Теория СДУ

ПМИ-4

December 14, 2017

Contents

1	Стохастические интегралы	1
	1.1 Винеровский процесс	1
	1.2 Свойства условного среднего	2
	1.3 Стохастический интеграл и стохастичесий дифференциал	3
	1.4 Мартингалы	4
	1.5 Формула Ито	4
	1.6 Многомерный стохастический интеграл	5
2	Многомерная формула Ито	6
3	Стохастические дифференциальные уравнения (СДУ)	6
4	Марковские процессы	10
5	Марковское свойство решения стохастических уравнений 5.1 Уравнение колмогорова, обратное уравнение 5.2 Формула Фейнмана-Каца	11 11 12
6	Генерация марковского процесса	13
	6.1 Вероятностное представление решения задачи Коши для нелинейного	
	параболического уравнения	14
7	Новый раздел, чтобы перезапустить нумерацию 07.09.17 лекция	16
1		
1	1 D	

1.1 Винеровский процесс.

Пусть (Ω, \mathcal{F}, P) - заданное вероятностное пространство.

Случайная величина - это измеримое отображение $\Omega \to \mathcal{R}, \, \{\omega : \xi \, (\omega) \leq x\} \in \mathcal{F}.$

Винеровский процесс $w\left(t\right)$ - это случайный процесс, обладающий следующими свойствами:

- 1. w(0) = 0
- 2. Приращение $\Delta_t w = w\left(t + \Delta t\right) w\left(t\right)$ гауссовская СВ с распределением $\mathcal{N}\left(0, \Delta t\right)$, т.е.

- (a) $E\Delta_t w = 0$
- (b) $E \left| \Delta_t w \right|^2 = \Delta t$
- 3. Приращение $\Delta_t w$ и $\Delta_S w$, где $0 \le s < t$ на непересекающихся интервалах независимы: $E\Delta_t w\Delta_s w = 0$.

Пусть (Ω, \mathcal{F}) - измеримое пространство и μ , ν - вероятностные меры, заданные на нем. Рассмотрим σ - подалгебру \mathcal{H} σ - алгебры \mathcal{F} (сигма-подалгебра: каждое множество из \mathcal{H} лежит в \mathcal{F} , т.е. из того, что мы попадаем в \mathcal{H} мы попадаем в \mathcal{F} , но не наоборот). Тогда условное математическое ожидание случайной величины ξ относительно \mathcal{H} обозначим $E\left[\xi|\mathcal{H}\right]$. Условное математическое ожидание - это \mathcal{H} - измеримая случайная величина, определяемая соотношением

$$\int_{H} E\left[\xi|\mathcal{H}\right] P\left(d\omega\right) = \int_{H} \xi\left(\omega\right) P\left(d\omega\right), \forall H \in \mathcal{H}$$

Пусть μ и ν - две вероятностные меры, определенные на (Ω, \mathcal{F}) и пусть ν абсолютно непрерывна относительно μ (это значит: если $\mu(A) = 0, A \in \mathcal{F}$, то $\nu(A) = 0$. Обозначают это $\nu << \mu$.

Если при этом $\mu << \nu$, то меры называются **эквивалентыми**: $\mu \sim \nu$.

Теорема Радона-Никодима (Р-Н): Если μ, ν - вероятностные меры на (Ω, \mathcal{F}) и $\nu << \mu$, то существует единственная положительная измеримая функция

$$\rho(\omega):\nu(H) = \int_{H} \rho(\omega) \mu(d\omega), \forall H \in \mathcal{F}$$

Функция $\rho(\omega) = \frac{\nu(d\omega)}{\mu(d\omega)}$ (не деление, это такое же деление, как когда пишем производную) называется производной Радона-Никодима (Р-Н).

Возвращаясь к определению условного среднего, рассмотрим меру $\mu(H) = \int_{H} \xi(\omega) P(d\omega)$, $H \in \mathcal{H}$. Эта мера $\mu(H)$ абсолютно непрерывна относительно $P(d\omega)|_{H}$ и ее производная P-H - это $E[\xi|\mathcal{H}]$.

1.2 Свойства условного среднего

- 1. $E\left[\alpha\xi + \beta\eta/\mathcal{H}\right] = \alpha E\left[\xi|\mathcal{H}\right] + \beta E\left[\eta|\mathcal{H}\right]$, где $\alpha, \beta \in \mathcal{R}$.
- 2. $E[\xi|\mathcal{H}] = \xi$ если ξ \mathcal{H} измеримо.
- 3. $E[\xi|\mathcal{H}] = E\xi$
- 4. $E[E[\xi|\mathcal{H}]] = E\xi$
- 5. Рассмотрим σ -подалгебру $\mathcal{F}_0 = \{\emptyset, \Omega\}$, при этом $E\xi \equiv E[\xi|\mathcal{F}_0]$. Пусть $\mathcal{H} \supset \mathcal{H}_1$ подалгебры алгебры \mathcal{F} , тогда $E[E[\xi|\mathcal{H}_1]|\mathcal{H}] = E[\xi|\mathcal{H}_1]$
- 6. $E[\xi \eta | \mathcal{H}] = \eta E[\xi | \mathcal{H}]$ если η \mathcal{H} -измеримая CB.

По идее, отсюда начинается ответ на этот вопрос. Но вся предыдущая теория будет использоваться при оценке свойств стохастического интеграла.

Стохастический интеграл и стохастичесий дифференциал.

Пусть A(s)- \mathcal{F}_s -измеримый случайный процесс, где $\mathcal{F}_s \equiv \mathcal{F}_s^w$ - поток σ -подалгебр, порожденный винеровским процессом.

Рассмотрим разбиение вида:

Предположим, что A(s)- ступенчатая функция и рассмотрим СВ

$$I(A) = \sum_{k=1}^{n} A(s_k) \Delta_{s_k} \omega = \sum_{k=1}^{n} A(s_k) \left[\omega(s_k + \Delta s) - \omega(s_k) \right]$$

Это очень похоже на вычисление площади под графиком.

I(A) называется **стохастическим интегралом** от ступенчатой функции A(s). Его свойства:

1. EI(A). Для того, чтобы вычислить EI(A) воспользуемся свойствами условных средних (св-во 2 усл. сред. и св-во 2 Винеровского процесса)

$$E\sum_{k=1}^{n} A\left(s_{k}\right) \Delta_{s_{k}} \omega = E\left[\sum_{k=1}^{n} E\left(A\left(s_{k}\right) \Delta_{s_{k}} \omega\right) / \mathcal{F}_{s_{k}}\right] = E\left[\sum_{k=1}^{n} A\left(s_{k}\right) E\left[\Delta_{s_{k}} \omega | \mathcal{F}_{s_{k}}\right]\right] = 0$$

2.

$$E |I(A)|^{2} = E \left[\sum A(s_{k}) \Delta_{s_{k}} \omega \right]^{2} =$$

$$E \sum (A(s_{k}) \Delta_{s_{k}} \omega)^{2} + E \left[\sum \sum A(t_{k}) \Delta_{t_{k}} \omega \cdot A(s_{k}) \Delta_{s_{k}} \omega \right]^{2} + E \left[\sum \sum A(s_{k}) \Delta_{s_{k}} \omega \cdot A(s_{j}) \Delta_{s_{j}} \omega \right] =$$

$$= E \sum E \left[[A(S_{k}) \Delta_{s_{k}} \omega]^{2} |\mathcal{F}_{s_{k}}] = E \sum A^{2}(s_{k}) E \left[\Delta_{s_{k}} \omega \right]^{2} |\mathcal{F}_{s_{k}} = E \sum A^{2}(s_{k}) \left[s_{k+1} - s_{k} \right] \right]$$

$$E |I(A)|^{2} = \sum E A^{2}(s_{k}) \Delta_{s_{k}}$$

для ступенчатых функций $I\left(A\right) = \int_{0}^{T} A\left(s\right) dw\left(s\right)$ словами,

 $E\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)\right]=0,\ E\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)\right]^{2}=\int_{0}^{T}EA^{2}\left(s\right)ds$ Построение стохастического интеграла можно продолжить на следующий класс случайных функций \mathcal{H}_{s} , таких что $E\int_{0}^{T}\left(A\left(s\right)-A_{n}\left(s\right)\right)^{2}ds \to 0$ при $n\to\infty$ где $A_{n}\left(s\right)$ - это ступенчатая функция

$$A_{n}\left(s\right) = \begin{cases} A\left(s_{k}\right) & s_{k} \leq s < s_{k+1} \\ 0 & \text{в противном случае} \end{cases}, k = 1, ..., n$$

Для функций из этого класса $I(A) = \lim I_n(A)$ по вероятности.

При этом $EI(A) = 0, E[I(A)]^2 = \int_0^T EA^2(s) ds$

Соответствующий интеграл с переменным верхним пределом определим соотношением

$$\int_{0}^{t} A(s) dw(s) = \int_{0}^{T} I(s \le t) A(s) dw(s)$$

Стохастический интеграл $\int_0^t A(s) dw(s)$, определенный выше, является мартингалом (локальным).

Мартингалы.

Случайный процесс X(t) является \mathcal{F}_{t} - мартингалом, если

$$E\left|X\left(t\right)\right| < \infty, E\left[M\left(T\right)\right|\mathcal{F}_{t}\right] = M\left(t\right)$$

Если $E\left|X\left(t\right)\right|<\infty$ при $t\leq T$, то говорят, что X - локальный мартингал.

Примеры:

№1. Винеровский процесс.

 $E[w(T)|\mathcal{F}_t] = w(t), E[w(T) - w(t) + w(t)|\mathcal{F}_t] = E[w(T) - w(t)|\mathcal{F}_t] + w(t) = w(t).$ Используется свойство приращения Гауссовской величины.

Заметим, что $w\left(t\right)$ - это локальный мартингал, т.к. $E\left|w\left(t\right)\right|^{2}=t$

Заметим, что w(t)- это локальный мартингал, т.к. $E \mid w(t) \mid -t$ **№2.** Стохастический интеграл $\int_0^t A(s) \, dw(s)$ тоже является локальным \mathcal{F}_t - мартингалом: $E \left[\int_0^T A(s) \, dw(s) \mid \mathcal{F}_t \right] = \int_0^t A(s) \, dw(s)$.

Действительно, по аналогии с предыдущим примером $E \left[\left[\int_0^T A(s) \, dw(s) - \int_0^t A(s) \, dw(s) \right] + \int_0^t A(s) \, dw(s) \mid \mathcal{F}_t \right] = \int_0^t A(s) \, dw(s)$ поскольку

$$E\left[\left[\int_{0}^{T}A\left(s\right)dw\left(s\right)-\int_{0}^{t}A\left(s\right)dw\left(s\right)\right]+\int_{0}^{t}A\left(s\right)dw\left(s\right)\left|\mathcal{F}_{t}\right]\right.=\left.\int_{0}^{t}A\left(s\right)dw\left(s\right)\right.$$
 поскольку
$$E\left[\int_{t}^{T}A\left(s\right)dw\left(s\right)\left|\mathcal{F}_{t}\right|\right]=0$$

№3. $w^{2}(t)$ - **не является мартингалом**. Для любого мартингала X(t) справедливо соотношение $E[X(T) - X(t) | \mathcal{F}_t] = 0 (X(T) - X(t))$ - мартингал-разность)

Случайный процесс $w^{2}(t)$ обладает свойством $Ew^{2}(t)=t$, при этом $w^{2}(t)-t$ является \mathcal{F}_{t} - мартингалом и называется **квадратичным мартингалом**.

