هوش مصنوعی پیشرفته

پردازش تکاملی

دانشگاه تهران - دانشکده ریاضی، آمار و علوم کامپیوتر نیمسال اول 1398-1397

هُمرست

- الگوریتمهای جستجو: معرفی و مفاهیم
 - و پردازش تکاملی
 - مفاهیم
 - نمایش کروموزوم
 - جمعیت اولیه
 - تابع برازش
 - (Selection) انتخاب
- تولید مثل: باز ترکیب (Recombination)/همبرش (Crossover)، جهش (Mutation)
 - جايگزيني
 - شرایط توقف
 - کنترل قابلیت پویش و انتفاع
 - الگوريتم ژنتيك: مثال

محاسبات زیستی

• حل مسائل بهینهسازی، جستجو و یادگیری ماشین با الهام از تکامل زیستی

• نظریه تکامل زیستی داروین (1859)

- o حیوانات و گیاهان امروزی از نسل موجوات ماقبل تاریخ هستند-صدها میلیون سال از حیات می گذرد
- حیات تنها با یک یا تعدادی ارگانیسم ساده شروع شده و بعدها تکامل یافته و تبدیل به میلیونها گونه
 متفاوت امروزی شده است
- o تمامی فر آیند خلقت گونههای مختلف حیات، ناشی از یکی از نیروهای هدایت کننده در طبیعت با نام انتخاب طبیعی (Natural Selection) است
 - از بین رفتن نمونههای ضعیف و زنده ماندن نمونههای بر تر = تکامل تدریجی
- انتخاب طبیعی راز بقای بر ترینها در طبیعت و انتقال خصوصیات بر تر به نسل بعد= قانون بقای اصلح (Survival of the Fittest)

الگوریتمهای جستجو . . .

الگوریتمهای جستجو . . .

(Analytical Search) جستجوی تحلیلی

- استفاده از توابع و روشهای ریاضی برای یافتن حل بهینه: گرادیان، مشتق دوم
 - o نیوتون-رافسون (برای یافتن ریشه تابع)

Oninformed (Blind) Search) جستجوی ناآگاهانه

- عدم وجود از اطلاعات جانبی درباره نقاط فضای جستجو: تنها تشخیص هدف از غیرهدف
 - پیمایش فضای جستجو به صورت درختی
 - دو نوع
 - ٥ كامل: پيمايش كامل فضاى جستجو و تضمين يافتن يك راه حل (بهينه يا غيربهينه)
 - ٥ ناكامل: جستجو تا يافتن يك راهحل

• روشها

- o جستجوی اول سطح (Breadth-First Search)
- o جستجوی هزینه یکنواخت (Uniform-Cost Search)
 - o جستجوی اول عمق (Depth-First Search)

الگوريتمهای جستجو

o جستجوی آگاهانه (Informed Search)

- استفاده از یک تابع تخمین در مورد فضای جستجو (دانش مساله)
 - جستجوی اول-بهترین (Best-First Search) مکاشفهای
- o جستجوی Graph-Search) Tree-Search)- انتخاب یک گره بر اساس تخمین هزینه گسترش آن o روشها
 - جستجوی حریصانه (Greedy Search): جستجوی نزدیک ترین گره به هدف
 - جستجوی *A* Search) A): کمینه کردن کل هزینه برآورد شده محاسبه زیاد و نیاز به حافظه زیاد

• جستجوی فرامکاشفهای (Meta-Heuristic Search)

- o روشهای قدیمی: نیاز به نمایش فضای جستجو با درخت
- ۰ عدم امکان نمایش فضای جستجو با درخت (به ویژه برای فضاهای بزرگ و نامنظم)
 - ۰ الهام از پدیدههای طبیعی برای جستجو (زیستی و غیرزیستی)

o فضای جستجو و دورنمای برازش (Fitness Landscape)...

