

Directed evolution of compatible plasmid origins of replication

Towards a model of orthogonality

Prof. Vitor B. Pinheiro
Associate Professor

Orthogonality

- Borrowed concept from Mathematics
- There's no free ride in Biology

 There are also different routes towards orthogonality

De Lorenzo (2011) **Bioengineered Bugs** 10.4161/bbug.2.1.13388

Gyorgy *et al.* (2015) **Biophysical Journal** 10.1016/j.bpj.2015.06.034

Torres *et al* (2016) **Essays in Biochemistry** 10.1042/EBC20160013

XNA biology

• Broadly 3 strategies to change the information storage medium in biology:

Life orthogonal

- Requires multiple orthogonal steps
- Orthogonality can be engineered but...
 - What's the best orthogonality to engineer?
 - How to quantify different orthogonalities?
 - Can the concept of orthogonality itself be improved?
- We need a fast tractable tunable model for orthogonality.

ColE1-family plasmids and plasmid compatibility

- colE1-family plasmids have a common replication mechanism
 - Sense-antisense overlapping gene pair
 - Interaction between two transcripts controls rate of replication initiation
- Two plasmids with the same colE1 origin cannot stably co-exist in a cell
 - Shared mechanism drives cell to lose one plasmid

Snyder *et al* (2013) **Mol. Gen. of Bacteria** 10.1128/9781555817169.ch4.f4.6

Plasmid compatibility

- Differences between compatibility groups is small
- Loop mutations are known to affect compatibility

Selecting novel plasmid origins

- Chemically synthesised diversity
- Viable plasmid origins selected by plating
 - Functional space not densely populated (< 10⁵ from over 10¹⁰ variants)

Selecting novel compatible plasmid origins

Classic approach:

- serial passaging with (or without) selection
- plating under double selection

Plasmid origins	Selection	Day 01	Day 02	Day 03	Day 04
wild-type colE1 (kanR)	kan + chl (co-existing)				
wild-type colE1 (camR)	kan only (total plasmid)				
alpha (kanR)	kan + chl (co-existing)				
wild-type colE1 (camR)	kan only (total plasmid)				

Created in BioRender.com b

Selecting novel compatible plasmid origins

Scaled down assay:

- Serial passaging with (or without) reporter selection
 - One rather than five days fast
- Fluorescent readout
 - · Selection and screening
 - Compatible with dynamic measurements

Characterising novel compatible origins

- Five origins selected for further characterisation
 - Based on sequence diversity
- Pairwise compatibility
 - Incompatibility taken from fluorescence outliers
 - Not symmetric

3rd dilution								
M9		pGFP(TetA)						
IV	19	WT D4 I G6 D4 II F4					G4	
	WT		21699	21105	22897	15320	16763	
pTetR	D4 I	20591	574962	17190	17078	17176	18047	
	G6	27180	213569	796289	22905	14470	21593	
	D4 II	22785	64041	11803	339829	21765	23394	
	F4	22291	45029	11608	24051	249330	17521	
	G4	25794	70443	1119908	31474	149623	286265	

pGFP(TetA) positive control	738296
pTetR negative control	22328

Directional orthogonality

- Rule out assay (or conditions) as source
 - Culture medium has an impact on the determination of outliers **dynamic and static** components.
 - Assay is a cellular response
 - Classic approach comparison

Directional orthogonality

- Circuit-based assay is robust tractable
- Plasmid copy number
 - Significant differences could explain symmetry break
 - Not sufficient plasmid compatibility captures more complex behaviour
 - Complex behaviour is circuit dependent
- Compatible with orthogonality being a continuous measure

3rd dilution								
М9		pGFP(TetA)						
		WT	D4 I	G6	D4 II	F4	G4	
	WT		21699	21105	22897	15320	16763	
	D4 I	20591	574962	17190	17078	17176	18047	
nTo+D	G6	27180	213569	796289	22905	14470	21593	
pTetR	D4 II	22785	64041	11803	339829	21765	23394	
	F4	22291	45029	11608	24051	249330	17521	
	G4	25794	70443	1119908	31474	149623	286265	

pGFP(TetA) positive control	738296
pTetR negative control	22328

Circuit-dependent plasmid compatibility

М9			
		WT	D4 I
pTetR	WT		21699
	D4 I	20591	574962
	G6	27180	213569
	D4 II	22785	64041
	F4	22291	45029
	G4	25794	70443

Plasmid cross-compatibility

- Pairwise compatibility is a good guide of cross-compatibility
- Compatibility affected by antibiotic selection tunable

Potential engineering insight into plasmid copy number control

- Good correlation between total RNAI loop length and plasmid copy number
- This in addition to:
 - Regulation of RNAI and RNAII promoters
 - Rop regulation

Key points and acknowledgements

- Orthogonality is a continuum
 - Not necessarily linked to metabolic burden
- Plasmid compatibility is a fast tractable tunable model for orthogonality
 - Well suited to improve the biological definition
 - If complexity is tractable
- Analysis tools are well established and can benefit from further developments
- Novel origins can be harnessed for applications
 - Multiple compatible high copy number origins
 - Programmed plasmid loss
 - Optimization of copy number

- Eleftheria Stamou
- Santiago Chaillou
- Leticia Torres
- Ana B. Riesco
- Waren Hazelton
- Pinheiro Group

