

Grundlagen der Wirtschaftsinformatik

Prof. Dr. Alpar Sommersemester 2019

Unterlagen zur Veranstaltung

- Homepage des Lehrstuhls: http://www.uni-marburg.de/fb02/bwl09
- ILIAS: Fb. 02: Wirtschaftswissenschaften → Veranstaltungen der Betriebswirtschaftslehre → Wirtschaftsinformatik und Quantitative Methoden → SoSe 2019 → Alpar: VL Grundlagen der Wirtschaftsinformatik; ILIAS-Passwort: Platon
- Literatur:

Paul Alpar; Rainer Alt; Frank Bensberg; Peter Weimann:

Anwendungsorientierte Wirtschaftsinformatik:

Strategische Planung, Entwicklung und Nutzung von Informationssystemen O. Aufl. Wiesbaden 2010 (orseh

Informationssystemen, 9. Aufl., Wiesbaden 2019 (erscheint im Mai)

Übung

- Der erste Übungstermin ist am Freitag, dem 26.04.2019,
 von 12 bis 15 Uhr (c.t.) im Audimax.
- Dort erfahren Sie auch Details zu Übungsablauf und Gruppeneinteilung.
- Ein vorheriges Anmelden in den Übungsgruppen ist nicht notwendig.

Teil 1: Die Rolle von Informations- und Kommunikationssystemen in Unternehmen

Kapitel 1: Information, Kommunikation, Modell und System

Definitionen

• Gegenstand der **Wirtschaftsinformatik** sind Informationssysteme (IS) in Wirtschaft, Verwaltung und dem privaten Bereich.

IS = Information + System

- **Information** ist zusätzliches zweckorientiertes Wissen.
- Daten stellen die physische Darstellung von Informationen dar.
- Nachrichten sind übermittelte Daten.
- Kommunikation ist Austausch von Nachrichten.

Entropie

Wert einer Information?
...besteht in der Reduktion von Unsicherheit

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Entropiefunktion

Entropie: Beispiel fairer Münzwurf

- Bei einer fairen Münze sind "Kopf" (p=50%) und "Zahl" (q=50%) gleichwahrscheinlich. Dadurch ist die Unsicherheit für den nächsten Münzwurf maximal.
- Formel für Münzwurf

$$H = -(p \times \log_2 p + q \times \log_2 q)$$

Durch Einsetzen erhält man

$$H = -(0.5 \times \log_2 0.5 + 0.5 \times \log_2 0.5)$$

$$H = -(0.5 \times (-1) + 0.5 \times (-1))$$

$$H = -(-0.5 - 0.5)$$

$$H = 1$$

Entropie: Beispiel unfaire Münzwurf

- Bei einer unfairen Münze sind "Kopf" (p=70%) und "Zahl" (q=30%) ungleichwahrscheinlich. Dadurch ist die Unsicherheit für den nächsten Münzwurf geringer als bei der fairen Münze, da Kopf mit einer höheren Wahrscheinlichkeit vorkommt.
- Formel für Münzwurf

$$H = -(p \times \log_2 p + q \times \log_2 q)$$

Durch Einsetzen erhält man

$$H = -(0.7 \times \log_2 0.7 + 0.3 \times \log_2 0.3)$$

$$H = -(0.7 \times (-0.515) + 0.3 \times (-1.737))$$

$$H = -(-0.3605 - 0.5211)$$

$$H = 0.8816$$

Informationsattribute

Attribut	Mögliche Ausprägungen			
Aktualität	Letzter Monat	Seit Anfang des Jahres	Letzte 12 Monate	Letztes Jahr
Version	Ist		Plan	
Organisations- ebene	Produkt	Produkt- gruppe	Geschäfts- bereich	Konzern
Genauigkeit	In € mit allen Nachkomma- stellen	In € und ganzen Cents	In ganzen €	In 1.000 €

Tab. 1-1: Einige Informationsattribute und ihre möglichen Ausprägungen dargestellt am Beispiel der Information "Umsatz"

Problemlösungsphasen

Abb. 1-1: Problemlösungsphasen

Dimensionen des Entscheidens

Dimension	Ausprägung			
Problemstruktur	Wohl- strukturiert	Semi- strukturiert		Unstrukturiert
Zielerreichung	Optimal		Zufriedenstellend	
Entscheider	Risikoscheu	Risikoneutral		Risikofreudig
Sicherheitsgrad	Sicherheit		U	nsicherheit

Abb. 1-2: Dimensionen des Entscheidens

Nutzenerwartungswert

Entscheidungsträger haben unterschiedliche Risikoeinstellungen. Test: Vergleich ein Sicherheitsäquivalent mit dem erwarteten Nutzen! Daraus kann geschlossen werden, ob der Entscheidungsträger in diesem Kontext risikoscheu, -neutral, oder –freudig ist.

$$E(X) = \sum_{i=1}^{n} p_i N(x_i)$$

Wert von Information

- Subjektiver Ansatz
- Objektiver Ansatz
- Normativer Ansatz

Bsp.: Berechnung des IWs nach dem normativen Ansatz (1/4)

