ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

ALGORITMI DI ORDINAMENTO:

CountingSort

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

PROBLEMA dell'ORDINAMENTO

INPUT:

Una sequenza di n NATURALI $A=< a_0,a_1,...,a_{n-1}>$ tale che $0 \le a_i \le k, \ \forall i \in \{0,1,...,n-1\}.$

OUTPUT:

La sequenza A ordinata in ordine non decrescente

NON verranno effettuati confronti tra elementi di A

IDEA:

- Per ogni possibile valore j assunto dagli elementi di A (sono solo quelli che vanno da 0 a k), conto quanti elementi in A sono uguali a j, usando un array di appoggio C
- Genero la sequenza A appropriata, partendo da C

ESEMPIO $A = \langle 5, 8, 3, 0, 8, 10, 7, 7, 3, 2 \rangle$ k = 10

 Per ogni possibile valore j assunto dagli elementi di A (sono solo quelli che vanno da 0 a k), conto quanti elementi in A sono uguali a j, usando un array di appoggio C

ESEMPIO
$$A = \langle 5, 8, 3, 0, 8, 10, 7, 7, 3, 2 \rangle$$

$$k = 10$$

C

0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0

 Per ogni possibile valore j assunto dagli elementi di A (sono solo quelli che vanno da 0 a k), conto quanti elementi in A sono uguali a j, usando un array di appoggio C

Genero la sequenza A appropriata, partendo da C

- Usiamo un array C di appoggio, che deve avere tante celle quanti i possibili valori assunti dai valori in A —> k+1
- C[i] = numero di occorrenze in A del valore i

$$A = \langle 5, 8, 3, 0, 8, 10, 7, 7, 3, 2 \rangle$$

$$k = 10$$

0	1	2	3	4	5	6	7	8	9	10
1	0	1	2	0	1	0	2	2	0	1

• Per riempire C, scorriamo A e aggiorniamo C opportunamente

C

C

• Generiamo la sequenza appropriata in A, scorrendo C


```
Torniamo a contare
COUNTINGSORT(A,k)
                                                         le operazioni logico-
 n := length(A) // cardinalità di A
                                                              aritmetiche
 crea C[0..k]
 for i = 0 to k // inizializzazione C
                                                             \Theta(k)
  C[i] := 0
 for j = 0 to n-1
                                                             \Theta(n)
  C[A[j]] := C[A[j]] + 1
 //calcolo occorrenze: C[i] = numero di
 // occorrenze di i
                                                             \Theta(n+k)
 for i = 0 to k // "riempimento" di A
    while C[i] > 0
     A[j] := i
     j := j + 1
                                                            Test eseguito per ogni
     C[i] := C[i] - 1
                                                                indice di C
                Costo computazionale
             tempo \Theta(n+k) spazio \Theta(k)
                                                           Istruzioni eseguite per
                                                              ogni indice di A
```

COSTO COMPUTAZIONALE

Tempo
$$T(n) \in \Theta(k) + \Theta(n) + \Theta(n+k) = \Theta(n+k)$$
 e $T(n) \in \Omega(k)$

Spazio $\Theta(k)$

Buone notizie:

- Se $k \in O(n \log n) \Rightarrow T(n) \in O(n \log n)$
- Se $k \in O(n) \Rightarrow T(n) \in O(n)$

Ma come la mettiamo con il lower bound??

Brutte notizie:

- Se $k \in \Omega(n^t) \Rightarrow T(n) \in \Omega(n^t)$ e spazio $\Theta(n^t)$
- Se $k \in \Omega(2^n) \Rightarrow T(n) \in \Omega(2^n)$ e spazio $\Theta(2^n)$

CountingSort si usa quando $k \in O(n)$, meglio se $k \in \Theta(1)$