Interpolação

Ivo Calado

Instituto Federal de Educação, Ciência e Tecnologia de Alagoas

23 de Fevereiro de 2016

Roteiro

- Introdução
- Porma de Lagrange
- 3 Limitante para o Erro

Observação

Este material é baseado no material produzido pelo professor Jonas Joacir Radtke da UTFPR

A seguinte tabela relaciona o calor específico da água e a respectiva temperatura:

Temperatura (°C)	20,0	25,0	30,0	35,0
Calor específico	0,99907	0,99852	0,99826	0,99818

Temperatura (°C)	40,0	45,0	40,0
Calor específico	0,99828	0,99849	0,99878

Suponhamos que se queira calcular:

- i) o calor específico da água a 32,5°C
- ii) a temperatura para a qual o calor específico é 0,99837

Interpolar uma função f(x) consiste em aproximar essa função por uma outra função g(x), escolhida entre uma classe de funções definida a priori e que satisfaça algumas propriedades. A função g(x) é então usada em substituição à função f(x) A necessidade de realizar o procedimento de interpolação surge em situações como:

- i) quando são conhecidos somentos os valores numéricos da função para um conjunto de pontos e é necessário calcular o valor da função em um ponto não tabelado
- ii) quando a função em estudo tem uma expressão tal que operações como a diferenciação e a integração são difíceis (ou mesmo impossíveis) de serem realizadas

Interpolar esta função f(x) definida em x_0 , x_1 , ..., x_n , (n+1) pontos distintos de um intervalo [a,b] consiste em aproximar esta função por um polinômio P(x) de grau menor ou igual a n, tal que este coincida com a função nestes pontos, isto é,

$$P(x_i) = f(x_i) = y_i,$$
 $i = 0, 1, ..., n$

Teorema: Existência e Unicidade

Seja f(x) definida em x_0 , x_1 , ..., x_n , (n+1) pontos distintos de um intervalo [a,b], então existe um único polinômio P(x) de grau menor ou igual a n tal que

$$P(x_i) = f(x_i) = y_i,$$
 $i = 0, 1, ..., n$

Prova: Considere o polinômio de grau *n*,

$$P(x) = a_0 x^0 + a_1 x^1 + \ldots + a_{n-1} x^{n-1} + a_n x^n$$
 tal que

$$P(x_i) = f(x_i) = y_i,$$
 $i = 0, 1, ..., n$

y 18 Ivo Calado IFAL

Desta forma temos:

$$\begin{cases} a_0x_0^0 + a_1x_0 + \dots + a_{n-1}x_0^{n-1} + a_nx_0^n = y_0 \\ a_0x_1^0 + a_1x_1 + \dots + a_{n-1}x_1^{n-1} + a_nx_1^n = y_1 \\ a_0x_2^0 + a_1x_2 + \dots + a_{n-1}x_2^{n-1} + a_nx_2^n = y_2 \\ \vdots & \vdots & \vdots \\ a_0x_n^0 + a_1x_n + \dots + a_{n-1}x_n^{n-1} + a_nx_n^n = y_n \end{cases}$$

Podemos observar que temos um sistema de equações lineares $A\vec{x} = \vec{b}$, onde

$$A = \begin{bmatrix} x_0^0 & x_0^1 & \dots & x_0^{n-1} & x_0^n \\ x_1^0 & x_1^1 & \dots & x_1^{n-1} & x_1^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^{n-1} & x_n^n \end{bmatrix} \quad \vec{x} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ a_n \end{bmatrix} \quad \vec{b} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix}$$

O det A, chamado de **determinante de Vandermonde**, é **dado** municipal por det $A = \prod_{i < i} (x_i - x_i)$

7 / 18 Ivo Calado

Como os pontos x_i , i=0, 1, ..., n, são distintos, segue que $\det(A) \neq 0$, o que significa que o sistema linear possui uma única solução e, portanto, os coeficientes a_0 , a_1 , ..., a_n do polinômio são únicos calculados pela resolução deste sistema. Em resumo, o polinômio P(x) existe e é único.

Definição

Denominamos **polinômio interpolador** de uma função f(x) definida em $x_0, x_1, ..., x_n$ (n+1) pontos distintos de um intervalo [a, b], ao polinômio P(x) de grau menor ou igual a n, que coincide com a função nos pontos x_i , i=0,1,...,n, isto é,

$$P(x_i) = f(x_i) = y_i,$$
 $i = 0, 1, ..., n$

Embora o polinômio interpolador P(x) coincida com a função nos pontos de interpolação $x_0, x_1, ..., x_n$, espera-se que $P(\overline{x}) \approx f(\overline{x})$ para $\overline{x} \neq x_i$, i = 0, 1, ..., n, ou seja, estimamos f(x) pelo polinômio interpolador e cometemos um erro $E(\overline{x})$ nesta

8 / 18

Ivo Calado

Considere a função f(x) definida nos pontos, conforme tabela abaixo. Determine o polinômio interpolador e estime f(0,8).

