МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Навчально-наукового інституту атомної і теплової енергетики Кафедра інженерії програмного забезпечення в енергетиці

МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ №1 з лисшипліни

«МЕТОДОЛОГІЯ РОЗРОБКИ ІНТЕЛЕКТУАЛЬНИХ КОМП'ЮТЕРНИХ ПРОГРАМ »

Тема: «Штучні нейронні мережі. Моделювання формальних логічних функцій. Прогнозування часових рядів»

Мета: Отримати початкові навички щодо створення штучних нейронних мереж, що здатні виконувати прості логічні функції, та нейронних мереж, що здатні прогнозувати часові ряди.

Теоретичні відомості

Штучний нейрон — вузол штучної нейронної мережі, що ε спрощеною моделлю природного нейрона.

Рисунок 1.1. Схема штучного нейрона

 x_1 - x_n – входи нейрона (синапси);

 w_1 - w_n – вагові коефіцієнти входів;

S – зважена сума входів нейрона;

F(S) — функція активації нейрона;

T — порогове значення (значення, після якого нейрон переходить у стан збудження), ϵ не у всіх типів штучних нейронів;

Y – вихід нейрона (аксон).

Зважена сума S обчислюється за наступною формулою:

$$S = x_1 \cdot w_1 + x_2 \cdot w_2 + \dots + x_n \cdot w_n. \tag{1.1}$$

 Φ ункція активації F(S) — визначає залежність сигналу на виході нейрона від зваженої суми сигналів на його входах. Використання різних функцій активації дозволяє вносити нелінійність в роботу нейрона і в цілому нейронної мережі.

Приклади функцій активації Лінійна передавальна функція:

$$F(S) = \begin{cases} 0 & \text{if } S \le 0 \\ 1 & \text{if } S \ge 1 \\ S & \text{else} \end{cases}$$
 (1.2)

Рисунок 1.2. Лінійна передавальна функція

Порогова передавальна функція:

$$F(S) = \begin{cases} 1 & \text{if } S \ge 0 \\ 0 & \text{else} \end{cases}$$
 (1.3)

Рисунок 1.3. Порогова передавальна функція

Сигмоїдальна передавальна функція:

$$F(S) = \frac{1}{(1 + \exp(-S))},$$
(1.4)

Рисунок 1.4. Сигмоїдальна передавальна функція

Моделювання формальних логічних функцій за допомогою нейронів та нейронних мереж

Моделювання логічної функції "I" (AND)

Рисунок 1.5. Схема штучного нейрону, налаштованого на моделювання логічної функції "I"

Функція активації даного нейрона:

$$F(S) = \begin{cases} 0 & \text{if } S < 1,5 \\ 1 & \text{if } S >= 1,5 \end{cases}$$
 (1.5)

Таблиця 1.1. Таблиця істинності логічної функції "I" (AND)

\mathbf{x}_1	\mathbf{X}_2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Розглянемо як обчислюється вихідний сигнал даного нейрона при різних вхідних даних:

$$x_1 = 0; x_2 = 0$$

 $S = 0 \cdot 1 + 0 \cdot 1 = 0$
 $Y = F(S) = 0$ (тому що $S < 1,5$)

$$x_1 = 0; x_2 = 1$$

 $S = 0 \cdot 1 + 1 \cdot 1 = 1$
 $Y = F(S) = 0$ (тому що $S < 1,5$)

$$x_1 = 1; x_2 = 0$$
 $S = 1 \cdot 1 + 0 \cdot 1 = 1$ $Y = F(S) = 0$ (тому що $S < 1,5$)

$$x_1 = 1; x_2 = 1$$

 $S = 1 \cdot 1 + 1 \cdot 1 = 2$
 $Y = F(S) = 1$ (тому що $S > 1,5$)

Моделювання логічної функції "АБО" (OR)

Рисунок 1.6. Схема штучного нейрону, налаштованого на моделювання логічної функції "АБО"

Функція активації даного нейрона:

$$F(S) = \begin{cases} 0 & f \ S < 0.5 \\ 1 & f \ S >= 0.5 \end{cases}$$
 (1.6)

Таблиця 1.2 – Таблиця істинності логічної функції "АБО" (OR)

