

POWER OPTIMISATION FOR ADAPTIVE EMBEDDED WIDEBAND RADIOS

A Thesis submitted to the School of Computer Engineering of Nanyang Technological University

by

Pham Hung Thinh

in fulfillment of the requirement for the Degree of Doctor of Philosophy of for Computer Engineering

September 22, 2014

Contents

	List	of Figu	ures	iv
	List	of Tab	les	1
1	Rese	earch Ir	ntroduction	2
	1.1	Backg	round	2
	1.2	Resear	rch Motivation	2
	1.3	Object	tive and Contributions	2
	1.4	Organi	ization	2
2	Bacl	kground	d Literature	3
	2.1	Power	Consumption	4
		2.1.1	Power Dissipation on FPGA	4
		2.1.2	Power Estimation	4
		2.1.3	Low power design strategies	4
	2.2	Orthog	gonal Frequency Division Multiplexing	4
		2.2.1	Cyclic Prefix	4
		2.2.2	OFDM-based system	4
		2.2.3	Evaluating OFDM	4
	2.3	Multip	ole Standard Cognitive Radios	4
	2.4	OFDM	1 Synchronisation	4
		2.4.1	Timing Offsets	4
		2.4.2	Frequency Offset	4
		2.4.3	Phase Noise	4
	2.5	Relate	ed Work on OFDM synchronisation	4
		2.5.1	Coarse STO and Fractional CFO Estimation	4

		2.5.2	Fractional CFO Compensation	4				
		2.5.3	Fine STO and Integer CFO Estimation	4				
	2.6	.6 Shaping OFDM Spectral Leakage						
		2.6.1	Pulse Shaping	4				
		2.6.2	Image Spectrum Compression	4				
	2.7	Summa	ary	4				
3	Mul	tiplierle	ess Correlator Design for low-power systems	5				
	3.1	Introdu	action	5				
	3.2	Implen	nentation of correlators	5				
		3.2.1	Design of DSP48E1 Based Correlator	5				
		3.2.2	Design of Multiplierless Correlator	5				
		3.2.3	Implementation Results	5				
	3.3	Simula	ation and discussion	5				
	3.4	Summa	ary	5				
4	Prop	Proposed Method for OFDM Synchronisation						
	4.1	Introdu	action	6				
	4.2	Propos	ed Technique for FFO and STO Estimation	6				
	4.3	Enhand	ced Synchronization Through Novel IFO Estimation Architecture	6				
	4.4	Summa	ary	6				
5	Proposed Method for Shaping OFDM Spectral Leakage							
	5.1	Introdu	action	7				
	5.2	Propos	ed Technique for Adaptive Shaping Spectral Leakage	7				
	5.3	Simula	ation Results and Discussion	7				
	5.4	Summa	ary	7				
6	A Novel Architecture for Multiple Standard Cognitive Radios							
	6.1	Introdu	action	8				
	6.2	Propos	ed OFDM-based baseband modulation for MSCR	8				
	6.3	Perform	mance Analysis and Discussion	8				
	6.4	Summa	ary	8				

7	Conclusion and Future Work	9
Re	eferences	10

List of Figures

List of Tables

Research Introduction

- 1.1 Background
- 1.2 Research Motivation
- 1.3 Objective and Contributions
- 1.4 Organization

Background Literature

2.1 Power Consump	otion
-------------------	-------

- 2.1.1 Power Dissipation on FPGA
- 2.1.2 Power Estimation
- 2.1.3 Low power design strategies
- 2.2 Orthogonal Frequency Division Multiplexing
- 2.2.1 Cyclic Prefix
- 2.2.2 OFDM-based system
- 2.2.3 Evaluating OFDM
- 2.3 Multiple Standard Cognitive Radios
- 2.4 OFDM Synchronisation
- 2.4.1 Timing Offsets
- 2.4.2 Frequency Offset
- 2.4.3 Phase Noise
- 2.5 Related Work on OFDM synchronisation
- 2.5.1 Coarse STO and Fractional CFO Estimation
- 2.5.2 Fractional CFO Compensation
- 2.5.3 Fine STO and Integer CFO Estimation
- 2.6 Shaping OFDM Spectral Leakage
- 2.6.1 Pulse Shaping

Multiplierless Correlator Design for low-power systems

- 3.1 Introduction
- 3.2 Implementation of correlators
- 3.2.1 Design of DSP48E1 Based Correlator
- 3.2.2 Design of Multiplierless Correlator
- 3.2.3 Implementation Results
- 3.3 Simulation and discussion
- 3.4 Summary

Proposed Method for OFDM Synchronisation

- 4.1 Introduction
- 4.2 Proposed Technique for FFO and STO Estimation
- **4.3 Enhanced Synchronization Through Novel IFO Estimation Architecture**
- 4.4 Summary

Proposed Method for Shaping OFDM Spectral Leakage

- 5.1 Introduction
- **5.2** Proposed Technique for Adaptive Shaping Spectral Leakage
- 5.3 Simulation Results and Discussion
- 5.4 Summary

A Novel Architecture for Multiple Standard Cognitive Radios

- 6.1 Introduction
- 6.2 Proposed OFDM-based baseband modulation for MSCR
- **6.3** Performance Analysis and Discussion
- 6.4 Summary

Conclusion and Future Work

References