5.1.1 분석 준비

```
# 수치 계산에 사용하는 라이브러리
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 그래프를 그리기 위한 라이브러리
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
# 선형모델을 추정하는 라이브러리 (경고가 나올 수도)
import statsmodels. formula.api as smf
import statsmodels.api as sm
# 표시 자릿수 지정
%precision 3
#그래프를 주피터 노트북에 그리기 위한 설정
%matplotlib inline
```

경고가 나와도 그대로 진행 가능

5.1.2 데이터 읽어 들이기와 표시

```
beer = pd.read_csv("5-1-1-beer.csv")
print(beer.head())
```

가공의 맥주 매상 데이터 읽어 들이기.

그래프 그리기 - 데이터의 특징을 알 수 있다.

```
sns.jointplot(x = "temperature", y = "beer", data = beer, color = 'black')
```

(그래프 나옴)

5.1.3 모델 구축

맥주 매상 ~
$$\mathcal{N}(\beta_0 + \beta_1 \times$$
기온, σ^2)

- (종속변수 맥주 매상, 독립변수 기온)을 사용한 정규선형모델
- 독립변수가 한 개밖에 없으므로, 기온이 모델에 들어가는지 판단만 하면 됨.

• 파라미터 추정으로는 식에 있는 계수 2개를 추정. 시그마 제곱은 장애모수이므로 고려 x

모델을 구축함으로써 얻는 장점

- 1. 현상을 해석할 수 있게 된다.
 - o 계수 beta1이 0이 아니다 맥주 매상은 기온의 영향을 받는다
 - ㅇ 계수 의 부호를 안다 기온이 오르면 맥주 매상이 올라갈지 떨어질지 판단 가능
 - 계수 검정 대신 AIC를 이용한 모델 선택을 이용해도 됨. 맥주 매상을 예측하려면 기온이 필요
 하다는 해석 가능
- 2. 예측이 가능하다
 - ㅇ 계수와 기온을 알면 맥주 매상의 기댓값을 계산할 수 있게 됨

5.1.4 statsmodels를 이용한 모델링

[정규선형모델 구축]

 통계모델 추정을 위해 import statsmodels. formula. api as smf를 이용해서 statsmodels를 임포 트한다.

Im_model = smf.ols(formula = "beer ~ temperature", data = beer).fit()

- smf.ols 함수 사용 (ols는 범용최소제곱법의 약자)
- 모집단분포가 정규분포임을 가정했을 때, 최대우도법의 결과는 최소제곱법의 결과와 일치
- formula 모델의 구조 지정
 - o "beer ~ temperature"로 지정함으로써 종속변수는 beer, 독립변수는 temperature인 모델
 - o formula를 바꿈으로써 다양한 모델 추정 가능
- formula와 대상이 되는 데이터프레임을 지정하는 것으로 모델에 대한 설정 종료
- 마지막으로 fit()을 호출 이것으로 파라미터 추정까지 자동으로 끝남

5.1.5 추정 결과 표시와 계수 설정

summary 함수를 이용해 추정 결과 표시

Im_model.summary()

coef 은 계숫값

이 다음부터 순서대로 계수의 표준오차, t값, 귀무가설을 '계수의 값이 0'이라고 했을 때의 p값, 95% 신뢰구간에서 하측신뢰한계와 상측신뢰한계

- p값은 매우 작아서 반올림하여 0이 됨.
- 기온에 대한 계수는 0과 다르다고 판단 가능
- 기온이 맥주 매상에 영향을 끼친다는 것을 알 수 있음
- 기온이 오르면 좋은지 내려가면 좋은지는 계숫값을 보면 알 수 있음 0.7654로 양수 기온이 오르면 맥주 매상도 오른다는 의미

5.1.6 summary 함수의 출력 내용 설명

세 번째는 뒤에 나온다

첫 번째 표에 대하여

- Dep. Variable : 종속변수의 이름. Dep은 Depended의 약자로, 종속변수라는 의미입니다.
- Model, Method: 범용최소제곱법을 사용했다는 설명
- Date. Time: 모델을 추정한 일시
- No. Observations: 샘플사이즈
- Df Residuals : 샘플사이즈에서 추정된 파라미터 수를 뺀 것
- Df Model : 사용된 독립변수의 수
- Covariance Type: 공분산 타입. 특별히 지정하지 않으면 nonrobust가 됩니다.
- R-squared, Adj. R-squared: 결정계수와 자유도 조정이 끝난 결정계수. 결정계수는 5.1.12절에서 설명하겠습니다.
- F-statistic, Prob (F-statistic): 분산분석 결과, 분산분석은 5.2절에서 설명하겠습니다.
- Log-Likelihood : 최대로그우도
- AIC: 아카이케 정보 기준
- BIC: 베이즈 정보 기준. 정보 기준의 일종이지만 이 책에서는 사용하지 않습니다. 세세한 부분은 사용하는 라이브러리나 버전에 따라 달라질 수 있습니다. 샘플사이즈, 결정계수, AIC 등을 참조하는 것만으로도 충분 합니다.

