Jérémy Jean¹ María Naya-Plasencia² Thomas Peyrin³

¹École Normale Supérieure, France

²SECRET Project-Team - INRIA Paris-Rocquencourt, France

³Nanyang Technological University, Singapore

SAC'2013 - August 16, 2013

Open-Key Distinguishers

Block-cipher $E\cong$ family of PRPs $E:\mathcal{K}\times\mathcal{D}\longrightarrow\mathcal{D}.$ Known-key model: introduced by Knudsen and Rijmen in [KR-A07] Let Δ_{IN} and Δ_{OUT} two truncated differences.

A Known-key Distinguisher

Let K a key and E_K the associated permutation. Find (P, P') s.t. $P \oplus P' \in \Delta_{IN}$ and $E_K(P) \oplus E_K(P') \in \Delta_{OUT}$.

A Chosen-key Distinguisher

Find K, (P, P') s.t. $P \oplus P' \in \Delta_{IN}$ and $E_K(P) \oplus E_K(P') \in \Delta_{OUT}$.

Example: AES $\Delta_{IN} \qquad \qquad E_{K} \qquad \qquad \Delta_{OUT}$

Limited Birthday Algorithm [GP-FSE10]

Conjecture: best generic algorithm to solve the LB problem.

Limited Birthday

What is the generic complexity for mapping i fixed-difference bits to i fixed-difference bits with a random *n*-bit permutation π ?

Algorithm: sequential applications of the birthday algorithm.

Time complexity: C(i, j) (assuming $i \leq j$)

$$\log_2\left(\frac{C(i,j)}{C(i,j)}\right) = \begin{cases} j/2, & \text{if: } j \le 2(n-i), \\ i+j-n, & \text{if: } j > 2(n-i). \end{cases}$$

The End

Our Contributions

Limited Birthday

- We add more than one valid truncated differences Δ_{IN} and Δ_{OUT}
- We consider this extended LB problem as Multiple Limited-Birthday
- We provide the best known algorithm to solve the MLB problem
- We apply it to several AES-like primitives

Intuitions (1/2)

Limited Birthday

Obs.: the gap between generic and distinguishing complexities is often big

Rebound-based distinguishing algorithms

- Two phases: inbound (deterministic) and outbound (probabilistic)
- We do not elaborate on the inbound phase
- In the outbound, constrained truncated probabilistic transitions.
 - ⇒ output positions can be **relaxed**

Probabilistic transition

LB Problem applied to AES

 $P_{outbound} = 2^{-40}$

Intuitions (2/2)

Limited Birthday

Relaxation

- A $t \to c$ transition leads to $\binom{t}{c}$ possibilities
- ightharpoonup The probability is $\binom{t}{c}$ higher

$$P_{outbound} = 24 \times 2^{-40} \approx 2^{-35.4}$$

Limited Birthday

Generic problem

Relaxing the positions changes the generic algorithm (MLB)

Our Algorithm

- ▶ The algorithm due to [GP-FSE10] is not optimal \implies Need to commit to a fixed Δ_{IN} (or Δ_{OUT})
- We restric ourselves to:
 - geometries of square size $t \times t$ (AES: t = 4),
 - $ightharpoonup n_B$ active diagonals for Δ_{IN}
 - $ightharpoonup n_F$ active anti-diagonals for Δ_{OUT}

Let Δ_{IN} be the set of truncated patterns containing all the $\binom{t}{n}$ possible ways to choose n_B active diagonals among the t ones.

Let \triangle_{OUT} defined similarly with n_F active anti-diagonals.

Multiple Limited Birthday (MLB)

Given F, Δ_{IN} and Δ_{OUT} , find a pair (m, m') of inputs to F such that $m \oplus m' \in \Delta_{IN}$ and $F(m) \oplus F(m') \in \Delta_{OUT}$.

