AFWAL-TR-80-3021, Part III

ADA 087337

CAST ALUMINUM STRUCTURES TECHNOLOGY (CAST) STRUCTURAL TEST AND EVALUATION (PHASE V) PART III—STATIC PROPERTY ALLOWABLES

D. L. McLellan

The Boeing Company Seattle, Washington 98124

April 1980

Technical Report AFWAL-TR-80-3021, Part III Final Report for Period June 1976-August 1979

Approved for public release; distribution unlimited

FILE COPY

Flight Dynamics Laboratory Air Force Wright Aeronautical Laboratories Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433

80 7 28 020

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

John R. Williamson

Deputy Program Manager AMS Program Office

Structural Mechanics Division

William R. Johnston

Acting Program Manager AMS Program Office

Structural Mechanics Division

FOR THE COMMANDER

RALPH L. KUSTER, JR., COLONEL, USAF Chief, Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify <u>AFWAL/FIBAA</u>, Wright-Patterson AFB, OH 45433 to help us maintain a current mailing list."

(IA) TB	- 0N-2	N14-	DT-3	. /
(19) ו תו	-80-36	ملريان	, , ,	

(2) 141-6

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM CESSION NO. 3. RECIPIENT'S CATALOG NUMBER
	4 / 9 H 3 2 H
AFWAL-TR-80-3021, PART III A D-A	5. TYPE OF REPORT & PERIOD COVERED
CAST ALUMINUM STRUCTURES TECHNOLOGY (CAST) STRUCTURAL TEST AND EVALUATION (PHASE V)	June, 1976-August, 1979
PART III - STATIC PROPERTY ALLOWABLES	D180-25724-3
-Q.L./McLellan	F33615-76-C-3111
The Boeing Military Airplane Company Advanced Aircraft Branch	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Seattle, Washington 98124	Project No. 486U Work Unit 485U
Air Force Flight Dynamics Laboratory (FBA)	April, 1980 (1) A
Air Force Wright Aeronautical Laboratories AFSC Wright-Patterson AFB OH 45433 14 MONITORING AGENCY NAME & ADDRESS(U different from Control	
Final rept. July 76-A: 3 19	Unclassified
That reprise	15a. DECLASSIFICATION/DOWNGRADING
Approved for public release, distribution	unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i	if different from Report)
Approved for public release, distribution	unlimited.
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identity by CAST, Aluminum Castings, YC-14 Bulkhead, A	
Allowables, Microstructure, Soundness	4337 Aldistrium Attoy, Static Tropercies
N_{i}	
This document contains static mechanical processory and identify by be castings. Properties of castings are related as a condition of the castings and aluminum dendrite size. A confidence of the condition of the case of the case alloy and temper regardless of simulaterials or other process variables.	properties of A257-T6 aluminum alloy atable to non-destructively measured criterion is developed for design ameters applicable to all castings of

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

477593

sel

FOREWORD

This report was prepared by the Boeing Military Airplane Company, Advanced Airplane Branch, Seattle, Washington under USAF Contract No. F33615-76-C-3111. The contract work was performed under project 486U under the direction of the Air Force Flight Dynamics Laboratory, Advanced Metallic Structures/Advanced Development Program Office, Wright-Patterson AFB, Ohio. A significant portion of the contract was funded by the Metals Branch of the Manufacturing Technology Division of the Air Force Materials Laboratory. The Air Force Project Engineer was John R. Williamson of the AMS Program Office, Structural Mechanics Division, Air Force Flight Dynamics Laboratories (AFWAL/FIBAA).

The Boeing Military Airplane Company, Advanced Airplane Branch, was the contractor, with Donald E. Strand as Program Manager, Donald D. Goehler as Technical Leader, and Cecil E. Parsons as Allowables Manager. This phase of the program was conducted by Dale L. McLellan assisted by James W. Faber, Frederick J. Feiertag, and Howard L. Southworth.

This report is Part III of a three-part report on Phase V activities. The contractor's report number is D180-25724-3. The report covers work from June 1976 through August 1979. Other work performed on the CAST program is reported in:

- o AFFDL-TR-77-36, Final Report (Phase I) for period June 1976-February 1977
- o AFFDL-TR-78-62, Final Report (Phase II) for period June 1976-March 1978
- o AFFDL-TR-78-7, Final Report (Phase III) for period February 1977-December 1977
- o AFFDL-TR-79-3029, Final Report (Phase IV) for period June 1977-March 1979

		1					
Access	ion For						
NTIS GNA&I DDC TAB Unsunced Justification							
By							
<u>Dist</u> ri	bution/						
	ability	Codes					
Dist	Availa speci	_ '					

NOMENCLATURE

A, B, C, D	radiographic s	oundness grades per ASTM E155
DAS	dendrite arm s	spacing
DCS	dendrite cell s	ize
N	sample size	
R	reduced prope	rty ratio
X	sample mean	
$\mathbf{x}_{\mathbf{A}}$	statistical A-t	oasis tolerance limit
k		t factor for a normal distribution and a specified confidence and degrees of freedom
n	shape factor	•
r, T	property ratio	and average value
8	sample standa	rd deviation
e/D	edge margin	
~	confidence coe	efficient
~	degrees of free	edom
x ²	chi-squared; a	statistic
Duan auti	A39 - A3	
Properties	Allowables	
TUS	F _{tu}	tensile ultimate strength
TYS	F _{ty}	tensile yield strength
ELONG	e	total elongation
CYS	Fey	compression yield strength
sus	F_{su}	shear ultimate strength
BYS	F _{bry}	bearing yield strength
DITO	_ *	

BUS

Fbru

bearing ultimate strength

TABLE OF CONTENTS

	Page
SECTION I. INTRODUCTION	1
SECTION II. TENSION PROPERTIES	3
1. General	3
2. Casting Geometry Effects	3
3. Foundry Variables Effects	4
4. Heat-Treatment Effects	12
SECTION III. ALLOWABLES DEVELOPMENT	21
1. General	21
2. Phase II Test Plan	21
3. Tension Allowables	26
4. Derived Properties	33
SECTION IV. ALLOWABLES ASSESSMENT	39
1. Bulkhead Tension Properties	39
2. Allowables Assessment	41
3. Supplemental Assessment	46
SECTION V. CONCLUSIONS AND RECOMMENDATIONS	53
REFERENCES	55
APPENDIX A. TEST SPECIMENS AND PROCEDURES	57
APPENDIX B. FOUNDRY VARIABLES	61
APPENDIX C. ELONGATION MEASUREMENTS	79
APPENDIX D. INTEGRAL COUPON PROPERTIES	83
APPENDIX E. STATIC MECHANICAL PROPERTIES DATA	91
APPENDIX F. CORRELATIVE PROPERTIES	111
APPENDIX G. DERIVED PROPERTIES	131
APPENDIX H. BULKHEAD COUPON DATA	139

LIST OF ILLUSTRATIONS

Figure		Page
1	Variations in Elongation with Thickness	6
2	Variations in Elongation with DAS	7
3	Foundry Variables, Heavy Lug	9
4	Effects of Foundry Variables on TUS and TYS	10
5	Effects of Foundry Variables on Elongation	11
6	Variations in TUS and TYS with DAS	13
7	Elongation Variations with DAS	14
8	TUS-TYS-ELONG Relationships for A356 Castings	16
9	TUS-TYS-ELONG Relationships for A357-T6 Castings	18
10	Tensile Property Trends for Aluminum Alloy Castings	20
11	Station 170 YC-14 Bulkhead	22
12	Part A Test Section	23
13	Part B Test Section	24
14	Average Strength Trends with Dendrite Arm Spacing and Soundness	27
15	Average Elongation Trends with Dendrite Arm Spacing and Soundness	28
16	Standard Deviations of TUS and TYS for A357-T6 Castings	30
17	Standard Deviations of Elongation for A357-T6 Castings	31
18	Derived Property Ratios	37
19	TUS Data Comparisons, Soundness Grade A	42
20	TUS Data Comparisons, Soundness Grades B and C	43
21	TYS Data Comparisons, Soundness Grade A	44
22	TYS Data Comparisons, Soundness Grades B and C	45
23	Elongation Data Comparisons, Soundness Grade A	47
24	Elongation Data Comparisons, Soundness Grades B and C	48
25	TUS Data Comparisons, Supplemental Tests	49
26	TYS Data Comparisons, Supplemental Tests	50
27	Elongation Data Comparisons, Supplemental Tests	51
28	Static Specimen Configurations	58
29	Forward Face, Boeing Part A Castings	62
30	Aft Face, Boeing Part A Castings	63
31	Details of Drag, Hitchcock Castings Part A	68

Figure		Page
32	Details of Cope, Hitchcock Castings Part A	69
33	Details of Part B	74
34	Pouring System, Boeing Part A and B Castings	78
35	Elongation Analysis	80
36	Relations between Integral Coupons and Casting TUS Properties	84
37	Relations between Integral Coupons and Casting Elongation Properties	85
38	Relations between Integral Coupons and Casting TYS Properties	86
39	Integral Coupon-Casting TYS Correlations, Integral Coupon X7, Part B Castings	89
40	Bulkhead Specimen Locations	140

LIST OF TABLES

Table		Page
1	Manufacturing VariablesThickness	5
2	Phase II Allowables Specimen Quantities	25
3	Phase II Tension Property Statistics	29
4	CAST Program Tension Allowables	34
5	Derived Property Ratios Summary	35
6	Tensile Properties of Sta. 170 YC-14 Bulkheads	40
7	Chill Details, Boeing Part A	64
8	Ingate Details, Boeing Part A	65
9	Summary of Foundry Variables, Part A Boeing Castings	66
10	Ingate and Riser Details, Hitchcock Part A	70
11	Chill Details, Hitchcock Part A	71
12	Summary of Foundry Variables, Part A Hitchcock Castings	72
13	Ingate Details, Boeing Part B	75
14	Insulator Details, Boeing Part B	75
15	Chill Details, Boeing Part B	76
16	Summary of Foundry Variables, Part B Boeing Castings	77
17	Elongation Analysis	81
18	Static Mechanical Properties Data	93
19	Correlative Properties	112
20	Derived Property Ratio Analysis Compression	132
21	Derived Property Ratio AnalysisShear	133
22	Derived Property Ratio AnalysisBearing Yield Strength e/D=1.5	134
23	Derived Property Ratio AnalysisBearing Ultimate Strength e/D=1.5	135
24	Derived Property Ratio AnalysisBearing Yield Strength e/D=2.0	136
25	Derived Property Ratio AnalysisBearing Ultimate Strength e/D=2.0	137
26	Rulkhand Tennila Properties	141

SECTION I INTRODUCTION

The purpose of the CAST program was to demonstrate that the use of high-strength aluminum alloy castings could be extended to primary structural components of airframe construction. The program objectives included efforts to establish structural and manufacturing technologies and to demonstrate the integrity, producibility, and reliability of representative cast airframe structures. One specific objective was to establish realistic static design allowables and to eliminate the need for using casting design factors.

Castings were obtained during Phase II, Manufacturing Methods, for purposes of developing a static data base from which allowables were reveloped. The key issue of allowables development pertains to the basis upon which data are categorized. For this purpose, influences of casting-zone geometries, foundry variables and nondestructively measurable physical parameters were evaluated. Section II of this report contains the results of these evaluations, concluding with a physical parameter basis for allowables development. Section III presents tension allowables and derived properties for compression, shear, and bearing developed during Phase II.

An assessment of tension allowables was made in Phase V, Structural Test and Evaluation. Four of twenty YC-14 bulkheads produced in Phase IV, Fabrication of Demonstration Articles and Production Hardware, were sampled for tensile coupon properties and physical parameters. Results of this assessment are contained in Section IV of this report. These evaluations show that realistic static design allowables of high-strength aluminum alloy castings can be developed if based upon the physical conditions of the material that control and dictate such behaviors. Furthermore, the subject of casting factors can be viewed in relation to casting production controls and inspections required of the relevant physical conditions.

SECTION II TENSION PROPERTIES

1. GENERAL

This section reports results of examinations of tensile property variations in relation to the following parameters:

- 1. Casting geometry (thickness)
- 2. Foundry variables (distances from ingates, risers, chills, etc.)
- 3. Heat treatment

From these evaluations, TUS and ELONG dependencies are established with dendrite arm spacing (DAS) and X-ray soundness grade as defined by ASTM E155 standards. In addition, supplemental data for both A357 and A356 casting alloys indicates that TYS variations are related to the artificial aging conditions of the heat-treatment process.

2. CASTING GEOMETRY EFFECTS

Phase II provided an excellent opportunity to determine whether tensile properties are related to casting geometry. Geometry was represented by the thicknesses of casting zones. Section III contains a complete description of Phase II test castings, referred to as Parts A and B.

The effects of casting-zone thickness on tensile properties observed in Phase II were:

- 1. TUS increases with thickness (Part A castings)
- 2. TUS decreases with thickness (Part B castings)
- 3. TYS does not vary with thickness
- 4. ELONG increases with thickness (Part A castings)
- 5. ELONG decreases with thickness (Part B castings)

These results are shown in Table 1.

Elongation data for thickness extremes in Table 1 are shown in Figure 1. The trends of increasing ELONG with thickness for Part A castings and decreasing ELONG with thickness for Part B castings are clearly identified. Elongation of A357-T6 does not develop a consistent function with casting-zone thicknesses for these parts. Within each thickness band, a range of ELONG values suggests a relatively large scatter. Two physical characteristics of these materials are offered as an explanation for interpreting these results. Each ELONG result is identified by the DAS and soundness grade. In both thin and thick regions, it is apparent that the smallest DAS and highest soundness (grade A) result in the highest ELONG. These two physical parameters may not be entirely responsible for ELONG variations but they are the two characteristics measured for all coupons. It therefore seems reasonable, as an initial effort, to categorize ELONG (and TUS) according to levels of DAS and soundness. Figure 2 shows the soundness grade A results of the previous diagram related to DAS.

The amount of scatter in this trend band could be due to any of the following items:

- 1. Natural ELONG scatter
- 2. Errors in test and/or measurement of ELONG
- 3. Errors in DAS measurement
- 4. Unidentified gradations within ASTM soundness grade A
- 5. Other unidentified physical or metallurgical characteristics

In the above discussion, and for all future data analysis purposes, both DAS and soundness refer to physical measurements made on tested specimens adjacent to the fracture zones. ELONG was obtained from full-range stress-strain curves. For a comparison with specimen measurements for ELONG, refer to Appendix C.

3. FOUNDRY VARIABLES EFFECTS

At the onset of the program, it was considered that tensile properties might be relatable to manufacturing parameters. Earlier efforts by Battelle, per reference 1, had shown that tensile properties of A357-T6 castings could be separated into categories described by distances from chills and risers. They concluded that this approach was instructive, but not feasible or desirable.

TABLE 1 MANUFACTURING VARIABLES -- THICKNESS

ĺ					Part	A				Par	t B	
		В	oeing			Hit	chcoc	k		Вое	ing	
Section Thickness (in.)	Qty.	TUS (ksi)		EL. (%)	Qty.	TUS (ksi)		EL. (%)	Qty.		TYS (ksi)	EL. (%)
.10	34	46.0	40.8	2.0	44	46.7	40.8	1.8	34	47.8	40.8	3.6
.2025	28	47.5	41.2	2.2	25	47.1	40.4	2.4	10	51.2	42.5	5.1
.30	8	48.3	41.2	3.0	10	49.1	41.0	3.6	35	47.9	41.5	2.8
.50	7	47.4	41.1	3.0	10	47.8	39.2	4.3	10	46.4	42.0	1.2
1.0	7	48.8	40.9	4.2	9	49.4	39.9	5.1	10	45.2	40.2	1.2
2.0	16	48.5	40.2	5.2	20	48.5	40.2	4.2	0	_	_	! ! -
3.0	0	: -	-	: -	0	-	-	-	10	44.9	40.1	1.2
sting Average	100	47.3	40.9	2.9	118	47.6	40.4	3.0	109	47.5	11.2	2.8

Note: Integral coupon data not included.

FIGURE 1 VARIATIONS IN ELONGATION WITH THICKNESS A357-T6 CAST

FIGURE 2 VARIATIONS IN ELONGATION WITH DAS A357-T6 CAST

To confirm the Battelle conclusion, tensile properties from the heavy lugs of Phase II Part A castings were categorized according to distances from ingates and chills. Riser distance was not included because the Boeing castings, with the patterned mold cavity situated vertically, contained no risers. Figure 3 shows the heavy lug tensile coupons locations common to both Boeing and Hitchcock castings. Compression, shear, and bearing coupons have been omitted for clarity. Each lug surface that was directly chilled is identified with chill material type, size, and location.

The lug is shown positioned according to the pouring method used by Boeing with a horizontal ingate. Hitchcock castings were poured with the mold cavity in a horizontal plane. Their ingating and risering are also identified in the figure. Specimens from the two foundry products were the same distances from ingates and chills although chill sizes and materials differed. These differences in manufacturing methods were designed to enable selection of the best approach to produce complete bulkheads in Phase IV.

Lug tensile properties are shown in Figures 4 and 5 plotted against distances from chills and ingates. In Figure 4, both TUS and TYS are shown on the same ordinate scale. TUS data at each chill distance location form a 2- to 3-ksi band. TUS results at 2-inch distance from the ingate form a 4-ksi band and essentially envelop those results at the 4 inches from ingate location. The trends in TUS and TYS for distance from chills are inconclusive. Based upon the physical trends for DAS and soundness with tensile properties provided in the preceding discussion for thickness effects, it is expected that TUS would (1) decrease with distance from chills and (2) increase with distance from ingates. These trends cannot be fully confirmed with these data, probably because of chilling and ingate insulating opposing interactive effects.

Figure 5 shows lug ELONG results. The trends appear to be the same as shown for TUS with distances from chills and ingates. This is consistent with the trends for ELONG and TUS relative to thickness influences. Information presented in both of these figures supports the Battelle conclusion that such a method for categorizing tensile properties is not desirable.

14T 1T 2T 13T 14T H1tchcock	2 2 4 2 2	.5 1 .25 .25 .5	Dimensions in inches	Code Material Letter	Cxx Copper Nxx Cast Iron	Fxx 70000 Manganese Bronze
1T 2T 13T 14T Boeing	2 2 4	1 .25 .25	Dimensio	Foundry Chill Types	Form & Rect. Normal	Formal Property of the Propert
Specimen Casting Source	Ingate Distance	Chill Distance		Foundry	Boeing Hitchcock	
			into 1X1X1.5		/_X	SEZER ED

FIGURE 3 FOUNDRY VARIABLES, HEAVY LUG Part A Castings A357-T6

FIGURE 4 EFFECTS OF FOUNDRY VARIABLES ON TUS AND TYS
A357-T6 CAST
Heavy Lugs, Part A Castings

FIGURE 5 EFFECTS OF FOUNDRY VARIABLES ON ELONGATION A357-T6 CAST Heavy Lugs, Part A Castings

These same data have been replotted in Figures 6 and 7 as functions of DAS. The decreasing TUS and ELONG and invariant TYS relations established with DAS previously in the discussion of thickness effects are also demonstrated with these data. Essentially all results represent specimen soundness grade A material. Only three of the thirty-six results are for soundness grade B. The finite TUS and ELONG bands describe the possibilities of unidentified gradations within grade A soundness or other test or measurement uncertainties previously mentioned. TYS shows no relation with DAS as was also the case with data for various casting thicknesses. These results support a dual-basis DAS/soundness concept for categorizing TUS and ELONG properties.

4. HEAT-TREATMENT EFFECTS

The general effect of heat treatment for high-strength aluminum alloy castings is an increase in TYS. Particular segments of the heat-treatment process such as quench delay, quench rate, and artificial aging may produce significantly different effects. Significant variations were measured for TYS from different zones of castings produced in both Phases II and IV. However, the average TYS value from Phase II castings seemed to be invariant for different levels of DAS and soundness grades. It would be beneficial to understand the cause of differences between individual measurements to establish realisitic allowables. The amount of process control required to establish consistency should also be determined for both specification controls and to insure the applicability of allowables.

A356 is the predecessor alloy of A357 and contains approximately one-half the magnesium content of the newer alloy. A356 contains no beryllium, whereas A357 does. Two sources of A356 data were available from which individual tensile test results could be analyzed with reference to dendrite cell size (DCS) and some heat-treatment effects.

Prior to a discussion of these effects, a few comments are required to establish a graphical format suitable to demonstrate relative influences of heat treatment, dendrite measurement (DCS or DAS), and soundness on each of the three tensile properties. Without exception, all observed A356 and A357 data, including all test results from the CAST program, demonstrate a common characteristic.

FIGURE 6 VARIATIONS IN TUS AND TYS WITH DAS A357-T6 CAST Heavy Lugs, Part A Castings

FIGURE 7 ELONGATION VARIATIONS WITH DAS A357-T6 CAST Heavy Lugs, Part A Castings

There is no necking of tensile specimens. Total elongation is the same as uniform elongation and is the strain coordinate of TUS. Using TUS and ELONG as terminus coordinates of a stress-strain curve, it has been conveniently determined that the plastic portion of the curve can be described analytically by the following power function:

$ELONG = 0.2(TUS/TYS)^n$

The power coefficient n is the shape factor. Values of TUS and corresponding ELONG vary with different DAS levels and soundness grades for the A357-T6 CAST data.

