AD-A078 875

WOODWARD-CLYDE CONSULTANTS PLYMOUTH MEETING PA
NATIONAL DAM INSPECTION PROGRAM. POCONO LAKE DAM (NDS I.D. NUMB--ETC(U)
JUL 79 J BOSCHUK, J H FREDERICK
DACW31-79-C-0017

UNCLASSIFIED

131-79-C-0017 NL

Distribution Unlimited Approved for Public Release Contract No. DACW31-79-C-0017

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DELAWARE RIVER BASIN

POCONO LAKE DAM

MONROE COUNTY, PENNSYLVANIA umber (NDS I. D. NO. PA 00781 DER I. D. NO. 45-222) PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM. Pocono Lake Damk Delaware River Basin, Monroe County, Pennsylvania. Phase I Inspection Report, Prepared by: WOODWARD-CLYDE CONSULTANTS 5120 Butler Pike Plymouth Meeting, Pennsylvania 19462 DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203 ORIGINAL CONTAINS COLOR PLATES: ALL DDC REPRODUCTIONS WILL BE IN BLACK AND WHITE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of the Chief of Engineers, Washington, D. C., 20314. The purpose of a Phase I investigation is to expeditiously identify those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify the need for more detailed studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected, and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

Name of Dam: County Located: State Located: Stream: Coordinates: Pocono Lake Dam Monroe County Pennsylvania Tobyhanna Creek Latitude 41° 5.8' Longitude 75° 32.4'

Date of Inspection: 10 May 1979

[contid from pil]

Pocono Lake Dam, owned by the Pocono Lake Preserve, was built as a result of the failure of the previous timber crib dam in August 1955, during Hurricane Diane. This concrete dam was designed by Justin & Courtney of Philadelphia, Pennsylvania, and was built in 1956 by Reed and Kuhn Contractors. The facility is considered to be in good condition and well maintained. The dam is classified as a "High" hazard structure consistent with its potential for extensive property damage and possible loss of life downstream in the event of failure. The dam is classified as an "Intermediate" size dam by virtue of its 22,430 acre-foot total storage capacity and 47 foot height.

The available documentation, specifications and visual inspection provided sufficient information to evaluate the embankment and appurtenant structures in accordance with the provisions of the Phase I Inspection Program.

The hydrologic and hydraulic calculations presented in Appendix C indicate the dam will pass the Probable Maximum Flood without overtopping. Therefore, the spillway system is considered to be "Adequate".

Visual inspection of the dam and reservoir detected no significant problems with the structure. There was some leakage noted around the stilling basin walls, which was assessed to be drainage from the rock toe. Some minor cracking of the spillway walls was noted and the loss of some joint sealer was noted in the bridge. These conditions are not considered to be critical.

Based on the findings presented in this report, it is recommended that the following measures be taken.

- Woody vegetation along the downstream slopes of the 1. embankment should be removed on a periodic basis.
- 2. Seepage around the end walls of the spillway should be monitored, at least visually, for changes in rates or turbidity.
- 3. Minor cracking noted along the downstream section of the spillway retaining walls should be monitored annually and, if the cracks increase, they should be repaired.
- 4. The joint sealer beneath the bridge decking should be replaced as soon as practical to prevent collection of foreign material which, when subject to freeze/thaw cycles, would cause spalling.

Due to the location of the dam and the potential for extensive property damage and possible loss of life in the event of failure, a formal procedure of observation and warning during periods of high precipitation should be developed and implemented. This procedure should include a method of warning and possibly evacuating residents along the creek. An operation and maintenance procedure should also be developed to insure that all items are carefully inspected on a regular basis and maintained in the best possible condition.

John Boschuk, Jr., P.E.

Pennsylvania Registration 27450E

Woodward-Clyde Consultants

John H. Frederick, Jr., P.E.

Maryland Registration 7301

Woodward-Clyde Consultants

APPROVED BY:

PECK

Colonel, Corps of Engineers

District Engineer

OVERVIEW POCONO DAM, MONROE COUNTY, PENNSYLVANIA

TABLE OF CONTENTS

	PAGE
Preface Assessment and Recommendations Overview Photograph	i ii iv
SECTION 1 - PROJECT INFORMATION 1.1 General 1.2 Description of Project 1.3 Pertinent Data	1 1 3
SECTION 2 - ENGINEERING DATA 2.1 Design 2.2 Construction 2.3 Operational Data 2.4 Evaluation	5 5 5 5
SECTION 3 - VISUAL INSPECTION 3.1 Findings 3.2 Evaluation	7 8
SECTION 4 - OPERATIONAL PROCEDURES 4.1	9 9 9 9
SECTION 5 - HYDROLOGY/HYDRAULICS 5.1 Evaluation of Features	10
SECTION 6 - STRUCTURAL STABILITY 6.1 Evaluation of Structural Stability	12
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES 7.1 Dam Assessment 7.2 Remedial Measures	13 13
APPENDIX A Engineering Data, Design, Construction	
and Operation B Visual Inspection C Hydrology/Hydraulics D Photographs E Plates F Geology	

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM POCONO LAKE DAM NATIONAL ID #PA 00781 DER #45-222

SECTION 1 PROJECT INFORMATION

1.1 General.

- a. <u>Authority</u>. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

Dam and Appurtenances. Pocono Lake Dam is a concrete ogee spillway with concrete non-overflow sections keyed on each side into a zoned earth embankment. embankment contains an upstream impervious fill protected with three feet of dumped riprap over a one foot filter bed. The upstream slope below elevation 1,635 is 2.5H:1V, and above elevation 1,635 the slope is 2H:1V. The downstream slope contains an impervious zone against the concrete non-overflow section; a random fill zone; and a rock toe separated from the random zone with one foot of filter stone. The slope is 2H:1V and protected with eight inches of stone having a three inch maximum size. Plan and typical embankment sections are shown on Plates 2 and 5, Appendix E. The right embankment, beyond the concrete non-overflow section, is about 115 feet long with a 25 foot wide crest. The corresponding left embankment is about 130 feet long with a 25 foot wide crest. The concrete overflow and non-overflow sections are founded on rock and both embankments have an impervious core trench excavated to rock. A grout curtain with maximum 20 foot deep holes and 10 foot center to center spacings was installed under the entire structure. Borrow materials for the embankments were obtained within the reservoir area.

The central portion of the dam is the concrete ogee type spillway, 31 feet above the foundation and 216 feet long. A 15 foot wide concrete bridge for one-way vehicular traffic and pedestrians is supported on four concrete piers over the spillway. The distance between the underside of the bridge to the spillway crest is about 15 feet. Each pier is four feet wide with a semicircular upstream section.

The concrete stilling basin at the downstream toe is 50 feet long and about 4 feet deep. The basin is concrete paved and the downstream end contains a concrete sill four feet above the basin floor. The stilling basin is bounded on each side by concrete training walls which extend 10 feet beyond the end sill. Typical sections of the stilling basin, end sill, chute and baffle blocks and training walls are shown on Plate 4, Appendix E.

The dam contains a 30-inch I.D. drawdown pipe through the spillway at elevation 1,610.25 under each of the two center piers. Each gate can be operated from the upstream side of the pier at bridge level. Trash racks cover both intakes. A gated low flow discharge pipe, 10 inches in diameter under the extreme right pier, discharges through the spillway. Typical sections of the discharge pipe are shown on Plates 4 and 6.

- b. Location. The dam is located on Tobyhanna Creek in Tobyhanna Township, Monroe County, Pennsylvania. The site is shown on USGS Quadrangle entitled "Blakeslee, Pennsylvania" at coordinates N 41° 5.8' W 75° 32.4'. A regional location plan of Pocono Lake Dam is enclosed as Plate 1, Appendix E.
- c. <u>Size Classification</u>. The dam is classified as an "Intermediate" size dam by virtue of its 22,430 acre-foot total storage capacity and 47 foot height.
- d. <u>Hazard Classification</u>. A "High" hazard classification is assigned consistent with the potential for extensive property damage and loss of life along the stream.
- e. Ownership. The dam is owned by Pocono Lake Preserve. All correspondence should be sent to Mr. Baldwin Avery, General Manager, Pocono Lake Preserve, Pocono Lake, Pennsylvania 18348.
- f. Purpose of Dam. The purpose of this dam is recreational.
- g. Design and Construction History. During Hurricane Diane, August 1955, an existing timber crib dam, approximately 250 feet upstream of the present dam, breached. As a result of this failure, Pocono Lake Preserve retained Justin & Courtney*, consulting engineers of Philadelphia,

^{*} Justin & Courtney, division of O'Brien & Gere, Syracuse, New York.

Pennsylvania, to design the present dam. On April 6, 1956, the "Report Upon the Application of Pocono Lake Preserve" was prepared and the construction permit issued April 11, 1956. Construction began during the summer of 1956, and Mr. T. W. Beland of Justin & Courtney served as resident engineer. Mr. S. L. Ritchie, of Reed & Kuhn, was the contractor's superintendent.

Limited available records in Department of Environmental Resources' files indicated that all work was performed in a highly satisfactory manner. Details as to specific construction test results, such as in place density tests and concrete testing, were not available. However, monthly inspection reports and job summaries were available, which indicated that all of these tests were satisfactory. By early 1957, the dam was completed and the reservoir was filled between May and July 1957. Throughout this period, the required minimum flow of 11.28 cubic feet per second was maintained downstream.

h. Normal Operating Procedures. Under normal conditions, all excess flow is discharged over the concrete ogee spillway. Minimum flow is maintained through the 10-inch pipe embedded in the ogee section and shown on Plate 6. The original requirement for a minimum 11.28 cfs flow, including measurement, has been waived as no flow is diverted by the structure and two tributaries enter Tobyhanna Creek below the dam within the boundaries of the preserve. The normal operating procedure is to maintain a minimum flow through the 10-inch pipe.

