Automate

- Recapitulare
- Exemple
- Aplicatii
- Translatoare, masini Turing

Automat finit: model fizic

Limbaje regulare. Echivalente

• putere de exprimare

AF: AFN ⇔AFD

AF ⇔ (m.regulare ⇔ expr.reg.)

AF ⇔ gr.regulare

Proprietati de inchidere

Teorema:

Daca

 L_1 , L_2 sunt limbaje regulare peste alfabetul Σ *atunci*:

 $L_1 \cup L_2, L_1 \cap L_2, L_1 L_2, L_1^*$, complement(L_1) sunt limbaje regulare peste alfabetul Σ

Proprietăti de închidere ale limbajelor independente de context

Teoremã.

Dacă L₁si L₂ sunt limbaje independente de context atunci:

$$L_1UL_2, L_1L_2, L_1^*$$

sunt limbaje independente de context.

Observatie:

 $L1\cap L2$, compl(L1):

nu sunt neaparat limbaje independente de context

constructie

Automat push-down (APD)

https://en.wikipedia.org/wiki/File:Pushdown-overview.svg

Automat push-down (APD)

$$M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- $q_0 \in Q$ stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\})x\Gamma \rightarrow \mathcal{P}(Qx\Gamma^*)$ funcția de tranziție
 - are ca valori submulţimi finite din $Qx\Gamma^*$ (posibil multimea vida)

Determinism

$$\mathbf{M} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\delta}, \mathbf{q}_{o}, \mathbf{Z}_{o}, \mathbf{F})$$

este *determinist* dacă:

$$\forall \mathbf{Z} \in \Gamma, \forall \mathbf{q} \in \mathbf{Q}, \forall \mathbf{a} \in \Sigma$$

- 1) $|\delta(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{Z})| = 0$ si $|\delta(\mathbf{q}, \mathbf{a}, \mathbf{Z})| <=1$
- 2) $|\delta(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{Z})| = 1$ si $|\delta(\mathbf{q}, \mathbf{a}, \mathbf{Z})| = 0$

In caz contrar, automatul nu este determinist

Multimea limbajelor acceptate de APD nedeterministe este strict mai larga decat multimea limbajelor acceptate de APD deterministe

Limbaje independente de context. Teoreme de echivalenta

Teoremă.

Fie automatul push-down M. Există întotdeauna un automat push-down M' astfel încât $L_{\epsilon}(M') = L_{f}(M)$; si reciproc.

Teoremă.

Oricare ar fi G – o gramatica independenta de context, există un automat push-down M astfel încât $L_{\mathfrak{g}}(M) = L(G);$

10

si reciproc.

Transformarea acceptarii dupa criteriul stivei vide in acceptare dupa criteriul starii finale

Fie: M – APD care accepta L dupa criteriul stivei vide Dorim sa construim M' care accepta L dupa criteriul starii finale

M' – contine tot ce contine M, dar mai adaugam:

- q_{nou} o noua stare initiala
- q_f starea finala
- Z_{nou} noul simbol initial al stivei

Adaugam si tranzitiile corespunzatoare noilor stari, asa cum este schitat mai jos:

In mod analog se poate face transformarea acceptarii dupa criteriul starii finale in acceptare dupa criteriul stivei vide.

Translator finit

$$M = (Q, \Sigma, D, \delta, q_o, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- D alfabetul de iesire;
- $q_0 \in Q$ stare iniţială;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}_0(Q \times D^*)$ multimea partilor finite

Translator finit

Exemplu:

$$\begin{split} M &= (\ Q, \qquad \Sigma, \quad D, \quad \delta, \quad \ q_o, \quad F \) \\ M &= (\{q_0, q_1\}, \quad \{a\}, \{b\} \ , \quad \delta \ , \quad \ q_0 \ , \quad \{q_1\} \) \\ \delta(q_0, a) &= \{q_1, \{b\}\} \\ d(q_1, \epsilon) &= \{q_1, \{b\}\} \end{split}$$

