Problem Set #2

LATEST SUBMISSION GRADE

This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n)=7*T(n/3)+n^2$. What's the overall asymptotic running time (i.e., the value of T(n))?	1/1 point
\bigcirc $\theta(n \log n)$	
$\bigcirc \theta(n^2 \log n)$	
$\bigcirc \theta(n^{2.81})$	
$lacktriangledown$ $ heta(n^2)$	
\checkmark Correct a=7, b=3, d=2. Since b^d > a, this is case 2 of the Master Method.	
This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n)=9*T(n/3)+n^2$. What's the overall asymptotic running time (i.e., the value of T(n))?	1/1 point
$\bigcirc \theta(n \log n)$	
$\bigcirc \theta(n^2)$	
\bullet $\theta(n^2 \log n)$	
\bigcirc $\theta(n^{3.17})$	
✓ Correct	
	governed by the recurrence $T(n) = 7 * T(n/3) + n^2$. What's the overall asymptotic running time (i.e., the value of T(n))? $\theta(n \log n)$ $\theta(n^2 \log n)$ $\theta(n^2 \log n)$ $\theta(n^2)$ Correct $a=7$, $b=3$, $d=2$. Since $b \wedge d > a$, this is case 2 of the Master Method. This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n) = 9 * T(n/3) + n^2$. What's the overall asymptotic running time (i.e., the value of T(n))? $\theta(n \log n)$ $\theta(n^2)$ $\theta(n^3 \log n)$ $\theta(n^3 \log n)$

٥.		question will give you further practice with the Master Method. Suppose the running time of an algorithm is read by the recurrence $T(n)=5*T(n/3)+4n$. What's the overall asymptotic running time (i.e., the value of
	T(n))?	
	0 6	$\partial(n^2)$
	0	$9(n^{5/3})$
	● 6	$\mathcal{I}(n^{\log_3(5)})$
	0 6	$\theta(n\log(n))$
	0 6	$9(n^{2.59})$
	0	$O(n^{rac{\log 3}{\log n}})$
	~	Correct $a = 5, b = 3, d = 1$. Since $a > b^d$, this is case 3 of the Master Method.
4.		ider the following pseudocode for calculating a^b (where a and b are positive integers) 1/1 point FastPower(a,b):
	3	2 if b = 1 3 return a
	5	<pre>le else c := a*a ans := FastPower(c,[b/2])</pre>
	7 8	7 if b is odd 3 return a*ans
		else return ans Bend
	0	$ \Theta(b) $
	($\Theta(\log(b))$
	0	$\Theta(\sqrt{b})$
	0	$\Theta(b\log(b))$
	~	Correct Constant work per digit in the binary expansion of b.
	5.	Choose the smallest correct upper bound on the solution to the following recurrence: $T(1)=1$ and $T(n)\leq T([\sqrt{n}])+1$ for $n>1$. Here [X] denotes the "floor" function, which rounds down to the nearest integer. (Note that the Master Method does not apply.)
		$\bigcirc O(\sqrt{n})$
		\bigcirc $O(1)$
		\bigcirc $O(1)$ \bigcirc $O(\log n)$ \bigcirc $O(\log \log n)$