Flip-Flop A single edge triggered latch

evel

Single Edge Positive

Analysis: Given a sequential circuit, show the behavior vs.

Design: Given a behavior, build the sequential circuit

Analysis (Recap)

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations? 2#FF
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - one for current state,
 - one for next state
 - b) Rows: for each state combination
 - o In total: 2#FF
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs => action
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

Analysis by an example

0) Is it sequential circuit?

At least one FF → Yes

At least one feedback → Yes

Otherwise → No

1) What are the FFs?

1.1. We pick a name for each FF

1.2. We note the type of FF

2) What are the state combinations (possibilities)?

Each FF can have {0,1} states In total, 2#FFs

#FFs = $3 \rightarrow 2^3 = 8$ combinations

3) Form a 'State' Table

- 3.1. For each FF, one column for current state
- 3.2. For each FF, one column for next state
- 3.3. For each combination of current state one row

Q(T)			Q(T+1)			
C	B	A	C	В	A	

4) Fill the 'State' table

For each FF, we determine the next state based on

- l) current state
- II) the current value of inputs to the FF

$Q(\overline{J})$			Q(T+1)		
С	В	А	С	В	А
0	0				$Q_{A}(T)=0$ $J_{A}=Q'_{B}(T)=1$ $K_{A}=Q_{B}(T)=0$ Set Action: 1
0	0	1			
0	1	0			
0	1	1			
1	0	0			

Q(T)			Q(T+1)			
С	В	Α	С	В	Α	
0	0	0		$Q_{B}(T)=0$ $T_{B}=Q'_{C}(T)=1$ Comp. $(Q_{B}(T))=1$	1	
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				

Q(T)			Q(T+1)		
С	В	А	С	В	А
0	0	0	$Q_{C}(T)=0$ $R_{C}=Q_{A}(T)=0$ $S_{C}=Q_{B}(T)=0$ Store $Q_{C}(T)=0$	1	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			

Analysis
$$Q_{A}(T) = A Q_{A}^{c}(T) = A'$$

For simplicity, the current status of a FF can be assume to be as a binary variable

Q(T)			Q(T+1)		
С	В	А	С	В	А
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	X	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	X	1	0

5) State Transition Diagram

- 5.1. for each state combination (each row), a node
- 5.2. from one state (node) to another state, a directed edge

Design by an example

Counter Count from 0 to N

Design

0. Do we need combinational logic or sequential logic?

Do we need memory?

Counter Count from 0 to N $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow ... \rightarrow N-1 \rightarrow N$

Counter Count from 0 to N $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow ... \rightarrow N-1 \rightarrow N$

At each step, we have to see at number we are and then move to next number: $i \rightarrow i+1$

Counter

Count from 0 to N We need a storage to store current number.

We need a sequential circuit!

Design

1. How many storage (flip-flops)?

Depends on the storage you need to store the current state in binary system!

Counter Count from 0 to N N = 7

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$

$$000 \rightarrow 001 \rightarrow 010 \rightarrow 010 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$
For each intermediate state, we need 3 bits \rightarrow 3 flip-flops

Design

2. Form the state (transition) diagram

Same as analysis,

- For each state → one node
- For each state transition to next state → a directed edge

Loop to the beginning!

Stuck in 7
Just one time counter!

3. Form the state table

Same as analysis, two columns for each flip-flop (storage unit)

- a) One for current state Q(T)
- b) One for next state Q(T+1)

$Q(\overline{1})$			Q(T+1)			
C	В	A	С	В	А	

4. Fill the state table

Unlike analysis, here we already know what is going to be the next state Q(T+1) based on current state Q(T)

	Q(T)			Q(T+1)	
C	В	A	C	В	А
0	0	0	0	0	1
0	0			B	0
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1		?	?	?

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	Lanca de Ale	1
1	0	1	1	Loop to the beginning!	ne o
1	1	0	1	beginning	1
1	1	1	0	0	0

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	Charle in 7	1
1	0	1	1	Stuck in 7 Just one time counter!	inter 0
1	1	0	1	The coc	1
1	1	1	1	1	1

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	Our Design Ch	oicel 1
1	0	1	1	Our Design Cir	0
1	1	0	1	1	1
1	1	1	² 0×	\ 0	× 0

5. What type of storage (flip-flop)? RS, D, T, JK, or Mixed

5. What type of storage (flip-flop)? RS, D, T, JK, or Mixed

In terms of design, does <u>not</u> matter. In terms of <u>efficiency</u>, matters!

Counter

Count from 0 to N=7Let's select JK, the complete FF.

