# Grafi Geometrici aleatori e reti wireless

#### Nota

- Il materiale di cui trattano queste lezioni è descritto nella dispensa D01GeometricRandomGraphs.
- La dispensa deve essere utilizzata essenzialmente per quanto concerne l'introduzione alle reti wireless ad-hoc ed al problema del minimo raggio di trasmissione
  - che nella nostra trattazione dei grafi geometrici casuali diventa minimo raggio di connessione
- Le parti tecniche (dimostrazione dei teoremi) sono invece completamente trattate in questi lucidi
- In particolare, la dimostrazione della delimitazione superiore presentata in questi lucidi differisce da quella nella dispensa:
  - la dimostrazione che vediamo insieme è più semplice
  - quella presentata nella dispensa è quella descritta nell'articolo originale
  - per gli interessati ho predisposto una serie di lucidi dal titolo AR-AppendiceGrafiGeometriciAleatori (che non sarà trattata a lezione)

#### Da rete virtuale a rete fisica

- Abbiamo introdotto due modelli di grafi aleatori il modello di Erdös-Renyi e un modello rich get richer
- Entrambi i modelli si prestano a generare grafi che corrispondono a reti, per così dire, virtuali
- ossia reti i cui archi sono virtuali rappresentano relazioni virtuali fra individui
  - relazioni di amicizia, nelle reti sociali
  - oppure collegamenti logici, come gli hyperlink nel web
- ossia, non sono strutture fisiche che devono essere costruite
- Ma quando l'obiettivo è costruire effettivamente una rete fisica
  - ad esempio, una rete di calcolatori, nella quale occorre predisporre fisicamente le connessioni fra i dispositivi (calcolatori, sensori, telefoni,...)
- occorre tenere in considerazione la struttura geometrica dello spazio nel quale i nodi sono inseriti
- e, pertanto, i modelli che abbiamo studiato sono poco significativi

#### Grafi Geometrici

- Un grafo geometrico consiste in un insieme V di punti in uno spazio metrico, dei quali conosciamo le coordinate, e in un parametro r > 0
- Per fissare le idee, assumiamo che lo spazio metrico sia il piano cartesiano  $\mathbb{R}^2$ 
  - in questo caso, ciascun punto A è individuato da una coppia di coordinate:
     A = (x<sub>A</sub>, y<sub>A</sub>)
- Gli archi del grafo individuato da V e r sono tutte e sole le coppie di punti la cui distanza euclidea è ≤ r:

E = { (A,B): A 
$$\in$$
 V  $\wedge$  B  $\in$  V  $\wedge$   $\sqrt{(x_A-x_B)^2+(y_A-y_B)^2} \leq$  r }

- Generalmente, si normalizza rispetto a r, ossia
  - si riportano i punti in scala 1: r (si pone pari ad r l'unità sugli assi coordinati)
  - cosicché due punti sono adiacenti se e solo se la loro distanza è ≤ 1
- in questo caso, quando r = 1, il grafo prende il nome di Unit Disk Graph
  - ma noi, in queste lezioni, considereremo il caso non normalizzato

#### Grafi Geometrici Aleatori

- Fissiamo n  $\in \mathbb{N}$  e r > 0 (come vedremo, r  $\leq \sqrt{2}$ )
- $\blacksquare$  scegliamo uniformemente a caso n punti nel quadrato [0, 1]  $\times$  [0, 1]
- e costruiamo il grafo geometrico G(n,r) corrispondente
  - ⇒ poiché i punti sono scelti nel quadrato unitario, e la diagonale del quadrato misura  $\sqrt{2}$ , è sufficiente scegliere r  $\leq \sqrt{2}$
  - infatti, con r =  $\sqrt{2}$  otteniamo un grafo completo ed è dunque inutile scegliere per r un valore maggiore di  $\sqrt{2}$
- Naturalmente, la aleatorietà del grafo G(n,r) dipende dalla scelta dei punti nel quadrato unitario
  - quando  $r < \sqrt{2} e r > 0$
  - perché per ogni scelta di n il grafo G(n,  $\sqrt{2}$ ) è un grafo fissato (qualunque sia n, G(n,  $\sqrt{2}$ ) è sempre un grafo completo)
  - e per ogni scelta di n il grafo G(n, 0) è un grafo fissato (qualunque sia n, G(n, 0) è sempre un grafo costituito da soli nodi isolati)

#### Grafi Geometrici Aleatori: connessione

- Come abbiamo già osservato, scegliendo  $r = \sqrt{2}$  otteniamo un grafo completo
- di contro, scegliendo r molto vicino a 0 otteniamo, più o meno, un grafo privo di archi.
- Analogamente al modello di Erdös-Renyi
  - nel quale avevamo scelto il parametro p in funzione di n ossia, p = p(n)
- $\rightarrow$  ora scegliamo r in funzione di n ossia, r = r(n)
  - infatti, se scegliamo per r un valore costante, otteniamo grafi sempre più densi al crescere di n
- Il problema del quale ci occupiamo è: scegliere il più piccolo valore di r(n) che permette di ottenere un grafo connesso
  - Naturalmente, essendo G(n,r(n)) un evento aleatorio, vogliamo studiarne la connessione in ambito probabilistico
  - ossia, ci interessa che G(n,r(n)) sia connesso con buona probabilità
- E vediamo, ora, un ambito di applicazione di questo problema

- Abbiamo un insieme di dispositivi ad esempio, calcolatori, o sensori dislocati in un'area
- ciascun dispositivo è dotato di un ricetrasmettitore wireless e di una batteria di capacità limitata
- Il ricetrasmettitore wireless può essere configurato in modo da trasmettere entro un certo raggio – che prende il nome di raggio di trasmissione
  - ossia, se il trasmettitore di un dispositivo x è configurato per trasmettere entro un raggio  $r_x$ , quel dispositivo potrà inviare messaggi solo ai dispositivi che distano  $\leq r_x$  da esso
- Perciò, rappresentiamo una siffatta rete mediante un grafo diretto
  - (x,y) è un arco diretto del grafo se e solo se la distanza da x a y è  $\leq$  r<sub>x</sub>



- Il grafo diretto che rappresenta la rete è chiamato grafo di comunicazione
- E se un nodo vuole trasmettere un messaggio ad un dispositivo più lontano del suo raggio di trasmissione?
  - prova a utilizzare un percorso all'interno del grafo
  - nell'esempio  $u_1$  può inviare un messaggio a  $u_4$  utilizzando il percorso  $(u_1, u_2), (u_2, u_3), (u_3, u_4)$
- ossia, il nostro modello utilizza comunicazione multi-hop



