MI AI API

Version 2.07

REVISION HISTORY

Revision No.	Description	Date
2.03	Initial release	04/12/2018
2.04	Updated for accuracy	02/23/2019
2.05	 Added MI_AI_SetAedAttr, MI_AI_GetAedAttr, MI_AI_EnableAed, MI_AI_DisableAed, and MI_AI_GetAedResult 	03/07/2019
2.06	Added description regarding audio algorithm	03/25/2019
2.07	Added MI_AI_SetExtAecChn and updated MI_AI_SetChnParam and MI_AI_GetChnParam	03/30/2019

TABLE OF CONTENTS

RE	VISIO	N HIST	ORY	i
TA	BLE O	F CONT	ENTS	ii
1.	API	参考		1
	1.1.	概述		1
	1.2.	功能模式	块 API	1
		1.2.1	MI AI SetPubAttr	3
		1.2.2	MI AI GetPubAttr	
		1.2.3	MI_AI_Enable	5
		1.2.4	MI_AI_Disable	6
		1.2.5	MI_AI_EnableChn	6
		1.2.6	MI_AI_DisableChn	7
		1.2.7	MI_AI_GetFrame	9
		1.2.8	MI_AI_ReleaseFrame	10
		1.2.9	MI_AI_SetChnParam	10
		1.2.10	MI_AI_GetChnParam	11
		1.2.11	MI_AI_EnableReSmp	12
		1.2.12	MI_AI_DisableReSmp	13
		1.2.13	MI_AI_SetVqeAttr	
		1.2.14	MI_AI_GetVqeAttr	14
		1.2.15	= =1-	
		1.2.16	MI_AI_DisableVqe	16
		1.2.17		
			MI_AI_SaveFile	
			MI_AI_SetVqeVolume	
			MI_AI_GetVqeVolume	
		1.2.21		
			MI_AI_GetAencAttr	
			MI_AI_EnableAenc	
			MI_AI_DisableAenc	
			MI_AI_SetAedAttr	
			MI_AI_GetAedAttr	
			MI_AI_EnableAed	
			MI_AI_DisableAed	
			MI_AI_GetAedResult	
_	**		MI_AI_SetExtAecChn	
2.	AI 娄			
	2.1.		DIO_DEV	
	2.2.	_	DIO_MAX_CHN_NUM	
	2.3.		CHN	
	2.4.	_	DIO_SampleRate_e	
	2.5.	_	DIO_Bitwidth_e	
	2.6.	MI_AUI	DIO_Mode_e	29

:	2.7.	MI_AUDIO_SoundMode_e2	9
	2.8.	MI_AUDIO_AencType_e	0
:	2.9.	MI_AUDIO_G726Mode_e3	0
:	2.10.	MI_AUDIO_I2sFmt_e3	31
:	2.11.	MI_AUDIO_I2sMclk_e3	32
	2.12.	MI_AUDIO_I2sConfig_t	32
:	2.13.	MI_AUDIO_Attr_t3	3
		MI_AI_ChnParam_t3	
		MI_AUDIO_Frame_t3	
	2.16.	MI_AUDIO_AecFrame_t	35
	2.17.	MI_AUDIO_SaveFileInfo_t	6
		MI_AI_VqeConfig_t3	
	2.19.	MI_AUDIO_HpfConfig_t	17
	2.20.	MI_AUDIO_HpfFreq_e3	8
	2.21.	MI_AI_AecConfig_t3	8
		MI_AUDIO_AnrConfig_t3	
		MI_AUDIO_NrSpeed_e4	
	2.24.	MI_AUDIO_AgcConfig_t4	1
		AgcGainInfo_t4	
:	2.26.	MI_AUDIO_EqConfig_t4	ŀ3
	2.27.	MI_AI_AencConfig_t4	13
		MI_AUDIO_AencG711Config_t4	
		MI_AUDIO_AencG726Config_t4	
	2.30.	MI_AUDIO_AlgorithmMode_e4	15
	2.31.	MI_AI_AedConfig_t4	6
	2.32.	MI_AUDIO_AedSensitivity_e4	6
	2.33.	MI_AI_AedResult_t4	8
	2.34.	MI_AI_ChnGainConfig_t4	8
:	错误	9 5	O

1. API 参考

1.1. 概述

音频输入(Audio Input, AI)主要实现配置及启用音频输入设备、获取音频帧数据等功能。

1.2. 功能模块 API

API 名	功能
MI_AI_SetPubAttr	设置 AI 设备属性
MI_AI_GetPubAttr	获取 AI 设备属性
MI_AI_Enable	启用 AI 设备
MI_AI_Disable	禁用 AI 设备
MI_AI_EnableChn	启用 AI 通道
MI_AI_DisableChn	禁用 AI 通道
MI_AI_GetFrame	获取音频帧
MI_AI_ReleaseFrame	释放音频帧
MI_AI_SetChnParam	设置 AI 通道参数
MI_AI_GetChnParam	获取 AI 通道参数
MI_AI_EnableReSmp	启用 AI 重采样
MI_AI_DisableReSmp	禁用 AI 重采样。
MI_AI_SetVqeAttr	设置 AI 的声音质量增强功能相关属性
MI_AI_GetVqeAttr	获取 AI 的声音质量增强功能相关属性
MI_AI_EnableVqe	使能 AI 的声音质量增强功能
MI_AI_DisableVqe	禁用 AI 的声音质量增强功能
MI_AI_ClrPubAttr	清除 AI 设备属性
MI_AI_SaveFile	开启音频输入保存文件功能
MI_AI_SetVqeVolume	设置声音质量增强功能中的音量大小
MI_AI_GetVqeVolume	获取声音质量增强功能中的音量大小
MI_AI_SetAencAttr	设置 AI 编码功能相关属性
MI_AI_GetAencAttr	获取 AI 编码功能相关属性
MI_AI_EnableAenc	使能 AI 编码功能
MI_AI_DisableAenc	禁止 AI 编码功能
MI_AI_SetAedAttr	设置声音事件检测相关属性
MI_AI_GetAedAttr	获取声音事件检测相关属性

API 名	功能
MI_AI_EnableAed	使能声音检测功能
MI_AI_DisableAed	禁止声音检测功能
MI_AI_GetAedResult	获取声音检测结果
MI_AI_SetExtAecChn	设置回声消除功能参考的外部 AI 通道

1.2.1 MI_AI_SetPubAttr

▶ 功能

设置 AI 设备属性。

▶ 语法

MI_S32 MI_AI_SetPubAttr(MI_AUDIO_DEV AiDevId, MI_AUDIO_Attr_t *pstAttr);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
pstAttr	AI 设备属性指针。	输入

▶ 返回值

返回值

▶ 依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

音频输入设备的属性决定了输入数据的格式,输入设备属性包括工作模式、采样率、采样精度、buffer 大小、每帧的采样点数和通道数目。这些属性应与对接 Codec 配置的时序一致,即能成功对接。

● 工作模式

音频输入输出目前支持 12s 主模式、12s 从模式,但每个音频设备支持的内容可能有出入。

采样率

采样率指一秒中内的采样点数,采样率越高表明失真度越小,处理的数据量也就随之增加。一般来说语音使用 8k 采样率,音频使用 32k 或以上的采样率;设置时请确认对接的 Audio Codec 是否支持所要设定的采样率。

● 采样精度

采样精度指某个通道的采样点数据宽度,同时决定整个设备的通道分布。采样精度支持 16bit,实际应用中采样精度还受 Audio Codec 限制。

● buffer 大小

MI_AUDIO_Attr_t 中的 u32FrmNum 项用于配置 AI 中用于接收音频数据的缓存的音频帧帧数,建议配置 为 5 以上,否则可能出现采集丢帧等异常。

