Package 'spBPS'

October 25, 2024

Title Bayesian Predictive Stacking for Scalable Geospatial Transfer Learning

Version 0.0-4

Maintainer Luca Presicce < l.presicce@campus.unimib.it>

Author Luca Presicce [aut, cre] (https://orcid.org/0009-0005-7062-3523), Sudipto Banerjee [aut]

Description Provides functions for Bayesian Predictive Stacking within the Bayesian transfer learning framework for geospatial artificial systems, as introduced in ``Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach" (Presicce and Banerjee, 2024) <doi:10.48550/arXiv.2410.09504>. This methodology enables efficient Bayesian geostatistical modeling, utilizing predictive stacking to improve inference across spatial datasets. The core functions leverage 'C++' for high-performance computation, making the framework well-suited for large-scale spatial data analysis in parallel and distributed computing environments. Designed for scalability, it allows seamless application in computationally demanding scenarios.

Depends R (>= 1.8.0)

Imports Rcpp, CVXR, mniw

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, mvnfast, foreach, parallel, doParallel, tictoc, MBA, RColorBrewer, classInt, sp, fields, testthat (>= 3.0.0)

Config/testthat/edition 3

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-10-25 09:20:01 UTC

2 Contents

Contents

Index

arma_dist	. 3
bayesMvLMconjugate	. 3
BPS_combine	. 4
BPS_post	. 6
BPS_postdraws	. 7
BPS_postdraws_MvT	. 8
BPS_post_MvT	. 9
BPS_pred	. 10
BPS_pred_MvT	. 12
BPS_PseudoBMA	. 14
BPS_weights	. 15
BPS_weights_MvT	. 16
conv_opt	. 17
CVXR_opt	. 18
dens_kcv	. 19
dens_kcv_MvT	. 19
dens_loocv	. 20
dens_loocv_MvT	. 20
d_pred_cpp	. 21
d_pred_cpp_MvT	. 21
expand_grid_cpp	
fit_cpp	. 23
fit_cpp_MvT	
forceSymmetry_cpp	. 24
models_dens	
models_dens_MvT	
post_draws	
post_draws_MvT	
pred_bayesMvLMconjugate	
r_pred_cond	
r_pred_cond_MvT	
r_pred_joint	
r_pred_joint_MvT	. 29
r_pred_marg	. 30
r_pred_marg_MvT	. 31
sample_index	. 31
spPredict_BPS	
subset_data	. 32
	34

arma_dist 3

arma_dist

Compute the Euclidean distance matrix

Description

Compute the Euclidean distance matrix

Usage

```
arma_dist(X)
```

Arguments

Χ

matrix (tipically of N coordindates on \mathbb{R}^2)

Value

matrix distance matrix of the elements of X

Examples

```
## Compute the Distance matrix of dimension (n x n) n <- 100 p <- 2 X <- matrix(runif(n*p), nrow = n, ncol = p) distance.matrix <- arma_dist(X)
```

bayesMvLMconjugate

Gibbs sampler for Conjugate Bayesian Multivariate Linear Models

Description

Gibbs sampler for Conjugate Bayesian Multivariate Linear Models

Usage

```
bayesMvLMconjugate(Y, X, mu_B, V_B, nu, Psi, n_iter = 1000, burn_in = 500)
```

BPS_combine

Arguments

```
Υ
                     matrix n \times q of response variables
Χ
                     matrix n \times p of predictors
                     matrix p \times q prior mean for \beta
mu_B
V_B
                     matrix p \times p prior row covariance for \beta
                     double prior parameter for \Sigma
nu
                     matrix prior parameter for \Sigma
Psi
n_iter
                     integer iteration number for Gibbs sampler
                     integer number of burn-in iteration
burn_in
```

Value

```
B_samples array of posterior sample for \beta Sigma_samples array of posterior samples for \Sigma
```

Examples

```
## Generate data
n <- 100
p <- 3
q <- 2
Y \leftarrow matrix(rnorm(n*q), nrow = n, ncol = q)
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
## Prior parameters
mu_B \leftarrow matrix(0, p, q)
V_B <- diag(10, p)</pre>
nu <- 3
Psi <- diag(q)
## Samples from posteriors
n_iter <- 1000
burn_in <- 500
set.seed(1234)
samples <- spBPS::bayesMvLMconjugate(Y, X, mu_B, V_B, nu, Psi, n_iter, burn_in)</pre>
```

BPS_combine

Combine subset models wiht BPS

Description

Combine subset models wiht BPS

Usage

```
BPS_combine(fit_list, K, rp)
```

BPS_combine 5

Arguments

fit_list	list K fitted model outputs composed by two elements each: first named epd , second named ${\cal W}$
K	integer number of folds
rp	double percentage of observations to take into account for optimization (default=1)

