

Web-Scale Graph Analytics with Apache Spark

Tim Hunter, Databricks

#EUds6

About Me

- Tim Hunter
- Software engineer @ Databricks
- Ph.D. from UC Berkeley in Machine Learning
- Very early Spark user
- Contributor to MLlib
- Co-author of TensorFrames, GraphFrames, Deep Learning Pipelines

Outline

- Why GraphFrames
- Writing scalable graph algorithms with Spark
 - Where is my vertex? Indexing data
 - Connected Components: implementing complex algorithms with Spark and GraphFrames
 - The Social Network: real-world issues
- Future of GraphFrames

Graphs are everywhere

Example: airports & flights between them

Vertices:

id City		State	
"JFK"	"New York"	NY	

Edges:

src dst		delay	tripID	
"JFK"	"SEA"	45	1058923	

Apache Spark's GraphX library

- General-purpose graph processing library
- Built into Spark
- Optimized for fast distributed computing
- Library of algorithms: PageRank, Connected Components, etc.

Issues:

- No Java, Python APIs
- Lower-level RDD-based API (vs. DataFrames)
- Cannot use recent Spark optimizations: Catalyst query optimizer, Tungsten memory management

The GraphFrames Spark Package

Brings DataFrames API for Spark

- Simplifies interactive queries
- Benefits from DataFrames optimizations
- Integrates with the rest of Spark ecosystem

Collaboration between Databricks, UC Berkeley & MIT

Dataframe-based representation

vertices DataFrame

id	City	State
"JFK"	"New York"	NY
"SEA	"Seattle"	WA

edges DataFrame

src	dst	delay	tripID
"JFK"	"SEA"	45	1058923
"DFW	"SFO"	-7	4100224

Supported graph algorithms

- Find Vertices:
 - PageRank
 - Motif finding
- Communities:
 - Connected Components
 - Strongly Connected Components
 - Label propagation (LPA)
- Paths:
 - Breadth-first search
 - Shortest paths
- Other:
 - Triangle count
 - SVD++

8

#EUds6

Assigning integral vertex IDs

... lessons learned

Pros of integer vertex IDs

GraphFrames take arbitrary vertex IDs.

→ convenient for users

Algorithms prefer integer vertex IDs.

- → optimize in-memory storage
- → reduce communication

Our task: Map unique vertex IDs to unique (long) integers.

The hashing trick?

- Possible solution: hash vertex ID to long integer
- What is the chance of collision?
 - -1 (N-1)/N * (N-2)/N * ...
 - -seems unlikely with long range N=2⁶⁴
 - -with 1 billion nodes, the chance is ~5.4%
- Problem: collisions change graph topology.

Name	Hash
Sue Ann	84088
Joseph	-2070372689
Xiangrui	264245405
Felix	67762524

12

Generating unique IDs

Spark has built-in methods to generate unique IDs.

- RDD: zipWithUniqueId(), zipWithIndex()
- DataFrame: monotonically increasing id()

Possible solution: just use these methods

13

How it works

Partition 1			
Vertex ID			
Sue Ann	0		
Joseph	1		

Partition 2			
Vertex ID			
Xiangrui	100 + 0		
Felix	100 + 1		

Partition 3				
Vertex ID				
Veronica	200 + 0			
	200 + 1			

... but not always

 DataFrames/RDDs are immutable and reproducible by design.

However, records do not always have stable

orderings.

-distinct

-repartition

cache () does not help.

Partition 1			
Vertex ID			
Xiangrui	0		
Joseph	1		

repartition distinct shuffle

	Partition 1				
1	Vertex	ID			
	Joseph	0			
	Xiangrui	1			

#EUds6

Our implementation

We implemented (v0.5.0) an expensive but correct version:

- 1. (hash) re-partition + distinct vertex IDs
- 2. sort vertex IDs within each partition
- 3. generate unique integer IDs

#EUds6

16

Connected Components

Connected Components

Assign each vertex a component ID such that vertices receive the same component ID iff they are connected.

