

Estadística Descriptiva

Medidas de Tendencia Central y Posición

MEDIDAS DE TENDENCIA CENTRAL (Datos no agrupados)

Media muestral:

$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n} = \frac{\sum x_i}{n}$

(1 dígito más que la precisión de los datos)

Media poblacional:

$$\overline{\mu} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{\sum x_i}{N}$$

Media muestral recortada:
$$\bar{x}_{rec(\%)} = \frac{\bar{x}_1 + \bar{x}_2 + \dots + \bar{x}_{n-1} + \bar{x}_n}{n}$$

Estadística Descriptiva Medidas de Tendencia Central y Posición

MEDIDAS DE TENDENCIA CENTRAL (Datos no agrupados)

Mediana muestral:

Mediana poblacional: ũ

Divide en dos la muestra <u>ordenada</u> de menor a mayor

$$\tilde{x} = \begin{cases} \frac{x_{\frac{n+1}{2}}}{2} & \text{si } n \text{ es impar} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}) & \text{si } n \text{ es par} \end{cases}$$

Moda \hat{x} Dato con mayor frecuencia absoluta (f_i) Moda poblacional: $\hat{\mu}$: Puede no existir o haber más de una

Estadística Descriptiva Medidas de Tendencia Central y Posición

MEDIDAS DE TENDENCIA CENTRAL (Datos no agrupados)

Estadística Descriptiva Medidas de Tendencia Central y Posición

MEDIDAS DE POSICIÓN (Datos no agrupados)

Cuartiles Divide al conjunto de datos en 4 partes

$$\begin{cases} Q_1=25\%\ de\ los\ datos \\ Q_2=50\%\ de\ los\ datos=\tilde{x}\ \ (mediana) \end{cases} \text{Si n es par} \\ Q_k=\frac{kn}{4} \\ Q_3=75\%\ de\ los\ datos \end{cases}$$

Percentiles Dividen en 100 partes al conjunto de datos

$$i = \frac{P}{100} \times n$$

Estadística Descriptiva

Medidas de Tendencia Central y Posición

MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN (Datos agrupados)

Media muestral:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i \times f_i}{n} = \frac{\sum x_i f_i}{n}$$

 x_i : marca de clase

Mediana muestral:

Identificar el intervalo $F_{r(50\%)}$

$$\tilde{x} = L_i + \left(\frac{\frac{n}{2} - F_{i-1}}{f_i}\right) \times A$$

Media poblacional:

$$\overline{\mu} = \frac{\sum_{i=1}^{N} x_i \times f_i}{N} = \frac{\sum x_i f_i}{N}$$

Mediana poblacional:

 $\tilde{\mu}$

Estadística Descriptiva

Medidas de Tendencia Central y Posición

MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN (Datos agrupados)

Moda muestral:

Moda poblacional: $\hat{\mu}$

Identificar el intervalo modal (mayor f_i)

$$\hat{x} = L_i + \left(\frac{f_{i-f_{i-1}}}{(f_{i-f_{i-1}}) + (f_{i-f_{i+1}})}\right) \times A$$

Cuartiles:

$$Q_k = L_i + \left(\frac{\frac{kn}{4} - F_{i-1}}{f_i}\right) \times A$$

MEDIDAS DE VARIABILIDAD (Datos no agrupados)

Ejemplo 2

Α	46	48	49	50	50	51	52	54
В	10	18	30	50	50	70	82	90

$$\bar{x}_A = \bar{x}_B = \tilde{x}_A = \tilde{x}_B = \hat{x}_A = \hat{x}_B = 50$$

MEDIDAS DE VARIABILIDAD (Datos no agrupados)

Rango: $Rango = mayor \ valor - menor \ valor = x_{max} - x_{min}$

Desviaciones de la media:
$$x_i - \bar{x}$$

$$\begin{cases} < 0 \Rightarrow x_i < \bar{x} \\ > 0 \Rightarrow x_i > \bar{x} \end{cases} \qquad \sum_{i=1}^n (x_i - \bar{x}) = 0$$

Varianza muestral:
$$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$
 Varianza poblacional: $\sigma^2 = \frac{\sum (x_i - \bar{\mu})^2}{N}$

Desvío estándar muestral:
$$S=\sqrt{S^2}$$
 Desvío estándar poblacional: $\sigma=\sqrt{\sigma^2}$

MEDIDAS DE VARIABILIDAD (Datos agrupados)

 x_i : marca de clase

Varianza muestral:
$$S^2 = \frac{\sum f_i(x_i - \bar{x})^2}{n-1}$$
 Varianza poblacional: $\sigma^2 = \frac{\sum f_i(x_i - \bar{\mu})^2}{N}$

Desvío estándar muestral: $S = \sqrt{S^2}$ Desvío estándar poblacional: $\sigma = \sqrt{\sigma^2}$

MEDIDAS DE VARIABILIDAD (Datos no agrupados y agrupados)

Rango Intercuartílico: $RI = Q_3 - Q_1$

Coeficiente de variación muestral: $CV = \frac{s}{\bar{x}} \times 100$

Coeficiente de variación poblacional: $CV = \frac{\sigma}{\bar{\mu}} \times 100$

ASIMETRÍA DE UNA DISTRIBUCIÓN

Coeficiente de asimetría de Pearson:

$$P = \frac{media - moda}{desvia \ estandar} = \frac{\bar{x} - \hat{x}}{S}$$

 $P > 0 \iff Asimetría\ positiva$

 $P < 0 \Leftrightarrow Asimetría negativa$

 $P = 0 \Leftrightarrow Sim\'etrica$

CURTOSIS DE UNA DISTRIBUCIÓN

Coeficiente de curtosis:
$$k = \frac{\sum (x_i - \bar{x})^4}{nS^4} - 3$$

 $k > 0 \iff Leptocúrtica$ $k < 0 \iff Platicúrtica$ $k = 0 \iff Mesocúrtica$

DIAGRAMA DE CAJAS

Rango Intercuartílico: $RI = Q_3 - Q_1$

Rango: $Rango = x_{max} - x_{min}$

DIAGRAMA DE CAJAS

Si hay valores extremos

$$f_{min} = Q_1 - 1.5 RI$$

$$f_{max} = Q3_1 + 1.5 RI$$