Prévention des risques relatifs à la foudre

TIPE de Florent Puy Numéro 12174

La foudre en France c'est en moyenne chaque année:

2 000 000 d'impacts 200 foudroyés dont 20 morts

15 000 départs d'incendie Première cause de coupure de courant 15 000 000€ de dégâts

Objectifs

Caractérisation du phénomène -

Modélisation numérique

Application à l'efficacité des

à l'efficacité des paratonnerres

Objectifs

Caractérisation du phénomène

Modélisation numérique

Application

à l'efficacité des

paratonnerres

Protection d'infrastructures

médicales

Caractérisation

du phénomène

Modélisation

numérique de la foudre

Discrétisation de l'équation

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} = 0$$

$$f''(a) = \lim_{h \to 0} \frac{f(a+2h)-2f(a+h)+f(a)}{h^2}$$

$$\frac{v_{i+1,j}-2v_{i,j}+v_{i-1,j}}{h^2}+\frac{v_{i,j+1}-2v_{i,j}+v_{i,j-1}}{h^2}=0$$

Méthode de Jacobi

$$v_{i,j} = \frac{v_{i+1,j} + v_{i-1,j} + v_{i,j+1} + v_{i,j-1}}{4}$$

Convergence de la méthode de Jacobi

Convergence de la méthode de Jacobi

 $\longrightarrow V_{i,j}(k+1) \leq V_{i,j}(k)$

 \rightarrow $V_{i,j}(k) \leq V_{i,j}(k+1)$

Convergence de la méthode de Jacobi

 $\longrightarrow V_{i,j}(k+1) \leq V_{i,j}(k)$

 $\longrightarrow V_{i,j}(k) \leq V_{i,j}(k+1)$

 $\forall i, j \in [|0, n-1|], \forall k \in \mathbb{N},$ $|\mathbf{V}_{i,j}(\mathbf{k})| \leq 1$

Convergence de la méthode de Jacobi

Convergence de la méthode de Jacobi

Ecart quadratique moyen

$$e_k = \frac{1}{n^2} \sum_{i,j} [v_{i,j}(k) - v_{i,j}(k-1)]^2$$

Algorithme de calcul d'une carte de potentiels

Conditions initiales:

Nuage

-1	-1	-1	-1	-1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
+1	+1	+1	+1	+1

Algorithme de calcul d'une carte de potentiels

Conditions initiales:

Nuage

-1	-1	-1	-1	-1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
+1	+1	+1	+1	+1

Sol

Algorithme de calcul d'une carte de potentiels

Conditions initiales:

Nuage

-1	-1	-1	-1	-1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
+1	+1	+1	+1	+1

Carte des potentiels au seuil e

A CONTRACTOR	-1	-1	-1	-1	-1
	0	-0,3	-0,4	-0,3	0
	0	0	0	0	0
	0	+0,3	+0,4	+0,3	0
100	+1	+1	+1	+1	+1

Exemple en 200x200

Exemple en 200x200

Choix du nouveau point de propagation:

Point éligible = Point dont un unique voisin est traversé par la décharge

Probabilité de propagation de la décharge en un point (i,j):

$$P(((i,j)) = \frac{v^{\eta}_{i,j}}{\sum_{k} v^{\eta}_{k}}$$

Avec les v_k représentant l'ensemble des points éligibles

Exemple en taille 5x5

Conditions initiales

Nuage

-1	-1	-1	-1	-1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
+1	+1	+1	+1	+1

Sol

Actualisation de la carte des potentiels par résolution de l'équation de Laplace

Choix du nouveau point parmi les éligibles

Exemple en taille 5x5

Conditions initiales

Nuage

-1	-1	-1	-1	-1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
+1	+1	+1	+1	+1

Sol

Actualisation de la carte des potentiels par résolution de l'équation de Laplace

Choix du nouveau point parmi les éligibles

Décharge touche le sol?

