

Radiodiagnostica a raggi x radiografia proiettiva

Radiografia: immagine di distribuzione spaziale delle caratteristiche di attenuazione di un fascio di raggi x nei tessuti

Lezione 7-8 AA 2010-2011

.

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Immagine RX: proiezione su di un piano P (piano della lastra fotografica) a partire da un centro C (punto focale dell'anodo nel tubo a vuoto) delle strutture interne al volume del corpo V

Un generico punto di proiezione A dipende da tutte le strutture incontrate dalla retta di proiezione r sul segmento L (interno a V)

Il valore di intensità rappresentato in A, I_A , si può ricondurre all'integrale sulla linea L della attenuazione lineare $\mu(x, y, z)$ funzione delle coordinate tridimensionali in V

$$I_A = I_0 \exp \left(-\int_L \mu(x, y, z) dL\right)$$

Punti a bassa intensità incidente (bianchi) indicano l'attraversamento di strutture ad alto assorbimento (tessuto osseo)

AA 2010-2011 Lezione 7-8 3

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Applicazioni cliniche

RX arti

RX bacino

RX Torace

RX cranio

RX apparato digerente

Rachide (cervicale/dorsale/lombare)

RX scheletro

Angiografia

Urografia

Isterosalpingografia

Mammografia

Clisma opaco

RX apparato cardiovascolare

Radiazioni elettromagnetiche

Modello ondulatorio (Maxwell, 1870)

- Fenomeno di tipo ondulatorio a cui è associato un trasporto di energia
- Spiega bene i fenomeni di propagazione
- La propagazione avviene per variazioni dell'intensità del campo elettrico e magnetico ad esse associato
- La propagazione avviene anche in assenza di materia

Lezione 7-8 AA 2010-2011 5

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Radiazioni elettromagnetiche

Modello ondulatorio: parametri e unità di misura

- λ [m] è la lunghezza d'onda è la distanza tra due punti in cui E (o B) hanno la stessa ampiezza (picchi o valli)
- T[s] è il periodo [s] è il tempo che intercorre tra due istanti nei quali
 E (o B) hanno la stessa ampiezza (picchi o valli)
- 1/T=v è la frequenza [Hz]
- $\lambda \cdot v = c$ è la velocità di propagazione (nel vuoto $3.10^8 \ m/s$)

Radiazioni elettromagnetiche Modello corpuscolare (Planck, 1900; Einstein, 1905)

- indispensabile per spiegare i processi di interazione radiazionemateria (assorbimento, emissione)
- prevede che l'energia trasportata da un'onda elettromagnetica sia concentrata in particelle prive di massa e senza carica elettrica: i fotoni
- l'energia del fotone dipende dalla frequenza dell'onda secondo la relazione: $E=hv\ [J]$ dove h è la costante di Planck ($h=6.63\cdot 10^{-34}Js$)
- al fotone si associa anche una quantità di moto pari a: $p=mv=hv/c=h/\lambda$ [Jsm^{-1}]
- Vale anche: $E=hc/\lambda$ [J]; $E=1.24/\lambda$ con λ in nm; E in keV (1 $eV=1.602\cdot 10^{-19}J$)

Lezione 7-8 AA 2010-2011 7

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Radiazioni elettromagnetiche ionizzanti

- interagiscono con la materia rompendo legami atomici e molecolari
- \bullet possono venire quindi diversamente assorbite dal mezzo attraversato \Rightarrow base dell'imaging
- vengono generate da apparecchiature radiogene ($raggi\ x$) o da radioisotopi, ossia da atomi che emettono radiazioni a causa della loro instabilità nucleare dovuta allo sbilanciamento del rapporto neutroni/protoni del nucleo ($raggi\ \gamma$).
- sono dannose per i tessuti biologici

Radiazioni elettromagnetiche Modello ondulatorio: spettro delle radiazioni

- Le radiazioni ionizzanti (raggi X e γ) hanno elevate frequenze (oltre 10^{16} Hz) e piccole lunghezze d'onda (al di sotto di 10^{-8} m)
- Sono dunque al di fuori dello spettro del visibile ma possiedono elevate capacità di penetrazione ed interazione con la materia biologica

Lezione 7-8 AA 2010-2011 9

Raggi X: interazione con la materia

Coefficiente attenuazione onde elettromagnetiche per acqua (linea continua) e tessuti molli (linea tratteggiata)

Dosaggio di radiazioni ionizzanti

Esposizione x:

- misura della quantità di ionizzazione prodotta in aria
- unità di misura: roentgen (1R=2.08x10¹⁹ ionizzazioni per cm³ d'aria) oppure coulomb/Kg. 1C/Kg=3876R
- quantità utilizzata per indicare la quantità di radiazione rilasciata in un punto

