In [3]: !pip install numpy

Requirement already satisfied: numpy in c:\users\tanushri mune\anaconda3\lib \site-packages (1.24.3)

In [2]: !pip install pandas

Requirement already satisfied: pandas in c:\users\tanushri mune\anaconda3\lib\site-packages (1.5.3)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\tanushri mu ne\anaconda3\lib\site-packages (from pandas) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\tanushri mune\anacond a3\lib\site-packages (from pandas) (2022.7)

Requirement already satisfied: numpy>=1.21.0 in c:\users\tanushri mune\anacon da3\lib\site-packages (from pandas) (1.24.3)

Requirement already satisfied: six>=1.5 in c:\users\tanushri mune\anaconda3\l ib\site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)

In [3]: !pip install matplotlib

Requirement already satisfied: matplotlib in c:\users\tanushri mune\anaconda3 \lib\site-packages (3.7.1)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\tanushri mune\ana conda3\lib\site-packages (from matplotlib) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\users\tanushri mune\anacond a3\lib\site-packages (from matplotlib) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\tanushri mune\an aconda3\lib\site-packages (from matplotlib) (4.25.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\tanushri mune\an aconda3\lib\site-packages (from matplotlib) (1.4.4)

Requirement already satisfied: numpy>=1.20 in c:\users\tanushri mune\anaconda 3\lib\site-packages (from matplotlib) (1.24.3)

Requirement already satisfied: packaging>=20.0 in c:\users\tanushri mune\anac onda3\lib\site-packages (from matplotlib) (23.0)

Requirement already satisfied: pillow>=6.2.0 in c:\users\tanushri mune\anacon da3\lib\site-packages (from matplotlib) (9.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\tanushri mune\ana conda3\lib\site-packages (from matplotlib) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\tanushri mune \anaconda3\lib\site-packages (from matplotlib) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\users\tanushri mune\anaconda3\lib\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)

In [4]: !pip install seaborn

Requirement already satisfied: seaborn in c:\users\tanushri mune\anaconda3\li b\site-packages (0.12.2) Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\users\tanushri mune \anaconda3\lib\site-packages (from seaborn) (1.24.3) Requirement already satisfied: pandas>=0.25 in c:\users\tanushri mune\anacond a3\lib\site-packages (from seaborn) (1.5.3) Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\tanushri m une\anaconda3\lib\site-packages (from seaborn) (3.7.1) Requirement already satisfied: contourpy>=1.0.1 in c:\users\tanushri mune\ana conda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.5) Requirement already satisfied: cycler>=0.10 in c:\users\tanushri mune\anacond a3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0) Requirement already satisfied: fonttools>=4.22.0 in c:\users\tanushri mune\an aconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.25.0) Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\tanushri mune\an aconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4) Requirement already satisfied: packaging>=20.0 in c:\users\tanushri mune\anac onda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.0) Requirement already satisfied: pillow>=6.2.0 in c:\users\tanushri mune\anacon da3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0) Requirement already satisfied: pyparsing>=2.3.1 in c:\users\tanushri mune\ana conda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9) Requirement already satisfied: python-dateutil>=2.7 in c:\users\tanushri mune \anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2) Requirement already satisfied: pytz>=2020.1 in c:\users\tanushri mune\anacond

a3\lib\site-packages (from pandas>=0.25->seaborn) (2022.7)
Requirement already satisfied: six>=1.5 in c:\users\tanushri mune\anaconda3\l
ib\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seabor
n) (1.16.0)

In [5]: pip show numpy

Name: numpy Version: 1.24.3

Summary: Fundamental package for array computing in Python Home-page: https://www.numpy.org (https://www.numpy.org)

Author: Travis E. Oliphant et al.

Author-email:

License: BSD-3-Clause

Location: C:\Users\Tanushri Mune\anaconda3\Lib\site-packages

Requires:

Required-by: astropy, bokeh, Bottleneck, contourpy, daal4py, datashader, data shape, gensim, h5py, holoviews, hvplot, imagecodecs, imageio, imbalanced-lear n, matplotlib, mkl-fft, mkl-random, numba, numexpr, pandas, patsy, pyarrow, p yerfa, PyWavelets, scikit-image, scikit-learn, scipy, seaborn, statsmodels, t ables, tifffile, transformers, xarray

Note: you may need to restart the kernel to use updated packages.