1.3 Pertinent Data.

A summary of pertinent data for Pocono Lake Dam is presented as follows.

a.	Drainage Area (sq miles)	75.4
b.	Discharge at Dam Site (cfs) Spillway	
	Water at Design Elevation	27,750
	Water at Top of Dam	44,525
	Low Flow Discharge	11.28
c.	Elevation (feet above MSL)	
	Top of Dam	1,650
	Spillway Crest	1,633
	Design High Water	1,644
	Stilling Basin End Sill	
	Stilling Basin End Sill	1,607

	Stilling Basin Floor Minimum Flow Pipe (invert) Pond Drain Invert Downstream Toe Elevation	1,603 1,614.08 1,610.25 1,610±
đ.	Reservoir (miles) Length at Normal Pool Fetch at Normal Pool	2.8 1.8
e.	Storage (acre-feet) Normal Pool At Top of Dam	5,402 22,430
f.	Reservoir Surface Area (acres) Normal Pool	518
g.	Dam Data Type	Concrete nonoverflow section keyed into zoned earth fill w/downstream rock toe
	Length (including spillway) Height Crest Width Volume Side Slopes Upstream	580 feet 47 feet 25 feet (to be determined)
	Above Elevation 1,635 Below Elevation 1,635 Downstream Cutoff (under embankment	2H:1V 2.5H:1V 2H:1V
	section) Grout Curtain	Cutoff trench; 10' base width w/ lH:1V slopes Single line grout
		curtain, 20' deep, 10' hole spacings
h.	Principal Spillway Type	Reinforced concrete ogee crest
	Length	216 feet (including 4 bridge piers)
	Discharge Basin	Concrete stilling basin with baffle & chute blocks

SECTION 2 ENGINEERING DATA

2.1 Design.

- a. Availability. A summary of engineering data for Pocono Lake Dam is presented in the checklist attached as Appendix A. Principal documents containing data used for this report include the "Report Upon the Application of Pocono Lake Preserve" dated April 6, 1956, by the State of Pennsylvania; several construction reports; a complete set of design drawings; and other miscellaneous documentation. Documentation specifically pertaining to construction, such as in place density test results, gradation curves and concrete test results, were not available in Department of Environmental Resources' (DER) files. Selected portions of the drawings are included in Appendix E of this report.
- b. <u>Design Features</u>. Principal design features are illustrated on the plan, profile and cross-section plates of the embankment and spillway, enclosed as Appendix E, Plates 2 through 6. A description of the design features is presented in Section 1.2 entitled "Description of Project". Under normal pool conditions, the reservoir level is at the crest of the principal spillway, elevation 1,633.

2.2 Construction.

A description of the construction history is presented in Section 1.2, paragraph q.

2.3 Operational Data.

There are no operational records maintained. Minimum flow is maintained by a 10-inch pipe located through the principal spillway section. There are no water level measurements or rainfall records maintained within this watershed by the Owner. A staff gage is located on the right training wall of the stilling basin, but this gage is unserviceable as the letters have faded.

2.4 Evaluation.

a. Availability. All engineering data reproduced in this report and studied for this investigation were provided by either the Pennsylvania DER or the Owner's representatives.

- b. Adequacy. The data included in State files and supplemented by discussions with the Owner's representative are considered adequate to evaluate the dam and appurtenant structures.
- c. $\underline{\text{Validity}}$. There is no reason to question the validity of this data.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

- a. General. Observations and comments of the field inspection team are contained in the checklist enclosed herein as Appendix E, and are summarized and evaluated as follows. In general, the dam and its appurtenant structures are considered to be in good condition and well maintained. At the time of inspection, the reservoir level was at the spillway crest.
- During the visual inspection, there were no surface cracks, unusual movement at or beyond the toe of the dam, unusual sloughing, or erosion of the embankment or abutment slopes. Vertical and horizontal alignments of the crest were checked and found to be in good condition. There were no observed riprap failures. The junction between the embankment and non-overflow section of the spillway is considered in good condition. Some minor woody vegetation was growing along the downstream slope of the embankment, which should be removed during routine maintenance of the structure. Seepage noted at the rock toe of the embankments on either side of the spillway was observed to be discharging into the stilling basin around the training walls. This seepage is considered normal for a rock toe without a perforated collection pipe.

c. Appurtenant Structures.

The concrete ogee spillway section was observed to be in very good condition, with no unusual distortion, cracks or excessive spalling of the concrete. Some minor cracking was observed along the downstream section of the spillway walls, as shown on sheet 5a and on photographs in Appendix D. Vertical and horizontal alignments were checked and found to be satisfactory. The monolith joints were inspected, where possible, and found to be in good condition. Construction joints were also observed to be in good condition. However, some deterioration of the joint sealer was noted beneath the bridge decking joints, resulting in deterioration of pier tops. This should be repaired during normal maintenance.

The minimum flow release gate was exercised and found to operate properly. At the time of inspection, minimum flow was being discharged downstream in addition to excess flow over the spillway crest. Both pond drain gates were exercised and observed to function properly.

- d. Reservoir. The reservoir side slopes are generally flat, well vegetated to the water's edge with trees and some homes along the edge of the reservoir. Sedimentation is probably concentrated in the upper reaches of the reservoir and has little or no effect on flood water storage.
- e. <u>Downstream Channel</u>. The creek flows through woods and is wide and stable. The creek bed is rocky and there was no debris noted. The valley gradient downstream from the dam is approximately 0.003. Side slopes of the channel are roughly 2H:1V. Approximately 3.2 miles below the dam, Tobyhanna Creek passes under PA Route 115, where there are three or four homes subject to damage in the event of failure. These homes justify the "High" hazard classification.

3.2 Evaluation.

Inspection of the dam and appurtenant facilities disclosed no evidence of apparent past or present movement that would indicate existing instability of the dam or spillway system. All gates were exercised and observed to function properly. All external features of the embankment were inspected and observed to be in very good condition. In summary, the dam and its appurtenant facilities are very well maintained and in good condition.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Procedures.

Operation of the dam does not require a dam tender. All flow discharges directly over the ogee crest of the principal spillway and downstream into Tobyhanna Creek.

4.2 Maintenance of the Dam.

The dam is maintained by the Pocono Lake Preserve employees. Maintenance work includes periodic mowing of the grass, repair of the riprap and removal of debris from embankment slopes.

4.3 Maintenance of Operating Facilities.

Maintenance of the operating facilities is also performed by employees of the Pocono Lake Preserve, which includes clearing the spillway of debris and insuring that all gates are cleaned, well greased and operating properly.

4.4 Warning Systems In Effect.

There are no formal warning systems or procedures established to be followed during periods of exceedingly heavy rainfalls.

4.5 Evaluation.

There are no written operational procedures, maintenance procedures or any type of warning system. Maintenance and operating procedures should be developed, including a checklist of items to be observed, operated and inspected on a regular basis.

Since a formal warning procedure does not exist, one should be developed and implemented during periods of extreme rainfall. This procedure should consist of a detailed method of notifying residents downstream that potentially high flows are imminent or a dangerous condition is developing.

SECTION 5 HYDROLOGY/HYDRAULICS

5.1 Evaluation of Features.

a. <u>Design Data</u>. Readily available design data was limited to statements in the application report prepared by the State and the construction drawings. Hydrologic and hydraulic evaluations performed in conjunction with this inspection are contained in Appendix C.

The 75.4 square mile watershed is predominantly wooded with no major/large towns. The watershed is about 11.7 miles long and averages about 7.6 miles wide. Elevations range from 2,200 feet to 1,633 at normal pool level. There are at least eight upstream dams, the largest of which is Lake Naomi Dam, located 1.8 miles upstream of the headwaters of Pocono Lake or 3.9 miles upstream of Pocono Lake Dam, controlling 19.5 square miles of the watershed. There are four dams upstream of Lake Naomi. Other dams upstream of Pocono Lake are: Tamaqua Lake, 4.8 miles upstream of Pocono Lake Dam; Mill Pond No. 1, 7.6 miles upstream of the dam on Tobyhanna Creek; and Tobyhanna, 9.6 miles upstream of Pocono Lake Dam on Tobyhanna Creek. The watershed also contains several swamps with an estimated area of four to five square miles. While residential development is continuing within the watershed, runoff characteristics are not expected to change significantly in the near future.

The application report indicated a spillway discharge of 29,000 cfs with a design head of 11 feet, and a discharge of 46,100 cfs with the reservoir level at the underside of the bridge, or 15 feet. The spillway capacity was considered adequate by the State.

In accordance with criteria established by Federal (OCE) Guidelines, the recommended spillway design flood for this "Intermediate" size dam and "High" hazard classification is the Probable Maximum Flood (PMF).

- b. Experience Data. No reservoir level records or rainfall records are maintained for this dam by the Owner. There are two rain gaging stations within the watershed and one 2.8 miles west of the dam, which report to the National Weather Service.
- c. <u>Visual Observations</u>. At the time of inspection, there were no conditions observed that would indicate a reduced spillway capacity during an extreme event. Other

observations regarding the condition of the downstream channel, spillway and reservoir are located in Appendix B and discussed in detail in Section 3.

d. Overtopping Potential. Overtopping potential of this dam was estimated using "HEC-1, Dam Safety Version", computer program. A brief description of the program is included in Appendix C. The upstream dam, Lake Naomi, was also inspected under the National Dam Inspection Act. The results of that investigation were available for evaluation of Pocono Lake Dam. Lake Naomi's spillway is rated as "Inadequate". The computer program was run twice, one assuming Lake Naomi and its upstream dams did not fail and one assuming failure of Lake Naomi and two of its upstream dams. Failure of any other upstream dam is assessed to have little effect on Pocono Lake Dam.

