

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Robótica

Hobotica							
Clave: 0820	Semestre:	Eje tema Imágene Artificia	No. Créditos:				
Carácter: Optativa			Horas		Horas por semana	Total de Horas	
Tino: To	Teoría: Práctica:						
Tipo: Teórico-Práctica			3	4	7	112	
Modalidad: Curso			Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: Proceso Digital de Imágenes; Reconocimiento de Patrones; Visión por Computadora

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Comprender y explicar el diseño, control, selección y aplicaciones de diversos tipos de robots.

Índice temático					
Unidad	Tamas	Horas			
	Temas	Teóricas	Prácticas		
	Introducción	6	8		
II	Análisis de movimiento y accionadores	3	4		
III	Cinemática espacial	9	12		
IV	Cinemática inversa	6	8		
V	Dinámica de manipuladores	6	8		
VI	Sistema de Control y sensores	9	12		
VII	Programación de Robots	9	12		
	Total de horas:	48	64		
	Suma total de horas:	1	12		

Contenido temático				
Unidad	Tema			
I Introduce	ión			
I.1	Antecedentes de los robots.			
1.2	Tipos de robots y sus componentes.			
1.3	Aplicaciones de los diferentes tipos de robots.			
II Análisis	de movimiento y accionadores			
II.1	Posición, orientación y referencias.			
11.2	Translación y rotación.			
II.3	Cambio de base.			
11.4	Consideraciones de cálculo para transformaciones.			
III Cinemá	tica espacial			
III.1	Descripción de las articulaciones.			
III.2	Tipos de estructura y notación de D.H.			
III.3	Ecuaciones de cerradura en orientación y posición.			
III.4	Cinemática de cadenas abiertas.			
III.5	Desarrollo de paquetes de cálculo.			
III.6	Cálculo de trayectorias en órganos terminales.			
IV Cinemá	tica inversa			
IV.1	Solución geométrica y numérica.			
IV.2	Método iterativo.			
IV.3	Repetitividad y singularidad.			
IV.4	Singularidades.			
V Dinámic	a de manipuladores			
V.1	Distribución de masa en los eslabones.			
V.2	Sistemas de accionamiento.			
V.3	Aplicación de Newton-Euler y Lagrange-Euler.			
V.4	Simulación dinámica.			
VI Sistema	de Control y sensores			
VI.1	Sistemas de posición y velocidad.			
VI.2	Sistemas no lineales y variantes con el tiempo.			
VI.3	Sistemas de control MIMO.			
VI.4	Sistemas de control adaptativos.			
VI.5	Sensores de fuerza.			
VI.6	Sistemas de semi-restringido.			
VI.7	Sistemas de control híbridos.			
VI.8	Sistemas de Visión.			
VII Prograi	mación de Robots			
VII.1	Programación de robots a bajo nivel.			
VII.2	Programación de robots a medio nivel.			
VII.3	Programación de robots a alto nivel.			

Bibliografía básica:

- 1. Groover, M and M. Weiss, *Robótica industrial: tecnología, Programación y aplicaciones*, Mc-Graw-Hill, 1999.
- 2. Merlet, J. P., Parallel Robots, Springer, 2006.
- 3. Rivin, E., Mechanical design of robots, Mc-Graww-Hill, 1988.
- 4. Craig, J., Introduction to robotics: mechanics and control, John Wiley and sons 1989.

Bibliografía complementaria:

- 1. Tokhi, M. Osman, *Climbing and Walking Robots*, Springer, 2006.
- 2. Fahimi, Firbod, Autonomous Robots: Modeling, Path Planning, and Control, Spring, 2009.
- 3. Sukhatme, S. Gaurav, The path to Autonomous Robots, Spring, 2009.
- 4. Yuh, Junku, Ura Tamaki and Bekeyt George, *Underwater Robots*, Spring, 1996.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	()	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	(X)
Prácticas de taller o laboratorio	(X)	Proyectos de programación	()
Prácticas de campo	()	Proyecto final	()
•	. ,	Seminario	()
Otras:			. ,
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en computación con amplia experiencia de programación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.