Nichtlineare Ausgleichsprobleme

Karl Westphal, Hugalf Bernburg, Christoph Staudt

16. Mai 2017

1 Das Problem

Sowohl das Gauß-Newton Verfahren als auch das Levenberg-Marquardt Verfahren behandeln die numerische Lösung des Quadratmittelproblems:

$$\min_{\beta} \left[\frac{1}{2} ||\vec{y} - F(x, \beta)||_{2}^{2} \right] \text{ mit } F(x, \beta) = \begin{pmatrix} f(x_{1_{1}}, ..., x_{1_{l}}, \beta_{1}, ..., \beta_{m}) \\ ... \\ f(x_{n_{1}}, ..., x_{n_{l}}, \beta_{1}, ..., \beta_{m}) \end{pmatrix}, \vec{y} \in \mathbb{R}^{n}, \vec{\beta} \in \mathbb{R}^{m}.$$

Im Kontext einer Ausgleichungsrechnung, $(x_{i_1},...,x_{i_l})$ die Stellgrößen, \vec{y} der Vektor der Messwerte, $\vec{\beta}$ der Parametervektor und $F: \mathbb{R}^m \to \mathbb{R}^n$ die nach $\vec{\beta}$ zu optimierende Funktion darstellen. Eine häufige Anwendung des Verfahrens ist die Approximation einer Kurve, die nur durch verrauschte Daten erahnt werden kann. Grundlage ist jedoch, dass man schon Eigenschaften der Funktion kennt, nur nicht deren Parameter.

2 Das Gauß-Newton Verfahren

Einleitung Das Gauß-Newton-Verfahren (nach Carl Friedrich Gauß und Isaac Newton) kann als Erweiterung des schon bekannten Newton-Verfahrens betrachtet werden. Es führt ein nichtlineares Ausgleichsproblem auf eine Abfolge linearer Ausgleichsprobleme zurück.

Das Vorgehen

• Aufstellen der Residuumsfunktion $\vec{r} = (\vec{F} - \vec{y}), \vec{r} : \mathbb{R}^m \to \mathbb{R}^n, m \le n$ • Linearisierung des Residuums $r(\beta) \approx r(\beta^k) + J_r(\beta^k)(\beta - \beta^k)), \beta \in \mathbb{R}^m$ • Lösung des linearen Ausgleichsproblems $\|(A\vec{x} - \vec{b})\| \to min! \Leftrightarrow A^t A \vec{x} = A^t \vec{b}$ • Iteration $\beta^{k+1} = \beta^k - J_r^+(\beta^k)r(\beta^k)$

3 Das Levenberg-Marquardt Verfahren

Einleitung Das LM-Verfahren ist wie das GN-Verfahren ein Optimierungsverfahren, das Iterativ arbeitet.

LM als Trust-Region-Verfahren Wie Jedes Iterationsverfahren benötigen wir einen Startwert β_0 Hier benötigen wir noch eine Angabe über die zu vertrauende Region, also allgemein wird eine Kugel um β_0 mit Radius r als vertrauens-Bereich gewählt. Nun wird unsere Funktion $g(\beta) = \frac{1}{2}||y - F(x, \beta)||_2^2$ approximiert mithilfe eines Modells

$$m_k(p) = g(\beta^k) + grad_{\beta}(\beta^k)^T p + \frac{1}{2} p^T B(\beta^k) p$$
 (1)

Hierbei ist $B(\beta^k)$ die Hessematrix von g oder eine Approximation eben dieser z.B. J^TJ .

Nun suchen wir das Minimum des Modells unter der Nebenbedingung, dass wir in der Vertrauensregion bleiben.

Tabelle 1: Pro und Cons des LM-Verfahren

Vorteile	Nachteile
Sichere Konvergenz in einem lokalem	Bei weiter Entfernung zum Minimum
Minimum	nur langsames Nähern
Wenn $x^{(k)}$ nah am Minimum, dann ver-	Bei nicht erfolgreichen Schritten kein
hält sich LM wie Gauss-Newton	Fortschritt
Verfahren funktioniert auch falls J kei-	
nen Vollen Spaltenrang hat	
Es werden keine zu großen schritte ge-	
macht, die zu anderen Minima trotz gu-	
ter Startwerte führen	

Literatur

 $[1]\,$ Martin Hermann. Numerische Mathematik -. Walter de Gruyter, Berlin, 2011.