Network Security Systems

A brief overview of some basic network security systems.

Iptables and Firewalls

From Wikipedia:

A firewall is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules.

A firewall typically establishes a barrier between a trusted network and an untrusted network.

Firewall examples: AWS

```
MyExampleSecurityGroup:
   Type: 'AWS::EC2::SecurityGroup'
   Properties:
     SecurityGroupIngress:
       - IpProtocol: tcp
         FromPort: '22'
         ToPort: '22'
         CidrIp: 130.108.0.0/16
       - IpProtocol: tcp
         FromPort: '1025'
         ToPort: '2048'
         CidrIp: 130.108.0.0/16
       - IpProtocol: -1
         FromPort: '-1'
         ToPort: '-1'
         CidrIp: 10.0.0.0/16
```

Firewall examples: iptables

```
# Generated by iptables-save v1.8.7 on <date>
*filter
:INPUT DROP [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -p tcp --dport 22 -j ACCEPT
-A INPUT -p tcp --match multiport --dports 1025:2048 \
    -i ACCEPT
-A INPUT -m state --state ESTABLISHED, RELATED - ACCEPT
-A INPUT -p tcp -s 10.0.0.0/16 -j ACCEPT
COMMIT
```

Firewall Types

Packet filters

- ▶ **Stateless** filters check basic information like port number, IP address, protocol, etc. of a packet to take action.
- Stateful filters maintain records of conections passing through, can determine if a packet is the start of a new connection or a part of an existing connection. In iptables the four trackable states are NEW, ESTABLISHED, RELATED and INVALID.

Application Layer

- works more like a proxy, can "understand" applications and protocols.
- frequently inspects contents of traffic.

Firewall Policies

Blacklist approach (default-allow)

- All packets are allowed through except those that fit the defined blacklist.
- Pros: flexible, less likely to impact services.
- Cons: unexpected malicious traffic makes it through.
- Lab Task 3

Whitelist approach (default-deny)

- All packets are dropped or rejected unless specifically allowed.
- Pros: safer network
- Cons: unexpected important traffic gets dropped or rejected.
- Lab Task 4

Firewall Rules

Firewalls take one of three actions on a packet.

- ► *Allow* lets the packet pass through.
- Drop prevents the packet from passing but is silent about it.
- Reject prevents the packet from passing but notifies the sender that it is being blocked.

ipchains

iptables specifcally has multiple chains of rules that apply, here are the 5 predetermined ones:

- PREROUTING are rules applied to all packets before any routing decisions are made.
- INPUT are rules applied on packets that will be delivered locally.
- ► FORWARD are rules applying to packets that have been routed but are not for locally delivery
- OUTPUT are packets sent by the local machine.
- ► POSTROUTING again are all packets but after they have been through all previous relevant chains.

iptables tables

Each of the chains defined previously can be applied to different tables depending on intent for the packet.

*filter

For packets that are destined locally and only to be filtered (allowed through or dropped) rules go in the filter table.

*nat

For packets destined elsewhere and that will need to be altered there is a nat table.

*mangle

For all other custom packet manipulation there is a mangle table.

NAT (for I337 gamers and programmers)

NAT stands for Network Address Translation

This is what allows your non-routable private network 192.168.1.0/24 access to the internet.

Lets say you want to make a connection to google.com:80

Your	computer	•	Router	
=====		:=	=======	====
1		1		- 1
por	t 31746	====>		- 1
1		1		1
=====	======	:=	=======	====

Router		www.google.com	_
 port 212 	 283 ===> 	port 80	_
Router		www.google.com	_
======================================	==== = 	port 80	=

Open NAT

All traffic coming in to your Router on a given port gets sent to your computer.

Your computer	Router	
=========	= =========	www.google.com:80
1	I I	www.google.com:443
port 31746	<==== port 21283 <====	serverfault.com:80
1	I I	fbi.gov:32188
	= =========	botnet.cn:11288

Moderate NAT

Your computer

Only traffic from a specified host gets sent back through to your PC.

Router

=========	:= ==:		=====	www	.google.com	n:80
1			1	www	google.com	n:443
port 31746	<====]	port	21283 <====	Х	(rejected)	server
	1		1	X	(rejected)	fbi.gov
	= ==:	=====	=====	X	(rejected)	botnet

Strict NAT

Only responses from the requested host and port are sent back to your pc.

Your	computer	•	Router			
=====		:= =	========	vwv	w.google.com	n:80
		1 1		x	(rejected)	www.god
por	t 31746	<====	port 21283 <==	== x	(rejected)	serveri
1		1 1		х	(rejected)	fbi.gov
=====		= =	========	x	(rejected)	botnet

IPtables info (web links)

- ▶ iptables guide
- ▶ iptables man page
- cool NAT info I used

IPtables notes for the lab

- iptables do not persist through a reboot (so if you lock yourself out you can reboot to get back in)
- iptables can be annoying
- dropping all inbound connections (without any exceptions) will break everything
 - the above will not allow any form of remote communications with the target, which is very annoying;)