HissTools FFT

1.0

Generated by Doxygen 1.8.13

Contents

1	Hiera	archical Index	1
	1.1	Class Hierarchy	1
2	Clas	s Index	3
	2.1	Class List	3
3	File	Index	5
	3.1	File List	5
4	Clas	s Documentation	7
	4.1	AVX256Double Struct Reference	7
	4.2	AVX256Float Struct Reference	7
	4.3	AVX512Double Struct Reference	8
	4.4	AVX512Float Struct Reference	8
	4.5	Scalar < T > Struct Template Reference	9
	4.6	Setup < T > Struct Template Reference	10
	4.7	SIMDVector< T, U, vec_size > Struct Template Reference	10
	4.8	Split< T > Struct Template Reference	10
	4.9	SSEDouble Struct Reference	11
	4 10	SSEFInat Struct Reference	11

ii CONTENTS

۲	ile D	ocume	entation		13
5	.1 /	/Users/	alexharke	r/Documents/C++ Library/HISSTools_FFT/HISSTools_FFT.h File Reference	13
	į	5.1.1	Function	Documentation	14
			5.1.1.1	hisstools_create_setup() [1/2]	14
			5.1.1.2	hisstools_create_setup() [2/2]	14
			5.1.1.3	hisstools_destroy_setup() [1/2]	15
			5.1.1.4	hisstools_destroy_setup() [2/2]	15
			5.1.1.5	hisstools_fft() [1/2]	15
			5.1.1.6	hisstools_fft() [2/2]	16
			5.1.1.7	hisstools_ifft() [1/2]	16
			5.1.1.8	hisstools_ifft() [2/2]	17
			5.1.1.9	hisstools_rfft() [1/2]	17
			5.1.1.10	hisstools_rfft() [2/2]	18
			5.1.1.11	hisstools_rifft() [1/2]	18
			5.1.1.12	hisstools_rifft() [2/2]	18

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Scalar < T >
Setup < T >
$SIMDVector < T, U, vec_size > \dots $
$SIMDVector < double, \underline{ } v4df, 4 > \dots \dots$
AVX256Double
$SIMDVector < double, \underline{ } v8df, 8 > \dots \dots$
AVX512Double
$SIMDVector < double, vDouble, 2 > \dots \dots$
SSEDouble
SIMDVector< float,v16sf, 16 >
AVX512Float
$SIMDVector < float, \underline{\hspace{0.5cm}} v8sf, 8 > \dots \dots$
AVX256Float
$SIMDVector < float, vFloat, 4 > \dots \dots$
SSEFloat
Split $\langle T \rangle$

2 Hierarchical Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AVX256Doub	le																							
AVX256Float																				 				
AVX512Doub	le																			 				
AVX512Float																				 				
${\it Scalar}{<{\sf T}>}$																				 				
Setup< T >																				 				1
SIMDVector<	Τ, ι	J,	ve	c _	siz	e :	>													 				1
Split< T >																				 				1
SSEDouble SSEFloat																 -								

4 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

FFT_Core.h	??
HISSTools FFT.h	13

6 File Index

Class Documentation

4.1 AVX256Double Struct Reference

Inheritance diagram for AVX256Double:

Public Member Functions

- **AVX256Double** (__v4df a)
- AVX256Double operator+ (const AVX256Double a) const
- AVX256Double operator- (const AVX256Double a) const
- AVX256Double operator* (const AVX256Double a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

• FFT_Core.h

4.2 AVX256Float Struct Reference

Inheritance diagram for AVX256Float:

8 Class Documentation

Public Member Functions

- AVX256Float (__v8sf a)
- AVX256Float operator+ (AVX256Float a) const
- AVX256Float operator- (AVX256Float a) const
- AVX256Float operator* (AVX256Float a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

· FFT_Core.h

4.3 AVX512Double Struct Reference

Inheritance diagram for AVX512Double:

Public Member Functions

- **AVX512Double** (__v8df a)
- AVX512Double operator+ (const AVX512Double a) const
- AVX512Double operator- (const AVX512Double a) const
- AVX512Double operator* (const AVX512Double a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

• FFT_Core.h

4.4 AVX512Float Struct Reference

Inheritance diagram for AVX512Float:

Public Member Functions

- AVX512Float (__v16sf a)
- AVX512Float operator+ (const AVX512Float a) const
- AVX512Float operator- (const AVX512Float a) const
- AVX512Float operator* (const AVX512Float a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