Формула Ито 1.5

Говорят, что случайный процесс $\xi(t)$ обладает **стохастическим дифференциалом** $d\xi(t) = a(t)dt + A(t)dw(t)$ если с вероятностью 1 справедливо соотношение $\xi(t) =$ $\xi(s) + \int_{s}^{t} a(\vartheta) d\vartheta + \int_{s}^{t} A(\vartheta) dw(\vartheta)$

Пусть $\xi(t)$ - случайный процесс, обладающий стохастическим дифференциалом $d\xi=$ a(t) dt + A(t) dw(t)и f(t,x) - неслучайная функция, дифференцируемая по t и дважды дифференцируепмая по $x \in \mathcal{R}$.

$$a(\vartheta) \in \mathcal{R}, A(\vartheta) \in \mathcal{R}.$$

Тогда случайный процесс $\eta(t) = f(t, \xi(t))$ обладает стохастическим дифференциалом вида

$$d\eta\left(t\right) = \left[\frac{\partial f}{\partial t}\left(t,\xi\left(t\right)\right) + a\left(t\right)\frac{\partial f}{\partial x}\left(t,\xi\left(t\right)\right) + \frac{1}{2}A^{2}\left(t\right)\frac{\partial^{2} f}{\partial x^{2}}\left(t,\xi\left(t\right)\right)\right]dt + \frac{\partial f\left(t,\xi\left(t\right)\right)}{\partial x}A\left(t\right)dw\left(t\right)$$

Доказательство этой формулы основано на формуле Тейлора и свойствах винеровского процесса.

В силу формулы Тейлора $f\left(t+\Delta t,x\left(t+\Delta t\right)\right)=f\left(t,x\left(t\right)\right)+f_{t}'\left(\ldots\right)\Delta t+f_{x}'\left(\ldots\right)\Delta x+$ $\frac{1}{2}f_{x}''(...)\Delta^{2}x+...,\Delta x=x\left(t+\Delta t\right)-x\left(t\right),$ если бы была неслучайная ситуация, то на третьем слагаемом мы бы остановились.

При переходе к стохастическому случаю

$$f(t + \Delta t, \xi(t + \Delta t)) = f(t, \xi(t)) + f'_t(t, \xi(t)) \Delta t + f'_x(t, \xi(t)) \Delta \xi + \frac{1}{2} f''_x(t, \xi(t)) (\Delta \xi(t))^2 + \dots$$

$$\Delta \xi = a(t) \Delta t + A(t) \Delta w$$

$$(\Delta \xi)^2 \sim a^2(t) \Delta t$$

Винеровский процесс обладает свойством: $\Delta w \sim \sqrt{\Delta t}$, мы этим воспользовались Интегральный вид формулы Ито.

Если
$$d\xi = a(t) dt + A(t) dw(t)$$
, то $\eta(t) = f(t, \xi(t))$ удовлетворяет соотношению $f(t, \xi(t)) = f(s, \xi(s)) + \int_{s}^{t} \left[\frac{\partial f}{\partial \vartheta} + a(\vartheta) \frac{\partial f}{\partial x} + \frac{1}{2} A^{2}(\vartheta) \frac{\partial^{2} f}{\partial x^{2}} \right] (\vartheta, \xi(\vartheta)) d\vartheta + \int_{s}^{t} \frac{\partial f(\vartheta, \xi(\vartheta))}{\partial x} A(\vartheta) dw(\vartheta)$

Примеры

Первый пример:

$$\eta(t) = (w(t))^2$$
 $d\xi = dw, f(x) = x^2$
 $a = 0, A = 1$
 $f'(x) = 2x, f''(x) = 2$
Тогда $d\eta = dt + 2w(t) dw(t)$

Из этой формулы следует, что интеграл $\int_0^T w\left(t\right)dw\left(t\right) = \frac{1}{2}w^2\left(T\right) - \frac{T}{2} = \left(w\left(T\right)\right)^2 - \left(w\left(0\right)\right)^2 = T - 0 = 2\int_0^T w\left(t\right)dw\left(t\right)$??? Что означает эта формула Второй пример: $d\xi\left(t\right) = 2\xi\left(t\right)dt + 4tdw\left(t\right), \ f\left(t,x\right) = \left|x\right|^2, \ f_t' = 0, f_x' = 2x, f_x'' = 2$,

a(t) = 2t, A(t) = 4t.

$$d\eta = [2t \cdot 2\xi(t) + 16t^2] dt + 2\xi(t) \cdot 4t dw(t)$$

Третий пример:
$$d\xi = a(t) dt + A(t) dw(t)$$
, $f(t,x) = \exp x$, $f'_x = f''_x = \exp x$,

$$\eta(t) = \exp(\xi(t)) = e^{\dot{\xi}(t)}$$

$$d\eta = \left[exp\left(\xi\left(t\right)\right)a\left(t\right) + \frac{1}{2}A^{2}\left(t\right)exp\left(\xi\left(t\right)\right)\right]dt + \exp\left(\xi\left(t\right)\right)A\left(t\right)dw\left(t\right)$$

 $d\eta = \eta(t) \left[a(t) + \frac{1}{2}A^2(t) \right] dt + \eta(t) A(t) dw(t)$ - линейное стохастическое уравнение. Теперь, мы знаем как его решать: $\exp(\xi(t))$.

$$d\xi = tdt + 5dw(t)$$

$$f(t,x) = \ln x, \ a = t, A = 5, f'_t = 0, f'_x = \frac{1}{x}, f''_x = -\frac{1}{x^2}$$
$$d\eta = \left[t \cdot \frac{1}{\xi(t)} - \frac{25}{2} \frac{1}{\xi^2(t)}\right] dt + \frac{5}{\xi(t)} dw(t)$$

Многомерный стохастический интеграл 1.6

Многомерный винеровский процесс $w(t) \in \mathcal{R}^d$ - это случайный процесс, такой, что его компоненты $w\left(t\right)=\left(w_{1}\left(t\right),w_{2}\left(t\right),...,w_{d}\left(t\right)\right)\,w_{k}\left(t\right)$ - это независимые винеровские процессы (скалярные).

Напомним, что в одномерном случае, $w(t) \in \mathcal{R}$ имеет плотность распределения $f(t,x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$

$$f(t,x) = \frac{1}{(\sqrt{2\pi t})^d} e^{-\frac{||x||^2}{2t}} = \frac{1}{(\sqrt{2\pi t})^d} \prod_{k=1}^d e^{-\frac{x_k^2}{2t}}$$

1.
$$Ew_{i}(t) w_{k}(t) = 0, i \neq k = 1, ..., d$$

2.
$$E||w(t)||^2 = E \sum_{i=1}^{d} (w_i(t))^2 = d \cdot t$$

3.
$$p(t, x, y) = \frac{1}{(\sqrt{2\pi t})^d} e^{-\frac{||y-x||^2}{2t}}$$

Стохастический интеграл: пусть $A\left(t\right)\in\mathcal{R}^{n}\otimes\mathcal{R}^{n}\equiv Matz^{n}$ - ступенчатая функция:

$$A(t)$$

$$\begin{cases} A(t_k) & t_k \le t < t_{k+1} \\ 0 & \text{иначе} \end{cases}$$

Зададим стохастический интеграл соотношением

$$I(A) = \sum A(t_k) \Delta_k w \in \mathcal{R}^n$$

Заметим, что $A\left(t\right)$ - \mathcal{F}_{t}^{w} - измерима. $(x,y)=\sum_{k=1}^{\infty}x_{k}\cdot y_{k}$ - скалярное произведение. Вектор с компонентной l: $(I\left(A\right))_{l}=\sum_{k=1}^{m}\sum_{t}^{t}A_{jl}\Delta_{k}w_{j}$

Пусть $\Delta_k w_j = w_j(t_{k+1}) - w_j(t_k)$. Тогда

 $EI\left(A\right) = E\sum_{k}A\left(t_{k}\right)\Delta_{k}w = E\sum_{k}A\left(t_{k}\right)E\left[\Delta_{k}w/\mathcal{F}_{t_{k}}\right] = 0$, т.к. $A\left(t_{k}\right)$ - измеримая. $E\left(I\left(A\right)^{2}\right) = \sum_{k}AA\Delta_{k}t$ $E\left|\left|I\left(A\right)\right|\right|^{2} = E\left|\left|\sum_{k}A\left(t_{k}\right)\Delta_{k}w\right|\right|^{2}$

$$E ||I(A)||^2 = E ||\sum A(t_k) \Delta_k w||^2$$

При вычислении:

$$E(A(t_k)\Delta_k w, A(t_i)\Delta_i w)$$

Пусть $t_k > t_j$, тогда $= E\left[E\left[A\left(t_k\right)\Delta_k w, A\left(t_j\right)\Delta_j w|F_{t_i}\right]\right]$ Заметим, что:

$$(A(t_k)\Delta_k w, A(t_j)\Delta_j w)=E\sum_j A_{lq}(t_l)\Delta_j w_q$$
 \cdot $E\sum_m A_{lm}(t_k)\Delta_k w_m=E\sum_l \sum_m A_{ml}(t_k)\Delta_k w_m=A_{ql}(t_i)p_j\cdot w_q$ В силу независимости $\Delta_k w_m$ и $\Delta_j w_q$ при $j\neq q$

$$E(I(A))^{2} = \int_{0}^{T} EA^{2}(t) dt$$

$$E$$
 силу независимости $\Delta_k w_m$ и $\Delta_j w_q$ при $E\left(I\left(A\right)\right)^2 = \int_0^T EA^2\left(t\right) dt$ $E\sum \left|A_{ml}\left(t_k\right)\Delta_k w_m\right|^2$??? Что это значит $A^2 = AA^T$

$$A^2 = AA^T$$

 $A_{ml}(t_k) A_{lq} \Delta_k w_m \Delta_k w_q$

$$A_{ml}A_{lm}=TrA^2$$
 , где $TrA=\sum_{i=1}^n B_{ii}$

 $A_{ml}A_{lm}=TrA^2$, где $TrA=\sum_{i=1}^n B_{ii}$ Класс интегрируемых функций - это матричные функции $A\left(t\right)$ такие, $E \int_0^T TrA^2(\tau) \Delta \tau < \infty$

Случайный процесс $\xi\left(t
ight)\in\mathcal{R}^{n}$ имеет **стохастический дифференциал**

$$d\xi = a(t) dt + A(t) dw(t)$$
(1.1)

где $w(t) \in \mathcal{R}, a(t) \in \mathcal{R}^n, A(t) \in Matr^n$ если с вероятностью 1 справедливо равенство

$$\xi(t) = \xi(s) + \int_{s}^{t} a(\vartheta) d\vartheta + \int_{s}^{t} A(\vartheta) dw(\vartheta)$$
(1.2)

Многомерная формула Ито 2

Пусть $\xi(t)$ имеет стохастический дифференциал вида (1) и $f(t,x) \in \mathcal{R}, t \in [0,T], x \in \mathcal{R}^n$ - это диференцируемая на t и дважды дифференцируемая по x скалярная функция Тогда случайный процесс $\eta(t) = f(t, \xi(t))$ имеет стохастический дифференциал вида

$$d\eta = \left[\frac{\partial f}{\partial t} + \sum_{i=1}^{n} a_{i}(t) \frac{\partial f}{\partial x_{i}} + \sum_{i,k,j} A_{ik}(t) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} A_{kj}(t)\right] (t, \xi(t)) dt + \sum_{i,k} \frac{\partial f}{\partial x_{i}} A_{x_{i}}(t) dw_{k}(t)$$
Пусть $\nabla f(x) = \left(\frac{\partial f}{\partial x_{1}}, ..., \frac{\partial f}{\partial x_{n}}\right), f''(x) = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i,j=1}^{n}$

$$(2.1)$$

Тогда формулу (3.3) можно переписать в виде

$$d\eta = \left[\frac{\partial f(t,\xi(t))}{\partial t} + (a(t),\nabla f(t,\xi(t))) + \frac{1}{2}TrA(t)f''(t,\xi(t))A^{T}(t)\right]dt + (\nabla f,A(t))dw(t)$$
(2.2)

05.10.17

3 дифференциальные Стохастические уравнения (СДУ)

Пусть a(t,x) и A(t,x) - заданные функции.

