MA446 Grupos e Representações - Exercícios P2

Adair Neto

22 de maio de 2023

Lista 2

Lema 1

Questão: $Inn(G) \cong G/Z(G)$.

Resolução:

• Considere a aplicação

$$\theta: \mathbf{G} \longrightarrow \mathrm{Inn}(\mathbf{G})$$
$$g \longmapsto \varphi_g$$

- em que φ_g é a conjugação com g à esquerda:

$$\varphi_g: \mathbf{G} \longrightarrow \mathbf{G}$$

$$h \longmapsto ghg^{-1}$$

- θ é claramente sobrejetivo.
- θ é homomorfismo pois

$$\theta(g_1g_2) = \varphi_{g_1g_2} = \varphi_{g_1}\varphi_{g_2} = \theta(g_1)\theta(g_2)$$

• Temos que o núcleo é dado por

$$\ker(\theta) = \{g \in G \mid \theta(g) = 1_{\text{Inn}(G)}\} = \{g \in G \mid ghg^{-1} = h, \ \forall \ h \in G\} = Z(G)$$

• Assim, pelo teorema de isomorfismos,

$$\frac{G}{\ker(\theta)} = \frac{G}{Z(G)} \cong \operatorname{im}(\theta) = \operatorname{Inn}(G)$$

Lema 2 (Questão 2a P2 2020)

Questão: Se G/Z(G) é cíclico, então G é abeliano.

Resolução:

- Como G/Z(G) é cíclico, existe $t \in G/Z(G)$ tal que G/Z(G) = $\langle tZ(G) \rangle$.
- Sejam $g, h \in G$. Podemos escrever

$$gZ(G) = t^n Z(G), \quad hZ(G) = t^m Z(G)$$

- em que $n, m \in \mathbb{Z}$.
- Por outro lado, existem $t_1, t_2 \in Z(G)$ tais que

$$g = t^n t_1, \quad h = t^m t_2$$

· Portanto,

$$gh = t^n t_1 t^m t_2 = t^n t^m t_1 t_2 = t^m t^n t_2 t_1 = t^m t_2 t^n t_1 = hg$$

• Logo, G é abeliano.

Lema 3

Questão: Se H ◀ N ◀ G, então H ◀ G, em que A ◀ B significa "A é característico em B".

Resolução:

- Seja $\varphi \in Aut(G)$.
- Como N \triangleleft G, então $\varphi(N) = N$.
- Assim, $\varphi \mid_{N} \in Aut(N)$.
- Portanto, como H ◀ N,

$$\varphi(H) = \varphi|_{N}(H) = H$$

• Logo, H ◀ G.

Lema 4 (Relações de Steinberg)

Questão: Mostre que

$$\begin{aligned} e_{ij}(\lambda)e_{ij}(\mu) &= e_{ij}(\lambda + \mu) \\ \left[e_{ij}(\lambda), e_{jr}(\mu) \right] &= e_{ir}(\lambda \mu), & \text{se } i \neq r \\ \left[e_{ij}(\lambda), e_{rs}(\mu) \right] &= \mathrm{I}_n, & \text{se } i \neq s \text{ e } j \neq r \end{aligned}$$

Observe que, da primeira relação, temos que $e_{ii}(\lambda)^{-1} = e_{ii}(-\lambda)$.

Resolução:

0. Seja e_r um elemento da base de K^n .

1.
$$e_{ii}(\lambda)e_{ii}(\mu) = e_{ii}(\lambda + \mu)$$
.

$$\left(e_{ij}(\lambda)e_{ij}(\mu)\right)(e_r) = \left(e_{ij}(\lambda)\right)(e_j + \mu e_i) = (e_j + (\lambda + \mu)e_i) = e_{ij}(\lambda + \mu)(e_r)$$

2. $[e_{ij}(\lambda), e_{jr}(\mu)] = e_{ir}(\lambda \mu)$, se $i \neq r$.

$$\begin{aligned} \left(e_{ij}(\lambda)^{-1}e_{jr}(\mu)^{-1}e_{ij}(\lambda)e_{jr}(\mu)\right)(e_r) &= \left(e_{ij}(-\lambda)e_{jr}(-\mu)e_{ij}(\lambda)e_{jr}(\mu)\right)(e_r) \\ &= \left(e_{ij}(-\lambda)e_{jr}(-\mu)e_{ij}(\lambda)\right)(e_r + \mu e_j) \\ &= \left(e_{ij}(-\lambda)e_{jr}(-\mu)\right)(e_r + \mu e_j + \mu \lambda e_i) \\ &= \left(e_{ij}(-\lambda)\right)(e_r + \mu \lambda e_i) \\ &= e_r + \mu \lambda e_i = e_{ir}(\lambda \mu)(e_r) \end{aligned}$$

3. $[e_{ii}(\lambda), e_{rs}(\mu)] = I_n$, se $i \neq s$ e $j \neq r$

$$(e_{ij}(\lambda)^{-1}e_{rs}(\mu)^{-1}e_{ij}(\lambda)e_{rs}(\mu))(e_r) = (e_{ij}(-\lambda)e_{rs}(-\mu)e_{ij}(\lambda)e_{rs}(\mu))(e_r)$$

$$= (e_{ij}(-\lambda)e_{rs}(-\mu)e_{ij}(\lambda))(e_r)$$

$$= (e_{ij}(-\lambda)e_{rs}(-\mu))(e_r)$$

$$= (e_{ij}(-\lambda))(e_r)$$

$$= e_r$$

Exercício 1

Questão: Classifique todos os grupos abelianos de ordem $2^33^25^2$.

Resolução:

Sabemos que G é isomorfo ao produto direto de G(p) sobre todos os primos p tais que existe g ∈ G \ {1_G} com |g| potência de p, i.e.,

$$G = \bigoplus G(p)$$

• Além disso, cada G(p) tem tipo único $(p^{r_1}, p^{r_2}, \dots, p^{r_k})$ para $r_1 \ge r_2 \ge \dots \ge r_k > 0$. Assim,

$$G(p) \cong \frac{\mathbb{Z}}{p^{r_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_k}\mathbb{Z}}$$

• Portanto, se G é grupo abeliano de ordem 2³3²5², então

$$G = G(2) \oplus G(3) \oplus G(5)$$

- Possibilidades para G(2):
 - Temos que $|G(2)| = 2^3 = 2^{r_1 + \dots + r_k}$.
 - Se $2^{r_1} = 8$, temos k = 1 e $G(2) = \frac{\mathbb{Z}}{8\mathbb{Z}}$.

 - Se $2^{r_1} = 4$, temos $2^{r_2} = 2$, k = 2 e $G(2) = \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}}$. Se $2^{r_1} = 2$, temos $r_1 = r_2 = r_3$, k = 3 e $G(2) = \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}}$.
- Possibilidades para G(3):
 - Temos que $|G(3)| = 3^2 = 3^{r_1 + \dots + r_k}$.
 - Se $3^{r_1} = 9$, temos k = 1 e G(3) = $\frac{\mathbb{Z}}{9\mathbb{Z}}$.
 - Se $3^{r_1} = 3$, temos $r_2 = r_1$, k = 2 e $G(3) = \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}}$.
- Possibilidades para G(5):

 - Temos que $|G(5)| = 5^2 = 5^{r_1 + \dots + r_k}$. Se $5^{r_1} = 25$, temos k = 1 e $G(5) = \frac{\mathbb{Z}}{25\mathbb{Z}}$.
 - Se $5^{r_1} = 5$, temos $r_2 = r_1$, k = 2 e $G(5) = \frac{\mathbb{Z}}{5\mathbb{Z}} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}}$.
- Totalizando, temos $3 \cdot 2 \cdot 2 = 12$ possibilidades.

Exercício 2

Questão: Determine todas as permutações em S_8 que comutam com $(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8)$. Prove que essas permutações formam um subgrupo de S₈ e calcule a ordem desse subgrupo.

