CS771: Practice Set 3

Problem 1

(Learning SVM via Co-ordinate Ascent) Consider the soft-margin linear SVM problem

$$\arg\max_{0\leq \boldsymbol{\alpha}\leq C}f(\boldsymbol{\alpha})$$

where $f(\alpha) = \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha^{\top} \mathbf{G} \alpha$, \mathbf{G} is an $N \times N$ matrix such that $G_{nm} = y_n y_m \mathbf{x}_n^{\top} \mathbf{x}_m$ and $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_N]$ are the Lagrange multipliers. Given the optimal α , the SVM weight vector is $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$

Your goal is to derive a **co-ordinate ascent** procedure for the vector $\boldsymbol{\alpha}$, such that each iteration updates a uniformly randomly chosen entry α_n of the vector $\boldsymbol{\alpha}$. However, instead of updating $\boldsymbol{\alpha}$ via standard co-ordinate descent as $\alpha_n = \alpha_n + \eta g_n$ where g_n denotes the n-th entry of the gradient vector $\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha})$, we will update it as $\alpha_n = \alpha_n + \delta_*$ where $\delta_* = \arg \max_{\boldsymbol{\delta}} f(\boldsymbol{\alpha} + \delta \mathbf{e}_n)$ and \mathbf{e}_n denotes a vector of all zeros except a 1 at entry n.

Essentially, this will give the new α_n that guarantees the maximum increase in f, with all other α_n 's fixed at their current value. Derive the expression for δ_* and give a sketch of the overall co-ordinate ascent algorithm.

Note that your expression for δ_* should be such that the constraint $0 \le \alpha_n \le C$ is maintained.

Problem 2

(Kernelized Ridge Regression) Starting with the solution of the weight vector of the ridge regression model, i.e., $\boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\boldsymbol{y}$, where \mathbf{X} is the $N \times D$ feature matrix and \boldsymbol{y} is the $N \times 1$ response vector, show that the weight vector can also be written as $\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i \boldsymbol{x}_i$ and thus the model can be kernelized at prediction time when given a new test input $\boldsymbol{x}*$.

Problem 3

(MLE for Multivariate Gaussian) Given N samples x_1, x_2, \dots, x_N drawn i.i.d. from a D-dimensional Gaussian $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$, derive the MLE solution for the mean and covariance matrix of this Gaussian.

Problem 4

(Poisson: Parameter Estimation and Predictive Distribution) Consider N count-valued observations $y=\{y_1,y_2,\ldots,y_N\}$ drawn i.i.d. from a Poisson distribution $p(y|\lambda)=\frac{\lambda^y e^{-\lambda}}{y!}$ where λ is the rate parameter of the Poisson. Assume a gamma prior on λ , i.e., $p(\lambda)=\operatorname{Gamma}(\lambda;\alpha,\beta)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}$, where $\alpha>0$ is the *shape parameter* and $\beta>0$ is the *rate parameter*, respectively, of the gamma. Note that, for this parameterization of gamma distribution, the prior's *mode* is $\frac{\alpha-1}{\beta}$ and mean is $\frac{\alpha}{\beta}$.

- Derive the MLE and MAP estimates for λ .
- Derive the posterior distribution for λ .
- Show that the MAP estimate (i.e., mode of the posterior) can be written as weighted combination of the MLE estimate and the prior's mode. Likewise, show that the posterior's *mean* can be written as a weighted combination of the MLE estimate and the prior's *mean*.

¹There is an alternate parameterization of gamma in terms of shape α and scale θ , for which $p(\lambda) \propto \lambda^{\alpha-1} e^{-\frac{\lambda}{\theta}}$

• Compute the predictive distribution $p(y_*|y)$, given the MLE and MAP estimate of λ , and also given the full posterior distribution over λ . In all the three cases, this would be an probability distribution over counts. Is it a Poisson in all the three cases?

