Inteligencia Artificial 13 de Septiembre, 2013 Grado de Ingeniería Informática - Ingeniería del Software Examen Final - Segunda Parte

| Apellidos: |
 | |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| $\mathbf{Nombre}:$ |
 | |

Sólo se corregirán los ejercicios escritos a bolígrafo azul o bolígrafo negro

Ejercicio 1. La siguiente tabla muestra el conjunto de entrenamiento D con tres atributos binarios

Ej.	ATR_1	Atr_2	Atr ₃	Clasif.
Ej_1	0	0	1	0
Ej_2	1	0	1	1
Ej ₃	0	0	0	0
Ej ₄	1	1	0	1
Ej ₅	0	1	1	0
Ej ₆	1	1	1	1

Considera la instancia I = (1, 0, 0).

- (a) [1 punto] Consideremos un perceptrón con pesos $\vec{w} = (w_0, w_1, w_2, w_3)$, $w_0 = 0.2$, $w_1 = 0.1$, $w_2 = 0.4$ y $w_3 = 0.2$, la función sigmoide como función de activación, el conjunto de entrenamiento D y un factor de aprendizaje $\eta = 0.3$. Devolver el valor del peso w_3 tras una actualización usando la Regla Delta. Nota: Se piden los cálculos necesarios para obtener la primera actualización de w_3 . Los cálculos para la actualización del resto de los pesos no hace falta especificarlos.
- (b) [1 punto] Aplica el algoritmo ID3 para construir un árbol de decisión y usar dicho árbol para clasificar la instancia *I*.

Para facilitar los cálculos, puede usarse la siguiente tabla de entropías

Tabla de Entropías Ent(X, Y)

		Y									
		0	1	2	3	4	5	6	7	8	9
\overline{X}	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.000	1.000	0.918	0.811	0.722	0.650	0.592	0.544	0.503	0.469
	2	0.000	0.918	1.000	0.971	0.918	0.863	0.811	0.764	0.722	0.684
	3	0.000	0.811	0.971	1.000	0.985	0.954	0.918	0.881	0.845	0.811
	4	0.000	0.722	0.918	0.985	1.000	0.991	0.971	0.946	0.918	0.890
	5	0.000	0.650	0.863	0.954	0.991	1.000	0.994	0.980	0.961	0.940
	6	0.000	0.592	0.811	0.918	0.971	0.994	1.000	0.996	0.985	0.971
	7	0.000	0.544	0.764	0.881	0.946	0.980	0.996	1.000	0.997	0.989
	8	0.000	0.503	0.722	0.845	0.918	0.961	0.985	0.997	1.000	0.998
	9	0.000	0.469	0.684	0.811	0.890	0.940	0.971	0.989	0.998	1.000

Ejercicio 2. [1 punto] Construye el árbol de resolución SLD correspondiente al objetivo p(H,f(f(a)),f(f(a))) y la Base de Conocimiento

H1: p(a,X,X)

R1: $p(X,Y,Z) \rightarrow p(f(Y),X,f(Z))$

devolviendo **explícitamemte** la(s) respuesta(s) obtenida(s). **Nota:** a es una constante y H, X, Y, Z son variables.

Cuestión 1. [1 punto] Considera la siguiente red bayesiana

Utiliza el argumento de la d-separación para responder a la siguiente pregunta: ¿A y C son condicionalmente independientes dado $\{B,E\}$?

Cuestión 2. [1 punto] Según el teorema de Minsky y Papert de 1969 sobre la convergencia del algoritmo de entrenamiento del perceptrón con umbral, dicho algoritmo converge en un número finito de pasos a un vector de pesos que clasifica correctamente todos los ejemplos de entrenamiento, siempre que se verifiquen dos condiciones. ¿Cuáles son esas dos condiciones?