Vishaal Krishnan Sonia Martínez

Mechanical and Aerospace Enginering University of California, San Diego v6krishn@ucsd.edu

IFAC 2017 World Congress

Introduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future wor

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- Results and Simulation
- 6 Conclusions and future work

Introduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

Large-scale spatial networks

Why large-scale networks? Increasingly pervasive due to advances in low-cost sensing, communication and computational capabilities

Essential characteristics

Consist of a large number of nodes

Figure: The US Powergrid; Swarm of Kilobots; Sensor network for forest fire monitoring

- Nodes embedded in a physical (metric) space underlying geometry cannot be ignored
- Deployed to perform specific functions represented as dynamical processes on the network

Introduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

Network vulnerability and robustness

Structure affects Function

- Network topological structure (determined by geometry) → Function
- Network performance characterized by suitable metrics e.g. Diameter, Average shortest path length, λ_{max} and λ_2 of Laplacian, node connectivity, etc

Robustness

- Performance deteriorates when nodes fail or are attacked
- Some nodes more important than others need to identify critical nodes to be protected

Introduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

What are critical node clusters?

Definition (Critical node clusters)

Set of nodes of given cardinality, whose removal results in the maximum deterioration of a chosen metric

Selected Literature

- M. Ventresca and D. Aleman, "Efficiently identifying critical nodes in large complex networks", 2015
- X. Chen, "Critical nodes identification in complex systems", 2015

Drawbacks

- Identifying critical nodes formulated as a combinatorial optimization problem - Complexity ↑ with network size N
- But $N \to \infty$ is not necessarily bad, allows for simplifying approx. algorithms should exploit this
- Some performance metrics harder to handle, but more important
- For spatial networks, geometry of embedding is important may even help simplify the problem

troduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- 5 Results and Simulation
- 6 Conclusions and future work

tion Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future wor

In this work...

Spatial network described by a Random Geometric Graph

- Reasonable to describe large-scale network by spatial distribution of nodes
- Nearest spatial neighbor interactions as a starting point

- Dynamical process on network Laplacian Consensus
 Consensus (or agreement) is often crucial to achieving reliability in distributed systems
- Choice of performance metric λ_2 of graph Laplacian
 - Governs convergence rate (more on it later)
 - Algebraic connectivity measure of how well connected the graph is

Results and Simulation

In this work

Continuum abstraction of large-scale network

- Large-scale network viewed as a discretization of a continuous space (manifold) - N nodes sampled uniformly from $\Omega \subset \mathbb{R}^d$
- The nodes are indexed by their position $x \in \Omega \subset \mathbb{R}^d$
- Object of interest for consensus Laplacian matrix (L_N) of graph

In the limit $N \to \infty^1$

- $L_N \to \mathcal{L}$ a bounded operator on $L^{(*)}(\Omega)$
- As the communication radius $r \to 0$, $\mathcal{L} \to -\Delta$ the Laplace operator

¹Belkin, Niyogi

troduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future wo

In this work..

Definition (What are critical node clusters?)

Set of nodes of given cardinality, whose removal results in the **maximum deterioration of chosen metric**

Metric chosen: λ_2 of Laplacian L_N

Following the continuum approximation

- Critical node clusters are now subsets of Ω of given measure we consider balls of a given radius r
- The metric $\lambda_2(L_N)$ is now $\mu_2(-\Delta(\Omega))$ the second eigenvalue of the Laplace operator on Ω

roduction Modeling Framework **Problem Formulation** Approach Results and Simulation Conclusions and future work

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- **6** Results and Simulation
- 6 Conclusions and future work

Laplacian consensus in functional form

Continuous-time Laplacian consensus on $\phi^d = (\phi_1^d, \dots, \phi_N^d)$:

$$\frac{d}{dt}\phi^d = -L_N\phi^d$$

With the continuum approximation ($N \to \infty$ and $r \to 0$):

$$\partial_t \phi = -\mathcal{L}\phi = \Delta\phi$$

where $\phi_i^d = \phi(t, x_i)$.

Boundary condition In the discrete case, the sum is conserved:

$$\frac{d}{dt}\mathbf{1}_N^{\top}\phi^d = -\mathbf{1}_N^{\top}L_N\phi^d = 0$$

Equivalently, we need in the continuum case:

$$\frac{d}{dt} \int_{\Omega} \phi \ d\nu = \int_{\Omega} \partial_t \phi \ d\nu = \int_{\Omega} \Delta \phi \ d\nu = \int_{\partial \Omega} \nabla \phi \cdot \mathbf{n} \ dS = 0$$

This motivates a Neumann boundary condition $\nabla \phi \cdot \mathbf{n} = 0$ on $\partial \Omega$

Second eigenvalue μ_2 of $\mathcal{L} = -\Delta$

For the Neumann problem,

- $\mathcal{L} = -\Delta$ has an infinite sequence of eigenvalues $0 = \mu_1 \leq \mu_2 \leq \ldots \leq \mu_m \leq \ldots$
- The eigenfunctions $\{\psi_i\}_{i=1}^{\infty}$ form an orthonormal basis for $L^2(\Omega)$

The energy functional for consensus:

$$E = \frac{1}{2} \langle \phi, \mathcal{L} \phi \rangle_{L^2(\Omega)}$$

Convergence rate:

$$\frac{d}{dt}E \leq -2\mu_2 E$$

How to compute μ_2 ?

