dirichletprocess Package GSoC-25 Tasks Analysis

Priyanshu Tiwari

2025-03-09

Contents

Introduction	1
Task 1: Normal Mixture Models	2
Univariate Model with Faithful Dataset	2
Multivariate Model with Iris Dataset	3
Task 2: Lognormal Mixture and Alpha Prior Effects	5
Generate Data from a Lognormal Mixture	5
Fit Models with Different Alpha Priors	6
Sample from the Posterior	7
Analyze the Effect of Alpha Priors on Clustering	8
Task 3: Custom Gamma Mixture Model	11
Mathematical Framework	11
Implementation	12
Testing the Model	14
Rosults	15

Introduction

This notebook is the analysis of the three tasks asked for the project "Improving the performance of multivariate normal models in dirichlet process".

- 1. Easy: Fit normal mixture models to standard datasets
- 2. Medium: Analyze the effect of alpha priors on a lognormal mixture
- 3. Hard: Implement a custom Gamma mixture model

Installing the required packages:

```
if (!require("dirichletprocess")) {
  install.packages("dirichletprocess")
}
library(dirichletprocess)
library(ggplot2)
library(coda)
```

Task 1: Normal Mixture Models

In this task, we'll fit Dirichlet process mixture models with Gaussian kernels to:

- The faithful dataset (univariate)
- The iris dataset (multivariate)

Univariate Model with Faithful Dataset

```
data(faithful)
head(faithful)
##
     eruptions waiting
## 1
         3.600
## 2
         1.800
                     54
## 3
         3.333
                     74
                     62
         2.283
## 4
## 5
         4.533
                     85
## 6
         2.883
                     55
faithful_scaled <- scale(faithful$waiting)</pre>
set.seed(123)
dp_faithful <- DirichletProcessGaussian(faithful_scaled)</pre>
dp_faithful <- Fit(dp_faithful, 1000)</pre>
Examining the results:
print(dp_faithful)
## Dirichlet process object run for 1000 iterations.
##
##
     Mixing distribution
                                    normal
##
     Base measure parameters 0, 1, 1, 1
##
     Alpha Prior parameters
                                      2, 4
##
     Conjugacy
                                 conjugate
##
     Sample size
                                       272
##
##
     Mean number of clusters
                                      4.41
                                      0.50
##
     Median alpha
```

```
# number of clusters found
num_clusters <- length(unique(dp_faithful$clusterLabels))
cat("Number of clusters found:", num_clusters, "\n")

## Number of clusters found: 2

# cluster sizes
table(dp_faithful$clusterLabels)

##

## 1 2
## 174 98</pre>
```

Density plot:

plot(dp_faithful)

Multivariate Model with Iris Dataset

We fit a multivariate normal model to the iris dataset which contains measurements of four features for three species of iris flowers.

```
data(iris)
head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
              5.1
                          3.5
                                        1.4
                                                     0.2 setosa
## 2
              4.9
                          3.0
                                        1.4
                                                     0.2 setosa
## 3
              4.7
                          3.2
                                        1.3
                                                     0.2 setosa
## 4
              4.6
                           3.1
                                        1.5
                                                     0.2 setosa
## 5
              5.0
                          3.6
                                                     0.2 setosa
                                        1.4
## 6
              5.4
                           3.9
                                        1.7
                                                     0.4 setosa
iris_scaled <- scale(iris[, 1:4])</pre>
set.seed(456)
dp_iris <- DirichletProcessMvnormal(iris_scaled)</pre>
dp_iris <- Fit(dp_iris, 1000)</pre>
Results:
print(dp_iris)
## Dirichlet process object run for 1000 iterations.
##
##
    Mixing distribution
                                                                                                mvnormal
     Base measure parameters c(0, 0, 0, 0), c(1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), 4, 4
##
##
     Alpha Prior parameters
                                                                                                    2, 4
##
     Conjugacy
                                                                                               conjugate
     Sample size
##
                                                                                                     150
##
##
     Mean number of clusters
                                                                                                    1.17
##
     Median alpha
                                                                                                    0.20
# number of clusters found
unique_clusters <- length(unique(dp_iris$clusterLabels))</pre>
cat("Number of clusters found in iris data:", unique_clusters, "\n")
## Number of clusters found in iris data: 2
# cluster sizes
table(dp_iris$clusterLabels)
##
##
         2
     1
## 50 100
```

We plot the clustering. For multivariate data, this will show the first two dimensions with points colored by their cluster assignments:

Task 2: Lognormal Mixture and Alpha Prior Effects

In this task, we'll:

- Generate data from a lognormal mixture model
- Fit a Dirichlet process with different alpha priors
- $\bullet\,$ Sample from the posterior
- Analyze how the alpha prior affects clustering

Generate Data from a Lognormal Mixture

```
set.seed(123)
n <- 500
component1 <- rlnorm(n * 0.7, meanlog = 0, sdlog = 0.5) # 70% from component1
component2 <- rlnorm(n * 0.3, meanlog = 1.5, sdlog = 0.3) # 30% from component2
lnorm_data <- c(component1, component2)</pre>
```

Lognormal Mixture Data

Fit Models with Different Alpha Priors

We'll fit three models with different alpha priors to see how they affect the clustering:

```
# Scale the data
lnorm_data_scaled <- scale(lnorm_data)

# 1. Default prior: alphaPriors = c(2, 4)
dp_lnorm1 <- DirichletProcessGaussian(lnorm_data_scaled)
dp_lnorm1 <- Fit(dp_lnorm1, 2000)

# 2. Prior encouraging fewer clusters
dp_lnorm2 <- DirichletProcessGaussian(lnorm_data_scaled, alphaPriors = c(1, 2))
dp_lnorm2 <- Fit(dp_lnorm2, 2000)

# 3. Prior encouraging more clusters
dp_lnorm3 <- DirichletProcessGaussian(lnorm_data_scaled, alphaPriors = c(5, 1))
dp_lnorm3 <- Fit(dp_lnorm3, 2000)</pre>
```

Sample from the Posterior

We sample from the posterior of the first model and calculate the 5% and 95% quantiles:

```
# Posterior density estimates
x_grid <- seq(min(lnorm_data_scaled), max(lnorm_data_scaled), length.out = 1000)</pre>
posterior_frame <- PosteriorFrame(dp_lnorm1, x_grid, ndraws=1000)</pre>
# Generating actual posterior samples
n_{samples} \leftarrow 5000
cluster_probs <- dp_lnorm1$pointsPerCluster / sum(dp_lnorm1$pointsPerCluster)</pre>
selected clusters <- sample(1:dp lnorm1$numberClusters, n samples, replace=TRUE, prob=cluster probs)
# For each selected cluster, generating a sample from the Gaussian
# with that cluster's parameters
posterior_samples <- numeric(n_samples)</pre>
for (i in 1:n_samples) {
 cluster <- selected clusters[i]</pre>
 mu <- dp_lnorm1$clusterParameters[[1]][,,cluster]</pre>
 sigma <- dp_lnorm1$clusterParameters[[2]][,,cluster]</pre>
  posterior_samples[i] <- rnorm(1, mu, sigma)</pre>
# Transform back to original scale
posterior_samples_original <- posterior_samples * sd(lnorm_data) + mean(lnorm_data)
# Calculating quantiles from the generated samples
quantiles <- quantile(posterior_samples_original, c(0.05, 0.95))
cat("5% and 95% quantiles of posterior samples:", quantiles[1], "and", quantiles[2], "\n")
## 5% and 95% quantiles of posterior samples: 0.402768 and 5.848588
# Plot the posterior samples and density
ggplot() +
  # Original data density
  geom_density(data = data.frame(x = lnorm_data), aes(x = x),
               color = "blue", linetype = 2) +
  # Posterior samples density
  geom_density(data = data.frame(x = posterior_samples_original),
               aes(x = x), color = "red") +
  # Histogram of posterior samples
  geom_histogram(data = data.frame(x = posterior_samples_original),
                 aes(x = x, y = after_stat(density)), bins = 30,
                 alpha = 0.2, fill = "black") +
  labs(title = "Posterior Samples Distribution",
       x = "Value", y = "Density") +
  theme_minimal() +
  annotate("text", x = Inf, y = Inf,
           label = paste("5% quantile:", round(quantiles[1], 2),
                          "\n95% quantile:", round(quantiles[2], 2)),
           hjust = 1.1, vjust = 1.5, size = 4)
```


Analyze the Effect of Alpha Priors on Clustering

We compare the number of clusters found by each model:

Now, we examine the alpha parameter chains to assess convergence:

Summarizing the average number of clusters and convergence metrics:

cat("Prior for more clusters (5,1):", avg_clusters3, "\n")

