Chapter 1

m.s. for measure space

mrb. for measurable

t.v.s. for a topological vector space

1.1 Topological Vector space

Definition 1.1

A vector space X is said to be a normed space if to every $x \in X$ there is associated a nonnegative real number ||x|| such that

a. $||x + y|| \le ||x|| + ||y||, x, y \in X$

b. $||\alpha x|| = |\alpha|||x||$ if $x \in X$ and α is scalar

c. ||x|| > 0 if $x \neq 0$.

A Banach space is a complete normed space.

Definition 1.2

Suppose τ is a topology on a vector space X such that

a. every point of X is a closed set, and

b. the vector space operations are continuous w.r.t. τ

Proposition 1.1

Let X be a topological vector space. For $a \in X$, $\lambda \neq 0$, define the translation operator T_a and the multiplication operator M_{λ} by

$$T_a(x) = a + x, M_{\lambda}(x) = \lambda x$$

then T_a and M_λ are homeomorphisms of X onto X.

It can be induced by the continuity of addition and multiplication, also that of inverse.

Definition 1.3

By the proposition above, we know every vector space topology τ is translation-invariant, i.e. a set $E \subset X$ is open iff a + E is open for any $a \in X$.

The local base means a collection \mathcal{B} of neighbourhoods of 0 such that every neighborhood of 0 contains a member of \mathcal{B} , so the open sets of X will be the unions of translates of members of \mathcal{B} .

A metric d on a vector space X will be called invariant if d(x+z,y+z)=d(x,y) for any $x,y,z\in X$.

A subset E of a topological space is said to be bounded if to every neighborhood V of 0 in X, there is a number s > 0 such that $E \subset tV$ for any t > s.

Definition 1.4

In the following definitions, X always denotes a topological vector space, with topology τ .

- a. X is locally convex if there is a local base $\mathcal B$ whose members are convex.
- b. X is locally bounded if 0 has a bounded neighbourhood.
- c. X is locally compact if 0 has a neighborhood whose closure is compact.
- d. X is metrizable if τ is compatible with some metric d.
- e. X is an F-space if its topology τ is induced by a complete invariant metric d.
- f. X is a Frechet space if X is a locally convex F-space.
- g. X is normable if a norm exists on X such that the metric induced by the norm is compatible with τ .

h. X has the Heine-Borel property if every closed and bounded subset of X is compact.

Theorem 1.1

Suppose K and C are subsets of a topological vector space X, K is compact, C is closed and $K \cap C = \emptyset$. Then 0 has a neighbor hood V such that

$$(K+V)\cap (C+V)=\emptyset$$

Proof For any W a neighbourhood of 0, we may find U a neighbourhood of 0 such that U=-U and U+U=W, by consider there are V_1, V_2 neighbourhoods of 0 such that $V_1+V_2\subset W$, then let $U=V_1\cap V_2\cap (-V_1)\cap (-V_2)$, and then we may find V symmetric such that $V+V\subset U$, then $V+V+V+V\subset W$, now we assume K is nonempty, and then for any $x\in K$, we may find V_x such that $x+V_x+V_x+V_x\cap C=\emptyset$ and then $X+V_x+V_x\cap C+V_x$ is empty since V_x is symmetric, then the rest is easy to be checked.

Theorem 1.2

If \mathcal{B} is a local base for a topological vector sapce X, then every member of \mathcal{B} contains the closure of some member of \mathcal{B} .

Proof For $V \in \mathcal{B}$, we may find $U \in \mathcal{B}$ such that $U + U \subset V$ and hence $\overline{U} \subset V$.

Theorem 1.3

Every topological vector space is a Hausdorff space.

Can be induced by theorem 1.1. directly.

Theorem 1.4

Let X be a t.v.s.

- a. If $A \subset X$ then $\overline{A} = \cap (A + V)$ where V runs through all neighbourhoods of 0.
- *b.* If $A \subset X$ and $B \subset X$, then $\overline{A} + \overline{B} \subset \overline{A + B}$.
- c. If Y is a subspace of X, so is \overline{Y} .
- d. If C is a convex subset of X, so are \overline{C} and C° .
- e. If B is a balanced subset of X, so is \overline{B} ; if also $0 \in B^{\circ}$ then B° is balanced.
- f. If E is a bounded subset of X, so is \overline{E} .

 $^{\circ}$

- **Proof** a. It suffices to show that $\cap (A+V)$ is closed, if for any $V, x+V\cap A$ nonempty, then if $x\notin A+U$ then $x-U\cap A$ empty and hence a contradiction. So $x\in \cap (A+V)$ and we are done.
- b. For any $x \in \overline{A}, y \in \overline{B}, V$ a neighbourhood of 0, we know there exists U_1, U_2 neighbourhood of 0 such that $x + U_1 + y + U_2 \subset x + y + V$ and hence $x + y + V \cap A + B \supset (x + U_1 + y + U_2) \cap A + B$ is always nonempty and we are done.
- c. If $x, y \in Y$ is an accumulation, then for any $U, V \in \beta$, we know there will be $x_0, y_0 \in Y \cap U, Y \cap V$ then we know $\lambda x_0 + y_0 \in \lambda x_0 + y_0 + \lambda U + V$, and since hence the problem goes by choosing U + V.
 - d. We may know that

$$tC^{\circ} + (1-t)C^{\circ} \subset C$$

and since the left side is open, so it is easy to check that $tC^{\circ} + (1-t)C^{\circ} \subset C^{\circ}$, and we are done.

Notice $\alpha \overline{A} = \overline{\alpha} \overline{A}$ and we may know

$$t\overline{C} + (1-t)\overline{C} \subset \overline{C}$$

and we are done.

e. For $0 \le |\alpha| \le 1$, we know $\alpha B \subset B$ and hence $\alpha \overline{B} \subset \overline{\alpha} B \subset \overline{B}$. For $0 < |\alpha| \le 1$, we know $\alpha B^{\circ} \subset (\alpha B)^{\circ}$ and $\alpha^{-1}(\alpha B)^{\circ} \subset B$ and hence $\alpha^{-1}(\alpha B)^{\circ} \subset B^{\circ}$ so we know $\alpha B^{\circ} = (\alpha B)^{\circ}$. And then $\alpha B^{\circ} \subset B^{\circ}$ and if $0 \in B^{\circ}$, the equality holds for $\alpha = 0$.

f.For any V, there exists s>0 such that t>s implies $E\subset tV$, then we know there exists W such that $\overline{W}\subset V$ and then there exists s' such that $\overline{E}\subset t'\overline{W}\subset t'V$ for any t'>s' and we are done.

Theorem 1.5

In a topological vector space X

- a. every neighbourhood of 0 contains a balanced neighborhood of 0
- b. every convex neighborhood of 0 contains a balanced convex neighbourhood of 0.

Proof a. Suppose U is a neighbourhood of 0 in X. We know there exists V and $\delta > 0$ such that $\alpha V \subset U$ if $|\alpha| < \delta$, then let $W = \bigcup_{|\alpha| < \delta} \alpha V$ and we are done.

b. Suppose U is a convex neighborhood, consider $V = \bigcap_{|\alpha=1|} \alpha U$ and let W be as in (a), then we may check that $W \subset V$, then we know V is balanced by choose $0 \le r \le 1, |\beta| = 1$ and we have

$$r\beta V = \bigcap_{|\alpha|=1} r\beta \alpha U = \bigcap_{|\alpha|=1} r\alpha U \subset V$$

and hence V balanced, and so is V° since which containing W and hence 0, and it is convex, we are done.

