齿轮精度公差计算及使用说明

名称及代号	5 级精度的齿轮公差计算式	使用说明
单个齿距偏差f _{pt}	$f_{\rm pt} = 0.3 (m+0.4\sqrt{d}) + 4$	
齿距累积偏差 F _{pk}	$F_{\rm pk} = f_{\rm pt} + 1.6 \sqrt{(k-1)m}$	
齿距累积总偏差 F _p	$F_{\rm p} = 0.3m + 1.25\sqrt{d} + 7$	
齿廓总偏差 F _a	$F_{\alpha} = 3.2\sqrt{m} + 0.22\sqrt{d} + 0.7$	
齿廓形状偏差 $f_{ m fa}$	$f_{\text{f}\alpha} = 2.5\sqrt{m} + 0.17\sqrt{d} + 0.5$	①5 级精度的未圆整的计算值乘以 2 ^{0.5(Q-5)} .即
齿廓倾斜偏差f _{Hα}	$f_{\text{H}\alpha} = 2\sqrt{m} + 0.14\sqrt{d} + 0.5$	可得到任意精度等级的待求值, Q 为待求值的精
螺旋线总偏差 F_{β}	$F_{\beta} = 0.1\sqrt{d} + 0.63\sqrt{b} + 4.2$	度等级数
螺旋线形状偏差 f_{fB}	$f_{\rm fB} = 0.07\sqrt{d} + 0.45\sqrt{b} + 3$	②应用公式时,参数 $m \times d$ 和 b 应取该分段界限 值的几何平均值代人。例如: 如果实际模数是
螺旋线倾斜偏差 $f_{H\beta}$	$f_{\rm H\beta} = 0.07\sqrt{d} + 0.45\sqrt{b} + 3$	7mm,分段界限值为 $m=6$ mm 和 $m=10$ mm,允许偏
切向综合总偏差 F'i	$F_i' = F_P + f_i'$	差用 $m = \sqrt{6 \times 10} = 7.746$ mm 代入计算。如果计算
一齿切向综合偏差 ƒ;	$f_i^* = K(4.3 + f_{\rm pt} + F_{\alpha})$ $= K(9 + 0.3 m + 3.2 \sqrt{m} + 0.34 \sqrt{d})$ 式中,当 $\varepsilon_{\gamma} < 4$ 时, $K = 0.2 \left(\frac{\varepsilon_{\gamma} + 4}{\varepsilon_{\gamma}}\right)$;当 $\varepsilon_{\gamma} \ge 4$ 时, $K = 0.4$ 如果产品齿轮与测量齿轮的齿宽不同,则按较小的齿宽进行 ε_{γ} 计算 如果对轮齿的齿廓或螺旋线进行了较大的修形,检验时 ε_{γ} 和 K 会受到较大的影响,因而在评定测量结果时,这些因素必须考虑在内,在这种情况下,对检验条件和记录曲线的评定另订专门的协议	值大于 10μm, 圆整到最接近的整数; 如果计算值 小于 10μm, 圆整到最接近的相差小于 0.5μm 的 小数或整数; 如果计算值小于 5μm, 圆整到最接近 的相差小于 0.1μm 的一位小数或整数 ③将实测的齿轮偏差值与表 15-1-53~表 15-1- 62 中的值比较, 以评定齿轮的精度等级 ④当齿轮参数不在给定的范围内或供需双方同 意时, 可以在公式中代入实际的齿轮参数
径向综合偏差 F'' _i	$F_{i}'' = 3.2m_{n} + 1.01\sqrt{d} + 6.4$	①5 级精度的未圆整的计算值乘以 $2^{0.5(Q-5)}$,即可得到任意精度等级的待求值, Q 为待求值的精度等级数②应用公式时,参数 m_n , d 和 b 应取该分段界限
一齿径向综合偏差 ƒ′′′	$f_{\rm i}'' = 2.96m_{\rm n} + 0.01\sqrt{d} + 0.8$	值的几何平均值代人。如果计算值大于 10μm, 圆整到最接近的整数; 如果计算值小于 10μm, 圆整到最接近的相差小于 0.5μm 的小数或整数 ③采用表 15-1-63~表 15-1-65 中的值评定齿轮精度, 仅用于供需双方有协议时。无协议时, 用模
径向跳动公差 F _r	$F_{\rm r} = 0.8F_{\rm p} = 0.24m_{\rm n} + 1.0\sqrt{d} + 5.6$	数 m _n 和直径 d 的实际值代人公式计算公差值,评 定齿轮的精度等级 ④当齿轮参数不在给定的范围内,使用公式时, 须供需双方协商—致

表 15-1-53

单个齿距偏差 $\pm f_{ m pt}$

八座回去公	+#; #I+						į,	精 度 等	级					
分度圆直径 d/mm	模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
<i>a</i> / IIIII	m/ IIIII							$\pm f_{ m pt}/\mu$	m					
5≤d≤20	$0.5 \le m \le 2$	0.8	1. 2	1.7	2. 3	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	26. 0	37. 0	53. 0
3 ≈ a ≈ 20	2< <i>m</i> ≤3.5	0. 9	1.3	1.8	2. 6	3. 7	5. 0	7. 5	10.0	15. 0	21.0	29. 0	41.0	59. 0
	$0.5 \le m \le 2$	0. 9	1.2	1.8	2. 5	3. 5	5. 0	7. 0	10.0	14. 0	20.0	28. 0	40. 0	56. 0
20 <d≤50< td=""><td>2<<i>m</i>≤3.5</td><td>1.0</td><td>1.4</td><td>1. 9</td><td>2. 7</td><td>3. 9</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15.0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td></d≤50<>	2< <i>m</i> ≤3.5	1.0	1.4	1. 9	2. 7	3. 9	5. 5	7. 5	11.0	15.0	22. 0	31.0	44. 0	62. 0
20< <i>a</i> ≤ 50	3. 5 <m≤6< td=""><td>1. 1</td><td>1.5</td><td>2. 1</td><td>3. 0</td><td>4. 3</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td></m≤6<>	1. 1	1.5	2. 1	3. 0	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0
	6< <i>m</i> ≤10	1. 2	1.7	2. 5	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	40. 0	56. 0	79. 0

续表

														~~~
八声回去初	F#: #/~						3	精 度 等	章 级					
分度圆直径	模数	0	1	2	3	4	5	6	7	8	9	10	11	12
d∕mm	m/mm							$\pm f_{\rm pt}/\mu$	m					
	0.5≤m≤2	0.9	1.3	1.9	2. 7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43.0	61. 0
	2< <i>m</i> ≤3.5	1.0	1.5	2. 1	2. 9	4. 1	6. 0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0
	3. 5 <m≤6< td=""><td>1.1</td><td>1.6</td><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>52. 0</td><td>73. 0</td></m≤6<>	1.1	1.6	2. 3	3. 2	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	36. 0	52. 0	73. 0
50 <d≤125< td=""><td>6<m≤10< td=""><td>1.3</td><td>1.8</td><td>2. 6</td><td>3.7</td><td>5. 0</td><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>30. 0</td><td>42. 0</td><td>59.0</td><td>84. 0</td></m≤10<></td></d≤125<>	6 <m≤10< td=""><td>1.3</td><td>1.8</td><td>2. 6</td><td>3.7</td><td>5. 0</td><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>30. 0</td><td>42. 0</td><td>59.0</td><td>84. 0</td></m≤10<>	1.3	1.8	2. 6	3.7	5. 0	7. 5	10.0	15. 0	21.0	30. 0	42. 0	59.0	84. 0
	10 <m≤16< td=""><td>1.6</td><td>2. 2</td><td>3. 1</td><td>4.4</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>71.0</td><td>100. 0</td></m≤16<>	1.6	2. 2	3. 1	4.4	6. 5	9.0	13. 0	18. 0	25. 0	35. 0	50.0	71.0	100. 0
	16 <m≤25< td=""><td>2. 0</td><td>2. 8</td><td>3.9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>63. 0</td><td>89. 0</td><td>125. 0</td></m≤25<>	2. 0	2. 8	3.9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	63. 0	89. 0	125. 0
	0.5≤m≤2	1. 1	1.5	2. 1	3. 0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0
	2< <i>m</i> ≤3.5	1.1	1.6	2. 3	3. 2	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	36. 0	51.0	73. 0
	3. 5< <i>m</i> ≤6	1. 2	1.8	2. 5	3.5	5.0	7. 0	10.0	14. 0	20.0	28. 0	40.0	56. 0	79. 0
125 <d≤280< td=""><td>6<m≤10< td=""><td>1.4</td><td>2. 0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90. 0</td></m≤10<></td></d≤280<>	6 <m≤10< td=""><td>1.4</td><td>2. 0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90. 0</td></m≤10<>	1.4	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90. 0
	10 <m≤16< td=""><td>1.7</td><td>2. 4</td><td>3.3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53.0</td><td>75. 0</td><td>107. 0</td></m≤16<>	1.7	2. 4	3.3	4. 7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	53.0	75. 0	107. 0
	16 <m≤25< td=""><td>2. 1</td><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>93.0</td><td>132. 0</td></m≤25<>	2. 1	2. 9	4. 1	6.0	8. 0	12. 0	16. 0	23. 0	33. 0	47. 0	66. 0	93.0	132. 0
	25 <m≤40< td=""><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30. 0</td><td>43. 0</td><td>61.0</td><td>86. 0</td><td>121.0</td><td>171.0</td></m≤40<>	2. 7	3.8	5. 5	7.5	11.0	15. 0	21.0	30. 0	43. 0	61.0	86. 0	121.0	171.0
	0. 5≤m≤2	1. 2	1.7	2. 4	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0
	2< <i>m</i> ≤3.5	1.3	1.8	2. 5	3.6	5.0	7. 0	10.0	14. 0	20.0	29. 0	41.0	57. 0	81.0
	3. 5 <m≤6< td=""><td>1.4</td><td>1.9</td><td>2. 7</td><td>3.9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td></m≤6<>	1.4	1.9	2. 7	3.9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0
200 - 1 - 500	6 <m≤10< td=""><td>1.5</td><td>2. 2</td><td>3. 1</td><td>4.4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>70.0</td><td>99. 0</td></m≤10<>	1.5	2. 2	3. 1	4.4	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	70.0	99. 0
$280 < d \le 560$	10 <m≤16< td=""><td>1.8</td><td>2. 5</td><td>3.6</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>81.0</td><td>115. 0</td></m≤16<>	1.8	2. 5	3.6	5.0	7. 0	10.0	14. 0	20. 0	29. 0	41.0	58. 0	81.0	115. 0
	16 <m≤25< td=""><td>2. 2</td><td>3. 1</td><td>4. 4</td><td>6.0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70. 0</td><td>99.0</td><td>140. 0</td></m≤25<>	2. 2	3. 1	4. 4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70. 0	99.0	140. 0
	25 <m≤40< td=""><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8.0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>63. 0</td><td>90.0</td><td>127. 0</td><td>180. 0</td></m≤40<>	2. 8	4. 0	5. 5	8.0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	180. 0
	40 <m≤70< td=""><td>3.9</td><td>5. 5</td><td>8.0</td><td>11.0</td><td>16.0</td><td>22. 0</td><td>31.0</td><td>45. 0</td><td>63.0</td><td>89. 0</td><td>126. 0</td><td>178. 0</td><td>252. 0</td></m≤70<>	3.9	5. 5	8.0	11.0	16.0	22. 0	31.0	45. 0	63.0	89. 0	126. 0	178. 0	252. 0
	0.5≤m≤2	1.3	1.9	2. 7	3.8	5. 5	7.5	11.0	15. 0	21.0	30.0	43.0	61.0	86. 0
	2< <i>m</i> ≤3.5	1.4	2.0	2. 9	4. 0	5. 5	8.0	11.0	16.0	23. 0	32. 0	46. 0	65.0	91.0
	3. 5< <i>m</i> ≤6	1.5	2. 2	3. 1	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	35. 0	49. 0	69.0	98. 0
560 <d< td=""><td>6&lt;<i>m</i>≤10</td><td>1.7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7.0</td><td>9.5</td><td>14. 0</td><td>19.0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td><td>109. 0</td></d<>	6< <i>m</i> ≤10	1.7	2. 4	3.4	4. 8	7.0	9.5	14. 0	19.0	27. 0	38. 0	54. 0	77. 0	109. 0
≤1000	10 <m≤16< td=""><td>2. 0</td><td>2. 8</td><td>3. 9</td><td>5.5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>63.0</td><td>89. 0</td><td>125. 0</td></m≤16<>	2. 0	2. 8	3. 9	5.5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	63.0	89. 0	125. 0
	16< <i>m</i> ≤25	2. 3	3.3	4. 7	6.5	9.5	13.0	19. 0	27. 0	38. 0	53.0	75.0	106.0	150.0
	25 <m≤40< td=""><td>3.0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12.0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>47. 0</td><td>67. 0</td><td>95.0</td><td>134. 0</td><td>190. 0</td></m≤40<>	3.0	4. 2	6.0	8. 5	12.0	17. 0	24. 0	34. 0	47. 0	67. 0	95.0	134. 0	190. 0
	40 <m≤70< td=""><td>4. 1</td><td>6.0</td><td>8.0</td><td>12.0</td><td>16.0</td><td>23. 0</td><td>33.0</td><td>46. 0</td><td>65. 0</td><td>93.0</td><td>131.0</td><td>185. 0</td><td>262. 0</td></m≤70<>	4. 1	6.0	8.0	12.0	16.0	23. 0	33.0	46. 0	65. 0	93.0	131.0	185. 0	262. 0
	2≤ <i>m</i> ≤3.5	1.6	2. 3	3. 2	4. 5	6. 5	9.0	13.0	18. 0	26. 0	36. 0	51.0	72. 0	103. 0
	3. 5< <i>m</i> ≤6	1.7	2. 4	3.4	4. 8	7.0	9.5	14. 0	19. 0	27. 0	39. 0	55.0	77. 0	109. 0
1000 <d< td=""><td>6&lt;<i>m</i>≤10</td><td>1.9</td><td>2. 6</td><td>3. 7</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>85. 0</td><td>120. 0</td></d<>	6< <i>m</i> ≤10	1.9	2. 6	3. 7	5.5	7.5	11.0	15. 0	21.0	30.0	42. 0	60.0	85. 0	120. 0
≤1600	10< <i>m</i> ≤16	2. 1	3.0	4. 3	6.0	8. 5	12.0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	136. 0
Z 1000	16< <i>m</i> ≤25	2. 5	3.6	5.0	7.0	10.0	14. 0	20.0	29. 0	40.0	57. 0	81.0	114. 0	161.0
	25 <m≤40< td=""><td>3. 1</td><td>4.4</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50.0</td><td>71. 0</td><td>100.0</td><td>142. 0</td><td>201. 0</td></m≤40<>	3. 1	4.4	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	50.0	71. 0	100.0	142. 0	201. 0
	40 <m≤70< td=""><td>4. 3</td><td>6.0</td><td>8.5</td><td>12.0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td><td>193. 0</td><td>273. 0</td></m≤70<>	4. 3	6.0	8.5	12.0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0	193. 0	273. 0
	3. 5≤ <i>m</i> ≤6	1.9	2. 7	3.8	5.5	7.5	11.0	15. 0	21.0	30.0	43. 0	61.0	86. 0	122. 0
	6< <i>m</i> ≤10	2. 1	2. 9	4. 1	6.0	8. 5	12.0	17. 0	23. 0	33. 0	47. 0	66.0	94. 0	132. 0
1600 <d< td=""><td>10<m≤16< td=""><td>2. 3</td><td>3.3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13.0</td><td>19.0</td><td>26. 0</td><td>37. 0</td><td>53.0</td><td>74. 0</td><td>105.0</td><td>149. 0</td></m≤16<></td></d<>	10 <m≤16< td=""><td>2. 3</td><td>3.3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13.0</td><td>19.0</td><td>26. 0</td><td>37. 0</td><td>53.0</td><td>74. 0</td><td>105.0</td><td>149. 0</td></m≤16<>	2. 3	3.3	4. 7	6. 5	9.5	13.0	19.0	26. 0	37. 0	53.0	74. 0	105.0	149. 0
≤2500	16 <m≤25< td=""><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61.0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td></m≤25<>	2. 7	3.8	5. 5	7. 5	11.0	15. 0	22. 0	31.0	43. 0	61.0	87. 0	123. 0	174. 0
	25 <m≤40< td=""><td>3. 3</td><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>107. 0</td><td>151.0</td><td>213. 0</td></m≤40<>	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	53. 0	75. 0	107. 0	151.0	213. 0
	40 <m≤70< td=""><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50. 0</td><td>71. 0</td><td>101. 0</td><td>143. 0</td><td>202. 0</td><td>286. 0</td></m≤70<>	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	50. 0	71. 0	101. 0	143. 0	202. 0	286. 0
	6≤ <i>m</i> ≤10	2. 3	3.3	4.6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	74. 0	105. 0	148. 0
	0 ≤ m ≤ 10 10 < m ≤ 16		3. 6							41. 0				
2500 <d< td=""><td></td><td>2.6</td><td></td><td>5.0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td></td><td>58. 0</td><td>82. 0</td><td>116. 0</td><td>165. 0</td></d<>		2.6		5.0	7.5	10.0	15. 0	21. 0	29. 0		58. 0	82. 0	116. 0	165. 0
≤4000	16 <m≤25< td=""><td>3.0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>95. 0</td><td>134. 0</td><td>189. 0</td></m≤25<>	3.0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	95. 0	134. 0	189. 0
	25 <m≤40< td=""><td>3.6</td><td>5.0</td><td>7.0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>29. 0</td><td>40. 0</td><td>57. 0</td><td>81. 0</td><td>114. 0</td><td>162. 0</td><td>229. 0</td></m≤40<>	3.6	5.0	7.0	10. 0	14. 0	20. 0	29. 0	40. 0	57. 0	81. 0	114. 0	162. 0	229. 0
	40 <m≤70< td=""><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>151.0</td><td>213. 0</td><td>301. 0</td></m≤70<>	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	53. 0	75. 0	106. 0	151.0	213. 0	301. 0

八座回去初	1212 W.L.						÷	精 度 等	级					
分度圆直径 d/mm	模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
a/ IIIII	<i>m</i> / IIIII							$\pm f_{\rm pt}/\mu$	m					
	6≤m≤10	2. 6	3.7	5.0	7.5	10.0	15. 0	21.0	29. 0	42. 0	59. 0	83. 0	118.0	167. 0
4000 <d< td=""><td>10<m≤16< td=""><td>2. 9</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>130. 0</td><td>183. 0</td></m≤16<></td></d<>	10 <m≤16< td=""><td>2. 9</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>130. 0</td><td>183. 0</td></m≤16<>	2. 9	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	65. 0	92. 0	130. 0	183. 0
4000< <i>a</i> ≤6000	16< <i>m</i> ≤25	3. 3	4. 6	6. 5	9.0	13.0	18. 0	26. 0	37. 0	52. 0	74. 0	104. 0	147. 0	208. 0
≥6000	25 <m≤40< td=""><td>3. 9</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>175. 0</td><td>248. 0</td></m≤40<>	3. 9	5. 5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0	248. 0
	40 <m≤70< td=""><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>57. 0</td><td>80.0</td><td>113.0</td><td>160. 0</td><td>226. 0</td><td>320. 0</td></m≤70<>	5. 0	7. 0	10.0	14. 0	20.0	28. 0	40.0	57. 0	80.0	113.0	160. 0	226. 0	320. 0
	10≤m≤16	3. 1	4.4	6. 5	9.0	13.0	18. 0	25.0	36.0	50.0	71.0	101.0	142. 0	201. 0
6000 < d	16 <m≤25< td=""><td>3. 5</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>57.0</td><td>80.0</td><td>113.0</td><td>160. 0</td><td>226. 0</td></m≤25<>	3. 5	5.0	7. 0	10.0	14. 0	20.0	28. 0	40.0	57.0	80.0	113.0	160. 0	226. 0
€8000	25 <m≤40< td=""><td>4. 1</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33.0</td><td>47. 0</td><td>66.0</td><td>94. 0</td><td>133. 0</td><td>188. 0</td><td>266. 0</td></m≤40<>	4. 1	6.0	8. 5	12. 0	17. 0	23. 0	33.0	47. 0	66.0	94. 0	133. 0	188. 0	266. 0
	40 <m≤70< td=""><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>84. 0</td><td>119.0</td><td>169. 0</td><td>239. 0</td><td>338. 0</td></m≤70<>	5. 5	7.5	11.0	15. 0	21.0	30.0	42. 0	60.0	84. 0	119.0	169. 0	239. 0	338. 0
	10≤m≤16	3. 4	4. 8	7. 0	9.5	14. 0	19.0	27. 0	38. 0	54. 0	77. 0	108. 0	153. 0	217. 0
8000 < d	16 <m≤25< td=""><td>3. 8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>43. 0</td><td>60.0</td><td>85. 0</td><td>121.0</td><td>171. 0</td><td>242. 0</td></m≤25<>	3. 8	5. 5	7.5	11.0	15. 0	21.0	30.0	43. 0	60.0	85. 0	121.0	171. 0	242. 0
≤10000	25 <m≤40< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70.0</td><td>99. 0</td><td>140. 0</td><td>199. 0</td><td>281. 0</td></m≤40<>	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70.0	99. 0	140. 0	199. 0	281. 0
	40 <m≤70< td=""><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>125. 0</td><td>177. 0</td><td>250. 0</td><td>353. 0</td></m≤70<>	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	125. 0	177. 0	250. 0	353. 0

