

PAT-NO: JP404098795A

DOCUMENT-IDENTIFIER: JP 04098795 A

TITLE: DISCHARGE LAMP LIGHTING DEVICE

PUBN-DATE: March 31, 1992

INVENTOR-INFORMATION:

NAME
ONISHI, MASAHIKO
KANDA, TAKASHI

ASSIGNEE-INFORMATION:

NAME	COUNTRY
MATSUSHITA ELECTRIC WORKS LTD	N/A

APPL-NO: JP02215161

APPL-DATE: August 14, 1990

INT-CL (IPC): H05B041/24

ABSTRACT:

PURPOSE: To supply energy from a power source of voltage for lighting a lamp, directly to a filament, so as to further reduce the size of a discharge lighting device by providing a switch device for switching to a power source, a switching device, and to the filament, which are formed in a loop, at the time of pre- heating the filament of the lamp.

CONSTITUTION: When a switch device SW<SB>2</SB> is turned OFF, the current IF supplied to filaments f<SB>1</SB>, f<SB>2</SB>, are cut, and a switching operation is actuated through a lamp L, and currents IL, IS that have slants

according to the property of the lamp, are let run. In a method of supplying current to the lamp L through the switching of a switching device SW<SB>1</SB>, by providing the switch SW<SB>2</SB>, the pre-heating by pulsed current is achieved, utilizing the property of each filament f<SB>1</SB>, f<SB>2</SB> of the lamp L, omitting the need to provide another power source for preheating, and the size of a device can thus be reduced. Regarding the operation of the switching device, the same pattern is obtained even when the ON condition of the SW<SB>1</SB> is maintained during pre-heating, while ON/OFF operation is carried out by the SW<SB>2</SB>.

COPYRIGHT: (C)1992,JPO&Japio

⑫ 公開特許公報 (A) 平4-98795

⑬ Int. Cl. 5

H 05 B 41/24

識別記号

庁内整理番号

⑬ 公開 平成4年(1992)3月31日

J	7913-3K
H	7913-3K
E	7913-3K
P	7913-3K

審査請求 未請求 請求項の数 2 (全8頁)

⑭ 発明の名称 放電灯点灯装置

⑫ 特願 平2-215161

⑫ 出願 平2(1990)8月14日

⑬ 発明者 大西 雅人 大阪府門真市大字門真1048番地 松下電工株式会社内
 ⑬ 発明者 神田 隆司 大阪府門真市大字門真1048番地 松下電工株式会社内
 ⑭ 出願人 松下電工株式会社 大阪府門真市大字門真1048番地
 ⑭ 代理人 弁理士 石田 長七 外2名

明細書

1. 発明の名称

放電灯点灯装置

2. 特許請求の範囲

(1) ランプと、このランプが点灯維持できる電圧以上の電圧を有する電源と、オンオフ制御されるスイッチング素子とで開ループを構成し、上記スイッチング素子のスイッチング動作によりランプを点灯させる放電灯点灯装置において、ランプのフィラメントの予熱時に、上記電源と、スイッチング素子と、該フィラメントがループ状になるように切換可能なスイッチ素子を設け、このスイッチ素子あるいはスイッチング素子をスイッチング動作させてランプのフィラメントへエネルギーを供給させる制御手段を設けたことを特徴とする放電灯点灯装置。

(2) 電源とスイッチング素子のループ内に、フィルタ等の完全な限流効果を持たないインピーダンス要素を挿入し、予熱時にスイッチング素子

のオン状態を維持させる制御手段を設けたことを特徴とする請求項1記載の放電灯点灯装置。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、電源からスイッチング回路を介してランプへ高周波エネルギーを供給する放電灯点灯装置であって、予熱時にランプフィラメントに予熱電流を供給する放電灯点灯装置に関するものである。

