Differential geometry: problems and solutions

 $\begin{array}{c} {\rm Jack~Ceroni^*} \\ {\rm (Dated:~Tuesday~20^{th}~February,~2024)} \end{array}$

I. MAT367 tutorial 1

Problem I.1 (MAT367 problem 1.4). Recall that a map $F: M \to N$ between smooth manifolds is smooth if, for each $p \in M$, we can find a chart (U_p, φ_p) around p and a chart (V_p, ψ_p) around F(p) such that $F(U_p) \subset V_p$ and $\psi_p \circ F \circ \varphi_p^{-1} \varphi_p(U_p) \to \psi_p(V)$ is smooth. It is a diffeomorphism if it also has a smooth inverse.

Suppose, for each chart (V, ψ) of N, $(F^{-1}(V), \psi \circ F)$ is a chart of M. Then, note that if F(p) is in the chart (V_p, ψ_p) , p is in chart $(F^{-1}(V_p), \psi_p \circ F)$ where $F(F^{-1}(V_p)) = V_p$ and $\psi_p \circ F \circ (\psi_p \circ F)^{-1} = \mathrm{id}$ is a smooth function on $(\psi_p \circ F)(F^{-1}(V_p)) = \psi_p(V_p)$. Moreover, $(\psi_p \circ F) \circ F^{-1} \circ \psi_p^{-1} = \mathrm{id}$ is also smooth. Thus, by definition, F is a diffeomorphism.

Conversely, suppose F is a diffeomorphism. Then $F^{-1}(V)$ is smooth for open V. Pick arbitrary chart (V, ψ) . To verify that $(F^{-1}(V), \psi \circ F)$ is a chart, we must verify it is smoothly-compatible with the smooth structure of M, which is to say that the transition functions

$$(\psi \circ F) \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V)) \to \mathbb{R}^n \quad \text{and} \quad \varphi \circ (\psi \circ F)^{-1} : (\psi \circ F)(U \cap F^{-1}(V)) \to \mathbb{R}^n$$
 (1)

are smooth. Pick some $p \in U \cap F^{-1}(V)$. Let (U_p, φ_p) and (V_p, ψ_p) be the charts relative to which F is smooth. Note that $U \cap F^{-1}(V) \cap U_p$ is a neighbourhood of p contained in U_p , and on this neighbourhood,

$$(\psi \circ F) \circ \varphi^{-1} = (\psi \circ \psi_p^{-1}) \circ (\psi_p \circ F \circ \varphi_p^{-1}) \circ (\varphi_p \circ \varphi^{-1})$$
 (2)

which is smooth, so $(\psi \circ F) \circ \varphi^{-1}$ is smooth at p, for every $p \in U \cap F^{-1}(V)$, and is thus smooth. We can apply the same logic to conclude that $\varphi \circ (\psi \circ F)^{-1}$ is smooth as well. It follows that $(F^{-1}(V), \psi \circ F)$ is smoothly-compatible with the atlas for M, and is thus a chart.

II. MAT367 tutorial 2

Problem II.1 (MAT367 problem 2.1). If c is a constant function, c(x) = c, then $\nu(c) = c \cdot \nu(1)$, where 1(x) = 1, by linearity. Since ν is a derivation, $\nu(1)\nu(1\cdot 1) = 1\cdot \nu(1) + 1\cdot \nu(1) = 2\nu(1)$, which implies that $\nu(1) = 0$, so $\nu(c) = 0$ as well.

In this latter case, $\nu(fg) = f(p)\nu(g) + g(p)\nu(f) = 0$.

Problem II.2 (MAT367 problem 2.2). This is trivial: $d[\mathrm{id}]_p(\nu)(f) = \nu(f \circ \mathrm{id}) = \nu(f)$. To prove the second thing, let us first make note of the chain rule for differentials. Note that if $F: M \to N$ and $G: N \to P$, then for some $p \in M$ and $\nu \in T_pM$, we have

$$d(G\circ F)_p(\nu)(f)=\nu(f\circ (G\circ F))=dF_p(\nu)(f\circ G)=(dG_{F(p)}\circ dF_p)(\nu)(f) \tag{3}$$

so that $d(G \circ F)_p = dG_{F(p)} \circ dF_p$. It follows immediately that $\mathrm{id} = d(F^{-1} \circ F)_p = d[F^{-1}]_{F(p)} \circ dF_p = \mathrm{id}$, so that $d[F^{-1}]_{F(p)}$ is a left-inverse of dF_p . Moreover, $d(F \circ F^{-1})_{F(p)} = dF_p \circ d[F^{-1}]_{F(p)} = \mathrm{id}$, so $d[F^{-1}]_{F(p)}$ is a right-inverse of dF_p . Thus, dF_p is invertible with $[dF_p]^{-1} = d[F^{-1}]_{F(p)}$. For the final thing, note that if F is the constant map, then $dF_p(\nu)(f) = \nu(f \circ F) = \nu(f(q))$ where f(q)

For the final thing, note that if F is the constant map, then $dF_p(\nu)(f) = \nu(f \circ F) = \nu(f(q))$ where f(q) is the constant map equal to f(q) on M. We showed above that derivations send constant maps to 0, so $\nu(f(q)) = 0$, and $dF_p(\nu) = 0$.

