ALGO QCM

- 1. La méthode de recherche la plus naïve est la recherche?
- X (a) séquentielle
 - (b) dichotomique
 - (c) autoadaptative
 - (d) par interpolation
- 2. La complexité au pire de la recherche dichotomique négative est d'ordre?
 - (a) linéaire
- (b) logarithmique
 - (c) quadratique
 - (d) constant
- 3. Lors d'une recherche si la clé recherchée est trouvée, on parle de recherche?
 - (a) négative
- x (b) positive
 - (c) affirmative
 - (d) logique
 - (e) cognitive
- 4. L'important dans les ensembles c'est?
 - (a) la position d'un élément dans un ensemble
 - (b) la place d'un élément dans un ensemble
- 🗙 (c) l'appartenance d'un élément à un ensemble
 - (d) l'ordre d'un élément dans un ensemble
- 5. la recherche autoadaptative est implémentable seulement sur?
 - (a) liste triée croissante
 - (b) liste triée décroissante
- (c) liste non triée
- 6. La complexité au pire de la recherche négative séquentielle est d'ordre?
- < (a) linéaire
 - (b) logarithmique
 - (c) quadratique
 - (d) constant
- 7. La recherche séquentielle peut se faire sur?
- > (a) liste triée croissante
- × (b) liste triée décroissante
- x (c) liste non triée

- 8. La recherche autoadaptative ramenant l'élément trouvé à la première place, préfère?
- × (a) une structure dynamique
 - (b) une structure statique
- 9. La recherche dichotomique peut se faire sur?
 - × (a) liste triée croissante
 - (b) liste triée décroissante
 - (c) liste non triée
 - 10. Un élément ne peut pas être présent plusieurs fois dans un ensemble!
 - (a) faux
 - × (b) vrai

NKKEL

QCM 7

17

lundi 16 décembre

Question 11

Soit $q \in \mathbb{R}$. La limite en $+\infty$ de la suite (q^n) :

- \mathbf{X} a. est égale à $+\infty$ si q=2
 -). est égale à $-\infty$ si q=-2
- $\boldsymbol{\times}$ c. est égale à 0 si |q| < 1
 - \mathcal{A} . n'existe pas si $q = -\frac{1}{2}$
 - Aucune des autres réponses

Question 12

Cochez la(les) affirmation(s) correcte(s)

- \not . Toute suite strictement croissante tend vers $+\infty$
- & b. Toute suite convergente est bornée
- \star c. Toute suite non majorée et croissante tend vers $+\infty$
 - d. Toute suite décroissante et positive converge vers 0
 - e. Aucune des autres réponses

Question 13

Soient (u_n) et (v_n) deux suites adjacentes dont on sait que (v_n) est décroissante. On a :

- \mathbf{x} a. (u_n) est croissante
 - \blacktriangleright (u_n) est décroissante
- \mathbf{k} c. (u_n) converge
 - d. (u_n) diverge
 - g. Aucune des autres réponses

Question 14

Soient (u_n) une suite réelle et $\ell \in \mathbb{R}$. On a :

- **a.** (u_n) converge vers $\ell \Longrightarrow (u_{3n})$ converge vers ℓ
 - \mathcal{Y} . (u_{3n}) converge vers $\ell \Longrightarrow (u_n)$ converge vers ℓ
- (u_{2n}) et (u_{2n+1}) convergent vers $\ell \Longrightarrow (u_n)$ converge vers ℓ
 - \mathcal{L} (u_{3n}) et (u_{3n+1}) convergent vers $\ell \Longrightarrow (u_n)$ converge vers ℓ
 - Aucune des autres réponses

Question 15

Soit (u_n) définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = u_n^2 - u_n + 1$ avec $u_0 = 2$. On a

- A. Pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ avec $f: x \longmapsto x^2 x$
- **b.** Pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ avec $f: x \longmapsto x^2 x + 1$
- \angle C. Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = (u_n 1)^2$
 - **d.** Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = (u_n + 1)^2$
 - ¿. Aucune des autres réponses

Question 16 V

Soient f une fonction continue sur \mathbb{R} et (u_n) définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- **« a.** Si (u_n) converge vers un réel ℓ alors $\ell = f(\ell)$
 - \mathcal{U} . Si un réel ℓ vérifie $\ell = f(\ell)$ alors (u_n) converge vers ℓ
 - \mathscr{L} (u_n) converge vers un réel ℓ si et seulement si $\ell=f(\ell)$
 - Aucune des autres réponses

Question 17 ×

Soit la suite $(u_n) = \left(\frac{n+1}{n+2}\right)$. On a

- \mathbf{z} . (u_n) est majorée par 0
- (u_n) est majorée par 1
- \swarrow \bowtie (u_n) est minorée par 0
 - (u_n) est minorée par -1
 - . Aucune des autres réponses

Question 18 ∨

Cochez la(les) affirmation(s) correcte(s)

- A. Si une suite est strictement positive alors elle ne peut pas converger vers 0.
- →> ऑ. Si une suite converge vers −1 alors à partir d'un certain rang, cette suite est strictement négative.
 - ∠. Si une suite est divergente alors elle n'est pas bornée.
 - K d. Aucune des autres réponses

Question 19 V

La suite
$$\left(\frac{(-1)^n}{n^2}\right)_{n\in\mathbb{N}^*}$$
 converge vers 0

🗶 a. Vrai

. Faux

Question 20 V

Dernière question en 2024! Alors, soyons fou : cadeau!!

Cochez toutes les cases (sauf la dernière) si vous voulez avoir les points à cette question!

- × a. Bonnes
- x b. fêtes
- K c. de fin
- a d'année
 - . J'ai encore une fois lu trop vite la question :(

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q21. On considère le circuit de gauche, où $e(t) = E.\sqrt{2}.\cos(\omega t)$. On veut déterminer le générateur de Thévenin vu par la résistance R. En représentation complexe, on obtient alors le schéma de droite.

Quelle est l'expression de E_{th} ?

b-
$$\underline{E}_{th} = \frac{1}{1+2jRC\omega} \underline{V}_E$$

b- $\underline{E}_{th} = \frac{jC\omega}{2R+jC\omega} \underline{V}_E$

$$\underline{E}_{th} = \frac{c}{2R+C} \underline{V}_{E}$$

$$\underline{E}_{th} = V_{E}$$

- **Q22.** Quelle est l'unité du produit $L\omega$? X
- 🗶 a. Des Siemens
- Des Ohms
- d. Il n'y en a pas
- Q23. A quoi est équivalent un condensateur en très basses fréquences ? V
 - a. Un fil

. Une résistance

, b. Un interrupteur ouvert

- d. Un générateur de tension
- Q24. A quoi est équivalent une bobine en très hautes fréquences ? \checkmark
 - a. Un interrupteur fermé
- ★ C. Un interrupteur ouvert

Une résistance

d. Un générateur de tension

Soit le filtre ci-contre, où $v_e(t) = V_E \cdot \sqrt{2} \cos(\omega t)$ (Q25&26)

Q25. De quel type de filtre s'agit-il?

- 🗶 a. Passe-Bas
- Passe-Haut
- Passe-Bande
- d. Coupe-Bande

Quel type de filtre obtient-on si on remplace la bobine par un condendateur ? χ

Passe-Bas

- b. Passe-Haut
- g. Passe-Bande
- d. Coupe-Bande

Soit le filtre ci-contre, où $v_e(t) = V_E.\sqrt{2}\,cos(\omega t)$ (Q27 à 30)

Q27. L'amplitude complexe de la tension v_s est donnée par :

a.
$$\underline{V_S} = \frac{1}{1 + jRC\omega} \underline{V_E}$$

$$V_{\underline{S}} = \frac{V_{\underline{E}}}{3 + j2RC\omega}$$

$$V_{\underline{S}} = \frac{V_{E}\sqrt{2}\sin(\omega t)}{1+jRC\omega}$$

d.
$$\underline{V_S} = \frac{\underline{V_E}}{R + jC\omega}$$

Q28. Quel est l'ordre de ce filtre?

- a. 0

£. 2

d. 3

Q29. De quel type de filtre s'agit-il?

Passe-Bas

- * b. Passe-Haut
- Passe-Bande
- d. Coupe-Bande

Q30. Quel type de filtre obtient-on si on remplace le condensateur par une bobine ? χ

- * a. Passe-Bas
- - (B) Passe-Haut
- g. Passe-Bande g. Coupe-Bande