CPSC 468 Midterm Review

Chapter 1: The Computational Model and Why It Doesn't Matter

- **0.1** (Turing Machine). A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) . Assume $k \geq 2$, with 1 read-only input tape and k-1 work tapes. The last work tape is assumed to be the output tape.
 - Γ the finite alphabet of symbols that M may have on its tapes. Assume that Γ contains at least $\{0,1,\Box,\rhd\}$.
 - Q a finite set of possible states M's state register may be in. Assume that Q contains a q_{start} and q_{halt} .
 - $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{L, S, R\}^k$ a transition function for M that takes in the current state and each head's read, and outputs the next state, with k-1 writes on all the work tapes, and movements for all k tapes.
- **0.2** (Computing a Function). Let $f: \{0,1\}^* \to \{0,1\}^*$ and $T: \mathbb{N} \to \mathbb{N}$, with M a TM. We say that M computes f if for every $x \in \{0,1\}^*$, if M is initialized to the start configuration on input x, then it halts with f(x) on the output tape. We say M computes f in T(n)-time if its computation on every x requires at most T(|x|) steps.
- **0.3** (Time Constructible). A function $T: \mathbb{N} \to \mathbb{N}$ is time constructible if $T(n) \geq n$ and there is a TM M that computes the function $x \mapsto \lfloor T(|x|) \rfloor$ in time T(n). $T(n) \geq n$ is to allow the algorithm to read its input. Some time constructible functions are n, $n \log n$, n^2 and $n \log n$.
- **0.4.** For every $f:\{0,1\}^* \to \{0,1\}$ and time constructible $T:\mathbb{N} \to \mathbb{N}$, if f is computable in time T(n) by some TM M using alphabet Γ , then it is able to compute the same function using $\{0,1,\square,\triangleright\}$ in $(c\log_2|\Gamma|)\cdot T(n)$. This is because we may express each symbol of Γ using $\log|\Gamma|$ binary bits, with some constant c overhead.
- **0.5.** A k-tape TM can have its k-1 work tapes simulated by a single tape by interleaving the k tapes together.
- **0.6** (Oblivious Turing Machine). An oblivious TM's head movement depends on the length of the input, not the contents of the input. Every TM can be simulated by an oblivious TM.
- **0.7** (Turing Machine Representation). Every binary string $x \in \{0,1\}^*$ represents some TM, and every TM is represented by infinite such strings (think: comments in a language). The machine represented by x is denoted M_x .
- **0.8** (Universal Turing Machine). There exists a TM \mathcal{U} such that for every $x, \alpha \in \{0,1\}^*$, $\mathcal{U}(x,a) = M_{\alpha}(x)$, where M_{α} denotes the TM represented by α . Moreover, if M_{α} halts on input x within T steps, then $\mathcal{U}_{\alpha}(x)$ halts within $CT \log T$ steps, where C is a number independent of |x|, and depends only on M_{α} 's alphabet size, number of tapes, and number of states. The cost of simulating any machine M_{α} has a logarithmic overhead, due to the alphabet size difference between M_{α} and \mathcal{U} . As \mathcal{U} has a single tape, we do the trick over interleaving M_{α} 's work tapes together.
- **0.9** (Uncomputable Function). Define U as follows: for every $\alpha \in \{0,1\}^*$, if the machine defined by α accepts itself, such that $M_{\alpha}(\alpha) = 1$, then $U(\alpha) = 0$. In other words $U(\alpha) = 1 M_{\alpha}(\alpha)$. There is no such TM that can compute U, because U will always negate it.
- **0.10** (Halting Problem). A TM H such that $H(\alpha, x) = 1$ if $M_{\alpha}(x)$ halts, and yields 0 otherwise, does not exist. We can construct a wrapper TM W that invokes H on itself, and performs the opposite. Diagonalization motherfuckers!
- **0.11** (DTIME). Let $T : \mathbb{N} \to \mathbb{N}$ be some function. A language L is in DTIME(T(n)) iff there is a deterministic TM that runs in time $c \cdot T(n)$ for some constant c > 0 and decides L. This class contains **decision** problems.
- **0.12** (The Class P). $P = \bigcup_{c>1} DTIME(n^c)$
- **0.13** (Church-Turing Thesis). Every physically realizable computation device can be simulated by a TM.
- **0.14** (Bounds). The asymptoptic operators $\{o, O, \Theta, \Omega, \omega\}$ can be thought of as $\{<, \leq, =, \geq, >\}$.