- Naturalmente, un nodo x può inviare messaggi a un nodo y solo se il grafo di comunicazione contiene un percorso da x a y
  - ad esempio, u<sub>4</sub> non può inviare messaggi a u<sub>2</sub>
  - u<sub>5</sub> non può inviare a né ricevere messaggi da alcun nodo
- Perciò, se vogliamo che ciascun nodo possa comunicare con qualunque altro nodo è necessario che il grafo di comunicazione sia fortemente connesso



- Se vogliamo che ciascun nodo possa comunicare con qualunque altro nodo è necessario che il grafo di comunicazione sia fortemente connesso
- E questo è facile: se configuriamo il trasmettitore di ciascun nodo ad un raggio di trasmissione pari alla distanza di quel nodo dal nodo ad esso più distante
  - ossia, detto V l'insieme dei nodi e indicata con d(u,v) la distanza fra i nodi u e v, per ogni  $u \in V$  poniamo  $r_u = \max \{ d(u,v) : v \in V \{u\} \}$
- allora il grafo di comunicazione è un grafo completo
  - in cui ogni nodo può inviare messaggi direttamente al destinatario, senza ricorrere alla comunicazione multi-hop
- ▶ Però...
- però, l'energia che occorre ad un nodo per trasmettere i suoi messaggi è tanto maggiore quanto più è grande il raggio di trasmissione di quel nodo
- e i nodi dispongono di batterie a capacità limitata!
- Perciò, dobbiamo assegnare a ciascun nodo un raggio di trasmissione il più piccolo possibile

## Reti wireless e grafi geometrici aleatori

- Assumiamo, da ora in avanti, che tutti i nodi abbiano lo stesso raggio di trasmissione r
- Assumiamo, inoltre, che gli n nodi siano distribuiti uniformemente a caso in una regione limitata di piano
- senza perdita di generalità, tale regione è il quadrato Q = [0, 1] x [0, 1]
  - e il raggio di trasmissione, uguale per tutti i nodi, sarà una funzione di n
  - perché, intuitivamente, se r è un valore costante, la rete sarà molto probabilmente connessa quando n è molto molto grande, sarà molto probabilmente non connessa quando n è molto molto piccolo!
- La nostra rete è allora modellata da un grafo geometrico aleatorio!
  - Che, in particolare, è un grafo **non** orientato
  - perché  $d(u,v) \le r(n)$  se e solo se  $d(v,u) \le r(n)$
- ▶ Il problema che ci accingiamo a studiare è allora il seguente:

dati n punti distribuiti uniformemente a caso nel quadrato  $Q = [0, 1] \times [0, 1]$ , calcolare il valore minimo di r(n) affinché G(n,r(n)) sia connesso

## Connessione di G(n,r(n))

In queste lezioni dimostreremo che:

detto r\*(n) il minimo valore per r(n) che garantisce, con probabilità ragionevole, che G(n,r(n)) è connesso, allora r\*(n)  $\in \Theta\left(\sqrt{\frac{\ln n}{n}}\right)$ 

- Dimostreremo questo risultato in due passi: se n punti sono scelti uniformemente a caso nel quadrato Q = [0, 1] x [0, 1], allora
- Teorema (Delimitazione superiore al minimo raggio di connessione):

esiste una costante  $\gamma_1 > 0$  tale che se  $r(n) \ge \gamma_1 \left(\sqrt{\frac{\ln n}{n}}\right)$  allora G(n,r(n)) è connesso con alta probabilità

Teorema (Delimitazione inferiore al minimo raggio di connessione):

per ogni costante c > 0, se r(n)  $\leq \left(\sqrt{\frac{\ln n + c}{n}}\right)$  allora la probabilità che G(n,r(n)) sia non connesso è > 0 [informale]

- **Teorema (Delimitazione superiore)**: esiste una costante  $\gamma_1 > 0$  tale che se  $r(n) \ge \gamma_1 \left(\sqrt{\frac{\ln n}{n}}\right)$  allora G(n,r(n)) è connesso con alta probabilità
- sia k(n) > 0 un intero
  - dipendente da n
- Partizioniamo Q = [0, 1]  $\times$  [0, 1] in  $k^2$ (n) celle, ciascuna di lato 1/k(n)
- e poniamo r(n) pari alla lunghezza della diagonale di una coppia di celle adiacenti
  - due celle sono adiacenti se hanno un lato in comune



- **Teorema (Delimitazione superiore)**: esiste una costante  $\gamma_1 > 0$  tale che se  $r(n) \ge \gamma_1 \left( \sqrt{\frac{\ln n}{n}} \right)$  allora G(n,r(n)) è connesso con alta probabilità
- poniamo r(n) =  $\frac{\sqrt{5}}{k(n)}$  , ossia, pari alla lunghezza della diagonale di una coppia di celle adiacenti

in questo modo, ciascun nodo in una qualsiasi cella è collegato da un arco a tutti i nodi (eventualmente) contenuti

in tutte le celle adiacenti

Perciò, se riuscissimo a dimostrare che

- con alta probabilità
- ciascuna cella contiene almeno un nodo
- avremmo dimostrato che G(n,r(n)) è connesso con alta probabilità



- Abbiamo posto r(n) =  $\sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$
- Dimostriamo, ora, che è possibile scegliere k(n) in modo tale che, con alta probabilità, nessuna cella è vuota
- Invece di calcolare direttamente la probabilità di questo evento, calcoliamo la probabilità dell'evento complementare, ossia: esiste almeno una cella vuota
  - perché è più facile!
  - NB: da qui la prova si discosta da quella presentata nella dispensa
- Sia C una cella: il primo passo sarà trovare una delimitazione superiore a  $P(C = \emptyset)$
- $\blacksquare$  per farlo esprimiamo l'evento "C =  $\emptyset$ " come intersezione di eventi:
- l'evento "C = Ø " coincide con l'evento "1 ∉ C e 2 ∉ C e ... e n ∉ C" che esprimiamo sinteticamente come "∩<sub>1 ≤ i ≤ n</sub> (i ∉ C)"
- Quindi,  $P(C = \emptyset) = P(\bigcap_{1 \le i \le n} (i \notin C))$

- Abbiamo posto r(n) =  $\sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$
- sia C una cella:  $P(C = \emptyset) = P(\bigcap_{1 \le i \le n} (i \notin C))$
- poiché i nodi sono posizionati in Q indipendentemente gli uni dagli altri,

$$P(\bigcap_{1 \le i \le n} (i \notin C)) = \prod_{1 \le i \le n} P(i \notin C)$$

- Sia i un nodo: la probabilità che il nodo i sia scelto all'interno della cella C è pari al rapporto fra l'area di C e l'area del quadrato Q = [0, 1] x [0, 1]
  - e, naturalmente, l'area di Q è pari a 1
- Quindi:  $P(i \in C) = \frac{\text{area di } C}{\text{area di } Q} = \frac{1}{k^2(n)}$ 
  - e conseguentemente P(i  $\notin$  C) = 1  $\frac{1}{k^2(n)}$
- allora, P(C = Ø) = P( $\bigcap_{1 \le i \le n}$  (i  $\notin$  C)) =  $\prod_{1 \le i \le n}$  P(i  $\notin$  C) =  $\left(1 \frac{1}{k^2(n)}\right)^n$