Пусть (Ω, \mathcal{F}, P) - заданное вероятностное пространство и w(t) - стандартный винеровский процесс.

Рассмотрим СДУ вида

$$d\xi = a(t, \xi(t)) dt + A(t, \xi(t)) dw(t)$$
(3.1)

Заметим, что a(t,x) и A(t,x) могут быть случайными, но тогда мы будем предполагать, что они F_t^w - измеримы.

Мы будем решать задачу Коши для СДУ (3.1) с условиями

$$\xi(s) = x \in \mathcal{R}$$
 (или $\xi(s) = \xi_0 - F_s$ – измерима) (3.2)

Будем говорить, что процесс $\xi(t)$ является решением (3.1), (3.2) если с вероятностью 1 справедливо равенство

$$\xi(T) = \xi(s) + \int_{s}^{T} a(\vartheta, \xi(\vartheta)) d\vartheta + \int_{s}^{T} A(\vartheta, \xi(\vartheta)) dw(\vartheta)$$
(3.3)

Рассмотрим уравнение

$$\xi(t) = x + \int_{s}^{t} a(\vartheta, \xi(\vartheta)) d\vartheta + \int_{s}^{t} A(\vartheta, \xi(\vartheta)) dw(\vartheta)$$
(3.4)

Сформулируем необходимое и достаточное условие существования решения уравнения (3.4). Будем говорить, что выполнено условие У1, если справедливы оценки:

$$\left|a\left(t,x\right)\right|^{2}+\left|A\left(t,x\right)\right|^{2}\leq C\left[1+\left|x\right|^{2}\right]$$

$$\left|a\left(t,x\right)-a\left(t,y\right)\right|^{2}+\left|A\left(t,x\right)-A\left(t,y\right)\right|^{2}\leq L\left|x-y\right|^{2}$$

$$C,L-$$
 неслучайные постоянные

При этом оценки выполняются либо с вероятностью 1, либо в среднем квадратичном. Теорема 3.1: Пусть коэффициенты (3.1) (3.2) (или 3.4) удовлетворяют условию У1. Тогда существует единственное решение $\xi(t) = \xi_{s,x}(t)$

Доказательство: Построим систему последовательных приближений:

$$\xi^{1}\left(t\right)=x+\int_{s}^{t}a\left(\vartheta,x\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,x\right)dw\left(\vartheta\right)$$

$$\xi^{2}\left(t\right)=x\int_{s}^{t}a\left(\vartheta,\xi^{1}\left(\vartheta\right)\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,\xi^{1}\left(\vartheta\right)\right)dw\left(\vartheta\right)$$
 Общий вид:
$$\xi^{n}\left(t\right)=x+\int_{s}^{t}a\left(\vartheta,\xi^{n-1}\left(\vartheta\right)\right)d\vartheta+\int_{s}^{t}A\left(\vartheta,\xi^{n-1}\left(\vartheta\right)\right)dw\left(\vartheta\right)$$
 Обозначим
$$\mathcal{H}_{T}^{2}=\left\{\xi\left(\vartheta\right),0\leq\vartheta\leq T:\sup_{\vartheta}E\xi^{2}\left(\vartheta\right)<\infty\right\}$$
 Наша цель показать, что
$$\xi^{n}\in\mathcal{H}_{T}^{2}$$
 и существует единственный предел
$$\lim_{n\to\infty}\xi^{n}\left(t\right)=\xi\left(t\right),$$

удовлетворяющий (3.4).

Для доказательства единственности решения уравнения (5.4) воспользуемся леммой Гронуолла.

Пусть $\alpha(t)$ - положительная функция, удовлетворяющая Лемма Гронуолла: неравенству

$$\alpha(t) \le A + \int_0^t B\alpha(\tau) d\tau \tag{3.5}$$

Тогда

$$\alpha\left(t\right) \le Ae^{Bt} \tag{3.6}$$

Доказательство леммы: проитерируем оценку
$$\alpha\left(t\right) \leq A + \int_0^t B\left[A + \int_0^\tau B\alpha\left(\vartheta\right)d\vartheta\right]d\tau = A + ABt + \int_0^t \int_0^\tau B\alpha\left(\vartheta\right)d\vartheta d\tau \leq \alpha\left(t\right) \leq A\left(1 + Bt\right) + B\int_0^t \int_0^\tau \left[A + \int_0^{\vartheta_1} B\alpha\left(\vartheta\right)\right]d\vartheta d\tau \dots$$

$$= A\left(1 + Bt + B + B^2 \int \int \int \dots\right)$$

$$\int_0^t \int_0^\tau d\vartheta d\tau = \int_0^t \tau d\tau = \frac{t^2}{2}$$

Повторяя эти оценки, мы получим неравенство

$$\alpha\left(t\right) \leq A\left[1 + Bt + B^{2}\frac{t^{2}}{2!} + \dots + B^{n}\frac{t^{n}}{n!} + \dots\right] = Ae^{Bt}$$

Замечание: аналогично доказывается, что если $\alpha\left(t\right)\leq A+\int_{0}^{t}B\left(\tau\right)\alpha\left(\tau\right)d\tau$, то $\alpha\left(t\right)\leq Ae^{\int_{0}^{t}B\left(\tau\right)d\tau}$

Вернемся к доказательству теоремы 5.1:

Для того, чтобы доказать единственность, мы предположим обратное, т.е. пусть существует 2 решения уравнения (5.4) $\xi(t)$ и $\eta(t)$.

Оценим разность

$$\alpha\left(t\right) = E\left|\xi\left(t\right) - \eta\left(t\right)\right|^{2} = E\left\{\int_{0}^{t} \left[a\left(\vartheta, \xi\left(\vartheta\right)\right) - a\left(\vartheta, \eta\left(\vartheta\right)\right)\right] d\vartheta + \int_{0}^{t} \left[A\left(\vartheta, \xi\left(\vartheta\right)\right) - A\left(\vartheta, \eta\left(\vartheta\right)\right)\right] dw\left(\vartheta\right)\right\}^{2} d\vartheta\right\}$$

??? Почему интегралы от 0 а не от s?

Воспользуемся тем, что $|(c,b)|^2 \le |c|^2 |b|^2$, тогда $\left[\int_0^t 1 \cdot a(\tau) d\tau\right]^2 \le \int_0^t 1^2 d\tau \int_0^t a^2(\tau) d\tau = t \int_0^t a^2(\tau) d\tau$,

Для второго слагаемого применим свойство $E\left|\int_0^t A\left(\tau\right)dw\left(\tau\right)\right|^2 \leq \int_0^t EA^2\left(\tau\right)d\tau$. Эта формула определена в конце третьей страницы. Также воспользуемся тем, что $|a+b|^2 \leq 2a^2 + 2b^2$

$$\alpha\left(t\right) \leq 2t \int_{0}^{t} E\left|a\left(\vartheta,\xi\left(\vartheta\right)\right) - a\left(\vartheta,\eta\left(\vartheta\right)\right)\right|^{2} d\vartheta + 2 \int_{0}^{t} E\left[A\left(\vartheta,\xi\left(\vartheta\right)\right) - A\left(\vartheta,\eta\left(\vartheta\right)\right)\right]^{2} d\vartheta$$

Используя условие У1 мы получим

$$\alpha(t) \leq 2 \int_0^t E\left[t \left|a\left(\vartheta, \xi\left(\vartheta\right)\right) - a\left(\vartheta, \eta\left(\vartheta\right)\right)\right|^2 + \left|A\left(\vartheta, \xi\left(\vartheta\right)\right) - A\left(\vartheta, \eta\left(\vartheta\right)\right)\right|^2\right] d\vartheta$$

$$\alpha(t) \leq 2 \int_0^t E\left[tL \left|\left|\xi\left(\vartheta\right) - \eta\left(\vartheta\right)\right|\right|^2 + L \left|\left|\xi\left(\vartheta\right) - \eta\left(\vartheta\right)\right|\right|^2\right] d\vartheta =$$

$$= 2L\left(t+1\right) \int_0^t E\left|\left|\xi\left(\vartheta\right) - \eta\left(\vartheta\right)\right|\right|^2 d\vartheta$$

 $lpha\left(t
ight)=2L\left(t+1
ight)\int_{0}^{t}lpha\left(artheta
ight)dartheta$. В силу леммы Гронуолла получим соотношение $E\left|\left|\xi\left(t
ight)-\eta\left(t
ight)
ight|
ight|^{2}=0$

Доказано

Для доказательства существования решения рассмотрим последовательные приближения

приближения
$$\xi^{n+1}\left(t\right) = x + \int_{s}^{t} a\left(\vartheta, \xi^{n}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A\left(\vartheta, \xi^{n}\left(\vartheta\right)\right) dw\left(\vartheta\right)$$

$$\xi^{n+2}\left(t\right) = x + \int_{s}^{t} a\left(\vartheta, \xi^{n+1}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A\left(\vartheta, \xi^{n+1}\left(\vartheta\right)\right) dw\left(\vartheta\right) \text{ и оценим}$$

$$E\left|\xi^{n+2}\left(t\right) - \xi^{n+1}\left(t\right)\right|^{2} \leq L\left(t+1\right) \int_{0}^{t} E\left|\xi^{n+1}\left(\vartheta\right) - \xi^{n}\left(\vartheta\right)\right|^{2} d\vartheta \leq L\left(t+1\right) \int_{0}^{t} \int_{0}^{\vartheta} L\left(\vartheta + 1\right) E\left|\xi^{n}\left(\vartheta\right) - \xi^{n-1}\left(\vartheta\right)\right|^{2} d\vartheta \leq ... \leq \frac{\left|L\left(t+1\right)\right|^{n}}{n!} \leq ...$$
 Первое неравенство - мы применяем формулу разобранную в доказательстве единства

Первое неравенство - мы применяем формулу, разобранную в доказательстве единства решения (там $\alpha(t)$ было МО разности двух решений, здесь - разность последовательных приближений к решению). При этом от шага n+2 и n+1 мы переходим к шагам n+1 и n соответственно. Повторяя этот процесс многократно, мы сводим этот интеграл к дроби. Дальше мы устремляем количество последовательных решений к бесконечности и получаем, что $\lim_{n\to\infty} \frac{[L(t+1)]^n}{n!} = 0$. При этом предельная функция (предельный процесс) удовлетворяет оценке $E ||\xi(t)||^2 < \infty$

Чтобы это показать, применим неравенство $|a+b+c|^2 \le 3\left(|a|^2+|b|^2+|c|^2\right)$???