# 齿距累积总偏差 F_p

							;	_ <del></del> 精 度 等	手 级					
分度圆直径	模数	0	1	2	3	4	5	6	7	8	9	10	11	12
d∕mm	m/mm			1	1	1		$F_{\rm p}/\mu$	m			1		
5 - 1 - 20	0.5≤m≤2	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90.0	127. 0
5≤ <i>d</i> ≤20	2< <i>m</i> ≤3.5	2. 1	2. 9	4. 2	6. 0	8. 5	12. 0	17. 0	23. 0	33.0	47. 0	66. 0	94. 0	133. 0
	0. 5 ≤ $m$ ≤ 2	2. 5	3.6	5. 0	7. 0	10.0	14. 0	20.0	29. 0	41.0	57. 0	81.0	115. 0	162. 0
20 <d≤50< td=""><td>2&lt;<i>m</i>≤3.5</td><td>2. 6</td><td>3.7</td><td>5. 0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>59. 0</td><td>84. 0</td><td>119.0</td><td>168. 0</td></d≤50<>	2< <i>m</i> ≤3.5	2. 6	3.7	5. 0	7.5	10.0	15. 0	21.0	30.0	42. 0	59. 0	84. 0	119.0	168. 0
20 <a 50<="" <="" td=""><td>3. 5&lt;<i>m</i>≤6</td><td>2. 7</td><td>3. 9</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td></a>	3. 5< <i>m</i> ≤6	2. 7	3. 9	5. 5	7. 5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	123. 0	174. 0
	6 <m≤10< td=""><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12.0</td><td>16. 0</td><td>23. 0</td><td>33.0</td><td>46.0</td><td>65.0</td><td>93.0</td><td>131.0</td><td>185. 0</td></m≤10<>	2. 9	4. 1	6. 0	8. 0	12.0	16. 0	23. 0	33.0	46.0	65.0	93.0	131.0	185. 0
	$0.5 \le m \le 2$	3. 3	4. 6	6. 5	9.0	13.0	18. 0	26. 0	37. 0	52.0	74. 0	104. 0	147. 0	208. 0
	2< <i>m</i> ≤3.5	3. 3	4. 7	6. 5	9.5	13. 0	19.0	27. 0	38. 0	53.0	76. 0	107. 0	151.0	214. 0
50 <d≤125< td=""><td>3. 5&lt;<i>m</i>≤6</td><td>3. 4</td><td>4. 9</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>28. 0</td><td>39. 0</td><td>55.0</td><td>78. 0</td><td>110.0</td><td>156. 0</td><td>220. 0</td></d≤125<>	3. 5< <i>m</i> ≤6	3. 4	4. 9	7. 0	9.5	14. 0	19. 0	28. 0	39. 0	55.0	78. 0	110.0	156. 0	220. 0
30 (4 < 123	6 <m≤10< td=""><td>3. 6</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116.0</td><td>164. 0</td><td>231.0</td></m≤10<>	3. 6	5.0	7. 0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	116.0	164. 0	231.0
	10 <m≤16< td=""><td>3. 9</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>175. 0</td><td>248. 0</td></m≤16<>	3. 9	5.5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0	248. 0
	16< <i>m</i> ≤25	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96.0	136. 0	193. 0	273. 0
	$0.5 \le m \le 2$	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	35. 0	49. 0	69. 0	98. 0	138. 0	195. 0	276. 0
	2< <i>m</i> ≤3.5	4. 4	6.0	9. 0	12. 0	18. 0	25. 0	35. 0	50.0	70.0	100. 0	141.0	199. 0	282. 0
	3. 5< <i>m</i> ≤6	4. 5	6. 5	9. 0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0	288. 0
$125 < d \le 280$	6 <m≤10< td=""><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13.0</td><td>19. 0</td><td>26. 0</td><td>37. 0</td><td>53.0</td><td>75.0</td><td>106. 0</td><td>149. 0</td><td>211.0</td><td>299. 0</td></m≤10<>	4. 7	6. 5	9. 5	13.0	19. 0	26. 0	37. 0	53.0	75.0	106. 0	149. 0	211.0	299. 0
	10 <m≤16< td=""><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79. 0</td><td>112. 0</td><td>158. 0</td><td>223. 0</td><td>316. 0</td></m≤16<>	4. 9	7. 0	10.0	14. 0	20. 0	28. 0	39. 0	56. 0	79. 0	112. 0	158. 0	223. 0	316. 0
	16< <i>m</i> ≤25	5. 5	7.5	11.0	15. 0	21.0	30. 0	43. 0	60. 0	85. 0	120. 0	170. 0	241. 0	341.0
	25 <m≤40< td=""><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>47. 0</td><td>67. 0</td><td>95.0</td><td>134. 0</td><td>190. 0</td><td>269. 0</td><td>380. 0</td></m≤40<>	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	47. 0	67. 0	95.0	134. 0	190. 0	269. 0	380. 0
	0. 5 ≤ $m$ ≤ 2	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	64. 0	91.0	129. 0	182. 0	257. 0	364. 0
	2< <i>m</i> ≤3.5	6. 0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65. 0	92. 0	131.0	185. 0	261. 0	370. 0
	3. 5< <i>m</i> ≤6	6. 0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	66. 0	94. 0	133. 0	188. 0	266. 0	376. 0
280 <d≤560< td=""><td>6<m≤10< td=""><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td><td>193. 0</td><td>274. 0</td><td>387. 0</td></m≤10<></td></d≤560<>	6 <m≤10< td=""><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td><td>193. 0</td><td>274. 0</td><td>387. 0</td></m≤10<>	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0	193. 0	274. 0	387. 0
280< <i>a</i> ≤ 300	10< <i>m</i> ≤16	6. 5	9.0	13.0	18. 0	25. 0	36. 0	50. 0	71.0	101.0	143. 0	202. 0	285. 0	404. 0
	16< <i>m</i> ≤25	6. 5	9.5	13.0	19. 0	27. 0	38. 0	54. 0	76. 0	107. 0	151.0	214. 0	303. 0	428. 0
	25 <m≤40< td=""><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>83. 0</td><td>117. 0</td><td>165. 0</td><td>234. 0</td><td>331. 0</td><td>468. 0</td></m≤40<>	7. 5	10.0	15. 0	21. 0	29. 0	41.0	58. 0	83. 0	117. 0	165. 0	234. 0	331. 0	468. 0
	40< <i>m</i> ≤70	8. 5	12.0	17. 0	24. 0	34. 0	48. 0	68. 0	95.0	135. 0	191.0	270. 0	382. 0	540. 0



								 精 度 等	· 级				:	<b> </b>
分度圆直径	模数	0	1	2	3	4	5	6	7	8	9	10	11	12
$d/\mathrm{mm}$	m/mm	_				· ·		$F_{\rm p}/\mu$						
	0.5≤m≤2	7. 5	10. 0	15. 0	21.0	29. 0	41.0	59. 0	83. 0	117. 0	166. 0	235. 0	332. 0	469. 0
	2< <i>m</i> ≤3.5	7. 5	10.0	15. 0	21.0	30.0	42. 0	59.0	84. 0	119.0	168. 0	238. 0	336. 0	475. 0
	3. 5< <i>m</i> ≤ 6	7. 5	11.0	15. 0	21.0	30.0	43. 0	60.0	85. 0	120.0	170.0	241.0	341.0	482. 0
560 <d< td=""><td>6<m≤10< td=""><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td><td>246. 0</td><td>348. 0</td><td>492. 0</td></m≤10<></td></d<>	6 <m≤10< td=""><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td><td>246. 0</td><td>348. 0</td><td>492. 0</td></m≤10<>	7. 5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	123. 0	174. 0	246. 0	348. 0	492. 0
≤1000	10 <m≤16< td=""><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>127. 0</td><td>180. 0</td><td>254. 0</td><td>360. 0</td><td>509. 0</td></m≤16<>	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	64. 0	90.0	127. 0	180. 0	254. 0	360. 0	509. 0
	16 <m≤25< td=""><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>94. 0</td><td>133. 0</td><td>189. 0</td><td>267. 0</td><td>378. 0</td><td>534. 0</td></m≤25<>	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	94. 0	133. 0	189. 0	267. 0	378. 0	534. 0
	25 <m≤40< td=""><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>101.0</td><td>143. 0</td><td>203. 0</td><td>287. 0</td><td>405.0</td><td>573. 0</td></m≤40<>	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101.0	143. 0	203. 0	287. 0	405.0	573. 0
	40 <m≤70< td=""><td>10.0</td><td>14. 0</td><td>20. 0</td><td>29. 0</td><td>40.0</td><td>57. 0</td><td>81.0</td><td>114. 0</td><td>161.0</td><td>228. 0</td><td>323. 0</td><td>457. 0</td><td>646. 0</td></m≤70<>	10.0	14. 0	20. 0	29. 0	40.0	57. 0	81.0	114. 0	161.0	228. 0	323. 0	457. 0	646. 0
	2≤ <i>m</i> ≤3.5	9.0	13.0	18. 0	26. 0	37. 0	52. 0	74. 0	105.0	148. 0	209. 0	296. 0	418. 0	591. 0
	3. 5 <m≤6< td=""><td>9. 5</td><td>13.0</td><td>19. 0</td><td>26. 0</td><td>37.0</td><td>53.0</td><td>75.0</td><td>106.0</td><td>149. 0</td><td>211.0</td><td>299. 0</td><td>423.0</td><td>598. 0</td></m≤6<>	9. 5	13.0	19. 0	26. 0	37.0	53.0	75.0	106.0	149. 0	211.0	299. 0	423.0	598. 0
1000 - 1	6 <m≤10< td=""><td>9. 5</td><td>13.0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td><td>152. 0</td><td>215. 0</td><td>304.0</td><td>430.0</td><td>608. 0</td></m≤10<>	9. 5	13.0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0	152. 0	215. 0	304.0	430.0	608. 0
1000< <i>d</i> ≤1600	10 <m≤16< td=""><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39.0</td><td>55.0</td><td>78. 0</td><td>111.0</td><td>156. 0</td><td>221. 0</td><td>313.0</td><td>442.0</td><td>625. 0</td></m≤16<>	10.0	14. 0	20. 0	28. 0	39.0	55.0	78. 0	111.0	156. 0	221. 0	313.0	442.0	625. 0
€1000	16 <m≤25< td=""><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>57. 0</td><td>81.0</td><td>115.0</td><td>163. 0</td><td>230. 0</td><td>325. 0</td><td>460. 0</td><td>650. 0</td></m≤25<>	10.0	14. 0	20.0	29. 0	41.0	57. 0	81.0	115.0	163. 0	230. 0	325. 0	460. 0	650. 0
	25 <m≤40< td=""><td>11.0</td><td>15.0</td><td>22. 0</td><td>30.0</td><td>43.0</td><td>61.0</td><td>86. 0</td><td>122. 0</td><td>172. 0</td><td>244. 0</td><td>345.0</td><td>488. 0</td><td>690. 0</td></m≤40<>	11.0	15.0	22. 0	30.0	43.0	61.0	86. 0	122. 0	172. 0	244. 0	345.0	488. 0	690. 0
	40 <m≤70< td=""><td>12.0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>67. 0</td><td>95.0</td><td>135. 0</td><td>190.0</td><td>269. 0</td><td>381.0</td><td>539. 0</td><td>762. 0</td></m≤70<>	12.0	17. 0	24. 0	34. 0	48. 0	67. 0	95.0	135. 0	190.0	269. 0	381.0	539. 0	762. 0
	3.5≤ <i>m</i> ≤6	11.0	16.0	23. 0	32. 0	45.0	64. 0	91.0	129.0	182. 0	257. 0	364. 0	514. 0	727. 0
	6< <i>m</i> ≤10	12.0	16.0	23. 0	33.0	46. 0	65. 0	92.0	130.0	184. 0	261.0	369.0	522. 0	738. 0
$1600 {<} d$	10 <m≤16< td=""><td>12.0</td><td>17. 0</td><td>24. 0</td><td>33.0</td><td>47. 0</td><td>67. 0</td><td>94. 0</td><td>133.0</td><td>189. 0</td><td>267. 0</td><td>377.0</td><td>534. 0</td><td>755. 0</td></m≤16<>	12.0	17. 0	24. 0	33.0	47. 0	67. 0	94. 0	133.0	189. 0	267. 0	377.0	534. 0	755. 0
≤2500	16< <i>m</i> ≤25	12.0	17. 0	24. 0	34. 0	49. 0	69. 0	97.0	138. 0	195. 0	276. 0	390.0	551.0	780. 0
	25 <m≤40< td=""><td>13.0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>145. 0</td><td>205. 0</td><td>290.0</td><td>409. 0</td><td>579. 0</td><td>819. 0</td></m≤40<>	13.0	18. 0	26. 0	36. 0	51.0	72. 0	102. 0	145. 0	205. 0	290.0	409. 0	579. 0	819. 0
	40 <m≤70< td=""><td>14. 0</td><td>20.0</td><td>28. 0</td><td>39. 0</td><td>56.0</td><td>79. 0</td><td>111.0</td><td>158. 0</td><td>223. 0</td><td>315.0</td><td>446. 0</td><td>603.0</td><td>891.0</td></m≤70<>	14. 0	20.0	28. 0	39. 0	56.0	79. 0	111.0	158. 0	223. 0	315.0	446. 0	603.0	891.0
	6≤m≤10	14. 0	20.0	28. 0	40.0	56.0	80.0	113.0	159. 0	225. 0	318.0	450. 0	637. 0	901.0
2500 <d< td=""><td>10&lt;<i>m</i>≤16</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>57. 0</td><td>81.0</td><td>115.0</td><td>162. 0</td><td>229. 0</td><td>324. 0</td><td>459. 0</td><td>649. 0</td><td>917. 0</td></d<>	10< <i>m</i> ≤16	14. 0	20.0	29. 0	41.0	57. 0	81.0	115.0	162. 0	229. 0	324. 0	459. 0	649. 0	917. 0
2300< <i>a</i> ≤4000	16< <i>m</i> ≤25	15.0	21.0	29. 0	42. 0	59. 0	83. 0	118.0	167. 0	236. 0	333.0	471.0	666. 0	942. 0
<b>~</b> 4000	25 <m≤40< td=""><td>15.0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61.0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td><td>245. 0</td><td>347. 0</td><td>491.0</td><td>694. 0</td><td>982. 0</td></m≤40<>	15.0	22. 0	31.0	43. 0	61.0	87. 0	123. 0	174. 0	245. 0	347. 0	491.0	694. 0	982. 0
	40 <m≤70< td=""><td>16.0</td><td>23.0</td><td>33. 0</td><td>47. 0</td><td>66.0</td><td>93.0</td><td>132. 0</td><td>186. 0</td><td>264. 0</td><td>373.0</td><td>525. 0</td><td>745. 0</td><td>1054. 0</td></m≤70<>	16.0	23.0	33. 0	47. 0	66.0	93.0	132. 0	186. 0	264. 0	373.0	525. 0	745. 0	1054. 0
	6≤m≤10	17.0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0	194. 0	274. 0	387. 0	548. 0	775. 0	1095. 0
4000 <d< td=""><td>10&lt;<i>m</i>≤16</td><td>17.0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>69. 0</td><td>98. 0</td><td>139. 0</td><td>197. 0</td><td>278. 0</td><td>393.0</td><td>556. 0</td><td>786. 0</td><td>1112. 0</td></d<>	10< <i>m</i> ≤16	17.0	25. 0	35. 0	49. 0	69. 0	98. 0	139. 0	197. 0	278. 0	393.0	556. 0	786. 0	1112. 0
≈6000 ≤6000	16< <i>m</i> ≤25	18.0	25. 0	36. 0	50.0	71.0	100.0	142. 0	201.0	284. 0	402. 0	568. 0	804. 0	1137. 0
< 00000	25 <m≤40< td=""><td>18.0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>74. 0</td><td>104. 0</td><td>147. 0</td><td>208. 0</td><td>294. 0</td><td>416.0</td><td>588. 0</td><td>832. 0</td><td>1176. 0</td></m≤40<>	18.0	26. 0	37. 0	52. 0	74. 0	104. 0	147. 0	208. 0	294. 0	416.0	588. 0	832. 0	1176. 0
	40 <m≤70< td=""><td>20.0</td><td>28. 0</td><td>39. 0</td><td>55.0</td><td>78. 0</td><td>110.0</td><td>156. 0</td><td>221.0</td><td>312.0</td><td>441.0</td><td>624. 0</td><td>883. 0</td><td>1249. 0</td></m≤70<>	20.0	28. 0	39. 0	55.0	78. 0	110.0	156. 0	221.0	312.0	441.0	624. 0	883. 0	1249. 0
	10≤m≤16	20.0	29. 0	41.0	57. 0	81.0	115. 0	162. 0	230. 0	325. 0	459. 0	650. 0	919. 0	1299. 0
6000 < d	16< <i>m</i> ≤25	21.0	29. 0	41.0	59. 0	83. 0	117. 0	166. 0	234. 0	331.0	468. 0	662. 0	936. 0	1324. 0
€8000	25 <m≤40< td=""><td>21.0</td><td>30.0</td><td>43. 0</td><td>60.0</td><td>85. 0</td><td>121.0</td><td>170. 0</td><td>241.0</td><td>341.0</td><td>482. 0</td><td>682. 0</td><td>964. 0</td><td>1364. 0</td></m≤40<>	21.0	30.0	43. 0	60.0	85. 0	121.0	170. 0	241.0	341.0	482. 0	682. 0	964. 0	1364. 0
	40 <m≤70< td=""><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>63.0</td><td>90.0</td><td>127. 0</td><td>179. 0</td><td>254. 0</td><td>359. 0</td><td>508.0</td><td>718.0</td><td>1015.0</td><td>1436. 0</td></m≤70<>	22. 0	32. 0	45. 0	63.0	90.0	127. 0	179. 0	254. 0	359. 0	508.0	718.0	1015.0	1436. 0
	10≤m≤16	23.0	32. 0	46. 0	65.0	91.0	129. 0	182. 0	258. 0	365. 0	516.0	730. 0	1032. 0	1460. 0
$8000 {<} d$	16< <i>m</i> ≤25	23.0	33.0	46. 0	66. 0	93.0	131.0	186. 0	262. 0	371.0	525.0	742. 0	1050.0	1485. 0
≤10000	25 <m≤40< td=""><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>67. 0</td><td>95.0</td><td>135. 0</td><td>191.0</td><td>269. 0</td><td>381.0</td><td>539. 0</td><td>762. 0</td><td>1078.0</td><td>1524. 0</td></m≤40<>	24. 0	34. 0	48. 0	67. 0	95.0	135. 0	191.0	269. 0	381.0	539. 0	762. 0	1078.0	1524. 0
	40 <m≤70< td=""><td>25.0</td><td>35.0</td><td>50.0</td><td>71.0</td><td>100.0</td><td>141.0</td><td>200. 0</td><td>282. 0</td><td>399. 0</td><td>564. 0</td><td>798. 0</td><td>1129.0</td><td>1596. 0</td></m≤70<>	25.0	35.0	50.0	71.0	100.0	141.0	200. 0	282. 0	399. 0	564. 0	798. 0	1129.0	1596. 0

## 齿廓总偏差 $F_{lpha}$

**************************************	I++- \V.						;	精 度 等	章 级					
分度圆直径 d/mm	模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
W/ IIIII	777 11111							$F_{\alpha}/\mu$	m					
5≤d≤20	0.5≤m≤2	0.8	1. 1	1.6	2. 3	3. 2	4. 6	6. 5	9.0	13.0	18. 0	26. 0	37. 0	52. 0
3 ≈ a ≈ 20	2< <i>m</i> ≤3.5	1. 2	1.7	2. 3	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	26. 0	37. 0	53.0	75. 0

