Cloud Computing and Distributed Systems Introduction

Raja Appuswamy

Eurecom

Cloud computing: The disruption

- "The worldwide public cloud services market is projected to reach a total of \$214.3 billion in 2019. Cloud Services Industry to grow exponentially to \$331 billion by 2022." Gartner
- "In 2018, AWS delivered most of Amazon's operating income" Amazon
- "80% of organizations will migrate toward the cloud by 2025." Gartner
- "50% of all data will be held in the cloud by 2020. Cloud data centers will process 94% of workloads in 2021." IDC & Cisco
- "Global data centers used roughly 416 terawatts (3% of the total electricity) last year, nearly 40% more than the entire United Kingdom." Forbes
- "Big data solutions via cloud subscriptions will increase about 7.5 times faster than on-premise options." Forrester
- "Al without the cloud is tough" Information Age

This Course

- What you will learn (roadmap)
 - Economic foundations
 - Cloudonomics & Service models
 - Infrastructure foundations
 - Virtualization, containerization, serverless functions
 - Systems foundations
 - In-depth description of Hadoop & ecosystem
 - Architecture of Apache Spark
 - Programming foundations
 - Map—reduce and functional programming
 - Relational Algebra and High-Level Languages
 - Algorithmic foundations
 - Cluster scheduling with YARN, Mesos, Omega
 - CAP theorem, SQL and NoSQL
 - Coordination & Apache Zookeeper
 - Decentralization & blockchain (if time permits)

Who is this course for?

- Cloud system and application engineers
- Data scientists
- Requirements
 - Good knowledge of Python
 - Familiarity with operating systems concepts, and Linux
 - · Good knowledge of git
 - · Ideally, familiarity with distributed algorithms

How to make the most of this course?

Attend classes and the labs

- · Many discussions in live classes, that are not on the slides
- Laboratories can be hard for people with little CS background

Resources

Lecture notes: https://raja-appuswamy.github.io/DISC-CLOUD-COURSE/

Grading

Final exam

- 50% of the grade
- Generally divided in two parts
 - · A series of questions
 - · One or more problems to solve

Laboratory sessions

- Mainly Notebooks, some special labs
- · Question answering
- · Heuristic to map credits to grade

Introduction to the Cloud Computing

We live in a world of data

Figure: Data deluge.

Big Data

- Big data is defined as large pools of data that can be captured, communicated, aggregated, stored, and analyzed.
- Data continues to grow

Figure: Global datasphere

- · Applications are becoming data intensive
 - More data leads to better accuracy
 - · With more data, accuracy of different algorithms converges

Let's look at your data.

You want to access, shared, process your data from all your devices, anytime, anywhere.

How will we manage all this data?

Manage it ourselves?

- How do we store it?
- How do we share it?
- How can we enable access to it from any place?
- How do we process all of it?
- How do we secure it?
-

What if it is managed by someone else?

- Someone provides a management "service"
- You pay a subscription for this "service"

Cloud computing: The prophecy

- In 1965, MIT's Fernando Corbató and the other designers of the Multics operating system envisioned a computer facility operating "like a power company or water company".
- Plug your thin client into the computing Utility and Play your favorite Intensive Compute & Communicate Application

Utility-Product-Service lifecycle: Water

Utility-Product-Service lifecycle: Electricity

Generalizing the lifecycle

Cloud Computing

Transformation of IT from a product to a service

How did IT transformation happen?

Requirements to transform IT

- · Connectivity to move data
- Interactivity for seamless interface
- · Reliability against failures
- · Acceptable performance
- Ease of programmability for developing new services
- Manageability for Big Data
- Pay-as-you-go to avoid capital investment
- Scalability and elasticity for changing needs

Supporting technologies

- Cloud computing is a combination of technologies
 - Connectivity to move data => Networked systems
 - Interactivity for seamless interface => Web 2.0 and HCI
 - Reliability against failures => Dependable systems
 - Acceptable performance => Parallel and distributed systems
 - Ease of programmability for developing new services =>
 Programming languages
 - Manageability for Big Data => Storage systems
 - Pay-as-you-go to avoid capital investment => Utility computing & economics
 - Scalability and elasticity for changing needs => Virtualization

Formal definition

Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,

as a metered service over a network.

Why Cloud Computing?

No upfront cost

Market

· Reduced Time to

- · All you need is access to the internet
- · It's the providers responsibility to manage the details.

Scale quickly and effortlessly

- · Resources can be rented and released as required
- · Software Controlled · Instant scalablility

Flexible options Configure software

- packages, instance systems. · Any software platform
- · Access from any machine connected to the Internet

Resource Utilization is improved

· Reduce Idle resources by sharing and conolidation · Better utilization of CPU / Storage and Bandwidth

Carbon **Footprint** decreased

· Sharing of resources means less servers less power and less emissions

Applications enabled by cloud computing

High-growth applications

- When you startup gains traction, can you keep up?
- Friendster(2001): Could not keep up with user growth
- Facebook (2006): \$Billion company today
- Airbnb, Uber, Expedia, ...

