Lecture 9: Classification, LDA

Reading: Chapter 4

STATS 202: Data mining and analysis

October 11, 2019

Review: Main strategy in Chapter 4

Find an estimate $\hat{P}(Y \mid X)$. Then, given an input x_0 , we predict the response as in a Bayes classifier:

$$\hat{y}_0 = \operatorname{argmax}_y \hat{P}(Y = y \mid X = x_0).$$

Linear Discriminant Analysis (LDA)

Instead of estimating $P(Y \mid X)$ directly, we will estimate:

- 1. $\hat{P}(X \mid Y)$: Given the response, what is the distribution of the inputs?
- 2. $\hat{P}(Y)$: How probable is each category?

Then, we use *Bayes rule* to obtain the estimate:

$$\begin{split} \hat{P}(Y = k \mid X = x) &= \frac{\hat{P}(X = x \mid Y = k)\hat{P}(Y = k)}{\hat{P}(X = x)} \\ &= \frac{\hat{P}(X = x \mid Y = k)\hat{P}(Y = k)}{\sum_{j} \hat{P}(X = x \mid Y = j)\hat{P}(Y = j)} \end{split}$$

Linear Discriminant Analysis (LDA)

Instead of estimating $P(Y \mid X)$, we compute estimates:

1. $\hat{P}(X=x\mid Y=k)=\hat{f}_k(x)$, where each $\hat{f}_k(x)$ is a Multivariate Normal Distribution density:

2. $\hat{P}(Y=k) = \hat{\pi}_k$ is estimated by the fraction of training samples of class k.

Suppose that:

- We know $P(Y = k) = \pi_k$ exactly.
- ▶ P(X = x | Y = k) is Mutivariate Normal with density:

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)}$$

 μ_k : Mean of the inputs for category k.

 Σ : Covariance matrix (common to all categories).

Then, what is the Bayes classifier?

By Bayes rule, the probability of category k, given the input x is:

$$P(Y = k \mid X = x) = \frac{\mathsf{likelihood} \cdot \mathsf{prior}}{\mathsf{marginal}} = \frac{f_k(x) \pi_k}{P(X = x)}$$

The denominator does not depend on the response k, so we can write it as a constant:

$$P(Y = k \mid X = x) = C \times f_k(x)\pi_k$$

Plugging in the formula for $f_k(x)$:

$$P(Y = k \mid X = x) = \frac{C\pi_k}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)}$$

$$P(Y = k \mid X = x) = \frac{C\pi_k}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)}$$

Now, let us absorb everything that does not depend on k into a constant C':

$$P(Y = k \mid X = x) = C' \pi_k e^{-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k)}$$

and take the logarithm of both sides:

$$\log P(Y = k \mid X = x) = \log C' + \log \pi_k - \frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k).$$

This constant is the same for every category, k. So we want to find the maximum of this over k.

Goal, maximize the following over k:

$$\log \pi_k - \frac{1}{2} (x - \mu_k)^T \mathbf{\Sigma}^{-1} (x - \mu_k).$$

$$= \log \pi_k - \frac{1}{2} \left[x^T \mathbf{\Sigma}^{-1} x + \mu_k^T \mathbf{\Sigma}^{-1} \mu_k \right] + x^T \mathbf{\Sigma}^{-1} \mu_k$$

$$= C'' + \log \pi_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + x^T \mathbf{\Sigma}^{-1} \mu_k$$

We define the objective:

$$\delta_k(x) = \log \pi_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + x^T \mathbf{\Sigma}^{-1} \mu_k$$

At an input x, we predict the response with the highest $\delta_k(x)$.

What is the decision boundary? It is the set of points in which 2 classes are equally probable:

$$\begin{split} \delta_k(x) &= \delta_\ell(x) \\ \log \pi_k - \frac{1}{2} \mu_k^T \boldsymbol{\Sigma}^{-1} \mu_k + \frac{\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mu_k}{\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mu_k} &= \log \pi_\ell - \frac{1}{2} \mu_\ell^T \boldsymbol{\Sigma}^{-1} \mu_\ell + \frac{\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mu_\ell}{\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mu_\ell} \end{split}$$

This is a linear equation in x.

