chapter 8

The Internet

내용

- 인터넷의 역사
- 도메인 네임 시스템(Domain Name System)과 네임 서버(Name Servers)
- 널리 사용되는 인터넷 프로토콜과 어플리케이션
- IPv6

- 1969년 9월 1일 ARPA(Advanced Research Projects Agency, 미국방성에서 펀딩)에서 탄생
 - 패킷 교환망 연구로 출발
- 첫 이름은 ARPANET(ARPA network)
- UCLA의 컴퓨터 한대가 맨 처음 ARPANET에 연결
- 1969년 말까지 4대의 컴퓨터가 연결
- 1970년 말까지 13대의 컴퓨터가 연결
- 1971년에 16대 1972년에 30+대
- 1973년에 40+ 대, 국제적 연결 (노르웨이, 스웨덴, 영국)

- 1973년 Vinton Cerf와 Robert Kahn이 TCP 개발
- 1975년 ARPANET의 관할이 Defense Communications Agency (DCA)로 이전
- 1978년 TCP가 TCP와 IP로 분할
- 1981년 TCP/IP가 ARPANET 전송 프로토콜의 표준이되여 1982년 통합이 완료됨
- 1983년 DCA가 ARPANET을 두개의 네트워크로 분리 (MILNET, ARPANET) 둘 다 군대 관할

- MILNET과의 분리 이후 ARPANET의 급속한 확장
- 1982년 National Science Foundation (NSF)의 펀딩으로 CSNET과 ARPANET이 연결
- 1984년 NSF에서 5개의 지역 슈퍼컴퓨팅 센터를 여결
 - 1985년 NSF에서 NSFNET라는 이름으로 통합
- 처음 NSFNET의 연결은 56 Kbps 전용선
 - 1987 T1 라인으로 업그레이드

T1(Telephone Set 1 또는 Trunk 1) 다중화 반송시스템, TDM방식 1.544Mbps로 음성 24채널 전송 T2: 6.3Mbps

T3:44.Mbps

- 1990년 군대의 인터넷 관할권 종료
- 1990년대 초 까지는 연구소와 학술기관들만 연결
- 사적 수익용 TCP/IP 데이터 네트워크가 AT&T, MCI, Sprint에서 서비스 되기 시작
- 상업용 데이터 네트워크가 자리를 잡아가자 NSF에서 민영화 추진
- 1994년 민영화, NSF 백본이 1995년 5월 해제, 인터넷이 ISP들에 의해 관리되는 민간 상업 기구가 됨
- 1995년 NSF주도로 vBNS(very high-speed backbone network service) 개시, 이후 민간 이전 (2006년)

ISP: Internet Service Provider

- 한국 인터넷 역사
 - KAIST 전산학과 전길남교수의 주도로 1990년 미국 하와이대학교와 KAIST사이의 전용회선 설치
 - 1990년 말 국내 최초 온라인 게임 설치 LP-MUD
 - HANA/SDN 망으로 전국 인터넷 연결
 - 1992년 8월 운영을 KT로 이관
 - 참조) https://sites.google.com/site/koreainternethistor y/publication/e-bridge

ISP를 통한 연결

내용

- 인터넷의 역사
- 도메인 네임 시스템(Domain Name
 System)과 네임 서버(Name Servers)
- 널리 사용되는 인터넷 프로토콜과 어플리케이션
- IPv6

- 서버 컴퓨터에서 파일, 웹페이지, 동영상 스트리밍등의 컨텐츠를 제공
- IP, DNS, HTTP, and FTP등의 프로토콜이 인터넷에서 데이터를 찾고 가져오는 기능을 제공
- .com, .net, .org, and .kr 같은 인터넷 도메인들이 데이터의 위치와 성격들에 대한 정보를 제공
- DNS를 통해 친숙한 이름으로 된 주소를 IP주소로 변환
 - 예) <u>www.naver.com</u> => 223.130.195.200

- 역사
 - 처음에는 hosts.txt파일에 모든 컴퓨터의 이름과
 IP주소를 저장
 - 지금도 윈도우는 C:\Windows\System32\drivers\etc\hosts라는 파일에 저장, 리눅스는 /etc/hosts
 - 노드가 추가될 때 마다 hosts.txt에 추가 필요
 - Stanford Research Institute의 Network Information
 Centor(NIC)컴퓨터에 등록하면, 다른 컴퓨터들은 이 파일을 다운로드해서 설치.
 - 잦은 hosts.txt의 전송이 ARPANET의 트래픽을 많이 소모, 중복 이름 방지가 문제가 됨, ARPANET의 확장 속도가 너무 빨라 hosts.txt를 관리 하는 것이 점점 어려워 짐

