Dispense del corso di Teoria della Rappresentazione

Fabio Zoratti

2 dicembre 2016

1 Teoria dei gruppi

Definizione 1.1 (Gruppo). Un gruppo è un insieme con associata un operazione binaria $\cdot: G \times G \to G$ che gode di alcune proprietà

- 1. Associatività (ab)c = a(bc)
- 2. Esistenza unità ea = ae = a
- 3. Esistenza inverso a' per ogni elemento $a \quad a'a = aa' = e$

Esempi

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con l'operazione di somma.
- 2. $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$ con l'operazione di moltiplicazione. (Senza lo 0)
- 3. $GL_n(\mathbb{R})$ oppure GL(V)
- 4. $f: I \to I$ biunivoca, con I insieme e con l'operazione di composizione. Nel caso in cui I sia un insieme finito, tanto vale scegliere $I = \{1, 2, 3, \dots, n\}$. In tal caso questo gruppo si chiama S_n

Alcuni teoremi elementari

1. L'unità e è unica

Dimostrazione: supponiamo per assurdo che siano due distinte, e, e'. Allora vale

$$e = ee' = e' \quad \square$$

2. L'inverso è unico.

Dimostrazione:

Supponiamo per assurdo che siano due, a', a''

$$(a'a)a'' = a'(aa'') \Rightarrow ea'' = a'e \quad \square$$

- 3. Se ho a_1, a_2, \ldots, a_n , il prodotto di questi termini è ben definito senza bisogno di parentesi
- 4. Esistono le potenze, ovvero $\forall k \in \mathbb{Z}, \forall a \in G \exists b \in G | a^k = b$

Vale sempre la regola

$$a^{k+h} = a^k \cdot a^h$$

Ricorda che

$$(ab)^{-1} = b^{-1}a^{-1}$$

Definizione 1.2 (Sottogruppo). Sia G un gruppo, $H \subseteq G$ si dice sottogruppo di G se:

- $e \in H$
- $x, y \in H \Rightarrow xy \in H$

e si indica $H \leq G$.

Definizione 1.3 (Sottogruppo normale). Sia G un gruppo, $H \leq G$ si dice normale in G se

$$\forall h \in H, \forall g \in G \qquad ghg^{-1} \in H$$

e si indica $H \subseteq G$.

Definizione 1.4 (Gruppo quoziente). NON LO SCRIVO PERCHÈ È LUNGO, ASPETTO DI VEDERE COME/SE LO DEFINISCE LUI

Definizione 1.5 (Classi di coniugio). Sia G un gruppo, $x \in G$, la classe di coniugio di x è l'insieme $\{gxg^{-1}|g\in G\}$. Si dimostra facilmente che le classi di coniugio di tutti gli elementi di G formano una partizione del gruppo stesso. Si osserva inoltre che un sottogruppo è normale se e solo se è unione di classi di coniugio (ATTENZIONE: è raro che unendo a caso classi di coniugio si ottenga un sottogruppo).

Esempio 1.1 (Le classi di coniugio di $GL_n(\mathbb{C})$). Nel caso del gruppo $GL_n(\mathbb{C})$ due matrici stanno nella stessa classe di coniugio se e solo se sono simili, quindi per ogni classe di coniugio esiste un rappresentante canonico che è la forma di Jordan di una qualsiasi matrice nella classe (con opportune convenzioni sull'ordine dei blocchi e degli autovalori).

Definizione 1.6 (Centro di un gruppo). Sia G un gruppo, il *centro* di G si indica con Z(G) ed è il sottoinsieme degli elementi che commutano con tutto G:

$$Z(G) = \{ h \in G \mid hg = gh \ \forall g \in G \}$$

È immediato verificare che Z(G) è un sottogruppo normale di G.

Definizione 1.7 (Prodotto diretto di gruppi). Siano G e H gruppi. Si definisce prodotto diretto di G e H il gruppo formato dall'insieme $G \times H = \{(g,h)|g \in G, h \in H\}$ con l'operazione componente per componente, ovvero separatemente per i due gruppi di partenza.

Definizione 1.8 (Omomorfismo (isomorfismo) di gruppi). Siano G ed H gruppi, un'applicazione $\varphi: G \to H$ si dice omomorfismo di gruppi se

$$\forall q_1, q_2 \in G$$
 $\varphi(q_1 q_2) = \varphi(q_1)\varphi(q_2)$

dove la prima moltiplicazione è fatta in G mentre la seconda in H. Se φ è bigettiva, allora si dice isomorfismo.

Definizione 1.9 (Azione di un gruppo su un insieme). Sia G un gruppo e I un insieme. Definiamo un azione a di G su I una funzione $a:G\times I\to I$ che rispetti la regola di composizione, ovvero che se $h,g\in G$ e $i\in I$, valga

$$a(h, a(g, i)) = a(hg, i)$$

Normalmente si usa una notazione abbreviata in cui invece di scrivere a(g,i) si scrive direttamente $g \cdot i$ o addirittura gi

Definizione 1.10 (Azione transitiva). Un'azione di un gruppo G su un insieme $I \neq \emptyset$ si dice transitiva se $\forall i, j \in I \exists s \in G$ t.c. $j = s \cdot i$.

SAREBBE UTILE SCRIVERE UN COMANDO PER SCRIVERE ORB(X) SOLO CHE NON SO COME SI FA...

Definizione 1.11 (Orbita di un elemento). Sia G un gruppo che agisce sull'insieme I, dato $x \in I$ si chiama orbita di x in G l'insieme $Orb_G(x) = \{g \cdot x \mid g \in G\}$, se il gruppo utilizzato è chiaro si può scrivere semplicemente Orb(x). Si osserva subito che un'azione è transitiva se e solo se induce una unica orbita.

Osservazione. Le classi di coniugio sono le orbite degli elementi generate mediante l'azione per coniugio.

Definizione 1.12 (Azione semplicemente transitiva). Un'azione di G su un insieme $I \neq \emptyset$ di dice semplicemente transitiva se $\forall i, j \in I \exists ! s \in G \text{ t.c. } j = s \cdot i.$

Definizione 1.13 (Funzione G equivariante). Dato un gruppo G che agisce su due insiemi I e J, una funzione $\phi: I \to J$ si dice G equivariante se

$$\phi(s \cdot_I i) = s \cdot_J \phi(i) \quad \forall s \in G, \ \forall i \in I$$

1.1 Proprietà dei gruppi abeliani

Teorema 1.1. Ogni gruppo abeliano finito è isomorfo al prodotto di gruppi ciclici.

Osservazione. Sia G un gruppo abeliano. Allora

$$|G| = card(\{Hom(G \to \mathbb{C}^*)\})$$

Se invece G non è abeliano allora nella formula precedente all'uguale va sostituito un >

1.2 Proprietà del gruppi simmetrici

Teorema 1.2 (Ogni elemento $\sigma \in S_n$ si scrive in modo unico come prodotto di cicli disgiunti a meno dell'ordine dei fattori).