Two sources of A356 casting tensile data are illustrated in Figure 8 using the above nondimensionalized strength-elongation format. Frederick and Bailey (ref. 2) provided A356-T6 tensile properties for two artificial aging temperatures, $320^{\circ}F$ and $350^{\circ}F$. All other conditions of manufacture and processing were the same. The aging temperature causes a shift from (n = 13) to (n = 22). Spear and Gardner (ref. 3) provided tensile properties for material identified as A356-T62. The -T62 temper signifies user heat treatment that may produce different mechanical properties. At first, it would appear that the mechanical properties of the A356-T62 and those of the 320°F aged A356-T6 are the same. DCS values have been added to these plots to show general agreement between the two sets of data described by (n = 13). Actually, there is a larger difference between the mechanical properties from the two data sources at (n = 13) than there is between the two aging temperature conditions distinguished by (n = 13) and (n = 22).

	<u>n = 1</u>	n = 22		
Temper:	-T62	-T6	-T6	
Age:	NA	320°F	350°F	
TUS (ksi)	35 to 42	43 to 51	45 to 51	
TYS (ksi)	29 to 32	34 to 37	41 to 43	
ELONG (%)	2 to 14	3 to 15	1 to 11	

FIGURE 8 TUS-TYS-ELONG RELATIONSHIPS FOR A356 CASTINGS

Apart from the differences in properties at the (n = 13) condition, it would appear that TYS and shape factor are changed by heat treatment. This is shown by the increase in TYS from the $320^{\circ}F$ to the $350^{\circ}F$ aging temperature and the shift from (n = 13) to (n = 22). The general characteristics of this diagram are shifts along a constant shape-factor line for different DCS values (and soundnesses as found with A357-T6 CAST data) and differing shape factors for different aging conditions.

The characteristics identified with A356 can be applied to A357 tensile properties. Battelle Columbus Laboratories, under subcontract to Boeing on this program, supplied in excess of 5000 tension test results from A357-T6 castings. Data sources included 15 cooperating foundries and airframe companies supplying properties from 47 different parts. Data were categorized into 14 (TUS/TYS/ELONG) groups including the four described in procurement specification MIL-A-21180C. These data are summarized in reference 1. Other than tensile properties, most test results were identified by foundry source, mold type, and thickness of the tested zone.

Although statistics were supplied by Battelle for data of each category, a complete reanalysis was performed to evaluate normality, compute representative statistics, and determine the acceptability of data according to specification requirements of each (TUS/TYS/ELONG) set of data. Both TUS and TYS seem to follow linear normal trends, whereas ELONG fits normality best when logarithmically transformed. Recomputed statistics of reference 1 data have been combined with Phase II results in Figure 9. Phase II data were categorized into four DAS levels and four soundness grades. The result shows three trends, each identified by a different shape factor (n = 14, 16, and 18.5). All of the CAST data groups and a few of those from Battelle can be described by the shape factor of (n = 16). The majority of Battelle-reported data groups are split into two outer bands described by (n = 14) and (n = 18.5). Using the CAST data, both DAS and soundness produce different coordinates along a single shape-factor line and these parameters have interchangeable influences. Low soundness and small DAS can produce the same ELONG and TUS (assuming TYS remains constant) that is obtained with higher soundness and a larger DAS.

FIGURE 9 TUS-TYS-ELONG. RELATIONSHIPS FOR A357-T6 CASTINGS

Basic characteristics demonstrated in ELONG versus TUS/TYS diagrams for both A356 and A357 alloys can be combined. Figure 10 shows the composite plot for both materials and the trends they develop. As the artificial aging temperature is increased, both TYS and shape factor (n) increase. A357-T6 results from Hughes (ref. 4), supplemented by TYS results via personal communique that were not officially reported, were analyzed and have been added to this composite diagram.

Boundaries are established by A356 with four intermediate shape factors describing A357 results. Regardless of alloy type, there is a consistency developed. Numbers shown along the trend lines indicate average TUS values. At up to 4 percent ELONG, these TUS values are about the same for the A357 CAST results and the A356 with the 350°F age. The offset between these trends is due to a 2-ksi difference in TYS as an apparent result of the two aging conditions. It also appears that the three groupings of Battelle results may be due to differences in aging conditions. Positions along each shape-factor line identify dendrite size and soundness, whereas lateral position seems to be heat-treatment dependent. With this concept, the differences between CAST and Battelle A357 data must be attributed to dendrite size and/or soundness along the (n = 16) line. All of these data are represented by a single TYS of 40 ksi.

The above discussion identifies soundness, dendrite size, and heat treatment as each having specific influences on tensile properties of A356 and A357 alloy castings. Information is not currently available to develop an understanding of how tensile properties might vary with chemistry or impurity levels, but it is obvious that development of reliable properties for these materials requires a much more in-depth knowledge of effects. The assurance that a production casting possesses certain static properties must be assessed from the controls and inspections required by the procurement specification and engineering drawings. With these devices, there is good cason to expect consistency in properties from part to part.

FIGURE 10 TENSILE PROPERTY TRENDS FOR ALUMINUM ALLOY CASTINGS

SECTION III ALLOWABLES DEVELOPMENT

1. GENERAL

In this section, the Phase II data base, supplemented by Battelle-gathered data per reference 1, are used to establish allowables for the CAST bulkheads and a format for the general category of A357 castings.

2. PHASE II TEST PLAN

Fourteen bulkhead segment castings produced in Phase II were cut up for testing and analysis to develop a static design properties data base. These 14 segments consisted of two different portions of the bulkhead as shown in Figure 11. Boeing produced four of the Part A segments and five of the Part B segments. Hitchcock Industries produced five of the Part A segments. The segments shown in Figures 12 and 13 were representative of Phase I preliminary concepts of the full-size bulkhead design. Figures 12 and 13 also illustrate static specimen locations. The primary emphasis was given to tension coupons representing all zones of each part configuration. Compression, shear and bearing coupons were located in adjacent casting zones to develop derived properties. All coupons located in the Hitchcock Part A castings duplicated those of the Boeing Part A castings to evaluate potential differences between foundries.

Table 2 identifies target classes and soundnesses for all casting zones. These targets were designated for test purposes only and do not reflect actual design requirements for the bulkhead. The intent in setting these tests standards was to evaluate the capability of producing the highest strength/elongation and soundness grades in the most massive and difficult casting zones.

Six hundred and four static coupons were machined from castings for allowables development. An additional 65 integral cast-on tension coupons were made to evaluate heat treatment response.

FIGURE 11 STATION 170 YC-14 BULKHEAD Aft Side A357-T6 Casting

FIGURE 12 PART A TEST SECTION

FIGURE 13 PART B TEST SECTION

	BEARING e/D=2.0	0	20	HH400H	20	100000	ଛ ୫	₫
	TEST COUPON QUANTITIES TENSION COMPR. SHEAR BEARING e/D=1.5	000000	12	00000	10	NH00H0H	2 3	
A	TEST COUPON QUANTITIES ON COMPR. SHEAR BEARIN e/D=1.	81017	24	0000H0	15	m=000=0	25 mly 64	
	TEST COU	8 H H H 4 8	09	00000	15	MH000H0	110 25 ; • 4 castings only 334 1G0	33
S		90000s	104	6 000000	120	40004	110 * t cm 334	5% (EL.) 3% (EL.)
JANTITIE	UNDNESS	ജ ധജധധധ		മ ധമധധധ		ജ ധജധ ഗജധ	=	(TYS),
PHASE II ALLOWABLES SPECIMEN QUANTITIES	REQUIREMENTS CLASS SOUNDNESS	Critical Other Critical Other Other		Critical Other Critical Other Other		Critical Other Critical Other Other Critical	Totals:	TUS), 40 ks1 TUS), 30 ks1
ILLOWABLES	NOMINAL THICKNESS		<u>.</u>	1 & 2 .5 .5 .2 .2 .2 .2 .3	<u></u>		<u>-</u>	46 ks1 (40 ks1 (
TABLE 2 PHASE II A	LOCATION	Landing Gear Sppts. Base Flange Pad Up Side Flange Pad Up Deck Stiffeners	subtotals (4 castings	Landing Gear Sppts. Base Flange Pad Up Side Flange Pad Up Deck Stiffeners	subtotals (5 castings	Gear Actuator Sppts. Torque Box, Vertical Torque Box, Vertical Torque Box, Vertical Flanges Torque Box, Horiz.	subtotals (5 castings	: Critical Other
	QUANTITY	4	ห	ω	ัง	w	x	casting target requirements quantitles per each casting
	TYPE OF CASTING	Part A		Part A		Part B		Test casting Test quantiti
	FOUNDRY	Boeing		Hitchcock		Boeing		₽ ₽

25

Specific testing details and specimen configurations are contained in Appendix A. Details concerning foundry variables are contained in Appendix B. Appendix C contains a discussion of elongation measurement methods. Appendix D contains a discussion of integral cast-on specimens and their relation to tensile properties of various locations within castings. Individual test results from Phase II are contained in Appendix E.

3. TENSION ALLOWABLES

Tensile property trends are shown in Figure 14 for TUS and TYS and in Figure 15 for ELONG. Average values of each property were computed for each soundness grade over four selected DAS ranges identified in Table 3. Smaller DAS and better soundness produce higher TUS. TYS does not vary significantly with either of these parameters. ELONG being the strain coordinate of TUS has the same physical parameter dependencies. In Figures 14 and 15, symbols represent the average tensile property values plotted at the midpoint of each DAS range. An insufficient quantity of results for soundness grades B and C may have prevented a real separation in effects to be demonstrated.

Figures 16 and 17 show standard deviations for strength and elongation of A357-T6 tensile data from this program, the Battelle-gathered results, and those computed from Hughes-reported results per reference 4. DAS, soundness, and all other identifiers have been omitted purposely to illustrate that this material can be characterized by constant standard deviations for strength ($S_f = 1.77$ ksi) and elongation (Se = 0.41, or 1.5 percent strain). No distinction is necessary between the dispersion characteristics of TYS and TUS. These computed standard deviations combine and project a constant value for an infinitely large sample. The only noticeable difference between CAST and Battelle data is that the latter source provided larger samples. Hughes TUS results are intermixed with CAST results. TYS was not officially reported by Hughes on the basis that it was invariant with DCS. It is therefore not shown in the figure, although a standard deviation was computed to be 1.53 ksi. Five of the Battelle-reported strength data groups form a separate standard-deviation trend that is not obvious in the elongation dispersion results. The reasons for these results are unknown and are not considered further in developing the general characteristics for this material.

FIGURE 14 AVERAGE STRENGTH TRENDS WITH DENDRITE ARM SPACING AND SOUNDNESS A357-T6 CAST

FIGURE 15 AVERAGE ELONGATION TRENDS WITH DENDRITE ARM SPACING AND SOUNDNESS A357-T6 CAST

TABLE 3 PHASE II TENSION PROPERTY STATISTICS A357-76 CAST

Grade
Soundness
Specimen

					2			,						
				⋖			~				ပ			٥
Specimen DAS	PROPERTY	MAX	MIN.	AVG.	S.D.	MAX.	MIN.	AVG.	S.D.	MAX.	MIN.	AVG.	S.D.	AVG.
	i	N = 14	;	:	•	N = 13	;	;	•	۳ ا ا		;		# Z
LEVEL 1	TUS	51.9	44.5	20.0	1.5	53.7	44.8	48.4	2.2	51.5	45.8	48.0	9.4	42
00 on	TYS	44.7	37.5	41.1	1.7	44.4	37.3	41.5	1.7	42.7	37.8	40.8	5.6	37.
inch	ELONG	11.5	2.5	4 .	1.46	6.7	1.4	5.6	1.92	4.4	1.3	5.6	1.33	:
		N = 120				N = 69				N = 29				0 2
LEVEL 2	TUS	52.3	41.9	48.3	1.6	53.9	39.6	47.0	2.5	50.0	42.5	45.9	2.0	1
.0013	TYS	46.9		40.3	1.5	46.8	33.5	41.0	2.4	44.0	35.4	40.2	1.1	;
.0018	ELONG	12.4		3.4	1.73	7.2	0.4	1.9	1.89	5.5	9.0	1.7	1.65	;
		N = 70				N = 35				N = 14				*
LEVEL 3	TUS	20.0	42.4	47.0	1.5	48.4	41.5	45.4	1.6	49.7	44.4	45.0	1.7	41.
.0019	TYS	42.9	38.1	40.3	1.2	42.9	38.5	40.2	1:1	43.4	37.2	40.7	1.4	40.4
.0024	ELONG	8.1	9.0	2.2	1.77	4.0	0.5	1.3	1.69	3.6	9.0	1.2	1.50	0
524		X × 4				8 10 10				N = A				0 *
LEVEL 4	TUS	46.9	46.0	46.4	0.4	47.5	43.1	45.5	1.4	44.6	43.3	44.2	9.0	i
.0025	TYS	41.5	38.6	40.4	1.3	43.2	39.6	41.2	1.4	41.0	37.4	39.4	1.6	i
.0030 inch	ELONG	3.3	1:1	1.7	1.59	1.3	9.0	0.9	1.20	4.3	0.5	1.2	2.50	1
	TUS, ksi TYS, ksi ELONG, p N = quan	TUS, ksi TYS, ksi ELONG, percent N = quantity of results in each cell	esults	in each	cell									

In Figures 16 and 17, the convergent solid curves represent theoretical 99 percent confidence level limits for estimating the population standard deviations assuming that sample standard deviations follow the chi-squared distribution with (N-1) degrees of freedom. The curves were constructed using the following expressions per reference 5:

Lower Limit =
$$\frac{S}{\sqrt{\frac{\chi^{2}_{\alpha/2}, \nu}{\nu}}}$$
Upper Limit =
$$\frac{S}{\sqrt{\frac{\chi^{2}_{-\alpha/2}, \nu}{\nu}}}$$

where:

s = standard deviation estimate of the population

 χ^2 = chi-squared values for $(\alpha/2)$ and $(1 - \alpha/2)$ probability levels

 ν = degrees of freedom (N-1)

N = sample size

Results from the above analysis for mean values and standard deviations of A357-T6 tensile properties can be combined to establish CAST program allowables and a general format for all other A357 produced castings. This format is that proposed by MIL-HDBK-5 for establishing statistical design values based upon normal data distributions.

$$X_A = \overline{X} - ks$$

where:

 X_A = statistical A-basis value with 95 percent confidence, 99 percent proportion

 \overline{X} = mean value

k = statistical confidence/proportion coefficient

s = standard deviation

Since both strength and elongation standard devitions have been established as population characteristics, the term k corresponds to an infinite sample size and becomes the Student's t-value, named after W. S. Gosset and contained in many statistical books and tables. For example, see page 87 of reference 6. The t-value for a 99 percent proportion is 2.326.

Using this value with the standard deviations of 1.77 ksi for strength and 0.41 for elongation allows the above expression to be rewritten for each property:

$$F_{tu} = \overline{TUS} - 4.12 \text{ ksi}$$

 $F_{ty} = \overline{TYS} - 4.12 \text{ ksi}$
 $e = \overline{ELONG} - 0.954$

The elongation allowable must be transformed by (e^{x}) to obtain a design value in percent strain. Proposed tension property allowables from Phase II of the CAST program are presented in Table 4.

The above tension design properties format should be applicable to A357 castings regardless of method of manufacture or heat-treatment processing. For the particular chemistries, heat treatments, levels of DAS, and soundness grades produced in this program, specific tension allowables will be tested against CAST bulkhead properties in Section IV of this report. As shown in Section II, slight variations within the acceptable limits of heat treatment, and possibly chemistry, may produce casting zones with the same DAS and soundness, but significantly different tensile properties. This means that although DAS and soundness may represent suitable dual-basis design property qualifiers, there are other physical aspects that must be qualified prior to assuming the general state of applicability.

4. DERIVED PROPERTIES

A summary of derived property ratios analyses is presented in Table 5. Compression, shear and bearing data are contained in Appendix E. These data were ratioed by tension data for specimens of adjacent casting locations and are contained in Appendix F. These ratios were grouped into the tension DAS/ soundness cells previously established and statistics were computed for each cell of ratios including average ratio (r) and standard deviation (s). The average ratios

TABLE 4 CAST PROGRAM TENSION ALLOWABLES

			n Soundn M E-155)	ess Grade	
Specimen DAS Range	Property	A (AST	B B	C	D
Up To	F _{tu}	45.9	44.3	43.6	_
.0012 inch	F _{ty}	36.5	36.5	36.5	-
	e	1.8	1.0	1.0	-
.0013 to	F _{tu}	44.2	42.9	42.1	-
.0018 inch	F _{ty}	36.5	36.5	36.5	-
	e	1.3	0.6	0.6	-
.0019 to					
.0024 inch	Ftu	42.9	41.5	40.8	-
	F _{ty}	36.5	36.5	36.5	-
	e	0.8	0.5	0.5	-
.0025 to	F _{tu}	42.3	40.9	40.1	
.0030 inch	F _{ty}	36.5	36.5	36.5	-
	e	0.6	0.4	0.4	_

F_{tu}, ksi F_{ty}, ksi e , percent

DERIVED PROPERTY RATIOS SUMMARY A357-T6 CAST TABLE 3

_			Tension Specimen	Soundness Grades	
Property	DAS	A	В	C	D
Ratio	Level	n r s	N r s	N T S	N F s
CYS/TYS	1	7 1.063 .032	2 1.039 .093	1 1.136 -	1 1.106 -
	2	19 1.032 .036	16 1.048 .033	10 1.074 .032	0
	3	13 1.058 .020	9 1.063 .032	8 1.038 .024	0
	4	2 1.026 .029	3 1.020 .075	0	0
SUS/TUS	1	5 .694 .0085	0	1 .701 -	0
	2	17 .713 .033	6 .715 .010	3 .731 .049	0
	3	13 .740 .021	7 ,732 .049	7 .756 <i>.</i> 018	0
	4	2 .737 ,023	3 .737 .010	0	0
BYS/TYS	1	3 1.555 .059	0	0	0
e/D = 1.5	2	17 1.645 .083	7 1.641 .056	2 1.613 .037	0
	3	3 1.690 .025	4 1.676 .043	2 1.694 026	0
	4	1 1.679 -	0 ~ -	0	0
BUS/TUS	1	3 1.561 .155	0	0	0
e/D = 1.5	2	17 1,607 .092	7 1,583 .081	2 1,507 .128	0
	3	4 1.582 .226	6 1,522 .142	3 1.567 .200	0
	4	2 1.481 .032	1 1,396 -	0	0
BYS/TYS	1	1 1.929 -	3 2.05 .131	0	0
e/0 = 2.0	2	22 1.984 .070	10 1.978 .105	4 1,882 .042	0
	3	8 1.980 .046	6 1.959 .042	3 1.983 .094	0
	4	0	1 2.03 -	0	0
BUS/TUS	1	1 1.970 -	3 2.00 .083	1 2,07 -	0
e/D = 2.0	2	23 2.02 .103	10 2.02 .090	4 1.991 .099	0
	3	8 2.12 .120	6 2.09 .127	3 2.06 ,068	0
	4	0	1 2,10 -	0	0

flotes:

CYS = Compression Yield Strength
SUS = Shear Ultimate Strength
BYS = Bearing Yield Strength
BUS = Bearing Ultimate Strength

 $\frac{N}{r}$ = sample size $\frac{N}{r}$ = average ratio value $\frac{N}{r}$ = standard deviation value $\frac{N}{r}$ = edge margin

DAS Levels: 1 = up to .0012 inch; 2 = .0013 to .0018 inch; 3 = .0019 to .0024 inch; 4 = .0025 to .0030 inch

DAS measurements from specimen fracture zones

are plotted against cell sample size in Figure 18 to illustrate that neither DAS nor soundness influences ratio values. This permits all data of each property ratio to be pooled to develop a reduced ratio design property. The reduced ratios are shown by lines in the figure and are naturally weighted towards the larger cell sample averages.

The recommended use of derived property ratios for A357-T6 castings is to first obtain the tensile property allowable according to DAS and soundness, then multiply that allowable by the reduced ratios shown below to obtain the compression, shear, or bearing allowables.

$$F_{cy}/F_{ty} = 1.045$$
 $F_{bry}/F_{ty} = 1.627(e/D = 1.5); = 1.959(e/D = 2.0)$ $F_{su}/F_{tu} = 0.720$ $F_{bru}/F_{tu} = 1.538(e/D = 1.5); = 2.02(e/D = 2.0)$

Appendix G contains derived property ratio analysis details.

FIGURE 18 DERIVED PROPERTY RATIOS CAST

SECTION IV ALLOWABLES ASSESSMENT

BULKHEAD TENSION PROPERTIES

Four bulkheads from the 20 parts produced during Phase IV were used to assess allowables developed in Phase II. Tension coupons were measured after tests for DAS and soundness in zones adjacent to fracture. The four castings included two each produced by the Boeing and Hitchcock foundries. One of the two Hitchcock castings, identified herein as H2, was reported as having been produced from low-phosphorus ingot. This casting was selected for evaluation primarily to determine if any differences in properties resulted from that chemistry. Other fabrication and processing features were common among all castings.

