Digital Signatures

Definition

- Similar to symmetric case we need to care about data integrity
- A triple (Gen, Sign, Ver) is called a (T, ε) -secure signature scheme if

validity for any pair (s, v) generated by Gen and every $P \in \{0,1\}^n$ we have $\mathrm{Ver}_v\big(P,\mathrm{Sign}_s(P)\big) = 1$

security for any Eve with time complexity at most T in the following game:

- Alice chooses (s, v)
- Eve gets black box access to Sign_{s} (she has access to Ver_{v})
- Eve wins if in the end she produces a pair (P, σ) such that
 - (a) P was not queried
 - (b) $\operatorname{Ver}_{v}(P, \sigma) = 1$

Definition (cntd)

- The probability Eve wins $Pr[Eve\ wins] < \varepsilon$
- A scheme is secure if it is (T, ε) -secure for a superpolynomial pair (T, ε)

One-Time Signature Scheme

- Eve is allowed to make only one query and we certify only one bit
- Thus Eve's task is: Given $(b, \operatorname{Sign}_s b)$ find (\overline{b}, σ) such that $\operatorname{Ver}_v(\overline{b}, \sigma) = 1$
- We use a one-way permutation $f: \{0,1\}^n \to \{0,1\}^n$ with $\Pr_{x \in \{0,1\}^n} \left[\operatorname{Eve}(f(x)) = x \right] < \varepsilon(n)$

for any polynomial time Eve and some superpolynomial ϵ

- **Key generation**: Gen chooses $x^0, x^1 \in \{0,1\}^n$ and computes $y^0 = f(x^0), y^1 = f(x^1)$. Then set $s = (x^0, x^1)$ and $v = (y^0, y^1)$.
- Signing: $Sign_s(b) = x^b$
- Verification: $Ver_v(b, x) = 1 \Leftrightarrow f(x) = y^b$

Extending to Longer Messages

Generate a pair for each bit of a message

Signing Messages Longer Than Key Length

- We use a hash function
- A collection of functions $\{h_k\}_{k\in\{0,1\}^*}$ with $h_k:\{0,1\}^{2n}\to\{0,1\}^n$ for $k\in\{0,1\}^n$ is called (T,ε) -collision resistant if the function $(k,x)\mapsto h_k(x)$ is polynomial time computable and for any Eve of time complexity at most T we have $\Pr[\operatorname{Eve}(k)=(x,x') \operatorname{such that } h_k(x)=h_k(x')]<\varepsilon$
- Having a hash function $h_k: \{0,1\}^{2n} \to \{0,1\}^n$ we can construct a function $h_k: \{0,1\}^{n^3} \to \{0,1\}^n$

Signing Messages Longer Than Key Length (cntd)

- We use a signature scheme (Gen', Sign', Ver') that signs n-bit messages with a key of n^2 bits long, and a hash function collection $\{h_k\}$ where for $k \in \{0,1\}^n$ we have $h_k: \{0,1\}^{n^3} \to \{0,1\}^n$
- **Key generation:** Gen uses Gen' to choose a pair (s', v') of the signature scheme for messages of length n, and a key $k \in \{0,1\}^n$ for the hash function.

Public key: (v',k) Private key: s'Note that $n^2+n\ll n^3$ where n^2+n is the key length

- Singing: To sign a message $P \in \{0,1\}^{n^3}$ Sign computes $P' = h_k(P)$ and then $\operatorname{Sign}'_{S'}(P')$
- Verification: $\operatorname{Ver}_{v}(P, \sigma) = 1 \Leftrightarrow \operatorname{Ver}'_{v}(h_{k}(P), \sigma) = 1$

From One-Time to Many-Times Scheme

- Observe that a one-time scheme for signing messages of length m can be converted into a two-time scheme for messages of length m/2. Assume, we have a two-time scheme with n-bit public key for 2n-bit messages
- **Key generation**: (s_0, v_0) initially, (s_i, v_i) at time i v_0, \dots, v_i is the public key, s_0, \dots, s_i the private key
- Signing: At time i to sign a message, first, generate (s_i, v_i) use s_{i-1} to sign v_i and obtain a signature σ_i sign P using s_i to obtain a signature σ the signature is the list $\sigma_1, \ldots, \sigma_i, \sigma$
- **Verification**: Using v_{j-1} check for all j > 0 that σ_j is a signature for v_j and v_j to check that σ is a signature for P