Value

matrix posterior predictive density evaluations (each columns represent a different model)

```
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n), nrow = n, ncol = 1)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
## Select competitive set of values for hyperparameters
delta_seq <- c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Perform Bayesian Predictive Stacking within subsets
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
    Yi <- data_part$Y_list[[i]]</pre>
    Xi <- data_part$X_list[[i]]</pre>
    crd_i <- data_part$crd_list[[i]]</pre>
    p <- ncol(Xi)</pre>
    bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi),</pre>
                                 priors = list(mu_b = matrix(rep(0, p)),
                                                V_b = diag(10, p),
                                                a = 2,
                                                b = 2), coords = crd_i,
                                                hyperpar = list(delta = delta_seq,
                                                                  phi = phi_seq),
                                                K = 5
     w_hat <- bps$W
     epd <- bps$epd
     fit_list[[i]] <- list(epd, w_hat) }</pre>
## Combination weights between partitions using Bayesian Predictive Stacking
comb_bps <- BPS_combine(fit_list = fit_list, K = 10, rp = 1)</pre>
```

BPS_post

BPS_post	Perform the BPS sampling from posterior and posterior predictive
	given a set of stacking weights

Description

Perform the BPS sampling from posterior and posterior predictive given a set of stacking weights

Usage

```
BPS_post(data, X_u, priors, coords, crd_u, hyperpar, W, R)
```

Arguments

data	list two elements: first named ${\cal Y}$, second named ${\cal X}$
X_u	matrix unobserved instances covariate matrix
priors	list priors: named μ_b , V_b , a , b
coords	matrix sample coordinates for X and Y
crd_u	matrix unboserved instances coordinates
hyperpar	list two elemets: first named δ , second named ϕ
W	matrix set of stacking weights
R	integer number of desired samples

Value

list BPS posterior predictive samples

```
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n), nrow = n, ncol = 1)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
## Select competetive set of values for hyperparameters
delta_{seq} \leftarrow c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Fit local models
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
  Yi <- data_part$Y_list[[i]]
  Xi <- data_part$X_list[[i]]</pre>
  crd_i <- data_part$crd_list[[i]]</pre>
  p <- ncol(Xi)</pre>
```

BPS_postdraws 7

```
bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi),</pre>
                             priors = list(mu_b = matrix(rep(0, p)),
                                            V_b = diag(10, p),
                                            a = 2,
                                            b = 2), coords = crd_i,
                                            hyperpar = list(delta = delta_seq,
                                                             phi = phi_seq),
                                                              K = 5
  w_hat <- bps$W
  epd <- bps$epd
  fit_list[[i]] <- list(epd, w_hat) }</pre>
## Model combination weights between partitions using Bayesian Predictive Stacking
comb_bps <- BPS_combine(fit_list = fit_list, K = 10, rp = 1)</pre>
Wbps <- comb_bps$W
W_list <- comb_bps$W_list
## Generate prediction points
m <- 100
X_new <- matrix(rnorm(m*p), nrow = m, ncol = p)</pre>
crd_new <- matrix(runif(m*2), nrow = m, ncol = 2)</pre>
## Perform posterior and posterior predictive sampling
R <- 250
subset_ind <- sample(1:10, R, TRUE, Wbps)</pre>
postsmp_and_pred <- vector(length = R, mode = "list")</pre>
for (r in 1:R) {
 ind_s <- subset_ind[r]</pre>
 Ys <- matrix(data_part$Y_list[[ind_s]])</pre>
 Xs <- data_part$X_list[[ind_s]]</pre>
 crds <- data_part$crd_list[[ind_s]]</pre>
 Ws <- W_list[[ind_s]]</pre>
 result <- spBPS::BPS_post(data = list(Y = Ys, X = Xs), coords = crds,
                             X_u = X_{new}, crd_u = crd_{new},
                             priors = list(mu_b = matrix(rep(0, p)),
                                            V_b = diag(10, p),
                                            a = 2,
                                            b = 2),
                                            hyperpar = list(delta = delta_seq,
                                                              phi = phi_seq),
                                                              W = Ws, R = 1
 postsmp_and_pred[[r]] <- result}</pre>
```

BPS_postdraws

Compute the BPS posterior samples given a set of stacking weights

Description

Compute the BPS posterior samples given a set of stacking weights

Usage

```
BPS_postdraws(data, priors, coords, hyperpar, W, R)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b, V_b, a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

W matrix set of stacking weights
R integer number of desired samples

Value

matrix BPS posterior samples

BPS_postdraws_MvT

Compute the BPS posterior samples given a set of stacking weights

Description

Compute the BPS posterior samples given a set of stacking weights

Usage

```
BPS_postdraws_MvT(data, priors, coords, hyperpar, W, R, par)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_B, V_r, Ψ, ν

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named α , second named ϕ

W matrix set of stacking weights
R integer number of desired samples

par if TRUE only β and Σ are sampled (ω is omitted)

