# LSmeans, population means, estimates and contrasts with the doBy package

# Søren Højsgaard

doBy version 4.5-5 as of feb 05, 2013

## Contents

| 1 | Introduction                                               | 1      |
|---|------------------------------------------------------------|--------|
| 2 | The esticon function                                       | 1      |
| 3 | A simulated dataset                                        | 3      |
| 4 | Linear functions of parameters, contrasts                  | 3      |
| 5 | Population means 5.1 A brute-force calculation             |        |
|   | Using popMatrix() and popMeans() 6.1 Using the at argument | 7<br>7 |
| 7 | The engine argument of popMeans()                          | 8      |

## 1 Introduction

This is a working document; please feel free to suggest improvements.

library(doBy)

## 2 The esticon function

Consider a linear model which explains Ozone as a linear function of Month and Wind:

```
data(airquality)
airquality <- transform(airquality, Month=factor(Month))</pre>
m<-lm(Ozone~Month*Wind, data=airquality)</pre>
coefficients(m)
(Intercept)
                 Month6
                              Month7
                                           Month8
                                                       Month9
                                                                      Wind
     50.748
                -41.793
                             68.296
                                          82.211
                                                        23.439
                                                                     -2.368
Month6: Wind Month7: Wind Month8: Wind Month9: Wind
                             -6.154
      4.051
                 -4.663
                                           -1.874
```

When a parameter vector  $\beta$  of (systematic) effects have been estimated, interest is often in a particular estimable function, i.e. linear combination  $\lambda^{\top}\beta$  and/or testing the hypothesis  $H_0: \lambda^{\top}\beta = \beta_0$  where  $\lambda$  is a specific vector defined by the user.

Suppose for example we want to calculate the expected difference in ozone between consequtive months at wind speed 10 mph (which is about the average wind speed over the whole period).

The esticon function provides a way of doing so. We can specify several  $\lambda$  vectors at the same time. For example

```
Lambda <- rbind(
    c(0,-1,0,0,0,0,-10,0,0,0),
    c(0,1,-1,0,0,0,10,-10,0,0),
    c(0,0,1,-1,0,0,0,10,-10,0),
    c(0,0,0,1,-1,0,0,0,10,-10))
)
```

In other cases, interest is in testing a hypothesis of a contrast  $H_0: \Lambda\beta = \beta_0$  where  $\Lambda$  is a matrix. For example a test of no interaction between Month and Wind can be made by testing jointly that the last four parameters in m are zero (observe that the test is a Wald test):

```
Lambda <- rbind(
    c(0,0,0,0,0,1,0,0,0),
    c(0,0,0,0,0,0,0,1,0,0),
    c(0,0,0,0,0,0,0,1,0),
    c(0,0,0,0,0,0,0,0,1)
)
```

```
esticon(m, Lambda, joint.test=T)

X2.stat DF Pr(>|X^2|)
1 22.11 4 0.0001906
```

For a linear normal model, one would typically prefer to do a likelihood ratio test instead. However, for generalized estimating equations of glm-type (as dealt with in the packages **geepack** and **gee**) there is no likelihood. In this case **esticon** function provides an operational alternative.

### 3 A simulated dataset

Consider these data:

```
library(doBy)
 dd <- expand.grid(A=factor(1:3),B=factor(1:3),C=factor(1:2))</pre>
 dd$y <- rnorm(nrow(dd))
 dd$x <- rnorm(nrow(dd))^2
 dd$z <- rnorm(nrow(dd))
head(dd,10)
  ABC
  1 1 1 -1.39918 1.324525 1.2155
  2 1 1 1.31774 2.325944 0.8665
  3 1 1 0.02265 2.117689 -0.4598
  1 2 1 -0.10185 2.453452 0.9988
  2 2 1 0.89448 0.690510 -0.3352
  3 2 1 -0.60579 0.115301 1.2075
  1 3 1 -1.49305 0.479673
                            0.0138
 2 3 1 0.68182 11.181538 0.4928
9 3 3 1 -0.72781 0.007692 -0.3969
10 1 1 2 -0.28547 0.226861
                           1.1120
```

Consider the additive model

$$y_i = \beta_0 + \beta_{A(i)}^1 + \beta_{B(i)}^2 + \beta_{C(i)}^3 + e_i \tag{1}$$

where  $e_i \sim N(0, \sigma^2)$ . We fit this model:

```
mm <- lm(y~A+B+C, data=dd)
coef(mm)

(Intercept) A2 A3 B2 B3 C2
-0.10920 0.64889 -0.31111 -0.03415 -0.44635 0.48645
```

Notice that the parameters corresponding to the factor levels A1, B1 and C2 are set to zero to ensure identifiability of the remaining parameters.