6. Boolean expression for the flip-flops' input? input equations, aka, excitation equations

Counter Count from 0 to N=7

Α	$J_A =$	K _A =
В	$J_B =$	$K_B =$
С	$J_{C}=$	$K_C =$

Counter Count from 0 to N=7

Α	$J_A =$	K _A =
В	$J_B =$	$K_B =$
С	J _C =	$K_C =$

	Q(T)		Q(T+1)				
С	В	A	C	В	Α		
0	0	0	0	0	1		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	1	0	0		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	0	0		

	Q(T)		Q(T+1)			Not part of state table!		
С	В	А	С	В	А	Action	J_A	K_A
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	А	С	В	А	Action	J_A	K _A
0	0	0	0	0	1	Set	1	0
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

OR

	Q(T)		Q(T+1)			Not part of state table!		
С	В	Α	С	В	А	Action	J_A	K _A
0	0	0	0	0	1	Comp	1_	1
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	Α	С	В	Α	Action	J_A	K _A
0	0	0	0	0	1	Set/Comp	1	<u>0/1</u> → ×
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	Α	С	В	Α	Action	J_A	K_A
0	0	0	0	0	1	Set/Comp	1	X
0	0		0	1	0	Reset	0	1
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

OR

	Q(T)		Q(T+1)			Not part of state table!		
С	В	Α	С	В	Α	Action	J _A	K_A
0	0	0	0	0	1	Set/Comp	1	X
0	0	1	0	1	0	Comp.	1	1
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	Α	С	В	Α	Action	J_A	K_A
0	0	0	0	0	1	Set/Comp	1	X
0	0	1	0	1	0	Reset/Comp	X	1
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	А	С	В	Α	Action	J_A	K _A
0	0	0	0	0	1	Set/Comp	1	X
0	0	1	0	1	0	Reset/Comp	X	1
0	1	0	0	1	1	Set/Comp	1	(8) \times
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

	Q(T)		Q(T+1)			Not part of state table!		
С	В	А	С	В	Α	Action	J_A	K_A
0	0	0	0	0	1	Set/Comp	1	X
0	0	1	0	1	0	Reset/Comp	X	1
0	1	0	0	1	1	Set/Comp	1	X
0	1	1	1	0	0	Reset/Comp	X	1
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

Mo Q(I)			Q(T+1)			Not part of state table!		
С	В	A	С	В	А	Action	J_{A}	K _A
0	0	0	0	0	1	Set/Comp		X
0	0	1	0	1	0	Reset/Comp	/ <u>x</u>	1
0	1	0	0	1	1	Set/Comp	1	X
0	1	1	1	0	0	Reset/Comp	X	1
1	0	0	1	0	1	Set/Comp	1	X
1	0	1	1	1	0	Reset/Comp	×	1
1	1	0 /	1	1	1	Set/Comp	1	X
1	1	1 /	0	0	0	Reset/Comp	X	1

Counter

Count from 0 to N=7

Flip-Flops

	$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$						
Α	$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$	$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$					
В	$J_{B}=$	$K_B =$					
C	$J_{C}=$	$K_{C}=$					

Counter Count from 0 to N=7

Α	$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$	$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$
В	$J_{B}=$	$K_B =$
C	$J_{C}=$	$K_C =$

Q(T)			Q(T+1)			Not part of state table!		
С	B	А	С	(B)	A	Action	J_B	K _B
0	0	0	0	0	1	Store	0	0
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

OR

Q(T)			Q(T+1)			Not part of state table!		
С	В	A	2	В	А	Action	J_B	K _B
0	0	0	0) <u>Q</u>	1	Reset	0	
0	0	1	0	1	0)Xt		
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

Q(T)			Q(T+1)			Not part of state table!		
С	В	Α	С	В	Α	Action	J _B	K_{B}
0	0	0	0	0	1	Store/Reset	0	\bigcirc
0	0	1	0	1	0	Set/Comp	1	\searrow
0	(1) —	0	0	1	1	Store/Set	X	0
0	1	1	1	0	0	Reset/Comp	X	
1	0	0	1) 0	1	Store/Reset	0	
1	0	1	1	1	0	Set/Comp	(1)	X
1	1 —	0	1	1	1	Store/Set	X	0
1	1	1	0) 0	0	Reset/Comp	X	1

Counter Count from 0 to N=7

Α	$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$	$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$
В	$J_B = F(C,B,A) = \sum (1,5) + d(2,3,6,7)$	$K_B = F(C, B, A) = \sum (3,7) + d(0,1,4,5)$
С	$J_{C}=$	$K_C =$