- 역사
 - 중앙 집중식 hosts.txt관리는 1980년대 초 ARPANET의
 약점으로 부각
 - 1983년, Paul Mockapetris와 Jon Postel이 hosts.txt를
 대체하는 분산 데이터베이스를 고안
 - 이 것이 domain name system (DNS)기술로 알려지고
 Request for Comment (RFC) 882에 기술됨.
 - 이후 새로운 기능들이 추가된 RFC들이 나와 구현됨

- 장점
 - DNS의 사용을 통해 컴퓨터 주소(Domain Name)과 IP 주소의 관리가 중앙집중식에서 분산관리 형식으로 이전
 - DNS는 주소 변환 기능을 네트워크로 연결된 DNS서버들에 분산시킴
 - 이를 Name Server라 부름

Name Servers

- DNS servers라고도 부름
- 보통 지역, 구역, 국가 ISP마다 쌍으로 존재
- 요청하면 Domain Name에 해당하는 IP 주소 정보를 제공
- DNS 프로토콜을 통해 서비스 제공
- 전체 DNS 데이터베이스의 일부분을 저장
- 적어도 한 개의 다른 DNS서버와 연동
- 다른 DNS서버의 정보를 캐싱해서 네트워크 트래픽의 감소에 기여

인터넷 도메인(Internet Domains)

- 컴퓨터 주소 (Domain Name) = 컴퓨터 이름 + 도메인
 - <u>www.naver.com</u> => www (컴퓨터 이름), .naver.com(도메인)
- 인터넷의 연결된 컴퓨터들의 소속별 계층 구조 정보 포함.
- 탑 레벨 도메인(Top-level domains (TLDs)) : .com, .net, .org, .gov, .biz, .kr, .uk, .jp 등등
- 수 백만개의 도메인이 존재 TLD들의 아래에 존재
- 도메인은 "."으로 구분된 계층 구조를 갖는다.
- 컴퓨터 주소의 최대 길이는 253자이며 "."으로 구분된 각 라벨의 이름은 최대 63글자 이다.
 - 라벨의 개수는 따로 제한이 없다.

DNS Name Space

DNS Name Space

- 인터넷 도메인
 - 최초의 7 TLD, generic TLDs (gTLDs)라 불림:
 - .com, .edu, .gov, .int, .mil, .net, .org, and .arpa
 - 추가된 TLD들과 국가 코드 TLD들 (country code TLDS (ccTLDs))
 - .aero, .biz, .info, .museum, .name, .pro, and others.
 - .kr, .jp, .uk, .cn ...

Original Top-Level Domains

TABLE 10.1 Original Top-Level Domains

TLD	Original Purpose
.com	Commercial organizations
.edu	U.S. educational organizations
.gov	U.S. government organizations
.int	International organizations
.mil	U.S. military organizations
.net	Network infrastructure organizations
.org	Nonprofit organizations
.arpa	ARPANET hosts
New TLD	Purpose
.aero	Air transport organizations
.biz	Businesses
info	Information
.museum	Museums
.name	Individuals
.pro	Professionals

내용

- 인터넷의 역사
- 도메인 네임 시스템(Domain Name
 System)과 네임 서버(Name Servers)
- 널리 사용되는 인터넷 프로토콜과 어플리케이션
- 인터넷의 진화와 IPv6

인터넷 프로토콜

- 인터넷 프로토콜(Internet Protocols)
 - TCP와 IP는 1970년대에 ARPANET을 통한 효율적인 데이터 전송을 위해 개발된 프로토콜
 - 현재 수많은 프로토콜이 인터넷에 존재한다.
 - Address resolution protocol (ARP)은 IP 주소를 MAC 주소로 변환해 준다.
 - DHCP는 IP 주소와 관련 정보를 클라이언 컴퓨터에 자동적으로 할당한다.
 - DNS는 컴퓨터 이름을 IP 주소로 변환한다.
 - iSCS는 SAN에서 데이터 전송을 제공한다.
 - SAN : Storage Area Network (전용 네트워크로 연결, NAS와는 다르다)
 - LDAP(Lightweight Directory Access Protocol)을 통한 LDAP서버의 정보 검색/삭제/추가기능 제공.
 - HTTP(Hyper Text Transfer Protocol) Web서비스 제공 프로토콜

인터넷 프로토콜 목록

Internet protocol suite

Application layer

BGP · DHCP · DNS · FTP · HTTP · HTTPS ·
IMAP · LDAP · MGCP · MQTT · NNTP · NTP ·
POP · PTP · ONC/RPC · RTP · RTSP · RIP ·
SIP · SMTP · SNMP · SSH · Telnet · TLS/SSL ·
XMPP · more...

