Representando Relações e Fechamento de Propriedades

Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

26 de maio de 2014

Representando Relações

Matrizes Grafos Direcionados

Fechamento de Propriedades

Representando Relações

Matrizes Grafos Direcionados

Fechamento de Propriedades

Representando Relações

Há várias maneiras distintas de representar relações binárias finitas:

- · Listando seus pares ordenados;
- Dando uma definição do conjunto baseado em alguma condição que caracterize seus elementos;
- Uma tabela;
- Uma matriz;
- Um digrafo.

Representando Relações - Exemplo

Exemplo

Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{a, b\}$, e a relação binária de A para B, $R = \{(0, a), (0, b), (1, a), (2, b)\}$.

- 1. A primeira delas envolve listar seus pares, como já o fizemos.
- 2. Uma tabela

Representando Relações - Exemplo

Exemplo

Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{a, b\}$, e a relação binária de A para B, $R = \{(0, a), (0, b), (1, a), (2, b)\}$.

- 1. A primeira delas envolve listar seus pares, como já o fizemos.
- 2. Uma tabela
- 3. Uma matriz

$$M_R = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right]$$

Representando Relações - Exemplo

Exemplo

Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{a, b\}$, e a relação binária de A para B, $R = \{(0, a), (0, b), (1, a), (2, b)\}$.

- 1. A primeira delas envolve listar seus pares, como já o fizemos.
- 2. Uma tabela
- 3. Uma matriz
- 4. Um digrafo (quadro)

Representando Relações Matrizes

Grafos Direcionados

Fechamento de Propriedades

Representação em Matrizes

Definição

Se $R \subseteq A \times B$, onde $A = \{a_1, a_2, ..., a_n\}$ e $B = \{b_1, b_2, ..., b_n\}$, então a relação R pode ser representada pela matriz $M_R = [m_{ij}]$, onde

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

Representação em Matrizes - Exemplo

Exemplo

Se $A = \{a_1, a_2, a_3\}$ e $B = \{b_1, b_2, b_3, b_4, b_5\}$, que pares pertencem à relação R representada pela matriz

$$M_R = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array} \right]?$$

RELEMBRANDO: Propriedades das Relações Binárias

Utilizamos essas propriedades somente para relações binárias em um conjunto S. Seja S um conjunto qualquer e $R \subseteq S \times S$ uma relação binária, dizemos que R será

- REFLEXIVA se $(\forall x)[x \in S \rightarrow (x,x) \in R]$
- SIMÉTRICA se $(\forall x)(\forall y)[(x,y) \in R \rightarrow (y,x) \in R]$
- TRANSITIVA se $(\forall x)(\forall y)(\forall z)[[(x,y) \in R \ e\ (y,z) \in R] \to (x,z) \in R]$
- ANTI-SIMÉTRICA se $(\forall x)(\forall y)[[(x,y) \in R \ e \ (y,x) \in R] \rightarrow x = y]$

Representação em Matrizes - Exercício

- O que poderia caracterizar a matriz de uma relação reflexiva?
- 2. O que poderia caracterizar a matriz de uma relação simétrica?
- 3. O que poderia caracterizar a matriz de uma relação anti-simétrica?
- 4. O que poderia caracterizar a matriz de uma relação transitiva?

Representação em Matrizes - Exercício

Suponha uma relação R representada pela matriz

$$M_R = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

1. Quais as propriedades dessa relação?

Representando Relações

Matrizes

Grafos Direcionados

Fechamento de Propriedades

Representação em Grafos Direcionados

Definição

Um grafo direcionado ou digrafo consiste de um conjunto V de vértices e um conjunto E de pares ordenados de elementos de V chamados de arestas. Em outras palavras, E será uma relação binária em V. Em cada par (a, b), a é chamado de origem e b é chamado de destino da aresta.

Constatação:

Os grafos direcionados só podem ser utilizados para relações em um conjunto V, ou seja, é inadequada para relações sobre conjuntos diferentes.

Representação em Grafos Direcionados - Exemplo

Exemplo

Se $A = \{a, b, c, d\}$ e $R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$, pode-se representar R pelo digrafo

Figura: O grafo direcionado de R

Representação em Matrizes - Exercício

- 1. O que poderia caracterizar a digrafo de uma relação reflexiva?
- 2. O que poderia caracterizar a digrafo de uma relação simétrica?
- **3.** O que poderia caracterizar a digrafo de uma relação anti-simétrica?
- 4. O que poderia caracterizar a digrafo de uma relação transitiva?

Representando Relações

Matrizes Grafos Direcionados

Fechamento de Propriedades

Fechamento de Propriedades

- A relação $R = \{(1,1), (1,2), (2,1), (3,2)\}$ em $A = \{1,2,3\}$ não é reflexiva. Como poderíamos corrigir isso?
- Adicionaremos pares neceessários (apenas!!!) para satisfazer a condição de reflexividade.
- No exemplo, seriam os pares (2,2)e(3,3).
- A relação resultante será
 R* = {(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)} e sera reflexiva.
- R* sera o fechamento reflexivo de R.

Fechamento de Propriedades

Seja P uma propriedade desejada e R uma relação binária qualquer em algum conjunto S, o fecho de R na propriedade P será a relação R^* tal que:

- **1.** R^* tem a propriedade P,
- **2.** $R \subseteq R^*$,
- **3.** Não existe nenhuma outra relação R' tal que $R' \subset R^*$ que satisfaça simultaneamente 1 e 2.

Constatação:

Só podemos falar em fechos reflexivo, simétrico e transitivo, pois apenas podemos adicionar pares. Para corrigir a anti-simetria, seria necessário remover pares, o que não é permitido.

RELEMBRANDO: Propriedades das Relações Binárias

Utilizamos essas propriedades somente para relações binárias em um conjunto S. Seja S um conjunto qualquer e $R \subseteq S \times S$ uma relação binária, dizemos que R será

- REFLEXIVA se $(\forall x)[x \in S \rightarrow (x,x) \in R]$
- SIMÉTRICA se $(\forall x)(\forall y)[(x,y) \in R \rightarrow (y,x) \in R]$
- TRANSITIVA se $(\forall x)(\forall y)(\forall z)[[(x,y) \in R \ e\ (y,z) \in R] \to (x,z) \in R]$
- ANTI-SIMÉTRICA se $(\forall x)(\forall y)[[(x,y) \in R \ e \ (y,x) \in R] \rightarrow x = y]$

Fechamento de Propriedades - Exemplo

Exemplo

$$R = \{(1,1), (1,2), (2,1), (3,2)\}$$
 em $A = \{1,2,3\}$, calcule:

- O fecho simétrico de R:
- O fecho transitivo de R.

Fechamento de Propriedades - Exemplo

Exemplo

$$R = \{(1,1), (1,2), (2,1), (3,2)\}$$
 em $A = \{1,2,3\}$, calcule:

- O fecho simétrico de R:
- O fecho transitivo de R.

Exemplo

$$R = \{(1,1), (1,2), (2,2), (3,3)\}$$
 em $A = \{1,2,3\}$, calcule:

- O fecho reflexivo de R;
- O fecho simétrico de R;
- O fecho transitivo de R.
- O fecho simétrico e transitivo de R.

Representando Relações Matrizes Grafos Direcionados

Fechamento de Propriedades

Fechamento de Propriedades

- Consideramos anteriormente o que caracterizaria a matriz ou digrafo de uma relação binária com certeas propriedades.
- Os fechamentos adequados, portanto, seguem a intuição de complementar a matriz ou digrafo de forma a satisfazer as condições adequadas.