Beth's theorem and saturated models

Introductory Model Theory

December 9, 2021

Recommended reading: This material is covered in Sections 9.1-9.3 of the textbook, but using a different approach involving p-equivalence and resplendent models.

1 Expansions and reducts

Definition 1. Let $L \subseteq L'$ be languages.

- 1. If M is an L'-structure, then $M \upharpoonright L$ is the L-structure obtained by forgetting the symbols in $L' \setminus L$.
- 2. Let M be an L-structure and N be an L'-structure. Then M is a reduct of N, and N is an expansion of M, if $M = N \upharpoonright L$.

Lemma 2. Let M be a κ -saturated L-structure. For $L_0 \subseteq L$, the reduct $M \upharpoonright L_0$ is κ -saturated.

Proof. Let A be a subset of M with $|A| < \kappa$. Let p be a complete 1-type over A in $M \upharpoonright L_0$. Then p is a finitely satisfiable set of L(A)-formulas, so p is realized in M.

Lemma 3. Let M be an L-structure and κ be a cardinal. There is an L-structure $N \succeq M$ such that for every $L_0 \subseteq L$, the reduct $N \upharpoonright L_0$ is κ -saturated and κ -strongly homogeneous.

Proof. In the proof of Lemma 14 last week, we showed

- 1. There is an elementary chain $\{M_{\alpha}\}_{{\alpha}<\kappa^{+}}$ such that $M_{0}=M$, and $M_{\alpha+1}$ is $|M_{\alpha}|^{+}$ -saturated for each ${\alpha}<\kappa^{+}$.
- 2. Given such a chain, the union $N = \bigcup_{\alpha < \kappa^+} M_{\alpha}$ is κ -saturated and strongly κ -homogeneous.

For any $L_0 \subseteq L$, the chain of reducts $\{M_\alpha \upharpoonright L_0\}_{\alpha < \kappa^+}$ has the same saturation properties (Lemma 2), so $N \upharpoonright L_0$ is strongly κ -homogeneous.

2 Beth's implicit definability theorem

Let L be a language and let L(R) be the language obtained by adding one new n-ary relation symbol R.

Definition 4. Let T be an L(R)-theory.

- 1. R is implicitly defined in T if for every L-structure M, there is at most one $R \subseteq M^n$ such that $(M, R) \models T$.
- 2. R is explicitly defined in T if there is an L-formula $\phi(x_1, \ldots, x_n)$ such that $T \vdash \forall \bar{x} \ (R(\bar{x}) \leftrightarrow \phi(\bar{x}))$.

If \bar{a} is a tuple in an L(R)-structure M, let $\operatorname{tp}^L(\bar{a})$ denote the type in the reduct $M \upharpoonright L$. In other words, $\operatorname{tp}^L(\bar{a})$ is the set of L-formulas satisfied by \bar{a} .

Lemma 5. Suppose R is not explicitly defined in T. Then there are $M, N \models T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$, such that

- $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b}).$
- $M \models R(\bar{a}) \ and \ N \models \neg R(\bar{b}).$

Proof. Suppose not. Let $S = \{ \operatorname{tp}^L(\bar{a}) : M \models T, \bar{a} \in M^n \}$. For $p \in S$, one of two things happens:

- 1. Every realization of p satisfies R.
- 2. Every realization of p satisfies $\neg R$.

Otherwise, we can find a realization \bar{a} satisfying R and a realization \bar{b} satisfying $\neg R$, as desired.

By compactness, for each $p \in S$ there is an L-formula $\phi_p(\bar{x}) \in p(\bar{x})$ such that one of two things happens:

- 1. $T \cup \{\phi_p(\bar{x})\} \vdash R(\bar{x})$
- 2. $T \cup \{\phi_p(\bar{x})\} \vdash \neg R(\bar{x})$.

(p is closed under conjuction: if $\phi_1, \ldots, \phi_n \in p$, then $\phi_1 \wedge \cdots \wedge \phi_n \in p$. This is why we only need one formula from p.)

Let $\Sigma(\bar{x}) = T \cup \{\neg \phi_p(\bar{x}) : p \in S\}$. If $\Sigma(\bar{x})$ is consistent, there is $M \models T$ and $\bar{a} \in M^n$ satisfying $\Sigma(\bar{x})$. Let $p = \operatorname{tp}^L(\bar{a})$. Then \bar{a} satisfies p, so it satisfies ϕ_p , but it also satisfies $\neg \phi_p$ (by choice of Σ), a contradiction.

