Analysis of Algorithm

Definition Step: chosen operations performed by the algorithm such that the total number of these operations is the same as the number of all operations performed by the algorithm to within a constant factor

 $\begin{array}{ll} \textbf{Definition} & t_A(I) \text{ denote the number of steps the algorithm A taks for input I} \\ \textbf{Example} & linear search \\ \end{array}$

```
LS(L, x)

1. i \leftarrow 1

2. while i \le len(L)

3. if L[i] = x then return I

4. i \leftarrow i + 1

5. return 0
```

Steps: number of comparisons with x

X	$t_{LS}([2,4,6,8],x)$
2	1
4	2
8	4
1	4

Definition T(n) the running time of one algorithm on input of size n, because running time of a program usually increases as the size of the input increases

$$\begin{array}{l} T_W \colon \mathbb{Z}^+ \to \mathbb{N} \coloneqq T_W(n) = \max\{\,t_n(I) \mid size(I) = n\,\} \text{ the worst time complexity} \\ T_A \colon \mathbb{Z}^+ \to \mathbb{R}^+ \coloneqq T_A(n) = \frac{\sum_i i \in \{t_n(I) \mid size(I) = n\}}{|\{t_n(I) \mid size(I) = n\}|} \text{ the average time complexity} \end{array}$$

Sometimes algorithm runtime functions has more than 2 parameters, such as the graph algorithm

```
T_C(v, e), v = \text{#vertices}, e = \text{#edges}
```

Breaking point: The point which one algorithm starts to takes less time than another

A, B \in Alg. $T_A(n) = n^3$, $T_B(n) = 8n + 3$ When $n > 3 \rightarrow T_A(n) > T_B(n)$, $n < 3 \rightarrow T_A(n) < T_B(n)$, 3 is the breaking point

Leading coefficients and exponential terms determine algorithm's running time

Upper bound of the algorithm $u: \forall n \in \mathbb{Z}^+$. $\forall i \in Input. |I| = n \rightarrow t_A(I) \leq u(n)$

Lower bound on the worst cases of the algorithm l: $\forall n \in \mathbb{Z}^+$. $\exists i \in Input. |i| = n \ AND \ t_A(i) \ge l(n)$

```
\begin{split} & \text{Big-Oh O(f)} = \left\{g \mid \exists c \in \mathbb{R}^+. \exists n_0 \in \mathbb{N}. \, \forall n \in \mathbb{N}. \, n \geq n_0 \rightarrow g(n) \geq cf(n) \right\} \\ & \text{Big-Omega } \Omega(f) = \left\{g \mid \exists c \in \mathbb{R}^+. \, \exists n_0 \in \mathbb{N}. \, \forall n \in \mathbb{N}. \, n \geq n_0 \rightarrow g(n) \leq cf(n) \right\} \\ & \text{Big-Theta } \Theta(f) = \left\{g \mid \exists c \in \mathbb{R}^+ \exists d \in \mathbb{R}^+. \, \exists n_0 \in \mathbb{N}. \, \forall n \in \mathbb{N}. \, n \geq n_0 \rightarrow cf(n) \leq g(n) \leq df(n) \right\} \end{split}
```

Iterative Algorithm Time Complexity

```
Code with loops and procedures calls O(1) If statement: \in O(h(n) + \max\{f(n), g(n)\}) if C \mid O(h(n)) then A \mid O(f(n)) else B \mid O(g(n))
```

For/while loop: if a loop is executed O(f(n)) times and each iteration is O(g(n)), then total is O(f(n)g(n))

Suppose we call with an input of size g(n), the the call takes $O\left(f(g(n))\right)$ times

```
IS(A)

1. i \leftarrow 1
2. while i \le len(A)
3. j \leftarrow i
4. while j > 1 \&\& A[i] < B[j-i]
5. B[j] \leftarrow B[j-i]
6. j \leftarrow j-1
7. B[j] \leftarrow A[i]
8. i \leftarrow i+1
9. return B
```

Example Insertion Sort

Let $T: \mathbb{Z}^+ \to \mathbb{N} := T(n) =$ the max number of steps taken by insertion sort on arrays of size n Let step = comparisons assignments

Lemma1 $T(n) \in O(n^2)$

Proof Let $n \in \mathbb{N}^+$ be arbitrary and consider an arbitrary array A of length n There are n complete iterations of the outer while loop (2-8). Each iterations consists of 4 steps and a 1 execution of an inner while loop (4-6)

Each iteration of the inner loop takes at most 4 steps, and at most i-1 complete iterations of the inner loop are performed during the iteration of the inner loop. The final complete iteration of the inner loop takes at most 2 steps (check the while statement)

So the total time taken by n complete iterations of the out while loop is at most $\sum_{i=1}^{n} (4(i-1)+2+4) = \sum_{i=1}^{n} 4i+2=2n^2+4n$

The final complete iteration of the outer while loop takes 1 more assignment and 1 while statement check, then $T(n)=2n^2+4n+2\in O\left(n^2\right)$

By generalization, $\forall n \in \mathbb{Z}^+$. $T(n) \in O(n^2)$

Lemma2 $T \in \Omega(n^2)$

Proof Let $n \in \mathbb{Z}^+$ be arbitrary, consider the input A = [n, n-1, ..., 1]During the 1st iteration, the outer while loop takes 5 steps (2.3.4(1).7.8), and after

During the 1st iteration, the outer while loop takes 5 steps (2,3,4(1),7,8), and afterwards, j = i, B[i] = A[i] = n

If i < n, then during the rest iterations of the outer while loop, 4 steps are performed and adding the inner while loop.

There are i complete iterations of the inner while loop since the first i elements of B are all larger than A[i] = n - i

In the final iteration of the inner while loop, only 2 step is performed For a total of 4i + 2 steps. The outer loop completely iterates n times, the last incomplete iteration of the outer while loop takes 1 step, there's also one more step taken before the outer while loop

$$T(A) = 5 + 2 + \sum_{i=1}^{n-1} 4 + 4i + 1 = 7 + 5n + 4 \sum_{i=1}^{n-1} i \in \Omega(n^2)$$
Corollary $T(A) \in \Theta(n^2)$

Running time of Recursive Algorithm

```
Square(n)
1. if n = 1
2. return n
3. else return (2n - 1 + square(n - 1))
```

Proof Define $T: \mathbb{Z}^+ \to \mathbb{N} \coloneqq T(n) =$ the number of arithmatic operations performed by square(n)

$$T(n) = \begin{cases} 0 \mid n = 1 \\ 4 + T(n-1) \mid n > 1 \end{cases}$$

Hence $T(n) = 4n - 4$ for $n > 1$

RBS(A, f, l, x)

- 1. if f = 1
- 2. if A[f] = n then return f
- 3. else return 0
- $4. \ m \leftarrow \frac{f+l}{2}$
- 5. if $A[m] \ge x$ then RBS(A, f, m, x)
- 6. else RBS(A, m+1, l, x)

Proof Define B: $\mathbb{Z}^+ \to \mathbb{N} \coloneqq B(n) =$ the worst case number of comparision with x perfromed by RBS(A, f, l, x),

$$1 + f + l = n$$

$$B = \begin{cases} 1 \mid n = 1 \\ 1 + \max\left\{B\left(\left\lfloor\frac{n}{2}\right\rfloor\right), B\left(\left\lceil\frac{n}{2}\right\rceil\right)\right\} \mid n > 1 \end{cases}$$