Почему тройка только перед $||\mathbf{x}||$ $E ||\xi(t)||^2 \le 3 ||\mathbf{x}||^2 + t \int_0^t E |a(\vartheta, \xi(\vartheta))|^2 d\vartheta + \int_0^t E |A(\vartheta, \xi(\vartheta))|^2 d\vartheta$

 $\frac{1}{E|\xi(t)|^{2}} \le 3|x|^{2} + L(t+1) \int_{0}^{t} C[1+\xi^{2}(\tau)] d\tau \le [3|x|^{2} + LC(t+1)t] + \int_{0}^{t} CE|\xi(\tau)|^{2} d\tau \le (1+t)^{2} + LC(t+1) + LC($ $\leq \left[3\left|x\right|^{2} + LC\left(t+1\right)t\right]e^{Ct}$ в силу Леммы Гронуолла и $\sup E\left|\xi\left(t\right)\right|^{2} < \infty$

Свойства решений СДУ.

№1. Рассмотрим СДУ

$$d\xi(t) = a(\xi(t)) dt + A(\xi(t)) dw(t)$$
(3.7)

и покажем, что его решение непрерывно по начальным данным.

Напомним, что
$$\xi_{s,x}(t) = x + \int_s^t a\left(\xi_{s,x}(\vartheta)\right) d\vartheta + A\left(\xi_{s,x}(\vartheta)\right) dw\left(\vartheta\right)$$
 Оценим разность ??? Тот же вопрос с тройками
$$E\left|\xi_{s,x}(t) - \xi_{s,y}(t)\right|^2 \leq 3\left|x - y\right|^2 + (t - s)\int_s^t E\left|a\left(\xi_{s,x}(\vartheta)\right) - a\left(\xi_{s,y}(\vartheta)\right)\right|^2 d\vartheta + \int_s^t E\left|A\left(\xi_{s,x}(\vartheta)\right) - A\left(\xi_{s,y}(\vartheta)\right)\right|^2 d\vartheta$$

$$\left|\xi_{s,x}\left(t\right) - \xi_{s,y}\left(t\right)\right|^{2} = \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta + \left[\left[x - y\right] + \int_{s}^{t} a\left(\xi_{s,x}\left(\vartheta\right)\right) - a\left(\xi_{s,y}\left(\vartheta\right)\right)\right] d\vartheta$$

 $\int_{s}^{t} \left[A\left(\xi_{s,x} \left(\vartheta \right) \right) - A\left(\xi_{s,y} \left(\vartheta \right) \right) dw \right]^{2}$

 $=3\left(x-y
ight)^{2}+3\left(t-s+1
ight)\int_{s}^{t}EL\left|\xi_{s,x}\left(\vartheta
ight)-\xi_{s,y}\left(\vartheta
ight)
ight|^{2}d\vartheta$ в силу леммы Гронуолла \leq $3(x-y)^2 e^{kT}, k = 3(t-s+1)L, 0 < s < t < T$

№2. Гладкость решений СДУ.

Пусть $\xi_{s,x}(t)$ - это решение (3.4). Обозначим $\frac{\partial}{\partial x}\xi_{s,x}(t) = \lim_{\Delta x \to 0} \frac{\xi_{s,x+\Delta}(t) - \xi_{s,x}(t)}{\Delta x}$, где предел понимается в среднеквадратичном.

При этом процесс $\eta(t) = \frac{\partial}{\partial x} \xi_{s,x}(t)$ удовлетворяет СДУ

$$d\eta(\vartheta) = a'_{x}(\xi(\vartheta))\eta(\vartheta)d\vartheta + A'_{x}(\xi(\vartheta))\eta(\vartheta)dw(\vartheta)$$
(3.8)

Таким образом, если коэффициент a(x) и A(x) к раз дифференцируемы, k=1,2,...,то решения $\xi_{s,x}(t)$ уравнения (3.4) тоже k раз дифференцируемы.

Если a'(x) и A'(x)- ограниченные, то уравнение (3.8) определено корректно, т.е. его коэффициенты удовлетворяют У1.

Обозначим $\gamma\left(t\right) = \frac{\partial^{2}\xi_{s,x}(t)}{\partial x^{2}}$

Формально, мы получим, что $\gamma\left(t\right)$ удовлетворяет СДУ

$$d\gamma(t) = a'_{x}(\xi_{s,x}(\vartheta))\gamma(\vartheta) d\vartheta + A'_{x}(\xi_{s,x}(\vartheta))\gamma(\vartheta) dw(\vartheta) + a''_{x}(\xi(\vartheta))\eta(\vartheta) d\vartheta + A''(\xi_{s,x}(\vartheta))\eta^{2}(\vartheta) dw(\vartheta)$$

$$(3.9)$$

Решение уравнения (3.8) имеет вид

$$\eta(t) = \exp\left[\int_{s}^{t} a'\left(\xi_{s,x}\left(\vartheta\right)\right) d\vartheta + \int_{s}^{t} A'\left(\xi_{s,x}\left(\vartheta\right)\right) dw\left(\vartheta\right) - \frac{1}{2} \int_{s}^{t} \left[A'\left(\xi_{s,x}\left(\vartheta\right)\right)\right]^{2} d\vartheta\right]$$

19.10.17

$$d\xi = a(\xi(t)) dt + A(\xi(t)) dw(t)$$

$$\xi(s) = x, \, \eta(t) = u(t, \xi(t))$$

$$d\eta\left(t\right) = \left[\frac{\partial u(t,\xi(t))}{\partial t} + a\left(\xi\left(t\right)\right)\frac{\partial u(t,\xi(t))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(t\right)\right)\frac{\partial^{2}u(t,\xi(t))}{\partial x^{2}}\right]dt + \frac{\partial u(t,\xi(t))}{\partial x}A\left(\xi\left(t\right)\right)dw\left(t\right) = du\left(t,\xi\left(t\right)\right)$$

Рассмотрим уравнение в частных производных $\frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} = 0$ с граничным условием $u\left(T,x\right)=u_{0}\left(x\right),s\leq t\leq T$

Проинтегрируем $d\eta\left(t\right)$ от s до T $u\left(T,\xi\left(T\right)\right)-u\left(s,x\right)=\int_{s}^{T}\left[...\right]dt+\int_{s}^{T}\frac{\partial u}{\partial x}\left(t,\xi\left(t\right)\right)A\left(\xi\left(t\right)\right)d\omega\left(t\right)$ - формула Ньютона-Лейбница

$$Eu_0\left(\xi\left(T\right)\right) - u\left(s, x\right) = 0$$

Математическое ожидание стохастического процесса равно нулю. Дисперсия равна au. $u(s,x) = Eu_0(\xi(T))$

$$\frac{\partial u}{\partial s} + a\left(x\right) \frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right) \frac{\partial^{2} u}{\partial x^{2}} = f\left(x\right)$$

$$\left[\frac{\partial u(t,\xi(t))}{\partial t} + a\frac{\partial u(t,\xi(t))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(t\right)\right) \frac{\partial^{2} u(t,\xi(t))}{\partial x} + f\left(\xi\left(t\right)\right) - f\left(\xi\left(t\right)\right)\right] dt + \frac{\partial u(t,\xi(t))}{\partial x}A\left(\xi\left(t\right)\right) dw\left(t\right) = d\eta\left(t\right) = du\left(t,\xi\left(x\right)\right)$$

 $u\left(s,x
ight)=E\left[u_{0}\left(\xi\left(T
ight)
ight)-\int_{s}^{T}f\left(\xi\left(t
ight)
ight)dt\right]$??? Почему, откуда появилось второе слагаемое с интегралом

Пример:

$$\begin{split} &d\xi = \sin\left(\xi\left(t\right)\right)dt + \cos\xi\left(t\right)dw\left(t\right)\\ &\xi\left(s\right) = x\\ &f\left(t,x\right) = t\sin x\\ &\frac{\partial f}{\partial x} = t\cos x, \ \frac{\partial^2 f}{\partial x^2} = -t\sin x\\ &d\eta = \sin x + \sin\left(\xi\left(t\right)\right)t\cos x - \frac{1}{2}cos^2\left(\xi\left(t\right)\right)t\sin x = 0\\ &??? \ \text{Разве не } d\eta = \left[\sin\xi\left(t\right) + \sin\left(\xi\left(t\right)\right)t\cos x - \frac{1}{2}cos^2\left(\xi\left(t\right)\right)t\sin x\right]dt + t\cos^2\xi\left(t\right)dw\left(t\right) \end{split}$$

$$d\eta = \sin x + \sin(\xi(t)) t \cos x - \frac{1}{2} \cos^2(\xi(t)) t \sin x = 0$$
???? Разве не $d\eta = \left[\sin \xi(t) + \sin(\xi(t)) t \cos x - \frac{1}{2} \cos^2(\xi(t)) t \sin x\right] dt + t \cos^2 \xi(t) dw(t)$

4 Марковские процессы

Случайный процесс называется марковским относительно потока σ -аглебр \mathcal{F}_t , если справедливо соотношение:

$$E[f(\xi(T))|\mathcal{F}_t] = E[f(\xi(T))|\xi(t)]$$

для любой измеримой ограниченной функции f(x), $0 \le t \le T$.

С каждым марковским процессом связана его переходная вероятность $p(s, x, t, G) = P\{\xi(t) \in G | \xi(s) = x\}, G \in \mathcal{R}, G = [a; b)$

В терминах переходной вероятности, марковское свойство описывается уравнением Чепмена-Колмогорова

$$p(s, x, t, G) = \int_{-\infty}^{\infty} p(s, x, \vartheta, dz) p(\vartheta, z, t, G)$$

Если $P(s, x, t, G) = \int_G p(s, x, t, y) dy$, то уравнение Чепмена-Колмогорова имеет вид:

$$p(s, x, t, y) = \int_{-\infty}^{\infty} p(s, x, \vartheta, z) p(\vartheta, z, t, y) dz$$

Каждый марковский процесс порождает **эволюционное семейство**, действующее в пространстве V измеримых ограниченных функций.

$$u(s,t) f(x) = \int_{-\infty}^{\infty} f(y) p(s,x,t,y) dy$$

Эволюционное свойство $u\left(s,t\right)$ т.е. равенство $u\left(s,t\right)=u\left(s,\vartheta\right)u\left(\vartheta,t\right)$ следует из уравнения Ч-К.

