

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br

Newtons Method

• Ruggiero, Example 5, p. 199

$$\begin{split} \underline{\mathbf{F}}(\underline{x}) &= \begin{pmatrix} x_0 + x_1 - 3 \\ x_0^2 + x_1^2 - 9 \end{pmatrix}; \quad \underline{\mathbf{x}}_0 = \begin{pmatrix} 1.000000 \\ 5.000000 \end{pmatrix} \\ \underline{\underline{\mathbf{J}}}(\underline{x}) &= \begin{pmatrix} 1 & 1 \\ 2x_0 & 2x_1 \end{pmatrix} \end{split}$$

$$\varepsilon_1 = 1.00e - 06, \varepsilon_2 = 1.00e - 06.$$

k	$\mathbf{\underline{s}}_{k}$	$\mathbf{\underline{x}}_{k}$	$\underline{\underline{\mathbf{J}}}(\underline{\mathbf{x}}_k)$	$\underline{\mathbf{F}}(\underline{\mathbf{x}}_k)$
1	(1.6250000000)	(-0.6250000000)	(1.0000000000 1.00000000000)	(0.00e + 00)
1	(1.3750000000)	3.6250000000)	(-1.2500000000 7.2500000000)	(4.53e + 00)
2	(0.5330882353)	(-0.0919117647)	(1.0000000000 1.0000000000)	(0.00e + 00)
	-0.5330882353	$\sqrt{3.0919117647}$	$(-0.1838235294 \ 6.1838235294)$	$\sqrt{5.68e - 01}$
3	(0.0892584228	(-0.0026533419)	(1.0000000000 1.0000000000)	(0.00e + 00)
3	-0.0892584228	$\sqrt{3.0026533419}$	$(-0.0053066839 \ 6.0053066839)$	1.59e - 02
4	(0.0026509993	(-0.0000023426)	(1.0000000000 1.00000000000)	(0.00e + 00)
_	-0.0026509993	3.0000023426	$(-0.0000046852 \ 6.0000046852)$	1.41e - 05
5	(0.0000023426)	(-0.0000000000)	(1.00000000000 1.00000000000)	(0.00e + 00)
	-0.0000023426	3.0000000000)	(-0.00000000000 6.00000000000)	(1.10e - 11)
6	(0.0000000000)	(-0.0000000000)	(1.0000000000 1.0000000000)	(0.00e + 00)
0	(0.0000000000)	3.00000000000	(-0.00000000000 6.00000000000)	$ \ (1.10e - 11) \ $

$$\underline{\mathbf{x}}^* = \begin{pmatrix} -0.000000 \\ 3.000000 \end{pmatrix}; \quad ||\underline{\mathbf{s}}^*|| = 0.00e + 00; \quad ||\underline{\mathbf{F}}(\underline{\mathbf{x}}^*)|| = 1.10e - 11$$

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br

Newtons Method

• Ruggiero, Exercise 2.a, p. 205

$$\underline{\mathbf{F}}(\underline{x}) = \begin{pmatrix} x_0^2 + x_1^2 - 2 \\ e^{x_0 - 1} + x_1^3 - 2 \end{pmatrix}; \quad \underline{\mathbf{x}}_0 = \begin{pmatrix} 1.500000 \\ 2.000000 \end{pmatrix}$$
$$\underline{\underline{\mathbf{J}}}(\underline{x}) = \begin{pmatrix} 2x_0 & 2x_1 \\ e^{x_0 - 1} & 3x_1^2 \end{pmatrix}$$

