

HYPOTHESIS TESTING

Komputasi Statistika

HYPOTHESIS TESTING

Defining a hypothesis allows you to collect data effectively and determine whether it provides enough evidence to support your hypothesis.

FORMULATE HYPOTHESIS

H _o	H ₁ / Ha
Assumption, status quo	Rejection of H ₀
Assumed to be "true", a given	Rejection of an assumption or the given
Negation of the research question	Research question to be "proven"
Always contains an equality $(=, \leq, \geq)$	Does not contain equality (\neq , <, >)

$$H_0: \mu = H_0: \mu \le H_0: \mu \ge H_1: \mu \ne H_1: \mu > H_1: \mu <$$

The decision made for the hypothesis is reject H_0 or fail to reject H_0 , we don't say accept H_0

TYPE I AND TYPE II ERROR

		Actual condition	
		H _o TRUE	H _o FALSE
Conclusion	Fail to reject H ₀	Correct (True Positive)	Type II error (False Negative)
	Reject H ₀	Type I error (False Positive)	Correct (True Negative)

Probabilitas kesalahan tipe 1 (α) $\alpha = P(menolak \ H_0 | H_0 \ benar)$ Probabilitas kesalahan tipe 2 (β) $\beta = P(menerima \ H_0 | H_0 \ salah)$

Hypothesis Testing Workflow

Satu populasi

Large Sample Tests for μ

When the sample size is large, a Z test concerning μ is based on the normal test statistic

$$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

The rejection region is one- or two-sided depending on the alternative hypothesis. Specifically,

$$H_1: \mu > \mu_0$$
 requires $R: Z \ge z_{\alpha}$
 $H_1: \mu < \mu_0$ $R: Z \le -z_{\alpha}$
 $H_1: \mu \ne \mu_0$ $R: |Z| \ge z_{\alpha/2}$

Hypotheses Tests for μ —Small Samples

To test H_0 : $\mu = \mu_0$ concerning the mean of a **normal population**, the test statistic is

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

which has Student's t distribution with n-1 degrees of freedom:

$$H_1: \mu > \mu_0$$
 $R: T \ge t_{\alpha}$
 $H_1: \mu < \mu_0$ $R: T \le -t_{\alpha}$
 $H_1: \mu \ne \mu_0$ $R: |T| \ge t_{\alpha/2}$

The test is called a **Student's** *t* **test** or simply a *t* **test**.

Dua populasi independen

 H_0 : $\mu_1 - \mu_2 = (\mu_1 - \mu_2)_0$ leading to two-tailed test H_0 : $\mu_1 - \mu_2 \ge (\mu_1 - \mu_2)_0$ leading to left-tailed test H_0 : $\mu_1 - \mu_2 \le (\mu_1 - \mu_2)_0$ leading to right-tailed test

Cases in which the Test Statistic is Z

- 1. The sample sizes n_1 and n_2 are both at least 30 and the population standard deviations σ_1 and σ_2 are known.
- 2. Both populations are **normally distributed** and the population standard deviations σ_1 and σ_2 are known.

The formula for the test statistic Z is

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}}$$

where $(\mu_1 - \mu_2)_0$ is the hypothesized value for the difference in the two population means.

Dua populasi independen

Cases in which the Test Statistic is t

Both populations are **normally distributed**; population standard deviations σ_1 and σ_2 are unknown, but the sample standard deviations S_1 and S_2 are known.

The equations for the test statistic t depends on 2 subcases:

Subcase 1: σ_1 and σ_2 are believed to be equal (although unknown. We calculate t using the formula

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where \mathcal{S}_p^2 is the pooled variance of the two samples, which serves as the estimate of the common population variance given by formula

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

The degrees of freedom for t are $(n_1 + n_2 - 2)$.

Cases in which the Test Statistic is t

Subcase 2: σ_1 and σ_2 are believed to be unequal (although unknown. We calculate t using the formula

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

The degrees of freedom for this t given by

$$df = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{(S_1^2/n_1)^2/(n_1 - 1) + (S_2^2/n_2)^2/(n_2 - 1)}$$

Paired-observation

The test statistic for the pair-observation t test is

$$t = \frac{\overline{D} - \mu_{D_0}}{s_D / \sqrt{n}}$$

Where:

 \overline{D} is the sample average difference between each pair of observation, s_D is the sample standard deviation of there differences, n is the number of pairs of observations, and $\mu_{D\,0}$ is the population mean difference under the null hypothesis.

