弱磁性分类

抗磁性: $\chi < 0$, $\chi \sim 10^{-6}$

正常(经典)抗磁性:磁化率与温度无关。

反常抗磁性:磁化率是温度和磁场的函数。

超导抗磁性。

顺磁性: $\chi > 0$, $\chi \sim 10^{-3} \sim 10^{-5}$

正常顺磁性:磁化率是温度的函数,服从居里定律。

也有些服从居里-外斯定律。

传导电子顺磁性:磁化率与温度无关。

范夫莱克顺磁性: 磁化率与温度无关

(反铁磁性:从磁化率数值看,也可以看作是弱磁性。)

弱磁性物质的磁性分析

绝缘体:

Langevin 经典抗磁性;轨道电子的电磁感应。

Langevin 经典顺磁性:原子磁矩在磁场中的取向效应。

Van Vleck 顺磁性:激发态的影响。

导体:

Langevin 经典抗磁性

Langevin 经典顺磁性

Van Vleck 顺磁性。

离子实

Landau 抗磁性: 传导电子在磁场中的量子感应效应。

Pauli顺磁性: 传导电子在磁场中的量子取向效应。

传导 电子 探求磁性起源应理解为寻找物质磁性的承载者:目前发现的只有电子磁矩(电子的轨道磁矩和自旋磁矩)和原子核磁矩。也有把外磁场感生的轨道矩改变作为第 3 种来源。更广义地说,电流的磁效应也是磁性的起源。

但物质中电子磁矩间是否存在**相互作用**以及相互作用的 类型,受材料内、外环境影响的程度如何是物质各种磁性表 现的起因。磁性物理研究的不是磁性起源问题,而是各种磁 性表现的起因问题。

和弱磁性不同,强磁性是磁性应用的主体,不但需要解释其起因,还需要研究它们在外磁场中的行为,即磁性应用中的问题,要分成几个章节来完成,不宜再用铁磁性、亚铁磁性等做章名。

第三章 自发磁化理论

- 3.1 铁磁性的"分子场"理论
- 3.2 Heisenberg 直接交换作用模型
- 3.3 自旋波理论
- 3.4 金属铁磁性的能带模型及巡游电子理论
- 3.5 反铁磁性的"分子场"理论
- 3.6 亚铁磁性的"分子场"理论
- 3.7 间接交换作用模型
- 3.8 RKKY交换作用模型

参见姜书 1.13,1.14 两节及二、三两章

铁磁性物质在磁场中的行为,19世纪末就已经有了系统 研究和应用,它的强磁性起因早就成为科学界需要解决的问 题,1907年法国科学家外斯(Weiss)提出了分子场和磁畴 的假说(见姜书 p 53-54), 唯象地解释铁磁现象, 尽管当 时还不知道引起自发磁化的分子场的具体来源,但在描述铁 磁体宏观行为上却获得了很大的成功,如今这两个假说都已 得到证实,它们的详细理论构成了今天磁性物理学的核心 内容。本章介绍分子场理论并从微观机制上探讨铁磁性自发 磁化的起因, 亚铁磁性、反铁磁性以及螺旋磁性的起因也将 归并在这一章中介绍,磁畴学说则成为解释强磁体在外磁场 中的行为的理论基础,称为技术磁化理论,我们将在四、五 两章中介绍。

3.1 铁磁性的"分子场"理论

一. 分子场的引入

外斯 (P.Weiss) 提出分子场理论,并不是突发奇想,他是在对居里-外斯定律的分析中得到启发的:

顺磁物质服从居里定律,有:

$$\chi = \frac{M}{H} = \frac{C}{T}, \qquad H = \frac{T}{C}M$$

超过居里温度后的铁磁体服从居里-外斯定律,有:

$$\chi = \frac{M}{H} = \frac{C}{T - T_p}, \qquad H = \frac{1}{C} (T - T_p) M$$

对比两种情况,可以认为在铁磁体内存在一个附加磁场

$$H + \frac{T_p}{C}M = \frac{T}{C}M$$
分子场
$$H_m = \frac{T_p}{C}M = wM$$

w称分子场系数

如果认为正是这个附加磁场引起了自发磁化,那么它的量级就可以由下式确定: (居里温度时自发磁化消失)

