SIGNAL PROCESSING (FOR MACHINE LEARNING)

WHY IS SIGNAL PROCESSING NEEDED IN **AI?**

WHEN SIGNAL PROCESSING IS NOT NEEDED IN AI

- Natural Language Processing (**NLP**) that deosn't involve the speech component
- Tabular structured data (CSVs) various tasks
- Malware detection
- **Graph modeling** (social networks analysis, knowledge graph representations)

WHEN IS SINGAL PROCESSING REQUIRED IN AI?

- Computer vision
 - Object detection and classification
 - Image segmentation
 - Image generation
 - Satellite image analysis
- Biomedical signal processing
 - EEG
 - EMG
 - Medical images MRI, X-Ray, CT
- **Audio** processing tasks
 - Speech synthesis (Test-to-Speech)
 - Automatic Speech Recognition (ASR)
 - Source separation

1D SIGNALS TIME DOMAIN

- Let's represent a signal in time domain:
 - o What is **sample rate** (rata de eşantionare)?
 - o What is **quantization** (cuantizare)?

1D SIGNALS RESAMPLING

- Example of method:
- linear interpolation between samples (t0, y0) and (t1, y1), at time t:

$$y(t) = y_0 + (y_1 - y_0) \frac{t - t_0}{t_1 - t_0}$$

- Simple scenario:
 - o A) resample from 10 Hz to 20 Hz
 - o B) resample from 20Hz to 10Hz
- WHY IS SAMPLE RATE (SR) <u>CRITICAL</u> FOR MACHINE LEARNING?

1D SIGNALS CHANNEL NUMBER

Audio

- Mono (1 source)
- Stereo/Binaural (2 sources)
- Home cinema (Ex: 5.1 RL RR FL FR C SBW)

Other signals

o Ex: EMG bracelet with 8 channels

Why does it matter?

1D SIGNALS TIME DOMAIN FEATURES

- Used as features for ML models!
- ZCR (Zero crossing rate)
 - o The times the signal changes its sign per second
- RMS Energy
 - Overall average 'power' of a signal
- Autocorrelation
 - Multiply the signal with itself compute average
 - Apply for multiple values of the *time lag k*
- Computed on **SMALL WINDOWS** (WHY?)

$$ZCR = rac{1}{N-1} \sum_{n=1}^{N-1} |s(n) \cdot s(n+1) < 0|$$

$$RMS = \sqrt{rac{1}{N}\sum_{n=1}^{N}x(n)^2}$$

$$R_x(k) = \sum_{n=0}^{N-k-1} x(n) \cdot x(n+k)$$

1D SIGNALS FREQUENCY DOMAIN

- Fourier Transform
 - express the signal as a sum of cosines

$$X(f) = a + jb$$

$$|X(f)| = \sqrt{a^2 + b^2}$$

$$\phi(f) = \operatorname{atan2}(b, a)$$

1D SIGNALS FOURIER

- Fourier Transform
 - o express the signal as a sum of cosines which are:
 - a) Scaled an amplitude |X(f)|
 - Shifted in phase (delayed) by $\Phi(f)$

1D SIGNALS FOURIER

- Some real-life signals may be estimated using this method
- But in most cases, an infinite number of terms are required for perfect stimation

1D SIGNALS DFT. NIQUIST

- DFT = Discrete Fourier Transform
- **Th. Niquist**: The sampling frequency has to be at least double the maximum frequency component of the signal.
 - \circ Fsample >= 2 max{Fsignal}
- But why?
- The spectrum has **period Fs**

$$X_s(f) = rac{1}{T_s} \sum_{k=-\infty}^{\infty} X(f-kF_s)$$

1D SIGNALS TIME-FREQUENCY DOMAIN (SPECTROGRAMS)

• Is frequency domain enough?

- Let's discuss:
 - Windowing
 - Window overlapping why?
 - FFT assumes the signal is infinite
 => sharp edges! => Hamming or
 Han windows
 - Creating spectrograms

1D SIGNALS SPECTROGRAMS

1D SIGNALS PSD

- PSD = Power Spectral Density
- PROBLEM: FFT is a sum/integral
 - => the same sine, but LONGER (in time) will lead to higher values.
- SOLUTION: PSD shows the POWER of the frequency component
 - => is time duration agnostic.
- Remember: Power = Energy / Time
- PSD is frequently used in brain signal analysis (**EEG**)

2D SIGNALS IMAGE REPRESENTAION

- Vectorial images (svg)
- Raster images MATRICES
 - o Grayscale (1channel)
 - o Color RGB (3 channels)
 - o Others (satellite, medical, IR)

2D SIGNALS RGB CHANNELS

- Common color images have 3 values, for each pixel
 - o R (Red)
 - o G (Green)
 - o B (Blue)

```
8,11,0, 55,13,25,19

15,241,2,155,13,35,65

14,211,0,255,23,45,11

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
4
45,245,0,145,22,55,48
```


2D SIGNALS BIT DEPTH

- An image = a **MATRIX**
- Question 1: for one individual element of the image, what are the values it can take? What range is it is?
- Question 2: does it matter if the total number of values is lower or higher?

