# Лекция 8 Периферийные модули: USB, Ethernet

План курса «Встраиваемые микропроцессорные системы»:

Лекция 1: Введение. Язык программирования С

Лекция 2: Язык программирования С. Стандартная библиотека языка С

Лекция 3: Применение языка С для встраиваемых систем

Лекция 4: Микроконтроллер

Лекция 5: Этапы разработки встраиваемых систем

Лекция 6: Разработка и отладка программ для встраиваемых систем

Лекция 7: Архитектура программ для встраиваемых систем

**Лекция 8:** Периферийные модули: USB, Ethernet



## **USB**

USB (Universal Serial Bus) - это универсальный последовательный интерфейс, который используется для подключения периферийных устройств к компьютерам и другим микропроцессорным системам.

#### Версии USB:

- USB 1.0 первая версия USB, выпущенная в 1996 году. Поддерживает скорость передачи данных до 1,5 Мбит/с.
- USB 1.1 улучшенная версия USB 1.0, выпущенная в 1998 году. Поддерживает скорость передачи данных до 12 Мбит/с.
- USB 2.0 вторая версия USB, выпущенная в 2000 году. Поддерживает скорость передачи данных до 480 Мбит/с.
- USB 3.0 третья версия USB, выпущенная в 2008 году. Поддерживает скорость передачи данных до 5 Гбит/с.
- USB 4 последняя версия, выпущенная в 2020 году. Поддерживает скорость передачи данных до 40 Гбит/с.

Во встраиваемых системах чаще всего применяются USB 1.1 и USB 2.0.



# **USB**: термины и определения

**USB Host (USB хост)** – это устройство, которое управляет передачей данных между USBустройствами. USB Host может быть встраиваемая система или персональный компьютер.

**USB Device (USB устройство)** — это периферийное устройство, которое подключается к компьютеру или другому устройству через интерфейс USB. Как правило, USB Device это встраиваемая система. Пример: USB флеш накопитель, принтер, другие устройства.

USB Device может быть со своим источником питания (как принтер) или питаться от USB Host (как флеш накопитель).

**USB OTG (On-The-Go)** — это технология, которая позволяет USB-устройству выступать как в роли хоста (Host), так и в роли периферии (Device).

VID — это 16-битный номер, который присваивается производителю USB-устройства. Чтобы получить VID, производитель должен зарегистрироваться в USB Implementers Forum (USB-IF).

**PID** – это 16-битный номер, который присваивается производителю для каждого конкретного продукта. PID может быть любым числом от 0 до 65535.

Чтобы пользоваться лого USB нужно быть членом USB-IF (иметь VID) и устройство должно пройти тестирование на соответствие стандарту.





## USB: разъемы

USB Type-A – используется в Host устройствах.





USB Type-B – используется в Device устройствах.





USB mini-B – используется в Device устройствах.





USB micro-B – используется в Device устройствах.





USB Type-C – используется в Host и Device устройствах.







| # | Название  | Цвет провода | Описание                                                                |
|---|-----------|--------------|-------------------------------------------------------------------------|
| 1 | $V_{BUS}$ | Красный      | +5 V                                                                    |
| 2 | D-        | Белый        | Data-                                                                   |
| 3 | D+        | Зеленый      | Data+                                                                   |
| 4 | ID        | Нет провода  | ID OTG<br>A разъем (Host):<br>GND<br>В резъем (Device):<br>не подключен |
| 5 | GND       | Черный       | GND                                                                     |









# USB: протокол

### Стек протокола USB:

- Физический уровень это уровень, который отвечает за передачу данных по физической линии связи. В USB применяется дифференциальный сигнал (D+/D+) с частотой передачи 12 МГц или 480 МГц.
- Логический уровень это уровень, который отвечает за форматирование данных для передачи. В производится пакетная передача данных с длиной пакета от 8 до 64 байт.
- Уровень управления это уровень, который отвечает за управление взаимодействием между USB устройствами и USB хостами. В нем применяется набор команд для управления подключением, отключение, передачей данных и т.д.
- Классовый уровень это уровень, который отвечает за реализацию конкретных функций USB-устройства. В нем используется набор классов для поддержки различных типов устройств, таких как клавиатуры, мыши, принтеры, флэш-накопители и т.д.



## USB: классы устройств

Основные классы USB:

Hub Class – класс для поддержки концентраторов.

Device Class – базовый класс для всех USB-устройств.

Human Interface Device Class (HID) — класс для поддержки устройств вводавывода, таких как клавиатуры, мыши, джойстики и т.д.

Mass Storage Class (MSC) — класс для поддержки устройств хранения данных, таких как флэш-накопители и внешние жесткие диски.

