Теория языков программирования и методы трансляции

 $\left[1\right]$

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

Введение

2

Трансляция программы

Введение

3

• Лексический анализ

• Синтаксический анализ

• Генерация кода

• Оптимизация кода

Организация трансляции программы

Введение

4

Используемые методы:

- теория языков;
- теория перевода;
- методы синтаксического анализа.

База:

- математическая подготовка (булева алгебра, дискретная математика);
- теория множеств;
- Знание ОО-языка высокого уровня.

5

Базовые понятия:

- атомы;
- множества;
- элементы множеств;
- предикаты;
- операции над множествами;
- отношения на множествах;
- замыкание отношений.

Множества цепочек

- *Алфавит* Σ множество символов, из которых состоят *цепочки символов* (*предложения*) анализируемого языка.
- *Символ* − элемент алфавита ($a \in \Sigma$).

Примеры:

- Двоичный алфавит $\Sigma = \{0, 1\}$.
- Алфавит русского языка Σ = {a б в ... я А Б В ... Я о 1 2 ... 9 . , ! ? ...} или {a-я А-Я о-9 . , ! ? ...}

7

Множества цепочек

Формально цепочки в алфавите Σ определяются следующим образом:

- 1) e цепочка в Σ ;
- 2) если α цепочка в Σ и $a \in \Sigma$, то αa цепочка в Σ ;
- 3) β цепочка в Σ тогда и только тогда, когда она является таковой в силу 1) и 2).

Если цепочку из i символов a обозначить как a^i , тогда $a^o = e - пустая цепочка.$

Множества цепочек

- *Цепочка* α последовательность из о и более символов алфавита Σ : $\alpha \in \Sigma^*$.
- Пустая цепочка цепочка, состоящая из о символов ($\alpha = e$).
- Цепочка из 1 и более символов $\alpha \in \Sigma^+$.

Пример: пусть $\Sigma = \{0, 1\}$, тогда:

- $\alpha = 010 \in \Sigma^+$ и $\alpha = 010 \in \Sigma^*$;
- $\alpha = e \notin \Sigma^+$ и $\alpha = e \in \Sigma^*$;
- $\alpha = e1e1e = 11 \in \Sigma^{+} \text{ if } \alpha = e1e1e = 11 \in \Sigma^{*}$.

9

Операции над цепочками

- αβ конкатенация (сцепление) цепочек α и β. Например, если α = ab, β = cd, то αβ = abcd. При этом пустая цепочка играет роль «единицы»:
 αe = eα = α. В сцепленной цепочке αβγ цепочка α называется префиксом (если βγ ≠ e, то собственным), цепочка β называется подцепочкой, а цепочка γ суффиксом (если αβ ≠ e, то собственным) цепочки αβγ.
- $|\alpha|$ длина цепочки. Например, |abcd| = 4, |e| = 0.

Языки

• Язык L – множество правильных цепочек (предложений) в алфавите Σ : $L \subseteq \Sigma^*$ или $L \subseteq \Sigma^+$.

Примеры:

- Двоичные числа: $\Sigma = \{0, 1\}$, $L = \Sigma^+ = \{0, 1, 00, 01, 10, 11, 001, 010, 011, 100, ...\}$.
- Двоичные числа без незначащих нулей: $\Sigma = \{0, 1\}$, $L \subset \Sigma^+ = \{0, 1, 10, 11, 100, 101, 110, 111, 1000, ...\}.$

Языки

• Язык L – множество правильных цепочек (предложений) в алфавите Σ : $L \subseteq \Sigma^*$ или $L \subseteq \Sigma^+$.

Примеры:

- Русский язык: $\Sigma = \{a-я A-Я o-9., !?...\},$ $L \subset \Sigma^+ = \{mama, папа, я, ...\}.$
- Язык C++: $\Sigma = \{ \text{_a-z A-Z o-9}, ; : # < > () ... \},$ $L \subset \Sigma^* = \{ e, \text{ void main() } \{ \}, \text{ #include < vector>, ... } \}.$

Соглашения

- Прописные буквы греческого алфавита алфавиты.
- Прописные буквы латинского алфавита множества, языки, состояния анализаторов (в т.ч. нетерминалы грамматик).
- Строчные буквы греческого алфавита цепочки символов.
- Строчные буквы латинского алфавита отдельные символы.

Задачи, решаемые методами синтаксического анализа:

- 1. Получение всех правильных цепочек (предложений) языка, т.е. построение дерева вывода.
- 2. Проверка принадлежности цепочки (предложения) языку ($\alpha \in L$ или $\alpha \notin L$).