Applications:

- -fraud detection
 - Spark Summit 2016 keynote from Capital One
- -clustering
- -entity resolution

#EUds6

Naive implementation (GraphX)

- 1. Assign each vertex a unique component ID.
- 2. Iterate until convergence:
 - –For each vertex v, update: component ID of v ← Smallest component ID in neighborhood of v

Pro: easy to implement

Con: slow convergence on large-diameter graphs

Small-/large-star algorithm

Kiveris et al. "Connected Components in MapReduce and Beyond."

- 1. Assign each vertex a unique ID.
- 2. Iterate until convergence:
 - –(small-star) for each vertex, connect smaller neighbors to smallest neighbor
 - –(big-star) for each vertex, connect bigger neighbors to smallest neighbor (or itself)

#EUds6

20

Small-star operation

(a) The small-star operation at node 8.

Big-star operation

(b) The large-star operation at node 8.

Another interpretation

adjacency matrix

	1	5	7	8	9
1				X	
5				X	
7				X	
8					Х
9					

#EUds6

Small-star operation

rotate & lift

	1	5	7	8	9
1		X	X	X	
5					
7					
8					Х
9					

Big-star operation

#EUds6

Convergence

	1	5	7	8	9
1	X	X	X	X	X
5					
7					
8					
9					

Properties of the algorithm

- Small-/big-star operations do not change graph connectivity.
- Extra edges are pruned during iterations.
- Each connected component converges to a star graph.
- Converges in log²(#nodes) iterations

27

Implementation

Iterate:

- filter
- self-join

Challenge: handle these operations at scale.

Skewed joins

Real-world graphs contain big components. The "Justin Bieber problem" at Twitter

→ data skew during connected components iterations

src	Component id	neighbors
0	0	2,000,000
1	0	10
2	3	5

join

src	dst
0	1
0	2
0	3
0	4
0	2,000,000
1	3
2	5

#EUds6

Skewed joins

(#nbrs > 1,000,000)

src	Component id	neighbors
0	0	2,000,000

broadcast join

src	dst
0	1
0	2
0	3
0	4
0	2,000,000

union

1	0	10
2	3	5

hash join

1	3
2	5

Checkpointing

We checkpoint every 2 iterations to avoid:

- query plan explosion (exponential growth)
- optimizer slowdown
- disk out of shuffle space
- unexpected node failures

#EUds6

Experiments

twitter-2010 from WebGraph datasets (small diameter)

-42 million vertices, 1.5 billion edges

16 r3.4xlarge workers on Databricks

- -GraphX: 4 minutes
- -GraphFrames: 6 minutes
 - algorithm difference, checkpointing, checking skewness

Experiments

uk-2007-05 from WebGraph datasets

-105 million vertices, 3.7 billion edges

16 r3.4xlarge workers on Databricks

- -GraphX: 25 minutes
 - slow convergence
- -GraphFrames: 4.5 minutes

Experiments

regular grid 32,000 x 32,000 (large diameter)

-1 billion nodes, 4 billion edges

32 r3.8xlarge workers on Databricks

-GraphX: failed

-GraphFrames: 1 hour

Future improvements

GraphFrames

- better graph partitioning
- letting Spark SQL handle skewed joins and iterations
- graph compression

Connected Components

- local iterations
- node pruning and better stopping criteria

#EUds6

35

Thank you!

- http://graphframes.github.io
- https://docs.databricks.com

#EUds6

37

2 types of graph representations

Algorithm-based

Standard & custom algorithms
Optimized for batch processing

Query-based

Motif finding
Point queries & updates

GraphFrames: Both algorithms & queries (but not point

Graph analysis with GraphFrames

Simple queries

Motif finding

Graph algorithms

Simple queries

SQL queries on vertices & edges

Search for structural patterns within a graph.

Then filter using vertex & edge data.

Graph algorithms

Find important vertices

PageRank

Find paths between sets of vertices

- Breadth-first search (BFS)
- Shortest paths

Find groups of vertices (components, communities)

- Connected components
- Strongly connected components
- Label Propagation Algorithm (LPA)

Other

- Triangle counting
- SVDPlusPlus

Saving & loading graphs

Save & load the DataFrames.

```
vertices = sqlContext.read.parquet(...)
edges = sqlContext.read.parquet(...)
g = GraphFrame(vertices, edges)

g.vertices.write.parquet(...)
g.edges.write.parquet(...)
```