〔従来の技術〕

従来、スイッチングによりランプへ直接バルス電流を供給する回路方式として、第16図に示すものがある。これは、ランプLが点灯維持可能な電圧以上の電源電圧を有する電源E1と並列に、ランプLとスイッチング素子SW1の直列回路を接続し、スイッチング素子SW1をスイッチング動作させ、ランプ電流が設定電流となるように、スイッチング素子SW1のオン期間と周波数を制御するものである。また、ランプLの一方のフィラメントT1には、電源E2とスイッチ素子SW2

が接続され、他方のフィラメント I_1 にも電源 E_1 、 E_2 とスイッチ素子 SW_1 が接続されている。

まず、ランプ I_1 を始動させるため、スイッチ素子 SW_1 、 SW_2 をオンとし、電源 E_1 、 E_2 よりそれぞれフィラメント I_1 、 I_2 を予熱する。その後、第17図(a)に示すように、ドライブ信号によりスイッチ素子 SW_1 をオンオフ動作させ、ランプ I_1 に電源 E_1 の電圧を印加して始動させる。第17図の(b)でドライブ信号がHレベルとなり、スイッチ素子 SW_1 がオンすると、電源 E_1 がランプ I_1 に印加され、ランプ I_1 内に第17図(b)に示すようなランプ電流 I_L が流れ始める。

ランプ I_1 は負特性を持つため、電流は急激に増加し、ランプ電流 I_L は傾斜をもって上昇する。予め設定された平均電流値となるように、(b)においてドライブ信号がLレベルとなってスイッチ素子 SW_1 をオフし、ランプ電流はなくなる。Lで再びドライブ信号がHレベルとなり、この繰り返しで、ランプ I_1 にパルスエネルギーが供給されることになる。

設け、このスイッチ素子あるいはスイッチング素子をスイッチング動作させてランプのフィラメントへエネルギーを供給させる制御手段を設けたものである。

また、電源とスイッチング素子のループ内に、フィルタ等の完全な限流効果を持たないインピーダンス要素を挿入し、予熱時にスイッチング素子のオン状態を持続させる制御手段を設けたものである。

【作用】

而して、ランプのフィラメントの予熱時において、制御手段によりスイッチ素子あるいはスイッチング素子をスイッチング動作させることで、フィラメントを予熱できるようにしている。

また、請求項2では、予熱時には制御手段により、スイッチング素子をオン状態に持続させて、電源をインピーダンス要素を介してランプに供給させることで、インピーダンス要素の適宜な値により適切な予熱エネルギー以上のエネルギーがフィラメントに供給してランプの始動点灯をよりスム

この回路の特徴は、電源 E_1 とランプ I_1 とスイッチング素子 SW_1 がループ接続され、ランプ電流をスイッチング素子 SW_1 が直接制御するため、大きな限流用チョークが不要となり、小型化が望めることである。

【発明が解決しようとする課題】

しかし、ランプ I_1 の予熱、始動、点灯にあっては、予熱用電源 E_1 、 E_2 が必要となり、必要な時に供給するためのスイッチ素子 SW_1 、 SW_2 が必要となる。故に予熱用電源の確保による回路の大型化や、スイッチ素子 SW_1 、 SW_2 の制御のため回路が複雑になるという問題があった。

本発明は、上述の点に鑑みて提供したものであって、予熱時にもパルススイッチングによる電流供給を行い、より小型化を図った放電灯点灯装置を提供することを目的としたものである。

【課題を解決するための手段】

本発明は、ランプのフィラメントの予熱時に、電源と、スイッチング素子と、該フィラメントがループ状になるように切換可能なスイッチ素子を

一ズにさせている。

【実施例1】

以下、本発明の一実施例を図面を参照して説明する。第1図は本発明の実施例を示し、第2図はその動作波形図を示している。第1図では、予熱時にフィラメント I_1 、 I_2 にランプ I_1 点灯用電源 E_1 からエネルギーを供給するもので、電源 E_1 と、フィラメント I_1 、 I_2 と、スイッチング素子 SW_1 がループ状となるように、スイッチ素子 SW_2 を設け、スイッチ素子 SW_2 は予熱を行う期間オンとなる。尚、スイッチ素子 SW_2 及びスイッチング素子 SW_1 は制御手段(図示せず)にてオンオフ制御されるようになっている。

一般に蛍光ランプのフィラメントは、らせん状となっており、例えば、32Wタイプでは、数Ωの抵抗と、300mH程度のインダクタンス成分を持っている。従って、第2図に示すように、スイッチ素子 SW_2 がオンしている予熱期間中は、フィラメント I_1 、 I_2 のインダクタンス分と電源 E_1 によって決まる傾斜の電流 I_{1a} 、 I_{2a} が第2図(b)

) (d) に示すように流れる。さらに、電流 I_r , I_s のピークは、スイッチング素子 SW_1 のオン期間で制御でき、適当に選ぶことができる。

スイッチング素子 SW_2 がオフすると、フィラメント I_r , I_s に供給されていた電流 I_r は遮断され、ランプ L を介してスイッチング動作となり、第 2 図 (c) (d) に示すように、ランプ特性により傾斜を持つ電流 I_r , I_s が流れる。

このように、スイッチング素子 SW_1 のスイッチングにより、ランプ L に電流を供給する方式において、スイッチ素子 SW_2 を設けることにより、ランプ L のフィラメント I_r , I_s の特性を利用して、パルス状の電流による予熱が可能となり、予熱用の電源を新たに設ける必要がなく、小型化が望めるものである。尚、スイッチング素子の動作としては、第 1 図において、 SW_1 が予熱時オンを維持し、 SW_2 がオンオフ動作しても同様となるものである。

【実施例 2】

第 3 図に実施例 2 を示すものであり、ハーフ

ではなく、コンデンサで構成しても良い。

【実施例 4】

実施例 4 を第 5 図に示す。この実施例ではフルブリッジ構成となっており、スイッチング素子 SW_1 と SW_2 , SW_3 と SW_4 の組でオンオフ動作し、ランプ L に交流を供給できるもので、この場合も、スイッチ素子 SW_1 がオンすると、パルススイッチングでフィラメント I_r , I_s に電流を供給できるものである。

【実施例 5】

第 6 図は実施例 5 を示し、予熱時は、スイッチ素子 SW_1 , SW_2 がオンで、スイッチング素子 SW_1 , SW_2 がスイッチング動作を行うか、スイッチング素子 SW_1 , SW_2 がオンで、スイッチ素子 SW_1 , SW_2 がスイッチング動作を行うか、あるいは、両方がスイッチング動作を行うか等フィラメント I_r , I_s に直列となるスイッチング素子のいずれかのスイッチングにより、フィラメント I_r , I_s にエネルギーを供給し、点灯時は、スイッチング素子 SW_1 と SW_2 , SW_3 と SW_4 の組でラ

プリッジ構成の場合である。電源 E_1 と E_2 の直列回路にスイッチング素子 SW_1 と SW_2 との直列回路が接続され、その両接続点間にランプ L を接続している。スイッチング素子 SW_1 , SW_2 は同時にオンせず、スイッチング素子 SW_1 がパルススイッチング動作している時と、スイッチング素子 SW_2 がスイッチング動作している時でのランプ電流の向きを変えることができる。この場合も同様に、スイッチ素子 SW_3 のオンによって、フィラメント I_r , I_s のパルス電流を供給することができる。

【実施例 3】

第 4 図は実施例 3 を示し、スイッチング素子 SW_1 と SW_2 を直列接続し、 E_1 と $2E_2$ とした電源を持つ直列インバータを示している。この場合も、スイッチ素子 SW_1 を設けることによって、スイッチ素子 SW_2 のオンでフィラメント I_r , I_s に、同時にオンしないスイッチング素子 SW_1 と SW_2 のスイッチングでエネルギーを供給するようにしたものである。なお、電源 E_1 は直流電源