Resolução:

- Tome $g \in S_8$.
- Se g comuta com (1 2 3 4) (5 6 7 8), então

$$g(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8) = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8)g$$

· Mas isso equivale a

$$(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8) = g(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8)g^{-1}$$

= $g(1 \ 2 \ 3 \ 4)g^{-1}g(5 \ 6 \ 7 \ 8)g^{-1}$

• Como $g(i_1 \quad i_2 \quad \dots \quad i_m)g^{-1} = (g(i_1) \quad g(i_2) \quad \dots \quad g(i_m))$, temos que

$$(1 \quad 2 \quad 3 \quad 4)(5 \quad 6 \quad 7 \quad 8) = (g(1) \quad g(2) \quad g(3) \quad g(4))(g(5) \quad g(6) \quad g(7) \quad g(8))$$

- Como os dois ciclos têm a mesma ordem, temos duas possibilidades:
 - 1. $(1 \ 2 \ 3 \ 4) = (g(1) \ g(2) \ g(3) \ g(4)) e (5 \ 6 \ 7 \ 8) = (g(5) \ g(6) \ g(7) \ g(8)).$

2.
$$(1 \ 2 \ 3 \ 4) = (g(5) \ g(6) \ g(7) \ g(8)) e (5 \ 6 \ 7 \ 8) = (g(1) \ g(2) \ g(3) \ g(4)).$$

- Note que em cada caso temos quatro possibilidades para o primeiro ciclo e quatro para o segundo. Assim, temos dezesseis possibilidades em cada caso, totalizando trinta e duas possibilidades.
- Por fim, sejam g_1, g_2 permutações em S_8 que comutam com $(1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8)$.
- · Portanto,

$$g_1g_2^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix} (g_1g_2^{-1})^{-1} = g_1(g_2^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix} g_2)g_1^{-1}$$

$$= g_1 \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix} g_1^{-1}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix}$$

• Logo, $g_1g_2^{-1}$ comuta com $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ $\begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix}$ e, assim, temos que essas permutações formam um subgrupo que, conforme vimos, tem ordem trinta e dois.

Exercício 3

Questão: Sejam G um grupo e H um subgrupo característico de G. Prove que se H é cíclico, então todo subgrupo de H é característico e, portanto, normal em G.

- Como H é cíclico, existe $h \in H$ tal que $H = \langle h \rangle$.
- Seja N um subgrupo de H e $\varphi \in Aut(G)$.
- Como N \leq H, temos que N é gerado por h^r para algum $r \in \mathbb{Z}$.
- Assim, cada elemento $a \in \mathbb{N}$ pode ser escrito como $a = h^{nr}$, com $n \in \mathbb{Z}$.
- E como H é um subgrupo característico de G, $\varphi(h) = h^s$, para algum $s \in \mathbb{Z}$.
- · Dessa forma,

$$\varphi(h^{nr}) = (h^{nr})^s = h^{(ns)r} \in \mathbb{N}$$

• Logo, N é subgrupo característico de G e, portanto, normal em G.

Exercício 4

Questão: Sejam G um grupo e H um subgrupo de G tal que [G:H] é finito. Prove que existe um subgrupo N de G tal que $N \triangleleft G$, $N \subseteq H$ e [G:N] é também finito.

Resolução:

- 0. Ideia: vamos definir N como o núcleo da ação por produto de G nas classes laterais de H em G.
- 1. Definir a ação:
 - Seja $X = \{tH\}_{t \in G}$ o conjunto das classes laterais de H em G.
 - Temos que G age sobre X à esquerda via produto, i.e., existe homomorfismo

$$\varphi: G \longrightarrow \operatorname{Perm}(X)$$

$$g \longmapsto \varphi(g)$$

• em que

$$\varphi(g): X \longrightarrow X$$

 $tH \longmapsto g * tH$

- 2. Mostrar que φ é homomorfismo.
 - Dados $g_1, g_2 \in G$,

$$\varphi(g_1g_2)(tH) = (g_1g_2) * tH$$

• Por outro lado,

$$\varphi(g_1)\varphi(g_2)(tH) = \varphi(g_1)(g_2 * tH) = g_1 * (g_2 * tH) = (g_1g_2) * tH$$

- Portanto, φ é homomorfismo.
- 3. Mostrar que cada $\varphi(g)$ é bijetora (i.e. uma permutação de X).
 - Aqui basta notar que $\varphi^{-1}(g)$ dada por $\varphi^{-1}(g)(g*tH) = tH$ é inversa de $\varphi(g)$.
 - · De fato,

$$(\varphi^{-1}(g) \circ \varphi(g))(tH) = \varphi^{-1}(g)(g * tH) = tH$$

• e

$$(\varphi(g) \circ \varphi^{-1}(g))(g * tH) = \varphi(g)(tH) = g * tH$$

4. Calcular o núcleo de φ .

$$\begin{aligned} \ker(\varphi) &= \{g \in G \mid \varphi(g) = 1_{S_X} \} \\ &= \{g \in G \mid g * tH = tH, \ \forall t \in G \} \\ &= \{g \in G \mid t^{-1}gt \in H, \ \forall t \in G \} \\ &= \{g \in G \mid g \in tHt^1, \ \forall t \in G \} \\ &= \bigcap_{t \in G} tHt^{-1} \end{aligned}$$

- 5. Aplicar teorema de isomorfismos para mostrar que $G/\ker(\varphi)$ é finito.
 - · Assim, temos que

$$G/\ker(\varphi) \cong \operatorname{im}(\varphi)$$

- Como $\operatorname{im}(\varphi)$ é um subgrupo de $\operatorname{Perm}(X)$, que é finito (pois X é finito), temos que $\operatorname{im}(\varphi)$ é finito.
- Portanto, $G/\ker(\varphi)$ é finito.

• Denotando N = $\ker(\varphi)$, como o núcleo é normal, temos que N \triangleleft G e

$$[G:N] = \left| \frac{G}{N} \right| = \frac{|G|}{|N|} < \infty$$

- 6. Mostrar que $N \subseteq H$.
 - Como N = $\bigcap_{t \in G} tHt^{-1} \subseteq tHt^{-1}$, tomando t = 1 temos que N $\subseteq H$.

Exercício 5

Questão: Classifique todos os grupos de ordem 22.

Resolução:

- 1. Analisar Syl₁₁(G).
 - Como $22 = 2 \cdot 11$, pelo Teorema de Sylow, temos que

$$n_{11} \equiv 1 \mod 11$$
, $n_{11} \mid |\mathsf{G}| = 2 \cdot 11 \Longrightarrow n_{11} \mid 2 \Longrightarrow n_{11} \in \{1, 2\}$

- Mas $2 \not\equiv 1 \mod 11$ nos dá que $n_{11} = 1$.
- Assim, $N \in Syl_{11}(G)$ é o único 11-Sylow subgrupo de $G \in |N| = 11$.
- Note que, se $g \in G$, então como $gNg^{-1} = N$, $gNg^{-1} \in Syl_{11}(G)$ e N é único, temos que N \triangleleft G.
- 2. Analisar Syl₂(G).
 - Considere agora $P \in Syl_2(G)$.
 - Como |P| = 2 e $N \triangleleft G$, temos $NP \leq G$.
 - Mostremos que a interseção N∩P é trivial.

$$g \in \mathbb{N} \cap \mathbb{P} \implies |g| \mid |\mathbb{N}| = 11$$
 e $|g| \mid |\mathbb{P}| = 2 \implies |g| = 1 \implies g = 1_{\mathbb{G}}$