														续表
							;	精 度 等	- 级					
分度圆直径	模数	0	1	2	3	4	5	6	7	8	9	10	11	12
$d/\mathrm{mm}$	m/mm			_				$F_{\alpha}/\mu$						
	0.5≤m≤2	0. 9	1. 3	1.8	2. 6	3.6	5. 0	7.5	10. 0	15. 0	21. 0	29. 0	41. 0	58. 0
	2< <i>m</i> ≤3.5	1. 3	1.8	2. 5	3.6	5. 0	7. 0	10.0	14. 0	20. 0	29. 0	40. 0	57. 0	81. 0
20 <d≤50< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d≤50<>														
	3. 5< <i>m</i> ≤6	1.6	2. 2	3. 1	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0	70. 0	99. 0
	6 <m≤10< td=""><td>1. 9</td><td>2. 7</td><td>3.8</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61.0</td><td>87. 0</td><td>123. 0</td></m≤10<>	1. 9	2. 7	3.8	5.5	7.5	11.0	15. 0	22. 0	31.0	43. 0	61.0	87. 0	123. 0
	0.5≤m≤2	1.0	1.5	2. 1	2. 9	4. 1	6.0	8. 5	12. 0	17. 0	23. 0	33.0	47. 0	66. 0
	2< <i>m</i> ≤3.5	1.4	2.0	2. 8	3.9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	63. 0	89. 0
50 <d≤125< td=""><td>3.5<m≤6< td=""><td>1. 7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td></m≤6<></td></d≤125<>	3.5 <m≤6< td=""><td>1. 7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td></m≤6<>	1. 7	2. 4	3.4	4. 8	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0
	6 <m≤10< td=""><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8.0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33.0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>131. 0</td></m≤10<>	2. 0	2. 9	4. 1	6.0	8.0	12. 0	16. 0	23. 0	33.0	46. 0	65. 0	92. 0	131. 0
	10 <m≤16< td=""><td>2. 5</td><td>3.5</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>56. 0</td><td>79.0</td><td>112.0</td><td>159. 0</td></m≤16<>	2. 5	3.5	5.0	7.0	10.0	14. 0	20.0	28. 0	40.0	56. 0	79.0	112.0	159. 0
	16 <m≤25< td=""><td>3. 0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>136. 0</td><td>192. 0</td></m≤25<>	3. 0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	192. 0
	0. 5≤m≤2	1. 2	1.7	2. 4	3.5	4. 9	7. 0	10.0	14. 0	20. 0	28. 0	39. 0	55. 0	78. 0
	2 <m≤3.5< td=""><td>1.6</td><td>2. 2</td><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50. 0</td><td>71.0</td><td>101.0</td></m≤3.5<>	1.6	2. 2	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	50. 0	71.0	101.0
125 - 1 - 200	3.5 <m≤6< td=""><td>1. 9</td><td>2. 6</td><td>3.7</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30.0</td><td>42. 0</td><td>60. 0</td><td>84. 0</td><td>119. 0</td></m≤6<>	1. 9	2. 6	3.7	5.5	7.5	11.0	15. 0	21. 0	30.0	42. 0	60. 0	84. 0	119. 0
125< <i>d</i> ≤280	6 <m≤10< td=""><td>2. 2</td><td>3. 2</td><td>4. 5</td><td>6.5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50.0</td><td>71.0</td><td>101. 0</td><td>143. 0</td></m≤10<>	2. 2	3. 2	4. 5	6.5	9.0	13. 0	18. 0	25. 0	36. 0	50.0	71.0	101. 0	143. 0
	$10 < m \le 16$ $16 < m \le 25$	2. 7	3. 8 4. 5	5. 5 6. 5	7. 5 9. 0	11. 0	15. 0 18. 0	21. 0	30. 0	43. 0	60. 0 72. 0	85. 0 102. 0	121. 0 144. 0	171. 0 204. 0
	$10 < m \le 23$ $25 < m \le 40$	3. 8	5.5	7.5	11.0	15. 0	22. 0	31. 0	43. 0	61.0	87. 0	123. 0	174. 0	246. 0
	$0.5 \leq m \leq 2$	1. 5	2. 1	2.9	4. 1	6. 0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	94. 0
	0.5 ≤ m ≤ 2 2 < m ≤ 3.5	1. 8	2. 6	3.6	5. 0	7.5	10.0	15. 0	21. 0	29. 0	41. 0	58. 0	82. 0	116. 0
	3.5< <i>m</i> ≤6	2. 1	3. 0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95. 0	135. 0
	6< <i>m</i> ≤10	2. 5	3.5	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	40. 0	56. 0	79. 0	112. 0	158. 0
280 <d≤560< td=""><td>10&lt;<i>m</i>≤16</td><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>93. 0</td><td>132. 0</td><td>186. 0</td></d≤560<>	10< <i>m</i> ≤16	2. 9	4. 1	6. 0	8. 0	12. 0	16. 0	23. 0	33. 0	47. 0	66. 0	93. 0	132. 0	186. 0
	16< <i>m</i> ≤25	3. 4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	39. 0	55.0	78. 0	110. 0	155. 0	219. 0
	25 <m≤40< td=""><td>4. 1</td><td>6.0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>65.0</td><td>92. 0</td><td>131.0</td><td>185. 0</td><td>261. 0</td></m≤40<>	4. 1	6.0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65.0	92. 0	131.0	185. 0	261. 0
	40 <m≤70< td=""><td>5. 0</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>57. 0</td><td>80. 0</td><td>113. 0</td><td>160. 0</td><td>227. 0</td><td>321. 0</td></m≤70<>	5. 0	7. 0	10. 0	14. 0	20. 0	28. 0	40. 0	57. 0	80. 0	113. 0	160. 0	227. 0	321. 0
	0.5≤m≤2	1.8	2. 5	3.5	5.0	7. 0	10.0	14. 0	20.0	28. 0	40. 0	56. 0	79. 0	112. 0
	2< <i>m</i> ≤3.5	2. 1	3.0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95.0	135. 0
	3.5 <m≤6< td=""><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td><td>109. 0</td><td>154. 0</td></m≤6<>	2. 4	3.4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109. 0	154. 0
560< <i>d</i>	6 <m≤10< td=""><td>2. 8</td><td>3.9</td><td>5. 5</td><td>8.0</td><td>11.0</td><td>16.0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>125. 0</td><td>177. 0</td></m≤10<>	2. 8	3.9	5. 5	8.0	11.0	16.0	22. 0	31.0	44. 0	62. 0	88. 0	125. 0	177. 0
≤1000	10 <m≤16< td=""><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13.0</td><td>18. 0</td><td>26. 0</td><td>36.0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>145. 0</td><td>205. 0</td></m≤16<>	3. 2	4. 5	6. 5	9.0	13.0	18. 0	26. 0	36.0	51.0	72. 0	102. 0	145. 0	205. 0
	16 <m≤25< td=""><td>3. 7</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>59. 0</td><td>84. 0</td><td>119.0</td><td>168. 0</td><td>238. 0</td></m≤25<>	3. 7	5. 5	7.5	11.0	15. 0	21.0	30.0	42. 0	59. 0	84. 0	119.0	168. 0	238. 0
	25 <m≤40< td=""><td>4. 4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>70.0</td><td>99. 0</td><td>140. 0</td><td>198. 0</td><td>280. 0</td></m≤40<>	4. 4	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	70.0	99. 0	140. 0	198. 0	280. 0
	40 <m≤70< td=""><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>85.0</td><td>120.0</td><td>170. 0</td><td>240. 0</td><td>339. 0</td></m≤70<>	5. 5	7.5	11.0	15. 0	21.0	30.0	42. 0	60.0	85.0	120.0	170. 0	240. 0	339. 0
	2≤ <i>m</i> ≤3.5	2. 4	3.4	4. 9	7.0	9.5	14. 0	19. 0	27. 0	39. 0	55.0	78. 0	110.0	155. 0
	3.5 <m≤6< td=""><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43.0</td><td>61.0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td></m≤6<>	2. 7	3.8	5. 5	7.5	11.0	15. 0	22. 0	31.0	43.0	61.0	87. 0	123. 0	174. 0
1000 <d< td=""><td>6<m≤10< td=""><td>3. 1</td><td>4. 4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49.0</td><td>70.0</td><td>99.0</td><td>139. 0</td><td>197. 0</td></m≤10<></td></d<>	6 <m≤10< td=""><td>3. 1</td><td>4. 4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49.0</td><td>70.0</td><td>99.0</td><td>139. 0</td><td>197. 0</td></m≤10<>	3. 1	4. 4	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49.0	70.0	99.0	139. 0	197. 0
≤1600	10 <m≤16< td=""><td>3. 5</td><td>5.0</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40. 0</td><td>56.0</td><td>80. 0</td><td>113. 0</td><td>159. 0</td><td>225. 0</td></m≤16<>	3. 5	5.0	7. 0	10. 0	14. 0	20.0	28. 0	40. 0	56.0	80. 0	113. 0	159. 0	225. 0
12000	16< <i>m</i> ≤25	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	65.0	91.0	129. 0	183. 0	258. 0
	25 <m≤40< td=""><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75.0</td><td>106. 0</td><td>150. 0</td><td>212. 0</td><td>300. 0</td></m≤40<>	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	53. 0	75.0	106. 0	150. 0	212. 0	300. 0
	40 <m≤70< td=""><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>127. 0</td><td>180. 0</td><td>254. 0</td><td>360. 0</td></m≤70<>	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	64. 0	90.0	127. 0	180. 0	254. 0	360. 0
	3.5≤m≤6	3. 1	4. 3	6.0	8. 5	12. 0	17. 0	25. 0	35.0	49.0	70.0	98. 0	139. 0	197. 0
	6 <m≤10< td=""><td>3. 4</td><td>4. 9</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>39. 0</td><td>55.0</td><td>78. 0</td><td>110.0</td><td>156. 0</td><td>220. 0</td></m≤10<>	3. 4	4. 9	7. 0	9.5	14. 0	19. 0	27. 0	39. 0	55.0	78. 0	110.0	156. 0	220. 0
1600 < d	10 <m≤16< td=""><td>3. 9</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>175. 0</td><td>248. 0</td></m≤16<>	3. 9	5. 5	7. 5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0	248. 0
≤2500	16 <m≤25< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70. 0</td><td>99. 0</td><td>141.0</td><td>199. 0</td><td>281. 0</td></m≤25<>	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70. 0	99. 0	141.0	199. 0	281. 0
	25 <m≤40< td=""><td>5. 0</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>29. 0</td><td>40. 0</td><td>57. 0</td><td>81.0</td><td>114. 0</td><td>161.0</td><td>228. 0</td><td>323. 0</td></m≤40<>	5. 0	7. 0	10. 0	14. 0	20. 0	29. 0	40. 0	57. 0	81.0	114. 0	161.0	228. 0	323. 0
	40< <i>m</i> ≤70	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	135. 0	191. 0		383. 0
		J. 0. 0	0.5	12.0	1	0	J 0	1 .0.0	00.0	/ 0. 0	155.0	171.0	1. 0	202.0



							;	精 度 等	多级					
分度圆直径 d/mm	模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
								$F_{\alpha}/\mu$	m					
	6≤m≤10	3. 9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	176.0	249. 0
2500 <d< td=""><td>10&lt;<i>m</i>≤16</td><td>4. 3</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>35. 0</td><td>49. 0</td><td>69. 0</td><td>98. 0</td><td>138. 0</td><td>196. 0</td><td>277. 0</td></d<>	10< <i>m</i> ≤16	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	35. 0	49. 0	69. 0	98. 0	138. 0	196. 0	277. 0
≥300< <i>a</i> ≤4000	16< <i>m</i> ≤25	4. 8	7. 0	9. 5	14. 0	19.0	27. 0	39. 0	55.0	77.0	110.0	155. 0	219.0	310.0
<4000	25 <m≤40< td=""><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>176. 0</td><td>249. 0</td><td>351.0</td></m≤40<>	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	176. 0	249. 0	351.0
	40< <i>m</i> ≤70	6. 5	9.0	13.0	18. 0	26. 0	36. 0	51.0	73. 0	103.0	145. 0	206. 0	291.0	411.0
	6≤ <i>m</i> ≤10	4. 4	6. 5	9. 0	13.0	18. 0	25. 0	35. 0	50.0	71.0	100.0	141.0	200.0	283. 0
4000 <d< td=""><td>10&lt;<i>m</i>≤16</td><td>4. 9</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>39. 0</td><td>55.0</td><td>78. 0</td><td>110.0</td><td>155. 0</td><td>220.0</td><td>311.0</td></d<>	10< <i>m</i> ≤16	4. 9	7. 0	9. 5	14. 0	19. 0	27. 0	39. 0	55.0	78. 0	110.0	155. 0	220.0	311.0
4000< <i>a</i> ≤6000	16< <i>m</i> ≤25	5. 5	7.5	11.0	15. 0	22. 0	30.0	43.0	61.0	86. 0	122. 0	172.0	243.0	344. 0
≪0000	25< <i>m</i> ≤40	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96.0	136.0	193.0	273.0	386. 0
	40 <m≤70< td=""><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>39. 0</td><td>56.0</td><td>79. 0</td><td>111.0</td><td>158. 0</td><td>223.0</td><td>315.0</td><td>445. 0</td></m≤70<>	7. 0	10.0	14. 0	20.0	28. 0	39. 0	56.0	79. 0	111.0	158. 0	223.0	315.0	445. 0
	10≤m≤16	5. 5	7. 5	11.0	15. 0	21.0	30. 0	43. 0	61.0	86. 0	122. 0	172. 0	243. 0	344. 0
6000 < d	16< <i>m</i> ≤25	6. 0	8. 5	12. 0	17. 0	24. 0	33.0	47. 0	67. 0	94. 0	113.0	189. 0	267. 0	377. 0
€8000	25 <m≤40< td=""><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>74. 0</td><td>105.0</td><td>148. 0</td><td>209. 0</td><td>296. 0</td><td>419. 0</td></m≤40<>	6. 5	9. 5	13. 0	19. 0	26. 0	37. 0	52. 0	74. 0	105.0	148. 0	209. 0	296. 0	419. 0
	40< <i>m</i> ≤70	7. 5	11.0	15. 0	21.0	30. 0	42. 0	60.0	85. 0	120. 0	169. 0	239. 0	338. 0	478. 0
	10≤m≤16	6. 0	8. 0	12. 0	16. 0	23. 0	33.0	47. 0	66. 0	93.0	132. 0	186. 0	263. 0	372. 0
8000 <d< td=""><td>16&lt;<i>m</i>≤25</td><td>6. 5</td><td>9. 0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>101.0</td><td>143. 0</td><td>203. 0</td><td>287. 0</td><td>405. 0</td></d<>	16< <i>m</i> ≤25	6. 5	9. 0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101.0	143. 0	203. 0	287. 0	405. 0
≤10000	25 <m≤40< td=""><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td><td>112. 0</td><td>158. 0</td><td>223.0</td><td>316. 0</td><td>447. 0</td></m≤40<>	7. 0	10. 0	14. 0	20. 0	28. 0	40. 0	56. 0	79. 0	112. 0	158. 0	223.0	316. 0	447. 0
	40 <m≤70< td=""><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>63. 0</td><td>90.0</td><td>127. 0</td><td>179. 0</td><td>253.0</td><td>358. 0</td><td>507. 0</td></m≤70<>	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	179. 0	253.0	358. 0	507. 0

## 齿廓形状偏差 $f_{ m flpha}$

							J 1	u						
	St. 7 . 1444 NP						3	精 度 等	级					
分度圆直径 d/mm	法向模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
u/ mm	<i>m</i> / mm							$f_{ m flpha}/\mu$ ı	m					
5≤d≤20	0.5≤m≤2	0.6	0. 9	1. 3	1.8	2. 5	3. 5	5. 0	7. 0	10.0	14. 0	20.0	28. 0	40. 0
3 ≈ a ≈ 20	2< <i>m</i> ≤3.5	0. 9	1.3	1.8	2. 6	3.6	5. 0	7. 0	10.0	14. 0	20. 0	29. 0	41.0	58. 0
	0. 5 ≤ $m$ ≤ 2	0.7	1.0	1.4	2.0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0
20 <d≤50< td=""><td>2&lt;<i>m</i>≤3.5</td><td>1.0</td><td>1.4</td><td>2. 0</td><td>2.8</td><td>3. 9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td></d≤50<>	2< <i>m</i> ≤3.5	1.0	1.4	2. 0	2.8	3. 9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0
20 <a 50<="" td="" ≤=""><td>3. 5&lt;<i>m</i>≤6</td><td>1. 2</td><td>1.7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>39. 0</td><td>54. 0</td><td>77. 0</td></a>	3. 5< <i>m</i> ≤6	1. 2	1.7	2. 4	3.4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	39. 0	54. 0	77. 0
	6< <i>m</i> ≤10	1.5	2. 1	3. 0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95. 0
	0. 5 ≤ $m$ ≤ 2	0.8	1. 1	1.6	2. 3	3. 2	4. 5	6. 5	9.0	13.0	18. 0	26. 0	36. 0	51.0
	2< <i>m</i> ≤3.5	1. 1	1.5	2. 1	3.0	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0
50 <d≤125< td=""><td>3. 5&lt;<i>m</i>≤6</td><td>1. 3</td><td>1.8</td><td>2. 6</td><td>3.7</td><td>5.0</td><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>29. 0</td><td>42. 0</td><td>59. 0</td><td>83. 0</td></d≤125<>	3. 5< <i>m</i> ≤6	1. 3	1.8	2. 6	3.7	5.0	7. 5	10.0	15. 0	21.0	29. 0	42. 0	59. 0	83. 0
50 < a < 125	6< <i>m</i> ≤10	1.6	2. 2	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101.0
	10< <i>m</i> ≤16	1. 9	2. 7	3. 9	5.5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	123. 0
	16< <i>m</i> ≤25	2. 3	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	26. 0	37. 0	53. 0	75. 0	106. 0	149. 0
	0. 5 ≤ $m$ ≤ 2	0. 9	1.3	1. 9	2. 7	3.8	5. 5	7.5	11.0	15. 0	21.0	30. 0	43.0	60.0
	2< <i>m</i> ≤3.5	1. 2	1.7	2. 4	3.4	4. 9	7. 0	9. 5	14. 0	19. 0	28. 0	39. 0	55.0	78. 0
	3. 5< <i>m</i> ≤6	1.4	2. 0	2. 9	4. 1	6.0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65.0	93. 0
$125 < d \le 280$	6< <i>m</i> ≤10	1.7	2. 4	3. 5	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	55. 0	78. 0	111.0
	10< <i>m</i> ≤16	2. 1	2. 9	4. 0	6.0	8. 5	12. 0	17. 0	23. 0	33.0	47. 0	66. 0	94. 0	133. 0
	16< <i>m</i> ≤25	2. 5	3. 5	5. 0	7. 0	10.0	14. 0	20. 0	28. 0	40. 0	56. 0	79. 0	112. 0	158. 0
	25< <i>m</i> ≤40	3. 0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	135. 0	191. 0

														续表
							;	精 度 等	<b>手级</b>					
分度圆直径	法向模数	0	1	2	3	4	5	6	7	8	9	10	11	12
$d/\mathrm{mm}$	m/mm							$f_{f\alpha}/\mu$	m					
	0.5≤m≤2	1. 1	1.6	2. 3	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	26. 0	36. 0	51.0	72. 0
	2< <i>m</i> ≤3.5	1.4	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	64. 0	90. 0
	3. 5< <i>m</i> ≤6	1. 6	2. 3	3. 3	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	74. 0	104. 0
	6< <i>m</i> ≤10	1. 9	2. 7	3.8	5. 5	7.5	11.0	15. 0	22. 0	31.0	43. 0	61. 0	87. 0	123. 0
280< <i>d</i> ≤560	10 <m≤16< td=""><td>2. 3</td><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>51. 0</td><td>72. 0</td><td>102. 0</td><td>145. 0</td></m≤16<>	2. 3	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	26. 0	36. 0	51. 0	72. 0	102. 0	145. 0
	16< <i>m</i> ≤ 25	2. 7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43. 0	60. 0	85. 0	121. 0	170. 0
	25 <m≤40< td=""><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>101. 0</td><td>144. 0</td><td>203. 0</td></m≤40<>	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101. 0	144. 0	203. 0
	40< <i>m</i> ≤70	3.9	5. 5	8. 0	11. 0	16. 0	22. 0	31. 0	44. 0	62. 0	88. 0	125. 0	177. 0	250. 0
	0.5≤m≤2	1.4	1.9	2. 7	3.8	5. 5	7.5	11.0	15. 0	22. 0	31. 0	43. 0	61.0	87. 0
	2< <i>m</i> ≤3.5	1.6	2. 3	3.3	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	74. 0	104. 0
	3. 5< <i>m</i> ≤6	1. 9	2. 6	3. 7	5. 5	7.5	11.0	15. 0	21. 0	30. 0	42. 0	59. 0	84. 0	119. 0
560 <d< td=""><td>6&lt;<i>m</i>≤10</td><td>2. 1</td><td>3.0</td><td>4. 3</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td></d<>	6< <i>m</i> ≤10	2. 1	3.0	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0
≤1000	10 <m≤16< td=""><td>2. 5</td><td>3.5</td><td>5. 0</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td><td>112. 0</td><td>159. 0</td></m≤16<>	2. 5	3.5	5. 0	7. 0	10. 0	14. 0	20. 0	28. 0	40. 0	56. 0	79. 0	112. 0	159. 0
	16 <m≤25< td=""><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>131. 0</td><td>185. 0</td></m≤25<>	2. 9	4. 1	6.0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65. 0	92. 0	131. 0	185. 0
	25 <m≤40< td=""><td>3.4</td><td>4. 8</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td><td>109. 0</td><td>154. 0</td><td>217. 0</td></m≤40<>	3.4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109. 0	154. 0	217. 0
	40 <m≤70< td=""><td>4. 1</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>93. 0</td><td>132. 0</td><td>187. 0</td><td>264. 0</td></m≤70<>	4. 1	6.0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	93. 0	132. 0	187. 0	264. 0
	2≤ <i>m</i> ≤3.5	1. 9	2. 7	3.8	5. 5	7.5	11. 0	15. 5	21. 0	30. 0	42. 0	60. 0	85. 0	120. 0
	3. 5< <i>m</i> ≤6	2. 1	3.0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95. 0	135. 0
	6< <i>m</i> ≤10	2. 4	3.4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0	153. 0
1000 < d	10 <m≤16< td=""><td>2. 7</td><td>3.9</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31. 0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>124. 0</td><td>175. 0</td></m≤16<>	2. 7	3.9	5. 5	7.5	11.0	15. 0	22. 0	31. 0	44. 0	62. 0	87. 0	124. 0	175. 0
≤1600	16 <m≤25< td=""><td>3. 1</td><td>4.4</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>71. 0</td><td>100. 0</td><td>142. 0</td><td>201. 0</td></m≤25<>	3. 1	4.4	6. 5	9.0	13. 0	18. 0	25. 0	35. 0	50.0	71. 0	100. 0	142. 0	201. 0
	25 <m≤40< td=""><td>3. 6</td><td>5.0</td><td>7.5</td><td>10. 0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>117. 0</td><td>165. 0</td><td>233. 0</td></m≤40<>	3. 6	5.0	7.5	10. 0	15. 0	21. 0	29. 0	41.0	58. 0	82. 0	117. 0	165. 0	233. 0
	40 <m≤70< td=""><td>4. 4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>70. 0</td><td>99. 0</td><td>140. 0</td><td>198. 0</td><td>280. 0</td></m≤70<>	4. 4	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	70. 0	99. 0	140. 0	198. 0	280. 0
	3.5≤m≤6	2. 4	3.4	4. 8	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0	152. 0
	6 <m≤10< td=""><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>43. 0</td><td>60. 0</td><td>85. 0</td><td>120. 0</td><td>170. 0</td></m≤10<>	2. 7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43. 0	60. 0	85. 0	120. 0	170. 0
1600 <d< td=""><td>10&lt;<i>m</i>≤16</td><td>3. 0</td><td>4. 2</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>136. 0</td><td>192. 0</td></d<>	10< <i>m</i> ≤16	3. 0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	192. 0
≤2500	16< <i>m</i> ≤25	3. 4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	39. 0	55. 0	77. 0	109. 0	154. 0	218. 0
	25< <i>m</i> ≤40	3. 9	5. 5	8. 0	11. 0	16. 0	22. 0	31. 0	44. 0	63. 0	89. 0	125. 0	177. 0	251. 0
	40< <i>m</i> ≤70	4. 6	6. 5	9.5	13. 0	19. 0	26. 0	37. 0	53. 0	74. 0	105. 0	149. 0	210. 0	297. 0
	6≤ <i>m</i> ≤10	3. 0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	193. 0
	10< <i>m</i> ≤16	3. 4	4. 7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	107. 0	152. 0	214. 0
2500 <d< td=""><td>16&lt;<i>m</i>≤25</td><td>3.8</td><td>5. 5</td><td>7. 5</td><td>11. 0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>42. 0</td><td>60.0</td><td>85. 0</td><td>120. 0</td><td>170. 0</td><td>240. 0</td></d<>	16< <i>m</i> ≤25	3.8	5. 5	7. 5	11. 0	15. 0	21. 0	30. 0	42. 0	60.0	85. 0	120. 0	170. 0	240. 0
≤4000	25 <m≤40< td=""><td>4. 3</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>136. 0</td><td>193. 0</td><td>273. 0</td></m≤40<>	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	193. 0	273. 0
	40 <m≤70< td=""><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>80. 0</td><td>113. 0</td><td>160. 0</td><td></td><td>320. 0</td></m≤70<>	5.0	7.0	10.0	14. 0	20. 0	28. 0	40. 0	56. 0	80. 0	113. 0	160. 0		320. 0
	6≤m≤10	3.4	4.8	7.0	9.5	14. 0	19. 0	27. 0	39. 0	55.0	77. 0	109. 0	155. 0	219. 0
4000 1	10 <m≤16< td=""><td>3.8</td><td>5.5</td><td>7.5</td><td>11. 0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>43. 0</td><td>60.0</td><td>85. 0</td><td>120. 0</td><td>170. 0</td><td>241. 0</td></m≤16<>	3.8	5.5	7.5	11. 0	15. 0	21. 0	30. 0	43. 0	60.0	85. 0	120. 0	170. 0	241. 0
4000 <d< td=""><td>16<m≤25< td=""><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>94. 0</td><td>133. 0</td><td>189. 0</td><td>267. 0</td></m≤25<></td></d<>	16 <m≤25< td=""><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>94. 0</td><td>133. 0</td><td>189. 0</td><td>267. 0</td></m≤25<>	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	94. 0	133. 0	189. 0	267. 0
≤6000	25 <m≤40< td=""><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19.0</td><td>26. 0</td><td>37. 0</td><td>53. 0</td><td>75.0</td><td>106. 0</td><td>150.0</td><td>212. 0</td><td>299. 0</td></m≤40<>	4. 7	6. 5	9. 5	13. 0	19.0	26. 0	37. 0	53. 0	75.0	106. 0	150.0	212. 0	299. 0
	40 <m≤70< td=""><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43.0</td><td>61.0</td><td>87. 0</td><td>122. 0</td><td>173.0</td><td>245. 0</td><td>346. 0</td></m≤70<>	5. 5	7.5	11.0	15. 0	22. 0	31.0	43.0	61.0	87. 0	122. 0	173.0	245. 0	346. 0
	10≤m≤16	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	94. 0	133. 0	188. 0	266. 0
6000 <d< td=""><td>16<m≤25< td=""><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>73.0</td><td>103. 0</td><td>146. 0</td><td>207. 0</td><td>292. 0</td></m≤25<></td></d<>	16 <m≤25< td=""><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>73.0</td><td>103. 0</td><td>146. 0</td><td>207. 0</td><td>292. 0</td></m≤25<>	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	73.0	103. 0	146. 0	207. 0	292. 0
€8000	25 <m≤40< td=""><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>57. 0</td><td>81.0</td><td>115. 0</td><td>162. 0</td><td>230. 0</td><td>325. 0</td></m≤40<>	5.0	7. 0	10.0	14. 0	20.0	29. 0	41.0	57. 0	81.0	115. 0	162. 0	230. 0	325. 0
	40 <m≤70< td=""><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>66. 0</td><td>93.0</td><td>131.0</td><td>186. 0</td><td>263. 0</td><td>371.0</td></m≤70<>	6. 0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	66. 0	93.0	131.0	186. 0	263. 0	371.0
	10≤m≤16	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0	288. 0
8000 <d< td=""><td>16<m≤25< td=""><td>4. 9</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79. 0</td><td>111.0</td><td>157. 0</td><td>222. 0</td><td>314. 0</td></m≤25<></td></d<>	16 <m≤25< td=""><td>4. 9</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79. 0</td><td>111.0</td><td>157. 0</td><td>222. 0</td><td>314. 0</td></m≤25<>	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	56. 0	79. 0	111.0	157. 0	222. 0	314. 0
\$000 <a< p=""> \$10000</a<>	25< <i>m</i> ≤40	5. 5	7.5	11.0	15. 0	22. 0	31. 0	43. 0	61. 0	87. 0	123. 0	173. 0	245. 0	347. 0
~10000														
	40< <i>m</i> ≤70	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	70. 0	98. 0	139. 0	197. 0	278. 0	393. 0



