205

Taylor expansions and retractions, second order

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Function value along a curve, take two

Let \mathcal{M} be a Riemannian manifold, with associated ∇ and $\frac{D}{dt}$.

Consider smooth $f: \mathcal{M} \to \mathbf{R}$ and $c: \mathbf{R} \to \mathcal{M}$, with c(0) = x, c'(0) = v.

$$g(t) = f(c(t))$$

$$g(t) = g(0) + t g'(0) + \frac{t^2}{2}g''(0) + 0(t^3)$$

$$g(0) = f(x);$$

$$g'(t) = Df(c(t))[c'(t)] = \angle gradf(c(t)), c'(t) > c(t)$$

$$g''(t) = \frac{d}{dt}g'(t) = \frac{d}{dt} \angle gradf(c(t)), c'(t) > c(t)$$

In the production
$$= \langle \frac{1}{2} (gradf \cdot c) (t), c'(t) \rangle_{c(t)} + \langle gradf(c(t)), \frac{1}{2} c'(t) \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), \frac{1}{2} c'(t) \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} = \langle f(c(t)), c''(t), c''(t) \rangle_{c(t)} \rangle_{c(t)} + \langle gradf(c(t)), c''(c(t)), c''(t) \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} \rangle_{c(t)} = \langle f(c(t)), c''(t), c''($$

 $f(Clf) = f(x) + t \langle granf(x), v \rangle_{x}$ $+ \frac{t^{2}}{2} \left(\langle Hunf(x)[v], v \rangle_{x} + \langle gradf(x), C''(0) \rangle_{x} + Olf' \right)$

Take away

Fact: Consider $f: \mathcal{M} \to \mathbf{R}$ smooth. Let $c: \mathbf{R} \to \mathcal{M}$ be a smooth curve with c(0) = x, c'(0) = v and c''(0) = w. Then:

$$\begin{split} f\big(c(t)\big) &= f(x) + t \langle \operatorname{grad} f(x), \boldsymbol{v} \rangle_{x} \\ &+ \frac{t^{2}}{2} \bigg[\langle \operatorname{Hess} f(x)[\boldsymbol{v}], \boldsymbol{v} \rangle_{x} + \langle \operatorname{grad} f(x), \boldsymbol{w} \rangle_{x} \bigg] + O(t^{3}). \end{split}$$

Second-order retractions

The factor $\langle \operatorname{grad} f(x), w \rangle_x$ vanishes if $\operatorname{grad} f(x) = 0$ or c''(0) = 0.

Def.: A retraction is second order if, for all $(x, v) \in T\mathcal{M}$, the curve $c(t) = R_x(tv)$ satisfies c''(0) = 0.

Fact: If *R* is a second-order retraction, or if grad f(x) = 0, then

$$f(R_{x}(s)) = f(x) + \langle \operatorname{grad} f(x), s \rangle_{x} + \frac{1}{2} \langle \operatorname{Hess} f(x)[s], s \rangle_{x} + O(\|s\|_{x}^{3})$$

Example: On the sphere S^{d-1} ,

the retraction
$$R_x(v) = \frac{x+v}{\|x+v\|}$$
 is second order.

$$C(t) = R_{x}(tv) = \frac{1}{\|x+tv\|} (x+tv) = \frac{1}{\|x+tv\|} (x+tv)$$

$$C'(t) = g'(t) (x+tv) + g(t)v$$

$$\frac{d}{dt} c'(t) = g''(t) (x+tv) + 2g'(t)v ; \frac{d}{dt} c'(0) = g''(0)x + 2g'(0)v$$

$$c''(0) = \frac{D}{dt}c'(0) = Proj_{x}\left(\frac{d}{dt}c'(0)\right) = 0$$

More generally, projection retractions are second order: see §5.12.

Gradient and Hessian of pullbacks

For the pullback $f \circ R_x$, we already had grad $f(x) = \text{grad}(f \circ R_x)(0)$.

That holds for all retractions and for all $x \in \mathcal{M}$.

The expansion above yields a corollary that completes the picture:

Fact: If *R* is a second-order retraction, or if grad f(x) = 0, then

$$\operatorname{Hess} f(x) = \operatorname{Hess} (f \circ R_x)(0)$$