Counter Count from 0 to N=7

Α	$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$	$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$
В	$J_B = F(C,B,A) = \sum (1,5) + d(2,3,6,7)$	$K_B = F(C,B,A) = \sum (3,7) + d(0,1,4,5)$
С	$J_{C}=$	$K_C =$

Q(T)			Q(T+1)			Not part of state table!		
С	В	Α	(c)	В	A	Action	J_{C}	K _C
0 _	0	0	0	0	1	Store/Reset	0	X
0	0	1	<u> </u>	1	0	Store/Reset	0	X
0	1	0	0	1	1	Store/Reset	0	X
0	1	1	1	0	0	Comp/Set	(1)	X
1 /	0	0	1	0	1	Store/Set	X	0
1	0	1	1	1	0	Store/Set	X	0
1	1	0	1	1	1	Store/Set	X	0
1	1	1	→ 0	0	0	Comp/Reset	X	1

3- van ah le

Counter from 0 to N-7

Count from 0 to N=7

A
$$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$$
 $K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$
B $J_B = F(C,B,A) = \sum (1,5) + d(2,3,6,7)$ $K_B = F(C,B,A) = \sum (3,7) + d(0,1,4,5)$
C $J_C = F(C,B,A) = \sum (3) + d(4,5,6,7)$ $K_C = F(C,B,A) = \sum (7) + d(0,1,2,3)$

Design

7. Minimization of input (excitation) equations

Counter

Count from 0 to N=73-Variable K-Map

Α	$J_A = F(C,B,A) = \sum (0,2,4,6) + d(1,3,5,7)$	$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$
В	$J_B = F(C,B,A) = \sum (1,5) + d(2,3,6,7)$	$K_B = F(C,B,A) = \sum (3,7) + d(0,1,4,5)$
С	$J_C = F(C,B,A) = \sum(3) + d(4,5,6,7)$	$K_C = F(C,B,A) = \sum (7) + d(0,1,2,3)$

$$J_C = F(C,B,A) = \sum(3) + d(4,5,6,7)$$

 $J_C = BA$

$$K_C = F(C,B,A) = \sum (7) + d(0,1,2,3)$$

 $K_C = BA$

$$J_B = F(C,B,A) = \sum (1,5) + d(2,3,6,7)$$

 $J_B = A$

$$K_B \neq F(C,B,A) = \sum (3,7) + d(0,1,4,5)$$

$$J_A = F(C,B,A) = \sum_{(0,2,4,6)} + d(1,3,5,7)$$

$$J_A = 1$$

$$K_A = F(C,B,A) = \sum (1,3,5,7) + d(0,2,4,6)$$

 $K_A = 1$

Design

8. Draw/Sketch Logic Circuit

Design
9. (Optional) Test

	Q(T)		Q(T+1)					
C B A			C B A					
1	0		?	?	?			
5 → ? 6								

	Q(T)		Q(T+1)						
C B A			C B A						
1	0	1	?	?	(?)				
	5 → ?								

	Q(T+1)				
C B A C B	Α				
	1, $J_A=1$, $K_A=1$ Comp., $\rightarrow 0$				

	Q(T)		Q(T+1)			
С	В	Α	С	В	Α	
1	0	1	?	?	0	
			-			

Q(T)			Q(T+1)		
С	В	А	С	В	А
1	0	1	?	B=0, $J_B=A=1$, $K_B \neq A'=0$ Set $\rightarrow 1$	0

Q(T)			Q(T+1)				
	С	В	Α	С	В	А	
	1	0	1	?	1	0	

Q(T)			Q(T+1)		
С	В	Α	С	В	А
1	0	1	?	1	0

Q(T)			Q(T+1)		
С	В	Α	С	В	А
1	0	1	C=1, $J_C = BA = 01 = 0$ $K_C = BA = 01 = 0$ Store \rightarrow 1	1	0

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
1	0	1	1	1	0
0		5 -	> 6	Ō	0

Design (Recap)

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. Form the state (transition) diagram
- 3. Form the state table
- 4. Fill the state table
- 5. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 6. Input (excitation) equations for each FF
- 7. Minimization of input (excitation) equations
- 8. Draw/Sketch Logic Circuit
- 9. (Optional) Test

Design (Recap)

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. Form the state (transition) diagram
- 3. Form the state table
- 4. Fill the state table
- 5. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 6. Input (excitation) equations for each FF
- 7. Minimization of input (excitation) equations
- 8. Draw/Sketch Logic Circuit
- 9. (Optional) Test

Design (Advanced)