## 齿廓倾斜偏差±f_{Hα}

								精度等	E 416					
分度圆直径	法向模数	0	1	2	3	4	5	6	7	8	9	10	11	12
$d/\mathrm{mm}$	m/mm		1		3			$f_{\rm H\alpha}/\mu$		0		10	11	12
	0. 5≤m≤2	0. 5	0. 7	1.0	1.5	2. 1	2. 9	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	33. 0
5≤d≤20	$0.3 \leqslant m \leqslant 2$ $2 < m \leqslant 3.5$	0. 3	1.0	1. 5	2. 1		4. 2	6.0	8. 5	12. 0	17. 0			47. 0
		0. 7	0.8	1. 2	1.6	3.0	3. 3	4.6	6. 5	9. 5		24. 0	34. 0 26. 0	37. 0
	$0.5 \leqslant m \leqslant 2$	0. 8	1.1	1. 2	2. 3	2. 3	4. 5	6. 5	9.0	13. 0	13.0	19. 0 26. 0		51. 0
20 <d≤50< td=""><td>$2 &lt; m \le 3.5$ $3.5 &lt; m \le 6$</td><td></td><td></td><td></td><td></td><td>3. 2</td><td></td><td></td><td></td><td></td><td>18. 0</td><td></td><td>36. 0</td><td></td></d≤50<>	$2 < m \le 3.5$ $3.5 < m \le 6$					3. 2					18. 0		36. 0	
		1.0	1.4	2.0	2.8	3.9	5. 5 7. 0	8. 0 9. 5	11.0	16. 0	22. 0	32. 0	45. 0	63. 0
	6< <i>m</i> ≤10	1. 2	1.7	2.4	3.4	4.8		5.5	14. 0 7. 5	19.0	27. 0	39. 0	55. 0	78. 0
	$0.5 \leqslant m \leqslant 2$	0.7	0.9	1.3	1.9	2.6	3.7			11.0	15. 0	21. 0	30.0	42. 0
	2< <i>m</i> ≤3.5	0.9	1.2	1.8	2.5	3.5	5.0	7.0	10.0	14. 0	20. 0	28. 0	40. 0	57. 0
50< <i>d</i> ≤125	$3.5 < m \le 6$ $6 < m \le 10$	1. 1	1.5	2.1	3. 0	4. 3	6. 0 7. 5	8. 5 10. 0	12. 0	17. 0 21. 0	24. 0	34. 0	48. 0 58. 0	68. 0
			2. 2	2.6		5.0	9.0	13. 0	15. 0	25. 0	29. 0	41. 0		83. 0
	10 <m≤16< td=""><td>1.6</td><td></td><td>3. 1</td><td>4.4</td><td>6. 5</td><td></td><td></td><td>18. 0</td><td></td><td>35. 0</td><td>50. 0</td><td>71.0</td><td>100. 0</td></m≤16<>	1.6		3. 1	4.4	6. 5			18. 0		35. 0	50. 0	71.0	100. 0
	$16 < m \le 25$ $0.5 \le m \le 2$	1.9	2. 7	3.8	5.5	7.5	11.0	15. 0	21.0	30. 0	43. 0	60. 0	86. 0	121. 0
		0.8	1.1	1.6	2. 2	3. 1	4.4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0
	2< <i>m</i> ≤3.5	1.0	1.4	2.0	2.8	4. 0	5.5	8.0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0
125 . 1 - 200	3. 5 <m≤6< td=""><td>1.2</td><td>1.7</td><td>2. 4</td><td>3.3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td></m≤6<>	1.2	1.7	2. 4	3.3	4. 7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0
$125 < d \le 280$	6< <i>m</i> ≤10	1.4	2.0	2.8	4.0	5. 5	8.0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90. 0
	10 <m≤16< td=""><td>1.7</td><td>2. 4</td><td>3.4</td><td>4.8</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td></m≤16<>	1.7	2. 4	3.4	4.8	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0
	16< <i>m</i> ≤25	2.0	2.8	4.0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	91.0	129. 0
	25 <m≤40< td=""><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7.0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>39. 0</td><td>55. 0</td><td>77. 0</td><td>109. 0</td><td>155. 0</td></m≤40<>	2. 4	3.4	4. 8	7.0	9.5	14. 0	19. 0	27. 0	39. 0	55. 0	77. 0	109. 0	155. 0
	0.5≤m≤2	0.9	1.3	1.9	2. 6	3.7	5. 5	7.5	11.0	15. 0	21. 0	30. 0	42. 0	60. 0
	2< <i>m</i> ≤3.5	1.2	1.6	2. 3	3.3	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	74. 0
	3. 5 <m≤6< td=""><td>1.3</td><td>1.9</td><td>2.7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>43. 0</td><td>61.0</td><td>86. 0</td></m≤6<>	1.3	1.9	2.7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43. 0	61.0	86. 0
$280 < d \le 560$	6< <i>m</i> ≤10	1.6	2. 2	3. 1	4.4	6. 5	9.0	13. 0	18. 0	25. 0	35. 0	50. 0	71.0	100.0
	10< <i>m</i> ≤16	1.8	2. 6	3. 7	5.0	7.5	10.0	15. 0	21.0	29. 0	42. 0	59. 0	83. 0	118. 0
	16< <i>m</i> ≤25	2. 2	3. 1	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	35. 0	49. 0	69. 0	98. 0	138. 0
	25 <m≤40< td=""><td>2. 6</td><td>3.6</td><td>5. 0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116. 0</td><td>164. 0</td></m≤40<>	2. 6	3.6	5. 0	7.5	10.0	15. 0	21. 0	29. 0	41.0	58. 0	82. 0	116. 0	164. 0
	40< <i>m</i> ≤70	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	50.0	71.0	101.0	143. 0	202. 0
	0.5≤m≤2	1.1	1.6	2. 2	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0
	2< <i>m</i> ≤3.5	1.3	1.9	2. 7	3.8	5. 5	7.5	11.0	15. 0	21.0	30. 0	43. 0	61.0	86. 0
560 . 1	3. 5< <i>m</i> ≤ 6	1.5	2. 2	3.0	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0	97. 0
560 <d< td=""><td>6<m≤10< td=""><td>1.7</td><td>2. 5</td><td>3.5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td><td>112. 0</td></m≤10<></td></d<>	6 <m≤10< td=""><td>1.7</td><td>2. 5</td><td>3.5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td><td>112. 0</td></m≤10<>	1.7	2. 5	3.5	4. 9	7. 0	10.0	14. 0	20. 0	28. 0	40. 0	56. 0	79. 0	112. 0
≤1000	10 <m≤16< td=""><td>2.0</td><td>2. 9</td><td>4.0</td><td>5.5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>129. 0</td></m≤16<>	2.0	2. 9	4.0	5.5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	65. 0	92. 0	129. 0
	16 <m≤25< td=""><td>2. 3</td><td>3.3</td><td>4.7</td><td>6.5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>150. 0 176. 0</td></m≤25<>	2. 3	3.3	4.7	6.5	9.5	13. 0	19. 0	27. 0	38. 0	53. 0	75. 0	106. 0	150. 0 176. 0
	25 <m≤40< td=""><td>2.8</td><td>3.9</td><td>5.5</td><td>8.0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>125. 0</td><td></td></m≤40<>	2.8	3.9	5.5	8.0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	125. 0	
-	$40 < m \le 70$ $2 \le m \le 3.5$	3. 3 1. 5	4. 7 2. 2	6. 5	9. 5 4. 4	13. 0	19. 0 8. 5	27. 0 12. 0	38. 0 17. 0	53. 0	76. 0 35. 0	107. 0 49. 0	151. 0 70. 0	214. 0 99. 0
	2 ≤ m ≤ 5. 5 3. 5 < m ≤ 6	1. 7	2. 4	3. 5	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	55. 0	78. 0	110. 0
	6 <m≤10< td=""><td>2. 0</td><td>2. 8</td><td>3.9</td><td>5. 5</td><td>8. 0</td><td>11. 0</td><td>16. 0</td><td>22. 0</td><td>31. 0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>125. 0</td></m≤10<>	2. 0	2. 8	3.9	5. 5	8. 0	11. 0	16. 0	22. 0	31. 0	44. 0	62. 0	88. 0	125. 0
1000 <d< td=""><td>10<m≤16< td=""><td>2. 2</td><td>3. 1</td><td>4. 5</td><td>6.5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50.0</td><td>71. 0</td><td>101. 0</td><td>142. 0</td></m≤16<></td></d<>	10 <m≤16< td=""><td>2. 2</td><td>3. 1</td><td>4. 5</td><td>6.5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>50.0</td><td>71. 0</td><td>101. 0</td><td>142. 0</td></m≤16<>	2. 2	3. 1	4. 5	6.5	9.0	13. 0	18. 0	25. 0	36. 0	50.0	71. 0	101. 0	142. 0
≤1600	16 <m≤25< td=""><td>2. 5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>115.0</td><td>163. 0</td></m≤25<>	2. 5	3.6	5.0	7.0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	115.0	163. 0
	25 <m≤40< td=""><td>3.0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>95.0</td><td>134. 0</td><td>189. 0</td></m≤40<>	3.0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	95.0	134. 0	189. 0
	40 <m≤70< td=""><td>3.5</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>57. 0</td><td>80.0</td><td>113.0</td><td>160.0</td><td>227. 0</td></m≤70<>	3.5	5.0	7.0	10.0	14. 0	20.0	28. 0	40.0	57. 0	80.0	113.0	160.0	227. 0
	3. 5 ≤ <i>m</i> ≤ 6	2.0	2. 8	3.9	5.5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88.0	125. 0
	6< <i>m</i> ≤10	2. 2	3. 1	4. 4	6.0	8. 5	12.0	17. 0	25. 0	35. 0	49. 0	70.0	99.0	139. 0
$1600 {<} d$	10< <i>m</i> ≤16	2. 5	3.5	4. 9	7.0	10.0	14. 0	20.0	28. 0	39. 0	55. 0	78. 0	111.0	157. 0
≤2500	16< <i>m</i> ≤25	2. 8	3. 9	5. 5	8.0	11.0	16. 0	22. 0	31.0	44. 0	63. 0	89. 0	126. 0	178. 0
	25 <m≤40< td=""><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>144. 0</td><td>204. 0</td></m≤40<>	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0
	40 <m≤70< td=""><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30. 0</td><td>43. 0</td><td>60. 0</td><td>85. 0</td><td>121.0</td><td>170. 0</td><td>241. 0</td></m≤70<>	3.8	5. 5	7.5	11.0	15. 0	21.0	30. 0	43. 0	60. 0	85. 0	121.0	170. 0	241. 0
	L													

							;	精 度 等	※ 级					
分度圆直径 d/mm	法向模数 <i>m</i> /mm	0	1	2	3	4	5	6	7	8	9	10	11	12
W/ IIIII	<i>710</i> / 111111							$f_{\rm H\alpha}/\mu$	m					
	6≤ <i>m</i> ≤10	2. 5	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	39.0	56.0	79.0	112. 0	158. 0
2500 - 1	10< <i>m</i> ≤16	2. 7	3. 9	5. 5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0
2500< <i>d</i> ≤4000	16< <i>m</i> ≤25	3. 1	4. 3	6. 0	8. 5	12.0	17. 0	24. 0	35.0	49.0	69. 0	98. 0	139. 0	196. 0
≥4000	25 <m≤40< td=""><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>39.0</td><td>55.0</td><td>78. 0</td><td>111.0</td><td>157. 0</td><td>222. 0</td></m≤40<>	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	39.0	55.0	78. 0	111.0	157. 0	222. 0
	40< <i>m</i> ≤70	4. 1	5. 5	8. 0	11.0	16.0	23. 0	32. 0	46. 0	65.0	92.0	130.0	183. 0	259. 0
	6≤ <i>m</i> ≤10	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45.0	63.0	90.0	127. 0	179. 0
1000 - 1-	10 <m≤16< td=""><td>3. 1</td><td>4. 4</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49.0</td><td>70.0</td><td>98. 0</td><td>139. 0</td><td>197. 0</td></m≤16<>	3. 1	4. 4	6. 0	8. 5	12. 0	17. 0	25. 0	35. 0	49.0	70.0	98. 0	139. 0	197. 0
4000 <d≤< td=""><td>16&lt;<i>m</i>≤25</td><td>3. 4</td><td>4. 8</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td><td>109.0</td><td>154. 0</td><td>218. 0</td></d≤<>	16< <i>m</i> ≤25	3. 4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109.0	154. 0	218. 0
6000	25 <m≤40< td=""><td>3. 8</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15.0</td><td>22. 0</td><td>30.0</td><td>43.0</td><td>61.0</td><td>86. 0</td><td>122. 0</td><td>172. 0</td><td>244. 0</td></m≤40<>	3. 8	5. 5	7. 5	11.0	15.0	22. 0	30.0	43.0	61.0	86. 0	122. 0	172. 0	244. 0
	40< <i>m</i> ≤70	4. 4	6. 0	9.0	12. 0	18.0	25. 0	35.0	50.0	70.0	99.0	141.0	199. 0	281. 0
	10≤m≤16	3. 4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	39. 0	54.0	77. 0	109. 0	154. 0	218. 0
6000 <d< td=""><td>16<m≤25< td=""><td>3. 7</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>84. 0</td><td>119.0</td><td>169. 0</td><td>239. 0</td></m≤25<></td></d<>	16 <m≤25< td=""><td>3. 7</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>84. 0</td><td>119.0</td><td>169. 0</td><td>239. 0</td></m≤25<>	3. 7	5. 5	7. 5	11.0	15. 0	21.0	30.0	42. 0	60.0	84. 0	119.0	169. 0	239. 0
≤8000	25 <m≤40< td=""><td>4. 1</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66.0</td><td>94. 0</td><td>132. 0</td><td>187. 0</td><td>265. 0</td></m≤40<>	4. 1	6. 0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66.0	94. 0	132. 0	187. 0	265. 0
	40< <i>m</i> ≤70	4. 7	6. 5	9. 5	13.0	19.0	27. 0	38. 0	53.0	76. 0	107. 0	151.0	214. 0	302. 0
	10≤m≤16	3. 7	5. 0	7. 5	10.0	15.0	21.0	29.0	42. 0	59.0	83. 0	118.0	167. 0	236. 0
8000 <d< td=""><td>16&lt;<i>m</i>≤25</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16.0</td><td>23. 0</td><td>32. 0</td><td>45.0</td><td>64. 0</td><td>91.0</td><td>128. 0</td><td>181.0</td><td>257. 0</td></d<>	16< <i>m</i> ≤25	4. 0	5. 5	8. 0	11.0	16.0	23. 0	32. 0	45.0	64. 0	91.0	128. 0	181.0	257. 0
≤10000	25 <m≤40< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35.0</td><td>50.0</td><td>71.0</td><td>100.0</td><td>141.0</td><td>200. 0</td><td>283. 0</td></m≤40<>	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35.0	50.0	71.0	100.0	141.0	200. 0	283. 0
	40 <m≤70< td=""><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>57. 0</td><td>80.0</td><td>113. 0</td><td>160. 0</td><td>226. 0</td><td>320. 0</td></m≤70<>	5. 0	7. 0	10.0	14. 0	20.0	28. 0	40.0	57. 0	80.0	113. 0	160. 0	226. 0	320. 0

## 螺旋线总偏差 $F_{\beta}$

11 -baber 1. cz	ut. saba						j	精 度 等	※ 级					
分度圆直径 d/mm	齿宽 b∕mm	0	1	2	3	4	5	6	7	8	9	10	11	12
a/ mm	<i>0/</i> mm							$F_{\beta}/\mu$	m					
	4≤b≤10	1. 1	1.5	2. 2	3. 1	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	35. 0	49. 0	69. 0
5 - 1 - 20	10 <b≤20< td=""><td>1. 2</td><td>1.7</td><td>2. 4</td><td>3.4</td><td>4. 9</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19.0</td><td>28. 0</td><td>39. 0</td><td>55.0</td><td>78. 0</td></b≤20<>	1. 2	1.7	2. 4	3.4	4. 9	7. 0	9.5	14. 0	19.0	28. 0	39. 0	55.0	78. 0
5≤ <i>d</i> ≤20	20 <b≤40< td=""><td>1.4</td><td>2. 0</td><td>2. 8</td><td>3. 9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16.0</td><td>22. 0</td><td>31.0</td><td>45. 0</td><td>63. 0</td><td>89. 0</td></b≤40<>	1.4	2. 0	2. 8	3. 9	5. 5	8. 0	11.0	16.0	22. 0	31.0	45. 0	63. 0	89. 0
	40 <b≤80< td=""><td>1.6</td><td>2. 3</td><td>3. 3</td><td>4. 6</td><td>6. 5</td><td>9. 5</td><td>13.0</td><td>19.0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>74. 0</td><td>105. 0</td></b≤80<>	1.6	2. 3	3. 3	4. 6	6. 5	9. 5	13.0	19.0	26. 0	37. 0	52. 0	74. 0	105. 0
	4≤b≤10	1. 1	1.6	2. 2	3. 2	4. 5	6. 5	9.0	13.0	18.0	25. 0	36.0	51.0	72. 0
	10 <b≤20< td=""><td>1. 3</td><td>1.8</td><td>2. 5</td><td>3.6</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>40. 0</td><td>57. 0</td><td>81. 0</td></b≤20<>	1. 3	1.8	2. 5	3.6	5.0	7. 0	10.0	14. 0	20.0	29. 0	40. 0	57. 0	81. 0
20 <d≤50< td=""><td>20<b≤40< td=""><td>1.4</td><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16.0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td></b≤40<></td></d≤50<>	20 <b≤40< td=""><td>1.4</td><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16.0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td></b≤40<>	1.4	2. 0	2. 9	4. 1	5. 5	8. 0	11.0	16.0	23. 0	32. 0	46. 0	65. 0	92. 0
	40 <b≤80< td=""><td>1. 7</td><td>2. 4</td><td>3. 4</td><td>4. 8</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>107. 0</td></b≤80<>	1. 7	2. 4	3. 4	4. 8	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	107. 0
	80< <i>b</i> ≤160	2. 0	2. 9	4. 1	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	65. 0	92.0	130. 0
	4≤b≤10	1. 2	1.7	2. 4	3. 3	4. 7	6. 5	9.5	13.0	19.0	27. 0	38. 0	53.0	76. 0
	10 <b≤20< td=""><td>1.3</td><td>1.9</td><td>2. 6</td><td>3. 7</td><td>5.5</td><td>7. 5</td><td>11.0</td><td>15.0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>60.0</td><td>84. 0</td></b≤20<>	1.3	1.9	2. 6	3. 7	5.5	7. 5	11.0	15.0	21.0	30.0	42. 0	60.0	84. 0
	20 <b≤40< td=""><td>1. 5</td><td>2. 1</td><td>3. 0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>95. 0</td></b≤40<>	1. 5	2. 1	3. 0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	95. 0
$50 < d \le 125$	40 <b≤80< td=""><td>1. 7</td><td>2. 5</td><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79. 0</td><td>111.0</td></b≤80<>	1. 7	2. 5	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	39. 0	56. 0	79. 0	111.0
	80< <i>b</i> ≤160	2. 1	2. 9	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	94. 0	133. 0
	160 <b≤250< td=""><td>2. 5</td><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40.0</td><td>56.0</td><td>79. 0</td><td>112. 0</td><td>158. 0</td></b≤250<>	2. 5	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	40.0	56.0	79. 0	112. 0	158. 0
	250 <b≤400< td=""><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16.0</td><td>23. 0</td><td>33. 0</td><td>46.0</td><td>65.0</td><td>92. 0</td><td>130. 0</td><td>184. 0</td></b≤400<>	2. 9	4. 1	6. 0	8. 0	12. 0	16.0	23. 0	33. 0	46.0	65.0	92. 0	130. 0	184. 0
	4≤b≤10	1. 3	1.8	2. 5	3. 6	5.0	7. 0	10.0	14. 0	20.0	29. 0	40.0	57. 0	81.0
	10 <b≤20< td=""><td>1.4</td><td>2.0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16.0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>63. 0</td><td>90.0</td></b≤20<>	1.4	2.0	2. 8	4. 0	5. 5	8. 0	11.0	16.0	22. 0	32. 0	45. 0	63. 0	90.0
	20 <b≤40< td=""><td>1. 6</td><td>2. 2</td><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9. 0</td><td>13.0</td><td>18. 0</td><td>25.0</td><td>36. 0</td><td>50.0</td><td>71.0</td><td>101.0</td></b≤40<>	1. 6	2. 2	3. 2	4. 5	6. 5	9. 0	13.0	18. 0	25.0	36. 0	50.0	71.0	101.0
105 . 1 < 200	40 <b≤80< td=""><td>1.8</td><td>2. 6</td><td>3. 6</td><td>5. 0</td><td>7. 5</td><td>10.0</td><td>15.0</td><td>21.0</td><td>29.0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>117. 0</td></b≤80<>	1.8	2. 6	3. 6	5. 0	7. 5	10.0	15.0	21.0	29.0	41.0	58. 0	82. 0	117. 0
$125 < d \le 280$	80 <b≤160< td=""><td>2. 2</td><td>3. 1</td><td>4. 3</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>69. 0</td><td>98. 0</td><td>139. 0</td></b≤160<>	2. 2	3. 1	4. 3	6. 0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	69. 0	98. 0	139. 0
	160 <b≤250< td=""><td>2. 6</td><td>3.6</td><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116. 0</td><td>164. 0</td></b≤250<>	2. 6	3.6	5. 0	7. 0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	116. 0	164. 0
	250< <i>b</i> ≤400	3. 0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	47. 0	67. 0	95.0	134. 0	190. 0
	400< <i>b</i> ≤650	3. 5	4. 9	7. 0	10. 0	14. 0	20.0	28. 0	40.0	56.0	79. 0	112. 0	158. 0	224. 0



