Wydział WFIIS	Imię i nazwisko 1. Mateusz Kulig 2. Przemysław F		Rok 2022	Grupa 3	Zespół 1
PRACOWNIA FIZYCZNA WFiIS AGH	: Laser półprze częstotliwośc	, ,	, laser z podw	ojeniem	Nr ćwiczenia 86-87
Data wykonania 22.05.2022	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W doświadczeniu dokonaliśmy pomiarów długości fali światła laserowego kolorów czerwonego i zielonego, których wartości zgodziły się z oczekiwanym wynikiem. Kolejno przeprowadziliśmy badanie profilu wiązki światła lasera czerwonego z zastosowaniem fotodiody półprzewodnikowej oraz polaryzatora za których pomocą udało się dowieść prawa Malusa co zostało zobrazowane odpowiednimi wykresami. W drugiej części zbadaliśmy natężenie światła w zależności od obrotu polaryzatora i wykonując stosowny wykres otrzymaliśmy dwa piki, z czego jeden dotyczył światła z zakresu podczerwieni, a drugi światła zielonego.

1. Wstęp teoretyczny

Laser to źródło światła, w którym wykorzystana jest wymuszona emisja promieniowania. Żeby zrozumieć zasadę działania lasera trzeba uwzględnić kwantowe oddziaływanie światła z materią. Zgodnie z modelem Bohra jeśli elektron spadnie na niższy stan energetyczny wyemituje on foton o zadanej częstotliwości, co opisuje równanie

$$E_i - E_i = h\nu. (1)$$

Rozróżniamy trzy możliwe zjawiska występujące pomiędzy fotonem a przeskakującym elektronem. Pierwsze z nich to zjawisko absorbcji. Elektron pobierając energie od fotonu przeskakuje na wyższy stan energetyczny a foton zanika. Przeciwieństwem tego zjawiska jest emisja spontaniczna. W tym przypadku elektron spada na niższy poziom i następuje kreacja fotonu o odpowiedniej częstotliwości. Ostatnią możliwością jest emisja wymuszona. Polega ona na tym, że gdy foton pada na elektron, ten nie pochłania go lecz spada na niższy poziom i produkuje drugi dokładnie taki sam kwant światła. Ważnym faktem jest to że prawdopodobieństwo zajścia absorbcji i emisji wymuszonej jest takie same nie zależnie od rozpatrywanego układu.

Warunkiem koniecznym do powstania lasera jest inwersja obsadzeń. Za pomocą procesu nazywanego pompowaniem tworzy się ośrodek w którym ilość atomów ze stanami wyższymi jest większa niż ilość atomów ze stanami niższymi. Dodając do tego dodatnie sprzężenie zwrotne, w postaci na przykład zwierciadła, otrzymamy samorzutna generacje światła spójnego czyli laser.

Najczęściej spotykane są lasery półprzewodnikowe. Jest to rozwinięcie diody półprzewodnikowej. Dioda bowiem emituje światło o energii równej przerwie energetycznej. Gdy zwiększymy natężenie płynącego prądu oraz wytworzymy w przerwie energetycznej studnie kwantową to skoncentrujemy elektrony i dziury na małej objętości. W ten właśnie sposób otrzymamy emisje światła spójnego.

2. Aparatura

W przeprowadzonym doświadczeniu użyliśmy następujących przyrządów:

- Laser fioletowy podana przez producenta długość emitowanego światła to 405 ± 10 [nm],
- Laser czerwony podana przez producenta długość emitowanego światła to 650 [nm],
- Płytka dyfrakcyjna użyta w doświadczeniu płytka posiadała 300 rys na milimetr,
- Polaryzator,
- Linijka,
- Ekran,
- Papier milimetrowy,
- Czujnik światła użytym w doświadczeniu czujnikiem była fotodioda półprzewodnikowa,
- Laser zielony,
- Pryzmat.

