

World Of Tech 2017

# 

2017年4月14日-15日 北京富力万丽酒店

RHIECOX





#### 出品人及主持人:

海滴出行基础平台部 技术总监

创新运维探索



# 基于Mesos/Docker构建企业级SaaS应用 —— Elasticsearch as a Service

马文 去哪儿网opsdev







#### 马文

去哪儿网

平台事业部数据平台研发工程师

#### 分享主题:

基于Mesos/Docker构建 Elasticsearch as a Service



### 主要内容:

- 背景/设计目标 技术调研/选型 细节实现 集群信息汇总与自助配置 自动化部署 监控与报警 日志/marathon事件收集

- 问题&解决





### 背景/设计目标

Elasticsearch需求量暴增带来的交付与维护弊端:

- 传统部署以kvm虚机或实体机为ES节点,需要提前创建虚拟机或申请实体机
- ES运行环境需使用ansible, salt等工具事先部署
- 节点扩容需人力一遍一遍去部署环境
- 集群不易于管理,维护成本高





#### 背景/设计目标

针对上述弊端, 我们制定的几点设计目标:

- 加快集群构建速度
- 快速扩容和快速迁移能力
- ES使用/运维标准化
- 集中的信息展示与良好的用户交互界面





### 背景/设计目标

容器化的私有云平台 Elasticsearch as a service (ESAAS)





### 技术调研

- Elastic Cloud
  - Elastic官方的公有云平台,能够做到ES服务即启即用,横向扩容,自助配置等
- Amazon Elasticsearch Service
  - 基于亚马逊AWS公有云服务的搜索和分析平台, 同Elastic cloud一样,能够提供即启即用的ES服务
- Elasticsearch Framework on Mesos
  - 一个开源的基于Mesos的任务调度框架,每一个executor即为一个ES节点实例,每一个框架即为一个ES集群。功能少,无法配置多角色的节点, 无法提供插件,script等自定义配置等





#### 预期功能点

- 集群统一管理/集中的信息交付
- 集群资源quota限定/集群隔离
- 数据持久化存储/可靠性保障
- 数据节点快速水平/垂直扩容
- 集群/外围插件/script的自助配置
- 集群的发布和配置管理
- 完整的集群/平台监控和报警





#### 技术选型











# 总体结构

| Elasticsearch bamboo dashboar | es2graphite •••••      |
|-------------------------------|------------------------|
| Docker                        |                        |
|                               |                        |
| Elasticsearch Saas            |                        |
| Sub-Marathon Sub-Marathon     | Sub-Marathon • • • • • |
| Marathon                      |                        |
| Mesos                         |                        |
| Node Node Node                | le Node Node           |





### 几个核心问题

- Quota分配
- 集群的隔离
- 服务发现
- •数据可靠性
- 自助化集群配置
- 集中的交付信息展示
- 部署自动化
- 监控与报警





#### 资源分配结构







#### Quota & 资源划定

- Mesos Role & 动态Quota设定
- Root marathon 不做资源设定, 拥有系统全部的资源
- •每一个Sub-marathon都拥有不同的Role
- 自由Sub-marathon享有限定范围内的资源, 并具有逻辑上隔离的 命名空间





# 集群逻辑隔离/划分







# 集群逻辑隔离/划分







# 一个完整的ES集群逻辑结构

Sub-Marathon







#### 单台物理机的结构



- 一个机器上可有多个ES 节点
- 使用不同的端口来区别ES集群





#### 服务发现

使用bamboo + haproxy来实现ES集群内部节点发现:

• bamboo 是一个开源的marathon服务发现工具,通过注册marathon callback来监听marathon事件, 根据配置自动reload haproxy

bamboo + haproxy 内部端口转发示意图:







# 如何解决服务发现

discovery.zen.ping.unicast.hosts: ["<haproxy\_ip>:<haproxy:port>"]







#### 数据可靠性 & 持久化

- Marathon 持久化卷功能, 保证ES节点重启之后能在原机器节点 之上restart
- ES 每个索引至少有一个备份(index.number\_of\_replicas>=1)
- •默认配备hdfs插件,可将数据备份到hdfs上
- 每个宿主(mesos slave)上,同一ES集群的节点数不超过索引备份数 (防止主备分片被分配在同一台机器上面)





#### 自助化配置







#### 集群信息展示&配置





# 自动化部署







#### 定制的Jenkins







### 监控与报警

- pyadvisor 收集docker 容器的指标
- es2graphite 收集ES集群的指标





#### 指标聚合汇总





### 报警设置

- ES集群
  - ES集群状态(非green状态)
  - ES节点GC时间
  - 节点数量
- ESAAS平台
  - ZK相关
  - 节点load
  - 节点磁盘容量





### 日志/事件收集

#### 平台日志分为两个部分:

- 1. Mesos日志 flume + kafka + logstash + elasticsearch + kibana
- 1. ES日志 filebeat + kafka + logstash + elasticsearch + kibana

#### Marathon事件收集:

1. nodejs 收集客户端 + kafka + logstash + elasticsearch + kibana





### 开发中的问题

- Mesos slave重启之后原有task不会原地恢复
  - Slave id会改变, mesos认为是新的slave
  - boot\_id 标识机器是否重启
- Mararhon (1.1.1) 持久化卷bug
  - 宿主持久化目录mount错误
  - 持久化目录不能自定义
  - 只使用持久化特性, 自行挂载数据卷作为持久化卷
- 使用持久化卷特性,mesos slave只能root启动
  - 需要mount数据卷
  - ES/marathon 使用非root用户启动





### 运维中的问题

- 局部资源过热
  - I/O, load, 磁盘
  - 统计分析,标准差来衡量,平衡遵从原则:先手动后自动
- ES的JVM内存
  - 内存管理不是很好, 5.X之前CMS, 之后G1
  - 做好监控&报警,做好规划, 及时扩容
    - Query/Filter Cache
    - Fielddata Cache
    - Index Buffer
  - segment是JVM old memory消耗的主要者
    - 与数据量成正比,定期Force merge (索引越大越不明显)
  - Index.max\_result\_window, size巨大可导致内存被打爆





### 平台规模

- 平台机器数量: 87台服务器
- datanode数据节点机器数量: 79台服务器
- 当前托管的集群数量: 48个
- 当前可存储数据总量: 200TB左右
- 当前覆盖业务线: 30个
- 最大的集群数据量: ~50 T







