1 Derivatives of Elementary Transcendental Functions

Date: Term 1, Fall '23

Notes: A.L. Maagma

DEFINITION. In general, the term transcendental means non-algebraic. A transcendental function is a function that is not expressible as a finite combination of the algebraic opperations of addition, subtraction, multiplication, division, raising to a power, and extracting a root. An example includes the function $\log x$, $\sin x$, $\cos x$, e^x , and any functions containing them.

2 The Natural Logarithmic Function

DEFINITION. The function defined by

$$f(x) = \log_e x = \ln x$$

 $(x > 0, e \approx 2.718281...)$ is called the natural logarithmic function.

NOTE. The equation $y = \ln x$ is equivalent to $e^y = x$.

2.1 Logarithmic Properties

DEFINITION. If a and b are positive numbers and n is rational, then the following properties are true.

- 1. $\ln 1 = 0$
- $2. \ln(ab) = \ln a + \ln b$
- 3. $\ln(a^n) = n \ln a$
- $4. \ln\left(\frac{a}{b}\right) = \ln a \ln b$

2.2 Definition of the Natural Logarithmic Function

DEFINITION. The natural logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt, x > 0$$

The domain of the natural logarithmic function is the set of all positive real numbers.

2.3 Derivative of the Natural Logarithmic Function

DEFINITION. Let u be a differentiable function of x.

- 1. $\frac{d}{dx}[\ln x] = \frac{1}{x}, x > 0$
- 2. $\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}, u > 0$

EXAMPLE 2.3.1. Solve for the equation $\frac{d}{dx}[\ln 2x]$.

EXAMPLE 2.3.2. Solve for the equation $\frac{d}{dx}[\ln(x^2+1)]$.

EXAMPLE 2.3.3. Solve for the equation $\frac{d}{dx}[x \ln x]$.

EXAMPLE 2.3.4. Solve for the equation $\frac{d}{dx}[(\ln x)^3]$.

EXAMPLE 2.3.5. Solve for the equation $y = \ln [(4x^2 + 3)(2x - 1)].$

EXAMPLE 2.3.6. Solve for the equation $y = \ln\left(\frac{x}{x+1}\right)$.

EXAMPLE 2.3.7. By implicit differentiation, find the dy/dx of $\ln \frac{x}{y} + xy = 1$.

EXAMPLE 2.3.8. Solve for the equation $\ln(x+y) - \ln(x-y) = 4$.

3 Logarithmic Differentiation

DEFINITION. It is sometimes convenient to use logarithms as aids in differentiating non-logarithmic functions. This procedure is called logarithmic differentiation. This process uses the properties of natural logarithm to simplify the work involved in differentiating complicated expressions containing products, quotients, and powers.

2

EXAMPLE 3.0.1. Solve for the equation $y = \frac{(\sin x)^2 (x^3 + 1)^4}{(x + 3)^8}$.

EXAMPLE 3.0.2. Solve for the equation $y = x^3\sqrt{5-9x}$.

EXAMPLE 3.0.3. Solve for the equation $y = \frac{x^2(6+3x)^4}{\sqrt[3]{9-x^2}}$.

EXAMPLE 3.0.4. Solve for the equation $y = x^{\sin x}$.

EXAMPLE 3.0.5. Solve for the equation $y = \frac{\sqrt[3]{x+1}}{(x+2)\sqrt{x+3}}$.

EXAMPLE 3.0.6. Solve for the equation $y = \frac{(x-2)^2}{\sqrt{x^2+1}}$.