TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG GIẢI TÍCH 1

CHƯƠNG IV. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN

§2. Đạo hàm hàm ẩn và đạo hàm theo hướng

ThS. Đinh Tiến Dũng

NỘI DUNG CHÍNH

- * Đạo hàm hàm ẩn.
- * Đạo hàm theo hướng, vector gradient.

CHƯƠNG IV. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN

§2. Đạo hàm hàm ẩn và đạo hàm theo hướng

I. ĐẠO HÀM CỦA HÀM ẨN

1. Định nghĩa hàm ẩn một biến

Cho phương trình F(x,y) = 0 (1), trong đó F(x,y) là hàm hai biến xác định trong miền mở $\mathbf{D} \subset \mathbb{R}^2$ chứa điểm $M(x_0,y_0)$ và $F(x_0,y_0) = \mathbf{0}$. Giả sử với mỗi x thuộc lân cận nào đó của điểm x_0 thì tồn tại duy nhất một y = y(x) sao cho $(x,y) = (x,y(x)) \in \mathbf{D}$ và $F(x,y(x)) = \mathbf{0}$. Khi đó hàm y = y(x) được gọi là hàm ẩn của một biến x xác định bởi (1).

* Ví dụ

Tìm hàm ẩn xác định bởi phương trình đường tròn (C): $x^2 + y^2 - 1 = 0$ (1)

Giải

Ta thấy (1) $\Leftrightarrow y^2 = 1 - x^2 \Leftrightarrow y = \pm \sqrt{1 - x^2}$

- Xét trên miền mở D: y > 0 thì (1) xác định duy nhất hàm ẩn $y = \sqrt{1 x^2}$.
- Xét trên miền mở D': y < 0 thì (1) xác định duy nhất hàm ẩn $y = -\sqrt{1 x^2}$.

* Định lý

Gia sử hàm F(x, y) thỏa các điều kiện sau:

- 1) F liên tục trong hình tròn mở $B(M(x_0, y_0), r)$ với F(M) = 0.
- 2) F khả vi trong B(M,r) và $F'_{y}(x,y) \neq 0$, $\forall (x,y) \in B(M,r)$.

Khi đó tồn tại $\delta > 0$ sao cho phương trình F(x,y) = 0 xác định một hàm ẩn y = y(x) khả vi trong $(x_0 - \delta, x_0 + \delta)$ với đạo hàm y'(x) được tính theo công thức: $y'(x) = -\frac{F'_x}{F'}$.

* Tóm lại:

• $N\acute{e}u \ y = y(x)$ là hàm ẩn xác định bởi phương trình F(x,y) = 0 thì:

$$y'(x)=-\frac{F_x'}{F_y'}.$$

$$\mathbf{z}_x' = -\frac{F_x'}{F_z'}; \ \mathbf{z}_y' = -\frac{F_y'}{F_z'}$$

- * Nhận xét: Cách tính đạo hàm của hàm ẩn y = y(x) xác định bởi phương trình: F(x, y) = 0.
 - Cách 1: Giải phương trình F(x,y) = 0 tìm y theo x, ta suy được hàm ẩn y = y(x), rồi tính đạo hàm của hàm một biến. • Cách 2: Tính F'_x và F'_y rồi thế vào công thức $y' = -\frac{F_x}{F'_y}$.

❖ Ví du 1

Tính y'(1), y''(0) biết rằng y = y(x) là hàm ẩn xác định bởi phương trình: $x^3 - 2x^2 + y = 0$.

Giái

Từ phương trình:
$$x^3 - 2x^2 + y = 0$$

$$\Rightarrow y = -x^3 + 2x^2.$$

$$\Rightarrow y' = -3x^2 + 4x; y'' = -6x + 4$$

$$\Rightarrow y'(1) = -3 + 4 = 1; y''(0) = 4.$$

❖ Ví dụ 2

Cho hàm ẩn y = y(x) xác định bởi phương trình: $x^2 - 2x + y = \pi + \sin y.$ Tính y'(0), y''(0) biết rằng $y(0) = \pi$.