Herstellungs- und Produkteinführungskosten:

300.000€

• Wenn "ausreichender" Bedarf (aB) im Markt

→ 1.000.000€

• Wenn "kein ausreichender" Bedarf (kaB) im Markt

 $\rightarrow 0$ €

• P(aB) = 0.6; P(kaB) = 0.4

Erwarteter Gewinn der Produkteinführung beträgt:

$$(1.000.000 - 300.000) * 0,6 + (-300.000) * 0,4 = 300.000$$

Ein Marktforschungsinstitut bietet eine Untersuchung (U) an:

- Wenn aB, zeigt das die U. mit P(UaB|aB) = 90% an
- Wenn kaB, zeigt das die U. mit P(UkaB|kaB) = 90% an

Bsp.: Berechnung des IWs nach dem normativen Ansatz (2/4)

Die Eigenschaften der Untersuchung lassen sich tabellarisch darstellen:

Dann		Untersuchung ergibt		
Wenn		UaB	UkaB	
In der Realität gilt	аВ	0,90	0,10	
	kaB	0,10	0,90	
(zu Bezeichnungen s. Text)				

Bsp.: Berechnung des IWs nach dem normativen Ansatz (3/4)

Die a posteriori-Wahrscheinlichkeit, dass aB vorliegt, wenn dies durch die Untersuchung angezeigt wird, beträgt nach dem Satz von Bayes:

$$P(aB|UaB) = P(UaB|aB) * P(aB) / P(UaB) = 0.9 * 0.6/(0.9 * 0.6 + 0.1 * 0.4) = 0.93$$

(Zur Erinnerung:
$$P(UaB) = P(UaB \cap aB) + P(UaB \cap kaB)$$

= $P(UaB|aB) * P(aB) + P(UaB|kaB) * P(kaB)$
und $P(A|B) = P(A \cap B)/P(B)$

$$P(kaB|UaB) = 1 - P(aB|UaB) = 0.07$$

Tabelle a posteriori-Wahrscheinlichkeiten:

Wenn Dann		Untersuchung ergibt		
		UaB	UkaB	
Realität	аВ	0,930	0,143	
	kaB	0,070	0,857	
(zu Bezeichnungen s. Text)				

Bsp.: Berechnung des IWs nach dem normativen Ansatz (4/4)

- P(UaB) = 0.58
- P(UkaB) = 1 0.58 = 0.42

Wenn das Untersuchungsergebnis positiv:

Erwarteter Gewinn 0.93 * 700.000 + 0.07 * (-300.000) = 630.000.

Wenn das Untersuchungsergebnis negativ: Erwarteter Gewinn 0.

Erwarteter Gewinn bei erfolgter Marktuntersuchung:

0.58 * 630.000 + 0.42 * 0 = 365.400.

Die Differenz zwischen dem Erwartungswert ohne die Information (300.000) und dem Erwartungswert mit der Information (365.400) entspricht dem Wert der Information. Es "lohnt" sich, die Information zu beschaffen, wenn die Untersuchung weniger als 65.400€ kostet.

System

Definition System:

Ein System besteht aus einer Menge von miteinander verknüpften Elementen, die sich insgesamt von ihrer Umgebung abgrenzen lassen.

Abb. 1-3: Ein System und seine Umwelt

Systemklassifikationen

Tab. 1-3: Systemklassifikationen

Modell

Definition Modell:

Ein Modell ist das Ergebnis eines Konstruktionsprozesses, das die Wahrnehmung von Inhalten eines ausgewählten Gegenstands zweckorientiert repräsentiert.

Modellbegriff

Modellklassifikationen

Kriterium	Ausprägung			
Abstraktions- grad	Physisch	Analog		Mathematisch
Zweck	Normativ		Deskriptiv	
Zeit	Statisch		Dynamisch	
Verhalten	Deterministisch		Stochastisch	
Anpassung	Adaptiv		Nicht-adaptiv	

Tab. 1-4: Modellklassifikationen

Abb. 1-4: Organisationsebenen einer Unternehmung

Informationsbedürfnisse der Leitungsebenen

Informationsattribut	Operative Ebene	Taktische Ebene	Strategische Ebene
Entstehung			
Herkunft	Intern		Extern
Berechnung	Einfach		Komplex
Inhalt			
Aktualität	Hoch		Niedrig
Verdichtung	Niedrig		Hoch
Zeitl. Ausrichtung	Vergangenheit	/	Zukunft,
	Gegenwart		Gegenwart
Darstellung			
Genauigkeit	Hoch		Niedrig
Präsentation	Einfach		Aufwendig
Nutzung			
Zweck	Eindeutig		Vage
Häufigkeit	Hoch		Niedrig
Periodizität	Vorbestimmt		Ad hoc

Tab. 1-5: Informationsbedürfnisse der Leitungsebenen

Abb. 1-5: St. Galler Management-Modell [Rüegg-Stürm 2003, S. 89]