Loan Status Prediction

(1) Import Python Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
```

(2) Loading the Data Set

```
In [26]:
            path = r'D:\IITG\portfolio_finance\loan_status\loan_info.csv'
In [27]:
            loan_dataset = pd.read_csv(path)
            loan dataset.head()
Out[27]:
               Loan_ID
                          Gender
                                    Married
                                              Dependents
                                                            Education
                                                                         Self_Employed
                                                                                         ApplicantInc
                                                         0
                LP001002
                              Male
                                          No
                                                               Graduate
                                                                                     No
                LP001003
                                                          1
                                                               Graduate
                              Male
                                          Yes
                                                                                     No
            2 LP001005
                              Male
                                          Yes
                                                         0
                                                               Graduate
                                                                                     Yes
                LP001006
                                                          0 Not Graduate
                              Male
                                          Yes
                                                                                     No
                LP001008
                              Male
                                          No
                                                          0
                                                               Graduate
                                                                                     No
```

In [28]: loan_dataset.describe()

Out[28]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Hi
count	614.000000	614.000000	592.000000	600.00000	564
mean	5403.459283	1621.245798	146.412162	342.00000	0
std	6109.041673	2926.248369	85.587325	65.12041	0
min	150.000000	0.000000	9.000000	12.00000	0
25%	2877.500000	0.000000	100.000000	360.00000	1
50%	3812.500000	1188.500000	128.000000	360.00000	1
75%	5795.000000	2297.250000	168.000000	360.00000	1
max	81000.000000	41667.000000	700.000000	480.00000	1

(3) Cleaning the Data Set

In [29]: loan_dataset.shape

Out[29]: (614, 13)

In [30]: loan_dataset.isnull().sum()

50

Out[30]: Loan_ID 0 Gender 13 Married 3 15 Dependents Education 0 Self_Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14

Credit_History

Property_Area 0 Loan_Status 0 dtype: int64

```
In [31]:
            loan_dataset = loan_dataset.dropna()
            loan_dataset.isnull().sum()
Out[31]: Loan ID
                                 0
          Gender
                                 0
          Married
                                 0
          Dependents
                                 0
          Education
                                 0
          Self_Employed
                                 0
          ApplicantIncome
                                 0
          CoapplicantIncome
                                 0
                                 0
          LoanAmount
          Loan_Amount_Term
                                 0
          Credit_History
                                 0
          Property Area
                                 0
          Loan_Status
                                 0
          dtype: int64
In [32]:
            loan_dataset.replace({"Loan_Status":{'N':0,'Y':1}},inplace=True)
            loan_dataset.head()
Out[32]:
                                                                     Self_Employed
              Loan_ID
                        Gender
                                  Married
                                            Dependents
                                                         Education
                                                                                     ApplicantInc
              LP001003
                                                       1
                                                            Graduate
                             Male
                                       Yes
                                                                                 No
              LP001005
                             Male
                                       Yes
                                                       0
                                                            Graduate
                                                                                Yes
              LP001006
                                                       0 Not Graduate
                             Male
                                       Yes
                                                                                 No
                                                      0
               LP001008
                             Male
                                        No
                                                            Graduate
                                                                                 No
               LP001011
                             Male
                                       Yes
                                                       2
                                                            Graduate
                                                                                Yes
           loan_dataset['Dependents'].value_counts()
In [33]:
Out[33]:
                274
          2
                  85
                  80
          1
          3+
                  41
          Name: Dependents, dtype: int64
            loan_dataset = loan_dataset.replace(to_replace='3+', value=4)
In [34]:
            loan_dataset['Dependents'].value_counts()
Out[34]: 0
               274
          2
                85
                80
          1
                41
          Name: Dependents, dtype: int64
```

(4) Visualizing the Data Set

```
In [35]: sns.countplot(x='Education', hue='Loan_Status', data=loan_dataset)
```

Out[35]: <AxesSubplot:xlabel='Education', ylabel='count'>


```
In [36]: sns.countplot(x='Married', hue='Loan_Status', data=loan_dataset)
```

Out[36]: <AxesSubplot:xlabel='Married', ylabel='count'>

In [38]:	<pre>loan_dataset.head()</pre>									
Out[38]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantInc		
	1	LP001003	1	1	1	1	0			
	2	LP001005	1	1	0	1	1			
	3	LP001006	1	1	0	0	0			
	4	LP001008	1	0	0	1	0			
	5	LP001011	1	1	2	1	1			
	4							•		

(5) Building the Model

Split the Data

```
In [39]: X = loan_dataset.drop(columns=['Loan_ID','Loan_Status'],axis=1)
Y = loan_dataset['Loan_Status']
In [40]: X_train, X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.1,stratify)
```

Create and Fit the Model

```
In [41]: classifier = svm.SVC(kernel='linear')
classifier.fit(X_train,Y_train)
```

Out[41]: SVC(kernel='linear')

(6) Evaluating the Model

```
In [42]: X_train_prediction = classifier.predict(X_train)
    X_train_prediction[:5]
Out[42]: array([0, 1, 1, 1], dtype=int64)
```

```
In [43]: training_data_accuray = accuracy_score(X_train_prediction,Y_train)
print('Accuracy on training data : ', training_data_accuray)
```

Accuracy on training data: 0.7986111111111112

Accuracy on test data : 0.8333333333333334