STA221

Neil Montgomery

Last edited: 2017-01-17 10:53

goodness-of-fit testing ("Comparing Counts", Ch. 23 of

textbook)

In Stats 101 you will have encountered (at least) Binomial and Normal distribuions.

In Stats 101 you will have encountered (at least) Binomial and Normal distribuions.

And we've learned that \overline{X} is always approximately Normal when the sample is large enough.

Sums of random things also tend to be approximately Normal.

In Stats 101 you will have encountered (at least) Binomial and Normal distribuions.

And we've learned that \overline{X} is always approximately Normal when the sample is large enough.

Sums of random things also tend to be approximately Normal.

A special case is the so-called "Normal approximation to the Binomial".

In Stats 101 you will have encountered (at least) Binomial and Normal distribuions.

And we've learned that \overline{X} is always approximately Normal when the sample is large enough.

Sums of random things also tend to be approximately Normal.

A special case is the so-called "Normal approximation to the Binomial".

Why? Recall that a Binomial probability model is used to *count* the number of "successes" in n "trials".

In Stats 101 you will have encountered (at least) Binomial and Normal distribuions.

And we've learned that \overline{X} is always approximately Normal when the sample is large enough.

Sums of random things also tend to be approximately Normal.

A special case is the so-called "Normal approximation to the Binomial".

Why? Recall that a Binomial probability model is used to *count* the number of "successes" in n "trials".

Let's map "success" to the number 1 and "failure" to the number 0.

Counting 1s in a sequence of 0s and 1s is exactly equivalent to adding up all the 0s and 1s

detour 2.1 - what happens when you look at the square of a normal?

My compute can simulate random "draws" from a standard normal (N(0,1)) distribution, resulting in a histogram such as:

detour 2.2 - what what happens when you look at the square of a normal?

I could take all of those simulated standard normals and square them, and make a histogram of the result, which would give:

detour 2.2 - what what happens when you look at the square of a normal?

I could take all of those simulated standard normals and square them, and make a histogram of the result, which would give:

detour 2.3 - sum of squared normals?

I can simulate two columns of standard normals, square them both, add the results, and make a histogram of the result:

detour 2.3 - sum of squared normals?

I can simulate *two* columns of standard normals, square them *both*, add the results, and make a histogram of the result:

detour 2.4 - sum of many squared normals?

I can make several columns of normals, square them, add them up, and make a histogram. Here's the histogram with 5 columns of normals:

If you have n independent standard normals, the sum of their squares will have a χ_n^2 distribution.

If you have n independent standard normals, the sum of their squares will have a χ_n^2 distribution.

The n is a parameter going by the name "degrees of freedom."

If you have n independent standard normals, the sum of their squares will have a χ_n^2 distribution.

The n is a parameter going by the name "degrees of freedom."

If you have n general $N(\mu, \sigma)$, say called X_1, X_2, \dots, X_n , you could standardize them:

$$Z_i = \frac{X_i - \mu}{\sigma}$$

and then the sums of the squares of these Z_i will have a χ^2_n distribution.

If you have n independent standard normals, the sum of their squares will have a χ_n^2 distribution.

The n is a parameter going by the name "degrees of freedom."

If you have n general $N(\mu, \sigma)$, say called X_1, X_2, \dots, X_n , you could standardize them:

$$Z_i = \frac{X_i - \mu}{\sigma}$$

and then the sums of the squares of these Z_i will have a χ^2_n distribution.

detour - pictures of some χ_n^2 distributions

detour - pictures of more χ^2_n distributions

Note: the average of a χ_n^2 distribution is just n.

ever wonder why the sample variance is divided by n-1?

Look at the formula for sample variance:

$$s^2 = \frac{\sum\limits_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

The numerator is a sum of n squares, but the denominator is n-1. Why?

pictures of $\sum_{i=1}^{5} (x_i - \overline{x})^2$

I can simulate samples of size, say, 5 and compute that numerator, and make a histogram.

pictures of $\sum_{i=1}^{5} (x_i - \overline{x})^2$

I can simulate samples of size, say, 5 and compute that numerator, and make a histogram.

