Relaxation of phonons in 1D Bose gases or From collective Bosons to individual Bosons going through Fermions

I. Bouchoule, Léa Dubois, Jérôme Dubail and Dima Gangardt

Group meeting, 6th of December 2021

- Luttinger Liquid Hamiltonian
- Production of out-of-equilibrium states
- Fermionic description of the Luttinger Liquid: Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example : relaxation of a phonon
- 6 Conclusion

- 1 The Luttinger Liquid: phononic (bosonic) expression
 - Luttinger Liquid Hamiltonian
 - Production of out-of-equilibrium states
- 2 Fermionic description of the Luttinger Liquid : Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- 3 The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example : relaxation of a phonon
- Conclusion

Hamiltonian of the Luttinger Liquid

- 1D gas
- Low energy
- Long wavelength

$$H_{LL} = \frac{v_s}{2} \int \left(\frac{\pi}{K} (\delta n)^2 + \frac{K}{\pi} (\partial x \theta)^2 \right) dx.$$

$$[\delta n(x), \theta(y)] = i\delta(x - y).$$

Luttinger parameter : $K = \pi \rho_0 / v_s$

Phonons: creation operator a_{ν}^{+}

$$H_{LL} = \sum_{k \in (2\pi/L)Z, k \neq 0} v_s |k| a_k^+ a_k + \frac{P^2}{2mN}$$

$$a_k = \frac{\operatorname{sgn}(k)}{2} \int dx \left(-\frac{i\sqrt{2\pi}}{\sqrt{KL|k|}} \delta n(x) e^{-ikx} + \sqrt{\frac{2K|k|}{\pi L}} \theta(x) e^{-ikx}\right)$$

Production of out-of-equilibrium states

- Parametric excitation : $g = g_0 + \delta g \cos(\omega_{\text{mod}} t) \Rightarrow 2$ -mode squeezing (Jaskula et al., Phys. Rev. Lett. 109, 220401 (2013))
- Linear drive : $V(z,t) = V_0 \cos(k_0 x \omega_0 t)$ (short time Bragg pulse)
- Sudden modification of $g : \Rightarrow$ squeezed phononic modes (Schemmer et al., Phys. Rev. A. 109, 043604 (2018))
- Sudden modification of V(z): \Rightarrow Displaced phonons. (Federica Cataldini et al., arxiv:2111.13647 (2021))

Situation considered here: gaussian states

$$\hat{\rho} = \prod_{k} \hat{\rho}_{k}, \ \hat{\rho}_{k} = D_{k} S_{k} e^{-\lambda_{k} a_{k}^{+} a_{k}} S_{k}^{-1} D_{k}^{-1}$$

$$D_k = e^{lpha_k a_k - lpha_k^* a_k^+}, S_k = e^{\mu_k a_k^2 - \mu_k^* a_k^{+2}}$$

- 1 The Luttinger Liquid: phononic (bosonic) expression
 - Luttinger Liquid Hamiltonian
 - Production of out-of-equilibrium states
- 2 Fermionic description of the Luttinger Liquid : Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- 3 The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example: relaxation of a phonon
- Conclusion

Chiral bosonic fields

$$\begin{cases} \varphi_{R}(x) = \sqrt{\frac{2\pi}{L}} \sum_{k>0} \frac{1}{\sqrt{k}} (e^{ikx} a_{k} - e^{-ikx} a_{k}^{+}) \\ \varphi_{L}(x) = \sqrt{\frac{2\pi}{L}} \sum_{k<0} \frac{1}{\sqrt{|k|}} (e^{ikx} a_{k} - e^{-ikx} a_{k}^{+}) \end{cases}$$

Heisenberg picture : $\varphi_R(x,t) = \varphi_R(x-ct), \varphi_L(x,t) = \varphi_R(x+ct)$

$$\begin{cases} \partial_x \varphi_R(x) = \frac{2\pi}{\sqrt{K}} (\frac{1}{2} \delta n(x) + \frac{K}{2\pi} \partial_x \theta) \\ \partial_x \varphi_L(x) = \frac{2\pi}{\sqrt{K}} (\frac{1}{2} \delta n(x) - \frac{K}{2\pi} \partial_x \theta) \end{cases}$$

