$\label{like} $$ \frac{\tikz}{\tikz}$ graphs/$ conversions/canvas coordinate/.code=1 , conversions/coordinate/.code=1$

force, layering, graphs Dimostrazione[theorem]

Università degli Studi di Camerino

Scuola di Scienze e Tecnologie

Corso di Laurea in Informatica (Classe L-31)

Sviluppo di una struttura dati per la trascrizione e gestione di sogni

 ${\bf Marco~Caputo}$

Relatore **Prof.ssa Emanuela Merelli**

Matricola 119136

Indice

1	Inti	oduzio	one	11
	1.1	Motiv	azione	11
	1.2	Obiet	tivi	12
	1.3	Strutt	sura della Tesi	12
2	Gra	afi e Aj	pproccio Multi-Livello	13
	2.1	Cenni	di Teoria dei Grafi \hdots	13
		2.1.1	Grafo Orientato	13
		2.1.2	Archi e nodi	14
		2.1.3	Cammini	15
		2.1.4	Connessione tra nodi	16
	2.2	Contr	azione di Grafi	16
		2.2.1	Contrazione di archi	16
		2.2.2	Contrazione di sottografi	17
		2.2.3	Grafi quoziente	19
	2.3	Appro	occio Multi-Livello	21
		2.3.1	Partizionamento multilivello di grafi	21
3	Gra	ıfi mul	ti-livello	25
		3.0.1	Grafo decontraibile	25
		3.0.2	Grafo multi-livello	29
		3 0 3	Algoritmo generico di trasformazione naturale	31

Elenco dei codici

Elenco delle figure

2.1	Un esempio di grafo orientato	14
2.2	Un esempio di contrazione di un arco in un grafo orientato	17
2.3	Un esempio di contrazione di un sottografo in un grafo orientato $\ \ldots \ \ldots$	18
2.4	Un esempio di grafo quoziente di un grafo orientato	20
2.5	Un esempio di condensazione di un grafo orientato	20
2.6	Schema grafico del partizionamento multilivello	23
3.1	Il grafo decontraibile a sinistra è una contrazione del grafo destra. $\ . \ . \ .$	27
3.2	Il grafo decontraibile a sinistra ottenuto come decontrazione completa	
	del grafo destra NON è una sua contrazione, in quanto il super-nodo	
	a_3 appartiene contemporaneamente a V_a e V_b , e il super-arco e_3 viene	
	decontratto in un insieme vuoto di archi	27
3.3	Esempio di grafi decontraibili G_0, G_1, G_2 di un grafo multi-livello di al-	
	tezza 2 definito da funizoni di contrazione per cricche (contrazione da	
	G_0 a G_1) e per componenti connesse (contrazione da G_1 a G_2)	32

Elenco delle tabelle

1. Introduzione

Numerosi e ragguardevoli sono stati i traguardi raggiunti dagli strumenti di elaborazione automatica di testi scritti sviluppati ed affinati negli ultimi decenni. In particolare, la branca dell'intelligenza artificiale dell'elaborazione automatica del linguaggio naturale ($Natural\ Language\ Processing\ o\ NLP$) ha visto una crescita esponenziale negli ultimi anni, grazie all'impiego di tecniche di deep learning e all'incremento della potenza di calcolo a disposizione. Tuttavia, nonostante i progressi compiuti circa le capacità, la comprensione del testo scritto rimane un compito complesso per i sistemi automatici, che richiedono enormi quantitativi di dati annotati per poter apprendere modelli di linguaggio sufficientemente accurati. Si pensi che i dataset per l'addestramento di modelli di linguaggio come GPT-3 si sono rapidamente espansi, culminando in dimensioni dell'ordine del trilione di parole [Bro+20].

D'altra parte, l'applicazione di queste tecniche di analisi automatica di testi scritti o parlati sui sogni hanno già trovato applicazioni in ambito psicologico e psichiatrico, applicando tecniche di NLP su piccoli corpus di testi di sogni [Alt+17], mentre la rappresentazione di testi sui sogni attraverso grafi si è rivelato un'utile strumento a supperto della diagnosi e predizione di disturbi come la schizofrenia o il disturbo bipolare [MFM+14; MCR17].

In questa tesi si discuterà di come una struttura di grafi a più livelli possa essere utilizzata per rappresentare e analizzare piccoli dataset di testi provenienti da trascrizioni di sogni e come essa possa essere sfruttata per realizzare dei modelli di linguaggio minimali rappresentativi di un particolare sognatore, dimostrando come informazioni legate alla semantica delle parole possano essere estrapolate a partire da aspetti sintattici.

1.1 Motivazione

Sebbene gli strumenti di NLP siano stati ampiamente utilizzati per l'analisi sintattica e semantica di testi scritti, le motivazioni che spingono alla realizzazione di una struttura dati applicabile alla trasposizione di sogni in semplici modelli di linguaggio sono legate al tentativo di individuare i rapporti sintattici e semantici tra parole e contesti di parole in relazione alla specifica persona, ovvero allo spazio semantico di un sognatore.

L'estrapolazione di informazioni legate al significato delle parole a partire da aspetti sintattici è un principio fondamentale della semantica computazionale, noto come ipotesi distribuzionale, che si basa sul principio per cui il significato di una parola è determinato dal suo contesto di utilizzo, e che le parole che appaiono nello stesso contesto tendono ad avere significati simili.

Lo spazio semantico di un sognatore può essere rappresentato, quindi, attraverso una struttura basata su grafi in cui i nodi rappresentino le parole o i contesti di parole presenti nei sogni e gli archi siano ricavati dalle relazioni sintattiche tra di esse, come l'immediata vicinanza o la co-occorrenza.

Da questa necessità nasce l'idea di realizzare una struttura dati generica per la rappresentazione di una gerarchia di grafi a più livelli, dove ogni livello rappresenti una diversa astrazione del grafo iniziale, e i grafi ai livelli inferiori possano essere ottenuti dall'espansione ricorsiva dei nodi ai livelli superiori.

