Introduction to Machine Learning

Evaluation: In a Nutshell

Learning goals

- Understand what the Generalization Error is
- Get an overview on how we evaluate performance of learners
- Know some evaluation metrics for classification and regression
- Understand why we do resampling

EVALUATING A MODEL

 We have seen how to train models that are optimal in some sense, relative to other possible models. However, how can we assess how good they actually are, in absolute numbers?

• Idea: Use risk $\sum_{(\mathbf{x},y)\in\mathcal{D}_{\text{train}}}\left[L\left(y,\hat{f}(\mathbf{x})\right)\right]$ after training.

• Problem: This value can be very optimistic.

• Example: Overfitting of a polynomial regression.

• "Best" means that using new data, this model will probably produce the most meaningful predictions.

GENERALIZATION ERROR

- In other words, the "best" model will generalize well and have a low Generalization Error.
- Formally, for a fixed model, the GE can be expressed via: $GE(\hat{t}, L) := \mathbb{E}\left[L(y, \hat{t}(\mathbf{x}))\right],$
- i.e., "what is the expected loss for a new observation?"
- Ideally, the GE should be estimated with new, unseen data.
- Usually, we have no access to new unseen data, though.
- Thus, we divide our data set manually into $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$ and use the latter to estimate the GE via some metric $\rho()$.

METRICS

But what is a good metric $\rho()$?

- While we can always use the (inner) loss function that we trained the model on as outer loss to construct a metric $\rho()$, this may not always be ideal.
- For both, classification and regression there is a large variety of evaluation metrics, of which we will just cover a fraction.

METRICS FOR CLASSIFICATION

Commonly used evaluation metrics include:

- Accuracy:
 - $\rho_{ACC} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} = \hat{y}^{(i)}] \in [0, 1].$
 - "Proportion of correctly classified observations."
- Misclassification error (MCE):
 - $\rho_{MCE} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \neq \hat{y}^{(i)}] \in [0, 1].$
 - "Proportion of incorrectly classified observations."
- Brier Score:
 - $\rho_{BS} = \frac{1}{m} \sum_{i=1}^{m} (\hat{\pi}^{(i)} y^{(i)})^2$
 - "Squared error btw. predicted probability and actual label."
- Log-loss:
 - $\rho_{LL} = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log \left(\hat{\pi}^{(i)} \right) \left(1 y^{(i)} \right) \log \left(1 \hat{\pi}^{(i)} \right) \right).$
 - "Distance of predicted and actual label distribution."

The probabilistic metrics, Brier Score and Log-Loss, penalize false confidence, i.e. predicting the wrong label with high probability, heavily.

METRICS FOR CLASSIFICATION / 2

For hard-label classification, the confusion matrix is a useful tool:

		True Class <i>y</i>	
		+	_
Pred.	+	True Positive	False Positive
		(TP)	(FP)
ŷ	_	False Negative	True Negative
		(FN)	(TN)

From this matrix a variety of evaluation metrics, including precision and recall, can be computed.

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$

METRICS FOR CLASSIFICATION / 3

- Other frequently used metrics like the False Negative Rate can also be derived from the confusion matrix.
- Many of these metrics can go with different names.

► Clickable version/picture source

▶ Interactive diagram

ROC-CURVE

- The ROC-Curve allows to evaluate binary classifiers beyond single metrics. It compares classifiers using their TPR and FPR, for different thresholds.
- We aim to identify good thresholds that dominate others.
- The area under this curve (AUC) can also be used as metric.

METRICS FOR REGRESSION

Commonly used evaluation metrics include:

- Sum of Squared Errors (SSE): $\rho_{SSE} = \sum_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2$
- Mean Squared Error (MSE): $\rho_{MSE} = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2$
- Root Mean Squared Error (RMSE): $\rho_{RMSE} = \sqrt{MSE}$
- R-Squared: $\rho_{R^2} = 1 \frac{\sum\limits_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2}{\sum\limits_{i=1}^{m} (y^{(i)} \bar{y})^2}$
- Mean Absolute Error (MAE): $\rho_{MAE} = \frac{1}{m} \sum_{i=1}^{m} |y^{(i)} \hat{y}^{(i)}|$

IMPROVING ESTIMATION OF GE

We can estimate the GE with a test data set via:

$$\widehat{\mathrm{GE}}(\widehat{f},L) := \frac{1}{m} \sum_{(\mathbf{x},y) \in \mathcal{D}_{\text{test}}} \left[L\left(y,\widehat{f}(\mathbf{x})\right) \right],$$

i.e. we compute the selected metric $L\left(y,\hat{f}(\mathbf{x})\right)$ for each observation in the test set and compute the mean.

This will give an appropriate estimate for the GE. However, with only a few test observations (small m), this estimate will be unstable or, in other words, have high variance. We have two options to decrease it:

- Increase m.
- Compute $\widehat{\mathrm{GE}}(\widehat{f},L)$ for multiple test sets and aggregate them.

RESAMPLING

As we do not have access to infinite data and increasing m will mean a reduction of the number of training observations, aggregation over B sets is the preferred option:

$$\mathcal{J} = ((J_{\mathrm{train},1}, J_{\mathrm{test},1}), \dots, (J_{\mathrm{train},B}, J_{\mathrm{test},B}))$$
 .

We compute $\widehat{\mathrm{GE}}(\widehat{f},L)$ for each set and aggregate the estimates. These B distinct sets are generated through **resampling**.

There exist a number of well-established resampling strategies:

- (Repeated) Hold-out / Subsampling
- Cross validation
- Bootstrap

RESAMPLING

All methods aim to generate the train-test splits $\mathcal J$ by splitting the full data set repeatedly. The model is trained on the respective train set and evaluated on the test set.

Example: 3-fold cross validation

