Text as Data

Meeting 2: Text Preprocessing

Petro Tolochko

Text Preprocessing

- Texts are highly dimensional
- When possible, it is nice to reduce this dimensionality
- Ideally, without losing too much information

Text Preprocessing For Unsupervised Learning (Danny & Spirling, 2018)

- Punctuation
- Numbers
- Lowercasing
- Stemming/Lemmatization
- Stop-words
- N-grams
- Removal of words by frequency

Punctuation / Numbers / Lowercasing

- Fairly straighforward
- Often we don't care about punctuation and/or numbers so, might be better to remove them
- We probably do care about the letter case
 - To what extent?
 - Reduction in dimensions might be worth the reduction in accuracy
 - When would letter case be (un)important?

Stemming / Lemmatization

- A stem is the part of the word responsible for lexical meaning
- A stem is invariable part of the word under inflection
- "wait" is a stem of:
 - Waiting
 - Waits
 - Waited
- \bullet A lemma is the base / "original" (dictionary) part of the word
 - $\quad \text{``Went'', ``gone''} \, \rightarrow \, \text{``go''} \\$
- Both are useful for dimension reduction and often produce similar results

Stop Words

- Words that are filtered out before the analysis begins
- Could be any type of words that you do not want in the analysis
- Usually, function words are used as stop words
 - the
 - is
 - that
 - etc.
- Domain-specific words are also often excluded from the analysis
- E.g., "Global Warming" in the corpus of texts about Global Warming

Petro Tolochko Text as Data 6/20

N-grams

- So far, we've only looked at "unigrams" individual words
- Texts can be broken down into any n-gram sequences
- "I love ice-cream and bananas"
 - "I" "love" "ice-cream" "and" "bananas"
 - "I love" "love ice-cream" "ice-cream and" "and bananas"
 - 3-grams?

Removal of terms by frequency

- Further removal of dimensionality can be achieved by removing either very frequent or very infrequent terms
- If they are very frequent, they probably don't carry much discriminating information for our analysis (think stopwords)
- If they are very infrequent, they probably carry a lot of discriminating information, but very low statistical power

Text Preprocessing For Unsupervised Learning

Figure 5. Regression results depicting the effects of each of the seven preprocessing steps on the preText score for that preprocessing combination.

TF-IDF

- We can do more than just count words
- We can transform these counts
- Use some sort of a weight in order to transform
- Term frequency inverse document frequency is one form of weighting

TF-IDF: Term Frequency – Inverse Document Frequency

- Motivation: Raw counts (bag-of-words) overemphasize frequent words (e.g., "the", "and").
- Idea:
 - **TF** (term frequency): How often a term appears in a document.
 - **IDF** (inverse document frequency): Downweight terms that appear in many documents.
- Formula:

$$\mathsf{TF-IDF}(t,d) = \underbrace{\frac{\mathsf{count}(t,d)}{\sum_{t'}\mathsf{count}(t',d)}}_{\mathsf{TF: \ term \ frequency \ in \ document \ } d \\ \mathsf{DF: \ inverse \ document \ } \underbrace{\frac{N}{\mathsf{df}(t)}}_{\mathsf{IDF: \ inverse \ document \ frequency}}$$

- \bullet N = total number of documents.
- df(t) = number of documents containing term t.

Petro Tolochko Text as Data 12 / 20

• Exactly

- Exactly
- Introduced in 1972 by a computer scientist (Spärck Jones, 1972)

Petro Tolochko Text as Data 14 / 20

- Exactly
- Introduced in 1972 by a computer scientist (Spärck Jones, 1972)
- No theoretical justification

- Exactly
- Introduced in 1972 by a computer scientist (Spärck Jones, 1972)
- No theoretical justification
- Apart from "it seems to work..."

- Exactly
- Introduced in 1972 by a computer scientist (Spärck Jones, 1972)
- No theoretical justification
- Apart from "it seems to work..."
- And sometimes it does

Odds

- Probability: $p = \frac{\# \text{ successes}}{\# \text{ trials}}$
- **Odds:** ratio of probability of success to probability of failure

$$\mathsf{Odds} = \frac{p}{1-p}$$

If p = 0.8 (80% chance), then

$$\mathsf{Odds} = \frac{0.8}{0.2} = 4 \quad \text{(4-to-1 in favor)}$$

Text as Data 15/20

Log Odds

- Log odds are the natural logarithm of odds.
- Maps probabilities (0,1) to the full real line $(-\infty, +\infty)$.

$$\mathsf{Logit}(p) = \log\left(\frac{p}{1-p}\right)$$

If p = 0.8, then

$$\log\left(\frac{0.8}{0.2}\right) = \log(4) \approx 1.39$$

Petro Tolochko Text as Data 16/20

Logit Function

Comparing Two Groups

- Suppose we have two groups (e.g., John vs. Mary).
- Each group has its own probability of using a word.
- We compare their log odds.

$$\mathsf{Log}\;\mathsf{Odds}\;\mathsf{Ratio} = \log\left(\frac{p_1}{1-p_1}\right) - \log\left(\frac{p_2}{1-p_2}\right)$$

Worked Example: "banana"

- John says "banana" in 7 out of 12 words: $p_1 = 7/12 \approx 0.58$.
- Mary says "banana" in 1 out of 16 words: $p_2 = 1/16 = 0.0625$.

$$\mathsf{Log}\;\mathsf{Odds}\;\mathsf{Ratio} = \log\left(\frac{0.58}{0.42}\right) - \log\left(\frac{0.0625}{0.9375}\right)$$

$$= \log(1.38) - \log(0.0667) \approx 0.32 - (-2.71) \approx 3.03$$

Positive log-odds ratio \Rightarrow "banana" is more associated with John.

19 / 20

Why Use Log Odds?

- Probabilities are bounded between 0 and 1, hard to compare directly.
- Odds ratios can be very skewed.
- Log odds:
 - Symmetric around 0.
 - Interpretable: sign = direction, magnitude = strength.
 - Used in logistic regression and text analysis (e.g., Monroe et al. 2008).