Действительно:

 $u\left(s,t\right)f\left(x
ight)=\int_{-\infty}^{\infty}f\left(y
ight)p\left(s,x,t,y
ight)dy=\int_{-\infty}^{\infty}f\left(x
ight)\left[\int_{-\infty}^{\infty}p\left(s,x,\vartheta,z
ight)p\left(\vartheta,z,t,y
ight)dz\right]dy$ =изменяем порядок интегрирования, $u\left(\vartheta,t\right)f\left(z\right)=\phi\left(z\right)$, далее

$$= \int_{-\infty}^{\infty} p(s, x, \vartheta, z) \left[\int_{-\infty}^{\infty} f(y) p(\vartheta, z, t, y) dy \right] dz = \int_{-\infty}^{\infty} p(s, x, \vartheta, z) (u(\vartheta, t) f) (z) dz = \int_{-\infty}^{\infty} p(s, x, \vartheta, z) \phi(z) dz = u(s, \vartheta) \phi(z) = u(s, \vartheta) u(\vartheta, t) f(x)$$

Генератор эволюционного семейства $u\left(s,t\right)$ - это оператор A, задаваемый соотношением:

 $\lim_{\Delta_s \to 0} \frac{u(s, s + \Delta s) - I}{\Delta s} f(x) = Af(x), I$ - единичный оператор.

Генератор марковского процесса - это оператор L, задаваемый соотношением $\lim_{\Delta s \to 0} \frac{Ef(\xi_{s,x}(s+\Delta s)) - f(x)}{\Delta s} = Lf(x)$

Если $u\left(s,t\right)f\left(x\right)=\int_{-\infty}^{\infty}f\left(y\right)p\left(s,x,t,y\right)dy$, т.е. $u\left(s,t\right)$ порожден марковским процессом $\xi\left(t\right)$ с плотностью переходной вероятности $p\left(s,x,t,y\right)$, то Af=Lf на области их определения.

5 Марковское свойство решения стохастических уравнений

Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x$$
(5.1)

Мы будем предполагать, что функции a(x), A(x) неслучайные и удовлетворяют условию теоремы существования и единства решения СДУ.

Теорема 5.1 Пусть a(x), A(x) неслучайны и существует решение $\xi_{s,x}(t)$ задачи (5.1). Тогда $\xi_{s,x}(t)$ - марковский процесс.

Доказательство:

Рассмотрим случайный процесс

$$\xi(t) = x + \int_{s}^{t} a(\xi(\vartheta)) d\vartheta + \int_{s}^{t} A(\xi(\vartheta)) dw(\vartheta) = \xi(\tau) + \int_{\tau}^{s} a(\xi(\vartheta)) d\vartheta + \int_{\tau}^{t} A(\xi(\vartheta)) dw(\vartheta).$$
 Это равенство вытекает из единственности решения (5.1)

Процесс $\xi_{\tau,\eta}(t)$, $\eta=\xi(\tau)$ можно представить в виде функции, зависящей от двух переменных ω и ω_1 , где $\omega=\eta(\tau)$ и ω_1 поражден стохастическим и обыкновенным интегралом.

В силу свойств стохастических интегралов, ω и ω_1 независимые.

Пусть $\xi(t) = g(\omega, \omega_1)$. g можно представить в виде: $g(\omega, \omega_1) = \sum_{k=0}^{\infty} \phi_k(\omega) \psi_k(\omega_1)$

Используя это свойство можно показать, что в любой измеримой ограниченно функции f(x) справедливо равенство $Ef(\xi(T)|\mathcal{F}_{\tau}) = Ef(\xi(T)|\xi(\tau))$, т.е. $\xi(t)$ - это марковский процесс.

5.1 Уравнение колмогорова, обратное уравнение

Пусть $\xi(t)$ - решение уравнения (5.1) со случайными коэффициентами. Рассмотрим функцию $u(s,x) = Ef(\xi_{s,x}(T))$ и выведем уравнение, которому она удовлетворяет.

С учетом того, что $u(s,x) = Ef(\xi_{s,x}(T)) = \int f(y) p(s,x,T,y) dy$, вычислим:

$$u\left(s + \Delta s, x\right) - u\left(s, x\right) = \int f\left(y\right) p\left(s + \Delta s, x, T, y\right) dy - \int f\left(y\right) p\left(s, x, T, dy\right) \tag{5.2}$$

Воспользуемся уравнением Ч-К

$$p\left(s,x,T,y\right) = \int p\left(s,x,s+\Delta s,z\right) p\left(s+\Delta s,z,T,y\right) dy$$
 Из (5.2) получим:

$$u\left(s+\Delta s,x\right)-u\left(s,x\right)=\int f\left(y\right)p\left(s+\Delta s,x,T,y\right)dy-\int f\left(y\right)\int p\left(s,x,s+\Delta s,z\right)\cdot p\left(s+\Delta s,z,T,y\right)dzdy \tag{5.3}$$

Поскольку

```
\int f(y) \, p(s + \Delta s, z, T, y) = u(s + \Delta s, z) то из (5.3) следует, что и u(s + \Delta s, x) - u(s, x) = 0
 \int f(y) p(s + \Delta s, x, T, y) dy - \int u(s + \Delta s, z) p(s + \Delta s, z, T, y) dz
        Таким образом u\left(s+\Delta s,x\right)-u\left(s,x\right)=E\left\{u\left(s+\Delta s,\xi_{s+\Delta s,x}\left(t\right)\right)-u\left(s+\Delta s,\xi_{s+\Delta s,\xi\left(s+\Delta s\right)}\left(T\right)\right)\right\}
??? Почему
        Перепишем полученные соотношения в следующем виде.
                                                                                                                                                                                   Напомним,
u\left(s,x\right) \hspace{2mm} = \hspace{2mm} \int f\left(y\right) p\left(s,x,s+\Delta s,y\right) dy \hspace{2mm} = \hspace{2mm} \int f\left(y\right) \int p\left(s,x,\vartheta,z\right) p\left(\vartheta,z,s+\Delta s,y\right) dy dz \hspace{2mm} = \hspace{2mm} \int f\left(y\right) \int p\left(s,x,\vartheta,z\right) p\left(\vartheta,z,s+\Delta s,y\right) dy dz
Eu\left(s,\xi_{s,x}\left(s+\Delta s\right)\right)
        u\left(s+\Delta s,x\right)-u\left(s,x\right)=u\left(s+\Delta s,x\right)-E\left[u\left(s+\Delta s,\xi_{s,x}\left(s+\Delta s\right)\right)\right]
        Используя формулу Ито, получим
        \lim_{\Delta s \to 0} \frac{u(s + \Delta s, x) - u(s, x)}{\Delta s} = \frac{\partial u}{\partial s} = -\left[a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^2\left(x\right)\frac{\partial^2 u}{\partial x^2}\right] В квадртаной скобке находится
слагаемое перед ds в формуле Ито.
        Таким образом, функция u\left(s,x\right)=Ef\left(\xi_{s,x}\left(T\right)\right) удовлетворяет задаче Коши \frac{\partial u}{\partial s} +
a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} = 0, \ u\left(T,x\right) = f\left(x\right)
        Пример:
        d\xi = 3f(\vartheta) d\vartheta + sin(\xi(\vartheta)) dw, \xi(s) = x, f(x)
       u\left(s,x\right) = Ef\left(\xi_{s,x}\left(T\right)\right) \frac{\partial u}{\partial s} + 3x\frac{\partial u}{\partial x} + \frac{1}{2}sin^{2}x\frac{\partial^{2}u}{\partial x^{2}} = 0 , Другой вариант: \frac{\partial u}{\partial s} + 4x\frac{\partial u}{\partial x} - 9x^{2}\frac{\partial^{2}u}{\partial x^{2}} = 0 u\left(T,x\right) = sinx
        Написать вероятностное представление:
        d\xi = 4\xi(\vartheta) d\vartheta + 3\sqrt{2}\xi(\vartheta) du
        u(s,x) = Esin(\xi_{s,x}(T))
        Пример:
        N_{\theta}1. d\xi = \sqrt{3}sin(\xi(\theta)) + \sqrt{2}cos(3\xi(\theta))dw(\theta)
        \xi(s) = x
        f(x) = \cos x
        u\left(s,x\right) = E\cos\left(\xi_{s,x}\left(T\right)\right)
        a(\xi(\vartheta)) = \sqrt{3}\sin(\xi(\vartheta)), \ a(x) = \sqrt{3}\sin x
        A\left(\xi\left(\vartheta\right)\right) = \sqrt{2}\cos\left(3\xi\left(\vartheta\right)\right), A\left(x\right) = \sqrt{2}\cos3x
\frac{\partial u}{\partial s} + \sqrt{3}\sin x \frac{\partial u}{\partial x} + \cos^2 3x \frac{\partial^2 u}{\partial x^2} = 0
        u(T,x) = \cos x
        \frac{\overline{\partial u}}{\partial s} + \overline{\sin(x)} \frac{\overline{\partial u}}{\partial x} + \frac{1}{2} \cos^2(x) \frac{\partial^2 u}{\partial x^2} = 0
u(T, x) = 2 \sin x, \ u(s, x) = Ef(\xi_{s, x}(T))
        d\xi = \sin(\xi(\vartheta)) d\vartheta + \cos(\xi(\vartheta)) dw\vartheta
```

5.2 Формула Фейнмана-Каца

Рассмотрим задачу Коши

 $u\left(s,x\right) = E2sin\left(\xi_{s,x}\left(T\right)\right)$

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u = 0, u(T, x) = f(x)$$
(5.4)

Нужно построить вероятностное представление решения этой задачи. Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta)$$
(5.5)

$$d\eta = c\left(\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)d\vartheta\tag{5.6}$$

$$\xi\left(s\right) = x, \eta\left(s\right) = 1$$

и функцию $u\left(s,x\right)$ вида

$$u(s,x) = E\left[\eta(T) f\left(\xi_{s,x}(T)\right)\right] \tag{5.7}$$

Покажем, что $u\left(s,x\right)$ вида (5.7) удовлетворяет (5.4)

Примечание: $\eta\left(s+\Delta s\right)=\exp\int_{s}^{s+\Delta s}c\left(\xi\left(a\right)\right)d\vartheta$??? Здесь $\eta\left(t\right)$ - верхний предел зависит от аргумента. Может быть $\eta\left(t\right)=\int_{s}^{t}...$ а не \int_{s}^{T}

Заметим, что процесс $\eta(t)$ имеет вид $\eta(t) = \exp \int_s^T c(\xi(\vartheta)) d\vartheta$ и вычислим $u(s+\Delta s,x)-u(s,x)$??? Здесь $\eta(t)$ - интеграл с T в качестве верхнего предела, см. предыдущий вопрос

$$u\left(s + \Delta s, x\right) - u\left(s, x\right) =$$

Рассмотрим

$$u(s,x) = E\eta(s + \Delta s) f(\xi_{s,x}(s + \Delta s))$$

Тогда $u\left(s+\Delta s,x\right)-u\left(s,x\right)=u\left(s+\Delta s,x\right)-E\eta\left(s+\Delta s\right)+f\left(\xi_{s,x}\left(s+\Delta s\right)\right)$??? Почему +, а не умножение

Рассмотрим разность $E\left[\eta\left(s+\Delta s\right)-\eta\left(s\right)\right]f\left(\xi_{s,x}\left(s+\Delta s\right)\right)$ + $E\left[\eta\left(s\right)f\left(\xi_{s,x}\left(s+\Delta s\right)\right)-f\left(x\right)\right]$??? Правильно ли расставлены скобки = $E\left[e^{\int_{s}^{s+\Delta s}c(\xi(\vartheta))d\vartheta}-1\right]f\left(\xi_{s,x}\left(s+\Delta s\right)\right)+E\left[f\left(\xi_{s,x}\right)-f\left(x\right)\right]$

Таким образом

$$\lim_{\Delta s \to 0} \frac{u(s + \Delta s, x) - u(s, x)}{\Delta s} = \frac{\partial u}{\partial s} = -\left(c\left(x\right)u + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2} u}{\partial x^{2}}\right)$$

Отсюда вытекает, что $u\left(s,x\right)=Ee^{\int_{s}^{T}c\left(\xi\left(\vartheta\right)\right)d\vartheta}\cdot f\left(\xi_{s,x}\left(T\right)\right)$ удовлетворяет задаче Коши.

