

Congratulations! You passed!

Go to next item

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

Linear Regression with Multiple Variables

Latest Submission Grade 100%

1. Suppose *m*=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

1/1 point

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

places and enter in the text box below.

Correct

← Back Line

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

with lpha=0.3 and compute J(heta) after each

iteration. You find that the value of $J(\theta)$ increases over

time. Based on this, which of the following conclusions seems

most plausible?

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

Suppose you have m=14 training examples with n=3 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

1/1 point

Linear Regression with Multiple Variables

Graded Quiz • 30 min

Due Apr 4, 8:59 AM EET

4. Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

1/1 point

Correct

5. Which of the following are reasons for using feature scaling?

1/1 point

