Страхиња Радић

Формуле из Вероватноће и статистике

[верзија 1.2 од 10.05.2010.]

ОСНОВНЕ ФОРМУЛЕ ИЗРАЧУНАВАЊА ВЕРОВАТНОЋА

$$P(A_1+A_2+\ldots+A_n)=$$
 $=p_1-p_2+\ldots+(-1)^{n-1}p_n,$ где је $p_k=\sum_{i_1=1}^{n-k+1}\cdots\sum_{i_k=i_{k-1}+1}^n P(A_{i_1}\cdots A_{i_k}).$ [формула сабирања]

$$\begin{array}{c} \boxed{3^{\circ}} \ A \subset H_1 \cup \ldots \cup H_n \implies \\ \\ \Longrightarrow \boxed{P(A) = \sum_{k=1}^n P(H_k) \cdot P(A|H_k)} \\ \\ \boxed{[\phi \text{ормула потпуне вероватноће}]} \end{array}$$

НУМЕРИЧКЕ КАРАКТЕРИСТИКЕ СЛУЧАЈНИХ ВЕЛИЧИНА

ullet Математичко очекивање CB X (средња/просечна вредност CB)

 $[x_k$ — вредности које узима СВ X, p_k — вероватноће $P\{X = x_k\}$

$$EX \stackrel{\text{def}}{=} \sum_{k=1}^{n} x_k p_k$$

Особине:

$$1^{\circ}$$
 $E(aX) = a \cdot EX$, $a = \text{const}$

$$2^{\circ}$$
 X , Y независне \Longrightarrow $E(XY) = EX \cdot EY$

$$\boxed{3^{\circ}} E(X+Y) = EX + EY$$

• Дисперзија (распрострањеност) СВ Х

$$\int DX \stackrel{\text{def}}{=} E(X - EX)^2 = EX^2 - E^2X$$

Особине:

$$\begin{bmatrix} 1^{\circ} \end{bmatrix} Da = 0, \quad a = \text{const}$$

$$\begin{bmatrix} 2^{\circ} \end{bmatrix} D(aX) = a^2 \cdot DX, \quad a = \text{const}$$

$$3^{\circ}$$
 X , Y независне \Longrightarrow $D(X + Y) = DX + DY$

• Стандардна девијација (одступање)

$$\sigma(X) \stackrel{\text{def}}{=} \sqrt{DX} = \sqrt{EX^2 - E^2X}$$

• Коваријација

$$cov(X, Y) \stackrel{\text{def}}{=} E[(X - EX)(Y - EY)] =$$

$$= E(XY) - EX \cdot EY$$

$$cov(X, X) \stackrel{\text{def}}{=} DX$$

• КОЕФИЦИЈЕНТ КОРЕЛАЦИЈЕ

$$\left[\xi = \frac{X - EX}{\sqrt{DX}}, \quad \eta = \frac{Y - EY}{\sqrt{DY}}\right];$$

1

$$\rho(X, Y) \stackrel{\text{def}}{=} \operatorname{cov}(\xi, \eta) =$$

$$= \frac{E(XY) - EX \cdot EY}{\sqrt{DX} \cdot \sqrt{DY}} = \frac{\operatorname{cov}(X, Y)}{\sigma X \cdot \sigma Y}$$

РАСПОДЕЛЕ СЛУЧАЈНИХ ВЕЛИЧИНА

• Дискретне СВ

1° Хипергеометријска:

$$P\{X=m\} = \frac{\binom{M}{n}\binom{N-M}{n-m}}{\binom{N}{n}}$$

 2° Биномна: $[X \sim \mathrm{Bi}(n,p)]$

$$P{X = k} = \binom{n}{k} p^k q^{n-k}$$

$$EX = np, \qquad DX = npq$$

 $\boxed{3^{\circ}}$ Поасонова: $[X \sim \Pi(\lambda)]$

$$\begin{pmatrix}
P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda} \\
EX = \lambda, \quad DX = \lambda
\end{pmatrix}$$

4° Геометријска:

$$P{X = k} = (1 - p)^{k-1} \cdot p$$

$$EX = 1/p$$

• Апсолутно непрекидне СВ

 1° Равномерна (униформна): $[X \sim R[a,b] \equiv U[a,b]]$

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b], \\ 0, & x \notin [a, b]. \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a, b], \\ 1, & x > b. \end{cases}$$

$$EX = \frac{a+b}{2}, \qquad DX = \frac{(b-a)^2}{12}.$$

 2° Нормална (Гаусова): $[X \sim N(m, \sigma^2)]$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x > 0;$$

$$EX = m, \quad DX = \sigma^2.$$

 3° Експоненцијална: $[X \sim E(\lambda)]$

$$f(x) = \begin{cases} \frac{\lambda}{e^{\lambda x}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$EX = 1/\lambda, \quad DX = 1/\lambda^2.$$

 4° Кошијева (са параметром $\alpha > 0$):

$$f(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)}, \qquad x > 0$$

 5° Гама-расподела (са параметрима $\alpha > 0$ и $\lambda > 0$):

$$\left[f(x) = \frac{X^{\alpha - 1} \lambda^{\alpha} e^{-\lambda X}}{\Gamma}(\alpha),\right] \qquad x > 0$$

 Γ устина расподеле: функција f(x), таква да је

$$F(x) = \int_{-\infty}^{x} f(t) dt = P\{X \leqslant x\}.$$

Својства:

$$\boxed{1^{\circ}} f(x) \geqslant 0$$

$$2^{\circ} \int_{-\infty}^{\infty} f(t) \, \mathrm{d}t = F(\infty) = 1$$

$$\boxed{3^{\circ}} P\{x_1 \leqslant X \leqslant x_2\} = \int_{x_1}^{x_2} f(t) dt$$

$$\boxed{4^{\circ}} F'(x) = f(x)$$

Очекивање апсолутно непрекидне СВ:

$$EX \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

Функција расподеле стандардне нормалне $CB\ (X \sim N(0,1))$:

$$\Phi(y) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt = \Phi\left(\frac{x-m}{\sigma}\right) = F(x)$$

Функција Лапласа:

$$\Phi_0(y) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_0^y e^{-t^2/2} dt = \Phi(y) - \frac{1}{2}$$