H_0	Value of Test Statistic	H_1	Critical Region
$\mu = \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}; \sigma \text{ known}$	$\mu < \mu_0 \mu > \mu_0 \mu \neq \mu_0$	$\begin{array}{l} z<-z_{\alpha}\\ z>z_{\alpha}\\ z<-z_{\alpha/2} \text{ or } z>z_{\alpha/2} \end{array}$
$\mu = \mu_0$	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}; v = n - 1,$ σ unknown	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$egin{aligned} t < -t_{lpha} \ t > t_{lpha} \ t < -t_{lpha/2} ext{ or } t > t_{lpha/2} \end{aligned}$
$\mu_1-\mu_2=d_0$	$z = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}};$ σ_1 and σ_2 known	$\mu_1 - \mu_2 < d_0 \mu_1 - \mu_2 > d_0 \mu_1 - \mu_2 \neq d_0$	$z < -z_{\alpha}$ $z > z_{\alpha}$
$\mu_1 - \mu_2 = d_0$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}};$ $v = n_1 + n_2 - 2,$ $\sigma_1 = \sigma_2 \text{ but unknown,}$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	
$\mu_1 - \mu_2 = d_0$	$t' = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}};$ $v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}};$ $\sigma_1 \neq \sigma_2 \text{ and unknown}$	$\mu_1 - \mu_2 < d_0$ $\mu_1 - \mu_2 > d_0$ $\mu_1 - \mu_2 \neq d_0$	
$ \mu_D = d_0 $ paired observations	$t = \frac{\overline{d} - d_0}{s_d / \sqrt{n}};$ $v = n - 1$	$egin{aligned} \mu_D & < d_0 \ \mu_D & > d_0 \ \mu_D & eq d_0 \end{aligned}$	$egin{aligned} t < -t_{lpha} \ t > t_{lpha} \ t < -t_{lpha/2} \ ext{or} \ t > t_{lpha/2} \end{aligned}$

Hypotheses about population proportions can be tested using the binomial distribution or normal approximation to calculate the p-value.

Test statistics:

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0 / n}}$$

The rejection region is right-sided, left-sided, or two-sided according to

$$H_1: p > p_0, Z \ge Z_\alpha$$

$$H_1: p < p_0, Z \leq -Z_\alpha$$

$$H_1: p \neq p_0, \quad |Z| \geq Z_{\alpha/2}$$

TESTING POPULATION PROPORTION

Dua populasi

Situation I: H_0 : $p_1 - p_2 = 0$

 $H_1: p_1 - p_2 \neq 0$

Situation II: H_0 : $p_1 - p_2 \ge 0$

 H_1 : $p_1 - p_2 < 0$

Situation III: H_0 : $p_1 - p_2 \le 0$

 H_1 : $p_1 - p_2 > 0$

Situation A: H_0 : $p_1 - p_2 = D$

 $H_1: p_1 - p_2 \neq D$

Situation B: H_0 : $p_1 - p_2 \le D$

 H_1 : $p_1 - p_2 > D$

Situation C: H_0 : $p_1 - p_2 \le D$

 $H_1: p_1 - p_2 > D$

The test statistic for the difference between two population proportions when **the null hypothesis difference is zero** is

$$z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where

 $\hat{p}_1 = x_1/n_1$ is the sample proportion in sample 1

 $\hat{p}_2 = x_2/n_2$ is the sample proportion in sample 2

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

The test statistic for the difference between two population proportions when the null hypothesis difference is some number D, other than zero, is

$$z = \frac{\hat{p}_1 - \hat{p}_2 - D}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

TESTING POPULATION VARIANCE

Satu populasi

To test hypotheses about σ , the test statistic is

$$\frac{(n-1)S^2}{\sigma_0^2}$$

Given a level of significance α ,

Reject
$$H_0$$
: $\sigma = \sigma_0$ if $\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\alpha}^2$

Reject H_0 : $\sigma = \sigma_0$ if $\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\alpha}^2$

Reject H_0 : $\sigma = \sigma_0$ if $\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\alpha}^2$

Reject H_0 : $\sigma = \sigma_0$ if $\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\alpha/2}^2$

in favor of H_1 : $\sigma \ne \sigma_0$ or $\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\alpha/2}^2$

(a two-tailed test)
$$H_0 \colon \sigma_1^2 = \sigma_2^2 \\ H_1 \colon \sigma_1^2 \neq \sigma_2^2$$

(a left-tailed test)
$$\begin{array}{l} H_0 \colon \sigma_1^2 \geq \sigma_2^2 \\ H_1 \colon \sigma_1^2 < \sigma_2^2 \end{array}$$

(a right-tailed test)
$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

The test statistic for the equality of variances of two normally distributed populations is

$$F_{(n_1-1, n_2-1)} = \frac{S_1^2}{S_2^2}$$

$$\frac{S_1^2}{S_2^2} = \frac{\chi_1^2 \sigma_1^2 (n_1 - 1)}{\chi_2^2 \sigma_2^2 (n_2 - 1)}$$

An F random variable with \mathbf{v}_1 and \mathbf{v}_2 degrees of freedom is

$$F_{(v_1, v_2)} = \frac{\chi_1^2 / v_1}{\chi_2^2 / v_2}$$

where χ_1^2 is chi-square random variable with v_1 degrees of freedom and χ_2^2 is chi-square random variable with v_2 degrees of freedom.

TERIMA KASIH

Prodi S1 Teknologi Sains Data