

ZOMBIES EN LA CULTURA POP

LAS MATEMÁTICAS DE LA REALIDAD

Una sociedad, con sus individuos y las relaciones que se establecen entre ellos, es una red compleja que puede representarse como un grafo

Red aleatoria

Cada nodo de la red tiene un número similar de enlaces

Grado medio: $\langle k
angle$

LAS MATEMÁTICAS DE LA REALIDAD

Una sociedad, con sus individuos y las relaciones que se establecen entre ellos, es una red compleja que puede representarse como un grafo

Red libre de escala

Aparecen los *hubs,* nodos con un número muy alto de conexiones

LAS MATEMÁTICAS DE LA REALIDAD

La información de un grafo se puede organizar en una matriz de adyacencia

$$Adj = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

UN MODELO MATEMÁTICO PARA EL APOCALIPSIS ZOMBIE MODELO SIR

Definimos unos parámetros que marcan el paso de los nodos de un estado a otro

UN MODELO MATEMÁTICO PARA EL APOCALIPSIS ZOMBIE MODELO SIR

La dinámica de cada población viene definida por un sistema de ecuaciones diferenciales acopladas

$$\frac{dh(t)}{dt} = -\beta \langle k \rangle z(t) h(t)$$

$$\frac{dz(t)}{dt} = -\alpha z(t) + \beta \langle k \rangle z(t) h(t)$$

$$\frac{df(t)}{dt} = \alpha z(t)$$

UN MODELO MATEMÁTICO PARA EL APOCALIPSIS ZOMBIE MODELO SIR

Objetivo: obtener el número de humanos, zombies y fallecidos en función del tiempo para distintos valores de los parámetros

- Comportamiento temprano de la infección
- Número de nodos en cada estado al finalizar la epidemia
- Número máximo de zombies

Programación en Python

import networkx as nx

Programación en Python

```
import networkx as nx

N = 50 # tamaño de la red
p = 0.1 # probabilidad de que un nodo esté conectado con otro

random = nx.fast_gnp_random_graph(N, p, seed=None, directed = False)

print('¿Es una red directa?')
print(nx.is_directed(random))
print('Información de la red')
print(nx.info(random))
```

Elementos básicos del modelo SIR

1 ¿Cuándo surge la epidemia?

¡La infección no siempre se propaga! Tiene que cumplirse que

$$R_0=rac{eta\langle k
angle}{lpha}>1$$
 Tasa de fallecimiento

Ritmo reproductivo básico

Elementos básicos del modelo SIR

2 Comportamiento temprano de la infección

Al comienzo la infección se propaga exponencialmente

$$R_e = \frac{\beta N s(0)}{\alpha}$$

Fuerza del patógeno

Elementos básicos del modelo SIR

3 El final de la epidemia

El número de zombies siempre tiende a cero para tiempos suficientemente largos El número de humanos vivos viene dado por la solución de

$$0 = \frac{\alpha}{\beta \langle k \rangle} \ln[s(\infty)] - [s(\infty) - 1]$$

Elementos básicos del modelo SIR

4 Pico de máxima infección

Siempre existe un pico de máxima infección

$$i_{\text{max}} = 1 - \frac{1}{R_0} (1 + \log R_0)$$

Dos ejemplos de propagación de epidemia

Añadimos la dificultad de sobrevivir en un entorno hostil

Supervivencia

Supervivencia Zombies **Fallecidos** Humanos

Supervivencia Zombies **Fallecidos** Humanos

El escenario de un apocalipsis zombie es perfecto para introducir los conceptos de cooperación y egoísmo.

¿Cómo afecta el comportamiento de los individuos a la dinámica de la epidemia?

Humanos colaboradores

Humanos colaboradores

Humanos colaboradores

Humanos colaboradores

Humanos colaboradores

Humanos colaboradores

$$\beta \Rightarrow \beta e^{-(\#\text{cols.})}$$

Humanos colaboradores Humanos egoístas

Humanos colaboradores Humanos egoístas

$$N = 10000, \beta = 0.03, \alpha = 0.03, \delta = 0.0008$$

$$N = 10000, \beta = 0.03, \alpha = 0.03, \delta = 0.0008$$

Ha muerto el 93% de la población

- Ha muerto el 99% de los colaboradores
- Ha muerto el 90% de los humanos no colaboradores

El sacrificio del 30% de la población ha permitido que sobreviva un 7%

$$N = 10000, \beta = 0.03, \alpha = 0.03, \delta = 0.0008$$

Ha muerto el 82% de la población

- Ha muerto el 96% de los colaboradores
- Ha muerto el 68% de los humanos no colaboradores

El sacrificio de ~50% de la población ha permitido que sobreviva un 18%

Valores medios sobre 30 repeticiones

- Supervivientes totales
- Humanos
- o colaboradores Colaboradores

Es necesario que el porcentaje de colaboradores inicial sea alto para que sobrevivan

Ha muerto el 79% de la población

- Ha muerto el 97% de los humanos
- Ha muerto el 38% de los humanos egoístas

Sólo han sobrevivido los egoístas

CONCLUSIONES

- La teoría de grafos nos aporta las herramientas matemáticas necesarias para modelizar redes complejas, como por ejemplo, la que representa a una sociedad
- Una epidemia puede entenderse como un proceso dinámico sobre el grafo/red compleja

REFERENCIAS

- Mathematical Modelling of Zombies, Robert Smith. University of Ottawa Press.
- When zombies attack!: mathematical modelling of an outbreak of zombie infection, P.
 Munz, I. Hudea, J. Imad, R. Smith
- Network Science, Albert-László Barabási. Libro online: networksciencebook.com
- Graph Theory and Complex Networks, Maarten van Steen
- The SIR model and the Foundations of Public Health, Howard Weiss, Univ. Autónoma de Barcelona
- SIR Epidemic model for influenza A (H1N1): Modelling the outbreak of the pandemic in Kolkata, West Bengal, India, 2010, Sandipan Dey

