

Bilgisayar ve Bilişim Fakültesi Bilgisayar Mühendisliği Bölümü

Lojik Devreler Laboratuvarı Deney Raporu Deney # 8

Grup No: M15

Deneyi Yapanlar		
040080153 Serkan Güler		
040080200	Burak Gür	
040090533	3 Abdullah Aydeğer	

Deneyi Yaptıran: Araş. Gör. Ahmet Aycan Atak

A) Amaç: Deneyde ardışıl devrelerin, sonlu durum makinesi modeline göre çözümlenmeleri ve gerçeklenmeleri incelenecektir.

B) Devre Çizimleri ve Sonuçları

Deney 8.1:

1) Flip flopları süren fonksiyonların ifadeleri belirlenir.

$$D_1 = Q_1' + Q_2$$

$$D_2=X.Q_2$$

2) Sonraki durumlar hesaplanır.

$$Q_{1+} = D_1 = Q_1' + Q_2$$

$$Q_{2+} = D_2 = X.Q_2$$

3) Durum geçiş tablosu oluşturulur.

$Q_2Q_1\setminus X$	0	1
00	01	11
01	00	10
10	01	01
11	01	01

Tabloyu daha anlaşılır hale getirmek için durum kodlarına simgeler karşı düşürülür.

00:A S:şimdiki durum 10:C

01:B S+:sonraki durum 11:D

S+

$S \setminus X$	0	1
A	В	D
В	A	С
С	В	В
D	В	В

4) Çıkış fonksiyonu Z'nin ifadesi belirlenir.

$$Z = Q_2' + Q_1$$

5) Durum çıkış tablosu oluşturulur.

S+,Z

$S \setminus X$	0	1
A	B,1	D,1
В	A,1	C,1
С	В,0	B,0
D	B,1	B,1

Son olarak durum diyagramı çizilir.

Deney 8.2:

Sayıcının üreteceği her sayı bir durum olarak kabul edilir ve sayıcının davranışına göre durum diyagramı çizilir.

Sayıcının durum tablosu oluşturulur.

 $Q_{1+}\;Q_{0+}$

$Q_1Q_0 \setminus X$	0	1
00	01	10
01	10	00
11	K	K
10	00	01

Sayıcı D flip flopları ile tasarlanması:

 D_1

Q1Q0\X	0	1
00	0	1
01	1	0
11	K	K
10	0	0

Buradan tablo indirgenerek; $D_1 = Q_0 . X' + Q_1' . Q_0' . X$

D0

Q1Q0 \ X	0	1
00	1	0
01	0	0
11	K	K
10	0	1

Tablodan gerekli indirgemeler yapılarak; D0=Q1.X+Q1'.Q0'.X'

Elde ettiğimiz sonuçları en son olarak devre üzerinde gösterirsek, aşağıda verilen şekil elde edilir. Devrenin belirsiz durumu 11 durumudur. Q1=1 ve Q0=1 olursa D1=X' ve D0=X olur.X=0 ise 10 durumuna geçilir, X=1 ise 01 durumuna geçilir. Sayıcı istenilen düzenden çıkar.

Deney 8.3:

İlk olarak sayıcının CLR girişine 0 verilir ve sayıcı sıfırlanır. Sonra sayıcının veri girişine 0000 verilir ve LD girişi 1 yapılarak bu değer sayıcıya yüklenir. Daha sonra ENABLE T ve ENABLE P izin girişlerinin her ikisi de 1 yapılarak sayma işlemi başlatılır. Sayıcı bu durumda iken 4 bitlik olduğu için 0 dan 15 e kadar sayar.0-9 arası sayma işlemi yapmak için sayıcının CLR girişine öyle bir devre bağlanmalıdır ki 1010 a yani 10 a gelindiği zaman başa dönülsün.

Sayıcının CLR girişine (D.B)' fonksiyonunu bağlanırsa 1010 a gelindiğinde CLR=(1.1)'=0 olur ve sayıcı başa döner.Diğer değerler için CLR=1 olduğundan sayıcı tekrar 9 a kadar sayar sonra 0 a döner.

Raporda istenilenler kısmında verilen sayıcının tasarımı:

Anlatılan sayıcının durum diyagramı çizilir.

Durum tablosu oluşturulur.

Durum tablosu Karnough diyagramı olarak düzenlenir.

$Q_2^+Q_1^+Q_0^+$				
$Q_2Q_1Q_0$	×00	01	11	10
00	001	010	011	010
01	011	100	101	100
11	ØØØ	ØØØ	ØØØ	ØØØ
10	101	000	001	000

T flip flopunun geçiş tablosuna baklılarak yapılan geçişlerde T nin alması gereken değerler belirlenir.

T filp flopları kullanılarak tasarım yapılır.

T₂ için:

T₁ için:

T₀ için:

$$T1 = Q2'.X + Q2'.Q0$$

T0=X'

Son olarak elde edilen verilerle devre aşağıdaki gibi çizilir.

Belirsiz durumlar için devrenin davranışı:

110 için:

T2=X

T1=0

T0=X'

X=1 olursa sayıcı 100 durumuna geçer, X=0 olursa sayıcı 001 durumuna geçer.

111 için:

T2=1

T1=0

T0=X'

X=1 olursa sayıcı 100 durumuna geçer, X=0 olursa sayıcı 101 durumuna geçer.

