Ressource R 305

Chaînes de transmissions numériques

- En transmission analogique, l'information transmise est analogique ; elle résulte de la variation continue d'un phénomène physique comme le son ou la température.
- En transmission numérique, l'information transmise est composée de données qui ne peuvent prendre qu'un nombre fini de valeurs possibles appelées symboles appartenant à un alphabet.

Chaîne de transmission analogique simplifiée.

Partie émetteur.

Chaîne de transmission analogique simplifiée.

Partie récepteur.

Chaîne de transmission numérique simplifiée.

Partie émetteur.

Chaîne de transmission numérique simplifiée.

Partie récepteur.

Pourquoi numérique?

- Le signal transmis transportant l'information numérique va être déformé et bruité pendant sa transmission sur le support.
- Le récepteur devra donc décider de la forme d'onde la plus probablement émise par l'émetteur et pourra, s'il ne se trompe pas dans sa décision, reconstituer **exactement** le signal numérique émis.
- Si le récepteur s'est trompé sur la forme d'onde, il y aura alors une erreur sur l'information binaire transmise.

Chaîne de transmission

Partie I

- Dépend du canal de transmission utilisé;
 - Transmission filaire;
 - Transmission par ondes hertziennes;
 - Transmission par Fibre Optique.

- Dépend du canal de transmission utilisé;
 - Transmission filaire, le signal transmis est un signal électrique, la bande passante du canal est de la forme [0, f_{max}] => transmission en Bande de Base;
 - Transmission par ondes hertziennes;
 - Transmission par Fibre Optique.

- Dépend du canal de transmission utilisé;
 - Transmission filaire => en Bande de Base ;
 - Transmission par ondes hertziennes, le signal transmis est une onde électromagnétique, la bande passante du canal est de la forme [f_{min}, f_{max}] => transmission en Bande Transposée (modulation);
 - Transmission par Fibre Optique.

- Dépend du canal de transmission utilisé;
 - Transmission filaire => en Bande de Base ;
 - Transmission par ondes hertziennes => en Bande Transposée (modulation);
 - Transmission par Fibre Optique, le signal transmis est un signal lumineux, la fréquence est alors autour de 2.10¹⁴ Hz.

I.1

Transmission en bande de base

Notions élémentaires

 Un symbole (bit) est représenté par une tension, cette tension est maintenue pendant un certain temps.

- ITE : Intervalle de Temps Élémentaire
- R : Rapidité de modulation (en Baud)

$$R = \frac{1}{ITE}$$

Classification des principaux codes

	Unipolaire	Bipolaire	AMI
Code NRZ			
Code RZ			
Code Biphase			

Autres codes Codes à mémoire

Code Manchester différentiel

Code de Miller

Code HDBn

Code NRZ Non Remise à Zéro

NRZ Unipolaire (un seul niveau de tension)

Code NRZ Non Remise à Zéro

NRZ Bipolaire (deux niveaux de tension)

Code NRZ Non Remise à Zéro

NRZ AMI (alternatif)

0

Code RZ Remise à Zéro

• RZ Unipolaire (un seul niveau de tension)

Code RZ Remise à Zéro

RZ Bipolaire (deux niveaux de tension)

Code RZ Remise à Zéro

RZ AMI (alternatif)

0

Code Biphase

Changement de niveau de tension pendant l'ITE

Biphase Unipolaire

Code Biphase Changement de niveau de tension pendant l'ITE

Biphase Bipolaire (Manchester)

Code à mémoire Manchester Différentiel

A partir du code Manchester :

- 0 : même symbole que l'ITE précédent ;
- 1 : symbole opposé au symbole de l'ITE précédent.

Code à mémoire HDB3

A partir du code NRZ AMI :

Mais si 4 zéros d'affilé : B00V.

Code à mémoire HDB3

Bit de bourrage :

- s'assure que la valeur moyenne du signal codé est nulle ;
- il vaut 0, -5 ou +5 de manière à ce que la valeur moyenne du signal, après lui, soit nulle.

Bit de viol :

- permet au récepteur de reconnaître la suite de 4 zéros ;
- viole l'alternance ;
- donc identique au dernier symbole non nul.

Code à mémoire Miller

- 0 :
- pas de transition au milieu de l'ITE ;
- au début de l'ITE, conserve le même niveau de tension si le symbole précédent était un 1;
- ne le conserve pas sinon.
- 1
- transition au milieu de l'ITE;
- au début de l'ITE, conserve le même niveau de tension que le symbole précédent.

Choix d'un code

- Les critères de choix dépendent principalement du support de transmission;
- Il dépend aussi de contraintes économiques :
 - facilité de mise en oeuvre,
 - immunité aux bruits.

Choix d'un code

 Dépend principalement de la Bande Passante du canal.

 On étudie donc la densité spectrale de puissance du code : répartition moyenne de la puissance en fonction de la fréquence. Elle indique l'occupation spectrale du code.

Densité spectrale de différents codes

Code NRZ Unipolaire

- Une raie à f = 0;
- Pas d'énergie pour f = R;
- OS « faible ».

Densité spectrale de différents codes

Code Manchester

- Pas d'énergie à f = 0 ;
- De l'énergie pour f = R;
- OS plus large.

Caractéristiques importantes des codes

- Occupation spectrale :
 - largeur de la bande de fréquence occupée,
 - amplitude des composantes basse fréquence et f = 0;
- Densité des transitions dans le signal émis : restitution de l'horloge.

Transmission asynchrone

 Chaque caractère est émis de façon irrégulière dans le temps :

Transmission synchrone

- Émetteur et récepteur sont cadencés à la même horloge :
 - nécessité donc pour le récepteur de « recevoir »
 l'horloge du signal émis.

Deux critères importants

• P_{BF} : part de la puissance totale contenue entre f = 0 et f = 0.1R.

 B_{0,9}: bande de fréquence qui contient 90% de la puissance totale, comptée depuis f = 0.

Caractéristiques principales de quelques codes

Code	NRZ Unip.	NRZ Bip.	NRZ AMI	RZ Unip.	RZ Bip.	RZ AMI	Biphase Unip.	Biphase Bip
P _{BF} Puissance entre 0 et 0,1 R	59,5%	19%	1,12%	29,8%	9,58%	0,57%	0,07%	0,14%
Bande à 10% de la puissance	Impossi ble	0,05 R	0,208 R	Impossi ble	0,1 R	0,262 R	0,546 R	0,417 R
B _{0,9} Bande à 90% de la puissance	0,54 R	0,85 R	2,29 R	1,58 R	1,7 R	1,73 R	3,05 R	3,05 R

Codes Utilisés

- NRZ AMI : ligne DS1/T1
- Manchester : liaison Ethernet 10Base5, 10Base2
- Miller: RFID
- HDB3: RNIS

Bande Passante du canal

- Elle impose la rapidité de modulation du code choisi!
- Que peut-on alors faire si on veut augmenter la vitesse de transmission (le débit de transmission)?

Valence

- On peut regrouper les bits par paquet!
- On transmet alors des symboles qui correspondent à des paquets de n bits.
- On transmet 2ⁿ symboles différents.

Valence

- Valence : nombre de symboles différents.
- $V = 2^n$.
- Alors D = n R.

Exemple

• n = 2; V = 4; D = 2R.

01

00

Valence / bruit

