1. 들어가기

논리회로

부경대 컴퓨터 인공지능공학부 최필주

목차

- 디지털과 아날로그
- 디지털 정보의 표현
- 논리 레벨과 펄스파형
- 디지털 집적회로
- ADC와 DAC
- Summary

● 디지털 신호와 아날로그 신호

아날로그 신호(Analog Signal)	디지털 신호(Digital Signal)
•시간에 따라 연속적으로 변화 •예: 온도, 습도, 소리, 빛 등	•분명히 구별되는 두 레벨의 신호 값만을 갖는다.
전압 	전압 ↑

● 디지털 시스템과 아날로그 시스템

- 디지털 시스템의 장점
 - 내·외부 잡음에 강함
 - 설계, 정보의 저장, 가공 등이 아날로그에 비해 쉬움
 - 프로그래밍으로 전체 시스템 제어 가능
 - 규격/사양 변경에 쉽게 대응 가능
 - 높은 기능 구현의 유연성
 - 짧은 개발기간

• 아날로그 회로와 디지털 회로의 상호 연결

- 디지털 정보의 전압레벨
 - 디지털 정보를 표현하기 위해 2진수 체계(binary system)를 사용
 - "0"과 "1"만의 2종류의 디지트(digit)를 사용

- 디지털 정보의 표현 단위
 - 1byte = 8bit
 - 1byte = 1character
 - 영어는 1byte로 1 문자 표현, 한글은 2byte가 필요
 - 1word : 특정 CPU에서 취급하는 명령어나 데이터의 길이에 해당하는 비트 수

MSB(most significant bit) : 최상위비트 LSB(least significant bit) : 최하위비트

8

● SI 단위와 IEC 단위 비교

SI (10진 단위)			
값	기호	이름	
$(10^3)^1 = 10^3$	k, K	kilo-	
$(10^3)^2 = 10^6$	M	mega-	
$(10^3)^3=10^9$	G	giga-	
$(10^3)^4 = 10^{12}$	Т	tera-	
$(10^3)^5 = 10^{15}$	P	peta-	
$(10^3)^6 = 10^{18}$	Е	exa-	
$(10^3)^7 = 10^{21}$	Z	zetta-	
$(10^3)^8 = 10^{24}$	Y	yotta-	

IEC (2진 단위)			
값	기호	이름	10진 변환 크기
$(2^{10})^1 = 2^{10} \simeq 10^{3.01}$	Ki	kibi-	1,024
$(2^{10})^2 = 2^{20} \approx 10^{6.02}$	Mi	mebi-	1,048,576
$(2^{10})^3 = 2^{30} \simeq 10^{9.03}$	Gi	gibi-	1,073,741,824
$(2^{10})^4 = 2^{40} \approx 10^{12.04}$	Ti	tebi-	1,099,511,627,776
$(2^{10})^5 = 2^{50} \approx 10^{15.05}$	Pi	pebi-	1,125,899,906,842,624
$(2^{10})^6 = 2^{60} \approx 10^{18.06}$	Ei	exbi-	1,152,921,504,606,846,976
$(2^{10})^7 = 2^{70} \simeq 10^{21.07}$	Zi	zebi-	1,180,591,620,717,411,303,424
$(2^{10})^8 = 2^{80} \simeq 10^{24.08}$	Yi	yobi-	1,208,925,819,614,629,174,706,176

● 전자소자를 이용한 논리 표현

● 정논리와 부논리

전압레벨	정논리 (양논리, positive logic)	부논리(음논리, negative logic)
+5V	High=1	High = 0
0V	Low=0	Low = 1

■ 정논리를 많이 사용

- 펄스파형
 - Low-High 상태를 반복하는 전압레벨로 구성
 - 주기 펄스(periodic pulse) vs. 비주기 펄스(non-periodic pulse)
- 이상적인 펄스파형

- 리딩 에지(leading edge) = 상승에지(rising edge)
- 트레일링 에지(trailing edge) = 하강에지(falling edge)

- 실제적인 펄스파형
 - 상승시간(rise time): t_r
 - 하강시간(fall time): t_f
 - 펄스 폭(pulse width): t_w

- 주파수(f)
 - 주기적인 파형이 1초 동안에 진동한 횟수를 의미
 - 단위: 헤르츠(Hz)를 사용
 - 전파를 처음으로 발견한 독일의 헤르츠의 이름을 사용
- 주기(T)
 - 주기적인 파형이 1 회 반복 하는데 걸리는 시간
 - T=1/f
- Duty cycle: $\frac{t_w}{T} \times 100\%$

디지털 집적회로

- 조합논리회로 (combinational logic circuit)
 - 기본 게이트의 조합으로 구성되는 논리회로
- 순서논리회로 (sequential logic circuit)
 - 조합논리회로 + 플립플롭(flip-flop) 또는 메모리

디지털 집적회로

- PCB에 장착하는 방법에 따른 IC 패키지 구분
 - 삽입 장착(through-hole mounted)형: PCB 보드의 구멍에 핀 삽입 후 뒷면의 도체에 납땜으로 연결, DIP 형태
 - 표면 실장(surface-mounted)형: PCB 표면의 금속 처리된 곳에 직접 납 때 처리

SOIC

PLCC

ADC와 DAC

● 아날로그-디지털 변환과정의 블록도

	설명
표본화 (sampling)	 최고 주파수의 2배 이상의 빈도로 샘플링 시 샘플링된 데이터로부터 본래 데이터를 재현 가능 ex) 사람 음성: 초당 8000번 샘플링(8KHz) 필요
양자화	• 펄스의 진폭의 크기를 디지털 양으로 변환
(quantization)	• 이 과정에서 불가피한 양자화 잡음이 발생
부호화	• 부호화는 양자화한 값을 2진 디지털 부호로 변환
(coding)	• 일반적으로 전화 음성에서는 8비트로 부호화 수행

Summary

- 디지털과 아날로그
 - 아날로그: 연속적인 신호
 - 디지털: 이산신호, 정보의 저장/가공/처리 용이
- 디지털 신호의 표현
 - 0과 1, 즉 2진수로 표현
 - 8 bits → 1 byte, Ki/Mi/Gi/Ti/... 등으로 높은 단위 표현
- 논리 레벨
 - 0에 근접한 전압: low → 0 (정논리)
 - 공급전압에 근접한 전압: high → 1 (정논리)

Summary

- 펄스파형의 표현
 - 주파수: 1초 동안 진동하는 횟수, 단위는 Hz
 - 주기: 파형 1회 반복에 걸리는 시간, 단위는 s
 - Duty cycle: $\frac{t_w}{T} \times 100\%$
- 디지털 집적회로
 - 조합논리 회로, 순차논리회로
- 아날로그-디지털 변환
 - 표본화(sampling) 양자화(quantization) 부호화(coding)