Giải

Đặt $F(x, y) = x^2 - 2x + y - \pi - \sin y$ thì phương trình hàm ẩn có dạng: F(x, y) = 0. Khi đó:

$$y'(x) = -\frac{F_x'}{F_y'} = -\frac{2x - 2}{1 - \cos y} = -\frac{2x - 2}{1 - \cos y(x)}$$

$$\Rightarrow y'(0) = \frac{2}{1 - \cos[y(0)]} = \frac{2}{1 - \cos \pi} = 1$$

$$y''(x) = \left(-\frac{2x - 2}{1 - \cos(y(x))}\right)' = -\frac{2[1 - \cos(y(x))] - (2x - 2)\sin(y(x)) \cdot y'(x)}{[1 - \cos(y(x))]^2}$$

$$\Rightarrow y''(0) = -\frac{2(1 - \cos \pi)}{(1 - \cos \pi)^2} = -1.$$

❖ Ví dụ 3

Cho hàm ẩn $\mathbf{z} = \mathbf{z}(x, y)$ xác định bởi phương trình $x^3 + \mathbf{z}^2 + ye^{xz} + z\cos y = \mathbf{0}$ Tính các đạo hàm riêng $\mathbf{z}_x', \mathbf{z}_v'$ tại $(\mathbf{0}, \mathbf{0}, \mathbf{0})$.

Giải

• Đặt $F(x, y, z) = x^3 + z^2 + ye^{xz} + z\cos y$ thì phương trình hàm ẩn có dạng: F(x, y, z) = 0. Khi đó:

$$\begin{cases} F'_{x} = 3x^{2} + zye^{xz} \\ F'_{y} = e^{xz} - zsiny \\ F'_{z} = 2z + xye^{xz} + cosy \end{cases} \Rightarrow \begin{cases} F'_{x}(0,0,0) = 0 \\ F'_{y}(0,0,0) = 1 \\ F'_{z}(0,0,0) = 1 \end{cases}$$

• Tóm lại:

$$z'_{x}(0,0) = -\frac{F'_{x}(0,0,0)}{F'_{z}(0,0,0)} = 0; \ \ z'_{y}(0,0) = -\frac{F'_{y}(0,0,0)}{F'_{z}(0,0,0)} = -1.$$

BÀI TẬP TẠI LỚP

Cho hàm ẩn z = z(x, y) thỏa phương trình:

$$x^2z + y^2 - 2z^2 = (y - x)e^{xyz}$$

Tính các đạo hàm riêng $z'_x(1;1), z'_y(1;1)$ biết rằng z(1;1) = 1.

ĐÁP ÁN

II. ĐẠO HÀM THEO HƯỚNG VÀ VECTOR GRADIENT

Cho hàm số w = f(x, y) xác định trên miền D trong mặt Oxy chứa điểm $M_0(x_0, y_0)$. Chúng ta đã biết ý nghĩa của các đạo hàm riêng tại M_0 :

- $f'_x(M_0)$: Độ đốc của đồ thị f tại điểm M_0 theo hướng Ox.
- $f'_y(M_0)$: Độ đốc của đồ thị f tại điểm M_0 theo hướng Oy.

Nếu muốn đánh giá độ dốc của f theo hướng một đường thẳng (d) nào đó đi qua M_0 thì ta cần một khái niệm tổng quát hơn khái niệm đạo hàm riêng. Đó là đạo hàm theo hướng.

Gọi $\overrightarrow{l} = (l_1, l_2)$ là VTCP của đường thẳng (d) nào đó đi qua $M_0(x_0, y_0)$. Ta chọn VTCP là vectơ đơn vị, tức là:

$$\sqrt{l_1^2 + l_2^2} = 1.$$

Khi đó (d) có phương trình tham số là: $\begin{cases} x = x_0 + l_1 \cdot t \\ y = y_0 + l_2 \cdot t \end{cases}$

Dọc theo đường thẳng (d), hàm f là hàm của một biến t, nghĩa là $w(t) = f(x_0 + l_1 t; y_0 + l_2 t)$.

Xét hai điểm M_0 , M trên (d) ứng với tham số t = 0 và $t = 0 + \Delta t$ và xét tỷ số sai phân tại điểm M_0 :

$$\frac{\Delta w(0)}{\Delta t} = \frac{w(t) - w(0)}{\Delta t} = \frac{f(M) - f(M_0)}{\Delta t} \\
= \frac{f(x_0 + l_1, \Delta t, y_0 + l_2, \Delta t) - f(x_0, y_0)}{\Delta t}$$

Theo ý nghĩa của đạo hàm thì $\mathbf{w}'(\mathbf{0}) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{w}(\mathbf{0})}{\Delta t}$ là tốc độ biến thiên của hàm $\mathbf{w}(t)$ tại $t = \mathbf{0}$, và đây cũng chính là tốc độ biến thiên của hàm $\mathbf{w} = f(x,y)$ tại điểm M_0 theo hướng vector \vec{l} .

Ta gọi $\mathbf{w}'(\mathbf{0}) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{w}(\mathbf{0})}{\Delta t}$ là đạo hàm của hàm f(x,y) tại $M_0(x_0,y_0)$ theo hướng của vecto đơn vị $\vec{l} = (l_1, l_2)$.

1. Định nghĩa đạo hàm theo hướng

• Đạo hàm của hàm f(x,y) tại $M_0(x_0,y_0)$ theo hướng của vecto đơn vị $\overrightarrow{l}=(l_1,l_2)$ được ký hiệu và định nghĩa như sau:

$$\frac{\partial f}{\partial \overrightarrow{l}}(M_0) = \lim_{\Delta t \to 0} \frac{f(x_0 + l_1, \Delta t; y_0 + l_2, \Delta t) - f(x_0; y_0)}{\Delta t}$$

nếu giới hạn này tồn tại và hữu hạn.

• Đạo hàm của hàm 3 biến $f(x_1, x_2, x_3)$ tại $M_0(x_0, y_0, z_0)$ theo hướng của của $VT DV \vec{l} = (l_1, l_2, l_3)$ được định nghĩa tương tự.

$$\frac{\partial f}{\partial \overrightarrow{l}}(M_0) = \lim_{\Delta t \to 0} \frac{f(x_0 + l_1.\Delta t; \ y_0 + l_2.\Delta t; \ z_0 + l_3.\Delta t) - f(x_0; y_0; z_0)}{\Delta t}$$

* Ý nghĩa

 $\frac{\partial f}{\partial \vec{l}}(M_0)$ là vận tốc biến thiên của hàm f tại điểm M_0 theo hướng vector đơn vị \vec{l} .

2. Định lý (Công thức tính đạo hàm theo hướng)

Nếu hàm f(x,y) khả vi tại $M_0(x_0,y_0)$ thì tại đó hàm f có đạo hàm theo mọi hướng $\overrightarrow{l}=(l_1,l_2)$ (với $|\overrightarrow{l}|=\sqrt{l_1^2+l_2^2}=1$) và được tính bởi công thức:

$$\frac{\partial f}{\partial \vec{l}}(M_0) = f_x'(M_0). l_1 + f_y'(M_0). l_2$$

• Công thức đạo hàm của hàm 3 biến f(x,y,z) tại $M_0(x_0,y_0,z_0)$ theo hướng của của VTĐV $\overrightarrow{l}=(l_1,l_2,l_3)$ tương tự:

$$\frac{\partial f}{\partial \vec{l}}(M_0) = f'_x(M_0). \, l_1 + f'_y(M_0). \, l_2 + f'_z(M_0). \, l_3$$

Chứng minh: Xét tại điểm $(x,y) = (x_0 + l_1t; y_0 + l_2t,) \in (d)$.

