Giochi per Reti Profonde

David Vencato

Università di Pisa

10 Ottobre 2023

Università di Pisa

→□→ →□→ → □→ → □ → ○○○

David Vencato Università di Pisa
Giochi per Reti Profonde 1 / 50

- 1 Gioco di apprendimento a un livello
- 2 Gioco per reti neurali
- 3 Problema parziale e punti KKT
- 4 Approfondimento per DLG

David Vencato Università di Pisa Giochi per Reti Profonde 2 / 50

- 1 Gioco di apprendimento a un livello
- 2 Gioco per reti neurali
- 3 Problema parziale e punti KKT
- 4 Approfondimento per DLG

David Vencato Università di Pisa Giochi per Reti Profonde 3 / 50

Un gioco simultaneo a una mossa è un gioco nel quale ci sono:

- 1 un insieme di N giocatori;
- 2 un insieme Σ_i (finito o infinito) di azioni per ogni giocatore i = 1, ..., N. Si definisce inoltre l'insieme delle azioni congiunte $\Sigma = \prod_{i=1}^{N} \Sigma_i$:
- 3 una funzione di utilità per ogni giocatore $u_i: \Sigma \longrightarrow \mathbb{R}$.

In un gioco simultaneo a una mossa ogni giocatore deve fare la propria scelta senza conoscere quella degli altri giocatori.

Il "supervised learning" o apprendimento supervisionato è una classe di problemi dove si ha un insieme di dati $\{(x_t,y_t)\}_{t=1}^T \in \mathcal{X} \times \mathcal{Y} \text{ e si vuole "imparare" una funzione predittrice } h: \mathcal{X} \longrightarrow \mathcal{Y} \text{ (chiamato anche predittore)}.$

Ipotesi sul modello:

- ② lineare: il predittore è del tipo $h(x) = \phi(\theta x)$ dove θ è una matrice $n \times m$ che rappresenta i parametri "allenabili" del modello e $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ la funzione output;

Il problema di apprendimento a un livello (OLP) si basa su una funzione perdita $I: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ che è convessa e differenziabile nel primo argomento.

Siano $I_t(z) = I(z, y_t)$ e $L_t(\theta) = I_t(\theta x_t)$.

Per allenare il modello si deve minimizzare la funzione

$$L(\theta) = T^{-1} \sum_{t=1}^{T} L_t(\theta).$$

David Vencato Università di Pisa Giochi per Reti Profonde

Il gioco di apprendimento a un livello (OLG) è un gioco simultaneo a una mossa con le seguenti caratteristiche:

- 1 ci sono due giocatori: un protagonista p e un antagonista a;
- 2 p sceglie la matrice $\theta \in \mathbb{R}^m \times \mathbb{R}^n$; a sceglie $\{a_t, b_t\}_{t=1}^T$ con $a_t \in \mathbb{R}^n$ e $b_t \in \mathbb{R}$ tali che $a_t^T z + b_t \le I_t(z) \ \forall z \in \mathbb{R}^n$;
- 3 data un'azione congiunta $(\theta, \{a_t, b_t\}_{t=1}^T)$, la funzione di utilità dell'antagonista è $U^a = T^{-1} \sum_{t=1}^T a_t^T \theta x_t + b_t$ mentre quella del protagonista è $U_p = -U_a$.

Caratteristiche del gioco:

- 1 somma zero con azioni continue;
- 2 se $\tilde{\sigma}^p = \theta$ denota l'azione del protagonista e $\tilde{\sigma}^a = \{a_t, b_t\}_{t=1}^T$ quella dell'antagonista, allora l'azione congiunta $(\tilde{\sigma^p}, \tilde{\sigma^a})$ è un equilibrio di Nash se $U_p(\tilde{\sigma}^p, \tilde{\sigma}^a) \geq U_p(\sigma^p, \tilde{\sigma}^a) \ \forall \sigma^p$ e $U_a(\tilde{\sigma}^p, \tilde{\sigma}^a) \geq U_p(\tilde{\sigma^p}, \sigma^a) \ \forall \sigma^a$.

L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash per OLG se e soltanto se $l_t(\theta x_t) = a_t^T \theta x_t + b_t$, $a_t = \nabla l_t(g)|_{g=\theta x_t}$ (miglior risposta dell'antagonista) e $T^{-1} \sum_{t=1}^T a_t x_t^T = 0$ (miglior risposta del protagonista).

