Functions in two Variables:

$$f \in >0$$
, $f \in >0$ $f \in >0$

2) input, f(20) - output.

9:
$$f(x) = x^2$$
; $x_0 = 2$

$$L = 4, \quad \xi = 1$$

$$\xi = 1 \quad \text{(deviation in y)}$$

σ= ? (derication in x).

Now

$$-0.3 < x-2 < 0.5$$

J=nin(0.3,0,5)

demain, Range, level lucke,
Open set, classed Set.
Donais:
Points the function is defined is
Points the function is defined is
Called domains.
$f:(D) \longrightarrow (W)$
Domain Pange
Interior Point:
$E = \{ [-1, 5] \cup \{7\} \cup [10, 15) \}$
Check in the ngbhard of the pt.
If both pts exists in the set, then
it is interior polities:
Collection of interior pls is an open set
Boundary pts:
Collection or exterior pt is an Boundary

Find and skeetch the domain f(x,y) - Vy-x-2. Since the function gex)= Too is defined only for x 7.0. x=-1; y=1 $D = \left\{ (x, y) \in \mathbb{R}^2 \left[|| y - x - 2 \ge 0 \right] \right\}$ $\Rightarrow y - x - x_{=0} y = x + 2$ /-> y-x = 0. (a) $f(x, y) = ln(x^2 + y^2 - 4)$ g(x) = ln(x) D= { (x,y) < 12 : x+y > 4 }