● 每帧的采样点数

当音频采样率较高时,建议相应地增加每帧的采样点数目。如要将这些采集到的音频数据送编码,则应保证每帧的持续时长不少于 10ms (例如 16K 的采样频率下每帧的采样点数至少应设置为 160,如果声音有断断续续,可以适当增加每帧的采样点数,参数设置与具体芯片的性能有关),否则解码后声音可能有异常。

● 通道数目

通道数目指当前输入设备的 AI 功能的信道数目,需与对接的 Audio Codec 的配置保持一致;支持 1 路、2 路、4 路、8 路、16 路。

● 时钟分时通道数目

时钟分时通道数目决定了主模式下当前输入设备的 AI 支持通道数,与对接的 Audio Codec 及配置的信道数目相关。

▶ 举例

```
下面的代码实现设置 AI 设备属性及启用 AI 设备。
MI S32 ret;
MI AUDIO Attr t stAttr;
MI_AUDIO_Dev AiDevId = 0;
stAttr.eBitwidth = E_MI_AUDIO_BIT_WIDTH_16;
stAttr.eSamplerate = E_MI_AUDIO_SAMPLE_RATE_8000;
stAttr.eSoundmode = E_MI_AUDIO_SOUND_MODE_MONO;
stAttr.eWorkmode = E_MI_AUDIO_MODE_I2S_SLAVE;
stAttr.u32FrmNum = 5;
stAttr.u32PtNumPerFrm = 160;
stAttr.u32ChnCnt = 2;
/* set public attribute of AI device*/
ret = MI_AI_SetPubAttr(AiDevId, &stAttr);
if(MI_OK != ret)
{
     printf("set ai %d attr err:0x%x\n", AiDevId, ret);
     return ret;
/* enable AI device */
ret = MI AI Enable(AiDevId);
if(MI OK != ret)
{
     printf("enable ai dev %d err:0x%x\n", AiDevId, ret);
     return ret;
}
```

1.2.2 MI_AI_GetPubAttr

▶ 功能

获取 AI 设备属性。

▶ 语法

MI_S32 MI_AI_GetPubAttr(MI_AUDIO_DEV AiDevId, MI_AUDIO_Attr_t*pstAttr);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
pstAttr	AI 设备属性指针。	输入

返回值

返回值 $\begin{cases} 0 & \text{成功} \\ & \\ & \\ & \\ & \\ & \\ & \end{cases}$ KD

▶ 依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

- 获取的属性为前一次配置的属性。
- 如果从来没有配置过属性,则返回失败。
- ▶ 举例

```
MI_S32 ret;
MI_AUDIO_DEV AiDevId = 0;
MI_AUDIO_Attr_t stAttr;
ret = MI_AI_GetPubAttr(AiDevId, &stAttr);
if(MI_OK != ret)
{
    printf("get ai %d attr err:0x%x\n", AiDevId, ret);
    return ret;
}
```

1.2.3 MI_AI_Enable

▶ 功能

启用 AI 设备。

▶ 语法

MI_S32 MI_AI_Enable(MI_AUDIO_DEV AiDevId);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败,}$ 参照错误码.

依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

- 必须在启用前配置 AI 设备属性,否则返回属性未配置错误
- 如果 AI 设备已经处于启用状态,则直接返回成功。
- ▶ 举例

请参见 MI_AI_SetPubAttr 的举例。

1.2.4 MI AI Disable

功能

禁用 AI 设备。

语法

MI_S32 MI_AI_Disable(MI_AUDIO_DEV AiDevId);

形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入

返回值

- 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a
- Ж 注意
 - 如果 AI 设备已经处于禁用状态,则直接返回成功
 - 禁用 AI 设备前必须先禁用该设备下已启用的所有 AI 通道
 - 要求在禁用 AI 设备之前,先禁用与之关联、使用 AI 的音频数据的通道和设备,否则可能导致该接口调 用失败
- 举例

```
MI S32 ret;
MI_AUDIO_DEV AiDevId = 0;
ret = MI_AI_Disable(AiDevId);
if(MI_OK != ret)
printf("disable ai %d err:0x%x\n", AiDevId);
return ret;
```

1.2.5 MI_AI_EnableChn

功能

启用 AI 通道

语法

MI_S32 MI_AI_EnableChn(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

形参

参数名称	描述	输入/输出
------	----	-------

- 6 -

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	支持的通道范围由AI设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定,详见	
	MI_AUDIO_SoundMode_e定义的描述。	

返回值

- ▶ 依赖
 - 头文件: mi_ai.h库文件: libmi.a
- ※ 注意
 - 启用 AI 通道前,必须先启用其所属的 AI 设备,否则返回设备未启动的错误码
- ▶ 举例

无

1.2.6 MI_AI_DisableChn

▶ 功能

禁用 AI 通道

▶ 语法

MI_S32 MI_AI_DisableChn(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, MI_AUDIO_MAX_CHN_NUM)。	

▶ 返回值

- 依赖
 - 头文件: mi_ai.h ● 库文件: libmi.a
- ※ 注意

无

MI AI API

Version 2.07

▶ 举例

无

1.2.7 MI_AI_GetFrame

功能

获取音频帧

▶ 语法

MI_S32 MI_AI_GetFrame(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AUDIO_Frame_t*pstFrm, MI_AUDIO_AecFrame_t *pstAecFrm , MI_S32 s32MilliSec);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	支持的通道范围由AI设备属性中的最大通道个数	
	u32ChnCnt 与声道模式eSoundmode 决定。	
pstFrm	音频帧结构体指针。	输出
pstAecFrm	回声抵消参考帧结构体指针。	输出
s32MilliSec	获取数据的超时时间	输入
	-1 表示阻塞模式,无数据时一直等待;	
	0 表示非阻塞模式,无数据时则报错返回;	
	>0表示阻塞s32MilliSec毫秒,超时则报错返回。	

返回值

▶ 依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

- 如果需要获取回声抵消参考帧,pstAecFrm 不能是空指针,如果不想获取回声抵消参考帧 pstAecFrm 置为空指针即可
- ullet AI 模块会缓存音频帧数据,用于用户态获取。缓存的深度通过 MI_AI_SetChnParam 接口设定,默认为 0
- s32MilliSec 的值必须大于等于-1,等于-1 时采用阻塞模式获取数据,等于 0 时采用非阻塞模式获取数据,大于 0 时,阻塞 s32MilliSec 毫秒后,没有数据则返回超时并报错
- 获取音频帧数据前,必须先使能对应的 AI 通道
- 本接口支持 select 操作

▶ 举例

无

1.2.8 MI_AI_ReleaseFrame

▶ 功能

释放音频帧

▶ 语法

MI_S32 MI_AI_ReleaseFrame(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AUDIO_Frame_t *pstFrm, MI_AUDIO_AecFrame_t *pstAecFrm);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 支持的通道范围由AI设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
pstFrm	音频帧结构体指针。	输出
pstAecFrm	回声抵消参考帧结构体指针。	输出

▶ 返回值

- ▶ 依赖
 - 头文件: mi_ai.h库文件: libmi.a
- ※ 注意
 - 如果不需要释放回声抵消参考帧,pstAecFrm 置为 NULL 即可
- 举例无

1.2.9 MI_AI_SetChnParam

▶ 功能

设置 AI 通道参数

▶ 语法

MI_S32 MI_AI_SetChnParam(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AI_ChnParam_t *pstChnParam);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 支持的通道范围由AI设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
pstChnParam	音频通道参数结构体指针。	输入