Bulkhead tensile properties can be categorized into six zones: Lugs, Upper (Slant Beam) Flange, Corrugations, Webs and Stiffeners, Fittings, and the Periphery Flange. Average properties for each of these zones are listed in Table 6. Comparative results are shown for each of the four castings. The heavily chilled lug zones exhibit the highest strengths and elongations. The periphery flange exhibits the lowest properties. Specimens from the periphery flange showed the largest DAS and greatest amounts of shrinkage. Individual test results are contained in Appendix H.

Observations made from properties listed in Table 6 are as follows:

- 1. Boeing castings MO8 and MO9 exhibit similar properties.
- 2. Hitchcock casting H2 exhibits consistently higher TUS and ELONG than casting H9.
- 3. The Boeing castings have higher TUS and TYS but lower ELONG than Hitchcock castings.

The lowest of combined bulkhead average properties form two groups: Critical Area (lugs) 48/38/5 and Other Areas 44/34/2. Ultimate strength design requirements for both Critial (46/40/5) and Other (40/30/3) Areas are exceeded in both cases. A slight deficiency for TYS in lugs can be eliminated by heat treatment. Elongation properties do not support the Other Areas design

TABLE 6 TENSILE PROPERTIES OF Sta. 170 YC-14 BULKHEADS A357-T6 Phase V CAST

	Boeing 1	Foundry	Hitchcock Foundry			
Casting Location:	M08	M09	Н2	Н9		
Lugs	52.6/42.6/6.1	51.0/41.4/5.4	49.4/38.1/7.7	48.1/38.1/5.1		
Upper Flange	48.2/39.5/3.1	46.9/38.5/2.7	45.3/34.5/4.7	44.4/34.9/2.7		
Corrugation	s49.1/40.6/2.0	47.4/39.8/3.0	47.0/38.6/3.7	45.5/38.5/2.1		
Webs & Stiffeners	49.7/42.7/2.1	46.7/40.8/1.7	46.8/39.1/2.8	45.9/39.1/2.3		
Fitting	50.3/43.0/2.2	50.5/41.2/4.5	48.4/39.9/3.6	46.4/39.4/2.0		
Periphery Flange	45.0/41.9/0.6	44.8/40.9/1.0	44.8/41.8/0.6	42.6/41.2/0.4		
Averages:	Boe	ing	Hitchco	ock		
Lugs	51.8/	12.0/5.8	48.8/38	.1/6.4		
Other Ar	reas 47.2/4	40.6/2.0	45.3/38	.5/2.4		

Note: Data are averages of TUS(ksi)/TYS(ksi)/Elong.(percent)

requirements, especially in the periphery flange. This is not abnormal for initial production development. Future efforts will be directed to improving ductility.

2. ALLOWABLES ASSESSMENT

Phase V tensile properties were used to assess allowables established in Phase II. The link between these two groups of information is specimen DAS and soundness measurements. These two parameters dictate the allowables applicable to Phase V bulkhead TUS and ELONG properties.

Results of this assessment are dependent upon the statistical basis used to establish allowables. A statistical A-basis was selected for tensile properties. Only the resulting allowables for TUS and ELONG vary with DAS levels and soundness grades. The tentative allowable for TYS is a constant ($F_{ty} = 36.5 \text{ ksi}$).

The assessment of allowables for TUS is shown in Figure 19 (grade A) and Figure 20 (grades B and C). In each diagram, individual results are plotted against specimen measured DAS values. Only three of the TUS results fell below the Phase II developed allowables. Two of these results are soundness grade A. Specimen 20 from Boeing casting MO8 failed at 29.2 ksi prior to yield. The reason for this premature failure is unknown. The other grade A suballowable result is from a Hitchcock casting H9 lug. Prior to test, a gas pore was noted open to the specimen gage section surface. This defect was approximately 0.015 inch in diameter, and caused the specimen to fail at 10 ksi. Both of the above results show the importance of nondestructive inspection requirements. Defects in these two casting zones should have been nondestructively identified and weld corrected prior to actual production casting acceptances. One grade C TUS result per Figure 20 at a DAS of 0.0028 inch had a value of 40 ksi where the tentative allowable is 40.1 ksi. This difference is not significant. In general, Phase V TUS results show that the Phase II developed allowables are acceptable.

TYS data are shown in Figures 21 (grade A) and 22 (grades B and C). Eight results are below the tentative allowable of 36.5 ksi. Two of the grade A results were previously discussed. The other two grade A results are between 35 and 36 ksi, and not sufficient to cause an allowables adjustment. Figure 22 shows four grade B TYS results below 36.5 ksi. These and three of the four grade A results are

TUS

FIGURE 19 TUS DATA COMPARISONS A357-T6 CAST

FIGURE 20 TUS DATA COMPARISONS A357-T6 CAST

FIGURE 21 TYS DATA COMPARISONS A357-T6 CAST

FIGURE 22 TYS DATA COMPARISONS A357-T6 CAST

from Hitchcock castings. In both Figures 21 and 22, it is noted that Hitchcock castings TYS results are generally less than the Boeing castings TYS values. The dividing line seems to be the Phase II average trend value of 40.6 ksi. This may have been caused by a minimum artificial aging condition used by Hitchcock as noted for other data in Section II. Overall, the allowable for TYS appears to be adequate.

ELONG assessments are shown in Figures 23 (grade A) and 24 (grades B and C). Only two grade A results fall below the allowable. These were discussed for TUS and are not considered to represent acceptable material properties. The grade A ELONG allowables are believed to be adequate. In Figure 24, grades B and C have the same allowables in each of the four DAS level ranges. In the highest DAS level, two grade C results are less than the allowable of 0.4 percent, but the amounts they deviate below the allowable are minimal. It is therefore believed that the allowables established in Phase II for ELONG are adequate without any adjustment.

3. SUPPLEMENTAL ASSESSMENT

In addition to the 26 specimen locations in each bulkhead casting used to describe tension characteristics and to assess allowables, supplemental tests were conducted to describe tension properties of two other zones in detail. Tension coupons were excised from all left-hand walls of corrugation stiffeners from castings MO9 and H9. Tension coupons were also excised from one-half of the periphery flange at alternate step gate and chill locations from casting MO9. Results are shown in Figure 25, 26, and 27 for TUS, TYS, and ELONG, respectively. Phase II allowables are superimposed. Results are segregated by soundness grade and plotted against DAS.

All TUS grade A results are above the allowables. See Figure 25. The majority of grade B results are sufficiently above the allowables. Only two grade B and three grade C results fall below the allowables. The marginal points below the grade C allowables suggest no adjustments are necessary.

In Figure 26, all supplemental TYS test results, with the exception of one grade B result at a DAS of 0.0017 inch, exceed the 36.5-ksi allowable. The one test result

FIGURE 23 ELONGATION DATA COMPARISONS A357~T6 CAST

ELONG.

FIGURE 24 ELONGATION DATA COMPARISONS A357-T6 CAST

TYS DATA COMPARISONS SUPPLEMENTAL TESTS A357-T6 CAST

FIGURE 26

50

ELONG.

M09 H9

Corrugations Periphery Flange

LEGEND

4 0

FIGURE 27 ELONGATION DATA COMPARISONS SUPPLEMENTAL TESTS A357-T6

with a TYS of 34.8 ksi has questionable validity. That specimen failed in the gage-to-grip transition zone apparently due to a much lower soundness quality than in the reduced gage section. This single result is not sufficient to cause an allowables adjustment.

In Figure 27, all grade A ELONG results are shown to support the allowables, as do the majority of grade B results. Only two grade B results are marginal. The grade C ELONG supplemental test results are all below 1 percent strain. One corrugation and six periphery flange zones had soundness grade C. Five of the six periphery flange results represent DAS values above 0.0029 inch. Material of this soundness and DAS range cannot be expected to demonstrate an appreciable ductility. In general, the supplemental ELONG test results support the allowables.

SECTION V CONCLUSIONS AND RECOMMENDATIONS

Technology improvements developed during the CAST program pertaining to static properties of high-strength aluminum alloy castings are summarized into the categories of material behavior, design properties, and their general applicability.

With respect to material behavior:

- Ultimate strength and elongation of A357-T6 castings depend upon dendrite arm spacing and soundness. These tensile properties increase with smaller dendrite arm spacings and higher soundness.
- 2. Yield strength is primarily influenced by heat treatment.
- Tensile properties are not direct functions of foundry variables or casting geometry, although these variables influence the resulting physical conditions of all casting zones.
- 4. A356 casting data demonstrate the same dependencies on aluminum dendrite size as determined for A357. Soundness effects on A356 have not been evaluated.

With respect to design properties:

- Static allowables have been developed from CAST program tensile data. Ultimate strength and elongation values depend upon specific categories of dendrite arm spacing and soundness. Yield strength is a constant.
- 2. These allowables have been validated with data obtained from full-scale CAST bulkheads.

With respect to applicability:

- Static design properties developed in the CAST program must be qualified for applicability to all A357 castings produced by all foundries. The purpose of this qualification is to ensure that ultimate strength and elongation dependencies on dendrite arm spacing and soundness are not altered by differences in either chemistry or heat treatment. Specific applicability of the yield strength allowable depends upon the particular conditions employed in the heat-treatment process.
- 2. The general applicability of design properties also depends upon the consistency of casting production. Consistently acceptable products require use of a procurement specification in which controls and inspections are based upon the physical parameters that influence static properties.

REFERENCES

- 1. Rice, R. C. and W. S. Hyler, "An Analysis of the Mechanical Properties of the A357 Aluminum Casting Alloy," AFS Trans., 78-117, p. 401, 1978.
- 2. Frederick, S. F. and W. A. Bailey, "The Relation of Ductility to Dendrite Cell Size in a Cast Al-Si-Mg Alloy," Trans. of the Metallurg. Soc. of AIME, vol. 242, p. 2063, Oct. 1968.
- 3. Spear, R. E. and G. A. Gardner, "Dendrite Cell Size, "AFS Trans., p. 209, 1963.
- Binder, H. F. et al., "Program for Evaluation of Effect of Dendrite Cell Size on Mechanical Properties of Aluminum Alloy Castings," Hughes Helicopters Report HH75-173, report to U.S. Army Aviation Systems Command, Contract DAAJ01 74-C-0282, July 1975.
- 5. Crow, E. L. et al., "Statistics Manual," NAVORD Report 3369, NOTS 948, 1960.
- 6. Li, J. C. R., "Introduction to Statistical Inference," Edwards Bros., Inc., Ann Arbor, Michigan, 1957.

APPENDIX A TEST SPECIMENS AND PROCEDURES

GENERAL

Test specimens and procedures were in accordance with ASTM. Two Baldwin Universal test machines were used, one a 20-kip Model CS and the other a 120-kip Model CS. These machines were calibrated in accordance with ASTM Method E4-72 to ensure loading accuracy within 1.0 percent. The machines are equipped with integral automatic load or strain pacers and autographic load-strain recorders. The extensometers conformed to ASTM E83-67 classification B1, having an accuracy of 0.0001 in./in.

Specific test specimens and procedures for the tension, compression, shear, and bearing tests are described in the following paragraphs. All static tests were conducted in a laboratory air environment.

TENSION

Two configurations were used. One was round for tests from casting zones 0.5 inch thick or greater. All lesser thickness zones were tested using flat specimens as shown in Figure 28. The specimens and testing procedures were in accordance with ASTM E8-69.

COMPRESSION

Flat and round specimens, per Figure 28, were used as applicable. Both were tested in accordance with ASTM E9-70 using a loading subpress. Side support to prevent buckling of flat specimens was provided by a Montgomery-Templin compression fixture using rollers.

SHEAR

Double-shear cylindrical specimens, 1/4 inch in diameter, Figure 28, were used for the thicker sections of the castings. Double-shear flat specimens were used for the thinner sections of the castings.

FIGURE 28 STATIC SPECIMEN CONFIGURATIONS

BEARING

Bearing tests were conducted in accordance with ASTM Method E238-68. Specimens, as shown in Figure 28, have a constant ratio of bearing pin diameter to thickness (D/t) of 4.0 and of specimen width to bearing pin diameter (W/D) of 5.0, and edge margin ratios (e/D) of 1.5 and 2.0. Bearing specimens were machined flat from all mid-depth locations of all thick sections. Specimens, pins and fixtures were cleaned prior to testing in accordance with ASTM E238-68.

APPENDIX B FOUNDRY VARIABLES

BOEING PART A CASTINGS

The state of the s

Details of specimens from Boeing Part A castings are described in relation to the following variables:

- 1. Location within each casting
- 2. Strength/elongation class and quality grade
- 3. Nominal section thickness
- 4. Distance from ingates
- 5. Distance from chills
- 6. Distance from risers and insulators, when applicable

Boeing Part A castings were poured in a vertical position, thereby eliminating risers. The allocation of coupons from these castings is shown in Table 2. In addition each casting contained five integral cast-on tensile coupons as shown in Figure 2.

The foundry variables are identified in Figures 29 and 30. These figures represent forward and aft faces of the Part A castings, respectively. In Figure 29, 12 ingates are designated by the symbols I1-I12. The forward face was chilled with 21 aluminum chills (A1-A21) and 25 copper chills (C1-C25). The aft face was chilled with 13 aluminum chills (A22-A34) and 17 copper chills (C26-C42). Details of chills are contained in Table 7. Table 8 shows ingate details.

Pertinent foundry variables for these castings consist of ingate and chill distances to specimens. These details are summarized in Table 9. Each specimen is identified by the coding explained in Appendix E, the nominal thickness of that section of the casting and the target values for strength/elongation and quality.

FIGURE 29 FORWARD FACE, BOEING PART A CASTINGS

FIGURE 30 AFT FACE, BOEING PART A CASTINGS

TABLE 8 INGATE DETAILS Boeing Part A

Ingate	At Casting		At Ris	7	
-	(x)	(y)	(x)	(y)	1>
I 1	.375	8	.5	8	•
12	.375	7	.5	7	
13	.75	7.5	.875	7.5	
I 4	.375	3	.5	3	
15	.375	2.5	.5	2.5	
I6	.375	4.5	.5	4.5	
17	.375	11.75	.5	12.5	
18	.375	14	.5 .5	14	
19	.375	3	.5	3	
I10	.375	11.5	.5	12	
I11	.375	17	.5	17	
I12	1.5	.5	1.5	.75	
I13	.5	15.75	.75	16.5	
I14, I15	.5	19.5	.625	21.5	
I16	.375	15.5	.625	15.5	
I17, I18	.625	3.375	.75	3.625	
I19	.375	4.125	.5	4.375	
I20-I22	.5	3	.625	3.125	
I23	.375	1.375	.375	1.75	
I24	.625	2.5	1.25	2.5	
I25	1.625	2.5	2.5	2.5	
126, 127	.375	5.875	.5	6	
I28	.312	8.5	.5	8.75	
129	.312	1.5	.312	1.25	
130	.5	6.75	.75	7.12	
I31	1.625	2.5	2.5	2.5	
I32	.5	1.75	.75	2	
133 2>	.5	6.75	.75	7.12	

Dimensions in inches per orientations:

2 Used for casting no. 6 (S/N 635) only.

TABLE 9

SUMMARY OF FOUNDRY VARIABLES
PART A BOEING CASTINGS
PHASE II TASK 2
BOEING PATTERN NO. GR672039

TARGET CLASS: 50/40/5 TARGET GRADE: 8

	^			48,7c 5T,6T					91,86 35,11,36,217,126,81,101,108,124,136,136,136,136,136,136,136,136,136,136	201217 257.9C	9		
	5-2								97,80 217,120 177,110 187,247 237, 140	191,86 207,21,T 6C,65 18,13C			
CHILL	1-2											89	
COPPER CHILL	.5-1						17,14T 1C,1S T6,T7			157 6c,58		40,48	
	95					31, 41 20,25 38	2T, 13T			16.1		19	
	2 5						76,77	DE: C	71,8T 10T,108 3C,15C 17T,11C 12C,21T,24T TS,T10 14C	197,22T 88,13c			
	2-5			48,7c 57,67		26,25 3T,4T 3B	17,27 137,147 16,18 18,28	TARGET GRADE: C	30,150 30,150 120,217, 75,710	4	18	T11,6T	
11	1-2							TAR	35 97,8¢	157,167 50,55 20T		12T, 68	
ALUMINUM CHILL	.5-1							40/30/3	F.	,			
ALUM	90							TARGET CLASS: 40/30/3	267,100	251,96 66,65			
	75							ARGET C	108,30 81,710 120,40	15T,16T 5C,55			
	2-5			48,7c 5T.6T		38	13.T 18,28	_	35,77,75 86,97,10C 107,181,217,235,62 7.17,11C	197,201 13c, 18 251,90	48	12 T,68 4C,48	
INGATE	1-2					3T 2C, 2S	7,2T 14T,1C 18,T7		107,181	72.7 65,60		11,79	
ä	.5-1												
(INCHES):	05 .5-1												
E FROM		0.1	0.5	0.3	0.5	1.0	2.0		0.1	0.5	0.3	0.5	1.0
DISTANCE FROM	NOMINAL	THICKNESS	(INCHES)					NOM1NAL SECTION	THICKNESS (INCHES)				

HITCHCOCK PART A CASTINGS

Details of allowable specimens from five Hitchcock Part A castings are described in relation to the following variables:

- 1. Location within each casting
- 2. Strength/elongation class and quality grade
- 3. Nominal section thickness
- 4. Distance from ingates
- 5. Distance from risers
- 6. Distance from chills

The five Hitchcock castings provided 180 allowables test specimens. In addition to allowables specimens, five integral cast-on tension specimens were located at selected zones of each casting similar to the Boeing Part A castings.

Foundry variables are identified in Figures 31 and 32. These are drag (forward face) and cope (aft face) sides of the Hitchcock castings, respectively. In Figure 31, 23 ingates are designated by the symbols I1-I23. The geometries of these ingates are summarized in Table 10. Chilling of the dragside is also shown in Figure 31 by 14 normal chills (N1-N14) and 16 form chills (F1-F16). All normal chills were cast iron. All form chills were 70,000 manganese bronze. Details of chills are summarized in Table 11.

Figure 32 shows the locations of 23 risers (R1-R23), 42 normal chills (N15-N56) and 5 form chills (F17-F21) on the cope-side of these castings. Chill geometries are summarized in Table 11. Details of the risers are summarized in Table 10.

Table 12 shows the relations between foundry variables and specimen locations. The information is separated into two groups based on the target strength/elongation classes and quality grades. Each specimen is identified by its nominal section thickness and the closest distance from ingates, risers, and chills. These distances are measured from the ingate, riser, and chill at the mold cavity surface to the center of the specimen.

FIGURE 31 DETAILS OF DRAG HITCHCOCK CASTINGS PART A

FIGURE 32 DETAILS OF COPE HITCHCOCK CASTINGS PART A

TABLE 10 INGATE AND RISER DETAILS HITCHCOCK PART A

ITEM	SHAPE	DIMENSIONS	AT:
		CASTING	RUNNER
Ingate		ono roma	***************************************
I1-I9 I10-I12 I13, I14 I15 I16-I19 I20, I21 I22	Cylindrical Rectangular " " "	1 D. .25 x 4 .1 x 5.5 .1 x 3.5 .1 x 4.5 .1 x 4	1.25 D. .5 x 5 .5 x 6 .5 x 4 .5 x 5 .5 x 4.5 .375 x 3.5
123	•	1 x 4	.375 x 3.5
Riser			
R1-R9 R10 R11 R12 R13, R14 R15 R16 R17 R18-R21 R22, R23	Cylindrical Rectangular " " " " " " " " " " " " " " " " " " "	1.25 D. .75 x 2.5 .75 x 2 .75 x 2.5 .5 x 2 .75 x 2.5 1.75 x 2.5 1.75 x 2.5 1.75 x 3.5 .5 x 2 1.5 D.	