Как описать язык L?

• Если язык состоит из конечного числа цепочек (предложений), то можно просто составить список всех цепочек (предложений).

Пример: язык булевых констант $L = \{\text{false, true}\}.$

Пример: двоичные числа от о до 255 (байт).

• Если число цепочек (предложений) бесконечно, то требуются специальные средства описания языков.

Конечные автоматы

Способы описания языков

Регулярные выражения

Грамматики

Конечные автоматы

Классификация КА

Конечный автомат (КА)

Недетерминированный конечный автомат (НКА)

Детерминированный конечный автомат (ДКА)

ДКА с магазинной памятью (ДМПА)

Конечный автомат (КА):

$$M = (Q, \Sigma, \delta, q_0, F),$$

где

- Q конечное множество состояний;
- Σ конечное множество входных символов (алфавит);
- δ функция переходов, отображение множества $Q \times \Sigma$ во множество P(Q);
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество заключительных состояний.

Способы записи функции переходов:

• В виде отображения:

$$\delta(q_0, x) = \{q_1\}, \delta(q_0, y) = \{q_1, q_2\}, ...$$

• В виде множества:

$$\delta = \{((q_0, x), \{q_1\}), ((q_0, y), \{q_1, q_2\}), ...\}$$

• В виде графа:

21

Способы записи функции переходов:

• В виде таблицы:

	X	y
q_o	$\{q_i\}$	$\{\boldsymbol{q_1},\boldsymbol{q_2}\}$
q_{i}	{}	{}
${\rm q_2}$	{}	{}

В детерминированном автомате #δ(q, a) ≤ 1. Данный автомат недетерминирован, т.к.

$$\#\delta(q_0, y) = \#\{q_1, q_2\} = 2.$$

Детерминированный конечный автомат (ДКА):

$$M = (Q, \Sigma, \delta, q_{o}, F),$$

где

- Q конечное множество состояний;
- Σ конечное множество входных символов (алфавит);
- δ функция переходов, отображение множества $Q \times \Sigma$ во множество Q;
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество заключительных состояний.

Способы записи функции переходов:

• В виде отображения:

$$\delta(q_0, x) = q_1, \delta(q_0, y) = q_2, ...$$

• В виде множества:

$$\delta = \{((q_0, x), q_1), ((q_0, y), q_2), ...\}$$

• В виде графа:

Способы записи функции переходов:

• В виде таблицы:

	X	\mathbf{y}
q_{o}	q_{i}	${f q_2}$
$\mathbf{q_{\scriptscriptstyle 1}}$	ERROR	ERROR
${f q_2}$	ERROR	ERROR

ERROR – специальный символ ошибки синтаксического анализа (в функции переходов его можно не указывать).

Сокращенный вариант записи:

$$M = (Q, \Sigma, \delta, q_0),$$

где

- Q конечное множество состояний;
- Σ конечное множество входных символов (алфавит);
- δ функция переходов, отображение множества $Q \times (\Sigma \cup \{\bot\})$ во множество Q;
- $q_0 \in Q$ начальное состояние.

Новые обозначения:

- HALT специальный символ, означает успешное завершение разбора.

Таблица переходов ДКА:

	$\mathbf{a_1}$	$\mathbf{a_2}$	•••	Τ
$\mathbf{q_o}$	$\delta(q_0, a_1)$	$\delta(q_0, a_2)$	•••	$\delta(q_o, \perp)$
$\mathbf{q_{1}}$	$\delta(q_1, a_1)$	$\delta(q_1, a_2)$		$\delta(q_1, \perp)$
${f q_2}$	$\delta(q_2, a_1)$	$\delta(q_2, a_2)$		$\delta(q_2, \perp)$
•••	•••	•••		

 $\delta(q,a)$:

- q';
- $HALT(a = \bot, q \in F);$
- ERROR.

Пусть язык описывает двоичные числа без незначащих нулей. Тогда:

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{0, 1\};$
- $\delta = \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_1, 0), ERROR), ((q_1, 1), ERROR), ((q_2, 0), q_2), ((q_2, 1), q_2)\};$
- $q_{\rm o} = q_{\rm o}$.
- $F = \{q_1, q_2\}.$

T.e. $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_2, 0), q_2), ((q_2, 1), q_2)\}, q_0, \{q_1, q_2\})$

Или:

- $Q = \{q_0, q_1, q_2\};$
- $\Sigma = \{0, 1\};$
- $\delta = \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_0, \bot), ERROR), ((q_1, 0), ERROR), ((q_1, 1), ERROR), ((q_1, \bot), HALT), ((q_2, 0), q_2), ((q_2, 1), q_2), ((q_2, \bot), HALT)\};$
- $q_0 = q_0$.

