Expand

_		
	Corre	_

Yes. This array has two rows and in each row it has 2 arrays of 1x1.

4.	Consider	the followi	ng random	arravs a	and b	, and c :
----	----------	-------------	-----------	------------	---------	-------------

a = np.random.randn(2,3) # a.shape = (2,3)

b = np.random.randn(2,1) # b.shape = (2,1)

c = a + b

What will be the shape of c?

- c.shape = (3, 2)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (2, 3)
- c.shape = (2, 1)

✓ Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5. Consider the two following random arrays a and b:

a = np.random.randn(4,3) # a.shape = (4,3)

 $b = np.random.randn(3,2) \, \# \, b.shape = (3,2)$

c = a * b

What will be the shape of c?

- c.shape = (4,2)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (4, 3)
- c.shape = (3, 3)

∠⁷ Expand

⊗ Incorrect

No! In numpy the "*" operator indicates element-wise multiplication. The broadcasting cannot happen because of the shape of b. b should have been something like (4, 1) or (1, 3) to broadcast properly.

6. Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into feature column vectors \mathbf{x}^j . Remember that $X = \left[\mathbf{x}^{(1)}\mathbf{x}^{(2)}\cdots\mathbf{x}^{(8)}\right]$. What is the dimension of X?

1/1 point

1/1 point

0 / 1 point

(8, 64)

(8, 8, 8)

(64.8)

♥ (♥¬, ♥)	
(512, 1)	
∠ ⁷ Expand	
✓ Correct	
Yes. After converting the 8x8 gray scale images to a column vector we get a vector of size \$\$64\$\$, thus \$\$X\$\$ has dimension	
\$\$(64, 8)\$\$.	
Consider the following array:	1/1 point
a=np.array([[2,1],[1,3]])	
What is the result of $np.dot(a,a)$?	
$\bigcirc ({4 \atop 2} {2 \atop 6})$	
(5 5)	
Loading [MathJax]/jax/output/CommonHTML/autoload/mtable.js	
∠ ⁷ Expand	
○ Correct	
Yes, recall that * indicates the element wise multiplication and that np.dot() is the matrix multiplication. Thus $\$ \begin{pmatrix} (2)(2) + (1)(1) & (2)(1) + (1)(3) \\ (1)(2) + (3)(1) & (1)(1) + (3)(3) \ \end{pmatrix} \\$.	
Consider the following code snippet:	1/1 point
a.shape=(3,4)	
$b.shape=\left(4,1 ight)$	
for i in range(3):	
for j in range(4):	
c[i][j] = a[i][j]*b[j]	
How do you vectorize this?	
c = np.dot(a,b)	
$\bigcirc c = a*b$	
○ c = a.T*b	
\bigcirc c = a*b.T	
∠ [™] Expand	
1 /1 Fausah	

7.

8.

9. Consider the following arrays:

a=np.array([[1,1],[1,-1]])

b = np.array([[2],[3]])

c = a + b

Which of the following arrays is stored in c?

- 3 43 2
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- $\begin{pmatrix}
 3 & 3 \\
 3 & 1 \\
 4 & 4 \\
 5 & 2
 \end{pmatrix}$
- \bigcirc 3 3

⊗ Incorrect

No. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

10. Consider the following computation graph.

1/1 point

0 / 1 point

What is the output J?

$$\bigcirc \quad J = (b-1)*(c+a)$$

$$\bigcirc \quad J = (c-1)*(b+a)$$

$$\bigcirc \quad J = a*b+b*c+a*c$$

⊘ Correct

Yes. \$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c)\$.