- **18.** If $T:(x, y) \to (x + 2, y)$, then $T^2:(x, y) \to (\frac{?}{}, \frac{?}{})$.
- **19.** If $T:(x, y) \to (x + 3, y 4)$, then $T^2:(x, y) \to (\frac{?}{x}, \frac{?}{x})$.
- **20.** If R_x is reflection in the x-axis, then $(R_x)^2: P \to \frac{?}{}$.

In each exercise, a rule is given for a mapping S. Write the rule for S^{-1} .

- **B** 21. $S:(x, y) \rightarrow (x + 5, y + 2)$
- **22.** $S:(x, y) \to (x 3, y 1)$
- **23.** $S:(x, y) \to (3x, -\frac{1}{2}y)$
- **24.** $S:(x, y) \to (\frac{1}{4}x, \frac{1}{4}y)$
- **25.** $S:(x, y) \to (x 4, 4y)$
- **26.** $S:(x, y) \to (y, x)$
- 27. If $S:(x, y) \rightarrow (x + 12, y 3)$, find a translation T such that $T^6 = S$.
- 28. Find a transformation S (other than the identity) for which $S^5 = I$.
- **C** 29. a. j and k are vertical lines 1 unit apart. According to Theorem 14-7, $R_k \circ R_j$ and $R_j \circ R_k$ are both translations. Describe in words the distance and direction of each translation.
 - **b.** Show that $R_k \circ R_j$ and $R_j \circ R_k$ are inverses by showing that their composite is I. Note: Forming composites of transformations is an associative operation, so $(R_k \circ R_j) \circ (R_j \circ R_k) = R_k \circ (R_j \circ R_j) \circ R_k$.

- **30.** The blue lines in the diagram illustrate the statement $H_B \circ H_A = \text{translation } T$. The red lines show that $H_A \circ H_B = \text{translation } S$.
 - a. How is translation S related to translation T?
 - **b.** Prove your answer correct by showing that $(H_A \circ H_B) \circ (H_B \circ H_A) = I$. (*Hint*: See Exercise 29, part (b).)

- 31. Complete the proof by giving a reason for each step.
 - Given: $l_1 \perp l_2$; $l_3 \perp l_2$; R_1 , R_2 , and R_3 denote reflections in l_1 , l_2 , and l_3 .

Prove: $H_B \circ H_A$ is a translation.

Proof:

Statements

Reasons

- $1. H_A = R_2 \circ R_1$
- $2. H_B = R_3 \circ R_2$
- 3. $H_B \circ H_A = (R_3 \circ R_2) \circ (R_2 \circ R_1)$
- 4. $H_R \circ H_A = (R_3 \circ (R_2 \circ R_2)) \circ R_1$
- 5. $H_B \circ H_A = (R_3 \circ I) \circ R_1$
- 6. $H_B \circ H_A = R_3 \circ R_1$
- 7. $H_B \circ H_A$ is a translation.

- 1. _ ?
- 2. _?
- 3. _?
- 4. Composition is associative.
- 5. _?
- 6. _ ?
- 7. _ ?