A Proofs

In this section, we provide the proof of the propositions given in the article. For each proposition, we re-state the statement and we provide the corresponding proof.

A.1 Proof of Proposition 1.

Statement: A Boolean function f has an Al_S of 0 if and only if the restriction f_S on S is constant.

Proof. First, we show the reverse implication. We suppose that $f \in \mathcal{B}_n$ is constant on S, either f(x) = 0 for all $x \in S$, or f(x) = 1 for all $x \in S$. If f is not null everywhere but $f(x) = 0 \ \forall x \in S$, then the constant function g(x) = 1 is not zero on all S, and is it such that g(x)f(x) = 0 for all $x \in S$. Similarly, if for all $x \in S$ f(x) = 1, the same argument can be used for the function f + 1 on S.

Then, we show the direct implication. We suppose that a function $g \in \mathcal{B}_n$ is a non-zero-annihilator of f restricted to S of degree 0. Then, $g \neq 0$ and $\deg(g) = 0 \Rightarrow g = 1$, therefore since g annihilates f in S, g(x)f(x) = 0 for all $x \in S$, resulting in f(x)g(x) = f(x) = 0. Similarly, if g annihilates f + 1 on S instead of f, we have that g(x)(f(x) + 1) = 0 implying that $f + 1 = 0 \Rightarrow f(x) = 1$ for all $x \in S$. \square

A.2 Proof of Proposition 2.

Statement: Let $Z=\sup\left(f^{(o)}\right)\cap S.$ If $\operatorname{rank}\left(G^{f_{Z}^{(o)},S}\right)<\operatorname{rank}(G^{S}_{r,n}),$ then $f^{(o)}$ admits a non-zero-annihilator restricted to S of degree at most r.

Proof. Let $D_r^n = \sum_{i=0}^r \binom{n}{i}$. Since $D_r^n = \operatorname{rank}(G_{r,n}^{f_S^{(o)},S}) + |\operatorname{Ker}(G_{r,n}^{f_S^{(o)},S})| = \operatorname{rank}(G_{r,n}^S) + |\operatorname{Ker}(G_{r,n}^S)|$, we have that $\operatorname{rank}(G_{r,n}^{f_S^{(o)},S}) < \operatorname{rank}(G_{r,n}^S) \iff |\operatorname{Ker}(G_{r,n}^{f_S^{(o)},S})| > |\operatorname{Ker}(G_{r,n}^S)| + |\operatorname{Ker}(G_{r,n}^S)| > |\operatorname{Ker}(G_{r,n}^S)|$. Therefore $\exists v \in \operatorname{Ker}(G_{r,n}^{f_S^{(o)},S})$ such that $v \notin \operatorname{Ker}(G_{r,n}^S)$. Hence, it exists a Boolean function g of degree r, whose truth table is given by $v \cdot G_{r,n}$, which is such that $v \cdot G_{r,n} \neq 0$ and $v \cdot G_{r,n}^S \neq 0$, but $(g \cdot f_S^{(o)})_S = v \cdot G_{r,n}^{f_S^{(o)},S} = 0$. Since $\operatorname{rank}\left(G_{r,n}^{f_S^{(o)},S}\right) = \operatorname{rank}\left(G_{r,n}^{f_S^{(o)},S}\right)$, $\operatorname{rank}(G_{r,n}^{f_S^{(o)},S}) < \operatorname{rank}(G_{r,n}^S) \Rightarrow \operatorname{rank}(G_{r,n}^{f_S^{(o)},S}) < \operatorname{rank}(G_{r,n}^S)$ is enough to justify the existence of such v giving the non-zero-annihilator g of f^o restricted to S.

A.3 Proof of Proposition 3

Statement: Let $k < \min\{(|Z|, |E_{D_n^n}|\}$ and let V_k constructed following Definition 13. Suppose $\ker(V_k) = \langle \hat{g}_k \rangle = \langle (\epsilon_1, \epsilon_2, \dots, \epsilon_k) \rangle$ and let $g_k \in \mathcal{B}_n$ be the Boolean

function having \hat{g}_k as ANF. Furthermore, assume there exists a z_{k+j} , for $j \geq 1$ such that $g_k(z_{k+j}) = 1$. Then, the matrix V'_{k+1} constructed as:

$$V_{k+1}^{'} = egin{pmatrix} z_{k+j}^{lpha_1} & z_{k+j}^{lpha_2} \ V_k & z_{k+j}^{lpha_2} \ & dots \ z_{k}^{lpha_k} \ z_{1}^{lpha_{k+1}} z_{2}^{lpha_{k+1}} \cdots z_{k}^{lpha_{k+1}} z_{k+j}^{lpha_{k+1}} \end{pmatrix}$$

is such that $(\epsilon_1, \epsilon_2, \dots, \epsilon_k, 0) \notin \ker(V'_{k+1})$.