Value

matrix BPS posterior samples

BPS_post_MvT

BPS_post_MvT Perform the BPS sampling from posterior and posterior predictive given a set of stacking weights	'e
---	----

Description

Perform the BPS sampling from posterior and posterior predictive given a set of stacking weights

Usage

```
BPS_post_MvT(data, X_u, priors, coords, crd_u, hyperpar, W, R)
```

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
priors	list priors: named μ_B, V_r, Ψ, ν
coords	matrix sample coordinates for X and Y
crd_u	matrix unboserved instances coordinates
hyperpar	list two elemets: first named α , second named ϕ
W	matrix set of stacking weights
R	integer number of desired samples

Value

list BPS posterior predictive samples

```
## Generate subsets of data
n <- 100
p <- 3
q <- 2
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n*q), nrow = n, ncol = q)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
## Select competitive set of values for hyperparameters
alfa_seq <- c(0.7, 0.8, 0.9)
phi_seq <- c(3, 4, 5)
## Fit local models
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
    Yi <- data_part$Y_list[[i]]
    Xi <- data_part$X_list[[i]]</pre>
```

10 BPS_pred

```
crd_i <- data_part$crd_list[[i]]</pre>
    bps <- spBPS::BPS_weights_MvT(data = list(Y = Yi, X = Xi),</pre>
                                priors = list(mu_B = matrix(0, nrow = p, ncol = q),
                                               V_r = diag(10, p),
                                               Psi = diag(1, q),
                                               nu = 3), coords = crd_i,
                                               hyperpar = list(alpha = alfa_seq,
                                                                phi = phi_seq),
                                               K = 5
     w_hat <- bps$W
     epd <- bps$epd
     fit_list[[i]] <- list(epd, w_hat) }</pre>
## Model combination weights between partitions using Bayesian Predictive Stacking
comb_bps <- BPS_combine(fit_list = fit_list, K = 10, rp = 1)</pre>
Wbps <- comb_bps$W
W_list <- comb_bps$W_list
## Generate prediction points
m <- 100
X_new <- matrix(rnorm(m*p), nrow = m, ncol = p)</pre>
crd_new <- matrix(runif(m*2), nrow = m, ncol = 2)</pre>
## Perform posterior and posterior predictive sampling
R <- 250
subset_ind <- sample(1:10, R, TRUE, Wbps)</pre>
postsmp_and_pred <- vector(length = R, mode = "list")</pre>
for (r in 1:R) {
 ind_s <- subset_ind[r]</pre>
 Ys <- data_part$Y_list[[ind_s]]
 Xs <- data_part$X_list[[ind_s]]</pre>
 crds <- data_part$crd_list[[ind_s]]</pre>
 Ws <- W_list[[ind_s]]</pre>
 result <- spBPS::BPS_post_MvT(data = list(Y = Ys, X = Xs), coords = crds,
                                  X_u = X_new, crd_u = crd_new,
                                  priors = list(mu_B = matrix(0, nrow = p, ncol = q),
                                                 V_r = diag(10, p),
                                                 Psi = diag(1, q),
                                                 nu = 3),
                                                 hyperpar = list(alpha = alfa_seq,
                                                                  phi = phi_seq),
                                                 W = Ws, R = 1
 postsmp_and_pred[[r]] <- result}</pre>
```

BPS_pred

Description

Compute the BPS spatial prediction given a set of stacking weights

Usage

```
BPS_pred(data, X_u, priors, coords, crd_u, hyperpar, W, R)
```

Arguments

data	list two elements: first named \boldsymbol{Y} , second named \boldsymbol{X}
X_u	matrix unobserved instances covariate matrix
priors	list priors: named μ_b, V_b, a, b
coords	matrix sample coordinates for X and Y
crd_u	matrix unboserved instances coordinates
hyperpar	list two elemets: first named δ , second named ϕ
W	matrix set of stacking weights
R	integer number of desired samples

Value

list BPS posterior predictive samples

```
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n), nrow = n, ncol = 1)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
## Select competetive set of values for hyperparameters
delta_seq <- c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Fit local models
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
    Yi <- data_part$Y_list[[i]]</pre>
    Xi <- data_part$X_list[[i]]</pre>
    crd_i <- data_part$crd_list[[i]]</pre>
    p <- ncol(Xi)
    bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi),</pre>
                                 priors = list(mu_b = matrix(rep(0, p)),
                                                V_b = diag(10, p),
                                                a = 2,
                                                b = 2), coords = crd_i,
                                                hyperpar = list(delta = delta_seq,
```

