Lab12-Approximation Algorithm II

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2018.

- * Name: Hongyi Guo Student ID: 516030910306 Email: guohongyi@sjtu.edu.cn
- 1. Let us consider the special case of the Maximum Cut problem in which the required partition of the node set must have the same cardinality. Define a polynomial-time local search algorithm for this problem and evaluate its performance ratio.

Solution. First, we divide V into two arbitrary partition S,T with the same cardinality. Then for each pair of u, v where $u \in S$, $v \in T$, we consider swapping them. We denote the number of vertices that x is adjacent to in S by x_S and that in T by x_T . Thus, if $u_T + v_S < u_S + v_T$, we should put u into T and put v into S and get a larger cut. We repeat this procedure until we can't find any pair of u, v that can be swapped.

For each time we repeat the procedure, the cut must be increased by at least 1. The maximum cut is at most |E|, so there are at most |E| iterations. Our algorithm is polynomial.

When the algorithm stops, $\forall u \in S, \forall v \in T, u_T + v_S \geq u_S + v_T$.

So,
$$\sum u_T + \sum v_S \ge \sum u_S + \sum v_T$$
. Note that $\sum u_T = \sum v_S$.

Thus,
$$\sum u_T \ge (\sum u_S + \sum v_T)/2 = |E| - \sum u_T$$
.

Then, our $cut = \sum u_T \ge |E|/2 \ge maximum \ cut/2$. The performance ratio is 2.

- 2. Minimum Weighted Vertex Cover: Consider the weighted version of the Minimum Vertex Cover problem in which a non-negative weight c_i is associated with each vertex v_i and we look for a vertex cover having minimum total weight.
 - (a) Given a weighted graph G = (V, E) with a non-negative weight c_i associated with each vertex v_i , please formulate the Minimum Weighted Vertex Cover problem as an integer linear program.

Solution.

min
$$\sum_{i=1}^{|V|} x_i c_i$$
subject to
$$x_i = \{0, 1\},$$

$$\forall (v_i, v_i) \in E, x_i + x_i \ge 1.$$

(b) Prove that the following algorithm finds a feasible solution of the Minimum Weighted Vertex Cover problem with value $m_{LP}(G)$ such that $m_{LP}(G)/m^*(G) \leq 2$.

Algorithm 1: Rounding Weighted Vertex Cover

Input: Graph G = (V, E) with non-negative vertex weights;

Output: Vertex cover V' of G;

- 1 Let ILP_{VC} be the integer linear programming formulation of the problem;
- **2** Let LP_{VC} be the problem obtained from ILP_{VC} by LP-relaxation;
- **3** Let $x^*(G)$ be the optimal solution for LP_{VC} ;
- 4 $V' \leftarrow \{v_i \mid x_i^*(G) \geq 0.5\};$
- 5 return V';

Proof. In optimal solution for LP_{VC} , for each edge (v_i, v_j) , at least one of $x_i > 0.5$ and $x_j > 0.5$ should hold. Otherwise, $x_i + x_j > 1$ is impossible. So this algorithm provides a feasible solution.

For each vertex $v_i \in E$, x_i is increased by a factor of at most 2 because we only round those $x_i^*(G) \ge 0.5$ to 1. So $m_{LP}(G)/m^*(G) \le 2$.