In the final exam, you are allowed to use a pen, paper, a single A4-sized one-sided hand-written cheat sheet, and a calculator. Any communication with other students during the exam is considered cheating and will result in a zero-point grade.

VARIANT 1

Full name	Group	Signature

Task #:	1	2	3	4	5	6	7	8	9	10	Total	Extra
Max pts.:	2	2	2	2	3	3	3	4	4	5	30	1
Score:												

- 1. (2 point) List at least three applications for each of the following:
 - (a) matrices;
 - (b) quadratic surfaces.
- 2. (2 points) Describe geometrically the subspaces of \mathbb{R}^3 spanned by the following sets of vectors.
 - (a) $\{(1,0,0),(2,0,0)\};$
 - (b) $\{(1,0,0),(0,1,0)\};$
 - (c) $\{(1,0,0),(0,1,0),(1,1,0)\};$
 - (d) $\{(1,0,0),(0,1,0),(1,1,1)\}.$
- 3. (2 points) Suppose A, B and C are 3x3 matrices, and |A| = 2, |B| = 3, |C| = 5. Find the following quantities:
 - (a) |AB|;
 - (b) $|A^{-1}B|$;
 - (c) |2C|;
 - (d) |AB| |BA|.
- 4. (2 points) What is the polar form of the equation of the line x = 1?
- 5. (3 points) Find the angle between the planes:

$$2x - y + z = 6$$
, $x + y + 2z = 3$.

- 6. (3 points) Find a vector that is orthogonal to both $v_1 = (1,0,1)$ and $v_2 = (1,3,0)$ and which dot product with vector $v_3 = (1,1,0)$ equals to 8.
- 7. (3 points) What are the coordinates of the center of the hyperbola:

$$4x^2 - 9y^2 - 40x + 54y - 17 = 0?$$

- 8. (4 points) Let the line l_1 to be the intersection of the planes 2x y z = 3 and x + 2y + z = 2. Let the line l_2 to be the line with parametric equation x = 1 + 2t, y = -2 t, z = -1 t. Find the equation of the plane that contains the line l_1 and is parallel to the line l_2 .
- 9. (4 points) Given the bases A and B, find the transition matrices from basis A to a Cartesian coordinate system (with the standard basis $S = \{(1,0)^T, (0,1)^T\}$); from Cartesian coordinate system to the basis B and from the basis B to the basis A. Given that

(a)
$$A = \{(1,1)^T, (-1,2)^T\}$$
 and $B = \{(-2,1)^T, (-2,-1)^T\}$

10. (5 points) Find the radius of the circle defined by the two following equations: $x^2 + y^2 + z^2 - 8x + 4y + 8z - 45 = 0$ and x - 2y + 2z = 3.

Extra: (1 point) How to multiply 2 matrices in Numpy?

In the final exam, you are allowed to use a pen, paper, a single A4-sized one-sided hand-written cheat sheet, and a calculator. Any communication with other students during the exam is considered cheating and will result in a zero-point grade.

VARIANT 2

Full name	Group	Signature

Task #:	1	2	3	4	5	6	7	8	9	10	Total	Extra
Max pts.:	2	2	2	2	3	3	3	4	4	5	30	1
Score:												

- 1. (2 point) List at least **three** applications for **each** of the following:
 - (a) systems of linear equations;
 - (b) quadratic surfaces.
- 2. (2 points) Describe geometrically the subspaces of \mathbb{R}^3 spanned by the following sets of vectors.
 - (a) $\{(1,1,0),(-2,1,0)\};$
 - (b) $\{(-1,0,0),(-2,0,0)\};$
 - (c) $\{(1,-1,0),(0,2,0),(-1,-1,1)\};$
 - (d) $\{(-1,0,0),(0,10,0),(1,-1,0)\}.$
- 3. (2 points) Suppose A, B and C are 3x3 matrices, and |A| = 4, |B| = 6, |C| = 7. Find the following quantities:
 - (a) |AB|;
 - (b) $|A^{-1}B|$;
 - (c) |3C|;
 - (d) |AB| + |BA|.
- 4. (2 points) What is the polar form of the equation of the line y = 1?
- 5. (3 points) Find the angle between the planes:

$$4x - y + 2z = 2$$
, $2x + 2y + z = 4$.

