```
In [11]:
          import numpy as np
          import pandas as pd
          import os
          import math
          import glob
          import matplotlib.pyplot as plt
          import seaborn
          import plotly.express as px
          import plotly.graph_objects as go
          from plotly.subplots import make_subplots
          from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
          import plotly.figure factory as ff
          import warnings
          warnings.filterwarnings('ignore')
In [12]:
          district df = pd.read csv('districts info.csv')
          product_df = pd.read_csv('products_info.csv')
          csvs = glob.glob('/Users/salazar1210/Data Science/Project prop1/engagement_data/
          dframes = []
          for file in csvs:
              df = pd.read csv(file, index col=None, header=0)
              district id = file.split('/')[-1].split('.')[0]
              df['district_id'] = district_id
              dframes.append(df)
          engagement_df = pd.concat(dframes)
          engagement df = engagement df.reset index(drop=True)
          engagement df[['district id']] = engagement df[['district id']].astype(int)
          engagement df2 = pd.merge(engagement df, district df, on = 'district id')
          engagement complete = pd.merge(engagement df2, product df, left on='lp id', righ
          pct black hispanic = []
          for value in engagement complete['pct black/hispanic']:
              if isinstance(value, float):
                  val = None
              else:
                  k = value.split(", ")
                  val = k[0][1:]
              pct black hispanic.append(val)
          pct free reduced = []
          for value in engagement_complete['pct_free/reduced']:
              val = 0
              if isinstance(value, float):
                  val = None
              else:
                  k = value.split(", ")
                  val = k[0][1:]
              pct free reduced.append(val)
```

pp_total_raw = []

val = 0

for value in engagement complete['pp total raw']:

if isinstance(value, float):

```
val = None
   else:
       k = value.split(", ")
       val = k[0][1:]
   pp_total_raw.append(val)
engagement_complete['pct_black_hispanic'] = pct_black_hispanic
engagement_complete['pct_free_reduced'] = pct_free_reduced
engagement_complete['pp_total_raw'] = pp_total_raw
engagement_complete = engagement_complete.drop(['lp_id','URL','county_connection
engagement_complete['pct_black_hispanic'] = engagement_complete['pct_black_hispa
engagement_complete['pct_free_reduced'] = engagement_complete['pct_free_reduced']
engagement_complete['pp_total_raw'] = engagement_complete['pp_total_raw'].astype
```

In [13]:

engagement_complete

Out

3]:		time	pct_access	engagement_index	district_id	state	locale	pp_total_raw	LP II
-	0	2020- 01-01	0.04	1.30	3188	NaN	NaN	NaN	2932
	1	2020- 01-02	0.26	17.78	3188	NaN	NaN	NaN	2932:
	2	2020- 01-03	0.82	121.42	3188	NaN	NaN	NaN	2932:
	3	2020- 01-05	0.00	NaN	3188	NaN	NaN	NaN	2932:
	4	2020- 01-06	2.86	451.43	3188	NaN	NaN	NaN	2932:
									•
	11691582	2020- 12-15	0.11	3.80	4629	Illinois	Suburb	16000.0	4314!
	11691583	2020- 12-17	0.07	1.38	4629	Illinois	Suburb	16000.0	4314!
	11691584	2020- 12-18	0.10	3.28	4629	Illinois	Suburb	16000.0	4314!

time p	ct_access	engagement_index	district_id	state	locale	pp_total_raw	LP II
--------	-----------	------------------	-------------	-------	--------	--------------	-------

11691585	2020- 12-21	0.09	3.28	4629	Illinois	Suburb	16000.0	4314!
11691586	2020- 12-22	0.08	2.67	4629	Illinois	Suburb	16000.0	4314!

11691587 rows × 13 columns

In [14]:

engagement_complete.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 11691587 entries, 0 to 11691586
Data columns (total 13 columns):

Column Dtype 0 time object 1 pct access float64 2 engagement index float64 3 district id int64 4 state object 5 locale object float64 6 pp_total_raw 7 LP ID int64 Product Name object 9 Provider/Company Name object 10 Primary Essential Function object 11 pct black hispanic float64 12 pct free reduced float64 dtypes: float64(5), int64(2), object(6)