5.1.7 AIC를 이용한 모델 선택

AIC를 이용한 모델 선택

독립변수가 1개 밖에 없기 때문에 Null모델의 AIC와 기온이라는 독립변수가 들어간 모델의 AIC를 비교하는 작업

1. Null모델 구축 : 독립변수가 없을 때는 "beer ~ 1"이라고 함수에 파라미터를 넘긴다.

```
null_model = smf.ols("beer ~ 1", data = beer).fit()
```

null_model.aic

2. 독립변수가 있는 모델

Im_model.aic

독립변수가 있는 모델 쪽이 더 작은 AIC를 가지고 있음.

때문에 기온이라는 독립변수가 있는 쪽이 예측 정확도가 높아지는 것이 아닐까 하는 판단 가능 - 맥주 매상 예측 모델에는 기온이라는 독립변수가 필요함!

AIC 계산 방법

AIC = -2*(최대로그우도 - 추정된 파라미터 수)

추정된 모델의 로그우도

Im_model.llf

추정된 파라미터 수를 바로 알면 좋겠지만 이에 대한 정보는 모델에 포함되어 있지 않으므로 모른데요

사용된 독립변수의 수

Im_model.df_model

실제로 절편도 추정되었기 때문에 여기에 1을 더하면 추정된 파라미터 수를 구할 수 있다.

최종 AIC

-2*(Im_model.llf - (Im_model.df_model + 1))

(주의)

그런데 추정된 파라미터 수에는 몇 가지 유형이 있습니다.

이번에는 장애모수를 파라미터 수에 포함시키지 않았지만 이를 포함한 AIC를 구하는 경우도 존재 - 210.909

R언어 등 다른 소프르웨어에서는 장애모수가 포함되어 있기도 함

AIC는 그 값의 크고 작음에 의미가 있는 지표 - (절댓값은 의미가 없음)

같은 유형으로 계산됐다면 괜찮지만 다른 소프트웨어나 라이브러리에서 계산된 AIC와의 비교는 피해야한다.

5.1.8 회귀직선

회귀직선

모델에 의한 종속변수의 추측값을 직선으로 표시한 것

(비선형모델의 경우는 회귀곡선)

5.1.9 seaborn을 이용한 회귀직선 그래프 그리기

```
sns.lmplot(x = "temperature", y = "beer", data = beer, scatter_kws =
{"color":"blue"}, line_kws = {"color":"black"})
```

이것은 산포도에 회귀직선을 덧그린 그래프

- 산포도의 디자인은 scatter_kws, 회귀직선의 디자인은 line_kws 으로 지정
- 음영부분 : 회귀직선의 95% 신뢰구간

5.1.10 모델을 이용한 예측

모델의 계수를 추정할 수 있으므로 이를 사용하면 예측 할 수 있다.

이를 위해 추정된 모델에 predict함수 적용

파라미터에 아무것도 넘기지 않으면 훈련 데이터를 사용한 값이 그대로 출력됨.

```
Im_model.predict()
```

기온값을 지정해서 예측할 수도 있다.

파라미터로 데이터프레임을 넘긴다. 이번에는 기온이 0도일 때의 맥주 매상의 기댓값을 계산

```
Im_model.predict(pd.DataFrame({"temperature":[0]}))
```

그러나 이번에 추정한 모델은 아래와 같았다

맥주 매상 ~
$$\mathcal{N}(\beta_0 + \beta_1 \times \text{기온}, \sigma^2)$$

모델의 예측값, 즉 정규분포에서 기댓값은 ~~으로 계산된다.

그러므로 기온이 0도일 때는 beta0과 같아진다.

확인해보자면

```
Im_model.params
```

Intercept가 beta0으로 예측값과 일치한다.

다음은 기온이 20도일 때의 맥주 매상의 기댓값이다.

```
Im_model.predict(pd.DataFrame({"temperature":[20]}))
```

이 값은 beta0 + beta1*20와 같다.

```
beta0 = Im_model.params[0]
beta1 = Im_model.params[1]
temperature = 20
```

beta0 + beta1*temperature

5.1.11 잔차 계산

마지막으로 모델의 평가 방법에 대해....

원래는 예측을 하기 전에 모델의 평가를 해두면 좋다.

모델의 평가는 주로 **잔차를 체크**해서 한다.

정규선형모델의 경우, 잔차가 '평균이 0인 정규분포'를 따르는 것이므로 모델이 그 분포를 따르고 있는지 체크함.

