Workshop 1: Sets Solutions

SCC120 Fundamentals of Computer Science
Solutions by Corina Sas

Exercise 1

Determine whether each of the following pairs of sets is equal:

- a) {1, 3, 5} and {5, 3, 1}
- b) {1, 3, 5} and {5, 1, 6}

Exercise1: Answer

- a) {1, 3, 5} and {5,3,1} are equal.
 Remember, sets are unordered. Both sets contain the same number of elements, and the same elements.
- b) {1,3,5} and {5,1,6} are not equal. Both sets do have the same number of elements, but not the same elements, i.e.,3 ≠ 6.

Exercise 2

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find

- a) A ∩ B
- b) $A \cup B$
- c) A B
- d) B A

$$U = \{ 0, 1, 2, 3, 4, 5, 6 \}$$

$$A = \{ 1, 2, 3, 4, 5 \}$$

$$B = \{ 0, 3, 6 \}$$

Answer 2 (a)

• a) $A \cap B = \{3\}$

U = {	0,	1,	2,	3,	4,	5,	6	}
A = {		1,	2,	3,	4,	5		}
B = {	0,			3,			6	}
$A \cap B = \{$				3				}

Answer 2 (b)

• b) $A \cup B = \{0, 1, 2, 3, 4, 5, 6\}$

$U = \{ 0,$	1,	2,	3,	4,	5,	6	}
A = {	1,	2,	3,	4,	5		}
$B = \{ 0,$			3,			6	}
$A \cup B = \{ 0, \}$	1,	2,	3,	4,	5,	6	}

Answer 2 (c)

• c) $A - B = \{1, 2, 4, 5\}$

U = {	0,	1,	2,	3,	4,	5,	6	}
A = {		1,	2,	3,	4,	5		}
B = {	0,			3,			6	}
$A - B = {$		1,	2,		4,	5		}

Answer 2 (d)

• d) $B - A = \{0, 6\}$

U = {	0,	1,	2,	3,	4,	5,	6	}
A = {		1,	2,	3,	4,	5		}
B = {	0,			3,			6	}
$B - A = \{$	0,						6	}

Exercise 3

Let $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$. Find

- a) $A \cap B \cap C$
- b) A ∪ B ∪ C
- c) $(A \cup B) \cap C$
- d) $(A \cap B) \cup C$

U = {	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	}
A = {	0,		2,		4,		6,		8,		10	}
B = {	0,	1,	2,	3,	4,	5,	6,					}
C = {					4,	5,	6,	7,	8,	9,	10	}

Answer 3 (a)

• a) $A \cap B \cap C = \{4, 6\}$

$U = \{ 0,$	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	}
$A = \{ 0,$		2,		4,		6,		8,		10	}
$B = \{ 0,$	1,	2,	3,	4,	5,	6,					}
C = {				4,	5,	6,	7,	8,	9,	10	}
{				4,		6					}

Answer 3 (b)

• b) $A \cup B \cup C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

U = {	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	}
A = {	0,		2,		4,		6,		8,		10	}
B = {	0,	1,	2,	3,	4,	5,	6,					}
C = {					4,	5,	6,	7,	8,	9,	10	}
{	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	}

Answer 3 (c)

• c) $(A \cup B) \cap C = \{4, 5, 6, 8, 10\}$

U = {	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	}
A = {	0,		2,		4,		6,		8,		10	}
B = {	0,	1,	2,	3,	4,	5,	6,					}
$(A \cup B) = \{$	0,	1,	2,	3,	4,	5,	6,		8,		10	}
C = {					4,	5,	6,	7,	8,	9,	10	}
$(A \cup B) \cap C = \{$					4,	5,	6,		8,		10	}

Answer 3 (d)

• d) $(A \cap B) \cup C = \{0, 2, 4, 5, 6, 7, 8, 9, 10\}$

U = {	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10 }
A = {	0,		2,		4,		6,		8,		10 }
B = {	0,	1,	2,	3,	4,	5,	6,				}
$(A \cap B) = \{$	0,		2,		4,		6				}
C = {					4,	5,	6,	7,	8,	9,	10 }
$(A \cap B) \cup C = \{$	0,		2,		4,	5,	6,	7,	8,	9,	10 }

Exercise 4

if $A = \{1, 2, 3, a\}$, $B = \{1, 2, 3, 4, 5\}$, $C = \{a, b\}$ evaluate:

- a) $A \cup (B \cap C)$
- b) $(A \cup B) \cap C$
- c) C A
- d) (A B) C
- e) A (B C)
- f) $(A \cap C) \cup B$
- g) $A \cap (C \cup B)$

Answer 4 (a)

- (a) $A \cup (B \cap C) = A = \{1, 2, 3, a\}$
- $(B \cap C)$ is the empty set.