2 undependent fields: Right-movers and Left-movers

$$H_{LL} = H_R + H_L$$

$$H_R = \int dx : (\partial_x \varphi_R)^2 := \sum_{k>0} cka_k^+ a_k$$

The Rozhkov Fermions

• Consider right-movers only The Rozhkov Fermions:

•
$$\psi_R^+(x) = \sqrt{\frac{2\pi}{L}} \sum_q e^{iqx} c_{Rq}^+$$

• Linear dispersion : $H_R = \sum_{a} cqc_{Ra}^+ c_{Rq}$ Ground state: semi-infinite Fermi sea

Partilce-hole excitation

Bosonisation

$$H_R = \sum_{k>0} ck a_k^+ a_k = \sum_q cq c_{Rq}^+ c_{Rq}$$

Bosonisation rules

$$a_k^+ = \frac{i}{\sqrt{kL/(2\pi)}} \sum_q c_R^+(q+k)c_R(q)$$

$$\psi_R(x) =: e^{i\varphi_R(x)} :$$

Absence of relaxation within Luttinger Liquid

Luttinger Liquid: integrable system.

Relaxation? Some other integrable systems do relax, towards a GGE.

• In bosonic point of view. Natural Generalized Gibbs ensemble

$$\hat{
ho} = \prod_k e^{\lambda_k a_k^+ a_k}$$

This is the GGE of T.Langen et al., Science 348, 6231 (2015)

• In Fermionic point of view. Natural GGE:

$$\hat{\rho} = \prod_{q} (1 + e^{\lambda_q c_q^+ c_q})$$

No relaxation with Luttinger Liquid

No prefered point of view

Non Linear Luttinger Liquid : Rozhkov fermions are beter quasiparticle

v depends on $n \Rightarrow$ beyond Luttinger Liquid

Non Linear Luttinger Liquid (from Dima Gangardt)

Fermions : quadratic term in relation dispersion : \Rightarrow masse m^*

$$\frac{m}{m^*} = \frac{1}{2\sqrt{K}} \left(1 + \frac{n}{v} \frac{\partial v}{\partial n} \right)$$

Hamiltonian term:

$$H_3 = -\int \frac{1}{2m^*} \left(\psi_R^{\dagger} \nabla^2 \psi_R + \psi_R^{\dagger} \nabla^2 \psi_R \right) dx$$

Rozhkov fermions have a longer lifetime than phonons ⇒ Rozhkov Fermions are better quasi-particles

- 1 The Luttinger Liquid: phononic (bosonic) expression
 - Luttinger Liquid Hamiltonian
 - Production of out-of-equilibrium states
- 2 Fermionic description of the Luttinger Liquid : Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- 3 The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example : relaxation of a phonon
- Conclusion

Lieb-Liniger model: Bethe-Ansatz fermions

Lieb-Liniger model: 1D Bosons with contact interactions

$$H_{\mathcal{L}\mathcal{L}} = \int dx \left(-\frac{\hbar^2}{2m} \psi^+(x) \partial_x^2 \psi(x) + \frac{g}{2} \psi^+ \psi^+ \psi \psi \right)$$

Eigenstates (Bethe-Ansatz form) : $|\{\theta_a\}\rangle = |\{p_a\}\rangle$

$$\theta_a + \frac{1}{L} \sum_{b \neq a} 2 \arctan\left(\frac{\theta_a - \theta_b}{mc}\right) = p_a, \text{ where } \begin{cases} p_a \in \frac{\hbar 2\pi}{L} \mathbb{Z} & \text{for } N \text{ odd} \\ p_a \in \frac{\hbar 2\pi}{L} (\mathbb{Z} + \frac{1}{2}) & \text{for } N \end{cases}$$