Proposizione 1.3. Il segno di un ciclo di lunghezza k è esattamente $(-1)^{k-1}$

1.3 Proprietà dei gruppi ciclici

Osservazione. Due gruppi ciclici dello stesso ordine sono isomorfi

1.4 Proprietà dei gruppi diedrali

Definizione 1.14 (Gruppo diedrale). L'insieme D_n delle rotazioni e simmetrie di un poligono regolare di n lati è un gruppo con l'operazione di composizione. Detta ρ una rotazione di $2\pi/n$ (che ha ordine n, e per inverso ha ρ^n) e σ una qualunque riflessione (che ha ordine 2), esse generano il gruppo D_n , che si può quindi presentare nel seguente modo:

$$D_n = <\rho, \sigma | \rho^n = \sigma^2 = id, \ \sigma \rho \sigma = \rho^{-1} >$$

Osservazione. Le n potenze distinte di ρ sono tutte e sole le rotazioni di D_n , mentre gli elementi della forma $\sigma \rho^i$, i = 0, 1, ..., n-1 sono tutte e sole le riflessioni.

Osservazione. Si dimostra facilmente che la relazione $\sigma \rho \sigma = \rho^{-1}$ è verificata da qualsiasi rotazione ρ e qualsiasi riflessione σ .

2 Algebra multilineare

2.1 Alcune generalizzazioni di algebra lineare

Definizione 2.1 (Base di uno spazio vettoriale). Sia V uno spazio vettoriale e I un insieme; una base di V è una funzione $e:I\to V$ tale che $\forall v\in V,\ \exists!\ a:I\to\mathbb{C}$ a supporto finito per cui vale $v=\sum_{i\in I}a_ie_i$. La funzione a valutata in i prende il valore della i-esima coordinata del vettore v nella base e. Questa definizione è compatibile con la definizione di base come insieme di vettori generatori linearmente indipendenti.

Lemma 2.1. Sia $e: I \to V$ una base di V e W uno spazio vettoriale. $f: I \to W$ una funzione. Allora $\exists ! \phi: V \to W$ lineare tale che

$$\phi(e_i) = f_i$$

Inoltre ϕ è un isomorfismo \Leftrightarrow f è una base.

2.2 Prodotto tensoriale

Definizione 2.2 (Prodotto tensoriale). Siano V, W due \mathbb{C} -spazi vettoriali. Si dice prodotto tensore di V e W, e si indica come $V \otimes W$, uno spazio vettoriale con una funzione bilineare $\otimes : V \times W \to V \otimes W$ tale che per ogni data funzione bilineare $h: V \times W \to Z$, esiste unica $\phi: V \otimes W \to Z$ lineare per cui $\phi(v \otimes w) = h(v, w)$. Questa proprietà viene detta proprietà universale e la funzione $\otimes : V \times W \to V \otimes W$ viene detta funzione universale.

Proposizione 2.2. Se ho due prodotti tensoriali $V \otimes W$ e $V \overline{\otimes} W$, allora esiste un unico isomorfismo $\phi: V \otimes W \to V \overline{\otimes} W$ tale che

$$\phi(v \otimes w) = v \overline{\otimes} w$$

Nota. È importante notare che non tutti gli elementi $z \in V \otimes W$ si scrivono come $z = v \otimes w$. In particolare, per fare un esempio concreto che mostra che questa cosa non funziona, prendiamo $W = V^*$. Vedremo fra poco che $V \otimes V^*$ è canonicamente isomorfo allo spazio delle applicazioni bilineari da V in \mathbb{C} , che sappiamo scriverlo come matrici $n \times n$. Tuttavia se un elemento si scrive in termini di matrici come $z = v \otimes w$, allora la matrice associata a z in una base avrà rango al massimo 1, ben lontano da coprire tutto lo spazio.

Proposizione 2.3.

$$\langle \{v \otimes w | v \in V, w \in W\} \rangle = V \otimes W$$

Definizione 2.3 (Prodotto tensoriale di mappe lineari). Date $f: V \to V'$ e $g: W \to W'$ funzioni lineari, si definisce prodotto tensoriale tra f e g la funzione lineare $f \otimes g: V \otimes W \to V' \otimes W'$ tale che $(f \otimes g)(v \otimes w) = f(v) \otimes g(w) \ \forall v \in V, w \in W$

Osservazione.

$$id_V \otimes id_W = id_{V \otimes W}$$

Proposizione 2.4. Se e_i è una base di V e f_i è una base di W allora $e_i \otimes f_j$ è una base di $V \otimes W$ Corollario.

$$dim(V \otimes W) = dimV \cdot dimW$$

Definizione 2.4. DEFINISCI TRACCIA DEL PRODOTTO TENSORE, OVVERO

$$tr(f \otimes g)$$

Teorema 2.5. Se $f:V \to V$ e $g:W \to W$ sono endomorfismi di spazi vettoriali, allora vale la formula

$$tr(f \otimes g) = tr(f)tr(g)$$

DIMOSTRAZIONE:

2.3 Prodotto esterno e prodotto simmetrico

Definizione 2.5 (Applicazione r-lineare simmetrica/alternante). Una applicazione $\phi: V^n \to Z$ si dice r-lineare se è lineare in ogni componente dopo aver fissato le altre n-1.

Inoltre ϕ si dice simmetrica se $\phi(v_{s(1)},...,v_{s(n)}) = \phi(v_1,...,v_n)$, $\forall s \in S_n$, mentre si dice alternante se $\phi(v_{s(1)},...,v_{s(n)}) = \operatorname{sgn}(s)\phi(v_1,...,v_n)$, $\forall s \in S_n$.

Proposizione 2.6. Un'applicazione $h: V^n \to W$ è alternante se e solo se $h(v_1, ..., v_n) = 0$ se $v_i = v_j$ per qualche $i \neq j$.

Proposizione 2.7. Un'applicazione $h: V^n \to W$ è nulla se i vettori $v_1, ..., v_n$ sono linearmente dipendenti.

Definizione 2.6 (Prodotto esterno). Sia n un intero positivo, V uno spazio vettoriale. Un prodotto esterno è uno spazio vettoriale indicato con $\bigwedge^n V$ dotato di una funzione n-lineare alternante $\wedge: V^n \to \bigwedge^n V$ che manda $(v_1, ..., v_n)$ in $v_i \wedge v_2 \wedge ... \wedge v_n \in \bigwedge^n V$, tale che $\forall h: V^n \to Z$ n-lineare alternante, esiste unica $\phi: \bigwedge^n V \to Z$ lineare per cui vale $\phi(v_1 \wedge v_2 \wedge ... \wedge v_n) = h(v_1, ..., v_n)$.

Teorema 2.8 (Dimensione del prodotto esterno). Sia V uno spazio vettoriale di dimensione n, $\{e_i|1\leq i\leq n\}$ una base di V e k un intero positivo. Allora l'insieme $E=\{e_{i_1}\wedge e_{i_2}\wedge e_{i_k}|1\leq i_1< i_2<...< i_k\leq n\}$ è una base di $\bigwedge^k V$ e si ha $|E|=\binom{n}{k}$.

MANCANO UN SACCO DI PROPRIETA' E LE DIMOSTRAZIONI

Definizione 2.7 (Prodotto simmetrico). Sia n un intero positivo, V uno spazio vettoriale. Un prodotto simmetrico è uno spazio vettoriale indicato con S^nV dotato di una funzione n-lineare simmetrica $V^n \to \bigwedge^n V$ che manda $(v_1, ..., v_n)$ in $v_i v_2 ... v_n \in S^nV$, tale che $\forall h : V^n \to Z$ n-lineare simmetrica, esiste unica $\phi: S^nV \to Z$ lineare per cui vale $\phi(v_1 v_2 ... v_n) = h(v_1, ..., v_n)$.