ランプ L に交流エネルギーを供給するものである。この場合も同様に、電源 E_1 からパルススイッチングでフィラメント I_r , I_s にエネルギーを供給するものである。

【実施例 6】

第 7 図は実施例 6 を示し、第 6 図に対してスイッチ素子 SW_1 , SW_2 をスイッチング素子 SW_1 , SW_2 間に接続したものである。

【実施例 7】

第 8 図は実施例 7 を示し、フィラメント I_r , I_s 同に設けたスイッチ素子 SW_1 , SW_2 のオンにより、フィラメント I_r , I_s が並列接続となるもので、スイッチング素子 SW_1 と SW_2 , SW_3 と SW_4 の組により、フィラメント I_r , I_s に予熱エネルギーを供給するようにしたものである。

【実施例 8】

実施例 8 を第 9 図に示す。この実施例では、メインのスイッチング素子 SW_1 が 1 個で、ランプ L に交流エネルギーを供給するものである。スイッチング素子 SW_1 がオンの時、ランプ L へ電

流を供給すると同時に、インダクタンスしにエネルギーを蓄積し、スイッチング素子SW₁のオフ時に、ランプLへスイッチング素子SW₂のオン時とは逆方向の電流を流そうとするものである。この場合も、スイッチ素子SW₂のオンによって、フィラメントT₁、T₂にスイッチング素子SW₂の動作によるパルスエネルギーを供給できるものである。尚、第9図のインダクタンスしの代わりに、第10図(a)(b)に示すように、インダクタンスしとコンデンサCの直列、あるいは並列のLC回路を用いても良い。

【実施例9】

第11図は実施例9を示し、第1図において電源E₁を交流電源V₁に置き換えたもので、この場合もスイッチ素子SW₂のオンにより、ランプLのフィラメントT₁、T₂にエネルギーを供給でき、交流電源V₁によってランプLへ交流電流を供給できるものである。

【実施例10】

第12図は実施例10を示し、ランプL₁、

スイッチング素子SW₁のスイッチングにより、それぞれに適当なエネルギーを供給でき、同様の効果が得られるものである。

ここで、パルススイッチング予熱のオン幅は、予め設定しておいても良く、オン時のピーク電流の検出回路を設けて、設定電流になれば、オフさせるフィードバック制御で決めて良い。

【実施例13】

第15図に示す実施例13は、電源E₁、ランプL、スイッチング素子SW₁のループ内、あるいはスイッチ素子SW₂がオン時のフィラメントT₁、T₂を介するループ内に、例えば、フィルタ等のインピーダンス要素Zを介在させた実施例である。この実施例では、パルススイッチング動作を行うスイッチング素子SW₁、SW₂が、オン状態を持続した場合、スイッチング動作の場合と比べて、インピーダンス要素Zの適切な値により、より大きな電流が流れることで、適切な予熱エネルギー以上のエネルギーがフィラメントT₁、T₂に供給される場合を示すもので、この場合も同様

し、が複数(この実施例では2個)あり、電源E₁に対し、両ランプL₁、L₂のフィラメントT₁、T₂が交互直列となり、スイッチング素子SW₁、SW₂の少なくとも1つがスイッチング動作し、残りがオンを維持することにより、スイッチングでフィラメントT₁、T₂を予熱するようにしたものである。

【実施例11】

第13図に示すように、ランプL₁、L₂が複数(この実施例では2個)並列した場合で、この場合も、スイッチング素子SW₁は、あるいはスイッチ素子SW₁、SW₂のいずれかがスイッチング動作し、残りがオンを維持することにより、同様の効果が得られるものである。

