Lecture 2.2

Bayesian Phylogenetics 1

The Bayesian framework

Bayesian phylogenetic analysis

- Bayesian phylogenetic analysis was developed in the mid 1990s
- Now one of the most widely used methods

MrBayes

RevBayes

BEAST 1

BEAST 2

Bayesian phylogenetic analysis

- Bayes's theorem (1763)
- Reverend Thomas Bayes

Image probably not of Thomas Bayes

In phylogenetics

 $Pr(\theta \mid D) \propto Pr(\theta) Pr(D \mid \theta)$

Bayesian phylogenetic analysis

Maximum likelihood

Probability of?

bat
 CCGTTAGTAACT
 whale
 CCGTTAGTAACT
 rabbit
 CCGATAGTTACT
 elephant
 kangaroo
 TCATTGGTTACT

Bayesian inference

Probability of?

Given

whale CCGTTAGTAACT
rabbit CCGATAGTTACT
elephant TCGTTAGTTACC
kangaroo TCATTGGTTACT

The Bayesian paradigm

- Contrast with frequentist statistics (likelihood)
- Parameters have distributions
- Before the data are observed, each parameter has a prior distribution
- The likelihood of the data is computed
- The prior distribution is combined (updated) with the likelihood to yield the posterior distribution

Simple example

Simple example

Simple example

Bayesian inference

Prior

Specified by user, independent of data

Likelihood

Calculated from data

$$Pr(\theta \mid D) = \frac{Pr(\theta) Pr(D \mid \theta)}{Pr(D)}$$

Posterior

This is what we want to estimate

normalising constant marginal likelihood of the data model likelihood

Bayesian inference

Prior prob of treeTopology

Branch lengths

Prior prob of substitution model parameters
Rate parameters

Base frequencies

$$Pr(\tau,M \mid D) = \frac{Pr(\tau) Pr(M) Pr(D \mid \tau,M)}{Pr(D)}$$

Posterior

This is what we want to estimate

Likelihood

Calculated from data

Bayesian hierarchical model

Priors

Priors

- Priors are chosen in the form of probability distributions
- Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
 - Past observations
 - Personal beliefs
 - Use of a biological model

Uniform
 Normal
 Exponential
 Lognormal
 Gamma
 Used to specify prior distributions of various continuous parameters
 Used to specify prior distributions of continuous parameters that cannot take negative values

- Beta
- Dirichlet

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• λ = rate of decay

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

- α = shape
- β = inverse scale

Scaled gamma:

 $\alpha = \beta$

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Used to specify the prior distributions of simplex parameters

- Base frequencies
- Relative rates in GTR model

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• α_1 , α_2 , ... = shape parameters

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$$

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$$
 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 300$

Discrete distributions

- Bernoulli distribution
- Binomial
- Multinomial
- Poisson

Default priors

	BEAST2	MrBayes
Rate matrix parameters	Gamma(0.05,10)	Dirichlet(1,1,1,1,1,1)
Base frequencies	Uniform(0,1)	Dirichlet(1,1,1,1)
Shape parameter (α)	Exponential(1)	Exponential(2)
Proportion invariable	Uniform(0,1)	Uniform(0,1)

Uninformative priors

Flat or uniform prior

Jeffreys prior

- Invariant to reparameterisation
- Only works well for models with a single parameter

Reference priors

- Maximise expected distance between prior and posterior
- Allows data to have maximum effect on posterior

Tree prior

- 1. Use a **flat prior** (*MrBayes*)
 - All trees have equal probability
 - Also need a prior for branch lengths or node times

- 2. Use a **biological model** (BEAST and MrBayes)
 - Among species: speciation model
 - Within species: coalescent model

Priors on rooted trees

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Coalescent model

Constant size

Exponential growth

Choosing a tree prior

- Test whether inferences are robust to the choice of tree prior
- Mixed data sets: multiple sequences from each species
 - Birth-death prior generally works well
- Compare tree priors using Bayesian model selection

Bayesian hierarchical model

Useful references

