

HM-380F17 434/868/915MHz SOC 无线 透传模块使用指南

文档版本	更新日期	修改内容
v1.0	2022. 3. 10	初版
v1. 1	2023. 8. 10	1. 修正 RESET 复位信号为高电平有效。

目录

1.	产品概述	4
2.	产品特性	4
3.	电气参数	5
4.	模块引脚图	6
5.	模块外形尺寸图	7
6.	产品使用说明	8
7.	模块配置	11
8.	低功耗模式下功耗计算	14
9.	联系方式	16

1. 产品概述

HM380F17 是一款集成了 8 位 80C51 CPU 内核和一颗超低功耗射频收发器、超低功耗、高灵敏度、远距离通讯、高性价比的 SOC 射频收发模块。

该产品提供了丰富的串口速率的选择,采用交织前向纠错码,能一定的恢复干扰的数据,还提供多个信道的选择,多种低功耗运行模式和快速唤醒机制、可在线修改串口速率和发射功率等参数。

该产品分为 434MHz, 868MHz, 915MHz, 三个工作频率, 支持 300bps-256kbps 之间的标准串口速率。

2. 产品特性

- 超强的抗干扰能力,适合复杂干扰环境的情景使用
- 接收灵敏度: -120dBm @434MHz, GFSK
- 工作频率: 434MHz、868MHz、915MHz
- 电源电压输入范围: 1.8V—3.6V
- 发射电流: 78mA @ +20dBm, 434MHz
- 接收电流: 10mA @434MHz, GFSK
- 深度睡眠电流: ≤2.5uA
- 多频道可设,GFSK调制方式
- 可定义的低功耗运行模式
- 最大发射功率+20dbm,最小发射功率-10dbm

应用范围:

- 自动抄表
- 家具安防及楼宇自动化
- 无线传感节点及工业监控
- ISM 频段数据通讯
- 短距无线数据通讯

订购信息

模块型号	工作频率
HM-380F17-433S2	434MHz
HM-380F17-868S2	868MHz
HM-380F17-915S2	915MHz

3. 电气参数

测试条件: 供电电源 3.3V, 温度 25℃

参数	状态	最小值	典型值	最大值	单位
	HM-380F17-433S2	426		442	MHz
工作频率	HM-380F17-868S2	860		876	MHz
	HM-380F17-915S2	907		923	MHz
调制方式			GFSK		
	434MHz, 0.5 Kbps		-120		dBm
接收灵敏度	868MHz, 0.5 Kbps		-116		dBm
	915MHz, 0.5 Kbps		-116		dBm
串口数据率		0.3	9.6	256	Kbps
工作电压		1.8	3. 3	3.6	V
	434MHZ		10	15	mA
接收工作电流	868MHZ		11	15	mA
	915MHZ		12.5	15	mA
	434MHZ, +20dbm		78	85	mA
发射工作电流	868MHZ, +20dbm		90	99	mA
	915MHZ, +20dbm		81.2	95	mA
睡眠电流			2. 5		uA
	F_{RF} =433 MHz		35		dBc
镜频抑制	F_{RF} =868 MHz		33		dBc
睡眠电流	F_{RF} =915MHz		33		dBc
工作温度		-40		+85	$^{\circ}$ C

4. 模块引脚图

脚位定义

脚位	名称	引脚特性	引脚描述	
P30	RXD	Ι	串口数据接收(内部上拉)	
P31	TXD	0	串口数据发送(内部上拉)	
RESET	RESET	I	硬复位引脚,高有效	
P34	P34	I	设置/唤醒引脚	
GPI03	GPI03	0	NC	
VCC	VCC		正电源	
GND	GND		地线	
RFOUT	RFOUT	0	射频输出	
P22	P22	0	模块状态	
P24	P24	0	帧错误指示脚	
P60	P60	I	模式设置 1	

P61	P61	I	模式设置 2	
SWDIO	SWDIO	10	NC	
SWCLK	SWCLK	I	NC	
GPI01	GPI01	0	RF 标志位引脚	

5. 模块外形尺寸图

单位: mm

6. 产品使用说明

RFM380F17 是 一 款 集 成 了 8 位 80C51 CPU 内核和一颗超低功耗射频收发器、超低功耗、高灵敏度、远距离通讯、高性价比的 SOC 射频收发模块,最大发射功率达 20dbm。

默认出厂串口速率是 9600bps,内部设双 250bytes 容量的缓冲区,串口速率自动匹配相应的空中速率,在任何串口速率条件下都可以发送无限长的数据,数据等待时间为当前串口速率大约 2 个字节的时间,即当用户向模块发完一帧数据后,超过两字节时间后无数据到来就会启动 RF 的发射,空中数据帧最大为 250 字节(编码开启条件下为 202 字节),用户的数据若超过该长度将分包传输。

本产品支持最大 32 个信道,信道步进为 500KHz,频率范围分别为: 426~442MHz、860~876 MHz、907~923 MHz,中心频点分别为: 434 MHz、868 MHz、915 MHz。

空中数据帧:

无编码

ı				
	Preamble	Syncword	Length	Payload (Channal +Data+CRC)

带编码

Preamble Syncword Length	Payload (Channal +Data+Chksum+FEC)
--------------------------	------------------------------------

正常工作模式时序:

模块有四种工作模式,通过给引脚 P60、P61 不同的电平组合来 切换到其他模式:

P60	P61	模式	模式描述
1	1	正常模式	该模式为正常高性能运行状态,RF 一直保持为RX 状态,收到数据后立刻从串口发出,若从串口接收到数据后则 RF 会转为TX 状态将数据包发出。
0	1	唤醒模式	该模式为唤醒模式,用于发送给处于低功耗状态的模块接收,该模式和正常运行状态类似,只是在发送是会有超长的 preamble,所以一包数据会耗费较长的时间,该时间取决于用户设置的低功耗周期。
1	0	低功耗模式	该模式为低功耗状态,串口的接收关闭,即不能向模块发送数据,只能接收数据,该模式状态下 RF 处于 sleep 和 RX 的循环周期性变换,两者的时长取决于用户设置的低功耗周期和空中速率。该模式下接收到数据后会从 P22 模式状态引脚输出 5ms 的高电平后才会从串口输出数据。
0	0	睡眠模式	该模式下为休眠模式, 串口的输入输出关闭,

	RF 也 sleep,整个模块进入休眠状态,该状态
	下唤醒模块只需要给唤醒引脚一个负脉冲即可
	唤醒。

四种模式可自由相互切换,需要改变两个引脚的电平,在休眠模式和低功耗模式下转变为其他模式时,需要先改变引脚电平状态在给唤醒引脚一个负脉冲才能将模块唤醒并切换到其他状态,模块状态引脚 P22 在正常模式和唤醒模式下保持高电平,在低功耗模式和休眠模式下保持低电平。用户可以检测该引脚状态来得知模块是否已经切换模式。

模式切换时间:

当前模式	切换模式	切换时间
正常模式	低功耗模式	550 µ s
低功耗模式	正常模式	23.5ms
正常模式	休眠模式	220 µ s
休眠模式	正常模式	345 µ s

唤醒模式几乎等同于正常模式,所以切换到其他模式与正常模式切换到其他模式的时间等同,唤醒模式与正常模式的互切时间可不计。唤醒模式用于使处于低功耗模式下的模块收到数据,所以一般与低功耗模式搭配使用。

唤醒模式与低功耗模式通讯时序:

7. 模块配置

模块支持在线配置,通过拉低 P34 引脚进入配置模式(只有在正常模式和唤醒模式才能配置),在配置模式下串口速率固定为 9600bps。通过发送 HEX 序列来配置模块,模块有六个配置项:信道、串口速率、低功耗唤醒周期,GPI01 状态输出,交织前向编解码开关,发射功率。配置完成后拉高 P34 脚可生效配置。配置可保存在内部 Flash 中,重新上电会使用上次保存的配置。出厂默认配置:串口 9600bps,信道 17,发射功率 20dbm,编码关,同步字 CACA,低功耗默认周期 1s。

HEX 序列命令格式:

0x5a	0x36	CMD	Parameter	Chksum
------	------	-----	-----------	--------

CMD 为一字节长,parameter 长度取决于配置的命令,chksum 为 CMD 和 parameter 的校验和(直接相加)。

命令名	CMD	Parameter
		1字节参数
		0x01: 300bps
		0x02: 600bps
		0x03: 1200bps
		0x04: 2400bps
串口速率	0x30	0x05: 4800bps
中口处于		0x06: 9600bps
		0x07: 19200bps
		0x08: 38400bps
		0x09: 57600bps
		0x0A: 115200bps
		0x0B: 256000bps
信道	0x31	1字节参数
	0.001	0x00-0x1F:信道 1 [~] 信道 32
		1字节参数
		0x01: Preamble detected
		0x02: Syncword detected
GPI01 状态		0x03: Recived Packet
输出	0x34	0x04: Send Packet Done
1111 [11]		0x05: Rx_FIFO_NMTY
		0x06: Tx_FIFO_NMTY
		0x09: STATE_IS_RX
		OxOA: STATE_IS_TX
交织前向纠	0x35	1字节参数
世祖 一		0x00: 关
\r \		>0x00: 开

		不建议在串口速率为
		19200bps 以上时开启
低功耗周期	0x36	2 字节参数 0x0032-0x2710: 50ms~10s 步 进 1ms 高位在前; 在部分串口速率下最高的休 眠周期有一定的限制: 57600bps(带编码): <=8s 115200bps(无编码): <=5s 115200bps(带编码): <=4s 256000bps(无编码): <=2s
发射功率	0x38	1 字节参数 0x00~0x1E: -10dbm~20dbm 步 进 1dbm
同步字	0x39	2 字节参数 0x0000 [~] 0xFFFF
读取所有配 置	0x50	1 字节参数 ANY
设置所有配置	0x51	9字节参数 参数顺序:串口速率+信道+ 发射功率+低功耗周期+ GPI01 输出+前向纠错码+同步字
保存配置	0x52	1 字节参数 ANY
版本读取	0x53	1 字节参数 ANY

在每发送一条命令后模块都会回复命令的执行结果,回复的HEX格式:

0x5a	0x36 REPLY	[Parameter]
------	------------	-------------

	REPLY	Parameter
执行成功	0x60	版本读取: 软件版本

		其他命令: 无
执行失败	0x61	无
当前配置	0x62	用于回复读取配置的命令; 回复顺序:串口速率+信道+ 发射功率+低功耗周期+ GPI01 输出+前向纠错码+同步字

8. 低功耗模式下功耗计算

低功耗的周期时间是可配置的,配置范围: 50ms-10s,每个周期 RF 模块状态如下:

Sleep	CAL	RX
-------	-----	----

RX 是 6bytes preamble 长度的时间,CAL 是晶振起振和稳定时间大约 1ms, sleep的时间是配置的周期时间减去 RX 和 CAL 的时间。唤醒模式下 preamble 的长度是刚好覆盖上面周期的时间,所以能保证在低功耗模式下能接收到唤醒模式下的数据,前提是 TX 端模块和 RX 端模块的周期配置时间是一样的。

$$t_{RX} = \frac{48000}{\text{空中速率}}$$

功耗 =
$$\frac{t_{RX} * 接收电流 + 1.45 + 休眠电流 * (低功耗周期时间 - t_{RX} - 1)}{低功耗周期时间}$$
mAH

串口速率所对应空中速率: (上为无编码速率,下为带编码速率)

串口速率	空中速率
200hng	500bps
300bps	500bps
600bps	600bps
OOODPS	700bps
1200bps	1100bps
12000ps	1300bps
2400bps	2100bps
24000ps	2600bps
4800bps	4100bps
100000p3	5200bps
9600bps	8400bps
2000bp3	10500bps
19200bps	16900bps
102000p3	21000bps
38400bps	34000bps
00 100bp3	42000bps
57600bps	50000bps
01000bp3	63000bps
115200bps	102400bps
1102000p3	130000bps
256000bps	102400bps
2000000p3	130000bps

9. 联系方式

深圳市华普微电子股份有限公司

地址:深圳市南山区西丽街道万科云城三期8栋A座30层

电话: +86-0755-82973805

邮箱: sales@hoperf.com

网址: http://www.hoperf.cn