An LLL algorithm for module lattices

Changmin Lee¹, **Alice Pellet-Mary**², Damien Stehlé¹ and Alexandre Wallet³

¹ ENS de Lyon, ² KU Leuven, ³ NTT Tokyo

Séminaire Grace, December 19, 2019

https://eprint.iacr.org/2019/1035

Cryptography and hard problems

Cryptography and hard problems

Lattices

Lattice

A (full-rank) lattice L is a subset of \mathbb{R}^n of the form $L = \{Bx \mid x \in \mathbb{Z}^n\}$, with $B \in \mathbb{R}^{n \times n}$ invertible. B is a basis of L.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 10 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Hardness of lattice problems

Best Time/Approximation trade-off for SVP and CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[[]SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

Hardness of lattice problems

Best Time/Approximation trade-off for SVP and CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

Structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

⇒ improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

	Frodo (Ivl 1)	Kyber (Ivl 1)
	(unstructured lattices)	(structured lattices)
public key size (in Bytes)	9 616	800
ciphertexts size (in Bytes)	9 720	736

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

multiplication by
$$a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$$
 mod $X^n - 1$

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$
 multiplication $a_0 + a_1 X + \cdots$ mod $X^n + 1$ $(n = 2^\ell)$

multiplication by
$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$
 mod $X^n + 1$ $(n = 2^{\ell})$

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 + a_2 \\ a_1 & a_0 + a_{n-1} & \cdots & a_2 + a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 + a_{n-1} \end{pmatrix} \quad \begin{array}{l} \text{multiplication by} \\ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \\ \text{mod } X^n - X - 1 \\ \text{$(n$ prime)} \end{array}$$

multiplication by
$$a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$$
 mod $X^n - X - 1$ (*n* prime)

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using lattices with a structured basis

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 + a_2 \\ a_1 & a_0 + a_{n-1} & \cdots & a_2 + a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 + a_{n-1} \end{pmatrix} \quad \begin{array}{l} \text{multiplication by} \\ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \\ \text{mod } X^n - X - 1 \\ \text{$(n$ prime)} \\ \end{array}$$

(n prime)

basis of a (principal) ideal lattice

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Ring R

- $R = \mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Ring R

- $R = \mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Ring R

- $R = \mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Ring R

- $R = \mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Ring R

- $R = \mathbb{Z}[X]/P(X)$ with P irreducible, degree d
- M_a = multiplication by a in R

Objective

Lattice reduction over ${\mathbb Z}$

Module lattices

- ullet large dimension over ${\mathbb Z}$
- small dimension over R

Objective

Lattice reduction over $\mathbb Z$

Module lattices

- ullet large dimension over ${\mathbb Z}$
- small dimension over R

Can we extend the LLL algorithm to lattices over *R*?

[Nap96] LLL for some specific number fields no bound on quality / run-time

[[]Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des nombres de Bordeaux.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[[]FP96] C. Fieker, M. E. Pohst. Lattices over number fields. ANTS.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[KL17] LLL for norm-Euclidean fields
bound on run-time but not on quality
bound on quality for biquadratic fields

[[]KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[KL17] LLL for norm-Euclidean fields
bound on run-time but not on quality
bound on quality for biquadratic fields

[LPSW19] LLL for any number field bound on quality and run-time if oracle solving CVP in a fixed lattice (depending on R)

[[]LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices. To appear at Asiacrypt 2019.

Outline of the talk

- Module lattices
- 2 The LLL algorithm
- The Lagrange-Gauss algorithm
- 4 Computing the relaxed Euclidean division

Outline of the talk

- Module lattices
- The LLL algorithm
- The Lagrange-Gauss algorithm
- 4 Computing the relaxed Euclidean division

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

Coefficient embedding

$$\sigma$$
: $R \rightarrow \mathbb{R}^d$
$$\mathbf{a} = a_0 + a_1 X + \dots + a_{d-1} X^{d-1} \mapsto (a_0, a_1, \dots, a_{d-1})^T$$

$$\mathbf{a} \longrightarrow M_{\mathbf{a}} = \begin{pmatrix} | & | & | \\ \sigma(\mathbf{a}) & \sigma(X\mathbf{a}) & \cdots & \sigma(X^{d-1}\mathbf{a}) \\ | & | & | \end{pmatrix}$$

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

 $\alpha_1, \dots, \alpha_d$ roots of P

Canonical embedding

$$\sigma: \qquad \qquad R \rightarrow \mathbb{C}^d$$

$$\mathbf{a} = a_0 + a_1 X + \dots + a_{d-1} X^{d-1} \mapsto (\mathbf{a}(\alpha_1), \dots, \mathbf{a}(\alpha_n))^T$$

$$\mathbf{a} \longrightarrow M_{\mathbf{a}} = \begin{pmatrix} | & | & | \\ \sigma(\mathbf{a}) & \sigma(X\mathbf{a}) & \cdots & \sigma(X^{d-1}\mathbf{a}) \\ | & | & | \end{pmatrix}$$

