Modelagem Computacional no Ensino de Física em nível Médio

Eliane Angela Veit (IF-UFRGS)
Rafael Vasques Brandão (PPgEnfis-UFRGS)
Instituto de Física UFRGS
VII RELAEF

Porto Alegre, 23 a 27 de novembro de 2009

Sumário do minicurso

- Por que trabalhar com modelagem computacional no ensino de Física?
- Apresentação do Modellus e atividades exploratórias com o Modellus
- Descrição de resultados experimentais
- Exemplos de outros aplicativos para a modelagem de sistemas físicos (powersim, planilha) e atividade expressiva com o Modellus
- Diagrama AVM. Síntese sobre o uso de TICs no ensino de Física em nível médio.

Duas ideias básicas

 A aprendizagem significativa de Física requer trabalhar com conceitos, procedimentos e instrumentos do fazer científico.

 As TICs oferecem a possibilidade de aprendizagem significativa de novos tópicos e competências, especialmente através de atividades de simulação e modelagem computacionais.

Aula 1

- Ideias básicas sobre o fazer ciências
- Alguns problemas do ensino de Física
- Atividades de simulação e modelagem computacionais
- Possibilidades de uso: modo expressivo e exploratório
- Potencialidades das atividades computacionais para a aprendizagem de Física

Se um trem viaja em linha reta durante 2 horas, a 40 km/h, que distância percorre?

Pois para Galileu não foi tão simples!

Em Diálogos relativos a duas novas ciências (1636) Galileu demonstra 6 teoremas sobre movimento uniforme!

*Andrea diSessa, Changing Minds Computers. Learning and Literacy, M.I.T. 1999.

Comentários:

- Não há um único sinal de igual (=) nos manuscritos de Galileu!
- A Álgebra surgiu 5 anos depois da publicação de Galileu, com Descartes (1596-1650).
- Galileu n\u00e3o dispunha de todas as ferramentas de que dispomos hoje!

Evolução humana x ferramentas

 A evolução da cultura humana está fortemente vinculada ao conhecimento e instrumentos já disponíveis para o indivíduo.

 O fazer científico se vale da modelagem e das TICs como um de seus instrumentos básicos. Como integrá-los com os demais recursos na aprendizagem de Física?

Como se faz Ciências?

"...formulando questões claras,

imaginando modelos conceituais das coisas, às vezes teorias gerais e tentando justificar o que se pensa e o que se faz, seja através da lógica, seja através de outras teorias, seja através de experiências, aclaradas por teorias".

Bunge, 1974, p. 13

Sobre o fazer Física

- Física é um processo de representação do mundo, sempre sujeito a reformulações
- Fazer Física => trabalhar com modelos conceituais (externos)
- Modelagem computacional, juntamente com teoria e experiência, compõe o tripé de sustentação da Física.

Relatório do *National Research* Council (USA) 1989

computação científica...pode ser considerada uma terceira metodologia fundamental das Ciências, paralela ao paradigma experimental e ao teórico das ciências, mais bem estabelecidos

fenômeno fisico

No fazer da Física, modelos são os mediadores...

...entre teoria e realidade e, mais recentemente, destas com as simulações computacionais.

Modelo científico

ponte entre o mundo real, que é complexo, holístico, e um mundo idealizado e simplificado

Modelo científico em Física

tentativa de apreender a realidade através de uma representação idealizada, esquemática de objetos e/ou eventos reais ou supostos como tais

constituído por proposições semânticas e um modelo matemático subjacente

é uma representação externa, consensual, aceita pela comunidade científica, sujeita a reformulações

São abstrações construídas pelos cientistas.

Não existem na natureza!

No contexto da Física convém distinguir...

o sistema físico, com sua riqueza e complexidade

o sistema idealizado, que resulta da modelagem do sistema físico

o modelo teórico que descreve

$$F_{y} = -mg - kv_{y}$$

$$a_{y} = \frac{F_{y}}{m}$$

$$\frac{dv_{y}}{dt} = a_{y}$$

$$\frac{dy}{dt} = v$$

y

O processo da modelagem requer...

