

Automates finis

- Automate fini déterministe (AFD)
- Automates finis non déterministes AFN
- Construction d'automates
- Langage d'un AFD
- Théorème de Kleene
- Équivalence d'automates Minimisation

Langage d'un automate fini Système d'équations aux langages

Soit $\mathcal{A} = (Q, \Sigma, T, q_0, A)$ un automate. Nous allons présenter ici une méthode mathématique permettant de caractériser le langage L accepté par cet automate.

Définition

Si q est un état de l'automate, on appelle langage d'arrivée à l'état q que l'on note L_q , l'ensemble des mots dont la lecture fait passer de l'état initial q_0 à l'état q.

il est alors clair que

Définition

Le langage de l'automate \mathcal{A} est la somme des langages d'arrivée aux états acceptants.

i.e.

$$L(\mathcal{A}) = \sum_{q \in A} L_q$$

Remarquons sur notre exemple que les langages d'arrivée sont liés par les relations.

•
$$L1 = \varepsilon + L1.a$$

• $L2 = L1.b + L2.a$
• $L3 = L2.b + L3.a$

Plus généralement :

•
$$L_q'=$$
 $\epsilon+\sum_{q'=T(q,l)}L_q.l$, si q est un état initial • $L_q'=\sum_{q'=T(q,l)}L_q.l$, si q n'est pas un état initial

Lemme d'Arden

Il nous reste à apprendre à résoudre de tels systèmes d'équations linéaires sur les langages...

Lemme: (d'Arden)

Soit L₁ et L₂ deux langages tels que ε n'appartient pas à L1. L'équation linéaire aux langages, d'inconnue le langage X:

(E)
$$X = X.L_1 + L_2$$

admet pour unique solution le langage

$$X=L_2(L_1)*$$

Chacune des équations du système des équations aux langages étant de la forme précédente peut être résolue par l'application de ce lemme.

On en déduit l'algorithme général de détermination du langage d'un automate :

(Voir les animations AFDlemmeArden 1 et 2)

Algorithme:

- Écrire pour chaque état q l'équation linéaire vérifiée par le langage d'arrivée L_q. Obtenir ainsi le système des équations aux langages de l'automate.
- En « remontant » les états, déterminer une expression du langage L_q en fonction des états plus petits en appliquant le lemme d'Arden.
- Quand on arrive à L₁, il est parfaitement déterminé.
- Redescendre le système en propageant les langages connus.
- Une fois tous les langages connus, calculer le langage de l'automate en sommant les langages des états acceptants.
- Comme toujours cette méthode générale, un peu rigide, devra être appliquée et adaptée avec intelligence aux cas particuliers traités.

On déduit de l'algorithme de résolution précédent l'implication qui nous manquait dans le résultat théorique majeur de ce chapitre :

Théorème : de Kleene (2)

Les langages automatiques sont les mêmes que les langages réguliers.