práctica 7

martín rossi

1.

a.

D: producto defectuoso N: producto no defectuoso P(D) = p, P(N) = 1 - p proceso estocástico $\{N_n : n \in \mathbb{N}\}$ $\Omega = \{w : w = (w_1, w_2, ...), w_i \in \{D, N\}\}$ $N_n(w) \sim Bin(n, p)$ $P(N_n = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

b.

- -Cantidad de estados discreto, la cantidad de productos defectuosos(\mathbb{N}_0)
- -Instantes de observación discretos, cada vez que se fabrica un producto (\mathbb{N}_0)
- -Propiedad markoviana:

c.

$$E = \mathbb{N}_0$$

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & 0 & 0 & \dots \\ 0 & 0 & 1-p & p & 0 & 0 & \dots \\ 0 & 0 & 0 & 1-p & p & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

d.

Los estados son todos transitorios, porque para cada estado hay una probabilidad no nula de abandonarlo, y no regresar nunca porque cada vez se van agregando más productos defectuosos.

e.

$$N_n \sim Bin(n, p)$$
 entonces:
 $E(N_n) = np$
 $V(N_n) = np(1-p)$

2.

a.

$$P(N_5 = 1, N_4 = 0, N_3 = 0, N_2 = 0, N_1 = 0) = p(0, 0)p(0, 0)p(0, 0)p(0, 0)p(0, 1)p(N_0 = 0)$$

= 0.38⁴0.62

b.

$$P(N_5 = 2|N_4 = 1)P(N_4 = 1) = 0.62 * 0.136083 = 0.0843712$$

c.

$$P(N_{20} = 12|N_{12} = 9) = P(N_8 = 3) = P^8(0,3) = 0.0602776$$

d.

38 automóviles

4.

$$E = \{S, N\}$$

$$P = \begin{pmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{pmatrix}$$

5.

a.

$$P\{X_1 = b, X_2 = b, X_3 = b, X_4 = a, X_5 = c | X_0 = a\} = P(a, b)P(b, b)P(b, b)P(b, a)P(a, c)$$

$$= \frac{1}{3} \frac{3}{4} \frac{1}{4} \frac{2}{3}$$

$$= \frac{1}{32}$$

b.

$$P\{X_1 = b, X_3 = a, X_4 = c, X_6 = b | X_0 = a\} = P(a, b)P^2(b, a)P(a, c)P^2(c, b)$$
$$= \frac{1}{3}0.1875\frac{2}{3}\frac{4}{3}$$
$$\approx 0.05$$

c.

$$P\{X_2 = b, X_5 = b, X_6 = a\} = P\{X_2 = b, X_5 = b, X_6 = a | X_0 = a\} P(X_0 = a)$$

$$+ P\{X_2 = b, X_5 = b, X_6 = a | X_0 = b\} P(X_0 = b)$$

$$+ P\{X_2 = b, X_5 = b, X_6 = a | X_0 = c\} P(X_0 = c)$$

$$= P^2(a, b) P^3(b, b) P(b, a) P(X_0 = a)$$

$$+ P^2(b, b) P^3(b, b) P(b, a) P(X_0 = b)$$

$$+ P^2(c, b) P^3(b, b) P(b, a) P(X_0 = c)$$

$$= 0.25 * 0.5468 * 0.25 * 0.4$$

$$+ 0.6458 * 0.5468 * 0.25 * 0.4$$

$$+ 0.1333 * 0.5468 * 0.25 * 0.4$$

6.

a.

$$E = \{0, 1, 2\}$$

$$P = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.75 & 0 & 0.25 \\ 0 & 0 & 1 \end{pmatrix}$$

c.

$$(\pi_0 P^{\infty}) = \{0.43, 0.27, 0.3\}$$

8.

b.

$$E = \{a,b,c,d,e,f\}$$

F(i,j)	a	b	c	d	е	f
a	1	1	0	0	0	0
b	1	1	0	0	0	0
c	0	0	1	1	0	0
d	0	0	1	1	0	0
е	1	1	0	0	0	0
f	1	1	0	0	$\frac{1}{3}$	0

с.

R(i,j)	a	b	c	d	е	f
a	∞	∞	0	0		
b	∞	∞	0	0		
c	0	0	∞	∞	0	0
d	0	0	∞	∞	0	0
e			0	0		
f			0	0		