Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет»

Кафедра ИТАС

КУРСОВАЯ РАБОТА

по дисциплине «ОРГАНИЗАЦИЯ ЭВМ И СИСТЕМ»

Тема: «Структурно-алгоритмическое проектирование ЭВМ»

Выполнил студент группы РИС-19-16

_ Миннахметов Э.Ю.

Погудин А.Л.

Руководитель

Дата сдачи 18.12.2021

Дата защиты 22.12.

Оценка от

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Кафедра ИТАС

«УТВЕРЖДАЮ»

Заведующий кафедрой ИТАС

Р.А. Файзрахманов

« /3 » сентября 2021 год

ЗАДАНИЕ на выполнение курсовой работы

Фамилия И.О. Миннахметов Эльдар Юлдашевич

Факультет Электротехнический Группа РИС-19-16

Начало выполнения работы: 13 сентября 2021 года

Контрольные сроки просмотра работы: 22.09.2021, 20.10.2021, 10.11.2021

Защита работы: 22.12.21

1. Наименование темы: «Структурно-алгоритмическое проектирование ЭВМ».

2. Исходные данные к работе (проекта):

Объект исследования – Контроллер ассоциативной памяти

Предмет исследования — Алгоритм работы и структура контроллера ассоциативной памяти Цель работы (проекта) — Разработать контроллер ассоциативной памяти, хранящей 64*8-разрядных двоичных кодов с выходом по «равно признаку» и «не равно признаку». Признаком поиска может быть 1,2,4,8 двоичных разрядов. Результатом поиска, выводимым на ШД, является весь байт.

- 3. Содержание:
 - 3.1 Исследование предметной области курсовой работы
 - 3.2 Анализ исходных данных задания на курсовую работу
 - 3.3 Спецификация устройства на уровне «черного ящика»
 - 3.4 Представление устройства в виде операционной и управляющей частей
 - 3.5 Разработка структуры устройства
 - 3.6 Составление алгоритма работы устройства.
 - 3.7 Разработка микропрограммы работы устройства
 - 3.8 Составление полной спецификации устройства
 - 3.9 Составление фрагмента функциональной схемы устройства
 - 3.10 Контрольный пример

Руководитель курсовой работы _______ А.Л. Погудин ______ Э.Ю. Миннахметов

КАЛЕНДАРНЫЙ ГРАФИК ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

No	Этапы работы	Объём Сроки выпол		лнения	Приме-
пп		этапа, %	Начало	Конец	чание
1.	Исследование предметной области курсовой работы	9	13.09.2021	17.09.2021	foreon
2.	Анализ исходных данных задания на курсовую работу	9	20.09.2021	01.10.2021	bruan
3.	Спецификация устройства на уровне «черного ящика»	9	04.10.2021	08.10.2021	bourser
4.	Представление черного ящика в виде операционной и управляющей частей	9	11.10.2021	15.10.2021	bruser
5.	Разработка структуры устройства	9	18.10.2021	22.10.2021	Course
6.	Составление алгоритма работы устройства	9	25.10.2021	29.10.2021	bours
7.	Составление полной спецификации устройства	9	1.11.2021	12.11.2021	freed
8.	Составление фрагмента функциональной	9	15.11.2021	19.11.2021	Camar
0	схемы устройства Контрольный пример	9	22.11.2021	03.12.2021	Canan
9.	Оформление курсовой работы	10	06.12.2021		
11.	¥ = -	9	20.12.2021	22.12.2021	lonce

Руководитель курсовой работы _

А.Л. Погудин

«________» сентября 2021 года

РЕФЕРАТ

Отчет 27 с., 21 рис., 1 табл., 3 источника.

АРИФМЕТИКО-ЛОГИЧЕСКОЕ УСТРОЙСТВО, УПРАВЛЯЮЩЕЕ УСТРОЙСТВО, ПОИСК, ЗАНУЛЕНИЕ, СОХРАНЕНИЕ ЗНАЧЕНИЯ.

Цель работы – разработка алгоритма работы и структуры работы устройства для выполнения трех команд.

