

Turinys

- Pagrindai
- IPv4 Protokolas
- Adresacija
 - Klasifikavimas
- IP valdymo protokolai
- Maršrutizavimo protokolai
- IPv6 Protokolas

Interneto projektavimo principai

- 1. Sprendimas turi veikti
- 2. Sprendimas turi būti paprastas
- 3. Vienam tikslui pasiekti vienas kelias
- 4. Modulinė struktūra
- 5. Pasiruošimas heterogeninėms esybėms
- 6. Vengti statinių parametrų
- 7. Pasirinkti gerą sprendimą bet ne geriausią
- 8. Griežtas siuntimas, tolerantiškas priėmimas
- 9. Apkrovos pasiskirstymas
- 10. Atsižvelgti į greitį ir kainą

Internetas daugelio tinklų tinklas

IPv4 paketo formatas

IPv4 plėtiniai

Plėtinys	Aprašymas		
Saugumas	Nusako datagramos saugumo lygį		
Griežto kelio maršrutizavimas	Nusako tikslų kelią, kuriuo keliaus paketai		
Laisvo kelio maršrutizavimas	Nusako sąrašą maršrutizatorių kurių nereikėtų praleisti		
Audituojamas maršrutizavimas	Kiekvienas maršrutizatorius prie paketo prideda savo IP adresą		
Laiko žyma	Kiekvienas maršrutizatorius prie paketo prideda savo adresą ir laiko žymą		

IPv4 adreso formatas ir klasės

Specialūs IPv4 adresai

• 45 00 00 28 Versija – 4; IHL – 5; Ilgis 40 5e 43 40 00 Id – 24131; DF – 1; MF – 0; Offset – 0 80 06 09 24 TTL – 128; Protokolas – 6 (RFC1700); c0 a8 01 5f Šaltinio IP: 192.168.1.95; ad c2 23 9f Tikslo IP: 173.194.35.159

IPv4 Potinkliai

- (net,0); (net,host);
- (net,subnet,0); (net,subnet,host);

IPv4 Potinkliai ir tinklo kaukės

CIDR (Classless InterDomain Routing) – beklasė maršrutizacija domeno viduje

194.0.0.0 - 195.255.255.255 - Europa

198.0.0.0 - 199.255.255.255 - Šiaurės Amerika

200.0.0.0 - 201.255.255.255 - Centrinė ir

Pietų Amerika

202.0.0.0 - 203.255.255.255 - Azija

Kiekvienas regionas gavo 32 000 000 adresų

ARP ir RARP protokolai

DHCP – Dynamic Host Configuration Protocol

- Automatinis adresų paskristymas
- Visa konfigūracijai skirta informacija viename pranešime
- Trys adresų paskirstymo būdai:
 - Rankinis
 - Automatinis
 - Dinaminis

DHCP Protokolas

ICMP – Internet Control Message Protocol

Message type	Description		
Destination unreachable	Packet could not be delivered		
Time exceeded	Time to live field hit 0		
Parameter problem	Invalid header field		
Source quench	Choke packet		
Redirect	Teach a router about geography		
Echo request	Ask a machine if it is alive		
Echo reply	Yes, I am alive		
Timestamp request	Same as Echo request, but with timestamp		
Timestamp reply	Same as Echo reply, but with timestamp		

- Open Shortest Path First
 - Algoritmas turi būti išleistas laisvai prieinamoje literatūroje
 - Turi mokėti dirbti su įvairiom metrikom: atstumu, pralaidumu, užlaikymu ir t.t.
 - Turi būti dinaminis
 - Turi palaikyti įvairius serviso lygius
 - Apkrovimo balansavimas ir srautų išskaidymas per skirtingus kanalus
 - Maršrutizatorius neturi žinoti viso tinklo parametrų
 - Turi būti sustiprintas maršrutizatorių saugumas
 - Tunelio panaudojimas

- OSPF palaiko trijų skirtingų ir sujungimų tipus:
 - Taškas su tašku tarp dviejų maršrutizatorių
 - Tinklas su broadcast perdavimu (LAN tinklai)
 - Tinklas su daugybiniu perdavimu

- OSPF išskiria keturias maršrutizatorių klases:
 - Vidinis maršrutizatorius dirbantis tik srities viduje
 - Kraštinis maršrutizatorius sujungia sritis tarpusavyje
 - Pradinis (atraminis) maršrutizatorius priklauso pagrindinei (atraminei) sričiai
 - AS kraštinis maršrutizatorius sujungtas su kitų AS maršrutizatoriais

