Le but de cet exerice est l'étude de la suite (a_n) définie par $a_1=1$ et $\forall n\in\mathbb{N}^*, a_{n+1}=\frac{a_n(1+a_n)}{1+2a_n}$.

- 1. Etude de la limite de $(a_n)_{n>1}$.
 - (a) Calculer a_2 et a_3 .
 - (b) Etudier la fonction f définie par $f(x) = \frac{x(x+1)}{1+2x}$
 - (c) Déterminer l'image directe de]0,1[par f.
 - (d) Démontrer que, $\forall n \geq 2$, on a $0 < a_n < 1$.
 - (e) Montrer que la suite $(a_n)_{n\geq 1}$ est décroissante.
 - (f) Rédoudre l'équation f(x) = x sur [0, 1].
 - (g) En déduire la limite de $(a_n)_{n\geq 1}$.
- 2. Un résultat intermédiaire.

Soit $(u_n)_{n\geq 1}$ une suite croissante, admettant une limite ℓ en $+\infty$ et $(C_n)_{n\geq 1}$ définie par

$$C_n = \frac{1}{n} \sum_{k=1}^n u_k$$

- (a) Montrer que pour tout $n \in \mathbb{N}^*$, $C_n \leq u_n$.
- (b) Montrer que pour $(C_n)_{n\geq 1}$ est croissante.
- (c) Montrer que pour tout $n \in \mathbb{N}^*$, $2C_{2n} C_n \ge u_{n+1}$.
- (d) En déduire que $(C_n)_{n\geq 1}$ converge et donner la valeur de sa la limite en fonction de celle de $(u_n)_{n\geq 1}$.
- 3. Etude d'un équivalent de $(a_n)_{n\geq 1}$.
 - (a) Montrer que $\frac{1}{a_{n+1}} \frac{1}{a_n} = \frac{1}{1+a_n}$.
 - (b) On pose $u_n = \frac{1}{a_{n+1}} \frac{1}{a_n}$. Déterminer la limite de $(u_n)_{n \ge 1}$.
 - (c) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (d) En posant $C_n = \frac{1}{n} \sum_{k=1}^n u_k$, exprimer C_n en fonction de a_{n+1} et de a_1 .
 - (e) Conclure à l'aide de la question 2.e que $a_n \underset{+\infty}{\sim} \frac{1}{n}$.