Low-Power High-Precision Crystal Oscillators

Present	ration · September 2001		
DOI: 10.131	40/RG.2.1.1774.7605		
CITATIONS		READS	
0		1,641	
1 autho	r:		
	E.A. Vittoz		
	Institute of Electrical and Electronics Engineers		
	199 PUBLICATIONS 9,421 CITATIONS		
	SEE PROFILE		

CSPT

LOW-POWER HIGH-PRECISION CRYSTAL OSCILLATORS

Eric A.Vittoz CSEM

Centre Suisse d'Electronique et de Microtechnique SA Jaquet-Droz 1, CH 2007 Neuchâtel, Switzerland.

- Crystal resonator.
- General theory of crystal oscillators
 - splitting for analysis
 - oscillation: condition and frequency
 - amplitude limitation
 - start-up time.
- Theory of the 3-point oscillator
 - linear analysis with and without losses
 - nonlinear behaviour
 - amplitude and energy of oscillation
 - frequency stability, frequency tuning
 - phase noise
 - elimination of unwanted modes
 - loading by amplifier.
- Practical implementations
 - grounded drain oscillator
 - grounded source oscillators
 - amplitude regulator
 - circuit examples.

APPLICATIONS OF CRYSTAL OSCILLATORS

- Time-keeping (real-time clocks, RTC)
 - precision and stability: 10⁻⁶
 (≅ 30s/year)
 - low power watches: ≤ 0.5 μW
- Radio communication
 - precision and stability: 10⁻⁶ to 10⁻⁵
 (1 to 10kHz at 1GHz)
 - low power («1mW)
 - phase noise if :
 - no VCO (direct RF generation)
 - injection synchronized VCO
 - wide-band PLL loop
 otherwise negligible (~1/Q²)
- Clock of analog systems (filters)
 - precision and stability: 10⁻⁴ (better than component mismatch)
- Clock of digital systems
 - no high precision required
 - beware of overtone oscillation!

OSC-1a

BASICS ON OSCILLATORS

Frequency-dependent nonlinear loop.

$$\omega$$
 = (angular) frequency

A = amplitude

- strongly nonlinear: relaxation oscillator
- weakly nonlinear: harmonic oscillator
- Stable oscillation at frequency ω_0 : $G(\omega_0, A_0) = 1$

with:

$$\frac{d(Arg(G))}{d\omega}\Big|_{\substack{\omega=\omega_0\\A=A_0}} < 0$$

(phase stability)

and:

$$\frac{\mathsf{d}|\mathsf{G}|}{\mathsf{d}\mathsf{A}}\bigg|_{\substack{\omega=\omega_0\\\mathsf{A}=\mathsf{A}_0}}<0$$

(amplitude stability)

Alternative representation:

Resonator and sustaining circuit

Stable oscillation at frequency ω₀:

$$\mathbf{Z_r}(\omega_0, A_0) + \mathbf{Z_c}(\omega_0, A_0) = 0$$

CRYSTAL RESONATOR

⁴mi motional impedance of mode *i*

- Mechanical resonant frequency : $\omega_{mi} = \frac{1}{\sqrt{L_i C_i}}$
- Mechanical quality factor:

$$Q_i = \frac{1}{\omega_{mi}C_iR_i} *1$$

- i_i ~ velocity ~amplitude of mode i
- C_i ~ electromech. coupling of mode i, C_i«C₁₂
- ω_{mi} of different modes are not exact multiples of each other, and Q_i»1; therefore:

even if v(t) is strongly distorted

all branches other than Z_{mi} are negligible

(for a single mode i of oscillation), and

the motional current ii is always sinusoidal

MECHANICAL POWER AND ENERGY

Mechanical energy of oscillation:

$$E_{m} = \frac{\stackrel{\wedge}{I^{2}}}{2} = \frac{\stackrel{\wedge}{I^{2}}}{2\omega_{m}^{2}C}$$

must be limited to avoid destruction, aging, and nonlinear effects.

Mechanical power dissipation:

$$P_{m} = \frac{R\hat{I}^{2}}{2} = \frac{\hat{I}^{2}}{2\omega_{m}QC}$$

 Can be calculated as soon as the peak value Î of sinusoidal current i(t) is known.