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功}. \\ \\ & \text{非 0} & \text{失败,} \\ \end{cases}$ %照错误码。

▶ 依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

无

▶ 举例

无

1.2.10 MI_AI_GetChnParam

▶ 功能

获取 AI 通道参数

▶ 语法

MI_S32 MI_AI_GetChnParam(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AI_ChnParam_t *pstChnParam);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 支持的通道范围由AI设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
pstChnParam	音频通道参数结构体指针。	输出

▶ 返回值

▶ 依赖

头文件: mi_ai.h库文件: libmi.a

※ 注意

无

▶ 挙例无

1.2.11 MI_AI_EnableReSmp

▶ 功能

启用 AI 重采样

▶ 语法

MI_S32 MI_AI_EnableReSmp(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AUDIO_SampleRate_e eOutSampleRate);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 支持的通道范围由AI设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入
eOutSampleRate	音频重采样的输出采样率。	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{ # 0 } \\ \end{cases}$$
 失败,参照错误码。

- 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libSRC_LINUX.so
- ※ 注意
 - 在启用 AI 通道之后,调用此接口启用重采样功能。
 - 允许重复启用重采样功能,但必须保证后配置的属性与之前配置的属性一样。
 - 在禁用 AI 通道之后,如果重新启用 AI 通道,并使用重采样功能,需调用此接口重新启用重采样。

▶ 举例

```
以 AI 从 32K 到 8K 的重采样为例,配置如下:

/* dev attr of ai */

MI_AUDIO_SampleRate_e eOutSampleRate;
    stAioAttr.u32ChnCnt = 2;

stAioAttr.eBitwidth = E_MI_AUDIO_BIT_WIDTH_16;

stAioAttr.eSamplerate = E_MI_AUDIO_SAMPLE_RATE_32000;

stAioAttr.eSoundmode = E_MI_AUDIO_SOUND_MODE_MONO;
    stAioAttr.u32FrmNum = 30;

stAioAttr.u32PtNumPerFrm = 320*4;
    eOutSampleRate = AUDIO_SAMPLE_RATE_8000;
    ret = MI_AI_EnableReSmp(AiDev, AiChn, eOutSampleRate);
    if (MI_OK != ret)
    {
        printf("func(%s) line(%d): failed, ret:0x%x\n", __FUNCTION__,__LINE__, ret);
        return ret;
    }
```

1.2.12 MI AI DisableReSmp

▶ 功能

禁用 AI 重采样

▶ 语法

MI_S32 MI_AI_DisableReSmp(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 支持的通道范围由AI设备属性中的最大通道个数 u32ChnCnt 与声道模式eSoundmode 决定。	输入

返回值

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libSRC_LINUX.so
- ※ 注意
 - 不再使用 AI 重采样功能的话,应该调用此接口将其禁用。
 - 要求在调用此接口之前,先禁用使用该 AI 设备相应通道音频数据的通道,否则可能导致该接口调用失败。

▶ 举例

无

1.2.13 MI_AI_SetVqeAttr

▶ 功能

设置 AI 的声音质量增强功能相关属性

▶ 语法

MI_S32 MI_AI_SetVqeAttr(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AUDIO_DEV AoDevId, MI_AO_CHN AoChn, MI_AI_VqeConfig_t *pstVqeConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
AoDevId	用于回声抵消的AO设备号。	输入
AoChn	用于回声抵消的AO通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstVqeConfig	音频输入声音质量增强配置结构体指针	输入

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功}. \\ \\ & \text{非 0} & \text{失败, 参照错误码}. \end{cases}$

- ▶ 依赖
 - 头文件: mi_ai.h ● 库文件: libmi.a
- ※ 注意
 - 启用声音质量增强功能前必须先设置相对应 AI 通道的声音质量增强功能相关属性。
 - 设置 AI 的声音质量增强功能相关属性前,必须先使能对应的 AI 通道。
 - 相同 AI 信道的声音质量增强功能不支持动态设置属性,重新设置 AI 通道的声音质量增强功能相关属性时,需要先关闭 AI 通道的声音质量功能,再设置 AI 通道的声音质量增强功能相关属性。
- ▶ 举例

无。

1.2.14 MI_AI_GetVqeAttr

▶ 功能

获取 AI 的声音质量增强功能相关属性。

▶ 语法

MI_S32 MI_AI_GetVqeAttr(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AI_VqeConfig_t *pstVqeConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstVqeConfig	音频输入声音质量增强配置结构体指针	输出

▶ 返回值

- ▶ 依赖
 - 头文件: mi_ai.h ● 库文件: libmi.a
- ※ 注意

无。

▶ 举例

无。

1.2.15 MI_AI_EnableVqe

▶ 功能

使能 AI 的声音质量增强功能。

▶ 语法

 $MI_S32\ MI_AI_EnableVqe(MI_AUDIO_DEV\ AiDevId,\ MI_AI_CHN\ AiChn);$

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

返回值 $\begin{cases} 0 & 成功。 \\ \\ # 0 & 失败,参照错误码。 \end{cases}$

▶ 依赖

● 头文件: mi_ai.h

● 库文件: libmi.a libAPC_LINUX.so

※ 注意

- 启用声音质量增强功能前必须先启用相对应的 AI 通道。
- 多次使能相同 AI 通道的声音质量增强功能时,返回成功。
- 禁用 AI 通道后,如果重新启用 AI 通道,并使用声音质量增强功能,需调用此接口重新启用声音质量增强功能。

▶ 举例

无。

1.2.16 MI_AI_DisableVqe

▶ 功能

禁用 AI 的声音质量增强功能。

▶ 语法

MI_S32 MI_AI_DisableVqe(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败,} \\ \end{cases}$ %照错误码。

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libAPC_LINUX.so

※ 注意

- 不再使用 AI 声音质量增强功能时,应该调用此接口将其禁用。
- 多次禁用相同 AI 通道的声音质量增强功能,返回成功。
- ▶ 举例

无。

1.2.17 MI_AI_ClrPubAttr

▶ 功能

清除 AI 设备属性。

▶ 语法

MI_S32 MI_AI_ClrPubAttr(MI_AUDIO_DEV AiDevId);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败,} \\ \end{cases}$ $\begin{cases} \text{кр,} \\ \text{кр,} \\ \text{кр,} \end{cases}$

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a
- ※ 注意
 - 清除设备属性前,需要先停止设备。
- ▶ 举例

无。

1.2.18 MI_AI_SaveFile

▶ 功能

开启音频输入保存文件功能

▶ 语法

MI_S32 MI_AI_SaveFile(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AUDIO_SaveFileInfo_t *pstSaveFileInfo);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstSaveFileInfo	音频保存文件属性结构体指针。	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{非 0} & \text{失败, 参照错误码} \end{cases}$$

依赖

● 头文件: mi_ai.h ● 库文件: libmi.a

※ 注意

- 此接口仅用于 dump AI 中 VQE 处理前后的文件,没有使能 VQE 功能时,使用该接口 dump AI 数据无效。调用后会在指定目录下写出三个指定大小文件。AudIn.pcm 为 VQE 处理前的输入帧,RefIn.pcm 为 VQE 处理前的回声抵消参考帧,VqeOut.pcm 为 VQE 处理后的输出帧
- ▶ 相关主题无。

1.2.19 MI_AI_SetVqeVolume

▶ 功能

设置声音质量增强功能中的音量大小

▶ 语法

MI_S32 MI_AI_SetVqeVolume(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_S32 s32VolumeDb);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
s32VolumeDb	声音质量增强功能中的音量大小(以Db 为单位)。	输入

