DLP lab01

1.Introduction

在這次的 lab 中,需要實作 neural network,不過為了瞭解神經網路如何 update 參數,使 model 能夠有效的預測分類,因此,在這次的作業中,必須了解 backpropagation 的運算邏輯,僅使用 NumPy 完成程式,其中,我使用了 SGD 來優化參數,cost function 的部分則使用了 MSE。

2.Experiment setups

A. Sigmoid functions

在這次的作業中,我首先嘗試了使用 sigmoid 作為 activate function,根據定義, $\sigma(x)=\frac{1}{1+e^{-x}}$,而在 backpropagation 的部分,需要對 sigmoid function 進行一階微分,公式如下 $\frac{d\sigma}{dx}=\sigma(x)\times \left(1-\sigma(x)\right)$,而受惠於我們已經在 feed forward 的階段就對 $\sigma(x)$ 進行計算,因此在 derivate_sigmoid(x)的 function 中,只需要帶入 $\sigma(x)$ 的值就好,不必重新計算。

B. Neural network

至於神經網路的架構,依照作業的要求,我使用了兩層的 hidden layer,因此會有 3 個 weight 參數需要被訓練,而 cost function 的部分我則使用了 Mean

Square Error ,公式如下:
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

,因為 MSE 計算時有平方項,所以 \hat{y} 和 y的順序並沒有影響,但是 back propagation 就要注意相減的順序,來決定要不要負號。

C. Backpropagation

為了得到 $\frac{dL}{dW_i}$ (where i = 1,2,3)的值來對 weight 進行優化,我們需要一連串的 chain rule,如下圖所示。

```
def back_propagation(self , y_gt):
   self.dc_dy = derivate_MSE(y_gt, self.y_pred)
   self.dy_dz3 = derivate_sigmoid(self.y_pred)
   self.dz3_dw3 = self.a_2
   self.dc_dz3 =self.dy_dz3 * self.dc_dy
   self.dc_dw3 = self.dz3_dw3.T @ self.dc_dz3
   self.dz2_dw2 = self.a_1
   self.dz3_da2 = self.weight_3
   self.dc_da2 = self.dz3_da2 @ self.dc_dz3.T
   self.dc_dz2 = self.derivate_activate_function(self.a_2) * self.dc_da2.T
   self.dc_dw2 = self.dz2_dw2.T @ self.dc_dz2
   self.dz1_dw1 = self.x
   self.dz2_da1 = self.weight_2
   self.dc_da1 = self.dz2_da1 @ self.dc_dz2.T
   self.dc_dz1 = self.derivate_activate_function(self.a_1) * self.dc_da1.T
   self.dc_dw1 = self.dz1_dw1.T @ self.dc_dz1
```

而在計算完 $\frac{dL}{dW_i}$ 後,就可以更新權重了,而在這次的作業中,我使用了 Gradient

Descent 作為 Optimizer, 在這裡使用 GD 的原因而不是 SGD 的原因是因為這次作業的訓練資料數量相當的小,因此在實作上,我採取了計算完所有訓練資料的 Gradient 後才更新權重。

```
self.weight_1 -= self.lr*self.dc_dw1
self.weight_2 -= self.lr*self.dc_dw2
self.weight_3 -= self.lr*self.dc_dw3
```

- 3. Results of your testing
- A. Screenshot and comparison figure

XOR DATA:

Linear DATA:

B. Show the accuracy of your prediction XOR DATA:

Train loss:

```
epoch 5000 loss : 0.000581
epoch 10000 loss : 0.000237
epoch 15000 loss : 0.000146
epoch 20000 loss : 0.000105
epoch 25000 loss : 0.000082
epoch 30000 loss : 0.000067
epoch 35000 loss : 0.000056
epoch 40000 loss : 0.000049
epoch 45000 loss : 0.000043
epoch 50000 loss : 0.000038
epoch 55000 loss : 0.000034
epoch 60000 loss : 0.000031
epoch 65000 loss : 0.000029
epoch 70000 loss : 0.000027
epoch 75000 loss : 0.000025
epoch 80000 loss : 0.000023
epoch 85000 loss : 0.000022
epoch 90000 loss : 0.000020
epoch 95000 loss : 0.000019
epoch 100000 loss : 0.000018
```

Accuracy

accuracy 100.0%

Linear DATA:

Train loss:

```
epoch 5000 loss: 0.005087
epoch 10000 loss : 0.002745
epoch 15000 loss : 0.001745
epoch 20000 loss : 0.001190
epoch 25000 loss : 0.000850
epoch 30000 loss : 0.000630
epoch 35000 loss : 0.000482
epoch 40000 loss : 0.000378
epoch 45000 loss : 0.000303
epoch 50000 loss : 0.000248
epoch 55000 loss : 0.000205
epoch 60000 loss : 0.000173
epoch 65000 loss : 0.000147
epoch 70000 loss : 0.000126
epoch 75000 loss : 0.000110
epoch 80000 loss : 0.000096
epoch 85000 loss : 0.000085
epoch 90000 loss: 0.000076
epoch 95000 loss : 0.000068
epoch 100000 loss: 0.000062
```

Accuracy

accuracy 100.0%

C. Learning curve (loss, epoch curve)

XOR DATA (learning rate = 1, optimizer = GD, activate function = sigmoid)

Linear DATA (learning rate = 1, optimizer = GD, activate function = sigmoid)

D. Anything you want to present

可以發現在 XOR data 和 Linear data 上,accuracy rate 都達到了 100% ,也就說

明,我們使用了 sigmoid 等 non-linear transform 方式,能夠成功的將 input data map 到正確的預測值之上。

4. Discussion

A. Try different learning rates

(metric: accuracy, epochs:100000)

	Linear	XOR
0.1	100%	100%
1	100%	100%
10	100%	100%
100	59.0%	52.3%

可以發現當 learning rate 過大時,model 可能無法收斂,進而預測全部紅色或全部藍色。

B. Try different numbers of hidden units

(metric: accuracy, epochs:100000)

(hidden layer1, hidden layer2)

	Linear	XOR
1,1	55.0%	52.3%
3,3	100%	100%
1,9	100%	66.7%
9,1	56%	52.3%
9,9	100%	100%

可以發現如果 hidden units 數量太少, model 無法收斂, 此外我也嘗試使用了 (1,9) 和(9,9)兩種配置, 結果效果皆比(3,3)差, 可見較為對稱的 hidden units 有助於模型收斂。

C. Try without activation functions

(metric: accuracy, epochs:100000)

	Linear	XOR
With activation function	100%	100%
Without activation	100%	52.3%
function		

在沒有 activation function 的狀況下,可以發現 XOR 完全沒有預測能力,這是因為沒有 activation function 這種非線性轉換,也無法找到一條線能夠將 XOR 這種分布的 data 良好的分類。

D. Anything you want to share

在嘗試不同的 activation function 時,發現在 linear 的 case 中,只使用 Relu 作為 activation function 時,有時候並不會收斂,而一開始以為是隨機性的問題,但 透過打印出 predict 的結果時,發現其值並不介於 0-1 之間,這也因此,沒有一個良好的 threshold 將結果切成 0 或 1,因此,在最後一層中,我使用了 sigmoid

function 作為 final activate function。

5. Extra

A. Implement different optimizers.

在這次的作業中,我除了實作 Gradient Descent 外,也實作了 Momentum,其 公式如下, $V_t \leftarrow \beta V_{t-1} - \eta \frac{\partial L}{\partial W}$, $W \leftarrow W + V_t$

,而這種特性,往往有比 Gradient Descent 更容易收斂,而實作上也相對簡單, 只需要記住前一次的梯度值就好,以下為 code 的實作細節。

```
#update
if self.op == 'momentum':
    self.velocity_1 = self.velocity_1 * self.beta - self.lr*self.dc_dw1
    self.weight_1 = self.weight_1 + self.velocity_1
    self.velocity_2 = self.velocity_2 * self.beta - self.lr*self.dc_dw2
    self.weight_2 = self.weight_2 + self.velocity_2
    self.velocity_3 = self.velocity_3 * self.beta - self.lr*self.dc_dw3
    self.weight_3 = self.weight_3 + self.velocity_3
```

下圖為 Gradient Descent 和 momentum 的 learning curve 圖,可以發現 momentum 的收斂速度較快,這也符合原本 momentum 的設計意義。

GD

Momentum:

B. Implement different activation functions.

除了 sigmoid function 我也實作了 Relu activate function,Relu function 只會有正數,因此,只要使用 np.maximum(0,x)就能簡單的表達出來,而其一階導數,在 X>0 的地方為 X 的微分,也就是等於 1,而小於等於 0 的地方則為 0。

```
def relu(x):
    return np.maximum(0,x)

def derivate_relu(x):
    return np.where(x > 0, 1 , 0)
```