Problem 5

(Generative Classification with Gaussian Class-Conditional Distributions) Consider a generative clasification model with K classes. Assume the class-conditional for class k to be Gaussian $\mathcal{N}(\boldsymbol{x}|\mu_k, \Sigma_k)$ and assume the class-marginal p(y) to be multinoulli $(y|\pi_1,\ldots,\pi_K)$. Assume the training data to be $\{\boldsymbol{x}_n,y_n\}_{n=1}^N$. Show that the MLE solution for the model parameters $\boldsymbol{\pi}=[\pi_1,\ldots,\pi_K]$ and $\{\mu_k,\Sigma_k\}_{k=1}^K$ is given by

$$\hat{\pi}_k = \frac{N_k}{N}$$

$$\hat{\mu}_k = \frac{1}{N_k} \sum_{n:y_n = k} \boldsymbol{x}_n$$

$$\hat{\Sigma}_k = \frac{1}{N_k} \sum_{n:y_n = k} (\boldsymbol{x}_n - \hat{\mu}_k) (\boldsymbol{x}_n - \hat{\mu}_k)^{\top}$$

Note that this is the same model that we looked at in the class. I however left the derivation as an exercise (which I would like to try on your own now :)). This exercise is also meant to give you practice for parameter estimation for multinoulli and (multivariate) Gaussian distributions.

Note: Although this MLE problem is fairly standard and the results intuitive/worth-remembering, note that:

- For doing MLE for π_k , you will have to use the constraint that $\sum_{k=1}^K \pi_k = 1$ which makes it a *constrained* optimization problem.
- For getting the MLE solution for Σ_k , you should ideally use the constraint that it is positive semi-definite (which will again lead to a constrained optimization problem). However, even if you ignore this constraint, you should be able to get the solution above (so I would suggest ignoring the constraint for this part).

Problem 6

(MAP and Posterior for Multinoulli) You already derived the MLE for the parameters π of a multinoulli in Problem 5. In this problem, you will go a step further and do MAP estimation for π and also compute the posterior distribution of π .

Suppose that you are given N samples y_1, y_2, \ldots, y_N drawn i.i.d. from a K-dimensional multinoulli distribution multinoull($y|\pi$) where $\pi = [\pi_1, \pi_2, \ldots, \pi_K]$. Further, assuming a Dirichlet prior on Dirichlet($\pi|\alpha$) where $\alpha = [\alpha_1, \alpha_2, \ldots, \alpha_K]$ are K non-negative hyperparameters of the Dirichlet, derive the MAP estimate as well as the posterior distribution of π . Note: To get the MAP estimate, you can follow either of these two approaches: (1) Follow the conventional recipe of finding the MAP estimate, i.e., maximize the log-posterior w.r.t. the parameter of interest π , (2) Compute the posterior of π and see what the mode of this distribution is.

Problem 7

(A Circular Definition) Consider a logistic regression model $p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \frac{1}{1+\exp(-y_n\boldsymbol{w}^{\top}\boldsymbol{x}_n)}$, with a zero-mean Gaussian prior $p(\boldsymbol{w}) = \mathcal{N}(\mathbf{0}, \lambda^{-1}\mathbf{I})$. Note that this loss function for logistic regression assumes $y_n \in \{-1, +1\}$ instead of $\{0, 1\}$. Show that the MAP estimate for \boldsymbol{w} can be written as $\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n$ where each α_n itself is a function of \boldsymbol{w} . Based on the expression of α_n , briefly explain why α_n can be seen as the "importance" of the training example (\boldsymbol{x}_n, y_n) and why the result $\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n$ makes sense for this model.

Problem 8

(Generative seen as Discriminative) Consider a generative classification model for binary classification. Assume the class-marginal distribution to be defined as $p(y=1)=\pi$ and assume each class-conditional distribution to be defined as a product of D Bernoulli distributions, i.e., $p(\boldsymbol{x}|y=1)=\prod_{d=1}^D p(x_d|y=1)$ where $p(x_d|y=1)$ = Bernoulli $(x_d|\mu_{d,1})$, and $p(\boldsymbol{x}|y=0)=\prod_{d=1}^D p(x_d|y=0)$ where $p(x_d|y=0)$ = Bernoulli $(x_d|\mu_{d,0})$. Note that this makes uses of the naïve Bayes assumption.

Show that this model is equivalent (in its mathematical form) to a probabilistic discriminative classifier. In particular, derive the expression for p(y=1|x), and state what type of decision boundary will this model learn - linear, quadratic, or something else (looking at the expression of p(y=1|x) should reveal that)? Clearly write down the expressions for the parameters of the equivalent probabilistic discrimininative model in terms of the generative model parameters $(\pi, \mu_{d,0}, \mu_{d,1})$. Note that you do not have to estimate the parameters $\pi, \mu_{d,0}, \mu_{d,1}$ (but you may try that for practice if you want).