· FFT Core.h

4.5 Scalar < T > Struct Template Reference

Public Types

- typedef T scalar_type
- typedef Split < scalar_type > split_type
- typedef Setup< scalar_type > setup_type

Public Member Functions

- Scalar (T a)
- · Scalar operator+ (const Scalar a) const
- Scalar operator- (const Scalar a) const
- Scalar operator* (const Scalar a) const

Static Public Member Functions

· static int size ()

Public Attributes

T mVal

The documentation for this struct was generated from the following file:

• FFT_Core.h

10 Class Documentation

4.6 Setup < T > Struct Template Reference

Public Attributes

- unsigned long max_fft_log2
- Split< T > tables [28]

The documentation for this struct was generated from the following file:

HISSTools_FFT.h

4.7 SIMDVector < T, U, vec_size > Struct Template Reference

Public Types

- typedef T scalar_type
- typedef Split < scalar_type > split_type
- typedef Setup< scalar_type > setup_type

Public Member Functions

· SIMDVector (U a)

Static Public Member Functions

• static int size ()

Public Attributes

∪ mVal

The documentation for this struct was generated from the following file:

· FFT_Core.h

4.8 Split < T > Struct Template Reference

Public Attributes

- T * realp
- T * imagp

The documentation for this struct was generated from the following file:

HISSTools_FFT.h

4.9 SSEDouble Struct Reference

Inheritance diagram for SSEDouble:

Public Member Functions

- SSEDouble (vDouble a)
- SSEDouble operator+ (const SSEDouble a) const
- SSEDouble operator- (const SSEDouble a) const
- SSEDouble operator* (const SSEDouble a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

• FFT_Core.h

4.10 SSEFloat Struct Reference

Inheritance diagram for SSEFloat:

Public Member Functions

- SSEFloat (vFloat a)
- SSEFloat operator+ (const SSEFloat a) const
- SSEFloat operator- (const SSEFloat a) const
- SSEFloat operator* (const SSEFloat a) const

Additional Inherited Members

The documentation for this struct was generated from the following file:

· FFT_Core.h

12 Class Documentation

File Documentation

5.1 HISSTools_FFT.h File Reference

```
#include <stdint.h>
```

Classes

- struct Split< T >
- struct Setup< T >

Typedefs

- typedef Setup< float > * FFT_SETUP_F
- typedef Setup< double > * FFT_SETUP_D
- typedef Split< float > FFT_SPLIT_COMPLEX_F
- typedef Split < double > FFT_SPLIT_COMPLEX_D

Functions

- void hisstools_create_setup (FFT_SETUP_D *setup, uintptr_t max_fft_log_2)
- void hisstools create setup (FFT SETUP F *setup, uintptr t max fft log 2)
- void hisstools_destroy_setup (FFT_SETUP_D setup)
- void hisstools_destroy_setup (FFT_SETUP_F setup)
- void hisstools_fft (FFT_SETUP_D setup, FFT_SPLIT_COMPLEX_D *input, uintptr_t log2n)
- void hisstools_fft (FFT_SETUP_F setup, FFT_SPLIT_COMPLEX_F *input, uintptr_t log2n)
- void hisstools rfft (FFT SETUP D setup, FFT SPLIT COMPLEX D *input, uintptr t log2n)
- void hisstools_rfft (FFT_SETUP_F setup, FFT_SPLIT_COMPLEX_F *input, uintptr_t log2n)
- void hisstools ifft (FFT SETUP D setup, FFT SPLIT COMPLEX D *input, uintptr t log2n)
- void hisstools_ifft (FFT_SETUP_F setup, FFT_SPLIT_COMPLEX_F *input, uintptr_t log2n)
- void hisstools_rifft (FFT_SETUP_D setup, FFT_SPLIT_COMPLEX_D *input, uintptr_t log2n)
- void hisstools_rifft (FFT_SETUP_F setup, FFT_SPLIT_COMPLEX_F *input, uintptr_t log2n)
- void hisstools_unzip_zero (double *input, FFT_SPLIT_COMPLEX_D *output, uintptr_t in_length, uintptr
 _t log2n)
- void hisstools_unzip_zero (float *input, FFT_SPLIT_COMPLEX_F *output, uintptr_t in_length, uintptr_t log2n)
- void hisstools_unzip_zero (float *input, FFT_SPLIT_COMPLEX_D *output, uintptr_t in_length, uintptr_t log2n)
- void hisstools_unzip (double *input, FFT_SPLIT_COMPLEX_D *output, uintptr_t log2n)
- void hisstools unzip (float *input, FFT SPLIT COMPLEX F *output, uintptr t log2n)
- void hisstools_zip (FFT_SPLIT_COMPLEX_D *input, double *output, uintptr_t log2n)
- void hisstools_zip (FFT_SPLIT_COMPLEX_F *input, float *output, uintptr_t log2n)

14 File Documentation

5.1.1 Function Documentation

5.1.1.1 hisstools_create_setup() [1/2]

```
void hisstools_create_setup (
     FFT_SETUP_D * setup,
     uintptr_t max_fft_log_2 )
```

hisstools_create_setup() creates an FFT setup suitable for double-precision FFTs and iFFTs up to a maximum specified size.

