Course Code:	CST261						
	Third Semester BE (Electronics Eng	ineering) Examination					
Data Structure and Algorithms							
Time: 2 Hours]			[Max. Marks: 40				

Instructions to Candidates:

1. All questions are compulsory.

		Stepwise explanation will be appreciated		Stepwise explanation will be appreciated				
Quest		Description of Question	Marks	CO				
1	(a)	Find the worst case complexity for the code given below	3	CO1				
		void compute(int n, int check){						
		in count=0;						
		if(check)						
		{						
		for(int i=0;i < n;i++)						
		for (int j = n ;j>n-i; j)						
		for(int $k=1$; $k < j$; $k=k*2$)						
		count++;						
		} else {						
		for(int i=n;i>0;i)						
		for(int k=1; k <n;k=k*2)< td=""><td></td><td></td></n;k=k*2)<>						
		count++;						
]						
		}						
		Show the steps how the complexity is calculated.						
	(b)	Sort the following number by Quick sort algorithm. Consider the last	5	CO2,				
		element as pivot element.		CO4				
		14,16,7,2,5,9,10,4,20,80,60,50						
		If the elements are the given in reverse order what will be the						
		complexity of quick sort. Explain with an example						
2	(a)	Convert the following expression to prefix expression using stack	4	CO3				
	` ′	$A+B-(C*D/F+G^(H/L*M-K))$						
	(b)	Consider 3 Queues are placed in one array. Design a C program for	4	CO3				
		deletion and insertion of elements. Ensure all the queues have proper						
		overflow and underflow conditions						
3	(a)	Consider a double linked list is already created. Write C function for the following:	8	CO3				
		(a) Find the number of occurrences of a given key						
		(b) Delete the last occurrence of the key						

		(c) Print the contents of double linked list in reverse order(d) Create a header node, which will be the first node of double linked list. The header node will store number of nodes in double linked list.		
4	(a)	Construct an AVL tree for the following keys	4	CO5
		34,30,32,15,13,20,31,25,28		
	(b)	Write a C program to construct a binary search tree. Create a function to find the inorder successor of a given node.	4	CO5
5	(a)	For the graph given below depict the DFS and BFS traversal with starting node as S. Select the edge/vertex in alphabetical order: Write a C function for BFS traversal.	5	CO5
		With a Clarenon for bio naversal.		
	(b)	Define the following terms	3	CO5
		 Strongly connected graph Cyclic graph Degree of a node in directed graph 		