ELEMENTARNI DISKRETNI SIGNALI

Primena DSP u upravljanju

Diskretni jedinični odskočni signal

Diskretni pravougaoni impuls

$$p[n] = u[n] - u[n - N] = \begin{cases} 0, n < 0 \\ 1, 0 \le n \le N - 1 \\ 0, n > N \end{cases}$$

Diskretni jedinični impulsni signal

Diskretni jedinični odskočni i jedinični impulsni signal

$$\bullet \quad \delta[n] = u[n] - u[n-1]$$

Diskretni realan eksponencijalni signal

- $x[n] = Ca^n$
- C realna konstanta
- a- realna konstanta

Diskretan realan eksponencijalni signal

Diskretan kompleksni prostoperiodični signal

- $\mathbf{x}[n] = Ca^n$ gde su C i a kompleksne konstante
- $\mathbf{a} = \mathbf{e}^{j\Omega_0}$ gde je Ω_0 diskretna kružna učestanost
- $C = |C|e^{j\phi}$ gde je ϕ realna konstanta
- Ako obeležimo sa A = |C| tada je prostoperiodičan signal dat izrazom:

Diskretan sinusoidalan signal

Periodičnos t diskretno g sinusoidalnog signala

- Uslov periodičnosti x[n+N] = x[n] mora da važi za svaki ceo broj n i za neki prirodan broj N
- $e^{j\Omega_0(n+N)} = e^{j\Omega_0n}e^{j\Omega_0N} = e^{j\Omega_0n} \Rightarrow e^{j\Omega_0N} = 1$
- lacktriangle Ako posmatramo diskretizaciju signala $x(t)=\sin\omega_0 t$ sa periodom odabiranja T_S
- Pošto je $\Omega_0 = \omega_0 T_S = \frac{2\pi}{T_0} T_S$ pa je uslov da $x(n) = \sin \Omega_0 n$ bude periodičan
- $\frac{\Omega_0}{2\pi} = \frac{\omega_0 T_S}{2\pi} = \frac{T_S}{T_0} = \frac{k}{N} \Rightarrow T_S = \frac{k}{N} T_0 \text{ i } \frac{k}{N} < \frac{1}{2} \text{ da bi se zadovoljio Niquistov kriterijum}$
- Iz toga se zaključuje da je diskretni signal x(n) periodičan sa periodom N ako jedna perioda diskretizovanog sinusa sadrži ceo broj (k) perioda nediskretizovane sinusne funkcije $NT_S = kT_0$
- Diskretni sinusoidalni signali učestanosti $\Omega_0 + 2k\pi$ su identični
- $=e^{j(\Omega_0+2k\pi)n}=e^{j\Omega_0n}e^{j2kn\pi}=e^{j\Omega_0n}$ pri čemu su k i n proizvoljni celi brojevi
- Diskretna učestanost se prema tome kreće u opsegu $0 \le \Omega_0 < 2\pi$ ili $-\pi \le \Omega_0 < \pi$

Diskretni kompleksni eksponencijalni signal – opšti slučaj

- $\mathbf{x}[n] = \mathbf{C}a^n$
- $\mathbf{a} = \rho e^{j\Omega_0}$ gde je Ω_0 diskretna kružna učestanost, a ρ realan broj
- $C = |C|e^{j\phi}$ gde je ϕ realna konstanta
- $x[n] = |C|e^{j\phi} (\rho e^{j\Omega_0})^n = |C|e^{j\phi} \rho^n e^{jn\Omega_0} = |C|\rho^n e^{j(n\Omega_0 + \phi)}$
- $\mathbf{x}[n] = |C| \rho^n [\cos(\Omega_0 n + \phi) + j\sin(\Omega_0 n + \phi)]$ ako obeležimo sa $\mathbf{A} = |C|$
- $x[n] = A \rho^n \cos(\Omega_0 n + \phi) = \text{Re}\{A \rho^n e^{j(\Omega_0 n + \phi)}\} = \frac{A \rho^n}{2} (e^{j(\Omega_0 n + \phi)} + e^{-j(\Omega_0 n + \phi)})$
- \blacksquare Za $\rho > 1$ eksponencijalno rastući kosinusni signal
- lacktriangle Za 0<
 ho<1 eksponencijalno opadajući kosinusni signal prigušene oscilacije

Diskretni kompleksni eksponencijalni signal – opšti <mark>sluča</mark>j

Furijeova transforamacij<mark>a jediničnog</mark> impulsnog signala

$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} \delta(n) e^{-j\Omega n} = 1 \cdot e^{-j\Omega 0} = 1$$