Here it is, with the χ_4^2 distribution in blue and the χ_5^2 in red:

a heuristic explanation

 s^2 is calculated after fixing the value of \overline{x}

a heuristic explanation

 s^2 is calculated after fixing the value of \overline{x}

So given \overline{x} and any n-1 of the n raw values, I can calculate that other raw value.

a heuristic explanation

 s^2 is calculated after fixing the value of \overline{x}

So given \overline{x} and any n-1 of the n raw values, I can calculate that other raw value.

We say s^2 (given \overline{x}) only has n-1 degrees of freedom.

is there evidence that something doesn't follow a given distribution?

is a lottery "fair"

Lotto 6/49 is a Canadian lottery in which 49 identical balls are mixed together and 7 are selected, now twice per week. People can win money based on how many of the numbers they have out of the 6 on their ticket.

I found a list of every number ever picked here: http://portalseven.com/lottery/canada_lotto_649.jsp

```
## # A tibble: 3.437 × 8
##
                   date
                         num1
                               n_{11}m_2 n_{11}m_3 n_{11}m_4
                                                 num5
                                                         num6 bonus
##
                  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
  1 Sat, Jan 14, 2017
                            1
                                   6
                                        19
                                              30
                                                     32
                                                           44
                                                                  33
## 2 Wed. Jan 11, 2017
                           24
                                 34
                                        36
                                              38
                                                     42
                                                           43
                                                                  30
                                  10
                                                     23
                                                           27
## 3 Sat. Jan 7, 2017
                                        18
                                               19
                                                                  48
                            2
                                  11
## 4 Wed, Jan 4, 2017
                                        13
                                              23
                                                     35
                                                           48
                                                                  30
## 5 Sat, Dec 31, 2016
                            3
                                   5
                                        14
                                               18
                                                     26
                                                           28
                                                                  40
  # ... with 3.432 more rows
```

all 49 numbers should appear with roughly the same frequency

categorical data, cells, observed cell counts

The dataset (now) consists of one variable called numbers. This is a *categorical*, or *factor* variable with 49 possible *levels*. There are 24050 observations.

categorical data, cells, observed cell counts

The dataset (now) consists of one variable called numbers. This is a *categorical*, or *factor* variable with 49 possible *levels*. There are 24050 observations.

A categorical variable is summarized by producing a table of *observed cell counts* (notation: O_i). In this case:

```
## # A tibble: 49 \times 2
##
     numbers
               0 i
##
      <fctr> <int>
               472
## 1
           1
           2 472
## 2
           3
               497
## 3
           4
## 4
               493
           5
## 5
               493
## # ... with 44 more rows
```

expected cell counts

If Lotto 6/49 is actually fair, each number would appear with probability 1/49 = 0.0204 each.

After 24050 numbers have been selected, we would expect to see:

$$24050 \cdot \frac{1}{49} = 490.82$$

of each number.

These are called *expected cell counts* — calulated under the assumption of fairness as defined in this example. (Notation: E_i)

Each O_i is a count (i.e. a sum of 0s and 1s), which will have an approximate normal distribution. It turns out:

$$\frac{O_i - E_i}{\sqrt{E_i}}$$

has a standard normal distribution, as long as there are enough 1s in the sample.

Each O_i is a count (i.e. a sum of 0s and 1s), which will have an approximate normal distribution. It turns out:

$$\frac{O_i - E_i}{\sqrt{E_i}}$$

has a standard normal distribution, as long as there are enough 1s in the sample.

How many? As long as $E_i \ge 10$, the approximation will be good.

Each O_i is a count (i.e. a sum of 0s and 1s), which will have an approximate normal distribution. It turns out:

$$\frac{O_i - E_i}{\sqrt{E_i}}$$

has a standard normal distribution, as long as there are enough 1s in the sample.

How many? As long as $E_i \ge 10$, the approximation will be good.

(Note: this is exactly like the $np \geq 10$ or $np \geq 5$ suggestion that is given for the accuracy of a normal approximation to a binomial.)

Each O_i is a count (i.e. a sum of 0s and 1s), which will have an approximate normal distribution. It turns out:

$$\frac{O_i - E_i}{\sqrt{E_i}}$$

has a standard normal distribution, as long as there are enough 1s in the sample.