In [15]:

engagement complete.describe()

memory usage: 1.2+ GB

Out[15]:

	pct_access	engagement_index	district_id	pp_total_raw	LP ID	pct_black __
count	1.168087e+07	9.414268e+06	1.169159e+07	6.238946e+06	1.169159e+07	9.13
mean	8.357378e-01	2.573893e+02	5.255355e+03	1.133406e+04	5.476999e+04	1.4
std	4.138046e+00	2.146490e+03	2.642549e+03	4.050854e+03	2.633956e+04	2.24
min	0.000000e+00	1.000000e-02	1.000000e+03	4.000000e+03	1.053300e+04	0.000
25%	1.000000e-02	9.400000e-01	2.956000e+03	8.000000e+03	3.085100e+04	0.000
50%	5.000000e-02	5.080000e+00	5.006000e+03	1.000000e+04	5.482700e+04	0.000
75%	2.200000e-01	3.388000e+01	7.741000e+03	1.400000e+04	7.688900e+04	2.00

 pct_access
 engagement_index
 district_id
 pp_total_raw
 LP ID
 pct_black

 max
 1.000000e+02
 1.527471e+05
 9.927000e+03
 3.200000e+04
 9.991600e+04
 8.00

engagement_index:

Total page-load events per one thousand students of a given product and on a given day

pct_access:

fig.show()

Percentage of students in the district have at least one page-load event of a given product and on a given day

Cyclic behavior due to the weekend weekday hours, the middle drop is due to the mid year holidays the mismatch in the beginning shows the drastic impact of covid

```
for_barchart1 = engagement_complete[['Product Name','engagement_index']]
    grouped_for_barchart1 = for_barchart1.groupby(['Product Name'], as_index=False).

    grouped_for_barchart1 = grouped_for_barchart1.dropna()
    grouped for barchart1 sorted = grouped for barchart1.sort values('engagement ind)
```

```
fig = px.bar(grouped_for_barchart1_sorted, x='Product Name', y='engagement_index
fig.update_layout(
    title={
        'text': "Engagement by Product - 2020"}, template='plotly_dark', xaxis_tic
)

fig.layout.coloraxis.colorscale = [(0.0, 'Orange'), (0.5, 'Red'), (1.0, 'darkred')]

fig.show()
```



```
In []:
```

```
In [18]:
    for_treemap1 = engagement_complete[['Primary Essential Function','Provider/Compa
    for_treemap1 = for_treemap1.dropna()

    symbol = []
    for funct in for_treemap1['Primary Essential Function']:
        f = funct.split(' - ')
            symbol.append(f[0])
        for_treemap1['Symbol'] = symbol

        grouped_for_treemap1 = for_treemap1.groupby(['Primary Essential Function','Provi
```

```
In [19]: grouped_for_treemap1.sort_values('engagement_index')[-15:]
```

Out[19]:	: Primary Essential Function		Provider/Company Name	Product Name	Symbol	engagement_index
	33	CM - Virtual Classroom - Video Conferencing &	ZOOM VIDEO COMMUNICATIONS, INC.	Zoom	СМ	454.551856
	133	LC - Digital Learning Platforms	Lexia Learning	Lexia Core5 Reading	LC	469.961840
		LC/CM/SDO - Other	Instagram	Instagram	LC/CM/SDO	521.411663
		LC/CM/SDO - Other	Google LLC	Google Sheets	LC/CM/SDO	548.311132
	61	LC - Content Creation & Curation	Seesaw Learning Inc	Seesaw : The Learning Journal	LC	628.701885

	Primary Essential Function	Provider/Company Name	Product Name	Symbol	engagement_index
348	SDO - School Management Software - SSO	ClassLink	ClassLink	SDO	666.844419
311	LC/CM/SDO - Other	Google LLC	Google Drive	LC/CM/SDO	814.455172
0	CM - Classroom Engagement & Instruction - Asse	Google LLC	Google Forms	СМ	888.950223
282	LC - Study Tools	Kahoot! AS	Kahoot!	LC	1503.386972
29	CM - Virtual Classroom - Video Conferencing &	Google LLC	Meet	СМ	1903.177151
344	SDO - Learning Management Systems (LMS)	Schoology	Schoology	SDO	2336.762399
166	LC - Online Course Providers & Technical Skill	Instructure, Inc.	Canvas	LC	2969.429030
255	LC - Sites, Resources & Reference - Streaming	Google LLC	YouTube	LC	3331.426261
341	SDO - Learning Management Systems (LMS)	Google LLC	Google Classroom	SDO	5366.451342
49	LC - Content Creation & Curation	Google LLC	Google Docs	LC	10289.882475