^{*} jack.ceroni@mail.utoronto.ca

Problem II.3 (MAT367 problem 2.3). Note that we have

$$dF_p\left(\frac{d}{dx}\Big|_p\right)(f) = \frac{d(f \circ F)}{dx}(p) = \frac{dF^1}{dx}(p)\frac{df}{du}\Big|_{F(p)} + \frac{dF^2}{dx}(p)\frac{df}{dv}\Big|_{F(p)} + \frac{dF^3}{dx}(p)\frac{df}{dw}\Big|_{F(p)}$$
(4)

$$= \frac{df}{du} \Big|_{F(p)} + y \frac{df}{dw} \Big|_{F(p)} \tag{5}$$

Problem II.4 (MAT367 problem 2.4). It is easy to verify that the projections are smooth maps. Thus, $d[\pi_1]_p \times d[\pi_2]_q : T_{p \times q} M \times N \to T_p M \times T_q N$ is a well-defined linear map. As vector spaces, the two spaces have the same dimension. Thus, we can prove either injectivity or surjectivity to prove to prove bijectivity.

We'll prove surjectivity. Suppose $\nu_1 \in T_pM$ and $\nu_2 \in T_qN$. Let us define the smooth maps $\phi_1, \phi_2 : M, N \to M \times N$ as $\phi_1(x) = (x,q)$ and $\phi_2(y) = (p,y)$. Let us define $\nu = d[\phi_1]_p(\nu_1) + d[\phi_2]_q(\nu_2)$. Note that

$$d[\pi_1]_{p \times q}(\nu) = d[\pi_1 \circ \phi_1]_p(\nu_1) + d[\pi_1 \circ \phi_2]_q(\nu_2) = \nu_1$$
(6)

as well as

$$d[\pi_2]_{p \times q}(\nu) = d[\pi_2 \circ \phi_1]_p(\nu_1) + d[\pi_2 \circ \phi_2]_q(\nu_2) = \nu_2 \tag{7}$$

so surjectivity follows.

III. Other stuff

Now, I will try to do a very concise derivation of the Lie derivative of a vector field just being the commutator of vector fields. To be more specific, a vector field X will take in some function f, and yield a new smooth function $p \mapsto X_p(f)$. We will just denote this function X(f). It follows that if Y is another smooth vector field, then Y(X(f)) and X(Y(f)) are smooth functions.

Claim III.1. The Lie derivative of a vector field, $\mathcal{L}_X Y$ (which is just another vector field), is XY - YX. *Proof.* Note that

$$(\mathcal{L}_X Y)_p(f) = \frac{d}{dt} \bigg|_{t=0} \Phi_t^*(Y)_p = \frac{d}{dt} \bigg|_{t=0} d \left[\Phi_t^{-1} \right]_{\Phi_t(p)} (Y_{\Phi_p(t)})(f) = \frac{d}{dt} \bigg|_{t=0} Y_{\Phi_t(p)}(f \circ \Phi_{-t})$$
(8)

$$= \frac{d}{dt} \bigg|_{t=0} \Phi_t^* (Y(f \circ \Phi_{-t}))(p) \tag{9}$$

From here, let's use the definition of the derivative!

$$\frac{d}{dt}\Big|_{t=0} \Phi_t^* (Y(f \circ \Phi_{-t}))(p) = \lim_{t \to 0} \frac{\Phi_t^* (Y(f \circ \Phi_{-t}))(p) - Y_p(f)}{t}$$
(10)

$$= \lim_{t \to 0} \frac{\Phi_t^*(Y(f \circ \Phi_{-t}))(p) - \Phi_t^*(Y(f))(p) + \Phi_t^*(Y(f))(p) - Y_p(f)}{t}$$
(11)

Note that

$$\lim_{t \to 0} \frac{\Phi_t^*(Y(f))(p) - Y_p(f)}{t} = \frac{d}{dt} \Big|_{t=0} \Phi_t^*(Y(f))(p) = X_p(Y(f))$$
(12)

Moreover, note that

$$\lim_{t \to 0} \frac{\Phi_t^*(Y(f \circ \Phi_{-t}))(p) - \Phi_t^*(Y(f))(p)}{t} = \lim_{t \to 0} Y_{\Phi_t(p)} \left(\frac{f \circ \Phi_{-t} - f}{t} \right) = -\lim_{t \to 0} Y_{\Phi_{-t}(p)} \left(\frac{\Phi_t^*(f) - f}{t} \right) \tag{13}$$

Now for a leap of faith: we assume the limit is nicely-behaved, so

$$-\lim_{t \to 0} Y_{\Phi_{-t}(p)} \left(\frac{\Phi_t^*(f) - f}{t} \right) = -Y_p \left(\frac{d}{dt} \bigg|_{t=0} \Phi^*(f) \right) = -Y_p(X(f))$$
 (14)

Thus, the overall limit is $X_p(Y(f)) - Y_p(X(f))$, so that $\mathcal{L}_X(Y) = XY - YX$.