- Assim, NP é produto semidireto de N por P, i.e. $N \times P$.
- 3. Avaliar o produto semidireto.
 - Note que $N \cong \mathbb{Z}_{11}$ e $P \cong \mathbb{Z}_2$.
 - Queremos encontrar todos os possíveis homomorfismos de grupos

$$\theta: \mathbb{Z}_2 \longrightarrow \operatorname{Aut}(\mathbb{Z}_{11})$$

$$x \longmapsto \theta(x)$$

• Em que

$$\rho := \theta(x) : \mathbb{Z}_{11} \longrightarrow \mathbb{Z}_{11}$$
$$y \longmapsto \rho(y) = y^m, \quad 1 \le m \le 10$$

- Observe que $\mathbb{Z}_2 = \{1, x\}, x^2 = 1 \in \mathbb{Z}_2 = \langle x \rangle$.
- Com isso, temos que

$$\theta(x)^2 = \theta(x^2) = \theta(1_P) = 1_{Aut(N)} = id_N = \rho^2$$

• Como $\rho(y) = y^m$,

$$\rho^2(y) = \rho(\rho(y)) = \rho(y^m) = (y^m)^m = y^{m^2} = y \implies y^{m^2-1} = 1 \implies 11 = |y| \mid m^2 - 1$$

- Assim, $11 \mid (m+1)(m-1)$ e, como 11 é primo, temos que $11 \mid m-1$ ou $11 \mid m+1$.
- Caso 11 | *m* 1:
 - Então m = 1 (porque $1 \le m \le 10$) e $\rho = \mathrm{id}_N$.
 - Com isso,

$$\theta(x) = \rho = \mathrm{id}_{\mathrm{N}} \implies xnx^{-1} = n, \quad \forall \ n \in \mathrm{N}$$

- Logo,

$$G = N \rtimes_{\theta} P = N \times P = \mathbb{Z}_{11} \times \mathbb{Z}_2$$

- Pelo Teorema Chinês dos Restos, $G \cong \mathbb{Z}_{22}$.
- Caso $11 \mid m+1$:
 - Então m = 10 = -1.
 - Temos que $\rho(y) = y^{-1}$ e $\rho \neq id_N$.
 - Neste caso, G não é abeliano (é grupo diedral).

Exercício 6a

Questão: Sejam G um *p*-grupo e H \triangleleft G um subgrupo normal de ordem *p*. Prove que H \subseteq Z(G).

Resolução:

- 1. Construir uma ação de G sobre H.
 - Seja $X = H \setminus \{1_G\}$ e

$$\varphi: G \longrightarrow \operatorname{Perm}(X)$$

$$g \longmapsto \varphi(g)$$

• em que

$$\varphi(g): X \longrightarrow Perm(X)$$

 $x \longmapsto gxg^{-1}$

- 2. Mostrar que $\varphi(g)$ é trivial.
 - Para concluir que $ghg^{-1} = h$, em que $h \in H$, a ideia é mostrar que $\varphi(g) = 1_{S_X}$ para todo $g \in G$.
 - Como $|\varphi(g)|$ divide |Perm(X)|,

$$|\operatorname{Perm}(X)| = |X|! = (p-1)! \implies |\varphi(g)| | (p-1)!$$

- Por outro lado, $|\varphi(g)|$ divide $|g| = p^m$, para algum $m \in \mathbb{Z}$.
- Assim, como mdc $((p-1)!, p^m) = 1$, segue que $|\varphi(g)| = 1$ e, portanto, $\varphi(g) = 1_{S_v}$.
- Logo, $\varphi(g)(x) = gxg^{-1} = x$ e, com isso, $H \subseteq Z(G)$.

Exercício 6b

Questão: Prove que todo *p*-grupo finito não trivial contém um subgrupo normal de índice *p*.

Resolução:

- 1. Veja que é solúvel.
 - Seja G um *p*-grupo finito não trivial.
 - Sabemos que todo *p*-grupo finito é solúvel.
 - Isso significa que existe uma cadeia

$$1_G = G^{(n)} \triangleleft \cdots \triangleleft G' \triangleleft G$$

- em que cada $G'_i \subseteq G'_{i+1}$.
- 2. Mostre que $G' \neq G$.
 - Caso G' = G, temos que $G' = G^{(2)} = \cdots = G^{(n)} = 1_G$, o que contradiz a hipótese de G ser não trivial.
- 3. Considere o quociente G/G' e use a caracterização de grupos abelianos finitos.
 - Assim, como $G' \neq G$ e $G' \triangleleft G$, considere o grupo quociente G/G' e a projeção canônica

$$\pi: G \longrightarrow G/G'$$

- Note que G/G' é *p*-grupo abeliano finito.
- Da caracterização de grupos abelianos finitos, temos que

$$G/G' \cong \frac{\mathbb{Z}}{p^{r_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_k}\mathbb{Z}}$$

- 4. Encontre um subgrupo normal de índice p.
 - Note que $H := (p_{\overline{p^{r_1}\mathbb{Z}}}) \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_k}\mathbb{Z}}$ é subgrupo de $\frac{\mathbb{Z}}{p^{r_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_k}\mathbb{Z}}$ de índice p.
 - Ou seja, H é subgrupo de G/G' de índice p.
 - Logo, $\pi^{-1}(H)$ é subgrupo normal de G de índice p.

Exercício 7

Questão: Seja G um grupo tal que Aut(G) é cíclico. Mostre que G é abeliano.

- 1. Como Aut(G) é cíclico e todo subgrupo de grupo cíclico é cíclico, temos que Inn(G) é cíclico.
- 2. Note que $Inn(G) \cong G/Z(G)$ (Lema 1).
- 3. Assim, G/Z(G) é cíclico e, portanto, G é abeliano (Lema 2).

Questão: Achar as ordens dos elementos do grupo $Aut(S_3)$.

Resolução:

- Lembre que S_3 é gerado por $\begin{pmatrix} 1 & 2 \end{pmatrix}$ e $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.
- Assim temos os seguintes elementos em S₃:
 - 1. 1_{S_2} , de ordem 1.
 - 2. (1 2), de ordem 2.
 - 3. (1 2 3), de ordem 3.
 - 4. $(1 \ 2 \ 3)^2 = (1 \ 3 \ 2)$, de ordem 3.
 - 5. $(1 \ 2)(1 \ 2 \ 3) = (2 \ 3)$, de ordem 2.
 - 6. $(1 \ 2 \ 3)(1 \ 2) = (1 \ 3)$, de ordem 2.
- Como todo homomorfismo $\varphi: S_3 \longrightarrow S_3$ é completamente determinado por $\varphi((1 \ 2))$ e $\varphi((1 \ 2 \ 3))$.
- E como, se φ é automorfismo, φ preserva a ordem dos elementos.
- Isso nos dá no máximo três opções para $\varphi((1 \ 2))$ e no máximo duas para $\varphi((1 \ 2 \ 3))$. Ou seja, temos no máximo seis possibilidades para φ .
- Como $Z(S_3)$ é trivial e $Inn(G) \cong G/Z(G)$, temos que $Inn(S_3) \cong S_3$.
- Por fim,

$$6 = |S_3| = |Inn(S_3)| \le |Aut(S_3)| \le 6 \implies |Aut(S_3)| = 6$$

• Logo, Aut(S₃) tem elementos de ordem um, dois e três.

Exercício 9

Questão: Seja G um *p*-grupo finito, onde *p* é primo, e $N \le G$ tal que [G:N] = p. Demonstre que $N \triangleleft G$.

