МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУПАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Факультет кибернетики и информационной безопасности

КАФЕДРА КИБЕРНЕТИКИ

Задание на УИР

Студенту гр. <u>Б14-506</u>

Шелько Андрею Юрьевичу (фия)

ТЕМА УИР

Разработка алгоритма классификации когнитивных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций

ЗАЛАНИЕ

Ne n/n	Содержание работы	Форма отчетности	Срок исполне- ния	Отметка о выполне- нии Дата, подпись рук.
l. 🧬	Аналитическая часть		S - 2 2	
1.1.	Изучение и анализ подходов к классификации когнитив- ных состояний по данным фМРТ (статическим и динами- ческим) применительно к задачам медицинской диагно- стики	Пункт ПЗ	1.03.17	1030
1.2.	Сравнительный анализ методов классификации много- мерных данных (шиейный дискриминантный анализ, ме- тод опорных векторов, нейросетевые методы) для выбора подходящего набора анторитмов.	подраздел ПЗ	8.03.17	05 of
1.3.	Сравнительный анализ программных средств визуализа- ции трехмерных данных фМРТ и исследование возмож- ности их использования.	Гекет ПЗ	8.03.17	The ross
1.4.	Оформление расниренного содержания пояснительной затски (РСПЗ)	Гекст РСПЗ	27.03,17	120
2.	Теоретическая часть			
2.1.	Формальная постановка задачи классификации сигналов фМРТ.	подраздел ПЗ	05.04.17	
2.2.	Выбор и разработка показателей точности классифика- цаи когнятивных состояний по фМРТ.	Формулы, Вы- ражения	15.04,17	
2.3.	Разработка алгоритма выявления значимых для класси- фикации зон головного мозга на основе внализа межин- дивидуальных корреляций.	подраздел ПЗ	26.04.17	
2.4.	Формальное описание авторитма классификации когни- тивных состояний по фМРТ.	рабочие мате- риалы	03.05.17	
2.5.	Формальное описание схемы применения алгоритми для классификации когнятивных состояний в режиме реаль- ного времени.	Текст ПЗ	12.05.17	
3.	Инженерная часть			
3.1.	Проектирование программного пакета выполняющего классификацию когизтивных состояний по данным фМРТ на основе анализа межиндивидуальных корреляций	Гекст ПЗ	16,04.17	
1.2	Результаты проектирования оформить с помощью UML	UML диа- грамма	20.04.17	

4.	Технологическая и практическая часть		11 000 000	
4.1	Реализация программных модулей для эксперименталь- ных неспедований алгоритма классяфикации когнитив- ных состояний по фМРТ. с использованием программных сред МАТLAB и Scipy.	Исполняемые файлы, исходный текст, подключае- мый модуль для ЯП	17.04.17	
4.2.	Описание типов когнитивных состояний и исходных дан- шых для проведения экспериментальных исследований разработанного алгоритма.	Гекст ПЗ	20.04.17	
4.3.	Составление плана экспериментальных исследований разработанного алгоритма.	План экспери- мента	25.04.17	
4.4.	Исследование точности классификации при различных	Схемы, гра- фики, исход- ные тексты	04.05.17	
4.5.	Исследование показателей точности классификации, вы- явление наименее и наиболее разделимых когнитивных состояний и соответствующих зон головного мозга с ис- пользованием программных сред MATLAB и Scipy.	Схемы, гра- фики	05.05.17	
5.	Оформзение пояснительной записки (ПЗ) и излюстра- тивного материала для доклада.	Текст ПЗ, пре- вентация	15.05.17	

ЛИТЕРАТУРА

[1]	Дьяконов В. П. MATLAB. Полный самоупитель М.// ДМК Пресс, 2012 768 с.: ил.
[2]	Pajula Juha, Kauppi Jukka-Pekka, Tohka Jussi. Inter-Subject Correlation in (MRI: Method Validation
131	against Stimulus-Model Based Analysis // PLOS ONE. — 2012. — 08. — Vol. 7, no. 8. — Pp. 1–13.
[3]	Pereira Francisco, Mitchell Tom, Botvinick Matthew. Machine learning classifiers and fMRI: A tu-
	torial overview // NeuroImage. — 2009. — Vol. 45, no. 1, Supplement 1. — Pp. S199 - S209. —
Trans.	Mathematics in Brain Imaging. http://www.sciencedirect.com/science/article/
	pii/\$1053811908012263.
[4]	Hastie, Trevor, Tibshirani, Robert and Friedman, Jerome. The elements of statistical learning: data min-
ni.	ing, inference and prediction - 2 edition - Springer, 2009.
[5]	ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому де-
	лу. Издания, Международный стандартный книжный номер. Использование и издательское
	оформление. — М.: Стандартинформ, 2007, — 5 с.
[6]	Бун Г., Рамбо Д., Джекобсон А. Язык UML. Руководство пользовителя: Пер. с англ. М.// ДМК,
	2907
[7]	Kaiappi J. P. et al. Clustering inter-subject correlation matrices in functional magnetic resonance imaging
- 4	//Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Con-
*** *	ference on IEEE, 2010 - C. 1-6.
[8]	Ivezić Ž et al. Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide
	for the Analysis of Survey Data. //Princeton University Press, 2014.
[9]	Pajula Juha. Inter-Subject Correlation Analysis for Functional Magnetic Resonance Imaging: Prop-
~	erties and Validation, Tampere University of Technology, Publication. — Tampere University of
	Technology, 2016. — 4. — Awarding institution: Tampere University of Technology.
-	Tanpas Christish of Technology.

Дата выдачи задания:	Руковолитель	My	The fund 4.1
«14» февраля 2017г.	Студент	(поднись)	(Megine 1.10)
1.7	4	(подпись)	🧷 (фио)