Numero di fotoni necessario per produrre un Roentgen in funzione dell'energia fotonica

11

Lezione 7-8 AA 2010-2011

Dosaggio di radiazioni ionizzanti

Dose assorbita:

- misura la quantità di energia assorbita da una massa unitaria di tessuto
- unità di misura: gray (1Joule/Kg) oppure rad (radiation absorbed dose). 1 rad=1/100 gray

Dosaggio di radiazioni ionizzanti

Esame	Proiezione	Dose
Torace	AP	0.3
	LL	1.5
Cranio	AP	5.0
	LL .	3.0
Addome	AP	10
Pelvi	AP	10
Rachide lombare	AP	10
	LL	30

Tabella 5.1 — Dose media (in mGy) erogata all'adulto (Antero-Posteriore AP, Latero-Laterale LL)

Dose equivalente:

- si ottiene moltiplicando la dose assorbita per un fattore dipendente dal tipo di radiazione considerata, fattore=1 per i raggi X e gamma
- si misura in Sievert Sv . Per i raggi X, 1 Gray = 1 Sievert

Lezione 7-8 AA 2010-2011 13

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Raggi X sfruttati in radiodiagnostica:

- energia 12-124 keV (luce visibile 1.8-3.1 eV)
- lunghezza d'onda $0.01<\lambda<0.1$ nm (luce visibile $400<\lambda<750$ nm)
- frequenza 3x10¹⁸-3x10¹⁹ Hz (luce visibile 5-7.5x10¹⁴ Hz)

Raggi X

Il fascio di fotoni utilizzato in realtà non è mai monocromatico ma presenta uno spettro di emissione

Lezione 7-8 AA 2010-2011 15

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Sistema a raggi X

Proprietà dei raggi x:

- diverso attraversamento dei tessuti a seconda della loro densità: si possono quindi ottenere immagini d'ombra delle strutture all'interno del corpo umano
- capacità di rendere fluorescenti in modo visibile alcuni materiali:
 l'immagine radiante può quindi essere convertita in immagine osservabile

Raggi X

Produzione: fisica

- Radiazione caratteristica: prodotta per sostituzione di elettroni degli orbitali più interni da parte di elettroni dagli strati più esterni (livelli energetici L_I-L_{II}-L_{III}, M_I-M_{II}-M_{III}-M_{IV}-M_V)
- Due radiazioni caratteristiche con energia pari a 58 e 68 keV sono prodotte per sostituzione di elettroni sul livello K da parte di elettroni dei livelli L e M rispettivamente

Elettrone appartenente ad orbitali esterni riempie la lacuna Viene emessa una specifica quantità di energia sotto forma di radiazione X

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

• Lo spettro è costituito da una componente continua dovuta alla *bremsstrahlung* e da picchi energetici corrispondenti alla radiazione caratteristica

Raggi X: interazione con la materia

Quando un fascio di raggi X incontra la materia ogni fotone può:

- Attraversarla
- Essere assorbito
- Essere diffuso (deviato)

I fenomeni di diffusione ed assorbimento dei fotoni riducono l'intensità del fascio \Rightarrow attenuazione

Vale la legge di Lambert-Beer

$$I(x)=I_0e^{-\mu x}$$

con:

I(x): intensità alla profondità di misura x

I₀: intensità alla sorgente

μ: coefficiente di attenuazione [cm-1]

Il coefficiente di attenuazione dipende dall'energia del fotone e dal tessuto attraversato

Lezione 7-8 AA 2010-2011 23

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Spessore emivalente: spessore di materia per cui l'intensità del fascio attenuato è pari a metà dell'intensità del fascio incidente

Energia equivalente: energia di un fascio monoenergetico avente lo stesso spessore emivalente di Al del fascio considerato

Esempio: un fascio di raggi x generati a 90kV e filtrato con 2mm di Al ha lo stesso spessore emivalente in Al di un fascio di raggi x monoenergetico di energia 43.4keV. L'energia equivalente è quindi 43.4 keV.