返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ \# 0 & \text{失败,} \text{ 参照错误码} \end{cases}$$

依赖

● 头文件: mi_ai.h ● 库文件: libmi.a

※ 注意

无。

▶ 举例

无。

1.2.20 MI_AI_GetVqeVolume

▶ 功能

获取声音质量增强功能中的音量大小

▶ 语法

MI_S32 MI_AI_GetVqeVolume(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_S32 *ps32VolumeDb);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
ps32VolumeDb	声音质量增强功能中的音量大小(以Db 为单位)。	输出

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{ # 0 } \text{ 失败, 参照错误码} . \end{cases}$$

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a
- ※ 注意

无。

▶ 举例

无。

1.2.21 MI_AI_SetAencAttr

▶ 功能

设置AI编码功能相关属性

▶ 语法

MI_S32 MI_AI_SetAencAttr (MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AI_AencConfig_t *pstAencConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。 取值范围: [0, AUIDO_MAX_CHN_NUM]。	输入
pstAencConfig	音频编码配置结构体指针	输入

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ \text{非 0} & \text{失败,} \text{ $\phi \in \mathbb{R}^{3}$$$

- 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libg711.so libg726.so
- ※ 注意

无。

▶ 举例

无。

1.2.22 MI_AI_GetAencAttr

▶ 功能

获取 AI 编码功能相关属性

▶ 语法

MI_S32 MI_AI_GetAencAttr (MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn, MI_AI_AencConfig_t *pstAencConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstAencConfig	音频编码配置结构体指针	输出

▶ 返回值

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libg711.so libg726.so
- ※ 注意

无。

1.2.23 MI_AI_EnableAenc

▶ 功能

使能 AI 编码功能。

▶ 语法

MI_S32 MI_AI_EnableAenc (MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libg711.so libg726.so
- ※ 注意

无。

1.2.24 MI_AI_DisableAenc

▶ 功能

禁用 AI 编码功能。

▶ 语法

MI_S32 MI_AI_DisableAenc (MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

▶ 依赖

● 头文件: mi_ai.h

• 库文件: libmi.a libg711.so libg726.so

※ 注意

无。

1.2.25 MI_AI_SetAedAttr

▶ 功能

设置AI声音事件检测功能。

▶ 语法

MI_S32 MI_AI_SetAedAttr(<u>MI_AUDIO_DEV</u> AiDevId, <u>MI_AI_CHN</u> AiChn, <u>MI_AI_AedConfig_t</u> *pstAedConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstAedConfig	声音事件检测配置结构体指针	输入

返回值

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a
- ※ 注意

无。

$1.2.26\,MI_AI_GetAedAttr$

▶ 功能

获取 AI 声音事件检测功能配置。

▶ 语法

MI_S32 MI_AI_GetAedAttr(<u>MI_AUDIO_DEV_AiDevId</u>, <u>MI_AI_CHN_AiChn</u>, <u>MI_AI_AedConfig_t</u>*pstAedConfig);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstAedConfig	声音事件检测配置结构体指针	输出

▶ 返回值

返回值 $\begin{cases} 0 & \text{成功}. \\ \\ \text{非 0} & \text{失败,}$ 参照错误码.

- ▶ 依赖
 - 头文件: mi_ai.h库文件: libmi.a
- ※ 注意

无。

1.2.27 MI_AI_EnableAed

▶ 功能

使能 AI 声音事件检测功能。

▶ 语法

MI_S32 MI_AI_EnableAed(<u>MI_AUDIO_DEV_AiDevId</u>, <u>MI_AI_CHN_AiChn</u>);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libAED_LINUX.so
- ※ 注意

无。

1.2.28 MI_AI_DisableAed

▶ 功能

禁止 AI 声音事件检测功能。

▶ 语法

MI_S32 MI_AI_DisableAed(MI_AUDIO_DEV AiDevId, MI_AI_CHN AiChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功} \\ \\ & \text{ # 0 } \text{ 失败, 参照错误码} . \end{cases}$$

- ▶ 依赖
 - 头文件: mi_ai.h
 - 库文件: libmi.a libAED_LINUX.so

※ 注意

无。

1.2.29 MI_AI_GetAedResult

▶ 功能

获取 AI 声音事件检测结果。

▶ 语法

MI_S32 MI_AI_GetAedResult(<u>MI_AUDIO_DEV_AiDevId</u>, <u>MI_AI_CHN_AiChn</u>, <u>MI_AI_AedResult_t</u>*pstAedResult);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
pstAedResult	声音事件检测结果结构体指针	输出

▶ 返回值

▶ 依赖

● 头文件: mi_ai.h

● 库文件: libmi.a libAED_LINUX.so

※ 注意

无。

1.2.30 MI_AI_SetExtAecChn

▶ 功能

设置回声消除功能参考的 AI 通道。

▶ 语法

MI_S32 MI_AI_SetExtAecChn(<u>MI_AUDIO_DEV</u> AiDevId, <u>MI_AI_CHN</u> AiChn, <u>MI_AI_CHN</u> AiAECSndChn);

▶ 形参

参数名称	描述	输入/输出
AiDevId	音频设备号	输入
AiChn	音频输入通道号。	输入
	取值范围: [0, AUIDO_MAX_CHN_NUM]。	
AiAECSndChn	参考的AI通道号	输入

▶ 返回值

返回值
$$\begin{cases} 0 & \text{成功}. \\ \\ & \text{非 0} & \text{失败, 参照错误码.} \end{cases}$$

- ▶ 依赖
 - 头文件: mi_ai.h
- ※ 注意

无。

2. AI 数据类型

AI 模块相关数据类型定义如下:

MI_AUDIO_DEV	定义音频输入/输出设备编号
MI_AUDIO_MAX_CHN_NUM	定义音频输入/输出设备的最大通道数
MI_AI_CHN	定义音频输入通道
MI_AUDIO_SampleRate_e	定义音频采样率
MI_AUDIO_Bitwidth_e	定义音频采样精度
MI_AUDIO_Mode_e	定义音频输入输出工作模式
MI_AUDIO_SoundMode_e	定义音频声道模式
MI_AUDIO_Attr_t	定义音频输入输出设备属性结构体
MI_AI_ChnParam_t	定义通道参数结构体
MI_AUDIO_Frame_t	定义音频帧数据结构体
MI_AUDIO_AecFrame_t	定义回声抵消参考帧信息结构体
MI_AUDIO_SaveFileInfo_t	定义音频保存文件功能配置信息结构体
MI_AI_VqeConfig_t	定义音频输入声音质量增强配置信息结构体
MI_AUDIO_HpfConfig_t	定义音频高通滤波功能配置信息结构体
MI_AUDIO_HpfFreq_e	定义音频高通滤波截止频率
MI_AI_AecConfig_t	定义音频回声抵消配置信息结构体
MI_AUDIO_AnrConfig_t	定义音频语音降噪功能配置信息结构体
MI_AUDIO_AgcConfig_t	定义音频自动增益控制配置信息结构体
MI_AUDIO_EqConfig_t	定义音频均衡器功能配置信息结构体
MI_AI_AecConfig_t	定义音频回音消除功能配置信息结构体
MI_AI_AencConfig_t	定义音频编码功能配置信息结构体
MI_AUDIO_AlgorithmMode_e	定义音频算法的运行模式
MI_AI_AedConfig_t	定义声音事件检测功能配置信息结构体
MI_AUDIO_AedSensitivity_e	定义声音事件检测的灵敏度
MI_AI_AedResult_t	定义声音事件检测的结果
MI_AI_ChnGainConfig_t	定义音频通道增益设置结构体