CSScolor: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturguoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, vellowgreen

```
In [20]:
          fig = px.treemap(grouped_for_treemap1,
                            path=['Symbol','Primary Essential Function','Provider/Company Na
                            values='engagement_index',
                            color='Symbol',
                            color_discrete_map={'LC':'darkcyan','SDO':'cyan','CM':'lightcyan
                            template='plotly_dark')
          fig.show()
             Products by Primary Essential Function
                LC
                 LC - Content Creation & Curation
                 Google LLC
                                                                    Google LLC
                                                    LC - Study Tools
In [21]:
          engagement_complete.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 11691587 entries, 0 to 11691586
          Data columns (total 13 columns):
           #
               Column
                                             Dtype
               _____
                                             ____
           0
               time
                                             object
                                             float64
           1
               pct access
                                             float64
           2
               engagement index
           3
               district id
                                             int64
           4
               state
                                             object
           5
               locale
                                             object
           6
               pp total raw
                                             float64
           7
               LP ID
                                             int64
           8
               Product Name
                                             object
           9
               Provider/Company Name
                                             object
           10 Primary Essential Function object
           11 pct black hispanic
                                             float64
           12 pct free reduced
                                             float64
          dtypes: float64(5), int64(2), object(6)
         memory usage: 1.2+ GB
In [22]:
          for_chloropleth = engagement_complete[['engagement_index','pct_access','time','s
          grouped by date chloropleth = for chloropleth[['time','pct access','engagement i
In [23]:
          us_state_abbrev = {
               'Alabama': 'AL',
               'Alaska': 'AK',
               'American Samoa': 'AS',
```

'Arizona': 'AZ',

```
'Arkansas': 'AR',
    'California': 'CA',
    'Colorado': 'CO',
    'Connecticut': 'CT',
    'Delaware': 'DE',
    'District Of Columbia': 'DC',
    'Florida': 'FL',
    'Georgia': 'GA',
    'Guam': 'GU',
    'Hawaii': 'HI',
    'Idaho': 'ID',
    'Illinois': 'IL',
    'Indiana': 'IN',
    'Iowa': 'IA',
    'Kansas': 'KS',
    'Kentucky': 'KY',
    'Louisiana': 'LA',
    'Maine': 'ME',
    'Maryland': 'MD',
    'Massachusetts': 'MA',
    'Michigan': 'MI',
    'Minnesota': 'MN',
    'Mississippi': 'MS',
    'Missouri': 'MO',
    'Montana': 'MT',
    'Nebraska': 'NE',
    'Nevada': 'NV',
    'New Hampshire': 'NH',
    'New Jersey': 'NJ',
    'New Mexico': 'NM',
    'New York': 'NY',
    'North Carolina': 'NC',
    'North Dakota': 'ND',
    'Northern Mariana Islands': 'MP',
    'Ohio': 'OH',
    'Oklahoma': 'OK',
    'Oregon': 'OR',
    'Pennsylvania': 'PA',
    'Puerto Rico': 'PR',
    'Rhode Island': 'RI',
    'South Carolina': 'SC',
    'South Dakota': 'SD',
    'Tennessee': 'TN',
    'Texas': 'TX',
    'Utah': 'UT',
    'Vermont': 'VT',
    'Virgin Islands': 'VI',
    'Virginia': 'VA',
    'Washington': 'WA',
    'West Virginia': 'WV',
    'Wisconsin': 'WI',
    'Wyoming': 'WY'
}
```

```
In [166...
          data2 = dict(
                  type = 'choropleth',
                  colorscale = 'blues',
                  locations = codes,
                  locationmode = 'USA-states',
                  z = list(grouped by date chloropleth['engagement index']),
                  colorbar = {'title':'Engagement Index'}
          from urllib.request import urlopen
          import json
          with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-c
              geojson = json.load(response)
          fig = px.choropleth(grouped_by_date_chloropleth, geojson=geojson, color='engagem
                                     color continuous scale="Viridis",
                                      range_color=(0, 12),
                                      scope="usa"
          fig.update_layout(
                  geo_scope='usa',
                  plot_bgcolor="#323130",
                  paper_bgcolor="#323130",
                  margin=go.layout.Margin(l=0, r=35, t=0, b=0),
                  font=dict(color="white"))
          hexcode = 0
          borders=[hexcode for x in range(len(df))]
          fig.update traces(marker line width=borders)
          fig.add_trace(go.Choropleth(data2))
```



```
In [26]: grouped_by_date_chloropleth.sort_values('engagement_index')[-3:]
```

