Elliptic-curve Diffie-Hellman

Saurabh Gajbhiye

भारतीय प्रौद्योगिकी संस्थान जम्मू INDIAN INSTITUTE OF TECHNOLOGY JAMMU

8 April 2021

Section 1

- 1 Introduction
- 2 Elliptic Curve Cryptography
 - ECC
- **3** Group Operations in ECC
 - Group Operations
 - Elliptic Curve Discrete Log Problem
- 4 ECDH
 - Generator
 - Example
 - ECDH Example
- 6 Conclusion

Introduction

- In this presentation I am going to brief about ECDH.
- First we will be discussing ECC.
- Then we will discuss ECDH algorithm.
- Finally I will be discussing the ECDH example.

Section 2

- 1 Introduction
- 2 Elliptic Curve Cryptography
 - ECC
- **3** Group Operations in ECC
 - Group Operations
 - Elliptic Curve Discrete Log Problem
- 4 ECDH
 - Generator
 - Example
 - ECDH Example
- 6 Conclusion

What are Elliptic Curves?

$$E = \{(x, y) \mid y^2 = x^3 + ax + b\}$$

$$a, b \in K$$

point at infinity:

$$4a^3 + 27b^2 \neq 0$$

Examples of fields

$$K: \mathbb{R}$$
 \mathbb{Q}

$$\mathbb{C}$$

$$\mathbb{Z}/p\mathbb{Z}$$

Elliptic Curves Graph

SOME GRAPHS OF ELLIPTICE CURVES

Why Elliptic Curves?

Shorter encryption keys use fewer memory and CPU resources.

			- ~	
	Symmetric Encryption (Key Size in bits)	RSA and Diffie-Hellman (modulus size in bits)	ECC Key Size in bits	Notice the Rati
	56	512	112	
	80	1024	160	$\frac{1024}{160} \approx \frac{6.4}{1}$
	112	2048	224	$\frac{1}{160} \sim \frac{1}{1}$
	128	3072	256	$\frac{3072}{256} = \frac{12}{1}$
	192	7680	384	256 1
	256	15360	512	$\frac{15360}{512} = \frac{30}{1}$
	Î	Î	~	
COM	PARABLE SECURITY	$\mathbb{Z}/p\mathbb{Z}$	ELLIPTIC CURVES	

Saurabh Gajbhiye

Section 3

- 1 Introduction
- 2 Elliptic Curve Cryptography
 - ECC
- 3 Group Operations in ECC
 - Group Operations
 - Elliptic Curve Discrete Log Problem
- 4 ECDH
 - Generator
 - Example
 - ECDH Example
- 6 Conclusion

Addition

Group Operations

+ ADDITION

Given two points in the set $E = \{(x,y) \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$

P+Q=?

point at infinity

Addition P+Q

Group Operations

+ ADDITION

Given two points in the set $E=\{(x,y)\mid y^2=x^3+ax+b\}\cup\{\mathcal{O}\}$

P+Q=?

point at infinity

Addition P+Q Formula

Group Operations

+ ADDITION

Given two points in the set $E = \{(x,y) \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$

$$P+Q=?$$

Algebraically

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$

$$x_R = s^2 - (x_P + x_O)$$

$$y_R = s(x_P - x_R) - y_P$$

point at infinity

Point Doubling 1

Point Doubling
$$P + P = R = 2P$$

Point Doubling 2

Point Doubling
$$P + P = R = 2P$$

Point Doubling Formula

Point Doubling P + P = R = 2P

$$P + P = R = 2P$$

Algebraically

$$s = \frac{3x_P^2 + a}{2y_P}$$

$$x_R = s^2 - 2x_P$$

$$y_R = s(x_P - x_R) - y_P$$

Adding Vertical Points

$$P + Q = \mathcal{O}$$
 If $x_P = x_Q$

$$P+P=\mathcal{O}$$
 if $x_P=0$

Scalar Multiplication

Scalar Multiplication

$$P \in E$$

$$k \in \mathbb{Z}$$

$$Q = kP$$

REPEATED ADDITION

$$Q = P + P + \ldots + P$$
 } K tímes

ECDLP

Elliptic Curve Discrete Log Problem

Scalar Multiplication One Way Function

 $E(\mathbb{Z}/p\mathbb{Z})$

GIVEN

 $Q, P \in E(\mathbb{Z}/p\mathbb{Z})$ Q is a multiple of P

FIND

k such that Q = kP

Section 4

- 1 Introduction
- 2 Elliptic Curve Cryptography
 - ECC
- **3** Group Operations in ECC
 - Group Operations
 - Elliptic Curve Discrete Log Problem
- 4 ECDH
 - Generator
 - Example
 - ECDH Example
- 6 Conclusion

Basepoint

IDEALLY: h=1

The Base Point (Generator)

$$G\in E(\mathbb{Z}/p\mathbb{Z})$$
 GENERATES A CYCLIC GROUP $ord(G)=n$ size of subgroup smallest positive integer st. $kG=\mathcal{O}$ Cofactor: $h=\frac{|E(\mathbb{Z}/p\mathbb{Z})|}{n}$

Parameters

Domain Parameters

```
\{p, a, b, G, n, h\}
```

p: field (modulo p)

a, b: curve parameters

G: Generator Point

 $n: \operatorname{ord}(G)$

h: cofa

An Example

$$E: y^2 \equiv x^3 + 2x + 2 \pmod{17}$$

An Example

$$E: y^2 \equiv x^3 + 2x + 2 \pmod{17}$$

 $G = (5, 1)$

Computing 2G

The Cyclic Group

COMPUTE
$$2G = G + G$$

$$s = \frac{3x_G^2 + a}{2u_G} \qquad \qquad s \equiv \frac{3(5^2) + 2}{2(1)} \equiv 77 \cdot 2^{-1} \equiv 9 \cdot 9 \equiv 13 \pmod{17}$$

$$x_{2G} = s^2 - 2x_G$$
 $x_{2G} \equiv 13^2 - 2(5) \equiv 16 - 10 \equiv 6 \pmod{17}$

$$y_{2G} = s(x_G - x_{2G}) - y_G$$
 $y_{2G} \equiv 13(5 - 6) - 1 \equiv -13 - 1 \equiv -14 \equiv 3 \pmod{17}$

$$2G = (6,3)$$

Computing Subgroup of G

An Example

$$E: \ y^2 \equiv x^3 + 2x + 2 \pmod{17}$$

$$G = (5,1) \qquad 11G = (13,10)$$

$$2G = (6,3) \qquad 12G = (0,11)$$

$$3G = (10,6) \qquad 13G = (16,4)$$

$$4G = (3,1) \qquad 14G = (9,1)$$

$$5G = (9,16) \qquad 15G = (3,16)$$

$$6G = (16,13) \qquad 16G = (10,11)$$

$$7G = (0,6) \qquad 17G = (6,14)$$

$$8G = (13,7) \qquad 9G = (7,6)$$

$$10G = (7,11)$$

$$h = \frac{|E(\mathbb{Z}/p\mathbb{Z})|}{n}$$

$$h=19$$

$$h=1$$

ECDH Demonstration

Bob

Bobpicks

$$\beta = 9$$

Compute

$$B = 9G = (7, 6)$$

Receives

$$A = (10, 6)$$

Computes

$$\beta A = 9A = 9(3G) = 27G = 8G = (13, 7)$$

$$y^2 \equiv x^3 + 2x + 2 \pmod{17}$$

$$G = (5, 1)$$

$$n = 19$$

$$A = (10, 6)$$

$$B = (7,6)$$

Alice

Alicepicas

$$\alpha = 3$$

Computes

$$A = 3G = (10, 6)$$

Receives

$$B = (7, 6)$$

Computes

$$\alpha B = 3B = 3(9G) = 27G = 8G = (13,7)$$

ECDH Algorithm

Elliptic Curce Diffie Hellmann

Bob picks private key $oldsymbol{eta}$

$$1 \le \beta \le n-1$$

Computes

$$B = \beta G$$

Receives

$$A = (x_A, y_A)$$

Computes

$$P = \beta \alpha G$$

Eve

$$y^2 = x^3 + ax + b$$

$$p$$

$$a$$

$$egin{array}{c} b \ G \ n \ h \ A \end{array}$$

$$P = ?$$

Alice

Alice picks private key lpha

$$1 \le \alpha \le n - 1$$

Computes

$$A = \alpha G$$

Receives

$$B = (x_B, y_B)$$

Computes

$$P = \alpha \beta G$$

Section 5

- 1 Introduction
- 2 Elliptic Curve Cryptography
 - ECC
- **3** Group Operations in ECC
 - Group Operations
 - Elliptic Curve Discrete Log Problem
- 4 ECDH
 - Generator
 - Example
 - ECDH Example
- **6** Conclusion

Conclusion

- We understood the ECC.
- We understood the working of ECDH.
- I was able to implement ECDH Algorithm.

Thank You!