KL-Divergence, Trust-Region and Natural PG

Roberto Capobianco

Recap

Policy Gradient Theorem (Infinite Setting)

The policy gradient theorem generalizes the likelihood ratio approach

$$\nabla_{\theta} J(\pi_{\theta}) = \sum_{h=0}^{\infty} \gamma^{h} \mathbb{E}_{s, a \sim \mathbb{P}_{h}^{\pi_{\theta}}} \nabla_{\theta} \ln \pi_{\theta}(a \mid s) \cdot Q^{\pi_{\theta}}(s, a)$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \cdot Q^{\pi_{\theta}}(s, a) \right]$$

Policy Evaluation!

Policy Gradient Theorem (Infinite Setting)

The policy gradient theorem generalizes the likelihood ratio approach

$$\nabla_{\theta} J(\pi_{\theta}) = \sum_{h=0}^{\infty} \gamma^{h} \mathbb{E}_{s, a \sim \mathbb{P}_{h}^{\pi_{\theta}}} \nabla_{\theta} \ln \pi_{\theta}(a \mid s) \cdot Q^{\pi_{\theta}}(s, a)$$
$$= \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \cdot Q^{\pi_{\theta}}(s, a) \right]$$

We can use the return G as an unbiased estimate of Q

REINFORCE

```
Initialize policy parameters \theta arbitrarily for each episode \{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t endfor endfor return \theta
```

VARIANCE!

Baseline

To reduce the variance we can introduce baselines (function of state)

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \cdot \left(Q^{\pi_{\theta}}(s, a) - b(s) \right) \right]$$

Is this term introducing a bias? NO!

Value Function as Baseline

As baselines have to be action-independent, a common choice for a baseline is

$$b(s) = V^{\pi_{\theta}}(s)$$

$$\nabla_{\theta} J(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \ln \pi_{\theta}(a \mid s) \left(Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s) \right) \right] \quad \text{Called Advantage Function}$$

$$\nabla_{\theta} J(\theta_{t}) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d^{\pi_{\theta}_{t}}} \left[\nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) \left(A^{\pi_{\theta_{t}}}(s, a) \right) \right]$$

Advantage Function

Intuition: the advantage function tells us how good an action is compared to the average value of the state

Value of an action in the state

$$Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

Average value of the state

REINFORCE with Baseline

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, \cdots do
  Collect a set of trajectories by executing the current policy
 At each timestep t in each trajectory \tau^i, compute Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, and
    Advantage estimate \hat{A}_t^i = G_t^i - b(s_t).
  Re-fit the baseline, by minimizing \sum_{i} \sum_{t} ||b(s_t) - G_t^i||^2,
  Update the policy, using a policy gradient estimate \hat{g},
    Which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}_t.
    (Plug \hat{g} into SGD or ADAM)
endfor
```

We're still using the return and collecting MC samples

Advantage Function

$$Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

If we can access the true value function, the TD error is an unbiased estimate of the advantage function

$$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[\delta^{\pi_{ heta}}|s,a
ight] &= \mathbb{E}_{\pi_{ heta}}\left[r+\gamma V^{\pi_{ heta}}(s')|s,a
ight] - V^{\pi_{ heta}}(s) \ &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &= A^{\pi_{ heta}}(s,a) \end{aligned}$$

So we can use the TD error to compute the policy gradient

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \ \delta^{\pi_{ heta}} \right]$$

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$$

Can be approximated!

Reducing Variance with Critic

Motivation: Monte-Carlo policy gradient still has high variance!

We can estimate V/Q by using a critic

Such critic is also parameterized

$$Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

MC vs TD Policy Gradient

In MC policy gradient, the target is the return G

$$\Delta \theta = \alpha(\mathbf{G}_{t} - V_{v}(s_{t})) \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t})$$

- In Actor-Critic the target is a TD target and relies on bootstrapping
 - Multiple timescales are possible (not only 1-step)
 - Also TD-lambda with forward/backward view

$$\Delta\theta = \alpha(\mathbf{r} + \gamma V_{v}(\mathbf{s}_{t+1}) - V_{v}(\mathbf{s}_{t}))\nabla_{\theta} \log \pi_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})$$

Actor-Critic with LFA

Critic $Q_w(s,a) = \phi(s,a)^T w$ updates weights w by linear TD(0) Actor updates weights by policy gradient