Áp dụng quy tắc xích:
$$f'_t = f'_x \cdot x'_t + f'_y \cdot y'_t = f'_x \cdot l_1 + f'_y \cdot l_2$$

$$\Rightarrow \frac{\partial f}{\partial \vec{l}}(M_0) = f'_x(M_0) \cdot l_1 + f'_y(M_0) \cdot l_2.$$

❖ Ví dụ

Tính đạo hàm của $f(x,y,z) = 2x - y + ze^{x-y}$ tại $M_0(1,1,3)$ theo hướng VTĐV cùng hướng với $\vec{v} = -2\vec{i} + \vec{j} + 2\vec{k}$. Với $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$, $\vec{k} = (0,0,1)$ là VTĐV của các trực 0x, 0y và 0z.

Giải

Tù gt:
$$\vec{v} = -2\vec{\iota} + \vec{j} + 2\vec{k} \Rightarrow \vec{v} = (-2; 1; 2) \Rightarrow |\vec{v}| = 3.$$

VTĐV theo hướng vector \vec{v} là: $\vec{l} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{3}(-2; 1; 2) = \left(-\frac{2}{3}; \frac{1}{3}; \frac{2}{3}\right).$

$$f'_x = 2 + ze^{x-y} \Rightarrow f'_x(M_0) = f'_x(1, 1, 3) = 5$$

$$f'_y = -1 - ze^{x-y} \Rightarrow f'_y(M_0) = f'_y(1, 1, 3) = -4$$

$$f'_z = e^{x-y} \Rightarrow f'_z(M_0) = f'_z(1, 1, 3) = 1$$

$$\frac{\partial f}{\partial \vec{l}}(M_0) = f'_x(M_0). l_1 + f'_y(M_0). l_2 + f'_z(M_0). l_3$$

$$= 5. \left(-\frac{2}{3}\right) - 4. \frac{1}{3} + 1. \frac{2}{3} = -4$$

3. Định nghĩa vecto gradient

• Vector gradient của f(x; y) tại M_0 ký hiệu $\nabla f(M_0)$ (đọc là "del f''), hoặc là $\overrightarrow{grad}f(M_0)$ và được định nghĩa như sau:

$$\nabla f(M_0) = f'_x(M_0) \cdot \vec{i} + f'_y(M_0) \cdot \vec{j}$$

 $ho\breve{a}c: \overline{grad}f(M_0) = (f'_x(M_0); f'_y(M_0)).$

■ Tương tự, vector gradient của f(x; y; z) tại M_0 ký hiệu $\nabla f(M_0)$ hoặc là $\overrightarrow{grad}f(M_0)$ và được định nghĩa là:

$$\nabla f(M_0) = f'_x(M_0) \cdot \vec{i} + f'_y(M_0) \cdot \vec{j} + f'_z(M_0) \cdot \vec{k}$$

hoặc $\overrightarrow{grad}f(M_0) = (f'_x(M_0); f'_y(M_0); f'_z(M_0)).$

* Ý nghĩa của vector gradient

Theo ∂N đạo hàm theo hướng $VT\partial V \vec{l} = (l_1, l_2)$ của hàm f(x; y) tại M_0 ta có:

$$\frac{\partial f}{\partial \vec{l}}(M_0) = f_x'(M_0). \, l_1 + f_y'(M_0). \, l_2 \quad \Rightarrow \frac{\partial f}{\partial \vec{l}}(M_0) = \nabla f(M_0). \, \vec{l}$$

$$\Rightarrow \left|\frac{\partial f}{\partial \vec{l}}(M_0)\right| = |\nabla f(M_0)|. |\vec{l}|. |\cos \varphi| \le |\nabla f(M_0)| \quad v \acute{o}i \ \varphi = (\nabla f(M_0), \vec{l})$$

$$\max \left| \frac{\partial f}{\partial \vec{l}}(M_0) \right| = |\nabla f(M_0)| \Leftrightarrow \cos \varphi = \pm 1 \Leftrightarrow \vec{l} \text{ cùng phương } \nabla f(M_0).$$

