Modeling and Simulation -

Lab Assignment 5

Modeling with randomness

Vaibhav Amit Patel (201401222)* and Tanmay Patel (201401409)*

E-mail: vaibhav290797@gmail.com; tanmaypatel273@gmail.com

Problem 1

In this problem you are supposed to use Monte carlo method for your calculation. You can

use the inbuilt random number generator. You are supposed to do the problem in two ways

(i) through a single run and increasing values of the number of random numbers (ii) run

the simulation many times and then calculate the average. In each of the cases you should

show through a single figure how the estimate improves/converges as the length of the runs is

increased or the number of runs increases. Using Monte Carlo Method calculate

Part A:

Area between the curve for $f(x) = x^2$ and the x-axis from x = 0 to x = 2.

1

Figure 1: ensemble size=10, t=100. (ensemble method values are linearly interpolated for visualization)

Figure 2: ensemble size=100, t=100. (ensemble method values are linearly interpolated for visualization)

Figure 3: generated points (n=10000)

Figure 4: ensemble size=100, t=1000. (ensemble method values are linearly interpolated for visualization)

Figure 5: generated points (n=100000)

Part B:

An estimate of π .

Figure 6: generated points (n=10000)

Figure 7: ensemble size=100, t=100. (ensemble method values are linearly interpolated for visualization)

Figure 8: generated points (n=10000)

Figure 9: ensemble size=100, t=100. (ensemble method values are linearly interpolated for visualization)

Part C:

Volume of a Sphere.

Figure 10: generated points (n=10000)

Figure 11: ensemble size=100, t=100. (ensemble method values are linearly interpolated for visualization)

Figure 12: generated points (n=10000)

Figure 13: ensemble size=100, t=100. (ensemble method values are linearly interpolated for visualization)

Problem 2

Starting from uniformly distributed random numbers between 0 and 1, generate random numbers which are distributed as

Part A:

Normal $N(\mu, \sigma^2)$ (Use Box-Muller Algorithm).

Figure 14: Histogram of the distribution generated

Figure 15: Probability density function

Figure 16: Cumulative density function

Figure 17: Histogram of the distribution generated

Figure 18: Probability density function

Figure 19: Cumulative density function

Part B:

Exponential $F_X(x) = 1 - e^{-\lambda x}$ (Use inverse transfer method)

Figure 20: Probability density function

Figure 21: Cumulative density function

Figure 22: Probability density function

Figure 23: Cumulative density function

Part C:

Weibull $F_X(x) = 1 - e^{-(x/\lambda)^k}$, for x > 0, (Use inverse transfer method)

Figure 24: Probability density function

Figure 25: Cumulative density function

Figure 26: Probability density function

Figure 27: Cumulative density function

Figure 28: Probability density function

Figure 29: Cumulative density function

Figure 30: Probability density function

Figure 31: Cumulative density function

Problem 3

Using Acceptance-Rejection Method obtain random numbers whose probability density function is given by $f(x) = 2\pi \sin(4x)$ in the range 0 to 0:25. Generating sufficient number of values plot the histogram.

Figure 32

Figure 33

Figure 34

End of the Document