Abbiamo posto r(n) = 
$$\sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$$

- sia C una cella: P( C = Ø ) =  $\left(1 \frac{1}{k^2(n)}\right)^n$
- ► A questo punto,  $P(\exists C: C = \emptyset) = P(U_{C \in Q} [C = \emptyset]) \le \sum_{C \in Q} P(C = \emptyset)$ 
  - dove l'ultima disuguaglianza segue dallo Union Bound: la probabilità dell'unione di eventi è minore o uguale della somma delle probabilità dei singoli eventi
- e quindi P( $\exists$  C: C =  $\emptyset$ )  $\leq$   $k^2(n) \left(1 \frac{1}{k^2(n)}\right)^n$
- ada cui, sostituendo  $\frac{\sqrt{5}}{r(n)}$  a k(n), P( $\exists$  C: C =  $\emptyset$ )  $\leq \frac{5}{r^2(n)} \left(1 \frac{r^2(n)}{5}\right)^n$
- infine, ponendo  $r(n) = \gamma_1 \left( \sqrt{\frac{\ln n}{n}} \right)$  otteniamo

$$P(\exists C: C = \emptyset) \le \frac{5 n}{\gamma_1^2 \ln n} \left(1 - \frac{\gamma_1^2 \ln n}{5n}\right)^n$$

- A questo punto, ci occorre un risultato tecnico
- **Lemma**: Per ogni  $x \in \mathbb{R}$ :  $1-x \le e^{-x}$ . Inoltre, se  $x \ne 0$  allora  $1-x < e^{-x}$ .
- Definiamo la funzione  $G(x) = 1-x-e^{-x}$
- Calcoliamo la derivata prima di G(x):  $G'(x) = e^{-x} 1$
- Studiamo il segno di G'(x):  $e^{-x} 1 \ge 0 \rightarrow e^{-x} \ge 1 \rightarrow e^{-x} \ge e^0 \rightarrow x \le 0$
- G'(x)  $\geq$  0 per x  $\leq$  0: allora, G(x) ha un punto di massimo relativo in x = 0
- inoltre, essendo l'unico punto in cui la derivata si annulla, x = 0 è anche un punto di massimo assoluto
- Poiché  $G(0) = 1-0-e^{-0} = 0$ , questo implica che
  - $\blacksquare$   $G(x) \le G(0) = 0$  per ogni  $x \in \mathbb{R}$ , ossia  $1-x \le e^{-x}$  per ogni  $x \in \mathbb{R}$
  - **■** G(x) < G(0) = 0 per ogni  $x \neq 0$

Abbiamo dimostrato che ponendo  $r(n) = \gamma_1 \left( \sqrt{\frac{\ln n}{n}} \right)$  abbiamo

**P(**
$$\exists$$
 **C**: **C** =  $\emptyset$  **)**  $\leq \frac{5 \text{ n}}{\gamma_1^2 \ln n} \left( 1 - \frac{\gamma_1^2 \ln n}{5n} \right)^n$ 

In virtù del Lemma appena dimostrato, poiché  $\frac{\gamma_1^2 \ln n}{5n} \neq 0$  per ogni  $n \in \mathbb{N}$ :

$$\left(1 - \frac{\gamma_1^2 \ln n}{5n}\right) < e^{-\frac{\gamma_1^2 \ln n}{5n}}$$

Quindi: 
$$P(\exists C: C = \emptyset) < \frac{5 n}{\gamma_1^2 \ln n} e^{-n\frac{\gamma_1^2 \ln n}{5n}} = \frac{5 n}{\gamma_1^2 \ln n} e^{-\frac{\gamma_1^2 \ln n}{5}}$$
$$< \frac{5 n}{\gamma_1^2} e^{-\frac{\gamma_1^2 \ln n}{5}} = \frac{5 n}{\gamma_1^2} n^{-\frac{\gamma_1^2}{5}}$$
$$= \frac{5}{\gamma_1^2} n^{1 - \frac{\gamma_1^2}{5}}$$

Osserviamo che 1 –  $\frac{\gamma_1^2}{\epsilon}$  < 0 per  $\gamma_1 > \sqrt{5}$ 

Abbiamo dimostrato che ponendo  $r(n) = \gamma_1 \left( \sqrt{\frac{\ln n}{n}} \right)$  abbiamo

$$P(\exists C: C = \emptyset) < \frac{5}{\gamma_1^2} n^{1 - \frac{\gamma_1^2}{5}}$$

- Osserviamo, poi, che 1  $-\frac{\gamma_1^2}{5}$  < 0 per  $\gamma_1 > \sqrt{5}$
- In conclusione: scegliendo  $\mathbf{r}(\mathbf{n}) = \gamma_1 \left( \sqrt{\frac{\ln n}{n}} \right) \operatorname{con} \gamma_1 > \sqrt{5}$ , e ponendo  $b = \frac{5}{\gamma_1^2}$  e  $c = \frac{\gamma_1^2}{5} 1$ , abbiamo che  $P(\exists C: C = \emptyset) < \frac{b}{n^c}$  con c > 0
- ossia, abbiamo dimostrato che: se  $\mathbf{r(n)} \ge \gamma_1 (\sqrt{\frac{\ln n}{n}})$  esiste  $\gamma_1 > 0$  tale che  $\mathsf{P}(\mathsf{G}(\mathsf{n},\mathsf{r(n)})$  è connesso)  $\ge \mathsf{P}(\nexists \ \mathsf{C} = \emptyset) = 1 \mathsf{P}(\exists \ \mathsf{C} : \mathsf{C} = \emptyset) > 1 \frac{\mathsf{b}}{\mathsf{n^c}}$ 
  - ossia, G(n,r(n)) è connesso con alta probabilità

- **Teorema (Delimitazione inferiore)**. Per ogni costante c > 0, se  $r(n) = \sqrt{\frac{\ln n + c}{n \pi}}$  allora  $\lim_{n \to \infty} P(G(n,r(n)) \text{ è non connesso}) > 0$
- Per semplicità, nel corso della dimostrazione denoteremo con G il grafo G(n,r(n)) e con r il valore r(n).

