Question 1

Consider the hare series which contains annual abundance of Canadian hares.

- a) Based on the time plot and ACF, does this series look stationary?
- b) Show using the Box-Cox transformation that a square-root transformation is supported.
- c) Plot the transformed (square root) series.
- d) Show that the transformed series is more normally distributed than the original.
- e) Based on the Dicky-Fuller test, is differencing required?
- f) By looking at the ACF and PACF, what possible models may be appropriate?

Question 2

Consider the color series which contains the colour property from successive batches of an industrial process.

- a) Based on the time plot, does this series look stationary?
- b) Apply the Dicky-Fuller test and comment on the result.
- c) Plot the differenced series and comment.
- d) Based on the ACF and PACF of the differenced series, what model is appropriate?
- e) Is your answer to part (d) supported by the EACF? Note use ar.max = 7 and ma.max = 7 in the eacf function.
- f) What models might we consider for the original series (i.e., no differencing) based on the ACF, PACF and EACF?

Question 3

Consider the tempdub which contains monthly temperature in Dubuque.

a) Based on the time plot and ACF, does this series look stationary?

- b) Apply the Dicky-Fuller test and comment on the result.
- c) Transform the series by applying seasonal differencing, i.e.,diff(tempdub, lag=12), plot this transformed series and comment.
- d) Based on the ACF and PACF of the differenced series, what model would you suggest?
- e) What models are suggested by the armasubsets function. Set nar=12 and nma=12.

Question 4

Consider the **robot** which contains measurements obtained from an industrial robot. The robot was put through a sequence of maneuvers, and the distance from a desired ending point was recorded in inches. This was repeated 324 times to form the time series.

- a) Does this series appear to be stationary?
- b) Based on the ACF and PACF, what model would you suggest?
- c) Calculate and interpret the sample EACF.
- d) Use the best subsets ARMA approach to suggest a model.
- e) Repeat (b), (c) and (d) but for the differenced series.

Question 5

What models would you suggest based on the following information:

a) n = 100 with

Lag	1	2	3	4	k > 4
$\overline{\mathrm{ACF}}$	-0.49	0.31	-0.21	0.11	$k > 4$ $ r_k < 0.09$

b) n = 121 with

Lag	1	2	3	4	k > 4
PACF	0.8	-0.6	0.08	0.00	$ r_k \approx 0.00$

c) n = 169 with

Lag	1	2	3	4	5
ACF	0.41	0.32	0.26	0.21	0.16

d) n = 100 with

Lag	1	2	3	4	5	6
ACF for Y_t	0.97	0.97	0.93	0.85	0.80	0.71
Lag ACF for Y_t ACF for ∇Y_t	-0.42	0.18	-0.02	0.07	-0.10	-0.09

Question 6

Consider the basic Dickey-Fuller test which is based on testing $\alpha=1$ in the model

$$Y_t = \alpha Y_{t-1} + e_t.$$

a) By subtracting Y_{t-1} from both sides, show that this model can be written as:

$$\nabla Y_t = \beta Y_{t-1} + e_t$$

where $\beta = \alpha - 1$.

Question 7

Consider an augmented Dickey-Fuller test where we assume

$$Y_t = \alpha Y_{t-1} + X_t$$

and X_t is an AR(1) model.

- a) Show that $X_t = (1 \alpha)Y_t + \alpha \nabla Y_t$.
- b) By subtracting Y_{t-1} from both sides of $Y_t = \alpha Y_{t-1} + X_t$, substituting $X_t = \phi X_{t-1} + e_t$ and using your answer to part (a), show that this model is can be written as

$$\nabla Y_t = \beta Y_{t-1} + \delta \nabla Y_{t-1} + e_t$$

where $\beta = (\alpha - 1)(1 - \phi)$.

c) Explain why $\beta = 0$ is equivalent to $\alpha = 1$.

Question 8

a) Show that for k > p, the partial autocorrelation for an AR(p) model is zero.

Question 9

Consider the situation whereby we wish to estimate Y_t using a linear function of the previous value, Y_{t-1} , i.e., $\hat{Y}_t = \beta Y_{t-1}$, where there is no intercept since we are assuming, without the loss of generality, that $E(Y_t) = 0$.

- a) Derive an expression for $Var(Y_t \hat{Y}_t)$ which is called the mean squared error. Assume that Y_t is stationary with autocovariance function γ_k .
- b) We wish to choose β such that we minimise the above variance, e.g., if $Var(Y_t \hat{Y}_t) = 0$ then $\hat{Y}_t = Y_t$ and we have a perfect estimate. By differentiating w.r.t. β , show that this variance is minimised for $\beta = \rho_1$.
- c) We may also estimate Y_{t-2} using Y_{t-1} via $\hat{Y}_{t-2} = \beta Y_{t-1}$. Show that $\text{Var}(Y_{t-2} \hat{Y}_{t-2})$ is also minimised for $\beta = \rho_1$.

d) Using the above results, show that the lag-2 partial autocorrelation is given by

$$\tau_2 = \text{Corr}(Y_t - \hat{Y}_t, Y_{t-2} - \hat{Y}_{t-2})$$
$$= \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}.$$

Hint: you need to use $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$

e) Hence, show that $\tau_2 = 0$ for an AR(1) process and $\tau_2 = \phi_2$ for an AR(2) process.

Note: you may make use of the expressions for ρ_1 and ρ_2 for AR(1) and AR(2) processes in Lecture 4.