Proof. Suppose $\ker(V_k) = \langle \hat{g}_k \rangle = \langle (\epsilon_1, \epsilon_2, \dots, \epsilon_k) \rangle$, and that there exists $j \geq 1$ such that $g_k(z_{k+j}) = 1$, but it is also such that $(\epsilon_1, \epsilon_2, \dots, \epsilon_k, 0) \in \ker(V'_{k+1})$.

If $(\epsilon_1, \epsilon_2, \dots, \epsilon_k, 0) \in \ker(V'_{k+1})$, then $(\epsilon_1, \epsilon_2, \dots, \epsilon_k, 0) \cdot V'_{k+1} = \hat{0}$. Specifically, the last equation in the system of equations described by $(\epsilon_1, \epsilon_2, \dots, \epsilon_k, 0) \cdot V'_{k+1} = \hat{0}$ is:

$$\epsilon_1 z_{k+j}^{\alpha_1} + \dots + \epsilon_k z_{k+j}^{\alpha_k} + 0 \cdot z_{k+j}^{\alpha_{k+1}} = \epsilon_1 z_{k+j}^{\alpha_1} + \dots + \epsilon_k z_{k+j}^{\alpha_k} = 0.$$

However, from our hypothesis, we have:

$$g_k(z_{k+j}) = 1 \iff g_k(z_{k+j}) = (\epsilon_1, \epsilon_2, \dots, \epsilon_k) \begin{pmatrix} z_{k+j}^{\alpha_1} \\ z_{k+j}^{\alpha_2} \\ \vdots \\ z_{k+j}^{\alpha_k} \end{pmatrix} = \epsilon_1 z_{k+j}^{\alpha_1} + \dots + \epsilon_k z_{k+j}^{\alpha_k} = 1.$$

This contradiction shows that it cannot be the case that $(\epsilon_1, \dots, \epsilon_k, 0)$ is in the kernel of V'_{k+1} .

A.4 Proof of Proposition 4.

Statement: The sequence of matrices $(V_k)_k$, constructed as described in Proposition 3, ensures that:

$$\dim (\ker (V_k)) \le 1, \quad \forall k \in [1, |Z|].$$

Proof. We prove the result by induction:

- Base case. The initial matrix $V_1=(1)$ has full rank, so $\dim(\ker(V_1))=0\leq 1$.
- Induction step. We suppose that $\dim(\ker(V_k)) \le 1$. We show that $\dim(\ker(V_{k+1})) \le 1$.
 - If $\dim(\ker(V_k)) = 0$, adding a new row and column to form V_{k+1} can increase the kernel by at most 1. Hence, $\dim(\ker(V_{k+1})) \leq 1$.
 - If $\dim(\ker(V_k)) = 1$, let \hat{z} be an element of $\ker(V_{k+1})$. Then either:

*
$$\hat{z} = (\hat{\epsilon}, 0)$$
:

$$\hat{z} \cdot V_{k+1} = 0 \implies \hat{\epsilon} \cdot V_k = 0 \implies \hat{\epsilon} \in \ker(V_k).$$

By Proposition 3, $\hat{\epsilon}$ can only be a trivial solution.

* $\hat{z} = (\hat{y}, 1)$, where $\hat{y} \in \mathbb{F}_2^k$: In this case $\hat{z} \cdot V_{k+1} = 0$ implies:

$$\hat{y} \cdot V_k + (z_1^{\alpha_{k+1}}, \cdots, z_k^{\alpha_{k+1}}) = 0 \iff \hat{y} \cdot V_k = (z_1^{\alpha_{k+1}}, \cdots, z_k^{\alpha_{k+1}}), (1)$$

and

$$\hat{y} \cdot (z_{k+1}^{\alpha_1}, \cdots, z_{k+1}^{\alpha_k})^T + z_{k+1}^{\alpha_{k+1}} = 0 \iff \hat{y} \cdot (z_{k+1}^{\alpha_1}, \cdots, z_{k+1}^{\alpha_k})^T = z_{k+1}^{\alpha_{k+1}}.$$
(2)

Since dim(ker(V_k)) = 1, rank(V_k) = k-1. Hence, there exists at most one particular solution \hat{y}_p for Equation 1. If \hat{y}_p also solves Equation 2, then \hat{y}_p is in $\ker(V_{k+1})$.

