The tidymodels ecosystem

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Data resampling

Data resampling

Feature engineering

Data resampling

Feature engineering

Data resampling

Feature engineering

Supervised machine learning

Branch of machine learning that uses labeled data for model fitting

Regression

- Predicting quantitative outcomes
 - Selling price of a home

left_company	miles_from_home	salary
no	1	84500
yes	10	64820
no	5	76490
yes	19	68540

Classification

- Predicting categorical outcomes
 - Whether an employee will leave a company

tidymodels variable roles

- left_company is an outcome variable
- miles_from_home and salary are predictor variables

Data resampling

Create training and test sets

- Guards against overfitting
- Common ratio is 75% training, 25% test

Training data

- Feature engineering
- Model fitting and tuning

Test data

Estimate model performance on new data

Fuel efficiency data

Vehicle fuel efficiency data from the U.S. Environmental Protection Agency

Outcome variable is hwy - highway fuel efficiency in miles per gallon (mpg)

```
mpg
```

```
A tibble: 234 x 11
         cty displ
                    cyl manufacturer model
                                                  year trans
                                                                 drv
                                                                              class
   hwy
 <int> <int> <dbl> <int> <chr>
                                      <chr>
                                                 <int> <chr>
                                                                 <chr> <chr> <chr>
                       4 audi
                                                  1999 auto(l5)
    29
          18
              1.8
                                     a4
                                                                        р
                                                                              compact
                                                  1999 manual(m5) f
              1.8
                       4 audi
          21
                                      a4
                                                                              compact
          20
                      4 audi
                                                  2008 manual(m6) f
    31
                                                                              compact
                                      a4
                                                  2008 auto(av)
    30
         21
                       4 audi
                                     a4
                                                                              compact
                                                  1999 auto(l5) f
    26
          16
               2.8
                       6 audi
                                                                              compact
                                      a4
   with 224 more rows
```

Data resampling with tidymodels

- initial_split()
 - Specifies instructions for creating training and test datasets
 - prop specifies the proportion to place into training
 - strata provides stratification by the outcome variable
- Pass split object to training() function

• Pass split object to testing() function

```
library(tidymodels)
```

```
mpg_training <- mpg_split %>%
  training()
```

```
mpg_test <- mpg_split %>%
  testing()
```

Home sales data

Home sales from the Seattle, Washington area between 2015 and 2016

```
home_sales
```

```
# A tibble: 1,492 x 8
  selling_price home_age bedrooms bathrooms sqft_living sqft_lot sqft_basement floors
                                                          <dbl><
          <dbl>
                   <dbl>
                            <dbl>
                                     <dbl>
                                                                       <dbl>
                                                 <dbl>
         487000
                      10
                                      2.5
                                                  2540
                                                           5001
                                4
                                                                            0
                      10
                                      2.25
         465000
                                3
                                                  1530
                                                           1245
                                                                          480
         411000
                      18
                                                  1130
                                                           1148
                                                                          330
                                3
         635000
                                      2.5
                                                  3350
                                                           4007
                                                                          800
 4
                                5
         380000
                      24
                                      2.5
                                                  2130
                                                           8428
                                                                                  2
     with 1,482 more rows
```

Let's practice!

MODELING WITH TIDYMODELS IN R

Linear regression with tidymodels

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Model fitting with parsnip

Linear regression model

Predicting hwy using cty as a predictor

$$hwy = \beta_0 + \beta_1 cty$$

Model parameters

- β_0 is the intercept
- β_1 is the slope

Highway Fuel Efficiency vs City Fuel Efficiency

Linear regression model

Predicting hwy using cty as a predictor

$$hwy = \beta_0 + \beta_1 cty$$

Model parameters

- β_0 is the intercept
- eta_1 is the slope

Estimated paramters from training data

$$hwy=0.77+1.35(cty)$$

Highway Fuel Efficiency vs City Fuel Efficiency

Model formulas

Model formulas in parsnip

- Used to assign column roles
 - Outcome variable
 - Predictor variables

General form

```
outcome ~ predictor_1 + predictor_2 + ...
```

Shorthand notation

```
outcome ~ .
```

Predicting hwy using cty as a predictor variable

The parsnip package

Unified syntax for model specification in R

- 1. Specify the model type
 - Linear regression or other model type
- 2. Specify the engine
 - Different engines correspond to different underlying R packages
- 3. Specify the **mode**
 - Either regression or classification

Fitting a linear regression model

Define model specification with parsnip

• linear_reg()

Pass lm_model to the fit() function

- Specify model formula
- data to use for model fitting

```
lm_model <- linear_reg() %>%
  set_engine('lm') %>%
  set_mode('regression')
```

```
lm_fit <- lm_model %>%
  fit(hwy ~ cty, data = mpg_training)
```