Nuage

-1	-1	-1	-1	-1
0	-0,3	-1	-0,3	0
0	-1	-0,3	-1	0
0	-1	0,1	0,2	0
+1	+1	+1	+1	+1

Sol

36/89

Obtention du tracé final de la décharge

-1	-1	-1	-1	-1
0	-0,3	-1	-0,3	0
0	-1	-0,3	-1	0
0	-1	0,1	0,2	0
+1	+1	+1	+1	+1

Carte des potentiels finale

Points de potentiel -1 = Points des traceurs

Obtention du tracé final de la décharge

-1	-1	-1	-1	-1
0	-0,3	-1	-0,3	0
0	-1	-0,3	-1	0
0	-1	0,1	0,2	0
+1	+1	+1	+1	+1

Carte des potentiels finale

Points de potentiel -1 = Points des traceurs

Suppression des points n'intervenant pas dans la décharge

Améliorations de l'algorithme

$$\delta = \lim_{\varepsilon \to 0} \frac{\ln(N(\varepsilon))}{\ln \frac{1}{\varepsilon}}$$

Calcul de la dimension fractale moyenne d'un éclair réel

Calcul de la dimension fractale moyenne d'un éclair réel

$$\delta_{th}$$
=1,38

Calcul de la dimension fractale moyenne d'un éclair réel

2-Amélioration du temps d'exécution

Améliorer le temps d'exécution

Résolution de l'équation de Laplace

Algorithme final

 \rightarrow $O(n^4)$

2-Amélioration du temps d'exécution

Méthode de Gauss-Seidel

Jacobi

$$v_{i,j}(k+1) = \frac{v_{i+1,j}(k) + v_{i-1,j}(k) + v_{i,j+1}(k) + v_{i,j-1}(k)}{4}$$

Méthode de Gauss-Seidel

Jacobi

$$v_{i,j}(k+1) = \frac{v_{i+1,j}(k) + v_{i-1,j}(k) + v_{i,j+1}(k) + v_{i,j-1}(k)}{4}$$

Gauss-Seidel

$$v_{i,j}(k+1) = (1-\omega)v_{i,j}(k) + \omega \frac{v_{i-1,j}(k+1) + v_{i,j-1}(k+1) + v_{i,j+1}(k) + v_{i+1,j}(k)}{4}$$

avec
$$\omega_{\text{id\'eal}} = \frac{2}{1 + \frac{\pi}{n}}$$

2-Amélioration du temps d'exécution

Comparaison des deux méthodes

2-Amélioration du temps d'exécution

Comparaison des deux méthodes

Jacobi

Gauss-Seidel

Prise en compte des traceurs ascendants

Point de contact entre descendant et ascendant

Décharge passant par le point de contact

Prise en compte des traceurs ascendants

Déclenchement de l'ascendant lorsque la tension entre le sol et l'air est suffisante

Condition d'arrêt: contact entre descendant et ascendant

Prise en compte des traceurs ascendants

Déclenchement de l'ascendant lorsque la tension entre le sol et l'air est suffisante

Condition d'arrêt: contact entre descendant et ascendant Trajectoire de la décharge

Résultats sur une grille 200x200

Résultats sur une grille 200x200

Résultats sur une grille 200x200

Application

à l'efficacité des paratonnerres

1-Présence d'un paratonnerre

Potentiel plus élevé au niveau de la tige pour simuler l'effet de pointe

1-Présence d'un paratonnerre

1-Présence d'un paratonnerre

2-Analogie de longueur

Bas du cumulonimbus: 1000m

200 pixels

Sol: 0m

2-Analogie de longueur

Bas du cumulonimbus: 1000m

Sol: 0m

2-Efficacité des paratonnerres

Rayon de protection à 95% en fonction de la taille de la tige

Avec 50 essais par taille, on obtient

Altitude sommet de la tige (m)	10	20	30	50	75
Rayon de protection (m)	49	53	65	72	83

Rayon de protection à 95% en fonction de la taille de la tige

Avec 50 essais par taille, on obtient

Altitude sommet de la tige (m)	10	20	30	50	75
Rayon de protection (m)	49	53	65	72	83

Ce qui correspond au graphe:

Rayon de protection à 95% en fonction de la taille de la tige

Avec 50 essais par taille, on obtient

Altitude sommet de la tige (m)	10	20	30	50	75
Rayon de protection (m)	49	53	65	72	83

Ce qui correspond au graphe:

De la forme y=ax+b avec a $\approx 0,58$ et $b \approx 46m$

69/89

2-Efficacité des paratonnerres

Surface de protection annoncée par la société Schirtec

$$A_p(h)=h^2+12Q h+Q^2$$

$$\longrightarrow R_p(h) = \sqrt{\frac{h^2 + 12 Q h + Q^2}{\pi}}$$

Confrontation des résultats

Hauteur du sommet de la tige (m)