#### OSSERVAZIONE:

▶ se nella prova della delimitazione superiore, ossia, che  $r^*(n) \le \gamma_1 \left(\sqrt{\frac{\ln n}{n}}\right)$ , abbiamo dovuto cercare una *maggiorazione* della probabilità che G è non connesso (ossia, abbiamo dovuto dimostrare che

 $P(G \text{ non connesso}) \leq qualcosa),$ 

ora, per dimostrare che  $r^*(n) \ge \sqrt{\frac{\ln n + c}{n \pi}}$ , dobbiamo trovare una minorazione della probabilità che G è non connesso (ossia, dobbiamo dimostrare che P(G non connesso)  $\ge$  qualcosa)

- dobbiamo trovare una minorazione di P(G non connesso)
- Per cominciare, introduciamo i seguenti eventi:
  - $\triangleright$   $\mathcal{E}_{>1}$  = G contiene almeno un nodo isolato
  - $\epsilon_{i_1 i_2 \dots i_h} = \text{tutti i nodi } i_1, i_2, \dots, i_h \text{ sono isolati in } G, \text{ con } i_1, i_2, \dots, i_h \in [n]$
  - $\triangleright$   $\mathcal{E}_{i!} = i \ \dot{e} \ l'unico nodo isolato in G, con <math>i \in [n]$
- ed esprimiamo in loro funzione la probabilità che G sia non connesso
  - ovviamente, se G contiene almeno un nodo isolato allora G è non connesso: dunque,  $P(G \text{ non connesso}) \ge P(\mathcal{E}_{\ge 1})$
  - poi, se accade che 1 è l'unico nodo isolato in G, oppure 2 è l'unico nodo isolato in G, oppure ..., oppure n è l'unico nodo isolato in G allora accade anche che G contiene almeno un nodo isolato (ovviamente!). Dunque: P( ε<sub>≥1</sub>) ≥ P( U<sub>i ∈[n]</sub> ε<sub>i!</sub> )
  - lacksquare e poiché  $\mathcal{E}_{1!}$ ,  $\mathcal{E}_{2!}$ , ...,  $\mathcal{E}_{n!}$  sono eventi disgiunti:  $P(\ \cup_{i \in [n]} \ \mathcal{E}_{i!}) = \sum_{i \in [n]} P(\ \mathcal{E}_{i!})$
- ▶ In conclusione:  $P(G \text{ non connesso}) \ge \sum_{i \in [n]} P(\mathcal{E}_{i!})$

- dobbiamo trovare una minorazione di P(G non connesso)
- ▶  $P(G \text{ non connesso}) \ge \sum_{i \in [n]} P(\mathcal{E}_{i!})$
- Non è, però, semplice calcolare direttamente  $P(\mathcal{E}_{i!})$ : allora, lavoriamo per minorarla con espressioni che sappiamo calcolare
- A questo scopo, osserviamo che:
- i è l'unico nodo isolato in G se e solo se
  - i è un nodo isolato in G e, inoltre,
  - comunque scegliamo un altro nodo j, i e j non sono entrambi isolati in G:
  - lacksquare dunque,  $\mathcal{E}_{i!} = \mathcal{E}_i \cap_{j \in [n] \{i\}} \mathcal{E}_{ij}^{C} = \mathcal{E}_i \bigcup_{j \in [n] \{i\}} \mathcal{E}_{ij}$
- da cui:

$$P(\mathcal{E}_{i!}) = P(\mathcal{E}_i - \bigcup_{i \in [n] - \{i\}} \mathcal{E}_{ij}) \ge P(\mathcal{E}_i) - P(\bigcup_{i \in [n] - \{i\}} \mathcal{E}_{ij}) \ge P(\mathcal{E}_i) - \sum_{i \in [n] - \{i\}} P(\mathcal{E}_{ij})$$

dove l'ultima disuguaglianza segue dallo Union Bound

- dobbiamo trovare una minorazione di P(G non connesso)
- **▶** P(G non connesso)  $\geq \sum_{i \in [n]} P(\mathcal{E}_{i!})$
- lacksquare e  $P(\mathcal{E}_{i!}) \geq P(\mathcal{E}_{i}) \sum_{j \in [n] \{i\}} P(\mathcal{E}_{ij})$
- Non ci resta che trovare una minorazione per  $P(\mathcal{E}_i)$  e una maggiorazione per  $P(\mathcal{E}_{ij})$
- Prima di procedere, indichiamo
  - per un punto  $t \in Q$ ,  $C_r(t)$  è il cerchio di centro t e raggio r
  - per i ∈ [n], t<sub>i</sub> ∈Q è il punto del quadrato nel quale è posizionato il nodo i

- Minoriamo  $P(\mathcal{E}_i)$ :
- si verifica l'evento  $\mathcal{E}_i$  se e solo se, una volta fissato  $t_i$ , nessun nodo  $j \neq i$  è posizionato in  $C_r(t_i)$ 
  - **fissato t**<sub>i</sub> e fissato j ≠ i,  $P(t_j \notin C_r(t_i)) = \frac{\text{area di } (Q C_r(t_i))}{\text{area di } Q} \ge 1 \pi r^2$ 
    - maggiore o uguale perché C<sub>r</sub>(t<sub>i</sub>) potrebbe non essere completamente contenuto in Q (se t<sub>i</sub> è vicino al bordo di Q)
  - allora, **fissato**  $t_i$ ,  $P(\forall j \neq i: t_j \notin C_r(t_i)) \geq (1 \pi r^2)^{n-1}$
- il punto t<sub>i</sub>, nel quale posizionare i, è scelto uniformemente a caso in Q
  - che è un insieme continuo
  - e la funzione di densità corrispondente alla scelta uniformemente a caso di un punto in Q è  $f(t) = \frac{1}{\text{area di Q}} = 1$
- e quindi P(ε<sub>i</sub>) ≥  $\int_{t_i \in Q}$  f(t<sub>i</sub>) (1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> dt<sub>i</sub> =  $\int_{t_i \in Q}$  (1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> dt<sub>i</sub> = (1  $\pi$  r<sup>2</sup>)<sup>n-1</sup>

- ightharpoonup Maggioriamo P( $\mathcal{E}_{ij}$ )
- ⇒ si verifica l'evento  $\mathcal{E}_{ij}$  se e solo se, una volta fissato  $t_i$ , j è posizionato in un nodo  $t_i \notin C_r(t_i)$  e nessun nodo  $h \in [n] \{i, j\}$  è posizionato in  $C_r(t_i)$  U  $C_r(t_i)$
- possiamo esprimere questo evento come unione di due eventi mutuamente esclusivi (ossia, disgiunti):

$$\mathcal{E}_{ij}^1 = \mathsf{t}_j \not\in \mathsf{C}_{2\mathsf{r}}(\mathsf{t}_i) \; \land \; \forall \; \; \mathsf{h} \in [\mathsf{n}] - \{\,\mathsf{i},\,\mathsf{j}\,\} \, [\; \mathsf{t}_\mathsf{h} \not\in \mathsf{C}_\mathsf{r}(\mathsf{t}_i) \; \cup \; \mathsf{C}_\mathsf{r}(\mathsf{t}_j) \;] \\ \text{ossia, } \mathsf{t}_i \; \grave{\mathsf{e}} \; \mathsf{nella} \; \mathsf{regione} \; \mathsf{gialla} \; \mathsf{in} \; \mathsf{figura}$$

