Müllabfuhr ? A1
1. Verbesserungen 2. Aufbau 2. Umsetzung 3. Beispiele 4. Quellcode Lösungsidee
Zuerst ist bei dieser Problemstellung eine gewisse Ähnlichkeit zum min-max k-Chinese Postman problem festzustellen. Da dieses Problem NP-Schwer ist, wird hier ein meta-heuristischer Algorithmus zur Annäherung an eine möglichst optimale Lösung verwendet, wie in dieser Arbeit beschrieben. Als Startpunkt wird ein einziger Pfad durch den Graph verlegt (vgl. Hierholzer's algorithm) und die restlichen Tage mit Nullen aufgefüllt. Nun wird optimiert: Kurzgesagt wird iterativ eine 'Nachbarschaft', also leichte Veränderungen zweier Touren durch das Verschieben von zwei Kanten berechnet, und der beste Kandidat, der nicht in der tabu-Liste enthalten ist, wird weiterverbessert. Wenn zwei Möglichkeiten zur Weiterverbesserung gleich 'gut' sind, wird zufällig eine der beiden ausgewählt. Somit ist der Algorithmus zwar nicht deterministisch, mit ausreichender Laufzeit wir die Menge der möglichen Ergebnisse jedoch immer enger. Diese Auswahl wird nun der tabu-Liste hinzugefügt. Die tabu-Liste hat eine bestimmte Zeit, für die Elemente nicht noch einmal ausgewählt werden dürfen. Diese Zeit hat mit einem Wert von 20 (20 Iterationen) gute Ergebnisse geliefert. Zusätzlich wird der Algorithmus durch ein Limit
von 100 Iterationen ohne Verbesserung, und eine maximale Laufzeit von 600 Sekunden beschränkt. Verbesserungen Nicht-Integer Gewichte Eine vorgenommene Verbesserung ist das Einlesen von Fließkommazahl-Gewichtungen der Straßen. Es ist unrealistisch dass in einem echten Szenario Straßen eine Länge von z.B. genau 480m haben. Um das zu implementieren wird der dritte Wert aus den Beispieldateien als
float eingelesen. Home-office Eine Funktionalität des Verbesserungs-algorithmus, die im Aufsatz nicht beschrieben wurde, ist die Möglichkeit, in der Zentrale zu bleiben. Dies ist der Fall, wenn Pfade nicht mehr sinnvoll verkürzt werden können, und somit das Ausfahren an zusätzlichen Tagen keine Verbesserung bringt. Der ausgegebene Pfad ist dann einfach Ø.
Arbiträre Anzahl Tage Auch kann eine Anzahl an Tagen eingegeben werden, für die geplant werden soll. So kann zum Beipiel ein Fahrplan für zwei Wochen erstellt werden. Dazu werden einfach die merging- und padding-Schritte am Ende der get_paths Funktion angepasst. Diese Veränderung and k wird auch in der Optimisierungsphase berücksichtigt. Dropout
Das erste was die Optimierung macht ist, die Pfade gerecht aufzuteilen. Hierfür reicht es, nicht jede Möglichkeit zu betrachten. Dafür gibt es den dropout-Wert. Am Anfang werden z.B. 10% aller Möglichkeiten ignoriert. Mit dropout_fn verändert sich dieser Wert über die Laufzeit des Algorithmus und somit wird die Auswahl am Ende der Optimierung 'feiner'. Aufbau utility.py
class TabuList Eine tabu-Liste, die Elemente für eine Zeit von tenure als tabu markiert. def TabuListinit(default_tenure: int, cleanup_freq: int = 20) Initialisiert die tabu-Liste mit einer default_tenure.
def TabuListcleanup() Interne Methode. Wird aufgerufen, um abgelaufene Einträge aus der Liste zu löschen. def TabuList.add(item: Hashable, tenure: int = None) Setzt ein item für eine Zeit von tenure or default_tenure auf die tabu-Liste. def TabuList.get(item: Hashable) -> int
Gibt die Zeit zurück, bis item nicht mehr tabu ist. (Sonst 0) def TabuList.tick() Inkrementiert die Zeit um eins. def remove_by_exp(exp: Callable[[Any], bool], lst: List) Entfernt das erste Element bei dem exp 'True' zurückgibt.