Resolução:

- 1. Listar classes laterais.
 - Seja X o conjunto de classes laterais de N em G.
 - Como [G:N] = p, temos

$$X = \{g_1 N, g_2 N, \dots, g_n N\}$$

- 2. Agir via produto.
 - Temos que G age sobre X à esquerda via produto:

$$g(g_i * N) = (gg_i) * N$$

Assim, existe

$$\varphi: G \longrightarrow \operatorname{Perm}(X)$$
 $g \longmapsto \varphi(g)$

• em que

$$\varphi(g): X \longrightarrow X$$

 $g_i N \longmapsto (gg_i) N$

- 3. Mostrar que $\varphi(g)$ é permutação e φ é homomorfismo (ver exercício 4).
- 4. Aplicar Teorema de Isomorfismos.
 - Pelo Teorema de Isomorfismos,

$$\frac{\mathrm{G}}{\ker(\varphi)} \cong \mathrm{im}(\varphi)$$

- é um *p*-grupo.
- 5. Analisar ordem.
 - Note que

$$|\operatorname{im}(\varphi)| | |\operatorname{Perm}(X)| = p!$$

- Como $|\operatorname{im}(\varphi)|$ é potência de p, isso implica que $|\operatorname{im}(\varphi)| = p$.
- Ou seja, $[G : \ker(\varphi)] = p$.
- 6. Mostrar que $N = \ker(\varphi)$.

- Tome $g \in \ker(\varphi)$.
- Então

$$gg_1N = \varphi(g)(g_1N) = g_1N$$

- Note que podemos tomar um dos g_i N como sendo igual a N.
- Assim, tomamos, s.p.g, $g_1 = 1_G$.
- Portanto,

$$gN = N \implies \ker(\varphi) \subseteq N$$

· Por outro lado,

$$p = [G : \ker(\varphi)] = [G : N][N : \ker(\varphi)] = p[N : \ker(\varphi)]$$

- O que implica que $[N : \ker(\varphi)] = 1$ e, portanto, $N = \ker(\varphi)$.
- Como N é núcleo de um homomorfismo, temos que N ⊲ G.

Exercício 10

Questão: Seja G um *p*-grupo não abeliano de ordem p^3 . Demonstre que Z(G) = G'.

Resolução:

- Como G é não abeliano, temos que $Z(G) \neq G$.
- E como G é *p*-grupo finito, temos que $Z(G) \neq 1_G$.
- Esses dois fatos implicam que $|G/Z(G)| \notin \{1, p^3\}$.
- Mas

$$|G/Z(G)| | |G| \Longrightarrow |G/Z(G)| \in \{p, p^2\}$$

- Se |G/Z(G)| = p, então G/Z(G) é cíclico.
- Assim, G é abeliano, o que contradiz nossa hipótese.
- Portanto, $|G/Z(G)| = p^2$.
- Isso implica que G/Z(G) é abeliano.
- Portanto, $1 \subseteq G' \subseteq Z(G)$.
- Note que G' = 1 equivale a G ser abeliano.
- Assim,

$$|Z(G)| = \frac{|G|}{\left|\frac{G}{Z(G)}\right|} = \frac{p^3}{p^2} = p$$

• E

$$1 \neq |G'| \mid |Z(G)| = p \implies |G'| = |Z(G)|$$

• Logo, G' = Z(G).

Exercício 11

Questão: Mostrar que A₄ é um grupo solúvel.

Resolução:

· Vamos mostrar que

$$1 \triangleleft V \triangleleft A_4$$

- em que:
 - V é o grupo de Klein dado por

$$V = \{(1), (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$$

- $A_4/V \cong \mathbb{Z}_3.$
- $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- Mostremos que $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ e que $V \triangleleft S_4$.
 - Observe que V é formado pelos elementos de S₄ que são produtos de 2-ciclos disjuntos e pela identidade.
 - Assim, $(1 \ 2)(3 \ 4)$ e $(1 \ 3)(2 \ 4)$ geram V e como eles possuem ordem dois, segue que $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - Tomando $\sigma \in S_4$ e $i, j, k, l \in \{1, 2, 3, 4\}$ temos

$$\sigma \begin{pmatrix} i & j \end{pmatrix} \begin{pmatrix} k & l \end{pmatrix} \sigma^{-1} = \sigma \begin{pmatrix} i & j \end{pmatrix} \sigma^{-1} \sigma \begin{pmatrix} k & l \end{pmatrix} \sigma^{-1} = \begin{pmatrix} \sigma(i) & \sigma(j) \end{pmatrix} \begin{pmatrix} \sigma(k) & \sigma(l) \end{pmatrix} \in V$$

- Logo, $V \triangleleft S_4$ e, portanto, $V \triangleleft A_4$.
- Por fim, mostremos que $A_4/V \cong \mathbb{Z}_3$.
 - Note que

$$\left| \frac{A_4}{V} \right| = \frac{|A_4|}{|V|} = \frac{12}{4} = 3$$

- Como 3 é primo, temos que A₄/V é cíclico, portanto abeliano, e de ordem 3.
- Assim, como V \triangleleft A₄, V é solúvel (pois V é abeliano) e A₄/V é solúvel, temos que A₄ é solúvel.

Questão: Seja G um grupo finito com H \triangleleft G, |H| = n, [G : H] = m e mdc(n, m) = 1. Mostre que H é o único subgrupo de G de ordem n e então H é subgrupo característico.

Resolução:

- 1. Aplicar Teorema de Isomorfismos.
 - Suponha, por contradição, que existe um outro subgrupo K de G tal que |K| = n.
 - Como H ⊲ G, temos que G/H é grupo.
 - Considere a projeção canônica $\pi: G \longrightarrow G/H$.
 - Pelo Teorema de Isomorfismos,

$$\pi(K) = \frac{KH}{H} \cong \frac{K}{H \cap K}$$

- 2. Analisar a ordem de $\pi(K)$.
 - Note que

$$|\pi(K)| | |K| = n$$
 e $|\pi(K)| | |G/H| = m$

- Mas mdc(n, m) = 1 implica que $|\pi(K)| = 1$ e, com isso, $\pi(K) = 1_{G/H}$.
- Ou seja, $\pi(K) \subseteq \ker(\pi) = H$.
- Como |K| = |H|, segue que K = H.
- 3. Mostrar que H é subgrupo característico.
 - Considere $\varphi \in Aut(G)$.
 - Aplicando φ a H temos que $|\varphi(H)| = |H|$.
 - Portanto, $\varphi(H) = H e H é subgrupo característico.$

Exercício 13a

Questão: Seja G um grupo de ordem 30. Mostre que cada Sylow 3-subgrupo e Sylow 5-subgrupo de G é normal.

- 1. Análise prévia.
 - · Pelo Teorema de Sylow,

$$n_3 \equiv 1 \mod 3$$
, $n_3 \mid |G| = 30 \Longrightarrow n_3 \mid 10 \Longrightarrow n_3 \in \{1, 10\}$

$$n_5 \equiv 1 \mod 5$$
, $n_5 \mid |G| = 30 \Longrightarrow n_3 \mid 6 \Longrightarrow n_5 \in \{1, 6\}$

- 2. Caso $n_3 = 10$ e $n_5 = 6$.
 - Neste caso,

$$Syl_3(G) = \{P_1, \dots, P_{10}\}, \quad Syl_5(G) = \{Q_1, \dots, Q_6\}, \quad |P_i| = 3, |Q_i| = 5$$

- Como 3 é primo, $P_i \cap P_j = 1_G$ para $i \neq j$.
- Analogamente, como 5 é primo, $Q_i \cap Q_j = 1_G$ para $i \neq j$.
- Contemos os elementos de

$$\left(\bigcup_{1\leq i\leq 10}^{\cdot} (P_i\setminus 1_G)\right) \bigcup \left(\bigcup_{1\leq j\leq 6}^{\cdot} (Q_j\setminus 1_G)\right)$$

- Temos $2 \cdot 10$ elementos de ordem 3 e $6 \cdot 4$ elementos de ordem 5.
- Mas 20 + 24 > 30 = |G|, o que é impossível.
- 3. Caso $n_3 = 1$ e $n_5 = 6$.
 - Como P é o único 3-Sylow subgrupo de G, temos P ⊲ G.