Особине:

$$\Phi_0(-y) = -\Phi_0(y)$$

$$\Phi(-y) = 1 - \Phi(y)$$

АПРОКСИМАЦИЈЕ БИНОМНЕ РАСПОДЕЛЕ

Посматра се EX = np:

$$np < 10$$
 $np < 10$ $np < 10$ $np < +\infty$, $np < +\infty$ $np < +\infty$ $np < +\infty$

$$P\{X = k\} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

$$P\{a \leqslant X \leqslant b\} \approx \sum_{k=a}^{b} \frac{\lambda^k}{k!} e^{-\lambda}$$

$$[\lambda = np]$$

$$(2^{\circ})$$
 $(np>10)$ $(n\to +\infty,\ p\in (0,1))$ — Теорема Моавра-Лапласа:

$$ig(a.)ig)$$
 локална: $\left(-\infty < a \leqslant rac{k-np}{\sqrt{npq}} \leqslant b < +\infty
ight)$

$$P\{X = k\} \approx \varphi(x) = \frac{1}{\sqrt{2\pi npq}} \exp\left\{-\frac{(k - np)^2}{2npq}\right\}$$

б.) интегрална:

$$P\{a \leqslant X \leqslant b\} \approx \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-x^{2}/2} dx =$$

$$= \Phi\left(\frac{b - np}{\sqrt{npq}}\right) - \Phi\left(\frac{a - np}{\sqrt{npq}}\right)$$

ГУСТИНА РАСПОДЕЛЕ СЛУЧАЈНОГ ВЕКТОРА

Нека је

There je
$$\begin{cases} y_1 = g_1(x_1, \dots, x_n), \\ \vdots & J_{g^{-1}} \stackrel{\text{def}}{=} |(x_i)'_{y_i}|_{i,j=1}^n \neq 0; \\ y_n = g_n(x_1, \dots, x_n); \end{cases}$$

Густина расподеле вероватноће сл. век. $(X_1,\ldots,X_n)\in A$ је функција $f(x_1,\ldots,x_n)=f_X$, таква да је

$$\begin{array}{c}
\boxed{1^{\circ}} f(x_{1}, \dots, x_{n}) \geqslant 0, \\
\boxed{2^{\circ}} \underbrace{\int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}} = 1.
\end{array}$$

Аналогно, $f_Y(y_1,\ldots,y_n)$ за $(Y_1,\ldots,Y_n)\in B.$ Важи:

$$\begin{pmatrix}
P\{X \in A\} = \int_{A} f_{X}(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n} = \\
= \int_{B} f_{X}(x_{1}, \dots, x_{n}) \cdot |J_{g^{-1}}| dy_{1} \dots dy_{n} = \\
= P\{Y \in B\}$$

Функција расподеле вероватноће сл. век.:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t,s) dt ds$$
$$f(x,y) = F''_{xy}(x,y)$$

Маргиналне густине расподела:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx$$

Маргиналне расподеле сл. век.:

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{x} f(t, s) \, \mathrm{d}s \, \mathrm{d}t$$

$$F_Y(y) = \lim_{x \to +\infty} F(x, y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{y} f(t, s) \, \mathrm{d}t \, \mathrm{d}s$$

СЛУЧАЈНО ЛУТАЊЕ НА ПРАВОЈ

• Симетрично [p = 1/2]

 $X_k: \begin{pmatrix} -1 & 1 \\ 1/2 & 1/2 \end{pmatrix}, S_n = X_1 + \ldots + X_n, p_m \stackrel{\text{def}}{=} \mid X_k: \begin{pmatrix} -1 & 1 \\ q & p \end{pmatrix}, q \stackrel{\text{def}}{=} 1 - p;$

$$\boxed{1^{\circ}}$$
 $n=2m, m \in \mathbf{N}$

$$p_{2m} = P\{S_{2m} = 2k\} = {2m \choose m+k} \frac{1}{2^{2m}}$$

$$2^{\circ}$$
 $n = 2m - 1, m \in \mathbf{N}$

$$p_{2m-1} = P\{S_{2m-1} = 2k - 1\} = {2m - 1 \choose m + k - 1} \frac{1}{2^{2m-1}}$$

• Несиметрично [$p \neq 1/2$]

$$X_k: \left(\begin{array}{cc} -1 & 1 \\ q & p \end{array}\right), \ q \stackrel{\text{def}}{=} 1 - p$$

$$p_n = P\{S_k = n\} = \begin{cases} \left(\frac{p}{1-p}\right)^n, & 0 \le p < \frac{1}{2}, \\ 1, & \frac{1}{2} < p \le 1. \end{cases}$$

$$q_n = P\{S_k = -n\} = \begin{cases} \left(\frac{1-p}{p}\right)^n, & \frac{1}{2}$$

КАРАКТЕРИСТИЧНЕ ФУНКЦИЈЕ

• Основни полмови

Функција $\phi_X : \mathbf{R} \to \mathbf{C}$, дефинисана са

$$egin{aligned} oldsymbol{\phi}_X(t) &= E(e^{\mathbf{i}tX}) & ext{[општи случај]} \ &= \int_{-\infty}^{+\infty} e^{\mathbf{i}tX} \, \mathrm{d}F(x) & ext{[непрекидна CB]} \end{aligned}$$

се назива карактеристичном функцијом СВ Х. Из $dF(x) \stackrel{\text{def}}{=} f(x) dx$ следи:

$$\varphi(t) = \int_{-\infty}^{+\infty} e^{itX} \cdot f(x) dx.$$

• МЕТОД КАРАКТЕРИСТИЧНИХ ФУНКЦИЈА

$$X_n \xrightarrow[n \to \infty]{F} X \implies \varphi_n(t) \xrightarrow[n \to \infty]{} \varphi(t)$$

$$\varphi_n(t) \xrightarrow[n \to \infty]{} \varphi(t) \land \varphi \in \mathscr{C}(0) \implies X_n \xrightarrow[n \to \infty]{F} X$$

• Својства

$$1^{\circ}$$
 $|\varphi_X(t)| \leqslant \varphi_X(0) = 1$

$$2^{\circ}$$
 $\varphi_X(-t) = \overline{\varphi_X(t)}$

 $[3^{\circ}]$ φ је равномерно непрекидна по t

$$(4^{\circ})$$
 X_1, \ldots, X_n су независне CB \Longrightarrow $\varphi_{X_1+\ldots+X_n}(t) = \varphi_{X_1}(t) \cdots \varphi_{X_n}(t)$

$$\boxed{5^{\circ}} \ \varphi_X \equiv \varphi_Y \implies F_X \equiv F_Y$$

$$\underbrace{\begin{bmatrix} 6^{\circ} \end{bmatrix} E|X|^{n} < +\infty, \quad n \in \mathbb{N} \implies}_{\exists \varphi_{X}^{(k)}(t) = \int_{-\infty}^{+\infty} (\mathbf{i}X)^{k} e^{\mathbf{i}tX} dF(x),}_{EX^{k} = \frac{\varphi^{(k)}(0)}{\mathbf{i}^{k}}}$$

