Fundamentos da Computação 1

Aula 13

Olá!!! Vamos para nossa segunda aula sobre relações lógicas.

Conteúdo Visto

- Sintaxe e Semântica da Logica Proposicional
 - Definimos uma proposição
 - Aprendemos os conectivos lógicos
 - Tradução
- Tabela Verdade
- Sistema de Especificação
- Ponto de Participação 01, 02 e 03
- Implicação Lógica

Ponto de Participação 3

Sabendo que o valor da formula $(p \rightarrow q) \wedge (\neg p \rightarrow q)$ é verdadeiro podemos afirmar que o valor de p, q podem ser respectivamente.

1.V, V	р	q	$p \to q$	~p	~p → q	$(p \rightarrow q) \land (\sim p \rightarrow q)$
2.F, F	F	F	V	V	F	F
3.F, V	F	V	V	V	V	V
4.V, F	V	F	F	F	V	F
	V	V	V	F	V	V

Conteúdo

- Correção de Exercícios
- Equivalências Lógicas

Voltando ao conteúdo. Lembrando o que foi dito na aula passada.

Relação entre Proposições

- Na lógica temos duas relações
 - Implicação
 - Equivalência

 Diz se que uma proposição (composta) P implica logicamente ou apenas implica uma proposição (composta) Q, se Q é verdadeira todas as vezes que P é verdadeira.

 Diz se que uma proposição (composta) P implica logicamente ou apenas implica uma proposição (composta) Q, se Q é verdadeira todas as vezes que P é verdadeira.

 Diz se que uma proposição (composta) P implica logicamente ou apenas implica uma proposição (composta) Q, se Q é verdadeira todas as vezes que P é verdadeira.

Exercícios

- Sejam H e G as fórmulas indicadas a seguir.
 Identifique se H ⇒ G.
 - $H = (p \land q), G = (p)$
 - $H = (p \vee q), G = (p)$
 - $H = ((p \vee q) \wedge \sim p), G = y$
 - $H = ((p \lor q) \land \sim q), G$
 - $H = ((p \rightarrow q) \land p), G$
 - $H = ((p \rightarrow q) \land \sim q)$,

Vamos resolver os exercícios da aula passada. Vamos começar fazendo uma tabela verdade com todas as formulas.

$$(p \land q) \Rightarrow (p) ?$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$(p \land q) \Rightarrow (p) ? Sim$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$(p \lor q) \Rightarrow (p) ?$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$(p \vee q) \Rightarrow (p)$$
 ? Não

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$((p \lor q) \land \sim p) \Rightarrow (q) ?$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$((p \vee q) \wedge \sim p) \Rightarrow (q) ? Sim$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$((p \lor q) \land \sim q) \Rightarrow (p) ?$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$((p \lor q) \land \sim q) \Rightarrow (p) ? Sim$$

p	q	~p	~q	p^q	pvq	(p v q) ^ ~p	(p v q) ^ ~q)
F	F	V	V	F	F	F	F
F	V	V	F	F	V	V	F
V	F	F	V	F	V	F	V
V	V	F	F	V	V	F	F

$$((p \rightarrow q) \land p) \Rightarrow (q) ?$$

$$((p \rightarrow q) \land p) \Rightarrow (q) ? Sim$$

p	q	~p	~q	$p \rightarrow q$	((p → q) ^ p)
F	F	V	V	V	F
F	V	V	F	V	F
V	F	F	V	F	F
V	V	F	F	V	V

$$((p \rightarrow q) \land \sim q) \Rightarrow (\sim p) ?$$

p	q	~p	~q	$p \rightarrow q$	((p → q) ^ ~q)
F	F	V	V	V	V
F	V	V	F	V	F
V	F	F	V	F	F
V	V	F	F	V	F

$$((p \rightarrow q) \land \sim q) \Rightarrow (\sim p)$$
 ? Sim

p	q	~p	~q	$p \rightarrow q$	((p → q) ^ ~q)
F	F	V	V	V	V
F	V	V	F	V	F
V	F	F	V	F	F
V	V	F	F	V	F

 Toda e qualquer proposição implica uma tautologia.

