Mid Term Report

Project Title: US Regional Sales Channel Prediction

Group Details:

- Fayaz Shaik
- Mahesh Maddineni
- Nathaniel Yee
- Vivekananda Reddy Pyda

Data:

Type of Data: The data is presented in a comma-separated values format, featuring a combination of text, dates, and numerical information.

Dataset Information:

There are 7992 attributes and 16 attributes.

- OrderNumber: A unique identifier for each order.
- Sales Channel: The channel through which the sale was made (In-Store, Online, Distributor, Wholesale).
- WarehouseCode: Code representing the warehouse involved in the order.
- ProcuredDate: Date when the products were procured.
- OrderDate: Date when the order was placed.
- **ShipDate:** Date when the order was shipped.
- **DeliveryDate:** Date when the order was delivered.
- SalesTeamID: Identifier for the sales team involved.
- **CustomerID:** Identifier for the customer.
- **StoreID:** Identifier for the store.
- **ProductID:** Identifier for the product.
- Order Quantity: Quantity of products ordered.
- **Discount Applied:** Applied discount for the order.
- Unit Cost: Cost of a single unit of the product.
- Unit Price: Price at which the product was sold.

Below is the information of column names and their data types.

Column Name	Data Type
OrderNumber	object
Sales Channel	object
WarehouseCode	object
ProcuredDate	object
OrderDate	object
ShipDate	object
DeliveryDate	object
CurrencyCode	object
_SalesTeamID	int64
_CustomerID	int64
_StoreID	int64
_ProductID	int64
Order Quantity	int64
Discount Applied	float64
Unit Cost	object
Unit Price	object

Data Processing:

Below are steps processing steps:

1. Checked for missing data, duplicate data. There are no such kind of data.

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 7991 entries, 0 to 7990
 Data columns (total 16 columns):
      Column
                        Non-Null Count Dtype
 --- -----
                        -----
                                        ----
      OrderNumber
  0
                        7991 non-null
                                        object
      Sales Channel
                        7991 non-null
                                        object
  2
    WarehouseCode
                        7991 non-null
                                        object
     ProcuredDate
  3
                        7991 non-null
                                        object
  4
     OrderDate
                        7991 non-null
                                        object
     ShipDate
  5
                        7991 non-null
                                        object
    DeliveryDate
                        7991 non-null
  6
                                        object
  7 CurrencyCode
                        7991 non-null
                                        object
                                        int64
  8
      SalesTeamID
                        7991 non-null
  9
      CustomerID
                        7991 non-null
                                        int64
  10 StoreID
                        7991 non-null
                                        int64
                        7991 non-null
  11 ProductID
                                        int64
  12 Order Quantity
                        7991 non-null
                                        int64
  13 Discount Applied 7991 non-null
                                        float64
  14 Unit Cost
                        7991 non-null
                                        object
  15 Unit Price
                        7991 non-null
                                        object
 dtypes: float64(1), int64(5), object(10)
 memory usage: 999.0+ KB
[85]: # Duplicate Data
  dups = us sales data[us sales data.duplicated() == True]
  len(dups)
```

- 2. Converted object data type in OrderDate, ShipDate, DeliveryDate to datetime data type and also converted object data type of Unit Cost, Unit Price to float data type.
- 3. Derived new features "DaysToShip", "DaysToDeliver" using OrderDate, ShipDate, Delivery date and also derived Profit using Unit Cost, Unit Price.
- 4. A total of 19 plots were created for the purpose of data visualization, all of which are available for reference in the attached notebook.
- 5. Employed encoding techniques to translate categorical values into their corresponding numeric representations.

- 6. Employed box plots to detect outliers within the data and subsequently removed these outliers using the Interquartile Range (IQR) method.
- 7. Computed a correlation matrix and created visualizations to identify the features that exhibit significant correlations with the target variable.
- 8. Split the dataset into training and testing sets, adhering to an 80:20 ratio.

Which attributes you use and which one you don't use? Why?

- Dropped OrderNumber as it is unique for every column.
- Dropped ProcuredDate is manufacturing date of the product which doesnot require to predict sales channel
- Dropped CurrencyCode is USD for all orders and it is also not affecting our target data.
- Dropped OrderDate, ShipDate, DeliveryDate as we derived new features DaysToShip and DaysToDeliver.
- Using all other columns in the dataset including the derived features.

Data Mining Task

Task: We explored 3 different multi-class classification algorithms to address the problem, given the limited unique values in the target variable. The prominent algorithms include K-Nearest Neighbors, Decision Tree, Random Forest.

Progress:

We have implemented 3 algorithms on our data after pre-processing:

- Random Forest Classification
- Decision Tree Classification
- K Nearest Neighbors Classification

Preliminary Results:

1. Random Forest Classification:

Accuracy: 0.96
Precision: 0.96
Recall: 0.95
F1 Score: 0.95
Confusion Matrix:

2. Decision Tree Classification:

Accuracy: 97
Precision: 97
Recall: 95
F1 Score: 96
Confusion Matrix:

3. K Nearest Neighbors Classification:

Accuracy: 0.92
Precision: 0.91
Recall: 0.91
F1 Score: 0.91
Confusion Matrix:

Schedule:

- Use other classification Models (23rd Oct 29th Oct)
- Tuning Classification Models (30th Oct 5th Nov)
- Final Testing and Validation (6th Nov 12th Nov)
- Presentation Preparation (13th Nov 26th Nov)
- Project Presentation (27th Nov)