Corrigé - Colle 9 (Sujet 1)

BCPST1B Année 2021-2022

30 novembre 2021

Exercice 1. Calculer les intégrales suivantes :

$$1. \int_1^e \frac{\ln(x)}{x} \, dx.$$

3.
$$\int_0^{\frac{\pi}{2}} x^2 \cos(x) dx$$
.

2.
$$\int_{2}^{3} \frac{x+2}{x+1} dx$$
.

4.
$$\int_{2}^{3} \ln(x^2 - 1) dx$$
.

Solution de l'exercice 1. 1. On remarque qu'en posant $u(x) = \ln(x)$, on a $u'(x) = \frac{1}{x}$, de sorte que f(x) = u'(x) u(x) et donc

$$\int_{1}^{e} \frac{\ln(x)}{x} dx = \left[\frac{1}{2} \ln(x)^{2}\right]_{1}^{e} = \frac{1}{2}.$$

2. On a

$$\int_{2}^{3} \frac{x+2}{x+1} dx = \int_{2}^{3} 1 + \frac{1}{x+1} dx = \left[x + \ln(|x+1|)\right]_{2}^{3} = 3 + \ln(4) - (2 + \ln(3)) = 1 + \ln\left(\frac{4}{3}\right).$$

3. Dans le cas où, comme ici, intervient une fonction polynôme, on fait en général des i.p.p. (intégrations par parties) successives, en dérivant à chaque étape la fonction polynôme qui intervient, jusqu'à « annulation » de la partie polynomiale dans l'expression considérée. Ainsi

$$\int_0^{\frac{\pi}{2}} x^2 \cos(x) \, dx = \int_0^{\frac{\pi}{2}} u(x) \, v'(x) \, dx \quad \text{où} \quad \begin{cases} u(x) = x^2 \,, \, \text{donc } u'(x) = 2 \, x \\ v(x) = \sin(x) \,, \, \text{donc } v'(x) = \cos(x) \end{cases}$$
$$= \left[x^2 \sin(x) \right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} x \sin(x) \, dx.$$

On refait une i.p.p. pour calculer la dernière primitive :

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx = \int_0^{\frac{\pi}{2}} u(x) v'(x) dx \quad \text{où} \quad \begin{cases} u(x) = x, \text{ donc } u'(x) = 1\\ v(x) = -\cos(x), \text{ donc } v'(x) = \sin(x) \end{cases}$$
$$= [-x \cos(x)]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) dx.$$

Finalement,

$$\int_0^{\frac{\pi}{2}} x^2 \cos(x) \, dx = \left[x^2 \sin(x) \right]_0^{\frac{\pi}{2}} - 2 \left[-x \cos(x) \right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} \cos(x) \, dx = \frac{\pi^2}{4} - 2.$$

4. On voit la fonction g comme le produit de la fonction g et de la fonction constante égale à 1.

$$\int_{2}^{3} \ln(x^{2} - 1) dx = \int_{2}^{3} u(x)v'(x) dx \qquad \text{avec } u(x) = \ln(x^{2} - 1), v(x) = x$$
$$= \left[x \ln(x^{2} - 1) \right]_{2}^{3} - \int_{2}^{3} x \frac{2x}{x^{2} - 1} dx$$

Puis on écrit

$$\int_{2}^{3} \frac{x^{2}}{x^{2} - 1} dx = \int_{2}^{3} \frac{x^{2} - 1 + 1}{x^{2} - 1} dx = \int_{2}^{3} \left(1 + \frac{1}{x^{2} - 1} \right) dx$$
$$= 1 + \frac{1}{2} \int_{2}^{3} \left(\frac{1}{x - 1} - \frac{1}{1 + x} \right) dx = 1 + \frac{1}{2} \left[\ln(x - 1) - \ln(x + 1) \right]_{2}^{3}$$

pour conclure que

$$\int_{2}^{3} \ln(x^{2}-1) dx = 3\ln(8) - 2\ln(3) - 2 - (\ln(2) - \ln(4) + \ln(3)) = 3\ln(8) + \ln(4) - 3\ln(3) - \ln(2) - 2$$

Exercice 2. On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = u_n^2$ pour tout $n \in \mathbb{N}$.