Teorema 2.9 (Dimensione del prodotto simmetrico). Sia V uno spazio vettoriale di dimensione n, $\{e_i|1 \leq i \leq n\}$ una base di V e k un intero positivo. Allora l'insieme $E = \{e_{i_1} \wedge e_{i_2} \wedge e_{i_k} | 1 \leq i_1 \leq i_2 \leq ... \leq i_k \leq n\}$ è una base di S^kV e si ha $|E| = \binom{n+k-1}{k}$.

3 Prime proprietà delle rappresentazioni

Definizione 3.1 (Rappresentazione). Sia G un gruppo. Una rappresentazione ρ di G è una coppia composta da uno spazio vettoriale di dimensione qualsiasi V_{ρ} e una funzione $\rho: G \to GL(V_{\rho})$ che manda ciascun elemento del gruppo in un'applicazione lineare di V_{ρ} , ovvero un suo endomorfismo. Affinché ρ sia una rappresentazione deve essere un omomorfismo di gruppi, ovvero in parole semplici deve rispettare la regola di composizione. In formule, se $s,t\in G$ deve valere

$$\rho(st)v = \rho(s)\rho(t)v \qquad \forall v \in V_{\rho}, \quad \forall s, t \in G$$

La dimensione di V_{ρ} viene detta grado della rappresentazione.

Proposizione 3.1. $\rho(G)$ è evidentemente un sottogruppo di $GL(V_{\rho})$, quindi esistono sempre inversi, potenze e tutte le cose che valgono per i gruppi.

Esempi.

1. La rappresentazione banale, di grado qualsiasi, indicata con ρ_1 che manda qualsiasi elemento di g nell'identità di V_{ρ} , ovvero

$$\rho(s) = id_{V_{\rho}} \qquad \forall s \in G$$

- 2. Dato S_n , il segno di un elemento $s \in S_n$ è una rappresentazione di grado 1. Infatti si ha sgn(st) = sgn(s)sgn(t).
- 3. L'azione naturale di S_n sui vettori della base. Prendiamo quindi $G = S_n$ e uno spazio vettoriale di dimensione n, che sarà sicuramente isomorfo a \mathbb{C}^n . Prendiamo la base canonica di \mathbb{C}^n e la chiamiamo e_i . Descriviamo la rappresentazione $\rho: S_n \to GL(\mathbb{C}^n)$ dicendo cosa fa agli elementi della base. Per linearità si estenderà a tutto lo spazio.

$$\rho(s)e_i = e_{s(i)}$$

Notare che in questo caso $deg(\rho) = n$. Notiamo inoltre che se rappresentiamo nella base canonica le matrici associate a $\rho(s)$ queste matrici sono unitarie. Inoltre, ogni colonna (e anche ogni riga) contiene esattamente un 1 e tutti gli altri sono 0.

Prendiamo come esempio S_3 e vediamo cosa succede. Notiamo innanzitutto che $|S_3| = 3! = 6$ FINISCI DI SCRIVERE

Proposizione 3.2. Sia G un gruppo finito $e \rho : G \to GL(V_{\rho})$ una sua rappresentazione. Allora $\forall g \in G$ la matrice $\rho(g)$ ammette una base di autovettori in V_{ρ} , ovvero è diagonalizzabile. Inoltre, tutti gli autovalori di $\rho(g)$ sono radici n-esime dell'unità.

Nota bene: Per ogni matrice in generale la base è diversa, quindi le varie matrici in generale non sono simultaneamente diagonalizzabili. In particolare, tutte le matrici $\rho(s)$ sono simultaneamente diagonalizzabili $\Leftrightarrow G$ è abeliano.

DIMOSTRAZIONE: Se G è un gruppo finito, allora $\exists k | g^k = e^1$. Dato che $\rho: G \to GL(V_\rho)$ mantiene queste proprietà in quanto omomorfismo, dovrà essere

$$\rho(g)^k = id$$

¹Dato che g è finito, se prendo l'insieme delle potenze $I = \{g^k | k \in \mathbb{Z}\}$, proprio perchè G è finito si ha che I ha un numero finito di elementi, quindi ci saranno $m, n \in \mathbb{Z}$ tali che $g^m = g^n = h$. Dato che nei gruppi esiste l'inverso, sarà $g^{n-m} = e$

Con il polinomio minimo si mostra facilmente che $\rho(g)$ è diagonalizzabile. MATEMATICI SCRIVETE IL PERCHÉ. Inoltre da questa formula è anche evidente che tutti gli autovalori di $\rho(g)$ hanno modulo 1 e in particolare saranno radici k—esime dell'unità.

Ricordiamo un teorema di algebra lineare per finire l'ultima parte della dimostrazione: due endomorfismi di uno spazio vettoriale diagonalizzabili sono simultaneamente diagonalizzabili \Leftrightarrow commutano. Da questo teorema segue facilmente la seconda parte dell'enunciato.

Definizione 3.2 (Omomorfismo di rappresentazioni). Siano ρ e σ due rappresentazioni di G su V_{ρ} e V_{σ} rispettivamente, un omomorfismo di spazi vettorali $\varphi: V_{\rho} \to V_{\sigma}$ si dice omomorfismo di rappresentazioni se

$$\forall a \in G, \forall v \in V_{\rho} \quad \varphi(\rho(a)(v)) = \sigma(a)(\varphi(v))$$

oppure equivalentemente

$$\forall a \in G \quad \varphi \circ \rho(a) = \sigma(a) \circ \varphi$$

Definizione 3.3 (Rappresentazioni isomorfe). Due rappresentazioni si dicono *isomorfe* se esiste un omomorfismo di rappresentazioni tra di loro che è anche bigettivo.

Rappresentazioni di grado 1

Teorema 3.3 (Le classi di isomorfismo delle rappresentazioni di grado 1 sono gli omomorfismi da G in \mathbb{C}^*).

Esempio 3.1 (Rappresentazioni di grado 1 di C_n).

Esempio 3.2 (Rappresentazioni di grado 1 di S_3).

Esempio 3.3 (Rappresentazioni di grado 1 di $C_n \times C_n$). (generalizzazione a prodotto di C_{n_i})

3.1 Operazioni con le rappresentazioni

Definizione 3.4 (Somma di rappresentazioni).

Osservazioni:

1. $\rho + \sigma \cong \sigma + \rho$

2.
$$\rho + (\sigma + \tau) \cong (\rho + \sigma) + \tau$$

3. Esiste l'elemento neutro che è la rappresentazione di grado 0 ma non esiste l'inverso.

Definizione 3.5 (Prodotto di rappresentazioni).

Osservazioni:

1. $1 \otimes \rho \cong \rho$

2. $\rho \otimes \sigma \cong \sigma \otimes \rho$

3. $0 \otimes \rho \cong 0$

4. $\rho \otimes (\sigma \otimes \tau) \cong (\rho \otimes \sigma) \otimes \tau$

5. $\rho \otimes (\sigma_1 + \sigma_2) \cong \rho \otimes \sigma_1 + \rho \otimes \sigma_2$

Definizione 3.6 (Rappresentazione duale). Sia ρ una rappresentazione di G su v_{ρ} . Allora la rappresentazione duale ρ^* è la rappresentazione di G su v_{ρ}^* tale che $\rho^*(s) = \rho(s^{-1})^t$

Nota. $\rho^*(s) = \rho(s^{-1})^t = (\rho(s)^{-1})^t = (\rho(s)^t)^{-1}$. Inoltre, notare che la presenza di inverso e trasposto fa in modo che $\rho^*(s)$ sia una rappresentazione.