GENERAL FORM OF CRYSTAL OSCILLATOR

 The resonator is combined with an active circuit to sustain oscillation (compensate R)

- Frequency of oscillation ω slightly different of ω_m (effect of circuit)
- Frequency pulling $\mathbf{p} = \frac{\omega \omega_{m}}{\omega_{m}}$ « 1
- The system must be conceptually split into:

Motional impedance
$$Z_m = R + j \frac{2p}{\omega C}$$
 (linear, strongly dependent on p)

Circuit impedance Z_{c(1)}, independent of p

Since no energy can be exchanged at harmonic frequencies (i sinusoidal), nonlinear effects are included by defining the circuit impedance at fundamental frequency:

$$Z_{c(1)} = \frac{V_{(1)}}{I}$$

where $V_{(1)}$ is the complex value of the fundamental of v for complex value I of sinusoidal current i.

OSCILLATION

Stable oscillation:

$$Z_{m} + Z_{c(1)} = 0$$
 $Re|Z_{c(1)}| = -R$
 $Im|Z_{c(1)}| = -\frac{2p_{0}}{\omega C}$

where $Z_{c(1)} = \frac{V_{(1)}}{I}$ circuit imped. at fundam. frequency

- Growth of oscillation: exponential, with time constant $\tau = \frac{2L}{Re|Z_{c(1)}|}$ - R
- Critical condition for start-up of oscillation:

$$Z_m + Z_c = 0$$

(linear circuit)

AMPLITUDE LIMITATION

- Necessary to define amplitude (an oscillator is always non linear)
- Instantaneous limitation by distortion:
 - → creates harmonics
 - → inter-modulation
 - → addit. fundam. component of current
 - → frequency change
 - → poor stability
 - → power dissipated in harmonics.
- Non-distorting amplitude limitation:
 - Z_c linear but slowly variable.

- + improved stability
- + reduced power dissipation in circuit (just above critical condition).

OSC-5a

START-UP TIME OF OSCILLATOR

• Equivalent circuit:

Growth of oscillation:

$$I = I_0 e^{t/\tau(I)} \quad \text{with } \tau(I) = \frac{2L}{-Re|Z_{c(1)}| - R}$$

$$\frac{dI}{dt} = \frac{I}{\tau(I)} \quad \longrightarrow \quad \left(\frac{dt}{dI} = \frac{\tau(I)}{I}\right)$$

Start-up time T_{ab} from I_a(noise) to I_b

• Approximation: $T_{ab} = \tau_0 \ln(I_b/I_a)$

BASIC 3-POINT OSCILLATOR

 Only possibility to use a single active device when no inductance is available:

C₁,C₂ are necessary functional capacitors.

• General equivalent circuit:

where $Z_i^{-1} = G_i + j\omega C_i$ (independent of **p**)

- include all circuit losses
- may be nonlinear.

LINEAR ANALYSIS

- $Z_{c1} \rightarrow Z_c$ and $i_D(v_1) \rightarrow g_m V_1$
- General form of circuit (all losses included):

No oscillation if g_m too small or too large.

LOSSLESS LINEAR ANALYSIS

- Oscillation **only possible** if: $\frac{QC}{C_3} > 2(1+2C_3/C_1)$ If large margin to minimize dp/dR, then:
 - $p_0 = \frac{\omega_0 \omega_m}{\omega_m} \cong \frac{C}{2C_3 + C_1}$

 * trade-off
 - $g_{mcrit} \cong \frac{\omega}{QC} (C_1 + 2C_3)^2 = \frac{\omega C}{Qp_0^2}$
 - $g_{mmax} \cong \omega C \ C_1^2 Q/C_3^2$ for $C_3 \ll C_4$ thus: $\frac{g_{mmax}}{g_{mcrit}} \cong \left[\frac{C \ C_1 \ Q}{C_3(C_1 + 2C_3)}\right]^2 \cong \left[\frac{QC}{C_3}\right]^2$

E. Vittoz, 2001.

LOSSLESS LINEAR ANALYSIS

OSC-8a

• Oscillation **only possible** if: $\frac{QC}{C_3} > 2(1+C_3\frac{C_1+C_2}{C_1C_2})$ If large margin to minimize dp/dR, then:

•
$$p_0 = \frac{\omega_0 - \omega_m}{\omega_m} \cong \frac{C}{2(C_3 + \frac{C_1 C_2}{C_1 + C_2})}$$
 trade-off $C_1 = C_2$

•
$$g_{mcrit} \cong \frac{\omega}{QC} = \frac{(C_1C_2 + C_2C_3 + C_3C_1)^2}{C_1C_2} = \frac{\omega C}{Qp_0^2} = \frac{(C_1 + C_2)^2}{4C_1C_2}$$

•
$$g_{\text{mmax}} \cong \omega C C_1 C_2 Q/C_3^2$$
 for $C_3 \ll C_1$ and C_2

thus:
$$\frac{g_{mmax}}{g_{mcrit}} \cong \left[\frac{C C_1 C_2 Q}{C_3 (C_1 C_2 + C_2 C_3 + C_3 C_1)}\right]^2 \stackrel{\checkmark}{=} \left[\frac{QC}{C_3}\right]^2$$
E. Vittoz, 2001

EFFECT OF LOSSES

Example of linear analysis with:

- Causes of losses:
 - biasing circuitry
 - loading by amplifier
 - series resistance of capacitors (HF)
 - output conductance of active device
 - input conductance of active device (bipolar)
 - external load (moisture)

OSC-9a

RELATIVE VOLTAGE AMPLITUDES

• Critical oscillation:
$$Z_m = -Z_c$$

thus: $1/7_{+0} = 1/7_{-} + 1/7_{0} = -1/7_{-} + 1/7_{0}$

thus: $1/Z_{12} = 1/Z_m + 1/Z_3 = -1/Z_c + 1/Z_3$

yields: $Z_{12} = -(Z_1 + Z_2 + g_{mcrit}Z_1Z_2)$

$$1+Z_{12}/Z_1 = V_2/V_1 = -Z_2(1/Z_1 + g_{mcrit})$$

$$V_3/V_1 = V_2/V_1 - 1$$

• Losselss circuit $(Z_i = 1/j\omega C_i)$ with R«R_{max}

$$g_{mcrit} = \frac{\omega}{QC} \frac{(C_1C_2 + C_2C_3 + C_3C_1)^2}{C_1C_2}$$

yields:
$$\frac{V_2}{V_1} = -\frac{C_1}{C_2} + j\frac{C_1}{QC}(1 + \frac{C_3}{C_1} + \frac{C_3}{C_2})^2$$

usually < or « 1

Then: $V_2/V_1 \cong -C_1/C_2$ and $V_3/V_1 \cong -(1+C_1/C_2)$

EXAMPLE OF NONLINEAR ANALYSIS

stable oscillation for particular value of R

DISTORTION OF GATE SIGNAL

Drain current is distorted

V₂ is distorted

- Drain to gate attenuation:
 - for fundamental frequency: F = (as shown before)
 - for harmonic components: H = $(Z_m = \infty)$
 - relative attenuation $\left| \frac{H}{F} \right| = \frac{C_3 C_1}{(C_1 + C_3)C_2}$ usually « 1, thus V₁ approximately sinusoidal
- Effect of residual distortion of V_1 :
 - intermodulation of harmonics in transistor creation of out -of-phase fund. in drain
 - current
- change in p, \Rightarrow frequency instability C_3 must therefore be minimized (Z_3 large)

AMPLITUDE LIMITATION BY i_D(v_G)

- Small effect on **p** (none if $Z_3 = \infty$).
- Assumption: AC signal at gate sinusoidal:
 v_G =V₀+V₁sinωt

Results in: $i_D = f(v_G) = I_0 + I_1 \sin \omega t + harmonics$

then: $I_1/V_1 = g_{m1}(V_1) = g_{mcrit}$

transconductance for fundamental frequency

for stable oscillation

Using continuous model for saturated MOS

$$i_D = I_S \ln^2(1 + e^{V/2})$$
 [Vittoz, 1994] [Enz et al., 1995]

where $v = (v_{GS}-V_T)/(nU_T)$ and $I_S = 2n\beta U_T^2$ this yields [L.Astier, 1987, von Kaenel et al.1995]:

 V_1 = peak voltage amplitude at gate of transistor

 I_0 = bias current of transistor

 $I_{\text{Ocritmin}} = nU_{\text{T}}g_{\text{mcrit}}$

 $IC = I_{0crit}/I_{S} = inversion coefficient at I_{0crit}$

I₀ (V₁) is minimum in weak inversion (I_{0critmin}).

