Assignment on wavelets

- 1. Give expression for the Mexihan-hat wavelet and its Fourier transform (specification upto a scale factor acceptable).
- 2. (a) Show that f(t) = sinc(t) is not absolutely integrable but it is square integrable.
 - (b) Evaluate the $\sum_{n \in \mathbb{Z}} sinc(t 0.2n)$
- 3. (a) Consider N unit vectors in R^2 specified in parametric form as $e_k = \left(\cos\left(\frac{2\pi k}{N}\right), \sin\left(\frac{2\pi k}{N}\right)\right)$, where $k = 0, 1, 2, \dots N 1$. Examine the conditions under which they form an orthonormal basis, a Riesz basis and a frame. Compute the frame bounds.
 - (b) Show that in a space of finite dimensions N, a frame of $P \ge N$ normalized vectors has frame bounds A and B, which satisfy $A \le \frac{P}{N} \le B$.
- 4. Let g(t) be a window supported over $\left[-\frac{\pi}{\xi_0}, \frac{\pi}{\xi_0}\right]$ prove if $\frac{2\pi}{\xi_0} \sum_{n \in \mathbb{Z}} |g(t nu_0)|^2 = A > 0 \ \forall t \in \mathbb{R}$, then $\{g_{n,k}(t) = g(t nu_0)e^{jk\xi_0t}, (n,k) \in \mathbb{Z}\}$ is a tight frame of $L^2(\mathbb{R})$
- 5. Prove Plancherel-Parseval identity: $\int\limits_R f(t)g^*(t)dt = \frac{1}{2\pi}\int \hat{f}(\omega)g^*(\omega)d\omega$ from that compute $\int\limits_R \frac{1}{t^2+a^2)(t^2+b^2)}dt$?
- 6. Show that a scaling function $\phi(t)$ obtained by aggregating wavelets at scales larger than unity satisfies $||\phi(t)|| = 1$
- 7. Consider the set of integer shifted functions $\{\theta(t-n), n \in Z\}$. Derive the condition on θ if the integer shifted functions have to be mutually orthogonal.
- 8. (a) Compute the support of *n*-th order spline ' $\beta^{(n)}$ -spline' and its Riesz bounds.
 - (b) Compute $\sum_{k \in \mathbb{Z}} \beta^{(n)}(t-k)$.
- 9. Let $\phi(t) = \sum_{n \in \mathbb{Z}} h(n)\phi(2t-n)$, prove the below
 - (a) If $\int \phi(t)dt \neq 0$ then $\sum_{n \in \mathbb{Z}} h(n) = \sqrt{2}$
 - (b) If $\{\phi(t-k), k \in Z\}$ is an orthonormal set, then $\sum_{n \in Z} h(n)h(n-2k) = \delta(k)$ and $\sum_{n \in Z} h(2n) = \sum_{n \in Z} h(2n+1) = \frac{1}{\sqrt{2}}$
 - (c) If $\phi(t)$ has compact support on $0 \le t \le N-1$ and if $\{\phi(t-k), k \in z\}$ linear independent, then h(n) has compact support over $0 \le n \le N-1$.
- 10. (a) Explain Daubechies method of constructing compactly supported wavelets?
 - (b) Compute the Daubechies scaling and wavelet filters if the wavelet function possess two vanishing moments.