IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

ATTY. DOCKET NO. 067242/0107

Fumihiko WANTANABE et al OIP A

Serial No.: 09/120,383

Filed: July 22, 1998

Group Art Unit: 1613

AY 2 0 1999 Braminer: Unknown

For: SULFONATED AMONO ACID DESWATIVES AND METALLOPROTEINASE

INHIBITORS CONTAINING THE SAME

SHOWING AND STATEMENT PURSUANT TO INTERFERENCE RULE 37 C.F.R. §1.608

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Further to the Request For Interference Under Rule 607 filed herewith, applicants submit the following statement pursuant to Rule 608(a).

Applicants are entitled to an effective filing date of January 23, 1996, the filing date of the Japanese priority application 30082/96. A certified translation of the priority application is enclosed as Appendix 1. Also enclosed is a certified translation of PCT/JP97/00126, from which the instant application claims priority under 35 U.S.C. §120. The PCT supports the claims as does the instant 09/120,383 application and as set forth in the Rule 607 request. The claims are supported throughout the Japanese Priority document, for example, by claims 1, 7 and 14, and page 9, first full paragraph of the priority document. Thus, the instant application is entitled to the January 23, 1996 filing date.

The effective filing date of U.S. Patent 5,756,546 is its U.S. filing date of April 12, 1997.

Since applicants' effective filing date of January 23, 1996 is earlier than the April 12, 1997 effective filing date of the patent, applicants are *prima facie* entitled to a judgement

U.S. Appln. No. 09/120,383

relative to the patentee. Therefore, it is respectfully requested that an interference be declared.

Moreover, because applicants have an earlier effective filing date, they should be designated as senior party in the interference.

Should the Examiner have any questions, he or she is invited to contact the undersigned.

Respectfully submitted,

May 14, 1999

Date

Stephen B. Maebius

Reg. No. 35,264

FOLEY & LARDNER 3000 K Street, N.W. Suite 500 Washington, D.C. 20007-5109

Tel: (202) 672-5300

PTO-850-78% 09-	17	96)
-----------------	----	-----

	A >			Count #
2110-820-(7(√, 09-10-96)	INTERFERENCE	EINITIAL MEMORA	NDUM	. ———
BOARD OF PATENT APP	EALS AND INTERFERE This in	nces: An interference involves 2	parties	· · · · · · · · · · · · · · · · · · ·
24077	AFPLICATION NO.	FILING DATE	PATENT NO., IF ANY	ISSUE DATE, IF ANY
Watanabe et al.	09/120.383	July 22, 1998		A SA OFFICE W
t application has been patented, have			Maintenance fees no	t due yet aud angligite sails a
"Accorded the benefit of:	AF PLICATION NO.	IFILING DATE	PATENT NO., IF ANY	ISSUE DATE, IF ANY
COUNTRY		January 23, 1996		
JAPAN	8/30082	August 13, 1996		_
JAPAN	8/213555	January 22,1997		
PCT	JP97/00126		 	A Althoration Live
	Total And Market Information			
The claim(s) of this party which corres PATENTED OR PATENTABLE PEN	DING CLAIMS	UNPATENTABLE PENDING	CLAIMS	o de la companya de l La companya de la companya de
26-32				2 (48) (48)
The claim(s) of this party which does(s) PATENTED OR PATENTABLE PEN	do) <u>not</u> or respond to this count is(8 IDING CLAIMS	INDITION OF THE PENDING	CLAIMS	i de se de la composición del composición de la composición del composición de la co
· ·	<u> </u>]	त्रकार स्थापन स्थाप	
	A PLICATION NO.		PATENT NO., IF ANY	ISSUE DATE, IF ANY
PARTY O'Brien et al	844,598	· 1	5,756,545	May 26, 1998
If application has been patented, hav		YesNo	Maintenance fees n	ot due yet:
"Accorded the benefit of:	APPLICATION NO.	IFILING DATE	PATENT NO., IF ANY	ISSUEDATE, IF ANY
COUNTRY	A PLICATION NO.			the company of the
				· · · · · · · · · · · · · · · · · · ·
				25 1 4 1 2 2 2 2
The claim(s) of this party which come PATENTED OR PATENTABLE PE	espond(s) to this count is(are):	UNPATENTABLE PENDING	G CLAIMS	
1_10				
The claim(s) of this party which does PATENTED OR PATENTABLE PE	(do) not i prespond to this count is	(are): UNPATENTABLE PENDING	G CLAIMS	·
PATENTED OR PATENTABLE PE				
	In	structions		d DATM
1. For every patent involve	d in the interference, check	if the maintenance fees ha	ave been paid by using	g the patent number with PALM it would involve an expired patent
screen 2970. If fees are	due and they have not been	paid, the interference can	TOU DO GOOIGI OF PETO	
(35 USC 135(a); 37 CFF	R 1.606 . (for material) (or material)	and impatentable (pendin	g) claims which corre	espond to the count (37 CFR
1.601(f), (n); 1.609(b)(2	()).			1 - 4 (27
3. For each party, identify	the pate atable (or patented)) and unpatentable (pendin	g) claims which do n	ot correspond to the count (37
CED 1 600(P)(3))			•	(; `
4. Forward all files includi	ng those the benefit of which the contract of	ch is being accorded.	your records.	
1		intana manaé ha affachad a	m (a) cenarate typey	vritten sheet(s).
ممسيد بالما	fact a single proposed into	erference count. It any cla	um of any party is ex-	actly the same word for word
as this count, please ind	icate the party, application	or patent number, and the	claim number.	- definer the same natentable
7. For each claim designat	ted as corresponding to the	count, provide an explana	tion of why each clair	n defines the same patentable
	(37 CFR 1.609(b)(2)). ted as nct corresponding to			
patentable invention in	on the count (3) CFR 1.00 unt, if an /, repeat steps 2-6	and, additionally, provide	an explanation why e	ach count represents a
7. Für Calli attitiquial Cou	ention from every other cou	int (37 CFR 1.609(b)(1).	•	

04P			
	The state of the s	ITELEPHONE NO.	ART UNIT
DATE	PRIMARY E KAMINER (Signature)	TELET HONO	•
	GROUP DIF ECTOR SIGNATURE (if required)		
DATE	CKOOL DILECTON SIGNAL DISC (11 indance)	Į.	
l	1		to the list the conflort
1		the be accorded must be listed. It is not suffic	Stell to wetern lize mis estimate

*The application number and filing date of e ich application the benefit of which is intended to be accorded must be listed. It is not sufficient to merely list the earliest application if there are intervening application is necessary for continuity.

THIS PAGE CAN BE DUPLICATED IF THERE ARE, MORE THAN TWO INTERFERING PARTIES.

APPENDIX "1"

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. CL CO7C311/00. CO7D209/42. CO7D213/55. CO7D235/24, CO7D257/04. CO7D277/56, CO7D277/82. CO7D263/56, CO7D307/91. CO7D333/34. CO7D333/62. A61K31/40, A61K31/535/A61K31/42, A61K31/425, A61K31/415, A61K31/44. A61K31/34. A61K31/38. A61K31/41. A61K31/18

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. CL CO7C311/00. CO7D209/42. CO7D213/55. CO7D235/24. CO7D257/04. CO7D277/56. CO7D277/82. CO7D263/56, CO7D307/91. CO7D333/34. CO7D333/62. A61K31/40. A61K31/535/A61K31/42. A61K31/425. A61K31/415. A61K31/44. A61K31/34. A61K31/38. A61K31/41. A61K31/18

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

31 m ++++		
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X a	JAN-GERD HANSEL et al, Oxazoline Formation via a Pd-catalyzed Cyclization.	4, 21
	Tetrahedron Lett. (1995), Vol. 36, No. 17, P. 2916-2913	
X (2	S. NATELSON et al. Preparation of D-, DL-, and L-Homoserine Lactone from Methi-	4.21
_	onine', Microchem. J. (1989), Vol. 40, No. 2, P. 226-232	
X 3	N. YAMADA et al, Reaction of L alphatosylamid betapropiolactone. I. Synt-	4, 21
	hesis, reactions with amines, and derivation to L-Ser.', 薬学雑誌(1969), Vol. 89	
	. No. 1, P. 98-103	
X @	S. H. LEE et al. Systematic Study on the Resolution of derivatized amino acid-	4. 5. 20. 22
	s enan-tiomers on different cyclodextrin-bonded stationary phases', J. Chroma-	
_	togr. (1992), Vol. 603, No. 1-2, P. 83-93	
OX) EP. 468231. A2(エフ キフマン-ラ ロシュ アーケー) 29. 1月. 1992 (29. 01. 92) & AU, 9179490, A &	4. 5. 8. 9. 14. 19. 20
	CA. 2044636, A&DE, 59103021, B&ES, 2061123, B&FI, 9103282, A&IL, 98690, A&NO, 17770	. 22
	4. A&NZ. 238773. A&PT. 98221. A&TW. 201303. A&US. 5583133. A	
L		

区欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

様式PCT/ISA/210 (第2ページ) (1992年7月)

C (続き)		関連すると認められる文献	
引用文献の		DE / CES JIVE AIN	関連する
カテゴリー		引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	6	A. K. DEBNATH et al, '4-(4'-Substituted benzoyl) aminobenzenesulphonyl-L(+)-gl-utamicacids and 5-N-substituted-2-[4'-(4"-substituted benzoyl) aminobenzenes-ulphon-yl]-L-glutamines as potential antineoplastic agents', Indian J. Chem., Sect. B (1989), Vol. 28B, No. 10, P. 843-847	4, 11, 16
X		V. STOCCHI et al, 'Reserved-Phase High-Performance Liquid Chromatography Separation of Dimethylaminoazobenzene Sulfonyl', Anal. Biochem. (1989), Vol. 178, No. 1, P. 107-117	4
X	8	L. J. KUN et al, 'Debsyl Chloride: its synthesis, characterization and application and application in amino acid and amine microanalysis', J. Chin. Biochem. Soc. (1985), Vol. 14, No. 1, P. 10-19	4, 22
x	9	J. HLAVACEK et al, 'An Alternative Route to N-Methylamino acid derivatives', Collect Czech. Chem. Commun. (1988), Vol. 53, No. 11A, P. 2473-2493	4, 20, 21
x	0	WO, 93/14069, A (プリティッシュ・ハーイオテクノロシュー リミテット) 22. 7月. 1993 (22. 07. 93) &AU, 9332612, A&EP, 620813, A	4, 22
x	0	B. GALLI et al, 'Enantiomeric separation of dansyl-and dabsylamino acids by ligand- exchange chromatography', J. Chromatogr., A(1994), Vol. 666, No. 1-2, P. 77-89	4, 22
x	@	JP, 57-59969, A(ペンテル株式会社)10. 4月. 1982(10. 04. 82), 実施例 1, (ファミリーなし)	4
Х	\bigcirc	Vol. 51, P. 576–579	4, 5
х	(B)	C. KAISER et al, '2-Substituted Derivatives of 3,4-Dihydroxyphenylalanine', J. Am. Chem. Sci. (1957), Vol. 79, P. 4365-4370	4, 21
X	Ø	D. DUWEL et al, 'Carboxylic acid analogues of suramin, potential filaricides', Indian J. Chem., Sec. B(1991), Vol. 30B, No. 2, P. 182-187	4, 6, 11, 16
A	Θ	WO, 96/00214, A1 (チバガイギー AG) 04. 1月. 1996 (04. 01. 96) &ZA, 9505206, A &AU, 9525369, A	1-25
A	0	WO, 95/35276, A1 (ブリティッシュ バイオテク ファーマシューティカルズ リミテッド) 28. 12月. 1995 (28. 12. 95) &AU, 9527466, A	1-25
		·	

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this office.

Date of Application:

January 23, 1996

Application Number: Application No. 30082/1996

Applicant(s):

Shionogi & Co.,Ltd.

Commissioner,

Patent Office

Hisamitsu ARAI

[Name of Document]

PETITION

[Docket No.]

A005530

[Filing Date]

January 23, 1996

[Addressee]

Commissioner, Patent Office

[International Patent Classification]

C07C 311/19

A61K 31/18

[Title of Invention]

SULFONATED AMINO ACID DERIVATIVES.

AND METALLOPROTEINASE INHIBITORS CONTAINING THE

SAME

[Number of Claims]

19

[Inventor]

[Address]

2-5-22, Tomogaoka, Kanmaki, Kitakatsuragi-gun,

Nara

[Name]

Fumihiko WATANABE

[Inventor]

[Address]

5-12-15, Ohsumigaoka, Tanabe-cho, Tsuzuki-gun, Kyoto

[Name]

Hiroshige TSUZUKI

[Inventor]

[Address]

1342, Takabatake-cho, Nara-shi, Nara

[Name]

Mitsuaki OHTANI

[Applicant]

[Identification No.]

000001926

[Name]

Shionogi & Co.,Ltd.

[Representative Director]

Yoshihiko SHIONO

[Agent]

[Identification No.]