► 
$$\mathcal{E}_{ij}^2 = t_j \in C_{2r}(t_i) - C_r(t_i) \land \forall h \in [n] - \{i, j\} [t_h \notin C_r(t_i) \cup C_r(t_j)]$$

ossia, t<sub>i</sub> è nell'anello azzurro in figura



► Allora: 
$$P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1 \cup \mathcal{E}_{ij}^2) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$$

- lacktriangle Maggioriamo P( $\mathcal{E}_{ij}$ )
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$ 
  - questa formulazione ci aiuterà con la maggiorazione
- Calcoliamo  $P(\mathcal{E}_{ij}^1)$ : fissiamo  $t_i$ , fissiamo  $t_j$  nella zona gialla e fissiamo  $h \in [n] \{i, j\}$ 
  - la probabilità di scegliere t<sub>h</sub> nella regione rimanente (gialla + azzurra nella figura a destra) è pari al rapporto dell'area della regione con l'area del quadrato
  - ossia, essa è 1-2  $\pi$  r<sup>2</sup> almeno se  $t_i$  e  $t_j$  non sono troppo vicini al bordo del quadrato



- Maggioriamo  $P(\mathcal{E}_{ii})$
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ightharpoonup Calcoliamo P( $\mathcal{E}_{ij}^1$ ): fissiamo  $t_i$ , fissiamo  $t_j$  nella zona gialla e fissiamo  $h \in [n] \{i, j\}$ 
  - la probabilità di scegliere t<sub>h</sub> nella regione rimanente (rosa + azzurra) è pari al rapporto dell'area della regione con l'area del quadrato
  - ightharpoonup ossia, essa è 1-2  $\pi$  r<sup>2</sup>
  - almeno, se t<sub>i</sub> e t<sub>i</sub> non sono troppo vicini al bordo del quadrato
- Calcoliamo  $P(\mathcal{E}_{ii}^1)$ : fissiamo  $t_i$  e fissiamo  $t_i$  nella zona gialla
  - allora, la probabilità che, per ogni h ∈ [n] –{i, j}, t<sub>h</sub> ∉ C<sub>r</sub>(t<sub>i</sub>) ∪ C<sub>r</sub>(t<sub>j</sub>) è in questo caso (t<sub>i</sub> scelto nella zona gialla) (1-2 π r²)<sup>n-2</sup>
    - almeno, se t<sub>i</sub> e t<sub>i</sub> non sono troppo vicini al bordo del quadrato
    - In realtà, complicando leggermente la prova, è possibile giungere agli stessi risultati considerando anche gli effetti ai bordi.
    - Poiché le tecniche rimangono sostanzialmente invariate, per semplicità studiamo la versione semplificata che non considera gli effetti ai bordi.

- Maggioriamo  $P(\mathcal{E}_{ii})$
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ightharpoonup Calcoliamo P( $\mathcal{E}_{ij}^1$ ): fissiamo  $t_i$  e fissiamo  $t_i$  nella zona gialla
  - allora, la probabilità che, per ogni h ∈ [n] –{ i, j}, t<sub>n</sub> ∉ C<sub>r</sub>(t<sub>i</sub>) ∪ C<sub>r</sub>(t<sub>j</sub>) è in questo caso (t<sub>j</sub> scelto nella zona gialla) (1-2 π r²)<sup>n-2</sup>
  - trascurando gli effetti ai bordi
- fissato  $t_i$ , la probabilità che, scegliendo  $t_j$  nella zona gialla, per ogni  $h \in [n] \{i, j\}$ ,  $t_h \notin C_r(t_i) \cup C_r(t_j)$  è  $\int_{t_i \in Q C_{2r}(t_i)} f(t_j) (1 2\pi r^2)^{n-2} dt_j$
- infine,  $\begin{aligned} \mathbf{P}(\mathcal{E}_{ij}^{1}) &= \int_{t_{i} \in \mathbf{Q}} \mathsf{f}(\mathsf{\,fi}) \int_{\boldsymbol{t_{j}} \in \boldsymbol{Q} \boldsymbol{C}_{2r}(\boldsymbol{t_{i}})} \mathsf{f}(\mathsf{\,f_{j}}) (1 2\pi \, r^{2})^{n-2} \, \mathrm{d}\boldsymbol{t_{j}} \, \mathrm{d}\boldsymbol{t_{i}} \\ &= \int_{t_{i} \in \mathbf{Q}} \int_{t_{j} \in \mathbf{Q} \boldsymbol{C}_{2r}(t_{i})} (1 2\pi \, r^{2})^{n-2} \, \mathrm{d}\boldsymbol{t_{j}} \, \mathrm{d}\boldsymbol{t_{i}} \\ &= \int_{t_{i} \in \mathbf{Q}} (1 4\pi \, r^{2}) (1 2\pi \, r^{2})^{n-2} \, \mathrm{d}\boldsymbol{t_{i}} = (1 4\pi \, r^{2}) (1 2\pi \, r^{2})^{n-2} \end{aligned}$

- lacktriangle Maggioriamo P( $\mathcal{E}_{ij}$ )
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ► Maggioriamo  $P(\mathcal{E}_{ij}^2)$ : fissiamo  $t_i$ , fissiamo  $t_j$  nella zona azzurra e fissiamo  $t_i = [n] \{i, j\}$ 
  - la probabilità di scegliere t<sub>n</sub> nella regione rimanente (gialla+ azzurra nella figura a destra)
     è pari al rapporto dell'area della regione con l'area del quadrato
  - e, questa volta, dipende dalla posizione di t<sub>i</sub> nella zona azzurra



- lacktriangle Maggioriamo P( $\mathcal{E}_{ij}$ )
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ► Maggioriamo  $P(\mathcal{E}_{ij}^2)$ : fissiamo  $t_i$ , fissiamo  $t_j$  nella zona azzurra e fissiamo  $t_i$  he  $t_j$ 
  - la probabilità di scegliere t<sub>h</sub> nella regione rimanente (gialla+ azzurra) è massima quando è massima l'intersezione di C<sub>r</sub>(t<sub>i</sub>) con C<sub>r</sub>(t<sub>j</sub>) – ossia, quando t<sub>j</sub> è sulla circonferenza che delimita C<sub>r</sub>(t<sub>i</sub>)
  - in questo caso area( $C_r(t_i) \cup C_r(t_i)$ ) =  $2 \pi r^2 \text{area}(C_r(t_i) \cap C_r(t_i)$ )