Dimostrazione Lemma

Vediamo \Longrightarrow (l'altro senso è analogo):

- Per ipotesi $a_t^Tz + b_t \leq I_t(z) \ \forall z \in \mathbb{R}^n$ dunque $I_t(\theta x_t) = a_t^T \theta x_t + b_t$ è l'utilità massima per a. I_t è convessa e differenziabile allora $\exists ! \ h(g)$ affine che è uguale a I_t in un punto e minore o uguale altrove, cioè $h(g) = \nabla I_t(\theta x_t)(g \theta x_t) + I_t(\theta x_t), \ a_t = \nabla I_t(g)|_{g = \theta x_t}.$
- $U^p = -T^{-1}\sum_{t=1}^T a_t^T \theta x_t + b_t$. Facendo $\nabla_{\theta} U^p = -T^{-1}\sum_{t=1}^T a_t x_t^T = 0$ otteniamo il massimo di U^p .

- 4 ロ > 4 部 > 4 き > 4 き > - き - 夕 Q G

Teorema 1

Se $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OLG, allora θ^* è un punto di minimo globale di OLP. Viceversa, se θ^* è un punto di minimo globale di OLP, allora esiste una strategia dell'antagonista $\{a_t, b_t\}_{t=1}^T$ tale che $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OLG.

Dimostrazione Teorema

 \Longrightarrow : Per quanto visto nel lemma , si deve avere $L(\theta^*) = T^{-1} \sum_{t=1}^T a_t^T \theta^* x_t + b_t$, $a_t = \nabla I_t(g)|_{g=\theta^* x_t}$ e $T^{-1} \sum_{t=1}^T a_t x_t^T = 0$. Ultime due equazioni:

$$T^{-1} \sum_{t=1}^{T} \nabla I_t(\mathbf{g})|_{\mathbf{g}=\theta^* x_t} x_t^T = 0.$$

Ma il membro di sinistra è $\nabla L(\theta^*)$ e dunque $\nabla L(\theta^*) = 0$. L convessa e differenziabile, allora θ^* minimo globale.

- (ロ) (部) (注) (注) (注) の(の

Dimostrazione Teorema

 \Leftarrow : L'antagonista per fare la risposta migliore a θ^* deve scegliere $a_t := \nabla I_t(g)|_{g=\theta^* x_t}$ e $b_t = I_t(\theta^* x_t) - a_t^T \theta^* x_t$. Allora, dato che θ^* è minimo globale:

$$0 = \nabla L(\theta^*) = T^{-1} \sum_{t=1}^{T} \nabla L_t(\theta^*) = T^{-1} \sum_{t=1}^{T} (\nabla I_t(g)|_{g=\theta^* x_t}) x_t^T = T^{-1} \sum_{t=1}^{T} a_t x_t^T.$$

Per il lemma, anche θ^* è la risposta migliore e allora si ha un equilibrio di Nash.

Fino ad ora abbiamo ignorato la complessità del modello. Per questo introduciamo un vincolo $\theta \in \Theta$ per un qualche insieme convesso Θ .

Fino ad ora abbiamo ignorato la complessità del modello. Per questo introduciamo un vincolo $\theta \in \Theta$ per un qualche insieme convesso Θ .

Definizione 5

Si definisce il problema di apprendimento a un livello vincolato (OCP) un OLP al quale si aggiunge un vincolo di ottimizzazione $\theta \in \Theta$.

Definizione 6

Si definisce il gioco di apprendimento a un livello vincolato (OCG) un OLG al quale si aggiunge un vincolo di ottimizzazione $\theta \in \Theta$.

Supponiamo che Θ sia un politopo cioè un'intersezione finita di semispazi. Allora, Θ è esprimibile con un insieme finito J di funzioni affini, tale per cui $\theta \in \Theta$ se e soltanto se $j(\theta) \leq 0 \ \forall j \in J$.

Supponiamo che Θ sia un politopo cioè un'intersezione finita di semispazi. Allora, Θ è esprimibile con un insieme finito J di funzioni affini, tale per cui $\theta \in \Theta$ se e soltanto se $j(\theta) \leq 0 \ \forall j \in J$.

Lemma 2

L è convessa e differenziabile, dunque condizioni necessari e sufficienti (condizioni KKT) affinché $\theta^* \in \operatorname{argmin}_{\theta \in \Theta} L(\theta)$ è che esista $\{\mu_j\}_{j \in J}$ tale che $\forall j \in J$:

$$\begin{cases} \mu_j \ge 0 \\ \mu_j j(\theta^*) = 0 \\ j(\theta^*) \le 0 \\ \sum_{j \in J} \mu_j \nabla j(\theta^*) = -\nabla L(\theta^*) \end{cases}$$