- focar a atenção aspectos particulares da natureza
- realizar recortes da realidade
- fazer simplificações do sistema real
- postular entidades ideais
- Inferir, a sistemas reais, mecanismo internos imaginários

A construção e análise de modelos científicos envolve ...

- situação-problema e questões-foco
- idealizações, aproximações e a formulação de hipóteses
- referentes, relações, variáveis e parâmetros
- domínio de validade e grau de precisão
- teste (experimental e teórico) de hipóteses
- fazer predições
- aperfeiçoar os modelos
- eventualmente abandoná-los

Onde entram os computadores no fazer Física?

Aguiar, UFRJ

Sumário da Aula 1

- ✓ Ideias básicas sobre o fazer ciências
- Alguns problemas do ensino de Física
- Atividades de simulação e modelagem computacionais
- Possibilidades de uso: modo expressivo e exploratório
- Potencialidades das atividades computacionais para a aprendizagem de Física

Problemas no ensino de Física (entre outros)

Ciências e seu desenvolvimento, concebida como:

- verdade absoluta e perene
- descoberta por gênios
- a partir de dados experimentais

No ensino-aprendizado de Física

- resolver problemas se resume a substituição de valores em fórmulas decoradas
- o papel dos modelos é ignorado
- computador serve para busca e observação, raramente como ferramenta cognitiva

Um dos objetivos primordiais do Ensino de Física

Contribuir para que os modelos conceituais dos alunos se aproximem dos modelos conceituais científicos (ou como temos chamado, dos modelos científicos)!

Potencialidades da modelagem (computacional) no ensino de Física

- facilitar a compreensão de modelos científicos
- facilitar a construção e investigação de situaçõesproblema (mais reais e atuais)
- desenvolver a capacidade de predizer, avaliar e analisar predições
- propiciar uma visão de ciências compatível com as visões contemporâneas

Mas, as TICs podem reforçar vícios...

Para que ângulo de lançamento o alcance é máximo?

Quanto vale o alcance máximo?

Qual a altura máxima que as bolas atingem?

Qual a condição que deve ser satisfeita, para que o alcance correspondente aos dois ângulos apresentados seja o mesmo?

Como se comparam os tempos de vôo das duas bolas?

A simulação apresenta para cada valor do módulo da velocidade, dois valores de seu ângulo com a horizontal (ângulo de tiro) que resultam no mesmo alcance. VII RELAEF: eav@if.ufrgs.br & rafael.brandao@ufrgs.br

Como ficam...

a discussão sobre os referentes?

a questão das idealizações?

o contexto de validade do modelo?

a análise dos princípios, leis e teorias envolvidas?

Implícitos!

Sumário da Aula 1

- ✓ Ideias básicas sobre o fazer ciências
- ✓ Alguns problemas do ensino de Física
- Atividades de simulação e modelagem computacionais
- Possibilidades de uso: modo expressivo e exploratório
- Potencialidades das atividades computacionais para a aprendizagem de Física

Simulação e modelagem computacionais: tipo de acesso aos primitivos do modelo

Simulação: O aluno não tem

Modelagem: O aluno tem

acesso aos primitivos do modelo matemático ou icônico usado na implementação do modelo computacional

Ex. softwares de modelagem para o Ensino de Ciências:

Modellus, Planilhas eletrônica, Powersim, Simquest

Animações computacionais

Animação: interatividade se resume a

(~vídeo) parar, rodar, avançar

rápida ou lentamente, retroceder

rápida ou lentamente

Resultados de pesquisa: têm pouca eficácia sobre a aprendizagem dos alunos.

Por ex.,

Beichner, A.J.P. v. 64, n. 10, p.1272, 1996.

Ex. de acesso aos primitivos do modelo no Modellus

Ex. de acesso aos primitivos do modelo no Powersim

Simulação: não dá acesso aos primitivos do modelo computacional

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48.0

Diferentes modos de uso de atividades de simulação e modelagem computacionais

exploratório

O aluno observa, analisa e interage com modelos computacionais já construídos

de simulação

de modelagem

expressivo

(criação)

O aluno passa por todo o processo de construção do modelo, desde sua estrutura matemática ou icônica, até a análise dos resultados.