Calculations for this investigation essentially confirm the spillway evaluation made in the application report prepared by the State, with an estimated discharge of about 27,750 cfs at the design head of 11 feet. The HEC-1 program computed the peak PMF inflow to be 50,868 cfs assuming no upstream dam failures and 51,752 cfs assuming upstream failures. As shown in Appendix C, the spillway can pass the PMF under both conditions. The maximum reservoir level is conservative as no allowance has been made for flood storage in Tamaqua Lake, Millpond No. 1, Tobyhanna Lake or the extensive marshy/swamp areas.

- e. <u>Spillway Adequacy</u>. As the spillway will pass the PMF without overtopping, the spillway is considered to be "Adequate".
- f. <u>Downstream Conditions</u>. Tobyhanna Creek flows through a fairly wide, wooded flood plain for about 3.2 miles until it passes under PA Route 115, where there are three or four homes subject to damage in the event of failure. These residences justify the "High" hazard classification. The creek enters the Lehigh River about 9.8 miles below the dam.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

- Visual Observations. Visual observations detected no evidence of existing or pending embankment or spillway instability. Upstream and downstream slopes of the embankment appear to be stable, in good condition and well vegetated. Downstream slopes on the right and left embankments contain woody vegetation, which at the present time is not critical, but should be removed during routine maintenance of the structure. Seepage noted around the training walls of the principal spillway is flowing from the rock fill toe drains and is considered normal for this type of structure. seepage was observed to be clear, with no signs of turbidity. The spillway and bridge deck were inspected and found to be in good condition. There was some minor cracking, but this does not appear to be structural cracking associated with instability or other unsafe conditions.
- Design and Construction Data. Design and construction data was limited principally to the drawings, of which selected sections are presented in Appendix E. These drawings present in great detail the principal features of both the embankment and the spillway system, as well as several specifications on the various components of the system. There were no stability analyses of the embankments available in the Maximum embankment height above rock is less than 40 feet and less than 25 feet above original ground. Therefore, an assessment of the embankment stability is qualitative. For the embankment materials used and specified compaction, the embankment slopes appear to be reasonable. Stability analyses were performed on the concrete overflow and non-overflow sections for design high water and ice load conditions. The sections have adequate factors of safety against sliding and overturning. See Plate 8, Appendix E.
- c. Operating Records. There are no operational records for this structure.
- d. <u>Post-Construction Changes</u>. There are no reports nor is there any evidence that modifications were made to this dam.
- e. <u>Seismic Stability</u>. The dam is located in Seismic Zone 1. Normally it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake conditions. Since the embankment static stability analysis was not available for review, the seismic stability could not be assessed.

SECTION 7 ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment.

- a. Evaluation. Visual inspection and review of the design and construction documentation indicates that the dam, foundation and appurtenant structures, including the spillway of Pocono Lake Dam, are in very good condition. The hydrologic and hydraulic computations presented in Appendix C indicate that the structure will pass the Probable Maximum Flood without overtopping. Therefore, the spillway system for this structure is considered to be "Adequate". In the event the dam fails during an extreme event, extreme property damage and probable loss of life would be expected, thus justifying the "High" hazard classification.
- b. Adequacy of Information. The information available from DER files and the visual inspection are sufficiently adequate to evaluate the dam and appurtenant structures.
- c. <u>Urgency</u>. It is recommended that the suggestions presented in Section 7.2 be implemented during routine maintenance of the dam.

7.2 Remedial Measures.

- a. <u>Facilities</u>. It is recommended that the following measures be taken.
 - Woody vegetation along the downstream slopes of the embankment should be removed on a periodic basis. Once they are removed, the area should be reseeded to establish dense grass/Crownvetch vegetation.
 - Seepage around the end walls of the spillway, which emerges from the toe drain of the embankments, should be monitored, at least visually, for changes in rates or the presence of turbidity. Should either occur, this condition should be inspected by a registered professional engineer experienced in the design of dams.
 - 3. Minor cracking noted along the downstream section of the spillway retaining walls should be monitored annually and, if the cracks increase, they should be repaired.

- 4. The joint sealer beneath the bridge decking should be replaced as soon as practical. If the joint is allowed to remain open and fill with soil or water, spalling at the joints could occur.
- b. Operation and Maintenance Procedures. Because of the location of the dam and the potential for extreme property damage and possible loss of life in the event of failure, a formal procedure of observation and warning during periods of high precipitation should be developed and implemented. This procedure should include a method of warning downstream residents that high flows are expected and provisions for evacuating these people in the event of an emergency. In addition, an operation and maintenance procedure should also be developed to insure that all items are carefully inspected on a regular basis and maintained in the best possible condition.

APPENDIX

A

ENGLYEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I CHECK LIST

NAME OF DAM Pocono Lake Dam

PA 00781 # QI

ITEM

AS-BUILT DRAWINGS

REMARKS

Sheet 1 of 4

Construction drawings were available as prepared by Justin and Courtney and are presented in Appendix E.

REGIONAL VICINITY MAP

See Plate 1, Appendix E.

CONSTRUCTION HISTORY

Data was not available in DER files.

TYPICAL SECTIONS OF DAM

See Plates in Appendix E.

OUTLETS - PLAW

DETAILS

CONSTRAINTS

DISCHARGE RATINGS

RAINFALL/RESERVOIR RECORDS

See Plates in Appendix E.

- Not available in DER files

- Records are not maintained in this watershed.

ITEM	REMARKS Sheet 2 of 4
DESIGN REPORTS	Formal report was not available but boring logs and stability data available in DER files.
GEOLOGY REPORTS	No data in DER files. See Appendix F for data collected for this report.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS UAM STABILITY	Not available in DER files One page plan (D-1) containing the stability analysis of the structure prepared by Justin and Courtney, Philadelphia, Pennsylvania Not available in DER files.
MATERIALS INVESTIGATIONS BORING RECORDS FIELD	Boring logs were available and performed by Sprague and Henwood,
POST-CONSTRUCTION SURVEYS OF DAM	· None
BORROW SOURCES	Unknown.

	Sheet 3 of 4	4
ITEM	REMARKS	1
MONITORING SYSTEMS	None	
MODIFICATIONS	None	
HIGH POOL RECORDS	No data in DER files.	
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None	
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Original dam (250 feet upstream) failed in 1955. The present concrete dam replaced the original timber dam.	:

MAINTENANCE OPERATION RECORDS

No data in DER files.

	t 10 t lague
ITEM	REMARKS
SPILLWAY PLAW	
SECTIONS	See Appendix E.
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	See Appendix E.

MISCELLANEOUS	1.	1. Water Resources Inventory Form.
	8	Pennsylvania State Inspection Reports
	3.	"Report Upon the Application of Pocono Lake Preserve"
		dated April 6, 1956.
	4.	. "Application" dated 28 March 1956.

Designer of Concrete Dam: Justin and Courtney, Philadelphia, Pennsylvania Contractor: Reed and Kuhm 2:3

APPENDIX

B

CHECK LIST VISUAL INSPECTION PHASE I

Sheet 1 of 11

State Pennsylvania ID # PA 00781	ture 60's	Tailwater at Time of Inspection $\frac{1607^2}{1}$ M.S.L.	John H. Frederick (Geotechnical)	Recorder
County Monroe Hazard Category	9 Weather Cloudy and Cool Temperature	of Inspection 1633.2 M.S.L. Tailwater at	nical) Raymond Lambert (Geologist) Vincent McKeever (Hydrologist)	John Boschuk, Jr.
Name Dam Pocono Lake Dam Type of Dam Concrete	Date(s) Inspection $10 \text{ May}'79$ $(P.M.)$	Pool Elevation at Time of Ins	Inspection Personnel: John Boschuk, Jr. (Geotechnical) Mary F. Beck (Hydrologist)	

Remarks:

Mr. Baldwin Avery, General Manager, was on site and provided assistance.

CONCRETE/MASONRY DAMS

SUAL EXAMINATION OF	2	EMARKS OR RECOMMENDATIONS
NOTICEABLE SEEPAGE	None observed through the concrete structure.	

ro ABANKMENT Good condition.	None	AGES Not available.
STRUCTURE TO ABUTHENT/EMBANKMENT JUNCTIONS	DRAINS	WATER PASSAGES

No evidence was found to indicate problems associated with the foundation.

FOUNDATION

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	Sheet 3 of 11 OBSERVATIONS RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Relatively good condition.
STRUCTURAL CRACKING	No major cracking was observed but minor cracking was noted on the downstream section of the spillway retaining walls. See Sheet 5a and photographs.
VERTICAL AND HORIZONTAL ALIGNMENT	poop
MONOLITH JOINTS	Good condition.

Good condition. Some deterioration of the joint sealer was noted beneath the bridge decking which should be repaired.

CONSTRUCTION JOINTS

EMBANKMENT

			Sheet 4 of 11
VISUAL EXAMINATION OF	UBSEK	UBSERVALIUNS	KETAKAS UK KELUMIENDALIUNS
SURFACE CRACKS	None observed. Crest is asphalt paved.	is asphalt paved.	

UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.
SLOUGHING OR EROSION OF	None observed.

	2	
	Ó	
•	2	
	2	
-	ä	
	Good condition	
	0	
	0	
-	a	
	0	
,	ō	
	9	
_		
≤	5	
Z	ŭ	
2	×	
17	_	
×	Ш	
우	Ξ	
_		
₽	上	
a	0	
	-	
=	z	
VERTICAL AND HORIZONTAL	₹	
-	z	
2	2	
E	_	
>	A	

RIPRAP FAILURES

None observed.

EMBANKMENT

11 12 2 22112

See Sheet 5a, for seepage locations. Good condition. JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM ANY NOTICEABLE SEEPAGE Gage on downstream, right spillway wall is not legible. STAFF GAGE AND RECORDER

DRAINS

None. Downstream rock toe controls embankment seepage.

