Problem

Read the definition of a 2DFA (two-headed finite automaton) given in Problem 5.26. Prove that P contains a language that is not recognizable by a 2DFA.

Step-by-step solution

Step 1 of 2

Suppose $L = \{p \mid \text{either } p = 0x \text{ for some } x \in B_{TM}, \text{ or } p = 1y \text{ for some } y \notin B_{TM} \}$.

 \cdot It can be designed a Turing machine S and S may be defined as:

S : On input, write 0 followed by $\langle M,p \rangle$ in the tapes and halts. Then it is easy to check that:

 $\langle M, p \rangle \in B_{\scriptscriptstyle TM} \Leftrightarrow output \ of \ Q \in L$

Thus, a mapping reduction of $\ ^{B_{TM}}$ to $\ ^{L}$ or $\ ^{B_{TM}} \le_{_{m}} ^{L}$ can be obtained .

• Now, a Turing machine(TM) R can be formed, which shows the functionality $B_{TM} \leq_m \overline{L}$. The Turing machine(TM) R can be defined as:

R: On input, write 1 followed by $\langle M, p \rangle$ in the tapes and halts. Then it is easy to check that:

 $\langle M, p \rangle \in \overline{B}_{TM} \Leftrightarrow output \ of \ R \in L$

· Similarly,

 $\langle M, p \rangle \in B_{TM} \Leftrightarrow output \ of \ R \in \overline{L}$

Thus, a mapping reduction of B_{TM} to \overline{L} can be obtained .

Comment

Step 2 of 2

Since, $B_{TM} \leq_m L$ and $\overline{B}_{TM} \leq_m \overline{L}$. This show that \overline{L} is non Turing recognizable because B_{TM} is non Turing recognizable. Similarly, since $B_{TM} \leq_m \overline{L}$ and $\overline{B}_{TM} \leq_m L$. So, this allows that L is non Turing recognizable. Therefore, the above explanation shows that "P contains a language which is not recognizable by a 2DFA".

Comment