Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski

WS 22/23

Kapitel 3: Vereinfachung Boolescher Funktionen

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$= x_3 \overline{x_2} x_0 + \overline{x_3} \overline{x_2} x_1 x_0 + \overline{x_3} \overline{x_2} x_1 x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$= x_3 \overline{x_2} x_0 + x_3 x_1 x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$= x_3 \overline{x_2} x_0 + x_3 x_1 x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_0 +$$

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$= x_3 \overline{x_2} x_0 + x_3 x_1 x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_0 + \overline{x_2} x_1 x_0$$

Resolutionsregel:
$$ab + a\overline{b} = a(b + \overline{b}) = a1 = a$$

Beispiel 1:
$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2x_1x_0$$

$$= (\overline{x_2} + x_2)x_1x_0$$

$$= x_1 x_0$$

Beispiel 2:

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$= x_3 \overline{x_2} x_0 + x_3 x_1 x_0 + \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_0 + \overline{x_2} x_1 x_0$$

$$= \overline{x_2} x_0 + x_3 x_1 x_0$$

Minimal polynom

- Polynom = DF = Sum of products (SoP)
- Sei M ein Polynom für $f: B^n \to B^1$
- M heißt Minimalpolynom (für f), wenn es kein Polynom geringerer Länge für f gibt.
- Die Länge eines Polynoms ist definiert als die Anzahl der Literale, die es enthält

Abschnitt 3.1

Karnaugh-Diagramme

- ► Implikanten
- Don't Cares

Karnaugh-Diagramme für n = 2

index	X ₁	Xo	f
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	0

Karnaugh-Diagramme für n = 3, 4

Blockbildung

- Blöcke müssen maximale Größe haben
- Die Blockgröße muss eine Zweierpotenz sein

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

$$f(x_3, x_2, x_1, x_0) = x_3 \overline{x_2} x_1 x_0 + x_3 \overline{x_2} \overline{x_1} x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x_2} x_1 x_0$$

Vereinfachte Form: $f = \overline{x_2}x_0 + x_3x_1x_0$

$$f = \overline{x_3} \, \overline{x_2} \, \overline{x_1} \, \overline{x_0} + x_3 \overline{x_2} \, \overline{x_1} \, \overline{x_0} + \overline{x_3} x_2 \overline{x_1} x_0 + x_3 x_2 \overline{x_1} x_0$$
$$+ \overline{x_3} \, x_2 x_1 x_0 + x_3 x_2 x_1 x_0 + \overline{x_3} \, \overline{x_2} x_1 \overline{x_0} + x_3 \overline{x_2} x_1 \overline{x_0}$$

Vereinfachte Form: $f = x_2 x_0 + \overline{x_2} \, \overline{x_0}$

Definition

Sei $f: B^n \to B$ eine Boolesche Funktion. Ein Term $M \neq 0$ heißt **Implikant** von f, kurz $M \leq f$, falls $M(x) \leq f(x)$ für alle $x \in B^n$ gilt, d.h.

$$M(x) = 1 \Rightarrow f(x) = 1 \quad \forall x \in B^n$$

Ein Implikant M von f heißt **Primimplikant** (von f), falls keine echte Verkürzung von M noch Implikant von f ist.

Ein Primimplikant M heißt **Kernimplikant** (von f), falls M in jedem Minimalpolynom von f vorkommt.

$$f = x_3 x_2 x_1 x_0 + \overline{x_3} x_2 x_1 x_0 + x_3 x_2 x_1 \overline{x_0} + \overline{x_3} x_2 \overline{x_1} x_0$$

$$f = x_3 x_2 x_1 x_0 + \overline{x_3} x_2 x_1 x_0 + x_3 x_2 x_1 \overline{x_0} + \overline{x_3} x_2 \overline{x_1} x_0$$

$$f = x_3 x_2 x_1 x_0 + \overline{x_3} x_2 x_1 x_0 + x_3 x_2 x_1 \overline{x_0} + \overline{x_3} x_2 \overline{x_1} x_0$$