При разработке устройства использовались концепции «черного ящика», т.е. первоначальное определение общих функций устройства и системы входных и выходных сигналов. В основе дальнейшей работы с «черным ящиком» использовался принцип декомпозиции, т.е. последовательное разложение функций на подфункции до получения описания функций на элементарном уровне.

В результате работы была составлен алгоритм работы и структура устройства.

Приведен контрольный пример в числовой форме.

СОДЕРЖАНИЕ

Перечень используемых условных обозначений, сокращений и терминов	6
ВВЕДЕНИЕ	7
1 Исследование предметной области	8
1.1 Устройство управления	8
1.2 Ассоциативная память	9
1.3 Поиск	. 10
1.4 Зануление	. 10
1.5 Сохранение значения	. 10
2 Разработка устройства	. 11
2.1 Анализ исходных данных задания на курсовую работу	. 11
2.2 Спецификация устройства на уровне «черного ящика»	. 11
2.3 Представление черного ящика в виде операционной и управляющей частей	12
2.4 Разработка структуры операционной части устройства	. 12
2.5 Составление схемы алгоритма работы устройства и его микропрограммы	. 13
2.6 Разработка схемы алгоритма работы	. 13
2.7 Составление полной спецификации устройства	. 16
2.8 Разработка функциональной схемы	. 17
2.9 Контрольный пример	. 18
2.10 Временная диаграмма работы УУ	. 21
ЗАКЛЮЧЕНИЕ	. 22
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	. 23
ПРИЛОЖЕНИЕ А	. 24

Перечень используемых условных обозначений, сокращений и терминов

ЧЯ	Черный ящик
уч	Управляющая часть устройства
ОЧ	Операционная часть устройства
АЛУ	Арифметико-логическое устройство
MO	Микрооперация
МПР	Микропрограмма

ВВЕДЕНИЕ

Цель работы (проекта) — Разработать контроллер ассоциативной памяти, хранящей 64*8-разрядных двоичных кодов с выходом по «равно признаку» и «не равно признаку». Признаком поиска может быть 1,2,4,8 двоичных разрядов. Результатом поиска, выводимым на ШД, является весь байт. Объектом исследования является устройство управления. Предметом исследования — алгоритм работы и структура устройства.

В работе представлена спецификация устройства на уровне «черного ящика», разработана схема алгоритма работы устройства и его микропрограммы, составлена полная спецификация устройства. Построена временная диаграмма работы устройства управления. Приведен листинг разработанной программы на языке программирования С и результаты расчета контрольного примера.

1 Исследование предметной области курсовой работы

1.1 Устройство управления

Управляющее устройство (УУ) - устройство управления, часть вычислительной машины (ВМ), координирующая работу всех её устройств, предписывая им те или иные действия в соответствии с заданной программой. Управляющее устройство вырабатывает управляющие сигналы, обеспечивающие требуемую последовательность выполнения операций, контролирует работу машины в различных режимах, обеспечивает взаимодействие человека-оператора с ВМ.

Для выполнения своих функций УУ должно иметь входы, позволяющие определить состояние управляемой системы, и выходы, через которые реализуется управление поведением системы.

Входная информация:

Тактовые импульсы – с каждым тактовым импульсом УУ инициирует выполнение одной или нескольких микроопераций.

Код операции – код операции текущей команды поступает из регистра команды и используется, чтобы определить, какие микрооперации должны выполняться в течение машинного цикла.

Сигналы из системной шины— часть сигналов с системной шины, обеспечивающая передачу в управляющее устройства запросов прерывания, подтверждений и т.д.

В свою очередь УУ, а точнее микропрограммный автомат, формирует следующую выходную информацию:

Внутренние сигналы управления— эти сигналы воздействуют на внутренние схемы центрального процессора и относятся к одному из двух типов: тем, которые вызывают перемещение данных из регистра в регистр, и тем, что инициируют определенные функции операционного устройства ВМ.

Сигналы в системную шину— также относится к одному из двух типов: управляющие сигналы в память и управляющие сигналы в модули ввода/вывода.