How many? As long as $E_i \ge 10$, the approximation will be good.

(Note: this is exactly like the $np \ge 10$ or $np \ge 5$ suggestion that is given for the accuracy of a normal approximation to a binomial.)

The overall deviation is measured as:

$$\sum_{i=1}^{n} \left(\frac{O_i - E_i}{\sqrt{E_i}} \right)^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

measuring the deviation - compared to what?

The expected cell counts E_i are computed for a given fixed sample size N.

measuring the deviation - compared to what?

The expected cell counts E_i are computed for a given fixed sample size N.

So given n along with any of the n-1 expected cell counts, we could compute that other expected cell count.

measuring the deviation - compared to what?

The expected cell counts E_i are computed for a given fixed sample size N.

So given n along with any of the n-1 expected cell counts, we could compute that other expected cell count.

(This might seem trivial in this example because all the expected cell counts are the same

- but this is only because our hypothesis is that all the cell probabilities are the same.)

measuring the deviation - compared to what?

The expected cell counts E_i are computed for a given fixed sample size N.

So given n along with any of the n-1 expected cell counts, we could compute that other expected cell count.

(This might *seem* trivial in this example because all the expected cell counts are the same - but this is only because our hypothesis is that all the cell probabilities are the same.)

We say

$$\sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

has n-1 degrees of freedom, and it follows (approximately) a χ_{n-1}^2 distribution.

let's measure the deviation

Here are the first few deviations (with $(O_i - E_i)^2/E_i$ called D_i for short):

The sum of the D_i column is 41.99. Is this number surprising?

surprising, compared to what?

We know we should compare this number with the χ^2_{48} distribution. Here we can see we are not surprised. There is no evidence that Lotto 6/49 is unfair.

Goodness-of-fit testing is a form of hypothesis testing.

Goodness-of-fit testing is a form of hypothesis testing.

The null hypothesis is the result of statement that data follows a certain distribtuion of interest.

Goodness-of-fit testing is a form of hypothesis testing.

The null hypothesis is the result of statement that data follows a certain distribtuion of interest.

In the Lotto example, technically this statement is:

$$H_0: p_1=p_2=\cdots=p_{49}=\frac{1}{49}$$

But usually we just make H_0 a simple written statement:

 H_0 : the probabilities are all the same.

Goodness-of-fit testing is a form of hypothesis testing.

The null hypothesis is the result of statement that data follows a certain distribtuion of interest.

In the Lotto example, technically this statement is:

$$H_0: p_1=p_2=\cdots=p_{49}=\frac{1}{49}$$

But usually we just make H_0 a simple written statement:

 H_0 : the probabilities are all the same.

The "distribution of interest" is technically the "discrete uniform distribution on the outcomes $\{1,2,3,\ldots,49\}$ "

Goodness-of-fit testing is a form of hypothesis testing.

The null hypothesis is the result of statement that data follows a certain distribtuion of interest.

In the Lotto example, technically this statement is:

$$H_0: p_1=p_2=\cdots=p_{49}=\frac{1}{49}$$

But usually we just make H_0 a simple written statement:

 H_0 : the probabilities are all the same.

The "distribution of interest" is technically the "discrete uniform distribution on the outcomes $\{1,2,3,\ldots,49\}$ "

The alternative hypothesis is the negation of the null. We don't normally bother to write it down.

Given a sample size N and the null hypothesis probabilities, compute the n expected cell counts. In this case:

$$E_i = Np_i = 24050 \cdot \frac{1}{49} = 490.82$$

Given a sample size N and the null hypothesis probabilities, compute the n expected cell counts. In this case:

$$E_i = Np_i = 24050 \cdot \frac{1}{49} = 490.82$$

Compute the *observed value of the test statistic*:

$$\chi_{\text{obs}}^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 41.99$$

Given a sample size N and the null hypothesis probabilities, compute the n expected cell counts. In this case:

$$E_i = Np_i = 24050 \cdot \frac{1}{49} = 490.82$$

Compute the *observed value of the test statistic*:

$$\chi_{\text{obs}}^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = 41.99$$