U = {	1,	2,	3,	4,	5,	a,	b	}
A = {	1,	2,	3,			a		}
B = {	1,	2,	3,	4,	5			}
C = {						a,	b	}
$(B \cap C) = \{$								}
$A \cup (B \cap C) = \{$	1,	2,	3,			a		}

Answer 4 (b)

• b)
$$(A \cup B) \cap C = \{a\}$$

$$U = \{ 1, 2, 3, 4, 5, a, b \}$$
 $A = \{ 1, 2, 3, a \}$
 $B = \{ 1, 2, 3, 4, 5 \}$
 $(A \cup B) = \{ 1, 2, 3, 4, 5, a \}$

$$(A \cup B) = \{ 1, 2, 3, 4, 5, a \}$$

 $C = \{ a, b \}$
 $(A \cup B) \cap C = \{ a \}$

Answer 4 (c)

• c)
$$C - A = \{b\}$$

$U = \{ 1, 2, 3, \}$	4,	5 ,	a,	b	}
C = {			a,	b	}
$A = \{ 1, 2, 3, \dots \}$			a		}
$C - A = {$				b	}

Answer 4 (d)

• d)
$$(A - B) - C = \emptyset$$

$$U = \{ 1, 2, 3, 4, 5, a, b \}$$
 $A = \{ 1, 2, 3, a \}$
 $B = \{ 1, 2, 3, 4, 5 \}$
 $(A - B) = \{ a \}$

$$(A - B) = \{$$
 a $\}$
 $C = \{$ a, b $\}$
 $(A - B) - C = \{$

Answer 4 (e)

- e) $A (B C) = \{a\}$
- Note that (B C) = B.

$$U = \{ 1, 2, 3, 4, 5, a, b \}$$

$$B = \{ 1, 2, 3, 4, 5 \}$$

$$C = \{ a, b \}$$

$$(B - C) = \{ 1, 2, 3, 4, 5 \}$$

$$A = \{ 1, 2, 3, a \}$$

 $(B - C) = \{ 1, 2, 3, 4, 5 \}$
 $A - (B - C) = \{ a \}$

Answer 4 (f)

• f) $(A \cap C) \cup B = \{1, 2, 3, 4, 5, a\}$ $U = \{ 1, 2, 3, 4, 5, a, b \}$ $A = \{ 1, 2, 3, \dots \}$ $C = {$ $(A \cap C) = \{$ $(A \cap C) = \{$ $B = \{ 1, 2, 3, 4, 5 \}$

 $(A \cap C) \cup B = \{ 1, 2, 3, 4, 5, a \}$

Answer 4 (g)

• g)
$$A \cap (C \cup B) = A$$

$$U = \{ 1, 2, 3, 4, 5, a, b \}$$

$$B = \{ 1, 2, 3, 4, 5 \}$$

$$C = \{ a, b \}$$

$$(C \cup B) = \{ 1, 2, 3, 4, 5, a, b \}$$

$$A = \{ 1, 2, 3, a \}$$

$$(C \cup B) = \{ 1, 2, 3, 4, 5, a, b \}$$

$$A \cap (C \cup B) = \{ 1, 2, 3, a \}$$

Exercise 5

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets, in English.

- a) A ∩ B
- b) $A \cup B$
- c) A B
- d) B A

Answer 5 (a)

- Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.
- a) Answer: $A \cap B = ?$ (intersection)

 The set of students who live within one mile of school and who walk to classes.

Answer 5 (b)

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

b) Answer: $A \cup B = ?$ (union)

The set of students who live within one mile of school or who walk to classes (or who do both).

Answer 5 (c)

- Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.
- c) A B = ? (difference : who appears in set A and not in set B)
 - The set of students who live within one mile of school but do not walk to classes.

Answer 5 (d)

Let A be the set of students who live within one mile of school and B the set of students who walk to classes. Describe the students in each of the following sets.

d) B - A = ?

The set of students who walk to classes but live more than one mile away from school.

Sets A and B

A: Students who live within one mile of school

B : Students who walk to classes

Sets A and B: $A \cap B$

A

B: Students who live within one mile of school AND walk to classes

A : Students who live within one mile of school

Sets A and B: A \cup B

A ∪ B : Students who live within one mile of school OR students who walk to classes

A : Students who live within one mile of school

Sets A and B: A - B

A - B : Students who live within one mile of school but do not walk to classes

A : Students who live within one mile of school

Sets A and B: B - A

B - A: Students who walk to classes but do not live within one mile of school

A : Students who live within one mile of school

Exercise 6

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find

- a) A x B
- b) B x A

Answer 6 (a)

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find a) $A \times B$

Answer: A x B = $\{$ <a, y>, <a, z>, <b, y>, <b, z>, <c, y>, <c, z> $\}$

	У	Z
a	<a, y=""></a,>	<a, z=""></a,>
b	<b, y=""></b,>	<b, z=""></b,>
С	<c, y=""></c,>	<c, z=""></c,>

Answer 6 (b)

Let $A = \{a, b, c\}$ and $B = \{y, z\}$. Find b) B x A

Answer: B
$$x A = \{ < y, a>, < y, b>, < y, c>, < z, a>, < z, b>, < z, c> \}$$

a b c
y <y, a> <y, b> <y, c>
z <z, a> <z, b> <z, c>

Exercise/Answer 7

How many different elements does A x B have if A has m elements and B has n elements?

