Analysis

Jonathan Gai

January 23, 2022

Contents

1 Limits and Convergence 1.1 Review from Numbers and Sets	1 1	
Lecture 1: Limits		21 Jan. 11:00
Books:		
• A First Course in Mathematical Analysis -Burkill		
• Calculus -Spivak		

1 Limits and Convergence

 \bullet Analysis I -Tao

1.1 Review from Numbers and Sets

Notation. We denote sequences by a_n or $(a_n)_{n=1}^{\infty}$, with $a_n \in \mathbb{R}$.

Definition 1.1. We say that $a_n \to a$ as $n \to \infty$ if given $\epsilon > 0$, there exists N such that $|a_n - a| < \epsilon$ for all $n \ge N$.

Note. $N = N(\epsilon)$ which is dependent on ϵ . That is, if you want to go closer to a, sometimes you need to go higher in N.

Definition 1.2 (limit of a sequence). We say that a sequence is a increasing sequence if $a_n \leq a_{n+1}$, decreasing sequence if $a_n \geq a_{n+1}$, strictly increasing sequence if $a_n \leq a_{n+1}$, strictly decreasing sequence if $a_n \leq a_{n+1}$.

We also have

Theorem 1.1 (Fundamental Axiom of the Real Numbers). If $a_n \in \mathbb{R}$ and a_n is increasing and bounded above by $A \in \mathbb{R}$, then there exists $a \in \mathbb{R}$ such that $a_n \to n$ as $n \to \infty$.

That is, an increasing sequence of real numbers bounded above converges.

Remark. It is equivalent to the following,

- A decreasing sequence of real numbers bounded below converges.
- Every non-empty set of real numbers bounded above has a *supremum* (Least Upper Bound Axiom).

Definition 1.3 (supremum). For $S \subseteq \mathbb{R}, S \neq \emptyset$. We say that $\sup S = k$ if

- 1. $x \le k$, $\forall x \in S$,
- 2. given $\epsilon > 0$, there exists $x \in S$ such that $x > k \epsilon$.

Note. Supremum is unique, and there is a similar notion of infimum.

Lemma 1.1 (Properties of Limits).

- 1. The limit is unique. That is, if $a_n \to a$, and $a_n \to b$, then a = b.
- 2. If $a_n \to a$ as $n \to \infty$ and $n_1 < n_2 < n_3 ...$, then $a_{n_j} \to a$ as $j \to \infty$ (subsequences converge to the same limit).
- 3. If $a_n = c$ for all n then $a_n \to c$ as $n \to \infty$.
- 4. If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$.
- 5. If $a_n \to a$ and $b_n \to b$, then $a_n b_n \to ab$.
- 6. If $a_n \to a$, then $\frac{1}{a_n} \to \frac{1}{a}$.
- 7. If $a_n < A$ for all n and $a_n \to a$, then $a \le A$.

Proof.

1. Given $\epsilon > 0$, there exists N_1 such that $|a_n - a| < \epsilon, \forall n \geq N_1$, and there exists N_2 such that $|a_n - b| < \epsilon, \forall n \geq N_2$.

Take $N = \max\{n_1, n_2\}$, then if $n \ge N$,

$$|a-b| \le |a_n - a| + |a_n - b| < 2\epsilon.$$

If $a \neq b$, take $\epsilon = \frac{|a-b|}{3}$, we have

$$|a-b|<\frac{2}{3}|a-b|.\cancel{2}$$

- 2. Given $\epsilon > 0$, there exists N such that $|a_n a| < \epsilon, \forall n \geq N$, Since $n_j \geq j$, we know
 - 1 LIMITS AND CONVERGENCE

$$|a_{n_i} - a| < \epsilon, \forall j \ge N.$$

That is, $a_{n_j} \to a$ as $j \to \infty$.

5. We have

$$|a_n b_n - ab| \le |a_n b_n - a_n b| + |a_n b - ab|$$

= $|a_n||b_n - b| + |b||a_n - a|$.

Given $\epsilon > 0$, there exists N_1 such that $|a_n - a| < \epsilon, \forall n \geq N_1$, and there exists N_2 such that $|b_n - b| < \epsilon, \forall n \geq N_2$.

If
$$n \ge N_1(1)$$
, $|a_n - a| < 1$, so $|a_n| \le |a| + 1$.

We have

$$|a_n b_n - ab| \le \epsilon(|a| + 1 + |b|), \forall n \ge N_3(\epsilon) = \max\{N_1(1), N_1(\epsilon), N_2(\epsilon)\}.$$

Lemma 1.2.

$$\frac{1}{n} \to 0 \text{ as } n \to \infty.$$

Proof. $\frac{1}{n}$ is a decreasing sequence that is bounded below. By the Fundamental Axiom, it has a limit a.

We claim that a = 0. We have

$$\frac{1}{2n} = \frac{1}{2} \times \frac{1}{n} \to \frac{a}{2}$$
 by Lemma (1.1).

But $\frac{1}{2n}$ is a subsequence, so by Lemma (1.1) $\frac{1}{2n} \to a$. By uniqueness of limits proved again in Lemma (1.1), we have $a = \frac{a}{2} \implies a = 0$.

Remark. The definition of limit of a sequence makes perfect sense for $a_n \in \mathbb{C}$ by replacing the absolute value with modulus.

Definition 1.4. We say that $a_n \to a$ as $n \to \infty$ if given $\epsilon > 0$, there exists N such that $|a_n - a| < \epsilon$ for all $n \ge N$.

And the first six parts of Lemma (1.1) are the same over \mathbb{C} . The last one does not make sense over \mathbb{C} since it uses the order of \mathbb{R} .