CS-AD 220 – Spring 2016

Natural Language Processing

Session 15: 29-Mar-16

Prof. Nizar Habash

Moving Legislative Day Class

- Spring Break is March 18 25, 2016
- Sat March 26, 2016 is a Legislative Thursday
- Move to

Sat April 2, 2016 at 10am Same Classroom C2-E049

POS Tagging

Assign the correct POS tag in context!

NN RB VBN JJ VB

PRP VBD TO VB DT NN

She promised to back the bill

POS Tagging

Assign the correct POS tag in context!

NN RB

VBN JJ VB

PRP VBD TO VB DT NN

She promised to back the bill

Two Methods for POS Tagging

1. Rule-based tagging

- Large databases of hand-written rules
 - EngCG / ENGTWOL

2. Stochastic

- Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - ...

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
 - Bayes Rule
 - Foundational work in computational linguistics
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

HMMs and their Usage

- Speech recognition (observed: acoustic signal, hidden: words)
- Handwriting recognition (observed: image, hidden: words)
- Part-of-speech tagging (observed: words, hidden: part-of-speech tags)
- Machine translation (observed: foreign words, hidden: words in target language)

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags (the "hidden" sequence") that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...w_n.

Getting to HMMs

• We want, out of all sequences of n tags $t_1...t_n$ the single tag sequence such that $P(t_1...t_n|w_1...w_n)$ is highest.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Getting to HMMs

 This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{P(w_{1}^{n}|t_{1}^{n})} \underbrace{P(t_{1}^{n})} \underbrace{P(t_{1}^{n})}$$

$$P(w_{1}^{n}|t_{1}^{n}) \approx \prod_{i=1}^{n} P(w_{i}|t_{i})$$

$$P(t_{1}^{n}) \approx \prod_{i=1}^{n} P(t_{i}|t_{i-1})$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n}|w_{1}^{n}) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i}|t_{i}) P(t_{i}|t_{i-1})$$

Two Kinds of Probabilities

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be low.
 - Compute P(NN|DT) by counting in a labeled corpus: $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

Disambiguating "race"

- P(VB|TO) = .83
- P(NN|TO) = .00047
- P(race|VB) = .00012
- P(race|NN) = .00057
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race| NN)=.0000000032
- So we (correctly) choose the verb reading

Hidden Markov Models

 What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)

Definitions

- A weighted finite-state automaton (WFST) adds probabilities to the arcs
 - The sum of the probabilities on arcs leaving any node must sum to one
- A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
 - Assigning probabilities to unambiguous observed sequences
 - Conditioning on previously observed events
- Hidden Markov Models allows to talk about both observed events (words) and hidden events (POS tags)

Markov Chain for Weather

Markov Chain for Words

Markov Chain: "First-order observable Markov Model"

- A set of states
 - $Q = q_1, q_2...q_{N}$; the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ij} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A
- Current state only depends on previous state

$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

Markov Chain for Weather

- What is the probability of 4 consecutive rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- P(3,3,3,3) =
 - $\pi_1 a_{11} a_{11} a_{11} = 0.2 \times (0.6)^3 = 0.0432$

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}$ $a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$
- Observations O= o₁, o₂...o_T;
 - Each observation is a symbol from a vocabulary V = {v₁,v₂,...v_V}
- Observation likelihoods / Emission probabilities
 - Output probability matrix $B = \{b_i(k)\}$ $b_i(k) = P(X_t = o_k \mid q_t = i)$
- Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

HMM for Weather

 Assume that we only have a record of the number of ice-creams eaten (say, 1, 2 or 3) (~ seen words) on each day; and we want to determine if the day was hot or cold (~ POS tags)

Given

Ice Cream Observation Sequence: 1,2,3,2,2,3...

Produce:

Weather Sequence: H,C,H,H,H,C...

HMM for Ice Cream

Transition Probabilities

Observation Likelihoods

Decoding

Ok, now we have a complete model that can give us what we need. Recall that we need to get

 $\hat{t}_1^n = \operatorname*{argmax} P(t_1^n | w_1^n)$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - Luckily dynamic programming (last seen in Ch. 3 with minimum edit distance) helps us here

The Viterbi Algorithm

function VITERBI(observations of len T,state-graph) **returns** best-path

```
num-states \leftarrow NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]

viterbi[0,0] \leftarrow 1.0

for each time step t from 0 to T do

for each state s from 0 to num-states do

for each transition s' from s specified by state-graph

new-score \leftarrow viterbi[s, t] * a[s,s'] * b_{s'}(o_t)

if ((viterbi[s',t+1] = 0) || (new-score > viterbi[s', t+1]))

then

viterbi[s', t+1] \leftarrow new-score

back-pointer[s', t+1] \leftarrow s
```