3. Metodyka doświadczenia

Przeprowadzenie doświadczenia rozpoczęliśmy od badania długości fali lasera fioletowego i czerwonego. W tym celu ustawiliśmy laser, siatkę dyfrakcyjną, i ekran z papierem milimetrowym na stelażu oraz zmierzyliśmy odległość miedzy nimi linijką. Następnie zaznaczyliśmy na papierze położenie maksimów natężenia światła i zmierzyliśmy odległość dzielące maksima poszczególnych rzędów. Kolejna częścią doświadczenia było badanie profilu wiązki dla lasera czerwonego. W tym celu ustawiliśmy na stelażu fotodiodę. Za pomocą pokrętła zmienialiśmy jej położenie, a co pół obrotu odczytywaliśmy wskazanie amperomierza. Następnie zbadaliśmy polaryzacje światła lasera. Pomiędzy diodą a laserem umieściliśmy polaryzator. Pokrętłem zmienialiśmy jego ustawienie, za każdym razem o 10 stopni i odczytywaliśmy wskazanie czujnika, aż wykonaliśmy pełny obrót. Ostatnią częścią eksperymentu, był pomiar profilu wiązki lasera zielonego, którego światło zostało rozszczepione na pryzmacie. Pomiar ten wykonaliśmy analogicznie jak poprzednio.

4. Analiza danych

Laser półprzewodnikowy

Stała siatki użytej w doświadczeniu której liczba rys na milimetr wynosiła 300 to $d=\frac{1}{3}*10^{-6}$ [m]. Odległość ekranu od siatki w obu przypadkach była jednakowa i wynosiła L=0.295 [m].

Do obliczenia długości fali w przeprowadzonym doświadczeniu korzystamy z poniższego wzoru:

$$\lambda = \frac{d \cdot \sin(\alpha)}{n} = \frac{d \cdot x_n}{n \cdot \sqrt{(x_n)^2 + (L)^2}}.$$
 (2)

Dane pomiarów odległości między prążkami poszczególnych rzędów dla lasera fioletowego zebrano w poniższej tabeli Tab. 1.

Tab. 1. Tabela odległości między prążkami poszczególnych rzędów i obliczona za ich pomocą długość fali zastosowanego fioletowego lasera.

n	$2x_n$ [cm]	[cm]	λ [nm]
1	7,25	3,625	406,55
2	14,8	7,4	405,52

_		44 -0-	404.00
	22 NE	1 11 575	1 <u>404</u> 33
3	25.03	11.323	404.33
J	23,03	11,323	404,33

Średnia długość fali wynosi $\bar{\lambda}_f = 405,46$ [nm].

Niepewność z kolei liczymy korzystając ze wzoru otrzymanego za pomocą prawa przenoszenia niepewności zastosowanym do wzoru (2). Otrzymujemy w ten sposób wzór:

$$u(\lambda) = \sqrt{\left(\frac{d\lambda}{dx_n} \cdot u(x)\right)^2 + \left(\frac{d\lambda}{dL} \cdot u(L)\right)^2} = \sqrt{\left(\frac{d \cdot L^2}{n \cdot ((x_n)^2 + (L)^2)^{\frac{3}{2}}} \cdot u(x)\right)^2 + \left(\frac{-d \cdot L \cdot x_n}{n \cdot ((x_n)^2 + (L)^2)^{\frac{3}{2}}} \cdot u(L)\right)^2}$$

, gdzie niepewności x oraz L są dokładnością użytej linijki i wynoszą u(x) = u(L) = 0,001 [m].

Niepewność długości fali lasera fioletowego wynosi $u(\bar{\lambda}_f) = 5.2 \text{ [nm]}.$

Wynik ten jest zgodny z wartością na urządzeniu wynoszącą $\lambda = (405 \pm 10) [\text{nm}]$.

Dane pomiarów odległości między prążkami poszczególnych rzędów dla lasera czerwonego zebrano w poniższej tabeli Tab. 2.

Tab. 2. Tabela odległości między prążkami poszczególnych rzędów i obliczona za ich pomocą długość fali zastosowanego czerwonego lasera.

n	$2x_n$ [cm]	x_n [cm]	λ [nm]
1	11,7	5,85	648,39
2	24,9	12,45	648,04

Średnia długość fali wynosi $\bar{\lambda}_{cz} = 648,22 \text{ [nm]}.$

Niepewność z kolei liczymy korzystając ze wzoru otrzymanego za pomocą prawa przenoszenia niepewności zastosowanym do wzoru (2).

