I start testing with b = 6, v = 4. Because $98304 = 2^15 + 2^16$. There are three possibilities:

- 1. Make C = 16, c = 14, then we need to make k = 3 because of overheads.
- 2. Make C = 16, c = 13, then we can make k = 4.
- 3. Make C = 15, c = 15, then we can make k = 4.

I test the possible combinations of (c, C, k) to be (14, 16, 3), (13, 16, 4), and (15, 15, 4).

astar.trace

I vary the possible combinations of (s, S) and find the best configuration for each (c, C, k).

(c, C, k) = (14, 16, 3)

S	S	AAT (s)
0	0	4.116251
0	1	4.018445
0	2	3.997215
0	3	4.027672
0	4	4.084612
1	0	4.107232
1	1	4.107760
1	2	4.116425
1	3	4.140404
1	4	4.194694
2	0	4.277815
2	1	4.286252
2	2	4.302348
2	3	4.326738
2	4	4.377133

	(c, c, k) – (13, 10, 4)	
S	S	AAT (s)
0	0	4.070146
0	1	3.892439
0	2	3.877933
0	3	3.912881
0	4	3.975269
1	0	3.999852
1	1	3.962857
1	2	3.970691
1	3	3.997668
1	4	4.055276
2	0	4.163447
2	1	4.133159
2	2	4.143711
2	3	4.173088
2	4	4.231180

S	AAT (s)
0	3.879474
1	<mark>3.868276</mark>
2	3.884040
3	3.944950
4	4.030110
0	3.929275
1	3.999650
2	4.038916
3	4.109770
4	4.194503
0	4.104531
1	4.169115
2	4.239441
3	4.308172
4	4.391101
	0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Then we fix c=15, C=15, s=0, and S=1 to find optimal b, v, and k.

As the graphs show, the larger b, v, and k are, the smaller AAT is.

Therefore, the best configuration is c = 15, C = 15, s = 0, S = 1, b = 6, v = 4, k = 4. AAT = 3.868276 s. Total budget = $2^15 + 2^15 + (2^9 \times (64 - 15 + 0 + 2)) / 8 + (2^9 \times (64 - 15 + 1 + 2)) / 8 + 4 \times 2048 + 2^6 \times 4 + (4 \times (64 - 6 + 2)) / 8 = 80606$ bytes < 98304 bytes.

bzip2.trace

I vary the possible combinations of $(s,\,S)$ and find the best configuration for each $(c,\,C,\,k)$.

(c, C, k) = (14, 16, 3)

S	S	AAT (s)
0	0	2.086169
0	1	2.070702
0	2	2.070367
0	3	2.071943
0	4	2.073666
1	0	2.253934
1	1	2.251944
1	2	2.250101
1	3	2.250756
1	4	2.251557
2	0	2.446353
2	1	2.445968
2	2	2.446610
2	3	2.447106
2	4	2.447749

(c, C, R) = (13, 10, 7)		
S	AAT (s)	
0	2.089225	
1	2.070663	
2	2.070614	
3	2.072475	
4	2.074483	
0	2.256755	
1	2.252460	
2	2.251544	
3	2.252538	
4	2.253679	
0	2.458283	
1	2.454821	
2	2.453710	
3	2.454802	
4	2.456041	
	S 0 1 2 3	

S	S	AAT (s)
0	0	2.053009
0	1	2.049716
0	2	2.048481
0	3	2.048127
0	4	2.048801
1	0	2.246015
1	1	2.246450
1	2	2.246004
1	3	2.244088
1	4	2.245257
2	0	2.439683
2	1	2.439721
2	2	2.440493
2	3	2.441118
2	4	2.441596

Then we fix c=15, C=15, s=0, and S=3 to find optimal b, v, and k.

As the graphs show, the larger b, v, and k are, the smaller AAT is.

Therefore, the best configuration is c = 15, C = 15, s = 0, S = 3, b = 6, v = 4, k = 4. AAT = 2.048127 s. Total budget = $2^15 + 2^15 + (2^9 \times (64 - 15 + 0 + 2)) / 8 + (2^9 \times (64 - 15 + 3 + 2)) / 8 + 4 \times 2048 + 2^6 \times 4 + (4 \times (64 - 6 + 2)) / 8 = 80734$ bytes < 98304 bytes.

mcf.trace

I vary the possible combinations of $(s,\,S)$ and find the best configuration for each $(c,\,C,\,k)$.