Transport layer

TCP · UDP · DCCP · SCTP · RSVP · more...

Internet layer

IP (IPv4 · IPv6) · ICMP · ICMPv6 · ECN · IGMP · IPsec · *more...*

Link layer

ARP · NDP · OSPF · Tunnels (L2TP) · PPP · MAC (Ethernet · Wi-Fi · DSL · ISDN · FDDI)

more...

A . L . E

인터넷 프로토콜

- File Transfer
 - FTP(File Transfer Protocl) 계정 정보를 통한 원격 파일 접근/전송
 - HTTP : Hyper Text문서 전송
 - Hyper Text : 다른 Hyper Text의 주소를 문서에 내장해서 문서끼리 의 간편한 연결이 가능한 문서
- Remote Computing
 - Telnet: 원격 접속 표준, 상대방 컴퓨터에 로그인해서 작업, 지금은 port
 연결 테스트용도
 - Secure Shell (SSH) : Telnet과 같지만 모든 전송데이터를 암호화
- Streaming Media
 - 기존의 데이터 전송 프로토콜들을 사용해서 구현
 - RTP(Real-time Transport Protocol), UDP, RTCP(RTP Control Protocl)
 - RTSP(Real Time Streaming Protocol)를 어플리케이션 레벨의 프로토콜로 사용하여 구현하기도 함. 이때에도 실제 전송은 RTP와 RTCP사용

인터넷 프로토콜

- Email
 - SMTP(Simple Mail Transfer Protocol) : 모든 email의 표준
 - 지금 naver메일, 구글메일, 한메일이 서로 메일을 주고 받을 수 있는 이유
 - POP3, IMAP4: email 서버에서 email을 가져오는 프로토콜
- 메시지 전송 -
 - Extensible Messaging and Presence Protocol (XMPP)과 Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE)이 표준
 - 카톡, 밴드, 텔레그램 등등
 - 다양한 용도
 - 파일전송, 음성 메일, 그룹 스케줄링, 비데오 컨퍼런싱, 화이트보딩, 칼렌더링, 음성/비디오 채팅

내용

- 인터넷의 역사
- 도메인 네임 시스템(Domain Name
 System)과 네임 서버(Name Servers)
- 널리 사용되는 인터넷 프로토콜과 어플리케이션
- 인터넷의 진화와 IPv6

인터넷의 진화

Internet2

- 1997년 미국 대학을 묶는 고속 통신망 사업으로 시작
 - vBNS가 정부기관들의 연결에 집중하면서 대안으로 구상
- 2012년 12월 100G 광케이블로 미국 대학들 연결
- 지금은 조용...

IPv6

- 개요
 - 1995년에 첫 제안, 1998년 표준 제안 지정, 2017년 7월14일 표준 지정
 - vBNS와 Internet2에서 테스트되다 현재 인터넷에도 적용
 - 부가 기능
 - 멀티 캐스팅, 자체 IPv6주소 설정(SLAAC)
 - 이동 통신과 무선 통신 고려
 - hand-over시에도 고유 IP주소 유지
 - 통신 설정 패킷(triangular networking)을 미리 보낼 필요 없음
 - 구글/애플 앱스토어에서 사용을 강제하고 있음
 - 보급에 난항 (특히 대한민국...) : 너무 많이 설치된 구세대 기계/SW

IPv6

- IPv6 주소
 - IPv6의 32비트 주소로 인한 주소 공간 부족 해결
 - 128비트를 8개의 16비트 구간으로 표현
 - 3개의 구간으로 구성
 - global routing prefix bits : 라우팅 정보
 - subnet bits to identify: LAN id
 - interface ID bits : 노드 주소

IPv6

- 표현 방식
 - ":"으로 연결된 8개의 4자리 16진수들로 표현
 - FE80:0000:0000:0000:ABCD:FF32:030C:1234
 - 축약 가능
 - FE80:0:0:0:ABCD:FF32:30C:1234
 - FE80::ABCD:FF32:30C:1234
 - URL표현

http://[2001:db8:4006:812::200e]:8080/path/page.html.