Week 4

Progress during 20-26th July

Hao SUN

July 26, 2017

Contents

- Unsupervised learning in star-galaxy classification/segmentation
 - Manifold learning for hidden layer clustering
 - Hypercolumns with kmeans for segmentation
 - Hypercolumns with kmeans for segmentation
 - Applied to SDSS field datas (large scale)
 - TODOs

Progress in this week

- Tried manifold learning for hidden layer clustering
- 2 Tried Hypercolumns with kmeans for segmentation
- Applied to SDSS field datas (large scale)
- Tried different VAE structures and hyperparameters for better performance
- 5 Tried different normalization method
- Opening Promising direction: hidden layer explaination

Manifold learning for hidden layer clustering

Manifold learning use geometric distance instead of Euclidian distance in clustering

Manifold Learning with 1000 points, 6 neighbors

Hypercolumns with kmeans for segmentation

Then I use Hypercolumns to perform segmentation: (SDSS field data, cut to 64*64 RGB)

Hypercolumns with kmeans for segmentation

SDSS 64*64 RGB image (color: different normalization method)

Applied to SDSS field datas (large scale)

Apply the method above to the original field image (256*256 RGB image), kmeans with 3 kernels:

Todos

- Find knowledge from hidden layer(size, luminosity, gravity?) Figures below show the hidden variables when using the same VAE structure with different normalization methods.
- Try different normalization method
- 6 Hyperparameter adjustment
- Use other clustering methods instead of K-means
- Artificial convolution kernels

