Affinité

1. Dans un système d'axes orthonormés Oxy, on donne les points suivants : A(7; -6), B(11; -4), M(5; -4) et M'(7; 7).

Disposition: feuille A4 verticale, Ox au milieu et O à 3 cm du bord gauche.

 $Unit\acute{e}$: le centimètre.

Soit f l'affinité d'axe y=0 telle que l'image de M est M'. Construire l'image du triangle ABC sachant que M est le milieu de AC. Chercher l'image de la médiane et de la médiatrice du côté AC.

Corrig'e

2. On donne un point A, une droite d et leur image A' et d' par une affinité f. Construire l'axe a de cette affinité ainsi que l'antécédent M d'un point M' donné.

$Corrig\acute{e}$

3. Dans un système d'axes orthonormés Oxy, on donne les trois droites suivantes : (d)y = x + 6, (d')y = x - 1, et (a)y = -2x + 7.

Disposition: feuille A4 verticale, Oy au milieu et O au centre de la feuille.

 $Unit\acute{e}$: le centimètre.

Soit l'affinité de rapport 1/3 telle que d' est l'image de d et la droite a est globalement invariante (a' = a). Déterminer :

- a) la direction \vec{v} de l'affinité et son axe;
- b) l'image du point $P(-2; y_P) \in a$.

 $Corrig\acute{e}$

4. D'une affinité, on connaît son axe a et son rapport k=-2. Déterminer sa direction \vec{v} pour que les deux droites d et g aient pour images deux droites d' et g' perpendiculaires.

 $Corrig\acute{e}$

- **5.** Dans le repère orthonormé $(O; \vec{e_1}; \vec{e_2})$, on donne les points A'(-6; 0), C'(0; 3), et P'(9; 2), et la direction $\vec{u}' = -2\vec{e_1} + 3\vec{e_2}$.
 - On appelle Γ l'ellipse centrée à l'origine de grand axe A'B' et de petit axe C'D'.

Disposition: feuille A4 horizontale, Oy au milieu et O au centre de la feuille.

 $Unit\acute{e}$: le centimètre.

On considère l'affinité orthogonale d'axe (O, \vec{e}_1) et de rapport k > 0.

- a) Construire le cercle γ dont Γ est l'image.
- b) Construire une tangente à Γ issue de P'.
- c) Construire une tangente à Γ parallèle à la direction \vec{u}' .

6. On appelle transvection ou cisaillement, une affinité dont la direction est parallèle à l'axe. Le rapport d'affinité n'a plus de sens, le point I étant rejeté à l'infini.

Pour définir une transvection, il faut donner son axe, un point P et son image P'. Les propriétés sont identiques à celles d'une affinité de direction non parallèle à l'axe, entre autre la transvection est linéaire lorsque son axe passe par l'origine.

La distance d'un point quelconque à son image est proportionnel à sa distance à

l'axe :
$$\frac{dist(P, P')}{dist(P, axe)}$$
 = constante k .

Plus un point est distant de l'axe plus la distance à son image est grande.

a) Déterminer l'image du parallélogramme ABCD par la transvection d'axe a telle que le point P a pour image le point P'.

Calculer le rapport entre l'aire du parallélogramme et l'aire de son image. Que vaut ce rapport lorsque l'affinité est de direction non parallèle à l'axe ?

b) Déterminer dans le repère orthonormé $(O, \vec{e_1}, \vec{e_2})$, la matrice de la transvection lorsque P(0,4) a pour image P'(6,4).

b) La transvection étant linéaire son axe passe par l'origine O. Sa direction est \vec{e}_1 car $y_P=y_P'$.

On détermine par exemple l'image des vecteurs de la base en résolvant le système

$$\begin{cases} f(\vec{e}_1) & \vec{e}_1 \\ f(0\vec{e}_1 + 4\vec{e}_2) & = 6\vec{e}_1 + 4\vec{e}_2 \end{cases}$$
 d'où $M = \begin{pmatrix} 1 & 3/2 \\ 0 & 1 \end{pmatrix}$