Teoria da Computação

Máquinas de Turing

Thiago Alves

Introdução

- Queremos um modelo mais poderoso que o autômato de pilha
- Como criar um representação simples para algoritmos?

Introdução

- Algoritmos usam variáveis
- Variáveis podem mudar de valor
- Precisamos de uma forma de armazenar os valores das variáveis

Máquina de Turing

Fita infinita com células contendo símbolos de um alfabeto finito

$$\delta(q_1, 0) = (q_2, 1, R)$$

$$\delta(q_1, 1) = (q_1, 0, R)$$

$$\delta(q_1, B) = (q_a, B, R)$$

$$\delta(q_2, 0) = (q_1, 1, R)$$

$$\delta(q_2, 1) = (q_2, 1, R)$$

$$\delta(q_2, B) = (q_r, B, R)$$

Que strings aceita?

 Aceita strings com uma quantidade par de 0's

Máquina de Turing -Definição

- Uma Máquina de Turing é descrita por:
 - 1. Um conjunto finito de estados (Q).
 - 2. Um alfabeto de entrada (Σ) .
 - 3. Um alfabeto da fita (Γ contendo Σ).
 - 4. Uma função de transição (δ).
 - 5. Um *estado inicial* (q_0 em Q).
 - 6. Um *símbolo branco* (B em Γ- Σ).
 - Um estado de aceitação q_a e um estado de rejeição q_r

$$M=(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$$

A Função de Transição

- Dois argumentos:
 - 1. Um estado em Q
 - 2. Um símbolo da fita em Γ
- δ(q_i, a) pode ser indefinido ou uma tripla da forma (q_i, b, D)
 - q_i é um estado
 - b é um símbolo de fita
 - D é uma *direção*, L, R ou S.

A Função de Transição

- $\delta(q_i, a)$ pode ser indefinido ou uma tripla da forma (q_i, b, D)
- ♦ δ : QxΓ → QxΓx{L,R,S}

A Função de Transição

- Fita tem um início na esquerda
- Se o cabeçote estiver no limite da esquerda e a transição indicar um movimento para a esquerda?
 - A máquina de Turing continua na mesma posição da fita

- Definição formal da máquina de Turing do exemplo anterior
- $\bullet Q = \{q_1, q_2, q_a, q_r\}.$
- $\bullet \Sigma = \{0, 1\}.$
- $\bullet \Gamma = \{0, 1, B\}.$
- $\mathbf{q}_0 = \mathbf{q}_1$

- Definição formal da máquina de Turing do exemplo anterior
- $\bullet \delta(q_1, 0) = (q_2, 0, R)$
- $\bullet \delta(q_1, 1) = (q_1, 1, R)$
- $\bullet \delta(q_1, B) = (q_a, B, R)$
- $\bullet \delta(q_2, 0) = (q_1, 0, R)$
- $\bullet \delta(q_2, 1) = (q_2, 1, R)$
- $\bullet \delta(q_2, B) = (q_r, B, R)$

 Descreva uma máquina para a linguagem

```
L = \{w \in \{0,1\}^* \mid \text{termina em 1}\}
```

$$\delta(q_1, 0) = (q_1, 0, R) \quad q_a = q_3 e q_r = q_5$$

$$\delta(q_1, 1) = (q_1, 0, R)$$

$$\delta(q_1, B) = (q_2, B, L)$$

$$\delta(q_2, 1) = (q_3, 1, R)$$

$$\delta(q_2, 0) = (q_5, 0, R)$$

$$\delta(q_2, B) = (q_4, B, R)$$

$$\delta(q_4, 0) = (q_4, 0, R)$$

$$\delta(q_4, 1) = (q_4, 1, R)$$

$$\delta(q_a, B) = (q_a, B, R)$$

Máquinas de Turing

- Máquinas de Turing podem
 - Ler e escrever na fita
 - Podem ir para a direita e esquerda da entrada
 - Com uma entrada, pode chegar em um estado de aceitação, um de rejeição ou entrar em loop

- Na computação de uma máquina de Turing
 - O estado pode mudar
 - O conteúdo da fita pode mudar
 - A posição do cabeçote pode mudar
- Uma configuração é a situação destes itens

- Inicialmente, uma máquina de Turing tem um fita com a string de entrada seguida por brancos infinitos
- A máquina de Turing está no estado inicial
- O cabeçote está no primeiro símbolo da entrada