$$\varepsilon_1 = 1.00e - 06, \varepsilon_2 = 1.00e - 06.$$

k	$\mathbf{\underline{s}}_{k}$	$\underline{\mathbf{x}}_k$	$\underline{\underline{\mathbf{J}}}(\mathbf{\underline{x}}_k)$	$\underline{\mathbf{F}}(\underline{\mathbf{x}}_k)$
1	(0.6939308000)	(0.8060692000)	(1.6121384001 2.9158961999)	(7.75e - 01)
1	(0.5420519000)	1.4579481000	$(0.8237149034 \ 6.3768379866)$	(1.92e + 00)
2	(0.0840500702)	(0.8901192702)	(1.7802385404 2.2911410642)	(1.05e - 01)
~	(-0.3123775679)	1.1455705321	$(0.8959409880 \ 3.9369955320)$	(3.99e - 01)
3	(0.1014698784)	(0.9915891486)	(1.9831782973 2.0421081679)	(2.58e - 02)
3	(-0.1245164481)	1.0210540840	(0.9916244209 3.1276543272)	(5.61e - 02)
4	(0.0081193217	(0.9997084703)	(1.9994169407 2.0010696516)	(4.87e - 04)
4	(-0.0205192582)	1.0005348258	$(0.9997085128 \ 3.0032098130)$	(1.31e - 03)
5	(0.0002913577	(0.9999998281)	(1.9999996561 2.0000007144)	(3.71e - 07)
)	(-0.0005344686)	1.0000003572	$(0.9999998281 \ 3.0000021433)$	(9.00e - 07)
6	(0.0000000000)	(0.9999998281)	(1.9999996561 2.0000007144)	(3.71e - 07)
	(0.0000000000)	(1.0000003572)	$(0.9999998281 \ 3.0000021433)$	(9.00e - 07)

$$\underline{\mathbf{x}}^* = \begin{pmatrix} 1.000000 \\ 1.000000 \end{pmatrix}; \quad ||\underline{\mathbf{s}}^*|| = 0.00e + 00; \quad ||\underline{\mathbf{F}}(\underline{\mathbf{x}}^*)|| = 9.00e - 07$$

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br

Newtons Method

• Ruggiero, Exercise 2.b, p. 205

$$\underline{\mathbf{F}}(\underline{x}) = \begin{pmatrix} 4x_0 - x_0^3 + x_1 \\ -\frac{1}{9}x_0^2 + x_1 - \frac{1}{4}x_1^2 + 1 \end{pmatrix}; \quad \underline{\mathbf{x}}_0 = \begin{pmatrix} -1.000000 \\ -2.000000 \end{pmatrix}$$
$$\underline{\underline{\mathbf{J}}}(\underline{x}) = \begin{pmatrix} 4 - 3x_0^2 & 1 \\ -\frac{2}{9}x_0 & 1 - \frac{1}{2}x_1 \end{pmatrix}$$

