

Learning Macroscopic Brain Connectomes via Group-Sparse Factorization

Farzane Aminmansour¹, Andrew Patterson¹, Lei Le², Yisu Peng³, Daniel Mitchell¹, Franco Pestilli², Cesar Caiafa⁴, Russell Greiner¹, Martha White¹ University of Alberta¹, Indiana University², Northeastern University³, Instituto Argentino de Radioastronom⁴

BACKGROUND & SETTING

3. A Tractography Objective for Extracting Brain Connectomes

THEORY & ALGORITHMS

EMPIRICAL RESULTS

ENCODE:

- Represents brain structure by a 3D sparse tensor $\Phi \in \mathbb{R}^{N_a \times N_v \times N_f}$
- \triangleright N_{y} : #voxels, fascicles spatial position

- Unifies dMRI signal with connectome structure
- ► Matrix of dMRI signal $Y \in R^{N_{\theta} \times N_{\nu}}$
- \triangleright θ is gradient direction
- ightharpoonup Factorizing **Y** into Φ and dictionary **D**
- $ightharpoonup D \in R^{N_{\theta} \times N_{a}}$
- ▶ $Y \approx \Phi \times_1 D \times_3 W$, where $W \in \mathbb{R}^{N_f}$

C. Natural brain space and tensor encoding

non-zero entry 🏓

A Pipeline for Extracting Brain Connectomes

