

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №8 по курсу "Моделирование" по теме "Модель городской поликлиники"

Уласик Е.А. Студент:

Группа: ИУ7-71

Вариант по списку 18

Рудаков И.В. Преподаватель:

Оглавление

1. Задание	3
2. Листинг программы	4
3. Результат работы программы	5
4. Вывод	6

1. Задание

В городскую поликлинику одним потоком приходят граждане. Если все три имеющиеся окна регистратуры заняты, гражданин встаёт в очередь. После получения медицинской карты гражданин следует к одному из свободных дежурных врачей. Если все три врача заняты, то гражданин встаёт в очередь. У врача гражданин с вероятностью 70% будет отправлен на сдачу анализа. Если кабинет для сдачи анализа занят, то гражданин также встаёт в очередь. После сдачи анализа гражданин выходит из поликлиники.

Граждане поступают в больницу по Пуассоновскому закону. Окна регистрации работают по нормальному закону. Второе окно работает в два раза быстрее остальных. Врачи также работают по нормальному закону. Сдача анализа происходит за константное время. Процесс моделирования происходит пока не будет обслужено N граждан.

Рисунок 1. Структурная схема СМО

2. Листинг программы

```
1. SIMULATE
2. GENERATE (POISSON(1,20)) ; generating requests using poisson distribut
ion
3. REG QUEUE REG_QUEUE ; add request to queue to registers else wait
4. TRANSFER ALL,RG1,RG3,5; transfer to free register
5. RG1 SEIZE REG1 ; occupy register 1
6. DEPART REG_QUEUE ; take one request from queue
7. ADVANCE (NORMAL(1,50,10)); work using normal distribution
8. RELEASE REG1 ; free register 1
9. TRANSFER ,DOCTORS ; send request to doctors
10.RG2 SEIZE REG2 ; occupy register 2
11. DEPART REG_QUEUE ; take one request from queue
12. ADVANCE (NORMAL(1,25,5)); work using normal distribution
13. RELEASE REG2 ; free register 2
14. TRANSFER ,DOCTORS ; send request to doctors
15.RG3 SEIZE REG3 ; occupy register 3
16. DEPART REG_QUEUE ; take one request from queue
17. ADVANCE (NORMAL(1,50,10)); work using normal distribution
18. RELEASE REG3 ; free register 3
19. TRANSFER ,DOCTORS ; send request to doctors
20.
21.DOCTORS QUEUE DOC_QUEUE ; add request to queue to doctors 22. TRANSFER ALL,DOC1,DOC3,6 ; transfer to free doctor else wait
23.DOC1 SEIZE DOCT1 ; occupy doctor 1
24. DEPART DOC_QUEUE ; take one request from queue
25. ADVANCE (NORMAL(1,75,15)); work using normal distribution
26. RELEASE DOCT1 ; free doctor 1
27. TRANSFER 0.7, WITHOUT ; 30% to leave without analysis
28. TRANSFER ,ANALYSIS ; send request to analysis
29.DOC2 SEIZE DOCT2 ; occupy doctor 2
30. DEPART DOC_QUEUE ; take one request from queue
31. ADVANCE (NORMAL(1,75,15)) ; work using normal distribution
32. RELEASE DOCT2 ; free doctor 2
33. TRANSFER 0.7,WITHOUT ; 30% to leave without analysis 34. TRANSFER ,ANALYSIS ; send request to analysis
35.DOC3 SEIZE DOCT3 ; occupy doctor 3
36. DEPART DOC_QUEUE ; take one request from queue
37. ADVANCE (NORMAL(1,50,10)); work using normal distribution
38. RELEASE DOCT3 ; free doctor 3
39. TRANSFER 0.7, WITHOUT ; 30% to leave without analysis
40. TRANSFER ,ANALYSIS ; send request to analysis
42.ANALYSIS QUEUE ALS_QUEUE ; add request to queue to analysis
43. SEIZE ALYSIS1 ; occupy cabinet
44. DEPART ALS_QUEUE ; take one request from queue
45. ADVANCE 30 ; work constant time
46. RELEASE ALYSIS1 ; free cabinet
47. TRANSFER ,WITH ; send request to home
48.
49.WITH TRANSFER ,FINAL
50. WITHOUT TRANSFER , FINAL
51.
52. FINAL SAVEVALUE PROCESSED, N$WITH
53. SAVEVALUE PROB, ((N$WITHOUT)/(N$FINAL))
54.
55. TERMINATE 1
56. START 300
```

Листинг 1. Код программы на языке GPSS

3. Результат работы программы

На рисунке 1 представлен результат моделирования городской поликлиники:

FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
REG1	113	0.846	51.103	3 1	341	0	0	0	0
REG2	152	0.558	25.088	8 1	0	0	0	0	0
REG3	76	0.567	50.93	1 1	340	0	0	0	0
DOCT1	92	0.989	73.42	0 1	0	0	0	25	0
DOCT2	89	0.985	75.602	2 1	314	0	0	25	0
DOCT3	133	0.979	50.283	3 1	313	0	0	25	0
ALYSIS1	209	0.915	29.89	9 1	298	0	0	0	11
QUEUE	MAX C	ONT. ENTR	Y ENTRY(0)	AVE.COM	NT. AVI	E.TIME	E AVI	E.(-0)	RETRY
REG QUEUE	1	0 34	1 330	0.005	5	0.104	1	3.237	0
DOC QUEUE	26	25 33	9 10	14.684	4 29	95.82	1 3	04.815	0
ALS_QUEUE	14	11 22	0 17	3.31) 10	02.749	1	11.353	0
SAVEVALUE		RETRY	VALUE						
PROCESSED		0	208.000						
DROPPED		0	92.000						
PROB		0	0.307						

Рисунок 1. Результат моделирования городской поликлиники

Из 300 поступивших заявок к доктору 208 были направлены на анализы и 92 (~30%) на анализы отправлены не были. Самая длинная очередь оказалась к докторам.

4. Вывод

Таким образом, была смоделирована система массового обслуживания граждан в поликлинике.