Primimplikanten

Kernimplikanten

Ausnutzung von Don't Cares

X	Х3	<i>X</i> ₂	X ₁	Xo	f
0	0	0	0	0	0
1	0	0	0		1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	0 1 1 1	1	0	0
7	0	1	1 0 0 1	1 0 1 0 1 0	0
8	1	1 0	0	0	1
0 1 2 3 4 5 6 7 8 9	1	0		1	1
A B C D E F	0 0 0 0 0 1 1 1 1 1 1	0 0 0	0 1 1	0 1 0 1 0	0 1 0 0 0 1 0 0 1 1 D D D D D
В	1	0	1	1	D
С	1	1	0	0	D
D	1	1 1	0	1	D
Е	1	1	1 1	0	D
F	1	1	1	1	D

Ausnutzung von Don't Cares

Ergebnis:
$$f(x_3, x_2, x_1, x_0) = x_3 + \overline{x_1}x_0$$

Abschnitt 3.2

Quine-McCluskey-Verfahren

Quine-McCluskey-Verfahren

$$f = \overline{x_3} \, \overline{x_2} \, \overline{x_1} \, \overline{x_0} + \overline{x_3} \, x_2 \overline{x_1} \, \overline{x_0} + \overline{x_3} \, x_2 x_1 \overline{x_0} + x_3 \overline{x_2} x_1 x_0$$
$$+ x_3 x_2 \overline{x_1} \, \overline{x_0} + x_3 x_2 \overline{x_1} x_0 + x_3 x_2 x_1 \overline{x_0}$$

Minterme gemäß Anzahl der Negationen:

Gruppe	Implikant	Index (dezimal)
1	$x_3\overline{x_2}x_1x_0$	11
	$x_3x_2\overline{x_1}x_0$	13
	$x_3x_2x_1\overline{x_0}$	14
2	$\overline{x_3} x_2 x_1 \overline{x_0}$	6
	$x_3x_2\overline{x_1}\overline{x_0}$	12
3	$\overline{x_3} x_2 \overline{x_1} \overline{x_0}$	4
4	$\overline{x_3} \overline{x_2} \overline{x_1} \overline{x_0}$	0

Quine-McCluskey-Verfahren

Nach erster Anwendung der Resolutionsregel:

Gruppe	Implikant	Index (dezimal)
1	$x_3\overline{x_2}x_1x_0$	11
	$x_2x_1\overline{x_0}$	6,14
	$x_3x_2\overline{x_1}$	12,13
	$x_3x_2\overline{x_0}$	12,14
2	$\overline{x_3}x_2\overline{x_0}$	4,6
	$x_2\overline{x_1}\overline{x_0}$	4,12
3	$\overline{x_3} \overline{x_1} \overline{x_0}$	0,4

Alle Primimplikanten:

Gruppe	Implikant	Index (dezimal)
1	$x_3\overline{x_2}x_1x_0$	11
	$x_3x_2\overline{x_1}$	12,13
	$x_2\overline{x_0}$	4,6,12,14
3	$\overline{x_3} \overline{x_1} \overline{x_0}$	0,4

Quine-McCluskey-Verfahren

Implikationsmatrix:

	Minterm	0	4	6	11	12	13	14
Primimplikant								
$x_3\overline{x_2}x_1x_0$		0	0	0	1	0	0	0
$x_3x_2\overline{x_1}$		0	0	0	0	1	1	0
$x_2\overline{x_0}$		0	1	1	0	1	0	1
$\overline{x_3} \overline{x_1} \overline{x_0}$		1	1	0		0	0	0

Kostengünstigste Darstellung:

$$f = x_3 \overline{x_2} x_1 x_0 + x_3 x_2 \overline{x_1} + x_2 \overline{x_0} + \overline{x_3} \overline{x_1} \overline{x_0}$$

Anderes Beispiel:

$$f = x_{3}\overline{x_{2}}x_{1}x_{0} + x_{3}\overline{x_{2}}x_{1}\overline{x_{0}} + x_{3}\overline{x_{2}}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}x_{2}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}x_{2}x_{1}x_{0} + \overline{x_{3}}x_{2}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}x_{1}x_{0} + \overline{x_{3}}\overline{x_{2}}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}\overline{x_{1}}\overline{x_{0}} + \overline{x_{3}}\overline{x_{2}}\overline{x_{1}}\overline{x_{0}}$$

Minterme gemäß Anzahl der Negationen:

Gruppe	Implikant	Index (dezimal)
1	$\overline{x_3}x_2x_1x_0$	7
	$x_3\overline{x_2}x_1x_0$	11
2	$\overline{x_3} \overline{x_2} x_1 x_0$	3
	$\overline{x_3}x_2\overline{x_1}x_0$	5
	$\overline{x_3} x_2 x_1 \overline{x_0}$	6
	$x_3\overline{x_2}x_1\overline{x_0}$	10
3	$\overline{x_3}x_2\overline{x_1}\overline{x_0}$	4
	$x_3\overline{x_2}\overline{x_1}\overline{x_0}$	8
4	$\overline{x_3} \overline{x_2} \overline{x_1} \overline{x_0}$	0

Nach erster Anwendung der Resolutionsregel:

Gruppe	Implikant	Index (dezimal)
1	$\overline{x_3}x_1x_0$	3,7
	$\overline{x_3}x_2x_0$	5,7
	$\overline{x_3}x_2x_1$	6,7
	$\overline{x_2}x_1x_0$	3,11
	$x_3\overline{x_2}x_1$	10,11
2	$\overline{x_3}x_2\overline{x_1}$	4,5
	$\overline{x_3}x_2\overline{x_0}$	4,6
	$x_3\overline{x_2}\overline{x_0}$	8,10
3	$\overline{x_3}\overline{x_1}\overline{x_0}$	0,4
	$\overline{x_2} \overline{x_1} \overline{x_0}$	0,8

Nach zweiter Anwendung der Resolutionsregel:

Gruppe	Implikant	Index (dezimal)
1	$\overline{x_3}x_1x_0$	3,7
	$\overline{x_3}x_2$	4,5,6,7
	$\overline{x_2}x_1x_0$	3,11
	$x_3\overline{x_2}x_1$	10,11
2	$x_3\overline{x_2}\overline{x_0}$	8,10
3	$\overline{x_3} \overline{x_1} \overline{x_0}$	0,4
	$\overline{x_2} \overline{x_1} \overline{x_0}$	0,8

Keine weitere Anwendung mehr möglich

Implikationsmatrix:

Primimplikant \ Minterm	0	3	4	5	6	7	8	10	11
$\overline{x_3}x_1x_0$	0	1	0	0	0	1	0	0	0
$\overline{x_3}x_2$	0	0	1	1	1	1	0	0	0
$\overline{x_2}x_1x_0$	0	1	0	0	0	0	0	0	1
$x_3\overline{x_2}x_1$	0	0	0	0	0	0	0	1	1
$x_3\overline{x_2}\ \overline{x_0}$	0	0	0	0	0	0	1	1	0
$\overline{x_3} \overline{x_1} \overline{x_0}$	1	0	1	0	0	0	0	0	0
$\overline{x_2} \overline{x_1} \overline{x_0}$	1	0	0	0	0	0	1	0	0

Kostengünstigste Darstellung: Hier nicht eindeutig!

Kernimplikant: $\overline{x_3}x_2$

Primimplikant \ Minterm	0	3	4	5	6	7	8	10	11
$\overline{x_3}x_1x_0$	0	1	0	0	0	1	0	0	0
$\overline{x_3}x_2$	0	0	1	1	1	1	0	0	0
$\overline{x_2}x_1x_0$	0	1	0	0	0	0	0	0	1
$x_3\overline{x_2}x_1$	0	0	0	0	0	0	0	1	1
$x_3\overline{x_2}\ \overline{x_0}$	0	0	0	0	0	0	1	1	0
$\overline{x_3} \overline{x_1} \overline{x_0}$	1	0	1	0	0	0	0	0	0
$\overline{x_2} \overline{x_1} \overline{x_0}$	1	0	0	0	0	0	1	0	0

$$f_1 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}x_1 + \overline{x_2}\overline{x_1}\overline{x_0}$$

$$f_2 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}\,\overline{x_0} + \overline{x_2}\,\overline{x_1}\,\overline{x_0}$$

$$f_3 = \overline{x_3}x_2 + \overline{x_3}x_1x_0 + x_3\overline{x_2}x_1 + \overline{x_2}\overline{x_1}\overline{x_0}$$

$$f_4 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}\overline{x_0} + \overline{x_3}\overline{x_1}\overline{x_0}$$

