Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет безопасности информационных технологий

Группа	ФИЗ-3 Э БИТ 1.3.1	К работе допущен
Студенты	Бардышев Артём	
	Суханкулиев Мухаммет	Работа выполнена
	Шегай Станислав	
Преподавател	ь Бочкарев М. Э.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №5.11

Подтверждение дискретности энергетических состояний атома. Определение потенциалов возбуждения гелия

1. Цель работы.

- 1. Подтверждение дискретности энергетических состояний гелия.
- 2. Количественное определение потенциалов возбуждения гелия.

2. Задачи, решаемые при выполнении работы.

- 1. Измерить ток коллектора I_R в виде функции ускоряющего напряжения U_A .
- 2. Сравнить максимальные значения тока с известными потенциалами возбуждения атома гелия.

3. Объект исследования.

Атом гелия.

4. Метод экспериментального исследования.

Измерение тока коллектора при изменении ускоряющего напряжения (опыт Франка—Герца).

5. Рабочие формулы и исходные данные.

1. Зависимость анодного напряжения от времени:

$$U_A(t) = U_{
m H} + \left(\frac{U_{
m K} - U_{
m H}}{t_{
m K} - t_{
m H}}\right) t$$

Напряжение батарейного блока:

$$U = 1.5 \, \text{B}$$

Частота подачи на анод напряжения

$$f = 20 \Gamma$$
ц

Напряжение накала:

$$U_{\text{накал}} = 3.5 \text{ B}$$

Минимальное анодное напряжение:

$$U_{\rm H} = 15.7~{\rm B}$$

Максимальное анодное напряжение:

$$U_{\rm K} = 27.6 \, \rm B$$

Коэффициент показаний мультиметра:

$$k = \frac{1}{1000}$$

Чувствительность канала 1 осциллографа (отклонение по X):

$$X_{sh} = 200 \text{ мВ/дел}$$

Чувствительность канала 2 (отклонение по Y):

$$Y_{sh} = 1 \, \text{В/дел}$$

Развертка на осциллографе:

$$t_{sh} = 5 \,\mathrm{мc/дел}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон
1	Мультиметр	Цифровой	0 – 30 B
2	Осциллограф	Цифровой	0 – 30 B
4	Блок управления	Генератор	0 – 30 B

7. Схема установки.

Рисунок 1 – Общий вид экспериментальной установки

1 — блок питания, 2 — вакуумная колба, наполненная гелием с кольцевидным коллектором и экранирующим кожухом, 3 — батарейный блок, 4 — управляющее устройство, 5 — осциллограф, 6 — подключение устройства 4 к осциллографу, 7 — подключение устройства 4 к вольтметру.

8. Результаты прямых измерений и их обработки.

$$t_{
m K}=40.2$$
 мс $t_{
m H}=0$ мс $t_{
m K}-t_{
m H}=40.2$ мс

Рисунок 2 – Вид кривых

Определим значение угла наклона зависимости (1) по измеренным значениям:

$$\varphi_{U_A}(t) = \left(\frac{U_{\mathrm{K}} - U_{\mathrm{H}}}{t_{\mathrm{K}} - t_{\mathrm{H}}}\right) t \approx 0.296t$$

Пользуясь этой же формулой, рассчитаем соответствующие анодные напряжения (потенциалы возбуждения) U_i и занесем их значения в таблицу:

Уровни энергии	$oldsymbol{t_i}$, мс	$\boldsymbol{U_i}$, B
2 ³ S	12.5	19.4002
2 ¹ S	15.5	20.2883
2 ¹ P	24.6	22.9821
4 ¹ P	28	23.9886
Ионизация	30.4	24.699

Сравним полученные потенциалы с энергиями возбуждения, приведенными в следующей таблице:

Уровень	Энергия	Потенциал	Расхождение
энергии	состояния, эВ	возбуждения, В	результатов
2 ³ S	19.8	19.4002	2.0605 %
2 ¹ S	20.6	20.2883	1.5363 %
2 ¹ P	21.2	22.9821	7.7543 %
4 ¹ P	23.7	23.9886	1.2029 %
Ионизация	24.6	24.699	0.4008 %

9. График

Рисунок 3 – Зависимость анодного напряжения от времени

10. Выводы и анализ результатов работы.

В ходе лабораторной работы были экспериментально определены потенциалы возбуждения атома гелия методом Франка–Герца. Полученные значения были сопоставлены с табличными данными. Расхождение не превышает 8%, что свидетельствует об удовлетворительной точности измерений.

Зафиксированы экспериментальные подтверждения дискретности энергетических состояний атома гелия, что соответствует основным положениям квантовой теории.