Out[26]:		state	pct_access	engagement_index	state_codes
	7	Massachusetts	961992.83	2.592307e+08	MA
	5	Illinois	1191045.82	3.040042e+08	IL
	2	Connecticut	1594691.52	4.253337e+08	СТ

```
In [52]:
           engagement complete['state'].unique()
          array([nan, 'Massachusetts', 'Utah', 'California', 'Indiana',
Out [52]:
                  'New Jersey', 'Connecticut', 'Illinois', 'Virginia', 'Ohio', 'North Carolina', 'Michigan', 'New York', 'Washington',
                  'District Of Columbia', 'North Dakota', 'Tennessee', 'Wisconsin',
                  'Arizona', 'New Hampshire', 'Texas', 'Missouri', 'Florida',
                  'Minnesota'], dtype=object)
In [27]:
           for_scatterplot = engagement_complete[['engagement_index','pct_free_reduced','st
           for_scatterplot = for_scatterplot.dropna()
           for_scatterplot_groupedby_state = for_scatterplot.groupby(['state'], as_index=Fa
           fig = px.scatter(for_scatterplot_groupedby_state,
                        x="pct_free_reduced",
                        y="engagement index",
                        color="state",
                        size='engagement_index',
                        template="plotly_dark",
                        text='state',
                        title= 'Engagement vs Percentage free/reduced scatterplot')
           fig.show()
```


No relation temon between the two

```
In [28]: engagement_complete.head(2)
```

out[28]:		time	pct_access	engagement_index	district_id	state	locale	pp_total_raw	LP ID	Produ Nam
	0	2020- 01-01	0.04	1.30	3188	NaN	NaN	NaN	29322	Kha Acaden
	1	2020- 01-02	0.26	17.78	3188	NaN	NaN	NaN	29322	Kha Acaden

```
In [30]: engagement_complete_clean_prep = engagement_complete.copy()
```

engagement_complete_clean = engagement_complete_clean_prep.dropna(subset=['Prima
engagement_complete_sorted = engagement_complete_clean.sort_values('time')
#to get mean engagement of all productucts, each day, on the basis of states.
grouped_by_date = engagement_complete_sorted[['time','engagement_index','Primary
#to get sum of avg engagements on each day from every functional category there
grouped_by_date = grouped_by_date.groupby(['time','Primary Essential Function'],
grouped_by_date['time'] = pd.to_datetime(grouped_by_date["time"])
grouped_by_date = grouped_by_date.set_index('time', drop=False)
#making 3 different dataframes for the 3 primary type of functionalities
grouped_by_date_LC = grouped_by_date[grouped_by_date['Primary Essential Function
grouped_by_date_SDO = grouped_by_date[grouped_by_date['Primary Essential Function
grouped_by_date_CM = grouped_by_date[grouped_by_date['Primary Essential Function

In [79]:

grouped_by_date_LC.groupby(pd.Grouper(freq="7D", origin="start_day")).sum()
#aita all the PEF er 1 week er sum dive dicche

Out[79]:

engagement_index

time	
2020-01-01	76572.909650
2020-01-08	137788.417947
2020-01-15	115186.741477
2020-01-22	139311.122605
2020-01-29	138861.628365
2020-02-05	138636.467936
2020-02-12	210988.760793
2020-02-19	254208.852397
2020-02-26	245182.837974
2020-03-04	249315.652534
2020-03-11	189607.120346
2020-03-18	180529.269794
2020-03-25	171304.877260
2020-04-01	160067.322827
2020-04-08	160315.598961
2020-04-15	153752.784122
2020-04-22	157986.253117
2020-04-29	150497.719617
2020-05-06	143815.768911
2020-05-13	127421.163797
2020-05-20	86158.588304
2020-05-27	85852.561884
2020-06-03	71886.711185