100103230

[Patent Attorney]

[Name]

Hirotsugu TAKAYAMA

[Telephone number]

06-202-2161

[List of Attached Documents]

[Item]

Specification

1

[Item] Abstract 1

[General Authorization No.] 9505451

[Document's Name]

Specification

Title of the invention SULFONATED AMINO ACID DERIVATIVES
AND METALLOPROTEINASE INHIBITORS CONTAINING THE SAME

[Claims]

[Claim 1] A composition for inhibiting metalloproteinase which contains a compound of the formula (I):

[Formula 1]

$$R^{2}-SO_{2}-N \xrightarrow{R^{1}} COY \qquad (I)$$

wherein R¹ is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R² is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or optionally substituted amino; R³ is hydrogen atom, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; and Y is -NHOH or -OH; provided R³ is hydrogen atom when Y is -NHOH, its pharmaceutically acceptable salt, or hydrate thereof.

[Claim 2] A composition for inhibiting metalloproteinase of claim 1 which is a composition for inhibiting type-IV collagenase.

[Claim 3]

A compound of the formula (Ia):

[Formula 2]

$$R^1$$
 R^2 -SO₂NH CONHOH (Ia)

wherein R^1 and R^2 are as defined above, its pharmaceutically acceptable salt, or hydrate thereof.

[Claim 4]

A compound of the formula (Ib) of claim 3:

[Formula 3]

$$R^{11}$$
 $(CH_2)_n$
 R^2-SO_2NH
 $CONHOH$ (Ib)

wherein R^{11} is optionally substituted aryl or optionally substituted heteroaryl; n is an integer of 0 to 6; and R^2 is as defined above.

[Claim 5] A compound of claim 4 wherein R¹¹ is optionally substituted phenyl, optionally substituted naphthyl, optionally substituted thiazolyl, optionally substituted indolyl, optionally substituted benzothiazolyl, or optionally substituted benzimidazolyl.

[Claim 6] A compound of claim 3 wherein R¹ is isopropyl, isobutyl, or sec-butyl.

[Claim 7] A compound of the formula (Ic) of claim 3:

(Formula 4)

$$R^{1}$$
 $R^{26}-R^{22}-R^{21}-SO_{2}NH$
CONHOH (Ic)

wherein R^{21} is phenylene, naphthylene, or thiophen-diyl; R^{22} is a bond, ethynylene, - $(CH_2)m$ -, -N=N-, -O-, -S-, -N(R^{23})-, -CO-, -N(R^{24})CON(R^{25})-, or tetrazol-diyl; R^{26} is optionally substituted phenyl, optionally substituted naphthyl, or optionally substituted heteroaryl; m is 1 or 2; R^{23} , R^{24} , and R^{25} are each independently hydrogen atom or alkyl; and R^1 is as defined above.

[Claim 8] A compound of the formula (Id) of claim 3:

[Formula 5]

$$R^{27}-R^{21}-SO_2NH$$
 CONHOH (Id)

wherein R^{27} is hydrogen atom, halogen, acyloxy, hydroxy, carboxy, alkoxycarbonyl, alkoxy, alkyl, trifluoromethyl, nitro, or $N(R^{28})R^{29}$; R^{28} and R^{29} are each independently hydrogen atom or alkyl; R^1 and R^{21} are as defined above.

[Claim 9] A compound of claim 7 wherein R²¹ is phenylene or thiophen-diyl; R²² is a bond, -CH₂-, ethynylene, -N=N-, -O-, or tetrazolyl; and R²⁶ is optionally substituted phenyl.

[Claim 10] A compound of claim 8 wherein R²¹ is phenylene or thiophen-diyl.

[Claim 11] A compound of claim 3 wherein R² is optionally substituted alkyl.

[Claim 12] A compound of the formula (IIa):

[Formula 6]

$$R^{2}$$
-SO₂NH COOH (IIa)

wherein R^1 and R^2 are as defined above, its pharmaceutically acceptable salt, or hydrate thereof.

[Claim 13] A compound of the formula (IIb) of claim 12:

[Formula 7]

$$R^{12}$$
 R^2 -SO₂NH COOH (IIb)

wherein R^{12} is phenyl, phenethyl, isopropyl, isobutyl, sec-butyl, optionally substituted thiazolylmethyl, optionally substituted naphthylmethyl, optionally substituted pyridylmethyl, optionally substituted benzothiazolylmethyl, optionally substituted benzimidazolylmethyl, indolyl substituted with alkyl, acyl, alkoxy, or halogen, alkyl substituted with halogen, cycloalkyl, carboxy, or benzyloxy, or benzyl substituted with nitro, halogen, carboxy, or phenyl; and R^2 is as defined above.

[Claim 14] A compound of the formula (IIc) of claim 12:

[Formula 8]

$$R^{26}-R^{22}-R^{21}-SO_2NH$$
 COOH (IIc)

wherein R^1 , R^{21} , R^{22} , and R^{26} are as defined above.

[Claim 15]

A compound of the formula (IId) of claim 13:

[Formula 9]

$$R^{12}$$
 R^{27}
 R^{21}
 R^{21}
 R^{20}
 R^{21}
 R^{21}

wherein R12, R21, and R27 are as defined above.

[Claim 16] A compound of claim 14 wherein R^{21} is phenylene or thiophen-diyl; R^{22} is a bond, -CH₂-, ethynylene, -N=N-, -O-, or tetrazolyl; and R^{26} is optionally substituted phenyl.

[Claim 17]

A compound of the formula (IIe) of claim 14:

[Formula 10]

$$R^{13}$$

 $R^{26}-R^{22}-R^{21}-SO_2NH$ COOH (IIe)

wherein R^{13} is optionally substituted benzyl, optionally substituted phenethyl, optionally substituted naphthylmethyl, optionally substituted indolylmethyl, or optionally substituted alkyl; and R^{21} , R^{22} and R^{26} are as defined above.

[Claim 18] The compound of any one of claims 3 to 17, wherein a configuration of asymmetric carbon atom bonding with R¹ is R configuration.

[Claim 19] A composition for inhibiting type IV collagenase which contains the compound of any one of claims 3 to 17.

[Detailed Description of Invention]

[0001]

[Field of Industrial Application]

This application relates to sulfonated amino acid derivatives and metalloproteinase inhibitors containing the same.

[0002]

[Prior Art]

An extracellular matrix consists of collagen, proteoglycan, etc., has a function to support tissues, and plays a role in a maintaining of a cell functions, for example propagation, differentiation, adhesion, or the like. Matrix metalloproteinases (MMP) such as gelatinase, stromelysin, collagenase, and the like have an important role in degradation of an extracellular matrix, and these enzymes work for growth, tissue remodeling, etc. under physiological conditions. Therefore, it is considered that these enzymes participate in progression of various kind of diseases involving breakdown and fibrosis of tissues, such as osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontitis, metastasis and invasion of tumor, and virus infection (for example, HIV infection). At the present time, it is not clear which enzyme participates in the above diseases seriously, but it is considered that these enzymes at least participate in tissue breakdown. N-substituted sulfonamide derivatives of hydroxamic acid derivatives of amino acids are described in JP-A-6-256293. However, N-sulfonated amino acid derivatives having activity for inhibiting metalloproteinase of the present invention are not reported.

[0003]

(Problems to be solved by the Invention)

If it is able to inhibit the activity of MMP, it is considered that MMP inhibitors contribute to an improvement and prevention of the above diseases caused by or related to its activity. Therefore, development of MMP inhibitors has long been desired.

[0004]

[Means to Solve the Problems]

In the above situation, the inventors of the present invention found that a compound of formula (I):

[Formula 11]

$$R^{2}-SO_{2}-N \longrightarrow COY \qquad (I)$$

wherein R1 is optionally substituted lower alkyl, optionally substituted aryl, optionally

substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R² is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or optionally substituted amino; R³ is hydrogen atom, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; and Y is -NHOH or -OH; provided R³ is hydrogen atom when Y is -NHOH, its pharmaceutically acceptable salt, or hydrate thereof has activity for inhibiting metalloproteinase and significantly inhibit the growth lung cancer cells. It is also found that it is more stable against racemization than conventional sulfonated amino acid derivatives.

[0005]

Concretely, the compound of the present invention includes a compound of the formula (Ia):

[Formula 12]

$$R^1$$
 R^2 -SO₂NH CONHOH (Ia)

wherein R^1 and R^2 are as defined above and (2)-2 a compound of the formula (IIa): [Formula 13]

$$R^1$$
 R^2 -SO₂NH COOH (IIa)

wherein R1 and R2 are as defined above.

As a preferable mode, (2)-1 (A) a compound of the formula (Ib): [Formula 14]

$$R^{11}$$
 $(CH_2)_n$
 R^2-SO_2NH
 $CONHOH$ (Ib)

wherein R¹¹ is optionally substituted aryl or optionally substituted heteroaryl; n is an integer of 0 to 6; and R² is as defined above is exemplified and as a particularly preferable mode, a compound wherein R¹¹ is optionally substituted phenyl, optionally substituted naphthyl, optionally substituted thiazolyl, optionally substituted indolyl, optionally substituted benzothiazolyl, or optionally substituted benzimidazolyl is exemplified. Lokewise, (C) a compound of the formula (Ic):

[Formula 15]

$$R^{26}-R^{22}-R^{21}-SO_2NH$$
 CONHOH (Ic)

wherein R^{21} is phenylene, naphthylene, or thiophen-diyl; R^{22} is a bond, ethynylene, - $(CH_2)m$ -, -N=N-, -O-, -S-, -N(R^{23})-, -CO-, -N(R^{24})CON(R^{25})-, or tetrazolyl; R^{26} is optionally substituted phenyl, optionally substituted naphthyl, or optionally substituted heteroaryl; m is 1 or 2; R^{23} , R^{24} , and R^{25} are each independently hydrogen atom or alkyl; and R^1 is as defined above is exemplified, especially, a compound wherein R^{21} is phenylene or thiophen-diyl; R^{22} is a bond, -CH₂-, ethynylene, -N=N-, -O-, or tetrazolyl; and R^{26} is optionally substituted phenyl is exemplified.

[0006]

Similarly, (D) a compound of the formula (Id): [Formula 16]

$$R^{27}$$
 $-R^{21}$ $-SO_2NH$ CONHOH (Id)

wherein R^{27} is hydrogen atom, halogen, acyloxy, hydroxy, carboxy, alkoxycarbonyl, alkoxy, alkyl, trifluoromethyl, nitro, or $-N(R^{28})R^{29}$; R^{28} and R^{29} are each independently hydrogen atom or alkyl; R^1 and R^{21} are as defined above is exemplified, especially a compound wherein R^{21} is phenylene or thiophen-diyl is exemplified.

In the same way, (E) a compound of the formula (Ia) wherein R² is optionally substituted alkyl is exemplified.

Likewise, (2)-2 (F) a compound of the formula (IIb): [Formula 17]

$$R^{12}$$
 R^2 -SO₂NH COOH (IIb)

wherein R¹² is phenyl, phenethyl, isopropyl, isobutyl, sec-butyl, optionally substituted thiazolylmethyl, optionally substituted naphthylmethyl, optionally substituted pyridylmethyl, optionally substituted benzothiazolylmethyl, optionally substituted benzimidazolylmethyl, indolyl substituted with alkyl, acyl, alkoxy, or halogen, alkyl substituted with halogen, cycloalkyl, carboxy, or benzyloxy, or benzyl substituted with nitro, halogen, carboxy, or phenyl; and R² is as defined above is exemplified, especially, a compound wherein R² is -R²¹-R²⁷ is exemplified.

Similarly, (G) a compound of the formula (IIc): [Formula 18]

$$R^{26}-R^{22}-R^{21}-SO_2NH$$
 COOH (IIc)

wherein R^1 , R^{21} , R^{22} , and R^{26} are as defined above is exemplified.

In the same way, (H) a compound of the formula (IIe): [Formula 19]

$$R^{26}-R^{22}-R^{21}-SO_2NH$$
 COOH (IIe)

wherein R^{13} is optionally substituted benzyl, optionally substituted phenethyl, optionally substituted naphthylmethyl, optionally substituted indolylmethyl, or optionally substituted alkyl; and R^{21} , R^{22} and R^{26} are as defined above is exemplified.

Additionally, as a characteristic compound, a compound wherein a configuration of asymmetric carbon atom bonding with R¹ is R configuration is preferable.

[0007]

The term "alkyl" herein used means C₁-C₁₀ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neo-pentyl, tert-pentyl, and the like.

[0008]

The term "alkenyl" herein used means C₂-C₁₀ straight or branched chain alkenyl, for example, vinyl, allyl, i-propenyl, pentenyl (e.g., 1-pentenyl), and the like.

The term "aryl" herein used is exemplified by phenyl, naphthyl, and the like. Phenyl is preferred.

The term "aralkyl" herein used means the above mentioned alkyl substituted by the above mentioned aryl at any possible position. Examples of the aralkyl are benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (anaphthylmethyl), anthrylmethyl (9-anthrylmethyl), and the like. Benzyl is preferred. The aryl part may optionally be substituted.

