Title: Project 1

Subject: Computer Vision

Subject Code: ECE 763

Name: Deepayan Bardhan

Unity ID: 200266399 (dbardha)

STEP 1: DATA PRE-PROCESSING

- 1. For the project, the LFWcrop dataset have been used, available at the following link.
- 2. The first part for each of the model code describes the pre-processing of the images.
- 3. The non-face part has been cropped randomly from the images from one of the corners.
- 4. While reading the images, the images- both the faces and non-faces, have been resized to a dimension of 60x60.
- 5. After preprocessing the data are kept separately into 4 folder Train_FaceData, Train_NonFaceData, Test_FaceData and Test_NonFaceData.

STEP 2: LEARNING A SINGLE GAUSSIAN MODEL

In this model python code for a single Gaussian model has been implemented and the following tasks are performed:

1. The estimated mean face has been visualized formed using the face-data

2. The estimated covariance face has been visualized formed using the face-data

3. The estimated mean image has been visualized formed using the non-face-data

4. The estimated covariance image has been visualized formed using the non-face-data

5. Performance rate calculation by setting a threshold=0.5

False Positive Rate	0.235
False Negative Rate	0.197
Misclassification Rate	0.37

6. Plotting the ROC

STEP 3: LEARNING A MIXTURE OF GAUSSIAN MODEL

In this model python code for a mixture of Gaussian model has been implemented and the following tasks are performed:

1. The estimated mean face has been visualized formed using the face-data

2. The estimated covariance face has been visualized formed using the face-data

3. The estimated mean image has been visualized formed using the non-face-data

4. The estimated covariance image has been visualized formed using the non-face-data

5. Performance rate calculation by setting a threshold=0.5

False Positive Rate	
False Negative Rate	0.377
Misclassification Rate	0.265

6. Plotting the ROC

STEP 4: LEARNING A T-DISTRIBUTION MODEL

In this model python code for a T-Distribution model has been implemented and the following tasks are performed:

1. The estimated mean face has been visualized formed using the face-data

2. The estimated covariance face has been visualized formed using the face-data

3. The estimated mean image has been visualized formed using the non-face-data

4. The estimated covariance image has been visualized formed using the non-face-data

5. Performance rate calculation by setting a threshold=0.5

False Positive Rate	0.318
False Negative Rate	0.152
Misclassification Rate	0.336

6. Plotting the ROC

STEP 5: LEARNING A FACTOR ANALYZER MODEL

In this model python code for a Factor Analyzer model has been implemented and the following tasks are performed:

1. The estimated mean face has been visualized formed using the face-data

2. The estimated covariance face has been visualized formed using the face-data

3. The estimated mean image has been visualized formed using the non-face-data

4. The estimated covariance image has been visualized formed using the non-face-data

5. Performance rate calculation by setting a threshold=0.5

False Positive Rate	0.288
False Negative Rate	0.197
Misclassification Rate	0.313

6. Plotting the ROC

STEP 6: LEARNING A MIXTURE OF T-DISTRIBUTION MODEL

In this model python code for a mixture of T-Distribution model has been implemented and the following tasks are performed:

1. The estimated mean face has been visualized formed using the face-data

2. The estimated covariance face has been visualized formed using the face-data

3. The estimated mean image has been visualized formed using the non-face-data

4. The estimated covariance image has been visualized formed using the non-face-data

5. Performance rate calculation by setting a threshold=0.5

False Positive Rate	0.248
False Negative Rate	0.112
Misclassification Rate	0.236

6. Plotting the ROC

