4.2.1. Метод Ньютона

Метод Ньютона (метод касательных, метод линеаризации, метод Ньютона-Рафсона) является одним из популярнейших итерационных методов решения нелинейных уравнений, т.к. он отличается простотой и быстрой сходимостью. Выражение для итерационного процесса можно получить двумя способами, первый опирается на геометрическое представление, а второй на аналитическое разложение заданной нелинейной функции f(x) в ряд Тейлора.

Получим выражение, для итеративной последовательности исходя из геометрического представления метода (рис. 25). В качестве начального приближения x_0 примем правую границу интервала локализации b. Вычисляем в этой точке значение функции $f(x_0)$ на рис. 25 определенное значение соответствует точке

В . Проводим через точку $B(x_0, f(x_0))$ касательную к кривой y = f(x). Эта касательная пересекается с осью абсцисс в точке x_1 , которая в дальнейшем рассматривается в качестве следующего приближения и является искомым параметром.

Рис. 25 — Визуализация процесса построения решения с помощью метода касательных

Значение новой точки x_1 можно достаточно легко определить, опираясь на математическое выражение для тангенса угла α в прямоугольном треугольнике

$$tg\alpha = \frac{f(x_0)}{x_0 - x_1} = f'(x_0).$$

Данное выражение позволяет определить искомую величину x_1 в следующем виде

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
.

Для нахождения следующего приближения x_2 вычисляется значение функции в точке x_1 , на рис. 26 это точка $B_1(x_1, f(x_1))$ и

вычисляется первая производная в точке x_1 , т.е. проводится касательная через точку B_1 к функции y = f(x).

Рис. 26 — Второе приближение по методу касательных Математическое выражение для нахождения x_2 имеет вид

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Аналогично находятся все последующие приближения x_3 , x_4 , и т.д. Формула для k+1 приближения будет иметь вид

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Отсюда вытекает условие применимости метода: функция f(x) должна быть дифференцируемой, и её первая производная f'(x) в окрестности корня не должна менять знак.

Замечание. Если вместо правой границы в для начального приближения x_0 взять левую a, то проводя касательную к функции y = f(x) в точке A(a, f(a)), получаемая точка пересечения

касательной с осью абсцисс x_1 , как видно из рис. 27, находится за пределами интервала локализации корня. Таким образом, процесс выбора начального приближения в методе Ньютона требует особого внимания и будет подробно рассмотрен в дальнейшем.

Рассмотрим второй способ получения выражения для определения x_{k+1} . Для этого предполагается, что заданная функция f(x) является непрерывной и минимум дважды дифференцируемой на отрезке [a, b], внутри которого находится один искомый корень x^* .

На рассматриваемом интервале уже имеется одна точка x_k , являющаяся начальным приближением x_0 , т.е. k=0. В заданной точке наша функция имеет значение $f(x_k)$, а также первую $f'(x_k)$ и вторую производную $f''(x_k)$. Между заданной точкой x_k и искомым решением x^* имеется некоторое малое расстояние, тогда для определения значения функции в точке x^* применяем разложение в ряд Тейлора, ограниченное до членов со второй

производной

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{1}{2}f''(x_k)(x^* - x_k)^2.$$

Так как точка x^* является точным решением, то значение функции в этой точке обращается в ноль. В результате получается квадратное уравнение для нахождения корня x^*

$$f(x_k)+f'(x_k)(x^*-x_k)+\frac{1}{2}f''(x_k)(x^*-x_k)^2=0$$
.

Поскольку расстояние между точками x_k и x^* мало, то квадратом их разности можно пренебречь и результирующее уравнение будет линейным. Поскольку в процессе получения точного решения x^* от бесконечного ряда Тейлора осталось только два слагаемых, то полученное решение будет отличаться от точного. Определенная таким образом точка обозначается x_{k+1} и определяется с помощью следующего выражения

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Следовательно, второе слагаемое с дробью является тем самым приращением, на которое новая точка приближается к точному решению нелинейного уравнения на каждой итерации.

Для окончания итерационного процесса используются стандартное условие

$$\left|x_{k+1}-x_{k}\right|\leq\varepsilon$$
.

Замечание. В методе Ньютона нет необходимости задавать отрезок [a,b], содержащий корень уравнения, а достаточно задать только точку x_0 являющуюся начальным приближением.