DOC 221 Dinámica orbital y control de actitud Problems Lecture ADCS - X

Problem 1:

Consider the spacecraft attitude control problem for a single axis. Neglecting the disturbance torque, the attitude dynamics are given by

$$I\ddot{\theta} = u$$
.

where u is the control torque. The moment of inertia is $l = 1 \text{ kg} \cdot \text{m}^2$. The following transient specifications are given for the closed-loop step response:

- Maximum overshoot requirement, $M_p = 20 \%$.
- Settling time requirement, $t_s = 60$ seconds.

Design a modified proportional-derivative attitude control law such that the transient specifications are satisfied.

Problem 2:

Consider the modified proportional-derivative attitude control about a single spacecraft axis as shown in the figure below, where $I = 10 \text{ kg} \cdot \text{m}^2$ is the corresponding moment of inertia, $y = \theta$ is the corresponding attitude angle, $r = \theta_d$ is the desired attitude angle, $K_p = 0.1$ is the proportional gain and $K_d = 0.5$ is the derivative gain. With regards to a unit step input:

- (a) Determine the settling time.
- **(b)** Determine the percent overshoot.
- (c) Determine the rise time.
- (d) Is it possible to reduce both the settling time and percent overshoot without changing the proportional gain? Illustrate your reasoning with a diagram.

Problem 3:

Consider the spacecraft attitude control problem for a single axis. The attitude dynamics are given by

$$I\ddot{\theta} = u + T_d$$

where I is the related moment of inertia, θ is the related attitude angle, u is the control torque applied about the axis by an actuator, and T_d is a disturbance torque. The actuator has dynamics

$$\dot{u} = -\frac{1}{T_a}(u - u_c)$$

where u is the control torque applied by the actuator, T_a is the actuator time constant, and u_c is the control torque commanded by the control law.

- (a) Find the actuator transfer function.
- **(b)** The control law is chosen to be a modified proportional-derivative attitude control law

$$u_c(t) = K_p e(t) - K_d \dot{y}(t)$$

where the plant output is the attitude angle ($y(t) = \theta(t)$), the reference signal is the desired attitude angle ($r(t) = \theta_d$), and e(t) = r(t) - y(t) is the attitude error. Draw a block diagram representation of the closed-loop system.

Problem 4:

Consider a spin-stabilized spacecraft nominally spinning about the principal z-axis with spin-rate v. The desired angular velocities are therefore ω_x = 0, ω_y = 0 and ω_z = v. It may be desirable to control the spin-rate. The equations of motion are (as usual)

$$I_{x}\dot{\omega}_{x} + (I_{z} - I_{y})\omega_{y}\omega_{z} = T_{xc} + T_{xd}$$

$$I_{y}\dot{\omega}_{y} + (I_{x} - I_{z})\omega_{x}\omega_{z} = T_{yc} + T_{yd}$$

$$I_{z}\dot{\omega}_{z} + (I_{y} - I_{x})\omega_{x}\omega_{y} = T_{zc} + T_{zd}$$

where T_{c} are control torques, and T_{d} are disturbance torques. The principal moments of inertia are $I_x = 10 \text{ kg} \cdot \text{m}^2$, $I_y = 12 \text{ kg} \cdot \text{m}^2$, $I_z = 8 \text{ kg} \cdot \text{m}^2$.

- (a) Assuming small angular velocities $\omega_x = \varepsilon_x$, $\omega_y = \varepsilon_y$, obtain the linearized equation for the spin-rate ω_z .
- **(b)** Given that the output of interest is $y = \omega_z$, and the control input is $u = T_{cz}$, find the plant transfer function $G_p(s)$ such that

$$Y(s) = G_p(s) \left[U(s) + \hat{T}_{dz}(s) \right]$$

(c) The reference signal is the desired spin-rate r = v. Therefore, the spin-rate error is $e = v - \omega = r - y$. Assuming proportional control $u(t) = K_p e(t)$

Draw a block-diagram for the closed-loop system.

- (d) Find the closed-loop transfer function relationships from the reference signal R(s) to the error E(s) and from the disturbance $\hat{T}_{dz}(s)$ to the error E(s). What restriction must be placed on the proportional gain K_p to ensure asymptotic stability?
- (e) Find the response e(t) to a step disturbance $T_{dz}(t) = \overline{T}_{dz}$. What restriction must be placed on the proportional gain K_p if the steady-state error to a disturbance of magnitude $\overline{T}_{dz} = 10^{-5} \, \text{Nm}$ is to be kept below 1 deg/s?
- (f) Find the response e(t) to a step reference signal $r(t) = \overline{v}$. What restriction must be placed on the proportional gain K_p if the spin-rate y(t) is to be within 2% of the desired spin-rate \overline{v} within 10 seconds?

Problem 5 (optional):

Do the exercise self-control proposed in page 102 of lecture ADCS - X.