### **Integrals**

### Question1

If  $\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$ , where a, b, c are rational numbers, then 2a + 3b - 4c is equal to :

### [27-Jan-2024 Shift 1]

**Options:** 

A.

4

В.

10

C.

7

D.

8

Answer: D

#### **Solution:**

$$\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = \int_{0}^{1} \frac{\sqrt{3+x} - \sqrt{1+x}}{(3+x) - (1+x)} dx$$

$$\frac{1}{2} \left[ \int_{0}^{1} \sqrt{3+x} \, dx - \int_{0}^{1} (\sqrt{1+x}) \, dx \right]$$

$$\frac{1}{2} \left[ 2 \frac{(3+x)^{\frac{3}{2}}}{3} - \frac{2(1+x)^{\frac{3}{2}}}{3} \right]_{0}^{1}$$

$$\frac{1}{2} \left[ \frac{2}{3} (8 - 3\sqrt{3}) - \frac{2}{3} \left( 2^{\frac{3}{2}} - 1 \right) \right]$$

$$\frac{1}{3}[8-3\sqrt{3}-2\sqrt{2}+1]$$

$$= 3 - \sqrt{3} - \frac{2}{3}\sqrt{2} = a + b\sqrt{2} + c\sqrt{3}$$

$$a=3, b=-\frac{2}{3}, c=-1$$

$$2a + 3b - 4c = 6 - 2 + 4 = 8$$

-----

### Question2

If (a, b) be the orthocentre of the triangle whose vertices are (1, 2), (2, 3) and (3, 1), and

 $I_1=\int\limits_a^bxsin~(4x-x^2)\,dx,~I_2=\int\limits_a^bsin~(4x-x^2)\,dx$  , then 36  $\frac{I_1}{I_2}$  is equal to :

### [27-Jan-2024 Shift 1]

**Options:** 

A.

72

B.

88

C.

80

D.

66

Answer: A

### **Solution:**

Equation of CE

$$y-1 = -(x-3)$$

$$x + y = 4$$



orthocentre lies on the line x + y = 4

so, 
$$a + b = 4$$

$$I_1 = \int_a^b x sin(x(4-x)) dx$$
 .....(i)

Using king rule

$$I_1 = \int_a^h (4 - x) sin(x(4 - x)) dx$$
 .....(ii)

$$2I_1 = \int_a^b 4\sin(x(4-x)) dx$$

$$2I_1 = 4I_2$$

$$I_1 = 2I_2$$

$$\frac{I_1}{I_2} = 2$$

$$\frac{36I_1}{I_2} = 72$$

For 0 < a < 1, the value of the integral  $\int_{0}^{\pi} \frac{dx}{1 - 2a\cos x + a^2}$  is :

### [27-Jan-2024 Shift 2]

#### **Options:**

A.

$$\frac{\pi^2}{\pi + a^2}$$

B.

$$\frac{\pi^2}{\pi - a^2}$$

C

$$\frac{\pi}{1-a^2}$$

D.

$$\frac{\pi}{1+a^2}$$

Answer: C

$$I = \int_{0}^{\pi} \frac{dx}{1 - 2a\cos x + a^{2}}; \ 0 \le a \le 1$$

$$I = \int_{0}^{\pi} \frac{dx}{1 + 2a\cos x + a^2}$$

$$2I = 2 \int_{0}^{\pi/2} \frac{2(1+a^2)}{(1+a^2)^2 - 4a^2 \cos^2 x} dx$$

$$\Rightarrow I = \int_{0}^{\pi/2} \frac{2(1+a^{2}) \cdot sec^{2}x}{(1+a^{2})^{2} \cdot sec^{2}x - 4a^{2}} dx$$

$$\Rightarrow I = \int_{0}^{\pi/2} \frac{2 \cdot (1 + a^{2}) \cdot sec^{2}x}{(1 + a^{2})^{2} \cdot tan^{2}x + (1 - a^{2})^{2}} dx$$

$$\Rightarrow I = \int_{0}^{\pi/2} \frac{\frac{2 \cdot sec^{2}x}{1+a^{2}} \cdot dx}{tan^{2}x + \left(\frac{1-a^{2}}{1+a^{2}}\right)^{2}}$$

$$\Rightarrow I = \frac{2}{(1-a^2)} \left[ \frac{\pi}{2} - 0 \right]$$

$$I = \frac{\pi}{1 - a^2}$$

The integral  $\int \frac{(x^8-x^2)\,\mathrm{d}x}{(x^{12}+3x^6+1)\mathrm{tan}^{-1}\left(x^3+\frac{1}{x^3}\right)}$  is equal to :

### [27-Jan-2024 Shift 2]

#### **Options:**

A.

$$\log_e\left(\left|\tan^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^{1/3}+C$$

B.

$$\log_e\left(\left|\tan^{-1}\left(x^3+\frac{1}{r^3}\right)\right|\right)^{1/2}+C$$

C.

$$\log_e\left(\left|\tan^{-1}\left(x^3+\frac{1}{r^3}\right)\right|\right)+C$$

D.

$$\log_e \left( \left| \tan^{-1} \left( x^3 + \frac{1}{x^3} \right) \right| \right)^3 + C$$

Answer: A

#### **Solution:**

$$I = \int \frac{x^8 - x^2}{(x^{12} + 3x^6 + 1)\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)} dx$$

Let 
$$\tan^{-1}\left(\mathbf{x}^3 + \frac{1}{\mathbf{x}^3}\right) = t$$

$$\Rightarrow \frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \cdot \left(3x^2 - \frac{3}{x^4}\right) dx = dt$$

$$\Rightarrow \frac{x^6}{x^{12} + 3x^6 + 1} \cdot \frac{3x^6 - 3}{x^4} \, dx = dt$$

$$I = \frac{1}{3} \int \frac{dt}{t} = \frac{1}{3} \ln \left| t \right| + C$$

$$I = \frac{1}{3} \ln \left| \tan^{-1} \left( x^3 + \frac{1}{x^3} \right) \right| + C$$

$$I = \ln \left| \tan^{-1} \left( x^3 + \frac{1}{x^3} \right) \right|^{1/3} + C$$

Hence option (1) is correct

For 
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
,

if 
$$y(x) = \int \frac{\csc x + \sin x}{\csc x \sec x + \tan x \sin^2 x} dx$$

and 
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} y(x) = 0$$
 then  $y\left(\frac{\pi}{4}\right)$  is equal to

### [29-Jan-2024 Shift 1]

#### **Options:**

A.

$$\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

B.

$$\frac{1}{2} \tan^{-1} \left( \frac{1}{\sqrt{2}} \right)$$

C.

$$-\frac{1}{\sqrt{2}}tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

D.

$$\frac{1}{\sqrt{2}}tan^{-1}\Big(-\frac{1}{2}\Big)$$

Answer: D

### **Solution:**

$$y(x) = \int \frac{(1 + \sin^2 x) \cos x}{1 + \sin^4 x} dx$$

Put sin x = t

$$= \int \frac{1+t^2}{t^4+1} dt = \frac{1}{\sqrt{2}} tan^{-1} \frac{\left(t-\frac{1}{t}\right)}{\sqrt{2}} + C$$

$$\mathbf{x} = \frac{\pi}{2}, \, \mathbf{t} = 1 \quad \therefore \, \mathbf{C} = 0$$

$$y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}tan^{-1}\left(-\frac{1}{2}\right)$$

\_\_\_\_\_\_

If 
$$\int \frac{\sin^{\frac{3}{2}}x + \cos^{\frac{3}{2}}x}{\sqrt{\sin^{3}x\cos^{3}x\sin(x-\theta)}} dx = A\sqrt{\cos\theta\tan x - \sin\theta} + B\sqrt{\cos\theta - \sin\theta\cot x} + C,$$

where C is the integration constant, then AB is equal to

### [29-Jan-2024 Shift 2]

#### **Options:**

A.

 $4 \csc(2\theta)$ 

B.

 $4\;sec\theta$ 

C.

 $2 \sec \theta$ 

D.

 $8 \csc(2\theta)$ 

Answer: D

#### **Solution:**

### **Question7**

Let  $f(x) = \int_{0}^{x} g(t) \log_{e} \left( \frac{1-t}{1+t} \right) dt$ , where g is a continuous odd function.

If 
$$\int_{-\pi/2}^{\pi/2} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left( \frac{\pi}{\alpha} \right)^2 - \alpha$$
, then  $\alpha$  is equal to..............

#### [27-Jan-2024 Shift 2]

**Options:** 

Answer: 2

**Solution:** 

$$f(x) = \int_{0}^{x} g(t) \ln\left(\frac{1-t}{1+t}\right) dt$$

$$f(-x) = \int_{0}^{-x} g(t) \ln\left(\frac{1-t}{1+t}\right) dt$$

$$f(-x) = -\int_{0}^{x} g(-y) \ln\left(\frac{1+y}{1-y}\right) dy$$

$$= -\int_{0}^{x} g(y) \ln\left(\frac{1-y}{1+y}\right) dy \text{ (g is odd)}$$

$$f(-x) = -f(x) \Rightarrow f$$
 is also odd

Now,

$$I = \int_{-\pi/2}^{\pi/2} \left( f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx \dots (1)$$

$$I = \int_{-\pi/2}^{\pi/2} \left( f(-x) + \frac{x^2 e^x \cos x}{1 + e^x} \right) dx \dots (2)$$

$$2I = \int_{-\pi/2}^{\pi/2} x^2 \cos x \, dx = 2 \int_{0}^{\pi/2} x^2 \cos x \, dx$$

$$I = (x^2 \sin x)_0^{\pi/2} - \int_0^{\pi/2} 2x \sin x \, dx$$

$$= \frac{\pi^2}{4} - 2(-x\cos x + \int \cos x \, dx)_0^{\pi/2}$$

$$= \frac{\pi^2}{4} - 2(0+1) = \frac{\pi^2}{4} - 2 \Rightarrow \left(\frac{\pi}{2}\right)^2 - 2$$

$$\alpha = 2$$

\_\_\_\_\_

### **Question8**

If the value of the integral

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin x^{2023}}} \right) dx = \frac{\pi}{4} (\pi + a) - 2,$$

then the value of a is

[29-Jan-2024 Shift 1]

**Options:** 

A.

3

В.

$$-\frac{3}{2}$$

C.

2

D.

3/2

Answer: A

#### **Solution:**

$$I = \int_{-\pi/2}^{\pi/2} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin x^{2023}}} \right) dx$$

$$I = \int_{-\pi/2}^{\pi/2} \left( \frac{x^2 \cos x}{1 + \pi^{-x}} + \frac{1 + \sin^2 x}{1 + e^{\sin(-x)^{2023}}} \right) dx$$

On Adding, we get

$$2I = \int_{-\pi/2}^{\pi/2} (x^2 \cos x + 1 + \sin^2 x) \, dx$$

On solving

$$I = \frac{\pi^2}{4} + \frac{3\pi}{4} - 2$$

a = 3

\_\_\_\_\_\_

### **Question9**

If  $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2x} \, dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3}$ , where  $\alpha, \beta$  and  $\gamma$  are rational numbers, then  $3\alpha + 4\beta - \gamma$  is equal to\_\_\_\_

[29-Jan-2024 Shift 2]

Answer: 6

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2x} \, dx$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} |\sin x - \cos x| \, dx$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sin x - \cos x) \, dx$$

$$= -1 + 2\sqrt{2} - \sqrt{3}$$

$$= \alpha + \beta\sqrt{2} + \gamma\sqrt{3}$$

$$\alpha = -1, \beta = 2, \gamma = -1$$

$$3\alpha + 4\beta - \gamma = 6$$

The value of  $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{(n^2 + k^2)(n^2 + 3k^2)}$  is :

### [30-Jan-2024 Shift 1]

**Options:** 

A.

$$\frac{(2\sqrt{3}+3)\pi}{24}$$

B.

$$\frac{13\pi}{8(4\sqrt{3}+3)}$$

C.

$$\frac{13(2\sqrt{3}-3)\pi}{8}$$

D.

$$\frac{\pi}{8(2\sqrt{3}+3)}$$

Answer: B

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^{3}}{n^{4} \left(1 + \frac{k^{2}}{n^{2}}\right) \left(1 + \frac{3k^{2}}{n^{2}}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{n^{3}}{\left(1 + \frac{k^{2}}{n^{2}}\right) \left(1 + \frac{3k^{2}}{n^{2}}\right)}$$

$$= \int_{0}^{1} \frac{dx}{3(1 + x^{2}) \left(\frac{1}{3} + x^{2}\right)}$$

$$= \int_{0}^{1} \frac{1}{3} \times \frac{3}{2} \frac{(x^{2} + 1) - (x^{2} + \frac{1}{3})}{(1 + x^{2}) (x^{2} + \frac{1}{3})} dx$$

$$= \frac{1}{2} \int_{0}^{1} \left[\frac{1}{x^{2} + \left(\frac{1}{\sqrt{3}}\right)^{2}} - \frac{1}{1 + x^{2}}\right] dx$$

$$= \frac{1}{2} [\sqrt{3} \tan^{-1}(\sqrt{3}x)]_{0}^{1} - \frac{1}{2} (\tan^{-1}x)_{0}^{1}$$

$$= \frac{\sqrt{3}}{2} \left(\frac{\pi}{3}\right) - \frac{1}{2} \left(\frac{\pi}{4}\right) = \frac{\pi}{2\sqrt{3}} - \frac{\pi}{8}$$

$$= \frac{13\pi}{8 \cdot (4\sqrt{3} + 3)}$$

\_\_\_\_\_

### **Question11**

The value  $9\int_{0}^{9} \left[ \sqrt{\frac{10x}{x+1}} \right] dx$ , where [t] denotes the greatest integer less than or equal to t, is

### [30-Jan-2024 Shift 1]

Answer: 155

#### **Solution:**

$$\frac{10x}{x+1} = 1 \implies x = \frac{1}{9}$$
$$\frac{10x}{x+1} = 4 \implies x = \frac{2}{3}$$

$$\frac{10x}{x+1} = 9 \implies x = 9$$

$$I = 9 \left( \int_{0}^{1/9} 0 \, dx + \int_{1/9}^{2/3} 1 \cdot dx + \int_{2/3}^{9} 2 \, dx \right)$$

= 155

\_\_\_\_\_

Let y = f(x) be a thrice differentiable function in (-5, 5). Let the tangents to the curve y = f(x) at (1, f(1)) and (3, f(1)) and

[30-Jan

#### **Options:**

- A.
- -14
- B.
- 26
- C.
- -16
- D.
- 36

Answer: B

#### **Solution:**

$$y = f(x) \Rightarrow \frac{dy}{dx} = f'(x)$$

$$(\frac{dy}{dx})_{(1,f(1))} = f'(1) = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \Rightarrow f'(1) = \frac{1}{\sqrt{3}}$$

$$\frac{dy}{dx}$$
)<sub>(3, f(3))</sub> = f'(3) = tan  $\frac{\pi}{4}$  = 1  $\Rightarrow$  f'(3) = 1

$$27\int_{1}^{3} ((f'(t))^{2} + 1)f''(t) dt = \alpha + \beta\sqrt{3}$$

$$I = \int_{1}^{3} ((f'(t))^{2} + 1)f''(t) dt$$

$$f'(t) = z \Rightarrow f''(t) dt = dz$$

$$z = f'(3) = 1$$

$$z = f'(1) = \frac{1}{\sqrt{3}}$$

$$I = \int_{1/\sqrt{3}}^{1} (z^2 + 1) dz = \left(\frac{z^3}{3} + z\right)_{1/\sqrt{3}}^{1}$$

$$= \left(\begin{array}{c} \frac{1}{3} + 1 \end{array}\right) - \left(\begin{array}{c} \frac{1}{3} \cdot \frac{1}{3\sqrt{3}} + \begin{array}{c} \frac{1}{\sqrt{3}} \end{array}\right)$$

$$=\frac{4}{3}-\frac{10}{9\sqrt{3}}=\frac{4}{3}-\frac{10}{27}\sqrt{3}$$

$$\alpha + \beta \sqrt{3} = 27\left(\frac{4}{3} - \frac{10}{27}\sqrt{3}\right) = 36 - 10\sqrt{3}$$

$$\alpha = 36, \beta = -10$$

$$\alpha + \beta = 36 - 10 = 26$$

.....

Let  $f: R \to R$  be defined  $f(x) = ae^{2x} + be^{x} + cx$ . If f(0) = -1,  $f'(\log_e 2) = 21$  and  $\int_0^1 \log_e 4(f(x) - cx) dx = \frac{39}{2}$ , then the value |a + b + c| equals :

[30-Jan

#### **Options:**

A.

16

B.

10

C.

12

D.

8

Answer: D

#### **Solution:**

$$f(x) = ae^{2x} + be^{x} + cx$$

$$f(0) = -1$$

$$a + b = -1$$

$$f'(x) = 2ae^{2x} + be^{x} + c$$

$$f'(\ln 2) = 21$$

$$8a + 2b + c = 21$$

$$\int_{0}^{\ln 4} (ae^{2x} + be^{x}) dx = \frac{39}{2}$$

$$\left[\begin{array}{c} \frac{ae}{2x} + be^x \end{array}\right]_0^{\ln 4} = \frac{39}{2} \Rightarrow 8a + 4b - \frac{a}{2} - b = \frac{39}{2}$$

$$15a + 6b = 39$$

$$15a - 6a - 6 = 39$$

$$9a = 45 \Rightarrow a = 5$$

$$b = -6$$

$$c = 21 - 40 + 12 = -7$$

$$a+b+c=-8$$

$$|a+b+c|=8$$

.....

### **Question14**

Let  $S = (-1, \infty)$  and  $f : S \to \mathbb{R}$  be defined as  $f(x) = \int_{-1}^{x} (e^t - 1)^{11} (2t - 1)^5 (t - 2)^7 (t - 3)^{12} (2t - 10)^{61}$  dt Let p =Sum of squ values of x, where f(x) attains local maxima on S. and q =Sum of the values of x, where f(x) attains local mining. Then, the value of  $p^2 + 2q$  is \_\_\_\_\_

Answer: 27

#### **Solution:**



Local minima at  $x = \frac{1}{2}$ , x = 5

Local maxima at x = 0, x = 2

$$\therefore$$
p = 0 + 4 = 4, q =  $\frac{1}{2}$  + 5 =  $\frac{11}{2}$ 

Then  $p^2 + 2q = 16 + 11 = 27$ 

-----

### **Question15**

If the integral 525  $\int_{0}^{\frac{\pi}{2}} \sin 2x \cos^{\frac{11}{2}} x \left(1 + \cos^{\frac{5}{2}} x\right)^{\frac{1}{2}} dx$  is equal to  $(n\sqrt{2} - 64)$ , then n is equal to\_\_\_\_\_

[31-Jan-2024 Shift 1]

Answer: 176

$$I = \int_{0}^{\frac{\pi}{2}} \sin 2x \cdot (\cos x)^{\frac{11}{2}} \left( 1 + (\cos x)^{\frac{5}{2}} \right)^{\frac{1}{2}} dx$$

Put  $\cos x = t^2 \Rightarrow \sin x \, dx = -2t \, dt$ 

$$\therefore I = 4 \int_{0}^{1} t^{2} \cdot t^{11} \sqrt{(1+t^{5})}(t) dt$$

$$I = 4 \int_{0}^{1} t^{14} \sqrt{1 + t^{5}} dt$$

Put 
$$1 + t^5 = k^2$$

$$\Rightarrow 5t^4 dt = 2k dk$$

$$id I = 4 \cdot \int_{1}^{\sqrt{2}} (k^2 - 1)^2 \cdot k \frac{2k}{5} dk$$

$$I = \frac{8}{5} \int_{1}^{\sqrt{2}} k^6 - 2k^4 + k^2 dk$$

$$I = \frac{8}{5} \left[ \frac{k^7}{7} - \frac{2k^5}{5} + \frac{k^3}{3} \right]_1^{\sqrt{2}}$$

$$I = \frac{8}{5} \left[ \frac{8\sqrt{2}}{7} - \frac{8\sqrt{2}}{5} + \frac{2\sqrt{2}}{3} - \frac{1}{7} + \frac{2}{5} - \frac{1}{3} \right]$$

$$I = \frac{8}{5} \left[ \frac{22\sqrt{2}}{105} - \frac{8}{105} \right]$$

$$525 \cdot I = 176\sqrt{2} - 64$$

-----

## Question16

Let  $f, g: (0, \infty) \to R$  be two functions defined by  $f(x) = \int_{-x}^{x} (|t| - t^2)e^{-t^2} dt$  and  $g(x) = \int_{0}^{x} x^2 t^{1/2} e^{-t} dt$ . Then the value of  $(f(\sqrt{\log_e 9}) + g(\sqrt{\log_e 9}))$  is equal to

[31-Jan

#### **Options:**

A.

6

В.

9

C.

0

D.

10

Answer: C

$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt$$

$$\Rightarrow f'(x) = 2 \cdot (|x| - x^2)e^{-x^2} \dots (1)$$

$$g(x) = \int_{0}^{x^{2}} t^{\frac{1}{2}} e^{-t} dt$$

$$g'(x) = xe^{-x^2}(2x) - 0$$

$$f'(x) + g'(x) = 2xe^{-x^2} - 2x^2e^{-x^2} + 2x^2e^{-x^2}$$

Integrating both sides w.r.t. x

$$f(x) + g(x) = \int_0^{\alpha} 2xe^{-x^2} dx$$

$$x^2 = t$$

$$\Rightarrow \int_{0}^{\sqrt{\alpha}} e^{-t} dt = [-e^{-t}]_{0}^{\sqrt{\alpha}}$$

$$=-e^{(\log_c(9)^{-1})+1}$$

$$\Rightarrow 9(f(x) + g(x)) = (1 - \frac{1}{9})9 = 8$$

### **Question17**

$$\left| \frac{120 \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx \right| \text{ is equal to}$$

[31-Jan-2024 Shift 2]

Answer: 15

$$\int_{0}^{\pi} \frac{x^{2} \sin x \cdot \cos x}{\sin^{4} x + \cos^{4} x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\sin^{4} x + \cos^{4} x} (x^{2} - (\pi - x)^{2}) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x (2\pi x - \pi^{2})}{\sin^{4} x + \cos^{4} x}$$

$$= 2\pi \int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^{4} x + \cos^{4} x} dx - \pi^{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^{4} x + \cos^{4} x} dx$$

$$= 2\pi \cdot \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos^{4} x}{\sin^{4} x + \cos^{4} x} dx - \pi^{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos^{4} x}{\sin^{4} x + \cos^{4} x} dx$$

$$= -\frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^{4} x + \cos^{4} x} dx$$

$$= -\frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x dx}{1 - 2\sin^{2} x \times \cos^{2} x}$$

$$= -\frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x dx}{1 - 2\sin^{2} x \times \cos^{2} x}$$

$$= -\frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \cos^{2} 2x} dx$$

$$= -\frac{\pi^{2}}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \cos^{2} 2x} dx$$

Let  $\cos 2x = t$ 

\_\_\_\_\_

### **Question18**

The value of the integral  $\int_{0}^{\frac{\pi}{4}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)}$  equals :

### [1-Feb-2024 Shift 1]

**Options:** 

A.

$$\frac{\sqrt{2}\pi^2}{8}$$

B.

$$\frac{\sqrt{2}\pi^2}{16}$$

C.

$$\frac{\sqrt{2}\pi^2}{32}$$

D.

$$\frac{\sqrt{2}\pi^2}{64}$$

Answer: C

#### **Solution:**

$$\int_{0}^{\frac{\pi}{4}} \frac{x \, \mathrm{dx}}{\sin^4(2x) + \cos^4(2x)}$$

Let 2x = t then  $dx = \frac{1}{2} dt$ 

$$I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{t \, dt}{\sin^{4} t + \cos^{4} t}$$

$$I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2} - t\right) dt}{\sin^{4}\left(\frac{\pi}{2} - t\right) + \cos^{4}\left(\frac{\pi}{2} - t\right)}$$

$$I = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} dt}{\sin^{4} t + \cos^{4} t} - I$$

$$2I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} \frac{dt}{\sin^4 t + \cos^4 t}$$

$$2I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} \frac{\sec^4 t \, dt}{\tan^4 t + 1}$$

Let  $tan = y then sec^2 tdt = dy$ 

$$2I = \frac{\pi}{8} \int_{0}^{\infty} \frac{(1+y^{2})dy}{1+y^{4}}$$

$$= \frac{\pi}{16} \int_{0}^{\infty} \frac{1 + \frac{1}{y^{2}}}{y^{2} + \frac{1}{y^{2}}} dy$$

Put 
$$y - \frac{1}{v} = p$$

$$I = \frac{\pi}{16} \int_{-\infty}^{\infty} \frac{\mathrm{dp}}{\mathrm{p}^2 + (\sqrt{2})^2}$$

$$= \frac{\pi}{16\sqrt{2}} \left[ \tan^{-1} \left( \frac{p}{\sqrt{2}} \right) \right]_{-\infty}^{\infty}$$

$$I = \frac{\pi^2}{16\sqrt{2}}$$

\_\_\_\_\_

### **Question19**

If 
$$\int_{-\pi/2}^{\pi/2} \frac{8\sqrt{2}\cos x \, dx}{(1+e^{\sin x})(1+\sin^4 x)} = \alpha\pi + \beta \log_e(3+2\sqrt{2})$$
, where  $\alpha, \beta$  are integers, then  $\alpha^2 + \beta^2$  equals

[1-Feb-2024 Shift 1]

**Answer: None** 

#### **Solution:**

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{(1 + e^{\sin x})(1 + \sin^4 x)} dx \dots (1)$$

Apply king

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x(e^{\sin x})}{(1 + e^{\sin x})(1 + \sin^4 x)} dx \dots (2)$$

adding (1) & (2)

$$2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x}{1 + \sin^4 x} \, dx$$

$$I = \int_{0}^{\frac{\pi}{2}} \frac{8\sqrt{2} \cos x}{1 + \sin^{4} x} \, \mathrm{d}x,$$

sin x = t

$$I = \int_{0}^{1} \frac{8\sqrt{2}}{1+t^4} dx$$

$$I = 4\sqrt{2} \int_{0}^{1} \left( \frac{1 + \frac{1}{t^{2}}}{t^{2} + \frac{1}{t^{2}}} - \frac{1 - \frac{1}{t^{2}}}{t^{2} + \frac{1}{t^{2}}} \right) dt$$

$$I = 4\sqrt{2} \int_{0}^{1} \frac{\left(1 + \frac{1}{t^{2}}\right)}{\left(t - \frac{1}{t}\right)^{2} + 2} - \frac{\left(1 - \frac{1}{t^{2}}\right)}{\left(t + \frac{1}{t}\right)^{2} - 2} dt$$

Let 
$$t - \frac{1}{t} = z \& t + \frac{1}{t} = k$$

$$= 4\sqrt{2} \left[ \int\limits_{-\infty}^{0} \frac{dz}{z^2 + 2} - \int\limits_{\infty}^{2} \frac{dk}{k^2 - 2} \right]$$

$$=4\sqrt{2}\left[\frac{1}{\sqrt{2}}\tan^{-1}\frac{z}{\sqrt{2}}\right]_{-\infty}^{0}-\left[\frac{1}{2\sqrt{2}}\ln\left(\frac{k-\sqrt{2}}{k+\sqrt{2}}\right)\right]_{\infty}^{2}$$

$$=4\sqrt{2}\left[\begin{array}{c}\frac{\pi}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\left[\ln\frac{2-\sqrt{2}}{2+\sqrt{2}}\right]\end{array}\right]$$

$$=2\pi+2\ln(3+2\sqrt{2})$$

 $\alpha = 2$ 

 $\beta = 2$ 

\_\_\_\_\_

### Question20

The value of  $\int_{0}^{1} (2x^3 - 3x^2 - x + 1)^{\frac{1}{3}} dx$  is equal to:

[1-Feb-2024 Shift 2]

**Options:** 

A.

0

В.

1

C.

2

D.

-1

Answer: A

#### **Solution:**

$$I = \int_{0}^{1} (2x^{3} - 3x^{2} - x + 1)^{\frac{1}{3}} dx$$

Using  $\int_{0}^{2a} f(x) dx$  where f(2a-x) = -f(x)

Here 
$$f(1-x)=f(x)$$

$$\therefore I = 0$$

\_\_\_\_\_

### **Question21**

If  $\int_{0}^{\frac{\pi}{3}} \cos^4 x \, dx = a\pi + b\sqrt{3}$ , where a and b are rational numbers, then 9a + 8b is equal to :

### [1-Feb-2024 Shift 2]

#### **Options:**

A.

B.

1

C.

3

D.

3/2

Answer: A

$$\int_{0}^{\pi/3} \cos^{4}x \, dx$$

$$= \int_{0}^{\pi/3} \left( \frac{1 + \cos 2x}{2} \right)^{2} dx$$

$$= \frac{1}{4} \int_{0}^{\pi/3} (1 + 2\cos 2x + \cos^{2}2x) \, dx$$

$$= \frac{1}{4} \left[ \int_{0}^{\pi/3} dx + 2 \int_{0}^{\pi/3} \cos 2x \, dx + \int_{0}^{\pi/3} \frac{1 + \cos 4x}{2} \, dx \right]$$

$$= \frac{1}{4} \left[ \frac{\pi}{3} + (\sin 2x)_{0}^{\pi/3} + \frac{1}{2} \left( \frac{\pi}{3} \right) + \frac{1}{8} (\sin 4x)_{0}^{\pi/3} \right]$$

$$= \frac{1}{4} \left[ \frac{\pi}{3} + (\sin 2x)_{0}^{\pi/3} + \frac{1}{2} \left( \frac{\pi}{3} \right) + \frac{1}{8} (\sin 4x)_{0}^{\pi/3} \right]$$

$$= \frac{1}{4} \left[ \frac{\pi}{2} + \frac{\sqrt{3}}{2} + \frac{1}{8} \times \left( -\frac{\sqrt{3}}{2} \right) \right]$$

$$= \frac{\pi}{2} + \frac{7\sqrt{3}}{64}$$

$$\therefore a = \frac{1}{8}; b = \frac{7}{64}$$

-----

### **Question22**

 $9a + 8b = \frac{9}{8} + \frac{7}{8} = 2$ 

Let  $f:(0,\infty) \to R$  and  $F(x) = \int_{0}^{x} tf(t) dt$ . If  $F(x^2) = x^4 + x^5$ , then  $\sum_{r=1}^{12} f(r^2)$  is equal to :

[1-Feb-2024 Shift 2]

Answer: 219

$$F(x) = \int_{0}^{x} t \cdot f(t) dt$$

$$F^{1}(x) = xf(x)$$
Given  $F(x^{2}) = x^{4} + x^{5}$ , let  $x^{2} = t$ 

$$F(t) = t^{2} + t^{5/2}$$

$$F'(t) = 2t + 5/2t^{3/2}$$

$$t \cdot f(t) = 2t + 5/2t^{3/2}$$

$$f(t) = 2 + 5/2r^{1/2}$$

$$\sum_{r=1}^{12} f(r^{2}) = \sum_{r=1}^{12} 2 + \frac{5}{2}r$$

$$= 24 + 5/2 \left[ \frac{12(13)}{2} \right]$$

\_\_\_\_\_

### Question23

The value of  $\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$  is \_\_\_\_\_\_\_ [24-Jan-2023 Shift 1]

Answer: 2

=219

**Solution:** 

$$I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx \dots (1)$$

$$U \sin g \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

$$I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx \dots (2)$$

$$Adding (1)&(2)$$

$$II = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} 1 dx$$

### **Question24**

$$\int\limits_{\frac{3\sqrt{2}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^2}} \, dx \text{ is equal to}$$

[24-Jan-2023 Shift 2]

**Options:** 

A. 
$$\frac{\pi}{3}$$

B. 
$$\frac{\pi}{2}$$

C. 
$$\frac{\pi}{6}$$

**Answer: D** 

#### **Solution:**

Solution:

We have 
$$\int \frac{48}{\sqrt{9-4x^2}} dx$$

$$\frac{3\sqrt{3}}{4} \frac{48}{\sqrt{9-4x^2}} dx = \sin^{-1}\frac{x}{a} + C$$
Hence 
$$\int \frac{3\sqrt{3}}{4} \frac{48}{\sqrt{9-4x^2}} dx = \frac{48}{2} \times \left[\sin^{-1}\frac{2x}{3}\right] \frac{3\sqrt{2}}{4}$$

$$= 24 \times \left[\sin^{-1}\left(\frac{2}{3} \times \frac{3\sqrt{3}}{4}\right) - \sin^{-1}\left(\frac{2}{3} \times \frac{3\sqrt{2}}{4}\right)\right]$$

$$= 24 \times \left[\sin^{-1}\frac{\sqrt{3}}{2} - \sin^{-1}\frac{1}{\sqrt{2}}\right]$$

$$= 24 \times \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= 24 \times \frac{\pi}{12} = 2\pi$$

-----

### **Question25**

Let f be a differentiable function defined on  $\left[0, \frac{\pi}{2}\right]$  such that f(x) > 0 and

$$\mathbf{f}(\mathbf{x}) + \sum_{0}^{x} \mathbf{f}(\mathbf{t}) \sqrt{1 - (\log_{e} \mathbf{f}(\mathbf{t}))^{2}} d\mathbf{t} = \mathbf{e}, \ \forall \mathbf{x} \in \left[0, \ \frac{\pi}{2}\right].$$

Then 
$$\left(6\log_{e}f\left(\frac{\pi}{6}\right)\right)^{2}$$
 is equal to\_\_\_\_\_\_

[24-Jan-2023 Shift 2]

Answer: 27

$$f(x) + \int_{0}^{x} f(t) \sqrt{1 - (\log_{e} f(t))^{2}} dt = e$$

$$\Rightarrow f(0) = e$$

$$f'(x) + f(x) \sqrt{1 - (\ln f(x))^{2}} = 0$$

$$f(x) = y$$

$$\frac{dy}{dx} = -y \sqrt{1 - (\ln y)^{2}}$$

$$\int \frac{dy}{y \sqrt{1 - (\ln y)^{2}}} = -\int dx$$

Put 
$$\ln y = t$$

$$\int \frac{dt}{\sqrt{1-t^2}} = -x + C$$

$$\sin^{-1}t = -x + C \Rightarrow \sin^{-1}(\ln y) = -x + C$$

$$\sin^{-1}(\ln f(x)) = -x + C$$

$$f(0) = e$$

$$\Rightarrow \frac{\pi}{2} = C$$

$$\Rightarrow \sin^{-1}(\ln f(x)) = -x + \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\left(\ln f\left(\frac{\pi}{6}\right)\right) = \frac{-\pi}{6} + \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\left(\ln f\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{3}$$

$$\Rightarrow \ln f\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \text{ we need } \left(6 \times \frac{\sqrt{3}}{2}\right)^2 = 27.$$

The minimum value of the function  $f(x) = \int_0^2 e^{|x-t|} dt$  is is [25-Jan-2023 Shift 1]

**Options:** 

A. 2(e-1)

B. 2e - 1

C. 2

D. e(e-1)

Answer: A

#### **Solution:**

#### Solution:

 $f(x) = \int_{0}^{2} e^{t-x} dt = e^{-x}(e^{2} - 1)$ For 0 < x < 2  $f(x) = \int_{0}^{x} e^{x-t} dt + \int_{x}^{2} e^{t-x} dt = e^{x} + e^{2-x} - 2$ For  $x \ge 2$ 
$$\begin{split} f(x) &= \int\limits_0^2 e^{x-t} \, dt = e^{x-2} (e^2 - 1) \\ \text{For } x &\leq 0, \, f(x) \text{ is } \downarrow \text{ and } x \geq 2, \, f(x) \text{ is } \uparrow \end{split}$$
 $\therefore$  Minimum value of f(x) lies in  $x \in (0, 2)$ Applying  $A.M \ge G.M$ 

minimum value of f(x) is 2(e-1)

### **Question27**

#### The value of

$$\mathop{\text{Lim}}_{n\to\infty} \ \frac{1+2-3+4+5-6+...+(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$$

[25-Jan-2023 Shift 1]

#### **Options:**

A. 
$$\frac{\sqrt{2}+1}{2}$$

B. 
$$3(\sqrt{2}+1)$$

C. 
$$\frac{3}{2}(\sqrt{2}+1)$$

D. 
$$\frac{3}{2\sqrt{2}}$$

Answer: C

#### **Solution:**

Solution:   

$$\lim_{n \to \infty} \frac{0+3+6+9+\dots n \text{ terms}}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$$

$$\lim_{n \to \infty} \frac{3n(n-1)}{2\left(\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}\right)}$$

$$= \frac{3}{2(\sqrt{2}-1)} = \frac{3}{2}(\sqrt{2}+1)$$

### **Question28**

The integral  $16\int\limits_{1}^{2}\frac{d\,x}{x^{3}(x^{2}+2)^{2}}$  is equal to [25-Jan-2023 Shift 2]

**Options:** 

A. 
$$\frac{11}{6} + \log_e 4$$

B. 
$$\frac{11}{12} + \log_e 4$$

C. 
$$\frac{11}{12} - \log_e 4$$

D. 
$$\frac{11}{6} - \log_e 4$$

Answer: D

Solution:  

$$I = 16 \int_{1}^{2} \frac{dx}{x^{3}(x^{2} + 2)^{2}}$$

$$= 16 \int_{1}^{2} \frac{dx}{x^{3}x^{4}\left(1 + \frac{2}{x^{2}}\right)^{2}}$$
Let,  $1 + \frac{2}{x^{2}} = t \Rightarrow \frac{-4}{x^{3}}dx = dt$   

$$I = -4 \int_{3}^{2} \frac{dt}{\left(\frac{2}{t - 1}\right)^{2}t^{2}}$$

$$I = -4 \int_{3}^{2} \left(\frac{t - 1}{2}\right)^{2} \frac{dt}{t^{2}}$$

$$I = -4 \int_{3}^{2} \left(\frac{t - 1}{2}\right)^{2} \frac{dt}{t^{2}}$$

$$I = -\frac{4}{4} \int_{3}^{2} \left(1 - \frac{2}{t} + \frac{1}{t^{2}}\right) dt$$

$$I = -1 \left[t - 2\ln|t| - \frac{1}{t}\right]_{3}^{\frac{3}{2}}$$

$$I = -1 \left[\left(\frac{3}{2} - 2\ell \ln \frac{3}{2} - \frac{2}{3}\right) - \left(3 - 2\ell \ln 3 - \frac{1}{3}\right)\right]$$

$$I = -1 \left[ 2\ell n 2 - \frac{11}{6} \right]$$

$$I = \frac{11}{6} - \ell n 4$$

-----

### **Question29**

If  $\frac{3}{\frac{1}{3}} \log_e x dx = \frac{m}{n} \log_e \left(\frac{n^2}{e}\right)$ , where m and n are coprime natural numbers, then  $m^2 + n^2 - 5$  is equal to

[25-Jan-2023 Shift 2]

Answer: 20

**Solution:** 

$$\frac{3}{1} \|\ell \, nx \, dx = \frac{1}{1} (-\ell \, nx) \, dx + \frac{3}{1} (\ell \, nx) \, dx$$

$$= -[x\ell \, nx - x]_{1/3}^{-1} + [x\ell \, nx - x]_{1}^{-3}$$

$$= -\left[-1 - \left(\frac{1}{3}\ell n \, \frac{1}{3} - \frac{1}{3}\right)\right] + [3\ell n 3 - 3 - (-1)]$$

$$= \left[-\frac{2}{3} - \frac{1}{3}\ell n \, \frac{1}{3}\right] + [3\ell \ln 3 - 2]$$

$$= -\frac{4}{3} + \frac{8}{3}\ell \, nn \, 3$$

$$= \frac{4}{3}(2\ell n 3 - 1)$$

$$= \frac{4}{3} \left(\ell n \, \frac{9}{e}\right)$$

$$\therefore \, m = 4, \, n = 3$$
Now,  $m^{2} + n^{2} - 5 = 16 + 9 - 5 = 20$ 

-----

### Question30

Let [x] denote the greatest integer  $\leq$ x. Consider the function  $f(x) = \max\{x^2, 1 + [x]\}$ . Then the value of the integral  $\int_{0}^{2} f(x) dx$  is:

[29-Jan-2023 Shift 1]

**Options:** 

A. 
$$\frac{5+4\sqrt{2}}{3}$$

B. 
$$\frac{8+4\sqrt{2}}{3}$$

C. 
$$\frac{1+5\sqrt{2}}{3}$$

D. 
$$\frac{4+5\sqrt{2}}{3}$$

Answer: A

**Solution:** 

Solution:



### **Question31**

Let  $f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x$ ,  $x \in \mathbb{R}$  be a function which satisfies  $f(x) = x + \int_0^{\pi/2} \sin (x + y) f(y) dy$ .

Then (a + b) is equal to [29-Jan-2023 Shift 1]

**Options:** 

A. 
$$-\pi(\pi + 2)$$

B. 
$$-2\pi(\pi + 2)$$

C. 
$$-2\pi(\pi-2)$$

D. 
$$-\pi(\pi - 2)$$

Answer: B

$$f(x) = x + \int_{0}^{\pi/2} (\sin x \cos y + \cos x \sin y) f(y) dy$$
  
$$f(x) = x + \int_{0}^{\pi/2} ((\cos y f(y) d y) \sin x + (\sin y f(y) d y) \cos x)$$

$$f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x, x \in \mathbb{R} \text{ then}$$

$$\Rightarrow \frac{a}{\pi^2 - 4} = \int_0^{\pi/2} \cos y f(y) dy \dots (2)$$

$$\Rightarrow \frac{b}{\pi^2 - 4} = \int_0^{\pi/2} \sin y f(y) dy \dots (3)$$

Add (2) and (3)  

$$\frac{a+b}{\pi^2-4} = \int_{0}^{\pi/2} (\sin y + \cos y) f(y) dy \dots (4)$$

$$\frac{a+b}{\pi^2-4} = \int_{0}^{\pi/2} (\sin y + \cos y) f\left(\frac{\pi}{2} - y\right) dy \dots (5)$$

$$\frac{2(a+b)}{\pi^2 - 4} = \int_0^{\pi/2} (\sin y + \cos y) \left( \frac{\pi}{2} + \frac{(a+b)}{\pi^2 - 4} (\sin y + \cos y) \right) dy$$

$$=\pi+\ \frac{a+b}{\pi^2-4}\bigg(\ \frac{\pi}{2}+1\,\bigg)$$

# The value of the integral $\int\limits_{1/2}^2 \frac{\tan^{-1}x}{x} \, dx$ is equal to [29-Jan-2023 Shift 2]

#### **Options:**

A. πlog<sub>e</sub>2

B. 
$$\frac{1}{2}\log_e 2$$

C. 
$$\frac{\pi}{4} \log_e 2$$

D. 
$$\frac{\pi}{2}\log_e 2$$

Answer: D

#### **Solution:**

Formula:
$$I = \int_{1/2}^{2} \frac{\tan^{-1} x}{x} dx \dots (i)$$
Put  $x = \frac{1}{t} dx = -\frac{1}{t^2} dt$ 

$$I = -\int_{2}^{1/2} \frac{\tan^{-1} \frac{1}{t}}{\frac{1}{t}} \cdot \frac{1}{t^2} dt = -\int_{2}^{1/2} \frac{\tan^{-1} \frac{1}{t}}{t} dt$$

$$I = \int_{1/2}^{2} \frac{\cot^{-1} t}{t} dt = \int_{1/2}^{2} \frac{\cot^{-1} x}{x} dx \dots (ii)$$

$$\begin{split} &\text{Add both equation} \\ &2I = \int\limits_{1/2}^2 \frac{\tan^{-1}x + \cot^{-1}x}{x} \, dx = \frac{\pi}{2} \int\limits_{1/2}^2 \frac{dx}{x} = \frac{\pi}{2} (\ell n 2)_{1/2}^{}^2 \\ &= \frac{\pi}{2} \Big( \ln 2 - \ell \ln \frac{1}{2} \Big) = \pi \ell n 2 \\ &I = \frac{\pi}{2} \ell \ln 2 \end{split}$$

### **Question33**

# The value of the integral $\frac{1}{t} \left( \begin{array}{c} \frac{t^4+1}{t^6+1} \end{array} \right)$ dt is : [29-Jan-2023 Shift 2]

#### **Options:**

A. 
$$\tan^{-1} \frac{1}{2} + \frac{1}{3} \tan^{-1} 8 - \frac{\pi}{3}$$

B. 
$$\tan^{-1} 2 - \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$$

C. 
$$\tan^{-1}2 + \frac{1}{3}\tan^{-1}8 - \frac{\pi}{3}$$

D. 
$$\tan^{-1} \frac{1}{2} - \frac{1}{3} \tan^{-1} 8 + \frac{\pi}{3}$$

#### **Solution:**

$$I = \int_{1}^{2} \left( \frac{t^{4} + 1}{t^{6} + 1} \right) dt$$

$$= \int_{1}^{2} \frac{(t^{4} + 1 - t^{2}) + t^{2}}{(t^{2} + 1)(t^{4} - t^{2} + 1)} dt$$

$$= \int_{1}^{2} \left( \frac{1}{t^{2} + 1} + \frac{t^{2}}{t^{6} + 1} \right) dt$$

$$= \int_{1}^{2} \left( \frac{1}{t^{2} + 1} + \frac{1}{3} \frac{3t^{2}}{(t^{3})^{2} + 1} \right) dt$$

$$= \tan^{-1}(t) + \frac{1}{3} \tan^{-1}(t^{3})|_{1}^{2}$$

$$= (\tan^{-1}(2) - \tan^{-1}(1)) + \frac{1}{3} (\tan^{-1}(2^{3}) - \tan^{-1}(1^{3}))$$

$$= \tan^{-1}(2) + \frac{1}{3} \tan^{-1}(8) - \frac{\pi}{3}$$

### Question34

If [t denotes the greatest integer  $\leq 1$ , then the value of of  $\frac{3(e-1)^2}{e}$   $\frac{2}{1}$   $x^2e^{[x]+[x^3]}$  dx is : [30-Jan-2023 Shift 1]

**Options:** 

A. 
$$e^9 - e$$

B. 
$$e^8 - e$$

C. 
$$e^7 - 1$$

D. 
$$e^8 - 1$$

Answer: B

#### **Solution:**

$$\frac{2}{3}x^{2}e^{[x^{3}]+1} dx$$

$$x^{3} = t$$

$$3x^{2} dx = dt$$

$$= \frac{e}{3} \int_{1}^{8} e^{[t]} dt$$

$$= \frac{e}{3} \left\{ \int_{1}^{2} e dt + \int_{2}^{3} e^{2} dt + \dots + \int_{7}^{8} e^{7} dt \right\}$$

$$= \frac{e}{3}(e + e^{2} + \dots + e^{7})$$

$$= \frac{e^{2}}{3}(1 + e + \dots + e^{6}) = \frac{e^{2}}{3} \frac{(e^{7} - 1)}{(e - 1)}$$

$$\frac{3(e - 1)}{e} \int_{1}^{2} x^{2} \times e^{[x] + [x^{3}]} dx = \frac{3}{e}(e - 1) \times \frac{e^{2}}{3} \frac{(e^{7} - 1)}{(e - 1)}$$

$$= e(e^{7} - 1)$$

$$= e^{8} - e$$

**Question35** 

### [30-Jan-2023 Shift 1]

Answer: 12

#### **Solution:**

$$48 \lim_{x \to 0} \frac{\int_{0}^{x} \frac{t^{3}}{t^{6} + 1} dt}{x^{4}} \left(\frac{0}{0}\right)$$
Applying L'Hospitals Rule

$$48 \lim_{x \to 0} \frac{x^{3}}{x^{6} + 1} \times \frac{1}{4x^{3}}$$
= 12

### **Question36**

$$\lim_{\substack{\lim \\ n \to \infty}} \frac{3}{n} \left\{ 4 + \left(2 + \frac{1}{n}\right)^2 + \left(2 + \frac{2}{n}\right)^2 + \dots + \left(3 - \frac{1}{n}\right)^2 \right\}$$
 is equal to [30-Jan-2023 Shift 2]

**Options:** 

A. 12

B.  $\frac{19}{3}$ 

C. 0

D. 19

Answer: D

#### **Solution:**

$$\lim_{n \to \infty} \frac{3}{n} \sum_{r=0}^{n-1} \left(2 + \frac{r}{n}\right)^2$$

$$= 3 \int_{0}^{1} (2 + x)^2 dx = 27 - 8 = 19$$

### **Question37**

The value of  $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(2+3\sin x)}{\sin x(1+\cos x)} dx$  is equal to

[31-Jan-2023 Shift 1]

**Options:** 

A. 
$$\frac{7}{2} - \sqrt{3} - \log_e \sqrt{3}$$

B. 
$$-2 + 3\sqrt{3} + \log_{e}\sqrt{3}$$

C. 
$$\frac{10}{3} - \sqrt{3} + \log_e \sqrt{3}$$

D. 
$$\frac{10}{3} - \sqrt{3} - \log_e \sqrt{3}$$

Answer: C

#### **Solution:**

Solution:
$$\int_{\pi/3}^{\pi/2} \left( \frac{2 + 3\sin x}{\sin x(1 + \cos x)} \right) dx = 2 \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x + \sin x \cos x} + 3$$

$$3 \int_{\pi/3}^{\pi/2} \frac{dx}{1 + \cos x} = \int_{\pi/3}^{\pi/2} \frac{1 - \cos x}{\sin^2 x} dx$$

$$= \int_{\pi/3}^{\pi/2} (\csc^2 x - \cot x \csc x) dx$$

$$= (\csc x - \cot x) \int_{\pi/3}^{\pi/2} = (1) - \left( \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right) = 1 - \frac{1}{\sqrt{3}}$$

$$\int_{\pi/3}^{\pi/2} \frac{dx}{\sin x(1 + \cos x)} = \int_{\pi/3}^{\pi/2} \frac{dx}{\sin x(1 + \cos x)}$$

$$= \int \frac{dx}{(2 \tan x/2)(1 + 1 - \tan^2 x/2)}$$

$$= \int \frac{(1 + \tan^2 x/2) \sec^2 x/2 dx}{2 \tan x/22}$$

$$\tan x/2 = t$$

$$\frac{1}{2} \int \left( \frac{1 + t^2}{t} \right) dt = \frac{1}{2} \left[ \ell \operatorname{nt} + \frac{t^2}{2} \right] \frac{1}{\sqrt{3}}$$

$$= \frac{1}{2} \left[ \left( 0 + \frac{1}{2} \right) - \left( \ell \operatorname{n} \frac{1}{\sqrt{3}} + \frac{1}{6} \right) \right] = \left( \frac{1}{3} + \ell \operatorname{n} \sqrt{3} \right) \frac{1}{2}$$

$$= \left( \frac{1}{6} + \frac{1}{2}\ell \operatorname{n} \sqrt{3} \right) dt$$

$$2 \left( \frac{1}{6} + \frac{1}{2}\ell \operatorname{n} \sqrt{3} \right) + 3 \left( 1 - \frac{1}{\sqrt{3}} \right)$$

$$= \frac{1}{3} + \ell \operatorname{n} \sqrt{3} + 3 - \sqrt{3} = \frac{10}{3} + \ell \operatorname{n} \sqrt{3} - \sqrt{3}$$

### **Question38**

Let a differentiable function f satisfy  $f(x) + \int_{3}^{x} \frac{f(t)}{t} dt = \sqrt{x+1}$ ,  $x \ge 3$ . Then 12f(8) is equal to: [31-Jan-2023 Shift 1]

**Options:** 

- A. 34
- B. 19
- C. 17
- D. 1

Answer: C

#### **Solution:**

Differentiate w.r.t. x

$$f'(x) + \frac{f(x)}{x} = \frac{1}{2\sqrt{x+1}}$$

I.F. 
$$= e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$
  
 $xf(x) = \int \frac{x}{2\sqrt{x+1}} dx$   
 $x+1=t^2$   
 $= \int \frac{t^2-1}{2t} 2t dt$   
 $xf(x) = \frac{t^3}{3} - t + c$   
 $xf(x) = \frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + c$   
Also putting  $x = 3$  in given equation  $f(3) + 0 = \sqrt{4} f(3) = 2$   
 $\Rightarrow C = 8 - \frac{8}{3} = \frac{16}{3}$   
 $f(x) = \frac{\frac{(x+1)^{3/2}}{3} - \sqrt{x+1} + \frac{16}{3}}{x}$   
 $f(8) = \frac{9-3+\frac{16}{3}}{8} = \frac{34}{24}$   
 $\Rightarrow 12f(8) = 17$ 

Let  $\alpha \in (0, 1)$  and  $\beta = \log_e(1 - \alpha)$ . Let  $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}, x \in (0, 1)$ . Then the integral  $\int_0^a \frac{t^{50}}{1-t} dt$  is equal to

[31-Jan-2023 Shift 1]

**Options:** 

A. 
$$\beta - P_{50}(\alpha)$$

B. 
$$-(\beta + P_{50}(\alpha))$$

C. 
$$P_{50}(\alpha) - \beta$$

D. 
$$\beta + P_{50}(\alpha)$$

Answer: B

#### **Solution:**

$$\begin{split} & \int\limits_0^\alpha \frac{t^{50}-1+1}{1-t} = -\int\limits_0^\alpha \left(1+t+\ldots +t^{49}\right) + \int\limits_0^\alpha \frac{1}{1-t} \, dt \\ & = -\left(\frac{\alpha^{50}}{50} + \frac{\alpha^{49}}{49} + \ldots + \frac{\alpha^1}{1}\right) + \left(\frac{\ln(1-f)}{-1}\right)_0^\alpha \\ & = -P_{50}(\alpha) - \ln(1-\alpha) \\ & = -P_{50}(\alpha) - \beta \end{split}$$

**Question40** 

Let 
$$\alpha > 0$$
. If  $\int_0^a \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} dx = \frac{16+20\sqrt{2}}{15}$ , then  $\alpha$  is equal to: [31-Jan-2023 Shift 2]

**Options:** 

A. 2

B. 4

C.  $\sqrt{2}$ 

D.  $2\sqrt{2}$ 

Answer: A

#### **Solution:**

Solution:

After rationalising

$$\begin{split} &\frac{\alpha}{0} \frac{x}{\alpha} (\sqrt{x + \alpha} + \sqrt{x}) \\ &\frac{1}{\alpha} \left[ \frac{2}{5} (x + \alpha)^{5/2} - \alpha \frac{2}{3} (x + \alpha)^{3/2} + \frac{2}{5} x^{5/2} \right] \Big|_0^{\alpha} \\ &= \frac{1}{\alpha} \left( \frac{5}{2} (2\alpha)^{5/2} - \frac{2\alpha}{3} (2\alpha)^{3/2} + \frac{2}{5} \alpha^{5/2} - \frac{2}{5} \alpha^{5/2} + \frac{2}{3} \alpha^{5/2} \right) \\ &= \frac{1}{\alpha} \left( \frac{2^{7/2} \alpha^{5/2}}{5} \frac{2^{5/2} \alpha^{5/2}}{3} + \frac{2}{3} \alpha^{5/2} \right) \\ &= \alpha^{3/2} \left( \frac{2^{7/2}}{5} - \frac{2^{5/2}}{3} + \frac{2}{3} \right) \\ &= \frac{\alpha^{3/2}}{15} (24\sqrt{2} - 20\sqrt{2} + 10) = \frac{\alpha^{3/2}}{15} (4\sqrt{2} + 10) \\ &\text{Now,} \\ &\frac{\alpha^{3/2}}{15} (4\sqrt{2} + 10) = \frac{16 + 20\sqrt{2}}{15} \end{split}$$

### **Question41**

If  $\varphi(x) = \frac{1}{\sqrt{x}} \int_{-\pi}^{x} (4\sqrt{2}\sin t - 3\varphi'(t)) dt$ , x > 0 then  $\varphi'\left(\frac{\pi}{4}\right)$  is equal to :

[31-Jan-2023 Shift 2]

**Options:** 

A. 
$$\frac{8}{\sqrt{\pi}}$$

B. 
$$\frac{4}{6 + \sqrt{\pi}}$$

C. 
$$\frac{8}{6 + \sqrt{\pi}}$$

D. 
$$\frac{4}{6-\sqrt{\pi}}$$

Answer: C

Solution: 
$$\begin{aligned} & \phi'(x) = \frac{1}{\sqrt{x}}[(4\sqrt{2}\sin x - 3\phi'(x)) \cdot 1 - 0] - \frac{1}{2}x^{-3/2} \\ & \frac{x}{4} \\ & \phi'\left(\frac{\pi}{4}\right) = \frac{2}{\sqrt{\pi}}\left[4 - 3\phi'\left(\frac{\pi}{4}\right)\right] + 0 \\ & \left(1 + \frac{6}{\sqrt{\pi}}\right)\phi'\left(\frac{\pi}{4}\right) = \frac{8}{\sqrt{\pi}} \\ & \phi'\left(\frac{\pi}{4}\right) = \frac{8}{\sqrt{\pi} + 6} \end{aligned}$$

Let 
$$f(x) = \int \frac{2x}{(x^2+1)(x^2+3)} dx$$
.  
If  $f(3) = \frac{1}{2}(\log_e 5 - \log_e 6)$ , then  $f(4)$  is equal to [25-Jan-2023 Shift 1]

**Options:** 

A. 
$$1/2(\log_e 17 - \log_e 19)$$

C. 
$$\frac{1}{2}(\log_e 19 - \log_e 17)$$

$$D. \log_e 19 - \log_e 20$$

Answer: A

#### **Solution:**

Solution:

Put 
$$x^2 = t$$

$$\int \frac{dt}{(t+1)(t+3)} = \frac{1}{2} \int \left( \frac{1}{t+1} - \frac{1}{t+3} \right) dt$$

$$f(x) = \frac{1}{2} \ln \left( \frac{x^2 + 1}{x^2 + 3} \right) + C$$

$$f(3) = \frac{1}{2} (\ln 10 - \ln 12) + C$$

$$\Rightarrow C = 0$$

$$f(4) = \frac{1}{2} \ln \left( \frac{17}{10} \right)$$

### **Question43**

If 
$$\int \sqrt{\sec 2x - 1} \, dx = \alpha \log_e \left| \cos 2x + \beta + \sqrt{\cos 2x \left( 1 + \cos \frac{1}{\beta}x \right)} \right|$$
 + constant, then  $\beta - \alpha$  is equal to \_\_\_\_\_. [30-Jan-2023 Shift 2]

Answer: 1

$$\int \sqrt{\sec 2x - 1} \, dx = \int \sqrt{\frac{1 - \cos 2x}{\cos 2x}} \, dx$$

$$= \sqrt{2} \int \frac{\sin x}{\sqrt{2\cos^2 x - 1}} \, dx$$
put  $\cos x = t \Rightarrow -\sin x \, dx = dt$ 

$$= -\sqrt{2} \int \frac{dt}{\sqrt{2t^2 - 1}}$$

$$= -\ln |\sqrt{2} \cos x + \sqrt{\cos 2x}| + c$$

$$= -\frac{1}{2} \ln \left| 2\cos^2 x + \cos 2x + 2\sqrt{\cos 2x} \cdot \sqrt{2} \cos x \right| + c$$

$$= -\frac{1}{2} \ln \left| \cos^{2x} + \frac{1}{2} + \sqrt{\cos 2x} \cdot \sqrt{1 + \cos 2x} \right| + c$$
  
$$\therefore \beta = \frac{1}{2}, \alpha = -\frac{1}{2} \Rightarrow \beta - \alpha = 1$$

\_\_\_\_\_\_

### **Question44**

$$\lim_{n\to\infty} \left( \frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{2n} \right)$$
 is equal to:-
[1-Feb-2023 Shift 1]

**Options:** 

A. 0

B. log<sub>e</sub>2

C.  $\log_{e}\left(\frac{3}{2}\right)$ 

D.  $\log_{e}\left(\frac{2}{3}\right)$ 

Answer: B

#### **Solution:**

$$\begin{split} &\lim_{n \to \infty} \left( \ \frac{1}{1+n} + \ldots + \ \frac{1}{n+n} \right) = \lim_{n \to \infty} \sum_{r=1}^{n} \ \frac{1}{n+r} \\ &= \lim_{n \to \infty} \sum_{r=1}^{n} \ \frac{1}{n} \left( \ \frac{1}{1+\frac{r}{n}} \right) \\ &= \int_{0}^{1} \ \frac{1}{1+x} \, dx = \left[ \ \ln(1+x) \right]_{0}^{1} = \ln 2. \end{split}$$

### **Question45**

If 
$$\int_{0}^{1} (x^{21} + x^{14} + x^{7})(2x^{14} + 3x^{7} + 6)^{1/7} dx = \frac{1}{1}(11)^{m/n}$$

where 1, m, n  $\in$  N, m and n are coprime then l+m+n is equal to \_\_\_\_\_. [1-Feb-2023 Shift 1]

Answer: 63

$$\begin{split} &\int (x^{20} + x^{13} + x^6)(2x^{21} + 3x^{14} + 6x^7)^{1/7} dx \\ &2x^{21} + 3x^{14} + 6x^7 = t \\ &42(x^{20} + x^{13} + x^6) dx = dt \\ &\frac{1}{42} \int_0^{11} t^{\frac{1}{7}} dt = \left( \frac{\frac{8}{7}}{\frac{8}{7}} \times \frac{1}{42} \right)_0^{11} \\ &= \frac{1}{48} \left( t^{\frac{8}{7}} \right)_0^{11} = \frac{1}{48} (11)^{8/7} \end{split}$$

$$1 = 48, m = 8, n = 7$$
  
 $1 + m + n = 63$ 

The value of the integral  $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} dx \text{ is:}$ 

### [1-Feb-2023 Shift 2]

**Options:** 

- A.  $\frac{\pi^2}{6}$

- D.  $\frac{\pi^2}{6\sqrt{3}}$

Answer: D

### **Solution:**

$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} dx \dots (1)$$

$$X \rightarrow -x$$

$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{-x + \frac{\pi}{4}}{2 - \cos 2x} dx \dots (2)$$

$$(1) + (2)$$

$$\frac{\pi}{4}$$

$$(1) + (2)$$

$$2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\pi}{2}}{2 - \cos 2x} dx$$

$$I = \frac{\pi}{4} \cdot 2 \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x} dx$$

$$I = \frac{\pi}{4} \cdot 2 \int_{0}^{\frac{\pi}{4}} \frac{(1 + \tan^{2}x) dx}{2(1 + \tan^{2}x) - (1 - \tan^{2}x)}$$

$$I = \frac{\pi}{4} \int_{0}^{1} \frac{dt}{3t^{2} + 1}$$

$$\Rightarrow I = \frac{\pi}{2\sqrt{3}} tan^{-1} \sqrt{3}$$

$$I = \frac{\pi^2}{6\sqrt{\pi}}$$

### **Question47**

If  $\int_{0}^{\pi} \frac{5^{\cos x}(1 + \cos x \cos 3x + \cos^{2}x + \cos^{3}x \cos 3x) dx}{1 + 5^{\cos x}} = \frac{k\pi}{16}$ , then k is equal to \_\_\_\_\_.

