

Team

Teachers

Dr. Maryam Al-Berrymaryam nabil@cis.asu.edu.eg

TAs

- Reham Ahmed
- Mohammed Ali
- Mostafa Mahmoud
- Rola Hany

11/13/2023

ILOs

- A working knowledge of the most commonly used methods and procedures for image processing.
- Understanding of the mathematics/theory behind the procedures as well as the ability to write software to implement the mathematics.
- Make use of data structures, linear algebra, and signal processing in the implementations.
- Given an image and a goal for its processing the student should be able to select and implement an appropriate procedure to achieve that goal.
- The ability to explain results in writing is essential for a successful engineer → reports/papers.

Introduction and Image Acquisition

Today's Contents

- What is a digital image
- How to acquire/represent a digital image
- Effects of sampling and quantization
- What is image processing
- Common IP operations and applications
- Course outline
- GP orientation session.

What is a Digital Image?

- A digital image is a representation of a twodimensional picture.
- Digitization implies that a the image is an approximation of a real scene.

Human Visual Perception

Structure of the Human Eye

Brightness adaptation and discrimination

Light source

Human Visual Perception – (cont.)

Image Formation in the Eye

11/13/2023

Human Visual Perception – (cont.)

11/13/2023

Digital Image Acquisition

Digital Camera

11/13

Digital Image Acquisition

- Digital Camera
- Color filter arrays Bayer

The Electromagnetic Spectrum

 Light is a part of the EM spectrum that can be sensed by the human eye.

- Incoming energy lands on a sensor material responsive to that type of energy and this generates a voltage.
- Collections of sensors are arranged to capture images.

Image (as a signal) is continuous in
 x- and y-coordinates → requires sampling
 and in amplitude → requires quantization

Sampling and Quantization

Sampling and Quantization

Q. Which?

Sampling and Quantization Example

Quality depends on the number of samples and discrete intensity levels used in sampling and quantization.

Sampling

 A digital image is a representation of a twodimensional picture as a finite set of digital values, called picture elements or pixels.

Color image

Image Representation

- The image now is composed of M rows and N columns of pixels each storing a value f(x,y).
- In practice, the *grey scale* is shifted to [0, L-1].
- x and y are called spatial coordinates.

Image Representation

• The number L of discrete intensity levels is typically a power of 2.

$$L=2^k$$

- k = bits required to store the image.
- k-bit image, e.g. 8-bit image.

Image Representation

That representation can take several forms.

 This affects the size, quality (resolution), and data structure used to save the image on disk.

 This does not necessarily correspond to the file format.

11/13/2023

Image Representation - Binary Image

 2D array of integer numbers where each pixel has two possible values.

(usually 0 and 1, or 0 and 255 in an 8-bit image).

Image Representation - Gray-scale (intensity) Image

 2D array of integer numbers where each pixel has a value in the range [0-1], or most

commonly [0-255],

for an 8-bit image.

1-	0.3344	0.2624	0.3344	0.3344	0.3344		
4308	0.2483	0.2624	0.3344	0.3344	0.2624	0.2549	
0.5342	0.1789	0.1307	0.1789	0.2051	0.3256	0.2483	
5.5342	0.2251	0.2563	0.2826	0.2826	0.4391	0.439	
	0.2051	0.2157	0.2826	0.3822	0.4551		

Image Representation - RGB (truecolor) Image

- 3D array that defines red, green, and blue color components for each individual pixel.
- Each of the three values is in the range [0-1] or [0-255] for an 8-bit image.

```
Black = (0, 0, 0)
White = (1, 1, 1)
or = (255, 255, 255)
```


Image Representation - Indexed Image

- 2D array of integer numbers (indexes) representing a row in a color map.
- Each row of map specifies the red, green, and blue components of a single color.

- An 8-bit image has a its grey scale [0, 255], however, not all images use the whole range.
- The actual range used by an image is called the dynamic range.
- Dynamic range affects contrast and the contrast ratio.

Contrast Examples

Most Popular Image File Formats

Compressed Vs. raw

Image Resolution

- A measure of quality of the image.
- How close the lines can be to each other and still be visibly resolved.
- Depends strongly on the number of
 - Samples → Pixel

 - Gray levels

 Intensity Resolution

1- Pixel Resolution

- Refers to the pixel count of the image.
- Conventions:

The number of pixel columns (width) times the number of pixel rows (height), e.g. as 640 by 480.