[0008]

The term "heteroaryl" herein used means a 5 to 6 membered aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in the ring and may be fused with a carbocyclic ring or other heterocyclic ring at any possible position. Examples of the heteroaryl are pyrrolyl (e.g., 1-pyrrolyl), indolyl (e.g., 2-indolyl, 1-formylindolyl, 1-acetylindolyl), carbazolyl (e.g., 3-carbazolyl), imidazolyl (e.g., 4- imidazolyl), pyrazolyl (e.g., 1-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl), indazolyl (e.g., 3-indazolyl),

indolizinyl (e.g., 6-indolizinyl), pyridyl (e.g., 1-pyridyl), quinolyl (e.g., 5-quinolyl), isoquinolyl (e.g., 3-isoquinolyl), acridinyl (e.g., 1-acridinyl), phenanthridinyl (e.g., 2-phenanthridinyl), pyridazinyl (e.g., 3-pyridazinyl), pyrimidinyl (e.g., 4-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthalazinyl (e.g., 2-phthalazinyl), quinazolinyl (e.g., 2-quinazolinyl), isoxazolyl (e.g., 3-isoxazolyl), benzisoxazolyl (e.g., 3-benzisoxazolyl), oxazolyl (e.g., 2-oxazolyl), benzoxazolyl (e.g., 2-benzoxadiazolyl), isothiazolyl (e.g., 2-isothiazolyl), benzisothiazolyl (e.g., 2-benzisothiazolyl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzisothiazolyl), furyl (e.g., 3-furyl), benzofuryl (e.g., 3-benzofuryl), thienyl (e.g., 2-thienyl), benzothienyl (e.g., 2-benzothienyl), tetrazolyl, and the like. The aryl part of the above heteroaryl is optionally substituted. [0010]

The term "heteroarylalkyl" herein used means the above mentioned alkyl substituted with the above mentioned heteroaryl at any possible position. Examples of the heteroarylalkyl are thiazolylmethyl (e.g., 4-thiazolylmethyl), thiazolylethyl (e.g., 5-thiazolyl-2-ethyl), indolylmethyl (e.g., 2-indolylmethyl, 1-formylindolylmethyl, 1acetylindolylmethyl), imidazolylmethyl (e.g., 4-imidazolylmethyl). benzothiazolylmethyl 2-benzothiazolylmethyl), benzodiazolylmethyl (e.g., benzodiazolylmethyl), benzotriazolylmethyl (e.g., 4-benzotriazolylmethyl). benzoquinolylmethyl (e.g., 2-benzoquinolylmethyl), benzimidazolylmethyl (e.g., 2benzimidazolylmethyl), pyridylmethyl (e.g., 2-pyridylmethyl), and the like. The aryl part of the above heteroaryl is optionally substituted.

[0011]

The term "halogen" herein used is exemplified by fluoro, chloro, bromo, and iodo, and the like.

The term "acyloxy" herein used is exemplified by alkanoyloxy (e.g., acetyloxy), aroyloxy (e.g., benzoyloxy), arylalkanoyloxy (e.g., phenylacetyloxy), and the like.

The term "alkoxy carbonyl" herein used is exemplified by methoxycarbonyl, ethoxycarbonyl, tert-butylcarbonyl, benzyloxycarbonyl, and the like.

The term "alkoxy" herein used is exemplified by methoxy, ethoxy, and the like.

The term "optionally substituted amino" herein used means mono- or disubstituted amino, for example, ethylamino, dimethylamino, cyclohexylamino, etc., and cyclic amino, for example, piperidino, morpholino, etc.

The term "thiophen-diyl" is exemplified by 2,5-thiophendiyl, 3,4-thiophendiyl, 3,4-thiophendiyl, and the like.

[0012]

Substituents for "optionally substituted alkyl" and "optionally substituted alkenyl" are hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, ester form of carboxy (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, trifluoromethyl, substituted or unsubstituted amino (e.g., methylamino, dimethylamino, and carbamoylamino), guanidino, phenyl, benzyloxy, and the like. These substituents are able to bind them at one or more of any possible positions.

[0013]

Substituents for the aromatic ring of "optionally substituted aralkyl (e.g., naphthylmethyl)", "optionally substituted heteroarylalkyl (e.g., optionally substituted thiazolylmethyl, optionally substituted pyridylmethyl, optionally substituted benzimidazolylmethyl)", "optionally substituted aryl (e.g., optionally substituted phenyl, optionally substituted naphthyl)", "optionally substituted heteroaryl (optionally substituted thiazolyl, optionally substituted indolyl, optionally substituted benzothiazolyl, optionally substituted benzimidazolyl)", and "optionally substituted phenylene" are, for example, hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, ester form of carboxy (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, trifluoromethyl, aryloxy (e.g., phenyloxy) substituted or unsubstituted amino (e.g., methylamino, dimethylamino, and diethylamino), guanidino, alkyl (e.g., methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neo-pentyl, and tert-pentyl), alkenyl (e.g., vinylene and propenylene), alkynyl (e.g., acetylene and phenylacetylene), alkanoyl (e.g., formyl, acetyl, and propionyl), acyloxy (e.g., acetyloxy), phenyl, benzyl, imino (e.g., bezylideneamino), an azo group (e.g., phenylazo), optionally substituted heteroaryl (e.g., 3-pyridyl), optionally substituted ureido (e.g., ureido and phenylureido), and the like. These substituents are able to bind to it at one or more of any possible position.

[0014]

The term "pharmaceutically acceptable salt" herein used is exemplified by a salt with alkali metals (e.g., lithium, sodium, potassium, etc.), alkaline earth metals (e.g., calcium, magnesium, etc.), ammonium (e.g., ammonium, trimethylammonium, diethylammonium, etc.), mineral acids (e.g., hydrochloric acid, sulfuric acid, etc.), and organic acids (e.g., methanesulfonic acid, mallein acid, etc.).

The term "hydrate" herein used includes hydrates of the compound

represented by the formula (I) and its pharmaceutically acceptable salt.

The compound of the present invention includes all of stereoisomers (diastereoisomer, enantioisomer, epimaer) and all of racemates. The compound wherein a configuration of asymmetric carbon atom bonding with R^1 is R configuration is preferred.

[0015]

Compounds (Ia) and (IIa) of the invention are able to be synthesized from the corresponding α -amino acids represented by the formula (III).

wherein R^1 and R^2 are as defined above, R^3 is hydrogen atom or a carboxy protective group, and R^4 is a hydroxy protective group.

Conversion of compound (III) to compound (IIa) is sulfonation of an amino group of the compound (III) (process 1). If necessary, after this reaction, N-alkylation, deprotection of a carboxyl protective group, etc. are carried out. Conversion of compound (IIa) to compound (Ia) is to obtain hydroxamic acid derivatives from carboxylic acid derivatives (process 2). To obtain compound (IIa) from compound (Ia), compound (IIa) may also be reacted with hydroxylamine having a hydroxyl protective group or its acidic salts to give compound (IV) (process 3), followed by and deprotection (process 4). Conversion to sulfonyl derivatives and hydroxamic acid derivatives are able to be carried out according to an usual method. For example, an amino acid represented by the formula (III) is reacted with a sulfonating agent such as sulfonyl halide represented by R²-SO₂X' (R² is as defined above; and X' is halogen) and then hydroxylamine. Each process will hereinafter be described in more detail.

[0016]

(Process 1)

Some of amino acids represented by the formula (III) or its acidic salts (e.g., hydrochloride, p-toluenesulfonate, and trifluoroacetate) which are starting materials are commercially available. The other are able to be synthesized in accordance with a

method described in Zikkenkagakukoza, vol. 22, IV (nihonkagakukai), J. Med. Chem. 38, 1689-1700, 1995, Gary M. Ksander et. al., etc. some of sulfonating agents are commercially available and the other are synthesized in accordance with a method described Shin-zikkenkagakukoza, vol. 14, 1787, 1978, Synthesis 852-854, 1986, etc. A carboxyl protective group is exemplified by esters (e.g., methyl ester, tert-butyl ester and benzyl ester). Deprotection of this protective group may be carried out by hydrolysis with acid (e.g., hydrochloride and trifluoroacetic acid) or base (e.g., sodium hydroxide) depending on the type of the group, or by catalytic reduction, e.g., under 10% palladium-carbon catalyst condition. To obtain a compound (Ia), the esters may directly be converted to hydroxamic acid by the method of process 2. compound (III) is an amino acid wherein R3 is hydrogen atom, preferable solvents for this sulfonylation are dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, or mixed solvents thereof. When a compound (III) is an amino acid wherein R³ is a protective group such as an ester, a solvent for this sulfonylation is exemplified by the above solvents and mixed solvents of water-insoluble solvents (e.g., benzene and dichloromethane) and the above solvents. A base to be used in this sulfonylation is exemplified by organic bases such as triethylamine, methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and the like. Usually this reaction can be carried out at ice-cooling to room temperature. When R1, R2 or R3 of compound (IIa) contains a functional group(s) possibly interfering this sulfonylation (e.g., hydroxy, mercapto, amino, and guanidino), it can previously be protected in accordance with a method described in "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)) and then deprotected at an appropriate process.

[0017]

(Process 2)

A hydroxylamine is reacted with compound (IIa) or its reactive derivatives to give hydroxamic acid derivatives (Ia). A hydroxylamine is usually used as its acidic salts (e.g., hydrochloride, and phosphate, sulfate: commercially available) in the presence of a base. A base to be used in this reaction is exemplified by organic bases such as triethylamine, N, N-dimethylaniline, N-methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, etc. When compound (IIa) is used as a starting material of conversion to hydroxamic acid, this reaction is carried out in the presence of a peptide condensing agent (e.g., dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N'-carbonyldiimidazole, or a mixture of one of the above agents with 1-

hydroxybenzotriazole, N-hydroxy sucinicimide, etc.). A solvent for this reaction may be dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, and mixed solvent thereof. This reaction is carried out at -20 $^{\circ}$ C to 40 $^{\circ}$ C, preferably ice-cooling to room temperature, for 1 to 16 hours.

[0018]

Acid anhydrides (especially, mixed acid anhydrides), acid halides, acid azides, and esters can be utilized in this reaction as a reactive derivative of compound (IIa). These reactive derivatives are produced by usual methods. For example, the acid anhydride derivatives can be produced by a reaction of compound (IIa) with acid halide derivatives (e.g., ethyl chlorocarbonate) in the presence of a base (e.g., triethylamine), and acid halide derivatives can be produced by a reaction of compound (IIa) with a halogenation agent (e.g., oxalylchloride, and thionylchloride). Ester derivatives may be inactive or active. Sulfonyl derivatives converted from a compound (III) wherein R³ is a carboxyl protective groups (e.g., methyl, tert-butyl, and benzyl) at process 1 can be used as inactive esters without deprotection. Active esters can be produced by a reaction of compound (IIa), carbodiimide reagents (e.g., dicyclohexylcarbodiimide, 1ethyl-3-(3-dimethylaminopropyl)carbodiimide), and hydroxy derivatives corresponding to the active ester residue such as 1-hydroxybenzotriazole, N-hydroxysuccinimide, or the like. A reaction condition of conversion of the reactive derivatives of compound (IIa) to hydroxamic acid may be the same as that of conversion of compound (IIa) itself to hydroxamic acid. The reactions of processes 1 and 2 are able to continuously be carried out in one-pot reaction.

[0019]

(Process 3)

A protected hydroxylamine to be used in this reaction includes Obenzylhydroxylamine, O-(p-methoxybenzyl)hydroxylamine, O-(tertbutyl)hydroxylamine, or the like. This reaction condition may be in the same manner as that of process 2.

[0020]

(Process 4)

This process for deprotection is carried out by catalytic reduction, treatment with conc. hydrochloric acid, or treatment with trifluoroacetic acid to give the desired compound (Ia). The compounds of this invention (Ia) and (IIa) can be isolated and purified by usual separation methods and purification methods (e.g., chromatography, crystallization, etc.).

[0021]

The compound of the present invention represented by the formula (I) has an excellent activity for inhibiting metalloproteinase and inhibits matrix dissolution, as described in the following test examples. Therefore, the compound of the present invention is useful to treat or prevent diseases which are caused by MMP, for example, osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontal disease, metastasis and invasion of tumor, virus infection (e.g., HIV).

[0022]

The compound of the present invention can be administered by oral and parenteral administration. When the compound is administered by oral administration, usual formulations, for example, solid preparations such as tablets, powder, capsules, granules, etc., and liquid medicines such as aqueous suspension, oiliness suspension, syrup, elixir, etc. are applicable. When the compound is administered by parenteral administration, aqueous or oiliness suspending injection and rectum administering suppositorium are able to use. When the formulation is prepared, usual excipients, binders, lubricants, aqueous solutions, oily solutions, emulsifiers, suspending agents and the like are able to be used. Additionally, the formulation can contain the other auxiliaries such as preservatives, stabilizers, etc.

An appropriate dosage varies with the administration method, the age of the patients, their weight, their conditions and their diseases. Usually, in the case of oral administration, a daily dosage can generally be between 10 - 800 mg/kg, preferably 50 - 200 mg/kg. In the case of parenteral administration, the daily dosage can generally be between 0.1 - 200 mg/kg, preferably 1 - 100 mg/kg. The daily dosage can be administrated in 1 to 3 divisions.

The following examples are provided to further illustrate the present invention and are not to be construed as limiting the scope thereof.

