

Sign Language Recognition

Roqaya - Mennatullah - David - Youssef

01

Goal: Automate recognition of Arabic Sign Language (ArSL) using deep learning for accessibility.

Dataset

- ArSL Dataset (54K Images, 32 Classes)
- Grayscale Images, size standardized to 64×64 pixels.
- Labels: Arabic letters (ain, ba, jeem, etc.)
- Training/Testing split: 80% training, 20% testing.

02

- Methodology
- Pre-processing
 - Grayscale conversion
 - Resizing to (64×64)
 - Normalization (1./255)
- Encoding labels with LabelEncoder
- Data pipeline using tf.keras.utils.image_dataset_from_directory.

Models Used

- Model 1: Fully Connected Neural Network (Baseline)
 - Flatten \rightarrow Dense(128) \rightarrow Dense(64) \rightarrow Dense(32, softmax)
- Model 2: Convolutional Neural Network (CNN)
 - Conv2D (32, 64, 128 filters) + MaxPooling2D
 - Flatten \rightarrow Dense(128, relu) \rightarrow Dropout(0.5) \rightarrow Dense(32, softmax)

Training & Results

- Epochs: 20/20
- CNN Model Performance:
- Accuracy: 97.15%
- Loss decreased steadily (from 1.7711 \rightarrow 0.0847).
- Baseline Model: Lower performance compared to CNN.

Prediction Example

- Input: Sample ArSL Image (64×64 grayscale).
- Model Output: Softmax → Highest probability = predicted class.
- Example: Predicted class → "jeem".
- Visualization with Matplotlib.

Challenges

Data Issues: Class imbalance, noisy images.

Limited time

Technical Errors: Encountered dtype mismatch ("string to float cast error").

Future Work

- Expand dataset: more samples, real-time video signs.
- Use Transfer Learning (e.g., VGG16, ResNet, MobileNet).
- Apply Data Augmentation (rotation, flipping, zoom).
- Develop Real-time Detection System (webcam integration).
- Build a Mobile App for accessibility.
- Explore Transformer-based Vision Models (ViT).

Conclusion

- Achieved 97.15% accuracy on Arabic Sign Language recognition.
- CNN significantly outperformed simpler models.
- Project demonstrates real-world ML application for accessibility.

Let's move to the model