- فضای جستجو: یک سرزمین حاوی کلیه مقادیر ممکن برای پاسخ مساله
 - ۵ گاهی بسیار بزرگ و نامنظم
 - عستجوی هوشمندانه: پیمایش بخش مهم فضای پاسخ

• دورنمای برازش: پستی و بلندیهای سرزمین جستجو

- o تابع برازش (Fitness Function): تعیین پستی و بلندیهای سرزمین جستجو
 - تعریف بر اساس اطلاعات مساله
- ٥ در هر لحظه شامل نقطه پاسخ فعلى (موقعيت) و مقدار برازش (شايستگي) آن نقطه (ارتفاع)

o فضای جستجو و دورنمای برازش (Fitness Landscape)

- در مسائل واقعی، دورنمای برازش پیچیده است
 - o فضای چندقلهای یا خارپشتی (multimodal)

- o قابلیت پویش (Exploration)
- جستجوی آزادانه کل فضا بدون توجه به دستاوردهای آن در طول جستجو
 - رفتار تصادفی تر الگوریتم
 - o قابلیت انتفاع (Exploitation)
 - توجه به دستاوردهای الگوریتم در طول جستجو
 - رفتار حساب شده و محتاطانه
 - نیاز به تنظیم دو قابلیت بر اساس شرایط مساله
- ایجاد مصالحه (trade-off) بین این دو قابلیت با پارامترهای روش جستجو

و قابلیت پویش و انتفاع

• برای مسائلی با دورنمای برازش منظم، باید انتفاع را تقویت و پویش را کم کنیم

• برای مسائلی با دورنمای برازش نامنظم (خارپشتی)، باید قابلیت پویش را زیاد کنیم

- جستجوی با بیشترین پویش= جستجوی تصادفی (Random Search)
- جستجوی با بیشترین انتفاع= جستجوی تپه نوردی (Hill-Climbing Search)

پردازش تکاملی . . .

٥ مفاهيم . . .

- کروزموزم (Chromosome) محل ذخیرهسازی اطلاعات ژنی یک موجود
 - ه تشکیل شده از DNA
 - o انسان تقریباً 22 هزار ژن در DNA خود دارد
 - ٥ رشته، گراف، درخت= پاسخ مساله

• ژن (Gene)–واحدهای کوچکتر تشکیل دهنده کروموزم

٥ ويژگي (مشخصه) دادهها

يردازش تكاملي . . .

٥ مفاهيم . . .

- ژنوتایپ (Genotype) ترکیب تمام ژن ها برای یک فرد مشخص
- فنوتایپ (Phenotype)- خصوصیات ظاهری یک فرد، حاصل شده از رمز گشایی یک ژنوتایپ
 - آلل (Allele)- مقادیر مجاز برای هر ژن
 - ٥ مقادير مجاز براي مشخصههاي هر پاسخ
 - برازش (Fitness)- میزان شایستگی یک موجود در جمعیت

پردازش تکاملی . . .

• مراحل یک الگوریتم تکاملی . . .

- 1- تولید جمعیت اولیه (پاسخهای اولیه مساله)
 - 2- محاسبه برازش جمعیت ورودی
- 3- انتخاب (Selection) برای تولید مثل (Reproduction): انتخاب والدین شایسته تر های اصلح داروین
- 4- بازترکیب (Recombination) والدین انتخاب شده: تولید یک یا چند فرزند با ترکیب (Crossover) ورد با ترکیب ژنهای دو یا چند والد با همبرش (Crossover)
 - ٥ مفهوم جفت گيري
 - 5- جهش (Mutation) فرزندان تولید شده: تغییر تصادفی ژنها در یک کروموزوم و -5 جهش (سادی ژنها در یک کروموزوم و الدین)
 - 6- محاسبه برازش جمعیت فرزندان: محاسبه شایستگی فرزندان جدید
- 7- انتخاب برای جایگزینی (Replacement): تولید یک جمعیت به عنوان نسل جدید (از والدین قبلی و فرزندان جدید)

پردازش تکاملی . . .