[0023]

Example 1

[Formula 21]

To a suspension of (R)-(+)-phenylalanine (compound III-1, 1.65g (10 mmol)) in 50 ml of dimethylformamide and 35 ml of water was stirred and treated with 2.78 ml (20 mmol) of triethylamine under ice-cooling. Then, 2.52g(10 mmol) of 4-biphenylsulfonyl chloride in 10 ml of dimethylformamide was added dropwise to the mixture over 5 min. After the reaction mixture was stirred for 2 h at the same temperature, 1.35 g (10 mmol) of 1-hydroxybenzotriazole hydrate, 2.1 g (11 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 3.47 g (50 mmol) of hydroxylamine hydrochloride, and 7 ml (50 mmol) of triethylamine were added to the mixture. After being stirred for 16 h at room temperature, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected to yield 1.70 g of compound (Ia-1) as a foam. Yield 43%. mp. 169-170°C.

Elemental analysis (%) C21H20N2O4S

Calcd. : C; 63.62, H; 5.08, N; 7.07, S; 8.09

Found: C;63.61, H; 5.12, N; 6.98, S; 8.06

IR ν max (cm⁻¹) (Nujol): 3365, 3295, 3266, 1674, 1320, 1159.

NMR (δ ppm) d₆-DMSO : 2.61 (dd, J=8.6, 13.4Hz, 1H), 2.80 (dd, J=6.0, 13.6Hz, 1H), 3.80 (m, 1H).

 $[\alpha]_D$: +18.5 ± 1.2 (c=0.503 %, 25°C, DMSO)

[0024]

Example 1'

Another synthetic method of compound (Ia-1)

[Formula 22]

Process 1

To a solution of (R)-phenylalanine benzyl ester tosylate (compound XV-1', 2.5 g (5.85 mmol)) in 60 ml of dichloromethane was added triethylamine (1.8 ml, 12.87 mmol) and 4-biphenylsulfonyl chloride(1.63 g, 6.44 mmol) under ice-cooling. After being stirred for 2 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO3 and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected and crystallized from dichloromethane / hexane to give 2.32 g of compound (Ia-1-1'). Yield 84.1%. mp. 130-131°C.

Elemental analysis (%) C₂₈H₂₅NO₄S

Calcd. : C; 71.32, H; 5.34, N; 2.97, S; 6.80

Found: C; 71.05, H; 5.41, N; 3.00, S; 6.81

IR v max (cm⁻¹) (Nujol): 3352, 1732, 1341, 1190, 1163.

NMR (δ ppm) (CDCl₃): 3.06 (d, J=5.8Hz, 2H), 4.30 (dt, J=6.0, 9.0Hz, 1H), 4.89 (s, 2H), 5.12 (d, J=9.0Hz, 1H), 6.98-7.81 (m, 14H).

 $[\alpha]_D$: -16.4 ± 1.1(c=0.506 %, 25°C, MeOH)

[0025]

Process 2

A solution of compound (III-1') (2.28 g) which was obtained process 1 in 50 ml of mixed solvents of methanol / ethyl acetate =1/1, was hydrogenated using 10 % Pd/C (200 mg) for 25 min. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane

to give 1.83 g of compound (IIa-1"). Yield 99.1 %. mp. 146-147℃.

Elemental analysis (%) C21H19NO4S

Calcd.: C; 66.12, H; 5.02, N; 3.67, S; 8.41

Found: C;65.97, H; 5.06, N; 3.61, S; 8.48

IR v max (cm⁻¹) (Nujol): 3408, 3305, 1751, 1325, 1161, 1134.

NMR (δ ppm) (CDCl₃): 2.97 (dd, J=7.0, 13.8Hz, 1H), 3.14 (dd, J=5.2, 14.0Hz, 1H), 4.13 (m, 1H), 7.03-7.78 (m, 14H).

 $[\alpha]_D$: -4.0±0.4(c=1.000 %, 25°C, MeOH)

[0026]

Process 3

To a solution of compound (IIa-1", 1.0 g (2.62 mmol)) which was obtained process 2 in dichloromethane (20 ml) was added 0.33 ml (3.93 mmol) of oxalyl chloride and one drop of dimethylformamide. After being stirred for stirred for 1 h at room temperature, the reaction mixture was concentrated in vacuo. The residue was dissolved in 10 ml of tetrahydrofuran. A solution of hydroxylamine hydrochloride (911 mg (13.1 mmol)) and NaHCO₃ 1.54 g (18.34 mmol) in 10ml of tetrahydrofuran and 10ml of water was stirred for 5 min under ice-cooling. To the mixture was added the above solution of acid chloride in tetrahydrofuran and the resulting mixture was stirred for 30 min. The reaction mixture was poured into water, and extracted with ethyl acetate. The organic layer was washed with 5% NaHCO₃, and water, and concentrated in vacuo to give compound (Ia-1) (969 mg). Yield 93.3 %.

[0027]

Process 4

To a solution of compound (IIa-1", 2.0 g, 5.24 mmol) which was obtained process 2 in dimethylformamide (20 ml) was added 1-hydroxybenzotriazole hydrate (0.7 g, 5.24 mmol), N-methylmorpholine (2.9 ml, 26.2 mmol), 1-ethyl-3-(3-diisopropylamino) carbodiimide hydrochloride (8 mmol), and O-benzylhydroxylamine hydrochloride (1.67 g, 10.48 mmol), and the resulting mixture was stirred for 6 h at room temperature. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CH₂Cl₂ / hexane = 1/1 were collected and recrystallized from dichloromethane / hexane to give 2.04 g of compound (IV-1). Yield 80 %. mp. 171-173°C.

Elemental analysis (%) C₂₈H₂₆N₂O₄S

Calcd.: C; 69.12, H; 5.39, N; 5.76, S; 6.59

Found :C; 68.85, H; 5.46, N; 5.76, S; 6.78

IR ν max (cm⁻¹) (Nujol): 3248, 1661, 1594, 1333, 1163.

NMR (δ ppm) (CDCl₃): 2.85-3.60 (m, 2H), 3.86 (m, 1H), 4.77 (ABq-Apart, J=11.4Hz, 1H), 4.82 (ABq-Bpart, J=11.4Hz, 1H), 5.00 (m, 1H), 6.95-7.70 (m, 19H).

 $[\alpha]_D$: -40.2 ± 1.6 (c=0.505 %, 25°C, DMSO)

[0028]

Process 5

A solution of compound (IV-1) (1.97 g) which was obtained process 4 in a 60 ml of mixed solvents of methanol / ethyl acetate =1/1 was hydrogenated using 10 % Pd-C (200 mg) for 3.5 h. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane to give 1.35 g of compound (Ia-1). Yield 84.4 %.

[0029]

Example 2 - 58

The compounds which were shown in Tables 1 to 26 were synthesized in a manner similar to those described in Example 1'.

(Table 1)

	Elemental analysis	C ₂₀ H ₂₆ N ₂ O ₄ S Calc. C;61.52 H;6.71 N;7.17 S;8.21 Foun.C;61.87 H;6.74 N;6.83 S;7.87	C ₂₁ H ₂₀ N ₂ O ₅ S-00.2H ₂ O Calc. C;60.62 H;4.94 N;6.73 S;7.71 Foun.C;60.54 H;4.95 N;6.58 S;7.59	C ₂₁ H ₂₀ N ₄ O ₄ S•00.6H ₂ O Calc. C;58.06 H;4.74 N;12.81 S;7.19 Foun.C;57.95 H;4.91 N;12.87 S;7.37	-	C ₂₃ H ₂₀ N ₂ O ₄ S Calc. C;65.70 H;4.79 N;6.66 S;7.63 Foun.C;65.31 H;5.00 N;6.40 S;7.62	C ₁₈ H ₁₇ N ₃ O ₄ S ₂ Calc. C;53.38 H;4.25 N;10.41 S;15.89 Foun.C;53.36 H;4.42 N;10.36 S;15.64	C ₂₃ H ₂₁ N ₃ O ₄ S·00.1CHCl ₃ Calc. C;62.01 H;4.75 N;9.39 S;7.17 Foun.C;62.27 H;4.89 N;9.70 S;6.75	
	mp. (decomp.) m.pt. (°C)	129-131	foam	157-160	138-142	156-158	173 >	203-206	
	*	Œ	· cc	œ	œ	Œ	S _S	· œ	RS
CONHOH (Ia)	R ²	CH3(CH ₂)4		√N:N-√	(CH ₃)2N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-C=C-{		-CH ₂ -	CH ₂ .
R¹ R²SO₂NH * CONHOH	_E	-CH2-	CH ₂ .	CH2-	OH2-	CH2-	S ^N ———CH ₂ -	- 1	00°H
	Example No.	8	ო .	4	ß	9	~	ω	9 H ₃

	(la)
- œ-	R2SO,NH CONHOH

1 1	1		•					
¹ H-NMR (δ ppm) d ₆ -DMSO	0.90(t,J=6.8Hz,3H),1.22-1.40(m,4H),1.52-1.67(m,2H),2.62(t,J=7.7Hz,2H),2.86(dd,J=8.4,13.7Hz, ,1H),3.02(dd,J=5.7,13.7Hz,1H) (CDCl ₃) 2.60(dd,J=8.7,13.7Hz,1H), 2.79(dd, J=6.0,13.7Hz,1H),3.75(ddd,J=6.0, 8.7,9.0,1H),6.94(d,J=8.9Hz.2H)		2.65(dd,J=8.9,13.6Hz,1H), 2.82(dd, J=6.6,13.6Hz,1H),3.86(m,1H),7.75 (d,J=7.8Hz,2H),7.87(d,J=8.7Hz,2H)	2.62(dd,J=8.6,13.5Hz,1H),2.81(dd,J=6.5 ,13.6Hz,1H),3.09(s,6H),3.83(m,1H),6.86(d,J=9.0Hz,2H),7.83(d,J=8.8Hz,2H)	2.62(dd,J=8.4,13.5Hz,1H), 2.80(dd, J=6.0,13.5Hz,1H),3.82(ddd,J=6.0, 8.4,8.7Hz,1H),8.38(d,J=8.7Hz,1H)	2.87(dd,J=5.6,14.2Hz,1H), 2.98(dd, J=8.4,14.2Hz,1H),4.02(dd,J=2.2, 8.6Hz,1H), 7.24(d,J=2.0Hz,1H), 8.83(d,J=2.2Hz,1H)	2.72(dd,J=7.2,13.8Hz,1H), 2.97(dd, 7.0,14.8Hz,1H),3.81(m,1H),	
IR (v cm ⁻¹) (KBr)	3700-2400br,3247, 1636,1337,1160	3700-2400br,3277, 1669,1325,1152	3700-2400br,3273, 1633,1338,1166	3700-2400br,2921, 1672,1314,1165,	3700-2400br,3267, 2217,1671,1321,1161	3258,1650,1377, 1348,1163 (Nujol)	3403,3386,3265,1673 ,1320,1162 (Nujol)	
*	Œ	Œ	Œ	Œ	Œ	RS	Œ	RS :
R ²	CH ₃ (CH ₂) ₄ -{}		N:N-V	Me ₂ N			12-	CH ₂ - CH ₂ -
Т	CH₂-	CH ₂ -	CH ₂ .	CH ₂ -	CH ₂ -	SN 	± = = = = = = = = = = = = = = = = = = =	00
Example No.	2	ო	4	လ	φ	~	æ	9 H ³ (

[Table 3]

Elemental analysis	C ₂₅ H ₂₂ N ₂ O ₄ S·00.6H ₂ O Calc. C;65.66 H;5.11 N;6.13 S;6.72 Foun.C;65.63 H;5.40 N;6.15 S;7.01	C ₂₇ H ₂₄ N ₂ O ₄ S•00.9H ₂ O Calc. C;66.05 H;5.32 N;5.73 S;6.56 Foun.C;66.38 H;5.42 N;5.72 S;6.29	C ₁₆ H ₁₅ N ₂ F ₃ O ₄ S•00.3H ₂ O Calc. C;48.80 H;3.99 N;7.11 F;14.47 S;8.14 Foun.C;48.77 H;3.93 N;7.08 F;14.50 S;8.11	C ₂₂ H ₂₂ N ₂ O ₄ S•00.1H ₂ O Calc. C;64.09 H;5.43 N;6.79 S;7.78 Foun.C;64.14 H;5.59 N;6.95 S;7.94	C ₂₃ H ₂₁ N ₃ O ₅ S•00.1C ₆ H ₆ Calc. C;61.71 H;4.74 N;9.15 S;6.98 Foun.C;61.44 H;4.96 N;8.71 S;6.65	C ₂₃ H ₂₁ N ₃ O ₅ S Calc. C;61.19 H;4.69 N;9.31 S;7.10 Foun.C;60.80 H;4.72 N;8.85 S;7.05	C ₁₇ H ₂₀ N ₂ O ₅ S Calc. C;56.03 H;5.53 N;7.69 S;8.80 Foun.C;55.83 H;5.62 N;7.93 S;8.65	C ₁₇ H ₂₈ N ₂ O ₄ S·00.2H ₂ O Calc. C;56.71 H;7.95 N;7.78 S;8.90 Foun.C;56.60 H;7.96 N;7.90 S;8.87
mp. (decomp.) m.pt. (°C)	124-126 C	139-141 C	167-169 C	0 172-173 6	115-118 C		149-151 C	oil C
*	RS	· cc	œ	S _S	Œ	ω	œ	Œ
R ²								CH ₃ (CH ₂),—
R¹	Š.	CH ₂ -	CF ₃ CH ₂ -	CH2CH2-	N CH	CH.	(CH ₃) ₂ CH-	<a>CH₂-
Example No.	10	= .	5	. 2	4	5	16	17

[Table 4]

pro pr	-5.8,14
¹ H-NMR (6 ppm) d ₆ -DMSO 3.12(dd,J=10.3,14.3Hz,1H), 3.89(dd, J=3.3,13.5Hz,1H),4.20(m,1H), 5.90 (brs,1H) 2.67(dd,J=9.2,13.1Hz,1H), 2.84(dd, J=5.3,13.5Hz,1H),3.82(m,1H) 2.2-2.7(m,2H),3.99(t,J=7.0Hz,1H) 2.2-2.7(dd,J=7.0,14.4Hz,1H), 2.96(dd, J=7.0,14.2Hz,1H),3.78(t,J=7.6Hz,1H) 2.71(dd,J=7.9,14.4Hz,1H),2.96(dd, J=7.0,14.4Hz,1H),3.78(dd,J=7.2, 7.3Hz,1H) 0.76(d,J=6.6Hz,6H), 1.77(m,1H),	3.26(m,1H) 0.87(t,J=6.3Hz,3H),2.50(t,J=7.4Hz,2H),2. 76(dd,J=9.6,14.0Hz,1H),2.87(dd,J=5.8,14 .0Hz,1H),3.84(dd,J=5.8,9.6Hz,1H),
IR (v cm ⁻¹) (KBr) 3277,1669,1397, 1322,1159, 3262,1663,1322, 1157, 1377,1161 (Nujol) 3403,3261,1669, 1321,1160 3406,1670,1324, 1153(Nujol) 3268,1634,1582, 1325,1153	3700-2400br,1663, 1320,1145 (film)
* SG R R SG R N R	Œ
-CONHOH (a)	CH ₃ (CH ₂)7—
CF3CH2. CF3CH2. CF3CH2. CF3CH2. CF3CH2. CF3CH2. CF3CH2. CF3CH2. CF3CH3. CF3	-ZH2-CH2-
Example No. 10 11 12 13 15 15 16	17.

[Table 5]

	Elemental analysis		C ₁₅ H ₁₅ N ₂ BrO ₄ S•00.2Ether Calc. C;45.83 H;4.14 N;6.77 Foun.C;45.66 H;3.96 N;6.59			C ₁₂ H ₁₈ N ₂ O ₅ S Calc. C;47.67 H;6.00 N;9.27 S;10.60 Foun.C;47.68 H;5.98 N;9.28 S;10.76	C ₂₁ H ₁₉ N ₃ O ₆ S•00.2H ₂ O Calc. C;56.67 H;4.39 N;9.44 S;7.20 Foun.C;56.56 H;4.46 N;9.76 S;7.16	C ₂₁ H ₁₉ N ₂ FO ₄ S•00.4H ₂ O Calc. C;59.82 H;4.79 N;6.64 F;4.51 S;7.60 Foun.C;59.83 H;4.65 N;6.75 F;4.36 S;7.62	C ₂₁ H ₂₆ N ₂ O ₄ S Calc. C;62.66 H;6.51 N;6.96 S;7.97 Foun.C;62.57 H;6.57 N;7.15 S;7.87
	mp. (decomp.) m.pt. (°C)	lio	144-146	116-118	91-92	178-179	184-185	128-130	165-166
	*	Œ	œ	Œ	Œ	Œ	RS	RS	æ
R²-SO₂NH ♣ CONHOH (Ia)	R ²	CH ₃ (CH ₂) ₃ —	B	F ₃ C	(CH ₃) ₂ N-(CH ₃)	H ₃ CO (
	"R	CH2-	CH2-	CH ₂ -CH ₂ -	CH ₂ -	—HЭ ² (СН-Э)	O ₂ N	F CH2-	-cH ₂ -
	Example No.	18	19	20	24	8	23	24	25

	OSMO-9p (mpd (8 phm)-H	0.79(t,J=7.0Hz,3H),2.32-2.56(m,2H), 2.92(m,1H),3.26(m,1H),	2.61(dd,J=9.4,13.8Hz,1H),2.78(dd, J=6.0,13.8Hz,1H),3.78(m,1H),7.43 (d,J=8.2Hz,2H),7.60(d,J=8.2Hz,2H),	2.60-2.82(m,2H),3.84(m,1H),7.00- 7.18(m,5H),7.62-7.80(m,4H),	2.70-2.93(m,2H),2.82(s,6H), 3.75(m,1H),	0.71(d,J=6.8Hz,3H),0.74(d,J=5.4Hz,3H),1.73 (m,1H),1.73(m,1H),3.22(m,1H),3.82(s,3H),7. 05(d,J=9.0Hz,2H),7.69(d,J=9.0Hz,2H)	2.80(dd,J=10.0,13.8Hz,1H),2.92(dd, J=5.0,12.8Hz,1H),3.90(dd,J=5.4, 9.6Hz,1H),	2.62(dd,J=9.9,13.5Hz,1H),2.78(dd, J=5.8,13.0Hz,1H),3.77(t,J=6.2Hz, 1H),	0.50-1.62(m,13H), 3.56(t,J= 7.4Hz,1H)
	IR (v cm ⁻¹) (KBr)	3600-2400br,3262,1673, 1321,1142 (CHCl ₃)	3700-2200br,3264, 1635,1342,1164,	3600-2400br,3257, 1743,1721,1323,1132,	3700-2100br,3176, 1664,1320,1143,	3268,1632,1598, 1336,1162	3257,1662,1516, 1344,1322,1160,	3258,1669,1509, 1322,1157	3278,2920,1632, 1337,1161
	*	Œ	Œ	Œ	Œ	Œ	R	RS	Œ
R¹ ↓ *CONHOH (Ia)	H ²	CH ₃ (CH ₂) ₃ —	B	F_3C	(CH ₃) ₂ N _N	H ₃ CO			
R¹ R²-SO₂NH * CONHOH	<u>-</u> α	CH ₂ -	-ZH2-	CH ₂ -	CH ₂ -	(CH ₃) ₂ CH—	O₂N⟨}-CH₂-	F CH ₂ -	CH ₂ .
	Example No.	81	61	50	21	53	83	24	52

[Table 7]

	Elemental analysis	C ₂₄ H ₂₃ N ₃ O ₄ S•00.15H ₂ O Calc. C;63.74 H;5.19 N;9.29 S;7.09 Foun.C;63.70 H;5.17 N;9.16 S;7.32	C ₂₄ H ₂₃ N ₃ O ₄ S•00.15H ₂ O Calc. C;63.74 H;5.19 N;9.29 S;7.09 Foun.C;63.53 H;5.20 N;9.12 S;7.18	C ₂₃ H ₂₀ N ₃ FO ₄ S·00.5H ₂ O Calc. C;59.73 H;4.58 N;9.09 F;4.11 S;6.93 Foun.C;60.02 H;4.46 N;8.92 F;4.12 S;6.75		C ₂₀ H ₁₉ N ₃ O ₄ S Calc. C;60.44 H;4.82 N;10.57 S;8.07 Foun.C;60.95 H;4.89 N;10.16 S;8.33	C ₂₂ H ₁₉ N ₃ O ₄ S _{2*} 11.9H ₂ O Calc. C;54.17 H;4.71 N;8.61 S;13.15 Foun.C;54.07 H;4.15 N;8.70 S;12.72		C ₂₀ H ₁₈ N ₂ O ₄ S Calc. C;62.81 H;4.74 N;7.32 S;8.38 Foun.C;62.84 H;4.82 N;7.23 S;8.29
	mp. (decomp.) m.pt. (°C)	158-163				154-158	111-115		196-197
	*	RS	RS	S	RS	SB.	RS	RS	Œ
R¹ ↓ R²SO₂NH *CONHOH (la)	н²								
	. с	CH3 N	H ₃ C _H C _H C _P	HV HO	CH ₂ -	N CH2-	SHOP	IO-O	
	Example No.	26	27	58	59	30	31	32	33

	R¹ R²SO₂NH ♣CONHOH	СОМНОН (Іа)			
Example No.		R^2	*	IR (v cm ⁻¹) (KBr)	¹ H-NMR (δ ppm) d ₆ -DMSO
56	HO CH		RS	3272,1631,1332, 1161	2.71(dd,J=7.9,14.2Hz,1H),2.94(dd, J=6.9,14.2Hz,1H),3.57(s,3H),3.83 (dd,J=7.0,7.4Hz,1H)
27	H ₃ C CH ₂ -		RS	3404,1670,1320, 1159	2.25(s,3H),2.67(dd,J=7.5,14.2Hz, 1H),2.95(dd,J=7.7,14.6Hz,1H), 3.81(dd,J=6.2,14.2Hz,1H)
58	F CH2		RS	3420,1670,1592, 1321,1159	2.72(dd,J=8.0,14.0Hz,1H),2.90(dd, J=6.2,14.2Hz,1H),3.82(m,1H)
. 53	CH2		RS	ļ.	
30	N CH ₂ -		RS	3186,1593,1480, 1379	2.68(dd,J=9.8,13.7Hz,1H),2.79(dd, J=5.6,12.8Hz,1H),3.85(t,J=7.0Hz,1H),
31	S CH2-		RS	3700-2400br,3252, 1668,1326,1160	3.22-3.38(m,2H),4.17-4.24(m,2H), 7.80(d,J=8.0Hz,2H),7.96(d,J=6.4 Hz.2H)
32	10-9		RS	3455,3362,1672, 1398,1162	3.86(d,J=3.6Hz,1H),4.91 (d,J=3.6Hz,1H)
33			Œ	3404,3315,1669, 1594,1316,1162	4.88(d,J=9.4Hz,1H),8.74(d,J=9.4Hz,1H), 8.98(s,1H),10.92(s,1H)

[Table 9]

	Elemental analysis	C ₂₂ H ₂₂ N ₂ O ₄ S-00.3H ₂ O Calc. C;63.54 H;5.48 N;6.74 S;7.71 Foun.C;63.65 H;5.38 N;6.68 S;7.53		İ	C ₁₅ H ₁₆ N ₂ O ₅ S Calc. C;53.56 H;4.79 N;8.33 S;9.53 Foun C:54.05 H;5.02 N;8.26 S;9.16				C ₁₇ H ₁₈ N ₂ O ₄ S·00.5H ₂ O Calc. C;57.45 H;5.39 N;7.88 S;9.02 Foun.C;57.49 H;5.10 N;7.58 S;8.66	C ₁₆ H ₁₈ N ₂ O ₄ S·00.3Ethylether Calc. C;57.93 H;5.94 N;7.85 S;8.99 Foun.C;58.08 H;5.54 N;7.29 S;9.09
	mp. (decomp.) m.pt. (°C)	85-86			197-199	201-202	63-65	70-71	138-139	02-69
•	*	Œ	œ	Œ	Œ	Œ	Œ	œ	œ [']	œ
R¹ ├ R²-SO₂NH ♣ CONHOH (Ia)	R ²		N=N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N		Но	Ноос-		O_2N		-5H2-
	æ	CH2-CH2-	C. C	TN TO	CH ₂ -CH ₂ -	CH2-	CH2-	CH2-	CH ₂ -CH ₂ -	-CH ₂ -
	Example No.	34	35	36	37	38	33	40	4	42

(Table 10)	¹ H-NMR (δ ppm) d ₆ -DMSO	2.80(m,1H),2.96(m,1H),3.94(s,2H),3.86(m, 1H),6.80-7.52(m,10H),7.08(A ₂ B ₂ qJ=7.5Hz, 2H),7.42(A ₂ B ₂ q,J=7.5Hz,2H)(CDCl ₃)		 	2.69(dd,J=7.6,13.5Hz,1H),2.93(dd,J=7.6,13.5 Hz,1H),3.77(t,J=7.6Hz,H),(CD ₃ OD)	2,74(dd,J=8.3,13.5Hz,1H),2.95(dd,J=6.5,13.5H z,1H),3.87(dd,J=6.5,8.3Hz,1H),(CD ₃ OD)	2.60(dd,J=9.0,13.8Hz,1H),2.79(dd, J=9.3,13.8Hz,1H),3.76(m,1H)	2.66(dd,J=9.5,13.6Hz,1H),2.79(dd,J=5.4,13.6Hz,1H), 3.84(m,1H),7.73(A ₂ B ₂ qJ=8.9Hz,2H),8.20(A ₂ B ₂ q,J=8. 9Hz,2H),8.72(d,J=9.0Hz,1H),8.86(s,1H),10.7(s,1H)	2.79(dd,J=8.5,13.4Hz,1H),2.89(dd,J=6.0,13.4Hz,1 H),3.81(dd,J=6.0,8.5Hz,1H),6.55(d,J=15.5Hz,1H)	2.78(dd,J=8.6,13.4Hz,1H),2.91(dd,J=6.0,13.4Hz,1 H),3.92(ABq,J=13.5Hz,1H),3.90(m,1H),9.01(s,1H), 10.78(s,1H)
	IR (v cm ⁻¹) (KBr)	3700-2200(br),3262, 1639,1332,1156			3700-2400(br),3473, 1675,1310,1152	3700-2200(br),3278, 1706,1645,1322,1162	3700-2200(br),3362,1670, 1590,1336,1152	3700-2200br,3372,1674, 1531,1348,1310,1161	3700-2400(br),3312, 1629,1329,1144	3700-2200(br),1670, 1318,1152
·	*	· œ	Œ	Œ	œ.	Œ	α	Œ	Œ	œ
R¹ NH ★CONHOH (Ia)	R ²		N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		Но			O_2N		CH ₂ -
R-SO ₂ NH	<u>.</u>	-cH ₂ -	CH ₂	CH ₂	CH ₂ -	-CH ₂ -	CH2-	CH2-	CH ₂ -	-CH ₂ -
	Example No.	34	35	36	37	38	39	40	14	42

