Statistical Data Analysis Exercise session 2

1. Generate n = 100 random data points from a bivariate normal distribution with mean $\mu = (2,3)^t$, and variances $s_{11} = 5$ and $s_{22} = 2$. Vary the covariance s_{12} such that the correlation r_{12} between X_1 and X_2 is successively 0, 0.3, 0.6 and 0.9. Make a scatter plot of every situation.

From now on, always use the data set with $r_{12} = 0.6$.

- 2. Show (in R) that this correlation corresponds to the covariance between the standardized data.
- 3. Illustrate that the mean and (empirical) covariance matrix are affine equivariant.
- 4. Illustrate that the Mahalanobis distances are affine invariant.
- 5. Given a $(n \times p)$ data matrix X with covariance matrix S, we can consider the sphered data $XS^{-1/2}$.
 - (a) Show (by hand) that the Mahalanobis distance between two observations is equal to the Euclidean distance between the corresponding sphered observations.
 - (b) Consider the bivariate data set again. Make a scatter plot of the original data, the standardized data and the sphered data. On the first figure you add the *tolerance ellipse*:

$$\{\boldsymbol{x}; (\boldsymbol{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = c^2\}$$

with $c = \sqrt{\chi_{p,0.05}^2}$. You also add the tolerance ellipse to the first figure based on the estimates for μ and Σ :

$$\{\boldsymbol{x}; (\boldsymbol{x} - \overline{\boldsymbol{x}})^t \boldsymbol{S}^{-1} (\boldsymbol{x} - \overline{\boldsymbol{x}}) = c^2\}$$

On the last figure you add the corresponding tolerance sphere.

Useful functions:

- 1. scale()
- 2. mahalanobis()
- 3. ellipse() in package ellipse