# 4 Linear functions of parameters, contrasts

For a regression model with parameters  $\beta = (\beta^1, \beta^2, \dots, \beta^P)$  we shall refer to a weighted sum of the form

$$\sum_{j} w_{j} \beta^{j}$$

as a contrast. Notice that it is common in the litterature to require that  $sum_j w_j = 0$  for the sum  $\sum_j w_j \beta^j$  to be called a contrast but we do not follow this tradition here.

The effect of changing the factor A from A2 to A3 can be found as

```
w \leftarrow c(0,-1,1,0,0,0)

sum(coef(mm)*w)

[1] -0.96
```

The esticon() function provides this estimate, the standard error etc. as follows:

```
esticon(mm, w)

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper
1 0 -0.96 0.5963 -1.61 12 0.1334 -2.259 0.3393
```

## 5 Population means

Population means (sometimes also called marginal means) are in some sciences much used for reporting marginal effects (to be described below). Population means are known as Ismeans in SAS jargon. Population means is a special kind of contrasts as defined in Section 4.

The model (1) is a model for the conditional mean  $\mathbb{E}(y|A,B,C)$ . Sometimes one is interested in quantities like  $\mathbb{E}(y|A)$ . This quantity can not formally be found unless B and C are random variables such that we may find  $\mathbb{E}(y|A)$  by integration.

However, suppose that A is a treatment of main interest, B is a blocking factor and C represents days on which the experiment was carried out. Then it is tempting to average  $\mathbb{E}(y|A,B,C)$  over B and C (average over block and day) and think of this average as  $\mathbb{E}(y|A)$ .

#### 5.1 A brute–force calculation

The population mean for A=1 is

$$\beta^0 + \beta_{A1}^1 + \frac{1}{3}(\beta_{B1}^2 + \beta_{B2}^2 + \beta_{B3}^2) + \frac{1}{2}(\beta_{C1}^3 + \beta_{C2}^3)$$
 (2)

Recall that the parameters corresponding to the factor levels A1, B1 and C2 are set to zero to ensure identifiability of the remaining parameters. Therefore we may also write the population mean for A=1 as

$$\beta^0 + \frac{1}{3}(\beta_{B2}^2 + \beta_{B3}^2) + \frac{1}{2}(\beta_{C2}^3) \tag{3}$$

This quantity can be estimated as:

```
w \leftarrow c(1, 0, 0, 1/3, 1/3, 1/2)
coef(mm)*w
(Intercept)
                       A2
                                     АЗ
                                                  B2
                                                                В3
                                                                             C2
                 0.00000
   -0.10920
                               0.00000
                                           -0.01138
                                                         -0.14878
                                                                        0.24322
sum(coef(mm)*w)
[1] -0.02615
```

We may find the population mean for all three levels of A as

Notice that the matrix W is based on that the first level of A is set as the reference level. If the reference level is changed then so must W be.

## 5.2 Using esticon()

Given that one has specified W, the esticon() function in the doBy package be used for the calculations above and the function also provides standard errors, confidence limits etc:

```
esticon(mm, W)

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper
1 0 -0.02615 0.4217 -0.06201 12 0.9516 -0.9449 0.8926
2 0 0.62274 0.4217 1.47683 12 0.1655 -0.2960 1.5415
3 0 -0.33725 0.4217 -0.79980 12 0.4394 -1.2560 0.5815
```

# 6 Using popMatrix() and popMeans()

Writing the matrix W is somewhat tedious and hence error prone. In addition, there is a potential risk of getting the wrong answer if the the reference level of a factor has been changed. The popMatrix() function provides an automated way of generating such matrices. The above W matrix is constructed by

```
pma <- popMatrix(mm,effect='A')</pre>
 summary(pma)
     (Intercept) A2 A3
                         B2
                                 B3 C2
[1,]
        1 0 0 0.3333 0.3333 0.5
[2,]
              1 1 0 0.3333 0.3333 0.5
              1 0 1 0.3333 0.3333 0.5
[3,]
grid:
'data.frame':
                   3 obs. of 1 variable:
$ A: chr "1" "2" "3"
at:
NUI.I.
```