Obtaining the estimated parameters

The tidy() function

- Takes a trained parsnip model object
- Creates a model summary tibble
- term and estimate column provide estimated parameters

```
tidy(lm_fit)
```

```
# A tibble: 2 x 5
             estimate std.error statistic p.value
  term
                <dbl>
                         <dbl>
                                   <dbl>
                                           <dbl>
  <chr>
1 (Intercept)
                0.769
                        0.528
                                   1.46 1.47e- 1
                                   44.2 6.32e-97
2 cty
                1.35
                        0.0305
```

Making predictions

Pass trained parsnip model to the predict() function

 new_data specifies dataset on which to predict new values

Standardized output from predict()

- 1. Returns a tibble
- 2. Keep rows in the same order as new_data
 input
- 3. Names prediction column .pred

```
hwy_predictions <- lm_fit %>%
  predict(new_data = mpg_test)
hwy_predictions
```

```
# A tibble: 57 x 1
    .pred
    <dbl>
1 25.0
2 27.7
3 25.0
4 25.0
5 22.3
# ... with 47 more rows
```

Adding predictions to the test data

The bind_cols() function

- Combines two or more tibbles along the column axis
- Useful for creating a model results tibble

Steps

- Select hwy and cty from mpg_test
- Pass to bind_cols() and add predictions column

```
mpg_test_results <- mpg_test %>%
    select(hwy, cty) %>%
    bind_cols(hwy_predictions)

mpg_test_results
```

```
# A tibble: 57 x 3
   hwy cty .pred
   <int> <int> <dbl>
1 29 18 25.0
2 31 20 27.7
3 27 18 25.0
4 26 18 25.0
5 25 16 22.3
# ... with 47 more rows
```

Let's model!

MODELING WITH TIDYMODELS IN R

Evaluating model performance

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Input to yardstick functions

All yardstick functions require a tibble with model results

- Column with the true outcome variable values
 - hwy for mpg data
- Column with model predictions
 - .pred

```
mpg_test_results
```

```
# A tibble: 57 x 3
    hwy
         cty .pred
  <int> <int> <dbl>
     29
          18 25.0
     31
          20 27.7
 3
     27 18 25.0
     26 18 25.0
     25
          16 22.3
 ... with 47 more rows
```

Root mean squared error (RMSE)

RMSE estimates the average prediction error

- Calculated with the rmse() function from yardstick
 - Takes a tibble with model results
 - truth is the column with true outcome values
 - estimate is the column with predicted outcome values

```
mpg_test_results %>%
  rmse(truth = hwy, estimate = .pred)
```

R squared metric

Measures the squared correlation between actual and predicted values

- Also called the coefficient of determination
- Ranges from 0 to 1
 - When all predictions equal the true outcome values, R squared is 1
- Calculated with the rsq() function from yardstick

```
mpg_test_results %>%
  rsq(truth = hwy, estimate = .pred)
```

R squared plots

Visualization of the R squared metric

- Model predictions versus the true outcome
- The line y = x
 - Represents R squared of 1
- Used to find potential problems with model performance
 - Non-linear patterns
 - Regions where model is predicting poorly

R-Squared Plot

Plotting R squared plots

Making R squared plots with ggplot2

- Tibble of model results
- geom_point()
- geom_abline()
- coord_obs_pred()

R-Squared Plot

Streamlining model fitting

The last_fit() function

- Takes a model specification, model formula, and data split object
- Performs the following:
 - 1. Creates training and test datasets
 - 2. Fits the model to the training data
 - 3. Calculates metrics and predictions on the test data
 - 4. Returns an object with all results

Collecting metrics

The collect_metrics() function

- Takes the results of last_fit()
 - Returns a tibble with performance metrics obtained on the test dataset
- Default regression model metrics
 - RMSE
 - R squared

```
lm_last_fit %>%
  collect_metrics()
```

Collecting predictions

The collect_predictions() function

- Takes the results of last_fit()
 - Returns a tibble with test dataset predictions
 - Predictions column is named .pred
 - Outcome variable and other row identifier columns included

```
lm_last_fit %>%
  collect_predictions()
```

```
# A tibble: 57 x 4
   id
                   .pred
                                 hwy
                          .row
  <chr>
                   <dbl> <int> <int>
 1 train/test split 25.0
                                  29
 2 train/test split 27.7
                                  31
 3 train/test split 25.0
                                  27
 4 train/test split 25.0
                                  26
 5 train/test split 22.3
                                  25
# ... with 47 more rows
```

Let's evaluate some models!

MODELING WITH TIDYMODELS IN R