\mathbf{x}_1	\mathbf{X}_2	Y
0	0	0
0	1	1
1	0	1
1	1	1

Розглянемо як обчислюється вихідний сигнал даного нейрона при різних вхідних даних:

$$x_1 = 0; x_2 = 0$$

 $S = 0 \cdot 1 + 0 \cdot 1 = 0$
 $Y = F(S) = 0$ (тому що $S < 0.5$)

$$x_1 = 0; x_2 = 1$$

 $S = 0 \cdot 1 + 1 \cdot 1 = 1$
 $Y = F(S) = 1$ (тому що $S > 0.5$)

$$x_1 = 1; x_2 = 0$$

 $S = 1 \cdot 1 + 0 \cdot 1 = 1$
 $Y = F(S) = 1$ (тому що $S > 0.5$)

$$x_1 = 1; x_2 = 1$$

 $S = 1 \cdot 1 + 1 \cdot 1 = 2$
 $Y = F(S) = 1$ (тому що $S > 0.5$)

Моделювання логічної функції "HI" (NOT)

Рисунок 1.7. Схема штучного нейрону, налаштованого на моделювання логічної функції "HI"

Функція активації даного нейрона:

$$F(S) = \begin{cases} 0 & \text{if } S < -1 \\ 1 & \text{if } S > = -1 \end{cases}$$
 (1.7)

Таблиця 1.3. Таблиця істинності логічної функції "HI" (NOT)

X	Y
0	1
1	0

Розглянемо як обчислюється вихідний сигнал даного нейрона при різних вхідних даних:

$$x = 0$$

 $S = 0 \cdot (-1,5) = 0$
 $Y = F(S) = 1$ (тому що $S > -1$)
 $x = 1$

$$S = 1 \cdot (-1,5) = -1,5$$

 $Y = F(S) = 0$ (тому що $S < -1$)

Моделювання логічної функції "Виключне АБО" (XOR)

Рисунок 1.8. Схема штучної нейронної мережі, налаштованої на моделювання логічної функції "Виключне АБО" (XOR)

Таблиця 1.4 – Таблиця істинності логічної функції "Виключне АБО" (XOR)

\mathbf{x}_1	\mathbf{x}_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

Функція активації даного нейрона:

$$F(S) = \begin{cases} 0 & \text{if } S < 0.5 \\ 1 & \text{if } S >= 0.5 \end{cases}$$
 (1.8)

Розглянемо як обчислюється вихідний сигнал даної мережі при різних вхідних даних:

$$S_1 = 1 \cdot 1 + 1 \cdot (-1) = 0$$

 $Y_1 = F(S) = 0$ (Tomy IIIO $S < 0.5$)
 $S_2 = 1 \cdot (-1) + 1 \cdot 1 = 0$
 $Y_2 = F(S) = 0$ (Tomy IIIO $S < 0.5$)
 $S_3 = 0 \cdot 1 + 0 \cdot 1 = 0$
 $Y_3 = F(S) = 0$ (Tomy IIIO $S < 0.5$)
 $x_1 = 0$; $x_2 = 1$
 $S_1 = 0 \cdot 1 + 1 \cdot (-1) = -1$
 $Y_1 = F(S) = 0$ (Tomy IIIO $S < 0.5$)
 $S_2 = 0 \cdot (-1) + 1 \cdot 1 = 1$
 $Y_2 = F(S) = 1$ (Tomy IIIO $S > 0.5$)
 $S_3 = 0 \cdot 1 + 1 \cdot 1 = 1$
 $Y_3 = F(S) = 1$ (Tomy IIIO $S > 0.5$)

 $x_1 = 1$; $x_2 = 1$

Прогнозування часових рядів за допомогою нейрону з сигмоїдальною функцією активації

Задача прогнозування часових рядів, в яких ϵ певні закономірності, може бути вирішена за допомогою нейромережі, яка може навчатися. Відомо, що людський мозок здатний до самонавчання, причому досяга ϵ успіхів найчастіше, не знаючи природи процесів, що лежать в основі виконуваних дій.

Наприклад, щоб потрапити м'ячем у баскетбольне кільце, роботбаскетболіст повинен виміряти відстань до кільця й напрямок, розрахувати параболічну траєкторію, і зробити кидок з урахуванням маси м'яча й опору повітря. Людина ж обходиться без цього тільки через тренування. Багаторазово здійснюючи кидки й спостерігаючи результати, вона коректує свої дії, поступово вдосконалюючи свою техніку. При цьому в її мозку формуються відповідні структури нейронів, відповідальні за техніку кидків.

