

毕业论文开题答辩——基 于unity的多人游戏的设计

指导老师--蒋旻隽 霍 英 豪 2023年2月14日

课题选题背景

Unity

是一种新兴的,轻量化的,灵活的,易学习的游戏引擎。

- 引擎支持游戏开发、美术、建筑、汽车设计、影视在内的所有创作。可用于创作任何实时互动的2D和3D内容, 支持平台包括手机、平板电脑、PC、游戏主机、增强现实和虚拟现实设备。
- Unity该平台还具有完整详细的教程,对开发者相对友好,同时支持对多种脚本语言的支持,大大提高了该引擎的可用性,也提高了在不同终端中切换的流畅性,降低了游戏开发的门槛。

课题的基本内容

核心功能

其次是完成玩家与电脑AI的对战功能。这一部分 意在完成AI算法和AI算法嵌入游戏引擎和游戏项 目代码中,并将结果返回在项目上。

进阶功能

完成玩家与玩家之间的联网对战功能。这一部分意在完成游戏项目网络连接的功能, 实现两玩家在局域网中相互联机堆栈的功能,考验游戏的网络编程。

基础功能

首先实现本地玩家对玩家之间的对战功能。这一部分意在完成一个完整的,可运行的,可用的fps游戏,其中包括双方得分和胜负判断。

提高功能

玩家可以自定义电脑AI难度。玩家可以根据自己的水平挑战符合自己水平的AI进行与AI的本地对战功能。

fps游戏中人机设计的核心

项目目标

使用Unity3D引擎制作出一个可以使用的五子棋项目。

AI核心

使用极大极小值算法,决策 树算法和剪枝算法编写出AI 具体代码并加以训练

AI嵌入

将编写好的AI代码嵌入Unity项目中并成功实现人机对战功能。

研究中的难点

功能衔接

网络链接

Al设计

人机Al结合

第一步

处理好Unity项目中 中各个游戏组件的 关系。

第二步

尽量实现出可以联 网对战的功能,同 时玩家可以自定义 游戏AI难度。

第三步

成功编写出具有一 定计算能力的,与 传统暴力算法不同 的,使用人工智能 技术的AI代码。

第四步

将AI代码与Unity结合,涉及到多语言 跨平台操作,并且 将AI的计算结果反 馈到游戏中。

AI在游戏中的发展趋势

AI的产生

对于传统的棋类游戏来说,自从2016年AlphaGo的诞生, 最重要的是Al的自我学习能力,所以未来游戏Al的发展前 沿之一是深度学习技术。

AI的实际应用

AI技术的成熟会使游戏中,那么NPC和怪物的AI也将更加拟人化,并会体现出更富有深度和挑战性的NPC行为和反馈。

更大更好的语言建模

众所周知, OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实, 但一些人估计, 它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲, 它离创造语言以及进行人类无法区分的对话更近了一大步。而且, 它在创建计算机代码方面也会变得更好。

AI的实际存在

因为通过深度学习, AI会不断学习人类在游戏中的行为, 作为对自身的知识和技能方面的补充, 这样的游戏也必然会更富有挑战性。

AI的应用

人工智能的研究方面,经过深度学习技术的运用, 开发者们更希望训练出更加符合人类动作和习惯 的AI,从而推进元宇宙概念的落实。

人工智能与元宇宙

人工智能无疑将是元宇宙的关键。人工智能将有助于创造 在线环境,让人们在元宇宙中体会宾至如归的感觉,培养 他们的创作冲动。人们或许很快就会习惯与人工智能生物 共享元宇宙环境,比如想要放松时,就可与人工智能打网 球或玩国际象棋游戏。

决策树算法介绍

在地图中玩家有各种各样的走法, 而把每一步的走法展开,就是一 颗巨大的博弈树。在这个树中, 根节点0为开始,奇数层表示电 脑可能的走法,偶数层表示玩家 可能的走法。

假设电脑先动,那么第一层 就是电脑的所有可能的走法, 第二层就是玩家的所有可能 走法,以此类推。所以可以 考虑用递归遍历这颗博弈树。 为了判断最优走法,就需要一个评估函数能对当前整个局势作出评估,返回一个分数。规定对电脑越有利,分数越大,对玩家越有利,分数越小,分数的起点是0。

- •电脑走的层我们称为 MAX层,这一层电脑要保证自己利益最大化,那么就需要 选分最高的节点。
- •玩家走的层我们称为MIN层,这一层玩家要保证自己的利益最大化,那么就会 选分最低的节点。

决策树算法示意图

剪枝算法介绍

Alpha Beta剪枝算法 是一种安全的剪枝策略,也 就是不会对胜负产生任何负 面影响。 它的基本依据是: 选手不会做出对自己不利的选择。依据这个前提,如果一个节点明显是不利于自己的节点,在MAX层,假设当前层已经搜索到一个最大值X,如果发现下一个节点的下一层(也就是MIN层)会产生一个比X还小的值,那么就直接剪掉此节点。在MIN层,假设当那么就可以直接剪掉这个节点。前层已经搜索到一个最小值Y,如果发现下一个节点的下一层(也就是MAX层)会产生一个比Y还大的值,那么就直接剪掉此节点。

剪枝算法示意图

感谢各位老师的聆听