The Solow 1956 Model

(Desecrate time version)

Constant Technology

Discrete time: $t = 0, 1, 2, \dots, \infty$

Two factors of production:

 L_t - Labor

 K_t - Capital

Produce one final good that can be used for consumption or as capital in the production process.

The dynamics of the Solow Model

Factor supply

Labor supply at t + 1:

$$L_{t+1} = (1+n)L_t$$

where:

 L_0 is given

$$n > -1$$

capital supply at t + 1:

$$K_{t+1} = S_t + (1 - \delta)K_t$$

where:

 K_0 is given

 S_t - aggregate saving

$$\delta \in [0,1]$$

A1:

$$n + \delta > 0$$

Production

output produced at time t:

$$Y_t = F(K_t, L_t)$$

A2:

$$F_K(K_t, L_t), F_L(K_t, L_t) > 0,$$

 $F_{KK}(K_t, L_t), F_{LL}(K_t, L_t) < 0,$ for all $K_t, L_t > 0$

$$\lim_{K\to 0} F_K(K_t, L_t) = \infty$$

$$\lim_{K\to\infty}F_K(K_t,L_t)=0$$

$$F(0,L_t)=0$$

$$\lambda F(K_t, L_t) = F(\lambda K_t, \lambda L_t)$$

$$\rightarrow$$

$$Y_t = F(K_t, L_t) = L_t F(K_t/L_t, 1) \equiv L_t f(k_t)$$
 where $k_t \equiv K_t/L_t$

It follows from A2:

$$f(0) = 0$$
 $(L_t f(0) = F(0, L_t) = 0)$

for all $k_t > 0$:

$$f'(k_t) = F_K(K_t, L_t) > 0$$

$$F_K(K_t, L_t) = dL_t f(K_t/L_t)/dK_t = f'(k_t)$$

and

$$f''(k_t) = L_t F_{KK} < 0$$

$$F_{KK} = df'(K_t/L_t)/dK_t = f''(k_t)/L_t$$

$$\lim_{k_t\to 0} f'(k_t) = \infty \quad \lim_{k_t\to \infty} f'(k_t) = 0$$

Output per worker as a function of capital per worker

Moreover:

since:

 $\lambda F(K_t, L_t) = F(\lambda K_t, \lambda L_t)$, differentiating with respect to λ :

$$F(K_t, L_t) = F_K K_t + F_L L_t$$

and dividing by L_t :

$$f(k_t) = f'(k_t)k_t + F_L$$

$$f(k_t) - f'(k_t)k_t = F_L > 0$$

Remark:

In a competitive environment:

the rate of return per unit of capital (rental rate):

$$F_K = f'(k_t)$$

the wage rate per unit of labor:

$$F_L = f(k_t) - f'(k_t)k_t$$

Remark:

Since $F(K_t, L_t) = F_K K_t + F_L L_t$, it follows from differentiating with respect to L_t that

$$F_L = F_{KL}K_t + F_{LL}L_t + F_L$$

$$\rightarrow$$

$$F_{KL}K_t + F_{LL}L_t = 0$$

$$F_{KL} > 0$$

Consumption, Saving and Investment

$$S_t = sY_t$$

where $s \in [0,1]$

Capital Accumulation:

$$K_{t+1} = S_t + (1 - \delta)K_t$$

= $sL_t f(k_t) + (1 - \delta)K_t$

$$= sL_t f(k_t) + (1 - \delta)K_t$$

$$k_{t+1} = \frac{K_{t+1}}{L_{t+1}} = \frac{sL_{t}f(k_{t}) + (1 - \delta)K_{t}}{L_{t}} \frac{L_{t}}{L_{t+1}}$$

The Dynamical System

 $\{k_t\}_0^{\infty}$ such that

$$k_{t+1} = \phi(k_t) \ \forall t$$

where k_0 is given

Let y_t be output per worker

$$y_t = Y_t/L_t = f(k_t)$$

 \rightarrow

 $\{k_t\}_0^\infty$ uniquely determines $\{y_t\}_0^\infty$

Properties of $\phi(k_t)$:

$$\phi(0)=0$$

$$\phi(0) = 0$$

$$\phi(0) = 0$$

$$\phi'(k_t) = \frac{sf'(k_t) + (1 - \delta)}{1 + n} > 0 \ \forall k_t > 0$$

$$\phi(0) = 0$$

$$\phi(0)=0$$

$$\phi(0)=0$$

$$\phi(0)=0$$

$$\phi(0)=0$$

$$\phi(0) = 0$$

$$\phi(0)=0$$

$$\phi(0)=0$$

periods of
$$\varphi(\kappa_t)$$
 .
$$\phi(0) = 0$$

$$\phi(0)=0$$

Properties of
$$\phi(\kappa_t)$$
 : $\phi(0)$ =

openies of
$$\phi(\kappa_t)$$
 :
$$\phi(0) = 0$$

es of
$$\phi(k_t)$$
:

 $\phi''(k_t) = \frac{sf''(k_t)}{1+n} < 0 \ \forall k_t > 0$

 $\lim_{k_t\to 0}\phi'(k_t)=\infty$

 $\lim_{k_t\to\infty}\phi'(k_t)=\frac{1-\delta}{1+n}\in[0,1)$

Remark:

The strict concavity of $\phi(k_t)$ follows from:

- 1. the strict concavity of $f(k_t)$
- 2. saving is a constant fraction of output

Steady states

 \bar{k} such that:

$$\bar{k} = \phi(\bar{k}) = \frac{sf(\bar{k}) + (1 - \delta)\bar{k}}{1 + n}$$

$$\rightarrow$$

$$(n+\delta)\bar{k} = sf(\bar{k})$$

- → there exist 2 steady states:
- 0 unstable

 $\bar{k} > 0$ stable

- Existence
- Uniqueness
- Stability

• Existence?

• Uniqueness?

• Stability?

Stability: convergence in oscillations

Stability: divergence in oscillations

Stability (Local)

 $\phi'(\bar{k}) > 0 \rightarrow$ monotonic convergence or divergence

 $\phi'(\bar{k}) < 0 \rightarrow$ oscillatory convergence or divergence

 $|\phi'(\bar{k})| < 1 \rightarrow \text{convergence}$

 $|\phi'(\bar{k})| > 1 \rightarrow \text{divergence}$

Comparative Statics

Proposition.

$$\frac{dk}{dn} < 0$$

$$\frac{d\bar{k}}{ds} > 0$$

$$\frac{d\bar{k}}{dk_0} = 0$$

Proof.

Let

$$G(\bar{k}, n, s) \equiv (n + \delta)\bar{k} - sf(\bar{k}) = 0$$

$$\rightarrow$$

$$\frac{d\bar{k}}{dn} = -\frac{\frac{\partial G}{\partial n}}{\frac{\partial G}{\partial \bar{k}}} = -\frac{\bar{k}}{n + \delta - sf'(\bar{k})} < 0$$

$$=-\frac{\frac{\partial G}{\partial s}}{\frac{\partial G}{\partial \bar{k}}} = \frac{f(\bar{k})}{n+\delta-sf'(\bar{k})} > 0$$

initial condition do not matter since there exists a unique globally stable steady state equilibrium

Comparative Dynamics

Let

$$\gamma_{k_t} \equiv \frac{k_{t+1} - k_t}{k_t}$$

Proposition.

$$\frac{d\gamma_{k_t}}{dn} < 0$$

$$\frac{d\gamma_{k_t}}{ds} > 0$$

$$\frac{d\gamma_{k_t}}{ds} < 0$$

Proof.

$$\gamma_{k_t} = \left[\frac{sf(k_t) + (1 - \delta)k_t}{1 + n} - k_t \right] / k_t$$

$$= \frac{sf(k_t) - (n + \delta)k_t}{(1 + n)k_t}$$

$$= \frac{sf(k_t)}{(1 + n)k_t} - \frac{n + \delta}{1 + n}$$

 $\frac{d\gamma_{k_t}}{dn} = -\frac{sf(k_t)}{(1+n)^2 k_t} - \frac{1-\delta}{(1+n)^2} < 0$

 $\frac{d\gamma_{k_t}}{ds} = \frac{f(k_t)}{(1+n)k_t} > 0$

 $\frac{d\gamma_{k_t}}{dk_t} = -\frac{s}{(1+n)k_t^2} [f(k_t) - f'(k_t)k_t] < 0$

Conclusion: no growth in the long-run without technological progress

Testable Implication:

Conditional convergence, not global convergence

Testing for convergence:

 β convergence

 σ convergence

Convergence

Convergence

Convergence

β convergence

Global convergence:

$$\gamma_{1980-2020}^{i} = \alpha + \beta_0 y_{1980}^{i} + \varepsilon^{i}$$

Conditional convergence

$$\gamma_{1980-2020}^{i} = \alpha + \beta_0 y_{1980}^{i} + \beta_1 X_{1980}^{i} + \varepsilon^{i}$$

σ convergence

Sigma convergence occurs when the dispersion of income per capita between different countries tends to decrease over time

Paul Samuelson's predictions

Factors of Production vs. Productivity as Explanations for International Income Differences