program.py class CityGraph Klasse die ein Straßennetz (ungerichteter gewichteter Graph) repräsentiert.
def CityGraphinit(vertices: List[int], edges: List[Tuple[int, int, float]]) Initialisiert den CityGraph mit einer Liste der Vertices und der adjacency-list. @classmethod def CityGraphfrom_bwinf_file(path: str) -> 'CityGraph' Liest eine Beispieldatei ein, und gibt einen CityGraph zurück.
def is_connected(self) -> bool Gibt als Wahrheitswert zurück, ob der Graph verbunden ist, d. h. es gibt nur ein verbundenes Straßennetz. def get_paths(days: int = 5) -> List[Tuple[float, Tuple[int,]]] Gibt eine Liste zurück, die Tuples mit dem Pfad, und der Länge dessen an erster Stelle, enthält.
def MMKCPP_TEE_TabuSearch(G: Dict[int, Dict[int, float]], k: int = 5, maxNOfltsWithoutImprovement: int = 100, maxRunningTime: float = 0, dropout: float = 0.1, dropout_fn: Callable = lambda x: x1.2, tabuTenure: int = 20) -> List[Tuple[int,]]** Min-Max K-Chinese Postman Problem - Two Edge Exchange. Findet und verbessert k Touren, die alle Kanten im Graph abdecken. G ist eine adjacency-List in der auch die Gewichte der Kanten gespeichert sind. maxNOfItsWithoutImprovement ist die Maximalzahl der Iterationen ohne das Finden einer besseren Lösung, dass der Algorithmus abgebrochen wird.
maxRunningTime ist die maximale Laufzeit des Algorithmus, bevor dieser abgebrochen wird. tabuTenure ist die Anzahl an Iterationen, die ein schon besuchtes Element als tabu markiert wird. die folgenden Funktionen befinden sich innerhalb der Funktion MMKCPP_TEE_TabuSearch def edges(tour: Tuple[int,]) -> Iterable[set] Gibt alle im Pfad tour enthaltenen Kanten in der Form [{0, 1}, {1, 2},] zurück.
def w_tour(tour: Tuple[int,]) -> float Gibt die Länge eines Pfades tour zurück. def w_max_tours(tours: Iterable[Tuple[int,]]) -> float Gibt die Länge aller Pfade in tours zurück. Dies ist auch die cost-Funktion, die es zu minimieren gilt. def edgecount_tour(tour: Tuple[int,]) -> collections.Counter
Zählt alle Kanten im Pfad tour. def edgecount_tours(tours: List[Tuple[int,]]) -> collections.Counter Zahlt alle Kanten in den Pfaden tours. def MergeWalkWithTour(tour: Tuple[int,], walk: Tuple[int,]) -> Tuple[int,] Verbindet walk (2 Kanten) mit dem jetzigen Pfad tour.
def SeparateWalkFromTour(tour: Tuple[int,], walk: Tuple[int,]) -> Tuple[int,] Entfernt die Kanten walk im Pfad tour, während aufgepasst wird, dass der Pfad verbunden bleibt. def ReorderToClosedWalk(edgeset: List[set]) -> Tuple[int,] Ordnet die Kanten edges so, dass ein geschlossener Pfad, der bei Kreuzung 0 anfängt und endet, entsteht.
def RemoveEvenRedundantEdges(tour: Tuple[int,], tours: List[Tuple[int,]]) -> Tuple[int,] Entfernt Kanten im Pfad tour, die zu gerader Zahl vorkommen, immernoch in anderen Touren vorkommen, und den Pfad verbunden lassen. Umsetzung Das Programm ist in der Sprache Python umgesetzt. Der Aufgabenordner enthält neben dieser Dokumentation eine ausführbare Python-Datei program.py. Diese Datei ist mit einer Python-Umgebung ab der Version 3.6 ausführbar.