Backtrace from highest probability state in the final column of *viterbi[]* and return path

Viterbi Example

function VITERBI(observations of len T,state-graph) **returns** best-path

```
num-states \leftarrow NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]

viterbi[0,0] \leftarrow 1.0

for each time step t from 0 to T do

for each state s from 0 to num-states do

for each transition s' from s specified by state-graph

new-score \leftarrow viterbi[s, t] * a[s,s'] * b<sub>s'</sub>(o<sub>t</sub>)

if ((viterbi[s',t+1] = 0) || (new-score > viterbi[s',t+1]))

then

viterbi[s',t+1] \leftarrow new-score

back-pointer[s',t+1] \leftarrow s
```


Viterbi Trellis

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a goldstandard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...

Error Analysis

Look at a confusion matrix (gold, predicted)=(x,y)

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	_	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- 4.4% of all errors are caused by mistagging VBD as VBN
- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Arabic POS Tagging Morphological Ambiguity

- Morphological richness
 - Token Arabic/English = 80%
 - Type Arabic/English = 200%
- Morphological ambiguity
 - Each word: 12.3 analyses and 2.7 lemmas
- Derivational ambiguity
 - qAEdap: basis/principle/rule, military base, Qa'ida/Qaeda/Qaida

Morphological Ambiguity

- Inflectional ambiguity
 - taktub: you write, she writes
 - Segmentation ambiguity
 - wjd: wajada he found; wa+jad~u: and+grandfather
- Spelling ambiguity
 - Optional diacritics
 - kAtb: kAtib writer; kAtab to correspond
 - Suboptimal spelling
 - Hamza dropping: إ, أ جاً
 - Undotted ta-marbuta: ق 🗲 ه
 - Undotted final ya: ي → ي

Analysis vs. Disambiguation

PV+PVSUFF_SUBJ:3MS

bay~an+a

He demonstrated

PV+PVSUFF_SUBJ:3FP

bay~an+~a

They demonstrated (f.p)

NOUN_PROP

biyn

Ben

ADJ

bay~in

Clear

PREP

bayn

Between, among

Morphological AnalysisMorphological Disambiguation

is out-of-context is in-context

Analysis vs. Disambiguation

Will Ben Affleck be a good Batman?

هل سينجح بين أفليك في دور باتمان؟

PV+PVSUFF_SUBJ:3MS

bay~an+a

He demonstrated

PV+PVSUFF_SUBJ:3FP

bay~an+~a

They demonstrated (f.p)

*

NOUN_PROP

biyn

Ben

ADJ

bay~in

Clear

PREP

bayn

Between, among

Morphological Analysis

Morphological Disambiguation

is out-of-context is in-context

Morphological Disambiguation in English

- Select a morphological tag that fully describes the morphology of a word
- Complete English morphological tag set (Penn Treebank): 48 tags

Verb:

VB	VBD	VBG	VBN	VBP	VBZ
go	went	going	gone	go	goes

Same as "POS Tagging" in English

Morphological Disambiguation in Arabic

- Morphological tag has 14 subtags corresponding to different linguistic categories
 - Example: Verb
 Gender(2), Number(3), Person(3), Aspect(3), Mood(3),
 Voice(2), Pronominal clitic(12), Conjunction clitic(3)
- 22,400 possible tags
 - Different possible subsets
- 2,200 appear in Penn Arabic Tree Bank Part 1 (140K words)
- Example solution: MADA (Habash&Rambow 2005)

MADA (Habash&Rambow 2005;Roth et al. 2008)
MADAMIRA (Pasha et al., 2014)

MORPHOLOGICAL CLASSIFIERS

- Multiple independent classifiers
- Corpus-trained

RANKER

• Heuristic or corpus-trained

MORPHOLOGICAL ANALYZER

- Rule-based
- Human-created

MADA 3.2 (MSA) Evaluation

	PATB 3 Blind Test				
Accuracy	Baseline	MADA	Error 		
All	74.8%	84.3%	38%		
POS + Features	76.0%	85.4%	39%		
All Diacritics	76.8%	86.4%	41%		
Lemmas	90.4%	96.1%	60%		
Partial Diacritics	90.6%	95.3%	50%		
Base POS	91.1%	96.1%	56%		
Segmentation	96.1%	99.1%	77%		

Baseline: most common analysis per word in training

وکاتب wkAtb and (the) writer of

wakAtibu kAtib_1 pos:noun

prc3:0 prc2:wa_conj prc1:0 prc0:0 per:3 asp:na vox:na mod:na gen:m num:s stt:c

cas:n enc0:0

w+ kAtb

MADAMIRA DEMO

http://nlp.ldeo.columbia.edu/madamira/

Next Time

Read J+M Chap 12

Assignment #3 will be given out