Parameters

setup	A pointer to an uninitialised FFT_SETUP_D.
max_fft_log⇔ _2	The log base 2 of the FFT size of the maimum FFT size you wish to support

Remarks

On return the object pointed to by setup will be intialsed,

5.1.1.2 hisstools_create_setup() [2/2]

```
void hisstools_create_setup (
          FFT_SETUP_F * setup,
          uintptr_t max_fft_log_2 )
```

hisstools_create_setup() creates an FFT setup suitable for single-precision FFTs and iFFTs up to a maximum specified size.

Parameters

setup	A pointer to an uninitialised FFT_SETUP_F.
max_fft_log↔ _2	The log base 2 of the FFT size of the maimum FFT size you wish to support

Remarks

On return the object pointed to by setup will be intialsed,

5.1.1.3 hisstools_destroy_setup() [1/2]

hisstools_destroy_setup() destroys a double-precision FFT setup.

Parameters

```
setup A FFT_SETUP_D (double-precision setup).
```

Remarks

After calling this routine the setup is destroyed.

5.1.1.4 hisstools_destroy_setup() [2/2]

hisstools_destroy_setup() destroys a single-precision FFT setup.

Parameters

```
setup A FFT_SETUP_F (single-precision setup).
```

Remarks

After calling this routine the setup is destroyed.

5.1.1.5 hisstools_fft() [1/2]

hisstools_fft() performs an in-place complex Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_D that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_D structure containing the complex input.
log2n	The log base 2 of the FFT size.

Remarks

The FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned

16 File Documentation

hisstools_fft() performs an in-place complex Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_F that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_F structure containing the complex input.
log2n	The log base 2 of the FFT size.

Remarks

The FFT may be performed with scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned.

uintptr_t log2n)

hisstools_ifft() performs an in-place inverse complex Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_D that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_D structure containing a complex input.
log2n	The log base 2 of the FFT size.

Remarks

The inverse FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned.

```
FFT_SPLIT_COMPLEX_F * input,
uintptr_t log2n )
```

hisstools_ifft() performs an in-place inverse complex Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_D that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_F structure containing a complex input.
log2n	The log base 2 of the FFT size.

Remarks

The inverse FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_F are sixteen byte aligned.

hisstools_rfft() performs an in-place real Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_D that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_D structure containing a complex input.
log2n	The log base 2 of the FFT size.

Remarks

The FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned. Note that the input should first be unzipped into the complex input structure using hisstools_unzip() or hisstools_unzip_zero).

hisstools_rfft() performs an in-place real Fast Fourier Transform.

18 File Documentation

Parameters

setup	A FFT_SETUP_F that has been created to deal with an appropriate maximum size of FFT.		
input	A pointer to a FFT_SPLIT_COMPLEX_F structure containing a complex input.		
log2n	The log base 2 of the FFT size.		

Remarks

The FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned. Note that the input should first be unzipped into the complex input structure using hisstools_unzip() or hisstools_unzip_zero).

hisstools_rifft() performs an in-place inverse real Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_D that has been created to deal with an appropriate maximum size of FFT.
input	A pointer to a FFT_SPLIT_COMPLEX_D structure containing a complex input.
log2n	The log base 2 of the FFT size.

Remarks

The inverse FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned. Note that the output will need to be zipped from the complex output structure using hisstools_zip().

hisstools_rifft() performs an in-place inverse real Fast Fourier Transform.

Parameters

setup	A FFT_SETUP_F that has been created to deal with an appropriate maximum size of FFT	
input	A pointer to a FFT_SPLIT_COMPLEX_F structure containing a complex input.	
log2n	The log base 2 of the FFT size.	erated by Doxygen

Remarks

The inverse FFT may be performed with either scalar or SIMD instructions. SIMD instructions will be used when the pointers within the FFT_SPLIT_COMPLEX_D are sixteen byte aligned. Note that the output will need to be zipped from the complex output structure using hisstools_zip().

20 File Documentation