CSE419 – Artificial Intelligence and Machine Learning 2018

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/CSE419 2018

Lecture 11 Large Margin Classifiers

Based on Asst. Prof. Dr. David Kauchak (Pomona College) Lecture Slides

Which hyperplane?

Two main variations in linear classifiers:

- which hyperplane they choose when the data is linearly separable
- how they handle data that is not linearly separable

Linear approaches so far

Perceptron:

- separable:
- non-separable:

Gradient descent:

- separable:
- non-separable:

Linear approaches so far

Perceptron:

- separable:
 - finds some hyperplane that separates the data
- non-separable:
 - will continue to adjust as it iterates through the examples
 - final hyperplane will depend on which examples is saw recently

Gradient descent:

- separable and non-separable
 - finds the hyperplane that minimizes the objective function (loss + regularization)

Which hyperplane is this?

Which hyperplane would you choose?

Choose the line where the distance to the nearest point(s) is as large as possible

The margin of a classifier is the distance to the closest points of either class

Large margin classifiers attempt to maximize this

Select the hyperplane with the largest margin where the points are classified correctly!

Setup as a constrained optimization problem:

$$y_i(w \times x_i + b) > 0$$
 " i what does this say?

subject to:

$$y_i(w \times x_i + b) > 0$$
 " i

$$y_i(w \times x_i + b) \stackrel{3}{\circ} c \stackrel{11}{\circ} i$$

$$c > 0$$

Are these equivalent?

subject to:

$$y_i(w \times x_i + b) > 0$$
 " i

 $\max_{w,b} \ \text{margin}(w,b)$

subject to:

$$y_i(w \times x_i + b) \stackrel{3}{\circ} c \quad i$$
 $c > 0$

$$\max_{w,b} \ \mathrm{margin}(w,b)$$
 subject to:
$$y_i(w \times x_i + b) \ ^3 \ 1 \ '' \ i$$

We'll assume c = 1, however, any c > 0 works

How do we calculate the margin?

Support vectors

For any separating hyperplane, there exist some set of "closest points"

These are called the support vectors

The margin is the distance to the support vectors, i.e. the "closest points", on either side of the hyperplane

$$d = \sqrt{1^2 + 2^2} = \sqrt{5}$$

How far away is this point from the hyperplane?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

$$d(x) = \frac{w}{\|w\|} \times x + b$$

$$= \frac{1}{\sqrt{5}} (w_1 x_1 + w_2 x_2) + b$$

$$= \frac{1}{\sqrt{5}} (1 \times 1 + 1 \times 2) + 0$$

$$= 1.34$$

Why length normalized?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

Why length normalized?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

Why length normalized?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

Thought experiment:

Someone gives you the optimal support vectors

Where is the max margin hyperplane?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

margin

Margin =
$$(d^+-d^-)/2$$

Max margin hyperplane is halfway in between the positive support vectors and the negative support vectors

Why?

$$d(x) = \frac{w}{\|w\|} \times x + b$$

margin

Margin = $(d^+-d^-)/2$

Max margin hyperplane is halfway in between the positive support vectors and the negative support vectors

- All support vectors are the same distance
- To maximize, hyperplane should be directly in between

$$d(x) = \frac{w}{\|w\|} \times x + b$$

margin =
$$\frac{1}{2} \xi \frac{w}{\|w\|} \times x^{+} + b - \xi \frac{w}{\xi \|w\|} \times x^{-} + b = \frac{\ddot{0}\ddot{0}}{\dot{\xi}\dot{\xi}}$$

Hint:

subject to:

$$y_i(w \times x_i + b) = 1 \text{ " } i$$

$$\max_{w,b} \max_{\mathbf{w},b} (w,b)$$
 subject to:
$$y_i(w \times x_i + b) \ ^3 \ 1 \ '' \ i$$

The support vectors have $y_i(w \times x_i + b) = 1$

Otherwise, we could make the margin larger!