续表

														->->
							;	精度等	手级					
分度圆直径	齿宽	0	1	2	3	4	5	6	7	8	9	10	11	12
d/mm	b/mm							$F_{\beta}/\mu$	m	1	1			
	10≤b≤20	1.5	2. 1	3.0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68.0	97. 0
	20 <b≤40< td=""><td>1.7</td><td>2. 4</td><td>3.4</td><td>4.8</td><td>6.5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td></b≤40<>	1.7	2. 4	3.4	4.8	6.5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0
	40 <b≤80< td=""><td>1.9</td><td>2. 7</td><td>3. 9</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>124. 0</td></b≤80<>	1.9	2. 7	3. 9	5.5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	124. 0
280 <d≤560< td=""><td>80<b≤160< td=""><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6.5</td><td>9.0</td><td>13.0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>52. 0</td><td>73. 0</td><td>103.0</td><td>146. 0</td></b≤160<></td></d≤560<>	80 <b≤160< td=""><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6.5</td><td>9.0</td><td>13.0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>52. 0</td><td>73. 0</td><td>103.0</td><td>146. 0</td></b≤160<>	2. 3	3. 2	4. 6	6.5	9.0	13.0	18. 0	26. 0	36. 0	52. 0	73. 0	103.0	146. 0
280< <i>a</i> ≤ 300	160< <i>b</i> ≤250	2. 7	3.8	5. 5	7.5	11.0	15. 0	21.0	30.0	43. 0	60.0	85. 0	121.0	171.0
	250< <i>b</i> ≤400	3. 1	4. 3	6.0	8. 5	12.0	17. 0	25. 0	35. 0	49. 0	70. 0	98. 0	139. 0	197. 0
	400< <i>b</i> ≤650	3.6	5.0	7. 0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	115.0	163. 0	231.0
	$650 < b \le 1000$	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96.0	136. 0	193.0	272. 0
	10≤b≤20	1.6	2. 3	3. 3	4. 7	6. 5	9.5	13.0	19. 0	26. 0	37. 0	53.0	74. 0	105. 0
	20 <b≤40< td=""><td>1.8</td><td>2. 6</td><td>3.6</td><td>5.0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116. 0</td></b≤40<>	1.8	2. 6	3.6	5.0	7.5	10.0	15. 0	21.0	29. 0	41.0	58. 0	82. 0	116. 0
	40 <b≤80< td=""><td>2. 1</td><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>93.0</td><td>132. 0</td></b≤80<>	2. 1	2. 9	4. 1	6.0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	93.0	132. 0
560< <i>d</i>	80 <b≤160< td=""><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7.0</td><td>9.5</td><td>14. 0</td><td>19.0</td><td>27. 0</td><td>39. 0</td><td>55. 0</td><td>77. 0</td><td>109. 0</td><td>154. 0</td></b≤160<>	2. 4	3.4	4. 8	7.0	9.5	14. 0	19.0	27. 0	39. 0	55. 0	77. 0	109. 0	154. 0
≤1000	160< <i>b</i> ≤250	2. 8	4. 0	5. 5	8.0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	179. 0
	250< <i>b</i> ≤400	3. 2	4. 5	6.5	9.0	13. 0	18. 0	26. 0	36. 0	51.0	73. 0	103. 0	145. 0	205. 0
	400 <b≤650< td=""><td>3. 7</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30. 0</td><td>42. 0</td><td>60.0</td><td>85. 0</td><td>120. 0</td><td>169. 0</td><td>239. 0</td></b≤650<>	3. 7	5.5	7.5	11.0	15. 0	21.0	30. 0	42. 0	60.0	85. 0	120. 0	169. 0	239. 0
	650< <i>b</i> ≤1000	4. 4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0	70.0	99. 0	140. 0	199. 0	281. 0
	20≤b≤40	2. 0	2. 8	3. 9	5.5	8.0	11.0	16. 0	22. 0	31.0	44. 0	63. 0	89. 0	126. 0
	40 <b≤80< td=""><td>2. 2</td><td>3. 1</td><td>4.4</td><td>6.0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50. 0</td><td>71.0</td><td>100.0</td><td>141. 0</td></b≤80<>	2. 2	3. 1	4.4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0	71.0	100.0	141. 0
1000 <d< td=""><td>80<b≤160< td=""><td>2. 6</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116.0</td><td>164. 0</td></b≤160<></td></d<>	80 <b≤160< td=""><td>2. 6</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116.0</td><td>164. 0</td></b≤160<>	2. 6	3.6	5.0	7.0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	116.0	164. 0
≤1600	160 <b≤250< td=""><td>2. 9</td><td>4. 2</td><td>6. 0</td><td>8.5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>33. 0</td><td>47. 0</td><td>67. 0</td><td>94. 0</td><td>133. 0</td><td>189. 0</td></b≤250<>	2. 9	4. 2	6. 0	8.5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	94. 0	133. 0	189. 0
	250 <b≤400< td=""><td>3. 4</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>107. 0</td><td>152. 0</td><td>215. 0</td></b≤400<>	3. 4	4. 7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	107. 0	152. 0	215. 0
	400 <b≤650< td=""><td>3. 9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>176. 0</td><td>249. 0</td></b≤650<>	3. 9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	176. 0	249. 0
	650 <b≤1000< td=""><td>4. 5</td><td>6.5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>51.0</td><td>73. 0</td><td>103. 0</td><td>145. 0</td><td>205. 0</td><td>290. 0</td></b≤1000<>	4. 5	6.5	9.0	13. 0	18. 0	26. 0	36. 0	51.0	73. 0	103. 0	145. 0	205. 0	290. 0
	20≤b≤40	2. 1	3.0	4. 3	6.0	8.5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0
	$40 < b \le 80$ $80 < b \le 160$	2. 4	3. 4	4. 7 5. 5	6. 5 7. 5	9.5	13. 0 15. 0	19. 0 22. 0	27. 0	38. 0 43. 0	54. 0 61. 0	76. 0 87. 0	107. 0 123. 0	152. 0 174. 0
$1600 {<} d$	$160 < b \le 250$	3. 1	4.4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0	70. 0	99. 0	141. 0	199. 0
≤2500	$100 < b \le 230$ $250 < b \le 400$	3. 5	5. 0	7.0	10.0	14. 0	20. 0	28. 0	40. 0	56. 0	80. 0	112. 0	159. 0	225. 0
	400 <b≤650< td=""><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11. 0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>130. 0</td><td>183. 0</td><td>259. 0</td></b≤650<>	4. 0	5. 5	8. 0	11. 0	16. 0	23. 0	32. 0	46. 0	65. 0	92. 0	130. 0	183. 0	259. 0
	650< <i>b</i> ≤1000	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	53. 0	75. 0	106. 0	150. 0	212. 0	300. 0
	40≤b≤80	2. 6	3. 6	5. 0	7.5	10. 0	15. 0	21. 0	29. 0	41. 0	58. 0	82. 0	116. 0	165. 0
	80 <b≤160< td=""><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>93. 0</td><td>132. 0</td><td>187. 0</td></b≤160<>	2. 9	4. 1	6. 0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	93. 0	132. 0	187. 0
2500 <d< td=""><td>160&lt;<i>b</i>≤250</td><td>3. 3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>26. 0</td><td>37. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>150. 0</td><td>212. 0</td></d<>	160< <i>b</i> ≤250	3. 3	4. 7	6. 5	9.5	13. 0	19. 0	26. 0	37. 0	53. 0	75. 0	106. 0	150. 0	212. 0
≤4000	250 <b≤400< td=""><td>3. 7</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>42. 0</td><td>59. 0</td><td>84. 0</td><td></td><td>168. 0</td><td>238. 0</td></b≤400<>	3. 7	5. 5	7.5	11.0	15. 0	21. 0	30. 0	42. 0	59. 0	84. 0		168. 0	238. 0
	400< <i>b</i> ≤650	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	192. 0	272. 0
	650< <i>b</i> ≤1000	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	55. 0	78. 0	111.0	157. 0	222. 0	314. 0
	80≤b≤160	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101.0	143. 0	203. 0
	160 <b≤250< td=""><td>3.6</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>57. 0</td><td>80. 0</td><td>114. 0</td><td>161.0</td><td>228. 0</td></b≤250<>	3.6	5.0	7. 0	10.0	14. 0	20. 0	28. 0	40. 0	57. 0	80. 0	114. 0	161.0	228. 0
4000< <i>d</i> ≤6000	250 <b≤400< td=""><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>63. 0</td><td>90.0</td><td>127. 0</td><td>179. 0</td><td>253. 0</td></b≤400<>	4. 0	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	179. 0	253. 0
≥0000	400 <b≤650< td=""><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>144. 0</td><td>203. 0</td><td>288. 0</td></b≤650<>	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	102. 0	144. 0	203. 0	288. 0
	650 <b 1000<="" \le="" td=""><td>5. 0</td><td>7. 5</td><td>10. 0</td><td>15. 0</td><td>21.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116. 0</td><td>165. 0</td><td>233. 0</td><td>329. 0</td></b>	5. 0	7. 5	10. 0	15. 0	21.0	29. 0	41.0	58. 0	82. 0	116. 0	165. 0	233. 0	329. 0
	80≤b≤160	3. 4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109.0	154. 0	218. 0
	160 <b≤250< td=""><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>43. 0</td><td>61.0</td><td>86. 0</td><td>121.0</td><td>171.0</td><td>242. 0</td></b≤250<>	3.8	5. 5	7.5	11.0	15. 0	21.0	30.0	43. 0	61.0	86. 0	121.0	171.0	242. 0
6000 <d< td=""><td>250<b≤400< td=""><td>4. 2</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>47. 0</td><td>67. 0</td><td>95. 0</td><td>134. 0</td><td>190. 0</td><td>268. 0</td></b≤400<></td></d<>	250 <b≤400< td=""><td>4. 2</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>47. 0</td><td>67. 0</td><td>95. 0</td><td>134. 0</td><td>190. 0</td><td>268. 0</td></b≤400<>	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	47. 0	67. 0	95. 0	134. 0	190. 0	268. 0
≤8000	400 <b≤650< td=""><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13.0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>76. 0</td><td>107. 0</td><td>151.0</td><td>214. 0</td><td>303. 0</td></b≤650<>	4. 7	6. 5	9. 5	13.0	19. 0	27. 0	38. 0	53. 0	76. 0	107. 0	151.0	214. 0	303. 0
	650 <b 1000<="" td="" ≤=""><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>30. 0</td><td>43. 0</td><td>61.0</td><td>86. 0</td><td>122. 0</td><td>172. 0</td><td>243. 0</td><td>344. 0</td></b>	5. 5	7. 5	11.0	15. 0	22. 0	30. 0	43. 0	61.0	86. 0	122. 0	172. 0	243. 0	344. 0
	1										1			

	والم والم						;	精 度 等	级					
分度圆直径 d/mm	齿宽 b/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
W/ IIIII	, mm							$F_{\beta}/\mu$	m					
	80≤b≤160	3. 6	5. 0	7. 0	10. 0	14. 0	20. 0	29. 0	41.0	58.0	81.0	115. 0	163. 0	230. 0
8000 <d< td=""><td>160<b≤250< td=""><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>128. 0</td><td>181. 0</td><td>255. 0</td></b≤250<></td></d<>	160 <b≤250< td=""><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>128. 0</td><td>181. 0</td><td>255. 0</td></b≤250<>	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90.0	128. 0	181. 0	255. 0
\$6000 <a< p=""> \$10000</a<>	250 <b≤400< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70.0</td><td>99. 0</td><td>141.0</td><td>199. 0</td><td>281. 0</td></b≤400<>	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70.0	99. 0	141.0	199. 0	281. 0
<10000	400 <b≤650< td=""><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79.0</td><td>112.0</td><td>158. 0</td><td>223. 0</td><td>315. 0</td></b≤650<>	4. 9	7. 0	10.0	14. 0	20. 0	28. 0	39. 0	56. 0	79.0	112.0	158. 0	223. 0	315. 0
	650 <b 1000<="" \le="" td=""><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45.0</td><td>63.0</td><td>89. 0</td><td>126. 0</td><td>178. 0</td><td>252. 0</td><td>357. 0</td></b>	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45.0	63.0	89. 0	126. 0	178. 0	252. 0	357. 0

## 螺旋线形状偏差 $f_{ m f eta}$ 和螺旋线倾斜偏差 $\pm f_{ m H eta}$

八座回去初	比亞						;	精度等	级					
分度圆直径 d/mm	齿宽 b∕mm	0	1	2	3	4	5	6	7	8	9	10	11	12
<i>a</i> / IIIII	0/ 111111						$f_{ m f}$	_β 和±f _{Hβ}	/µm					
	4≤b≤10	0.8	1. 1	1.5	2. 2	3. 1	4. 4	6. 0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0
5 - 1 - 20	10 <b≤20< td=""><td>0. 9</td><td>1. 2</td><td>1.7</td><td>2. 5</td><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td></b≤20<>	0. 9	1. 2	1.7	2. 5	3. 5	4. 9	7. 0	10.0	14. 0	20. 0	28. 0	39. 0	56. 0
5≤ <i>d</i> ≤20	20 <b≤40< td=""><td>1.0</td><td>1.4</td><td>2. 0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td></b≤40<>	1.0	1.4	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	64. 0
	40 <b≤80< td=""><td>1. 2</td><td>1.7</td><td>2. 3</td><td>3. 3</td><td>4. 7</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>26. 0</td><td>37. 0</td><td>53.0</td><td>75. 0</td></b≤80<>	1. 2	1.7	2. 3	3. 3	4. 7	6. 5	9. 5	13. 0	19. 0	26. 0	37. 0	53.0	75. 0
	4≤b≤10	0.8	1. 1	1.6	2. 3	3. 2	4. 5	6. 5	9.0	13.0	18. 0	26. 0	36. 0	51.0
	10 <b≤20< td=""><td>0. 9</td><td>1.3</td><td>1.8</td><td>2. 5</td><td>3.6</td><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td></b≤20<>	0. 9	1.3	1.8	2. 5	3.6	5. 0	7. 0	10.0	14. 0	20. 0	29. 0	41.0	58. 0
20 <d≤50< td=""><td>20<b≤40< td=""><td>1. 0</td><td>1.4</td><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>65. 0</td></b≤40<></td></d≤50<>	20 <b≤40< td=""><td>1. 0</td><td>1.4</td><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>65. 0</td></b≤40<>	1. 0	1.4	2. 0	2. 9	4. 1	6. 0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65. 0
	40 <b≤80< td=""><td>1. 2</td><td>1.7</td><td>2. 4</td><td>3. 4</td><td>4. 8</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td></b≤80<>	1. 2	1.7	2. 4	3. 4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0
	80 <b≤160< td=""><td>1.4</td><td>2. 0</td><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33. 0</td><td>46. 0</td><td>65. 0</td><td>93. 0</td></b≤160<>	1.4	2. 0	2. 9	4. 1	6. 0	8. 0	12. 0	16. 0	23. 0	33. 0	46. 0	65. 0	93. 0
	4≤b≤10	0.8	1. 2	1.7	2. 4	3.4	4. 8	6. 5	9. 5	13.0	19. 0	27. 0	38. 0	54. 0
	10 <b≤20< td=""><td>0. 9</td><td>1.3</td><td>1.9</td><td>2. 7</td><td>3.8</td><td>5. 0</td><td>7. 5</td><td>11.0</td><td>15.0</td><td>21.0</td><td>30. 0</td><td>43. 0</td><td>60. 0</td></b≤20<>	0. 9	1.3	1.9	2. 7	3.8	5. 0	7. 5	11.0	15.0	21.0	30. 0	43. 0	60. 0
	20 <b≤40< td=""><td>1. 1</td><td>1.5</td><td>2. 1</td><td>3.0</td><td>4. 3</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td></b≤40<>	1. 1	1.5	2. 1	3.0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0
50 <d≤125< td=""><td>40<b≤80< td=""><td>1. 2</td><td>1.8</td><td>2. 5</td><td>3.5</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td></b≤80<></td></d≤125<>	40 <b≤80< td=""><td>1. 2</td><td>1.8</td><td>2. 5</td><td>3.5</td><td>5.0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td></b≤80<>	1. 2	1.8	2. 5	3.5	5.0	7. 0	10.0	14. 0	20.0	28. 0	40. 0	56. 0	79. 0
	80 <b≤160< td=""><td>1. 5</td><td>2. 1</td><td>3.0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>67. 0</td><td>95. 0</td></b≤160<>	1. 5	2. 1	3.0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95. 0
	160 <b≤250< td=""><td>1. 8</td><td>2. 5</td><td>3.5</td><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>80. 0</td><td>113. 0</td></b≤250<>	1. 8	2. 5	3.5	5. 0	7. 0	10.0	14. 0	20. 0	28. 0	40. 0	56. 0	80. 0	113. 0
	250 <b≤400< td=""><td>2. 1</td><td>2. 9</td><td>4. 1</td><td>6. 0</td><td>8. 0</td><td>12. 0</td><td>16. 0</td><td>23. 0</td><td>33.0</td><td>46. 0</td><td>66. 0</td><td>93.0</td><td>132. 0</td></b≤400<>	2. 1	2. 9	4. 1	6. 0	8. 0	12. 0	16. 0	23. 0	33.0	46. 0	66. 0	93.0	132. 0
	4≤b≤10	0. 9	1.3	1.8	2. 5	3.6	5.0	7. 0	10.0	14. 0	20. 0	29. 0	41.0	58. 0
	10 <b≤20< td=""><td>1. 0</td><td>1.4</td><td>2. 0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td></b≤20<>	1. 0	1.4	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0
	20 <b≤40< td=""><td>1. 1</td><td>1.6</td><td>2. 2</td><td>3. 2</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td></b≤40<>	1. 1	1.6	2. 2	3. 2	4. 5	6. 5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0
125 . 1 - 200	40 <b≤80< td=""><td>1. 3</td><td>1.8</td><td>2. 6</td><td>3.7</td><td>5.0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>29. 0</td><td>42. 0</td><td>59. 0</td><td>83. 0</td></b≤80<>	1. 3	1.8	2. 6	3.7	5.0	7.5	10.0	15. 0	21.0	29. 0	42. 0	59. 0	83. 0
125< <i>d</i> ≤280	80 <b≤160< td=""><td>1. 5</td><td>2. 2</td><td>3. 1</td><td>4.4</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>25. 0</td><td>35. 0</td><td>49. 0</td><td>70.0</td><td>99. 0</td></b≤160<>	1. 5	2. 2	3. 1	4.4	6.0	8. 5	12. 0	17. 0	25. 0	35. 0	49. 0	70.0	99. 0
	160 <b≤250< td=""><td>1. 8</td><td>2. 6</td><td>3.6</td><td>5.0</td><td>7.5</td><td>10. 0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>83. 0</td><td>117. 0</td></b≤250<>	1. 8	2. 6	3.6	5.0	7.5	10. 0	15. 0	21. 0	29. 0	41.0	58. 0	83. 0	117. 0
	250 <b≤400< td=""><td>2. 1</td><td>3.0</td><td>4. 2</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>135. 0</td></b≤400<>	2. 1	3.0	4. 2	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	135. 0
	400 <b≤650< td=""><td>2. 5</td><td>3.5</td><td>5.0</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>40.0</td><td>56. 0</td><td>80. 0</td><td>113. 0</td><td>160. 0</td></b≤650<>	2. 5	3.5	5.0	7. 0	10. 0	14. 0	20. 0	28. 0	40.0	56. 0	80. 0	113. 0	160. 0
	10≤b≤20	1. 1	1.5	2. 2	3.0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0
	20 <b≤40< td=""><td>1. 2</td><td>1.7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td></b≤40<>	1. 2	1.7	2. 4	3.4	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0
	40 <b≤80< td=""><td>1. 4</td><td>1.9</td><td>2. 7</td><td>3. 9</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td></b≤80<>	1. 4	1.9	2. 7	3. 9	5. 5	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0
280 <d≤560< td=""><td>80<b≤160< td=""><td>1. 6</td><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>73. 0</td><td>104. 0</td></b≤160<></td></d≤560<>	80 <b≤160< td=""><td>1. 6</td><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>73. 0</td><td>104. 0</td></b≤160<>	1. 6	2. 3	3. 2	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	73. 0	104. 0
	160 <b≤250< td=""><td>1. 9</td><td>2. 7</td><td>3. 8</td><td>5. 5</td><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>30.0</td><td>43. 0</td><td>61.0</td><td>86. 0</td><td>122. 0</td></b≤250<>	1. 9	2. 7	3. 8	5. 5	7. 5	11.0	15. 0	22. 0	30.0	43. 0	61.0	86. 0	122. 0
	250 <b≤400< td=""><td>2. 2</td><td>3. 1</td><td>4. 4</td><td>6.0</td><td>9.0</td><td>12.0</td><td>18.0</td><td>25. 0</td><td>35.0</td><td>50.0</td><td>70.0</td><td>99.0</td><td>140. 0</td></b≤400<>	2. 2	3. 1	4. 4	6.0	9.0	12.0	18.0	25. 0	35.0	50.0	70.0	99.0	140. 0
	400 <b≤650< td=""><td>2. 6</td><td>3.6</td><td>5.0</td><td>7.5</td><td>10.0</td><td>15.0</td><td>21.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116. 0</td><td>165. 0</td></b≤650<>	2. 6	3.6	5.0	7.5	10.0	15.0	21.0	29. 0	41.0	58. 0	82. 0	116. 0	165. 0
	650< <i>b</i> ≤1000	3. 0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0	97. 0	137. 0	194. 0