The Rayleigh quotient for operator $\mathcal{L} = -\Delta$

$$Q(\mathcal{L}) = \frac{\langle \psi, \mathcal{L}\psi \rangle_{L^2(\Omega)}}{\langle \psi, \psi \rangle_{L^2(\Omega)}} = \frac{\int_{\Omega} |\nabla \psi|^2 d\nu}{\int_{\Omega} |\psi|^2 d\nu}$$

The min-max theorem gives a variational characterization of eigenvalues

For the operator $\mathcal{L} = -\Delta$, we get:

$$\mu_2 = \inf_{\substack{\int_{\Omega} \psi d\nu = 0, \\ \int_{\Omega} |\psi|^2 d\nu = 1}} \int_{\Omega} |\nabla \psi|^2 d\nu$$

Problem formulation

Problem statement Identify a ball $B_r(x) \subset \Omega$ of radius $r, x \in \tilde{\Omega}$ such that $\mu_2(\Delta(\Omega \setminus B_r(x)))$ is an infimum

Equivalently, identify an x^* below

$$x^* \in \arg\inf_{x \in \tilde{\Omega}_r} \inf_{\substack{\int_{\Omega \backslash B_r(x)} \psi d\nu = 0, \\ \int_{\Omega \backslash B_r(x)} |\psi|^2 d\nu = 1}} \int_{\Omega \backslash B_r(x)} |\nabla \psi|^2 d\nu$$

The outer optimization problem is non-convex

troduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future wor

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- Results and Simulation
- 6 Conclusions and future work

Approach

The idea is to set up a flow to guide a point $x \in \Omega$ towards x^*

- ullet Design an algorithm to compute μ_2 for an arbitrary domain
- Use it to guide (set up a dynamics for) center of ball x of $B_r(x)$
- Prove that the center of the ball converges to x^* (defined earlier)

troduction Modeling Framework Problem Formulation Approach **Results and Simulation** Conclusions and future wor

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- Results and Simulation
- 6 Conclusions and future work

Determination of μ_2 for a fixed domain

For μ_2 , we have the optimization problem:

$$\inf_{\psi \in H^{1}(\Omega)} J(\psi) = \int_{\Omega} |\nabla \psi|^{2},$$
s.t
$$\int_{\Omega} |\psi|^{2} = 1, \quad \int_{\Omega} \psi = 0,$$

$$\nabla \psi \cdot \mathbf{n} = 0 \text{ on } \partial \Omega.$$

 \mathcal{S}_{Ω} for the feasible set

Critical points of $J(\psi)$

$$\Delta \psi^* + \mu^* \psi^* = 0$$

Lemma

Of all the critical points ψ^* of the functional $J(\psi)$, the second eigenfunction ψ_2 of $\Delta(\Omega)$ is the only minimizer of $J(\psi)$ in S_{Ω} .

Determination of μ_2 for a fixed domain

We consider the dynamics:

$$\partial_t \psi = \Delta \psi + J(\psi)\psi \tag{1}$$

Lemma

The set S_{Ω} is invariant with respect to (1).

Lemma

Solutions to (1) in S_{Ω} converge in L^2 -norm to the set of equilibria of (1).

Lemma

The second eigenfunction ψ_2 is the only locally asymptotically stable equilibrium in S_{Ω} for (1).

roduction Modeling Framework Problem Formulation Approach **Results and Simulation** Conclusions and future work

μ_2 of residual domains

Figure: μ_2 as a function of h for a disk-shaped domain.

oduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

μ_2 of residual domains

Figure: μ_2 as a function of h for a ring-shaped domain of inner radius 0.4 and unit outer radius.

Lemma

The first-order condition for a critical point x^* of the functional μ_2 in the interior of the domain is given by:

$$\mu_2^* \left(\int_{\partial B_r(x^*)} |\psi_2^*|^2 \mathbf{n} \right) = \int_{\partial B_r(x^*)} |\nabla \psi_2^*|^2 \mathbf{n}, \tag{2}$$

where $(\mu_2^* = \mu_2(x^*), \psi_2^*)$ is the second eigenpair and **n** is the outward normal to $\partial B_r(x^*)$.

We consider the following dynamics for the center of the ball:

$$\frac{dx}{dt} = \mathbf{v} = \begin{cases} \mathbf{v}_{int}, & x \in \text{int } \tilde{\Omega}_r \\ \mathbf{v}_{int} - (\mathbf{v}_{int} \cdot \tilde{\mathbf{n}})\tilde{\mathbf{n}}, & x \in \partial \tilde{\Omega}_r \end{cases}
\mathbf{v}_{int} = \int_{\partial B_r(x)} |\nabla \psi|^2 \mathbf{n} - J(\psi) \int_{\partial B_r(x)} |\psi|^2 \mathbf{n}, \qquad (3)
\partial_t \psi = \Delta \psi + J(\psi)\psi + a\psi + b,
\nabla \psi \cdot \mathbf{n} = 0, \text{ on } \partial \Omega \cup \partial B_r(x)$$

Theorem

The set Ψ is invariant with respect to the dynamics (3). The solutions to the dynamics (3) converge to a critical point of the objective functional μ_2 . A critical point of μ_2 is locally asymptotically stable with respect to the dynamics (3) only if it is a strict local minimum.

Results and Simulation

Figure: Path of the center of the hole, x(t) from two different initial conditions x(0) = (0.4, 0.5) and x(0) = (-0.5, -0.5)

roduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

- Introduction
- 2 Modeling Framework
- Problem Formulation
- 4 Approach
- **6** Results and Simulation
- 6 Conclusions and future work

oduction Modeling Framework Problem Formulation Approach Results and Simulation Conclusions and future work

Conclusions

- We studied the problem of identifying critical nodes for consensus in large-scale spatial networks
- Approximated the graph Laplacian matrix by the Laplace operator on the domain
- Formulation does not conceal the geometry of the problem important for spatial networks
- Looked at the removal of balls of given radius to minimize μ_2 of residual domain
- Future work: Generalization to arbitrary sets, and non-uniform distributions of nodes in the domain