Review Questions 4

Programmable Logic, Flip-flops, Counters

1 – In the simple programmed AND array with programmable links in the figure, determine the Boolean output expressions.

Yanıt 1

$$X_1 = A'B$$
 $X_2 = A'B'$ $X_3 = AB'$

 ${\bf 2}$ - Develop the f_{out} waveform for the circuit in the following figure when an 8 kHz square wave input is applied to the clock input of flip-flop A.

Yanıt 2

Saatin yükselen kenarında tetiklendiği için, çıktıyı o andaki girdilere bakarak buluyoruz. Flip Flop B ve Flip Flop C'nin saatlerinin sırasıyla Q_A ve Q_B olduğuna dikkat etmek gerekir. Bütün J ve K girdilerimiz de HIGH yani mantıksal olarak 1. Bu yüzden her yükselen kenarda değiştirme (toggle) olacak.

J	K	Q _(t+1)	Etki				
0	0	Q	Değişiklik yok (no change)				
0	1	0	Sıfırlama (reset)				
1	0	1	Kurma (set)				
1	1	Q'	Değiştirme (toggle)				

3 - Determine the output waveforms in relation to the clock for Q_A , Q_B and Q_C in the circuit of the following figure and show the binary sequence represented by these waveforms.

Yanıt 3

CLK girdisinin ucundaki yuvarlak(NOT) çıktıların, saatin düşen (negatif) kenarına göre değiştiğini gösteriyor. Çıktıyı o andaki girdilere bakarak buluyoruz. Bütün J ve K girdilerimiz de HIGH yani mantıksal olarak 1. Bu yüzden her yükselen kenarda değiştirme (toggle) olacak.

Aşağıdaki şekilden yola çıkarak dizimizi şöyle buluruz: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...

4 – For a positive edge-triggered J-K flip-flop with inputs as shown in following figure, determine the Q output relative to the clock. Assume that Q starts LOW.

Yanıt 4

Saatin yükselen kenarında tetiklendiği için, çıktıyı o andaki girdilere bakarak buluyoruz. Örneğin ik yükselen kenarda J'nin değeri 0, K'nin değeri 0. J ve K O'ken Q aynı şekilde devam ettiği için 0 olarak devam ediyor. İkinci yükselen kenarda J'nin değeri 1, K'nin değeri 0; bu durumda Q, 1 olacaktır.

5 – Determine the sequence of the counter in the figure

Şekildeki flip flopların D flip flop olduğuna DİKKAT! -

 D_0 'ın girişinin $(Q_1.Q_2)$ ', D_1 'in girişinin Q_0 , D_2 'nin girişinin Q_1 'e bağlı olduğuna dikkat etmek lazım.

CLK	D	Q _(t+1)
1	0	0
1	1	1
-	Χ	Q

İlk olarak Q₂, Q₁, Q₀'ın değerleri 0.

$$D_0 = (Q_1.Q_2)' \rightarrow (0.0)' = 1$$

$$D_1 = Q_0 \rightarrow 0$$

$$D_2 = Q_1 \rightarrow 0$$

Aşağıdaki sonraki durum tablosu gösteriliyor. Sayılarımız şöyle devam ediyor: 000, 001, 011, 111, 110, 100 ve sonra tekrar 001, 011 ...

	Q_2	Q ₁	Q_0	D ₂	D ₁	D ₀
Başlangıçta	0	0	0	0	0	1
CLK 1	0	0	1	0	1	1
CLK 2	0	1	1	1	1	1
CLK 3	1	1	1	1	1	0
CLK 4	1	1	0	1	0	0
CLK 5	1	0	0	0	0	1
CLK 6	0	0	1	0	1	1

6 - Design a counter to produce the following sequence: 1,2,5,7. Use J-K flip-flops.

Yanıt 6

Sadece 4 durum olmasına rağmen, en yüksek sayı 7 (111) olduğu için 3-bit'lik sayaca ihtiyacımız var. Bu dizilim bütün ikili olasılıkları içermiyor, geçerli olmayan sayılar (0, 3,4, ve 6) *Don't care* olarak kabul edilebilir.

Adım 1 - Durum Diyagramı

Adım 2 - Sonraki durum tablosu

Şimdiki Durum			Sonraki durum			
Q ₂	Q ₁ Q ₀		Q ₂	Q_1	Q_0	
0	0	1	0	1	0	
0	1	0	1	0	1	
1	0	1	1	1	1	
1	1	1	0	0	1	

Adım 3 – J – K Flip-flop için Geçiş tablosu

Çıktı Geçişleri			Flip-flop Girdileri			
\mathbf{Q}_{N}		Q _{N+1}	J	K		
0	\rightarrow	0	0	Х		
0	\rightarrow	1	1	Χ		
1	\rightarrow	0	Х	1		
1	\rightarrow	1	Χ	0		

Adım 4 – Karnaugh Map

Şimdiki duruma göre J ve K girdileri için Karnaugh Map oluşturuyoruz. Geçerli olmayan 000, 011, 100, ve 110'ın yerine "X" koyuyoruz.

Adım 5

Karnaugh map'e göre her girdi için fonksiyonlar çıkarılır

$$J_0 = 1$$
 $K_0 = Q_0'$

$$J_1 = K_1 = 1$$

$$J_2=K_2=Q_1$$

<u>Adım 6 -</u> Devre çizimi

Çıkarılan fonksiyona göre her bir girdinin bağlantıları yapılarak devre tamamlanır.

7 - Design a counter to produce the following binary sequence. Use J-K flip-flops.

Yanıt 7

Adım 1

Adım 2

Pre	esent St	ate	Next State			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	1	1	0	0	
1	0	0	0	1	1	
0	1	1	1	0	1	
1	0	1	1	1	1	
1	1	1	1	1	0	
1	1	0	0	1	0	
0	1	0	0	0	1	

Adım 3

Output State Transitions			Flip-flop Inputs					
(Present	(Present state to next state)							
Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
0 to 1	0 to 0	1 to 0	1	X	0	X	X	1
1 to 0	0 to 1	0 to 1	X	1	1	X	1	X
0 to 1	1 to 0	1 to 1	1	X	X	1	X	0
1 to 1	0 to 1	1 to 1	X	0	1	X	X	0
1 to 1	1 to 1	1 to 0	X	0	X	0	X	1
0 to 0	1 to 0	0 to 1	0	X	X	1	1	X
1 to 0	1 to 1	0 to 0	X	1	X	0	0	X

<u>Adım 4-5</u>

<u>Adım 6</u> – Devre Çizimi