- Configuração inicial
- \diamond q₀a₁a₂...a_n
- Configuração inicial para a máquina do primeiro exemplo:
- Entrada 001:
 - **q**₁001
- Entrada 101
 - **q**₁101

- Configuração geral:
- É uma string αqβ, em que αβ inclui a fita até o não branco mais à direita
- O estado q está imediatamente à esquerda do símbolo da fita lido pelo cabeçote

- Configuração geral:
- Exemplos:
 - 1q₂01
 - ▶ 11q₁1
 - 110q₁B

- Configuração de aceitação
 - O estado da configuração é q_a
 - 10q_a1
- Configuração de rejeição
 - O estado da configuração é q_r
 - **101**q_r

Movimentos

- ◆ Usamos o símbolo ⊦ e ⊦* para representar um movimento e zero ou mais movimentos, respectivamente
- Usamos a função de transição para determinar o movimento
- Exemplo: Os movimentos do primeiro exemplo são

 - 1q₂01⊦11q₁1
 - 11q₁1+110q₁B
 - 110q₁B⊦110BqaB

Linguagem de uma MT

- ◆Uma máquina de Turing aceita uma entrada w se q₀w⊦*C
 - Em que C é uma configuração com estado de aceitação q_a
- A linguagem de M:
- $◆L(M) = {w \mid q_0w⊦*C, em que C tem q_a}$
 - Também dizemos que L(M) é reconhecida por M

Linguagem Recursivamente Enumerável

- Uma linguagem L é Turingreconhecível se existe uma máquina de Turing M tal que
 - L(M) = L
- ◆Também chamada de Linguagem Recursivamente Enumerável

Linguagem Recursivamente Enumerável

- Uma máquina de Turing M pode ter três comportamentos com uma entrada w
 - Chegar em um estado q_a e parar
 - $w \in L(M)$
 - Chegar em um estado q_r e parar
 - w ∉ L(M)

Linguagem Recursivamente Enumerável

- Uma máquina de Turing M pode ter três comportamentos com uma entrada w
 - Não chegar em q_a nem em q_r
 - Não vai parar
 - w ∉ L(M)

Linguagens Recursivas

- Preferimos máquinas de Turing que param para qualquer entrada w
 - Chega em q_a aceitando w
 - Chega em q_r rejeitando w

Linguagens Recursivas

- ◆Uma linguagem L é Turingdecidível se existe uma máquina de Turing M que pára em toda entrada, tal que
 - L = L(M)
- ◆Também chamada de Linguagem Recursiva

◆Faça uma máquina de Turing para decidir a linguagem {0ⁿ1ⁿ | n>0}

- ◆Faça uma máquina de Turing para decidir a linguagem {0ⁿ1ⁿ | n>0}
 - Estado inicial para marcar um zero
 - Um estado para achar o primeiro 1 e marcá-lo
 - Um estado para voltar ao primeiro zero não marcado
 - Um para terminar as marcações
 - Estado de aceitação e um de rejeição

◆Faça uma máquina de Turing para decidir {0ⁿ1ⁿ | n>0}

Transições não descritas vão para q_r

Teorema

 Se A é uma linguagem recursiva, então A é uma linguagem recursivamente enumerável

Teorema

◆Se A é uma linguagem recursiva, então A é uma linguagem recursivamente enumerável

Prova:

- Suponha A recursiva. Existe máquina de Turing M que decide A.
- Podemos construir M' a partir de M trocando o estado q_r por um estado q' e forçando esse novo estado entrar em loop.

Descreva uma máquina para decidir a linguagem{w#w | w ∈ {0,1}*}

- ◆Fazer um zigue-zague nas posições correspondentes em cada lado do # para verificar se são o mesmo símbolo e marcá-los
 - Caso não sejam, rejeitar.
- Quando todos da esquerda tiverem sido marcados verificar se ainda existem símbolos na direita
 - Caso não existam, aceitar.

Faça uma máquina de Turing para decidir a linguagem $\{0^{2^n} | n \ge 0\}$

- A ideia é cortar a quantidade de 0's pela metade a cada passo
- Ao percorrer a fita verificar se a quantidade de 0's é ímpar e maior que um
 - Se for, rejeita!
- No final, se a quantidade de 0's for um, aceita!

Faça uma máquina de Turing para decidir $\{0^{2^n} | n \ge 0\}$

