	taritosh Gandre
	Final Project 1001
4)	Analyzing the impact of loodiacke
a	· Slope of You Xi
	b. = Sx, y
	5x, x, M .; M
	SX, X
	5 X, Y is the Covamance between X, & Y
	Sxix, is the variance of X.
	· Slope of Y on X2
	$\hat{b}_2 = 5X_2Y$
	$3x_2x_2$
	SX2Y is the covariance between X2 & Y
	SX2X2 is the Covariance of X2
	· Slope of regression for X2 on X,
	: X, l X2 have sample correlation equal
	to O.
	$\frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} = 0$ $\frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} = 0$
	Sxixi
	3 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- b) · Residuals of regression of Yon X1:
 - e:= y:- B(Y(x,) * (x,:- x,)
 - · Residual of the regression of XzonX:
 - ei= X2; B(X21X1) * (X1:-X1)
- C). Slope of regression corresponding to the added variable plot for the regression of Yon X2 after X.:

 $P(Y|X_2,x_1) = \frac{6e2y}{5e2x_2}$

- · Sezy is the sum of products of the regression of Yon X, &Y.

 · Sexz is the sum of products of the regression of Xz on X, &Xz
- (3x,e2=0) $Se2y = 6xy \beta(y|x_1) * 3x_1y$ 8 $Se2x2 = 6x_2 x_2 \beta(x_2|x_1) * 6x_1x_2$

$$3x_1 x_2 = 0$$
 & $3(x_2 | x_1) = 0$

$$\frac{\hat{\beta}(\hat{y}|\chi_2,\chi_1) = \hat{S} \times y}{5\chi_2\chi_2} = \frac{\hat{\beta}(\hat{y}|\chi_2)}{5\chi_2\chi_2}$$

... The Slope of the added-variable plat is the Same as the slope for simple regression You X2 ignoring X1.

$$X = [1, X']$$
 Where X' is an $n \times p$ matrix $H = X(X'X)^{-1}X' = [1, X']([1, X'])^{-1}[1, X']$

$$T_{r}(x'P''x') = \sum_{i=1}^{n} \lambda_{i} \rightarrow eigenvalues$$

$$T_{r}(H) = 1 + \sum_{i=1}^{r} \lambda_{i}$$

i lis non-negative,

$$\frac{T_{\gamma}(H) \geq 1}{1 - T_{\gamma}(H) = 1 + 1} = \frac{\sum_{i=1}^{n} \lambda_{i}}{n}$$

'. In is a positive term

:. 1 < Tr(H) < 1