Therefore $\Sigma(\bar{x})$ is inconsistent. By compactness there are $p_1, \ldots, p_n, q_1, \ldots, q_m \in S$ such that

$$T \vdash \bigvee_{i=1}^{n} \phi_{p_i}(\bar{x}) \lor \bigvee_{i=1}^{m} \phi_{q_i}(\bar{x})$$

$$T \cup \{\phi_{p_i}(\bar{x})\} \vdash R(\bar{x}) \quad \text{for } i = 1, \dots, n$$

$$T \cup \{\phi_{q_i}(\bar{x})\} \vdash \neg R(\bar{x}) \quad \text{for } i = 1, \dots, m.$$

Then $T \vdash \forall \bar{x} \ (R(\bar{x}) \leftrightarrow \bigvee_{i=1}^n \phi_{p_i}(\bar{x}))$. The \leftarrow is by choice of the ϕ_{p_i} . The \rightarrow is because if none of the ϕ_{p_i} hold, then one of the ϕ_{q_i} holds, and then $\neg R$ must hold.

Finally, $\bigvee_{i=1}^n \phi_{p_i}(\bar{x})$ is an explicit definition of R.

Theorem 6 (Beth). If R is implicitly defined in T, then R is explicitly defined in T.

Proof.

Case 1: T is complete. If R is not explicitly defined, we obtain $M, N \models T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$ with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$, but $M \models R(\bar{a})$ and $N \models \neg R(\bar{a})$. Since T is complete, we have $M \equiv N$. By elementary amalgamation, we may find elementary embeddings $M \to N'$ and $N \to N'$. Replacing M and N by N' and N', we may assume M = N.

By Lemma 3, we may replace M with an elementary extension and assume M and $M \upharpoonright L$ are \aleph_0 -saturated and \aleph_0 -strongly homogeneous. The fact that $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ implies that there is an automorphism $\sigma \in \operatorname{Aut}(M \upharpoonright L)$ with $\sigma(\bar{a}) = \bar{b}$. Let $R' = \sigma(R)$. Let $M' = (M \upharpoonright L, R')$. Then σ is an isomorphism from M to M', so $M' \models T$. But $M' \upharpoonright L = M \upharpoonright L$. Because R is implicitly defined, R = R'. But then

$$\bar{a} \in R \iff \sigma(\bar{a}) \in \sigma(R) \iff \bar{b} \in R' \iff \bar{b} \in R,$$

contradicting the fact that $M \models R(\bar{a})$ and $M \models \neg R(\bar{b})$.

Case 2: T is not complete. Any completion of T implicitly defines R. By Case 1, any completion of T explicitly defines R. So in any model $M \models T$, there is an L-formula ϕ_M such that $M \models \forall \bar{x} \ (R(\bar{x}) \leftrightarrow \phi_M(\bar{x}))$.

Assume R is not explicitly defined. By Lemma 5 there are $M, N \models T$ and $\bar{a} \in M^n$, $\bar{b} \in N^n$, with $\operatorname{tp}^L(\bar{a}) = \operatorname{tp}^L(\bar{b})$ and $M \models R(\bar{a})$ and $N \models \neg R(\bar{b})$. Let T' be the L-theory obtained from T by replacing every "R" with ϕ_M , the L-formula defining R in M. Then $M \models T'$. The type $\operatorname{tp}^L(\bar{a})$ contains the following:

- The formula $\phi_M(\bar{x})$.
- The sentences in T' (these do not involve \bar{x}).

These formulas are in $\operatorname{tp}^L(\bar{b}) = \operatorname{tp}^L(\bar{a})$, so $N \models \phi_M(\bar{b})$ and $N \models T'$.

Let $R' = \{\bar{c} \in N^n : N \models \phi_M(\bar{c})\}$. Then $(N \upharpoonright L, R') \models T$ because $N \models T'$. Therefore R' = R because R is implicitly defined. But $N \models \phi_M(\bar{b})$ and $N \models \neg R(\bar{b})$, a contradiction.

3 Saturated models

Definition 7. A structure M is *saturated* if it is |M|-saturated. That is, for any $A \subseteq M$ with |A| < |M| and any $p \in S_1(A)$, the type p is realized in M.

Example. A countably infinite model M is saturated iff it is ω -saturated.

Lemma 8. Let M, N be saturated structures of cardinality κ . Let $A \subseteq M, B \subseteq N$ be sets and $f: A \to B$ be a partial elementary map from M to N. Suppose $|A| = |B| < \kappa$. Then we can extend f to an isomorphism $g: M \to N$.