Corollary 1.1

- a. Every topological vector space has a balanced local base.
- b. Every locally convex space has a blanced convex local base.

Theorem 1.6

Suppose V is a neighbourhood of 0 in a topological vector space X.

a. If $0 < r_1 < r_2 < \cdots$ and $r_n \to \infty$, then

$$X = \bigcup_{n=1}^{\infty} r_n V$$

- b. Every compact subset K of X is bounded.
- c. If $\delta_1 > \delta_2 > \cdots$ and $\delta_n \to 0$, and if V is bounded, then the collection

$$\{\delta_n V\}$$

is a local base for X.

Proof a. For $x \in X$ and V a neighbourhood of 0, since $\alpha \mapsto \alpha x$ is continuous, then we know $\{\alpha, \alpha x \in V\}$ is open and containing 0, so we may know $(1/r_n)x \in V$ for large n and hence $x \in r_n V$ for some n.

- b. We know for any V neighbourhood of 0, there are finite r_n such that $K \subset \bigcup_{i=1}^n r_i V$.
- c. Let U be a neighbourhood of 0, then if V is bounded, there exists s>0 such that $V\subset tU$ for all t>s. Then we know there exists n such that $s\delta_n<1$ and hence $V\subset (1/\delta_n)U$ and we are done.

Theorem 1.7

Let X and Y be topological vector spaces. If $\Lambda: X \to Y$ is linear and continuous at 0, then Λ is continuous. In fact, Λ is uniformly continuous, i.e. to each neighborhood W of 0 in Y corresponds a neighborhood V of 0 in X such that

$$y-x\in V \implies \Lambda y - \Lambda x \in W$$

Theorem 1.8

Let Λ be a linear functional on a topological vector space X. Assume $\Lambda \neq 0$ for some $x \in X$. Then each of the following four properties implies the other three

- a. Λ is continuous.
- b. $\mathcal{N}(\Lambda)$ is closed.
- c. $\mathcal{N}(\Lambda)$ is not dense in X.
- d. Λ is bounded in some neighborhood V of 0.

Proof (a) implies (b) is trivial. (b) implies (c) is trivial. Now we consider (c) implies (d), we know there exists x and V balanced such that

$$(x+V)\cap \mathcal{N}(\Lambda)=\emptyset$$

since ΛV is a balanced subset, so ΛV is bounded or $\Lambda V=K$ since it is balanced. Then we know if $\Lambda V=K$, there is y such that $\Lambda y=-\Lambda x$ and then $x+y\in \mathcal{N}(\Lambda)$, which is a contradiction.

(c) implies (d) is trivial.

Lemma 1.1

If X is a complex topological vector space and $f: \mathbb{C}^n \to X$ is linear, then f is continuous.

 \heartsuit

Proof Let e_i be the standard basis of \mathbb{C}^n and let $u_i = f(e_i)$, then for $z = (z_i) \in C^n$ we know $f(z) = z_1 u_1 + \cdots + z_n u_n$. And then the continuity is secured by that of addition and scalar multiplication.

Theorem 1.9

If n is a positive integer and Y is an n-dimensional subspace of a complex topological vector space X, then a. every isomorphism of \mathbb{C}^n onto Y is a homeomorphism and

b. Y is closed.

 \Diamond

Proof a. Suppose $f: \mathbb{C}^n \to Y$ is an isomorphism. This means that f is linear, one-to-one, and $f(\mathbb{C}^n) = Y$. Put $K = f(\partial D)$, then we know K is compact since f is continuous, and f(0) = 0. So there is a balanced neighborhood V of 0 in X which does not intersect K. Then $f^{-1}(V)$ is therefore disjoint from S. Since f is linear, E is balanced and henced connected. So $E \subset D$ and we know $f^{-1}(V \cap Y) \subset D$, so we know f^{-1} is continuous by theorem 1.8.d.

b. Let $p \in \overline{Y}$ and we know for some t > 0, $p \in tV$ and then p is in the closure of

$$Y \cap (tV) \subset f(tB) \subset f(t\overline{B})$$

and then $p \in f(t\overline{B}) \subset Y$.

Theorem 1.10

Every locally compact topological vector space X has finite dimension.

 $^{\circ}$

Proof We consider V is a neighbourhood of 0 and \overline{V} is compact, then we know there exists x_i such that

$$\overline{V} \subset \sum (x_i + 2^{-1}V)$$

and let Y be the subspace generated by x_i . We know

$$V \subset Y + \frac{1}{2}V$$

and then we know $\frac{1}{2}V\subset Y+\frac{1}{4}V$ since Y is a subspace and by induction we know

$$V \subset \cap_n (Y + 2^{-n}V)$$

since V is bounded and we know $2^{-n}V$ is a local base and hence $V \subset \overline{Y} = Y$, so then we know $X = \bigcup_n nV = Y$ and hence X is finite dimensional.

Theorem 1.11

If X is a locally bounded topological vector space with the Heine-Borel property, then X has finite dimention.

 \odot

Proof We know there is a neighbourhood V of 0 is bounded, then we know \overline{V} is bounded and hence compact. So X is locally compact and we are done.

Theorem 1.12

If X is a topological vector space with a countable local base, then there is a metric d on X such that

a. d is compatible with the topology of X

 $b.\ the\ open\ balls\ centered\ at\ 0\ are\ balanced\ and$

c. d is invariant

If X is locally convex, then d can be chosen to satisfy

d. all open balls are convex.

Proof a. We know we may choose balanced local base V_n such that

$$V_{n+1} + V_{n+1} + V_{n+1} + V_{n+1} \subset V_n$$

when X is locally convex, this local base can be chosen to be convex.

Let D be the set of all 2-adic rational numbers r with finite positions to be 1, let A(r) = X for $r \ge 1$ and

$$A(r) = r_1 V_1 + \cdots$$

for $0 \le r < 1$ and define $f(x) = \inf\{r, x \in A(r)\}$ with d(x, y) = f(x - y), then we know d is a metric by

$$A(r) + A(s) \subset A(r+s)$$

and then we may know $f(x+y) \leq f(x) + f(y)$. Notice for $x \neq 0$ obviously, there is a V_n not containing x, and then f(x) > 0 and f(0) = 0. For $\delta < 2^{-n}$, we may know $B_{\delta}(0) \subset V_n$ and hence $B_{\delta}(0)$ will be a local base of (x). Notice A(r) is balanced, so we know B is balanced and we are done.

d. If V_n convex, then A(r) convex and we are done.

Definition 1.5

a. Suppose d is a metric on a set X. x_n is a Cauchy sequence if it is Cauchy under d.

b. For a topological vector space, x_n is Cauchy means for a local base \mathcal{B} and $V \in \mathcal{B}$, there always exists a N such that $x_n - x_m \in V$ if n, m > N.

c. It is easy to check if τ is compatible to an invariant metric d, then a seq is d-Cauchy iff it is τ -Cauchy. With corollary that d_1, d_2 invaiant metrics on a vector space X, we know d_1, d_2 have the same Cauchy seqs and d_1 complete iff d_2 complete.