	Minterm	0	3	8	10	11
Primimplikant						
$\overline{x_3}x_1x_0$		0	1	0	0	0
$\overline{x_2}x_1x_0$		0	1	0	0	1
$x_3\overline{x_2}x_1$		0	0	0	1	1
$x_3\overline{x_2}\overline{x_0}$		0	0	1	1	0
$\overline{x_3} \overline{x_1} \overline{x_0}$		1	0	0	0	0
$\overline{x_2} \overline{x_1} \overline{x_0}$		1	0	1	0	0

$$f_1 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}x_1 + \overline{x_2}\overline{x_1}\overline{x_0}$$

Wähle beliebigen Implikant mit neuer Information!

	Minterm	0	8	10
Primimplikant				
$\overline{x_3}x_1x_0$		0	0	0
$x_3\overline{x_2}x_1$		0	0	1
$x_3\overline{x_2}\overline{x_0}$		0	1	1
$\overline{x_3} \overline{x_1} \overline{x_0}$		1	0	0
$\overline{x_2} \overline{x_1} \overline{x_0}$		1	1	0

$$f_1 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + \overline{x_2}\overline{x_1}\overline{x_0} + x_3\overline{x_2}x_1$$

Wähle beliebigen Implikant mit neuer Information!

	Minterm	10
Primimplikant		
$x_3\overline{x_2}x_1$		1
$x_3\overline{x_2}\overline{x_0}$		1
$\overline{x_3} \overline{x_1} \overline{x_0}$		0

$$f_1 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + \overline{x_2}\overline{x_1}\overline{x_0} + x_3\overline{x_2}x_1$$

Wähle beliebigen Implikant mit neuer Information!

Mehrdeutigkeit am KV-Diagramm

Karnaugh-Diagramme für f

$$f_1 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}x_1 + \overline{x_2}\overline{x_1}\overline{x_0}$$

$$f_2 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}\,\overline{x_0} + \overline{x_2}\,\overline{x_1}\,\overline{x_0}$$

Karnaugh-Diagramme für f

$$f_3 = \overline{x_3}x_2 + \overline{x_3}x_1x_0 + x_3\overline{x_2}x_1 + \overline{x_2}\overline{x_1}\overline{x_0}$$

$$f_4 = \overline{x_3}x_2 + \overline{x_2}x_1x_0 + x_3\overline{x_2}\,\overline{x_0} + \overline{x_3}\,\overline{x_1}\,\overline{x_0}$$

Abschnitt 3.3

OBDDs und Vereinfachung

- Beispiele zu OBDDs
- Relevanz der Variablenordnung
- Vergleich zu Quine-McCluskey

Beispiel für OBDD (Variablenordnung $x_3 < x_2 < x_1 < x_0$)

Reduziertes OBDD (Variablenordnung $x_3 < x_2 < x_1 < x_0$)

Beispiel für OBDD (Variablenordnung $x_1 < x_0 < x_3 < x_2$)

Reduziertes OBDD (Variablenordnung $x_1 < x_0 < x_3 < x_2$)

Vergleich zu Quine-McCluskey

Verfahren	Resultat
Quine-McCluskey	$f = x_3 x_2 x_1 + \overline{x_3} x_2 x_0$
OBDD (Variablenordnung $x_3 < x_2 < x_1 < x_0$)	$f = x_3 x_2 x_1 + \overline{x_3} x_2 x_0$
OBDD (Variablenordnung $x_1 < x_0 < x_3 < x_2$)	$f = x_2 x_1 x_0 + x_3 x_2 x_1 \overline{x_0} + \overline{x_3} x_2 \overline{x_1} x_0$

→ Variablenordnung bei OBDDs relevant!

Zusammenfassung

- Warum minimieren?
 - Reduzierung von Eingangsvariablen und Schaltkreiselementen
 - Suche nach der optimalen Realisierung
- In diesem Kapitel vorgestellt:

Definitionen

- Minimalpolynom
- (Prim- / Kern-) Implikant

Verfahren

- Karnaugh-Veitch
- Quine-McCluskey
- (Reduzierte) OBDDs

