TEST REPORT

Reference No	•	WTS15S1035093E
1101010100100 1101		VV 101301033033E

FCC ID : 2AF9N-HW-28

Applicant...... : Shenzhen Pacemaker Electronic Technology Co., Ltd.

China

Manufacturer : The same as above

Address : The same as above

Product Name.....: Self-folding lever

Model No...... : HUAWEI HW-28, HW-28, HW-18, HW-58, HW-88, HW-98

Brand.....: HUAWEI

Standards...... : FCC CFR47 Part 15 Section 15.247:2014

Date of Receipt sample : Oct. 12, 2015

Date of Test..... : Oct. 13 - 28, 2015

Date of Issue.....: Oct. 30, 2015

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

Thelo zhous

Reference No.: WTS15S1035093E Page 2 of 45

2 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Dand adas	15.247(d)	DACC
Band edge	15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	4.4207/b\/4\	DACC
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE. 4.5 TEST FACILITY.	5 5 5
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
6	CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	9 9
7	RADIATED SPURIOUS EMISSIONS	12
	7.1 EUT OPERATION	13 14 15
8	BAND EDGE MEASUREMENT	
	8.1 TEST PROCEDURE	
9	20 DB BANDWIDTH MEASUREMENT	22
	9.1 TEST PROCEDURE	22
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 TEST PROCEDURE	
11	HOPPING CHANNEL SEPARATION	
	11.1 TEST PROCEDURE	
12	NUMBER OF HOPPING FREQUENCY	
	12.1 TEST PROCEDURE	30
13	DWELL TIME	
4.4	13.1 TEST PROCEDURE	31
14	ANTENNA REQUIREMENT	34

Reference No.: WTS15S1035093E Page 4 of 45

15	RF EX	THE PROCEDURES / LIMIT	35
	15.1 15.2	REQUIREMENTS THE PROCEDURES / LIMIT	
16	РНОТ	OGRAPHS – MODEL HUAWEI HW-28 TEST SETUP	36
	16.1 16.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	
17	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	38
	17.1	MODEL HUAWEI HW-28-EXTERNAL PHOTOS	
	17.2	MODEL HUAWELHW-28-INTERNAL PHOTOS	42

Reference No.: WTS15S1035093E Page 5 of 45

4 General Information

4.1 General Description of E.U.T.

Product Name :Self-folding lever

Model No. :HUAWEI HW-28, HW-28, HW-18, HW-58, HW-98

Model Description : Only the model name is different.

Operation Frequency :2402MHz ~ 2480MHz, 79 channels in total

Type of Modulation :GFSK

The lowest oscillator :16MHz

Antenna installation :PCB printed antenna

Antenna Gain :0.5 dBi

Remark: The model HUAWEI HW-28 is the tested sample.

4.2 Details of E.U.T.

Technical Data: DC 3.7V, 55mAh by battery or

DC 5V with USB port by PC

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS15S1035093E Page 6 of 45

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

• FCC Test Site 1#- Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

5.1 Equipments List Conducted Emissions Tost Site 1#									
Conducted Emissions Test Site 1# Last Calibration									
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S ESCI		100947	Sep.15,2015	Sep.14,2016			
2.	LISN	R&S	ENV216	101215	Sep.15,2015	Sep.14,2016			
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2015	Sep.14,2016			
Conducted Emissions Test Site 2#									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2015	Sep.14,2016			
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2015	Sep.14,2016			
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2015	Sep.14,2016			
4.	Cable	LARGE	RF300	-	Sep.15,2015	Sep.14,2016			
3m Ser	ni-anechoic Chamber	for Radiation Emis	sions Test site	1#					
Item	Equipment Manufacture		Model No. Serial No.		Last Calibration Date	Calibration Due Date			
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016			
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016			
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2015	Apr.18,2016			
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016			
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2015	Apr.18,2016			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2015	Apr.18,2016			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2015	Mar.16,2016			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2015	Apr.09,2016			
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016			
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2015	Sep.14,2016			
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016			

RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016	

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	$\pm 1 \times 10^{-6}$	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
	± 5.03 dB	
Radiated Spurious	(Bilog antenna 30M~1000MHz)	
Emissions test	± 5.47 dB	
	(Horn antenna 1000M~25000MHz)	
Conducted Spurious	± 3.64 dB	
Emissions test	(AC mains 150KHz~30MHz)	

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS15S1035093E Page 9 of 45

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The EUT was placed on the test table in shielding room.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Conducted Emission Test Result 6.4

Neutral line:

11

12

3.7060

3.7060

30.86

18.59

56.00

46.00

-14.84

-17.11

QP

AVG

41.16

28.89

10.30

10.30

Reference No.: WTS15S1035093E Page 12 of 45

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	Distance		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS15S1035093E Page 15 of 45

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

			Turn	RX An	tenna				
Frequency	Receiver Reading	Detector	table Angle	Height	Polar	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
294.12	49.17	QP	157	1.4	Н	-13.35	35.82	46.00	-10.18
294.12	47.98	QP	77	1.4	V	-13.35	34.63	46.00	-11.37
4804.00	55.24	PK	207	2.0	V	-1.06	54.18	74.00	-19.82
4804.00	42.56	Ave	207	2.0	V	-1.06	41.50	54.00	-12.50
7206.00	55.73	PK	37	1.4	Н	1.33	57.06	74.00	-16.94
7206.00	43.27	Ave	37	1.4	Н	1.33	44.60	54.00	-9.40
2318.64	46.30	PK	27	1.0	V	-13.19	33.11	74.00	-40.89
2318.64	38.45	Ave	27	1.0	V	-13.19	25.26	54.00	-28.74
2354.55	42.08	PK	45	1.8	Н	-13.14	28.94	74.00	-45.06
2354.55	38.02	Ave	45	1.8	Н	-13.14	24.88	54.00	-29.12
2498.17	42.86	PK	291	1.3	V	-13.08	29.78	74.00	-44.22
2498.17	36.68	Ave	291	1.3	V	-13.08	23.60	54.00	-30.40