2D SIGNALS QUANTIZATION

- Usually, images use 8 bits for every gray level
- **Question**: how many bits are required for an RGB image pixel?

2D SIGNALS COLOR SPACES

• Usually, we express images in RGB format, but WHY?

• Is RGB the best color space?

2D SIGNALS THE BAYER GRID

• Why are there more **green** sensors in the Bayer grid?

2D SIGNALS THE BAYER GRID

- Why are there more **green** sensors in the Bayer grid? (compared to the others)
- R: because of sensitivity
- (perceptual) Luminance = perceptual brightness

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

2D SIGNALS OTHER COLOR SPACES

HSV

- Hue = "what kind of **colors** are used"
- Saturation = "How much **pigment** is used" (distance from the gray axis)
- Value = "how light-dark it is"
- HSV is more **intuitive for humans**, but it is not perceptually uniform.
- HSV is sometimes used in ML for extracting handcrafted features when working with small datasets

2D SIGNALS HSV COLOR SPACE

• For each pixel, RGB-HSV transformation is defined by:

$$H = \begin{cases} \arccos\left\{\frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}\right\} & B \le G \\ 2\pi - \arccos\left\{\frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}\right\} & B > G \end{cases}$$

$$S = \frac{\max(R, G, B) - \min(R, G, B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}$$

$$V = \frac{\max(R, G, B)}{255}$$

http://blog.csdn.net/

2D SIGNALS LAB SPACE

- Lab:
 - \circ L = Luminance
 - \circ a= Green (-) Red (+)
 - \circ B = Blue (-) yellow (+)
- Lab is perceptually uniform
- What is gamut?
- **Gamut** = 'full range'

2D SIGNALS HISTOGRAMS

BACK TO GRAYSCALE...

• A histogram shows how gray values are distributed in an image.

$$p(k) = rac{h(k)}{N}$$

- h(k) = number of pixels with value k
- N = total number of pixels

0	0	1	1	1
0	2	2	3	3
2	2	2	3	3

2D SIGNALS CONVOLUTION

- A **filter slides** along the image
- For each location, the region from the image gets multiplied elementwise with the filter
- The output feature map gets assigned the average of elements, after product.

0	0	0	0	0
0	0	0	0	1
0	0	0	0	1
2	2	2	2	2
2	2	2	2	2
2	3	2	1	2

1100-1-1

Convolution result

 *convolution can be defined for every type of signal, including 1D, but it may be more intuitive in 2D

2D SIGNALS FILTERING USING CONVOLUTION

- **HPF** (High Pass Filter)
- What is high frequency in an image?

- **LPF** (Low Pass Filter)
- What is low frequency in an image?

2D SIGNALS FILTERING WITH CONVOLUTION

- **HPF** (High Pass Filter)
 - o 'quick' variation in space
 - o Details
 - o Edges
- **LPF** (Low Pass Filter)
 - o "Slow" variation in space
 - Smooth surfaces
 - o Background / overall shapes

- **Derivation** filters
 - o Coefficients sum up to 1

- **Smoothing** filters
 - o Coefficients sum up to 1
 - All values positive

Sobel kernels

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

Averaging kernel

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

COMPRESSION

Why compression?

- 1. Lossless compression
- 2. Lossy compression

FILE FORMATS

Audio

- Wav
 - o **Uncompressed**, raw waveform
 - Very large size
 - o Usually used for training ML models
- flac
 - o Compressed, lossless
 - o **Smaller size** than way
- MP3
 - o Compressed, lossy
 - Much smaller size

Images

- BMP
 - o Uncompressed
 - o Used for icons, thumbnails
- PNG
 - o Compressed, lossless
 - o Larger size compared to JPEG
 - o Alpha channel
- JPG/JPEG
 - Compressed, lossy => block artefacts
 - o **Smaller size** compared to JPEG

WHY DOES FILE FORMAT MATTER FOR AI?