Chapter 2: NP and NP Completeness

- **0.15** (Non-deterministic Turing Machine). A non-deterministic TM is endowed with two transition functions δ_0 and δ_1 along with a special accept state q_{accept} . The NDTM may use either transition function per time step. For every input x, we say that M(x)=1 if there **exists** some sequence of transition function choises that would cause M to reach q_{accept} . Otherwise, if every sequence of non-deterministic choices causes M to halt on x without reaching q_{accept} , then we say that M(x)=0. M runs in time T(n) if for every input $x \in \{0,1\}^*$ and every sequence of non-deterministic choices, M reaches either the halting state or q_{accept} within T(|x|) steps.
- **0.16** (NTIME). For every function $T: \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0, 1\}^*$, we say that $L \in \text{NTIME}(T(n))$ if there is a constant c > 0 and a $c \cdot T(n)$ -time NDTM M such that for every $x \in \{0, 1\}^*$, we have $x \in L \iff M(x) = 1$.
- **0.17** (NP). NP = $\bigcup_{c \in \mathbb{N}} \text{NTIME}(n^c)$
- **0.18.** A language $L \subseteq \{0,1\}^*$ is in NP if there exists a polynomial $p: \mathbb{N} \to \mathbb{N}$ and a polynomial time TM M (called the **verifier** for L) s.t. for every $x \in \{0,1\}^*$, we have $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x,u) = 1. If $x \in L$ and $u \in \{0,1\}^{p(|x|)}$ satisfy M(x,u) = 1, we call u a **certificate** for x (with respect to L and M). NP is the class of languages for which we can tell if u is a solution to the problem $x \in L$ in polynomial time.
- **0.19** (Reductions, NP-hardness, and NP-completeness). We say that a language $L \subseteq \{0,1\}^*$ is a polynomial time **Karp reducible** to a language $L' \subseteq \{0,1\}^*$ if there is a polynomial time computable function $f: \{0,1\}^* \to \{0,1\}^*$ such that for every $x \in \{0,1\}^*$, we have $x \in L \iff f(x) \in L'$. We say that L' is NP-hard if $L \leq_p L'$ for every $L \in NP$. We say that L' is NP-complete if L' is NP-hard and $L' \in NP$.
- **0.20** (Cook Reduction). A reduction computed by a deterministic polynomial time oracle TM.
- **0.21** (Transitivity). If $L \leq_p L'$, and $L' \leq_p L''$, then $L \leq_p L''$.
- **0.22.** If L is NP-hard and $L \in P$, then P = NP.
- **0.23.** If L is NP-Complete then $L \in P \iff P = NP$.
- **0.24** (TMSAT). TMSAT = $\{(\alpha, x, 1^n, 1^t) : \exists u \in \{0, 1\}^n \text{ s.t. } M_a(x, u) = 1 \text{ within } t \text{ steps} \}$
- **0.25** (Decision vs Search). Suppose that P = NP, then for every NP language L there exists a polynomial time TM B such that on input $x \in L$ outputs a certificate for x. That is, $x \in L \iff \exists u \in \{0,1\}^{p(|x|)}$ s.t. M(x,u) = 1 where p is some polynomial and M is a polynomial time TM, then on input $x \in L$, we have B(x) as the string $u \in \{0,1\}^{p(|x|)}$ satisfying M(x,B(x)) = 1.
- **0.26** (Complement Language). If $L \subseteq \{0,1\}^*$, then we denote \overline{L} to be the complement of L. That is, $\overline{L} = \{0,1\}^* \setminus L$.
- **0.27** (coNP). $coNP = \{L : \overline{L} \in NP\}$
- **0.28** (coNP Alternative Definition). For every $L \subseteq \{0,1\}^*$, we say $L \in \text{coNP}$ if there is a polynomial $p : \mathbb{N} \to \mathbb{N}$ and a polynomial time TM M s.t. for every $x \in \{0,1\}^*$, we have $x \in L \iff \forall u \in \{0,1\}^{p(|x|)}$ with M(x,u) = 1.
- **0.29.** coNP is the class of problems for which we can reject proposed solutions in polynomial time.
- **0.30.** $P \subseteq NP \cap coNP$
- **0.31** (EXP). EXP = $\bigcup_{c>1}$ DTIME (2^{n^c})
- **0.32** (NEXP). NEXP = $\bigcup_{c>1}$ NTIME (2^{n^c})