[1-Feb-2023 Shift 2]

#### **Solution:**

$$I = \int_{0}^{\pi} \frac{5^{\cos x}(1 + \cos x \cos 3x + \cos^{2}x + \cos^{3}x \cos 3x)}{1 + 5^{\cos x}} dx$$

$$I = \int_{0}^{\pi} \frac{5^{-\cos x}(1 + \cos x \cos 3x + \cos^{2}x + \cos^{3}x \cos 3x)}{1 + 5^{\cos x}} dx$$

$$2I = \int_{0}^{\pi} (1 + \cos x \cos 3x + \cos^{2}x + \cos^{3}x \cos 3x) dx$$

$$not I = not 2 \int_{0}^{\pi} (1 + \cos x \cos 3x + \cos^{2}x + \cos^{3}x \cos 3x) dx$$

$$I = \int_{0}^{\pi} (1 + \sin x(-\sin 3x) + \sin^{2}x - \sin^{3}x \sin 3x) dx$$

$$2I = \int_{0}^{\pi} (3 + \cos 4x + \cos^{3}x \cos 3x - \sin^{3}x \sin 3x) dx$$

$$2I = \int_{0}^{\pi} 3 + \cos 4x + \left(\frac{\cos 3x + 3\cos x}{4}\right) \cos 3x - \sin 3x \left(\frac{3\sin x - \sin 3x}{4}\right) dx$$

$$2I = \int_{0}^{\pi} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{\pi}{2} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{\pi}{2} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{\pi}{2} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{\pi}{2} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{\pi}{2} \left(3 + \cos 4x + \frac{1}{4} + \frac{3}{4}\cos 4x\right) dx$$

$$2I = \frac{13}{4} \times \frac{\pi}{2} + \frac{7}{4} \left(\frac{\sin 4x}{4}\right)_{0} \frac{\pi}{2} \Rightarrow I = \frac{13\pi}{16}$$

### **Question48**

Let f(x) be a function satisfying  $f(x) + f(\pi - x) = \pi^2$ ,  $\forall x \in \mathbb{R}$ . Then  $\int_0^{\pi} f(x) \sin x \, dx$  is equal to : [6-Apr-2023 shift 2]

**Options:** 

A. 
$$\frac{\pi^2}{2}$$

B. 
$$\pi^2$$

C. 
$$2\pi^2$$

D. 
$$\frac{\pi^2}{4}$$

Answer: B

#### **Solution:**

$$I = \int_{0}^{\pi} f(x) \sin x \, dx \dots (1)$$

Apply king property

$$I = \int_{0}^{\pi} f(\pi - x) \sin(\pi - x) dx \dots (1)$$

bbA

$$2I = \int_{0}^{\pi} f(x) + f(\pi - x)\sin x \, dx$$

$$2I = \int_{0}^{\pi} \pi^{2} \sin x \, dx$$

$$2I = \pi^{2} (\text{not})$$

$$I = \pi^{2}$$
Ans. Option 2

### **Question49**

Let 
$$f(x) = \frac{x}{(1+x^n)^{\frac{1}{n}}}$$
,  $x \in \mathbb{R} - \{-1\}$ ,  $n \in \mathbb{N}$ ,  $n > 2$ . If  $f^n(x) = n$  (f of of ..... upto n times) (x), then  $\lim_{n \to \infty} \int_0^1 x^{n-2} (f^n(x)) dx$ 

is equal to [6-Apr-2023 shift 2]

Answer: 0

#### **Solution:**

Let 
$$f(x) = \frac{x}{n + 1}, x \in \mathbb{R} - \{-1\}, n \in \mathbb{N}, n \ge 2.$$

If  $f^{n}(x) = n$  (fofof..... upto n times) (x)

then 
$$\lim_{n\to\infty} \int_0^1 x^{n-2} (f^n(x)) dx$$

$$f(f(x)) = \frac{x}{(1+2x^n)^{1/n}}$$

$$f(f(x)) = \frac{x}{(1+2x^n)^{1/n}}$$
$$f(f(f(x))) = \frac{x}{(1+3x^n)^{1/n}}$$

Similarly 
$$f^{n}(x) = \frac{x}{(1+n \cdot x^{n})^{1/n}}$$

Now 
$$\lim_{n \to \infty} \int \frac{x^{n-2} \cdot x \, dx}{(1+n \cdot x^n)^{1/n}} = \lim_{n \to \infty} \int \frac{x^{n-1} \cdot dx}{(1+n \cdot x^n)^{1/n}}$$

Now 
$$1 + nx x^n = t$$

$$n^2 \cdot x^{n-1} \, dx = dt$$

$$x^{n-1} dx = \frac{dt}{n^2}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n^2} \int_{1} 1 + n \, \frac{dt}{t^{1/n}}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n^2} \left[ \begin{array}{c} \frac{1-\frac{1}{n}}{t-\frac{1}{n}} \\ \frac{1}{1-\frac{1}{n}} \end{array} \right]_{1}^{1+n}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n(n-1)} \left( (1+n)^{\frac{n-1}{n}} - 1 \right) \text{ Now let } n = \frac{1}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{\left(1 + \frac{1}{h}\right)^{1-h} - 1}{\frac{1}{h} \frac{(1-h)}{h}}$$

Using series expansion

### Question 50

Let [t] denote the greatest integer  $\leq t$ . The  $\frac{2}{\pi} \int_{\pi/6}^{5\pi/6} (8[\csc x] - 5[\cot x]) dx$  is equal to [8-Apr-2023 shift 1]

#### Answer: 14

#### **Solution:**



$$\frac{5\pi}{6}$$

$$8 \int [\csc x] dx$$

$$\frac{\pi}{6}$$

$$8 \int \frac{5\pi}{6}$$

$$8 \int dx = \frac{16\pi/3}{16\pi/3}$$

$$1 = \int \frac{5\pi}{6} [\cot x] dx$$

$$x \to \pi - x$$

$$\frac{\pi}{6}$$

$$2I = \int [-\cot x] dx$$

$$\frac{5\pi}{6}$$

$$2I = \int ([\cot x] + [-\cot x]) dx$$

$$\frac{\pi}{6}$$

$$I = -\frac{1}{2} \int_{\pi/6}^{5\pi/6} dx \Rightarrow -\frac{1}{2} \left(\frac{4\pi}{6}\right)$$

$$= -\pi/3$$

$$\therefore \frac{2}{\pi} \left[\frac{16\pi}{3} + \frac{5\pi}{3}\right] = \frac{2}{\pi} \left(\frac{21\pi}{3}\right)$$

$$= 14$$

\_\_\_\_\_

## **Question51**

Let [t] denote the greatest integer function. If  $\int_0^{2^4} [x^2] dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3} + \delta \sqrt{5}$ , then  $\alpha + \beta + \gamma + \delta$  is equal to  $\overline{[8-Apr-2023 \text{ shift 2}]}$ 

Answer: 6

$$\begin{split} & \int\limits_{0}^{1} 0 \, dx + \int\limits_{1}^{\sqrt{2}} 1 \, dx + \int\limits_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int\limits_{\sqrt{3}}^{2} 3 \, dx + \int\limits_{2}^{\sqrt{5}} 4 \, dx + \int\limits_{\sqrt{5}}^{2 + 4} 5 \, dx \\ & \sqrt{2} - 1 + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) + 4(\sqrt{5} - 2) + 5((2 \cdot 4) - \sqrt{5}) \\ & = 9 - \sqrt{2} - \sqrt{3} - \sqrt{5} \\ & \alpha + \beta + \gamma + \delta = 9 - 1 - 1 - 1 = 6 \end{split}$$

### Question52

Let f be a continuous function satisfying  $\int_0^{t^2} (f(x) + x^2) dx = \frac{4}{3}t^3$ ,  $\forall t > 0$ . Then  $f\left(\frac{\pi^2}{4}\right)$  is is equal to [10-Apr-2023 shift 2]

**Options:** 

A. 
$$-\pi^2 \left(1 + \frac{\pi^2}{16}\right)$$

B. 
$$\pi \left( 1 - \frac{\pi^3}{16} \right)$$

$$C. -\pi \left(1 + \frac{\pi^3}{16}\right)$$

D. 
$$\pi^2 \left( 1 - \frac{\pi^3}{16} \right)$$

**Answer: B** 

**Solution:** 

$$\int_{0}^{1} t^{2}(f(x) + x^{2}) dx = \frac{4}{3}t^{3}, \ \forall t > 0$$

$$(f(t^{2}) + t^{4}) = 2t$$

$$f(t^{2}) = 2t - t^{4}$$

$$t = \frac{\pi}{2} \Rightarrow f\left(\frac{\pi^{2}}{4}\right) = \frac{2\pi}{2} - \frac{\pi^{4}}{16}$$

$$= \pi - \frac{\pi^{4}}{16} = \pi \left(1 - \frac{\pi^{3}}{16}\right)$$

### **Question53**

The value of the integral  $\int\limits_{-\log_e^2}^{\log_e^2} e^x \Big(log_e \Big(e^x + \sqrt{1+e^{2x}}\Big)\Big)$  is equal to : [11-Apr-2023 shift 1]

**Options:** 

A. 
$$\log_{e}\left(\frac{(2+\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}}\right) + \frac{\sqrt{5}}{2}$$

B. 
$$\log_{e} \left( \frac{2(2+\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}} \right) - \frac{\sqrt{5}}{2}$$

C. 
$$\log_{e} \left( \frac{\sqrt{2}(3-\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}} \right) + \frac{\sqrt{5}}{2}$$

D. 
$$\log_{e} \left( \frac{\sqrt{2}(2+\sqrt{5})^{2}}{\sqrt{1+\sqrt{5}}} \right) - \frac{\sqrt{5}}{2}$$

Answer: D

#### **Solution:**

$$I = \int_{-\ln 2}^{\ln 2} e^{x} \left( \ln \left( e^{x} + \sqrt{1 + e^{2x}} \right) \right) dx$$
Put  $e^{x} = t \Rightarrow e^{x} dx = dt$ 

$$I = \int_{1/2}^{2} \ln(t + \sqrt{1 + t^2}) dt$$

Applying integration by parts. 
$$= \left[ t \ln \left( t + \sqrt{1 + t^2} \right) \right] \frac{1}{2} - \int_{1/2}^{2} \frac{t}{t + \sqrt{1 + t^2}} \left( 1 + \frac{2t}{2\sqrt{1 + t^2}} \right) dt$$

$$= 2 \ln (2 + \sqrt{5}) - \frac{1}{2} \ln \left( \frac{1 + \sqrt{5}}{2} \right) - \int_{1/2}^{2} \frac{t}{\sqrt{1 + t^2}} dt$$

$$= 2 \ln (2 + \sqrt{5}) - \frac{1}{2} \ln \left( \frac{1 + \sqrt{5}}{2} \right) - \frac{\sqrt{5}}{2}$$

$$= \ln \left( \frac{(2 + \sqrt{5})^2}{\left( \left( \frac{\sqrt{5 + 1}}{2} \right)^{\frac{1}{2}} \right)} - \frac{\sqrt{5}}{2} \right)$$

### Question54

For m, n > 0, let  $\alpha(m, n) = \int_{0}^{2} t^{m} (1 + 3t)^{n} dt$ . If  $11\alpha(10, 6) + 18\alpha(11, 5) = p(14)^{6}$ , then p is equal to \_\_\_\_\_. [11-Apr-2023 shift 1]

Answer: 32

#### **Solution:**

Solution:

$$\begin{split} &\alpha(m,n) = \int\limits_0^2 t^m (1+3t)^n \, dt \\ &\text{If } 11\alpha(10,6) + 18\alpha(11,5) = p(14)^6 \, \text{ then } P \\ &= 11 \int\limits_0^2 \frac{t^{10}}{11} \frac{(1+3t)^6}{1} + 10 \int_0^2 t^{11} (1+3t)^5 \, dt \\ &= 11 \left[ (1+3t)^6 \cdot \frac{t^{11}}{11} - \int_0^2 6(1+3t)^5 \cdot 3 \, \frac{t^{11}}{11} \right]_0^2 + 18 \int\limits_0^2 t^{11} (1+3t)^5 \, dt \\ &= (t^{11} (1+3t)^6)_0^2 \\ &= 2^{11} (7)^6 \\ &= 2^5 (14)^6 \\ &= 32 (14)^6 \end{split}$$

## **Question55**

Let the function  $f: [0, 2] \rightarrow R$  be defined as

$$\mathbf{f}(\mathbf{x}) = \begin{cases} e^{\min\{x^2, x - [x]\}} & x \in [0, 1) \\ e^{[x - \log_e x]} & x \in [1, 2) \end{cases}.$$

where [t] denotes the greatest integer less than or equal to t. Then the value of the integral  $\int_{0}^{1} xf(x) dx$  is [11-Apr-2023 shift 2]

**Options:** 

A. 
$$(e-1)\left(e^2 + \frac{1}{2}\right)$$

B. 
$$1 + \frac{3e}{2}$$

C. 
$$2e - \frac{1}{2}$$

Answer: A

#### **Solution:**

$$F[0, 2] \rightarrow R$$

$$F(x) = \begin{cases} \min\{x^2, \{x\}\}; & x \in [0, 1) \\ [x - \log_e x] = 1; & x \in [1, 2) \end{cases}.$$

$$F(x) = \begin{cases} e^{x^2} : x \in [0, 1) \\ e \ x \in [1, 2) \end{cases}.$$

$$\int_{0}^{2} xf(x) dx = \int_{0}^{1} x \cdot e^{x^{2}} dx + \int_{1}^{2} x \cdot e dx$$

$$= \frac{1}{2}(e-1) + \frac{1}{2}(4-1)e$$

$$\Rightarrow 2e - \frac{1}{2}$$

**Question56** 

If  $f: R \to R$  be a continuous function satisfying  $\int\limits_0^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx + \alpha \int\limits_0^{\frac{\pi}{4}} f(\cos 2x) \cos x \, dx = 0$ , then the value of  $\alpha$  is [11-Apr-2023 shift 2]

**Options:** 

$$A. -\sqrt{3}$$

B. 
$$\sqrt{3}$$

$$C. -\sqrt{2}$$

D. 
$$\sqrt{2}$$

Answer: C

F: R \rightarrow R  

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} F(\sin 2x) \sin dx + \alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \cdot \cos x \, dx = 0$$

$$\frac{\pi}{4} F(\sin 2x) \sin x \, dx + \int_{0}^{\frac{\pi}{2}} F(\sin 2x) \cdot \sin x \, dx + \alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \cdot \cos x \, dx = 0$$

$$\frac{\pi}{4} F(x) \, dx = \int_{0}^{\frac{\pi}{4}} F(a - x) \, dx$$
Let  $x = t + \frac{\pi}{4}$ 

$$\frac{\pi}{4} F(\cos 2x) \sin \left(\frac{\pi}{4} - x\right) \, dx + \int_{0}^{\frac{\pi}{4}} F(\cos 2t) \sin \left(t + \frac{\pi}{4}\right) + \alpha \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \cos x \, dx = 0$$

$$\frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \left\{ \sin \left(\frac{\pi}{4} - x\right) + \sin \left(x + \frac{\pi}{4}\right) + \alpha \cos x = 0. \right\}$$

$$\frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \left\{ (\sqrt{2} + \alpha) \cos x \right\} \, dx = 0$$

$$(\sqrt{2} + \alpha) \int_{0}^{\frac{\pi}{4}} F(\cos 2x) \cos x \, dx = 0$$

$$\therefore \text{ in interval } \left(0, \frac{\pi}{4}\right) \Rightarrow F(\cos 2x) \& \cos x \text{ is NOT Zero.}$$

$$\therefore \sqrt{2} + \alpha = 0$$

$$\alpha = -\sqrt{2}$$

.....

### **Question57**

If 
$$\int_{-0.15}^{0.15} |100x^2 - 1| dx = \frac{k}{3000}$$
, then k is equal to \_\_\_\_\_. [12-Apr-2023 shift 1]

Answer: 575

#### **Solution:**

$$\int_{-0.15}^{0.15} |100x^{2} - 1| dx = 2 \int_{0}^{0.15} |100x^{2} - 1| dx$$
Now  $100x^{2} - 1 = 0 \Rightarrow x^{2} = \frac{1}{100} \Rightarrow x = 0.1$ 

$$I = 2 \left[ \int_{0}^{0.1} (1 - 100x^{2}) dx + \int_{0.1}^{0.15} (100x^{2} - 1) dx \right]$$

$$I = 2 \left[ x - \frac{100}{3}x^{3} \right]_{0}^{0.1} + 2 \left[ \frac{100x^{3}}{3} - x \right]_{0.1}^{0.15}$$

$$= 2 \left[ 0.1 - \frac{0.1}{3} \right] + 2 \left[ \frac{0.3375}{3} - 0.15 - \frac{0.1}{3} + 0.1 \right]$$

$$= 2 \left[ 0.2 - \frac{0.2}{3} + 0.1125 - 0.15 \right]$$

$$= 2 \left[ \frac{5}{100} - \frac{2}{30} + \frac{1125}{10000} \right] = 2 \left( \frac{1500 - 2000 + 3375}{30000} \right)$$

$$= \frac{575}{3000} \Rightarrow k = 575$$

**Question58** 

The value of 
$$\frac{e^{-\frac{\pi}{4} + \frac{\pi}{4}} e^{-x} \tan^{50} x \, dx}{\frac{\pi}{4} e^{-x} (\tan^{49} x + \tan^{51} x) \, dx}$$
 is

#### [13-Apr-2023 shift 2]

**Options:** 

- A. 25
- B. 51
- C. 50
- D. 49

**Answer: C** 

#### **Solution:**

let 
$$I_1 = e^{-\pi/4} + \int_0^{\pi/4} e^{-x} \tan^{50} x \, dx$$

$$I_2 = \int_0^{\pi/4} e^{-x} (\tan^{49} x + \tan^{51} x) \, dx$$

$$= \int_0^{\pi/4} e^{-x} \tan^{49} x (\sec^2 x) \, dx$$

$$= \left| e^{-x} \frac{\tan^{50} x}{50} \right|_0^{\pi/4} + \frac{1}{50} \int_0^{\pi/4} e^{-x} \tan^{50} x \, dx$$

$$= \frac{e^{-\pi/4}}{50} + \frac{1}{50} \int_0^{\pi/4} e^{-x} \tan^{50} x \, dx = \frac{I_1}{50}$$
then  $\frac{I_1}{I_2} = 50$ 

### **Question59**

Answer: 41

$$\begin{split} f_n &= \int\limits_0^{\pi/2} \left( \sum_{k=1}^n \sin^{k-1} x \right) \left( \sum_{k=1}^n (2k-1) \sin^{k-1} x \right) \cos x \, dx \\ \sin x &= t \\ \cos x \, dx &= d \, t \\ f_n \int\limits_0^1 \left( \sum_{k=1}^{k-1} \right) \left( \sum_{k=1}^{k-1} (2k-1)t \right) \, dt \\ &= \int\limits_0^1 (1+t+t^2 \dots t^n) (1+3t+5t^2+\dots+(2n+1)t^n) \, dt \\ &= \int\limits_0^1 (1+t+t^2+\dots t^{n-1}) (1+3t+5t^2+\dots+(2n-1)t^{n-1}) \, dt \\ &+ \int\limits_0^1 (1+3t+5t^2+\dots(2n+1))t^n \, dt \end{split}$$

$$\begin{split} &+\int\limits_{0}^{1}(1+t+t^{2}+...+t^{n-1})(2n+1)t^{n}\,dt\\ &f_{n+1}-f_{n}=\int\limits_{0}^{1}(1+3t+5t^{2}+...+(2n+1)t^{n})t^{n}\,dt\\ &+\int\limits_{0}^{1}(1+t+t^{2}+...t^{n+1})((2n+1)t^{n})\,dt\\ &put\,n=20\\ &f_{21}-f_{20}=\int\limits_{0}^{1}(1+3t+5t^{2}...41\cdot t^{20})t^{20}\,dt+\int\limits_{0}^{1}(1+t+t^{2}...t^{19})(41\cdot t^{20})\,dt\\ &=\left(\frac{1}{21}+\frac{3}{22}+\frac{5}{23}+...+\frac{39}{40}+\frac{41}{41}\right)+\left(\frac{41}{21}+\frac{41}{22}+\frac{41}{40}\right)\\ &=\frac{1+41}{21}+\frac{3+41}{22}+...+\frac{39+41}{40}+1=40+1=41 \end{split}$$

### Question60

If 
$$\int_{0}^{\frac{1}{3}} \frac{1}{(5+2x-2x^{2})(1+e^{(2-4x)})} dx = \frac{1}{\alpha} log_{e}(\frac{\alpha+1}{\beta})$$
,  $\alpha$ ,  $\beta > 0$ , then  $\alpha^{4} - \beta^{4}$  is equal to [15-Apr-2023 shift 1]

**Options:** 

A. 19

B. -21

C. 21

D. 0

Answer: C

#### **Solution:**

$$\begin{aligned} & \text{Solution:} \\ & I = \int\limits_{0}^{1} \frac{d\,x}{(5 + 2x - 2x^2)(1 + e^{2 - 4x})} \cdots \, (i) \\ & x \to 1 - x \\ & I = \int\limits_{0}^{1} \frac{e^{2 - 4x}\,dx}{(5 + 2x - 2x^2)(1 + e^{2 - 4x})} \cdots \, (ii) \\ & \text{Add (i) and (ii)} \\ & 2I \int\limits_{0}^{1} \frac{d\,x}{5 + 2x - 2x^2} = \int\limits_{0}^{1} \frac{d\,x}{2\left(\frac{11}{4} - \left(x - \frac{1}{2}\right)^2\right)} \\ & I = \frac{1}{\sqrt{11}} \ln\left(\frac{\sqrt{11} + 1}{\sqrt{10}}\right) \\ & \alpha = \sqrt{11} \\ & \beta = \sqrt{10} \\ & \alpha^4 - \beta^4 = 121 - 100 = 21 \end{aligned}$$

### **Question61**

Let I (x) = 
$$\int \frac{x^2(x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx$$
. If I (0) = 0, then I  $\left(\frac{\pi}{4}\right)$  is equal to: [6-Apr-2023 shift 1]

**Options:** 

A. 
$$\log_e \frac{(\pi+4)^2}{16} + \frac{\pi^2}{4(\pi+4)}$$

B. 
$$\log_e \frac{(\pi+4)^2}{32} - \frac{\pi^2}{4(\pi+4)}$$

C. 
$$\log_e \frac{(\pi+4)^2}{16} - \frac{\pi^2}{4(\pi+4)}$$

D. 
$$\log_e \frac{(\pi+4)^2}{32} + \frac{\pi^2}{4(\pi+4)}$$

Answer: B

#### **Solution:**

Solution:  

$$I(x) = \int \frac{x^2(x \sec^2 x + \tan x)}{(x \tan x + 1)^2} dx$$
Let  $x \tan x + 1 = t$ 

$$I = x^{2} \left( \frac{-1}{x \tan x + 1} \right) + \int \frac{2x}{x \tan x + 1} dx$$

$$I = x^2 \left(\frac{-1}{x \tan x + 1}\right) + 2 \int \frac{2x}{x \tan x + 1} dx$$

$$\begin{vmatrix} x \tan x + 1 \\ 1 = x^2 \left( \frac{-1}{x \tan x + 1} \right) + 2 \ln \left| x \sin x + \cos x \right| + C$$
As  $| (0) = 0 \Rightarrow C = 0$ 

As 
$$I(0) = 0 \Rightarrow C = 0$$

$$I\left(\frac{\pi}{4}\right) = ln\left(\frac{(\pi+4)^2}{32}\right) - \frac{\pi^2}{4(\pi+4)}$$

### Question62

Let I (x) = 
$$\int \frac{(x+1)}{x(1+xe^x)^2} dx$$
, x > 0. If  $\lim_{x\to\infty} I(x) = 0$ , then I (1) is equal to [8-Apr-2023 shift 1]

**Options:** 

A. 
$$\frac{e+1}{e+2} - \log_e(e+1)$$

B. 
$$\frac{e+2}{e+1} + \log_e(e+1)$$

C. 
$$\frac{e+2}{e+1} - \log_e(e+1)$$

D. 
$$\frac{e+1}{e+2} + \log_e(e+1)$$

Answer: D

### Question63

The integral 
$$\int \left( \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \right) \log_2 x \, dx$$
 is equal to [8-Apr-2023 shift 2]

**Options:** 

A. 
$$\left(\frac{x}{2}\right)^x \log_2\left(\frac{2}{x}\right) + C$$

$$B. \left( \begin{array}{c} \frac{x}{2} \end{array} \right)^x - \left( \begin{array}{c} \frac{2}{x} \end{array} \right)^x + C$$

C. 
$$\left(\frac{x}{2}\right)^x \log_2\left(\frac{x}{2}\right) + C$$

D. 
$$\left(\frac{x}{2}\right)^x + \left(\frac{2}{x}\right)^x + C$$

Answer: B

#### **Solution:**

Solution:

$$\begin{split} &\int (x^{x}2^{-x} + 2^{x}x^{-x})log_{2}^{\ x} \, dx \\ &\int (e^{x \ln x} \cdot e^{-x \ln 2} + e^{x \ln 2} \cdot e^{-x \ln x}) \, dx \\ &\int (e^{x \ln x - x \ln 2} + e^{x \ln 2 - x \ln x}) \, \frac{\ln x}{\ln 2} \, dx \\ &let \quad x \ln x - x \ln 2 = t \\ &(\ln x + 1 - \ln 2) \, dx = d \, t \end{split}$$

-----

### **Question64**

If I (x) =  $\int e^{\sin^2 x} (\cos x \sin 2x - \sin x) dx$  and I (0) = 1, then I  $\left(\frac{\pi}{3}\right)$  is equal to: [10-Apr-2023 shift 1]

**Options:** 

A. 
$$e^{\frac{3}{4}}$$

B. 
$$-e^{\frac{3}{4}}$$

C. 
$$\frac{1}{2}e^{\frac{3}{4}}$$

D. 
$$-\frac{1}{2}e^{\frac{3}{4}}$$

Answer: C

#### **Solution:**

Solution:

$$\begin{split} I &= \int_{\mathbb{C}} e^{\sin^2 x} & \sin 2x \cos x \, dx_1 - \int e^{\sin^2 x} \sin x \, dx \\ &= \cos x \int e^{\sin^2 x} \sin 2x \, dx - \int \left( (-\sin x) \int e^{\sin^2 x} \sin 2x \, dx \right) \, dx - \int e^{\sin^2 x} \sin x \, dx \\ \sin^2 x &= t \\ \sin 2x \, dx &= d \, t \\ &= \cos x \int e^t \, dt + \int (\sin x \int e^t \, dt) \, dx - \int e^{\sin^2 x} \sin x \, dx \\ &= e^{\sin^2 x} \cos x + \int e^{\sin^2 x} \sin x \, dx - \int e^{\sin^2 x} \sin x \, dx \\ I &= e^{\sin^2 x} \cos x + C \\ I(0) &= 1 \\ &\Rightarrow 1 &= 1 + C \\ &\Rightarrow C &= 0 \\ &\therefore I &= e^{\sin^2 x} \cos x \\ I\left(\frac{\pi}{3}\right) &= e^{\sin^2 \frac{\pi}{3}} \cos \frac{\pi}{3} \\ &= \frac{e^{\frac{3}{4}}}{2} \end{split}$$

-----

### **Question65**

For  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta \in N$ , if  $\int \left(\left(\frac{x}{e}\right)^{2x} + \left(\frac{e}{x}\right)^{2x}\right) log_e x dx = \frac{1}{\alpha} \left(\frac{x}{e}\right)^{\beta x} - \frac{1}{\gamma} \left(\frac{e}{x}\right)^{\delta x} + C$ , where  $e = \sum_{n=0}^{\infty} \frac{1}{n!}$  and C is constant of integration, then  $\alpha + 2\beta + 3\gamma - 4\delta$  is equal to [10-Apr-2023 shift 2]

#### **Options:**

- A. 4
- B. -4
- C. -8
- D. 1

Answer: A

#### **Solution:**

#### Solution:

$$x = e^{\ln x}$$

$$\int \left(\left(\frac{x}{e}\right)^{2x} + \left(\frac{e}{x}\right)^{2x}\right) \log_e x \, dx = \int \left[e^{2(x \ln x - x)} + e^{-2(x \ln x - x)}\right] \ln x \, dx$$

$$x \ln x - x = t$$

$$\ln x \cdot dx = dt$$

$$\int (e^{2t} + e^{-2t}) \, dt$$

$$\frac{e^{2t}}{2} - \frac{e^{-2t}}{2} + C$$

$$= \frac{1}{2} \left(\frac{x}{e}\right)^{2x} - \frac{1}{2} \left(\frac{e}{x}\right)^{2x} + C$$

$$\alpha = B = \gamma = \delta = 2$$

$$\alpha + 2B + 3\gamma - 4\delta = 4$$

\_\_\_\_\_

### **Question66**

$$\int_{0}^{\infty} \frac{6}{e^{3x} + 6e^{2x} + 11e^{x} + 6} dx =$$
[13-Apr-2023 shift 1]

#### **Options:**

A. 
$$\log_{e}\left(\frac{32}{27}\right)$$

B. 
$$\log_{e}\left(\frac{256}{81}\right)$$

C. 
$$\log_{e}\left(\frac{512}{81}\right)$$

D. 
$$\log_{e}\left(\frac{64}{27}\right)$$

Answer: A

$$I = \int_{0}^{\infty} \frac{6}{(e^{x} + 1)(e^{x} + 2)(e^{x} + 3)} dx$$

$$= 6 \int_{0}^{\infty} \left( \frac{\frac{1}{2}}{e^{x} + 1} + \frac{-1}{e^{x} + 2} + \frac{\frac{1}{2}}{e^{x} + 3} \right) dx$$

$$= 3 \int_{0}^{\infty} \frac{e^{-x}}{1 + e^{-x}} dx - 6 \int_{0}^{\infty} \frac{e^{-x} dx}{1 + 2e^{-x}} + 3 \int_{0}^{\infty} \frac{e^{-x}}{1 + 3e^{-x}} dx$$

$$= 3 \left[ -\ln(1 + e^{-x}) \right]_{0}^{\infty} + 6 \frac{1}{2} \left[ \ln(1 + 2e^{-x}) \right]_{0}^{\infty}$$

$$= 3 \ln 2 - 3 \ln 3 + \ln 4$$

$$= 3 \ln \frac{2}{3} + \ln 4$$

$$= \ln \frac{32}{37}$$

-----

### **Question67**

Let 
$$f(x) = \int \frac{dx}{(3+4x^2)\sqrt{4-3x^2}}$$
,  $|x| < \frac{2}{\sqrt{3}}$ . If  $f(0) = 0$  and  $f(1) = \frac{1}{\alpha\beta}\tan^{-1}\left(\frac{\alpha}{\beta}\right)\alpha$ ,  $\beta > 0$ , then  $\alpha^2 + \beta^2$  is equal to [15-Apr-2023 shift 1]

Answer: 28

#### **Solution:**

Solution:

$$f(x) = \int \frac{dx}{(3+4x^2)\sqrt{4-3x^2}}$$

$$x = \frac{1}{t}$$

$$= \int \frac{\frac{-1}{t^2}dt}{\frac{(3t^2+4)}{t^2} \frac{\sqrt{4t^2-3}}{t}} : Put \ 4t^2-3 = z^2$$

$$= -\frac{1}{4}\int \frac{z \, dx}{(3\left(\frac{z^2+3}{4}\right)+4\right)z}$$

$$= \int \frac{-dz}{3z^2+25} = -\frac{1}{3}\int \frac{dz}{z^2+\left(\frac{5}{\sqrt{3}}\right)^2}$$

$$= -\frac{1}{3}\frac{\sqrt{3}}{5}\tan^{-1}\left(\frac{\sqrt{3}z}{5}\right) + C$$

$$= -\frac{1}{5\sqrt{3}}\tan^{-1}\left(\frac{\sqrt{3}}{5}\sqrt{4t^2-3}\right) + C$$

$$f(x) = -\frac{1}{5\sqrt{3}}\tan^{-1}\left(\frac{\sqrt{3}}{5}\sqrt{4t^2-3}\right) + C$$

$$\because f(0) = 0 \because c = \frac{\pi}{10\sqrt{3}}$$

$$f(1) = -\frac{1}{5\sqrt{3}}\cot^{-1}\left(\frac{\sqrt{3}}{5}\right) + \frac{\pi}{10\sqrt{3}}$$

$$f(1) = \frac{1}{5\sqrt{3}}\cot^{-1}\left(\frac{\sqrt{3}}{5}\right) = \frac{1}{5\sqrt{3}}\tan^{-1}\left(\frac{5}{\sqrt{3}}\right)$$

$$\alpha = 5 : \beta = \sqrt{3} \therefore \alpha^2 + \beta^2 = 28$$

.....

### **Question68**

The value of  $12\int_{0}^{3} |x^2 - 3x + 2| dx$  is [24-Jan-2023 Shift 1]

Answer: 22

**Solution:** 

$$12 \int_{0}^{3} \left| x^{2} - 3x + 2 \right| dx$$

$$= 12 \int_{0}^{3} \left| \left( x - \frac{3}{2} \right)^{2} - \frac{1}{4} \right| dx$$
If  $x - \frac{3}{2} = t$ 

$$dx = dt$$

$$= 24 \int_{0}^{3/2} \left| t^{2} - \frac{1}{4} \right| dt$$

$$= 24 \left[ -\int_{0}^{1/2} \left( t^{2} - \frac{1}{4} \right) dt + \int_{1/2}^{3/2} \left( t^{2} - \frac{1}{4} \right) dt \right] = 22$$

-----

### **Question69**

If 
$$\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} dx = g(x) + c$$
,  $g(1) = 0$ , then  $g\left(\frac{1}{2}\right)$  is equal to:

[26-Jun-2022-Shift-2]

**Options:** 

A. 
$$\log_{e} \left( \frac{\sqrt{3}-1}{\sqrt{3}+1} \right) + \frac{\pi}{3}$$

B. 
$$\log_{e} \left( \frac{\sqrt{3}+1}{\sqrt{3}-1} \right) + \frac{\pi}{3}$$

C. 
$$\log_{e} \left( \frac{\sqrt{3}+1}{\sqrt{3}-1} \right) - \frac{\pi}{3}$$

D. 
$$\frac{1}{2} \log_e \left( \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \right) - \frac{\pi}{6}$$

Answer: A

$$\iint_{x} \sqrt{\frac{1-x}{1+x}} dx = g(x) + c$$

$$\int_{1}^{\frac{1}{2}} \frac{1}{x} \sqrt{\frac{1-x}{1-x}} dx = g\left(\frac{1}{2}\right) - g(1)$$

$$\therefore g\left(\frac{1}{2}\right) = \int_{1}^{\frac{1}{2}} \frac{1}{x} \sqrt{\frac{1-x}{1+x}} dx$$

$$= \int_0^{\frac{\pi}{6}} \frac{1}{\cos 2\theta} \cdot \frac{\sin \theta}{\cos \theta} (-2\sin 2\theta) d\theta$$

$$= -\int_{0}^{\frac{\pi}{6}} \frac{4\sin^{2}\theta}{\cos 2\theta} d\theta$$

$$=2\int_0^{\frac{\pi}{6}}\frac{(1-2\sin^2\theta)-1}{\cos 2\theta}d\theta$$

$$=2\int_{0}^{\frac{\pi}{6}}(1-\sec 2\,\theta)d\,\theta$$

$$= \frac{\pi}{3} - 2 \cdot \frac{1}{2} [\ln|\sec 2\theta + \tan 2\theta|]_0^{\frac{\pi}{6}}$$

$$= \frac{\pi}{3} - [\ln | 2 + \sqrt{3} | - \ln 1]$$

$$= \frac{\pi}{3} + \ln\left(\frac{1}{2 + \sqrt{3}}\right)$$

$$=\frac{\pi}{3}+\ln\left|\frac{\sqrt{3}-1}{\sqrt{3}+1}\right|$$

### **Question70**

If  $\int \frac{(x^2+1)e^x}{(x+1)^2} dx = f(x)e^x + C$ , where C is a constant, then  $\frac{d^3f}{dx^3}$  at x = 1 is equal to: [27-Jun-2022-Shift-1]

**Options:** 

A. 
$$-\frac{3}{4}$$

B. 
$$\frac{3}{4}$$

C. 
$$-\frac{3}{2}$$

D. 
$$\frac{3}{2}$$

Answer: B

Solution:  

$$I = \int \frac{e^{x}(x^{2}+1)}{(x+1)^{2}} dx = f(x)e^{x} + c$$

$$= \int \frac{e^{x}(x^{2}-1+1+1)}{(x+1)^{2}} dx$$

$$= \int e^{x} \left[ \frac{x-1}{x+1} + \frac{2}{(x+1)^{2}} \right] dx$$

$$= e^{x} \left( \frac{x-1}{x+1} \right) + c$$

$$\therefore f(x) = \frac{x-1}{x+1}$$

$$f(x) = 1 - \frac{2}{x+1}$$

$$\begin{split} &f^{'}(x) = 2\left(\frac{1}{x+1}\right)^2 \\ &f^{''}(x) = -4\left(\frac{1}{x+1}\right)^3 \\ &f^{'''}(x) = \frac{12}{(x+1)^4} \\ &for \ x = 1 \\ &f^{'''}(1) = \frac{12}{2^4} = \frac{12}{16} = \frac{3}{4} \end{split}$$

### **Question71**

### The value of the integral

$$\int_{-\pi/2}^{\pi/2} \frac{dx}{(1+e^{x})(\sin^{6}x + \cos^{6}x)}$$
 is equal to

[24-Jun-2022-Shift-2]

**Options:** 

Α. 2π

B. 0

 $C. \pi$ 

D.  $\frac{\pi}{2}$ 

Answer: C

#### **Solution:**

$$I = \int_{-\pi}^{\frac{\pi}{2}} \frac{dx}{(1 + e^x)(\sin^6 x + \cos^6 x)}.....$$
 (i)

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{(1 + e^{-x})(\sin^6 x + \cos^6 x)} \dots (ii)$$

(i) and (ii)

From equation (i) \& (ii)

$$2I = \int_{-\pi}^{\frac{\pi}{2}} \frac{dx}{\sin^6 x + \cos^6 x}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sin^{6}x + \cos^{6}x} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - \frac{3}{4}\sin^{2}2x}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{4\sec^{2}2x dx}{4 + \tan^{2}2x} = 2 \int_{0}^{\frac{\pi}{4}} \frac{4\sec^{2}2x}{4 + \tan^{2}2x} dx$$

when 
$$x = 0$$
,  $t = 0$ Now,  $\tan 2x = t$ when  $x = \frac{\pi}{4}$ ,  $t \to \infty$ 

$$2\sec^2 2x dx = dt$$

$$=2\frac{\pi}{2}=\pi$$

\_\_\_\_\_\_

$$\lim_{\substack{n \to \infty \\ n \to \infty}} \left( \frac{n^2}{(n^2+1)(n+1)} + \frac{n^2}{(n^2+4)(n+2)} + \frac{n^2}{(n^2+9)(n+3)} + \dots + \frac{n^2}{(n^2+n^2)(n+n)} \right)$$

is equal to:

[24-Jun-2022-Shift-2]

**Options:** 

A. 
$$\frac{\pi}{8} + \frac{1}{4} \log_e 2$$

B. 
$$\frac{\pi}{4} + \frac{1}{8} \log_e 2$$

C. 
$$\frac{\pi}{4} - \frac{1}{8} \log_e 2$$

D. 
$$\frac{\pi}{8} + \log_e \sqrt{2}$$

Answer: A

#### **Solution:**

$$\lim_{n \to \infty} \left( \frac{n^2}{(n^2 + 1)(n + 1)} + \frac{n^2}{(n^2 + 4)(n + 2)} + \dots + \frac{n^2}{(n^2 + n^2)(n + n)} \right)$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{n^2}{(n^2 + r^2)(n + r)}$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \frac{1}{\left[1 + \left(\frac{r}{n}\right)^2\right] \left[1 + \left(\frac{r}{n}\right)\right]}$$

$$= \int_{0}^{1} \frac{1}{(1 + x^2)(1 + x)} dx$$

$$= \frac{1}{2} \int_{0}^{1} \left[\frac{1}{1 + x} - \frac{(x - 1)}{(1 + x^2)}\right] dx$$

$$= \frac{1}{2} \left[\ln(1 + x) - \frac{1}{2}\ln(1 + x^2) + \tan^{-1}x\right]_{0}^{1}$$

$$= \frac{1}{2} \left[\frac{\pi}{4} + \frac{1}{2}\ln 2\right] = \frac{\pi}{8} + \frac{1}{4}\ln 2$$

### Question73

The value of  $\int_0^\pi \frac{e^{\cos x} \sin x}{(1+\cos^2 x)(e^{\cos x}+e^{-\cos x})} \, dx$  is equal to: [25-Jun-2022-Shift-1]

**Options:** 

A. 
$$\frac{\pi^2}{4}$$

B. 
$$\frac{\pi^2}{2}$$

C. 
$$\frac{\pi}{4}$$

D. 
$$\frac{\pi}{2}$$

Answer: C

$$\int_0^\pi \frac{e^{\cos x} \sin x}{(1 + \cos^2 x)(e^{\cos x} + e^{-\cos x})} dx$$

Let  $\cos x = t$ 

 $\sin x \, d \, x = d \, t$ 

$$= \int_{1}^{-1} \frac{-e^{t} dt}{(1+t^{2})(e^{t}+e^{-t})}$$

$$I = \int_{-1}^{1} \frac{e^{t}}{(1+t^{2})(e^{t} + e^{-t})} dt.....$$
 (i)

$$I = \int_{-1}^{1} \frac{e^{-t}}{(1+t^2)(e^{-t}+e^t)} dt....$$
 (ii)

Adding (i) and (ii)

Adding (i) and (ii)

$$2I = \int_{-1}^{1} \frac{dt}{1+t^2}$$

$$2I = .\tan^{-t}|_{1}^{1}$$

$$2I = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right)$$

$$2I = \frac{\pi}{2}$$

$$I = \frac{\pi}{4}$$

\_\_\_\_\_

### **Question74**

Let  $g:(0,\infty)\to R$  be a differentiable function such that

$$\int \left( \frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \right) \mathbf{d} \mathbf{x} = \frac{xg(x)}{e^x + 1} + \mathbf{c}$$

, for all x > 0, where c is an arbitrary constant. Then : [25-Jun-2022-Shift-1]

**Options:** 

A. g is decreasing in  $\left(0, \frac{\pi}{4}\right)$ 

B. g' is increasing in  $\left(0, \frac{\pi}{4}\right)$ 

C. g + g' is increasing in  $\left(0, \frac{\pi}{2}\right)$ 

D. g - g' is increasing in  $\left(0, \frac{\pi}{2}\right)$ 

Answer: D

$$\int \left( \frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \right) dx = \frac{xg(x)}{e^x + 1} + c$$

On differentiating both sides w.r.t. x, we get

$$\left(\begin{array}{c} \frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \end{array}\right)$$

$$= \frac{(e^{x}+1)(g(x)+xg'(x))-e^{x}\cdot x\cdot g(x)}{(e^{x}+1)^{2}}$$

$$(e^{x} + 1)x(\cos x - \sin x) + g(x)(e^{x} + 1 - xe^{x})$$

$$= (e^{x} + 1)(g(x) + xg'(x)) - e^{x} \cdot x \cdot g(x)$$

$$\Rightarrow g'(x) = \cos x - \sin x$$

$$\Rightarrow g(x) = \sin x + \cos x + C$$

g(x) is increasing in  $(0, \pi/4)$ 

$$g''(x) = -\sin x - \cos x < 0$$

 $\Rightarrow$ g'(x) is decreasing functionlet  $h(x) = g(x) + g'(x) = 2\cos x + C \Rightarrow h'(x) = g'(x) + g''(x) = -2\sin x < 0$ 

 $\Rightarrow$ h is decreasing let  $\varphi(x) = g(x) - g'(x) = 2\sin x + C \Rightarrow \varphi'(x) = g'(x) - g''(x) = 2\cos x \ge 0 \Rightarrow \varphi$  is increasing

-----

### **Question75**

If 
$$\mathbf{b_n} = \int_0^{\frac{\pi}{2}} \frac{\cos^2 nx}{\sin x} dx$$
,  $n \in \mathbb{N}$ , then [25-Jun-2022-Shift-2]

#### [25-Jun-2022-Smnt-2

**Options:** 

A.  $b_3 - b_2$ ,  $b_4 - b_3$ ,  $b_5 - b_4$  are in A.P. with common difference -2

B.  $\frac{1}{b_3-b_2}$ ,  $\frac{1}{b_4-b_3}$ ,  $\frac{1}{b_5-b_4}$  are in an A.P. with common difference 2

C.  $b_3 - b_2$ ,  $b_4 - b_3$ ,  $b_5 - b_4$  are in a G.P.

D.  $\frac{1}{b_3-b_2}$ ,  $\frac{1}{b_4-b_3}$ ,  $\frac{1}{b_5-b_4}$  are in an A.P. with common difference -2

Answer: D

#### **Solution:**

$$\begin{split} &b_n - b_{n-1} = \int\limits_0^{\pi} \frac{\cos^2 nx - \cos^2 (n-1)x}{\sin x} d\, x \\ &= \int\limits_0^{\pi} \frac{2}{2} \, \frac{-\sin(2n-1)\, x \cdot \sin x}{\sin x} d\, x \\ &= \cdot \frac{\cos(2n-1)\, x}{2n-1} \, \big|_0^{\pi/2} \, = -\, \frac{1}{2n-1} \\ &\text{So, } b_3 - b_2, \, b_4 - b_3, \, b_5 - b_4 \text{ are in H.P.} \\ &\Rightarrow \frac{1}{b_3 - b_2}, \, \frac{1}{b_4 - b_3}, \, \frac{1}{b_5 - b_4} \text{ are in A.P. with common difference } -2. \end{split}$$

### **Question76**

The value of b > 3 for which

$$12 \int_{3}^{b} \frac{1}{(x^{2}-1)(x^{2}-4)} dx = \log_{e} \left( \frac{49}{40} \right)$$

# , is equal to [25-Jun-2022-Shift-2]

Answer: 6

#### **Solution:**

$$\begin{split} & I = \int \frac{1}{(x^2 - 1)(x^2 - 4)} dx = \frac{1}{3} \int \left( \frac{1}{x^2 - 4} - \frac{1}{x^2 - 1} \right) dx \\ & = \frac{1}{3} \left( \frac{1}{4} \ln \left| \frac{x - 2}{x + 2} \right| - \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right) + C \\ & 12I = \ln \left| \frac{x - 2}{x + 2} \right| + 2 \ln \left| \frac{x - 1}{x + 1} \right| + C \\ & 12 \int_3^b \frac{dx}{(x^2 - 4)(x^2 - 1)} \\ & = \ln \left( \frac{b - 2}{b + 2} \right) - 2 \ln \left( \frac{b - 1}{b + 1} \right) - \left( \ln \left( \frac{1}{5} \right) - 2 \ln \left( \frac{1}{2} \right) \right) \\ & = \ln \left( \left( \frac{b - 2}{b + 2} \right) \cdot \frac{(b + 1)^2}{(b - 1)^2} \right) - \left( \ln \frac{4}{5} \right) \\ & \text{So, } \frac{49}{40} = \frac{(b - 2)}{(b + 2)} \frac{(b + 1)^2}{(b - 1)^2} \cdot \frac{5}{4} \\ \Rightarrow b = 6 \end{split}$$

### **Question77**

Let  $f(x) = \max\{|x+1|, |x+2|, ...., |x+5|\}$ . Then  $\int_{-6}^{0} f(x) dx$  is equal to\_\_\_\_\_ [26-Jun-2022-Shift-1]

Answer: 21

#### **Solution:**

For |x+1| critical point,  $x+1=0 \Rightarrow x=-1$ 

For |x+2| critical point,  $x+2=0 \Rightarrow x=-2$ 

For |x+3| critical point,  $x+3=0 \Rightarrow x=-3$ 

For |x+4| critical point,  $x+4=0 \Rightarrow x=-4$ 

For |x+5| critical point,  $x+5=0 \Rightarrow x=-5$ 



Here maximum function is represent by the dotted line.

 $\therefore$  Point of intersection A of line y = -x - 1 and y = x + 5:

$$-x - 1 = x + 5$$

$$\Rightarrow 2x = -6$$

$$\Rightarrow x = -3$$

$$\therefore y = -3 + 5 = 2$$

$$\therefore \int_{-6}^{0} f(x) dx$$

$$= \int_{-6}^{-3} (-x-1)dx + \int_{-3}^{0} (x+5)dx$$

$$= \left(-\frac{x^2}{2} - x\right)_{-6} + \left[\frac{x^2}{2} + 5x\right]_{-3}^{0}$$

$$= \left[ \left( -\frac{9}{2} + 3 \right) - \left( -\frac{36}{2} + 6 \right) \right] + \left[ 0 - \left( \frac{9}{2} - 15 \right) \right]$$

$$=\left(-\frac{3}{2}+12\right)+\frac{21}{2}$$

$$=\frac{21}{2}=21$$

\_\_\_\_\_\_

### **Question78**

The value of the integral

$$\frac{48}{\pi^4} \int_0^{\pi} \left( \frac{3\pi x^2}{2} - x^3 \right) \frac{\sin x}{1 + \cos^2 x} dx \text{ is equal to } \underline{\qquad}$$
[26-Jun-2022-Shift-1]

Answer: 6

$$I = \frac{48}{\pi^4} \int_0^{\pi} \left[ \left( \frac{\pi}{2} - x \right)^3 - \frac{3\pi^2}{4} \left( \frac{\pi}{2} - x \right) + \frac{\pi^3}{4} \right] \frac{\sin x \, d \, x}{1 + \cos^2 x}$$
Using 
$$\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx$$

$$I = \frac{48}{\pi^4} \int_0^{\pi} \left[ -\left(\frac{\pi}{2} - x\right)^3 + \frac{3\pi^4}{4} \left(\frac{\pi}{2} - x\right) + \frac{\pi^3}{4} \right] \frac{\sin x \, dx}{1 + \cos^2 x}$$

Adding these two equations, we get

$$2I = \frac{48}{\pi^4} \int_0^{\pi} \frac{\pi^3}{2} \cdot \frac{\sin x \, dx}{1 + \cos^2 x}$$
  
$$\Rightarrow I = \frac{12}{\pi} [-\tan^{-1}(\cos x)]_0^{\pi} = \frac{12}{\pi} \cdot \frac{\pi}{2} = 6$$

### **Question79**

The integral  $\frac{24}{\pi} \int_0^{\sqrt{2}} \frac{(2-x^2)dx}{(2+x^2)\sqrt{4+x^4}}$  is equal to [26-Jun-2022-Shift-2]

Answer: 6

#### **Solution:**

$$I = \frac{24}{\pi} \int_{0}^{\sqrt{2}} \frac{2 - x^{2}}{(2 + x^{2})\sqrt{4 + x^{4}}} dx$$
Let  $x = \sqrt{2}t \Rightarrow dx = \sqrt{2}dt$ 

$$I = \frac{24}{\pi} \int_{0}^{1} \frac{(2 - 2t^{2}) \cdot \sqrt{2}dt}{(2 + 2t^{2})\sqrt{4 + 4t^{4}}}$$

$$= \frac{12\sqrt{2}}{\pi} \int_{0}^{1} \frac{\left(\frac{1}{t^{2}} - 1\right)dt}{\left(t + \frac{1}{t}\right)\sqrt{\left(t + \frac{1}{t}\right)^{2} - 2}}$$
Let  $t + \frac{1}{t} = u$ 

$$\Rightarrow \left(1 - \frac{1}{t^{2}}\right)dt = du$$

$$= \frac{12\sqrt{2}}{\pi} \int_{\infty}^{2} \frac{-du}{u\sqrt{4^{2} - 2}}$$

$$= \frac{12\sqrt{2}}{\pi} \int_{2}^{\infty} \frac{du}{u^{2}\sqrt{-\left(\frac{\sqrt{2}}{u}\right)^{2}}}$$

$$= \frac{12\sqrt{2}}{\pi} \int_{\frac{1}{\sqrt{2}}}^{0} \frac{-\frac{1}{\sqrt{2}}dp}{\sqrt{1 - p^{2}}}$$

$$= \frac{12}{\pi} [\sin^{-1}p]_{0}^{\frac{1}{\sqrt{2}}}$$

 $= \frac{12}{\pi} \cdot \frac{\pi}{4} = 3$ 

### The value of the integral

$$\int_{-2}^{2} \frac{x^3 + x|}{(e^{x|x|} + 1)} dx$$
 is equal to:

### [27-Jun-2022-Shift-1]

**Options:** 

A. 
$$5e^2$$

B. 
$$3e^{-2}$$

Answer: D

#### **Solution:**

$$I = \int_{-2}^{2} \frac{|x^{3} + x|}{e^{x|x|} + 1} dx....(i)$$

$$I = \int_{-2}^{2} \frac{|x^{3} + x|}{e^{-x|x|} + 1} dx....(ii)$$

$$2I = \int_{-2}^{2} \left| x^3 + x \right| dx$$

$$2I = 2 \int_{0}^{2} (x^{3} + x) dx$$

$$2I = 2 \int_{0}^{2} (x^{3} + x) dx$$
$$I = \int_{0}^{2} (x^{3} + x) dx$$

$$= \frac{x^4}{4} + \frac{x^2}{2} \Big]_0^2$$

$$= \left(\frac{16}{4} + \frac{4}{2}\right) - 0$$

### **Question81**

Let f be a differentiable function in  $\left(0, \frac{\pi}{2}\right)$ . If  $\int_{\cos x}^{1} t^2 f(t) dt = \sin^3 x + \cos x$ , then  $\frac{1}{\sqrt{3}} f'\left(\frac{1}{\sqrt{3}}\right)$  is equal to [27-Jun-2022-Shift-2]

**Options:** 

A. 
$$6 - 9\sqrt{2}$$

B. 
$$6 - \frac{9}{\sqrt{2}}$$

C. 
$$\frac{9}{2} - 6\sqrt{2}$$

D. 
$$\frac{9}{\sqrt{2}} - 6$$

Answer: B

$$\int_{\cos x}^{1} t^2 f(t) dt = \sin^3 x + \cos x$$

$$\Rightarrow \sin x \cos^2 x f(\cos x) = 3\sin^2 x \cos x - \sin x$$

$$\Rightarrow f(\cos x) = 3\tan x - \sec^2 x$$

$$\Rightarrow f'(\cos x) \cdot (-\sin x) = 3\sec^2 x - 2\sec^2 x \tan x$$



Put 
$$\cos x = \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}}f'\left(\frac{1}{\sqrt{3}}\right) = 6 - \frac{9}{\sqrt{2}}$$

### **Question82**

The integral  $\int_0^1 \frac{1}{7^{\left[\frac{1}{x}\right]}} dx$ , where [. ] denotes the greatest integer function, is equal to

[27-Jun-2022-Shift-2]

**Options:** 

A. 
$$1 + 6\log_{e}\left(\frac{6}{7}\right)$$

B. 
$$1 - 6\log_e\left(\frac{6}{7}\right)$$

C. 
$$\log_{e}\left(\frac{7}{6}\right)$$

D. 
$$1 - 7\log_{e}\left(\frac{6}{7}\right)$$

Answer: A

$$\int_{0}^{1} \frac{1}{7 \left[\frac{1}{x}\right]} dx, \quad \text{let} \quad \frac{1}{x} = t$$

$$\frac{-1}{x^{2}} dx = dt$$

$$= \int_{\infty}^{1} \frac{1}{-t^{2}7^{[t]}} dt = \int_{1}^{\infty} \frac{1}{t^{2}7^{[t]}} dt$$

$$= \int_{1}^{2} \frac{1}{7t^{2}} dt + \int_{2}^{3} \frac{1}{7^{2}t^{2}} dt + \dots$$

$$= \frac{1}{7} \left[ -\frac{1}{t} \right]_{1}^{2} + \frac{1}{7^{2}} \left[ -\frac{1}{t} \right]_{2}^{3} + \frac{1}{7^{3}} \left[ -\frac{1}{t} \right]_{2}^{3} + \dots$$

$$= \sum_{n=1}^{\infty} \frac{1}{7^{n}} \left( \frac{1}{n} - \frac{1}{n+1} \right)$$

$$= \sum_{n=1}^{\infty} \frac{\left(\frac{1}{7}\right)^{n}}{n} - 7 \sum_{n=1}^{\infty} \frac{\left(\frac{1}{7}\right)^{n+1}}{n+1}$$

$$= -\log\left(1 - \frac{1}{7}\right) + 7\log\left(1 - \frac{1}{7}\right) + 1$$
$$= 1 + 6\log\frac{6}{7}$$

-----

### **Question83**

Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral  $\int_0^1 [-8x^2 + 6x - 1] dx$  is equal to [28-Jun-2022-Shift-1]

**Options:** 

A. -1

B.  $\frac{-5}{4}$ 

C.  $\frac{\sqrt{17}-13}{8}$ 

D.  $\frac{\sqrt{17}-16}{8}$ 

Answer: C

#### **Solution:**

$$\int_{0}^{1} [-8x^{2} + 6x - 1] dx$$

$$= \int_{0}^{1/4} -1 dx + \int_{1/4}^{1/2} 0 dx + \int_{1/2}^{3/4} -1 dx$$

$$(1/4, 0)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

$$(3/4, -1)$$

### **Question84**

Let  $f: R \to R$  be a differentiable function such that  $f\left(\frac{\pi}{4}\right) = \sqrt{2}$ ,  $f\left(\frac{\pi}{2}\right) = 0$  and  $f'\left(\frac{\pi}{2}\right) = 1$  and

let  $g(x) = \int_{x}^{\pi/4} (f'(t) \sec t + \tan t \sec t f(t)) dt$  for  $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ . Then  $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x)$  is equal to:

### [28-Jun-2022-Shift-2]

**Options:** 

- A. 2
- B. 3
- C. 4
- D. -3

Answer: B

#### **Solution:**

#### Solution:

Given: 
$$f\left(\frac{\pi}{4}\right) = \sqrt{2}$$
,  $f\left(\frac{\pi}{2}\right) = 0$  and  $f'\left(\frac{\pi}{2}\right) = 1$ 

$$g(x) = \int_{x}^{\pi} (t) \sec t + \tan t \ \sec t f(t) \right) dt$$

$$= \left[ \sec t + f(t) \right]_{x}^{\pi} \frac{\pi}{4} = 2 - \sec x f(x)$$
Now,  $\lim_{x \to \frac{\pi}{2}} g(x) = \lim_{h \to 0} g\left(\frac{\pi}{2} - h\right)$ 

$$= \lim_{h \to 0} 2 - (\csc h) f\left(\frac{\pi}{2} - h\right)$$

$$= \lim_{h \to 0} \left[ 2 - \frac{f\left(\frac{\pi}{2} - h\right)}{\sin h} \right]$$

$$= \lim_{h \to 0} \left[ 2 + \frac{f'\left(\frac{\pi}{2} - h\right)}{\cos h} \right]$$

### **Question85**

Let  $f: R \to R$  be a continuous function satisfying f(x) + f(x+k) = n, for all  $x \in R$  where k > 0 and n is a positive integer. If  $I_1 = \int_0^{4nk} f(x) dx$  and  $I_2 = \int_{-k}^{3k} f(x) dx$ , then: [28-Jun-2022-Shift-2]

**Options:** 

A. 
$$I_1 + 2I_2 = 4nk$$

B. 
$$I_1 + 2I_2 = 2nk$$

C. 
$$I_1 + nI_2 = 4n^2k$$

D. 
$$I_1 + nI_2 = 6n^2k$$

Answer: C

#### **Solution:**

Solution:

f: R → R and f(x) + f(x+k) = n 
$$\forall x \in R$$
  
 $x \to x + k$   
 $f(x+k) + f(x+2k) = n$   
∴  $f(x+2k) = f(x)$   
So, period of  $f(x)$  is  $2k$   
Now,  $I_1 = \int_0^{4nk} f(x) dx = 2n \int_0^{2k} f(x) dx$   
 $= 2n \left[ \int_0^k f(x) dx + \int_k^{2k} f(x) dx \right]$   
 $x = t + k \Rightarrow dx = dt$  (in second integral)  
 $= 2n \left[ \int_0^k f(x) dx + \int_0^k f(t+k) dt \right]$   
 $= 2n^2k$   
Now,  $I_2 = \int_{-k}^{3k} f(x) dx = 2 \int_0^{2k} f(x) dx$   
 $I_2 = 2(nk)$   
∴  $I_1 + nI_2 = 4n^2k$ 

### **Question86**

$$\int_{0}^{5} \cos \left( \pi \left( x - \left[ \frac{x}{2} \right] \right) \right) d x$$

where [t] denotes greatest integer less than or equal to t, is equal to: [29-Jun-2022-Shift-1]

#### **Options:**

A. -3

B. -2

C. 2

D. 0

Answer: D

#### **Solution:**

We know,

 $\left[\begin{array}{c} \frac{x}{2} \end{array}\right]$  is discontinuous at 1, 2, 3, 4......