(c, C, k) = (14, 16, 3)

(c, c, k) = (11, 10, 3)			
S	S	AAT (s)	
0	0	2.757849	
0	1	2.631125	
0	2	2.607768	
0	3	2.627114	
0	4	2.654812	
1	0	2.642450	
1	1	2.661870	
1	2	2.654976	
1	3	2.668251	
1	4	2.689877	
2	0	2.768800	
2	1	2.804810	
2	2	2.809620	
2	3	2.821205	
2	4	2.840827	

$\begin{array}{c c} S & S & AAT(s) \end{array}$		
S	AAT (s)	
0	2.980926	
1	2.864126	
2	2.852270	
3	2.880753	
4	2.924206	
0	2.663155	
1	2.704166	
2	2.697747	
3	2.711498	
4	2.740061	
0	2.758243	
1	2.819937	
2	2.821280	
3	2.832236	
4	2.855797	
	S 0 1 2 3	

S	AAT (s)
0	2.552846
1	2.549250
2	2.513508
3	2.538747
4	2.583998
0	2.665424
1	2.714443
2	2.698542
3	2.717621
4	2.758131
0	2.806571
1	2.819415
2	2.885518
3	2.905138
4	2.939254
	0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Then we fix c = 15, C = 15, s = 0, and S = 2 to find optimal b, v, and k.

In fact, k = 4 will overexploit spatial locality and result in pollution. k = 3 is the best option here.

k	AAT (s)
0	3.013803
1	2.707323
2	2.522490
3	2.501532
4	2.513508

We choose k = 3 and determine v in the final step.

As the graphs show, as the larger b and v are, the smaller AAT is. But k = 4 will result in slight pollution, so we choose k = 3.

Therefore, the best configuration is c = 15, C = 15, s = 0, S = 2, b = 6, v = 4, k = 3. AAT = 2.501532 s. Total budget = $2^15 + 2^15 + (2^9 \times (64 - 15 + 0 + 2)) / 8 + (2^9 \times (64 - 15 + 2 + 2)) / 8 + 3 \times 2048 + 2^6 \times 4 + (4 \times (64 - 6 + 2)) / 8 = 78622$ bytes < 98304 bytes.

perlbench.trace

I vary the possible combinations of (s,S) and find the best configuration for each (c,C,k).

(c, C, k) = (14, 16, 3)

S	S	AAT (s)
0	0	3.999886
0	1	3.782838
0	2	3.646194
0	3	<mark>3.630943</mark>
0	4	3.698776
1	0	4.000044
1	1	3.858019
1	2	3.790249
1	3	3.769145
1	4	3.847835
2	0	3.988819
2	1	3.941238
2	2	3.927869
2	3	3.917494
2	4	3.972389

(e, e, k) (15, 16, 1)		
S	S	AAT (s)
0	0	4.422177
0	1	3.990378
0	2	3.832267
0	3	3.836538
0	4	3.925470
1	0	4.332583
1	1	4.031023
1	2	3.901778
1	3	3.896765
1	4	3.968213
2	0	4.448207
2	1	4.163183
2	2	4.051578
2	3	4.034093
2	4	4.104263

S	S	AAT (s)
0	0	4.031732
0	1	3.943684
0	2	3.860997
0	3	3.836327
0	4	3.884335
1	0	3.872092
1	1	3.977232
1	2	3.992509
1	3	3.998485
1	4	4.060271
2	0	3.973700
2	1	4.060457
2	2	4.195929
2	3	4.183837
2	4	4.251991

Then we fix c = 14, C = 16, s = 0, and S = 3 to find optimal b, v, and k.

As the graphs show, the larger b, v, and k are, the smaller AAT is.

The best configuration is c = 14, C = 16, s = 0, S = 3, b = 6, v = 4, k = 3. AAT = 3.630943 s. Total budget = $2^14 + 2^16 + (2^8 \times (64 - 14 + 0 + 2)) / 8 + (2^10 \times (64 - 16 + 3 + 2)) / 8 + 3 \times 2048 + 2^6 \times 4 + (4 \times (64 - 16 + 3 + 2)) / 8 + 3 \times 2048 + 2^6 \times 4 + (4 \times (64 - 16 + 3 + 2)) / 8 + (2^10 \times (64 - 16 + 3 +$ -6 + 2)) / 8 = 96798 bytes < 98304 bytes.