2024年全国青少年信息学奥林匹克联赛

赛前模拟试卷

出题人: 洛谷NOIP计划 - Round4 - mrsrz - NOI 2022 金牌

题目名称	铁甲战士	静默猎手	故障机器人	观者
题目类型	传统型	传统型	传统型	传统型
目录	ironclad	silent	defect	watcher
可执行文件名	ironclad	silent	defect	watcher
输入文件名	ironclad.in	silent.in	defect.in	watcher.in
输出文件名	ironclad.out	silent.out	defect.out	watcher.out
每个测试点时限	1.0秒	1.0秒	1.0秒	1.0秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点数目	10	10	25	20
测试点是否等分	是	是	是	是

提交源程序文件名

编译选项

对于C++语言	-O2 - std = c + +14
---------	---------------------

注意事项与提醒 (请选手务必仔细阅读)

1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。 2. C++ 中函数 main() 的返回值类型必须是 int, 程序结束后返回值必须为 0。 3. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。 4. 若无特殊说明,结果比较方式为忽略行未空格、文末回车后的全文比较。 5. 程序可使用的栈空间大小与该题内存空间限制一致。 6. 每道题目所提交的代码文件大小限制为 100KB。 7. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。 8. 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。 9. 使用 std:deque 等 STL 容器时,请注意其内存空间消耗。 10. 请务

必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外**不允许在程序中手动开启其他编译选项**,一经发现, 本题成绩以 0 分处理。

铁甲战士 (ironclad)

题目背景

题目描述

战士哥来到塔底,遇到了 n 只咔咔。这些咔咔的能力互不相同,不过都会成长。第 i 只咔咔第一个回合拥有 a_i 点力量,且每过一个回合会增加 b_i 点力量。也就是说,第 i 只咔咔在第 j 个回合拥有 $a_i+(j-1)\times b_i$ 点力量。

战士哥开了许多张恶魔形态,自然是不怕这些咔咔的。他决定挑战 k 只咔咔。由于费用有限,战士哥每一回合只能杀一只咔咔,所以需要 k 个回合。

每个回合,战士哥都会选择一只活着的咔咔,然后一刀秒掉,不过这只咔咔会先出手,对战士哥造成等同于它的力量的伤害。其他的咔咔不会出手。

选择不同的咔咔,以不同的顺序击杀,最终的战损也会不同。战士哥当然希望自己的战损尽可能小,因此他想知道,对于 $k=1,2,\cdots,n$,击杀 k 只咔咔所受到的总伤害最少是多少。

输入格式

第一行一个整数 n 表示咔咔的数量。

接下来 n 行,每行两个整数 a_i, b_i ,表示这只咔咔第一回合的力量以及之后每回合的成长值。

输出格式

共n行,每行一个整数。第i行的整数表示击杀i只咔咔所受到的最小总伤害。

样例 #1

样例输入#1

```
5
4 9
6 6
4 7
4 9
3 8
```

样例输出#1

```
3
14
32
57
91
```

提示

对于 20% 的数据, $n \leq 10$ 。

对于 50% 的数据, $n \le 100$ 。

对于 100% 的数据, $1 \leq n \leq 5000$, $0 \leq a_i, b_i \leq 10^9$ 。

静默猎手(silent)

题目背景

题目描述

猎宝的核心机制之一是丢弃手牌,她最擅长把手牌转来转去。

猎宝凭借高超的运转技术,以及幽魂形态的保护,一路过关斩将,来到了史莱姆牢大的面前。

猎宝手里现在有n张牌,她将每张牌都用小写字母进行了编号。由于手牌是有顺序的,因此她的手牌可以看作一个只包含小写字母的字符串。

猎宝准备启动她的卡组。她现在可以将手牌中连续的 k 张牌丢弃。这样,她的手牌就会变成长度为 n-k 的字符串。

由于猎宝的手牌太强了,她无论怎么选都可以启动,因此她开始关心手牌的字典序。令 s[i] 表示 丟弃第 $i,i+1,\cdots,i+k-1$ 张手牌后,剩余的手牌形成的字符串。猎宝想要找到一个长度为 n-k+1 的排列 p 满足:

$$s[p_1] \leq s[p_2] \leq \cdots \leq s[p_{n-k+1}]$$

由于不同的丢弃方式可能得到相同的字符串,因此 p 也不一定是唯一的。猎宝想要找到字典序最小的排列 p。

为了便于记忆,猎宝只想要知道 $\sum\limits_{i=1}^{n-k+1}p_i imes i$ 对 10^9+7 取模的值。

输入格式

第一行一个正整数 T 表示数据组数。

每组数据的第一行两个整数 n, k,分别表示手牌数量,已经要丢弃的牌的数量。

每组数据的第二行一个长度为 n 的,仅包含小写字母的字符串 S,按顺序表示每张手牌。

输出格式

共T行,对于每组数据,输出一行一个整数表示答案。

样例 #1

样例输入#1

3 2 1

5 2

abcde

12 7

slaythespire

样例输出#1

5 20

61

提示

样例解释

对于第一组数据和第二组数据,满足条件的最小的排列分别是 [1,2] 以及 [4,3,2,1]。

限制与约定

对于 10% 的数据, $\sum n \le 10$ 。

对于 30% 的数据, $\sum n \leq 1000$ 。

对于 60% 的数据, $\sum n \leq 10^6$ 。

对于 100% 的数据, $1 \leq T \leq 10^5$, $2 \leq n, \sum n \leq 2 \times 10^7$, $1 \leq k < n$ 。

故障机器人 (defect)

题目背景

题目描述

作为一个机器人,鸡煲当然最擅长进行位运算。

鸡煲有 n 个充能球,每个充能球上都有一个数,第 i 个充能球上的数记为 a_i 。鸡煲只花了 1 秒就算出了这 n 个数的异或和。

但是鸡煲是"故障机器人",他不太正常,以至于他非常执着地想让这 n 个数的异或和为 0。

好在鸡煲也很擅长转来转去,他手里有很多强力的牌,使得他只需 SL 一个小时,交两瓶药,掉 50 滴血,就可以不被六火打死。

他有一张牌,可以使得某个充能球上的数 +1。我们认为这张牌他可以打出无数次。但是每次打出这张牌就需要 1 点费用。

鸡煲在回响形态的帮助下,好不容易打赢六火,又使用烟雾弹从三奴隶面前逃掉了,终于来到了铜制机械人偶面前,他需要足够的费用才有可能战胜对手。因此他希望用最少的费用,使得这些充能球上的数的异或和为 0。

你需要帮助鸡煲计算这个最少的费用,不然这张牌下一回合就会被铜球给拿走,鸡煲就会惨败。

输入格式

第一行一个整数 T 表示数据组数。

每组数据的第一行为一个整数 n 表示鸡煲的充能球个数。

每组数据的第二行为 n 个整数 a_1, a_2, \dots, a_n , 表示充能球上的数。

输出格式

对每组数据,输出一行一个整数表示最少的费用。

样例 #1

样例输入#1

```
4
3
3 4 5
4
5 3 0 7
3
2 3 1
5
7 7 7 7 7
```

样例输出#1

2 1 0 9

提示

样例解释

对于第一个样例的第四组数据,一个可能的方案是:对第3个充能球使用1次牌,对第4个充能球使用8次牌,最终变成778157。

第四个样例满足测试点 16、17 的性质。

限制与约定

对于 100% 的数据, $1 \leq T \leq 100$, $2 \leq n, \sum n \leq 10^6$, $0 \leq a_i < 2^{60}$ 。

