Quantum Field Theory on a Highly Symmetric Lattice

Marco Aliberti

Università degli Studi di Torino

July 9, 2023

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated.

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Why Lattice Quantum Chromodynamics?

In quantum field theory scattering amplitudes in the form

$$\langle f|i
angle = \int_{\phi_i}^{\phi_f} \mathcal{D}\left[\phi
ight] \mathrm{e}^{-S\left[\phi
ight]}$$

need to be evaluated. There are two possible approaches:

Perturbative

Son Control of the Co

Perturbative

• Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

Non-Perturbative

No straightforward approach

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies

Perturbative

- Straightforward series expansion in powers of small $g \Leftrightarrow$ Feynman diagrams with n loops
- UV divergencies need to be eliminated
- Fails predicting quantities with essential singularities as $g \to 0$

- No straightforward approach
- Can have a natural cut-off for high momenta ⇒ No UV divergencies
- ullet Can predict quantities with essential singularities as g o 0

What is a Lattice?

Definition: Lattice Λ

$$\Lambda = \{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \}, \text{ with } \{e_i\}$$
 any basis of \mathbb{R}^n

Figure: A bidimensional lattice.

What is a Lattice?

Definition: Lattice Λ

 $\Lambda = \{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \}, \text{ with } \{e_i\}$ any basis of \mathbb{R}^n

Figure: A bidimensional lattice.

Hypercubic lattice

 $\{e_i\}$ is the canonical basis of \mathbb{R}^n a is called *lattice spacing*.

Figure: A square lattice.

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

• Scalar fields $\Phi(x) \to \Phi(n)$ on sites

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) o U_{\mu}(n)$ on links

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) \to U_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Basic idea

Fields can take values only in given parts of the lattice, $x \to n \in \Lambda$.

Examples:

- Scalar fields $\Phi(x) \to \Phi(n)$ on sites
- Vector fields $U_{\mu}(x) o U_{\mu}(n)$ on links
- Object with k indices on k-symplexes

Beware!

Spinorial fields are trickier to be discretized.

Parallel Transporter

$$U_{\mu}(x) = \exp(igaA_{\mu}(x))$$

Figure: A (hyper)cubic lattice in \mathbb{R}^3 .

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

On the lattice, every closed path is gauge-invariant.

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

On the lattice, every closed path is gauge-invariant.

Definition: Plaquette $U_{\mu\nu}(n)$

$$U_{\mu}(n)U_{
u}(n+\mu)U_{\mu}^{\dagger}(n+
u)U_{
u}^{\dagger}(n)$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Gauge-Invariant Observables and Wilson Action

The Yang-Mills continuum action is $S_E = \frac{1}{4} \int d^4x F^{a\mu\nu}(x) F^a_{\mu\nu}(x)$.

Definition: Plaquette $U_{\mu\nu}(n)$

$$U_{\mu}(n)U_{
u}(n+\mu)U_{\mu}^{\dagger}(n+
u)U_{
u}^{\dagger}(n)$$

On the lattice, every closed path is gauge-invariant.

Wilson's Idea

$$S = rac{eta}{2N} \sum_{n,\mu,
u} \mathfrak{Re} \operatorname{Tr} \left(\mathbb{1} - U_{\mu
u}(n) \right)$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Polyakov Loops and Potential

If the time coordinate is taken to be periodic, more closed paths arise.

Polyakov Loop

$$P(n) = \operatorname{Tr} \prod_{t=0}^{T-1} U_t(n)$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Polyakov Loops and Potential

If the time coordinate is taken to be periodic, more closed paths arise.

Polyakov Loop

$$P(n) = \operatorname{Tr} \prod_{t=0}^{T-1} U_t(n)$$

The expectation value of two Polyakov loops is the potential.

Potential

$$V(R) = -\frac{1}{T}\log \langle P(0)P^{\dagger}(R) \rangle$$

Figure: Gauge-invariant paths on a bidimensional lattice.[1]

Poincaré Group can be divided in:

Translations

Rotations

Poincaré Group can be divided in:

Translations

$$x^{\mu} \rightarrow x^{\mu} + \varepsilon^{\mu}$$
$$\downarrow \downarrow$$

 $n \rightarrow n + a\hat{\mu}$

Rotations

Poincaré Group can be divided in:

Translations

$$x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \to n + a\hat{\mu}$$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

Poincaré Group can be divided in:

Translations

$$x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \to n + a\hat{\mu}$$

$$a\hat{\mu}
ightarrow arepsilon^{\mu}$$
 for $a
ightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \downarrow$$

$$n \rightarrow \Gamma n \quad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

Poincaré Group can be divided in:

Translations

$$x^{\mu} \to x^{\mu} + \varepsilon^{\mu}$$

$$\downarrow \downarrow$$

$$n \to n + a\hat{\mu}$$

$$a\hat{\mu}
ightarrow \varepsilon^{\mu}$$
 for $a
ightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \Gamma \qquad \Gamma \qquad \Gamma \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

T: group of rotations of multiples of 90° around any axis.

$$\Gamma \times R$$
 for $a \to 0$

Poincaré Group can be divided in:

Translations

$$a\hat{\mu} \rightarrow \varepsilon^{\mu}$$
 for $a \rightarrow 0$

Rotations

$$x^{\mu} \rightarrow R^{\mu}_{\nu} x^{\nu} \quad R \in SO(4)$$

$$\downarrow \downarrow$$

$$n \rightarrow \Gamma n \quad \Gamma \in T$$

T: group of rotations of multiples of 90° around any axis.

$$\Gamma \times R$$
 for $a \to 0$

Important:

Rotational invariance seems to be broken.

Rotational Invariance Restoration

Bibliography

[1] Dibakar Sigdel. "Two Dimensional Lattice Gauge Theory with and without Fermion Content". In: FIU Electronic Theses and Dissertations 3224 (2016). DOI: 10.25148/etd.FIDC001748. URL: https://digitalcommons.fiu.edu/etd/3224?utm_source= digitalcommons.fiu.edu%2Fetd%2F3224&utm_medium=PDF&utm_campaign=PDFCoverPages.