$$\varepsilon_1 = 1.00e - 06, \varepsilon_2 = 1.00e - 06.$$

k	$\underline{\mathbf{s}}_k$	$\mathbf{\underline{x}}_{k}$	$\underline{\underline{\mathbf{J}}}(\underline{\mathbf{x}}_k)$	$\underline{\mathbf{F}}(\underline{\mathbf{x}}_k)$
1	$\begin{pmatrix} -4.4375000000 \\ -0.5625000000 \end{pmatrix}$	$\begin{pmatrix} 3.4375000000 \\ -1.4375000000 \end{pmatrix}$	$ \begin{pmatrix} -31.4492187500 & 1.00000000000 \\ -0.7638888889 & 1.7187500000 \end{pmatrix} $	$\begin{pmatrix} -2.83e + 01 \\ -2.27e + 00 \end{pmatrix}$
2	$\begin{pmatrix} -0.8704270411 \\ 0.9321460625 \end{pmatrix}$	$\begin{pmatrix} 2.5670729589 \\ -0.5053539375 \end{pmatrix}$		$\begin{pmatrix} -7.15e + 00 \\ -3.01e - 01 \end{pmatrix}$
3	$\begin{pmatrix} -0.4514185397 \\ 0.0350370735 \end{pmatrix}$	$\begin{pmatrix} 2.1156544192 \\ -0.4703168639 \end{pmatrix}$		$\begin{pmatrix} -1.48e + 00 \\ -2.29e - 02 \end{pmatrix}$
4	$\begin{pmatrix} -0.1612379175 \\ -0.0427931279 \end{pmatrix}$	$\begin{pmatrix} 1.9544165017 \\ -0.5131099919 \end{pmatrix}$		$\begin{pmatrix} -1.61e - 01 \\ -3.35e - 03 \end{pmatrix}$
5	$\begin{pmatrix} -0.0222322600 \\ -0.0050211543 \end{pmatrix}$	$\begin{pmatrix} 1.9321842417 \\ -0.5181311462 \end{pmatrix}$		$\begin{pmatrix} -2.89e - 03 \\ -6.12e - 05 \end{pmatrix}$
6	$\begin{pmatrix} -0.0004138273 \\ -0.0000925008 \end{pmatrix}$	$\begin{pmatrix} 1.9317704144 \\ -0.5182236470 \end{pmatrix}$	$\begin{pmatrix} -7.1952108017 & 1.00000000000 \\ -0.4292823143 & 1.2591118235 \end{pmatrix}$	$\begin{pmatrix} -9.93e - 07 \\ -2.12e - 08 \end{pmatrix}$
7	$\begin{pmatrix} 0.00000000000 \\ 0.0000000000 \end{pmatrix}$	$ \begin{pmatrix} 1.9317704144 \\ -0.5182236470 \end{pmatrix} $	$\begin{pmatrix} -7.1952108017 & 1.00000000000 \\ -0.4292823143 & 1.2591118235 \end{pmatrix}$	$\begin{pmatrix} -9.93e - 07 \\ -2.12e - 08 \end{pmatrix}$

$$\underline{\mathbf{x}}^* = \begin{pmatrix} 1.931770 \\ -0.518224 \end{pmatrix}; \quad ||\underline{\mathbf{s}}^*|| = 0.00e + 00; \quad ||\underline{\mathbf{F}}(\underline{\mathbf{x}}^*)|| = 9.93e - 07$$

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br

Newtons Method

• Ruggiero, Exercise 2.c, p. 205

$$\underline{\underline{F}}(\underline{x}) = \begin{pmatrix} \frac{1}{9}(2x_0 - x_0^2 + 8) + \frac{1}{4}(4x_1 - x_1^2) \\ 8x_0 - 4x_0^2 + x_1^2 + 1 \end{pmatrix}; \quad \underline{\mathbf{x}}_0 = \begin{pmatrix} -1.000000 \\ -1.000000 \end{pmatrix}$$

$$\underline{\underline{\mathbf{J}}}(\underline{x}) = \begin{pmatrix} \frac{1}{9}(2 - 2x_0) & 1 - \frac{1}{2}x_1 \\ 8 - 8x_0 & 2x_1 \end{pmatrix}$$

