15:00

23. Considere o alfabeto $A = \{a, b\}$ e o autómato \mathcal{A} descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares.
- (b) Determine o autómato minimal equivalente ao autómato dado.

$$X_{2} = bX_{2} + aX_{3} = rX_{2} + S$$

$$S = aX_{3}$$

$$X_{2} = r^{*}S = b^{*}aX_{3}$$

b) O autimati du enunciado è DCA. Vamo entas calcular a religió de equivalência N.

2 N, 3 , 5(2,a) N, 5(3,a) e 5(2,5) N, 6(3,5)

 2×4 , $5(2,\alpha)=3\% =5(4,\alpha)$, pelo que 2% 4.

2 Ng 3 , 5(2,0)=3/14=5(40) Logo 2 /2 3 .

24. Considere os autómatos A_1 e A_2 representados respetivamente por

- (a) Calcule um autómato determinista completo e acessível que lhe seja equivalente.
- (b) Determine o autómato minimal que lhe é equivalente.

Gmo 8/N2 = 8/N9, ent N2 = N1 = N. Logo o autimate minimal km 3 estados:

Este e' o autimate minimal

NOTA: 0 autimati não é minimal progue nos i comple . L(A) = bac+

27. Seja $A = \{0, 1\}$. Considere as linguagens:

- \bullet L_1 constituída pelas palavras sobre A que têm pelo menos um algarismo repetido;
- \bullet L_2 constituída pelas palavras sobre A que têm um número par de ocorrências do símbolo 1 e um número ímpar de ocorrências do símbolo 0.
- (a) Para cada uma das linguagens anteriores, determine um autómato que a reconhece.
- (b) Para cada uma das linguagens anteriores, indique uma expressão regular que a
- (c) Determine o autómato minimal que reconhece L_1 :
 - i. determinando-o por minimização do autómato calculado anteriormente;
 - ii. usando a construção com base no cálculo de resíduos.

Le DCA e ruembra L2.

b)
$$3 - 5$$

C) i) chalogo an ex 23,24.

in
$$L = \int ((au+11)(a+11)(a+11)^2 + (an+1u)(a+11)^4) = (an+1)^4 + (an+1u)(a+11)^4 + (an+1u)(a+1u)($$

- 28. Seja $A=\{a,b,c\}$ um alfabeto. Considere os seguintes autómatos finitos:
 - (i) $\mathcal{B}_1=(\{1,2,3,4\},A,\delta_1,1,\{2,3\})$ em que a função de transição δ_1 é definida pela tabela abaixo.

δ_1	1	2	3	4
a	{2,4}	{3}	Ø	{4}
b	{1}	Ø	Ø	{1}
c	{1}	Ø	Ø	{1}

(ii) $\mathcal{B}_2=(\{1,2,3,4\},A,\delta_2,1,\{3,4\})$ em que a função de transição δ_2 é definida pela tabela abaixo.

δ_2	1	2	3	4
a	{3}	{2}	{4}	{2}
b	{1}	{1}	{1}	{1}
c	{1}	{1}	{1}	{1}

(iii) $\mathcal{B}_3=(\{1,2,3,4\},A,\delta_3,1,\{3,4\})$ em que a função de transição δ_3 é definida pela tabela abaixo.

δ_3	1	2	3	4
a	{1}	$\{1, 3\}$	{4}	Ø
b	{2}	{1}	Ø	Ø
c	{2}	{1}	Ø	Ø

De entre as afirmações seguintes selecione a afirmação verdadeira.

- (a) \mathcal{B}_2 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (b) \mathcal{B}_1 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .
- (c) \mathcal{B}_1 , \mathcal{B}_2 e \mathcal{B}_3 são autómatos equivalentes.
- (d) \mathcal{B}_2 e \mathcal{B}_3 são autómatos e acessíveis e são equivalentes.