

Design **Analysis** of **Algorithms**

Lecture 5

Analysis of Algorithm Efficiency

Two kinds of efficiency:

- Time efficiency, also called time complexity, indicates how fast an algorithm in question runs.
- Space efficiency, also called space complexity, refers to the amount of memory units required by the algorithm in addition to the space needed for its input and output.

Measuring an Input's Size

Almost all algorithms run longer on larger inputs.

For example

longer to sort larger arrays, multiply larger matrices, ...

Investigating an algorithm's efficiency as a function of some parameter n indicating the algorithm's input size

Measuring an Input's Size

Exception-Example

• For evaluating a polynomial $p(x) = a_n x^n + ... + a_0$ of degree n, it will be the polynomial's degree or the number of its coefficients, which is larger by 1 than its degree.

Measuring an Input's Size

Other Examples

- Searching among n elements
- Sorting n elements
- computing the product of two n x n matrices
- Primality testing of a number n [In such situations, it is preferable to measure size by the number b of bits in the n's binary representation: b = \log_2 n \right]+1]

Orders of Growth

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10 ⁶	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Worst-Case, Best-Case, and Average-Case Efficiencies

• The worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which is an input (or inputs) of size n for which the algorithm runs the longest among all possible inputs of that size.

Worst-Case, Best-Case, and Average-Case Efficiencies

• The **best-case** efficiency of an algorithm is its efficiency for the best-case input of size **n**, which is an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of that size.

Worst-Case, Best-Case, and Average-Case Efficiencies

- However, that neither the worst-case analysis nor its best-case counterpart yields the necessary information about an algorithm's behavior on a "typical" or "random" input.
- This is the information that the average-case efficiency seeks to provide.

Worst-Case, Best-Case, and Average-Case Efficiencies

```
ALGORITHM Sequential Search (A[0..n-1], K)
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n-1] and a search key K
//Output: The index of the first element in A that matches K
          or -1 if there are no matching elements
i \leftarrow 0
while i < n and A[i] \neq K do
    i \leftarrow i + 1
if i < n return i
else return -1
```

References

Chapter 2: Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, Third Edition, 2017

Chapter 2: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", MIT Press/PHI Learning Private Limited, Third Edition, 2012.

Homework

- 1. a. Consider the definition-based algorithm for adding two n × n matrices. What is its basic operation? How many times is it performed as a function of the matrix order n? As a function of the total number of elements in the input matrices?
 - b. Answer the same questions for the definition-based algorithm for matrix multiplication.
- 2. Consider a variation of sequential search that scans a list to return the number of occurrences of a given search key in the list. Does its efficiency differ from the efficiency of classic sequential search?