Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 11

Throughout this exercise sheet, let $T \in (0, +\infty)$, let $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ be a stochastic basis, let $W \colon [0,T] \times \Omega \to \mathbb{R}$ be a one-dimensional standard $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ -Brownian motion, and let $L \colon [0,T] \times \Omega \to \mathbb{R}$ be a Lévy process.

1. Let $\xi \in \mathbb{R}$, $\mu \in \mathcal{M}(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$, $\sigma \in \mathcal{M}(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$, $\eta \in \mathcal{M}(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$, and consider the Lévy-driven SDE

$$dX_t = \mu(X_{t-}) dt + \sigma(X_{t-}) dW_t + \eta(X_{t-}) dL_t, \qquad t \in [0, T], \qquad X_0 = \xi. \tag{1}$$

(i) Let $K, N \in \mathbb{N}$. Write a Matlab function EulerMaruyamaLevySDE(T, ξ , μ , σ , η , W, L) with inputs $T \in (0, +\infty)$, $\xi \in \mathbb{R}$, $\mu \colon \mathbb{R}^{1 \times K} \to \mathbb{R}^{1 \times K}$, $\sigma \colon \mathbb{R}^{1 \times K} \to \mathbb{R}^{1 \times K}$, $\eta \colon \mathbb{R}^{1 \times K} \to \mathbb{R}^{1 \times K}$, $W \in \mathbb{R}^{(N+1) \times K}$ and $L \in \mathbb{R}^{(N+1) \times K}$ which returns K realizations $Y_N^N(\omega_i)$, $i = 1, 2, \ldots, K$, of the Euler–Maruyama approximation Y_N^N of X_T . The input parameter $W \in \mathbb{R}^{(N+1) \times K}$ is a realization of K independent one-dimensional Brownian motions at the equally spaced time points $\{n\Delta t : n = 0, \ldots, N\}$, i.e.

$$W^{:,i} = (W_0, W_{\Delta t}, W_{2\Delta t}, \dots, W_{(N-1)\Delta t}, W_{N\Delta t})(\omega_i)$$

for $i=1,2,\ldots,K$. Analogously, the input parameter $L\in\mathbbm{R}^{(N+1)\times K}$ is a realization of K independent Lévy processes at the equally spaced time points $\{n\Delta t:n=0,\ldots,N\}$, i.e.

$$L^{:,i} = (L_0, L_{\Delta t}, L_{2\Delta t}, \dots, L_{(N-1)\Delta t}, L_{N\Delta t})(\omega_i)$$

for i = 1, 2, ..., K.

Hint: You may modify EMMultiDim.m from Sheet 6.

(ii) Investigate the convergence rate of the Euler–Maruyama scheme by fixing the parameters $T=1,\,\xi=1,\,\mu(x)=0.5x,\,\sigma(x)=x,\,\eta(x)=0.5x$ and using $K=10^4,\,N=N_\ell=10\cdot 2^\ell,\,\ell\in\{0,1,\ldots,4\},$ and a Gamma subordinator with shape parameter $\alpha=2$ and rate $\beta=1$ as driving Levy process. To do so, generate K sample paths of the Brownian motion and of the Gamma subordinator on the finest grid. Then, for every $\ell\in\{0,1,\ldots,4\}$ generate K realizations $Y_{N_\ell}^{N_\ell}(\omega_i),\,i=1,2,\ldots,K,$ of the Euler–Maruyama approximation $Y_T^{N_\ell}$ of X_T . Hence, for every $\ell\in\{0,1,\ldots,4\}$ compute a Monte Carlo approximation E_K^ℓ of

$$\mathbb{E}[|Y_{N_{\ell}}^{N_{\ell}} - X_{T}|^{2}]^{\frac{1}{2}}$$

based on K samples, and estimate the experimental strong $L^2(P; |\cdot|_{\mathbb{R}})$ -convergence rate of the Euler-Maruyama scheme by a linear regression of $\log(E_M^\ell)$ on the log-stepsizes $\log(N_\ell^{-1})$ for $\ell \in \{0,1,\ldots,4\}$. Comment on the convergence rate observed in your experiment. You can use the template EulerMaruyamaGammaSDE.m. *Hint:* Use as an approximation of the exact solution X_T an Euler-Maruyama approximation of the SDE on level $\ell=8$.

2. Let $\mu \in \mathbb{R}$ and $\lambda > 0$, and let $X \sim C_{\mu,\lambda}$ be a Cauchy distributed random variable with parameters μ and λ , i.e. its probability density function is given by

$$f_{\mu,\lambda} \colon \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\pi \lambda} \left[\frac{\lambda^2}{(x-\mu)^2 + \lambda^2} \right].$$

(i) Prove that X is infinitely divisible.

Hint: You may use without proof that the characteristic function of X is given by

$$\phi_X(x) = e^{i\mu x - \lambda|x|}, \quad x \in \mathbb{R}.$$

(ii) Show that $\mathbb{E}[X]$ does not exist.

The Cauchy process with shape parameter $\mu \in \mathbb{R}$ and $\lambda > 0$ is defined as the Lévy process $I^{C_{\mu,\lambda}} : [0,T] \times \Omega \to [0,\infty)$ such that $I_1^{C_{\mu,\lambda}} \sim C_{\mu,\lambda}$.

(ii) Repeat item (ii) from Exercise 1 by replacing the Gamma subordinator with a Cauchy subordinator with parameters $\mu=0$ and $\lambda=1$. Comment on the convergence rate observed in your experiment.

Hint: Use the Matlab function random('stable',1,0,lambda,mu,size(...)) to sample from the Cauchy distribution with parameters μ and λ .

- **3.** Complete the crossword puzzle below:
 - 1. Numerical methods to reduce the computational cost of standard Monte Carlo methods.
 - 2. Almost surely non-decreasing stochastic process.
 - 3. Financial derivative.
 - 4. Extends methods of calculus to stochastic processes.
 - 5. Stochastic process with stationary and independent increments.
 - 6. Stochastic process with jumps.
 - 7. Can be either strong or weak.
 - 8. Increasing sequence of σ -algebras on a measurable space.
 - 9. Numerical scheme with weak convergence of order one.
 - 10. Range of estimates for an unknown parameter.

The NASODE team wishes you a Merry Christmas, relaxing holidays, all the best for the exam preparations, and much success for the exam!

Andreas, Francesca, Mateo and Wei

Due: 16:00 o'clock, Monday, 12th December 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2