103-96

問題文

0.01~mol/L 塩化アンモニウム水溶液の pH に最も近い値はどれか。1つ選べ。ただし、アンモニアの pK $_{\rm b}$ を 4.70、水のイオン積 K $_{\rm W}$ を 1.00×10^{-14} (mol/L) 2 とする。

- 1. 3.65
- 2. 5.65
- 3. 8.35
- 4. 9.30
- 5. 10.35

解答

2

解説

弱酸 HA の電離による pH、 弱塩基 B の電離による pH、 弱酸と強塩基から生じた塩の pH、 強酸と弱塩基から生じた塩の pH の 4 パターンについては、 公式を覚えて対応 するのがよいと思われます。

- ・弱酸 HA の電離による pH → [H +] = √ (Ka · C)
- ・弱塩基 B の電離による pH → [OH ⁻⁻] =√ (Kb · C) なので、 [H ⁺] =Kw / √ (Kb · C)
- ・弱酸と強塩基から生じた塩のpH → 弱塩基による電離と同じ。
- ・強酸と弱塩基から生じた塩のpH → 弱酸による電離と同じ。 となります。
- ※ 大前提となるのは **Ka・Kb = Kw** です。 Kw とは、水のイオン積のことです。 また、pH のように小文字の p を付けるのは 「一log $_{10}$ 」という意味です。

本問では、 塩化アンモニウム、 すなわちアンモニアと塩酸の塩なので 「強酸と弱塩基から生じた塩」の pH です。 この場合の公式は $[H^+]=\sqrt{(Ka\cdot C)}$ です。 pKb = 4.70 なので、Kb は、 $10^{-4.70}$ です。 従って、Kaは、 $10^{-9.30}$ とわかります。 C は $0.01=10^{-2}$ です。

従って、 Ka·C = $10^{-9.30} \cdot 10^{-2} = 10^{-11.30}$ です。 \checkmark をとれば、 $10^{-5.65}$ となります。 これが [H $^+$] なので、pH は 5.65 です。 従って、正解は 2 です。

ちなみに、公式を忘れていても、 強酸と弱塩基の塩であることから 少なくとも酸性側 とわかるので 選択肢 $3 \sim 5$ はありえません。