11.09.2020

Spatial vs. Transform Domain Processing

Spatial Domain Input Image Output Image Processing Inverse **Transform Processing** Transform **Transform Domain**

Fourier Transform

Approximate non-periodic signals with complex sinusoids

Intuition for FT

- f(t) = Single number
- How much of frequency ω signal is present for all values of t?

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$F(\omega) = \mathcal{F}[f(t)]$$

Fourier Transform and Inverse Fourier Transform

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \qquad F(\omega) = \mathcal{F}[f(t)]$$

Inverse Fourier Transform

$$f(t) = \int_{\omega = -\infty}^{\omega = \infty} \frac{1}{2\pi} F(\omega) e^{i\omega t} d\omega \qquad f(t) = \mathcal{F}^{-1} [F(\omega)]$$

Sampling = f(t) x Impulse Train

FT of sampled function (G&W 4.2.4)

$$\tilde{f}(t) = \sum_{n=-\infty}^{n=-\infty} f_n \, \delta(t - n\Delta T)$$

Periodic (copies of f(t)'s FT)

FT of sampled function

$$\tilde{f}(t) = \sum_{n=0}^{n=(M-1)\Delta T} f_n \, \delta(t - n\Delta T)$$

$$\tilde{F}(\mu) = \sum_{n=0}^{m=(M-1)} f_n e^{-j2\pi\mu n\Delta T}$$

Digital processing of frequencies

- Need discrete frequency samples, but FT of sampled function is continuous
- OBSERVATION: Characterizing one period $(\frac{1}{\Lambda T})$ is enough
- How do we get frequency 'samples'?

FT of sampled function (G&W 4.4.1)

$$\tilde{f}(t) = \sum_{n=0}^{n=(M-1)\Delta T} f_n \, \delta(t - n\Delta T)$$

$$ilde{F}(\mu) = \sum_{n=0}^{n=(M-1)} f_n e^{-j2\pi\mu n\Delta T}$$
 , $\mu \in R$

DFT and **IDFT**

$$F[\underline{m}] = \sum_{n=0}^{n=(M-1)} f_n e^{\frac{-j2\pi nm}{M}}, m = 0,1,...(M-1) \qquad f_n = \frac{1}{M} \sum_{m=0}^{m=(M-1)} F_m e^{\frac{j2\pi nm}{M}}, n = 0,1,...(M-1)$$

$$F[\underline{m}] \qquad \qquad \text{Re}\left\{F[\underline{m}]\right\} \qquad \qquad \text{Im}\left\{Fe[\underline{m}]\right\}$$

- A complex value
- Represents amplitude, phase of <u>function</u> f[.]'s content at angular frequency $2\pi m/M$

DFT: Record of 'energy' portion at various frequency bands present in input function f[.]

$$(= A + iB | c| = \sqrt{A^2 + B^2}$$

$$\phi = tan' \left(\frac{B}{A}\right)$$

DFT (in practice)

$$F[m] = \sum_{n=0}^{n=(M-1)} f[n] e^{\frac{-j2\pi mn}{M}}, m = 0,1,...(M-1)$$

DFT – center shifted (for plotting)

$$F[m] = \sum_{n=0}^{n=(M-1)} f[n] e^{\frac{-j2\pi mn}{M}}, m = 0,1,...(M-1)$$

Shifting origin

1-D

$$f[x]e^{\frac{j2\pi u_o x}{M}} \leftrightarrow F(u - u_o)$$

$$f[n](-1)$$

$$u_o = \frac{M}{2}$$

Relationship between Sampling and Frequency Intervals

- Ω (Range of frequencies) depends inversely on sampling interval ΔT
- Δu (Frequency Resolution of DFT) depends inversely on duration T over which f(t) is sampled

Relationship between u and x

a b

figure 4.2 (a) A discrete function of M points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

$$\Delta u = \frac{1}{M\Delta x}$$

1-D DFT example

a b

FIGURE 4.11

(a) A function, and (b) samples in the x-domain. In (a), t is a continuous variable; in (b), x represents integer

values.

$$F[m] = \sum_{n=0}^{n=(M-1)} f[n] e^{\frac{-j2\pi mn}{M}}, m = 0,1,...(M-1)$$

$$F[0] = 1+2+4+4$$

$$-j 2\pi *n/4$$

$$0 \to e \to 1 \times 1$$

$$1 \to e^{-j 2\pi l/4} \to -j \times 2$$

$$2 \to e^{-j 4\pi l/4} \to -1 \times 4$$

$$-3+2i$$

$$3 \to e^{-j 6\pi l/4} \to +j \times 6$$

2D DFT and IDFT

$$F[m,n] = \sum_{y=0}^{y=(N-1)} \sum_{x=0}^{x=(M-1)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$F[3,3] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{y=0}^{\cos(0.5\pi x + 1.5\pi y)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \sum_{$$

$$f[x,y] = \frac{1}{MN} \sum_{n=0}^{n=(N-1)} \sum_{m=0}^{m=(M-1)} F[m,n] e^{2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

DFT for simple spatial patterns |F(m,n)|

Brightness Image

Fourier transform spectrum

DFT Example

Example

DFT Example (Rotation)

DFT Example (Sum of Signals)

DFT for simple 'spatial' patterns

DFT Example (Rect, Log Transformation)

DFT Example (Translation - Magnitude)

Important Terms

Magnitude spectrum

Phase Spectrum

$$\phi(u) = \tan^{1}\left(\frac{I(u)}{R(u)}\right)$$

Power Spectrum

Phase

Magnitude and Phase Spectra

Figure 4a
Original

Figure 4b $\log(|A(\Omega,\Psi)|)$

Figure 4c $\phi(\Omega, \Psi)$ tan 2m

We generally do not display PHASE images because most people who see them shortly thereafter succumb to hallucinogenics or end up in a Tibetan monastery – John Brayer

Magnitude and Phase Spectra Both matter for reconstruction

Original

Figure 4b $log(|A(\Omega, \Psi)|)$

Figure 5a

 $\phi(\Omega, \Psi) = 0$

Mag

a b c d e f

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction using the phase angle corresponding to the woman and the spectrum corresponding to the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the spectrum of the woman.

Shifting origin

1-D

2-D

$$f[x,y]e^{j2\pi(\frac{u_ox}{M}+\frac{v_oy}{M})} \leftrightarrow F(u-u_o,v-v_0)$$

Shifting origin

$$F[m,n] = \sum_{y=0}^{y=(N-1)} \sum_{x=0}^{x=(M-1)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \frac{1}{MN} \sum_{n=0}^{n=(N-1)} \sum_{m=0}^{m=(M-1)} F[m,n] e^{2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

Adding up to 50% lowest frequencies

(Some) Properties of FT

	Name:	Condition:	Property:
1	Amplitude scaling	$f(t) \leftrightarrow F(\omega)$, constant K	$Kf(t) \leftrightarrow KF(\omega)$
2	Addition	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega), \cdots$	$f(t) + g(t) + \cdots \leftrightarrow F(\omega) + G(\omega) + \cdots$
3	Hermitian	Real $f(t) \leftrightarrow F(\omega)$	$F(-\omega) = F^*(\omega)$
4	Even	Real and even $f(t)$	Real and even $F(\omega)$
5	Odd	Real and odd $f(t)$	Imaginary and odd $F(\omega)$
6	Symmetry	$f(t) \leftrightarrow F(\omega)$	$F(t)\leftrightarrow 2\pi f(-\omega)$
7	Time scaling	$f(t) \leftrightarrow F(\omega)$, real s	$f(st) \leftrightarrow \frac{1}{ s } F(\frac{\omega}{s})$
8	Time shift	$f(t) \leftrightarrow F(\omega)$	$f(t-t_o)\leftrightarrow F(\omega)e^{-j\omega t_o}$
9	Frequency shift	$f(t) \leftrightarrow F(\omega)$	$f(t)e^{j\omega_o t} \leftrightarrow F(\omega - \omega_o)$
10	Modulation	$f(t) \leftrightarrow F(\omega)$	$f(t)\cos(\omega_o t)\leftrightarrow \frac{1}{2}F(\omega-\omega_o)+\frac{1}{2}F(\omega+\omega_o)$
11	Time derivative	Differentiable $f(t) \leftrightarrow F(\omega)$	$rac{df}{dt} \leftrightarrow j\omega F(\omega)$
12	Freq derivative	$f(t) \leftrightarrow F(\omega)$	$-jtf(t)\leftrightarrow \frac{d}{d\omega}F(\omega)$
13	Time convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t) * g(t) \leftrightarrow F(\omega)G(\omega)$
14	Freq convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t)g(t) \leftrightarrow \frac{1}{2\pi}F(\omega) * G(\omega)$
15	Compact form	Real $f(t)$	$f(t) = rac{1}{2\pi} \int_0^\infty 2 F(\omega) \cos(\omega t + \angle F(\omega))d\omega$
16	Parseval, Energy W	$f(t) \leftrightarrow F(\omega)$	$W \equiv \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$

DFT has an efficient version called FFT (Fast Fourier Transform)

DFT vs FFT computation times

$$F[m] = \sum_{n=0}^{n=(M-1)} f[n] e^{\frac{-j2\pi mn}{M}}, m = 0,1,...(M-1)$$

0(4)

		n=0	
n	$N=2^n$	N^2	N log N
10	1 024	1 048 576	10 240
12	4 096	16 777 216	49 152
14	16 384	268 435 456	229 376
16	65 536	4 294 967 296	1 048 576

References

- http://cns-alumni.bu.edu/~slehar/fourier/fourier.html
- https://slideplayer.com/slide/5665338/
- https://2e.mindsmachine.com/asf07.02.html
- https://radiologykey.com/a-walk-through-the-spatial-frequency-domain/
- https://blogs.mathworks.com/steve/2009/12/04/fourier-transform-visualization-using-windowing/
- https://photo.stackexchange.com/guestions/40401/what-does-frequency-mean-in-an-image
- http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm
- http://paulbourke.net/miscellaneous/imagefilter
- https://www.cs.unm.edu/~brayer/vision/fourier.html

Image Enhancement and Filtering

in Frequency Domain

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

where
$$D(u, v) = [(u - M/2)^2 + (v - N/2)^2]^{1/2}$$

 $D_0 \rightarrow cut$ off frequency

Radii 10,30,60,160 and 460 \rightarrow power 87, 93.1, 95.7, 97.8 and 99..2

ILPF radius 10

ILPF radius 30

ILPF radius 60

ILPF radius 160

ILPF radius 460

ILPF radius 30

Gaussian Low Pass Filters

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

Gaussian Low Pass Filters (GLPF)

....a |||||||| a a a a a a a a

GLPF cut off frequency 10

GLPF cut off frequency 30

...a

GLPF cut off frequency 60

GLPF cut off frequency 160

GLPF cut off frequency 460

Comparison (ILPF, BLPF, GLPF)

Low pass filtering application

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

References

- G & W (4.5.1, 4.5.2, 4.5.5, 4.6 4.11)
- http://mstrzel.eletel.p.lodz.pl/mstrzel/pattern_rec/fft_ang.pdf

Scribe List

2018101097
2018101099
2018101106
2018101110
2018102003
2018102005