12 BPS_pred_MvT

```
phi = phi_seq),
                                                 K = 5
     w_hat <- bps$W
     epd <- bps$epd
     fit_list[[i]] <- list(epd, w_hat) }</pre>
## Model combination weights between partitions using Bayesian Predictive Stacking
comb_bps <- BPS_combine(fit_list = fit_list, K = 10, rp = 1)</pre>
Wbps <- comb_bps$W
W_list <- comb_bps$W_list
## Generate prediction points
m < -50
X_new <- matrix(rnorm(m*p), nrow = m, ncol = p)</pre>
crd_new <- matrix(runif(m*2), nrow = m, ncol = 2)</pre>
## Perform posterior predictive sampling
subset_ind <- sample(1:10, R, TRUE, Wbps)</pre>
predictions <- vector(length = R, mode = "list")</pre>
for (r in 1:R) {
  ind_s <- subset_ind[r]</pre>
  Ys <- matrix(data_part$Y_list[[ind_s]])</pre>
  Xs <- data_part$X_list[[ind_s]]</pre>
  crds <- data_part$crd_list[[ind_s]]</pre>
  Ws <- W_list[[ind_s]]</pre>
  result <- spBPS::BPS_pred(data = list(Y = Ys, X = Xs), coords = crds,
                              X_u = X_{new}, crd_u = crd_{new},
                              priors = list(mu_b = matrix(rep(0, p)),
                                             V_b = diag(10, p),
                                             a = 2,
                                             b = 2),
                                             hyperpar = list(delta = delta_seq,
                                                               phi = phi_seq),
                                             W = Ws, R = 1)
  predictions[[r]] <- result}</pre>
```

BPS_pred_MvT

Compute the BPS spatial prediction given a set of stacking weights

Description

Compute the BPS spatial prediction given a set of stacking weights

Usage

```
BPS_pred_MvT(data, X_u, priors, coords, crd_u, hyperpar, W, R)
```

BPS_pred_MvT

Arguments

data list two elements: first named Y, second named X X_u matrix unobserved instances covariate matrix priors list priors: named μ_B, V_r, Ψ, ν coords matrix sample coordinates for X and Y crd_u matrix unboserved instances coordinates hyperpar list two elemets: first named α , second named ϕ W matrix set of stacking weights R integer number of desired samples

Value

list BPS posterior predictive samples

```
## Generate subsets of data
n <- 100
p <- 3
q <- 2
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n*q), nrow = n, ncol = q)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
## Select competitive set of values for hyperparameters
alfa_seq <- c(0.7, 0.8, 0.9)
phi_seq <- c(3, 4, 5)
## Fit local models
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
    Yi <- data_part$Y_list[[i]]</pre>
    Xi <- data_part$X_list[[i]]</pre>
    crd_i <- data_part$crd_list[[i]]</pre>
    bps <- spBPS::BPS_weights_MvT(data = list(Y = Yi, X = Xi),</pre>
                                priors = list(mu_B = matrix(0, nrow = p, ncol = q),
                                               V_r = diag(10, p),
                                               Psi = diag(1, q),
                                               nu = 3), coords = crd_i,
                                               hyperpar = list(alpha = alfa_seq,
                                                                phi = phi_seq),
                                               K = 5
     w_hat <- bps$W
     epd <- bps$epd
     fit_list[[i]] <- list(epd, w_hat) }</pre>
## Model combination weights between partitions using Bayesian Predictive Stacking
comb_bps <- BPS_combine(fit_list = fit_list, K = 10, rp = 1)</pre>
```

14 BPS_PseudoBMA

```
Wbps <- comb_bps$W
W_list <- comb_bps$W_list</pre>
## Generate prediction points
m < -100
X_new <- matrix(rnorm(m*p), nrow = m, ncol = p)</pre>
crd_new <- matrix(runif(m*2), nrow = m, ncol = 2)</pre>
## Perform posterior predictive sampling
R <- 250
subset_ind <- sample(1:10, R, TRUE, Wbps)</pre>
predictions <- vector(length = R, mode = "list")</pre>
for (r in 1:R) {
  ind_s <- subset_ind[r]</pre>
  Ys <- data_part$Y_list[[ind_s]]</pre>
  Xs <- data_part$X_list[[ind_s]]</pre>
  crds <- data_part$crd_list[[ind_s]]</pre>
  Ws <- W_list[[ind_s]]</pre>
  result <- spBPS::BPS_pred_MvT(data = list(Y = Ys, X = Xs), coords = crds,
                                   X_u = X_{new}, crd_u = crd_{new},
                                   priors = list(mu_B = matrix(0, nrow = p, ncol = q),
                                                   V_r = diag(10, p),
                                                  Psi = diag(1, q),
                                                  nu = 3),
                                                  hyperpar = list(alpha = alfa_seq,
                                                                    phi = phi_seq),
                                                   W = Ws, R = 1
  predictions[[r]] <- result}</pre>
```

BPS_PseudoBMA

Combine subset models wiht Pseudo-BMA

Description

Combine subset models wiht Pseudo-BMA

Usage

```
BPS_PseudoBMA(fit_list)
```

Arguments

BPS_weights 15

Value

matrix posterior predictive density evaluations (each columns represent a different model)