КОНВЕРГЕНЦИЈЕ СЛУЧАЈНИХ ВЕКТОРА

• У РАСПОДЕЛИ:

$$(X_n \xrightarrow[n \to \infty]{F} X \iff F_n(x) \xrightarrow[n \to \infty]{F} F(x))$$

$$(X_n \xrightarrow[n \to \infty]{\mathsf{P}} X \iff P\{|X_n - X| \ge \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

• Скоро сигурна:

$$\left(X_n \xrightarrow[n \to \infty]{\operatorname{cc}} X \iff P\{X_n \xrightarrow[n \to \infty]{} X\} = 1\right)$$

• СРЕДЊЕКВАДРАТНА:

$$\left(X_n \xrightarrow[n \to \infty]{\text{ck}} X \iff E|X_n - X|^2 \xrightarrow[n \to \infty]{} 0\right)$$

Важи:

$$\left(\begin{array}{c} \mathsf{CC} \\ \mathsf{CK} \end{array}\right) \Longrightarrow P \Longrightarrow F$$

[СС и СК су независне једна од друге!]

НЕЈЕДНАКОСТИ

• НЕЈЕДНАКОСТ ЧЕБИШЕВА

$$P\{|X| \geqslant \varepsilon\} \leqslant \frac{E|X|^r}{\varepsilon^r}$$

$$[r=2] \implies$$

$$\implies P\{|X - EX| \ge \varepsilon\} \le \frac{E|X - EX|^2}{\varepsilon^2} = \frac{DX}{\varepsilon^2}$$

$$\begin{bmatrix} \text{ биномна расподела,} \\ X_k : \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}, \\ S_n \stackrel{\text{def}}{=} \sum_{k=1}^n X_k, \\ ES_n = np \end{bmatrix} \Longrightarrow P \bigg\{ \bigg| \frac{S_n}{n} - p \bigg| \geqslant \varepsilon \bigg\} \leqslant \frac{p(1-p)}{n\varepsilon^2}$$

[Бернулијева неједнакост]

• НЕЈЕДНАКОСТ КОЛМОГОРОВА

$$P\left\{\max_{1\leqslant k\leqslant n}|S_k|\geqslant \varepsilon\right\}\leqslant \frac{ES_n^2}{\varepsilon^2}$$

ЗАКОНИ ВЕЛИКИХ БРОЈЕВА

• Слаби (Чебишевљев) закон

$$\frac{\sum_{k=1}^{n} X_k - E \sum_{k=1}^{n} X_k}{n} \xrightarrow[n \to \infty]{P} 0$$

$$\left(\frac{S_n - ES_n}{n} \xrightarrow[n \to \infty]{P} 0, \\ P\left\{ \left| \frac{S_n - ES_n}{n} \right| \geqslant \varepsilon \right\} \xrightarrow[n \to \infty]{} 0 \right)$$

• ЈАКИ (КОЛМОГОРОВЉЕВ) ЗАКОН

$$\frac{\sum_{k=1}^{n} X_k - E \sum_{k=1}^{n} X_k}{n} \xrightarrow[n \to \infty]{cc} 0$$

$$\left(\frac{S_n - ES_n}{n} \xrightarrow[n \to \infty]{cc} 0, \\ P\left\{ \lim_{n \to \infty} \left| \frac{S_n}{n} - \frac{ES_n}{n} \right| = 0 \right\} = 1 \right)$$

• Критеријум Чебишева

$$X_1, \ldots, X_n$$
 независне СВ, $\exists C \ DX_k \leqslant C$ \Longrightarrow важи *слаби* закон

• Критеријум Колмогорова

 $X_1,\ \dots,\ X_n$ независне СВ, $\left\{ egin{array}{c} \sum_{k=1}^{+\infty} rac{DX_k}{k^2} < +\infty \ \end{array}
ight.$ истих расподела и $EX < +\infty$

 \implies важи $ja\kappa u$ закон

• ЦЕНТРАЛНА ГРАНИЧНА ТЕОРЕМА

$$\frac{\sum\limits_{k=1}^{n}X_{k}-E\sum\limits_{k=1}^{n}X_{k}}{\sqrt{D\sum\limits_{k=1}^{n}X_{k}}} \xrightarrow{\frac{F}{n\to\infty}} Z \sim N(0,1).$$

$$\left(\frac{S_{n}-ES_{n}}{\sqrt{DS_{n}}} \xrightarrow{F} Z \sim N(0,1)\right)$$

ОСНОВНИ ПОЈМОВИ СТАТИСТИКЕ

Популација — скуп који проучавамо

Узорак — део (подскуп) популације

Обележје — СВ, карактеристика елемента популације; *квантитативно* и *квалитативно* (последње је потребно кодирати у квантитативно)

Прост случајни узорак — сл. вектор

 $(X_1, ..., X_n)$; све X_k су независне и исте расподеле као и обележје X; n- обим узорка

Узорачка средина:

$$\overline{X_n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n X_k}$$

Ако је узорак дат таблично, посматра се *реализована узорачка средина*:

$$\overline{x}_n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n n_k x_k,$$

где је n_k број појављивања реализованог обележја $x_k, \sum n_k = n.$

Узорачка дисперзија:

Очекивање m је познато:

$$\widehat{S}_n^2 \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n (X_k - m)^2$$

Очекивање m није познато:

$$\widehat{\overline{S}_n^2} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X}_n)^2$$

Реализована узорачка дисперзија: Очекивање *m* је познато:

$$\widehat{\widehat{\mathbf{s}}_n^2} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n n_k (x_k - m)^2$$

Очекивање m није познато:

$$\overline{\overline{s}_n^2} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{k=1}^n n_k (x_k - \overline{x}_n)^2$$

Поправљена узорачка дисперзија:

$$\widetilde{\widetilde{S}_n^2} \stackrel{\text{def}}{=} \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2$$

РАСПОДЕЛЕ ОБЕЛЕЖЈА

ullet χ^2 -РАСПОДЕЛА СА n СТЕПЕНИ СЛОБОДЕ

$$X_1, X_2, \ldots, X_n \sim N(0, 1) \implies \left(X_1^2 + \ldots + X_n^2 \sim \chi_n^2\right)$$

ullet Студентова расподела са n степени слободе

$$Y \sim N(0,1), \ Z \sim \chi_k^2$$
 независне \Longrightarrow

$$\Longrightarrow \left(X = \frac{Y}{\sqrt{Z/n}} \sim t_n\right)$$

ullet Фишерова РАСПОДЕЛА СА $n,\,k$ СТЕПЕНИ СЛОБОДЕ

$$Y \sim \chi_n^2, \;\; Z \sim \chi_k^2 \;\;$$
 независне $\Longrightarrow \left(X = rac{Y/n}{Z/k} \sim F_{n,k}
ight)$

За k=1 се добија Кошијева расподела, $f(x)=\frac{1}{\pi(1+t^2)}$.