 $\{\theta_a\}$: rapidities (all different). $E = \sum \theta_a^2/(2m)$

 $\{p_a\}$: Bethe Fermions. Creation of a Bethe Ansatz Fermion : b_q^+

$$P = \sum \theta_a = \sum p_a$$

Rozhkov fermions are the Bethe-Ansatz fermions

• Hardcore Bosons case

Let us consider $\delta n_k = (1/\sqrt{L}) \int dx e^{ikx} \delta n(x)$

From Luttinger Liquid theory

$$\delta n_k = \frac{1}{\sqrt{L}} \left(\sum_q c_{Rq}^+ c_{R(q+k)} + \sum_q c_{Lq}^+ c_{L(q+k)} \right)$$

From BEthe Ansatz

$$\delta n_k = \frac{1}{\sqrt{L}} \sum_q b_q^+ b_{q+k}$$

Close to ground state: right and left border of the Fermi sea contribute

• General case

Adiabatic increase of *g* until hardcore regime is reached Distribution of Rozhkov fermions unchanged Distribution of Bethe-Ansatz fermions unchanged

- 1 The Luttinger Liquid: phononic (bosonic) expression
 - Luttinger Liquid Hamiltonian
 - Production of out-of-equilibrium states
- Permionic description of the Luttinger Liquid : Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- 3 The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example: relaxation of a phonon
- Conclusion

Relaxation of phonons

Relaxation within the Lieb-Liniger model

For local obsevrable:

$$\hat{\rho} \underset{t \to \infty}{\rightarrow} \hat{\rho}_{GGE}$$
, where $\hat{\rho}_{GGE} = \sum_{\theta_a} |\{\theta_a\}\rangle\langle\{\theta_a\}| e^{\sum_a f(\theta_a)}$

$$\hat{
ho}_{GGE}$$
 very close to $\hat{
ho}_{GGE}^{(RF)}$, where $\hat{
ho}_{GGE}^{(RF)}=\sum_{p_a}|\{p_a\}
angle\langle\{p_a\}|e^{\sum_ag(p_a)}$

- Initial out-of-equilibrium state gaussian in phonons representation
- Wick theorem and bosonization rules ⇒ Rozhkov Fermions populations
- $\Rightarrow \hat{\rho}_{GGF}^{(RF)}$ known : state after relaxation
- Compute properties of collective modes after relaxation using bosonization rules

Example of calculation

• Out-of-equilibrium initial state : phonon at k_0 displaced

$$\hat{\rho} = e^{\alpha_k a_{k_0} - \alpha_k^* a_{k_0}^+} \hat{\rho}_{T_0} e^{-\alpha_k a_{k_0} + \alpha_k^* a_{k_0}^+}$$

correlation between phonons

Correlation between phonons population

$$C_{q,q'} = \langle a_q^+ a_q a_{q'}^+ a_{q'} \rangle - \langle a_q^+ a_q \rangle \langle a_{q'}^+ a_{q'} \rangle$$

Bosonization rule + Wick theorem \Rightarrow

$$C_{q,q'} = \langle a_q^+ a_q \rangle^2 \delta_{q,q'} + \frac{1}{L} \mathcal{C}(q,q')$$
 where $\mathcal{C} = \sum_{i=1.6} C_i$

- The Luttinger Liquid: phononic (bosonic) expression
 - Luttinger Liquid Hamiltonian
 - Production of out-of-equilibrium states
- 2 Fermionic description of the Luttinger Liquid : Rozhkov Fermions
 - Chiral bosonic fields
 - The Rozhkov Fermions
- 3 The fermions of the Lieb-Liniger model
 - The Bethe-Ansatz
 - Identifying the Bethe-Ansatz Fermions and the Rozhkov fermions
- 4 Relaxation of out-of-equilibrium states
 - General scenario
 - Example: relaxation of a phonon
- Conclusion

Conclusion

The delicate points, not yet well established

- Equivalence between Rozhkov Fermions and Bethe-Ansatz Fermions
- Equivalence, up to order 1/L between $\hat{\rho}_{GGE}$ and $\hat{\rho}_{GGE}^{(RF)}$