

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Physiology</u> <u>Breathing & Circulation</u> <u>Respiratory Systems Revision</u>

Respiratory Systems Revision

Part A	Fish gills
Which o	of the following statements describe how fish gills take in oxygen? Select all that apply.
	water moves in through the mouth and out across the gills
	water moves in across the gills and out through the mouth
	blood is pumped through the gills in the same direction to the flow of water across the gills
	blood is pumped through the gills in the opposite direction to the flow of water across the gills
	because blood and water flow in the same direction, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency
	because blood and water flow in opposite directions, a steep diffusion gradient is maintained across the gill capillaries, thus increasing gas exchange efficiency

Part B Mammalian lungs adaptations

Fill in the table below by matching the feature of the mammalian lungs to the description of how this feature improves efficiency of gas exchange between the air and the bloodstream.

Feature	How this feature improves efficiency of gas exchange
	ensures a very small distance for gases to diffuse across
	increases the surface area for diffusion of gases to occur
	increases the concentration gradient of oxygen by ensuring that the lungs are continuously supplied with oxygen-poor blood
	increases concentration gradient of oxygen by ensuring that the lungs are continuously filled with oxygen-rich air

Items:

lungs are composed of a large number of alveoli alveoli are surrounded by blood capillaries alveoli are lined with a thin layer of cells (squamous epithelium)

lungs are actively ventilated

Which of the following statements describe how mammalian lungs take in air? Coloct all that apply			
Which of the following statements describe how mammalian lungs take in air? Select all that apply.			
The diaphragm contracts , changing from a more domed shape to a flatter shape, causing the lungs to expand downward.	ards.		
The diaphragm relaxes , changing from a flatter shape to a more domed shape, causing the lungs to expand downwar	ds.		
The external intercostal muscles contract , causing the lungs to expand outwards and upwards.			
The external intercostal muscles relax , causing the lungs to expand outwards and upwards.			
The expansion of the lungs increases thoracic pressure, which causes air to move into the lungs from outside the boo	y.		
The expansion of the lungs decreases thoracic pressure, which causes air to move into the lungs from outside the bo	ly.		
Part D Pulmonary ventilation			
A group of students were investigating the effect of exercise on pulmonary ventilation.			
The table below shows some of the results recorded for one of the students in the group.			
Tidal volume $0.45\mathrm{dm^3}$			
Vital capacity $3.45\mathrm{dm^3}$			
Mean breathing rate at rest $14\mathrm{min^{-1}}$			
Mean breathing rate during exercise $18\mathrm{min}^{-1}$			

Calculate the total volume of air that moved in and out of this student's lungs in a five minute period **before** the start of exercise.

Created for isaacphysics.org by Lewis Thomson. Part B adapted with permission from OCR AS Level Biology A, May 2013, Cells, Exchange and Transport, Question 2c. Part D adapted with permission from OCR AS Level Biology B, June 2016, Foundations of Biology, Question 9.

Home Gameboard Biology Physiology Breathing & Circulation Circulatory Systems Revision

Circulatory Systems Revision

Part A	Double circulation
Which	of the following statements about double circulation are correct? Select all that apply.
	double circulation refers to the fact that the heart has two types of chambers: atria and ventricles
	double circulation refers to the fact that blood passes through the heart twice for each complete circuit of the circulatory system
	all vertebrates have a double circulatory system
	mammals and birds have a double circulatory system, whereas fish have a single circulatory system
	double circulation ensures that blood travels through the body at a higher pressure and faster speed than in a single circulatory system
	double circulation ensures that blood travels through the body at a lower pressure and slower speed than in a single circulatory system

Part B Systole vs diastole

In the table below, show which process each statement refers to: systole or diastole.

Statement	Systole or Diastole
blood moves from the vena cava and pulmonary veins into the atria	
blood moves from the ventricles out into the aorta and pulmonary artery	
the semi-lunar valves open	
the atrioventricular valves open	
caused by electrical excitation (i.e. depolarisation)	

systole diastole

Part C Oxygen saturation

In mammalian blood, oxygen is mainly transported combined with haemoglobin. The presence of haemoglobin greatly increases the oxygen carrying capacity of blood.

- $100\,\mathrm{cm^3}$ of plasma contains $0.3\,\mathrm{cm^3}$ of oxygen when fully saturated.
- $100\,\mathrm{cm^3}$ of blood contains $20.1\,\mathrm{cm^3}$ of oxygen when fully saturated.

Calculate the percentage increase in oxygen carried in fully saturated blood compared with oxygen carried in fully saturated plasma. Give your answer to the nearest percent.

Part D Cardiac output

The average stroke volume of a particular person is $60 \, \mathrm{ml}$, and their average heart rate is $82 \, \mathrm{bpm}$.

Calculate this person's cardiac output.

Created for isaacphysics.org by Lewis Thomson. Part C adapted with permission from OCR AS Level Biology A, May 2016, Breadth in Biology, Question 24

Gameboard:

STEM SMART Biology Week 22

Home Gameboard Biology Physiology Breathing & Circulation Capillary Pressures and Interstitial Fluid

Capillary Pressures and Interstitial Fluid

Figure 1 below shows a capillary (c) surrounded by interstitial fluid (i). <u>Hydrostatic pressures</u> (P) and <u>oncotic pressures</u> (π) are shown. All values are given in mmHg.

Figure 1: Hydrostatic and oncotic pressures in a blood capillary and in the surrounding interstitial fluid.

The net movement of fluid between the capillary and interstitial tissue is determined by the net driving force (NDF):

$$\mathrm{NDF} = (\mathbf{P_c} - \mathbf{P_i}) - (oldsymbol{\pi_c} - oldsymbol{\pi_i})$$

When NDF > 0, fluid leaves the capillary.

interstitial

When NDF < 0, fluid enters the capillary.

Part A Calculate the NDF Calculate the net driving force (NDF) for the capillary shown in Figure 1. Which of the following processes will occur? Select all that apply. fluid will enter the capillary fluid will leave the capillary interstitial fluid will be produced interstitial fluid will be lost Part B Pressure equilibrium Assuming the other values remain the same (as in Figure 1), what value for the capillary hydrostatic pressure would result in no net fluid movement between the capillary and the interstitial fluid?

Adapted with permission from OCR A Level Biology B, June 2017, Fundamentals of Biology, Question 18

Gameboard:

STEM SMART Biology Week 22

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Physiology</u> <u>Plants</u> <u>Plant Physiology</u> <u>Revision</u>

Plant Physiology Revision

rai i A Avieiii vs biiideii	Part A	Xvlem v	s phloem
-----------------------------	--------	---------	----------

Fill in the table below to compare xylem and phloem.

Xylem	Phloem
xylem transports water and	phloem transports
xylem vessel walls are reinforced with	sieve tube walls have no additional support
xylem vessel walls contain that allow water to pass into adjacent vessels	there are many gaps in the cell walls between companion cells and sieve tube elements called

Items:

lignin

chitin

plasmodesmata

mineral ions e.g. nitrates and phosphates

assimilates e.g. sucrose and amino acids

pits

Part B Phloem loading

A scientist isolated companion cells and conducted some experiments to investigate the mechanism involved in loading sucrose into the sieve tubes. The scientist recorded the following observations:

- Observation 1: isolated companion cells became slightly negatively charged compared with their surroundings.
- Observation 2: companion cells could decrease the pH of the surrounding solution from 7.0 to 5.6.
- Observation 3: the pH inside the companion cells rose from 7.0 to 8.2.
- Observation 4: treatment with cyanide (which stops aerobic respiration) prevents the change in pH occurring.

Which of the following conclusions can be drawn from the observations above? Select all that apply.
hydrogen ions are moving from the companion cells to the surrounding solution
hydrogen ions are moving from the surrounding solution into the companion cells
hydrogen ions are moving by passive transport
hydrogen ions are moving by active transport

Part C Xerophytes

Xerophytes are plants that are adapted to living in dry conditions.

The table below describes four general features of leaves. In each section, one leaf belongs to a xerophyte.

Presence of hairs on leaves				
riesence of flairs officaves				
Leaf A	no			
Leaf B	yes			
Leaf C	no			
Mean number of stomata (cm ⁻²)				
Leaf D	30 000			
Leaf E	23 000			
Leaf F	13 000			
Mean surface area of one leaf (cm^2)				
Leaf G	0.2			
Leaf H	10.0			
Leaf I	23.0			
Thickness of cuticle (μm)				
Leaf J	4.25			
Leaf K	8.50			
Leaf L	2.00			

Leaf I	23.0
Thickness of	cuticle (μm)
Leaf J	4.25
Leaf K	8.50
Leaf L	2.00
Which four leaves belong to xerophytes? Choose one A B C D F	from each section.

G			
П			
J			
K			
L			

Adapted with permission from OCR AS Level Biology A, June 2013, Cells, Exchange and Transport, Question 6 and OCR AS Level Biology A, June 2014, Cells, Exchange and Transport, Question 4

Gameboard:

STEM SMART Biology Week 22

<u>Home</u> <u>Gameboard</u> Biology Physiology Plants Xylem Calculations

Xylem Calculations

A $0.2\,\mathrm{cm}$ long section of xylem, with internal diameter $60\,\mu\mathrm{m}$, was studied.

The velocity at which water was transported through the xylem in a plant was found to be 3.6 metres per hour in the morning.

the morning.
Part A Velocity
Calculate the velocity of water transport in the xylem of this plant in the morning.
Part B Internal volume
Calculate the internal volume of this section of xylem.
Give your answer to 2 significant figures.
Part C How much water?
How much water would move through this section of xylem, per hour, in the morning?
Give your answer to 2 significant figures.

Part D An increase in velocity
Later in the day, the velocity of water transport was measured and was found to be greater than in the morning.
Which of the following environmental factors could have resulted in this change in velocity? Select all that apply.
increased sunlight
decreased sunlight
increased wind speed
decreased wind speed
increased humidity
decreased humidity

Adapted with permission from NSAA 2022 Section 2 Q53

Gameboard:

STEM SMART Biology Week 22

<u>Home</u> <u>Gameboard</u> Biology Physiology Plants Plant Processes

Plant Processes

Part A Osmosis

The diagram below shows a plant cell.

Which of the arrows on the diagram show the net movement of water molecules, by osmosis, when the cell is surrounded by a solution that is more concentrated than the solution in the cytoplasm? Select all that apply.

1

2

[] 4

none of the above

Part B Growth

The diagram below shows the tip of a plant shoot, with two areas labelled P and Q.

Which of the following statements could explain the growth of this shoot? Select all that apply.

		Concentration of plant hormone is higher at Q than F
--	--	--

	Unidirectional light has	caused a change in th	ne concentration of	plant hormone at P

		Cells at	Ρ	are	smaller	than	the	cells	at	Q
--	--	----------	---	-----	---------	------	-----	-------	----	---

Question elements adapted with permission from NSAA 2016 Section 1 Q56 and Q63