$$\varepsilon_1 = 1.00e - 06, \varepsilon_2 = 1.00e - 06.$$

k	$\mathbf{\underline{s}}_{k}$	$\mathbf{\underline{x}}_{k}$	$\mathbf{\underline{J}}(\mathbf{\underline{x}}_k)$	$\mathbf{F}(\mathbf{x}_k)$
1	(-0.5982142857)	(-0.4017857143)	(0.3115079365 1.3571428571)	(-6.02e - 02)
1	-0.2857142857	(-0.7142857143)	$\begin{pmatrix} 11.2142857143 & -1.4285714286 \end{pmatrix}$	$\left \left(-5.54e + 00 \right) \right $
2	0.4856953264	0.0839096121	(0.2035756418 1.3907161564)	$\sqrt{-2.73e - 02}$
	(-0.0671465985)	(-0.7814323128)	(7.3287231031 -1.5628646256)	$\left(-1.71e + 00 \right)$
3	0.2304688797	0.3143784918	0.1523603352 1.3977555433	$\sqrt{-5.95e - 03}$
	(-0.0140787737)	(-0.7955110865)	(5.4849720656 -1.5910221731)	2.47e - 01
4	(-0.0424016490)	0.2719768428	(0.1617829238 1.3933156934)	$\sqrt{-2.19e - 04}$
4	0.0088796998	(-0.7866313868)	(5.8241852573 -1.5732627735)	$\left \begin{array}{c} -1.31e - 01 \end{array} \right $
5	(0.0219203853)	0.2938972282	(0.1569117271 1.3945095596)	$\sqrt{-5.48e - 05}$
	(-0.0023877325)	(-0.7890191192)	(5.6488221747 -1.5780382385)	6.01e - 02
6	(-0.0103052837)	(0.2835919444)	(0.1592017901 1.3939101251)	$\left(-1.22e - 05\right)$
	0.0011988691	-0.7878202501	(5.73126444445 -1.5756405002)	(-3.02e - 02)
7	0.0051077512	0.2886996956	0.1580667343 1.3941974477	(-2.98e - 06)
	(-0.0005746453)	(-0.7883948954)	(5.6904024352 -1.5767897909)	1.45e - 02
8	(-0.0024719368)	0.2862277588	(0.1586160536 1.3940562510)	(-6.99e - 07)
	0.0002823935	(-0.7881125019)	(5.7101779293 -1.5762250039)	(-7.13e - 03)
9	(0.0012108071)	(0.2874385659)	(0.1583469854 1.3941248833)	(-1.68e - 07)
	_0.0001372646\	$\sqrt{-0.7882497665}$	$\sqrt{5.7004914728} -1.5764995330$	3.47e - 03
10	(-0.0005896641)	(0.2868489018)	(0.1584780218 1.3940913356)	(-3.98e - 08)
10	0.0000670952	$\sqrt{-0.7881826713}$	$\sqrt{5.7052087856} -1.5763653426$	1 - 1.69e - 03
11	(0.0002879839)	(0.2871368857)	(0.1584140254 1.3941076902)	$\left(-9.48e - 09\right)$
	_0.0000327090\	$\sqrt{-0.7882153803}$	$\sqrt{5.7029049141} -1.5764307606$	8.26e - 04
12	(-0.0001404534)	(0.2869964323)	(0.1584452373 1.3940997068)	$\left(-2.26e - 09\right)$
	0.0000159667	-0.7881994136	$\sqrt{5.7040285413} -1.5763988272$	-4.03e - 04
13	(0.0000685471)	(0.2870649795)	(0.1584300046 1.3941036013)	$\left(-5.37e - 10\right)$
	(-0.0000077891)	-0.7882072027	\(5.7034801642 \ -1.5764144053 \)	1.97e - 04
14	$\left(-0.0000334429\right)$	(0.2870315366)	(0.1584374363	$\left(-1.28e - 10\right)$
	0.0000038009	-0.7882034017	5.7037477072 -1.5764068035	-9.60e - 05
15	0.0000163188	(0.2870478554)	(0.1584338099 1.3941026281)	$\left(-3.04e - 11 \right)$
	0.0000018545	(-0.7882052563)	\(\) 5.7036171570 \(-1.5764105125 \)	4.68e - 05
16	(-0.0000079623)	(0.2870398931)	0.1584355793 1.3941021757	(-7.25e - 12)
	0.0000009049	-0.7882043514	$\sqrt{5.7036808552} -1.5764087027$	$\frac{-2.29e - 05}{1.72}$
17	0.0000038851	0.2870437782	0.1584347160 1.3941023964	$\left(-1.73e - 12\right)$
-	(-0.0000004415)	(-0.7882047929)	5.7036497743 -1.5764095858	1.12e - 05
18	$\begin{pmatrix} -0.0000018957 \\ 0.000000154 \end{pmatrix}$	(0.2870418825)	(0.1584351372 1.3941022887)	$\left(-4.11e - 13 \right)$
	0.0000002154	(-0.7882045774)	5.7036649396 -1.5764091549	-5.44e - 06
19	0.0000009250	$\begin{pmatrix} 0.2870428075 \\ 0.7882046826 \end{pmatrix}$	$\begin{pmatrix} 0.1584349317 & 1.3941023413 \\ 5.7026575200 & 1.5764002651 \end{pmatrix}$	$\begin{pmatrix} -9.78e - 14 \\ 2.66 & 06 \end{pmatrix}$
	(-0.0000001051)	(-0.7882046826)	(5.7036575399 -1.5764093651)	2.66e - 06