1.2 Obiettivi

L'obiettivo principale di questa tesi è, quindi, proporre una definizione formale della struttura dati astratta del *Grafo Muli-Livello* e delle operazioni che possono essere eseguite su di essa, nonché di valutarne complessità computazionale e spaziale.

Il secondo obiettivo è quello di analizzarne le possibili applicazioni, in particolare per la rappresentazione di spazi di parole e contesti in relazione ai sogni trascritti da un determinato sognatore.

1.3 Struttura della Tesi

La tesi è strutturata come segue:

- Nel Capitolo ?? verranno presentati i concetti di base relativi alla teoria dei grafi, con particolare attenzione agli aspetti legati al partizionamento e agli approcci multilivello esistenti per la risoluzione di problemi di partizionamento su grafi.
- Nel Capitolo ?? verranno illustrati gli algoritmi per l'individuazione di pattern strutturali in grafi utili per la costruzione di una gerarchia di grafi a più livelli.
- Nei Capitoli ?? verrà presentata e definita la struttura dati del Grafo Multi-Livello, le operazioni che possono essere eseguite su di essa e i relativi algoritmi
- Nei Capitoli ?? verranno discusse le possibili applicazioni del Grafo Multi-Livello, evidenziandone limiti e punti di forza. Particolare attenzione sarà rivolta all'ambito della trascrizione dei sogni, e verranno discussi i risultati preliminari ottenuti applicando la struttura dati a dataset di sogni di esempio.

2. Grafi e Approccio Multi-Livello

In questo capitolo sono presentati alcuni concetti introduttivi utili alla definzione e alla comprensione dei *Grafi Multi-livello*. Verrà esplorato il concetto fondamentale di grafo, una struttura matematica in grado di rappresentare relazioni tra elementi discreti, e verranno illustrati i fondamenti della teoria dei grafi [gross2018graph; Cor+09], la disciplina che si occupa dello studio di queste strutture, utile in svariati ambiti applicativi, come l'informatica, l'ingegneria, la biologia, la chimica ed altri. Maggiore attenzione sarà rivolta alle definizioni pertinenti al partizionamento e alla contrazione di grafi [Sanders2012HighQG], vicine alle caratteritiche salienti dei *Grafi Multi-livello*, evidenziando gli aspetti già trattati nella letteratura esistente e quelli che verranno approfonditi in questa tesi.

2.1 Cenni di Teoria dei Grafi

Un grafo è una struttura matematica costruita su un insieme di elementi in cui coppie di elementi possono essere in relazione tra loro. I grafi possono essere orientati o non orentati, a seconda che esista una direzione o un ordine tra le coppie di elementi che si trovano in relazione. In questa sezione ci concentreremo eclusivamente sui grafi diretti, in quanto più generali, visto che grafi non orientati possono sempre essere rappresentati come particolari grafi orientati, ed in quanto la struttura dei *Grafi Multi-livello* si basa su di essi.

2.1.1 Grafo Orientato

Definizione 2.1.1 (Grafo orientato)

Un grafo orientato G è una coppia (V, E), dove:

- $V = \{v_1, v_2, ..., v_n\}$ è un di un insieme finito non vuoto di elementi detti **nodi** (o **vertici**).
- $E = \{(v_i, v_j) \mid v_i, v_j \in V\} \subseteq V \times V$ è un insieme di coppie ordinate di nodi dette archi (o spigoli).

Nelle rappresentazioni grafiche dei grafi orientati, i nodi sono solitamente rappresentati come cerchi o punti, mentre gli archi come frecce. Nella figura 2.1 è mostrato un esempio di grafo orientato con insieme di nodi $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ e insieme di archi $E = \{(v_1, v_2), (v_2, v_1), (v_2, v_3), (v_3, v_1)(v_3, v_4),$

 $(v_4, v_4), (v_5, v_6), (v_6, v_5)$.

Si noti che sono ammessi **cappi**, ovvero archi che collegano un nodo a se stesso, ma nella normale nozione di grafo orientato non sono ammessi archi multipli tra due nodi.

Figura 2.1: Un esempio di grafo orientato

Le cardintalità degli insiemi di nodi e archi di un grafo orientato sono rispettivamente |V| = n e |E| = m, e vengono dette rispettivamente **ordine** e **dimensione** del grafo.

Essendo definiti su un insieme di elementi e di archi, possono essere definite relazioni di inclusione tra grafi. Un grafo G'=(V',E') è un sottografo di G=(V,E), e lo si indica con $G'\subseteq G$ se $V'\subseteq V$ e $E'\subseteq E$.

Inoltre, dato un certo insieme $V' \subseteq V$, si definisce il sottografo di G indotto da V', e lo si indica con la notazione G[V'], il grafo avente come insieme di nodi V' e come insieme di archi l'insieme di tutti gli archi in G che rappresentino relazioni tra tali nodi, ovvero il grafo G' = (V', E') dove $E' = \{(u, v) \in E : u, v \in V'\}$.

Essendo il contenuto informativo rilevante di un grafo orientato contenuto nei suoi archi, e quindi nelle relazioni tra nodi, il concetto di eguaglianza tra grafi orientati non è banale. Una relazione tra grafi orientati, utile per valutare la loro equivalenza in termini di informazione espressa, è l'isomorfismo (dal greco iso = uguale e morphè = forma). Così come per tutte le struttre matematiche, intuitivamente, due grafi si dicono **isomorfi** quando per ogni parte della struttura di uno esiste una corrispondente parte della struttura dell'altro, e viceversa. Formalmente, due grafi orientati G = (V, E) e H = (W, F) si dicono isomorfi, e lo si indica con $G \cong H$ se esiste una biiezione $f: V \to W$ tale per cui $(u, v) \in E$ se e solo se $(f(u), f(v)) \in F$ per ogni $u, v \in V$.

2.1.2 Archi e nodi

A seguire alcune definizioni relative ai nodi e agli archi di un grafo orientato:

Sia $(u, v) \in E$ un arco di un grafo orientato G = (V, E), allora:

• l'arco (u, v) esce dal nodo u ed entra nel nodo v. Ad esempio, gli archi uscenti dal nodo v_2 nel grafo della figura 2.1 sono (v_2, v_1) e (v_2, v_3) , mentre l'unico arco entrante nel nodo v_5 è (v_6, v_5) .

- l'arco (u, v) si dice **incidente** in entrambi i vertici $u \in v$.
- il nodo v è detto adiacente al nodo u, in quanto esiste un arco $(u, v) \in E$.

Sia $v \in V$ un nodo di un grafo orientato G = (V, E), allora:

- il **grado uscente** di un nodo v è il numero di archi che escono da v.
- il grado entrante di un nodo v è il numero di archi che entrano in v.
- il **grado** di un nodo v è la somma del grado uscente e del grado entrante di v.

2.1.3 Cammini

I cammini sono concetti fondamentali della teoria dei grafi e sono alla base di molti algoritmi e problemi noti relativi ai grafi.

Sia G = (V, E) un grafo orientato, siano $u, v \in V$ due nodi di G, allora un **cammino** da u a v in G è una sequenza ordinata di nodi $\langle v_0, v_1, \ldots, v_k \rangle$ tale che $(v_i, v_{i+1}) \in E$ per ogni $i = 0, 1, \ldots, k-1$ con $v_1 = u$ e $v_k = v$. La **lunghezza** k di un cammino è data dal numero di archi che lo compongono. Ad esempio, $\langle v_1, v_2, v_3, v_4 \rangle$ è un cammino di lunghezza 3 nel grafo della figura 2.1.

Se esiste un cammino p da u a v in G, allora si dice che il nodo v è **raggiungibile** da u attraverso p in G, e questo può essere indicato con la notazione $u \stackrel{p}{\leadsto} v$.

A seguire alcune definizioni relative ai cammini su un grafo orientato:

- Un cammino si dice **semplice** se non contiene nodi ripetuti, ad eventuale eccezione del primo e dell'ultimo nodo.
- Un cammino si dice **elementare** se non contiene archi ripetuti. Si noti che un cammino semplice è sempre elementare.
- Un cammino $\langle v_0, v_1, \ldots, v_k \rangle$ di lunghezza $k \geq 1$ si dice **ciclo** se $v_1 = v_k$, ovvero se il suo nodo iniziale coincide con il suo nodo finale. Un **ciclo semplice** è un cammino in cui tutti i nodi sono distinti, ad eccezione del primo e dell'ultimo nodo, mentre un **ciclo elementare** (o **circuito**) è un ciclo in cui tutti gli archi sono distinti. Ad esempio, nel grafo in figura 2.1, il cammino $\langle v_1, v_2, v_3, v_1 \rangle$ è un circuito semplice di lunghezza 3. Inoltre, un grafo diretto che non contiene cicli semplici è detto grafo diretto **aciciclico** (o **DAG**).
- Un cammino si dice **cammino hemiltoniano** in nel grafo G se attraversa ogni nodo di G esattamente una volta.
- Un cammino $\langle v_0, v_1, \dots, v_k \rangle$ si dice **ciclo hemiltoniano** in nel grafo G se esso è un ciclo e ogni nodo di G appare una ed una sola volta tra i nodi $\langle v_0, v_1, \dots, v_{k-1} \rangle$ e $v_k = v_0$.
- Un cammino si dice **cammino euleriano** nel grafo G se attraversa ogni arco di G esattamente una volta.
- Un cammino si dice **ciclo euleriano** nel grafo G se esso è un ciclo e ogni arco di G appare una ed una sola volta tra gli archi del ciclo.

2.1.4 Connessione tra nodi

Una caratteristica importante dei grafi orientati, basata sul concetto di raggiungibilità e adiacienza, è la connessione dei suoi nodi.

Un grafo orientato G = (V, E) si dice **fortemente connesso** se per ogni coppia di nodi $u, v \in V$ esiste un cammino da u a v.

In un tale grafo, quindi, ogni nodo è mutualmente raggiungibile da ogni altro nodo. Le **componenti fortemente connesse** di un grafo sono le classi di equivalenza dei nodi secondo la relazione ëssere mutualmente raggiungibili: Ad esempio, nel grafo in figura 2.1, le componenti fortemente connesse sono $\{\{v_1, v_2, v_3\}, \{v_4\}, \{v_5, v_6\}, \{v_7\}\}$. Si noti che l'insieme di nodi V di un grafo fortemente connesso è per definizione una unica componente connessa.

Un maggiore grado di connessione tra nodi è dato dalla presenza di singoli archi tra ogni coppia di nodi anzichè di cammini.

Un grafo orientato G = (V, E) si dice **completo** se esiste un arco $(u, v) \in E$ per ogni coppia di nodi distinti $u, v \in V$. In un tale grafo, quindi, ogni coppia di nodi distinti è adiaciente. Le **cricche** di un grafo sono le classi di equivalenza dei nodi secondo la relazione "essere mutualmente adiacienti". Ad esempio, nel grafo in figura 2.1, le cricche sono $\{\{v_1, v_2\}, \{v_3\}, \{v_4\}, \{v_5, v_6\}, \{v_7\}\}$. Si noti che l'insieme di nodi V di un grafo completo è per definizione un'unica cricca.

2.2 Contrazione di Grafi

Nella teoria dei grafi la contrazione di un grafo è un'operazione che permette di ridurre la dimensione di un grafo senza alterarne la struttura fondamentale.

La contrazione di archi o di sottoinsiemi di nodi è un operazione fondamentale nella teoria dei grafi minori, dove si studiano le proprietà di un grafo in relazione alla presenza di sottostrutture minori ottenibili attraverso rimozione di archi e nodi o contrazioni. Queste tecniche di contrazione trovano applicazione in tutti quei casi in cui si vuo-le semplificare un grafo identificando i vertici che possono essere considerati equivalenti in relazione ad una certa proprietà, e risultano essere utili in svariati problemi di ottimizzazione e partizionamento di grafi. In letteratura, le operazioni di contrazione di grafi sono state utilizzate anche a scopo di compressione di grafi, al fine di renderli più compatti e trattabili con algoritmi di analisi altrimenti troppo costosi, individuando schemi di contrazione d'interesse e cercando di evitare perdita di informazione [10.1145/3448016.3452797].