16 / 50

Lemma 3

L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash per OCG se e soltanto se $I_t(\theta x_t) = a_t^T \theta x_t + b_t$, $a_t = \nabla I_t(g)|_{g=\theta x_t}$ (miglior risposta dell'antagonista), e esiste $\{\mu_i\}_{i\in J}$ tale che $\forall i\in J$:

$$\begin{cases} \mu_{j} \geq 0 \\ \mu_{j}j(\theta) = 0 \\ j(\theta) \leq 0 \\ \sum_{j \in J} \mu_{j} \nabla j(\theta) = -T^{-1} \sum_{t=1}^{T} a_{t} x_{t}^{T} (\textit{miglior risposta protagonista}) \end{cases}$$

Teorema 2

Se $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OCG, allora θ^* è un punto di minimo globale con restrizione di OCP. Viceversa, se θ^* è un punto di minimo globale con restrizione di OCP, allora esiste una strategia dell'antagonista $\{a_t, b_t\}_{t=1}^T$ tale che $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OCG.

- Gioco di apprendimento a un livello
- 2 Gioco per reti neurali
- 3 Problema parziale e punti KKT
- 4 Approfondimento per DLG

Un grafo G è una coppia (V, E) dove V è l'insieme dei vertici ed $E \subset V \times V$ quello degli archi. Se, inoltre, gli archi sono orientati allora si parla di grafo diretto. (Ben definiti vertice iniziale e finale).

Un grafo G è una coppia (V, E) dove V è l'insieme dei vertici ed $E \subset V \times V$ quello degli archi. Se, inoltre, gli archi sono orientati allora si parla di grafo diretto. (Ben definiti vertice iniziale e finale).

Definizione 8

Sia G un grafo diretto. Allora un percorso in G è una sequenza di archi $(e_1,..,e_k)$ tale che il vertice finale di e_i è anche il vertice iniziale di e_{i+1} $\forall i=1,...,k-1$. Se vale anche che il vertice finale di e_k coincide col vertice iniziale di e_1 allora si parla di ciclo. Un grafo diretto senza cicli è detto aciclico.

Una rete neurale feed-forward è una quintupla N=(V,E,I,O,F) dove (V,E) è un grafo diretto aciclico, $I=\{i_1,...,i_m\}\subset V$ è l'insieme dei vertici di input, $O=\{o_1,...,o_n\}\subset V$ è l'insieme dei vertici di output e $F=\{f_v:\mathbb{R}\longrightarrow\mathbb{R}\mid v\in V\}$ è l'insieme delle funzioni di attivazione. I parametri allenabili sono dati da $\theta:E\longrightarrow\mathbb{R}$.

Ipotesi aggiuntive:

- non ci sono archi entranti nei vertici di input;
- non ci sono archi uscenti dai vertici di output.

Considerazioni:

- un grafo diretto aciclico induce un ordine parziale \leq sui vertici: $u \leq v$ se e soltanto se esiste un percorso da u a v; $\forall v \in V$, $E_v := \{(u, u') \in E : u' = v\}$
- La rete neurale è "collegata" al set dei dati di allenamento assumendo che |I|=m (il numero dei vertici di input corrisponde al numero di caratteristiche degli input dell'apprendimento supervisionato) e |O|=n (il numero di vertici di output è uguale alla dimensione degli output del supervised learning).

Funzionamento della rete neurale

Sia $x_t \in R^m$ un valore input di allenamento. La rete neurale feed-forward lavora creando funzioni c_t che assegnano valori a ogni vertice nel seguente modo:

$$c_t(i_k, \theta) = f_{i_k}((x_t)_k), \quad i_k \in I$$

$$c_t(v, \theta) = f_v(\sum_{u:(u,v)\in E} c_t(u, \theta)\theta(u, v)), \quad v \in V - I.$$

Denotiamo con $c_t(o,\theta)$ il vettore dei valori dei vertici di output (i.e. $(c_t(o,\theta))_k := c_t(o_k,\theta)$ con $o_k \in O$).

Per imporre vincoli a θ lo facciamo in questo modo: $\forall v \in V - I$ i parametri θ ristretti a E_v devono stare in un insieme $\Theta_v \subset \mathbb{R}^{E_v}$, ponendo $\Theta := \prod_{v \in V - I} \Theta_v$.

Per imporre vincoli a θ lo facciamo in questo modo: $\forall v \in V - I$ i parametri θ ristretti a E_v devono stare in un insieme $\Theta_v \subset \mathbb{R}^{E_v}$, ponendo $\Theta := \prod_{v \in V - I} \Theta_v$.