R_{théorique}

 $\mathsf{R}_{\mathsf{obtenu}}$

Confrontation des résultats

Hauteur du sommet de la tige (m)

Rthéorique

Robtenu

Asymptote en

$$y = \frac{1}{\sqrt{\pi}}x + 49$$

$$\frac{1}{\sqrt{\pi}} \approx 0.56$$

Protection d'infrastructures médicales

1-Hôpital Lapeyronie

1-Hôpital Lapeyronie

Hauteur des bâtiments + Paratonnerre (m)

1-Hôpital Lapeyronie

Zones protégés

112 m 110 m 108 m 106 m 104 m 102 m 99 m 97 m 95 m 92 m 90 m 87 m 84 m 82 m 79 m 76 m 73 m 70 m Altitude

Altitude rapport
au 0 fixé
+
Hauteur des
bâtiments
+
Paratonnerre
(m)

112 m 110 m 108 m 106 m 104 m 102 m 99 m 97 m 95 m 92 m 90 m 87 m 84 m 82 m 79 m 76 m 73 m 70 m Altitude

Conclusion

Annexe

codes V3.pv 001 | import numpy as np import matplotlib.pyplot as plt 003 from math import * 004 from random import * 005 006 007 i #Taille de la grille 008 i N = 200009 010 011 #On fixe eta=6 012 eta=6 013 014 015 # définition des paramètres physiques de l'expérience 016 # potentiels >0 pour s'affranchir des erreurs de signe 017 | # tout en MV 018 | Vsol = 100# du sol 019| Vair = 50.0# de l'air 020 Vnuage= 0 # potentiel du nuage 021 022 # création de la carte des potentiels 024 i V = np.zeros([N,N])025 026 027 i # définition des conditions initiales $028 \mid V[0,:] = Vnuage # bord supérieur$ 029 | V[-1,:] = Vsol# bord inférieur V[1:N-1,0:N] = Vair # intérieur de la grille 030 i 031 032 # facteur w 033 W=2/(1+pi/N)034

def ecart quadratique moyen(V1, V2):

for j in range(N):

e+=(V1[i,i]-V2[i,i])**2

for i in range(N):

