Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 29

Виконав студент	<u>III-12 Скорик Родіон Олегович</u>
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 29

Індивідуальне завдання. Знайти всі чотирьохзначні паліндроми.

Розв'язання

Постановка задачі

Вхідні данні — з умови розуміємо, що необхідно знайти усі чотирьохзначні паліндроми, тобто які лежать у межах від 1000 до 9999 включно. Для обсислення інших даних не потрібно. Результат обрахунків — 90 чотирьохзначних числел.

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Лічильник	Ціле	i	Лічильник
Лічильник	Ціле	j	Лічильник
Результат ітерації	Ціле	res	Результат

Побудова математичної моделі

Представмо чотирицифрове число у вигляді запису аbcd. Щоб воно було паліндромом, необхідне виконання умови abcd = dcba, звідки маємо a=d, b=c. Отже можемо передставити довільний чотирицифровий паліндром так: abba = 1001*a+110*b. Для знаходення усіх паліндромів достатньо організувати зовнішній цикл, що перебиратиме лічильник і від 1 до 9 (оскільки за значення 0 отримаємо двоцифровий паліндром), що відповідатиме змінній а, та внутрішній цикл із лічильником ј, що перебиратиме значення b від 0 до 9. На кожній ітерації обраховуватимемо число 1001*i+110*j, що буде паліндромом, виводимо його та пробіл. Таким чином будуть знайдені усі потрібні

паліндроми.

Псевдокод

```
Крок 1
початок
         перебір значення а
         перебір значення b
         знаходження паліндрому
кінець
Крок 2
початок
         повторити
               для і від 1 до 9
                перебір значення b
                знаходження паліндрому
         все повторити
кінець
Крок 3
початок
         повторити
                для і від 1 до 9
                     повторити
                          для ј від 0 до 9
                                знаходження паліндрому
                     все повторити
         все повторити
```

кінець

```
Крок 4
```

початок

повторити

для і в**і**д 1 до 9

повторити

для ј від 0 до 9

res:= 1001*i + 110*j

вивід res, ' '

все повторити

все повторити

кінець

Блок-схеми

початок
перебір значення а
перебір значення b
значення b
знаходження паліндрому

Крок 3

Крок 4

Перевірка

Блок	Дія
	Початок
1	i:=1
2	i<=9 - істина
3	j:=0
4	j<=9 - істина
6	res:= $1001*1 + 110*0 = 1001$
6	Виведення: "1001 "
7	j:=1
8	j<=9 - істина
9	res:= $1001*1 + 110*1 = 1111$
10	Виведення: "1111 "
11	j:=2
12	j<=9 - істина
13	res:= 1001*1 + 110*2 = 1221
14	Виведення: "1221 "
15	j:=3
16	j<=9 - істина
17	res:= $1001*1 + 110*3 = 1331$
18	Виведення: "1331 "
19	j:=4
20	j<=9 - істина
21	res:= $1001*1 + 110*4 = 1441$
22	Виведення: "1441 "
•••	
353	i:=9
354	i<=9 - істина
355	j:=0
356	j<=9 - істина

357	res:= $1001*9 + 110*0 = 9009$
358	Виведення: "9009"
•••	•••
382	j:=9
383	j<=9 - істина
384	res:= $1001*9 + 110*9 = 9999$
385	Виведення: "9999"
386	j:=10
387	j<=9 – хиба
388	i:=10
389	i<=9 – хиба
	Кінець

Висновок

Під час виконання роботи було досліджено особливості роботи арифметичних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій. Особливістю моєї реалізації було представлення чотирицифрового паліндрому у вигляді числа, складеного з двох змінних. Це дозволило не виеористовувати вкладенність більше ніж другого рівня та оптимізувало алгоритм уцілому.