Theorem 1.13

Suppose that (X, d_1) and (Y, d_2) are metric spaces, and (X, d_1) is complete. If E is a closed set in X, $f: E \to Y$ is continuous and

$$d_2(f(x'), f(x'')) > d_1(x', x'')$$

for all $x', x'' \in E$, then f(E) is closed.

Proof Choose any accumulation is fine.

Theorem 1.14

Suppose Y is a subspace of a topological vector space X, and Y is an F-space. Then Y is a closed subspace of X.

Proof Let $B_n = \{y : y \in Y, d(y,0) < n^{-1}\}$ amd U_n be a neighbourhood of 0 in X, such that $Y \cap U_n = B_n$, and choose symmetric neighboods V_n of 0 in X such that $V_n + V_n \subset U_n$ and $V_{n+1} \subset U_n$. Then suppose $x \in \overline{Y}$ and $E_n = Y \cap (x + V_n)$, then if $y_1, y_2 \in E_n$, we know $y_1 - y_2 \in U_n$ and hence in B_n . Then we know $\cap E_n$ is a singelton $\{y_0\}$. By the way, we may consider

$$F_n = Y \cap (x + W \cap Y_n)$$

and hence $\cap F_n$ is a singleton y_0 and then y_0 is in all x + W, so $y_0 = x$ and we are done.

Theorem 1.15

a. If d is a translation invariant metric on a vector space X, then

$$(nx,0) \le nd(x,0)$$

b. If $\{x_n\}$ is a seq in a metrizable tvs X and if $x_n \to 0$ as $n \to \infty$, then there are positive scalars $\gamma_n \to \infty$ and $\gamma_n x_n \to 0$.

Proof We only prove (b) by considering $n_k \le n < n_{k+1}$ such that $d(x_n, 0) < k^{-2}$.

Proposition 1.2

Any Cauchy seq is bounded.

Theorem 1.16

The following two properties of E in a tvs are equivalent

- a. E is bounded
- b. If x_n is a seq in E and α_n is a seq of scalars such that $\alpha_n \to 0$ as $n \to \infty$, then $\alpha_n x_n \to 0$ as $n \to \infty$.

Proof (a) implies (b) is trivial.

(b) implies (a) find r_n , V such that r_nV does not contain E and there will be a contradiction.

Definition 1.6

Suppose X and Y are tvss and $\Lambda: X \to Y$ is linear. Then Λ is bounded if Λ maps bounded sets into bounded sets.

.

Theorem 1.17

Suppose X and Y are topological vector spaces and Λ is linear. Among the following four properties of Λ , we have $(a) \Longrightarrow (b) \Longrightarrow (c)$ and if X is metrizable, then also $(c) \Longrightarrow (d) \Longrightarrow (a)$.

- a. Λ is continuous
- b. Λ is bounded
- c. If $x_n \to 0$, then Λx_n is bounded.
- d. If $x_n \to 0$ then $\Lambda x_n \to 0$.

 \sim

Proof (a) \Longrightarrow (b), we know that for any bounded E, we know for any $V \subset Y$, we have $f^{-1}(V)$ is an open neighbourhood of 0 in X and there exists s such that $E \subset tf^{-1}V$ for any t > s and then $f(E) \subset tV$ for any t > s and hence f(E) is bounded.

(b) \Longrightarrow (c), we know $x_n \to 0$ and hence x_n is bounded, and we are done.

Now we assume that X is metrizable, then we know since $x_n \to 0$, then we may find $\gamma_n \to \infty$ such that $\gamma_n x_n \to 0$ and then $\Lambda(\gamma_n x_n)$ bounded, so $\Lambda x_n \to 0$.

(d) \Longrightarrow (a), we know for V an neighborhood of 0 open in Y, then if there exists $x_n \in f^{-1}(V)^c$ such that $x_n \to 0$, then there will be a contradiction and hence there exists an neighborhood U in X such that $f(U) \subset V$ and we are done by use a union.

Definition 1.7

A seminorm on a vector space X is a real-valued function p on X such that

- a. $p(x+y) \leq p(x) + p(y)$ and
- b. $p(\alpha x) = |\alpha| p(x)$

for all x and y in X and all scalars $\alpha = \alpha$.

A family P of seminorms on X is said to be separating if to each $x \neq 0$ corresponds at least one $p \in P$ with $p(x) \neq 0$.

Then considering a convex set $A \subset X$ which is absorbing, i.e. for any x there exists some t = t(x) > 0 such that $x \in tA$.

The Minkowski functional μ_A of A is defined by

$$\mu_A(x) = \inf\{t > 0, t^{-1}x \in A\}$$

*

Theorem 1.18

Suppose p is a seminorm on a vector space X. Then

- a. p(0) = 0.
- b. $|p(x) p(y)| \le p(x y)$.
- c. $p(x) \ge 0$.
- d. p(x) = 0 is a subspace of X.
- e. The set $B = \{x, p(x) < 1\}$ is convex, balanced, absorbing, and $p = \mu_B$.

Theorem 1.19

Suppose A is a convex absorbing set in a vector space X. Then

- a. $\mu_A(x+y) \le \mu_A(x) + \mu_B(y)$.
- b. $\mu_A(tx) = t\mu_A(x) \text{ if } t \ge 0.$
- c. μ_A is a seminorm if A is balanced.
- d. If $B = \{x, \mu_A(x) < 1\}$ and $C = \{x : \mu_A(x) \le 1\}$, then $B \subset A \subset C$ and $\mu_B = \mu_A = \mu_C$.

Proof There is no need to check (a),(b),(c).

Notice $0 \in A$ and we know for any $x \in X$ and $t > \mu_A(x)$, $t^{-1} \in A$ and and hence $B \subset A \subset C$ and then we know $\mu_B \ge \mu_A \ge \mu_C$. For $x \in X$, choose s, t such that $\mu_C(x) < s < t$ and we know $x/s \in C$ and $\mu_A(x/t) < 1$ and we know $x/t \in B$, so $\mu_B(x) \le t$ and then $\mu_B(x) \le \mu_C(x)$ and we are done.

Theorem 1.20

Suppose β is a convex balanced local base in a topological vector space X. Associagte to every $V \in \beta$ denote its Minkowski functional μ_V and then

- a. $V = \{x \in X, \mu_V(x) < 1\}$ for every $V \in \beta$ and
- b. $\{\mu_V, V \in \beta\}$ is a separating family of continuous seminorms on X.

Theorem 1.21

- a. We know $\{x \in X, \mu_V(x) < 1\} \subset V$ and for any $x \in V$, $x/t \in V$ for some $t \in 1$ since V is open, and then we know $\mu_V(x) < 1$.
- b. We have already know that μ_V are seminorms and separating since for $x \neq y$, we may find V such that $x-y \notin V$ and then $\mu_V(x-y) \geq 1$. For r>0, we know $|\mu_V(x)-\mu_V(y)| < r$ if $x-y \in rV$ and hence μ_V is continuous.

