清华大学本科生考试试题专用纸

考试课程 一元微积分 (A)

一. 填空题(每空3分,共15题)(请将答案直接填写在横线上!)

$$1. \quad \lim_{x \to \infty} \left(\frac{1+x}{2+x} \right)^x = \underline{\qquad}_{\circ}$$

$$\lim_{x \to 0} \frac{\sin 2x - x}{\arcsin x + x} = \underline{\qquad}_{\circ}$$

3.
$$\lim_{x \to +\infty} \frac{\ln(1+x)}{\ln(1+x^3)} = \underline{\hspace{1cm}}$$

4.
$$\lim_{x \to 4} \frac{\sqrt{1+2x} - 3}{\sqrt{x} - 2} = \underline{\hspace{1cm}}$$

5. 当
$$x \to 0$$
 时, $f(x) = \frac{1}{\sin x} - \frac{1}{x}$ 为 x^k 的同阶无穷小量,则 $k = \underline{\hspace{1cm}}$ 。

6. 函数
$$f(x) = \frac{1}{1 - e^{\frac{x}{1 - x}}}$$
 在 $x = 1$ 处间断点的类型为______。

7. 设
$$y = x^x$$
 $(x > 0)$,则其微分 $dy =$ ______。

8.
$$f(x) = e^{\sin(x^2+1)}$$
, \emptyset $f'(x) = \underline{\hspace{1cm}}$

9. 设由
$$x = 2t + \sin t$$
, $y = \cos t$ 决定 $y = f(x)$,则在 $x = 0$,即($t = 0$)点 $f'(0) = ______$ 。

- 12. 函数 $f(x) = x^4 2x^2 + 5$ 在区间 [-2,2] 上最大值为 _____。
- 13. $\[\[\] \] f'(0) = \underline{ } \]$
- 15. 曲线 $y = \sqrt[3]{x^3 + x^2 + x + 1}$ 的渐近线方程为______。
- 二. 计算题 (每题 10 分,共 4 题) (请写出详细计算过程和必要的根据!)
- 1. 确定 a,b 值使函数 $f(x) = \begin{cases} \sin ax & x \le 0 \\ \ln(1+x) + b & x > 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内可导。
- 2. 计算 $\lim_{x\to+\infty} \left(\frac{\pi}{2} \arctan x\right)^{\frac{1}{\ln x}}$ 。
- 3. 设 f''(x) 存在,且 $f'(x) \neq 1$, $\forall x \in (-\infty, +\infty)$,函数 y = y(x) 由方程 y = f(x + y) 确定,求 y' 与 y'' 。
- 4. 求 $f(x) = |x^3 2x^2 + x|$ 的所有最大单调区间,上凸下凸区间,极大值点和极小值点,并画出 y = f(x) 的图像示意图。
- 三. 证明题(请写出详细的证明过程!)
- 1. (8分)证明: 当x > 0时, $(x^2 1) \ln x \ge (x 1)^2$ 。
- 2. (7 分) 设 $f(x) \in C^{(1)}(-\infty, +\infty)$ 为下凸函数。
- (1) 证明: $\forall x_0, x \in (-\infty, +\infty)$, $f(x) \ge f(x_0) + f'(x_0)(x x_0)$;
- (2) 证明: 若存在常数 M>0 使得 $\forall x\in (-\infty,+\infty)$, 均有 $|f(x)|\leq M$, 则 f(x) 为常数函数。