• ГАМА-РАСПОДЕЛА

$$X \sim \Gamma(\alpha, \lambda), \quad \alpha > 0, \ \beta > 0, \ X > 0,$$

$$f(x) = \frac{X^{\alpha - 1} \cdot \lambda^{\alpha} \cdot e^{-\lambda X}}{\Gamma(\alpha)}$$

За $\alpha = 1$ се добија експоненцијална расподела, $X \sim E(\lambda)$.

• ГОТОВЕ ФОРМУЛЕ У ВЕЗИ СА РАСПОДЕЛАМА ОБЕ-ЛЕЖЈА

- $\boxed{1^{\circ}} \quad \frac{\overline{X}_n m}{\sigma} \sqrt{n} \sim N(0, 1);$
- $\boxed{2^{\circ}} \qquad \frac{n\widehat{S}_n^2}{\sigma^2} \sim \chi_n^2;$
- $\boxed{3^{\circ}} \qquad \frac{n\overline{S}_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2};$
- $\boxed{4^{\circ}} \qquad \frac{\overline{X}_n m}{\sqrt{\overline{S}_n^2}} \sqrt{n-1} \sim t_{n-1}.$

(Ове формуле је доказао Фишер.)

ЗАКОНИ РАСПОДЕЛЕ СЛУЧАЈНИХ ВЕЛИЧИНА*)

Закон расподеле	Ознака СВ и ЗР	Расподела (густина)	Веза између случајних величина	EX	DX
Бернулијев	Be(p)	$p^k q^{1-k}, k=0, 1$	Be(p) = Bi(1, p)	p	pq
Бета	$B(\alpha,\beta)$	$\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1$	$B(\alpha, \beta) = \frac{\Gamma(\alpha, 1)}{\Gamma(\alpha, 1) + \Gamma(\beta, 1)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Биномни	Bi(n,p)	$\binom{n}{k} p^k q^{n-k}, k = 0, 1, \ldots, n$	$\operatorname{Bi}(n,p) = \sum_{k=1}^{n} \operatorname{Be}(p)$	пр	npq
Негативан биномни	NB(n,p)	$\binom{n+k-1}{k}p^nq^k$, $k=0, 1, \ldots$	$NB(n,p) = \sum_{k=1}^{n} IG_k(p)$	(kq)/p	$(kq)/p^2$
Гама	$\Gamma(\alpha,\lambda)$	$\frac{\lambda^{\alpha} x^{\alpha-1}}{e^{\lambda x} \Gamma(\alpha)}, x > 0$	$2\lambda \cdot \Gamma(\alpha, \lambda) = \chi^2(2\alpha)$	α/λ	$lpha/\lambda^2$
Геометријски	Geom(p)	$p \cdot q^{k-1}, k = 1, 2, \dots$	Geom(p) = Pas(1,p)	1/p	q/p^2
Искључиви геометријски	IG(p)	$p\cdot q^k,\ k=0,\ 1,\ 2,\ldots$	IG(p) = NB(1, p)	q/p	q/p^2
Експоненцијални	$E(\lambda)$	$\lambda e^{-\lambda x}, x > 0$	$E(\lambda) = \Gamma(1, \lambda)$	1/λ	$1/\lambda^2$
Логаритамски нормални	$LN(m, \sigma^2)$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - m)^2}{2\sigma^2}}, x > 0$	$LN(m, \sigma^2) = \exp N(m, \sigma^2)$	$e^{m+\frac{\sigma^2}{2}}$	$e^{2m+\sigma^2}\cdot\left(e^{\sigma^2}-1\right)$
Нормални	$N(m, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, -\infty < x < \infty$	$N(m, \sigma^2) = \ln LN(m, \sigma^2)$	m	σ^2
Паскалов	Pas(n,p)	$\binom{k-1}{n-1} p^n q^{k-n}, k = n, \ n+1, \ldots$	$\operatorname{Pas}(n,p) = \sum_{k=1}^{n} \operatorname{Geom}_{k}(p)$	k/p	$(kq)/p^2$
Поасонов	Π(λ)	$\frac{\lambda^k}{k!}e^{-\lambda}, k=0, 1, \dots$	$\sum\limits_{k=1}^{n}\Pi(\lambda_{k})=\Pi\Bigl(\sum\limits_{k=1}^{n}\lambda_{k}\Bigr)$	λ	λ
Равномерни (правоугаони)	$\left. egin{array}{c} R(a,b) \\ U(a,b) \end{array} \right\}$	$\frac{1}{b-a}, a \leqslant x \leqslant b$	R(a,b) = B(1,1)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
χ^2 (Пирсонов)	$\chi^2(n)$	$\frac{1}{2^{(n/2)}\Gamma(n/2)}x^{(n/2)-1}e^{-x/2}, x > 0$	$\chi^2(n) = \Gamma(n/2, 1/2)$	n	2 <i>n</i>

^{*)} Г. А. Соколов, И. М. Гладких: Математическая статистика, Экзамен, Москва, 2004.

ТАЧКАСТЕ ОЦЕНЕ ПАРАМЕТАРА

Расподела зависи од параметра 0:

$$f(x, \theta); \qquad F(x, \theta).$$

Ако се статистиком g(X) оцењује параметар θ , онда се она назива *оценом параметра* θ и означава са $\widehat{\theta} \stackrel{\text{def}}{=} g(X)$.

• НЕПРИСТРАСНОСТ ОЦЕНЕ

Оцена $\widehat{\theta}$ је *непристрасна* ако је

$$\widehat{E\widehat{\theta}} = \emptyset$$
 (асимптотски: $\widehat{E\widehat{\theta}} \xrightarrow[n o +\infty]{} \emptyset$).

