1: for each internal node with index $i \in [0, n-2]$ in parallel 2. // Determine direction of the range (+1 or -1) 3: $d \leftarrow \operatorname{sign}(\delta(i, i+1) - \delta(i, i-1))$ 4: // Compute upper bound for the length of the range 5: $\delta_{\min} \leftarrow \delta(i, i-d)$ 6: $l_{max} \leftarrow 2$ 7: while $\delta(i, i + l_{\text{max}} \cdot d) > \delta_{\text{min}}$ do 8: $l_{\text{max}} \leftarrow l_{\text{max}} \cdot 2$ 9: // Find the other end using binary search 10: $l \leftarrow 0$ 11: for $t \leftarrow \{l_{\max}/2, l_{\max}/4, ..., 1\}$ do if $\delta(i, i + (l + t) \cdot d) > \delta_{\min}$ then 12: 13: $1 \leftarrow 1 + t$ 14: $i \leftarrow i + l \cdot d$ 15: // Find the split position using binary search 16: $\delta_{\text{node}} \leftarrow \delta(i, j)$ $c \leftarrow 0$ 17: for $t \leftarrow \{\lceil l/2 \rceil, \lceil l/4 \rceil, \dots, 1\}$ do 18: 19: if $\delta(i, i + (s+t) \cdot d) > \delta_{\text{node}}$ then 20: $s \leftarrow s + t$ 21: $\gamma \leftarrow i + s \cdot d + \min(d, 0)$ 22: // Output child pointers 23: if $min(i, j) = \gamma$ then left $\leftarrow L_{\gamma}$ else left $\leftarrow I_{\gamma}$ if $\max(i, j) = \gamma + 1$ then right $\leftarrow L_{\gamma+1}$ else right $\leftarrow I_{\gamma+1}$ 24: 25: $I_i \leftarrow (\text{left}, \text{right})$ 26: end for