TROST Select: LASSO Model

Heike Sprenger

07/06/2020

Contents

Setup	2
Load functions	2
Load data	2
Tolerance information	2
Transcript data	2
Metabolite data	2
Remove batch effect in metabolite data	3
PCA	3
Transcripts	3
Metabolites	4
Define training and test data	4
Transcripts	4
TROST data for training model	4
VALDIS data for model prediction	4
Metabolites	5
TROST data for training model	5
VALDIS transcript data for model prediction	5
LASSO Model	6
Transcripts	6
Moodel training	6
Predict DRYM for VALDIS data	6
Median DRYM values	6
Metabolites	7
Moodel training	7
Predict DRYM for VALDIS data	8
Median DRYM values	8
Combine predicted DRYM values	9
Subpopulations	9
Plots	10
Transcripts	10
Boxplot of predicted DRYM vs line	10
Boxplot of predicted DRYM vs line (sparse)	10
Metabolites	11
Boxplot of predicted DRVM vs line	11

Boxplot of predicted DRYM vs line (sparse)	11
Save workspace	12
Session Info	12

Setup

Load functions

```
source("func_prep_pca.R")
source("func_remove_factors.R")
```

Load data

Tolerance information

```
tolerance <- read.table("tolerance.txt", sep = "\t", header = T)</pre>
```

Transcript data

TROST: 202 samples, 42 transcripts

all data: 1159 samples

```
# ALL
transcript_data_all <- read.table("log_norm_ct_trost_valdis.txt", header = T, sep = "\t")
transcript_samples_all <-
    read.table("transcript_samplelist_trost_valdis.txt", header=TRUE, sep="\t") %>%
    left_join(tolerance[,-3], by = "subspecies_id")

transcript_samples_all$row_id <- rownames(transcript_data_all)

# VALDIS lines
transcript_samples_valdis <-
    read.table("transcript_samplelist_valdis.txt", header = T, sep = "\t") %>%
    dplyr::select(line_id, crossing, name) %>% distinct
```

Metabolite data

911 samples, XXX metabolites

```
## [1] 2336 81
```

```
# 2336 samples, 81 metabolites

metabolite_samples_all <-
    read.table("metabolite_samplelist_trost_valdis.txt", header=TRUE, sep="\t") %>%
    left_join(tolerance, by = "cultivar")

# Import analytes overlap table (overlap regarding 17 measured TROST experiments, not the QC experiment
analytes <-
    read.table("analytes_trost_valdis.txt", sep = "\t", header = T) %>%
    filter(select_part == "yes") %>%
    arrange(analyte) %>% droplevels

length(analytes$name) # 81

## [1] 81

colnames(metabolite_data_all) <- analytes$MPIMP_ID</pre>
```

Remove batch effect in metabolite data

PCA

Transcripts

Metabolites

Define training and test data

Subsets: TROST and VALDIS

Transcripts

[1] 202 42

TROST data for training model

```
transcript_samples_training <-
    transcript_samples_all %>%
    filter(cultivation == "field") %>%
    filter(trost_valdis == "trost") %>%
    filter(!is.na(model_set)) %>%
    droplevels()

compObs_transcript_training <-
    compObs_transcript_all %>%
    rownames_to_column("row_id") %>%
    filter(row_id %in% transcript_samples_training$row_id) %>%
    column_to_rownames("row_id")

dim(compObs_transcript_training) # 202 samples
```

VALDIS data for model prediction

```
transcript_samples_pred <-
  transcript_samples_all %>%
  filter(trost_valdis == "valdis") %>%
  droplevels()

compObs_transcript_pred <-</pre>
```

```
compObs_transcript_all %>%
  rownames_to_column("row_id") %>%
  filter(row_id %in% transcript_samples_pred$row_id) %>%
  column_to_rownames("row_id")

dim(compObs_transcript_pred) # 803 samples
```

[1] 803 42

Metabolites

TROST data for training model

```
metabolite_samples_training <-
   metabolite_samples_all %>%
   filter(cultivation == "field") %>%
   filter(trost_valdis == "trost") %>%
   filter(!is.na(model_set)) %>%
   droplevels()

compObs_metabolite_training <-
   compObs_metabolite_all %>%
   rownames_to_column("chromatogram") %>%
   filter(chromatogram %in% metabolite_samples_training$chromatogram) %>%
   column_to_rownames("chromatogram")

dim(compObs_metabolite_training) # 911 samples
```

[1] 911 81

VALDIS transcript data for model prediction

```
metabolite_samples_pred <-
   metabolite_samples_all %>%
   filter(trost_valdis == "valdis") %>%
   droplevels()

compObs_metabolite_pred <-
   compObs_metabolite_all %>%
   rownames_to_column("chromatogram") %>%
   filter(chromatogram %in% metabolite_samples_pred$chromatogram) %>%
   column_to_rownames("chromatogram")

dim(compObs_metabolite_pred) # 806 samples
```

[1] 806 81

LASSO Model

Transcripts

Moodel training

```
mdrym_fve: Median DRYM
set.seed(1)
lasso_fit_transcript <- glmnet(x = as.matrix(comp0bs_transcript_training),</pre>
                                 y = transcript_samples_training$mdrym_fve)
# plot(lasso_fit_transcript)
# Cross-validation (10-fold)
set.seed(1111)
lasso_cv_transcript <- glmnet::cv.glmnet(x = as.matrix(compObs_transcript_training),</pre>
                                  y = transcript_samples_training$mdrym_fve)
lasso_cv_transcript$lambda.1se # 0.001209806
## [1] 0.001209806
# plot(lasso_cv_transcript, ylim=c(0, 0.005))
lasso_cv_transcript_coef_1se <- predict(lasso_cv_transcript,</pre>
                                          type = "coefficients",
                                          s = lasso_cv_transcript$lambda.1se)
table(as.matrix(lasso_cv_transcript_coef_1se) == 0) # 23 transcripts left
##
## FALSE TRUE
##
      24
            19
```

Predict DRYM for VALDIS data

Median DRYM values

```
# join predicted DRYM values with line IDs and calculate median
lasso_transcript_predicted_drym_valdis_1se_median <-
   data.frame(drym = lasso_transcript_predicted_drym_valdis_1se[,1],
        line_id = transcript_samples_pred$subspecies_id) %>%
group_by(line_id) %>%
```

```
summarize(median_drym = median(drym)) %>%
  rename(drym = median_drym) %>%
  left_join(transcript_samples_valdis, by = "line_id")
## `summarise()` ungrouping output (override with `.groups` argument)
lasso transcript predicted drym valdis median <-
  data.frame(drym = lasso_transcript_predicted_drym_valdis[,1],
             line_id = transcript_samples_pred$subspecies_id) %>%
  group_by(line_id) %>%
  summarize(median_drym = median(drym)) %>%
  rename(drym = median drym) %>%
 left join(transcript samples valdis, by = "line id")
## `summarise()` ungrouping output (override with `.groups` argument)
# save median of predicted drym
write.table(lasso_transcript_predicted_drym_valdis_1se_median,
            "lasso_transcript_predicted_drym_valdis_1se_median.txt",
            sep = "\t", row.names = F)
Metabolites
Moodel training
mdrym_fve: Median DRYM
set.seed(1)
lasso_fit_metabolite <- glmnet(x = as.matrix(comp0bs_metabolite_training),</pre>
                                y = metabolite_samples_training$mdrym_fve)
# plot(lasso_fit_metabolite)
# Cross-validation (10-fold)
set.seed(1111)
lasso_cv_metabolite <- glmnet::cv.glmnet(x = as.matrix(compObs_metabolite_training),</pre>
                                  y = metabolite_samples_training$mdrym_fve)
lasso_cv_metabolite$lambda.1se # 0.0006964521
## [1] 0.0006964521
# plot(lasso cv metabolite, ylim=c(0, 0.005))
# define lambda for sparse model with 29 variables
lambda.sparse <- 0.002</pre>
lasso_cv_metabolite_coef_1se <- predict(lasso_cv_metabolite,</pre>
                                          type = "coefficients",
                                          s = lambda.sparse)
table(as.matrix(lasso_cv_metabolite_coef_1se) == 0)
##
```

FALSE TRUE 30

52

Predict DRYM for VALDIS data

Median DRYM values

```
# join predicted DRYM values with line IDs and calculate median
lasso_metabolite_predicted_drym_valdis_sparse_median <-</pre>
  data.frame(drym = lasso_metabolite_predicted_drym_valdis_sparse[,1],
             line_id = metabolite_samples_pred$cultivar) %>%
  group_by(line_id) %>%
  summarize(median drym = median(drym)) %>%
  rename(drym = median_drym) %>%
  mutate(name = str replace(line id, " ", "")) %>%
  mutate(name = str_replace(name, "AxR", "AR")) %>%
  mutate(name = str_replace(name, "ExA", "EA")) %>%
  mutate(name = str_replace(name, "ALBATROS", "Albatros")) %>%
  mutate(name = str_replace(name, "DESIREE", "Desiree")) %>%
  mutate(name = str_replace(name, "EURORESA", "Euroresa")) %>%
  mutate(name = str_replace(name, "RAMSES", "Ramses"))
## `summarise()` ungrouping output (override with `.groups` argument)
lasso_metabolite_predicted_drym_valdis_median <-</pre>
  data.frame(drym = lasso_metabolite_predicted_drym_valdis[,1],
             line_id = metabolite_samples_pred$cultivar) %>%
  group by(line id) %>%
  summarize(median_drym = median(drym)) %>%
  rename(drym = median_drym) %>%
  mutate(name = str_replace(line_id, "_", "")) %>%
  mutate(name = str_replace(name, "AxR", "AR")) %>%
  mutate(name = str_replace(name, "ExA", "EA")) %>%
  mutate(name = str_replace(name, "ALBATROS", "Albatros")) %>%
  mutate(name = str_replace(name, "DESIREE", "Desiree")) %>%
 mutate(name = str_replace(name, "EURORESA", "Euroresa")) %>%
  mutate(name = str_replace(name, "RAMSES", "Ramses"))
## `summarise()` ungrouping output (override with `.groups` argument)
# save median of predicted drym
write.table(lasso_metabolite_predicted_drym_valdis_sparse_median,
            "lasso_metabolite_predicted_drym_valdis_sparse_median.txt",
            sep = "\t", row.names = F)
```

Combine predicted DRYM values

```
lasso_predicted_drym_sparse <-</pre>
  lasso_metabolite_predicted_drym_valdis_sparse_median %>%
  dplyr::select(name, drym) %>%
  rename(drym_metabolite = drym) %>%
  left_join(lasso_transcript_predicted_drym_valdis_1se_median, by = "name") %>%
  rename(drym_transcript = drym) %>%
  mutate(drym_avg = (drym_metabolite + drym_transcript)/2) %>%
  arrange(drym_avg)
lasso predicted drym <-
  lasso_metabolite_predicted_drym_valdis_median %>%
  dplyr::select(name, drym) %>%
 rename(drym metabolite = drym) %>%
 left_join(lasso_transcript_predicted_drym_valdis_median, by = "name") %>%
  rename(drym_transcript = drym) %>%
  mutate(drym_avg = (drym_metabolite + drym_transcript)/2) %>%
  arrange(drym_avg)
write.table(lasso_predicted_drym,
            "lasso_predicted_drym_valdis_sparse_median.txt",
            sep = "\t", row.names = F)
```

Subpopulations

```
lines_MPt <- c("AR1", "AR23", "AR56", "AR67", "AR106", "AR121", "AR157", "AR163", "AR183",
               "AR185", "AR196", "AR197", "AR200", "AR241", "AR245", "AR254", "AR269", "AR282",
               "AR285", "AR293", "EA28", "EA74", "EA87")
lines_MPs <- c("AR55", "EA2", "EA8", "EA19", "EA22", "EA54", "EA55", "EA71", "EA92",
               "EA111", "EA112", "EA131", "EA154", "EA165", "EA172", "EA173", "EA174",
               "EA252", "EA269", "EA273", "EA279", "EA280")
lasso predicted drym sparse$select <- "not"</pre>
lasso_predicted_drym_sparse$select[which(lasso_predicted_drym_sparse$name %in% lines_MPt)] <- "MPt"
lasso_predicted_drym_sparse$select[which(lasso_predicted_drym_sparse$name %in% lines_MPs)] <- "MPs"
table(lasso_predicted_drym_sparse$select)
##
## MPs MPt not
## 22 23 154
lasso_predicted_drym$select <- "not"</pre>
lasso_predicted_drym$select[which(lasso_predicted_drym$name %in% lines_MPt)] <- "MPt"
lasso_predicted_drym$select[which(lasso_predicted_drym$name %in% lines_MPs)] <- "MPs"</pre>
table(lasso_predicted_drym$select)
##
## MPs MPt not
## 22 23 154
\# qqplot(lasso\_predicted\_drym\_sparse, aes(x = select, y = drym\_avq)) + qeom\_boxplot()
```

Plots

Transcripts

Boxplot of predicted DRYM vs line

```
lasso_transcript_predicted_drym_valdis_df <-</pre>
  data.frame(drym = lasso_transcript_predicted_drym_valdis[,1],
             line_id = transcript_samples_pred$subspecies_id) %>%
 left_join(transcript_samples_valdis, by = "line_id")
# sort predicted DRYM values for plot
lasso_transcript_predicted_drym_valdis_sorted <-</pre>
  with(lasso_transcript_predicted_drym_valdis_df, reorder(name, drym, median, na.rm=T))
lasso_color <- rep("#00756D", 199) # for ExA
lasso_color [which( grepl("^AR", levels(lasso_transcript_predicted_drym_valdis_sorted) ))] <- "#BF5300"
lasso_color [which( levels (lasso_transcript_predicted_drym_valdis_sorted) == "Albatros" )] <- "grey"</pre>
lasso color [which( levels (lasso transcript predicted drym valdis sorted) == "Euroresa" )] <- "#5778B9
lasso_color [which( levels (lasso_transcript_predicted_drym_valdis_sorted) == "Ramses" )] <- "#F7B944"
lasso_color [which( levels (lasso_transcript_predicted_drym_valdis_sorted) == "Desiree" )] <- "white"</pre>
# lasso_color <- subset(lasso_color, levels (lasso_transcript_predicted_drym_valdis_sorted) != "DESIREE
lasso_color_fac <- factor(lasso_color)</pre>
png("boxplot_lasso_transcript_predicted_drym_valdis_full.png", width=3000, height=1500, res=300)
par(mar=c(4.5,5,2,0.5))
boxplot(drym ~ lasso_transcript_predicted_drym_valdis_sorted, data = lasso_transcript_predicted_drym_va
        ylab="DRYM", cex.lab=1.5, cex.axis=1.2, las=2, col=lasso_color, main = "transcript model", name
legend("bottomright", fill=levels(lasso_color_fac), legend=c("ExA", "E", "AxR", "R", "A"), horiz=T)
dev.off()
## pdf
##
```

Boxplot of predicted DRYM vs line (sparse)

```
lasso_color_fac <- factor(lasso_color)

png("boxplot_lasso_transcript_predicted_drym_valdis_1se.png", width=3000, height=1500, res=300)
par(mar=c(4.5,5,2,0.5))
boxplot(drym ~ lasso_transcript_predicted_drym_valdis_1se_sorted, data = lasso_tran
```

Metabolites

Boxplot of predicted DRYM vs line

```
lasso_metabolite_predicted_drym_valdis_df <-</pre>
  data.frame(drym = lasso_metabolite_predicted_drym_valdis[,1],
             line_id = metabolite_samples_pred$cultivar)
# sort predicted DRYM values for plot
lasso_metabolite_predicted_drym_valdis_sorted <-</pre>
  with(lasso_metabolite_predicted_drym_valdis_df, reorder(line_id, drym, median, na.rm=T))
lasso_color <- rep("#00756D", 199) # for ExA
lasso_color [which( grepl("^AxR", levels(lasso_metabolite_predicted_drym_valdis_sorted) ))] <- "#BF5300
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sorted) == "ALBATROS" )] <- "grey"
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sorted) == "EURORESA" )] <- "#5778B9
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sorted) == "RAMSES" )] <- "#F7B944"</pre>
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sorted) == "DESIREE" )] <- "white"</pre>
# lasso_color <- subset(lasso_color, levels (lasso_metabolite_predicted_drym_valdis_sorted) != "DESIREE
lasso_color_fac <- factor(lasso_color)</pre>
png("boxplot lasso metabolite predicted drym valdis full.png", width=3000, height=1500, res=300)
par(mar=c(4.5,5,2,0.5))
boxplot(drym ~ lasso_metabolite_predicted_drym_valdis_sorted, data = lasso_metabolite_predicted_drym_va
        ylab="DRYM", cex.lab=1.5, cex.axis=1.2, las=2, col=lasso_color, main = "metabolite model", name
legend("bottomright", fill=levels(lasso_color_fac), legend=c("ExA", "E", "AxR", "R", "A"), horiz=T)
dev.off()
## pdf
##
```

Boxplot of predicted DRYM vs line (sparse)

```
lasso_color <- rep("#00756D", 199) # for ExA
lasso_color [which( grepl("^AxR", levels(lasso_metabolite_predicted_drym_valdis_sparse_sorted) ))] <- "
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sparse_sorted) == "ALBATROS" )] <- "
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sparse_sorted) == "EURORESA" )] <- "
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sparse_sorted) == "RAMSES" )] <- "#F
lasso_color [which( levels (lasso_metabolite_predicted_drym_valdis_sparse_sorted) == "DESIREE" )] <- "w"
\#\ lasso\_color <-\ subset(lasso\_color,\ levels\ (lasso\_metabolite\_predicted\_drym\_valdis\_sparse\_sorted)\ !=\ ".
lasso color fac <- factor(lasso color)</pre>
png("boxplot_lasso_metabolite_predicted_drym_valdis_sparse.png", width=3000, height=1500, res=300)
par(mar=c(4.5,5,2,0.5))
boxplot(drym ~ lasso_metabolite_predicted_drym_valdis_sparse_sorted, data = lasso_metabolite_predicted_orym_valdis_sparse_sorted
        ylab="DRYM", cex.lab=1.5, cex.axis=1.2, las=2, col=lasso_color, main = "metabolite model", name
legend("bottomright", fill=levels(lasso_color_fac), legend=c("ExA", "E", "AxR", "R", "A"), horiz=T)
dev.off()
## pdf
##
```

Save workspace

```
save.image("lasso_model.RData")
```

Session Info

```
sessionInfo()
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Linux Mint 19.3
##
## Matrix products: default
          /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8
                                           LC NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8
                                           LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=de_DE.iso885915@euro
                                           LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=de_DE.iso885915@euro
                                           LC NAME=C
## [9] LC ADDRESS=C
                                           LC TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.iso885915@euro LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats
                          graphics grDevices utils
                                                         datasets methods
## [8] base
## other attached packages:
## [1] pcaMethods_1.78.0
                           Biobase_2.46.0
                                                BiocGenerics_0.32.0
```

```
[4] forcats_0.5.0
                            stringr_1.4.0
                                                 dplyr_1.0.0
##
   [7] purrr_0.3.4
                            readr_1.3.1
                                                 tidyr_1.1.0
## [10] tibble 3.0.1
                            tidyverse_1.3.0
                                                 glmnet 4.0
                                                 ggplot2_3.3.1
## [13] Matrix_1.2-18
                            caret_6.0-86
## [16] lattice_0.20-40
                            knitr_1.28
##
## loaded via a namespace (and not attached):
   [1] httr_1.4.1
                             jsonlite_1.6.1
                                                   splines_3.6.3
##
   [4] foreach_1.5.0
                             prodlim_2019.11.13
                                                   modelr_0.1.8
                             stats4_3.6.3
                                                   blob_1.2.1
  [7] assertthat_0.2.1
## [10] cellranger_1.1.0
                             yaml_2.2.1
                                                   ipred_0.9-9
## [13] pillar_1.4.4
                                                   glue_1.4.1
                             backports_1.1.7
## [16] pROC_1.16.2
                             digest_0.6.25
                                                   rvest_0.3.5
## [19] colorspace_1.4-1
                             recipes_0.1.12
                                                   htmltools_0.4.0
## [22] plyr_1.8.6
                             timeDate_3043.102
                                                   pkgconfig_2.0.3
## [25] broom_0.5.6
                             haven_2.3.1
                                                   scales_1.1.1
## [28] gower_0.2.1
                             lava_1.6.7
                                                   generics_0.0.2
## [31] ellipsis 0.3.1
                             withr 2.2.0
                                                   nnet_7.3-13
## [34] cli_2.0.2
                             survival_3.1-11
                                                   magrittr_1.5
## [37] crayon 1.3.4
                             readxl_1.3.1
                                                   evaluate 0.14
## [40] fansi_0.4.1
                             fs_1.4.1
                                                   nlme_3.1-144
## [43] MASS_7.3-51.5
                             xm12_1.3.2
                                                   class 7.3-15
## [46] tools_3.6.3
                             data.table_1.12.8
                                                   hms_0.5.3
## [49] lifecycle 0.2.0
                             munsell 0.5.0
                                                   reprex 0.3.0
## [52] compiler_3.6.3
                             rlang_0.4.6
                                                   grid_3.6.3
## [55] iterators_1.0.12
                                                   rmarkdown_2.2
                             rstudioapi_0.11
## [58] gtable_0.3.0
                             ModelMetrics_1.2.2.2
                                                   codetools_0.2-16
## [61] DBI_1.1.0
                             reshape2_1.4.4
                                                   R6_2.4.1
## [64] lubridate_1.7.8
                             shape_1.4.4
                                                   stringi_1.4.6
                             vctrs_0.3.1
## [67] Rcpp_1.0.4.6
                                                   rpart_4.1-15
## [70] dbplyr_1.4.4
                             tidyselect_1.1.0
                                                   xfun_0.14
```