Machine Learning & NLP – Week 2 Assignments

(NOT A GROUP ASSIGNMENT)

Word Limit for each question: 300.

Goal:

This assignment will help you explore basic concepts in Machine Learning and Natural Language Processing, while learning to use Python libraries like **pandas**, **scikit-learn**, **nltk**, and **matplotlib**.

Section A – Theory Questions (Research + Write-Up)

Write your answers in your own words. Include short examples wherever possible.

1. ML Algorithms in the Wild

- Research: Decision Trees, Linear Regression, K-Means, Neural Networks.
- For each:
 - How it works (3–4 lines)
 - One real-world example
 - Name of the scikit-learn function/class used to implement it

Hint: Search "scikit-learn decision tree classifier" or "scikit-learn linear regression" in the documentation.

2. Model Evaluation Metrics

- Define: Accuracy, Precision, Recall, F1-score, Confusion Matrix.
- Write the **formula** for each (in simple math form).
- Explain when each metric is most useful.

Hint: Look up "precision vs recall tradeoff" in ML tutorials.

3. Data Preprocessing in Pandas

Explain how to:

- Load a CSV file into a DataFrame.
- Handle missing values.
- Rename columns.
- Filter rows based on a condition.
 Include the exact pandas function names in your answer.

4. NLP Basics in NLTK

Explain:

- What is tokenization?
- What is stopword removal?
- What is POS tagging?
 For each, mention the NLTK function that can perform it.

Hint: Search for "nltk.tokenize", "nltk.corpus stopwords", and "nltk.pos_tag".

5. Matplotlib Visualization Types

List at least **5 different types of plots** in matplotlib. For each:

- Name of the plot (e.g., scatter plot)
- Name of the matplotlib function (e.g., plt.scatter)
- One example use case

6. Scikit-learn & NLTK Library Exploration

Part A - Scikit-learn Models

List at least **5 different machine learning models** available in scikit-learn. For each model:

- Name of the model (e.g., Decision Tree Classifier)
- scikit-learn class/function name (e.g., DecisionTreeClassifier)
- Type of learning (Supervised / Unsupervised)
- One example use case (e.g., Classifying flower species based on petal measurements)

Part B – NLTK Functions

List at least **5 different NLP tasks** you can perform with NLTK. For each task:

- Name of the task (e.g., Tokenization)
- NLTK function name (e.g., word_tokenize)
- One example use case (e.g., Splitting a sentence into words before analysis)

Section B – Practical Questions (Code + Output)

Write Python scripts for each task. Submit both your code and output screenshots.

1. CSV Data Exploration & Visualization

Download any small CSV dataset (e.g., Titanic, Iris, Wine Quality). Using **pandas** and **matplotlib**:

1. Load & Inspect

- Load CSV file into a DataFrame.
- Show first 10 rows.
- Display shape, column names, and data types.

2. Summary Statistics

- .describe() for numeric columns.
- Count missing values per column.
- Fill missing numeric values with the mean.

3. Filter & Sort

- Filter rows by a numeric condition (e.g., Age > 30).
- Sort dataset by a column in descending order.

4. Group & Aggregate

o Group by a categorical column, calculate mean of a numeric column.

5. Visualize

- Create a histogram for a numeric column.
- Create a bar chart of group averages.

Extra Challenge: Save the cleaned dataset as processed_data.csv.

2. Decision Tree Classifier

• Use the **Iris dataset** (load_iris from scikit-learn).

- Train a DecisionTreeClassifier.
- Print the accuracy score.
- Plot the tree using plot_tree.

3. Text Processing with NLTK

- Take a short paragraph from a news article.
- Tokenize it.
- Remove stopwords.
- POS tag the remaining words.
- Count how many nouns, verbs, and adjectives are in the text.

Hint: Explore nltk.pos_tag and collections.Counter.

4. K-Means Clustering with Visualization

- Generate a random 2D dataset using make_blobs (scikit-learn).
- Apply **KMeans** with 3 clusters.
- Plot results using matplotlib, with each cluster in a different color.

5. Confusion Matrix Plot

- Train any classifier (Decision Tree, Logistic Regression, etc.) on the Iris dataset.
- Predict on test set.
- Plot confusion matrix using matplotlib or ConfusionMatrixDisplay.

★ Submission Guidelines:

- Write answers for **Section A** in a single .pdf. (should be handwritten)
- Submit **Section B** as .py files and screenshots of output. (attach it to your github repo)
- Mention your dataset source in each practical question. (V.V. Important)