Since $(\hat{\epsilon}, 0)$ cannot be in $\ker(V_{k+1})$, the only possible element in $\ker(V_{k+1})$ is \hat{y}_p , if it exists. Therefore, $\dim(\ker(V_{k+1})) \leq 1$.

A.5 Proof of Proposition 5.

Statement: Let $\ker(V_{E_k,Z_k}) = \langle \hat{g}_k \rangle = \langle (\epsilon_1,\ldots,\epsilon_k) \rangle$, where the corresponding Boolean function $g_k \in \mathcal{B}_n$ satisfies $g_k(x) = 0, \ \forall x \in Z$.

Define $E^* = (\alpha_1, \alpha_2, \dots, \alpha_{k-1}, \alpha_{k+1})$, a vector constructed from E_k by replacing the last element α_k with α_{k+1} . Let $V_{k+1} = V_{E_{k+1}^*, Z_k}$ be the matrix defined by replacing the monomial α_k in V_{E_k, Z_k} , with the monomial α_{k+1} :

$$V_{E_{k+1}^*, Z_k} = \begin{pmatrix} z_k^{\alpha_1} \\ z_{k-1}^{\alpha_2} \\ \vdots \\ z_1^{\alpha_{k+1}} z_2^{\alpha_{k+1}} & \vdots \\ z_1^{\alpha_{k+1}} z_2^{\alpha_{k+1}} & z_k^{\alpha_{k+1}} \\ z_1^{\alpha_{k+1}} & z_2^{\alpha_{k+1}} & z_k^{\alpha_{k+1}} \end{pmatrix}.$$

Then, either $\hat{g}_k \notin \ker(V_{E_{k+1}^*,Z_k})$, or \hat{g}_k is the only element (aside from $\hat{0}$) in the kernel of $V_{E_{k+1}^*,Z_k}$. Hence:

$$\dim\left(\ker(V_{E_{k+1}^*,Z_k})\right)\leq 1.$$

Proof. Proposition 3 ensures that the kernel of V_{E_{k-1},Z_k} does not contain elements derived from the kernel of $V_{E_{k-1},Z_{k-1}}$. Therefore, $V_{E_{k-1},Z_{k-1}}$ can be treated as a full-rank matrix. Modifying the last row of a matrix that contains a full-rank sub-matrix does not increase the size of the kernel. This is because the first k entries of the elements in the kernel of V_{E_k,Z_k} and $V_{E_{k+1}^*,Z_k}$ are the same, with the only difference arising from the last row. Since this row is the only one that can introduce linear dependence, the dimension of the kernel of $V_{E_{k+1}^*,Z_k}$ is bounded by 1.

A.6 Proof of Proposition 6.

Statement: Let k be such that $1 < k < \min(|Z|, |E_{D_n^n}|)$ it holds that

$$EF(V_k) =_{p} EF \begin{pmatrix} z_k^{\alpha_1} \\ EF(V_{k-1}) & z_k^{\alpha_2} \\ \vdots & \vdots \\ z_k^{\alpha_{k-1}} \\ (z_1^{\alpha_k} z_2^{\alpha_k} \cdots z_{k-1}^{\alpha_k}) P_{k-1} & z_k^{\alpha_k} \end{pmatrix} .$$

where P_{k-1} is such that $U_{k-1}^{-1} = P_{k-1}$, where $V_{k-1} = L_{k-1}U_{k-1}$ with $EF(V_{k-1}) =_p L_{k-1}$

Proof. Let k be such that $1 < k < \min(|Z|, |E_{D_n^n}|)$. The LU-decomposition of V_{k-1} is $V_{k-1} = L_{k-1}U_{k-1}$, where U_{k-1} is an upper triangular matrix and $L_{k-1} = EF(V_{k-1})$ is the lower triangular matrix.

$$V_{k} = \begin{pmatrix} z_{k}^{\alpha_{1}} \\ L_{k-1}U_{k-1} & z_{k}^{\alpha_{2}} \\ \vdots & \vdots & \vdots \\ z_{1}^{\alpha_{k}} & z_{2}^{\alpha_{k}} \cdots z_{k-1}^{\alpha_{k}} & z_{k}^{\alpha_{k}} \end{pmatrix} = \begin{pmatrix} z_{k}^{\alpha_{1}} & z_{k}^{\alpha_{2}} \\ L_{k-1} & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ z_{1}^{\alpha_{k}} & z_{2}^{\alpha_{k}} \cdots z_{k-1}^{\alpha_{k}} & z_{k}^{\alpha_{k}} \end{pmatrix} \begin{pmatrix} 0 \\ U_{k-1} & 0 \\ \vdots & \vdots \\ 0 \\ 0 & 0 \cdots 0 & 1 \end{pmatrix}.$$