续表

														<b>突表</b>
八座回去の	正母						;	精 度 等	<b>多</b>					
分度圆直径 d/mm	齿宽 b/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
a/ IIIII	0/11111						$f_{ m f}$	_β 和±f _{Hβ}	/µm					
	10≤b≤20	1. 2	1.7	2. 3	3.3	4. 7	6. 5	9. 5	13.0	19. 0	26. 0	37. 0	53.0	75. 0
	20 <b≤40< td=""><td>1. 3</td><td>1.8</td><td>2. 6</td><td>3.7</td><td>5.0</td><td>7.5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>83. 0</td></b≤40<>	1. 3	1.8	2. 6	3.7	5.0	7.5	10.0	15. 0	21.0	29. 0	41.0	58. 0	83. 0
	40 <b≤80< td=""><td>1. 5</td><td>2. 1</td><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>94. 0</td></b≤80<>	1. 5	2. 1	2. 9	4. 1	6.0	8. 5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	94. 0
560< <i>d</i>	80 <b≤160< td=""><td>1.7</td><td>2. 4</td><td>3. 4</td><td>4. 9</td><td>7. 0</td><td>9.5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>39. 0</td><td>55. 0</td><td>78. 0</td><td>110.0</td></b≤160<>	1.7	2. 4	3. 4	4. 9	7. 0	9.5	14. 0	19. 0	27. 0	39. 0	55. 0	78. 0	110.0
≤1000	160 <b≤250< td=""><td>2. 0</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>128. 0</td></b≤250<>	2. 0	2. 8	4. 0	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90.0	128. 0
	250 <b≤400< td=""><td>2. 3</td><td>3. 2</td><td>4. 6</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>26. 0</td><td>37. 0</td><td>52. 0</td><td>73. 0</td><td>103. 0</td><td>146. 0</td></b≤400<>	2. 3	3. 2	4. 6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	73. 0	103. 0	146. 0
	400 <b≤650< td=""><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>43. 0</td><td>60. 0</td><td>85. 0</td><td>121. 0</td><td>171. 0</td></b≤650<>	2. 7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43. 0	60. 0	85. 0	121. 0	171. 0
	650 <b≤1000< td=""><td>3. 1</td><td>4. 4</td><td>6. 5</td><td>9.0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50. 0</td><td>71. 0</td><td>100. 0</td><td>142. 0</td><td>200. 0</td></b≤1000<>	3. 1	4. 4	6. 5	9.0	13. 0	18. 0	25. 0	35. 0	50. 0	71. 0	100. 0	142. 0	200. 0
	20≤b≤40	1.4	2. 0	2. 8	3.9	5. 5	8. 0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	89. 0
	40 <b≤80< td=""><td>1. 6</td><td>2. 2</td><td>3. 1</td><td>4.4</td><td>6. 5</td><td>9. 0</td><td>13. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50. 0</td><td>71. 0</td><td>100. 0</td></b≤80<>	1. 6	2. 2	3. 1	4.4	6. 5	9. 0	13. 0	18. 0	25. 0	35. 0	50. 0	71. 0	100. 0
	80< <i>b</i> ≤160	1. 8	2. 6	3.6	5. 0	7. 5	10. 0	15. 0	21. 0	29. 0	41. 0	58. 0	82. 0	116. 0
$1000 {<} d$	160< <i>b</i> ≤250	2. 1	3.0	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	47. 0	67. 0	95. 0	134. 0
≤1600	250< <i>b</i> ≤400	2. 4	3.4	4. 8	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0	153. 0
	400< <i>b</i> ≤650	2. 8	3.9	5. 5	8.0	11.0	16. 0	22. 0	31. 0	44. 0	63. 0	89. 0	125. 0	177. 0
	650< <i>b</i> ≤1000	3. 2	4.6	6. 5	9.0	13. 0	18. 0	26. 0	37. 0	52. 0	73. 0	103. 0	146. 0	207. 0
	20≤b≤40	1. 5	2. 1	3.0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0
	40 <b≤80< td=""><td>1. 7</td><td>2. 4</td><td>3.4</td><td>4. 8</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td></b≤80<>	1. 7	2. 4	3.4	4. 8	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0
	80 <b≤160< td=""><td>1. 9</td><td>2. 7</td><td>3. 9</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>87. 0</td><td>124. 0</td></b≤160<>	1. 9	2. 7	3. 9	5. 5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	124. 0
$1600 {<} d$	160< <i>b</i> ≤250	2. 2	3. 1	4.4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50. 0	71. 0	100. 0	141. 0
≤2500	250< <i>b</i> ≤400	2. 5	3. 1	5. 0	7. 0	10. 0	14. 0	20. 0	28. 0	40. 0	57. 0	80. 0	113. 0	160. 0
	400< <i>b</i> ≤650	2. 9	4. 1	6.0	8.0	12. 0	16. 0	23. 0	33. 0	46. 0	65. 0	92. 0	130. 0	184. 0
	$650 < b \le 1000$ $40 \le b \le 80$	3. 3	4. 7 2. 6	6. 5	9. 5 5. 0	13. 0 7. 5	19. 0 10. 0	27. 0 15. 0	38. 0	53. 0	76. 0 41. 0	107. 0 58. 0	151. 0 83. 0	214. 0 117. 0
	80 <b≤160< td=""><td>2. 1</td><td>2. 9</td><td>4. 1</td><td>6.0</td><td>8.5</td><td>12. 0</td><td>17. 0</td><td>23. 0</td><td>33. 0</td><td>47. 0</td><td>66. 0</td><td>94. 0</td><td>133. 0</td></b≤160<>	2. 1	2. 9	4. 1	6.0	8.5	12. 0	17. 0	23. 0	33. 0	47. 0	66. 0	94. 0	133. 0
2500 <d< td=""><td>160<b≤250< td=""><td>2. 4</td><td>3. 3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>150. 0</td></b≤250<></td></d<>	160 <b≤250< td=""><td>2. 4</td><td>3. 3</td><td>4. 7</td><td>6. 5</td><td>9.5</td><td>13. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>150. 0</td></b≤250<>	2. 4	3. 3	4. 7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	53. 0	75. 0	106. 0	150. 0
≤4000	250 <b≤400< td=""><td>2. 6</td><td>3. 7</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>42. 0</td><td>60. 0</td><td>85. 0</td><td>120. 0</td><td>169. 0</td></b≤400<>	2. 6	3. 7	5. 5	7.5	11.0	15. 0	21. 0	30. 0	42. 0	60. 0	85. 0	120. 0	169. 0
	400 <b≤650< td=""><td>3. 0</td><td>4. 3</td><td>6.0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td><td>193. 0</td></b≤650<>	3. 0	4. 3	6.0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0	193. 0
	650 <b≤1000< td=""><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10. 0</td><td>14. 0</td><td>20. 0</td><td>28. 0</td><td>39. 0</td><td>56. 0</td><td>79. 0</td><td>112.0</td><td>158. 0</td><td>223. 0</td></b≤1000<>	3. 5	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	56. 0	79. 0	112.0	158. 0	223. 0
	80≤b≤160	2. 2	3. 2	4. 5	6.5	9.0	13. 0	18. 0	25. 0	36. 0	51.0	72. 0	101.0	144. 0
4000 <d< td=""><td>160<b≤250< td=""><td>2. 5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>40. 0</td><td>57. 0</td><td>81.0</td><td>114. 0</td><td>161. 0</td></b≤250<></td></d<>	160 <b≤250< td=""><td>2. 5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>40. 0</td><td>57. 0</td><td>81.0</td><td>114. 0</td><td>161. 0</td></b≤250<>	2. 5	3.6	5.0	7.0	10.0	14. 0	20.0	29. 0	40. 0	57. 0	81.0	114. 0	161. 0
≤6000	250 <b≤400< td=""><td>2. 8</td><td>4.0</td><td>5. 5</td><td>8.0</td><td>11.0</td><td>16. 0</td><td>22. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>127. 0</td><td>180. 0</td></b≤400<>	2. 8	4.0	5. 5	8.0	11.0	16. 0	22. 0	32. 0	45. 0	64. 0	90.0	127. 0	180. 0
	400< <i>b</i> ≤650	3. 2	4.5	6.5	9.0	13. 0	18. 0	26. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0
	$650 < b \le 1000$ $80 \le b \le 160$	3. 7 2. 4	5. 0 3. 4	7. 5 4. 8	7.0	15. 0 9. 5	21. 0 14. 0	29. 0 19. 0	41. 0	58. 0 39. 0	83. 0 54. 0	77. 0	165. 0 109. 0	234. 0 154. 0
	160< <i>b</i> ≤250								27. 0					
6000 <d< td=""><td></td><td>2. 7</td><td>3.8</td><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>21. 0</td><td>30. 0</td><td>43. 0</td><td>61. 0</td><td>86. 0</td><td>122. 0</td><td>172. 0</td></d<>		2. 7	3.8	5. 5	7.5	11.0	15. 0	21. 0	30. 0	43. 0	61. 0	86. 0	122. 0	172. 0
€8000	250 <b≤400< td=""><td>3. 0</td><td>4. 2</td><td>6.0</td><td>8.5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>67. 0</td><td>95. 0</td><td>135. 0</td><td>190. 0</td></b≤400<>	3. 0	4. 2	6.0	8.5	12. 0	17. 0	24. 0	34. 0	48. 0	67. 0	95. 0	135. 0	190. 0
	400< <i>b</i> ≤650	3. 4	4.7	6. 5	9.5	13. 0	19. 0	27. 0	38. 0	54. 0	76. 0	107. 0	152. 0	215. 0
	650 <b≤1000< td=""><td>3. 8</td><td>5.5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61. 0</td><td>86. 0</td><td>122. 0</td><td>173. 0</td><td>244. 0</td></b≤1000<>	3. 8	5.5	7.5	11.0	15. 0	22. 0	31.0	43. 0	61. 0	86. 0	122. 0	173. 0	244. 0
	80≤b≤160	2. 5	3.6	5.0	7.0	10.0	14. 0	20. 0	29. 0	41.0	58. 0	81.0	115. 0	163. 0
8000 <d< td=""><td>160&lt;<i>b</i>≤250</td><td>2. 8</td><td>4. 0</td><td>5. 5</td><td>8.0</td><td>11.0</td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>45. 0</td><td>64. 0</td><td>90.0</td><td>128. 0</td><td>181. 0</td></d<>	160< <i>b</i> ≤250	2. 8	4. 0	5. 5	8.0	11.0	16. 0	23. 0	32. 0	45. 0	64. 0	90.0	128. 0	181. 0
≤10000	250 <b≤400< td=""><td>3. 1</td><td>4. 4</td><td>6.0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70. 0</td><td>100. 0</td><td>141.0</td><td>199. 0</td></b≤400<>	3. 1	4. 4	6.0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70. 0	100. 0	141.0	199. 0
	400 <b≤650< td=""><td>3. 5</td><td>4. 9</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40. 0</td><td>56. 0</td><td>79. 0</td><td>112.0</td><td>158. 0</td><td>224. 0</td></b≤650<>	3. 5	4. 9	7. 0	10.0	14. 0	20.0	28. 0	40. 0	56. 0	79. 0	112.0	158. 0	224. 0
	650< <i>b</i> ≤1000	4. 0	5. 5	8.0	11.0	16. 0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	179. 0	253. 0