مراحل یک الگوریتم تکاملی

يردازش تكاملي: نمايش كروموزوم

از مهمترین مراحل

- فرموله کردن مساله برای الگوریتم تکاملی
- تاثیر زیاد بر کارایی و پیچیدگی الگوریتم

٥ روشها

- - نمایش مبتنی بر اعداد حقیقی (هر ژن یک عدد حقیق): برای متغیرهای پیوسته 1.12 | 32.6 | 15.1 | 19.4 | 6.19 | 0.12 | 10.5 | 12.3 | 65.1
 - جایگشت عناصر: مثلاً برای فروشنده دوره گرد

• نمایش درختی: برای برنامهها و روابط ریاضی

بردازش تكاملى: جمعيت اوليه

- جمعیت = تعدادی از راهحلهای کاندید برای مساله
 - جمعیت اولیه = پاسخ اولیه مساله
- روش تصادفی: مقدار تصادفی در بازه مجاز برای هر ژن (پوشش یکنواخت فضا)
- روش هوشمندانه: تولید کروموزمهای اولیه با برازندگی بالا (پوشش بخشها مهم فضا)
 - اندازه جمعیت: معمولاً ثابت
 - o افزایش اندازه جمعیت = تقویت قابلیت پویش: پوشش دادن فضای جستجوی بز *ر*گتر
 - o افزایش اندازه جمعیت = تقویت قابلیت انتفاع: افزایش شانس عملگرهای تولیدمثل
 - افزایش اندازه جمعیت = افزایش محاسبات

بردازش تکاملی: تابع برازش

- نسلها) دازش: محاسبه میزان شایستگی پاسخها (نسلها)
 - نگاشت شایستگی هر کروموزوم به یک مقدار عددی
 - کاربرد در عملگر انتخاب برای تعیین اعضای برازنده
 - وابسته به کاربرد
 - o تعیین تابع برازش در برخی کاربردها کار مشکلی است

بردازش تكاملي: انتخاب . . .

○ انتخاب= یکی از عملگرهای اصلی پردازش تکاملی

- بیانگر مفهوم بقای اصلح نظریه داروین
- هدف: یافتن پاسخهای بر تر مساله در جمعیت جاری برای اعمال عملگر تولید مثل
- فشار انتخاب (Selective Pressure): میزان فشار عملگر انتخاب برای بردن جمعیت به راهحلهای خوب
 - o فشار انتخاب زیاد = توجه بیش از اندازه به اعضای برازنده = کاهش تنوع جمعیت = افزایش قابلیت انتفاع = کاهش قابلیت پویش = همگرایی سریع (محلی)

• روشهای مختلفی برای انتخاب

- ٥ انتخاب تصادفي
- ه انتخاب نسبی (Proportional)
- o انتخاب رتبهای (Rank-based)
- o انتخاب مسابقهای (Tournament)
 - o انتخاب برشی (Truncation)

يردازش تكاملي: انتخاب . . .

انتخاب تصادفی

- انتخاب هر کدام از اعضای جمعیت با احتمال برابر = عدم استفاده از برازش
 - كمترين فشار انتخاب

برازش عضو أام انتخاب نسبی (Proportional) انتخاب نسبی (o

• شانس بیشتر برای موجوات برتر

 $p_i = rac{f_i}{\Sigma_{j=1}^N f_j}$:محاسبه احتمال انتخاب عضو اام جمعیت • محاسبه احتمال انتخاب عضو $= \mathbb{N}$ ه محاسبه احتمال انتخاب عضو

- پیادهسازی انتخاب نسبی با چرخ روالت (Roulette Wheel Selection)
 - o در نظر گرفتن یک دایره (چرخ دوار) که به تعداد N بخش (قطعه) تقسیم شده است
- ٥ هر قطعه مرتبط با هر عضو بوده كه اندازه آن متناسب با احتمال آن عضو (برازندگی) است
 - o چرخاندن چرخ به تعداد N بار و انتخاب عضوی که چرخ روی آن توقف می کند

پردازش تكاملى: انتخاب . . .

o انتخاب نسبی (Proportional)

• فشار انتخاب زیاد چرخ رولت = همگرایی سریع در بهینه محلی

• بهبود: چرخ رولت با بیش از یک اشاره گر

o تعداد N اشاره گر

o یک با*ر* چرخاندن

o تعدیل فشا*ر* انتخاب

No	Chromosome	F _i (Fitness)	p _i
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9

بردازش تكاملي: انتخاب . . .