2.2.1 Contrazione di archi

La contrazione di archi, spesso riferita come **contrazione di spigoli**, di un grafo orientato G=(V,E) è un'operazione che consiste nella rimozione di un arco $e=(u,v)\in E$ e nella simultanea fusione dei nodi u e v in un unico nodo w. Quando ciò avviene, tutti gli archi che entrano in u e v diventano archi entranti in w, e, analogamente, tutti gli archi che escono da u e v diventano archi uscenti da w. Il risultato di una tale operazione è, quindi, un nuovo grafo ottenuto da G mediante la contrazione dell'arco e, che può

essere indicato con G/e (da non confondersi con la sottrazione insiemistica \backslash). Si noti che, secondo la definzione data, una tale operazione applicata ad un grafo orientato semplice può risultare in un grafo con archi multipli e cappi, a seconda della struttura del grafo iniziale, e per questo è spesso previsto nella definzione di contrazione di archi che vengano applicate le ulteriori operazioni necessarie ad ottenere come risultato un nuovo grafo semplice.

Definizione 2.2.1 (Contrazione di archi)

Sia G = (V, E) un grafo orientato e sia $e = (u, v) \in E$ un arco di G con $u \neq v$, sia f una funzione su V che associa ogni nodo in $V \setminus \{u, v\}$ a se stesso, o ad un nuovo nodo w altrimenti.

La contrazione di e su G è un nuovo grafo G' = (V', E') dove:

- $V' = (V \setminus \{u, v\}) \cup \{w\} \ con \ w \notin V$
- $E' = \{(f(x), f(y)) \mid (x, y) \in E \setminus \{e\}\}\$

In figura 2.2 è mostrato un esempio di contrazione di un arco (u,v) in un nuovo nodo w in un grafo orientato, che include la rimozione di archi multipli e di cappi. Più in generale, una tale operazione può essere eeguita su un insieme di archi, contraendo ciacuno di essi in un qualsiasi ordine.

Figura 2.2: Un esempio di contrazione di un arco in un grafo orientato

2.2.2 Contrazione di sottografi

Un'operazione simile alla contrazione di archi, ma più generale, è la **contrazione di vertici** (o **identificazione di vertici**) di un grafo. Essa può essere vista come una generalizzazione della contrazione di archi, in quanto rimuove la restrizione che la coppia di nodi da contrarre sia adiacente, rendendo la contrazione per archi un suo caso particolare. Si immagini, pertanto, di avere il grafo a sinistra della figura 2.3 privato, però, dell'arco (u, v). La contrazione per vertici permetterebbe di contrarre la coppia non adiacente di nodi $u \in v$, risultando, comunque, nel grafo a destra della figura 2.3.

L' operazione di contrazione di vertici può essere generalizzata nella **contrazione** di **sottografi**, un'operazione che permette di contrarre un qualsiasi sottoinsieme di

nodi di un grafo in un unico nodo. Dato un grafo $G = (E_G, V_G)$ ed un suo sottografo $H = (V_H, E_H)$, quindi, il grafo risultante dalla contrazione di H mantiene tutti gli archi incidenti su coppie di nodi in $E_G \setminus E_H$, sostituendo quegli archi incidenti tra nodi in $V_G \setminus V_H$ e V_H con nuovi archi incidenti sul nuovo nodo contratto.

Definizione 2.2.2 (Contrazione di sottografi)

Sia G = (V, E) un grafo orientato, sia $W \subseteq V$ un sottoinsieme di nodi di G, sia H = G[W] = (W, F) il sottografo indotto da W in G. Sia f una funzione su V che associa ogni nodo in $V \setminus W$ a se stesso, o ad un nuovo nodo W altrimenti. La contrazione di W su W è un nuovo grafo W dove:

- $V' = (V \setminus W) \cup \{w\} \ con \ w \notin V$
- $E' = \{(f(u), f(v)) \mid (u, v) \in E \setminus F\}$

In figura 2.3 è mostrato un esempio di contrazione di un sottografo $G[\{v_1, v_2, v_3, v_4\}]$ del grafo orientato G in un nuovo nodo w, che include la rimozione di archi multipli e di cappi.

Figura 2.3: Un esempio di contrazione di un sottografo in un grafo orientato

Alla luce delle definizioni delle operazioni presentate, valgono le seguenti considerazioni:

- Il risultato della contrazione di una coppia di nodi adiacienti su un certo grafo G può produrre un grafo isomorfo a quello della contrazione di una coppia di nodi non adiacenti in un altro grafo G' non isomorfo a G. E' il caso precedentemente considerato applicato al grafo a sinistra in figura 2.2.
- Il risultato della contrazione di un sottografo su un certo grafo G può produrre un grafo isomorfo a quello della contrazione di un sottografo in un altro grafo G' non isomorfo a G. Come esempio analogo, basta considerare un grafo G ottenuto a apartire dal grafo G a sinistra in figura 2.3 rimuovendo il nodo v_1 e i suoi archi incidenti. I grafi risultanti dalla contrazione di $G[\{v_1, v_2, v_3, v_4\}]$ in G e dalla contrazione di $G[\{v_1, v_2, v_3, v_4\}]$ in G' sono certamente isomorfi.

Questo significa che la contrazione di vertici e di sottografi non sono operazioni invertibili, in quanto rappresentano funzioni suriettive, e quindi non iniettive. Di fatti queste operazioni non mantengono alcuna informazione legata alla struttura originale del grafo su cui sono applicate. Come mostrato nei prossimi capitoli, tra gli obiettivi

della definizione del grafo multi-livello, vi è proprio quello di mantenere le informazioni legate alla struttura dei grafi a cui sono applicate contrazioni, permettendo anche operazioni di decontrazione.