Kết luận: Phương của vector $\nabla f(M_0)$ là phương mà tốc độ biến thiên của hàm f tại M_0 có trị tuyệt đối lớn nhất. Cụ thể:

- f tăng nhanh $nhất \Leftrightarrow \frac{\partial f}{\partial \vec{l}}(M_0) = |\nabla f(M_0)| \Leftrightarrow \vec{l}$ cùng hướng $\nabla f(M_0)$.
- f giảm nhanh nhất $\Leftrightarrow \frac{\partial f}{\partial \vec{l}}(M_0) = -|\nabla f(M_0)| \Leftrightarrow \vec{l}$ ngược hướng $\nabla f(M_0)$.
- f không biến thiên theo hướng vuông góc với vecto $\nabla f(M_0)$.

* Ví dụ

Cho hàm số $f(x, y, z) = 3xy^2 - 2yz + 1$ và điểm $M_0(-2; 1; 2)$.

- a) Tîm vector gradient của f tại điểm $M_0(-2; 1; 2)$.
- b) Tính $\frac{\partial f}{\partial \vec{l}}(M_0)$, biết \vec{l} là hướng mà hàm f tăng nhanh nhất.
- c) Tính $\frac{\partial f}{\partial \overline{l_1}}(M_0)$, biết $\overline{l_1}$ là hướng mà hàm f giảm nhanh nhất.

Giải

a) Ta có:
$$f'_x = 3y^2$$
; $f'_y = 6xy - 2z$; $f'_z = -2y$.

$$\Rightarrow f'_x(M_0) = 3$$
; $f'_y(M_0) = -16$; $f'_z(M_0) = -2$.

Vector gradient của f tại điểm $M_0(-2; 1; 2)$ là:

$$\overrightarrow{grad}f(M_0) = (f'_x(M_0); f'_y(M_0); f'_z(M_0)) = (3; -16; -2).$$

b) Hàm f tăng nhanh nhất theo hướng $\overline{grad}f(M_0)$. Ta có: $\overline{grad}f(M_0) = (3; -16; -2)$

$$\Rightarrow \left| \overrightarrow{grad} f(M_0) \right| = \sqrt{3^2 + 16^2 + 2^2} = \sqrt{269}$$

Vector đơn vị theo hướng vector $\overrightarrow{grad}f(M_0)$ là:

$$\vec{l} = \frac{1}{\sqrt{266}} \cdot \vec{grad} f(M_0) = \left(\frac{3}{\sqrt{269}}, \frac{-16}{\sqrt{269}}, \frac{-2}{\sqrt{269}}\right).$$

$$\frac{\partial f}{\partial \vec{l}}(M_0) = f'_x(M_0) \cdot l_1 + f'_y(M_0) \cdot l_2 + f'_z(M_0) \cdot l_3$$

$$= 3 \cdot \frac{3}{\sqrt{269}} - 16 \cdot \frac{-16}{\sqrt{269}} - 2 \cdot \frac{-2}{\sqrt{269}} = \sqrt{269} .$$

c) Hàm f tăng giảm nhanh nhất theo hướng ngược lại $\overline{grad}f(M_0)$.

Ta chọn:
$$\vec{l_1} = \left(\frac{-3}{\sqrt{269}}, \frac{16}{\sqrt{269}}, \frac{2}{\sqrt{269}}\right)$$
. Khi đó: $\frac{\partial f}{\partial \vec{l_1}}(M_0) = -\sqrt{269}$.

BÀI TẬP VỀ NHÀ

Câu 1: Cho hàm ẩn z = z(x, y) thỏa phương trình:

$$x^3z + y^2 - 2z^2 + (x + y)e^{xyz} = 0$$

Tính các đạo hàm riêng $z'_x(1;-1)$, $z'_y(1;-1)$ biết rằng z(1;-1)=1.

<u>Câu 2:</u> Cho hàm số $f(x, y, z) = 3x^2y - 3y^3z + 2xe^z$.