2.1. MI_AUDIO_DEV

▶ 说明

定义音频输入/输出设备编号。

▶ 定义

typedef MI_S32 MI_AUDIO_DEV

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.2. MI_AUDIO_MAX_CHN_NUM

▶ 说明

定义音频输入/输出设备的最大通道数。

▶ 定义

#define MI_AUDIO_MAX_CHN_NUM 16

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.3. MI AI CHN

▶ 说明

定义音频输入通道。

▶ 定义

typedef MI_S32 MI_AI_CHN

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.4. MI_AUDIO_SampleRate_e

▶ 说明

定义音频采样率。

▶ 定义

```
typedef enum {
    E_MI_AUDIO_SAMPLE_RATE_8000 =8000, /* 8kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_16000 =16000, /* 16kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_32000 =32000, /* 32kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_48000 =48000, /* 48kHz sampling rate */
    E_MI_AUDIO_SAMPLE_RATE_INVALID,
}MI_AUDIO_SampleRate_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_SAMPLE_RATE_8000	8kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_16000	16kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_32000	32kHz 采样率
E_MI_AUDIO_SAMPLE_RATE_48000	48kHz 采样率

※ 注意事项

这里枚举值不是从0开始,而是与实际的采样率值相同。

▶ 相关数据类型及接口

 $MI_AUDIO_Attr_t_{\circ}$

2.5. MI AUDIO Bitwidth e

▶ 说明

定义音频采样精度。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_BIT_WIDTH_16 =0, /* 16bit width */
    E_MI_AUDIO_BIT_WIDTH_24 =1, /* 24bit width */
    E_MI_AUDIO_BIT_WIDTH_MAX,
}MI_AUDIO_BitWidth_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_BIT_WIDTH_16	采样精度为 16bit 位宽
E_MI_AUDIO_BIT_WIDTH_24	采样精度为 24bit 位宽

※ 注意事项

目前软件只支持 16bit 位宽。

▶ 相关数据类型及接口 无。

2.6. MI AUDIO Mode e

▶ 说明

定义音频输入输出设备工作模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_MODE_I2S_MASTER, /* I2S master mode */
    E_MI_AUDIO_MODE_I2S_SLAVE, /* I2S slave mode */
    E_MI_AUDIO_MODE_TDM_MASTER, /* TDM master mode */
    E_MI_AUDIO_MODE_MAX,
}MI_AUDIO_Mode_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_MODE_I2S_MASTER	I2S 主模式
E_MI_AUDIO_MODE_I2S_SLAVE	I2S 从模式
E_MI_AUDIO_MODE_TDM_MASTER	TDM 主模式

※ 注意事项

主模式与从模式是否支持会依据不同的使用场景而有区别。

▶ 相关数据类型及接口

MI_AUDIO_Attr_t

2.7. MI AUDIO SoundMode e

▶ 说明

定义音频声道模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_SOUND_MODE_MONO =0, /* mono */
    E_MI_AUDIO_SOUND_MODE_STEREO =1, /* stereo */
    E_MI_AUDIO_SOUND_MODE_QUEUE =2, /*all data in One chn */
    E_MI_AUDIO_SOUND_MODE_BUTT,
}MI_AUDIO_SoundMode_e
```

▶ 成员

成员名称	描述	
E_MI_AUDIO_SOUND_MODE_MONO	单声道。	
E_MI_AUDIO_SOUND_MODE_STEREO	双声道。	
E_MI_AUDIO_SOUND_MODE_QUEUE	所有音频数据按顺序排列到1个通道里面, 针对音频采集时使用	

※ 注意事项

对于双声道模式,只应对左声道(即编号小于设备属性中通道数 u32ChnCnt 一半的通道)进行操作,SDK内部会自动对右声道也进行相应的操作。

▶ 相关数据类型及接口

MI_AUDIO_Attr_t

2.8. MI_AUDIO_AencType_e

▶ 说明

定义音频编码类型。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_AENC_TYPE_G711A = 0,
    E_MI_AUDIO_AENC_TYPE_G711U,
    E_MI_AUDIO_AENC_TYPE_G726,
    E_MI_AUDIO_AENC_TYPE_INVALID,
}MI_AUDIO_AencType_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_AENC_TYPE_G711A	G711A 编码。
E_MI_AUDIO_AENC_TYPE_G711U	G711U 编码。
E_MI_AUDIO_AENC_TYPE_G726	G726 编码。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AUDIO_AencG726Config_t

2.9. MI_AUDIO_G726Mode_e

▶ 说明

定义 G726 工作模式。

▶ 定义

```
typedef enum
{
    E_MI_AUDIO_G726_MODE_16 = 0,
    E_MI_AUDIO_G726_MODE_24,
    E_MI_AUDIO_G726_MODE_32,
    E_MI_AUDIO_G726_MODE_40,
    E_MI_AUDIO_G726_MODE_INVALID,
}MI_AUDIO_G726Mode_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_G726_MODE_16	G726 16K 比特率模式。
E_MI_AUDIO_G726_MODE_24	G726 24K 比特率模式。
E_MI_AUDIO_G726_MODE_32	G726 32K 比特率模式。
E_MI_AUDIO_G726_MODE_40	G726 40K 比特率模式

※ 注意事项

无

▶ 相关数据类型及接口

MI_AUDIO_AencG726Config_t

2.10. MI_AUDIO_I2sFmt_e

▶ 说明

I2S 格式设定。

▶ 定义

typedef enum
{
 E_MI_AUDIO_I2S_FMT_I2S_MSB,
 E_MI_AUDIO_I2S_FMT_LEFT_JUSTIFY_MSB,
}MI_AUDIO_I2sFmt_e;

▶ 成员

成员名称	描述
E_MI_AUDIO_I2S_FMT_I2S_MSB	I2S 标准格式,最高位优先
E_MI_AUDIO_I2S_FMT_LEFT_JUSTIFY_MSB	I2S 左对齐格式,最高位优先

※ 注意事项

无

▶ 相关数据类型及接口

MI_AUDIO_I2sConfig_t

3/30/2019

2.11. MI_AUDIO_I2sMclk_e

▶ 说明

I2S MCLK 设定

▶ 定义

typedef enum{
 E_MI_AUDIO_I2S_MCLK_0,
 E_MI_AUDIO_I2S_MCLK_12_288M,
 E_MI_AUDIO_I2S_MCLK_16_384M,
 E_MI_AUDIO_I2S_MCLK_18_432M,
 E_MI_AUDIO_I2S_MCLK_24_576M,
}MI_AUDIO_I2SMClk_e;

▶ 成员

成员名称	描述
E_MI_AUDIO_I2S_MCLK_0	关闭 MCLK
E_MI_AUDIO_I2S_MCLK_12_288M	设置 MCLK 为 12.88M
E_MI_AUDIO_I2S_MCLK_16_384M	设置 MCLK 为 16.384M
E_MI_AUDIO_I2S_MCLK_18_432M	设置 MCLK 为 18.432M
E_MI_AUDIO_I2S_MCLK_24_576M	设置 MCLK 为 24.576M

※ 注意事项

无

▶ 相关数据类型及接口

MI_AUDIO_I2sConfig_t

2.12. MI_AUDIO_I2sConfig_t

▶ 说明

定义 I2S 属性结构体。

▶ 定义

typedef struct MI_AUDIO_I2sConfig_s
{
 MI_AUDIO_I2sFmt_e eFmt;
 MI_AUDIO_I2sMclk_e eMclk;
 MI_BOOL bSyncClock;
}MI_AUDIO_I2sConfig_t;

成员名称	描述
eFmt	I2S 格式设置。
	静态属性。
eMclk	I2S MCLK 时钟设置。
	静态属性。
bSyncClock	AI 同步 AO 时钟,暂未支持,需设置成 FALSE。
	静态属性。

- ※ 注意事项无。
- ▶ 相关数据类型及接口 MI_AUDIO_Attr_t

2.13. MI_AUDIO_Attr_t

▶ 说明

定义音频输入输出设备属性结构体。

▶ 定义

成员名称	描述
eSamplerate	音频采样率。
	静态属性。
eBitwidth	音频采样精度(从模式下,此参数必须和音频 AD/DA 的
	采样精度匹配)。
	静态属性。
eWorkmode	音频输入输出工作模式。
	静态属性。
eSoundmode	音频声道模式。
	静态属性。
u32FrmNum	缓存帧数目。
	取值范围: [2, MAX_AUDIO_FRAME_NUM]。
	静态属性。
u32PtNumPerFrm	每帧的采样点个数。
	取值范围为: 128, 128*2, ···, 128*N。
	静态属性。
u32CodecChnCnt	支持的 codec 通道数目,即决定了 codec 到 AIO 的
	I2S/PCM 时序(时分复用关系),取值范围1、2、4、
	8、16(最大取值为 MI_AUDIO_MAX_CHN_NUM)。与对接
	的 codec 和 u32ChnCnt 相关,要求 u32CodecChnCnt
	大于等于 u32ChnCnt。
u32ChnCnt	支持的通道数目,实际可使能的最大通道数。取值:1、
	2、4、8、16。(输入最多支持 MI_AUDIO_MAX_CHN_NUM

成员名称	描述
	个通道,输出最多支持2个通道)
MI_AUDIO_I2sConfig_t stI2sConfig;	设置 I2S 工作属性

无。

▶ 相关数据类型及接口

MI_AI_SetPubAttr

2.14. MI_AI_ChnParam_t

▶ 说明

定义通道参数结构体。

▶ 定义

▶ 成员

成员名称	描述
stChnGain	音频通道的增益设定。
u32Reserved	保留,未使用。

※ 注意事项

无。

▶ 相关数据类型及接口

MI AI SetChnParam MI AI GetChnParam

2.15. MI_AUDIO_Frame_t

▶ 说明

定义音频帧结构体。

▶ 定义