Since U_{k-1} is an upper triangular matrix, $\begin{pmatrix} 0 \\ U_{k-1} \\ \vdots \\ 0 \\ 0 \\ 0 \\ \cdots \\ 0 \\ 1 \end{pmatrix}$ is also an upper triangular

matrix, and therefore

$$EF(V_k) =_{p}EF\begin{pmatrix} z_k^{\alpha_1} & z_k^{\alpha_2} \\ L_{k-1} & \vdots \\ & \vdots \\ z_k^{\alpha_{k-1}} \\ (z_1^{\alpha_k} z_2^{\alpha_k} \cdots z_{k-1}^{\alpha_k}) U_{k-1}^{-1} z_k^{\alpha_k} \end{pmatrix}.$$

Taking $L_{k-1} =_p EF(V_{k-1})$ and $P_{k-1} = U_{k-1}^{-1}$:

$$EF(V_k) = {}_{p}EF\left(\begin{pmatrix} z_k^{\alpha_1} \\ EF(V_{k-1}) & z_k^{\alpha_2} \\ \vdots \\ z_k^{\alpha_{k-1}} \\ (z_1^{\alpha_k} z_2^{\alpha_k} \cdots z_{k-1}^{\alpha_k}) P_{k-1} & z_k^{\alpha_k} \end{pmatrix}\right).$$

B Algorithms

In this section, we provide the pseudo-codes of the algorithms described in Section 3 and Section 4.2.

Algorithm 2 Algebraic immunity of f restricted to the set S, Reed-Muller method.

```
Input: x \in \mathbb{F}_2^{2^n} evaluation of the truth table of f \in \mathcal{B}_n and the restricted set S \subseteq \mathbb{F}_2^n.
 1: function <code>find_deg_smallest_S_annihilator</code> ( G_{n,n}^{f_{n,n}^{(o)},S},G_{d,n}^{S},D^{n})
 2:
          r \leftarrow 0;
          i \leftarrow 0;
 3:
          ef_f, ef_S \leftarrow null, null;
 4:
 5:
          previousIndex \leftarrow 0;
          while r \leq |S|/2 do
 6:
               D_i^n \leftarrow D^n[i];
 7:
               ef_f \leftarrow \texttt{ECHELON\_FORM\_LAST\_D}_i^n \_\texttt{ROWS} \left( ef_f \mid\mid G_{n,n}^{f_{Z_n}^{(o)},S}[previousIndex:D_i^n] \right)^1;
 8:
               ef_S \leftarrow \text{ECHELON\_FORM\_LAST\_}D_i^n \text{\_ROWS} (ef_S \mid\mid G_{n,n}^S[previousIndex:D_i^n]);
 9:
10:
                r \leftarrow rank (ef_S);
               if rank (ef_f) < r then
11:
12:
                     return i;
                end if
13:
14:
                previousIndex \leftarrow D_i^n;
15:
                i \leftarrow i + 1;
           end while
16:
17: end function
18:
19: Z = supp(x) \cap S;
20: Z_c = supp(x+1) \cap S;
21: if Z = \emptyset of Z_c = \emptyset then return 0;
23: m_{max}, D^{\leq n_{max}} \leftarrow \text{READ\_VALUES\_FROM\_FILE()};
24: G_{n,n} \leftarrow m_{max}[n];
25: D^{n} \leftarrow D^{\leq n_{max}}[n];
26: G_{n,n}^{f_Z,S}, G_{n,n}^{(f+1)_Z,S}, G_{n,n}^S \leftarrow \text{Construct_restricted_generator_matrices}(G_{n,n}, x, S)^2
27: immunity_f, immunity_{f+1} \leftarrow (
28: FIND_DEG_SMALLEST_S_ANNIHILATOR (G_{n,n}^{f_Z,S},G_{n,n}^S,D^n)
29: | FIND_DEG_SMALLEST_S_ANNIHILATOR (G_{n,n}^{(f+1)_Z,S},G_{n,n}^S,D^n)
31: return MIN(immunity_f, immunity_{f+1})^3;
```

