Prova Scritta di Robotica II

10 Luglio 2009

Esercizio 1

Il modello dinamico di un generico robot planare 2R è della forma

$$B(q)\ddot{q} + c(q,\dot{q}) + g(q) = \tau,$$

con

$$\boldsymbol{B}(\boldsymbol{q}) = \left(\begin{array}{cc} b_{11}(q_2) & b_{12}(q_2) \\ b_{12}(q_2) & b_{22} \end{array} \right), \quad \boldsymbol{c}(\boldsymbol{q}, \boldsymbol{\dot{q}}) = \left(\begin{array}{cc} c_1(q_2, \dot{q}_1, \dot{q}_2) \\ c_2(q_2, \dot{q}_1) \end{array} \right), \quad \boldsymbol{g}(\boldsymbol{q}) = \left(\begin{array}{cc} g_1(q_1, q_2) \\ g_2(q_1, q_2) \end{array} \right).$$

Siano inoltre le coppie motrici limitate da

$$|\tau_i| \leq T_i, \quad i = 1, 2.$$

In un dato stato $(\boldsymbol{q}_0, \dot{\boldsymbol{q}}_0)$ del robot, disegnare le regioni del piano delle accelerazioni (\ddot{q}_1, \ddot{q}_2) compatibili con i vincoli di coppia e indicare i punti a massima norma di accelerazione $\|\ddot{\boldsymbol{q}}\|$ per le seguenti situazioni:

- A) $g(q_0) = 0$ e $\dot{q}_0 = 0$. Si discutano i vari casi che si possono incontrare.
- B) q_0 qualsiasi e $\dot{q}_0 = 0$, nell'ipotesi che $T_i > |g_i(q)|, i = 1, 2, \forall q \in \mathbb{R}^2$.
- C) Generico stato (q_0, \dot{q}_0) . E' possibile in questo caso che l'origine $\ddot{q} = 0$ non appartenga alla regione compatibile? Quale sarebbe il significato di questo caso?

I disegni si possono fare in modo qualitativo, ma devono essere consistenti con le proprietà del modello dinamico.

Esercizio 2

Per il compito d'interazione con l'ambiente illustrato in figura, localizzare la terna di compito (task frame) e definire i vincoli naturali e artificiali. Il payload movimentato deve mantenere il contatto con le superfici ambientali scorrendo lungo la guida. Nella specificazione dei vincoli artificiali, si assegnino in particolare valori di riferimento che tendano a mantenere in modo robusto il contatto con il fondo della guida e ridurre gli sforzi di contatto in presenza di incertezze geometriche. Si considerino entrambi i casi in cui il payload debba scorrere con orientamento costante o variabile. Si discuta inoltre la possibilità di realizzare tale compito con un robot di tipo SCARA (a 4 gradi di libertà) e si proponga un opportuno schema a blocchi del controllore ibrido di forza-velocità in questo caso. Quali sono gli eventuali problemi?

[120 minuti di tempo; libri aperti]

Soluzioni

10 Luglio 2009

Esercizio 1

Per un dato valore dello stato del robot, i vincoli dovuti alle massime coppie (in valore assoluto) sui due giunti sono di tipo lineare (tutti gli elementi di B(q), $c(q.\dot{q})$ e g(q) sono costanti). Le regioni ammissibili per le accelerazioni di giunto sono pertanto dei poligoni (in generale dei poliedri in uno spazio n-dimensionale). La massima accelerazione in norma (euclidea) $\|\ddot{q}\| = \sqrt{\sum_{i=1}^n \ddot{q}_i^2}$ si avrà allora in corrispondenza (di coppie) di vertici di tale regione.

Nel caso n=2 considerato, si può parlare di pendenza delle rette che determinano la regione poligonale, distinguendo le tre situazioni (tutte ugualmente possibili, in funzione del valore dei parametri dinamici e della configurazione \boldsymbol{q} considerata) in cui $b_{12}>0,\ b_{12}<0$ o $b_{12}=0$. Viceversa, la definita positività della matrice di inerzia $\boldsymbol{B}(\boldsymbol{q})$ implica sempre che $b_{11}>0,\ b_{22}>0$ e det $\boldsymbol{B}=b_{11}b_{22}-b_{12}^2>0$.

