House Price

Prediction

Linear Regression

Data corrcoef

Data corrcoef

	X1	X2	X3	X4	X5	X6
X1	1	0.0367701	0.0587889	-0.00528282	0.0435039	-0.0436175
X2	0.0367701	1	0.0260113	0.0344743	0.0518532	-0.0563221
X3	0.0587889	0.0260113	1	-0.599147	-0.576657	-0.814509
X4	-0.00528282	0.0344743	-0.599147	1	0.43662	0.452031
X5	0.0435039	0.0518532	-0.576657	0.43662	1	0.406383
X6	-0.0436175	-0.0563221	-0.814509	0.452031	0.406383	1

Data preprocessing (before)

X4 number of convenience stores

Data preprocessing (before)

X5 latitude

Data preprocessing (before)

X6 longitude

Data preprocessing (after)

X4 number of convenience stores

Data preprocessing (after)

X5 latitude

Data preprocessing (after)

X6 longitude

Linear Regression

$$Z_3 = \theta_3 x_3$$

$$Z_1 = \theta_2 x_2$$

$$Z_5 = z_4 + \theta_0 \longrightarrow Z_6 = y + z_5 \longrightarrow L = (z_6)^2$$

$$Z_1 = \theta_1 x_1$$

$$(Z_4 = Z_3 + Z_2 + Z_1)$$

Train result

Cost: 78.85679088182624

1 Test data

Linear Regression

$$Z_4 = \theta_4 x_4$$

$$Z_3 = \theta_3 x_3$$

$$Z_1 = \theta_2 x_2$$

$$Z_1 = \theta_1 x_1$$

$$Z_1 = \theta_1 x_1$$

$$Z_2 = \theta_1 x_1$$

$$(Z_5 = Z_4 + Z_3 + Z_2 + Z_1)$$

△ Train result

Cost: 72.75241583188847

1 Test data

1 Test data

3 X_data

4 X_data