- 6. (3 points) Find a vector that is orthogonal to both $v_1 = (4,0,2)$ and $v_2 = (3,1,0)$ and which dot product with vector $v_3 = (2,4,0)$ equals to 16.
- 7. (3 points) What are the coordinates of the center of the hyperbola:

$$2x^2 - 3y^2 - 12x + 42y - 161 = 0?$$

- 8. (4 points) Let the line l_1 to be the intersection of the planes x + 2y + z = 1 and 2x y z = 2. Let the line l_2 to be the line with parametric equation x = 1 + 2t, y = -2 t, z = -1 t. Find the equation of the plane that contains the line l_1 and is parallel to the line l_2 .
- 9. (4 points) Given the bases A and B, find the transition matrices from basis A to a Cartesian coordinate system (with the standard basis $S = \{(1,0)^T, (0,1)^T\}$); from Cartesian coordinate system to the basis B and from the basis B to the basis A. Given that

(a)
$$A = \{(-2,1)^T, (-2,-1)^T\}$$
 and $B = \{(1,1)^T, (-1,2)^T\}$

10. (5 points) Find the radius of the circle defined by the two following equations: $x^2 + y^2 + z^2 - 4x + 8y + 4z - 45 = 0$ and x - 2y + 2z = 3.

Extra: (1 point) How to multiply 2 matrices in Numpy?

End of Final Exam

In the final exam, you are allowed to use a pen, paper, a single A4-sized one-sided hand-written cheat sheet, and a calculator. Any communication with other students during the exam is considered cheating and will result in a zero-point grade.

VARIANT 3

Full name	Group	Signature

Task #:	1	2	3	4	5	6	7	8	9	10	Total	Extra
Max pts.:	2	2	2	2	3	3	3	4	4	5	30	1
Score:												

- 1. (2 point) List at least **three** applications for **each** of the following:
 - (a) vectors and vector spaces;
 - (b) conic sections.
- 2. (2 points) Describe geometrically the subspaces of \mathbb{R}^3 spanned by the following sets of vectors.
 - (a) $\{(0,0,1),(0,-1,0)\};$
 - (b) $\{(0,0,2),(0,0,-1)\};$
 - (c) $\{(0,0,1),(0,-10,0),(2,4,0)\};$
 - (d) $\{(2,0,0),(0,4,0),(8,8,8)\}.$
- 3. (2 points) Suppose A, B and C are 3x3 matrices, and |A| = 0, |B| = 5, |C| = 2. Find the following quantities:
 - (a) |AB|;
 - (b) $|A^{-1}B|$;
 - (c) |4C|;
 - (d) $|AB| |(AB)^{\top}|$.
- 4. (2 points) What is the polar form of the equation of the line x = y?
- 5. (3 points) Find the angle between the planes:

$$x - 2y + 2z = 3$$
, $2x + 2y + z = 6$.

- 6. (3 points) Find a vector that is orthogonal to both $v_1 = (2,0,2)$ and $v_2 = (3,1,0)$ and which dot product with vector $v_3 = (3,2,0)$ equals to 36.
- 7. (3 points) What are the coordinates of the center of the hyperbola:

$$8x^2 - 2y^2 - 32x + 20y - 50 = 0$$

- 8. (4 points) Let the line l_1 to be the intersection of the planes 2x + y + z = 1 and x 2y z = 2. Let the line l_2 to be the line with parametric equation x = 1 + 2t, y = -2 t, z = -1 t. Find the equation of the plane that contains the line l_1 and is parallel to the line l_2 .
- 9. (4 points) Given the bases A and B, find the transition matrices from basis A to a Cartesian coordinate system (with the standard basis $S = \{(1,0)^T, (0,1)^T\}$); from Cartesian coordinate system to the basis B and from the basis B to the basis A. Given that

(a)
$$A = \{(-1,3)^T, (1,-1)^T\}$$
 and $B = \{(1,2)^T, (1,-3)^T\}$

10. (5 points) Find the radius of the circle defined by the two following equations: $x^2 + y^2 + z^2 + 4x - 8y - 4z - 45 = 0$ and x - 2y + 2z = 3.

Extra: (1 point) How to multiply 2 matrices in Numpy?

End of Final Exam