Algorithm 3 Algorithm to compute the algebraic immunity of a function $f \in \mathcal{B}_n$ restricted to S

```
Input: x \in \mathbb{F}_2^{2^n} evaluation of the truth table of f \in \mathcal{B}_n and the restricted set S \subseteq \mathbb{F}_2^n.
Output: Al_S(f)
1:
2: Z \leftarrow supp(x) \cap S;
3: Z_c \leftarrow supp(x+1) \cap S;
 4: if Z = \emptyset or Z_c = \emptyset then
 5:
         return 0;
6: end if
7:
8: E_{D_n^n} \leftarrow \text{Construct\_monomials}(n=n,d=n)^4;
9: r \leftarrow \frac{|Z|}{|Z_c|} if |Z| < |Z_c| else \frac{|Z_c|}{|Z|}; 10: if r \ge \frac{1}{4} then
     immunity_f, immunity_{f+1} \leftarrow (
12: find_deg_smallest_S_annihilator(Z = Z, E = E_{D_n^n}, S = S)
13: | FIND_DEG_SMALLEST_S_ANNIHILATOR(Z = Z_c, E = E_{D_n^n}, S = S)
14: );
         return MIN(immunity_f, immunity_{f+1});
15:
16: else
         return FIND_DEG_SMALLEST_S_ANNIHILATOR_SEQ(Z = Z, Z_c, E = E_{D_s^n}, S =
17:
    (S)^5;
18: end if
```

C Comparison between Algorithm 2 and Algorithm 3 on WAPB functions

In this part, we compare the execution times of Algorithm 2 and Algorithm 3 by running both algorithms on multiple WAPB functions restricted to the largest set $\mathsf{E}_{\lceil n/2 \rceil, n}$, with different numbers of variables. Specifically, the experiment is done by running the

² The symbol || is used as row-concatenation of matrices, meaning that C = A||B| is the matrix constructed by appending all the row of the matrix B to the matrix A.

³ CONSTRUCT_RESTRICTED_GENERATOR_MATRICES is a function extracting $G_{n,n}^{f_{supp}(f)\cap S,S}$, $G_{n,n}^{f_{supp}(f+1)\cap S,S}$ and $G_{n,n}^{S}$ from the full Reed-Muller code generator matrix $G_{n,n}$ following Definition 11.

⁴ The function MIN takes care of null values: $MIN(immunity_f, null) = immunity_f$ and $MIN(null, immunity_{f+1}) = immunity_{f+1}$.

⁹ CONSTRUCT_MONOMIALS generates all monomials up to the degree d with n variables. $E_{D_n^n}$ may also be pre-computed and the function CONSTRUCT_MONOMIALS removed from the algorithm.

The implementation of the function FIND_DEG_SMALLEST_S_ANNIHILATOR_SEQ is similar to the function FIND_DEG_SMALLEST_S_ANNIHILATOR described in Algorithm 1 with the difference that the degree of the minimal-degree non-zero annihilator of f or of f+1 restricted on S, is found sequentially instead of in parallel.

algorithms with the number of variables n going from 1 to 12. For both algorithms, if $n \leq 4$, we calculate the average over the $\mathsf{Al}_{\lceil n/2 \rceil}$ of all functions in \mathcal{WAPB}_n , whereas for n > 4, we calculate the average over the $\mathsf{Al}_{\lceil n/2 \rceil}$ of a random sample of $10^4 \ \mathcal{WAPB}_n$ functions.

Figure 1 shows the mean execution time per value of n of the two algorithms. We denote by $T\left(G^{\leq n_{max}}\right) = T\left(G^{\leq 12}\right)$ the necessary time to pre-compute all the necessary Reed-Muller codes's generator matrices following Equation (2): we recall that it is the necessary time to compute the sequence $(G_{n,n})_{n\in[1,12=n_{max}]}$, not only the generator matrix $G_{n,n}$ for the current iteration n. In fact, $T\left(G^{\leq 12}\right)$ is constant, that is because the computation occurs before beginning the experiment since it is expected that Algorithm 2 is able to run for any number of variable n up to an upper bound n_{max} , without having to compute the Reed-Muller code for it.

Fig. 1: Average time execution per number of variables of Algorithms 2 and 3 over 10^4 random \mathcal{WAPB}_n functions on the set $E_{\lceil n/2 \rceil,n}$. $T\left(G^{\leq 12}\right)$ gives the time of the precomputation of the sequence of all Reed-Muller matrices up to $G_{12,12}$.