 $\therefore$ [x] is discontinuous at 2, 4, 6, 8.....

In between 0 to 5 it is discontinuous at 2 and 4.

Break the integration into 3 parts

- (1) 0 to 2
- (2) 2 to 4

= 0

### **Question87**

Let f be a real valued continuous function on [0, 1] and  $f(x) = x + \int_0^1 (x - t)f(t)dt$ Then, which of the following points (x, y) lies on the curve y = f(x)? [29-Jun-2022-Shift-2]

**Options:** 

A. 
$$(2, 4)$$

Answer: D

#### **Solution:**

$$f(x) = \left(1 + \int_{0}^{1} f(t) dt\right) x - \int_{0}^{1} t f(t) dt$$

$$f(x) = Ax - B$$

$$A = 1 + \int_{0}^{1} f(t) dt = 1 + \int_{0}^{1} (At - B) dt$$

$$\Rightarrow A = 2(1 - B)$$
Also  $B = \int_{0}^{1} t f(t) dt = \int_{0}^{1} (At t^{2} - Bt) dt$ 

$$f(x) = Ax - E$$

$$A = 1 + \int_{0}^{1} f(t) dt = 1 + \int_{0}^{1} (At - B) dt$$

$$\Rightarrow A = 2(1 - B)$$

Also B = 
$$\int_{0}^{1} tf(t) dt = \int_{0}^{1} (At t^{2} - Bt) dt$$

$$A = \frac{9}{2}B$$

$$A = \frac{18}{13}, B = \frac{4}{13}$$

so 
$$f(6) = 8$$

### **Question88**

If 
$$\int_{0}^{2} \left( \sqrt{2x} - \sqrt{2x - x^{2}} \right) dx = \int_{0}^{1} \left( 1 - \sqrt{1 - y^{2}} - \frac{y^{2}}{2} \right) dy + \int_{1}^{2} \left( 2 - \frac{y^{2}}{2} \right) dy + I$$
, then I equals [29-Jun-2022-Shift-2]

**Options:** 

A. 
$$\int_{0}^{1} (1 + \sqrt{1 - y^{2}}) dy$$

B. 
$$\int_{0}^{1} \left( \frac{y^{2}}{2} - \sqrt{1 - y^{2}} + 1 \right) dy$$

C. 
$$\int_{0}^{1} (1 - \sqrt{1 - y^{2}}) dy$$

D. 
$$\int_{0}^{1} \left( \frac{y^{2}}{2} + \sqrt{1 - y^{2}} + 1 \right) dy$$

Answer: C

$$\begin{split} \text{LHS} &= \int\limits_{0}^{2} \left( \sqrt{2x} - \sqrt{2x - x^2} \right) dx = \frac{8}{3} - \frac{\pi}{2} \\ \text{RHS} &= \int\limits_{0}^{1} \left( 1 - \sqrt{1 - y^2} - \frac{y^2}{2} \right) dy + \int\limits_{1}^{2} \left( 2 - \frac{y^2}{2} \right) dy + I \\ I + \frac{5}{3} - \frac{\pi}{4} \\ \text{So, } I = 1 - \frac{\pi}{4} = \int\limits_{0}^{1} \left( 1 - \sqrt{1 - y^2} \right) dy \end{split}$$

### **Question89**

Let  $f(\theta) = \sin \theta + \int_{-\pi/2}^{\pi/2} (\sin \theta + t \cos \theta) f(t) dt$ . Then the value of  $\left| \int_{0}^{\pi/2} f(\theta) d\theta \right|$  is [24-Jun-2022-Shift-1]

Answer: 1

**Solution:** 

$$f(\theta) = \sin \theta \left( 1 + \int_{-\pi/2}^{\pi/2} f(t) dt \right) + \cos \theta \left( \int_{-\pi/2}^{\pi/2} t f(t) dt \right)$$

Clearly  $f(\theta) = a \sin \theta + b \cos \theta$ 

Where  $a = 1 + \int_{-\pi/2}^{\pi/2} (a \sin t + b \cos t) dt \Rightarrow a = 1 + 2b \dots (i)$  and  $b = \int_{-\pi/2}^{\pi/2} (at \sin t + bt \cos t) dt \Rightarrow b = 2a \dots (ii)$  from (i) and (ii) we get

$$a = -\frac{1}{3}$$
 and  $b = -\frac{2}{3}$ 

So 
$$f(\theta) = -\frac{1}{3}(\sin\theta + 2\cos\theta)$$

$$\Rightarrow \left| \int_0^{\pi/2} f(\theta) d\theta \right| = \frac{1}{3} (1 + 2 \times 1) = 1$$

\_\_\_\_\_

### **Question90**

Let 
$$\max_{\substack{0 \le x \le 2 \\ 0 \le x \le 2}} \left\{ \begin{array}{c} \frac{9-x^2}{5-x} \end{array} \right\} = \alpha \text{ and } \min_{\substack{0 \le x \le 2 \\ 0 \le x \le 2}} \left\{ \begin{array}{c} \frac{9-x^2}{5-x} \end{array} \right\} = \beta.$$

$$If_{\beta-\frac{8}{3}}^{\frac{2\alpha-1}{5}}Max\left\{\begin{array}{l}\frac{9-x^2}{5-x},\,x\,\right\}\,d\,x=\alpha_1+\alpha_2log_e\left(\begin{array}{l}\frac{8}{15}\end{array}\right)\,then\,\,\alpha_1+\alpha_2\,is\,\,equal\,\,to$$

[24-Jun-2022-Shift-1]

Answer: 34

Let 
$$f(x) = \frac{x^2 - 9}{x - 5} \Rightarrow f'(x) = \frac{(x - 1)(x - 9)}{(x - 5)^2}$$
  
So,  $\alpha = f(1) = 2$  and  $\beta = \min(f(0), f(2)) = \frac{5}{3}$   
Now,  $\int_{-1}^{3} \max\left\{-\frac{x^2 - 9}{x - 5}, x\right\} dx = \int_{-1}^{9/5} \frac{x^2 - 9}{x - 5} dx + \int_{9/5}^{3} x dx$   
 $= \int_{-1}^{9/5} \left(x + 5 + \frac{16}{x - 5}\right) dx + \cdot \frac{x^2}{2} \Big|_{9/5}^{3}$   
 $= \frac{28}{25} + 14 + 16 \ln\left(\frac{8}{15}\right) + \frac{72}{25} = 18 + 16 \ln\left(\frac{8}{15}\right)$   
Clearly  $\alpha_1 = 18$  and  $\alpha_2 = 16$ , so  $\alpha_1 + \alpha_2 = 34$ .

### **Question91**

The integral 
$$\int \frac{\left(1 - \frac{1}{\sqrt{3}}\right)(\cos x - \sin x)}{\left(1 + \frac{2}{\sqrt{3}}\sin 2x\right)} dx \text{ is equal to}$$

[26-Jul-2022-Shift-2]

**Options:** 

A. 
$$\frac{1}{2}log_e \left[ \frac{tan\left(\frac{x}{2} + \frac{\pi}{12}\right)}{tan\left(\frac{x}{2} + \frac{\pi}{6}\right)} \right] + C$$

B. 
$$\frac{1}{2}\log_{e} \left[ \frac{\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{x}{2} + \frac{\pi}{3}\right)} \right] + C$$

C. 
$$\log_e \left[ \frac{\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)}{\tan\left(\frac{x}{2} + \frac{\pi}{12}\right)} \right] + C$$

D. 
$$\frac{1}{2}\log_{e} \left[ \frac{\tan\left(\frac{x}{2} - \frac{\pi}{12}\right)}{\tan\left(\frac{x}{2} - \frac{\pi}{6}\right)} \right] + C$$

Answer: A

$$\begin{split} &= \int \frac{\left(1 - \frac{1}{\sqrt{3}}\right) (\cos x - \sin x)}{\left(1 + \frac{2}{\sqrt{3}} \sin 2 x\right)} \, dx \\ &= \int \frac{\left(\frac{\sqrt{3} - 1}{\sqrt{3}}\right) \sqrt{2} \sin\left(\frac{\pi}{4} - x\right)}{\left(\frac{2}{\sqrt{3}}\right) \left(\sin \frac{\pi}{3} + \sin 2 x\right)} \, dx \\ &= \int \frac{\frac{(\sqrt{3} - 1)}{\sqrt{2}} \sin\left(\frac{\pi}{4} - x\right)}{\left(\sin \frac{\pi}{3} + \sin 2 x\right)} \, dx \end{split}$$

$$= \int \frac{\frac{\sqrt{3} - 1}{2\sqrt{2}} \sin\left(\frac{\pi}{4} - x\right)}{\sin\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right)} dx$$

$$= \frac{1}{2} \int \frac{2 \sin\frac{\pi}{12} \sin\left(\frac{\pi}{4} - x\right)}{\sin\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right)} dx$$

$$= \frac{1}{2} \int \frac{\cos\left(\frac{\pi}{6} - x\right) - \cos\left(\frac{\pi}{3} - x\right)}{\sin\left(\frac{\pi}{6} + x\right) \cos\left(\frac{\pi}{6} - x\right)} dx$$

$$= \frac{1}{2} \left[\int \csc\left(\frac{\pi}{6} + x\right) dx - \int \sec\left(\frac{\pi}{6} - x\right) dx\right]$$

$$= \frac{1}{2} \left[\ln\left|\tan\left(\frac{\pi}{12} + \frac{x}{2}\right)\right| - \int \csc\left(\frac{\pi}{3} - x\right) dx\right]$$

$$= \frac{1}{2} \left[\ln\left|\tan\left(\frac{\pi}{12} + \frac{x}{2}\right)\right| - \ln\left|\frac{\pi}{6} + \frac{x}{2}\right|\right] + C$$

$$= \frac{1}{2} \ln\left|\frac{\tan\left(\frac{\pi}{2} + \frac{x}{2}\right)}{\tan\left(\frac{\pi}{6} + \frac{x}{2}\right)}\right| + C$$

### **Question92**

For I (x) 
$$-\int \frac{\sec^2 x - 2022}{\sin^{2022} x} dx$$
, if I  $\left(\frac{\pi}{4}\right) - 2^{1011}$ , then [29-Jul-2022-Shift-2]

**Options:** 

A. 
$$3^{1010}I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$$

B. 
$$3^{1010}I\left(\frac{\pi}{6}\right)-I\left(\frac{\pi}{3}\right)=0$$

C. 
$$3^{1011}I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$$

D. 
$$3^{1011}I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0$$

Answer: A

#### **Solution:**

Given, 
$$\begin{split} &I\left(x\right) = \int \frac{\sec^2 x - 2022}{\sin^{2022} x} \, dt \\ &= \int \frac{\sec^2 x}{\sin^{2022} x} \, dt - \int \frac{2022}{\sin^{2022} x} \, dt \\ &= \int \frac{1}{\sin^{2022} x} \cdot \sec^2 x \, dt - \int \frac{2022}{\sin^{2022} x} \, dt \\ &= \frac{1}{\sin^{2022} x} \cdot \tan x - \int \left( \frac{-2022}{\sin^{2023} x} \cdot \cos x \cdot \tan x \right) \, dt - \int \frac{2022}{\sin^{2022} x} \, dt + C \\ &= \frac{\tan x}{\sin^{2022} x} + \int \left( \frac{2022}{\sin^{2023} x} \cdot \cos x \cdot \frac{\sin x}{\cos x} \right) \, dt - \int \frac{2022}{\sin^{2022} x} \, dt + C \\ &= \frac{\tan x}{\sin^{2022} x} + \int \frac{2022}{\sin^{2022} x} \, dt - \int \frac{2022}{\sin^{2022} x} \, dt \\ &= \frac{\tan x}{\sin^{2022} x} + C \end{split}$$

Given, 
$$\begin{split} & \text{Given, I}\left(\frac{\pi}{4}\right) = 2^{1011} \\ \therefore & \text{I}\left(\frac{\pi}{4}\right) = \frac{\tan\left(\frac{\pi}{4}\right)}{\left(\sin\frac{\pi}{4}\right)^{2022}} + C \\ \Rightarrow & 2^{1011} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2022}} + C \\ \Rightarrow & C = 2^{1011} - 2^{1011} = 0 \\ \therefore & \text{I}\left(x\right) = \frac{\tan x}{\sin\frac{2022}{x}} \end{split}$$

$$\therefore I\left(\frac{\pi}{3}\right) = \frac{\tan\frac{\pi}{3}}{\left(\sin\frac{\pi}{3}\right)^{2022}} = \frac{\sqrt{3}}{\left(\frac{\sqrt{3}}{2}\right)^{2022}}$$

$$I\left(\frac{\pi}{6}\right) = \frac{\frac{1}{\sqrt{3}}}{\left(\frac{1}{2}\right)^{2022}} = \frac{1}{\sqrt{3}} \times (2)^{2022}$$

From option (A),

$$3^{1010} \cdot I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right)$$

$$= 3^{1010} \cdot \sqrt{3} \cdot \left(\frac{2}{\sqrt{3}}\right)^{2022} - \frac{(2)^{2022}}{\sqrt{3}}$$

$$= 3^{1010} \cdot \sqrt{3} \times \frac{2^{2022}}{3^{1011}} - \frac{2^{2022}}{\sqrt{3}}$$

$$= \frac{2^{2022}}{\sqrt{3}} - \frac{2^{2022}}{\sqrt{3}} = 0$$

\_\_\_\_\_\_

### Question93

For any real number x, let [x] denote the largest integer less than equal to x. Let f be a real valued

function defined on the interval [-10, 10] by  $f(x) = \begin{cases} x-[x], & \text{if } [x] \text{ is odd} \\ 1+[x]-x, & \text{if } [x] \text{ is even} \end{cases}$ .

Then the value of  $\frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x dt$  is : [25-Jul-2022-Shift-1]

**Options:** 

A. 4

B. 2

C. 1

D. 0

Answer: A

#### **Solution:**

#### Solution:

Case 1:

Let  $0 \le x \le 1$ 

then  $[\boldsymbol{x}] = \boldsymbol{0}$  , which is even

$$: f(x) = 1 + [x] - x$$

$$= 1 + 0 - x$$

$$= 1 - x$$

Case 2:

Let  $1 \le x < 2$ 

then [x] = 1, which is odd

$$f(x) = x - [x]$$

= x - 1

Case 3:

Let  $2 \le x \le 3$  then [x] = 2, which is even

$$\begin{split} & \text{ if } (x) = 1 + [x] - x \\ & = 1 + 2 - x \\ & = 3 - x \\ & \text{Case 4:} \\ & \text{Let } 3 \leq x < 4 \\ & \text{then } [x] = 3 \text{ , which is odd} \\ & \text{ if } (x) = x - [x] \\ & = x - 3 \end{split}$$



 $\therefore f(x)$  is periodic and period of f(x) = 2

And period of 
$$\cos \pi x = \frac{2\pi}{\pi} = 2$$

 $\therefore$  Period of  $f(x) \cos \pi x = 2$ 

Now,  

$$I = \frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x \, dx$$

$$= \frac{\pi^2}{10} \int_{-10}^{10+10 \times 2} f(x) \cos \pi x \, dx$$

$$= \frac{\pi^2}{10} \int_{0}^{10 \times 2} f(x) \cos \pi x \, dx$$

$$= \frac{\pi^2}{10} \int_{0}^{10 \times 2} f(x) \cos \pi x \, dx$$

$$= \frac{\pi^2}{10} \times 10 \int_{0}^{2} f(x) \cos \pi x \, dx$$

$$= \pi^2 \int_{0}^{2} f(x) \cos \pi x \, dx$$

$$\exists I = \pi^{2} \left[ \int_{0}^{1} f(x) \cos \pi x \, dx + \int_{1}^{2} f(x) \cos \pi x \, dx \right]$$

$$= \pi^{2} \left[ \int_{0}^{1} (1 - x) \cos \pi x \, d \, x + \int_{1}^{2} (x - 1) \cos \pi x \, d \, x \right]$$

$$= \pi^2 \left[ \int_0^1 \cos \pi \, x \, d \, \, x - \int_0^1 x \cos \pi \, x \, d \, \, x + \int_1^2 x \cos \pi \, x \, d \, \, x - \int_1^2 \cos \pi \, x \, d \, \, x \right]$$

$$=\pi^{2}\left[\begin{array}{cc} \frac{1}{\pi}[\sin\pi\,x]_{0}^{-1} - \int_{0}^{1}x\cos\pi\,x\,d\,\,x + \int_{1}^{2}x\cos\pi\,x\,d\,\,x - \frac{1}{\pi}[\sin\pi\,x]_{1}^{-2} \end{array}\right]$$

$$= \pi^{2} \left[ 0 - \int_{0}^{1} x \cos \pi x \, d \, x + \int_{1}^{2} x \cos \pi x \, d \, x - 0 \right]$$

$$= \pi^{2} \left[ -\left[ x \frac{\sin \pi x}{\pi} + \frac{1}{\pi^{2}} \cos \pi x \right]_{0}^{1} + \left[ x \frac{\sin \pi x}{\pi} + \frac{1}{\pi^{2}} \cos \pi x \right]_{1}^{2} \right] \left[ As . \int x \cos \pi x \, dx = x \cdot \int \cos \pi x - \int \left( 1 . \frac{\sin \pi x}{\pi} \right) dx = x \cdot \frac{\sin \pi x}{\pi} + \frac{1}{\pi^{2}} \cos \pi x + c \right]_{1}^{2}$$

$$= \pi^{2} \left[ -\left[ \left( 1 . \sin \pi + \frac{1}{\pi^{2}} \cos \pi x \right) - \left( 0 + \frac{1}{\pi^{2}} \cos \pi x \right) \right]_{1}^{2} + \left[ \left( 2 . \sin 2\pi + \frac{1}{\pi^{2}} \cos 2\pi \right) - \left( 1 . \sin \pi + \frac{1}{\pi^{2}} \cos \pi x \right) \right]_{1}^{2} \right]_{1}^{2}$$

$$=\pi^2\left[-\left[\left.\left(1\cdot\frac{\sin\pi}{\pi}+\frac{1}{\pi^2}\cdot\cos\pi\right)-\left(0+\frac{1}{\pi^2}\cdot\cos0\right)\right.\right]+\left[\left.\left(2\cdot\frac{\sin2\pi}{\pi}+\frac{1}{\pi^2}\cos2\pi\right)-\left(1.\frac{\sin\pi}{\pi}+\frac{1}{\pi^2}\cos\pi\right)\right.\right]\right]$$

$$=\pi^2\left[-\left.\left\{\right.\left(-\frac{1}{\pi^2}\right)-\left(\right.\frac{1}{\pi^2}\right)\right.\right\} \\ \left.+\left.\left(\left.\left(+\frac{1}{\pi^2}\right)-\left(-\frac{1}{\pi^2}\right)\right.\right].$$

$$=\pi^2\left[-\left(-\frac{2}{\pi^2}\right)+\frac{2}{\pi^2}\right]$$

$$=\pi^2\left[\begin{array}{cc}\frac{2}{\pi^2}+&\frac{2}{\pi^2}\end{array}\right]$$

$$= \pi^2 \times \frac{4}{2}$$

### **Question94**

$$\lim_{n \to \infty} \frac{1}{2^n} \left( \frac{1}{\sqrt{1 - \frac{1}{2^n}}} + \frac{1}{\sqrt{1 - \frac{2}{2^n}}} + \frac{1}{\sqrt{1 - \frac{3}{2^n}}} + \dots + \frac{1}{\sqrt{1 - \frac{2^n - 1}{2^n}}} \right)$$

#### is equal to [25-Jul-2022-Shift-2]

**Options:** 

A. 
$$\frac{1}{2}$$

D. 
$$-2$$

Answer: C

#### **Solution:**

Solution:

$$I = \lim_{n \to \infty} \frac{1}{2^n} \left( \frac{1}{\sqrt{1 - \frac{1}{2^n}}} + \frac{1}{\sqrt{1 - \frac{2}{2^n}}} + \frac{1}{\sqrt{1 - \frac{3}{2^n}}} + \dots + \frac{1}{\sqrt{1 - \frac{2^n - 1}{2^n}}} \right)$$

Let  $2^n = t$  and if  $n \to \infty$  then  $t \to \infty$ 

$$I = \lim_{n \to \infty} \frac{1}{t} \left( \sum_{r=1}^{t-1} \frac{1}{\sqrt{1 - \frac{r}{t}}} \right)$$

$$\begin{split} I &= \int_{0}^{1} \frac{dx}{\sqrt{1-x}} = \int_{0}^{1} \frac{dx}{\sqrt{x}} \left( \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx. \right. \end{split}$$

$$= \left[ \frac{1}{2x} \right]_0^1 = 2$$

### **Question95**

Let |t| denote the greatest integer less than or equal to t. Then the value of the integral  $\int_{3}^{101} ([\sin(\pi x)] + e^{[\cos(2\pi x)]}) dx$  is equal to

[25-Jul-2022-Shift-2]

**Options:** 

A. 
$$\frac{52(1-e)}{e}$$

B. 
$$\frac{52}{e}$$

C. 
$$\frac{52(2+e)}{e}$$

D. 
$$\frac{104}{e}$$

Answer: B

#### **Solution:**

$$I = \int_{-3}^{101} ([\sin(\pi x)] + e^{[\cos(2\pi x)]}) dx$$

 $[\sin\pi\,x]$  is periodic with period 2 and  $e^{[\cos(2\pi x)]}$  is periodic with period 1 . So,

$$I = 52 \int_{0}^{2} ([\sin \pi x] + e^{[\cos 2\pi x]}) dx$$

$$= 52 \left\{ \int_{1}^{2} -1 dx + \int_{1}^{\frac{3}{4}} e^{-1} dx + \int_{0}^{\frac{7}{4}} e^{-1} dx + \int_{0}^{\frac{1}{4}} e^{0} dx + \int_{0}^{\frac{5}{4}} e^{0} dx + \int_{0}^{\frac{2}{4}} e^$$

### **Question96**

Let f be a twice differentiable function on C. If f'(0) = 4 and  $f(x) + \int_0^x (x - t)f'(t) dt = (e^{2x} + e^{-2x})\cos 2x + \frac{2}{a}x$ , then  $(2a + 1)^5 a^2$  is equal to \_\_\_\_ [25-Jul-2022-Shift-2]

| Answer: 8 |      |      |  |
|-----------|------|------|--|
|           |      |      |  |
|           | <br> | <br> |  |

### **Question97**

Let  $a_n = \int\limits_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx$  for every  $n \in N$ . Then the sum of all the elements of the set  $\{n \in N : a_n \in (2,30)\}$  is \_\_\_\_ [25-Jul-2022-Shift-2]

Answer: 5

#### **Solution:**

Solution:

$$\begin{split} & \text{$:} a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) d\, x \\ & = \left[x + \frac{x^2}{2^2} + \frac{x^3}{3^2} + \ldots + \frac{x^n}{n^2}\right]_{-1}^n \\ & a_n = \frac{n+1}{1^2} + \frac{n^2-1}{2^2} + \frac{n^3+1}{3^2} + \frac{n^4-1}{4^2} + \ldots + \frac{n^n+(-1)^{n+1}}{n^2} \\ & \text{Here, } a_1 = 2, \, a_2 = \frac{2+1}{1} + \frac{2^2-1}{2} = 3 + \frac{3}{2} = \frac{9}{2} \\ & a_3 = 4 + 2 + \frac{28}{9} = \frac{100}{9} \\ & a_4 = 5 + \frac{15}{4} + \frac{65}{9} + \frac{255}{16} > 31 \\ & \therefore \text{ The required set is } \{2,3\} . \ \because \ a_n \in (2,30) \\ & \therefore \text{ Sum of elements} = 5. \end{split}$$

-----

### **Question98**

If 
$$a = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2n}{n^2 + k^2}$$
 and  $f(x) = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$ ,  $x \in (0, 1)$ , then:

#### [26-Jul-2022-Shift-1]

**Options:** 

A. 
$$2\sqrt{2}f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$$

B. 
$$f\left(\frac{a}{2}\right)f'\left(\frac{a}{2}\right) = \sqrt{2}$$

C. 
$$\sqrt{2}f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$$

D. 
$$f\left(\frac{a}{2}\right) = \sqrt{2}f'\left(\frac{a}{2}\right)$$

Answer: C

### **Solution:**

$$\begin{split} a &= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2n}{n^2 + k^2} \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{2}{1 + \left(\frac{k}{n}\right)^2} \\ a &= \int_{0}^{1} \frac{2}{1 + x^2} dx = 2 tan^{-1} x \int_{0}^{1} = \frac{\pi}{2} \\ f(x) &= \sqrt{\frac{1 - \cos x}{1 + \cos x}}, x \in (0, 1) \\ f(x) &= \frac{1 - \cos x}{\sin x} = \csc x - \cot x \\ f'(x) &= \csc^2 x - \csc x \cot x \end{split}$$

### **Question99**

If  $n(2n+1)\int_{0}^{1} (1-x^{n})^{2n} dx = 1177\int_{0}^{1} (1-x^{n})^{2n+1} dx$ , then  $n \in \mathbb{N}$  is equal to \_\_\_\_\_. [26-Jul-2022-Shift-1]

Answer: 24

$$\begin{split} &\int_{0}^{1} (1-x^{n})^{2n+1} dx = \int_{0}^{1} 1 \cdot (1-x^{n})^{2n+1} dx \\ &= \left[ (1-x^{n})^{2n+1} \cdot x \right]_{0}^{1} - \int_{0}^{1} x \cdot (2n+1)(1-x^{n})^{2n} \cdot -nx^{n-1} dx \\ &= n(2n+1) \int_{0}^{1} (1-(1-x^{n}))(1-x^{n})^{2n} dx \\ &= n(2n+1) \int_{0}^{1} (1-x^{n})^{2n} dx - n(2n+1) \int_{0}^{1} (1-x^{n})^{2n+1} dx \end{split}$$

$$(1+n(2n+1))\int_{0}^{1} (1-x^{n})^{2n+1} dx = n(2n+1)\int_{0}^{1} (1-x^{n})^{2n} dx$$

$$(2n^{2}+n+1)\int_{0}^{1} (1-x^{n})^{2n+1} dx = 1177\int_{0}^{1} (1-x^{n})^{2n+1} dx$$

$$\therefore 2n^{2}+n+1 = 1177$$

$$2n^{2}+n-1176 = 0$$

$$\therefore n = 24 \text{ or } -\frac{49}{2}$$

$$\therefore n = 24$$

.....

### Question 100

$$\int_{0}^{20\pi} (|\sin x| + |\cos x|)^{2} dx \text{ is equal to}$$
[26-Jul-2022-Shift-2]

#### **Options:**

A. 
$$10(\pi + 4)$$

B. 
$$10(\pi + 2)$$

C. 
$$20(\pi - 2)$$

D. 
$$20(\pi + 2)$$

**Answer: D** 

#### **Solution:**

$$I = \int_{0}^{20\pi} (|\sin x| + |\cos x|)^{2} dx$$

$$= 20 \int_{0}^{\pi} (1 + |\sin 2x|) dx$$

$$= 40 \int_{0}^{\frac{\pi}{2}} (1 + \sin 2x) dx$$

$$= .40 \left( x - \frac{\cos 2x}{2} \right) \Big|_{0}^{\frac{\pi}{2}}$$

$$= 40 \left( \frac{\pi}{2} + \frac{1}{2} + \frac{1}{2} \right) = 20(\pi + 2)$$

\_\_\_\_\_

### Question101

Let  $f : \mathbb{R} \to \mathbb{R}$  be a function defined as

 $f(x) = a \sin\left(\frac{\pi[x]}{2}\right) + [2-x], a \in \mathbb{R}$  where [t] is the greatest integer less than or equal to t. If  $\lim_{x \to -1} f(x)$  exists, then the value of  $\int_0^4 f(x) dx$  is equal to [27-Jul-2022-Shift-1]

### **Options:**

- A. -1
- B. -2
- C. 1
- D. 2

**Answer: B** 

#### **Solution:**

$$\begin{split} &f(x) = a \sin\left(\frac{\pi[x]}{2}\right) + [2-x]a \in R \\ &\text{Now,} \\ & \vdots \lim_{\substack{x \to -1 \\ x \to -1^- \\ x \to -1^- \\ x \to -1^- \\ x \to -1^+ \\ }} f(x) \text{ exist } \\ & \vdots \lim_{\substack{x \to -1^- \\ x \to -1^- \\ x \to -1^+ \\ x \to -1$$

### Question 102

Let  $f(x) = 2 + |x| - |x - 1| + |x + 1|, x \in R$ . Consider

(S1): 
$$\mathbf{f}'\left(-\frac{3}{2}\right) + \mathbf{f}'\left(-\frac{1}{2}\right) + \mathbf{f}'\left(\frac{1}{2}\right) + \mathbf{f}'\left(\frac{3}{2}\right) = 2$$
  
(S2):  $\int_{-2}^{2} \mathbf{f}(\mathbf{x}) d\mathbf{x} = 12$ 

Then,

[27-Jul-2022-Shift-2]

#### **Options:**

A. both (S1) and (S2) are correct

B. both (S1) and (S2) are wrong

C. only (S1) is correct

D. only (S2) is correct

**Answer: D** 

### **Solution:**

#### Solution:

$$f(x) = 2 + |x| - |x-1| + |x+1|, x \in R$$

: Only (S2) is correct

\_\_\_\_\_\_

### Question 103

 $\int_{0}^{2} \left( |2x^{2} - 3x| + \left[ x - \frac{1}{2} \right] \right) dx$ , where [t] is the greatest integer function, is equal

to:

[27-Jul-2022-Shift-2]

**Options:** 

- A.  $\frac{7}{6}$
- B.  $\frac{19}{12}$
- C.  $\frac{31}{12}$
- D.  $\frac{3}{2}$

**Answer: B** 

### **Solution:**

Solution:

$$\begin{split} & \int_{0}^{2} \left| 2x^{2} - 3x \right| dx + \int_{0}^{2} \left[ x - \frac{1}{2} \right] dx \\ & = \int_{0}^{3/2} (3x - 2x^{2}) dx + \int_{3/2}^{2} (2x^{2} - 3x) dx + \int_{0}^{1/2} -1 dx + \int_{1/2}^{3/2} 0 dx + \int_{3/2}^{2} 1 dx \\ & = \left( \frac{3x^{2}}{2} - \frac{2x^{3}}{3} \right) \Big|_{0}^{3/2} + \left( \frac{2x^{3}}{3} - \frac{3x^{2}}{2} \right) \Big|_{3/2}^{2} - \frac{1}{2} + \frac{1}{2} \\ & = \left( \frac{27}{8} - \frac{27}{12} \right) + \left( \frac{16}{3} - 6 - \frac{27}{12} + \frac{27}{8} \right) \\ & = \frac{19}{12} \end{split}$$

\_\_\_\_\_

### Question104

Let  $f(x) = min\{[x-1], [x-2], ..., [x-10]\}$  where [t] denotes the greatest integer  $\leq t$ . Then  $\int_{0}^{10} f(x) dx + \int_{0}^{10} (f(x))^{2} dx + \int_{0}^{10} |f(x)| dx$  is equal to \_\_\_\_\_. [27-Jul-2022-Shift-2]

Answer: 385

### **Solution:**

Solution:

$$\begin{split} & \text{ ``f'}(x) = \min\{[x-1], [x-2], \dots, [x-10]\} = [x-10] \\ & \text{Also } |f(x)| = \left\{ \begin{array}{l} -f(x), & \text{if } x \leq 10 \\ f(x), & \text{if } x \geq 10. \end{array} \right. \\ & \text{ ``\int } f(x) dx + \int 0 (f(x))^2 dx + \int 0 (-f(x)) dx \\ & = \int 0 (f(x))^2 dx \\ & = 10^2 + 9^2 + 8^2 + \dots + 1^2 \\ & = \frac{10 \times 11 \times 21}{6} = 385 \end{split}$$

-----

### Question 105

Let f be a differentiable function satisfying  $f(x) = \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2}x}{3}\right) d\lambda$ , x > 0 and  $f(1) = \sqrt{3}$ . If y = f(x) passes through the point  $(\alpha, 6)$ , then  $\alpha$  is equal to  $\overline{[27-Jul-2022-Shift-2]}$ 

Answer: 12

### **Solution:**

Solution:

$$f(x) = \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} f\left(\frac{\lambda^{2}x}{3}\right) d\lambda, x > 0$$

On differentiating both sides w.r.t., x, we get

$$f'(x) = \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} \frac{\lambda^{2}}{3} f'\left(\frac{\lambda^{2}x}{3}\right) d\lambda$$

$$f'(x) = \frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} \lambda \cdot \frac{2\lambda}{3} f'\left(\frac{\lambda^2 x}{3}\right) d\lambda$$

$$\sqrt{3}xf'(x) = \sqrt{3}f(x) - \frac{\sqrt{3}}{2}f(x)$$

$$xf'(x) = \frac{f(x)}{2}$$

On integrating we get  $\ln y = \frac{1}{2} \ln x + \ln c$  :  $f(1) = \sqrt{3}$  then  $c = \sqrt{3}$ 

 $\therefore (\alpha, 6)$  lies on

∴y = 
$$\sqrt{3x}$$

$$\therefore 6 = \sqrt{3\alpha} \Rightarrow \alpha = 12$$

### Question 106

If 
$$\int_{0}^{\sqrt{3}} \frac{15x^3}{\sqrt{1+x^2+\sqrt{(1+x^2)^3}}} dx - \alpha\sqrt{2} + \beta\sqrt{3}$$
, where  $\alpha$ ,  $\beta$  are integers, then  $\alpha + \beta$  is equal to

## [28-Jul-2022-Shift-1]

Answer: 10

#### **Solution:**

Put 
$$x = \tan \theta \Rightarrow dx = \sec^2 \theta d\theta$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15\tan^{3}\theta \cdot \sec^{2}\theta d\theta}{\sqrt{1 + \tan^{2}\theta + \sqrt{\sec^{6}\theta}}}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15\tan^{2}\theta \sec^{2}\theta d\theta}{\sec\theta\sqrt{1 + \sec\theta}}$$

$$\Rightarrow I = \int_{0}^{\frac{\pi}{3}} \frac{15(\sec^{2}\theta - 1)\sec\theta\tan\theta\,d\,\theta}{(\sqrt{1 + \sec\theta})}$$

Now put 
$$1 + \sec\theta = t^2$$

$$\Rightarrow$$
 sec $\theta$  tan  $\theta$  d  $\theta$  = 2td t

$$\Rightarrow I = \int_{\sqrt{2}}^{\sqrt{3}} \frac{15((t^2 - 1)^2 - 1)2tdt}{t}$$

$$\Rightarrow$$
I = 30  $\int_{\sqrt{2}}^{\sqrt{3}} (t^4 - 2t^2 + 1 - 1)dt$ 

$$\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{2}} (t^4 - 2t^2) dt$$

$$\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{2}} (t^4 - 2t^2) dt$$
$$\Rightarrow I = 30 \int_{\sqrt{2}}^{\sqrt{3}} (t^4 - 2t^2) dt$$

$$\Rightarrow I = .30 \left( \frac{t^5}{5} - \frac{2t^3}{3} \right) \Big|_{\sqrt{2}} \sqrt{3}$$

$$= 30 \left[ \left( \frac{9}{5} \sqrt{3} - 2\sqrt{3} \right) - \left( \frac{4\sqrt{2}}{5} - \frac{4\sqrt{2}}{3} \right) \right]$$
$$= (54\sqrt{3} - 60\sqrt{3}) - (24\sqrt{2} - 40\sqrt{2})$$

$$= 16\sqrt{2} - 6\sqrt{3}$$
  

$$\therefore \alpha = 16 \text{ and } \beta = -6$$
  

$$\alpha + \beta = 10$$

\_\_\_\_\_\_

### Question 107

Let 
$$I_n(x) = \int_0^x \frac{1}{(t^2 + 5)^n} dt$$
,  $n = 1, 2, 3, ...$  Then: [28-Jul-2022-Shift-2]

#### **Options:**

A. 
$$50I_6 - 9I_5 - xI_5'$$

B. 
$$50I_6 - 11I_5 - xI_5'$$

C. 
$$50I_6 - 9I_5 - I_5'$$

D. 
$$50I_6 - 11I_5 - I_5'$$

**Answer: A** 

### **Solution:**

#### Solution:

$$I_{n}(x) = \int_{0}^{x} \frac{1}{(t^{2} + 5)^{n}} dt$$

$$= \int_{0}^{x} \frac{1}{(2_{1} + 5)^{n}} \times \int_{11}^{1} dt$$

$$= \frac{t}{(t^{2} + 5)^{n}} \Big|_{0}^{x} - \int_{0}^{x} \frac{-2nt}{(t^{2} + 5)^{n+1}} \times tdt$$

$$= \frac{x}{(x^{2} + 5)^{n}} + \int_{0}^{x} 2n \left( \frac{t^{2} + 5 - 5}{(t^{2} + 5)^{n+1}} \right) dt$$

$$I_{n}(x) = \frac{x}{(x^{2} + 5)^{n}} + 2nI_{n}(x) - 10nI_{n+1}(x)$$

$$10nI_{n+1}(x) - (2n-1)I_{n}(x) = xI_{n}'(x)$$
For  $n = 5$ 

$$50I_{6}(x) - 9I_{5}(x) = xI_{5}'(x)$$

------

### Question 108

# The value of the integral $\int_{0}^{\frac{\pi}{2}} 60 \frac{\sin(6x)}{\sin x} dx$ is equal to\_\_\_\_\_. [28-Jul-2022-Shift-2]

Answer: 104

### **Solution:**

Solution:

$$I = \int_{0}^{\frac{\pi}{2}} 60 \cdot \frac{\sin 6x}{\sin x} dx$$

$$= 60 \cdot 2 \int_{0}^{\frac{\pi}{2}} (3 - 4 \sin^{2}x)(4\cos^{2}x - 3) \cos x dx$$

$$= 120 \int_{0}^{\frac{\pi}{2}} (3 - 4 \sin^{2}x)(1 - 4 \sin^{2}x) \cos x dx$$
Let  $\sin x = t \Rightarrow \cos x dx = dt$ 

$$= 120 \int_{0}^{1} (3 - 4t^{2})(1 - 4t^{2}) dt$$

$$= 120 \int_{0}^{1} (3 - 16t^{2} + 16t^{4}) dt$$

$$= 120 \left[ 3t - \frac{16t^{3}}{3} + \frac{16t^{5}}{5} \right]_{0}^{1}$$

$$= 104$$

### Question109

The integral  $\int_0^{\frac{\pi}{2}} \frac{1}{3+2\sin x + \cos x} dx$  is equal to: [29-Jul-2022-Shift-1]

### **Options:**

A. 
$$tan^{-1}$$

B. 
$$tan^{-1}(2) - \frac{\pi}{4}$$

C. 
$$\frac{1}{2} \tan^{-1}(2) - \frac{\pi}{8}$$

D. 
$$\frac{1}{2}$$

**Answer: B** 

### **Solution:**

Solution:

$$I = \int_{0}^{\pi/2} \frac{1}{3+2\sin x + \cos x} dx$$

$$= \int_{0}^{\pi/2} \frac{(1+\tan^{2}x/2)dx}{3(1+\tan^{2}x/2) + 2(2\tan x/2) + (1-\tan^{2}x/2)}$$
Let  $\tan x/2 = t \Rightarrow \sec^{2}x/2dx = 2dt$ 

$$I = \int_{0}^{1} \frac{2dt}{4+2t^{2}+4t}$$

$$= \int_{0}^{1} \frac{dt}{t^{2}+2t+2} = \int_{0}^{1} \frac{dt}{(t+1)^{2}+1}$$

$$= .\tan^{-1}(t+1) \Big|_{0}^{1} = \tan^{-1}2 - \frac{\pi}{4}$$

\_\_\_\_\_

### **Question110**

If  $f(\alpha) = \int_{1}^{\alpha} \frac{\log_{10} t}{1+t} dt$ ,  $\alpha > 0$ , then  $f(e^3) + f(e^{-3})$  is equal to: [29-Jul-2022-Shift-1]

### **Options:**

A. 9

B.  $\frac{9}{2}$ 

C.  $\frac{9}{\log_{e}(10)}$ 

D.  $\frac{9}{2\log_{a}(10)}$ 

Answer: D

$$\begin{split} f(\alpha) &= \int\limits_{1}^{\alpha} \frac{\log_{10}t}{1+t} \, dt \dots (i) \\ f\left(\frac{1}{\alpha}\right) &= \int\limits_{1}^{\alpha} \frac{\log_{10}t}{1+t} \, dt \\ \text{Substituting } t &\to \frac{1}{p} \\ f\left(\frac{1}{\alpha}\right) &= \int\limits_{1}^{\alpha} \frac{\log_{10}\left(\frac{1}{p}\right)}{1+\frac{1}{p}} \left(\frac{-1}{p^2}\right) dp \\ &= \int\limits_{1}^{\alpha} \frac{\log_{10p}p}{p(p+1)} dp = \int\limits_{1}^{\alpha} \left(\frac{\log_{10}t}{t} - \frac{\log_{10}t}{t+1}\right) dt \dots (ii) \\ \text{By } (i) + (ii) \\ f(\alpha) + f\left(\frac{1}{\alpha}\right) &= \int\limits_{1}^{\alpha} \frac{\log_{10}t}{t} \, dt = \int\limits_{1}^{\alpha} \frac{\ln t}{t} \cdot \log_{10}e \, dt \\ &= \frac{(\ln \alpha)^2}{2\log_e 10} \\ \alpha = e^3 \Rightarrow f(e^3) + f(e^{-3}) = \frac{9}{2\log_e 10} \end{split}$$

\_\_\_\_\_

### **Question111**

If [t] denotes the greatest integer  $\leq t$ , then the value of  $\int_{0}^{1} [2x - |3x^{2} - 5x + 2| + 1] dx$  is: [29-Jul-2022-Shift-2]

**Options:** 

A. 
$$\frac{\sqrt{37} + \sqrt{13} - 4}{6}$$

B. 
$$\frac{\sqrt{37} - \sqrt{13} - 4}{6}$$

C. 
$$\frac{-\sqrt{37}-\sqrt{13}+4}{6}$$

D. 
$$\frac{-\sqrt{37} + \sqrt{13} + 4}{6}$$

Answer: A

$$\begin{split} I &= \int_{0}^{1} [2x - 13x^{2} - 3x - 2x + 2 \mid +1] dt \\ I &= \int_{0}^{1} [2x - |(3x - 2)(x - 1)|] dt + \int_{0}^{1} 1 dt \\ I &= \int_{0}^{2/3} [(2x - (3x^{2} - 5x + 2))] dt + \int_{2/3}^{1} (2x + (3x^{2} - 5x + 2)) dt + 1 \\ I &= \int_{0}^{2/3} [-3x^{2} + 7x - 2] dt + \int_{2/3}^{1} (3x^{2} - 3x + 2) dt + 1 \end{split}$$



$$=-2\alpha-\left(\frac{1}{3}-\alpha\right)+\frac{2}{3}-\beta=-\alpha-\beta+\frac{1}{3}$$

$$y = 3x^2 - 3x + 2$$



When 
$$x \in \left(\frac{2}{3}, 1\right)$$

$$3x^2 - 3x + 2 \in \left(\frac{4}{3}, 2\right)$$

$$[3x^2 - 3x + 2] = 1$$

$$\therefore \int_{2/3}^{1} [3x^2 - 3x + 2] dt = 1 \left(1 - \frac{2}{3}\right) = \frac{1}{3}$$

Hence 
$$I=\left(\begin{array}{c} \frac{1}{3}-(\alpha+\beta) \right)+\left(\begin{array}{c} \frac{1}{3} \end{array}\right)+1$$

$$= \frac{5}{3} - \left(\frac{7 - \sqrt{37}}{6} + \frac{7 - \sqrt{13}}{6}\right)$$
$$= \frac{-2}{3} + \frac{\sqrt{37} + \sqrt{13}}{6}$$

$$= \frac{3}{\sqrt{37} + \sqrt{13} - 4}$$

$$= \frac{\sqrt{37} + \sqrt{13} - 4}{6}$$

### Question112

The integral  $\int \frac{e^{3\log_e 2x} + 5e^{2\log_e 2x}}{e^{4\log_e x} + 5e^{3\log_e x} - 7e^{2\log_e x}} dx$ , x > 0, is equal to (where, c is a constant of integration) [25 Feb 2021 Shift 2]

### **Options:**

A. 
$$\log_{e} x^2 + 5x - 7 \mid +c$$

B. 
$$4\log_e x^2 + 5x - 7 + c$$

C. 
$$\frac{1}{4}\log_{e} x^{2} + 5x - 7 + c$$

D. 
$$\log_e \sqrt{x^2 + 5x - 7} + c$$

Answer: B

#### **Solution:**

#### Solution:

Foliation:
$$I = \int \frac{e^{3\log_e(2x)} + 5e^{2\log_e(2x)}}{e^{4\log_e(x)} + 5e^{3\log_e(x)} - 7e^{2\log_e(x)}} dx$$

$$= \int \frac{e^{\log_e(2x)^3} + 5e^{\log_e(2x)^2}}{e^{\log_e(2x)^3} + 5e^{\log_e(2x)^2}} dx$$
[using property a log  $x = \log x^a$ ]
$$= \int \frac{8x^3 + 5(2x)^2}{x^4 + 5(x)^3 - 7x^2} dx \quad \text{[using property a}^{\log_a x} = x\text{]}$$

$$= \int \frac{8x^3 + 20x^2}{x^4 + 5x^3 - 7x^2} dx = \int \frac{4x^2(2x + 5)}{x^2(x^2 + 5x - 7)} dx$$

$$= \int \frac{4(2x + 5)}{x^2 + 5x + 7} dx$$
Let  $x^2 + 5x - 7 = t$ , then  $(2x + 5)dx = dt$ 

$$I = \int \frac{4dt}{t} = 4\log_e t + c$$
Put  $t = x^2 + 5x - 7$ 

$$I = 4\log_e |x^2 + 5x - 7| + C$$

\_\_\_\_\_

### Question113

The value of the integral

$$\int \frac{\sin\theta \sin 2\theta (\sin^6\theta + \sin^4\theta + \sin^2\theta)}{1 - \cos 2\theta} \sqrt{\frac{2\sin^4\theta + 3\sin^2\theta + 6}{1 - \cos 2\theta}} d\theta$$

## is (where, c is a constant of integration) [25 Feb 2021 Shift 1]

### **Options:**

A. 
$$\frac{1}{18}[11 - 18\sin^2\theta + 9\sin^4\theta - 2\sin^6\theta]^{\frac{3}{2}} + c$$

B. 
$$\frac{1}{18}[9-2\cos^6-\theta 3\cos^4\theta-6\cos^2\theta]^{\frac{3}{2}}+c$$

C. 
$$\frac{1}{18}[9 - 2\sin^6\theta - 3\sin^4\theta - 6\sin^2\theta]^{\frac{3}{2}} + c$$

D. 
$$\frac{1}{18}[11 - 18\cos^2\theta + 9\cos^4\theta - 2\cos^6\theta]^{\frac{3}{2}} + c$$

**Answer: D** 

### **Solution:**

### Solution:

Let

$$\int \left[ \frac{\sin\theta \cdot \sin2\theta (\sin^6\!\theta + \sin^4\!\theta + \sin^2\!\theta) \,\, \sqrt{2\!\sin^4\!\theta + 3\!\sin^2\!\theta + 6}}{1 - \cos2\,\theta} \, \right] d\theta$$

$$\sin 2 A = 2 \sin A \cos A$$

and 
$$1 - \cos 2 A = 2\sin^2 A \sin \theta \cdot 2\sin \theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)$$

$$I = \int \frac{\sqrt{2\sin^4\theta + 3\sin^2\theta + 6}}{2\sin^2\theta} d\theta$$

$$I = \int \cos \theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)$$

$$\sqrt{2\sin^4\theta + 3\sin^2\theta + 6}d\theta$$

$$= \int (t^6 + t^4 + t^2) \sqrt{2t^4 + 3t^2 + 6} dt$$

$$= \int (t^5 + t^3 + t) \sqrt{2t^6 + 3t^4 + 6t^2} dt$$

Let 
$$2t^6 + 3t^4 + 6t^2 = z$$

$$dz = (12t^5 + 12t^3 + 12t)dt$$

$$dz = 12(t^5 + t^3 + t)dt$$

Now, 
$$\frac{1}{12} \int \sqrt{z} dz = \frac{1}{12} \times \frac{z^{3/2}}{3/2} + c$$

$$=\frac{1}{18}z^{3/2}+c$$

$$=\frac{1}{18}[2t^6+3t^4+6t^2]^{3/2}+c$$

$$= \frac{1}{18} [2\sin^6\theta + 3\sin^4\theta + 6\sin^2\theta]^{3/2} + c$$

$$= \frac{1}{18} [(1 - \cos^2 \theta) \{2(1 - \cos^2 \theta)^3 + 3 - 3\cos^2 \theta + 6\}]^{3/2} + c$$

$$= \frac{1}{18} [(1 - \cos^2 \theta)(2\cos^4 \theta - 7\cos^2 \theta + 11)]^{3/2} + c$$

$$= \frac{1}{18} [-2\cos^6 \theta + 9\cos^4 \theta - 18\cos^2 \theta + 11]^{3/2} + c$$

$$= \frac{1}{18} [11 - 18\cos^2 \theta + 9\cos^4 \theta - 2\cos^6 \theta]^{3/2}$$

-----

### **Question114**

For x > 0, if  $f(x) = \int_{1}^{x} \frac{\log_{e} t}{(1+t)} dt$ , then  $f(e) + f\left(\frac{1}{e}\right)$  is equal to [26 Feb 2021 Shift 2]

### **Options:**

A. 1

B. -1

C.  $\frac{1}{2}$ 

D. 0

**Answer: C** 

### **Solution:**

#### Solution:

$$f(x) = \int_{1}^{x} \frac{\log_{e} t}{(1+t)} dt$$

Then, 
$$f(e) = \int_{1}^{elog_e t} \frac{dt}{1+t}$$
...(i)

and 
$$f\left(\frac{1}{e}\right) = \int_{1}^{e} \frac{\log_{e} t}{1+t} dt$$
 . . . . (ii)

Let 
$$t = \frac{1}{u}$$
,  $dt = \frac{-1}{u^2} du$  and put in Eq. (ii), we get

$$f\left(\frac{1}{e}\right) = \int_{1}^{e} \frac{\log\left(\frac{1}{u}\right)}{1+\frac{1}{u}} \cdot \frac{-1}{u^{2}} du = \int_{1}^{e} \frac{\log u}{u(u+1)} du$$

Using change of variable

$$f\left(\begin{array}{c} \frac{1}{e} \end{array}\right) = \int\limits_{1}^{e} \, \frac{\log t}{t(t+1)} d\,t \, \ldots \, \text{(iii)}$$

From Eqs. (i) and (iii), we get

$$f(e) + f\left(\frac{1}{e}\right) = \int_{1}^{e} \frac{\log t}{1+t} dt + \int_{1}^{e} \frac{\log t}{t(1+t)} dt = \int_{1}^{e \log t} \frac{gt}{t}$$

Take  $\log t = v$ , then  $\frac{1}{t}dt = dv$ 

$$f(e) + f(\frac{1}{e}) = \int_{0}^{1} v dv = \left[\frac{v^{2}}{2}\right]_{0}^{1} = \frac{1}{2}$$

$$\therefore f(e) + f\left(\frac{1}{e}\right) = \frac{1}{2}$$

\_\_\_\_\_

### **Question115**

If  $I_{m \cdot n} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ , for m,  $n \ge 1$  and  $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \alpha I_{m \cdot n}$ ,  $\alpha \in \mathbb{R}$ , then  $\alpha$  equals \_\_\_\_\_. [26 Feb 2021 Shift 2]

Answer: 1

### **Solution:**

#### Solution:

Given, 
$$I_{mn} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

Using substitution put  $x = \frac{1}{t+1}$ 

Then, 
$$dx = \frac{-1}{(t+1)^2} dt$$

$$I_{mn} = \int_{\infty}^{0} (-1) \frac{1}{(t+1)^{m-1}} \cdot \frac{t^{n-1}}{(t+1)^{n-1}} \cdot \frac{1}{(t+1)^{2}} dt$$
$$= -\int_{\infty}^{0} \frac{t^{n-1}}{(t+1)^{m+n}} dt...(i)$$

Similarly,

$$I_{mn} = \int_{0}^{1} x^{n-1} (1-x)^{m-1} dx...$$
 (ii)

$$\Rightarrow I_{mn} = \int_{0}^{\infty} \frac{t^{m-1}}{(t+1)^{m+n}}$$

From Eqs. (i) and (ii), we get

$$2I_{mn} = \int_{0}^{\infty} \frac{t^{n-1} + t^{m-1}}{(t+1)^{m+n}} dt$$

$$2I_{mn} = \int_{0}^{1t^{n-1} + t^{m-1}} \frac{dt}{(t+1)^{m+n}} + \int_{1}^{\infty} \frac{t^{n-1} + t^{m-1}}{(t+1)^{m+n}} dt \text{ Let } I_{1} = \int_{1}^{\infty} \frac{t^{n-1} + t^{m-1}}{(t+1)^{m+n}} dt$$

Let 
$$t = \frac{1}{z}$$
, then  $dt = \frac{-1}{z^2}dz$ 

$$I_{1} = \int_{1}^{0} (-1) \frac{\left(\frac{1}{z}\right)^{n-1} + \left(\frac{1}{z}\right)^{m-1}}{\left(\frac{1}{z} + 1\right)^{m+n}} \cdot \frac{1}{z^{2}} dz = -\int_{1}^{0} \frac{z^{n-1} + z^{m-1}}{(z+1)^{m+n}} dz$$

$$21_{mn} = \int_{0}^{1t^{n-1} + t^{m-1}} \frac{dt}{(t+1)^{m+n}} dt$$

$$-\int_{1}^{0} \frac{z^{n-1} + z^{m-1}}{(z+1)^{m+n}} dz$$

$$= 2 \int_{0}^{1t^{m-1} + t^{n-1}} \frac{(t+1)}{(t+1)^{m+n}} dt$$

$$\Rightarrow \alpha = 1$$

### Question116

The value of  $\sum_{n=1}^{100} \int_{n}^{n} e^{x-[x]} dx$ , where [x] is the greatest integer  $\leq x$ , is [26 Feb 2021 Shift 1]

#### **Options:**

A. 100(e-1)

B. 100(1-e)

C. 100e

D. 100(1+e)

Answer: A

### **Solution:**

Let 'x' be any real number, then  $x = [x] + \{x\}$ , where [x] is integer part of x and  $\{x\}$  is fractional part of x.