Examples

```
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n), nrow = n, ncol = 1)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
data_part \leftarrow subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)
## Select competitive set of values for hyperparameters
delta_seq <- c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Perform Bayesian Predictive Stacking within subsets
fit_list <- vector(length = 10, mode = "list")</pre>
for (i in 1:10) {
    Yi <- data_part$Y_list[[i]]</pre>
    Xi <- data_part$X_list[[i]]</pre>
    crd_i <- data_part$crd_list[[i]]</pre>
    p <- ncol(Xi)</pre>
    bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi),</pre>
                                 priors = list(mu_b = matrix(rep(0, p)),
                                                V_b = diag(10, p),
                                                a = 2,
                                                b = 2), coords = crd_i,
                                                hyperpar = list(delta = delta_seq,
                                                                  phi = phi_seq),
                                                K = 5
     w_hat <- bps$W
     epd <- bps$epd
     fit_list[[i]] <- list(epd, w_hat) }</pre>
## Combination weights between partitions using Pseudo Bayesian Model Averaging
comb_bps <- BPS_PseudoBMA(fit_list = fit_list)</pre>
```

BPS_weights

Compute the BPS weights by convex optimization

Description

Compute the BPS weights by convex optimization

16 BPS_weights_MvT

Usage

```
BPS_weights(data, priors, coords, hyperpar, K)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b , V_b , a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

K integer number of folds

Value

matrix posterior predictive density evaluations (each columns represent a different model)

Examples

```
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n), nrow = n)</pre>
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
## Select competitive set of values for hyperparameters
delta_seq <- c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Perform Bayesian Predictive Stacking within subsets
bps <- spBPS::BPS_weights(data = list(Y = Y, X = X),</pre>
                                 priors = list(mu_b = matrix(rep(0, p)),
                                               V_b = diag(10, p),
                                               a = 2,
                                               b = 2), coords = crd,
                                               hyperpar = list(delta = delta_seq,
                                                                phi = phi_seq),
                                               K = 5
```

BPS_weights_MvT

Compute the BPS weights by convex optimization

Description

Compute the BPS weights by convex optimization

conv_opt 17

Usage

```
BPS_weights_MvT(data, priors, coords, hyperpar, K)
```

Arguments

data list two elements: first named Y, second named X priors list priors: named μ_B, V_r, Ψ, ν coords matrix sample coordinates for X and Y hyperpar list two elemets: first named α , second named ϕ

hyperpar list two elemets: first named α , second nam

K integer number of folds

Value

matrix posterior predictive density evaluations (each columns represent a different model)

Examples

```
## Generate subsets of data
n <- 100
p <- 3
q <- 2
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
Y <- matrix(rnorm(n*q), nrow = n, ncol = q)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)</pre>
## Select competitive set of values for hyperparameters
alfa_seq <- c(0.7, 0.8, 0.9)
phi_seq <- c(3, 4, 5)
## Perform Bayesian Predictive Stacking within subsets
bps <- spBPS::BPS_weights_MvT(data = list(Y = Y, X = X),</pre>
                               priors = list(mu_B = matrix(0, nrow = p, ncol = q),
                                              V_r = diag(10, p),
                                              Psi = diag(1, q),
                                              nu = 3), coords = crd,
                                              hyperpar = list(alpha = alfa_seq,
                                                              phi = phi_seq),
                                              K = 5
```

conv_opt Solver for Bayesian Predictive Stacking of Predictive densities convex optimization problem

Description

Solver for Bayesian Predictive Stacking of Predictive densities convex optimization problem

18 CVXR_opt

Usage

```
conv_opt(scores)
```

Arguments

scores

 $\mbox{matrix}~N\times K$ of expected predictive density evaluations for the K models considered

Value

W matrix of Bayesian Predictive Stacking weights for the K models considered

Examples

```
## Generate (randomly) K predictive scores for n observations
n <- 50
K <- 5
scores <- matrix(runif(n*K), nrow = n, ncol = K)

## Find Bayesian Predictive Stacking weights
opt_weights <- conv_opt(scores)</pre>
```

CVXR_opt

Compute the BPS weights by convex optimization

Description

Compute the BPS weights by convex optimization

Usage

```
CVXR_opt(scores)
```

Arguments

scores

 $\mbox{matrix}~N\times K$ of expected predictive density evaluations for the K models considered

Value

conv_opt function to perform convex optimizaion with CVXR R package

dens_kcv 19

dens_kcv Compute the KCV of the density evaluations for fixed values of the hyperparameters

Description

Compute the KCV of the density evaluations for fixed values of the hyperparameters

Usage

```
dens_kcv(data, priors, coords, hyperpar, K)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b , V_b , a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

K integer number of folds

Value

vector posterior predictive density evaluations

dens_kcv_MvT	Compute the KCV of the density evaluations for fixed values of the
	hyperparameters