(Rank-based) انتخاب رتبهای (

- استفاده از رتبه برازندگی اعضا به جای استفاده از مقدار مطلق برازندگی
 - o برازش برترین عضو = N
 - o برازش دومین عضو برتر = N-1
 - o برازش سومین عضو برتر = N-2
 - ... 0
 - ٥ برازش آخرين عضو برتر = 1

o محاسبه احتمال بر اساس برازشهای جدید

$$p_i = rac{f_i}{\sum_{j=1}^N f_j}$$
 رمحاسبه با روش فوق)

- کاهش فشار انتخاب در مقایسه با چرخ رولت
 - عدم همگرایی زودرس

يردازش تكاملي: انتخاب . . .

- o انتخاب مسابقهای (Tournament)
- انتخاب یک گروه t < N عضو) از جمعیت به صورت تصادفی \bullet
 - مقایسه برازش اعضای انتخاب شده و انتخاب بهترین عضو
- اگر t خیلی بزرگ نباشد، از انتخاب برترین افراد جلوگیری میشود (فشار انتخاب کم) ه برای t=N، همیشه بهترین فرد انتخاب میشود = بیشترین فشار انتخاب
 - اگر t خیلی کوچک باشد، شانس انتخاب ضعیف ترین افراد افزایش می یابد درای t=1، الگوریتم انتخاب تصادفی
 - مقدار معمول برای t: مقدار 2 یا 3

بردازش تكاملي: انتخاب . . .

o انتخاب برشی (Truncation)

- مرتب کردن اعضای جمعیت بر اساس شایستگی آنها
 - انتخاب T درصد از اعضای برتر
- انتخاب $\mathbb N$ عضو به صورت تصادفی (از میان $\mathbb T$ درصد از بر ترین اعضا lacktriangle
 - مقدار T بزرگ تر = فشار انتخاب کمتر
 - o مقدار T=100 معادل انتخاب تصادفی

پردازش تکاملی: تولید مثل . . .

• تولید مثل = تولید جمعیت جدید (فرزندان) از والدین انتخاب شده با

- بازترکیب (Recombination) یا همبرش (Crossover)
 - ٥ معادل مفهوم جفت گیری
- ٥ تولید یک یا چند فرزند با ترکیب ژنهای تصادفی انتخاب شده از دو یا چند والد
 - o اعمال روی اعضای (والدین) انتخاب شده در مرحله انتخاب (برازنده)
- تولید فرزندان مشابه والدین: انتقال ژنهای کروموزومهای والدین به فرزندان
 - ۰ به ارث بردن ژنهای والدین و تولید پاسخهایی با برازش بهتر
 - p_{c} اعمال عملگر بازتر کیب روی اعضای جمعیت با احتمال o
 - ٥ استفاده بیشتر از عملگر بازتر کیب = افزایش قابلیت انتفاع

• جهش (Mutation)

- o تغییر تصادفی ژنها در کروموزوم
- ٥ هدف: یافتن مقادیر جدید ژن برای فرزندان که در والدین نبوده است
 - ۰ افزایش تنوع ژنوتایپی
 - $\rho_{\rm m}$ اعمال عملگر جہش روی فرزندان با احتمال
 - افزایش بیشتر از عملگر جهش = افزایش قابلیت پویش

پردازش تکاملی: تولید مثل (بازترکیب) . . .

