Hidden Markov Model

Depu Meng

Oct. 2018

1 Basic Concepts & Examples

1.1 Basic Concepts

Definition 1.1 Assume $X = \{X_n; n \geq 1\}$ is a Markov chain over finite state space $\Phi = \{1, 2, ..., K\}$, if states of X are unobservable, $Y = \{Y_n; n \geq 1\}$ is an observable random variable series over finite set $V = \{v_1, v_2, ..., v_L\}$ that is correlated with X, then $(X, Y) = \{(X_n, Y_n); n \geq 1\}$ is a Hidden Markov Chain.

Denote $\pi = \{\pi_1, \pi_2, ..., \pi_k\}$ is the initial distribution of X, $A = [a_{ij}]$ is the transition matrix of X

$$a_{ij} = P\{X_{n+1} = j | X_n = i\}, i, j \in \Phi$$
 (1)

is the one-step transition probality of X. Denote

$$b_{ij} = P\{Y_n = v_j | X_n = i\}, i \in \Phi, v_j \in V$$
 (2)

represents the probability that Y equals to v_j given X is at state i at time n. If X is homogeneous, then Y is also irrelavent with time n. Denote $B = [b_{ij}]$ as the observation probability matrix. Due to the unobservability of X, π , A, B can not be directly measured. Generally, we call parameter set $\lambda = \{\pi, A, B\}$ the math model of Hidden Markov chain (X, Y), as well as $Hidden\ Markov\ Model\ (HMM)$.

Property 1.1 Assume N is the length of time on observation, denote $\mathbf{X} = \{X_1, X_2, ..., X_N\}$, $\mathbf{Y} = \{Y_1, Y_2, ..., Y_N\}$ as the sample series of Markov chain X and observation series Y in the time period $1 \sim N$ respectively, then the joint distribution of \mathbf{X} and \mathbf{Y} satisfy the following Hidden Markov Condition.

$$P\{\mathbf{X} = x, \mathbf{Y} = y\} = \pi_{i_1} b_{i_1 j_1} \dots b_{i_{N-1} j_{N-1}} b_{i_{N-1} j_N} b_{i_N j_N}, \tag{3}$$

where $x = \{i_1, ..., i_N\}, y = \{v_{j_1}, ..., v_{j_N}\}.$

1.2 Examples

Coin flipping problem Stochasticly choose a coin from two coins indexed 1 and 2, and then toss it, observe the result and repeat this process. Denote X_n as the coin chosen in t^{th} time, then $X = \{X_n; n \ge 1\}$ is a Markov chain over state space $\Phi = \{1, 2\}$. Denote Y_n as the result of n^{th} experiment, then $Y = \{Y_n; n \ge 1\}$

is observation series that takes values from $V = \{H, T\}$, where H means the front side and T means the back side. State transition matrix and observation probability matrix are

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, \tag{4}$$

where summation of each row equals to 1. For initial distribution $\pi = \{\pi_1, \pi_2\},\$ we have $\pi_1 + \pi_2 = 1$. Then $\lambda = \{\pi, A, B\}$ is the corresponding HMM of Hidden Markov chain (X,Y), which contains 5 unknown parameters.

Basic Problems & Solutions

Basic Problems 2.1

Problem 1 For a specific observation sample series $\mathbf{Y} = \{Y_1, ..., Y_n\}$, known it is generated by one of the given HMMs, determine which model that generates the sample series is called *Pattern Recognition* problem, as well as *classification* problem.

Problem 2 From a series of observation samples $\mathbf{Y} = \{Y_1, ..., Y_n\}$ and known HMM $\lambda = \{\pi, A, B\}$, give the best estimate of hidden states is called State Estimate problem, as well as Decoding problem.

Problem 3 From a series of observation samples $\mathbf{Y} = \{Y_1, ..., Y_n\}$, give the best estimate of parameter set $\lambda = \{\pi, A, B\}$, we call it *Model Learning* problem.

2.2 Solutions

Solution to Problem 1 To solve Problem 1 is mainly to solve $P\{Y|\lambda\}$, for different λ , we can compare with their corresponding $P\{\mathbf{Y}|\lambda\}$, and choose the largest one. So how to compute $P\{\mathbf{Y}|\lambda\}$?

$$P\{\mathbf{Y} = y|\lambda\} = \sum_{x} P\{\mathbf{Y} = y, \mathbf{X} = x|\lambda\}$$
 (5)

$$= \sum_{x} \pi_{i_1} b_{i_1 j_1} \dots b_{i_{N-1} j_{N-1}} b_{i_{N-1} j_N} b_{i_N j_N}$$
 (6)

In order to make the writing more convenient, we introduce notation $\alpha_n(i)$ and $\beta_n(i)$ first.

$$\alpha_n(i) = P\{Y_1 = v_{j_1}, ..., Y_n = v_{j_n}, X_n = i | \lambda\}$$
 (7)

Recurrence relation of $\alpha_n(i)$.

$$\alpha_n(i) = \sum_{j=1}^K \alpha_n(j) a_{ji} b_{ij_{n+1}}, n = 1, ..., N - 1$$
(8)

 $\alpha_{n+1}(i) = \sum_{i=1}^{K} P_A P_B P_C$

proof

$$\alpha_{n+1}(i) = \sum_{k=1}^{K} P_A P_B P_C$$
$$= \sum_{k=1}^{K} \alpha_n(k) a_{ki} b_{ij_{n+1}}$$

(23)

$$\begin{array}{ccc}
 & & & 124 \\
 & & & 125 \\
 & & & 126 \\
 & & & 127 \\
 & & & 128 \\
\end{array}$$