- E temos $Syl_5(G) = \{Q_1, ..., Q_6\}, com |Q_i| = 5.$
- Assim, PQ ⊲ G e o produto é semi-direto.
- Como $\operatorname{mdc}(|P|, |Q|) = 1$, temos $P \cap Q = 1_G$ e, assim, |PQ| = |P||Q|.

- Portanto,

$$Q_i \subseteq T \implies Syl_5(G) = Syl_5(T)$$

Como

$$m_5 = |\text{Syl}_5(T)|, \quad m_5 \mid |T|, \quad m_5 \equiv 1 \mod 5$$

Temos que

$$6 = n_5 = m_5 \mid |T| = 15 \implies 6 \mid 15$$

- o que é uma contradição.
- 4. Caso $n_3 = 10$ e $n_5 = 1$.
 - Pela mesma conta do caso anterior, temos que este caso é impossível.
- 5. Logo, $n_3=1$ e $n_5=1$ e cada Sylow 3-subgrupo e Sylow 5-subgrupo de G é normal.

Exercício 13b

Questão: Seja G um grupo de ordem 30. Mostre que existe um subgrupo $N \triangleleft G$ tal que [G:N] = 2.

Resolução:

- Pela parte anterior, temos que $P \in Syl_3(G)$ e $Q \in Syl_5(G)$ são únicos.
- Como P \triangleleft G e Q \triangleleft G, tomamos N = PQ.
- Usando que P e Q são cíclicos, $P \cong \mathbb{Z}_3$ e $Q \cong \mathbb{Z}_5$.
- E dado que mdc(|P|, |Q|) = 1, temos $P \cap Q = 1$.
- Assim, pelo Teorema Chinês dos Restos, $N = P \times Q = \mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{15}$.
- Como |N| = 15, temos que [G:N] = 2 pelo Teorema de Lagrange.

Exercício 13c

Questão: Seja G um grupo de ordem 30. Classifique os grupos de ordem 30.

Resolução:

- 1. Escrever G como produto semi-direto.
 - Escrevemos G = NS em que S \in Syl₂(G) e S = $\langle x \rangle$. Como |S| = 2, temos que |x| = 2.
 - Como mdc(|N|, |S|) = mdc(15, 2) = 1 (dos itens anteriores), temos que $N \cap S = 1_G$. E como $N \triangleleft G$, segue que $G = N \rtimes S$.
- 2. Caracterizar o produto semi-direto.
 - · Consideremos o homomorfismo

$$\varphi: S \longrightarrow Aut(N)$$

 $x \longmapsto \varphi(x)$

• Em que

$$\varphi(x): \mathbb{N} \longrightarrow \mathbb{N}$$
$$g \longmapsto xgx^{-1}$$

- Note que $x^2 = 1$ implica que $\varphi(x)^2 = \varphi(x^2) = \varphi(1_G) = \mathrm{id}_N$.
- Queremos encontrar os elementos de $Aut(\mathbb{Z}_{15})$ de ordem dois.
- Se $|\varphi(x)| = 1$, então $\varphi(x) = \mathrm{id}_N$. Assim, $G = N \times S = N \times S \cong \mathbb{Z}_{15} \times \mathbb{Z}_2 = \mathbb{Z}_{30}$.
- Denotemos $\theta = \varphi(x)$. Se $|\theta| = 2$, então

$$\text{Syl}_3(\mathbb{Z}_{15}) = {\mathbb{Z}_3}, \quad \text{Syl}_5(\mathbb{Z}_{15}) = {\mathbb{Z}_5}$$

- Assim, $\mathbb{Z}_{15} = \mathbb{Z}_3 \times \mathbb{Z}_5$ e $\theta(\mathbb{Z}_3) \in \text{Syl}_3(\mathbb{Z}_{15})$. Isso implica que $\theta(\mathbb{Z}_3) = \mathbb{Z}_3$. Analogamente, temos que
- Consideremos as restrições $\theta_1 = \theta \mid_{\mathbb{Z}_3} e \; \theta_2 = \theta \mid_{\mathbb{Z}_5}$. Assim, $\theta_1 \in \operatorname{Aut}(\mathbb{Z}_3) e \; \theta_2 \in \operatorname{Aut}(\mathbb{Z}_5)$.

- Como \mathbb{Z}_3 é cíclico, $\mathbb{Z}_3 = \langle y \rangle = \{1, y, y^2\}$. Portanto, $\theta_1 = \mathrm{id}_{\mathbb{Z}_3}$ ou $\theta_1(y) = y^2$, em que $\theta_1 = \mathrm{id}_{\mathbb{Z}_3}$.
- E como \mathbb{Z}_5 é cíclico, $\mathbb{Z}_5 = \langle b \rangle = \{1, b, b^2, b^3, b^4\}$. Assim, $\theta_2 = \mathrm{id}_{\mathbb{Z}_5}$ ou $\theta_2(b) = b^i$, em que $\theta_2^2(b) = b^{i^2}$ e $1 \le i \le 4$.
- Dessa forma, temos que $|\theta_i| \in \{1,2\}$, o que equivale a $|\theta| \in \{1,2\}$.
- Como $b = \theta_2^2(b)$, $b^{i^2} = b \iff i^2 \equiv 1 \mod 5$. Portanto, $i \equiv \pm 1 \mod 5$. Assim, $i \equiv -1 \mod 5$.
- E temos que $\theta_1 = \mathrm{id}_{\mathbb{Z}_3}$ ou $\theta_1(y) = y^{-1}$ e $\theta_2 = \mathrm{id}_{\mathbb{Z}_5}$ ou $\theta_2(b) = b^{-1}$.
- 3. Listar possibilidades.
 - · Com isso, temos as seguintes possibilidades:
 - 1. Se $\theta_1=\mathrm{id}_{\mathbb{Z}_3}$ e $\theta_2=\mathrm{id}_{\mathbb{Z}_5}$, então $\theta=\mathrm{id}$ e $G=\mathbb{Z}_{30}$ é grupo abeliano.
 - 2. Se $\theta_1 = \mathrm{id}_{\mathbb{Z}_3}^{-3}$ e $\theta_2 \neq \mathrm{id}_{\mathbb{Z}_5}^{-3}$, então $\mathrm{Z}(\mathrm{G}) = \mathbb{Z}_3$.
 - 3. Se $\theta_1 \neq \mathrm{id}_{\mathbb{Z}_3}$ e $\theta_2 = \mathrm{id}_{\mathbb{Z}_5}$, então $\mathrm{Z}(\mathrm{G}) = \mathbb{Z}_5$.
 - 4. Se $\theta_1 \neq \mathrm{id}_{\mathbb{Z}_3}$ e $\theta_2 \neq \mathrm{id}_{\mathbb{Z}_5}$, então $\mathrm{Z}(\mathsf{G}) \cap \mathbb{Z}_{15} = 1_{\mathsf{G}}$.
 - Note que nenhum dos quatro casos acima são isomorfos.

Questão: Seja G um grupo de ordem 175 e P um Sylow 7-subgrupo de G. Mostre que $P \subseteq Z(G)$.