Description

Compute the KCV of the density evaluations for fixed values of the hyperparameters

Usage

```
dens_kcv_MvT(data, priors, coords, hyperpar, K)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_B, V_r, Ψ, ν

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named α , second named ϕ

K integer number of folds

20 dens_loocv_MvT

Value

vector posterior predictive density evaluations

Description

Compute the LOOCV of the density evaluations for fixed values of the hyperparameters

Usage

```
dens_loocv(data, priors, coords, hyperpar)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b , V_b , a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

Value

vector posterior predictive density evaluations

dens_loocv_MvT Compute the LOOCV of the density evaluations for fixed values of the

hyperparameters

Description

Compute the LOOCV of the density evaluations for fixed values of the hyperparameters

Usage

```
dens_loocv_MvT(data, priors, coords, hyperpar)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_B , V_r , Ψ , ν

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named α , second named ϕ

d_pred_cpp 21

Value

vector posterior predictive density evaluations

d_pred_cpp	Evaluate the density of a set of unobserved response with respect to the conditional posterior predictive

Description

Evaluate the density of a set of unobserved response with respect to the conditional posterior predictive

Usage

```
d_pred_cpp(data, X_u, Y_u, d_u, d_us, hyperpar, poster)
```

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
Y_u	matrix unobserved instances response matrix
d_u	matrix unobserved instances distance matrix
d_us	matrix cross-distance between unobserved and observed instances matrix
hyperpar	list two elemets: first named δ , second named ϕ
poster	list output from fit_cpp function

Value

vector posterior predictive density evaluations

d_pred_cpp_MvT	Evaluate the density of a set of unobserved response with respect to the conditional posterior predictive
----------------	---

Description

Evaluate the density of a set of unobserved response with respect to the conditional posterior predictive

Usage

```
d_pred_cpp_MvT(data, X_u, Y_u, d_u, d_us, hyperpar, poster)
```

22 expand_grid_cpp

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
Y_u	matrix unobserved instances response matrix
d_u	matrix unobserved instances distance matrix
d_us	matrix cross-distance between unobserved and observed instances matrix
hyperpar	list two elemets: first named α , second named ϕ
poster	list output from fit_cpp function

Value

double posterior predictive density evaluation

expand_grid_cpp

Build a grid from two vector (i.e. equivalent to expand.grid() in R)

Description

Build a grid from two vector (i.e. equivalent to expand.grid() in R)

Usage

```
expand_grid_cpp(x, y)
```

Arguments

x vector first vector of numeric elements
y vector second vector of numeric elements

Value

matrix expanded grid of combinations

```
## Create a matrix from all combination of vectors
x <- seq(0, 10, length.out = 100)
y <- seq(-1, 1, length.out = 20)
grid <- expand_grid_cpp(x = x, y = y)</pre>
```

fit_cpp 23

fit_cpp	Compute the parameters for the posteriors distribution of β and Σ (i.e. updated parameters)

Description

Compute the parameters for the posteriors distribution of β and Σ (i.e. updated parameters)

Usage

```
fit_cpp(data, priors, coords, hyperpar)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b, V_b, a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

Value

list posterior update parameters

fit_cpp_MvT	Compute the parameters for the posteriors distribution of β and Σ (i.e.
	updated parameters)

Description

Compute the parameters for the posteriors distribution of β and Σ (i.e. updated parameters)

Usage

```
fit_cpp_MvT(data, priors, coords, hyperpar)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_B , V_r , Ψ , ν

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named α , second named ϕ

Value

list posterior update parameters

24 models_dens

forceSymmetry_cpp

Function to subset data for meta-analysis

Description

Function to subset data for meta-analysis

Usage

```
forceSymmetry_cpp(mat)
```

Arguments

mat

matrix not-symmetric matrix

Value

matrix symmetric matrix (lower triangular of mat is used)

Examples

```
## Force matrix to be symmetric (avoiding numerical problems) n <- 4   
X <- matrix(runif(n*n), nrow = n, ncol = n)  
X <- forceSymmetry_cpp(mat = X)
```

models_dens

Return the CV predictive density evaluations for all the model combinations

Description

Return the CV predictive density evaluations for all the model combinations

Usage

```
models_dens(data, priors, coords, hyperpar, useKCV, K)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_b , V_b , a, b

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named δ , second named ϕ

useKCV if TRUE K-fold cross validation is used instead of LOOCV (no default)

K integer number of folds

models_dens_MvT 25

Value

matrix posterior predictive density evaluations (each columns represent a different model)

models_dens_MvT	Return the CV predictive density evaluations for all the model combi-
	nations

Description

Return the CV predictive density evaluations for all the model combinations

Usage

```
models_dens_MvT(data, priors, coords, hyperpar, useKCV, K)
```

Arguments

data list two elements: first named Y, second named X

priors list priors: named μ_B , V_r , Ψ , ν

coords matrix sample coordinates for X and Y

hyperpar list two elemets: first named α , second named ϕ

useKCV if TRUE K-fold cross validation is used instead of LOOCV (no default)