The popMeans() function is simply a wrapper around first a call to popMatrix() followed by a call to (by default) esticon():

```
pme <- popMeans(mm, effect='A')
pme

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper A
1     0 -0.02615     0.4217 -0.06201 12     0.9516 -0.9449     0.8926 1
2     0     0.62274     0.4217     1.47683 12     0.1655 -0.2960     1.5415 2
3     0 -0.33725     0.4217 -0.79980 12     0.4394 -1.2560     0.5815 3
```

More details about how the matrix was constructed is provided by the summary() function:

```
    summary(pme)

    beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper A

    1 0 -0.02615 0.4217 -0.06201 12 0.9516 -0.9449 0.8926 1

    2 0 0.62274 0.4217 1.47683 12 0.1655 -0.2960 1.5415 2

    3 0 -0.33725 0.4217 -0.79980 12 0.4394 -1.2560 0.5815 3

    Call:

    NULL

    Contrast matrix:

    Length Class Mode

    0 NULL NULL
```

The effect argument requires to calculate the population means for each level of A aggregating across the levels of the other variables in the data.

Likewise we may do:

```
popMatrix(mm,effect=c('A','C'))

(Intercept) A2 A3 B2 B3 C2

[1,] 1 0 0 0.3333 0.3333 0

[2,] 1 1 0 0.3333 0.3333 0

[3,] 1 0 1 0.3333 0.3333 1

[4,] 1 0 0 0.3333 0.3333 1

[5,] 1 1 0 0.3333 0.3333 1
```

This gives the matrix for calculating the estimate for each combination of A and C when averaging over B. Consequently

```
popMeans(mm)

beta0 Estimate Std.Error t.value DF Pr(>|t|) Lower Upper
1 0 0.08645 0.2435 0.3551 12 0.7287 -0.444 0.6169
```

gives the "total average".

#### 6.1 Using the at argument

We may be interested in finding the population means at all levels of A but only at C = 1. This is obtained by using the at argument:

```
popMatrix(mm,effect='A', at=list(C='1'))

(Intercept) A2 A3 B2 B3 C2
[1,] 1 0 0 0.3333 0.3333 0
[2,] 1 1 0 0.3333 0.3333 0
[3,] 1 0 1 0.3333 0.3333 0
```

Notice here that average is only taken over B. Another way of creating the population means at all levels of (A, C) is therefore

```
popMatrix(mm,effect='A', at=list(C=c('1','2')))
    (Intercept) A2 A3
                          B2
                                 B3 C2
             1 0 0 0.3333 0.3333 0
[1,]
[2,]
              1 1 0 0.3333 0.3333
[3,]
              1 0 1 0.3333 0.3333
[4,]
              1 0 0 0.3333 0.3333
[5,]
              1 1 0 0.3333 0.3333
              1 0 1 0.3333 0.3333
[6.]
```

We may have several variables in the at argument:

```
popMatrix(mm,effect='A', at=list(C=c('1','2'), B='1'))
    (Intercept) A2 A3 B2 B3 C2
[1,]
            1 0 0 0 0 0
             1 1 0 0 0 0
[2,]
[3,]
                0
                  1
                     0
                        0
[4,]
             1 0 0 0 0 1
[5,]
             1 1 0 0 0 1
[6,]
             1 0 1 0 0 1
```

## 6.2 Ambiguous specification when using the effect and at arguments

There is room for an ambiguous specification if a variable appears in both the effect and the at argument, such as

```
popMatrix(mm,effect=c('A','C'), at=list(C='1'))

(Intercept) A2 A3 B2 B3 C2
[1,] 1 0 0 0.3333 0.3333 0
[2,] 1 1 0 0.3333 0.3333 0
[3,] 1 0 1 0.3333 0.3333 0
```

This ambiguity is due to the fact that the effect argument asks for the populations means at all levels of the variables but the at chooses only specific levels.