Resolução:

- 1. Aplicar Teorema de Sylow.
 - Note que $|G| = 175 = 5^27$.
 - Pelo Teorema de Sylow, n_7 , o número de Sylow 7-subgrupo de G é tal que

$$n_7 \equiv 1 \mod 7$$
 e $n_7 \mid 5^2 7$

- Assim, $n_7 \mid 5^2 e n_7 \in \{1, 5, 5^2\}.$
- Temos que $n_7 = 1$ (pois $n_7 \equiv 1 \mod 7$).
- Ou seja, existe um único $P \in Syl_7(G)$ e, portanto $P \triangleleft G$.
- 2. Mostrar que $P \subseteq Z(G)$.
 - · Consideremos o homomorfismo

$$\varphi: G/P \longrightarrow Aut(P)$$

$$gP \longmapsto \varphi(gP)$$

• em que $\varphi(gP)$ é a conjugação com g à esquerda:

$$\varphi(gP): P \longrightarrow P$$

$$h \longmapsto ghg^{-1}$$

- Mostrar que φ é um homomorfismo bem-definido (ver exercício 4).
- Como |P| = 7 é cíclico, temos que existe $x \in P$ tal que $P = \langle x \rangle$.
- Assim, todo automorfismo θ de P pode ser escrito como $\theta(x) = x^i$, com $i \in \{1, 2, 3, 4, 5, 6\}$.
- Ou seja, |Aut(P)| = 6.
- Como $\operatorname{mdc}(|G/P|, |\operatorname{Aut}(P)|) = \operatorname{mdc}(25, 6) = 1$, temos que $\varphi(gP) = \operatorname{id}_{\operatorname{Aut}(P)}$.
- Isto é, $ghg^{-1} = h$ para todo $h \in P$ e $g \in G$.
- Logo, $P \subseteq Z(G)$.

Exercício 15a

Questão: Sejam $p \in q$ primos, p < q, e G um grupo de ordem pq. Mostre que se $(q-1)/p \notin \mathbb{Z}$, então G é cíclico.

- 1. Aplicar Teorema de Sylow para q.
 - · Sabemos que

$$n_q \mid |\mathsf{G}| = pq$$
 e $n_q \equiv 1 \mod q$

- Assim, $n_q \in \{1, p\}$ e q divide $n_q 1$. Portanto, $n_q \neq p$.
- Como $n_q = 1$, temos um único q-subgrupo de Sylow Q de G.

- Como |Q| = q é primo, temos que $Q \cong \mathbb{Z}_q$.
- 2. Aplicar Teorema de Sylow para p.
 - Seja $P \in Syl_p(G)$.
 - Como |P| = p, temos $P \cong \mathbb{Z}_p$.
- 3. Mostrar que o produto é semi-direto.
 - Note que $|P \cap Q|$ divide |P| e Q. Portanto, $|P \cap Q| = 1$.
 - Como Q \triangleleft G e |QP| = pq = |G|, temos $G = Q \rtimes P$.
- 4. Analisar produto semi-direto.
 - Observe que P age sobre Q permutando os elementos de Q \ $\{1_G\}$.
 - Como P e Q são cíclicos, escreva $P = \langle y \rangle$ e $Q = \langle x \rangle$.

 - Assim, $yxy^{-1}=x^i$ para algum $i\in\{1,2,\ldots,q-1\}$. Como $y^p=1_G$, temos que $x=y^pxy^{-p}=x^{i^p}$. Portanto, q divide i^p-1 .
 - Considere o grupo \mathbb{Z}_q^* , que sabemos ter ordem q-1.
 - Como $q \mid i^p 1$, temos que $i^p = 1$ em \mathbb{Z}_q^* .
 - Portanto, |i| | p. Mas p é primo e, assim, $|i| \in \{1, p\}$.
 - Caso |i|=1, então i=1 e G é abeliano. Neste caso, pelo Teorema Chinês dos Restos, $G\cong P\times Q$ é cíclico.
 - Caso |i|=p, então i gera um subgrupo de \mathbb{Z}_q^* de ordem p. Portanto, $p\mid |\mathbb{Z}_q^*|=q-1$, o que contradiz nosso enunciado.

Exercício 15b

Questão: Sejam $p \in q$ primos, p < q, e G um grupo de ordem pq. Mostre que se $(q-1)/p \in \mathbb{Z}$, então a menos de isomorfismo existe único G não abeliano.

Resolução:

- 1. Notar que existe subgrupo H de ordem *p*.
 - Se $(q-1)/p \in \mathbb{Z}$, então como \mathbb{Z}_q^* é um grupo cíclico, existe um único $H \leq \mathbb{Z}_q^*$ de ordem p, que também é cíclico.
- Suponha que i₁, i₂ ∈ H com |i₁| = p = |i₂|. Então i₁ e i₂ são geradores de H.
 Mostrar que G₁ = Q × P, com ação de P sobre Q dada por yxy⁻¹ = x^{i₁}, e G₂ = Q × P, com ação dada por yxy⁻¹ = x^{i₂}, são isomorfos.
 - Usando i_2 como gerador de H, temos que $i_1=i_2^a$ para algum $a\in\{1,2,\ldots,p-1\}$, o que equivale a $i_1\equiv(i_2)^a$
 - Defina $\varphi: G_1 \longrightarrow G_2$ tal que $\varphi|_Q = \mathrm{id}_Q$ e $\varphi(y^j) = y^{ja}$.
 - Com isso,

$$\varphi(x^i y^j) = x^i y^{aj}$$

- Mostre que φ é homomorfismo de grupos.
 - Tomemos $0 \le a_1, a_2 \le q 1$ e $0 \le b_1, b_2 \le p 1$.
 - Temos o seguinte produto em G₁:

$$(x^{a_1}y^{b_1})(x^{a_2}y^{b_2}) = x^{a_1}y^{b_1}x^{a_2}y^{-b_1}y^{b_1+b_2} = x^{a_1}(y^{b_1}xy^{-b_1})^{a_2}y^{b_1+b_2}$$
$$= x^{a_1}(x^{i_1^{b_1}})^{a_2}y^{b_1+b_2} = x^{a_1+a_2i_1^{b_1}}y^{b_1+b_2}$$

- Analogamente, em G₂:

$$(x^{a_1}y^{b_1})(x^{a_2}y^{b_2}) = x^{a_1+a_2i_2^{b_1}}y^{b_1+b_2}$$

- Assim, em G₁,

$$\varphi((x^{a_1}y^{b_1})(x^{a_2}y^{a_2})) = \varphi(x^{a_1+a_2l_1^{b_1}}y^{b_1+b_2}) = x^{a_1+a_2l_1^{b_1}}y^{(b_1+b_2)a}$$

- E em G₂,

$$\varphi((x^{a_1}y^{b_1}))\varphi((x^{a_2}y^{b_2})) = (x^{a_1}y^{ab_1})(x^{a_2}y^{ab_2}) = x^{a_1 + a_2 l_2^{ab_1}}y^{ab_1 + ab_2}$$
$$= \varphi((x^{a_1}y^{b_1})(x^{a_2}y^{a_2}))$$

- pois $i_1 \equiv (i_2)^a \mod q$ implica que $x^{a_1 + a_2 i_2^{ab_1}} = x^{a_1 + a_2 i_1^{ab_1}}$ em Q.
- Claramente, φ é bijetivo. Assim, φ é isomorfismo de grupos.

Questão: Exiba os Sylow 7-subgrupos de S₁₄, justificando a sua resposta.

Resolução:

- Seja $P \in Syl_7(S_{14})$.
- Como $|S_{14}| = 14!$, temos $|P| = 7^2 = p^2$, p = 7 primo, o que implica que P é abeliano.
- Da classificação de grupos abelianos finitos, temos duas possibilidades: ou $P = \mathbb{Z}_p \times \mathbb{Z}_p$ ou $P = \mathbb{Z}_{p^2}$.
- Escreva

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$
 e $b = \begin{pmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 \end{pmatrix}$

- Como |a| = |b| = p, temos que $\langle a, b \rangle$ é abeliano e, portanto, isomorfo a $\mathbb{Z}_7 \times \mathbb{Z}_7$.
- Como cada par de p-Sylow subgrupos são conjugados, temos que existe $\sigma \in S_{14}$ tal que

$$P = \langle \sigma a \sigma^{-1}, \sigma b \sigma^{-1} \rangle \in Syl_7(S_{14}), \quad \langle a, b \rangle = \langle a \rangle \times \langle b \rangle, \quad ab = ba$$

Exercício 17a

Questão: Demonstre que os subgrupos de Z_i(G) são característicos, i.e., invariantes sobre todos os automorfismos de G.

