NOI2019 模拟

	inv	perm	dlds
时间限制	4s	5s	12s
空间限制	512m	512m	512m
是否开启 O2	Y	Y	Y

首页没有废话

1 不可视境界线

1.1 背景

破碎吧, 现实!

绽放吧,神经键!

放逐这个世界!

"终于走到这里了呢, Rikka"

1.2 题目描述

经过与圣调理人漫长而又艰难的战斗,Dark Flame Master 和 Rikka 终于来到了不可视境界线的入口前。而挡在他们面前的是不可视境界线管理局的战斗员们,而最后更是有他们的老朋友 -圣调理人。

"怎么办,圣调理人的实力太强了,即使我完全解放了黑炎龙的封印也未必能赢。"

"不必担心, Dark Flame Master, 邪王真眼有着吸收战胜的敌人战斗力的能力,只要我们战胜一些战斗员,吸收他们的能力,区区圣调理人自然不在话下"

现在,在他们面前有 n 个敌人,第 i 个敌人有 k 个属性 $A_{i,1}-A_{i,k}$ 表示他的战斗力,同时每一时刻 Rikka 等人也有 k 个属性 C_1-C_k 表示他们的战斗力。

当 Rikka 等人与第 i 个敌人交战的时候,受到的伤害值为 $\sqrt{a^2 + \sum_{j=1}^k (A_{i,j} - C_j)^2} - a$, 其中 a 为他们之前受到的伤害总和,战斗完后他们的属性值会变成 A_i ,初始状态下 $C_i = 0 (1 \le i \le k)$

由于神奇的地形原因,当他们与第i个敌人交战后就不能与第1到i-1个敌人交战了。

因为圣调理人有着特殊的能力,邪王真眼无法探查到她是排在第几个位置,所以 Rikka 想要知道他们打败第i个敌人受到的最少伤害是多少。

1.3 输入格式

第一行输入两个正整数 n,k。

接下来 n 行每行 k 个正整数表示 $A_{i,1} - A_{i,k}$ 。

1.4 输出格式

输出 n 行每行一个数表示战胜第 i 个敌人受到的最少伤害是多少,保留四位小数。

1.5 样例输入

- 4 2
- 1 1
- 2 2
- 3 3
- 4 4

1.6 样例输出

- 1.4142
- 2.0000
- 2.4495
- 2.8284

1.7 数据范围与约定

测试点编号	n	k	其他
1	= 10	k=2	
2	=20000	k=2	
3	= 150000	k=1	$1 \le A_{i,j} \le 2000$
4-5	= 150000	k=1	
6-10	= 100000	k=2	-

对于 100% 的数据 $1 \le A_{i,j} \le 20000$ 且 $A_{i,j}$ 随机生成

时间限制:

4S

空间限制:

512M

2 排列

2.1 题目描述

对于一个 n-排列 $\{p_i\}$,可以对应地构造一个包含 n 个结点、n 条边的有向图: 对每一个 $1 \le i \le n$,连边 (i, p_i) 。容易证明这个有向图由若干个互不相交的环(可能有自环)组成。

例如,排列 3,4,5,2,1,6 可以表示成三个环: $1 \rightarrow 3 \rightarrow 5 \rightarrow 1,2 \rightarrow 4 \rightarrow 2,6 \rightarrow 6$ 。

我们把一个环的长度定义为它所含的结点数。在上面的例子中,环的长度分别为3,2,1。

给定一个数字集合 $A = \{a_1, a_2, \cdots, a_k\}$ 。称一个 n-排列是合法的,当且仅当它对应的有向图中,每一个环的长度都属于集合 A。

给定 n 与集合 A,对于所有 1 < i < n,求出合法的 i-排列数量。

答案模 950009857(453×221+1, 一个质数) 后输出。

2.2 输入格式

输入第一行包含两个整数 n,k。

第二行包含 k 个整数, 分别为 a_1, a_2, \cdots, a_k , 表示集合 A 的元素。

输出格式

输出共n行,其中第i行表示i的答案模 950009857。

2.3 样例输入

5 2

3 2

2.4 样例输出

0

1

2

3

20

2.5 数据规模与约定

编号	n	k	备注
1	= 10		
2	=5000		
3	= 100000	= n - 1	
4	=70000		$\sum_{i=1}^{k} a_i = n$
5	= 80000	0	$\sum_{i=1}^{k} a_i = n$ $a_i \ge n/2$
6	=100000		$a_i \ge n/2$
7	=50000		*
8	=70000		
9	=100000		
10	= 100000		

对于 100% 的数据, $k \ge 1$; 给出的 a_i 互不重复,且 $1 \le a_i \le n$ 。

时间限制:

5s

空间限制:

512M

3 DZY Loves Data Structures

3.1 题目描述

你有n个序列,一开始每个序列里只有一个元素。每个元素有一个A属性和一个B属性。有m个操作:

1 x y val	修改第 i 个序列中第 j 个元素的 A 属性为 val
2 x y val	修改第 i 个序列中第 j 个元素的 B 属性为 val
3 x y	将第 y 个序列接在第 x 个序列后,之后操作中不会出现第 y 个序列
4 x l r val	询问第 x 个序列的第 l 到第 r 个元素中A属性大于 val 的元素个数
5 x l r k	询问第 x 个序列的第 l 到第 r 个元素中 A 属性第 k 大的值
6 x l r Al Ar	询问第 x 个序列的第 l 到第 r 个元素中,A 属性在 $[Al,Ar]$ 内的元
	素的 B 属性的最大值(如果不存在这样的元素,输出 0)

输入的每个变量都要与 lastans 异或 (lastans 为上一个询问的答案,一开始为 0)。 保证任意时刻任意元素的 A,B 属性都在 $[1,10^6]$ 内。

3.2 输入格式

第一行两个整数 n,m。

接下来 n 行,每行两个整数,表示每个元素的 A,B 属性。

接下来 m 行,每行一个操作,具体见题目描述。

3.3 输出格式

对每个询问输出一行,表示该询问的答案。

3.3 输出格式

对每个询问输出一行,表示该询问的答案。

3.4 样例输入

10 10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8899

9 9

10 10

3 3 5

3 3 4

4 3 1 2 3

5 2 0 2 0

3 2 6

627666

```
1 4 0 0
6 4 1 0 0 0
2 2 4 3
6 2 4 1 1 2
```

3.5 样例输出

3.6 数据范围和约定

对于 10% 的数据, $n \le 100, m \le 300$ 。 对于 20% 的数据, $n \le 2000, m \le 5000$ 。 对于 40% 的数据, $n \le 70000, m \le 200000$ 。 对于另外 20% 的数据, $n \le 25000, m \le 400000$ 。 对于 100% 的数据, $n \le 250000, m \le 450000$ 。

3.7 提示

未加密 (输入的数不需要与 lastans 异或) 的样例输入如下:

```
10 10
1 1
22
3 3
4 4
5 5
6 6
77
88
9 9
10 10
3 3 5
3 3 4
4 3 1 2 3
5 3 1 3 1
3 7 3
672333
1733
672333
2716
671447
```

时间限制:

12S

空间限制:

512M