Answer: m x n

Exercise 8

List the members of the following sets

- a) {x | x is a positive integer less than 12}
- b) {x | x is the square of an integer and x < 100}

Answer 8 (a)

List the members of the following sets a) {x | x is a positive integer less than 12}

Answer: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Answer 8 (b)

List the members of the following sets b) $\{x \mid x \text{ is the square of an integer and } x < 100\}$

The set consist of all squares less than 100

$$0^2 = 0$$
 $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ $4^2 = 16$
 $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$

Answer: {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

For each of the following sets, determine if 2 is an element of that set

- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$
- b) $\{x \in R \mid x \text{ is the square of an integer}\}$

Answer 9 (a)

For each of the following sets, determine if 2 is an element of that set

a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$

Answer: This set contains the element 2 (2 is an integer and 2 > 1)

Answer 9 (b)

For each of the following sets, determine if 2 is an element of that set

b) $\{x \in R \mid x \text{ is the square of an integer}\}$

Answer: This set does not contains the element 2 as 2 is not a square

 Identify 2 sets whose cardinality is 1 and whose intersection's cardinality is also 1.

- Answer: any 2 identical sets with 1 element each.
- Cardinality of 1 means singleton sets with one element. If their intersection has also 1 element, the 2 sets are equal, i.e., A = {1}, and B = {1}

Which of the following is not a proper subset of set A? $A = \{4, 5, 6, x, y, z\}$

- {4, x, y}
- {3, 4, 5}
- {4, 5, 6}
- Ø

Answer: {3, 4, 5} as 3 ∉ A

Which is a subset of set *A*?

$$A = \{a, \{b\}, c, \{c\}, \{x, y\}\}$$

- {a, {b}, c}
- {a, b, c}
- {c, x, y}
- {x, y}

Answer: {a, {b}, c} is a subset as each of its elements are also in A

Which is false?

- $\{1, 2\} \subseteq \{1, 2, 3\}$
- $\{1, 2\} \subseteq \{2, 3, 4\}$
- $\emptyset \subseteq \{1, 2, 3\}$

Answer: $\{1, 2\}$ ⊆ $\{2, 3, 4\}$ as $1 \notin \{2, 3, 4\}$

Extension Exercise 14

Let Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets:

```
E = \{2, 4, 6, 8, 10\},\

O = \{x \mid x \text{ is an odd number}\}\

and T = \{3\}.
```

- a) Enumerate the elements of set O
- b) What operation can be applied to set E and U to get set O?
- c) Define set E through its elements' property
- d) Which of the sets above are subsets of set O?
- e) Which of the sets above are proper subsets of set O?
- f) Which of the sets above are proper supersets of empty set?

Answer 14 (a)

Let's us have four set:

Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets: $E = \{2, 4, 6, 8, 10\}$, $O = \{x \mid x \text{ is an odd number}\}$ and $T = \{3\}$.

a) Enumerate the elements of set O

Answer: $O = \{1, 3, 5, 7, 9\}$

Answer 14 (b)

Let's us have four set:

Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets: $E = \{2, 4, 6, 8, 10\}$, $O = \{x \mid x \text{ is an odd number}\}$ and $T = \{3\}$.

b) What operation can be applied to set E and U to get set O?

Answer: comp(E) = O

Answer 14 (c)

Let's us have four set:

Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets: $E = \{2, 4, 6, 8, 10\}$, $O = \{x \mid x \text{ is an odd number}\}$ and $T = \{3\}$.

c) Define set E through its elements' property

Answer: $E = \{x \mid x \text{ is an even number}\}$ Without the Universe U, set E could be defined: $E = \{x \text{ integer} \mid x \text{ is an even number and } 0 < x < 11\}$

Answer 14 (d)

Let's us have four set:

and $T = \{3\}$.

Universal set U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and its 3 sets: E = {2, 4, 6, 8, 10}, O = {x | x is an odd number}

d) Which of the sets above are subsets of set O?

Answer: T is a subset of set O: $T \subseteq O$

O is subset of set O: $O \subseteq O$

Answer 14 (e)

Let's us have four set:

Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets: $E = \{2, 4, 6, 8, 10\}$, $O = \{x \mid x \text{ is an odd number}\}$ and $T = \{3\}$.

e) Which of the sets above are proper subsets of set O?

Answer: T is a proper subset of set O: T ⊂ O

Answer 14 (f)

Let's us have four set:

Universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and its 3 sets: $E = \{2, 4, 6, 8, 10\}$, $O = \{x \mid x \text{ is an odd number}\}$ and $T = \{3\}$.

f) Which of the sets above are proper supersets of empty set∅?

Answer: All non empty sets are proper supersets of \varnothing

$$\emptyset \subset U; \emptyset \subset E; \emptyset \subset O; \emptyset \subset T$$