To Do

Read Sections 4.6 - 4.7.

Do End-of-Chapter Problems 1-17 in preparation for Tutorial Test 2.

Today's Lecture

- (1) Confidence Interval for Gaussian mean μ when standard deviation σ is unknown
- (2) Handspan Example
- (3) Sample Size Calculation Gaussian Data

Gaussian data with unknown mean μ and unknown standard deviation σ

Suppose $Y_1, Y_2, ..., Y_n$ is a random sample from a $G(\mu, \sigma)$ distribution where $E(Y_i) = \mu$ is unknown and $sd(Y_i) = \sigma$ is also unknown.

A point estimator for μ is $\widetilde{\mu} = \overline{Y}$ (the maximum likelihood estimator).

Point Estimator for σ^2

A point estimator for σ^2 is

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

(not the maximum likelihood estimate).

We prefer S^2 because $E(S^2) = \sigma^2$. See Course Notes page 132.

Theorem

Suppose $Y_1, Y_2, ..., Y_n$ is a random sample from a $G(\mu, \sigma)$ distribution.

Then

$$\frac{\overline{Y} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(t distribution with degrees of freedom (parameter) equal to n-1).

t(2) and G(0,1)

t(30) (blue) and G(0,1) (black)

Pivotal Quantity

The random variable $\frac{\overline{Y} - \mu}{S / \sqrt{n}}$

is a function of the data $Y_1, Y_2, ..., Y_n$ and the unknown parameter μ .

Since
$$\frac{\overline{Y} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

the distribution of $\frac{\overline{Y} - \mu}{C / \sqrt{n}}$ is completely

known.

We use this pivotal quantity to construct confidence intervals for μ .

100p% Confidence Interval for μ , when σ is unknown

Since the t distribution is symmetric about zero, we find the value a from t tables such that $P(-a \le T \le a) = p$ or equivalently $P(T \le a) = (1+p)/2$ where $T \sim t(n-1)$.

Since

$$\frac{\overline{Y} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

therefore

$$P\left(-a \le \frac{\overline{Y} - \mu}{S / \sqrt{n}} \le a\right) = p$$

100p% Confidence Interval for μ , when σ is unknown

Since

$$P\left(-a \le \frac{\overline{Y} - \mu}{S / \sqrt{n}} \le a\right) = p$$

is equivalent to

$$P\left(\overline{Y} - a\frac{S}{\sqrt{n}} \le \mu \le \overline{Y} + a\frac{S}{\sqrt{n}}\right) = p$$

therefore

$$\left[\overline{y} - a \frac{s}{\sqrt{n}}, \overline{y} + a \frac{s}{\sqrt{n}}\right]$$

is a 100p% confidence interval for μ

100p% Confidence Interval for μ

When σ is known a 100p% confidence interval is

$$\overline{y} \pm a \frac{\sigma}{\sqrt{n}}$$

where $P(Z \le a) = (1+p)/2$ and $Z \sim G(0,1)$.

When σ is unknown a 100p% confidence interval is

$$\overline{y} \pm a \frac{s}{\sqrt{n}}$$

where $P(T \le a) = (1+p)/2$ and $T \sim t(n-1)$.

Useful Result

If p = 0.9 then (1 + p)/2 = 0.95 so use the column labelled 0.95 for a 90% confidence interval.

If p = 0.95 then (1 + p)/2 = 0.975 so use the column labelled 0.975 for a 95% confidence interval.

If p = 0.99 then (1+p)/2 = 0.995 so use the column labelled 0.995 for a 99% confidence interval.

Hand and Foot Measurements

Foot measurements WITHOUT shoe!

Exercise

Construct a PPDAC for this experiment.

Numerical Summaries for Female Handspans

sample mean = 19.37 cm sample standard deviation = 1.43 cm sample median = 19.0 cm sample skewness = -0.022 sample kurtosis = 2.58

Relative Frequency Histogram for Female Handspans

Qqplot for Female Handspans

Model - Females

It seems reasonable to assume the model

$$Y_i \sim G(\mu, \sigma), i=1,2,...,64$$

where Y_i = handspan of i'th female.

We wish to estimate the parameter μ , the mean hand span for females registered in STAT 231 in Fall 2016.

Confidence Interval for Mean Handspan for Females

A point estimate for μ is $\hat{\mu} = \overline{y} = 19.3656$.

An interval estimate is given by a 95% confidence interval.

Using R, we obtain:

$$P(T \le 1.9983) = (1+0.95)/2 = 0.975$$
 for $T \sim t(63)$.

A 95% confidence interval for μ is

$$\overline{y} \pm 1.9983s / \sqrt{64} = 19.3656 \pm 1.9983(1.3655) / \sqrt{64}$$

= 19.3656 ± 0.3655

or [19.00,19.73].

Numerical Summaries for Male Handspans

sample mean = 21.50 cm sample standard deviation = 1.85 cm sample median = 21.2 cm sample skewness = 0.37 sample kurtosis = 2.91

Relative Frequency Histogram for Male Handspans

Qqplot for Male Handspans

Model - Males

It seems reasonable to assume the model

$$X_i \sim G(\mu_m, \sigma), i=1,2,...,78$$

where X_i = handspan of i'th male.

We wish to estimate the parameter μ_m , the mean hand span for males registered in STAT 231 in Fall 2016.

Confidence Interval for Mean Handspan for Males

A point estimate for $\mu_{\it m}$, is $\hat{\mu}_{\it m}=\overline{x}=21.5026$.

An interval estimate is given by a 95% confidence interval.

Using R, we obtain:

 $P(T \le 1.9913) = (1+0.95)/2 = 0.975$ for $T \sim t(77)$.

A 95% confidence interval for μ_m is

$$\overline{x} \pm 1.9913s / \sqrt{78} = 21.5026 \pm 1.9913(1.8523) / \sqrt{78}$$

= 21.5026 ± 0.4176

or [21.08,21.92].

Boxplots for Handspans

CBC Documentary

Right hands, wrong piano: a game changer for small-handed pianists

http://www.cbc.ca/radio/docproject/right-hands-wrong-piano-a-game-changer-for-small-handed-pianists-1.3819321

Sample Size Calculation: Gaussian Data

If we know the approximate value of σ (possibly from previous experiments), we can determine the sample size n needed for a future experiment to ensure a 95% confidence interval has a given width.

When σ is known a 95% confidence for μ is given by

$$\overline{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

with width
$$2(1.96)\frac{\sigma}{\sqrt{n}}$$

Sample Size Calculation: Gaussian Data

If we want the confidence interval

$$\overline{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

to be of the form $\overline{y} \pm d$ then we should choose n such that

$$1.96 \frac{\sigma}{\sqrt{n}} \approx d \text{ or } n \approx \left(\frac{1.96\sigma}{d}\right)^2$$

In practice, since we usually don't know σ , we would choose *n* larger than $(1.96\sigma/d)^2$.