CS663 Assignment-4 Question-3

KOTWAL ALANKAR SHASHIKANT

October 11, 2014

Part A

Consider a matrix **A** of size $m \times n$. Define $\mathbf{P} = \mathbf{A}^T \mathbf{A}$ and $\mathbf{Q} = \mathbf{A} \mathbf{A}^T$.

Now, if **A** has dimensions $m \times n$, **P** has dimensions $n \times n$. Hence if we want to evaluate $\mathbf{y}^T \mathbf{P} \mathbf{y}$ for a (column) vector \mathbf{y} , \mathbf{y} must have dimensions $n \times 1$. This means the product $\mathbf{y}^T \mathbf{P} \mathbf{y}$ will be a scalar.

Now we have

$$\mathbf{v}^T \mathbf{P} \mathbf{v} = \mathbf{v}^T \mathbf{A}^T \mathbf{A} \mathbf{v}$$

Putting $\mathbf{Z} = \mathbf{A}\mathbf{y}$, and noticing that $\mathbf{Z}^T = \mathbf{y}^T \mathbf{A}^T$, we have

$$\mathbf{y}^T \mathbf{P} \mathbf{y} = \mathbf{Z}^T \mathbf{Z}$$

Thus the given expression is the dot product of a vector with itself, which is always non-negative. Thus,

$$\mathbf{y}^T \mathbf{P} \mathbf{y} \ge 0$$

Similarly, we have for a $n \times 1$ vector \mathbf{z} , with $\mathbf{Y} = \mathbf{A}\mathbf{z}$

$$\mathbf{z}^T \mathbf{Q} \mathbf{z} = \mathbf{Y}^T \mathbf{Y}$$

which is again the dot product of a vector with itself, which is always non-negative. Thus,

$$\mathbf{z}^T \mathbf{Q} \mathbf{z} \geq 0$$

Now consider an eigenvector \mathbf{z} of $\mathbf{A}^T\mathbf{A}$, where \mathbf{z} is a $m\times 1$ vector. We must have for some λ

$$\mathbf{A}^T \mathbf{A} \mathbf{z} = \lambda \mathbf{z}$$

A pre-multiplication by \mathbf{z}^T yields

$$\mathbf{z}^T \mathbf{A}^T \mathbf{A} \mathbf{z} = \mathbf{z}^T \lambda \mathbf{z}$$

which means

$$\mathbf{z}^T \mathbf{A}^T \mathbf{A} \mathbf{z} = \lambda \mathbf{z}^T \mathbf{z}$$

Now the left hand side is positive, as proved above. $\mathbf{z}^T\mathbf{z}$ is positive, because it is the dot product of a vector with itself. Hence, λ must be non-negative.

Similarly for $\mathbf{A}\mathbf{A}^T$, consider an eigenvector \mathbf{z} of dimension $m \times 1$. Multiplying the eigenvalue equation on the left by \mathbf{z}^T we get for some λ

$$\mathbf{z}^T \mathbf{A} \mathbf{A}^T \mathbf{z} = \lambda \mathbf{z}^T \mathbf{z}$$

which again means λ is non-negative.

Hence the eigenvalues of $\mathbf{A}^{\tilde{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{T}$ are non-negative.

Part B

If **u** is an eigenvector of **P** with eigenvalue λ , we have

$$\mathbf{A}^T \mathbf{A} \mathbf{u} = \lambda \mathbf{u}$$

Pre-multiply by \mathbf{A}^T to give

$$\mathbf{A}\mathbf{A}^T\mathbf{A}\mathbf{u} = \mathbf{A}\lambda\mathbf{u}$$

implying

$$\mathbf{A}\mathbf{A}^T\mathbf{A}\mathbf{u} = \lambda\mathbf{A}\mathbf{u}$$

Thus $\mathbf{A}\mathbf{u}$ is an eigenvector of \mathbf{Q} with eigenvalue λ .

Similarly, if ${\bf v}$ is an eigenvector of ${\bf Q}$ with eigenvalue $\mu,$ we have by premultiplying with ${\bf A}^T$

$$\mathbf{A}^T \mathbf{A} \mathbf{A}^T \mathbf{v} = \mu \mathbf{A}^T \mathbf{v}$$

Thus $\mathbf{A}^T \mathbf{v}$ is an eigenvector of \mathbf{P} with eigenvalue μ . Clearly \mathbf{u} has n elements and \mathbf{v} has m elements.

Part C

If \mathbf{v}_i is an eigenvector of \mathbf{Q} , we have

$$\mathbf{A}\mathbf{A}^T\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Defining \mathbf{u}_i as

$$\mathbf{u}_i = \frac{\mathbf{A}^T \mathbf{v}_i}{||\mathbf{A}^T \mathbf{v}_i||}$$

and substituting it in the previous equation yields

$$\mathbf{A}\mathbf{u}_i = \frac{\lambda_i}{||\mathbf{A}^T\mathbf{v}_i||}\mathbf{v}_i$$

Define γ_i as

$$\gamma_i = \frac{\lambda_i}{||\mathbf{A}^T \mathbf{v}_i||}$$

Clearly γ_i are non-negative because λ_i are non-negative and the denominator being a norm is non-negative as well. Thus there exist some real, non-negative γ_i which satisfy

$$\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{u}_i$$

Part D

Consider the product $\mathbf{U}\Gamma\mathbf{V}^T$ with the matrices as defined in the question. We have

$$\mathbf{U}\Gamma = [\mathbf{v}_1|\mathbf{v}_2|\cdots|\mathbf{v}_m] \begin{pmatrix} \gamma_1 & 0 & \cdots & 0 \\ 0 & \gamma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \gamma_m \end{pmatrix}$$

Thus

$$\mathbf{U}\Gamma = [\gamma_1 \mathbf{v}_1 | \gamma_2 \mathbf{v}_2 | \cdots | \gamma_m \mathbf{v}_m]$$

From the previous part each $\gamma_i \mathbf{v}_i$ can be written as

$$\gamma_i \mathbf{v}_i = \mathbf{A} \mathbf{u}_i$$

Thus

$$\mathbf{U}\Gamma = [\mathbf{A}\mathbf{u}_1|\mathbf{A}\mathbf{u}_2|\cdots|\mathbf{A}\mathbf{u}_n]$$

which means

$$\mathbf{U}\Gamma\mathbf{V}^T = [\mathbf{A}\mathbf{u}_1|\mathbf{A}\mathbf{u}_2|\cdots|\mathbf{A}\mathbf{u}_n][\mathbf{u}_1|\mathbf{u}_2|\cdots|\mathbf{u}_n]^T$$

implying

$$\mathbf{U}\Gamma\mathbf{V}^T = \mathbf{A}[\mathbf{u}_1|\mathbf{u}_2|\cdots|\mathbf{u}_n][\mathbf{u}_1|\mathbf{u}_2|\cdots|\mathbf{u}_n]^T$$

Now given that

$$\mathbf{u}_i \mathbf{u}_j = \delta_{ij}$$

we have

$$A = \mathbf{U}\Gamma\mathbf{V}^T$$

where Γ is a matrix that has the non-negative γ_i on its diagonal elements and zeros on the off-diagonal elements. Thus we are done.