Wird das Programm gestartet, wird zuerst eine Eingabe in Form einer einstelligen Zahl erwartet, um ein bestimmtes Beispiel auszuwählen. (Das heißt: 0 für Beispiel muellabfuhr0.txt). Dann wird nach der Anzahl der zu planenden Tage gefragt (default ist 5). Nun wird die Logik des Programms angewandt und die Ausgabe erscheint in der Kommandozeile (kann bis zu 10 Minuten dauern!). Beispiele
Hier wird das Programm auf die neun Beispiele aus dem Git-Repo, und ein eigenes angewendet (jeweils mit einem Ziel von 5 Tagen): (die Anzahl der Punkte ist die Anzahl der vorgenommenen Verbesserungen) muellabfuhrø.txt dropout 0.1
10 13 0 2 1 0 4 1 0 6 1 0 8 1 5 6 1 6 7 1
7 8 1 8 1 1 8 9 1 Ausgabe zu muellabfuhr0.txt
Tag 1: 0 -> 8 -> 7 -> 6 -> 0, Gesamtlaenge: 4.0 Tag 2: 0 -> 6 -> 5 -> 4 -> 0, Gesamtlaenge: 4.0 Tag 3: 0 -> 4 -> 3 -> 2 -> 0, Gesamtlaenge: 4.0 Tag 4: 0 -> 8 -> 9 -> 8 -> 0, Gesamtlaenge: 4.0 Tag 5: 0 -> 8 -> 1 -> 2 -> 0, Gesamtlaenge: 4.0 Maximale Lange einer Tagestour: 4.0
<pre>8 13 0 4 6 0 5 6 0 6 1 1 3 9 : 3 6 1 4 5 5 4 7 8 5 7 2</pre>
Ausgabe zu muellabfuhr1.txt Tag 1: 0 -> 6 -> 3 -> 2 -> 3 -> 6 -> 0, Gesamtlaenge: 18.0 Tag 2: 0 -> 6 -> 7 -> 4 -> 0 -> 6 -> 0, Gesamtlaenge: 18.0 Tag 3: 0 -> 6 -> 1 -> 3 -> 6 -> 0, Gesamtlaenge: 13.0 Tag 4: 0 -> 5 -> 3 -> 6 -> 0, Gesamtlaenge: 11.0 Tag 5: 0 -> 6 -> 7 -> 5 -> 4 -> 3 -> 6 -> 0, Gesamtlaenge: 18.0 Maximale Lange einer Tagestour: 18.0
muellabfuhr2.txt - dropout 0.1 15 34 0 5 1 0 6 1 0 9 1 1 6 1 9 10 1
9 12 1 9 13 1 10 14 1 13 14 1 Ausgabe zu muellabfuhr2.txt Tag 1: 0 -> 9 -> 10 -> 2 -> 8 -> 11 -> 3 -> 4 -> 3 -> 13 -> 9 -> 0, Gesamtlaenge: 11.0 Tag 2: 0 -> 9 -> 13 -> 14 -> 10 -> 14 -> 7 -> 8 -> 12 -> 9 -> 6 -> 0, Gesamtlaenge: 11.0 Tag 3: 0 -> 6 -> 14 -> 13 -> 9 -> 5 -> 14 -> 6 -> 1 -> 7 -> 9 -> 0, Gesamtlaenge: 11.0 Tag 4: 0 -> 5 -> 11 -> 2 -> 14 -> 8 -> 12 -> 1 -> 7 -> 9 -> 0, Gesamtlaenge: 10.0
Tag 5: 0 -> 5 -> 11 -> 7 -> 1 -> 13 -> 4 -> 10 -> 4 -> 6 -> 0, Gesamtlaenge: 10.0 Maximale Lange einer Tagestour: 11.0 muellabfuhr3.txt - dropout 0.1
0 1 1 0 2 1 0 3 1 0 4 1 : 11 13 1 11 14 1 12 13 1 12 14 1 13 14 1 Ausgabe zu muellabfuhr3.txt
Tag 1: 0 -> 11 -> 6 -> 10 -> 3 -> 12 -> 9 -> 11 -> 1 -> 10 -> 9 -> 6 -> 1 -> 3 -> 8 -> 14 -> 4 -> 10 -> 5 -> 2 -> 14 -> 0, Gesamtlaenge: 21.0 Tag 2: 0 -> 13 -> 5 -> 6 -> 3 -> 0 -> 2 -> 12 -> 14 -> 11 -> 3 -> 13 -> 4 -> 12 -> 13 -> 10 -> 11 -> 13 -> 9 -> 7 -> 0, Gesamtlaenge: 21.0 Tag 3: 0 -> 6 -> 14 -> 3 -> 7 -> 5 -> 9 -> 0 -> 8 -> 2 -> 10 -> 14 -> 5 -> 11 -> 2 -> 4 -> 7 -> 10 -> 12 -> 5 -> 4 -> 0, Gesamtlaenge: 21.0 Tag 4: 0 -> 12 -> 6 -> 13 -> 7 -> 11 -> 4 -> 9 -> 3 -> 4 -> 8 -> 1 -> 9 -> 14 -> 7 -> 8 -> 9 -> 2 -> 13 -> 14 -> 1 -> 0, Gesamtlaenge: 21.0
Gesamtlaenge: 21.0 Tag 5: 0 -> 10 -> 8 -> 13 -> 1 -> 2 -> 6 -> 8 -> 11 -> 12 -> 8 -> 5 -> 1 -> 7 -> 6 -> 4 -> 12 -> 7 -> 2 -> 3 -> 5 -> 0, Gesamtlaenge: 21.0 Maximale Lange einer Tagestour: 21.0 muellabfuhr4.txt - dropout 0.1
10 10 0 1 1 0 9 1 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1 6 7 1
7 8 1 8 9 1 Ausgabe zu muellabfuhr4.txt
Tag 1: 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 0, Gesamtlaenge: 10.0 Tag 2: 0, Gesamtlaenge: 0 Tag 3: 0, Gesamtlaenge: 0 Tag 4: 0, Gesamtlaenge: 0 Tag 5: 0, Gesamtlaenge: 0 Maximale Lange einer Tagestour: 10.0
muellabfuhr5.txt 50 989 0 2 8 0 3 12 0 5 6 0 6 9 :
46 48 8 46 49 1 47 48 7 47 49 6 48 49 9 Keine Ausgabe. (Iteration dauert zu lange)
muellabfuhr6.txt - dropout 0.9 100 204 0 4 7782 0 44 5495 1 3 4633 2 5 18959 :
98 32 11629 98 35 1367 98 45 11403 99 27 4355 99 43 3450 Ausgabe zu muellabfuhr6.txt
Tag 1: 0 -> 93 -> 35 -> 93 -> 4 -> 0 -> 58 -> 98 -> 45 -> 98 -> 10 -> 45 -> 93 -> 35 -> 98 -> 93 -> 58 -> 45 -> 42 -> 67 -> 42 -> 5 -> 86 -> 41 -> 86 -> 77 -> 67 -> 41 -> 90 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 2 -> 72 -> 2 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 19 -> 39 -> 60 -> 39 -> 83 -> 28 -> 30 -> 28 -> 31 -> 28 -> 82 -> 31 -> 82 -> 28 -> 83 -> 33 -> 83 -> 39 -> 30 -> 33 -> 60 -> 33 -> 30 -> 25 -> 30 -> 83 -> 25 -> 39 -> 19 -> 2 -> 13 -> 2 -> 19 -> 48 -> 25 -> 48 -> 10 -> 4 -> 44 -> 60 -> 61 -> 60 -> 59 -> 62 -> 54 -> 17 -> 9 -> 56 -> 9 -> 17 -> 56 -> 17 -> 22 -> 24 -> 61 -> 24 -> 82 -> 70 -> 82 -> 24 -> 22 -> 47 -> 56 -> 26 -> 47 -> 9 -> 22 -> 54 -> 9 -> 26 -> 29 -> 53 -> 29 -> 26 -> 29 ->
Tag 1: 0 -> 93 -> 35 -> 93 -> 4 -> 0 -> 58 -> 98 -> 45 -> 98 -> 10 -> 45 -> 93 -> 35 -> 98 -> 93 -> 58 -> 45 -> 42 -> 67 -> 42 -> 5 -> 86 -> 41 -> 86 -> 77 -> 67 -> 41 -> 90 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 2 -> 72 -> 2 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 19 -> 39 -> 60 -> 39 -> 83 -> 28 -> 30 -> 28 -> 31 -> 28 -> 82 -> 31 -> 82 -> 28 -> 25 -> 48 -> 10 -> 4 -> 44 -> 60 -> 61 -> 60 -> 59 -> 62 -> 54 -> 17 -> 9 -> 56 -> 9 -> 17 -> 56 -> 17 -> 22 -> 24 -> 61 ->
Tag 1: 0 -> 93 -> 35 -> 93 -> 4 -> 0 -> 58 -> 98 -> 45 -> 98 -> 10 -> 45 -> 93 -> 35 -> 98 -> 93 -> 58 -> 45 -> 42 -> 67 -> 42 -> 5 -> 86 -> 41 -> 86 -> 77 -> 67 -> 41 -> 90 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 2 -> 72 -> 2 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 19 -> 39 -> 60 -> 39 -> 83 -> 28 -> 30 -> 28 -> 31 -> 28 -> 82 -> 31 -> 82 -> 28 -> 83 -> 83 -> 33 -> 83 -> 39 -> 30 -> 33 -> 60 -> 33 -> 60 -> 59 -> 62 -> 54 -> 17 -> 9 -> 56 -> 9 -> 17 -> 56 -> 17 -> 22 -> 24 -> 61 -> 24 -> 82 -> 70 -> 82 -> 24 -> 22 -> 47 -> 56 -> 26 -> 47 -> 9 -> 22 -> 54 -> 9 -> 17 -> 56 -> 17 -> 22 -> 24 -> 61 -> 24 -> 82 -> 70 -> 82 -> 24 -> 22 -> 47 -> 56 -> 26 -> 47 -> 9 -> 22 -> 54 -> 9 -> 13 -> 29 -> 26 -> 29 -> 57 -> 92 -> 79 -> 57 -> 79 -> 57 -> 53 -> 95 -> 53 -> 80 -> 65 -> 51 -> 81 -> 65 -> 80 -> 64 -> 63 -> 80 -> 76 -> 63 -> 80 -> 65 -> 81 -> 76 -> 80 -> 16 -> 92 -> 74 -> 16 -> 89 -> 96 -> 89 -> 40 -> 89 -> 85 -> 85 -> 85 -> 12 -> 12 -> 50 -> 75 -> 75 -> 75 -> 75 -> 75 -> 76 -> 77
Tag 1: 0 -> 93 -> 35 -> 93 -> 4 -> 0 -> 58 -> 98 -> 45 -> 98 -> 10 -> 45 -> 93 -> 35 -> 98 -> 93 -> 58 -> 45 -> 42 -> 67 -> 42 -> 5 -> 86 -> 41 -> 86 -> 77 -> 67 -> 41 -> 90 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 12 -> 28 -> 28 -> 31 -> 82 -> 28
Tag 1: 0 -> 93 -> 35 -> 93 -> 4 -> 9 -> 58 -> 98 -> 41 -> 90 -> 41 -> 90 -> 41 -> 93 -> 72 -> 12 -> 95 -> 95 -> 95 -> 41 -> 96 -> 41 -> 90 -> 90
Tag 1: 0 -> 93 -> 35 -> 93 -> 3 -> 4 -> 0 -> 58 -> 98 -> 14 -> 42 -> 67 -> 42 -> 5 -> 86 -> 47 -> 42 -> 5 -> 86 -> 47 -> 41 -> 96 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 2 -> 72 -> 2 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 13 -> 5 -> 2 -> 5 -> 67 -> 77 -> 84 -> 13 -> 96 -> 41 -> 42 -> 86 -> 72 -> 13 -> 77 -> 84 -> 2 -> 84 -> 2 -> 84 -> 13 -> 4 -> 44 -> 60 -> 60 -> 33 -> 33 -> 38 -> 28 -> 30 -> 28 -> 31 -> 28 -> 21 -> 22 -> 24 -> 22 -> 42 -> 42 -> 4
Tag 1: 6 - 93 - 35 - 93 - 4 - 9 - 58 - 98 - 45 - 98 - 45 - 98 - 10 - 45 - 93 - 35 - 98 - 93 - 58 - 44 - 2 - 77 - 2 - 2 - 78 - 2 - 78 - 13 - 77 - 84 - 13 - 77 - 84 - 19 - 39 - 86 - 39 - 88 - 28 - 30 - 28 - 31 - 78 - 81 - 28 - 22 - 29 - 28 - 23 - 33 - 33 - 38 - 39 - 39 - 38 - 28 - 39 - 28 - 30 - 28 - 31 - 28 - 98 - 21 - 28 - 22 - 24 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 22 - 24 - 2
Top 1: 0 → 93 → 53 → 93 → 4 → 80 → 56 → 98 → 56 → 98 → 10 → 45 → 93 → 35 → 98 → 93 → 56 → 44 → 57 → 57 → 13 → 77 → 13 → 13
Top (1: 9 → 39 → 39 → 39 → 30 → 4 → 90 → 50 → 50 → 50 → 30 → 10 → 45 → 30 → 30 → 50 → 45 → 47 → 47 → 47 → 47 → 47 → 47 → 47
Tag 1: 0 - 9 Ta
Tag 1 Co March Co March Co March Co March
Total Tota
Top 1 = 7 00 - 20 - 20 - 20 - 20 - 20 - 20 - 20
Top 15 C 10 3 20 1 30 1 40 1 4 C 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The first of the f
15 - 15 - 15 - 15 - 15 - 15 - 15 - 1
The 1 file of State Country of State Cou

<pre>Parameters path : str The path to the bwinf file. """ with open(path, 'r') as f: lines = f.read().split('\n') n, m = map(int, lines[0].split()) return cls(list(range(n)), [(int(v), int(u), float(length)) for v, u, length in [line.split() for line in lines[1: m + 1]]])</pre>
<pre>definit(self, vertices: List[int], edges: List[Tuple[int, int, float]]): self.vertices = {v: {} for v in vertices} self.edgeset = set() for edge in edges: v, u, len_ = edge self.edgeset.add(frozenset((v, u))) self.vertices[v][u] = len_ self.vertices[u][v] = len_ def w_tour(self, tour: Tuple[int,]) -> float: return sum(self.vertices[tour[i]][tour[i+1]] for i in range(len(tour)-1))</pre>
<pre>def is_connected(self) -> bool: unseen = set(self.vertices.keys()) q = deque((0,)) while q: current = q.popleft() if current not in unseen: continue unseen.remove(current) for next_ in self.vertices[current]: q.append(next_) return not unseen def get_paths(self, days: int = 5) -> List[Tuple[float, Tuple[int,]]]: return map(lambda x: (self.w_tour(x), x), MMKCPP_TEE_TabuSearch(self.vertices, days, 100, 600))</pre>
<pre># repl while True: pth = join(dirname(file),</pre>
from collections import Counter, deque from functools import reduce from operator import add from random import random from time import time from typing import Dict, List, Tuple, Iterable, Callable from utility import TabuList def MMKCPP_TEE_TabuSearch(G: Dict[int, Dict[int, float]], k: int = 5, maxNOfItsWithoutImprovement: int = 100,
Parameters G: Dict[int, Dict[int, float]] The undirected, non-windy weighted graph to operate on. k: int, default=5 Number of Vehicles. maxNOfItsWithoutImprovement: int, default=100 Maximum number of iterations without improvement to stop early. maxRunningTime: float, optional The maximum running time to stop early (seconds). tabuTenure: int, default=20 The number of iterations to 'tabu' a neighbor. Returns
List[List[int]] An optimized List of k paths """ # precompute shortest paths O(V 2) dijkstra = {k: {} for k in G} # shallowcopy doesnt work for start in dijkstra: q = deque((0, start, []),)) while q: length, current, currentpath = q.popleft() if current in dijkstra[start]: continue dijkstra[start][current] = (length, tuple(currentpath[1:])) for next_, weight in G[current].items():
<pre>return sum(G[tour[i]][tour[i+1]] for i in range(len(tour)-1)) def w_max_tours(tours: Iterable[Tuple[int,]]) -> float: return max(w_tour(tour) for tour in tours) def edgecount_tour(tour: Tuple[int,]) -> Counter: # return Counter(frozenset(x) for x in edges(tour)) def edgecount_tours(tours: List[Tuple[int,]]) -> Counter: # return reduce(add, (edgecount_tour(tour) for tour in tours)) def MergeWalkWithTour(tour: Tuple[int,], walk: Tuple[int,]) -> Tuple[int,]: # # remove edges from walk that are already in tour if len(walk) == 1: return tour</pre>
<pre>walk = list(walk) tour_edges = edges(tour) if not tour_edges: return ((0,) if walk[0] != 0 else ())+dijkstra[0][walk[0]][1]+tuple(walk)+dijkstra[walk[-1]][0][1]+((0,) if walk[-1] != 0 else ()) while tour_edges: if frozenset((walk[0], walk[1])) in tour_edges: del walk[0] if len(walk) == 1: return tour else: break while tour_edges: if frozenset((walk[-1], walk[-2])) in tour_edges: del walk[-1] if len(walk) == 1:</pre>