Aperiodic applications

- How do you deal with sudden load peaks?
 - Amazon Prime Day: Aurora cloud database processed 148 billion transactions, stored 609 terabytes of data, and transferred 306 terabytes of data
 - Flipkart: Website crashed on their "Big Billion Day" sale
- If you design for peak, how do you deal with low loads?
 - Amazon normal day: 1.3 billion transactions

Applications enabled by cloud computing(2)

On-off applications

- Scientific simulation using 1000s of computers
 - DNA Nexus and Baylor college of medicine analyzed DNA of more than 14,000 individuals
 - 2.4 million core-hours of computational time, 440 TB of results, 1PB of storage
- Why not rent computing time to run such one-off experiments?

Periodic applications

- Stock market analysis
 - Mine market data during day
 - Analyze data during night
 - Different computational requirements at different times
- Dynamic, flexible infrastructure can reduce costs, improve performance

"A Cloudy History of Time"

Cloud computing: Full circle back to time sharing

New features of Cloud Computing

- Massive scale.
- On-demand access: Pay-as-you-go, no upfront commitment.
 - · And anyone can access it
- Data-intensive Nature: What was MBs has now become TBs, PBs and XBs.
 - Daily logs, forensics, Web data, etc.
- New Cloud Programming Paradigms: MapReduce/Hadoop, Spark, NoSQL, NewSQL,... and many others.
 - High in accessibility and ease of programmability
 - Lots of open-source

Cloud Infrastructure

What is a server?

- Servers are computers that provide "services" to "clients"
 - Typically designed for reliability and to service a large number of requests
 - Dual-socket servers are the fundamental building block of cloud infrastructure
- Organizations typically require many physical servers to provide various services
 - Web server, database server, mail server, ...
- Server hardware is becoming more compact
 - · conserving floor space
 - improving manageability
 - power and cooling

What is a rack?

- · Servers are grouped, placed, and organized in racks
- Equipment are designed in a modular fashion to fit into rack units (1RU = 4.45cm)
- A single rack (6 ft or 180cms) can hold up to 42 1U servers

Figure: Global datasphere

What is a data center?

- Facility used to house a large number of computer systems and associated components
 - Air conditioning
 - Power supply
 - Hazard protection
 - Security and monitoring systems
 - Networking and connectivity
- Let's take a look at a special Microsoft datacenter (https://www.youtube.com/watch?v=L2oJw1a gEM)

Trivia: World's largest datacenter

- (2018) China Telecom. 10.7 Million sq. ft.
- (2017) "The Citadel" Nevada. 7.2 Million sq. ft.
- (2015) In Chicago!
 - •350 East Cermak, Chicago, 1.1 MILLION sq. ft.
 - Shared by many different "carriers"
 - Critical to Chicago Mercantile Exchange

See:

https://www.gigabitmagazine.com/top10/top-10-biggest-data-centres-world

https://www.racksolutions.com/news/data-center-news/top-10-largest-data-centers-world/

Problems with privately owned data centers

- Expensive to setup (High capital expenses or CAPEX)
 - Real estate, server and peripherals, ...
- Expensive to operate (High operational expenses or OPEX)
 - Energy costs (Good data centers have efficiency of 1.7, 0.7
 Watts lost for each 1W delivered to the servers)
 - Administration costs
- Difficult for applications to grow/shrink
 - How do we map applications to servers?
 - · What if we over/under provision?
- Low utilization (30% server usage considered good)
 - Throw money at the performance problem (peak provisioning)
 - Uneven application fit: each server has CPU, memory, and disk: most applications exhaust one resource, stranding the others
 - Uncertainty in demand: Demand for a new service can spike quickly

What if

- Turn the servers into a single large resource pool and let services dynamically expand and contract their footprint as needed?
- Two main requirements:
 - Means for rapidly and dynamically satisfying application fluctuating resource needs
 - · Provided by virtualization
 - Means for servers to quickly and reliably access shared and persistent data
 - Provided by programming models and distributed file/storage/database systems

What is a cloud then?

Single-site cloud

 A data center hardware and software that the vendors use to offer the computing resources and services

Geographically distributed cloud

 Multiple such sites, with each site perhaps having different structure and services

Figure: Azure: 1 million servers, 100 data centers across 90 countries.

Cloud Computing

Cloud Computing is the delivery of computing as a service rather than a product,

whereby shared resources, software, and information are provided to computers and other devices,

as a metered service over a network.

