Digital Circuits and Systems

Boolean Theorems

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

DeMorgan's Theorem

$$\overline{(X_1 + X_2 + \ldots + X_n)} = \overline{X_1} \cdot \overline{X_2} \cdot \ldots \cdot \overline{X_n}$$

$$\overline{(X_1 \cdot X_2 \cdot ... \cdot X_n)} = \overline{X_1} + \overline{X_2} + ... + \overline{X_n}$$

Remember:
$$\overline{X \cdot Y} \neq \overline{X} \cdot \overline{Y}$$

$$\overline{X+Y} \neq \overline{X} + \overline{Y}$$

Proof Techniques (Example 1)

■ Prove $x + (y \cdot z) = (x + y) \cdot (x + z)$

RHS =
$$x \cdot (x+z) + y \cdot (x+z)$$

= $x \cdot x + x \cdot z + y \cdot x + y \cdot z$
= $x \cdot (1+z+y) + y \cdot z$
= $x \cdot (1) + y \cdot z$
= $x + y \cdot z$

Fairly Straightforward

Proof Techniques (Example 2)

■ Prove $x + x \cdot y = x$

$$x + x \cdot y = x \cdot 1 + x \cdot y$$
 $= x \cdot (1 + y)$
 $= x \cdot 1$
 $= x$

Introduce a constant

Proof Techniques (Example 3)

■ Prove x.y + y.z + x'.z = x.y + x'.z

LHS =
$$x.y + y.z.1 + x'.z$$

= $x.y + y.z.(x+x') + x'.z$
= $x.y + y.z.x + y.z.x' + x'.z$
= $x.y (1 + z) + (y + 1).x'.z$
= $x.y + x'.z$

Introduce a constant and introduce a function

Boolean Techniques (Example 4)

 \blacksquare Simplify x.y + x.y.z + y.z

LHS =
$$x.y + x.y.z + y.z$$

= $x.y + x.y.z + x.y.z + y.z$
= $x.y (1 + z) + y.z (x + 1)$
= $x.y + y.z$
= $y.(x+z)$

Introduced a copy of a term

A simpler derivation is there. Think about it!

Exercise: Prove the Two Variable Theorems Below

Absorption

$$\square \quad \times + (\times \cdot \vee) = \times$$

$$\square$$
 \times $(x + y) = x$

Combining

$$\square \quad \times \quad \cdot \quad \vee \quad + \quad \times \quad \cdot \quad \vee \quad = \quad \times$$

$$\square (x + y) \cdot (x + y') = x$$

 DeMorgan's Laws (You probably know how to use Venn Diagram to prove this)

$$\square (x + y)' = x' \cdot y'$$

$$\square (x \cdot y)' = x' + y'$$

$$\blacksquare$$
 \times $(\times' + \vee) = \times + \vee$

Boolean Functions

$$f = (x_1 OR x_2) AND (x_3)$$

= $(x_1 + x_2) \cdot x_3$

$$x_1 \\ x_2 \\ x_3$$
 $f = (x_1 + x_2) \cdot x_3$

Design Problem 1

- Design a circuit for staircase light control using a two-way switch
- If both switches are OFF or ON, light is off
- If one of them is ON and another is OFF, the light is ON

х	y	L
0	0	0
0	1	1
1	0	1
1	1	0
		l

(a) Two switches that control a light

(b) Truth table

Boolean Expression

- Lamp is ON when
 - □ Either x is ON and y is OFF
 - Or x is OFF and y is ON

(c) Logic network

(d) XOR gate symbol

re.

Design Problem 2

Design a circuit which realizes the following truth table

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

$$f = ?$$

Design Problem 2 (contd.)

 $f = X_1'.X_2' + X_1'.X_2 + X_1.X_2$

Power of Simplification

$$f = X_1'.X_2' + X_1'.X_2 + X_1.X_2$$

$$= X_1'.X_2' + X_1'.X_2 + X_1'.X_2 + X_1.X_2$$

$$= X_1'.(X_2' + X_2) + (X_1' + X_1).X_2$$

$$= X_1'.1 + 1.X_2$$

$$= X_1' + X_2$$

Minimal-cost realization

Positional Number System

Decimal: Uses base 10

Hundreds Tens Ones

Binary Number: Uses base 2

Binary to Decimal

Because humans work well with decimal, it is useful to know how to convert between binary and decimal:

0000	1000- 0
$0000_2 = 0$	10002 = 8
$0001_2 = 1$	10012 = 9
$0010_2 = 2$	$1010_2 = 10$
00112 = 3	10112 = 11
01002 = 4	$1100_2 = 12$
01012 = 5	11012 = 13
01102= 6	$1110_2 = 14$
01112 = 7	11112 = 15

Binary to Decimal (contd.)

To convert to decimal, represent the column values in decimal

$$1x128 + 1x16 + 1x8 + 1x4 + 1x1 =$$

$$128 + 16 + 8 + 4 + 1 =$$

$$157$$

End of Week 1: Module 3

Thank You