TABLE 11 CHILL DETAILS
Hitchcock Part A

CHILL	DIM	ENSION	s .	^
Normal (Cast Iron)	(x)	(y)	(z)	1>
N1	1	6	2	
N2-N4	.5	ĭ	2 2 2 1 2 2 2 2	
N5-N9	.5	.5	2	
N10	.5	1	2	
N11	.5	4	1	
N12, N13	1	.5	2	
N14 N15-N17	2 .5	.5 1	2	
N18	.5 .75	i	2	
N19	4	.5	ī	
. N20-N22	i	i	4	
N23	.5	1	4	
N24-N26	.5	1	2 1 1	
N27	1.5	1	1	
N28, N30	2	1	1	
N29 N31-N35	1	1	2	
N36	.25	2	i	
N37, N38	i	.5	3	
N39	.5	i	2	
N40	1	1	1.5	
N41	1.5	2	2	
N42	1.5	5	2	
N43	2	1.5	2 2 2 2	
N44 N45	1.5 2	5 1.5	2	
N46	1	1.5	4	
N47-N50	.5	i	3	
N51-N56	.5	.25	3	
Form (70,000 Manganese B				
F1	1.5	6	4	
F2	1.3	6	4	
F3, F4	.5	ĭ	ž	
F5	1	2	ī	
F6	.5	2	1	
F7, F8	2_	1	.5	
F9	.5	2	1	
F10, F11 F12, F13, F14	1 .5	.5 1	2	
F15, F16	i	.5	2 2 4	
F17	ī	5	4	
F18	.5		4	
F19	.75	5 5	4	
F20	2	5 2	4	
F21	2	2	4	
Dimensions in inches	per o	rienta	tions:	: I ^Y
	*			1
				ــــــــــــــــــــــــــــــــــــــ
			4	•

TABLE 12 SUMMARY OF FOUNDRY VARIABLES
PART A HITCHCOCK CASTINGS
PHASE II TASK 2
BOEING PATTERN NO, 6R672039

		A									108					
		2-5									77 8T	19T 20T				
	CHILL	1-2								CHILL	9T 18T 7T 8T 23T 24T 17T 21T	22T 6c 6s 19T 20T				
		.5-1			£ή			11. 25. 15. 15.			101 110			е9		
		05			5T 6T		20 33 33 24 34 34 34 34 34 34 34 34 34 34 34 34 34	2T 13T 1T 1 1B 2B 16				15T 16T	T8	11T 12T	179	
ADE B		> 5			Вħ			137		ADE C	10r 17r 7r 21r 10r 17r 23r 24r	15T 22T 16T 19T 15T 16T 6c 6s 20T		6В		
TARGET CLASS 50/40/5 TARGET GRADE		2-5			5T 6T		3T 4T 2C	17 147 1018 18 28 38	T6 T7	TARGET CLASS 40/30/3 TARGET GRADE RISER TIO	100 14 101 14 191 14	15T 22T 6c 6s	T8	131 III	179	
/5 TA	RISER	1-2					82	7Z		O/3 TA						
3 50/40	_	.5-1								to/30						
ET CLASS		05								st class						
TARG		7														i
	11	2-5			aŋ 15			118 28 T6_F7		Æ F	12 12 12 12 12 12 12 12 12 12 12 12 12 1	15T 16T 68	18	11T 12T	1.9	
	INGATE	1-5			19		SC 28	11, 13r 11 2B 11, 13c 11 2B 18 3B 176, 77		INGATE	23T	8		6B		
	3	.5-1					37 kT			Ä	217					
	(INCHE	05									24T	19T 20T 22T				
	DISTANCE FROM (INCHES)		% 0.1	0.5	0.3	0.5	1.0	2.0			0.1) 0.2	0.3	0.5	1.0	2.0
	DISTAN		SECTION 0.1	(INCHES) 0.2							NOWINAL SECTION	INCHES) 0.2				

BOEING PART B CASTINGS

Details of allowable specimens from five Boeing Part B castings are described in relation to the following variables:

- 1. Location within each casting
- 2. Strength/elongation class and quality grade
- 3. Nominal section thickness
- 4. Distance from ingates
- 5. Distance from insulators
- 6. Distance from chills

These five castings provided 204 allowables test specimens as described in Table 2. In addition to allowables specimens, four integral cast-on tension specimens were located at selected zones of each casting. Refer to Figure 13.

The foundry variables are identified in Figure 33. The forward and aft faces of the castings show 27 ingates, designated by the symbols I1-I27. The geometries of these ingates are summarized in Table 13. Six plaster insulators were used on the vertical box segments and are designated as INS. 1 through INS. 6. Table 14 contains insulation geometry details. Chilling is also shown in Figure 33 by 56 aluminum (Al-A56) and 35 copper (C1-C35) chills. Details of chills are summarized in Table 15.

Table 16 shows the relations between foundry variables and specimen locations. The information is separated in two groups based upon the target strength/elongation classes and quality grades. Each specimen is identified by its nominal section thickness and the closest distance from ingates, insulators, and chills. These distances are measured from the mold cavity surface to the center of the specimen.

The tabulated foundry variables information for Boeing Parts A and B castings do not include riser details. This is due to the vertical flow method of casting. Refer to Figure 34. An end view shows the directions of metal flow into the mold. Sprues at both ends are connected to horizontal feeders located at the base of the mold. On both FWD and AFT sides, vertical risers allow metal to flow upwards into the horizontal ingates. Therefore, the pertinent foundry variables information are ingate sizes and locations plus chills and insulators.

BOEING PATTERN NO. 7R672039 PROGRAM CAST PHASE II TASK 2

FIGURE 33 DETAILS OF PART B

TABLE 13 INGATE DETAILS Boeing Part B

INGATE	SHAPE	DIMENSIO	ONS AT:
		RISER (x) (y)	CASTING (x) (y) 1>
I1-I3	Rectangular	1.75 .5	1.375 .625
I4, I5	Semicircular	1.25 R.	1.25 R.
16-111	Rectangular	1.75 .5	1.875 .625
I12	Semičircular	1.25 R.	1.25 R.
I13-I27	Rectangular	1.75 .5	1.875 .625
	3	14	
1.		1	
1> Dimension	ns in inches per o	orientations:	
		<u> </u>	

TABLE 14 INSULATOR DETAILS Boeing Part B

INSULATOR	DIME	NSIONS	S	_
		(y)		1>
INS 1, INS 2	1.5	4	.25	-
INS 3, INS 4	1.5	5	.25	
INS 5	2	5	.25	
INS 6	1	5	.25	

Dimensions in inches per orientations:

TABLE 15 CHILL DETAILS Boeing Part B

CHILL	DIMENSIO	NS (z) 1	•
Aluminum:	(x) (y)	(2)	
A1-A6 A7, A8 A9, A10 A11, A12 A13, A14 A15, A16 A17, A18 A19, A20 A21, A22 A23, A24 A25, A26 A27, A28 A29, A30 A31, A32 A33-A40 A41, A42 A43, A44 A45, A46 A47, A48 A49, A50 A51, A52 A53-A56	1 1 1 3 1 1 2.5 1 5.25 .75 4.5 1 3 .5 1.5 .5 5 1.5 .5 1.5 .5 1.5 .5 1.5 1.	5 1 1 .5 .5 .5 2 1 .5 8 ea.) 1 1 .5 .5 1 1 .75 .75 .75	
Copper:			
C1,C2 C3, C4 C5, C6 C7, C8 C9, C10 C11, C12 C13-C16	5 .5 1 2 .75 2.5 3.5 2.5 1.25 .5 3 .5 1.75 R. —	1 1.5 2 .125 1.5 1.5	7.75 2
C17, C18 C19, C20 C21, C22 C23 C24 C25, C26 C27, C28 C29, C30 C31-C34	2.5D 2 1 2 1.25 1 3 .5 Same as C13 Same as C23	1.5 1.5 1.25 3-C16	at center
Dimensions in in	nches per ort	ientations:	x

TABLE 16 SUMMARY OF FOUNDRY VARIABLES
PART B BOEING CASTINGS
PHASE II TASK 2 - ALLOWABLES

(INCHES) (INCHES) 2-5 > 5 2-5 > 5 (INCHES) 7x 4w 4y 7x 4w 4y 7x 4x 1x	
	1-2 1-2

FIGURE 34 POURING SYSTEM BOEING PART A AND B CASTINGS

APPENDIX C ELONGATION MEASUREMENTS

Two methods were used to measure elongation in all tensile tests. First, full-range stress-strain curves were recorded to failure. Secondly, fractured coupons were carefully fitted together to physically measure the extension between gage marks in accordance with ASTM E8-69. Stress-strain curve recorded elongations are generally less than physically measured values and they are also believed to be the more accurate of the two methods, recognizing the difficulties in fitting irregular fractured surfaces to obtain physical measurements. The physical measurement method is quicker, less costly, and currently used for many materials including high-strength aluminum alloy castings.

Phase II comparative elongation measurement results are plotted in Figure 35 and summarized in Table 17. In Figure 35, the abscissa represents elongations measured from the fractured coupons. Statistics of stress-strain curve elongations are plotted on the ordinate. Averages for round and flat coupons are shown by symbols. The ranges and quantities of results are designated for each level of measured elongation. A comparison of results between round and flat configurations shows:

- 1. Flat coupons give slightly lower average elongations, the difference being 1 percent or less.
- 2. There is more scatter associated with flat coupon results. At 7 percent measured elongation, 15 flat coupon results ranged from 2.6 percent to 12.4 percent with an arithmetic average of 5.6 percent strain. The single condition involving the largest quantity of data is for flat specimens at 3 percent measured elongation. Recorded values range from 0.5 to 4.7 percent strain with an arithmetic average of about 1.9 percent strain.

With the exception of the two flat coupon results at 9 percent measured elongation, stress-strain curve average elongations are less than the measured values. The differences increase with the larger measured elongations. In many cases, minimum recorded elongations are far less than measured values. It should be noted that all reference to elongation in this report concerning CAST program tests signifies stress-strain recorded values.

FIGURE 35 ELONGATION ANALYSIS A357-T6 CAST

TABLE 17 ELONGATION ANALYSIS A357-T6 CASTINGS

SPECIMEN			STRESS-	STRAIN	CURVE EL	ONGATIO	N (%)	
MEASURED ELONGATION	Ro	ound Spe	cimens		Fla	ıt Speci	mens	
(%)	Qty.	Max.	Min.	Avg.	Qty.	Max.	Min.	Avg.
0	0	-	-	-	2	3.4	0.8	2.1
1	3	1.5	0.4	0.83	7	2.4	0.2	0.89
2	42	3.3	0.6	1.40	38	4.0	0.3	1.31
3	15	3.3	0.6	2.19	83	4.7	0.5	1.87
4	13	4.5	2.5	3.29	55	7.0	0.6	2.72
5	21	5.3	2.4	3.94	41	5.7	1.7	3.53
6	11	6.3	3.1	5.13	15	8.1	3.5	4.66
7	7	6.5	4.9	5.69	15	12.4	2.6	5.55
8	6	11.5	5.6	7.53	8	7.8	3.7	6.29
9	0	-	-	-	4	8.1	5.3	7.00
10	3	8.0	5.6	7.20	3	7.8	4.6	6.40
11	0	-	-	-	0	-	-	-
12	0	-	-	-	1	-	-	5.90
	121				272			

Black

APPENDIX D INTEGRAL COUPON PROPERTIES

Integral cast-on tensile coupons were detached from all castings after final processing. Tensile properties of integral coupons are contained in the data summary in Appendix E.

Tensile properties of integral coupons are required primarily to ensure that a casting has been properly heat treated. Both TUS and ELONG properties can be assessed from parts in the as-cast condition via nondestructive measurements for DAS and soundness. Chemistry, from selectively located attached chips or ladle samples, can be ensured without damaging the castings. However, TYS is not influenced by the variations in DAS or soundness that cause significant TUS and ELONG changes. In Section II, Tension Properties, it is shown that TYS is a responsive parameter to heat treatment. Therein, data illustrate that different sources for the -T6 condition material can produce essentially the same TUS and ELONG properties, but markedly different TYS values. This applies to both A357 and A356 alloys.

The task is to selectively locate integral coupons on a casting that will signify TYS for the most critical zones. Integral coupon locations are identified for the Phase II Parts A and B castings in Figures 12 and 13, respectively. Results obtained from these parts are illustrated in Figures 36, 37, and 38 for TUS, ELONG, and TYS, respectively.

In each figure, integral coupon and corresponding casting location tensile properties from all 14 castings are shown collectively. In each figure, a 1:1 line has been established for visual clarity. If integral and adjacent casting properties were the same, all data would be expected to fall on these lines. These experimental data show that the results for each of the three properties are situated around the unity line. The deviations can be categorized into two areas. These are (1) absolute deviations from the unity line and (2) slope deviations from the unity line. These categories are discussed below for each property.

FIGURE 36 RELATIONS BETWEEN INTEGRAL COUPONS AND CASTING TUS PROPERTIES A357-T6 CAST

FIGURE 37 RELATIONS BETWEEN INTEGRAL COUPONS AND CASTING ELONGATION PROPERTIES A357-T6 CAST

FIGURE 38 RELATIONS BETWEEN INTEGRAL COUPONS AND CASTING TYS PROPERTIES A357-T6 CAST

TUS (Fig. 36):

The general trends developed from the same locations in replicate castings are lines offset but parallel to the unity line. This means that integral coupons have either higher or lower TUS values than the corresponding casting zones and the variations between castings are identifiable by integral coupon properties. Integral coupon T8 from Boeing Part A castings is obviously not a good indicator for the casting 7T location, the adjacent lower web. The trend is converse to the unity trend line. The same situation applies to the Part B casting integral lug (X3 and X4) in relation to the solid 3-inch-diameter fitting (3X, 4X). The only other nonrelatable comparison is between the Part B right outside flange (13X) and the adjacent integral coupon (X5). Three of the five results fall near the unity line while the other two show much higher casting TUS values (13X) than what would be expected from integral coupon TUS values (X5). The two results causing the trend inconsistency represent the first and fifth castings. No intentional differences in manufacture regarding placement of chills or insulators were made. This type of inconsistency illustrates the importance for precise repetition of manufacture between all production castings.

ELONG (Fig. 37):

Results tend to band around the unity line showing a general relation between ELONG for integral coupons and castings. The Part B casting (X5/13X) group does not follow this trend, as was the case using TUS values.

TYS (Fig. 38):

The overall range of TYS is relatively small from all integral coupon and casting locations in comparison to TUS. It is somewhat more difficult to observe the general trends of results situated about the unity line. The (X5/13X) comparison shows poor correlation for TYS, as was the case for both TUS and ELONG. One group of results illustrates a very good relationship. These are Part B specimens (X7/16X) from the vertical torque box inner flange location. These results parallel the unity line showing integral coupons to be 2 to 3 ksi higher in TYS than the adjacent flange.

As a matter of interest, the X7 integral coupon TYS results were compared with properties representing a variety of Part B casting zones. These results are shown in Figure 39. This series of seven graphs shows TYS of the X7 integral coupons on the abscissa and casting zone TYS values as ordinates. Each graph contains two casting-zone results to evaluate similarities of response. Each graph also contains a unity line to designate a 1:1 response between casting and integral coupon values. The cored fitting (1X) is less responsive than the solid 3-inchdiameter fitting (4X) to X7 changes. The solid fitting TYS remains about 5 ksi less than X7. However, TYS of both fittings can be estimated using the X7 integral coupon TYS. The horizontal torque box TYS properties (6X, 7X) are between 3 and 4 ksi less than X7. The right vertical torque box coupons (8X, 9X) are estimated well by X7. They exhibit about one-half as much TYS variations as do the integral coupons. The left side of the base attachment flange is not relatable to X7 TYS variations. Vertical torque box zones (16X, 18X) are relatable to X7 TYS variations. As cited previously, 16X lags X7 by about 3 ksi. Location 18X is from the opposite vertical torque box, immediately adjacent to the inner flange. TYS from this location seems to respond about four times greater than the X7 integral coupons. Pase attachment flange, right side coupons (19X, 20X) show different results. The higher TYS from 19X is the result of that zone being directly chilled, whereas 20X is adjacent to the same chill. The heavy chilling effect at 19X may have prevented TYS variations similar to those noted in other casting zones and at X7. In the center of the base attachment flange, coupons (21X, 22X) show a fairly consistent 3 ksi less TYS than X7.

As shown in detail for Part B castings, some zones respond very well with integral coupons while others do not respond at all to integral coupon property variations. It has also been shown that numerous casting zones are relatable to a single integral coupon. The entire analysis presented above has been made independent of DAS and soundness properties. Since TYS does not seem to be a function of these two physical parameters, it is suggested that only the comparisons using TYS data be considered relevant. Both TUS and ELONG are influenced by DAS and soundness, and these variables were not accounted for in those comparisons. If this type of analysis is considered applicable to infer TYS properties of casting zones, as it is believed to be, it must also be recognized that both casting zones and integral coupon TYS values are, to some degree, variable. This is on an individual basis and is most likely reflective of the difference in responses of various casting zones to the same nominal heat treatment. The above points must be considered during preproduction casting development.

FIGURE 39 INTEGRAL COUPON-CASTING TYS CORRELATIONS
Integral Coupon X7, Part B Castings
Left Vertical Torque Box
Inner Flange
A357-T6 89 CAST

APPENDIX E STATIC MECHANICAL PROPERTIES DATA

EXPLANATION

Table 18 contains static mechanical property test data developed during Phase II Task 2, Manufacturing Methods. All test coupons were excised from castings following final heat treatment (A357-T6) and inspections. Specimen configurations and test details are summarized in Appendix A. The segments of the Station 170 bulkhead cast for this phase are referred to as Parts A and B, shown in Figures 12 and 13, respectively.

Nomenclature used in Table 18 is explained below.

Specimen

Casting Group	Boeing Par: A	Hitchcock Part A	Boeing Part B
Type of Specimen:			
Tension	T	T	X
Compression	C	С	Y
Shear	S	S	Z
Bearing $e/D = 1.5 \underline{1}/$	В	В	W
e/D = 2.0	В	В	W

<u>1</u>/ Specimen location <u>odd</u> numbers designate e/D = 1.5; <u>even</u> numbers designate e/D = 2.0.

Casting Group	<u>Boei</u>	ng Part A	Hitched	ock Part A	Boei	ng Part B
Casting Identification:		Serial #		Serial #		Serial #
	3	632	5H	005	7	397
	4	633	6H	006	8	400
	5	634	7H	007	9	403
	6	635	8H	008	10	406
			9H	009	11	409

Static Properties:

TUS	Tensile Ultimate Strength
TYS	Tensile Yield Strength
ELONG	Total Elongation (Uniform Elongation)
CYS	Compression Yield Strength
SUS	Shear Ultimate Strength
BUS	Bearing Ultimate Strength
BYS	Bearing Yield Strength

TABLE 18 STATIC MECHANICAL PROPERTIES DATA

CASTING GROUP: BOEING PART A

CAST

Contract F 33615-76-C-3111

	П	BYS (ks1)		76.2 78.0 79.9 82.3			75.6 79.3 79.3		
	2,0	$\vdash \rightrightarrows$		97.5 7 103.1 7 98.1 7	- -		0,0,-0		\dashv
	e/D =	Cks 1		<u> </u>	 		58.88 8.88		
BEARING	*	PART NO.		283 284 285 285			483 484 485		
BEAR	5	BYS (ks1)		63.1 65.5 63.4 67.1	683.2 63.2 64.8				
	D = 1.	BUS (ks1)		81.9 82.2 77.4 80.2	80.8 82.2 75.0 80.0				
	e/D	PART NO.		183 184 185	385 385 385				
	1	SUS (ks1)	34.0 34.1 34.0 34.0		35.5 35.5 35.5				8
SHFAR	5	PART NO.	153 154 155 156		253 254 255 255				
COMPR		CYS (ks1)	42.9 43.9 41.2		42.0 42.9 42.6			4.44.4.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	
Ś	3	PART NO.	2222		203 205 205			703 704 705 706	
		; (%) B	3.2 4.1 3.8 2.6	11.6 6.9 6.9	2.7	3.10	3.7.2	4244	
		ELONG A	ຂຍ	8772	₩.	5826	V894	@ m m 4	- 68 43
TENCTON	MOTE	TYS (ks1)	40.9 40.8 40.8 42.6	39.5 40.0 40.1	40.6 40.8 42.3	40.5 40.1 41.2 40.8	41.2 41.7 40.5 43.2	41.2 42.5 39.3 40.2	-
7.	2	TUS (ks1)	47.7 48.7 47.7 48.7	49.5 48.8 49.0	49.1 43.1 48.2	50.0 50.2 48.1	50.0 52.3 47.7	4.08.0 4.08.0 4.08.0	specimens, 1 tach
		PART NO.	173 174 175 176	213 214 215 216	313 314 315 316	413 414 415 416	513 514 515 516	6T3 6T4 6T5 6T6	
ZONE	THICKNESS	NOMINAL (in.)	2.0	2.0	9:1 O	1.0	.30	.30	fitted fractured
	IOCATION		LUG B CENTER	LUG B EDGE	LUG A CENTER	LUG A TOP	PAD UP ATTACHMT. FLANGE	PAD UP ATTACHMT. FLANGE	From #1th

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

CASTING GROUP: BOEING PART A

	0	BYS) (ks1)	2.4.2 2.5.0%					2 76.5 7 75.1 2 79.2	
ı	0 = 2.	BUS	2222	·				96. 96.	
BEARING	6/0	PART NO.	1084 1085 1085					683 685 685 685	
BEAU	2	BYS (ks1)							
ŀ	10.	BUS (ks1)							
	Ş	PART NO.							yle1d
SHEAR		SUS (ks1)	34.0 30.0 30.0				32.9 32.8 33.4.8		prior to y
35		PART NO.	383 384 385 386				484 485 485 485		•
COMPR.		CYS (ks1)		42.6 45.1 44.1 42.1	43.8 43.8 43.9		43.6 42.5 40.6 41.8		Falled
2		PART NO.		305	888 800 800 800 800 800		244 255 255 255		Э
	•	(X)	1.4	2.4.4.0.	4	2.7 0.1 0.8	2.028	6.40. 0.40.],
		ELONG A	₩₩₩ ₽	44/4	លល 44	ഹനന	R ≒ 4.R	4000	ch gage
TENSION		TYS (ks1)	39.0 41.5 37.8 41.3	40.3 40.8 39.8 40.1	40.5 41.9 39.3 40.7	⁸ O5.₹	40.6 41.3 40.7 40.4	42.2 41.5 40.7 41.7	
1	: [7US (ks1)	44.1 46.8 42.8 44.4	46.9 45.8 47.9 45.6	47.0 45.2 45.8	45.1 39.0 45.5	47.0 41.4 50.0 46.7	48.4 44.7 48.7	ctmens
		PART NO.	713 714 715 716	813 814 815 816	913 914 915	1013 1014 1015	1113 1114 1115 1116	1273 1274 1275 1276	ctured specimens, 1 inch
ZONE	IMICKNESS	NOMINAL (in.)	.10	.10	.10	.10	88: ©	.50	ted fractu
	I OCATION	1000 A	WEB LWR.LEFT	WEB LWR.LEFT	WEB BOTTOM	WEB BOTTOM	PAD UP BASE FLANGE	PAD UP BASE FLANGE	A From fitted fra

94

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

	ZONE			TENCTON		Γ	٤	COMPR		CHEAD			BEARING	ING		
I OCATION	THICKNESS		=	10.50			3		5	5	(e/	/0 = 1,	.5	g/a	0 = 2.	0
	(in.)	PART NO.	TUS (ks1)	TYS (ks1)	ELONG A	(X)	PART NO.	CYS (kst)	PART NO.	SUS (ks1)	PART NO.	BUS (ks1)	BYS (ks1)	PART NO.	BUS (ks1)	BYS (ks1
100 B	2.0	1373 1374 1375 1376	49.5 50.5 49.5 89.5	40.0 39.5 4.04	8007	6 8 8 4 100 9										
LUG B BOTTOM	2.0	1473 1474 1475 1476	46.1 48.4 47.2 46.6	38.02	4 10 00 10	6.4.0.0 6.0.00										
ML 130 DECK	.25	1573 1574 1575 1575	47.2 45.6 44.3 51.3	40.7 42.4 40.3 42.8	W44V	2002		43.9 45.0	553 554	32.2 33.8						
ML 130 DECK	.25	1673 1674 1675 1676	51.0 51.3 50.1 49.8	⊕ 8.1.1. 8.1.1. 8.1.1.	57 20 2	444V 90VR	505	41.9 39.6	525 526 526	35.2						
WEB UPR.LEFT	.10	1713 1714 1775 1775	47.4 47.4 45.2 46.4	41.6 43.1 40.8 43.3	0440	6010 4010	2222	42.2 42.3 40.1 43.9								.
NEB UPR.LEFT	.10	1813 1814 1815 1816	39.6 35.1 45.5	2.5. 2.2.3 3.2.2.3	614r	40 44 8044										
From #1	From fitted fractured specimens, 1 inch	eds pa	cimens	1 100	- gage		16	ـ ا	Inaccurate TYS		recording					

STATIC MECHANICAL PROPERTIES DATA (CONTINUED) TABLE 18

CASTING GROUP:	٦	OEING PART	A T								Cont	Contract F		33615-76-C-3111	111	CAST
	ZONE		=	TENCTON			[§	COMPR	SHEAR	A A			BEARING	ING		\prod
1 OCATION	THICKNESS		<u> </u>							[e/0	0 = 1.	.5	e/D	- 2.0	
	NOMINAL (in.)	PART NO.	TUS (ks1)	TYS (ks1)	ELONG	(X)	PART NO.	cys (kst)	PART NO.	SUS (ks1)	PART NO.	BIJS (ks1)	BYS (ks1)	PART NO.	BUS (ks1)	BYS (ks1)
FLANGE UPR.LEFT	.20	19T3 19T4 19T5 19T5	45.2 44.3 44.8 47.7	40.2 41.0 40.6 43.2		1.2 0.7 0.9								883 8843	96.5	80.8
FLANGE UPR.LEFT	.20	20T3 20T4 20T5 20T6	44.8 47.5 46.3	39.9 42.6 41.4 42.9		1.3	605 605 605	⊕£4.0 4.0 4.0	655 655 655	35.0 34.5 35.1				98 98	8.4.	82.3 4.4
WEB UPR. CENTER	.10	21T3 21T4 21T5 21T5	47.6 43.3 48.7 45.6	42.1 41.0 41.5	887B	2.7 0.5 1.5	12C3 12C4 12C5 12C5	43.0 42.6 42.6	•							
FLANGE UPR.RT.	.20	22T3 22T4 22T5 22T5 22T6	46.0 45.9 46.2 48.7	40.1 41.8 42.9	ພພ4™	0.0	1303 1304 1305 1306	42.6 46.5 43.3 45.7			783 784 785 785	76.2 65.4 76.8	⊗5.5. 4.6. 1.4.0.			
WEB UPR.RT.	01.	23T3 23T4 23T5 23T6	47.8 48.9 46.4 49.4	42.9 42.9 42.8	លលលល	20.0.2 10.4.0	145 145 145 145 145 145 145 145 145 145	43.3 44.0 42.5 48.1								
WEB UPR.RT.	.10	2413 2414 2415 2415	45.6 47.0 46.0 47.5	40.8 39.7 43.0	***	V400										···

96

Specimen buckledFailed prematurely

From fitted fractured specimens, I inch gage From full-range stress-strain curves

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

CAST			BYS (ksf)			
3111		- 2.0	BUS (ks1)			
Contract F 33615-76-C-3111	ING	0/a	PART NO.			
F 33615	BEARING	.5	BYS (ks1)			
ract		e/0 = 1	BUS (ks1)			
Cont		73	PART 160.			2
	SHFAR		SUS (kst)			Specimen bucklad
	3		PART 80.			ec fine
	COMPR		CYS (ks1)	42.8 43.5 43.0 44.3	±0±±	 ⊖
	Ŝ		PART NO.	9999 8799 8799	1000 1000 2000 2000 2000	
	Γ		(X)	3.0	ക്ക്യപ് സെയയെ	
			ELONG A	ณพาณ	(C)	ch gage
	TENSTON		(ks1)	40.3 43.1 39.6 43.4	4.000 4.000 4.000	urves
A T	#	•	(ks1)	48.3 50.3 46.1 49.7	53.7.4.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	ecimens train c
BOEING PART			PART NO.	2513 2514 2515 2515	2613 2614 2615 2615	tured specimens, 1 1
_	ZONE	IMICKNESS	(1n.)	.20	.20	fitted fractured specimens, 1 inch
CASTING GROUP:		LOCATION		FLANGE SIDE LONER	FLANGE SIDE UPPER	A From f1

97

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

	ZONE		151	TENSTON				COMPR.	7	SHFAR				BEARING		
LOCATION	THICKNESS						3		5		e,	e/0 = 1	• 5	/a	e/0 = 2.0	0
	MOMINAL (1n.)	PART NO.	TUS (ks1)	TYS (ks1)	ELONG	(X)	PART NO.	cys (ks1)	PART NO.	SUS (ks1)	PART NO.	BUS (ks1)	BYS (ks1)	PART NO.	BUS (ks1)	BYS (ks1)
INTEGRAL LUG CENTER	ĺ	16/3 16/4 16/5 16/6	44.4 48.4 44.3 46.5	38.0 39.0 36.8 39.5	7 4 4	25.6										
INTEGRAL LUG CENTER	2.0	17/3 17/4 17/5 17/6	45.4 48.2 45.0	38.0 39.2 37.2 39.5	w o r4	ലന് ന										· · · · · · · · · · · · · · · · · · ·
INTEGRAL WL 130 DECK	.25	18/3 18/4 18/5 18/6	44.2 42.7 45.2 41.5	37.6 39.5 39.1	4000	-0-0										
INTEGRAL PAD UP BASE FLANGE	. 50	19/3 19/4 19/5	4.04 4.04 4.04 4.04	39.4 39.6 40.1 39.7	50000	7.8 7.1 8.1 6.3			<u></u>			· · · · · · · · · · · · · · · · · · ·				
INTEGRAL	35.	110/3 110/4 110/6 110/6	⊕4.54.8 8.7.7.8.	40.1 40.3 40.8	₩. 4 ₩.Φ	Ø.: 1.1 8.: 8.:	1503 1504 1505 1506	\$ ⊕ 1 \$								
From fi	From fitted fractured specimens, 1 inch gage From full-range stress-strain curves	red spec	cimens,	Tyes and	4. 889		99	TUS IK	TUS not recorded Specimen damaged	orded	TUS not recorded (2) El	© 3	Elonga st	Elongation not recorded	t rec	P

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

	ZONE			TENCTON.			1 5	COMPD	CUEAD	9			BEARING	ING		
1 OCATION	THICKNESS		<u>.</u>	MOTCH			5		שרכ	¥.	e/	0.	5	9	10 = 2.0	lo
	NOMINAL (1n.)	PART NO.	TUS (ks1)	TYS (ks1)	ELONG A	(%) B	PART NO.	CYS (ks1)	PART NO.	SUS (ks1)	PART NO.	BUS (ks1)	BYS (kst)	PART NO.	Ks 5	BYS (ks1)
LUG B CENTER	2.0	175H 116H 117H 1178H 119H	48.4 48.7 47.2 47.2 48.7	40.4 40.0 42.0 40.4 40.7	ro ro co co es	3.7 2.7 2.4 4.0	105H 105H 107H 108H	42.2 42.2 42.0 41.7 42.9	155H 156H 157H 157H 158H	34.6 34.8 33.9 34.6						
3903 8 901	2.0	275H 276H 277H 278H 278H	48.6 48.5 48.5 48.6	39.5 39.2 38.8 40.0	@ \u2014	0.4.0. 0.5.1.0.0 0.0.1.0.0					185H 186H 187H 188H 189H	81.0 77.8 84.3 78.8 80.9	63.0 65.0 65.8 65.8	285H 286H 287H 288H 289H	103.6 102.7 100.1 103.0	79.8 80.5 81.0 82.6
LUG A CENTER	<u></u> 0	315H 316H 317H 318H	48.3 49.0 49.8 42.3	40.6 40.1 41.0 38.8	44000	W.V.4.4.0 W.V.8.4.0	2058 2069 2074 2084 2084	42.1 42.3 41.8 42.8	255H 255H 257H 258H 258H	35.5 35.5 35.4 35.4 35.4	385H 386H 387H 388H 389H	80.3 75.2 80.0 75.4	66.9 68.9 65.2 65.2			
A 901	1.0	475H 477H 478H 479H	50.0 49.7 49.3 50.0	39.0 39.7 40.3	87797	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
PAD UP ATTACHETT FLANGE	98.	515H 516H 517H 518H	8.47.9 4.00.0 4.0.0 7.0.0	39.7 40.0 40.0 40.4	<i>ი</i> ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა ა	0.46.4								485H 486H 487H 488H 489H	101.9 92.4 100.6 94.8 92.9	81.6 78.1 81.8 83.0 79.7
A From fi	From fitted fractu	ress-s	ictured specimens, 1 i		fnch gage		$\neg \Theta$	Premature		faflure						

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

CAST		0	BYS (ks1)		83.4 82.0 80.0 82.3 76.1			
-3111		0 - 2.	BUS (ks1)		99.2 92.1 96.2 90.0			
F 33615-76-C-3111	BEARING	0/9	PART NO.		1085H 1086H 1087H 1088H 1089H		·	
F 3361	BEA	.5	BYS (ks1)			·		
Contract		e/0 = 1	(ks1)					
Cod		e	PART NO.					
	CHEAD		SUS (ks1)					
	₽	5	PART NO.	·				
	dayo		CYS (ks1)					
	2	3	PART NO.	<u>.</u>				Θ
			(%) B B	2.2 3.0 3.4	0.10	4.7.0 0.0 0.0	20.01.4	9.9 7.2 7.2
		TENSION	ELONG	04444	Nm=mN	400mm	N444N	647046
	NO TOW		TYS (ks1)	41.3 41.1 41.5 41.5	40.3 39.8 41.3 41.9	39.3 41.6 39.3 40.0	40.3 40.3 40.5	42.9 39.7 39.1 40.2 39.3
PART A		TE	TUS (ks1)	50.0 47.6 48.8 48.7 49.5	48.4 48.1 45.0 46.6	47.3 44.1 46.2 45.0	48.7 45.4 46.9	48.7 47.9 46.7 47.2 45.4
HITCHCOCK PART			PART NO.	615H 616H 617H 618H 619H	715H 715H 717H 718H	815H 816H 817H 818H 819H	915H 916H 917H 918H	1015H 1016H 1017H 1018H 1019H
	ZONE	THICKNESS	(1n.)		.10	.10	.10	.10
CASTING GROUP:		I OCETION		PAD UP ATTACHAT. FLANGE	LWR.WEB LEFT	LWR.WEB LEFT	BOTTOM	WEB ВОТТОМ

() Failed through weld correctable single pore

A From fitted fractured specimens, 1 inch gage B From full-range stress-strain curves

100

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

	2.0) (ks1)		75.2 73.8 76.9 75.1			
	•	[물꼬]		26.59 24.00 26.00 26.00 26.00			
BEARING	9	PART NO.		685H 686H 687H 688H			
BEAI	5	BYS (ks1)					
	0 - 1.	S 2					
	Q/a	PAR					
CUCAB	LAK.	SUS (ks1)					
1	110	PART NO.					
Course	IF K.	CYS (ks1)					
٤	3	PART NO.	, = -				
		(X) B	4.2 3.5 4.1	6.4 8.1.8 5.1	66.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0	6.4.0.0.0 6.0.0.0 7.0.0.0	
		ELONG	លល 44ល	00000	മരമര	44400	<i>~~~~~</i>
101.00	ENSTON	TYS (ks1)	39.8 38.1 39.5 40.3 39.8	39.5 38.7 38.9 39.5	40.7 40.3 40.9	40.3 40.0 39.6 41.4	39.7 39.3 39.1 39.1
;	ׅׅׅׅׅׅׅׅ֝֟֝֝֟֝֟֝֟֝ ֡	TUS (ks1)	48.1 46.7 47.0 47.1 48.0	48.7 47.9 47.3 47.8 48.9	50.4 50.1 49.3 49.2 49.8	47.9 48.2 46.8 47.9	44.0 44.0 45.9 44.1
		PART NO.	1175H 1176H 1177H 1178H 1178H	1275H 1276H 1277H 1278H 1278H	1375H 1376H 1377H 1378H 1378H	1475H 1476H 1477H 1478H 1479H	1575H 1576H 1577H 1578H 1578H
ZONE	THICKNESS	ON NOMINAL (1n.)	.50	.50	2.0	2.0	.25
	10001100	בייראוניי	PAD UP BASE FLANGE	PAD UP BASE FLANGE	100 B	LUG B BOTTOM	ML 130 DECK

A From fitted fractured specimens, 1 inch gage B From full-range stress-strain curves

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

		BYS (ks1)					8
	3 = 2.0	물꼬					Tus for le pores
ING	e/D	PART NO.					nd ind rectab
BEARING	5	BYS (kst)					ible sa
	e/0 = 1.	S 2					led through weld correctable sand indiusion lire attributed to two weld correctable por lure through surface defect timen buckled
	(a)	PAR					reld co
CHEAD	YV.	SUS (ks1)				36.5 35.7 36.8 36.3 37.0	hrough attribut through buckle
13	TUS.	PART NO.				655H 656H 657H 658H 658H	Failed th Failure a Failure t
adwo	- N -	CYS (kst)				4.4.4.6 4.4.9.5.5	
٤	3	PART NO.	Θ	စု	ဓ	605H 606H 607H 608H 609H	
		G (X) B	2.2.4 2.4.3.4 7.5.2	0.1.3	24.9.2.6.	2.3 1.6 2.9	3.0.3.3.
		ELONG	യപരസസ	00000	~~~~~	~~~~	~~~~ ~
TOWE TOW	NO TON	TYS (ks1)	39.4 39.4 39.8 39.3	40.7 40.0 40.6 40.3	42.4 41.2 41.9 42.9 41.8	41.6 42.1 40.1 41.4	42.0 41.8 41.6 42.7 41.0
	7	TUS (ks1)	49.2 46.6 48.2 47.1 48.5	41.5 44.8 44.5 45.6	48.8 47.7 46.5 47.5 46.8	48.6 48.9 47.8 47.8	47.8 47.0 47.1 47.2 48.3
		PART NO.	1675H 1676H 1677H 1678H 1679H	1775H 1776H 1777H 1778H 1778H	1875H 1876H 1877H 1878H 1878H	1975H 1976H 1977H 1978H 1978H	2015H 2016H 2017H 2018H 2018H
ZONE	<u> </u>	NOMINAL (1n.)	.25	.10	.10	.20	.20
	LOCATION	LUCAL IUN	WL 130 DECK	WEB UPR. LEFT	WEB UPR. LEFT	FLANGE Upr. Left	FLANGE UPR.LEFT

A From fitted fractured specimens, 1 inch gage B From full-range stress-strain curves

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

	LOCATION	WEB UPR	FLANGE UPR. RIGHT	MEB UPR.	MEB UPR.	From fitted fra
ZONE THICKNESS TEN	NOMINAL (in.)		05.	01.	.10	fractu
	PART NO.	2175H 2176H 2177H 2178H 2178H	2215H 2216H 2217H 2218H 2219H	2315H 2316H 2317H 2318H 2318H	2415H 2416H 2417H 2418H 2419H	ctured specimens, 1
SS TENSION COMPR.	TUS (ks1)	41.6 45.7 41.8 46.6 51.0	47.9 47.3 46.8 47.6 47.6	49.2 47.4 46.6 45.1	440.9 46.4 46.4 7.0	comens
NSION	TYS (ks1)	40.5 39.4 40.2 46.9	40.0 39.8 39.8 40.2 40.3	42.3 41.0 39.7 41.2	444 0000 0000 0000 0000 0000	1.
	ELONG	2222	च चचच		mm0m0	fnch gage
-	(¥) ₂₀	48401	20.000 20.000 20.000	1.0	1.79	
<u>8</u>	PART NO.					e
۳. ج	CYS (ks1)					2
풄	PART NO.					ple 10
SHEAR	SUS (ks1)					naftuo
	PAS					Multiple longitudinal cracks
6/0 = 1						racks
5.5						
	PART NO.					
2 = 0/0	니움의					ti de
6	BYS					Premature failure

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

1 .	LOCATION	INTEGRAL LUG CENTER	INTEGRAL LUG CENTER	INTEGRAL ML 130	INTEGRAL PAD UP BASE FLANGE	INTEGRAL M. 150
ZONE	MOMINAL (1n.)	2.0	2.0	5 2.	.50	.15
	PART NO.	16/5H 16/6H 16/7H 16/8H 16/9H	17/5H 17/6H 17/7H 17/8H	18/5H 18/6H 18/7H 18/8H 18/9H	19/5H 19/6H 19/7H 19/8H 19/9H	110/5H 110/6H 110/7H 110/8H
"	TUS (ks1)	46.7 46.7 45.1 45.5	46.0 45.1 41.9 46.9	48.6 49.3 45.9	49.4 48.1 48.9 49.0	48.3 49.7 48.7 48.0
TENSION	TYS (ks1)	39.4 38.6 39.2 39.2	38.2 38.5 38.1 39.7	40.9 40.1 40.3 41.3 40.2	39.2 37.6 39.2 39.0 38.7	39.7 42.6 40.6 39.3 40.2
	ELONG	31122	2222	47666	V8128V	⇔ ⇔⇔⇔
	£ _	2.8 2.4 1.5 2.8	0.000 0.000 0.000 0.000	41.20	5.6 7.5 4.7 8.1	21 24 24 24 30 30 30 30 30 30 30 30 30 30 30 30 30
8	PART NO.		Θ	ဓ		
COMPR.	CYS (ks1)					
3	PART NO.					
SHEAR	SUS (ks1)					
	PAR					
1 . 0/9	BUS ks1)					
BEARING	BYS (ks1)	-				
ING	PART NO.					
	BUS (ks1)					
_	BYS (ks1)					

A from fitted fractured specimens, 1 inch gage B From full-range stress-strain curves