FIELD OBSERVATION PLAN POCONO DAM

SHEET SA OF II

OUTLET WORKS

	Sheet 6 of 11
VISUAL EXAMINATION OF	OBSERVATIONS REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	None observed.
IMTAKE STRUCTURE	Underwater, could not be observed.
OUTLET STRUCTURE	Observed to be in good condition.
OUTLET CHAMNEL	All flows discharge into spillway stilling pool.
EMERGENCY GATE	Gate was exercised and observed to function satisfactorily.

UNGATED SPILLWAY

		Sheet 7 of 11
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Good condition.	

tion.	
Good condi	
CHANNEL	
DISCHARGE CHANNEL	

None

APPROACH CHANNEL

BRIDGE AND PIERS	Good condition but joints need some minor repairs.	some minor repairs.	
RETAINING WALLS			

Some spalling noted at base of retaining walls as shown on Sheet 5a and photographs. This spalling should be repaired.

GATED SPILLWAY

	Sheet	Sheet 8 of 11
VISUAL EXAMINATION OF CONCRETE SILL	OBSERVATIONS RECOMMENDATIONS None	ATIONS
APPROACH CHAINEL	None	
DISCHARGE CHANNEL	None	
BRIDGE AND PIERS	None	
GATES AND OPERATION EQUIPMENT	None	

INSTRUMENTATION

		Sheet 9 of 11
VISHAL EXAMINATION	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	None	
ОТНЕВ	None	

RESERVOIR

VISUAL EXAMINATION OF	Sheet 10 of 11 OBSERVATIONS REMARKS OR RECOMMENDATIONS	Sheet 10 of 11
SL OPES	The reservoir side slopes are generally flat, well vegetated to water's edge with trees, some homes along edge of reservoir.	water's

SEDIMENTATION

Any sedimentation has little or no effect on flood water storage.

DOWNSTREAM CHANNEL

Sheet 11 of 11

		Sheet II of
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	The creek flows through woods, is wide and stable. The bed is rocky, no debris noted.	The bed is rocky,

The side slopes are about 2H:IV. The valley gradient is about 0.003. SLOPES

APPROXIMATE NO. OF HOMES AND POPULATION

About 3.2 miles below the dam, Tobyhanna Creek passes under PA. Rt. 115 where there are three or four homes subject to damage in the event of failure.

APPENDIX

C

POCONO DAM CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

Predominantly wooded, several upstream dams, some
residential development. ELEVATION TOP NORMAL POOL (STORAGE CAPACITY):1633.06 feet (5402 Acre-Feet).
FLEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 1650 feet (22430 Acre-Feet).
ELEVATION MAXIMUM DESIGN POOL: 1644.0 feet.
ELEVATION TOP DAM: 1650 feet
SPILLWAY:
a. Elevation 1633.06 feet.
b. Type Concrete ogee weir.
c. Width 216 feet including four 4 foot wide bridge piers.
d. Length
e. Location Spillover Center.
f. Number and Type of Gates
OUTLET WORKS:
a. Type 2- 30 inch pipes.
b. Location Through two center bridge piers.
c. Entrance inverts
d. Exit inverts 1610.25 feet.
e. Emergency draindown facilities
HYDROMETEOROLOGICAL GAGES:
a. Type Standard rain gages.
b. Location Within watershed.
c. Records Weather Service gages maintained by others.
MAXIMUM NON-DAMAGING DISCHARGE: Not determined.

HEC-1, REVISED FLOOD HYDROGRAPH PACKAGE

The original "Flood Hydrograph Package" (HEC-1), developed by the Hydrologic Engineering Center, Corps of Engineers, has been modified for use under the National Dam Inspection Program. The "Flood Hydrograph Package (HEC-1), Dam Safety Version", hereinafter referred to as, HEC-1, Rev., has been modified to require less detailed input and to include a dam breach analysis. The required input is obtained from the field inspection of a dam, any available design/evaluation data, relatively simple hydraulic calculations, or information from the USGS Quandrangle maps. The input format is flexible in order to reflect any unique characteristics of an individual dam.

HEC-1, Rev. computes a reservoir inflow hydrograph based on individual watershed characteristics such as: area, percentage of impervious surface area, watershed shape, and hydrograph characteristics determined from regional correlation studies by the Corps of Engineers, Baltimore District. The inflow is routed through the reservoir using spillway discharge data obtained from the field inspection or design data. Flood storage capacity is determined from USGS maps or design information and verified by the field inspection. In the event a spillway cannot discharge 0.5 PMF without overtopping and failure of the dam, downstream channel characteristics obtained from the field inspection and USGS maps are inputed and flows are routed downstream to the damage center and a dam breach analysis is performed.

Included in this Appendix are the HEC-1, Rev. pertinent input values and a summary print-out tables.

Y	YFB .	DATE 6/6/79	SUBJECT		SHEETOF	22
IKD. BY	CH	DATE 6/6/79	Pocono Dan		JOB Ne	
	/		Hydrology / Hy	draulics		
C	lassi	fication (2	ef. Recommended Inspection of	Guidelines Dams)	for Safety	
			classification is			
	2.	The size cl	assification is "In 22.430 Ac.Ft. tot	rtermediate be	used on its	47 FL
	3.	The spillwa Classification	design flood, b in, 13 the Proba	ble Maximum	and hazard Flood (PMF).	
Ну	drole	gy and Hya	raulic Analysis			
	/.	the "Application of spillway can	ilable design data toon Report preparations productly was considered. Spillway of as: Ho ~ 11 H. Q = 29,000 c	red by the State dered adequate	for the 15.2 he 200 H age It (design he H. (to undersid	be sg. e weir
	2.	Evaluation of Computer in	of structure was put as follows:	by use of a	bridge) omputer prog	ram.
		Inflow H. Draina 1.8 h about	drograph ge Area - total niles upstream or ve Pocono Dam) dams upstream	from USGS ma	ps, 75.4 39 1 se (and 3.9 n ni, 45-1. The	miles niles re are
		Dan Dan	n has also been n Inspection Act e available for t	and the result	der the National in	ion
		Rainfai Raport	No. 33.	bersheets, Ref-	Hydro meteroi	logical
		Snyder ts	s hydrograph pa	rameters, to	t CP	
			Co:0.45 E	nformation recongingers, Baltin	nore for Zone	2.

	DATE 6/15/25	SUBJECT		SHEET	# or <u>22</u>
CHKD. BY	_DATE 10/21/74	_ Pocono Da	m	JOB Ne_	
90	11	Hydrology / H			
		- ciyararogy / ci	, or o and o		
		L, Lca & dr	ainage are	determ	ined from
		111111111111111111111111111111111111111	GS maps		
			as mays		
	Sub-area	L(miles)	Lea (mile	() Ep	1 -20 t (50 miles
	Lynchwood		0.95		arca (sq. miles)
-+-+-+	1 121 1-1			2.7/	9.4
	Pocono Su		1.61	3.75	3.2
	Stillwater		1.14	304	66
	Lake Naon		2.75	451	20
	Lake Naom		2.65	4.38	43
	Pocono La	ke 14.58	8.05	8.77	55,9
	uncan	strolled area above	dam, not	Decessoril	y total drawage
	area	above dam.			
	Reservoir	Routing			
		on - storage			
	norm	al storage of a	Il dans to	ten lon	DER Whoten
	Po	sources Bulletin	1/0 5	101	
++++	Plan	June 2 Daniel	1	CS	
	TIDO	Storage cotimat	ed Ironi os	S PACES.	4 12 10 5 10
	++++	ormal & total cap	acing Show	g on snee	15_14/8517
-++++			+ + + - + -	+-+-+-+	
	elevati	on - discharge			
	disch	larges for upstre	am days	were calc	ulated by the
	car	parges for upstre	CLHTE	nd intern	ation given
	be	low. Any auxilia	y spillway	discharge	and flow
	OV	er the top was	calculated	by the co	mputer
	as	suming critical	depth.		
		Lunchusen 1	nk-		
		C - 2.6 Ref.	Table 5-3	Kino & B	rater. Handbook
		L = 24 ft (m	casared)	of Hydn	aulies
		auxiliary 301	Yuny asA	higher -	220 H long
		Parana Suna	it theo do	m2 0.5.54	rater, Handbook aulies 120 H long med acting as on
		C: 3.8 Ret	- Table 5-	3	
		L= 20 ++ (+			
		Stillwater Lak			
++++	1-1-1-1-1	C: 2.7 Ref			
	+	4 = 60 A (Table 5 5	1 1 1 1 1	
		4 - 60 HT CI	measured)		
	+++++	++++++		++++	
	+				
		+++++++++			
	1		-		

4.4

0

MFB DATE 6/15/29 SHEET _ 5 OF 22 CHKD. BY DATE MANT Pocono Dam Hydrology / Hydrawics Lake Naomi L = 100 H. (measured) discharge calculated by critical depth auxiliary spillway, 950 H wide, 0.4 to 0.7H higher Pocono Dam - Ref Chow, Open Channel Hydraulics, p. 364 X = KHd Y HI - design head excluding velocity head of approach n = 1.825 K: 1.9.8 from drawing 4/3 face = 3H:15V calc eleu. X 1633.04 0 0 1632'-6"4" 3' 0.49.75 11.875 1631-24" 1.8725 11.036 1626-476 12 4.047 11.037' 10.985 use HJ 11.0ff stage - discharge Ref - Design of Small Dams USBR, shown on sheet 10. L + L' - 2 (N Kp + Ka) He He = total head on crest Kp: pier contraction coefficient . 0.01 N: number of piers 4 Ka = abutment contraction coefficient = 0.20 assume no velocity of approach & Hd = 11.41 · 200-2(4.0.01+0.20)11 = 1947 ft Jay 195 using his 249 \$ 250, 4 = 3,9 Q = 19513.90 U 12 = 27,745cfs

