

OnStage Technical Interview Score Sheet 2025

Category	Examples of how high marks may be achieved are:	Mark
Programming	Ability to explain the program and the interactions between the hardware and	/7
	software: • Choice of programming language	
	Difficulties with the software	
	Development of appropriate models, datasets and/or libraries to solve program-	
	ming solutions	
	Efficient and optimized programming with clear documentation and commenting with evidence of version control	
	Development of calibration, testing and debugging functionalities	
	Usage of AI / AR technology	
Electro-	Ability to explain why electromechanical design choices were made:	/7
mechanical	Choice of materials, microcontrollers and actuators	
Systems	Development of custom electronics (including PCBs)	
	Power management, regulation, and battery choices	
	Design choices are made to ensure systems are reliable and durable	
	Sustainable design choices including the choice of materials	
	Explain how systems are fit for purpose - examples include:	
	Complex mobility - omnidirectional/legged robots	
	Stable builds, system kinematics and design of custom components	
	High precision systems including pneumatics	
	Functional arms/hands/faces	
	Robotic arms for manipulation	
	Automatic balance system	
Sensor and	Ability to explain the role of sensors and communication in the systems and	/7
Communication	how the robots interact with the stage environment:	, ,
Systems	Robot systems can dynamically respond to unplanned events	
	Robots can sense their environment and use the information to dynamically respond with an action	
	Integration of multi sensor systems to develop solutions	
	Development of communication between sensors	
	Creation of communication architectures (asymmetric communication)	
	Explain how systems are fit for purpose - examples include:	
	Visual/Audio recognition	
	Developed guidance, navigation, and control systems	
	Robot-Robot and/or [.underline]Natural Robot-Human interaction	
	Stage/Robot localization systems	
Innovation and	Ability to explain and showcase innovative features or robotic components	/6
Feature	• Innovation achieved with clear evidence of testing, research and development.	70
Development	Innovations that can inspire future competitors	
	Teams are able to explain developments based on past feedback and performance results	
Teamwork and Collegiality	Evidence of team collaboration, problem solving and spirit in the performance and competition.	/3
Deductions (At	Judges believe the work was not done by team members	
discretion of	Team members are unable to explain their technical involvement with the robot	
judges up to -15)		
Total Score		/30