return tour else: break walk = tuple(walk) # find node `t` closest to `u` and `v`, the end nodes of `walk` min_idx = None min_distance = 999999 min_sp_v = min_sp_u = None for i, node in enumerate(tour): sp_u = dijkstra[node][walk[0]] sp_v = dijkstra[walk[-1]][node] if sp_u[0]+sp_v[0] < min_distance: min_distance = sp_v[0]+sp_u[0] min_idx = i
<pre>min_sp_u = sp_u[1] min_sp_v = sp_v[1] # splice return tour[:min_idx+(1 if tour[min_idx] != walk[0] else 0)]+min_sp_u+walk+min_sp_v+tour[min_idx+(1 if tour[min_idx] == walk[-1] else 0):] # basically shortenPath def SeparateWalkFromTour(tour: Tuple[int,], walk: Tuple[int,]) -> Tuple[int,]: # assuming walk is a subsegment of tour u, v, = walk[0], walk[-1] # better lr if finding for i in range(len(tour)-2): if walk == tour[i:][:3]: li = i</pre>
<pre>ri = i+2 break return tour[:li+(1 if u != v else 0)]+dijkstra[u][v][1]+tour[ri:] def ReorderToClosedWalk(edgeset: List[set]) -> Tuple[int,]: newtour = [0] # depot node while edgeset: stop = True for edge in edgeset: if newtour[-1] in edge: edge.remove(newtour[-1]) newtour.append(edge.pop()) edgeset.remove(edge)</pre>
<pre>stop = False if stop: break while edgeset: # find walks and append them to the main path walk = list(edgeset.pop()) while True: stop = True for edge in edgeset: if newtour[-1] in edge: edge.remove(walk[-1]) walk.append(edge.pop()) edgeset.remove(edge) stop = False if stop: break newtour = list(MergeWalkWithTour(tuple(newtour), tuple(walk)))</pre>
<pre>return tuple(newtour) def RemoveEvenRedundantEdges(tour: Tuple[int,], tours: List[Tuple[int,]]) -> Tuple[int,]: edgeset = list(edges(tour)) for edge in map(frozenset, edgeset): ects = edgecount_tours(tours)[edge] ect = edgecount_tour(tour)[edge] if ects > ect and ect % 2 == 0: # check if tour remains connected to node 0 when removing edge 2x nodes = set(0,)) remaining = set(map(frozenset, edges(tour))) remaining.discard(edge) if ect > 2: remaining.clear() # skip to else if no connection is in danger while remaining:</pre>
<pre>to_remove = None for edge_ in remaining: if nodes.intersection(edge_): nodes.update(edge_) to_remove = edge_ stop = False break if to_remove: remaining.remove(to_remove) if stop: break else: # remove 2 edges edgeset.remove(edge) edgeset.remove(edge) return ReorderToClosedWalk(edgeset)</pre>
<pre># first make a starting solution # all edges in graph + dijkstra between odd connections edges_ = list(map(set, list(set(frozenset((start, end)) for start in G for end in G[start])))) odd = [k for k, v in G.items() if len(v) % 2] for _ in range(0, len(odd), 2): odd1 = odd.pop() odd2 = odd.pop() edges_ += list(map(set, edges((odd1,)+dijkstra[odd1][odd2][1]+(odd2,)))) singlePath = ReorderToClosedWalk(edges_) bestSolution = [singlePath]+[(0,)]*(k-1) currentSolution = bestSolution bestSolutionValue = w_max_tours(bestSolution) guegoptSolutionValue = w_max_tours(bestSolution)</pre>
<pre>currentSolutionValue = w_max_tours(bestSolution) nOfItsWithoutImprovement = 0 tabuList = TabuList(tabuTenure) allEdgesCnt = len(set.union(set(map(frozenset, edges(bestSolution))))) if maxRunningTime: startTime = time() while (nOfItsWithoutImprovement < maxNOfItsWithoutImprovement and not (maxRunningTime and time() > startTime + maxRunningTime)): nOfItsWithoutImprovement += 1 tabuList.tick()</pre>
<pre>neighborhood: List[Tuple[Tuple[int]]] = [] # compute neighborhood current_max_tour = max(currentSolution, key=w_tour) current_max_tour_idx = currentSolution.index(current_max_tour) for i in range(len(current_max_tour)-2): semilocal_tours = currentSolution.copy() walk = current_max_tour[i:i+3] # 3 nodes, 2 edges semilocal_tours[current_max_tour_idx] = SeparateWalkFromTour(current_max_tour, walk) semilocal_tours[current_max_tour_idx] = RemoveEvenRedundantEdges(semilocal_tours[current_max_tour_idx], semilocal_tours) for other_tour_idx in range(k): if other_tour_idx == current_max_tour_idx or random() <= dropout:</pre>
<pre>continue local_tours = semilocal_tours.copy() other_tour = local_tours[other_tour_idx] local_tours[other_tour_idx] = MergeWalkWithTour(other_tour, walk) local_tours[other_tour_idx] = RemoveEvenRedundantEdges(local_tours[other_tour_idx], local_tours) neighborhood.append(tuple(local_tours)) # filter tabu, reduce max length try: currentSolution = min(filter(lambda x: not tabuList.get(x), neighborhood), key=lambda x: (w_max_tours(x), random())) except ValueError: # no non-tabu neighbors, were done return bestSolution</pre>
tabulist.add(currentSolution) currentSolution = list(currentSolution) currentSolutionValue = w_max_tours(currentSolution) if currentSolutionValue < bestSolutionValue: print('.', end='') nOfItsWithoutImprovement = 0 bestSolutionValue = currentSolutionValue bestSolution = currentSolution dropout = dropout_fn(dropout) print() return bestSolution

"""A class representing the city graph."""
vertices: Mapping[int, Mapping[int, float]]
edgeset: Set[FrozenSet[int]]

@classmethod
def _from_bwinf_file(cls, path: str) -> 'CityGraph':
 """

Load the CityGraph from an bwinf example file.

{vertex_id: {connected_vertex_id: distance}, ...}
{{vertex_id, vertex_id}, {vertex_id, vertex_id}, ...}