EECS 127/227AT Optimization Models in Engineering Spring 2020

Discussion 6

1. Simple constrained optimization problem with duality

Consider the optimization problem

$$\min_{x_1, x_2 \in \mathbb{R}} f(x_1, x_2)$$
subject to $2x_1 + x_2 \ge 1$

$$x_1 + 3x_2 \ge 1$$

$$x_1 > 0, \ x_2 > 0$$

(a) Express the Lagragian of the problem $\mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$ Solution:

$$\mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = f(x_1, x_2) + \lambda_1(-2x_1 - x_2 + 1) + \lambda_2(1 - x_1 - 3x_2) - \lambda_3x_1 - \lambda_4x_2$$

(b) Show that \mathcal{L} is concave in $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$.

Solution: $-\mathcal{L}$ is convex in $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ as a affine function of $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$. So \mathcal{L} is concave in $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$

(c) Express the dual function of the problem, and show that it is concave.

Solution: $g(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = \min_{x_1, x_2} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$. We can show that by showing that -g is convex.

$$-g(\vec{\lambda}) = -\min_{x_1, x_2} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$$
$$= \max_{x_1, x_2} -\mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$$

When (x_1, x_2) is fixed, the function $-\mathcal{L}$ is linear in $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$, therefore convex. Because the max of convex functions is convex, -g is convex. Therefore g is concave.

(d) Assume f is convex. Show that \mathcal{L} is convex in (x_1, x_2) .

Solution: \mathcal{L} is convex in (x_1, x_2) because it is the sum of convex functions.

(e) Denoting $\mathcal{X} = \{(x_1, x_2) \mid 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0\}$, show that

$$\max_{\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = \begin{cases} f(x_1, x_2) & \text{if } (x_1, x_2) \in \mathcal{X} \\ +\infty & \text{otherwise} \end{cases}$$

Solution: Let's just do it for λ_4 :

$$\max_{\lambda_4 \geq 0} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = \max_{\lambda_4 \geq 0} (f(x_1, x_2) + \lambda_1(-2x_1 - x_2 + 1) + \lambda_2(1 - x_1 - 3x_2) - \lambda_3 x_1 - \lambda_4 x_2)$$

$$= f(x_1, x_2) + \lambda_1(-2x_1 - x_2 + 1) + \lambda_2(1 - x_1 - 3x_2) - \lambda_3 x_1 + \max_{\lambda_4 \geq 0} -\lambda_4 x_2$$

$$\max_{\lambda_4 \geq 0} -\lambda_4 x_2 = \begin{cases} 0 & \text{if } x_2 \geq 0 \\ +\infty & \text{otherwise} \end{cases}$$

One can show the same results for λ_1, λ_2 and λ_3 , resulting in:

$$\max_{\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = \begin{cases} f(x_1, x_2) & \text{if } (x_1, x_2) \in \mathcal{X} \\ +\infty & \text{otherwise} \end{cases}$$

(f) Conclude that $\min_{(x_1,x_2)\in\mathcal{X}} \max_{\lambda_1\geq 0, \lambda_2\geq 0, \lambda_3\geq 0, \lambda_4\geq 0} \mathcal{L}(x_1,x_2,\lambda_1,\lambda_2,\lambda_3,\lambda_4) = \min_{(x_1,x_2)\in\mathcal{X}} f(x_1,x_2)$ Solution:

$$\min_{x_1, x_2} \max_{\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = \min_{x_1, x_2} \begin{cases} f(x_1, x_2) & \text{if } (x_1, x_2) \in \mathcal{X} \\ +\infty & \text{otherwise} \end{cases}$$

$$= \min_{(x_1, x_2) \in \mathcal{X}} f(x_1, x_2)$$

(g) Assuming f is convex, formulate the first order condition on \mathcal{L} as a function of ∇f and $\lambda_1, \lambda_2, \lambda_3$ and λ_4 to solve:

$$\min_{x_1, x_2} \mathcal{L}(x_1, x_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$$

Solution:

$$\nabla_{x_1, x_2} \mathcal{L}(x_1^*, x_2^*, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = 0$$

$$= \nabla_{x_1, x_2} f(x_1^*, x_2^*) + \begin{pmatrix} -2\lambda_1 - \lambda_2 - \lambda_3 \\ -\lambda_1 - 3\lambda_2 - \lambda_4 \end{pmatrix}$$

2. Lagrangian Dual of a QP

Consider the general form of a convex quadratic program, with $Q \succ 0$:

$$\min_{\vec{x}} \ \frac{1}{2} \vec{x}^{\top} Q \vec{x}$$

s.t. $A \vec{x} \leq \vec{b}$

(a) Write the Lagrangian function $\mathcal{L}(\vec{x}, \vec{\lambda})$.

Solution:

$$\mathcal{L}(\vec{x}, \vec{\lambda}) = \frac{1}{2} \vec{x}^{\top} Q \vec{x} + \vec{\lambda}^{\top} (A \vec{x} - \vec{b})$$

(b) Write the Lagrangian dual function, $g(\vec{\lambda})$.

Solution:

$$g(\vec{\lambda}) = \inf_{\vec{x}} \ \mathcal{L}(\vec{x}, \vec{\lambda})$$

We can find this infimum by setting $\nabla_{\vec{x}} \mathcal{L}(\vec{x}^*, \vec{\lambda}) = 0$:

$$Q\vec{x}^* + A^{\top}\vec{\lambda} = 0 \implies \vec{x}^* = -Q^{-1}A^{\top}\vec{\lambda}$$

Substituting, we get

$$\begin{split} g(\vec{\lambda}) &= \mathcal{L}(\vec{x}^*, \vec{\lambda}) \\ &= \frac{1}{2} \vec{\lambda}^\top A Q^{-\top} A^\top \vec{\lambda} - \vec{\lambda}^\top A Q^{-1} A^\top \vec{\lambda} - \vec{\lambda}^\top \vec{b} \\ &= -\frac{1}{2} \vec{\lambda}^\top A Q^{-1} A^\top \vec{\lambda} - \vec{\lambda}^\top \vec{b} \end{split}$$

(c) Show that the Lagrangian dual problem is convex by writing it in standard QP form. Is the Lagrangian dual problem convex in general?

Solution: The Lagrangian dual problem writes

$$\max_{\vec{\lambda} \geq 0} \ g(\vec{\lambda}) = \max_{\vec{\lambda} \geq 0} \ -\frac{1}{2} \vec{\lambda}^{\top} A Q^{-1} A^{\top} \vec{\lambda} - \vec{\lambda}^{\top} \vec{b},$$

the maximization of a concave function of $\vec{\lambda}$ over the convex region given by the non-negative orthant $\vec{\lambda} \geq 0$. The dual problem is therefore convex.

While in this problem, the primal problem was convex, it turns out that the Lagrangian dual problem is a convex problem even when the primal is not. To see this, examine its general form:

$$\max_{\vec{\lambda} \ge 0} \min_{\vec{x}} \mathcal{L}(\vec{x}, \vec{\lambda}) = \max_{\vec{\lambda} \ge 0} \min_{\vec{x}} \left[f_0(\vec{x}) + \sum_{i=1}^n \lambda_i f_i(\vec{x}) \right]$$

This represents the pointwise minimum of affine functions of $\vec{\lambda}$, which we know to be concave. The resulting maximization problem of a concave objective in $\vec{\lambda}$ over the convex region $\vec{\lambda} \geq 0$ is then a convex optimization problem!