Then,  $x - [x] = \{x\}$ , Also period of  $\{x\} = 1$ Now,  $\sum_{n=1}^{100} \int_{n-1}^{n} e^{x-[x]} dx = \sum_{n=1}^{100} \int_{n-1}^{n} e^{[x]} dx$ [Difference between upper and lower limit is 1 unit]

$$= \int_{0}^{1} e^{[x]} dx + \int_{1}^{2} e^{\{x\}} dx + \dots + \int_{99}^{100} e^{[x]} dx$$

$$= e^{x} \int_{0}^{1} + e^{(x-1)} \int_{1}^{2} + \dots + e^{(x-99)} \int_{99}^{100}$$

$$= (e-1) + (e-1) + \dots + (e-1) = 100(e-1)$$

### Question117

The value of  $\int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1+3^x} dx$  is [26 Feb 2021 Shift 1]

### **Options:**

- A.  $\frac{\pi}{4}$
- B.  $4\pi$
- C.  $\frac{\pi}{2}$
- D.  $2\pi$

**Answer: A** 

### **Solution:**

#### Solution:

Let I = 
$$\int_{-\pi/2}^{\pi} \frac{\cos^2 x}{1+3^x} dx$$
 ... (i)

Using the property,  $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$ 

$$I = \int_{-\pi/2}^{\pi/2} \frac{\cos^2(\pi/2 - \pi/2)}{1 + 3^{\pi/2 - \pi/2}}$$

$$= \int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1 + 3^{-x}} dx \quad [\because \cos(-x) = \cos x]$$

$$I = \int_{-\pi/2}^{\pi/2} \frac{3^x \cos^2 x}{(1 + 3^x)} dx \dots (ii)$$
Adding Eqs. (i) and (ii),

$$2I = \int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1+3^x} dx + \int_{-\pi/2}^{\pi/2} \frac{3^x \cos^2 x}{1+3^x} dx$$

$$= \int_{-\pi/2}^{\pi/2} \frac{(1+3^x)\cos^2 x}{1+3^x} dx = \int_{-\pi/2}^{\pi/2} \cos^2 x dx$$

$$= \int_{-\pi/2}^{\pi/2} \frac{1+\cos 2x}{2} dx$$

$$= \frac{1}{2} \left[ x + \frac{\sin 2x}{2} \right]_{-\pi/2}^{\pi/2} = \frac{1}{2} [\pi]$$

$$\Rightarrow 2I = \pi/2 \Rightarrow I = \frac{\pi}{4}$$

### **Question118**

The value of the integral  $\int_{0}^{\pi} \left| \sin 2x \right| dx$  is .......... [26 Feb 2021 Shift 1]

**Answer: 2** 

### **Solution:**

#### Solution:

Let 
$$I = \int_0^{\pi} \left| \sin 2x \right| dx$$
  

$$= 2 \int_0^{\pi/2} \left| \sin 2x \right| dx \quad [\because \sin 2x \text{ is periodic function }]$$

$$= 2 \int_0^{\pi/2} \sin 2x dx [\sin 2x \text{ is positive in range } (0, \pi/2)]$$

$$= 2 \left[ \frac{-\cos 2x}{2} \right]_0^{\pi/2}$$

$$= -[\cos \pi - \cos 0] = -(-1 - 1) = 2$$

$$I = 2$$

\_\_\_\_\_

### **Question119**

Answer: 19

### **Solution:**

#### Solution:

$$\begin{split} & \int_{-2}^{2} \left| 3x^{2} - 3x - 6 \right| dx = I \text{ (say)} \\ & I = 3 \int_{-2}^{2} \left| x^{2} - x - 2 \right| dx \\ & = 3 \left[ \int_{-2}^{-1} (x^{2} - x - 2) dx + \int_{-1}^{2} (-x^{2} + x + 2) dx \right] \\ & = 3 \left[ \left( \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x \right)^{-1} - \left( \frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x \right)^{2} \right] \\ & = 19 \end{split}$$

\_\_\_\_\_\_

### Question120

# If I<sub>n</sub> = $\int_{\pi/4}^{\pi/2} \cot^n x dx$ , then [25 Feb 2021 Shift 2]

#### **Options:**

A. 
$$\frac{1}{I_2+I_4}$$
,  $\frac{1}{I_3+I_5}$ ,  $\frac{1}{I_4+I_6}$  are in AP

B. 
$$I_2 + I_4$$
,  $I_3 + I_5$ ,  $I_4 + I_6$  are in AP

C. 
$$\frac{1}{I_2+I_4}$$
,  $\frac{1}{I_3+I_5}$ ,  $\frac{1}{I_4+I_6}$  are in GP

D. 
$$I_2 + I_4$$
,  $(I_3 + I_5)^2$ ,  $I_4 + I_6$  are in GP

#### Answer: A

### **Solution:**

#### Solution:

$$I_{n} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n} x d x = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x (\cot^{2} x) d x$$

$$I_{n} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2}x \csc^{2}x dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2}x dx$$

$$I_n + I_{n-2} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \cdot \csc^2 x dx$$

Now, let  $\cot x = t$ , then  $\csc^2 x dx = -dt$ , limit will be

$$I_{n} + I_{n-2} = \int_{1}^{0} -t^{n-2} dt$$

$$= \frac{-(t)^{n-1}}{n-1} J_{1}^{0} = -\left\{ \frac{0}{n-1} - \frac{(1)^{n-1}}{n-1} \right\}$$

$$I_n + I_{n-2} = \frac{1}{n-1}$$

Now, put 
$$n = 4$$

$$\Rightarrow I_2 + I_4 = \frac{1}{3}$$
, then  $\frac{1}{I_2 + I_4} = 3 \dots$  (i)

Put 
$$n = 5$$

$$\Rightarrow I_5 + I_3 = \frac{1}{4}$$
, then  $\frac{1}{I_2 + I_5} = 4$ ... (ii)

Put 
$$n = 6$$

$$\Rightarrow$$
  $I_6 + I_4 = \frac{1}{5}$ , then  $\frac{1}{I_4 + I_6} = 5$ ... (iii)

\_\_\_\_\_\_

### **Question121**

The value of  $\int_{-1}^{1} x^2 e^{[x^3]} dx$ , where [t] denotes the greatest integer  $\leq t$ , is [25 Feb 2021 Shift 1]

#### **Options:**

- A.  $\frac{e-1}{3e}$
- B.  $\frac{e+1}{3}$
- C.  $\frac{e+1}{3e}$
- D.  $\frac{1}{3e}$

**Answer: C** 

### **Solution:**

#### Solution:

Given,  $\int\limits_{-1}^{1}x^{2}e^{\left[ x^{3}\right] }d\,x,$  where [t] is greatest integer function.

$$\therefore [x^3] = 0 \ \forall x \in (0, 1)$$

and 
$$[x^3] = -1 \ \forall x \in (-1, 0)$$

So, 
$$\int_{-1}^{1} x^{2} e^{[x^{3}]} dx = \int_{-1}^{0} x^{2} e^{-1} dx + \int_{0}^{1} x^{2} e^{0} dx$$
$$= \frac{1}{e} \int_{-1}^{0} x^{2} dx + \int_{0}^{1} x^{2} dx = \frac{1}{e} \times \left[ \frac{x^{3}}{3} \right]_{-1}^{0} + \left[ \frac{x^{3}}{3} \right]_{0}^{1}$$
$$= \frac{1}{e} \times \left[ 0 + \frac{1}{3} \right] + \left[ \frac{1}{3} \right] = \frac{1}{3e} + \frac{1}{3} = \left( \frac{1+e}{3e} \right)$$

\_\_\_\_\_\_

### Question122

Let f(x) be a differentiable function defined on [0, 2], such that f'(x) = f'(2-x), for all  $x \in (0, 2)$ , f(0) = 1 and  $f(2) = e^2$ . Then, the value of

## $\int_{0}^{2} f(x) dx is$ [24 Feb 2021 Shift 2]

#### **Options:**

A. 
$$1 - e^2$$

B. 
$$1 + e^2$$

C. 
$$2(1-e^2)$$

D. 
$$2(1+e^2)$$

**Answer: B** 

#### **Solution:**

### Solution:

```
Given, f(0) = 1 ... (i)
f(2) = e^2 ... (ii)
f'(x) = f'(2-x)
Integrating w.r.t. x,
f(x) = -f(2-x) + C
Put x = 0
f(0) = -f(2) + C
\Rightarrow 1 = -e^2 + C [from Eqs. (i) and (ii)]
\Rightarrow C = 1 + e^2
 f(x) = -f(2-x) + 1 + e^2
 or f(x) + f(2-x) = 1 + e^2 \dots (iii)
 Let I = \int_{0}^{2} f(x)dx . . . (iv)
Also, I = \int_{0}^{2} f(2-x)dx...(v)
Now, adding Eqs. (iv) and (v),
2I = \int_{0}^{2} [f(x) + f(2 - x)] dx
2I = \int_{0}^{2} (1 + e^{2}) dx [from Eq. (iii)]
2I = 2(1 + e^2)
I = (1 + e^2)
```

\_\_\_\_\_

### Question123

The value of the integral  $\int_{1}^{3} [x^2 - 2x - 2] dx$ , where [x] denotes the greatest integer less than or equal to x, is

### [24 Feb 2021 Shift 2]

### **Options:**

A. 
$$-\sqrt{2} - \sqrt{3} + 1$$

B. 
$$-\sqrt{2} - \sqrt{3} - 1$$

$$C. -5$$

**Answer: B** 

### **Solution:**

#### Solution:

Let 
$$I = \int_{1}^{3} [x^2 - 2x - 2] dx$$
  

$$= \int_{1}^{3} [x^2 - 2x + 1 - 3] dx = \int_{1}^{3} (x - 1)^2 - 3 dx$$

$$= \int_{1}^{3} [(x - 1)^2] dx + \int_{1}^{3} - 3 dx$$
Put  $x - 1 = t$ ;  $dx = dt$ , when  $x = 1$ ,  $t = 0$  and  $x = 3$ ,  $t = 2$   

$$\therefore I = -3[x]_{1}^{3} + \int_{0}^{2} [t^2] dt$$

$$= -6 + \int_{0}^{1} 0 dt + \int_{1}^{\sqrt{2}} 1 dt + \int_{\sqrt{2}}^{\sqrt{3}} 2 dt + \int_{\sqrt{3}}^{2} 3 dt$$

$$= -6 + (0) + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3})$$

$$= -6 + \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$$

$$I = -1 - \sqrt{2} - \sqrt{3}$$

\_\_\_\_\_

### **Question124**

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{\int_0^{x^2} (\sin \sqrt{t}) dt}{x^3}$$
 is equal to:

### 24 Feb 2021 Shift 1

### **Options:**

A. 
$$\frac{2}{3}$$

B. 
$$\frac{3}{2}$$

C. 0

D. 
$$\frac{1}{15}$$

Answer: A

### **Solution:**

Solution:

$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{3}} = \lim_{x \to 0^{+}} \frac{(\sin x)2x}{3x^{2}}$$
$$= \lim_{x \to 0^{+}} \left(\frac{\sin x}{x}\right) \times \frac{2}{3} = \frac{2}{3}$$

\_\_\_\_\_

### **Question125**

If  $\int_{-a}^{a} (|x|+|x-2|) dx = 22$ , (a > 2) and [x] denotes the greatest integer  $\le x$ , then  $\int_{a}^{a} (x+[x]) dx$  is equal to \_\_\_\_ 24 Feb 2021 Shift 1

**Answer: 3** 

### **Solution:**

Solution:

$$\int_{-a}^{a} (-2x+2)dx + \int_{0}^{2} (x+2-x)dx + \int_{2}^{a} (2x-2)dx = 22$$

$$\Rightarrow x^{2} - 2x \Big|_{0}^{-a} + 2x \Big|_{0}^{2} + x^{2} - 2x \Big|_{2}^{a} = 22$$

$$\Rightarrow a^{2} + 2a + 4 + a^{2} - 2a - (4-4) = 22$$

$$\Rightarrow 2a^{2} = 18 \Rightarrow a = 3$$

$$\therefore \int_{3}^{-3} (x+[x])dx = -(-3-2-1+1+2) = 3$$

\_\_\_\_\_

### Question126

The integral  $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$  is equal to (where, c is a constant of integration)

integration)
[18 Mar 2021 Shift 1]

**Options:** 

A. 
$$\frac{1}{2}\sin\sqrt{(2x-1)^2+5}+c$$

B. 
$$\frac{1}{2}\cos\sqrt{(2x+1)^2+5}+c$$

C. 
$$\frac{1}{2}\cos\sqrt{(2x-1)^2+5}+c$$

D. 
$$\frac{1}{2}\sin\sqrt{(2x+1)^2+5}+c$$

Answer: A

### **Solution:**

Solution:

Let I = 
$$\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$$
  
=  $\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{(2x-1)^2+5}} dx$ 

Putting 
$$(2x-1)^2 + 5 = z^2$$

$$\Rightarrow 2(2x-1) \times 2 \cdot dx = 2zdz$$

$$\Rightarrow$$
  $(2x-1)dx = \frac{1}{2}zdz$ 

$$I = \int \frac{\cos z}{z} \cdot \frac{1}{2} z \cdot dz = \frac{1}{2} \int \cos z \, dz = \frac{1}{2} \sin z + C$$

$$= \frac{1}{2} \sin \sqrt{(2x-1)^2 + 5} + c$$

[Note You can also substitute  $\sqrt{(2x-1)^2+5}=z$  and then proceed.]

-----

### Question127

If  $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$ ,  $(x \ge 0)$ , f(0) = 0 and  $f(1) = \frac{1}{K}$  then the value of K is [18 Mar 2021 Shift 1]

**Answer: 4** 

#### **Solution:**

#### Solution:

Let 
$$I = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$$
  

$$= \int \frac{5x^8 + 7x^6}{x^{14}(x^{-5} + x^{-7} + 2)^2} dx$$

$$= \int \frac{5x^8 + 7x^6}{x^{14}} dx$$

$$= \int \frac{5x^{-6} + 7x^{-8}}{x^{14}} dx$$

$$\Rightarrow I = \int \frac{5x^{-6} + 7x^{-8}}{(x^{-5} + x^{-7} + 2)^2} dx$$
Putting  $x^{-5} + x^{-7} + 2 = z$   

$$\Rightarrow -(5x^{-6} + 7x^{-8}) dx = dz$$

$$\therefore I = -\int \frac{dz}{z^2} = -\left(\frac{1}{-z}\right) + c$$

$$\Rightarrow \Rightarrow I = \frac{1}{x^{-5} + x^{-7} + 2} + c$$

$$\Rightarrow f(x) = \frac{x^7}{x^2 + 1 + 2x^7} + c$$
Given,  $f(0) = 0$   

$$\Rightarrow c = 0$$

$$\therefore f(x) = \frac{x^7}{x^2 + 1 + 2x^7}$$

$$\therefore f(1) = \frac{1}{1 + 1 + 2}$$

$$= \frac{1}{4} = \frac{1}{K}$$
Hence,  $K = 4$ .

\_\_\_\_\_\_

### Question128

#### Answer: 6

### **Solution:**

$$\begin{split} \text{Let I} &= \int \frac{(x^2-1) + \tan^{-1}\left(\frac{x^2+1}{x}\right)}{(x^4+3x^2+1)\tan^{-1}\left(\frac{x^2+1}{x}\right)} dx \\ \Rightarrow & I = \int \frac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\frac{x^2+1}{x}\right)} dx + \int \frac{1}{x^4+3x^2+1} dx \\ \text{Again let I}_1 &= \int \frac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\frac{x^2+1}{x}\right)} dx \\ \text{and} & I_2 &= \int \frac{dx}{x^4+3x^2+1} \\ & \therefore & I = I_1 + I_2, \dots, (i) \\ \text{Now, I}_1 &= \int \frac{(x^2-1)}{(x^4+3x^2+1)\tan^{-1}\left(\frac{x^2+1}{x}\right)} dx \\ \text{Let } \tan^{-1}\left(\frac{x^2+1}{x}\right) &= t \\ \Rightarrow & \frac{x^2-1}{(x^4+3x^2+1)} dx = dt \\ & \therefore I_1 &= \int \frac{dt}{t} = \log \left| t \right| + C_1 = \log \left| \tan^{-1}\left(\frac{x^2+1}{x}\right) \right| + C_1 \\ I_2 &= \int \frac{1}{x^4+3x^2+1} dx = \frac{1}{2} \int \frac{(x^2+1) - (x^2-1)}{x^4+3x^2+1} dx \\ &= \frac{1}{2} \int \frac{x^2+1}{x^4+3x^2+1} dx - \frac{1}{2} \int \frac{x^2-1}{x^4+3x^2+1} dx \\ &= \frac{1}{2} \int \frac{1+1/x^2}{x^2+3+\frac{1}{x^2}} dx - \frac{1}{2} \int \frac{1-1/x^2}{x^2+3+\frac{1}{x^2}} dx \\ I_2 &= \frac{1}{2} \int \frac{1+\frac{1}{x^2}}{(x-\frac{1}{x})^2+5} dx - \frac{1}{2} \int \frac{1-1/x^2}{(x+\frac{1}{x})^2+1} dx \\ &= \frac{1}{2\sqrt{5}} \tan^{-1}\left(\frac{x^2-1}{\sqrt{5x}}\right) - \frac{1}{2} \tan^{-1}\left(\frac{x^2+1}{\sqrt{5x}}\right) + C_2 \\ I &= \log \left| \tan^{-1}\left(\frac{x^2+1}{x}\right) \right| + \frac{1}{2\sqrt{5}} \tan^{-1}\left(\frac{x^2-1}{\sqrt{5x}}\right) - \frac{1}{2} \tan^{-1}\left(\frac{x^2+1}{x}\right) + C \text{ (given)} \end{aligned}$$

$$\begin{array}{l} \therefore \quad \alpha=1, \, \beta=\frac{1}{2\sqrt{5}}\gamma=\frac{1}{\sqrt{5}} \text{ and } \delta=-\frac{1}{2} \\ \therefore \text{ Required value of } 10(\alpha+\beta\gamma+\delta) \\ =10\left(1+\frac{1}{10}-\frac{1}{2}\right) \\ =10\left(\frac{10+1-5}{10}\right) \\ =6 \end{array}$$

\_\_\_\_\_\_

### Question129

Answer: 512

### **Solution:**

Given, 
$$f(x^2) + g(4 - x) = 4x^3$$
  
and  $g(4 - x) + g(x) = 0$   
Let  $I = \int_{-4}^{4} f(x^2) dx$   
 $= 2 \int_{0}^{4} f(x^2) dx$   
 $\Rightarrow I = 2 \cdot \int_{0}^{4} [4x^3 - g(4 - x)] dx$   
 $= 8 \int_{0}^{4} x^3 dx - 2 \int_{0}^{4} g(4 - x) dx$   
 $= 8 \left(\frac{x^4}{4}\right)_{0}^{4} - 2I_1 = 2(4^4 - 0^4) - 2I_1$   
 $= 2^9 - 2I_1$   
where,  $I_1 = \int_{0}^{4} g(4 - x) dx$   
Now,  $I_1 = \int_{0}^{4} g(4 - x) dx$ ....(i)  
 $\Rightarrow I_1 = \int_{0}^{4} g \left[4 - (0 + 4 - x)] dx \left[ \because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$   
 $\Rightarrow I_1 = \int_{0}^{4} g(x) = dx$ ...(ii)  
Adding Eqs. (i) and (ii),

$$2l_{1} = \int_{0}^{4} [g(x) + g(4 - x)] dx$$

$$\Rightarrow 2I_{1} = 0$$

$$\Rightarrow 1_{1} = 0 \quad (\because g(x) + g(4 - x) = 0, \text{ given })$$

$$\therefore I = 2^{9} - 2I_{1}$$

$$\Rightarrow I = 2^{9} = 512$$

\_\_\_\_\_

### Question130

Let P(x) be a real polynomial of degree 3 which vanishes at x = -3. Let P(x) have local minima at x = 1, local maxima at x = -1 and  $\int_{-1}^{1} P(x) dx = 18$ , then the sum of all the coefficients of the polynomial P(x) is equal to [18 Mar 2021 Shift 2]

**Answer: 8** 

#### **Solution:**

#### Solution:

Let 
$$P'(x) = a(x-1)(x+1)$$
  
 $\Rightarrow P'(x) = a(x^2-1)$   
 $\therefore P(x) = a \int (x^2-1) dx \Rightarrow P(x) = a \left(\frac{x^3}{3} - x\right) + C$   
According to the question,  $P(-3) = 0$   
 $a \left(-\frac{27}{3} + 3\right) + C = 0$   
 $\Rightarrow -6a + C = 0...(i)$   
Now,  $\int_{-1}^{1} \left(a \left(\frac{x^3}{3} - x\right) + C\right) dx = 18$  (given)  
 $\Rightarrow 2C = 18$   
 $\Rightarrow C = 9...(ii)$   
From Eqs. (i) and (ii),  
 $-6a + 9 = 0 \Rightarrow a = \frac{3}{2}$   
 $\therefore P(x) = \frac{3}{2} \left(\frac{x^3}{3} - x\right) + 9$   
 $\therefore$  Sum of the all coefficient  $= \frac{1}{2} - \frac{3}{2} + 9 = 8$ 

\_\_\_\_\_\_

### Question131

Which of the following statements is correct for the function  $g(\alpha)$  for  $\alpha \in R$ , such that  $g(\alpha) = \int\limits_{\pi/6}^{\pi/3} \frac{\sin^{\alpha}x}{\cos^{\alpha}x + \sin^{\alpha}x} dx$  [17 Mar 2021 Shift 1]

### **Options:**

- A.  $g(\alpha)$  is a strictly increasing function
- B.  $g(\alpha)$  has an inflection point at  $\alpha = -\frac{1}{2}$
- C.  $g(\alpha)$  is a strictly decreasing function
- D.  $g(\alpha)$  is an even function

**Answer: D** 

#### **Solution:**

Solution:

$$\begin{split} g(\alpha) &= \int\limits_{\pi/6}^{\pi/3} \frac{\sin^{\alpha}x}{\cos^{\alpha}x + \sin^{\alpha}x} d \ x...(i) \\ \text{Applying } \int\limits_{a}^{b} f(x) d \ x &= \int\limits_{a}^{b} f(a + b - x) d \ x \\ g(\alpha) &= \int\limits_{\pi/6}^{\pi/3} \frac{\sin^{\alpha}(\pi/2 - x)}{\cos^{\alpha}\left(\frac{\pi}{2} - x\right) + \sin^{\alpha}\left(\frac{\pi}{2} - x\right)} d \ x \\ g(\alpha) &= \int\limits_{\pi/6}^{\pi/3} \frac{\cos^{\alpha}x}{\cos^{\alpha}x + \sin^{\alpha}x} d \ x.....(ii) \\ \text{Adding Eqs. (i) and (ii),} \\ 2g(\alpha) &= \int\limits_{\pi/6}^{\pi/3} \frac{\sin^{\alpha}x + \cos^{\alpha}x}{\sin^{\alpha}x + \cos^{\alpha}x} d \ x \\ 2g(\alpha) &= \int\limits_{\pi/6}^{\pi/3} 1 \cdot d \ x = [x]_{\pi/6}^{\pi/3} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \\ \therefore \ g(\alpha) &= \frac{\pi}{12} \end{split}$$

 $g(\alpha)$  is constant function.

: It is even function.

## Question 132

Let  $f: R \to R$  be defined as  $f(x) = e^{-x} \sin x$ . If  $F: [0, 1] \to R$  is a differentiable function, such that  $F(x) = \int_0^x f(t) dt$ , then the value of  $\int_0^1 [F'(x) + f(x)] e^x dx$  lies in the interval [17 Mar 2021 Shift 2]

### **Options:**

A. 
$$\left[ \frac{327}{360}, \frac{329}{360} \right]$$

B. 
$$\left[ \frac{330}{360}, \frac{331}{360} \right]$$

C. 
$$\frac{331}{360}$$
,  $\frac{334}{360}$ 

D. 
$$\left[ \frac{335}{360}, \frac{336}{360} \right]$$

**Answer: B** 

### **Solution:**

#### Solution:

Given, 
$$f(x) = e^{-x} \cdot \sin x$$

and 
$$F(x) = \int_{0}^{x} f(t)dt$$

 $rac{1}{2}$ F (x) is differentiable function.

$$\therefore F'(x) = f(x) \times 1 - f(0) \times 0$$
 (using Newton-Leibnitz rule)

$$\Rightarrow$$
 F'(x) = f(x)...(i)

Let 
$$I = \int_{0}^{1} [F'(x) + f(x)]e^{x} dx$$

$$= \int_{0}^{1} [f(x) + f(x)]e^{x} dx = \int_{0}^{1} 2 \cdot f(x) \cdot e^{x} dx [\text{ from Eq. (i) }]$$

$$\Rightarrow I = 2 \cdot \int_{0}^{1} f(x) \cdot e^{x} dx$$

$$=2\cdot\int\limits_0^1 e^{-x}\sin x\cdot e^x dx$$

$$=2\int_{0}^{1}\sin x \, dx = 2[-\cos x]_{0}^{1}$$

$$= 2[-(\cos 1 - \cos 0)] = 2(1 - \cos 1)$$

$$\Rightarrow 1 = 2 \cdot \left[ 1 - \left( 1 - \frac{(1)^2}{2!} + \frac{(1)^4}{4!} - \frac{(1)^6}{6!} + \frac{(1)^8}{8!} - \dots \right] \right]$$

[using expansion of cos x i.e.,

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots 1$$

$$I = 2\left[1 - 1 + \frac{1}{2!} - \frac{1}{4!} + \frac{1}{6!} - \frac{1}{8!} + \dots\right]$$

$$\Rightarrow I = 2\left(\frac{1}{2} - \frac{1}{24} + \frac{1}{720} - ...\right)$$

Now, I 
$$< 2\left(\frac{1}{2} - \frac{1}{24} + \frac{1}{720}\right)$$

$$\Rightarrow I < \left(1 - \frac{1}{12} + \frac{1}{360}\right) \Rightarrow I < \frac{360 - 30 + 1}{360}$$

$$\Rightarrow I < \frac{331}{360}...(ii)$$

Also, I > 2 
$$\left(\frac{1}{2} - \frac{1}{24}\right) \Rightarrow$$
 I >  $\left(1 - \frac{1}{12}\right)$   
 $\Rightarrow$  I >  $\frac{11}{12} \Rightarrow$  I >  $\frac{11 \times 30}{12 \times 30}$   
 $\Rightarrow$  I >  $\frac{330}{360}$  ....(iii)  
From Eqs. (ii) and (iii), we get  $\frac{330}{360} < 1 < \frac{331}{360}$ 

\_\_\_\_\_\_

### Question133

If the integral  $\int_{0}^{10} \frac{[\sin 2\pi x]}{e^{x-[x]}} dx = \alpha e^{-1} + \beta e^{-\frac{1}{2}} + \gamma$ , where  $\alpha$ ,  $\beta$ ,  $\gamma$  are integers and [x] denotes the greatest integer less than or equal to x, then the value of  $\alpha + \beta + \gamma$  is equal to [17 Mar 2021 Shift 2]

#### **Options:**

A. 0

B. 20

C. 25

D. 10

Answer: A

### **Solution:**

#### Solution:

Let 
$$I = \int_{0}^{10} \frac{[\sin 2\pi x]}{e^{x-[x]}} dx$$
  

$$\Rightarrow I = \int_{0}^{10} \frac{[\sin 2\pi x]}{e^{\{x\}}} dx \quad [\because x - [x] = \{x\}]$$

From above integrand, we observe that  $\frac{[\sin 2\pi x]}{e^{[x]}}$  is a periodic function with period ' 1 '.

$$\therefore I = 10 \int_0^1 \frac{\left[\sin 2\pi x\right]}{e^{[x]}}$$

[by the property of definite integral,

$$\int_{0}^{nT} f(x)dx = n \int_{0}^{T} f(x)dx$$

where f(x) is a periodic function with period = T ]

$$\Rightarrow I = 10 \cdot \int_{0}^{1} \frac{[\sin 2\pi x]}{e^{x}} dx \ [\because \{x\} = x, 0 \le x < 1]$$

$$\Rightarrow I = 10 \left( \int_{0}^{1/2} \frac{[\sin 2\pi x]}{e^{x}} dx + \int_{1/2}^{1} \frac{[\sin 2\pi x]}{e^{x}} dx \right)$$

$$\Rightarrow I = 10 \left( \int_0^{1/2} \frac{0}{e^x} dx + \int_{1/2}^1 \frac{(-1)}{e^x} dx \right)$$

$$\Rightarrow I = 10 \left( 0 - \int_{1/2}^{1} e^{-x} dx \right) \Rightarrow I = -10 \left[ \frac{e^{-x}}{-1} \right]_{1/2}^{1}$$



$$\Rightarrow I = 10[e^{-1} - e^{-1/2}] \Rightarrow I = 10e^{-1} - 10e^{-\frac{1}{2}}$$

$$\Rightarrow I = 10e^{-1} + (-10) \cdot e^{-\frac{1}{2}} + 0...(i)$$

$$\Rightarrow I = 10e^{-1} + (-10) \cdot e^{\frac{-1}{2}} + 0...(i)$$

Comparing Eq. (i) by  $\alpha e^{-1} + \beta e^{-\frac{1}{2}} + \gamma$ , we get

$$\alpha = 10$$
,  $\beta = -10$  and  $\gamma = 0$ 

Hence, 
$$\alpha + \beta + \gamma = 10 - 10 + 0$$

$$\Rightarrow \alpha + \beta + \gamma = 0$$

### Question 134

Let  $I_n = \int_1^c x^{19} (\log |x|)^n dx$ , where  $n \in N$ . If (20)  $I_{10} = \alpha I_9 + \beta I_8$ , for natural numbers  $\alpha$  and  $\beta$ , then  $\alpha - \beta$  is equal to .............. [17 Mar 2021 Shift 2]

Answer: 1

### **Solution:**

Given, 
$$I_n = \int_{1}^{e} x^{19} (\log |x|)_{dx}^{n}$$

$$\Rightarrow I_{n} = \left[ \frac{x^{20}}{20} (\ln|x|^{n}]_{1}^{e} - \int_{1}^{e} n \cdot \frac{(\ln|x|)^{n-1}}{x} \cdot \frac{x^{20}}{20} dx \right]$$

(using integration by parts) 
$$\Rightarrow I_n = \frac{e^{20}}{20} - \frac{n}{20} \int_1^e (\ln |x|)^{n-1} \cdot x^{19} dx$$
 
$$\Rightarrow I_n = \frac{e^{20}}{20} - \frac{n}{20} \cdot I_{n-1} \Rightarrow 20I_n + nI_{n-1} = e^{20}$$
 Put  $n = 10$  and  $n = 9$ , we get 
$$20I_{10} + 10I_9 = e^{20}...(i)$$
 and 
$$20I_9 + 9I_8 = e^{20}....(ii)$$
 From Eqs. (i) and (ii), 
$$20I_{10} - 10I_9 - 9I_8 = 0$$
 
$$\Rightarrow 20I_{10} = 10I_9 + 9I_8$$
 comparing this to 
$$20(I_{10}) = \alpha I_9 + \beta I_8$$
, we get 
$$\alpha = 10, \beta = 9$$

\_\_\_\_\_

### Question135

 $\therefore \alpha - \beta = 1$ 

Let 
$$f:(0,2)\to R$$
 be defined as  $f(x)=\log_2\left[1+\tan\left(\frac{\pi x}{4}\right)\right]$  Then, 
$$\lim_{\substack{lim\\n\to\infty}}\frac{2}{n}\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+...+f(1)\right] \text{ is equal to......}$$
 [16 Mar 2021 Shift 1]

Answer: 1

### **Solution:**

$$\begin{split} &f(x) = \log_2 \left[ \ 1 + \tan \left( \frac{\pi x}{4} \right) \ \right] \\ &\text{Then,} \quad = \lim_{n \to \infty} \frac{2}{n} \left[ \ f \left( \frac{1}{n} \right) + f \left( \frac{2}{n} \right) + \ldots + f(1) \ \right] = 2 \lim_{n \to \infty} \sum_{r=1}^n \left( \frac{1}{n} \right) f \left( \frac{r}{n} \right) \\ &\text{Let } 1 = \frac{2}{\log_n 2} \int_0^1 \log_n \left[ \ 1 + \tan \left( \frac{\pi x}{4} \right) \ \right] dx \ \ldots . (i) \\ &\text{as,} \quad \int_a^b f(x) dx = \int_a^b f(a + b - x) dx \\ &\text{So,} \ x \to 1 - x \\ &1 = \frac{2}{\log_n 2} \int_0^1 \log_n \left[ \ 1 + \tan \frac{\pi}{4} (1 - x) \ \right] dx \\ &= \frac{2}{\log_n 2} \int_0^1 \log_n \left[ \ 1 + \tan \left( \frac{\pi}{4} - \frac{\pi x}{4} \right) \ \right] dx \end{split}$$

$$\begin{split} &= \frac{2}{\log_{n} 2} \int_{0}^{1} \log_{n} \left[ 1 + \left( \frac{1 - \tan \pi \, x \, / \, 4}{1 + \tan \pi \, x \, / \, 4} \right) \right] d \, x \\ &= \frac{2}{\log_{n} 2} \int_{0}^{1} \log_{n} \left( \frac{2}{1 + \tan \frac{\pi x}{4}} \right) d \, x \\ &= \frac{2}{\log_{n} 2} \int_{0}^{1} \log_{n} 2 - \log_{n} \left( 1 + \tan \frac{\pi x}{4} \right) d \, x .....(ii) \\ &= \frac{2}{\log_{n} 2} \int_{0}^{1} \log_{n} 2 - \log_{n} \left( 1 + \tan \frac{\pi x}{4} \right) d \, x .....(ii) \\ &= \frac{2}{\log_{n} 2} \int_{0}^{1} \log_{n} 2 d \, x \\ &= 1 \end{split}$$

-----

### **Question136**

If the normal to the curve  $y(x) = \int_0^x (2t^2 - 15t + 10)dt$  at a point (a, b) is parallel to the line x + 3y = -5, a > 1, then the value of |a + 6b| is equal to........ [16 Mar 2021 Shift 1]

Answer: 406

### **Solution:**

Given, 
$$y(x) = \int_{0}^{x} (2t^{2} - 15t + 10)dt$$
  
 $\Rightarrow y'(x) = 2x^{2} - 15x + 10$   
Since equation of normal is parallel to  $x + 3y = -5$   
 $\therefore$  Slope of normal to  $y(x) =$  Slope of lime  
 $\Rightarrow \frac{-1}{[y'(x)]_{a,b}} = \frac{-1}{3}$   
or  $[y'(x)]_{a,b} = 3$   
 $2a^{2} - 15a + 10 = 3$   
 $\Rightarrow 2a^{2} - 15a + 7 = 0$   
 $\Rightarrow (2a - 1)(a - 7) = 0$   
 $a = \frac{1}{2}$  or  $7$   
As,  $a > 1$ , so,  $a = 7$   
Now,  $(7, b)$  lies on  $y(x)$ ,  
 $\therefore b = \int_{0}^{a} (2t^{2} - 5t + 10)dt$   
 $\Rightarrow b = \frac{2}{3}a^{3} - \frac{15}{2}a^{2} + 10a$ 

⇒ 
$$b = \frac{2}{3}(7)^3 - \frac{15}{2}(7)^2 + 10(7)$$
  
⇒  $b = \frac{-413}{6}$   
So,  $a + 6b = 7 - 6\left(\frac{413}{6}\right) = -406$   
∴  $|a + 6b| = 406$ 

\_\_\_\_\_

### Question137

Let  $f: R \to R$  be a continuous function such that f(x) + f(x+1) = 2, for all  $x \in R$ . If  $I_1 = \int_0^8 f(x) dx$  and  $I_2 = \int_{-1}^3 f(x) dx$ , then the value of  $I_1 + 2I_2$  is equal to........... [16 Mar 2021 Shift 1]

Answer: 16

### **Solution:**

### Solution: Given, f(x) + f(x+1) = 2....(i) $I_1 = \int_0^8 f(x)$ and $I_2 = \int_{-1}^{3} f(x) dx$ Let f(0) = aPut x = 0 in Eq. (i) f(0) + f(1) = 2f(1) = 2 - aPut x = 1 in Eq. (i) f(1) + f(2) = 2f(2) = a and so on So, f(0) = f(2) = f(4)... = af(1) = f(3) = f(5)... = 2 - aClearly, f(x) is periodic with its period 2 units. So, $I_1 = \int_{0}^{24} f(x) dx$ $\Rightarrow I_1 = 4 \int_0^2 f(x) dx$ Now, $I_2 = \int_{-1}^{3} f(x)dx$ $x \rightarrow x + 1$ $I_2 = \int_0^4 f(x+1)dx = \int_0^4 [2-f(x)]dx$

$$\Rightarrow I_2 = 8 - 2 \int_0^2 f(x) dx$$

$$\Rightarrow 2I_2 = 16 - 4 \int_0^2 f(x) dx$$

$$\Rightarrow 2I_2 = 16 - I_1$$

$$\therefore I_1 + 2I_2 = 16$$

\_\_\_\_\_\_

### Question138

Consider the integral  $I = \int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$  where [x] denotes the greatest integer less than or equal to x. Then, the value of / is equal to [16 Mar 2021 Shift 2]

### **Options:**

A. 9(e-1)

B. 45(e+1)

C. 45(e-1)

D. 9(e+1)

**Answer: C** 

### **Solution:**

We have, 
$$\int_{0}^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$$

$$= e \int_{0}^{10} \frac{[x]e^{[x]}}{e^{x}} dx$$

$$= e \int_{0}^{1} \frac{0}{e^{x}} dx + e \int_{1}^{2} \frac{e}{e^{x}} dx + e \int_{2}^{3} \frac{2e^{2}}{e^{x}} dx + ...$$

$$\Rightarrow \int_{a}^{b} e^{-x} dx = \frac{e^{-x}}{-1} \Big|_{a}^{b} \Rightarrow (e^{-a} - e^{-b})$$

$$\Rightarrow e^{2} \left( \frac{1}{e} - \frac{1}{e^{2}} \right) + 2e^{3} \left( \frac{1}{e^{2}} - \frac{1}{e^{3}} \right) + 3e^{4} \left( \frac{1}{e^{3}} - \frac{1}{e^{4}} \right) + ... + 9e^{10} \left( \frac{1}{e^{9}} - \frac{1}{e^{10}} \right)$$

$$= (e - 1) + 2(e - 1) + 3(e - 1) + ... + 9(e - 1)$$

$$= (1 + 2 + 3 + ... + 9)(e - 1) = \left( \frac{9 \times 10}{2} \right)(e - 1)$$

$$= 45(e - 1)$$

### Question139

Let the domain of the function  $f(x) = \log_4(\log_5(\log_3(18x - x^2 - 77)))$  be (a, b)Then the value of the integral  $\int_a^b \frac{\sin^3 x}{(\sin^3 x + \sin^3(a+b-x))} dx$  is equal to \_\_\_\_\_. [27 Jul 2021 Shift 1]

**Answer: 1** 

#### **Solution:**

#### Solution:

For domain  $\log_5(\log_3(18x - x^2 - 77)) > 0$   $\log_3(18x - x^2 - 77) > 1$   $18x - x^2 - 77 > 3$   $x^2 - 18x + 80 < 0$   $x \in (8, 10)$   $\Rightarrow a = 8 \text{ and } b = 10$   $I = \int_a^b \frac{\sin^3 x}{\sin^3 x + \sin^3 (a + b - x)} dx$   $I = \int_a^b \frac{\sin^3 (a + b - x)}{\sin^3 x + \sin^3 (a + b - x)}$   $2I = (b - a) \Rightarrow I = \frac{b - a}{2} \ (\because a = 8 \text{ and } b = 10)$   $I = \frac{10 - 8}{2} = 1$ 

\_\_\_\_\_

### **Question140**

The value of  $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} \frac{(2j-1)+8n}{(2j-1)+4n}$  is equal to : [27 Jul 2021 Shift 1]

**Options:** 

A. 
$$5 + \log_e\left(\frac{3}{2}\right)$$

B. 
$$2 - \log_e\left(\frac{2}{3}\right)$$

C. 
$$3 + 2\log_{e}(\frac{2}{3})$$

D. 
$$1 + 2\log_{e}(\frac{3}{2})$$

**Answer: D** 

## **Solution:**

Solution:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{\left(\frac{2j}{n} - \frac{1}{n} + 8\right)}{\left(\frac{2j}{n} - \frac{1}{n} + 4\right)}$$

$$\int_{0}^{1} \frac{2x + 8}{2x + 4} dx = \int_{0}^{1} dx + \int_{0}^{1} \frac{4}{2x + 4} dx$$

$$= 1 + 4\frac{1}{2}(\ln|2x + 4|) \Big|_{0}^{1}$$

$$= 1 + 2\ln\left(\frac{3}{2}\right)$$

# **Question141**

The value of the definite integral

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)}$$
 is equal to:
[27 Jul 2021 Shift 1]

# [27 Jul 2021 Shift 1]

**Options:** 

A. 
$$-\frac{\pi}{2}$$

B. 
$$\frac{\pi}{2\sqrt{2}}$$

C. 
$$-\frac{\pi}{4}$$

D. 
$$\frac{\pi}{\sqrt{2}}$$

**Answer: B** 

$$\frac{\pi}{\frac{4}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \dots (1)$$
Using  $\int_a^b f(x) dx = \int_a^b f(a + b - x) dx$ 

$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{-x \cos x})(\sin^4 x + \cos^4 x)} \dots (2)$$
Add (1) and (2)
$$2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{\sin^4 x + \cos^4 x}$$

$$2I = 2 \int_0^{\frac{\pi}{4}} \frac{dx}{\sin^4 x + \cos^4 x}$$

$$I = \int_0^{\frac{\pi}{4}} \frac{(1 + \tan^2 x) \sec^2 x}{\tan^4 x + 1} dx$$

$$I = \int_0^{\frac{\pi}{4}} \left(1 + \frac{1}{\tan^2 x}\right) \sec^2 \frac{x}{(\tan x - \frac{1}{\tan x})^2 + 2} dx$$

$$\tan x - \frac{1}{\tan x} = t$$

$$\left(1 + \frac{1}{\tan^2 x}\right) \sec^2 x dx = dt$$

$$I = \int\limits_{-\infty}^{0} \frac{d\,t}{t^2 + 2} = \left[\,\frac{1}{\sqrt{2}} tan^{-1} \!\left(\,\frac{t}{\sqrt{2}}\,\right)\,\right]_{-\infty}^{\phantom{-0}}$$

$$I = 0 - \frac{1}{\sqrt{2}} \left( -\frac{\pi}{2} \right) = \frac{\pi}{2\sqrt{2}}$$

\_\_\_\_\_

# Question142

The value of the definite integral  $\int_{\pi/24}^{5\pi/24} \frac{dx}{1 + \sqrt[3]{\tan 2x}}$  is [25 Jul 2021 Shift 1]

A. 
$$\frac{\pi}{3}$$

B. 
$$\frac{\pi}{6}$$

C. 
$$\frac{\pi}{12}$$

D. 
$$\frac{\pi}{18}$$

**Answer: C** 

## **Solution:**

Solution:

Let 
$$I = \int_{\pi/24}^{5\pi/24} \frac{(\cos 2x)^{1/3}}{(\cos 2x)^{1/3} + (\sin 2x)^{1/3}} dx$$
 ......(i)  

$$\Rightarrow I = \int_{\pi/24}^{5\pi/24} \frac{\left(\cos\left(\frac{\pi}{4} - x\right)\right)^{\frac{1}{3}}}{\left(\cos\left(\frac{\pi}{4} - x\right)\right)^{\frac{1}{3}} + \left(\sin\left(\frac{\pi}{4} - x\right)\right)^{\frac{1}{3}}} dx$$

$$\begin{cases} \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \\ \int_{a}^{b} f(x) dx = \int_{a}^{5\pi/24} \frac{(\sin 2x)^{1/3}}{(\sin 2x)^{1/3} + (\cos 2x)^{1/3}} dx ......(ii) \end{cases}$$
So  $I = \int_{\pi/24}^{5\pi/24} \frac{(\sin 2x)^{1/3}}{(\sin 2x)^{1/3} + (\cos 2x)^{1/3}} dx ......(ii)$ 
Hence  $2I = \int_{\pi/24}^{5\pi/24} dx$ 

$$[(i) + (ii)]$$

$$\Rightarrow 2I = \frac{4\pi}{24} \Rightarrow I = \frac{\pi}{12}$$

# Question143

The value of the integral  $\int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) dx$  is: [25 Jul 2021 Shift 2]

## **Options:**

- A. 2
- B. 0
- C. -1
- D. 1

**Answer: B** 

Solution:

Let 
$$I = \int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) dx$$
  
 $\because \log(x + \sqrt{x^2 + 1})$  is an odd function  
 $\therefore I = 0$ 

\_\_\_\_\_

# Question144

If  $\int_{0}^{100\pi} \frac{\sin^2 x}{\left(\frac{x}{\pi}\left[\frac{x}{\pi}\right]\right)} dx = \frac{\alpha\pi^3}{1+4\pi^2}$ ,  $\alpha \in \mathbb{R}$  where [x] is the greatest integer less than or equal

to x, then the value of  $\alpha$  is : [22 Jul 2021 Shift 2]

## **Options:**

A. 
$$200(1-e^{-1})$$

B. 
$$100(1-e)$$

C. 
$$50(e-1)$$

D. 
$$150(e^{-1}-1)$$

Answer: A

## **Solution:**

$$\begin{split} & I = \int\limits_{0}^{100\pi} \frac{\sin^2 x}{e^{(x/\pi)}} d\, x = 100 \int\limits_{0}^{\pi} \frac{\sin^2 x}{e^{x/\pi}} d\, x \\ & 100 \int\limits_{0}^{\pi} e^{-x/\pi} \frac{(1-\cos 2\, x)}{2} d\, x \\ & = 50 \, \left\{ \int\limits_{0}^{\pi} e^{-x/\pi} d\, x - \int\limits_{0}^{\pi} e^{-x/\pi} \cos 2\, x \, d\, x \, \right\} \\ & I_{1} = \int\limits_{0}^{\pi} e^{-x/\pi} d\, x = \left[ -\pi e^{-x/\pi} \right]_{0}^{\pi} \, = \pi (1-e^{-1}) \\ & I_{2} = \int\limits_{0}^{\pi} e^{-x/\pi} \cos 2\, x \, d\, x \\ & = -\pi e^{-x/\pi} \cos 2\, x \, d\, x \\ & = -\pi e^{-x/\pi} \cos 2\, x \, J_{0}^{\pi} - \int -\pi e^{-x/\pi} (-2\sin 2\, x) d\, x \\ & = \pi (1-e^{-1}) - 2\pi \int\limits_{0}^{\pi} e^{-x/\pi} \sin 2\, x \, d\, x \\ & = \pi (1-e^{-1}) - 2\pi \{ -\pi e^{-x/\pi} \sin 2\, x \, J_{0}^{\pi} - \int\limits_{0}^{\pi} -\pi e^{-x/\pi} 2\cos 2\, x d\, x \, \right\} \, = \pi (1-e^{-1}) - 4\pi^{2} I_{2} \\ \Rightarrow I_{2} = \frac{\pi (1-e^{-1})}{1+4\pi^{2}} \end{split}$$

# **Question145**

# The value of the integral $\int_{-1}^{1} \log_{e}(\sqrt{1-x} + \sqrt{1+x}) dx$ is equal to : [20 Jul 2021 Shift 1]

## **Options:**

A. 
$$\frac{1}{2}\log_{e} 2 + \frac{\pi}{4} - \frac{3}{2}$$

B. 
$$2\log_e 2 + \frac{\pi}{4} - 1$$

C. 
$$\log_e 2 + \frac{\pi}{2} - 1$$

D. 
$$2\log_e 2 + \frac{\pi}{2} - \frac{1}{2}$$

**Answer: B** 

## **Solution:**

Let I = 
$$2\int_{0}^{1} \ln(\sqrt{1-x} + \sqrt{1+x}) 1 d x$$
  
∴I =  $2[(x \cdot \ln(\sqrt{1-x} + \sqrt{1-x}))_{0}^{-1} - \int_{0}^{1} x \cdot (\frac{1}{\sqrt{1-x} + \sqrt{1+x}}) \cdot (\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}) d x$   
=  $2(\ln \sqrt{2} - 0) - \frac{2}{2} \int_{0}^{1} \frac{x\sqrt{1-x} - \sqrt{1+x} d x}{(\sqrt{1-x} + \sqrt{1+x})\sqrt{1-x^{2}}}$   
=  $(\log_{e} 2) - \int_{0}^{1} \frac{x \cdot (2 - 2\sqrt{1-x^{2}})}{-2x\sqrt{1-x^{2}}} d x$  (After rationalisation)  
=  $(\log_{e} 2) + \int_{0}^{1} (\frac{1 - \sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}) d x$   
=  $(\log_{e} 2) + (\sin^{-1} x)_{0}^{-1} - 1$   
=  $\log_{e} 2 + (\frac{\pi}{2} - 0) - 1$   
∴I =  $(\log_{e} 2) + \frac{\pi}{2} - 1$   
⇒ Option (3) is correct.

$$\therefore I = (\log_e 2) + \frac{\pi}{2} - 1$$

# **Question146**

Let a be a positive real number such that  $\int_0^a e^{x-[x]} dx = 10e-9$  where [x] is the greatest integer less than or equal to x. Then a is equal to: [20 Jul 2021 Shift 1]

## **Options:**

A. 
$$10 - \log_{e}(1 + e)$$

B. 
$$10 + \log_{e} 2$$

C. 
$$10 + \log_{e} 3$$

D. 
$$10 + \log_{e}(1 + e)$$

Answer: B

#### **Solution:**

#### Solution:

$$\begin{array}{ll} a>0 \\ \text{Let } n\leq a \leq n+1, \, n \ \in W \\ \\ \therefore a= \begin{bmatrix} a \end{bmatrix} \qquad +\{a\} \\ \\ \Downarrow \qquad \qquad \Downarrow \end{array}$$

G.I.F Fractional part

Here [a] = nNow, 
$$\int_{0}^{a} e^{x-[x]} dx = 10e - 9$$
  

$$\Rightarrow \int_{0}^{n} e^{\{x\}} dx + \int_{n}^{a} e^{x-[x]} dx = 10e - 9$$

$$\therefore n \int_{0}^{1} e^{x} dx + \int_{n}^{a} e^{x-n} dx = 10e - 9$$

$$\Rightarrow n(e-1) + (e^{a-n} - 1) = 10e - 9$$

$$\therefore n = 0 \text{ and } \{a\} = \log_{e} 2$$
So,  $a = [a] + \{a\} = (10 + \log_{e} 2)$ 

\_\_\_\_\_\_

# Question147

⇒ Option (2) is correct.

If [x] denotes the greatest integer less than or equal to x, then the value of the integral  $\int_{-\pi/2}^{\pi/2} [[x] - \sin x] dx$  is equal to :

# [20 Jul 2021 Shift 2]

## **Options:**

A.  $-\pi$ 

Β. π

C. 0

D. 1

Answer: A

## **Solution:**

#### Solution:

$$I = \int \frac{\pi}{2} ([x] + [-\sin x]) dx \dots (1)$$

$$\frac{\pi}{2}$$

$$I = \int \frac{-\pi}{2} ([-x] + [\sin x]) dx \dots (2)$$
(King property)
$$\frac{\pi}{2}$$

$$2I = \int \frac{-\pi}{2} ([x] + [-x]) + ([\sin x] + [-\sin x]) dx$$

$$\frac{\pi}{2}$$

$$2I = \int \frac{\pi}{2} (-2) dx = -2(\pi)$$

\_\_\_\_\_\_

# **Question148**

If  $f : R \rightarrow R$  is given by f(x) = x + 1, then the value of

$$\lim_{n\to\infty}\frac{1}{n}\left[\mathbf{f}(\mathbf{0})+\mathbf{f}\left(\frac{5}{n}\right)+\mathbf{f}\left(\frac{10}{n}\right)+\dots+\mathbf{f}\left(\frac{5(n-1)}{n}\right)\right]$$
 is: [20 Jul 2021 Shift 2]

## **Options:**

A.  $\frac{3}{2}$ 

- B.  $\frac{5}{2}$
- C.  $\frac{1}{2}$
- D.  $\frac{7}{2}$

**Answer: D** 

## **Solution:**

#### Solution:

$$I = \sum_{r=0}^{n-1} f\left(\frac{5r}{n}\right) \frac{1}{n}$$

$$I = \int_{0}^{1} f(5x) dx$$

$$I = \int_{0}^{1} (5x+1) dx$$

$$I = \left[\frac{5x^{2}}{2} + x\right]_{0}^{1}$$

$$I = \frac{5}{2} + 1 = \frac{7}{2}$$

.....

# **Question149**

Let  $g(t) = \int_{-\pi/2}^{\pi/2} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$ , where  $f(x) = \log_e(x + \sqrt{x^2 + 1})$ ,  $x \in R$ . Then which one of the following is correct? [20 Jul 2021 Shift 2]

## **Options:**

A. 
$$g(1) = g(0)$$

B. 
$$\sqrt{2}g(1) = g(0)$$

C. 
$$g(1) = \sqrt{2}g(0)$$

D. 
$$g(1) + g(0) = 0$$

Answer: B

$$g(t) = \int_{-\pi/2}^{\pi/2} \left(\cos\frac{\pi}{4}t + f(x)\right) dx$$

$$g(t) = \pi\cos\frac{\pi}{4}t + \int_{-\pi/2}^{\pi/2} f(x) dx$$

$$g(t) = \pi\cos\frac{\pi}{4}t$$

$$g(1) = \frac{\pi}{\sqrt{2}}, g(0) = pi$$

\_\_\_\_\_\_

# Question150

Let  $F:[3,5] \to R$  be a twice differentiable function on (3,5) such that  $F(x) = e^{-x} \int_{3}^{x} (3t^2 + 2t + 4F'(t)) dt$ If  $F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2}$ , then  $\alpha + \beta$  is equal to \_\_\_\_\_. [27 Jul 2021 Shift 1]

**Answer: 16** 

## **Solution:**

F(3) = 0
$$e^{x}F(x) = \int_{3}^{x} (3t^{2} + 2t + 4F'(t))dt$$

$$e^{x}F(x) + e^{x}F'(x) = 3x^{2} + 2x + 4F'(x)$$

$$(e^{x} - 4)\frac{dy}{dx} + e^{x}y = (3x^{2} + 2x)$$

$$\frac{dy}{dx} + \frac{e^{x}}{(e^{x} - 4)}y = \frac{(3x^{2} + 2x)}{(e^{x} - 4)}$$

$$ye^{\frac{x}{(e^{x} - 4)}} = \int \frac{(3x^{2} + 2x)}{(e^{x} - 4)}e^{\frac{x}{(e^{x} - 4)}}dx$$

$$y \cdot (e^{x} - 4) = \int (3x^{2} + 2x)dx + c$$

$$y(e^{x} - 4) = x^{3} + x^{2} + c$$

$$Put x = 3 \Rightarrow c = -36$$

$$F(x) = \frac{(x^{3} + x^{2} - 36)}{(e^{x} - 4)}$$

$$F'(x) = \frac{(3x^{2} + 2x)(e^{x} - 4) - (x^{3} + x^{2} - 36)e^{x}}{(e^{x} - 4)^{2}}$$
Now put value of  $x = 4$  we will get  $\alpha = 12$  &  $\beta = 4$ 

# Question151

If  $\int_0^{\pi} (\sin^3 x) e^{-\sin^2 x} dx = \alpha - \frac{\beta}{e} \int_0^{1} \sqrt{t} e^t dt$ , then  $\alpha + \beta$  is equal to \_\_\_\_\_. [27 Jul 2021 Shift 2]

**Answer: 5** 

## **Solution:**

Solution:

$$\begin{split} &I = \int\limits_{0}^{\pi} (\sin^{3}x) e^{-\sin^{2}x} d \ x \\ &= 2 \int\limits_{0}^{\pi/2} \sin x \ e^{-\sin^{2}x} d \ x + \int\limits_{0}^{\pi/2} \cos x \ e^{-\sin^{2}x} (-\sin 2x) d \ x \\ &= 2 \int\limits_{0}^{\pi/2} \sin x \ e^{-\sin^{2}x} d \ x + \left[\cos x \ e^{-\sin^{2}x}\right]_{0}^{\pi/2} + \int\limits_{0}^{\pi/2} \sin x \ e^{-\sin^{2}x} d \ x \\ &= 3 \int\limits_{0}^{\pi/2} \sin x \ e^{-\sin^{2}x} d \ x - 1 \\ &= \frac{3}{2} \int\limits_{-1}^{0} \frac{e^{\alpha} d \ \alpha}{\sqrt{1 + \alpha}} - 1 (\ \text{Put} - \sin^{2}x = t) \\ &= \frac{3}{2e} \int\limits_{0}^{1} \frac{e^{x}}{\sqrt{x}} d \ x - 1 (\ \text{put} \ 1 + \alpha = x) \\ &= \frac{3}{2e} \int\limits_{0}^{1} e^{x} \frac{1}{\sqrt{x}} d \ x - 1 \\ &= 2 - \frac{3}{e} \int\limits_{0}^{1} e^{x} \sqrt{x} d \ x \end{split}$$
Hence,  $\alpha + \beta = 5$ 

\_\_\_\_\_

# Question152

The value of  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \right) dx \text{ is}$ 

[26 Aug 2021 Shift 2]

**Options:** 

A.  $\frac{\pi}{2}$ 

B. 
$$\frac{5\pi}{2}$$

C. 
$$\frac{3\pi}{4}$$

D. 
$$\frac{3\pi}{2}$$

**Answer: C** 

## **Solution:**

#### Solution:

$$\begin{split} I &= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} dx \ ...(i) \\ I &= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 (-x)}{1 + \pi^{\sin (-x)}} \left[ \ \because \ _a^b f(x) dx = \int\limits_a^b f(a + b - x) dx \right] \\ \frac{\frac{\pi}{2}}{\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin x}{1 + \pi^{-\sin x}} dx \\ I &= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{\sin x} (1 + \sin^2 x)}{1 + \pi^{\sin x}} dx \ ...(ii) \end{split}$$

Adding Eqs. (i) and (ii), we get

$$2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1 + \pi^{\sin x})(1 + \sin^2 x)}{(1 + \pi^{\sin x})} dx$$

$$\Rightarrow 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \sin^2 x) dx$$

$$\Rightarrow 2I = [x]_{-\frac{\pi}{2}} + 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$

[  $\because \sin^2 x$  is an even function, so  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x dx$ ]

$$\Rightarrow I = \frac{1}{2} \left( \frac{\pi}{2} - \left( -\frac{\pi}{2} \right) \right) + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos 2x) dx$$

$$\Rightarrow I = \frac{\pi}{2} + \frac{1}{2} \left[ x - \frac{\sin 2x}{2} \right]_0^{\frac{\pi}{2}}$$
$$\frac{\pi}{2} + \frac{1}{2} \left[ \left( \frac{\pi}{2} - 0 \right) - (0 - 0) \right]$$
$$I = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

\_\_\_\_\_\_

# **Question153**

If  $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left( \frac{\sin x + \cos x}{b} \right) + c$ , where c is a constant of integration, then the ordered pair (a, b) is equal to [2021]

## **Options:**

A. (-1, 3)

B. (3, 1)

C.(1,3)

D. (1, -3)

**Answer: C** 

## **Solution:**

#### Solution:

$$\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2 x}} dx$$

$$\int \frac{\cos x - \sin x}{\sqrt{9 - (\sin x + \cos x)^2}} dx$$
Let  $\sin x + \cos x = t$ 

$$\int \frac{dt}{\sqrt{9 - t^2}} = \sin^{-1} \frac{t}{3} + c$$

$$= \sin^{-1} \left( \frac{\sin x + \cos x}{3} \right) + c$$
So  $a = 1, b = 3$ .