T.e.
$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{((q_0, 0), q_1), ((q_0, 1), q_2), ((q_1, \bot), HALT), ((q_2, 0), q_2), ((q_2, 1), q_2), ((q_2, \bot), HALT), q_0)$$

(30)

Функция переходов в виде графа:

Функция переходов в виде таблицы:

	O	1	上
q_{o}	$q_{_1}$	$ m q_{_2}$	ERROR
$\mathbf{q_{\scriptscriptstyle 1}}$	ERROR	ERROR	HALT
${ m q_2}$	$ m q_{2}$	$ m q_{2}$	HALT

Состояниям можно давать любые имена:

	O	1	1
start	zero	non-zero	ERROR
zero	ERROR	ERROR	HALT
non-zero	non-zero	non-zero	HALT

Тогда:

- *Q* = {start, zero, non-zero};
- q_0 = start;
- и т.д.

Проверка ДКА

Как проверить, что ДКА описан правильно?

- Построить дерево вывода. Если дерево содержит все правильные цепочки языка, и не содержит неправильные цепочки, то автомат описан правильно.
- 2. Осуществить запуск ДКА. Если для всех правильных цепочек разбор окончится символом HALT, а всех неправильных символом ERROR, то автомат описан правильно.

Дерево вывода ДКА

Дерево вывода ДКА

Дерево вывода ДКА

Запуск ДКА

Основные понятия:

• конфигурация ДКА М

$$(q, \alpha) \in Q \times \Sigma^*;$$

- начальная конфигурация − (q_0, α) , где $\alpha \in \Sigma^*$;
- *заключительная конфигурация* (q, \bot), где q ∈ F;
- *такт* работы ДКА *M* при $\delta(q, a) = q'$, где $q, q' \in Q$, $a \in \Sigma \cup \{\bot\}$:

$$(q, a\alpha) \Rightarrow (q', \alpha)$$

Запуск ДКА

• Для правильной цепочки:

$$(q_{0}, «110\bot») \Rightarrow^{1} (q_{2}, «10\bot»)$$

$$\Rightarrow^{2} (q_{2}, «0\bot»)$$

$$\Rightarrow^{3} (q_{2}, «\bot»)$$

$$\Rightarrow^{4} HALT$$

• Для неправильной цепочки:

$$(q_0, \text{``010}\bot\text{'`}) \Rightarrow^1 (q_1, \text{``10}\bot\text{'`})$$

 $\Rightarrow^2 ERROR$

Алгоритм работы ДКА

42

Пусть $\alpha = a_1 a_2 ... a_n \bot -$ входная цепочка. Тогда:

- 1. Полагаем $q \leftarrow q_0, k \leftarrow 1$.
- 2. Ищем $\delta(q, a)$, где $a = a_k$.
- 3. Если $\delta(q, a)$ не определена, то ошибка в позиции k. Если значений $\delta(q, a)$ несколько таблица переходов построена неверно. Если $\delta(q, a) = q'$, то:
 - 3.1. Переходим в новое состояние $q \leftarrow q'$.
 - 3.2. Переходим к следующему символу $k \leftarrow k + 1$.
- 4. Если $\delta(q, a) = HALT$, то разбор успешно завершен.
- 5. Если $\delta(q, a) = ERROR$, то имеем во входной цепочке синтаксическую ошибку в позиции k.
- 6. Иначе возврат на шаг 2.

43

Цель минимизации – избавиться от лишних состояний, которые дублируют друг друга.

Цель минимизации – избавиться от лишних состояний, которые дублируют друг друга.

Способ 1. Сравним два состояния q_i и q_j . Поведение автомата в этих двух состояниях идентично, если:

 Функция переходов для этих состояний дает одинаковый результат:

$$\delta(q_i, a) = \delta(q_i, a) \ \forall a \in \Sigma;$$

• Оба состояния являются конечными, либо оба не являются таковыми:

$$q_i, q_j \in F$$
 или $q_i, q_j \notin F$.