- 1. Écrire un programme Python renvoyant la liste des valeurs de u_n pour $n \in \{0, ..., N\}$.
- 2. Étant donné un nombre M, écrire un programme Python renvoyant le premier entier n tel que $u_n > M$.

Solution de l'exercice 2. 1. On a

Algorithme 1 : Calcul de u_n

Entrées : Un entier n

Sorties: u_n .

- $u = u_0$;
- **2** L = [];
- 3 pour k de 0 \grave{a} n faire
- 4 | $u = u^2$;
- $b \qquad L = L + u$
- 6 fin
- 7 retourner u
 - 2. On a

Algorithme 2 : Premier rang pour lequel u_n dépasse M

Entrées : Un nombre M

Sorties : n le premier rang tel que $u_n > M$.

 $u = u_0$;

n = 0;

3 tant que $u \leqslant M$ faire

4 | $u = u^2$;

n = n + 1;

6 fin

7 retourner n

Exercice 3. Trouver les entiers $n \in \mathbb{N}$ tels que $(1+i\sqrt{3})^n$ soit un nombre réel positif.

Solution de l'exercice 3. On commence par écrire $1+i\sqrt{3}$ sous forme exponentielle : $1+i\sqrt{3}=2e^{\frac{i\pi}{3}}$. En prenant la puissance n-ième, on obtient $(1+i\sqrt{3})^n=2^ne^{\frac{in\pi}{3}}$. Ceci est un réel positif si et seulement si $\sin\left(\frac{n\pi}{3}\right)=0$ et $\cos\left(\frac{n\pi}{3}\right)\geqslant 0$. Or, $\sin\left(\frac{n\pi}{3}\right)=0$ si et seulement si $n=3k,\ k\in\mathbb{Z}$. Mais, pour ces valeurs de n, on a $\cos\left(\frac{n\pi}{3}\right)=\cos(k\pi)$, et ceci est positif si et seulement si k est pair. Ainsi, les entiers qui conviennent sont les multiples de 6.

Exercice 4. Calculer

$$\int_0^3 \frac{\sqrt{x}}{x+1} \, dx.$$

Solution de l'exercice 4. On procède au changement de variable $t = \sqrt{x}$. Alors, $dt = \frac{1}{2\sqrt{x}}dx$ et $x = t^2$. Ainsi,

$$\int_0^3 \frac{\sqrt{x}}{x+1} \, dx = \int_0^{\sqrt{3}} \frac{1}{t^2+1} \, 2dt = 2[\arctan(t)]_0^{\sqrt{3}} = 2(\arctan(\sqrt{3}) - \arctan(0)) = \frac{2\pi}{3}.$$

Exercice 5. Soient $a, b \in]0, \pi[$. Écrire sous forme exponentielle le nombre complexe $z = \frac{1+e^{ia}}{1+e^{ib}}$

Solution de l'exercice 5. On a

$$z = \frac{\left(e^{-\frac{ia}{2}} + e^{\frac{ia}{2}}\right)e^{\frac{ia}{2}}}{\left(e^{-\frac{ib}{2}} + e^{\frac{ib}{2}}\right)e^{\frac{ib}{2}}} = \frac{\cos\left(\frac{a}{2}\right)e^{\frac{ia}{2}}}{\cos\left(\frac{b}{2}\right)e^{\frac{ib}{2}}} = \frac{\cos\left(\frac{a}{2}\right)}{\cos\left(\frac{b}{2}\right)}e^{\frac{i(a-b)}{2}}.$$

De plus, $\cos\left(\frac{a}{2}\right) > 0$ et $\cos\left(\frac{b}{2}\right) > 0$ car $a, b \in]0, \pi[$ et $-\frac{\pi}{2} < \frac{a-b}{2} < \frac{\pi}{2}$ et on a donc bien obtenu l'écriture trigonométrique du complexe.