Proof. Let $\{a_{\alpha} : \alpha < \kappa\}$ and $\{b_{\alpha} : \alpha < \kappa\}$ be enumerations of M and N. Recursively define an increasing chain of small partial elementary maps $\{f_{\alpha}\}_{{\alpha}<\kappa}$ as follows:

- 1. $f_0 = f$.
- 2. Given f_{α} , take some $c \in N$ such that $f_{\alpha} \cup \{(a_{\alpha}, c)\}$ is a partial elementary map. Take some $d \in M$ such that $f_{\alpha} \cup \{(a_{\alpha}, c)\} \cup \{(d, b_{\alpha})\}$ is a partial elementary map. Let $f_{\alpha+1} = f_{\alpha} \cup \{(a_{\alpha}, c)\} \cup \{(d, b_{\alpha})\}$. Both steps are possible by Lemma 6 last week.
- 3. If α is a limit ordinal, let $f_{\alpha} = \bigcup_{\beta < \alpha} f_{\beta}$.

Let $g = \bigcup_{\alpha < \kappa} f_{\alpha}$. Then dom(g) contains every a_{α} and im(g) contains every b_{α} . Thus dom(g) = M and im(g) = N. It follows that g is an isomorphism from M to N.

Theorem 9. Let M, N be saturated models of cardinality κ . If $M \equiv N$, then $M \cong N$.

Proof. Apply Lemma 8 to $f = \emptyset$.

Theorem 10. Let M be a saturated model. Let $f: A \to B$ be a partial elementary map from M to M. If |A| < |M|, then f extends to an automorphism $\sigma \in \operatorname{Aut}(M)$.

In other words, M is strongly |M|-homogeneous.

Proof. Apply Lemma 8 to N = M.

4 Countable saturated models

Lemma 11. Let M be a structure and $A = \{a_1, \ldots, a_m\}$ be a finite subset. Suppose $N, K \succeq M$. Suppose $\bar{b} \in N^n$ and $\bar{c} \in K^n$. Then

$$\operatorname{tp}^N(\bar{b}/A) = \operatorname{tp}^K(\bar{c}/A) \iff \operatorname{tp}^N(\bar{b}, \bar{a}) = \operatorname{tp}^K(\bar{c}, \bar{a}).$$

Proof. Every L(A)-formula has the form $\varphi(\bar{x}, \bar{a})$ for some L-formula $\varphi(\bar{x}, y_1, \ldots, y_m)$. So both sides say that for any L-formula $\varphi(\bar{x}, y_1, \ldots, y_m)$,

$$M \models \varphi(\bar{b}, \bar{a}) \iff N \models \varphi(\bar{c}, \bar{a}).$$

If T is a complete theory, then $S_n(T)$ denotes $S_n^M(\emptyset)$ for some $M \models T$. (The choice of M doesn't matter.)

Definition 12. A complete theory T is small if $S_n(T)$ is countable for all n.

Lemma 13. If M is a model of a small theory T, and $A \subseteq_f M$, then $S_n(A)$ is countable.

Proof. Let $A = \{a_1, \ldots, a_m\}$. Define a map $f: S_n(A) \to S_{n+m}(\emptyset) = S_{n+m}(T)$ sending $\operatorname{tp}^N(\bar{b}/A)$ to $\operatorname{tp}^N(\bar{b},\bar{a})$ for any $N \succeq M$ and $\bar{b} \in N^n$. This is well-defined and injective by Lemma 11. So $|S_n(A)| \leq |S_{n+m}(T)| \leq \aleph_0$.

Theorem 14. Let T be a complete theory. Then T has a countable ω -saturated model if and only if T is small.

Proof. First suppose there is a countable ω -saturated model M. Every type in $S_n(T) = S_n(\emptyset)$ is realized in M, so $S_n(T)$ is countable.

Conversely, suppose $S_n(T)$ is countable for any n. Take some ω -saturated model M^+ . For each finite set $A \subseteq M^+$ and type $p \in S_1(A)$, take some element $c_{A,p} \in M$ realizing p. Define an increasing chain of countable subsets $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots M^+$ as follows:

- $\bullet \ A_0 = \varnothing.$
- $A_{i+1} = A_i \cup \{c_{A,p} : A \subseteq_f A_i, p \in S_1(A)\}.$

This is countable because A_i has countably many finite subsets, and for each finite subset A, the type space $S_1(A)$ is countable by Lemma 13.

Define $M = \bigcup_{i=0}^{\infty} A_i$. This is a countable union of countable sets, so it is countable.

Claim. Work in M^+ . If $A \subseteq_f M$ and $p \in S_1(A)$, then p is realized by an element of M.