Lower Bounding the Generic Time Complexity

Lower bound on the time complexity T

- ▶ MLB with differences $(\Delta_{IN}, \Delta_{OUT})$ is at least as hard as LB on the equivalent parameters (IN, OUT)
- Indeed, LB is made easier with less constraints and more possible input pairs

$$C(\underline{IN}, \underline{OUT}) \leq T$$

Upper bound on the time complexity T

A first algorithm to solve MLB is based on independent applications of the generic algorithm for LB

Our Algorithm

ightharpoonup Take one random input Δ_i of size IN, and apply LB(IN, OUT) until one solution is found

$$T \leq \min \left\{ C(\overline{IN}, \underline{OUT}), C(\underline{IN}, \overline{OUT}) \right\}$$

MLB Example (t = 4, c = 8)

Limited Birthday

Improving the Generic Time Complexity

Bounds

$$C(\underline{IN}, \underline{OUT}) \le \underline{T} \le \min \left\{ C(\overline{IN}, \underline{OUT}), C(\underline{IN}, \overline{OUT}) \right\}$$

Our algorithm

- Solves the generic MLB problem with time complexity T
- We conjecture its optimality
- ▶ In the seguel, we explain the forward direction
- We compare our time complexities to the lower bound C(IN, OUT)

Data

Notes

Limited Birthday

A random pair is a right pair with proba.

$$P_{out} = {t \choose n_F} 2^{-t(t-n_F)c}$$

- ▶ We need (at least) P_{out}^{-1} pairs at the input
- ▶ $D_1, \ldots, D_{n'_{R}}$ assume 2^{ct} values
- $ightharpoonup D_0$ assume $2^y < 2^{ct}$ values
- $ightharpoonup n_B = 2, n_B' = 3$

Structure of Input Data

Number of Pairs

$$N_{pairs}(n'_{B}, y) \stackrel{\text{def}}{=} \binom{n'_{B}}{n_{B}} \binom{2^{n_{B}ct}}{2} 2^{y} 2^{(n'_{B}-n_{B})tc} + \binom{n'_{B}}{n_{B}-1} \binom{2^{y+(n_{B}-1)ct}}{2} 2^{(n'_{B}-(n_{B}-1))ct}$$

Then: Solve $N_{\text{pairs}}(n'_B, y) = P_{\text{out}}^{-1}$ to get (n'_B, y) .

Online Phase

Online Phase

- Query the $2^{y+ctn'_B}$ outputs to the permutation π
- ► Sort them, and:
 - check for a valid output pattern
 - ▶ then, check for a valid input pattern

Time Complexity

$$2^{y+ctn'_{B}} + 2^{2(y+ctn'_{B})-1}P_{out} \approx 2^{y+ctn'_{B}}$$

Improvements: constant memory with collision-finding algorithms.

AES in the Known-Key Model

AES: 10 rounds, t = 4, c = 8.

Details

Limited Birthday

- ▶ Super-SBox technique [GP-FSE10]: $S_2 \rightarrow S_5 = 1$ operation on av.
- ► Total cost: $2^{24}/4 \cdot 2^{24}/4 = \frac{2^{44}}{4}$ computations (prev: 2^{48}).
- Lower bound for generic complexity: 2⁶¹ computations.

The End

Collision on 6-Round AES in Davies-Meyer Mode

Reduced AES: 6 rounds, t = 4, c = 8.

AES: 6-Round Collision in DM

Details

- ▶ Technique from [DFJ-INDO12]: $S_1 \rightarrow S_6 = 1$ operation on av.
- ► Total cost: $2^{24} \times 2^8 = 2^{32}$ computations (position constrained).
- Lower bound for generic complexity: 2⁶⁴ computations.

Improved Distinguisher of Whirlpool CF

Whirlpool: 10 rounds, t = 8, c = 8.

Compression Function (CF): $h(H, M) = E_H(M) \oplus M \oplus H$.

Whirlpool: 10-Round Truncated Characteristic

Details

Limited Birthday

- Inbound from [LMRRS-09]: $S_2 \rightarrow S_7 = 2^{64}$ computations on av.
- Cost outbound: $2^{32}/\binom{8}{4} \times 2^{32}/\binom{8}{4} = 2^{51.74}$ computations.
- ► Total cost: $2^{64} \times 2^{51.74} = 2^{115.74}$ computations
- Lower bound for generic complexity: 2¹²⁵ computations.
- ► Previous: 2¹⁷⁶ computations Ideal: 2³⁸⁴.

Conclusion

- New generic problem for permutations: Multiple Limited-Birthday.
- Lower and upper bounds.
- Best known algorithm to solve the MLB problem.
- Applications to AES (proceedings):
 - ▶ 8R known-key distinguisher in 2⁴⁴ computations.
 - ▶ 8R chosen-key distinguisher in 2^{13.4} computations.
 - ▶ 6R collision attack in DM in 2³² computations.
- Applications to Whirlpool (proceedings):
 - ▶ 10R CF distinguisher in 2^{115.74} computations.
 - ▶ 7.5R CF collision attack in 2¹⁷⁶ computations.
 - ▶ 5.5R HF collision attack in 2¹⁷⁶ computations.
- More in the extended version: LED, Grøstl, ECHO, PHOTON.