\_\_\_\_\_\_

# Question154

The integral  $\int \frac{1}{4\sqrt{(x-1)^3(x+2)^5}} dx$  is equal to (where C is a constant of integration) [31 Aug 2021 Shift 1]

**Options:** 

A. 
$$\frac{3}{4} \left( \frac{x+2}{x-1} \right)^{\frac{1}{4}} + C$$

B. 
$$\frac{3}{4} \left( \frac{x+2}{x-1} \right)^{\frac{5}{4}} + C$$

C. 
$$\frac{4}{3} \left( \frac{x-1}{x+2} \right)^{\frac{1}{4}} + C$$

D. 
$$\frac{4}{3} \left( \frac{x-1}{x+2} \right)^{\frac{5}{4}} + C$$

**Answer: C** 

## **Solution:**

Solution:

$$\int \frac{1}{(x-1)^{\frac{3}{4}}(x+2)^{\frac{5}{4}}} dx = \int \frac{dx}{\left(\frac{x+2}{x-1}\right)^{\frac{5}{4}}(x-1)^{2}}$$

$$\frac{x+2}{x-1} = t$$

$$\Rightarrow \left(\frac{(x-1)-(x+2)}{(x-1)^{2}}\right) dx = dt$$

$$\Rightarrow -\frac{3}{(x-1)^{2}} dx = dt$$

$$\Rightarrow -\frac{1}{3} \int \frac{dt}{t^{\frac{5}{4}}} = \frac{4}{3} \cdot \frac{1}{t^{\frac{1}{4}}} + C$$

$$= \frac{4}{3} \left(\frac{x-1}{x+2}\right)^{\frac{1}{4}} + C$$

\_\_\_\_\_

# Question155

If

$$\int \frac{\sin x}{\sin^3 x + \cos^3 x} dx = \alpha \log_e \left| 1 + \tan x \right| + \beta \log_e \left| 1 - \tan x + \tan^2 x \right| + \gamma \tan^{-1} \left( \frac{2 \tan x - 1}{\sqrt{3}} \right) + C,$$

# when C is constant of integration, then the value of $18(\alpha + \beta + \gamma^2)$ is [31 Aug 2021 Shift 2]

**Answer: 3** 

### **Solution:**

Solution:

$$\begin{split} & \operatorname{Let} I = \int \frac{\sin x}{\sin^3 x + \cos^3 x} d \, x = \\ & = \frac{\tan x \sec^2 x}{\tan^3 x + 1} d \, x \\ & \operatorname{Put} \tan x = t \\ & \Rightarrow \sec^2 x d \, x = d t \\ & I = \int \frac{t dt}{t^3 + 1} = \int \frac{t}{(t + 1)(t^2 - t + 1)} d \, t \\ & \operatorname{Now}, \quad \frac{t}{(t + 1)(t^2 - t + 1)} = \frac{A}{t + 1} + Bt + Ct^2 - t + 1 \\ & \Rightarrow t = A(^2 - t + 1) + (Bt + C)(t + 1) \\ & \operatorname{Comparing coefficients to both the sides and solving them for A, B, C, we have } \\ & A = -\frac{1}{3}, B = \frac{1}{3}, C = \frac{1}{3} \\ & \operatorname{Hence}, I = -\frac{1}{3} \int \frac{1}{t + 1} d \, t + \frac{1}{3} \int \frac{t + 1}{t^2 - t + 1} d \, t \\ & = -\frac{1}{3} \ln(t + 1) + \frac{1}{3} \int \frac{\frac{1}{2}(2t - 1) + \frac{3}{2}}{t^2 - t + 1} d \, t \\ & = -\frac{1}{3} \ln(t + 1) + \frac{1}{6} \ln(t^2 - t + 1) + \frac{1}{2} \int \frac{dt}{\left(t - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \\ & = -\frac{1}{3} \ln(t + 1) + \frac{1}{6} \ln(t^2 - t + 1) + \frac{1}{2} \cdot \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2t - 1}{\sqrt{3}}\right) + C \\ & = -\frac{1}{3} \ln(\tan x + 1) + \frac{1}{6} \ln(\tan^2 x - \tan x + 1) + \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2 \tan x - 1}{\sqrt{3}}\right) + C \\ & \Rightarrow \alpha = \frac{-1}{3}, \beta = \frac{1}{6}, \gamma = \frac{1}{\sqrt{3}} \\ & \operatorname{So}, 18(\alpha + \beta + \gamma^2) = 18\left(\frac{-1}{3} + \frac{1}{6} + \frac{1}{3}\right) = 3 \end{split}$$

\_\_\_\_\_

# Question156

If 
$$\int \frac{dx}{(x^2+x+1)^2} = a \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + b\left(\frac{2x+1}{x^2+x+1}\right) + C$$
,  $x > 0$  where C is the constant of integration, then the value of  $9(\sqrt{3}a + b)$  is equal to [27 Aug 2021 Shift 1]

**Answer: 15** 

## **Solution:**

Solution:

Solution:  

$$\int \frac{dx}{(x^2 + x + 1)^2} = \int \frac{dx}{\left[\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2}$$
Let  $x + \frac{1}{2} = \frac{\sqrt{3}}{2} \tan \theta$   

$$\Rightarrow dx = \frac{\sqrt{3}}{2} \sec^2 \theta d \theta$$

$$\therefore \int \frac{\frac{\sqrt{3}}{2} \sec^2 \theta d \theta}{\frac{9}{16} (\tan^2 \theta + 1)^2} = \frac{8}{3\sqrt{3}} \int \frac{\sec^2 \theta d \theta}{\sec^4 \theta}$$

$$= \frac{8}{3\sqrt{3}} \int \cos^2 \theta d \theta$$

$$= \frac{8}{3\sqrt{3}} \int \frac{1 + \cos 2\theta}{2} d \theta$$

$$= \frac{4}{3\sqrt{3}} (\theta + \sin 2\theta 2) + C$$

$$= \frac{4}{2\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) + \frac{4}{3\sqrt{3}} \frac{\frac{2x + 1}{\sqrt{3}}}{1 + \left(\frac{2x + 1}{\sqrt{3}}\right)^2} + C$$

$$= \frac{4}{3\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{3}\right) + \frac{1}{3} \frac{2x + 1}{(x^2 + x + 1)} + C$$

$$\therefore a = \frac{4}{3\sqrt{3}}, b = \frac{1}{3}$$
Hence,  $9(\sqrt{3}a + b) = 9\left(\frac{4}{3} + \frac{1}{3}\right) = 15$ 

-----

# Question157

If 
$$\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \frac{1}{14} (ux + vlog_e (4e^x + 7e^{-x})) + C$$
,

# where C is a constant of integration, then u + v is equal to [27 Aug 2021 Shift 2]

**Answer: 7** 

## **Solution:**

Solution:

I = 
$$\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \int \frac{2e^{2x} + 3}{4e^{2x} + 7} dx$$

Let  $2e^{2x} + 3 = A \frac{d}{dx} (4e^{2x} + 7) + B(4e^{2x} + 7)$ 

⇒  $2e^{2x} + 3 = (8A + 4B)e^{2x} + 7B$ 

Comparing both sides

B =  $\frac{3}{7}$  and A =  $\frac{1}{28}$ 

∴ I =  $\int \frac{\frac{1}{28} (8e^{2x}) + \frac{3}{7} (4e^{2x} + 7)}{4e^{2x} + 7} dx$ 

=  $\frac{1}{28} \ln \left| 4e^{2x} + 7 \right| + \frac{3}{7}x + C$ 

=  $\frac{1}{28} \ln \left| e^x (4e^x + 7e^{-x}) \right| + \frac{3}{7}x + C$ 

=  $\frac{1}{28} x + \frac{1}{28} \ln \left| 4e^x + 7e^{-x} \right| + \frac{3}{7}x + C$ 

=  $\frac{1}{14} \left( \frac{13}{2}x + \frac{1}{2} \ln \left| 4e^x + 7e^{-x} \right| \right) + C$ 

⇒  $u = \frac{13}{2}$  and  $v = \frac{1}{2}$ 

∴  $u + v = \frac{13}{2} + \frac{1}{2} = 7$ 

\_\_\_\_\_\_

# Question158

**Section B: Numerical Type Questions** 

Let [t] denote the greatest integer  $\leq$  t. Then the value of 8.  $\int_{-\frac{1}{2}}^{1} ([2x] + |x|) dx$  is

[31 Aug 2021 Shift 1]

**Answer: 5** 

## **Solution:**

#### Solution:

$$8 \int_{-\frac{1}{2}}^{1} ([2x] + |X|) dx$$

$$= -\frac{1}{2} \le x0$$

$$\Rightarrow [2x] = -1$$

$$0 \le x < \frac{1}{2}$$

$$\Rightarrow [2x] = 0$$

$$\frac{1}{2} \le x < 1$$

$$\Rightarrow [2x] = 1$$

$$I = \int_{-\frac{1}{2}}^{0} (-1 - x) dx + \int_{0}^{\frac{1}{2}} (0 + x) dx + \int_{-\frac{1}{2}}^{1} (1 + x) dx$$

$$= \left[ -x - \frac{x^{2}}{2} \right]_{-\frac{1}{2}}^{0} + \left[ \frac{x^{2}}{2} \right]_{0}^{\frac{1}{2}} + \left[ x + x^{2} 2 \right]_{\frac{1}{2}}^{1}$$

$$= -\left( \frac{1}{2} - \frac{1}{8} \right) + \left( \frac{1}{8} \right) + \left( 1 + \frac{1}{2} \right) - \left( \frac{1}{2} + \frac{1}{8} \right) = \frac{5}{8}$$

$$\therefore 8I = 8 \cdot \frac{5}{8} = 5$$

-----

# **Question159**

If  $x\phi(x) = \int_{5}^{x} (3t^2 - 2\phi'(t)dt, x > -2$ , and  $\phi(0) = 4$ , then  $\phi(2)$  is [31 Aug 2021 Shift 1]

Answer: 4

# **Solution:**

$$x\phi(x) = \int_{5}^{x} (3t^{2} - 2\phi'(t)dt)$$

$$\Rightarrow x\phi(x) = [t^{3} - 2\phi(t)]_{5}^{x}$$

$$\Rightarrow x\phi(x) = (x^{3} - 125) - 2[\phi(x) - \phi(5)]$$
Now,  $\phi(0) = 4$ 

⇒0 = -125 - 2[4 - 
$$\phi(5)$$
]  
⇒ $\phi(5) = \frac{133}{2}$   
For  $\phi(2)$ ,  
⇒2 $\phi(2) = (8 - 125) - 2\left[\phi(2) - \frac{133}{2}\right]$   
⇒4 $\phi(2) = 16$   
⇒ $\phi(2) = 4$ 

\_\_\_\_\_

# Question160

If [x] is the greatest integer  $\leq x$ , then  $\pi^2 \int_0^2 \left( \sin \frac{\pi x}{2} \right) (x - |x|)^{[x]} dx$  is equal to [31 Aug 2021 Shift 2]

## **Options:**

A.  $2(\pi - 1)$ 

B.  $4(\pi - 1)$ 

C.  $4(\pi + 1)$ 

D.  $2(\pi + 1)$ 

**Answer: B** 

## **Solution:**

#### Solution:

$$\begin{split} &\pi^2 \int_0^2 \sin\left(\frac{\pi x}{2}\right) (x - |x|)^{[x]} dx \\ &= \pi^2 \int_0^1 \sin\left(\frac{\pi x}{2}\right) x^0 dx + \pi^2 \int_1^2 \sin\left(\frac{\pi x}{2}\right) (x - 1) dx \\ &= \pi^2 \left[\frac{-2}{\pi} \cos\frac{\pi x}{2}\right]_0^{-1} + \pi^2 \left[\left(x - 1\right) \frac{2}{\pi} \left(-\cos\frac{\pi x}{2}\right)\right]_1^{-2} + \pi^2 \int_1^{-2} \frac{2}{\pi} \cos\frac{\pi x}{2} dx \\ &= \pi^2 \left(\frac{2}{\pi}\right) + \frac{2\pi^2}{\pi} (1 - 0) + 2\pi \cdot \frac{2}{\pi} \left(\sin\frac{\pi x}{2}\right) \Big|_1^2 \\ &= 2\pi + 2\pi + 4(0 - 1) = 4\pi - 4 = 4(\pi - 1) \end{split}$$

\_\_\_\_\_\_

# Question161

# If $U_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2^2}{n^2}\right)^2 \dots \left(1 + \frac{n^2}{n^2}\right)^n$ , then $\lim_{n \to \infty} (U_n)^{\frac{-4}{n^2}}$ is equal to [27 Aug 2021 Shift 1]

# **Options:**

- A.  $\frac{e^2}{16}$
- B.  $\frac{4}{e}$
- C.  $\frac{16}{e^2}$
- D.  $\frac{4}{e^2}$

Answer: A

## **Solution:**

#### Solution:

Let 
$$y = \lim_{n \to \infty} (U_n)^{\frac{-4}{n^2}}$$

$$y = \lim_{n \to \infty} \left[ \left( 1 + \frac{1}{n^2} \right)^{\frac{-4}{n^2}} \left( 1 + \frac{2^2}{n^2} \right)^{\frac{-4}{n^2} \cdot 2} \left( 1 + \frac{3^2}{n^2} \right)^{\frac{-4}{n^2} \cdot 3} \dots \right]$$

Taking log on both sides, we get

$$\ln y = \lim_{n \to \infty} \sum_{r=1}^{n} \left[ \frac{-4}{n^2} \cdot r \ln \left( 1 + \frac{r^2}{n^2} \right) \right]$$

Now, replace  $\lim \Sigma \to \int$ 

$$\frac{\mathbf{r}}{\mathbf{n}} \to \mathbf{x}, \frac{1}{\mathbf{n}} \to \mathbf{d} \, \mathbf{x}$$

Lower limit = 0

Let 
$$1 + x^2 = t$$

$$\Rightarrow$$
 xd x =  $\frac{dt}{2}$ 

When  $x\rightarrow 0$ ,  $t\rightarrow 1$ 

and 
$$x \rightarrow 1,\, t \rightarrow 2$$

$$\ln y = \int_1^2 -2 \ln t \, dt$$

$$=-2(t\ln t-t)_1^2$$

$$=-2(2 \ln 2 - 2 + 1)$$

$$=-2(2 \ln 2 - 1)$$

$$\Rightarrow \ln y = \ln \frac{1}{16} + 2$$
$$\Rightarrow y = \frac{1}{16}e^{2}$$

\_\_\_\_\_

# Question162

$$\int_{6}^{16} \frac{\log_{e} x^{2}}{\log_{e} x^{2} + \log_{e} (x^{2} - 44x + 484)} dx \text{ is equal to}$$

# [27 Aug 2021 Shift 1]

## **Options:**

A. 6

B. 8

C. 5

D. 10

**Answer: C** 

## **Solution:**

#### Solution:

$$\begin{split} &\text{Let I} = \int_6^{16} \frac{\ln_e(x^2) + \ln_e(484 - 44x + x^2)}{\ln_e(x^2) + \ln_e(22 - x)^2} d\, x \\ &= \int_6^{16} \frac{\ln_e(x^2)}{\ln_e(x^2) + \ln_e(22 - x)^2} d\, x \\ &= \int_6^{16} \frac{2\ln_e x d\, x}{2\ln_e x + 2\ln_e(22 - x)} \\ &I = \int_6^{16} \frac{\ln_e x d\, x}{\ln_e x + \ln_e(22 - x)} ...(i) \\ &\because \int_a^b f(x) d\, x = \int_a^b f(a + b - x) d\, x \\ &\therefore I = \int_6^{16} \frac{\ln_e(22 - x)}{\ln_e(22 - x) + \ln_e x} d\, x \, ...(ii) \\ &\text{Adding Eqs. (i) and (ii), we get} \\ &2I = \int_6^{16} \frac{\ln_e x + \ln_e(22 - x)}{\ln_e x + \ln_e(22 - x)} d\, x \\ &2I = \int_6^{16} d\, x = x \mid_6^{16} = 10 \\ &\text{or I} = 5 \end{split}$$

\_\_\_\_\_\_

# The value of the integral $\int_0^1 \frac{\sqrt{x} dx}{(1+x)(1+3x)(3+x)}$ is [27 Aug 2021 Shift 2]

## **Options:**

A. 
$$\frac{\pi}{8}\left(1-\frac{\sqrt{3}}{2}\right)$$

B. 
$$\frac{\pi}{4} \left( 1 - \frac{\sqrt{3}}{6} \right)$$

C. 
$$\frac{\pi}{8} \left( 1 - \frac{\sqrt{3}}{6} \right)$$

D. 
$$\frac{\pi}{4} \left( 1 - \frac{\sqrt{3}}{2} \right)$$

Answer: A

## **Solution:**

#### Solution:

$$\begin{split} &\int_{0}^{1} \frac{\sqrt{x} d x}{(1+x)(1+3x)(3+x)} \\ &\text{Put } \sqrt{x} = t \\ \Rightarrow x = t^{2} \\ &\text{or } dx = 2t \ dt \\ &\therefore I = \int_{0}^{1} \frac{2t^{2} d t}{(t^{2}+1)(3t^{2}+1)(t^{2}+3)} \\ &= \int_{0}^{1} \frac{(3t^{2}+1)-(t^{2}+1)}{(t^{2}+1)(3t^{2}+1)(t^{2}+3)} d t \\ &= \int_{0}^{1} \left[ \frac{1}{(t^{2}+3)(t^{2}+1)} - \frac{1}{(t^{2}+3)(3t^{2}+1)} \right] d t \\ &= \int_{0}^{1} \left[ \frac{1}{2(t^{2}+1)} - \frac{1}{2(t^{2}+3)} - \frac{3}{8(3t^{2}+1)} + \frac{1}{8(t^{2}+3)} \right] d t \\ &= \int_{0}^{1} \frac{d t}{2(t^{2}+1)} = \int_{0}^{1} \frac{3}{8} \frac{d t}{(3t^{2}+1)} - \int_{0}^{1} \frac{3}{8} \frac{d t}{(t^{2}+3)} \\ &= \left( \frac{1}{2} tan^{-1} t \right)_{0}^{1} - \left( \frac{3}{8} \frac{\sqrt{3}}{3} tan^{-1} \sqrt{3} t \right)_{0}^{1} - \left( \frac{3}{8\sqrt{3}} tan^{-1} \frac{t}{\sqrt{3}} \right)_{0}^{1} \\ &= \frac{\pi}{8} - \frac{\sqrt{3}}{8} \frac{\pi}{3} - \frac{\sqrt{3}}{8} \frac{\pi}{6} = \frac{\pi}{8} - \frac{\sqrt{3}\pi}{16} = \frac{\pi}{8} \left( 1 - \frac{\sqrt{3}}{2} \right) \end{split}$$

------

# Question164

# The value of $\int_{-1\sqrt{2}}^{1/\sqrt{2}} \left( \left( \frac{x+1}{x-1} \right)^2 + \left( \frac{x-1}{x+1} \right)^2 - 2 \right)^{1/2} dx$ is [26 Aug 2021 Shift 1]

## **Options:**

A.  $log_e 4$ 

B. log<sub>e</sub>16

C. 2log<sub>e</sub>16

D.  $4\log_{e}(3 + 2\sqrt{2})$ 

**Answer: B** 

## **Solution:**

#### Solution:

Let 
$$I = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left( \left( \frac{x+1}{x-1} \right)^2 + \left( \frac{x-1}{x+1} \right)^2 - 2 \right)^{1/2} dx$$

$$I = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left[ \left( \frac{x+1}{x-1} - \frac{x-1}{x+1} \right)^2 \right]^{\frac{1}{2}} dx = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left| \frac{x+1}{x-1} - \frac{x-1}{x+1} \right| dx$$

$$= \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left| \frac{(x+1)^2 - (x-1)^2}{(x-1)(x+1)} \right| dx = \int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left| \frac{4x}{(x-1)(x+1)} \right| dx$$

$$= 2.4 \int_{0}^{\frac{1}{\sqrt{2}}} \left| \frac{x}{(x-1)(x+1)} \right| dx = 4 \int_{0}^{\frac{1}{\sqrt{2}}} \frac{-2x}{x^2-1} dx$$

$$= -4 \left[ \log(x^2-1) \right]_{0}^{\frac{1}{\sqrt{2}}}$$

$$= -4 \left[ \log\left(\frac{1}{2} - 1\right) - \log\left| - 1\right| \right]$$

$$= -4 \log\left(\frac{1}{2}\right) = 4 \ln 2 = \ln 16$$

\_\_\_\_\_\_

# **Question165**

The value of  $\lim_{n\to\infty} \frac{1}{n} \sum_{r=0}^{2n-1} \frac{n^2}{n^2 + 4r^2}$  is

[26 Aug 2021 Shift 1]

**Options:** 

A. 
$$\frac{1}{2} \tan^{-1}(2)$$

B. 
$$\frac{1}{2} tan^{-1}(4)$$

C. 
$$tan^{-1}(4)$$

D. 
$$\frac{1}{4} \tan^{-1}(4)$$

**Answer: B** 

**Solution:** 

**Solution:** 

$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{2n-1} \frac{n^2}{n^2 + 4r^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{2n-1} \frac{1}{1 + 4\left(\frac{r}{n}\right)^2} = \int_{0}^{2} \frac{1}{1 + 4x^2} dx$$

$$= \frac{1}{2} \left[ \tan^{-1} 2x \right]_{0}^{2} = \frac{1}{2} \tan^{-1} 4$$

.....

# Question 166

If the value of the integral  $\int_0^5 \frac{x+[x]}{e^{x-[x]}} dx = \alpha e^- + \beta$ , where  $\alpha, \beta \in \mathbb{R}$ ,  $5\alpha + 6\beta = 0$  and [x] denotes the greatest integer less than or equal to x, then the value of  $(\alpha + \beta)^2$  is equal to: [26 Aug 2021 Shift 2]

- A. 100
- B. 25
- C. 16
- D. 36

Answer: B

#### **Solution:**

Solution:

$$\begin{split} I &= \int\limits_0^5 \frac{x + [x]}{e^{x - [x]}} d\, x = \alpha e^- + \beta, \\ I &= \int\limits_0^1 \frac{x}{e^x} d\, x + \int\limits_1^2 \frac{x + 1}{e^{x - 1}} d\, x + \int\limits_2^3 \frac{x + 2}{e^{x - 2}} d\, x + \int\limits_3^4 \frac{x + 3}{e^{x - 3}} d\, x + \int\limits_4^5 \frac{x + 4}{e^{x - 4}} d\, x \\ \text{Let } I &= I_1 + I_2 + I_3 + I_4 + I_5 \\ \text{Here, } , I_2 &= \int\limits_1^2 \frac{x + 1}{e^{x - 1}} d\, x \, \text{Put} \, x = t + 1 \\ \Rightarrow d\, x = d\, t \\ &= \int\limits_0^1 \frac{t + 2}{e^t} d\, t = \int\limits_0^1 \frac{t}{e^t} d\, t + \int\limits_0^1 \frac{2}{e^t} d\, t \\ &= \int\limits_0^1 \frac{t + 2}{e^t} d\, t = I_1 + 2(1 - e^{-1}) \\ \text{Similarly,} \\ I_3 &= I_1 + 4(1 - e^{-1}) \\ I_5 &= I_1 + 8(1 - e^{-1}) \\ I &= I_1 + I_2 + I_3 + I_4 + I_5 = 5I_1 + (2 + 4 + 6 + 8)(1 - e^{-1}) \\ &= 5I_1 + 20(1 - e^{-1}) \\ I_1 &= \int\limits_0^1 x e^{-1} d\, x = -[e^{-x}(x + 1)]_0^{-1} = 1 - 2e^{-1} \\ &\therefore 5I_1 + 20(1 - e^{-1}) = 5(1 - 2e^{-1}) + 20(1 - e^{-1}) = 25 - 30e^{-1} \\ &\therefore \alpha = -30, \, \beta = 25 \\ \text{Also it satisfy } 5\beta + 6\alpha = 0 \\ \text{Now, } (\alpha + \beta)^2 = (-30 + 25)^2 = (-5)^2 = 25 \end{split}$$

\_\_\_\_\_

# Question167

Let  $J_{n, m} = \int_{0}^{\frac{1}{2}} \frac{x^n}{x^{m-1}} dx$ ,  $\forall n > m$  and  $n, m \in \mathbb{N}$ .

Consider a matrix  $A = [a_{ij}]_{3 \times 3}$  where

$$\mathbf{a_{ii}} = \begin{cases} J_6 + i & 3 - J_i + 3, & 3 & i \le j \\ 0 & i > j \end{cases}$$

then |adj A<sup>-1</sup>| is [1 Sep 2021 Shift 2]

A. 
$$(15)^2 \times 2^{42}$$

B. 
$$(15)^2 \times 2^{34}$$

C. 
$$(105)^2 \times 2^{38}$$

D. 
$$(105)^2 \times 2^{36}$$

**Answer: C** 

## **Solution:**

#### Solution:

$$\mathbf{A} = \left[ \begin{array}{cccc} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ 0 & \mathbf{a}_{22} & \mathbf{a}_{23} \\ 0 & 0 & \mathbf{a}_{33} \end{array} \right]$$

$$\Rightarrow |\mathbf{A}| = \mathbf{a}_{11} \mathbf{a}_{22} \mathbf{a}_{33}$$

$$\Rightarrow |A| = (J_{7,3} - J_{4,3}) (J_{8,3} - J_{5,3}) (J_{9,3} - J_{6,3})$$

$$\Rightarrow |A| = (J_{7,3} - J_{4,3}) (J_{8,3} - J_{5,3}) (J_{9,3} - J_{6,3})$$

$$= \int_0^1 \frac{1}{2} \frac{x^7 - x^4}{x^3 - 1} dx \cdot \int_0^1 \frac{1}{2} \frac{x^8 - x^5}{x^3 - 1} dx \cdot \int_0^1 \frac{1}{2} \frac{x^9 - x^6}{x^3 - 1} dx$$

$$= \int_0^{\frac{1}{2}} x^4 dx \int_0^{\frac{1}{2}} x^5 dx . \int_0^{\frac{1}{2}} x^6 dx$$

$$=\frac{x^5}{5}\bigg|_0^{\frac{1}{2}}\cdot\frac{x^6}{6}\bigg|_0^{\frac{1}{2}}\cdot\frac{x^7}{7}\bigg|_0^{\frac{1}{2}}=\frac{1}{(210)2^{18}}$$

Now, 
$$|\text{adj A}^{-1}| = \frac{1}{|A|^2} = ((210).2^{18})^2 = 105^2.2^{38}$$

# Question168

The function f(x), that satisfies the condition  $f(x) = x + \int_{0}^{\pi/2} \sin x \cdot \cos y f(y) dy$ , is

$$f(x) = x + \int_{0}^{x} \sin x \cdot \cos y f(y) d$$
  
[1 Sep 2021 Shift 2]

A. 
$$x + \frac{2}{3}(\pi - 2) \sin x$$

B. 
$$x + (\pi + 2) \sin x$$

C. 
$$x + \frac{\pi}{2} \sin x$$

D. 
$$x + (\pi - 2) \sin x$$

**Answer: D** 

## **Solution:**

Solution:

$$f(x) = x + \int_0^{\frac{\pi}{2}} \sin x \cdot \cos y f(y) dy$$

Let 
$$K = \int_0^{\frac{\pi}{2}} \cos y \, f(y) \, dy$$
 ...(i)

Then, 
$$f(x) = x + K \sin x...$$
 (ii)

From Eqs. (i) and (ii),

$$f(x) = x + \int_0^{\pi} \frac{\pi}{2} \sin x \cos y (y + k \sin y) dy$$

$$= x + \sin x \int_0^{\frac{\pi}{2}} y \cos y \, d y + \frac{k}{2} \sin x \int_0^{\frac{\pi}{2}} \sin 2 y \, d y$$

$$f(x) = x + \sin x \cdot \frac{\pi \cdot 2}{2} + \frac{k \sin x}{2} \dots (iii)$$

$$k = \frac{\pi - 2}{2} + \frac{k}{2}$$

$$\Rightarrow$$
 k =  $\pi$  – 2

$$f(x) = x + (\pi - 2) \sin x$$

\_\_\_\_\_\_

# Question169

The integral  $\int \frac{dx}{(x+4)^{8/7}(x-3)^{6/7}}$  is equal to: (where C is a constant of integration) [Jan. 9, 2020 (I)]

**Options:** 

$$A. \left(\frac{x-3}{x+4}\right)^{1/7} + C$$

$$B. - \left(\frac{x-3}{x+4}\right)^{1/7} + C$$

C. 
$$\frac{1}{2} \left( \frac{x-3}{x+4} \right)^{3/7} + C$$

D. 
$$-\frac{1}{13} \left( \frac{x-3}{x+4} \right)^{-13/7} + C$$

**Answer: A** 

## **Solution:**

Solution:

$$I = \int \frac{dx}{(x+4)^{8/7}(x-3)^{6/7}}$$

$$= \int \left(\frac{x-3}{x+4}\right)^{\frac{-6}{7}} \frac{1}{(x+4)^2} dx$$
Let  $\frac{x-3}{x+4} = t^7$ 

Differentiate on both sides, we get

$$\frac{7}{(x+4)^2} dx = 7t^6 dt$$

Hence, 
$$I = \int t^{-6} t^6 dt = t + C = \left(\frac{x-3}{x+4}\right)^{\frac{1}{7}} + C$$

-----

# Question170

If  $\int \frac{d\theta}{\cos^2\theta(\tan 2\theta + \sec 2\theta)} = \lambda \tan \theta + 2\log_e|f(\theta)| + C$  where C is a constant of integration, then the ordered pair  $(\lambda, f(\theta))$  is equal to: [Jan. 9,2020 (II)]

**Options:** 

A. 
$$(1, 1 - \tan \theta)$$

B. 
$$(-1, 1 - \tan \theta)$$

C. 
$$(-1, 1 + \tan \theta)$$

D. 
$$(1, 1 + \tan \theta)$$

**Answer: C** 

## **Solution:**

$$\begin{split} &I = \int \frac{d\theta}{\cos^2\theta(\tan 2\theta + \sec 2\theta)} \\ &= \int \frac{\sec^2\theta}{\frac{1 + \tan^2\theta}{1 - \tan^2\theta}} + \frac{2\tan\theta}{1 - \tan^2\theta} \\ &= \int \frac{\sec^2\theta(1 - \tan^2\theta)}{(1 + \tan\theta)^2} d\theta \\ &= \int \frac{\sec^2\theta(1 - \tan\theta)}{1 + \tan\theta} d\theta \end{split}$$

Let 
$$\tan \theta = t \Rightarrow \sec^2 \theta d \theta = dt$$
, then

$$I = \int \left(\frac{1-t}{1+t}\right) dt = \int \left(-1 + \frac{2}{1+t}\right) dt$$

$$= -t + 2\log(1+t) + C$$

$$=$$
  $-\tan\theta + 2\log(1 + \tan\theta) + C$ 

Hence, by comparison  $\lambda = -1$  and  $f(x) = 1 + \tan \theta$ 

\_\_\_\_\_

# Question171

If 
$$\int \frac{\cos x \, d \, x}{\sin^3 x (1 + \sin^6 x)^{2/3}} = f(x)(1 + \sin^6 x)^{1/\lambda} + c$$
 where c is a constant of integration,

then  $\lambda f\left(\frac{\pi}{3}\right)$  is equal to:

[Jan. 8, 2020 (II)]

**Options:** 

A. 
$$-\frac{9}{8}$$

B. 2

C. 
$$\frac{9}{8}$$

D. -2

**Answer: D** 

## **Solution:**

Let 
$$I = \int \frac{\cos x \, dx}{\sin^3 x (1 + \sin^6 x)^{2/3}}$$
  
=  $f(x)(1 + \sin^6 x)^{1/\lambda} + c$  .....(i)  
If  $\sin x = t$   
then,  $\cos x \, dx = dt$ 

$$I = \int \frac{dt}{t^3 (1 + t^6)^{\frac{2}{3}}} = \int \frac{dt}{t^7 \left(1 + \frac{1}{t^6}\right)^{\frac{2}{3}}}$$

Put 
$$1 + \frac{1}{t^6} = r^3 \Rightarrow \frac{dt}{t^7} = \frac{-1}{2}r^2dr - \frac{1}{2}\int \frac{r^2dr}{r^2} = -\frac{1}{2}r + c$$

$$= -\frac{1}{2} \left( \frac{\sin^6 x + 1}{\sin^6 x} \right)^{\frac{1}{3}} + c = -\frac{1}{2\sin^2 x} (1 + \sin^6 x)^{\frac{1}{3}} + c$$

\_\_\_\_\_\_

# Question172

If for all real triplets (a, b, c),  $f(x) = a + bx + cx^2$ ; then  $\int_0^1 f(x) dx$  is equal to: [Jan. 9, 2020 (I)]

**Options:** 

A. 
$$2 \left\{ 3f(1) + 2f\left(\frac{1}{2}\right) \right\}$$

B. 
$$\frac{1}{2}$$
  $\left\{ f(1) + 3f\left(\frac{1}{2}\right) \right\}$ 

C. 
$$\frac{1}{3}$$
  $\left\{ f(0) + f\left(\frac{1}{2}\right) \right\}$ 

D. 
$$\frac{1}{6} \left\{ f(0) + f(1) + 4f\left(\frac{1}{2}\right) \right\}$$

**Answer: D** 

## **Solution:**

Solution:

$$\int_{0}^{1} (a + bx + cx^{2}) dx = ax + \frac{bx^{2}}{2} + \frac{cx^{3}}{3_{0}} \Big|_{1}^{1} = a + \frac{b}{2} + \frac{c}{3}$$

Now, 
$$f(1) = a + b + c$$
,  $f(0) = a$  and  $f\left(\frac{1}{2}\right) = a + \frac{b}{2} + \frac{c}{4}$ 

Now, 
$$\frac{1}{6} \left( f(1) + f(0) + 4f\left(\frac{1}{2}\right) \right)$$
  
=  $\frac{1}{6} \left( a + b + c + a + 4\left(a + \frac{b}{2} + \frac{c}{4}\right) \right)$   
=  $\frac{1}{6} (6a + 3b + 2c) = a + \frac{b}{2} + \frac{c}{3}$ 

Hence, 
$$\int_{0}^{1} f(x) = \frac{1}{6} \left\{ f(0) + f(1) + 4f\left(\frac{1}{2}\right) \right\}$$

-----

# Question173

The value of  $\int_{0}^{2\pi} \frac{x \sin^8 x}{\sin^8 x + \cos^8 x} dx$  is equal to:

[Jan. 9, 2020 (I)]

**Options:** 

Α. 2π

B.  $2\pi^{2}$ 

C.  $\pi^2$ 

D.  $4\pi$ 

**Answer: C** 

## **Solution:**

$$\begin{split} &\int\limits_{0}^{2\pi} \frac{x s i n^8 x}{s i n^8 x + cos^8 x} dx \\ &= \int\limits_{0}^{\pi} \left[ \frac{x s i n^8 x}{s i n^8 x + cos^8 x} + \frac{(2\pi - x) s i n^8 x}{s i n^8 x + cos^8 x} \right] dx \left[ \because \int\limits_{0}^{2a} f(x) dx = \int\limits_{0}^{a} f(x) dx + \int\limits_{0}^{a} f(2a - x) dx \right] \\ &= \int\limits_{0}^{\pi} \frac{2\pi s i n^8 x}{s i n^8 x + cos^8 x} dx \\ &= 2\pi \int\limits_{0}^{\pi/2} \left[ \frac{s i n^8 x}{s i n^8 x + cos^8 x} + \frac{cos^8 x}{s i n^8 x + cos^8 x} \right] dx \\ &= 2\pi \int\limits_{0}^{\pi/2} 1 dx = 2\pi \times \frac{\pi}{2} = \pi^2 \end{split}$$

\_\_\_\_\_

# **Question174**

If I = 
$$\int_{1}^{2} \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}}$$
, then:

[Jan. 8, 2020 (II)]

A. 
$$\frac{1}{8} < I^2 < \frac{1}{4}$$

B. 
$$\frac{1}{9} < I^2 < \frac{1}{8}$$

C. 
$$\frac{1}{16} < I^2 < \frac{1}{9}$$

D. 
$$\frac{1}{6} < I^2 < \frac{1}{2}$$

**Answer: B** 

## **Solution:**

Solution:

$$f(x) = \frac{1}{\sqrt{2x^3 - 9x^2 + 12x + 4}}$$

$$'(x) = \frac{-1}{2} \left( \frac{(6x^2 - 18x + 12)}{(2x^3 - 9x^2 - 12x + 4)^{3/2}} \right)$$

$$= \frac{-6(x - 1)(x - 2)}{2(2x^3 - 9x^2 + 12x + 4)^{3/2}}$$

$$f(1) = \frac{1}{3} \text{ and } f(2) = \frac{1}{\sqrt{8}}$$
It is increasing function

$$\frac{1}{3} < I < \frac{1}{\sqrt{8}}$$
 $\frac{1}{9} < I^2 < \frac{1}{8}$ 

\_\_\_\_\_\_

# **Question175**

If f(a+b+1-x) = f(x), for all x, where a and b are fixed positive real numbers, then  $\frac{1}{a+b} \int_a^b x(f(x)+f(x+1)) dx$  is equal to: [Jan. 7, 2020 (I)]

**Options:** 

A. 
$$\int_{a+1}^{b+1} f(x) dx$$

$$B.\int_{a-1}^{b-1} f(x) dx$$

C. 
$$\int_{a-1}^{b-1} f(x+1) dx$$

D. 
$$\int_{a+1}^{b+1} f(x+1) dx$$

Answer: C

$$I = \frac{1}{(a+b)} \int_{a}^{b} x[f(x) + f(x+1)] dx \dots (i)$$

$$x \to a+b-x$$

$$I = \frac{1}{(a+b)} \int_{a}^{b} (a+b-x)[f(a+b-x) + f(a+b+1-x)] dx$$

$$I = \frac{1}{(a+b)} \int_{a}^{b} (a+b-x) [f(x+1) + f(x)] dx \dots (ii)$$

$$[\because put \ x \to x+1 \text{ in } f(a+b+1-x) = f(x)]$$
Add (i) and (ii)
$$2I = \int_{a}^{b} f(x+1) + f(x) dx$$

$$2I = \int_{a}^{b} f(x+1) dx + \int_{a}^{b} f(x) dx$$

$$= \int_{a}^{b} f(a+b+1-x) dx + \int_{a}^{b} f(x) dx$$

$$2I = 2 \int_{a}^{b} f(x+1) dx = \int_{a}^{b} f(x+1) dx$$

$$\therefore \int_{a-1}^{b-1} f(x+1) dx = \int_{a}^{b} f(x+1) dx = \int_{a}^{b} f(x+1) dx$$

-----

# **Question176**

The value of  $\alpha$  for which  $4\alpha \int_{-1}^{2} e^{-\alpha |x|} dx = 5$ , is: [Jan. 7, 2020 (II)]

## **Options:**

A.  $log_e 2$ 

B.  $\log_{e}\left(\frac{3}{2}\right)$ 

C.  $\log_{\rm e} \sqrt{2}$ 

D.  $\log_{e}\left(\frac{4}{3}\right)$ 

Answer: A

$$4\alpha \left\{ \int_{-1}^{0} e^{\alpha x} dx + \int_{0}^{2} e^{-\alpha x} dx \right\} = 5$$

$$\Rightarrow 4\alpha \left\{ \frac{e^{\alpha x}}{\alpha_{-1}^{0}} + \frac{e^{-\alpha x}}{-\alpha_{0}^{2}} \right\} = 5$$

$$\Rightarrow 4\alpha \left\{ \left( \frac{1 - e^{-\alpha}}{\alpha} \right) - \left( \frac{e^{-2\alpha} - 1}{\alpha} \right) \right\} = 5$$

$$\Rightarrow 4(2 - e^{-\alpha} - e^{-2\alpha}) = 5$$
Put  $e^{-\alpha} = t$ 

$$\Rightarrow 4t^{2} + 4t - 3 = 0 \Rightarrow (2t + 3)(2t - 1) = 0$$

$$\Rightarrow e^{-\alpha} = \frac{1}{2} \Rightarrow \alpha = \log_{e} 2$$

\_\_\_\_\_

# Question177

If  $\theta_1$  and  $\theta_2$  be respectively the smallest and the largest values of theta in  $(0,2\pi)-\{\pi\}$  which satisfy the equation,  $2\cot^2\theta-\frac{5}{\sin\theta}+4=0$ , then  $\frac{\theta_2}{\theta_1}\cos^23\theta d\theta$  is equal to: [Jan. 7, 2020 (II)]

**Options:** 

A.  $\frac{\pi}{3}$ 

B.  $\frac{2\pi}{3}$ 

C.  $\frac{\pi}{3} + \frac{1}{6}$ 

D.  $\frac{\pi}{9}$ 

Answer: A

## **Solution:**

$$2\cot^{2}\theta - \frac{5}{\sin\theta} + 4 = 0$$

$$\frac{2\cos^{2}\theta}{\sin^{2}\theta} - \frac{5}{\sin\theta} + 4 = 0$$

$$\Rightarrow 2\cos^{2}\theta - 5\sin\theta + 4\sin^{2}\theta = 0, \sin\theta \neq 0$$

$$\Rightarrow 2\sin^{2}\theta - 5\sin\theta + 2 = 0$$

$$\Rightarrow (2\sin\theta - 1)(\sin\theta - 2) = 0$$

# **Question178**

Let a function  $f : [0, 5] \rightarrow R$  be continuous, f(1) = 3 and F be defined as:  $\mathbf{F}(\mathbf{x}) = \int_{1}^{x} \mathbf{t}^2 \mathbf{g}(\mathbf{t}) d\mathbf{t}$ , where  $\mathbf{g}(\mathbf{t}) = \int_{1}^{x} \mathbf{f}(\mathbf{u}) d\mathbf{u}$ Then for the function F, the point x = 1 is: [Jan. 9, 2020 (II)]

## **Options:**

A. a point of local minima.

B. not a critical point.

C. a point of local maxima.

D. a point of inflection.

Answer: A

## **Solution:**

#### Solution:

$$F(x) = \int_{1}^{x} t^2 g(t) dt$$

Differentiate by using Leibnitz's rule, we get

$$F(x) = x^2 g(x) = x^2 \int_1^x f(u) du$$
 ......(i)  
 $\Delta t x = 1$ 

At 
$$x =$$

$$F'(1) = 1 \int_{1}^{1} f(u) du = 0$$
 Now, differentiate eqn (i)

$$F''(x) = x^2 f(x) - 2x \int_{1}^{x} f(u) du$$

At 
$$x = 1$$

At 
$$x = 1$$
,  
 $F''(1) = 1 \cdot f(1) - 2 \times 1 \cdot \int_{1}^{1} f(u) du$   
 $f(1) = 2 \times 0 - f(1)$ 

$$F''(1) = 3$$

\_\_\_\_\_

# Question179

$$\lim_{\substack{x \to 1 \\ x \to 1}} \left( \frac{\int_{0}^{(x-1)^{2}} t \cos(t^{2}) dt}{\frac{0}{(x-1)\sin(x-1)}} \right)$$

[Sep. 06, 2020 (I)]

## **Options:**

A. is equal to  $\frac{1}{2}$ 

B. is equal to 1

C. is equal to  $-\frac{1}{2}$ 

D. (Bonus)

**Answer: D** 

# **Solution:**

#### Solution:

$$\lim_{x \to 1} \frac{\frac{1}{2}\sin(x-1)^4}{(x-1)\sin(x-1)}$$
Let  $x-1=h$  when  $x \to 1$  then  $h \to 0$ 

$$\lim_{h \to 0} \frac{\sin h^4}{h^4} \times \frac{h}{\sin h} \times h^2 = 1 \times 1 \times 0 = 0$$
(No any option is correct)

\_\_\_\_\_\_

# Question 180

If  $\int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} dx = g(x)e^{(e^x + e^{-x})} + c$ , where c is a constant of integration, then g(0) is equal to: [Sep. 05, 2020 (I)]

B.  $e^2$ 

C. 1

D. 2

**Answer: D** 

## **Solution:**

#### Solution:

$$\begin{split} &\int (e^{2x} + 2e^x - e^{-x} - 1) \cdot e^{(e^x + e^{-x})} d\, x \\ &I = \int (e^{2x} + e^x - 1) \cdot e^{(e^x + e^{-x})} d\, x + \int (e^x - e^{-x}) e^{(e^x + e^{-x})} d\, x \\ &= \int e^x (e^x + 1 - e^{-x}) \cdot e^{(e^x + e^{-x})} d\, x + e^{(e^x + e^{-x})} \\ &= \int (e^x - e^{-x} + 1) e^{(e^x + e^{-x} + x)} d\, x + e^{(e^x + e^{-x})} \\ &\text{Let } e^x + e^{-x} + x = t \Rightarrow (e^x + e^{-x} + 1) d\, x = d\, t \\ &= \int e^t d\, t + e^{(e^x + e^{-x})} = e^t + e^{(e^x + e^{-x})} + C \\ &= e^{(e^x + e^{-x} + x)} + e^{(e^x + e^{-x})} + C \\ &= (e^x + 1) \cdot e^{(e^x + e^{-x})} + C \\ &\text{So, } g(x) = 1 + e^x \text{ and } g(0) = 2 \end{split}$$

\_\_\_\_\_\_

# **Question181**

If  $\int \frac{\cos \theta}{5 + 7 \sin \theta - 2 \cos^2 \theta} d\theta = A \log_e |B(\theta)| + C$ , where C is a constant of integration, then  $\frac{B(\theta)}{A}$  can be: [Sep. 05, 2020 (II)]

## **Options:**

A. 
$$\frac{2\sin\theta+1}{\sin\theta+3}$$

B. 
$$\frac{2\sin\theta+1}{5(\sin\theta+3)}$$

C. 
$$\frac{5(\sin\theta+3)}{2\sin\theta+1}$$

D. 
$$\frac{5(2\sin\theta+1)}{\sin\theta+3}$$

**Answer: D** 

#### **Solution:**

#### Solution:

Let 
$$\sin \theta = t \Rightarrow \cos \theta d \theta = dt$$

$$\int \frac{\cos \theta}{5 + 7 \sin \theta - 2\cos^2 \theta} d\theta = \frac{dt}{5 + 7t - 2 + 2t^2}$$

$$\Rightarrow \frac{1}{2} \int \frac{dt}{\left(t + \frac{7}{4}\right)^2 - \left(\frac{5}{4}\right)^2} = \frac{1}{5} \ln \left| \frac{t + \frac{1}{2}}{t + 3} \right| + C$$

$$= \frac{1}{5} \ln \left| \frac{2t + 1}{t + 3} \right| + C = \frac{1}{5} \ln \left| \frac{2 \sin \theta + 1}{\sin \theta + 3} \right| + C$$

$$\therefore B(\theta) = \frac{2 \sin \theta + 1}{2(\sin \theta + 3)} \text{ and } A = \frac{1}{5}$$

$$\Rightarrow \frac{B(\theta)}{A} = \frac{5(2 \sin \theta + 1)}{(\sin \theta + 3)}$$

\_\_\_\_\_

### **Question182**

The integral  $\int \left(\frac{x}{x \sin x + \cos x}\right)^2 dx$  is equal to(where C is a constant of integration): [Sep. 04, 2020 (I)]

#### **Options:**

A. 
$$\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$

B. 
$$\sec x + \frac{x \tan x}{x \sin x + \cos x} + C$$

C. 
$$\sec x - \frac{x \tan x}{x \sin x + \cos x} + C$$

D. 
$$\tan x + \frac{x \sec x}{x \sin x + \cos x} + C$$

**Answer: A** 

#### **Solution:**

$$\int \frac{x^2}{(x \sin x + \cos x^2)} dx$$

$$\therefore \frac{d}{dx} (x \sin x + \cos x) = x \cos x$$

$$= \int \frac{x \cos x}{(x \sin x + \cos x)^2} \left(\frac{x}{\cos x}\right) dx$$

$$= \frac{x}{\cos x} \left[ \frac{-1}{x \sin x + \cos x} \right] - \int \frac{x \sin x + \cos x}{\cos^2 x} \left[ \frac{-1}{x \sin x + \cos x} \right] dx$$

$$= \frac{x}{\cos x} \left[ \frac{-1}{x \sin x + \cos x} \right] + \int \sec^2 x dx$$

$$= \frac{-x \sec x}{x \sin x + \cos x} + \tan x + C$$

Let  $f(x) = \int \frac{\sqrt{x}}{(1+x)^2} dx (x \ge 0)$ . Then f(3) - f(1) is equal to : [Sep. 04, 2020 (I)]

#### **Options:**

A. 
$$-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$$

B. 
$$\frac{\pi}{6} + \frac{1}{2} - \frac{\sqrt{3}}{4}$$

C. 
$$-\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{4}$$

D. 
$$\frac{\pi}{12} + \frac{1}{2} - \frac{\sqrt{3}}{4}$$

**Answer: D** 

#### **Solution:**

Solution:  

$$\int \frac{\sqrt{x}}{(1+x)^2} dx(x > 0)$$
Put  $x = \tan^2 \theta \Rightarrow 2x dx = 2 \tan \theta \sec^2 \theta d\theta$ 

$$I = \int \frac{2\tan^2 \theta \cdot \sec^2 \theta}{\sec^4 \theta} d\theta = \int 2\sin^2 \theta d\theta$$

$$= \theta - \frac{\sin 2\theta}{2} + C$$

$$\Rightarrow f(x) = \theta - \frac{1}{2} \times \frac{2 \tan \theta}{1 + \tan^2 \theta} + C$$

$$f(x) = \theta - \frac{\tan \theta}{1 + \tan^2 \theta} + C = \tan^{-1} \sqrt{x} - \frac{\sqrt{x}}{1 + x} + C$$
Now  $f(3) - f(1) = \tan^{-1}(\sqrt{3}) - \frac{\sqrt{3}}{1 + 3} - \tan^{-1}(1) + \frac{1}{2}$ 

$$= \frac{\pi}{12} + \frac{1}{2} - \frac{\sqrt{3}}{4}$$

If  $\int \sin^{-1} \left( \sqrt{\frac{x}{1+x}} \right) dx = A(x)\tan^{-1}(\sqrt{x}) + B(x) + C$ , where C is a constant of

integration, then the ordered pair ( A(x), B(x) ) can be : [Sep. 03, 2020 (II)]

#### **Options:**

A. 
$$(x + 1, -\sqrt{x})$$

B. 
$$(x + 1, \sqrt{x})$$

C. 
$$(x-1, -\sqrt{x})$$

D. 
$$(x-1, \sqrt{x})$$

Answer: A

#### **Solution:**

#### Solution:

$$\begin{split} I &= \int \sin^{-1} \left( \frac{\sqrt{x}}{\sqrt{1+x}} \right) d \, x \, = \int \tan^{-1} \sqrt{x} \, . \, 1 d \, x \\ &= x \tan^{-1} \sqrt{x} - \int \frac{1}{1+x} \, . \, \frac{1}{2\sqrt{x}} \, . \, x d \, x + C \\ &= x \tan^{-1} \sqrt{x} - \frac{1}{2} \int \frac{t \, . \, 2t d \, t}{1+t^2} + C \, \left( \text{Put } \, x = t^2 \Rightarrow d \, x = 2t d \, t \, \right) \\ &= x \tan^{-1} \sqrt{x} - \int \frac{t^2}{1+t^2} d \, t + C \\ &= x \tan^{-1} \sqrt{x} - \int \frac{t^2}{1+t^2} d \, t + C \\ &= x \tan^{-1} \sqrt{x} - t + \tan^{-1} t + C \\ &= x \tan^{-1} \sqrt{x} - \sqrt{x} + \tan^{-1} \sqrt{x} + C \\ &= (x+1) \tan^{-1} \sqrt{x} - \sqrt{x} + C \\ &\Rightarrow A(x) = x+1 \Rightarrow B(x) = -\sqrt{x} \end{split}$$

------

### **Question185**

The integral  $\int_{1}^{2} e^{x} \cdot x^{x}(2 + \log_{e} x) dx$  equals: [Sep. 06, 2020 (II)]

**Options:** 

A. 
$$e(4e + 1)$$

B. 
$$4e^2 - 1$$

C. 
$$e(4e-1)$$

D. 
$$e(2e-1)$$

**Answer: C** 

#### **Solution:**

Solution:

$$I = \int_{1}^{2} e^{x} x^{x} (2 + \log_{e} x) dx$$

$$I = \int_{1}^{2} e^{x} x^{x} [1 + (1 + \log_{e} x)] dx$$

$$= \int_{1}^{2} e^{x} [x^{x} + x^{x} (1 + \log_{e} x)] dx$$

$$\because \int_{1}^{2} e^{x} (f(x) + f'(x)) dx = e^{x} f(x) + c$$

$$\therefore I = [e^{x} x^{x}]_{1}^{2}$$

$$= e^{2} \times 4 - e \times 1 = 4e^{2} - e = e(4e - 1)$$

-----

### **Question186**

If  $I_1 = \frac{1}{0} (1 - x^{50})^{100} dx$  and  $I_2 = \frac{1}{0} (1 - x^{50})^{101} dx$  such that  $I_2 = \alpha I_1$  then  $\alpha$  equals to: [Sep. 06, 2020 (I)]

**Options:** 

A. 
$$\frac{5049}{5050}$$

B. 
$$\frac{5050}{5049}$$

C. 
$$\frac{5050}{5051}$$

D. 
$$\frac{5051}{5050}$$

Answer: C

$$\begin{split} &I_{2} = \int_{0}^{1} (1 - x^{50})^{101} dx = \int_{0}^{1} (1 - x^{50})(1 - x^{50})^{100} dx \\ &I_{2} = \int_{0}^{1} (1 - x^{50})^{100} dx - \int_{0}^{1} x \cdot x^{49} (1 - x^{50})^{100} dx \\ &I_{2} = I_{1} + \left[ \frac{x}{5050} (1 - x^{50})^{101} \right]_{0}^{1} - \int_{0}^{1} \frac{(1 - x^{50})^{101}}{5050} dx \\ &I_{2} = I_{1} + 0 - \frac{I_{2}}{5050} \\ &\Rightarrow \frac{5051}{5050} I_{2} = I_{1} \Rightarrow I_{2} = \frac{5050}{5051} I_{1} \\ &\Rightarrow \alpha = \frac{5050}{5051} \end{split}$$

The value of  $\int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\sin x}} dx$  is:

[Sep. 05, 2020 (I)]

**Options:** 

A.  $\frac{\pi}{4}$ 

Β. π

C.  $\frac{\pi}{2}$ 

D.  $\frac{3\pi}{2}$ 

**Answer: C** 

#### **Solution:**

Solution:  

$$I = \int_{-\pi/2}^{\pi/2} \frac{1}{1 + e^{\sin x}} dx$$

$$= \int_{-\pi/2}^{0} \frac{1}{1 + e^{\sin x}} dx + \int_{0}^{\pi/2} \frac{1}{1 + e^{\sin x}} dx$$

$$= \int_{0}^{\pi/2} \left( \frac{1}{1 + e^{\sin x}} + \frac{1}{1 + e^{-\sin x}} \right) dx$$

$$= \int_{0}^{\pi/2} \frac{1 + e^{\sin x}}{1 + e^{\sin x}} dx = \frac{\pi}{2}$$

Let f(x) = |x-2| and g(x) = f(f(x)),  $x \in [0, 4]$  Then  $\int_{0}^{3} (g(x) - f(x)) dx$  is equal to: [Sep. 04, 2020 (I)]

#### **Options:**

- A. 1
- B. 0
- C.  $\frac{1}{2}$
- D.  $\frac{3}{2}$

#### Answer: A

#### **Solution:**

#### Solution:

$$f(x) = |x-2| = \begin{cases} 2-x, & x < 2 \\ x-2, & x \ge 2 \end{cases}$$

$$g(x) = f(f(x)) = \begin{cases} 2-f(x), & f(x) < 2 \\ f(x)-2, & f(x) \ge 2 \end{cases}$$

$$= \begin{cases} 2-(2-x), & 2-x < 2, & x < 2 \\ (2-x)-2, & 2-x \ge 2, & x < 2 \\ 2-(x-2), & x-2 < 2, & x \ge 2 \\ (x-2)-2, & x-2 \ge 2, & x \ge 2 \end{cases}$$

$$= \begin{cases} -x, & 0 < x \le 0 \\ x, & 0 < x < 2 \\ 4-x, & 2 \le x < 4 \\ x-4, & x \ge 4 \end{cases}$$

\_\_\_\_\_\_

# Question 189

The integral  $\int_{\pi/6}^{\pi/3} \tan^3 x \cdot \sin^2 3x (2\sec^2 x \cdot \sin^2 3x + 3\tan x \cdot \sin 6x) d$  xis equal to : [Sep. 04, 2020 (II)]

**Options:** 

A. 
$$\frac{7}{18}$$

B. 
$$-\frac{1}{9}$$

C. 
$$-\frac{1}{18}$$

D. 
$$\frac{9}{2}$$

**Answer: C** 

#### **Solution:**

Solution:

$$\int_{\pi/6}^{\pi/3} \left[ \frac{1}{2} \frac{d (\tan^4 x)}{d x} \cdot \sin^4 3x + \frac{1}{2} \tan^4 x \cdot \frac{d (\sin^4 3x)}{d x} \right] d x$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/3} d (\tan^4 x \cdot \sin^4 3x) d x$$

$$= \left[ \frac{\tan^4 x \sin^4 3x}{2} \right]_{\pi/6}^{\pi/3} = \frac{9 \cdot 0}{2} - \frac{\frac{1}{9} \cdot 1}{2} = \frac{-1}{18}$$

\_\_\_\_\_

### Question190

Let  $\{x\}$  and [x] denote the fractional part of x and the greatest integer leq x respectively of a real number x. If [x]  $\{x\}$  d x, [x] d x and [x] and [x]  $\{x\}$  d x, [x] d x and [x] and [x]  $\{x\}$  d x, [x] d x and [x] and [x]  $\{x\}$  d x, [x] d x and [x] and [x]  $\{x\}$  d x, [x] d x and [x] and [x]  $\{x\}$  d x, [x] d x and [x] and [x] denote the fractional part of x and the greatest integer leq x respectively of a real number x. If [x] d x and [x] d

Answer: 21

$$\int_{0}^{n} \{x\} dx = n \int_{0}^{1} x \cdot dx = \frac{n}{2}$$

$$\Rightarrow \int_{0}^{n} [x] dx = \int_{0}^{n} (x - \{x\}) dx = \frac{n^{2}}{2} - \frac{n}{2}$$
According to the questions,
$$\frac{n}{2}, \frac{n^{2} - n}{2}, 10(n^{2} - n) \text{ are in GP}$$

$$\therefore \left(\frac{n^{2} - n}{2}\right)^{2} = \frac{n}{2} \times 10(n^{2} - n)$$

$$\Rightarrow n^{2} = 21n \Rightarrow n = 21$$

-----

### **Question191**

 $\int_{-\pi}^{\pi} |\pi - |x|| dx \text{ is equal to :} \\ [\text{Sep. 03, 2020 (I)}]$ 

**Options:** 

A.  $\sqrt{2}\pi^2$ 

B.  $2\pi^2$ 

C.  $\pi^2$ 

D.  $\frac{\pi^2}{2}$ 

**Answer: C** 

#### **Solution:**

Solution:

$$\begin{split} I &= \int\limits_{-\pi}^{\pi} |\pi - |x| |d\,x \; [\; \because |\; \pi - |\; x|| \; \text{is even} \; ] \\ &= 2 \int\limits_{0}^{\pi} |\pi - |x| |d\,x \\ &= 2 \int\limits_{0}^{\pi} (\pi - x) d\,x \\ &= 2 \left[ \left. \pi x - \frac{x^2}{2} \right]_{0}^{\pi} \; = 2 \left( \left. \pi^2 - \frac{\pi^2}{2} \right) = \pi^2. \end{split}$$

------

### Question192

# If the value of the integral $\int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} dx$ is $\frac{k}{6}$ , then k is equal to: [Sep. 03, 2020 (II)]

#### **Options:**

A. 
$$2\sqrt{3} - \pi$$

B. 
$$2\sqrt{3_{\pi}}$$

C. 
$$3\sqrt{2} + \pi$$

D. 
$$3\sqrt{2} - \pi$$

**Answer: A** 

#### **Solution:**

#### Solution:

$$\frac{k}{6} = \int_{0}^{\frac{1}{2}} \frac{x^2}{(1-x^2)^{3/2}} dx$$
Let  $x = \sin \theta$ ;  $dx = \cos \theta d\theta$ 

$$then \int_{0}^{\frac{1}{2}} \frac{x^2}{(1-x^2)^{3/2}} dx = \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta \cos \theta}{\cos^3 \theta} d\theta$$

$$\therefore \frac{k}{6} = \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^3 \theta} \cdot \cos \theta d\theta$$

$$\Rightarrow \frac{k}{6} = \int_{0}^{\frac{\pi}{6}} \tan^2 \theta d\theta = \int_{0}^{\frac{\pi}{6}} (\sec^2 \theta - 1) d\theta$$

$$\Rightarrow \frac{k}{6} = (\tan \theta - \theta)_0^{\pi/6} = \left(\frac{1}{\sqrt{3}} - \frac{\pi}{6}\right) = \frac{2\sqrt{3} - x}{6}$$

$$\Rightarrow k = 2\sqrt{3} - \pi$$

\_\_\_\_\_

### Question193

The integral  $\int_{0}^{2} ||x-1|-x| dx$  is equal to \_\_\_\_\_. [NA Sep. 02, 2020 (I)]

**Answer: 1.50** 

#### **Solution:**

Solution:

$$\int_{0}^{2} \|x - 1\| - x | dx = \int_{0}^{1} |1 - x - x| dx \$ + \sqrt{2} \{1\} \setminus \{2\} \{\|x - 1 - x\| dx \$ + \int_{0}^{2} (2x - 1) dx \$ = \int_{0}^{1} (1 - 2x) dx + \int_{1/2}^{1} (2x - 1) dx + \int_{1}^{2} dx$$

$$= \left[ x - x^{2} \right]_{0}^{\frac{1}{2}} + \left[ x^{2} - x \right]_{\frac{1}{2}}^{1} + \left[ x \right]_{1}^{2}$$

$$= \frac{1}{2} - \frac{1}{4} + (1 - 1) - \left( \frac{1}{4} - \frac{1}{2} \right) + 2 - 1 = \frac{1}{4} + \frac{1}{4} + 1 = \frac{3}{2}$$

\_\_\_\_\_

### **Question194**

Let [t] denote the greatest integer less than or equal to t. Then the value of  $\frac{1}{2}|2x - [3x]|dx$  is \_\_\_\_\_. [NA Sep. 02, 2020 (II)]

**Answer: 1** 

#### **Solution:**

$$\int_{1}^{2} |2x - [3x]| dx$$

$$= \int_{1}^{2} |3x - [3x] - x| dx$$

$$= \int_{1}^{2} |\{3x\} - x| dx = \int_{1}^{2} (x - \{3x\}) dx$$

$$= \int_{1}^{2} x dx - \int_{1}^{2} \{3x\} dx$$

$$= \left[\frac{x^{2}}{2}\right]_{1}^{2} - 3 \int_{0}^{1/3} 3x dx$$

$$= \frac{(4-1)}{2} - 9 \left[\frac{x^{2}}{2}\right]_{0}^{1/3} = \frac{3}{2} - \frac{1}{2} = 1$$

For  $x^2 \neq n\pi + 1$ ,  $n \in \mathbb{N}$  (the set of natural numbers), the integral

$$\int \mathbf{x} \ \sqrt{\frac{\frac{2\sin(x^2-1)-\sin 2(x^2-1)}{2\sin(x^2-1)+\sin 2(x^2-1)}}{\sin(x^2-1)+\sin 2(x^2-1)}} \ \mathbf{d} \ \mathbf{x} \ \mathbf{is} \ \mathbf{equal} \ \mathbf{to}:$$

[Jan. 09, 2019(I)]

**Options:** 

A. 
$$\log_e \left| \frac{1}{2} \sec^2(x^2 - 1) \right| + c$$

B. 
$$\frac{1}{2}\log_{e}|\sec^{2}(x^{2}-1)|+c$$

C. 
$$\frac{1}{2}\log_{e}\left|\sec^{2}\left(\frac{x^{2}-1}{2}\right)\right|+c$$

D. 
$$\log_{e} \left| \sec^{2} \left( \frac{x^{2}-1}{2} \right) \right| + c$$

Answer: 0

#### **Solution:**

Consider the given integral
$$I = \int x \sqrt{\frac{2 \sin(x^2 - 1) - 2 \sin(x^2 - 1) \cos(x^2 - 1)}{2 \sin(x^2 - 1) + 2 \sin(x^2 - 1) \cos(x^2 - 1)}} dx$$
(::sin 2 \theta = 2 \sin \theta \cos \theta)

$$(\because \sin 2\theta = 2 \sin \theta \cos \theta)$$
  
$$\Rightarrow I = \int x \sqrt{\frac{1 - \cos(x^2 - 1)}{1 + \cos(x^2 - 1)}} dx$$

Now let 
$$\frac{x^2 - 1}{2} = t \Rightarrow \frac{2x}{2} dx = dt$$

$$:I = \int |\tan(t)| dt = \ln|\sec t| + C$$

or 
$$I = \ln \left| \sec \left( \frac{x^2 - 1}{2} \right) \right| + c = \frac{1}{2} \ln \left| \sec^2 \left( \frac{x^2 - 1}{2} \right) \right| + c$$

### Question196

If  $f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx$ ,  $(x \ge 0)$ and f(0) = 0, then the value of f(1) is: [Jan. 09, 2019 (II)]