No further progress.

$$\underline{\mathbf{x}}^* = \begin{pmatrix} 0.287043 \\ -0.788205 \end{pmatrix}; \quad ||\underline{\mathbf{s}}^*|| = 0.00e + 00; \quad ||\underline{\mathbf{F}}(\underline{\mathbf{x}}^*)|| = 2.66e - 06$$

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br

Newtons Method

• Ruggiero, Exercise 2.d (Rosenbrock), p. 205

$$\begin{split} \underline{\mathbf{F}}(\underline{x}) &= \begin{pmatrix} 10(x_1 - x_0^2) \\ 1 - x_0 \end{pmatrix}; \quad \underline{\mathbf{x}}_0 = \begin{pmatrix} -1.200000 \\ 1.000000 \end{pmatrix} \\ \underline{\underline{\mathbf{J}}}(\underline{x}) &= \begin{pmatrix} -20x_0 & 10 \\ -1 & 0 \end{pmatrix} \end{split}$$

$$\varepsilon_1 = 1.00e - 06, \varepsilon_2 = 1.00e - 06.$$

k	$\mathbf{\underline{s}}_{k}$	$\mathbf{\underline{x}}_{k}$	$\underline{\underline{\mathbf{J}}}(\underline{\mathbf{x}}_k)$	$\underline{\mathbf{F}}(\underline{\mathbf{x}}_k)$
1	$\left(-2.2000000000\right)$	(1.0000000000)	(-20.00000000000 10.0000000000)	(-4.84e + 01)
1	4.8400000000	(-3.8400000000)	(-1.000000000000000000000000000000000000	(-2.22e - 16)
2	(-0.0000000000)	(1.0000000000)	(-20.00000000000 10.0000000000)	(-4.44e - 15)
	4.8400000000	(1.0000000000)	$\left(\begin{array}{ccc} -1.0000000000 & 0.00000000000 \right) \right]$	(2.22e - 16)
3	(0.0000000000)	(1.0000000000)	(-20.00000000000 10.0000000000)	(-4.44e - 15)
	(0.0000000000)	(1.0000000000)	$\left(\begin{array}{ccc} -1.0000000000 & 0.00000000000 \right) \right]$	(2.22e - 16)

$$\underline{\mathbf{x}}^* = \begin{pmatrix} 1.000000 \\ 1.000000 \end{pmatrix}; \quad ||\underline{\mathbf{s}}^*|| = 0.00e + 00; \quad ||\underline{\mathbf{F}}(\underline{\mathbf{x}}^*)|| = 4.44e - 15$$