In [6]: pip show pandas

Name: pandas Version: 1.5.3

Summary: Powerful data structures for data analysis, time series, and statist

ics

Home-page: https://pandas.pydata.org (https://pandas.pydata.org)

Author: The Pandas Development Team Author-email: pandas-dev@python.org

License: BSD-3-Clause

Location: C:\Users\Tanushri Mune\anaconda3\Lib\site-packages

Requires: numpy, numpy, python-dateutil, pytz

Required-by: bokeh, datashader, holoviews, hyplot, panel, seaborn, statsmodel

s, xarray

Note: you may need to restart the kernel to use updated packages.

In [7]: pip show seaborn

Name: seaborn Version: 0.12.2

Summary: Statistical data visualization

Home-page: Author:

Author-email: Michael Waskom <mwaskom@gmail.com>

License:

Location: C:\Users\Tanushri Mune\anaconda3\Lib\site-packages

Requires: matplotlib, numpy, pandas

Required-by:

Note: you may need to restart the kernel to use updated packages.

In [8]: |pip show matplotlib

Name: matplotlib Version: 3.7.1

Summary: Python plotting package

Home-page: https://matplotlib.org (https://matplotlib.org)

Author: John D. Hunter, Michael Droettboom Author-email: matplotlib-users@python.org

License: PSF

Location: C:\Users\Tanushri Mune\anaconda3\Lib\site-packages

Requires: contourpy, cycler, fonttools, kiwisolver, numpy, packaging, pillow,

pyparsing, python-dateutil

Required-by: seaborn

Note: you may need to restart the kernel to use updated packages.

In [37]: import numpy as np

import pandas as pd
import matplotlib as plt

import seaborn as sns

```
df = pd.read_csv(r'C:\Users\Tanushri Mune\Downloads\Python_Diwali_Sales_Analys
In [11]:
In [12]:
          df.shape
Out[12]: (11251, 15)
In [13]:
          df.head()
Out[13]:
                                                     Age
              User ID Cust name
                                                               Marital_Status
                                 Product ID Gender
                                                          Age
                                                                                     State
                                                                                             Zo
                                                   Group
             1002903
                                 P00125942
                                                    26-35
                                                           28
                         Sanskriti
                                                                          0
                                                                               Maharashtra
                                                                                           Weste
             1000732
                           Kartik
                                 P00110942
                                                F
                                                    26-35
                                                            35
                                                                             Andhra Pradesh
                                                                                           Southe
             1001990
                           Bindu
                                 P00118542
                                                    26-35
                                                            35
                                                                          1
                                                                              Uttar Pradesh
                                                 F
                                                                                            Cent
              1001425
                          Sudevi
                                 P00237842
                                                     0-17
                                                            16
                                                                          0
                                                                                 Karnataka
                                                Μ
                                                                                          Southe
              1000588
                                                    26-35
                                                            28
                                                                          1
                                 P00057942
                                                                                   Gujarat
                            Joni
                                                Μ
                                                                                           Weste
In [14]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 11251 entries, 0 to 11250
          Data columns (total 15 columns):
           #
                Column
                                   Non-Null Count
                                                     Dtype
           0
                User ID
                                   11251 non-null
                                                     int64
           1
                Cust name
                                   11251 non-null
                                                     object
           2
                Product ID
                                   11251 non-null
                                                     object
           3
               Gender
                                   11251 non-null
                                                     object
           4
                                                    object
               Age Group
                                   11251 non-null
           5
                                   11251 non-null
                                                     int64
                Age
           6
                                   11251 non-null
                                                     int64
               Marital_Status
           7
               State
                                   11251 non-null
                                                    object
           8
                Zone
                                   11251 non-null
                                                     object
           9
               Occupation
                                                     object
                                   11251 non-null
               Product_Category
                                   11251 non-null
                                                     object
           10
           11
               Orders
                                   11251 non-null
                                                     int64
           12
               Amount
                                   11239 non-null
                                                    float64
           13
               Status
                                   0 non-null
                                                     float64
           14
               unnamed1
                                   0 non-null
                                                     float64
          dtypes: float64(3), int64(4), object(8)
          memory usage: 1.3+ MB
In [15]: df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
```

In [19]: pd.isnull(df)

Out[19]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Осс
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
•••										
11246	False	False	False	False	False	False	False	False	False	
11247	False	False	False	False	False	False	False	False	False	
11248	False	False	False	False	False	False	False	False	False	
11249	False	False	False	False	False	False	False	False	False	
11250	False	False	False	False	False	False	False	False	False	

11251 rows × 13 columns

```
In [21]: pd.isnull(df).sum()
```

```
Out[21]: User_ID
                                0
         Cust_name
                                0
          Product_ID
                                0
         Gender
                                0
         Age Group
                                0
         Age
                                0
         Marital_Status
                                0
         State
                                0
         Zone
                                0
         Occupation
                                0
          Product_Category
                                0
         Orders
                                0
                               12
         Amount
          dtype: int64
```

```
In [22]: df.shape
```

Out[22]: (11251, 13)

In [23]: df.dropna(inplace=True)

In [24]: df.shape

Out[24]: (11239, 13)

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Westerr
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southerr
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Centra
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southerr
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Westerr
									••
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Westerr
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northerr
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Centra
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southerr
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Westerr

11239 rows × 13 columns

In [30]: df.describe()

Out[30]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

Gender:

```
In [33]: ax = sns.countplot(x = 'Gender',data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```


The X-axis represents gender with two categories: 'F' for female and 'M' for male.

The Y-axis represents the shopping count, which is the number of shopping instances or items purchased.

The bar for 'F' reaches up to a count of 7832, indicating that females have a shopping count of 7832.

The bar for 'M' reaches up to a count of 3407, indicating that males have a shopping count of 3407.

From this chart, we can infer that females have a significantly higher shopping count than males according to the data represented.

In [40]: df.groupby(['Gender'],as_index= False)['Amount'].sum().sort_values(by='Amount
Out[40]:

	Gender	Amount
0	F	74335853
1	М	31913276

```
In [36]: sales_gen = df.groupby(['Gender'],as_index= False)['Amount'].sum().sort_values
sns.barplot(x = 'Gender',y = 'Amount', data = sales_gen)
```

Out[36]: <Axes: xlabel='Gender', ylabel='Amount'>

The graphs indicate a predominant female buyer demographic, with a substantial count of 74,335,853. Furthermore, the purchasing power of females surpasses that of males.

Age:

@Total Count Vs Age Group:

```
In [45]: ax = sns.countplot(data = df, x = 'Age Group', hue= 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


The 26-35 age group has the highest count for both categories, with the 'F' category (presumably 'Female') having a significantly higher count than the 'M' category (presumably 'Male').

The second-highest count for the 'F' category is in the 36-45 age group, while for the 'M' category, it is in the 18-25 age group.

The 0-17 age group has the lowest count for both categories.

In all age groups except for 46-50, the 'F' category has a higher count than the 'M' category.

The 55+ age group has a similar count for both categories, with the 'M' category slightly higher.

@Total Amount Vs Age Group:

```
In [15]: #Total Amount Vs Age Group
sales_age = df.groupby(['Age Group'],as_index = False)['Amount'].sum().sort_va
sns.barplot(x = 'Age Group', y = 'Amount',data = sales_age)
```

Out[15]: <Axes: xlabel='Age Group', ylabel='Amount'>

The following age group, 36-45, has roughly half the amount of the 26-35 Female group.

The 18-25 age group has a slightly lower amount than the 36-45 group.

The amounts decrease with the increasing age groups, with the 46-50 and 51-55 groups showing similar amounts.

The 55+ and 0-17 age groups have the lowest amounts, with the 0-17 group having the smallest bar.

This chart provides a visual representation of the distribution of a certain amount (possibly sales or revenue) across different age groups. The data suggests that the most significant amount is associated with the 26-35 females age group, indicating that this age group might be the most active or profitable segment.

State:

@Total Number of orders from 10 states

Uttar Pradesh leads in orders, nearing 5000 on the y-axis. Maharashtra follows closely. Karnataka and Delhi have comparable, slightly lower order counts.

Madhya Pradesh, Andhra Pradesh, and Himachal Pradesh show moderate orders. Kerala, Haryana, and Gujarat have the fewest.

The x-axis denotes states, and y-axis shows order numbers. This chart aids quick statewise order volume comparison, guiding marketing and operational decisions.

@ Total Amount/Sales from top 10 states

```
In [11]: sales_state = df.groupby(['State'],as_index=False)['Amount'].sum().sort_values
    sns.set(rc={'figure.figsize':(15,5)})
    sns.barplot(data= sales_state,x = 'State',y='Amount')
```


The bar chart depicts Uttar Pradesh with the highest amount, substantially exceeding other states. Maharashtra and Karnataka follow, with Maharashtra's amount slightly surpassing Karnataka's.

Delhi's amount is slightly lower than Karnataka's, while Madhya Pradesh and Andhra Pradesh have comparable amounts, both falling below Delhi's.

Marital status:

@Total Count Vs Marital Status

The bar chart illustrates counts for a categorical variable labeled "Marital_Status" with two categories denoted as '0' and '1'. Category '0' exhibits a higher count of 6522, surpassing the count of category '1' which stands at 4729.

While the specific meanings of '0' and '1' are not explicitly defined in the chart, it is common in binary variables for '0' to represent 'Unmarried' and '1' to represent 'Married', or vice versa, depending on the coding scheme employed in the dataset.

The chart provides a straightforward overview of the distribution of marital status, indicating a higher prevalence of the category denoted by '0'.

@Total Amount Vs Marital Status

Out[19]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

The bar chart illustrates data categorized by marital status and gender. Marital statuses '0' and '1' are present, potentially indicating 'single' and 'married'.

Two genders, 'F' for female and 'M' for male, are represented. The y-axis labeled 'Amount' implies counts of individuals. The tallest bar, for '0' marital status in males ('M'), has the highest count.

Females ('F') in both '0' and '1' marital statuses have lower counts than males ('M'). The gender count difference is more pronounced in the '0' marital status.

The y-axis scale suggests data in the tens of millions (1e7). Overall, the chart provides a high-level overview of population distribution in terms of marital status and gender.

Occupation:

Total Count Vs Occupation

```
In [20]: sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x='Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```


The bar chart depicts counts of various occupations across sectors. The IT sector leads with 1588, indicating its prominence in the dataset. Healthcare follows closely with 1408, and Aviation stands out with 1310. Sectors with the lowest counts include Agriculture (283), Textile (350), and Chemical (542). The Government sector is relatively high at 854, surpassing counts in Automobile (566), Construction (414), and Food Processing (423). Other notable counts include Media (637), Banking (1139), Retail (501), and Hospitality (705). These counts suggest the prevalence of occupations within each sector, possibly reflecting employee numbers or company representation.

Total Amount Vs Occupation

Out[23]: <Axes: xlabel='Occupation', ylabel='Amount'>

The bar chart clearly illustrates that the IT sector boasts the highest bar, signaling its substantial magnitude compared to other sectors. Conversely, the Agriculture sector exhibits the smallest bar, indicating its comparatively modest size in relation to the other sectors.

Product Category

@Total Count vs Product Category

The bar chart highlights that Clothing & Apparel, Food, and Electronics & Gadgets are the categories with the highest counts, underscoring their popularity. Conversely, categories such as Hand & Power Tools, Decor, and Veterinary have the lowest counts, indicating lower engagement or demand in comparison.

@Total Amount Vs Product Category

Product Category

The bar chart highlights that Clothing & Apparel, Food, and Electronics & Gadgets are the categories with the highest counts, underscoring their popularity. Conversely, categories such as Hand & Power Tools, Decor, and Veterinary have the lowest counts, indicating lower engagement or demand in comparison.

@Product Id Vs Orders

The bar chart reveals distinct order counts for different product IDs. Notably, product ID P00265242 stands out with the highest number of orders, surpassing 120. Conversely, product ID P00118442 has the lowest order count, hovering just below 60. The remaining products fall within this range, with none reaching the peak of P00265242 or the low of P00118442.

Conclusion:

In conclusion, the analysis reveals a predominant female buyer demographic, indicating higher purchasing power among women. The age group with the most buyers falls within 26-35 years, particularly among females. Geographically, the majority of orders and total sales originate from Uttar Pradesh, Maharashtra, and Karnataka. Married women emerge as the primary buyers with substantial purchasing influence. Additionally, buyers predominantly work in the IT, Healthcare, and Aviation sectors. The most sold product categories include Food, Clothing, and Electronics.