Artificial Intelligence

Lecture 6: Probabilistic Reasoning

Xiaojin Gong 2021-04-12

Credits: AI Course in Berkeley & JHU

Review

- Knowledge and reasoning
 - Knowledge base
 - Inference
- Propositional logic
 - Inference: model checking, resolution, forward chaining

Review

Language	Ontological Commitment	Epistemological Commitment
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts facts	true/false/unknown true/false/unknown true/false/unknown degree of belief known interval value

Higher-order logic:

relations and functions operate not only on objects, but also on relations and functions

Outline

- Probability
 - Random variables
 - Joint and marginal distributions
 - Conditional distribution
 - Product rule, chain rule, Bayes' rule
 - Inference
 - Independence and conditional independence

Uncertainty

- Task environments:
 - Partially observable
 - Non-deterministic

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Making Decision Under Uncertainty

• Example:

```
P(A_{25} \text{ gets me there on time}|...) = 0.04

P(A_{90} \text{ gets me there on time}|...) = 0.70

P(A_{120} \text{ gets me there on time}|...) = 0.95

P(A_{1440} \text{ gets me there on time}|...) = 0.9999
```

- Which action to choose?
 - Depends on my preferences for missing flight vs. airport cuisine, etc
- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Rational Decision

```
persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action

update belief_state based on action and percept
calculate outcome probabilities for actions,
given action descriptions and current belief_state
select action with highest expected utility
given probabilities of outcomes and utility information
return action
```

- Decision theory = probability theory + utility theory
 - An agent is rational iff it chooses the action that yields the highest expected utility, averaged over all the possible outcomes of the action.
 - A.k.a the principle of maximum expected utility.

Random Variable

- A random variable is some aspect of the world about which we have uncertainty, e.g.
 - R = Is it raining? {true, false}
 - T = Is it hot or cold? {hot, cold}
 - D = How long will it take to drive to airport? $[0, \infty)$
- We denote random variables with capital letters

Probability Distribution

Associate a probability with each value

$$\forall x \ P(X=x) \ge 0$$
, and $\sum_{x} P(X=x) = 1$

Temperature

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

Weather

D(W)

1 (* *)			
W	Р		
sun	0.6		
rain	0.4		

Probability for Discrete Variables

- Unobserved random variables have distributions
- A distribution is a TABLE of probabilities of values
 - Temperature

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

Weather

W	Р	
sun	0.6	
rain	0.4	

Shorthand notation:

$$P(hot) = P(T = hot),$$

$$P(rain) = P(W = rain),$$

. . .

OK if all domain entries are unique

Probability for Continuous Variables

Probability density function

$$P(x) = \lim_{dx \to 0} \frac{P(x \le X \le x + dx)}{dx}$$

Joint Probability Distribution

- A joint probability distribution over a set of random variables: X_1, \dots, X_n specifies a real number of each assignment (or outcome):
 - Denote: $P(X_1 = x_1, \dots, X_n = x_n) = P(x_1, \dots, x_n)$

$$P(x_1,\dots,x_n) \ge 0$$
, and $\sum_{x_1,\dots,x_n} P(x_1,\dots,x_n) = 1$

P(T)		
T P		
hot	0.5	
cold	0.5	

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - Random variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1, \dots, x_n) \in E} P(x_1, \dots, x_n)$$

- From a joint distribution, we can calculate the probability of any event: P(T,W)
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 Typically, the events we care about are partial assignments, like P(T=hot)

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

Conditional Probabilities

 Conditional distributions are probability distributions over some variables given fixed values of others

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

Joint probability:

$$P(s,c) = P(s|c)P(c)$$

P(T)		
T P		
hot	0.5	
cold	0.5	

		-
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T,W)

Conditional Probability Distribution

Normalization:

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
$$= \frac{P(T = c, W = s)}{\sum_{W} P(T = c, W)}$$

Independence

• Two variables are independent $(X \perp Y)$ in a joint distribution if:

$$P(X,Y) = P(X)P(Y)$$

$$\forall x, y \ P(x,y) = P(x)P(y)$$

Conditional Independence

• X is conditionally independent of Y given $Z(X \perp Y \mid Z)$ iff:

$$\forall x, y, z \qquad P(x, y|z) = P(x|z)P(y|z)$$

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- Unconditional independence very rare.