۰ حالت دودویی ۰۰۰

- همبرش (بازترکیب) تک نقطهای (One-point crossover)
 - o انتخاب یک نقطه تصادفی و برش کروموزومها از این نقطه
 - بخش اول والد اول و بخش دوم والد دوم = فرزند اول
 - بخش دوم والد اول و بخش اول والد دوم = فرزند دوم

				C	له بر ش	نقط														
					,	\downarrow														
	1	1	1	0	1	0	0	1	1	Ι.	1	1	1	0	1	1	0	0	1	
1	0	1	0	1	1	1	0	0	1	_	0	1	0	1	1	0	0	1	1	
١			_	_	_	_	_	_	_	J	_	_	_							ן אַן עַאָן יך עאַן עאָן

• همبرش (بازترکیب) دونقطهای

- o انتخاب دو نقطه تصادفی و برش کروموزومها از این نقاط
- ٥ بخش اول و سوم والد اول و بخش دوم والد دوم = فرزند اول
- بخش دوم والد اول و بخش اول و سوم والد دوم = فرزند دوم

			ی	اط برث	ئق												
		,	,		,	,											
1	1	1	0	1	0	0	1	1	1	1	1	1	1	1	0	1	1
0	1	0	1	1	1	0	0	1	0	1	0	0	1	0	0	0	1

بردازش تکاملی: تولید مثل (بازترکیب) . . .

۰ حالت دودویی

- همبرش (بازترکیب) یکنواخت (Uniform crossover)
 - ٥ انتخاب هر ژن فرزند از ژن متناسب یکی از دو والد
 - ٥ استفاده از یک توزیع تصادفی برای انتخاب ژن فرزند
 - o شانس مشابه هر دو والد برای حضور در ژن فرزند
 - برای ضریب ترکیب 50%، شانس هر دو والد برابر خواهد بود

پردازش تکاملی: تولید مثل (بازترکیب) . . .

۰ حالت حقیقی . . .

- بازترکیب ساده (Simple)
- ٥ انتخاب یک بخش از کروموزومها
- o انتقال بخش اول از والد اول به فرزند اول
- ٥ انتقال بخش اول از والد دوم به فرزند دوم
- محاسبه ژنهای بخش انتخاب نشده فرزند اول: جمع کردن مقدار ژنهای دو کروموزوم و ضرب حاصل در α (بین α و 1)
- محاسبه ژنهای بخش انتخاب نشده فرزند دوم: جمع کردن مقدار ژنهای دو کروموزوم و ضرب حاصل در α

٥ توسعه: استفاده از عملگرهای دیگر، غیر از جمع

پردازش تکاملی: تولید مثل (بازترکیب) . . .

حالت حقیقی

- بازترکیب حسابی ساده (Simple Arithmetic)
 - o مشابه بازتر کیب ساده اما فقط یک ژن تغییر می کند

- بازترکیب حسابی کامل (Whole Arithmetic)
 - ٥ مشابه بازتركيب ساده اما تمام ژنها تغيير ميكند
- ٥ فرزندان شباهتی به والدین ندارند: افزایش قابلیت پویش

بردازش تکاملی: تولید مثل (بازترکیب) . . .

🔾 حالت جابگشت . . .

- بازترکیب ترتیبی (Order Recombination)
 - ٥ انتخاب دو نقطه تصادفي
- گام اول: استفاده از والد اول = انتقال بخش میانی والد اول به فزند اول
- o گام دوم: استفاده از والد دوم = شروع از نقطه اول بخش پایانی برای استفاده از ژنهای والد دوم در بخش پایانی فرزند اول
 - ۰ اگر مقدار ژنی قبلاً در فرزند وجود داشته باشد از آن صرفنظر میشود
 - o ادامه این فرایند برای بخش آغازی (ابتدایی) فرزند اول

بردازش تکاملی: تولید مثل (بازترکیب) . . .

