Bosong Zhang

Email: <u>bxz125@miami.edu</u> | <u>bosongzhang@gmail.com</u>

Address: 4600 Rickenbacker Causeway, Miami, FL, 33149

Education

2018–2021	Ph.D. in Atmospheric Science	University of Miami
2016–2018	M.S. in Meteorology and Physical Oceanography	University of Miami
2010–2014	B.S. in Atmospheric Science	Nanjing University

Research Interests

- Convective Aggregation: Tropical cyclones, the Madden-Julian Oscillation (MJO)
- Radiative Feedbacks
- Precipitation Extremes
- Precipitation Change
- Global Climate Models

Publications

- 1. **Zhang, B.**, Soden, B. J., Vecchi, G. A., & Wenchang Yang (2020). The Role of Radiative Interactions in Tropical Cyclone Development under Realistic Boundary Conditions, under review at *Journal of Climate*.
- 2. **Zhang, B.**, Soden, B. J., & Vecchi, G. A. (2020). The Impact of Radiative Interactions on Convective Organization under Realistic Boundary Conditions, in preparation.
- 3. Medeiros, B., Clement, A. C., Benedict, J. J., & **Zhang, B.** (2020). Investigating the Impact of Cloud Radiative Feedbacks on Tropical Precipitation Extremes, in preparation.
- 4. **Zhang, B.**, Kramer, R. J., & Soden, B. J. (2019). Radiative Feedbacks Associated with the Madden–Julian Oscillation. *Journal of Climate*, *32*(20), 7055-7065.
- 5. **Zhang, B.**, & Soden, B. J. (2019). Constraining climate model projections of regional precipitation change. *Geophysical Research Letters*, *46*(17-18), 10522-10531.
- 6. Zhang, C., & **Zhang, B**. (2018). QBO-MJO Connection. *Journal of Geophysical Research: Atmospheres*, 123(6), 2957-2967.

Research Experience

Current: using "observed" radiative cooling rates (CloudSat, MERRA2, ERA5) to nudge a global climate model
(HiRAM) and investigate what determines the spatial pattern of precipitation change.

- Investigated the impact of radiative interactions on tropical cyclones using HiRAM, 2019-2020.
- Examined the response of convective organization and extreme precipitation to suppressed radiative interactions, 2019-2020.
- Used radiative kernels to quantify radiative feedbacks associated with the MJO, 2018-2019.
- Analyzed global precipitation patterns from CMIP5 before and after bias correction and proposed a simple approach to reduce uncertainty in future projections of climate change, 2018-2019.
- Analyzed the relationship between the Madden-Julian Oscillation (MJO) and Quasi-biennial Oscillation (QBO) based on observations, 2016-2017.

Teaching Experience

- Teaching assistant, ATM 307: Introduction to the Physics of Climate, Prof. Amy Clement
- Teaching assistant, ATM 265-D1: Atmospheric Chemistry, Prof. Anthony J. Hynes
- Teaching assistant, ATM 102: Introduction to Weather and Climate, Prof. Anthony J. Hynes

Conferences and workshops

- CFMIP Virtual Meeting on Clouds, Precipitation, Circulation, and Climate Sensitivity, September 14-17, 2020
- American Geophysical Union Fall Meeting, December 7-11, 2020
- 101st American Meteorological Society Annual Meeting (Fourth Special Symposium on Tropical Meteorology and Tropical Cyclones), January 10-14, 2021
- Gordon Research Seminar and Conference on Radiation and Climate, Bates College, Lewiston, ME, July 21-26, 2019
- NASA PMM (Precipitation Measurement Missions) Science Team Meeting, Phoenix, AZ, October 8-12, 2018