Theorem 1 22

Suppose P is a separating famuly of seminorms on a vector space X. Associate to each $p \in P$ and to each positive number n the set

$$V(p,n) = \{x, p(x) < 1/n\}$$

Let β be the collection of all finite intersections of the sets V(p, N). Then β is a convex balanced local baase for a topology τ on X, which turns X into a locally convex space such that

- a. every $p \in P$ is continuous and
- b. a set $E \subset X$ is bounded iff every $p \in P$ is bounded on E.

 \Diamond

Proof Consider the topology to be all unions of translates of members in β .

For $x \neq 0$, we know p(x) > 0 for some $p \in P$ and hence $\{0\}$ is a closed set and hence all singelton. For U a neighborhood of 0, we may find $\cap V(p_i, n_i) \subset U$ and hence $V + V \subset U$ where $V = \cap V(p_i, 2n_i)$. Also $x \in sV$ for some s > 0, let $y \in x + tV$ and $|\beta - \alpha| < 1/s$ where $\alpha x \in U$ and $t = s/(1 + |\alpha|s)$, we know

$$|\beta y - \alpha x| \subset |\beta| tV + |\beta - \alpha| sV \subset V + V \subset U$$

since $|\beta|t \leq 1$ and V balanced. Now we know (X,τ) is a topological vector space.

We know that p is continuous by V(p, n) open.

Now we prove (b), it suffices to show the necessity, which is obvious.

Theorem 1.23

A tvs X is normable iff its origin has a convex bounded neighborhood.

 \Diamond

Proof It suffices to show the necessity, V is a convex bounded neighborhood of 0. Then V containes a convex balanced neighborhood U of 0 and U is also bounded, define $||x|| = \mu(x)$ where μ is the Minkowski functional of U, then rU form a local base for the topology of X. If $x \neq 0$, then $x \in rU$ for some $x \in rU$ for some $x \in rU$ for some $x \in rU$ and hence |x| = 0, then we know |x| = 0 and we are done.

Now we use a proposition to summarize the chapter.

Proposition 1.3

Here is a list of some relations between these properties of a topological vector space X.

- a. If X is locally bounded, then X has a countable local base.
- b. X is metrizable iff X has a countable local base.
- $c. \ X$ is normable iff X is locally convex and locally bounded.
- d. X has finite dimension iff X is locally compact.
- e. If a locally bounded space X has the Heine-Borel property, then X has finite dimension.

Proof a. δV will be a local base.

- b. Consider theorem 1.12.
- c. Consider theorem 1.3.
- d. Consider $|a_i| \leq 1$.
- e. Consider theorem 1.11.

Definition 1.8

(The spaces $C(\Omega)$) If Ω is a nonempty open set in \mathbb{R}^n , then Ω is the union of countably many compact sets $K_n \neq \emptyset$ which can be chosen so that K_n lies in the interior of K_{n+1} . Then define the topology on $C(\Omega)$ by the seminorms

$$p_n(f) = \sup |f(x)|, x \in K_n$$

Proposition 1.4

 $C(\Omega)$ is a Frechet space. And $E \subset C(\Omega)$ is bounded iff there are numbers $M_n < \infty$ such that $p_n(f) \leq M_n$ for all $f \in E$. $C(\Omega)$ is not loacally bounded.

Proof We may define

$$d(f,g) = \max_{n} \frac{2^{-n}p_n(f-g)}{1 + p_n(f-g)}$$

and it is easy to check that f_i converges uniformly on K_n to $f \in C(\Omega)$ and easy to check that $d(f, f_i) \to 0$. And notice $V_n = \{f \in C(\Omega), p_n(f) < n^{-1}\}.$

A set E is bounded iff there are M_n such that $|f(x)| \leq M_n$, $x \in K_n$ and since V_n contains f such that $p_{n+1}(f)$ large arbitrarily and we know $C(\Omega)$ is not locally bounded.

Chapter 2 Completeness

Definition 2.1

Let S be a topological space, $E \subset S$ is said to be nowhere dense if its closure \overline{E} has an empty interior. The sets of the first category in S are those countable unions of nowhere dense sets.

Theorem 2.1

If S is either

a. a complete metric space, or

b. a locally compact Hausdorff space.

then the intersection of every countable collection of dense open subsets of S is dense in S.

Definition 2.2

Suppose X,Y are tvs and Γ is a collection of linear mappings from X to Y, we say Γ is equicontinuous if to every neighbourhood W of 0 in Y there corresponds a neighborhood V of 0 in X such that $\Lambda(V) \subset W$ for all $\Lambda \in \Gamma$

Theorem 2.2

Suppose X and Y are topological vector spaces, Γ is an equicontinuous collection of linear mappings from X into Y, and E is a bounded subset of X. Then Y has a bounded subset F such that $\Lambda(E) \subset F$ for every $\Lambda \in \Gamma$.

Proof Let F be the unions of the sets $\Lambda(E)$ for $\Lambda \in \Gamma$. Let W be a neighborhood of 0 in Y, we know there is V neighborhood of 0 in X such that $\Lambda(V) \subset W$, then we know F is bounded by E is bounded.

Theorem 2.3

Suppose X and Y are topological vector spaces, Γ is a collection of continuous linear mappings from X into Y, and B is the set of all $x \in X$ whose orbits

$$\Gamma(x) = \{\Lambda x, \Lambda \in \Gamma\}$$

are bounded in Y.

If B is of the second category in X, then B = X and Γ is equicontinuous.

Proof Choose balanced neighborhoods W and U of 0 in Y such that $\overline{U} + \overline{U} \subset W$. Let $E = \bigcap_{\Lambda \in \Gamma} \Lambda^{-1}(\overline{U})$. If $x \in B$, then $\Gamma(x) \subset nU$ for some n, and hence $x \in nE$ and hence

$$B \subset \bigcup_{n=1}^{\infty} nE$$

so we know E is closed and has an interior point x, then we know x - E contains a neighborhood V of 0 in X and then

$$\Lambda(V) \subset \Lambda x - \Lambda(E) \subset W$$

and hence Γ is equicontinuous.

Then we know Γ is uniformly bounded, which means Γx is bounded in Y and hence B=X.

Chapter 3 Distribution theory

Definition 3.1

(The space $\mathcal{D}(\Omega)$)

Let $\mathscr{D}(\Omega) = \bigcup_{K \subset \Omega, K \text{ compact }} \mathscr{D}_K$.

Consider the norms

$$||\phi||_N = \max\{|D^{\alpha}\phi(x)|, \in \Omega, |\alpha| \le N\}$$

for $\phi \in \mathscr{D}(\Omega)$ and we claim the restriction on these norms to any fixed \mathscr{D}_K induce the same topology on \mathscr{D}_K by the seminorms p_N . Here we know

$$||\phi_N|| \le ||\phi_{N+1}|| \quad p_N(\phi) \le p_{N+1}(\phi)$$

and for sufficient large N, $||\cdot||_N = p_N$ on \mathcal{D}_K and we are done.

For the topology induced by this norms, we know the induced metric is not compact, since consider any $\phi \in \mathscr{D}(\mathbb{R})$ and let

$$\varphi_m = \sum_{k=1}^m \frac{1}{2^k} \phi(x - m)$$

we know the limit exists but does not have compact support, and also the sequence is Cauchy under the metric.

