Peluang Bersyarat

Kuliah ke-3

Masalah

Suatu kotak berisi 100 microchip. Microchipmicrochip tersebut buatan pabrik 1 dan pabrik 2. Beberapa microchip ada yang cacat.

Satu microchip diambil secara acak dan diamati apakah microchip tersebut cacat atau baik. Misal A kejadian terambil microchip cacat, maka A' adalah kejadian terambil microchip baik.

Misal B kejadian microchip yang terambil produk pabrik 1, maka B' adalah kejadian microchip yang terambil buatan pabrik 2.

Keadan microchip-microchip tersebut dinyatakan pada tabel berikut

Tabel Keadaan Microchip

Numbers of defective and nondefective microchips from two factories

	B	B'	Totals
A A'	15 45	5 35	20 80
Totals	60	40	100

Dari masalah tersebut

Jika satu microchip diambil secara acak dan yang terambil adalah microchip buatan pabrik 1, berapa peluang bahwa microchip yang terambil adalah microchip cacat?

Dari tabel dapat dihitung

$$P(A \mid B) = \frac{n(A \cap B)}{n(B)} = \frac{15}{60} = 0.25$$

Jika dipandang secara keseluruhan

$$P(A \mid B) = \frac{n(A \cap B)/n(S)}{n(B)/n(S)} = \frac{P(A \cap B)}{P(B)}$$

Definisi

Definition 1.5.1

The conditional probability of an event A, given the event B, is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

(1.5.1)

if
$$P(B) \neq 0$$

Teorema

Theorem 1.5.1 For any events A and B,

$$P(A \cap B) = P(B)P(A \mid B) = P(A)P(B \mid A)$$

Teorema Probabilitas Total

Jika kejadian B_1 , B_2 , ... adalah kejadian-kejadian yang saling asing dengan $P(B_k) > 0$ untuk setiap k dan $\mathbb{D}_{\mathbf{B}_k} = \mathbf{S}$, A sembarang kejadian dalam S maka

$$P(A) = \sum_{k=1}^{\infty} P(B_k) P(A | B_k)$$

Kejadian-kejadian tersebut dapat digambarkan sbb:

Teorema Bayes

Jika B_1 , B_2 , ... adalah kejadian-kejadian yang saling asing dengan $P(B_k) > 0$ untuk setiap k dan $\bigcup_{k=1}^{\infty} \mathbf{B}_k = \mathbf{S}$ maka untuk sembarang kejadian A

$$P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{k=1}^{\infty} P(B_k)P(A|B_k)}$$

Kejadian saling bebas

Definition 1.5.2

Two events A and B are called independent events if

$$P(A \cap B) = P(A)P(B)$$

Otherwise, A and B are called dependent events.

Teorema

If A and B are events such that P(A) > 0 and P(B) > 0, then A and B are independent if and only if either of the following holds:

$$P(A \mid B) = P(A) \qquad P(B \mid A) = P(B)$$

Teorema

Two events A and B are independent if and only if the following pairs of events are also independent:

- 1. A and B':
- 2. A' and B.
 - 3. A' and B'.

Contoh

A softball team has three pitchers, A, B, and C, with winning percentages of 0.4, 0.6, and 0.8, respectively. These pitcher pitch with frequency 2, 3, and 5 out of every 10 games, respectively. In other words, for a randomly selected game, P(A) = 0.2, P(B) = 0.3, and P(C) = 0.5. Find:

- a. P(team wins game) = P(W)
- b. P(A pitched game | team won) = P(A|W)

Penyelesaian

$$\begin{split} P(W|A) &= 0,4 & P(A) = 2/10 = 0,2 \\ P(W|B) &= 0,6 & P(B) = 3/10 = 0,3 \\ P(W|C) &= 0,8 & P(C) = 5/10 = 0,5 \\ a. & P(W) &= P(A) \cdot P(W|A) + P(B) \cdot P(W|B) + P(C) \cdot P(W|C) \\ &= (0,2)(0,4) + (0,3)(0,6) + (0,5)(0,8) \\ &= 0,08 + 0,18 + 0,4 \\ &= 0,66 \\ b. & P(A|W) &= \frac{P(A) \cdot P(W|A)}{P(W)} \\ &= \frac{(0,2)(0,4)}{0,66} \\ &= 0,12 \end{split}$$

Tugas

Kerjakan Bain: hal 47 no 35, hal 51 no 71

TERIMAKASIH