• Постојаност оцене

Оцена $\widehat{\theta}$ је *постојана* ако је

$$\widehat{\widehat{\theta}} \xrightarrow[n \to +\infty]{P} \widehat{\theta} \qquad \Big(P\{|\widehat{\theta} - \theta| \geqslant \varepsilon\} \xrightarrow[n \to +\infty]{P} \widehat{\theta}\Big).$$

Важи:

$$\left(\begin{array}{c} \widehat{\theta} \ \text{непристрасна} \\ \wedge \ D\widehat{\theta} \xrightarrow[n \to +\infty]{} 0 \end{array} \right) \implies \widehat{\theta} \ \text{је постојана.}$$

Скоро сигурна постојаност:

$$\widehat{\widehat{\theta}} \xrightarrow[n \to +\infty]{\operatorname{cc}} \widehat{\theta}.$$

Средњеквадратна постојаност:

$$\widehat{\theta} \xrightarrow[n \to +\infty]{\operatorname{ck}} \theta.$$

МЕТОД МАКСИМАЛНЕ ВЕРОДОСТОЈНОСТИ

Функција

$$L(X, heta) = egin{cases} \prod_{k=1}^n f(X_k, heta), & ext{ расп. је непрекидна,} \ \prod_{k=1}^n P_{ heta}\{X=k\}, & ext{ расп. је дискретна,} \end{cases}$$

назива се функцијом веродостојности.

Параметар θ се оцењује максимумом функције $L(X,\theta)$. Ако је $L(X,\theta)\in\mathscr{D}$, максимум се

одређује преко нуле извода:

$$\widehat{\theta} = \theta \mid L'_{\theta}(X, \theta) = 0.$$

▶ Ако L'_{θ} нема нуле, обично се задају границе СВ X у функцији од параметра. Тада се вредност $\widehat{\theta}$ одређује **из услова**, као вредност параметра θ за коју он важи, а истовремено је $L(X,\widehat{\theta})$ максимално. На пример: $X \in (0,\theta), \ L(X,\theta) = 1/\theta; \ \widehat{\theta} = \max_k X_k$, јер мора бити $\forall k \ X_k \in (0,\widehat{\theta})$.

ИНТЕРВАЛСКЕ ОЦЕНЕ ПАРАМЕТАРА РАСПОДЕЛЕ

- Интервали поверења за непознато математичко очекивање (m)
- ►►Позната је дисперзија (σ²): Одређује се ε из

$$P\{|\overline{X}_n - m| \le \varepsilon\} = \beta;$$

важи $rac{\overline{X}_n - m}{\sigma} \sqrt{n} \sim N(0,1)$, па се z_{eta} одређује из

$$\left\{P\left\{\left|rac{\overline{X}_n-m}{\sigma}\sqrt{n}
ight|\leqslant z_eta
ight.
ight\}=eta$$
 (таблице!), $z_eta=rac{arepsilon}{\sigma}\sqrt{n}.$

Интервал поверења је

$$\left[\overline{X}_n - \frac{z_{\beta}}{\sqrt{n}}\sigma, \ \overline{X}_n + \frac{z_{\beta}}{\sqrt{n}}\sigma\right].$$

▶•• Aко је *непозната дисперзија*, посматра се CB:

$$\frac{\overline{X}_n - m}{\overline{S}_n} \sqrt{n - 1} \sim t_{n - 1}.$$

ИП се налази из услова

$$P\{|\overline{X} - m| \le \varepsilon\} = \beta$$

И

$$egin{aligned} Pigg\{ \Big| \overline{\overline{X}_n - m} \sqrt{n-1} \Big| \leqslant t_{n-1;eta} igg\} &= eta \ ext{(таблице!)}, \ & ext{ИП: } \Big[\overline{X}_n - rac{t_{n-1;1-eta}}{\sqrt{n-1}} \overline{S}_n, \ \overline{X}_n + rac{t_{n-1;1-eta}}{\sqrt{n-1}} \overline{S}_n \Big]. \end{aligned}$$

- Интервали поверења за непознату вероватноћу у биномном закону
- ▶ Непозната је вероватноћа p = P(A). Број реализација догађаја A у n експеримената има биномну расподелу, $S_n \sim \text{Bi}(n,p)$. Вероватноћа се оцењује са $\overline{X}_n = S_n/n$.

ИП се одређује из услова

$$P\{|\overline{X}_n - p| \le \varepsilon\} = \beta.$$

Важи $\frac{\overline{X}_n-p}{\sqrt{p(1-p)}}\sqrt{n}\sim N(0,1)$, па је за $z_{\beta}=\frac{\varepsilon}{\sqrt{p(1-p)}}\sqrt{n}$:

$$\left\{ P \left\{ \left| rac{\overline{X}_n - p}{\sqrt{p(1-p)}} \right| \sqrt{n} \leqslant z_{eta}
ight.
ight\} = eta$$
 (таблице!), ИП: $[p_1, p_2]$,

где су p_1 , p_2 решења квадратне једначине

$$(n+z_{\beta}^2)p^2-(2n\overline{X}_n+z_{\beta}^2)p+n\overline{X}_n^2=0.$$

- Интервали поверења за непознату дисперзију (σ^2)
- **▶**▶Познато је очекивање (т):

$$rac{n\widehat{S}_n^2}{\sigma^2}\sim \chi_n^2$$
, па се $b=\chi_{n;eta}^2$ одређује из $rac{n\widehat{S}_n^2}{\sigma^2}\geqslant b$:

$$egin{aligned} egin{aligned} \widehat{P}\Big\{rac{n\widehat{S}_n^2}{\sigma^2}\geqslant b\Big\} &=eta \ ext{(таблице!)}, & \Big[0,rac{n\widehat{S}_n^2}{\chi_{n;eta}^2}\Big]. \end{aligned} \end{aligned}$$
 (једнострани доњи ИП)

Једнострани горњи ИП се налази из $\frac{n\widehat{S}_n^2}{\sigma^2}\leqslant c.$ Из таблица налазимо $c=\chi_{n:1-eta}^2$:

$$\left(P\left\{\frac{n\widehat{S}_n^2}{\sigma^2} \leqslant c\right\} = \beta, \quad \text{M}\Pi: \left[\frac{n\widehat{S}_n^2}{\chi_{n;1-\beta}^2}, +\infty\right).\right)$$

Двострани ИП се налази из услова $b \leqslant \frac{n\widehat{S}_n^2}{\sigma^2} \leqslant c$:

$$P\left\{\frac{n\widehat{S}_n^2}{c} \leqslant \sigma^2 \leqslant \frac{n\widehat{S}_n^2}{b}\right\} = \beta,$$

што се замењује условима (ознаке су: $b=\chi^2_{n;\frac{1+\beta}{2}}$, $c=\chi^2_{n;\frac{1-\beta}{2}}$):

$$egin{aligned} P\Big\{rac{n\widehat{S}_n^2}{\sigma^2} < b\Big\} &= P\Big\{rac{n\widehat{S}_n^2}{\sigma^2} > c\Big\} = rac{1-eta}{2} \ ext{(таблице!)}, \end{aligned}$$
 двострани ИП: $\left[rac{n\widehat{S}_n^2}{\chi_{n;rac{1-eta}{2}}^2},rac{n\widehat{S}_n^2}{\chi_{n;rac{1+eta}{2}}^2}^2
ight].$

►►Непознато очекивање: користи се \overline{S}_n^2 уместо \widehat{S}_n^2 и $b=\chi_{n-1;\beta}^2,\ c=\chi_{n-1;1-\beta}^2.$

ТЕСТИРАЊЕ ХИПОТЕЗА — ПАРАМЕТАРСКИ ТЕСТОВИ

• Основни полмови

- $\blacktriangleright \blacktriangleright$ Нека расподела обележја X зависи од непознатог параметра θ . Параметарска хипотеза је претпоставка о непознатом параметру расподеле, а поступак њеног потврђивања или одбацивања на основу података из узорка је параметарски тест. Статистика која се користи у том поступку се назива тест-статистика.
- **▶▶** Хипотеза која се тестира се зове *нулта хи*потеза и означава са H_0 . Алтернативна хиnomesa, H_1 , јој је супротстављена. Хипотеза је проста ако се односи на једну вредност параметра, којом је расподела потпуно одређена, нпр. $H_{\theta}(\theta = \theta_0)$. У супротном, хипотеза је сложена.
- Грешка прве врсте се чини ако се нулта хипотеза одбацује када је она тачна, а ако се она прихвата када је тачна алтернативна хипотеза, чини се грешка друге врсте.
- ▶▶ Тест је потпуно одређен критичном облашћу W_n , као скупом тачака (x_1, x_2, \ldots, x_n) , следећи начин: ако реализовани узорак $(x_1, x_2, ..., x_n) \in W_n$, одбацује се H_0 , а ако $(x_1, x_2, \dots, x_m) \not\in W_n$, прихвата се H_0 . Дакле, вероватноће грешака прве и друге врсте су:

$$\alpha = P_{H_0}\{(X_1, X_2, \dots, X_n) \in W_n\},\$$

 $\beta = P_{H_1}\{(X_1, X_2, \dots, X_n) \notin W_n\}.$

Број α се зове *праг* (ниво) значајности.

- ТЕСТИРАЊЕ ХИПОТЕЗА О МАТЕМАТИЧКОМ ОЧЕКИВАњу (т)
- ►►Позната је дисперзија σ^2 : обележје X има нормалну расподелу $N(m, \sigma^2)$.

Ако је $H_0(m=m_0)$ тачна, $Z=rac{\overline{X}_n-m_0}{\sigma}\sqrt{n}$ има нормалну расподелу, N(0,1).

1° Одреде се границе критичне области:

$$P_{H_0}\{|\overline{X}_n-m_0|\geqslant \varepsilon\}=lpha=P\{|Z|\geqslant c\}, \qquad c=rac{arepsilon}{\sigma}\sqrt{n}.$$
 Из таблица се налази $c=F^{-1}ig(rac{1-lpha}{2}ig)$, па $\varepsilon.$ Ако је $|\overline{x}_n-m_0|\geqslant arepsilon$, тј.

$$\left[\overline{x}_n\in W=\left(-\infty,\ m_0-\varepsilon\right]\cup\left[m_0+\varepsilon,\ +\infty\right),\right]$$

одбацује се нулта хипотеза. Иначе се она прихвата.

 2° Алтернативно, из таблица за нормалну расподелу се израчуна α^* (p-вредност) из

$$P_{H_0}ig\{|\overline{X}_n-m_0|\geqslant|\overline{x}_n-m_0|ig\}=$$
 $=P_{H_0}ig\{rac{|\overline{X}_n-m_0|}{\sigma}\sqrt{n}\geqslantrac{|\overline{x}_n-m_0|}{\sigma}\sqrt{n}ig\}=lpha^*,$ и ако је $lpha^*, хипотеза се одбацује.$

►► Непозната дисперзија σ^2 : ако је нулта хипотеза $H_0(m=m_0)$ тачна, статистика T= $rac{\overline{X}_n-m_0}{\overline{S}_n}\sqrt{n-1}$ има Студентову расподелу $t_{n-1}.$ Прво се за праг значајности lpha одреди кри-

тична област из услова

$$P\{|\overline{X}_n - m_0| \geqslant \varepsilon\} =$$

$$= P_{H_0} \left\{ \frac{|\overline{X}_n - m_0|}{\overline{S}_n} \sqrt{n - 1} \geqslant \frac{\varepsilon}{\overline{S}_n} \sqrt{n - 1} \right\} =$$

$$= P\{|T| \geqslant c\} = \alpha,$$

добије се $c=t_{n-1;\alpha}$, а онда се рачуна ε . Ако је $|\overline{x}_n - m_0| \geqslant arepsilon$, одбацује се нулта хипотеза, иначе се прихвата.

- ТЕСТИРАЊЕ ХИПОТЕЗА О ДИСПЕРЗИЈИ (σ^2)
- **▶▶**Познато очекивање т: ако је хипотеза $H_0(\sigma^2=\sigma_0^2)$ тачна, статистика $\frac{n\widehat{S}_n^2}{\sigma_2^2}$ има расподелу χ_n^2 .

Област се одређује из услова

$$\boxed{P_{H_0}\Big\{\frac{n\widehat{S}_n^2}{\sigma_0^2}\leqslant \varepsilon_1\Big\}=P_{H_0}\Big\{\frac{n\widehat{S}_n^2}{\sigma_0^2}\geqslant \varepsilon_2\Big\}=\frac{\alpha}{2}}.$$

Из таблица за расподелу χ^2_n , добија се ϵ_1 = $\chi^2_{n;1-rac{lpha}{2}},\; arepsilon_2=\chi^2_{n;rac{lpha}{2}}.$ Ако је

тада се одбацује нулта хипотеза, а иначе се прихвата.