#!/usr/bin/python3

Dr. Ole Peter Smith


```
from math import *
from Vector import *
from Matrix import *
from Gauss_Pivotation import *
##! Implement Newtons method for nonlinear systems.
##1
##!
##! F: Function (def) returning the list of functions to be zeroed.
##! J: Function (def) returning the Jacobian.
##! x: Starting x, list.
##!
def Newton (F, J, x, eps 1=1.0E-6, eps 2=1.0E-6, max_iter=100):
     x s = []
     ss = []
     res = 0
     k=1
     while (res==0 \text{ and } k \le max_iter):
         res , x = Newton\_Iteration (F, J, x, eps 1, eps 2)
          xs.append(x)
         k+=1
     return res, xs
##!
##! Do one Newton iteration
##!
def Newton_Iteration(F, J, x, eps 1, eps 2):
     res = 0
     if (Vector\_Norm\_Inf(Fx) < eps 1):
         res=1
     else:
         Jx=J(x)
          s = Vector_Mul(Fx, -1.0)
          Gauss_Pivotation(Jx,s)
          x=Vectors\_Add(x,s)
          if (Vector\_Norm\_Inf(s) < eps 2):
              res = 2
     return res, x
##!
##! Gather Latex for Newton iterations
##!
def Newton_Latex(info,F_Latex,J_Latex,F,J,x,eps1,eps2):
     res, xs=Newton(F, J, x, eps 1, eps 2)
     latex = [
         Latex_Title ("Newtons Method"),
          ſ
               "$\\ bullet $",
               "\\ textbf {"+info+"}",
          Latex_Math([
"\\ Vector{F}(\\ underline{x})=",
               Vector\_Latex (
                   F_Latex(), options = ""
              ),
";\\quad"
               "\\ Vector\{x\}_0=",
               Vector_Latex(x),
          Latex_Math([
                '\\ Matrix { J } (\\ underline { x } )=",
              Matrix_Latex (
J_Latex (), options =""
          Latex_Inline ([
               "\\varepsilon_1="+("%.2e" % eps1)+",",
"\\varepsilon_2="+("%.2e" % eps2)+".",
          1),
     ]
```



```
table = [
              "$k$"
              "$\\ Vector { s }_k$",
              "$\\ Vector{x}_k$",
"$\\ Matrix{J}(\\ Vector{x}_k)$",
              "\Vector{F}(\Vector{x}_k)",
         ]
    ]
    for k in range(len(xs)):
         table.append(
             Newton_Latex_Iteration (F, J, x, xs, k)
    latex=latex+Latex_Table(table)
    niterations = len(xs)
eps1_val = Vector_Norm_Inf(
    Vectors_Sub(xs[niterations -1],xs[niterations -1])
    eps2_val=Vector_Norm_Inf(
         F(xs[niterations-1])
    if (eps2_val <= eps2):
    latex . append("Convergence .")</pre>
    elif (eps1_val<=eps1):
        latex.append("No further progress.")
         latex.append("Divergence.")
    latex = latex + [
         Latex_Math([
    "\\ Vector{x}^*=",
              Vector_Latex(xs[niterations −1]),
              "; \ \ quad ",
              "||\\ Vector\{F\}(\\ Vector\{x\}^*)||=",
             ("%.2e" % eps2_val)
         ])
    return latex +["\\clearpage\n\n"]
##!
##! Gather Latex row for one Newton iteration
def Newton_Latex_Iteration(F, J, x, xs, k):
    if (k>0):
         s = Vectors_Sub(xs[k], xs[k-1])
    else:
         s=Vectors\_Sub(x, xs[k])
    return [
         str(k+1),
         Latex_Inline ([
             Vector_Latex(s, frmt="%.10f"),
         Latex_Inline ([
             Vector_Latex(xs[k],frmt="%.10f"),
         Latex_Inline ([
             Matrix_Latex(J(xs[k]), frmt="%.10f"),
         Latex_Inline ([
              Vector_Latex (F(xs[k]), frmt="%.2e"),
    ]
#Ruggiero, Example 5, p. 199.
def F1(x):
    return [
        x[0]+x[1]-3.0,
         x[0]**2+x[1]**2-9.0,
    1
def J1(x):
```



```
return [
        [
             1.0,1.0
        1.
        [
             2.0*x[0],2.0*x[1]
        ],
    ]
def F1_Latex():
    return [
"x_0+x_1-3",
        x_0^2 + x_1^2 - 9,
def J1_Latex():
    1
#Ruggiero, Exercise 2.a, p. 205.
def F2(x):
    return [
       x[0]**2+x[1]**2-2.0,
        e **(x[0]-1.0)+x[1]**3-2.0,
    1
def J2(x):
    return [
       [
             2.0 * x [0], 2.0 * x [1]
        1.
        ſ
             e **(x[0]-1.0),3.0*x[1]**2
        ],
    ]
def F2_Latex():
    return [
        x_0^2+x_1^2-2,
        "e^{x}{x_0-1}+x_1^3-2",
def J2_Latex():
    #Ruggiero, Exercise 2.b, p. 205.
def F3(x):
    return [
        4.0*x[0]-x[0]**3+x[1],

-x[0]**2/9.0+x[1]-0.25*x[1]**2+1.0
def J3(x):
    return [
       [
             4.0 - 3.0 * x [0] * * 2, 1.0
        ],
        [
             -2.0/9.0*x[0],1.0-0.5*x[1]
        ],
    ]
def F3_Latex():
    return [
        4x_0-x_0^3+x_1^n
        "-\\frac\{1\}\{9\}x_0^2+x_1-\\frac\{1\}\{4\}\ x_1^2+1",
def J3_Latex():
    return [
    ["4-3x_0^2","1"],
    ["-\\frac{2}{9}x_0","1-\\frac{1}{2}x_1"],
#Ruggiero, Exercise 2.c, p. 205.
def F4(x):
    return [
        (2.0*x[0]-x[0]**2+8)/9.0 + x[1]-0.25*x[1]**2,
```



```
8.0*x[0] - 4.0+x[0]**2 + x[1]**2+1.0
def J4(x):
   return [
       Γ
           (2.0-2.0*x[0])/9.0,
           1-0.5*x[1]
        ],
       [
           8.0 - 8.0 * x[0],
           2.0*x[1]
       ],
   ]
def F4_Latex():
   def J4_Latex():
    return [
       [
           "\\ frac\{1\}\{9\}(2-2x_0)",
           "1-\\frac {1}{2}x_1"
       ],
       ]
           "8-8x_0",
           "2x_1"
       ],
   ]
#Ruggiero, Exercise 2.d, p. 205 (Rosenbrock).
def F5(x):
   return [
       10.0*(x[1]-x[0]**2),
       1.0 - x[0]
   1
def J5(x):
   return [
       [
            -20.0*x[0],
           10.0
       ],
       ſ
            -1.0,
           0.0
       ],
   ]
def F5_Latex():
   return [
"10(x_1-x_0^2)",
       "1-x_0",
def J5_Latex():
   return [
       Γ
           "-20x_0",
           "10",
       [
           "-1",
           "0",
       ],
   ]
##!
##! To keep SmtC happy.
##!
def dummy():
   return 0
###!
###! Testing ###
###!
###!
```


Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - http://www.olesmith.com.br


```
if (__name__=='__main__'):
     eps 1=eps 2=1.0E-6
     latex = []
     x 1 = [1.0, 5.0]
     latex=latex+Newton_Latex(
               "Ruggiero, Example 5, p. 199", F1_Latex, J1_Latex,
               F1,J1,x1,
                eps1, eps2
     )
     x2 = [1.5, 2.0]
     latex = latex + Newton\_Latex (
               "Ruggiero, Exercise 2.a, p. 205", F2_Latex, J2_Latex, F2,J2,x2,
               eps1,eps2
     x3=[-1,-2.0]
     latex = latex + Newton\_Latex (
               "Ruggiero, Exercise 2.b, p. 205", F3_Latex, J3_Latex,
               F3,J3,x3,
               eps1,eps2
     x4=[-1,-1.0]
    latex=latex+Newton_Latex(
    "Ruggiero, Exercise 2.c, p. 205",
    F4_Latex, J4_Latex,
    F4,J4,x4,
                eps1,eps2
     x5 = [-1.2, 1.0]
     latex = latex + Newton_Latex (
               "Ruggiero, Exercise 2.d (Rosenbrock), p. 205", F5_Latex, J5_Latex,
               F5, J5, x5,
                eps1,eps2
     latex = latex + ["\\ lstinputlisting {Newton.py}"]
     latex=Latex_Print(latex)
```

Latex_Save("Newton.tex",latex)