测试点编号	$n \le$	$\sum n \le$	$a_i <$	特殊性质
1	5	500	16	
2	5	500	16	
3	100	10^{3}	2^7	
4	100	10^{3}	2^7	
5	100	10^{3}	2^7	
6	100	10^{3}	2^7	
7	7	100	2^{60}	
8	7	100	2^{60}	
9	13	100	2^{60}	
10	13	100	2^{60}	
11	10^{3}	10^4	2^{30}	
12	10^{3}	10^4	2^{30}	
13	10^{3}	10^4	2^{30}	
14	10^{3}	10^4	2^{30}	
15	10^{3}	10^4	2^{30}	
16	10^{3}	10^4	2^{30}	$a_1 = 0$
17	10^{3}	10^4	2^{30}	$a_1 = 0$
18	10^{6}	10^6	2^{30}	$a_1 = 0$
19	10^{6}	10^6	2^{30}	$a_1 = 0$
20	10^{6}	10^6	2^{30}	
21	10^{6}	10^6	2^{30}	
22	10^{6}	10^6	2^{30}	
23	10^{6}	10^6	2^{60}	$a_1 = 0$
24	10^{6}	10^6	2^{60}	
25	10^{6}	10^6	2^{60}	

观者 (watcher)

题目背景

题目描述

观者在一层就抓到了猛虎下山、不惧妖邪、潦草急就,然后删了几张打防。她使用猛虎无限大杀四方,拳打蹲起,脚踢弟勇,仅花 15 分钟就来到时光牢头面前(此时的鸡煲正在和乐加维林比启动)。

时光牢头有着对方出 12 张牌就会强制结束回合的神技,非常克制没带起防卡的猛虎无限。为了应对这个技能,观者开了天人形态,手握诸神的黄昏,打算一波带走牢头。

时光牢头非常害怕,使用了神秘的力量,把观者送到了一个奇怪的地方。观者看了看地图,发现这个地方有 n 个结点,n-1 条连接两个结点的路,且观者可以走到所有的结点。观者给所有结点编了号,观者目前所在的点是 1 号点。

幸运的是,观者遇到了那个熟悉的,戴着面具的商人。她付了点钱以后,商人告诉她,每个结点都需要解决一个问题。

将地图看作一棵以 1 号结点为根的树,则,对于每个结点 u,有三个参数 X_u,Y_u,Z_u ,你需要在 1 号结点到 u 的路径上(不包括 u)选择至少 X_u 个结点,在 u 的子树(不包括 u)中选择至少 Y_u 个结点。你需要保证你总共选择了 m 个结点(**对于所有结点,**m 是相同的)。然后,令 S_1 表示 1 号结点到 u 的路径上被选择的结点到 u 的距离和, S_2 表示 u 的子树中被选择的结点到 u 的距离和,需要求出 $|S_1-S_2+Z_u|$ 的最小值。

两点之间的距离为两点之间简单路径上的边数。

观者想要尽快解决这个问题,然后去和时光牢头算账,于是她把问题交给了你。

输入格式

第一行两个整数 n, m。

接下来 n-1 行,每行两个整数 u,v,表示一条树上的边。

接下来 n 行, 每行三个整数 X_i, Y_i, Z_i , 表示结点 i 的参数。

输出格式

输出一行 n 个整数表示答案。特别地,若对于一个结点,你无法按要求选择结点,则输出 -1。

样例 #1

样例输入#1

```
5 2
1 2
1 3
2 4
2 5
0 0 -1
0 0 0
1 0 1
0 0 2
0 0 1
```

样例输出#1

```
3 0 -1 5 4
```

样例 #2

样例输入#2

```
7 5
1 2
2 3
3 4
4 5
4 6
4 7
0 0 0
0 0
0 0 0
2 0 -3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
```

样例输出#2

```
14 8 2 1 -1 -1 -1
```

提示

对于前 5% 的数据, $n \leq 10$.

对于前 20% 的数据, $n \leq 300$ 。

对于前 40% 的数据, $n \leq 3000$ 。

对于前 60% 的数据, $n \leq 10^5$ 。

对于另外 20% 的数据,保证对于 $i \in [1, n-1]$,存在连接 i = i+1 的边。

对于 100% 的数据, $1\leq n\leq 5\times 10^5$, $0\leq m\leq n$, $|Z_i|\leq 10^9$, $X_i,Y_i\geq 0$,保证输入的是一棵树。对于 $u\in [1,n]$,保证 X_u 不超过 1 到 u 的路径上的结点个数(不包括 u),保证 Y_u 不超过 u 子树中的结点个数(不包括 u),保证 $X_u+Y_u\leq m$ 。