2.2.3 Grafi quoziente

Nella teoria dei grafi, un grafo quoziente è una visione astratta di un grafo partizionato in sottoinsiemi di nodi che rappresenta le relazioni tra tali sottoinsiemi. In un grafo quoziente G' ottenuto a partire da un grafo G = (V, E), i nodi rappresentano blocchidi nodi di G che fanno parte dello stesso insieme per una qualche partizione di V. Per quanto riguarda gli archi di G', dati due blocchi di nodi B_1 e B_2 in G', un arco tra B_1 e B_2 sta ad indicare la presenza di almeno un arco tra un nodo di B_1 e un nodo di B_2 in G.

Se intuitivamente si potrebbe dire che il grafo quoziente permette di accorpare gruppi di nodi e archi tra loro per formare un nuovo grafo, una descrizione più formale utilizzerebbe il concetto di contrazione di sottografi, definendo il grafo quoziente come il risultato delle contrazioni dei sottografi indotti dalla data partizione di nodi.

Definizione 2.2.3 (Grafo Quoziente)

Sia G = (V, E) un grafo orientato, sia $P \subseteq \mathcal{P}(V)$ una partizione di V, sia R la relazione d'equivalenza su V indotta dalla partizione P. Il grafo quoziente di G rispetto a P è il grafo G' = (V', E') dove:

- V' è l'insieme quoziente V/R, ovvero l'insieme delle classi di equivalenza di R su V.
- $E' = \{([u]_R, [v]_R) \mid (u, v) \in E\}, dove [u]_R \ e \ [v]_R \ sono \ rispettivamente le classi di equivalenza dei nodi <math>u \ e \ v \ rispetto \ a \ R.$

La figura 2.4 mostra un esempio di grafo quoziente sulla destra ottenuto a partire dal grafo orientato sulla sinistra e una partizione $P = \{A, B, C\}$.

Come evidente dalla definzione, il nome del grafo quoziente è dovuto al fatto che la sua struttura è strettamente legata all'insieme quoziente di una qualche relazione di equivalenza definita sui nodi del grafo. Sebbene, assieme al grafo di partenza, l'ingrediente fondamentale per la definizione di un grafo quoziente sia la una partizione dei suoi nodi, una relazione di equivalenza sugli stessi sarebbe un parametro equivalente, in quanto ogni relazione di equivalenza induce una partizione degli elementi del suo dominio in classi di equivalenza.

Le relazioni di equivalenza, cosí come le partizioni, possono essere comparate tra loro secondo il concetto di raffinamento: una relazione di equivalenza R_1 si dice **più fine** (in inglese **finer**) di un'altra relazione di equivalenza R_2 se ogni classe di equivalenza di R_1 è contenuta in una classe di equivalenza di R_2 . In tal caso si dice che R_2 è **più grezza** (in inglese **coarser**) di R_1 , in quanto ogni classe di equivalenza di R_2 può essere ottenuta come l'unione di classi di equivalenza di R_1 .

Per questo è interessante notare che tale concetto di finezza può essere facilmente esteso ai grafi quoziente:

Figura 2.4: Un esempio di grafo quoziente di un grafo orientato

- Ogni grafo può banalmente considerarsi come il grafo quoziente di se stesso rispetto alla relazione di equivalenza di ugualianza, in quanto ogni nodo di un grafo è uguale unicamente a se stesso. La relazione di equivalenza di ugualianza, infatti, è la relazione di equivalenza più fine, e per questo genera il grafo quoziente più fine possibile a partire da qualunque grafo.
- Analogamente, il grafo composto di un unico nodo e nessun arco risulta il grafo quoziente di ogni grafo rispetto alla relazione di equivalenza universale, che mette in relazione qualsiasi coppia di elementi ed identifica tutti i nodi di qualunque grafo in un unico blocco. La relazione di equivalenza universale, infatti, è la relazione di equivalenza più grezza e, come è intuibile pensare, genera il grafo quoziente più grezzo possibile a partire da qualunque grafo.

Una particolare relazione di equivalenza che ben si presta alla definizione di un grafo quoziente è la relazione di mutua raggiungibilità tra nodi di un grafo, che ne definisce le componenti fortemente connesse. Il grafo quoziente di un grafo rispetto a tale relazione di equivalenza prende il nome di **condensazione** (o grafo delle componenti fortemente connesse), e si dimostra essere un grafo diretto aciclico.

Figura 2.5: Un esempio di condensazione di un grafo orientato

In figura 2.5 è mostrato un esempio di grafo orientato sulla sinistra, in cui le componenti fortemente connesse sono evidenziate in giallo, e al sua condensazione sulla destra.

Si noti che il grafo condensato, in quanto aciclico, non contiene cicli semplici.

Se si volesse aggiungere un arco affinchè il grafo condensato contenesse un ciclo, ad esempio aggiungendo un arco uscente da un nodo nella componente C e entrante in un nodo nella componente A, si otterrebbe una nuova componente fortemente connessa data dall'unione delle componenti A, B e C, ovvero le componenti i cui corrispondenti nodi nel grafo condensato sarebbero contentenuti in un ciclo semplice.

2.3 Approccio Multi-Livello

In questa sezione verrà introdotto il concetto di contrazione a più livelli di grafi. L'idea di base di un approccio multi-livello è quella di partire da un grafo di partenza e di applicare ripetutamente operazioni di contrazione, ottenendo una sequenza di grafi contratti di dimensione via via minore. Sebbene tale approccio sia stato generalmente utilizzato per ridurre la dimensione di un grafo al fine di applicare efficientemente algoritmi di partizionamento [DBLP:journals/corr/abs-1012-0006], non mancano esempi di applicazioni in contesti diversi, come quello della visualizzazione di grafi di grandi dimensioni [4069239].

In ogni caso, lo scopo di un approccio multi-livello è quello di costruire una gerarchia di grafi contratti che rappresentino la struttura del grafo di partenza, comprimendo in nodi in meta-nodi in accordo a determinate caratteristiche di interesse. Così come per la terminologia usata per le partizioni, i grafi risultanti dalle contrazioni sono spesso detti grossolani (coarse), mentre quelli risultanti dalle decontrazioni sono detti raffinati (fine). I grafi grossolani, ottenuti ricorsivamente a partire dai grafi più raffinati, sono quindi da considerarsi come rappresentazioni più astratte di questi ultimi.

2.3.1 Partizionamento multilivello di grafi

Il partizionamento multilivello di grafi (in inglese multilevel graph partitioning o MGP) è un approccio euristico per la risoluzione di problemi su grafi in cui si vuole dividere un grafo in un dato numero di blocchi che abbiano approssimativamente la stessa dimensione, affinchè una certa funzione obiettivo sia minimizzata.

Un esempio di tale problema dalla grande utilit'a pratica è quello in cui l'obiettivo del partizionamento è quello di minimizzare il numero di archi che connettono i blocchi, che trova applicazione in importanti contesti legati all'informatica, ad esempio per la decomposizione di strutture dati per la computazione parallela, e all'ingegneria, ad esempio per il partizionamento di circuiti integrati.

L'approccio multi-livello, per la prima volta introdotto da Hendrickson e Leland nel 1995 [Hendrickson:1995:MPG:221253.221279], si è rivelato essere quello di maggior successo per la risoluzione di problemi di partizionamento di grafi di grandi dimensioni, in quanto permette di ottenere partizioni di alta qualità in tempi ragionevoli, nonostante il problema di partizionamento sia NP-completo per la maggior parte delle funzioni obiettivo.

L'utilità di questa tecnica si basa sull'intuizione per cui una buona partizione ad un livello grossolano della gerarchia rimarrà tale anche ad un livello più raffinato, e che, in questo modo, la ricerca di una partizione ottimale può essere effettuata su grafi più piccoli e più semplici.

L'approccio multi-livello per la partizione di grafi si articola in tre fasi principali:

- 1. Fase di contrazione (contraction/coarsening phase): si crea una gerarchia di grafi riducendo iterativamente la dimensione del grafo iniziale. Questo viene fatto comunemente individuando e contraendo coppie di nodi adiacenti, ovvero individuando un sottoinsieme degli archi del grafo da contrarre, $M \subseteq E$ detti match. Si noti che la scelta di contrarre coppie di nodi adiacienti porta a grafi grossolani i cui nodi rappresentano sottografi del grafo iniziale densamente connessi. In base allo specifico problema, una determinata funzione di rating classifica gli archi individuando quale sottoinsieme degli archi E debba essere assegnato ad E affinche la somma dei rating degli in E si globalmente massimizzata. Si consideri che un nodo già contratto non può essere più coinvolto in un ulteriore matching allo stesso livello della gerarchia.
- 2. Fase di partizionamento iniziale (initial partitioning phase): quando a seguito delle contazioni il grafo risulta essere di ordine abbastanza piccolo, in relazione ad un qualche threshold, esso può essere partizionato direttamente con algoritmi costosi, fornendo una partizione inizile sul grafo più grossolano della gerarchia.
- 3. Fase di decontrazione (refinement/uncoarsening phase), i matchings vengono iterativamente decontratti, e i relativi nodi vengono associati a blocchi della partizione del grafo più grossolano, proiettandola sul grafo più raffinato. Per fare in modo che la partizione al livello più grossolano tenga conto delle sotto-strutture ai livelli più raffinati, un algoritmo di miglioramento locale (local improvement) ricolloca i nodi tra i blocchi per migliorare la dimensione del taglio o l'equilibrio delle dimensioni tra i blocchi.

drftcite

 $Fase\ di\ partizionamento\ iniziale$

Figura 2.6: Schema grafico del partizionamento multilivello

3. Grafi multi-livello

Come si è potuto vedere dal contenuto del capitolo 1, le operazioni di contrazione e la costruzione di gerarchie di grafi a più livelli siano concetti già ampiamente utilizzato e consolidato nella teoria dei grafi e nelle sue applicazioni. Tuttavia, ciò che non è stato ancora propriamente considerato nella letteratura esistente è la possibilità di definire e formalizzare una vera e propria struttura dati astratta che rappresenti un grafo multilivello come un'entità a sè stante. In questo capitolo saranno proposte definizioni e proprietà di base di una struttura dati per la rappresentazione di gerarchie di grafi a più livelli, in cui sia possibile ottenere informazioni sull'intera struttura gerarchica in relazione ai singoli grafi che la compongono. In particolare, riprendendo dalla terminologia e dai concetti esistenti in letteratura, proporremo definizioni orginali di *Grafi decontraibili* e di *Grafi multi-livello*.

3.0.1 Grafo decontraibile

Definzione 1 (Grafo decontraibile)

Un grafo decontraibile è una quadrupla $G = (V, E, dec_V, dec_E)$ dove:

- V è un insieme di elementi detti supernodi;
- $E \subseteq V \times V$ è un insieme di coppie ordinate di supernodi, dette superarchi;
- $dec_V: V \to \mathcal{G}_D$ è una biezione tale per cui $dec_V(v) = G_v$ è un grafo decontraibile rappresentato dal supernodo v;
- $dec_E : E \to (\mathcal{V} \times \mathcal{V})$ con $\mathcal{V} = \bigcup_{v \in V} \mathcal{V}_v$, è una biiezione tale per cui $\forall e = (u, v)$, $dec_E(e) = E_e \subseteq \{(a, b) \mid a \in \mathcal{V}_u \land b \in \mathcal{V}_v\}$ è un insieme di archi rappresentati da e.

Si noti che è possibile usare una notazione basata su attributi alternativa a quella delle funzioni per descrivere le proprietà caratteristiche di nodi ed archi che rendono tale un grafo decontrabile.

In particolare, si può definire un grafo decontraibile come un normale grafo diretto sotto forma di coppia (V, E) dove:

- $\forall v \in V$, è definito un attributo $v.dec = G_v$ dove $G_v = (\mathcal{V}_v, \mathcal{E}_v)$ è un grafo decontraibile rappresentato da v, quindi tale per cui $dec_V(v) = v.dec$.
- $\forall e = (u, v) \in E$, è definito una attributo $e.dec = E_e$ dove $\mathcal{E}_e \subseteq \{(a, b) \mid a \in \mathcal{V}_u \land b \in \mathcal{V}_v\}$ è un insieme di archi rappresentati da e, quindi tale per cui $dec_E(e) = e.dec$.

Si noti inoltre che, dal momento in cui i grafi decontraibili sono a tutti gli effetti dei grafi, tutte le definizioni date sui grafi standard continuano a valere per i grafi decontraibili.

Definzione 2 (Contrazione di un grafo decontraibile) Sia G = (V, E) un grafo decontraibile, il grafo decontraibile $G' = (\mathfrak{V}, \mathfrak{E})$ è una sua **contrazione** se e solamente se:

1. l'insieme $\{V_{\alpha} \mid \alpha \in \mathfrak{V}, dec$

 $V(\alpha) = (V_{\alpha}, E_{\alpha})$ è una partizione di V

2. l'insieme $\{E_{\alpha} \mid \alpha \in \mathfrak{V}, dec$

$$V(\alpha) = (V_{\alpha}, E_{\alpha}) \cup \{dec$$

 $E(\epsilon) \mid \epsilon \in \mathfrak{E}$ è un ricoprimento di E formato di insiemi due a due disgiunti, con $\emptyset \notin \{dec_E(\epsilon) \mid \epsilon \in \mathfrak{E}\}.$

Si noti, quindi, che la contrazione G' del grafo decontraibile G contiene tutte le informazioni necessarie a calcolare G. Infatti dalla definizione si ha:

$$G = (\bigcup_{\alpha \in \mathfrak{V}} V_{\alpha}, (\bigcup_{\alpha \in \mathfrak{V}} E_{\alpha} \cup \bigcup_{\epsilon \in \mathfrak{C}} dec$$

 $E(\epsilon)))$

Figura 3.1: Il grafo decontraibile a sinistra è una contrazione del grafo destra.

Definiamo, inoltre, l'operatore unario $\cdot^D: \mathcal{G}_D \to \mathcal{G}_D$ come l'operatore di **decontrazione completa** che, dato un grafo decontraibile G = (V, E) restituisce il grafo decontrabile G^D ottenuto dalla decontrazione di tutti i super-nodi e super-archi del grafo in input.

$$G^D = (\bigcup_{v \in V} V_v, (\bigcup_{v \in V} E_v \cup \bigcup_{e \in E} dec_E(e)))$$

Una contrazione di un grafo decontraibile G, può quindi essere alternativamente definta come un suo grafo quoziente decontrabile G' la cui decontrazione completa $(G')^D$ è proprio G.

Si noti che, in generale, un grafo decontraibile G può essere o meno una contrazione di G^D .

Figura 3.2: Il grafo decontraibile a sinistra ottenuto come decontrazione completa del grafo destra NON è una sua contrazione, in quanto il super-nodo a_3 appartiene contemporaneamente a V_a e V_b , e il super-arco e_3 viene decontratto in un insieme vuoto di archi.

Proposizione 1.1 Sia G = (V, E) un grafo decontraibile e sia $G' = (\mathfrak{V}, \mathfrak{E})$ una sua contrazione, sia α un super-nodo appartenente a \mathfrak{V} . Allora $dec_{\mathfrak{V}}(\alpha) = (V_{\alpha}, E_{\alpha})$ è il sottografo di G indotto da V_{α} .

$$dec_{\mathfrak{N}}(\alpha) = G[V_{\alpha}]$$

Dimostrazione Sia H=(W,F) il sottografo di G=(V,E) indotto da V_{α} con $\alpha \in \mathfrak{V}$, per definizione di grafo indotto, H deve essere definito sull'insieme di nodi V_{α} , ovvero deve essere $W=V_{\alpha}$. Si vuole ora dimostrare che $F=E_{\alpha}$.

L'inclusione $F \subseteq E_{\alpha}$ può essere dimostrata notando che per definizione H, che è un grafo indotto da V_{α} , si ha:

$$(x,y) \in F \implies (x,y) \in E \quad \text{con} \quad x,y \in V_{\alpha}$$

Essendo che $\{E_{\alpha} \mid \alpha \in \mathfrak{V}, dec\}$

$$V(\alpha) = (V_{\alpha}, E_{\alpha}) \cup \{dec$$

 $E(\epsilon) \mid \epsilon \in \mathfrak{E}$ è un ricoprimento di E, si nota che l'unico insieme del ricoprimento che può contenere archi definiti in $V_{\alpha} \times V_{\alpha}$ è proprio E_{α} . Si conclude allora $(x,y) \in F \implies (x,y) \in E \implies (x,y) \in E_{\alpha}$.

L'inclusione $E_{\alpha} \subseteq F$ può essere dimostrata notando che per la proprietà delle contrazioni, per cui $\{E_{\alpha} \mid \alpha \in \mathfrak{V}, dec$

$$V(\alpha) = (V_{\alpha}, E_{\alpha}) \cup \{dec$$

 $\mathrm{E}(\epsilon) \mid \epsilon \in \mathfrak{E}\}$ è una copertura di E, si ha:

$$(u,v) \in E_{\epsilon} \implies (u,v) \in E$$

Essendo che $(u,v) \in E_{\alpha} \implies (u,v) \in V_{\alpha} \times V_{\alpha}$ per definzione di E_{α} , si deve avere $u,v \in V_{\alpha}$. Segue quindi $(u,v) \in E \wedge u, v \in V_{\alpha} \implies (u,v) \in F$.

3.0.2 Grafo multi-livello

A partire dalla definizione di grafo decontraibile e di contrazione, può essere definita una struttura gerarchica a più livelli dove i grafi ai livelli inferiori possono essere ricorsivamente espansi a partire dai supernodi dei livelli superiori. Il concetto di grafo multi-livello prevede quindi una definizione bottom-up di tale struttura, indicandone il grafo inziale e gli schemi di contrazione secondo cui dei sotto-grafi sono collassati in singoli super-nodi, formando gerarchie di grafi decontraibili.

Definzione 4 (Funzione di contrazione)

Una funzione di contrazione $f_C: \mathcal{G}_D \to \mathcal{G}_D$ è una funzione che dato un grafo decontraibile G essa produce un nuovo grafo decontraibile $f_C(G) = G'$ che sia una contrazione di G.

Una funzione di contrazione rappresenta quindi un particolare schema di contrazione dove dominio e codominio sono coincidenti e sono rappresentati dall'insieme dei grafi decontraibili. Questo vuol dire che è possibile comporre le funzioni di contrazione in sequenza a partire da un dato grafo decontraibile.

Definzione 5 (Funzione di trasformazione naturale)

Definiamo funzione di trasformazione naturale η una funzione che dato un grafo standard H=(W,F), produce il corripondente grafo decontraibile G=(V,E) con le seguenti proprietà:

- $dec_V(v) = (\emptyset, \emptyset) \quad \forall \ v \in V$
- $dec_E(e) = \emptyset \quad \forall \ e \in E$
- H e G sono isomorfi, ovvero esiste una biiezione $f_V: W \to V$ tale che

$$(u,v) \in F \iff (f_V(u), f_V(v)) \in E$$

La funzione trasformazione naturale è quindi la funzione che permette di trasformare un dato grafo standard in un grafo decontraibile isomorfo per cui le due funzioni di decontrazione dei nodi e degli archi siano definite, seppur producano rispettivamente un grafo e un insieme di archi vuoto. Questo garantisce che il grafo decontraibile ottenuto non possa essere contrazione di alcun altro grafo decontraibile.

Definzione 6 (Grafo multi-livello)

Un grafo multi-livello M è una coppia (G,Γ) dove:

- G = (V, E) è un grafo
- Γ è una sequenza $\langle f_{C_1}, f_{C_2}, ..., f_{C_k} \rangle$ di funzioni di contrazione, ovvero tali che

$$f_{C_i}(G_{i-1}) = G_i$$
 è una contrazione di G_{i-1} $\forall i \in \{1, \ldots, k\}$

Dato un grafo multi-livello $M=(G,\Gamma)$ con $\Gamma=\langle f_{C_1},f_{C_2},..,f_{C_k}\rangle$, la funzione che calcola il suo grafo decontraibile al livello k-esimo è definita come

$$con(M,k) = \begin{cases} f_{C_k}(con(M,k-1)) & \text{se } k > 0 \\ \eta(G) & \text{se } k = 0 \end{cases} = G_k$$

dove η è la funzione di trasformazione naturale precedentemente defnita.

Si noti che la funzione da applicare a G per ottenere G_k è $f_{C_k} \circ f_{C_{k-1}} \circ \ldots \circ f_{C_1} \circ \eta$.

Definiamo, inoltre, la funzione altezza h, sia per grafi multi-livello che per i suoi grafi decontraibili, nel modo seguente:

- $h: \mathcal{M} \to \mathbb{N}$, tale che h(M) = k, con $M = (G, \Gamma)$ e k il numero di funzioni di contrazione in Γ .
- $h: \mathcal{G}_D \to \mathbb{N}$, tale che $h(G_i) = i$, con i il numero di contrazioni necessarie per ottenere G_i a partire da $\eta(G)$.

Figura 3.3: Esempio di grafi decontraibili G_0, G_1, G_2 di un grafo multi-livello di altezza 2 definito da funizoni di contrazione per cricche (contrazione da G_0 a G_1) e per componenti connesse (contrazione da G_1 a G_2).

3.0.3 Algoritmo generico di trasformazione naturale

L'algoritmo generico di trasformazione naturale si occupa di definire un nuovo grafo decontraibile tramite l'ausilio della funzione biiettiva sopra definita f_V che realizza l'isomorfismo.

$\overline{\mathbf{Algorithm}}$ 1 NATURAL-TRANSFORMATION(H)

```
1: V=∅
2: for each x \in W do
       let v be a super-node such that f_V(x) = v
       v.dec = (\emptyset, \emptyset)
        V = V \cup \{v\}
 5:
 6: end for
 7: E=∅
8: for each g = (x, y) \in F do
       let e be a super-edge such that e = (f_V(x), f_V(y))
       e.dec = \emptyset
10:
        E = E \cup \{e\}
11:
12: end for
13: return (V, E)
```

Tramite l'ausilio di strutture dati con tempi di ricerca costanti, la complessità della riga 10 si riduce a O(1), e, di conseguenza, la complessità dell'algoritmo è $\Theta(\mid V\mid +\mid E\mid)$.

Bibliografia

- [Alt+17] Edgar Altszyler et al. «The interpretation of dream meaning: Resolving ambiguity using Latent Semantic Analysis in a small corpus of text». In: Consciousness and Cognition 56 (2017), pp. 178-187. ISSN: 1053-8100. DOI: https://doi.org/10.1016/j.concog.2017.09.004. URL: https://www.sciencedirect.com/science/article/pii/S1053810017301034.
- [Bro+20] Tom B. Brown et al. «Language Models are Few-Shot Learners». In: CoRR abs/2005.14165 (2020). arXiv: 2005.14165. URL: https://arxiv.org/abs/2005.14165.
- [Cor+09] Thomas H. Cormen et al. *Introduction to Algorithms*. 3^a ed. Cambridge, MA: MIT Press, 2009. ISBN: 978-0-262-03384-8.
- [LK17] Marc Moreno Lopez e Jugal Kalita. «Deep Learning applied to NLP». In: CoRR abs/1703.03091 (2017). arXiv: 1703.03091. URL: http://arxiv.org/abs/1703.03091.
- [MCR17] N.B. Mota, M. Copelli e S. Ribeiro. «Thought disorder measured as random speech structure classifies negative symptoms and schizophrenia diagnosis 6 months in advance». In: npj Schizophrenia 3 (2017), p. 18. DOI: 10.1038/s41537-017-0019-3. URL: https://doi.org/10.1038/s41537-017-0019-3.
- [MFM+14] N Mota, R Furtado, P Maia et al. «Graph analysis of dream reports is especially informative about psychosis». In: *Scientific Reports* 4 (2014), p. 3691. DOI: 10.1038/srep03691. URL: https://doi.org/10.1038/srep03691.