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.9
 - These represents the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:

 - Evidence variables: $E_1 \cdots E_k = e_1 \cdots e_k$ Query variable: Q• Hidden variables: $H_1 \cdots H_k$ All variables
- We want: $P(Q|e_1 \cdots e_k)$
- Solution:
 - Step 1: Select the entries consistent with the evidence
 - Step 2: Sum out *H* to get joint of Query and evidence
 - Step 3: Normalize

Inference by Enumeration

• P(sun)?

• P(sun | winter)?

• P(sun | winter, hot)?

Т	W	Р
hot	sun	0.30
hot	rain	0.05
cold	sun	0.10
cold	rain	0.05
hot	sun	0.10
hot	rain	0.05
cold	sun	0.15
cold	rain	0.20
	hot cold cold hot hot cold	hot sun hot rain cold sun cold rain hot sun hot rain cold sun

Inference by Enumeration

• Worst-case time complexity $O(d^n)$

• Space complexity $O(d^n)$ to store the joint distribution

The Product Rule

Infer the joint probability from conditional distributions

$$P(x,y) = P(y)P(x|y)$$

The Chain Rule

 The joint distribution can be written as an incremental product of conditional distributions:

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, ..., x_n) = \prod P(x_i | x_1 ... x_{i-1})$$

Bayes' Rule

• Two ways to factor a joint distribution:

$$P(x,y) = P(y)P(x|y) = P(x)P(y|x)$$

$$\Rightarrow P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

$$\Rightarrow P(x|y) \propto \frac{P(y|x)P(x)}{P(y|x)P(x)}$$
Posterior Likelihood Prior

Bayes' Rule

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems
- In the running for most important AI equation!

Inference with Bayes' Rule

- Example:
 - Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - Given:

P(W)		
R	Р	
sun	0.8	
rain	0.2	

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

• What is P(W | dry)?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
^{1,2} B	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
OK	OK		

- $P_{ij} = true$ iff [i, j] contains a pit
- B_{ij} = true iff [i,j] is breezy Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the Probability Model

- The full joint distribution is $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$
- Apply product rule: P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1},..., P_{4,4})P(P_{1,1},..., P_{4,4})
 This gives us: P(Effect|Cause)
- First term: 1 if pits are adjacent to breezes, 0 otherwise
- Second term: pits are placed randomly, probability 0.2 per square:

$$P(P_{1,1},...,P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for n pits.

- Observations and Query
 - We know the following facts:

$$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

- Define $Unknown = P_{ij}$ s other than $P_{1,3}$ and Known
- For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$$

Grows exponentially with number of squares!

Using Conditional Independence

 Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define $Unknown = Fringe \cup Other$ $P(b|P_{1,3}, Known, Unknown) = P(b|P_{1,3}, Known, Fringe)$
- Manipulate query into a form where we can use this!

 $P(P_{1,3}|known,b) = \alpha$ \sum $P(P_{1,3},unknown,known,b)$ = α \sum $\mathbf{P}(b|P_{1,3}, known, unknown)\mathbf{P}(P_{1,3}, known, unknown)\mathbf{I}$ = $\alpha \sum \mathbf{P}(b|known, P_{1,3}, fringe, other)\mathbf{P}(P_{1,3}, known, fringe, other)$ fringe other = $\alpha \sum \mathbf{P}(b|known, P_{1,3}, fringe)\mathbf{P}(P_{1,3}, known, fringe, other)$ fringe other = $\alpha \sum \mathbf{P}(b|known, P_{1,3}, fringe) \sum \mathbf{P}(P_{1,3}, known, fringe, other)$ fringe= $\alpha \sum \mathbf{P}(b|known, P_{1,3}, fringe) \sum \mathbf{P}(P_{1,3})P(known)P(fringe)P(other)$ fringe= $\alpha P(known) \mathbf{P}(P_{1,3}) \sum \mathbf{P}(b|known, P_{1,3}, fringe) P(fringe) \sum P(other) \mathbf{I}$ other= $\alpha' P(P_{1,3}) \sum P(b|known, P_{1,3}, fringe) P(fringe)$ fringe

Assignments

- Reading assignment:
 - Ch. 13