Definizione 10

Data una funzione di perdita I(z,y) che è convessa nel primo argomento e soddisfa $0 \le I(z,y) \le \infty \ \forall z \in R^n$, si definisce $I_t(z) = I(z,y_t)$ e $L_t(\theta) = I_t(c_t(o,\theta))$. Il "problema di allenamento" è trovare $\theta \in \Theta$ che minimizza $L(\theta) = T^{-1} \sum_{t=1}^{T} L_t(\theta)$ (si parla di "Deep Learning Problem").

Vogliamo definire un gioco simultaneo a una mossa che richiami il DLP. Chiamiamo questo gioco "Deep learning game" (DLG). Definiamo i giocatori, l'insieme delle azioni e le funzioni di utilità:

Vogliamo definire un gioco simultaneo a una mossa che richiami il DLP. Chiamiamo questo gioco "Deep learning game" (DLG). Definiamo i giocatori, l'insieme delle azioni e le funzioni di utilità:

• Giocatori: per ogni vertice $v \in V - I$ c'è un protagonista p; per ogni vertice $v \in V$ c'è uno zanni s_v (un agente che opera per il proprio interesse); un antagonista a.

Università di Pisa

25 / 50

Vogliamo definire un gioco simultaneo a una mossa che richiami il DLP. Chiamiamo questo gioco "Deep learning game" (DLG). Definiamo i giocatori, l'insieme delle azioni e le funzioni di utilità:

- Giocatori: per ogni vertice $v \in V I$ c'è un protagonista p; per ogni vertice $v \in V$ c'è uno zanni s_v (un agente che opera per il proprio interesse); un antagonista a.
- Azioni: il protagonista nel vertice v sceglie una funzione parametro $\theta_v \in \Theta_v$. L'antagonista sceglie un insieme di vettori T e scalari $\{a_t, b_t\}_{t=1}^T$ con $a_t \in \mathbb{R}^n$ e $b_t \in \mathbb{R}$ tali che $a_t^T z + b_t \leq I_t(z) \ \forall z \in \mathbb{R}^n$. Allo stesso modo, ogni zanni s_v sceglie un insieme di 2T scalari $\{q_{vt}, d_{vt}\}_{t=1}^T$ con $q_{vt} \in \mathbb{R}$ e $d_{vt} \in \mathbb{R}$ tali che $q_{vt}z + d_{vt} \leq f_v(z) \ \forall z \in \mathbb{R}$.

• Funzioni di utilità: consideriamo un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\}).$

Utilità per gli zanni: *t*-esimo elemento del training set è:

$$U_{it}^{s}(\sigma) = d_{it} + q_{it}x_{it}, \quad i \in I$$

$$U_{vt}^s(\sigma) = d_{vt} + q_{vt} \sum_{u:(u,v) \in E} U_{tu}^s(\sigma) \theta(u,v), \quad v \in V - I.$$

Dunque, fissato $v \in V$, la funzione utilità totale per lo zanni s_v è data da $U_v^s(\sigma) = \sum_{t=1}^T U_{vt}^s(\sigma)$.

Utilità per l'antagonista: $U^a = T^{-1} \sum_{t=1}^{T} U_t^a$ dove $U_t^a(\sigma) = b_t + \sum_{k=1}^{n} a_{kt} U_{o_k t}^s(\sigma)$.

Utilità per i protagonisti: $U^p(\sigma) = -U^a(\sigma)$.

- 4 ロ ト 4 御 ト 4 蓮 ト 4 蓮 ト 9 年 9 9 9 9

Lemma 4

Data un'azione dei protagonisti θ , esiste un'unica azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ nella quale gli zanni e l'antagonista giocano le loro migliori risposte a θ (σ è la scelta congiunta espansa per θ).

Inoltre, $U_p(\sigma) = -L(\theta)$, $\nabla_\theta U^p(\sigma) = -\nabla L(\theta)$, e dato un protagonista in $v \in V-I$, se teniamo le scelte di ogni altro agente fisse, $U^p(\sigma)$ è una funzione affine rispetto alla strategia del protagonista in v.

Lemma 4

Data un'azione dei protagonisti θ , esiste un'unica azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ nella quale gli zanni e l'antagonista giocano le loro migliori risposte a θ (σ è la scelta congiunta espansa per θ).

Inoltre, $U_p(\sigma) = -L(\theta)$, $\nabla_\theta U^p(\sigma) = -\nabla L(\theta)$, e dato un protagonista in $v \in V-I$, se teniamo le scelte di ogni altro agente fisse, $U^p(\sigma)$ è una funzione affine rispetto alla strategia del protagonista in v.

Teorema 3

L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ è un equilibrio di Nash del DLG se e soltanto se è un'espansione per θ e θ è un punto KKT del DLP.