- $\blacksquare$  Maggioriamo P( $\mathcal{E}_{ij}$ )
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ► Maggioriamo  $P(\mathcal{E}_{ij}^2)$ : fissiamo  $t_i$ , fissiamo  $t_j$  su  $C_r(t_i)$  e fissiamo  $h \in [n] \{i, j\}$ 
  - area( $C_r(t_i) \cap C_r(t_i)$ ) = 2 · area colorata viola = 2 · [area colorata (rosa e viola) area  $t_i AB$ ]
  - t<sub>j</sub>At<sub>i</sub> è un triangolo equilatero di lato r, allora la sua area è  $\frac{1}{2}$  r  $\frac{r\sqrt{3}}{2}$  =  $\frac{r^2\sqrt{3}}{4}$



- area triangolo  $t_jAB$  = area triangolo  $t_jAt_i = \frac{r^2\sqrt{3}}{4}$
- la regione rosa e viola è un settore circolare di  $C_r(t_j)$ , e il suo angolo al centro  $At_jB$  è il doppio di  $At_jt_i$  che misura  $\frac{\pi}{3}$  (perché  $t_iAt_i$  e  $t_iBt_i$  sono triangoli equilateri)
- allora, l'area della regione rosa e viola è  $\frac{1}{2}$  r<sup>2</sup>  $\frac{2\pi}{3}$  = r<sup>2</sup>  $\frac{\pi}{3}$
- allora, l'area della regione viola è  $r^2 \frac{\pi}{3} \frac{r^2 \sqrt{3}}{4}$
- allora, area( $C_r(t_i) \cap C_r(t_j)$ ) = 2  $r^2 \left(\frac{\pi}{3} \frac{\sqrt{3}}{4}\right)$

- $\blacksquare$  Maggioriamo  $P(\mathcal{E}_{ii})$
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ► Maggioriamo  $P(\mathcal{E}_{ij}^2)$ : fissiamo  $t_i$ , fissiamo  $t_j$  nella zona azzurra e fissiamo  $t_j$  hella zona azzurra e fissiamo  $t_j$  h
  - la probabilità di scegliere t<sub>h</sub> nella regione rimanente (gialla+ azzurra) è massima quando è massima l'intersezione di C<sub>r</sub>(t<sub>i</sub>) con C<sub>r</sub>(t<sub>j</sub>) ossia, quando t<sub>j</sub> è sulla circonferenza che delimita C<sub>r</sub>(t<sub>i</sub>)
  - in questo caso:



$$\begin{split} \text{area(} \ C_r(t_i) \ \cup \ C_r(t_j) \ ) &= 2 \, \pi \, r^2 - \text{area(} C_r(t_i) \cap C_r(t_j) \ ) \\ &= 2 \, \pi \, r^2 - 2 \, r^2 \, \left( \, \frac{\pi}{3} - \frac{\sqrt{3}}{4} \, \right) = \frac{4\pi}{3} \, r^2 + \frac{\sqrt{3}\pi}{2\pi} \, r^2 \\ &= \pi \, r^2 \, \left( \frac{4}{3} + \frac{\sqrt{3}}{2\pi} \, \right) > \frac{8}{5} \, \pi \, r^2 \end{split}$$

- Ossia, la probabilità di scegliere  $t_h$  nella regione gialla+ azzurra è: 1 area(  $C_r(t_i) \cup C_r(t_j)$  ) < 1  $\frac{8}{5} \pi r^2$ 
  - e, quindi, la probabilità di scegliere tutti gli n-2 punti  $t_h$  nella regione gialla+ azzurra è <  $\left(1 \frac{8}{5} \pi r^2\right)^{n-2}$
- sempre trascurando gli effetti ai bordi

- ightharpoonup Maggioriamo P( $\mathcal{E}_{ij}$ )
- allora,  $P(\mathcal{E}_{ij}) = P(\mathcal{E}_{ij}^1) + P(\mathcal{E}_{ij}^2)$
- ► Maggioriamo  $P(\mathcal{E}_{ij}^2)$ : fissiamo  $t_i$ , fissiamo  $t_j$  nella zona azzurra e fissiamo  $t_j$  hella zona azzurra e fissiamo  $t_j$  h
  - allora, la probabilità che, per ogni h ∈ [n] –{ i, j}, t<sub>h</sub> ∉ C<sub>r</sub>(t<sub>i</sub>) ∪ C<sub>r</sub>(t<sub>j</sub>) è in questo caso (t<sub>j</sub> scelto nella zona azzurra) < (1 <sup>8</sup>/<sub>5</sub> π r<sup>2</sup>)<sup>n-2</sup>
  - <u>trascurando gli effetti ai bordi</u>
- fissato  $t_i$ , la probabilità che, scegliendo  $t_j$  nella zona azzurra, per ogni  $h \in [n] \{i, j\}$ ,  $t_h \notin C_r(t_i) \cup C_r(t_j)$  è  $< \int_{t_i \in C_{2r}(t_i) C_r(t_i)} f(t_j) \left(1 \frac{8}{5}\pi r^2\right)^{n-2} dt_j$
- infine,  $P(E_{ij}^2) < \int_{t_i \in Q} \int_{t_j \in C_{2r}(t_i) C_r(t_i)} f(t_i) f(t_j) \left(1 \frac{8}{5}\pi r^2\right)^{n-2} dt_j dt_i$   $= \int_{t_i \in Q} \int_{t_j \in C_{2r}(t_i) C_r(t_i)} \left(1 \frac{8}{5}\pi r^2\right)^{n-2} dt_j dt_i$   $= \int_{t_i \in Q} \left(4\pi r^2 \pi r^2\right) \left(1 \frac{8}{5}\pi r^2\right)^{n-2} dt_i = 3\pi r^2 \left(1 \frac{8}{5}\pi r^2\right)^{n-2}$

- Maggioriamo  $P(\mathcal{E}_{ij})$ :
- P(ε<sub>ij</sub>) = P(ε<sub>ij</sub><sup>1</sup>) + P(ε<sub>ij</sub><sup>2</sup>) < (1 4 π r<sup>2</sup>) (1 2 π r<sup>2</sup>)<sup>n-2</sup> + 3 π r<sup>2</sup> (1  $\frac{8}{5}$  π r<sup>2</sup>)<sup>n-2</sup> < (1 2 π r<sup>2</sup>)<sup>n-2</sup> + 3 π r<sup>2</sup> (1  $\frac{8}{5}$  π r<sup>2</sup>)<sup>n-2</sup>
- Sostituiamo ora  $r = \sqrt{\frac{\ln n + c}{n \pi}}$ :

$$P(\mathcal{E}_{ij}) < \left(1 - 2\frac{\ln n + c}{n}\right)^{n-2} + 3\frac{\ln n + c}{n}\left(1 - \frac{8}{5}\frac{\ln n + c}{n}\right)^{n-2}$$

$$< e^{-2\frac{\ln n + c}{n}(n-2)} + 3\frac{\ln n + c}{n}e^{-\frac{8}{5}\frac{\ln n + c}{n}(n-2)}$$

$$= e^{-2\frac{\ln n + c}{n}(n-2)} + 3\frac{\ln n + c}{\frac{3}{n^{\frac{3}{5}}}}n^{\frac{-2}{5}}e^{-\frac{8}{5}\frac{\ln n + c}{n}(n-2)}$$
[... continua ...]