① Premature failure ② Failed through extensometer attachment point

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

CASTING GROUP: BOEING PART B

	ZONE			100			8	GONO	1 3				BEARING	RING		
1 OCATTOW	THICKNESS		2	IENSION			ב	F.N.	SHEAK	X.	è	e/0 = 1.	5	e/0	0 = 2.0	
50150	(in.)	PART No.	TUS (ks1)	TYS (ks1)	ELONG A	(x) B	PART NO.	CYS (ks1)	PART NO.	SUS (ks1)	PAR	BUS (ks1)	نــــا	PART NO.	32	BYS (ks1)
FITTING	1.0	1X7 1X8 1X9 1X10 1X10	45.2 45.5 46.3 44.8	39.4 40.5 40.8 41.3	00000	47.927	177 178 179 1710 1711	42.1 42.4 42.4 42.2	1W7 1W8 1W9 1W10	33.8 33.8 33.6	1121 0121 621 128 121	80.2 61.2 79.9 58.8 60.9	(C)	227 228 229 2210 2211	98.6 98.2 98.6 94.9	77.4 78.1 81.1 79.5 81.0
FITTING	1.0	2X7 2X8 2X9 2X10 2X11	45.0 44.6 45.6 45.6	40.0 40.3 40.8	2222	1.1										
FITTING	0.	3X7 3X8 3X9 3X10 3X11	44.4 44.7 47.7 46.0 45.3	39.2 41.5 40.2 39.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.2 1.3 0.0	2Y7 2Y8 2Y9 2Y10 2Y11	\$2.00 \$3.00 \$3.00 \$3.50 \$3.50	2W7 2W8 2W9 2W10 2W11	34.0 33.0 34.3	328 328 329 3210	79.2 77.7 65.8 70.8	67.1 66.1 65.8 67.5	428 428 429 4210 4211	88.1 91.0 103.5 86.3	78.3 78.7 80.6 84.2
FITTING	0.0	4x8 4x8 4x9 4x10 4x11	42.7 44.7 42.4 45.6 45.8	39.7 41.9 38.4 40.1 41.5	00000	0.00000	377 378 379 3710 3711	43.6 43.6 44.2	3W7 3W8 3W9 3W10 3W11	33.7 33.5 33.6						
HORIZONT. TORQUE BOX	œ.	5x7 5x8 5x9 5x10 5x11	45.2 46.6 45.8 47.5 50.6	37.0 37.9 38.8 41.2	4447 6	0 H W O 80										
A From f1s	From fitted fractured From full-range stres		specimens, 1 inch	. 1 1m urves	gage			Failed prior to yield Specimen buckled	rior t	2 ye	2					

105

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

BOEING PART B

CASTING GROUP:

_	_		 				
		BYS (ks1)					
	0.5 - 0						
ING	S	PART NO.					
BEARING	5			·	<u> </u>		
	e/0 = 1.	BUS (ks1)			69.6 64.7 66.3 71.5 64.7		
	/3	PAR			727 728 729 7210 7211		
CUEAD	EME	SUS (ks1)		36.0 35.5 36.2 35.2 36.1	33.7 35.1 35.1 34.5 34.6		
		PART NO.		4W8 4W8 4W9 4W10 4W11	5W7 5W8 5W9 5W10 5W11		
COMPD	IF N.	crs (ks1)		45.5 44.6 45.1 46.0	43.1 42.3 42.1 43.4 40.9		
TENETON	3	PART NO.		4Y8 4Y8 4Y9 4Y10 4Y11	5Y7 5Y8 5Y9 5Y10 5Y11		ဓု
		(%) B	4.0 3.0 1.7 2.9 1.3	5.7 6.0 3.8	1.5	1.0	0.01111
		ELONG A	იის ტი	თთთდ	00000	00m00	23372
	NOTEN	TYS (ks1)	39.5 38.2 38.5 40.1 42.3	40.4 41.4 41.6 41.9	40.8 41.7 41.5 41.7	41.0 42.3 42.4 43.2	4.5.0 4.2.2 4.0.2 4.9
	ן נ	TUS (ks1)	47.7 46.1 44.8 47.4 46.9	51.1 51.3 51.9 51.7 51.9	44.9 45.6 46.1 45.3	46.3 47.5 47.1 47.7	45.4 47.8 49.0 46.7
		PART NO.	6X7 6X8 6X9 6X10 6X11	7X7 7X8 7X9 7X10 7X11	8X7 8X8 8X9 8X10 8X11	9X7 9X8 9X9 9X10 9X10	10x7 10x8 10x9 10x10 10x11
ZONE	THICKNESS	NOMINAL (in.)	•30	.20	.50	.50	.30
	1 OCATION	LOCAL TOP	HORIZ. TORQUE BOX	HORIZ. TORQUE BOX	VERTICAL BOX RT.REAR	VERTICAL BOX RT.REAR	VERTICAL BOX LEFT FRONT

I From fitted fractured specimens, 1 inch gage B From full-range stress-strain curves

Failed prior to yield Failed through machine marks

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

CASTING GROUP: BOEING PART B

Control of the contro

	1 OCATTON		VERTICAL BOX RIGHT FRONT	NEB LMR.LEFT	FLANGE RIGHT OUTSIDE	ATTACHMT. FLANGE LEFT VERTICAL	HORIZ.				
ZONE	IHICKNESS	NOMINAL (1n.)		.10	.10	.30	.30				
	_	PART NO.	11X7 11X8 11X9 11X10 11X11	12X7 12X8 12X9 12X10 12X11	13X7 13X8 13X9 13X10 13X10	14X7 14X8 14X9 14X10 14X10	15x7 15x8 15x9 15x10 15x10				
P		TUS (ks1)	51.4 50.2 50.1 49.3 53.9	49.3 45.2 48.6	52.5 50.0 49.8 51.0	448.4 49.1 49.8 6.8 6.8	48.1 48.0 47.2 48.0				
TENSION		TYS (ks1)	43.7 43.0 44.4 43.7 46.8	40.5 38.6 37.3 39.7 42.2	43.8 40.0 43.0 37.5 42.3	42.6 39.3 41.2 40.6	41.3 42.1 42.3 43.4				
		ELONG A	⊕ 4₩₩₩	≻ 0℃4€	64000	12 10 3	40601				
		(X)	2.4.5 6.3 6.3	6.7 2.5 1.8 2.8	7.5.3.7 5.5.5.7	40.40 40.40 60.40	1.171.19				
COMPR.	PAR 1 NO NO N										
PR.		CYS (ks1)									
SHEAR		PART NO.					·- ·-				
AR		SUS (ks1)	!								
	6	PART NO.					527 528 529 5210 5210				
	0 - 1,	BUS (ks1)					73.5 73.0 72.9 74.5 70.1				
BEARING	.5	BYS (kst)					68.4 69.7 69.1				
	79	PART NO.		828 828 829			628 628 629 6210 6211				
	70 = 2.	BUS (ks1)		88428 96555			8 2 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
		BYS (ks1)		78 8.68 8.69 9.60 9.60			79.6 85.9 83.8				

(1) Failed through machine marks

A From fitted fractured specimens, I inch gage B From full-range stress-strain curves

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

Contract F 33615-76-C-3111

CASTING GROUP: BOEING PART B

	ZONE						8	١					BEARING	ING	Ì	
	THICKNESS		Ħ	TENSION			COMPK.	ž.	SHEAR	AK)e	/0 - 1.	5	0/a	0 = 2.0	
	NOMINAL (1n.)	PART NO.	TUS (ks1)	TYS (ks1)	ELONG A	(X) m	PART NO.	CYS (ks1)	PART NO.	SUS (ks1)	PART NO.	BUS (ks1)	BYS (ks1)	PART NO.	8 2	BYS (ks1)
FLANGE LEFT INSIDE	.10	16X7 16X8 16X9 16X10 16X10	48.4 49.8 40.2 45.0 50.0	41.2 42.5 41.2 44.0	34116	2002	စု									
ATTACHMT. FLANGE LEFT VERTICAL	90.	17X7 17X8 17X9 17X10 17X10	46.9 47.2 44.2 44.6	41.3 40.9 40.8 37.4	46060	9.6.0										
VERTICAL BOX RIGHT INSIDE	.10	18X7 18X8 18X9 18X10 18X10	42.6 42.5 46.1 48.5	35.4 41.4 43.3	4666	2.7.7. 2.0.7.7.		· · · · · · · · · · · · · · · · · · ·								
FLANGE LVR. RT.	.25	19x7 19x8 19x9 19x10 19x10	51.5 49.8 51.0 52.0	42.7 42.3 43.8 43.8	Promon	40446	ඉඉ									
ATTACHET. FLANGE LINR. RT.	.10	20X7 20X8 20X9 20X10 20X11	50.0 50.0 50.0	40.7 42.4 39.7 43.2	∾~~~~	4.7.00.0 9.00.0					927 928 929 9210 NO 92	77.6 70.5 70.3 82.2 9211 PAR	66.7 63.1 66.5 75.5			
From fi	From fitted fractu	tured specimens, 1 inch gage stress-strain curves	ecfmens train c	urves	ch gag		GOO Fatied		lor to rough a	yteld corn	prior to yield outside gage zone through a correctable shrink pore through vibratool mark	e gage	a zone	.	defect	

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

4/.4 45.3 3	22X8 47.9 40.6 3	22X8 47.9 40.6 3	22X8 47.9 40.6 3
4/.4 45.3 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22x9 46.3 40.2 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
2 2.54	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
	22X10 45.8 40.8 2	22X10 45.8 40.8 2	22X10 45.8 40.8 2
- 5 - 5.54 +·/+	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22 AC 2 AC 2	22 AC 2 AC 2	C C UV C YV DACC
22X10 45.8 40.8 2			
22X10 45.8 40.8 2	52X8 47.9 40.6 3	52X8 47.9 40.6 3	22X8 47.9 40.6 3
22x10 45.8 40.8 2	22X8 47.9 40.6 3	22X8 47.9 40.6 3	22X8 47.9 40.6 3
45.8 40.2	22X8 47.9 40.6 3	22x8 47.9 40.6 3	22X8 47.9 40.6 3
22x10 45.8 40.8 2	22X8 4/.9 40.6	E 9.04 6.74 87.2	22X8 47.9 40.6 3
22X10 45.8 40.8 2		- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o occident over
22X10 45.8 40.8 2			
22X10 45.8 40.8 2			
22X10 45.8 40.8 2	0 07 6 07	0 07 6 07	
22X10 45.8 40.8 2	2 0 0 0 C 34 0VCC	2 0 0 0 C 34 0VCC	02VG AC 2 AC 2 AC 2
22X10 45.8 40.8 2	22x9 46.3 40.2	22x9 46.3 40.2	22Y9 46.3 40.2 3
22X10 45.8 40.8 Z			
7 0.04 0.04 ULAZZ	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
2 0001 0001	2209 46.3 40.2 3	2209 46.3 40.2 3	22x9 46.3 40.2 3
	22X9 46.3 40.2 3	22X9 46.3 40.2 3	2289 46.3 40.2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
	22X9 46.3 40.2 3 22X10 45.8 40.8 2	22X9 46.3 40.2 3 22X10 45.8 40.8 2	22x9 46.3 40.2 3
	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
	22X10 45.8 40.8 2	22X10 45.8 40.8 2	22X10 45.8 40.8 2
	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22X10 45.8 40.8 2
	22xy 46.3 40.2 3 22x10 45.8 40.8 2	22xy 46.3 40.2 3 22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22x10 45.8 40.8 2
-	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
_	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22xy 46.3 40.2 3	22xy 46.3 40.2 3	22x10 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 46.3 40.2 3	22x10 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22xy 46.3 40.2 3	22xy 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x10 45.8 40.8 2 22x11 47.4 43.3 3	22x9 46.3 40.2 3 22x10 45.8 40.8 2 22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x11 47.4 43.3 3	22x11 47.4 43.3 3	22x11 47.4 43.3 3
	22x10 45.8 40.8 2 22x10 45.8 40.8 2	22x10 45.8 40.8 2 22x10 45.8 40.8 2	22x10 45.8 40.8 2 22x10 45.8 40.8 2
	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22x9 46.3 40.2 3 22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
	22x10 45.8 40.8 2	22x10 45.8 40.8 2	22x10 45.8 40.8 2
	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
	22X10 45.8 40.8 2	22X10 45.8 40.8 2	22X10 45.8 40.8 2
	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
	22X10 45.8 40.8 2	22X10 45.8 40.8 2	22X10 45.8 40.8 2
C C C T T C T T T T T T T T T T T T T T	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22X9 46.3 40.2 3
3 000 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22X9 46.3 40.2 3	22X9 46.3 40.2 3	2289 46.3 40.2 3
7 0.04 0.04 ULAZZ	2209 46.3 40.2 3	2209 46.3 40.2 3	22x9 46.3 40.2 3
22X10 45.8 40.8 Z	22X9 46.3 40.2 3	22X9 46.3 40.2 3	22X9 46.3 40.2 3
22X10 45.8 40.8 2	22x9 46.3 40.2 3	22x9 46.3 40.2 3	22x9 46.3 40.2 3
22X10 45.8 40.8 2	22x9 46.3 40.2	22x9 46.3 40.2	22Y9 46.3 40.2 3
22X10 45.8 40.8 2	22YO AK 2 AN 2 2	22YO AK 2 AN 2 2	2 4 4 4 4 4 4 4 4 4
22X10 45.8 40.8 2	C C OV C 37 0x66	C C OV C 37 0x66	C C OF C 3F OACC
22X10 45.8 40.8 2	0.00	0.00	
22X10 45.8 40.8 2			
22X10 45.8 40.8 2			
22X9 46.3 40.2 3 22X10 45.8 40.8 2			
22x10 45.8 40.8 2			
22x10 45.8 40.8 2			- Orion Court
22x10 45.8 40.8 2		C 0.01 7.17	C 0.01 0.11
22x9 46.3 40.2 3 22x10 45.8 40.8 2	2 0.04 2.74 2.75	2 0.04 2.74 2.75	2 0.04 2.74 2.75
22x9 46.3 40.2 22x10 45.8 40.8 2	5 0°0* 6°/* 9777	5 0°0* 6°/* 9777	5 0°0* 6°/* 9777
22x9 46.3 40.2 3 22x10 45.8 40.8 2	- Y - Y - Y - X - X - X - X - X - X - X	- Y - Y - Y - X - X - X - X - X - X - X	- Y - Y - Y - X - X - X - X - X - X - X
22X10 45.8 40.8 2	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S	SOVE AT BLACK
22x10 45.8 40.8 2			6 3 07 0 67 0AGG
22x10 45.8 40.8 3 22x10 45.8 40.8 2			
22X8 47.9 40.6 3 22X9 46.3 40.2 3 22X10 45.8 40.8 2			
22x8 47.9 40.6 3 22x9 46.3 40.2 2 22x10 45.8 40.8 2			
MGE 22X8 47.9 40.6 3 2.4 22X9 46.3 40.2 3 2.0 TER 22X10 45.8 40.8 2 1.5			

TABLE 18 STATIC MECHANICAL PROPERTIES DATA (CONTINUED)

SS

Contract F 33615-76-C-3111

CASTING GROUP: BOEING PART B

APPENDIX F CORRELATIVE PROPERTIES

EXPLANATION

Table 19 contains information regarding tension specimens and property ratios of corresponding compression, shear, and bearing to tension data. Gage section thicknesses are recorded for the prior-to-test condition. Dendrite Arm Spacing (DAS) measurements are recorded for both the casting surface of thick sections from which tension specimens were excised and all tension specimen gage zones. Specimen soundness grades A through D refer to the radiographically measured soundnesses of material adjacent to fracture zones of tested tension specimens. Grades B, C, and D are primarily the result of gas and shrink porosity. Distances from tension specimen gage sections were recorded to the nearest chills, risers, ingates, and insulators when used. Property ratios for compression, shear, and bearing are recorded adjacent to the respective tension specimens. Figures 12 and 13 show the locations of all derived property specimens in relation to tension specimens. Derived property ratios are analyzed to develop reduced ratios in Tables 20 through 25 of Appendix G.

TABLE 19 CORRELATIVE PROPERTIES

CASTING GROUP: BOEING PART A

CONTRACT F 33615-76-C-3111 CAST

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

	의논		2.11 2.04 2.04			2.08 1.736 1.826 1.845	
	SIS.		1.929 1.950 1.993 1.964			2.10 1.902 1.867 1.836	
tos	SUS.		1.655 1.684 1.606 1.637	1.646 1.695 1.556 1.660			
Property Ratios	BYS TYS e/D =		1.597 1.638 1.581 1.601	1.581 1.672 1.564 1.532			
Proper	SUS SUT	.713 .700 .711 .698		.692 .718 .736 .718			
	SIST ST	1.049 1.076 1.010		1.034 1.051 1.044 1.033			1.053 1.105 1.108 1.050
nen to:	Insul- ator						
spectr	Chtll	D A1	23 28	22 24	2 S	E S	28 0
Distance from specimen	Riser						
Distan	Ingate	ນ	ပ	ပ	6	6	
DAS(10-4tn.)	Specimen Quality Grade	4484	4444	≪∞≪≪	~ ~ « « «	ജ≼ജ∪	≪∞∞ ∪
3-41n)	0	15 17 17 16	10 17 16 17	10 14 15	13 14 15	14 15 17	18 10 10
DAS (10	Θ	21 25 17 19	See Above	17 21 14 19	See	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.25 D	.25 D	.25 D	.25 D	.1787 .1719 .1802 .1783	. 1980 . 2000 . 1994 . 2010
Tension		113 114 115 116	213 214 215 216	313 314 315 316	413 414 415 416	573 574 575 576	613 614 615 616

(1) Measurement on Casting surface(2) Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CASTING GROUP: BOEING PART A

CONTRACT F 33615-76-C-3111 CAST

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

	SUB SES	2.02 1.976 2.07 2.04				2.08 2.20 2.06	
	BYS JYS	1.871 1.934 NoBYS 1.882				1.903 1.918 NoBYS 1.855	
20	쀎	from 8T es.				121 121	
Property Ratios	BYS TYS E/D=	Ratios fr 77 and 81 averages.				Ratios from 111 and 127 averages.	
Proper	SUS TUS	.771 .722 .701 .676				.656 .656 .715	
	CYS TYS	1.074 1.096 1.136 1.034	•	1.081 1.036 1.115 1.079		1.053 1.027 .998 1.018	
nen to:	Insul- ator		_				
spectmen	Chill	A Cu	23	SS	23	53	53
		ОП	<u>ош</u>	ပ္ရ	mm	0 60	ပစ
ce from	Riser						
Distance	Ingate	0	W	6	6	ပ	۵
	Specimen Quality Grade	ပ္ဆပ္ပ	< ∞∞∪	ပၕပၕ	U ≪ BU	8448	∞<∞<
DAS(10-41n)	0	15 12 13	13 15 17	13 14	13 14 13	20 13 14 16	21 17 21 21
DAS (1	Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.1088 .1075 .1260	.1100 .1097 .1058 .1101	.1080 .1053 .1078	.1090 .1082 .1074	.2242 .2249 .2242 .2202	.249 D .249 D .248 D .249 D
Teneton		713 714 715 715	813 814 815 816	973 974 975 976	1013 1014 1015 1016	1173 1174 1175 1176	1273 1274 1275 1276

(1) Measurement on Casting surface(2) Measurement on Specimen surface

_	
Ξ	
₹	
≘	
중	
(CONTINUED)	
Ë	
Ħ	
PROPERTIES	
•	
CORRELATIVE	
Ξ	
5	
z	
Ŗ	
_	
<u>o</u>	
<u></u>	
TABLE 19	
≤	

CASTING GROUP: BOEING PART A

CONTRACT F 33615-76-C-3111 CAST

		Distances: A 0 to 0.5 fm. B 0.5 to 1.0 fm. C 1.0 to 2.0 fm.	2.0 to 5.0 5.0 fn. plu				
	罰뙁			Š			
	SIS.			averages.			
90	SIE SE			los from and 16T		·-	
Property Ratios	BYS			Ratios 15T am			
Proper	SUS ST ST			.656 .698 .746			
	SIS			1.079 1.050 1.027 .920	-	1.014 .981 .983 1.014	
en to:	Insul- ator						
specin	Ch111	63	E 3	23	83	2 3	83
Distance from specimen	Riser	_ Q ∀		<u> </u>	∪ ∢	<u> </u>	
Distanc	Ingate	Q	ပ	ш	ш	6	ပ
	pecimen Quality Grade	***	∞≪≪∞	മയ∪∢	≪≪∞∪	Not Meas Not Meas Not Meas	മൈധമ
Cm3-6	0	14 11 15 14	21 17 21	24 18 15 14	15 15 16	2212	114 114 164
DAS (10-	Θ	21 25 17 19	See Above	Not Meas.	Not Meas.	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.249 D .243 D .249 D .249 D	.250 D .249 D .250 D	.1510 .1478 .1550	.1548 .1488 .1600	1084 1100 1102	1107 1085 1072 1154
Tension		13T3 13T4 13T5 13T6	1473 1474 1475 1476	1573 1574 1575 1576	1673 1674 1675 1676	1773 1774 1775 1775	1873 1874 1875 1876

Weasurement on Casting surfaceMeasurement on Specimen surface

NTINUED)

CONTRACT F 33615-76-C-3111 CAST

-	
_	
Z	
0	
8	
$\overline{}$	
S	
ES	
_	
PROPERTI	
2	
₩.	
▔	
8	
~	
<u> </u>	
_	
44	
록 .	
=	
_	
_	
CORRELATIVE	
;;;	
7	
≂	
=	
$\boldsymbol{\asymp}$	
_	
_	
0	
_	
~	
TABLE 19	
-	
~	
_	