Resolução:

- 0. Procedemos por indução em i.
- 1. Para i = 0:
 - Temos que $Z_0(G) = 1_G$ e assim $\varphi(1_G) = 1_G \subseteq Z_0(G)$ para todo automorfismo φ de G.
- 2. Para i = 1:
 - Tomemos $\varphi \in Aut(Z(G)), z \in Z(G)$ e $g \in G$.
 - Queremos mostrar que $\varphi(Z(G)) \subseteq Z(G)$, i.e., $\varphi(z)g = g\varphi(z)$
 - Como φ é automorfismo,

$$\varphi(z)g = \varphi(z)\varphi(\varphi^{-1}(g)) = \varphi(z\varphi^{-1}(g)) = \varphi(\varphi^{-1}(g)z) = \varphi(\varphi^{-1}(g))\varphi(z) = g\varphi(z)$$

- Logo, $\varphi(Z(G)) = Z(G)$.
- 3. Passo indutivo: suponha que $Z_i(G)$ é característico.
 - Pela hipótese de indução, temos que se $\varphi(G) \in Aut(G)$, então $\varphi(Z_i(G)) = Z_i(G)$.
 - Definimos $\tilde{\varphi} \in \text{Aut}(G/Z_i(G))$ como $\tilde{\varphi}(gZ_i(G)) = \varphi(g)Z_i(G)$.
 - Mostrar que $\tilde{\varphi}$ é bem definido e é automorfismo.
 - · Com isso.

$$\frac{\varphi(Z_{i+1}(G))}{Z_i(G)} = \tilde{\varphi}\left(Z\left(\frac{G}{Z_i(G)}\right)\right) = Z\left(\frac{G}{Z_i(G)}\right) = \frac{Z_{i+1}(G)}{Z_i(G)}$$

Logo,

$$\varphi(\mathsf{Z}_{i+1}(\mathsf{G})) = \mathsf{Z}_{i+1}(\mathsf{G})$$

Exercício 17b

Questão: Demonstre que os subgrupos $G^{(m)}$ são característicos.

- 0. Procedemos por indução em m.
- 1. Para m = 1:
 - Temos que $G^{(1)} = G'$.
 - Seja $[a,b] \in G'$ arbitrário.
 - Se $\varphi \in Aut(G)$, então

$$\varphi([a,b]) = [\varphi(a), \varphi(b)]$$

- Logo, pela arbitrariedade de [a,b], temos que $\varphi(G') \subseteq G'$.
- 2. Passo indutivo: suponha que G^(m) é subgrupo característico de G.
 Note que G^(m+1) = (G^(m))' é subgrupo característico de G^(m), pelo caso m = 1.
 Então, pelo Lema 3, como G^(m+1) é subgrupo característico de G^(m) e G^(m) é subgrupo característico de G, então $G^{(m+1)}$ é subgrupo característico de G.

Questão: Seja $G = \{A = (a_{ij}) \in M_n(\mathbb{R}) \mid a_{ij} = 0 \text{ se } i > j, \ a_{ij} = 1 \text{ se } i = j\}$. Demonstre que G é nilpotente. **Resolução:**

• Ilustrando com n = 4:

$$\begin{split} Z_0(G) &= 1_G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad Z_1(G) = Z(G) = \begin{pmatrix} 1 & 0 & 0 & * \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \\ Z_2(G) &= \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad Z_3(G) = G = \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

- Sabemos de Álgebra Linear que, se A ∈ G então A I_n é nilpotente (onde $I_n = 1_G$ é a matriz identidade).
- Sabemos que G é nilpotente se, e somente se, existe uma cadeia

$$1_G = K_0 \le K_1 \le \cdots \le K_m = G$$

- tal que $[K_{i+1}, G] \subseteq K_i$ para todo i.
- Defina

$$K_i = \{A \in G \mid (A - I_n)^{i+1} = 0_n\}$$

- Note que $K_0 = I_n$ e $K_{n-1} = G$.
- Mostrar que $K_i \triangleleft G$ para todo i.
 - Seja A ∈ G e B ∈ K_i .

$$(ABA^{-1} - I_n)^{i+1} = (A(B - I_n)A^{-1})^{i+1} = A(B - I_n)^{i+1}A^{-1} = 0_n$$

- Logo, ABA^{-1} ∈ K_i .
- Mostrar que $[K_{r+1}, G] \le K_r$.
 - − Observe que cada K_r é gerado pelas matrizes elementares $e_{ij}(\lambda)$ com $j \ge (n-r) + i$ e $\lambda \in \mathbb{R}$.
 - Assim, basta considerar os geradores $e_{ij}(\lambda)$ de K_{r+1} , em que $j \ge (n (r+1)) + i$, e os geradores $e_{st}(\mu)$ de $K_{n-1} = G$, em que $j \ge 1 + i$.
 - Das relações de Steinberg (Lema 4), temos:

$$\begin{split} [e_{ij}(\lambda), e_{jr}(\mu)] &= e_{ir}(\lambda \mu), & \text{se } i \neq r \\ [e_{ij}(\lambda), e_{rs}(\mu)] &= \mathrm{I}_n, & \text{se } i \neq s \text{ e } j \neq r \end{split}$$

- Portanto,

$$[e_{ij}(\lambda), e_{st}(\mu)] = \begin{cases} e_{it}(\lambda \mu), & \text{se } j = s, \ i \neq t \\ I_n, & \text{se } j \neq s, \ i \neq t \end{cases}$$

- Observe que isso nos dá justamente as matrizes que geram K_r . Logo, $[K_{r+1}, G] \leq K_r$.

Exercício 19

Questão: Seja $G = \{A = (a_{ij}) \in M_n(\mathbb{R}) \mid a_{ij} = 0 \text{ se } i > j\}$. Demonstre que G é solúvel. **Resolução:**

• Ilustrando com n = 4:

$$\begin{aligned} G_4 &= \mathbf{1}_G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 1 & 0 & 0 & * \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ G_1 &= \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad G_0 = G = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix} \end{aligned}$$

- Note que G/G₄ é isomorfo ao subgrupo das matrizes diagonais:

$$G/G_4 \cong \left\{ \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \in M_4(\mathbb{R}) \right\} \cong \mathbb{R}^* \times \mathbb{R}^* \times \mathbb{R}^* \times \mathbb{R}^*$$

- Além disso, $G_1 \cong \mathbb{R}$ com a operação adição, $G_2/G_1 \cong \mathbb{R}^2$ também com a operação adição.
- · Com isso, temos uma cadeia

$$1_G = G_1 \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

Questão 1a (P2 2021)

Questão: Enuncie o Teorema de Sylow.

Resolução:

- 0. Seja G um grupo finito e p primo tal que $p \mid |G|$.
- 1. Se $H \le G$ tal que |H| é potência de p, então existe $P \in Syl_p(G)$ tal que $H \subseteq P$.
- 2. Cada par de *p*-subgrupos de Sylow de G são conjugados.
- 3. Se n_p é o número de p-subgrupos de Sylow de G, então $n_p \equiv 1 \mod p$ e $n_p \mid |G|$.

Questão 1b1 (P2 2021)

Questão: Seja G um grupo de ordem 68. Mostre que existe um único 17-Sylow subgrupo P de G. Descreva G como produto semidireto G = PQ definindo o grupo Q. A quais grupos Q pode ser isomorfo?