Osservazione: vale

$$(\rho + \sigma)^* \cong \rho^* + \sigma^*$$

E l'isomorfismo è canonico. SCRIVI DIMOSTRAZIONE.

Definizione 3.7 (Rappresentazione regolare).

Esempio 3.4 (La rappresentazione regolare di S_3).

Teorema 3.4.

$$\mathcal{R}_G \cong \sum_i deg(\rho_i)\rho_i$$

3.2 Sottospazi invarianti e scomposizione delle rappresentazioni

Definizione 3.8 (Sottospazio invariante). NON VA MESSO TUTTO ASSIEME NELLA DEFINIZIONE DI SOTTORAPPRESENTAZIONE???

Definizione 3.9 (Sottorappresentazione). Sia ρ una rappresentazione di G su V_{ρ} , una sottorappresentazione di ρ è un sottospazio vettoriale $W \subseteq V_{\rho}$ tale che $\rho(s)(W) \subseteq W \ \forall \ s \in G$. Posso definire una rappresentazione σ con $V_{\sigma} = W$ e $\sigma(s) = \rho(s) \upharpoonright W$ (la indicherò con $\sigma \subseteq \rho$). COME SI SCRIVE LA RESTRIZIONE DI UNA FUNZIONE A UN DOMINIO PIÙ PICCOLO??????

Definizione 3.10 (Rappresentazione irriducibile). Una rappresentazione ρ di G è irriducibile se

- 1. $\rho \neq 0 \ (deg(\rho) \geq 1)$
- 2. ρ non ha sottorappresentazioni non banali (diverse da 0 e V_{ρ}).

Osservazione. Normalmente la cosa che si fa più spesso in teoria della rappresentazione è cercare di scomporre la rappresentazione di un gruppo come somma di rappresentazioni irriducibili. Vedremo quindi adesso diversi teoremi che ci aiuteranno in questi problemi.

Esempio 3.5 (Rappresentazione regolare di S_3).

Teorema 3.5 (Le rappresentazioni di un gruppo finito sono completamente riducibili).

Proposizione 3.6 (Prodotto hermitiano invariante).

Lemma 3.7. Sia $h: V_{\rho} \times V_{\rho} \to \mathbb{C}$ una forma hermitiana definita positiva e invariante per $\rho: G \to GL(V_{\rho})$ e sia $\rho|_{W}: G \to GL(W)$ una sottorappresentazione di ρ . Allora se W^{\perp} è l'ortogonale di W, $\rho|_{W^{\perp}}: G \to GL(W^{\perp})$ è una sottorappresentazione.

Lemma 3.8. Sia $\rho: G \to GL(V_{\rho})$ una rappresentazione di un gruppo finito G. Sia $\rho|_{W}: G \to GL(W)$ una sottorappresentazione di ρ . Allora esiste una sottorappresentazione $\sigma: G \to GL(W')$ tale che

$$\rho = \rho|_W + \sigma$$

Osservazione. Notare che il teorema precedente è falso per gruppi finiti. (Esempio con \mathbb{Z}^+ che Salvatore non ha scritto con cura. Porco salvatore)

Teorema 3.9. Se $\rho: G \to GL(V_{\rho})$ e $\sigma: G \to GL(V_{\sigma})$ sono rappresentazioni di G e $f: V_{\rho} \to V_{\sigma}$ è un omomorfismo di rappresentazioni, allora Im(f) è una sottorappresentazione di σ e Ker(f) è una sottorappresentazione di V_{ρ}

Dimostrazione. Se $v \in Ker(f)$ allora per la definizione di omomorfismo di rappresentazioni ho che $\forall s \in G \ f(\rho(s)v) = \sigma(s)f(v) = 0$ e quindi $\rho(s)v \in Ker(f)$. Allo stesso modo, se $w \in Im(f)$ allora w = f(v) per qualche $v \in V_{\rho}$ e quindi sempre per la definizione di omomorfismo di rappresentazione $\sigma(s)w = \sigma(s)f(v) = f(\rho(s)v) \in Im(f)$

Teorema 3.10. Sia G un gruppo abeliano finito. Allora ogni rappresentazione di G è isomorfa alla somma di rappresentazioni di grado 1.

Proposizione 3.11. La rappresentazione regolare \mathcal{R} di C_n è isomorfa alla somma delle n rappresentazioni irriducibili di grado 1 di C_n .

Lemma 3.12. Date ρ_1, ρ_2, σ rappresentazioni di G, allora

$$Hom(\rho_1 + \rho_2, \sigma) \cong Hom(\rho_1, \sigma) \oplus Hom(\rho_2, \sigma)$$

Teorema 3.13 (Lemma di Schur). Siano ρ e σ due rappresentazioni irriducibili di G gruppo finito $e \phi : \rho \to \sigma$ un omomorfismo di rappresentazioni, allora ϕ è un isomorfismo oppure è identicamente nullo. Se poi $f : \rho \to \rho$ è un omomorfismo di rappresentazioni, allora f è una moltiplicazione per scalare.

Dimostrazione. Supponiamo che $\phi \neq 0$, allora sappiamo che $Ker(\phi) \subseteq V_{\rho}$ è una sottorappresentazione di ρ , ma ρ è irriducibile e quindi $Ker(\phi) = 0 \Rightarrow \phi$ iniettiva. Ma anche $Im(\phi) \subseteq V_{\sigma}$ è una sottorappresentazione di σ e, non essendo nulla ed essendo σ irriducibile, coincide con tutto $V_{\sigma} \Rightarrow \phi$ suriettiva, da cui ϕ è un isomorfismo. Consideriamo ora f: sia λ un autovalore di f, che

esiste perché G è finito e stiamo lavorando su \mathbb{C} , allora $f - \lambda : V_{\rho} \to V_{\rho}$ è un omomorfismo di rappresentazioni. Ma non è iniettivo, perché c'è almeno un autovettore relativo a λ , e quindi per la prima parte del lemma di Schur ho che $f - \lambda$ è identicamente nullo, da cui ricaviamo che f è la moltiplicazione per uno scalare (λ) .

Teorema 3.14. Sia $\rho: G \to GL(V_{\rho})$ una rappresentazione e

$$\rho = \sum_{i=1}^{N} n_i \rho_i$$

una sua scomposizione come somma di rappresentazioni irriducibili a due a due non isomorfe. Allora la scomposizione è unica.

Lemma 3.15. Sia ρ una rappresentazione di G e \mathcal{R} la sua rappresentazione regolare. Allora

$$deg(\rho) = dim(Hom(\mathcal{R}, \rho))$$

Teorema 3.16. Sia \mathcal{R} la rappresentazione regolare di G, un gruppo finito, e sia

$$\mathcal{R} = \sum_{i=1}^{N} n_i \rho_i$$

Con ρ_i irriducibili e a due a due non isomorfe. Allora ogni rappresentazione irriducibile di G è isomorfa ad una ρ_i . Inoltre $n_i = deg(\rho_i)$

Corollario. Se G è abeliano allora ha |G| rappresentazioni irriducibili di grado 1 e \mathcal{R} è la somma di queste.