Calculate the p-value based on $\chi^2_{\rm obs}$ being approximately χ^2_{n-1} .

goodness-if-fit testing p-value

A p-value is the *probability of observing a more extreme value*, in the sense of being further from where the null hypothesis "lives", which is where in this case?

goodness-of-fit testing p-value

The p-value is $P(\chi_{48}^2 \ge 41.99) = 0.7165747$

goodness-of-fit testing p-value

The p-value is $P(\chi_{48}^2 \ge 41.99) = 0.7165747$

On tests you'll need to use a table. Here's a close-up of the book's table:

	Right-tail probability		0.10	0.05	0.025	0.01	0.005
	Table X	df					
	Values of χ^2_{α}	1	2.706	3.841	5.024	6.635	7.879
	, επιτές σε χα	2	4.605	5.991	7.378	9.210	10.597
		3	6.251	7.815	9.348	11.345	12.838
		4	7.779	9.488	11.143	13.277	14.860
		5	9.236	11.070	12.833	15.086	16.750
	\sim	6	10.645	12.592	14.449	16.812	18.548
	/ \	7	12.017	14.067	16.013	18.475	20.278
		8	13.362	15.507	17.535	20.090	21.955
	α	9	14.684	16.919	19.023	21.666	23.589
,		10	15.987	18.307	20.483	23.209	25.188
0	χ^2_{α}	11	17.275	19.675	21.920	24.725	26.757
·	α	12	18.549	21.026	23.337	26.217	28.300
		13	19.812	22.362	24.736	27.688	29.819

goodness-of-fit testing p-value (from table)

∠ŏ	37.910	41.33/	44.4 01	40.470	JU.ノノ エ
29	39.087	42.557	45.722	59.588	52.336
30	40.256	43.773	46.979	50.892	53.672
40	51.805	55. <i>7</i> 59	59.342	63.691	66.767
50	63.167	<i>67.</i> 505	71.420	76.154	79.490
60	74.397	79.082	83.298	88.381	91.955
70	95 527	00 531	05.023	100 424	104.213

From a table the best you can do is to estimate the p-value.

All this together is called the " χ^2 goodness-of-fit test."

applications of χ^2 goodness-of-fit testing to two-way tables	

contingency tables

Recall the gas pipelines data:

```
## # A tibble: 1,000 \times 4
      Leak Size Material Pressure
##
##
    <fctr> <ord> <fctr>
                         <fctr>
## 1
       No 1.75 Aldyl A
                          High
## 2
       No 1.75 Aldyl A
                           Med
                Aldyl A Low
## 3
       No
    Yes 1.5 Steel
## 4
                           Med
                  Steel
## 5
       No 1
                          High
## # ... with 995 more rows
```

The (only?) suitable numerical summary for two categorical/factor variables at a time is a so-called contingency table, or two-way table.

two-way table for "Leak" and "Pressure"

	High	Low	Med	Sum
No	277	278	247	802
Yes	71	66	61	198
Sum	348	344	308	1000

Question 1: do the rows (or columns) come from the same distribution?

Question 1: do the rows (or columns) come from the same distribution?

This question is answered using a *test of homogeneity*.

Question 1: do the rows (or columns) come from the same distribution?

This question is answered using a *test of homogeneity*.

Question 2: are the rows and columns independent?

Question 1: do the rows (or columns) come from the same distribution?

This question is answered using a test of homogeneity.

Question 2: are the rows and columns independent?

This question is answered using a test of independence.

Question 1: do the rows (or columns) come from the same distribution?

This question is answered using a test of homogeneity.

Question 2: are the rows and columns independent?

This question is answered using a test of independence.

The mechanics of both tests are identical. Only the interpretation is (slightly) different.

two-way table again

Count version:

	High	Low	Med	Sum
No	277	278	247	802
Yes	71	66	61	198
Sum	348	344	308	1000

Proportion version:

	High	Low	Med	Sum
No	0.277	0.278	0.247	0.802
Yes	0.071	0.066	0.061	0.198
Sum	0.348	0.344	0.308	1.000