BY	MEB	DATE 6/1	0/29	. s	UBJEC	T						SHEET	6	_OF_	22	
CHKD. BY_	mo	DATE 6	28/25			Por	cono	Da	m.			JOB N				
	7'	/	1		H	droi	logy.	1 Hy	trau	lics						
							T T	1-1-				1 1	т т	ТТ		
	++-		1	1.+	D	1 1		+	++	++-	++-	++-	++	++	++	++
	+-+-	Over	top	oing	ro	Tent	ra/ -		1	-				+-	,_ ,	
	+++	15	Ine OI L	1	tect	Q T	Lap	Aha	D	ama	que !	Lake	VAL	7, 7	S-/2	6
	+++	6		1	1ih	2	F5	1 1)	The Party	Tunk	600		7)	ave		
		neo	lecte	W	her	2015	1	1/4	Smo	11 (1	6 3	omil	()	Irali	1000	11
		ara	a.	M	1100	ed 1	ub, I	no	DER	numb	er.	and	Toby	han	19	
										nd 1						10
										ted b						
		dis	tanc	e	and	the	se	vena	be	ridge	ope	ning	an	do	nara	4/
		54	amp	4	are	25	toby	han	na	Cree	k pa	تهتع	thr	u.		
			-	1			+-1	+.	1-1-	1-1-			-	++	1.	-
			As	she	now	on	she	ect .	19,	the	Spi	Mwa	1 pa	es es	the	
	-	fu	II P	MF	wit	h ou	10	verto	pring	the A	road	way	as	sum	ing	
	+	no	ир	5#	eam	de	ZWI .	failu	res.	A	3000	nd	Comp	ate		+ .,
	++-	ru	n	269	une.	14	23776	am	Lyn	chwo	Od L	ake,	POC	ono	Jus	nmit
	++-									tail						narge
		11	E	77	WI	nous	00	er iop	ping	the	CI II	70	O/ACC	160	-4	
			The	BI	lowin	10 .5	beet	1 13	for	n the	10	10 /	Vann	: 10	anen	hin
		re	port.	1		3	TT			n the						
		5p	illwa	4 1	Adeg	wacy				"Ade						
			The	ي ۽	spille	vay	ر فر	rated	as	"Ade	quate	" 4	s the	e 3/	cillus	y
		W,	11. 1	ass	th	e'PI	MF	with	at c	verte	pping	the	dan	M.		
	+-+		-	-	+		++	-	-			-		+	-+-+	++
	++-			++	-		-	-	-			1	-	++	+++	+++
	1								++			1		++	++	
							11	1						11		
					1		1		\top					TT	11	11
							1			1 .						
														1	-	
				-			-		++	-	-	1-		++		
							1	++	-		-	-	+	++		-
				-			++-		++			++-	+	+		++
				++	-		+-+-	+-+	+-+		++-	-	+++	++	+	-
	+						+		-		+++	+++	++-	++	++	
				1			1	+++	++	-	+		1	1	11	+++
				1			1	+++								

0

The Manager of the A

0

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

PH AT LLI	H T0 LL0	PH AT PSI	H T0 PS0	PH AT SUI	OGRAPHS AT SUTI	H TO SWO	PH AT LNS	PH AT LAN	OGRAPHS AT LNT	H 70 LN0	H TO LND	PH AT PLI	DERAPHS AT PLT	
RUNDFF HYDROGRAPH AT	ROUTE HYDROGRAPH TO	RUNDFF HYDROGRAPH AT	ROUTE HYDROGRAPH TO	RUNOFF HYDROGRAPH AT	COMBINE 3 HYDROGRAPHS	ROUTE HYDROGRAPH TO	RUNDEF HYDROGRAPH AT	RUNDFF HYDROGRAPH AT	COMBINE 3 HYDROGRAPHS	ROUTE HYDROGRAPH TO	ROUTE HYDROGRAPH	RUNDFF HYDROGRAPH AT	COMBINE 2 HYDROGRAPHS	ROUTE HYDROGRAPH TO

JULY 1978

26 FEB 79

DATE* 79/06/13. TIME* 13.56.20.

RUN

LAST MODIFICATION

DAM SAFETY VERSION

POCONO DAM NAT ID MO. PA 00/81 DER NO. 45-222 OVERTOPPING ANALYSIS

				JOB SPEC	HICATIC	*		
	NHE	KILK	IDAY	IHR	ININ	IHR ININ METRC I	IPLT	IPRT
200	•	30	•	0	•	0	0	4-
			JOPER	TOR	LROPT	TRACE		
			S	0	0	0		

NSTAN

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 NRTIO= 3 LRTIO= 1.50 .70 1.00

RTIOS=

SUB-AREA RUNOFF COMPUTATION

LYNCHUOOD LAKE INFLOW HYDROGRAPH

JPRT INAME ISTAGE IAUTO ISTAD ICOMP IECON ITAPE JPLT LLI

HYDROGRAPH DATA

IUNG TAREA SNAP TRSDA TRSPC RATIO ISNOW ISAME LOCAL IHYDG 75.40 0.00 3.39 0.00 0.000

PRECIP DATA

R72 R96 R12 R48 SPFE PHS R4 R24 0.00 22.30 87.00 100.00 111.00 118.00 0.00 0.00

TRSPC COMPUTED BY THE PROGRAM IS .860

LOSS DATA

ERAIN STRKS RTICK STRTL CNSTL 0.00 0.00 1.00 1.00 .05 LROPT STRKR DLTKR RTIOL ALSHX RTIMP 0.00 0.00 0.00 0.00 1.00

> UNIT HYDROGRAPH DATA TP= 2.75 CP= .45 NTA= 0

> > RECESSION DATA

STRTQ= -1.50 ORCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 50 END-OF-PERIOD ORDINATES, LAG= 2.76 HOURS, CP= .45 VOL= 1.00 299. 238. 24. 88. 178. 269. 335. 356. 335. 267. 213. 190. 170. 151. 135. 121. 108. 96. 86. 77. 61. 55. 49. 43. 39. 35. 31. 28. 25. 20. 14. 12. 10. 3.

END-OF-PERIOD FLOW HO.DA HR.HN PERIOD RAIN EXCS LOSS COMP 0 HO.DA HR.HN PERIOD RAIN EXCS LOSS COMP .

> SUM 22.63 20.25 2.38 89942. (575.)(\$14.)(60.)(2546.87)

HYDROGRAPH ROUTING

LYNCHUOOD LAKE OUTFLOW HYDROGRAPH

ISTAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO LLO ROUTING DATA QLOSS CLOSS AVG IOPT IPHP IRES ISAME LSTR 0.000 0.00 NSTPS NSTDL LAG ANSKK TSK STORA ISPRAT -1881. 0.000 0.000 0.000

CAPACITY= 285. 0. 800.

1881.

1890.

1861.

ELEVATION=

CREL SPUID EXPU COOL ELEVL COOL CAREA EXPL 1881.0 24.0 1.5 0.0 0.0 0.0

> TOPEL 1883.0

DAN DATA COOD EXPD DANNID 0.0

0.0

CREST LENGTH 220. 370. 1200. AT OR BELOW 1881.5 1883.0 1884.0 ELEVATION

MFB 6/18/79 POCONO DAM HYDROLOGY HY DRAULICS

SUB-AREA RUNOFF COMPUTATION

POCONO SUMMIT INFLOW HYDROGRAPH

ISTAQ ICOMP IECOM ITAPE JPLT JPRT INAME ISTAGE IAUTO

HYDROGRAPH BATA IHYDG IUHG TAREA SNAP RATIO ISNOW TRSDA TRSPC ISAME LOCAL 3.21 0.00 0.00 0.000

PRECIP DATA SPFE PHS R6 R12 R24 R48 R72 R96 0.00 22.30 87.00 100.00 111.00 118.00 0.00 0.00 TRSPC COMPUTED BY THE PROGRAM IS .860

> LOSS DATA ERAIN STRKS RTIOK STRTL ALSMX LROPT STRKR DLTKR RTIOL CNSTL RTIMP 0 0.00 000 1.00 0.00 0.00 1.00 1.00 .05 0.00 0.00

> > UNIT HYDROGRAPH DATA TP= 3.75 CP= .45

RECESSION DATA

STRT0= -1.50 QRCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 68 END-OF-PERIOD ORDINATES, LAG= 3.75 HOURS, CP= .45 VOL= 1.00 .40. 81. 129. 177. 217. 243. 251. 240. 11. 187. 203. 172. 158. 145. 134. 123. 113. 104. 88. 81. 74. 68. 63. 58. 38. 35. 32. 30. 27. 25. 17. 15. 14. 13. 7. 7. 6. 4.

END-OF-PERIOD FLOW MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q

SUM 22.63 20.25 2.38 84368. (575.)(514.)(60.)(2389.04)

HYDROGRAPH ROUTING

POCONO SUMMIT OUTFLOW HYDROGRAPH

ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO PSO ROUTING DATA QLOSS CLOSS AVG IRES ISAME IOPT IPMP LSTR 0.000 0.00 NSTPS NSTDL LAG ANSKK TSK STORA ISPRAT 0 0.000 0.000 0.000 -1825.

CAPACITY= 1265. ELEVATION= 1817. 1825. 1832.

> CREL SPUID COOM EXPU ELEVL COOL CAREA EXPL 3.3 1.5 0.0

> > DAN DATA EXPD DANUID TOPEL COGD 1824.5 0.0 0.0

CREST LENGTH 500. 1000. AT OR BELOW ELEVATION 1826.5 1830.0

SUB-AREA RUNOFF COMPUTATION

STILLWATER LAKE INFLOW HYDROGRAPH

IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO ISTAG ICOMP SHI

HYDROGRAPH BATA IHYDG IUNG TAREA SHAP TRSDA TRSPC RATIO ISNOU 6.56 0.00 75.40 0.00 0.000

PRECIP DATA SPFF PHS PA R12 R24 R48 R72 0.00 22.30 87.00 100.00 111.00 118.00 0.00 0.00 TRSPC COMPUTED BY THE PROGRAM IS .860

> LOSS DATA ERAIN STRKS RTIOK STRTL CNSTL ALSHX 0.00 0.00 1.00 1.00 .05 0.00 LROPT STRKR DLTKR RTIO RTIMP 0.00 0.00 1.00

> > UNIT HYDROGRAPH DATA TP= 3.04 CP= .45 NTA= 0

RECESSION DATA STRT0= -1.50 ORCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 55 END-OF-PERIOD ORDINATES, LAG: 3.05 HOURS, CP= .45 VOL: 1.00 36. 578. 132. 268. 418. 544. 620. 626. 521. 469. 309. 278. 422. 343. 380. 250. 225. 203. 183. 165. 108. 148. 134. 120. 98. 88. 79. 71. 64. 58. 42. 38. 23. 52. 47. 34. 31. 28. 25. 20. 18. 16. 15. 13. 12. 11. 10. 5. 5.

