复习题

习题 1.1. 如果 \mathcal{F} 是 S 上的滤构成的一个 \subseteq -链,则 $\bigcup \mathcal{F}$ 是 S 上的滤。

习题 1.2. 如果 F 是非主超滤,则任意 $X \in F$ 都是无穷的。因此任何非主超滤必是弗雷歇滤的扩张。

习题 1.3. 如果 $F \in S$ 上的滤,而 $F' = \{X \subseteq S \mid S - X \notin F\}$,则 $F \subseteq F'$,并且 F = F' 当且仅当 F 是超滤。

习题 1.4. 假设 *X* ⊂ *S* , 证明:

- (1) 如果 $F \in S$ 上的滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的滤;
- (2) 如果 $F \neq S$ 上的超滤且 $X \in F$,则 $F \cap \mathcal{P}(X) \neq X$ 上的超滤;
- (3) 如果 $F \neq X$ 上的滤,则 F 能扩张为 S 上的超滤。

习题 1.5. 假设 S 是无穷的,则

- (1) 存在 S 上的超滤 F , 对任意 $X \in F$, |X| = |S| 。这样的滤称为 S 上的均匀超滤(uniform ultrafilter);
- (2) $\{F \mid F \neq S \text{ 上的均匀超滤}\} = \{F \mid F \neq S \text{ 上的非主超滤}\}$ 当且仅 当 $S \neq S$ 是可数的。

习题 1.6. 如果 S 是无穷的,F 是 S 上的超滤,则以下命题等价:

- (1) *F* 是非主滤;
- (2) $\{X \subseteq S \mid S X$ 是有穷的 $\}$ ⊆ F;
- (3) F 的元素都是无穷的。

习题 1.7. 如果 S 是无穷的,则 S 上的任何非主超滤都不是 $|S|^+$ 完全的。所以 ω 上的任何非主超滤都不是 σ -完全的。

习题 1.8. 如果 F 是 S 上的非主超滤,并且是 |S|-完全的,则 F 是均匀超滤。

习题 1.9. 如果 $F \in S$ 上的滤,并且令 $\mu = \sup \{ \kappa \mid F \in \kappa \in \mathbb{R} \}$,则 $\mu \in \mathbb{R}$ 正则基数,并且 $\mu \in \mathbb{R}$ 是 μ

习题 1.10. 假设 S 是无穷的,F 是 S 上的超滤。证明 F 是 κ -完全的当且仅当对任意 $\tau < \kappa$ 和任意划分 $\langle X_{\xi} \mid \xi < \tau \rangle$,总存在 $X_{\xi} \in F$ 。

习题 1.11. 如果 $\alpha > \aleph_0$ 是正则基数,并且 $f : \alpha \to \alpha$ 是函数,则集合 $C = \{\beta < \alpha \mid f[\beta] \subseteq \beta\}$ 是 α 上的无界闭集。

Jech 第三版(第7章)

习题 1.12. 如果 $U \in S$ 上的超滤,令 $X \subseteq S \times S$ 为满足以下性质的集合:

$${a \in S \mid \{b \in S \mid (a,b) \in X\} \in U\} \in U}.$$

则所有这样的 X 组成族 F 是 $S \times S$ 上超滤。

习题 1.13. 令 U 是 S 上的超滤, $f:S\to T$ 是函数,证明 $U'=\{X\subseteq T\mid f^{-1}[X]\in U\}$ 是 T 上的超滤。

习题 1.14. 令 A 为自然数 \mathbb{N} 上的线序 (\mathbb{N}, \leq_s) 组成的集合并且满足: 如果 (\mathbb{N}, \leq_s) 与 (\mathbb{N}, \leq_t) 都属于 A,则 (\mathbb{N}, \leq_s) 与 (\mathbb{N}, \leq_t) 不同构。证明 A 与 \mathbb{R} 等势。

习题 1.15. 令 X 是一个序数的集合。 $X^{<\omega}$ 是 X 中元素的有穷序列的集合。对任意 $s \in X^{<\omega}$,我们用 |s| 表示 s 的长度。定义 $X^{<\omega}$ 上的序 $<_l$ 为:

对任意
$$s, t \in X$$
, $s <_l t$ 当且仅当

- (1) 存在i, i < |s| 并且i < |t|, $s_i < t_i$, 并且对任意j < i, $s_j = t_j$; 或者
- (2) t 是 s 的真扩张,即,|s| < |t|,并且对任意 i < |s|, $s_i = t_i$,而且存在一个 j,|s| < j < |t|, $t_i \neq 0$ 。证明 $<_l$ 是一个线序。

习题 1.16. 令 λ 为一个无穷基数,记 $D = \lambda^{<\omega}$,定义 D 上的序为:对任意 $s,t\in D$,

$s \prec t$ 当且仅当 $s \cap \lambda <_l t \cap \lambda$,

其中,对任意有穷序列 $s = (s_0, \dots, s_{n-1})$,任意序数 β , $s \cap \beta = (s_0, \dots, s_{n-1}, \beta)$ 。 而 $<_l$ 是当 $X = \lambda \cup \{\lambda\}$ 时,1.15 中定义的 $X^{<\omega}$ 上的序。

- (1) 证明: 对任意 $s, t \in D$, $s \prec t$, 对任意 $\alpha < \lambda$,
- (2) 存在 $r \in D$ 使得: $s \prec r \cap \alpha \prec t$ 。 (2) 对任意 $\alpha < \lambda$,任意 D 中的区间 $(s,t) = \{r \in D \mid s \prec r \prec t\}$,证明: 存在 $Y \subseteq (s,t)$,使得 $(\alpha,<) \cong (Y,\prec)$ 。

习题 1.17. 假设 λ 是不可数的正则基数。 $S \subseteq \lambda$ 是平稳集。 $f: \lambda \to \lambda$ 在 S 上是退缩函数,即,对任意 $\alpha \in S$, $\alpha > 0$, $f(\alpha) < \alpha$ 。对任意 $\beta < \lambda$,定义 $S_{\beta} = \{\alpha \in S \mid f(\alpha) = \beta\}$ 。最后,令 $I = \{\beta < \lambda \mid S_{\beta}$ 是平稳集}。

- (1) 证明 I 非空, 即至少存在一个 β 使得 S_{β} 是平稳集。
- (2) 如果 $|I| \neq \lambda$,则存在一个无界闭集 C, f 限制在 $C \cap S$ 上是有界的。 Jech 第三版(第 8 章):

习题 1.18. 令 κ 是不可数正则基数,如果 $X \subseteq \kappa$ 不是平稳集,则存在退缩函数 $f: X \to \kappa$ 使得对任意 $\gamma < \kappa$,集合 $\{\alpha \in X \mid f(\alpha) < \gamma\}$ 是有界的。【提示:取 $C \cap X = \emptyset$,定义 $f(\alpha) = \sup(C \cap \alpha)$ 。】

习题 1.19. 如果 κ 是马洛基数,则 $\{\lambda < \kappa \mid \lambda \in \Lambda \}$ 是不可达基数} 是 κ 上的平稳集,因此 κ 是第 κ 个不可达基数。

习题 1.20. 如果 $\kappa = \min\{\lambda \mid \lambda \in \mathbb{A} \land \mathbb{A} \land \mathbb{A} \}$,证明 $\kappa \in \mathbb{A} \land \mathbb{A}$

习题 1.21. 如果 κ 是马洛基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是第 λ 个不可达基数} 在 κ 中无界。

习题 1.22. (1) 令 κ 是极限基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中 无界,则 κ 是强极限基数。因此,

- (2) 令 κ 是弱不可达基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中无界,则 κ 是强不可达基数。
- (3) 令 κ 是弱马洛基数,并且集合 { $\lambda < \kappa \mid \lambda$ 是强极限基数} 在 κ 中无界,则 κ 是马洛基数。

习题 1.23. 证明不存在 ω 上的正则的非主超滤。

Schindler

习题 1.24 (4.1)**.** 如果 $\alpha < \omega_1$ 是序数, 证明存在 $X \subseteq \mathbb{Q}$, $(\alpha, <) \cong (X, <_{\mathbb{Q}})$ 。【对 α 归纳。】

习题 1.25 (4.2). 令 κ 为基数, $y = \kappa \cup \{\alpha \mid |\alpha| = \kappa\}$,则 $y = \kappa^+$ 。