۰ حالت جایگشت

- بازترکیب چرخشی (Cycle Recombination)
 - ٥ گام اول: تعيين دورها
- شروع از ژن اول والد اول و رفتن به شماره ژنی از والد دوم که در این ژن (اول از والد اول) نشان داده شده است
 - ۰ تکرار گام فوق برای ژن انتخاب شده در والد دوم: رفتن به ژنی از والد اول که این ژن نشان میدهد
 - دور: در صورت رسیدن به ژن اول والد اول
 - تكرار الگوريتم فوق در صورت وجود ژن پيمايش نشده با شروع از اولين ژن پيمايش ننشده در والد اول
- - برای فرزند دوم: عوض کردن جای دو والد

نقاط شکست در تشکیل فرزندان = دورها

9 3 7 8 2 6 5 1 4

بردازش تکاملی: تولید مثل (بازترکیب)

• حالت درخت

- در نظر گرفتن نقاط شکست در دو والد
 - جابجایی زیر درختهای انتخاب شده

پردازش تکاملی: تولید مثل (جهش) . . .

- o حالت دودویی: معکوسسازی بیت (Bit-flipping mutation)
 - انتخاب یک یا چند بیت به صورت تصادفی
 - تغییر مقدار آن بیت (0 به 1 و برعکس)
 - عدم استفاده از اطلاعات موجود

بردازش تكاملى: توليد مثل (جهش) . . .

- o حالت حقیقی: جهش مکمل (Complement Mutation)
 - انتخاب یک یا چند ژن برای ژن
 - کم کردن مقدار بیشینه ممکن برای آن ژن از مقدار جاری آن ژن
 - جمع مقادیر قبلی و جدید ژن = مقدار بیشینه ممکن برای آن ژن

پردازش تکاملی: تولید مثل (جهش) . . .

- ۰ حالت جایگشت . . .
- جهش جابجایی (Swap Mutation)
- ٥ انتخاب دو ژن به صورت تصادفی و جابجا کردن مقادیر آنها

- جهش درجی (Insert Mutation)
 - o انتخاب دو ژن به صورت تصادفی
- ۰ کپی کردن ژن دوم در ژن بعد از ژن اول
 - ۰ شیفت دادن ژنهای دیگر به راست

بردازش تكاملى: توليد مثل (جهش) . . .

۰ حالت جایگشت

- جهش درهمسازی (Scramble Mutation)
 - o انتخاب دو ژن به صورت تصادفی
 - ۰ جابجایی تصادفی مقادیر ژنهای بین دو نقطه

○ افزایش فاصله بین دو نتقطه انتخابی= قابلیت پویش بیشتر

- جهش معکوس (Inversion Mutation)
 - o انتخاب دو ژن به صورت تصادفی
- ٥ جابجا كردن مقادير ژنهای بين دو نقطه به صورتی كه نسبت به وسط آنها وارونه باشند
 - ٥ گذاشتن آينه در نقطه وسط بين دو نقطه

پردازش تکاملی: تولید مثل (جهش)

حالت درخت

- تغییر مقدار مربوط به یک گره
 - مقدار جدید = تصادفی

بردازش تکاملی: جایگزینی . . .

- ٥ گزينش جمعيت جديد (پاسخهای جديد)
- از روی جمعیت والدین (پاسخهای فعلی) و جمعیت فرزندان (پاسخهای جدید)
 - دو نوع کلی
 - o جایگزینی حالت پایدار (پایا) (Steady State Replacement)
 - o جایگزینی نسلی (Generational Replacement)
- ... (Steady State Replacement) (پایا) \circ
 - حفظ کردن بخش بزرگی از جمعیت والدین
 - جایگزینی بخشی از والدین با بهترین فرزندان تولید شده
- حفظ بافت قبلی جمعیت و گوناگونی جمعیت: جلوگیری از همگرایی به بهینه محلی
 - پارامتر کنترلی: p_{rep} = درصدی از والدین که تغییر میکنند
 - o افزایش این پارامتر = کاهش تنوع = همگرایی سریع
 - o شکاف نسلی (generation gap): میزان همپوشانی نسل کنونی و نسل بعد

پردازش تکاملی: جایگزینی

o جایگزینی نسلی (Generational Replacement)