- 4 ロ ト 4 御 ト 4 差 ト 4 差 ト 2 × 9 Q Q

- 2 Gioco per reti neurali
- 3 Problema parziale e punti KKT
- 4 Approfondimento per DLG

Generalizziamo: consideriamo una partizione P di V-I tale che per ogni $\rho \in P$, se $u,v \in \rho$ e $u \leq v$ allora $v \leq u$. Sia $E_{\rho} = \bigcup_{v \in \rho} E_v$, $\Theta_{\rho} \subset \mathbb{R}^{E_{\rho}}$ e $\Theta = \prod_{\rho \in P} \Theta_{\rho}$. Lasciamo invariati lo spazio delle azioni degli zanni e dell'antagonista, ma ora ogni protagonista controlla una parte del nodo ρ .

Se la partizione è quella dei singoletti, si torna al caso base.

Sia $u: \mathbb{R}^{E_{\rho}} \to \mathbb{R}$ una funzione affine. Trovare l'insieme $\operatorname{argmax}_{\theta_{\rho} \in \Theta_{\rho}} u(\theta_{\rho})$ è chiamato problema parziale in $\rho \in P$.

David Vencato

Sia $u: \mathbb{R}^{E_{\rho}} \to \mathbb{R}$ una funzione affine. Trovare l'insieme $\operatorname{argmax}_{\theta_{\rho} \in \Theta_{\rho}} u(\theta_{\rho})$ è chiamato problema parziale in $\rho \in P$.

Per ogni $\rho \in P$, siano $H_{\rho} \subset \mathbb{R}^{\mathbb{R}^{E_{\rho}}}$ e $J_{\rho} \subset \mathbb{R}^{\mathbb{R}^{E_{\rho}}}$ insiemi finiti di funzioni differenziabili continue. Allora, possiamo porre che Θ_{ρ} sia l'insieme di tutti $\theta_{\rho} \in \mathbb{R}^{E_{\rho}}$ tale che per ogni $h \in H_{\rho}$, $h(\theta_{\rho}) = 0$, e per ogni $j \in J_{\rho}$, $j(\theta_{\rho}) \leq 0$.

Diciamo che θ_{ρ} è un punto KKT per il problema parziale in $\rho \in P$ se $\theta_{\rho} \in \Theta_{\rho}$ e esistono moltiplicatori $\mu_{j} \geq 0$ e $\lambda_{h} \in \mathbb{R}$ tali che:

$$\nabla u(\theta_{\rho}) = \sum_{j \in J_{\rho}} \mu_{j} \nabla j(\theta_{\rho}) + \sum_{h \in H_{\rho}} \lambda_{h} \nabla h(\theta_{\rho})$$
$$\mu_{j} j(\theta_{\rho}) = 0 \text{ per ogni } j \in J_{\rho}$$

Se per ogni $\rho \in P$, gli elementi di H_{ρ} e J_{ρ} sono affini allora si parla di restrizione parziale affine. Se, invece, per ogni $\rho \in P$, gli elementi di H_{ρ} sono affini e quelli di J_{ρ} sono convessi allora si parla di restrizione parziale di Slater.

David Vencato Università di Pisa
Giochi per Reti Profonde 32 / 50

Se per ogni $\rho \in P$, gli elementi di H_{ρ} e J_{ρ} sono affini allora si parla di restrizione parziale affine. Se, invece, per ogni $\rho \in P$, gli elementi di H_o sono affini e quelli di J_o sono convessi allora si parla di restrizione parziale di Slater.

Teorema 4

Mettiamoci nelle ipotesi della restrizione parziale affine o di Slater. Allora un punto è di minimo globale se e soltanto se è un punto KKT.

- 1 Gioco di apprendimento a un livello
- 2 Gioco per reti neurali
- 3 Problema parziale e punti KKT
- 4 Approfondimento per DLG

Sia $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\}_{t=1}^T)$ un'azione congiunta e $v \in V$. Se f_v è convessa e differenziabile, si dice che lo zanni di v è ragionevole per σ se $\forall t \in \{1, ..., T\}$, vale che:

$$\begin{cases} q_{vt} = f'_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) \\ f_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) = d_{vt} + q_{vt}(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)). \end{cases}$$

Sia $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\}_{t=1}^T)$ un'azione congiunta e $v \in V$. Se f_v è convessa e differenziabile, si dice che lo zanni di v è ragionevole per σ se $\forall t \in \{1, ..., T\}$, vale che:

$$\begin{cases} q_{vt} = f'_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) \\ f_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) = d_{vt} + q_{vt}(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)). \end{cases}$$

Definizione 15

In maniera analoga, se la funzione perdita l'è convessa e differenziabile nel primo termine, allora l'antagonista è ragionevole se $\forall t \in \{1,...,T\}$:

$$\begin{cases} a_t = \nabla I_t(z)|_{z=c_t(o,\theta)} \\ a_t^T c_t(o,\theta) + b_t = I_t(c_t(o,\theta)). \end{cases}$$

Teorema 5

Siano dati un insieme finito S, un ordinamento parziale $\le su S$ e $X \subset S$. Se $\forall s \in S$ si ha che $\{s' \in S : s' < s\} \subset X \Longrightarrow s \in X$, allora X = S. Questa, in teoria degli insiemi, è chiamata induzione forte su un insieme parzialmente ordinato.

Da questo lemma, riusciamo a dimostrare uno dopo l'altro risultati cruciali riguardanti le azioni e le utilità degli zanni e antagonista. Supponiamo che $\forall v \in V$, f_v sia convessa e differenziabile e la funzione perdita I sia convessa differenziabile nel primo termine. Sia \leq l'ordinamento parziale generato dal grafo diretto aciclico della rete neurale. Fissiamo $v \in V$.

David Vencato

- 1 Data un'azione congiunta σ dove $\forall u < v$, lo zanni di u è ragionevole per σ , allora $U_{tv}^s(\sigma) = c_t(v,\theta)$;
- 2 Data un'azione congiunta σ dove tutti gli zanni e l'antagonista sono ragionevoli, allora $U_t^a(\sigma) = I_t(c_t(o,\theta))$, per ogni dato di allenamento x_t ;
- 3 data un'azione congiunta σ dove $\forall u < v$ (tranne al più v), lo zanni di u è ragionevole per σ , allora l'unica migliore risposta per lo zanni in ν è di essere ragionevole.
- **4** Data un'azione congiunta σ dove tutti gli zanni sono ragionevoli, allora l'unica migliore risposta per l'antagonista è di essere ragionevole.

In queste ipotesi, quindi, gli zanni e l'antagonista agiscono in maniera ragionevole se e soltanto se giocano la loro migliore risposta. Vediamo i protagonisti.

Gioco di apprendimento a un livello

Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile e la funzione perdita I sia convessa differenziabile nel primo termine. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\}_{t=1}^T)$ dove tutti gli zanni e l'antagonista sono ragionevoli, allora se U^p è l'utilità del protagonista, vale:

$$\nabla_{\theta} U^{p}(\sigma) = -\nabla_{\theta} L(\theta).$$

David Vencato

Università di Pisa

Dimostrazione Lemma

- **1** Mostriamo che $\nabla_{\theta} U_t^p(\sigma) = -\nabla_{\theta} I_t(c_t(o, \theta)).$
- 2 Partiamo vedendo $\frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)} = -\frac{\partial I_t(c_t(\sigma,\theta))}{\partial c_t(v,\theta)}$:
 - per $o \in O$ viene subito dalla definizione di utilità $(U_t^p(\sigma) = -b_t \sum_{k=1}^n a_{kt}(U_t^s(o_k)))$ e ragionevolezza dell'antagonista $(a_{kt} = \frac{\partial l_t(c_t(o,\theta))}{\partial c_t(o_k,\theta)})$.

Dimostrazione Lemma

Ora, consideriamo $(u, v) \in E$, allora:

$$\frac{\partial U_t^{p}(\sigma)}{\partial \theta(u,v)} = \frac{\partial U_t^{p}(\sigma)}{\partial U_{tv}^{s}(\sigma)} q_{tv} U_{tu}^{s}(\sigma) = -\frac{\partial I_t(c_t(o,\theta))}{\partial c_t(v,\theta)} q_{tv} U_{tu}^{s}(\sigma),$$

Usando sempre che gli zanni sono ragionevoli, si ha $q_{vt} = f'_v(\sum_{u':(u',v)\in E} c_t(u',\theta)\theta(u',v))$ e $U^s_{tu}(\sigma) = c_t(u,\theta)$:

$$\frac{\partial \textit{U}^\textit{p}_t(\sigma)}{\partial \theta(\textit{u},\textit{v})} = -\frac{\partial \textit{I}_t(\textit{c}_t(\textit{o},\theta))}{\partial \textit{c}_t(\textit{v},\theta)} \textit{f}^\prime_\textit{v} \Big(\sum_{\textit{u}':(\textit{u}',\textit{v}) \in \textit{E}} \textit{c}_t(\textit{u}',\theta) \theta(\textit{u}',\textit{v}) \Big) \textit{c}_t(\textit{u},\theta).$$

Dalla definizione di $c_t(v, \theta)$ si ottiene che

$$\frac{\partial c_t(v,\theta)}{\partial \theta(u,v)} = f_v'(\sum_{u':(u',v)\in E} c_t(u',\theta)\theta(u',v))c_t(u,\theta):$$

$$\frac{\partial U_t^p(\sigma)}{\partial \theta(u,v)} = -\frac{\partial I_t(c_t(o,\theta))}{\partial c_t(v,\theta)} \frac{\partial c_t(v,\theta)}{\partial \theta(u,v)} = -\frac{\partial I_t(c_t(o,\theta))}{\partial \theta(u,v)}.$$

Sia P(u, v) l'insieme di tutti i percorsi da u in v, e per ogni percorso p sia |p| il numero di nodi del percorso.