46

	0	1	Т
q_{o}	$q_{_1}$	${ m q_2}$	
$\mathbf{q}_{\scriptscriptstyle 1}$			HALT
${f q_2}$	${f q}_3$	${ m q}_4$	HALT
${f q}_3$	${f q}_3$	${ m q}_4$	HALT
q_4	${ m q}_3$	q_4	HALT

47

	0	1	Τ
q_{o}	$\mathbf{q_{i}}$	${ m q_2}$	
$\mathbf{q_{i}}$			HALT
$ m q_{_2}$	\mathbf{q}_3	q_4	HALT
${f q}_3$	q_3	${ m q}_4$	HALT
$\mathrm{q}_{\scriptscriptstyle{4}}$	${ m q}_3$	q_4	HALT

$$\Rightarrow q_3 = q_4$$

48

	0	1	1
q_{o}	q_{i}	${ m q_2}$	
$\mathbf{q_{\scriptscriptstyle 1}}$			HALT
${f q_2}$	${f q}_3$	q_3	HALT
${f q}_3$	${ m q}_3$	$\mathbf{A}_{\mathbf{q}_3}$	HALT
q_4	q_3	q_{4}	HALT

49

	0	1	Τ
q_{o}	$q_{_1}$	$ m q_{2}$	
$\mathbf{q_{\scriptscriptstyle 1}}$			HALT
$ m q_{_{2}}$	${f q}_3$	${f q}_3$	HALT
${\bf q_3}$	q_3	q_3	HALT

	0	1	Τ
$ m q_o$	\mathbf{q}_{1}	$ m q_{_2}$	
q_{i}			HALT
$ m q_{_{2}}$	${ m q}_3$	${ m q}_3$	HALT
${f q}_3$	${f q}_3$	${f q}_3$	HALT

$$\Rightarrow q_2 = q_3$$

51

	0	1	1
q_{o}	$q_{\scriptscriptstyle 1}$	q_2	
$\mathbf{q}_{\scriptscriptstyle 1}$			HALT
${f q_2}$	\mathbf{q}_{2}	$\mathbf{A}_{3}\mathbf{q}_{2}$	HALT
G ₂	q_3	Gg	HALT

52

	O	1	1
q_{o}	$q_{_1}$	$ m q_{2}$	
$\mathbf{q}_{\scriptscriptstyle 1}$			HALT
${ m q_2}$	$ m q_{2}$	$ m q_{2}$	HALT

53

Пример 2.

Пример 2.

	0	1	1
q_{o}	$q_{_1}$	${ m q_2}$	
$\mathbf{q_{\scriptscriptstyle 1}}$			HALT
${f q_2}$	${f q}_3$	${ m q}_4$	HALT
${f q}_3$	${f q}_3$	${f q}_3$	HALT
q_4	q_4	q_4	HALT

Способ 2. Сравним два состояния q_i и q_j . Поведение автомата в этих двух состояниях идентично, если:

 Функция переходов для этих состояний дает одинаковый результат:

$$\delta'(q_i, a) = \delta'(q_i, a) \ \forall a \in \Sigma.$$

Здесь $\delta'(q, a) = q'$, если $q = q_i$ или $q = q_j$, в противном случае $\delta'(q, a) = \delta(q, a)$.

• Оба состояния являются конечными, либо оба не являются таковыми:

$$q_i, q_j \in F$$
 или $q_i, q_j \notin F$.

Пример 2.

	0	1	Τ
$ m q_o$	$\mathrm{q}_{\scriptscriptstyle 1}$	${ m q_2}$	
q_{i}			HALT
$ m q_{_2}$	\mathbf{q}_3	q_4	HALT
${\bf q_3}$	q'	q'	HALT
q_4	q'	q'	HALT

$$\Rightarrow q_3 = q_4$$

Пример 2.

	0	1	Τ
q_{o}	q_{i}	${ m q_2}$	
$\mathbf{q_{_1}}$			HALT
${f q_2}$	${f q}_3$	$\mathbf{A}_{\mathbf{q}}$ \mathbf{q}_{3}	HALT
${f q}_3$	${f q}_3$	${f q}_3$	HALT
2	ا م	م!	IIAIT
44	Ч	Ч	11/11/1

- 1. Построить граф переходов, а потом преобразовать его в таблицу переходов.
- 2. Построение графа начинается с начального состояния q_0 . Если начальное состояние может являться также и конечным (т.е. язык допускает пустые предложения), помечаем его двойной границей.
- 3. Для каждого состояния графа q_i определяем, есть ли из данного состояния такие переходы, которые соответствуют допустимому символу a из входной цепочки, которые пока еще отсутствуют в графе. Если есть, то проверяем, ведет ли данный переход в уже имеющееся состояние q_i . Если да, то добавляем в граф только новый переход $\delta(q_i,a)=q_i$. Если нет, то добавляем в граф новое состояние q_k и переход в него $\delta(q_i,a)=q_k$. Если новое состояние может являться конечным, помечаем его двойной границей.
- 4. Если в процессе выполнения шага 3 в графе появились новые состояния или переходы, возвращаемся на шаг 3, иначе граф переходов построен.

59

Пример. Рассмотрим язык L, описывающий число с фиксированной точкой. Такое число может начинаться со знака «+» или «-», далее следует мантисса числа. Разные языки программирования допускают различные формы записи мантиссы, в общем случае они могут быть следующими: «N.M», «N.», «M», «N», где N – целая, а M – дробная часть числа. Оба числа N и M имеют одинаковый формат – это последовательность из одной и более цифр в диапазоне от о до 9.

73

Ввод диапазонов:

	+	_	•	0	1	2	3	4	5	6	7	8	9	1
q_{o}														
q_n														

	+,-	•	0-9	1
q_{o}				
q_n				

74

Ввод диапазонов:

	Σ_{1}	Σ_2	•••	$\Sigma_{ m m}$	Т
q_{o}					
q_n					

$$\Sigma_{i} \in \Sigma, i = 1, 2, ..., m;$$

$$\Sigma_{i} \cap \Sigma_{j} = \emptyset, i \neq j;$$

$$\Sigma_{1} \cup \Sigma_{2} \cup ... \cup \Sigma_{m} = \Sigma.$$

Определение функции переходов

75

Табличное представление функции переходов:

	+,-	•	0-9	Τ
q_o	q_1	q_2	q_3	
$\mathbf{q}_{\scriptscriptstyle 1}$		q_2	q_3	
${f q}_2$			q_4	
\mathbf{q}_3		q_5	q_3	HALT
q_4			q_4	HALT
${f q}_5$			q_5	HALT

Определение функции переходов

76

Минимизация ДКА:

	+,-	•	0-9	1
q_{o}	$q_{\scriptscriptstyle 1}$	q_2	${ m q}_3$	
$\mathbf{q_{i}}$		q_2	q_3	
${f q_2}$			q_4	
${f q}_3$		q_4	q_3	HALT
q_4			q_4	HALT

Определение функции переходов

77

Результат:

	+,-	•	0-9	Τ
q_o	$q_{\scriptscriptstyle 1}$	q_2	${ m q}_3$	
$\mathbf{q}_{\scriptscriptstyle 1}$		q_2	${f q}_3$	
\mathbf{q}_{2}			q_4	
q_3		q_4	${f q}_3$	HALT
q_4			q_4	HALT

Алфавит языка
$$\Sigma = \{+, -, ., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{+, -, ., 0-9\}.$$

78

Пример. Язык L описывает десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Алфавит языка $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{0-9\}.$

$$\Sigma_{1} = \{0\}$$
 $\Sigma_{2} = \{1\}$
 $\Sigma_{3} = \{2\}$
 $\Sigma_{4} = \{3-4\}$
 $\Sigma_{5} = \{5\}$
 $\Sigma_{6} = \{6-9\}$

81

Пример. Язык L описывает десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Алфавит языка
$$\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} = \{0-9\}.$$

$$\Sigma_1 = \{0\}, \Sigma_2 = \{1\}, \Sigma_3 = \{2\}, \Sigma_4 = \{3-4\},$$

$$\Sigma_5 = \{5\}, \Sigma_6 = \{6-9\}$$

$$\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Sigma_4 \cup \Sigma_5 \cup \Sigma_6 = \{0-9\} = \Sigma.$$

	0	1	2	3-4	5	6-9	1
q_{o}							
•••							
q_{12}							

Приём 1. Конкатенация

Приём 2. Объединение

...a... или ...b...

83)

Приём 3. Итерация

...**е**..., ...аа..., ...ааа... и т.д.

или $q \in F$:

Приём 4. Положительная итерация

...а..., ...ааа... и т.д.

или $q' \in F$:

Приём 5. Конкатенация с итерацией

...b..., ...ba..., ...baa... и т.д.

или $q' \in F$;

...b..., ...ab..., ...aab... и т.д.

86

Приём 6. Итерация объединения

...**е**..., ...a.., ...b..., ...aa..., ...ab..., ...ba..., ...bb... и т.д.

или $q \in F$.

87

Приём 7. Итерация конкатенации

...е..., ...aba..., ...ababab... и т.д.

или $q \in F$.