MoskaliovYV 15022025-091710

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.55f_{\rm B}$:

```
s_{11}=0.571-0.074i.
(Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 26 Om
- 2) 152 O_M
- 3) 107 O_M
- 4) 97 O_M

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 42 Ом;
- 2 толщиной 0.508 мм и с волновым сопротивлением 58 Ом;
- 3 толщиной 0.305 мм и с волновым сопротивлением 64 Ом;
- 4 толщиной 0.406 мм и с волновым сопротивлением 58 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=173~{\rm Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=2.8~\Gamma\Gamma$ ц и $f_{\rm B}=4~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.3 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\text{h}}, f_{\text{b}}]$?

Варианты ОТВЕТА:

- 1) 1 дБ
- 2) 0.3 дБ
- 3) 0.5 дБ
- 4) 1.4 дБ

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 8.6 ГГц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: 0.66-0.75i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 38.4 см
- 2) 45 cm
- 3) 8 cm
- 4) 5.1 cm

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
9.0	0.541	107.8	1.425	6.2	0.249	21.5	0.177	103.3

Выбрать Г-образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 2 на частоте 9 ГГц при наложении следующих ограничений:

1 - W_T больше 19 Ом;

2 - θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D