Practical Signature Schemes

Idea: Use a trapdoor permutation To sign a message `decrypt' it

Practical Signature Schemes: Rabin Signatures

- **Key generation**: Choose random $p, q \equiv 3 \pmod{4}$. p, q is a private / signing key $n = p \cdot q$ is a public key
- **Signing**: To sign P compute $\sigma = \sqrt{P}$ (how?) there are 4 square roots of P, choose any.
- Verification: Check that $\sigma^2 = P$
- This scheme is not secure
- Eve: choose a random $X \in \mathbb{Z}_n^*$ and $P = X^2$ given $\sigma = \sqrt{P}$ with probability 1/2 $\sigma \neq \pm X$ then $\gcd(\sigma X, n)$ is a nontrivial divisor of n

Rabin Scheme (cntd)

- A fix: Before signing apply a hash function
- Hope: It is difficult to find P such that $X^2 \equiv h(P) \pmod{n}$
- It does not suffice in general. Collision resistance does not guarantee this property.
 - Indeed, if h is the identity function, it is collision resistant, but does not work
- Or it may be that $h(c \cdot P) = c \cdot h(P)$ for some quadratic residue c

Indeed, Eve can ask for a signature σ of P, and then output $\sqrt{c} \cdot \sigma$ as a signature for $c \cdot P$

Practical Signature Schemes: RSA Scheme

- **Key generation**: choose random primes p,q of length k $n=p\cdot q$. Note that $\varphi(n)=(p-1)(q-1)$ choose e at random from $\mathbb{Z}_{\varphi(n)}^*$ private key $d\equiv e^{-1}(mod\ \varphi(n))$ public key n,e
- Signing: $\sigma \equiv P^d \pmod{n}$
- Verification: check if $\sigma^e \equiv P \pmod{n}$
- Not secure!!!
- Eve can ask for signatures σ_1 and σ_2 for P_1 and P_2 Then return $(P_1 \cdot P_2, \sigma_1 \cdot \sigma_2)$

Digital Signature Standard

- The Digital Signature Algorithm (DSA) is a United States Federal Government standard or FIPS for digital signatures
- It was proposed by the NIST 1991 for use in their Digital Signature Standard (DSS), specified in FIPS 186
- Revised in 1993, 1996, 2000, and 2009
- Uses a cryptographic hash function, SHA-1 or SHA-2
- Uses the discrete logarithm problem as the basis of security
- Key: q is an N-bit prime (N=160, 224, 256) p is an L-bit prime (L=1024, 2048, 3072) such that $q \mid p-1$
 - g a residue of order q modulo p

Digital Signature Standard (cntd)

- X is random with 0 < X < q $Y = g^X \pmod{p}$
- Public key: (p, q, g, Y)Private key: X
- Signing:
 - generate random k, 0 < k < q
 - calculate $r \equiv (g^k \pmod{p}) \pmod{q}$
 - calculate $s \equiv k^{-1}(H(P) + Xr) \pmod{q}$
 - signature is (r,s)

Digital Signature Standard (cntd)

- Verification:
 - calculate $w \equiv s^{-1} \pmod{q}$
 - calculate $u_1 \equiv H(P) \cdot w \pmod{q}$
 - calculate $u_2 \equiv r \cdot w \pmod{q}$
 - calculate $v \equiv ((g^{u_1}Y^{u_2}) \pmod{p}) \pmod{q}$
 - the signature is valid if v = r
- Correctness

How to Prove Security

- The security of practical schemes is not proved
- How could we prove security of such a scheme with a hash function:
 - define sufficiently `crazy' hash functions
 - using factoring / DDH / PRG / OWP construct a sufficiently crazy hash function
 - prove that Rabin / RSA is secure when using this construction
- Cannot make even the first step

Random Oracle Model

- Is our signature scheme secure if we use a random function instead of a hash function?
- It is called the Random Oracle Model
- Then we hopefully can replace a random function with a PRF
- Problem: with PRF we know that Eve cannot distinguish it from a random function when given as a black box.
 - But in this case Eve has the seed / key / description of the PRF
- The Random Oracle Thesis:
 - If a protocol is secure in the random oracle model, then it is secure when instantiated with a "sufficiently crazy" hash function
- Looks true in practical cases
- False in general