

Задача №17 Исследование характера распространения лазерного излучения (СПбПУ им. Петра Великого)

Команда «Замечательный беспередел»

Доклад подготовил студент 3-го курса Андрей Гавриленко

Дифференциальная кювета Андерсона

Постановка задачи

Необходимо:

- О найти аналитическое выражение для отклонения луча в дифференциальной кювете Андерсона
- О изучить характер распространения луча
- О определить влияние различных параметров системы
- О научиться численно находить значение коэффициента преломления с точностью 0.0001

Аналитическое решение

$$A : \frac{\sin \alpha_{1}}{\sin \beta_{1}} = \frac{n_{q}}{n_{s}}; B : \frac{\sin \alpha_{2}}{\sin \beta_{2}} = \frac{n_{m}}{n_{q}}; C : \frac{\sin \alpha_{3}}{\sin \beta_{3}} = \frac{n_{q}}{n_{m}}; D : \frac{\sin \alpha_{4}}{\sin \beta_{4}} = \frac{n_{a}}{n_{q}};$$

$$\alpha_{1} = \alpha_{3} + \beta_{2}, L_{1} = e t g \beta_{4}, L_{2} = d_{1} t g \beta_{3}, L_{3} = K_{1} t g \alpha_{3}, K_{1} = (y - b_{1} + L_{4}) t g \alpha_{1}, t g \alpha_{1} = \frac{a}{b},$$

$$L_{4} = |AB| \cdot \sin(\alpha_{1} - \beta_{1}) = \frac{d}{\cos \beta_{1}} \sin(\alpha_{1} - \beta_{1}) = d(\sin \alpha_{1} - \cos \alpha_{1} t g \beta_{1}).$$

Аналитическое решение

$$\begin{split} L_4 &= d \sin \alpha_1 \left(1 - \frac{n_s \cos \alpha_1}{\sqrt{n_q^2 - n_s^2 \sin^2 \alpha_1}} \right), \\ \text{tg} \alpha_3 &= \text{tg} \left(\alpha_1 - \beta_2 \right) = \frac{\text{tg} \alpha_1 - \text{tg} \beta_2}{1 + \text{tg} \alpha_1 \text{tg} \beta_2}, \\ \frac{L_3}{K_1} &= tg \alpha_3 = \frac{\text{tg} \alpha_1 - \frac{n_s \sin \alpha_1}{\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1}}}{1 + \text{tg} \alpha_1 \frac{n_s \sin \alpha_1}{\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1}}} = \frac{\sin \alpha_1 \sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \sin \alpha_1 \cos \alpha_1}{\cos \alpha_1 \sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} + n_s \sin^2 \alpha_1}, \\ \sin \alpha_3 &= \sin \left(\alpha_1 - \beta_2 \right) = \sin \alpha_1 \cos \beta_2 - \sin \beta_2 \cos \alpha_1 = \\ &= \sin \alpha_1 \sqrt{1 - \frac{n_s^2}{n_m^2} \sin^2 \alpha_1} - \frac{n_s}{n_m} \sin \alpha_1 \cos \alpha_1 = \frac{\sin \alpha_1}{n_m} \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right), \\ \text{tg} \beta_3 &= \frac{L_2}{d_1} = \frac{\sin \alpha_1 \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right)}{\sqrt{n_q^2 - \sin^2 \alpha_1} \left(n_m^2 + n_s^2 \cos^2 \alpha_1 - n_s^2 \sin^2 \alpha_1 - n_s \cos \alpha_1 \right)} \\ L_1 &= e \text{tg} \beta_4; \quad \frac{L_1}{e} = \text{tg} \beta_4 = \frac{\frac{\sin \alpha_1}{n_a} \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right)}{\sqrt{1 - \left(\frac{\sin \alpha_1}{n_a} \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right) \right)^2}} = \\ &= \frac{\sin \alpha_1 \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right)}{\sqrt{n_a^2 - \sin^2 \alpha_1} \left(n_m^2 - n_s^2 \sin^2 \alpha_1 - n_s \cos \alpha_1 \right)}}. \end{split}$$

