

Global United Technology Services Co., Ltd.

Report No.: GTS201707000142F04

FCC Report (Bluetooth)

Applicant: Shenzhen YLWD Technology Co.,Ltd

Address of Applicant: RM1002.A.Haisong BLD.RDTairan.FuTian District

Shenzhen, China

Manufacturer/Factory: Shenzhen YLWD Technology Co.,Ltd

Address of RM1002.A.Haisong BLD.RDTairan.FuTian District

Manufacturer/Factory: Shenzhen, China

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: E4001, E4002, E4003, E4004, E4005, E4501, E4502, E4503,

E4504, E4505, E5001, E5002, E5003, E5004, E5005, E5501, E5502, E5503, E5504, E5505, E6001, E6002, E6003, E6004,

E6005

Trade mark: MOVIC

FCC ID: 2AKSAMOVIC-E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2017

Date of sample receipt: July 03, 2017

Date of Test: July 04-11, 2017

Date of report issued: July 12, 2017

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 12, 2017	Original

Prepared By:	Edward. Pan	Date:	July 12, 2017	
	Project Engineer	<u> </u>		
Check By:	Andy w	Date:	July 12, 2017	
	Reviewer			

3 Contents

			Page
1	COVER PAG	6E	1
2	VERSION		2
3	CONTENTS.		3
4		IARY	
5	GENERAL IN	NFORMATION	5
		AL DESCRIPTION OF EUT	
		DDE	
		PTION OF SUPPORT UNITS	
		CILITY	
		DCATION	
6	TEST INSTR	UMENTS LIST	8
7	TEST RESUL	LTS AND MEASUREMENT DATA	9
	7.1 ANTENN	IA REQUIREMENT	9
	7.2 CONDUC	CTED EMISSIONS	10
		CTED OUTPUT POWER	
		EL BANDWIDTH	
		SPECTRAL DENSITY	
		DGESducted Emission Method	
		ated Emission Method	
		US EMISSION	
		ducted Emission Method	
		ated Emission Method	
8	TEST SETUR	P PHOTO	30
9	EUT CONST	RUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 General Description of EUT

•	·
Product Name:	mobile phone
Model No.:	E4001, E4002, E4003, E4004, E4005, E4501, E4502, E4503, E4504, E4505, E5001, E5002, E5003, E5004, E5504, E5505, E6001, E6002, E6003, E6004, E6005
Test Model No.:	E4001
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PIFA antenna
Antenna Gain:	1.0dBi
Power Supply:	Adapter Model No.: R400-A Input: AC 100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 500mA or DC 3.7V 1400mAh Li-ion Battery

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
	. !		. !	• !	• !	• !	• !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2017	June 28 2018		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2017	June 28 2018		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2017	June 28 2018		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2017	June 28 2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2017	June 28 2018		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2017	June 28 2018		
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2017	June 28 2018		
11	Coaxial cable	GTS	N/A	GTS210	June 29 2017	June 28 2018		
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2017	June 28 2018		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2017	June 28 2018		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2017	June 28 2018		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2017	June 28 2018		
16	Band filter	Amindeon	82346	GTS219	June 29 2017	June 28 2018		

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	ron 7.3(L)x3.1(W)x2.9(H)		May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2017	June 28 2018	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2017	June 28 2018	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2017	June 28 2018	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June 29 2017	June 28 2018	

Gen	General used equipment:						
Ite m	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	June 29 2017	June 28 2018	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PIFA antenna, the best case gain of the antenna is 1dBi

7.2 Conducted Emissions

	I -					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Frequency range (MHz) Limit (dBuV)					
	Quasi-peak Average					
	0.15-0.5 66 to 56* 56 to 46*					
	0.5-5 56 46					
	5-30	60	50			
Toot cotup:	* Decreases with the logarithn	•				
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.					
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details	<u> </u>				
Test mode:	Refer to section 5.3 for details	1				
Test results:	Pass					

Measurement data

Line:

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1 2 3 4	0. 343 0. 343 0. 408 0. 408	42.12 30.90 47.89 37.79	42.33 31.11 48.11 38.01	0.11 0.11 0.11 0.11	0.10 0.10 0.11 0.11		-9.57	Average
5 6 7	0. 444 0. 444 0. 510	41.52 31.32 41.43	41.75 31.55 41.66	0.12 0.12 0.12	0.11 0.11 0.11	56. 98 46. 98 56. 00	-15. 23 -15. 43 -14. 34	QP Average QP
8 9 10 11 12	0. 510 0. 546 0. 546 3. 276 3. 276	30. 61 39. 99 29. 08 45. 62 26. 35	30. 84 40. 23 29. 32 45. 94 26. 67	0.12 0.13 0.13 0.17 0.17	0.11 0.11 0.11 0.15 0.15	56.00 46.00 56.00	-15.77 -16.68 -10.06	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1 2 3 4 5 6 7 8 9	0.343 0.343 0.408 0.408 0.444 0.516 0.516 0.614	41. 67 35. 04 49. 88 43. 04 44. 73 38. 28 43. 96 33. 35 40. 89 33. 76	41. 83 35. 20 50. 05 43. 21 44. 90 38. 45 44. 13 33. 52 41. 08 33. 95	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07	0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11	49. 13 57. 68 47. 68 56. 98 46. 98 56. 00 46. 00 56. 00	-7. 63 -4. 47 -12. 08 -8. 53 -11. 87 -12. 48 -14. 92	Average QP Average QP Average QP Average
11 12	0. 751 0. 751	42. 08 30. 95	42.28 31.15	0.07 0.07	0.13 0.13	56.00	-13.72	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-7.08		
Middle	-7.05	30.00	Pass
Highest	-7.63		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.690			
Middle	0.688	>500	Pass	
Highest	0.682			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-7.18		
Middle	-7.11	8.00	Pass
Highest	-7.79		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Test plot as follows:

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15 209	and 15 205						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to								
l con request, remiger	2500MHz) data was showed.								
Test site:		Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Value								
·		Peak	1MHz	3MHz	Peak				
	Above 1GHz	RMS	1MHz	3MHz	Average				
Limit:	Freque	ncy	Limit (dBuV/	/m @3m)	Value				
	Above 1	GH ₇	54.0	0	Average				
	Above 1	OTIZ	74.0	0	Peak				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier								
Test Procedure:	the ground at determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to dethorizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified the EUT where 10dB meak or averasheet. 7. The radiation And found the self-minited the self-maximum the self-minited t	t a 3 meter can be position of the set 3 meters and the set 3 meters and the set 3 meters and the set 4 meters and	nber. The talle highest race away from the away from the don the top of the t	ble was rotated ble was rotated ble was rotated ble interference of a variable neter to four elements of the field he antenna alwas arrange hts from 1 mgrees to 360 ak Detect Fund Mode. In mode was 1 stopped and elements by one using the proposition of the report med in X, Y, it is worse care	meters above the strength. Both are set to make the d to its worst case after to 4 meters degrees to find anction and ddB lower than dd the peak values ons that did not sing peak, quasi-				
Test Instruments:	Refer to section			-					
Test mode:	Refer to section								
Test results:	Pass								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 31

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Fest channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	41.81	27.59	5.38	30.18	44.60	74.00	-29.40	Horizontal
2400.00	58.45	27.58	5.39	30.18	61.24	74.00	-12.76	Horizontal
2390.00	42.26	27.59	5.38	30.18	45.05	74.00	-28.95	Vertical
2400.00	60.37	27.58	5.39	30.18	63.16	74.00	-10.84	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.61	27.59	5.38	30.18	35.40	54.00	-18.60	Horizontal
2400.00	43.78	27.58	5.39	30.18	46.57	54.00	-7.43	Horizontal
2390.00	32.47	27.59	5.38	30.18	35.26	54.00	-18.74	Vertical
2400.00	45.33	27.58	5.39	30.18	48.12	54.00	-5.88	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.79	27.53	5.47	29.93	46.86	74.00	-27.14	Horizontal
2500.00	43.17	27.55	5.49	29.93	46.28	74.00	-27.72	Horizontal
2483.50	44.46	27.53	5.47	29.93	47.53	74.00	-26.47	Vertical
2500.00	44.06	27.55	5.49	29.93	47.17	74.00	-26.83	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.42	27.53	5.47	29.93	38.49	54.00	-15.51	Horizontal
2500.00	33.57	27.55	5.49	29.93	36.68	54.00	-17.32	Horizontal
2483.50	36.54	27.53	5.47	29.93	39.61	54.00	-14.39	Vertical
2500.00	33.41	27.55	5.49	29.93	36.52	54.00	-17.48	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Test plot as follows:

Lowest channel

30MHz~10GHz

30MHz~10GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

10GHz~25GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209										
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz									
Test site:	Measurement Distance: 3m										
Receiver setup:	Frequency	Detector	RBW	VBW	Value						
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak						
	Above 1GHz	Peak	1MHz	3MHz	Peak						
	Above IGHZ	RMS	1MHz	3MHz	Average						
Limit:	Frequer	псу	Limit (dBuV/	/m @3m)	Value						
	30MHz-88	MHz	40.0	0	Quasi-peak						
	88MHz-216	6MHz	43.5	0	Quasi-peak						
	216MHz-96	60MHz	46.0	0	Quasi-peak						
	960MHz-1	GHz	54.0	0	Quasi-peak						
	Above 10	211-7	54.0	0	Average						
	Above ic	JI 12	74.0	0	Peak						
Test setup:	Below 1GHz	EUT+		Antenna 4m >	iier-						
	Above 1GHz										

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Turn Table \(\tag{150cm} > \tag{150cm} \) Receiver \(\tag{Preamplifier} \)
Test Procedure:	The EUT was placed on the top of a rotating table (0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