Sia P(u, v) l'insieme di tutti i percorsi da u in v, e per ogni percorso p sia |p| il numero di nodi del percorso.

Lemma 6

$$\frac{\partial U^{p}(\sigma)}{\partial \theta(u,v)} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{k=1}^{n} \sum_{p \in P(v,o_k)} U^{s}_{tu}(\sigma) q_{t,p_{|p|}} a_{kt} \prod_{j=1}^{|p|-1} \theta\left(p_j, p_{j+1}\right) q_{t,p_j}$$

Sia $\rho \in P$, definiamo $U_{\rho,\sigma}^p : \mathbb{R}^{E_\rho} \to \mathbb{R}$ tale che $U_{\rho,\sigma}^p(\theta_\rho)$ è l'utilità del protagonista su ρ se decide unilateralmente di giocare θ_ρ invece che σ .

Sia $\rho \in P$, definiamo $U_{\rho,\sigma}^p : \mathbb{R}^{E_\rho} \to \mathbb{R}$ tale che $U_{\rho,\sigma}^p(\theta_\rho)$ è l'utilità del protagonista su ρ se decide unilateralmente di giocare θ_ρ invece che σ .

Lemma 7

 $U_{\rho,\sigma}^{p}$ è una funzione affine.

Dimostrazione Lemma

Sia $\sigma|_{\rho}:\Theta_{\rho}\to\Sigma$ t.c. $\sigma|_{\rho}(\check{\theta})$ è lo stesso di σ eccetto l'azione del protagonista su ρ è rimpiazzata da $\tilde{\theta}$. Vale quindi $\forall (u,v)\in E_{\rho}$:

$$U_{\rho,\sigma}^{p}(\tilde{\theta}) = U^{p}\left(\left.\sigma\right|_{\rho}(\tilde{\theta})\right) \Longrightarrow \frac{\partial U_{\rho,\sigma}^{p}(\tilde{\theta})}{\partial \tilde{\theta}_{(u,v)}} = \frac{\partial U^{p}\left(\left.\sigma\right|_{\rho}(\tilde{\theta})\right)}{\partial \tilde{\theta}_{(u,v)}}$$

Dunque:

$$\frac{\partial U^{p}\left(\sigma|_{\rho}\left(\tilde{\theta}\right)\right)}{\partial \tilde{\theta}(u,v)} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{k=1}^{n} \sum_{p \in P(v,o_{k})} U^{s}_{tu}\left(\sigma|_{\rho}\left(\tilde{\theta}\right)\right) q_{t,p_{|\rho|}} a_{kt} \prod_{j=1}^{|\rho|-1} \theta\left(p_{j},p_{j+1}\right) q_{t,p_{j}}$$

Per ipotesi di partizione, né u né un nodo "antenato" sono in ρ . Allora, $U^s_{tu}\left(\sigma|_{\rho}\left(\tilde{\theta}\right)\right)=U^s_{tu}(\sigma)$. Quindi, la derivata parziale è una funzione solo di $\sigma\Longrightarrow$ derivata parziale costante lungo ogni coordinata \Longrightarrow affine.

Gioco di apprendimento a un livello

Lemma 8

Data un'azione dei protagonisti θ , esiste un'unica azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ (la scelta congiunta espansa) nella quale gli zanni e l'antagonista giocano le loro migliori risposte a θ . Non solo, $U_p(\sigma) = -L(\theta)$, $\nabla_\theta U^p(\sigma) = -\nabla L(\theta)$, e dato un protagonista in $\rho \in P$, se teniamo le scelte di ogni altro agente fisse, $U^p(\sigma)$ è una funzione affine rispetto alla strategia del protagonista in ρ .