Definition 3.2

Let Ω be a nonempty open set in \mathbb{R}^n

a. For every compact $K \subset \Omega$, τ_K denotes the Frechet topology of \mathscr{D}_K induced by the norms.

b. β is the collection of all convex balanced sets $W \subset \mathcal{D}(\Omega)$ such that $\mathcal{D}_K \cap W \in \tau_K$ for every compact $\subset \Omega$.

c. τ is the collection of all unions of sets of the form $\phi + W$ with $\phi \in \mathcal{D}(\Omega)$ and $W \in \beta$.

Theorem 3.1

a. τ is a topology in $\mathcal{D}(\Omega)$ and β is a local base for τ .

b. τ makes $\mathcal{D}(\Omega)$ into a locally convex topological vector space.

Proof a. It suffices to show that for $V_1, V_2 \in \tau$ and $\phi \in V_1 \cap V_2$, there is $W \in \beta$ such that

$$\phi + W \subset V_1 \cap V_2$$

We know there is $\phi_i \in \mathcal{D}(\Omega)$ and $W_i \in \beta$ such that

$$\phi \in \phi_i + W_i \subset V_i$$

Choose K so that D_K contains ϕ_1, ϕ_2 and ϕ . Since $\mathscr{D}_K \cap W_i$ is open, so we know $\phi - \phi_i \in (1 - \delta_i)W_i$ for some $\delta_i > 0$. The convexity of W_i implies therefore that

$$\phi - \phi_i + \delta_i W_i \subset (1 - \delta_i) W_i + \delta_i W_i = W_i$$

so that $\phi + \delta_i W_i \subset \phi_i + W_i \subset V_i$ hence $W = (\delta_1 W_1) \cap (\delta_2 W_2)$ will satisfy the requirement.

Suppose next that ϕ_1, ϕ_2 are distinct elements of $\mathcal{D}(\Omega)$ and put

$$W = \{ \phi \in \mathcal{D}(\Omega), ||\phi||_0 < ||\phi_1 - \phi_2||_0 \}$$

then we know $W \in \beta$ and ϕ_1 is not in W, so we know singelton will be closed. And $(\phi_1 + \frac{1}{2}W) + (\phi_2 + \frac{1}{2}W) = (\phi_1 + \phi_2) + W$ will show the continuity of addition under τ .

For any $\phi_0 \in \mathscr{D}(\Omega), W \in \beta$, we know there is always some \mathscr{D}_K containing ϕ_0 and $W \cap \mathscr{D}_K$ is open in \mathscr{D}_K , so there exists $\delta > 0$ such that $\delta \phi_0 \in 2^{-1}W$.

For

$$\alpha\phi - \alpha_0\phi_0 = \alpha(\phi - \phi_0) + (\alpha - \alpha_0)\phi_0$$

we know

$$\alpha \phi - \alpha_0 \phi_0 \in \alpha \alpha cW + 2^{-1}W$$

for any $|\alpha - \alpha_0| < \delta$ and $\phi - \phi_0 \in cW$, then we know let $c = 1/2(|\alpha_0| + \delta)$ will be fine.

Theorem 3.2

- a. A convex balanced subset V of $\mathcal{D}(\Omega)$ is open iff $V \subset \beta$.
- b. The topology τ_K of any $\mathscr{D}_K \subset \mathscr{D}(\Omega)$ coincides with the subspace topology that \mathscr{D}_K inherits from $\mathscr{D}(\Omega)$.
- c. If E is a bounded subset of $\mathcal{D}(\Omega)$, then $E \subset \mathcal{D}_K$ for some $K \subset \Omega$ and there are numbers $M_N < \infty$ such that every $\phi \in E$ satisfies the inequalities

$$||\phi||_N \leq M_N$$

- d. $\mathcal{D}(\Omega)$ has the Heine-Borel property.
- e. If ϕ_i is a Cauchy sequence in $\mathcal{D}(\Omega)$, then $\{\phi_i\}\subset\mathcal{D}_K$ for some compact $K\subset\Omega$ and

$$\lim_{i,j\to\infty} ||\phi_i - \phi_j||_N = 0$$

- f. If $\phi_i \to 0$ in the topology of $\mathcal{D}(\Omega)$, then there is a compact $K \subset \Omega$ which contains the support of every ϕ_i and $D^{\alpha}\phi_i \to 0$ uniformly.
- g. In $\mathcal{D}(\Omega)$, every Cauchy sequence converges.

Proof a. If $V \in \tau$, for $\phi \in \mathcal{D}_K \cap V$, we know $\phi + W \in V$ for some $W \in \beta$ and then

$$\phi + (\mathscr{D}_K \cap W) \subset \mathscr{D}_K \cap V$$

and hence $\mathscr{D}_K \cap V \in \tau_K$. The opposite direction is trivial.

b. For any $B = ||\phi||_N < \delta$, we know it is convex and balanced in $\mathscr{D}(\Omega)$ with $B \cap \mathscr{D}_K$ is open in \mathscr{D}_K , so we know τ_K is a subtopology of the subspace topology inherited from $\mathscr{D}(\Omega)$.

For any W convex and balanced, we know $W \cap \mathscr{D}_K$ is always open and hence the subspace topology is a subset of τ_K and we are done.

c. Consider E bounded but not in \mathscr{D}_K for any K, then there are $\phi_m \in E$ with $x_m \in \Omega$ with no limit point in Ω and $\phi_m(x_m) \neq 0$. Let W be the set of ϕ such that

$$|\phi(x_m) < m^{-1}|\phi_m(x_m)|$$

we know $\mathscr{D}_K \cap W \in \tau_K$ and hence $W \in \beta$, but $\phi_m \in mW$ and hence there is no rW containing E.

Then every bounded E of $\mathscr{D}(\Omega)$ lies in some \mathscr{D}_K and hence for each norm, there exists M_N such that $||\phi||_N \leq M_N$ on E.

- d. Follows from C.
- e. Since every ϕ_i is bounded, we know $\phi \in \mathscr{D}_K$ for some K and hence they are also Cauchy in \mathscr{D}_K .
- f. Follows from e.
- g. Follows from (b), (e) and the completeness of \mathcal{D}_K .

Theorem 3.3

Suppose Λ is a linear mapping of $\mathscr{D}(\Omega)$ into a locally convex space Y. Then each of the following four properties implies the others

- a. Λ is continuous.
- b. Λ is bounded.
- c. If $\phi_i \to 0$ in $\mathcal{D}(\Omega)$, then $\Lambda \phi_i \to 0$ in Y.
- d. The restrictions of Λ to every $\mathscr{D}_K \subset \mathscr{D}(\Omega)$ are continuous.

Proof (a) implies (b) follows the conclusion in tvs.

- (b) implies (c), we know ϕ_i will be in some \mathscr{D}_K and $\Lambda|_{\mathscr{D}_K}$ is bounded , so $\Lambda\phi_i\to 0$ in Y.
- (c) implies (d), for $\phi_i \to 0$ in \mathscr{D}_K , we know $\phi_i \to 0$ in $\mathscr{D}(\Omega)$ and then we know Λ is continuous by metrilizing \mathscr{D}_K .

(d) implies (a), for any V convex balanced neighborhood of Y, we know $\Lambda^{-1}(V)$ is convex and balanced with $\mathscr{D}_K \cap \Lambda^{-1}(V)$ is open, so $\Lambda^{-1}(V)$ is open in τ and we are done.

Corollary 3.1

 D^{α} is a continuous mapping of $\mathcal{D}(\Omega) \to \mathcal{D}(\Omega)$.

\bigcirc

Definition 3.3

A linear functional on $\mathcal{D}(\Omega)$ which is continuous is called a distribution.

Theorem 3.4

If Λ is a linear functional on $\mathcal{D}(\Omega)$, the following two conditions are equivalent $a. \ \Lambda \in \mathcal{D}'(\Omega)$.

b. To every $K \subset \Omega$, corresponds a nonnegative ineger N and $C < \infty$ such that

$$|\Lambda \phi| \le C||\phi_N||$$

on \mathscr{D}_K .

Proof (a) implies (b), if all images of $\{||\phi_N|| < 1\}$ is unbounded on \mathcal{D}_K , then we know any images of open set is unbounded, which is a contradiction.

(b) implies (a), we know Λ is continuous on any \mathcal{D}_K by consider the preimage of (-1,1).

Definition 3.4

If Λ is such that one N will do for all K, then the smallest N is called the order of Λ . Else, call Λ to have infinite order.

Then we may define $\delta_x(\phi) = \phi(x)$, and we know δ_x is a distribution of order 0.

Definition 3.5

We define the differentiation of distributions

$$(D^{\alpha\Lambda})(\phi) = (-1)^{|\alpha|} \Lambda(D^{\alpha}\phi)$$

And the multiplication by functions, for $f \in C^{\infty}(\Omega)$ define

$$(f\Lambda)(\phi) = \Lambda(f\phi)$$

by the Leibniz formula

$$D^{\alpha}(fg) = \sum_{\beta \leq \alpha} (D^{\alpha - \beta} f)(D^{\beta} g)$$

Definition 3.6

For $\mathcal{D}'(\Omega)$, define the topology on it to be the weak*-topology.

Theorem 3.5

Suppose $\Lambda_i \in \mathscr{D}'(\Omega)$, and $\Lambda \phi = \lim \Lambda_i \phi$ exists for every $\phi \in \mathscr{D}(\Omega)$, then $\Lambda \in \mathscr{D}'(\Omega)$ and $D^{\alpha} \Lambda_i \to D^{\alpha} \Lambda$ in $\mathscr{D}'(\Omega)$.

Proof It suffices to show $\Lambda \in \mathscr{D}'(\Omega)$. We only need to check that Λ is continuous on \mathscr{D}_K , since \mathscr{D}_K is a complete metric space, then we know Λ_i is uniformly bounded and hence Λ is bounded, so it is continuous.

For the second conclusion, only need to check that there will be an N and C such that $|D^{\alpha}\Lambda\phi| \leq C||\phi||_{N+|\alpha|}$ for any K compact and hence D^{α} will be continuous as well.

Theorem 3.6

If $\Lambda_i \to \Lambda$ in $\mathscr{D}'(\Omega)$ and $g_i \to g$ in $C^{\infty}(\Omega)$, then $g_i \Lambda_i \to g \Lambda$ in $\mathscr{D}'(\Omega)$.

 \bigcirc

Proof We need to show that for any ϕ , $\Lambda_i(g_i\phi) \to \Lambda(g\phi)$, which can be seen by

$$|\Lambda_i(g_i\phi) - \Lambda(g\phi)| \le |\Lambda_i((g_i - g)\phi)| + |\Lambda_i(g\phi) - \Lambda(g\phi)|$$

since Λ_i is uniformly bounded as a map from $\mathscr{D}_K \to R$, and then we know for any $\epsilon > 0$, there exists W a neighbourhood of 0 such that $\Lambda_i(W) \in (-\epsilon, \epsilon)$ for any i, so let i large enough let $(g_i - g)\phi \in W$ and we are done.

Definition 3.7

Suppose $\Lambda_i \in \mathscr{D}'(\Omega)$ and ω is an open subset of Ω , then $\Lambda_1 = \Lambda_2$ on ω means $\Lambda_1 \phi = \Lambda_2 \phi$ for every $\phi \in \mathscr{D}(\omega)$.

Theorem 3.7

If Γ is a collection of open sets in \mathbb{R}^n whose union is Ω then there exists a sequence $\phi_i \in \mathcal{D}(\Omega)$ with $\phi_i \geq 0$, such that

a. each ϕ_i has its support in some member of Γ

b.
$$\sum_{i=1}^{\infty} \phi_i = 1$$
 for every $x \in \Omega$

c. to every compact $K \subset \Omega$ correspond an integer m and an open set $W \supset K$ such that

$$\phi_1(x) + \cdots + \phi_m(x) = 1$$

for all $x \in W$.

Such ϕ_i is called a locally finite partition of unity in Ω .

 \Diamond

Proof Let S be a countable dense subset of Ω . Let B_i be all the closed ball B_i with center in S and with rational radius such that it will lie in some member of Γ . Let V_i be the open ball with center p_i and radius $r_i/2$ where r_i was assume to be sufficent close to $\max d(p_i, \omega^c)$, such that $\bigcup_i V_i = \Omega$.

Then we know there are $\phi_i \in \mathscr{D}(\Omega)$ such that $0 \leq \phi 1$ and $\phi_i = 1$ in V_i and 0 outside of B_i define $\varphi_1 = \phi_1$ and inductively

$$\varphi_{i=1} = (1 - \phi_1) \cdots (1 - \phi_i) \phi_{i+1}$$

and then we know $\varphi_i = 0$ outside of B_i and

$$\varphi_1 + \cdots + \varphi_i = 1 - (1 - \phi_1) \cdots (1 - \phi_i)$$

which equals to 1 for $x \in V_1 \cup \cdots \cup V_m$. For compact set, we know $K \subset \bigcup_{1 \le i \le m} V_i$ for some m.

Theorem 3.8

Suppose Γ is an open cover of an open set $\Omega \subset \mathbb{R}^n$ and suppose that to each $\omega \in \Gamma$ corresponds a distribution $\Lambda_\omega \in \mathscr{D}'(\omega)$ such that

$$\Lambda_{\omega_1} = \Lambda_{\omega_2}$$

on $\omega_1 \cap \omega_2$ for $\omega_1, \omega_2 \in \Gamma$ with nonemptyset disjoint. Then there exists a unique $\Lambda \in \mathscr{D}'(\Omega)$ such that $\Lambda = \Lambda_{\omega}$ on ω for every $\omega \in \Gamma$.

C

Proof Let ϕ_i be a locally finite partition of unity w.r.t. Γ and we know there exists ω_i containing the suppose of ϕ_i , if $f \in \mathcal{D}(\Omega)$, then $f = \sum_{n \geq 0} \phi_n f$ and define

$$\Lambda f = \sum_{n \ge 0} \Lambda_{\omega_i}(\phi_i f)$$

then we know $\Lambda \in \mathscr{D}'(\Omega)$ easily. For any $h \in \mathscr{D}(\omega)$, we know $\phi_i h \in \mathscr{D}(\omega_i \cap \omega)$ so

$$\Lambda h = \sum \Lambda_{\omega_i}(\phi_i h) = \Lambda_{\omega}(\sum \phi_i h) = \Lambda_{\omega}(h)$$

and we are done. The uniqueness is easy to be checked.