K integer number of folds

Value

matrix posterior predictive density evaluations (each columns represent a different model)

post_draws	Sample R draws from the posterior distributions	
------------	---	--

Description

Sample R draws from the posterior distributions

Usage

```
post_draws(poster, R, par, p)
```

Arguments

```
poster list output from fit_cpp function

R integer number of posterior samples
```

par if TRUE only β and σ^2 are sampled (ω is omitted)

p integer if par = TRUE, it specifies the column number of X

Value

list posterior samples

post_draws_MvT

Sample R draws from the posterior distributions

Description

Sample R draws from the posterior distributions

Usage

```
post_draws_MvT(poster, R, par, p)
```

Arguments

poster list output from fit_cpp function

R integer number of posterior samples

par if TRUE only β and Σ are sampled (ω is omitted)

p integer if par = TRUE, it specifies the column number of X

Value

list posterior samples

```
pred_bayesMvLMconjugate
```

Predictive sampler for Conjugate Bayesian Multivariate Linear Mod-

Description

Predictive sampler for Conjugate Bayesian Multivariate Linear Models

Usage

```
pred_bayesMvLMconjugate(X_new, B_samples, Sigma_samples)
```

Arguments

X_new $matrix n_n ew \times p$ of predictors for new data points

 $\begin{array}{ll} {\rm B_samples} & {\rm array~of~posterior~sample~for~}\beta \\ {\rm Sigma_samples} & {\rm array~of~posterior~samples~for~}\Sigma \\ \end{array}$

r_pred_cond 27

Value

Y_pred matrix of posterior mean for response matrix Y predictions

Y_pred_samples array of posterior predictive sample for response matrix Y

Examples

```
## Generate data
n <- 100
p <- 3
q <- 2
Y \leftarrow matrix(rnorm(n*q), nrow = n, ncol = q)
X <- matrix(rnorm(n*p), nrow = n, ncol = p)</pre>
## Prior parameters
mu_B \leftarrow matrix(0, p, q)
V_B <- diag(10, p)</pre>
nu <- 3
Psi <- diag(q)
## Samples from posteriors
n_iter <- 1000
burn_in <- 500
set.seed(1234)
samples <- spBPS::bayesMvLMconjugate(Y, X, mu_B, V_B, nu, Psi, n_iter, burn_in)</pre>
## Extract posterior samples
B_samples <- samples$B_samples</pre>
Sigma_samples <- samples$Sigma_samples</pre>
## Samples from predictive posterior (based posterior samples)
m <- 50
X_new <- matrix(rnorm(m*p), nrow = m, ncol = p)</pre>
pred <- spBPS::pred_bayesMvLMconjugate(X_new, B_samples, Sigma_samples)</pre>
```

 r_pred_cond

Draw from the conditional posterior predictive for a set of unobserved covariates

Description

Draw from the conditional posterior predictive for a set of unobserved covariates

Usage

```
r_pred_cond(data, X_u, d_u, d_us, hyperpar, poster, post)
```

28 r_pred_cond_MvT

Arguments

data list two elements: first named Y, second named X X_u matrix unobserved instances covariate matrix d_u matrix unobserved instances distance matrix

d_us matrix cross-distance between unobserved and observed instances matrix

hyperpar list two elemets: first named δ , second named ϕ

poster list output from fit_cpp function
post list output from post_draws function

Value

list posterior predictive samples

r_pred_cond_MvT	Draw from the conditional posterior predictive for a set of unobserved
	covariates

Description

Draw from the conditional posterior predictive for a set of unobserved covariates

Usage

```
r_pred_cond_MvT(data, X_u, d_u, d_us, hyperpar, poster, post)
```

Arguments

data list two elements: first named Y, second named X X_u matrix unobserved instances covariate matrix d_u matrix unobserved instances distance matrix

d_us matrix cross-distance between unobserved and observed instances matrix

hyperpar list two elemets: first named α , second named ϕ

poster list output from fit_cpp_MvT function
post list output from post_draws_MvT function

Value

list posterior predictive samples

r_pred_joint 29

r_pred_joint	Draw from the joint posterior predictive for a set of unobserved covariates

Description

Draw from the joint posterior predictive for a set of unobserved covariates

Usage

```
r_pred_joint(data, X_u, d_u, d_us, hyperpar, poster, R)
```

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
d_u	matrix unobserved instances distance matrix
d_us	matrix cross-distance between unobserved and observed instances matrix
hyperpar	list two elemets: first named δ , second named ϕ
poster	list output from fit_cpp function
R	integer number of posterior predictive samples

Value

list posterior predictive samples

r_pred_joint_MvT	Draw from the joint posterior predictive for a set of unobserved covariates
	variates

Description

Draw from the joint posterior predictive for a set of unobserved covariates

Usage

```
r_pred_joint_MvT(data, X_u, d_u, d_us, hyperpar, poster, R)
```

r_pred_marg

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
d_u	matrix unobserved instances distance matrix

d_us matrix cross-distance between unobserved and observed instances matrix

hyperpar list two elemets: first named α , second named ϕ

poster list output from fit_cpp function

R integer number of posterior predictive samples

Value

list posterior predictive samples

r_pred_marg	Draw from the marginals posterior predictive for a set of unobserved covariates
-------------	---

Description

Draw from the marginals posterior predictive for a set of unobserved covariates

Usage

```
r_pred_marg(data, X_u, d_u, d_us, hyperpar, poster, R)
```

Arguments

data	list two elements: first named Y, second named X
X_u	matrix unobserved instances covariate matrix
d_u	matrix unobserved instances distance matrix

d_us matrix cross-distance between unobserved and observed instances matrix

hyperpar list two elemets: first named δ , second named ϕ

poster list output from fit_cpp function

R integer number of posterior predictive samples

Value

list posterior predictive samples

r_pred_marg_MvT 31

r_pred_marg_MvT	Draw from the joint posterior predictive for a set of unobserved covariates

Description

Draw from the joint posterior predictive for a set of unobserved covariates

Usage

```
r_pred_marg_MvT(data, X_u, d_u, d_us, hyperpar, poster, R)
```

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix
d_u	matrix unobserved instances distance matrix

d_us matrix cross-distance between unobserved and observed instances matrix

hyperpar list two elemets: first named α , second named ϕ

poster list output from fit_cpp function

R integer number of posterior predictive samples

Value

list posterior predictive samples

sample_index	Function to sample integers (index)

Description

Function to sample integers (index)

Usage

```
sample_index(size, length, p)
```

Arguments

size integer dimension of the set to sample
length integer number of elements to sample
p vector sampling probabilities

Value

vector sample of integers

32 subset_data

spPredict_BPS	Perform prediction for BPS accelerated models - loop over prediction set
---------------	--

Description

Perform prediction for BPS accelerated models - loop over prediction set

Usage

```
spPredict_BPS(data, X_u, priors, coords, crd_u, hyperpar, W, R, J)
```

Arguments

data	list two elements: first named Y , second named X
X_u	matrix unobserved instances covariate matrix

priors list priors: named μ_b , V_b , a, b

coords matrix sample coordinates for X and Y crd_u matrix unboserved instances coordinates

hyperpar list two elemets: first named δ , second named ϕ

W matrix set of stacking weights
R integer number of desired samples

J integer number of desired partition of prediction set

Value

list BPS posterior predictive samples

subset_data	Function to subset	data fe	or meta-analys	is

Description

Function to subset data for meta-analysis

Usage

```
subset_data(data, K)
```

Arguments

data	list three elements:	first named Y , seco	nd named X , third named crd
------	----------------------	------------------------	----------------------------------

K integer number of desired subsets

subset_data 33

Value

list subsets of data, and the set of indexes

```
## Create a list of K random subsets given a list with Y, X, and crd
n <- 100
p <- 3
q <- 2
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- matrix(rnorm(n*q), nrow = n, ncol = q)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)
subsets <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)</pre>
```

Index

```
arma_dist, 3
                                                  models_dens_MvT, 25
array, 4, 26, 27
                                                  post_draws, 25
bayesMvLMconjugate, 3
                                                  post_draws_MvT, 26
BPS_combine, 4
                                                  pred_bayesMvLMconjugate, 26
BPS_post, 6
                                                  r_pred_cond, 27
BPS_post_MvT, 9
                                                  r_pred_cond_MvT, 28
BPS_postdraws, 7
                                                  r_pred_joint, 29
BPS_postdraws_MvT, 8
                                                  r_pred_joint_MvT, 29
BPS_pred, 10
                                                  r_pred_marg, 30
BPS_pred_MvT, 12
                                                  r_pred_marg_MvT, 31
BPS_PseudoBMA, 14
BPS_weights, 15
                                                  sample_index, 31
BPS_weights_MvT, 16
                                                  spPredict_BPS, 32
                                                  subset_data, 32
conv_opt, 17
CVXR_opt, 18
                                                  vector, 19-22, 31
d_pred_cpp, 21
d_pred_cpp_MvT, 21
dens_kcv, 19
dens_kcv_MvT, 19
dens_loocv, 20
dens_loocv_MvT, 20
double, 4, 5, 22
expand_grid_cpp, 22
fit_cpp, 23
fit_cpp_MvT, 23
forceSymmetry_cpp, 24
function, 18
integer, 4-6, 8, 9, 11, 13, 16, 17, 19, 24-26,
        29-32
list, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19–26,
        28–33
matrix, 3-6, 8, 9, 11, 13, 15-32
models_dens, 24
```