engagement_index

time	
2020-06-10	52982.383840
2020-06-17	40345.501693
2020-06-24	33734.096665
2020-07-01	28743.961700
2020-07-08	31275.029104
2020-07-15	30144.772980
2020-07-22	29332.889306
2020-07-29	34522.164701
2020-08-05	40986.102998
2020-08-12	74930.291924
2020-08-19	134933.776586
2020-08-26	194177.278268
2020-09-02	182269.056031
2020-09-09	216397.929514
2020-09-16	231794.404274
2020-09-23	268796.345671
2020-09-30	238827.268339
2020-10-07	233578.291825
2020-10-14	233793.499878
2020-10-21	243254.170698
2020-10-28	228045.496651
2020-11-04	233196.051396
2020-11-11	238058.120231
2020-11-18	253872.330075
2020-11-25	133613.699817
2020-12-02	242657.685423
2020-12-09	249950.556688
2020-12-16	218073.554107
2020-12-23	50716.762108
2020-12-30	12291.051017

```
for function in y['Primary Essential Function']:
        if function not in functions:
            cols.append((y['time'][0], y[y['Primary Essential Function']==functi
            functions.append(function)
        else:
            break
dr_strage_time = pd.DataFrame(cols, columns=['time','engagement_index','Primary
fig = px.line(dr_strage_time, x='time', y='engagement_index', facet_col="Primary
              facet_col_wrap=3,color_discrete_map={'engagement_index':'cyan'},
             facet_row_spacing = 0.10, facet_col_spacing=0.10)
fig.update_layout(
    title={'text': "Engagement Index per Primary Essential Function - Learning a
    'y':.99, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, template='plotly_da
fig.update yaxes(matches=None, showticklabels=True)
fig.update_xaxes(matches=None, showticklabels=True)
fig.add vrect(x0='2020-05-21', x1='2020-08-16', fillcolor="white", opacity=0.2,
for i in range(len(fig.data)):
    fig.data[i].line.color = 'hotpink'
    fig.layout.annotations[i].text = '<br>'.join(fig.layout.annotations[i].text[
fig.show()
```



```
In [168...
cols = []
for x, y in grouped_by_date_CM.groupby(pd.Grouper(freq="7D", origin="start_day")
    functions = []
    for function in y['Primary Essential Function']:
        if function not in functions:
            cols.append((y['time'][0], y[y['Primary Essential Function']==functi
            functions.append(function)
        else:
            break

dr_strage_time = pd.DataFrame(cols, columns=['time','engagement_index','Primary
```



```
In [200...
grouped_by_date = engagement_complete[['time','pct_access','engagement_index','l
#grouped_by_date_lowexp = engagement_complete[['time','pct_access','engagement_i
#grouped_by_date_highexp = engagement_complete[['time','pct_access','engagement_

grouped_by_date_sorted = grouped_by_date.sort_values('time')
grouped_by_date_sorted2 = grouped_by_date_sorted[['time','engagement_index','loc
grouped_by_date_sorted2['time'] = pd.to_datetime(grouped_by_date_sorted2["time"]
grouped_by_date_sorted2 = grouped_by_date_sorted2.set_index('time', drop=False)
```

In [194... grouped by date sorted2

Out [194...

time locale engagement_index

time			
2020-01-01	2020-01-01	City	6.265015
2020-01-01	2020-01-01	Rural	33.440543
2020-01-01	2020-01-01	Suburb	22.511022
2020-01-01	2020-01-01	Town	15.936756
2020-01-02	2020-01-02	City	40.694297
•••	•••		
2020-12-30	2020-12-30	Town	60.036701
2020-12-31	2020-12-31	City	53.863697
2020-12-31	2020-12-31	Rural	82.102976
2020-12-31	2020-12-31	Suburb	58.297083
2020-12-31	2020-12-31	Town	58.875928

1464 rows x 3 columns

```
In [216...
```

```
cols = []
for x, y in grouped by date sorted2.groupby(pd.Grouper(freq="7D", origin="start
    locale = []
    for loc in y['locale']:
        if loc not in locale:
            cols.append((y['time'][0], y[y['locale']==loc]['engagement index'].m
            locale.append(loc)
        else:
            break
dr strage time 2 = pd.DataFrame(cols, columns=['time', 'engagement index', 'locale
fig = px.line(dr_strage_time_2, x='time', y=['engagement_index'], color='locale'
        title='Engagement Index - High Per-Pupil Total Expenditure vs Low Per-Pu
        color discrete map={"engagement lowexp": "Red", "engagement highexp": "M
        template="plotly dark"
        )
fig.update_layout(
    title={
        'text': "Mean Engagement Index per Week - Grouped by Location Context",
        'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'},
    template='plotly dark',
    height=600
fig.show()
```


In []: