Madepumopus podoma 1/15 Doctionerne Mexaminas gracaionix Kombarib Mema: biznarumu ocnobri napamempu gracame Kolubaro Mexaniria cucmenn Trunagu ma collagnature: Kombria cucmenta, Cerynaan Meon-bigaucomi: Deallui mex Kombanne zgin antomble za Harbroomi Club Oropy Capagolaiga. Horry 3 racon Kombanue znacaromb. Cent onopy cepezalruya nepelanus hypnopyiura lutus kocini pipcy mila, ys Bricuse Kolillanine: Hon = - 170, ge r-kolsp. Onopy Cepephuya, a zriak "-" bragge Fra momullumun go mbrig ko Omi nampen Hogi, gle mynumoro dialemental dionara jaman ma * ton-typ=0 mx+17+ kx=0 mx + rx + kx=0

Mograrulium = w, = 23 (3- Kolop- graconine ureno gup pilrunul fractionus kombans: \(\bar{x} + 2\beta \bar{x} + \bar{y} w^2 x = 0\) 1 Spul Wo > B 1 pozbajkoju ytoro pilovanie epilovanie:

2 x = Ao e-Bt cos (wt+40) gosin Boro mage rapuotirni kombania z guxu. racmomoro $W = VW_0^2 - B^2$ i zuimoro y raci amninyoro $A(t) = A_0 \cdot e^{-\beta t}$, npu noramkoliti amninyoji A_0 Tepiog Kalubano: $T = \frac{2 I}{W_0^2 - \beta^2}$ Desperiehm: $D = \frac{An}{A_{n+1}} = e^{\frac{1}{2}\beta^2}$ to rapus durint gexperierm: 2 = ln 0 = sT Mac perakcaijii I - rac za akhii aruniimyja kombine zurungemka be pasib. Korp zp. Gacanne - ofij. Cemina am oblineria go racy pelakealiji: B= 7 Ne-rucio kombano za sue K-mo ko intano julina 6 e pazilo mon yo . T = NeT. 2 = BT = T = Te.

Omne, non genere & pij. beturuna odepnera go Ne

Y//IN	/			-)	<u> </u>	1	
Dasponniant Cuan			= 211 -	E = .	T=I	Ne	$\Delta \beta_n = 8 \beta_n = 8 \beta_n = 100$
3a cno korolar nolimpuntu	1 2 3 op.	t,c 18,6 18,7 18,3 18,5 18,9 18,8	1,85 1,89 0,00 1,88 0,00 0,00 0,00 0,00 0,00 0,00	0,02	16 15 8 7 4	1 26 30 1 26 3	2 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
n over Min Olivin	B, C 0,026		B, C1.	5,5,% 8% 0,58%	2 0,044	Q High	ap

$$\begin{array}{lll}
\Delta \beta_{n} &= \left(\frac{1}{15} + \frac{0.01}{1.86}\right) \cdot 0.025 = 0.002 \\
8. \beta_{n} &= \frac{0.002}{1.002} = 0.08 = 8\% \\
\lambda_{n} &= \frac{1}{10002} \cdot \frac{1}{1001} = 0.044 \\
\Omega_{n} &= \frac{1}{1004} = 141.44 \\
\Omega_{n} &= \frac{1}{1004} = 141.44 \\
\Omega_{n} &= \frac{1}{1004} = 0.052 \\
\Omega_{n} &= \frac{1}{10002} \cdot \frac{0.01}{1.89} \cdot 0.052 = 0.0002 \\
8. \beta_{n} &= \frac{0.0003}{0.052} = 0.0058 = 0.0002 \\
8. \beta_{n} &= \frac{0.0003}{0.052} = 0.0058 = 0.0003 \\
\Omega_{n} &= \frac{1}{10002} \cdot \frac{1}{1001} = 0.043 \\
\Omega_{n} &= \frac{1}{10002} \cdot \frac{1}{1001} = 0.043 \\
\Omega_{n} &= \frac{1}{10002} \cdot \frac{1}{1001} = 0.043
\end{array}$$