Communications and CDC Control Class (CDC) — класс для поддержки устройств связи, таких как модемы, телефоны и сетевые адаптеры.

Audio Class – класс для поддержки аудиоустройств, таких как звуковые карты, микрофоны и колонки.



# **USB**: реализация в встраиваемой системе

Преобразователь USB-UART

Во всех МК имеется интерфейс UART. По UART к МК подключается внешняя интегральная схема (например, FT232 или CP2102), которая содержит в себе полный стек протокола USB и работает как Communications and CDC Control Class. Производитель предоставляет драйверы VCP (Virtual COM Port) этого устройства для всех ОС. В ОС устройства отображаются как COMx или /dev/ttyUSBx, /dev/cu.x.





# **USB**: реализация в встраиваемой системе

• Контроллер USB в МК и стек протокола В некоторых МК имеется периферийный модуль USB. Как правило этот модуль поддерживает только первые три уровня стека протокола. Классовый уровень реализуется программным обеспечение. Можно реализовать любой класс устройств.





## USB: источник питания

Существует множество протоколов зарядки по USB, которые обеспечивают различные скорости зарядки и возможности.

- USB Power Delivery (PD) универсальный протокол, который поддерживает широкий диапазон мощностей от 5 до 100 Вт. Используется большинством современных устройств, включая смартфоны, планшеты, ноутбуки и другие устройства.
- Quick Charge (QC) это протокол, разработанный компанией Qualcomm, который поддерживает скорости зарядки до 18 Вт. QC используется в некоторых смартфонах и планшетах, а также в некоторых зарядных устройствах.

Другие протоколы: Pump Express (27 Bt, MediaTek), VOOC (Voltage Open Loop Multi-Step Constant-Current Charging, 65Bt, OPPO), SuperCharge (до 100 Bt, Huawei)

Протоколы зарядки по USB обычно используют различные комбинации напряжения и тока для достижения различных мощностей зарядки. Например, протокол PD может использовать напряжение от 5 до 20 В и ток до 5 А, что обеспечивает максимальную мощность 100 Вт.



## **Ethernet**

Ethernet (IEEE 802.3) — это семейство технологий пакетной передачи данных между устройствами в компьютерных и промышленных сетях. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде на канальном уровне модели OSI.

### Ethernet состоит из двух уровеней:

- Физический уровень (PHY): Стандарты IEEE 802.3 определяют физические среды (витая пара, коаксиал, оптоволокно), электрические/оптические параметры, кодирование и классы скоростей (от 10 Мбит/с до сотен Гбит/с).
- Канальный уровень (Data Link) подуровни LLC и MAC. Подуровень MAC задаёт формат кадра, MAC-адресацию, FCS, взаимодействие с PHY и принципы доступа к среде.



# Ethernet: уровень MAC

Кадр Ethernet включает в себя поля для MAC-адресов отправителя и получателя, типа протокола, полезной нагрузки (данные) и контрольной суммы для обнаружения ошибок.

Ethernet использует MAC-адреса (Media Access Control) для идентификации устройств в сети. Каждое устройство имеет уникальный MAC-адрес, который используется для обеспечения доставки кадров на канальном уровне. Пример адреса: ee:69:70:82:71:58

Ethernet совместим с большинством сетевых протоколов верхних уровней, включая TCP/IP, что делает его универсальным решением для построения сетевых инфраструктур.



# Ethernet: реализация в встраиваемой системе

• Преобразователь UART-Ethernet\_TCP/IP Выпускаются отдельные системы на модуле, которые содержат в себе полноценный Ethernet с TCP/IP стеком. Пример — TCP232.



• Контроллер Ethernet MAC в MK, PHY интегральная схема и стек протокола TCP/IP. PHY подключается к MK через MII/RMII Пример STM32F205 + RTL8201 + IwIP.





## TCP/IP

TCP/IP - это сетевая модель, которая описывает процесс передачи данных в цифровом виде. TCP/IP является стандартом де-факто для передачи данных в сети. Он используется в большинстве современных сетей, включая интернет.

| Прикладной<br>(Application Layer)                   | HTTP, FTP, DNS, Modbus TCP, PTP, NTP, SNMP, MQTT, CoAP, RIP                                                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Транспортный (Transport Layer)                      | TCP, UDP, SCTP, DCCP                                                                                                       |
| Сетевой (Межсетевой) (Network<br>Layer)             | IP, ICMP, IGMP                                                                                                             |
| Уровень сетевого доступа<br>(Канальный)(Link Layer) | Ethernet, IEEE 802.11, WLAN, SLIP, PPP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1 |



## Заключение

- 1. USB приборный интерфейс, который можно применять даже в самых простых современных МК.
- 2. Для задач сетевого взаимодействия используется интерфейс Ethernet с протоколом TCP/IP.