- DCIOW I								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
35.25	41.39	14.39	0.61	30.07	26.32	40.00	-13.68	Vertical
51.66	37.23	15.17	0.79	29.99	23.20	40.00	-16.80	Vertical
104.90	41.36	14.68	1.23	29.67	27.60	43.50	-15.90	Vertical
126.33	48.16	11.51	1.41	29.53	31.55	43.50	-11.95	Vertical
170.79	49.15	11.03	1.69	29.31	32.56	43.50	-10.94	Vertical
609.92	26.12	20.48	3.76	29.29	21.07	46.00	-24.93	Vertical
91.50	38.83	14.24	1.12	29.74	24.45	43.50	-19.05	Horizontal
125.45	43.24	11.61	1.40	29.54	26.71	43.50	-16.79	Horizontal
173.81	51.33	11.23	1.71	29.30	34.97	43.50	-8.53	Horizontal
350.48	37.41	16.27	2.62	29.73	26.57	46.00	-19.43	Horizontal
499.43	32.67	18.58	3.30	29.30	25.25	46.00	-20.75	Horizontal
952.09	35.88	23.43	5.04	29.10	35.25	46.00	-10.75	Horizontal

■ Above 1GHz

Test channel: Lowest									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4804.00	38.80	31.78	8.60	32.09	47.09	74.00	-26.91	Vertical	
7206.00	32.82	36.15	11.65	32.00	48.62	74.00	-25.38	Vertical	
9608.00	32.35	37.95	14.14	31.62	52.82	74.00	-21.18	Vertical	
12010.00	*					74.00		Vertical	
14412.00	*					74.00		Vertical	
4804.00	43.40	31.78	8.60	32.09	51.69	74.00	-22.31	Horizontal	
7206.00	34.71	36.15	11.65	32.00	50.51	74.00	-23.49	Horizontal	
9608.00	31.92	37.95	14.14	31.62	52.39	74.00	-21.61	Horizontal	
12010.00	*					74.00		Horizontal	
14412.00	*					74.00		Horizontal	

Average value:

Average var	Average value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4804.00	27.33	31.78	8.60	32.09	35.62	54.00	-18.38	Vertical	
7206.00	21.34	36.15	11.65	32.00	37.14	54.00	-16.86	Vertical	
9608.00	20.33	37.95	14.14	31.62	40.80	54.00	-13.20	Vertical	
12010.00	*					54.00		Vertical	
14412.00	*					54.00		Vertical	
4804.00	31.73	31.78	8.60	32.09	40.02	54.00	-13.98	Horizontal	
7206.00	23.61	36.15	11.65	32.00	39.41	54.00	-14.59	Horizontal	
9608.00	20.18	37.95	14.14	31.62	40.65	54.00	-13.35	Horizontal	
12010.00	*					54.00		Horizontal	
14412.00	*					54.00		Horizontal	

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	36.97	31.85	8.67	32.12	2	45.37	74.00	-28.63	Vertical
7320.00	31.61	36.37	11.72	31.89	9	47.81	74.00	-26.19	Vertical
9760.00	31.27	38.35	14.25	31.6	2	52.25	74.00	-21.75	Vertical
12200.00	*						74.00		Vertical
14640.00	*						74.00		Vertical
4880.00	41.19	31.85	8.67	32.12	2	49.59	74.00	-24.41	Horizontal
7320.00	33.33	36.37	11.72	31.89	9	49.53	74.00	-24.47	Horizontal
9760.00	30.66	38.35	14.25	31.6	2	51.64	74.00	-22.36	Horizontal
12200.00	*						74.00		Horizontal
14640.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	25.86	31.85	8.67	32.12	2	34.26	54.00	-19.74	Vertical
7320.00	20.34	36.37	11.72	31.89	9	36.54	54.00	-17.46	Vertical
9760.00	19.44	38.35	14.25	31.6	2	40.42	54.00	-13.58	Vertical
12200.00	*						54.00		Vertical
14640.00	*						54.00		Vertical
4880.00	30.05	31.85	8.67	32.12	2	38.45	54.00	-15.55	Horizontal
7320.00	22.49	36.37	11.72	31.89	9	38.69	54.00	-15.31	Horizontal
9760.00	19.14	38.35	14.25	31.62	2	40.12	54.00	-13.88	Horizontal
12200.00	*						54.00		Horizontal
14640.00	*						54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 1 16/61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.03	31.93	8.73	32.16	44.53	74.00	-29.47	Vertical
7440.00	30.98	36.59	11.79	31.78	47.58	74.00	-26.42	Vertical
9920.00	30.72	38.81	14.38	31.88	52.03	74.00	-21.97	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.06	31.93	8.73	32.16	48.56	74.00	-25.44	Horizontal
7440.00	32.63	36.59	11.79	31.78	49.23	74.00	-24.77	Horizontal
9920.00	30.02	38.81	14.38	31.88	51.33	74.00	-22.67	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:					•	•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 1 1 5/61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.13	31.93	8.73	32.16	33.63	54.00	-20.37	Vertical
7440.00	19.85	36.59	11.79	31.78	36.45	54.00	-17.55	Vertical
9920.00	19.00	38.81	14.38	31.88	40.31	54.00	-13.69	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.23	31.93	8.73	32.16	37.73	54.00	-16.27	Horizontal
7440.00	21.94	36.59	11.79	31.78	38.54	54.00	-15.46	Horizontal
9920.00	18.63	38.81	14.38	31.88	39.94	54.00	-14.06	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201707000142F01

-----End-----