잔차는 다음과 같이 계산해서 얻는다

```
resid = Im_model.resid
resid.head(3)
```

공부가 목적이므로 잔차를 따로......계산해보자

잔차 계산식은

$$residuals = y - \hat{y}$$

여기서

$$\hat{y} = \beta_0 + \beta_1 \times$$
기온

이 값은

```
y_hat = beta0 + beta1*beer.temperature
y_hat.head(3)
```

실젯값에서 예측값을 빼면 잔차가 된다.

```
(beer.beer - y_hat).head(3)
```

5.1.12 결정계수

R - squared - 가지고 있는 데이터에 대해, 모델을 적용했을 때의 적합도를 평가한 지표 아래와 같이 계산할 수 있다.

y는 종속변수, y^은 모델에 의한 추측치(예측치), .는 y의 평균값

$$R^{2} = \frac{\sum_{i=1}^{N} (\hat{y} - \mu)^{2}}{\sum_{i=1}^{N} (y - \mu)^{2}}$$

• (모델에 의한 추측치 = 종속변수의 실젯값)이면 R^2은 1이 됨 결정계수 파이썬으로 계산/ 아래와 같이 코드를 작성해도 무방

식을 변형해서 결정계수의 분모는 아래와 같이 분해할 수 있다.

$$\sum_{i=1}^{N} (y - \mu)^2 = \sum_{i=1}^{N} (\hat{y} - \mu)^2 + \sum_{i=1}^{N} residuals^2$$

종속변숫값의 변동크기를

(모델로 설명 가능한 변동 + 그렇지 않은 잔차제곱합)으로 분해 가능

• 이 때문에 결정계수는 전체 변동폭의 크기에 대한 모델로 설명 가능한 변동폭의 비율로 해석 가능

5.1.13 수정된 결정계수

독립변수의 수가 늘어나는 것에 대해 페널티를 적용한 결정계수

- 독립변수의 수가 늘어나면 결정계수는 큰 값이 된다.
- 결정계수가 높아지면 과학습을 일으키기 때문에 조정이 필요하다.

아래의 식. s는 독립변수의 수

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} residuals^{2} / (N - s - 1)}{\sum_{i=1}^{N} (y - \mu)^{2} / (N - 1)}$$

5.1.14 잔차 그래프

잔차의 특징을 보는 가장 간단한 방법 - 잔차의 히스토그램을 그리는 것

이것을 보고 정규분포의 특징을 갖고 있는지 확인해보자

```
sns.distplot(resid, color = 'blue')
```

이를 보면 좌우대칭으로 정규분포를 따르는 것처럼 보인다.

(x축 - 적합도, y축 - 잔차)인 산포도를 그려보자

이 산포도가 완전 랜덤이며 상관이 없다는 것을 확인한다. 매우 큰 잔차가 나오지 않는 것도 확인한다.

```
sns.jointplot(Im_model.fittedvalues, resid, joint_kws=
{"color":"black"},marginal_kws={"color":"blue"})
```

자세하게 검정 순서를 기억하고 있지 않아도 이런 그래프를 보는 것만으로도 명확한 문제점을 깨닫게 됩니다.

5.1.15 Q-Q 플롯

이론상의 분위점과 실제 데이터의 분위점을 산포도 그래프로 그린 것. (Q = Quantile)

- 이번에는 모든 데이터에 대한 분위점을 구한다. 데이터가 100개 있다면 1%씩 100개의 분위점 존 재
- 한편, 정규분포의 퍼센트 포인트를 사용하면 이론상의 분위점을 얻을 수 있다.
- 이론상의 분위점과 실제 데이터의 분위점을 구해서 그 둘을 비교하는 것으로 잔차가 정규분포에 근접하는지 아닌지 '시각적'으로 판단 가능.

이것은 sm.gglot 함수를 사용해서 그릴 수 있다.

line = "s"라고 파라미터를 넘김으로써 잔차가 정규분포를 따르면 이 선상에 위치한다는 기준을 표시하게 된다.

```
fig = sm.qqplot(resid, line = "s")
```

직접 만들어 보겠습니다!!

5.1.16 summary 함수의 출력으로 보는 잔차 체크

Omnibus:	0.587	Durbin-Watson:	1.960
Prob(Omnibus):	0.746	Jarque-Bera (JB):	0.290
Skew:	-0.240	Prob(JB):	0.865
Kurtosis:	2.951	Cond. No.	52.5

Prob는 잔차의 정규성에 대한 검정 결과

귀무가설: 잔차가 정규분포를 따른다. 대립가설: 잔차가 정규분포와 다르다.

p값이 0.05다 큰지 확인하자.

그러나 검정의 비대칭성이 있으므로 크다고 해도 정규분포라고 주장할 수 없다.

정규분포와 다른지 여부를 판단

- 왜도: 히스토그램의 좌우비대칭 방향과 그 정도를 측정하는 지표
 - o 0보다 크면 오른쪽 자락이 길어진다.
 - 정규분포는 좌우 대칭이기 때문에 왜도는 0

$$Skew = E\left(\frac{(x-\mu)^3}{\sigma^3}\right)$$

- 첨도: 히스토그램 중심부의 뾰족함을 측정하는 지표
 - o 값이 클수록 히스토그램의 *가운데 부분*이 뾰족해짐

$$\circ \quad Kurtosis = E\left(\frac{(x-\mu)^4}{\sigma^4}\right)$$

Durbin - Watson : 잔차의 자기상관을 체크하는 지표

- 이것이 2 전후라면 문제 없다고 판단
- 시계열 데이터를 대상으로 분석하는 경우 반드시 확인 필요
- 잔차에 자기상관이 있으면 게수의 t검정 결과를 신뢰할 수 없음
 - o 이 문제를 **보여주기 위한 회귀**라고 부른다.