$$d(x) = \frac{w}{\|w\|} \times x + b$$

Margin = $(d^+-d^-)/2$

margin =
$$\frac{1}{2} \xi \frac{w}{\|w\|} \times x^{+} + b - \xi \frac{w}{\|w\|} \times x^{-} + b = \frac{\ddot{0}\ddot{0}}{\ddot{\xi} \vdots \dot{\xi}}$$

$$=\frac{1}{2} \frac{\partial}{\partial} \frac{1}{\|w\|} - \frac{-1}{\|w\|} \frac{\ddot{0}}{\ddot{v}} \quad \text{negative}$$

$$=\frac{1}{2} \frac{\partial}{\partial} \frac{1}{\|w\|} - \frac{-1}{\|w\|} \frac{\ddot{0}}{\ddot{0}} \quad \text{example}$$

$$=\frac{1}{\|w\|}$$

Maximizing the margin

$$\max_{w,b} \frac{1}{\|w\|}$$
 subject to:
$$y_i(w \times x_i + b) \ ^3 \ 1 \quad ^{"} i$$

Maximizing the margin is equivalent to minimizing ||w||! (subject to the separating constraints)

Maximizing the margin

$$\min_{w,b} \|w\|$$
 subject to:
$$y_i(w \times x_i + b) \ ^3 \ 1 \quad ^{"} i$$

Maximizing the margin is equivalent to minimizing ||w||! (subject to the separating constraints)

Maximizing the margin

The minimization criterion wants w to be as small as possible

$$\min_{w,b} \|w\|$$

subject to:

$$y_i(w \times x_i + b) \, {}^{3}1 \, i$$

The constraints:

- 1. make sure the data is separable
- 2. encourages w to be larger (once the data is separable)

Maximizing the margin: the real problem

$$\min_{w,b} ||w||^2$$
 subject to:

$$y_i(w \times x_i + b) \, {}^{3}1 \, i$$

Why the squared?

Maximizing the margin: the real problem

$$\min_{w,b} \quad ||w|| = \sqrt{\mathring{a}_i w_i^2}$$
 subject to:

$$y_i(w \times x_i + b) \, {}^{3}1 \, i$$

$$\min_{w,b} \|w\|^2 = \mathring{\mathbf{a}}_i w_i^2$$
 subject to:

$$y_i(w \times x_i + b)^{3} 1 " i$$

Minimizing ||w|| is equivalent to minimizing ||w||²

The sum of the squared weights is a convex function!

Support vector machine problem

$$\min_{w,b} \|w\|^2$$
 subject to:
$$y_i(w \times x_i + b) \stackrel{3}{1} \quad i$$

This is a version of a quadratic optimization problem

Maximize/minimize a quadratic function

Subject to a set of linear constraints

Many, many variants of solving this problem (we'll see one in a bit)

CSE419 – Artificial Intelligence and Machine Learning 2018

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/CSE419 2018

Lecture 11.2 Soft Margin Classifiers

Based on Asst. Prof. Dr. David Kauchak (Pomona College) Lecture Slides

Soft Margin Classification

$$\min_{w,b} \|w\|^2$$
subject to:
$$y_i(w \times x_i + b) \stackrel{3}{1} \quad i$$

What about this problem?

Soft Margin Classification

$$\min_{w,b} \|w\|^2$$
 subject to:
$$y_i(w \times x_i + b) \ ^3 \ 1 \quad "i$$

We'd like to learn something like this, but our constraints won't allow it 🙁

Slack variables

$$\min_{w,b} ||w||^2$$
 subject to:

$$y_i(w \times x_i + b) \, {}^{3}1 \, i$$

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$

subject to:

$$y_i(w \times x_i + b) = 1 - V_i = i$$
 $V_i = 0$

slack variables (one for each example)

What effect does this have?

Slack variables

$$\min_{w,b} \|w\|^2 + C\mathring{a}_i V_i$$
 subject to:

$$y_i(w \times x_i + b)^3 1 - V_i " i$$
 $V_i^3 0$

slack penalties

Slack variables

Soft margin SVM

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$
subject to:
$$y_i (w \times x_i + b)^3 1 - V_i \quad i$$

$$V_i \quad 3 \quad 0$$

Still a quadratic optimization problem!

Demo

http://cs.stanford.edu/people/karpathy/svmjs/demo/

Solving the SVM problem

$$\min_{w,b} \ \left\| w \right\|^2 + C \mathring{a}_i \, V_i$$
 subject to:
$$y_i (w \times x_i + b) \, {}^3 \, 1 - V_i \quad i$$

$$V_i \, {}^3 \, 0$$

Given the optimal solution, w, b:

Can we figure out what the slack penalties are for each point?

What do the margin lines represent wrt w,b?