Prior for more clusters (5,1): 29.91409

```
# average number of clusters in the second half of the chain
avg_clusters1 <- mean(n_clusters1[1000:2000])
avg_clusters2 <- mean(n_clusters2[1000:2000])
avg_clusters3 <- mean(n_clusters3[1000:2000])

cat("Average number of clusters (second half of chain):\n")

## Average number of clusters (second half of chain):

cat("Default prior (2,4):", avg_clusters1, "\n")

## Default prior (2,4): 6.526474

cat("Prior for fewer clusters (1,2):", avg_clusters2, "\n")

## Prior for fewer clusters (1,2): 8.087912</pre>
```

```
# Calculate convergence metrics
burnin <- 1000
effective_samples1 <- effectiveSize(dp_lnorm1$alphaChain[burnin:2000])
effective_samples2 <- effectiveSize(dp_lnorm2$alphaChain[burnin:2000])
effective_samples3 <- effectiveSize(dp_lnorm3$alphaChain[burnin:2000])

cat("Effective sample sizes after burn-in: \n")

## Effective sample sizes after burn-in:
cat("Default prior:", effective_samples1, "\n")

## Default prior: 22.04478

cat("Prior for fewer clusters:", effective_samples2, "\n")

## Prior for fewer clusters: 40.70079

cat("Prior for more clusters:", effective_samples3, "\n")</pre>
```

Task 3: Custom Gamma Mixture Model

In this task, we'll implement a custom mixture model using the Gamma distribution. The Gamma distribution is useful for modeling positive continuous data with different shapes.

Mathematical Framework

Prior for more clusters: 28.85655

The Gamma mixture model can be represented as a mixture of Gamma distributions:

$$p(x) = \sum_{i=1}^{\infty} w_j \cdot \operatorname{Gamma}(x | \alpha_j, \beta_j)$$

where:

- w_j are the mixture weights that sum to 1
- α_i is the shape parameter for the j-th component
- β_j is the rate parameter for the j-th component

$$\operatorname{Gamma}(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

is the Gamma PDF

In our nonparametric Bayesian approach, we place a Dirichlet process prior on the distribution of the parameter pairs (α, β) :

$$(\alpha_j, \beta_j) \sim G$$

$$G \sim \mathrm{DP}(\gamma, G_0)$$

where:

- G is a random distribution drawn from the Dirichlet process
- γ is the concentration parameter controlling the diversity of components
- G_0 is the base measure representing our prior belief about the parameters

For the prior on the shape parameter, we use a transformed Beta distribution:

$$u \sim \text{Beta}(a_0, b_0)$$
$$\alpha = -s \cdot \log(u)$$

where s is a scale parameter. For the rate parameter, we use a Gamma prior:

$$\beta \sim \text{Gamma}(c_0, d_0)$$

For posterior sampling, we use a combination of Gibbs sampling for the rate parameter and Metropolis-Hastings for the shape parameter.

