MATB24 TUTORIAL PROBLEMS 6, WEEK OF

KEY WORDS: inner product, inner product space, dot product, orthogonal complement, orthogonal projection

RELEVANT SECTIONS IN THE TEXTBOOK: 6.1, 6.2, 3.5FB or 6.A, 6.B SA

WARM-UP:

Write down a complete definition or a complete mathematical characterization for the following terms.

- (1) An inner product on a vector apace V
- (2) An inner product space
- (3) Orthogonal decomposition of a vector \vec{u} in an inner product space V onto another vector v
- (4) An orthonormal set of vectors
- (5) An orthogonal set of vectors
- (6) An orthogonal basis for a vector space W
- (7) An orthonormal basis for a vector space W

A: Which of the following are examples of inner product spaces? Explain why or why not.

(1) V = the space of continuous functions from [0, 1] to \mathbb{R} .

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

(2) V= the space of polynomials in the variable t of degree less than or equal to 3.

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt.$$

(3) V = the space of infinite sequences a_1, a_2, \ldots

$$\langle f, g \rangle = \sum_{i} a_i b_i$$

(4) V = the space of infinite bounded sequences a_1, a_2, \dots

$$\langle f, g \rangle = \sum_{i} \frac{a_i b_i}{2^i}.$$

(5) $V = \mathbb{R}^{m \times n}$ = the space of all $m \times n$ matrices.

$$\langle A, B \rangle = \operatorname{tr}(A + B).$$

(6) $V = \mathbb{R}^{m \times n}$ = the space of all $m \times n$ matrices.

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

B: Let \vec{v} , \vec{w} be in \mathbb{R}^2 . Consider

(1)
$$\langle \vec{v}, \vec{w} \rangle = \vec{v}^T \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \vec{w}$$

- (1) Find an explicit formula for (1) in terms of the components of \vec{v} and \vec{w} .
- (2) Show that (1) is an inner product on \mathbb{R}^2 which is different from the dot product.
- (3) Can you come up with other such examples?

C: In this question, you will prove the following theorem

Theorem 1. Let V be an inner product space vector space and let $\mathcal{U} = \{u_1, \dots, u_n\}$ be an orthonormal basis of V. Then for every $v \in V$,

$$v = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \dots + \langle v, u_n \rangle u_n$$

- (1) Suppose $v \in V$ and $v = \sum_{i=1}^{n} c_i u_i$. Compute $\langle v, u_1 \rangle$.
- (2) Use your answer in part one to compute c_1 .
- (3) Prove the theorem.
- (4) Restate the theorem with the word orthonormal replaced with orthogonal. Make any other necessary changes in order to get a correct statement. X

COOL-OFF: Give an example of the described object or explain why such an example does not exists.

- An inner product on \mathbb{R}^2 other than the dot product.
- An inner product on \mathbb{R}^3 other than the dot product.
- Two vectors in \mathbb{R}^3 that are orthogonal with respect to dot product but not with respect to your example of inner product.
- A vector in \mathbb{R}^3 with length one with respect to dot product and a different length with respect to your example of inner product.
- Two different orthogonal bases of \mathbb{R}^2 .
- ullet A vector in an inner product space V that is orthogonal to every other vector.
- 4 mutually orthogonal vectors in \mathbb{R}^3 .