

Department of Computer Engineering

Experiment No. 4

Apply Random Forest Algorithm on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance:

Date of Submission:

Department of Computer Engineering

Aim: Apply Random Forest Algorithm on Adult Census Income Dataset and analyze the

performance of the model.

Objective: Able to perform various feature engineering tasks, apply Random Forest

Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Random Forest is a popular machine learning algorithm that belongs to the supervised

learning technique. It can be used for both Classification and Regression problems in ML. It

is based on the concept of ensemble learning, which is a process of combining multiple

classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees

on various subsets of the given dataset and takes the average to improve the predictive

accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the

prediction from each tree and based on the majority votes of predictions, and it predicts the

final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of

overfitting.

The below diagram explains the working of the Random Forest algorithm:

NAP (I)

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

Department of Computer Engineering

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holland-Netherlands.

Code & Output:

!pip install pydotplus

Department of Computer Engineering

```
# Importing required packages for visualization
from IPython.display import Image
from six import StringIO
from sklearn.tree import export graphviz
import pydotplus,graphviz
# Putting features
features = list(df.columns[1:])
features
['fnlwgt',
 'education.num',
 'capital.gain',
 'capital.loss',
 'hours.per.week',
 'workclass',
 'education',
 'marital.status',
 'occupation',
 'relationship',
 'race',
 'sex',
 'native.country',
 'income']
# plotting tree with max depth=3
dot_data = StringIO()
```


Department of Computer Engineering


```
► GridSearchCV

► estimator: DecisionTreeClassifier

► DecisionTreeClassifier
```

```
# scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()
```

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_max_depth	params	split0_test_score	split1_test_score	split2_test_
0	0.014912	0.002731	0.003536	0.000278	1	{'max_depth': 1}	0.747810	0.747810	0.7
1	0.020321	0.000216	0.003579	0.000050	2	{'max_depth': 2}	0.812219	0.818612	0.8
2	0.029969	0.003706	0.005022	0.001609	3	{'max_depth': 3}	0.828558	0.834241	0.8
3	0.034974	0.000750	0.003977	0.000556	4	{'max_depth': 4}	0.832583	0.840871	0.8
4	0.043431	0.001287	0.005024	0.000871	5	{'max_depth': 5}	0.834241	0.844897	0.8

s	split0_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
': }	0.747810	0.747810	0.747573	0.747750	0.747750	0.747738	0.000087	39
': }	0.812219	0.818612	0.820507	0.825675	0.822833	0.819969	0.004538	16
': }	0.828558	0.834241	0.834478	0.836570	0.837518	0.834273	0.003115	12
': }	0.832583	0.840871	0.842529	0.842729	0.842255	0.840193	0.003860	9
': }	0.834241	0.844897	0.847265	0.842729	0.847466	0.843319	0.004858	7

```
from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

# specify number of folds for k-fold CV

n_folds =

# parameters to build the model on

parameters = {'min_samples_leaf': range(5, 200, 20)}

# instantiate the model

dtree = DecisionTreeClassifier(criterion = "gini",
CSL701: Machine Learning Lab
```


Department of Computer Engineering

random state = 100)# fit tree on training data tree = GridSearchCV(dtree, parameters, cv=n folds, scoring="accuracy") tree.fit(X_train, y_train) GridSearchCV • estimator: DecisionTreeClassifier ▶ DecisionTreeClassifier # scores of GridSearch CV scores = tree.cv_results_ pd.DataFrame(scores).head() mean_fit_time std_fit_time mean_score_time std_score_time param_min_samples_leaf params split0_test_score split1_test_score 5 {'min_samples_leaf': 0.302561 0.047643 0.010234 0.003623 0.825716 0.827848 25 {'min_samples_leaf': 0.226468 0.059930 0.013695 0.003549 0.841819 0.851291 45 {'min_samples_leaf': 45} 0.008670 0.002440 0.843003 0.119051 0.014305 0.849159 65 {'min_samples_leaf': 0.109432 0.024206 0.007160 0.001666 0.841108 0.852711 85 {'min_samples_leaf': 0.071941 0.003895 0.004989 0.000820 0.838030 0.849159 split0_test_score split1_test_score split2_test_score split3_test_score split4_test_score mean_test_score std_test_score rank_test_score 0.825716 0.827848 0.819560 0.826149 0.818806 0.823616 0.003696 0.841819 0.851291 0.839451 0.842018 0.849360 0.844788 0.004651 6 0.843003 0.849159 0.846555 0.851018 0.851729 0.848293 0.003194 0.841108 0.852711 0.845371 0.851492 0.838465 0.845830 0.005589 2 0.838030 0.849159 0.845371 0.851492 0.842018 0.845214 0.004834


```
from sklearn.model selection import KFold
from sklearn.model selection import GridSearchCV
# specify number of folds for k-fold CV
n folds = 5
# parameters to build the model on
parameters = {'min_samples_split': range(5, 200, 20)}
# instantiate the model
dtree = DecisionTreeClassifier(criterion = "gini",
                               random state = 100)
# fit tree on training data
tree = GridSearchCV(dtree, parameters,
                    cv=n folds,
                   scoring="accuracy")
tree.fit(X_train, y_train)
           GridSearchCV
 estimator: DecisionTreeClassifier
      ▶ DecisionTreeClassifier
# scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()
```