```
typedef struct MI_AUDIO_Frame_s

{

    MI_AUDIO_BitWidth_e eBitwidth; /*audio frame bitwidth*/
    MI_AUDIO_SoundMode_e eSoundmode; /*audio frame momo or stereo mode*/
    void *apVirAddr[MI_AUDIO_MAX_CHN_NUM];
    MI_U64 u64TimeStamp;/*audio frame timestamp*/
    MI_U32 u32Seq; /*audio frame seq*/
    MI_U32 u32Len; /*data lenth per channel in frame*/
```

MI_U32 au32PoolId[2]; }MI_AUDIO_Frame_t;

▶ 成员

成员名称	描述
eBitwidth	音频采样精度
eSoundmode	音频声道模式。
pVirAddr[MI_AUDIO_MAX_CHN_NUM]	音频帧数据虚拟地址。
u64TimeStamp	音频帧时间戳。
	以 μs 为单位
u32Seq	音频帧序号。
u32Len	音频帧长度。
	以 byte 为单位。
u32PoolId[2]	音频帧缓存池 ID。

※ 注意事项

- u32Len(音频帧长度)指单个声道的数据长度。
- 单声道数据直接存放,采样点数为 u32PtNumPerFrm,长度为 u32Len;立体声数据按左右声道分开存放, 先存放采样点为 u32PtNumPerFrm、长度为 u32Len 的左声道数据,然后存放采样点为 u32PtNumPerFrm, 长度为 u32Len 的右声道数据。
- ▶ 相关数据类型及接口 无。

2.16. MI_AUDIO_AecFrame_t

▶ 说明

定定义音频回声抵消参考帧信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AecFrame_s
{
     MI_AUDIO_Frame_t stRefFrame; /* aec reference audio frame */
     MI_BOOL bValid; /* whether frame is valid */
}MI_AUDIO_AecFrame_t;
```

▶ 成员

成员名称	描述
stRefFrame	回声抵消参考帧结构体。
bValid	参考帧有效的标志。 取值范围: TRUE:参考帧有效。 FALSE:参考帧无效,无效时不能使用此参 考帧进行回声抵消。

※ 注意事项

无。

▶ 相关数据类型及接口 无。

2.17. MI_AUDIO_SaveFileInfo_t

▶ 说明

定义音频保存文件功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_SaveFileInfo_s

{
     MI_BOOL bCfg;
     MI_U8 szFilePath[256];
     MI_U32 u32FileSize; /*in KB*/
} MI_AUDIO_SaveFileInfo_t
```

▶ 成员

成员名称	描述
bCfg	配置使能开关。
szFilePath	音频文件的保存路径
u32FileSize	文件大小,取值范围[1,10240]KB。

※ 注意事项 无

► 相关数据类型及接口 MI_AI_SaveFile

2.18. MI AI VgeConfig t

▶ 说明

定义音频输入声音质量增强配置信息结构体。

▶ 定义

```
typedef struct MI_AI_VqeConfig_s

{
    MI_BOOL bHpfOpen;
    MI_BOOL bAecOpen;
    MI_BOOL bAnrOpen;
    MI_BOOL bAgcOpen;
    MI_BOOL bEqOpen;
    MI_S32 s32WorkSampleRate;
    MI_S32 s32FrameSample;
    MI_AUDIO_HpfConfig_t stHpfCfg;
    MI_AI_AecConfig_t stAecCfg;
    MI_AUDIO_AnrConfig_t stAnrCfg;
    MI_AUDIO_AgcConfig_t stAgcCfg;
    MI_AUDIO_EqConfig_t stEqCfg;
}MI_AUDIO_EqConfig_t stEqCfg;
}MI_AI_VqeConfig_t;
```

▶ 成员

成员名称	描述
bHpfOpen	高通滤波功能是否使能标志。
bAecOpen	回声抵消功能是否使能标志。
bAnrOpen	语音降噪功能是否使能标志。
bAgcOpen	自动增益控制功能是否使能标志
bEqOpen	均衡器功能是否使能标志
s32WorkSampleRate	工作采样频率。该参数为内部功能算法工作 采样率。取值范围:8KHz/16KHz。默认值为 8KHz。
s32FrameSample	VQE 的帧长,即采样点数目。只能设置 128
stHpfCfg	高通滤波功能相关配置信息。
stAecCfg	回声抵消功能相关配置信息。
stAnrCfg	语音降噪功能相关配置信息。
stAgcCfg	自动增益控制相关配置信息。
stEqCfg	均衡器相关配置信息。

※ 注意事项无。

▶ 相关数据类型及接口 无。

2.19. MI_AUDIO_HpfConfig_t

▶ 说明

定义音频高通滤波功能配置信息结构体。

▶ 定义

▶ 成员

成员名称	描述
eMode	音频算法的运行模式。
eHpfFreq	高通滤波截止频率选择。 80: 截止频率为 80Hz; 120: 截止频率为 120Hz; 150: 截止频率为 150Hz。 默认值 150。

※ 注意事项

无。

▶ 相关数据类型及接口 MI_AI_VqeConfig_t

2.20. MI_AUDIO_HpfFreq_e

▶ 说明

定义音频高通滤波截止频率。

▶ 定义