Proof. Take i large enough that $A \subseteq A_i$. Then $c_{A,p} \in A_{i+1} \subseteq M$ and $c_{A,p}$ realizes p. \square_{Claim} .

Proof. Use the Tarski-Vaught criterion. Suppose $M^+ \models \exists x \ \varphi(\bar{a}, y)$ for some L-formula $\phi(\bar{x}, y)$ and some tuple $\bar{a} \in M^n$. Take $b \in M^+$ such that $M^+ \models \phi(\bar{a}, b)$. By the previous claim, $\operatorname{tp}(b/\bar{a})$ is realized by some c in M. Then $M^+ \models \phi(\bar{a}, c)$, as needed. $\square_{\operatorname{Claim}}$

Therefore $M \models T$. Finally, we show M is ω -saturated. Suppose $A \subseteq_f M$ and $p \in S_1^M(A)$. Because $M \preceq M^+$, we have $S_1^M(A) = S_1^{M^+}(A)$. By the first claim, there is $b \in M$ with $\operatorname{tp}^{M^+}(b/A) = p$. Then $\operatorname{tp}^M(b/A) = \operatorname{tp}^{M^+}(b/A)$ because $M \preceq M^+$, so b realizes p in M. \square

5 Appendix: how to think about implicit definitions

Let T be an L-theory. Let L(R) be L plus a new n-ary relation symbol R.

• An explicit definition of R in terms of L-formulas is an expression of the form

$$\forall \bar{x} \ (R(\bar{x}) \leftrightarrow \varphi(\bar{x}))$$

for some L-formula φ .

• An implicit definition of R in T is an L(R)-theory T' such that for every model $M \models T$, there is a unique $R \subseteq M^n$ such that $(M, R) \models T'$.

Here is a more conventional statement of Beth's theorem:

Theorem 15. Let T' be an implicit definition of R in T. Then there is an explicit definition of R in terms of L-formulas.

More precisely, there is an L-formula $\varphi(x_1,\ldots,x_n)$ such that for any model $M \models T$, the unique $R \subseteq M^n$ satisfying T' is defined by $\varphi(x_1,\ldots,x_n)$.

Proof. Apply Theorem 6 to the L(R)-theory $T \cup T'$. There is an L-formula $\varphi(\bar{x})$ such that $T \cup T' \vdash \forall \bar{x} \ (R(\bar{x}) \leftrightarrow \varphi(\bar{x}))$. Suppose $M \models T$. Let R be the unique n-ary relation such that $(M,R) \models T'$. Then $(M,R) \models T$ (since T is an L-theory and the reduct M satisfies T), and so $(M,R) \models T \cup T'$. Consequently $(M,R) \models \forall \bar{x} \ (R(\bar{x}) \leftrightarrow \varphi(\bar{x}))$, and R is defined by φ as claimed.

Example. Let L be the language of $(\mathbb{R}, +, \cdot, 0)$ and let T be the complete theory of $(\mathbb{R}, +, \cdot, 0)$. Let R be the 2-ary relation symbol \leq . Let T' be the set of sentences

$$\forall x,y,z: x \leq y \rightarrow x+z \leq y+z$$

$$\forall x,y,z: (x \leq y \ \land \ 0 \leq z) \rightarrow (xz \leq yz).$$

One of the homework problems is to show that this set of sentences is an implicit definition of \leq in T: if $(M, +, \cdot, 0)$ is a model of T then there is a unique binary relation \leq on M satisfying T'.

Beth's theorem then implies that there must be an explicit definition of \leq in terms of L-formulas. Another homework problem is to find such a definition.

Remark 16. Above we have discussed implicit definitions of relation symbols. But we can also define function symbols implicitly, and Beth's theorem works. In fact, an n-ary function is a special kind of (n+1)-ary relation. Similarly, we can implicitly define constant symbols. Constant symbols are 0-ary function symbols.

Remark 17. The terms "implicit definition" and "explicit definition" are by analogy with definitions of functions in calculus/analysis. An *explicit definition* of a function is something like

$$f(x) = \frac{x}{x^2 + 1}$$

which tells you exactly how to calculate f. An *implicit definition* is something like

$$f(x)^5 + f(x) + x = 0,$$

a statement about f which uniquely determines f, but doesn't tell you how to calculate f. (In this case, f(x) is the Bring radical of x.) The Implicit function theorem¹ gives a sufficient criterion for an implicit definition to work.

 $^{^{1}}$ Sometimes called the Hidden Function Theorem in Chinese.