

Advanced Data Analysis and Statistical Modelling

Exam-Part 1

Søren Skjernaa - s223316 Tymoteusz Barcinski - s221937

Overview of the experiment

Variable	Type	Explanation		
clo	Clothing insulation level	Positive variable, with higher values		
		implying higher insulation.		
tOut	Outdoors air temperature	Measured in C ^o		
tlnOp	Indoor operating temperature	Measured in C ^o		
sex	Sex	Female/male.		
subjld	Subject ID	Uniqiue ID for each subject.		
time	Time	Time difference since last observation for the subject		
		(continues variable, but unit not given).		
day	Day	Number of experimentation day for the subject.		
subDay	Subject × Day ID	Unique ID for each combination of subject and day.		

Overview of the experiment

Overview of the experiment

Linear mixed effects model $Y = \log(clo) = X\beta + ZU + \epsilon$, where $\epsilon \sim N(0, \Sigma)$ and $U \sim N(0, \Psi)$. For observation $i = 1, 2, \ldots, 803$ we have $Y_i = \log(clo_i) = \mu_i + \phi_i + \epsilon_i$.

Linear mixed effects model $Y = \log(clo) = X\beta + ZU + \epsilon$, where $\epsilon \sim N(0, \Sigma)$ and $U \sim N(0, \Psi)$. For observation $i = 1, 2, \dots, 803$ we have $Y_i = \log(clo_i) = \mu_i + \phi_i + \epsilon_i$.

Fixed effects structure:

$$\begin{split} \mu_i &= \beta_0 + \beta_1(\mathsf{sex}_i) \\ &+ \beta_2(\mathsf{sex}_i) \cdot \mathsf{tOut}_i + \beta_3(\mathsf{sex}_i) \cdot \mathsf{tOut}_i^2 \\ &+ \beta_4(\mathsf{sex}_i) \cdot \mathsf{tInOp}_i + \beta_5(\mathsf{sex}_i) \cdot \mathsf{tInOp}_i^2 \\ &+ \beta_6(\mathsf{sex}_i) \cdot \mathsf{tOut}_i \cdot \mathsf{tInOp}_i \\ &+ \beta_7(\mathsf{sex}_i) \cdot \mathsf{tOut}_i \cdot \mathsf{tInOp}_i^2 + \beta_8(\mathsf{sex}_i) \cdot \mathsf{tOut}_i^2 \cdot \mathsf{tInOp}_i \\ &+ \beta_9(\mathsf{sex}_i) \cdot \mathsf{tOut}_i^2 \cdot \mathsf{tInOp}_i^2. \end{split}$$

Linear mixed effects model $Y = \log(clo) = X\beta + ZU + \epsilon$, where $\epsilon \sim N(0, \Sigma)$ and $U \sim N(0, \Psi)$. For observation i = 1, 2, ..., 803 we have $Y_i = \log(clo_i) = \mu_i + \phi_i + \epsilon_i$.

Random effects structure - Model 1:

$$\phi_i = u_1(\operatorname{subjld}_i) + u_2(\operatorname{subjld}_i) \cdot \operatorname{tOut}_i + u_3(\operatorname{subjld}_i) \cdot \operatorname{tOut}_i^2 + u_4(\operatorname{subjld}_i) \cdot \operatorname{tInOp}_i + u_5(\operatorname{subjld}_i) \cdot \operatorname{tInOp}_i^2$$

$$\begin{pmatrix} u_1(\text{subjId}_i) \\ u_2(\text{subjId}_i) \\ u_3(\text{subjId}_i) \\ u_4(\text{subjId}_i) \\ u_5(\text{subjId}_i) \end{pmatrix} \sim N \begin{pmatrix} \sigma_{u_1}^2 & \sigma_{u_1u_2} & \sigma_{u_1u_3} & \sigma_{u_1u_4} & \sigma_{u_1u_5} \\ \sigma_{u_1u_2} & \sigma_{u_2}^2 & \sigma_{u_2u_3} & \sigma_{u_2u_4} & \sigma_{u_2u_5} \\ \sigma_{u_1u_3} & \sigma_{u_2u_3} & \sigma_{u_3}^2 & \sigma_{u_3u_4} & \sigma_{u_3u_5} \\ \sigma_{u_1u_4} & \sigma_{u_2u_4} & \sigma_{u_3u_4} & \sigma_{u_4u_5} \\ \sigma_{u_1u_5} & \sigma_{u_2u_5} & \sigma_{u_3u_5} & \sigma_{u_4u_5} & \sigma_{u_5}^2 \end{pmatrix}$$

Linear mixed effects model $Y = \log(clo) = X\beta + ZU + \epsilon$, where $\epsilon \sim N(0, \Sigma)$ and $U \sim N(0, \Psi)$.

For observation i = 1, 2, ..., 803 we have $Y_i = \log(clo_i) = \mu_i + \phi_i + \epsilon_i$.

Random effects structure - Model 2:

$$\begin{split} \phi_i = & u_1(\mathsf{subjld}_i) + u_2(\mathsf{subjld}_i) \cdot \mathsf{tOut}_i + u_3(\mathsf{subjld}_i) \cdot \mathsf{tInOp}_i \\ & + v_1(\mathsf{subDay}_i) + v_2(\mathsf{subDay}_i) \cdot \mathsf{tOut}_i + v_3(\mathsf{subDay}_i) \cdot \mathsf{tInOp}_i. \end{split}$$

$$U_i = \begin{pmatrix} u_1(\mathrm{subjId}_i) \\ u_2(\mathrm{subjId}_i) \\ u_3(\mathrm{subjId}_i) \end{pmatrix} \sim N \begin{pmatrix} \sigma_{u_1}^2 & \sigma_{u_1u_2} & \sigma_{u_1u_3} \\ \sigma_{u_1u_2} & \sigma_{u_2}^2 & \sigma_{u_2u_3} \\ \sigma_{u_1u_3} & \sigma_{u_2u_3} & \sigma_{u_3}^2 \end{pmatrix} \end{pmatrix}$$

$$V_i = \begin{pmatrix} v_1(\text{subDay}_i) \\ v_2(\text{subDay}_i) \\ v_3(\text{subDay}_i) \end{pmatrix} \sim N \begin{pmatrix} \sigma_{v_1}^2 & \sigma_{v_1v_2} & \sigma_{v_1v_3} \\ \sigma_{v_1v_2} & \sigma_{v_2}^2 & \sigma_{v_2v_3} \\ \sigma_{v_1v_3} & \sigma_{v_2v_3} & \sigma_{v_3}^2 \end{pmatrix}$$

Linear mixed effects model $Y = \log(clo) = X\beta + ZU + \epsilon$, where $\epsilon \sim N(0, \Sigma)$ and $U \sim N(0, \Psi)$. For observation i = 1, 2, ..., 803 we have $Y_i = \log(clo_i) = \mu_i + \phi_i + \epsilon_i$.

Random effects structure - Model 3:

$$Y_i = \log(\mathsf{clo}_i) \sim N(\mu_i, V)$$

and

$$\begin{split} \mathsf{subDay}_{i_1} &\neq \mathsf{subDay}_{i_2} \Rightarrow \mathit{V}_{i_1 i_2} = 0 \\ \mathsf{subDay}_{i_1} &= \mathsf{subDay}_{i_2} \Rightarrow \\ \mathit{V}_{i_1 i_2} &= \sigma^2_{\mathsf{subDay}} + \sigma^2 \cdot \lambda(\mathit{t}_{i_1} - \mathit{t}_{i_2}) \end{split}$$

Model 1 - Only random subject effect

Model diagnostics for initial model

Model 1 - Only random subject effect

Model diagnostics for initial model

Exam - Part 1

May 14, 2023 DTU Compute

Model 1 - Only random subject effect

Final model equation:

$$\begin{aligned} Y_i &= \log(\mathsf{clo}_i) = & \beta_0 + \beta_1(\mathsf{sex}_i) + \beta_2(\mathsf{sex}_i) \cdot \mathsf{tOut}_i + \beta_3(\mathsf{sex}_i) \cdot \mathsf{tOut}_i^2 + \\ & \beta_4(\mathsf{sex}_i) \cdot \mathsf{tInOp}_i + \\ & u_1(\mathsf{subjId}_i) + u_2(\mathsf{subjId}_i) \cdot \mathsf{tOut}_i + u_3(\mathsf{subjId}_i) \cdot \mathsf{tOut}_i^2 + \\ & u_4(\mathsf{subjId}_i) \cdot \mathsf{tInOp}_i + \\ & \epsilon_i \end{aligned}$$

$$\begin{pmatrix} u_1(\text{subjId}_i) \\ u_2(\text{subjId}_i) \\ u_3(\text{subjId}_i) \\ u_4(\text{subjId}_i) \end{pmatrix} \sim N \begin{pmatrix} \sigma_{u_1}^2 & \sigma_{u_1 u_2} & \sigma_{u_1 u_3} & \sigma_{u_1 u_4} \\ \sigma_{u_1 u_2} & \sigma_{u_2}^2 & \sigma_{u_2 u_3} & \sigma_{u_2 u_4} \\ \sigma_{u_1 u_3} & \sigma_{u_2 u_3} & \sigma_{u_3}^2 & \sigma_{u_3 u_4} \\ \sigma_{u_1 u_4} & \sigma_{u_2 u_4} & \sigma_{u_3 u_4} & \sigma_{u_4}^2 \end{pmatrix}$$
, $\epsilon_i \sim N(0, \sigma^2)$

Model AIC = -557.84.

Model 2 - Random subject and random day effect

Model diagnostics for initial model

Model 2 - Random subject and random day effect

Model diagnostics for initial model

Model 2 - Random subject and random day effect

Final model equation:

$$\begin{split} Y_i &= \log(\mathsf{clo}_i) = \beta_0 + \beta_1(\mathsf{sex}_i) + \beta_2 \cdot \mathsf{tOut}_i + \\ \beta_4(\mathsf{sex}_i) \cdot \mathsf{tInOp}_i + \beta_5(\mathsf{sex}_i) \cdot \mathsf{tInOp}_i^2 + \\ u_1(\mathsf{subjId}_i) + u_2(\mathsf{subjId}_i) \cdot \mathsf{tOut}_i + u_3(\mathsf{subjId}_i) \cdot \mathsf{tInOp}_i + \\ v_1(\mathsf{subDay}_i) + \\ \epsilon_i \\ \\ U_i &= \begin{pmatrix} u_1(\mathsf{subjId}_i) \\ u_2(\mathsf{subjId}_i) \\ u_3(\mathsf{subjId}_i) \end{pmatrix} \sim N \begin{pmatrix} 0, \begin{pmatrix} \sigma_{u_1}^2 & \sigma_{u_1u_2} & \sigma_{u_1u_3} \\ \sigma_{u_1u_2} & \sigma_{u_2}^2 & \sigma_{u_2u_3} \\ \sigma_{u_1u_3} & \sigma_{u_2u_3} & \sigma_{u_3}^2 \end{pmatrix} \\ v_1(\mathsf{subDay}_i) \sim N \begin{pmatrix} 0, \sigma_{v_1}^2 \end{pmatrix} \\ \epsilon_i \sim N \begin{pmatrix} 0, \sigma^2 \end{pmatrix} . \end{split}$$

Model AIC = -1127.73.

Determining the time correlation structure:

Covariance structure	Correlation term $\lambda(t_{i_1}-t_{i_2})$	AIC _{re}	BIC_{re}	
Gaussian	$\exp\left(\frac{-(t_{i_1}-t_{i_2})^2}{\rho^2}\right)$	-1194.65	-1092.00	
Exponential	$\exp\left(\frac{- t_{i_1}-t_{i_2} }{a}\right)'$	-1196.23	-1093.59	
Autoregressive(1)	$\rho^{ i_1-i_2 }$	-1204.14	-1106.16	

Model diagnostics for the initial AR(1) model

Exam - Part 1

May 14, 2023 DTU Compute

Reduction of the fixed effects structure using the Likelihood Ratio Test

$$-2\log\left(\frac{\sup_{\theta\in\Theta_0}L(\theta;y)}{\sup_{\theta\in\Theta}L(\theta;y)}\right)\to\chi^2(k-m)$$

under \mathcal{H}_0 .

Model	N Parameters	AIC	BIC	1	Df	p-value
Initial model	21	-1178.49	-1080.04	610.25		
All three-way-interactions removed	17	-1185.45	-1105.74	609.72	4	0.903
All tlnOp × tOut interactions removed	13	-1193.26	-1132.31	609.63	4	0.996
All sex \times tOut interactions removed	11	-1196.12	-1144.55	609.06	2	0.566
All tOut terms removed	9	-1194.95	-1152.75	606.47	2	0.075
$\beta_5(\text{sex}_i) \cdot \text{tlnOp}_i^2 \text{ removed}$	7	-1197.93	-1165.11	605.97	2	0.602

Final model equation

$$\begin{split} \log(\mathsf{clo}_i) &\sim \textit{N}(\mu_i, \textit{V}), \qquad \text{where} \\ \\ \mu_i &= \beta_1(\mathsf{sex}_i) + \beta_4(\mathsf{sex}_i) \cdot \mathsf{tlnOp}_i \\ \\ \textit{V}_{i_1, i_2} &= \begin{cases} 0 & \text{, if subDay}_{i_1} \neq \mathsf{subDay}_{i_2} \\ \sigma^2_{\mathsf{subDay}} + \sigma^2 \cdot \rho^{|i_1 - i_2|} & \text{, if subDay}_{i_1} = \mathsf{subDay}_{i_2} \end{cases} \end{split}$$

Model AIC = -1197.93.

Parameter	Estimate	Std. Error	Lower CI (2.5 %)	Upper CI (97.5 %)
Intercept β_1 (female)	-0.070	0.109	-0.286	0.146
Intercept β_1 (male)	-0.596	0.113	-0.819	-0.372
Slope β_4 (female)	-0.019	0.004	-0.027	-0.012
Slope β_4 (male)	-0.004	0.004	-0.012	0.004

Std. deviations and correlations	Lower CI (2.5 %)	Estimate	Upper CI (97.5 %)
$ ilde{\sigma}$	0.091	0.101	0.112
$ ilde{\sigma}_{\sf subDay}$	0.235	0.267	0.303
$ ilde{ ilde{ ho}}$	0.403	0.512	0.606

- Males: Intercept = 0.55 (0.44, 0.69), Slope = -0.38% (-1.17%, +0.42%)
- **Females:** Intercept = 0.93 (0.75, 1.16), Slope = -1.9% (-2.7%, -1.2%)