$$L = L_1 + L_2 + L_3 + L_4 = \sin \alpha_1 \left(d \left(1 - \frac{n_s \cos \alpha_1}{\sqrt{n_q^2 - n_s^2 \sin^2 \alpha_1}} \right) + \left(\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 \right) \cdot \frac{d_1}{\sqrt{n_q^2 - \sin^2 \alpha_1} \left(n_m^2 - n_s^2 \sin^2 \alpha_1 + n_s^2 \cos^2 \alpha_1 - 2n_s \cos \alpha_1 \sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} \right)} + \frac{d_1}{\sqrt{n_q^2 - \sin^2 \alpha_1} \left(n_m^2 + n_s^2 \cos^2 \alpha_1 - n_s^2 \sin^2 \alpha_1 - 2n_s \cos \alpha_1 \sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} \right)} + \frac{K_1}{\cos \alpha_1 \sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} + n_s \sin^2 \alpha_1} \right) \right).$$

$$\frac{L_4}{\sin \alpha_1} = d \left(1 - \frac{n_s \cos \alpha_1}{\sqrt{n_q^2 - n_s^2 \sin^2 \alpha_1}} \right) = L_4', \frac{L}{\sin \alpha_1} - L_4' = \frac{L - L_4}{\sin \alpha_1} = A,$$

$$\sqrt{n_m^2 - n_s^2 \sin^2 \alpha_1} - n_s \cos \alpha_1 = f_1; f_2 = f_1 \sin \alpha_1,$$

$$A = f_1 \left(\frac{e}{\sqrt{n_q^2 - f_2^2}} + \frac{d_1}{\sqrt{n_q^2 - f_2^2}} + \frac{K_1}{\cos \alpha_1 \left(f_1 + n_s \cos \alpha_1 \right) + n_s \sin^2 \alpha_1} \right).$$

Аналитическое решение

$$\frac{A\sin\alpha_1}{f_2} = \frac{e}{\sqrt{n_a^2 - f_2^2}} + \frac{d_1}{\sqrt{n_q^2 - f_2^2}} + \frac{K_1}{f_2 \operatorname{tg}\alpha_1 + n_s}.$$

Вывод: если в дальнейшем преобразовывать уравнение, то получим уравнение 12-ой степени относительно f2, и решать его не будем, так как аналитического решения для них нет

Математическая модель

Канонический вид прямой: Ax + By + C = 0

Формула для точки пересечения прямых:

$$x = \frac{\Delta_x}{\Delta_{ab}} = \frac{-(C_1 B_2 - B_1 C_2)}{A_1 B_2 - B_1 A_2}$$

$$y = \frac{\Delta_y}{\Delta_{ab}} = \frac{-(A_1 C_2 - C_1 A_2)}{A_1 B_2 - B_1 A_2}$$

$$\begin{cases} A_1 \times x + B_1 \times y = -C_1 \\ A_2 \times x + B_2 \times y = -C_2 \end{cases}$$

Формула преломления в векторном виде: с необходимым условием $|\mathbf{v}_1| = \mathbf{n}_1$

$$\vec{v}_2 = \vec{v}_1 + \left(\sqrt{\frac{n_2^2 - n_1^2}{(\vec{v}_1 \cdot \vec{n})^2} + 1 - 1}\right) (\vec{v}_1 \cdot \vec{n}) \vec{n}$$

Программная реализация:

Анализ решения

ns and nm values (ns=nm)	Experiment L, mm	Geometric	Time and iterations	Formulaic	Time and iterations
n(air) 1.000273	0.171129	1.0003	4.78 ms 17 steps	1.0003	4.27 ms 17 steps
n(water) 1.327412	0.082450	1.3275	4.34 ms 17 steps	1.3275	4.25 ms 17 steps
n(ethanol) 1.361513	0.071131	1.3616	4.38 ms 17 steps	1.3616	4.39 ms 17 steps
n(petrol) 1.437762	0.043715	1.4378	4.39 ms 17 steps	1.4378	4.39 ms 17 steps

Качественный анализ зависимостей

Заключение:

- 1. Получена аналитическая зависимость коэффициента исследуемой жидкости от параметров системы
- 2. Построена графическая модель для визуализации хода луча и его изучения
- 3. Получены качественные зависимости отклонения луча от характеристик системы
- 4. Разработан численный алгоритм для нахождения коэффициента преломления с произвольно задаваемой точностью

```
a = Decimal(50)
     b = Decimal(40)
    d = Decimal(2.5)
   d1 = Decimal(5)
   e = Decimal(5)
  y = Decimal(20)
 ns = Decimal(1.2)
 nq = Decimal(1.4584)
na = Decimal(1.0002926)
nm = Decimal(1.)
```


Спасибо за внимание! С нетерпением ждём ваших вопросов!