Wynosi ona $u(\bar{\lambda}_{cz}) = 7.7 \text{ [nm]}.$

Wynik ten jest zgodny z wartością na urządzeniu wynoszącą $\lambda = 650 [nm]$.

Następnie przeprowadziliśmy pomiar profilu wiązki. Zebrane wyniki zostały zestawione w poniższej tabeli Tab. 3..

Tab. 3. Wyniki pomiaru profilu wiązki.

Obrót [°]	/ [mA]
0	0,222
10	0,198
20	0,162
30	0,122
40	0,081
50	0,047
60	0,02
70	0,004
80	0,003
90	0,017
100	0,043
110	0,079
120	0,119
130	0,158
140	0,196

150	0,221
160	0,236
170	0,238
180	0,224
190	0,199
200	0,165
210	0,126
220	0,086
230	0,048
240	0,02
250	0,004
260	0,003
270	0,017
280	0,043
290	0,079
300	0,119
310	0,162
320	0,199
330	0,225
340	0,239
350	0,238

Rys. 1. Wykres prądu płynącego przez fotodiodę w zależności od kąta.

Tab. 4. Natężenie w zależności od ustawienia polaryzatora.

Obrót	/ [mA]
0	0,006
0,5	0,007
1	0,012
1,5	0,042
2	0,095
2,5	0,153

1
0,205
0,262
0,312
0,363
0,394
0,402
0,399
0,369
0,324
0,268
0,217
0,158
0,105
0,055
0,017
0,009
0,007
0,005

Rys. 2. Wykres prądu płynącego w zależności ustawienia polaryzatora.

• Laser z podwojeniem częstotliwości

Dane z pomiaru wiązki lasera zielonego, która została rozszczepiona na pryzmacie zebrane zostały w poniższej tabeli Tab. 5..

Tab. 5. Natężenie w zależności od ustawienia polaryzatora, gdzie każdy obrót to 0,5 [mm].

Obrót	/ [mA]
0	0,003
0,5	0,003
1	0,004

1,5	0,006
2	0,01
2,5	0,017
3	0,025
3,5	0,031
4	0,035
4,5	0,034
5	0,029
5,5	0,021
6	0,013
6,5	0,007
7	0,004
7,5	0,003
8	0,002
8,5	0,002
9	0,002
9,5	0,002
10	0,002
10,5	0,002
11	0,002
11,5	0,004
12	0,016
12,5	0,049
13	0,095
13,5	0,097
14	0,052
14,5	0,017
15	0,004
15,5	0,002
16	0,001
16,5	0,001
17	0,001
17,5	0,001

Rys. 3. Wykres natężenia prądu płynącego w zależności od obrotu polaryzatora.

Na powyższym wykresie widoczne są dwa wzmocnienia z czego pierwsze od lewej związanie jest z laserem z zakresu podczerwieni, a drugie z laserem koloru zielonego. Jest to spowodowane przejściem światła lasera przez pryzmat, który zmienia częstotliwość wiązki.

5. Podsumowanie

W wyniku przeprowadzonego doświadczenia dotyczącego lasera półprzewodnikowego otrzymaliśmy długości fali użytych w doświadczeniu laserów. Dla światła fioletowego $\bar{\lambda}_f=405,46~[\mathrm{nm}]$ o niepewności $u(\bar{\lambda}_f)=5,2~[\mathrm{nm}]$, a dla światła czerwonego $\bar{\lambda}_{cz}=648,22~[\mathrm{nm}]$ o niepewności $u(\bar{\lambda}_{cz})=7,7~[\mathrm{nm}]$. Wyniki te są zgodne z wartościami podanymi przez producenta na owych urządzeniach. Następnie w wyniku zbadania profilu wiązki widzimy zależność natężenia, która zmienia się jak $\cos^2(x)$, jest to też zgodne z przewidywaniem. Z drugiej części eksperymentu dotyczącej lasera z podwojeniem częstotliwości otrzymaliśmy wykres z którego można zauważyć zmianę długości fali światła który przeszedł przez pryzmat.

6. Literatura

- [1] http://website.fis.agh.edu.pl/~pracownia fizyczna/cwiczenia/86-2.pdf 22.05.2022
- [2] http://website.fis.agh.edu.pl/~pracownia fizyczna/cwiczenia/87 opis%20wykon.pdf 22.05.2022