После извлечения команды из памяти, она загружается в регистр команд. Дешифратор команд, входящий в устройство управления, преобразует код команды в управляющие сигналы:

- внутренние, необходимые для считывания/записи данных в регистры и управления АЛУ;
 - внешние, подаваемые на шину управления.

Арифметическо - логическое устройство (АЛУ)— блок процессора, который служит для выполнения арифметических и логических преобразований над словами, называемыми в этом случае операндами.

АЛУ в зависимости от выполнения функций можно разделить на две части:

2) операционное устройство (АЛУ), в котором реализуется заданная последовательность микрокоманд (команд).

В АЛУ выполняются требуемые операции:

- поиск
- зануление
- сохранение значения

1.2 Ассоциативная память

На рисунке П1 представлена схема ассоциативной памяти. Она состоит из управляющей части и операционной части. На рисунке П2 как будут храниться данные в ассоциативной памяти, поиск в которой будет реализовываться бинарной последовательностью, из которой будет получаться индекс в массиве.

Рисунок П1. – Устройство ассоциативной памяти

Ассоциативная память			
Индекс	Адрес	Значение	
0	00000000	0	
1	00000001	0	
62	00111110	0	
63	00111111	0	

Рисунок П2. – Представление ассоциативной памяти

1.3 Поиск

На вход поступает бинарная последовательность, которая будет преобразовываться в индекс, а на выходе байт, записанный в массиве по полученному индексу.

1.4 Зануление

На вход поступает бинарная последовательность, которая будет преобразовываться в индекс, по которому будет зануляться значение в массиве, а на выходе ответ о выполнении операции.

1.5 Сохранение значения

На вход поступает бинарная последовательность, которая будет преобразовываться в индекс, по которому будет записываться значение в массив, а на выходе ответ о выполнении операции.

2 Разработка устройства

2.1 Анализ исходных данных задания на курсовую работу

Согласно заданию, устройство должно быть предназначено для выполнения следующих операций:

- поиск;
- зануление;
- сохранение значения.

Разрядность операндов и результата должна быть – 8 бит.

Исходя из этого видно, что входы(A,B) и выход (результат операции C) должны иметь 8 разрядов.

2.2 Спецификация устройства на уровне «черного ящика»

Упрощенно разрабатываемое устройство можно представить как 3 команды, изображенные на рис.3-5.

Рисунок П3. – Система выводов устройства поиска

Рисунок П4. – Система выводов устройства зануления

Рисунок П5. – Система выводов устройства сохранения значения

2.3 Представление «черного ящика» в виде операционной и управляющей частей

Пусть операнды размещаются в регистрах A и B, как показано на рисунке 6. Выделим три блока для каждой команды. После каждого выполнения команды значение операнда A изменяется, а значение операнда B остается неизменным. Результат выполнения трех команд (изменения операнда A) записывается в регистр C.

Рисунок Пб. — Разбиение схемы устройств на ОЧ и УЧ.

2.4 Разработка структуры операционной части устройства

Пусть операнды размещаются в регистре A (уменьшаемое) и в регистре B (вычитаемое). Алгоритм приведен на рисунке 7.

Рисунок П7. — Упрощенная структура ОЧ четырёх команд.

2.5 Составление схемы алгоритма работы устройства и его микропрограммы

Схема алгоритма выполнения трех команд (поиска, зануления и сохранения значения) приведена на рисунке Π 7.

Отметим операторные блоки символами Yi, а логические блоки символами Xi.

Операторных блоков получилось 20, логических -5.

Таким образом, для операционной части (ОЧ) устройства потребуется 20 сигналов управления из управляющей части устройства, а для управляющей части (УЧ) устройства – 5 осведомительных сигналов из операционной части.

2.6 Разработка схемы алгоритма работы

Схема алгоритма на уровне микроопераций изображена на рисунках 8-11.

Рисунок П8. – Схема алгоритма возврата указателя ячейки, метод getPtr()

Рисунок П9. – Схема алгоритма чтения значения по указателя

Рисунок П10. – Схема алгоритма чтения значения по указателя

Рисунок П11. – Схема алгоритма чтения значения по указателю

2.7 Составление полной спецификации устройства

Опишем в таблице все линии и сигналы, полученные в процессе разработки ассоциативной памяти.