#### **Options:**

A. 
$$-\frac{1}{2}$$

B. 
$$-\frac{1}{4}$$

C. 
$$\frac{1}{2}$$

D. 
$$\frac{1}{4}$$

**Answer: D** 

#### **Solution:**

#### Solution:

$$\begin{split} f(x) &= \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} dx, x \ge 0 \\ &= \int \frac{5x^8 + 7x^6}{x^{14}(x^{-5} + x^{-7} + 2)^2} dx \\ &= \int \frac{5x^{-6} + 7x^{-8}}{(2 + x^{-7} + x^{-5})^2} dx \\ \text{Let } 2 + x^{-7} + x^5 = t \\ &\Rightarrow (-7x^{-8} - 5x^{-6}) dx = dt \\ &\Rightarrow f(x) = \int \frac{-dt}{t^2} = \int -t^{-2} dt = t^{-1} + c \\ &\Rightarrow f(x) = \frac{1}{2 + x^{-7} + x^{-5}} + c, f(0) = 0 \Rightarrow c = 0 \\ \therefore f(1) = \frac{1}{4} \end{split}$$

\_\_\_\_\_\_

### Question197

The integral  $\int \cos(\log_e x) dx$  is equal to : (where C is a constant of integration) [Jan. 12,2019 (I)]

#### **Options:**

A. 
$$\frac{x}{2}[\sin(\log_e x) - \cos(\log_e x)] + C$$

B. 
$$x[\cos(\log_e x) + \sin(\log_e x)] + C$$

C. 
$$\frac{x}{2}[\cos(\log_e x) + \sin(\log_e x)] + C$$

D. 
$$x[\cos(\log_e x) - \sin(\log_e x)] + C$$

**Answer: C** 

#### **Solution:**

#### Solution:

Let the integral,  $I = \operatorname{int} \cos(\ln x) d x$  $\Rightarrow I = \cos(\ln x) x - \int \frac{-\sin(\ln x)}{x} x d x$   $= x \cos(\ln x) + \int \sin(\ln x) d x$   $= x \cos(\ln x) + \sin(\ln x) x - \int \frac{\cos(\ln x)}{x} x d x$   $= x \cos(\ln x) + \sin(\ln x) \cdot x - I$   $\Rightarrow 2I = x(\cos(\ln x) + \sin(\ln x)) + C$ 

### Question198

 $\Rightarrow I = \frac{x}{2} [\cos(\ln x) + \sin(\ln x)] + C$ 

The integral  $\int \frac{3x^{13}+2x^{11}}{(2x^4+3x^2+1)^4} dx$  is equal to: (where C is a constant of integration) [Jan.12,2019 (II)]

#### **Options:**

A. 
$$\frac{x^4}{6(2x^4+3x^2+1)^3}$$
 + C

B. 
$$\frac{x^{12}}{6(2x^4+3x^2+1)^3}+C$$

C. 
$$\frac{x^4}{(2x^4+3x^2+1)^3}+C$$

D. 
$$\frac{x^{12}}{(2x^4+3x^2+1)^3}+C$$

Answer: B

$$I = \int \frac{3x^{13} + 2x^{11}}{(2x^4 + 3x^2 + 1)^4} dx = \int \frac{3x^{13} + 2x^{11}}{x^{16} \left(2 + \frac{3}{x^2} + \frac{1}{x^4}\right)^4} dx$$

$$I = \int \frac{\frac{3}{x^3} + \frac{2}{x^5}}{\left(2 + \frac{3}{x^2} + \frac{1}{x^4}\right)^4} dx$$

Let 
$$2 + \frac{3}{x^2} + \frac{1}{x^4} = t$$
,  $-2\left(\frac{3}{x^3} + 2x^5\right) dx = dt$ 

Then, I = 
$$\int \frac{-\frac{dt}{2}}{t^4} = -\frac{1}{2} \frac{t^{-4+1}}{2-4+1} + C$$

$$I = \frac{-1}{2} \times \frac{1}{(-3)} \frac{1}{\left(2 + \frac{3}{v^2} + \frac{1}{v^4}\right)^3} + C$$

$$I = \frac{1}{6} \frac{x^{12}}{(2x^4 + 3x^2 + 1)^3} + C$$

\_\_\_\_\_

### Question199

If  $\int \frac{\sqrt{1-x^2}}{x^4} dx = A(x) (\sqrt{1-x^2})^m + C$ , for a suitable chosen integer m and a function A(x), where C is a constant of integration, then  $(A(x))^m$  equals: [Jan. 11, 2019 (I)]

**Options:** 

A. 
$$\frac{-1}{27x^9}$$

B. 
$$\frac{-1}{3x^3}$$

C. 
$$\frac{1}{27x^6}$$

D. 
$$\frac{1}{9x^4}$$

Answer: A

$$A(x)(\sqrt{1-x^2})^m + C = \int \frac{\sqrt{1-x^2}}{x^4} dx$$

$$= \int \frac{\sqrt{\frac{1}{x^2} - 1}}{x^3} dx$$
Let  $\frac{1}{x^2} - 1 = u^2$ 

$$\Rightarrow -\frac{2}{x^3} = \frac{2udu}{dx}$$

$$\frac{dx}{x^3} = -udu$$

$$A(x)(\sqrt{1-x^2})^m + C = \int (-u^2)du = -\frac{u^3}{3} + C$$

$$= -\frac{1}{3}(\frac{1}{x^2} - 1)^{\frac{3}{2}} + C$$

$$= -\frac{1}{3} \cdot \frac{1}{x^3} \cdot (1 - x^2)^{\frac{3}{2}} + C$$

$$= \frac{-1}{3x^3}(\sqrt{1-x^2})^3 + C$$
Compare both sides,
$$\Rightarrow A(x) = -\frac{1}{3x^3} \text{ and } m = 3$$

$$\Rightarrow A(x) = -\frac{1}{3x^3} \text{ and } m = 3$$

$$\Rightarrow (A(x))^3 = \frac{-1}{27x^9}$$

\_\_\_\_\_

# Question200

If  $\int \frac{x+1}{\sqrt{2x-1}} dx = f(x)\sqrt{2x-1} + C$ , where C is a constant of integration, then f(x) is equal to: [Jan. 11, 2019 (II)]

**Options:** 

A. 
$$\frac{1}{3}(x+1)$$

B. 
$$\frac{2}{3}(x+2)$$

C. 
$$\frac{2}{3}(x-4)$$

D. 
$$\frac{1}{3}(x+4)$$

**Answer: D** 

#### **Solution:**

Let 
$$I = \int \frac{x+1}{\sqrt{2x-1}} dx$$
  
Put  $\sqrt{2x-1} = t$   
 $\therefore 2x-1 = t^2 \Rightarrow dx = tdt$   
 $I = \int \frac{(t^2+3)}{2} dt = \frac{t^3}{6} + \frac{3t}{2} + C$   
 $= \frac{(2x-1)^2}{6} + \frac{3}{2}(2x-1)^2 + C$   
 $= \sqrt{2x-1} \left(\frac{x+4}{3}\right) + C$   
 $= f(x) \cdot \sqrt{2x-1} + C$   
Hence,  $f(x) = \frac{x+4}{3}$ 

\_\_\_\_\_

# Question201

Let  $n \ge 2$  be a natural number and  $0 < \theta < \frac{\pi}{2}$ 

Then  $\int \frac{(\sin^n\theta + \sin\theta)^{\frac{1}{n}}\cos\theta}{\sin^{n+1}\theta}d\theta$  is equal to: [Jan 10, 2019(I)]

### **Options:**

A. 
$$\frac{n}{n^2-1} \left(1 - \frac{1}{\sin^{n-1}\theta}\right)^{\frac{n+1}{n}} + C$$

B. 
$$\frac{n}{n^2+1} \left(1 - \frac{1}{\sin^{n-1}\theta}\right)^{\frac{n+1}{n}} + C$$

C. 
$$\frac{n}{n^2-1} \left(1 + \frac{1}{\sin^{n-1}\theta}\right)^{\frac{n+1}{n}} + C$$

D. 
$$\frac{n}{n^2-1} \left(1 - \frac{1}{\sin^{n+1}\theta}\right)^{\frac{n+1}{n}} + C$$

**Answer: A** 

### **Solution:**

Let, 
$$I = \int \frac{(\sin^n \theta - \sin \theta)^{\frac{1}{n}} \cos \theta}{\sin^{n+1} \theta} d\theta$$

Let 
$$\sin \theta = u$$

$$\Rightarrow \cos \theta d \theta = d u$$

$$\begin{split} & : I = \int \frac{\left(u^{n} - u\right)^{\frac{1}{n}}}{u^{n+1}} du \\ & = \int \frac{\left(1 - \frac{1}{u^{n-1}}\right)^{\frac{1}{n}}}{u^{n}} du = \int u^{-n} (1 - u^{1-n})^{\frac{1}{n}} du \\ & = \int u^{1-n} = v \\ & \Rightarrow -(1 - n)u^{-n} du = dv \\ & \Rightarrow u^{n} du = \frac{dv}{n-1} \\ & : I = \int v^{\frac{1}{n}} \cdot \frac{dv}{n-1} = \frac{1}{n-1} \cdot \frac{v^{n+1} - 1}{n} \\ & = nn^{2} - 1v^{\frac{n+1}{n}} + C = \frac{n}{n^{2} - 1} \left(1 - \frac{1}{u^{n-1}}\right)^{\frac{n+1}{n}} + C \\ & = \frac{n}{n^{2} - 1} \left(1 - \frac{1}{\sin^{n-1}\theta}\right)^{\frac{n+1}{n}} + C \end{split}$$

\_\_\_\_\_\_

# Question202

$$\lim_{n \to \infty} \left( \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \dots + \frac{1}{5n} \right) \text{ is equal to :}$$

[Jan. 12, 2019 (II)]

### **Options:**

A.  $\frac{\pi}{4}$ 

B.  $tan^{-1}(3)$ 

C.  $\frac{\pi}{2}$ 

D.  $tan^{-1}(2)$ 

Answer: D

Solution:

Let 
$$L = \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{n}{n^2 + r^2} = \int_0^2 \frac{dx}{1 + x^2}$$

$$\left[ \because \frac{r}{n} \to x, \frac{1}{r} \to dx \right]$$

$$= \left[ \tan^{-1} x \right]_0^2$$

$$= \tan^{-1} 2$$

\_\_\_\_\_

# Question203

Let f and g be continuous functions on [0, a] such that f(x) = f(a - x) and g(x) + g(a - x) = 4, then  $\int_0^a f(x)g(x)dx$  is equal to: [Jan. 12, 2019 (I)]

**Options:** 

A. 
$$4\int_{0}^{a} f(x) dx$$

B. 
$$\int_{0}^{a} f(x) dx$$

C. 
$$2\int_{0}^{a} f(x) dx$$

D. 
$$-3\int_{0}^{a} f(x) dx$$

**Answer: C** 

#### **Solution:**

$$f(x) = f(a - x)$$

$$g(x) + g(a - x) = 4$$
Let, the integral,
$$I = \int_{0}^{a} f(x)g(x)dx$$

$$= \int_{0}^{a} f(a - x) \cdot g(a - x)dx$$

$$\left[ \because \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a + b - x)dx \right]$$

$$\Rightarrow I = \int_{0}^{a} f(x)[4 - g(x)]dx$$

$$\Rightarrow I = \int_{0}^{a} 4f(x)dx - \int_{0}^{a} f(x) \cdot g(x)dx$$

$$\Rightarrow I = \int_{0}^{a} 4f(x)dx - I$$

$$\Rightarrow 2I = \int_{0}^{a} 4f(x)dx$$

$$\Rightarrow I = 2\int_{0}^{a} f(x)dx$$

\_\_\_\_\_

# Question204

The integral  $\int_{1}^{e} \left\{ \left( \frac{x}{e} \right)^{2x} - \left( \frac{e}{x} \right)^{x} \right\} \log_{e} x d x \text{ is equal to :}$  [Jan. 12, 2019 (II)]

**Options:** 

A. 
$$\frac{1}{2} - e - \frac{1}{e^2}$$

B. 
$$-\frac{1}{2} + \frac{1}{e} - \frac{1}{2e^2}$$

C. 
$$\frac{3}{2} - \frac{1}{e} - \frac{1}{2e^2}$$

D. 
$$\frac{3}{2} - e - \frac{1}{2e^2}$$

**Answer: D** 

#### **Solution:**

$$I = \int_{1}^{e} \left\{ \left( \frac{x}{e} \right)^{2x} - \left( \frac{e}{x} \right)^{x} \right\} \log_{e} x dx$$

$$Let \left( \frac{x}{e} \right)^{x} = t$$

$$\Rightarrow x \ln \left( \frac{x}{e} \right) = \ln t$$

$$\Rightarrow x (\ln x - 1) = \ln t$$

On differentiating both sides w.r. tx we get

$$\ln x \cdot dx = \frac{dt}{t}$$

When x = e then t = 1 and when x = 1 then  $t = \frac{1}{e}$ .

$$\begin{split} I &= \frac{1}{\frac{1}{e}} \left( t^2 - \frac{1}{t} \right) \cdot \frac{dt}{t} = \frac{1}{\frac{1}{e}} \left( t - \frac{1}{t^2} \right) dt \\ &= \left( \frac{t^2}{2} + \frac{1}{t} \right) \frac{1}{e} = \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{2e^2} + e \right) = \frac{3}{2} - e - \frac{1}{2e^2} \end{split}$$

\_\_\_\_\_

# **Question205**

The value of the integral  $\int_{-2}^{2} \frac{\sin^2 x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} dx$ 

(where [x] denotes the greatest integer less than or equal to x) is: [Jan. 11, 2019 (I)]

**Options:** 

A. 0

B. sin 4

C. 4

D.  $4 - \sin 4$ 

**Answer: A** 

### **Solution:**

Let 
$$f(x) = \frac{\sin^2 x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}}$$
  
So,  $f(-x) = \frac{\sin^2(-x)}{\left[\frac{-x}{\pi}\right] + \frac{1}{2}}$  ::  $[-x] = -1 - [x]$ 

$$\Rightarrow f(-x) = \frac{\sin^2 x}{-1 - \left[\frac{x}{\pi}\right] + \frac{1}{2}} = \frac{\sin^2 x}{-\frac{1}{2} - \left[\frac{x}{\pi}\right]} = -f(x)$$

 $\Rightarrow$ f(x) is odd function

Hence, 
$$\int_{-2}^{2} f(x) dx = 0$$

\_\_\_\_\_\_

# Question206

The integral  $\int_{\pi/6}^{\pi/4} \frac{dx}{\sin 2x(\tan^5x + \cot^5x)}$  equals:

[Jan. 11, 2019 (II)]

**Options:** 

A. 
$$\frac{1}{20} \tan^{-1} \left( \frac{1}{9\sqrt{3}} \right)$$

B. 
$$\frac{1}{10} \left( \frac{\pi}{4} - \tan^{-1} \left( \frac{1}{9\sqrt{3}} \right) \right)$$

C. 
$$\frac{\pi}{40}$$

D. 
$$\frac{1}{5} \left( \frac{\pi}{4} - \tan^{-1} \left( \frac{1}{3\sqrt{3}} \right) \right)$$

**Answer: B** 

### **Solution:**

$$I = \int_{\pi/6}^{\pi/4} \frac{dx}{\sin 2x(\tan^5 x + \cot^5 x)}$$

$$= \int_{\pi/6}^{\pi/4} \frac{\tan^5 x \cdot \sec^2 x}{2\frac{\sin x}{\cos x}((\tan^5 x)^2 + 1)}$$

$$= \frac{1}{2} \int_{\pi/6}^{\pi/4} \frac{\tan^4 x \cdot \sec^2 x}{(\tan^5 x)^2 + 1} dx$$
Let  $\tan^4 x = t$ 

$$5\tan^4 x \cdot \sec^2 x dx = dt$$

When 
$$x \to \frac{\pi}{4}$$
 then  $t \to 1$   
and  $x \to \frac{\pi}{6}$  then  $t \to \left(\frac{1}{\sqrt{3}}\right)^5$   

$$\therefore I = \frac{1}{10} \int_{\left(\frac{1}{\sqrt{3}}\right)^5}^{1} \frac{dt}{t^2 + 1}$$

$$= \frac{1}{10} \left(\frac{\pi}{4} - \tan^{-1}\left(\frac{1}{9\sqrt{3}}\right)\right)$$

\_\_\_\_\_

# Question207

Let  $I = \int_a^b (x^4 - 2x^2) dx$ . If I is minimum then the ordered pair (a, b) is: [Jan 10, 2019 (I)]

#### **Options:**

A. 
$$(0, \sqrt{2})$$

B. 
$$(-\sqrt{2}, 0)$$

C. 
$$(\sqrt{2}, -\sqrt{2})$$

D. 
$$(-\sqrt{2}, \sqrt{2})$$

**Answer: D** 

### **Solution:**

$$I = \int_{a}^{b} (x^4 - 2x^2) dx$$

$$\Rightarrow \frac{dI}{dx} = x^4 - 2x^2 = 0 \text{ (for minimum )}$$

$$\Rightarrow x = 0, \pm \sqrt{2}$$
Also, 
$$I = \left[\frac{x^5}{5} - \frac{2x^3}{3}\right]_{a}^{b}$$
For 
$$a = 0, b = \sqrt{2}$$

$$I = \frac{-8\sqrt{2}}{15}$$
For 
$$a = -\sqrt{2}, b = 0$$

$$I = \frac{-8\sqrt{2}}{15}$$
For  $a = \sqrt{2}$ ,  $b = -\sqrt{2}$ 

$$I = \frac{16\sqrt{2}}{15}$$
.
For  $a = -\sqrt{2}$ ,  $b = \sqrt{2}$ 

$$I = \frac{-16\sqrt{2}}{15}$$

$$\therefore I \text{ is minimum when } (a, b) = (-\sqrt{2}, \sqrt{2})$$

If  $\int_{0}^{x} f(t)dt = x^{2} + \int_{x}^{1} t^{2} f(t)dt$ , then f'(1/2) is: [Jan. 10, 2019 (II)]

**Options:** 

- A.  $\frac{24}{25}$
- B.  $\frac{18}{25}$
- C.  $\frac{4}{5}$
- D.  $\frac{6}{25}$

Answer: A

### **Solution:**

$$\int_{0}^{x} f(t)dt = x^{2} + \int_{x}^{1} t^{2} f(t)dt$$

$$\Rightarrow f(x) = 2x - x^{2} f(x)$$

$$\Rightarrow f(x) = \frac{2x}{1 + x^{2}}$$

$$\Rightarrow f'(x) = \frac{2(1 - x^{2})}{(1 + x^{2})^{2}}$$

Then,

$$f'(1/2) = \frac{2\left(1 - \frac{1}{4}\right)}{\left(1 + \frac{1}{4}\right)^2} = \frac{3}{2} \times \frac{16}{25} = \frac{24}{25}$$

\_\_\_\_\_

# Question209

The value of  $\int_{-\pi/2}^{\pi/2} \frac{dx}{[x] + [\sin x] + 4}$ , where [t] denotes the greatest integer less than or equal to t, is: [Jan. 10, 2019 (II)]

#### **Options:**

A. 
$$\frac{1}{12}(7\pi + 5)$$

B. 
$$\frac{1}{12}(7\pi - 5)$$

C. 
$$\frac{3}{20}(4\pi - 3)$$

D. 
$$\frac{3}{10}(4\pi - 3)$$

**Answer: C** 

### **Solution:**

#### Solution:

$$\begin{split} I &= \int_{-\pi/2}^{\pi/2} \frac{dx}{[x] + [\sin x] + 4} \\ &= \int_{-\pi}^{-1} \frac{dx}{-2 - 1 + 4} + \int_{-1}^{0} \frac{dx}{-1 - 1 + 4} + \int_{0}^{1} \frac{dx}{0 + 0 + 4} + \int_{1}^{\frac{\pi}{2}} \frac{dx}{1 + 0 + 4} \\ &= \left(-1 + \frac{\pi}{2}\right) + \frac{1}{2}(0 + 1) + \frac{1}{4}(1 - 0) + \frac{1}{5}\left(\frac{\pi}{2} - 1\right) \\ &= \frac{3\pi}{5} - \frac{9}{20} = \frac{3}{20}(4\pi - 3) \end{split}$$

------

The value of  $\int_{0}^{\pi} |\cos x|^{3} dx$  is: [Jan 9, 2019 (I)]

### **Options:**

- A. 0
- B.  $\frac{4}{3}$
- C.  $\frac{2}{3}$
- D.  $-\frac{4}{3}$

**Answer: B** 

### **Solution:**

#### Solution:

$$I = \int_{0}^{\pi} |\cos x|^{3} dx$$

$$= 2 \int_{0}^{\pi/2} \cos^{3}x dx$$

$$= \frac{2}{4} \int_{0}^{\pi/2} (3\cos x + \cos 3x) dx \ [\because \cos 3\theta = 4\cos^{3}\theta - 3\cos\theta]$$

$$= \frac{1}{2} \left[ 3\sin x + \frac{\sin 3x}{3} \right]_{0}^{\pi/2}$$

$$= \frac{1}{2} \left( 3 - \frac{1}{3} \right) = \frac{4}{3}$$

\_\_\_\_\_

# **Question211**

Let f be a differentiable function from R to R such that  $|f(x) - f(y)| \le 2|x-y|^{3/2}$ , for all x, y,  $\in$  R. If f(0) = 1 then  $\int_0^1 f^2(x) dx$  is equal to: [Jan. 09, 2019 (II)]

#### **Options:**

- A. 1
- B. 2
- C.  $\frac{1}{2}$
- D. 0

**Answer: A** 

### **Solution:**

#### Solution:

 $:: R \to R$ 

and 
$$|f(x) - f(y)| \le 2 \cdot |x - y|^{3/2}$$

$$\Rightarrow \left| \frac{f(x) - f(y)}{x - y} \right| \le 2\sqrt{x - y}$$

$$\Rightarrow \lim_{x \to y} \left| \frac{f(x) - f(y)}{x - y} \right| \le \lim_{x \to y} 2\sqrt{x - y}$$

$$\Rightarrow f'(x) \mid = 0$$

 $\therefore$ f(x) is a constant function.

Given 
$$f(0) = 1 \Rightarrow f(x) = 1$$

Hence, the integral

$$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} 1 dx = [x]_{0}^{1} = 1$$

-----

# **Question212**

If  $\int_{0}^{\pi/3} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta = 1 - \frac{1}{\sqrt{2}}$ , (k > 0) then the value of kis:

[Jan. 09, 2019 (II)]

#### **Options:**

- A. 4
- B.  $\frac{1}{2}$
- C. 1

**Answer: D** 

### **Solution:**

#### Solution:

Let, 
$$I = \int_{0}^{\pi/3} \frac{\tan \theta}{\sqrt{2k \sec \theta}} d\theta$$
  

$$= \frac{1}{\sqrt{2k}} \int_{0}^{\pi/3} \frac{\sin \theta}{\sqrt{\cos \theta}} d\theta$$
Let  $\cos \theta = t^2$   

$$\therefore \sin \theta d\theta = -2tdt$$

Hence, integral becomes,

$$I = \frac{1}{\sqrt{2k}} \int_{1}^{\sqrt{\frac{1}{2}}} \frac{-2tdt}{t}$$

$$= \sqrt{\frac{2}{k}} \int_{1}^{\frac{1}{2}} dt$$

$$= \sqrt{\frac{2}{k}} \left(1 - \frac{1}{\sqrt{2}}\right)$$

$$= \frac{\sqrt{2} - 1}{\sqrt{k}}$$

$$= 1 - \frac{1}{\sqrt{2}} \left(\text{ Given }\right)$$

$$\therefore k = 2$$

\_\_\_\_\_

# Question213

If  $\int x^5 e^{-4x^3} dx = \frac{1}{48} e^{-4x^3} f(x) + C$ , where C is a constant of integration, then f(x) is equal to: [Jan. 10, 2019 (II)]

**Options:** 

A. 
$$-2x^3 - 1$$

B. 
$$-4x^3 - 1$$

$$C. -2x^3 + 1$$

D. 
$$4x^3 + 1$$

**Answer: B** 

### **Solution:**

#### Solution:

$$\begin{split} I &= \int x^{5} e^{-4x^{3}} d \, x \\ \text{Put} &- 4x^{3} = \theta \\ \Rightarrow -12x^{2} d \, x = d \, \theta \\ \Rightarrow x^{2} d \, x = -\frac{d \, \theta}{12} \\ I &= \int \frac{1}{48} \theta e^{\theta} d \, \theta = \frac{1}{48} [\theta e^{\theta} - e^{\theta}] + C \\ I &= \frac{1}{48} e^{-4x^{3}} (-4x^{3} - 1) + C \end{split}$$

Then, by comparison

$$f(x) = -4x^3 - 1$$

\_\_\_\_\_\_

# **Question214**

A value of  $\alpha$  such that  $\int_{\alpha}^{\alpha+1} \frac{dx}{(x+\alpha)(x+\alpha+1)} = \log_e\left(\frac{9}{8}\right)$  is: [April 12, 2019 (II)]

### **Options:**

B. 
$$\frac{1}{2}$$

C. 
$$-\frac{1}{2}$$

D. 2

**Answer: A** 

$$\begin{aligned} & \int\limits_{\alpha}^{\alpha+1} \frac{d\,x}{(x+\alpha)(x+\alpha+1)} \\ &= \int\limits_{\alpha}^{\alpha+1} \left[ \frac{1}{x+\alpha} - \frac{1}{x+\alpha+1} \right] d\,x \text{ [Using partial fraction]} \\ &= \log \left( \frac{(x+\alpha)}{(x+\alpha+1)} \right) \Big|_{\alpha}^{\alpha+1} = \log \left( \frac{2\alpha+1}{2\alpha+2} \cdot \frac{2\alpha+1}{2\alpha} \right) \\ &= \log \frac{9}{8} \Big( \text{ Given } \Big) \\ &\text{So, } \frac{(2\alpha+1)^2}{\alpha(\alpha+1)} = \frac{9}{2} \Rightarrow 8\alpha^2 + 8\alpha + 2 = 9\alpha^2 + 9\alpha \\ &\Rightarrow \alpha^2 + \alpha - 2 = 0 \Rightarrow \alpha = 1, -2 \end{aligned}$$

\_\_\_\_\_

# **Question215**

The integral  $\int \frac{2x^3-1}{x^4+x} dx$  is equal to :

(Here C is a constant of integration) [April 12, 2019 (I)]

#### **Options:**

A. 
$$\frac{1}{2}\log_{e} \frac{|x^3+1|}{x^2} + C$$

B. 
$$\frac{1}{2}\log_{e}\frac{(x^3+1)^2}{|x^3|} + C$$

C. 
$$\log_e \left| \frac{x^3 + 1}{x} \right| + C$$

D. 
$$\log_e \frac{|x^3 + 1|}{x^2} + C$$

**Answer: C** 

### **Solution:**

Given integral, 
$$I = \int \frac{(2x^3 - 1)dx}{x^4 + x} = \int \frac{(2x - x^{-2})dx}{x^2 + x^{-1}}$$
  
Put  $x^2 + x^{-1} = u \Rightarrow (2x - x^{-2})dx = du$ 

$$\Rightarrow I = \int \frac{du}{u} = \log|u| + c = \log|x^2 + x^{-1}| + c$$
$$= \log\left|\frac{x^3 + 1}{x}\right| + c$$

\_\_\_\_\_\_

# **Question216**

Let  $\alpha \in (0, \pi/2)$  be fixed. If the integral  $\int \frac{\tan x + \tan \alpha}{\tan x - \tan \alpha} dx$  =  $A(x) \cos 2\alpha + B(x) \sin 2\alpha + C$ , where C is a constant of integration, then the functions A(x) and B(x) are respectively: [April 12, 2019 (II)]

#### **Options:**

A.  $x + \alpha$  and  $log_e | sin(x + \alpha)|$ 

B.  $x - \alpha$  and  $\log_e |\sin(x - \alpha)|$ 

C.  $x - \alpha$  and  $log_e | cos(x - \alpha)|$ 

D.  $x + \alpha$  and  $\log_e |\sin(x - \alpha)|$ 

**Answer: B** 

#### **Solution:**

#### Solution:

Given integral  $\int \frac{\tan x + \tan \alpha}{\tan x - \tan \alpha} dx = \int \frac{\sin(x + \alpha)}{\sin(x - \alpha)} dx$ Let  $x - \alpha = t \Rightarrow dx = dt$   $= \int \frac{\sin(t + 2\alpha)}{\sin t} dt = \int [\cos 2\alpha + \sin 2\alpha \cdot \cot t] dt$   $= \cos 2\alpha \cot t + \sin 2\alpha \cdot \log |\sin t| + c$   $= (x - \alpha) \cdot \cos 2\alpha + \sin 2\alpha \cdot \log |\sin(x - \alpha)| + c$ 

\_\_\_\_\_\_

# **Question217**

If 
$$\int \frac{dx}{(x^2 - 2x + 10)^2} = A \left( \tan^{-1} \left( \frac{x - 1}{3} \right) + \frac{f(x)}{x^2 - 2x + 10} \right) + C$$
 where C is a constant of

### integration, then: [April 10, 2019 (I)]

#### **Options:**

A. 
$$A = \frac{1}{54}$$
 and  $f(x) = 3(x-1)$ 

B. 
$$A = \frac{1}{81}$$
 and  $f(x) = 3(x-1)$ 

C. 
$$A = \frac{1}{27}$$
 and  $f(x) = 9(x-1)$ 

D. 
$$A = \frac{1}{54}$$
 and  $f(x) = 9(x-1)^2$ 

#### Answer: A

#### **Solution:**

#### Solution:

Let 
$$I = \int \frac{dx}{(x^2 - 2x + 10)^2} = \int \frac{dx}{((x - 1)^2 + 9)^2}$$
  
Let  $(x - 1)^2 = 9\tan^2\theta$  .....(i)  
 $\Rightarrow \tan\theta = \frac{x - 1}{3}$ 

After differentiating equation ...(i), we get

$$2(x-1)d x = 18 \tan \theta \sec^2 \theta d \theta$$

$$2(x-1)d x = 18 \tan \theta \sec^2 \theta d \theta$$
  
$$\therefore I = \int \frac{18 \tan \theta \sec^2 \theta d \theta}{2 \times 3 \tan \theta \times 81 \sec^4 \theta}$$

$$I = \frac{1}{27} \int \cos^2 \theta d\theta = \frac{1}{27} \times \frac{1}{2} \int (1 + \cos 2\theta) d\theta$$

$$I = \frac{1}{54} \left\{ \theta + \frac{\sin 2\theta}{2} \right\} + c$$

$$I = \frac{1}{54} \left[ \tan^{-1} \left( \frac{x-1}{3} \right) + \frac{1}{2} \times \frac{2 \left( \frac{x-1}{3} \right)}{1 + \left( \frac{x-1}{3} \right)^2} \right] + c$$

$$I = \frac{1}{54} \left[ \tan^{-1} \left( \frac{x-1}{3} \right) + \frac{3(x-1)}{x^2 - 2x + 10} \right] + c$$

Compare it with 
$$A\left[\tan^{-1}\left(\frac{x-1}{b}\right) + \frac{f(x)}{x^2 - 2x + 10}\right] + c$$
, we get:  $A = \frac{1}{54}$  and  $f(x) = 3(x-1)$ 

\_\_\_\_\_

## **Question218**

If f(x) is a non-zero polynomial of degree four, having local extreme points at x = -1, 0, 1; then the set  $S = \{x \in R : f(x) = f(0)\}$  contains exactly:

[April 09, 2019 (I)]

### **Options:**

- A. four irrational numbers.
- B. four rational numbers.
- C. two irrational and two rational numbers.
- D. two irrational and one rational number

**Answer: D** 

### **Solution:**

#### Solution:

Since, function f(x) have local extreem points at x = -1, 0, 1. Then

$$f(x) = K(x+1)x(x-1)$$

$$=K(x^3-x)$$

$$\Rightarrow$$
f(x) = K  $\left(\frac{x^4}{4} - \frac{x^2}{2}\right)$  + C (using integration)

$$\Rightarrow f(0) = C$$

$$f(x) = f(0) \Rightarrow K\left(\frac{x^4}{4} - \frac{x^2}{2}\right) = 0$$

$$\Rightarrow \frac{x^2}{2} \left( \frac{x^2}{2} - 1 \right) = 0 \Rightarrow x = 0, 0, \sqrt{2}, -\sqrt{2}$$

$$:: S = \{0, -\sqrt{2}, \sqrt{2}\}$$

\_\_\_\_\_

The integral  $\int \sec^{2/3}x \csc^{4/3}x dx$  is equal to: (Here C is a constant of integration) [April 09, 2019 (I)]

### **Options:**

A. 
$$-3\tan^{-1/3}x + C$$

B. 
$$-\frac{3}{4}\tan^{-4/3}x + C$$

C. 
$$-3\cot^{-1/3}x + C$$

D. 
$$3\tan^{-1/3}x + C$$

Answer: A

### **Solution:**

#### Solution:

$$I = \int \sec^{\frac{2}{3}} x \cdot \csc^{\frac{4}{3}} dx$$

$$I = \int \frac{\sec^{2} x dx}{4 \tan^{\frac{4}{3}} x}$$

Put 
$$\tan x = z$$

$$\Rightarrow$$
 sec<sup>2</sup>xd x = d z

$$\Rightarrow I = \int z^{-\frac{4}{3}} \cdot dz = \frac{z^{-\frac{1}{3}}}{\left(\frac{-1}{3}\right)} + C \Rightarrow I = -3(\tan x)^{\frac{-1}{3}} + C$$

-----

# **Question220**

If  $\int e^{\sec x} (\sec x \tan x f(x) + (\sec x \tan x + \sec^2 x)) dx = e^{\sec x} f(x) + C$ , then a possible choice of f(x) is: [April 09, 2019(II)]

### **Options:**

- A.  $\sec x + \tan x + \frac{1}{2}$
- B.  $\sec x \tan x \frac{1}{2}$
- C.  $\sec x + x \tan x \frac{1}{2}$
- D.  $x \sec x + \tan x + \frac{1}{2}$

Answer: A

#### **Solution:**

#### Solution:

Given,

 $\int e^{\sec x} (\sec x \tan x f(x) + (\sec x \tan x + \sec^2 x)) dx = e^{\sec x} f(x) + C, \dots (i)$   $\therefore \int e^{g(x)} ((g'(x)f(x)) + f'(x)) dx = e^{g(x)} \times f(x) + C$ Our comparing above equation by equation (i),

$$f(x) = \int ((\sec x \tan x) + \sec^2 x) dx$$
  
 
$$\therefore f(x) = \sec x + \tan x + C$$

\_\_\_\_\_

# **Question221**

$$\int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx \text{ is equal to :}$$

(where c is a constant of integration.) [April 08, 2019 (I)]

### **Options:**

A. 
$$x + 2 \sin x + 2 \sin 2 x + c$$

B. 
$$2x + \sin x + 2\sin 2x + c$$

C. 
$$x + 2 \sin x + \sin 2 x + c$$

D. 
$$2x + \sin x + \sin 2x + c$$

**Answer: C** 

#### **Solution:**

Solution:

$$\int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx = \int \frac{2\cos \frac{x}{2} \cdot \sin \frac{5x}{2}}{2\cos \frac{x}{2} \cdot \sin \frac{x}{2}} dx$$

$$= \int \frac{\sin 3x + \sin 2x}{\sin x} dx$$

$$= \int (3 - 4\sin^2 x + 2\cos x) dx$$

$$[\because \sin 2x = 2\sin x \cos x \text{ and } \sin 3x = 3\sin x - 4\sin^3 x]$$

$$= \int (3 - 2(1 - \cos 2x) + 2\cos x) dx$$

$$= \int (1 + 2\cos x + 2\cos 2x) dx$$

$$= x + 2\sin x + \sin 2x + c$$

.....

# **Question222**

If  $\int \frac{dx}{x^3(1+x^6)^{\frac{2}{3}}} = xf(x)(1+x^6)^{\frac{1}{3}} + C$ , where C is a constant of integration,

then the function f (x) is equal to : [April 08,2019 (II)]

**Options:** 

A. 
$$\frac{3}{x^2}$$

$$B. -\frac{1}{6x^3}$$

C. 
$$-\frac{1}{2x^2}$$

D. 
$$-\frac{1}{2x^3}$$

**Answer: D** 

#### Solution:

Let, 
$$\int \frac{dx}{x^3(1+x^6)^{\frac{2}{3}}} = \int \frac{dx}{x^7(1+x^{-6})^{\frac{2}{3}}}$$

Put 
$$1 + x^{-6} = t^3 \Rightarrow -6^{-7} dx = 3t^2 dt \Rightarrow \frac{dx}{x^7} = \left(-\frac{1}{2}\right) t^2 dt$$

Now, 
$$I = \int \left(-\frac{1}{2}\right) \frac{t^2 d t}{t^2} = -\frac{1}{2}t + C$$

$$= -\frac{1}{2}(1+x^{-6})^{\frac{1}{3}} + C = -\frac{1}{2}\frac{(1+x^{6})^{\frac{1}{3}}}{x^{2}} + C$$

$$= -\frac{1}{2x^3}x(1+x^6)^{\frac{1}{3}} + C$$

Hence, 
$$f(x) = -\frac{1}{2x^3}$$

\_\_\_\_\_

## **Question223**

If  $\int x^5 e^{-x^2} dx = g(x)e^{-x^2} + c$ , where c is a constant of integration, then g(-1) is equal to : [April 10,2019 (II)]

#### **Options:**

A. -1

B. 1

C.  $-\frac{5}{2}$ 

D.  $-\frac{1}{2}$ 

**Answer: C** 

#### **Solution:**

Let, 
$$1 = \int x^2 \cdot e^{-x^2} dx$$
  
Put  $-x^2 = t \Rightarrow -2x dx = dt$ 

$$1 = \int \frac{t^2 \cdot e^t dt}{(-2)} = \frac{-1}{2} e^t (t^2 - 2t + 2) c$$
  
$$\therefore g(x) = \frac{-1}{2} (x^4 + 2x^2 + 2) \Rightarrow g(-1) = \frac{-5}{2}$$

\_\_\_\_\_\_

## Question224

Let  $f: R \to R$  be a continuously differentiable function such that f(2) = 6 and  $f'(2) = \frac{1}{48}$ .

If  $\int_{6}^{f(x)} 4t^3 dt = (x-2)g(x)$ , then  $\lim_{x\to 2} g(x)$  is equal to:

[April 12, 2019 (I)]

#### **Options:**

A. 18

B. 24

C. 12

D. 36

**Answer: A** 

#### **Solution:**

#### Solution:

Given, 
$$\int_{6}^{f(x)} 4t^3 dt = (x-2)g(x)$$

Differentiating both sides,

$$4(f(x))^3$$
.  $f'(x) = g'(x)(x-2) + g(x)$ 

Putting 
$$x = 2$$
,  $\frac{4(6)^3 \cdot 1}{48} = g(2) \Rightarrow \lim_{x \to 2} g(x) = 18$ 

\_\_\_\_\_\_

## **Question225**

If 
$$\int_0^{\frac{x}{2}} \frac{\cot x}{\cot x + \csc x} dx = m(\pi + n)$$
, then m.n is equal to: [April 12, 2019 (I)]

**Options:** 

A. 
$$-\frac{1}{2}$$

B. 1

C. 
$$\frac{1}{2}$$

D. -1

**Answer: D** 

#### **Solution:**

Solution:

$$\begin{split} &\int_{0}^{\frac{X}{2}} \frac{\cot x}{\cot x + \csc x} dx \\ &= \int_{0}^{\frac{X}{2}} \frac{\cot x}{1 + \cos x} = \int_{0}^{\frac{X}{2}} \left(1 - \frac{1}{1 + \cos x}\right) dx \\ &= \left[x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{X}{2}} \frac{1}{2\cos^{2}\frac{x}{2}} dx = \frac{\pi}{2} - \frac{1}{2} \int_{0}^{\frac{X}{2}} \sec^{2}\frac{x}{2} dx \\ &= \frac{\pi}{2} - \left(\tan\frac{x}{2}\right)_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - [1] = \left(\frac{\pi}{2} - 1\right) = m\pi + mn \\ &\therefore m = 1, n = -2, \text{ Hence, } mn = -1 \end{split}$$

-----

## Question226

The value of  $\int_{0}^{2\pi} [\sin 2x(1+\cos 3x)] dx$ , where [t] denotes the greatest integer function, is: [April 10, 2019 (I)]

**Options:** 

$$C. -2\pi$$

D. 
$$2\pi$$

#### **Solution:**

#### Solution:

$$I = \int_{0}^{2\pi} [\sin 2 x (1 + \cos 3 x)] dx \dots (1)$$

$$\int_{0}^{a} f(x) = \int_{0}^{a} f(a-x) dx$$

$$\therefore I = \int_{0}^{2\pi} [-\sin 2x(1 + \cos 3x)] dx \dots (2)$$

From (1)+(2), we get;

$$2I = \int_{0}^{2\pi} (-1)dx \Rightarrow 2I = -(x)_{0}^{2\pi} \Rightarrow I = -\pi$$

\_\_\_\_\_\_

## **Question227**

# The integral $\int_{\pi/6}^{\pi/3} \sec^{2/3} x \cos e c^{4/3} x d x$ is equal to: [April 10, 2019(II)]

#### **Options:**

A. 
$$3^{5/6} - 3^{2/3}$$

B. 
$$3^{4/3} - 3^{1/3}$$

C. 
$$3^{7/6} - 3^{5/6}$$

D. 
$$3^{5/3} - 3^{1/3}$$

#### Answer: C

Let, 
$$I = \int_{\pi/6}^{\pi/3} \sec^{\frac{2}{3}} x \cdot \csc^{\frac{4}{3}} x dx = \int_{\pi/6}^{\pi/3} \frac{1 \cdot dx}{\frac{2}{\cos^{\frac{4}{3}} x} \cdot \sin^{\frac{4}{3}} x}$$
  

$$= \int_{\pi/6}^{\pi/3} \frac{1 dx}{\cos^{2} x \cdot \tan^{\frac{4}{3}} x} = \int_{\pi/6}^{\pi/3} \frac{\sec^{2} x dx}{\frac{4}{\tan^{\frac{4}{3}} x}}$$

Let  $\tan x = u$ 

$$I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} u^{-\frac{4}{3}} du = \frac{3\left[u^{-\frac{1}{3}}\right]}{\frac{1}{\sqrt{3}}}$$

$$= -3\left[3^{-\frac{1}{6}} - \frac{1}{\frac{-1}{36}}\right] = -3\left(3^{-\frac{1}{6}} - 3^{\frac{1}{6}}\right)$$

$$= 3\left(3^{\frac{1}{6}} - 3^{\frac{1}{6}}\right) = \left(3^{\frac{7}{6}} - 3^{\frac{5}{6}}\right)$$

\_\_\_\_\_\_

## **Question228**

The value of  $\int_{0}^{\pi/2} \frac{\sin^{3}x}{\sin x + \cos x} dx$  is: [April 9, 2019 (I)]

#### **Options:**

A. 
$$\frac{\pi-2}{8}$$

B. 
$$\frac{\pi-1}{4}$$

C. 
$$\frac{\pi-2}{4}$$

D. 
$$\frac{\pi - 1}{2}$$

Answer: B

Let I = 
$$\int_{0}^{\pi/2} \frac{\sin^3 x}{\sin x + \cos x} dx$$
 .....(1)

Use the property  $\int\limits_0^a f(x)dx = \int\limits_0^a f(a-x)dx$ 

$$I = \int_{0}^{\pi/2} \frac{\cos^{3}x d x}{\sin x + \cos x} \dots (2)$$

Adding equation (1) and (2), we get

$$\Rightarrow 2I = \int_{0}^{\pi/2} \left(1 - \frac{1}{2}\sin(2x)\right) dx$$

$$\Rightarrow I = \frac{1}{2} \left[ x + \frac{1}{4} \cos 2x \right]_0^{\pi/2}$$

$$\Rightarrow I = \frac{\pi - 1}{4}$$

\_\_\_\_\_

## **Question229**

The value of the integral  $\int_0^1 x \cot^{-1}(1-x^2+x^4) dx$  is: [April 09, 2019 (II)]

#### **Options:**

A. 
$$\frac{\pi}{2} - \frac{1}{2} \log_e 2$$

B. 
$$\frac{\pi}{4} - \log_e 2$$

C. 
$$\frac{\pi}{2} - \log_e 2$$

D. 
$$\frac{\pi}{4} - \frac{1}{2} \log_e 2$$

**Answer: D** 

#### **Solution:**

$$\int_{0}^{1} x \cot^{-1}(1 - x^{2} + x^{4}) dx = \int_{0}^{1} x \tan^{-1}\left(\frac{1}{1 + x^{4} - x^{2}}\right)$$

$$= \int_{0}^{1} x \tan^{-1}\left(\frac{x^{2} - (x^{2} - 1)}{1 + x^{2}(x^{2} - 1)}\right) dx$$

$$= \frac{1}{2} \int_{0}^{1} 1 \tan^{-1} t^{2} dt - \frac{1}{2} \int_{-1}^{0} 1 \tan^{-1} k dk$$

Put 
$$x^2 = t \Rightarrow 2xd \ x = dt$$
 in the first integral and  $x^2 - 1 = k \Rightarrow 2xd \ x = dk$  in the second integral. 
$$= \frac{1}{2} \int_0^1 1 \tan^{-1}t dt - \frac{1}{2} \int_0^1 1 \tan^{-1}k dk$$
 
$$= \frac{1}{2} \left( t \tan^{-1}t |_0^1 - \int_0^1 \frac{t}{1+t^2} dt \right) - \frac{1}{2} \left( k \tan^{-1}k |_0^1 - \int_{-1}^0 \frac{k}{1+k^2} dk \right)$$
 
$$= \frac{1}{2} \left( \frac{\pi}{4} - \left( \frac{1}{2} \ln(1+t^2)|_0^1 \right) - \frac{1}{2} \left( -\frac{\pi}{4} - \left( \frac{1}{2} \ln(1+k^2)|_{-1}^0 \right) \right).$$
 
$$= \left( \frac{\pi}{8} - \frac{1}{4} \ln 2 \right) - \left( -\frac{\pi}{8} - \frac{1}{4} 10 - \ln 2 \right) = \frac{\pi}{4} - \frac{1}{2} \ln 2$$

\_\_\_\_\_

## Question230

If  $f: \mathbb{R} \to \mathbb{R}$  is a differentiable function and f(2) = 6, then  $\lim_{x \to 2} \int_{6}^{f(x)} \frac{2td t}{(x-2)}$ 

is:

[April 09, 2019 (II)]

**Options:** 

A. 24f'(2)

B. 2f'(2)

C. 0

D. 12f'(2)

**Answer: D** 

#### **Solution:**

#### Solution:

Using L' Hospital rule and Leibnitz theorem, we get

$$\lim_{x \to 2} \frac{\int_{0}^{f(x)} 2tdt}{(x-2)} = \lim_{x \to 2} \frac{2f(x)f'(x) - 0}{1}$$
Putting  $x = 2$ ,  $2f(2)f'(2) = 12f'(2)$  [:  $f(2) = 6$ ]

\_\_\_\_\_

## **Question231**

If  $f(x) = \frac{2 - x \cos x}{2 + x \cos x}$  and  $g(x) = \log_e x$ , (x > 0) then the value of the integral

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} g(f(x))dx \text{ is :}$$

[April 8, 2019 (I)]

#### **Options:**

- A.  $log_e 2$
- B.  $log_e 3$
- C. log<sub>e</sub>e
- D. log<sub>e</sub>1

**Answer: D** 

#### **Solution:**

#### Solution:

$$\begin{split} g(f(x)) &= log \left( \frac{2 - x \cos x}{2 + x \cos x} \right), \, x > 0 \\ \text{Let I} &= \int\limits_{-\pi/4}^{\pi/4} log \left( \frac{2 - x \cos x}{2 + x \cos x} \right) d \, x \, .......(i) \\ \text{Use the property} \int\limits_{a}^{b} f(x) d \, x &= \int\limits_{a}^{b} f(a + b - x) d \, x \\ \text{Then, equation (i) becomes,} \end{split}$$

$$I = \int_{-\pi/4}^{\pi/4} log\left(\frac{2 + x \cos x}{2 - x \cos x}\right) dx$$
 .....(ii)

Adding (i) and (ii)

$$2I = \int_{-\pi/4}^{\pi/4} \log \left( \frac{2 - x \cos x}{2 + x \cos x} \cdot \frac{2 + x \cos x}{2 - x \cos x} \right) dx$$

$$2I = \int_{-\pi/2}^{\pi/2} \log(1) d x = 0$$

 $\Rightarrow I = 0 = \log 1$ 

## Question232

Let  $f(x) = \int_{0}^{x} g(t)dt$ , where g is a non-zero even function. Iff (x + 5) = g(x), then  $\int_{0}^{x} f(t) dt$  equals: [April 08, 2019(II)]

#### **Options:**

A. 
$$\int_{x+5}^{5} g(t)dt$$

B. 
$$\int_{5}^{x+5} g(t)dt$$

C. 
$$2^{\int_{5}^{x+5} g(t)dt}$$

D. 
$$5 \int_{x+5}^{5} g(t) dt$$

#### Answer: A

#### **Solution:**

#### Solution:

$$f(x) = \int_{0}^{x} g(g)dt$$
, .....(i)

∵g is a non-zero even function.

$$: g(-x) = g(x).....(ii)$$

Given, 
$$f(x + 5) = g(x)$$
 ......(iii)

From (i) 
$$f'(x) = g(x)$$

Let, 
$$I = \int_{0}^{x} f(t) dt$$

Let, 
$$I = \int_{0}^{x} f(t)dt$$
,  
Put  $t = \lambda - 5 \Rightarrow I = \int_{5}^{x+5} f(\lambda - 5)d\lambda$ 

$$f(x+5) = g(x)$$

$$f(x+5) = g(x)$$

$$\Rightarrow f(-x+5) = g(-x) = g(x) \dots (iv)$$

$$I = \int_{5}^{x+5} f(\lambda - 5) d\lambda$$

$$I = \int_{5}^{x+3} f(\lambda - 5) d\lambda$$

$$f(0) = 0, g(x) \text{ is even } \Rightarrow f(x) \text{ is odd}$$
  
$$\therefore I = \int_{5}^{x+5} -f(5-\lambda)d\lambda$$

$$: I = \int_{5}^{x+5} -f(5-\lambda)d\lambda$$

$$\Rightarrow I = \int_{5}^{x+5} g(\lambda) d\lambda = \int_{x+5}^{5} g(t) dt$$
 (from

## Question233

$$\lim_{n\to\infty} \left( \frac{(n+1)^{1/3}}{n^{4/3}} + \frac{(n+2)^{1/3}}{n^{4/3}} + \dots + \frac{(2n)^{1/3}}{n^{4/3}} \right) \text{ is equal to :}$$

#### [April 10, 2019 (I)]

#### **Options:**

A. 
$$\frac{3}{4}(2)^{4/3} - \frac{3}{4}$$

B. 
$$\frac{4}{3}(2)^{4/3}$$

C. 
$$\frac{3}{2}(2)^{4/3} - \frac{4}{3}$$

D. 
$$\frac{4}{3}(2)^{3/4}$$

#### Answer: A

#### **Solution:**

#### Solution:

$$\lim_{n \to \infty} \left( \frac{(n+1)^{1/3}}{n^{4/3}} + \frac{(n+2)^{1/3}}{n^{4/3}} + \dots + \frac{(2n)^{1/3}}{n^{4/3}} \right)$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{(n+r)^{\frac{1}{3}}}{\frac{1}{3}}$$

$$= \int_{0}^{1} (1+x)^{\frac{1}{3}} dx \quad \left[ \because \frac{r}{n} \to x \text{ and } \frac{1}{n} \to \frac{d}{x} \right]$$

$$= \left[ \frac{3}{4} (1+x)^{\frac{4}{3}} \right]_{0}^{1} = \frac{3}{4} (2)^{\frac{4}{3}} - \frac{3}{4}$$

## **Question234**

The integral 
$$\int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} dx$$

## is equal to: [2018]

#### **Options:**

A. 
$$\frac{-1}{3(1+\tan^3 x)} + C$$

B. 
$$\frac{1}{1 + \cot^3 x} + C$$

C. 
$$\frac{-1}{1 + \cot^3 x} + C$$

D. 
$$\frac{1}{3(1+\tan^3 x)} + C$$

Answer: A

#### **Solution:**

#### Solution:

Let I

$$\begin{split} &\int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} d\, x \\ &= \int \frac{\sin^2 x \cos^2 x}{[(\sin^2 x + \cos^2 x)(\sin^3 x + \cos^3 x)]^2} d\, x \\ &= \int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} d\, x = \int \frac{\tan^2 x \cdot \sec^2 x}{(1 + \tan^3 x)^2} d\, x \\ &\text{Now, put } (1 + \tan^3 x) = t \\ \Rightarrow 3\tan^2 x \sec^2 x d\, x = d\, t \\ & \therefore I = \frac{1}{3} \int \frac{d\, t}{t^2} = -\frac{1}{3t} + C = \frac{-1}{3(1 + \tan^3 x)} + C \end{split}$$

\_\_\_\_\_\_

## **Question235**

If 
$$\int \frac{\tan x}{1 + \tan x + \tan^2 x} dx = x - \frac{K}{\sqrt{A}} tan^{-1} \left( \frac{K \tan x + 1}{\sqrt{A}} \right) + C$$

(  $\boldsymbol{C}$  is a constant of integration), then the ordered pair  $(\boldsymbol{K}$  ,  $\boldsymbol{A})$  is equal to

[Online April 16, 2018]

#### **Options:**

- A. (2,3)
- B. (2,1)
- C. (-2,1)
- D. (-2,3)

Answer: A

#### **Solution:**

#### Solution:

Solution:  
Let 
$$I = \int \frac{\tan x}{1 + \tan x + \tan^2 x} dx$$
  

$$\Rightarrow I = \int \frac{\tan x + 1 + \tan^2 x}{\tan x + 1 + \tan^2 x} dx - \int \frac{(1 + \tan^2 x)}{1 + \tan x + \tan^2 x}$$

$$\Rightarrow I = x - \int \frac{\sec^2 x dx}{1 + \tan x + \tan^2 x}$$
Put  $\tan x = t \Rightarrow \sec^2 x \cdot dx = dt$ 

$$\therefore I = x - \int \frac{dt}{t^2 + t + \frac{1}{4} + 1 - \frac{1}{4}}$$

$$= x - \int \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\Rightarrow I = x - \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + C$$

## Question236

 $\therefore$ A = 3 and K = 2

 $\Rightarrow I = x - \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{2 \tan x + 1}{\sqrt{3}} \right) + C$ 

If  $f\left(\frac{x-4}{x+2}\right) = 2x+1$ ,  $(x \in \mathbb{R} = \{1, -2\})$ , then int f(x) d x is equal to (where C is a constant of integration) [Online April 15, 2018]

#### **Options:**

A. 
$$12\log_e |1-x|-3x+c$$

B. 
$$-12\log_{e} |1-x| -3x + c$$

C. 
$$-12\log_e |1-x| + 3x + c$$

D. 
$$12\log_{e} |1-x| + 3x + c$$

**Answer: B** 

#### **Solution:**

#### Solution:

Suppose, 
$$\frac{x-4}{x+2} = y \Rightarrow x-4 = y(x+2)$$

$$\Rightarrow x(1-y) = 2y + 4 \Rightarrow x = \frac{2y+4}{1-y}$$

So, 
$$f(y) = 2\left(\frac{2y+4}{1-y}\right) + 1$$

Now, 
$$f(x) = 2\left(\frac{2x+4}{1-x}\right) + 1 = \frac{3x+9}{1-x}$$

$$=\frac{3(x+3)}{1-x}=\frac{3(x-1+4)}{1-x}=-3+\frac{12}{1-x}$$

-----

## Question237

$$\int \frac{2x+5}{\sqrt{7-6x-x^2}} dx = A \sqrt{7-6x-x^2} + B \sin^{-1} \left(\frac{x+3}{4}\right) + C$$

(where C is a constant of integration), then the ordered pair (A, B) is equal to

[Online April 15, 2018]

#### **Options:**

A. 
$$(-2,-1)$$

B. 
$$(2,-1)$$

C. (-2,1)

D.(2,1)

Answer: A

#### **Solution:**

Solution:

$$7 - 6x - x^{2} = 16 - (x + 3)^{2}$$
and  $\frac{d}{dx}(7 - 6x - x^{2}) = -2x - 6$ 
So,  $\int \frac{2x + 5}{\sqrt{7 - 6x - x^{2}}} dx = \int \frac{2x + 6}{\sqrt{7 - 6x - x^{2}}} dx$ 

$$-\int \frac{1}{\sqrt{16 - (x + 3)^{2}}} dx$$

$$= -2\sqrt{7 - 6x - x^{2}} - \sin^{-1}\left(\frac{x + 3}{4}\right) + C$$

## Question238

Therefore, A = -2, & B = -1

The value of  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1+2^x} dx$  is

[2018]

**Options:** 

A.  $\frac{\pi}{2}$ 

Β. 4π

C.  $\frac{\pi}{4}$ 

D.  $\frac{\pi}{8}$ 

**Answer: C** 

#### **Solution:**

#### Solution:

Let, 
$$I = \int_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1 + 2^x} dx$$
 ......(i)

Using  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ , we get:  $I = \int_{-\pi/2}^{\pi/2} \frac{\sin^{2}x}{1+2^{-x}} dx \dots (ii)$ 

$$I = \int_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1 + 2^{-x}} dx \dots (ii)$$

Adding (i) and (ii), we get;  

$$2I = \int_{-\pi/2}^{\pi/2} \sin^2 x dx \Rightarrow 2I = 2 \cdot \int_{0}^{x/2} \sin^2 x dx$$

$$\Rightarrow 2I = 2 \times \frac{\pi}{4} \Rightarrow I = \frac{\pi}{4}$$

## **Question239**

## If $f(x) = \int_{0}^{x} t(\sin x - \sin t) dt$ then [Online April 16, 2018]

#### **Options:**

A. 
$$f'''(x) + f'(x) = \cos x - 2x \sin x$$

B. 
$$f'''(x) + f''(x) - f'(x) = \cos x$$

C. 
$$f'''(x) - f''(x) = \cos x - 2x \sin x$$

D. 
$$f'''(x) + f''(x) = \sin x$$

Answer: A

#### **Solution:**

$$f(x) = \int_{0}^{x} t(\sin x - \sin t) \cdot dt$$
  
=  $\sin x \int_{0}^{x} t \cdot dt - \int_{0}^{x} t \sin t \cot dt t$   
=  $\frac{x^{2}}{2} \sin x + [t \cos t]_{0}^{x} + \sin x$ 

$$\Rightarrow f(x) = \frac{x^2}{2}\sin x + x\cos x - \sin x$$

$$f'(x) = \frac{x^2}{2}\cos x + 2\cos x$$

$$f''(x) = x \cos x - \frac{x^2}{2} \sin x - 2 \sin x$$

$$f'''(x) = \cos x - 2x \sin x - \frac{x^2}{2} \cos x - 2 \cos x$$

$$f'''(x) + f'(x) = \cos x - 2x \sin x$$

## **Question240**

The value of integral  $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1+\sin x} dx$  is

## [Online April 15, 2018]

#### **Options:**

A. 
$$\frac{\pi}{2}(\sqrt{2}+1)$$

B. 
$$\pi(\sqrt{2}-1)$$

C. 
$$2\pi(\sqrt{2}-1)$$

D. 
$$\pi\sqrt{2}$$

Answer: A

#### **Solution:**

#### Solution:

Solution:  
Let 
$$I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} dx$$

also let 
$$K = \frac{x}{1 + \sin x}$$

Multiplying numerator and denominator by  $(1 - \sin x)$ , we get;

$$K = \frac{x(1 - \sin x)}{1 - (\sin x)^2} = \frac{x(1 - \sin x)}{(\cos x)^2}$$

$$\begin{split} &= x(1-\sin x)\sec^2 x \\ &= x\sec^2 x - x\sin x \sec^2 x = x\sec^2 x - x\tan x \sec x \\ &= \frac{3\pi}{4} \frac{3\pi}{4} \frac{3\pi}{4} \\ &\text{Now, I} = \int x\sec^2 x \, dx - \int x \sec x \tan x \, dx \\ &= \left[ x \tan x - \int \frac{d}{d} \frac{x}{4} \tan x \, dx \right] \frac{3\pi}{4} - \left[ x \sec x - \int \frac{d}{d} \frac{x}{4} \sec x \, dx \right] \frac{3\pi}{4} \\ &= \left[ x \tan x - \ln |\sec x| \right] \frac{3\pi}{4} \\ &= \left[ x \tan x - \ln |\sec x| \right] \frac{3\pi}{4} + c \\ &\Rightarrow I = \left\{ \left[ \frac{3\pi}{4} \tan \frac{3\pi}{4} - \ln \left| \frac{3\pi}{4} \right| - \left[ \frac{3\pi}{4} \sec \frac{3\pi}{4} - \ln \left| \sec \frac{3\pi}{4} + \tan \frac{3\pi}{4} \right| \right] \right\} - \left\{ \left[ \frac{\pi}{4} \tan \frac{\pi}{4} - \ln \left| \frac{\pi}{4} \right| - \left[ \frac{\pi}{4} \sec \frac{\pi}{4} - \ln \left| \sec \frac{\pi}{4} + \tan \frac{\pi}{4} \right| \right] \right\} \\ &= \frac{\pi}{2} (\sqrt{2} + 1) \end{split}$$

-----

## **Question241**

If  $I_1 = \int_0^1 e^{-x} \cos^2 x dx$ ;  $I_2 = \int_0^1 e^{-x^2} \cos^2 x dx$  and  $I_3 = \int_0^1 e^{-x^3} dx$ ; then [Online April 15, 2018]

#### **Options:**

A. 
$$I_2 > I_3 > I_1$$

B. 
$$I_3 > I_1 > I_2$$

C. 
$$I_2 > I_1 > I_3$$

D. 
$$I_3 > I_2 > I_1$$

**Answer: D** 

Given: 
$$I_1 = \int_0^1 e^{-x} \cos^2 x dx$$
;  
 $I_2 = \int_0^1 e^{-x^2} \cos^2 x dx$   
 $I_3 = \int_0^1 e^{-x^3} dx$ ;  
For  $x \in (0, 1)$   
 $\Rightarrow x > x^2$  or  $-x < -x^2$   
and  $x^2 > x^3$  or  $-x^2 < -x^3$   
 $\therefore e^{-x^2} < e^{-x^3}$  and  $e^{-x} < e^{-x^2}$   
 $\Rightarrow e^{-x} < e^{-x^2} < e^{-x^3}$   
 $\Rightarrow e^{-x^3} > e^{-x^2} > e^{-x}$   
 $\Rightarrow I_3 > I_2 > I_1$ 

.....

