

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Civil

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

DISEÑO DE MEZCLAS ASFÁLTICAS

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
DÉCIMO	321104VT	85
OPTATIVA VÍAS TERRESTRES		

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Esta asignatura aporta al perfil del Ingeniero Civil los conocimientos importantes del asfalto como material de construcción vialidades, donde a través de este curso conocerá las propiedades de los componentes del asfalto y sus repercusiones en las propiedades tanto en estado fresco como en estado endurecido a través del empleo de técnicas de control de calidad en los materiales y procesos constructivos.

TEMAS Y SUBTEMAS

1. Naturaleza del Asfalto

- 1.1. Generalidades
- 1.2. Historia y clasificación de asfaltos.
- 1.3. Métodos de fabricación del asfalto.
- 1.4. Características y propiedades del asfalto.
- 1.5. Propiedades y características de Asfaltos especiales.

2. Diseño de mezclas asfálticas en caliente

- 2.1. Características y comportamiento de la mezcla
- 2.2. Densidad
- 2.3. Vacíos de aire (o simplemente vacíos)
- 2.4. Vacíos en el agregado mineral
- 2.5. Contenido de asfalto

3. Propiedades consideradas en el diseño de mezclas

- 3.1. Estabilidad
- 3.2. Durabilidad
- 3.3. Impermeabilidad
- 3.4. Trabajabilidad
- 3.5. Flexibilidad
- 3.6. Resistencia a la fatiga
- 3.7. Resistencia al deslizamiento

4. Método Marshall de diseño de mezclas

- 4.1. Preparación para efectuar los procedimientos Marshall
- 4.2. Selección de las muestras de material
- 4.3. Preparación del agregado
- 4.4. Secando el agregado
- 4.5. Análisis granulométrico por vía húmeda
- 4.6. Determinación del peso específico
- 4.7. Preparación de las muestras (probetas) de ensayo
- 4.8. Procedimiento de ensayo Marshall
- 4.9. Determinación del peso específico-total
- 4.10. Ensayo de estabilidad y fluencia
- 4.11. Valor de estabilidad Marshall
- 4.12. Valor de fluencia Marshall
- 4.13. Análisis de densidad y vacíos
- 4.14. Análisis de vacíos

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Civil

PROGRAMA DE ESTUDIOS

5. Método propuesto de Illinois para el diseño de mezclas en frio emulsión-agregado

- 5.1. Resumen del método
- 5.2. Ensayos sobre los agregados
- 5.3. Ensayos sobre la emulsión asfáltica
- 5.4. Contenido asfalto residual tentativo
- 5.5. Método francés
- 5.6. Método del Instituto del Asfalto (USA)
- 5.7. Ensayo de recubrimiento
- 5.8. Contenido óptimo de agua en la compactación
- 5.9. Variación del contenido de emulsión

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. El profesor desarrollará actividades de aprendizaje que propicien la aplicación de los conceptos, modelos y metodologías que se van aprendiendo en el desarrollo de la asignatura. Las sesiones se desarrollan utilizando medios de apoyo didáctico como son computadora, y/o proyectores.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%. Las evaluaciones serán escritas y práctica; estas últimas se asocian a la ejecución exitosa y a la documentación de la solución de problemas sobre temas del curso. Se podrá considerar el trabajo extra clases y las participación durante las sesiones del curso.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Diseño de Mezclas Asfálticas de Granulometría Densa de Alto Desempeño, Asociación Mexicana del Asfalto, A. (2008). PA-MA 01/2008. En A. Asociación Mexicana del Asfalto, Protocolo AMAAC. México: Asociación Mexicana del Asfalto, A.C.

Consulta:

Materiales Asfálticos, Aditivos y Mezclas. SCT. (2000). 05 006 Penetración en Cementos y Residuos Asfálticos. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 04Materiales para Pavimentos. México: SCT.

Materiales Asfálticos, Aditivos y Mezclas. SCT. (2000). 05 007 Punto de Inflamación Cleveland en Cementos Asfálticos. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.115

Materiales Asfálticos, Aditivos y Mezclas. SCT. (2000). 05 009 Punto de Reblandecimiento en Cementos Asfálticos. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Materiales Pétreos para Mezclas Asfálticas. SCT. (2002). 04 002 Granulometría de Materiales Pétreos para Mezclas Asfálticas. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para pavimentos. México: SCT.

Materiales Pétreos para Mezclas Asfálticas. SCT. (2002). 04. 004 Equivalente de Arena de Materiales Pétreos para Mezclas Asfálticas. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Materiales Pétreos para Mezclas Asfálticas. Desgaste Mediante la Prueba de Losa Ángeles de Materiales Pétreos para Mezclas Asfálticas, SCT. (2002). 04. en SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Materiales Asfálticos, Aditivos y Mezclas. 002 Viscosidad Dinámica de Cementos y Residuos Asfálticos. SCT. (2002). 05 En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Materiales Asfálticos, Aditivos y Mezclas. 010 Prueba en el Residuo de la Película Delgada de Cementos Asfálticos. SCT. (2002). 05 En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Civil

PROGRAMA DE ESTUDIOS

México: SCT.

Materiales Asfálticos, Aditivos y Mezclas. 025 Módulo Reológico de Corte dinámico. SCT. (2002). 05 En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Materiales asfálticos, Aditivos y Mezclas.001 SCT. (2006) 05. Calidad de materiales asfálticos. En SCT, CMT. Características de los materiales. 4 Materiales para pavimentos. México: SCT.

Materiales pétreos para mezclas asfálticas. SCT. (2008). 04 En SCT, CMT. Características de los materiales. 4. Materiales para pavimentos. México: SCT.

Materiales Asfáltico, Aditivos y Mezclas. 004. SCT. (2008). 05 Calidad de Materiales Asfálticos Grado PG. En SCT, CMT. Características de los materiales.4 Materiales para pavimentos. México: SCT.

Materiales Asfalticos, Aditivos y Mezclas. 003 SCT. (2008). 05. Calidad de Mezclas Asfálticas para Carreteras. En SCT, CMT. Características de los materiales. 4 Materiales para pavimentos. México: SCT.

Materiales Pétreos para Mezclas asfálticas. SCT. (2009). 04 013 Partículas Trituradas de Materiales Pétreos para Mezclas Asfálticas. En SCT, MMP. Métodos de Muestreo y Pruebas de Materiales. 4 Materiales para Pavimentos. México: SCT.

Antecedentes de los métodos de ensayo de ligantes asfalticos de SUPERPAVE. EE.UU.: SHRP.

Antecedentes del diseño y análisis de mezclas asfálticas de SUPERPAVE. EE.UU: SHRP. (1995).

Mezclas Bituminosas. UNE. (2008). UNE-EN 12697-22:2008+A1 Métodos de ensayo para mezclas bituminosas en caliente. Parte 22: Ensayo de Rodadura . UNE.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Civil con experiencia profesional, orientado hacia el área de materiales de construcción, preferentemente con postgrado afín y experiencia en la docencia a nivel licenciatura, capacidad de transmitir y actualizar conocimientos, facilidad para relacionarse con los alumnos.

DR. HÉCTOR GERARDO CAMPOS SILVA

JEFE DE CARRERA JEFATURA DE CARRERA

INGENIERIA CIVIL

AUTORIZÓ

VICE-RECTOR ACADÉMICO

DR. AGUSTÍN SANTIAGO ALVAR

/ICE-RECTORIA ACADÉMICA