Nel caso A $(g(q_0) = \mathbf{0} \text{ e } \dot{q}_0 = \mathbf{0}$, quindi anche $c(q_0, \mathbf{0}) = \mathbf{0}$) verrà considerata in dettaglio la costruzione grafica per la sola situazione $b_{12} > 0$. Le altre seguono immediatamente da considerazioni analoghe. I vincoli scalari sono

$$-T_1 \le b_{11}\ddot{q}_1 + b_{12}\ddot{q}_2 \le T_1$$

 \mathbf{e}

$$-T_2 \le b_{12}\ddot{q}_1 + b_{22}\ddot{q}_2 \le T_2.$$

Quando $b_{12} > 0$, le due rette delle equazioni omogenee associate,

$$b_{11}\ddot{q}_1 + b_{12}\ddot{q}_2 = 0 \quad \Rightarrow \quad \ddot{q}_2 = -\frac{b_{11}}{b_{12}}\ddot{q}_1$$

 \mathbf{e}

$$b_{12}\ddot{q}_1 + b_{22}\ddot{q}_2 = 0 \quad \Rightarrow \quad \ddot{q}_2 = -\frac{b_{12}}{b_{22}}\,\ddot{q}_1,$$

hanno entrambe pendenza negativa. Inoltre, la pendenza (in modulo) della prima è sempre superiore a quella della seconda in quanto

$$b_{11}b_{22} - b_{12}^2 > 0 \quad \Rightarrow \quad \frac{\frac{b_{11}}{b_{12}}}{\frac{b_{12}}{b_{22}}} > 1.$$

Le Figure 1–2 mostrano rispettivamente le bande ammissibili per le accelerazioni, dovute ai limiti di coppia al primo e al secondo giunto. La regione poligonale risultante e un vettore a massima norma di accelerazione sono riportati in Figura 3.

Nelle Figure 4 e 5 sono riportate le regioni ottenute per le situazioni $b_{12} < 0$ e $b_{12} = 0$, sempre relativamente al caso A. Si noti che in ogni situazione l'accelerazione $\ddot{q} = 0$ è sempre ammissibile.

Figura 1: Caso A con $b_{12}>0$: limiti sulla coppia del giunto 1

Figura 2: Caso A con $b_{12}>0$: limiti sulla coppia del giunto 2

Figura 3: Caso A con $b_{12} > 0$: regione risultante e determinazione della massima $\|\ddot{q}\|$ (viene mostrata solo una delle due soluzioni)

Figura 4: Caso A con $b_{12} < 0$: regione ammissibile e massima $\|\ddot{q}\|$ (è mostrata solo una delle due soluzioni)

Figura 5: Caso A con $b_{12}=0$: regione ammissibile e massima $\|\ddot{q}\|$ (è mostrata solo una delle due soluzioni)

Nel Caso B $(\boldsymbol{q}_0$ qualsiasi e $\dot{\boldsymbol{q}}_0=\boldsymbol{0}),$ I vincoli scalari diventano

$$-T_1 - g_1 \le b_{11}\ddot{q}_1 + b_{12}\ddot{q}_2 \le T_1 - g_1$$

 \mathbf{e}

$$-T_2 - g_2 \le b_{12}\ddot{q}_1 + b_{22}\ddot{q}_2 \le T_2 - g_2.$$

Nell'ipotesi fatta che $T_i > |g_i(q)| \ (\forall q \in \mathbb{R}^2)$, per i=1,2, i limiti superiori e inferiori mantengono lo stesso segno (rispettivamente, positivi e negativi) del caso di assenza di gravità. Tale ipotesi è più che ragionevole in quanto il dimensionamento delle coppie erogabili dai motori è tale da sostenere almeno il carico statico del robot stesso in una qualsiasi configurazione. Pertanto la situazione è simile a quella del Caso A, ma con la presenza ora di un offset sulle bande di accelerazioni ammissibili a causa della gravità. La regione relativa alla situazione $b_{12} < 0$ è riportata in Figura 6. E' qui illustrato un offset degli assi dovuto ad un vettore di gravità $g = (g_1 \ g_2)^T$ avente componenti di segno

$$g_1 < 0, \qquad g_2 > 0.$$

Si noti che il vettore di accelerazione $\ddot{q} = 0$ si mantiene sempre ammissibile.

Figura 6: Caso B con $b_{12} < 0$: regione ammissibile e spostamento degli assi dovuto al vettore di gravità g

Infine, nel Caso C i vincoli scalari diventano

$$-T_1 - (g_1 + c_1) \le b_{11}\ddot{q}_1 + b_{12}\ddot{q}_2 \le T_1 - (g_1 + c_1)$$

 \mathbf{e}

$$-T_2 - (g_2 + c_2) \le b_{12}\ddot{q}_1 + b_{22}\ddot{q}_2 \le T_2 - (g_2 + c_2).$$

In generale, è possibile che la combinazione dei termini di Coriolis e centrifughi (che crescono con il quadrato delle velocità) e/o di quelli di gravità porti a una situazione in cui $\ddot{q}=0$ non è più ammissibile. Ciò avviene tipicamente per regimi di velocità sufficientemente elevati. L'inammissibilità del vettore di accelerazione nulla sta a significare che tale regime di elevata velocità costante (in una data regione dello spazio delle configurazioni del robot) non è sostenibile con le date capacità di coppia massima dei motori. Una tale situazione è mostrata in Figura 7, disegnata quando

$$g_1 + c_1 > T_1 > 0$$
, $g_2 + c_2 < -T_2 < 0$.

Figura 7: Caso C con $b_{12} < 0$: regione ammissibile e spostamento degli assi dovuto al vettore di gravità g e al vettore di coppie di Coriolis e centrifughe c

Esercizio 2

Con riferimento al task frame $(\boldsymbol{x}_t, \boldsymbol{y}_t, \boldsymbol{z}_t)$ in figura, i vincoli naturali (geometrici) sono:

$$v_y=0, \quad v_z=0, \quad \omega_x=0, \quad \omega_y=0, \quad F_x=0, \quad M_z=0.$$

I vincoli artificiali, con i riferimenti scelti in modo da rispettare le specifiche del problema, sono:

$$F_y = 0$$
, $F_z = F_{z,d} > 0$, $M_x = 0$, $M_y = 0$, $v_x = v_{x,d} \neq 0$, $\omega_z = \omega_{z,d}$.

Nel caso di scorrimento con orientamento costante, si deve porre $\omega_{z,d} = 0$.

Con un robot avente mobilità sufficiente dell'organo terminale (almeno 6 gradi di libertà), uno schema di controllo ibrido avrebbe quattro anelli di forza e due di velocità nello spazio del compito. Nel caso di un robot SCARA è possibile invece realizzare solo quattro anelli di controllo indipendenti e disaccoppiati. La scelta delle *matrici di selezione* in forza e in velocità è quindi:

$$m{S}_f = \left(egin{array}{ccc} 0 & 0 \ 1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight), \qquad m{S}_v = \left(egin{array}{ccc} 1 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 1 \end{array}
ight).$$

In tal caso, non vengono realizzate le specifiche sui momenti M_x e M_y . Il relativo schema di controllo ibrido è deducibile da quello illustrato nel libro di testo (vedi paragrafi 9.5—9.7). Per non avere problemi deve ovviamente essere garantito a priori il parallelismo tra l'asse z_t del task frame e gli assi (tutti paralleli!) dei giunti del robot SCARA. In caso contrario, quando il payload è afferrato rigidamente dal gripper del robot ed è inserito nella guida, si creano dei momenti non controllabili sugli assi x_t e y_t che disturberanno permanentemente la corretta esecuzione del compito.

* * * * *