Таблица 1. Сигналы операционной части

Имя	Тип	Назначение сигнала
сигнала/шины	(In/Out)	
и разрядность		
Y1	I для ОЧ	Ввод бинарной последовательности
Y2	I для ОЧ	Преобразование бинарной последовательности в десятичное число
Y3	I для ОЧ	Условие вхождения числа в диапозон адресов ассоциативной памяти
Y4	I для ОЧ	Присвоение указателю Null
Y5	I для ОЧ	Присвоение указателю адреса на ячейку памяти
Y6	О для ОЧ	Возврат указателя
Y7	I для ОЧ	Получение указателя
Y8	I для ОЧ	Проверка указателя на неравенство Null
Y9	I для ОЧ	Сохранение сообщения «Выход за границы памяти»
Y10	I для ОЧ	Проверка значения ячейки на неравнство нулю
Y11	I для ОЧ	Сохранение сообщения «Значение занулено»
Y12	I для ОЧ	Сохранение сообщения «Значение: » + Значение ячейки
Y13	О для ОЧ	Вывод сообщения
Y14	I для ОЧ	Получение указателя
Y15	I для ОЧ	Проверка указателя на неравенство Null
Y16	I для ОЧ	Сохранение сообщения «Выход за границы памяти»
Y17	I для ОЧ	Зануление ячейки памяти
	I	

Продолжение таблицы 1. Сигналы операционной части

1 '		<u> </u>
Имя	Тип	Назначение сигнала
сигнала/шины	(In/Out)	
и разрядность		
Y18	О для ОЧ	Вывод сообщения
Y19	I для ОЧ	Получение указателя
Y20	I для ОЧ	Проверка указателя на неравенство Null
Y21	I для ОЧ	Сохранение сообщения «Выход за границы памяти»
	, ,	
Y22	І для ОЧ	Ввод нового значения
	7,	
Y23	І для ОЧ	Присвоение ячейке памяти нового значения
123	1 для о 1	Tipheboeime a tenke namath noboto sha tenha
Y24	І для ОЧ	Сохранение сообщения «Значение записано в память»
1 24	т для Оч	Сохранение сообщения «эначение записано в память»
1/05	0 011	D. C.
Y25	О для ОЧ	Вывод сообщения

2.8 Разработка фрагмента функциональной схемы ассоциативной памяти

Фрагмент схемы УЧ дан на рисунке $\Pi 10$. Схема составлена с блока Y8 по блок Y12 (см. рисунок $\Pi 5$).

Рисунок П12. - Фрагмент схемы УЧ

2.9 Контрольный пример

Выполнение программы для исходных данных показано на рисунке П11. Листинг программы представлен в приложении А.

Меню: 1. Создать устройство ассоциативной памяти. 2. Вывести все записи. 3. Прочитать из памяти. 4. Записать в память. 5. Удалить из памяти. 6. Удалить устройство ассоциативной памяти. (*). Выход. Введите номер действия: 1 Устройство ассоциативно.

Рисунок П13. – Создание устройства ассоциативной памяти

```
Меню:

1. Создать устройство ассоциативной памяти.

2. Вывести все записи.

3. Прочитать из памяти.

4. Записать в память.

5. Удалить из памяти.

6. Удалить устройство ассоциативной памяти.

(*). Выход.

Введите номер действия: 2

Содержимое памяти:

<пусто>
Всего записей: 0
```

Рисунок П14. – Создание устройства ассоциативной памяти

```
Меню:

1. Создать устройство ассоциативной памяти.
2. Вывести все записи.
3. Прочитать из памяти.
4. Записать в память.
5. Удалить из памяти.
6. Удалить устройство ассоциативной памяти.
(любое другое число). Выход.
Введите номер действия: 3
Введите индекс: 11
Значение по адресу 00000011 - занулено.
```

