CODE: 20BST101 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular/Supplementary Examinations, April, 2022

LINEAR ALGEBRA AND CALCULUS (Common to All Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered in one place

<u>UNIT-I</u>

- 1. a) Determine the rank of $\begin{bmatrix} 4 & 2 & 3 \\ 8 & 4 & 6 \\ -2 & -1 & -1.5 \end{bmatrix}$. (5M)
 - b) Solve the system by Gauss elimination method 2x+3y-z=5; (5M) 4x+4y-3z=3; 2x-3y+2z=2.

(OR)

- 2. a) Determine the values of a and b for which the system x+2y+3z=6; x+3y+5z=9; 2x+5y+az=b. (5M)
 - b) Solve the following system of equations, if consistent: x+y+z=3; (5M) x+y-z=1; 3(x+y)-5z=1.

UNIT-II

3. Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, verify that the eigenvalues of A^2 are the squares of those of A.

(OR)

4. Reduce the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_2x_3$ to (10M) canonical form by orthogonal transformation. Also find the rank, index, signature an nature of the quadratic form.

UNIT-III

5. Change the order of integration in $\int_0^a \int_0^{\frac{b}{a}\sqrt{a^2-x^2}} x^2 dy dx$ and then integrate it. (10M)

(OR)

6. Evaluate $\int_0^1 \int_0^x \int_0^{x+y} (x+y+z) dz dy dx.$ (10M)

UNIT-IV

- 7. a) Prove that $\int_0^\infty e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n}$, where a and n are positive. (5M)
 - b) Evaluate $\int_0^1 x^m (1 x^n)^p dx$ in terms of Gamma functions. (5M)

(OR)

8. Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, m > 0 \& n > 0$ (10M)

UNIT-V

- 9. a) Show that $\bar{u} = (2x^2 + 8xy^2z)\bar{\imath} + (3x^3y 3xy)\bar{\jmath} (4y^2z^2 + 2x^3z)\bar{k}$ is (5M) not solenoidal
 - b) When $\phi = x^3 + y^3 + z^3 3xyz$, find $\nabla \phi$ and $\nabla \cdot \nabla \phi$ at the point (1, (5M) 2, 3)

(OR)

- 10. a) Find the directional derivative $\phi = x^2yz + 4xz^2$ at the point P (1, (5M) 2, -1), (i) that is maximum, (ii) in the direction of PQ, where Q is (3, -3, -2).
 - b) Find the angle between the surfaces $x^2 y^2 z^2 = 11$ and xy + yz zx = 18 at the point (6, 4, 3).

UNIT-VI

11. Verify Green's theorem in a plane with respect (10M) to $\int_C [(x^2 - y^2)dx + 2xy dy]$, where C is the boundary of the rectangle in the xy-planebounded by the lines x = 0, x = a, y = 0 and y = b.

(OR)

12. Verify Gauss divergence theorem for $F = x^2 \bar{\imath} + y^2 \bar{\jmath} + z^2 \bar{k}$, where (10M) S is the surface of the cuboid formed by planes x = 0, x = a, y = 0, y = b, z = 0 and z = C.

CODE: 18BST101

SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April, 2022

LINEAR ALGEBRA AND CALCULUS (Common to All Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

- 1. a) Investigate for what values of a, b the equations x + y + z = 3, x + 2y + 2z = 6, x + ay + 3z = b will have a unique solution
 - b) Reduce the given matrix into Echelon form and hence find the rank of the matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & -4 \\ 2 & 3 & 5 & -5 \\ 3 & -4 & -5 & 8 \end{bmatrix}$$

(OR)

2. Calculate the eigen values and its corresponding eigen vectors 12M of the matrix

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

UNIT-II

3. Find the Maximum and Minimum values of $f(x,y) = x^3 + 12 M$ $3xy^2 - 3x^2 - 3y^2 + 4$

4. a) If $U = x \log(xy)$, where $x^3 + y^3 + 3xy + 1$ find du/dx

6 M

b) If u = x + y + z, uv = y + z, uvw = z then S.T $\frac{\partial (x,y,z)}{\partial (u,v,w)} = u^2 z$

UNIT-III

5. Find the perimeter of the cardioid $r = a(1 + \cos \theta)$, also show that the upper half of the cardioid $r = a(1 + \cos \theta)$ is bisected by the line $\theta = \pi/3$.

(OR)

6. Find the volume of the solid generated by the revolution of the area bounded by the curves $y^2 = ax^3$ and $x^2 = ay^3$ about x- axis

UNIT-IV

- 7. Using double integration, determine the area of the region bounded by the curves $y^2 = 4ax$, x + y = 3a and the line y = 0.
- 8. Evaluate the double integral $\int_{0}^{2} \int_{x}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates.

UNIT-V

9. a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$, $Z = x^2 + 6M$ $y^2 - 3$ at the point (2,-1,2)

6M

12M

- b) Show that the vector $(x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is irrotational and find its scalar potential
- 10. Verify Green's theorem in a plane for $\iint (3x^2 8y^2)dx + (4y 6xy)dy$, where C is the region bounded by x = 0 and y = 0 and x+y=1

CODE: 16BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April, 2022

ENGINEERING MATHEMATICS – I

(Common to All Branches)

Time: 3 Hours Max Marks: 70

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

Solve $(\cos x - x \cos y)dy - (\sin y + y \sin x)dx = 0$. 1. a) 7M Show that family of curves $x^2 + 4y^2 = c_1$ and $y = c_2 x^4$ are (mutually) orthogonal 7M b)

(to each other).

