CS 480/680 Introduction to Machine Learning

Lecture 5
Logistic Regression and Numerical Optimization

Kathryn Simone 24 September 2024

Will a shelter cat get adopted within the next 30 days?

Source: Humane Society of Kitchener Waterloo Stratford Perth (Accessed 21/09/2024)

The cat adoption dataset

Attributes →

Outcome/Label

Age (Years)	Playfulness (a.u.)	Adopted?
0.3	5	Yes
6	1	No
1	9	Yes
9	7	Yes
0.2	3	Yes

Exploring the cat adoption dataset

Knowledge of the chances of an event guides decision-making

Consider and compare:

Prediction A:

A cat will not get adopted within 30 days.

- Model has binary output
- Classification task

Prediction B:

The **probability** that a cat will get adopted within 30 days is **5**%.

- Model has continuous output
- Regression task used for classification
- Can prioritize efforts (marketing campaigns, waived/adjusted fees, etc) and justify decisions

Key Questions

I. What is logistic regression?

II. How do we estimate the parameters?

III. How can we handle the multiclass case?

Key Questions

I. What is logistic regression?

II. How do we estimate the parameters?

III. How can we handle the multiclass case?

How to model the probability of an outcome?

In Linear regression, we assumed a hypothesis class of the form:

$$p(X) = \beta_0 + \beta_1 X.$$

Hypothesis class for logistic regression

Goal: Learn a function $h : \mathbb{R}^d \to [0, 1]$ Hypothesis class:

$$\mathcal{H} = \left\{ x \to \frac{1}{1 + e^{-\langle w, x \rangle}} \right\}$$

Where:

 $w \in \mathbb{R}^{d}$ is the parameter vector,

x is the feature vector,

$$\phi(z) = \frac{1}{1+e^{-z}}$$
 is the logistic function.

h(x) can be interpreted as the probability he label associated with a feature vector x is 1.

Recall: Perceptron and the class of halfspaces

Compare to Perceptron and class of halfspaces

The logistic model for probability of an outcome

Monotonicity contributes to interpretability

Discussion: Logistic Regression in the Credit Industry (2nd Order Solutions on medium.com)

PAGE 13

Key Questions

I. What is logistic regression?

II. How do we estimate the parameters?

III. How can we handle the multiclass case?

Interpreting h(x) as a probability requires a stochastic model of the outcome

$$h(x) = \frac{1}{1 + e^{-\langle w, x \rangle}}$$

$$\implies h(x) = \Pr[Y = 1 \mid x, w]$$

Recall and apply the Bernoulli random variable

Bernoulli random variable:

$$\Pr[X = x] = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0, \end{cases}$$

where $0 \le p \le 1$.

Deriving the likelihood function starting with the Bernoulli RV

We model the outcome y as a Bernoulli random variable. The likelihood function is defined as:

$$\mathcal{L}(p \mid y) = \prod_{i=1}^{n} p^{y_i} (1-p)^{(1-y_i)},$$

Where p is a parameter, and y denotes the set of n individual observations y_i . To gain intuition for this likelihood, consider $y_i \in \{0, 1\}$:

$$\mathcal{L}(p \mid \boldsymbol{y}) = \begin{cases} \prod_{i=1}^{n} p & \text{for } y_i = 1\\ \prod_{i=1}^{n} (1-p) & \text{for } y_i = 0 \end{cases}$$

Taking the log of both sides, this reduces to:

$$\log \mathcal{L}(p \mid \mathbf{y}) = \sum_{i=1}^{n} \log \left(p^{y_i} (1-p)^{(1-y_i)} \right) \qquad \log(ab) = \log a + \log a$$

$$= \sum_{i=1}^{n} y_i \log p + (1-y_i) \log(1-p) \qquad \text{PAGE 17}$$

Deriving the log-likelihood function for logistic regression (1/2)

$$\log \mathcal{L}(p \mid \boldsymbol{y}) = \sum_{i=1}^{n} y_i \log p + (1 - y_i) \log(1 - p)$$

We seek to reparametrize the likelihood for the logistic hypothesis class, which is our model of the probability of an outcome given the features.

$$h(x) = \frac{1}{1 + e^{-\langle w, x \rangle}}$$

$$\implies h(x) = \Pr[Y = 1 \mid x, w]$$

Let $p(x_i, w)$ denote $\Pr[Y = 1 \mid x_i, w]$, that is, the probability that observation x_i will be labelled positive. Then

$$p(x_i, w) = \frac{1}{1 + e^{-\langle w, x_i \rangle}}.$$

$$\log \mathcal{L}(w \mid x, y) = \sum_{i=1}^{n} y_i \log \left(\frac{1}{1 + e^{-\langle w, x \rangle}} \right) + (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-\langle w, x \rangle}} \right)$$

If $y_i = 1$:

$$\log \mathcal{L}(w \mid \boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \log \left(\frac{1}{1 + e^{-\langle w, x_i \rangle}} \right)$$
Using $\log_b \frac{1}{b} = -\log_a b$

$$= \sum_{i=1}^{n} -\log \left(1 + e^{-\langle w, x_i \rangle} \right)$$

Similarly, if $y_i = 0$:

$$\log \mathcal{L}(w \mid \boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \log \left(1 - \frac{1}{1 + e^{-\langle w, x_i \rangle}}\right)$$

$$= \sum_{i=1}^{n} -\log(1 + e^{\langle w, x_i \rangle})$$

Full derivation at the end of this deck, if interested

PAGE 18

Deriving the log-likelihood function for logistic regression (2/2)

$$\log \mathcal{L}(w \mid \boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \sum_{i=1}^{n} -\log(1 + e^{-\langle w, x_i \rangle}) & \text{for } y_i = 1\\ \sum_{i=1}^{n} -\log(1 + e^{\langle w, x_i \rangle}) & \text{for } y_i = 0 \end{cases}$$

If we let

$$\tilde{y_i} = \begin{cases} +1 & \text{for } y_i = 1\\ -1 & \text{for } y_i = 0, \end{cases}$$

Then we can arrive at a compact expression for the log-likelihood of the paramter vector w

$$\log \mathcal{L}(w \mid \boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} -\log \left(1 + e^{\tilde{y_i}\langle w, x_i \rangle}\right)$$

PAGE 19

The logistic regression objective and cross-entropy loss

We want to estimate w, that is, find some \hat{w} that maximizes the likelihood of the data:

$$\begin{split} \hat{w} &= \operatorname{argmax}_w \sum_{i=1}^n -\log \left(1 + e^{-\tilde{y_i}\langle \hat{w}, x_i \rangle}\right) \\ &= \operatorname{argmin}_w \sum_{i=1}^n \log \left(1 + e^{-\tilde{y_i}\langle \hat{w}, x_i \rangle}\right) \\ &= \operatorname{argmin}_w \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-\tilde{y_i}\langle \hat{w}, x_i \rangle}\right) \\ &\Longrightarrow E[l_w(x_i, y_i)] = \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-\tilde{y_i}\langle \hat{w}, x_i \rangle}\right) \\ &\Longrightarrow l_w(x, \tilde{y}) = \log \left(1 + e^{-\tilde{y}\langle \hat{w}, x \rangle}\right) \end{split}$$

$$l_w(x, \tilde{y}) = \log(1 + e^{-\tilde{y}\langle \hat{w}, x \rangle})$$

PAGE 20

Proof of convexity: Probabilistic Machine Learning, Section 10.2.3.4

Gradient descent for numerical optimization

Recall that the gradient of a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ at w is denoted $\nabla f(w)$, and is the vector of partial derivatives of f.

In **gradient descent**, the parameter vector w is updated in the direction opposite to that of the gradient, with step size η :

$$w_t = w_{t-1} - \eta \nabla f(w_{t-1})$$

For a loss function, this is computed over a batch of n training samples:

$$\nabla l_w(x,y) = \frac{1}{n} \sum_{i=1}^n \nabla_w l_{w,t-1}(x_i, y_i)$$

In **stochastic gradient descent**, the gradient is estimated using a randomly-selected subset of the observations, or "minibatch" of *m* samples:

$$\nabla l_w(x,y) = \frac{1}{m} \sum_{i=1}^n \nabla_w l_{w,t-1}(x_i,y_i)$$

Another approach: Newton's method

Deriving the update for Newton's method

$$w_1 = w_0 + \Delta_0$$

$$f'(w_0) = \frac{0 - f(w_0)}{w_1 - w_0}$$

$$= \frac{-f(w_0)}{(w_0 + \Delta_0) - w_0}$$

$$= -\frac{f(w_0)}{\Delta_0}$$

$$\Longrightarrow \Delta_0 = -\frac{f(w_0)}{f'(w_0)}$$

$$\Longrightarrow w_1 = w_0 - \frac{f(w_0)}{f'(w_0)}$$

Application of Newton's method to loss function minimization

Newton's method finds the roots of f(w) via successive updates:

$$w_1 = w_0 - \frac{f(w_0)}{f'(w_0)}$$

In parameter estimation, we are interested the roots of $f(w) = \frac{dl_w}{dw} = l'_w(w)$. Therefore our update requires second-order information:

$$w_1 = w_0 - \frac{l'_w(w)}{l''_w(w)}$$

For a differentiable loss of more than one parameter $l_w : \mathbb{R}^d \to \mathbb{R}$, this generalizes to

$$w_1 = w_0 - (\nabla^2 l_w)^{-1} \nabla l_w,$$

where $(\nabla^2 l_w)^{-1}$ is inverse of the Hessian.

Key Questions

I. What is logistic regression?

II. How do we estimate the parameters?

III. How can we handle the multiclass case?

Generalizing to the multiclass setting

Architectural interpretation of logistic regression

Logistic regression

PAGE 28

Multinomial regression

Multinomial regression

FACULTY OF

Multinomial regression

PAGE 31

Now that we're at the end of the lecture, you should be able to...

- * Recommend and justify application of logistic regression in appropriate **real-world scenarios**, as an alternative to linear regression and binary classification.
- ★ Explain the logistic regression **hypothesis class** using correct terminology, including conditional probability, sigmoid function, and linear predictor.
- ★ Sketch the **decision boundary** of a logistic regression predictor in a low-dimensional setting for different thresholds and parameters.
- ★ Defend the cross-entropy loss function used in logistic regression.
- ★ Explain the parametrization and hypothesis class of **multinomial regression** with reference to the **softmax function**.
- ★ Implement and apply **iterative optimization algorithms** including gradient descent, stochastic gradient descent, and the Newton-Raphson method.
- ★ Interpret the **meaning of coefficients** of a learned logistic regression model.

Similarly, if $y_i = 0$:

Similarly, if
$$y_i$$

$$\log \mathcal{L}(w \mid x, y) = \sum_{i=1}^{n} \log \left(1 - \frac{1}{1 + e^{-\langle w, x \rangle}}\right)$$

$$= \sum_{i=1}^{n} \log \left(\frac{e^{-\langle w, x \rangle}}{1 + e^{-\langle w, x \rangle}} \right)$$

Using
$$\log \frac{a}{b} = \log a - \log b$$

$$\sum_{n=0}^{\infty} \log_{a}(w,x) = \log(1+a^{-1})$$

$$= \sum_{i=1}^{n} \log e^{-\langle w, x \rangle} - \log(1 + e^{-\langle w, x \rangle})$$

$$\sum_{n=0}^{\infty} \log e^{-\langle w, x \rangle} - \log(1 + e^{-1})$$

$$|x\rangle - \log(1 + e^{-\langle w, x \rangle})$$

$$e^{-(w,x)} - \log(1 + e^{-(w,x)})$$

$$-\log(1+e^{-\langle w,x\rangle})$$

$$= \sum_{i=1}^{n} -\langle w, x \rangle - \log(1 + e^{-\langle w, x \rangle})$$

$$= \sum_{i=1}^{n} -\langle w, x \rangle - \log \left(1 + \frac{1}{e^{\langle w, x \rangle}} \right)$$

$$= \sum_{i=1}^{n} -\langle w, x \rangle - \log \left(\frac{e^{\langle w, x \rangle} + 1}{e^{\langle w, x \rangle}} \right)$$

$$\log a - \log b$$

Using again
$$\log \frac{a}{b} = \log a - \log b$$

Using again
$$\log \frac{1}{b} = \log a - \log b$$

 $= \sum -\log(e^{\langle w, x \rangle} + 1)$

$$= \sum_{i=1}^{n} -\langle w, x \rangle - [\log(e^{\langle w, x \rangle} + 1) - \log(e^{\langle w, x \rangle})]$$

$$= \sum_{i=1}^{n} -\langle w, x \rangle - \log(e^{\langle w, x \rangle} + 1) + \log(e^{\langle w, x \rangle})$$