CSL701: Machine Learning Lab

Vidyavardhini's College of Engineering & Technology

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_min_samples_split	params	split0_test_score	split1_test_score
0	0.257015	0.030095	0.011569	0.004530	5	{'min_samples_split': 5}	0.811982	0.811035
1	0.251020	0.036221	0.009931	0.002677	25	{'min_samples_split': 25}	0.825006	0.825243
2	0.283793	0.051051	0.013075	0.003601	45	{'min_samples_split': 45}	0.835188	0.839687
3	0.131714	0.039597	0.005965	0.001252	65	{'min_samples_split': 65}	0.839451	0.845844
4	0.105095	0.010136	0.005290	0.000514	85	{'min_samples_split': 85}	0.846081	0.853895

split0_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
0.811982	0.811035	0.818376	0.811701	0.808385	0.812296	0.003296	10
0.825006	0.825243	0.830215	0.822596	0.827570	0.826126	0.002581	9
0.835188	0.839687	0.830215	0.827333	0.838702	0.834225	0.004783	8
0.839451	0.845844	0.837556	0.833728	0.843913	0.840098	0.004360	7
0.846081	0.853895	0.838977	0.837281	0.845334	0.844314	0.005898	6

Department of Computer Engineering

Fitting 5 folds for each of 16 candidates, totalling 80 fits

- GridSearchCV
- estimator: DecisionTreeClassifier
 - ▶ DecisionTreeClassifier

cv results

cv_results = pd.DataFrame(grid_search.cv_results_)

cv_results

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_criterion	param_max_depth	param_min_samples_leaf	param_min_samples_s
0	0.066055	0.002414	0.006103	0.000330	entropy	5	50	
1	0.066297	0.002458	0.007829	0.003156	entropy	5	50	
2	0.063863	0.002771	0.006069	0.000250	entropy	5	100	
3	0.069619	0.007983	0.006503	0.000399	entropy	5	100	
4	0.110682	0.007796	0.006779	0.000537	entropy	10	50	
5	0.088213	0.019038	0.004649	0.000906	entropy	10	50	
6	0.072638	0.003297	7 0.00565	4 0.0022	114 entr	ору	10	100
7	0.068670	0.001294	4 0.00428	7 0.0002	entr	ору	10	100
8	0.041203	0.000853	3 0.00423	1 0.0002	13	gini	5	50
9	0.043932	0.002999	0.00436	8 0.0006	20	gini	5	50
10	0.041142	0.000680	0.00401	1 0.0001	75	gini	5	100

Department of Computer Engineering

11	0.040627	0.001732	0.003843	0.000085	gini	5	100		
12	0.066317	0.001318	0.004181	0.000077	gini	10	50		
13	0.069441	0.002989	0.004656	0.000756	gini	10	50		
14	0.065258	0.003734	0.004463	0.000590	gini	10	100		
15	0.065308	0.003595	0.004518	0.000568	gini	10	100		
# pr	inting t	the optima	al accura	ıcy score an	ıd hyperpa	rameters			
prin	t("best	accuracy'	", grid_s	search.best_	score_)				
prin	t(grid_s	search.bes	st_estima	itor_)					
best	accurac	cy 0.8510	400232064	759					
Deci it=5		eClassifie	er(max_de	epth=10,min_	samples_l	eaf=50,m:	in_samples_spl		
# mo	del with	n optimal	hyperpar	rameters					
clf_	gini = I	DecisionT	reeClassi	fier(criter	rion = "gi	ni",			
				random	_state =	100,			
	max_depth=10,								
				min_sa	mples_lea	f=50,			
	min_samples_split=50)								
clf_	gini.fit	(X_train,	, y_trair	1)					

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=10, min_samples_leaf=50, min_samples_split=50, random_state=100)


```
# accuracy score
clf_gini.score(X_test,y_test)
0.850922753895458
# plotting the tree
dot_data = StringIO()
export graphviz(clf gini,
out_file=dot_data, feature_names=features, filled=True, rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
# tree with max_depth = 3
clf gini = DecisionTreeClassifier(criterion = "gini",
                                   random state = 100,
                                   \max depth=3,
                                   min samples leaf=50,
                                   min samples split=50)
clf_gini.fit(X_train, y_train)
# score
print(clf_gini.score(X_test,y_test))
0.8393192617968837
# plotting tree with max depth=3
dot data = StringIO()
CSL701: Machine Learning Lab
```


Department of Computer Engineering

export_graphviz(clf_gini,
out_file=dot_data, feature_names=features, filled=True, rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())

classification metrics

from sklearn.metrics import classification_report,confusion_matrix

y_pred = clf_gini.predict(X_test)

print(classification report(y test, y pred))

	precision	recall	f1-score	support
0 1	0.85 0.77	0.96 0.47	0.90 0.59	6867 2182
accuracy macro avg weighted avg	0.81 0.83	0.71 0.84	0.84 0.74 0.82	9049 9049 9049

Conclusion:

Accuracy is the proportion of correctly predicted instances out of the total instances. Here, it is 0.84, meaning the model correctly predicted 84% of the cases. Performance on class 1 (minority class) is not as strong, with lower recall and F1-score.

Confusion matrix as follows:

Department of Computer Engineering

- True Positives (TP) for class $1 = \text{Recall} \times \text{Support} = 0.47 \times 2182 \approx 1026$
- False Negatives (FN) for class $1 = \text{Support} \text{TP} = 2182 1026 \approx 1156$
- True Negatives (TN) for class $0 = \text{Recall} \times \text{Support} = 0.96 \times 6867 \approx 6593$
- False Positives (FP) for class $0 = \text{Support} \text{TN} = 6867 6593 \approx 274$