What is claimed is:

1	1. In a communication system in which data is communicated		
2	between a first communication station and at least a second communication		
3	station upon a traffic channel, an improvement of apparatus for facilitating		
4	selection of resource allocation in the communication system, the resource		
5	allocation defined in terms of a first communication indicia and a second		
6	communication indicia, said apparatus comprising:		
7	a storage device having memory locations for storing a matrix		
8	defined by values of the first communication indicia and the second		
9	communication indicia, each element of the matrix of an exemplary threshold		
0	value;		
1	a comparator coupled to said storage device, said comparator for		
12	comparing a traffic-channel threshold value with at least some of the		
13	exemplary threshold values; and		
14	a selector coupled to said comparator, said selector for selecting		
15	the resource allocation responsive to comparisons made by said comparator,		
16	the resource allocation defined in terms of the first communication indicia and		
17	the second communication indicia associated with a selected one of the		
18	exemplary threshold values.		

2. The apparatus of claim 1 wherein the communication system comprises a multi-code, multi-rate communication system, wherein the first communication indicia comprises a coding indicia, and wherein the matrix stored at said storage device is defined, in part, by values of the coding indicia.

2

3

4

5

6

- The apparatus of claim 2 wherein the communication system

 comprises a CDMA (code-division, multiple-access) communication system

 which utilizes Walsh coding with N codes and wherein the coding indicia

 which defines, in part, the matrix stored at said storage device defined, in part,

 by values of N.
- The apparatus of claim 1 wherein the communication system
 comprises a multi-rate, multi-code communication system, wherein the second
 communication indicia comprises a modulation coding scheme (MCS) value,
 and wherein the matrix stored at said storage device is defined, in part, by
 values of the modulation coding scheme.
- 5. The apparatus of claim 4 wherein each value of the modulation coding scheme is representative of a level of modulation coding by which data to be communicated upon the traffic channel is to be encoded.
 - 6. The apparatus of claim 1 wherein the communication system comprises a radio communication system having network infrastructure, wherein the first communication station forms a portion of the network infrastructure and the second communication station comprises a mobile station, and wherein said storage device at which the matrix is stored is located at the network infrastructure.
- 7. The apparatus of claim 6 wherein the network infrastructure comprises a base transceiver station (BTS) and wherein said storage device is located at the base transceiver station.

2

1 8. The apparatus of claim 1 wherein the traffic channel threshold 2 value which said comparator compares with at least some of the exemplary 3 threshold values comprises a value representative of communication quality 4 levels of the traffic channel.

()

- 9. The apparatus of claim 8 wherein communications by the first communication station to the second communication station are effectuated upon a forward link, wherein communications by the second communication station to the first communication station are effectuated upon a reverse link, and wherein the traffic channel threshold value is representative of communication quality levels upon the forward link.
- 1 10. The apparatus of claim 9 wherein the traffic channel threshold 2 value is of a level responsive to measurements made by the second 3 communication station.
 - 11. The apparatus of claim 10 wherein the traffic channel threshold value is representative of a signal-to-noise ratio on the forward link.
- 1 12. The apparatus of claim 1 further comprising a coder and
 2 modulator coupled to said selector, said coder and modulator for coding and
 3 modulating the data to be communicated upon the traffic channel responsive
 4 to values of the first and second communication indicia, respectively,
 5 associated with the selected one of the exemplary threshold values.
- 1 13. The apparatus of claim 12 wherein said coder and modulator is 2 further form performing Walsh-code spreading, the Walsh-code spreading 3 defined in terms of a number N of Walsh codes by which to spread the data.

The apparatus of claim 1 wherein the communication system 14. 1 comprises a multi-user communication system, wherein the at least the second 2 communication station comprises the second communication station and at 3 least a third communication station, data communicated between the first and 4 second communication station, respectively, and between the first and third 5 communication stations, respectively, upon a shard channel, said apparatus 6 further comprising a scheduler for scheduling access to the shared channel 7 upon which to communicate the data between the first and second 8 communication stations and between the first and third communication 9 10 stations.

- 1 15. The apparatus of claim 14 wherein said scheduler schedules the access to the shared channel responsive, in part, to the traffic channel threshold value.
- 1 16. The apparatus of claim 15 wherein the data communicated
 2 during operation of the communication system comprises packet data, said
 3 apparatus further comprising a timer for timing periods of pendency of packet
 4 data prior to access to the shared channel to communicate the packet data
 5 thereon.
- 1 17. The apparatus of claim 16 wherein said scheduler schedules the 2 access to the shared channel further responsive, in part, to the periods of 3 pendency timed by said timer.
- 1 18. The apparatus of claim 17 further comprising a buffer for storing 2 the packets of data, said timer for timing pendency of the packet data at said 3 buffer.

1	19.	The apparatus of claim 17 wherein communications in the		
2	communicat	ion system are effectuated at a selected QoS (quality of service)		
3	level and wherein scheduling made by said scheduler is further responsive, in			
4	part, to the selected QoS level.			
1	20.	In a method for communicating data between a first		

communication station and at least a second communication station upon a traffic channel defined in a communication system, an improvement of a method for facilitating selection of resource allocation in the communication system, the resource allocation defined in terms of a first communication indicia and a second communication indicia, said method comprising:

forming a matrix of exemplary threshold values, the exemplary threshold values each indexed by values of the first communication indicia

comparing a traffic channel threshold value with at least some of the exemplary threshold values of the matrix formed during said operation of forming; and

and the second communication indicia;

selecting, responsive to comparisons formed during said operation of comparing, the resource allocation, the resource allocation defined in terms of the first communication indicia and the second communication indicia associated with a selected one of the exemplary threshold values.

1	21. The method of claim 20 wherein the communication system
2	comprises a multi-user communication system, wherein the at least the second
3	communication station comprises the second communication station and at
4	least a third communication station, data communicated between the first and
5	second communication stations, respectively, and between the first and third
6	communication stations, respectively, upon a shared channel, said method
7	further comprising the operation of scheduling access to the shared channel
8	upon which to communicate the data between the first and second
9	communication stations and between the first and third communication
10	stations.