Рисунок 1.9. Алгоритм навчання нейронних мереж

1. Вибір структури нейромережі, це складна задача, яку ми будемо розглядати в наступних лабораторних роботах. В даній лабораторній роботі візьмемо мережу, що складається з одного нейрону, зображеного на рисунку 1.10

Рисунок 1.10. Штучний нейрон для прогнозування значень часового ряду

Зважена сума та функція активації даного нейрона:

$$S_{i} = x_{i-3} \cdot w_{1} + x_{i-2} \cdot w_{2} + x_{i-1} \cdot w_{3}, \tag{1.9}$$

$$Y_i = 1/(1 + \exp(-S_i))*10,$$
 (1.10)

де w_1 , w_2 , w_3 – синаптичні ваги;

 x_{i-3} , x_{i-2} , x_{i-1} — вхідні сигнали — відомі попередні значення часового ряду (i- \check{u} набор вхідних даних);

 S_i – зважена сума i-го набору вхідних даних;

 Y_i – прогнозоване значення *i-го* члена часового ряду x_i ;

10 – масштабний множник.

2. Навчання полягає в тому, що на вхід мережі подаються спеціальні тренувальні дані, тобто такі вхідні дані, вихідний результат для яких відомий. На виході формуються результуючі дані, результати порівнюються з

очікуваними, і обчислюється значення помилки. Після цього в певній послідовності виконується корекція параметрів нейронної мережі із метою мінімізації функції помилки. Якщо задовільної точності досягти не вдається, варто змінити структуру мережі й повторити навчання на множині тренувальних даних.

Таблиця 1.5. Приклад тренувальних даних для нейронної мережі, що

здійснює прогнозування значень часового ряду

\mathbf{x}_1	X ₂	X 3	X4	X5	X ₆	X 7	X8	X 9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
1,59	5,73	0,48	5,28	1,35	5,91	0,77	5,25	1,37	4,42	0,26	4,21	1,90	4,08	1,40

Перші 13 чисел будемо використовувати для навчання мережі як тренувальний набір даних. Останні два члени ряду в навчанні не будуть брати участь, а служитимуть для тестування мережі.

Прогнозування полягає в тому, щоб на основі x_i , x_{i+1} , x_{i+2} обчислити x_{i+3} . Іншими словами, нейронна мережа переміщується уздовж часового ряду, перебираючи синапсами по три сусідніх числа, та намагається прогнозувати значення наступні за ними. Таким чином, для наведеного вище прикладу вхідними й вихідними величинами будуть наступні (див. табл. 1.6).

Таблиця 1.6. Очікувані значення часового ряду на кожному кроці навчання

і-тий набір даних	Вхід нейрона	Вихід (очікуваний результат)
1	1,59 5,73 0,48	5,28
2	5,73 0,48 5,28	1,35
3	0,48 5,28 1,35	5,91
4	5,28 1,35 5,91	0,77
	і т.д.	

Навчання нейронної мережі полягає в знаходженні таких значень ваг w, при яких нейромережа буде здатна видавати на основі вхідних даних вірні вихідні дані з певною наперед заданою точністю.

Дана задача задовільно вирішується за допомогою **алгоритму зворотного поширення** (*back propagation*), що полягає в наступному:

- 1) Спочатку всі вагові коефіцієнти нейронної мережі встановлюються довільно. Можна скористатися функцією random, або просто присвоїти всім ваговим коефіцієнтам 1.
- 2) Через мережу пропускаються тренувальні дані (перший набір вхідних даних), і обчислюється сумарна функція помилки (сума квадратів помилки):

$$E = \sum_{i=1}^{N} (Y_i - y_i)^2, \qquad (1.11)$$

де Y_i – обчислене значення виходу нейрона; N – кількість нейронів вихідного шару; y_i – правильне значення наступного члену часового ряду.

3) Обчислюється значення похідної функції помилки E'_t для кожного вагового коефіцієнта:

$$E'_{i} = (Y_{i} - y_{i}) \cdot (exp(-s_{i}) / (1 + exp(-s_{i}))^{2}) \cdot x_{i}$$
(1.12)

4) На основі E'_{il} , E'_{i2} , та E'_{i3} , здійснюється розрахунок виправлень Δw_{il} , Δw_{i2} , та Δw_{i3} до відповідних вагових коефіцієнтів за наступною формулою:

$$\Delta w_i = -v \cdot E'_i, \tag{1.13}$$

де v — коефіцієнт швидкості навчання. Виправлення необхідно знайти для кожного i-го набору вихідних даних, і обчислити середні значення $\Delta w_{cepedhel}$, $\Delta w_{cepedhe2}$, та $\Delta w_{cepedhe3}$ для всього набору:

$$\Delta w_{cepedhe} = \frac{1}{N} \sum_{i=1}^{N} \Delta w_i$$

де N – кількість наборів вхідних даних для навчання.

