Chapter 5: Fabrication

ELEC 424
John Peeples

Another Look at Fabrication

- Back End Basics
 - Test
 - Packaging
- Packaging and Interconnect
- IC Resistors

Back End Basics

- Two Major Components
 - Test
 - Packaging
- Silicon Run II

Testing

- Wafer-, Packaged Device- and System-Level
- Wafer Level
 - Go-No Go
 - Very Limited Functionality
- Packaged Device
 - Speed Sort
 - Functionality
 - Reliability (Burn-In, Hostile Environments)
 - Special Needs
- Operating System
- Use Conditions

Packaging

- Interconnection of Circuit Elements
 - First level on chip
 - Second level chip to package
 - Third level between packages (on PCB)
- Wafer to Die
 - Wafers diced into individual integrated circuits
 - Known Good Die (KGD) are packaged.
- Chip on Board (COB) high volume, inexpensive, miniature
- Packaged Devices for Broad Application
- Peripherally- or area-arrayed I/O
 - Hermetic or Encapsulated
 - Ceramic or Organic
 - Surface Mounted or Through Hole

First Level Interconnect

- Aluminum (3 $\mu\Omega$ -cm) or Copper (1.7 $\mu\Omega$ -cm)
 - Highly conductive "wires" between devices
- Polysilicon
 - Resistive gate electrodes/short interconnect
- Salicides (Self-Aligning Silicides)
 - Lower spreading resistance
 - Used over poly or shallow diffusions
- Barrier Metals
 - Promote adhesion
 - Prevent diffusion

Multi-Layer Interconnect

- Oxide insulating layers
- Vias
- Metallic "plugs"

Do "Wires" Fail?

- Electromigration
 - High current densities
 - ~10⁶ A/cm²
 - Atoms are blown by the electron "wind"
 - Thinning at negative end, hillocks at positive end
- Electrical Overstress (EOS)
 - Joule heating at high currents
 - \bullet P=I²R
 - Wires fuse
- Corrosion
- Thermo-mechanical Stress

IC Resistor

- Doped region of specificL and W
 - p-type in NMOS process
 - p⁺ regions enhance termination

$$R = \frac{\rho L}{A}$$

$$\sigma = \frac{1}{\rho} = (q\mu_n n + q\mu_p p)$$
W

$$dG(x) = q\mu_p p(x) \frac{W}{L} dx$$

Resistance

Use an average \(\mu\) to approximate conductance

$$G = N'q\overline{\mu}_{p} \frac{W}{L} = g \frac{W}{L}$$

$$R = \frac{1}{G} = \frac{L}{W} \frac{1}{g}$$

Sheet Resistance

- Patterns can be resolved to a number of L by W squares
- **♦** Each square has a sheet resistance, R_{\square} (lets assume $R_{\square} = 200\Omega/_{\square}$)
- •46 squares * $200\Omega/\Box = 9.2k\Omega$

For the fun of it

a) How wide will the 1 μm trench become when filled with SiO²?

SiO² contains 2.2*10²² molecules/cm³ and Si contains 5*10²² atoms/cm³. Therefore every unit of SiO² will use up 44% of a unit of Si (2.2/5). The total width of the SiO² trench will be...

$$x = 0.44x + 1$$

 $x = 1.79 \ \mu m$