[Table 11]

	Elemental analysis	C ₂₂ H ₂₀ N ₆ O ₄ S Calc. C;56.89 H;4.34 N;18.09 S;6.90 Foun.C;56.88 H;4.47 N;17.67 S;6.76	C ₂₂ H ₂₂ N ₄ O ₅ S Calc. C;58.14 H;4.88 N;12.33 S;7.06 Foun.C;57.91 H;4.91 N;12.00 S;6.87			C ₁₅ H ₁₆ N ₂ O ₅ S ₂ 00.4H ₂ O Calc. C;52.44 H;4.93 N;8.15 S;9.33 Foun.C;52.40 H;4.89 N;7.95 S;9.28	C ₂₂ H ₂₂ N ₂ O ₅ S Calc. C;61.96 H;5.20 N;6.57 S;7.52 Foun.C;61.86 H;5.33 N;6.40 S;7.33		C ₁₇ H ₁₇ N ₂ O ₄ S·00.2H ₂ O Calc. C;56.25 H;4.83 N;11.58 S;8.83 Foun.C;56.47 H;5.03 N;11.73 S;8.38	
	mp. (decomp.) m.pt. (°C)	194-195	206-207			192-193	69-70		160-162	
	*	ά .	Œ	Œ	Œ	Œ	Œ	Œ	<u>.</u> cc	RS
соинон (Іа)	В²	N=N N.N-N	O NI							₩
R²-SO₂NH ♣ CONHOH	e R¹	CH2- () -4H2-	HOOC-CH ₂ -	HOOC-CH ₂ -CH ₂ -	HOCH ₂ -	CH2OCH2-	H00C-{\bigs_cH2-}CH2-	IN HO	PCH3
	Example No.	43	4	45	46	47	48	49	20	51

	1H-NMR (8 ppm) d ₆ -DMSO	2.65(dd,J=9.3,13.1Hz,1H),2.82(dd, J=5.8,13.1Hz,1H),3.86(dt,J=5.8,9.3 Hz,1H),7.72(A ₂ B ₂ q,J=8.1Hz,2H), 8.19(A ₂ B ₂ q,J=8.1Hz,2H),8.49(d,J= 9.3Hz,1H),8.88(s,1H),10.69(s,1H)	2.57(dd,J=8.3,13.6Hz,1H),2.79(dd,J=6.0,13.6Hz,1H),3.76(m,1H),8.02(d,J=8.7Hz,1H),8.80(s,1H),8.85(d, J=1.7Hz,1H),9.06(s,1H),10.59(d,J=1.7Hz,1H)			3.29(dd,J=5.7,10.7Hz,1H),3.43(dd,J=8. 4,10.7Hz,1H),3.62(m,1H),7.85(A ₂ B ₂ q,J =8.7Hz,2H),7.88(A ₂ B ₂ q,J=8.7Hz,2H),7. 98(d,J=7.8Hz,1H),10.61(s,1H)	3.31(m,1H),3.46(dd,J=6.8,9.3Hz, 1H),3.89(t,J=6.8Hz,1H),4.33(ABq, J=12.3Hz,2H),		2.66(dd,J=7.5,13.4Hz,1H),2.96(dd, J=7.6,14.2Hz,1H),3.81(m,1H)	2.71(dd,J=7.9,14.2Hz,1H),2.93(dd, J=6.5,14.3Hz,1H),3.65(s,3H),3.78 (dd,J=7.1,7.2Hz,1H)
	IR (v cm ⁻¹) (KBr)	3700-2200(br),3278, 1634,1337,1160	3700-2400(br),3357,1686, 1641,1314,1155			3700-2400(br),3392, 1667,1320,1161	3700-2200(br),1671, 1329,1163		3401,3260,1673, 1316,1165	3314,1669,1582, 1420,1328,1154
	*	, cc	Œ	Œ	Œ	Œ	Œ	Œ	Œ	RS
R¹ ↓ NH ♣CONHOH (la)	R ²	N=N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N	O NI							
R ² SO ₂ NH	<u>.</u> er	CH ₂ -	CH ₂ -	HOOC-CH2-	HOOC-CH ₂ -CH ₂ -	носн₂-	СН2ОСН2-	ноос-{	CH ₂ .	P. ~
	Example No.	64	44	45	46	47	48	48	90	51

[Table 13]

	Elemental analysis						C ₂₅ H ₂₃ N ₃ O ₆ S•00.3H ₂ O Calc. C;60.18 H;4.77 N;8.42 S;6.43 Foun.C;60.26 H;5.00 N;8.20 S;6.19	C ₂₂ H ₂₀ N ₄ O ₄ S•11.6H ₂ O Calc. C;56.79 H;5.03 N;12.04 S;6.89 Foun.C;57.09 H;5.05 N;11.34 S;6.37
	mp. (decomp.) m.pt. (°C)							141-145
	*	RS	Œ	Œ	Œ	RS	RS	S _R
R²SO₂NH ♣CONHOH (Ia)	п²		S S	$\mathbb{B}_{r} \longrightarrow_{S}$	- NH			
'R¹ R²SO₂NH ♣C	R1	H ₃ C	N CH	NHO CH	IN H	L CH	COCH ₃	NT CH
,	Example No.	52	53	54	. 22	26	57	28

[Table 14]

	¹ H-NMR (δ ppm) d ₆ -DMSO	2.34(s,3H),2.65(dd,J=7.8,14.1Hz, 1H),2.93(dd,J=7.6,14.4Hz,1H), 3.75(dd,J=6.8,7.7Hz,1H)	1		 	2.71(dd,J=8.9,14.4Hz,1H),2.89(dd, J=6.6,14.4Hz,1H),3.75(dd,J=6.5, 6.8Hz,1H)	2.54(s,3H),2.69-2.89(m,2H),3.87 (m,1H)	2.84-3.21(m,2H),4.29(m,1H)
	IR (v cm ⁻¹) (KBr)	3405,1671,1582, 1487,1324,1154		<u> </u>		3317,1670,1582, 1488,1323,1153	3421,1702,1676,1582, 1354,1328,1153	3700-2400(br),1672, 1443,1327,1094
	· *	RS .	Œ.	Œ	Œ	SE S	SS.	SS
R¹ ↓ R²-SO₂NH * CONHOH (Ia)	H ²		CI CH3	$\mathbb{R}^{\mathbb{Z}_{\mathbb{S}}}$	-NH-			
F SO ₂ NH	H	H ₃ C CH ₂ -	HZ HO	TX HO	NT N	TX CA	CH ₂ -CH ₂ -	ZI SI
	Example No.	52	53	54	55	99	22	28

[Table 15]

	Elemental analysis	C ₂₀ H ₂₅ NO ₄ S•00.3H ₂ O Calc. C;63.67 H;6.77 N;3.68 S;8.42 Foun.C;62.98 H;6.58 N;3.66 S;8.39	C ₂₁ H ₁₉ NO ₅ S Calc. C;63.46 H;4.82 N;3.52 S;8.07 Foun.C;63.28 H;4.81 N;3.53 S;7.74	C ₂₁ H ₁₉ N ₃ O ₄ S•00.5H ₂ O Calc. C;60.27 H;4.82 N;10.04 S;7.66 Foun.C;60.39 H;4.75 N;9.67 S;7.43	C ₂₃ H ₂₄ N ₄ O ₄ S·22CF ₃ COOH·00.5H ₂ O Calc. C;47.15 H;3.93 N;8.15 F;16.57 S;4.66 Foun.C;47.35 H;4.21 N;8.25 F;16.07 S;4.21	C ₂₃ H ₁₉ NO ₄ S Calc. C;68.13 H;4.72 N;3.45 S;7.91 Foun.C;67.97 H;4.80 N;3.64 S;7.92	C ₁₈ H ₁₆ N ₂ O ₄ S ₂ •00.2H ₂ O Calc. C;55.14 H;4.22 N;7.15 S;16.36 Foun.C;55.18 H;4.22 N;7.46 S;16.41	C ₂₃ H ₂₀ N ₂ O ₄ S·00.4H ₂ O Calc. C;64.59 H;4.90 N;6.55 S;7.50 Foun.C;64.66 H;5.04 N;6.37 S;7.33	C ₂₄ H ₂₂ N ₂ O ₅ S•11.2H ₂ O Calc. C;61.06 H;5.21 N;5.93 S;6.79 Foun.C;61.24 H;5.20 N;5.75 S;6.26
	mp. (decomp.) m.pt. (°C)	121-122	108-109	172-174	93-94	176-178	159-161	227-229	181-189
	*	œ	Œ	Œ	Œ	Œ	RS	Œ	RS
1 СООН (IIa)		CH3(CH ₂)4		-N:N-	(CH ₃) ₂ N			·CH ₂ -	CH2-
R¹ R²SO₂NH ♣COOH	R	CH ₂ -	CH ₂ -	CH ₂ -	CH2-	CH2-	S N CH2-	ı	H ₃ CO
	Example No.	8	ო	4	ည	.	7	ω	ား တ

R²SO₂NH ♣COOH (IIa)	IR (v cm ⁻¹) (KBr) ¹ H-NMR (δ ppm) _{d6} -DMSO	2300-3700br,3426,3318, =7.0,13.9Hz,1H),2.96 =7.0,13.9Hz,1H),3.10(dd,J=5.4,13.9Hz,1H), (dt,J=6.9,8.2Hz,1H),5.30(d,J=8.2Hz,1H),	3 (4 (5 (S (☐) CH2- (☐) C≡C(☐) R 2200-3700br,3430, 2.73(dd,J=9.3,13.6Hz,1H),2.96(dd, 3292,1728,1324,1162 J=5.4,13.5Hz,1H),3.92(dt,J=5.4, 9.3Hz,1H),8.42(d,J=9.3Hz,1H)	7 S ^N 2.95(dd,J=9.0,14.0Hz,1H),3.12(dd,J = 5.0,14.0Hz,1H),3.12(dd,J = 5.4,14.0Hz,1H),4.13(m,1H),7.29(d,J = 5.4,14.0Hz,1H),4.13(m,1H),7.29(d,J = 5.4,14.0Hz,1H),8.34(d,J = 8.6Hz,1H),8.34(d,J = 8.6Hz,1H),9.34(d,J = 8.6Hz,	3386,3305,1747,1363, 2.88(dd,J=8.0,14.0Hz,1H),3.09(dd, 1323,1161,1135(Nujol) J=6.0,14.0Hz,1H),3.91(m,1H),8.23 H	N N N N N N N N N N N N N N N N N N N
	Example No.	2	ო	4	ហ	φ	~	, ω	

[Table 17]

	Elemental analysis	C ₂₅ H ₂₁ NO ₄ S•00.2H ₂ O Calc. C;69.01 H;4.96 N;3.32 S;7.37 Foun.C;68.87 H;5.02 N;3.36 S;7.40	C ₂₇ H ₂₃ NO ₄ S Calc. C;70.88 H;5.07 N;3.06 S;7.01 Foun.C;70.66 H;5.20 N;3.34 S;7.13		C ₂₂ H ₂₁ NO ₄ S•00.2H ₂ O Calc. C;66.21 H;5.40 N;3.51 S;8.03 Foun.C;66.06 H;5.49 N;3.93 S;8.25	C ₂₃ H ₂₀ N ₂ O ₅ S Calc. C;63.29 H;4.62 N;6.42 S;7.35 Foun.C;63.04 H;4.74 N;6.16 S;7.06	C ₂₃ H ₂₀ N ₂ O ₅ S•00.4H ₂ O Calc. C;62.26 H;4.73 N;6.31 S;7.23 Foun.C;62.47 H;5.02 N;5.88 S;7.11	C ₁₇ H ₁₉ NO ₅ S•00.2H ₂ O Calc. C;57.84 H;5.54 N;3.97 S;9.08 Foun.C;57.80 H;5.44 N;4.11 S;8.95	C ₁₇ H ₂₇ NO ₄ S•00.3H ₂ O Calc. C;58.87 H;8.02 N;4.04 S;9.24 Foun.C;58.91 H;8.01 N;3.91 S;9.10
·	mp. (decomp.) m.pt. (°C)	198-200	213-215	176-177	153-156	82-87	foam	137-138	io
	*	RS	œ	Œ	RS	Œ	ဟ	Œ	œ
R¹ ↓ * СООН (IIa)	H ²								CH ₃ (CH ₂)7—
R¹ A²SO₂NH ≯COOH	R1	Š.	CH ₂	CF ₃ CH ₂ -	CH2CH2-	N CH	CH N	(СН3)2СН-	CH2-
	Example No.	10	=	12	13	1	5	16	. 21