CASTING GROUP: BOEING PART A

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in.	2.0 to 5.0 5.0 fm. plu				
	ST3	2.14 1.889 2.01 2.05					
	BYS S	2.01 1.916 2.06 1.912					
los	SUS ST-	from d 20T es.			NoBUS 1.660 1.416 1.577		
Property Ratios	BYS TYS	Ratios 19T am averas			NoBYS 1.677 1.587 1.702		
Proper	SUS SUT SUT		.781 .726 .737 .749				
	CYS TYS		Nocys 1.009 1.077 1.026	1.021 1.088 1.034 1.060	1.062 1.112 1.051 1.065	1.040 1.040 1.079	
nen to:	Insul- ator		-				
specimen	Ch1)	E A1 D Cu	S3	83	53	23	23
e from	Riser		ပြ	<u> </u>	<u> </u>	00	шо
Distance	Ingate	٥	۵	۵	ပ	6	0
	Specimen Quality Grade	ပ္ဆပ္ဆ	ပစ္ဆပပ	ထပထပ	മൈധമ	ຄ∢ບບ	മെധധ
0-4tn)	0	19 21 19 15	28 23 19	25 25 15 15	20 18 17 18	19 17 14	2777
DAS (10-	Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.1595 .1722 .1772 .1658	.1698 .1660 .1657 .1670	.1103 .1108 .1108	. 1289 . 1206 . 1289	.1094 .1100 .1063	.1118 .1128 .1102
Tension		1973 1974 1975 1976	2013 2014 2015 2015	2173 2174 2175 2175 2176	2213 2214 2215 2215	2313 2314 2315 2316	2413 2414 2415 2416

Measurement on Casting surface Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

4
PART
BOE ING
GROUP:
CASTING

CONTRACT F 33615-76-C-3111 CAST

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in.	5.0 to 5.0 5.0 fn. plu			
	의논 기본					
	SXI SX					
SO	BUS ST-					
Property Ratios	BYS			 		
ropert	SIS					
	왕	1.062 1.009 1.086 1.021	.973 VoCYS 1.035 1.092			
en to:	Insul- ator					
spectmen	Ch111	A A1 E Cu	E A			<u>-</u>
ce from	Riser					
Distance	Ingate	Q	6			
	specimen Quality Grade	മ≪മ∪	മ≪≪∪			
-41n	0	13 17 17 20	1211		-	
DAS (10-	Θ	Not Meas.	Not Meas.			
Actual	Thkns. (1n.)	.1582 .1612 .1911 .1581	.0850 .0652 .0894 .1111			
Tension	Specimen Thkns.	2513 2514 2515 2515 2516	26T3 26T4 26T5 26T5			

Measurement on Casting surface
 Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

BOEING PART A: INTEGRALS

CASTING GROUP:

CONTRACT F 33615-76-C-3111 CAST

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in.	5.0 to 5.0 5.0 tn. plu		,		
	의논						
	BYS BYS						
8	뾦						:
ty Rati	E TS						
Property Ratios	SIS						
	SIST					1.020 NoCYS 1.106	
nen to:	Insul- ator						
spectmen	Cht	Su Su	23	23	83	2 3	
f g	Riser C	<u>ш</u> в	шө	<u> </u>		<u> </u>	
Distance		ú	ပ	Δ	ပ	ш	· · · · · · · · · · · · · · · · · · ·
	Quality Grade Ingate	5	υ ∞ ∢ ∪∞	8888	4444	m = <	
-41n.)	Quality Grade Ingate		18 21 21 21 6		 -		
-	Quality Grade Ingate	17 17 B 30 21 A 26 16 C 22 18 B	See 18 B Above 21 C 2 2 C	\$\$ \$\$ \$\$	9 9 115 A A A A A A A A A A A A A A A A A A	∞∞⊆≪	
-41n.)	① ② Quality Ingate	17 21 16 16 18 8	18 21 21 21 6	21 21 88 88 24 88	119 139 139 139	142113 A D B B	

(1) Measurement on Casting surface(2) Measurement on Specimen surface

ABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

(COMITMON)	
27 (27)	
TE PRUPERITES	
MOLE 13	

CASTING GROUP: HITCHCOCK PART A

CONTRACT F 33615-76-C-3111 CAST

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in. D 2.0 to 5.0 in.	 			
	STS S		2.097 2.113 2.064 2.137 2.175			2.046 1.949 2.012 1.919 1.877
	exis.		2.020 2.075 2.066 2.085 2.085			2.055 1.952 1.995 1.972
05	쀖		1.640 1.601 1.738 1.635 1.665	1.662 1.535 1.643 1.514		
Property Ratios	BYS Eds		1.595 1.727 1.658 1.696 1.645	1.635 1.608 1.656 1.673 1.610		
roper	SUS TUS	.715 .714 .733 .718		.720 .714 .727 .707		
	S S	1.044 1.055 1.053 1.032 1.054		1.037 1.055 1.035 1.022 1.012		
en to:	Insul- ator					
spectmen	Ch111	80	⋖	⋖	«	⋖
ce from	Riser	Q	6	Q	۵	0
Distance	Ingate	ပ	6	6	m	0
	Specimen Quality Grade	***	~~~~	4444	~~~~	<<<<
3-41nJ	0	18 20 21 21	16 117 118 118	1912	16 118 20	16 119 119 15
DAS (10	Θ	26 28 29 26 30	9000	2883	See	Not Meas.
Actual	Thkns. (1n.)	.249 D .250 D .250 D .249 D	.248 [.248 [.249 5. .250 D	.249 L .250 D .250 D .249 D	.249 D .249 D .248 D .250 D	.231 .239 .234 .234
Tension	Specimen Thkns.	115H 176H 177H 178H 119H	215H 216H 217H 218H 219H	315H 316H 317H 318H 319H	415H 416H 417H 418H 419H	515H 516H 517H 518H 519H

(1) Measurement on Casting surface(2) Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CONTRACT F 33615-76-C-3111 CAST

CASTING GROUP: HITCHCOCK PART A	
GROUP: HITCHCOCK	RT A
GROUP:	
	_

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

		Distances: A 0 to 0 t				
	BUS 2.785		2.069 2.050 2.060 2.019 1.937 2.058 1.964 2.021 1.843 1.923	_		
	BYS JYS		2.069 2.060 1.937 1.964 1.843			
los	SUS 175					
Property Ratios	BYS TYS					
Proper	SUS TUS					
	CYS					
en to:	Insul- ator					
Distance from specimen to:	Ch111	٧	0	6	ပ	€
ce from	Riser	0	w	0	6	0
Distan	Ingate	ပ	6	6	6	6
	Operation () () () () () () () () () () () () ()	4444	44044	4444	4444	<<<<
DAS (10-41n.)	0	16 18 20 19 18	18 17 21 13	17 18 19 13	15 21 21 13	410 10 10 10 10
	Θ	Not Meas.				
Actual	Thkns. (1n.)	. 236 . 235 . 242 . 242	.1144 .1321 .1010 .1190	.1194 .1392 .1067 .1315	.1220 .1253 .1087 .1171	.1093 .1185 .1097 .1164
Tension	Specimen Thkns.	615H 616H 617H 618H 619H	######################################	815H 816H 817H 818H 819H	9158 9164 9174 9184	1015H 1016H 1017H 1018H

Measurement on Casting surfaceMeasurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CAST	٢
CONTRACT F 33615-76-C-3111 CAST	
<u>. </u>	ŀ
CONTRACT	
	ŀ
	1.
	l
	ŀ
	١
	-
	ŀ
	1
	ŀ
	į
	1
₩.	
PAR	ŀ
Ř	
£	
1110	
I	+
G GROUP: HITCHCOCK PART A	
	•

		5 4800				
	SNE SNB		1.982 2.033 1.966 1.935 1.935			
	SXIS.		1.904 1.947 1.928 1.928			
los	SUS SUS					
Property Ratios	BYS TYS					
Proper	SUS TUS					
	CYS					
nen to:	Insul- ator					
spectmen	Chtll	«	«	<	©	<
ce from	Riser	0	6	w	6	۵
Distance	Ingate	O	6	U	ပ	0
	Specimen Quality Grade	***	***	4444	4444	≪∞∞≪∞
DAS(10-41n.)	0	17 19 19 20 18	17 18 13 13	15 18 20 19	23 23 20 21	22 22 23 23 23 23 23 23 23 23 23 23 23 2
DAS (1	Θ	16 16 20 18 18	See Above	26 28 30 30	See	Neas.
Actual	Thkns. (fn.)	.238 .237 .239 .238	.249 D .250 D .250 D .249 D	.250 D .248 D .249 D .250 D	.250 D .249 D .250 D .249 D	. 1791 . 1212 . 1489 . 1769
Tension		1175H 1116H 1117H 1178H 1178H	1275H 1276H 1277H 1278H 1278H	1315H 1316H 1317H 1318H 1319H	14T5H 14T6H 14T7H 14T8H 14T9H	1575H 1576H 1577H 1578H 1579H

Weasurement on Casting surfaceMeasurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CAST			Distances: A 0 to 0. B 0.5 to 1. C 1.0 to 2. D 2.0 to 5.	5.			
		BUS 7185					
CONTRACT F 33615-76-C-3111		SXS SXS					
33615-7	tos	쀖					
<u>ر</u> ة :	Property Ratios	BYS TYS					
CONTR	Proper	SUS SUS					.764 .760 .781 .769
		CYS					1.062 ckled 1.091 1.052 1.061
	nen to:	Insul- ator					8
	specimen	Ch111	٧	6	ပ	6	۵
	e from	Riser	E	a	۵	ш	ш
	Oistance	Ingate	0	0	0	∢	<
ART A		Quality Grade	***	04844	4484	~~~~	~~~
HITCHCOCK PART	DAS(10-41n.)	0	14 15 18 13 17	88858	82228	18 21 18 18	22 16 20 22 18
HITC	DAS (1	Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.
GROUP:	Actual	Thkns. (1n.)	.1770 .1800 .1811 .1722 .1800	.1109 .1091 .1078 .1086	.1012 .1165 .1097 .1128	.1893 .1840 .1880 .1881	.215 .203 .208 .208
CASTING GROUP:	Tension	Spectmen Thkns No. (1n.)	1675H 1676H 1677H 1678H 1678H	1775H 1776H 1777H 1778H 1778H	1815H 1816H 1817H 1878H 1879H	1975H 1976H 1977H 1978H	2015H 2016H 2017H 2017H 2018H 2019H

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

Measurement on Casting surface Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

⋖
PART
HITCHCOCK
GROUP:
CASTING

CONTRACT F 33615-76-C-3111 CAST

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

		2 4800				
	SES					•
	BYS STS					
0.5	SUS ST					
y Rat	BYS TYS					
Property Ratios	SUS TUS					
	CYS					
en to:	Insul- ator					
Distance from specimen to:	Ch111	Q	ပ	ပ	ပ	
ce from	Riser	ш	6	Lu	ш	
Distan	Ingate	6	<	ပ	<	
	Specimen Quality Grade	4484	4444	44484	<<∞<∞	
DAS(10-41n.)	0	15 17 17 18 18	48 19 19 19	17 19 24 23	21 16 17 16 16	
	Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	
Actual	Thkns. (1n.)	.1095 .1442 .1250 .1301 .1258	.1668 .1735 .1620 .1625 .1735	.1064 .1500 .1122 .1076	.1088 .1529 .1324 .1344	
Tenston	Specimen Thkns.	2175H 2176H 2177H 2178H 2178H	2215H 2216H 2217H 2218H 2219H	2375H 2316H 2317H 2318H 2319H	2415H 2416H 2417H 2418H 2419H	

Measurement on Casting surface
 Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CASTING GROUP: HITCHCOCK PART A INTEGRALS

CONTRACT F 33615-76-C-3111 CAST

		# 33334 91010	o.	•		
	SES Ses					
	SI SE					
0\$	쀖					
y Rati	BYS TAS	:				
Property Ratios	SUS SUT SUT					
	शह					7
en to:	Insul- ator					
Distance from specimen to:	Ch111	6 2	60	«	«	6
e from	Riser	a	۵	6	٥	∞
Distan	Ingate	Q	6	6	0	6
	pecimen Quality Grade	4444	4444	4444	4444	***
0-41n.)	0	21 26 20 18 20	22 20 18 18	No DAS 18 No DAS 23 14	13 13 13 13	15 20 16 14
DAS (10-	Θ	17 15 18 18 18	See Above	17 21 16 18 16	128216	Not Meas.
Actual	Thkns. (1n.)	.250 D .249 D .250 D .250 D	.250 D .249 D .250 D .249 D	.234 .234 .235 .206 .235	.238 .237 .237 .237	.1458 .1381 .1323 .1409
ension		16/5H 16/6H 16/7H 16/8H	77/5H 77/6H 77/7H 77/8H	18/5H 18/6H 18/7H 18/8H 18/9H	19/5H 19/6H 19/7H 19/8H 19/9H	710/5H 710/6H 710/7H 710/8H 710/9H

(1) Measurement on Casting surface(2) Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CONTRACT F 33615-76-C-3111 CAST

_	
MUTER I LES	
J	
•	
•	
222	
4	
•	
2	
_	
5	
•	
111111111	
3	
Ę	
•	
9	
אאנו	
Ę	
₹	
,	
n	
•	
705	
ï	
=	
7	
3	

CASTING GROUP: BOEING PART B

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in.	0.0			
	Sales	2.186 2.180 2.146 2.079 2.182		s from d 4X ges	2.063 2.036 2.255 2.270 2.103	
	SXIS.	1.950 1.980 2.007 1.956 2.022	ystng	Ratics 3X and average	1.985 1.878 2.052 2.010 2.029	
tos	SUS TYS	1.778 1.358 1.739 1.288 1.370		1.784 1.738 1.379 1.539 1.561	from 4X Es	
Property Ratios	BYS TYS	1.670 NoBYS 1.718 NoBYS NoBYS	above developed 2X averages.	1.712 1.678 1.586 1.679 1.735	Ratios 3X and average	
Proper	SUS TUS	.749 .714 .736 .736		.781 .752 .768 .720 .753	.810 .754 .744 .734	
	CYS TYS	1.050 1.034 1.050 1.038	Ratios 1X and	1.016 NoCYS 1.051 1.046 1.078	1.100 1.055 1.091 1.081	
nen to:	Insul- ator	6	6	0	٥	ш
spectmen	Cht11	69	23	53	23	23
e from	Rfser	V 0	∢Ω	<u> </u>	¥Ω	<u>∞</u> ≪
Distance	Ingate	Q	ు	6	6	ပ
	Specimen Quality Grade	<8<<8	∞∞<<∞	ပဆ≪≪ဆ	∞∪≪≪ ∞	ပထဆဆာ
DAS(10-41n.)	0	22 23 19 22 23	23 22 28 28	22 23 25 25 25	3 2222 8	16 17 13 20 18
		24 27 23 24 19	See Above	20 20 20 20 20	See Above	A Rot Ras.
Actual	Thkns. (1n.)	.25 D	.25 0	.25 D	.25 D	.216 .220 .221 .221 .206
Tension Actual	Specimen No.	1X7 1X8 1X9 1X10 1X11	2X7 2X8 2X9 2X10 2X11	3x7 3x8 3x9 3x10	4x7 4x8 4x9 4x10 4x11	5x7 5x8 5x9 5x10 5x11

(1) Measurement on Casting surface(2) Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPLITIES (CONTINUED)

~
PART
BOEING
GROUP:
CASTING

CAST
-
_
=
ů.
Ġ
Y
ė
≂
ĩ
Ò
吕
ø
쯠
n
u.
-
u
•
œ
至
∺
_

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

					
aus Tys			s from d 9X ges.		
BYS JYS			Ratio 8X am avera		
SUS T			1.526 1.390 1.423 1.524 1.396		
BYS EADS			1.675 NOBYS NOBYS 1.681 NOBYS		
SUS SUT		.704 .692 .697 .681	739 754 753 735		
CYS TYS		1.126 1.077 1.084 1.057 1.053	1.054 1.007 1.005 1.032		
Insul- ator	W	W	٥	۵	6
Chall	23	23	23	23	23
Riser		,		<u> </u>	≪ш
Ingate	ပ	٥	ပ	€	v
Specimen Quality Grade	∞∞∞≪∞	***	∪∪≪ ≪∞	∪യ≪≪യ	≪∞∞∞
0	17 17 18 17 17	01 13 8 11	23 24. 23 25. 25 25.	22 22 23 25 23 23 23 23 23 23 23 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	115 125 16
Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Not Meas.
Thkns. (1n.)	.230 .232 .234 .233 .233	.1696 .1680 .1686 .1700	.250 D	.250 0	.1980 .1453 .204 .209 .1898
Spectmen No.	6X7 6X8 6X9 6X10 6X10	7X7 7X8 7X9 7X10 7X11	8X7 8X8 8X9 8X10 8X10	9x7 9x8 9x9 9x10 9x10	10X7 10X8 10X9 10X10 10X11
	Thkns. (in.) (a) (a) Grade Ingate Riser Chill Insul- $\frac{\text{CYS}}{\text{TVS}}$ $\frac{\text{SUS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TVS}}$ $\frac{\text{BUS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$ $\frac{\text{BYS}}{\text{TUS}}$	Thkns. ① ② Quality Ingate Riser Chill Insul- TYS SUS BVS BVS TVS TVS TVS TVS TVS TVS TVS TVS TVS T	Thkns. ① ② Quality Ingate Riser Chill Insul- CYS SUS BVS TVS TVS TVS TVS TVS TVS TVS TVS TVS T	Thkns. ① ② ② Quality Ingate Riser Chill Insul- CVS SUS BYS TUS TYS TUS SUS BYS SUS BYS SUS BYS SUS SUS BYS SUS BYS SUS SUS SUS SUS BYS SUS SUS SUS SUS SUS SUS SUS SUS SUS S	Thkns. ① ② Quality Ingate Riser Chill Ingul- CYS SUS BYS TUS TUS TUS TUS TUS TUS TUS TUS TUS TU

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CONTRACT F 33615-76-C-3111 CAST

CASTING GROUP: BOEING PART B

		2 < B C D	<u> </u>			
	왕동		1.931 2.091 2.152 1.969			2.010 1.951 2.094 2.222 2.017
	BYS BYS		2.108 2.108 2.108 2.108 2.038			1.927 1.898 2.063 1.924 1.931
los	SE SE					1.528 1.556 1.519 1.578 1.460
ty Rat	BYS F/O					1.656 1.558 1.684 1.634 1.583
Property Ratios	SUS TOS					
	CYS TYS					
nen to:	Insul- ator	0	w	<	w	a
specin	Chill	A A1 E Cu	S S	23	₹3	23
Distance from specimen to:	Riser				≪ ω	шо
Distanc	Ingate	ပ	ш	ш	0	U
	Specimen Quality Grade		~~~	2444	⇔≪∞≪ ∞	∞∞∞∞
DAS(10-4tn.)	@	10 15 13 14	131212	111112	13 13 14 16 19 19	20 20 18
DAS (10	Θ	Not Meas.	Not Meas.	Not Meas.	Not Meas.	Neas.
Actual	Thkns. (fn.)	.202 .202 .202 .202	.1235 .1359 .1295 .1368	.1169 .1366 .1180 .1381	.221 .212 .218 .218 .220	. 201 . 202 . 202 . 202 . 201
Tenston	Specimen Thkns. No. (1n.)	11X7 11X8 11X9 11X10 11X11	12 <i>X7</i> 12 <i>X</i> 8 12 <i>X</i> 9 12 <i>X</i> 10 12 <i>X</i> 11	13X7 13X8 13X9 13X10 13X11	14x7 14x8 14x9 14x10 14x11	15x7 15x8 15x9 15x10 15x11

① Measurement on Casting surface② Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CASTING GROUP: BOEING PART B

CONTRACT F 33615-76-C-3111 CAST

0 to 0.5 fn. 0.5 to 1.0 fn. 1.0 to 2.0 fn. 2.0 to 5.0 fn. 5.0 fn. plus

	STES					. E
	SI SE					pecim
tos	315					339 1.597 375 1.462 902 1.709 Bearing Specimen
Property Ratios	BYS					1.639 1.488 1.902 No Bea
Proper	SIS					
	SIST					
men to:	Insul- ator	<	ш	6	ပ	o
specimen	Chtll	23	23	23	23	S
from		<u> </u>	ош	<u>o</u> m	4 0	O W
	Riser					
Distance	Ingate	Q	<	ပ	0	List (
	Specimen Quality Grade	ပပဓပပ	ပစ္ဆစ္ဆပ္	ပပထာထား	ပထထထထ	∪≪≪ &
DAS(10-41n.)	0	17 15 15 16 16	26 26 26 26 26 26	22772	22024	12 13 14 15
		Not Meas.	Not Weas.	Not Meas.	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.1030 .1080 .1150 .1085	.1600 .1629 .1609 .1607	.1566 .1514 .1492 .1424 .1187	.1300 .1310 .1284 .1295	.1015 .0911 .0988 .1084
Teneton	Specimen No.	16x7 16x8 16x9 16x9 16x10	17X7 17X8 17X9 17X10 17X11	18x7 18x8 18x9 18x10 18x10	19x7 19x8 19x9 19x10 19x10	20X7 20X8 20X9 20X10 20X10

Weasurement on Casting surfaceWeasurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CASTING GROUP: BOEING PART B

CONTRACT F 33615-76-C-3111 CAST

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in.					
	STS STS						-
	BYS BYS						
los	SIST T						
ty Rat	BYS TYS e.00 =					·	
Property Ratios	SUS SUT					_	
	SYS TYS				-		
nen to:	Insul- ator	u	lu _				-
spectmen	Ch111	C A	23 23	 			
Distance from	Riser			 			
Ofstan	Ingate	0	۵				<u> </u>
	Specimen Quality Grade	Not Meas A B A A					
0-4tn	0	13 14 13 14 15	17 20 18 22 16				
DAS (10-	Θ	Not Meas.	Not Meas.				
Actual	Thkns. (1n.)	.0585 .0893 .0942 .1107	.1163 .1165 .1164 .1158			· ——-	
Tension	Specimen Thkns No. (1n.)	21X7 21X8 21X9 21X10 21X10	22X7 22X8 22X9 22X10 22X11				

(1) Measurement on Casting surface(2) Measurement on Specimen surface

TABLE 19 CORRELATIVE PROPERTIES (CONTINUED)

CAST	
CONTRACT F 33615-76-C-3111	
CONTRACT	
ROFING DART B TNTEGRALS	
BOFING PART R	
CASTING GROUP.	

