LLM-compressor. Отчёт

Итоговый проект курса Deep Learning School

Студент: Матюнина Юлия Алексеевна Руководитель: Алексей Дмитриевич Рухович

Введение

Данная работа сделана к качестве итогового проекта курса от Deep Learning School.

Необходимо было на базе LLM с помощью алгоритма арифметической компрессии реализовать архиватор текста. Сжать Википедию и посчитать её объём. Улучшить коэффициент компрессии с помощью prefix tuning или steering. Обучить модель генерировать распределение для steering-вектора, чтобы ещё сильнее улучшить компрессию.

Основная часть работы находится в ноутбуках Compression with different models.ipynb, Compression with steering vector.ipynb и Steering vector with hyper prior.ipynb.

Подготовка

При подготовке работы были изучены научные статьи

- Language Modeling is Compression,
- Variational image compression with a scale hyperprior.

Для сжатия используется датасет Wikipedia Enwik8.

Запуск моделей производился на Colab с использованием графического процессора Т4.

Без чанков или с чанками

В начале обоснуем необходимость разбиения на чанки при экспериментах. В этом разделе использовалась модель EleutherAI/pythia-70m. Но результаты будут схожими и для других моделей.

Всего сжималось $400\,000$ бит информации ($50\,\mathrm{kB}$). Весь объём разбивался на части по $16\,000$ бит ($2\,\mathrm{kB}$). Получается 25 чанков. Ниже приведена сравнительная таблица результатов сжатия без использования чанков и с разбиением на чанки:

Метод	Время кодирования, с	Время декодирования, с	Размер после сжатия, бит	Коэффициент сжатия
Без чанков	733.66	731.65	60471	0.1512
С чанками	138.17	152.33	66303	0.1658

Таблица 1: Сравнение без чанков и с чанками

- Разбиение на чанки даёт почти в 5× ускорение кодирования и декодирования.
- При этом коэффициент сжатия слегка ухудшается (с 0.1512 до 0.1658), то есть итоговый объём возрастает на $\sim 10\%$.
- Так как мы располагаем сравнительно небольшими мощностями, для нас ключевым становится фактор времени. Поэтому все дальнейшие эксперименты мы проводим, используя разбиение на чанки.

Различные модели

Всего сжималось $400\,000$ бит информации ($50\,\mathrm{kB}$) тем же образом — 25 чанков по $2\,\mathrm{kB}$. Код экспериментов находится в ноутбуке Compression with different models.ipynb. Ниже приведена сравнительная таблица результатов сжатия с использованием различных моделей:

Модель	Параметров	Кодирование (с)	Декодирование (с)	Размер после сжатия (бит)	Коэффициент сжатия
EleutherAI/pythia-70m	$70\mathrm{M}$	138.17	152.33	66 303	0.1658
EleutherAI/pythia-160m	$160\mathrm{M}$	335.48	339.62	57 478	0.1437
GPT-2 (small)	$117\mathrm{M}$	379.86	380.13	61 388	0.1535
Open_llama_3b	$3\mathrm{B}$	3297.45	3263.61	38 099	0.0952
Open_llama_7b	$7\mathrm{B}$	3971.34	3957.65	36 262	0.0907

Таблица 2: Результаты по моделям

Мы видим, что самые маленькие модели (Pythia-70M, Pythia-160M, GPT-2) производят кодирование за несколько сотен секунд, тогда как крупные OpenLLaMA-3B/7B требуют уже нескольких тысяч секунд на энкодинг/декодинг. С ростом размера модели коэффициент сжатия падает (то есть сжатие становится более эффективным). Интересно, что GPT-2, которая имеет меньше параметров, чем EleutherAI/pythia-160m, работает дольше. Тем не менее коэффициент сжатия у неё хуже. Модели Open_llama_3b и Open_llama_7b отличаются по качеству и скорости сжатия не так сильно, как можно было бы подумать, глядя на количество параметров.

Так как мы располагаем малым количеством вычислительных ресурсов, для дальнейших экспериментов будем использовать EleutherAI/pythia-70m — самую маленькую и быструю модель.

Steering vector

Steering vector — это дополнительный контекст, который подаётся в начало входа модели и «настраивает» её работу под нужную тематику или стиль. В наших экспериментах мы рассматривали три варианта steering vector:

Фиксированная строка

Подаём заранее заданную фразу (в нашем случае, «This is Wikipedia html») и преобразуем её в токены. Эта последовательность служит префиксом, но сама не меняется в ходе работы модели.

Статический soft-prompt

Вместо текстовой строки вектор представляет собой матрицу вещественных эмбеддингов фиксированного размера. Элементы этой матрицы инициализируются случайно и после этого не обучаются.

Обучаемый soft-prompt

Матрица эмбеддингов включается в процесс обучения. Её значения оптимизируются так, чтобы улучшить степень компрессии заданного текста.

Вариант steering-вектора	Размер после сжатия (бит)	Коэффициент сжатия
Фиксированная строка	66 406	0.1660
Статический soft-prompt	68 138	0.1703
Обучаемый soft-prompt (100 эпох)	62589	0.1565
Обучаемый soft-prompt (500 эпох)	54 256	0.1356

Таблица 3: Влияние вида steering vector

Добавление фиксированной текстовой строки или статического soft-prompt чуть ухудшает коэффициент по сравнению с базовым (0.1658). Это логично, ведь мы подаем рандомные числа, которые никак не отражают информацию в тексте. Оптимизация soft-prompt в ходе обучения (100 и особенно 500 эпох) заметно улучшает сжатие, снижая коэффициент до 0.1356.

Hyper-prior

Гипер-приор (hyper-prior) — это распределение априорной информации c (в нашем случае это steering vector), которое позволяет учесть априорные представления о данных x. Формально мы представляем плотность p(x) как:

$$p(x) = \int p(c) p(x \mid c) dc.$$

Кодирование происходит в два этапа:

- 1. Сначала кодируется значение c по априорному распределению p(c).
- 2. Затем кодируется текст x по условному распределению $p(x \mid c)$.

Такой подход позволяет добиться более эффективного сжатия, так как мы сжимаем не только x, но и c

Мы протестировали три варианта кодирования steering vector по hyper-prior:

Вариант 1: Гауссов гипер-приор

Предполагаем, что каждая координата c_i steering-вектора распределена нормально: $c_i \sim \mathcal{N}(0, \sigma^2)$, и разбиваем диапазон $[c_{\min}, c_{\max}]$ на N равномерных бинов длины $\Delta = (c_{\max} - c_{\min})/N$. Априорная дискретная вероятность каждого бина строится по Гауссову закону, после чего из PMF строится CDF для арифметического кодирования.

Вариант 2: Эмпирический гипер-приор

Используем фактические значения $\{c_i\}$ из обученного steering-вектора:

- 1. Отбрасываем экстремальные перцентили (1% и 99%), получая диапазон $[v_{\min}, v_{\max}]$.
- 2. Строим гистограмму на этом отрезке с N бинами, нормируем в PMF.
- 3. Строим целочисленный CDF из этой PMF.

Вариант 3: Lloyd-Max (1D k-means) гипер-приор

Оптимизируем уровни квантования так, чтобы минимизировать MSE:

- 1. Берём подвыборку значений c_i и запускаем 1D k-means с N кластерами, получая центроиды μ_0, \ldots, μ_{N-1} .
- 2. Каждый c_i «попадает» в ближайший центроид.
- 3. Частоты попаданий формируют эмпирический РМF.
- 4. Строим целочисленный СDF для арифметического кодирования.

Гауссов prior даёт меньшую энтропию (6.725 бит/коорд) и требует наименьшее число бит (6.741 бит/коорд), но MSE у него выше, чем у Lloyd–Max. То есть При этом коэффициент сжатия steering-вектора самый низкий (0.2106), и итоговое сжатие текста тоже близко к лучшему (0.1355). Эмпирический приор имеет наибольшее число бит на координату (7.7645 бит), высокую энтропию и крупная MSE. Соответственно, коэффициент компрессии steering-вектора худший (0.2426).

Гипер-приор	Битов использовано	Бит/ коорд	Энтр./коорд (бит)	Общая энтр. (бит)	MSE	Коэф. компр. с	Текст после (бит)	Коэф. сжатия
Гауссов	690257	6.7408	6.7252	688 656	5.10e-4	0.2106	54190	0.1355
Эмпирический	795086	7.7645	7.6999	788475	4.30e-3	0.2426	54687	0.1367
Lloyd-Max (1D k-means)	788823	7.7033	7.7030	788789	4.14e-5	0.2407	54156	0.1354

Таблица 4: Сравнение hyper-prior

Lloyd-Max имеет коэффициент сжатие steering вектора хуже, чем гауссов приор. Однако имеет крайне низкой MSE $(4 \cdot 10^{-5})$. Его коэффициент сжатия steering-вектора (0.2407) приближается к эмпирическому, соответственно итоговый коэффициент сжатия текста — лучший (0.1354).

Таким образом, лучше всего сжимает steering vector гауссов приор. Но восстанавливает после сжатия точнее Lloyd–Max. В зависимости от потребностей надо выбрать один из этих вариантов.

Выводы

- Мы рассмотрели арифметическое кодирование текста на базе LLM. Нами были рассмотрены модели размером 70m-7b. Чем больше модель, тем лучший коэффициент сжатия она обеспечивает. Но большие модели работают медленнее и требуют больших вычислительных ресурсов.
- Предобученный steering vector способен улучшить коэффициент сжатия на несколько процентов. Необученный steering vector использовать нет смысла.
- Получившийся steering vector в целях дальнейшей оптимизации можно сам сжать, использую подход на основе hyper prior. Для лучшего коэффициента сжатия steering vector лучше использовать гауссов гипер-приор, а для лучшего коэффициента сжатия самого текста Lloyd—Max гипер-приор.