Megapixels

The total number of pixels in the image, typically given as number of megapixels.

1- Pixel Resolution – Example 1

256

512

1- Pixel Resolution — Example 1

1024×1024

1- Pixel Resolution — Example 1

1- Pixel Resolution - Example 1

1- Pixel Resolution – Example 1

1- Pixel Resolution — Example 1

1- Pixel Resolution - Example 1

1- Pixel Resolution – Example 2

11/13/2023

3- Intensity Resolution

- Refers to the number of intensity levels used to represent the image.
 - More intensity levels = finer discernable detail.
 - In terms of number of bits used to store each intensity level.

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

3- Intensity Resolution

- Resolution: How much is enough?
 - This all depends on what is in the image and what you would like to do with it
 - Key questions include
 - Does the image look aesthetically pleasing?
 - Can you see what you need to see within the image?

- Resolution: How much is enough?

The picture on the right is fine for counting the number of cars, but not for reading the plate number.

Note on Video

 Sequence of images (frames) with specific frame rate → definitely needs compression → affects quality.

Digital Image Processing

 DIP: Processing of a digital image by means of a computer.

• Why?

- Improvement of pictorial information for human interpretation (low-level).
- Processing of scene data for autonomous machine perception (computer vision).

11/13/2023 46

Digital Image Processing

11/13/2023

Example Applications

- Image Enhancement/restoration: One of the most common uses of DIP techniques: improve quality, remove noise, etc.

Blurred & noisy image

Restored image

- Image Enhancement/restoration: One of the most common uses of DIP techniques: improve quality, remove noise, etc.

Wide Field Planetary Camera 1

Wide Field Planetary Camera 2

- Medical Visualization:

Computerized Axial Tomography (CAT) scans.

Magnetic Resonance Imaging (MRI).

11/13/2023 50

- Industrial Inspection:

detecting anomalies.

- Special Effects: make images more visually

appealing, or make composites.

- Image Forensics: authentication and forgery detection.

11/13/2023

- Image Forensics: authentication and forgery

detection.

- Law Enforcement: automated detection,

tracking, and identification.

11/13/2023

55

- **HCI**: Try to make human computer interfaces

more natural

- Face recognition
- Gesture recognition
- Computer Graphics

Most Common Topics in DIP

- 1. Image formation
- 2. Sampling and quantization
- 3. Point processing and equalization
- 4. Re-sampling and geometric transformations
- 5. Convolution and spatial filtering
- 7. Fourier transform and frequency filtering
- 8. Restoration and noise reduction
- 9. Morphology
- 10. Segmentation

11/13/2023 57

Fundamental Steps of DIP

Course Outline

Problem Domain

Winner

- Diagnose the image(s).
- Develop a solution/process.
- Describe the why.
- Know the how.
- Write about it.

66

Assessm	ent
---------	-----

Final Test	50 %
Midterm	15%
Quiz	5%
Practical	20 %
Yearwork	10%

11/13/2023 Yearwork 10%

Textbook

 Digital Image Processing, 3rd edition, Rafael C. Gonzalez and Richard E. Woods, Prentice Hall, 2008.

http://www.imageprocessingplace.com

11/13/2023 67

Next Lecture

Image Enhancement in the Spatial Domain

Assignment

Textbook Chapter 1

Chapter 2: 1, 2, 3, 4, 4.1, 4.2, 4.3

Check associated problems:

Chapter 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 23

Choose your lab partners (teams of five).

11/13/2023 68

References

- Gonzalez and Woods, Digital Image Processing.
- Peters, Richard Alan, II, "Intro", Lectures on Image Processing, Vanderbilt University, Nashville, TN, April 2008, Available on the web at the Internet Archive, http://www.archive.org/details/Lectures on Image Processing.
- Image Processing, Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac, Roger Boyle, Thomson, 2008.
- Matlab Image Processing Toolbox.
- -http://www.scantips.com/basics09.html
- -http://vimeo.com/videoschool/lesson/186/the-basics-of-image-resolution
- -http://en.wikipedia.org/wiki/Display resolution
- -http://animoto.com/blog/news/hd-video-creation-sharing/

11/13/2023