Resolução:

- 1. Existe um único 17-Sylow subgrupo P de G.
 - Note que $68 = 2^2 \cdot 17$.
 - Pelo Teorema de Sylow,

$$n_{17} \equiv 1 \mod 17$$
 e $n_{17} \mid 68 \implies n_{17} \mid 2^2$

- Assim, $n_{17} \in \{1, 2, 4\}$.
- Mas $2 \not\equiv 1 \mod 17$ e $4 \not\equiv 1 \mod 17$. Portanto, $n_{17} = 1$.
- Assim, só existe um 17-Sylow subgrupo de G, que denotaremos por P, e temos que P

 G.
- Como P tem ordem prima, temos que P é cíclico e, assim, $P \cong \mathbb{Z}_{17}$.
- 2. Descreva G como produto semidireto G = PQ.
 - Seja Q ∈ Syl₂(G).
 - Note que $P \cap Q$ é trivial. De fato,

$$g \in P \cap Q \implies |g| \mid |P| = 17$$
 e $|g| \mid |Q| = 4 \implies |g| = 1$

- Assim, o produto PO é semidireto.
- Além disso, $|Q||P| = 2^2 \cdot 17 = |G|$. Ou seja, $G = P \times Q$.
- 3. A quais grupos Q pode ser isomorfo?
 - Se $n_2 = 1$, então Q \triangleleft G e o produto G = P \times Q é direto.
 - Nesse caso, ...
 - Se $n_2 = 17, \dots$
 - Caso Q cíclico, então Q $\cong \mathbb{Z}_4$ ou Q $\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Questão 1b2 (P2 2021)

Questão: Mostre que G é solúvel.

Resolução: Como $|G| = p^2q$ com $p \in q$ primos distintos, temos que G é solúvel.

Questão 1b3 (P2 2021)

Questão: Descrever todos os elementos de ordem w e os elementos de ordem 4 em Aut(\mathbb{Z}_{17}).

• Queremos encontrar a ação de Q sobre $P \cong \mathbb{Z}_{17}$ por meio de conjugação:

$$\theta: \mathbf{Q} \longrightarrow \operatorname{Aut}(\mathbb{Z}_{17})$$
$$q \longmapsto \theta(q)$$

Questão 1b4 (P2 2021)

Questão: Mostrar que se G não é abeliano, ele não é único a menos de isomorfismo.

Resolução:

Questão 2b (P2 2021)

Questão: Demonstrar que se p é primo, cada grupo G de ordem p^2 é abeliano.

Resolução:

- Pelo Teorema de Lagrange, como $Z(G) \le G$, temos que |Z(G)| | |G|.
- Assim, $|Z(G)| \in \{1, p, p^2\}.$
- Como G é um p-grupo finito, temos que $Z(G) \neq 1_G$.
- Se |Z(G)| = p, então

$$|G/Z(G)| = [G : Z(G)] = \frac{|G|}{|Z(G)|} = \frac{p^2}{p} = p$$

- Assim, G/Z(G) é cíclico e, portanto, G é abeliano (pelo Lema 2). Mas este caso implica que Z(G) = G, o que é uma contradição com as ordens de cada grupo.
- Logo, $|Z(G)| = p^2$, Z(G) = G e G é abeliano.

Questão 3b (P2 2021)

Questão: Quais dos seguintes grupos são solúveis e quais são nilpotentes:

- 1. $\mathbb{Z}_5 \times \mathbb{Z}$.
- 2. A₅.
- 3. $S_3 \times \mathbb{Z}$.

Resolução:

- 1. Note que $\mathbb{Z}_5 \times \mathbb{Z}$ é abeliano, portanto é nilpotente e solúvel.
- 2. A₅ não é solúvel, logo não é nilpotente.
- 3. $S_3 \times \mathbb{Z}$.
 - Lembre que subgrupo de solúvel/nilpotente é solúvel/nilpotente.
 - Como $Z(S_3) = 1$, temos que S_3 não é nilpotente. Assim, $S_3 \times \mathbb{Z}$ não é nilpotente.
 - Porém, S_3 é solúvel com cadeia $1_G \triangleleft A_3 \triangleleft S_3$ e $S_3/A_3 \cong \mathbb{Z}_2$ e $A_3 \cong \mathbb{Z}_3$.
 - Assim, como Z é abeliano e, portanto solúvel, temos que S₃ × Z é solúvel.

Questão 4b (P2 2021)

Questão: Sejam p um primo e G um p-grupo finito tal que G/G' é cíclico. Mostre que G é um grupo abeliano.

- Como G é um p-grupo finito, temos que G é nilpotente.
- · Portanto, existe uma cadeia

$$1_{\mathsf{G}} = \mathsf{Z}_0(\mathsf{G}) \le \mathsf{Z}_1(\mathsf{G}) \le \dots \le \mathsf{Z}_n(\mathsf{G}) = \mathsf{G}$$

- em que $Z_{i+1}(G)/Z_i(G)$ é abeliano.
- Suponha, por contradição, que $n \ge 2$.
 - Temos que $G/Z_{n-1}(G)$ é abeliano.
 - Ou seja, $G' \leq Z_{n-1}(G)$.
 - Mas como G/G' é cíclico e $G/Z_{n-1}(G)$ é um quociente de G/G', temos que $G/Z_{n-1}(G)$ é cíclico.

- Por definição, Z_{n-1}/Z_{n-2} é o centro de G/Z_{n-2} .
- Além disso,

$$\frac{\mathrm{G}}{\mathrm{Z}_{n-1}}\cong\frac{\mathrm{G}/\mathrm{Z}_{n-2}}{\mathrm{Z}_{n-1}/\mathrm{Z}_{n-2}}$$

- Como G/Z_{n-2} quocientado pelo seu centro é cíclico, pelo Lema 2, G/Z_{n-2} é abeliano.
- Ou seja, $Z(G/Z_{n-2}) = G/Z_{n-2}$.
- Isso implica que $Z_{n-1} = G$, o que é absurdo.
- Logo, n = 1 e, assim, G é abeliano.

Questão 5a (P2 2021)

Questão: Verdadeiro ou falso: produto direto de grupo solúvel com grupo nilpotente é solúvel.

Resolução:

- · Falso.
- Considere o produto direto S × P de um grupo solúvel, mas não nilpotente S (ex. S₃), com um grupo nilpotente P.
- Como todo subgrupo de nilpotente é nilpotente, temos que S é nilpotente, o que é absurdo.

Questão 5b (P2 2021)

Questão: Verdadeiro ou falso: se N é subgrupo normal em G com ambos G/N e N p-grupos finitos, então G é solúvel.

Resolução:

- · Verdadeiro.
- Como G/N e N são *p*-grupos finitos, ambos são solúveis.
- Assim, $N \triangleleft G$, $N \in G/N$ solúveis implica que G é solúvel.

Questão 1b (P2 2020)

Questão: Escrever a definição de grupos solúveis e a definição de grupos nilpotentes.

Resolução:

- 1. Grupos solúveis.
 - Um grupo é dito solúvel se existe uma cadeia de subgrupos

$$1 = G_n \triangleleft \cdots \triangleleft G_{i+1} \triangleleft G_i \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

- em que $G_{i+1} \triangleleft G_i$ e G_i/G_{i+1} é grupo abeliano.
- Equivalentemente, podemos definir a partir de uma cadeia

$$1 = H_n \triangleleft \cdots H_1 \triangleleft H_0 = G$$

- com $H_i = G^{(i)}$, H_i/H_{i+1} abeliano e H_i característico em G.
- 2. Grupos nilpotentes.
 - Um grupo é dito nilpotente se existe uma cadeia de subgrupos

$$1_G = Z_0(G) \le Z_1(G) \le \cdots \le Z_i(G) \le Z_{i+1} \le \cdots \le Z_n(G) = G$$

• em que $Z_i(G) \triangleleft G$ e

$$Z\left(\frac{G}{Z_i(G)}\right) = \frac{Z_{i+1}(G)}{Z_i(G)}$$

• Equivalentemente, podemos definir a partir de uma cadeia

$$1_G = K_0 \le K_1 \le \cdots \le K_n = G$$

• tal que $[K_{i+1}, G] \subseteq K_i$ para todo i.