- جایگزینی کل والدین (نسل قبل) با کل فرزندان (نسل جدید)
- جایگزین شدن بهترین عضو در جمعیت والدین با ضعیف ترین عضو در جمعیت فرزندان هایگزین شدن بهترین عضو در جمعیت فرزندان در (Elitism): جلو گیری از نابودی بهترین پاسخ
 - همگرایی سریع الگوریتم
 - (μ,λ) و $(\mu+\lambda)$ در استراتژی تکاملی: روش انتخاب $(\mu+\lambda)$ و $(\mu+\lambda)$
 - م روش $(\mu+\lambda)$: تعداد μ عضو برتر والدین و تعداد λ فرزند انتخاب میشوند
 - و روش (μ,λ) : تعداد μ عضو برتر از میان λ فرزند انتخاب شده و به نسل بعد منتقل میشوند λ

بردازش تكاملي: شرايط توقف

- ۰ رسیدن به بهترین پاسخ
- برای حالتی که مقدار برازش بهترین پاسخ را داریم
 - همیشه ممکن نیست
- محدود كردن تعداد نسلها (تعداد تكرار الگوريتم)
 - o راکد شدن (Stagnant) جمعیت
 - عدم تغییر جمعیت در نسلهای متوالی
- شمارش تعداد نسلهایی که بهترین پاسخ تغییر نکرده است

بردازش تكاملي: كنترل قابليت بويش و انتفاع . . .

• به کارگیری روش مناسب برای انتخاب، بازترکیب، جهش و جایگزینی

- انتخاب چرخ رولت ساده: تقویت قابلیت انتفاع
- انتخاب چرخ رولت با چنداشاره گر: تقویت قابلیت پویش
- باز ترکیب یکنواخت: بهترین انتخاب برای تقویت قابلیت پویش
 - جهش: تخریب بیشتر در کروموزومها = قابلیت پویش بیشتر
- جایگزینی حالت پایدار در مقایسه با جایگزینی نسلی قابلیت پویش بیشتری دارد

بردازش تكاملي: انواع الگوريتمها

- o الگوريتم ژنتيک (Genetic Algorithm)
- o برنامەنويسى ژنتيک (Genetic Programming)
 - o استراتژی تکامل (Evolutionary Strategy)
- o برنامەنوپسى تكاملى (Evolutionary Programming)
 - o تكامل تفاضلي (Differential Evolution)
 - o الگوريتم فرهنگى (Cultural Algorithm)
 - o الكوريتم همتكاملي (Co-Evolutionay Algorithm)
 - o الگوريتم ممتيک (Memtic Algorithm)
- Asexual Reproduction) بهینهسازی تولیدمثل غیرجنسی
 Optimization

الگوريتم ژنتيك . . .

۰ تاریخچه

- اولین بار توسط Fraser در 1957
- ادامه توسط Bremermann در 1962 و Reed
 - تكميل و توسعه توسط Holland در 1975
 - ٥ هالند = پدر الگوريتم ژنتيک

٥ كاربرد

• جستجو، بهینهسازی، یادگیری ماشین، کنترل، زمانبندی کارها، رباتیک

عملگرها

- انتخاب (مدلسازی قانون بقای اصلح)
 - تولید مثل: باز ترکیب و جهش

الگوريتم ژنتيك ...

• خصوصيات الگوريتم ژنتيک استاندارد

- استفاده از نمایش رشته بیتی
- طول ثابت و یکسان برای کروموزومها
 - تعداد اعضای جمعیت ثابت
- استفاده از عملگر انتخاب نسبی برای انتخاب والدین
 - استفاده از بازترکیب تک نقطه
 - استفاده از جهش معکوسسازی بیت
 - احتمال بازتركيب بالا (حدود 0.95 و بيشتر)
- احتمال جهش پایین: برابر با ۱/L که L طول کروموزوم است

الگوريتم ژنتيك: مثال . . .

o فروشنده دورهگرد (Travelling Salesman Problem) فروشنده دورهگرد

- یافتن کوتاه ترین مسیر برای یک فروشنده با عبور از ۱۱ شهر
 - از تمامی شهرها دقیقاً یک بار بگذرد و به شهر اول برگردد
 - جزو مسائل NP-Hard
 - 0.5(n-1)! = m شهر اهحلها برای n شهر
 - o برای 5 شہر = 12
 - o برای 10 شہر = 1.814.400
 - ە براى 30 شہر = 1.3*10³²

• حل با الگوريتم ژنتيک

الگوريتم ژنتيك. مثال (فروشنده دورهگرد) ...