$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u(x) = 0, u(T, x) = f(x)$$

$$(5.8)$$

Рассмотрим СДУ

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta)$$

и процесс $du\left(t,\xi\left(t\right)\right)=\left[u_{t}'+au_{x}'+\frac{1}{2}\Delta^{2}u_{x}''\right]dt+u_{x}'A\left(\xi\left(t\right)\right)dw$

Пусть $c\equiv 0$. Тогда, добавляя и вычитая в квадратных скобках $f\left(\xi\left(t\right)\right)$ получим

$$du = \left[u'_t + au'_x + \frac{1}{2}A^2 \cdot u''_{xx} + f - f \right] dt + u'_x A dw$$

 $du = f(\xi(t)) dt + u'_x A dw$

Интегрируем по t от s до T

$$Eu\left(T,\xi\left(T\right)\right) - u\left(s,x\right) = E\int_{s}^{T} f\left(\xi\left(\vartheta\right)\right) d\vartheta$$

Отсюда следует, что

$$u(s,x) = E\left[f\left(\xi_{s,x}\left(T\right)\right) + \int_{s}^{T} f\left(\xi_{s,x}\left(\vartheta\right)\right) d\vartheta\right]$$

??? Может быть, более подробно это расписать

02.11.17

6 Генерация марковского процесса

$$Grf\left(x\right) = \lim_{\substack{\Delta s \\ \Delta s}} \frac{Ef(\xi_{s,x}(s+\Delta s) - f(x)(t_k))}{\Delta s} = a\left(x\right)f'\left(x\right) + \frac{1}{2}A^2\left(x\right)F''\left(x\right)$$

$$u\left(s,x\right) = f\left(\xi_{s,x}\left(T\right)\right)$$

$$\frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^2\left(x\right)\frac{\partial^2 u}{\partial x^2} = 0, u\left(T,x\right) = f\left(x\right)$$

$$\begin{split} u\left(s,x\right) &= E\left[\exp\left[\int_{s}^{T}c\left(\xi\left(\vartheta\right)\right)dq\right]\right]_{F} \\ \frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} + g\left(x\right) = 0 \\ d\xi &= a\left(\xi\left(t\right)\right)dt + A\left(\xi\left(t\right)\right)dw\left(t\right) \\ u\left(s,x\right) \\ du\left(\vartheta,\xi\left(\vartheta\right)\right) &= \left[\frac{\partial u}{\partial \vartheta} + a\frac{\partial u}{\partial x} + \frac{A^{2}}{2}\frac{\partial^{2}u}{\partial x^{2}} + g - g\right]\left(\vartheta,\xi\left(\vartheta\right)\right)^{2} + \frac{\partial u}{\partial x}\left(\vartheta,\xi\left(\vartheta\right)\right)A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta\right) \\ \int_{s}^{T}Au\left(\vartheta,\xi\left(\vartheta\right)\right) &= -\int_{s}^{T}g\left(\xi\left(\vartheta\right)\right)d\vartheta + \int_{s}^{T}\frac{\partial u}{\partial x}A\left(\xi\left(\vartheta\right)\right)\partial w \\ Eu\left(T,\xi\left(T\right)\right) - u\left(s,x\right) &= -E\int_{s}^{T}g\left(\xi\vartheta\right)d\vartheta \\ u\left(s,x\right) &= E\left[f\left(\xi_{s,x}\left(T\right)\right) + \int_{s}^{T}g\left(\xi\left(\vartheta\right)\right)d\vartheta\right] \end{split}$$

6.1 Вероятностное представление решения задачи Коши для нелинейного параболического уравнения

Семилинейными параболическими уравнениями будем называть параболические уравнения, коэффициенты которых зависят как от временной и пространственной переменных, так и от искомой скалярной функции.

Рассмотрим семилинейное параболическое уравнение

$$\frac{\partial u}{\partial s} + a\left(x, u\left(s, x\right)\right) \frac{\partial u}{\partial x} + \frac{1}{2} A^{2}\left(x, u\left(s, x\right)\right) \frac{\partial^{2} u}{\partial x^{2}} = 0, u\left(T, x\right) = u_{0}\left(x\right)$$
(6.1)

Наряду с задачей (6.1) рассмотрим стохастическую задачу

$$d\xi = a\left(\xi\left(\vartheta\right), u\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + A\left(\xi\left(\vartheta, u\left(\vartheta, \xi\left(\vartheta\right)\right)\right)\right) dw\left(\vartheta\right) \tag{6.2}$$

$$u(s,x) = Eu_0(\xi_{s,x}(T))$$
 (6.3)

Сформулируем условие на коэффициенты a(x, u), A(x, u) и условие $u_0(x)$ при котором существует единственное решение системы (6.2) (6.3)

Условие С9.1

Пусть справедливы оценки

$$|a(x,u)|^{2} + |A(x,u)|^{2} \le C (1 + |x|^{2} + |u|^{2p})$$

$$|a(x,u) - a(y,v)|^{2} + |A(x,u) - A(y,v)|^{2} \le L |x-y| + k_{u,v} |u-v|^{2}$$

Решать задачу (6.2-6.3) мы будем с помощью методов последовательного приближения.

Рассмотрим последовательное приближение

$$\begin{split} u^{0}\left(x\right) &= u_{0}\left(x\right), \xi^{0}\left(t\right) = x \\ \xi^{1}\left(t\right) &= x + \int_{s}^{t} a\left(\xi^{1}\left(\vartheta\right), u^{1}\left(\vartheta, \xi^{1}\left(\vartheta\right)\right)\right) d\vartheta + \int_{s}^{t} A\left(\xi^{1}\left(\vartheta\right), u^{1}\left(\vartheta, \xi^{1}\left(\vartheta\right)\right)\right) dw \left(\vartheta\right) \\ u^{2}\left(s, x\right) &= Eu_{0}\left(\xi_{s, x}^{1}\left(T\right)\right) \\ \xi^{2}\left(t\right) &= x + \int_{s}^{t} a\left(\xi^{2}\left(\vartheta\right), u^{2}\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + \int_{s}^{T} A\left(\xi^{2}\left(\vartheta\right), u^{2}\left(\vartheta, \xi^{2}\left(\vartheta\right)\right)\right) dw \left(\vartheta\right) \\ u^{n}\left(s, x\right) &= Eu_{0}\left(\xi^{(n-1)}\left(T\right)\right) \\ \xi^{n}\left(t\right) &= x + \int_{s}^{t} a\left(\xi^{n}\left(\vartheta\right), u^{n}\left(\vartheta\right), \xi\left(\vartheta\right)\right) d\vartheta + \int_{s}^{T} A\left(\xi^{n}\left(\vartheta\right), u^{n}\left(\vartheta, \xi^{n}\left(\vartheta\right)\right)\right) dw \left(\vartheta\right) \end{split}$$

Заметим, что в силу условий С9, на каждом шаге последовательных приближений можем утверждать существование и единственность решений СДУ.

При этом все функции $u^{n}(s,x)$ равномерно ограничены если функция $u_{0}(x)$ ограничена, т.е. $\sup_{x}|u_{0}(x)|\leq k_{0}$

В силу meopemы Apuena-Ackonu, для того, чтобы семейство непрерывных функций $u^n(s,x)$ сходилась к непрерывной функции u(s,x) при фиксированном s, нужно проверить, что функции $u^n(s,x)$ равномерно ограничены и равномерно непрерывны.

Покажем, что семейство функций $u^{n}(s,x)$ равномерно непрерывно. Для этого достаточно показать, что семейство $\nu^n\left(s,x\right)=\frac{\partial}{\partial x}u^n\left(s,x\right)$ равномерно ограничено. Для того, чтобы это доказать, расмотрим линейную систему

Пусть g(s,x) - ограниченная Липшецева функция или даже дифференцируемая по x, т.е. $\left|\frac{\partial g(s,x)}{\partial x}\right| \leq k_g'(s)$. Рассмотрим СДУ

$$d\xi = a\left(\xi\left(\vartheta\right), g\left(\vartheta, \xi\left(\vartheta\right)\right)\right) d\vartheta + A\left(\xi\left(\vartheta\right), g\left(\vartheta, \xi\left(\vartheta\right)\right)\right) dw\left(\vartheta\right), \xi\left(s\right) = x \tag{6.4}$$

$$\nu\left(s,x\right) = Eu_0\left(\xi_{s,x}\left(T\right)\right) \tag{6.5}$$

Пусть $\eta\left(\vartheta\right) = \frac{\partial}{\partial x} \xi_{s,x}\left(T\right)$ $\left[a_{x}^{\prime}\left(\xi\left(\vartheta\right),g\left(\vartheta,g\left(\vartheta\right)\right)\right)+a_{g}^{\prime}\left(\xi\left(\vartheta\right),g\left(\vartheta,\xi\left(\vartheta\right)\right)\right)\frac{\partial g}{\partial x}\left(\vartheta,\xi\left(\vartheta\right)\right)\right]???$ Где дифференциал

$$\eta(\vartheta) d\vartheta + \left[A'_{x}(\xi(\vartheta)), g(\vartheta, \xi(\vartheta)) + A'_{g}(\vartheta, \xi(\vartheta)) \frac{\partial g}{\partial x}(\vartheta, \xi(\vartheta)) \right] \eta(\vartheta) dw(\vartheta)$$
 (6.6)

$$\frac{\partial \nu\left(s,x\right)}{\partial x} = E \frac{\partial u_0\left(\xi_{s,x}\left(T\right)\right)}{\partial y} \cdot \nu\left(T\right) \tag{6.7}$$

Наша цель - показать, что существует функция B(t) такая, что если

 $\left| \frac{\partial g(t,x)}{\partial x} \right| \leq B\left(t\right)$ то и $\left| \frac{\partial \nu(t,x)}{\partial x} \right| \leq B\left(t\right)$ для всех t из интервала.