David Vencato Università di Pisa

Dimostrazione Lemma

- Scelta congiunta espansa: Fissiamo azione arbitraria σ_0 . Sia \sqsubseteq un'estensione lineare di \leq . Così si ha $v_1, ..., v_{|V|}$ tali che $v_k \sqsubseteq v_{k+1}$. Usiamo ricorsione: σ_k è uguale a σ_{k-1} , tranne per lo zanni in v_k che gioca la risposta migliore a σ_{k-1} . Usando lemma precedente, per ogni zanni al passo k esiste la risposta ragionevole ed è unica. Al passo |V| abbiamo un'azione congiunta dove tutti gli zanni sono ragionevoli. Per lemma esiste ed è unica la risposta ottima per l'antagonista ed è quella nella quale gioca in maniera ragionevole.
- $U_p(\sigma) = -L(\theta)$: gli zanni e l'antagonista sono ragionevoli allora $U_t^a(\sigma) = I_t(c_t(o,\theta))$. Se ne fa la media ricordando che $U^p = -U^a$.

David Vencato
Giochi per Reti Profonde

Teorema 6

Assumiamo che per ogni $v \in V$, f_v è convessa e differenziabile e la perdita l'è convessa e differenziabile rispetto alla prima componente. Per ogni punto KKT $\theta \in \Theta$, c'è un equilibrio di Nash dove l'azione congiunta dei protagonisti è θ . Viceversa, per ogni equilibrio di Nash dove l'azione congiunta dei protagonisti è θ , allora θ è un punto KKT.

Dimostrazione Teorema

Basta fare la freccia \implies , l'altra si ottiene percorrendo la dimostrazione in senso opposto.

Scegliamo σ azione espansa di θ (tutti gli zanni e l'antagonista sono ragionevoli, dunque sappiamo già che stanno giocando la loro migliore risposta).

Mostriamo che che per ogni $\rho \in P$, il protagonista in ρ sta giocando la sua risposta migliore, cioè se $U^p(\sigma)$ è vista come una funzione dei valori di θ su $(u,v) \in E_\rho$, allora il θ scelto in σ è un massimo globale.

Strategia: trasportiamo le condizioni KKT del problema completo nelle condizioni KKT per il problema parziale $U_{\rho,\sigma}$.

Dimostrazione Teorema

Ora, le condizioni KKT sulla perdita L implicano che esistono i moltiplicatori KKT $\mu_{j,\rho}$ e $\lambda_{h,\rho}$ tali che:

$$-\nabla L(\theta) = \sum_{\rho \in P} \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla j(\theta) + \sum_{\rho \in P} \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla h(\theta)$$

$$\mu_{j,\rho}j(\theta) = 0 \ \forall \rho \in P, j \in J_{\rho}$$

Ricordando che $\nabla_{\theta} U^{p}(\sigma) = -\nabla L(\theta)$:

$$\nabla_{\theta} U^{p}(\sigma) = \sum_{\rho \in P} \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla_{j}(\theta) + \sum_{\rho \in P} \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla_{h}(\theta)$$
$$\mu_{i,\rho} j(\theta) = 0 \ \forall \rho \in P, j \in J_{\rho}$$

David Vencato

Università di Pisa

Dimostrazione Teorema

Fissiamo $\rho \in P$. Sia $\theta_{\rho} \in \Theta_{\rho}$ l'azione del protagonista su ρ in θ . Restringendoci su E_{ρ} , solo le restrizioni in J_{ρ} e H_{ρ} varieranno:

$$\nabla_{\theta_{\rho}} U^{\rho}(\sigma) = \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla j(\theta) + \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla h(\theta)$$
$$\mu_{j,\rho} j(\theta) = 0 \ \forall j \in J_{\rho}$$

Ora, ha senso sostituire $U^p(\sigma)$ con $U^p_{\rho,\sigma}$:

$$\nabla_{\theta_{\rho}} U_{\rho,\sigma}^{p} (\theta_{\rho}) = \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla_{j} (\theta_{\rho}) + \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla_{h} (\theta_{\rho})$$
$$\mu_{j,\rho} j (\theta_{\rho}) = 0 \ \forall j \in J_{\rho}$$

Queste sono le condizioni KKT per essere massimo locale ma $U^p_{\rho,\sigma}$ è affine \Longrightarrow punto di massimo globale \Longrightarrow ciascun protagonista non può unilateralmente migliorare su σ .

Bibliografia

- [1] Dale Schuurmans e Martin Zinkevich. *Deep Learning Games*, 2016.
- [2] S.Boyd e L. Vandenberghe. *Convex Optimization*. Cambridge U. Press, 2004.
- [3] N. Cesa-Bianchi e G. Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006.
- [4] W. Karush. *Minima of functions of several variables with inequalities as side constraints*. Master's thesis, Univ. of Chicago, Chicago, Illinois, 1939.
- [5] H. Kuhn e A. Tucker. Nonlinear programming. *In Proceedings of 2nd Berkeley Symposium*, pages 481–492. University of California Press, 1951.