Ex. atividade simulação no modo exploratório: regime caótico

Potencialidades das simulações computacionais

- permitir aos estudantes gerarem e testarem hipóteses
- envolver os estudantes em atividades que explicitem a natureza da pesquisa científica
- apresentar uma versão simplificada da realidade pela destilação de conceitos abstratos em seus mais importantes elementos

Gaddis apud Medeiros e Medeiros 2002

Outras vantagens no uso de simulações

- ajudar a identificar relações de causa e efeito em sistemas
- fomentar uma compreensão mais profunda dos fenômenos físicos
- auxiliar os estudantes a aprenderem sobre o mundo natural, vendo e interagindo com os modelos científicos subjacentes que não poderiam ser inferidos através da observação direta

Gaddis apud Medeiros e Medeiros 2002

Mas nós perguntamos:

Que condições devem ser satisfeitas para que as simulações cumpram este papel?

Como fazer para que as vantagens apontadas se reflitam na aprendizagem?

Quanto tempo o caminhão demorará para atravessar a ponte mantendo uma velocidade constante?

Dados:

velocidade do caminhão= 20m/s, na direção e sentido da ponte; comprimento do caminhão: 20m comprimento da ponte: a) 80m; b) 2000m

Alguns dados sobre uma revisão da literatura de 1990 a 2004 (Tese de Ives Solano Araujo)

Objetivo da revisão: mapear trabalhos envolvendo o computador no ensino de Física em nível superior e médio, identificando as principais modalidades pedagógicas do seu uso e os tópicos de Física escolhidos como tema em artigos publicados pelas principais revistas da área desde os anos noventa.

Palavras-chave típicas usadas na busca: combinações da palavra "Física" com, por exemplo, computador, computacional, programa, simulações, modelagem, modelos, tutoriais, multimídia, coleta de dados, internet, etc. (Usamos palavras-chave em Português e Inglês)

Total de trabalhos sobre uso de TICs: 127

de um total de > 5000 artigos publicados!

8 de discussões e/ou revisões da literatura

62 trabalhos de pesquisa ou propostas com avaliação empírica

57 e simples apresentações de propostas

Trabalhos de pesquisa ou propostas com avaliação empírica envolvendo o uso de atividades de simulação computacional no ensino de Física em nível médio (até 2004): <u>13</u>

Principais referências

- AGUIAR, C. E. Disponível em: http://omnis.if.ufrj.br/~carlos/infoenci/notasdeaula/roteiros/aula01.pdf
- ARAUJO, I. S. Simulação de modelagem computacionais como recursos auxiliares no ensino de Física Geral. Tese de doutorado. Instituto de Física, UFRGS, 2005.
- ARAUJO, I. S. e VEIT, E. A. Uma revisão da literatura sobre estudos relativos a tecnologias computacionais no ensino de Física. Revista Brasileira de Pesquisa em Educação em Ciências, v.4, n.3, p.5-18, 2004.
- ANDREA A. DI SESSA, Changing Minds Computers, Learning and Literacy, MIT Press, 1999.
- BRANDÃO, R. V; ARAUJO, I. S. e VEIT, E. A., A modelagem científica de fenômenos físicos e o ensino de física, Física na Escola, v.8, n.1, p.22-26, 2008.
- BUNGE, M. (1974) Teoria e Realidade. São Paulo: Ed. Perspectiva. 243 p.
- ESQUEMBRE, F. Computers in Physics Education, Computer Physics Communications 147, 13-18 2002.
- JONASSEN, D. H. *Computadores como herramientas da mente*. Disponível em: http://tecnologiaedu.us.es/bibliovir/pdf/efect_cog.pdf Acesso em: 10 de julho *de 2005.*
- MEDEIROS, A. & MEDEIROS, C. F. D. Possibilidades e limitações das simulações computacionais no ensino da Física. Revista Brasileira de Ensino de Física, São Paulo, v.24, n.2, p.77-86, 2002.
- PIETROCOLA, M. Construção e realidade: o realismo científico de Mario Bunge e o ensino de ciências através de modelos. Investigações em Ensino de Ciências, v. 4, n. 3, paginação eletrônica, Dez. 1999.