Particle-Based Approximate Inference

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Approximate Inference Methods
- Terminology of particles (Physics)
- Particle methods and PGMs
- Characterization of Particle Methods
- Task for Particle Methods
- Names of Sampling Methods

Approximate Inference Methods

- Variational inference methods
 - Lead to algorithms similar to factor manipulation methods of exact inference
- Particle-based methods
 - Very different class of methods
 - We approximate the joint distribution as a set of instantiations to all or some of the variables
 - Instantiations are often called particles
 - They are designed to provide a good representation of the overall probability distribution

Particles in Physics

- Charged particle beams in phase space
 - 1. Uniform over ellipse
 - 2. Gaussian (86% lie within ellipse

Particles from symmetric 2D Gaussian

Particle-based Methods in PGMs

 Particle-based methods approximate inference by generating multiple samples from the distribution that a graph factorizes

Two characterizations of Particle Methods

1. Particle generation method

- Wide variety, two extremes are
 - 1. Particles from a deterministic process
 - 2. Sample particles from some distribution
 - Many variations within each category

2. Type of particle

- Full particles
 - Assignment to all network variables \(\chi \)
 - Disadvantage: particle occupies only a small part of space
- Collapsed particle
 - Specifies assignment $oldsymbol{w}$ to subset of variables $oldsymbol{W}$
 - Associating with it the conditional distribution $P(\chi \mid W)$ or some summary of it

Task for Particle-based Methods

- Given a distribution $P(\chi)$ we want to estimate the probability of some event Y=y relative to P for some $Y \in \chi$ and $y \in Val(Y)$
- More generally we want to estimate the expectation of some function $f(\xi)$ relative to P

Methods discussed

1. Forward Sampling

- Simplest possible method
- Simply generates samples from original network

2. Likelihood weighting and Importance sampling

- Significantly improved method
- Generates samples closer to posterior distribution

3. Markov chain Monte Carlo

- Sampling process that generates, as it converges, samples arbitrarily close to posterior
- Apply mainly to Bayesian Networks, not Markov networks