Definition 3.8

Suppose $\Lambda \in \mathscr{D}'(\Omega)$, if ω is a open subset of Ω and if $\Lambda \phi = 0$ for every $\phi \in \mathscr{D}(\Omega)$, we say Λ vanished in ω . Let W be the union of all open subset of Ω where Λ vanished on, and W^c is the support of Λ . It is easy to check Λ vanished in W.

Theorem 3.9

Suppose $\Lambda \in \mathscr{D}'(\Omega)$ and S_{Λ} is the support of Λ .

- a. If the support of some $\phi \in \mathcal{D}(\Omega)$ does not intersect S_{Λ} , then $\Lambda \phi = 0$.
- b. If S_{Λ} is empty, the $n \Lambda = 0$.
- c. If $\varphi \in C^{\infty}(\Omega)$ and $\varphi = 1$ in some open set V containing $S\Lambda$, then $\varphi\Lambda = \Lambda$.
- d. If S_{Λ} is a compact subset of Ω , then Λ has finite order i.e. there is a constant $C < \infty$ and a nonnegative integer N such that

$$|\Lambda \phi| \le C||\phi||_N$$

for any $\phi \in \mathscr{D}(\Omega)$. Then Λ extends in a unique way to a continuous linear functional on $C^{\infty}(\Omega)$.

Proof (a),(b),(c) trivial.

(d) If S_{Λ} is compact, then we know there exists $\varphi \in \mathscr{D}(\Omega)$ such that $\varphi \Lambda = \Lambda$ and let the support of φ to be K. Then we know there exists c_1, N such that $|\Lambda \phi| \leq c_1 ||\phi||_N$ for all $\phi \in \mathscr{D}_K$. And c_2 such that $||\varphi \phi|| \leq c_2 ||\phi||_N$ for every $\phi \in \mathscr{D}(\Omega)$. Then

$$|\Lambda \phi| = |\Lambda(\varphi \phi)| \le c_1 c_2 ||\phi||_N$$

for every $\phi \in \mathscr{D}(\Omega)$, then for $f \in C^{\infty}(\Omega)$, define $\Lambda f = \Lambda(\varphi f)$ to be the extension and we know the extension is continuous. However, notice $\mathscr{D}(\Omega)$ is dense in $C^{\infty}(\Omega)$ and then the extension should be unique.

Theorem 3.10

Suppose $\Lambda \in \mathscr{D}'(\Omega), p \in \Omega, \{p\}$ is the support of λ and λ has order N. Then there are constants c_{α} such that

$$\Lambda = \sum_{|\alpha| \le N} c_{\alpha} D^{\alpha} \delta_p$$

Conversly, it is easy to check that the distribution of the form (1) has $\{p\}$ for its support.

Proof Assume p = 0 and $\phi \in \mathcal{D}(\Omega)$ such that

$$(D^{\alpha})(0) = 0, |\alpha| \le N$$

If $\eta > 0$, there is a compact ball $K \subset \Omega$ centered at 0 such that

$$|D^{\alpha}\phi| \leq \eta$$

on K if $|\alpha| = N$, then we claim that

$$|D^{\alpha}\phi(x)| \le \eta n^{N-|\alpha|} |x|^{N-|\alpha|}$$

we know

$$|\nabla D^{\beta}| \le n \cdot \eta n^{N-i} |x|^{N-i}$$

by induction and we are done.

Choose $\varphi \in \mathscr{D}(\mathbb{R}^n)$ which is 1 in some neighbourhood of 0 and whose support is in the unit ball B of \mathbb{R}^n , define

$$\varphi_r(x) = \varphi(x/r)$$

and we know

$$||\varphi_r||_N \le \eta C||\varphi||_N$$

for r small enough since Λ has order N, there is C_1 such that $|\Lambda \varphi| \leq C_1 ||\varphi||_N$ for all $\varphi \in \mathcal{D}_k$ and we know

$$|\Lambda \phi|$$

Theorem 3.11

Suppose $\Lambda \in \mathscr{D}'(\Omega)$ and K is a compact subset of Ω , then there is a continuous function f in Ω and α such that

$$\Lambda \phi = (-1)^{|\alpha|} \int_{\Omega} f(x) (D^{\alpha} \phi)(x) dx$$

for every $\phi \in \mathscr{D}_K$.

C

Proof Firstly assume $K \subset Q$ the unit cube in \mathbb{R}^n and we know

$$|\phi| \le \max_{x \in Q} |(D_i \phi)(x)|$$

for $\phi \in \mathcal{D}_Q$, let $T = D_1 D_2 \cdots D_n$ and we know

$$\phi(y) = \int_{x < y} (T\phi)(x) dx$$

and we know

$$||\phi||_{N} \le \max_{x \in Q} |(T^{N}\phi)| \le \int_{Q} |(T^{N+1}\phi)|$$

Since $\Lambda \in \mathscr{D}'(\Omega)$, there exists N and C such that

$$|\Lambda \phi| \le C||\phi||_N$$

and hence

$$|\Lambda| \le C \int_K |(T^{N+1}\phi)(x)| dx$$

Since T is one-to-one on \mathscr{D}_Q and hence \mathscr{D}_K , we know $T^{N+1}:D_K\leftrightarrow D_K$ is one-to-one, so we can let $\Lambda_1T^{N+1}\phi=\Lambda\phi$ for $\phi\in\mathscr{D}_K$ and a linear functional of \mathscr{D}_K with

$$|\Lambda_1 \phi| \le C \int_K |\phi|$$

for y in the range of T^{N+1} and then we may use the Hahn-Banach to extends Λ_1 to a bounded linear functional on $L^1(K)$. In other words, there is a bounded Borel function g on K such that

$$\Lambda \phi = \Lambda_1 T^{N+1} \phi = \int_{\mathcal{K}} g(x) (T^{N+1} \phi)(x) dx$$

Define g(x) = 0 outside K and let

$$f(y) = \int_{-\infty}^{y_1} \cdots \int_{-\infty}^{y_n} g(x) dx$$

then f is continuous and use the integrations by parts we know

$$\Lambda \phi = (-1)^n \int_{\Omega} f(x) (T^{N+2} \phi)(x)$$

Theorem 3.12

Suppose K is compact, V and Ω are open in \mathbb{R}^n and $K \subset V \subset \Omega$. Suppose also that $\Lambda \in \mathscr{D}'(\Omega)$, that K is the support of Λ , and that Λ has order N. Then there exists finitely many continuous functions f_{β} in Ω with supports in V such that

$$\Lambda = \sum_{\beta} D^{\beta} f_{\beta}$$

Proof Choose an open W with compact closure, such that $K \subset W, \overline{W} \subset V$, then we Impw there is a continuous function f in Ω such that

$$\Lambda \phi = (-1)^{|\alpha|} \int_{\Omega} f(x) (D^{\alpha} \phi)(x) dx$$

We may multiply f with a continuous function equaling 1 on \overline{W} with support in V.

Fix $\varphi \in \mathcal{D}(\Omega)$, with support in W such that $\varphi = 1$ on some open set containing K, then

$$\Lambda \phi = \Lambda(\varphi \phi) = (-1)^{|\alpha|} \int_{\Omega} f \sum_{\beta < \alpha} c_{\alpha\beta} D^{\alpha - \beta} \varphi D^{\beta} \phi$$

and let $f_{\beta} = (-1)^{\alpha-\beta|} c_{\alpha\beta} f \cdot D^{\alpha-\beta} \varphi$.

