

"DEEPGUARD": HIGH ACCURACY CREDIT CARD FRAUD DETECTION

Presented by Piyush Gupta Under the Guidance of Prof. Krystn Gutu

Seidenberg School of Computer Science & Information Systems

INTRODUCTION

technological advancement and The rapid proliferation of digital payments have amplified the usage of credit cards extensively. Consequently, this has also led to a surge in fraudulent activities associated with credit card transactions, necessitating the development of robust and precise fraud detection mechanisms. Credit card fraud can manifest in various forms, occurring both online and offline. Numerous methods are available for detecting such fraudulent activities, with research suggesting that machine learning algorithms are particularly effective in identifying and mitigating such risks. Notable algorithms such as Logistic Regression, KNN, Decision Tree, Random Forest & CNN have been instrumental in enhancing the accuracy and efficiency of fraud detection processes. In the project "DeepGuard", we aim to achieve a high level of accuracy in credit card fraud detection by leveraging sophisticated machine learning and deep learning techniques.

OBJECTIVES

The "DeepGuard" project aims to devise two predictive models using machine and deep learning algorithms to identify fraudulent transactions. By analyzing regular patterns, these models can differentiate genuine transactions from fraudulent ones. Our focus is on maximizing fraud detection with minimal false alerts, treating this as a classification challenge. Data preprocessing and PCA transformations are integral to our approach.

MODELS

- **1.Logistic Regression:** This technique is versatile, suited for regression and classification tasks, but is predominantly used for the latter. Logistic regression leverages dependent variables to forecast categorical outcomes.
- **2.Decision Tree:** This tool addresses both classification and regression challenges by branching decisions based on data attributes.
- **3.Random Forest:** This classifier harnesses multiple decision trees, each analyzing a data subset, and then consolidates their insights to enhance prediction accuracy for the entire dataset.
- **4.KNN (K-Nearest Neighbors):** KNN operates by classifying data points based on how their neighbors are classified, making it effective for pattern recognition tasks.
- **5.CNN (Convolutional Neural Network):** CNN is a deep learning algorithm primarily utilized for image analysis. It processes data with a grid-like topology, like an image, identifying patterns through various layers of information processing.

RESULTS

class	sification	report of	logistic r	egression	
р	recision	recall f	1-score	support	
0	1.00	1.00	1.00	84984	
1	0.70	0.64	0.67	134	
accuracy			1.00	85118	
macro avg	0.85	0.82	0.83	85118	
weighted avg	1.00	1.00	1.00	85118	
	Accuracy o	of logistic	regressio	n	
Accuracy:- 0.999	90013863107	686			
F1-Score: - 0.669	92607003891	.051			
Precision:- 0.69	99186991869	9187			

clas	sification recision	•				
ø	1.00	1.00	1.00	84984		
1	0.70	0.64	0.67	134		
accuracy			1.00	85118		
macro avg	0.85	0.82	0.83	85118		
weighted avg	1.00	1.00	1.00	85118		
	Accuracy	of decisi	on tree			
Accuracy:- 0.9991306186705514						
F1-Score:- 0.73	75886524822	697				
Precision:- 0.7	02702702702	7027				

	preci				- · · · ·
		LSION	recall	f1-score	support
	9	1.00	1.00	1.00	84984
	1	0.70	0.64	0.67	134
accurac	У			1.00	85118
macro av	g	0.85	0.82	0.83	85118
weighted av	g	1.00	1.00	1.00	85118

class	sification	report of	F KNN		
pr	recision	recall	f1-score	support	
0	1.00	1.00	1.00	84984	
1	0.70	0.64	0.67	134	
accuracy			1.00	85118	
macro avg	0.85	0.82	0.83	85118	
weighted avg	1.00	1.00	1.00	85118	
Accuracy of KNN					
Accuracy:- 0.9984609600789492					
F1-Score:- 0.05755395683453237					
Precision:- 0.8					

n recall 0 1.00 0 0.64	1.00	84984
0 0.64	0.67	134
	1.00	85118
5 0.82	0.83	85118
0 1.00	1.00	85118
acy of CNN-		
	0 1.00	0 1.00 1.00 acy of CNN

CONCLUSIONS

"DeepGuard" successfully project deployed machine deep learning and learning models for credit card fraud detection. Among the models tested, Forest achieved the Random highest accuracy at 0.9995. However, all models demonstrated impressive accuracy rates, underscoring their potential for real-world applications

S.No.	Model Name	Accuracy
1	Logistic Regression	0.9990
2	Decision Tree	0.9991
3	Random Forest	0.9995
4	KNN	0.9985
5	CNN	0.9994

REFERENCES

- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.
- Jagtap, A., & Shirbahadurkar, S. (2020).
 Detection of Credit Card Fraud Using Machine Learning Algorithms: A Survey.
 Procedia Computer Science, 167, 191–201.
- Hassan, M.M., Huda, S., Uddin, M.Z., Almogren, A., & Alamri, A. (2019). Secure and Robust Cloud-Based Large-Scale IoT Infrastructure for Smart Cities. IEEE Access, 7, 50724-50734.