```
typedef enum
{
     E_MI_AUDIO_HPF_FREQ_80 = 80, /* 80Hz */
     E_MI_AUDIO_HPF_FREQ_120 = 120, /* 120Hz */
     E_MI_AUDIO_HPF_FREQ_150 = 150, /* 150Hz */
     E_MI_AUDIO_HPF_FREQ_BUTT,
} MI_AUDIO_HpfFreq_e;
```

▶ 成员

成员名称	描述
E_MI_AUDIO_HPF_FREQ_80	截止频率为 80Hz。
E_MI_AUDIO_HPF_FREQ_120	截止频率为 120Hz。
E_MI_AUDIO_HPF_FREQ_150	截止频率为 150Hz。

※ 注意事项

默认配置为 150Hz

▶ 相关数据类型及接口

MI_AI_VqeConfig_t

2.21. MI_AI_AecConfig_t

▶ 说明

定义音频回声抵消配置信息结构体。

▶ 定义

```
typedef struct MI_AI_AecConfig_s
{
     MI_BOOL bComfortNoiseEnable;
     MI_S16 s16DelaySample;
     MI_U32 u32AecSupfreq[6];
     MI_U32 u32AecSupIntensity[7];
     MI_S32 s32Reserved;
} MI_AI_AecConfig_t;
```

成员名称	描述
成员石协	加处
bComfortNoiseEnable	是否添加噪音。 0: 不添加;
	1: 添加。

成员名称	描述
160 1 6 1	采样点样本延迟个数。
s16DelaySample	仅在 AEC 为立体声处理时有效,默认值为 0。
u32AecSupfreq	回声消除保护频率范围,后 1 个数据必须大于等于前 1 个数据。如: u32AecSupfreq[0] = 10,则: u32AecSupfreq[1]必须大于等于 10。当前采样率对应的最高频率平均分成 127份,频率范围则是对应多少份组成一个频带。如: 当前采样率为 16K,对应的最大频率为8K,每一份为 8000 / 127 \approx 63Hz,在推荐值 { 4 6 36 49 50 51} 的设定下,保护范围为 { 0~4 * 63Hz, 4~6 * 63Hz, 6~36 * 63Hz, 36~49 * 63Hz, 49~50 * 63Hz, 50~51 * 63Hz, 51-127 * 63Hz} = { 0~252Hz, 252~378Hz, 378~2268Hz, 2268~3087Hz, 3087~3150Hz, 3150~3213Hz, 3213Hz~8000Hz} 范围 [1, 127];步长 1推荐值 { 4, 6, 36, 49, 50, 51}
u32AecSupIntensity	回音消除保护力度,数值越小保护效果越强。此参数与 u32AecSupfreq 相对应,u32AecSupIntensity[0]对应 0~u32AecSupfreq[0], u32AecSupIntensity[1]对应 u32AecSupfreq[0]~ u32AecSupfreq[1],以此类推。 范围[0,15];步长1推荐值{5,4,4,5,10,10,10}

➤ 相关数据类型及接口 MI_AI_VqeConfig_t

2.22. MI_AUDIO_AnrConfig_t

▶ 说明

定义音频语音降噪功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AnrConfig_s
{

    <u>MI_AUDIO_AlgorithmMode_e</u> eMode;

    MI_U32 u32NrIntensity;

    MI_U32 u32NrSmoothLevel;

    MI_AUDIO_NrSpeed_e eNrSpeed;
} MI_AUDIO_AnrConfig_t;
```

▶ 成员

成员名称	描述
eMode	音频算法的运行模式 注: Anr 的模式选择将会在一定程度上影响 Agc 的功能
u32NrIntensity	降噪力度配置,配置值越大降噪力度越高,但同时也会带来细节音的丢失/损伤。 范围[0,30];步长1 默认值 20。
u32NrSmoothLevel	平滑化程度,值越大越平滑 范围[0,10];步长1 默认值10。
eNrSpeed	噪声收敛速度,低速,中速,高速 默认值中速。

※ 注意事项

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

▶ 相关数据类型及接口

MI_AI_VqeConfig_t

2.23. MI_AUDIO_NrSpeed_e

▶ 说明

定义噪声收敛速度

▶ 定义

▶ 成员

成员名称	描述
E_MI_AUDIO_NR_SPEED_LOW	低速。
E_MI_AUDIO_NR_SPEED_MID	中速。
E MI AUDIO NR SPEED HIGH	高速。

※ 注意事项

无

▶ 相关数据类型及接口

 $MI_AI_VqeConfig_t$

2.24. MI_AUDIO_AgcConfig_t

▶ 说明

定义音频自动增益控制配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AgcConfig_s
    MI AUDIO AlgorithmMode e eMode;
    AgcGainInfo_t stAgcGainInfo;
                u32DropGainMax;
    MI_U32
    MI_U32
                u32AttackTime;
    MI_U32
                u32ReleaseTime;
    MI_S16
                s16Compression_ratio_input[5];
    MI_S16
                s16Compression_ratio_output[5];
    MI_S32
                s32TargetLevelDb;
    MI_S32
                s32NoiseGateDb;
    MI_U32
                u32NoiseGateAttenuationDb;
} MI_AUDIO_AgcConfig_t;
```

成员名称	描述
eMode	音频算法的运行模式
stAgcGainInfo	定义 AGC 增益的最大、最小和初始值
u32DropGainMax	增益下降的最大值,防止输出饱和 范围[0,60];步长1 默认值55。
u32AttackTime	增益下降时间区间长度,以 16 毫秒为 1 单位 范围[1,20];步长 1 默认值 0。
u32ReleaseTime	增益上升时间区间长度,以 16 毫秒为 1 单位 范围[1,20] : 步长 1 默认值 0。
s16Compression_ratio_input[5]	输入压缩比,必须配合 s16Compression_ratio_output 使用,透过多个 转折点实现多斜率的曲线 范围[-80, 0]dBFS;步长 1
s16Compression_ratio_output[5]	输出压缩比,必须配合 s16Compression_ratio_input 使用,透过多个转 折点实现多斜率的曲线 范围[-80, 0] dBFS;步长 1
s32TargetLevelDb	目标电平,经过处理后的最大电平门限 范围[-80,0]dB;步长1 默认值0。
s32NoiseGateDb	噪声底值 范围[-80,0];步长1 注:当值为-80,噪声底值将不起作用 默认值-55。
u32NoiseGateAttenuationDb	当噪声底值起效果时,输入源的衰减百分比 范围[0,100];步长1 默认值 0。

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

而 s16Compression_ratio_input 和 s16Compression_ratio_output 则需要根据所需要的增益曲线来设定。如下面的折线图所示,在输入增益为-80~0dB 划分为四段斜率,-80dB~-60dB 范围内保持原来的增益,斜率为 1,-60dB~-40dB 范围内需要稍微提高增益,斜率为 1.5,-40dB~-20dB 范围内斜率为 1.25,-20dB~0dB 范围内斜率为 0.25。根据曲线的转折点对 s16Compression_ratio_input 和 s16Compression_ratio_output 设置,若不需要那么多段曲线,则将数组不需要的部分填 0。

➤ 相关数据类型及接口 MI_AI_VqeConfig_t

2.25. AgcGainInfo_t

▶ 说明

AGC 增益的取值

▶ 定义

成员名称	描述
s32GainMax	增益最大值 范围[0,30];步长1 默认值 15。
s32GainMin	增益中间值 范围[-20,30];步长1 默认值 0。

成员名称	描述
s32GainInit	增益最小值 范围[-20,30];步长1 默认值0。

无

▶ 相关数据类型及接口

 $MI_AI_VqeConfig_t$

2.26. MI_AUDIO_EqConfig_t

▶ 说明

定义音频均衡器功能配置信息结构体。

▶ 定义

▶ 成员

成员名称	描述
eMode	音频算法的运行模式
s16EqGainDb[129]	均衡器增益调节取值,将当前采样率的频率范围分成 129 个频率范围来进行调节范围 $[-50,20]$; 步长 1 默认值 0 。如:当前采样率为 16 K,对应的最高频率为 8 K, $8000 / 129 ≈ 62Hz,则单个调节的频率范围为 62Hz,将 0-8K 划分成 \{0-1*62Hz,1-2*62Hz,2-3*62Hz,…, 128-129*62Hz 2-124Hz,2-124Hz,2-24Hz,24-24Hz$

※ 注意事项

无

▶ 相关数据类型及接口

MI_AI_VqeConfig_t

2.27. MI_AI_AencConfig_t

▶ 说明

定义音频编码功能配置信息结构体。

▶ 定义