The pre-computation times of $G^{\leq n_{max}}$ for Algorithm 2 are given in the Table 1. From Figure 1, we observe that Algorithm 3 outperforms Algorithm 2 for $n \leq 12$, even without considering the pre-computation time required for $G^{\leq n_{max}}$ and $D^{\leq n_{max}}$ in Algorithm 2. Furthermore, Algorithm 2 becomes impractical for n>12 due to the excessive complexity of pre-computation. In contrast, Algorithm 3 remains feasible for larger values of n.

$G^{\leq 1}$	$G^{\leq 2}$	$G^{\leq 3}$	$G^{\leq 4}$	$G^{\leq 5}$	$G^{\leq 6}$	$G^{\leq 7}$	$G^{\leq 8}$	$G^{\leq 9}$	$G^{\leq 10}$	$G^{\leq 11}$	$G^{\leq 12}$
0.0126	0.0042	0.0017	0.004	0.0149	0.0470	0.1938	0.806	3.5456	14.9168	65.5014	276.2263

Table 1: Pre-computation time (in seconds) for $G^{\leq n_{max}}$ for n_{max} from 1 to 12.

Both implementations of the algorithms used to generate the plot in Figure 1 have been developed in *Python*, with the following enhancements:

- The linear algebra operations in Algorithm 2 are performed using the SageMath library, while those in Algorithm 3 are executed using an ad-hoc custom Python package implemented in Rust. This setup ensures comparability between the two implementations, as the SageMath library is highly optimized for linear algebra operations.
- The computation of $G^{\leq n_{max}}$ for Algorithm 2 is performed using the *generator_matrix* method of the *SageMath* object *BinaryReedMullerCodes*. While this computation could be more efficient if implemented in *Rust*, the current overall implementation still faces scalability issues. Specifically, for $n \geq 16$, the algorithm becomes impractical because $G_{16,16}$ cannot be stored in a native *Python* list or a *SageMath* matrix object. However, if the entire algorithm were implemented in *Rust*, it could potentially be feasible. Consequently, for larger values of n, Algorithm 2 is not usable, while Algorithm 3 remains viable.

D Plots of AIk probability distributions of WPB functions and average execution times.

Fig. 2: Mean of Al_k over WPB_2 .

Fig. 3: Probability distribution of Al_k over WPB_2 .

Fig. 4: Mean of Al_k and probability distribution of Al_k from Definition 16 of 4-variable WPB functions.

Fig. 5: Estimated average of AI_k over \mathcal{WPB}_3 .

Fig. 6: Estimated Probability distribution of Al_k over \mathcal{WPB}_3 .

Fig. 7: Estimated average of AI_k and probability distribution of AI_k over 8-variable WPB functions, with 2^{20} samples.

Fig. 8: Estimated average of AI_k over WPB_4 .

Fig. 9: Estimated Probability distribution of AI_k over WPB_4 .

Fig. 10: Estimated average of AI_k and probability distribution of AI_k over 8-variable WPB functions, with 2^{11} samples.

Table 2: Averages execution times and $\mathsf{Al}k$ of \mathcal{WPB}_2 , \mathcal{WPB}_3 and \mathcal{WPB}_4 functions.

(a) Average execution time and AI_k for n=4, m=2.

k	0	1	2	3	4
$\mathbb{E}[T(AI_k)]$	0.53×10^{-4}	0.0526	0.0487	0.0586	0.6×10^{-5}
$\mathbb{E}[AI_k]$	0.00	1.00	1.00	1.00	0.00

(b) Average execution time and AI_k for n=8, m=3 and sampleSize $=2^{20}$.

$k \mid 1$	2	3	4	5	6	7
$\mathbb{E}[T(AI_k)] \mid 0.5 \times 10^{-3}$	0.3×10^{-3}	0.7×10^{-3}	0.1×10^{-2}	0.7×10^{-3}	0.3×10^{-3}	0.4×10^{-3}
$\mathbb{E}[AI_k]$ 1.00	1.95	2.02	2.88	2.02	1.95	1.00

(c) Average execution time and AI_k for n=16, m=4 and sampleSize $=2^{11}.$

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathbb{E}[T(AI_k)]$	0.019	0.020	0.056	2.38	57.45	390.30	1807.83	4111.90	2262.56	432.50	74.77	3.20	0.068	0.019	0.018
$\mathbb{E}[AI_k]$	1.00	2.00	2.99	3.89	4.39	5.00	6.00	6.00	6.00	5.00	4.41	3.88	2.99	2.00	1.00