Modern Geometry Homework.

Our goal to to show that rigid motions are affine maps. That is if $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ satisfies

$$||T\vec{a} - T\vec{b}|| = ||\vec{a} - \vec{b}||$$

for all $\vec{a}, \vec{b} \in \mathbb{R}^2$, then

$$T((1-t)\vec{a} + t\vec{b}) = (1-t)T(\vec{a}) + tT(\vec{b}).$$

or all $\vec{a}, \vec{b} \in \mathbb{R}^2$ and all $t \in \mathbb{R}$.

We have shown

Proposition 1. Let \vec{a} and \vec{b} be in \mathbb{R}^2 then a point \vec{x} satisfies

$$\vec{x} = (1 - t)\vec{a} + t\vec{b}.\tag{1}$$

for some t with 0 < t < 1 if and only if

$$|||\vec{b} - \vec{x}|| + ||\vec{x} - \vec{a}|| = ||\vec{b} - \vec{a}||.$$
 (2)

If either of these two equivalent conditions hold then

$$t = \frac{\|\vec{x} - \vec{a}\|}{\|\vec{b} - \vec{a}\|}. (3)$$

Proof. First assume that $\vec{x} = (1-t)\vec{a} + t\vec{b}$ with 0 < t < 1. Then

$$\vec{b} - \vec{x} = \vec{b} - ((1-t)\vec{a} + t\vec{b}) = (1-t)(\vec{b} - \vec{a})$$

and

$$\vec{x} - \vec{a} = ((1 - t)\vec{a} + t\vec{b}) - \vec{a} = t(\vec{b} - \vec{a}).$$

As 0 < t < 1 both of t and (1 - t) are positive. Thus

$$\begin{split} \|\vec{b} - \vec{x}\| + \|\vec{x} - \vec{a}\| &= \|(1 - t)(\vec{b} - \vec{a})\| + \|t(\vec{b} - \vec{a})\| \\ &= (1 - t)\|\vec{b} - \vec{a}\| + t\|\vec{b} - \vec{a}\| \\ &= \|\vec{b} - \vec{a}\|. \end{split}$$

This shows that (2) holds.

Conversely if (2) holds, then

$$\begin{split} \|\vec{b} - \vec{a}\| &= \|(\vec{b} - \vec{+}(\vec{x} - \vec{a})\| \\ &\leq \|(\vec{b} - \vec{x})\| + \|(\vec{x} - \vec{a})\| & \text{(By triangle inequality)} \\ &= \|\vec{b} - \vec{a}\| & \text{(As (2) holds)}. \end{split}$$

This implies that equality holds in the triangle inequality. This means that $(\vec{b}-\vec{x})$ and $(\vec{x}-\vec{a})$ point in the same direction. Therefore there is a positive constant c such that

$$(\vec{b} - \vec{x}) = c(\vec{x} - \vec{a}).$$

We can solve this for \vec{x} to get

$$\vec{x} = \frac{c}{1+c}\vec{a} + \frac{1}{1+c}\vec{b}.$$

Therefore if we set $t = \frac{1}{1+c}$ we have 0 < t < 1 and $\vec{x} = (1-t)\vec{a} + t\vec{b}$ as required.

Finally if the conditions hold, then $x = (1 - t)\vec{a} + t\vec{b}$. This can be rearranged as

$$t(\vec{b} - \vec{a}) = \vec{x} - \vec{a}.$$

Take the norms of both sides and divide by $||1b - \vec{a}||$ to get

$$t = \frac{\|\vec{x} - \vec{a}\|}{\|\vec{b} - \vec{a}\|}$$

which completes the proof.

Proposition 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a rigid motion and 0 < t < 1. Then for and $\vec{a}, \vec{b} \in \mathbb{R}^2$

$$T((1-t)\vec{a} + t\vec{b}) = (1-t)T(\vec{a}) + tT(\vec{b}).$$

Proof. If $\vec{a} = \underline{1}$ this is clear. So assume $\vec{a} \neq \vec{b}$ and set

$$\vec{x} = (1 - t)\vec{a} + t\vec{b}.$$

By the last Proposition we then have

$$t = \frac{\|\vec{x} - \vec{a}\|}{\|\vec{b} - \vec{a}\|}$$

and

$$\|\vec{b} - \vec{x}\| + \|\vec{x} - \vec{a}\| = \|\vec{b} - \vec{a}\|$$

Using this and that T is a rigid motion we have

$$\begin{split} \|T(\vec{b}) - T(\vec{x})\| + \|T(\vec{x}) - T(\vec{a})\| &= \|\vec{b} - \vec{x}\| + \|\vec{x} - \vec{a}\| \\ &= \|\vec{b} - \vec{a}\| \\ &= \|T(\vec{b}) - T(\vec{a})\| \end{split}$$

This by Proposition 1 (with $T(\vec{a})$ and $T(\vec{b})$ playing the part of \vec{a} and \vec{b} and s playing the part of t) there a $s \in \mathbb{R}$ with 0 < s < 1 and

$$T(\vec{x}) = (1 - s)T(\vec{a}) + sT(\vec{a})$$

where, again using that T is a rigid motion,

$$s = \frac{\|T(\vec{x}) - T(\vec{a}(\|)\|}{\|T(\vec{b}) - T(\vec{a})\|} = \frac{\|\vec{x} - \vec{a}\|}{\|\vec{b} - \vec{a}\|} = t.$$

Putting this all together gives

$$T(1-t)\vec{a}+t\vec{b})=T(\vec{x})=(1-s)T(\vec{a})+sT(\vec{a})=(1-t)T(\vec{a})+tT(\vec{b})$$
 which is just what we wanted. $\hfill\Box$

Proposition 3. Let \vec{a} and \vec{b} be in \mathbb{R}^2 then a point \vec{x} satisfies

$$\vec{x} = (1 - t)\vec{a} + t\vec{b}.\tag{4}$$

for some t with t > 1 if and only if

$$|||\vec{x} - \vec{b}|| + ||\vec{b} - \vec{a}|| = ||\vec{x} - \vec{a}||.$$
 (5)

If either of these two equivalent conditions hold then

$$t = \frac{\|\vec{x} - \vec{a}\|}{\|\vec{b} - \vec{a}\|}.\tag{6}$$

Problem 1. Prove this. *Hint:* Very much like the proof of Proposition 1. \Box

Proposition 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a rigid motion and t > 1. Then for and $\vec{a}, \vec{b} \in \mathbb{R}^2$

$$T((1-t)\vec{a} + t\vec{b}) = (1-t)T(\vec{a}) + tT(\vec{b}).$$

Problem 2. Prove this. *Hint*: Very much like the proof of Proposition 2.