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$
subject to:
$$y_i (w \times x_i + b)^3 1 - V_i \quad i$$

$$V_i \quad 3 \quad 0$$

$$Or: \quad y_i(w \times x_i + b) = 1$$

What are the slack values for points outside (or on) the margin AND correctly classified?

0! The slack variables have to be greater than or equal to zero and if they're on or beyond the margin then $y_i(wx_i+b) \ge 1$ already

What are the slack values for points inside the margin AND classified correctly?

Difference from point to the margin. Which is?

$$V_i = 1 - y_i(w \times x_i + b)$$

What are the slack values for points that are incorrectly classified?

Which is?

"distance" to the hyperplane *plus* the "distance" to the margin

"distance" to the hyperplane *plus* the "distance" to the margin $-v_{\cdot}(w \times x_{\cdot} + b)$ Why -?

"distance" to the hyperplane *plus* the "distance" to the margin $v.(w \times x_i + b)$?

"distance" to the hyperplane *plus* the "distance" to the margin $-v.(w \times x_s + b)$

"distance" to the hyperplane *plus* the "distance" to the margin $V_i = 1 - y_i(w \times x_i + b)$

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$
subject to:
$$y_i (w \times x_i + b)^3 1 - V_i \quad i$$

$$V_i \quad 0$$

$$V_i = \begin{cases} 0 & \text{if } y_i(w \times x_i + b) \le 1 \\ 1 - y_i(w \times x_i + b) & \text{otherwise} \end{cases}$$

$$V_i = \begin{cases} 0 & \text{if } y_i(w \times x_i + b) \le 1 \\ 1 - y_i(w \times x_i + b) & \text{otherwise} \end{cases}$$

$$V_i = \max(0, 1 - y_i(w \times x_i + b))$$

= $\max(0, 1 - yy')$

Does this look familiar?

Hinge loss!

$$l(y,y') = 1[yy' \in 0]$$

$$l(y, y') = \max(0, 1 - yy')$$

$$l(y, y') = \exp(-yy')$$

$$l(y, y') = (y - y')^2$$

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$
 subject to:
$$y_i (w \times x_i + b)^3 1 - V_i \text{ "} i$$

$$V_i = \max(0, 1 - y_i (w \times x_i + b))$$

$$V_i \text{ } 0$$

Do we need the constraints still?

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i V_i$$
subject to:
$$y_i (w \times x_i + b)^3 1 - V_i \quad i$$

$$V_i \quad 3 \quad 0$$

$$V_i = \max(0, 1 - y_i(w \times x_i + b))$$

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i \max(0,1-y_i(w \times x_i + b))$$

Unconstrained problem!

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i loss_{hinge}(y_i, y_i')$$

Does this look like something we've seen before?

$$\underset{i=1}{\operatorname{argmin}} \overset{n}{\underset{i=1}{\circ}} loss(yy') + / regularizer(w, b)$$

Gradient descent problem!

Soft margin SVM as gradient descent

$$\min_{w,b} \|w\|^2 + C \mathring{a}_i loss_{hinge}(y_i, y_i')$$

multiply through by 1/C and rearrange

let
$$\lambda = 1/C$$

$$\min_{w,b} \ \, \mathring{a}_{i} loss_{hinge}(y_{i}, y_{i}') + / \left\| w \right\|^{2}$$

What type of gradient descent problem?

$$\underset{i=1}{\operatorname{argmin}}_{w,b} \overset{n}{\underset{i=1}{\circ}} loss(yy') + / regularizer(w,b)$$

Soft margin SVM as gradient descent

One way to solve the soft margin SVM problem is using gradient descent

Gradient descent SVM solver

- pick a starting point (w)
- repeat until loss doesn't decrease in all dimensions:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_i = w_i - h \frac{d}{dw_i} (loss(w) + regularizer(w, b))$$

$$w_j = w_j + h \mathop{a}_{i=1}^n y_i x_i 1[y_i(w \times x + b) < 1] - h/w_j$$

hinge loss L2 regularization

Finds the largest margin hyperplane while allowing for a soft margin

Support vector machines

One of the most successful (if not the most successful) classification approach:

decision tree

About 2,800,000 results (0.09 sec)

Support vector machine

About 2,940,000 results (0.16 sec)

k nearest neighbor

About 1,290,000 results (0.27 sec)

perceptron algorithm

About 138,000 results (0.07 sec)

Trends over time