- OSPF protokole maršrutizatoriai pasikeičia informacija ne su kaimynais, o su gretimais mazgais
- Gretimas mazgas nustatytas maršrutizatorius, jis turi dublerį

Message type	Description		
Hello	Used to discover who the neighbors are		
Link state update	Provides the sender's costs to its neighbors		
Link state ack	Acknowledges link state update		
Database description	Announces which updates the sender has		
Link state request	Requests information from the partner		

BGP (Border Gateway Protocol) – išorinis šliuzų maršrutizavimo protokolas

- AS viduje maršrutizatoriaus tikslas surasti optimalų maršrutą
- Tarp AS reikia atsižvelgti ir į įvairias sąlygas, kurios kyla dėl konkrečios organizacijos, kuriai priklauso AS, politikos
- Pavyzdžiai
 - Tam tikrų AS trafikas neturi pasiekti organizacijos AS
 - Srautas iš arba į autonominę sistemą, priklausiančią IBM, neturi eiti per autonominę sistemą, kuri yra Microsoft dalis

BGP – išorinių šliuzų maršrutizavimo protokolas

- BGP maršrutizatorius dalina į tris kategorijas:
 - Tinklas-aklavietė niekur neveda. Turi tik vieną sujungimo tašką su BGP grafu. Negali būti naudojamas tranzitui.
 - Tinklas su daugybiniais sujungimais. Gali būti naudojami tranzitui, jei leidžia tai daryti.
 - Tranzitiniai tinklai tokie kaip atraminiai (angl. Backbone), kurie skirti srauto tranzitui

BGP – išorinių šliuzų maršrutizavimo protokolas

Information F receives from its neighbors about D

From B: "I use BCD"
From G: "I use GCD"
From I: "I use IFGCD"
From E: "I use EFGCD"

(b)

NAT – Network Address Translation

- Mažos adresų erdvės problemos sprendimo variantas
- Organizacijos viduje daug skirtingų IP adresų, išorėje vienas
- Rezervuotos ribos:
 - -10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16

NAT – Network Address Translation

NAT – Network Address Translation

- Sugadina IP architektūrą, kurioje kiekvienas IP adresas unikaliai identifikuoja mašiną
- Tinklo lygis tampa orientuotas į sujungimus, nes reikia palaikyti informaciją apie kiekvieną sujungimą
- Pažeidžiama pagrindinė hierarchinės organizacijos taisyklė
 - lygio k protokolas neturi nieko žinoti apie k+1 lygio protokolo realizaciją
- Be TCP arba UDP kyla problemos
- Kai kurios programos saugo IP adresą pranešimo tekste (pvz. FTP), todėl atsiranda klaidos

IPv6

- Tikslai kuriant IPv6 buvo:
- 1. Išplėsti adresų erdvę
- 2. Sumažinti maršrutų lenteles maršrutizatoriuose
- 3. Supaprastinti protokolą, kad maršrutizatoriai galėtų apdoroti paketus greičiau
- 4. Įdiegti saugumo sistemą
- 5. Skirti daugiau dėmesio realaus laiko duomenims
- 6. Sukurti multicastingą išskiriant ribas
- 7. Leisti tinklo mazgams (hosts) migruoti nekeičiant jų IP adresų
- 8. Leisti protokolui evoliucionuoti ateityje
- 9. Palaikyti senus ir naujus protokolus

IPv6 antraštės formatas

IPv6 plėtiniai

Extension header	Description		
Hop-by-hop options	Miscellaneous information for routers		
Destination options	Additional information for the destination		
Routing	Loose list of routers to visit		
Fragmentation	Management of datagram fragments		
Authentication	Verification of the sender's identity		
Encrypted security payload	Information about the encrypted contents		

IPv6 jumbogramos

Next header	0	194	4		
Jumbo payload length					

IPv6 maršrutizavimo plėtiniai

IPv6 adresai

EFDC:BA62:7654:3201:EFDC:BA72:7654:3210

"1080:0000: 0000: 0000:0008:0800:200C:417A" \rightarrow "1080:0:

0: 0:8:800:200C:417A" \rightarrow "1080::8:800:200C:417A"

 $192.168.0.2 \rightarrow ::192.168.0.2$

Klausimai?