- B. Data Tables w/ results reproduce Table 3.2 & Table 3.3
- C. Sample calculations Show the calculation method used to fill out the columns in Table 3.2. If you fill out the calculations in column in Table 3.3 correctly, you will receive 5 extra points. You do this by using the diode in the following way: IF there CAN be a 0.7V drop over the diode, then there IS ONLY a 0.7V drop over the diode. If there CANNOT be a 0.7V drop over the diode, then the diode functions like an open switch. Feel free to see one of the TAs during office hours if you need more details.
- D. Discussion –Discuss how superposition works in Task #1 and why superposition doesn't work in Task #2. Think about how the diode works. We have said that the diode is a non-linear element. Discuss why resistors are linear elements and diodes are not. (What makes something linear?)

Table 3.2: Task 1

Parameter	Measured	Calculated	% difference	SPICE	% difference
					(SPICE to
					measured)
V_L	0.275V	0.26547	0.5%		
$V_{L,1}$	-D. 291U	-0.2909V	0.01%		
$V_{L,2}$	0.5564	0.55647	0%		
$V_{L,1} + V_{L,2}$	0.26541	0.2655V	0.01%		
	1		,		

Table 3.3: Task 2:

Parameter	Measured	Calculated	SPICE	% Error
V_L	-0.0024 mV			
$V_{L,1}$	0.154 V			
$V_{L,2}$	-0.003 mV			
$V_{L,1} + V_{L,2}$	6.151 V			

Lab 3: Equivalent Networks and Superposition