		Distances: A 0 to 0.5 in. B 0.5 to 1.0 in. C 1.0 to 2.0 in. D 2.0 in. F 5.0 in. plus			
	STS.				
	BYS BYS				
fos	SNB TŲS				
Property Ratios	BYS TYS e.D.=				
Proper	SUS TUS				
	CYS SYT				
en to:	Insul- ator	ш	W	∞	<
specin	Cht1)	E A1 A Cu	A S	69 00	2 A
e from	Riser				
Distance from specimen to:	Ingate	Q	۵	W	٥
	Specimen Quality Grade	മ∪മ≪മ	ജ∪ജ≼ജ	∢∢∪∞ ∞	∞ ∞ ≪ ≪ ∞
4tn.)		19 25 19 18 25	19 21 21 16 26	12 12 17	11222112
DAS (10-	Θ	28 28 23 26	See Above	Not Meas.	Not Meas.
Actual	Thkns. (1n.)	.25 D	.25 D	.1246 .1410 .1228 .1281	. 1195 . 1260 . 1674 . 1262 . 1396
Teneton	Specimen Thkns.	X3/8 X3/8 X3/10 X3/10	X4/7 X4/8 X4/9 X4/10 X4/11	x5/7 x5/8 x5/9 x5/10 x5/10	X7/7 X7/8 X7/9 X7/10 X7/11

Measurement on Casting surfaceMeasurement on Specimen surface

APPENDIX G DERIVED PROPERTIES

Compession, shear, and bearing design values are derived as 95 percent lower confidence limits of ratios formed with tensile properties. Tables 20 through 25 present the ratios of CYS/TYS, SUS/TUS, BYS/TYS, and BUS/TUS grouped into the DAS and soundness cells used in Section III.3 to categorize tensile properties. In Tables 20 and 21, evaluations were made between round and flat specimen data for compression and shear to determine whether specimen configurations influenced the results. In both cases, configuration caused less than 2 percent difference in mean ratios of either CYS/TYS or SUS/TUS. Therefore, Phase II round and flat specimen data within each cell were combined to compute statistical means and standard deviations. Each table of property ratios shows the calculations made to obtain reduced ratio (R) values. The cell average ratios and reduced ratio values are shown in Figure 18. The reduced ratio line for each of the six property ratios is naturally weighted towards the larger sample cell averages.

The recommended use of derived property ratios for A357-T6 castings is as follows:

- 1. Obtain the appropriate tensile allowable as explained in Section III.
- Multiply the tension allowable by the reduced ratio value shown below:

$$F_{cy} = 1.045 F_{ty}$$
 $F_{bry} = 1.627 F_{ty}(e/D = 1.5)$ $= 1.959 F_{ty}(e/D = 2.0)$

$$F_{su} = 0.720 F_{tu}$$
 $F_{bru} = 1.538 F_{tu}(e/D = 1.5)$ $= 2.02 F_{tu}(e/D = 2.0)$

DERIVED PROPERTY RATIO ANALYSIS -- COMPRESSION TABLE 20

F 336 5-76-C-3111	Q	1.106	Pooled Data:	Flat 55 1.056 <u>Fflat = 1.011</u> 3.9%
Contract F	ality Grade C	1,136	1.074 1.092 Pooled D 1.034 1.034 1.081 1.115 1.027 1.050 1.124 8 = .032 R = 1.0 1.056 1.026 1.056 1.056 1.056 1.057 1.056 1.057 1.056 1.057 1.058 1.054 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058	Round N 37 T 1.044 s .028 cv 2.78
	Tension Specimen Quality B	1.105 .973 N = 2 F = 1.039 S = .093	1.034 1.065 1.062 1.086 1.086 1.012*** 16 1.010*** 1.048 * * * * * * * * * * * * * * * * * * *	$\frac{N}{\Gamma} = \frac{3}{1.020}$ 8 = .075
CAST	٧	1.053 1.053 1.126 1.084 1.057 N = 7 1.053 F = 1.063 8 = .032	1.049* 1.009 1.077 1.010 1.076* .988 1.044* 1.037* 1.036 1.033* 1.055* 1.079 1.027 1.035* 1.018 .998 1.022* N19 1.040 1.051* 8.036 1.014 1.055* 1.050* 1.062 1.053* 1.038* 1.053 1.053* 1.038* 1.053 1.054* 1.081* 1.062 1.062 1.032* 1.009 1.062 1.032* 1.009 1.062 1.032* 1.009 1.063* 1.009 1.065* 1.056* 1.009 1.065* 1.056* 1.009 1.065* 1.056* 1.009 1.065* 1.009 1.006* 8 = .020 1.009 1.006* 1.009	N = 2 F = 1.026 8 = .029
•		Tension Specimen DAS range .0001 in Up To	13 to 18	25 +

Data are ratios (r) of CYS/TYS * - Round Specimens

r = mean group ratio s = standard deviation cv = coefficient of variation, 100 s/r - number of CYS/TYS ratios

TABLE 21 DERIVED PROPERTY RATIO ANALYSIS---SHEAR

Contract F 33615-76-C-3111 Tension Specimen Quality Grade B C D	.701	N = 6 .676 N = 3 N = 6 .746 N = 3 N = 6 .746 N = .731 F = .731 F = .010 S = .049 S = 1 R = F	N = 7 .737 N = 7	Round Flat N 38 26 Flat F737 F .732 .718 S010 S .0237 .0402 Fround CV 3.24% 5.60%	N = number of SUS/TUS ratios
CAST	Tension .692* N= 5 DAS range .704	.713* .720* .711* .700* .714* .698* .727* N* 17 .722 .736* .707* ¯ ".713 .698 .676 .766 s = .033 .726* .656 .768* .61 .692	19 to 24 .764 .735 * s = .021 .752 * .759 * .754 * .710 * .734 * F = .740 .742 * .764 .764 .785 * s = .021 .752 * .769 .769 * .749 * .810 * .749 * .	25 + 7.720 N = 2 .740 * .746 * .753	Data are ratios (r) of SUS/TUS

Data are ratios (r) of SUS/TUS * - Round Specimens

- mean group ratio

s = standard deviation cv = coefficient of variation, $100s/\overline{r}$

TABLE 22 DERIVED PROPERTY RATIO ANALYSIS --- BEARING YIELD STRENGTH e/D = 1.5

	CAST	V	Tension	on Specimen B	Quality	Grade C	Contract F 33615-76-C-3111 D	
Tension Specimen DAS range .0001 in. Up To 12	1.597 1.581 1.488	N = 3 T = 1.555 S = .059						
13 to 18	1.638 1.581 1.564 1.564 1.532 1.595 1.727 1.658	1.645 1.635 N = 17 1.608 F = 1.645 1.656 F = 1.645 1.586 s = .083 1.675 1.902	1.672 1.677 1.702 1.610 1.558 1.684 1.583	N = 7 F = 1.641 s = .056	1.587 1.639	N = 2 r = 1.613 s = .037	Pooled Bata: N = 39 \(\bar{r} = 1.646 s = .070 t.95 = 1.685 R = \(\bar{r} = t.958 \)	
19 to 24	1.670 1.718 1.681	N = 3 T = 1.690 s = .025	1.678 1.735 1.656 1.634	N = 4 F = 1.676 s = .043	1.712 1.675	N = 2 F = 1.694 S = .026	R = 1.627	
25 +	1.679							1
Data are ratios		(r) of BYS/TYS for e/D = 1.5	0 = 1.5		N = number of BYS/TYS r = mean group ratio s = standard deviation	BYS/TYS ratios ratio leviation	sol	7

TABLE 23 DERIVED PROPERTY RATIO ANALYSIS --- BEARING ULTIMATE STRENGTH e/D = 1.5

					1
D			R = 1.538		tios
ty Grade C		N = 2 F = 1.507 S = .128	S N = 3 F = 1.567 S = .200		number of BUS/TUS ratios mean group ratio standard deviation
Qua 11		1.597	1.784 1.526 1.390		E E S
ension Specimen B		N = 7 F = 1.583 S = .081	N = 6 T = 1.522 S = .142		
F		1.695 1.660 1.577 1.612 1.556 1.519 1.460	1.358 1.370 1.738 1.561 1.528 1.578	1.396	/D = 1.5
¥	N = 3 F = 1.561 S = .155	1.665 1.662 1.535 1.643 N = 17 1.514 F = 1.607 1.379 F = .092 1.709	N = 4 r = 1.582 s = .226	N = 2 F = 1.481 s = .082	(r) of BUS/TUS for e/D = 1.5
	1.655 1.646 1.382	1.684 1.606 1.637 1.656 1.660 1.601 1.738 1.635	1.778 1.739 1.288 1.524	ro 4.	
	Tension Specimen DAS range .0001 in. Up To 12	13 to 18	19 to 24	+ 52	Data are ratios
	Tension Specimen Quality Grade A B C D	1.655 1.655 1.646 1.382 N = 3 F = 1.561 s = .155	1.655 1.646 1.382 N = 3 F = 1.561 s = .155 1.684 1.662 1.606 1.612 1.656 1.643 1.652 1.650 1.612 1.650 1.640 1.379 1.612 1.601 1.416 1.597 1.612 1.650 1.519 1.602 1.603 1.577 1.612 1.604 1.597 1.612 1.605 1.606 1.519 1.601 1.416 1.597 1.612 1.601 1.416 1.597 1.612 1.601 1.460 s = .081 1.38 1.709 1.613 1.635 1.635 1.635 1.640 1.656 1.640 1.656 1.6	1.655 1.646 1.382 N = 3	1.655

	TABLE 24 D	JERIVED PR(OPERTY RA	DERIVED PROPERTY RATIO ANALYSIS	:	BEARING YIELD STRENGTH Contract F 33	D STRENGTH	
	\ _		Tension B	Specimen	Quality Grade C		O	
Tension Specimen DAS range	1.929		1.928 2.19 2.04	რ - ჯ				
Up To 12				r = 2.05		<u></u>		
13 to 18	1.950 2.06 1.993 2.06 1.964 1.952 1.902 1.995 1.918 1.972 2.02 2.07 2.08 2.06 2.07 1.843 2.08 1.904	1.947 1.987 1.928 1.901 N = 22 F = 1.984 s = .070	2.10 1.934 1.934 1.912 2.11 2.11 1.898 2.06	1.931 N = 10 F = 1.978 s = .105	1.836 1.871 1.937	N = 4 F = 1.882 S = .042	Pooled Data: N = 58	
19 to 24	1.903 1.995 1.964 1.950 2.01 2.05 2.05	N = 8 r = 1.980 s = .046	1.916 1.980 2.02 1.985 1.927 1.924	N = 6 F = 1.959 S = .042	2.01 2.06 1.878	N = 3 F = 1.983 S = .094	t.95 = 1.672 R = F - t.955/VN R = 1.959	
25 +		·	2.03					
a are rai	Data are ratios (r) of BYS/TYS for e/0 =	YS/TYS for e	/0 = 2.0		N = number of BYS/TYS r = mean group ratio s = standard deviation	BYS/TYS rat p ratio deviation	ratios	1

TABLE 25 DERIVED PROPERTY RATIO ANALYSIS ... BEARING ULTIMATE STRENGTH e/D = 2.0

	CAST				Contract F 33615-76-C-3111	6-C-3111
	٧	Tens fon B	Spectmen (Tension Specimen Quality Grade C	O	
Tenston Spectmen DAS range	1.970	1.931 2.09 1.969		2.07		
.0001 tn.			N = 3			
Up To 12			r = 2.00			
· · · ·			s = .083			
	2.11 2.14 1.982 2.04 2.18 2.03	2.08 2.02 1.826		1.845 2.02 2.03		
	1.95	2.06		2.06	Pooled Data:	•
13 to 18	1.877		N = 10	Z .	99 = Z	
	2.10 2.05 F = 2.02		F = 2.02		1.991 $\overline{\Gamma} = 2.04$	
	2.06 1.923 s = .103	2.09	s = .090	0° = \$.099 s = .105	
	2.08	1.889	•	2.14	t.95 = 1.671	
	2.02	2.18		2.04	۳ م ۱ ا	r - t.958/N
19 to 24	2.15 N = 8	2.01	9 - N	en 12	R = 2.02	
3	2.08 F = 2.12	2.22	F = 2.09	r = 2.	2.06	
	2.27 s = .120		s = .127). * 8	. 068	
		2.10				-
25 +		***************************************				
Inta are ratios	tios (r) of BUS/TUS for e/U = 2.0	e/0 = 2.0	•		US Fatios o	
				s = standard deviation	loi.	

APPENDIX H BULKHEAD COUPON DATA

Tensile coupon properties of four bulkheads are contained in this section. This includes TUS, TYS, ELONG, specimen DAS and specimen soundness grades. Figure 40 shows the locations of all specimens. Numbers 1 through 26 were required per the Engineering drawing. These specimens were tested from the following castings.

Boeing foundry:

M08, M09

Hitchcock foundry:

H2, H9

Supplemental tests were performed to evaluate property trends in the corrugation stiffeners of castings M09 and H9, and in the periphery flange of M09. Tests were also performed on the three remaining lugs of M09 and H9, integral coupons of M10, and one additional H2 casting lug. Table 26 contains these results. Refer to Section IV for a summary analysis of these results.

BULKHEAD SPECIMEN LOCATIONS FIGURE 40

Engineering drawing requirements
 Supplemental

Corrug. L.H. Walls

Lug Right Inner

Flange, Stepgates

61-69 70-76

41-51

Flange, Chills

	Šaaawwa N		数なないまれば	e Ža	Manar Sea M	A Secenance W	MAMM
	200 0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	E # # # # # # # # # # # # # # # # # # #	40847480	19. DPS 14.	ක්ක්ක් කිසු ක්ක්ක් කිසු		: ::::::::::::::::::::::::::::::::::::
•	5044044004 5044044000	ढ़ ॣ4ॖॖॖज़ढ़ढ़ढ़ढ़ढ़ ॿॣॖऀऀऀऀय़८८८७७७५० ॾ	้อ ฺฺอฺอฺอฺฺษฺนฺนฺ พ๚ดพษอนา	- 도급의 도급의	7.4.0 1.0.0 1.0.0 1.0.0 1.0.0	ี่ EZางงกุดงกุดจุดง EZาตตนานาาร	
	185 185 185 185 185 185 185 185 185 185	西のよって日本でで 日本名をできた。 日本名をできた。 日本記をできた。 日本記をできた。 日本記をできた。 日本記をいる。 日本記をはいる。 日本には、 日本には、 日本には、 日本には、 日本には、 日本には、 日本には、 日本には 日本には 日本には 日本には 日本には 日本には 日本には 日本には		5 42.2 5 42.2 5 38.9 5 38.9	2.0.0. P. C. O. C. O. C. O. C. O. C.	F @ @ @ & @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	00 4 00 0 00 00 0 00 00 0 00 00 0 00 00 0
٧	주 현 현급약약약속4444444444444444444444444444444444	744444W44W	S 4.4.4.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		88.58 86.58 86.58 87.73 8.68	9 954,6,6,4,4,4,4,4	144444
BULKHEAD TENSILE PROPERTIES	6 5	ୣ୵ୡ୕ୡ ୢଌୄଊ୴ୠଡ଼ୡୣଌୡୄ	1233 5 45541	25. SPECT SP	**************************************	25000000000000000000000000000000000000	<u> </u>
ENSILE 1					3 PORE		
HEAD TI	la la	CCCC CMCMMM	TGGGGGGGGG	G)			മലമാമാ
BULK	/a =	ವನ್ನದ ಜಿ.ಕ್ಷನ್ನಬ್ಬಳ್ಗ	1847847F	₽&CCK	မှုတ်လုံလုံလုံလုံ	ខ្លុំជំពុំ ក្នុង ក្ន	កុំកុំដូច្ចិ
E 26	250.40.034. 250.40.034. 20.40.00.00.00.00.00.00.00.00.00.00.00.00	ເ-ຸນຸ4ເ-ຸ ພຸພຸກຸ4ຸ4-ໆ ໝົດນາກ ຕ້ອ4 ສົມຄົນ	- ๑๓๗๑๗๓๗๑ จ๋อที่ที่ที่ที่ที่ที่ที่	F194.000	กุษษุ บลิลล อินก	4.ท.ษ.ท.ท.ท.ท.ท.ษ.ษ.4 พอผมษ. 4.พ.4.4.อ.ศ	~~~~ @@~~~~
TABLE	₽₽₩₽₽₩₽₽₽	ଞ୍ଜାନ୍ୟର୍ଷ ହାଧାର୍ଧ୍ୱର ଅନ୍ତର୍ଜ ଜ୍ୟୁ ପ୍ରତ୍ୟକ୍ତ ପ୍ରତ୍ୟକ୍ତ ପ୍ରତ୍ୟ କଥା	SBB 448444	₽₩₩±8 ₽°®∾±	نظوناقاهن	ਸ਼ਲ਼ਖ਼ਖ਼ <u>ਖ਼ਖ਼ਲ਼</u> ਲ਼ਲ਼ਖ਼ਫ਼ ਸ਼ਸ਼ਖ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼	60000 60000 40000
	554488888 584446640	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14-4444444 1000040	55 လိုင်းရှိ ရှိ လိုစ်လုပ်			₫ 4.4.6.ñ n'o.4.6.ń
ê		្នៈ - ខ្នុំ + លុំញុំ + ហុំហុំ + ល	ສູ ສິນຸນ + ຕູ່ທູ່- ຂູ່ດີດີ	SPECIMEN.		⊶ี่เก่น ู 4 เ ท่น ฺ4 นูน ์	ลื่ง _เ ก:±กก
(PERCENT)	ัฐผี⊶ัญตั ฐ พัษั∩ั	0 0निस संस्तर्गत्त	ะเกกกกกกกกกษา	∙rou⊶na:	หังขั้งขั้ง	ननननननन न न ्	พุพพพพ *
PERT ONG 11		######################################	CERTTRAD	C C C C C C C C C C C C C C C C C C C	ΣΣΣΣΣΕ	######################################	四角角角ひ
1 E-15 E	A STANGER STANGE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	Φ.		2	સં વેદાંસંસ
261 TDSILE PRO 175 (KSI) B. 21 IN.) 21 IN.) 21 PER PETT 21 B. DSINGERING D. 105 5.6 LT. 2078 GATION 21-1	<u>F</u>	ดูญญุงุญจุงกุล ดับดับเกริงกับติดั		Sauce Sauce	.40000000	•ฺ 4 4 เกเตนฺ <u>-</u> เกาฺ • ณ ๑ กเฐันเกเต	หูหูนูลูลู และกับกับ
	#####################################	ด้เก๋ต้ด้ด้นพิธุตรณ์ 4 4 ขขอดกระแทด4	4 66466	OHU444		รุ่งเหตุลูย์ซียู่ช่อง อเกองงานกระหายต่	4 4 4 4 (1)
25 C C C C C C C C C C C C C C C C C C C	82 82 83 83 83 83 83 83 83 83 83 83 83 83 83	ŊŊŊŊŖġţţ <u>ġ</u> ġġġ Ŀ¤ĸ~Ŀĸĸŧœĕ	NGNNN 444 1909 990 444 1909 990 990 990 990 990 990 990 990 990	0	ល្អ សម្រាស់ ក្រុស្តារ ក្រុស្តារ	ងូល្ងុំ កុំ កុំ កុំ ក្នុំ កុំ កុំ កុំ ឯល 4 ល ៤ លន្លិ៍ យ៉ាល់ល	å¢.åå. ∽v.4⊌4
	1	a	្តីអស់សំសំសំសំ <u>ង</u> ិ	SPECIFIED A.S. P. S. P.	เหตุผล	i de de de la como de l La como de la como della como della como della como della como della como de la como della como d	g Kyryny B