	¹ H-NMR (δ ppm) d ₆ -DMSO	3.17(dd,J=7.4,13.8Hz,1H),3.57(dd, J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz, 1H),8.11(d,J=7.4Hz,1H)	2.77(dd,J=9.7,13.7Hz,1H),3.03(dd, J=4.9,13.3Hz,1H),3.93(m,1H),8.38 (d,J=8.8Hz,1H)	2.40-2.90(m,2H),4.05(m,1H),8.51 (d,J=9.0Hz,1H),13.2(br,1H)	1.83(m,2H),2.52(m,2H),3.70(m, 1H),8.32(d,J=9.0Hz,1H)	2.88(dd,J=7.4,15.2Hz,1H),3.07(dd, J=6.2,14.4Hz,1H),3.83(m,1H),8.08 (m,1H),10.80(s,1H),12.70(br,1H)	2.81-3.12(m,2H),3.88(m,1H),8.19 (d,J=8.4Hz,1H)	0.89(d,J=7.0Hz,3H),0.98(d.J=6.8 Hz,3H),2.12(m,2H),3.80(dd,J=4.7 ,9.7Hz,1H),5.17(d,J=9.6Hz,1H)	0.88(t,J=6.9Hz,3H),2.55-2.73(m,2H),2.97(dd,J=8.4,13.8Hz,1H),3.24(dd,J=4.8,13.8H z,1H),4.35(m,1H),4.98(m,1H) (CDC ₁₃)
	IR (v cm ⁻¹) (KBr)	3446,3065,1594,1397, 1303,1154,1094	3184,1723,1337, 1317,1156	3276,1706,1344, 1260,1165	3289,1739,1326, 1159,1089	3410,3276,1724,1582, 1488,1331,1152(Nujol)	3412,1724,1582,1488, 1332,1152	3154,1720,1688,1583, 1488,1251	2400-3600br,3340,1736, 1334,1142(CHCl ₃)
	*	RS	Œ	Œ	S _F	œ	ω	Œ	œ
^{R¹} * соон (IIa)	. 2Н								CH ₃ (CH ₂)7—
R¹ R²·SO₂NH ★ COOH	а Д	Ş	CH2-	CF ₃ CH ₂ -	СН ₂ СН ₂ -	IZ HO	CH ₂ -	-н⊃²(сн₃)	CH ₂ -
	Example No.	01	=	5	. 5	4	5	91	14

	Elemental analysis	C ₁₃ H ₁₉ NO ₄ S•00.4H ₂ O Calc. C;53.37 H;6.82 N;4.79 S;10.96 Foun.C;53.55 H;6.96 N;4.96 S;10.91	C ₂₁ H ₂₂ N ₂ O ₄ S-00.4H ₂ O Calc. C;62.17 H;5.66 N;6.91 S;7.90 Foun.C;62.36 H;5.84 N;6.71 S;7.75	C ₂₁ H ₁₈ N ₂ O ₆ S·00.1H ₂ O Calc. C;58.90 H;4.28 N;6.54 S;7.49 Foun.C;58.72 H;4.35 N;6.72 S;7.59	C ₂₁ H ₁₈ NFO ₄ S Calc. C;63.14 H;4.54 N;3.51 F;4.76 S;8.03 Foun.C;62.93 H;4.53 N;3.71 F;4.66 S;8.13		C ₂₄ H ₂₂ N ₂ O ₄ S Calc. C;66.34 H;5.10 N;6.45 S;7.38 Foun C;66.33 H;5.13 N;6.30 S;7.36	C ₂₄ H ₂₂ N ₂ O ₄ S Calc. C;66.34 H;5.10 N;6.45 S;7.38 Foun.C;66.13 H;5.64 N;5.97 S;6.88	C ₂₃ H ₁₉ N ₂ FO ₄ S·00.2H ₂ O Calc. C;62.49 H;4.42 N;6.34 F;4.30 S;7.38 Foun.C;62.38 H;4.62 N;6.35 F;4.13 S;7.31
	mp. (decomp.) m.pt. (°C)	89-90	. 103-105	212-213	164-165	85-87	179-183	115-120	208-211
	*	Œ	Œ	RS	SR	Œ	RS	SB SB	RS
00н (IIa)	R ²	CH ₃ (CH ₂) ₃ —	(CH ₃) ₂ N						
R¹ ↓ R²-SO₂NH → COOH	В¹	CH2-	-2+O-CH ₂ -	02N CH2-	F CH2-	-CH ₂ -	CH ₂ ·	H ₃ C CH ₂ C	F CH ₂ -
	Example No.	18	21	83	24	52	. 56	23	58

	¹ H-NMR (δ ppm) d ₆ -DMSO	0.84(t,J=7.1Hz,3H),2.57-2.70(m,2H),2.97(dd, J=8.4,13.9Hz,1H),3.25(dd,J=4.8,13.9Hz,1H), 4.35(m,1H),4.96(d,J=9.6Hz,1H) (CDCl ₃)	2.86(m,1H),2.87(s,6H),2.98(dd,J= 5.1,13.8Hz,1H),4.15(m,1H),5.54 (m,1H)	2.86(dd,J=10.2,13.2Hz,1H), 3.14(dd,J=4.5,13.7Hz,1H), 4.02(m,1H),8.42(d,J=8.4Hz,1H)	2.71(dd,J=9.9,13.7Hz,1H),2.96(dd, J=5.3,13.5Hz,1H),3.89(m,1H), 8.34(d,J=9.0Hz,1H)	0.52-1.72(m,13H),3.68(m,1H), 8.20(br.s,1H)	2.80-3.12(m,2H),3.61(s,3H), 3.94(m,1H),8.30(d,J=8.6Hz,1H)	2.28(s,3H),2.78-3.10(m,2H),3.91 (m,1H),8.29(d,J=8.3Hz,1H)	2.80-3.10(m,2H),3.92(m,1H), 8.29(d,J=8.2Hz,1H)
	IR (v cm ⁻¹) (KBr)	2300-3700br,3240, 1725,1341,1144	2200-3700br,3439,3288, 1725,1329,1143	3113,1724,1520, 1345,1158	3426,3114,1715, 1509,1224,1159	2919,1688,1448, 1335,1326,1169	3432,3294.1713, 1482,1341,1159	3419,3397,3291,1736, 1482,1336,1321,1165	3407,3285,1751,1735, 1703,1486,1321,1162
	*	œ	Œ	RS	RS	œ	RS S	RS	S _R
СООН (IIa)	H ²	СН ₃ (СН ₂)3—	(CH ₃) ₂ N						
R²-SO₂NH + COOH	ite R1	CH2-	-ZH2-	O ₂ N CH ₂ -	F CH ₂ -	CH ₂ -	N OH3	H ₃ C CH ₂ -	HV CH
	Exampte No.	81	21	83	24	52	56	27	58
	'				•	•			1

[Table 21]

	Elemental analysis		C ₂₂ H ₁₈ N ₂ O ₄ S ₂ ·00.2H ₂ O Calc. C ₅ 59.77 H;4.19 N;6.34 S;14.50 Foun.C ₅ 59.65 H;4.24 N;6.43 S;14.51	C ₂₁ H ₁₉ NO ₅ S•00.2H ₂ O Calc. C;62.89 H;4.88 N;3.49 S;7.99 Foun.C;62.75 H;4.84 N;3.66 S;7.98	C ₂₀ H ₁₇ NO ₄ S Calc. C;65.38 H;4.66 N;3.81 S;8.73 Foun.C;65.09 H;4.76 N;3.72 S;8.50			C ₁₇ H ₁₇ NO ₄ S•00.2H ₂ O Calc. C;60.95 H;5.24 N;4.18 S;9.57 Foun.C;60.97 H;5.21 N;4.34 S;9.42	C ₁₆ H ₁₇ NO ₄ S•00.2H ₂ O Calc. C;59.50 H;5.43 N;4.34 S;9.93 Foun.C;59.83 H;5.83 N;4.24 S;9.24	C ₂₂ H ₁₉ N ₅ O ₄ S·00.5H ₂ O Calc. C;57.63 H;4.40 N;15.27 S;6.99 Foun.C;57.72 H;4.38 N;15.02 S;6.84
	mp. (decomp.) m.pt. (°C)	197-205	196-199	141-143	211-214	205-207	foam	116-117	foam	215-216
	*	RS	RS	RS	Œ	Œ	Œ.	Œ	Œ	Œ
R¹ ↓ COOH (IIa)	H ²					N=N N-N-			CH2-	N=N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N
R¹ ↓ R²SO₂NH * COOH	H ¹	N CH2-	S CH2-	TO-O		TV TO	CH ₂ -CH ₂ -	CH ₂ -CH ₂ -	-CH ₂ -	-ZH2-
	Example No.	30	31	32	33	35	36	14	42	43

	¹ H-NMR (δ ppm) d ₆ -DMSO	2.60-3.04(m,2H),3.98(m,1H)	3.24-3.56(m,2H),4,34(m,1H)	4.10(d.J=3.2Hz,1H),5.13(d,J= 3.2Hz,1H)	4.94(d,J=9.4Hz,1H),8.80(d,J= 9.4Hz,1H),13.0(br.s,1H)	3.03(dd,J=6.5,15.1Hz,1H),3.15 (dd,J=4.7,14.1Hz,1H),3.64(t, J=5.1Hz,1H),10.68(s,1H)	2.98(dd,J=7.0,14.8Hz,1H),3.15 (dd,J=4.4,14.0Hz,1H),3.78(m, 1H),10.77(s,1H)	2.81(dd,J=9.2,13.7Hz,1H),3.03(dd,J=5.4,13.7Hz, 1H),3.94(dt,J=5.4,9.2Hz,1H),6.66(d,J=15.2Hz,1H),7.16(d,J=15.2Hz,1H),8.01(d,J=9.2Hz,1H)	2.81(dd,J=9.2,13.7Hz,1H),3.00(dd,J=5 .6,13.7Hz,1H),4.01(ABq,J=13.7Hz,2H) ,4.01(m,1H),7.65(d,J=8.3Hz,1H)	2.75(dd,J=9.3,13.7Hz,1H),2.99(dd,J=5.3 ,13.7Hz,1H),3.96(dt,J=5.3,9.3Hz,1H),8. 53(d,J=9.3Hz,1H)
	IR (v cm ⁻¹) (KBr)	2600-3700br,1635,1594, 1335,1163,1095	2200-3700br,1713br, 1345,1125	3335,3246,1732, 1315,1152	3316,1734,1325, 1159(Nujol)	3413,1594,1456, 1416,1157	3412,2859,1589,1420, 1338,1149	2400-3700br,3252,1765, 1725,1301,1140	2200-3700br,3268,1726, 1321,1152(film)	2400-3700br,3422,3337, 1733,1698,1347,1170
	*	RS	RS	RS	Œ	Œ	<u>«</u>	œ	Œ	α
R¹ , , , соон (IIa)	R ²					N=N N.N.			CH2-	N=N N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
R ² ·SO ₂ NH	e R¹	N CH2-	N S S	±9-₽		IN G	IN P	CH2-CH2-	CH2-	CH ₂ -
	Example No.	30	31	32	33	35	36	14	42	43
										1

·	Elemental analysis	C ₂₂ H ₂₁ N ₃ O ₅ S Calc. C;60.12 H;4.82 N;9.56 S;7.30 Foun.C;59.72 H;4.87 N;9.50 S;7.15	C ₁₆ H ₁₅ NO ₆ S•00.4H ₂ O Calc. C;53.90 H;4.47 N;3.93 S;8.99 Foun.C;53.96 H;4.51 N;3.94 S;8.62	C ₁₇ H ₁₇ NO ₆ S•00.6H ₂ O Calc. C;54.57 H;4.90 N;3.74 S;8.57 Foun.C;54.55 H;5.07 N;3.96 S;8.35	C ₁₅ H ₁₅ NO ₅ S•00.6H ₂ O Calc. C;54.24 H;4.92 N;4.22 S;9.65 Foun.C;54.16 H;4.60 N;4.08 S;9.74		C ₂₂ H ₁₉ NO ₆ S•00.2H ₂ O Calc. C;61.59 H;4.56 N;3.26 S;7.47 Foun.C;61.49 H;4.55 N;3.41 S;7.45	C ₂₄ H ₂₂ N ₂ O ₅ S·00.4H ₂ O Calc. C;62.98 H;5.02 N;6.12 S;7.01 Foun.C;63.07 H;5.14 N;6.14 S;6.69	C ₂₄ H ₂₂ N ₂ O ₅ S·00.5H ₂ O Calc. C;62.73 H;5.04 N;6.10 S;6.98 Foun.C;62.75 H;5.15 N;6.02 S;6.60
	mp. (decomp.) m.pt. (°C)	203-204	171-173	185-187	277-279	89-91	>270	ļ	
	*	Œ	<u> </u>	Œ	Œ	. Œ	Œ	SR	RS
R²-SO₂NH ♣COOH (IIa)	R ²	NH ON NH							√ >• √
	"R) -2H2-	HOOC-CH ₂ -	HOOC-CH ₂ -CH ₂ -	HOCH ₂ -	CH2OCH2-	ноос () снг.	P- N - E	H ₃ C CH ₂ -
	Example No.	44	45	46	47	48	49	52	52