- ▶►Hепознато очекивање m: исто као за познато, само што се користи \overline{S}_n^2 уместо \widehat{S}_n^2 , и што тест-статистика има расподелу χ_{n-1}^2 .
- ТЕСТИРАЊЕ ХИПОТЕЗА О ВЕРОВАТНОЋИ (р) У БИ-НОМНОМ ЗАКОНУ РАСПОДЕЛЕ
- ▶▶ Обележје X има биномну Bi(1, p) расподелу. Тестира се хипотеза $H_0(p=p_0)$. Дефинише се

$$Z \stackrel{\text{def}}{=} \frac{\overline{X}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}.$$

Ако је H_0 тачна и обим узорка је > 30, статистика Z ће имати приближно нормалну нормирану расподелу. Из услова

$$P_{H_0}\{|\overline{X}_n - p_0| \geqslant \varepsilon\} = P\{|Z| \geqslant \varepsilon\} = \alpha$$

и таблица за N(0,1) се налази c, а онда рачуна ε . Ако је $|\overline{x}_n - p_0| \geqslant \varepsilon$, нулта хипотеза се одбацује, а иначе се прихвата.

НЕПАРАМЕТАРСКИ ТЕСТОВИ — ПИРСОНОВ χ^2 -ТЕСТ

Нека је $H_0\big(F(x)=F_0(x)\big)$, и нека је у расподели обележја X непознато s параметара, који се на основу узорка оцењују ММВ. Скуп $\{X\}$ се раставља на r дисјунктних подскупова S_1, S_2, \ldots, S_r . Нека је m_j број елемената из узорка који су у скупу S_j . Бројеви m_j су реализоване вредности СВ $M_j \sim \text{Ві}(n,p_j)$, где је $p_j = P_{H_0}\{X \in S_j\}$. Вероватноће p_j се налазе из F_0 . СВ M_j представља број чланова узорка који узимају вредност у скупу S_j (j је параметар за M_j).

У пракси се најчешће ради са примерима у којима су задате фреквенције реализованих вредности узорка, па се узима $M_j=n_j,\; p_j=F_0(x_j).$

Тест-статистика је

$$\overbrace{\chi_U^2 = \sum_{j=1}^r \frac{(M_j - np_j)^2}{np_j}}.$$

Ако је хипотеза H_0 тачна, она има приближно расподелу χ^2_{r-s-1} . Из таблице се добија $c=\chi^2_{r-s-1;\alpha}$, тако да важи

$$P\{\chi_U^2 \geqslant c\} = \alpha.$$

Ако је реализована вредност тест-статистике већа од c, нулта хипотеза се одбацује, а иначе прихвата.

ТАБЛИЧНИ ПРЕГЛЕД ИНТЕРВАЛСКИХ ОЦЕНА

Тип проблема	Тест-статистика	Израз за таблично одређивање параметра	Резултат
Одређивање параметра Ө	$\frac{\overline{X}_n - E_{\theta} \overline{X}_n}{\sqrt{D_{\theta} \overline{X}_n}} = Z_{\theta} \sim N(0, 1)$	$P\{ Z_{\theta} \leqslant z_{\beta}\}=\beta$	Интервал са границама одређеним решавањем $ Z_{ heta} \leqslant z_{eta}$ по $ heta$
Непознато <i>очекивање т</i> Позната дисперзија σ ²	$\frac{\overline{X}_n - m}{\sigma} \sqrt{n} = Z \sim N(0, 1)$	$P\{ Z \leqslant z_{\beta}\}=\beta$	$\left[\overline{X}_n - \frac{z_{\beta}\sigma}{\sqrt{n}}; \ \overline{X}_n + \frac{z_{\beta}\sigma}{\sqrt{n}}\right]$
Непознато <i>очекивање т</i> Непозната дисперзија <i>о</i> ²	$\frac{\overline{X}_n - m}{\overline{S}_n} \sqrt{n - 1} = T \sim t_{n - 1}$	$P\{ T \leqslant t_{n-1;\beta}\} = \beta$	$\left[\overline{X}_n - \frac{t_{n-1;1-\beta}\overline{S}_n}{\sqrt{n-1}}; \overline{X}_n + \frac{t_{n-1;1-\beta}\overline{S}_n}{\sqrt{n-1}}\right]$
Непозната <i>дисперзија</i> σ ² Познато очекивање <i>m</i>	$\frac{n\widehat{S}_n^2}{\sigma^2} = H \sim \chi_n^2$	$P\{H \geqslant b\} = \beta \text{ (д.)}; \ P\{H \geqslant c\} = 1 - \beta \text{ (г.)}$ $P\{H < b\} = P\{H > c\} = \frac{1-\beta}{2} \text{ (двос.)}$	$\left[0; \frac{n\widehat{S}_{n}^{2}}{\chi_{n;\beta}^{2}}\right]; \left[\frac{n\widehat{S}_{n}^{2}}{\chi_{n;1-\beta}^{2}}; +\infty\right); \left[\frac{n\widehat{S}_{n}^{2}}{\chi_{n;\frac{1-\beta}{2}}^{2}}; \frac{n\widehat{S}_{n}^{2}}{\chi_{n;\frac{1+\beta}{2}}^{2}}\right]$
Непозната <i>дисперзија</i> σ ² Непознато очекивање <i>m</i>	$\frac{n\overline{S}_n^2}{\sigma^2} = H \sim \chi_{n-1}^2$	_ " _	$\left[0; \frac{n\overline{S}_{n}^{2}}{x_{n-1;1}^{2}}\right]; \left[\frac{n\overline{S}_{n}^{2}}{x_{n-1;1-\beta}^{2}}; +\infty\right); \left[\frac{n\overline{S}_{n}^{2}}{x_{n-1;\frac{1-\beta}{2}}^{2}}; \frac{n\overline{S}_{n}^{2}}{x_{n-1;\frac{1+\beta}{2}}^{2}}\right]$
P азлика очекивања, m_1-m_2 Непознате дисперзије, $\sigma_1^2=\sigma_2^2$	$\frac{(\overline{X}_{n_1} - \overline{Y}_{n_2}) - (m_1 - m_2)}{\sqrt{(n_1 \overline{S}_{n_1}^2 + n_2 \overline{S}_{n_2}^2)(\frac{1}{n_1} + \frac{1}{n_2})}} \sqrt{n_1 + n_2 - 2} = T \sim t_{n_1 + n_2 - 2}$	$P\{ T \geqslant c\}=1-\beta$	$\begin{split} \left[(\overline{X}_{n_1} - \overline{Y}_{n_2}) - \frac{t_{n_1 + n_2 - 2; 1 - \beta}}{S}; \\ (\overline{X}_{n_1} - \overline{Y}_{n_2}) + \frac{t_{n_1 + n_2 - 2; 1 - \beta}}{S} \right] \end{split}$
P азлика очекивања, m_1-m_2 Познате дисперзије, σ_1^2 , σ_2^2	$\frac{(\overline{X}_{n_1} - \overline{Y}_{n_2}) - (m_1 - m_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = Z \sim N(0, 1)$	$P\{ Z \leqslant z_{\beta}\}=\beta$	$\left[(\overline{X}_{n_1} - \overline{Y}_{n_2}) - z_{\beta} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; \right.$ $\left. (\overline{X}_{n_1} - \overline{Y}_{n_2}) + z_{\beta} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$
Непозната вероватноћа р	$\frac{\overline{X}_n - p}{\sqrt{p(1-p)}} \sqrt{n} \sim N(0,1)$	_ " _	$[p_1,p_2];\ p_1,\ p_2$ решења једначине $(n+z_{eta}^2)p^2-(2n\overline{X}_n+z_{eta}^2)p+n\overline{X}_n^2=0$