```
function QAC Initialise s, \theta Sample a \sim \pi_{\theta} for each step do Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a Sample action a' \sim \pi_{\theta}(s',a') \delta = r + \gamma Q_w(s',a') - Q_w(s,a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s,a) Q_w(s,a) w \leftarrow w + \beta \delta \phi(s,a) a \leftarrow a', s \leftarrow s' end for end function
```


Policy Gradient Summary

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{G}_{t} \right] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \; \mathcal{Q}^{w}(s, a) \right] & \text{Q Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \; \mathcal{A}^{w}(s, a) \right] & \text{Advantage Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \; \delta \right] & \text{TD Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \; \delta e \right] & \text{TD}(\lambda) \; \text{Actor-Critic} \end{split}$$

Critic does policy evaluation to estimate Q, V or A using bootstrapping (if it uses MC we do not call it a critic)

End Recap

Policy Iteration Recall

Procedure:

- 1. Start with a random guess $\pi_{_{\Theta}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $Q^{\pi t}$ for all s,a
 - b. Do **policy improvement** as $\pi_{t+1} = \operatorname{argmax}_{a} Q^{\pi t}(s,a)$ for all s

This algorithm only makes progress, and the performance progress of the policy is monotonic

Policy Iteration Recall

Procedure:

- 1. Start with a random guess $\pi_{_{\Theta}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $Q^{\pi t}$ for all s,a
 - b. Do policy improvement as π_{t+1} =argmax_a $\mathbf{A}^{\pi t}(\mathbf{s},\mathbf{a})$ for all s

$$Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

We can also use the advantage function, it's equivalent: pick an action that has the largest advantage against π at every state s

Policy Iteration Recall

Procedure:

- 1. Start with a random guess $\pi_{_{\Theta}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $Q^{\pi t}$ for all s,a
 - b. Do policy improvement as π_{t+1} =argmax_a $\mathbf{A}^{\pi t}(\mathbf{s},\mathbf{a})$ for all s

$$Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

$$\arg\max_{a} Q^{\pi}(s, a) = \arg\max_{a} A^{\pi}(s, a)$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = ??$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$
$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

$$\begin{split} V^{\pi}(s_0) - V^{\pi'}(s_0) &= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi'}(s,a) - V^{\pi'}(s) \right] \\ &:= \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot|s)} A^{\pi'}(s,a) \right] \quad \text{Average advantage value} \end{split}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$

$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right] \quad \text{Average advantage value}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} Q^{\pi'}(s, a) - V^{\pi'}(s) \right]$$

$$:= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$
Average advantage value

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

This difference is exactly the definition of advantage

$$Q^{\pi'}(s,a) - V^{\pi'}(s)$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{s_0}^{\pi}} \left[\mathbb{E}_{a \sim \pi(\cdot \mid s)} A^{\pi'}(s, a) \right]$$

We can do recursion and follow the same reasoning again

$$V^{\pi}(s_0) - V^{\pi'}(s_0)$$

$$\begin{split} &V^{\pi}(s_0) - V^{\pi'}(s_0) \\ &= V^{\pi}(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \end{split}$$

$$V^{\pi}(s_0) - V^{\pi'}(s_0)$$

$$= V^{\pi}(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0)$$

$$\mathbb{E}_{a_0 \sim \pi(\cdot | s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi}(s') \right]$$

$$\begin{split} &V^{\pi}(s_0) - V^{\pi'}(s_0) \\ &= V^{\pi}(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot|s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \end{split}$$

$$\mathbb{E}_{a_0 \sim \pi(\cdot | s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi}(s') \right]$$

$$\begin{split} &V^{\pi}(s_0) - V^{\pi'}(s_0) \\ &= V^{\pi}(s_0) - \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] + \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \\ &= \gamma \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \mathbb{E}_{s_1 \sim P(s_0, a_0)} \left[V^{\pi}(s_1) - V^{\pi'}(s_1) \right] + \mathbb{E}_{a_0 \sim \pi(\cdot \mid s_0)} \left[r(s_0, a_0) + \gamma \mathbb{E}_{s' \sim P(s_0, a_0)} V^{\pi'}(s') \right] - V^{\pi'}(s_0) \end{split}$$

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \end{split}$$

Apply definition

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot \mid s_{0})} \left[A^{\pi'}(s_{0}, a_{0}) \right] \end{split}$$

Apply definition

$$\begin{split} &V^{\pi}(s_{0}) - V^{\pi'}(s_{0}) \\ &= V^{\pi}(s_{0}) - \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s' \sim P(s_{0}, a_{0})} V^{\pi'}(s') \right] - V^{\pi'}(s_{0}) \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[Q^{\pi'}(s_{0}, a_{0}) - V^{\pi'}(s_{0}) \right] \\ &= \gamma \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \mathbb{E}_{s_{1} \sim P(s_{0}, a_{0})} \left[V^{\pi}(s_{1}) - V^{\pi'}(s_{1}) \right] + \mathbb{E}_{a_{0} \sim \pi(\cdot|s_{0})} \left[A^{\pi'}(s_{0}, a_{0}) \right] \end{split}$$

Recursion

Performance Difference Lemma

We know that the new policy from PI is better than the old one, but what's their performance difference?

$$V^{\pi_{new}}(s_0) - V^{\pi_{old}}(s_0) = \frac{1}{1 - \gamma} \mathbb{E}_{s, a \sim d_{s_0}^{\pi_{new}}} \left[A^{\pi_{old}}(s, a) \right]$$

Advantage against old policy averaged over the new policy induced distribution

Approximate Policy Iteration Recall

Procedure:

- 1. Start with a random guess $\pi_{_{0}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute A^{n}
 - b. Do **policy improvement** as π^{\wedge}_{t+1} =argmax_a $\mathbf{A}^{\wedge \pi^{t}}(\mathbf{s}, \mathbf{a})$ for all $O^{\pi_{\theta}}(s, a) V^{\pi_{\theta}}(s)$

For example, estimate A[^] directly through regression

Approximate Policy Iteration Recall

Procedure:

- 1. Start with a random guess $\pi_{_{\Theta}}$ (can be deterministic or stochastic)
- 2. For t=0,...,T:
 - a. Do **policy evaluation** and compute $A^{n\tau}$

 π^{\wedge} is an approximate greedy policy

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \widehat{\pi}(s)) \right] \approx \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} \left[A^{\pi^t}(s, \pi(s)) \right]$$

Approximate Policy Iteration Recall

No monotonic improvement

Conservative Policy Iteration

Oscillations are due to the distribution change induced by the policy

Can we design an update rule that does not change the distribution so much?

$$d^{\pi^t} \approx d^{\pi^{t+1}}$$

$$\mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[A^{\pi^{t}}(s, \pi^{t+1}(s)) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi^{t+1}}} \left[A^{\pi^{t}}(s, \pi^{t+1}(s)) \right]$$

Incremental Update of CPI

Oscillations are due to the distribution change induced by the policy

Can we design an update rule that does not change the distribution so much?

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^{t}(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

$$\|\pi^{t+1}(\cdot \mid s) - \pi^{t}(\cdot \mid s)\|_{1} \le 2\alpha \longrightarrow \|d_{\mu}^{\pi^{t+1}}(\cdot \cdot) - d_{\mu}^{\pi^{t}}(\cdot \cdot)\|_{1} \le \frac{2\gamma\alpha}{1 - \gamma}$$

Incremental Update of CPI

If we set alpha appropriately we can get back monotonic improvement until termination

$$\begin{aligned} & \text{If} \max_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\mu}^{\pi^t}} [A^{\pi^t}(s, \pi(s))] \leq \varepsilon \\ & \text{Return } \pi^t \end{aligned}$$

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^t(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

$$\|\pi^{t+1}(\cdot \mid s) - \pi^{t}(\cdot \mid s)\|_{1} \le 2\alpha \longrightarrow \|d_{\mu}^{\pi^{t+1}}(\cdot \cdot) - d_{\mu}^{\pi^{t}}(\cdot \cdot)\|_{1} \le \frac{2\gamma\alpha}{1 - \gamma}$$

Problem of CPI

I now need to retain all the old policies in memory: what if they are all large neural networks?

$$\pi^{t+1}(\cdot \mid s) = (1 - \alpha)\pi^{t}(\cdot \mid s) + \alpha\pi'(\cdot \mid s), \forall s$$

Problem of CPI

I now need to retain all the old policies in memory: what if they are all large neural networks?

Let's use KL-Divergence

KL-Divergence

Given two distributions Q and P, KL-Divergence is defined as

expected excess surprise from using Q as a model when the actual distribution is P

$$KL(P | Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

 $KL(P \mid Q) \ge 0$

$$Q = P$$

$$KL(P \mid Q) = KL(Q \mid P) = 0$$

$$P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$$

$$KL(P | Q) = \|\mu_1 - \mu_2\|_2^2 / \sigma^2$$

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_t}}(s, a) \right]$$

s.t.,
$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \leq \delta$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$KL(P | Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}$$

$$KL(P | Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}$$

Initial state distribution, as well as next state distribution simplify, because they are the same. We are only left with the different policies.

$$KL(P | Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_t}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)}$$

$$KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \ln \frac{\rho_{\pi_{\theta_t}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta_t}}} \sum_{h=0}^{\infty} \ln \frac{\pi_{\theta_t}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)}$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_\mu^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h \mid s_h)}{\pi_{\theta}(a_h \mid s_h)} \right] := \mathcal{E}(\theta)$$

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$
s.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$

This is our trust-region, that maintains the distributions not so far

$$\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\pi_{\theta}(a_1 \mid s_1)\dots$$

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$
s.t.,
$$KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$$

How do we optimize this?

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$
s.t.,
$$KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$$

How do we optimize this?

Remember: the trajectory distribution is actually unknown and we do not know the transition function!

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$
s.t., $KL \left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}} \right) \leq \delta$

How do we optimize this?

1st or 2nd order Taylor expansion

Trust-Region Optimization: Objective Function

Let's first simplify and linearize the objective function using a 1st order Taylor Expansion

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot (\theta - \theta_{t})}_{\nabla_{\theta} J(\pi_{\theta_{t}})}$$

Trust-Region Optimization: Objective Function

Let's first simplify and linearize the objective function using a 1st order Taylor Expansion

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right] \cdot \theta - \theta_{t})$$
Advantage of the policy against product itself is 0

Trust-Region Optimization: Objective Function

Let's first simplify and linearize the objective function using a 1st order Taylor Expansion

$$\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] \approx \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} A^{\pi_{\theta_{t}}}(s, a) \right] + \underbrace{\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta_{t}}(s)} \nabla_{\theta} \ln \pi_{\theta_{t}}(a \mid s) A^{\pi_{\theta_{t}}}(s, a) \right]}_{\nabla_{\theta} J(\pi_{\theta_{t}})} \cdot (\theta - \theta_{t})$$

$$= \nabla_{\theta} J(\pi_{\theta_{t}})^{\top} (\theta - \theta_{t})$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$\mathscr{E}(\theta) \approx \mathscr{E}(\theta_t) + \nabla \mathscr{E}(\theta_t)^{\mathsf{T}}(\theta - \theta_t) + \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathscr{E}(\theta_t)(\theta - \theta_t)$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta)$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_t) + \nabla \mathcal{E}(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t) (\theta - \theta_t)$$

$$\ell(\theta_t) = KL(\rho_{\theta_t} | \rho_{\theta_t}) = 0$$

$$KL(\rho_{\theta_t} | \rho_{\theta}) := \ell(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right]$$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t)$$

$$\begin{split} KL(\rho_{\theta_t}|\,\rho_{\theta}) := \ell(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_h,a_h \sim d_\mu^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h\,|\,s_h)}{\pi_{\theta}(a_h\,|\,s_h)} \right] & \text{Does not depend on the variation of theta} \\ \ell(\theta) &\approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t) \end{split}$$

Let's then simplify and linearize the constraint using a 2nd order Taylor Expansion

$$\begin{split} KL(\rho_{\theta_t}|\,\rho_{\theta}) &:= \ell(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_h,a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h \,|\, s_h)}{\pi_{\theta}(a_h \,|\, s_h)} \right] \quad \text{Does not depend on the variation of theta} \\ \ell(\theta) &\approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t) \end{split}$$

$$\nabla_{\theta} \mathcal{E}(\theta) \big|_{\theta = \theta_t} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{t} \pi_{\theta_t}(a \mid s) \Big(-\nabla_{\theta} \ln \pi_{\theta}(a_h \mid s_h) \big|_{\theta = \theta_t} \Big)$$

ln(a/b) = ln a - ln b

Expectation has nothing to do with gradient, so we bring gradient inside

Let's then simplify and linearize the constraint using a 2nd order Taylor Expansion

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \mathscr{C}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right]$$

$$\mathcal{E}(\theta) \approx \boxed{\mathcal{E}(\theta_t)} + \nabla \mathcal{E}(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t) (\theta - \theta_t)$$

Bring sum inside: this sums to 1

$$\nabla_{\theta} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \left(-\nabla_{\theta} \ln \pi_{\theta}(a_{h} \mid s_{h}) \big|_{\theta = \theta_{t}} \right) = -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \frac{\nabla_{\theta} \pi_{\theta_{t}}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} = 0$$

$$KL(\rho_{\theta_t} | \rho_{\theta}) := \ell(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right]$$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t)$$

$$KL(\rho_{\theta_t} | \rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_t) + \nabla \mathcal{E}(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t) (\theta - \theta_t)$$

$$\mathit{KL}(\rho_{\theta_t} \,|\, \rho_{\theta}) := \mathscr{C}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h \,|\, s_h)}{\pi_{\theta}(a_h \,|\, s_h)} \right] \quad \text{Does not depend on the variation of theta}$$

Does not depend

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_t) + \nabla \mathcal{E}(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t) (\theta - \theta_t)$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta) \big|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a \mid s) \Big(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a \mid s) \big|_{\theta = \theta_{t}} \Big)$$

Expectation has nothing to do with gradient, so we bring gradient inside

$$KL(\rho_{\theta_{t}}|\rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_{t}) + \nabla \mathcal{E}(\theta_{t})^{\mathsf{T}} (\theta - \theta_{t}) + \frac{1}{2} (\theta - \theta_{t})^{\mathsf{T}} \nabla_{\theta}^{2} \mathcal{E}(\theta_{t}) (\theta - \theta_{t})$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta)|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta = \theta_{t}} \right)$$

$$\nabla_{\theta} \ln \pi_{\theta}(a_{h}|s_{h})|_{\theta = \theta_{t}} = \frac{\nabla_{\theta} \pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} \qquad \nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta = \theta_{t}} ?$$

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_t) + \nabla \mathcal{E}(\theta_t) \Gamma(\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \mathcal{E}(\theta_t) (\theta - \theta_t)$$

$$\nabla_{\theta}^2 \mathcal{E}(\theta)|_{\theta = \theta_t} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{a} \pi_{\theta_t}(a|s) \left(-\nabla_{\theta}^2 \ln \pi_{\theta}(a|s)|_{\theta = \theta_t} \right)$$

$$\nabla_{\theta} \ln \pi_{\theta}(a_h|s_h)|_{\theta = \theta_t} = \frac{\nabla_{\theta} \pi_{\theta_t}(a|s)}{\pi_{\theta_t}(a|s)} \qquad \nabla_{\theta}^2 \ln \pi_{\theta}(a|s)|_{\theta = \theta_t} ?$$
We just have to compute the gradient of this now

$$KL(\rho_{\theta_{t}}|\rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_{t}) + \nabla \mathcal{E}(\theta_{t}) \Gamma(\theta - \theta_{t}) + \frac{1}{2} (\theta - \theta_{t})^{T} \nabla_{\theta}^{2} \mathcal{E}(\theta_{t}) (\theta - \theta_{t})$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta)|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta = \theta_{t}} \right)$$

$$\nabla_{\theta} \ln \pi_{\theta}(a_{h}|s_{h})|_{\theta = \theta_{t}} = \frac{\nabla_{\theta} \pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} \qquad \nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta = \theta_{t}} ?$$

$$(f/g)' = f'/g - fg'/g^{2}$$

$$KL(\rho_{\theta_{t}}|\rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_{t}) + \nabla \mathcal{E}(\theta_{t})^{\mathsf{T}} (\theta - \theta_{t}) + \frac{1}{2} (\theta - \theta_{t})^{\mathsf{T}} \nabla_{\theta}^{2} \mathcal{E}(\theta_{t}) (\theta - \theta_{t})$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta)|_{\theta=\theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta=\theta_{t}} \right)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a|s) \nabla_{\theta} \pi_{\theta_{t}}(a|s)^{\mathsf{T}}}{\pi_{\theta_{t}}^{2}(a|s)} \right)$$

Trust-Region Optimization: Constraint

$$KL(\rho_{\theta_{t}}|\rho_{\theta}) := \mathcal{E}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_{h},a_{h} \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\ln \frac{\pi_{\theta_{t}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})} \right]$$

$$\mathcal{E}(\theta) \approx \mathcal{E}(\theta_{t}) + \nabla \mathcal{E}(\theta_{t})^{\mathsf{T}} (\theta - \theta_{t}) + \frac{1}{2} (\theta - \theta_{t})^{\mathsf{T}} \nabla_{\theta}^{2} \mathcal{E}(\theta_{t}) (\theta - \theta_{t})$$

$$\nabla_{\theta}^{2} \mathcal{E}(\theta)|_{\theta = \theta_{t}} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(-\nabla_{\theta}^{2} \ln \pi_{\theta}(a|s)|_{\theta = \theta_{t}} \right)$$

$$= -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \sum_{a} \pi_{\theta_{t}}(a|s) \left(\frac{\nabla_{\theta}^{2} \pi_{\theta_{t}}(a|s)}{\pi_{\theta_{t}}(a|s)} - \frac{\nabla_{\theta} \pi_{\theta_{t}}(a|s) \nabla_{\theta} \pi_{\theta_{t}}(a|s)^{\mathsf{T}}}{\pi_{\theta_{t}}^{2}(a|s)} \right)$$

Bring sum inside: this sums to 1

 $(f/g)' = f'/g - fg'/g^2$

Trust-Region Optimization: Constraint

$$KL(\rho_{\theta_t}|\rho_{\theta}) := \ell(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h|s_h)}{\pi_{\theta}(a_h|s_h)} \right]$$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t) \Gamma(\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t)$$

$$\nabla_{\theta}^2 \ell(\theta)|_{\theta = \theta_t} = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{a} \pi_{\theta_t}(a|s) \left(-\nabla_{\theta}^2 \ln \pi_{\theta}(a|s)|_{\theta = \theta_t} \right) = -\mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \sum_{a} \pi_{\theta_t}(a|s) \left(\frac{\nabla_{\theta}^2 \pi_{\theta_t}(a|s)}{\pi_{\theta_t}(a|s)} - \frac{\nabla_{\theta} \pi_{\theta_t}(a|s)}{\pi_{\theta_t}^2(a|s)} \right)$$

 $= \mathbb{E}_{s,a \sim d_{\mu}^{\pi_{\theta_t}}} \left\| \nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\mathsf{I}} \right\| \in \mathbb{R}^{\dim_{\theta} \times \dim_{\theta}}$

This is the **Fisher**Information Matrix

Trust-Region Optimization: Constraint

$$KL(\rho_{\theta_t} | \rho_{\theta}) := \ell(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{s_h, a_h \sim d_{\mu}^{\pi_{\theta_t}}} \left[\ln \frac{\pi_{\theta_t}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right]$$

$$\ell(\theta) \approx \ell(\theta_t) + \nabla \ell(\theta_t)^{\mathsf{T}} (\theta - \theta_t) + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} \nabla_{\theta}^2 \ell(\theta_t) (\theta - \theta_t)$$

Easy to compute, as we know how to compute the gradient of the log likelihood of the policy

$$= \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

This is the **Fisher**Information Matrix

Trust-Region Optimization: Simplified Constraint

$$KL\left(\rho_{\pi_{\theta_t}}|\rho_{\pi_{\theta}}\right) \approx \frac{1}{2}(\theta - \theta_t)^{\mathsf{T}}F_{\theta_t}(\theta - \theta_t)$$

$$F_{\theta_t} := \mathbb{E}_{s, a \sim d_{\mu}^{\pi_{\theta_t}}} \left[\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \left(\nabla_{\theta} \ln \pi_{\theta_t}(a \mid s) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{dim_{\theta} \times dim_{\theta}}$$

F is always positive semi-definite

Simplified Trust-Region Formulation

$$\max_{\pi_{\theta}} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{t}}}(s, a) \right]$$

$$\text{s.t., } KL\left(\rho_{\pi_{\theta_{t}}} | \rho_{\pi_{\theta}}\right) \leq \delta$$

$$\text{s.t., } \left(\theta - \theta_{t}\right)^{\mathsf{T}} F_{\theta_{t}}(\theta - \theta_{t}) \leq \delta$$

Simplified Trust-Region Formulation

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} (\theta - \theta_t)$$

s.t. $(\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta$

This looks very easy and we can compute the solution in closed form!

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} \left(\theta - \theta_t\right)$$
s.t. $(\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \leq \delta$

Let's first simplify the notation:

$$\theta - \theta_{t} = \Delta$$

$$\nabla_{\theta} J(\pi_{\theta t}) = \nabla$$

$$\max_{\Delta} \nabla^{\mathsf{T}} \Delta,$$

s.t. $\Delta^{\mathsf{T}} F \Delta \leq \delta$

Let's first simplify the notation:

$$\theta - \theta_{t} = \Delta$$

$$\nabla_{\theta} J(\pi_{\theta t}) = \nabla$$

$$\max_{\Delta} \nabla^{\mathsf{T}} \Delta,$$

s.t. $\Delta^{\mathsf{T}} F \Delta \leq \delta$

Let's then introduce $F^{1/2}$

For a positive definite matrix this can be obtained from the Eigen Decomposition: $F = U\Sigma U^T$, $F^{1/2} = U\sqrt{\Sigma}U^T$

Credits: Wen Sun

$$\max_{\Delta} \nabla^{\mathsf{T}} \Delta,$$

s.t. $\Delta^{\mathsf{T}} F \Delta \leq \delta$

$$(F^{1/2})^2 = F$$

 $F^{1/2}F^{-1/2} = I$

$$\max_{\Delta} \nabla^{\mathsf{T}} \mathsf{F}^{1/2} \mathsf{F}^{-1/2} \Delta$$

$$\mathsf{s.t.} (\mathsf{F}^{1/2} \Delta)^{\mathsf{T}} (\mathsf{F}^{1/2} \Delta) \leq \delta$$

$$\max_{\widetilde{\Delta}} \left(F^{-1/2} \nabla \right)^{\mathsf{T}} \widetilde{\Delta},$$

s.t. $\widetilde{\Delta}^{\mathsf{T}} \widetilde{\Delta} \leq \delta$

$$(\mathsf{F}^{1/2})^2 = \mathsf{F} \qquad \max_{\Delta} \nabla^\mathsf{T} \mathsf{F}^{1/2} \mathsf{F}^{-1/2} \Delta$$

$$\mathsf{F}^{1/2} \mathsf{F}^{-1/2} = \mathsf{I} \qquad \mathsf{s.t.} (\mathsf{F}^{1/2} \Delta)^\mathsf{T} (\mathsf{F}^{1/2} \Delta) \leq \delta$$

 $\widetilde{\Lambda} := F^{1/2} \Lambda$

$$\max_{\widetilde{\Delta}} \left(F^{-1/2} \nabla \right)^{\mathsf{T}} \widetilde{\Delta},$$

s.t.
$$\widetilde{\Delta}^{\top} \widetilde{\Delta} \leq \delta$$

$$\widetilde{\Delta} := F^{1/2} \Delta$$

This is my (ball) constraint: the norm of Δ^{\sim} has to be $\leq \delta$ (so, any vector Δ^{\sim} falls in this ball)

$$\max_{\widetilde{\Delta}} \left(F^{-1/2} \nabla \right)^{\mathsf{T}} \widetilde{\Delta},$$

s.t.
$$\widetilde{\Delta}^{\mathsf{T}} \widetilde{\Delta} \leq \delta$$

$$\widetilde{\Delta} := F^{1/2} \Delta$$

What I do care about now is the inner product between the vector $\mathbf{F}^{-1/2}\boldsymbol{\Delta}$ and any vector $\boldsymbol{\Delta}^{\sim}$ in this ball

$$\max_{\Lambda} \left(F^{-1/2} \nabla \right)^{\mathsf{T}} \widetilde{\Delta},$$

s.t.
$$\widetilde{\Delta}^{\mathsf{T}} \widetilde{\Delta} \leq \delta$$

$$\widetilde{\Delta} := F^{1/2} \Delta$$

Which vector does maximize this inner product? The green one: minimum angle (same direction $\mathbf{F}^{-1/2}\boldsymbol{\Delta}$), maximum length (scaled by η)

Credits: Wen Sun

$$\max_{\widetilde{\Delta}} \left(F^{-1/2} \nabla \right)^{\mathsf{T}} \widetilde{\Delta},$$

s.t.
$$\widetilde{\Delta}^{\mathsf{T}}\widetilde{\Delta} \leq \delta$$

st
$$\widetilde{\Lambda}^{\top}\widetilde{\Lambda} < \delta$$

$$\|\eta F^{-1/2} \nabla\|_2 = \sqrt{\delta} \quad \Rightarrow \eta = \sqrt{\frac{\delta}{\nabla^\top F^{-1} \nabla}}$$

$$\widetilde{\Delta}_{max} := \sqrt{\frac{\delta}{\nabla^{\top} F^{-1} \nabla}} F^{-1/2} \nabla$$

$$\Delta_{max} := \sqrt{\frac{\delta}{\nabla^{\top} F^{-1} \nabla}} F^{-1} \nabla$$

 $\widetilde{\Delta} := F^{1/2} \Delta$

Credits: Wen Sun

$$\begin{aligned} & \max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} \big(\theta - \theta_t \big) \\ & \text{s.t. } (\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta \end{aligned}$$

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \qquad \qquad \eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

The same solution can be obtained by applying Lagrange multipliers

$$\min_{\lambda \leq 0} \max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\mathsf{T}} (\theta - \theta_t) + \lambda \left((\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) - \delta \right)$$

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} (\theta - \theta_t)$$

s.t. $(\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta$

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \qquad \qquad \eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

F is generally invertible, but in case it is not you can use pseudo-inverse or add regularization (F = F + λ I with λ very small)

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} (\theta - \theta_t)$$

s.t. $(\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta$

s.t.
$$(\theta - \theta_t)^T F_{\theta_t} (\theta - \theta_t) \le \delta$$

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \qquad \qquad \eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

Step size (η) depends on the allowed trust region (δ) is a hyper-parameter that we typically set to a small number like 1e-2 or 1e-3)

$$\begin{aligned} & \max_{\theta} \nabla_{\theta} J(\pi_{\theta_t})^{\top} \big(\theta - \theta_t \big) \\ & \text{s.t.} \ (\theta - \theta_t)^{\top} F_{\theta_t} (\theta - \theta_t) \leq \delta \end{aligned}$$

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t}) \qquad \qquad \eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta_t})^{\top} F_{\theta_t}^{-1} \nabla_{\theta} J(\pi_{\theta_t})}}$$

F is pre-conditioning our gradient, instead of just fully going for it

TRPO: Line Search

Due to the quadratic approximation, the KL constraint might be violated: we solve this by doing a simple line search

```
for j=0,1,2,...,L do 
Compute proposed update \theta=\theta_k+\alpha^j\Delta_k 
if \mathcal{L}_{\theta_k}(\theta)\geq 0 and \bar{D}_{\mathit{KL}}(\theta||\theta_k)\leq \delta then 
accept the update and set \theta_{k+1}=\theta_k+\alpha^j\Delta_k break 
end if 
end for
```


Natural Policy Gradient: Additional Comments

We want to keep two distributions close, but parameters can change a lot: learning rate (η) is very high if eigen-values of F are very small (as the matrix is inverted)

Generally, Natural PG moves faster than standard/plain PG

If we have many parameters, computing & inverting F is too heavy!

Extending TRPO: Proximal Policy Optimization

If we have many params, we can impose KL divergence as a regularization term and optimize (simply through SG Ascent)

$$\max_{\theta} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_{t}}}} \left[\mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi^{t}}} \left[\mathsf{KL} \left(\pi_{\theta_{t}}(a \mid s) \mid \pi_{\theta}(a \mid s) \right) \right]$$
 regularization

using importance weighting and expanding KL divergence through expectation

$$\mathscr{E}(\theta) := \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \left[\mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} A^{\pi_{\theta_t}}(s, a) \right] - \lambda \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \left[-\ln \pi_{\theta}(a \mid s) \right]$$