Certo ou Errado?

 Toda e qualquer proposição implica uma tautologia.

Certo ou Errado?

Proposição 1	Proposição 2
?	V
?	V
?	V
?	V

 Toda e qualquer proposição implica uma tautologia.

Certo ou Errado?

Proposição 1	Proposição 2
?	V
?	V
?	V
?	V

Note que no lugar da ? podemos colocar qualquer valor V ou F, ou seja pode ser qualquer coisa.

 Toda e qualquer proposição implica uma tautologia.

Sim, já que uma tautologia é sempre verdadeira garantimos que a primeira proposição pode ser qualquer coisa.

 Somente uma contradição implica uma contradição!

Certo ou Errado?

Proposição 1	Proposição 2
?1	F
? ²	F
?3	F
?4	F

 Somente uma contradição implica uma contradição!

Certo ou Errado?

Proposição 1	Proposição 2
?1	F
? ²	F
?3	F
?4	F

Como proposição 2 é sempre F então temos que colocar um F no lugar de ?.

 Somente uma contradição implica uma contradição!

Sim, já que a segunda proposição é sempre F a primeira também deve ser.

Propriedades da Implicação Lógica

- Reflexiva
 - $P \Rightarrow P$

- Transitiva
 - Se $P \Rightarrow Q$ e $Q \Rightarrow R$, então $P \Rightarrow R$

Agora vamos falar de algumas propriedades das relações.

Propriedades da Implicação Lógica

Reflexiva

$$p \rightarrow q \Rightarrow p \rightarrow q$$

p	q	$p \rightarrow q$	$p \rightarrow q$
F	F	V	V
F	V	V	V
V	F	F	F
V	V	V	V

Propriedades da Implicação Lógica

- Transitiva
 - Se P \Rightarrow Q e Q \Rightarrow R, então P \Rightarrow R

A Propriedade
Transitiva é como a
da igualdade se
x=y e y=z podemos
concluir que x=z.

Vamos tentar visualizar a transitividade!!!

р	q	p→q	p ^ q	$p \land q \leftrightarrow p$
V	V	V	V	V
V	F	F	F	F
F	V	V	F	V
F	F	V	F	V

р	q	p→q	p ^ q	$p \land q \leftrightarrow p$
V	V	V	V	V
V	F	F	F	F
F	V	V	F	V
F	F	V	F	V
	Р	Q		

р	q	p→q	p ^ q	$p \land q \leftrightarrow p$
V	V	V	V	V
V	F	F	F	F
F	V	V	F	V
F	F	V	F	V
	Р	Q		R

Então vimos que: $q \Rightarrow p \rightarrow q e$ $p \rightarrow q \Rightarrow p \land q \leftrightarrow p$ Concluímos que: $q \Rightarrow p \land q \leftrightarrow p$

р	q	p→q	p ^ q	$p \land q \leftrightarrow p$
V	V	V	V	V
V	F	F	F	F
F	V	V	F	V
F	F	V	F	V
	Р	R		O

Implicação Lógica

 Demonstram algumas importantes regras de inferência que serão vistas mais a frente.

- Exemplos:
 - Regra da Adição
 - Regra da Simplificação

Implicação Lógica

- Teorema:
 - Dada duas formulas H e G, H ⇒ G, se e somente se a condicional H → G é uma tautologia.
- Exemplo:
 - p ^ ~p ⇒ q
 - Portanto, p ^ ~p → q é uma tautologia.
 - Podemos usar qualquer uma das duas formas para mostrar uma implicação.

Implicação Lógica

p ^ ~p ⇒ q

Logo....

p	q	~p	p^~p	p^~p → 7
F	F	V	F	V
F	V	V	F	V
V	F	F	F	V
V	V	F	F	V

Relação entre Proposições

- Na lógica temos duas relações
 - Implicação
 - Equivalência

 Diz se que uma proposição P é logicamente equivalente ou apenas equivalente a uma proposição Q se as tabelas verdade destas duas proposições são <u>idênticas</u>.

- Diz se que uma proposição P é logicamente equivalente ou apenas equivalente a uma proposição Q se as tabelas verdade destas duas proposições são <u>idênticas</u>.
- Equivalências são usadas na argumentação matemática para substituir uma proposição por outra.

 Diz se que uma proposição P é logicamente equivalente ou apenas equivalente a uma proposição Q se as tabelas verdade destas duas proposições são <u>idênticas</u>.

Símbolo Utilizado: ⇔ ,≡

Lógica – Tabela Conectivos

- Bicondicional: p ↔ q
 - Você pode tomar o avião. (p)
 - Você comprou passagem. (q)
 - Você pode tomar o avião se e somente se comprou passagem.

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Lógica – Tabela Conectivos

- Bicondicional: p ↔ q
 - \bullet p \rightarrow q
 - $q \rightarrow p$
 - $(p \rightarrow q) \land (q \rightarrow p)$

р	q	p→q	q→p	$(p \rightarrow q)^{(q \rightarrow p)}$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Lógica – Tabela Conectivos

р	q	$p \leftrightarrow q$	p→q	q→p	$(p \rightarrow q)^{(p \rightarrow q)}$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

A coluna dessas duas proposições são idênticas, logo são equivalentes!

р	q	~p	~q	p→q	~q > ~p
V	V				
V	F				
F	V				
F	F				

р	q	~p	~q	p→q	~q -> ~p
V	V	F	F		
V	F	F	V		
F	V	V	F		
F	F	V	V		

р	q	~p	~q	p→q	~q -> ~p
V	V	F	F	V	
V	F	F	V	F	
F	V	V	F	V	
F	F	V	V	V	

р	q	~p	~q	p→q	~q -> ~p
V	\ \	F	F	V	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

Exemplos

р	q	~p	~q	p→q	~q -> ~p
V	V	F	F	V	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V
				1	

São equivalentes

Exemplos

р	q	~p	~q	p→q	~q -> ~p
V	V	F	F	V	\ \
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

~q → ~p é chamada de contrapositiva de p→q

Exemplos: condicional e sua oposta

р	q	~p	~q	p→q	$q \rightarrow p$
V	V	F	F	V	V
V	F	F	V	F	V
F	V	V	F	V	F
F	F	V	V	V	V

Não são equivalentes

Exemplos: condicional e sua inversa/contrária

р	q	~p	~q	p→q	~p → ~q
V	V	Ш	F	V	\ \
V	F	F	V	F	V
F	V	V	F	V	F
F	F	V	V	V	V

Não são equivalentes

Exemplos: condicional e sua inversa/contrária

р	q	~p	~q	p→q	~p → ~q	~(p → q)
V	V	F	F	V	V	F
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	V	V	F

Não são equivalentes

Capitulo 1.1 - Rosen

- Exercícios 23 e 24.
 - Estes exercícios falam sobre oposta, contrapositiva e inversa.

Teorema:

 As proposições compostas P e Q são chamadas logicamente equivalentes se P ↔ Q é uma tautologia.

Teorema:

 As proposições compostas P e Q são chamadas logicamente equivalentes se P ↔ Q é uma tautologia.

p	q	~p	~q	p→q	~q -> ~p	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$
V	V	F	F	V	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

- Teorema:
 - As proposições compostas P e Q são chamadas logicamente equivalentes se P ↔ Q é uma tautologia.
- A notação P = Q indica que P e Q são logicamente equivalentes.

- Teorema:
 - As proposições compostas P e Q são chamadas logicamente equivalentes se P ↔ Q é uma tautologia.
- O símbolo = não é um conectivo lógico e sim uma relação.

Equivalências Lógicas Propriedades

- Reflexiva (idem implicação)
 - P ≡ P

- Simétrica (não vale na implicação)
 - Se $P \equiv Q$ então $Q \equiv P$

- Transitiva (idem implicação)
 - Se $P \equiv Q$ e $Q \equiv R$ então $P \equiv R$

Exercícios

- Página: 28
- Exercícios: 1,2,3,4,5,6