Для всех t из некоторого интервала предполагаем, что $u_0(x)$ имеет ограниченную производную, т.е. $\sup_{x} \left| \frac{\partial u_0(x)}{\partial x} \right| \le k'_0$

При этом
$$\sup_{x} \left| \frac{\partial \nu(s,x)}{\partial x} \right|^{2} \leq k_{0} \sup_{x} E \left| \eta \left(T \right) \right|^{2}$$

Оценим $E |\eta(T)|^2$

поскольку $E\left|\eta\left(t\right)\right|^{2}=\left|h\right|^{2}+2E\int_{s}^{T}\left[a_{x}^{\prime}+a_{a}^{\prime}g^{\prime}\left(\vartheta,\xi\left(\vartheta\right)\right)\right]\eta\left(\vartheta\right)^{2}d\vartheta$?? Что дальше?

Практика

Частные случаи
$$\frac{\partial u}{\partial s} + a(x)\frac{\partial u}{\partial x} + \frac{A^2}{2}(x)\frac{\partial^2 u}{\partial x^2} + a(x)u + f(x) = 0$$
#1: $c(x) \equiv 0$

$$u(s,x) = E\left[sin(\xi(T)) + \int^T sin\xi(\vartheta)d\vartheta\right]$$

$$u(s,x) = E\left[\sin\left(\xi\left(T\right)\right) + \int_{s}^{T}\sin\xi\left(\vartheta\right)d\vartheta\right]$$

#2.
$$f(x) = 0$$

#2.
$$f(x) = 0$$

$$\frac{\partial u}{\partial s} + a(x) \frac{\partial u}{\partial x} + \frac{1}{2} A^2(x) \frac{\partial^2 u}{\partial x^2} + c(x) u = 0$$

$$u(T, x) = u_0(x)$$

$$u\left(T,x\right) = u_0\left(x\right)$$

$$d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x$$

$$d\eta = c\left(\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)d\vartheta, \eta\left(s\right) = 1$$

$$\eta(\vartheta) = e^{\int_s^{\vartheta} c(\xi(\tau))d\tau}$$

$$u(s,x) = E\left[e^{\int_{s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right] = E\left[e^{\int_{s}^{s+\Delta s} c(\xi(\vartheta))d\vartheta + \int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]$$

$$u(s+\Delta s,x) - u(s,x) = E\left[e^{\int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s+\Delta s,x}\left(T\right)\right) - e^{\int_{s}^{s+\Delta s} c(\xi(\vartheta))d\vartheta + \int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]$$

Добавим и вычтем выражение вида

$$e^{\int_{s+\Delta s}^{T} c(\xi(\vartheta))d\vartheta} u_0\left(\xi_{s,x}\left(T\right)\right)$$

$$u\left(s+\Delta s,x\right)-u\left(s,x\right)=E\left\{e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}\left[u_{0}\left(\xi_{s+\Delta s,x}\left(T\right)\right)-u_{0}\left(\xi_{s,x}\left(T\right)\right)\right]+\right.$$

$$\left.+\left[e^{\int_{s}^{T}c(\xi(\vartheta))d\vartheta}-e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}\right]u_{0}\left(\xi_{s,x}\left(T\right)\right)\right\}$$

$$\frac{1}{\Delta}\left[e^{\int_{s}^{s+\Delta s}c(\xi(\vartheta))d\vartheta}-1\right]e^{\int_{s+\Delta s}^{T}c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)=c\left(x\right)du\left(s,x\right)$$
??? Как это работает

$$\begin{split} &\frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} + c\left(x\right)u = 0 \\ &\text{Наше решение имеет вид:} \\ &E\left[e^{\int_{s}^{T}c(\xi(\vartheta))d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right)\right] = u\left(s,x\right) \\ &u\left(s,x\right) = E\left[e^{\int_{s}^{T}\xi(\vartheta)d\vartheta}u_{0}\left(\xi_{s,x}\left(T\right)\right) + \int_{0}^{T}e^{\int_{0}^{T}\xi(\tau)d\tau}sin\left(\xi\left(\vartheta\right)\right)d\vartheta\right] \\ &\frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} + c\left(x\right)u + f\left(x\right) = 0 \\ &u\left(T,x\right) = u_{0}\left(x\right) \\ &d\xi\left(\vartheta\right) = a\left(\xi\left(\vartheta\right)\right)d\vartheta + A\left(\xi\left(\vartheta\right)\right)du\left(\vartheta\right), \xi\left(s\right) = x \\ &d\eta\left(\vartheta\right) = c\left(\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)d\vartheta, \eta\left(s\right) = 1 \\ &u\left(s,x\right) = E\left[\eta\left(T\right)u_{0}\left(\xi_{s,x}\left(T\right)\right) - \int_{s}^{T}\eta\left(\vartheta\right)f\left(\xi\left(\vartheta\right)\right)d\vartheta\right] \\ &\mathbf{01.12.17} \end{split}$$

7 Новый раздел, чтобы перезапустить нумерацию

$$d\xi = a\left(\xi\left(\vartheta\right)\right)d\vartheta + A\left(\xi\left(\vartheta\right)\right)dwd\vartheta, \ \xi\left(s\right) = x$$

$$\xi\left(t\right) = x + \int_{s}^{t} a\left(\xi\left(\vartheta\right)\right)d\vartheta + \int_{s}^{t} A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta,w\right)$$

$$\xi_{n}\left(t\right) = x + \sum_{k=1}^{n} \left[\int_{t_{k}}^{t_{k+1}} a\left(\xi\left(\vartheta\right)\right)d\vartheta + \int_{t_{k}}^{t_{k+1}} A\left(\xi\left(\vartheta\right)\right)dw\left(\vartheta\right)\right]$$

$$\xi_{n}\left(t\right) = x + \sum_{k=1}^{n} \left[a\left(\xi\left(t_{k}\right)\right)\Delta_{k} + A\left(\xi\left(t_{k}\right)\right)\Delta_{k}w\right]$$

$$\Delta_{k}w = w\left(t_{k+1}\right) - w\left(t_{k}\right)$$

$$u\left(s,x\right) = Eu\left(\xi_{s,x}\left(???,w\right)\right)???$$

$$\frac{\partial u}{\partial s} + a\left(x\right)\frac{\partial u}{\partial x} + \frac{1}{2}A^{2}\left(x\right)\frac{\partial^{2}u}{\partial x^{2}} = 0$$

$$u\left(T,x\right) = \nu\left(x\right)$$

Напомним, что мы расматриваем систему

$$d\xi = a^{u}(\xi(\vartheta)) d\vartheta + A^{u}(\xi(\vartheta)) dw(\vartheta), \xi(s) = x$$
(7.1)

$$u(s,x) = Eu_0(\xi_{s,x}(T)),$$
где $a^u(x) = a(x,u(s,x))$ (7.2)

Для того, чтобы построить решения системы (7.2) рассмотрим последовательные приближения

$$d\xi_n(\vartheta) = a^{u_n}(\xi_n(\vartheta)) d\vartheta + A^{u_n}(\xi_n(\vartheta)) dw(\vartheta)$$
(7.3)

$$\xi_n\left(s\right) = x \tag{7.4}$$

$$u^{n+1}\left(s,x
ight)=E_{s,x}u_{0}\left(\xi_{n}\left(T
ight)
ight)$$
, где $E_{s,x}\left(\xi\left(t
ight)
ight)\equiv E\left[\xi_{s,x}\left(t
ight)
ight]$

На каждом шаге системы последовательных приближений мы решаем уравнения вида

$$d\xi = a(\xi(\vartheta), \nu(\vartheta, \xi(\vartheta))) d\vartheta + A(\xi(\vartheta), \nu(\vartheta, \xi(\vartheta))) dw(\vartheta)$$
(7.5)

где $\nu(t,x)$ известная функция $(\nu(\vartheta,x)\equiv u^n(\vartheta,x))$

$$g(s,x) = Eu_0(\xi_{s,x}(T)) \tag{7.6}$$

где
$$\xi_{s,x}(\vartheta)$$
 - решение (7.5) $u^{1}(s,x) = u_{0}(x), \xi_{0}(0) = x$

Рассмотрим уравнения (7.5) и (7.6) и положим, что если $\nu(s,x)$ - ограниченная Липшицева функция, то и g(s,x) тоже ограниченная Липшецева функция с одинаковой константой Липшица: если $|\nu(t,x)-\nu(t,y)|=L(t)|x-y|$, то справедлива оценка $|g(t,x)-g(t,y)|\leq L(t)|x-y|$

Лемма 8.1 Пусть коэффициенты $a^{u}(x)$ и $A^{u}(x)$ удовлетворяют условиям существования и единственности решения СДУ.

Тогда существует интервал $\{T_1; T\}$ такой, что $g(t, x) - g(t, y) \leq \beta(t) |x - y|$, если $|\nu\left(t,x
ight)-\nu\left(t,y
ight)|\leqeta\left(t
ight)|x-y|$ для некоторой функции $eta\left(t
ight)$ ограниченной на интервале $[T_1,T]$

Доказательство:

Рассмотрим процесс $\xi(t)$

$$E |\xi_{x}(t) - \xi_{y}(t)|^{2} \leq |x - y|^{2} + 2E \int_{s}^{t} \left[a(\xi_{s,x}(\vartheta), \nu(\vartheta, \xi_{s,x}(\vartheta))) - a(\xi_{s,y}(\vartheta), \nu(\vartheta, \xi_{s,y}(\vartheta))) \right] \cdot \left(\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta) \right) d\vartheta + E \int_{s}^{t} \left| A(\xi_{s,x}(\vartheta), \nu(\vartheta, \xi_{s,y}(\vartheta))) - A(\xi_{s,y}(\vartheta), \nu(\xi_{s,y}(\vartheta))) \right|^{2} d\vartheta \leq |x - y|^{2} + 2 \int E |\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta)|^{2} + K_{0}\beta(\vartheta) |\xi_{s,x}(\vartheta) - \xi_{s,y}(\vartheta)|^{2} d\vartheta$$

далее $\left(g\left(s,x\right)-g\left(s,y\right)\right)^{2}$ $= |E\nu_0(\xi_{s,x}(T)) - \nu_0(\xi_{s,y}(T))|$ $L_0E\left|\xi_{s,x}\left(T\right)-\xi_{s,y}\left(T\right)\right|^2$ где L_0,K_0 - константа Липшица функции $u_0\left(x\right)$ и функции $a(\nu)$