## **Question242**

The value of the integral  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \left( 1 + \log \left( \frac{2 + \sin x}{2 - \sin x} \right) \right) dx$  is

## [Online April 15, 2018]

#### **Options:**

A. 
$$\frac{3}{16}\pi$$

B. 0

C. 
$$\frac{3}{8}\pi$$

D. 
$$\frac{3}{4}$$

**Answer: C** 

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4}x \left( 1 + \log\left(\frac{2 + \sin x}{2 - \sin x}\right) \right) dx \dots (1)$$

$$\Rightarrow I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4}(-x) \left( 1 + \log\left(\frac{2 + \sin x}{2 - \sin x}\right) \right) . dx$$

$$= \left[ \because \int_{a}^{b} f(x) . dx = \int_{a}^{b} f(a + b - x) . dx \right]$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^{4}x) \left( 1 + \log\left(\frac{2 - \sin x}{2 + \sin x}\right) \right) . dx$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4}x \left( 1 - \log\left(\frac{2 + \sin x}{2 - \sin x}\right) \right) . dx \dots (2)$$

$$= \frac{\pi}{2}$$

After adding equation (1) and (2) we get,

$$2I = 2 \int_{0}^{\frac{\pi}{2}} \sin^{4}x \cdot dx$$

$$-\frac{\pi}{2}$$

$$2I = 4 \int_{0}^{\frac{\pi}{2}} \sin^{4}x \cdot dx$$

$$I = 2 \int_{0}^{\frac{\pi}{2}} \sin^{4}x \cdot dx = \frac{2 \times \frac{3}{2} \times \frac{1}{2} \times \pi}{2 \times 2} = \frac{3\pi}{8}$$

[By Gamma function]

\_\_\_\_\_\_

## Question243

If 
$$f\left(\frac{3x-4}{3x+4}\right) = x+2$$
,  $x \neq -\frac{4}{3}$ , and  $\int f(x)dx = A \log |1-x| + Bx + C$ , then the ordered pair (A, B) is equal to: (where C is a constant of integration) [Online April 9, 2017]

**Options:** 

A. 
$$\left(\frac{8}{3}, \frac{2}{3}\right)$$

B. 
$$\left(-\frac{8}{3}, \frac{2}{3}\right)$$

C. 
$$\left(-\frac{8}{3}, -\frac{2}{3}\right)$$

D. 
$$\left(\frac{8}{3}, -\frac{2}{3}\right)$$

**Answer: B** 

#### **Solution:**

Solution:

$$f\left(\frac{3x-4}{3x+4}\right) = x+2, x \neq -\frac{4}{3}$$

Consider 
$$\frac{3x-4}{3x+4} = t$$

$$\Rightarrow 3x - 4 = 3tx + 4t$$

$$\Rightarrow x = \frac{4t+4}{3-3t} + 2$$

$$\Rightarrow f(t) = \frac{10 - 2t}{3 - 3t}$$

$$\Rightarrow f(x) = \frac{2x-10}{3x-3}$$

$$\therefore \int f(x)dx = \int \frac{2x-10}{3x-3}dx$$

$$= \int \frac{2x}{3x - 3} dx - 10 \int \frac{dx}{3x - 3}$$
$$= \frac{2}{3} \int \frac{x - 1}{x - 1} dx + \frac{2}{3} \int \frac{dx}{x - 1} - \frac{10}{3} \int \frac{dx}{x - 1}$$

$$=\frac{2x}{3}-\frac{8}{3}\ln(x-1)+C$$

Here, 
$$A = -\frac{8}{3}$$
,  $B = \frac{2}{3}$ 

$$\therefore (A, B) = \left(-\frac{8}{3}, \frac{2}{3}\right)$$

\_\_\_\_\_

## **Question244**

# The integral $\int \sqrt{1+2 \cot x (\operatorname{cosec} x + \cot x)} dx$ $\left(0 < x < \frac{\pi}{2}\right)$ is equal to: (where C is a constant of integration) [Online April 8, 2017]

#### **Options:**

A. 
$$2 \log \left| \sin \frac{x}{2} \right| + C$$

B. 
$$4 \log \left| \sin \frac{x}{2} \right| + C$$

C. 
$$2 \log \left| \cos \frac{x}{2} \right| + C$$

D. 
$$4 \log \left| \cos \frac{x}{2} \right| + C$$

#### **Answer: A**

#### **Solution:**

#### Solution:

Let, 
$$I = \int \sqrt{1 + 2 \cot x \csc x + 2 \cot^2 x} . dx$$
  

$$\Rightarrow I = \int \sqrt{\frac{\sin^2 x + 2 \cos x + 2 \cos^2 x}{\sin^2 x}} . dx$$

$$\Rightarrow I = \int \sqrt{\frac{1 + 2 \cos x + \cos^2 x}{\sin x}} . dx$$

$$\Rightarrow I = \int \left| \frac{1 + \cos x}{\sin x} \right| . dx$$

$$\Rightarrow I = \int \left| \frac{1 + \cos x}{\sin x} \right| . dx$$

$$\Rightarrow I = \int \left| \csc x + \cot x \right| . dx$$

$$\Rightarrow I = \log \left| \csc x - \cot x \right| + \log \left| \sin x \right| + C$$

$$\Rightarrow I = \log \left| 1 - \cos x \right| + C$$

$$\Rightarrow I = \log \left| \frac{2 \sin^2 x}{2} \right| + C$$

$$\Rightarrow I = \log \left| \sin^2 \frac{x}{2} \right| + C$$

$$\Rightarrow I = 2 \log \left| \sin^2 \frac{x}{2} \right| + C$$

$$\Rightarrow I = 2 \log \left| \sin^2 \frac{x}{2} \right| + C$$

\_\_\_\_\_\_

## **Question245**

The integral  $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1+\cos x}$  is equal to :

#### [2017]

#### **Options:**

A. -1

B. -2

C. 2

D. 4

**Answer: C** 

#### **Solution:**

Solution:  

$$I = \frac{\frac{3\pi}{4}}{\frac{1}{4}} \frac{dx}{1 + \cos x} \dots (i)$$

$$I = \frac{\frac{3\pi}{4}}{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \dots (ii)$$

Using 
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
  
Adding (i) and (ii)
$$2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{2}{\sin^{2}x} dx; I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \csc^{2}x dx$$

$$I = -(\cot x)_{\pi/4}^{3\pi/4} = -\left[\cot \frac{3\pi}{4} - \cot \frac{\pi}{4}\right] = 2$$

## **Question246**

Let  $I_n = \int \tan^n x dx$ ,  $(n > 1) \cdot I_4 + I_6 = a \tan^5 x + bx^5 + C$ where C is constant of integration, then the ordered pair (a, b) is equal to: [2017]

#### **Options:**

- A.  $\left(-\frac{1}{5}, 0\right)$
- B.  $\left(-\frac{1}{5}, 1\right)$
- C.  $\left(\frac{1}{5}, 0\right)$
- D.  $(\frac{1}{5}, -1)$

**Answer: C** 

#### **Solution:**

#### Solution:

$$\begin{split} &I_n = \int tan^n x d \, x, \, n > 1 \\ &\text{Let } I = I_4 + I_6 \\ &= \int (tan^4 x + tan^6 x) d \, x = \int tan^4 x sec^2 x d \, x \\ &\text{Let } tan \, x = t \\ &\Rightarrow sec^2 x d \, x = d \, t \\ & \therefore I = \int t^4 d \, t = \frac{t^5}{5} + C \\ &= \frac{1}{5} tan^5 x + C \Rightarrow \text{ On comparing, we have} \\ &a = \frac{1}{5}, \, b = 0 \end{split}$$

-----

## **Question247**

If 
$$\int_{1}^{2} \frac{dx}{(x^2-2x+4)^{\frac{3}{2}}} = \frac{k}{k+5}$$
 then k is equal to:

#### [Online April 9, 2017]

#### **Options:**

- A. 1
- B. 2
- C. 3
- D. 4

**Answer: A** 

#### **Solution:**

#### Solution:

Let 
$$I = \int_{1}^{2} \frac{dx}{((x-1a)^{2}+3)^{3/2}}$$
  
Let;  $x-1 = \sqrt{3} \tan \theta$   
 $\Rightarrow dx = \sqrt{3} \sec^{2} . d\theta$   
 $\Rightarrow I = \int_{0}^{\pi/6} \frac{\sqrt{3} \sec^{2}\theta d\theta}{((\sqrt{3} \tan \theta)^{2} + (\sqrt{3})^{2})^{3/2}}$   
 $= \frac{1}{3} \int_{0}^{\pi/6} \frac{\sec^{2}\theta}{\sec^{3}\theta} d\theta = \frac{1}{3} \int_{0}^{\pi/6} \cos \theta d\theta$   
 $= \frac{1}{3} [\sin \theta]_{0}^{\pi/6} = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$   
 $= \frac{1}{6} = \frac{k}{k+5} \Rightarrow k+5 = 6k$   
 $\Rightarrow k = 1$ 

## **Question248**

The integral 
$$\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} \frac{8\cos 2x}{(\tan x + \cot x)^3} dx$$
 equals:

[Online April 8, 2017]

#### **Options:**

- A.  $\frac{15}{128}$
- B.  $\frac{15}{64}$
- C.  $\frac{13}{32}$
- D.  $\frac{15}{256}$

Answer: A

#### **Solution:**

#### Solution:

$$\frac{\frac{\pi}{4}}{\int \frac{\cos 2x}{\left(\frac{1}{\sin 2x}\right)^3} = \int \frac{\pi}{4} \cos 2x \times \sin 2x \cdot \sin^2(2x) dx$$

$$\frac{\pi}{12} \left(\frac{1}{\sin 2x}\right)^3 = \frac{\pi}{12}$$

$$= \frac{1}{4} \int \frac{\pi}{4} \sin 4x \cdot (1 - \cos 4x) dx$$

$$= \frac{1}{4} \left[\int \frac{\pi}{4} \sin 4x - \frac{1}{2} \int \frac{\pi}{4} \sin 8x \right]$$

$$= \frac{1}{4} \left[-\frac{\cos 4x}{4} + \frac{\cos 8x}{16}\right]_{\pi/12}^{\pi/4} = \frac{1}{4} \left[\frac{15}{32}\right] = \frac{15}{128}$$

\_\_\_\_\_\_

## **Question249**

If

$$\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{1^a + 2^a + \dots + n^a}{(n+1)^{a-1}[(na+2) + \dots + (na+n)]} = \frac{1}{60}$$

for some positive real number a, then a is equal to : [Online April 9, 2017]

#### **Options:**

- A. 7
- B. 8
- C.  $\frac{15}{2}$
- D.  $\frac{17}{2}$

**Answer: A** 

#### **Solution:**

#### Solution:

$$\lim_{n \to \infty} \frac{\frac{1}{(a+1)} \cdot n^{a+1} + a_1 n^a + a_2 n^{a-1} + \dots}{(n+1)^{a-1} \cdot n^2 \left(a + \frac{1 + \frac{1}{n}}{2}\right)} = \frac{1}{60}$$

$$\Rightarrow \lim_{n \to \infty} \frac{\left(\frac{1}{n}\right)^a + \left(\frac{2}{n}\right)^a + \dots + \left(\frac{n}{n}\right)^a}{(n+1)^{a-1} \left[n^2 a + \frac{n(n+1)}{2}\right]} = \frac{1}{60}$$

$$= \frac{\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n}\right)^a}{\left(1 + \frac{1}{n}\right)^{a-1} \left[a + \frac{1}{2}\left(1 + \frac{1}{n}\right)\right]} = \frac{1}{60}$$

$$= \frac{\int_0^1 x^a dx}{\left(a + \frac{1}{2}\right)} = \frac{1}{60} = \frac{\frac{1}{a+1}}{a+12} = \frac{1}{60}$$

$$\Rightarrow \frac{\frac{1}{a+1}}{\left(a + \frac{1}{2}\right)} = \frac{1}{60}$$

$$\Rightarrow (a+1)(2a+1) = 120$$

$$\Rightarrow 2a^2 + 3a - 119 = 0$$

$$\Rightarrow 2a^2 + 17a - 14a - 119 = 0$$

$$\Rightarrow (a-7)(2a+17) = 0$$

$$\Rightarrow a = 7, -\frac{17}{2}$$

.....

## Question250

If  $\int \frac{dx}{\cos^3 x \sqrt{2 \sin 2 x}} = (\tan x)^A + C(\tan x)^B + k$ , where k is a constant of integration, then A + B + C equals: [Online April 9, 2016]

#### **Options:**

- A.  $\frac{16}{5}$
- B.  $\frac{27}{10}$
- C.  $\frac{7}{10}$
- D.  $\frac{21}{5}$

Answer: A

#### **Solution:**

#### Solution:

$$\int \frac{dx}{\cos^{3}x\sqrt{4}\sin x \cos x} = \int \frac{dx}{2\cos^{4}x\sqrt{\tan x}}$$
Let  $\tan x = t^{2} \Rightarrow \sec^{2}x = 1 + t^{4}$ 

$$\sec^{2}xdx = 2tdt$$

$$= \int \frac{\sec^{4}xdx}{2\sqrt{\tan x}} = \int \frac{\sec^{2}x(\sec^{2}xdx)}{2\sqrt{\tan x}}$$

$$= \int \frac{(1+t^{4})2tdt}{2t} = \int (1+t^{4})dt = t + \frac{t^{5}}{5} + k$$

$$= \sqrt{\tan x} + \frac{1}{5}\tan^{5/2}x + k \ [t = \sqrt{\tan x}]$$

$$A = \frac{1}{2}, B = \frac{5}{2}, C = \frac{1}{5}$$

$$A + B + C = \frac{16}{5}$$

------

## **Question251**

## The integral $\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}}$ is equal to:

# (where C is a constant of integration) [Online April 10, 2016]

#### **Options:**

A. 
$$-2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}}+C$$

$$B. - \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} + C$$

$$C. -2 \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

D. 2 
$$\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}}$$
 + C

#### **Answer: C**

#### **Solution:**

$$I = \int \frac{dx}{(1 + \sqrt{x}) \cdot \sqrt{x} \sqrt{1 - x}}$$
Put  $1 + \sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx = dt$ 

$$\Rightarrow I = \int \frac{2dt}{t\sqrt{2t - t^2}}$$

Again put 
$$t = \frac{1}{z} \Rightarrow dt = \frac{-1}{2^2} dz$$

$$\Rightarrow I = 2 \int \frac{\frac{-1}{z^2} dz}{\frac{1}{z} \sqrt{\frac{2}{z} - \frac{1}{z^2}}} = 2 \int \frac{-dz}{\sqrt{2z - 1}}$$

$$=-2\sqrt{\frac{2}{2z-1}}+c=-2\sqrt{\frac{\frac{2}{t}-1}+c}$$

$$=-2\sqrt{\frac{2-t}{t}}+c = -2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}+c$$

## **Question252**

# The integral $\int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$ is equal to: [2016]

#### **Options:**

A. 
$$\frac{x^5}{2(x^5+x^3+1)^2}$$
 + C

B. 
$$\frac{-x^{10}}{2(x^5+x^3+1)^2}+C$$

C. 
$$\frac{-x^5}{(x^5+x^3+1)^2}$$
 + C

D. 
$$\frac{x^{10}}{2(x^5+x^3+1)^2}+C$$

**Answer: D** 

#### **Solution:**

#### Solution:

$$\int \frac{2x^{12} + 5x^9}{\left(x^5 + x^3 + 1\right)^3} dx$$

Dividing by  $x^{15}$  in numerator and denominator

$$\int \frac{\frac{2}{x^3} + \frac{5}{x^6} dx}{\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^3}$$

Let 
$$1 + \frac{1}{x^2} + \frac{1}{x^5} = t$$

$$\Rightarrow \left(\frac{-2}{x^3} - \frac{5}{x^6}\right) dx = dt \Rightarrow \left(\frac{2}{x^3} + \frac{5}{x^6}\right) dx = -dt$$

This gives,

$$\int \frac{\frac{2}{x^3} + \frac{5}{x^6} dx}{\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^3} = \int \frac{-dt}{t^3} = \frac{1}{2t^2} + C$$

$$= \frac{1}{2\left(1 + \frac{1}{x^2} + \frac{1}{x^5}\right)^2} + C = \frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C$$

-----

## Question253

For  $x \in R$ ,  $x \neq 0$ , if y(x) is a differentiable function such that  $x \int_{1}^{x} y(t) dt = (x+1) \int_{1}^{x} ty(t) dt$ , then y(x) equals: (where C is a constant) [Online April 10, 2016]

**Options:** 

A. 
$$Cx^3e^{\frac{1}{x}}$$

B. 
$$\frac{C}{x^2}e^{-\frac{1}{x}}$$

C. 
$$\frac{C}{x}e^{-\frac{1}{x}}$$

D. 
$$\frac{C}{x^3}e^{-\frac{1}{x}}$$

**Answer: D** 

$$x \int_{1}^{x} y(t)dt = x \int_{1}^{x} ty(t)dt + \int_{1}^{x} ty(t)dt$$
Differentiate w cdot r to x.
$$\int_{1}^{x} y(t)dt + x[y(x) - y(1)]$$

$$= \int_{1}^{x} ty(t)dt + x[xy(x) - y(1)] + xy(x) - y(1)$$

$$\int_{1}^{x} y(t)dt = \int_{1}^{x} ty(t)dt + x^{2}y(x) - y(1)$$
Diff. again w . r. to x
$$y(x) - y(a) = xy(x) - y(a) + 2xy(x) + x^{2}y^{1}(x)$$

$$(1 - 3x)y(x) = x^{2}y^{1}(x)$$

$$\frac{y^{1}(x)}{y(x)} = \frac{1 - 3x}{x^{2}}$$

$$\frac{1dy}{ydx} = \frac{1 - 3x}{x^{2}} \Rightarrow \ln y = -\frac{1}{x} - 3\ln x$$

$$\ln(yx^{3}) = -\frac{1}{x}$$

$$yx^{3} = -e^{-1/x}$$

$$y = \frac{e^{-1x}}{x^{3}} \text{ or } y = \frac{ce^{-\frac{1}{x}}}{x^{3}}$$

.....

## **Question254**

The value of the integral  $\int_{4}^{10} \frac{[x^2]dx}{[x^2-28x+196]+[x^2]}$ , where [x]denotes the greatest integer less than or equal to x, is: [Online April 10, 2016]

#### **Options:**

A. 
$$\frac{1}{3}$$

**Answer: D** 

$$I = \int_{4}^{10} \frac{[x^{2}]dx}{[x^{2} - 28x + 196] + [x^{2}]} dx \dots (a)$$

$$Use \int_{4}^{b} f(a + b - x)dx = \int_{a}^{b} f(x)dx$$

$$I = \int_{4}^{10} \frac{[(x - 14)^{2}]}{[x^{2}] + [(x - 14)^{2}]} dx \dots (b)$$

$$(a) + (b)$$

$$2I = \int_{4}^{10} \frac{[(x - 14)^{2}] + [x^{2}]}{[x^{2}] + [(x - 14)^{2}]} dx$$

$$2I = \int_{4}^{10} dx \Rightarrow 2I = 6 \Rightarrow I = 3$$

-----

## **Question255**

If  $2\int_{0}^{1} \tan^{-1}x dx = \int_{0}^{1} \cot^{-1}(1-x+x^{2}) dx$ , then  $\int_{0}^{1} \tan^{-1}(1-x+x^{2}) dx$  is equal to:

## [Online April 9, 2016]

#### **Options:**

A. 
$$\frac{\pi}{2}$$
 + log 2

B. log 2

C. 
$$\frac{\pi}{2} - \log 4$$

D. log4

**Answer: B** 

#### **Solution:**

$$2\int_{0}^{1} \tan^{-1}x dx = \int_{0}^{1} \left(\frac{\pi}{2} - \tan^{-1}(1 - x + x^{2})\right) dx$$

$$2\int_{0}^{1} \tan^{-1}x dx = \int_{0}^{1} \frac{\pi}{2} dx - \int_{0}^{1} \tan^{-1}(1 - x + x^{2}) dx$$

$$\int_{0}^{1} \tan^{-1}(1 - x + x^{2}) dx = \frac{\pi}{2} - 2\int_{0}^{1} \tan^{-1}x dx \dots (a)$$
Let,  $I_{1} = \int_{0}^{1} \tan^{-1}x dx$ 

$$= [(\tan^{-1}x)x]_0^{-1} - \int_0^1 \frac{1}{1+x^2} x dx$$

$$=\frac{\pi}{4}-\int_{0}^{1}\frac{x}{1+x^{2}}dx=\frac{\pi}{4}-\frac{1}{2}\log 2$$

By equation (a)

$$\frac{\pi}{2} - 2\left[\frac{\pi}{4} - \frac{1}{2}\log 2\right] = \log 2$$

\_\_\_\_\_

## Question256

$$\lim_{n\to\infty} \left(\frac{(n+1)(n+2).....3n}{n^{2n}}\right)^{\frac{1}{n}}$$
 is equal to:

[2016]

#### **Options:**

A. 
$$\frac{9}{e^2}$$

B. 
$$3 \log 3 - 2$$

C. 
$$\frac{18}{e^4}$$

D. 
$$\frac{27}{e^2}$$

**Answer: D** 

#### **Solution:**

$$\begin{split} y &= \lim_{n \to \infty} \left( \frac{(n+1)(n+2)\dots .3n}{n^{2n}} \right) \frac{1}{n} \\ \ln y &= \lim_{n \to \infty} \frac{1}{n} \ln \left( 1 + \frac{1}{n} \right) \left( 1 + \frac{2}{n} \right) \dots . \left( 1 + \frac{2n}{n} \right) \\ \ln y &= \lim_{n \to \infty} \frac{1}{n} \left[ \ln \left( 1 + \frac{1}{n} \right) + \ln \left( 1 + \frac{2}{n} \right) + \dots + \ln \left( 1 + \frac{2n}{n} \right) \right] \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \ln \left( 1 + \frac{r}{n} \right) = \int_{0}^{2} \ln (1+x) \, dx \\ \text{Let } 1 + x = t \Rightarrow dx = dt \end{split}$$

when 
$$x = 0$$
,  $t = 1$   
 $x = 2$ ,  $t = 3$   
 $\ln y = \int_{1}^{3} \ln t \, d \, t = \left[t \ln t - t\right]_{1}^{3} = \ln(3^{3}e^{2}) = \ln\left(\frac{27}{e^{2}}\right)$   
 $\Rightarrow y = \frac{27}{e^{2}}$ 

-----

## Question257

If  $\int \frac{\log(t+\sqrt{1+t^2})}{\sqrt{1+t^2}} dt = \frac{1}{2}(g(t))^2 + C$ , where C is a constant, then g(b) is equal to:

[**Online April 11, 2015**]

#### **Options:**

$$A. \frac{1}{\sqrt{5}} \log(2 + \sqrt{5})$$

B. 
$$\frac{1}{2}\log(2+\sqrt{5})$$

C. 
$$2 \log(2 + \sqrt{5})$$

D. 
$$\log(2 + \sqrt{5})$$

**Answer: D** 

#### **Solution:**

Let 
$$I = \int \frac{\log(t + \sqrt{1 + t^2})}{\sqrt{1 + t^2}} dt$$
  
put  $u = \log(t + \sqrt{1 + t^2})$ 

$$du = \frac{1}{t + \sqrt{1 + t^2}} \cdot \left[ \frac{t + \sqrt{1 + t^2}}{\sqrt{1 + t^2}} \right] = \frac{1}{\sqrt{1 + t^2}} dt$$

$$\therefore I = \int u d u = \frac{u^2}{2} + c$$

Since, 
$$I = \frac{1}{2}[g(t)]^2 + c$$

$$\therefore g(t) = \log(t + \sqrt{1 + t^2})$$
Put  $t = 2$ 

$$g(b) = \log(2 + \sqrt{5})$$

\_\_\_\_\_\_

## **Question258**

The integral  $\int \frac{dx}{x^2(x^4+1)^{3/4}}$  equals: [2015]

**Options:** 

A. 
$$-(x^4+1)^{\frac{1}{4}}+c$$

B. 
$$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$

$$C. \left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}} + c$$

D. 
$$(x^4 + 1)^{\frac{1}{4}} + c$$

Answer: B

#### **Solution:**

$$I = \int \frac{dx}{x^{2}[x^{4} + 1]^{\frac{3}{4}}}$$

$$= \int \frac{dx}{x^{2}\left[(x^{4})^{\frac{3}{4}}\left(1 + \frac{1}{x^{4}}\right)^{\frac{3}{4}}\right]}$$

$$= \int \frac{dx}{x^{5}\left[1 + \frac{1}{x^{4}}\right]^{\frac{3}{4}}}$$
Substitute:  $1 + \frac{1}{x^{4}} = t$ 

Differentiating w.r.t. x

$$0 - 4 \frac{1}{x^5} dx = dt$$

$$\Rightarrow \frac{\mathrm{d} x}{x^5} = -\frac{\mathrm{d}t}{4}$$

$$I = \int \frac{\left(-\frac{d\,t}{4}\right)}{\frac{3}{t^{\frac{3}{4}}}}$$

$$=-\frac{1}{4}\int_{\mathbf{t}}^{-\frac{3}{4}}\mathrm{d}\,\mathbf{t}$$

$$= -\frac{1}{4} \frac{t^{\frac{3}{4}+1}}{\left(-\frac{3}{4}+1\right)} + C$$

$$= -t^{\frac{1}{4}} + C$$

$$= -\left[1 + \frac{1}{x^4}\right]^{\frac{1}{4}} + C$$

$$I = -\left[ \frac{x^4 + 1}{x^4} \right]^{\frac{1}{4}} + c$$

\_\_\_\_\_\_

## **Question259**

The integral  $\int \frac{dx}{(x+1)^{\frac{3}{4}}(x-2)^{\frac{5}{4}}}$  is equal to:

#### [Online April 10, 2015]

#### **Options:**

A. 
$$-\frac{4}{3}\left(\frac{x+1}{x-2}\right)^{\frac{1}{4}} + C$$

B. 
$$4\left(\frac{x+1}{x-2}\right)^{\frac{1}{4}} + C$$

C. 
$$4\left(\frac{x-2}{x+1}\right)^{\frac{1}{4}} + C$$

D. 
$$-\frac{4}{3}\left(\frac{x-2}{x+1}\right)^{\frac{1}{4}} + C$$

**Answer: B** 

### **Solution:**

Solution:

$$\int \frac{dx}{(x+1)^{3/4}(x-2)^{5/4}} \int \frac{dx}{\left(\frac{x+1}{x-2}\right)^{3/4}(x-2)^2}, \text{ put } \frac{x+1}{x-2} = t$$

$$\frac{-3}{(x-2)^2} = \frac{dt}{dx}$$

$$\frac{dx}{(x-2)^2} = -\frac{dt}{3} = \frac{-1}{3} \int \frac{dt}{\frac{3}{4}} = -\frac{1}{3} \int t \frac{-3}{4} 1t$$

$$= \frac{1}{3} \left[ \frac{-3}{\frac{4}{3}+1} \right] = \frac{-4}{3} \left[ \frac{x+1}{x-2} \right]^{1/4} + c$$

L 4 ' ' J

# Question260

The integral  $\int_{2}^{4} \frac{\log x^2}{\log x^2 + \log(36 - 12x + x^2)} dx$  is equal to [2015]

### **Options:**

- A. 1
- B. 6
- C. 2
- D. 4

Answer: A

$$I = \int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(36 - 12x + x^{2})} dx$$

$$I = \int_{2}^{4} \frac{\log x^{2}}{\log x^{2} + \log(6 - x)^{2}} dx \dots (i)$$

$$I = \int_{2}^{4} \frac{\log(6 - x)^{2}}{\log(6 - x)^{2} + \log x^{2}} dx \dots (ii)$$
Adding (i) and (ii)
$$2I = \int_{2}^{4} dx = [x]_{2}^{4} = 2$$

$$I = 1$$

Let  $f : R \to R$  be a function such that f(2-x) = f(2+x) and f(4-x) = f(4+x), for all  $x \in R$  and  $\int_{0}^{1} f(x) dx = 5$ . Then the value of  $\int_{10}^{50} f(x) dx$  is:

[Online April 11, 2015]

#### **Options:**

A. 125

B. 80

C. 100

D. 200

**Answer: C** 

### **Solution:**

#### Solution:

Let  $f: R \to R$  be a function such that f(2-x) = f(e+x)Put x = 2 + x we get f(-x) = f(4+x) = f(4-x) $\Rightarrow f(x) = f(x+4)$ Hence period is 4 Consider  $\int_{10}^{50} f(x) dx = 10 \int_{10}^{14} f(x) dx = 10[5+5] = 100$ 

Let  $f: (-1, 1) \to R$  be a continuous function. If  $\int_0^x f(t) dt = \frac{\sqrt{3}}{2}x$ , then

 $f\left(\frac{\sqrt{3}}{2}\right)$  is equal to :

[Online April 11, 2015]

### **Options:**

- A.  $\frac{1}{2}$
- B.  $\frac{\sqrt{3}}{2}$
- C.  $\sqrt{\frac{3}{2}}$
- D.  $\sqrt{3}$

**Answer: D** 

### **Solution:**

#### Solution:

Let  $f:(-1,1) \to R$  be a continuous function

Let 
$$\int_{0}^{\sin x} f(t)dt = \frac{\sqrt{3}}{2}x$$

$$f(\sin x) \cdot \frac{d}{dx}(\sin x) = \frac{\sqrt{3}}{2}$$

$$\Rightarrow f(\sin x) \cdot \cos x = \frac{\sqrt{3}}{2}$$

put 
$$x = \frac{\pi}{3}$$

$$f\left(\sin\frac{\pi}{3}\right).\cos\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$f\left(\frac{\sqrt{3}}{2}\right) \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$$

$$f\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$

\_\_\_\_\_

For x > 0, let  $f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$ . Then  $f(x) + f\left(\frac{1}{x}\right)$  is equal to: [Online April 10, 2015]

### **Options:**

$$A. \frac{1}{4} (\log x)^2$$

B. log x

$$C. \frac{1}{2} (\log x)^2$$

$$D. \frac{1}{4} \log x^2$$

**Answer: C** 

### **Solution:**

#### Solution:

$$\begin{split} f\left(\frac{1}{x}\right) &= \int\limits_{1}^{1/x} \frac{\ln t}{1+t} dt \\ \text{Let } t &= \frac{1}{z} \\ dt &= -\frac{1}{z^2} dz \\ f(x) &= \int\limits_{1}^{x} \frac{\ln z}{z(z+1)} dz \\ f(x) &+ f\left(\frac{1}{x}\right) = \int\limits_{1}^{x} \frac{\ln x}{z} dz = \left[\frac{(\ln z)^2}{2}\right]_{1}^{X} = \frac{(\ln x)^2}{2} \end{split}$$

-----

# **Question264**

The integral  $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$  is equal to [2014]

### **Options:**

A. 
$$(x+1)e^{x+\frac{1}{x}} + c$$

$$B. -xe^{x+\frac{1}{x}} + c$$

C. 
$$(x-1)e^{x+\frac{1}{x}} + c$$

D. 
$$xe^{x+\frac{1}{x}} + c$$

**Answer: D** 

### **Solution:**

#### Solution:

Let 
$$I = \int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$
  

$$= \int e^{x + \frac{1}{x}} dx + \int \left(x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$

$$= x \cdot e^{x + \frac{1}{x}} - \int x \left(1 - \frac{1}{x^2}\right) e^{x + \frac{1}{x}} dx + \int \left(x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx$$

$$= x \cdot e^{x + \frac{1}{x}} - \int \left(x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx + \int (x - 1x) e^{x + \frac{1}{x}} dx$$

$$= x \cdot e^{x + \frac{1}{x}} - \int \left(x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx + \int (x - 1x) e^{x + \frac{1}{x}} dx$$

$$= x \cdot e^{x + \frac{1}{x}} + C$$

\_\_\_\_\_

# **Question265**

The integral  $\int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} dx$  is equal to: [Online April 12, 2014]

$$A. \frac{1}{(1+\cot^3 x)} + c$$

B. 
$$-\frac{1}{3(1+\tan^3 x)}+c$$

$$C. \frac{\sin^3 x}{(1+\cos^3 x)} + c$$

D. 
$$-\frac{\cos^3 x}{3(1+\sin^3 x)}+c$$

**Answer: B** 

### **Solution:**

#### Solution:

Let 
$$I = \int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} dx$$
  
 $I = \int \left(\frac{\sin x \cdot \cos x}{\sin^3 x + \cos^3 x}\right)^2 dx$   
 $I = \int \left(\frac{\sin x \cdot \cos x}{\cos^2 x(1 + \tan^3 x)}\right)^2 dx$   
 $= \int \left(\frac{\sin x \cdot \sec^2 x}{(1 + \tan^3 x)}\right)^2 dx$   
Put  $1 + \tan^3 x = t$   
 $dt = 3\tan^2 x \sec^2 x dx$  or  $dx = \frac{dt}{3\tan^2 x \sec^2 x}$   
 $\therefore I = \int \frac{\sin^2 x \cdot \sec^4 x}{t^2} \times \frac{dt}{3\tan^2 x \sec^2 x}$   
 $I = \frac{1}{3} \int \frac{\sin^2 x \cdot \sec^4 x}{t^2} \times \frac{dt}{\sin^2 x} \times \sec^2 x$   
 $= \frac{1}{3} \int \frac{\sin^2 x \cdot \sec^4 x}{t^2} \times \frac{dt}{\sin^2 x \sec^4 x}$   
 $\therefore I = \frac{1}{3} \int \frac{dt}{t^2} = \frac{1}{3} \int t^{-2} dt$   
 $I = \frac{1}{3} \left[\frac{t^{-2+1}}{-2+1}\right] + c = \frac{-1}{3} \left[\frac{1}{t}\right] + c$   
or  $I = -\frac{1}{3(1 + \tan^3 x)} + c$ 

\_\_\_\_\_

# Question266

# The integral $\int x \cos^{-1} \left( \frac{1-x^2}{1+x^2} \right) dx(x > 0)$ is equal to:

### [Online April 11, 2014]

### **Options:**

A. 
$$-x + (1 + x^2)\tan^{-1}x + c$$

B. 
$$x - (1 + x^2)\cot^{-1}x + c$$

C. 
$$-x + (1 + x^2)\cot^{-1}x + c$$

D. 
$$x - (1 + x^2) tan^{-1} x + c$$

Answer: A

#### **Solution:**

#### Solution:

Let 
$$I = \int x \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) dx$$

$$\therefore I = 2 \int x \cdot \tan^{-1} x dx$$

 $\therefore$ I = 2 \int x \cdot tan^{-1} x d x Applying Integration by parts

$$I = 2 \left[ \tan^{-1} x \int x dx - \int \left( \frac{d}{dx} (\tan^{-1} x) \int x dx \right) dx \right]$$

$$I = 2\left[\frac{x^{2}}{2}\tan^{-1}x - \int \frac{1}{1+x^{2}} \times \frac{x^{2}}{2} dx\right] + c$$

$$I = 2\left[\frac{x^2}{2}\tan^{-1}x - \frac{1}{2}\int \frac{x^2 + 1 - 1}{x^2 + 1}dx\right] + c$$

$$I = 2\left[\frac{x^2}{2}\tan^{-1}x - \frac{1}{2}\int \frac{x^2 + 1}{x^2 + 1}dx + \frac{1}{2}\int \frac{1}{1 + x^2}dx\right] + c$$

$$I = 2\left[\frac{x^2}{2}\tan^{-1}x - \frac{1}{2}\int 1 \cdot dx + \frac{1}{2}\tan^{-1}x\right] + c$$

$$I = 2\left[\frac{x^{2}}{2}\tan^{-1}x - \frac{x}{2} + \frac{1}{2}\tan^{-1}x\right] + c$$

$$I = x^2 tan^{-1}x + tan^{-1}x - x + c$$

or 
$$I = -x + (x^2 + 1) \tan^{-1} x + c$$

# **Question267**

# $\int \frac{\sin^8 x - \cos^8 x}{(1 - 2\sin^2 x \cos^2 x)} dx$ is equal to:

### [Online April 9, 2014]

### **Options:**

A. 
$$\frac{1}{2} \sin 2 x + c$$

B. 
$$-\frac{1}{2}\sin 2x + c$$

$$C. -\frac{1}{2}\sin x + c$$

$$D. -\sin^2 x + c$$

**Answer: B** 

### **Solution:**

#### Solution:

Let 
$$I = \int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$
  

$$= \int \frac{(\sin^4 x)^2 - (\cos^4 x)^2}{1 - 2\sin^2 x \cos^2 x} dx$$

$$= \int \frac{(\sin^4 x + \cos^4 x)(\sin^4 x - \cos^4 x)}{1 - 2\sin^2 x \cos^2 x} dx$$

$$= \int \frac{[(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x][(\sin^2 x + \cos^2 x)][\sin^2 x - \cos^2 x]}{1 - 2\sin^2 x \cos^2 x}$$

$$= -\int \cos 2x dx = \frac{-\sin 2x}{2} + c = -\frac{1}{2}\sin 2x + c$$

-----

# **Question268**

If m is a non-zero number and  $\int \frac{x^{5m-1} + 2x^{4m-1}}{(x^{2m} + x^m + 1)^3} dx = f(x) + c$ , then f(x) is: [Online April 19, 2014]

A. 
$$\frac{x^{5m}}{2m(x^{2m}+x^m+1)^2}$$

B. 
$$\frac{x^{4m}}{2m(x^{2m}+x^m+1)^2}$$

C. 
$$\frac{2m(x^{5m} + x^{4m})}{(x^{2m} + x^m + 1)^2}$$

D. 
$$\frac{(x^{5m}-x^{4m})}{2m(x^{2m}+x^m+1)^2}$$

**Answer: B** 

### **Solution:**

Solution

Solution:  

$$\int \frac{x^{5m-1} + 2x^{4m-1}}{(x^{2m} + x^m + 1)^3} dx = \int \frac{x^{5m-1} + 2x^{4m-1}}{x^{6m}(1 + x^{-m} + x^{-2m})^3} dx$$

$$= \int \frac{x^{-m-1} + 2x^{-2m-1}}{(1 + x^{-m} + x^{-2m})^3} dx$$
Put  $t = 1 + x^{-m} + x^{-2m}$ 

$$\therefore \frac{dt}{dx} = -mx^{-m-1} - 2mx^{-2m-1}$$

$$\Rightarrow \frac{dt}{-m} = (x^{-m-1} + 2x^{-2m-1}) dx$$

$$\therefore \int \frac{x^{5m-1} + 2x^{4m-1}}{(x^{2m} + x^m + 1)^3} dx = \frac{1}{-m} \int t^{-3} dt = \frac{1}{2mt^2} + C$$

$$= \frac{1}{2m(1 + x^{-m} + x^{-2m})^2} + C$$

$$= \frac{x^{4m}}{2m(x^{2m} + x^m + 1)^2} + C$$

$$\therefore f(x) = \frac{x^{4m}}{2m(x^{2m} + x^m + 1)^2}$$

\_\_\_\_\_\_

# **Question269**

The integral  $\int_{0}^{\pi} \sqrt{1+4\sin^{2}\frac{x}{2}-4\sin\frac{x}{2}} dx$  equals:

[2014]

A. 
$$4\sqrt{3} - 4$$

B. 
$$4\sqrt{3} - 4 - \frac{\pi}{3}$$

C. 
$$\pi - 4$$

D. 
$$\frac{2\pi}{3} - 4 - 4\sqrt{3}$$

**Answer: B** 

#### **Solution:**

Solution:

Let 
$$I = \int_{0}^{\pi} \sqrt{1 + 4\sin^{2}\frac{x}{2} - 4\sin\frac{x}{2}} dx = \int_{0}^{\pi} \left| 2\sin\frac{x}{2} - 1 \right| dx$$
  

$$= \int_{0}^{\pi/3} \left( 1 - 2\sin\frac{x}{2} \right) dx + \int_{\pi/3}^{\pi} \left( 2\sin\frac{x}{2} - 1 \right) dx$$

$$\left[ \because \sin\frac{x}{2} = \frac{1}{2} \Rightarrow \frac{x}{2} = \frac{\pi}{6} \Rightarrow x = \frac{\pi}{3}, \frac{x}{2} = \frac{5\pi}{6} \Rightarrow x = \frac{5\pi}{3} > \pi \right]$$

$$= \left[ x + 4\cos\frac{x}{2} \right]_{0}^{\pi/3} + \left[ -4\cos\frac{x}{2} - x \right]_{\pi/3}^{\pi}$$

$$= \frac{\pi}{3} + 4\frac{\sqrt{3}}{2} - 4 + \left( 0 - \pi + 4\frac{\sqrt{3}}{2} + \frac{\pi}{3} \right)$$

$$= 4\sqrt{3} - 4 - \frac{\pi}{3}$$

------

### Question270

Let function F be defined as F (x) =  $\int_{1}^{x} \frac{e^{t}}{t} dt$ , x > 0 then the value of the integral  $\int_{1}^{x} \frac{e^{t}}{t+a} dt$ , where a > 0, is: [Online April 19, 2014]

A. 
$$e^{a}[F(x)-F(1+a)]$$

B. 
$$e^{-a}[F(x+a)-F(a)]$$

C. 
$$e^{a}[F(x+a)-F(1+a)]$$

D. 
$$e^{-a}[F(x+a)-F(1+a)]$$

**Answer: D** 

### **Solution:**

Solution:

$$F(x) = \int_{1}^{x} \frac{e^{t}}{t} dt, x > 0$$
Let  $I = \int_{1}^{x} \frac{e^{t}}{t+a} dt$ 
Put  $t+a=z \Rightarrow t=z-a$ ;  $dt=dz$ 
for  $t=1, z=1+a$ 
for  $t=x, z=x+a$ 

$$\therefore I = \int_{1+a}^{x+a} \frac{e^{z-a}}{z} dz$$

$$= e^{-a} \int_{1+a}^{x+a} \frac{e^{z}}{z} dz = e^{-a} \int_{1+a}^{x+a} \frac{e^{t}}{t} dt$$

$$I = e^{-a} \left[ \int_{1+a}^{1} \frac{e^{t}}{t} dt + \int_{1}^{x+a} \frac{e^{t}}{t} dt \right]$$

$$= e^{-a} \left[ -\int_{1}^{1+a} \frac{e^{t}}{t} dt + \int_{1}^{x+a} \frac{e^{t}}{t} dt \right]$$

$$= e^{-a} [-F(1+a) + F(x+a)]$$
(By the definition of  $F(x)$ )
$$= e^{-a} [F(x+a) - F(1+a)]$$

\_\_\_\_\_\_

# **Question271**

If for a continuous function f(x),  $\int_{-\pi}^{t} (f(x) + x) dx = \pi^2 - t^2$ , for all  $t \ge -\pi$ , then  $f\left(-\frac{\pi}{3}\right)$  is equal to: [Online April 12, 2014]

**Options:** 

Α. π

B.  $\frac{\pi}{2}$ 

C. 
$$\frac{\pi}{3}$$

D. 
$$\frac{\pi}{6}$$

Answer: A

### **Solution:**

#### Solution:

Let 
$$\int_{-\pi}^{t} (f(x) + x) dx = \pi^{2} - t^{2}$$
  

$$\Rightarrow \int_{-\pi}^{t} f(x) dx + \int_{-\pi}^{t} x dx = \pi^{2} - t^{2}$$

$$\Rightarrow \int_{-\pi}^{t} f(x) dx + \left(\frac{t^{2}}{2} - \frac{\pi^{2}}{2}\right) = \pi^{2} - t^{2}$$

$$\Rightarrow \int_{-\pi}^{t} f(x) dx = \frac{3}{2} (\pi^{2} - t^{2})$$

differentiating with respect to t

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\left[\int\limits_{-\pi}^t f(x)\mathrm{d}\,x\,\right] = \frac{3}{2}\frac{\mathrm{d}}{\mathrm{d}\,t}(\pi^2 - t^2)$$

$$f(t) \cdot \frac{dt}{dt} - f(-\pi)\frac{d}{dt}(-\pi) = -3t$$

$$f(t) = -3t$$

$$f\left(-\frac{\pi}{3}\right) = -3\left(-\frac{\pi}{3}\right) = \pi$$

-----

# Question272

If []denotes the greatest integer function, then the integral  $\int_0^{\pi} [\cos x] dx$  is equal to: [Online April 12, 2014]

A. 
$$\frac{\pi}{2}$$

D. 
$$-\frac{\pi}{2}$$

**Answer: D** 

### **Solution:**

Let 
$$I = \int_{0}^{\pi} [\cos x] dx$$
 ......(1)  
 $I = \int_{0}^{\pi} [\cos(\pi - x)] dx = \int_{0}^{\pi} [-\cos x] dx$  ......(2)  
On adding (1) and (2), we get  
 $2I = \int_{0}^{\pi} [\cos x] dx + \int_{0}^{\pi} [-\cos x] dx$   
 $2I = \int_{0}^{\pi} [\cos x] + [-\cos x] dx$   
 $2I = \int_{0}^{\pi} [-\cos x] dx$   
 $2I = -x |_{0}^{\pi} = -\pi$   

$$\Rightarrow I = \frac{-\pi}{2}$$

\_\_\_\_\_

# Question273

If for  $n \ge 1$ ,  $P_n = \int_1^{\epsilon} (\log x)^n dx$ , then  $P_{10} - 90P_8$  is equal to: [Online April 11, 2014]

### **Options:**

A. -9

B. 10e

C. -9e

D. 10

**Answer: C** 

$$\begin{split} P_n &= \int\limits_1^e (\log x)^n d\, x \\ \text{put } \log x = t \text{ then } x = e^t \text{ and } d\, x = e^t d\, t \\ \text{Also, when } x = 1, \text{ then } t = \log 1 = 0 \\ \text{and when } x = e, \text{ then } t = \log_e e = 1 \\ \therefore P_n &= \int\limits_0^1 t^n \cdot e^t d\, t \\ \therefore P_{10} &= \int\limits_0^1 t^{10} e^t d\, t \text{ and } P_8 = \int\limits_0^1 t^8 e^t d\, t \end{split}$$

Now, 
$$P_{10} - 90P_8 = \int_0^1 t^{10} e^t dt - 90 \int_0^1 t^8 e^t dt$$
  
 $P_{10} - 90P_9 = [t^{10} e^t]_0^1 - 10 \int_0^1 t^9 e^t dt - 90 \int_0^1 t^8 e^t dt$ 

$$P_{10} - 90P_8 = [t^{10}e^t]_0^1 - 10 \int_0^1 t^9 e^t dt - 90 \int_0^1 t^8 e^t dt$$

$$P_{10} - 90P_8 = e - 10 \left[ t^9 \int_0^1 e^t dt - \int_0^1 \frac{d}{dt} (t^9) \int e^t dt \right] - 90 \int_0^1 t^8 e^t dt$$

$$P_{10} - 90P_8 = e - 10 \left[ e - 9 \int_0^1 t^8 e^t dt \right] - 90 \int_0^1 t^8 e^t dt$$

$$P_{10} - 90P_8 = e - 10e + 90 \int t^8 e^t dt - 90 \int_0^1 t^8 e^t dt$$

$$\therefore P_{10} - 90P_8 = -9e$$

-----

### Question274

The integral  $\int_{0}^{\frac{1}{2}} \frac{\ln(1+2x)}{1+4x^2} dx$ , equals: [Online April 9, 2014]

### **Options:**

A. 
$$\frac{\pi}{4} \ln 2$$

B. 
$$\frac{\pi}{8} \ln 2$$

C. 
$$\frac{\pi}{16} \ln 2$$

D. 
$$\frac{\pi}{32} \ln 2$$

Answer: C

### **Solution:**

Let 
$$I = \int_{0}^{\frac{1}{2}} \frac{\ln(1+2x)}{1+4x^2} dx$$
 or  $= \int_{0}^{\frac{1}{2}} \frac{\ln(1+2x)}{1+(2x)^2} dx$   
Put  $2x = \tan \theta$ 

$$\therefore \frac{2d x}{d \theta} = \sec^2 \theta \text{ or } d x = \frac{\sec^2 \theta d \theta}{2}$$

also when 
$$x = 0 \Rightarrow \theta = 0$$

and when 
$$x = \frac{1}{2} \Rightarrow \theta = 45^{\circ}$$
 or  $\frac{\pi}{4}$ 

$$\therefore I = \int_{0}^{\frac{\pi}{4}} \frac{\ln(1 + \tan \theta)}{1 + \tan^{2} \theta} \times \frac{\sec^{2} \theta d \theta}{2}$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{\ln(1 + \tan \theta)}{1 + \tan^{2}\theta} \times \sec^{2}\theta d\theta \text{ (because } 1 + \tan^{2}\theta = \sec^{2}\theta)$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan \theta) d \theta \dots (i)$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[ 1 + \tan \left( \frac{\pi}{4} - \theta \right) \right] d \theta \text{(Using the property of definite integral)}$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[ 1 + \frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \times \tan \theta} \right] d \theta$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[ 1 + \frac{1 - \tan \theta}{1 + \tan \theta} \right] d\theta$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[ \frac{1 + \tan \theta + 1 - \tan \theta}{1 + \tan \theta} \right] d\theta$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[ \frac{2}{1 + \tan \theta} \right] d\theta$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} [\ln 2 - \ln(1 + \tan \theta)] d\theta$$

$$I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln 2 \cdot d\theta - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan \theta) d\theta$$

$$I=\frac{1}{2}\ln 2\,\theta\mid_{0}^{\pi/4}-I\,(\text{ from eq. (i))}$$

$$I + I = \frac{1}{2} \ln 2 \left( \frac{\pi}{4} - 0 \right)$$

$$2I = \frac{1}{2} \times \frac{\pi}{4} \times \ln 2$$

$$2I = \frac{\pi}{8} \ln 2 \text{ or } I = \frac{\pi}{16} \ln 2$$

\_\_\_\_\_

### **Question275**

# If $\int f(x)dx = \psi(x)$ , then $\int x^5 f(x^3)dx$ is equal to [2013]

### **Options:**

A. 
$$\frac{1}{3}[x^3\psi(x^3) - \int x^2\psi(x^3) dx] + C$$

B. 
$$\frac{1}{3}x^3\psi(x^3) - 3\int x^3\psi(x^3)dx + C$$

C. 
$$\frac{1}{3}x^3\psi(x^3) - \int x^2\psi(x^3)dx + C$$

D. 
$$\frac{1}{3}[x^3\psi(x^3) - \int x^3\psi(x^3)dx] + C$$

**Answer: C** 

### **Solution:**

Let 
$$\int f(x) dx = \psi(x)$$
  
Let  $I = \int x^5 f(x^3) dx$   
put  $x^3 = t$   
 $\Rightarrow 3x^2 dx = dt$   
 $I = \frac{1}{3} \int 3 \cdot x^2 \cdot x^3 \cdot f(x^3) \cdot dx$   
 $= \frac{1}{3} \int t f(t) dt = \frac{1}{3} [t \int f(t) dt - \int f(t) dt]$   
 $= \frac{1}{3} [t \psi(t) - \int \psi(t) dt]$   
 $= \frac{1}{3} [x^3 \psi(x^3) - 3 \int x^2 \psi(x^3) dx] + c$   
 $= \frac{1}{3} x^3 \psi(x^3) - \int x^2 \psi(x^3) dx + c$ 

If the integral  $\int \frac{\cos 8x + 1}{\cot 2x - \tan 2x} dx = A \cos 8x + k$ where k is an arbitrary constant, then A is equal to: [Online April 25, 2013]

### **Options:**

- A.  $-\frac{1}{16}$
- B.  $\frac{1}{16}$
- C.  $\frac{1}{8}$
- D.  $-\frac{1}{8}$

Answer: A

### **Solution:**

#### Solution:

Let 
$$I = \int \frac{\cos 8x + 1}{\cot 2x - \tan 2x} dx$$
  
Now,  $D^r = \cot 2x - \tan 2x = \frac{\cos 2x}{\sin 2x} - \frac{\sin 2x}{\cos 2x}$   
 $= \frac{\cos^2 2x - \sin^2 2x}{\sin 2x \cos 2x} = \frac{2\cos 4x}{\sin 4x}$   
 $\therefore I = \int \frac{2\cos^2 4x}{\frac{2\cos 4x}{\sin 4x}} dx = \int \frac{2\cos^2 4x \cdot \sin 4x}{2\cos 4x} dx$   
 $= \frac{1}{2} \int \sin 8x dx = -\frac{1}{2} \frac{\cos 8x}{8} + k = -\frac{1}{16} \cdot \cos 8x + k$   
Now,  $-\frac{1}{16} \cdot \cos 8x + k = A\cos 8x + k$   
 $\Rightarrow A = -\frac{1}{16}$ 

# **Question277**

# The integral $\int \frac{xdx}{2-x^2+\sqrt{2-x^2}}$ equals:

### [Online April 23, 2013]

### **Options:**

A. 
$$\log |1 + \sqrt{2 + x^2}| + c$$

B. 
$$-\log |1 + \sqrt{2 - x^2}| + c$$

C. 
$$x \log |1 - \sqrt{2 + x^2}| + c$$

D. 
$$-x \log |1 - \sqrt{2 - x^2}| + c$$

**Answer: B** 

### **Solution:**

#### Solution:

$$I = \int \frac{x d x}{2 - x^2 + \sqrt{2 - x^2}}$$
Put  $t = \sqrt{2 - x^2}$ ,  $\frac{d t}{d x} = \frac{1}{2\sqrt{2 - x^2}}$ .  $(-2x)$ 

$$\Rightarrow -t d t = x d x$$

$$\therefore I = \int \frac{(-t) d t}{t^2 + t} = -\int \frac{1}{t + 1} d t = -\log|t + 1|$$

$$= -\log|1 + \sqrt{2 - x^2}| + c$$

------

# **Question278**

If 
$$\int \frac{x^2 - x + 1}{x^2 + 1} e^{\cot^{-1} x} dx = A(x) e^{\cot^{-1} x} + C$$
, then A(x) is equal to: [Online April 22, 2013]

$$A. -x$$

C. 
$$\sqrt{1-x}$$

D. 
$$\sqrt{1 + x}$$

**Answer: B** 

### **Solution:**

Solution:

Let 
$$I = \int \frac{x^2 - x + 1}{x^2 + 1}$$
.  $e^{\cot^{-1}x} dx$   
Put  $x = \cot t \Rightarrow -\csc^2 t dt = dx$ 

Now, 
$$1 + \cot^2 t = \csc^2 t$$

# **Question279**

If  $\int dxx + x^7 = p(x)$  then  $\int \frac{x^6}{x + x^7} dx$  is equal to: [Online April 9, 2013]

**Options:** 

A. 
$$\ln |x| - p(x) + c$$

B. 
$$\ln |x| + p(x) + c$$

C. 
$$x - p(x) + c$$

D. 
$$x + p(x) + c$$

**Answer: A** 

$$\int \frac{x^6}{x+x^7} dx = \int \frac{x^6}{x(1+x^6)} dx = \int \frac{(1+x^6)-1}{x(1+x^6)} dx$$
$$= \int \frac{1}{x} dx - \int \frac{1}{x+x^7} dx = \ln|x| - p(x) + c$$

\_\_\_\_\_\_

### **Question280**

The intercepts on x -axis made by tangents to the curve,  $y = \int_0^x |t| dt$ ,  $x \in \mathbb{R}$ , which are parallel to the line y = 2x, are equal to : [2013]

### **Options:**

 $A.\pm 1$ 

 $B.\pm 2$ 

 $C. \pm 3$ 

 $D. \pm 4$ 

**Answer: A** 

### **Solution:**

#### Solution:

Since, 
$$y = \int_{0}^{x} |t| dt$$
,  $x \in R$   
therefore  $\frac{dy}{dx} = |x|$ 

But from 
$$y = 2x$$
,  $\therefore \frac{dy}{dx} = 2$   
 $\Rightarrow |x| = 2 \Rightarrow x = \pm 2$ 

Points 
$$y = \int_{0}^{\pm 2} |t| dt = \pm 2$$

∴ Equation of tangent is

$$y-2=2(x-2)$$
 or  $y+2=2(x+2)$ 

 $\Rightarrow x$  -intercept  $= \pm 1$ 

-----

**Statement-1: The value of the integral** 

$$\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$$
 is equal to  $\pi/6$ 

Statement-2:  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ [2013]

#### **Options:**

A. Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is true; Statement-2 is false.

D. Statement-1 is false; Statement-2 is true.

**Answer: D** 

### **Solution:**

#### Solution:

Solution:  
Let, 
$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}}$$
  

$$= \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x} dx}{1 + \sqrt{\tan x}} \dots (i)$$

Also, given 
$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\tan x} dx}{1 + \sqrt{\tan x}} \dots (ii)$$

By adding (i) and (ii), we get

$$2I = \int_{\pi/6}^{\pi/3} dx$$

$$\Rightarrow I = \frac{1}{2} \left[ \frac{\pi}{3} - \frac{\pi}{6} \right] = \frac{\pi}{12}$$

Statement-1 is false

It is fundamental property.

Statement -2 is true.

