ChernyshovDS 29112024-142311

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.74f_{\rm B}$:

```
s_{11} = -0.177 + 0.158і. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 91 Om
- 2) 36 O_M
- 3) 42 O_M
- 4) 69 Om

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте $4.1~\Gamma\Gamma$ ц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.66 + 0.75i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 27.2 cm
- 2) 88.5 cm
- 3) 117.5 см
- 4) 10.7 cm

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=17~{\rm Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\text{\tiny H}}=2$ ГГц и $f_{\text{\tiny B}}=2.8$ ГГц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\text{\tiny H}}$ и $f_{\text{\tiny B}}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.25 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\text{\tiny H}}, f_{\text{\tiny B}}]$?

Варианты ОТВЕТА:

- 1) 0.3 дБ
- 2) 0.7 дБ
- 3) 1.1 дБ
- 4) 0.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 2 на частоте 2.6 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T больше 20 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.305 мм и с волновым сопротивлением 23 Ом;
- 2 толщиной 0.508 мм и с волновым сопротивлением 48 Ом;
- 3 толщиной 0.406 мм и с волновым сопротивлением 24 Ом;
- 4 толщиной 0.203 мм и с волновым сопротивлением 19 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4