Session1: Getting started in R. A whirlwind introduction.

Dr Nicola Foster

UCL Respiratory

nicola.foster@ucl.ac.uk

Sep	Getting started in R	Data science introduction session with a focus on setting up to code in R, showing people how to import datasets, summarise data descriptively and where to find help.
Dec	Understanding data	Introduction to statistical thinking, types of data and how data types influence the methods we use, data management while doing the analysis, and data processing tips.
Mar	Uncovering differences between groups	Introduction to regression analyses, identifying covariates for your models, DAGs, correlation and confounding.
Jun	Setting up the experiment	Study designs and sample size calculations. This focus will be on what information we need for doing sample size calculations and looking at some examples. I will also introduce the approach of simulation studies at the study design phase and why they are valuable.

Introduction

- Expressing your analysis in code is only one part of your analysis
 - Still need to think about your experiment
 - Need a good design
 - And able to interpret your findings
- Using a programming language such as R
 - Allow you/ others to reproduce your analysis
 - Easier to review what you've done
 - Saves you time especially on repetitive tasks
 - Allow you to do computationally intensive tasks

Installing R

- R is free and open-source software, download from Comprehensive R Archive Network (CRAN) website https://cran.r-project.org
- Also need an integrated development environment (IDE) to run base R – use R studio


```
RStudio
○ - On | - | | Go to file/function
                                                - Addins -
                                                                                                                                                                                                                      Rroject: (None) -
 © circpolar2.R × geco2 ⇒
                                                                                                                                                                      Environment History Connections Tutorial

⟨□□⟩ Ø □ □ Source on Save □ ✓ Ø ✓ □ □
                                                                                                                                  → Run 🕩 🕆 🕒 📄 Source 🗸 🗏
                                                                                                                                                                      🚰 🔚 🔛 Import Dataset 🕶 🐧 275 MiB 🕶 🎻

    List → | (C) →
                                                                                                                                                                      R - Global Environment -
   2 # making a multimorbidity circular plot
                                                                                                                                                                      Data
   3 # from Making polar plots with ggplot2 (http://rstudio-pubs-static.s3.amazonaws.com/72298_c1ba7f77276a4f27a0f375cadc9fac5d.html)
                                                                                                                                                                      geco2
                                                                                                                                                                                        10652 obs. of 1503 variables
   5 library(gcookbook)
                                                                                                                                                                      Functions
    6 library(ggplot2)
                                                                                                                                                                       se
                                                                                                                                                                                        function (x)
    7 library(haven) #for loading stata data
    8 library(foreign) #for loading stata data
   11 # function to compute the standard error of the mean
   12 se <- function(x) sqrt(var(x)/length(x))</pre>
   13 set.seed(42)
  14
   15 # loads data
   16 data1 <- read_dta("Library/Mobile Documents/com~apple~CloudDocs/project_GECO/data/geco2.dta")</pre>
  17
                                                                                                                                                                      Files Plots Packages Help Viewer Presentation
  18 View(data1)
   19

↓ Zoom Zoom → Export → □

   20 years <- as.factor(data1$timemultimorb)</pre>
   21 timemultimorbidity <- as.numeric(data1$timemultimorbidity)</pre>
   22 multimorbidity <- as.numeric(data1$multimorbidity)</pre>
  23
  24 # generates sample/ pilot data
   25 # df2 <- data.frame(years = as.factor(1:15),
  17:1 (Top Level) $
                                                                                                                                                            R Script $
  Console Terminal × Background Jobs ×
                                                                                                                                                              =
  R 4.4.1 · ~/Library/Mobile Documents/com~apple~CloudDocs/project_SR1 DAT/DATA/do files/
  'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.
 > library(gcookbook)
 > library(ggplot2)
 > library(haven) #for loading stata data
 > library(foreign) #for loading stata data
 > # function to compute the standard error of the mean
 > se <- function(x) sqrt(var(x)/length(x))
 > set.seed(42)
 > # loads data
 > data1 <- read_dta("Library/Mobile Documents/com~apple~CloudDocs/project_GECO/data/geco2.dta")</pre>
 Error: 'Library/Mobile Documents/com~apple~CloudDocs/project_GECO/data/geco2.dta' does not exist in current working directory ('/Users/ucl/Library/Mobile Document
 s/com~apple~CloudDocs/project_SR1 DAT/DATA/do files').
 > View(data1)
 Error in View : object 'data1' not found
 > geco2 <- read_dta("~/Library/Mobile Documents/com~apple~CloudDocs/project_GECO/data/geco2.dta")</pre>
 > View(geco2)
 >
```

