SLRealizer:

Catalog-level searching of gravitationally-lensed quasars for LSST

Jenny Kim¹

Physics Department, Stanford University, CA 94305

systems.

Efficiency Rank

4. Conclusion

differences in features between

SDSS galaxies and lensed

Machine Learning Algorithm

Future works: more samples

• It is possible to see the

1. Introduction

- **LSST**(Large Synoptic Sky Telescope) will start running in 2019
- **8.4m** telescope in Chile, ten years of sky survey
- Expected to find substantial number of gravitationally-lensed quasars, that could be used to study time-delay cosmology
- Current Problem: LSST will produce "30 trillion measurements of 37 billion objects" very costly, if not impossible, to go through all the LSST image data to find the lensed quasars
- Need a simpler, more economic way to find those quasars

3. Results

Toy Source Catalog

562 LSST-like OM10 lenses * 200 observation epochs

Toy Object Catalog

562 LSST-like OM10 lenses, averaged by each filter in Toy Source Catalog

Cornerplot to Select Features

SDSS galaxies

OM10 lensed quasars

Figure 3. Ellipticity Some could be useful

2. Methods

562 LSST-like OM10 lensed system with quasar images and lensing galaxy

To simplify the model, we assumed all the sources to have gaussian PSFs.

Null-deblend all the sources in the system for each observation epoch using Galsim, saving the deblended properties to a toy source catalog

u filter

Then, make a toy object catalog by averaging the measured properties for each object per filter

overlap the features from the object catalog **Classification** of with non-lensed systems' Jensed systems using (galaxy pairs, star pairs, **ML Algorithms** quasar pairs, etc) features provided in **Scikit**and extract distinctive features 🕰 Learn

feature ²

Features Chosen:

Figure 1. Color Index

peaks are separated

Classification

5. Acknowledgements

This research was funded by Stanford Physics department. Special thanks to Prof. Kahn, Dr. Marshall, and Michael Baumer.

6. References

Abell, Paul, and Et Al. "LSST Science Book, Version 2.0." Jan. 2009, doi:10.2172/1156415. Oguri, Masamune, and Philip J. Marshall. "Gravitationally lensed quasars and supernovae in future wide-Field optical imaging surveys." Monthly Notices of the Royal Astronomical Society, 2010, doi:10.1111/j.1365-2966.2010.16639.x.