$$\lambda = \frac{n}{ts}$$

Sn = expected number of prolees (for successful) (100<5) in a table with grand n data items

Un = expected number probles (un successful) uni a tube with n search data itums

	linear		Un = 1 (1 +	$\left(\frac{1}{(1-\lambda)^2}\right)$	$\frac{Su}{\frac{1}{2}}$ (1	$+\frac{1}{1-x}$
n < 1	2 ucad O van	l vatic	1-	X	1 (og	$e^{(1-\lambda)}$
n>0{	cha	ined,	X		1 +	$\frac{\lambda}{2}$
	λ =	5 10	Us	= [- 0.5	= 2
	-	1 -	- 1-0 1 0	.tod	valu	L

probabilit $(1-\lambda)\cdot\lambda$ (1-X) 2/c-1 1.1. +2 - $\frac{1}{n}\sum_{i=1}^{n}\left(=\frac{1}{n}\frac{(n+1)}{2}\right)$

 $d \geq x^{i} = d \left(\frac{x^{k+1}-1}{x-1} \right) / dx$ pro be & - empty but used

Mash function

Distribution piece

Compression piece

String 80

File Project 3 2 x ample cpp

Lile Project > 2 x un p =. h(Key)= sum (Key) % +5 Sum dugits = di polynomial digits Zaidi n i.di midsquere ky (Key / ts) %ts

Number of Reads Number of Writes Head water Space allocation is continguous

Flat hte system (no hier avely)

Create (["File 0001" 500 100)