This ambiguity is resolved as follows: Any variable in the at argument is removed from the effect argument such as the statement above is equivalent to

```
popMatrix(mm,effect='A', at=list(C='1'))
```

#### 6.3 Using covariates

Next consider the model where a covariate is included:

```
mm2 <- lm(y^A+B+C+C:x, data=dd)
coef (mm2)
(Intercept)
                     A2
                                 AЗ
                                              B2
                                                           В3
                                                                       C2
  -0.37992
                0.58345
                           -0.21457
                                         0.11568
                                                    -0.47142
                                                                  0.88353
      C1:x
                   C2:x
   0.09513
               -0.20237
```

In this case we get

```
popMatrix(mm2,effect='A', at=list(C='1'))

(Intercept) A2 A3 B2 B3 C2 C1:x C2:x

[1,] 1 0 0 0.3333 0.3333 0 1.59 0

[2,] 1 1 0 0.3333 0.3333 0 1.59 0

[3,] 1 0 1 0.3333 0.3333 0 1.59 0
```

Above, x has been replaced by its average and that is the general rule for models including covariates. However we may use the at argument to ask for calculation of the population mean at some user-specified value of x, say 12:

```
popMatrix(mm2,effect='A', at=list(C='1',x=12))

(Intercept) A2 A3 B2 B3 C2 C1:x C2:x

[1,] 1 0 0 0.3333 0.3333 0 12 0

[2,] 1 1 0 0.3333 0.3333 0 12 0

[3,] 1 0 1 0.3333 0.3333 0 12 0
```

#### 6.4 Using transformed covariates

Next consider the model where a transformation of a covariate is included:

```
mm3 \leftarrow lm(y^A+B+C+C:log(x), data=dd)
coef (mm3)
                                                                           C2
(Intercept)
                      A2
                                   A3
                                                B2
                                                             В3
  -0.13970
                0.61069
                             -0.21550
                                           0.01296
                                                       -0.37431
                                                                     0.46806
 C1:log(x)
              C2:log(x)
   0.08663
                 0.01046
```

In this case we can not use popMatrix() (and hence popMeans() directly. Instead we have first to generate a new variable, say log.x, with log.x = log(x), in the data and then proceed as

```
dd <- transform(dd, log.x = log(x))
mm3 <- lm(y~A+B+C+C:log.x, data=dd)
popMatrix(mm3,effect='A', at=list(C='1'))

(Intercept) A2 A3 B2 B3 C2 C1:log.x C2:log.x
[1,] 1 0 0 0.3333 0.3333 0 -0.64 0
[2,] 1 1 0 0.3333 0.3333 0 -0.64 0
[3,] 1 0 1 0.3333 0.3333 0 -0.64 0
```

# 7 The engine argument of popMeans()

The popMatrix() is a function to generate a linear tranformation matrix of the model parameters with emphasis on constructing such matrices for population means. popMeans() invokes by default the esticon() function on this linear transformation matrix for calculating parameter estimates and confidence intervals. A similar function to esticon() is the glht function of the multcomp package.

The glht() function can be chosen via the engine argument of popMeans():

```
library(multcomp)
g<-popMeans(mm,effect='A', at=list(C='1'),engine="glht")
g

General Linear Hypotheses
Linear Hypotheses:
    Estimate
1 == 0    -0.269
2 == 0    0.380
3 == 0    -0.580</pre>
```

This allows to apply the methods available on the glht object like

```
summary(g,test=univariate())
        Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = y ~ A + B + C, data = dd)
Linear Hypotheses:
      Estimate Std. Error t value Pr(>|t|)
1 == 0
        -0.269
                    0.487
                           -0.55
2 == 0
                    0.487
                           0.78
                                      0.45
        0.380
3 == 0 -0.580
                  0.487 -1.19
                                     0.26
(Univariate p values reported)
confint(g,calpha=univariate_calpha())
        Simultaneous Confidence Intervals
Fit: lm(formula = y ~ A + B + C, data = dd)
Quantile = 2.179
95% confidence level
Linear Hypotheses:
      Estimate lwr
                      upr
1 == 0 -0.269 -1.330 0.792
2 == 0 0.380
               -0.681 1.440
3 == 0 -0.580
               -1.641 0.480
```

which yield the same results as the esticon() function.

By default the functions will adjust the tests and confidence intervals for multiplicity