Рисунок П15. – Создание устройства ассоциативной памяти

```
Меню:

1. Создать устройство ассоциативной памяти.
2. Вывести все записи.
3. Прочитать из памяти.
4. Записать в память.
5. Удалить из памяти.
6. Удалить устройство ассоциативной памяти.
(*). Выход.
Введите номер действия: 4
Введите индекс: 11
Введите значение: е
00000011 -> е
```

Рисунок П16. – Создание устройства ассоциативной памяти

```
Меню:

1. Создать устройство ассоциативной памяти.
2. Вывести все записи.
3. Прочитать из памяти.
4. Записать в память.
5. Удалить из памяти.
6. Удалить устройство ассоциативной памяти.
(*). Выход.
Введите номер действия: 2
Содержимое памяти:
00000011 -> е
00101010 -> г
```

Рисунок П17. – Создание устройства ассоциативной памяти

```
Меню:

1. Создать устройство ассоциативной памяти.

2. Вывести все записи.

3. Прочитать из памяти.

4. Записать в память.

5. Удалить из памяти.

6. Удалить устройство ассоциативной памяти.

(*). Выход.

Введите номер действия: 5

Введите индекс: 11

Байт по индексу 00000011 обнулён.
```

Рисунок П18. – Создание устройства ассоциативной памяти

Меню:

- 1. Создать устройство ассоциативной памяти.
- 2. Вывести все записи.
- 3. Прочитать из памяти.
- 4. Записать в память.
- 5. Удалить из памяти.
- 6. Удалить устройство ассоциативной памяти.
- (*). Выход.

Введите номер действия: 6

Устройство ассоциативной памяти удалено.

Рисунок П19. – Создание устройства ассоциативной памяти

Меню:

- 1. Создать устройство ассоциативной памяти.
- 2. Вывести все записи.
- 3. Прочитать из памяти.
- 4. Записать в память.
- 5. Удалить из памяти.
- 6. Удалить устройство ассоциативной памяти.

(любое другое число). Выход.

Введите номер действия: 7

Спасибо за работу! До свидания!

Process finished with exit code 0

Рисунок П20. – Создание устройства ассоциативной памяти

2.10 Временная диаграмма работы УУ

На рисунке П21 приведена временная диаграмма работы УУ.

Рисунок П21. – Фрагмент временной диаграммы работы операционной части

Закрашенные интервалы времени соответствуют логическим 1, горизонтальные штриховые линии указывают интервалы времени, в которых значения X не имеют смысла, т.к. в эти интервалы сигналы X не проверяются в YЧ. Вертикальные штриховые линии разделяют временные такты.

ЗАКЛЮЧЕНИЕ

Задача курсовой работы — разработка алгоритма работы и структуры работы устройства для выполнения четырех команд

Поставленная задача выполнена. В ходе курсовой работы была изучена специальная литература, разработана структура ОЧ, алгоритм их работы, спецификация сигналов, фрагмент функциональной схемы УЧ, контрольный числовой пример и временная диаграмма работы устройства.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Павловская Т.А. С/С++. Программирование на языке высокого уровня: Учеб. пособие. СПб.:Питер, 2007. 461 с.
- 2. Павловская Т.А., Щупак Ю.А. С/С++. Программирование на языке высокого уровня. Структурное программирование: Практикум. СПб.:Питер, 2003. 240 с.
- 3. Жмакин А. П. Архитектура ЭВМ: 2-е изд., перераб. и доп.: учеб. пособие. СПб.: БХВ-Петербург, 2010. 352 с.