$$\mu_0 H_m \mu_B \approx k_B T_C$$

$$\mu_0 H_m \approx \frac{k_B T}{\mu_B} \approx \frac{1.38 \times 10^{-23} \text{J} \cdot \text{K}^{-1} \times 1043 \text{K}}{9.27 \times 10^{-24} \text{J} \cdot \text{T}^{-1}} \approx 1.55 \times 10^3 \text{T}$$

$$H_m \approx 1.23 \times 10^9 \, \text{A} \cdot \text{m}^{-1} \qquad (\mu_0 = 4\pi \times 10^{-7} \, \text{H} \cdot \text{m}^{-1})$$

$$= 1.55 \times 10^7 \, \text{Oe}$$
见美书p53

这是一个实验室内目前根本达不到的强度, 姑且叫做分子场。显然在这样强的磁场作用下, 使原子磁矩平行排列是完全可以做到的。外斯根本没有考虑这样强的磁场会来源於何处, 就做了铁磁体内存在分子场的大胆假设, 这是他的过人之处。

二. 自发磁化强度随温度的变化 (图解法)

在 Langevin顺磁理论的基础上进行讨论:设单位体积有N 个原子,在分子场的作用下,系统稳定的条件仍是静磁能与热运动能的平衡。利用在顺磁性研究中给出的外场下磁化强度的表达式

$$M = Ng_J J \mu_B B_J (\alpha)$$
 这时的变量是:
$$\alpha = \frac{\mu_0 J g_J \mu_B}{k_B T} (H + wM)$$
 3.1) **2.1**) **3.1**)

 $B_{I}(\alpha)$ 是布里渊函数。

$$B_J(\alpha) = \frac{2J+1}{2J} \coth(\frac{2J+1}{2J}\alpha) - \frac{1}{2J} \coth\frac{\alpha}{2J} \quad --- \quad (3.2)$$

求解联立方程(3.1)即可以给出一定温度和磁场下的磁化强度。外磁场H=0,即可求出一定温度下的自发磁化强度

令: H=0 并求解,给出解析解是困难的,我们用图解法

因为
$$T \to 0$$
K, $\alpha \to \infty$, $\coth \alpha \to 1$, $B_J(\alpha) \approx 1$

由 (3.1) 式:
$$M(0K) = NJg_J\mu_B - - (3.3)$$
 这是材料一个 很重要的量

$$H = 0$$
,由 (3.1) $M(T) = \frac{\alpha k_B T}{\mu_0 J g_J \mu_B w}$ 温度为**T**时的磁化强度

方程(3.1)可以写成:

$$\begin{cases}
\frac{M(T)}{M(0)} = B_J(\alpha) & \dots \\
\frac{M(T)}{M(0)} = \frac{kT}{N\mu_0 J^2 g_J^2 \mu_B^2 w} & \dots \\
\end{cases} (3.4)$$

- (3.4) 式是一簇由不同J值决定的曲线,见下图。
- (3.5) 式是一簇和 T 值 J 值有关的直线族。

不同 J 值时的Brilouin 函数曲线 见戴书p123

直线和曲线的交点给出该温度下的自发磁化强度数值,不同温度直线和同一J值 $B_J(\alpha)$ 曲线的交点给出该J值下M(T)和温度关系。显然是一条随温度上升而逐渐下降、在居里温度至零的曲线,和实验结果是一致的。

三. Curie 温度与分子场系数的关系

当温度T升至 T_{C} 时, $\alpha <<1$,

$$B_J(\alpha) \cong \frac{J+1}{3J}\alpha$$

两线相切,有:

$$\frac{kT_c}{N\mu_0 g_J^2 J^2 {\mu_B}^2 w} \alpha = \frac{J+1}{3J} \alpha$$

给出铁磁居里温度

$$T_C = \frac{N\mu_0 g_J^2 \mu_B^2 J(J+1)}{3k} w ---- (3.6)$$

$$T_c = w \cdot C$$

其中 $\mu_J^2 = g^2 J(J+1)\mu_B$ 是原子磁距,C 是居里常数 测量宏观量居里温度 T_C 就能给出分子场系数w。 所以居里点是分子场系数w的一个很好的量度。

(3.6) 式代入(3.5) 式后有:

$$\frac{M(T)}{M(0)} = \frac{J+1}{3J} \frac{T}{T_c} \alpha$$

和 (3.4) 式联立,消去 α 可以给出如下关系:

$$\frac{M\left(T\right)}{M\left(0\right)} = f_J\left(\frac{T}{T_c}\right) \qquad (3.7)$$

该式表明:对于任何一个量子数为 J 的系统,其变化规律是一致的,成为铁磁体自发磁化强度——温度关系的普遍形式。

自发磁化强度的温度依赖性点为 Ni 和 Fe 的实验值,它们与从外斯理论出发,利用 $J=\frac{1}{2}$ 、1、 ∞ 的 有里渊函数计算出的理论曲线进行比较(引自 Becker 和 Döring²).

