RECEPTEUR A.M.E. 7G-1680 MA.-40 Mc. à 1,750 Mc.

(7,5 à 170 mètres)

ATELIERS DE MONTAGES ELECTRIQUES

Société Anonyme au Capital de 91.800.000 Francs

> 54, rue du Théâtre PARIS XV°

-SOPAREL-

Adresse télégraphique : SOPARELAME

TEL. SUFfren 72-74 ou 36-50 Fontenoy 97-10

TITRE		DÉSIGNATION								
1	GÉNÉRALITÉS.									
2	RÉSUMÉ DES C	ARACTÉRISTIQUES TECHNIQUES.								
3	DESCRIPTION.									
<i>!</i> ‡	INSTALLATION	ET MISE EN SERVICE.								
5	MAINTENANCE	ET RÈGLAGES.								
6	PIÈCES DÉTAC	HÉES.								
	NOMENCLATURE DES PLANS N° DES PLANS.									
	PHOTO PL 539 PL 541 PL 536 PL 543 PL 535 PL 538 PL 546	VUE D'ENSEMBLE DE L'APPAREIL SCHÉMA RADIOÉLECTRIQUE VUE AVANT VUE DE DESSUS VUE DE DESSOUS BLOC HAUTE FREQUENCE VUE DE DESSOUS PLAN DES SUPPORTS DE LAMPES ET DES TENSIONS AUX ÉLECTRODES COURBE DE SÉLECTIVITÉ MOYENNE FRÉQUENCE								
!	PL 547	COURBE DU RÉGULATEUR AUTOMATIQUE DE NIVEAU								

(ANTI-FADING)

SOUS-GAMME.

COURBE DE RÉPONSE BASSE FRÉQUENCE

EXEMPLE D'ÉTALONNAGE PRECIS D'UNE FRACTION DE

PL 548

PL 549

EDITION AVAIL 1953

GENERALITES

- 1.01 Le récepteur A.M.E. type 7G-1680 MA est un superhétérodyne à double changement de fréquence couvrant sans aucun trou la gamme de 40 à 1,75 Mc. (7,5 à 170 mètres). Il a été spécialement étudié pour assurer en toute sécurité, un trafic difficile dans des conditions d'exploitation très évères.
- 1.02 Le récepteur A.M.E. type 7G-1680 MA, est spécialement construit pour pouvoir fonctionner dans les conditions extrêmes de température et d'humidité.
- 1.03 Les transformateurs d'alimentation et de sortie, les selfs de filtrage, les condensateurs de filtrage et de découplage sont en boîtiers étanches.

Les transformateurs de fréquence intermédiaire sont montés sur culot octal et facilement amovibles.

Les commutateurs de changement de gamme et de sélectivité moyenne fréquence sont montés sur plexiglas.

Le câblage est réalisé en fil nu.

1.04 L'utilisation de deux valeurs successives de moyenne fréquence (1.600 Kc et 80 Kc) permet d'obtenir à la fois une protection-image parfaite (60 décibels à 24 mégacycles), et une protection-brouilleurs exceptionnelle (60 décibels pour un écart de + 3 kilocycles).

Il en résulte qu'une émission gênante (Image ou Brouilleur) couvrant complètement le signal à recevoir sur un récepteur à un seul changement de fréquence, ne gêne absolument pas sur un récepteur à double changement de fréquence.

1.05 Pour tirer partie de cette remarquable sélectivité, le récepteur doit avoir une stabilité parfaite et un bruit de fond négligeable.

De plus, le démultiplicateur de commande des condensateurs variables d'accord doit permettre une précision extrême de règlage (1/100.000ème) et de repérage (1/10.000ème).

- 1.06 Il faut que les blindages entre les différents circuits soient suffisamment efficaces pour que les couplages parasites ne viennent pas rendre illusoires la stabilité, la sélectivité, et la sensibilité.
- 1.07 Le récepteur 7G-1680 MA répond à ces conditions et permet d'assurer une réception confortable de correspondants lointains ou fortement brouillés dont l'écoute serait pratiquement impossible avec des récepteurs à simple changement de fréquence.

CARACTERISTIQUES TECHNIQUES

2.01 GAMME COUVERTE.

La gamme couverte s'étend, sans aucun trou, de 40 mégacycles à 1,75 mégacycles (7,5 à 170 mètres), en 7 sousgammes possèdant un recouvrement dépassant 5 %.

Répartition des sous-gammes.

Sous-gammes	1	40	à	23 Mc.
ĬĬ	2	24	à	13.7 Mc.
31	3	14,5	à	8,3 Mc.
11	4	8,8	à	5,1 Mc.
11	5	5 ,5	à	3,4 Mc.
Н	6	3,7	à	2,2 Mc.
Н	7	2.7	à	1.75 Mc.

2.02 ONDES RECUES.

- Al Télégraphie en ondes entretenues pures.
- A2 Télégraphie en ondes entretenues modulées.
- A3 Téléphonie commerciale.

2.03 SELECTIVITE HAUTE FREQUENCE.

L'utilisation de deux étages amplificateurs haute fréquence accordés avant le changement de fréquence, permet d'obtenir outre un gain important d'amplification, une sélectivité telle que l'onde Image est affaiblie par rapport à l'onde d'accord d'au moins :

45	décibels	à.	40	Mc.
70	décibels	à	20	Mc.
80	décibels	entre	7.0	et 1.75 Mc.

2.04 SELECTIVITE MOYENNE FREQUENCE.

L'amplificateur moyenne fréquence possède 4 positions de sélectivité pour lesquelles le tableau ci-après indique la largeur des bandes passantes.

Position du Commutateur		Largeur minimum de la bande pour une atténuation de 6 db.	Largeur maximum de la bande pour une atténuation de 60 db.		
Bande large	10	8 Kc.	30 Kc.		
Bande moyenne	3	2 Kc.	14 Kc.		
Bande étroite	0,8	0,5	6 Kc.		
Bande quartz		0,1	4 Kc.		

Les quatre courbes moyenne fréquence sont symétriques par rapport à l'axe figurant la moyenne fréquence choisie, la dissymétrie ne dépassant jamais 10 % de la largeur de bande.

2.05 <u>SENSIBILITE</u>.

La sensibilité du récepteur est telle, qu'il est possible d'obtenir une puissance de sortie de 50 milliwatts avec un signal d'entrée inférieur à 1 microvolt; le signal en ondes entretenues pures étant appliqué à l'entrée du récepteur par l'intermédiaire de l'antenne fictive standard.

En ondes entretenues pures, et dans toute l'étendue de la gamme du récepteur, on obtient toujours un rapport.

$$\frac{\text{Signal + Bruit de Fond}}{\text{Bruit de Fond}} = 10 \text{ db.}$$

avec un signal d'entrée inférieur à 0,6 microvolt, en opérant en sélectivité étroite.

En ondes entretenues modulées à 400 périodes aux taux de 30 %, on obtient toujours un rapport.

$$\frac{\text{Signal + Bruit de Fond}}{\text{Bruit de Fond}} = 26 \text{ db.}$$

avec un signal d'entrée inférieur à 8 microvolts en opérant en sélectivité moyenne.

2.06 STABILITE.

La dérive de l'oscillateur local de changement de fréquence en fonction du temps, est inférieure à 1/5.000ème de la fréquence, les mesures étant faites, respectivement l et 2 heures après la mise en service du récepteur.

La dérive par variation des tensions d'alimentation (+ 10 %) est inférieure à 1/5.000ème de la fréquence.

Le cadran de lecture du système d'accord est gradué en Mc. avec une précision de 1/250ème.

2.07 ANTIFADING.

L'efficacité du V.C.A., dont le seuil d'action est règlable, est telle que, pour un signal supérieur à 4 microvolts, une variation du signal d'entrée de 60 décibels se traduit, à la sortie, par une variation inférieure à 6 décibels.

La constante du temps de la désensibilisation est 10 fois plus petite que celle de la resensibilisation, qui peut prendre les valeurs de 1/20, 1/10, 1/2; 2 secondes. Pour l'utilisation en téléphonie, la constante de temps de la désensibilisation est égale à celle de la resensibilisation.

2.08 RACCORDEMENT DU CIRCUIT D'ENTREE.

Le récepteur 7G-1680 MA est pourvu de 2 entrées symétriques, l'une pour le raccordement à un aérien d'une impédance de 600 ohms environ, l'autre pour l'utilisation d'un aérien de 70 ohms environ. Dans les 2 cas, une des bornes d'entrée peut être réunie à la masse pour l'utilisation en dissymétrique.

2.09 HETERODYNE DE BATTEMENT.

La note de réception peut varier d'une manière continue de - 2.500 à + 2.500 cycles, de part et d'autre du battement zéro.

2.10 SORTIE.

4 sorties distinctes sont prévues :

Deux pour casques d'une impédance de 15.000 ohms Une pour haut-parleur extérieur 3 ohms Une pour une ligne d'une impédance de 600 ohms

Sur la sortie 600 ohms, le récepteur peut débiter une puissance de l watt avec, une distorsion inférieure à 5 % entre 200 et 5.000 périodes.

Un haut-parleur à aimant permanent contenu dans l'appareil permet le contrôle. Il est mis hors-circuit par l'utilisation des trois premiers jacks.

2.11 LIMITEUR.

Un limiteur de parasites est intercalé dans les étages d'amplification basse fréquence; le seuil d'action de ce limiteur est règlable.

2.12 ALIMENTATION.

Le récepteur est prévu pour le raccordement direct au secteur d'alimentation 50 périodes, dont la tension est comprise entre 90 et 250 volts.

La consommation sous 115 volts est de l'ampère environ.

Le récepteur peut également être alimenté par batteries d'accumulateurs au moyen d'un cordon spécial fourni sur demande. Les sources nécessaires sont :

6	volts	5	ampères
250	volts	110	milliampères

2.13 LAMPES.

L'équipement du récepteur 7G-1680 MA comporte les lampes suivantes :

1	PMO7 ou 6AM6	1	6AT6
4	6BA6	1	6AQ5
3	6AU6	1	6AF7
2	6B E 6	1	OB2
2	6AL5	2	5Y 3 CB
4	Lampes 6,3 V - 0,	l Am	père à vis
7		3 A	

2.14 ENCOMBREMENT ET POIDS.

Le récepteur se présente sous la forme d'un coffret métallique dont les dimensions sont :

Hauteur	400	m/m
Longueur	800	m/m
Profondeur		m/m
Poids	65	kg.

DESCRIPTION

3.01 Le récepteur, type 7G-1680 MA se présente sous la forme d'un coffret métallique dont la face avant, en aluminium de forte épaisseur, comporte tous les organes de règlage et de contrôle.

L'ensemble du récepteur est monté sur un châssis solidaire de la face avant coulissant sur deux glissières.

Toute la partie haute fréquence est montée dans un châssis en aluminium fondu de forte épaisseur qui assure, outre un blindage électrique parfait entre éléments, une grande rigidité mécanique des circuits. Ce châssis comporte deux éléments isolés; l'un contenant les circuits d'antenne, et l'autre les circuits oscillateurs et mélangeurs. Comme conséquence, il a été possible d'obtenir, sans risque d'accrochage, une très grande amplification du signal avant changement de fréquence, et de diminuer au maximum le souffle de l'amplificateur de fréquence intermédiaire.

De plus, la rigidité mécanique des circuits haute fréquence ainsi obtenue, procure une très grande stabilité du récepteur, ce qui est absolument indispensable pour permettre l'utilisation de sélectivité poussés en M.F.

3.03 Tous les transformateurs de fréquences intermédiaires ainsi que l'oscillateur de battement "BFO" sont montés sur culot octal et facilement amovibles.

Toute la réalisation mécanique du récepteur et en particulier celle des commutateurs de sous-gammes et des sélectivités a été spécialement soignée en vue de permettre un service intensif exempt de toute défaillance.

3.04 AMPLIFICATION H.F. (PL. 540)

La partie amplificatrice haute fréquence du récepteur comporte 2 étages accordés, équipés de penthodes à pente variable PMO7 ou 6AM6 (1) et 6BA6 (2).

Le premier blindage contient les bobinages Ill, I21, I31, I41, I51, I61, I71, constituant, avec le variable CV1 le circuit oscillant d'entrée qui commande la lampe amplificatrice PMO7 ou 6AM6 (1)

Afin de permettre, sur toute la gamme, un "alignement" rigoureux par rapport aux autres circuits HF, chaque bobinage est pourvu d'un noyau magnétique règlable par vis micrométrique et d'un trimmer à diélectrique air (CAII, CA21, CA31, CA41, CA51, CA61, CA71). De plus, le condensateur variable de faible valeur "appoint d'antenne" donne la possibilité de compenser le dérèglage apporté par l'utilisation d'un aérien dont les caractéristiques seraient assez nettement différentes de celles de l'antenne fictive standard qui a servi à l'alignement du récepteur.

Les circuits L12, L22, L32, L42, L52, L62, L72, CV2 et L13, L23, L33, L43, L53, L73; CV3 construits d'une façon identique, constituent les C.O. des premier et deuxième éta ges d'amplification H.F. qui commandent respectivement les lampes 6BA6 (2) et 6BE6 (3).

L'amplification des 2 lampes H.F. peut être réglée dans de très larges proportions de deux manières distinctes :

- 1°- En faisant varier le potentiel de leurs cathodes par la manoeuvre du potentiomètre Pl, dans le cas de règlage manuel du gain.
- 20- Par la variation du potentiel des grilles de commande dans le cas de fonctionnement en V.C.A.

PREMIER CHANGEMENT DE FREQUENCE (PL.539) **3.**05

Le premier changement de fréquence est opéré par la lampe 6BE6 (3) dont la troisième grille est attaquée par l'amplificateur H.F. et la première grille par l'oscillateur local équipé d'une lampe 6AU6 (4) connectée en triode en utilisant le montage "ECO".

Toutes les précautions ont été prises pour que la fréquence d'oscillation de cette lampe soit aussi stable que possible; en particulier, les bobinages correspondants sont montés, d'une façon très rigide, dans un blindage épais en aluminium fondu. Le condensateur ajustable CAl, placé en parallèle de la grille de la lampe oscillatrice 6AU6 (4), donne la possibilité de rattraper les légers écarts d'étalonnage qui peuvent se produire au moment de l'échange de cette lampe.

La fréquence d'oscillation de l'oscillateur local est, par l'emploi de "paddings" appropriés, maintenue supérieure de 1.600 Kc à la fréquence d'accord des étages H.F.

3.06 PREMIER AMPLIFICATEUR M.F. (PL. 539)

Le premier amplificateur de fréquence intermédiaire est accordé sur 1.600 Kc., il comporte 2 transformateurs T1 = MF 1.600 A - T2 = MF 1600 B, et 1 lampe à pente variable 6BA6 (5). Les transformateurs sont montés sur culot octal et sont facilement amovibles.

3.07 <u>DEUXIEME CHANGEMENT DE FREQUENCE</u>. (PL. 539)

Le deuxième changement de fréquence est opéré par la lampe 6BE6 (7).

La troisième grille de cette lampe est attaquée par l'amplificateur 1600 kilocycles et la première grille par l'oscillateur de 2ème changement de fréquence.

Cet oscillateur piloté par quartz sur 1680 Kc est équipé de la lampe 6AU6 (6) montée en triode.

Le blindage de cette oscillatrice est particulièrement soigné de façon à réduire le rayonnement de ses harmoniques sur les circuits H.F. à moins de l microvolt.

3.08 DEUXIEME AMPLIFICATEUR M.F. (PL. 539).

Le deuxième amplificateur de fréquence intermédiaire est accordé sur 80 Kc; il comporte deux transformateurs T3 MF 80 C et T4 MF 80 D, et une lampe à pente variable 6BA6 (8). Les transformateurs sont montés sur culot octal et facilement amovibles.

Dans les positions "0,8" et "Quartz", seul le couplage entre les enroulements primaires et secondaires est utilisé.

Dans la position "10" du commutateur de sélectivité, le couplage des transformateurs est augmenté par l'introduction de la totalité de la bobine de couplage supplémentaire.

Dans la position "3", une fraction seulement de cette bobine est mise en service.

Les caractéristiques de ces enroulements sont telles que l'augmentation de self due à l'introduction de la bobine de couplage compense toujours exactement la diminution de self due au couplage supplémentaire obtenu.

Les courbes des différentes sélectivités restent ainsi parfaitement centrées sur 80 kilocycles.

Dans la position "Quartz", un filtre à quartz est intercalé entre le transformateur T3 et la lampe 6BA6 (8).

Les transformateurs parfaitement blindé permettent d'utiliser au maximum la surtension élevée des circuits, procurant un gain important et une sélectivité poussée.

Comme pour l'amplificateur H.F., le gain M.F. peut être contrôlé d'une façon manuelle par variation du potentiel de cathode de la lampe 6BA6 (5), au moyen du potentiomètre P2 ou d'une façon automatique, par modification du potentiel des grilles de commande des lampes 6BA6 (5) et 6BA6 (8), contrôlées par les circuits de VCA.

3.09 OSCILLATRICE M.F. (PL. 539)

La réception des ondes entretenues pures est rendue possible par le battement avec la moyenne fréquence d'une fréquence auxiliaire fournie par l'oscillatrice 6AU6 (12), et le bobinage "T6 BFO.F". Ce bobinage est monté sur culot octal et facilement amovible.

Les circuits d'entretien d'oscillation sont connectés entre grille et grille écran en utilisant le montage "Hartley". La fréquence peut être réglée au moyen du condensateur variable CV5, entre 77,5 et 82,5 Kc.

Le couplage de l'oscillateur avec l'amplificateur M.F. est assuré par la plaque de la lampe 6AU6 (12). Ce mode de couplage permet d'obtenir une bonne indépendance de la fréquence de l'oscillateur de battement par rapport à celle de l'amplificateur MF 80 Kc.

La fréquence de battement peut, au gré de l'opérateur, être réglée entre 0 et 2.500 périodes de part et d'autre du zéro.

3.10 DETECTION ET AMPLIFICATION B.F. (PL. 539)

La détection des signaux est assurée par l'élément diode de la lampe 6AT6 (9), l'élément triode de cette même lampe est utilisé comme première amplificatrice B.F.

La penthode 6AQ5 (11) est la lampe de sortie de l'amplificateur B.F. Elle peut fournir une puissance de sortie de l watt avec une distorsion inférieure à 5%.

Pour la sortie, 4 jacks du type P.T.T. sont prévus, deux (J1 et J2) pour l'écoute au casque, un (J3) pour le raccordement du récepteur à une ligne symétrique de 600 ohms et un (J4) pour le branchement d'un H.P. de 3 ohms.

Une résistance de charge R57 est automatiquement mise en service lorsque le jack ligne n'est pas utilisé, de façon à ce que la mise en service de la ligne ne modifie pas sensiblement le niveau B.F.

3.11 <u>ANTIFADING</u>. (PL 539)

La lampe 6BA6 (13) est utiliséeen amplificatrice M.F. de VCA, un des éléments de la double diode 6AL5 (14) sert à la détection des signaux. L'autre élément est mis en série dans la commande de V.C.A. de façon à rendre indépendants les circuits de désensibilisation et de resensibilisation. Les constantes de temps de ces circuits peuvent être modifiées par le commutateur (G13 G14) qui change la valeur des capacités des circuits.

Le potentiomètre P5, en modifiant le potentiel de cathode de la 6AL5 (14) de détection permet de régler le seuil d'action du V.C.A.

L'utilisation de circuits d'amplification et de détection nettement séparés de ceux destinés à l'écoute rend le fonctionnement du V.C.A. complètement indépendant de l'oscillatrice de battement M.F., il est de ce fait, possible de l'utiliser aussi bien pour la réception des ondes entretenues modulées que pour celle des ondes entretenues pures.

3.12 <u>LIMITEUR B.F.</u> (PL. 539)

L'amplificateur B.F. est pourvu d'un limiteur constitué par la double diode 6AL5 (10) qui agit par écrêtage des signaux BF de forte amplitude.

Le seuil d'action est rendu règlable par la variation du potentiel de cathode de cette lampe commandé par le potentiomètre P4.

3.13 <u>CONTROLE</u> (PL. 539)

Un microampèremètre, placé sur la droite de l'appareil associé à un commutateur à 3 positions et à un redresseur oxymétal, permet d'effectuer les mesures suivantes :

- lo- Mesure de la tension de chauffage des lampes amplificatrices.
- 2°- Mesure de la tension de la source H.T. assurant l'alimentation anodique des lampes.
 - 30- Mesure de la valeur du courant détecté.

Le secteur rouge inscrit sur le cadran du microampèremètre indique la plage dans laquelle peuvent varier les tensions des sources d'alimentation sans que le fonctionnement du récepteur en soit affecté.

3.14 ACCORD DES CIRCUITS H.F.

L'accord de tous les circuits haute fréquence est assuré par une seule commande pourvue d'un démultiplicateur de très haute précision.

Ce démultiplicateur est entièrement monté sur roulements à billes et permet un règlage extrêmement précis.

Il comporte un grand cadran gradué directement en fréquences.

L'étalonnage est fait individuellement pour chaque récepteur; ce qui permet une précision beaucoup plus grande que celle donnée par un cadran imprimé.

Un tambour gradué en cent divisions, faisant cinquante tours pour la course totale des condensateurs d'accord permet de repérer une station avec une précision de 1/10.000ème.

Les différents jeux entre le bouton de commande et le condensateur variable sont extrêmement réduits. Il est ainsi facile de règler à quelques périodes près la note de battement d'une station sur 30 Mc.

3.15 REGLAGE DE L'AMPLIFICATION.

Les circuits des trois amplifications successives HF., lère M.F. et B.F., possèdent chacun un règlage de gain séparé, ce qui permet d'obtenir une variation de gain très importante tout en faisant travailler chaque circuit dans les meilleures conditions.

En particulier, lorsqu'on désire recevoir une émission de faible puissance, et qu'il n'y a pas de brouilleur sur un règlage voisin, il faut toujours utiliser le maximum possible d'amplification H.F. qui correspond au bruit de fond minimum.

Par contre, lorsqu'un brouilleur très puissant se trouve dans le voisinage de l'émission reçue, il peut être nécessaire de réduire l'amplification H.F. pour éviter la saturation de la changeuse de fréquence par le signal brouilleur, ce qui hâcherait les signaux de la station de faible puissance. Pour compenser la diminution de l'amplification H.F. il faut naturellement augmenter l'amplification M.F.

Le gain de l'amplificateur 80 Kc. n'est pas règlable manuellement pour rendre impossible la saturation de la deuxième changeuse par un signal fort, ce qui rendrait illusoire la sélectivité de la chaine M.F. 80 Kc.

DANS TOUS LES CAS, POUR OBTENIR UNE RECEPTION CORRECTE, LA VALEUR DU COURANT DETECTE DOIT RESTER INFERIEURE A 20 MICROAMPERES.

3.16 ALIMENTATION. (PL. 539)

L'alimentation est contenue dans le même coffret mais est thermiquement isolée du récepteur pour supprimer la dérive due à l'échauffement. Elle peut être raccordée à tous les secteurs alternatifs 50 périodes dont la tension est comprise entre 90 et 250 volts et comporte un redresseur équipé de valves à vide poussé 5Y3 (17), 5Y3 (18) destiné à fournir la tension anodique des lampes amplificatrices.

Le chauffage des filaments est assuré directement en alternatif, sous la tension : 6,3 volts.

Le transformateur d'alimentation possède diverses prises, variables au moyen d'un fusible, pour permettre le changement de la tension d'alimentation. Les enroulements H.T. du transformateur sont protégés par une lampe fusible 6 v. 0,3 Amp.

Afin de permettre l'écoute au casque sans fatigue pour l'opérateur, les différents filtrages éliminent toute composante alternative; de plus, les transformateurs self de filtrage, etc... ont été très largement calculés pour permettre un service continu sans échauffement appréciable.

Ils sont tous montés dans des boîtiers étanches avec sortie perles de verre ou céramique soudée.

Une lampe régulatrice OB2 (16) assure la stabilité de la tension plaque des oscillatrices.

Afin d'éviter la condensation de vapeur d'eau à l'intérieur du récepteur, un système de résistances chauffantes est automatiquement mis en service à l'arrêt du récepteur. Ces résistances chauffantes peuvent être mises hors-circuit en plaçant le fusible F2 dans la position "Arrêt".

INSTALLATION

4.01 Il est préférable pour la commodité de l'opérateur, de placer le récepteur sur une table-bureau d'assez grandes dimensions avec un nombre de tiroirs suffisants pour enfermer tous les accessoires indispensables (papier, crayons, etc...) de façon à laisser disponible la plus grande partie de la table.

Le récepteur sera ensuite raccordé au cordon d'alimentation au moyen de la fiche blindée qu'il est nécessaire de bien verrouiller en tournant la bague de blocage de gauche à droite.

4.02 Avant de raccorder le cordon d'alimentation au secteur il y a lieu de s'assurer que les fusibles du transformateur d'alimentation Fl et de résistances chauffantes F2 se trouvent bien placés sur les prises correspondant à la tension du secteur d'alimentation.

Le récepteur 7G-1680 MA fonctionne normalement sur antenne apériodique dissymétrique de dimensions moyennes; il est avantageux d'utiliser une antenne aussi haute que possible dont la longueur est comprise entre 6 et 10 mètres.

Une bonne prise de terre est recommandable.

Sur les gammes 1, 2 et 3 l'utilisation d'une antenne "Beam" orientée améliore considérablement les réceptions difficiles.

- Quatre bornes universelles permettent le branchement des aériens. Vues par l'arrière, ces bornes sont à brancher, suivant le cas, comme suit :
 - 1°- Antenne unifilaire en bas à gauche, s'il s'agit d'une petite antenne, en haut à gauche s'il s'agit d'une antenne longue. Dans les 2 cas les bornes de droite doivent être reliées l'une à l'autre, et à la terre.
 - 2°- <u>Doublet ou feeder symétrique 75 ohms</u>: entre les 2 bornes supérieures.
 - 3°- Feeder 75 à 125 ohms coaxial : entre les 2 bornes supérieures, les 2 bornes de droite étant réunies à la gaine du câble.

4°- Losange ou feeder symétrique 500 à 800 ohms : entre la borne inférieure gauche et la borne supérieure droite. La borne inférieure droite doit être reliée à la terre.

MISE EN SERVICE ET UTILISATION DU RECEPTEUR

4.04 TELEPHONIE OU TELEGRAPHIE MODULEE.

Après avoir placé l'interrupteur de mise en marche du récepteur sur la position "Marche" vérifier au moyen de l'appareil de mesure que les diverses sources d'alimentation ont bien des valeurs convenables et placer ensuite le commutateur de cet appareil dans la position "détection", position dans laquelle il devra normalement rester pendant le fonctionnement du récepteur.

Mettre l'inverseur "Al A2" dans la position "A2" puis placer le commutateur de "Gammes d'ondes" dans la position correspondant à la fréquence à recevoir, et le commutateur de "sélectivité", dans la position 3 qui correspond à la bande passante moyenne.

Après avoir placé le commutateur de V.C.A. dans la position "H.C." (hors-circuit), mettre les contrôles des gains H.F. et B.F. au maximum, le gain M.F. au milieu de sa course. On recherchera ensuite la station désirée par la simple manoeuvre du bouton commandant le bloc d'accord des étages haute fréquence, en tenant compte de l'étalonnage du cadran qui est fait en mégacycle. Le règlage optimum sera obtenu au moment où le trèfle cathodique placé à gauche du récepteur accuse la fermeture la plus importante, le règlage optimum correspond également au maximum de déviation du microampèremètre de détection. Il est indispensable de noter que le courant détecté ne doit pas dépasser 20 microampères, un courant plus important se traduirait par une saturation de l'amplificateur M.F. et une distorsion importante du signal reçu. On agira donc sur les gains H.F. et M.F. en diminuant la sensibilité du récepteur, d'abord par le "gain M.F." puis par le "gain HF", si la chose est nécessaire.

La puissance de réception sera ensuite amenée à la valeur désirée par les manoeuvres combinées des gains H.F. et B.F.

Au cas où une autre station d'une longueur d'onde voisine de celle reçue brouillerait la réception, passer sur une position de sélectivité plus étroite, et parfaire le règlage, du bloc d'accord.

Si les crachements produits par des parasites violents gênent la réception, il est recommandé de mettre en service le limiteur B.F. en tournant le bouton de commande correspondant de gauche à droite; le palier d'écrêtement sera ensuite règlé par la manoeuvre de ce même bouton.

Pour utiliser le volume-contrôle automatique en téléphonie mettre le bouton de commande V.C.A. dans la position "Téléph" et placer les gains M.F. et H.F. au maximum; le niveau B.F. sera ensuite règlé à la valeur désirée par la seule manoeuvre du gain B.F.

Pour la réception de télégraphie à manipulation automatique placer le bouton de commande "V.C.A." sur 1/20 ou 1/10. Pour les manipulations manuelles utiliser les constantes de temps 0,5 ou 2 secondes. Le seuil d'action du V.C.A. peut être réglé par le potentiomètre "Seuil V.C.A.".

4.05 TELEGRAPHIE EN ONDES ENTRETENUES PURES.

Après avoir placé l'inverseur "Al - A2" dans la position "Al" opérer comme il est dit ci-dessus en notant toutefois que le microampèremètre de détection indique un courant d'environ 7 mma, en absence de signal. Ce courant est induit dans le système détecteur par l'oscillateur local de battement.

L'opérateur a ensuite la possibilité de règler la note de réception en modifiant la fréquence de l'oscillateur local au moyen du condensateur variable dont le bouton de commande est placé à droite de l'appareil.

Pour la réception des ondes entretenues pures, il est possible d'obtenir une bande passante très étroite en utilisant la position de sélectivité "Quartz". Il est évident que la position de sélectivité "Quartz" ne peut être employée que pour la réception d'émissions très stables en raison même de l'étroitesse de la bande passante (100 cycles environ).

En raison de cette grande sélectivité il est absolument indispensable de ne pas chercher à modifier la note de réception par la manoeuvre du bloc d'accord H.F. qui doit être dans tous les cas, règlé à sa position optimum (déviation maximum du microampèremètre, mesurant le courant détecté, ou fermeture maximum du trèfle cathodique).

La modification de la note sera obtenue par la manoeuvre du condensateur CV5 commandant la fréquence de l'oscillateur de battement M.F.

INCIDENTS ET FONCTIONNEMENT

5.01 Ce récepteur est prévu pour fonctionner sans autre entretien que celui de la vérification périodique du bon fonctionnement des lampes.

CAS DE MAUVAIS FONCTIONNEMENT.

5.02 PAS DE RECEPTION.

Ne peut venir, en général, que d'une lampe en mauvais état qui doit être éliminée par substitutions progressives avec des lampes dont on est assuré du bon fonctionnement, ou de l'absence de tension d'alimentation qu'il est possible de déceler au moyen de l'appareil de mesure du récepteur.

5.03 RECEPTION FAIBLE.

Ne peut provenir que de lampes défectueuses ou de caractéristiques différentes de celles exigées sur ce récepteur.

La réception très affaiblie peut aussi provenir d'une détérioration de l'antenne de réception ou de la ligne qui relie le récepteur à celle-ci.

Le tableau PL.538 donne, par ailleurs, les valeurs des tensions qui doivent normalement être mesurées aux diverses électrodes des lampes; cette mesure doit être faite avec un appareil dont la résistance interne est au moins de 1.000 ohms par volt.

5.04 PARASITES ANORMAUX.

Débrancher l'antenne, si les parasites cessent, chercher la cause d'induction de ces parasites sur l'aérien.

Si les parasites persistent, vérifier le bon contact des lampes dans leurs supports, puis changer les lampes, car une lampe peut paraître fonctionner normalement tout en produisant des parasites.

Les autres cas de mauvais fonctionnement du récepteur, d'ailleurs excessivement rares, peuvent être mis en évidence

par les moyens usuels (mesures d'isolement, mesures de résistance, mesures de capacité, etc...) en examinant le schéma général.

REGLAGE ET REALIGNEMENT

5.05 L'alignement du récepteur est soigneusement réalisé en usine, et, à moins que le récepteur ne soit endommagé accidentellement au cours d'un transport effectué dans des conditions exceptionnellement défavorables, il n'y a pas lieu en principe, de retoucher au règlage d'un organe intérieur.

Les cas de dérèglage sont d'ailleurs assez rares, et il faut éviter d'attribuer toute anomalie constatée dans le fonctionnement du récepteur et dont l'origine n'est pas nettement établie, au dérèglage de l'alignement.

D'une façon générale, il est recommandé de ne pas toucher aux éléments ajustables (selfs et condensateurs) sans être absolument certain que le défaut vient d'un mauvais alignement.

5.06 Cependant, pour parer à toute éventualité, quelques règles essentielles sont sommairement indiquées ci-dessous.

Pour réaliser un alignement correct, il est nécessaire de disposer d'un générateur H.F. étalonné remplissant les conditions suivantes :

- a) couvrir au minimum la gamme 40 Mc 75 Kc
- b) fournir une tension de sortie règlable entre 1 microvolt et 0,1 volt.
- c) être étalonné en fréquence à 1/250ème près.

D'autre part, il est nécessaire de disposer d'une antenne fictive du type standard Radiodiffusion.

5.07 ALIGNEMENT DE L'AMPLIFICATEUR M.F. 80 Kc. (PL 539)

Retirer le tube oscillateur 6AU6 (4). Placer le commutateur de gammes en position 7, et celui de sélectivité en position quartz, le gain M.F. étant au max. et le commutateur V.C.A. dans la position hors-circuit.

Brancher le générateur H.F. entre masse et grille trois de la lampe 6BE6 (7).

Ceci réalisé, faire très lentement, osciller la fréquence du générateur autour de 80 Kc en cherchant l'élongation maximum du microampèremètre indicateur du courant détecté.

Il y a lieu d'ajuster la tension de sortie du générateur H.F. de façon à ne jamais dépasser 25 microampères de courant détecté. La fréquence optimum trouvée par la manoeuvre ci-dessus correspondant exactement à la fréquence 80 Kc. à la précision du cristal près, c'est-à-dire très supérieure au millième.

Ramener ensuite le commutateur sélectivité dans la position bande étroite (0,8) et régler les condensateurs ajustables des transformateurs MF T3 = MF 80 C et T4 = MF 80 D jusqu'à obtenir la déviation maximum du microampèremètre. La commande des condensateurs ajustables de ces transformateurs est accessible de la partie supérieure du blindage correspondant. Si le fonctionnement de l'amplificateur M.F. 80 Kc. est normal, la tension d'entrée nécessaire pour obtenir un courant détecté de 10 microampères est de l'ordre de :

3.500 microvolts sur la lampe 6BE6 (7)

5.08 ALIGNEMENT DU TRANSFORMATEUR T5 MF 80E DE V.C.A.

Le générateur H.F. étant toujours calé sur 80 Kc comme indiqué au § précédent règler les condensateurs ajustables du transformateur T5 de manière à obtenir la fermeture maximum de l'oeil magique, indicateur d'accord. Pour cette opération le niveau de sortie du générateur H.F. doit être ajusté de façon à éviter la saturation qui se traduit par une plage importante de règlage des condensateurs d'accord.

Un autre procédé de règlage plus précis peut être fait à l'aide d'un voltmètre à lampes à courant continu placé en dérivation de la résistance de détection VCA (R69).

5.09 REGLAGE DE LA FREQUENCE DE L'OSCILLATEUR DE BATTEMENT MF (BFO)

Abaisser l'inverseur Al, A2 dans la position Al, et placer le condensateur CV5 au repère zéro du panneau avant (milieu de course); l'amplificateur M.F. étant toujours attaqué dans les mêmes conditions. La fréquence de battement sera ensuite amenée à zéro en agissant sur le condensateur ajustable du transformateur T6 BFO-F. La commande de celui-ci est placé à la partie supérieure du transformateur).

En absence de signal, l'oscillateur de battement induit dans le circuit de détection, un courant de 7 à 10 microampères.

5.10 ALIGNEMENT M.F. 1.600 Kc.

Connecter le générateur H.F. entre masse et stator du condensateur CV3 qui correspond à la grille 3 de la lampe mélangeuse 6BE6 (3)

Passer sur la position sélectivité "quartz" et repérer au générateur la fréquence 1.600 Kc.

Passer ensuite sur bande étroite (0,8 Kc.) et régler les condensateurs ajustables des transformateurs M.F. T1 = MF 1600A et T2 = MF 1600B pour obtenir le maximum d'élongation du microampèremètre de détection.

A titre indicatif la tension d'entrée nécessaire pour obtenir un niveau de 25 microampères doit être de l'ordre de 130 microvolts environ.

5.11 REGLAGE DE L'OSCILLATEUR H.F.

L'échange de la lampe oscillatrice H.F. 6AU6 (4) peut amener un léger dérèglage de l'étalonnage du récepteur sensible surtout à la partie du cadran correspondant aux fréquences les plus élevées de chaque sous-gamme.

Pour y remédier, connecter le générateur réglé sur 8,8 Mc à l'entrée du récepteur par l'intermédiaire de l'antenne fictive. Placer le commutateur d'ondes sur la sousgamme 4 et l'aiguille du cadran de lecture très exactement sur 8,8 Mc.

Règler ensuite le trimmer CA1 (PL. 536) de façon à obtenir la déviation maximum du microampèremètre indicateur d'accord.

5.12 ALIGNEMENT DE L'AMPLIFICATEUR H.F. (PL. 539 et 536

Les bobines de self inductance de l'amplificateur H.F. sont désignées par la lettre L suivie d'un numéro d'ordre composé de 2 chiffres. Le premier indique la sous-gamme à laquelle se rapporte le bobinage considéré, le second désigne le circuit dans lequel est utilisé la self inductance.

• • •

Les circuits sont numérotés de la façon suivante :

- 1. Circuit d'entrée (antenne)
- 2. Circuit de liaison entre première et deuxième lampe H.F.
- 3. Circuit de liaison entre deuxième lampe H.F. et changeuse de fréquence.
- 4. Circuit de l'oscillateur H.F. local.

A titre d'exemple, la bobine 23 est utilisée par la deuxième sous-gamme dans le circuit \mathbb{N}° 3 .

Chaque bobine est munie d'une vis de règlage permettant de règler la valeur de la self inductance et d'un trimmer permettant d'ajuster la capacité résiduelle. Les trimmers sont désignés par les lettres CA suivies d'un numéro de 2 chiffres, le même code que celui employé pour les self a été utilisé.

L'alignement de la partie H.F. se fait séparément pour chaque sous-gamme. La méthode employée consiste à :

- 1. Règler la fréquence de l'oscillateur H.F. local
- 2. Aligner successivement tous les autres circuits sur l'oscillateur local H.F.

Après avoir remis en place la lampe oscillatrice 6AU6 (4), on vérifie que l'aiguille principale du cadran indique bien, très exactement, O quand le bloc des condensateurs d'accord est complètement fermé.

Le commutateur de sélectivité est placé sur la position "Bande moyenne", on branche ensuite le générateur H.F. sur le stator du condensateur variable CV3 et on règle le générateur H.F. sur la fréquence d'alignement "trimmer" de la sous-gamme considérée.

Les fréquences d'alignement données par le tableau cidessous sont repérées en rouge sur le cadran de lecture des fréquences.

Sous-gammes	Fréquence trimmer	Fréquence self
1	3 9 , 5	24
2	23 , 5	14,5
3	14,2	8,8
4	8.7	5,4

Sous-gammes	Fréquence	trimmer	Fréquence	self
_	_		_	_

5	5 , 4	3, 5
6	3, 6	3, 5 2 ,3
7	2 , 65	1,7

IL EST TRES IMPORTANT DE NOTER QUE LA FREQUENCE DE L'OSCILLATEUR LOCAL EST, POUR TOUTES LES SOUS-GAMMES, SUPERIEURE DE 1.600 Kc A LA FREQUENCE DE L'ONDE INCIDENTE.

En supposant que l'on opère sur la sous-gamme l, la fréquence du générateur H.F. sera règlée sur 39,5 Mc.

On place l'aiguille du cadran du récepteur sur le repère qui correspond à 39,5 Mc et on règle le trimmer de l'oscillateur local CA14, de façon à obtenir un maximum à l'indicateur d'accord.

Il faut bien veiller à ne pas régler l'oscillateur local sur une fréquence correspondant à la fréquence image. Pour cela on vérifiera, en modifiant la fréquence du générateur H.F. que l'on trouve bien un deuxième règlage à 39,5 + 2x la fréquence M.F., soit 39,5 + 3,200 = 42,700 Kc et non 39,5 - 3,200 = 36,300.

On passe ensuite à l'autre extrémité de la sous-gamme 1 en règlant le générateur H.F. sur la fréquence "self" soit 24 Mc.

On place l'aiguille du cadran du récepteur sur le repère correspondant et l'on règle la vis supérieure de la self Ll4 de façon à obtenir un maximum à l'indicateur d'accord. Il convient de vérifier ensuite que le règlage n'a pas été effectué de façon à obtenir la fréquence image (on doit trouver un deuxième règlage à 24 + 3,200 = 27,200).

Ceci fait, on revient à la fréquence 39,5 Mc et l'on réajuste, s'il y a lieu, le trimmer CA14 comme indiqué plus haut, on peut ensuite vérifier 24 Mc et ainsi de suite. Le règlage de l'oscillateur local est alors terminé en ce qui concerne la sous-gamme 1.

9.13 Pour aligner les circuits H.F. sur l'oscillateur local on branche le générateur H.F. sur le stator du condensateur variable CV2 (PL. 530).

La fréquence du générateur est règlée sur 39,5 Mc et l'aiguille du cadran du récepteur est placée sur la position correspondante. On règle le trimmer CAl3 pour obtenir un maximum à l'indicateur d'accord.

On passe ensuite à 24 Mc et l'on ajuste la vis de la self Ll3.

On revient alors à 39,5 Mc puis à 24 Mc et ainsi de suite jusqu'à ce que l'accord soit parfait. On passe ensuite à l'étage amplificateur précédent; le générateur est branché sur le stator du condensateur variable CVI, et on ajuste à 39,5 Mc le trimmer, CA12 et à 24 Mc la self L12.

Pour terminer, le générateur est raccordé à l'entrée du récepteur par l'intermédiaire de l'antenne fictive standard; le condensateur "appoint d'antenne" est placé au milieu de sa course (graduation zéro). On opère comme précédemment à 39,5 Mc on ajuste le trimmer CAll, à 24 Mc, on ajuste la self Lll.

Le réalignement de la sous-gamme l est alors terminé. Pour tous ces règlages, il est évidemment nécessaire d'ajuster le niveau de sortie du générateur H.F. de façon à obtenir un courant de détection inférieur à 25 microampères. Sans cette précaution, en raison de la saturation possible de l'amplificateur M.F., on observerait une plage importante de règlage, ce qui ne permettrait pas de réaliser un alignement rigoureux.

Par ailleurs, comme il est très rare que les divers circuits H.F. soient fortement dérèglés, on peut simplifier la méthode indiquée ci-dessus.

Lorsque le calage de l'oscillateur local a été réalisé on peut règler tous les circuits H.F. en une seule fois et non par étages successifs. Pour cela on branche le générateur H.F. directement à l'entrée du récepteur (avec l'antenne fictive). A 39,5 Mc, on agit sur les trimmers CAll - CAl2 - CAl3, à 24 Mc., sur les selfs Lll - Ll2 - Ll3 pour obtenir le maximum à l'indicateur d'accord.

La sous-gamme l étant ainsi règlée, on agit de même avec les autres sous-gammes.

REMARQUE. - A titre de vérification, on peut s'assurer que pour le milieu de la sous-gamme considérée, on retrouve les mêmes règlages qu'aux extrémités (point trimmer et point self).

Par exemple, pour la sous-gamme 2 on vérifiera à 19,5Mc que la retouche des trimmer CA21 - CA22 - CA23 ne modifie pas sensiblement la déviation de l'indicateur d'accord.

Au cas où l'on gagnerait beaucoup en sensibilité en modifiant, dans le MEME SENS la valeur de capacité des 3 trimmers, et SEULEMENT DANS CE CAS, il y aurait lieu de modifier la valeur du padding 0.102.

Cette éventualité constitue une anomalie qui ne doit se rencontrer que d'une façon tout à fait exceptionnelle, correspondant presque toujours à une détérioration mécanique du padding.

Le schéma radioélectrique PL.539 indique pour chaque sous-gamme la valeur théorique du padding correspondant. Le plus simple est évidemment de changer le padding défectueux. Au cas où l'on ne disposerait pas d'un condensateur padding rigoureusement étalonné, la méthode suivante permet, par tatonnements successifs, de déterminer très exactement la valeur de capacité à donner au padding. Si, pour le milieu d'une des sous-gammes, on gagne en augmentant la capacité des 3 trimmers H.F., il y a lieu d'augmenter la valeur du padding. Dans le cas contraire, il faut évidemment la diminuer.

Par ailleurs, si pour une sous-gamme quelconque, on est conduit à modifier la valeur d'un padding, il est nécessaire de retoucher au règlage des 2 extrémités de la sous-gamme comme il a été dit plus haut.

RECEPTEUR 7G-1680 MA. PIECES DETACHEES

RESISTANCES

Référence du schéma : R	Dési	gnatio	n en Ohi	ms -	Dissipation en watt	Référence Fournisseur	Fournisseurs
1-15-83-84-85- 86	22	ohms	<u>+</u> 10	%	1	A.B.T.	Vitrohm
34-45-80	47	ohms	<u>+</u> 10	%	1	_	_
30-31-42	120	_	_		1	_	_
5-9-33-35 -46-8 1	220	_			1	_	_
12-20-56-68	330		_		1	_	_
18-71-77	470	_	-		1	-	-
59	500	_	_		100 bobinée	85/25	Séta
32	680	ohms	<u>+</u> 10	%	1	A.B.T.	Vitrohm
57	680	-	-		2	B.B.T.	-
14	1200	-	_		1	A.B.T.	_
58	1500	-	-		100 bobinée	85/25	Séta
51	2200	_	-		1	A.B.T.	Vitrohm
60	22.00	-	-		10 bobin é e	10/50	Séta
17-19-23-24- 27-29-36-43- 47-64-78-79	4700	_	_		1	A.B.T.	Vitrohm
6-11-62	10000		-		1	_	_
37-38	33000	-	_		1		_
13-16-25-26- 28-48-50-52- 53-66-73-	47000	_	_	÷	1	-	· -
10-44-54	47000	_	_		2	B.B.T.	_
70	68000		_		2	_	_
63	70000	_	<u>+</u> 1 %	,	1		Daco
8_22	100000	-	<u>+</u> 10	%	1	A.B.T.	Vitrohm
65	220000	-	-		1	_	-

Référence du schéma : R	Désignation en Ohms	Dissipation en Watt	Référence Fournisseur	Fournisseurs
3-49-55-69-74	470000 ohms <u>+</u> 10 %	1	A.B.T.	Vitrohm
39	680000 ohms <u>+</u> 10 %	1	-	
40-75-76	1 Mg. <u>+</u> 10 %	1	_	_
2-4-7-41-47-67 72-82	2,2 Mg. <u>+</u> 10 %	1	-	-
61	3,3	1	-	Daco

POTENTIOMETRES

Référence du schéma : P	Désignation Valeur en ohms	Référence du Fournisseur	Fournisseurs
1-2-5	2.500 ohms	bobiné log. 2 w. JB-25-21	Allen- Bradley
4	10.000 ohms	bobiné linéaire 2 w. étanche sortie sur perles de verre	Variohm
3	500.000 ohms	Graphite log. étanche sortie sur perles de verre	-

CONDENSATEURS FIXES

Réf érence du schéma : C	Désignation Valeur en pf.	Tension de service	Nature	Référence Fournisseur	Fournisseurs
27-82-112-113 121-122	4,7 pf.	250 250	Cér.	4,7 E.	Philips
39-40-59-86- 108-132-133	6 pf nég. 10 pf.	250	, -	SCT. 11 10 E.	Scom Philips
109-110-114- 123-131 49-111	22 p f 33 pf	250 250	-	22 E SCT. 11	- Scom

-					
13-43-79-81	47 pf	250	Cér.	47 E	Philips
115–124	68 pf	250	Cér.	68 A	Philips
1-7-16-61-116-					1
125	100 pf	250		100 E	-
21-24-34-37	100 p f	250	M.Grat	N° 1	Radiohm
117-126	150 pf	250	Cér.	150 A	Philips
22-23-35-36- 51-64-65-82- 83-89-90	200 pf	250	Mica	n° 2	Radiohm
94	220 pf	250	Cér.	220 AX1	Philips
25	250 pf	250	M.Grat	N° 1	Radiohm
107	300 pf <u>+</u> 3 %	250	Mica	N° 1	-
118-127	330 pf	250	Cér.	330 A	Philips
106	365 pf - 3 %	250	Mica	N° 1	Radiohm
52-63-66-85- 88-91	400 pf	250	M.Grat	N° 1	Radiohm
68-69-119-128	470 pf	250	Cér.	SCT. 4	Scom
105	525 pf <u>+</u> 3 %	∠ 5∪	Mica	N° 1	Radiohm
104	645 pf <u>+</u> 3 %	250	Mica	N° 1	-
103	925 pf <u>+</u> 3 %	250	-	N° 1	_
53-54	1000 pf <u>+</u> 1 %	250	M.Grat	N° 1	-
101-102	1800 pf <u>+</u> 3 %	250	Mica	N° 1	-
2-3-4-5-8-9- 11-12-14-17- 18-19-20-26- 29-30-32-41- 48-57-62-92-95;	_				
120-129-130	6800 pf	250	Cér.	CTH.422 w.	Scom
44	10.000 pf	250	Cér.	CTH.422 w.	Scom
10-28-31-33- 38-42-45-46- 47-55-56- 5 8- 60-67-71-72- 73-78-80-87-					
93	50.000 pf	250	Papier	Capatrop	Radiotech- nique
75-76-77	8 MF	500	_	B.L.D.	Safco- Trévoux
6-50-70-74	25 MF	50	Chim.	Algérie	Micro

BLOC de CONDENSATEURS ETANCHE

Référence du schéma : C	Désignation Valeur en pf.	Tension de service	Nature	Référence Fournisseur	Fournisseurs
100	20.000	250	Papier		A.M.E.
99	30.000	250	-		-
98	0,1 MF	250	-		-
97	0,5 MF	250	-		_
96	2 MF	250	-		-
]

CONDENSATEUR VARIABLE

Référence du schéma : CV	Désignation	Référence Fournisseur	Fournisseurs
App ^t . antenne	22 pf. à air	JVL. 20	Aréna
1-2	2 × 130 pf. 2 cases à air	CP. 878 A.	
3-4	2 × 130 pf. 2 cases à air	CP. 915 A.	-
5	58 pf. à air	JVL 50	-

CONDENSATEUR AJUSTABLE

Référence du schéma : CA	Désignation	Référence Fournisseur	Fournisseurs
1	10 pf. à air	BAL. 10 sans blocage	Aréna
14-24-44-54- 64-74	22 pf. à air	BAL. 20 sans blocage	_
8	25 pf. à air	AR4	A.C.R.M.
11-12-13-21-22 23-31-32-33-41 42-43-51-52-53			
61-62-63-71-72 -73	3/30 pf air	3/30	Philips
2-3-4-5-	4/21 pf. céramique	116 N - 4/21	M.C.B.
6-7-9-10-75-76 77	15/45 pf. céramique	Céramalter 216N - 15/45	M.C.B.

FUSIBLES

Référence du schéma : F	Désignation	Référence Fournisseur	Fournisseurs
1 - 2	Fusibles 3,2 ampères	Série blanche	Gardy
3	Lampe 6v,3 - 0,3 Amp. à vis		Mazda

GALETTES DE COMMUTATEUR

Référence du schéma : G	Désignation	Référence Fournisseur	Fournisseurs
1 à 8	Gamme haute fréquence	1820/1/14	A.M.E.
9 à 10	Oscillat eu r de ler changement de fréquence	1820/1/12	-
11-12	Oscillateur de ler changement de fréquence	1820/1/14	
15 à 19	Sélectivité moyenne fréquence	1820/2/10	-
13 et 14	Commutateur 2 circuits 6 posi- tions	P12 6N 52/82	Rodé-Stucky
20 et 21	Commutateur 2 – 3 –	P12 3N	-

J A C K S

Référence du schéma : J	Désignation	Référence Fournisseur	Fournisseurs
1-2-4	Jack à coupure Isolement plex.	C.920 B	A.M.E.
3	Jack à coupure Isolement -	C.922 B	-

LAMPES

Référence du schéma	Désignation	Fournisseurs
(1)	PM 07 ou 6 A M 6 EF91	Radio Télévision
(2)(5)(8)(13)	6 B A 6	_
(3) (7)	6 B E 6	-
(4)(6) (12)	6 A U 6	_
(9)	6 A T 6	-
(10)	6 A L 5	-
(11)	6 A Q 5	-
(14)	6 A L 5	-
(15)	6 A F 7	Cie des Lampes
(16)	0 В 2	Radio Télévision
(17) (18)	5 Y 3 GB.	Cie des Lampes
LC. 1-2-3-4-	6,3 Volts - 0,1 Ampère à vis	_

QUARTZ

Référence schéma : Q	Désignation	Référence Fournisseur	Fournisseurs
1	Quartz 80 kilocycles	A.M.5	L.P.E.
2	Quartz 1.680 kilocycles	E. 5	-

SELFS DE FILTRAGE

Référence du schéma : SF	Désignation	Référence Fournisseur	Fournisseurs
1 - 2	Self de filtrage	2.006	A.M.E.

TRANSFORMATEURS

Référence du schéma : T	Désig natio n				Référence Fournisseur		Fournisseurs
1	Transfo.	moyenne	fréq.	1.600Ke	1600A	34-22	A.M.E.
2			_	1.600Kc	1600B	34-22	-
3	-		_	80Kc	80C	34-20	
4	-	sans.	* 1804	80Kc	80D	34-20	· -
5				80Kc	80E	34-20	
6	_	Oscillate ment	eur de	batte-	BFO-F	34-24	-
7		de sorti ϵ	9		3.006		- Salare
8	d'alimentation			1.013		-	

PIECES DETACHEES DIVERSES

Désignation	Référence du Fournisseur	Fournisseurs
Bornes antenne	566-17-IE	Ribet-Desjardins
Bouton flèche	P.M.	A.M.E.
Bouton manette	C.518	_
Démultiplicateur	1.460	
Encliquetage 7 positions	Aviation	_
Encliquetage 4 positions	-	
Fiche Octal unic	564/26 et 564/27	Ribet-Desjardins
Haut parleur aimant permanent	90 ACT sans transf.	Véga
Inverseur Unipolaire	1400 BBA	Secmé
Inverseur tripolaire	1415 BBA	_
Microampèremètre O à 100	50 KE 1	Pékly
Redresseur oxymétal	M5	Westinghouse
Support octal stéatite	Octométal	Westinghouse
Support Octal trolitul	type 13.333	Métox
Support lampe miniature	Micalex	Radio Télévision
Embase de blindage pour lampe		·
miniature	1	Métallo
Blindage pour lampe miniature	15/35	
	15/45	-
	15/55	
Support de lampe cadran	710	

RÉCEPTEUR A.M.E. TYPE 7G-1680

de 1,75 à 40 Mégacycles

A. M. E. - 54, RUE DU THÉATRE. PARIS XVe - SUFfren 72-74

RECEPTEUR A.M.E TYPE 7G 1.680MA

Vue de dessous du bloc HF

A.M.E . 54rue du Théâtre. PARIS 155

PI.538

RECEPTEUR_A.M.E_Type 7G_168O_M.A TABLEAU des TENSIONS

SUPPORTS DE LAMPES SONT VUS COTE CABLAGE.

Les tensions sont prises par rapport à la masse du chassis(Potentiel 0°) Haute tension avant filtrage 280°_Haute tension après filtrage 220°											
PM07 ou 6AM6(1)	6 BA6 (2)	6BE6 (3)									
FILT (MAGSE) 3 0 05 PLAQUE(210")	FILT(MASSE) 30 O SPLAQUE(180')	FILTG"3" FILT (MASSE) 3 O SPLAQUE(200")									
CATH. (1,6") 2 0 0 6 Supp. (1,6") GRILLE 1(0") 1 0 9 ECRAN(100")	\0 0/	GRILLE 1 (0°) 1 0 7GRILLE 3 (0°)									
6AU6 (4)	6BA6 (5)	6AU6 (6)									
FILT (MASSE) 30 0 5 PLAQUE (80') SUPP. (80') 2 0 0 SECRAN (80')	(0 0)	FILT (MASSE) 3 0 0 5 PLAQUE (40°) SUPP! (40°)2 0 0 6 ECRAN(40°)									
	GRILLE 1 (0") 7 CATH.(2")	GRILLE 1 (0°) 1 7 GATH. (0°)									
6BE 6 (7)	6BA6(8) FILTGY37	6AT6(9)									
	SUPP. (1") 2 (0 0) SECRAN(80)	FILT (MASSE) 300 S ANODE 2 CATH.(1,2") 20 O GANODE 1 GRILLE 1(0") 1 07 PLAQUE (80")									
6AL5(10)	6AQ5 (11)	6AU6(12)									
	CATH.(10") 2 (0 0) 6 ECRAN(210")	FILT (MASSE) 3 0 0 SPLAQUE (20°) SUPR! (MASSE)2 0 0 6 ECRAN (25°) GRILLE 1 (0°) 1 7 CATH . (0°)									
6BA6(13)	6AL5 (14)	6AF7(15) 5 ECRAN (2204)									
SUPP. (2') 2 0 0 GECRAN(80')	FILT (MASSE) 3 0 5 CATH 2(0") ANODE 2(0") 2 0 0 6 CATH.1(1,5"àd",5) 1 7 ANODE 1 (0")	GRILLE (0') 40 0 GPLAQUE 1 PLAQUE 2(6')30 0 (60') FILT (MASSE)2 0 7FILT 6'34 MASSE 1 0 8CATH.1 (115)									
OB2(16)	5Y3(17)	5Y3(18)									
30,005 20006 PLAQUE (0") 107CATH. (108")	PLAQUE (260°)4 0 0 6 PLAQUE (260°) 3 0 0 7 FILT (280°) 2 0 8 FILT (280°)	PLAQUE(265")4 0 0 6PLAQUE(260") 30 07 FILT(280") 2 0 0 5FILT(280")									

ATELIERS DE MONTAGES ELECTRIQUES 54 rue du Théâtre 54 PARIS _ XV

	Valeurs des Resistances et des Condensateurs															
R	Valeur		R	Valeur		C	Valeur	Tension	C	Valeur	Tension	C	Valeur	Tension	CA	Valeur
	en Ohns	enwitis	_	en Ohms	D. AV.C	_		Service	_		Service	_		Service		
1	22	1	49	410000	4	1	100	CE 250	49	33	CE 250	97	500000	P 250	1 2	10 PF
2	22M2	1	50	47000	1	2	6800	CE 250	50	25 PF	C.50	98	100000		à	4 x 21 PF
3	470.000	1	51	2200	4	3		0€ 250	59		MG 250	99	30 000	P 250	5)
4	2,2 Ma	1	52	47000	١	4		CE 250	52		MG 250		l.	P 250	6	15×45pf
5	220	4	53	47000	1	5		Cé 250	53	±1%975			+3%1 800		7)
6	10.000	1	54	47000	1	6	25 1 F	C 50	54	±1%975			±3%1800	P _ 1	8	25 pF
7	2,2Ma		58	470.000		7		Ce 250	55 56		P 250	_	±3% 925	M 250	10	15×45pf
8	100.000		56 57	330 680	2	8		Ce 250	57		P 250 C 250		±32645 ±32525	M 250 M 250	12	}
9	220 47.000	2	58	1500	100	10	50.000	1 1	28		P 250		132365	M 250	à	3/30 ps
111	10.000		59	500	100	14		Ce 250	59	-	CÉ 250	107	23%300	M 250	71	
12	330		60	2200	10	12		OS 250	60		P 250	108	10	Ce 250	12	7
13	47.000	1	61	32 Ma	4	13	47	CE 250	61	100	Ce 250	109	22	Oz 250	à	3/30 pf
14	1.200	1	62	10 000	1	14	6800	CE 250	62	6800	œ 250	110	5.5	04 280	72	
15	22	,	63	70000	1	15	Neg. 6	Cé 250	63	400	MG 250	111	33	Ce 250	13	
16	47.000	1	64		1	16	100	C 250	64	200			4.7	Cé 250	۵	13/30pf
17	4.700				1 1	17		Ca 250	65	200	MG 250		4.7		73	į
18	470		66		1 1	18	6.800		66	1	MG 250		22		14	22 pf
19	4.700		67 88	22Kn	!	19		CF 260 CE 250	67 68	50000	P 250	115	100	CE 250	:	Esp:
20	330	,	68			21		M4 250	69		Ce 250	116	150		75	ί,
•	100.000		70			22	200	MG 250	70	251F		118	,	Ce 250		15,4501
23	4 700	1	71	470	17	23			71	50.000	P250	119	470			,52,154
24	1	3	72			24	100	MG 250	72	50.000	P 250	120	6800		-	ETTEE
25	47.000	1	73	47000	1	25	250		78	50.000	P 250	121	47	OE 250	1	LETTES
26	47.000	1	74	1	1	26	6800	OF 250	74	25ri	C 50	122	4.7	CE 250	61	COMMANDE
27	4700		75	1111	1	27	4,7	ce 250	75	811	P 500	123	22	C 250		UNIQUE
58		1	76	2	1	28	50.000	P 250	76		P 500	124	_	Ce 250		, ,
29			77	470	1	29	6800	Ce 250	77		P 500	125	100	Ce 250		
30	1	3	78		1	30	6800	CE 250	78		P 250	126	150	Ce 250		UNIQUE
21	120	2	79	4700		31 32	50.000	P 250	79	1	Ce 250	127	350		21	3 . 1
32			80	220		33	6 800 50.000	P 250	81	50000	ce 250	125		Ce 250 Ce 250		COMMANDE
34			82	3 -	,	34		MG 250	BZ	1	MG 250	130	6800	Cé 250	الهرو	GELECTIVITE
35		1 4	183	22		35	200	MG 250	B3	200	MG 250		22	Ke 250	11 -	
36		3	84	22	1	36		MG 250	11 -	47	Ce 260	132	! 10	Cá 250 Cá 250	1620	COMMANDE
37			86	22	,	37	100	MG 250		400	MG 250	<u> </u>	1		et	UNIQUE
38	33000	1	P1	2500			50000	P 250	86	10	CE 250			•	1521	VOLTMETRE
	680 000	1	P2	\$200	2Bob		10	Ce 250	87	50000	P 250	Ċė	CERAN			
40				500.000		34	10	C4 250		,	MG 250	Me	CHIMIO		1-	16 4 . 6
41			P4		280	41		Cé 250			M6 250	1			126	If de Choc
42			P5	2500	2 Bob		50.000	P. 250	190		MG 250		Valeur		L1	1923/2 B
43					-	43	•	cé 250	17		MG 250		22pf		12	1823/2 A
	2x47000		11			44		Cé 250		6800	Cé 250	., .	!)		1 3	2362/2
46			1			45		P 250 P 250		50.000	P 250	0	130pf		14	
47						46		P 250			ce 250		50 pf			
	47.000					48					P 250		30	Ρř		
		<u> </u>	<u> </u>				1 200	1	11.0		1, 200	Щ			Ш	

TYPE 7G.1680 MA Pl.539 EPTEUR A.M.E. 68A6(5) 6AU6 (6) 6AT6 (9) 6AQ5(11) 6BE6(7) 6BA6 (8) 6AL5 (10) 6AU 6 (4) TC17 TC18 CASQUE 15 000A 68 # 7// R40 A CASOUE ¥ 771. 771. 15000A LIGNE 27 127 Fiche et cordons d'Alimentation Secteur & R22 5Y3(17) 5Y3(18) 6AL5 (14) 6BA6(13) 6AU6 (12) _ c79 REGULATRICE TO chauf. 6.3

RECEPTEUR AME _ TYPE 7G. 1680MA

Vue Avant

RECEPTEUR Type 7G1680MA

COURBES DE SELECTIVITE M.F.

A.M.E. 54 rue du Théâtre Paris 15 è

RECEPTEUR Type 7G1680MA

COURBE DU REGULATEUR AUTOMATIQUE DE NIVEAU (A.V.C.)

PL 547

RECEPTEUR Type 7G 1680MA

B.F. REPONSE DE COURBE

A.M.E. 54 rue du Théâtre Paris 15 è

RECEPTEUR Type7G168OMA

EXEMPLE D'ETALONNAGE D'UNE FRACTION DE SOUS GAMME

1610 A 1680 GAMME III

A.M.E. 54 rue du Théâtre Paris 15 è