 $\textbf{Corollario.}\ \textit{Sia}\ \textit{G}\ \textit{un gruppo finito}.\ \textit{G}\ \textit{ha un numero finito}\ \textit{di rappresentazioni irriducibili, a meno di isomorfismi.}\ \textit{Inoltre}$

$$|G| = \sum n_i^2$$

4 Teoria dei caratteri

Definizione 4.1. Sia $\rho: G \to GL(V_{\rho})$ una rappresentazione di un gruppo G. Definiamo carattere di ρ la funzione che associa ad ogni elemento del gruppo G la traccia della matrice associata all'elemento, ovvero

$$\chi_{\rho}(s) := tr(\rho(s)) \quad \forall s \in G$$

Notare che χ_{ρ} è una funzione che va dal gruppo in \mathbb{C} , ovvero $\chi_{\rho}: G \to \mathbb{C}$

Vediamo delle proprietà elementari del carattere OSSERVAZIONI:

- 1. Se $deg(\rho) = 1$ allora il carattere di s è uguale a $\rho(s)$
- 2. $\chi_{\rho_1} = deg(\rho)$. ² Questo è vero poichè $[\rho_1] = I_n \Rightarrow tr(\rho_1) = n$ ed $n = deg(\rho)$.
- 3. $\chi_{\rho+\sigma}(s) = \chi_{\rho}(s) + \chi_{\sigma}(s)$. Questo è dovuto al fatto che la somma di rappresentazioni si può scrivere come matrice a blocchi. Una volta scritto così è evidente il risultato.
- 4. $\chi_{\rho\sigma}(s) = \chi_{\rho}(s)\chi_{\sigma}(s)$. Questo deriva dal seguente fatto generale:

Lemma 4.1. Se $f: V \to V$ e $g: W \to W$ sono endomorfismi di spazi vettoriali, allora $tr(f \otimes g) = tr(f)tr(g)$.

Dimostrazione: Iniziamo a considerare il caso in cui sia f che g siano diagonalizzabili: prendendo due basi $a: I \to V$, $b: J \to W$ di autovettori rispettivamente per f e per g, si verifica facilmente la verità della proposizione nella base indotta su $V \otimes W$ (ovvero in quella formata dagli $a_i \otimes b_i$).

Ora, essendo la traccia una funzione continua e le matrice diagonalizzabili dense nello spazio delle matrici, la proprietà affermata dal lemma si estende al caso generale per continuità.

5.
$$\chi_{\rho}(s^{-1}) = \overline{\chi_{\rho}(s)}$$

Essendo G un gruppo finito, $\forall s \in G \ \rho(s)^n = id$ dove n = |G|: dunque tutti gli autovalori di $\rho(s)$ sono radici ennesime dell'unità e $\rho(s)$ è diagonalizzabile³. In tale base è evidente che:

$$\chi_{\rho}(s^{-1}) = tr(\rho(s^{-1})) = tr(\rho(s)^{-1}) = \sum_{i} \lambda_{i}^{-1} = \sum_{i} \overline{\lambda_{i}} = \overline{tr(\rho(s))} = \overline{\chi_{\rho}(s)}$$

in quanto, avendo gli autovalori modulo 1, l'inverso coincide con il coniugio.

6.
$$\chi_{\rho^*}(s)^4 = \overline{\chi_{\rho}(s)}$$
.

Per l'osservazione precedente vale che

$$\chi_{\rho^*}(s) = tr({}^t\rho(s^{-1})) = tr(\rho(s^{-1})) = \overline{tr(\rho(s))} = \overline{\chi_{\rho}(s)}$$

 $^{^2}$ Al solito ρ_1 è la rappresentazione che manda ogni elemento nell'identità di V_ρ

³Si veda la proposizione 3.2

⁴Ricordiamo che $\rho^*(s) = (\rho(s)^{-1})^*$

7. $\chi_{\rho}(hsh^{-1}) = \chi_{\rho}(s)$ ovvero χ_{ρ} è costante sulle classi di coniugio di G. La motivazione è semplice: se due elementi sono coniugati tra loro questo significa che le matrici corrispondenti saranno simili e la traccia è un invariante di similitudine.

Di conseguenza, non sarà necessario calcolare il carattere per ogni elemento del gruppo ma basterà farlo per le classi di coniugio di G.

Le funzioni che costanti sulle classi di coniugio di un gruppo vengono dette funzioni di classe. L'insieme delle funzioni di classe di un gruppo viene normalmente indicato con Cl(G) e si verifica che esso è un sottospazio di \mathbb{C}^G .

8. Supponiamo di avere una rappresentazione per permutazioni. Sia I un insieme finito e G un gruppo allora

$$\chi_{\rho_I}(s) = \#punti\ fissi\ di\ \rho_I(s) = |I^s|$$

dove $I^s := \{i \in I | s \circ i = i\}$. La veridicità di questo fatto si vede scrivendo esplicitamente la matrice che rappresenta $\rho_I(s)$.

9. Consideriamo la rappresentazione per permutazioni regolare R. Calcoliamone il carattere:

$$\chi_{\mathcal{R}}(s) = \begin{cases}
|G| & \text{se } s = id \\
0 & \text{se } s \neq id
\end{cases}$$

semplicemente perchè $s \circ g = g \Leftrightarrow s = id$.

Esempio: $G = S_3, I = \{1, 2, 3\}.$ Allora

$$\chi_{\rho_I}(s) = \begin{cases} 3 & \text{se } s = id \\ 1 & \text{se } s \text{ è una trasposizione} \\ 0 & \text{se } s \text{ è un treciclo} \end{cases}$$

Ricordandoci che $\chi_{\rho_I} = \chi_{1+\rho}$ si ha che

$$\chi_{\rho}(s) = \begin{cases} 2 & \text{se } s = id \\ 0 & \text{se } s \text{ è una trasposizione} \\ -1 & \text{se } s \text{ è un treciclo} \end{cases}$$

Definizione 4.2 (Prodotto hermitiano dei caratteri).

$$\langle f|g\rangle = \frac{1}{|G|} \sum_{s \in G} f(s) \overline{g(s)}$$

Teorema 4.2 (Relazioni di ortogonalità). Se ρ e σ sono rappresentazioni irriducibili di G, allora vale

$$\langle \chi_{\rho} | \chi_{\sigma} \rangle = \begin{cases} 1 & se \ \rho \cong \sigma \\ 0 & altrimenti \end{cases}$$

Per dimostrare questo teorema abbiamo bisogno di un lemma che ora enunciamo e dimostriamo.

Lemma 4.3. Se (ρ, V_{ρ}) e (σ, V_{σ}) sono rappresentazioni ⁵ di G, allora vale

$$\langle \chi_{\rho} | \chi_{\sigma} \rangle = dim(Hom(\sigma, \rho))$$

⁵Non necessariamente irriducibili

DIMOSTRAZIONE:

L'idea principale per dimostrare questo lemma è di ridurci al caso più facile in cui una delle due rappresentazioni è quella banale. Per farlo notiamo un paio di cose

$$\langle \chi_{\rho} | \chi_{\sigma} \rangle = \frac{1}{|G|} \sum_{s \in G} \chi_{\rho}(s) \overline{\chi_{\sigma}(s)} = \frac{1}{|G|} \sum_{s \in G} \chi_{\rho}(s) \chi_{\sigma}^{*}(s) = \frac{1}{|G|} \sum_{s \in G} \chi_{\rho\sigma^{*}}(s) = \langle \chi_{\rho\sigma^{*}} \rangle |1\rangle$$

Siamo passati da due rappresentazioni ad una sola. In particolare lo spazio vettoriale su cui agisce questa rappresentazione è

$$V_{\rho\sigma^*} = V_{\rho} \otimes V_{\sigma}^* \cong Hom(V_{\rho}, V_{\sigma})$$