```
typedef struct MI_AI_AencConfig_s
{
     MI_AUDIO_AencType_e eAencType;
     union
     {
          MI_AUDIO_AencG711Config_t stAencG711Cfg;
          MI_AUDIO_AnecG726Config_t stAencG726Cfg;
     };
}MI_AI_AencConfig_t;
```

▶ 成员

成员名称	描述
eAencType	音频编码类型。
stAencG711Cfg	G711 编码相关配置信息。
stAencG726Cfg	G726 编码相关配置信息。

※ 注意事项

无

▶ 相关数据类型及接口

 $MI_AI_SetAencAttr$

2.28. MI_AUDIO_AencG711Config_t

▶ 说明

定义音频编码功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AencG711Config_s
{
         MI_AUDIO_SampleRate_e eSamplerate;
         MI_AUDIO_SoundMode_e eSoundmode;
}MI_AUDIO_AencG711Config_t;
```

▶ 成员

成员名称	描述
eSamplerate	音频采样率。
eSoundmode	音频声道模式。

※ 注意事项

无

▶ 相关数据类型及接口

MI_AI_SetAencAttr

2.29. MI_AUDIO_AencG726Config_t

▶ 说明

定义音频编码功能配置信息结构体。

▶ 定义

```
typedef struct MI_AUDIO_AencG726Config_s
{
    MI_AUDIO_SampleRate_e eSamplerate;
    MI_AUDIO_SoundMode_e eSoundmode;
    MI_AUDIO_G726Mode_e eG726Mode;
}MI_AUDIO_AencG726Config_t;
```

▶ 成员

成员名称	描述
eSamplerate	音频采样率。
eSoundmode	音频声道模式。
eG726Mode	G726 工作模式。

※ 注意事项 无

▶ 相关数据类型及接口

MI_AI_SetAencAttr

2.30. MI_AUDIO_AlgorithmMode_e

▶ 说明

音频算法运行的模式。

▶ 定义

成员名称	描述
E_MI_AUDIO_ALGORITHM_MODE_DEF	默认运行模式
AULT	当使用该模式时,将使用算法的默认参数
E_MI_AUDIO_ALGORITHM_MODE_USER	用户模式
	当使用该模式时,需要用户重新设定所有参数
	音乐模式
E_MI_AUDIO_ALGORITHM_MODE_MUSI	仅有 Anr 具有此模式,当为此模式时,Agc 不
C	会进行 speech enhancment(语音增强)处
	理

在 Anr 和 Agc 都有使能的情况下,当 Anr 设定为 user mode 时,Agc 会对音频数据做频域处理,会评估 出语音信号再做相应的增减,而当 Anr 设定为 default/music mode 时,Agc 会对音频数据做时域处理,对全频段的数据进行增减。

▶ 相关数据类型及接口

MI AUDIO HpfConfig t, MI AUDIO AnrConfig t, MI AUDIO AgcConfig t, MI_AUDIO_EqConfig_t

2.31. MI_AI_AedConfig_t

▶ 说明

声音事件检测功能配置信息结构体。

▶ 定义

▶ 成员

成员名称	描述
bEnableNr	是否启用声音事件检测的降噪功能
eSensitivity	声音事件检测功能的灵敏度
s32OperatingPoint	操作点 范围[-10, 10],步长为1 默认值为0 注:提高操作点将会降低误报率,减小操作 点将会降低漏测率
s32VadThresholdDb	Vad 的门槛值(dB) 范围[-80, 0],步长为1 默认值为-40
s32LsdThresholdDb	Lsd 的门槛值(dB) 范围[-80, 0],步长为 1 默认值为-15

※ 注意事项

无

▶ 相关数据类型及接口

MI AI SetAedAttr, MI AI GetAedAttr

2.32. MI_AUDIO_AedSensitivity_e

▶ 说明

声音事件检测的灵敏度

▶ 定义

▶ 成员

成员名称	描述
E_MI_AUDIO_AED_SEN_LOW	低灵敏度
E_MI_AUDIO_AED_SEN_MID	中等灵敏度
E_MI_AUDIO_AED_SEN_HIGH	高灵敏度

※ 注意事项

无

▶ 相关数据类型及接口

MI AI AedConfig t

2.33. MI_AI_AedResult_t

▶ 说明

声音事件检测结果结构体。

▶ 定义

```
typedef struct MI_AI_AedResult_s
{
     MI_BOOL bAcousticEventDetected;
     MI_BOOL bLoudSoundDetected;
}MI_AI_AedResult_t;
```

▶ 成员

成员名称	描述
bAcousticEventDetected	是否检测到声音事件
bLoudSoundDetected	是否检测到高分贝声音

※ 注意事项

无

▶ 相关数据类型及接口

MI AI GetAedResult

2.34. MI_AI_ChnGainConfig_t

▶ 说明

音频通道增益设置结构体。

定义
 typedef struct MI_AI_ChnGainConfig_s
 {
 MI_BOOL bEnableGainSet;
 MI_S16 s16FrontGain;
 }
}

MI_S16 s16RearGain;

}MI_AI_ChnGainConfig_t;

▶ 成员

成员名称	描述
bEnableGainSet	是否使能增益设置
s16FrontGain	前级增益
s16RearGain	后级增益

※ 注意事项

无

▶ 相关数据类型及接口

MI AI ChnParam t

3. 错误码

AI API 错误码如表 3-1 所示:

表 3-1 AI API 错误码

宏定义	描述
MI_AI_ERR_INVALID_DEVID	音频输入设备号无效
MI_AI_ERR_INVALID_CHNID	音频输入信道号无效
MI_AI_ERR_ILLEGAL_PARAM	音频输入参数设置无效
MI_AI_ERR_NOT_ENABLED	音频输入设备或通道没有使能
MI_AI_ERR_NULL_PTR	输入参数空指标错误
MI_AI_ERR_NOT_CONFIG	音频输入设备属性未设置
MI_AI_ERR_NOT_SUPPORT	操作不支持
MI_AI_ERR_NOT_PERM	操作不允许
MI_AI_ERR_NOMEM	分配内存失败
MI_AI_ERR_NOBUF	音频输入缓存不足
MI_AI_ERR_BUF_EMPTY	音频输入缓存为空
MI_AI_ERR_BUF_FULL	音频输入缓存为满
MI_AI_ERR_SYS_NOTREADY	音频输入系统未初始化
MI_AI_ERR_BUSY	音频输入系统忙碌
MI_AI_ERR_VQE_ERR	音频输入 VQE 算法处理失败
MI_AI_ERR_AENC_ERR	音频输入编码算法处理失败
MI_AI_ERR_AED_ERR	声音检测算法处理失败