Outline of the talk

- Module lattices
- 2 The LLL algorithm
- The Lagrange-Gauss algorithm
- 4 Computing the relaxed Euclidean division

LLL over \mathbb{Z}

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over \mathbb{Z}

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time
- Lagrange-Gauss algo for SVP in dim 2
 - ▶ poly time

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over $\mathbb Z$

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over
$$R = \mathbb{Z}[X]/(X^d + 1)$$

- γ' -SVP in rank-k $\leq \gamma$ -SVP in rank-2

 - poly time

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over $\ensuremath{\mathbb{Z}}$

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - ▶ poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over
$$R = \mathbb{Z}[X]/(X^d + 1)$$

- γ' -SVP in rank-k< γ -SVP in rank-2

 - poly time
- Algorithm for γ -SVP in rank-2
 - $> \gamma = 2^{(\log d)^{O(1)}}$
 - heuristic, quantum
 - poly time if oracle solving CVP in a fixed lattice

(depending only on R)

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

LLL over $\mathbb Z$

- γ' -SVP in dim k \leq 1-SVP in dim 2
 - $\gamma' = 2^{O(k)}$
 - poly time
- Lagrange-Gauss algo for SVP in dim 2
 - poly time

LLL over
$$R = \mathbb{Z}[X]/(X^d + 1)$$

- γ' -SVP in rank-k $\leq \gamma$ -SVP needs QR-factorisation
- Algorithm for γ -SVP in rank-2

 - ▶ heu next sex
 - poly oracle solving CVP in a fixed lattice

(depending only on R)

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

For
$$\vec{a}=(a_1,\cdots,a_k)\in \mathcal{K}^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in \mathcal{K}^k$,

$$\langle \vec{a}, \vec{b} \rangle_K = \sum_i a_i \overline{b_i} \in K$$

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_K = \sum_i a_i \overline{b_i} \in K$$

$$\|\vec{a}\|_K := \sqrt{\langle \vec{a}, \vec{a} \rangle_K} \in K \ (\text{or} \ K_{\mathbb{R}})$$

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_{\mathcal{K}} = \sum_{i} a_{i} \overline{b_{i}} \in \mathcal{K}$$

$$\|\vec{a}\|_{\mathcal{K}} := \sqrt{\langle \vec{a}, \vec{a} \rangle_{\mathcal{K}}} \in \mathcal{K} \ (\text{or} \ \mathcal{K}_{\mathbb{R}})$$

Properties

•
$$\operatorname{Tr}(\|\vec{a}\|_{K}^{2}) = \|\sigma(\vec{a})\|_{2}^{2}$$

$$\operatorname{Tr}(x) = \sum_{i=1}^{d} \sigma(x)_i$$

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_{\mathcal{K}} = \sum_{i} a_{i} \overline{b_{i}} \in \mathcal{K}$$

$$\|\vec{a}\|_{\mathcal{K}}:=\sqrt{\langle \vec{a}, \vec{a}
angle_{\mathcal{K}}} \in \mathcal{K} \ (\text{or} \ \mathcal{K}_{\mathbb{R}})$$

Properties

- $\operatorname{Tr}(\|\vec{a}\|_{K}^{2}) = \|\sigma(\vec{a})\|_{2}^{2}$
- $\bullet \ \mathcal{N}(\|\vec{a}\|_{\mathcal{K}}^2) = \Delta_{\mathcal{K}}^{-1} \cdot \det(\mathcal{L}(\vec{a}))^2$

$$\mathcal{N}(x) = \prod_{i=1}^d \sigma(x)_i$$

QR factorization over R

Let
$$B=(b_1,\cdots,b_k)\in K^k$$
, define

$$b_i^* = b_i - \sum_{j < i} \mu_{ij} b_j^*$$
, with $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle_K}{\langle b_j^*, b_j^* \rangle_K}$

QR factorization over R

Let $B=(b_1,\cdots,b_k)\in K^k$, define

$$b_i^* = b_i - \sum_{j < i} \mu_{ij} b_j^*$$
, with $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle_K}{\langle b_j^*, b_j^* \rangle_K}$

QR-factorisation: B = QR, with

- $r_{ii} = \|b_i^*\|_{\mathcal{K}}$, $r_{ij} = \mu_{ji}r_{ii}$ for i < j and $r_{ij} = 0$ otherwise
- ullet columns of Q are $b_i^*/\|b_i^*\|_{\mathcal{K}}$

QR factorization over R

Let $B=(b_1,\cdots,b_k)\in K^k$, define

$$b_i^* = b_i - \sum_{j < i} \mu_{ij} b_j^*$$
, with $\mu_{ij} = \frac{\langle b_i, b_j^* \rangle_K}{\langle b_j^*, b_j^* \rangle_K}$

QR-factorisation: B = QR, with

- $r_{ii} = \|b_i^*\|_{\mathcal{K}}$, $r_{ij} = \mu_{ji}r_{ii}$ for i < j and $r_{ij} = 0$ otherwise
- ullet columns of Q are $b_i^*/\|b_i^*\|_{\mathcal{K}}$

Properties

- $\bullet \ \overline{Q}^T Q = I_k$
- ullet det $_K(B)=\prod_i r_{ii}$ and det $(\mathcal{L}(B))=\det(\mathcal{L}(R))$
- $\forall v \in \mathcal{L}(B), \ \mathcal{N}(\|v\|_{K}) \geq \min \mathcal{N}(r_{ii})$

Outline of the talk

- Module lattices
- The LLL algorithm
- The Lagrange-Gauss algorithm
- 4 Computing the relaxed Euclidean division

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

Compute QR factorization

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

reduce b_2 with b_1

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of 7.3 by 10.2

$$M = \begin{pmatrix} 10.2 & -2.9 \\ 0 & 0.6 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

reduce
$$b_2$$
 with b_1

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of -10 by 3

$$b_2 \nearrow b_1$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For the Lagrange-Gauss algorithm over R, we need

- Rotation
- Euclidean division

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For the Lagrange-Gauss algorithm over R, we need

- Rotation \Rightarrow ok
- Euclidean division \Rightarrow ?

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b + ra| \le |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{\bullet}$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{2}$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{\bigstar}$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{d} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$
- ⇒ sufficient for Gauss' algo

Outline of the talk

- Module lattices
- 2 The LLL algorithm
- The Lagrange-Gauss algorithm
- 4 Computing the relaxed Euclidean division

Reminder: $\sigma(r) = (r(\alpha_1), \dots, r(\alpha_d))^T$ (multiplication is coefficient-wise)

Reminder:
$$\sigma(r) = (r(\alpha_1), \dots, r(\alpha_d))^T$$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Reminder:
$$\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Properties of Log

Reminder: $\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

Log $r = h + a\mathbf{1}$, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- a > 0 if $r \in R$

Reminder: $\sigma(r) = (r(\alpha_1), \cdots, r(\alpha_d))^T$

(multiplication is coefficient-wise)

$$Log(r) = (log |r(\alpha_1)|, \cdots, log |r(\alpha_d)|)^T$$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

Log $r = h + a\mathbf{1}$, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- $a \ge 0$ if $r \in R$
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Solution: If $\| \operatorname{Log}(u) - \operatorname{Log}(v) \| \le \varepsilon$ then $\| u - v \| \lesssim \varepsilon \cdot \min(\| u \|, \| v \|)$

(requires to extend Log to take arguments into account)

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(d)$

Difficulty: Log works well with \times , but not with +

Solution: If $\| \operatorname{Log}(u) - \operatorname{Log}(v) \| \le \varepsilon$ then $\| u - v \| \lesssim \varepsilon \cdot \min(\| u \|, \| v \|)$

(requires to extend Log to take arguments into account)

New objective

Find $x, y \in R$ such that

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log d)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve exact CVP in L with target t

$$L = \begin{pmatrix} \log r_1 & \cdots & \log r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \log(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} \log r_1 & \cdots & \log r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = \begin{pmatrix} \log(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log d)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = egin{pmatrix} \mathsf{Log}\,r_1 & \cdots & \mathsf{Log}\,r_{d^2} \\ 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}, \quad t = egin{pmatrix} \mathsf{Log}(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Complexity

Poly time (with the oracle)

Under the carpet

- Heuristics
 - maths justification
 - numerical experiments (in very small dimension)
- Any module / ideal
 - use pseudo-basis
 - add units and class group to L (cf [Buc88])
 - lacktriangle decompose ideals in class group \Rightarrow quantum algo
- Full LLL algo over R
 - Lovász' swap condition
 - switch between $\mathcal{N}(\cdot)$ and $\|\cdot\|$
 - handling bit sizes

[Buc88] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

In practice? \Rightarrow replace the oracle by a CVP solver

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(d) $^{O(k)} = 2^{(\log d)^{O(1)} \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(d^{2+\varepsilon})$)

In practice? \Rightarrow replace the oracle by a CVP solver

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to $\tilde{O}(d)$?
 - prove the heuristics?
 - better CVP solver for L?

[[]MS19] T. Mukherjee, N. Stephens-Davidowitz. Lattice Reduction for Modules, or How to Reduce ModuleSVP to ModuleSVP, ePrint.

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to $\tilde{O}(d)$?
 - prove the heuristics?
 - ▶ better CVP solver for *L*?
- Generalizing LLL to all the BKZ trade-offs?
 - reduction rank k to rank β (cf [MS19])
 - sieving/enumeration in modules?

[MS19] T. Mukherjee, N. Stephens-Davidowitz. Lattice Reduction for Modules, or How to Reduce ModuleSVP to ModuleSVP, ePrint.

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to $\tilde{O}(d)$?
 - prove the heuristics?
 - ▶ better CVP solver for *L*?
- Generalizing LLL to all the BKZ trade-offs?
 - reduction rank k to rank β (cf [MS19])
 - sieving/enumeration in modules?

Thank you

[MS19] T. Mukherjee, N. Stephens-Davidowitz. Lattice Reduction for Modules, or How to Reduce ModuleSVP to ModuleSVP, ePrint.