

## **Art of Problem Solving** 2007 Balkan MO

## Balkan MO 2007

| _ | April 27th                                                                                                                                                                                                                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Let $ABCD$ a convex quadrilateral with $AB = BC = CD$ , with $AC$ not equal to $BD$ and $E$ be the intersection point of it's diagonals. Prove that $AE = DE$ if and only if $\angle BAD + \angle ADC = 120$ .                                     |
| 2 | Find all real functions $f$ defined on $IR$ , such that                                                                                                                                                                                            |
|   | f(f(x) + y) = f(f(x) - y) + 4f(x)y,                                                                                                                                                                                                                |
|   | for all real numbers $x, y$ .                                                                                                                                                                                                                      |
| 3 | Find all positive integers $n$ such that there exist a permutation $\sigma$ on the set $\{1,2,3,\ldots,n\}$ for which                                                                                                                              |
|   | $\sqrt{\sigma(1) + \sqrt{\sigma(2) + \sqrt{\dots + \sqrt{\sigma(n-1) + \sqrt{\sigma(n)}}}}}$                                                                                                                                                       |
|   | is a rational number.                                                                                                                                                                                                                              |
| 4 | For a given positive integer $n>2$ , let $C_1,C_2,C_3$ be the boundaries of three convex $n-$ gons in the plane, such that $C_1\cap C_2,C_2\cap C_3,C_1\cap C_3$ are finite. Find the maximum number of points of the sets $C_1\cap C_2\cap C_3$ . |

Contributors: stergiu, Huyn V, maky