

DATA SHEET

DESCRIPTION: High Power Infrared LED

Model No: WS-AS2HPL-850

REVISION: 1.1

Material: Heat resistant polymer / Heat resistant polymer

Encapsulating Resin / Silicone resin Lens / Heat resistant clear polymer Electrodes / Ag plating copper alloy

Die attach / Silver paste

Chip / AlGaAs

Applications:

- CCD Camera
- Night Vision
- **●** Infrared applied system

WS-AS2HPL-850

Package Dimensions

Notes: 1.All dimensions are in millimeters

2. Tolerances unless dimensions ±0.25mm

WS-AS2HPL-850

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Units
Forward Current	I_{F}	700	mA
Reverse Voltage	V_R	5	V
Operating Temperature	T_{opr}	-40 ~ +85	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{stg}	-40 ~ +85	$^{\circ}$ C
Junction temperature	T_{j}	125	°C
Power Dissipation @I _F =700mA	P_d	1	W

Note: We suggest that customer should add the heat sink with IR to exclude the heat.

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Units
Total Radiated Power	Po	$I_F=350mA$	70	120		mW
		I _F =700mA	90	240		
Radiant Intensity	I_{E}	I _F =350mA	10	30		mW/sr
		I _F =700mA	30	60		
Peak Wavelength	λр	I _F =20mA		850		nm
Spectral Bandwidth	Δλ	I _F =20mA		50		nm
Forward Voltage	$ m V_{F}$	I _F =350mA	1.0	1.6	2.5	V
		I _F =700mA	1.2	1.9	3.0	
Reverse Current	I_R	V _R =5V			10	$\mu \mathbf{A}$
Optical Rise Time	Tr	I _F =20mA		11		ns
Optical Fall Time	Tf	I _F =20mA		7		ns
View Angle	2 0 1/2	I _F =20mA		140		deg
Thermal resistance, junction to heat-sink	Rth j-L	I _F =700mA		45		°C/W

Note. 1. Radiometric measurement tolerance: $\pm 10\%$

- 2 $.2\theta_{I/2}$ is the off axis angle from lamp centerline where the radiant intensity is 1/2 of the peak value.
- 3. Forward Voltage measurement tolerance : ± 0.1 V

WS-AS2HPL-850

Typical Electro-Optical Characteristics Curves

Fig.1 Forward Current vs.

Ambient Temperature

Fig.3 Peak Emission Wavelength
Ambient Temperature

Fig.2 Spectral Distribution

Fig.4 Forward Current vs. Forward Voltage

WS-AS2HPL-850

Typical Electro-Optical Characteristics Curves

Fig.5 Relative Radiant Intensity vs. Angular Displacement

WS-AS2HPL-850

Precautions For Use

1. Over-current-proof

Though HPL-850 has conducted ESD protection mechanism, customer must not use the device in reverse and should apply resistors for extra protection. Otherwise slight voltage shift may cause enormous current change and burn out failure would happen.

2. Thermal Management

1.For maintaining the high flux output and achieving reliability, IR series LED package should be mounted on a metal core printed circuit board (MCPCB) with proper thermal connection to dissipate approximately 1W of thermal energy under 350mA operation.

MCPCB structure

- 2. Special thermal designs are also recommended to take in outer heat sink design, such as FR4 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc.
- 3.Sufficient thermal management must be conducted, or the die junction temperature will be over the limit under large electronic driving and LED lifetime will decrease critically.

WS-AS2HPL-850

3. Assembly process flow

Handling Indications: Do not handle the IR by the lens at any time during the assembly process. This can cause damage to the optical surfaces or may dislocate the lens if excessive force is applied.

WS-AS2HPL-850

4. Soldering Iron

- 1. For prototype builds or small series production runs it is possible to place and solder the LED by hand.
- 2.Dispensing thermal conductive glue or grease on the substrates and follow its curing spec. Press LED housing to closely connect LED and substrate.
- 3.It is recommended to hand solder the leads with a solder tip temperature of 280°C for less than 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal.
- 4.Be careful because the damage of the product is often started at the time of the hand solder.