ТАБЛИЧНИ ПРЕГЛЕД ТЕСТОВА ХИПОТЕЗА

Тип проблема	Тест-статистика	Израз за таблично одређивање параметра	Резултат (критична област)
$H_0(\theta = \theta_0)$			
Непознато <i>очекивање т</i> Позната дисперзија <i>о</i> ²	$\frac{\overline{X}_n - m_0}{\sigma} \sqrt{n} = Z \underset{H_0}{\sim} N(0, 1)$	$P_{H_0}\{ Z \geqslant c\} = \alpha$ $(c = \Phi^{-1}(\frac{1-\alpha}{2}))$	$\overline{x}_n \in \left(-\infty; \ m_0 - \frac{c\sigma}{\sqrt{n}}\right] \cup \left[m_0 + \frac{c\sigma}{\sqrt{n}}; +\infty\right) \implies \mathcal{W}_0$
Непознато <i>очекивање т</i> Непозната дисперзија σ ²	$\frac{\overline{X}_n - m_0}{\overline{S}_n} \sqrt{n - 1} = T \underset{H_0}{\sim} t_{n - 1}$	$P_{H_0}\{ T \geqslant c\} = \alpha$ $(c = t_{n-1;\alpha})$	$\overline{x}_n \in \left(-\infty; \ m_0 - \frac{c\overline{S}_n}{\sqrt{n-1}}\right] \cup \left[m_0 + \frac{c\overline{S}_n}{\sqrt{n-1}}; +\infty\right) \implies \mathcal{W}_0$
Непозната <i>дисперзија</i> о ² Познато очекивање <i>т</i>	$\frac{n\widehat{S}_n^2}{\sigma_0^2} = H \underset{H_0}{\sim} \chi_n^2$	$P_{H_0}\{H\leqslant \varepsilon_1\}=P_{H_0}\{H\geqslant \varepsilon_2\}=rac{lpha}{2}$	$H \in (-\infty; \ \varepsilon_1] \cup [\varepsilon_2; +\infty) \implies \mathcal{H}$
Непозната <i>дисперзија</i> о ² Непознато очекивање <i>т</i>	$\frac{n\overline{S}_n^2}{\sigma_0^2} = H \underset{H_0}{\sim} \chi_{n-1}^2$	_ " _	_ " _
Једнакост <i>очекивања</i> Непознате дисперзије $\sigma_1^2 = \sigma_2^2$	$\frac{\overline{X}_{n_1} - \overline{Y}_{n_2}}{\sqrt{(n_1 \overline{S}_{n_1}^2 + n_2 \overline{S}_{n_2}^2)(\frac{1}{n_1} + \frac{1}{n_2})}} \sqrt{n_1 + n_2 - 2} = T \underset{H_0}{\sim} t_{n_1 + n_2 - 2}$	$P_{H_0}\{ T \geqslant c\}=\alpha$	$T \in (-\infty; \ - c] \cup [c ; +\infty) \implies \mathcal{W}$
Једнакост <i>очекивања</i> Познате дисперзије $\sigma_1^2, \ \sigma_2^2$	$\frac{\overline{X}_{n_1} - \overline{Y}_{n_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = Z \underset{H_0}{\sim} N(0, 1)$	$P_{H_0}\{ Z \geqslant c\}=\alpha$	$Z \in (-\infty; \ - c] \cup [c ; +\infty) \implies \mathcal{W}$
Једнакост <i>дисперзија</i> Позната очекивања m_1, m_2	$\frac{\widehat{S}_{n_1}^2/\sigma_1^2}{\widehat{S}_{n_2}^2/\sigma_2^2} = \frac{\widehat{S}_{n_1}^2}{\widehat{S}_{n_2}^2} = F \underset{H_0}{\sim} F_{n_1,n_2}$	$P_{H_0}\{F \leqslant c_1\} = P_{H_0}\{F \geqslant c_2\} = \frac{\alpha}{2}$ $(c_1 = F_{n_1, n_2; \frac{\alpha}{2}}; c_2 = F_{n_1, n_2; 1 - \frac{\alpha}{2}})$	$F \in (0; c_1] \cup [c_2; +\infty) \implies \mathcal{W}$
Једнакост $\partial ucnepsuja$ Непозната очекивања $m_1,\ m_2$	$\frac{\overline{S}_{n_1}^2/\sigma_1^2}{\overline{S}_{n_2}^2/\sigma_2^2} = \frac{\overline{S}_{n_1}^2}{\overline{S}_{n_2}^2} = F \underset{H_0}{\sim} F_{n_1 - 1, n_2 - 1}$	$P_{H_0}\{F \leqslant c_1\} = P_{H_0}\{F \geqslant c_2\} = \frac{\alpha}{2}$ $(c_1 = F_{n_1 - 1, n_2 - 1; \frac{\alpha}{2}}; c_2 = F_{n_1 - 1, n_2 - 1; 1 - \frac{\alpha}{2}})$	_ " _
Непозната вероватноћа р	$\frac{\overline{X}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = Z \underset{H_0}{\sim} N(0, 1)$	$P_{H_0}\{ Z \geqslant c\}=\alpha$	$Z \in (-\infty; \ - c] \cup [c ; +\infty) \implies \mathcal{W}$

извори

- [1] Vesna Jevremović: Verovatnoća i statistika, Matematički fakultet, Beograd, 2009.
- [2] А. И. Кибзун, Е. Р. Горяинова, А. В. Наумов: Теория вероятностей и математическая статистика, Физматлит, Москва, 2005.
- [3] Павле Младеновић: Вероватноћа и статистика, Математички факултет, Београд, 2008.
- [4] Г. А. Соколов, И. М. Гладких: Математическая статистика, Экзамен, Москва, 2004.
- [5] В. П. Чистяков: Курс теории вероятностей, Дрофа, Москва, 2007.