

Figure 1

**Examples of Substituted Piperidines Accessible Via
the Methods of the Present Invention**

Structure A

Structure B

Structure C

Structure D

For Structures A, B, C, and D:

$n = 0, 1, \text{ or } 2$

$\text{R}_1 = \text{H, alkyl, aryl, heteroaryl, aralkyl, } -\text{CO}_2\text{R}_4, \text{ or } -\text{C(O)NHR}_4$

$\text{R}_2 = \text{alkyl}$

$\text{X} = \text{O, NC(O)R}_4, \text{ or NS(O)}_2\text{R}_4, \text{ NH, NR}_4, \text{ S, or S(O)}$

$\text{R}_3 = \text{alkyl, aralkyl, aryl, or heteroaryl}$

$\text{R}_4 = \text{alkyl, aryl, heteroaryl, or aralkyl}$

Figure 2

**Prophetic Asymmetric Synthesis
of 3-Substituted Piperidine **1****

Figure 3

Prophetic Asymmetric Synthesis of 50

Figure 4

Prophetic Asymmetric Syntheses of 3-Substituted Piperidine 1

Figure 5

Prophetic Asymmetric Synthesis of 3-Substituted Piperidine 3

TADDOL catalysts

Aryl = Ph,
2-naphthyl, or 1-naphthyl

Both enantiomers are commercially available

See Seebach, D. et al.
Tetrahedron 1992, 48 (27), 5719.

Figure 6

Prophetic Asymmetric Synthesis of 3-Substituted Piperidine 51

TADDOL catalysts

Aryl = Ph,
2-naphthyl, or 1-naphthyl

Both enantiomers are commercially available

See Seebach, D. et al.
Tetrahedron 1992, 48 (27), 5719.

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Mixture of 15, 16, 27, and 28

Figure 12

15: (*R,S*)-Isomer Chromatogram

Figure 13

27: (*S,S*)-Isomer Chromatogram

Figure 14

16: *(R,R)-Isomer Chromatogram*

Figure 15

28: (*S,R*)-Isomer Chromatogram

Figure 16

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 13 (254 nm)	8.420, 8.781
2	Catalyst 13 (220 nm)	8.420, 8.781
3	Catalyst 13 and non-selective coinjection (254 nm)	8.155, 8.328, 8.695
4	Catalyst 13 and non-selective coinjection (220 nm)	8.155, 8.333, 8.688
5	non-selective (254 nm)	8.208, 8.395, 8.688
6	Catalyst 14 (254 nm)	8.061, 8.210, 8.399, 8.688, 8.897

Figure 17

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 14 (254 nm)	8.158, 8.423
2	Catalyst 14 (220 nm)	8.030, 8.159, 8.366
3	Catalyst 14 and non-selective coinjection (254 nm)	8.176, 8.386, 8.664
4	Catalyst 14 and non-selective coinjection (220 nm)	8.044, 8.178, 8.387
5	non-selective (254 nm)	8.176, 8.374, 8.646, 9.950
6	non-selective (220 nm)	8.375

Figure 18

No.	Description of HPLC Trace	Peak Retention Times (min)
1	Catalyst 13 (254 nm)	8.42
2	Catalyst 13 (220 nm)	8.420, 8.781
3	Catalyst 13 and Catalyst 14 coinjection (254 nm)	8.147, 8.337, 8.695
4	Catalyst 13 and Catalyst 14 coinjection (220 nm)	8.147, 8.338, 8.695
5	Catalyst 14 (254 nm)	8.158, 8.423
6	Catalyst 14 (220 nm)	8.030, 8.159, 8.366

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

R = Me, TBDMS, TBDPS

R = Me, H, -CH₂CMe₃

Figure 24

Figure 25

$Ar = Ph, 1\text{-naphthyl}, 2\text{-naphthyl}$

Figure 26

$$\begin{aligned} R^1 &= R^2 = Ph \\ R^1 &= {}^1Bu, R^2 = Ph \\ R^1 &= C_6F_5, R^2 = Ph \end{aligned}$$

$\text{Ar} = \text{Ph}$
 $\text{Ar} = p\text{-MeOPh}$
 $\text{Ar} = p\text{-ClPh}$

R = Et, Bu

R = Et, ⁿBu

R = Me, Et

Figure 27

Figure 28

Figure 29

Aminoalcohols

$\text{R} = {^n\text{Bu}}, -(\text{CH}_2)_4-,$
 $-(\text{CH}_2)_5-, -(\text{CH}_2)_6-$

Figure 30

Figure 31

Figure 32

$\text{R} = \text{H, Me}$

Figure 33

Figure 34

Figure 35

● = an organic polymer or inorganic solid support

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Mixture of 1, 2, 3 and 4:

Figure 41

2: (*R,S*)-Isomer Chromatogram

