

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol (then an NFA is allowed to make a transition spontaneously, without receiving an input symbol).
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

 ε -NFAs have one more column in their transition table

Example of an ε-NFA

L = {w | w is empty, or if non-empty will end in 01}

	δ_{E}	0	1	3		
	*q' ₀	Ø	Ø	{q'₀,q₀} ⁴	_	ECLOSE(q' ₀)
	q_0	${q_0,q_1}$	$\{q_0\}$	{q₀} ←		ECLOSE(q ₀)
	q_1	Ø	{q ₂ }	{q₁} ₄		ECLOSE(q ₁)
J	*q ₂	Ø	Ø	{q₂} ←		ECLOSE(q ₂)

ε-closure of a state q, **ECLOSE(q)**, is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of εtransitions (all states reached by making an ε transition).

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of an ε-NFA

L = {w | w is empty, or if non-empty will end in 01}

Simulate for w=101:

To simulate any transition:

Step 1) Go to all immediate destination states.

Step 2) From there go to all their ε-closure states as well.

Example of another ε-NFA

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	{q' ₀ ,q ₀ ,q ₃ }
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_{0,}q_{3}\}$
	q_1	Ø	{q ₂ }	{q₁}
	*q ₂	Ø	Ø	{q ₂ }
	q_3	Ø	{q ₂ }	{q ₃ }

Simulate for w=101:

Equivalency of DFA, NFA, ε-NFA

■ Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA (L(DFA) = L(ε-NFA)).

- We have:
 - DFA \equiv NFA \equiv ϵ -NFA
 - (all accept Regular Languages)

Equivalency of DFA, NFA, ε-NFA (cont'd)

- **Direction**: $L(DFA) \subseteq L(\varepsilon \neg NFA)$. We turn a DFA into a $\varepsilon \neg NFA$ by adding transitions $\delta(q, \varepsilon) = \emptyset$ for each $q \in Q$ (states of the DFA).
- *Direction*: $L(DFA) \supseteq L(\varepsilon NFA)$ (see next slide).

4

Eliminating ε-transitions

```
Let E = \{Q_E, \sum, \delta_E, q_0, F_E\} be an \epsilon-NFA

<u>Goal</u>: To build DFA D = \{Q_D, \sum, \delta_D, \{q_D\}, F_D\} s.t.

L(D) = L(E)
```

Construction:

- Q_D = all reachable subsets of Q_E factoring in ε-closures
- $q_D = ECLOSE(q_0)$
- F_D=subsets S in Q_D s.t. $S \cap F_E \neq \Phi$
- δ_D: for each subset S of Q_E and for each input symbol a ∈ Σ:
 - Let $R = \bigcup_{p \text{ in } s} \delta_E(p,a)$ // go to destination states
 - $\delta_D(S,a) = U \text{ ECLOSE(r) // from there, take a union}$ rin R of all their ϵ -closures

Eliminating ε-transitions (cont'd)

In other words:

- 1. Compute all ϵ -closures of all states of the ϵ -NFA
- 2. Compute a transition table T of the ε -NFA
- From T compute the DFA transition table from the first state and take the resulting states as the next state in each step.

Example 1: ε -NFA \rightarrow DFA

L = {w | w is empty, or if non-empty will end in 01}

	δ_{E}	0	1	3
\rightarrow	*q' ₀	Ø	Ø	${q'_0,q_0}$
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0\}$
	q_1	Ø	$\{q_2\}$	{q ₁ }
	*q ₂	Ø	Ø	{q ₂ }

δ_{D}	0	1
 *{q' ₀ ,q ₀ }	$\emptyset \cup \{q_0,q_1\}$	Ø∪{q₀}
$\{q_0,q_1\}$	${q_0,q_1}\cup\emptyset$	$\{q_0\}\cup\{q_2\}$
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$*{q_0,q_2}$	${q_0,q_1}\cup \emptyset$	{q₀}∪Ø

Example 2: ε -NFA \rightarrow DFA

Summary

- **ε-NFA** conversion
- **Expresive** power of ε-NFAs and DFAs.