 $f_i'/K$  的比值

おけれ	衣 15-1-	- 00					J _i / A 出	1亿恒							
	八克园士石	) 1						;	精 度 等	级					
S   S   S   S   S   S   S   S   S   S			0	1	2	3	4	5	6	7	8	9	10	11	12
S = d ≤ 0   2 < m ≤ 3.5   2.8   4.0   5.5   8.0   11.0   16.0   23.0   23.0   45.0   64.0   91.0   129.0   182.0     20 < d ≤ 0   2 < m ≤ 3.5   3.0   4.2   6.0   8.5   12.0   17.0   24.0   30.0   29.0   41.0   88.0   82.0   115.0   163.0     20 < m ≤ 1 < m ≤ 3.5   3.0   4.2   6.0   8.5   12.0   17.0   24.0   34.0   48.0   68.0   96.0   135.0   191.0     3.5 m ≤ 6   3.4   4.8   7.0   9.5   14.0   19.0   27.0   38.0   54.0   77.0   108.0   135.0   191.0     50 < m ≤ 1 < 7 < m ≤ 3.5   8.0   11.0   16.0   22.0   31.0   44.0   62.0   88.0   124.0   170.0     20 < m ≤ 3.5 m ≤ 6   3.4   4.8   7.0   9.5   14.0   19.0   27.0   38.0   54.0   77.0   108.0   135.0   191.0     50 < m ≤ 1 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5	d/mm	m/mm					l		$(f'_i/K)/$	μm					
S = d ≤ 0   2 < m ≤ 3.5   2.8   4.0   5.5   8.0   11.0   16.0   23.0   23.0   45.0   64.0   91.0   129.0   182.0     20 < d ≤ 0   2 < m ≤ 3.5   3.0   4.2   6.0   8.5   12.0   17.0   24.0   30.0   29.0   41.0   88.0   82.0   115.0   163.0     20 < m ≤ 1 < m ≤ 3.5   3.0   4.2   6.0   8.5   12.0   17.0   24.0   34.0   48.0   68.0   96.0   135.0   191.0     3.5 m ≤ 6   3.4   4.8   7.0   9.5   14.0   19.0   27.0   38.0   54.0   77.0   108.0   135.0   191.0     50 < m ≤ 1 < 7 < m ≤ 3.5   8.0   11.0   16.0   22.0   31.0   44.0   62.0   88.0   124.0   170.0     20 < m ≤ 3.5 m ≤ 6   3.4   4.8   7.0   9.5   14.0   19.0   27.0   38.0   54.0   77.0   108.0   135.0   191.0     50 < m ≤ 1 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5 < m ≤ 5		0.5≤m≤2	2. 4	3.4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109. 0	154. 0
20     0.5 ≤ m ≤ 2     2.5     3.6     5.0     7.0     10.0     14.0     20.0     29.0     41.0     58.0     82.0     115.0     163.0       20     4 ≤ m ≤ 3.5     3.0     4.2     6.0     8.5     12.0     17.0     24.0     34.0     48.0     68.0     96.0     155.0     191.0       3.5 < m ≤ 6	5≤ <i>d</i> ≤20														
2															
6 <     6 <       0 <     0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <   0 <	$20 < d \le 50$														
8.6					8. 0	11.0					63. 0	89. 0			
Solition		0.5≤m≤2		3. 9	5. 5	8. 0					44. 0		88. 0		
$\begin{array}{c} 3.5 < m \leqslant 6 \\ 6 < m \leqslant 10 \\ 6 < m \leqslant 10$				4. 5	6. 5	9.0					51.0	72. 0	102. 0		
80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 <br< td=""><td></td><td></td><td></td><td></td><td>7. 0</td><td>10. 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>					7. 0	10. 0									
16<  m   25   5.5   8.0   11.0   16.0   23.0   32.0   46.0   65.0   91.0   12.0   183.0   259.0   366.0     2.5   2.6   3.0   4.3   6.0   8.5   12.0   17.0   24.0   34.0   49.0   69.0   97.0   137.0   194.0     3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   39.0   56.0   79.0   111.0   157.0   222.0     3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   39.0   56.0   79.0   111.0   157.0   222.0     3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   39.0   56.0   79.0   111.0   157.0   227.0     3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   39.0   56.0   79.0   111.0   157.0   227.0     3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   39.0   56.0   79.0   111.0   157.0   227.0     3.5   3.5   3.5   4.9   7.0   10.0   14.0   20.0   28.0   31.0   34.0     10<  4.5   5.5   7.0   10.0   14.0   20.0   29.0   41.0   58.0   82.0   115.0   16.0   12.0   21.0   231.0   326.0     25<  4.5   4.8   7.0   9.5   14.0   19.0   27.0   39.0   54.0   77.0   109.0   154.0   218.0     2.5   3.5   3.8   5.5   7.5   11.0   15.0   22.0   31.0   34.0   48.0   68.0   96.0   136.0   192.0   271.0     2.6   3.5   3.8   5.5   7.5   11.0   15.0   22.0   31.0   34.0   48.0   68.0   96.0   136.0   136.0   192.0   271.0     2.6   3.5   3.8   5.5   7.5   11.0   15.0   22.0   31.0   34.0   48.0   68.0   96.0   136.0   192.0   271.0     2.6   3.5   3.8   5.5   7.5   11.0   15.0   22.0   31.0   34.0   44.0   62.0   87.0   136.0   192.0   271.0     3.5   3.5   3.8   5.5   7.5   11.0   15.0   22.0   31.0   44.0   62.0   88.0   14.0   153.0   150.0   120.0   144.0     10<  4.8   6.5   5.5   7.5   11.0   15.0   22.0   31.0   44.0   62.0   88.0   14.0   153.0   150.0   120.0   140.0     10<  4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5	$50 < d \le 125$			6. 0	8. 0	12. 0		23. 0		47. 0		93. 0		186. 0	263. 0
$\begin{array}{c} 0.5 \leqslant m \leqslant 2 \\ 2 \leqslant m \leqslant 2 \\ 3.0 \\ 4.3 \\ 3.5 \\ 4.9 \\ 7.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10$		10 <m≤16< td=""><td>4. 8</td><td>7. 0</td><td>9. 5</td><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>77. 0</td><td>109. 0</td><td>154. 0</td><td>218. 0</td><td>308. 0</td></m≤16<>	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	38. 0	54. 0	77. 0	109. 0	154. 0	218. 0	308. 0
$125 < d \leqslant 288                                $		16< <i>m</i> ≤25	5. 5	8. 0	11.0	16. 0	23. 0	32. 0	46. 0	65. 0	91.0	129. 0	183. 0	259. 0	366. 0
$ \begin{array}{c} 3.5 < m \leqslant 6 \\ 6 < m \leqslant 10 \\ 6 < m \leqslant 1$		0.5≤m≤2	3. 0	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0	97. 0	137. 0	194. 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2< <i>m</i> ≤3.5	3. 5	4. 9	7. 0	10. 0	14. 0	20. 0	28. 0	39. 0	56. 0	79. 0	111.0	157. 0	222. 0
$ \begin{array}{c} 10 < m \leqslant 16 \\ 16                              $		3. 5< <i>m</i> ≤6	3. 9	5. 5	7. 5	11. 0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0	247. 0
$ \begin{array}{c} 16 < m \leqslant 25 \\ 25 < m \leqslant 40 \\ 25 < m \leqslant 40 \\ 7.5 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10$	125 <d≤280< td=""><td>6<m≤10< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70.0</td><td>100.0</td><td>141.0</td><td>199. 0</td><td>281. 0</td></m≤10<></td></d≤280<>	6 <m≤10< td=""><td>4. 4</td><td>6. 0</td><td>9.0</td><td>12. 0</td><td>18. 0</td><td>25. 0</td><td>35. 0</td><td>50.0</td><td>70.0</td><td>100.0</td><td>141.0</td><td>199. 0</td><td>281. 0</td></m≤10<>	4. 4	6. 0	9.0	12. 0	18. 0	25. 0	35. 0	50.0	70.0	100.0	141.0	199. 0	281. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 <m≤16< td=""><td>5. 0</td><td>7. 0</td><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>115. 0</td><td>163. 0</td><td>231. 0</td><td>326. 0</td></m≤16<>	5. 0	7. 0	10.0	14. 0	20.0	29. 0	41.0	58. 0	82. 0	115. 0	163. 0	231. 0	326. 0
$ 280 < d \le 560                                  $		16< <i>m</i> ≤25	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96.0	136.0	192. 0	272. 0	384. 0
$280 < d \leqslant 560$ $280 < d \leqslant 560$ $280 < d \leqslant 560$ $3.5 < m \leqslant 6$ $4.2$ $4.8$ $6.0$ $8.5$ $12.0$ $17.0$ $24.0$ $34.0$ $48.0$ $48.0$ $68.0$ $96.0$ $136.0$ $192.0$ $271.0$ $271.0$ $271.0$ $280 < 380.0$ $180.0$ $192.0$ $271.0$ $271.0$ $280 < 380.0$ $180.0$ $180.0$ $180.0$ $180.0$ $192.0$ $271.0$ $271.0$ $280.0$ $180.0$ $192.0$ $271.0$ $271.0$ $280.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $271.0$ $180.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $192.0$ $193.0$ $193.0$ $193.0$ $194.0$ $193.0$ $194.0$ $193.0$ $194.0$ $193.0$ $194.0$ $193.0$ $19$		25 <m≤40< td=""><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21. 0</td><td>29. 0</td><td>41.0</td><td>58. 0</td><td>82. 0</td><td>116.0</td><td>165. 0</td><td>233. 0</td><td>329. 0</td><td>465. 0</td></m≤40<>	7. 5	10.0	15. 0	21. 0	29. 0	41.0	58. 0	82. 0	116.0	165. 0	233. 0	329. 0	465. 0
$280 < d \leqslant 560$ $= \begin{cases} 3.5 < m \leqslant 6 & 4.2 & 6.0 & 8.5 & 12.0 & 17.0 & 24.0 & 34.0 & 48.0 & 68.0 & 96.0 & 136.0 & 192.0 & 271.0 \\ 6 < m \leqslant 10 & 4.8 & 6.5 & 9.5 & 13.0 & 19.0 & 27.0 & 38.0 & 54.0 & 76.0 & 108.0 & 153.0 & 216.0 & 305.0 \\ 10 < m \leqslant 16 & 5.5 & 7.5 & 11.0 & 15.0 & 22.0 & 31.0 & 44.0 & 62.0 & 88.0 & 124.0 & 175.0 & 248.0 & 350.0 \\ 16 < m \leqslant 25 & 6.5 & 9.0 & 13.0 & 18.0 & 26.0 & 36.0 & 51.0 & 72.0 & 102.0 & 144.0 & 204.0 & 289.0 & 408.0 \\ 25 < m \leqslant 40 & 7.5 & 11.0 & 15.0 & 22.0 & 31.0 & 43.0 & 61.0 & 86.0 & 122.0 & 173.0 & 245.0 & 346.0 & 489.0 \\ 40 < m \leqslant 70 & 9.5 & 14.0 & 19.0 & 27.0 & 39.0 & 55.0 & 78.0 & 110.0 & 155.0 & 22.0 & 311.0 & 439.0 & 621.0 \\ 2 < m \leqslant 3.5 & 4.3 & 6.0 & 8.5 & 12.0 & 17.0 & 24.0 & 34.0 & 49.0 & 69.0 & 97.0 & 137.0 & 194.0 & 275.0 \\ 3.5 < m \leqslant 6 & 4.7 & 6.5 & 9.5 & 13.0 & 19.0 & 27.0 & 38.0 & 53.0 & 75.0 & 106.0 & 150.0 & 212.0 & 300.0 \\ 6 < m \leqslant 10 & 5.0 & 7.5 & 10.0 & 15.0 & 21.0 & 30.0 & 42.0 & 59.0 & 84.0 & 118.0 & 167.0 & 236.0 & 334.0 \\ 8 < 1000 & 10 < m \leqslant 16 & 6.0 & 8.5 & 12.0 & 17.0 & 24.0 & 33.0 & 47.0 & 67.0 & 95.0 & 134.0 & 189.0 & 268.0 & 379.0 \\ 10 < m \leqslant 16 & 6.0 & 8.5 & 12.0 & 17.0 & 24.0 & 33.0 & 47.0 & 67.0 & 95.0 & 134.0 & 189.0 & 268.0 & 379.0 \\ 10 < m \leqslant 15 & 7.0 & 9.5 & 14.0 & 19.0 & 27.0 & 39.0 & 55.0 & 77.0 & 109.0 & 154.0 & 218.0 & 309.0 & 437.0 \\ 25 < m \leqslant 40 & 8.0 & 11.0 & 16.0 & 23.0 & 32.0 & 46.0 & 65.0 & 92.0 & 129.0 & 183.0 & 259.0 & 366.0 & 518.0 \\ 40 < m \leqslant 70 & 10.0 & 14.0 & 20.0 & 29.0 & 41.0 & 57.0 & 81.0 & 115.0 & 163.0 & 230.0 & 325.0 & 460.0 & 650.0 \\ 8 < 1600 < m \leqslant 10 & 5.5 & 8.0 & 11.0 & 16.0 & 23.0 & 32.0 & 46.0 & 65.0 & 91.0 & 129.0 & 183.0 & 259.0 & 366.0 \\ 10 < m \leqslant 16 & 6.5 & 9.0 & 13.0 & 18.0 & 26.0 & 36.0 & 51.0 & 77.0 & 108.0 & 153.0 & 217.0 & 307.0 \\ 8 < 100 < m \leqslant 16 & 6.5 & 9.0 & 13.0 & 18.0 & 26.0 & 36.0 & 51.0 & 77.0 & 108.0 & 153.0 & 217.0 & 307.0 \\ 8 < 100 < m \leqslant 16 & 6.5 & 9.0 & 13.0 & 18.0 & 26.0 & 36.0 & 51.0 & 77.0 & 108.0 & 133.0 & 259.0 & 366.0 \\ 10 < m \leqslant 10 & 6.5 & 9.0 & 13.0 & 18.0 & 26.0 & 36.0 & 51.0 & 77.0 & 109.0 & 141.0 & 341.$		0.5≤m≤2	3. 4	4. 8	7. 0	9.5	14. 0	19. 0	27. 0	39. 0	54. 0	77. 0	109. 0	154. 0	218. 0
$ 280 < d \leqslant 560                                  $		2< <i>m</i> ≤3.5	3.8	5. 5	7. 5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	123. 0	174. 0	246. 0
100   10   10   10   10   10   10   1		3.5 <m≤6< td=""><td>4. 2</td><td>6. 0</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>136. 0</td><td>192. 0</td><td>271.0</td></m≤6<>	4. 2	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	192. 0	271.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200 - 1 - 560	6 <m≤10< td=""><td>4. 8</td><td>6. 5</td><td>9. 5</td><td>13. 0</td><td>19.0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td><td>153. 0</td><td>216. 0</td><td>305. 0</td></m≤10<>	4. 8	6. 5	9. 5	13. 0	19.0	27. 0	38. 0	54. 0	76. 0	108. 0	153. 0	216. 0	305. 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280< <i>a</i> ≤ 500	10 <m≤16< td=""><td>5. 5</td><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>44. 0</td><td>62. 0</td><td>88. 0</td><td>124. 0</td><td>175. 0</td><td>248. 0</td><td>350. 0</td></m≤16<>	5. 5	7.5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	88. 0	124. 0	175. 0	248. 0	350. 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16 <m≤25< td=""><td>6. 5</td><td>9.0</td><td>13.0</td><td>18. 0</td><td>26. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>144. 0</td><td>204. 0</td><td>289. 0</td><td>408. 0</td></m≤25<>	6. 5	9.0	13.0	18. 0	26. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0	289. 0	408. 0
$ \begin{array}{c} 0.5 \leqslant m \leqslant 2 \\ 2 < m \leqslant 3.5 \\ 4.3 \\ 6.0 \\ 8.5 \\ 12.0 \\ 17.0 \\ 24.0 \\ 34.0 \\ 40.0 \\ 8.1000 \\ 8.1000 \\ 8.1000 \\ 8.1000 \\ 100 < m \leqslant 16 \\ 6.0 \\ 8.5 \\ 12.0 \\ 17.0 \\ 10.0 \\ 8.10 \\ 100 < m \leqslant 16 \\ 8.0 \\ 11.0 \\ 10.0 \\ 8.1000 \\ 8.1000 \\ 10.0 \\ 8.1000 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 $		25 <m≤40< td=""><td>7. 5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43.0</td><td>61.0</td><td>86. 0</td><td>122. 0</td><td>173.0</td><td>245. 0</td><td>346. 0</td><td>489. 0</td></m≤40<>	7. 5	11.0	15. 0	22. 0	31.0	43.0	61.0	86. 0	122. 0	173.0	245. 0	346. 0	489. 0
$ \begin{array}{c} 2 < m \leqslant 3.5 \\ 3.5 < m \leqslant 6 \\ 4.7 \\ 6.5 \\ 9.5 \\ 13.0 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 8.1 \\ 10.0 \\ 10.0 \\ 8.1 \\ 10.0 \\ 10.0 \\ 8.1 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\$		40< <i>m</i> ≤70	9. 5	14. 0	19.0	27. 0	39. 0	55. 0	78. 0	110.0	155. 0	220.0	311.0	439. 0	621.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$0.5 \le m \le 2$	3. 9	5. 5	7. 5	11.0	15. 0	22. 0	31.0	44. 0	62. 0	87. 0	123. 0	174. 0	247. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2< <i>m</i> ≤3.5	4. 3	6. 0	8. 5	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0	97. 0	137. 0	194. 0	275. 0
		3. 5< <i>m</i> ≤6	4. 7	6. 5	9. 5	13. 0	19. 0	27. 0	38. 0	53.0	75.0	106. 0	150. 0	212. 0	300.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	560 <d< td=""><td>6<m≤10< td=""><td>5. 0</td><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>59. 0</td><td>84. 0</td><td>118.0</td><td>167. 0</td><td>236. 0</td><td>334. 0</td></m≤10<></td></d<>	6 <m≤10< td=""><td>5. 0</td><td>7. 5</td><td>10.0</td><td>15. 0</td><td>21.0</td><td>30.0</td><td>42. 0</td><td>59. 0</td><td>84. 0</td><td>118.0</td><td>167. 0</td><td>236. 0</td><td>334. 0</td></m≤10<>	5. 0	7. 5	10.0	15. 0	21.0	30.0	42. 0	59. 0	84. 0	118.0	167. 0	236. 0	334. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	≤1000	10< <i>m</i> ≤16	6. 0	8. 5	12. 0	17. 0	24. 0	33. 0	47. 0	67. 0	95.0	134. 0	189. 0	268. 0	379. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7. 0												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		25 <m≤40< td=""><td>8. 0</td><td>11.0</td><td>16.0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65. 0</td><td>92. 0</td><td>129. 0</td><td>183. 0</td><td>259. 0</td><td>366. 0</td><td>518. 0</td></m≤40<>	8. 0	11.0	16.0	23. 0	32. 0	46. 0	65. 0	92. 0	129. 0	183. 0	259. 0	366. 0	518. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40 <m≤70< td=""><td>10.0</td><td>14. 0</td><td>20.0</td><td>29. 0</td><td>41.0</td><td>57. 0</td><td>81.0</td><td>115.0</td><td>163. 0</td><td>230. 0</td><td>325. 0</td><td>460. 0</td><td>650. 0</td></m≤70<>	10.0	14. 0	20.0	29. 0	41.0	57. 0	81.0	115.0	163. 0	230. 0	325. 0	460. 0	650. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2 \leq m \leq 3.5$	4. 8	7. 0	9. 5	14. 0	19. 0	27. 0	38. 0	54. 0	77.0	108. 0	153. 0	217. 0	307. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3. 5< <i>m</i> ≤6	5. 0	7.5	10.0	15. 0	21.0	29. 0	41.0	59. 0	83.0		166. 0	235. 0	332. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000 <d< td=""><td>6<m≤10< td=""><td>5. 5</td><td></td><td></td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td></td><td></td><td></td><td></td><td></td><td>366. 0</td></m≤10<></td></d<>	6 <m≤10< td=""><td>5. 5</td><td></td><td></td><td>16. 0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td></td><td></td><td></td><td></td><td></td><td>366. 0</td></m≤10<>	5. 5			16. 0	23. 0	32. 0	46. 0						366. 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
≤2500       16 <m≤25< td="">       8.0       11.0       16.0       22.0       31.0       45.0       63.0       89.0       126.0       178.0       252.0       356.0       504.0         25<m≤40< td="">       9.0       13.0       18.0       26.0       37.0       52.0       73.0       103.0       146.0       207.0       292.0       413.0       585.0</m≤40<></m≤25<>															
25 <m≤40 103.0="" 13.0="" 146.0="" 18.0="" 207.0="" 26.0="" 292.0="" 37.0="" 413.0="" 52.0="" 585.0<="" 73.0="" 9.0="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></m≤40>															
	≤2500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
		40< <i>m</i> ≤70	11.0	16.0	22. 0	32. 0	45. 0	63. 0	90.0	127. 0	179. 0	253. 0	358. 0	507. 0	717. 0



续表

														~~~
八座回去初	N. 1- 122 W.						1,	精 度 等	手级					
分度圆直径 d/mm	法向模数 m/mm	0	1	2	3	4	5	6	7	8	9	10	11	12
a/ mm	<i>m</i> / mm						•	$(f_i'/K)/$	/μm					
	6≤m≤10	7. 0	10.0	14. 0	20.0	28. 0	39. 0	56.0	79. 0	111.0	157. 0	223. 0	315.0	445. 0
2500 <d< td=""><td>10<m≤16< td=""><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61.0</td><td>87. 0</td><td>122. 0</td><td>173.0</td><td>245. 0</td><td>346. 0</td><td>490.0</td></m≤16<></td></d<>	10 <m≤16< td=""><td>7.5</td><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43. 0</td><td>61.0</td><td>87. 0</td><td>122. 0</td><td>173.0</td><td>245. 0</td><td>346. 0</td><td>490.0</td></m≤16<>	7.5	11.0	15. 0	22. 0	31.0	43. 0	61.0	87. 0	122. 0	173.0	245. 0	346. 0	490.0
≤4000	16 <m≤25< td=""><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>97. 0</td><td>137. 0</td><td>194. 0</td><td>274. 0</td><td>387. 0</td><td>548. 0</td></m≤25<>	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	97. 0	137. 0	194. 0	274. 0	387. 0	548. 0
₹4000	25 <m≤40< td=""><td>10.0</td><td>14. 0</td><td>20.0</td><td>28. 0</td><td>39. 0</td><td>56.0</td><td>79. 0</td><td>111.0</td><td>157. 0</td><td>222. 0</td><td>315.0</td><td>445.0</td><td>629. 0</td></m≤40<>	10.0	14. 0	20.0	28. 0	39. 0	56.0	79. 0	111.0	157. 0	222. 0	315.0	445.0	629. 0
	40 <m≤70< td=""><td>12.0</td><td>17.0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>67. 0</td><td>95.0</td><td>135. 0</td><td>190.0</td><td>269. 0</td><td>381.0</td><td>538. 0</td><td>761. 0</td></m≤70<>	12.0	17.0	24. 0	34. 0	48. 0	67. 0	95.0	135. 0	190.0	269. 0	381.0	538. 0	761. 0
	6≤m≤10	8. 0	11.0	16. 0	22. 0	31.0	44. 0	62. 0	88. 0	125. 0	176. 0	249. 0	352. 0	498. 0
4000 <d< td=""><td>10<<i>m</i>≤16</td><td>8. 5</td><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>48. 0</td><td>68. 0</td><td>96. 0</td><td>136. 0</td><td>192. 0</td><td>271.0</td><td>384. 0</td><td>543.0</td></d<>	10< <i>m</i> ≤16	8. 5	12. 0	17. 0	24. 0	34. 0	48. 0	68. 0	96. 0	136. 0	192. 0	271.0	384. 0	543.0
4000< <i>a</i> ≤6000	16 <m≤25< td=""><td>9. 5</td><td>13.0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>53. 0</td><td>75. 0</td><td>106. 0</td><td>150.0</td><td>212. 0</td><td>300.0</td><td>425.0</td><td>601.0</td></m≤25<>	9. 5	13.0	19. 0	27. 0	38. 0	53. 0	75. 0	106. 0	150.0	212. 0	300.0	425.0	601.0
€0000	25 <m≤40< td=""><td>11.0</td><td>15.0</td><td>21.0</td><td>30.0</td><td>43. 0</td><td>60.0</td><td>85. 0</td><td>121.0</td><td>170.0</td><td>241.0</td><td>341.0</td><td>482. 0</td><td>682. 0</td></m≤40<>	11.0	15.0	21.0	30.0	43. 0	60.0	85. 0	121.0	170.0	241.0	341.0	482. 0	682. 0
	40 <m≤70< td=""><td>13.0</td><td>18. 0</td><td>25. 0</td><td>36. 0</td><td>51.0</td><td>72. 0</td><td>102. 0</td><td>144. 0</td><td>204. 0</td><td>288. 0</td><td>407.0</td><td>576.0</td><td>814. 0</td></m≤70<>	13.0	18. 0	25. 0	36. 0	51.0	72. 0	102. 0	144. 0	204. 0	288. 0	407.0	576.0	814. 0
	10≤m≤16	9. 5	13.0	19. 0	26. 0	37. 0	52. 0	74. 0	105.0	148. 0	210.0	297. 0	420.0	594. 0
6000 < d	16< <i>m</i> ≤25	10.0	14. 0	20.0	29. 0	41.0	58. 0	81.0	115.0	163.0	230. 0	326. 0	461.0	652. 0
≤8000	25 <m≤40< td=""><td>11.0</td><td>16.0</td><td>23. 0</td><td>32. 0</td><td>46. 0</td><td>65.0</td><td>92. 0</td><td>130.0</td><td>183. 0</td><td>259. 0</td><td>366. 0</td><td>518.0</td><td>733. 0</td></m≤40<>	11.0	16.0	23. 0	32. 0	46. 0	65.0	92. 0	130.0	183. 0	259. 0	366. 0	518.0	733. 0
	40 <m≤70< td=""><td>14. 0</td><td>19. 0</td><td>27. 0</td><td>38. 0</td><td>54. 0</td><td>76. 0</td><td>108. 0</td><td>153. 0</td><td>216. 0</td><td>306. 0</td><td>432. 0</td><td>612. 0</td><td>865. 0</td></m≤70<>	14. 0	19. 0	27. 0	38. 0	54. 0	76. 0	108. 0	153. 0	216. 0	306. 0	432. 0	612. 0	865. 0
<u> </u>	10≤m≤16	10.0	14. 0	20. 0	28. 0	40.0	56. 0	80.0	113.0	159. 0	225. 0	319.0	451.0	637. 0
8000 < d	16 <m≤25< td=""><td>11.0</td><td>15. 0</td><td>22. 0</td><td>31.0</td><td>43.0</td><td>61.0</td><td>87. 0</td><td>123. 0</td><td>174. 0</td><td>246. 0</td><td>348. 0</td><td>492. 0</td><td>695.0</td></m≤25<>	11.0	15. 0	22. 0	31.0	43.0	61.0	87. 0	123. 0	174. 0	246. 0	348. 0	492. 0	695.0
≤10000	25 <m≤40< td=""><td>12. 0</td><td>17. 0</td><td>24. 0</td><td>34. 0</td><td>49. 0</td><td>69. 0</td><td>97. 0</td><td>137. 0</td><td>194. 0</td><td>275. 0</td><td>388. 0</td><td>549. 0</td><td>777. 0</td></m≤40<>	12. 0	17. 0	24. 0	34. 0	49. 0	69. 0	97. 0	137. 0	194. 0	275. 0	388. 0	549. 0	777. 0
	40 <m≤70< td=""><td>14. 0</td><td>20.0</td><td>28. 0</td><td>40. 0</td><td>57. 0</td><td>80. 0</td><td>114. 0</td><td>161.0</td><td>227. 0</td><td>321.0</td><td>454. 0</td><td>642. 0</td><td>909. 0</td></m≤70<>	14. 0	20.0	28. 0	40. 0	57. 0	80. 0	114. 0	161.0	227. 0	321.0	454. 0	642. 0	909. 0

注: f_i 的公差值,由表中的值乘以K计算得出。

表 15-1-61

径向综合偏差 F_i''

八克图士石	N.L. pl-1 444 464 c					精度等	级			
分度圆直径 d/mm	法向模数	4	5	6	7	8	9	10	11	12
a/ mm	$m_{ m n}/{ m mm}$					$F_{\rm i}''/\mu{ m m}$				1
	$0.2 \le m_{\rm n} \le 0.5$	7. 5	11	15	21	30	42	60	85	120
	$0.5 < m_n \le 0.8$	8. 0	12	16	23	33	46	66	93	131
5≤ <i>d</i> ≤20	$0.8 < m_n \le 1.0$	9.0	12	18	25	35	50	70	100	141
$3 \leqslant a \leqslant 20$	$1.0 < m_n \le 1.5$	10	14	19	27	38	54	76	108	153
	1. $5 < m_n \le 2.5$	11	16	22	32	45	63	89	126	179
	$2.5 < m_n \le 4.0$	14	20	28	39	56	79	112	158	223
	$0.2 \le m_{\rm n} \le 0.5$	9. 0	13	19	26	37	52	74	105	148
	$0.5 < m_{\rm n} \le 0.8$	10	14	20	28	40	56	80	113	160
	$0.8 < m_n \le 1.0$	11	15	21	30	42	60	85	120	169
20 <d≤50< td=""><td>$1.0 < m_{\rm n} \le 1.5$</td><td>11</td><td>16</td><td>23</td><td>32</td><td>45</td><td>64</td><td>91</td><td>128</td><td>181</td></d≤50<>	$1.0 < m_{\rm n} \le 1.5$	11	16	23	32	45	64	91	128	181
20 <a 50<="" td="" ≤=""><td>1. $5 < m_n \le 2.5$</td><td>13</td><td>18</td><td>26</td><td>37</td><td>52</td><td>73</td><td>103</td><td>146</td><td>207</td>	1. $5 < m_n \le 2.5$	13	18	26	37	52	73	103	146	207
	$2.5 < m_{\rm n} \le 4.0$	16	22	31	44	63	89	126	178	251
	$4.0 < m_{\rm n} \le 6.0$	20	28	39	56	79	111	157	222	314
	6. $0 < m_n \le 10$	26	37	52	74	104	147	209	295	417
	$0.2 \le m_{\rm n} \le 0.5$	12	16	23	33	46	66	93	131	185
	$0.5 < m_n \le 0.8$	12	17	25	35	49	70	98	139	197
	$0.8 < m_n \le 1.0$	13	18	26	36	52	73	103	146	206
50 <d≤125< td=""><td>$1.0 < m_n \le 1.5$</td><td>14</td><td>19</td><td>27</td><td>39</td><td>55</td><td>77</td><td>109</td><td>154</td><td>218</td></d≤125<>	$1.0 < m_n \le 1.5$	14	19	27	39	55	77	109	154	218
50 <a≥125< td=""><td>$1.5 < m_n \le 2.5$</td><td>15</td><td>22</td><td>31</td><td>43</td><td>61</td><td>86</td><td>122</td><td>173</td><td>244</td></a≥125<>	$1.5 < m_n \le 2.5$	15	22	31	43	61	86	122	173	244
	$2.5 < m_{\rm n} \le 4.0$	18	25	36	51	72	102	144	204	288
	$4.0 < m_{\rm n} \le 6.0$	22	31	44	62	88	124	176	248	351
	6. 0< <i>m</i> _n ≤10	28	40	57	80	114	161	227	321	454