$$\begin{array}{l} \bullet \quad \text{[... continuo ...]} \\ \bullet \quad \mathsf{P}(\mathcal{E}_{ij} \;) < \; e^{-2\frac{\ln n + c}{n}(n-2)} + 3\, \frac{\ln n + c}{n^{\frac{-2}{3}}} \, n^{\frac{-2}{5}} \, e^{-\frac{8}{5}\frac{\ln n + c}{n}} \, (n-2) \\ & = e^{-2\, \frac{n-2}{n}\, \ln n} \, e^{-2\, \frac{c(n-2)}{n}} + 3\, \frac{\ln n + c}{n^{\frac{3}{5}}} \, n^{\frac{-2}{5}} \, e^{-\frac{8}{5}\frac{(n-2)}{n}\, \ln n} \, e^{-\frac{8}{5}\frac{c(n-2)}{n}} \\ & = e^{-2\, \frac{n-2}{n}\, \ln n} \, e^{-2\, \frac{c(n-2)}{n}} + 3\, \frac{\ln n + c}{n^{\frac{3}{5}}} \, e^{-\frac{2}{5}\frac{\ln n}{n}} \, e^{-\frac{8}{5}\frac{(n-2)}{n}\, \ln n} \, e^{-\frac{8}{5}\frac{c(n-2)}{n}} \\ & < e^{-2\, \frac{n-2}{n}\, \ln n} \, e^{-2\, \frac{c(n-2)}{n}} + 3\, \frac{\ln n + c}{n^{\frac{3}{5}}} \, e^{-\frac{2}{5}\frac{(n-2)}{n}\, \ln n} \, e^{-\frac{8}{5}\frac{c(n-2)}{n}\, \ln n} \, e^{-\frac{8}{5}\frac{c(n-2)}{n}} \\ & = n^{-2\, \frac{n-2}{n}} \, e^{-2\, \frac{c(n-2)}{n}} + 3\, \frac{\ln n + c}{n^{\frac{3}{5}}} \, n^{-2\, \frac{n-2}{n}} \, e^{-\frac{8}{5}\frac{c(n-2)}{n}} \\ & = n^{-2\, \frac{n-2}{n}} \, e^{-2\, \frac{c(n-2)}{n}} \, \left[ 1 + 3\, \frac{\ln n + c}{n^{\frac{3}{5}}} \, e^{\frac{2}{5}\frac{c(n-2)}{n}} \right] \end{array}$$

- ▶ **Riassumiamo:**  $P(G \text{ non connesso}) \ge \sum_{i \in [n]} P(\mathcal{E}_{i!}) \ge \sum_{i \in [n]} [P(\mathcal{E}_{i}) \sum_{i \in [n] \{i\}} P(\mathcal{E}_{ij})]$ 
  - $e P(ε_i) \ge (1 \pi r^2)^{n-1}$
- quindi,

$$P(G \text{ non connesso}) > n(1 - \pi r^2)^{n-1} - n(n-1) n^{-2\frac{n-2}{n}} e^{-2\frac{c(n-2)}{n}} \left[ 1 + 3 \frac{\ln n + c}{n^{\frac{3}{5}}} e^{\frac{2}{5}\frac{c(n-2)}{n}} \right]$$

- osserviamo che  $\lim_{n\to\infty} n(n-1) n^{-2\frac{n-2}{n}} e^{-2\frac{c(n-2)}{n}} \left[ 1 + 3 \frac{\ln n + c}{n^{\frac{3}{5}}} e^{\frac{2}{5}\frac{c(n-2)}{n}} \right] = e^{-2c}$
- infatti, informalmente:

$$\lim_{n \to \infty} e^{-2\frac{c(n-2)}{n}} = e^{-2c}$$

$$\lim_{n \to \infty} 3 \frac{\ln n + c}{n^{\frac{3}{5}}} e^{\frac{2}{5}} \frac{c(n-2)}{n} = 0$$

Riassumiamo:

$$P(G \text{ non connesso}) > n(1 - \pi r^2)^{n-1} - n(n-1) n^{-2\frac{n-2}{n}} e^{-2\frac{c(n-2)}{n}} \left[ 1 + 3 \frac{\ln n + c}{\frac{3}{n^{\frac{3}{5}}}} e^{\frac{2}{5}\frac{c(n-2)}{n}} \right]$$

- $= \lim_{n \to \infty} n(n-1) n^{-2\frac{n-2}{n}} e^{-2\frac{c(n-2)}{n}} \left[ 1 + 3 \frac{\ln n + c}{n^{\frac{3}{5}}} e^{\frac{2}{5}\frac{c(n-2)}{n}} \right] = e^{-2c}$
- ossia: per ogni  $\varepsilon > 0$  esiste  $n_{\varepsilon} > 0$  tale che, per ogni  $n \ge n_{\varepsilon}$ :

$$n(n-1) n^{-2\frac{n-2}{n}} e^{-2\frac{c(n-2)}{n}} \left[ 1 + 3 \frac{\ln n + c}{n^{\frac{3}{5}}} e^{\frac{2}{5}\frac{c(n-2)}{n}} \right] < (1 + \varepsilon) e^{-2c}$$

■ allora, per ogni  $\varepsilon$  > 0 esiste  $n_{\varepsilon}$  > 0 tale che, per ogni  $n \ge n_{\varepsilon}$ :

P(G non connesso) 
$$>$$
 n (1 -  $\pi$  r<sup>2</sup>)<sup>n-1</sup> - (1 +  $\varepsilon$ )  $e^{-2c}$ 

■ allora, per dimostrare che  $\lim_{n\to\infty} P(G \text{ non connesso}) > 0$  è sufficiente dimostrare che, da un certo n in poi,

$$(1 - \pi r^2)^{n-1} - (1 + \varepsilon) e^{-2c} > 0$$

- dimostriamo che, da un certo n in poi,  $n(1 \pi r^2)^{n-1} > (1 + \varepsilon) e^{-2c}$ 
  - calcoliamo il logaritmo del membro sinistro della disuguaglianza:

$$\ln [n (1 - \pi r^2)^{n-1}] = \ln n + \ln (1 - \pi r^2)^{n-1} = \ln n + (n-1) \ln (1 - \pi r^2)$$

