Analog Processing of Signals

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Outline

- Sensors for physiological data
- Amplification, linearity, offset
- Concepts of Filtering
- Frequency filtering
- Frequency content of signals
- Conclusions

Transducers for Physiological Signals

- Mechanical measurement
 - Strain gauges and bridge measurement
 - Piezoelectric sensors
 - Electromagnetic sensors
- Electrophysiological measurement
 - Biopotential electrodes
- Displacement or length measurement
 - Camera based measurement
 - Resistive, capacitive, inductive sensors
- Optical measurement
 - Spectral measurement spectrophotometry
- Actuators
 - Electromagnetic actuators
 - Piezoelectric actuators

Measurement System - I

Particle Filtering by Size

Filtered Particle Size Distribution

- Driving forces: P_1-P_2 , and P_1-P_3
- Separation is not perfect, some small particles miss the filter
- Quality of filtering depends on filter pore size accuracy and driving forces
- Filter is described by:
 - Pore size (size threshold)
 - · Small-pass or Large-pass

Combination of filters I – cascading filters

Combination of filters II – adding filters

Summary of Particle-Size Filter

- Size filtering is imperfect, but can be improved by using multiple screens one after the other (cascade)
- Combinations of filters can be used to produce complex size filtering. The basic combinations are:
 - <u>Cascading</u>: this is equivalent to multiplying size distribution function
 - Adding: this is equivalent to adding size distribution function
- Filtering quality depends on accuracy of pore-size and pressure differences
 - Pressure differences can be controlled using fluid pumps

The use of analogies

- Analogies are useful to extend intuition to an unusual or unaccustomed situation
- Analogies are imperfect
- The particle filter analogy has some important limitations
 - The temporal and spatial relation between particles is not preserved during flow
 - In the case of most time signals in physiology, the temporal relation between components of the signal is very important

Electrical Filters – the basic RC filter

Filtered Signal Frequency Distribution

• Cutoff frequency: $f_o = \frac{1}{2\pi RC}$

Cutoff freq is half-power freq, or -3dB freq

- Separation is not perfect, there is a transition region
- Quality of filtering depends on source current, load currents. These depend on source impedance and load impedances
- Quality of filtering can be improved using active components

Summary of Frequency Filtering

- Frequency filtering is imperfect, but can be improved by using multiple filters one after the other (cascade)
- Combinations of filters can be used to produce complex frequency filtering. Basic combinations are:
 - <u>Cascading</u>: this is equivalent to multiplying frequency distribution functions
 - Adding: this is equivalent to adding frequency distribution functions
- Filtering quality depends on accuracy of resistor & capacitor values and source and load impedances
- Using active components (transistors, integrated circuits), the effect of source and load impedances can be greatly reduced

Frequency content of a time-varying signal

- Preface: Any composite fluid (like blood) can be regarded as a mixture of particles of different sizes
- Any composite signal (any general time varying signal) can be regarded as a mixture of pure frequencies
 [Note: Here, "pure frequency" means a signal whose shape doesn't change with differentiation or integration.
 Sines and cosines (sinusoids) are such functions]
- Fourier decomposition is a mathematical process of identifying the component frequencies in a signal

Basic Filter Characteristics

- The basic RC filter is a first order filter (described by a first order differential equation)
- Cascading two filters will result in multiplication of the frequency selectivity. This makes a second order filter.
- Adding two filters in parallel will add the frequency selectivity. This usually results in a 2nd order system.
- The basic filter types are:
 - Low-pass filter
 - High-pass filter
 - Bandpass filter
 - cascade HPF (f_H) and LPF (f_L) , with $f_H < f_L$
 - Bandstop filter
 - add LPF (f_L) and HPF (f_H) , with $f_L < f_H$

What is frequency analysis of signals and systems

- Fourier series: Any periodic signal can be described by a set of sine waves
- Fourier transform: Any arbitrary signal can be described by a continuum of sine waves
- Illustration: simulation from Signals & Systems book

- Freq spectrum=Freq distribution of signal power
- Freq response=Freq distribution of system response

Frequency distribution graphs

- Linear plots linear frequency and linear amplitude
 - Graphs are complex curves
 - Combining graphs is tedious
- Log-Log plots logarithm of frequency and logarithm
 - Graphs can be approximated by a few straight lines
 - Combining graphs is easy can usually be added
 - Log of frequency shows small frequencies with high resolution and high frequencies with large range

More complex filters

- Filters can be combined by cascading or addition to make more complex filters
- Higher order filters
 - Better stopping of unwanted frequencies
 - Transition region between passband and stopband can be designed
 - Butterworth, Bessel, Chebyshev, Elliptic, etc.
- Higher order filters can be unstable producing artificial oscillations

Part II ...

Noise Removal

What is "noise"?

- Contamination by unwanted signals
 - Usually of external origin
 - Could also be of biological origin
- Noise can be periodic or it can be random
 - Electrical mains caveat: SMPS
 - Radio waves, thermal noise

Filtering Noise

Frequency composition of Signal

- Every signal can be described in terms of a set of sinusoids
- Conversely, any signal can be constructed from a suitable set of sinusoids
- This is the Fourier Transform

Fourier Decomposition

Spectrum Analysis

Filtering: 1st and 2nd Order filters

How to select the cutoff freq: The Optimal Filter

The Optimal Filter

- Keep as much of the signal as possible
- Remove as much of the signal as possible
- Decide on a compromise between these two

Other Techniques

- Noise removal:
 - Ensemble Averaging
 - Adaptive filtering
- Signal Decomposition
 - Wavelet transforms