Operator Algebra

Ikhan Choi

July 8, 2022

Contents

Ι	C*-algebras	2
1	1.1 Multiplier algebra 1.2 Hereditary C*-subalgebras	3 3
II	Von Neumann algebras	4
2		5
III	Operator K-theory	6
3	Brown-Douglas-Fillmore theory	7
IV	Subfactor theory	8

Part I C*-algebras

Chapter 1

1.1 Multiplier algebra

- **1.1** (Multiplier algebra). Let \mathcal{A} be a C^* -algebra. A *double centralizer* of \mathcal{A} is a pair (L,R) of bounded linear maps on \mathcal{A} such that aL(b) = R(a)b for all $a, b \in \mathcal{A}$. The *multiplier algebra* $M(\mathcal{A})$ of \mathcal{A} is defined to be the set of all double centralizers of \mathcal{A} .
- **1.2** (Essential ideals). (a) Hilbert C*-module description
- **1.3** (Examples of multiplier algebras). (a) $M(K(H)) \cong B(H)$.
 - (b) $M(C_0(\Omega)) \cong C_b(\Omega)$.

Proof. (a)

(b) First we claim $C_0(\Omega)$ is an essential ideal of $C_b(\Omega)$. Since $C_b(\Omega) \cong C(\beta\Omega)$, and since closed ideals of $C(\beta\Omega)$ are corresponded to open subsets of $\beta\Omega$, $C_0(\Omega) \cap J$ is not trivial for every closed ideal J of $C_b(\Omega)$.

Now we have an injective *-homomorphism $C_b(\Omega) \to M(C_0(\Omega))$, for which we want to show the surjectivity. Let $g \in M(C_0(\Omega))^+$.

1.4 (Strict topology).

1.2 Hereditary C*-subalgebras

 $\textbf{1.5} \ (\text{Hereditary } C^*\text{-subalgebra and state embedding}).$

Part II Von Neumann algebras

Chapter 2

- **2.1** (Semi-finite traces). Let M be a von Neumann algebra and τ is a trace. For a trace τ
 - (a) τ is semi-finite if and only if $x \in M^+$ has a net $x_\alpha \in L^1(M, \tau)^+$ such that $x_\alpha \uparrow x$ strongly.
 - (b) Let τ be normal and faithful. Then, τ is semi-finite if and only if

$$\tau(x) = \sup\{\tau(y) : y \le x, y \in L^1(M, \tau)^+\} \text{ for } x \in M^+.$$

Part III Operator K-theory

Chapter 3

Brown-Douglas-Fillmore theory

3.1 (Haagerup property).

Baum-Connes conjecture Non-commutative geometry Elliott theorem

Part IV Subfactor theory