- ricordiamo che, per x < 1,  $\ln (1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}$
- da cui ln [ n(1  $\pi$  r² )<sup>n-1</sup> ] = ln n (n-1)  $\sum_{k=1}^{\infty} \frac{(\pi$  r²)<sup>k</sup>
- e poiché  $r = \sqrt{\frac{\ln n + c}{n \pi}}$ , ossia  $\pi r^2 = \frac{\ln n + c}{n}$ , allora  $\ln [n (1 \pi r^2)^{n-1}] = \ln n (n-1) \sum_{k=1}^{\infty} \frac{(\ln n + c)^k}{k n^k}$
- a questo punto poniamo  $\delta(n) = \sum_{k=3}^{\infty} \frac{(\ln n + c)^k}{k n^k}$  così che

$$\ln n(1 - \pi r^2)^{n-1} = \ln n - (n-1) \left[ \sum_{k=1}^{2} \frac{(\ln n + c)^k}{k n^k} + \delta(n) \right]$$

- Ossia, ln [ n (1  $\pi$  r² )<sup>n-1</sup> ] = ln n (n-1)  $\left[\frac{(\ln n + c)}{n} + \frac{(\ln n + c)^2}{2 n^2} + \delta(n)\right]$
- $\blacksquare$  a questo punto, non ci resta che maggiorare  $\delta(n)$

- P(G non connesso) > n(1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> (1 +  $\varepsilon$ )  $e^{-2c}$ 
  - per ogni n ≥ n ε
- stiamo dimostrando che, da un certo n in poi,  $n(1 \pi r^2)^{n-1} (1 + \varepsilon) e^{-2c} > 0$

Pein [n (1 - π r<sup>2</sup>)<sup>n-1</sup>] = in n - (n-1) 
$$\left[\frac{(\ln n + c)}{n} + \frac{(\ln n + c)^2}{2 n^2} + \delta(n)\right]$$

 $\rightarrow$  a questo punto, non ci resta che maggiorare  $\delta(n)$ :

$$\delta(n) = \sum_{k=3}^{\infty} \frac{(\ln n + c)^k}{k n^k} \le \frac{1}{3} \sum_{k=3}^{\infty} \frac{(\ln n + c)^k}{n^k} \le \frac{1}{3} \int_2^{\infty} \left(\frac{\ln n + c}{n}\right)^x dx$$

$$= \lim_{h \to \infty} \frac{1}{3} \int_2^h \left(\frac{\ln n + c}{n}\right)^x dx = \lim_{h \to \infty} \frac{1}{3} \int_2^h e^{x \ln \left(\frac{\ln n + c}{n}\right)} dx = \lim_{h \to \infty} \left[\frac{1}{3} \frac{1}{\ln \left(\frac{\ln n + c}{n}\right)} e^{x \ln \left(\frac{\ln n + c}{n}\right)}\right]_2^h$$

$$= \lim_{h \to \infty} \left[\frac{1}{3} \frac{1}{\ln \left(\frac{\ln n + c}{n}\right)} \left(\frac{\ln n + c}{n}\right)^x\right]_2^h = -\frac{1}{3} \frac{1}{\ln \left(\frac{\ln n + c}{n}\right)} \frac{(\ln n + c)^2}{n^2} = \frac{1}{3} \frac{1}{\ln \left(\frac{n}{\ln n + c}\right)} \frac{(\ln n + c)^2}{n^2}$$

- e poiché  $\lim_{n\to\infty}\frac{1}{\ln\left(\frac{n}{\ln n+c}\right)}=0$ , allora  $\frac{1}{\ln\left(\frac{n}{\ln n+c}\right)}<1$  per n sufficientemente grande
- in conclusione,  $\delta(n) < \frac{1}{3} \frac{(\ln n + c)^2}{n^2}$

- **P**(G non connesso) > n(1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> (1 + ε)  $e^{-2c}$
- stiamo dimostrando che, da un certo n in poi,  $n(1 \pi r^2)^{n-1} (1 + \varepsilon) e^{-2c} > 0$

Pein [n (1 - π r²)<sup>n-1</sup>] = in n - (n-1) 
$$\left[\frac{(\ln n + c)}{n} + \frac{(\ln n + c)^2}{2 n^2} + \delta(n)\right]$$

■ e δ(n) < 
$$\frac{1}{3} \frac{(\ln n + c)^2}{n^2}$$

allora 
$$\ln [n (1 - \pi r^2)^{n-1}] > \ln n - (n - 1) \left[ \frac{(\ln n + c)}{n} + \frac{(\ln n + c)^2}{2 n^2} + \frac{1}{3} \frac{(\ln n + c)^2}{n^2} \right]$$

$$= \ln n - (n - 1) \left[ \frac{(\ln n + c)}{n} + \frac{5 (\ln n + c)^2}{6 n^2} \right]$$

$$= \ln n - \frac{n-1}{n} (\ln n + c) - \frac{5 (n-1) (\ln n + c)^2}{6 n^2}$$

$$> \ln n - (\ln n + c) - \frac{5 (n-1) (\ln n + c)^2}{6 n^2}$$

$$= -c - \frac{5 (n-1) (\ln n + c)^2}{6 n^2}$$

- **▶** P(G non connesso) > n (1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> (1 +  $\epsilon$ )  $e^{-2c}$
- stiamo dimostrando che, da un certo n in poi,  $n(1 \pi r^2)^{n-1} (1 + \varepsilon) e^{-2c} > 0$

$$= \ln \left[ n \left( 1 - \pi r^2 \right)^{n-1} \right] > -c - \frac{5 (n-1) (\ln n + c)^2}{6 n^2}$$

- poiché  $\lim_{n\to\infty}\frac{5\,(n-1)\,(\ln n+c)^2}{6\,n^2}=0$ , allora per ogni  $\omega>0$  esiste  $n_\omega\geq n_\varepsilon$  tale che per ogni  $n\geq n_\omega:\frac{5\,(n-1)\,(\ln n+c)^2}{6\,n^2}<\omega$
- allora, per n sufficientemente grande  $\ln [n(1 \pi r^2)^{n-1}] > -c \omega$
- e dunque **n** (1  $\pi$  r<sup>2</sup>)<sup>n-1</sup> >  $e^{-c-\omega}$
- scegliamo  $\omega$  < c In (1 +  $\varepsilon$ )
- allora,  $\mathbf{n} (1 \pi r^2)^{\mathbf{n} 1} > e^{-c \omega} > e^{-c c + \ln(1 + \varepsilon)} = e^{-2c} e^{\ln(1 + \varepsilon)} = (1 + \varepsilon) e^{-2c}$
- cioè, per n sufficientemente grande

**P(G non connesso)** > n 
$$(1 - \pi r^2)^{n-1} - (1 + \varepsilon) e^{-2c} > (1 + \varepsilon) e^{-2c} - (1 + \varepsilon) e^{-2c} = 0$$

QED