Таким образом:

$$|g(s,x) - g(s,y)|^2 \le L_0 E |\xi_{s,x}(T) - \xi_{s,y}(T)|^2 \le |x-y|^2 \exp \int_s^T [K_1 + K_2 \beta(\vartheta)] d\vartheta$$
 Поскольку $E |\xi_{s,x}(T) - \xi_{s,y}(T)|^2 \le |x-y|^2 + \int_s^T c [|\xi_{s,x}(t) - \xi_{s,y}(T)|^2] - [1 - K_v \beta(\vartheta)] d\vartheta$ Отсюда в силу леммы Гронуолла: $E |\xi_{s,x}(T) - \xi_{s,y}(T)|^2 \le |x-y|^2 \exp \int_s^T [1 + K_v \beta(\vartheta)] d\vartheta$

Рассмотрим соотношение $\beta\left(t-s\right)=K_{0}\exp\int_{s}^{T}\left[K_{1}+K_{2}\beta\left(T-\vartheta\right)\right]d\vartheta$ и дифференциальный вариант

$$\frac{d\beta(t-s)}{ds} = \left[K_1 + K_2\beta(t-s)\right]\beta(t-s), \beta(T) = K_0 \tag{7.7}$$

Перепишем ОДУ (8.7) в виде

$$\frac{d\beta}{(K_1 + K_2\beta)\beta} = ds \tag{7.8}$$

Представим $\frac{1}{(K_1+K_2\beta)\beta}=\frac{A_1}{K_1+K_2\beta}+\frac{A_2}{\beta}$ $A_1\beta+A_2K_1+A_2K_2\beta=1$

 $A_1 + A_2 K_2 = 0, A_2 K_1 = 1$

$$\frac{1}{K \cdot K_1 [K_1 + K_2 \beta]} + \frac{1}{K} \frac{1}{\beta} = ds$$

$$\int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\widetilde{K}_1 + \widetilde{K}_2 \beta} + \int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\beta}, \ \widetilde{K}_1 = K_1^2, \ \widetilde{K}_2 = K_1 K_2$$

$$A_1 + A_2 K_2 = 0, A_2 K_1 = 1$$
 Таким образом, $A_2 = \frac{1}{K_1}, A_1 = -\frac{A_2}{K_1}$ и (7.8) приобретает вид $\frac{1}{K \cdot K_1[K_1 + K_2 \beta]} + \frac{1}{K} \frac{1}{\beta} = ds$ $\frac{1}{K_1[K_1 + K_2 \beta]} + \frac{1}{\beta} = K ds$??? правильно? $\int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\widetilde{K}_1 + \widetilde{K}_2 \beta} + \int_{\beta(s)}^{\beta(T)} \frac{d\beta}{\beta}, \ \widetilde{K}_1 = K_1^2, \ \widetilde{K}_2 = K_1 K_2$ $Ln\left[\widetilde{K}_1 + \widetilde{K}_2 \beta\right] |_{\beta(s)}^{\beta(T)} + ln\beta|_{\beta(s)}^{\beta(T)} = (T - s)K$

Решая полученные алгебраические уравнения мы получим ответ в виде $\beta\left(T-s\right)=$ $\frac{\widetilde{K}_1 K_0}{\widetilde{K}_1 + K - K_0 e^{K_2(t-s)}}$

Функция $\beta\left(T-s\right)$ ограничена на интервале $[T_1,T]$, где $\widetilde{K}_1+K_0-K_0e^{K_2(T-s)}=0$ $e^{K_2(T-T_1)} = \frac{\tilde{K}_1 + K_0}{K_0}$

$$e^{-T_1(T-T_1)} \equiv \frac{c_1T_1}{K_0}$$
 $K_2\left(T-T_1\right) = \ln\left(1+\frac{\widetilde{K}_1}{K_0}\right)$ для всех $\widetilde{T}_1 < T_1$ функция $\beta\left(T-s\right)$ ограничена при $s > T_1$ \mathbf{T}_1 \mathbf{T}_1 \mathbf{T}_1

Практика:

The trivial
$$\frac{\partial u}{\partial s} + \frac{\partial u(s,x)}{\partial s} + u(s,x) \frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0, \ u(T,x) = u_0(x)$$

$$d\xi = u(\vartheta, \xi(\vartheta)) d\vartheta + dw$$

```
\nu\left(s,x\right) = Eu_0\left(\xi_{s,x}\left(T\right)\right)
\frac{\partial\nu}{\partial s} + u\left(s,x\right)\frac{\partial\nu}{\partial x} + \frac{1}{2}\frac{\partial^2\nu}{\partial x^2} = 0
\nu\left(s,x\right) \equiv u\left(s,x\right)
                       \begin{cases} d\xi = u(\vartheta, \xi(\vartheta)) + du \\ u(s, x) = Eu_0(\xi_{s,x}(T)) \\ \frac{\partial u}{\partial s} + (x + u(s, x)) \frac{\partial u}{\partial x} + \frac{1}{2} u^2 \frac{\partial^2 u}{\partial x^2} = 0 \\ d\xi = [\xi(\vartheta) + u(\vartheta, \xi(\vartheta))] d\vartheta + u(\vartheta, \xi(\vartheta)) dw \end{cases}
                         u\left(s,x\right) = E\sin\left(\xi_{s,x}\left(T\right)\right)
                       \frac{\partial u}{\partial s} + 4x \frac{\partial u}{\partial x} + \frac{x^2}{2} \frac{\partial^2 u}{\partial x^2} + \cos x u + \sin x = 0
u(T, x) = \sin(x)
\frac{\partial u}{\partial s} + a(x) \frac{\partial u}{\partial x} + \frac{1}{2} A^2(x) \frac{\partial^2 u}{\partial x^2} + c(x) u = 0
u(T, x) = u_0(x)
                         d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x
                        d\eta = c(\xi(\vartheta)) \eta(\vartheta) d\vartheta, \eta(s) = 1
                        \eta(\vartheta) = \exp \int_{\xi}^{\vartheta} c(\xi(t)) dt
                        u\left(s,x\right)=E\eta\left(T\right)u_{0}\left(\xi_{s,x}\left(T\right)\right)=Ee^{\int_{s}^{T}c\left(\xi\left(\vartheta\right)\right)d\vartheta}u_{0}\left(\vartheta_{s,x}\left(T\right)\right)
                        \overline{c} = \overline{0}
                         d\xi = 4\xi(\vartheta) d\vartheta + \xi(\vartheta) dw(\vartheta)
                         d\eta = \cos(\xi(\vartheta)) \eta(\vartheta) d\vartheta
                         u(s,x) = Ee^{\int_{s}^{T} cos(\xi(\vartheta))d\vartheta} \cdot sin(\xi_{s,x}(T))
                         \frac{\partial u}{\partial s} + 4x \frac{\partial u}{\partial x} + \frac{x^2}{2} \frac{\partial^2 u}{\partial x^2} + \cos xu + x = 0
\frac{\partial u}{\partial s} + a(x) \frac{\partial u}{\partial x} + \frac{1}{2} A^2(x) \frac{\partial^2 u}{\partial x^2} + f(x) = 0
                         u\left(T,x\right) = u_0\left(x\right)
                         d\xi = a(\xi(\vartheta)) d\vartheta + A(\xi(\vartheta)) dw(\vartheta), \xi(s) = x
                        du\left(\vartheta,\xi\left(\vartheta\right)\right) = \int_{s}^{T} \left(\frac{\partial u}{\partial\vartheta} + a\left(\xi\left(\vartheta\right)\right) \frac{\partial u(\vartheta,\xi(\vartheta))}{\partial x} + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2}u(\vartheta,\xi(\vartheta))}{\partial x^{2}} + f\left(\xi\left(\vartheta\right)\right) - f\left(\xi\left(\vartheta\right)\right)\right) d\vartheta + \frac{1}{2}A^{2}\left(\xi\left(\vartheta\right)\right) \frac{\partial^{2}u(\vartheta,\xi(\vartheta))}{\partial x} + \frac{1}{2}A^{2
\int_{s}^{T} A \frac{\partial u}{\partial x} dw
                         E\left(u\left(T,\xi\left(T\right)\right)\right) - u\left(s,x\right) = -E\left[\int_{s}^{T} f\left(\xi\left(\vartheta\right)\right) d\vartheta\right]
                        u(s,x) = E\left[u_0(\xi(T)) + \int_s^T f(\xi(\theta)) d\theta\right]
                         \frac{\overline{\partial u}}{\partial s} + a(x)\frac{\overline{\partial u}}{\partial x} + \frac{1}{2}A^{2}(x)\frac{\partial^{2} u}{\partial x^{2}} + c(x)u + f(x) = 0
                        u(s,x) = E \left[ \eta(T) u_0(\xi_{s,x}(T)) + \int_s^T \eta(\vartheta) f(\xi_{s,x}(\vartheta)) d\vartheta \right]
                        d\left[u\left(\vartheta,\xi\left(\vartheta\right)\right)\right]\eta\left(\vartheta\right)\right] = du\left(\vartheta,\xi\left(\vartheta\right)\right)\cdot\eta\left(\vartheta\right) + u\left(\vartheta,\xi\left(\vartheta\right)\right)d\eta
                         d\left[\gamma\left(\vartheta\right)\eta\left(\vartheta\right)\right]
                         d\gamma = q\gamma(\vartheta) d\vartheta + Q\gamma(\vartheta) dw(\vartheta)
                         d\eta = c\eta(\vartheta) d\vartheta + c\eta(\vartheta) dw(\vartheta)
                         d(\gamma(\vartheta)\eta(\vartheta)) = \eta(\vartheta)d\gamma(\vartheta) + \gamma(\vartheta)d\eta...
                        d\left(u\left(\vartheta,\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)\right) \quad = \quad \left(\frac{\partial u}{\partial \xi} + a\frac{\partial u}{\partial x} + \frac{1}{2}A^2\frac{\partial^2 u}{\partial x^2}\right)\eta\left(\vartheta\right) \ + \ uc\left(\xi\left(\vartheta\right)\right)\eta\left(\vartheta\right)d\vartheta \ + \ \dots
   \left(\frac{\partial u}{\partial \theta} + a\frac{\partial u}{\partial x} + \frac{1}{2}A^2\frac{\partial^2 u}{\partial x} + cu\right)\eta(\theta),
                         d\vartheta+ мартингал
                         E\left[\eta\left(T\right)u_{0}\left(\xi_{s,x}\left(T\right)\right)-u\left(s,x\right)\right]=E\int_{s}^{T}\eta\left(\vartheta\right)f\left(\xi\left(\vartheta\right)\right)d\vartheta
                        u(s,x) = E\left[\eta(T) u_0(\xi(T)) + \int_s^T \eta(\vartheta) f(\xi(\vartheta)) d\vartheta\right]
                        \eta(\vartheta) = \exp \int_{s}^{\vartheta} c(\xi(\vartheta_1)) d\vartheta_1
```

$$d\xi = 4\xi(\vartheta) d\vartheta + \xi(\vartheta) dw(\vartheta)$$

$$d\eta = \cos(\xi(\vartheta)) \cdot \eta(\vartheta) d\vartheta$$

$$u(s,x) = E\left[e^{\int_s^T \cos(\xi(\vartheta))d\vartheta} \cdot \sin(\xi(T)) + \int_s^T e^{\int_s^T \cos(\xi(\vartheta_1))d\vartheta_1} \cdot \xi(\vartheta) d\vartheta\right]$$