

#### À RETENIR 99

# Méthode

Pour résoudre une inéquation du premier degré, on procède comme pour une équation, en isolant l'inconnue d'un côté du symbole de comparaison (<< >, < > >, < > ou <  $\ge$  »).

Cependant, la solution se donne sous forme d'un intervalle. Il est possible d'utiliser une droite graduée pour la représenter.

#### EXEMPLE •



L'ensemble solution est  $\mathcal{S} = [2; +\infty[$ .

### À RETENIR 👀

# Rappels

- Lorsque les symboles « < » ou « > » sont dans l'énoncé, les crochets doivent être ouverts.
- Lorsque les symboles « ≤ » ou « ≥ » sont dans l'énoncé, les crochets sont fermés.
- Autour de l'infini, les crochets sont toujours ouverts.

## EXEMPLE \$

Dans l'inéquation précédente, le crochet enferme la valeur 2 car dans l'énoncé, le symbole « ≥ » est utilisé.

### À RETENIR 00

# Remarque

**Attention.** On change le sens d'une inégalité en multipliant ou divisant par un nombre négatif. Mais on ne le change pas sinon.

### EXEMPLE 🔋

$$3x + 8 < 7 \iff 3x < 7 - 8$$

Le sens n'a pas changé car on a fait une soustraction (de 8).

#### EXEMPLE •

$$2x > 8 \iff x > 4$$

Le sens n'a pas changé car on a divisé par un nombre positif (par 2).

### EXEMPLE •

$$-3x < 18 \iff x > -6$$

Le sens a changé car on a divisé par un nombre négatif (par -3).

#### EXERCICE 1

Parmi les inéquations suivantes, lesquelles acceptent le nombre 9 comme solution?

1. 
$$-3x + 2 \ge 0$$
.

**3.** 
$$3x < 2$$
.

**2.** 
$$5(x-9) > 0$$
.

**4.** 
$$\frac{x+1}{4} \ge (-3) \times \frac{x-2}{3}$$
.

#### EXERCICE 2

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse en justifiant.

- 1. Tous les nombres de [9; 13] appartiennent à ]8; 13[.
- **2.**  $[9;10] \cup [-6;9,5[=[-6;10]]$ .
- **3.** Si x > 3, alors x 3 > 0.
- **4.** Si  $t \ge -2$ , alors  $-2t + 5 \le 10$ .
- **5.** Si  $x \ge 3$  et  $y \ge 2$ , alors  $3x + 4y \ge 17$ .
- **6.** Les nombres vérifiant  $|x-7| \le 3$  sont les nombres de l'intervalle [4;11].

# EXERCICE 3

Pour chaque question, représenter l'ensemble des nombres vérifiant l'encadrement sur une droite graduée.

1. 
$$-1 \le x \le 2$$
.

**3.** 
$$\sqrt{2} \le x < \sqrt{3}$$
.

**2.** 
$$x > 9$$
.

**4.** 
$$-5 < x$$
.

## EXERCICE 4

Résoudre les inéquations suivantes.

1. 
$$-3x + 7 \le x + 2$$
.

3. 
$$-\frac{x}{4} < 5$$
.

**5.** 
$$-3x + 7 \le 9 - x$$
.

**2.** 
$$-6x + 1 > 0$$
.

**4.** 
$$-3(x+5) < x+5$$
.

**6.** 
$$\frac{3x-1}{4} + x \le x + 2$$
.

### EXERCICE 5

Résoudre les inéquations suivantes.

1. 
$$x^2 + x + 1 \ge (x+1)(x-1)$$
.

**2.** 
$$(x+2)^2 < x^2 + 5x - 2$$
.

# EXERCICE 6

Soient a et b deux nombres réels.

- **1.** Résoudre l'inéquation  $ax + b \le 0$ .
- 2. Donner une interprétation graphique de ce résultat.

### EXERCICE 7

- **1.** Soient a et b deux nombres réels. À quelle condition a-t-on  $ab \ge 0$ ?
- **2.** En déduire la solution de l'inéquation  $(x+1)(x-1) \ge 0$ .
- **3.** En utilisant la méthode précédente, résoudre l'inéquation  $(x + 1)^2 \le 1$ .