Empirical Methods in Finance Homework 6

Prof. Lars A. Lochstoer

February 11, 2020

Problem 1: ARCH, GARCH, and Realized Variance

From Kenneth French's web page, download the monthly and daily returns to the investment (CMA) factor from 19630701 to 20191231. CMA is the last factor in the FF 5-factor model. Using the monthly return data:

- 1. Estimate an ARMA(1,1) for the return series. Report the results. What is the estimated monthly persistence of expected returns to CMA? What is the half-life of the expected return series in months?
- 2. Estimate an ARCH(12) and a GARCH(1,1) process for the residuals from this ARMA(1,1). Report the results and plot the time series of the conditional variance from each model on the same plot. Are the estimated variance processes stationary?
- 3. Plot the absolute values of the normalized residuals, $\eta_t = \varepsilon_t/\sigma_t$, for each model on two separate plots. Using eyeball econometrics, do the models do a good job of accounting for clustering of volatility? Plot the autocorrelation functions of $|\eta_t|$.
- 4. Using the daily data on CMA, estimate monthly realized variance for month t as

$$RV_t = \sum_{d=1}^{N_t} r_{t,d}^2, \tag{1}$$

where $r_{t,d}^2$ is the squared return of day d in month t and where N_t is the number of days in month t. Plot the resulting monthly time series of RV_t .

- 5. What are the first order autocorrelations of RV_t and ε_t^2 ? What is the correlation between RV_t and ε_t^2 ? What is the correlation between RV_t and σ_t^2 from the GARCH model? What is the correlation between ε_t^2 and σ_t^2 from the GARCH model?
- 6. Run an ARMA(1,1) on RV_t assuming normally distributed errors (which strictly speaking can't be correct). Report the results. Let $v_t = E_{t-1}[RV_t]$ where the expectation is obtained from the estimated ARMA. What is the correlation between v_t and RV_t ? Plot on the same graph the time series of v_t and σ_t^2 from the GARCH.