图 4 镍的饱和磁化强度和温度的关系,以及 S=1/2 的平均场理论曲线。实验值引自 P. Weiss and R. Forrer。 **Kittel 书8版 p226**

图 1-23 沿单晶钆基面 b 轴测得的自发磁化强度

采用 M(T)/M(0) 和 $T/T_{\rm C}$ 作图,消除了不同物质间的区别,而集中反映自发磁化强度随温度变化的规律。它对所有铁磁物质是有普遍意义的。

利用J = 1/2, 1, ∞ 的布里渊函数的计算值与实验结果比较。

过渡族金属实验结果与J=½的曲线比较接近,说明过渡族金属的原子磁矩主要来自电子自旋贡献。与曲线的偏离将在后面部分说明。

稀土金属Gd的实验结果与J=7/2的曲线符合更好,这与分子场理论是建立在对局域电子磁距认识的基础上有关,Gd的未满壳层4f电子被外面的5s和5p电子屏蔽,表现为明显的局域磁距。

四. Curie-Weiss 定律的导出

$$T > T_{\rm C}$$
 , $\alpha << 1$,

$$B_J(\alpha) \cong \frac{J+1}{3J}\alpha$$

顺磁磁化率(*H* ≠ **0**)

$$M = NgJ\mu_B \frac{J+1}{3J} \frac{\mu_0 gJ\mu_B}{kT} (H+wM)$$

整理后(习题3.2)可知顺磁磁化率 $\chi = \frac{M}{H} = \frac{C}{T - T}$

$$\chi = \frac{M}{H} = \frac{C}{T - T_P}$$

其中C 是居里常数,

$$T_p = w \cdot C$$

得到了 $T_P = T_C$ 的结果,这与实验结果并不十分一致, 所以"分子场"理论虽然给出了Curie-Weiss 定律的表达 式,但细节上是不够准确的。

图 2 在居里温度(358°C)附近,每克镍的磁化率的倒数曲线。密度为 ρ 。虚线是高温段的线性外推。引自 P. Weiss and R. Forrer。

表 10-2 几种铁磁材料的数据

材料	T _c /K	T _p /K	$M_{\rm o}/10^{-3}{\rm A\cdot m}^{-1}$	$p_{\rm s}(\mu_{\rm B})$	$p_{ m eff}(\mu_{ m B})$	$p_{\rm s}/{\rm H}$	p _{eff} /H
铁	1043	1101	1743	2.216	3.13(4.2)	4	4.90
钴	1395	1428	1447	1.715	3.13	3	3.87
镍	631	650	521	0.606	1.62	2	2.83
钆	293.2	317	1980	7.55	7,.98	7	7.94

有效玻尔磁子数

由磁化强度M(0)测量给出:

由居里常数
$$C$$
 测量给出: $C = \frac{N\mu_0(\overline{p_{\text{eff}}})^2 \mu_B^2}{3k_B}$

由洪德法则计算给出:测量最大值 $p_s = 2S$

磁矩绝对值
$$p_{\text{eff}} = 2\sqrt{S(S+1)}$$

本表数值取自《材料科学导论》(2002)p266

表 10-6 一些强磁物质的饱和磁化强度和居里温度 $(M_{\rm s}$ 的单位为 G 或 $10^3 {\rm A/m})$

 物 质	M _s (室温)	$M_{\rm o}(0{\rm K})$	p _s (μ _B /原子或分子)	T _c /K
Fe	1707	1743	2.216	1043
Co	1400	1447	1.715	1395
Ni	485	521	0.606	631
Gd		1980	7.55	293
Dy		2920	10.2	88
MnBi	620	680	3.52	630
Cu_2MnAl	430	(580)	(4.0)	603
CuMnIn	500	(600)	(4.0)	506
MnAs	670	870	3.4	318
MnB	147	A STATE OF THE STA		533
Mn_4N	183		0.24	745
MnSb	710		3.53	587
CrTe	240		2.39	336
CrO ₂	515		2.03	386
EuO		1920	6.8	69
MnFe ₂ O ₄	410		5.0	573
Fe_3O_4	480	v. Char	4.1	858 亚铁磁体
$Y_3Fe_5O_2$	130	200	5.0	560

