	[2018/66/03]
	Jan Hoffman (lecture 1)
	What is a prog. lang?
	What is a grog. lang? Today: progs. are mathematical objects.
	1 4 3
	How to define a PL?
	1. Static sementics: what are (valid) progs?
	2. Dyramic Sevantics: How to run grags?
	Lange
	expre::= X
	nvm[n]
	bool [tre]
	bool [folse]
	if (e. ez ez)
	let (e, x,ez)
	plus(e;ez) leg(e;ez)
	5tratic Semantics
	Not ideal Progs that don't
	Option: progs=all expressions Not ideal. Progs that don't make sense should be excluded (like 5+true)
	Observation: expressions come in 2 types: numbers &
	booleans
	Type 5 ystem
	. / \ \ (
	Ex: (1+2)+8 is valid (why?)
	1+2 is a valid exp of type nom.
-	rued indiction.

Jan Hoffman (Lect 1) [2018/06/03] (2) Motation: Write - (1+2)+8: num In general: test we call this - a judgment. We often call things judgments and then say what these judgments mean using inductive definitions. EX: Trees 1. emp is a tree 2 if n is a num & t, t; are trees, Then node (n, t, tz) is a tree. Judgment: L: tree Could define this by saying the set of trees is the smallest set closed under reles 1 & 2 In PL we (ivited) use inference rules: Interence Rules for defining judgments industriely J. ... In a premises

J a conclusion EX: emp: tree n: num titree titree emp: tree node(n, ti, tz): tree

Jan	Hollman

3

2018 06/03 Derivations Type Rules |-numinjenum |- bool[b]: bool What about variables? 1-x:? We need a context to keep track of the types of all variables [] nom[n]:nom [] bool[b]: bool T, x:~ - x:~ Their, Tixitilezite (Assume x does not) T + let (e, x.e2): 7 Therenum Thezinum Thezinum
Therenum Thezinum
Therenum Thezinum
Therenum Thezinum Mre: bool Mre: Trezit T - if(e, e, e2): ~

Jan Hollman

[2018/06/63] Type Derivation EX3 Judgment - Let x=5 in x = 6: bool (we can derive this judgment using the type rules, as follows & (num) X:num + X:num + G:num + G:num + G:num + X:num + X=6: bool (et) let x=5 in x=6 : bost Lemmal For every expre and every context r there is at most one type T st. Fre:T. (Pool: (der)

Rule Induction

Tu prove P(n) holds for all ninum, we prove 1. P(Z)

	Jan Hostman 5
0 1	2018/86/82
<u> </u>	2 Induction
	To show P(a), we show for every
	to show $P(a)$, we show for every rule and 51 that
	a j
	P(a1) A P(an) implies P(a)
1	nversion Principle
	· ·
	Shows if Their, Their thur, = 72
	By induction on The:T. Case "Var rule"
	then e= x and F = F, x:T
7\	
	Xample: Inversion for Plus (e, e2)
	Lemma If They + ezer then T= num
	and Theinum and Thezinum.

.

.