第十一次习题课 群文件《期中 & 期末试题》

期末试题

1.期末 2014-2015 - 5.

已知实二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_2$ 经正交变换 x = py 可化为标准形: $f = 6y^2$,则 a = 。

解:

任意二次型 x^TAx 经过正交变换化为标准型时,标准型中平方项的系数即为二次型矩阵 A 的特征值, 即 6.0.0 是 A 的特 征值, 而 A 的对角线元素是 a, a, a, 由特征值性质 $trace(A) = a + a + a = \sum_{i=1}^{3} \lambda = 6$, 所以 a = 2.

2.期末 2014-2015 六.

设实二次型

$$f(x_1, x_2, x_3) = X^T A X = ax_1^2 + 2x_2^2 - 2x_3^2 + 2bx_1x_3 \quad (b > 0)$$

的矩阵 A 的特征值之和为 1,特征值之积为-12。

- (1) 求 a, b 的值;
- (2) 利用正交变换将二次型 f 化为标准型, 并写出所用正交变换。

解:

由题得:
$$A = \begin{bmatrix} a & 0 & b \\ 0 & 2 & 0 \\ b & 0 & -2 \end{bmatrix} m, |A| = 2(-2a - b^2)$$
 (1) 由特征值的性质有:

$$\begin{cases} trace(A) = a + 2 - 2 = 1\\ \prod_{i=1}^{3} \lambda_i = -12 = |A| = 2(-2a - b^2) \\ b > 0 \end{cases} \Rightarrow \begin{cases} a = 1\\ b = 2 \end{cases}$$

(2)
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 2 & 0 \\ -2 & 0 & \lambda + 2 \end{vmatrix} = (\lambda - 2)[(\lambda - 1)(\lambda + 2) - 4] = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = 2, \lambda_3 = -3$$

 $\lambda_1 = \lambda_2 = 2$ 时:

$$[\lambda E - A] = \begin{vmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{vmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = 2x_3 \\ x_2 \in R \end{cases}$$

分别取 $[x_2,x_3]^T=[1,0]^T$ 和 $[0,1]^T$ 得: $\alpha_1=[0,1,0]^T,\alpha_2=[2,0,1]^T$,可以看出 α_1 与 α_2 正交。

 $\lambda_3 = -3$ 时:

$$[\lambda E - A] = \begin{vmatrix} -4 & 0 & -2 \\ 0 & -5 & 0 \\ -2 & 0 & -1 \end{vmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = -2$ 得: $\alpha_3 = [1,0,-2]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。 单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = [0, 1, 0]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 2y_1^2 + 2y_2^2 - 3y_3^2$$

 \Diamond

 \Diamond

 \Diamond

3.期末 2015-2016 一 6.

若矩阵
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$$
 正定,则 λ 满足的条件为_____。

解:

由题得: A 为对称矩阵,如果 A 正定,则 |A| > 0,所以 $|A| = \lambda - 5 > 0 \Rightarrow \lambda > 5$.

4.期末 2015-2016 四 1.

设 A 为 n 阶实对称矩阵, 且满足 $A^2 - 3A + 2E = 0$, 其中 E 为单位矩阵, 试证:

(2)A 为正定矩阵。

证明:

对于 n 阶实对称矩阵,如果 A 为正定矩阵,则 A 的全部特征值大于 0.设 A 的特征值为 λ 。由题得:

$$\lambda^2 - 3\lambda + 2 = 0 \quad \Rightarrow \quad \lambda_1 = 1 > 0, \lambda_2 = 2 > 0$$

所以 A 为正定矩阵。

5.期末 2016-2017 一 6.

设
$$B = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & \lambda \end{bmatrix}$$
,已知二次型 $f(x) = x^T B x$ 是正定的,则 λ 的取值范围为_____。

解:

由题得:

$$f(x) = x^T B x = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 & 2x_1 + 2x_2 & 4x_1 + 6x_2 + \lambda x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1^2 + 2x_2^2 + \lambda x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

所以其对应的二次型矩阵为: $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & \lambda \end{bmatrix}$,A 为对称矩阵,如果 A 正定,则 |A| > 0,所以 $|A| = \lambda - 5 > 0 \implies \lambda > 5$. \diamondsuit

6.期末 2016-2017 三 2.

已知实对称矩阵
$$A = \begin{bmatrix} a & -1 & 4 \\ -1 & 3 & b \\ 4 & b & 0 \end{bmatrix}$$
 与 $B = \begin{bmatrix} 2 & & \\ & -4 & \\ & 5 & \end{bmatrix}$ 相似。

- (1) 求矩阵 A;
- (2) 求正交线性变换 x = Qy, 把二次型 $f(x) = x^T Ax$ 化为标准型.

解:

对于对角矩阵, 其特征值为对角线上的元素。因为 A 与 B 相似, 所以 A 与 B 有相同的特征值。

(1) 由特征值的性质

$$\begin{cases} trace(A) = a + 3 + 0 = \sum_{i=1}^{3} \lambda_i = 2 - 4 + 5 = 3 \\ |A| = (-1) \times (-1)^{1+2} \begin{vmatrix} -1 & b \\ 4 & 0 \end{vmatrix} + 4 \begin{vmatrix} -1 & 3 \\ 4 & b \end{vmatrix} = -8b - 48 = \prod_{i=1}^{3} \lambda_i = 2 \times (-4) \times 5 = -40 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = -1 \end{cases}$$

$$(2)$$
 $\lambda_1 = 2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_3 \\ x_2 = 2x_3 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [1, 2, 1]^T$ 。 $\lambda_2 = -4$ 时:

$$[\lambda E - A] = \begin{bmatrix} -4 & 1 & -4 \\ 1 & -7 & 1 \\ -4 & 1 & -4 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = -1$ 得 $\alpha_2 = [1, 0, -1]^T$ 。 $\lambda_3 = 5$ 时:

$$[\lambda E - A] = \begin{bmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_3 \\ x_2 = -x_3 \end{cases}$$

取 $x_3=1$ 得 $\alpha_2=[1,-1,1]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 2y_1^2 - 4y_2^2 + 5y_3^2$$

 \Diamond

7.期末 2016-2017 四 2.

已知 A, B 是同阶实对称矩阵。

- (1) 证明如果 $A \sim B$, 则 $A \simeq B$, 也就是相似一定合同;
- (2) 举例说明反过来不成立。

证明:

(1) 因为 $A\sim B$,所以 A,B 具有相同的特征值,记为 $\lambda_i, (1\leq i\leq n)$ 。对于实对称矩阵 A 存在正交矩阵 Q,使得 $Q^{-1}AQ$ 为对角矩阵。即存在正交矩阵 Q_1 ,使得 $Q_1^{-1}AQ=\Lambda=\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$,对于正交矩阵 Q_1 ,有 $Q_1^{-1}=Q_1^T$,即 $Q_1^TAQ_1=\Lambda$,所以 A 合同于 A,同理 B 合同于 A,所以 A 合同于 B。

(2) 反过来描述: A, B 是同阶实对称矩阵, $A \simeq B$, 则 $A \sim B$ 。

由惯性定理(157 页)知:如果: $A=\begin{bmatrix}1\\2\end{bmatrix}$, $B=\begin{bmatrix}1\\3\end{bmatrix}$,A,B 为对角阵,且 $A\simeq B$,但 A 和 B 的特征值不同,即 A 与 B 不相似。

8.期末 2017-2018 一 6.

设二次型 $f(x_1,x_2,x_3)=2x_1^2+x_2^2+x_3^2+2x_1x_2+2tx_2x_3$ 的秩为 2,则 t=_____。

解:

二次型对应的矩阵为:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & t \\ 0 & t & 1 \end{bmatrix}$$

A 的秩为 2, 即 |A| = 0, 解得: $t = \pm \frac{1}{\sqrt{2}}$

 \Diamond

 \Diamond

9.期末 2017-2018 三 2.

设 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2$ 。

- (1) 写出该二次型的矩阵 A;
- (2) 求正交矩阵 Q 使得 $Q^TAQ = Q^{-1}AQ$ 为对角型矩阵;
- (3) 给出正交变换, 化该二次型为标准型。

解:

(1) 由题得:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(2)

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)[(\lambda - 2)^2 - 1] = 0 \quad \Rightarrow \quad \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$$

 $\lambda_1 = 1$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -x_2 \\ x_3 = 0 \end{cases}$$

取 $x_2 = -1$ 得 $\alpha_1 = [1, -1, 0]^T$ 。

 $\lambda_2=2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_2 = 0 \\ x_3 \in R \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_2 = [0, 0, 1]^T$ 。

 $\lambda_3 = 3$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = x_2 \\ x_3 = 0 \end{cases}$$

取 $x_2=1$ 得 $\alpha_3=[1,1,0]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1,\alpha_2,\alpha_3]$ 为正交向量组。

单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = [0, 0, 1]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = y_1^2 + 2y_2^2 + 3y_3^2$$

 \Diamond

10.期末 2018-2019 - 5.

若二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$ 正定,则 t 应满足_____。

解:

二次型矩阵
$$A = \begin{bmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{bmatrix}$$
, 二次型正定,即 A 正定,即 A 的所有顺序主子是大于 0 . 即

$$D_1 = 1$$

$$D_2 = \begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} = 4 - t^2 > 0 \quad \Rightarrow \quad -2 < t < 2$$

$$D_3 = \begin{vmatrix} 1 & t & -1 \\ t & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = 8 - 4t - 4t^2 > 0 \quad -2 < t < 1$$

综上所述: -2 < t < 1.

11.期末 2018-2019 三 2.

设实二次型 $f(x_1, x_2, x_3) = 4x_1x_2 - 4x_1x_3 + 4x_2^2 + 8x_2x_3 - 3x_3^2$ 。

- (1) 写出该二次型的矩阵 A;
- (2) 求正交矩阵 P, 使得 $P^{-1}AP$ 为对角型矩阵;
- (3) 给出正交变换,将该二次型化为标准型;
- (4) 写出二次型的秩,正惯性指标和负惯性指标。

解:

(1) 由题得:

$$A = \begin{bmatrix} 0 & 2 & -2 \\ 2 & 4 & 4 \\ -2 & 4 & 3 \end{bmatrix}$$

(2)

$$|\lambda E - A| = \begin{vmatrix} \lambda & -2 & 2 \\ -2 & \lambda - 4 & -4 \\ 2 & -4 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda^2 - 36) = 0 \quad \Rightarrow \quad \lambda_1 = 1, \lambda_2 = 6, \lambda_3 = -6$$

 $\lambda_1 = 1$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -3 & -4 \\ 2 & -4 & -2 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -2x_3 \\ x_2 = 0 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [-2, 0, 1]^T$ 。

$$\lambda_2 = 6$$
 时:

$$[\lambda E - A] = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 9 \end{bmatrix} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_3 = \frac{5}{2}x_3 \end{cases}$$

取 $x_3 = 2$ 得 $\alpha_2 = [1, 5, 2]^T$ 。

$$\lambda_3 = -6$$
 时:

$$[\lambda E - A] = \begin{bmatrix} -6 & -2 & 2 \\ -2 & -10 & -4 \\ 2 & -4 & -3 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_3 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3 = 2$ 得 $\alpha_3 = [1, -1, 2]^T$ 。因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1, \alpha_2, \alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[-\frac{2}{\sqrt{5}}, 0, -\frac{1}{\sqrt{5}} \right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{2}{\sqrt{30}} \right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right]^T \end{cases} \Rightarrow P = \begin{bmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \end{bmatrix}$$

(3) 由 (2) 得: f 可经正交变换 x = Py 化为标准型:

$$f = y_1^2 + 6y_2^2 - 6y_3^2$$

12.期末 2019-2020 一 6.

已知实对称矩阵 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 3 \\ 1 & 3 & x \end{bmatrix}$ 的正惯性指数为 3,则 x 的取值范围为_____。

解:

A 为实对称矩阵,且 A 的正惯性指数为 3,所以 A 正定,所以 A 的所有顺序主子式大于 0. 所以 |A|=2(3x-9)-3>0 $\Rightarrow x>3.5$

13.期末 2019-2020 三 3.

设三元二次型 $f(x_1, x_2, x_3) = 4x_2^2 + 4x_3^2 - 2x_1x_2 + 4x_1x_3$.

- (1) 写出该二次型的矩阵 A;
- (2) 用正交变换 x = Qy 把该二次型化为标准型。

解:

(1) 由题得:

$$A = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

(2)

 $|\lambda E - A| = \begin{vmatrix} \lambda & 1 & -2 \\ 1 & \lambda - 4 & 0 \\ -2 & 0 & \lambda - 4 \end{vmatrix} = -2[2(\lambda - 4)] + (\lambda - 4)[\lambda(\lambda - 4) - 1] = (\lambda - 4)(\lambda - 5)(\lambda + 1) \quad \Rightarrow \quad \lambda_1 = 4, \lambda_2 = 5, \lambda_3 = -1$

 $\lambda_1 = 4$ 时:

$$[\lambda E - A] = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = 0 \\ x_2 = 2x_3 \end{cases}$$

取 $x_3 = 1$ 得 $\alpha_1 = [0, 2, 1]^T$ 。

 $\lambda_2 = 5$ 时:

$$[\lambda E - A] = \begin{bmatrix} 5 & 1 & -2 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3 = 2$ 得 $\alpha_2 = [1, -1, 2]^T$.