										-><-
八座回去名	沙· 卢·特·米r					精度等	级			
分度圆直径 <i>d/</i> mm	法向模数 m _n /mm	4	5	6	7	8	9	10	11	12
a/ mm	m _n / mm					$F_{\rm i}''/\mu{ m m}$				
	$0.2 \le m_n \le 0.5$	15	21	30	42	60	85	120	170	240
	$0.5 < m_n \le 0.8$	16	22	31	44	63	89	126	178	252
	$0.8 < m_n \le 1.0$	16	23	33	46	65	92	131	185	261
125 - 1 - 200	$1.0 < m_n \le 1.5$	17	24	34	48	68	97	137	193	273
125< <i>d</i> ≤ 280	1.5 <m<sub>n≤2.5</m<sub>	19	26	37	53	75	106	149	211	299
	$2.5 < m_n \le 4.0$	21	30	43	61	86	121	172	243	343
	4. 0< <i>m</i> _n ≤6. 0	25	36	51	72	102	144	203	287	406
	6. 0< <i>m</i> _n ≤ 10	32	45	64	90	127	180	255	360	509
	$0.2 \le m_{\rm n} \le 0.5$	19	28	39	55	78	110	156	220	311
	$0.5 < m_n \le 0.8$	20	29	40	57	81	114	161	228	323
	$0.8 < m_n \le 1.0$	21	29	42	59	83	117	166	235	332
200 - 1 - 560	$1.0 < m_n \le 1.5$	22	30	43	61	86	122	172	243	344
280< <i>d</i> ≤560	1.5 <m<sub>n≤2.5</m<sub>	23	33	46	65	92	131	185	262	370
	$2.5 < m_{\rm n} \le 4.0$	26	37	52	73	104	146	207	293	414
	4. 0< <i>m</i> _n ≤6. 0	30	42	60	84	119	169	239	337	477
	6. 0< <i>m</i> _n ≤ 10	36	51	73	103	145	205	290	410	580
	$0.2 \le m_{\rm n} \le 0.5$	25	35	50	70	99	140	198	280	396
	$0.5 < m_n \le 0.8$	25	36	51	72	102	144	204	288	408
	$0.8 < m_n \le 1.0$	26	37	52	74	104	148	209	295	417
560 <d≤1000< td=""><td>$1.0 < m_{\rm n} \le 1.5$</td><td>27</td><td>38</td><td>54</td><td>76</td><td>107</td><td>152</td><td>215</td><td>304</td><td>429</td></d≤1000<>	$1.0 < m_{\rm n} \le 1.5$	27	38	54	76	107	152	215	304	429
500 <a 1000<="" td="" ≥=""><td>1.5<m<sub>n≤2.5</m<sub></td><td>28</td><td>40</td><td>57</td><td>80</td><td>114</td><td>161</td><td>228</td><td>322</td><td>455</td>	1.5 <m<sub>n≤2.5</m<sub>	28	40	57	80	114	161	228	322	455
	$2.5 < m_{\rm n} \le 4.0$	31	44	62	88	125	177	250	353	499
	4. 0< <i>m</i> _n ≤6. 0	35	50	70	99	141	199	281	398	562
	6. 0< <i>m</i> _n ≤10	42	59	83	118	166	235	333	471	665

一齿径向综合偏差 $f_{ m i}'$

八座回去公	法向模数					精度等	级			
分度圆直径 <i>d</i> /mm	$m_{\rm n}/{ m mm}$	4	5	6	7	8	9	10	11	12
<i>a</i> / mm	m _n , mm					$f_{\rm i}''/\mu{ m m}$				
	$0.2 \le m_{\rm n} \le 0.5$	1.0	2. 0	2. 5	3. 5	5. 0	7. 0	10	14	20
	$0.5 < m_n \le 0.8$	2. 0	2. 5	4. 0	5. 5	7. 5	11	15	22	31
5 - 1 - 20	$0.8 < m_n \le 1.0$	2. 5	3. 5	5. 0	7. 0	10	14	20	28	39
$5 \leqslant d \leqslant 20$	1. 0 <m<sub>n≤1. 5</m<sub>	3. 0	4. 5	6. 5	9. 0	13	18	25	36	50
	$1.5 < m_n \le 2.5$	4. 5	6. 5	9. 5	13	19	26	37	53	74
	$2.5 < m_n \le 4.0$	7. 0	10	14	20	29	41	58	82	115
	$0.2 \le m_{\rm n} \le 0.5$	1. 5	2. 0	2. 5	3. 5	5. 0	7. 0	10	14	20
	$0.5 < m_{\rm n} \le 0.8$	2. 0	2. 5	4. 0	5. 5	7. 5	11	15	22	31
	$0.8 < m_n \le 1.0$	2. 5	3. 5	5. 0	7. 0	10	14	20	28	40
20 <d≤50< td=""><td>$1.0 < m_n \le 1.5$</td><td>3. 0</td><td>4. 5</td><td>6. 5</td><td>9. 0</td><td>13</td><td>18</td><td>25</td><td>36</td><td>51</td></d≤50<>	$1.0 < m_n \le 1.5$	3. 0	4. 5	6. 5	9. 0	13	18	25	36	51
20< <i>a</i> ≤ 50	1. $5 < m_n \le 2.5$	4. 5	6. 5	9. 5	13	19	26	37	53	75
	$2.5 < m_n \le 4.0$	7. 0	10	14	20	29	41	58	82	116
	$4.0 < m_n \le 6.0$	11	15	22	31	43	61	87	123	174
	6. 0< <i>m</i> _n ≤ 10	17	24	34	48	67	95	135	190	269

续表

						精度等	级			- 安化
分度圆直径	法向模数	4	5	6	7	8	9	10	11	12
d∕mm	$m_{ m n}/{ m mm}$		l	l					l	
	$0.2 \le m_{\rm n} \le 0.5$	1.5	2. 0	2. 5	3. 5	5. 0	7. 5	10	15	21
	$0.5 < m_{\rm n} \le 0.8$	2. 0	3. 0	4. 0	5. 5	8. 0	11	16	22	31
	$0.8 < m_{\rm n} \le 1.0$	2. 5	3. 5	5. 0	7. 0	10	14	20	28	40
	1. 0< <i>m</i> _n ≤ 1. 5	3. 0	4. 5	6. 5	9. 0	13	18	26	36	51
50< <i>d</i> ≤ 125	1.5 <m<sub>n≤2.5</m<sub>	4. 5	6. 5	9. 5	13	19	26	37	53	75
	$2.5 < m_{\rm n} \le 4.0$	7. 0	10	14	20	29	41	58	82	116
	$4.0 < m_n \le 6.0$	11	15	22	31	44	62	87	123	174
	6. 0< <i>m</i> _n ≤ 10	17	24	34	48	67	95	135	191	269
	$0.2 \le m_{\rm n} \le 0.5$	1. 5	2. 0	2. 5	3. 5	5. 5	7. 5	11	15	21
	$0.5 < m_n \le 0.8$	2. 0	3. 0	4. 0	5. 5	8. 0	11	16	22	32
	$0.8 < m_n \le 1.0$	2. 5	3. 5	5. 0	7. 0	10	14	20	29	41
	1. 0< <i>m</i> _n ≤ 1. 5	3. 0	4. 5	6. 5	9. 0	13	18	26	36	52
$125 < d \le 280$	1. 5< <i>m</i> _n ≤ 2. 5	4. 5	6. 5	9. 5	13	19	27	38	53	75
	$2.5 < m_n \le 4.0$	7. 5	10	15	21	29	41	58	82	116
	$4.0 < m_n \le 6.0$	11	15	22	31	44	62	87	124	175
	6. 0< <i>m</i> _n ≤10	17	24	34	48	67	95	135	191	270
	$0.2 \le m_{\rm n} \le 0.5$	1. 5	2. 0	2. 5	4. 0	5. 5	7. 5	11	15	22
	$0.5 < m_{\rm n} \le 0.8$	2. 0	3. 0	4. 0	5. 5	8. 0	11	16	23	32
	$0.8 < m_{\rm n} \le 1.0$	2. 5	3.5	5. 0	7. 5	10	15	21	29	41
200 - 1 - 500	$1.0 < m_{\rm n} \le 1.5$	3. 5	4. 5	6. 5	9. 0	13	18	26	37	52
$280 < d \le 560$	$1.5 < m_n \le 2.5$	5. 0	6. 5	9. 5	13	19	27	38	54	76
	$2.5 < m_n \le 4.0$	7. 5	10	15	21	29	41	59	83	117
	$4.0 < m_n \le 6.0$	11	15	22	31	44	62	88	124	175
	6. 0< <i>m</i> _n ≤10	17	24	34	48	68	96	135	191	271
	$0.2 \le m_{\rm n} \le 0.5$	1.5	2.0	3.0	4. 0	5. 5	8. 0	11	16	23
	$0.5 < m_{\rm n} \le 0.8$	2. 0	3. 0	4. 0	6. 0	8. 5	12	17	24	33
	$0.8 < m_n \le 1.0$	2. 5	3. 5	5. 5	7. 5	11	15	21	30	42
560 1 1000	1. 0< <i>m</i> _n ≤ 1. 5	3. 5	4. 5	6. 5	9. 5	13	19	27	38	53
$560 < d \le 1000$	1. 5< <i>m</i> _n ≤ 2. 5	5. 0	7. 0	9. 5	14	19	27	38	54	77
	$2.5 < m_{\rm n} \le 4.0$	7. 5	10	15	21	30	42	59	83	118
	$4.0 < m_{\rm n} \le 6.0$	11	16	22	31	44	62	88	125	176
	6. 0< <i>m</i> _n ≤10	17	24	34	48	68	96	136	192	272

表 15-1-63

径向跳动公差 $F_{\rm r}$

分度園直径 d/mm				life per file for												
$\frac{d/\text{mm}}{m_n/\text{mm}} = \frac{0 1 2 3 4 5 6 7 8 9 10 11}{F_r/\mu m}$ $5 \le d \le 20 = \frac{0.5 \le m_n \le 2.0 1.5 2.5 3.0 4.5 6.5 9.0 13 18 25 36 51 72}{T_r/\mu m}$	14. 注点措			精度等级												
$F_r/\mu m$ $0.5 \le d \le 20$ $0.5 \le m_n \le 2.0$ 1.5 2.5 3.0 4.5 6.5 9.0 13 18 25 36 51 72 18				0	1	2	3	4	5	6	7	8	9	10	11	12
5≤d≤20	i m _n / iii			$F_{ m r}/\mu{ m m}$												
		5≤d≤20	$0.5 \le m_{\rm n} \le 2.0$	1.5	2. 5	3.0	4. 5	6. 5	9.0	13	18	25	36	51	72	102
			$2.0 < m_n \le 3.5$	1.5	2. 5	3.5	4. 5	6. 5	9. 5	13	19	27	38	53	75	106
$0.5 \le m_n \le 2.0$ 2.0 3.0 4.0 5.5 8.0 11 16 23 32 46 65 92 1	0.5≤m _n ≤	20 <d≤50< td=""><td>$0.5 \le m_{\rm n} \le 2.0$</td><td>2. 0</td><td>3.0</td><td>4. 0</td><td>5. 5</td><td>8. 0</td><td>11</td><td>16</td><td>23</td><td>32</td><td>46</td><td>65</td><td>92</td><td>130</td></d≤50<>	$0.5 \le m_{\rm n} \le 2.0$	2. 0	3.0	4. 0	5. 5	8. 0	11	16	23	32	46	65	92	130
			$2.0 < m_n \le 3.5$	2. 0	3.0	4. 0	6.0	8. 5	12	17	24	34	47	67	95	134
			$3.5 < m_n \le 6.0$	2. 0	3.0	4. 5	6.0	8. 5	12	17	25	35	49	70	99	139
$6.0 < m_n \le 10$ 2.5 3.5 4.5 6.5 9.5 13 19 26 37 52 74 105	6. 0< <i>m</i> _n =		6. $0 < m_{\rm n} \le 10$	2. 5	3.5	4. 5	6. 5	9. 5	13	19	26	37	52	74	105	148

														续表	
	N / . I-H-N// .	精度等级													
分度圆直径	法向模数	0	1	2	3	4	5	6	7	8	9	10	11	12	
d/mm	$m_{ m n}/{ m mm}$	$F_{ m r}/\mu{ m m}$													
	$0.5 \le m_{\rm n} \le 2.0$	2. 5	3.5	5.0	7. 5	10	15	21	29	42	59	83	118	167	
	$2.0 < m_n \le 3.5$	2. 5	4. 0	5. 5	7. 5	11	15	21	30	43	61	86	121	171	
	$3.5 < m_{\rm n} \le 6.0$	3. 0	4. 0	5.5	8. 0	11	16	22	31	44	62	88	125	176	
50< <i>d</i> ≤ 125	6. 0< <i>m</i> _n ≤10	3. 0	4. 0	6.0	8. 0	12	16	23	33	46	65	92	131	185	
	10 <m<sub>n≤16</m<sub>	3. 0	4. 5	6.0	9.0	12	18	25	35	50	70	99	140	198	
	16< <i>m</i> _n ≤25	3. 5	5. 0	7. 0	9. 5	14	19	27	39	55	77	109	154	218	
	$0.5 \le m_{\rm n} \le 2.0$	3. 5	5.0	7. 0	10	14	20	28	39	55	78	110	156	221	
	$2.0 < m_{\rm n} \le 3.5$	3. 5	5. 0	7. 0	10	14	20	28	40	56	80	113	159	225	
	$3.5 < m_{\rm n} \le 6.0$	3. 5	5. 0	7. 0	10	14	20	29	41	58	82	115	163	231	
125< <i>d</i> ≤280	6. 0< <i>m</i> _n ≤ 10	3. 5	5. 5	7.5	11	15	21	30	42	60	85	120	169	239	
	10 <m<sub>n ≤ 16</m<sub>	4. 0	5. 5	8. 0	11	16	22	32	45	63	89	126	179	252	
	16 <m<sub>n≤25</m<sub>	4. 5	6. 0	8. 5	12	17	24	34	48	68	96	136	193	272	
	25 <m<sub>n≤40</m<sub>	4. 5	6. 5	9. 5	13	19	27	38	54	76	107	152	215	304	
280 <d≤560< td=""><td>$0.5 \le m_{\rm n} \le 2.0$</td><td>4. 5</td><td>6. 5</td><td>9.0</td><td>13</td><td>18</td><td>26</td><td>36</td><td>51</td><td>73</td><td>103</td><td>146</td><td>206</td><td>291</td></d≤560<>	$0.5 \le m_{\rm n} \le 2.0$	4. 5	6. 5	9.0	13	18	26	36	51	73	103	146	206	291	
	$2.0 < m_n \le 3.5$	4. 5	6. 5	9.0	13	18	26	37	52	74	105	148	209	269	
	$3.5 < m_n \le 6.0$	4. 5	6. 5	9. 5	13	19	27	38	53	75	106	150	213	301	
	6. 0< <i>m</i> _n ≤10	5. 0	7. 0	9. 5	14	19	27	39	55	77	109	155	219	310	
	10 <m<sub>n≤16</m<sub>	5. 0	7. 0	10	14	20	29	40	57	81	114	161	228	323	
	16 <m<sub>n≤25</m<sub>	5. 5	7. 5	11	15	21	30	43	61	86	121	171	242	343	
	25 <m<sub>n≤40</m<sub>	6. 0	8. 5	12	17	23	33	47	66	94	132	187	265	374	
	40 <m<sub>n ≤70</m<sub>	7. 0	9. 5	14	19	27	38	54	76	108	153	216	306	432	
	$0.5 \le m_{\rm n} \le 2.0$	6.0	8. 5	12	17	23	33	47	66	94	133	188	266	376	
	$2.0 < m_n \le 3.5$	6. 0	8. 5	12	17	24	34	48	67	95	134	190	269	380	
	$3.5 < m_n \le 6.0$	6. 0	8. 5	12	17	24	34	48	68	96	136	193	272	385	
	6. 0< <i>m</i> _n ≤10	6. 0	8. 5	12	17	25	35	49	70	98	139	197	279	394	
$560 < d \le 1000$	10 <m<sub>n ≤ 16</m<sub>	6. 5	9. 0	13	18	25	36	51	72	102	144	204	288	407	
	16 <m<sub>n≤25</m<sub>	6. 5	9. 5	13	19	27	38	53	76	107	151	214	302	427	
	25 <m<sub>n≤40</m<sub>	7. 0	10	14	20	29	41	57	81	115	162	229	324	459	
	40 <m<sub>n≤70</m<sub>	8. 0	11	16	23	32	46	65	91	129	183	258	365	517	
	$2.0 \le m_{\rm n} \le 3.5$	7. 5	10	15	21	30	42	59	84	118	167	236	334	473	
	$3.5 < m_n \le 6.0$	7. 5	11	15	21	30	42	60	85	120	169	239	338	478	
	6. 0< <i>m</i> _n ≤10	7.5	11	15	22	30	43	61	86	122	172	243	344	487	
$1000 < d \le 1600$	10 <m<sub>n≤16</m<sub>	8. 0	11	16	22	31	44	63	88	125	177	250	354	500	
	16 <m<sub>n≤25</m<sub>	8. 0	11	16	23	33	46	65	92	130	184	260	368	520	
	25 <m<sub>n≤40</m<sub>	8. 5	12	17	24	34	49	69	98	138	195	276	390	552	
	40 <m<sub>n ≤70</m<sub>	9.5	13	19	27	38	54	76	108	152	215	305	431	609	
	$3.5 \le m_{\rm n} \le 6.0$	9.0	13	18	26	36	51	73	103	145	206	291	411	582	
	6. 0< <i>m</i> _n ≤10	9.0	13	18	26	37	52	74	104	148	209	295	417	590	
1600 <d≤2500< td=""><td>10<m<sub>n≤16</m<sub></td><td>9.5</td><td>13</td><td>19</td><td>27</td><td>38</td><td>53</td><td>75</td><td>107</td><td>151</td><td>213</td><td>302</td><td>427</td><td>604</td></d≤2500<>	10 <m<sub>n≤16</m<sub>	9.5	13	19	27	38	53	75	107	151	213	302	427	604	
	16 <m<sub>n≤25</m<sub>	9. 5	14	19	28	39	55	78	110	156	220	312	441	624	
	25 <m<sub>n≤40</m<sub>	10	14	20	29	41	58	82	116	164	232	328	463	655	
	$40 < m_{\rm n} \le 70$	11	16	22	32	45	63	89	126	178	252	357	504	713	

分度圆直径 d/mm	法向模数 m _n /mm	精 度 等 级												
		0	1	2	3	4	5	6	7	8	9	10	11	12
		$F_{ m r}/\mu{ m m}$												
	6. 0≤m _n ≤10	11	16	23	32	45	64	90	127	180	255	360	510	721
	10 <m<sub>n≤16</m<sub>	11	16	23	32	46	65	92	130	183	259	367	519	734
$2500 < d \le 4000$	$16 < m_{\rm n} \le 25$	12	17	24	33	47	67	94	133	188	267	377	533	754
	$25 < m_{\rm n} \le 40$	12	17	25	35	49	69	98	139	196	278	393	555	785
	$40 < m_n \le 70$	13	19	26	37	53	75	105	149	211	298	422	596	843
4000 <d≤6000< td=""><td>$6.0 \le m_{\rm n} \le 10$</td><td>14</td><td>19</td><td>27</td><td>39</td><td>55</td><td>77</td><td>110</td><td>155</td><td>219</td><td>310</td><td>438</td><td>620</td><td>876</td></d≤6000<>	$6.0 \le m_{\rm n} \le 10$	14	19	27	39	55	77	110	155	219	310	438	620	876
	$10 < m_{\rm n} \le 16$	14	20	28	39	56	79	111	157	222	315	445	629	890
	$16 < m_{\rm n} \le 25$	14	20	28	40	57	80	114	161	227	322	455	643	910
	$25 < m_n \le 40$	15	21	29	42	59	83	118	166	235	333	471	665	941
	$40 < m_n \le 70$	16	22	31	44	62	88	125	177	250	353	499	706	999
	$6.0 \le m_{\rm n} \le 10$	16	23	32	45	64	91	128	181	257	363	513	726	1026
	$10 < m_n \le 16$	16	23	32	46	65	92	130	184	260	367	520	735	1039
$6000 < d \le 8000$	$16 < m_n \le 25$	17	23	33	47	66	94	132	187	265	375	530	749	1059
	$25 < m_n \le 40$	17	24	34	48	68	96	136	193	273	386	545	771	1091
	40 <m<sub>n≤70</m<sub>	18	25	36	51	72	102	144	203	287	406	574	812	1149
	$6.0 \le m_{\rm n} \le 10$	18	26	36	51	72	102	144	204	289	408	577	816	1154
	$10 < m_n \le 16$	18	26	36	52	73	103	146	206	292	413	584	826	1168
$8000 < d \le 10000$	16< <i>m</i> _n ≤25	19	26	37	52	74	105	148	210	297	420	594	840	1188
	25 <m<sub>n≤40</m<sub>	19	27	38	54	76	108	152	216	305	431	610	862	1219
	40 <m<sub>n ≤70</m<sub>	20	28	40	56	80	113	160	226	319	451	639	903	1277

6.5 齿轮坯的精度

有关齿轮轮齿精度(齿廓偏差、相邻齿距偏差等)的参数的数值,只有明确其特定的旋转轴线时才有意义。 当测量时齿轮围绕其旋转的轴如有改变,则这些参数测量值也将改变。因此在齿轮的图纸上必须把规定轮齿公差的基准轴线明确表示出来,事实上所有整个齿轮的几何形状均以其为准。

齿轮坯的尺寸偏差和齿轮箱体的尺寸偏差对于齿轮副的接触条件和运行状况有着极大的影响。由于在加工齿轮 坯和箱体时保持较紧的公差,比加工高精度的轮齿要经济得多,因此应首先根据拥有的制造设备的条件,尽量使齿 轮坯和箱体的制造公差保持最小值。这种办法,可使加工的齿轮有较松的公差,从而获得更为经济的整体设计。

6.5.1 基准轴线与工作轴线之间的关系

基准轴线是制造者(和检验者)用来对单个零件确定轮齿几何形状的轴线,设计者应确保其精确的确定,保证齿轮相应于工作轴线的技术要求得以满足。通常,满足此要求的最常用的方法是确定基准轴线使其与工作轴线重合,即将安装面作为基准面。

在一般情况下首先需确定一个基准轴线,然后将其他所有的轴线(包括工作轴线及可能还有一些制造轴线) 用适当的公差与之相联系,在此情况下,公差链中所增加的链节的影响应该考虑进去。

6.5.2 确定基准轴线的方法

一个零件的基准轴线一般是用基准面来确定的,有三种基本方法实现。对与轴做成一体的小齿轮可将该零件安置于两端的顶尖上,由两个中心孔确定它的基准轴线。表 15-1-56 给出了确定基准轴线的方法。

6.5.3 基准面与安装面的形状公差

基准面的要求精度取决干:

- ① 规定的齿轮精度,基准面的极限值应确定规定得比单个轮齿的极限值紧得多;
- ② 基准面的相对位置,一般地说,跨距占齿轮分度圆直径的比例越大,给定的公差可以越松。

基准面的精度要求,必须在零件图上规定。所有基准面的形状公差不应大于表 15-1-65 中所规定的数值,公 差应减至最小。

第

-