學號:B06502149 系級:資工二 姓名:張琦琛

請實做以下兩種不同 feature 的模型. 回答第(1)~(3) 題:

- (1) 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- (2) 抽全部 **9** 小時內 **pm2.5** 的一次項當作 **feature(**加 **bias)** 備註:
 - a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
 - c. 第1-3 題請都以題目給訂的兩種 model 來回答
 - d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
 - e. 根據助教時間的公式表示. (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

9小時	Public score	Private score
All	5.80226	7.36075
feature		
PM2.5	5.9362	7.31609
Only		

由結果可知在 Public 上抽取所有 feature 的結果較只抽取 PM2.5 較好,可能是所有 feature 的參數較多,考慮較多因素,有更好的預測結果。但是在 Private 上卻比只抽取 PM2.5 差,可能是加入了許多不必要的變數導致 overfitting。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時, 討論其變化

5小時	Public score	Private score
All	5.77986	7.32266
feature		
PM2.5	5.97279	6.42956
Only		

若從抽前 9 小時改成抽前 5 小時, PM2.5 的分數變差,可能是 feature 太少導致 underfitting。但是兩者在 Private 上都得到較好的結果,減少參數將 overfitting 的機會下降,較小的維度也更快收斂。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

若取所有 feature, RMSE 將隨著 lambda 變小而增長,但是沒有顯著變化。若只取 PM2.5,RMSE 則不隨著 lambda 改變而改變,始終為水平線。綜合以上結果,我認為太小的 lambda 值做 regularization,對預測結果並沒有太大幫助。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=I}^{N}(y^n-\mathbf{x}^n\cdot\mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X}=[\mathbf{x}^1\mathbf{x}^2...\mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y}=[\mathbf{y}^1\mathbf{y}^2...\mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ? 請選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-1}yX^{T}$

ANS: (C)

Loss function = $\sum_{n=1}^{N} (y^n - x^n \cdot w)^2$

$$\frac{\partial L}{\partial w} = 2\sum_{n=1}^{N} (y^n - x^n \cdot w)(-x^n) = 0$$

$$\to -2X^T (y - Xw) = 0 \to 2X^T Xw = 2X^T y \to w = (X^T X)^{-1} X^T y$$