ПРИЛОЖЕНИЕ А

```
Листинг файла main.c
#include "assoc.h"
#include <locale.h>
int main() {
 setlocale(LC_ALL, "Russian");
 run();
 return 0;
}
       Листинг файла assoc.h
#pragma once
void run();
void create(void **mem);
void out(void **mem);
void read(void **mem);
void write(void **mem);
void rem(void **mem);
void drop(void **mem);
       Листинг файла assoc.c
#include "assoc.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char byte;
typedef void (*task)(void**);
struct bin {
 char s[9];
};
const byte BYTE_COUNT = 64;
const char *DIALOG =
   "Меню:\п"
    "\t1. Создать устройство ассоциативной памяти.\n"
    "\t2. Вывести все записи.\n"
    "\t3. Прочитать из памяти.\n"
    "\t4. Записать в память.\n"
   "\t5. Удалить из памяти.\n"
   "\t6. Удалить устройство ассоциативной памяти.\n"
    "\t(любое другое число). Выход.\n"
    "Введите номер действия: ";
const char *INCORRECT = "Некорректный индекс!";
const task TASKS[] = {
   &create.
   &out,
```

```
&read.
    &write,
    &rem,
    &drop
};
int read_index(byte *result);
byte read_value();
struct bin byte_to_bin(byte b);
byte bin_to_byte(struct bin b);
void run() {
  int number;
  void *mem = NULL;
  while(1) {
    printf("%s", DIALOG);
    scanf("%d", &number);
    if(1 <= number && number <= 6) {
      if(number > 1 \&\& mem == NULL) {
        printf("Устройство ассоциативной памяти не было создано!\n\n");
        continue;
      } else {
        TASKS[number - 1](&mem);
        printf("\n");
    } else {
      printf("Спасибо за работу! До свидания!\n");
      return;
   }
 }
void create(void **mem) {
  if(*mem) {
    free(*mem);
  *mem = malloc(BYTE_COUNT);
  for(byte i = 0; i < BYTE_COUNT; ++i) {</pre>
    ((byte*)*mem)[i] = 0;
  printf("Устройство ассоциативной памяти создано.\n");
}
void out(void **mem) {
  byte count = 0;
  printf("Содержимое памяти:\n");
  for(byte i = 0; i < BYTE_COUNT; ++i) {</pre>
    byte value = ((byte*)*mem)[i];
    if(value) {
      printf("\t%s -> \%c\n", byte_to_bin(i).s, value);
      ++count;
    }
  if(count == 0) {
    printf("\t<пусто>\n");
  printf("Всего записей: %d\n", count);
}
void read(void **mem) {
```

```
byte index:
  if (read_index(&index)) {
    byte value = ((byte *) *mem)[index];
    if (value) {
      printf("%s \rightarrow %c\n", byte_to_bin(index).s, value);
    } else {
      printf("Значение по адресу %s - занулено.\n", byte_to_bin(index).s);
  } else {
    printf("%s\n", INCORRECT);
  }
}
void write(void **mem) {
  byte index;
  if (read_index(&index)) {
    byte value = read_value();
    ((byte*)*mem)[index] = value;
    printf("%s -> %c\n", byte_to_bin(index).s, value);
  } else {
    printf("%s\n", INCORRECT);
}
void rem(void **mem) {
  byte index:
  if (read_index(&index)) {
    if(((byte*)*mem)[index]) {
      ((byte^*)^*mem)[index] = 0;
      printf("Байт по индексу %s обнулён.\n", byte_to_bin(index).s);
      printf("Байт по индексу %s уже был обнулён.\n", byte_to_bin(index).s);
  } else {
    printf("%s\n", INCORRECT);
void drop(void **mem) {
  free(*mem);
  *mem = NULL;
  printf("Устройство ассоциативной памяти удалено.\n");
}
int read_index(byte *result) {
  struct bin b;
  printf("Введите индекс: ");
  scanf("%s", b.s);
  *result = bin_to_byte(b);
  getchar();
  return *result < 64;
byte read_value() {
  byte value;
  printf("Введите значение: ");
  scanf("\n%c", &value);
  return value;
}
```

```
struct bin byte_to_bin(byte b) {
    struct bin r;
    r.s[8] = '\0';
    for(int i = 0; i < 8; ++i) {
        r.s[i] = (b & 128) ? '1' : '0';
        b <<= 1;
    }
    return r;
}

byte bin_to_byte(struct bin b) {
    byte r = 0;
    for(byte i = 0, n = strlen(b.s); i < n; ++i) {
        r <<= 1;
        r |= (b.s[i] != '0' ? 1 : 0);
    }
    return r;
}</pre>
```