 $\lambda_3 = -1$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -5 & 0 \\ -2 & 0 & -5 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} x_1 = -\frac{5}{2}x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

取 $x_3 = -2$ 得 $\alpha_3 = [5, 1, -2]^T$. 因为对称矩阵对应于不同特征值的特征向量正交,所以 $[\alpha_1, \alpha_2, \alpha_3]$ 为正交向量组。单位化:

$$\begin{cases} \gamma_1 = \frac{\alpha_1}{\|\alpha_1\|} = \left[0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right]^T \\ \gamma_2 = \frac{\alpha_2}{\|\alpha_2\|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^T \\ \gamma_3 = \frac{\alpha_3}{\|\alpha_3\|} = \left[\frac{5}{\sqrt{30}}, \frac{1}{\sqrt{30}}, -\frac{2}{\sqrt{30}}\right]^T \end{cases} \Rightarrow Q = \begin{bmatrix} 0 & \frac{1}{\sqrt{6}} & \frac{5}{\sqrt{30}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{30}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{30}} \end{bmatrix}$$

所以 f 可经正交变换 x = Qy 化为标准型:

$$f = 4y_1^2 + 5y_2^2 - y_3^2$$

 \Diamond

 \Diamond

14.期末 2019-2020 四 1.

设 A 为 m 阶正定矩阵,B 为 $m \times n$ 实矩阵, B^T 为 B 的转置矩阵,试证: B^TAB 为正定矩阵的充分必要条件是 B 的秩 r(B)=n。

解:

必要性:如果 B^TB 正定,则存在任意非零实列向量 $x \neq 0$,使得 $x^TB^TBx > 0$,即 $(Bx)^TA(Bx) > 0$,所以 $Bx \neq 0$ 。所以 Bx = 0 只有零解,即 r(B) = n。

充分性: 如果 B 的秩为 r(B)=n,则线性方程组 Bx=0 只有零解,所以存在任意非零实列向量 x,使得 $Bx\neq 0$ 。又因为 A 为正定矩阵,由正定矩阵的定义得: $(Bx)^TABx>0$,即 $x^TB^TABx=x^T(B^TAB)x>0$ 。因为 x 为任意非零实列向量,所以依正定矩阵的定义,矩阵 (B^TAB) 正定。

15.期末 2019-2020 四 2.

设 α, β 是 n 维列向量,证明 $r(\alpha \alpha^T + \beta \beta^T) \le 2$ 。

证明:

由秩的性质:

$$r(\alpha \alpha^T + \beta \beta^T) \le r(\alpha \alpha^T) + r(\beta \beta^T) \le \min(\alpha, \alpha_T) + \min(\beta, \beta_T) \le 1 + 1 = 2$$

16.期末 2017-2018 四 2.

设 A 为 $m \times n$ 实矩阵, 证明 Ax = 0 与 $(A^TA)x = 0$ 是同解方程, 进一步得出 $r(A) = r(A^TA)$ 。解:

(1) 若 x_0 为 Ax=0 的解,则 $Ax_0=0$,对等式两边同时左乘 A^T : $A^TAx_0=0$,即 x_0 为 $A^TAx=0$ 的解。

若 x_1 为 $A^TAx = 0$ 的解:则 $A^TAx_1 = 0$,等式两边同时左乘 x_1^T : $x_1^TA^TAx_1 = (Ax_1)^T(Ax_1) = 0$,两边同时求行列式有: $|(Ax_1)^T(Ax_1)| = |(Ax_1)^T|(Ax_1)| = |Ax_1|^2 = 0$,所以 $Ax_1 = 0$,所以 $Ax_2 = 0$ 的解。

综上所述: Ax = 0 与 $A^T Ax = 0$ 同解。

(2)Ax = 0 与 $A^TAx = 0$ 同解,则它们解的空间维数相同。又因为解的空间维数 = 未知量的个数-系数矩阵的秩。两个方程的未知数个数相同,所以系数矩阵相同,即 $r(A) = r(A^TA)$