E questo isomorfismo segue semplicemente dalle proprietà del prodotto tensore di spazi vettoriali. Notiamo che sullo spazio degli omomorfismi $Z = Hom(V_{\rho}, V_{\sigma})$ è possibile definire una rappresentazione completamente analoga a $\rho \sigma^*$ in questo modo: se $f \in Z$, allora possiamo definire la rappresentazione $\tau, V_{\tau} = Z$ di G in questo modo

$$\tau(s)f = \rho(s) \circ f \circ \sigma^{-1}(s)$$

É possibile mostrare VI PREGO QUALCHE MATEMATICO LO FACCIA che se chiamo ϕ la mappa tale che

$$\begin{cases} V_{\rho} \otimes V_{\sigma}^* \xrightarrow{\phi} Hom(V_{\rho}, V_{\sigma}) \\ \rho \sigma^* \xrightarrow{\phi} \tau \end{cases}$$

Allora ϕ è un isomorfismo di rappresentazioni. A questo punto possiamo andare a cercare i sottospazi invarianti per τ , ovvero stiamo andando a cercare le sottorappresentazioni irriducibili di τ sperando di usare teoremi che già conosciamo. In particolare stiamo quindi cercando dei sottospazi $W \subset Z = Hom(V_{\rho}, V_{\sigma})$ tali che $\tau(s)W \subset W \quad \forall s \in G$

LA DIMOSTRAZIONE VA CONCLUSA QUANDO IL PROF FINISCE DI DIMOSTRARLA MARTEDÍ

DIMOSTRAZIONE DEL TEOREMA 4.2:

A questo punto la tesi del teorema 4.2 segue dal lemma precedente applicato insieme al lemma di Schur. $\hfill\Box$

Osservazioni:

• Ricordiamo che se ρ è una rappresentazione di G, allora ρ si può scrivere in modo unico come

$$\rho = \sum_{i} n_i \rho_i$$

Dove le ρ_i sono le rappresentazioni irriducibili di G e gli n_i sono numeri naturali ≥ 0 . Dall'equazione scritta sopra segue subito che

$$\chi_{\rho} = \sum_{i} n_{i} \chi_{\rho_{i}}$$

E possiamo ottenere un'informazione utile prendendo il prodotto scalare dell'equazione precedente con il carattere di una delle rappresentazioni ρ_i

⁶Dato che sono spazi vettoriali in questo caso si tratta semplicemente di applicazioni lineari

$$\langle \chi_{\rho} | \chi_{\rho_j} \rangle = \sum_i n_i \langle \chi_{\rho_i} | \chi_{\rho_j} \rangle \Rightarrow n_i \delta_{ij} = \langle \chi_{\rho} | \chi_{\rho_j} \rangle \Rightarrow n_i = \langle \chi_{\rho} | \chi_{\rho_i} \rangle$$

• Caso particolare interessante del fatto precedente riguarda la rappresentazione regolare di un gruppo. Difatti come sappiamo,

$$\chi_{\mathcal{R}}(s) = \begin{cases} |G| & \text{se } s = e \\ 0 & \text{altrimenti} \end{cases}$$

Quindi considerando una sottorappresentazione si ha che

$$\langle \chi_{\mathcal{R}} | \chi_{\rho} \rangle = \frac{1}{|G|} |G| \chi_{\rho}(id) = \chi_{\rho}(id) = deg(\rho)$$

In particolare se ρ è una sottorappresentazione irriducibile allora

$$deg(\rho) = dim(Hom(\mathcal{R}, \rho))$$

Quindi ottengo una conferma del teorema precedente

$$\langle \chi_{\mathcal{R}} | \chi_{\rho} \rangle = dim(Hom(\mathcal{R}, \rho))$$

 $\bullet\,$ Se ρ e σ sono 2 rappresentazioni irriducibili allora

$$\rho \cong \sigma \Leftrightarrow \chi_{\rho} = \chi_{\sigma}$$

- $\langle \chi_{\rho} | \chi_{\rho} \rangle = |\chi_{\rho}|^2 = \sum_i n_i^2$.
- Conseguenza dell'ultima osservazione è che una rappresentazione di un gruppo ρ è irriducibile $\Leftrightarrow \langle \chi_{\rho} | \chi_{\rho} \rangle = |\chi_{\rho}|^2 = 1$

4.1 Tabella dei caratteri

Dato un gruppo G, possimo costruire la tabella dei caratteri nel seguente modo:

• su ogni colonna mettiamo un rappresentante della classe di coniugio con sotto la cardinalità dell'orbita ovvero

G	$\begin{bmatrix} e \\ 1 \end{bmatrix}$	$ \begin{array}{c c} orb(g_1) \\ orb(g_1) \end{array} $	

- su ogni riga mettiamo una rappresentazione irriducibile del gruppo
- all'incrocio tra la rappresentazione ρ_i e la classe di coniugio di g_j inseriamo il valore di $\chi_{\rho_i(g_j)}$.

S_3	e	(12)	$(1\ 2\ 3\)$
	1	3	2

S_3	e	(12)	(1 2 3)
	1	3	2
ρ_1	1	1	1

4.2 Esempi di rappresentazioni di gruppi finiti

Esempio 4.1 (Tabella dei caratteri di S_3). La prima cosa da fare per costruire la tabella dei caratteri è vedere quanti elementi ha S_3 , suddividerli in classi di coniugio e poi cercare le rappresentazioni irriducibili solo dopo aver fatto tutto questo. Notiamo subito che S_3 ha esattamente 3 classi di coniugio. La prima è ovviamente quella banale, composta solo dall'identità e. Poi c'è la classe delle trasposizioni $\{(12), (23), (13)\}$ che ha 3 elementi e poi ci sono i 3cicli, ovvero (123) e (132). Possiamo cominciare a scrivere una tabella vuota 3×3

Una rappresentazione irriducibile che c'è sempre è la rappresentazione banale di grado 1, ovvero quella che manda ogni elemento nell'identità. La tabella con questa informazione diventa

Un'altra rappresentazione che già conosciamo è il segno, ϵ , che ricordiamo vale $(-1)^{n-1}$ dove n è la lunghezza del ciclo. La tabella diventa

S_3	e	(12)	$(1\ 2\ 3\)$
	1	3	2
ρ_1	1	1	1
ϵ	1	-1	1

A questo punto ci sono due motivi per dire che l'ultima rappresentazione ha grado 2: il primo è che è l'unico modo di ottenere la relazione

$$|G| = \sum_{i} n_i^2$$

Il secondo è che se fossero due rappresentazioni di grado 1 allora il gruppo avrebbe solo rappresentazioni irriducibili di grado 1 e un teorema che abbiamo fatto implicherebbe che S_3 sia abeliano, cosa palesemente falsa.

Per trovare il carattere dell'ultima rappresentazione possiamo agire in più modi. Innanzitutto la tabella ora ha la forma

S_3	e	(12)	$(1\ 2\ 3\)$
	1	3	2
ρ_1	1	1	1
ϵ	1	-1	1
ρ	2		

In generale ci saranno due numeri complessi a, b nelle due caselle che mancano. Tuttavia noi sappiamo un sacco di teoremi che ci permettono di restringere il campo dei valori che possono avere. Per esempio noi sappiamo che

$$\langle \rho_i | \rho_j \rangle = \delta_{ij}$$

Per cui imponendo che il prodotto scalare con entrambe le precedenti faccia 0 abbiamo due equazioni e due incognite, ovvero un problema risolvibile. L'altro modo è dire che

$$\mathcal{R} = 1 + \epsilon + 2\rho$$

E dato che il carattere si comporta bene con la somma di rappresentazioni,

$$\chi_{\mathcal{R}} = \chi_1 + \chi_{\epsilon} + 2\chi_{\rho}$$

Ma sappiamo anche che

$$\chi_{\mathcal{R}}(s) = \begin{cases} |G| & \text{se } s = e \\ 0 & \text{altrimenti} \end{cases}$$

Per cui con agili conti riusciamo a completare la tabella

S_3	e	(12)	$(1\ 2\ 3\)$
	1	3	2
ρ_1	1	1	1
ϵ	1	-1	1
ρ	2	0	1

Tabella 1: Tabella dei caratteri di S_3

L'ultimo modo è cercare di scomporre un'altra rappresentazione a caso di S_3 , cercando di trovare la rappresentazione che ci manca. Per esempio ricordiamo l'azione di S_3 sui vettori di base di \mathbb{R}^3

$$\tau(s)e_i = e_{s(i)}$$

Ricordiamo che il sottospazio di dimensione 1 fatto dallo span del vettore $v=e_1+e_2+e_3$ è un sottospazio invariante in cui $\tau(s)$ è sostanzialmente l'identità. Il suo ortogonale è un altro sottospazio invariante su cui ρ è irriducibile. Di conseguenza potremo scrivere

$$\tau = 1 + \rho$$

E siamo sicuri che l'altra rappresentazione di grado 2 sia esattamente quella che stiamo cercando proprio grazie al teorema che ci dice che tutte le rappresentazioni irriducibili di un gruppo compaiono nella sua rappresentazione regolare. (Teorema 3.16)

Dato che è facile calcolare il carattere di $\tau(s)$ in quanto è uguale a Fix(s), possiamo scrivere

$$Fix(s) = 1 + \chi_{\rho}$$

Da cui si ricava subito il carattere della rappresentazione ρ

Esempio 4.2 (Tabella dei caratteri di S_4). Facciamo la prima cosa importante: dividiamo S_4 in classi di coniugio. Per i soliti teoremi sugli S_n , le classi di coniugio saranno

$$\{e\},\{(ab)\},\{(abc)\},\{(abcd)\},\{(ab)(cd)\}$$

S_4	e	(12)	$(1\ 2\ 3\)$	(1234)	(12)(34)
	1	6	8	6	3
ρ_1	1	1	1	1	1

E notiamo che sono 5. Possiamo quindi cominciare a compilare la tabella dei caratteri vuota dove ho già messo la rappresentazione banale. Anche per S_4 , essendo un gruppo simmetrico c'è la rappresentazione segno di grado 1.

S_4	e	(12)	$(1\ 2\ 3\)$	(1234)	(12)(34)
	1	6	8	6	3
ρ_1	1	1	1	1	1
ϵ	1	-1	1	-1	1

A questo punto bisogna fare cose a caso cercando le rappresentazioni irriducibili. Per esempio possiamo di nuovo considerare la rappresentazione per permutazioni

$$\tau(s)e_i = e_{s(i)}$$

Che si scompone anche questa come

$$\tau = 1 + \rho$$

Vorremmo sapere se ρ è irriducibile. Potremmo invocare qualche teorema ma lo faremo con le mani calcolando il carattere di ρ

$$\chi_{\rho}(s) = Fix(s) - 1 = \begin{cases} 3 & \text{Se } s = e \\ 1 & \text{Se } s = (ab) \\ 0 & \text{Se } s = (abc) \\ -1 & \text{Se } s = (abcd), (ab)(cd) \end{cases}$$

E andando a calcolare

$$\langle \chi_{\rho} | \chi_{\rho} \rangle = \frac{1}{24} \left(3^2 + 6 \cdot 1^2 + 0 + (-1)^2 \cdot (3+6) \right) = 1$$

Per cui è effettivamente irriducibile. Aggiungiamola alla tabella.

Abbiamo appena terminato le rappresentazioni che conoscevamo di S_4 .

Ottimo consiglio: Quando non vengono in mente altre rappresentazioni, considera due già presenti nella tabella e fanne il prodotto. Risulta utile il seguente lemma.

Lemma 4.4. Se ρ e σ sono due rappresentazioni e $deg(\rho) = 1$ (ovvero $\rho : G \to \mathbb{C}^*$), allora σ è irriducibile $\Leftrightarrow \rho \sigma$ lo è. Inoltre hanno lo stesso grado.

S_4	e	(12)	$(1\ 2\ 3\)$	(1234)	(12)(34)
	1	6	8	6	3
ρ_1	1	1	1	1	1
ϵ	1	-1	1	-1	1
ρ	3	1	0	-1	-1

Dimostrazione: Che sia ancora a tutti gli effetti una rappresentazione si verifica esplicitamente sapendo che

$$\forall s \in G\rho\sigma(s) = \rho(s)\sigma(s)$$

Per dimostrare che è irriducibile si considera il fatto che

$$\sigma \ irriducibile \Leftrightarrow 1 = \langle \chi_{\sigma} | \chi_{\sigma} \rangle = \frac{1}{|G|} \sum_{s \in G} |\chi_{\sigma(s)}|^2$$

Quindi...

$$\langle \chi_{\rho\sigma} | \chi_{\rho\sigma} \rangle = \frac{1}{|G|} \sum_{S \in G} |\chi_{\rho\sigma(s)}|^2 = \frac{1}{|G|} \sum_{s \in G} |\chi_{\rho(s)} \chi_{\sigma(s)}|^2 = \frac{1}{|G|} |\rho(s) \chi_{\sigma(s)}|^2 = \frac{1}{|G|} \sum_{s \in G} |\rho(s)|^2 |\chi_{\sigma(s)}|^2$$

ed essendo $\rho(s)$ una radice n-esima dell'unità dove n è l'ordine di G si ha che

$$1|\langle \chi_{\rho\sigma}|\chi_{\rho\sigma}\rangle = \frac{1}{|G|} \sum_{s \in G} |\chi_{\sigma(s)}|^2 = \langle \chi_{\sigma}|\chi_{\sigma}\rangle$$

Che abbiano lo stesso grado deriva dal fatto che

$$\chi_{\rho\sigma} = \chi_{\rho}\chi_{\sigma} \Rightarrow deg(\rho\sigma) = \chi_{\rho}\sigma(id) = \chi_{\rho}(id)\chi_{\sigma}(id) = deg(\rho)deg(\sigma) = deg(\sigma).$$

Essendo ϵ di grado 1 e ρ irriducibile allora anche $\rho\epsilon$ è un'altra rappresentazione irriducibile.

S_4	e	(12)	(1 2 3)	(1234)	(12)(34)
	1	6	8	6	3
ρ_1	1	1	1	1	1
ϵ	1	-1	1	-1	1
ρ	3	1	0	-1	-1
$\rho\epsilon$	3	-1	0	1	-1

E a questo punto dato che $|S_4| = 24$ e che $1 + 1 + 3^2 + 3^2 = 20$ si possono avere due situazioni: S_4 potrebbe avere ancora 4 rappresentazioni irriducibili di grado 1 oppure solo più una di grado 2. Tuttavia abbiamo visto come S_n ammetta solo due rappresentazioni irriducibili di grado 1 quindi siamo nel secondo caso.

Dato che ce ne manca solo una possiamo usare il trucco di prima (differenza dalla rappresentazione R) e concludere:

Ossevazione: Guardiamo la tabella, in particolare il "minore" ottenuto considerando le prime due e l'ultima riga e le prime 3 colonne.

S_4	e	(12)	$(1\ 2\ 3\)$	(1234)	(12)(34)
	1	6	8	6	3
ρ_1	1	1	1	1	1
ϵ	1	-1	1	-1	1
ρ	3	1	0	-1	-1
$ ho\epsilon$	3	-1	0	1	-1
σ	2	0	-1	0	2

Tabella 2: Tabella dei caratteri di S_4

S_4	e	(12)	$(1\ 2\ 3\)$
	1	6	8
ρ_1	1	1	1
ϵ	1	-1	1
σ	2	0	1

Se la confrontiamo con la tabella dei caratteri di S_3 vediamo che sono analoghe. Intuitivamente ρ in S_3 deriva dalla rappresentazione σ di S_4 mediante un omomorfismo

$$S_4 \rightarrow S_3$$

che corrisponde ad una azione di S_4 su un insieme di 3 elementi. Tale insieme è il sottogruppo di Klein privato dell'unità ovvero

$$\{(12)(34), (13)(24), (14)(23)\}$$

In questo caso non è servito ma potremmo trovarci in una situazione in cui i seguenti lemmi si rivela utile

Lemma 4.5. ρ^* è irriducibile $\Leftrightarrow \rho$ è irriducibile.

Infatti $\chi_{\rho^*} = \overline{\chi_{\rho}}$ e quindi analogamente al lemma precedente si vede che

$$1 = \langle \chi_{\rho} | \chi_{\rho} \rangle \Leftrightarrow 1 = \langle \chi_{\rho^*} | \chi_{\rho^*} \rangle$$

Lemma 4.6. Se ρ è una rappresentazione di grado d di G, come sempre gruppo finito, allora:

- $(a) |\chi_{\rho}(s)| \leq d$
- (b) Direttamente dal punto (a) si decude che,

$$\chi_{\rho}(s) = d \Leftrightarrow \lambda_1, ..., \lambda_d = 1 \Leftrightarrow \rho(s) = id$$

dove $\lambda_1, ..., \lambda_d$ sono gli autovalori della matrice $[\rho(s)]$.

Dimostrazione: Se $\lambda_1,...,\lambda_d$ sono gli autovalori della matrice $[\rho(s)]$ allora $\chi_{\rho}(s) = \sum_{i=1}^d \lambda_i$. Inoltre essendo G finito $|\lambda_i| = 1 \forall i \in \{1,...,d\}$. Se ne deduce che

$$|\chi_{\rho}(s)| \le \sum_{i=1}^{d} |\lambda_i| = d$$

Esempio 4.3 (Tabella dei caratteri di D_5). La prima cosa da fare è dividere D_5 in classi di coniugio FINIRE

4.2.1 I problemi della prima lezione visti con i nuovi strumenti

Esempio 4.4 (Problema 1 prima lezione).

Esempio 4.5 (Problema 2 prima lezione).

Esempio 4.6 (Problema 3 prima lezione). Consideriamo un cubo. Scriviamo un numero su ciascuna delle facce e consideriamo l'operazione T che per ogni faccia sostituisce al numero presente la media dei numeri presenti sulle 4 facce del cubo adiacenti. Vogliamo studiare il comportamento dei numeri del cubo quando questa iterazione viene compiuta molte volte.

Cerchiamo di formalizzare il problema usando la teoria della rappresentazione. Possiamo considerare l'insieme F delle facce del cubo⁷. Una generica configurazione del cubo sarà esprimibile come

$$v = \sum_{f \in F} a_f e_f$$

Dove $a_f \in \mathbb{C}$ e e_f sono una base. L'operatore che sostituisce la media è lineare ma soprattuto commuta con le simmetrie del problema. Ora spiegherò meglio questo concetto.

Consideriamo il gruppo G delle rotazioni del cubo, ovvero

$$G = \{g \in SO(3) | g(Cubo) \subset Cubo\}$$

É ovvio che il problema è invariante per simmetria, ovvero se $g \in G$, allora vale

$$Tv = q^{-1}Tqv$$

Che è la formula di un cambio di base. Questo si può scrivere come

$$qT = Tq$$

Ovvero ci dice che $\forall g \in G$ le due operazioni commutano. Le due frasi precedenti sono state dette un po' alla garibaldina in quanto non è g ad agire sul cubo ma è una sua rappresentazione di grado |F| = 6. Di conseguenza è bene scrivere in modo formale che $\tau : G \to GL(V_{\tau})$ è una rappresentazione del gruppo di rotazioni del cubo in \mathbb{C}^6 e questa rappresentazione commuta con un operatore T, ovvero

$$T\tau(q) = \tau(q)T \qquad \forall q \in G$$

L'obiettivo che ci poniamo ora è quello di riuscire a scomporre τ come somma di rappresentazioni irriducibili in quanto una volta trovata una scomposizione

$$V_{\tau} = \bigoplus_{i=i}^{n} V_{\rho_i}$$

Allora potremo usare il lemma di Schur per dire che su ogni V_{ρ_i} l'operatore T si comporta come scalare ovvero è più che diagonalizzato. Per riuscire a capire qualcosa di come sono fatte le rappresentazioni di questo gruppo è opportuno prima cercare di dare una struttura più chiara a questo gruppo.

É possibile mostrare che QUALCUNO CHE HA VOGLIA DI FARLO LO FACCIA PLS $G \cong S_4$. A questo punto noi abbiamo una rappresentazione di grado 6 di S_4 che cerchiamo di scomporre come somma di rappresentazioni irriducibili. Tuttavia grazie al teorema 3.16 sappiamo che tutte

 $^{^7{\}rm Che}$ ha quindi 6 elementi

le sottorappresentazioni di τ saranno isomorfe alle sottorappresentazioni della rappresentazione regolare $\mathcal{R}(S_4)$, di cui abbiamo preventivamente calcolato la tabella dei caratteri 2. Dato che

$$\tau = \sum_{i} n_{i} \rho_{i} \Rightarrow \chi_{\tau} = \sum_{i} n_{i} \chi_{\rho_{i}}$$

Andiamo a calcolare i prodotti scalari dei caratteri delle rappresentazioni irriducibili di S_4 con il carattere di τ per trovare quali rappresentazioni compaiono. Per farlo calcoliamo prima il carattere di τ

SCRIVI CHE NON HO VOGLIA

Per cui si ottiene

$$\tau = 1 + \epsilon \rho + \sigma$$

Ovvero

$$V_{\tau} = V_1 \oplus V_{\epsilon\rho} \oplus V_{\sigma}$$

Cerchiamo quindi di capire come sono fatti questi tre spazi che hanno rispettivaemente dimensione 1,3,2.

SCRIVI PIÚ DETTAGLIATO CHE DEVO ANDARE A LEZIONE

$$V_1 = span(e_1 + e_2 + \dots + e_6)$$

 $V_{\epsilon\rho}$ = Le facce opposte hanno numeri opposti

 $V_{\sigma}=$ Le facce opposte hanno numeri uguali e la somma di tutti è 0

Su questi spazi è facile vedere che effettivamente T è scalare. In particolare

$$\begin{cases} T|_{V_1} = 1\\ T|_{V_{\epsilon\rho}} = 0\\ T|_{V_{\sigma}} = -\frac{1}{2} \end{cases}$$

E quindi è evidente che $T^n \to \text{su ogni faccia viene la media dei numeri che c'erano all'inizio.}$