Script ->

Objects

Packages and Objects

- Packages are collections of R functions, data and compiled code that you will use to perform certain tasks.
- Base R refers to the standard set of packages, others you can download, install and load into your library.

```
> install.packages("ggplot2")

> library(ggplot2)
```

- All things in R functions (equations), datasets (vectors, matrices, lists, and data frames), results are objects
- Script is the way to make objects. Can be stored and reviewed.

Functions

```
# function to compute the standard error of the mean
se <- function(x) sqrt(var(x)/length(x))</pre>
```

- Equations
- Instead of writing a calculation over and over write a repetitive calculation as a function then apply

Variables

```
years <- as.factor(data1$timemultimorb)
timemultimorbidity <- as.numeric(data1$timemultimorbidity)
multimorbidity <- as.numeric(data1$multimorbidity)</pre>
```

- Important for many functions that you specify your variables as numerical or factors
- Factors are categorical variables in R

Vectors

```
> count <- c(1, 3, 4, 8, 0, 2)
```

- Use vectors to summarise, manipulate and sort data using R
- Can combine multiple logical expressions using Boolean expressions
- Change values of some elements in a vector

Data frames

- most commonly used data structure to store data in is the data frame
- Two-dimensional object made of rows and columns, whereby each row corresponds to an individual observation
- Other ways of storing data include matrices, arrays and lists

Working with data

Does happiness increase with increase in age?

```
# set the working directory
setwd("/Users/ucl/Documents/")

library(readxl)
# imports data
data1 <- read_excel("~/Desktop/happiness.xlsx")
View(data1)

ages <- as.numeric(data1$ages)
gender <- as.factor(data1$gender)
happiness <- as.numeric(data1$happiness)</pre>
```

Summarising data

```
> #summarising data
> head(data1) #first 6 observations
# A tibble: 6 x 4
     id ages gender happiness
  <dbl> <dbl> <chr>
                           50
           26 male
           30 female
                          100
           38 female
           43 male
                           20
          17 female
                           30
          78 male
                          100
> mean(ages) # average age
[1] 41.8
> sd(ages) # standard deviation of age
[1] 27.94359
> range(ages) #range of ages
[1] 10 98
> summary(data1) #statistics for all numeric variables in dataset
       id
                     ages
                                   gender
                                                    happiness
 Min. : 1.00
                Min. :10.00
                               Length:10
                                                  Min. : 20.0
                1st Qu.:23.75
                                                  1st Qu.: 52.5
 1st Qu.: 3.25
                                Class :character
 Median: 5.50
                Median :34.00
                                Mode :character
                                                  Median: 80.0
      : 5.50
                Mean :41.80
                                                  Mean : 68.0
 3rd Qu.: 7.75
                3rd Qu.:52.00
                                                  3rd Qu.: 80.0
      :10.00
                Max. :98.00
                                                  Max. :100.0
> table(gender)
gender
female male
     6
> by(data1, gender, summary) #statistics by group
gender: female
       id
                      ages
                                    gender
                                                     happiness
 Min. : 2.000
                 Min. :10.00
                                Length:6
                                                   Min. : 30.00
 1st Qu.: 3.500
                 1st Qu.:18.50
                                 Class :character
                                                   1st Qu.: 65.00
 Median : 6.500
                 Median :26.50
                                                   Median : 80.00
                                 Mode :character
                 Mean :28.83
      : 6.167
                                                   Mean : 71.67
 3rd Qu.: 8.750
                 3rd Qu.:36.00
                                                   3rd Qu.: 80.00
       :10.000
                 Max. :55.00
                                                   Max. :100.00
gender: male
       id
                    ages
                                  gender
                                                   happiness
 Min. :1.00
               Min. :26.00
                               Length:4
                                                 Min. : 20.0
 1st Qu.:3.25
               1st Qu.:38.75
                               Class :character
                                                 1st Qu.: 42.5
 Median :5.00
               Median :60.50
                               Mode :character
                                                 Median: 65.0
       :4.50
               Mean :61.25
                                                 Mean : 62.5
 3rd Qu.:6.25
               3rd Qu.:83.00
                                                 3rd Qu.: 85.0
       :7.00
               Max.
                      :98.00
                                                 Max. :100.0
```