Raggi X: interazione con la materia

Elemento	Z	Aria	Acqua	Muscolo	Grasso	Osso
H	1		11.2	11.1	16.0	3.5
C	6			8.6	62.9	16.4
N	7	75.5		3.7	0.9	0.7
()	8	23.2	88.8	75.6	20.2	-10.7
Na	П			0.2		0.7
Mg	12					0.2
P	15			0.3		10.5
S	16			0.3		0.3
Ar	18	1.3				
K	19	1200		0.2		0.3
Ca.	20					26.7
Densità ρ		$1.3 \cdot 10^{-3}$	1.00	1.00	0.91	1.85
Z_{eq}		7.64	7.42	7.42	5.92	13.8

Lezione 7-8 AA 2010-2011 25

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Raggi X: interazione con la materia

		Filtro:	Filtro: 1 mm Al		Filtro: 2 mm Al				
Tensione al tubo (kVp) Energia Equivalente (keV)		45 25.1	55 29.1	65 34.2	70 37.1	80 40.6	90 43.4	98 46.1	
Materiale ·	Z_{eq}	Co	efficiente d	li atten	uazione	linear	e (cm-	¹)	
Materiale Grasso	Z_{eq} 5.9	0.31	pefficiente d	li atten	uazione	e lineare	e (cm ⁻	0.19	
			17						
Grasso	5.9	0.31	0.26	0.23	0.21	0.20	0.19	0.19 0.22	
Grasso Muscolo,Acqua	5.9 7.4	0.31 0.44	0.26 0.35	0.23 0.28	0.21 0.26	0.20 0.24	0.19 0.23	0.19	

Raggi x

Diffusione: effetto Compton

- è preponderante per fotoni X con energia dell'ordine di centinaia di keV
- il fotone incidente interagisce con gli elettroni degli strati esterni trasferendo energia
- l'elettrone viene emesso (Elettrone Compton; ionizzazione)
- il fotone prosegue in direzione diversa e con maggiore lunghezza d'onda (cioè energia minore) con un angolo di diffusione che dipende dalla quantità di energia ceduta

Lezione 7-8 AA 2010-2011 29

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Coefficiente di attenuazione per effetto Compton e fotoelettrico nell'acqua.

Le interazioni di assorbimento predominano per basse energie su quelle di diffusione.

Lezione 7-8 AA 2010-2011

30

Raggi X

- Diffusione coerente (rappresenta una perdita di trasmissione)
- è preponderante per fotoni X a bassa energia (<10keV; meno del 5% della radiazione)
- non produce ionizzazione
- il fotone incidente interagisce con gli elettroni dell'atomo bersaglio
- l'energia trasferita viene riemessa come fotone diffuso con stessa lunghezza d'onda (stessa energia) ma direzione di propagazione diversa
- la diffusione è sorgente di **rumore** in radiografia

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Sommario delle interazioni tra raggi X e materia

- b fotoni incidenti emessi dal tubo radiogeno
- **g** fotoni emergenti di uguale energia e direzione **m** fotoni assorbiti
- p, q fotoni diffusi e poi assorbiti
- **f** fotoni emergenti diffusi all'indietro di uguale o minore energia **h** fotoni emergenti diffusi in avanti di uguale o minore energia

Raggi X: recettori

Recettore: sistema che colpito dai fotoni x uscenti dal corpo umano è in grado di convertire il segnale in immagine visibile

Proprietà recettore: efficienza e potere di risoluzione

Recettori analogici per immagini statiche

Pellicole radiografiche (lastre):

- fogli di acetato di cellulosa ricoperti da granuli di AgBr: formazione di un'immagine latente che verrà poi rivelata dallo sviluppo fotografico
- · ottima risoluzione
- efficienza dipendente dalla densità di AgBr. L'efficienza viene migliorata mediante **schermi di rinforzo** che convertono i raggi x in luce visibile.

Lezione 7-8 AA 2010-2011 33

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Recettori analogici

- Conversione delle differenze di esposizione X in differenze di densità ottica (=contrasto lastra)
- Curva caratteristica della densità ottica in funzione della esposizione relativa. Latitudine=porzione lineare della curva.

Lezione 7-8

Schermi di rinforzo per recettori analogici

Lezione 7-8 AA 2010-2011 35

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Cause di degrado delle immagini a raggi X

Sfocature dovute a radiazioni primarie:

- Sfocature geometriche: dovute alla dimensione non puntiforme del fuoco del tubo radiogeno ed alla distanza tra il fuoco stesso, l'oggetto ed il recettore dell'immagine
- Sfocature cinematiche: dovute movimenti del soggetto e a vibrazioni o movimenti dell'equipaggio radiologico
- Sfocature fotografiche: dovute alla qualità dei materiali

Sfocature dovute a radiazioni secondarie (radiazioni diffuse all'interno del corpo del paziente che arrivano al recettore)

Sfocature geometriche

Geometria della propagazione di un fascio di radiazioni elettromagnetiche a partire dai fuochi

Se la sorgente non è puntiforme, i contorni dell'oggetto proiettato sul recettore sono degradati da una zona d'ombra

Lezione 7-8 AA 2010-2011 37

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Sfocature geometriche

Possono essere ridotte:

1. aumentando la distanza tra il fuoco e l'oggetto

2. usando un tubo radiogeno con fuoco di dimensioni più piccole

3. diminuendo la distanza tra l'oggetto ed il recettore dell'immagine

Qualità della esposizione a RX e limitazione dose

- 1. Riduzione dei tempi di salita alla Vpicco nominale (a tensioni minori lo spettro è a minore energia).
- 2. Scelta di materiali dell'anodo con radiazione caratteristica prossima alle energie desiderate (W 70-80 keV, Mo 20-30)
- 3. Filtro di alluminio: riduzione per assorbimento di raggi X a bassa energia (molli). Si migliora la qualità dei RX cercando di avvicinarsi alla condizione di raggio monocromatico,
 - diminuire la dose (molti raggi molli sono assorbiti senza contribuire all'immagine);
 - ridurre artefatti da "beam hardening"= indurimento del raggio man mano che si attraversano strati di tessuto (artefatti perché il contrasto fra tessuti molli e duri cambia a seconda dell'energia.
- 4. Collimatore tra raggi X e corpo paziente. Limitazione del cono di proiezione al fine di esporre ai raggi X solo il FOV di interesse .

Lezione 7-8 AA 2010-2011 39

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Sfocature dovute alle radiazioni secondarie

Riduzione del contrasto immagine

Sfocature dovute alle radiazioni secondarie: *RIMEDI*

- 1.Air gap. D_{ag} =distanza uscita paziente lastra: distribuisce lo scatter uniformemente; ne diminuisce l'intesità come (Dag)-2). Di solito basta.
- 2.Griglia tra corpo del paziente e lastra: riduzione della radiazione secondaria in uscita per collimazione. Per applicazioni speciali, e.g. mammografia.

(Collimare=selezionare radiazioni eliminando quelle che hanno traiettorie non compatibili con la geometria del collimatore: finestre di collimazione, griglie, fori.)

41

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Griglie anti-scatter

Rapporto di griglia Rg=h/d (5:15)

Al crescere di Rg:

- · si riduce l'effetto della radiazione secondaria
- · si riduce l'efficienza

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Radiografia digitale

- maggiore efficienza di conversione
- elaborazione delle immagini e confronto con altre modalità di imaging
- maggiore latitudine di esposizione: maggiore capacità di rappresentare densità e spessori diversi sulla stessa immagine

Utilizza un intensificatore di immagini il cui schermo di uscita è ripreso da una telecamera.

Il segnale video viene inviato a un convertitore analogico numerico (A/N) che trasforma l'immagine video analogica in una matrice numerica.

I sistemi odierni utilizzano telecamere ad alta risoluzione con elevato rapporto segnale-rumore (superiore a 1000), consentono matrici 1024 x $_{AA\ 2010\text{-}2011}$ 1024 con almeno 1024 livelli₂₅ di grigio.

Videoradiografia: intensificatore di immagini

Lezione 7-8 AA 2010-2011 47

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Videoradiografia: intensificatore di immagini

Tra i due schermi a fosfori si ha un'intensificazione dell'immagine poichè:

- ogni interazione x provoca l'emissione di decine di migliaia di elettroni
- gli elettroni vengono accelerati e quindi acquistano energia cinetica
- vengono ridotte le dimensioni dell'immagine dall'ingresso all'uscita

Rispetto ad un semplice schermo fluorescente si ha così un guadagno di 10000 volte.

DSA (Digital Subtractive Angiography) applicazione più frequente della videoradiografia

Prima dell'iniezione $\rightarrow N = N_0 e^{-\mu x}$

Dopo l'iniezione $\rightarrow N_C = N_0 e^{-(\mu(x-h)-\mu_c h)}$ Correggere segno

$$D = N - N_{\scriptscriptstyle C} = N_{\scriptscriptstyle 0} e^{-\mu x} [1 - e^{-h(\mu_{\scriptscriptstyle C} - \mu)}]$$

Calcolando prima il logaritmo ottengo $D = \ln N - \ln N_C = h(\mu_C - \mu)$

Lezione 7-8 AA 2010-2011 49

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Cineangiografia per studi dinamici

Cineangiografia per studi dinamici

Al fine di ridurre la dose si ricorre a generatori ad impulsi, in modo che il tubo radiogeno sia in funzione solo quando l'otturatore della cinepresa è aperto, con tempi di esposizione di alcuni ms

Lezione 7-8 AA 2010-2011 51

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Radiografia digitale: evoluzione recettori

1994 – Tecnologia a fosfori a memoria con lettura tramite un fascio laser. La piastra può poi essere azzerata.

1995 – Pannelli di silicio amorfo con uno strato scintillatore.

1999- Sensore con matrice attiva con strato fotoconduttore e elettrodi di polarizzazione.

Radiografia digitale: evoluzione recettori