Implementation

```
# Likelihood function for Gamma distribution
Likelihood.gamma <- function(mdobj, x, theta) {</pre>
  shape <- theta[[1]]</pre>
 rate <- theta[[2]]
 return(as.numeric(dgamma(x, shape = shape, rate = rate)))
# Prior draw function for Gamma parameters
PriorDraw.gamma <- function(mdobj, n) {</pre>
  a0 <- mdobj$priorParameters[1] # shape
  b0 <- mdobj$priorParameters[2] # shape
  c0 <- mdobj$priorParameters[3]</pre>
  d0 <- mdobj$priorParameters[4]</pre>
  # Draw shape parameter (using a transform of Beta)
  shape_scale <- mdobj$priorParameters[5] # Scale factor for shape</pre>
  u <- rbeta(n, a0, b0)
  shape <- -shape_scale * log(u) # Transform to get positive values with appropriate scale
  # Draw rate from Gamma
  rate <- rgamma(n, shape = c0, rate = d0)
```

```
theta <- list(</pre>
    array(shape, dim = c(1, 1, n)),
    array(rate, dim = c(1, 1, n))
 return(theta)
# Posterior draw function using sufficient statistics and conjugacy
PosteriorDraw.gamma <- function(mdobj, x, n = 1) {
  a0 <- mdobj$priorParameters[1]
 b0 <- mdobj$priorParameters[2]
  c0 <- mdobj$priorParameters[3]</pre>
  d0 <- mdobj$priorParameters[4]</pre>
  shape_scale <- mdobj$priorParameters[5]</pre>
 n_obs <- length(x)
  # Sufficient statistics
  sum x \leftarrow sum(x)
  sum_log_x <- sum(log(x))</pre>
  # For the gamma shape parameter, we need to use MCMC since
  # there's no direct conjugate update
  shape samples <- numeric(n)</pre>
  rate_samples <- numeric(n)</pre>
  for(i in 1:n) {
    # Initial values
    alpha_current <- 1 # Starting value for shape</pre>
    # Since we know the posterior mode for rate given shape
    # we can use Gibbs sampling
    n_iter <- 500
    n_burnin <- 300
    for(j in 1:n_iter) {
      # Update rate given shape (conjugate update)
      beta_posterior <- rgamma(1, shape = c0 + n_obs * alpha_current,
                                rate = d0 + sum x)
      # Update shape using Metropolis-Hastings
      alpha_proposal <- exp(rnorm(1, log(alpha_current), 0.1))</pre>
      # Log posterior ratio for shape
      log_ratio <- (alpha_proposal - alpha_current) * sum_log_x -</pre>
        n_obs * (lgamma(alpha_proposal) - lgamma(alpha_current)) +
        n_obs * alpha_proposal * log(beta_posterior) -
        n_obs * alpha_current * log(beta_posterior) +
        (a0 - 1) * (log(1 - exp(-alpha_proposal/shape_scale)) -
                       log(1 - exp(-alpha_current/shape_scale))) +
        (alpha_current - alpha_proposal)/shape_scale
```

```
# Accept/reject shape proposal
      if(log(runif(1)) < log_ratio) {</pre>
        alpha_current <- alpha_proposal</pre>
      }
      # Store samples after burn-in
      if(j > n_burnin) {
        shape_samples[i] <- alpha_current</pre>
        rate_samples[i] <- beta_posterior</pre>
    }
  }
  theta <- list(</pre>
    array(shape_samples, dim = c(1, 1, n)),
    array(rate\_samples, dim = c(1, 1, n))
  return(theta)
}
# Predictive function for Gamma
Predictive.gamma <- function(mdobj, x) {</pre>
  # For positive data
  pred <- numeric(length(x))</pre>
  # Monte Carlo approximation with samples from the prior
  n_{samples} \leftarrow 1000
  # Draw samples from the prior
  prior_samples <- PriorDraw.gamma(mdobj, n_samples)</pre>
  shape_samples <- prior_samples[[1]][1, 1, ]</pre>
  rate_samples <- prior_samples[[2]][1, 1, ]</pre>
  # For each x, compute the predictive density
  for(i in seq_along(x)) {
    if(x[i] <= 0) {</pre>
      pred[i] \leftarrow 0 # Gamma density is 0 for x \leftarrow 0
    } else {
      # Compute Gamma density for each prior sample
      densities <- dgamma(x[i], shape = shape_samples, rate = rate_samples)</pre>
      # Average over samples
      pred[i] <- mean(densities)</pre>
    }
  }
  return(pred)
```

Testing the Model

We generate data from a mixture of two Gamma distributions and fit our custom model:

Results

Plot of the true density and the estimated posterior:

```
# Generate posterior predictive frame
x_range \leftarrow seq(0.1, 25, length.out = 100)
pf <- PosteriorFrame(dp, x range, 1000)</pre>
trueFrame <- data.frame(</pre>
 x = x_range,
 y = 0.4 * dgamma(x_range, shape = 2, rate = 1) +
    0.6 * dgamma(x_range, shape = 5, rate = 0.5)
ggplot() +
  geom_ribbon(data = pf,
              aes(x = x, ymin = X5., ymax = X95.),
              colour = NA,
              fill = "orange",
              alpha = 0.2) +
  geom_line(data = pf, aes(x = x, y = Mean), colour = "orange") +
  geom_line(data = trueFrame, aes(x = x, y = y), linetype = "dashed") +
  labs(title = "Gamma Mixture Model Fit",
       x = "Value",
       y = "Density") +
  theme minimal()
```


Plot of the data histogram with the fitted density:

Examine the clusters found by the model:

```
# Number of clusters found
n_clusters <- length(unique(dp$clusterLabels))
cat("Number of clusters found:", n_clusters, "\n")</pre>
```

Number of clusters found: 3

```
# Get the parameters for each cluster
cluster_params <- data.frame(
   Cluster = 1:dp$numberClusters,
   Shape = sapply(1:dp$numberClusters, function(i) dp$clusterParameters[[1]][,,i]),
   Rate = sapply(1:dp$numberClusters, function(i) dp$clusterParameters[[2]][,,i]),
   Size = dp$pointsPerCluster,
   Proportion = dp$pointsPerCluster / sum(dp$pointsPerCluster)
)</pre>
```

```
## Cluster Shape Rate Size Proportion
## 1 1 6.174073 0.6039547 298 0.596
## 2 2 2.280872 1.1533397 186 0.372
## 3 3 2.185196 2.6859146 16 0.032
```