Xi	-1	0	2
$f(x_i)$	4	1	-1

Solução: Com 3 pontos distintos temos um polinômio interpolador de ordem 2, ou seja,

$$P(x) = a_0 + a_1 x + a_2 x^2$$

Logo:

$$\begin{cases} a_0 + a_1 \cdot (-1)^1 + a_2 \cdot (-1)^2 = 4 \\ a_0 + a_1 \cdot (0)^1 + a_2 \cdot (0)^2 = 1 \\ a_0 + a_1 \cdot (2)^1 + a_2 \cdot (2)^2 = -1 \end{cases}$$

9/18 Ivo Calado IFA

Na forma matricial:

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & 4 \end{bmatrix} \quad \vec{x} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$$

Resolvendo este sistema obtemos:

$$\vec{x} = \begin{bmatrix} 1 \\ \frac{-7}{3} \\ \frac{2}{3} \end{bmatrix}$$

Substituindo no polinômio interpolador temos:

$$P(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Para estimar f(0,8) substituimos x = 0,8 em P(x), logo,

$$f(0,8)pprox P(0,8)=1-rac{7}{3}\cdot(0,8)+rac{2}{3}\cdot(0,8)^2=-0,44$$

10/18 Ivo Calado IFAL

Exercício 01

Seja $f(x) = 2e^x + 3$ definida no intervalo [0, 1].

- (a) Aproxime f(0,35) utilizando interpolação linear com $x_0=0$ e $x_1=0,5$.
- (b) Aproxime f(0,85) utilizando interpolação linear com $x_0 = 0,5$ e $x_1 = 1$.
- (c) Aproxime f(0,35) e f(0,85) utilizando um polinômio de grau 2, com os pontos $x_0 = 0$, $x_1 = 0,5$ e $x_2 = 1$.
- (d) Em qual dos casos obtemos melhor aproximação no ponto desejado? Justifique suas afirmações.

Exercício 02

Mostre que existe um único polinômio de grau ≤ 2 tal que $P(1)=3,\ P(2)=5$ e P(3)=12.

Usando o polinômio interpolador avalie P(1,5).

IA E I ECHOLOGIA

.1/18 Ivo Calado IFAL

Exercício 03

Considere a função $f(x) = \frac{1}{(x+1)}$ tabelada nos pontos conforme tabela abaixo. Determine o polinômio interpolador e estime f(1,3).

Xi	0	1	2
$f(x_i)$	1	1/2	1/3

Exercício 04

Considere uma função f(x) tabelada nos pontos conforme tabela abaixo. Determine o polinômio interpolador e estime f(0,6).

x _i	0,5	0,7	0,9	1, 1
$f(x_i)$	5,8	7,9	10, 1	12,3

12/18 Ivo Calado IFAL

Sejam $x_0, x_1, ..., x_n, (n+1)$ pontos distintos e $y_i = f(x_i), i = 0, \cdots, n$, a forma de Lagrange para o polinômio interpolador é dado por:

$$p_n(x) = \sum_{k=0}^n y_k L_k(x)$$

onde,

$$L_{k}(x) = \frac{\prod_{j=0, j \neq k}^{n} (x - x_{j})}{\prod_{j=0, j \neq k}^{n} (x_{k} - x_{j})}$$

13/18 Ivo Calado IFAI

Considere a função f(x) definida nos pontos, conforme tabela abaixo. Determine o polinômio interpolador.

x _i	-1	0	2
$f(x_i)$	4	1	-1

Solução: pela forma de Lagrange, temos que:

$$p_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

, onde:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 2)}{(-1 - 0)(-1 - 2)} = \frac{x^2 - 2x}{3}$$

14/18 Ivo Calado IFAI

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x + 1)(x - 2)}{(0 + 1)(0 - 2)} = \frac{x^2 - x - 2}{-2}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)(x-0)}{(2+1)(2-0)} = \frac{x^2+x}{6}$$

Assim, na forma de Lagrange,

$$p_2(x) = 4\left(\frac{x^2 - 2x}{3}\right) + 1\left(\frac{x^2 - x - 2}{-2}\right) + (-1)\left(\frac{x^2 + x}{6}\right)$$

Agrupando os termos semelhantes, obtemos que

$$p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

15 / 18 Ivo Calado IFAI

Exercício 01

Implementar um programa computacional para determinar o polinômio interpolador de um conjunto de pares ordenados a partir das forma polinomial e da forma de Lagrange.

Quando a função f(x) está disponível, e $f^{(n+1)}(x)$ for contínua em $I = [x_0, x_n]$, podemos escrever a seguinte relação:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1) \cdots (x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

onde,

$$M_{n+1} = \max_{1 \le i \le n} |f^{(n+1)}(x)|$$

17/18 Ivo Calado IFAI

Seja $f(x) = e^x + x - 1$ tabelada abaixo. Obter f(0,7) e fazer uma análise do erro cometido.

X _i	0,0	0, 5	1,0
$f(x_i)$	0,0	1, 1487	2,7183

Xi	1,5	2,0
$f(x_i)$	4, 9811	8, 389

Limitante para o Erro

18 / 18 Ivo Calado IFAL

Seja $f(x) = e^x + x - 1$ tabelada abaixo. Obter f(0,7) e fazer uma análise do erro cometido.

Xi	0,0	0, 5	1,0
$f(x_i)$	0,0	1,1487	2,7183

x_i	1,5	2,0
$f(x_i)$	4, 9811	8, 389

Verificar como é possível estimar o valor absoluto do erro $|E_n(x)|$ quando a função f(x) só é conhecida a partir da tabela de valores.

18 / 18 Ivo Calado IFAL