- 0. Do we need combinational logic or sequential logic? Do we need memory?
- 1. How many storage (flip-flops)? #FF
- 2. Form the state (transition) diagram
- 2.1. State Reduction
- 3. Form the state table
- 4. Fill the state table
- 5. What type of storage (flip-flop)? RS, D, T, JK, or Mixed
- 6. Input (excitation) equations for each FF
- 7. Minimization of input (excitation) equations
- 8. Draw/Sketch Logic Circuit
- 9. (Optional) Test

COMP-2140: Computer Languages, Grammars, and Translators

 $X \times Y = X + ... + X \rightarrow When to stop?$ Feedback \rightarrow Sequential Logic

Analysis vs. Design

George H. Mealy

(1927 - 2010)

Mathematician and Computer Scientist Invented Mealy Machine Also a pioneer of modular programming

Outputs = Function(Current State, (nputs))

Edward Forrest Moore (1925 – 2003)

Mathematician and Computer Scientist Inventor of the Moore Machine Also an early pioneer of artificial life

Outputs = Function(Current State, Inputs)

216 Chapter 5 Synchronous Sequential Logic

Moore Machine

FIGURE 5.21
Block diagrams of Mealy and Moore state machines

216 Chapter 5 Synchronous Sequential Logic

Analysis (Moore model in output) by an example

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations? 2#FF
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - o one for current state,
 - o one for next state
 - b) Rows: for each state combination
 - O In total: 2^{#FF}
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

Analysis (+ Input + Moore Model Output)

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations?
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - one for current state,
 - o one for next state
 - b) Rows: for each state combination
 - o In total: 🏋
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

0. Is the circuit sequential or combinational? Any FF or feedback → Sequential

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops?

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations?

#FFs + #Inputs = $2+1 \rightarrow 2^3 = 8$ combinations

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - For each FF, two columns: one for current state, one for next state
 - \circ For each input, one column $=>/e+\mp$
 - o For each output, one column => γίσλη
 - b) Rows: See item 2

Inputs	Q(T)		Q(<u>I</u>	<u>+1</u>)	Outputs
X	B	A	B	A	F
9	6				
Q	2				

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - For each FF, two columns: one for current state, one for next state
 - For each input, one column
 - For each output, one column
 - b) Rows: See item 2
- 4. Fill the state table for
 - a) next state columns
 - b) the output value

Inputs	Q(T)		Q(T) Q(T+1)		Outputs
X	В	А	В	А	F=BA ¥
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Inputs	Q	(T)	Q(T+1)		Outputs
X	В	А	В	А	F=BA V
0	0	0			0
0	0	1			0
0	1	0	Moore Model Only depends on current state X is not involved!		0
0	_ 1	1			1
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			(1

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	Α	F=BA
0	0	0			0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Inputs	Q	(T)	Q(T+1)		Outputs
X	В	А	В	А	F=BA
0	Q	0		$A=0$ $J_A = XB = 00 = 0$ $K_A = B' = 0' = 1$ $Reset \rightarrow 0$	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0

Inputs	Q	(T)	Q(T	<u>[+1)</u>	Outputs
X	В	Α	В	А	F=BA
0	0	0	$\begin{array}{c} B=0\\ T_B=XA=00=0\\ \hline \\ Store \rightarrow 0 \end{array}$	0	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0

Inputs	Q(T)		uts Q(T) Q(T+1)		Outputs
X	В	Α	В	Α	F=BA
0	0	0	0	0	0
0	0	1			0
0	1	0			0
0	1	1			1
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	А	F=BA
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	?	0	0
1	1	0	1	1	0
1	1	1	0	1	1

Inputs	Q(T)		Q(T) Q(T+1)		Outputs
X	В	А	В	А	F=BA
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	B=0 TB=XA=11=1 Comp. → 1	0	0

Inputs	Q(T)		Q(T+1)		Outputs
X	В	Α	В	А	F=BA
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	1	1
	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	0	1	1

- 0. Is the circuit sequential or combinational? Sequential
- 1. What are the flip-flops? T, JK
- 2. What are the state combinations? $2^{\#FF} \times 2^{\#inputs} = 2^{\#FF + \#inputs} = 2^3 = 8$
- 3. Form "State" table:
 - a) Columns:
 - For each FF, two columns: one for current state, one for next state
 - For each input, one column
 - For each output, one column
 - b) Rows: See item 2
- 4. Fill the state table for
 - a) next state columns
 - b) the output value
- 5. Form state (transition) diagram
 - a) nodes for states, directed edges for transitions between states
 - b) labels for edges by the value of input
 - c) labels for nodes by the value of <u>output</u>

Labels on edges based on value of X

Analysis

6) (Optional) Path on State Transitions

