

Current Transducer LA 55-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 R_{M}

 I_{\circ}

Electrical data I_{PN} Primary nominal r.m.s. current Primary current, measuring range

Measuring resistance @

 $f l_{_{\rm C}}$ Current consumption $f V_{_{\rm d}}$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn

Accuracy - Dynamic performance data

X	Accuracy @ I _{PN} , T _A = 25°C	@ ± 15 V (± 5 %)	± 0.65	%
		@ ± 12 15 V (± 5 %)	± 0.90	%
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.15	%
			Typ Max	

@ ± 70 A _{max}

-0	от о	
I _{OM}	Residual current 3 @ $I_p = 0$, after a	n overload of 3 x I _{PN}
I _{OT}	Thermal drift of I	0°C + 70°C
01	Ğ	- 25°C + 85°C
t _{ra}	Reaction time @ 10 % of I _{P max}	
t,	Response time @ 90 % of I _{P max}	

Offset current @ $I_p = 0$, $T_{\Delta} = 25$ °C

• _r	Tresponse time & 30 /6 or Ipm			
di/dt	di/dt accurately followed			
f	Frequency bandwidth (- 1 dB)			

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	80	Ω
Ü		$T_A = 85^{\circ}C$	85	Ω
m	Mass		18	g
	Standards 4)		EN 50178	

Notes : 1) Measuring range limited to ± 60 A max

²⁾ Measuring range limited to \pm 55 A $_{max}$

3) Result of the coercive field of the magnetic circuit

4) A list of corresponding tests is available

 $I_{PN} = 50 A$

Features

Α

Ω

Ω

Ω

mΑ

kV

mΑ

mΑ

mΑ

mΑ

ns

μs

A/us

kHz

50

 $T_{.} = 70^{\circ}C$

10 100

50

160

90

50

2.5

± 0.1

± 0.1

< 500

> 200

DC .. 200

< 1

1:1000

± 12 .. 15

10

50

50

 $0.. \pm 70$

 $\mathbf{T}_{\Delta} = 85^{\circ}\mathrm{C}$

60¹⁾ 60¹⁾

135 155

135²⁾ 135²⁾

 $10(@ \pm 15 V) + I_s mA$

 ± 0.2

 ± 0.3

 ± 0.5

 ± 0.6

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980706/8

Dimensions LA 55-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.