1) Masker Teorem:
$$T(n) = \alpha \cdot T(\frac{n}{b}) + \mathcal{O}(n^k \log^n)$$

a) $2 T(\frac{\pi}{a}) + \sqrt{n \log n} = 2 T(\frac{\pi}{a}) + n^2 \cdot (\frac{n^2 \log^n}{a})$

b) $T(n) = 9 T(\frac{\pi}{3}) + 5n^2 \longrightarrow T(n) = 2 (n^2 \log n)$

c) $T(n) = \frac{1}{2} T(\frac{\pi}{2}) + n \longrightarrow no \text{ masker teorem } a = \frac{1}{2} m - s + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{$

2) A=[3,6,2,1,4,5)

- 1) 3-6 swap (stable) (3,6,2,1,45) swap(2,3) swap(2,3) $= \{2,3,6,1,4,5\} \rightarrow \{2,3,6,1,4,5\} \rightarrow \{2,3,6,1,4,5\} \rightarrow \{2,3,6,1,4,5\}$
- 3)6>1 swap -> 52,3,1,6,415} -> 1,3 swap
 - b {2,1,3,6,4,5}→ swar(2,1)
 - L) {1,2, 3,6,4,5} swarped
- 4) 6>4 > swapped > {1,23,4,6,5}
 - L> { 1,2,5, 4,6,5} > noswar (413)
- 5) 6>5 -> swap -> { 1,2,3,4,5,6} Ly no swap for 4,5 -> all socked = {1,2,3,4,5,6}

3) 1) array use indexing O(1)

LL is start from first node = head = O(1) 2) array use indexing O(4)

LL has toil poind node to access last = O(1) 3) erroy use indexing O(1)

LL need to prove pointer to middle with loop = O(2) = O(n) 4) use indexing O(1)
use tail pointer to access lost O(1) 7) need orray shifting = O(n)

U need only ordd to beginning = O(1) 6) first shifting then adding equals = O(n)
odding is O(1) but need pointer to move O(n) 7) O(n) shifting needed O(1) gust change head pointer 8) O(1): no stiffing just delete 9) O(n): delete + shiffing O(n): loop to the lost node o(n): delete = O(1) but loop to the if x equals 0 return false

H + Hashmap // accessing in bash O(1) time

len + arrilength

for (i 0 to (len-1))

H[arr(i)]++ || bashmap stored with orr elements

for (i 0 to (len-1))

if (! H[x + arr(i)]) // if not zero

print (pair (x + arrile))

return false

First we copy arr elements to hashmap issince access in hash = O(i)

Then we check in a for loop | x-arr(i)| in hashmap.

B(1); first and second elements in our satisfy condition

W(n); lost two elements soutisfy or no satisfying in our

vith searching with for loop.

6) a) True, if we insert different order tree will	Chon
6) a) True, it we insert different order tree will ex: 3412 1234	
3	
2 3-4	
	ds
b) True, if we insert in order sorted may, search time depend on elements numbers, $O(n)$ shew 1234 1.2-3-4	
() In sorted array it con be constant time, since array acre indexing O(1)	5 9)5
d) False, Birery search algorithm in Linked 15%. In worst case we need traverse all elements = O(n)	to
e) Inserting sert = $Q(n^2) \rightarrow \tilde{r}t$ or ray serted $1+2+3+4-n-1 = \frac{N\cdot(n-1)}{2}$	