IT as a service

- How do we offer IT as a service?
- Different users have different needs
 - Average end user
 - Mobile app developer
 - Enterprise systems architect
- Let us look at some service models

Basic cloud service models

SaaS

- Software is delivered as a service over the Internet, eliminating the need to install and run the application on the customer's own computer
- Simplifies maintenance and support
- You use SaaS products everyday
 - Gmail, Google docs, Youtube, ...
- Salesforce.com is a popular commercial pioneer (ERP, CRM, ...)

PaaS

- The Cloud provider exposes a set of tools (a platform) and APIs which allows users to create SaaS applications
- The SaaS application runs on the provider's infrastructure
- The cloud provider manages the underlying hardware and requirements
- Examples: Google App Engine, Windows Azure Web App service

laaS

- The cloud provider leases to users Virtual Machine Instances (i.e., computer infrastructure) using the virtualization technology
- The user has access to a standard Operating System environment and can install and configure all the layers above it
- Ex: AWS EC2, Rackspace, Google Compute Engine

Other services models

- Hardware-as-a-service (HaaS)
 - You get access to barebones hardware machines, do whatever you want with them, Ex: Your own cluster
 - · Not always a good idea because of security risks
- X-as-a-service, where X can be
 - Backend (BaaS), Desktop (DaaS), ...

The Cloud Stack

Applications

Cloud applications can range from Web applications to scientific computational jobs

Data

- Old SQL systems (Oracle, SQLServer)
- NoSQL systems (MongoDB, Cassandra)
- NewSQL systems (TimesTen, Impala, Hekaton)

Runtime environment

- Runtime platforms to support cloud programming models
- Example: Hadoop, Spark

The Cloud Stack

Middleware

 Platforms for Resource Management, Monitoring, Provisioning, Identity Management and Security

Operating systems

- Standard Operating Systems used in Personal Computing
- Packaged with libraries and software for quick deployment and provisioning
- E.g., Amazon Machine Images (AMI) contain OS as well as required software packages as a "snapshot" for instant deployment

Virtualization (serverse, storage, networking)

- Key enabler of cloud computing
- Providers resource virtualization, multitenancy
- Ex: Amazon EC2 is based on the Xen virtualization platform, Azure based on HyperV

Cloud service models and the cloud stack

Types of clouds

Public (external) cloud

- Open market for on demand computing and IT resources
- Concerns: Limited SLA, reliability, availability, security, and trust

Private (internal) cloud

For large enterprises with the budget and large-scale IT

Hybrid cloud

- Extend the private cloud(s) by connecting it to other public cloud vendors to make use of their available cloud services
- Use the local cloud, and when you need more resources, burst into the public cloud

Cloud adoption

94% of Respondents Are Using Cloud

- All major cloud providers are extending their offering to private and hybrid markets
 - Example: Google Anthos, Microsoft AzureStack

Know the leaders

Cloud Provider Competitive Positioning

Source: Synergy Research Group

Cloud Economics

Economics of cloud computing

- What is the value proposition for cloud computing?
- How did Cloud Computing emerge from business / industry rather than from Academia?
- How did software service models evolve?

Cost of IT

- When you are using IT there are three primary costs associated with it:
 - Software cost (Media + License cost/user)
 - Support cost (vendor support, updates, ...)
 - Management cost (Manpower, IT infrastructure, ...)

Traditional model

- a.k.a Classic model
- Software provider develops software and charges a license fee per user for the client
- The provider may charge a support fee /user
- · The management of the software is the clients responsibility
 - Up to 4x the cost of the actual software per year!
 - Infrastructure, Manpower, software maintenance
- Traditional Software example: Oracle, SQL Server, Outlook, ...

Open Source Model

- a.k.a "Free" model
- Software provider packages Open Source Software and provides it at little or no cost to the client
- The provider makes money on support, charges a higher fee than traditional model
- The cost of Managing the software remains the same as Traditional Model
 - Up to 4x the cost of the actual software per year
 - Infrastructure, Manpower, software maintenance
- Traditional Software example: Oracle, SQL Server, Outlook, ...

Outsourcing Model

- Primary cost of Software Management is in Manpower
- Why not delegate the management of software to a country with cheaper labor costs?
- Outsource the management of software for a flat fee keep IT management costs under control

Hybrid and Hybrid+ models

- Business Software Requirements do not change often.
 - · ERP. Financials. CRM etc.
- Why reinvent the wheel? Standardize, Specialize and Repeat
 - Create a flexible version of the Software that can be quickly configured and deployed.
 - Automate support through remote access.
- Sell easy to deploy software to many clients.
 - · Decrease the Margin
 - Increase the Customers
- Hybrid+ is more advanced charge a flat monthly fee for the software, support and management

Software-as-a-service and cloud computing

- · Develop Web Application
- Offer to customers over Internet
- No deployment costs
- Amortize Management and Support costs over many clients