本表数值取自《材料科学导论》(2002)p278

注意

- 1) 由分子场理论得到的铁磁性居里点和居里-外斯得到的 居里点是一致的,但实际的结果并不十分一致;
- 2) 在居里点磁化强度并不为零,将由短程序来解释;
- 3) 在有些金属铁磁体中,由居里温度以上的顺磁磁化率得到的有效原子磁矩与铁磁自发磁化强度得到的有效原子磁矩是不一致的。这些都是分子场理论所不能解释的。

五. 存在外磁场时磁化强度的计算

当存在外磁场时,原子磁矩受到分子场和外磁场的共同作用,此时的磁化强度仍可由 $H\neq 0$ 的联立方程(3.4)(3.5)给出。 $H\geq H_m$ 时由上述图解法给出的磁化强度称作饱和磁化强度与上面 H=0 时的自发磁化强度从概念上是不同的,但外磁场不大时,它们的数值差别很小,可以不加区别。

$$\frac{M_S(T)}{M(0)} = B_J(\alpha)$$

$$\frac{M_S(T)}{M(0)} = \frac{Nk_BT}{w\mu_0[M(0)]^2} \alpha - \frac{H}{wM(0)}$$
和 (3.5) 相比多一项

在相同温度下,表示 $H\neq 0$ 的斜线和表示 H=0的斜线<mark>斜率相同,在通常磁场强度下,只是沿纵坐标下移了一个小量。</mark>

实验中只能测量出饱和磁化强度,由图明显看出,在 $T < 0.8 T_c$ 后,二者差别不大,可以认为测量值就是自发磁化强度数值。

六. 低、高温区域分子场理论的不足

$$\frac{T}{T_c} \to 0$$

$$\frac{T}{T_c} \rightarrow 0$$
 可将布里渊函数展开,所以(3.4)式可以表示为:
$$\alpha >> 1 \qquad \frac{M(T)}{M(0)} = B_J(\alpha) \approx 1 - \frac{1}{J} e^{-\frac{\alpha}{J}}$$

利用 T_c ,可以将(3.5)式表示为:

$$\frac{M(T)}{M(0)} = \frac{J+1}{3J} \frac{T}{T_c} \alpha$$

因为 $T\rightarrow 0$ K 时, $M(T)\rightarrow M(0)$

$$\therefore \alpha \doteq \frac{3J}{J+1} \frac{T_c}{T} \qquad 代入第一式中,有:$$

$$\frac{M(T)}{M(0)} = 1 - \frac{1}{J}e^{-\frac{3}{J+1}\frac{T_c}{T}} = 1 - 2e^{-\frac{2T_c}{T}}(\diamondsuit J = \frac{1}{2})$$

但实验结果表明,磁化强度随温度变化要快得多:

$$\frac{M(T)}{M(0)} = 1 - AT^{\frac{3}{2}}$$

实验给出的规律常被称作 3/2 次方定律,分子场理论不能予以解释。直到1930年自旋波理论出现后,才从理论上解释了3/2 次方定律。

A 的实验值:

Ni:
$$(7.5 \pm 0.2) \times 10^{-6} \text{ deg}^{-\frac{3}{2}}$$

Fe:
$$(3.4 \pm 0.2) \times 10^{-6} \text{ deg}^{-\frac{3}{2}}$$

$$\frac{T}{T_c} \to 1$$

 $\frac{T}{T} \to 1$ 即居里点附近, $M(T) \to 0$,对布里渊函数展开,

$$\frac{M(T)}{M(0)} = \left[\frac{10}{3} \frac{(J+1)^2}{J^2 + (J+1)^2}\right]^{\frac{1}{2}} \left(\frac{T_C}{T} - 1\right)^{\beta}$$

 β 称作临界指数,分子场理论给出 β =1/2。目前使用核磁 共振、振动样品磁强计及其它方法可以在温度变化只有 T_c 的十万分之几的条件下测量M(T)的变化规律,实验 确定的β≈1/3,与分子场理论是不一致的。

还有一个临界指数(顺磁端)也存在差异:

$$\chi = \frac{C}{\left(T - T_p\right)^f}$$
 分子场理论: $f = 1$ 实验结果: $f > 1$

临界点现象是对一个固体理论成功与否的考验。

相变和临界点现象是目前的固体理论的一个前沿领域。

七. "分子场"是磁场吗?