Theorem 3.13

Suppose $\Lambda \in \mathcal{D}'(\Omega)$ There exists continuous functions g_{α} in Ω , for each multi-index α .

a. each compact $K \subset \Omega$ intersects the supports of only finitely many g_{α}

b.
$$\Lambda = \sum D^{\alpha} = \sum_{\alpha} D^{\alpha} g_{\alpha}$$
.

If Λ has finite order, the n the functions g_{α} can be chosen so that only finitely many are nonzero.

\Diamond

Definition 3.9

For $u \in \mathcal{D}$, define

$$(\tau_x u)(y) = u(y-x), \check{u}(y) = u(-y)$$

and for $u \in \mathcal{D}'$ Define

$$(u * \phi)(x) = u(\tau_x \check{\phi})$$

and $\tau_x u(\phi) = u(\tau_{-x}\phi)$ for $u \in \mathscr{D}'$.

Theorem 3.14

Suppose $u \in \mathcal{D}', \phi, \varphi \in \mathcal{D}$, then

a. $\tau_x(u * \phi) = (\tau_x u) * \phi = u * (\tau_x \phi)$ for all $x \in \mathbb{R}^n$.

b. $u * \phi \in C^{\infty}$ and

$$D^{\alpha}(u * \phi) = (D^{\alpha}u) * \phi = u * (D^{\alpha}\phi)$$

 $c.\ u*(\phi*\varphi)=(u*\phi)*\varphi.$

Definition 3.10

The term approximate identity on \mathbb{R}^n will denote a sequence of functions h_j of the form

$$h_j(x) = j^n h(jx)$$

for $h \in \mathcal{D}$ and $\int h = 1$.

Theorem 3.15

Suppose h_j is an approximate identity on \mathbb{R}^n , $\phi \in \mathcal{D}$ and $u \in \mathcal{D}'$, then

a. $\lim_{j\to\infty} \phi * j_j = h$ in \mathscr{D} .

b. $\lim_{j\to\infty} u * h_j = u$ in \mathscr{D}' .

Proof We know

$$|f - f * h_j|(x) \le \int |f(x)h_j(t) - f(x-t)h_j(t)|dt \le \max_{t \in j^{-1}K} |f(x) - f(x-t)|$$

and hence $f*h_j \to f$ uniformly on compact sets, then it is easy to check that $D^{\alpha}(\phi*h_j) \to D^{\alpha\phi}$ uniformly on compact sets.

It is easy to verify (b) and then any distribution is a limit in the topology of \mathcal{D}' is a seq of infinitely differentiable functions.

Theorem 3.16

a. If $u \in \mathcal{D}'$ and

$$L\phi=u*\phi$$

for $\phi \in \mathcal{D}$, then L is a continuous linear mapping of \mathcal{D} into C^{∞} which satisfies

$$\tau_x L = L \tau_x$$

b. Conversly, if L is a continuous linear mapping of \mathscr{D} into $C(\mathbb{R}^n)$ and if L satisfies $\tau_x L = L\tau_x$, then there is a

unique $u \in \mathcal{D}'$ such that $L\phi = u * \phi$.

 \odot

Proof a. The second equality holds automatically, to prove L is continuous, we only need to show that $L|_{\mathscr{D}_K}$ is continuous, assume $\phi_i \to \phi$ in \mathscr{D}_K and then we know

$$|(u * \phi_i) - (u * \phi)|(x) = |u(\tau_x \phi_i - \tau_x \phi)| \to 0$$

and

$$|D^{\alpha}(u * \phi_i - u * \phi)|(x) = |u * (D^{\alpha}\phi_i - D^{\alpha}\phi)|(x) \to 0$$

b. Define $u(\phi) = (L\check{\phi})(0)$ and the rest is easy to be checked.

Definition 3.11

The convolution of u with compact support and any $\phi \in C^{\infty}$ is define by

$$(u * \phi)(x) = u(\tau_x \check{\phi})$$

•

Theorem 3.17

Suppose $u \in \mathcal{D}'$ has compact support, and $\phi \in C^{\infty}$. Then

a.
$$\tau_x(u * \phi) = (\tau_x u) * \phi = u * (\tau_x \phi) \text{ if } x \in \mathbb{R}^n.$$

b. $u * \phi \in C^{\infty}$ and

$$D^{\alpha}(u * \phi) = (D^{\alpha}u) * \phi = u * (D^{\alpha}\phi)$$

If $\varphi \in \mathcal{D}$, then

 $c. \ u * \varphi \in \mathscr{D}$

$$d. \ u * (\phi * \varphi) = (u * \phi) * \varphi = (u * \varphi) * \phi.$$

က

Definition 3.12

If $u, v \in \mathcal{D}'$ and at least one of there two distributions has compact support, define

$$L\phi = u * (v * \phi)$$

for $\phi \in \mathcal{D}$, we have $\tau_x L = L \tau_x$ and we will denote u * v to be this distribution.

Theorem 3.18

Suppose $u \in \mathcal{D}', v \in \mathcal{D}', w \in \mathcal{D}'$

- a. If at leasst one of u, v has compact support, then u * v = v * u.
- b. If S_u, S_v are the supports of u and v, and if at least one of these is compact, then

$$S_{u*v} \subset S_u + S_v$$

c. If at least two of the supports S_u, S_v, S_w are compact, then

$$(u * v) * w = u * (v * w)$$

d. If δ is the Dirac measure, then

$$D^{\alpha}u = (D^{\alpha}\delta) * u$$

e. If at least one of the sets S_u, S_v is compact, then

$$D^{\alpha}(u * v) = (D^{\alpha}u) * v = u * (D^{\alpha}v)$$

 \Diamond

Chapter 4 Fourier Transform

Theorem 4.1

Suppose $f, g \in L^1(\mathbb{R}^n), x \in \mathbb{R}^n$, then

$$a. (\tau_x f)^{\wedge} = e_{-x} \hat{f}.$$

b.
$$(e_x f)^{\wedge} = \tau_x \hat{f}$$
.

$$c. (f * g)^{\wedge} = \hat{f}\hat{g}.$$

d. If
$$\lambda > 0$$
 and $h(x) = f(x/\lambda)$, then $\hat{h}(t) = \lambda^n \hat{f}(\lambda t)$.

Definition 4.1

(Rapidly decreasing functions)

The functions $f \in \mathbb{C}^{\infty}$ *such that*

$$\sup_{|\alpha| \le N} \sup(1+|x|^2)^N |(D_\alpha f)(x)| < \infty$$

for any N, the space is denoted by S_n and the norms defines a locally convex topology.

Theorem 4.2

a. S_n is a Frechet space.

b. If P is a polynomial, $g \in S_n$, then

$$f\mapsto Pf,\quad f\mapsto gf,\quad f\mapsto D^{\alpha}f$$

is a continuous linear mapping of S_n to S_n .

c. If $f \in S_n$ and P is a polynomial, then

$$(P(D)f)^{\wedge} = P\hat{f}, \quad (Pf)^{\wedge} = P(-D)\hat{f}$$

d. The Fourier transform is a continuous linear mapping of S_n to S_n .