return e

035 | 036 |

037

038 039

040

041

042

```
043
    # résolution de l'équation de Laplace par méthode de Jacobi
045
    def jacobi(V):
         ecart = 1.0
046
047
         iteration = 0
048
         e=10e-3 #seuil de résolution
049
         while ecart > e:
             # sauvegarde de la grille courante pour calculer l'écart
050
             V1 = V.copy()
051
052
053
             # méthode de Jacobi
054
             for j in range (N-1):
055
                 for i in range (N-1):
056
                     if V[i,j]!=0 and V[i,j]<Vsol:
057
                         V[i,j]=0.25*(V[i-1,j]+V[i,j-1]+V[i,j+1]+V[i+1,j])
058
059
             # critère de convergence
             ecart = ecart quadratique moyen(V,V1)
060
061
             iteration +=\overline{1}
062
         return V
063
064
065 i
     # résolution de l'équation de Laplace par méthode de Gauss-Seidel
    def gauss seidel(V):
066
067
         ecart = 1.0
068
         iteration = 0
         e=10e-3 #seuil de résolution
069
070
         while ecart > e:
071
             # sauvegarde de la grille courante pour calculer l'écart
072
             V1 = V.copy()
073
074 i
             # méthode de Gauss-Seidel
             for j in range (N-1):
075 i
076
                 for i in range (N-1):
                     if V[i,j]!=0 and V[i,j]<Vsol:
077
078
                         V[i,j]=(1-w)*V[i,j]+w*0.25*(V[i-1,j]+V[i,j-1]+V[i,j+1]+V[i+1,j])
079
080
             # critère de convergence
081
             ecart = ecart quadratique moyen(V,V1)
082
             iteration +=\overline{1}
083
         return V
084
085
086 #renvoie la liste des points éligibles à être traversés par la décharge
```

```
def eligible(V):
088
                                   L=[]
089
                                   for i in range(1, N-1):
090
                                                  for j in range (1,N-1):
091
                                                                  if V[i,i]==Vnuage:
                                                                                 #eligible=unique voisin traversé par la décharge
092
                                                                                 if (V[i+1.i]==Vnuage and V[i-1,i]<Vnuage and V[i,j+1]<Vnuage and V[i,j-1]<Vnuage) or (V[i-1,j]==Vnuage and
093 i
V[i+1,j] < Vnuage and V[i,j+1] < Vnuage and V[i,
V[i+1,j] < Vnuage  or (V[i,j-1] == Vnuage  and V[i-1,j] < Vnuage  and V[i+1,j] < Vnuage  and V[i,j+1] < Vnuage 
094
                                                                                                  L.append((i.i))
095
                                   return L
096
097
098
099 i
                  # fonction principale
100
                  def foudre(point depart, V, bool=False):
101
102
                                    (i,i)=point depart
103
104
                                   #cas d'arret: touche le sol ou recontre l'ascendant
105
                                  if i>=N-1 or j<0:
106
                                                   return
107
                                  #tracé point et mise au potentiel du nuage
108
109
                                   plt.scatter([i],[j], s=1, color='black')
110
                                   V[i,i]=0
111
                                  # actualisation de la carte de potentiels
112
113
                                   V=gauss seidel(V)
114
115
                                  liste points éligibles=eligible(V)
116
117
                                   #somme des probas des points éligibles puissance eta
118
                                   sum=0
                                   for k in liste points éligibles:
119
120
                                                  k=(j,i)
121
                                                   sum+=V[i,j]**eta
122
123
                                   #liste des probas
124
                                   liste probas=[]
125 i
                                   for k in liste points éligibles:
                                                  k=(j,i)
126
127
                                                   liste probas.append((V[i,j]**eta)/sum)
128
```

```
129
130
         #choix du prochain point
131
         new=choices(liste points éligibles, liste probas)
132
133
         #initiation de l'ascendant
134
         for k in range(N):
135
             if V[1,k]<Vsol-0.1:
136
                 bool=True
137
                 #appel recursif sur l'ascendant
138 i
                 foudre((k,1),V,bool)
                 #Sortie de boucle forcée pour garder un seul ascendant
139
140
                 break
141
142
         #appel récursif pour sur nouveau point élu
143
         foudre(new, V, bool)
144
145
146
147
    #Affichage 1
    plt.imshow(V, cmap='twilight')
148
149 i
    plt.colorbar()
150
    plt.show()
151
152
153
    #Initiation du descendant au milieu de la 1ère ligne
154 i
    foudre((1,int(N/2)),V)
155 i
156
157 #Affichage 2
158 | plt.imshow(V, cmap='twilight')
    plt.colorbar()
159
160
    plt.show()
161
162
    ##
163 i
    ##
164
165
166
167 i
    def boxcount(Z, k):
168
         S = np.add.reduce(
169
             np.add.reduce(Z, np.arange(0, Z.shape[0], k), axis=0),
170
                                 np.arange(0, Z.shape[1], k), axis=1)
171
172
         # Calcul du nombre de carrés de taille k nécessaire pour recouvrir la figure
```

```
173
         return len(np.where((S > 0) & (S < k*k))[0])
174
175
176
    def dim fractale(Z, seuil=0.9):
177
178
         # Transforme Z en tableau numpy de booléens
179
         Z = (Z < seuil)
180
181
         # Dimension de l'image rognée en carré
182
         p = min(Z.shape)
183
184
         # Plus grande entier n tel que de 2^n<=p</pre>
185
         n = int(np.log(p)/np.log(2))
186
187
         # definition des tailles de carrés
188
         # de 2 à 2^n
189
         liste tailles = 2**np.arange(n, 1, -1)
190
191
         # Compte de nombre de carrés nécéssaires selon la taille des carrés avec l'appel de boxcount
192
         C = []
         for taille in liste tailles:
193
194
             c.append(boxcount(Z, taille))
195
196
         # regression linéaire de la décroissance des tailles de carrés avec polyfit
197
         coeffs = np.polyfit(np.log(liste tailles), np.log(c), 1)
198
         return -coeffs[0]#droite décroissante, on renvoie l'opposé du coef directeur
199
200
201
202
    I = plt.imread("C://Users//florent//Documents//MP//tipe//box counting//eclair.png")
203
204
     dimension fractale(I/n)
205
206
```