"分子场"的作用形似磁场,可以从铁的居里温度估计出"分子场"的量级为 10° A m⁻¹。 这相当于10³ T或10⁷ Oe的磁场,是目前实验室无法实现的数值。

1927年 多尔夫曼就用β粒子穿越铁磁介质,从实验上证实"分子场"不可能是磁场。实验表明铁磁物质内磁场数值不会超过3×10⁴ Oe。

1952—1953年贝尔科又用 μ 子重复了此实验,结果是一致的。

所以"分子场"不可能是磁场,究竟是何原因导致自发磁化,这是量子力学出现后才能解决的问题,确切地说它应叫做"交换场"。

小结: 分子场理论的成功

说明了自发磁化的存在及其随温度变化的规律。

- 1.给出了铁磁性消失的转变温度 $T_{\rm C}$ 。
- 2.给出了 $T > T_{C}$ 后,铁磁体的顺磁磁化规律Curie-Weiss定律。

不足:

- 1.没有说明"分子场"的本质及为什么其数值与磁化强度成正比。
- 2.在 0 K和 T_{C} 温度附近,分子场预示的规律与实验不符。
- 注意:许多离子在固体中表现出来的原子磁距数值与Hund法则给出的数值不同是晶场等作用的结果,与分子场理论无关。
- 从Langevin顺磁理论发展而成的"分子场"理论建立在对局域磁距认识的基础上,传导电子磁距不太适合用分子场理论分析。

附录: 铁磁物质的回转磁效应和朗德因子的测定:

- 1. 爱因斯坦-德哈斯效应: 磁化引起转动。
- 2. 巴奈特效应:转动引起磁化。
- 3. 铁磁共振效应:

共同结论: 铁磁金属及其合金、铁氧体的朗德因子都在

1.85~2.0 之间,说明铁族元素磁矩的元负载 者主要是电子自旋。

习题

3.1 己知Fe的居里温度为1043 K,试估计出"分子场"应有的量级, 并从数值对比中说明它不可能是磁偶极子产生的磁场。

提示:
$$k_{\rm B}T_{\rm C}\approx\mu_0\mu_{\rm B}H_{\rm m}$$

$$H\approx\frac{\mu_{\rm B}}{4\pi\mu_0r^3}$$
 $j_{\rm B}=\mu_0\mu_{\rm B}$

3.2 试证明,按照分子场理论

$$T_c = T_p = w \cdot C$$

"简洁是智慧的灵魂"

—— 莎士比亚

外斯的分子场理论可以说是宏观理论的典范。他只用了一个参数: H_{m} , 就解释了复杂的铁磁现象。

外斯 (Weiss,Pierre)

法国物理学家。1865年3月25日生于莱茵省的米卢兹; 1940年 10月24日卒于里昂。外斯出生在阿尔萨斯,父亲是个缝纫用品 商。当时,阿尔萨斯因普法战争割让给了德国,不过,外斯一家 仍留在当地。他在德国和瑞士读书,但二十一岁上决定还是当个 法国人。1887年,他以班上第一名的成绩从苏黎世工业学院毕 业,随后便去巴黎深造。他对磁学特别有兴趣。1907年,他对 铁磁性做出了解释。他认为,一个个原子磁体可以形成非同寻常 的强耦合,从而使它们都按一个方向排列,这便形成了强度累加 起来的"磁畴"。铁中便存在这种磁畴,但各个磁畴的取向可能 是任意的;一旦外磁场的作用使它们沿一个方向排列起来,整块 铁就成了一个大磁体。 1919年,阿尔萨斯又回归法国,外斯便 在斯特拉斯堡创建了一个物理研究所。后来,该所成了磁学研究 的中心。外斯于1936年退休。后来又看到德国军队在第二次世 界大战中再度占领阿尔萨斯。他逃难到里昂,于法国屈辱地宣布 投降以后不久去世。