- ٥ نمایش کروموزوم: جایگشت
- برای شهرهای تهران (1)، اصفهان (2)، مشهد (3)، شیراز (4)، تبریز (5)، زاهدان (6)
 - [136425] o
 - ㅇ برازش: جمع كل فاصله (هزينه) تور
 - فاصله کمتر = برازش بهتر

	تهران	اصفهان	مشهد	شيراز	تبريز	زاهدان
تهران	0	439	894	924	1567	1567
اصفهان	439	0	1222	485	1190	1190
مشهد	894	1222	0	1374	951	951
شيراز	924	485	1374	0	1523	1100
تبريز	1567	1190	951	1523	0	2166
زاهدان	1567	1190	951	1100	2166	0

- 🔾 انتخاب: مسابقهای، رتبهای، ...
- ۰ بازترکیب: ترتیبی یا چرخشی
- 🔾 جهش: جابجایی، درجی، جهش، معکوس

الگوريتم ژنتيك. مثال (فروشنده دورهگرد)

- ㅇ پارامترها: برای 30 شهر
 - جمعیت: 50
- ٥ جمعیت اولیه: تصادفی (میتواند هوشمندانه هم باشد)
 - تعداد نسلها (تكرار): 10.000
 - نرخ جهش (p_m)= **5**%

برنامهنویسی ژنتیک

o برنامەنويسى ژنتيک (Genetic Programming)

- ارائه شده توسط Koza برای تکامل برنامههای کامپیوتری
 - ٥ هدف: پيدا كردن برنامه بهينه
- کاربردها: برنامهنویسی خودکار، برنامهریزی، درخت تصمیم، طراحی شبکه عصبی، ...
 - میتوان آن را یکی از الگوریتمهای ژنتیک دانست!
 - تفاوت اصلی با الگوریتم ژنتیک: استفاده از نمایش درختی
 - ویژگیها
 - o طول متغیر برای کروموزوم (ویژگی انحصاری)
 - ٥ تعداد اعضاى جمعيت ثابت است
 - ه استفاده از عملگرهای بازتر کیب (با احتمال بیشتر از 90%) و جهش (کمتر از 1%) \circ
 - o استفاده از عملگر تغییر معماری (Architecture Alternation)
 - ويرايش برخى قوانين (مثلاً جايگزيني x and x با x)
 - شناسایی بلوکهای سازنده و جلوگیری از تغییر بلوکهای مفید با عملگرهای تولید مثل
 - تابع برازش: کارایی موجود (برنامه) بر روی یک مجموعه آزمون

استراثثي تكامل

o استراتژی تکامل (Evolutionary Strategy)

- ارائه شده توسط ریچنبرگ در سال 1960
 - هدف: بهینهسازی فرآیند تکامل است
- علاوه بر ویژگیهای ژنی برای هر موجود، پارامترهای استراتژی هم وجود دارد
 - ٥ مدلسازی رفتار موجود در محیط
 - o تکامل همزمان ویژگیهای ژنی و پارامترهای استراتژی
 - کاربردها: بهینهسازی، طراحی کنترلگر، سیستمهای قدرت
 - ویژگیها
 - ٥ نمایش اعداد حقیقی
 - ٥ تعداد ثابت براى اعضاى جمعيت
 - o استفاده از عملگر جهش با نرخ تطبیقی (بازتر کیبی در موارد محدودی استفاده میشود)
 - 🔾 پاسخهای بهتر دارای نرخ جهش کم و برعکس
 - o هر موجود دارای پارامترهای استراتژی مربوط به خود است
 - استفاده از جایگرینیهای $(\mu+\lambda)$ و (μ,λ) [مراجعه به چند اسلاید قبل] $oldsymbol{\circ}$