ACH2033 – Matrizes, Vetores e Geometria Analítica

Lista de Exercícios/Problemas 4

Exercícios

Determinar o ângulo entre os vetores \vec{u} e \vec{v} , além de determinar $\vec{u} \wedge \vec{v}$ e $||\vec{u} \wedge \vec{v}||$. Dar, também, a projeção do vetor \vec{u} sobre o vetor \vec{v} .

001)
$$\vec{u} = (1, 0, 0) \text{ e } \vec{v} = (0, 0, 1)$$

002)
$$\vec{u} = (1, 1, 0) e \vec{v} = (0, 1, 1)$$

003)
$$\vec{u} = (1, 1, 1) e \vec{v} = (1, 0, 0)$$

004)
$$\vec{u} = (-1, 1, -1) \text{ e } \vec{v} = (1, 1, 1)$$

005)
$$\vec{u} = (1, 2, 3) \ e \ \vec{v} = (3, 2, 1)$$

006)
$$\vec{u} = (1, 2, 3) \text{ e } \vec{v} = (1, 2, 3)$$

007)
$$\vec{u} = (3, 4, 0) \ e \ \vec{v} = (6, 0, 8)$$

008)
$$\vec{u} = (-2, -1, 1) \text{ e } \vec{v} = (1, -1, -1)$$

008)
$$\vec{u} = (-2, -1, 1)$$
 e $\vec{v} = (1, -1, -1)$ 009) $\vec{u} = (1, 0, 0)$ e $\vec{v} = (0, 1, 1)$

010)
$$\vec{u} = (1, 2, 3) \ e \ \vec{v} = (-6, 0, 2)$$

011)
$$\vec{u} = (2, 3, 4) \ e \ \vec{v} = (5, 6, 7)$$

012)
$$\vec{u}=(\pi,-\pi,\pi)$$
e $\vec{v}=(\pi,\pi,\pi)$

Escrever a equação da reta r que passa pelos pontos A e B nas suas formas vetorial e paramétrica.

013)
$$A = (1,0,0) \in B = (0,1,0)$$

014)
$$A = (1,0,0), B = (1,1,1)$$

015)
$$A = (1, 1, 2), B = (-1, 0, 1)$$

016)
$$A = (-1, -1, -1), B = (1, 1, 1)$$
 017) $A = (-1, -1, -1), B = (1, 0, 0)$ 018) $A = (1, 1, 1), B = (0, 0, 0)$

017)
$$A = (-1, -1, -1), B = (1, 0, 0)$$

018)
$$A = (1, 1, 1), B = (0, 0, 0)$$

Escrever a equação do plano π que passa pelos pontos A, B e C nas suas formas vetorial e paramétrica. Determinar, também, a equação geral do plano.

019)
$$A = (0,0,0), B = (1,0,0) \in C = (0,1,0)$$

019)
$$A = (0,0,0), B = (1,0,0) \in C = (0,1,0)$$
 020) $A = (1,0,0), B = (0,1,0) \in C = (0,0,1)$

021)
$$A = (1, 1, 1), B = (1, 0, 0)$$
 e $C = (0, 1, 0)$ 022) $A = (-1, -1, -1), B = (1, 0, 0)$ e $C = (0, 1, 0)$

022)
$$A = (-1, -1, -1), B = (1, 0, 0) \in C = (0, 1, 0)$$

Estudar a intersecção entre (i) r e s; (ii) $r e \pi$; $r e \sigma$; $s e \pi$; $s e \sigma$ (iii) $\pi e \sigma$

023)
$$r: X = (0,0,1) + \lambda(1,1,0), s: X = (1,0,0) + \lambda(0,1,1), \pi: X = (0,0,0) + \lambda(1,0,0) + \mu(0,0,1)$$
 e $\sigma: \begin{cases} x = 1 + \lambda \\ y = -1 + \lambda \\ z = -\lambda \end{cases}$

024)
$$r: X = (-1,0,1) + \lambda(0,1,0), s: X = (1,0,1) + \lambda(2,0,1), \pi: X = (1,0,0) + \lambda(1,1,0) + \mu(1,0,1)$$
 e $\sigma: \begin{cases} x = 1+2\lambda \\ y = \lambda \\ z = 1-\lambda \end{cases}$

Problemas

- p1) Escrever a equação da reta r que passa pelos pontos distintos $A=(a_1,a_2,a_3)$ e $B=(b_1,b_2,b_3)$ (na forma vetorial e paramétrica).
- p2) Escrever a equação geral do plano π que contém os pontos (não-colineares) $A=(a_1,a_2,a_3), B=$ $(b_1, b_2, b_3) \in C = (c_1, c_2, c_3)$