Tìm vecto gradient của f tại M(1, -1, 0) và đạo hàm của f tại M theo hướng vecto đơn vị $\vec{l} = \left(\frac{3}{5}, 0, -\frac{4}{5}\right)$.

<u>Câu 3:</u> Cho hàm số $f(x,y,z) = xy - 2z^2 + (2x+z)e^y$. Tính $\frac{\partial f}{\partial \vec{l}}(M)$, biết M(1,0,-2) và \vec{l} là vectơ đơn vị của vecto $\vec{a}=(4,7,-4)$.

<u>Câu 4:</u> Cho hàm số $f(x, y) = x^3y^2 + xy - 218$.

Tính $\frac{\partial f}{\partial \vec{l}}(M)$, biết M(-1,1) và \vec{l} là vecto đơn vị của vecto $\overrightarrow{grad} f(M)$.

<u>Câu 1</u>: Cho hàm ẩn z = z(x, y) thỏa phương trình:

$$x^{3}z + y^{2} - 2z^{2} + (x + y)e^{xyz} = 0$$

Tính các đạo hàm riêng $z'_x(1;-1)$, $z'_y(1;-1)$ biết rằng z(1;-1)=1.

Giải:

			• • • • • • • • • • • • • • • • • • • •
••••	• • • • • • • • • • • • • • • • • • • •	 •	
			• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	 •••••	

<u>Câu 2:</u> Cho hàm số $f(x,y,z) = 3x^2y - 3y^3z + 2xe^z$. Tìm vector gradient của f tại M(1,-1,0) và đạo hàm của f tại M theo hướng vector đơn vị $\overrightarrow{l} = \left(\frac{3}{5},0,-\frac{4}{5}\right)$. <u>Giải:</u>

																																								• • • • •
																																								• • • •
																																								• • • • •
																																								• • • • •
• • •	• • • •	•••	•••	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• •	• • •	• • •	• • •	• • •	• • •	•••	• • •	•••	• • •	•••	• • •	•••	•••	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • • • •
• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • • • •
																																								• • • • •
• • •	• • • •	•••	•••	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • • • •
• • • •	• • • •	•••		• • •			•••	• • •		• • •	• • •	• • •	• • •				• • •		• • •	• • •					• • •		•••	• • •		• • •		• • •		• • •	• • •	• • •	• • •		• • •	
	• • • •	• • •		• • •			• • •	• • •		• • •	• • •	• • • •	• • •						• •	• • •					• • •		• • •	• • •		• • •		• • •		• • •	• • •	• • • •	• • •		• • • •	• • • • •
• • •												• • • •				• • •			• • •	• • •															• • •		• • • •			• • • • •

<u>Câu 3:</u> Cho hàm số $f(x,y,z) = xy - 2z^2 + (2x+z)e^y$. Tính $\frac{\partial f}{\partial \vec{l}}(M)$, biết M(1,0,-2) và \vec{l} là vectơ đơn vị của vectơ $\vec{a}=(4,7,-4)$.

• • • • •																																						
••••																																						
••••																																						
••••																																						
• • • • •		• • •	• • • •		• • • •	• • • •	• • •	• • • •		• • • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • • •	• • •	• •
		• • • •															• • •		• • • •															• • • •				
• • • • •																																						
••••	• • •	• • •	• • • •	• • • •	• • • •	• • • •	•••	• • • •	• • •	• • • •	• • • •	• • •	•••	•••	• • •	•••	• • •	• • •	• • •	•••	• • • •	• • •	• • •	• • •	• • •	• • •	•••	•••	•••	•••	• • •	•••	•••	• • •	• • • •	• • • •	•••	••

Câu 4: Cho hàm số $f(x, y) = x^3y^2 + xy - 218$. Tính $\frac{\partial f}{\partial \vec{l}}(M)$, biết M(-1,1) và \vec{l} là vecto đơn vị của vecto $\overrightarrow{grad} f(M)$. Giải: