

Informe: Optimizacion Convexa Taller No. 2

Estudiante: Ruben Rodriguez Código: 21819696 Grupo: O1

Escuela de Ingeniería de Sistemas e Informática Universidad Industrial de Santander

14 de mayo de 2022

1. Introducción

Development of exercises on notation, Gradient and demonstrations.

2. Desarrollo

- 1. Basic notation. In front of each symbol write its meaning
 - lacksquare R: denotes the set of real numbers.
 - R_+ : denotes the set of positive real numbers.
 - R_{++} : denotes the set of positive real numbers except zero.
 - R_{+}^{mxn} : denotes the set of matrices of positive real numbers of size m * n.
 - N_+^k : denotes the set of vectors of positive natural numbers of size k.
 - S_+^k : denotes the set of symmetric positive semi-defined matrices.
 - $f: \mathbb{R}^p \to \mathbb{R}^q$: denotes a function with domain \mathbb{R}^p and range in \mathbb{R}^q .
- 2. Calculate the $\nabla f(x)$ respect to x of the following function
 - $||y Hx||_2^2$: (Demonstration in annex; 1)
 - $||y Hx||_2$: (Demonstration in annex; 1)
 - $||y Hx||_1$: (Demonstration in annex; 2)

3. For the special case where A is a symmetric matrix and

$$\alpha = x^T A x$$

where $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{nxn}$. Then, calculate $\frac{\partial \alpha}{\partial x}$. Differs the result if A is not symmetric?.

Answ:If A is not symmetric the answer change. (Demonstration in annex;3)

4. Let $A(\alpha)$ be a m*n matrix whose elements are functions of the scalar parameter α . Then the derivative of the matrix $A(\alpha)$ with respect to the scalar parameter α is the m*n matrix of element-by-element derivatives:

$$\frac{\partial \mathbf{A}(\alpha)}{\partial \alpha} = \begin{bmatrix}
\frac{\partial a_{11}}{\partial \alpha} & \frac{\partial a_{12}}{\partial \alpha} & \dots & \frac{\partial a_{1n}}{\partial \alpha} \\
\frac{\partial a_{21}}{\partial \alpha} & \frac{\partial a_{22}}{\partial \alpha} & \dots & \frac{\partial a_{2n}}{\partial \alpha} \\
\vdots & \vdots & & \vdots \\
\frac{\partial a_{ma}}{\partial \alpha} & \frac{\partial a_{m2}}{\partial \alpha} & \dots & \frac{\partial a_{man}}{\partial \alpha}
\end{bmatrix}$$

Then let $A(\alpha)$ be a nonsingular, m*m matrix whose elements are functions of the scalar parameter α . Then show what:

$$\frac{\partial A(\alpha)^{-1}}{\partial \alpha} = -A(\alpha)^{-1} \frac{\partial A(\alpha)}{\partial \alpha} A(\alpha)^{-1}$$
 (Demonstration in annex; 4)

3. Anexos

Figura 1: Demostracion punto 2.1 y 2.2

Figura 2: Demostracion punto 2.3

Figura 3: Demostracion punto 3

Figura 4: Demostracion punto 4