

15	So our target furtion will be this sum which is directly
	input in this form because operations like these create overflow
	ervors and the numbers are too big small.
	· The proposor function q is the multivariate normal distribution
	and we use the covariance matrix we got from part I to
	scale it. The constant c is 1.02. This is becomes it delivers
	acceptance voite 23% which is optimal.
	· Finally ne colculate the votio via:
	positio = P(Y) - P(X)
	due to the log likelihood and arrept when:
	a > (09(u)
	where a is the munt 0, ratio?
	3) The third part is Judgerdent Metropolis. The implementation
	is almost identical with the second part.
	· The towest function is exactly the same
444	· The proposal function q is the multivariote student-t
	distribution, since the multivoriote normal does not cover entirely
	the torget distribution, probably due to its thru tails.
	· Also, the nortio how includes q:
8 d 817/25	rotio = P(y) + q(x) - P(x) - q(y)
	The rest of the details are identical.

	。 第一章
	4) The last part is Gibbs soupling. The idea is that we
	get a souple from a 1D-distribution of the form:
	get a souple from a 1D-distribution of the form: 7(b0 b1,,b7) 7(b1 b0,b2,,b7)
	7(b1(b0, b2, ···, b7)
	P(107/160',, 66)
	The fricky part is that we don't know how to take (easily
	at least) a sounde flour these distributions. Fach of the above
	distributions is of the form: Example form
	1 (P(bz/66,61,,67))
	at least) a sample from these distributions. Each of the above distributions is of the form: -x2.62+7 -e + yi (x2.62+7) (1)
	i=1 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1
	whore exercitives is constant bosides he which is the
	where everything is constant besides be which is the variable of the example.
	White of the Champin.
	This is the manent that adaptive rejection sampling shows
	con light for each up "roctrict" the distribution and
	we accept/reject when the samples are one not sometes belonging to the target distribution, which is (1). This has to happen dynamically because the distributions heep shifting, hence the "odaptive" part. This was proposed by Gilks, Wild in 1992.
	to belowing to the torget distribution which is (1)
	tisches atomy to me faight assuration, united is this
	THIS HOS TO HOPPEN CHYLICITY DECOUSE THE TISTINDILIUMS
	seep suffing, hence the odopove part. This was proposed
	by Gilks, Wild in 1992.
at Cart	
1. 10	