EEL 4930 Stats – Lecture 22

EEL 4930 Stats - Lecture 21

Properties of Distribution Functions

1.
$$0 \le F_X(x) \le 1$$

EEL 4930 Stats – Lecture 21

Properties of Distribution Functions

1.
$$0 \le F_X(x) \le 1$$

1. $0 \le F_X(x) \le 1$ $\{0 \le F_X(x) \le 1\}$ Pf: $F_X(x)$ is a prob. measure

EEL 4930

2. F_X (-∞) = 0 and F_X (∞) = 1

2. F_X (-∞) = 0 and F_X (∞) = 1

Proof is technical.

2. $F_X(-\infty) = 0$ and $F_X(\infty) = 1$

Proof is technical.

Basically, $F_X(-\infty)$ and $F_X(\infty)$ are defined as limits, and the corresponding subsets of the samples space $\{s \in S : X \le x\}$ are either shrinking to \emptyset or S

EEL 4930

3. $F_X(x)$ is monotonically nondecreasing,

Pf:
$$P\{X \in (-\infty, b]\}$$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a])$$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a])$$

+ $P(X \in (a, b])$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a]) + P(X \in (a, b])$$

$$\Rightarrow F_X(b) = F_X(a) + P(a < X \le b)$$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a]) + P(X \in (a, b])$$

$$\Rightarrow F_X(b) = F_X(a) + P(a < X \le b) \tag{1}$$

4.
$$P(a < X \le b) = F_X(b) - F_X(a)$$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a]) + P(X \in (a, b])$$

$$\Rightarrow F_X(b) = F_X(a) + P(a < X \le b) \tag{1}$$

4.
$$P(a < X \le b) = F_X(b) - F_X(a)$$

Pf: rewriting equation (1)

5. $F_X(x)$ is continuous on the right,

5. $F_X(x)$ is continuous on the right,

i.e.,
$$F_X(b) = \lim_{h\to 0} F_X(b+h) = F_X(b)$$

5. $F_X(x)$ is continuous on the right, i.e., $F_X(b) = \lim_{h\to 0} F_X(b+h) = F_X(b)$

(The value at a jump discontinuity is the value <u>after</u> the jump.)

5. $F_X(x)$ is continuous on the right, i.e., $F_X(b) = \lim_{h\to 0} F_X(b+h) = F_X(b)$

(The value at a jump discontinuity is the value <u>after</u> the jump.)

Proof is rather technical and will be omitted.

EEL 4930

6. $P(X > x) = 1 - F_X(x)$

6.
$$P(X > x) = 1 - F_X(x)$$

Pf:
$$\{X > x\} = \{X \le x\}^c$$

6. $P(X > x) = 1 - F_X(x)$

Pf:
$$\{X > x\} = \{X \le x\}^c$$

$$\Rightarrow P(X > x) = 1 - P(X \le x)$$

6.
$$P(X > x) = 1 - F_X(x)$$

Pf:
$$\{X > x\} = \{X \le x\}^c$$

 $\Rightarrow P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$