PRZEDMIOT: Podstawy programowania

KLASA: 2A gr. 1

Tydzień 1 Lekcja 1,2

Temat: Język niskiego poziomu i wysokiego poziomu. Operacje wejścia/wyjścia. Typy danych

Język niskiego poziomu (Low-level language)

Definicja:

- Jest bliski językowi maszynowemu, czyli instrukcjom bezpośrednio wykonywanym przez procesor.
- Programista musi znać szczegóły działania sprzętu, takie jak rejestry, adresy pamięci czy operacje bitowe.

Przykłady:

- Kod maszynowy (ciąg zer i jedynek)
- Assembler / język asemblera

Cechy:

- Trudny do pisania i czytania dla człowieka
- Bardzo szybki w wykonaniu
- Daje pełną kontrolę nad sprzętem

```
Prosty przykład w NASM, Netwide Assembler (Linux) – wypisanie znaku A
     section .data
        znak db 'A'
                      ; jeden znak do wyświetlenia
     section .text
        global _start
      _start:
        mov edx, 1 ; długość danych = 1 znak
        mov ecx, znak ; adres znaku
        mov ebx, 1; stdout
        mov eax, 4 ; syscall: write
        int 0x80 ; wywołanie systemowe
        mov eax, 1 ; syscall: exit
        int 0x80
```

Język wysokiego poziomu (High-level language)

Definicja:

- Jest zbliżony do języka naturalnego i abstrakcyjny względem sprzętu.
- Programista nie musi znać szczegółów działania procesora czy pamięci.

Przykłady:

• C, C++, Java, Python, JavaScript, PHP

Cechy:

- Łatwy do nauki i czytania
- Program jest przenośny między różnymi komputerami
- Wydajność może być niższa niż w językach niskiego poziomu (ale kompilatory/interpretery bardzo to optymalizują)

Dlaczego C++ jest językiem wysokiego poziomu:

- Składnia jest czytelna i zbliżona do języka naturalnego (if, for, while, class itp.).
- Programista nie musi znać szczegółów działania procesora, by tworzyć aplikacje.
- Programy są przenośne między różnymi systemami.

Dlaczego ma cechy niskiego poziomu:

- Pozwala na **bezpośrednią manipulację pamięcią** przez wskaźniki.
- Możesz używać **instrukcji niskiego poziomu**, np. operacje bitowe.
- Nadaje się do tworzenia sterowników, systemów operacyjnych, gier wymagających wydajności.

Operacje wejścia/wyjścia w C++

- Operacje wejścia/wyjścia (I/O) pozwalają programowi odczytywać dane od użytkownika (wejście) lub wyświetlać dane na ekranie (wyjście).
- W C++ realizuje się je głównie za pomocą strumieni z biblioteki
 <iostream>.

Co zawiera <iostream>

1. Strumienie wejścia/wyjścia:

```
std::cin – standardowe wejście (klawiatura)
```

std::cout - standardowe wyjście (ekran)

```
    std::cerr – strumień błędów (niebuforowany, na ekran)
    std::clog – strumień logów (buforowany, na ekran)
```

2. Funkcje i operatory związane ze strumieniami:

```
<< – operator wyjścia</li>>> – operator wejścia
```

3. Typy strumieniowe:

```
std::ostream - bazowy typ dla wyjściastd::istream - bazowy typ dla wejścia
```

4. Manipulatory strumieniowe:

```
    std::endl - nowa linia + opróżnienie bufora
    std::flush - opróżnienie bufora strumienia
    std::setw(), std::setprecision() - formatowanie wyjścia (po dołączeniu <iomanip>)
```

using namespace std;

- W C++ std to **standardowy namespace**, czyli przestrzeń nazw dla biblioteki standardowej C++.
- Zawiera wszystko, co pochodzi z <iostream>, <vector>, <string> itd.
- Dzięki temu nie musisz pisać za każdym razem

```
std::cout,std::string,std::vector.
```

- Dlaczego main()
 - 1. Punkt wejścia programu
 - Kiedy uruchamiasz program, system operacyjny szuka funkcji main() i zaczyna wykonywać kod właśnie stamtąd.

2. Zwracanie wartości typu int

- o int main() oznacza, że funkcja zwraca liczbę całkowitą.
- System operacyjny interpretuje tę wartość jako kod zakończenia programu:
 - 0 → program zakończył się sukcesem
 - **■** inna liczba → program zakończył się błędem

3. Alternatywne formy main()

int main(int argc, char* argv[]) – **przyjmuje argumenty z linii poleceń.** Kompilacja programu z funkcją main z argumentami wykonuje się dodanie argumentów u ustawieniach właściwości projektu:

Projekt/Właściwości/Debugowanie w opcji **Argumenty polecenia** należy wpisać przykładowe dane np.: Jan 25

• 1. Typy podstawowe (proste)

Тур	Opis	Przykład wartości
int	Liczby całkowite	0, 10, -5
short	Krótsze liczby całkowite	0, 100
long	Dłuższe liczby całkowite	1000, -5000
long long	Bardzo duże liczby całkowite	1000000000
unsigned	Liczby całkowite dodatnie tylko	0, 100
float	Liczby zmiennoprzecinkowe (pojedyncza precyzja, około 7 cyfr znaczących)	3.14, -0.5
double	Liczby zmiennoprzecinkowe (podwójna precyzja, około 15 cyfr znaczących)	3.14159
char	Pojedynczy znak	'a', 'Z', '5'
bool	Wartość logiczna	true, false

2. Typy złożone

Тур	Opis	Przykład
array	Tablica elementów tego samego typu	int tab[5];
string (z <string>)</string>	Ciąg znaków	"Hello"

• 3. Typy wskaźnikowe i referencje

Тур	Opis	Przykład
int*	Wskaźnik na int	int* ptr = &x
double*	Wskaźnik na double	double* dp;
int&	Referencja (alias) do zmiennej	int& ref = x;

4. Typy specjalne

Тур	Opis
void	Brak wartości (funkcja nic nie zwraca)
auto	Automatyczne określenie typu przez kompilator
nullptr	Stała wskaźnikowa oznaczająca "brak adresu"

Różnice między struct a class w C++

1. Domyślny dostęp do pól i metod

- o w struct → domyślnie public
- o w class → domyślnie private

2. Zastosowanie historyczne

- struct kiedyś używane głównie jako prosty "koszyk" danych (np. rekord z polami),
- class do programowania obiektowego (metody, enkapsulacja, dziedziczenie).
 - → Ale w nowoczesnym C++ oba są prawie tym samym różnica to głównie **domyślny poziom dostępu**.

3. Dziedziczenie

- o w struct → domyślnie publiczne
- o w class → domyślnie prywatne

```
#include <iostream>
using namespace std;
struct Punkt {
  int x;
  int y;
};
class Prostokat {
  int szerokosc;
  int wysokosc;
public:
  Prostokat(int s, int w) {
     szerokosc = s;
     wysokosc = w;
  }
  int pole() {
    return szerokosc * wysokosc;
  }
};
int main() {
  Punkt p1;
  p1.x = 10;
  p1.y = 20;
  cout << "Punkt: (" << p1.x << ", " << p1.y << ")" << endl;
  Prostokat pr(5, 3);
  cout << "Pole prostokata: " << pr.pole() << endl;</pre>
}
```