Course 13

Confidence Interval(CI)置信区间: The probability of the interval cover the true value is confidence level(CL)

Problem: Given CL, find CI

• Case1: Population distribution is normal, σ is known, estimate μ

$$\circ$$
 Since $X\sim N(\mu,\sigma^2)$, then $ar{X}\sim N(\mu,rac{\sigma}{\sqrt{n}}), rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$

$$\circ \ P(-Z_{\frac{\alpha}{2}} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{\frac{\alpha}{2}}) = 1 - \alpha = P(\bar{X} - \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}} < \mu < \bar{X} + \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}})$$

- Case2: Any population distribution(normal or abnormal), σ is unknown, n is sufficiently large($n \geq 40$)
 - Use CLT(Central Limit Theorem)

$$\circ \ S
ightarrow \sigma(spprox\sigma)$$

$$\circ$$
 Sample variance: $S^2 = rac{\sum (x_i - ar{x})^2}{n-1}$

$$\circ \ Z = \frac{X - \mu}{S / \sqrt{n}}$$

$$\circ \ Z = rac{ar{X} - \mu}{S/\sqrt{n}}$$
 $\circ \ \mu = ar{X} \pm rac{S}{\sqrt{n}} - Z_{rac{lpha}{2}}$

- Case3: Population is normal, both μ and σ are unknown, and n is small

$$\circ$$
 Use **T** distribution: $T=rac{ar{X}-\mu}{S/\sqrt{n}}$

The only one parameter in T is the number of df(degrees of freedom): v=n-1, when $n\geq 40, T\sim N(0,1)$