Chapter 3: Diagonalization

- **0.33** (Main Idea). For two complexity classes C_1 and C_2 , we show $C_1 \subsetneq C_2$ by presenting L s.t. $L \in C_2$ but $L \not\in C_1$.
- **0.34** (Time Hierarchy Theorem). If f, g are time constructible function satisfying $f(n) \log f(n) = o(g(n))$, then we have $\text{DTIME}(f(n)) \subsetneq \text{DTIME}(g(n))$.
- **0.35** (Sketch for DTIME $(n) \subseteq \text{DTIME}\left(n^{1.5}\right)$). For the "diagonal" machine D: on input x run for $|x|^{1.4}$ steps on the universal TM \mathcal{U} to simulate $M_x(x)$. If \mathcal{U} outputs a bit $b \in \{0,1\}$, we yield the opposite, which is 1-b, and 0 if it fails to halt in time $|x|^{1.4}$. By definition, D always halts within $n^{1.4}$ steps and so any language decided by D is in DTIME $(n^{1.5})$. There is no machine M that always halts within n steps that can emulate D because D will have captured its result and yielded the opposite. Thus, $L \in \text{DTIME}\left(n^{1.5}\right)$, but $L \notin \text{DTIME}(n)$.

- **0.36** (Non-deterministic Time Hierarchy Theorem). If f, g are time constructible functions satisfying the bound f(n+1) = o(g(n)), then $\text{NTIME}(f(n)) \subseteq \text{NTIME}(g(n))$.
- **0.37** (Sketch for NTIME $(n) \subseteq \text{NTIME}\left(n^{1.5}\right)$). Apply lazy diagonalization. Define $f: \mathbb{N} \to \mathbb{N}$ as follows: f(1) = 2 and $f(i+1) = 2^{f(i)^{1.2}}$. We will find some n such that $f(i) < n \le f(i+1)$. The goal for our diagonal machine is to flip the result on the set $\{1^n: f(i) < n \le f(i+1)\}$. Define D as: If (1) f(i) < n < f(i+1) then simulate M_i on input 1^{n+1} using non-determinism in $n^{1.1}$ time and output. Otherwise if (2) n = f(i+1) accept 1^n iff M_i rejects $1^{f(i)+1}$ in $(f(i)+1)^{1.1}$ time. Thus, if f(i) < n < f(i+1) then $D(1^n) = M_i(1^{n+1})$, otherwise $D(1^{f(i+1)}) \ne M_i(1^{f(i)+1})$.
- **0.38** (Ladner's Theorem). Suppose that $P \neq NP$, then there exists a language $L \in NP \setminus P$ that is not NP-Complete.
- **0.39** (Sketch for Ladner's Theorem). We make some $L \in \text{NP} \setminus \text{P}$ "easy enough" using padding so that it is no longer NP-Complete, while keeping it "hard enough" so that it is not P. We do this by taking an NP-Complete language and "blowing holdes" in it.

Chapter 4: Space Complexity

- **0.40** (Space-bounded Computation). Let $S: \mathbb{N} \to \mathbb{N}$ and $L \subseteq \{0,1\}^*$. We say that $L \in \operatorname{SPACE}(s(n))$ if there is a constant c and a deterministic TM M that decides L with at most $c \cdot s(n)$ locations on M's work tapes (excluding the input tape) are ever visited by M's head during its computation on every input of length n. Likewise, say that $L \in \operatorname{NSPACE}(s(n))$ if there is an NDTM M deciding L that never uses more than $c \cdot s(n)$ non-blank tape locations on length n inputs, regardless of its non-deterministic choices.
- **0.41.** DTIME $(S(n)) \subseteq \text{SPACE}(S(n))$ since a TM can access only one tape cell per step, so a SPACE(S(n)) TM can run for much longer than S(n) steps. In fact, halting behavior can run for as much as $2^{\Omega(S(n))}$ steps as an example, a counter machine that counts from 1 to $2^{S(n)-1}$. Any language that is in SPACE(S(n)) is in DTIME $(2^{O(S(n))})$.
- **0.42.** For space constructible $S: \mathbb{N} \to \mathbb{N}$: DTIME $(S(n)) \subseteq SPACE(S(n)) \subseteq NSPACE(S(n)) \subseteq DTIME\left(2^{O(S(n))}\right)$

Chapter 5: The Polynomial Hierarchy and Alterations

Chapter 6: Boolean Circuits

Examples