5) Вагові коефіцієнти коректуються на величину обчислених виправлень:

$$w = w + \Delta w_{cepe\partial HC}, \tag{1.15}$$

6) Поточне значення сумарної функції помилки E зберігається в іншій змінній:

$$E_0 = E. ag{1.16}$$

Кроки 2—5 алгоритму зворотного поширення повторюються для кожного *i-того* набору вхідних даних (назвемо це *цикли навчання*), поки функція помилки не знизиться до заданого рівня, наприклад:

$$|E - E_0| < 0.0001 \tag{1.17}$$

Кількість ітерацій у процесі навчання мережі може досягати сотень і навіть тисяч. Тому доречно зробити додаткову умову виходу із циклу, на випадок якщо навчання з заданим рівнем точності буде тривати непримустимо довго, або відбудеться зациклення. Додатковою умовою виходу може бути натиснення користувачем кнопки "Стоп", або досягнення певної кількості циклів навчання, наприклад: і > 1000000.

3. Тестування, тобто контроль точності на спеціальних тестових даних, виконується після того, як нейронна мережа навчена. Це означає, що всі дані варто розбити на дві підмножини: на першій з них виконується навчання мережі, а на другій - тестування. За аналогією з навчанням людини тестування можна вподібнити іспиту. В нашому випадку для тестових даних ми залишили визначення нейронною мережею чисел x_{14} та x_{15} нашого часового ряду.

Завдання:

Написати програму для реалізації штучних нейронів та нейронних мереж для:

- моделювання логічної функції I,
- моделювання логічної функції АБО,
- моделювання логічної функції НІ,
- моделювання логічної функції Виключне АБО,
- прогнозування часового ряду (приклади часових рядів див. в додатку до лабораторної роботи А).

Додаткове завдання:

Написати програму для реалізації штучної нейронної мережі, що моделює логічну функцію, таблиця істинності якої наводиться в таблиці 1.7.

Таблиця 1.7. Таблиця істинності логічної функції

X ₁	X2	X ₂	y
0	0	0	1
0	1	0	1
1	0	0	0
1	1	1	1

Звіт повинен включати в себе

- 1. Титульний аркуш.
- 2. Постановку мети дослідження.
- 3. Опис дії однієї (з конкретними значеннями) епохи при використанні алгоритму зворотного поширення ($back\ propagation$).
- 4. Накреслену нейрону мережу з вибраними початковими даними для якої виконується опис.
- 5. Копію виконаної програми на одній із мов програмування (на вибір студента).
- 6. Скриншот результатів навчання нейронної мережі.
- 7. Скриншот результатів тестування.
- 8. Висновки.

Перед захистом звіт з лабораторної роботи надсилається на почту pis2020@ukr.net Тема листа «Група_Прізвище_ЛР №» наприклад ТІ-02_Петренко І.І._ЛР_№1. Назва файлу «Група_Прізвище_ЛР №» наприклад ТІ-02 Петренко І.І. ЛР №1

Кінцевий термін захисту лабораторної роботи 06.03.2023

Контрольні питання:

- 1. З яких елементів складається штучний нейрон? Яке призначення цих елементів?
 - 2. Що таке функія активіції? Які існують функції активації?
- 3. Як можна змоделювати за допомогою штучного нейрона логічну функцію AND?
- 4. Як можна змоделювати за допомогою штучного нейрона логічну функцію OR?
- 5. Як можна змоделювати за допомогою штучного нейрона логічну функцію NOT?
- 6. З яких основних блоків складається алгоритм навчання нейронних мереж? Як ці блоки пов'язані між собою?
 - 7. В чому заключається алгоритм зворотного поширення помилки?
- 8. Яким чином можна налаштувати нейронну мережу на прогнозування значень величин часового ряду?
- 9. Яку структуру має нейронна мережа, що моделює логічну функцію XOR?

Додаток А1

Таблиця А1.1. Варіанти часових рядів

№ варіанту	X1	X 2	X 3	X4	X 5	X6	X 7	X8	X 9	x10	X11	x12	x13	X14	x 15
1	2,56	4,20	1,60	4,29	1,17	4,40	0,88	4,14	0,07	4,77	1,95	4,18	0,04	5,05	1,40
2	0,20	5,14	0,47	4,37	1,22	4,29	1,89	4,51	0,32	5,80	1,37	5,77	0,88	4,86	1,94
3	1,92	4,01	1,48	5,45	1,56	5,42	1,28	4,34	1,51	5,49	1,32	4,00	0,49	4,19	1,53
4	0,13	5,97	0,57	4,02	0,31	5,55	0,15	4,54	0,65	4,34	1,54	4,70	0,58	5,83	0,03
5	2,16	3,19	1,85	4,84	0,55	4,20	1,68	4,74	0,14	5,68	0,48	5,03	0,18	5,99	0,09
6	2,54	5,28	0,78	5,72	0,58	4,65	0,91	5,80	1,76	5,67	1,73	5,70	1,03	5,00	1,79
7	1,69	3,38	1,40	5,56	1,86	5,62	0,46	5,51	0,26	5,13	1,18	5,98	1,36	5,09	1,29
8	1,19	5,61	0,89	6,00	1,04	5,98	0,03	6,00	1,83	4,23	0,60	4,15	0,13	5,01	1,87
9	0,87	4,12	0,93	4,62	1,51	5,76	0,50	5,48	0,95	4,03	0,92	5,15	1,66	5,01	0,40
10	2,82	3,48	0,60	4,76	1,51	5,51	1,48	5,19	0,48	5,22	0,21	4,19	0,07	4,63	0,49
11	2,64	4,66	1,87	4,05	1,73	5,31	1,67	5,96	0,13	5,64	1,52	4,07	0,22	4,79	0,73
12	2,65	5,60	1,21	5,48	0,73	4,08	1,88	5,31	0,78	4,36	1,71	5,62	0,43	4,21	1,21
13	2,37	4,85	1,97	4,17	1,39	4,66	1,26	4,40	0,46	5,54	1,34	5,80	1,61	5,97	1,95
14	1,88	4,52	1,91	5,66	1,23	5,50	1,14	5,29	1,60	4,31	0,06	5,33	0,07	4,62	0,69
15	0,78	4,95	1,19	4,08	0,80	4,25	0,22	4,63	1,48	4,97	0,53	5,50	1,28	5,79	0,44
16	0,58	3,38	0,91	5,80	0,91	5,01	1,17	4,67	0,60	4,81	0,53	4,75	1,01	5,04	1,07
17	0,51	4,82	0,43	4,71	1,92	5,86	1,24	4,69	0,72	5,26	0,90	4,55	1,46	5,21	1,50
18	0,07	3,58	0,44	5,33	0,56	5,24	1,99	4,38	0,89	4,53	1,82	4,13	1,88	5,97	1,18
19	1,44	4,60	1,22	5,90	1,34	4,31	1,02	4,35	0,82	4,18	1,60	4,86	1,45	4,97	1,00
20	2,57	4,35	1,27	5,46	1,30	4,92	1,31	4,14	1,97	5,67	0,92	4,76	1,72	4,44	1,49

21	0,79	3,84	0,92	4,50	0,96	5,51	1,14	5,32	0,39	4,99	1,36	5,81	1,90	4,79	1,41
22	0,99	4,72	1,59	5,29	1,53	5,58	0,84	5,79	0,21	5,94	0,42	5,98	1,18	5,55	0,11
23	2,92	3,56	0,15	5,11	1,38	4,44	1,61	4,11	1,97	4,50	1,37	5,08	1,76	5,19	1,58
24	0,48	4,30	0,91	4,85	0,53	4,51	1,95	5,88	0,63	5,79	0,92	5,18	1,88	4,84	0,22
25	1,88	4,98	0,06	5,26	1,16	5,06	0,58	5,28	1,41	5,57	1,19	5,36	1,40	4,30	0,09
26	2,57	5,77	0,38	4,73	0,10	5,93	1,35	4,70	1,62	5,51	1,78	5,66	1,47	5,52	1,88
27	0,11	4,87	1,52	4,47	0,34	5,44	1,20	5,21	1,48	5,93	0,62	5,48	1,34	4,25	0,65
28	1,07	3,17	1,08	5,99	1,28	4,11	0,25	5,82	0,96	4,83	1,10	4,31	0,81	5,49	1,92
29	1,59	5,74	0,48	5,28	1,34	5,91	0,77	5,25	1,37	4,42	0,26	4,21	1,90	4,08	1,40
30	0,68	5,78	0,25	5,58	1,31	4,28	1,57	5,75	0,41	5,55	0,90	5,86	0,03	5,57	0,30

Професор кафедри IПЗЕ доктор технічних наук, доцент

Андрій МУСІЄНКО