Harvard-MIT Division of Health Sciences and Technology

HST.151: Principles of Pharmocology

Instructors: Dr. Carl Rosow, Dr. David Standaert and Prof. Gary Strichartz

Midterm Review 2005

Pharmacokinetics- "what the body does to the drug"

- Absorption, Distribution, Metabolism, Excretion
- Described by graph of plasma concentration over time $\rightarrow t_{1/2}$, k, V_d , AUC

Pharmacodynamics- "what the drug does to the body"

- Related to receptor-target interactions, both binding and downstream signaling
- Described graph of response versus dose → potency, efficacy

**U	nderstand	l your	graphs	and	what	they	signify	!
-----	-----------	--------	--------	-----	------	------	---------	---

For each lecture topic,

- * Draw a pathway that explains underlying (patho)physiology and potential targets
- * Identify drugs that target the pathway (net positive or negative effect?)
- * Special therapeutic principles

For all drugs,

- * Mechanism of action
- * What does it treat?

If pertinent,

- 1. Selectivity (receptor selectivity; other means for conferring selectivity)
- 2. Toxicity... many examples
- 3. Reversible versus irreversible inhibition (AchE inhibitors, aspirin versus other NSAIDS)
- 4. Absorption (administration of epinephrine to minimize absorption of lidocaine)
- 5. Distribution (digoxin, anesthetics redistribution as a mechanism of clearance)
- 6. Metabolism (toxic metabolites, pro-drug activation)
- 7. Elimination (dosing for renal/hepatic failure, later in 2nd half of course phenytoin example of 0-order elimination)
- 8. Monitoring: does plasma drug levels correlate with efficacy and/or toxicity? (warfarin, digoxin)

Therapeutics

When actually administering drugs to patients, the following may apply:

Drug combination therapy

Examples: examples to come in antibiotics

- Drug interactions, especially in drug metabolism
 Examples: Effect on warfarin metabolism of P450 inducers and inhibitors; MAO inhibitors and tyramine
- Mode of administration

Examples: Inhalation of asthma drugs; topical administration of glaucoma drugs

Order of administration

Examples: thioamides before iodides in Rx of hyperthyroidism; α -blocker before β -blocker in Rx of pheochromocytoma; for gout if high uric acid load, allopurinol to stop synthesis before probenicid

Drug resistance

Examples: many in antibiotics and chemotherapeutics next section of course

Think of examples when these concepts might be important as you review.

Case presentations

Anticholinesterase

- Direct versus indirect agonists (targets receptor directly versus affects binding/signaling)
- Symptoms/signs and treatment of toxicity

Anticoagulation

- Concept of therapeutic window, specifically *narrow* therapeutic window of warfarin → need for close monitoring and attention to anything that would effect drug levels
- Drug interactions, both inducer and inhibitor of drug metabolism

Sulfasalazine

- Use of pro-drug sulfapyridine
- Side effects of metabolized pro-drug
- Decreased bioavailability and usefulness in therapeutic effect

Pheochromocytoma

- Acute versus long-term treatment
- Order of treatment: α -blocker then β -blocker

Asthma

- Strategy for treatment: bronchodilation versus anti-inflammatory; acute versus chronic
- Toxicity associated with theophylline

Poison Control

Mechanism for antidote

Glaucoma

- Open vs closed angle glaucoma and treatment
- Mechanism of Rx and drugs: 1) reduce fluid production and 2) increase drainage

Pharmacogenetics

- CYP2D6 polymorphism
- Drug metabolism: active \rightarrow inactive, pro-drug \rightarrow active, active \rightarrow toxic

Thyroid Disease

- Thyroid hormone biosynthesis and therapeutic targets
- Order of administration: thioamides before iodide

Cocaine

- Mechanism of action: NE reuptake inhibition, local anesthetic, DA reuptake inhibition (CNS)
- CV effects: coronary vasospasm, sympathetic overload

Gout

- Etiology of uric acid overload ("wine and meat," tumor lysis syndrome, drugs, etc) and pathophysiology of crystal deposition and inflammation
- Acute anti-inflammatory therapy versus chronic reversal of hyperuricemia
- Toxicity of colchicines

Lecture Topics- Special Notes

Dose-Response/ Drug-Receptor Interactions- Strichartz

- 1. Effect of spare receptors on K_{ap} of competitive agonist? Antagonist?
- 2. Full agonists vs partial agonists vs antagonists
- 3. Reversible vs irreversible antagonist (effect on dose response curves)

Pharmacokinetics- Walsh

- 1. Be able to calculate bioavailability
- 2. Effect of absorption, distribution, and clearance on therapeutic efficacy

Drug delivery- Langer

- 1. Sustained vs controlled vs targeted release (how to achieve)
- 2. When is each type of release kinetics desired?

Drug Metabolism/ Pharmacogenetics- Dershwitz

- 1. G6PD deficiency and mechanism for inducing adverse reaction
- 2. Pseudocholinesterase
- 3. Porphyria
- 4. Fast vs slow acetylators

Autonomic Pharmacology- Stichartz/ Rosow

- 1. Difference between depolarizing and non-depolarizing muscle relaxants (fasciculations, fade, reversal of block with AchE inhibitors, post-tetanic potentiation)
- 2. Difference between nicotinic vs muscarinic receptors
- 3. How do nicotinic receptors work (aka Na channel)
- 4. G-protein coupled muscarinic receptors: which are stimulatory, which inhibitory
- 5. Mechanisms for down-regulating β -adrenergic signaling (tachyphylaxis, receptor downregulation, receptor endocytosis, desensitivation via phosphorylation)
- 6. Advantage of selective α 1-receptor antagonist over nonseletive α -blocker

Local Anesthetics- Strichartz

- 1. Effect of protonated drugs on membrane permeability and Na channel binding
- 2. Use-dependent blockade
- 3. Why bicarbonate and epinephrine co-administered with lidocaine

Anti-dysrhythmics- Ruskin

- 1. Effect of different classes on myocardial action potential and automaticity
- 2. Toxicity of Class III (Torsades de pointes) from prolonged QT
- 3. Selectivity of class I and IV from use-dependent blockade of channels
- 4. Acute vs long-term management of arrhythmias

Anti-inflammatory drugs- Weinblatt

- 1. NSAID toxicity
- 2. Aspirin effect on platelets (why? Because of irreversible inhibition!)

Drugs for CHF- Baker

- 1. Which drug classes proven to have mortality benefit?
- 2. Rationale for using β -agonists in short-term and β -antagonists in long-term management

Drugs for hypertension- Baker

- 1. Different classes of drugs, diuretics, sympatholytics, vasodilators, rennin-angiotensin blockers and mechanism for lowering pressures
- 2. Combining different classes for synergistic effect

Lipid-lowering drugs- Lees

- 1. Effect of statins on LDL receptors and ultimately level of plasma LDL
- 2. Niacin toxicity