END-OF-PERIOD FLOW MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP @ HO.DA HR.HN PERIOD RAIN EXCS LOSS COMP O

SUN 22.63 20.25 2.38 173605. (575.)(514.)(60.)(4915.95)

COMBINE HYDROGRAPHS

TOTAL INFLOW HYDROGRAPH FOR STILLWATER LAKE

ISTAG ICOMP JPLT JPRT INAME ISTAGE IAUTO IECON ITAPE

HYBROGRAPH ROUTING

STILLWATER LAKE OUTFLOW HYDROGRAPH

ISTAG IECON ITAPE ICOMP JPLT JPRT INAME ISTAGE IAUTO SNO ROUTING DATA QLOSS CLOSS AVE LSTR IRES ISAME IOPT IPMP 0.00 0.000 NSTPS NSTDL LAG AMSKK TSK STORA ISPRAT 0.000 0.000 0.000

CAPACITY= 1335. 9670. ELEVATION= 1802. 1810. 1820-

> CREL SPUID COOM EXPU ELEVL COOL CAREA EXPL 1810.0 40.0 2.7 1.5 0.0 0.0 0.0 0.0

> > DAN BATA EXPD DAMUID TOPEL COOD 1811.5 0.0 0.0

CREST LENGTH 140. 1000. AT OR BELOW 1811.5 ELEVATION 1815.0

SUB-AREA RUNOFF COMPUTATION

INFLOW FROM WORTH

ISTAG ICOMP IECON ITAPE JPLT JPRT IMME ISTAGE IAUTO

SHAP TRSDA TRSPC 0.00 75.40 0.00 4.27

PRECIP DATA SPFE PMS R6 R12 R24 R48 0.00 22.30 87.00 100.00 111.00 118.00 TRSPC COMPUTED BY THE PROGRAM IS .860

> LOSS BATA
> DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX
> 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00 0.00

> > UMIT HYDROGRAPH DATA
> > TP= 4.51 CP= .45 NTA= 0

RECESSION DATA
STRT0= -1.50 ORCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 81 END-OF-PERIOD ORDINATES, LAG= 34. 243. 121. 158. 112. 261. 130. 64. 32. 16. 8. 60. 30. 15. 52. 26. 14. 13. 12. 11.

O END-OF-PERIOD FLOW
HO.DA HR.HM PERIOD RAIM EXCS LOSS COMP Q HO.DA HR.HM PERIOD RAIM EXCS LOSS COMP Q

SUM 22.63 20.25 2.38 111642. (575.)(514.)(60.)(3161.35)

SUB-AREA RUNOFF COMPUTATION

INFLOW FROM SOUTH

ISTAG ICOMP IECOM ITAPE JPRT INAME ISTAGE IAUTO

RATIO ISNOW ISAME LOCAL 0.000 0 1 0 IUHG TAREA

PRECIP DATA

SPFE PMS R6 R12 R24 R48 R72

0.00 22.30 87.00 100.00 111.00 118.00 0.00

TRSPC COMPUTED BY THE PROGRAM IS .860

UNIT HYDROGRAPH DATA
TP= 4.38 CP= .45 NTA= 0

STRTO= -1.50 RECESSION DATA
STRTO= -1.50 RECESSION DATA
2.00

UNIT HYDROGRAPH BO END-OF-PERIOD ORDINATES, LAG-17. 116. 57. 28. 35. 108. 53. 101. 87. 43. 5. 124. 61. 30. 15. 7. 24. 13. 10.

O EMB-OF-PERIOD FLOW DA HR.HM PERIOD RAIN EXCS LOSS COMP Q MO.D MO.DA HR.AN PERIOD RAIN EXCS LOSS COMP G

SUM 22.43 20.25 2.38 53103. (575.)(514.)(40.)(1543.71)

CONDINE HYDROGRAPHS

LAKE MACHI TOTAL INFLOW HYDROGRAPH

IECON ITAPE JPLT JPRT THAME ISTAGE TAUTO

HYDROGRAPH ROUTING

LAKE MADMI OUTFLOW HYDROGRAPH

		-	-												
					ISTAG	ICOMP	IECO	DM 1	TAPE	JPLT	JPF	21 11	MAME	ISTAGE	IAUTO
					LNO	1		0	0	0		0	0		1
							1	ROUTIA	IG DAT	A					
			QLO	SS	CLOSS	AVE	IRI	ES I	SAME	IOPT	IP	MP.		LSTR	
					0.000	0.00		1	1	0		0		0	
					MSTPS	MSTDL	L	AG A	AMSKK	х	1	SK S	TORA	ISPRAT	
					1	0			0.000	0.000		00 -1	755.	-1	
STAGE	175	55.00	175	6.00	1	757.00	175	8.00	17	59.00	176	1.00	1	763.00	1765.00
FLOW		0.00	30	9.00		874.00	160	5.00	24	71.00	454	0.00	6	989.00	9768.00
CAPAC	ITY=	•		149	2.	2832.	442	2.							
ELEVAT	10M=	1742		175	5.	1760.	176	5.							
				CR	FL 9	DIMA	coeu	EXP	W EL	EVL	COOL	CARE		EXPL	
				1755		0.0	0.0	0.	0	0.0	0.0	0.0		0.0	
									DAM	DATA					

COOD EXPD DAMUID TOPEL 1755.4

650. 2500. CREST LENGTH 0. 350. 450. AT OR BELOW ELEVATION 1755.4 1755.7 1750.9 0. 350. 1760.0 1765.0

HYDROGRAPH ROUTING

CHANNEL ROUTING OF LAKE NAONI OUTFLOW

	ISTAG	ICOMP	IECOM	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
	LMD	1	0	0	0	0	1	0	0
			ROU	ING DATE	•				
QLOSS	CLOSS	AVG	IRES	ISAME	IOPT	IPMP		LSTR	
0.0	0.000	0.00	1	1	0	0		0	
	NSTPS	NSTDL	LAG	AMSKK	¥	TSK	STORA	ISPRAT	
	1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1) QN(2) QN(3) ELNYT ELMAX RLNTH SEL .0650 .0450 .0650 1720.0 1740.0 9750. .00800

CROSS SECTION COORDINATES--STA, ELEV, STA, ELEV.-ETC 0.00 1740.00 850.00 1725.00 973.00 1722.00 973.00 1720.00 1025.00 1720.00 1025.00 1722.00 1125.00 1725.00 2000.00 1740.00

STORAGE	0.00	11.78	23.65	46.59	88.14	148.59	234.77	349.48	492.70	664.45
	864.72	1093.51	1350.82	1636.65	1951.00	2293.88	2665.27	3065.19	3493.63	3950.59
OUTFLOW	0.00	156.92	486.58	1027.76	1945.95	3349.68	5381.23	8309.72	12292.42	17477.36
	24003.97	32004.55	41605.45	52928.04	66089.43	81202.97	98378.75	117723.90	139342.94	163337.97
STAGE	1720.00	1721.05	1722.11	1723.16	1724.21	1725.26	1726.32	1727.37	1728.42	1729.47
	1730.53	1731.58	1732.63	1733.68	1734.74	1735.79	1736.84	1737.89	1738.95	1740.00
FLOW	0.00	156.92	486.58	1027.76	1945.95	3349.68	5381.23	8309.72	12292.42	17477.36
	24003.97	32004.55	41605.45	52928.04	66089.43	81202.97	98378.75	117723.90	139342.94	163337.97

SUM 22.63 20.25 2.38 1418356. (575.)(514.)(60.)(40163.37)

SUB-AREA RUNDFF COMPUTATION

*
HYDROGRAFH
≋
2
5
æ
=
-
3
105
_
INF
2
_
Œ
AREA
Œ
Æ
-
W.
=
2
<u>.</u>
2
0
9
UNCONTROLLED
-
w
AKE
Œ
-
0
OCONO
0
2
Š
-

																COMP 0
0							1199.	1806.	1262.	616.	430.	301.	210.	147.	103.	r088
IAUT	LUCAL		RTIMP 0.00			VOL= .96	1032.	1869.	1308.	639.	446.	312.	218.	152.	106.	EXCS
INANE ISTAGE	ISANE L	896 0.00	ALSHX 0.00				898	904.	356.	662.	462.	323.	226.	158.	110.	RAIN
	I MONSI	R72 0.00	CMSTL .05		2.00	8.84 HOURS, CP= .45		-	-							PERIOD
JPR	RATIO I	R48	STRTL 1.00	A TA = 0	RTIOR= 2.00	8.84 HOU	710.	1895.	1405.	686.	479.	335.	234.	163.	114.	H. A.
<u> </u>	Ue	± 0	A RT 10K	PH DATA	DATA 05	LAG=	561.	1858.	1457.	711.	497.	347.	243.	169.	118.	D FLOW
ITAP	HYDROGRAP DATA TRSDA TRSP 75.40 0.0	PRECIP DATA R12 R24 100.00 111.00	LOSS DATA STRKS 0.00	UNIT HYDROGRAPH DATA 8.77 CP= .45 NT	RECESSION DATA	HYDROGRAPH100 END-DF-PERIOD ORDINATES.	421.	1797.	1510.	737.	515.	360.	251.	176.	123.	END-OF-PERIOD FLOW COMP 0 MO.1
F IECON	SNAP T 0.00 7	R6 87.00 100	ERAIN 0.00		-1.50 B	ERIOD OR	294.	715.	565.	764.	534.	373.	261.	182.	127.	END-
ICOM	TAREA 55.94		1.00	1P=	STRT@= -1	END-0F-P	. 2									EXCS LO
ISTA0 PLI	TUNG TO	.860	DLTKR 0.00		STR	SAPH100	181.	1613.	1622.	792.	553.	387.	270.	189.	132.	RAIN E
	IHYD6	SPFI 0.00 Trspc computed by the program is	STRKE 0.00					1493.	1681.	821.	573.	401.	280.	196.	137.	PERIOD
	a	BY THE I	LROPT			TIND	23.	1355.	1743.	851.	594.	415.	290.	203.	142.	HR.AN P
		COMPUTED														MO.DA
		TRSPC C														