Translatarea definita de M:

$$T(M) = \{(x,y) | x \in \Sigma^*, y \in D^*, (q_0,x,\varepsilon) | -* (q,\varepsilon,y), q \in F \}$$

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_0, Z_0, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- D alfabetul de iesire;
- $q_0 \in Q$ stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_0(Q \times \Gamma^* \times D^*)$

multimea partilor finite

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_o, Z_o, F)$$

$$Q = \{q\} \qquad \qquad \delta \ (q, a, E) = \{(q, \epsilon, a)\} \\ \Sigma = \{a, +, *\} \qquad \qquad \delta \ (q, +, E) = \{(q, EE +, \epsilon)\} \\ \Gamma = \{E, +, *\} \qquad \qquad \delta \ (q, *, E) = \{(q, EE +, \epsilon)\} \\ D = \{a, +, *\} \qquad \qquad \delta \ (q, \epsilon, +) = \{(q, EE +, \epsilon)\} \\ Q_0 = Q \qquad \qquad \delta \ (q, \epsilon, *) = \{(q, \epsilon, *)\} \\ Z_0 = E \qquad \qquad \delta \ (q, \epsilon, *) = \{(q, \epsilon, *)\}$$

Considerand criteriul stivei vide, descrieti translatarea pe care acesta o defineste.

... am lucrat si cu alte translatoare

Vezi:

LL(1)

LR(*)

Ne reamintim: Analizorul LL(1)

- Automat: (α, β, Π)
 - banda de intrare: α
 - stiva β (stiva de lucru)
 - banda de iesire $\Pi =>$ sirul regulilor de productie
- config. initiala: $(w\$, S\$, \epsilon)$
- config. finala: $(\$, \$, \Pi)$
- tranzitii
 - push $(\mathbf{a}\mathbf{x}\$, \mathbf{A}\boldsymbol{\beta}, \boldsymbol{\Pi})$ $(\mathbf{a}\mathbf{x}\$, \alpha\boldsymbol{\beta}, \boldsymbol{\Pi}\mathbf{i})$ dc.: $\mathbf{M}(\mathbf{A}, \mathbf{a}) = (\alpha, \mathbf{i})$
 - pop $(\mathbf{a}\mathbf{x}\$, \mathbf{a}\beta, \Pi) \vdash (\mathbf{x}\$, \beta, \Pi)$
 - acc $(\$,\$,\Pi)$ \longrightarrow acc
 - err in celelalte cazuri

Automatul LL(1) ca translator push-down (modificat)

Translatorul push-down modificat este:

[Moldovan]

```
M = (\{q\}, \Sigma, \Gamma, D, \delta, q, S, \emptyset)
```

 Σ - alfabet de intrare și este același cu alfabetul Σ din G;

$$D$$
 – alfabet de ieşire, $D = \{1, 2, ..., m\}$

 $i \in D$ reprezintă nr. de ordine al producțiilor din P, $i: A \rightarrow \alpha$, i=1,m

$$\Gamma$$
 - alfabetul memoriei push-down $\Gamma = N \cup \Sigma$

S – simbolul de start în memoria push-down, $S \in \Gamma$

 δ – funcția de tranziție modificată

$$\delta: \Sigma \times \Gamma \to P(\Gamma^* \times (D \cup \{\varepsilon\}) \times \{0,1\})$$

$$\delta(a,a) = \{(\varepsilon,\varepsilon,1)\} \quad \forall a \in \Sigma$$

$$\delta(a,A) = \{(x,i,0)\}, \ a \in \Sigma, \ A \in N$$

$$dac\check{a} \ (\exists)i: A \to x \ \S i \ dac\check{a} \ a \in \varphi(x), \ sau$$

$$dac\check{a} \ \varepsilon \in \varphi(x) => a \in \varphi(A)$$

Limbajul acceptat se defineste dupa criteriul stivei vide.

1 : semnifică înaintarea benzii cu o poziție;

În celelalte cazuri $\delta(.,.) = \emptyset$

0 : semnifică staționarea benzii.

Masini Turing

- infinita
- finita la stanga

•

Masini Turing

O miscare a masinii Turing consta din:

- se schimba starea
- se inlocuieste simbolul curent de pe banda de intrare
- capul citire/scriere se muta cu o pozitie la stanga sau la dreapta

Masina Turing cu banda infinita

O masina Turing este: $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$

- Q multime finita de stari
- Γ multimea simbolurilor benzii
- # un simbol din Γ , numit simbolul blanc
- Σ o submultime a lui Γ -{#}
- δ este functia de tranzitie

δ:
$$Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$$

- q₀ starea initiala
- $F \subset Q$ multimea starilor finale

Masina Turing cu banda infinita

• configuratie $\alpha_1 \neq \alpha_2$

 $\alpha_1\alpha_2\in\Gamma^*$, separate de capul de citire pana la cel mai din stanga/dreapta simbol ne-blank

tranzitie

$$\begin{split} (p,Y,L) &\in \delta(q,X_i) \\ &\quad X_1 X_2 \dots X_{i-1} q X_i \, X_{i+1} \dots X_n \, \middle| - X_1 X_2 \, \dots \, X_{i-2} \, p \, X_{i-1} Y X_{i+1} \dots X_n \\ (p,Y,R) &\in \delta(q,X_i) \\ &\quad X_1 X_2 \dots X_{i-1} q X_i \, X_{i+1} \dots X_n \, \middle| - X_1 X_2 \, \dots \, X_{i-1} Y \, p \, X_{i+1} \dots X_n \end{split}$$

limbaj acceptat

$$\{\mathbf{w} \in \Sigma^* \mid \mathbf{q}_0 \mathbf{w} \mid -\alpha_1 \mathbf{q} \alpha_2, \mathbf{q} \in \mathbf{F}, \alpha_1 \alpha_2 \in \Gamma^* \}$$

Exemplu: masina Turing

Functia de tranzitie

0011?

	Σ		$\Gamma - \Sigma$			
	0	1	X	Y	#	
$\mathbf{q_0}$	(q_1,X,R)			(q ₃ ,Y,R)		0
\mathbf{q}_1	$(q_1,0,R)$	(q ₂ ,Y,L)		(q_1,Y,R)		0
\mathbf{q}_2	(q ₂ ,0,L)		(q_0,X,R)	(q ₂ ,Y,L)		0
\mathbf{q}_3				(q ₃ ,Y,R)	(q ₄ ,# ,R)	0
$\mathbf{q_4}$						1

Masini Turing

• Masina Turing cu o singura banda

versus Masina Turing cu mai multe benzi
O mașină Turing cu k benzi
nu este mai puternică decât o mașină Turing standard

Maşină Turing deterministă (MTD)

versus maşină Turing nedeterministă (MTND)
Cele două sunt computațional echivalente,
adică orice MTND se poate transforma într-o MTD
(și invers).

Masini Turing

Teza lui Church

- Logicianul Alonzo Church a emis ipoteza că maşina Turing este modelul cel mai general de calcul care poate fi propus.
 - maşina Turing este la fel de puternică ca orice alt model de calcul
 - nu înseamnă că poate calcula la fel de repede ca orice alt model de calcul, ci că poate calcula aceleași lucruri
- Acest enunţ nu este demonstrabil în sens matematic.

Dacă avem un model de calcul, putem defini precis ce înțelegem prin complexitate:

- **Timpul** de calcul pentru un şir dat la intrare: este numărul de mutări făcut de maşina Turing înainte de a intra în starea ``terminat";
- **Spaţiul** consumat pentru un şir de intrare: este numărul de căsuţe de pe bandă pe care algoritmul le foloseşte în timpul execuţiei sale.