(OR)

7M

2. a) Solve $y' + y = e^{e^x}$. 7M

If a substance cools from 370 k to 330 k in 10 minutes, when the temperature of the b) surrounding air is 290 k, find the temperature of the substance after 40 minutes.

UNIT-II

Solve $(D^2 + 2D + 1)y = 2e^{3x} + Sin 2x$. 3. a) 7M

Solve $x^2y'' - 3xy' + 3y = 0$ with y(1) = 0, y'(1) = -2. b) 7M

Solve $(D^3 - 3D^2 - 6D + 8)y = xe^x$. 4. a) 7M

Solve $(D^2 + 1)v = Csc x$ by the method of variation of parameters. 7M

UNIT-III

Use Taylor's theorem to expand $f(x, y) = x^2 + xy + y^2$ in powers of (x - 1) and (y - 2). 5. a) 7M

Calculate $\frac{\partial(u,v)}{\partial(r,\theta)}$ if $u=2axy, v=a(x^2-y^2)$ where $x=r\cos\theta, y=r\sin\theta$. 7M b)

Find the maximum and minimum values of $f(x, y) = x^4 + y^4 - x^2 - y^2 + 1$. 6. 14M

UNIT-IV

7. a) Evaluate $\iint_D (x^2 + y^2) dx dy$ where D is the region bounded by y = x, y = 2x and x = 17M in the first quadrant.

Find the total mass of the region in the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ with density at 7M b) any point given by xyz.

(OR) Change the order of integration and evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy dx$. 8. a) 7M

Evaluate $\int_0^1 \int_0^x \int_0^{x+y} (x+y+z) dz dy dx$. b) 7M

UNIT-V

9. Determine the directional derivative of $f = xy^2 + yz^3$ at the point (2, -1, 1) in the 7M direction of the vector i + 2j + 2k.

Prove that $\bar{A} = (2x^2 + 8xy^2z)i + (3x^3y - 3xy)j - (4y^2z^2 + 2x^3z)k$ is not solenoidal b) 7M but $\bar{B} = xyz^2\bar{A}$ is solenoidal.

Verify the divergence theorem for $\bar{A} = 2x^2yi + y^2j + 4xz^2k$ taken over the region in the 10. 14M first octant bounded by the cylinder $y^2 + z^2 = 9$ and the plane x = 2

CODE: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April, 2022

ENGINEERING MATHEMATICS - I

(Common to All Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- Solve $(x^2-ay)dx (ax y^2)dy = 0$
 - State Newton's law of cooling.
 - Find the roots of the auxiliary equation D^2 -D+1=0
 - If $f(D) = D^3 1$ then find $\frac{1}{f(D)}e^{2x}$.
 - If x = u(1-v), y = uv, find $\frac{\partial(x,y)}{\partial(u,v)}$
 - Find the stationary points of f(x,y) = x-y-xy
 - Evaluate $\int_0^1 \int_1^2 x^2 y \, dx \, dy$
 - Change into polar coordinates $\int_0^1 \int_0^{\sqrt{1-y^2}} dy dx$. h)
 - Find ∇f at (1,1,1) where $f = x^2 + y^2 + z^2$ i)
 - State Green's theorem in a plane. **i**)

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- Form the differential equation from $y = a e^{2x} + be^{-3x} + ce^{x}$ by eliminating a, b and c. 2. a) [6M]
 - b) Solve $\frac{dy}{dx} = y \tan x y^2 secx$.

(OR)

3. a) Solve $y \sin 2x dx - (1+y^2 + \cos^2 x) dy = 0$

[6M]

b) Solve $(1 + y^2) \frac{dy}{dx} = tan^{-1}y - x$.

[6M]

[6M]

UNIT-II

4. a)

[6M]

Solve $(D-2)^2$ $y=e^{2x}+\sin 2x$. Solve $(D^2-2D+1)y=e^x$ / x^2 by method of variation of parameters.

[6M]

(OR)

Solve $(D^2+2) y = x^2 e^{3x} + \cos 2x$ 5. a)

[6M]

Solve $(D^2 + 2D + 1)y = x \cos x + e^{-x}$

[6M]

UNIT-III

- Find the Taylor series expansion of $f(x,y) = e^x \sin y$ in powers of x and y up to the 6. a) [6M] terms of third degree
 - If u = f(r, s, t) and r = x/y, s = y/z, t = z/x prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. [6M] b)

- If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z then find $\frac{\partial(u, v, w)}{\partial_z(x, y, z)}$. **7.** a) [6M]
 - Find the Maximum and Minimum values of $f(x,y) = x^3 + y^3 3axy$ b) [6M]

C	OD	E: 13BS1001 UNIT-IV	SET-1
		<u>UN11-1V</u>	
8.		Evaluate by changing the order of integration $\int_0^1 \int_{x^2}^{2-x} xy dx dy$.	[12M]
		(OR)	
9.	a)	Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dx dy$.	[6M]
	b)	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and	[6M]
		$r = 4\sin\theta$	
		<u>UNIT-V</u>	
10.	a)	Find the directional derivative of $f(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of $\bar{t}+2\bar{t}+\bar{k}$.	[6M]
	b)	Show that $\nabla^2 r^m = m(m+1)r^{m-2}$ where $r^2 = x^2 + y^2 + z^2$.	[6M]
		(OR)	
11.		Verify Green's theorem for $\oint (xy + y^2)dx + x^2dy$ where C is bounded by y=x and y = x^2 .	[12M]

2 of 2 ***