Plotting 1

Histogram of happiness


```
#plotting
hist(happiness)
boxplot(happiness~gender)

# same graph plotted using ggplot2
ggplot(data1) +
   aes(x=gender, y=happiness) +
   geom_boxplot()
```

Plotting 2


```
#plotting
hist(happiness)
boxplot(happiness~gender)

# same graph plotted using ggplot2
ggplot(data1) +
  aes(x=gender, y=happiness) +
  geom_boxplot()
```

Plotting 3 (ggplot)


```
#plotting
hist(happiness)
boxplot(happiness~gender)

# same graph plotted using ggplot2
ggplot(data1) +
  aes(x=gender, y=happiness) +
  geom_boxplot()
```

Linear regression model


```
#linear regression analysis
#response variable ~ explanatory variable(s)
ggplot(mapping = aes(x=ages, y=happiness), data=data1) +
  geom_point()
lm1 <- lm(happiness ~ gender+ages, data=data1)</pre>
summary(lm1)
       > lm1 <- lm(happiness ~ gender+ages, data=data1)</pre>
       > lm1
       Call:
       lm(formula = happiness ~ gender + ages, data = data1)
       Coefficients:
       (Intercept)
                    gendermale
           51.0657
                      -32.3279
                                    0.7145
       > summary(lm1)
       Call:
       lm(formula = happiness ~ gender + ages, data = data1)
       Residuals:
                   10 Median
       -33.212 -9.961 -2.857 19.513 27.500
       Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
       (Intercept) 51.0657
                             14.6163 3.494
                                              0.0101 *
       gendermale -32.3279
                             19.8834 -1.626
                                              0.1480
                    0.7145
                              0.3674 1.944 0.0929 .
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       Residual standard error: 24.66 on 7 degrees of freedom
       Multiple R-squared: 0.3701, Adjusted R-squared: 0.1901
       F-statistic: 2.056 on 2 and 7 DF, p-value: 0.1984
```

```
ggplot(mapping = aes(x=ages, y=happiness), data=data1) +
  geom_point() +
  geom_smooth(method="lm", se=TRUE)
```

Linear regression model

Resources

- An introduction to R and good place to start https://cran.rproject.org/doc/manuals/r-release/R-intro.pdf
- Introduction to R with focus on basic data analysis http://r4ds.had.co.nz/
- Advanced R where the focus is more on the programming parts https://adv-r.hadley.nz/
- Imputation https://stefvanbuuren.name/fimd/
- Data visualization using ggplot2
 http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf

UCL courses

- Introduction to R https://www.ucl.ac.uk/short-courses/search-courses/introduction-r-online
- Regressions with R: an overview https://www.ucl.ac.uk/short-courses/search-courses/regressions-r-overview
- Introduction to tidyverse and ggplot2 https://www.ucl.ac.uk/short-courses/introduction-tidyverse-and-ggplot2
- R: further topics https://www.ucl.ac.uk/short-courses/search-courses/r-further-topics
- Introduction to Bayesian Inference and Modelling https://www.ucl.ac.uk/short-courses/search-courses/introduction-bayesian-inference-and-modelling

Coding communities

- NHS-R
- R-Ladies (London)
- UCL R group

UCL R User Group

UCL R User Group

The UCL R user group is a friendly group for R users to meet, hear a talk and discuss R questions.

24 Sep 2024	Getting started in R	Data science introduction session with a focus on setting up to code in R, showing people how to import datasets, summarise data descriptively and where to find help.
17 Dec 2024	Understanding data	Introduction to statistical thinking, types of data and how data types influence the methods we use, data management while doing the analysis, and data processing tips.
25 Mar 2025	Uncovering differences between groups	Introduction to regression analyses, identifying covariates for your models, DAGs, correlation and confounding.
17 Jun 2025	Setting up the experiment	Study designs and sample size calculations. This focus will be on what information we need for doing sample size calculations and looking at some examples. I will also introduce the approach of simulation studies at the study design phase and why they are valuable.