$10_{47} \ (K10a_{15})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 3u^{21} - 41u^{19} + \dots + b - 2, -2u^{21} + u^{20} + \dots + a + 1, u^{22} - 2u^{21} + \dots - u + 1 \rangle$$

 $I_2^u = \langle b - u, a - 1, u^2 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 3u^{21} - 41u^{19} + \dots + b - 2, -2u^{21} + u^{20} + \dots + a + 1, u^{22} - 2u^{21} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{21} - u^{20} + \dots + 4u - 1 \\ -3u^{21} + 41u^{19} + \dots - u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{20} + u^{19} + \dots - 9u^{2} + 4u \\ -u^{16} + 10u^{14} + \dots + 6u^{3} - 4u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{21} - u^{20} + \dots - 10u^{2} + 4u \\ -u^{21} + 14u^{19} + \dots - 3u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= -4u^{21} + 5u^{20} + 53u^{19} - 63u^{18} - 292u^{17} + 333u^{16} + 862u^{15} - 974u^{14} - 1448u^{13} + 1758u^{12} + 1295u^{11} - 2051u^{10} - 338u^9 + 1521u^8 - 426u^7 - 628u^6 + 422u^5 + 65u^4 - 139u^3 + 35u^2 + 14u + 75u^2 + 120u^2 + 120u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6	$u^{22} - 2u^{21} + \dots - u + 1$
c_3, c_9	$u^{22} + u^{21} + \dots - 21u^2 + 4$
c_7, c_{10}	$u^{22} - 3u^{21} + \dots - 8u + 1$
<i>c</i> ₈	$u^{22} + 9u^{21} + \dots + 40u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6	$y^{22} - 30y^{21} + \dots + 3y + 1$
c_3, c_9	$y^{22} - 15y^{21} + \dots - 168y + 16$
c_7, c_{10}	$y^{22} - 9y^{21} + \dots - 40y + 1$
c ₈	$y^{22} + 11y^{21} + \dots - 1080y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.964383 + 0.128666I		
a = 0.184838 - 0.945621I	1.70640 + 2.06027I	8.35016 - 3.76643I
b = -0.299924 + 0.888159I		
u = 0.964383 - 0.128666I		
a = 0.184838 + 0.945621I	1.70640 - 2.06027I	8.35016 + 3.76643I
b = -0.299924 - 0.888159I		
u = -0.889732		
a = 1.34588	0.304299	11.0200
b = 1.19747		
u = -1.059960 + 0.353222I		
a = 0.600368 + 0.550351I	5.17561 - 7.52719I	9.40693 + 6.57102I
b = 0.830761 + 0.371286I		
u = -1.059960 - 0.353222I		
a = 0.600368 - 0.550351I	5.17561 + 7.52719I	9.40693 - 6.57102I
b = 0.830761 - 0.371286I		
u = -1.128070 + 0.227245I		
a = -0.642240 - 0.353090I	6.69355 - 1.82013I	11.99179 + 1.37946I
b = -0.804731 - 0.252365I		
u = -1.128070 - 0.227245I		
a = -0.642240 + 0.353090I	6.69355 + 1.82013I	11.99179 - 1.37946I
b = -0.804731 + 0.252365I		
u = 0.459979 + 0.506822I		
a = 0.614823 - 0.850759I	1.65851 - 0.59540I	8.05700 - 0.40058I
b = -0.713989 + 0.079726I		
u = 0.459979 - 0.506822I		
a = 0.614823 + 0.850759I	1.65851 + 0.59540I	8.05700 + 0.40058I
b = -0.713989 - 0.079726I		
u = 0.269941 + 0.602986I		
a = -0.589034 + 0.985256I	1.04219 + 4.27368I	5.66030 - 6.14849I
b = 0.753100 + 0.089219I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.269941 - 0.602986I		
a = -0.589034 - 0.985256I	1.04219 - 4.27368I	5.66030 + 6.14849I
b = 0.753100 - 0.089219I		
u = 0.485575		
a = 0.677603	0.739737	13.5160
b = -0.329027		
u = -1.58393		
a = -0.123818	7.92361	15.4350
b = -0.196119		
u = -0.138359 + 0.279214I		
a = -0.56251 + 1.90545I	-1.65381 - 0.64556I	-2.86526 + 1.77412I
b = 0.454198 + 0.420697I		
u = -0.138359 - 0.279214I		
a = -0.56251 - 1.90545I	-1.65381 + 0.64556I	-2.86526 - 1.77412I
b = 0.454198 - 0.420697I		
u = 1.70733		
a = 3.19649	9.66174	9.65860
b = -5.45746		
u = -1.71885 + 0.02850I		
a = -0.023243 - 0.195497I	11.33560 - 2.65945I	9.22485 + 2.49660I
b = -0.045523 - 0.335367I		
u = -1.71885 - 0.02850I		
a = -0.023243 + 0.195497I	11.33560 + 2.65945I	9.22485 - 2.49660I
b = -0.045523 + 0.335367I		
u = 1.73830 + 0.09444I		
a = 2.32463 - 0.78043I	15.1237 + 9.3852I	10.11771 - 5.10224I
b = -4.11462 + 1.13708I		
u = 1.73830 - 0.09444I		
a = 2.32463 + 0.78043I	15.1237 - 9.3852I	10.11771 + 5.10224I
b = -4.11462 - 1.13708I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.75301 + 0.05790I		
a = -2.45571 + 0.49075I	17.0458 + 3.0253I	12.24161 - 0.83109I
b = 4.33329 - 0.71811I		
u = 1.75301 - 0.05790I		
a = -2.45571 - 0.49075I	17.0458 - 3.0253I	12.24161 + 0.83109I
b = 4.33329 + 0.71811I		

II.
$$I_2^u = \langle b - u, \ a - 1, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u + 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	u^2-u-1
c_3, c_9	u^2
c_4, c_5, c_6	$u^2 + u - 1$
c_7	$(u-1)^2$
c_8, c_{10}	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6	$y^2 - 3y + 1$
c_{3}, c_{9}	y^2
c_7, c_8, c_{10}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.00000	-0.657974	3.00000
b = 0.618034		
u = -1.61803		
a = 1.00000	7.23771	3.00000
b = -1.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2 - u - 1)(u^{22} - 2u^{21} + \dots - u + 1)$
c_3, c_9	$u^2(u^{22} + u^{21} + \dots - 21u^2 + 4)$
c_4, c_5, c_6	$(u^2 + u - 1)(u^{22} - 2u^{21} + \dots - u + 1)$
c_7	$((u-1)^2)(u^{22}-3u^{21}+\cdots-8u+1)$
c ₈	$((u+1)^2)(u^{22}+9u^{21}+\cdots+40u+1)$
c_{10}	$((u+1)^2)(u^{22}-3u^{21}+\cdots-8u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6	$(y^2 - 3y + 1)(y^{22} - 30y^{21} + \dots + 3y + 1)$
c_3, c_9	$y^2(y^{22} - 15y^{21} + \dots - 168y + 16)$
c_7,c_{10}	$((y-1)^2)(y^{22} - 9y^{21} + \dots - 40y + 1)$
c_8	$((y-1)^2)(y^{22}+11y^{21}+\cdots-1080y+1)$