1. Grafos

Lista de reproducción YouTube [9].

1.1. Propiedades

Figura 1: Grafos Aristas = Edge y Vértices o Nodos = Vertex

- 1. **Grafos orientados** (o dirigidos o digrafos) si las aristas (o arcos) que conectan sus vertices (también llamados nodos) están orientadas.
- 2. Grafos no orientados (o no dirigidos) si las aristas que conectan sus vertices no están orientadas.

Figura 2: Grafos Dirigido y No Dirigido

3. Ciclo: camino que conteniendo vertices distintos, excepto el primero que coincide con el ultimo.

Figura 3: Grafos Ciclo: $a \to b \to e \to a$, longitud 3.

- 4. **Grafo no dirigido conexo:** Grafo no orientado es conexo si para todo vértice del grafo hay un camino que lo conecte con otro vertice cualquiera del grafo.
- 5. **Grafo dirigido fuertemente conexo:** Grafo dirigido es fuertemente conexo sii entre cualquier par de vértices hay un camino que los une. Ver Figura 3.
- 6. Árbol libre: Grafo no dirigido conexo sin ciclos.

Grafo conexo 1 2 3 4 2 3 4 5

Figura 4: Grafos Conexo y No Conexo

Figura 5: Grafos Árbol Libre

1.2. Estructuras para implementar grafos

1.2.1. Matriz de Adyacencia

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	1	0	1	0
С	1	1	0	0	0	0
D	1	0	0	0	1	1
E	0	1	0	1	0	0
F	0	0	0	1	0	0

Figura 6: Grafo no dirigido y no pesado Matriz de Adyacencia

Figura 7: Grafo dirigido y pesado Matriz de Adyacencia

1.2.2. Matriz de Incidencia

Figura 8: Grafo no dirigido y no pesado Matriz de Incidencia

	Α	В	С	D	Ε
a1	-3	3	0	0	0
a2	0	-1	0	1	0
a3	0	-5	0	0	5
a4	0	0	-6	0	6
a5	0	-6	6	0	0
a6	0	0	0	-7	7

Figura 9: Grafo dirigido y pesado Matriz de Incidencia

1.2.3. Complejidad

	M. Incidencia	M. Adyacencia	Lista Adyacencia
Espacio:	$O(V \cdot E)$	$O(V^2)$	O(V+E)
Agregar un vértice:	$O(V \cdot E)$	$O(V^2)$	O(1) o $O(V)$
Agregar una arista:	$O(V \cdot E)$	O(1)	O(V)
Si dos vértices son adyacentes:	O(E)	O(1)	O(V)
Obtener los abyacentes de un vértices:	O(E)	O(V)	O(V)

Cuadro 1: Coplejidad.

1.3. Recorridos Grafos

Recorridos Grafos Dirigidos

■ Anchura: BFS (Breadth First Search)

■ Profundidad: DFS (Depth First Search)

Ver Videos YouTube [1] y [2].

1.3.1. BFS: Recorrido en Anchura

Para grafos dirigidos y no dirigidos.

$\underline{ Procedimento:}$

- Seleccionar un vértice inicial.
- \blacksquare Marcarlo como visitado.
- Encolarlo.
- \blacksquare Mientras la ${\bf cola}$ (FIFO) no esté vacía :
 - Desencolar vértice.
 - Mostrarlo.
 - Marcar como visitados.
 - o Los vertices adyacentes no visitado.
 - Encolarlos.

1.3.2. DFS: Recorrido en Profundidad

Para grafos dirigidos y no dirigidos.

Procedimento:

- Seleccionar un vértice inicial.
- Marcarlo como visitado.
- Apilarlo.
- Mientras la pila (LIFO) no esté vacía :
 - Desapilar vértice.
 - Mostrarlo.
 - Recorrer todos los vértices adyacentes del vértice desapilado
 - o Si el vértice adyacente no ha sido visitado, marcarlo como visitado y apilarlo.
 - o Si el vértice adyacente ya ha sido visitado, continúa con el siguiente vértice adyacente.

1.3.3. Complejidad BFS y DFS

	Matriz Adyacencia	Matriz Incidencia
Anchura BFS	$O(V^2)$	O(V+E)
Profundidad DFS	$O(V^2)$	O(V+E)

Cuadro 2: Coplejidad.

1.3.4. Aplicaciones

DFS: Recorrido Profundidad

- 1. Test de Aciclidad (Ciclos): Si al recorrer un grafo con DFS se encuentra un vértice que ya fue visitado, entonces existe un ciclo.
- 2. **Puntos de Articulación:** Un punto de articulación es un vértice que al ser eliminado aumenta la cantidad de componentes conexas del grafo.
- 3. Obtención de las componentes fuertemente conexas en un grafo dirigido: Una componente fuertemente conexa es un subgrafo en el que para cada par de vértices existe un camino de uno a otro.

BFS: Recorrido Anchura

- 1. Camino mínimo: Si el grafo es no pesado, el camino mínimo entre dos vértices es el camino que tiene menos aristas.
- 2. Árbol de expansión mínimo: Si el grafo es pesado, el árbol de expansión mínimo es el subgrafo que tiene todos los vértices del grafo original y la suma de los pesos de sus aristas es la mínima posible.