【実施例12】

この実施例は、第14図に示すように、第13図の回路においてランプL₁、L₂にそれぞれ並列にインダクタンスL_a、L_bを接続したものであり、この場合はインダクタンスL_aとL_bの値により、異なるタイプのランプの組み合わせでも、

スイッチングにより、適切な予熱エネルギーを供給することができるものである。また、かかるインピーダンス要素Zを介在させることは、上記各実施例においても同様のことがいえる。尚、予熱時にスイッチング素子SW₁、スイッチ素子SW₂のオン状態の持続は、制御手段1にて制御される。

【発明の効果】

本発明は上述のように、ランプのフィラメントの予熱時に、電源と、スイッチング素子と、該フィラメントがループ状になるように切換可能なスイッチ素子を設け、このスイッチ素子あるいはスイッチング素子をスイッチング動作させてランプのフィラメントへエネルギーを供給させる制御手段を設けたものであるから、ランプのフィラメントの予熱において、制御手段によりスイッチ素子あるいはスイッチング素子をスイッチング動作させることで、フィラメントを予熱できるものであり、このように、予熱時に、スイッチングによりランプを点灯しうる電圧の電源から直接、フィ

ラメントへエネルギーすることができて、小型化をより一層図ることができる効果を表するものである。

また、電源とスイッチング要素のループ内に、フィルタ等の完全な限流効果を持たないインピーダンス要素を挿入し、予熱時にスイッチング要素のオン状態を維持させる制御手段を設けていることで、予熱時には制御手段により、スイッチング要素をオン状態に維持させて、電源をインピーダンス要素を介してランプに供給させることで、インピーダンス要素の適宜な値により適切な予熱エネルギー以上のエネルギーがフィラメントに供給してランプの始動点灯をよりスムーズにさせることができるものである。

4. 図面の簡単な説明

第1図は本発明の実施例の回路図、第2図は同上の動作波形図、第3図は同上の実施例2の回路図、第4図は同上の実施例3の回路図、第5図は同上の実施例4の回路図、第6図は同上の実施例5の回路図、第7図は同上の実施例6の回路図、

第8図は同上の実施例7の回路図、第9図は同上の実施例8の回路図、第10図(a)(b)は夫々同上の要部回路図、第11図は同上の実施例9の回路図、第12図は同上の実施例10の回路図、第13図は同上の実施例11の回路図、第14図は同上の実施例12の回路図、第15図は同上の実施例13の回路図、第16図は従来例の回路図、第17図は同上の動作波形図である。

E_1 は電源、 SW_1 はスイッチング要素、 SW_2 はスイッチ要素、 L はランプ、 f_1 、 f_2 はフィラメント、 Z はインピーダンス要素である。

代理人弁理士 石田長七

E_1 …電源
 SW_1 …スイッチング要素
 SW_2 …スイッチ要素
 L …ランプ
 f_1 、 f_2 …フィラメント

第6図

第7図

第8図

第9図

手続補正書(自発)

平成2年11月24日

特許庁長官殿

1. 事件の表示
平成2年特許願第215161号

適

2. 発明の名称

放電灯点灯装置

3. 補正をする者

事件との関係 特許出願人

住所 大阪府門真市大字門真1048番地

名称 (583) 松下電工株式会社

代表者 三好俊夫

(1) 本願明細書の第5頁第19行目の「エネルギーが」を「エネルギーを」と訂正する。

(2) 同上第6頁第16行目の「300mH」を「300nH」と訂正する。

(3)添付図面中第8図を別紙のように訂正する。

。

代理人 弁理士 石田長七

4. 代理人

郵便番号 530

住所 大阪市北区堂島1丁目6番16号

毎日大阪会館北館5階

氏名 (6176) 弁理士 石田長七

電話 大阪 06 (345) 7777 (代表)

万式
審査

5. 補正命令の日付

自発

特許庁
2 11. 26

6. 補正により増加する請求項の数 なし

7. 補正の対象

明細書及び図面

8. 補正の内容

第8圖

