Tarea 6

Boris Garcés

Tabla de Contenidos

Series de Taylor y Polinomios de Lagrange	1
Conjunto de ejercicios	1

Series de Taylor y Polinomios de Lagrange

Conjunto de ejercicios

Determine el orden de la mejor aproximación para las siguientes funciones, usando la Serie de Taylor y el Polinomio de Lagrange:

1.
$$\frac{1}{25*x^2+1}$$
, $x_0=0$

Empezaremos determinando la serie de Taylor y comparando su resultado con la función original.

```
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

x = sp.Symbol('x')
funcion = 1 / (25 * x**2 + 1)
grados = 10

x_valores = np.linspace(-1, 1, 500)
funcion_original = sp.lambdify(x, funcion, modules='numpy')
plt.figure(figsize=(10, 6))
plt.plot(x_valores, funcion_original(x_valores), label="Función original", color="red", line
for n in range(1, grados + 1):
    funcion_taylor = sp.series(funcion, x, 0, n).removeO()
    funcion_taylor_numerica = sp.lambdify(x, funcion_taylor, modules='numpy')
```

```
try:
        y_valores = funcion_taylor_numerica(x_valores)
        plt.plot(x_valores, y_valores, label=f"Taylor grado {n}", linestyle="--", alpha=0.7)
    except Exception as e:
        print(f"No se pudo graficar el grado {n}: {e}")

plt.title("Función Original vs Aproximaciones de Taylor")

plt.xlabel("x")

plt.ylabel("f(x)")

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.grid()

plt.axis([-1, 1, -0.5, 1.5])

plt.tight_layout()

plt.show()
```

No se pudo graficar el grado 1: x and y must have same first dimension, but have shapes (500 No se pudo graficar el grado 2: x and y must have same first dimension, but have shapes (500

En este caso podemos apreciar como la serie de taylor a partir de la aproximación de orden 10 no tiene un cambio de comportamiento significativo.

Polinomio de Lagrange

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import lagrange
x_{valores} = np.linspace(-1.5, 1.5, 500)
def f(x):
    return 1 / (25 * x**2 + 1)
x_{lagrange} = np.array([-0.15,0,0.15])
y_lagrange = f(x_lagrange)
polinomio_lagrange = lagrange(x_lagrange, y_lagrange)
y_lagrange_vals = np.polyval(polinomio_lagrange, x_valores)
plt.plot(x_valores, f(x_valores), label="Función Original", color="red")
plt.plot(x_valores, y_lagrange_vals, label="Polinomio de Lagrange", linestyle="--", color="b.
plt.scatter(x_lagrange, y_lagrange, color="black", label="Puntos de Interpolación")
plt.title("Interpolación con Polinomio de Lagrange")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.grid()
plt.show()
```


2. arctanx, $x_0 = 0$

Primero utilizaremos series de taylor hasta encontrar la aproximación que se acerque más a la función real.

```
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
x = sp.Symbol('x')
funcion = sp.atan(x)
grados = 10
x_punto = 0
x_valores = np.linspace(0, 2, 500)
funcion_original = sp.lambdify(x, funcion, modules='numpy')
plt.figure(figsize=(10, 6))
plt.plot(x_valores, funcion_original(x_valores), label="Función original", color="red", line
for n in range(1, grados + 1):
    funcion_taylor = sp.series(funcion, x, x_punto, n).removeO()
```

No se pudo graficar el grado 1: x and y must have same first dimension, but have shapes (500

A partir de la serie de Taylor de grado 10 el resultado no
oo cambia de manera significativa, siendo esta la razón por la que la esco
jemos como la mejor aproximación

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import lagrange
    return np.arctan(x)
x_{valores} = np.linspace(-1.5, 1.5, 500)
x_{lagrange} = np.array([-0.15, 0, 0.15])
y_lagrange = f(x_lagrange)
polinomio_lagrange = lagrange(x_lagrange, y_lagrange)
y_lagrange_vals = polinomio_lagrange(x_valores)
plt.figure(figsize=(10, 6))
plt.plot(x_valores, f(x_valores), label="Función Original", color="red")
plt.plot(x_valores, y_lagrange_vals, label="Polinomio de Lagrange", linestyle="--", color="b.
plt.scatter(x_lagrange, y_lagrange, color="black", label="Puntos de Interpolación")
plt.title("Interpolación con Polinomio de Lagrange")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.grid()
plt.tight_layout()
plt.show()
```

