	4	2.181e-2	3	8826.002	<u>15</u>	NC 2400,000	1
588		40	min	003	2	424	2	0	12	-2.33e-2	2	207.48		3103.022	
589		10	max	.005	3	.293	3	.294	4	1.953e-2	3	8640.243	<u>15</u>	NC 2022 400	1
590		11	min	003	2	<u>436</u>	2	270	1	-2.509e-2	2	203.241		3033.169	
591		11	max	.005	3	.286	2	.278	4	1.726e-2	3	8825.753	<u>15</u>	NC 3105.246	1
592		10	min	002		424		0	1	-2.688e-2	2	208.185	2		1
593		12	max	.005	3	.261	2	.261	4	1.472e-2	3	9434.434	<u>15</u>	NC 3301.447	4
594 595		12	min	002 .005	3	386 .222	3	0 .242	12	-2.59e-2 1.178e-2	3	224.064 NC	<u>2</u>	NC	1
596		13	max min	002	2	326	2	<u>.242</u> 0	10	-2.076e-2	2	254.823	<u>15</u> 2	3895.894	_
597		14		.002	3	<u>326</u> .173	3	.22	4	8.851e-3	3	NC	15	NC	1
598		14	max min	002	2	25	2	001	1	-1.562e-2	2	307.452	2	5190.377	5
599		15	max	.002	3	<u>25</u> .117	3	<u>001</u> .197	4	5.917e-3	3	NC	5	NC	1
600		10	min	002	2	167	2	003	1	-1.049e-2	2	398.121		8164.163	
601		16	max	.004	3	.059	3	<u>003</u> .174	4	6.768e-3	5	NC	5	NC	1
602		10	min	002	2	082	2	004	1	-5.347e-3	2	566.163	2	NC	1
002			ппП	002		002		004		0.0476-3		500.105		INC	

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.154	4	8.524e-3	4	NC	5	NC	1
604			min	002	2	005	2	004	1	-3.54e-4	1	925.63	2	NC	1
605		18	max	.004	3	.06	1	.138	4	4.11e-3	5	NC	4	NC	1
606			min	002	2	046	3	003	1	-8.435e-3	2	1959.664	1	NC	1
607		19	max	.004	3	.117	1	.125	4	7.24e-3	3	NC	1	NC	1
608			min	002	2	092	3	0	12	-1.697e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.