Estimating π_k

$$\hat{\pi}_k = \frac{\#\{i \; ; \; y_i = k\}}{n}$$

In words, the fraction of training samples of class k.

Estimating the parameters of $f_k(x)$

Estimate the the mean vector μ_k for each class:

$$\hat{\mu}_k = \frac{1}{\#\{i \; ; \; y_i = k\}} \sum_{i \; ; \; y_i = k} x_i$$

Estimate the common covariance matrix Σ :

▶ One predictor (p = 1):

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^{K} \sum_{i ; y_i = k} (x_i - \hat{\mu}_k)^2.$$

Many predictors (p > 1): Compute the vectors of deviations $(x_1 - \hat{\mu}_{y_1}), (x_2 - \hat{\mu}_{y_2}), \dots, (x_n - \hat{\mu}_{y_n})$ and use an unbiased estimate of its covariance matrix, Σ .

LDA prediction

For an input x, predict the class with the largest:

$$\hat{\delta}_k(x) = \log \hat{\pi}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\Sigma}^{-1} \hat{\mu}_k + x^T \hat{\Sigma}^{-1} \hat{\mu}_k$$

The decision boundaries are defined by:

$$\log \hat{\pi}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\Sigma}^{-1} \hat{\mu}_k + x^T \hat{\Sigma}^{-1} \hat{\mu}_k = \log \hat{\pi}_\ell - \frac{1}{2} \hat{\mu}_\ell^T \hat{\Sigma}^{-1} \hat{\mu}_\ell + x^T \hat{\Sigma}^{-1} \hat{\mu}_\ell$$

These are the solid lines in the following image:

Quadratic discriminant analysis (QDA)

The assumption that the inputs of every class have the same covariance Σ can be quite restrictive:

Boundaries for Bayes (dashed), LDA (dotted), and QDA (solid).

Quadratic discriminant analysis (QDA)

In quadratic discriminant analysis we estimate a mean $\hat{\mu}_k$ and a covariance matrix $\hat{\Sigma}_k$ for each class separately.

Given an input, it is easy to derive an objective function:

$$\delta_k(x) = \log \pi_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}_k^{-1} \mu_k + x^T \mathbf{\Sigma}_k^{-1} \mu_k - \frac{1}{2} x^T \mathbf{\Sigma}_k^{-1} x - \frac{1}{2} \log |\mathbf{\Sigma}_k|$$

This objective is now quadratic in x and so are the decision boundaries.

Quadratic discriminant analysis (QDA)

- ► Bayes boundary (- -)
- ▶ LDA (·····)
- ▶ QDA (----).

Evaluating a classification method

We have talked about the 0-1 loss:

$$\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}(y_i\neq\hat{y}_i).$$

It is possible to make the wrong prediction for some classes more often than others. The 0-1 loss doesn't tell you anything about this.

A much more informative summary of the error is a **confusion** matrix:

		Predicted class			
		– or Null	+ or Non-null	Total	
True	– or Null	True Neg. (TN)	False Pos. (FP)	N	
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P	
	Total	N*	P*		

Example. Predicting default

Used LDA to predict credit card default in a dataset of 10K people.

Predicted "yes" if P(default = yes|X) > 0.5.

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- ► The error rate among people who do **not** default (false positive rate) is very low.
- ► However, the error rate among people who **do** default (false negative rate) is 76%.
- ► False negatives may be a bigger source of concern!
- One possible solution: Change the threshold.

Example. Predicting default

Changing the threshold to 0.2 makes it easier to classify to "yes".

Predicted "yes" if P(default = yes|X) > 0.2.

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Note that the rate of false positives became higher! That is the price to pay for fewer false negatives.

Example. Predicting default

Let's visualize the dependence of the error on the threshold:

- ► - False negative rate (error for defaulting customers)
- ▶ · · · · False positive rate (error for non-defaulting customers)
- ▶ 0-1 loss or total error rate.

Example. The ROC curve

- Displays the performance of the method for any choice of threshold.
- The area under the curve (AUC) measures the quality of the classifier:
 - 0.5 is the AUC for a random classifier
 - ► The closer AUC is to 1, the better.

Next time

- Comparison of logistic regression, LDA, QDA, and KNN classification.
- ► Start Chapter 5: Resampling.