TOPEL 1650.0

2
Z
-
=
=
ROUT
Œ
I
A
~
90
0
DE.
=
I

POCONO LAKE OUTFLOW HYDROGRAPH

			1650.00	44800.00			
IAUTO			1648.00	44800.00			
IE ISTAGE	CLOSS AVG IRES ISANE IOPT IPMP LSTR 0.000 0.00 1 1 0 0 0	LAG AMSKK X TSK STORA ISPRAT 0 0.000 0.000 0.000 -16331	1646.00	36153.00			EXPL 0.0
PRT INAM 0	989	TSK STOR 000 -1633	1644.00	27745.00			COOL CAREA
UPLT J	1 1001 0	× 000.					
ITAPE 0	ISANE	O.000	1640.00	13399.00			COGU EXPU ELEVL
IECON	IRES		1638.00	7843.00	34760.	1660.	0.0 EX
1 1COMP	S AV6	NSTPS NSTDL	1636.00	3511.00	10100.	1640.	SPUID 0.0
ISTA	00.0 0.00 0.0 0.00	NSTP	1634.00	638.00	5402.	1633.	CRE1
	16		1633.00 16	0.00	•	1593.	
					CAPACITY=	ELEVATION=	
			STAGE	FLOW	5	ELE	

PLAN 1 - No Upstream Dam Failures

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC NETERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO 1		RATIOS APPLIED TO FLOWS RATIO 3 1.00
HYDROGRAPH AT	LLI	3.39 8.78)	1,	2385. 67.53)(3339. 94.54)(4769. 135.05)(
ROUTED TO	LLO (3.39 8.78)	1 (2364. 66.95)(3318. 93.97)(4740. 134.24)(
HYDROGRAPH AT	PSI (3.21 8.31)	1 (1851. 52.40)(2591. 73.37)(3701. 104.81)(
ROUTED TO	PSO (3.21 8.31)	1 (1777. 50.33)(2523. 71.46)(3636. 102.95)(
HYDROGRAPH AT	SWI	6.56 16.99)	1	4369. 123.73)(6117. 173.22)(8739. 247.46)(
3 COMBINED	SUTI	13.16 34.08)	1,	8263. 233.99)(11720. 331.86)(16829. 476.56)(
ROUTED TO	SUO	13.16 34.08)	1 (4978. 140.95)(8357. 236.65)(13681. 387.41)(
HYDROGRAPH AT	LNS (2.03 5.26)	1,	1044. 29.57)(1462. 41.40)(2089. 59.15)(
HYDROGRAPH AT	LNN (4.27 11.06)	1 (2160. 61.16)(3024. 85.62)(4319. 122.31)(
3 COMBINED	LNT (19.46 50.40)	1,	7570. 214.35)(12407. 351.32)(19862. 562.43)(
ROUTED TO		19.46 50.40)	1 (7419. 210.09)(12186. 345.07)(19750. 559.25)(
ROUTED TO	LND (19.46 50.40)	1,	7360. 208.41)(12071. 341.82)(19591. 554.77)(
HYDROGRAPH AT	PLI (55.94 144.88)	1,	16713. 473.26)(23398. 662.56)(33426. 946.52)(
2 COMBINED		75.40 195.29)			35042. 992.27)(
ROUTED TO	PLO (75.40 195.29)	1,	19916. 563.96)(28564. 808.85)(42190. 1194.68)(

		TIME OF FAILURE HOURS	000		TINE OF FAILURE HOURS	00.00
	10P OF DAN 1883.00 399.	TIME OF MAX OUTFLOW HOURS	43.00 43.00 43.00	1826.50 1826.50 440. 121.	TINE OF NAX OUTFLOW HOURS	44.00
NLYSIS		DURATION OVER TOP HOURS	4.00 7.00 9.00 NLYSIS		DURATION OVER TOP HOURS	24.00 28.00 31.00
SUMMARY OF DAM SAFETY ANALYSIS LYNCHWOOD LAKE	SPILLWAY CREST 1881.00 285. 0.	MAXINUM OUTFLOW CFS	416. 2364. 4.434. 3318. 7.453. 4740. 9.4000ND SUMMIT	SPILLWAY CREST 1825.00 215.	MAXIMUM OUTFLOW CFS	1777. 2523. 3636.
SUNNARY OF BAN	1.00 1.00 285. 0.	MAXIMUM Storage AC-FT	416. 434. 453. SUMMARY OF DAN POCOND SUMMIT		MAXINUM STORAGE AC-FT	580. 617. 665.
<u>ខ</u> ្	INITIAL VALUE 1881.00 285. 0.	MAXIMUM DEPTH OVER DAM	.28 .60 .94 .8u	INITIAL VALUE 1825.00 215. 0.	MAXIMUM DEPTH OVER DAN	1.18
PLAN 1	ELEVATION Storage Outflow	HAXIMUM RESERVOIR N.S.ELEV	1883.28 1883.60 1883.94	ELEVATION Storage Outflow	MAXIMUM RESERVOIR U.S.ELEV	1827.43 1827.68 1828.00
		RATIO OF PMF	.50		RATIO OF PMF	.50

SIS	10P OF DAM 1811.50 2585. 298.	DURATION TIME OF TIME OF OVER TOP MAX OUTFLOW FAILURE HOURS HOURS	43.00 47.00 0.00 46.50 46.00 0.00 49.50 45.00 0.00	1755.40 auxiliary spillway 1755.40 crest; embankment 1599. low point, 1758.9 124.	DURATION TIME OF TIME OF OVER TOP MAX OUTFLOW FAILURE HOURS HOURS	65.50 46.00 0.00
SUMMARY OF DAM SAFETY ANALYSIS STILLMATER LAKE	SPILLWAY CREST 1810.00 1335. 0.	MAXIMUM OUTFLOW CFS	4503, 4978. 43. 5111, 8357. 46. 5818, 13681. 49. SUNNARY OF DAN SAFETY ANALYSIS	SPILLWAY CREST 1755.00 1492.	MAXIMUM OUTFLOW CFS	7419.
SUNNARY OF DAN STILLMATER LAKE	(AL VALUE 310.00 1335. 0.	MAXIMUM STORAGE AC-FT	4503. 5111. 5818. SUMMARY OF D	IAL VALUE 755.00 1492.	MAXINUM STORAGE AC-FT	2345.
ST.	INITIAL VALUE 1810.00 1335. 0.	NAXINUN DEPTH OVER DAM	2.30 3.03 3.88 Sun	INITIAL VALUE 1755.00 1492. 0.	MAXINUM DEPTH OVER DAM	3.71
1	ELEVATION STORAGE OUTFLOW	MAXINUM RESERVOIR U.S.ELEV	1813.80 1814.53 1815.38	ELEVATION STORAGE OUTFLOU	MAXIMUM RESERVOIR U.S.ELEV	1758.18
PLAN 1		RATIO OF PMF	.50		RATIO OF PMF	.50

-
Z
3
E

			TINE OF FAILURE HOURS	0000
		10P OF DAM 1650.00 22430. 44800.	TIME OF MAX OUTFLOW HOURS	51.50 51.50 50.50
TIME	47.50 46.50 45.50 SIS		DURATION OVER TOP HOURS	0.00
DOWNSTREAM OF LAKE NAOMI NAXINUM MAXIMUM FLOW, CFS STAGE, FT	0 7360, 1727.0 4 0 12071, 1728.4 4 0 19591, 1729.8 4 SUHHARY OF DAM SAFETY ANALYSIS	SPILLUMY CREST 1633.00 5402.	MAXIMUM DOUTFLOW	19916. 28564. 42190.
DOWNSTREAM O NAXINUN FLOU, CFS	50 7360. 70 12071. 30 19591. SUHHARY OF BAN POCOND DAM	VALUE 00 2. 0.	MAXINUM STORAGE AC-FT	15272. 19220.
RAT10	.50 .70 1,00 SUMI	INITIAL VALUE 1633.00 5402. 0.	MAXINUM DEPTH OVER DAM	0000
-		ELEVATION STORAGE	RESERVOIR U.S.ELEV	1641.82 1644.19 1647.40
PLAN			RATIO OF PMF	.50

MFB 6/18/19 Pocono Dam
Hydrology / Hydraulics
PLAN 2 - Upstream Dam Failures

34. 20 OF 22

PEAK FLOW AND STORAGE (END OF PERIOD) SUNMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE HILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIO 1 .50	RATIO 2 .70		O FLOWS
HYDROGRAPH AT	LLI	3.39	,	2385.	3339.	4769.	
	(8.78)	(67.53)(94.54)(135.05)(
ROUTED TO Failure assum	LLO	3.39	1	3702.	4509.	5712.	
Failure assum	ed (8.78)	(104.83)(127.68)(161.75)(
HYDROGRAPH AT	PSI	3.21	1	1851.	2591.	3701.	
1	(8.31)	(52.40)(73.37)(104.81)(
ROUTED TO	PSO	3.21	1	1777.	2885.	4014. 113.67)(
Failure assum	ed (8.31)	(50.33)(81.70)(113.67)(
HYDROGRAPH AT	SWI	6.56	1	4369.	6117.	8739.	
	1	16.99)	(123.73)(173.22)(247.46)(
3 COMBINED	SUTI	13.16	1	9900.	12800.	18281.	
	(34.08)	(280.32)(362.47)(517.66)(
ROUTED TO No failure as:	SWO	13.16	1	5326.	9009.	14481.	
No failure as	sumed (34.08)	(150.82)(255.10)(410.04)(
HYDROGRAPH AT	LNS	2.03 5.26)	1	1044.	1462.	2089.	
	(5.26)	(29.57)(41.40)(59.15)(
HYDROGRAPH AT	LNN	4.27	1	2160.	3024.	4319.	
	(11.06)	(61.16)(85.62)(122.31)(
3 COMBINED	LNT	19.46 50.40)	1	8060.	13128.	20669.	
	(50.40)	(228.23)(371.76)(585.29)(
ROUTED TO Failure assum	LNO	19.46	1	8208.	13208.	20761.	
Failure assum	ed (50.40)	(232.43)(374.02)(587.88)(
ROUTED TO	LND	19.46	1	8141.	13111.	20587.	
	(50.40)	(230.53)(371.25)(582.95)(
HYDROGRAPH AT	PLI	55.94 144.88)	1	16713.	23398.	33426.	
						946.521(
2 COMBINED	PLT	75.40 195.29)	1	24798.	36015.	51752.	
	. (195.29)	(702.20)(1019.83)(1465.45)(
ROUTED TO No failure as	PLO	75.40	1	20451.	29547.	43221.	
No failure as	sumed (195.29)	(579.10)(836.67)(1223.90)(

MFB 6/18/79 Pocono Dam
Rev 7/25/79 Hydrology / Hydraulics

sH. 21 of 22

DI	AN	2

SUMMARY OF DAM SAFETY ANALYSIS LYNCHWOOD LAKE - Failure Assumed

	ELEVATION Storage Outflow			SPILLWAY "CR 1881.00 285. 0.		OF-BAH Emerge 881.50 Crest 314. 22.	ency Spillway
RATIO OF PMF	MAXIMUM RESERVOIR U.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP - HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.50 .70 1.00	1883.07 1883.03 1883.18	1.57 1.53 1.68	403. 401. 410. HMARY OF D	3818. 4705. 6031. AM SAFETY AND	11.92 13.17 14.42 ALYSIS	43.17 42.42 42.25	41.50 40.50 40.00
				IT - Failur			
	ELEVATION STORAGE OUTFLOW	INITIAL 1825 2		SPILLWAY CR 1825.00 215. 0.	70.00	OF DAM 826.50 440. 121.	
RATIO OF	MAXIMUM RESERVOIR	MAXIMUM DEPTH	MAXIMUM STORAGE	MAXIMUM OUTFLOW	DURATION OVER TOP	TIME OF	TIME OF FAILURE
PMF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
.50 .70 1.00	1827.43 1827.58 1827.74	.93 1.08 1.24	580. 601. 626. MMARY OF D	1777. 2885. 4018. AM SAFETY AN	24.00 8.00 9.00	44.50 44.50 44.25	0.00 42.50 41.50
				AKE - No Fa		med	
	ELEVATION Storage Outflow	INITIAL 1810 13		\$PILLWAY CRI 1810.00 1335.		OF DAM 811.50 2585. 298.	
RATIO OF PF	MAXIMUM RESERVOIR U.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.50 .70 1.00	1813.89 1814.65 1815.49	2.39 3.15 3.99	4576. 5210. 5908.	5326. 9009. 14481.	42.50 43.00 46.50	46.50 46.00 45.00	0.00 0.00 0.00

PLAN	2
PLAN	4

SUMMARY OF DAM SAFETY ANALYSIS

	LAKE NAOMI	DAM - Failure As	sumed	
	INITIAL VALUE	SPILLWAY CREST	TOP-OF-BAN	auxiliary spillway
ELEVATION	1755.00	1755.00	1755.40	crest; embankment
STORAGE	1492.	1492.	1599.	low point, 1758.9
OUTFLOW	0.	0.	124.	Zon Posito, Zironi

RATIO	MAXIMUM	MUMIXAM	MUNIXAM	MAXIMUM	DURATION	TIME OF	TIME OF
OF	RESERVOR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX DUTFLOW	FAILURE
PHF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
.50	1758.06	2.66	2311.	8208.	19.50	47.00	44.00
.70	1758.98	3.58	2560.	13208.	22.50	46.00	43.00
1.00	1759.84	4.44	2790.	20761.	25.50	45.00	41.50

	LND	HOLTATE	1 9	PLAN
TINE			TREAM OF	DOWNS
HOURS	FT	STAGE	LOW, CFS	RATIO F
47.50	7.3	172	8141.	.50
46.50	3.6		13111.	.70
45.50	0.0	173	20587.	1.00
IS	ANAL YS	SAFETY	Y OF BAM	SUMMAR
sumed	ure As	No Fail	DAM -	POCON

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1633.00	1633.00	1650.00
STORAGE	5402.	5402.	22430.
OUTFLOW	0.	0.	44800.

RATIO	MUMIXAN	MUMIXAM	MUNIXAN	MUNIXAM	DURATION	TIME OF	TIME OF
OF	RESERVOIR	DEPTH	STORAGE	OUTFLOW	OVER TOP	MAX OUTFLOW	FAILURE
PHF	W.S.ELEV	OVER DAM	AC-FT	CFS	HOURS	HOURS	HOURS
.50	1641.97	0.00	12524.	20451.	0.00	51.50	0.00
.70	1644.43	0.00	15560.	29547.	0.00	51.50	0.00
1.00	1647.63	0.00	19514.	43221.	0.00	51.00	0.00

APPENDIX

D

VALVE USED TO CONTROL MINIMUM FLOW RELEASE.

TYPICAL OUTLET CONTROL VALVE.

VIEW OF SPILLWAY. NOTE MINIMUM FLOW DISCHARGE OUTLET ON THE LEFT OF PHOTOGRAPH.

OVERVIEW OF UPSTREAM SIDE OF SPILLWAY.

OVERVIEW OF DOWNSTREAM SIDE OF SPILLWAY.

OVERVIEW OF RIGHT WALL OF SPILLWAY. NOTE STAFF GAGE ON WALL.

OVERVIEW OF SPILLWAY DISCHARGE CHANNEL.

LOOKING AT ROADWAY ACROSS SPILLWAY FROM THE RIGHT ABUTMENT.

DIAGONAL CRACKING OF LEFT SPILLWAY WALL.

SPALLING AND GENERAL CONCRETE DETERIORATION OF LEFT SPILLWAY WALL AT STILLING POOL ELEVATION.

EMBANKMENT SEEPAGE DISCHARGING AROUND END OF LEFT SPILLWAY WALL.

TYPICAL CONCRETE REPAIR WORK PERFORMED ON DAM.

PHOTOGRAPH NO. 12

OVERVIEW OF RIGHT SPILLWAY ABUTMENT LOOKING UPSTREAM.

NOTE DETERIORATION OF BRIDGE ABUTMENT. REFER TO PHOTOGRAPH NO. 13 FOR LOCATION.

OVERVIEW OF LEFT ABUTMENT EMBANKMENT SLOPE.

APPENDIX

E

Training Wall Discharge thru valve in low water periods shall be sufficient to pass a 4 depth of water over weir PLAN Staff gage furnished and installed by owner. Pipe cut off flush with concrete tace -10 Inside Diame & of pipe SECTION THRU SLUIGE ALPIER ADJACENT TO RIGHT ABUTAINT

.

COLUMN A DENOTES
COLUMN & DENOTE
SPOON & DRIVE HA
BROON SIZE AS INI
CASING SIZE ...
CORE BIT . NX & B

NOTE:

COLUMN A DENOTES SAMPLE BLOWS & CORE RECOVERY
COLUMN B DENOTES CASING BLOWS
SPOON & DRIVE HAMMER - 300 LBS., DROP - 20"
SPOON SIZE AS INDICATED BELOW COLUMN A OR TO RIGHT OF HOLE
CASING SIZE ... COLUMN B
CORE BIT - NX & BX

LOGS OF BORINGS POCONO DAM

NAT.I.D.NO.PA.00781

MONROE COUNTY

DATA OBTAINED FROM JUSTIN AND COURTNEY, CONSULTING ENGINEERS, PHILA., PA., DRAWING NO.2, DATED 11/5/55

PLATE 7

2

AD-A078 875

WOODWARD-CLYDE CONSULTANTS PLYMOUTH MEETING PA
NATIONAL DAM INSPECTION PROGRAM. POCONO LAKE DAM (NDS I.D. NUMB--ETC(U)
JUL 79 J BOSCHUK, J H FREDERICK
DACW31-79-C-0017
NL

UNCLASSIFIED

DATE FILMED.

APPENDIX

F

SITE GEOLOGY POCONO DAM

Pocono Dam is located in the Pocono Plateau Section of the Appalachian Plateaus Physiographic Province. As shown on Plate F-1, the dam and surrounding region, as is much of northeastern Pennsylvania, are underlain by the Upper Devonian age Duncannon Member of the Catskill Formation, which is overlain by a partial mantle of Wisconsin age glacial drift. Immediately downstream of the dam is a limited exposure of sandy siltstone which strikes to the northwest and dips approximately 10 degrees to the southwest (downstream direction). A major set of high angle rock jointing strikes near east-west. Conditions favorable to seepage include the downstream direction of bedrock dip and joint pattern in addition to the nearness of bedrock to the ground surface and general character of glacial deposits.

