Lending Club

Loan Approval Optimization

Lending Club Business Operation

Problem

Solution

Charged Off Loans

Identify "Bad Loans"

- Default Loans
- Delayed Payments

Stakeholders

Investors

Example 1 LendingClub

Data Information

- Source: <u>Lending Club Loan Data 2007-11 dataset by jaypeedevlin</u>
- Data pertaining to 2007-2011
- Loan Status and relevant financial information
- Number of entries: 42,538
- Number of features: 115

Features

- Loan Amount
- Term
- Installment
- Grade
- Employment Length
- Home Ownership
- Annual Income
- Verification Status
- Loan Status
- Purpose

- Loan Title
- Address State
- Debt/Income Ratio
- Delinquency
- Earliest Credit Line
- Inquiry
- # of Open Credit Lines
- Public Records
- Total Credit Revolving Balance
- ...

Feature Engineering

- 1. Data Cleaning
 - Removed empty columns/null values

- 2. Feature Selection
 - Removed redundancy/data leakage
 - Retained relevant/useful features
- 3. Conversion to Numerical Dtype
 - Numerical: revol_util
 - Ordinal: grade/emp_length

- 4. New Feature Added
 - fico_range_avg

- 5. Target Feature Engineering
 - Excluded loans in-progress
 - New classification: loan_type
 - Binarization

Percentage of Each Loan Type

Good Loan

Fully Paid

Bad Loan

- Charged Off
- Does Not Meet the Credit Policy

- Notable loan_type correlations
 - grade
 - fico_range_avg
 - revol_util
 - Inq_last_6mths
- Intrinsically linked features
 - Installment/loan_amnt
 - pub_rec/pub_rec_bankruptcies
 - pub_rec/mths_since_last_record
 - open_acc/total_acc
 - 0 ...

Loan amount tends to increase with longer term regardless of the loan type

States with highest # of good loans ≈ States with highest # of bad loans

Grade Description: 0 as worst, 6 as best

Modeling Overview

- Supervised Learning
- Binary Classification
 - 1: Good Loan
 - 0: Bad Loan
- Highly Imbalanced Data
- Machine Learning Tools: Scikit-Learn, Imbalanced-Learn, XGBoost

Modeling Procedure

I. Data Preprocessing

- 1. One-Hot Encoding
- 2. Datetime Objects to Ordinal Numeric
- 3. Training Test Split (80%: 20%)
- 4. Feature Standardization
- 5. Minority Class Oversampling

II. Randomized Search

- Stratified K-Fold with cv = 5
- n_iter = 30
- scoring = "roc_auc"

III. Training with Tuned Parameters

IV. Performance Evaluation

Evaluation Metric: F1, ROC AUC

Techniques/Algorithms Used

Resampling Technique

SMOTE from Imbalanced-Learn

Weighting Technique

 class_weight = "balanced" in Scikit-Learn classifiers

Hyperparameter Tuning Technique

 Randomized Search from Scikit-Learn

Classification Algorithms

- 1) Logistic Regression
- 2) Random Forest
- 3) Support Vector Machine
- 4) XGBoost

Model Comparison

Model	ROC AUC	Minority F1	Majority F1
Logistic Regression	0.78	0.47	0.80
Random Forest	0.74	0.53	0.91
Support Vector Machine	0.67	0.41	0.87
XGBoost	0.80	0.56	0.89

Best: XGBoost Worst: Logistic Regression

Assumptions/Limitations

- Primary Assumption
 - Validity of the data
- Limitations
 - Outdated (year 2007-2011)
 - Large volume of missing features
 - Limited entries (only 39239 entries)

Conclusion

- Only 24 out of 115 features used
- Best model: XGBoost
- Primary features of importance: last_credit_pull_d, grade, inq_last_6mths
- Prospective improvement
 - Up-to-date dataset
 - Hyperparameter tuning with Grid Search
 - Alternative classifier algorithms: Neural Network, Deep Learning, etc.