Monday, October 30th 2023
Due:: Day 4.6 at 11 pm
Course notes:
Monday, October 30th 2023

Where to find material in Lock5 textbook:

- Lock5 Section 5.2 (Central Limit Theorem)
- Lock5 Sections 6.1-6.6
- Lock5 Section 6.10-6.11

Terminology of Inference

- population vs. sample
- sampling
 - from one population: iid vs. SRS
 - from two populations: paired samples vs. 2 independent samples
- point estimate, critical value (z^* or t^*), margin of error
- null and alternative hypothesis, test statistic, standardized test statistic, *P*-value, significance level, statistically significant result, Type I error, Type II error, null distribution

Sampling distributions for iid samples

- when CLT declares to be normal:
 - sampling distribution of \hat{p}
 - sampling distribution of \bar{x}
 - sampling distribution of $\bar{x}_1 \bar{x}_2$
- what to use as mean and standard error, when the CLT applies
- when you can conclude the difference between an iid sample and an SRS is negligible

Confidence interval construction

- assessing if the CLT applies
- for these parameters: p, μ , and $\mu_1 \mu_2$
- determine the critical value for a given level of confidence
- finding the margin of error, when the CLT is in play
- finding the boundaries of the confidence interval as

(point estimate) \pm (margin of error)

- interpreting a confidence interval as I've taught it, avoiding the misinterpretations in Section 3.2 of Lock5
- Selecting a sample size so a CI for \hat{p} is not wider than some specified value

Hypothesis testing

- assessing if the CLT applies
- 1-proportion and 1-sample *t*
- computing a standardized test statistic
- computing a *P*-value
- drawing an appropriate conclusion, given α
- stating, in context, what a Type I or Type II error would be
- interpreting a *P*-value

R commands

- Writing an appropriate command, usually one of pnorm() or pt(), whose result is the *P*-value corresponding to a particular test statistic and alternative hypothesis
- Writing an appropriate command to calculate the critical value, given a specified level of confidence, for confidence interval construction