		<u>-</u> c-			
	R ²⁻ SO ₂ NF	$R^2SO_2NH \overset{\bigstar}{COOH}$ (IIa)			
Example No.	B ¹	R ²	*	IR (v cm ⁻¹) (KBr)	¹ H-NMR (δ ppm) d ₆ -DMS
44	CH ₂ -	ON NH	Œ	2300-3700br,3358, 3262,1718,1686, 1660,1313,1159	2.71(dd,J=9.1,13.7Hz,1H),2.93(dd,±. 13.7Hz,1H),3.84(dt,J=5.6,9.1Hz,1H), d,J=9.1Hz,1H),8.78(s,1H),9.06(s,1H)
45	HOOC-CH ₂ -		Œ	3353,1752,1326, 1155,1096	2.45(dd,J=6.2,16.4Hz,1H)2.63(dd, J=6.6,16.4Hz,1H),
46	HOOC-CH ₂ -CH ₂ -		Œ	3270.1709,1336, 1159,1093	1.68(dd,J=7.9,14.1Hz,1H),1.87(dd, J=6.0,13.4Hz,1H),2.22(t,J=7.2Hz, 2H),3.80(m,1H),
47	носн₂-		œ	2200-3700br,3430, 3292,1728,1324,1162	3.51(dd,J=6.0,12.9Hz,1H),3.55(dd, J=5.4,12.9Hz,1H),3.80(m,1H), 8.06(d,J=8.7Hz,1H)
48	<->СН₂ОСН₂-		. ac	2200-3700br,3432, 3289,1733,1330,1165.	3.54(dd,J=4.8,9.9Hz,1H),3.60(dd, J=5.7,9.9Hz,1H),4.04(m,1H), 4.39(s,2H),8.34(d,J=8.1Hz,1H)
49	H00C		_ œ	3319,3052,1701,1317, 1284,1162	2.81(dd,J=9.7,13.7Hz,1H),3.05(dd, J=4.8,13.4Hz,1H),3.96(m,1H), 8.40(d,J=9.0Hz,1H),12.88(br.s,1H)
15	ν. Δ.		SS S	3273,1724,1582,1487. 1331,1198,1153	2.78-3.10(m,2H),3.67(s,3H), 3.86(m,1H)
. 52	H ₃ C CH ₂		RS S	3409,3281,1725,1582, 1331,1197,1153	2.34(s,3H),2.75-3.08(m,2H),3.86(m, 8.19(d,J=8.4Hz,1H)

[Table 25]

·	Elemental analysis				C ₂₃ H ₁₉ N ₂ FO ₅ S·00.8H ₂ O Calc. C;58.91 H;4.43 N;5.97 F;4.05 S;6.84 Foun.C;59.07 H;4.55 N;5.87 F;3.96 S;6.24	C ₂₅ H ₂₂ N ₂ O ₆ S·00.7H ₂ O Calc. C;61.14 H;4.80 N;5.70 S;6.53 Foun.C;61.13 H;4.59 N;5.73 S;6.66	
	mp. (decomp.) m.pt. (°C)	>250	243-246			236-237	151-156
	*	<u> </u>	Œ	Œ	RS	RS	RS
СООН (Па)	R ²	Cl CH ₃	Br	-NH-			
R¹ R²SO₂NH ♣COOH	£.	TZ T	EX HO	TN F	TN CH	CH2-CH2	IN CH
	Example No.	SS	54	55	26	57	28

	f :	l					1
	OSMG-9p (mdd g) H.NMH	2.41(s,3H),3.01(dd,J=6.0,14.4Hz,1H),3.12 (dd,J=4.5,14.4Hz,1H),3.67(t,J=5.4Hz,1H), 6.79(m,1H),6.89(m,1H),10.59(s,1H)	3.06(dd,J=5.4,14.4Hz,1H),3.14(dd, J=5.1,14.4Hz,1H),3.65(1,J=5.4Hz, 1H),6.92(m,1H),10.72(s,1H)	0.90-1.68(m,9H),1.78(m,1H),2.74 (m,1H),3.00-3.20(m,2H),3.77(m, 1H)6.45(br.s,1H),6.77(br.s,1H)	2.78-3.08(m,2H),3.85(m,1H),8.18 (d,J=8.6Hz,1H)	2.55(s,3H),2.79-3.11(m,2H),3.98 (m,1H)	3.17-3.50(m,2H),4.51(m,1H)
	IR (v cm ⁻¹) (KBr)	3421,1580,1333, 1421,1153	3420,1588,1402, 1324,1151	3413,2931,1720,1585, 1455,1421,1313,1144	3415,1725,1582,1488, 1329,1196,1174,1152	3296,1742,1647,1604, 1581,1342,1334,1152	2200-3700br,1734, 1334,1161
	*	Œ	<u>α</u>	Œ	S	S _E	SF.
 R ² ·SO ₂ NH * COOH (IIa)	R ²	CI CH3	Br S	-NH			
R ² -SO ₂ NH	Example No. R ¹	53 N CH ₂ -	54 CH2-	55 H CH2:	56 COCH3	57 CH ₂ -	58 TA CH2-
	üΖ						

[0030]

Test examples on the compounds of the present invention are described below.

The test compounds are the ones described in the Examples and Tables.

Test example

(1) Isolation and purification of MMP-9 (92 kDa, gelatinase B)

Type IV collagenase (MMP-9) was purified according to the methods descrived in the following literature. Scott M. Wilhelm et al., J. Biol. Chem., 264, 17213-17221, (1989), SV40-transformed Human Lung Fibroblasts Secrete a 92-kDa Type IV Collagenase Which Is Identical to That Secreted by Normal Human Macrophages; Yasunori Okada et al., J. Biol. Chem., 267, 21712-21719, (1992), Matrix Metalloproteinase 9 (92-kDa Gelatinase / Type IV Collagenase) from HT 1080 Human Fibrosarcoma Cells; Robin V. Ward et al., Biochem. J., (1991) 278, 179-187, The purification of tissue inhibitor of metalloproteinase-2 from its 72 kDa progelatinase complex.

MMP-9 is secreted from human fibrosarcoma cell line ATCC HT 1080, into its culture medium when it is stimulated with 12-tetradecanoylphorbol-13-acetate (TPA). The production of MMP-9 in this culture was verified by the gelatin zymography as described in the following literature (Hidekazu Tanaka et al., (1993) Biochem. Biophys. Res. Commun., 190, 732-740, Molecular cloning and manifestation of mouse 105-kDa gelatinase cDNA). The condition medium of the stimulated HT 1080 was concentrated and was purified with gelatin-Sepharose 4B, concanavalin A-sepharose, and Sephacryl S-200. The purified pro-MMP-9 (92 kDa, gelatinase B) thus obtained gave a single positive band in the gelatin zymography. Subsequently, activated MMP-9 was obtained by treating the pro-MMP-9 with trypsin.

[0031]

(2) Assay methods of type IV collagenase inhibitors

Collagenase assay was performed using the activated MMP-9 described above and the substrate supplied in the type IV collagenase activity kit (YAGAI, inc.), according to the manufacturer's protocol. The following 4 assays are performed per compound (inhibitor).

- (A) substrate (type IV collagenase), enzyme (MMP-9), inhibitor
- (B) substrate (type IV collagenase), inhibitor
- (C) substrate (type IV collagenase), enzyme (MMP-9)
- (D) substrate (type IV collagenase)

According to the manufacturer's protocol, fluorescent intensity was measured and percent inhibition was determined by the following equation.

Inhibition (%) = $\{1 - (A - B) / (C - D)\} \times 100$

 IC_{50} is a concentration at which the percent inhibition reaches 50 %. The results are shown in Table 27.

[Table 27]

·			
Compound	IC ₅₀	Compound	IC ₅₀ (μM)
			0.24
			1.31
			1.2
			0.48
			1.5
		112-0	1.0
		IIa-8	0.18
			0.81
			0.68
			0.00
		IIa-13	2.0
			0.247
Ia-15	0.0005		
		IIa-16	1.2
Ia-24	0.027		3.7
Ia-26			0.520
Ia-27			0.205
Ia-28	0.0282	IIa-28	0.500
Ia-31	0.004		
Ia-35		IIa-35	0.048
Ia-43	0.0056	IIa-43	0.575
Ia-48	0.0129	IIa-48	1.15
Ia-51	0.0037	IIa-51	0.520
Ia-52	0.0035	IIa-52	0.291
Ia-56	0.0041	IIa-56	0.79
Ia-58	0.0216		
	No. Ia-1 Ia-3 Ia-4 Ia-5 Ia-6 Ia-7 Ia-8 Ia-10 Ia-11 Ia-12 Ia-13 Ia-14 Ia-15 Ia-24 Ia-26 Ia-27 Ia-28 Ia-31 Ia-35 Ia-43 Ia-48 Ia-51 Ia-52 Ia-56	No. (μM) Ia-1 0.030 Ia-3 0.0012 Ia-4 0.018 Ia-5 0.0053 Ia-6 0.011 Ia-7 0.040 Ia-8 0.005 Ia-10 0.041 Ia-11 0.034 Ia-12 0.028 Ia-13 0.034 Ia-14 0.0006 Ia-15 0.0005 Ia-24 0.027 Ia-26 0.0108 Ia-27 0.0203 Ia-28 0.0282 Ia-31 0.004 Ia-35 Ia-43 0.0056 Ia-48 0.0129 Ia-51 0.0037 Ia-52 0.0035 Ia-56 0.0041	No. (μM) No. Ia-1 0.030 IIa-1 Ia-3 0.0012 IIa-3 Ia-4 0.018 IIa-4 Ia-5 0.0053 IIa-5 Ia-6 0.011 IIa-6 Ia-7 0.040 Ia-8 0.005 IIa-8 Ia-10 0.041 IIa-10 Ia-11 0.034 IIa-11 Ia-12 0.028 Ia-13 0.034 IIa-13 Ia-14 0.0006 IIa-14 Ia-15 0.0005 IIa-16 Ia-24 0.027 IIa-24 Ia-26 0.0108 IIa-26 Ia-27 0.0203 IIa-27 Ia-28 0.0282 IIa-28 Ia-31 0.004 Ia-35 IIa-35 Ia-43 0.0056 IIa-43 Ia-48 0.0129 IIa-48 Ia-51 0.0037 IIa-51 Ia-52 0.0035 IIa-52 Ia-56 0.0041 IIa-56

The compound of the present invention showed strong activity for inhibiting type IV collagenase.

[Document's Name]

Abstract

[Abstract]

[Problem] Matrix metalloproteinases (MMP) such as gelatinase, stromelysin, collagenase, and the like have an important role in degradation of an extracellular matrix. It is considered that these enzymes participate in progression of diseases such as osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontitis, metastasis and invasion of tumor, and virus infection (for example, HIV infection). Therefore, if it is able to inhibit the activity of MMP, it is considered that MMP inhibitors contribute to an improvement of the above diseases caused by or related to its activity.

[Means for solution]

A compound of the formula (I):

[Formula 1]

$$R^{2}$$
-SO₂-N COY (I)

, its pharmaceutically acceptable salt, or hydrate thereof has inhibitory activity against metalloproteinase.

[Representative Drawing]

None

[Document Name]

Official Correction Data

[Corrected Document]

Petition for Patent

[Approved or Supplemented Information]

[Applicant]

[Identification No.]

000001926

[Address]

1-8, Doshomachi 3-chome, Chuo-ku, Osaka-shi,

Osaka 541 JAPAN

[Name]

Shionogi & Co.,Ltd.

[Agent]

[Identification No.]

1000103230

[Address]

1-8, Doshomachi 3-chome, Chuo-ku, Osaka-shi,

Osaka 541 JAPAN

[Name]

Hirotsugu TAKAYAMA

Applicant Record

Identification Number

(000001926)

1. Date of Registration:

August 23, 1990

Newly Recorded

Address:

1-8, Doshomachi 3-chome, Chuo-ku, Osaka-shi,

Osaka 541 JAPAN

Name:

Shionogi & Co.,Ltd.

CERTIFICATE OF VERIFICATION

- I, Mitsugu Kiyokawa
- of c/o, 2-5-15, Ogi, Higashinada-ku, Kobe-shi, Hyogo 658-0027 Japan

state that the attached document is a true and complete translation to the best of my knowledge of Japanese Patent Application No. 30082/96.

Dated this 26th day of April, 1999

Signature of translator:

Mitsugu Kiyokawa