Multiple Limited-Birthday Our Algorithm Applications The End

Conclusion

- New generic problem for permutations: Multiple Limited-Birthday.
- Lower and upper bounds.
- Best known algorithm to solve the MLB problem.
- Applications to AES (proceedings):
 - ▶ 8R known-key distinguisher in 2⁴⁴ computations.
 - ▶ 8R chosen-key distinguisher in 2^{13.4} computations.
 - ▶ 6R collision attack in DM in 2³² computations.
- Applications to Whirlpool (proceedings):
 - ▶ 10R CF distinguisher in 2^{115.74} computations.
 - ▶ 7.5R CF collision attack in 2¹⁷⁶ computations.
 - ▶ 5.5R HF collision attack in 2¹⁷⁶ computations.
- More in the extended version: LED, Grøstl, ECHO, PHOTON.

Thank you!

Example of the LB on AES

Example: AES, one cell = 8 bits

Application of the algorithm

- 1. n = 128, i = n 32 = 96, j = n 32 = 96
- 2. Attacking π is as hard as π^{-1} (i = j)
- 3. With one structure of 2^{32} messages:
 - collision on 64 bits by the Birthday Paradox
 - ▶ 96 64 = 32 non-colliding bits
- 4. Repeat **Step 3** 2³² times (randomize value of non-active bits)
- 5. Collision on 96 bits with 2⁶⁴ messages and 2⁶⁴ computations

Example: AES-Like Permutation with t = 8

Outbound probability

$$2^{-c(2t-n_B-n_F)}$$

MLB on This Example

Outbound probability

$$\binom{t}{n_B} \binom{t}{n_F} 2^{-c(2t-n_B-n_F)}$$

Some Time Complexities and Bounds

Bounds

$$C(\underline{IN}, \underline{OUT}) \le T \le \min \left\{ C(\overline{IN}, \underline{OUT}), C(\underline{IN}, \overline{OUT}) \right\}$$

Time Complexity: Examples			
(t,c,n_B,n_F)	C(IN, OUT)	T	$C(\overline{IN}, \underline{OUT})$
(8, 8, 1, 1)	2 ³⁷⁹	2 ^{379.7}	2 ³⁸²
(8, 8, 1, 2)	$2^{313.2}$	2 ^{314.2}	2 ^{316.2}
(8, 8, 2, 2)	$2^{248.4}$	$2^{250.6}$	2 ^{253.2}
(8, 8, 1, 3)	$2^{248.2}$	$2^{249.7}$	2 ^{251.2}
(4, 8, 1, 1)	2^{61}	$2^{62.6}$	2^{63}
(4, 4, 1, 1)	2 ²⁹	2 ^{30.6}	2^{31}

Note: $C(\overline{IN}, \underline{OUT}) = \binom{t}{n_R} C(\underline{IN}, \underline{OUT}).$

AES in the Chosen-Key Model

AES: 10 rounds, t = 4, c = 8.

AES: Chosen-Key Distinguisher for 8R

Details

- ▶ Technique from [DFJ-INDO12] $S_2 \rightarrow S_8 = 1$ operation on av.
- ► Total cost: $2^{16-\log_2\binom{4}{2}} = 2^{13.4}$ computations (prev: 2^{24}).
- ► Lower bound for generic complexity: 2^{31.7} computations.

Improved Collision Attack for Whirlpool CF

Whirlpool: 10 rounds, t = 8, c = 8.

Whirlpool: 7.5-Round Truncated Characteristic $S_0 S_1 S_2 S_3 S_4 S_6 S_6 S_7 S_6$

Details

- ► Same inbound from [LMRRS-09].
- ▶ We let one more active byte in S_0 and S_7 .
- Gain factor: $2^8 \times 2^8 \times 2^{-8} = 2^8$.
- ► Total cost: 2¹⁷⁶ computations (prev: 2¹⁸⁴).
- Same technique for the 5.5-Round collision attack on the HF.
- ► Generic complexity: 2²⁵⁶ computations.