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency Reading	Reading	Detector	table Angle Height	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFS	SK Middle	Channe	el			
294.12	47.94	QP	87	1.9	Н	-13.35	34.59	46.00	-11.41
294.12	48.40	QP	181	1.6	V	-13.35	35.05	46.00	-10.95
4882.00	55.36	PK	301	1.5	V	-0.62	54.74	74.00	-19.26
4882.00	42.53	Ave	301	1.5	V	-0.62	41.91	54.00	-12.09
7323.00	56.78	PK	164	1.3	Н	2.21	58.99	74.00	-15.01
7323.00	44.74	Ave	164	1.3	Н	2.21	46.95	54.00	-7.05
2342.36	45.70	PK	263	1.7	V	-13.19	32.51	74.00	-41.49
2342.36	38.32	Ave	263	1.7	V	-13.19	25.13	54.00	-28.87
2360.74	44.43	PK	85	1.0	Н	-13.14	31.29	74.00	-42.71
2360.74	38.94	Ave	85	1.0	Н	-13.14	25.80	54.00	-28.20
2498.78	44.27	PK	17	1.5	V	-13.08	31.19	74.00	-42.81
2498.78	37.06	Ave	17	1.5	V	-13.08	23.98	54.00	-30.02

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency Reading		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel				
294.12	47.57	QP	185	1.7	Н	-13.35	34.22	46.00	-11.78
294.12	46.98	QP	18	1.3	V	-13.35	33.63	46.00	-12.37
4960.00	54.83	PK	239	1.3	V	-0.24	54.59	74.00	-19.41
4960.00	42.22	Ave	239	1.3	V	-0.24	41.98	54.00	-12.02
7440.00	55.59	PK	20	1.7	Н	2.84	58.43	74.00	-15.57
7440.00	44.04	Ave	20	1.7	Н	2.84	46.88	54.00	-7.12
2329.15	45.45	PK	109	1.9	V	-13.19	32.26	74.00	-41.74
2329.15	39.16	Ave	109	1.9	V	-13.19	25.97	54.00	-28.03
2382.95	44.45	PK	331	1.3	Н	-13.14	31.31	74.00	-42.69
2382.95	37.99	Ave	331	1.3	Н	-13.14	24.85	54.00	-29.15
2485.64	42.23	PK	33	1.2	V	-13.08	29.15	74.00	-44.85
2485.64	38.29	Ave	33	1.2	V	-13.08	25.21	54.00	-28.79

Test Frequency : Above 18GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS15S1035093E Page 19 of 45

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting and Hopping

8.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

Test plots

Reference No.: WTS15S1035093E Page 22 of 45

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

Test Channel	Bandwidth		
Low	0.922 MHz		
Middle	0.922 MHz		
High	0.922 MHz		

Test plots

Reference No.: WTS15S1035093E Page 24 of 45

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test Channel	Output Power (dBm)	Limit (dBm)	
Low	2.11	20.97	
Middle	3.55	20.97	
High	3.85	20.97	

Reference No.: WTS15S1035093E Page 27 of 45

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Test Channel	Separation (MHz)	Result	
Low	1.00	PASS	
Middle	1.00	PASS	
High	1.00	PASS	

Reference No.: WTS15S1035093E Page 30 of 45

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

Reference No.: WTS15S1035093E Page 31 of 45

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result:

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)				
DH5	1600/79/6*0.4*79*(MkrDelta)/1000				
DH3	1600/79/4*0.4*79*(MkrDelta)/1000				
DH1	1600/79/2*0.4*79*(MkrDelta)/1000				
Remark: Mkr Delta is once pulse time. Only the worst data(DH5)					
were show as follow.					

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
		Low	2.931	0.313	0.4
GFSK	DH5	middle	2.931	0.313	0.4
		High	2.931	0.313	0.4

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an PCB printed antenna fulfil the requirement of this section.

Reference No.: WTS15S1035093E Page 35 of 45

15 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method 447498 D01 General RF Exposure Guidance v05r02

15.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

15.2 The procedures / limit

Conducted Peak power(dBm)	Conducted Peak power(mW)	Source-based time- averaged maximum conducted output	Minimum test separation distance required for the exposure conditions	SAR Test Exclusion Thresholds(mW)
	power(mvv)	power(mW)	(mm)	
3.85	2.43	2.43	5	23.81(extremity)

Remark: Max. duty factor is 100%

Calculation formula: Source-based time-averaged maximum conducted output power(mW) =Conducted peak power(mW)*Duty factor

16 Photographs - Model HUAWEI HW-28 Test Setup

16.1 Photograph - Conducted Emission Test Setup at Test Site 1#

16.2 Photograph – Radiation Spurious Emission Test Setup

Below 30MHz at Test Site 2#

30MHz-1GHz at Test Site 2#

Above 1GHz at Test Site 1#

17 Photographs - Constructional Details

17.1 Model HUAWEI HW-28-External Photos

Reference No.: WTS15S1035093E Page 39 of 45

Reference No.: WTS15S1035093E Page 40 of 45

Reference No.: WTS15S1035093E Page 41 of 45

17.2 Model HUAWEI HW-28-Internal Photos

Reference No.: WTS15S1035093E Page 43 of 45

Reference No.: WTS15S1035093E Page 44 of 45

Reference No.: WTS15S1035093E Page 45 of 45

===== End of Report =====