AMPLITUDE OF OSCILLATION

- Limitation by nonlinear i_D(v_G) only
 - → Very small effect on frequency pulling **p** (none if $Z_3 = \infty$).
- Goal: minimum current to produce g_{mcrit}:
 - → transistor operated in weak inversion:

$$i_D = A \exp(v_G/nU_T)$$
 (with n=1.4...1.6)

Assumption: AC signal at gate sinusoidal:

$$v_G = V_0 + V_1 \sin(\omega t)$$

results in: $i_D = I_0 + I_1 \sin(\omega t) + \text{harmonics}$

where:
$$I_1 = I_0 \frac{2I_{B_1}(x)}{I_{B_0}(x)}$$
 with $x = V_1/nU_T$

and $I_{Bk}(x)$ are modified Bessel functions of order k

Transonductance g_{m1} for the fundamental:

$$g_{m1} = I_1/V_1 = g_{mcrit} = I_{0crit}/(nU_T)$$

stable oscillation

Yields bias current I_0 as a function of amplitude V_1 :

OSC-11b

LARGER AMPLITUDES

- Limited overdrive to avoid excessive distortion
- Use capacitive input attenuator C_a-C_b:

- Attenuation $1/k = \frac{C_a}{C_b + C_a}$ C_b includes C_G In weak inversion:

$$C_G = C_{ox}(1-1/n)$$

equivalent to transistor with $U_T \Rightarrow kU_T$

Result for transistor in weak inversion: $g_{\text{mequ}} = I_0/(knU_T)$, thus V_1 and I_0 amplified by **k**.

- Alternative solution: **strong** inversion
 - might be necessary for f>10MHz (large W/L \rightarrow large C₁ and C₂)

E. Vittoz. 2001-

AMPL. LIM. BY i_D(v_G) IN STRONG INVERSION

Assumption: AC signal at gate sinusoidal:

$$v_G = V_0 + V_1 \sin(\omega t)$$

results in: $i_D = I_0 + I_1 \sin(\omega t) + \text{harmonics}$

• $I_1/V_1 = g_{m1}(V_1) = g_{mcrit}$ can be calculated numerically by using a continuous model for saturated MOS transistor:

$$i_D = I_S \ln^2(1 + e^{V/2})$$

where $v = (v_{GS}-V_T)/(nU_T)$ and $I_S = 2n\beta U_T^2$ this yields [L.Astier, 1987]:

 V_1 = peak voltage amplitude at gate of transistor

 $I_0 = DC$ bias current of transistor

 $I_{Ocritmin} = nU_{T}g_{mcrit}$ (weak inversion)

 $IC = I_{Ocrit}/I_{S} = inversion coefficient at I_{Ocrit}$

CHART FOR LARGE AMPLITUDES

[L.Astier, 1987]

- Assumptions: gate voltage sinusoidal (peak V₁)
 - transistor always saturated
 - constant mobility
 - constant Q, linear Z₁,Z₂ and Z₃
- Definitions:
 I_{0critmin}=I_{0crit} in weak inversion
 - IC = I_{0crit}/I_{S} with $I_{S} = 2n\beta U_{T}^{2}$

BASIC DESIGN PROCEDURE

-	• • •	
MAIN	criteria	ref.OSC
1114111	CHUELIA	161727
HILL	Olitolia	101100

1. Select crystal resonator	frequency
·	temp. stability
	cost, size

2. Choose value of $C_1=C_2$ precision	12
power	8a

"circle" 8a

3. Calculate p_0 and $\omega_m = \omega_0 (1-p_0)$ 8a

4. Calculate g_{mcrit} 8a, 9

I_{Ocritmin} 11c

5. Fix ampl. of oscill. V_1 too small:

- phase noise 13b

- amplification 14a

- jitter of amplif.

too large:

power

- aging

6. Fix amount of overdrive too small: 11d

- large I₀/V₁

too large:

- poor stability 12

- risk of overtone 14

7. Select $IC=I_{0crit}/I_{S}$ from 5. and 6. 11d

8. Calculate I_{0crit} , I_0 , $I_S=2n\beta U_T^2$, β , W/L 11d

9. Calculate energy E_m and phase noise 13a,b

10. Return to 2, 5 or 6, or detailed design.

ENERGY OF MECHANICAL OSCILLATION

(I, I₁ and V₁ are complex RMS values)

Thus:
$$I = I_1 \frac{-j/\omega C_3}{R + 2pj/\omega C - j/\omega C_3}$$

Then:
$$I \cong I_1 \left(1 + \frac{C_3}{C_s}\right)$$
 where $C_s = \frac{C_1 C_2}{C_1 + C_2}$

where
$$C_s = \frac{C_1 C_2}{C_1 + C_2}$$

$$I \cong j\omega C_1 V_1 \left(1 + \frac{C_3}{C_s}\right)$$

 $I \cong j\omega C_1 V_1 \left(1 + \frac{C_3}{C_s}\right)$ current through motional impedance Z_m

Mechanical energy:
$$E_{m} = \frac{|\mathbf{I}|^2}{\omega^2 C} = \frac{C_1^2 |\mathbf{V_1}|^2}{C} \left(1 + \frac{C_3}{C_s}\right)^2$$

PHASE NOISE

- Simple model [Leeson, 1966](linear, time invariant)
- Equivalent circuit at stable oscillation

noise spectral density of

resonator circuit 4kTR $4kT\gamma R$ stable oscillation $R = |Z_{c(1)}| = -R$

Impedance loading the noise sources:

$$\mathbf{Z} = 2j\omega L \left(\frac{f - f_0}{f_0}\right) = 2jQR \left(\frac{f - f_0}{f_0}\right)$$
 for $|f - f_0| \ll f_0$

where f₀ is the frequency of oscillation

Noise current I_N circulating in the loop:

$$\frac{dI_N^2}{df} = \frac{4kT(1+\gamma)R}{|\mathbf{Z}|^2} = \frac{(1+\gamma)kT}{Q^2R} \left(\frac{f_0}{f-f_0}\right)^2$$

Phase noise spectral density:

$$\frac{d\phi_N^2}{df} = \frac{1}{2} \frac{dI_N^2/df}{I^2}$$
 (half phase noise, half amplitude noise)

$$\frac{d\phi_N^2}{df} = \frac{(1+\gamma)kT}{2Q^2P_m} \left(\frac{f_0}{f-f_0}\right)^2 = \frac{(1+\gamma)kT}{2\omega QE_m} \left(\frac{f_0}{f-f_0}\right)^2$$

 Nonlinear, time-variant: noise may added, including 1/f [Hajimiri-Lee,1999]

FREQUENCY INSTABILITY

Cause

Remedy

- a. Crystal resonator
- Aging
- Temperature

- Pre-aging.
- Better cut
- analog or digital compensation.
- b. Nonlinear effects in circuit (variations with V_B, V_T, T)
- Nonlinear Z₁, Z₂ or Z₃
- Nonlinear I_D(V_G)

- Keep trans.in saturation
- avoid C(V) effects.
- Reduce overdrive
- stabilize amplitude
- increase |Z₃|.

c. Variation of linear effects

Variation of R~1/Q

- Variation of losses
- Variation of C₁, C₂, C₃

- Increase Q
- reduce losses in circuit.
- increase $\frac{C_1C_2}{C_3(C_1+C_2)}$
- Reduce losses
- Decrease pulling p
- avoid C(V) effects
- stabilize V_B.

FREQUENCY TUNING

- On the resonator:
 precision limited to a few 10⁻⁵.
- By C₁ and/or C₂ in the circuit: tuning range:

- Digital tuning:
 - adjust the ratio of subsequent counters
 - inhibit an adequate percentage of pulses requires a few bits of memory:

pad bondings RAM

E²PROM.

ELIMINATION OF UNWANTED MODES

- A resonator has always several mech. modes (parallel series resonator in model).
- One mode is wanted (WM)
- All other modes are unwanted (UM).

$$g_{mcrit} = \sim \frac{\omega}{QC} (C_1 + 2C_3)^2 \text{ (for } C_2 = C_1)$$

$$= \omega^2 R \text{ same for all modes}$$

activity different for each mode

- a. Non-distorting amplitude limitation
 - No interaction between modes; g_m decreases until the most active reaches critical amplitude.
 - WM ensured if $\omega^2 R|_{WM} < \omega^2 R|_{UM}$
- b. Distorting amplitude limitation
 - Possible interaction between modes (very complicated).
 - Safe solution: $g_{mcrit}|_{WM} < g_{m} < g_{mcrit}|_{UM}$ requires $\omega^{2}R|_{WM} \ll \omega^{2}R|_{UM}$
- c. Selection of WM of lesser activity
 - frequency selective $Z_c \rightarrow$ degrades stability.
 - low- or high-pass for large difference in ω_{m}
 - LC bandpass to select a particular overtone

LOADING BY OUTPUT AMPLIFIER

Elementary voltage amplifier, gain A = |V₀|/|V₁|

- Capacitive load: V₀ = j AV₁ (complex gain)
- Miller capacitance C_M, thus, for A»1
 I₁=-jωC_MV₀ = ωAC_MV₁, in phase with V₁
- Input conductance $G_1 = I_1/V_1 = \omega C_M A$ may be large if C_M and A large.

significant loss in oscillator

 Increasing V₁ requires more current in lossless oscillator, but reduces loss due to G₁: trade-off.

GROUNDED-DRAIN OSCILLATOR

[Luescher, 1968, Santos-Meyer, 1984]

 T_1 active, biased by R and current source T_2 .

- + One single pin for resonator ("1-pin oscillator").
- + Doubled output amplitude.
- Increased C₃: decreases stability and/or increases power.
- T₁ must be put in a separate well connected to its source; otherwise an additional conductance g_m(n-1) is added to G₂ (large increase of losses).

ONE-PIN OSCILLATOR WITH GROUNDED C's

[van den Homberg, 1998/99]

$$\mathbf{Z_c} = \frac{Z_1 + g_m Z_1 Z_2}{1 + g_m (Z_1 - Z_2)}$$

bilinear function of g_m

• For
$$Z_i = \frac{1}{j\omega C_i}$$
:

Z-plane

Necessary condition for oscill.:

$$R < \frac{C_1/C_2}{\omega(C_1-C_2)} \rightarrow Q > \frac{C_1-C_2}{C.C_1/C_2}$$

If realized with large margin:

$$\mathbf{p_0} = \frac{\mathbf{C}}{2\mathbf{C_1}}$$

$$g_{\text{mcrit}} = \frac{\omega}{QC} C_1 C_2 = \frac{\omega C}{4Qp_0^2} \frac{C_2}{C_1}$$

 g_m $\mathbf{Z_c}(\mathbf{g_m})$ $g_{\text{mcrit}} = \frac{\omega}{QC} C_1 C_2 = \frac{\omega C}{4Qp_0^2} \frac{C_2}{C_1} - \frac{1}{\omega(C_1 - C_2)}$

Condition for stability: (pole of Zc with negative real part)

$$C_1 > C_2$$

radius of circle reduced for increased margin

CMOS-INVERTER OSCILLATOR

- a simple but poor solution -

Possible improvement by resistors in the drains.

GROUNDED-SOURCE OSCILLATOR

(non-complementary)

For fixed bias current I₀:

Margin needed for variations of Q and process

possible overdrive

waste of power limitation by distortion

Best:

Low-level amplitude regulation+ output amplifier

AMPLITUDE REGULATOR

No AC input voltage (V₁=0):

$$I_0 = I_{0start} = \frac{AU_T}{R}$$
 InK (start-up current)

• For V₁>0:

E. Vittoz, 2001-

AMPLITUDE REGULATING LOOP

 Effect of T₂-T₄ entering strong inversion: distortion of the regulator's characteristics

• Design criterion: $i_{D2max} < I_{S2} = 2n\beta_2 U_T^2$ (too strict)

semi-empirical:

$$R > \frac{2\beta_1/\beta_3}{\beta_2 n U_T}$$

MICROPOWER CRYSTAL OSCILLATOR

 R_1, R_2, R_3, D_1, D_2 : lateral diodes in poly layer

Example: f=32KHz

 $V_B=1$ to 3 V

 I_{tot} = 20 to 100nA (depends on C_1, C_2, Q)

no external component except crystal.

CURRENT DRAIN

of micropower crystal oscillator

VERY LOW-POWER 2MHZ OSCILLATOR

[Aebischer et al, 1997]

to amplitude regulator and frequency divider

- Currrent controlled CMOS inverter T₁-T₂
 - gates separately biased by T_{R1}-T_{R2}
 - controlled by bias I_{B1}-I_{B2}
 - source of T₂ AC grounded by C₄, with $\omega C_4 \gg g_{ms2}$
- 2.1 MHz ZT cut quartz, C=0.5fF, Q=300-900K $C_1 = C_2 = 2.5 pF, C_3 = 0.7 pF, C_4 = 10 pF$

I = 60-180nA (core oscillator only) (oscill.+freq. divider+ dig. tuning)

COMPACT PUSH-PULL OSCILLATOR

- Average current I₀ through T₁ and T₃:
 - imposed by T₃
 - from amplitude regulator
- Instantaneous current in T₃
 - proportional to that in T₂
 - creates a loss conductance, thus:
 - effect. trans. of T₂ for fundamental: g_{m2(1)}(1-1/A)
- Output amplifier T₄-T₅ directly coupled to T₁-T₂

Experimental results:

$$\begin{array}{ll} f & = 32 \text{ kHz} \\ R & = 35 \text{ k}\Omega \\ A & = 16 \\ C_1 & = 12.3 \text{ pF} \\ C_2 & = 24.6 \text{ pF} \\ C_3 & = 1 \text{pF} \\ V_{Bmin} & = 0.7 V \end{array}$$

Drawback:poor PSRR

REFERENCES

General	E.Vittoz et al, "High-performance crystal oscillator circuits: theory and application", IEEE J. Solid-State Circuits, vol.23, pp.774-778, June 1988.
OSC-1a	V.Uzunoglu, Semiconductor Network Analysis and Design, McGraw Hill 1964, p.245.
OSC-10	L.Astier, unpublished work, 1987
OSC-11c/d	L.Astier, unpublished work, 1987.
	E.Vittoz, "Micropower techniques", in <i>Design of VLSI Circuits for Telecommunication and Signal Processing</i> , Ed. J.Franca and Y. Tsividis, Prentice Hall, 1994.
	C. Enz et al.,"An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications", Analog integrated Signal Processing, vol.8, pp.83-114, 1995.
	V. von Kaenel and E.Vittoz, "Crystal oscillators", in <i>Analog Circuit Design</i> , Kluwer, Boston 1996, pp.369-382.
OSC-13b	D.B.Leeson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, vol.54, pp.329-330, Feb. 1966.
	A.Hajimiri and T.H. Lee, "The Design of Low-noise Oscillators", Kluwer Academic Publishers, 1999.
OSC-15	J.Luescher, "Oscillator circuit including a quartz crystal operating in parallel resonance", US patent 3,585,527, filed in 1968,
	J.Santos and R.Meyer, "A one pin oscillator for VLSI circuits", IEEE J. Solid-State Circuits, vol. SC-19, pp.228-236, April 1984.
OSC-15a	J.A.T.M. van den Homberg, "A universal 0.03mm ² one-pin crystal oscillator in CMOS", IEEE J. Solid-State Circuits, vol.34, pp.956-961, July 1999.
OSC-18	E.Vittoz and J.Fellrath, "CMOS analog circuits based on weak inversion operation", IEEE J. Solid-State Circuits, vol.SC-12, pp.224-231, June 1977.
OSC-19	E.Vittoz, "Quartz oscillators for watches", Proc. 10th International Congress of Chronometry, Geneva, 1979.
OSC-19a	D.Aebischer et al.,"A 2.1 MHz crystal oscillator time base with a current consumption under 500nA", IEEE J. Solid-State Circuits, vol.32, pp.999-1005, July 1997.
OSC-21	W.Thommen,"An improved low power crystal oscillator", Proc. ESSCIRC'99, pp.146-149, Sept. 1999.