Συναρτήσεις Θεώρημα Bolzano

Κωνσταντίνος Λόλας

• Φτιάξτε άξονες

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο Α με θετική τεταγμένη και ένα σημείο Β με αρνητική

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο Α με θετική τεταγμένη και ένα σημείο Β με αρνητική
- Σχηματίστε συνάρτηση στο $[\alpha, \beta]$ χωρίς να περάσετε από τον άξονα x'x

- Φτιάξτε άξονες
- Σημειώστε ένα σημείο A με θετική τεταγμένη και ένα σημείο B με αρνητική
- Σχηματίστε συνάρτηση στο $[\alpha,\beta]$ χωρίς να περάσετε από τον άξονα x'x

Συμπέρασμα...

Χωρίς πολλά πολλά...

Θεώρημα Bolzano

Έστω μια συνάρτηση f ορισμένη σε κλειστό διάστημα $[\alpha, \beta]$. Αν:

- \bullet η f είναι συνεχής στο $[\alpha, \beta]$ και

τότε υπάρχει $x_0 \in (\alpha, \beta)$ τέτοιο ώστε $f(x_0) = 0$

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

- ΔΕΝ είναι τρόπος επίλυσης εξισώσεων
- ΔΕΝ βρίσκει εντοπίζει ρίζες
- ΔΕΝ τις μετράει σε πλήθος

Πώς επιλύουμε εξισώσεις αλγεβρικά?

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

5/16

Πώς επιλύουμε εξισώσεις αλγεβρικά?

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

Πώς επιλύουμε εξισώσεις αλγεβρικά?

- Προφανής ρίζα
- Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

Πώς επιλύουμε εξισώσεις αλγεβρικά?

- Προφανής ρίζα
- \bullet Λύνουμε ως προς x
- Παραγοντοποίηση
- 1-1

Να αποδείξετε ότι:

- **1** Η συνάρτηση $f(x) = x^3 + x 1$ ικανοποιεί τις υποθέσεις του θεωρήματος Bolzano στο διάστημα [0, 1].

Λόλας Συναρτήσεις 6/16

Να αποδείξετε ότι:

- ① Η συνάρτηση $f(x) = x^3 + x 1$ ικανοποιεί τις υποθέσεις του θεωρήματος Bolzano στο διάστημα [0,1].
- ② Η εξίσωση $x^3 + x 1 = 0$ έχει μία τουλάχιστον ρίζα στο διάστημα (0,1).

Λόλας Συναρτήσεις 6/16

Να αποδείξετε ότι υπάρχει ένα τουλάχιστον $x_0\in(0,1)$ τέτοιο ώστε $x_0^2+3x_0=e^{x_0}+1$.

Λόλας

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής με $f(\mathbb{R})=(0,1)$. Να αποδείξετε ότι η εξίσωση f(x)=x-1 έχει μία τουλάχιστον ρίζα στο διάστημα (1,2).

Λόλας Συναρτήσεις 8/16

Να αποδείξετε ότι η εξίσωση $\frac{e^x}{x-2} + \frac{x^2+1}{x-1} = 0$ έχει μία τουλάχιστον ρίζα στο διάστημα (1,2).

Λόλας

Να αποδείξετε ότι υπάρχει μοναδικό $x_0 \in (0,1)$ τέτοιο ώστε $e^{x_0} + x_0 = 2$

Λόλας

Δίνονται οι συναρτήσεις $f(x) = \ln x$ και $g(x) = \frac{1}{x}$. Να αποδείξετε ότι οι C_f και C_a στο διάστημα (1,e) έχουν ένα ακριβώς κοινό σημείο.

> Λόλας Συναρτήσεις 11/16

Να αποδείξετε ότι η εξίσωση $x^3 - 4x^2 + 2 = 0$ έχει δύο τουλάχιστον ρίζες στο διάστημα (-1,1).

> Λόλας Συναρτήσεις 12/16

Δίνεται το ορθογώνιο ΟΑΒΓ του σχήματος και μία συνεχής συνάρτηση f στο [0,2] της οποίας η γραφική παράσταση βρίσκεται στο χωρίο που ορίζει το ορθογώνιο. Να αποδείξετε ότι η C_f τέμνει τη διαγώνιο ${\rm A}\Gamma$.

Λόλας Συναρτήσεις 13/16

Να δείξετε ότι η εξίσωση $\ln x = \frac{1}{x-1}$ έχει μία τουλάχιστον ρίζα στο διάστημα (0,1).

Λόλας Συναρτήσεις 14/16

Έστω η συνεχής συνάρτηση $f:[0,1]\to\mathbb{R}$ με -1< f(x)<0, για κάθε $x\in[0,1]$. Να δείξετε ότι υπάρχει ένα τουλάχιστον $x_0\in(0,1)$ τέτοιο ώστε $f^2(x_0)=2f(x_0)+3x_0$

Λόλας Συναρτήσεις 15/16

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση