Transformations Applications

YOUR NAME

25 June, 2020

Exercises

- 1. Let X be a random variable and let g be a function. By this point, it should be clear that $\mathrm{E}[g(X)]$ is not necessarily equal to $g(\mathrm{E}[X])$. Give one example (excluding examples from our notes) of X and g where $\mathrm{E}[g(X)] \neq g(\mathrm{E}[X])$. What are $\mathrm{E}[g(X)]$ and $g(\mathrm{E}[X])$? Use R to find $\mathrm{E}[g(X)]$.
- 2. (From Pruim 2011, Section 2.5) Let $X \sim \mathsf{Binom}(n,\pi)$. What is the pmf for X+3? Make sure you specify the domain of Y. [Note, we have used p for the probability of success in a binomial distribution. In the Pruim text, π was used.]
- 3. Let $X \sim \mathsf{Expon}(\lambda)$. Let $Y = X^2$. Find the pdf of Y.
- 4. ADVANCED: In exercise 3, you found the pdf of $Y=X^2$ when $X\sim \mathsf{Expon}(\lambda)$. Rearrange the pdf to show that $Y\sim \mathsf{Weibull}$ and find the parameters of that distribution.