For  $0 \le x \le \frac{\pi}{2}$ , the value of  $\int_0^{\sin^2 x} \sin^{-1}(\sqrt{t}) dt + \int_0^{\cos^2 x} \cos^{-1}(\sqrt{t}) dt$  equals : [Online April 25, 2013]

#### **Options:**

- A.  $\frac{\pi}{4}$
- B. 0
- C. 1
- D.  $-\frac{\pi}{4}$

Answer: A

### **Solution:**

#### Solution:

Consider

$$\int_{0}^{\sin^{2}x} \sin^{-1}(\sqrt{t}) dt + \int_{0}^{\cos^{2}x} \cos^{-1}(\sqrt{t}) dt$$

Let I = f(x) after integrating and putting the limits.

$$f'(x) = \sin^{-1} \sqrt{\sin^2 x} (2\sin x \cos x) - 0 + \cos^{-1} \sqrt{\cos^2 x} (-2\cos x \sin x) - 0$$

$$f'(x) = 0 \Rightarrow f(x) = C \text{ (constant)}$$

Now, we find f(x) at  $x = \frac{\pi}{4}$ 

$$\begin{split} & \therefore I \, = \, \int\limits_0^{1/2} \sin^{-1} \! \sqrt{t} d \, t \, + \, \int\limits_0^{1/2} \cos^{-1} \! \sqrt{t} d \, t \\ & = \, \int\limits_0^{1/2} (\sin^{-1} \! \sqrt{t} + \cos^{-1} \! \sqrt{t}) d \, t \, = \, \int\limits_0^{1/2} \frac{\pi}{2} d \, t = \frac{\pi}{4} = C \end{split}$$

$$: f(x) = \frac{\pi}{4}$$

$$\therefore \text{ Required integration } = \frac{\pi}{4}$$

-----

# **Question283**

# The value of $\int_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1+2^x} dx$ is: [Online April 23, 2013]

### **Options:**

Α. π

B.  $\frac{\pi}{2}$ 

C.  $4\pi$ 

D.  $\frac{\pi}{4}$ 

**Answer: D** 

### **Solution:**

#### Solution:

$$\begin{split} & I = \int\limits_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1 + 2^x} dx ......(i) \\ \Rightarrow & I = \int\limits_{-\pi/2}^{\pi/2} \frac{\sin^2 x}{1 + 2^{-x}} dx, \text{ by replacing } x \text{ by } \left(\frac{\pi}{2} - \frac{\pi}{2} - x\right) \\ \Rightarrow & I = \int\limits_{-\pi/2}^{\pi/2} \frac{2^x \cdot \sin^2 x}{1 + 2^x} dx ......(ii) \end{split}$$

Adding equations (i) and (ii), we get

$$2I = \int_{-\pi/2}^{\pi/2} \sin^2 x \, dx = \frac{1}{2} \int_{-\pi/2}^{\pi/2} (1 - \cos 2x) \, dx$$

$$\Rightarrow I = \frac{1}{4} \left[ x + \frac{\sin 2x}{2} \right]_{-\pi/2}^{\pi/2}$$

$$= \frac{1}{4} \left[ \left( \frac{\pi}{2} + \frac{\sin \pi}{2} \right) - \left( -\frac{\pi}{2} + \frac{\sin(-\pi)}{2} \right) \right]$$

$$\Rightarrow I = \frac{1}{4} \left[ \frac{\pi}{2} + \frac{\pi}{2} \right] = \frac{\pi}{4}$$

-----

# Question284

The integral  $\int_{7\pi/4}^{7\pi/3} \sqrt{\tan^2 x} dx$  is equal to : [Online April 22, 2013]

### **Options:**

- A.  $\log 2 \sqrt{2}$
- B. log 2
- C. 2 log 2
- D.  $\log \sqrt{2}$

**Answer: D** 

### **Solution:**

#### Solution:

Let 
$$I = \int_{7\pi/3}^{7\pi/3} \sqrt{\tan^2 x} dx$$
  

$$= \int_{7\pi/4}^{7\pi/3} \tan x dx = -\log \cos x|_{7\pi/4}^{7\pi/3}$$

$$= -\left[\log \cos \frac{7\pi}{3} - \log \cos \frac{7\pi}{4}\right]$$

$$= \log \cos \frac{7\pi}{4} - \log \cos \frac{7\pi}{3}$$

$$= \log \left[\frac{\cos \frac{7\pi}{4}}{\cos \frac{7\pi}{3}}\right] = \log \left[\frac{\cos \left(2\pi - \frac{\pi}{4}\right)}{\cos \left(2\pi + \frac{\pi}{3}\right)}\right]$$

$$= \log \left(\frac{\cos \frac{\pi}{4}}{\cos \frac{\pi}{3}}\right) = \log \left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\right)$$

$$= \log \left(\frac{2}{\sqrt{2}}\right) = \log \sqrt{2}$$

-----

# **Question285**

If 
$$x = \int_{0}^{y} \frac{dt}{\sqrt{1+t^2}}$$
, then  $\frac{d^2y}{dx^2}$  is equal to:

[Online April 9, 2013]

B. 
$$\sqrt{1+y^2}$$

C. 
$$\frac{x}{\sqrt{1+y^2}}$$

D. 
$$y^2$$

**Answer: A** 

### **Solution:**

#### Solution:

$$x = \int_{0}^{y} \frac{dt}{\sqrt{1+t^{2}}}$$

$$\Rightarrow 1 = \frac{1}{\sqrt{1+y^{2}}} \cdot \frac{dy}{dx}$$

$$\left[ \because If I(x) = \int_{\phi(x)}^{\Psi(x)} f(t)dt, \text{ then } \frac{dI(x)}{dx} = f \left\{ \Psi(x) \right\} \right. \left\{ \frac{d}{dx} psi(x) \right\} - f \left\{ \phi(x) \right\} \cdot \left\{ \frac{d}{dx} \phi(x) \right\} \right]$$

$$\frac{dy}{dx} = \sqrt{1-y^{2}}$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{1}{2\sqrt{1+y^{2}}} \cdot 2y \cdot \frac{dy}{dx} = \frac{y}{\sqrt{1+y^{2}}} \cdot \sqrt{1+y^{2}} = y$$

\_\_\_\_\_\_

# **Question286**

If the  $\int \frac{5 \tan x}{\tan x - 2} dx = x + a \ln |\sin x - 2 \cos x| + k$ , then a is equal to: [2012]

- A. -1
- B. -2
- C. 1
- D. 2

#### **Answer: D**

#### **Solution:**

#### Solution:

$$\begin{split} \int \frac{5 \tan x}{\tan x - 2} d \, x &= \int \frac{5 \frac{\sin x}{\cos x}}{\frac{\sin x}{\cos x} - 2} d \, x \\ &= \int \left( \frac{5 \sin x}{\cos x} \times \frac{\cos x}{\sin x - 2 \cos x} \right) d \, x \\ &= \int \frac{5 \sin x \, d \, x}{\sin x - 2 \cos x} \\ &= \int \left( \frac{4 \sin x + \sin x + 2 \cos x - 2 \cos x}{\sin x - 2 \cos x} \right) d \, x \\ &= \int \frac{(\sin x - 2 \cos x) + (4 \sin x + 2 \cos x)}{\sin x - 2 \cos x} d \, x \\ &= \int \frac{(\sin x - 2 \cos x) + (4 \sin x + 2 \cos x)}{\sin x - 2 \cos x} d \, x \\ &= \int \frac{(\sin x - 2 \cos x) + 2(\cos x + 2 \sin x)}{(\sin x - 2 \cos x)} d \, x \\ &= \int \frac{\sin x - 2 \cos x}{\sin x - 2 \cos x} d \, x + 2 \int \left( \frac{\cos x + 2 \sin x}{\sin x - 2 \cos x} \right) d \, x \\ &= \int d \, x + 2 \int \frac{\cos x + 2 \sin x}{\sin x - 2 \cos x} d \, x = I_1 + I_2 \\ \text{where, } I_1 &= \int d \, x \, \text{and } I_2 = 2 \int \frac{\cos x + 2 \sin x}{\sin x - 2 \cos x} d \, x \\ \text{Let } \sin x - 2 \cos x = t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \sin x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \cos x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \cos x) d \, x = d \, t \\ &\Rightarrow (\cos x + 2 \cos x)$$

\_\_\_\_\_\_

# **Question287**

If 
$$f(x) = \int \left(\frac{x^2 + \sin^2 x}{1 + x^2}\right) \sec^2 x dx$$
 and  $f(0) = 0$ , then  $f(1)$  equals [Online May 19, 2012]

A. 
$$\tan 1 - \frac{\pi}{4}$$

B. 
$$\tan 1 + 1$$

C. 
$$\frac{\pi}{4}$$

D. 
$$1 - \frac{\pi}{4}$$

Answer: A

#### **Solution:**

#### Solution:

Let 
$$f(x) = \int \left(\frac{x^2 + \sin^2 x}{1 + x^2}\right) \sec^2 x dx$$

$$x^2 \sec^2 x + \frac{\sin^2 x}{\cos^2 x} dx$$

$$= \int \frac{x^2 \sec^2 x + \tan^2 x}{1 + x^2} dx$$

$$= \int \frac{x^2 (1 + \tan^2 x) + \tan^2 x}{1 + x^2} dx$$

$$= \int \frac{x^2 + \tan^2 x (1 + x^2)}{1 + x^2} dx$$

$$= \int \frac{x^2 + \tan^2 x (1 + x^2)}{1 + x^2} dx$$

$$= \int \frac{x^2 + 1 - 1}{1 + x^2} dx + \int (\sec^2 x - 1) dx$$

$$= \int 1 dx - \int \frac{dx}{1 + x^2} + \int \sec^2 x dx - \int dx$$

$$= -\tan^{-1} x + \tan x + c$$
Given:  $f(0) = 0$ 

$$\Rightarrow f(0) = -\tan^{-1} 0 + \tan 0 + c \Rightarrow c = 0$$

$$\therefore f(x) = -\tan^{-1} x + \tan x$$
Now,  $f(1) = -\tan^{-1} (1) + \tan 1 = \tan 1 - \frac{\pi}{4}$ 

------

### **Question288**

The integral of  $\frac{x^2-x}{x^3-x^2+x-1}$  w.r.t. x is [Online May 12, 2012]

A. 
$$\frac{1}{2}\log(x^2+1) + C$$

B. 
$$\frac{1}{2} \log x^2 - 1 + C$$

C. 
$$\log(x^2 + 1) + C$$

D. 
$$\log x^2 - 1 \mid +C$$

**Answer: A** 

#### **Solution:**

#### Solution:

Let 
$$I = \int \frac{x^2 - x}{x^3 - x^2 + x - 1} dx$$
  

$$= \int \frac{x(x - 1)}{x^2(x - 1) + (x - 1)} dx = \int \frac{x dx}{x^2 + 1} = \frac{1}{2} \int \frac{2x dx}{(x^2 + 1)}$$
Let  $x^2 + 1 = t \Rightarrow 2x dx = dt$   

$$\therefore I = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \log t + c$$
  

$$= \frac{1}{2} \log(x^2 + 1) + c$$

where 'c' is the constant of integration.

\_\_\_\_\_

# Question289

Let f(x) be an indefinite integral of  $\cos^3 x$ .

Statement 1: f(x) is a periodic function of period  $\pi$ .

Statement 2:  $\cos^3 x$  is a periodic function.

[Online May 7, 2012]

### **Options:**

A. Statement 1 is true, Statement 2 is false.

B. Both the Statements are true, but Statement 2 is not the correct explanation of Statement 1.

C. Both the Statements are true, and Statement 2 is correct explanation of Statement 1.

D. Statement 1 is false, Statement 2 is true.

**Answer: D** 

### **Solution:**

#### Solution:

Statement  $-2 : \cos^3 x$  is a periodic function.

It is a true statement.

Statement -1

Given 
$$f(x) = \int \cos^3 x dx = \int \left(\frac{\cos 3x}{4} + \frac{3\cos x}{4}\right) dx$$
  
=  $\frac{1}{4} \frac{\sin 3x}{3} + \frac{3}{4} \sin x = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x$ 

Now, period of  $\frac{1}{12} \sin 3 x = \frac{2\pi}{3}$ 

Period of 
$$\frac{3}{4}\sin x = 2\pi$$

Hence period of 
$$f(x) = \frac{L.C.M.(2\pi, 2\pi)}{HCF \text{ of } (1, 3)} = \frac{2\pi}{1} = 2\pi$$

Thus, f(x) is a periodic function of period  $2\pi$ .

Hence, Statement - 1 is false.

\_\_\_\_\_\_

# Question290

If  $g(x) = \int_{0}^{x} \cos 4t \, dt$ , then  $g(x + \pi)$  equals [2012]

### **Options:**

A. 
$$\frac{g(x)}{g(\pi)}$$

B. 
$$g(x) + g(\pi)$$

C. 
$$g(x) - g(\pi)$$

D. 
$$g(x) \cdot g(\pi)$$

Answer: 0

$$\begin{split} g(x+\pi) &= \int\limits_{0}^{x+\pi} \cos 4\,t\,d\,\,t \\ &= \int\limits_{0}^{x} \cos 4\,t\,d\,\,t + \int\limits_{0}^{x+\pi} \cos 4\,t\,d\,\,t = g(x) + \int\limits_{0}^{\pi} \cos 4\,t\,d\,\,t \\ \text{(it is clear from graph of } \cos 4\,t\,d\,\,t \\ &\int\limits_{0}^{x+\pi} \cos 4\,t\,d\,\,t = \int\limits_{0}^{\pi} \cos 4\,t\,d\,\,t = g(x) + g(\pi) = g(x) - g(\pi) \\ &\text{($:$ From graph of } \cos 4\,t, g(\pi) = 0$)} \end{split}$$

\_\_\_\_\_

### Question291

If [x] is the greatest integer  $\leq x$ , then the value of the integral

$$\int_{-0.9}^{0.9} \left( [x^2] + \log \left( \frac{2-x}{2+x} \right) \right) dx \text{ is}$$
[Online May 26, 2012]

#### **Options:**

A. 0.486

B. 0.243

C. 1.8

D. 0

**Answer: D** 

#### **Solution:**

$$\int_{-0.9}^{0.9} \left\{ [x^2] + \log \left( \frac{2-x}{2+x} \right) \right\} dx$$

$$= \int_{-0.9}^{0.9} [x^2] dx + \int_{-0.9}^{0.9} \log \left( \frac{2-x}{2+x} \right) dx$$

$$= 0 + \int_{-0.9}^{0.9} \log \left( \frac{2-x}{2+x} \right) dx$$
Put  $x = -x \Rightarrow f(x) = \log \frac{2-x}{2+x}$ 
and  $f(-x) = \log \frac{2+x}{2-x} = -\log \frac{(2-x)}{2+x} = -f(x)$ 

\_\_\_\_\_

# Question292

The value of the integral  $\int_0^{0.9} [x-2[x]]dx$ , where [.] denotes the greatest integer function is [Online May 19, 2012]

### **Options:**

A. 0.9

B. 1.8

C. -0.9

D. 0

**Answer: D** 

### **Solution:**

#### Solution:

Since 
$$\int_{0}^{a} [x] = 0$$
 where  $0 \le a \le 1$   
 $\therefore \int_{0}^{0.9} [x - 2[x]] dx = 0$ 

\_\_\_\_\_\_

# Question293

If  $\frac{d}{dx}G(x) = \frac{e^{\tan x}}{x}$ ,  $x \in (0, \pi/2)$ , then  $\int_{1/4}^{1/2} \frac{2}{x} \cdot e^{\tan(\pi x^2)} dx$  is equal to [Online May 12, 2012]

A. 
$$G(\pi/4) - G(\pi/16)$$

B. 
$$2[G(\pi/4) - G(\pi/16)]$$

C. 
$$\pi[G(1/2) - G(1/4)]$$

D. 
$$G(1/\sqrt{2}) - G(1/2)$$

**Answer: A** 

### **Solution:**

#### Solution:

$$\begin{aligned} &\text{Let } \frac{d}{d\,x} G(x) = \frac{e^{\tan x}}{x}, \, x \in \left(0, \frac{\pi}{2}\right) \\ &\text{Now, } I = \int\limits_{1/4}^{1/2} \frac{2}{x} e^{\tan \pi \, x^2} \, . \, d\,x \, = \int\limits_{1/4}^{1/2} \frac{2\pi x}{\pi x^2} e^{\tan \pi \, x^2} d\,x \\ &\text{Let } \pi x^2 = t \Rightarrow 2\pi x d\,x = d\,t \\ &\text{When } x = \frac{1}{2}, \, t = \frac{\pi}{4} \text{ and } x = \frac{1}{4}, \, t = \frac{\pi}{16} \\ & \therefore I = \int\limits_{\pi/16}^{\pi/4} \frac{e^{\tan t}}{t} d\,t = G(t) |_{\frac{\pi}{16}} \frac{\pi}{4} = G\left(\frac{\pi}{4}\right) - G\left(\frac{\pi}{16}\right) \end{aligned}$$

\_\_\_\_\_\_

# Question294

If  $\int_{e}^{x} tf(t)dt = \sin x - x \cos x - \frac{x^{2}}{2}$ , for all  $x \in R - \{0\}$ , then the value of  $f\left(\frac{\pi}{6}\right)$  is

1 (6) 13 [Online May 7, 2012]

#### **Options:**

D. 
$$-1/2$$

**Answer: D** 

### **Solution:**

#### Solution:

Let 
$$\int_{e}^{x} tf(t)dt = \sin x - x \cos x - \frac{x^2}{2}$$

By using Leibnitz rule, we get

$$\frac{d}{dx} \left[ \int_{e}^{x} tf(t) dt \right] = \frac{d}{dx} \left[ \sin x - x \cos x - \frac{x^{2}}{2} \right]$$

$$\Rightarrow$$
xf(x)-ef(e).0 = x sin x - x

Now, put  $x = \frac{\pi}{6}$ , we get

$$\frac{\pi}{6} \cdot f\left(\frac{\pi}{6}\right) = \frac{\pi}{6} \cdot \sin\frac{\pi}{6} - \frac{\pi}{6}$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{6} - 1 = \frac{1}{2} - 1 = -\frac{1}{2}$$

-----

# **Question295**

# $f(x) = \int \frac{dx}{\sin^6 x}$ is a polynomial of degree

### [Online May 26, 2012]

### **Options:**

- A. 5 in cot x
- B. 5 in tan x
- C. 3 in tan x
- D. 3 in cot x

Answer: A

### **Solution:**

#### Solution:

Let 
$$f(x) = \int \frac{dx}{\sin^6 x}$$

$$f(x) = \int \csc^6 x dx$$

From reduction formula, we have

$$I_n = \int \csc^n x dx = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$

It is a polynomial of degree 5 in  $\cot x$ .

\_\_\_\_\_\_

### **Question296**

Let [.] denote the greatest integer function then the value of  $\int_0^{1.5} x[x^2]dx$  is [2011 RS]

### **Options:**

- A. 0
- B.  $\frac{3}{2}$
- C.  $\frac{3}{4}$
- D.  $\frac{5}{4}$

**Answer: C** 

$$\begin{split} & \int\limits_{0}^{1.5} x[x^2] d\, x = \int\limits_{0}^{1} x[x^2] d\, x + \int\limits_{1}^{\sqrt{2}} x[x^2] d\, x + \int\limits_{\sqrt{2}}^{1.5} x[x^2] d\, x = \int\limits_{0}^{1} x \cdot 0 d\, x + \int\limits_{1}^{\sqrt{2}} x d\, x + \int\limits_{\sqrt{2}}^{1.5} 2x d\, x = 0 + \left[\frac{x^2}{2}\right]_{1}^{\sqrt{2}} + \left[x^2\right]_{\sqrt{2}}^{1.5} \\ & = \frac{1}{2}(2-1) + (2.25-2) = \frac{1}{2} + 0.25 \\ & = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \end{split}$$

\_\_\_\_\_

# Question297

# The value of $\int_{0}^{1} \frac{8 \log(1+x)}{1+x^2} dx$ is [2011]

#### **Options:**

A. 
$$\frac{\pi}{8} \log 2$$

B. 
$$\frac{\pi}{2} \log 2$$

D. 
$$\pi \log 2$$

**Answer: D** 

### **Solution:**

$$\begin{split} & \int\limits_0^1 \frac{8 \log (1+x)}{1+x^2} d\, x \\ & \text{Put } x = \tan \theta \\ & \therefore d\, x = \sec^2 \theta d\, \theta \\ & \therefore I = 8 \int\limits_0^{\pi/4} \frac{\log (1+\tan \theta)}{1+\tan^2 \theta} \, . \, \sec^2 \theta d\, \theta \\ & I = 8 \int\limits_0^{\pi/4} \log (1+\tan \theta) \, d\, \theta \, .......(i) \\ & \text{Applying } \int\limits_0^a f(x) d\, x = \int\limits_0^a f(a-x) d\, x \\ & = 8 \int\limits_0^{\pi/4} \log \left[1+\tan \left(\frac{\pi}{4}-\theta\right)\right] d\, \theta \\ & = 8 \int\limits_0^{\pi/4} \log \left[1+\frac{1-\tan \theta}{1+\tan \theta}\right] d\, \theta = 8 \int\limits_0^{\pi/4} \log \left[\frac{2}{1+\tan \theta}\right] d\, \theta \end{split}$$

$$= 8 \int_{0}^{\pi/4} [\log 2 - \log(1 + \tan \theta)] d\theta$$

$$= 8 \log 2 \int_{0}^{\pi/4} 1 d\theta - 8 \int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta$$

$$I = 8 \cdot (\log 2) [x]_{0}^{\pi/4} - 8 \int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta$$

$$I = 8 \cdot \frac{\pi}{4} \cdot \log 2 - I \text{ [From equation (i)]}$$

$$\Rightarrow 2I = 2\pi \log 2$$

$$\therefore I = \pi \log 2$$

\_\_\_\_\_

### **Question298**

Let p(x) be a function defined on R such that p'(x) = p'(1-x), for all  $x \in [0, 1]$ , p(0) = 1 and p(1) = 41Then  $\int_0^1 p(x) dx$  equals [2010]

### **Options:**

A. 21

B. 41

C. 42

D.  $\sqrt{41}$ 

**Answer: A** 

$$p'(x) = p'(1-x)$$

$$\Rightarrow p(x) = -p(1-x) + c$$
at  $x = 0$ 

$$p(0) = -p(1) + c \Rightarrow 42 = c$$
Now,  $p(x) = -p(1-x) + 42$ 

$$\Rightarrow p(x) + p(1-x) = 42$$
Let  $I = \int_{0}^{1} p(x) dx$  ......(i)
$$\Rightarrow I = \int_{0}^{1} p(1-x) dx$$
 ......(ii)

# Question299

# $\int_{0}^{\pi} [\cot x] dx$ , where [.] denotes the greatest integer function, is equal to : [2009]

#### **Options:**

A. 1

B. -1

C.  $-\frac{\pi}{2}$ 

D.  $\frac{\pi}{2}$ 

**Answer: C** 

### **Solution:**

#### Solution:

Let 
$$I = \int_{0}^{\pi} [\cot x] dx$$
 ......(i)  

$$= \int_{0}^{\pi} [\cot(\pi - x)] dx = \int_{0}^{\pi} [-\cot x] dx$$
 .......(ii)  
Adding eq  $^{n}s(i)$ & (ii),  
We get  

$$2I = \int_{0}^{\pi} ([\cot x] + [-\cot x]) dx$$

$$= \int_{0}^{\pi} (-1) dx$$

$$[\because [x] + [-x] = -1, \text{ if } x \notin z \text{ and } [x] + [-x] = 0, \text{ if } x \in z]$$

$$= [-x]_{0}^{\pi} = -\pi \Rightarrow I = -\frac{\pi}{2}$$

------

# Question300

# The value of $\sqrt{2} \int \frac{\sin x \, d x}{\sin \left(x - \frac{\pi}{4}\right)}$ is

# [2008]

# **Options:**

A. 
$$x + \log \left| \cos \left( x - \frac{\pi}{4} \right) \right| + c$$

B. 
$$x - \log \left| \sin \left( x - \frac{\pi}{4} \right) \right| + c$$

C. 
$$x + \log \left| \sin \left( x - \frac{\pi}{4} \right) \right| + c$$

D. 
$$x - \log \left| \cos \left( x - \frac{\pi}{4} \right) \right| + c$$

**Answer: C** 

# **Solution:**

#### Solution:

Let 
$$I = \sqrt{2} \int \frac{\sin x \, d x}{\sin \left(x - \frac{\pi}{4}\right)}$$

Let 
$$x - \frac{\pi}{4} = t \Rightarrow dx = dt$$

$$\Rightarrow I = \sqrt{2} \int \frac{\sin\left(t + \frac{\pi}{4}\right)}{\sin t} dt = \frac{\sqrt{2}}{\sqrt{2}} \int \left(\frac{\sin t + \cos t}{\sin t}\right) dt$$

$$\Rightarrow I = \int (1 + \cot t) dt = t + \log |\sin t| + c_1$$

$$= x - \frac{\pi}{4} + \log \left| \sin \left( x - \frac{\pi}{4} \right) \right| + c_1$$

$$= x + \log \left| \sin \left( x - \frac{\pi}{4} \right) \right| + c \left( \text{ where } c = c_1 - \frac{\pi}{4} \right)$$

-----

Let  $I = \int_0^1 \frac{\sin x}{\sqrt{x}} dx$  and  $J = \int_0^1 \frac{\cos x}{\sqrt{x}} dx$ . Then which one of the following is true? [2008]

## **Options:**

A. I 
$$> \frac{2}{3}$$
 and J  $> 2$ 

B. I 
$$\leq \frac{2}{3}$$
 and J  $\leq 2$ 

C. I 
$$<\frac{2}{3}$$
 and J  $>$  2

D. 
$$I > 23$$
 and  $J < 2$ 

**Answer: B** 

# **Solution:**

#### Solution:

We know that  $\frac{\sin x}{x} < 1$ , for  $x \in (0, 1)$ 

$$\Rightarrow \frac{\sin x}{\sqrt{x}} < \sqrt{x} \text{ on } x \in (0, 1)$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \int_{0}^{1} \sqrt{x} dx = \left[ \frac{2x^{3/2}}{3} \right]_{0}^{1}$$

$$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx < \frac{2}{3} \Rightarrow I < \frac{2}{3}$$

Also 
$$\frac{\cos x}{\sqrt{x}} < \frac{1}{\sqrt{x}}$$
 for  $x \in (0, 1)$ 

$$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < \int_{0}^{1} x^{-1/2} dx = [2\sqrt{x}]_{0}^{-1} = 2$$

$$\Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx < 2 \Rightarrow J < 2$$

-----

$$\int \frac{dx}{\cos x + \sqrt{3} \sin x} equals$$
[2007]

### **Options:**

A. 
$$\log \tan \left(\frac{x}{2} + \frac{\pi}{12}\right) + C$$

B. 
$$\log \tan \left(\frac{x}{2} - \frac{\pi}{12}\right) + C$$

C. 
$$\frac{1}{2} \log \tan \left( \frac{x}{2} + \frac{\pi}{12} \right) + C$$

D. 
$$\frac{1}{2} \log \tan \left( \frac{x}{2} - \frac{\pi}{12} \right) + C$$

**Answer: C** 

$$\begin{split} & I = \int \frac{dx}{\cos x + \sqrt{3} \sin x} \\ \Rightarrow & I = \int \frac{dx}{2 \left[ \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right]} \\ & = \frac{1}{2} \int \frac{dx}{\left[ \sin \frac{\pi}{6} \cos x + \cos \frac{\pi}{6} \sin x \right]} = \frac{1}{2} \cdot \int \frac{dx}{\sin \left( x + \frac{\pi}{6} \right)} \\ \Rightarrow & I = \frac{1}{2} \cdot \int \csc \left( x + \frac{\pi}{6} \right) dx \end{split}$$

$$\text{We know that}$$

$$\int \csc x \, dx = \log |(\tan x/2)| + C$$
  
$$\therefore I = \frac{1}{2} \cdot \log \tan \left(\frac{x}{2} + \frac{\pi}{12}\right) + C$$

# Question303

The solution for x of the equation  $\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2-1}} = \frac{\pi}{2}$  is [2007]

**Options:** 

- A.  $\frac{\sqrt{3}}{2}$
- B.  $2\sqrt{2}$
- C. 2
- D. None of these

**Answer: D** 

# **Solution:**

#### Solution:

$$\int_{\sqrt{2}}^{x} \frac{dt}{t\sqrt{t^2 - 1}} = \frac{\pi}{2}$$

$$\therefore [\sec^{-1} t]_{\sqrt{2}}^{x} = \pi/2 \left[ \because \int \frac{dx}{x \sqrt{x^2 - 1}} = \sec^{-1} x \right]$$

$$\Rightarrow \sec^{-1} x - \sec^{-1} \sqrt{2} = \frac{\pi}{2}$$

$$\Rightarrow$$
 sec<sup>-1</sup>x  $-\frac{\pi}{4} = \frac{\pi}{2} \Rightarrow$  sec<sup>-1</sup>x  $= \frac{\pi}{2} + \frac{\pi}{4}$ 

$$\Rightarrow$$
 sec<sup>-1</sup>x =  $\frac{3\pi}{4}$   $\Rightarrow$ x = sec  $\frac{3\pi}{4}$  = sec  $\left(\pi - \frac{\pi}{4}\right)$ 

$$\Rightarrow x = -\sec\frac{\pi}{4} \Rightarrow x = -\sqrt{2}$$

-----

# Question304

# Let F (x) = f (x) + f $\left(\frac{1}{x}\right)$ , where f (x) = $\int_{1}^{x} \frac{\log t}{1+t} dt$ , ThenF (e) equals [2007]

### **Options:**

A. 1

B. 2

C. 1/2

D. 0

**Answer: C** 

# **Solution:**

#### Solution:

Given that  $F(x) = f(x) + f\left(\frac{1}{x}\right)$ , where

$$f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$$

$$\therefore F(e) = f(e) + f\left(\frac{1}{e}\right)$$

$$\Rightarrow F(e) = \int_{1}^{e} \frac{\log t}{1+t} dt + \int_{1}^{1/e} \frac{\log t}{1+t} dt \dots (1)$$

Let 
$$I = \int_{1}^{1/e} \frac{\log t}{1+t} dt$$

$$\therefore \text{ Put } \frac{1}{t} = z \Rightarrow -\frac{1}{t^2} dt = dz \Rightarrow dt = -\frac{dz}{z^2}$$

when  $t = 1 \Rightarrow z = 1$  and when  $t = \frac{1}{e}$ 

$$\Rightarrow$$
z = e

$$: I = \int_{1}^{e} \frac{\log\left(\frac{1}{z}\right)}{1 + \frac{1}{z}} \left(-\frac{dz}{z^{2}}\right)$$

$$= \int_{1}^{e} \frac{(\log 1 - \log z) \cdot z}{z+1} \left( -\frac{dz}{z^{2}} \right)$$

$$= \int_{1}^{e} -\frac{\log z}{(z+1)} \left( -\frac{dz}{z} \left[ \because \log 1 = 0 \right] \right)$$

$$= \int_{1}^{e} \frac{\log z}{z(z+1)} dz$$

$$: I = \int_{1}^{e} \frac{\log t}{t(t+1)} dt$$

[By property 
$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$$
]

Now from eqn. (1)

$$F(e) = \int_{1}^{e} \frac{\log t}{1+t}dt + \int_{1}^{e} \frac{\log t}{t(1+t)}dt$$

$$= \int_{1}^{e} \frac{t \cdot \log t + \log t}{t(1+t)}dt = \int_{1}^{e} \frac{(\log t)(t+1)}{t(1+t)}dt$$

$$\Rightarrow F(e) = \int_{1}^{e} \frac{\log t}{t}dt$$
Let  $\log t = x \therefore \frac{1}{t}dt = dx$ 
[when  $t = 1$ ,  $x = 0$  and when  $t = e$ ,  $x = \log e = 1$ ]
$$\therefore F(e) = \int_{0}^{1} xdx F(e) = \left[\frac{x^{2}}{2}\right]_{0}^{1}$$

$$\Rightarrow F(e) = \frac{1}{2}$$

-----

# **Question305**

The value of  $\int_{1}^{a} [x]f'(x)dx$ , a > 1 where [x] denotes the greatest integer not exceeding x is [2006]

### **Options:**

A. 
$$af(a) - \{f(1) + f(2) + \dots f([a])\}$$

B. 
$$[a]f(a) - \{f(1) + f(2) + \dots \cdot f([a])\}$$

C. 
$$[a]f([a]) - \{f(1) + f(2) + \dots f(a)\}$$

D. 
$$af([a]) - \{f(1) + f(2) + \dots f(a)\}$$

**Answer: B** 

### **Solution:**

#### Solution:

Let a = k + h where k is an integer such that and  $0 \le h < 1$  $\Rightarrow \lceil a \rceil = k$ 

$$= \{f(2) - f(1)\} + 2\{f(3) - f(2)\} + 3\{f(4) - f(3)\} + \dots + (k-1)\{f(k) - f(k-1)\} + k\{f(k+h) - f(k)\}$$

$$= -f(1) - f(2) - f(3) + \dots - f(k) + kf(k+h)$$

$$= [a]f(a) - \{f(1) + f(2) + f(3) + \dots + f([a])\}$$

# Question306

$$\int_{-\frac{3\pi}{2}}^{-\frac{\pi}{2}} [(x+\pi)^3 + \cos^2(x+3\pi)] dx \text{ is equal to}$$

# [2006]

#### **Options:**

A. 
$$\frac{\pi^4}{32}$$

B. 
$$\frac{\pi^4}{32} + \frac{\pi}{2}$$

C. 
$$\frac{\pi}{2}$$

D. 
$$\frac{\pi}{4} - 1$$

**Answer: C** 

# **Solution:**

$$\int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}} [(x+\pi)^3 + \cos^2(x+3\pi)] dx$$

Put 
$$x + \pi = t$$

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [t^3 + \cos^2 t] dt = 2 \int_{0}^{\frac{\pi}{2}} \cos^2 t dt$$

[  $:t^3$  is odd and  $\cos^2 t$  is even function ]

$$= \int_{0}^{\frac{\pi}{2}} (1 + \cos 2t) dt = \frac{\pi}{2} + 0$$

\_\_\_\_\_\_

# Question307

# $\int_{0}^{\pi} xf (\sin x) dx \text{ is equal to}$ [2006]

#### **Options:**

- A.  $\pi \int_{0}^{\pi} f(\cos x) dx$
- B.  $\pi \int_{0}^{\pi} f(\sin x) dx$
- C.  $\frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) dx$
- D.  $\pi \int_{0}^{\pi/2} f(\cos x) dx$

**Answer: D** 

# **Solution:**

#### Solution:

$$\begin{split} I &= \int\limits_0^\pi x f(\sin x) d\, x = \int\limits_0^\pi (\pi - x) f(\sin x) d\, x \\ &= \pi \int\limits_0^\pi f(\sin x) d\, x - I \implies 2I = \pi \int\limits_0^\pi f(\sin x) d\, x \\ I &= \frac{\pi}{2} \int\limits_0^\pi f(\sin x) d\, x = \pi \int\limits_0^{\pi/2} f(\sin x) d\, x \, \left[\because \sin(\pi - x) = \sin x\right] \\ &= \pi \int\limits_0^{\pi/2} f(\cos x) d\, x \end{split}$$

\_\_\_\_\_

# Question308

# The value of integral, $:\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx$ is [2006]

# **Options:**

A. 
$$\frac{1}{2}$$

B. 
$$\frac{3}{2}$$

**Answer: B** 

### **Solution:**

#### Solution:

$$I = \int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9 - x} + \sqrt{x}} dx... (1)$$

$$I = \int_{3}^{6} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x}} dx... (2)$$

$$\left[ \because \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx \right]$$
Adding equation (1) and (2)

$$2I = \int_{3}^{6} dx = [x]_{3}^{6} = 3 \Rightarrow I = \frac{3}{2}$$

# Question309

$$\int \left\{ \frac{(\log x - 1)}{1 + (\log x)^2} \right\}^2 dx \text{ is equal to}$$

# [2005]

## **Options:**

$$A. \frac{\log x}{(\log x)^2 + 1} + C$$

B. 
$$\frac{x}{x^2+1} + C$$

$$C. \frac{xe^x}{1+x^2} + C$$

$$D. \frac{x}{(\log x)^2 + 1} + C$$

**Answer: D** 

### **Solution:**

Solution:

$$\begin{split} &\int \frac{(\log x - 1)^2}{(1 + (\log x)^2)^2} dx = \int \frac{1 + (\log x)^2 - 2\log x}{[1 + (\log x)^2]^2} dx \\ &= \int \left[ \frac{1}{(1 + (\log x)^2)} - \frac{2\log x}{(1 + (\log x)^2)^2} \right] dx \\ &\therefore I = \int \left[ \frac{e^t}{1 + t^2} - \frac{2te^t}{(1 + t^2)^2} \right] dt \\ &= \int e^t \left[ \frac{1}{1 + t^2} - \frac{2t}{(1 + t^2)^2} \right] dt \\ &= \int e^t \left[ \frac{1}{1 + t^2} - \frac{2t}{(1 + t^2)^2} \right] dt \\ &= \int e^t \left[ \frac{1}{1 + t^2} - \frac{2t}{(1 + t^2)^2} \right] dt \\ &= \frac{e^t}{1 + t^2} + c = \frac{x}{1 + (\log x)^2} + c \end{split}$$

\_\_\_\_\_\_

# Question310

The value of  $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+a^x} dx$ , a > 0, is [2005]

# **Options:**

Α. a π

B.  $\frac{\pi}{2}$ 

C.  $\frac{\pi}{a}$ 

**Answer: B** 

# **Solution:**

Solution:

Let 
$$I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$$
 ......(1)  

$$I = \int_{-\pi}^{\pi} \frac{\cos^2(-x)}{1 + a^x} dx \text{ Using } \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$= \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{1 + a^x} dx \text{ ......}(2)$$

Adding equations (1) and (2) we get

$$2I = \int_{-\pi}^{\pi} \cos^2 x \left(\frac{1+a^x}{1+a^x}\right) dx = \int_{-\pi}^{\pi} \cos^2 x dx$$

$$= 2 \int_{0}^{\pi} \cos^2 x dx [\because f(\pi - x) = f(x)]$$

$$= 2 \times 2 \int_{0}^{\frac{\pi}{2}} \cos^2 x dx = 4 \int_{0}^{\frac{\pi}{2}} \sin^2 x dx \left[\because f\left(\frac{\pi}{2} - x\right) = f(x)\right]$$

$$\Rightarrow I = 2 \int_{0}^{\frac{\pi}{2}} \sin^2 x dx = 2 \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 x) dx$$

$$\Rightarrow I = 2 \int_{0}^{\frac{\pi}{2}} dx - 2 \int_{0}^{\frac{\pi}{2}} \cos^2 x dx$$

$$\Rightarrow I + I = 2 \left(\frac{\pi}{2}\right) = \pi \Rightarrow I = \frac{\pi}{2}$$

\_\_\_\_\_\_

# **Question311**

If  $I_1 = \int_0^1 2^{x^2} dx$ ,  $I_2 = \int_0^1 2^{x^3} dx$ ,  $I_3 = \int_1^2 2^{x^2} dx$  and  $I_4 = \int_1^2 2^{x^3} dx$  then [2005]

**Options:** 

A. 
$$I_2 > I_1$$

B. 
$$I_1 > I_2$$

C. 
$$I_3 = I_4$$

D. 
$$I_3 > I_4$$

**Answer: B** 

### **Solution:**

Solution:

$$\begin{split} &I_{1} = \int_{0}^{1} 2^{x^{2}} dx, I_{2} = \int_{0}^{1} 2^{x^{3}} dx, I_{3} \\ &= \int_{1}^{2} 2^{x^{2}} dx, I_{4} = \int_{1}^{2} 2^{x^{3}} dx \\ &\because 2^{x^{3}} < 2^{x^{2}}, 0 < x < 1 \\ &\Rightarrow \int_{0}^{1} 2^{x^{2}} dx > \int_{0}^{1} 2^{x^{3}} dx \Rightarrow I_{1} > I_{2} \\ &\text{and } 2^{x^{3}} > 2^{x}, x > 1 \\ &\Rightarrow I_{4} > I_{3} \end{split}$$

-----

# **Question312**

Let  $f : R \to R$  be a differentiable function having f(2) = 6,

$$f'(2) = \left(\frac{1}{48}\right)$$
. Then  $\lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^3}{x-2} dt$  equals

[2005]

### **Options:**

- A. 24
- B. 36
- C. 12
- D. 18

**Answer: D** 

$$\lim_{\substack{x \to 2 \\ 0}} \int_{0}^{f(x)} \frac{4t^{3}}{x-2} dt = \lim_{\substack{x \to 2 \\ x \to 2}} \frac{\int_{0}^{f(x)} 4t^{3} dt}{x-2}$$
Applying L Hospital rule
$$\lim_{\substack{x \to 2 \\ x \to 2}} \frac{[4f(x)^{3}f'(x)]}{1} = 4(f(2))^{3}f'(2)$$

$$= 4 \times 6^{3} \times \frac{1}{48} = 18$$

# Question313

$$\lim_{n \to \infty} \left[ \frac{1}{n^2} sec^2 \frac{1}{n^2} + \frac{2}{n^2} sec^2 \frac{4}{n^2} \dots + \frac{1}{n} sec^2 1 \right]$$
equals
[2005]

### **Options:**

- A.  $\frac{1}{2}$  sec 1
- B.  $\frac{1}{2}$  cosec 1
- C. tan 1
- D.  $\frac{1}{2} \tan 1$

**Answer: D** 

### **Solution:**

#### Solution:

$$\begin{split} & \underset{n \to \infty}{\text{Lim}} \left[ \frac{1}{n^2} \text{sec}^2 \frac{1}{n^2} + \frac{2}{n^2} \text{sec}^2 \frac{4}{n^2} + \frac{3}{n^2} \text{sec}^2 \frac{9}{n^2} ...... + \frac{1}{n} \text{sec}^2 \mathbf{1} \, \right] \text{ is equal to} \\ & \underset{n \to \infty}{\text{lim}} \frac{r}{n^2} \text{sec}^2 \frac{r^2}{n^2} = \underset{n \to \infty}{\text{lim}} \frac{1}{n} \cdot \frac{r}{n} \text{sec}^2 \frac{r^2}{n^2} \end{split}$$

 $\Rightarrow$  Given limit is equal to value of integral  $\int_{0}^{1} x \sec^{2} x^{2} dx$ 

or 
$$\frac{1}{2} \int_{0}^{1} 2x \sec x^{2} dx = \frac{1}{2} \int_{0}^{1} \sec^{2}t dt$$
 [put  $x^{2} = t$ ]  
=  $\frac{1}{2} (\tan t)_{0}^{1} = \frac{1}{2} \tan 1$ 

# **Question314**

$$\int \frac{dx}{\cos x - \sin x}$$
 is equal to

# [2004]

#### **Options:**

A. 
$$\frac{1}{\sqrt{2}} \log \left| \tan \left( \frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

B. 
$$\frac{1}{\sqrt{2}} \log \left| \cot \left( \frac{x}{2} \right) \right| + C$$

C. 
$$\frac{1}{\sqrt{2}} \log \left| \tan \left( \frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$

D. 
$$\frac{1}{\sqrt{2}} \log \left| \tan \left( \frac{x}{2} - \frac{\pi}{8} \right) \right| + C$$

Answer: A

# **Solution:**

#### Solution:

$$\int \frac{dx}{\cos x - \sin x} = \int \frac{dx}{\sqrt{2} \left(\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right)}$$

$$= \int \frac{dx}{\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}}\int \sec\left(x + \frac{\pi}{4}\right) dx$$

$$= \frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{\pi}{4} + \frac{x}{2} + \frac{\pi}{8}\right)\right| + C\left[\because \int \sec x \, dx = \log\left|\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right|\right]$$

$$= \frac{1}{\sqrt{2}}\log\left|\tan\left(\frac{x}{2} + \frac{3\pi}{8}\right)\right| + C$$

\_\_\_\_\_\_

If  $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log \sin(x-\alpha)$ , +C, then value of (A, B) is [2004]

#### **Options:**

A.  $(-\cos \alpha, \sin \alpha)$ 

B.  $(\cos \alpha, \sin \alpha)$ 

C.  $(-\sin \alpha, \cos \alpha)$ 

D.  $(\sin \alpha, \cos \alpha)$ 

**Answer: B** 

### **Solution:**

#### Solution:

$$\int \frac{\sin x}{\sin(x-\alpha)} dx = \int \frac{\sin(x-\alpha+\alpha)}{\sin(x-\alpha)} dx$$

$$= \int \frac{\sin(x-\alpha)\cos\alpha + \cos(x-\alpha)\sin\alpha}{\sin(x-\alpha)} dx$$

$$= \int \{\cos\alpha + \sin\alpha\cot(x-\alpha)\} dx$$

$$= (\cos\alpha)x + (\sin\alpha)\log\sin(x-\alpha) + C$$
Comparing with  $Ax + B\log\sin(x-\alpha) + c$ 

$$\therefore A = \cos\alpha, B = \sin\alpha$$

\_\_\_\_\_

# Question316

If  $f(x) = \frac{e^x}{1 + e^x}$ ,  $I_1 = \int_{f(-a)}^{f(a)} xg\{x(1 - x)\}dx$  and  $I_2 = \int_{f(-a)}^{f(a)} g\{x(1 - x)\}dx$ , then the value of  $\frac{I_2}{I_1}$  is [2004]

### **Options:**

**A**. 1

- B. -3
- C. -1
- D. 2

**Answer: D** 

### **Solution:**

#### Solution:

$$\begin{split} f(x) &= \frac{e^x}{1 + e^x} \Rightarrow f(-x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{e^x + 1} \\ &\therefore f(x) + f(-x) = 1 \ \forall x \in R \\ &\text{Now I}_1 = \int\limits_{f(-a)}^{f(a)} xg\{x(1 - x)\} dx \\ &= \int\limits_{f(-a)}^{f(a)} (1 - x)g\{x(1 - x)\} dx \left[ \ using \int\limits_a^b f(x) dx a = \int\limits_a^b f(a + b - x) dx \right] \\ &\Rightarrow \int\limits_{f(-a)}^{f(a)} g\{x(1 - x)\} dx - \int\limits_{f(-a)}^{f(a)} xg(x(1 - x) dx \\ &= I_2 - I_1 \Rightarrow 2I_1 = I_2 \end{split}$$

\_\_\_\_\_\_

# **Question317**

# If $\int_{0}^{\pi} xf(\sin x)dx = A \int_{0}^{\pi/2} f(\sin x)dx$ , then A is [2004]

### **Options:**

- A.  $2\pi$
- Β. π
- C.  $\frac{\pi}{4}$
- D. 0

**Answer: B** 

#### Solution:

Let 
$$I = \int_{0}^{\pi} xf(\sin x) dx$$
 .....(i)

We know that

$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx = \int_{0}^{\pi} (\pi - x)f(\sin x)dx \dots (ii)$$

Adding (i) and (ii)

Let 
$$\log x = t \Rightarrow e^t = x$$

$$\Rightarrow \frac{1}{x} dx = dt \Rightarrow dx = xdt \Rightarrow e^{t}dt$$

-----

# **Question318**

The value of 
$$I = \int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{1 + \sin 2 x}} dx$$
 is [2004]

#### **Options:**

- A. 3
- B. 1
- C. 2
- D. 0

**Answer: C** 

### **Solution:**

$$I = \int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{1 + \sin 2 x}} dx$$

$$\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^{2}}{\sqrt{(\sin x + \cos x)^{2}}}$$

$$\begin{split} I &= \int\limits_{0}^{\pi/2} \frac{(\sin x + \cos x)^2}{(\sin x + \cos x)} d\, x \; = \int\limits_{0}^{\pi/2} (\sin x + \cos x) d\, x \; [\; \because \sin x + \cos x > 0 \; \text{if} \; 0 < x < \frac{\pi}{2} \, ] \\ \text{or} \; I &= \left[ -\cos x + \sin x \right]_{0}^{\frac{\pi}{2}} = 2 \end{split}$$

# **Question319**

# The value of $\int_{-2}^{3} |1 - x^2| dx$ is [2004]

#### **Options:**

- A.  $\frac{1}{3}$
- B.  $\frac{14}{3}$
- C.  $\frac{7}{3}$
- D.  $\frac{28}{3}$

**Answer: D** 

## **Solution:**

$$\int_{-2}^{3} |1 - x^{2}| dx = \int_{-2}^{3} |x^{2} - 1| dx$$

Now 
$$|x^2 - 1| = \begin{cases} x^2 - 1 & \text{if } x \le -1 \\ 1 - x^2 & \text{if } -1 \le x \le 1 \\ x^2 - 1 & \text{if } x \ge 1 \end{cases}$$

∴ Integral is 
$$\int_{-2}^{-1} (x^2 - 1) dx + \int_{-1}^{1} (1 - x^2) dx + \int_{1}^{3} (x^2 - 1) dx$$
  

$$= \left[ \frac{x^3}{3} - x \right]_{-2}^{-1} + \left[ x - \frac{x^3}{3} \right]_{-1}^{-1} + \left[ \frac{x^3}{3} - x \right]_{1}^{3}$$

$$= \left( -\frac{1}{3} + 1 \right) - \left( -\frac{8}{3} + 2 \right) + \left( 2 - \frac{2}{3} \right) + \left( \frac{27}{3} - 3 \right) - \left( \frac{1}{3} - 1 \right)$$

$$= \frac{2}{3} + \frac{2}{3} + \frac{4}{3} + 6 + \frac{2}{3} = \frac{28}{3}$$

$$\lim_{\substack{lim\\n\to\infty}} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} is$$
[2004]

**Options:** 

A. 
$$e + 1$$

B. 
$$e - 1$$

C. 
$$1 - e$$

D. e

**Answer: B** 

# **Solution:**

Solution:

$$\lim_{n\to\infty} \sum_{r=1}^n \frac{1}{n} e^{\frac{r}{n}}$$
 [Using definite integrals as limit of sum] 
$$= \int_0^1 e^x dx = e-1$$

-----

# **Question321**

The value of the integral  $I = \int_0^1 x(1-x)^n dx$  is [2003]

**Options:** 

A. 
$$\frac{1}{n+1} + \frac{1}{n+2}$$

B. 
$$\frac{1}{n+1}$$

C. 
$$\frac{1}{n+2}$$

D. 
$$\frac{1}{n+1} - \frac{1}{n+2}$$
.

**Answer: D** 

#### **Solution:**

Solution:

$$I = \int_{0}^{1} x (1 - x)^{n} dx = \int_{0}^{1} (1 - x) (1 - 1 + x)^{n} dx$$
$$= \int_{0}^{1} (1 - x) x^{n} dx = \int_{0}^{1} (x^{n} - x^{n+1}) dx$$
$$= \left[ \frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \right]_{0}^{1} = \frac{1}{n+1} - \frac{1}{n+2}$$

------

# **Question322**

Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies  $f(x) + g(x) = x^2$ . Then the value of the integral  $\int_0^1 f(x)g(x)dx$ , is [2003]

**Options:** 

A. 
$$e + \frac{e^2}{2} + \frac{5}{2}$$

B. 
$$e - \frac{e^2}{2} - \frac{5}{2}$$

C. 
$$e + \frac{e^2}{2} - \frac{3}{2}$$

D. 
$$e - \frac{e^2}{2} - \frac{3}{2}$$
.

**Answer: D** 

#### Solution:

Given that 
$$f'(x) = f(x) \Rightarrow \frac{f'(x)}{f(x)} = 1$$

Integrating both side we get

$$\log f(x) = x + c \Rightarrow f(x) = e^{x + c}$$

$$f(0) = 1 \Rightarrow f(x) = e^{x}$$

$$f(0) = 1 \Rightarrow f(x) = e^{x}$$
  
 
$$\therefore g(x) = x^{2} - f(x) = x^{2} - e^{x}$$

$$= \int_{0}^{1} x^{2} e^{x} dx - \int_{0}^{1} e^{2x} dx$$

$$= \left[ x^2 e^x \right]_0^{\ 1} - 2 \left[ x e^x - e^x \right]_0^{\ 1} - \frac{1}{2} \left[ e^{2x} \right]_0^{\ 1}$$

$$= e - \left[ \frac{e^2}{2} - \frac{1}{2} \right] - 2[e - e + 1] = e - \frac{e^2}{2} - \frac{3}{2}$$

# Question323

If f(a+b-x) = f(x) then  $\int_{a}^{b} xf(x)dx$  is equal to [2003]

## **Options:**

A. 
$$\frac{a+b}{2}\int_{a}^{b} f(a+b+x)dx$$

B. 
$$\frac{a+b}{2}\int_{a}^{b} f(b-x)dx$$

C. 
$$\frac{a+b}{2}\int_{a}^{b} f(x)dx$$

D. 
$$\frac{b-a}{2}\int_{a}^{b} f(x)dx$$
.

**Answer: C** 

# **Solution:**

$$I = \int_{a}^{b} x f(x) dx = \int_{a}^{b} (a+b-x) f(a+b-x) dx$$
We know that

because 
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
  
=  $(a+b)\int_{a}^{b} f(a+b-x)dx - \int_{a}^{b} xf(a+b-x)dx$   
=  $(a+b)\int_{a}^{b} f(x)dx - \int_{a}^{b} xf(x)dx$  [: Given that  $f(a+b-x) = f(x)$ ]  
 $2I = (a+b)\int_{a}^{b} f(x)dx$   
 $\Rightarrow I = \frac{(a+b)}{2}\int_{a}^{b} f(x)dx$ 

# Question324

The value of  $\lim_{x\to 0} \frac{\int_{0}^{x^{2}} \sec^{2}t dt}{x \sin x}$  is [2003]

**Options:** 

A. 0

B. 3

C. 2

D. 1

**Answer: D** 

$$\lim_{x \to 0} \frac{\frac{d}{dx} \int_{0}^{x^{2}} \sec^{2}t dt}{\frac{d}{dx} (x \sin x)} = \lim_{x \to 0} \frac{\sec^{2}x^{2} \cdot 2x}{\sin x + x \cos x} \text{ (by L' Hospital rule)}$$

$$\lim_{x \to 0} \frac{2 \sec^{2}x^{2}}{\left(\frac{\sin x}{x} + \cos x\right)} = \frac{2 \times 1}{1 + 1} = 1$$

If  $f(y) = e^y$ , g(y) = y; y > 0 and  $F(t) = \int_0^t f(t - y)g(y)dy$ , then [2003]

### **Options:**

A. 
$$F(t) = te^{-t}$$

B. 
$$F(t) = 1 - te^{-t}(1+t)$$

C. 
$$F(t) = e^{t} - (1+t)$$

D. 
$$F(t) = te^t$$

**Answer: C** 

### **Solution:**

#### Solution:

$$F(t) = \int_{0}^{t} f(t-y)g(y)dy$$

$$= \int_{0}^{t} e^{t-y}ydy = e^{t} \int_{0}^{t} e^{-y}ydy$$

$$= e^{t} [-ye^{-y} - e^{-y}]_{0}^{t} = -e^{t} [ye^{-y} + e^{-y}]_{0}^{t}$$

$$= -e^{t} [te^{-t} + e^{-t} - 0 - 1] = -e^{t} \left[ \frac{t+1-e^{t}}{e^{t}} \right]$$

$$= e^{t} - (1+t)$$

\_\_\_\_\_\_

# Question326

$$\lim_{\substack{n \to \infty \\ n \to \infty}} \frac{1 + 2^4 + 3^4 + \dots \cdot n^4}{n^5} - \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{1 + 2^3 + 3^3 + \dots \cdot n^3}{n^5}$$
[2003]

#### **Options:**

A. 
$$\frac{1}{5}$$

- B.  $\frac{1}{30}$
- C. Zero
- D.  $\frac{1}{4}$

Answer: A

### **Solution:**

Solution:

$$\begin{split} &\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots \cdot n^4}{n^5} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots \cdot n^3}{n^5} \\ &= \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \left(\frac{r}{n}\right)^4 - \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} \left(\frac{r}{n}\right)^3 \\ &= \int\limits_0^1 x^4 dx - \lim_{n \to \infty} \frac{1}{n} \times \int\limits_0^1 x^3 dx = \left[\frac{x^5}{5}\right]_0^1 - 0 = \frac{1}{5} \end{split}$$

\_\_\_\_\_\_

# Question327

f(x) and g(x) are two differentiable functions on [0,2] such that f''(x) - g''(x) = 0, f'(1) = 2g'(1) = 4f(2) = 3g(2) = 9then f(x) - g(x) at x = 3/2 is [2002]

#### **Options:**

- A. 0
- B. 2
- C. 10
- D. 5

Answer: D

$$f''(x) - g''(x) = 0$$
Integrating,  $f'(x) - g'(x) = c$ ;
⇒  $f'(1) - g'(1) = c$  ⇒  $4 - 2 = c$  ⇒  $c = 2$ 
∴  $f'(x) - g'(x) = 2$ 
Integrating,  $f(x) - g(x) = 2x + c_1$ 
⇒  $f(2) - g(2) = 4 + c_1$  ⇒  $9 - 3 = 4 + c_1$ 
⇒  $c_1 = 2$  ∴  $f(x) - g(x) = 2x + 2$ 
At  $x = 3/2$ ,  $f(x) - g(x) = 3 + 2 = 5$ .

# **Question328**

$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$$
[2002]

### **Options:**

A. 
$$\frac{\pi^2}{4}$$

B. 
$$\pi^2$$

C. zero

D. 
$$\frac{\pi}{2}$$

**Answer: B** 

# **Solution:**

$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^{2}x} dx$$

$$= \int_{-\pi}^{\pi} \frac{2xdx}{1+\cos^{2}x} + 2 \int_{-\pi}^{\pi} \frac{x\sin x}{1+\cos^{2}x} dx$$

$$= 0 + 4 \int_{0}^{\pi} \frac{x\sin x dx}{1+\cos^{2}x}$$

We know that

$$\because \int_{-a}^{a} f(x) dx = 0, \text{ if } f(x) \text{ is odd.}$$

$$=2\int_{0}^{a}f(x)dx, \text{ if } f(x) \text{ is even}$$

$$I = 4 \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx$$

$$I = 4 \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^{2} x} dx$$

$$\Rightarrow I = 4\pi \int_{0}^{\pi} \frac{\sin x \, d x}{1 + \cos^{2} x} - 4 \int \frac{x \sin x \, d x}{1 + \cos^{2} x}$$

$$\Rightarrow 2I = 4\pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx$$

put  $\cos x = t \Rightarrow -\sin x d x = dt$ 

when x = 0, t = 1 and when  $x = \pi$ , t = -1

$$\therefore I = -2\pi \int_{1}^{-1} \frac{1}{1+t^2} dt = 2\pi \int_{-1}^{1} \frac{1}{1+t^2} dt$$

$$=2\pi[\tan^{-1}t]_{-1}^{1}=2\pi[\tan^{-1}1-\tan^{-1}(-1)]$$

$$=2\pi\left[\frac{\pi}{4}-\left(\frac{-\pi}{4}\right)\right]=2\pi\cdot\frac{\pi}{2}=\pi^{2}$$

\_\_\_\_\_

# **Question329**

 $\int_{0}^{2} [x^{2}] dx is$ [2002]

# **Options:**

A. 
$$2 - \sqrt{2}$$

B. 
$$2 + \sqrt{2}$$

C. 
$$\sqrt{2} - 1$$

D. 
$$-\sqrt{2} - \sqrt{3} + 5$$

**Answer: D** 

#### **Solution:**

#### Solution:

We know that [x] is greatest integer function less than equal to x

$$= \int_{0}^{1} 0 dx + \int_{1}^{\sqrt{2}} 1 dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 dx + \int_{\sqrt{3}}^{2} 3 dx$$

$$= [x]_{1}^{\sqrt{2}} + [2x]_{\sqrt{2}}^{\sqrt{3}} + [3x]_{\sqrt{3}}^{2}$$

$$= \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3}$$

$$= 5 - \sqrt{3} - \sqrt{2}$$

# Question330

$$I_n = \int_0^{\pi/4} tan^n x dx then \lim_{n \to \infty} n[I_n + I_{n+2}] equals$$
[2002]

# **Options:**

- A.  $\frac{1}{2}$
- B. 1
- C. of
- D. zero

**Answer: B** 

## **Solution:**

#### Solution:

$$\begin{split} &I_{n} + I_{n+2} = \int_{0}^{\pi/4} \tan^{n} x (1 + \tan^{2} x) dx \\ &= \int_{0}^{\pi/4} \tan^{n} x \sec^{2} x dx = \left[ \frac{\tan^{n+1} x}{n+1} \right]_{0}^{\pi/4} \left[ \because \int x^{n} dx = \frac{x^{n+1}}{n+1} \right] \\ &= \frac{1-0}{n+1} = \frac{1}{n+1} \\ &\therefore I_{n} + I_{n+2} = \frac{1}{n+1} \Rightarrow \lim_{n \to \infty} n[I_{n} + I_{n+2}] \\ &= \lim_{n \to \infty} n \cdot \frac{1}{n+1} = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{n}{n \left(1 + \frac{1}{n}\right)} = 1 \end{split}$$

\_\_\_\_\_\_

 $\int_{0}^{10\pi} |\sin x| dx \text{ is}$ [2002]

### **Options:**

A. 20

B. 8

C. 10

D. 18

**Answer: A** 

# **Solution:**

#### Solution:

$$\begin{split} I &= \int\limits_{0}^{10\pi} |\sin x| d\, x = 10 \int\limits_{0}^{\pi} |\sin x| d\, x \, \left[ \because \sin(10\pi - x) = \sin x \right] \\ &= \int\limits_{0}^{10\pi} |\sin x| d\, x \\ \because \sin x > 0, \text{ for } 0 < x < \pi \\ \text{as } \sin(\pi - x) = \sin x \\ I &= 20 \int\limits_{0}^{\pi/2} \sin x \, d\, x = 20 [-\cos x]_{0}^{\pi/2} = 20 \end{split}$$

-----

# Question332

$$\lim_{n \to \infty} \frac{1^{p} + 2^{p} + 3^{p} + \dots + n^{p}}{n^{p+1}} is$$

[2002]

# **Options:**

A. 
$$\frac{1}{p+1}$$

B. 
$$\frac{1}{1-p}$$

$$C. \frac{1}{p} - \frac{1}{p-1}$$

D. 
$$\frac{1}{p+2}$$

**Answer: A** 

# **Solution:**

#### Solution:

We have 
$$\lim_{n\to\infty}\frac{1^p+2^p+3^p+\ldots\ldots+n^p}{n^{p+1}}\;;$$

$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^{p}}{n^{p} \cdot n} = \int_{0}^{1} x^{p} dx = \left[ \frac{x^{p+1}}{p+1} \right]_{0}^{1} = \frac{1}{p+1}$$

-----