Begriffe		Qualitative
Statistik	Entwicklung und Anwendung von Methoden zur Erhebung,	Faktoren
	Aufbereitung, Analyse und Interpretation von Daten	Faktorstufer
Beschreibende	Vollständige Kenntnis über das Untersuchungsobjekt	
Statistik		
Schliessende	Für Untersuchung liegend die Daten des zu untersuchenden Objekts	
Statistik	nur zum Teil vor.	Kaman lavität
Hypothese	Eine Hypothese ist eine Aussage deren Gültigkeit man für möglich	Komplexität Komplizierth
Nivilla on a klasa a	hält, die aber nicht bewiesen oder verifiziert ist.	Symbole
Nullhypothese	Die Nullhypothese H0 ist eine Aussage von der angenommen wird, dass sie stimmt.	
Alternativhypothe	Die Alternativhypothese H1 beschreibt eine Annahme, sie ist also das	h_i
se	Gegenteil der Nullhypothese.	f_{i}
Fehler 1. Art	Fehlerhaftes Verwerfen einer Hypothese	
(alpha)	,,,	$\underline{\hspace{0.1cm}} H_i \underline{\hspace{0.1cm}}$
Fehler 2. Art	Fehlerhaftes Annehmen einer Hypothese	$oldsymbol{L}$
(beta)	·	F_i
Zufällige Fehler	Nicht reproduzierbar	11.
Systematische	Reproduzierbar (können vermieden werden, unterliegt keinen	_ P
Fehler	grossen Schwankungen)	σ^2
Validierung	Mache ich das Richtige (Überprüfung des Modells)	0
Verifikation	Mache ich es richtig (Verifiziertes Modell kann nicht valide sein)	σ
Merkmalsträger	Der Gegenstand der statistischen Untersuchung	L -
Abgrenzungsmerk	Sachlich: wer/was ist unter Merkmalsträger zu verstehen	\bar{x}
mal (sachlich,	z.B. Wer gilt als "Mitarbeiter" eines Unternehmens	
räumlich, zeitlich	Räumlich: Räumliche Grenzen, in denen der Merkmalsträger liegen	H_0
	muss	H_1
	z.B. ein Bürogebäude eines Konzerns	111
	Zeitlich: Zeitpunkt oder Zeitraum, an der ein Merkmalsträger	ω
	"existieren" muss, um Teil der Grundgesamtheit zu sein ≠ zum	
Grundgesamtheit	Zeitpunkt der Messung/Erhebung! Die Menge aller Merkmalsträger die für eine Untersuchung in Frage	Ω
Grunugesammen	kommen	σ -Alge
Merkmal	Eigenschaften der Merkmalsträger die von Interesse sind	o-Aige
Merkmalswert	Der Wert der Beobachtung / Messung	1
Primärstatistik	Die Daten wurden genau für diesen Zweck erhoben (teuer)	\sim
Sekundärstatistik	Existierende Daten wobei es ungewiss ist, wie die Daten erhoben	22
	wurden. (günstig)	n
Vollerhebung	Befragung aller Merkmalsträger (Kosten und Umfang meist zu gross)	N
Teilerhebung	Befragung der essentiellen Merkmalsträger (wird meist gemacht)	Λ
Diskrete Funktion	Mit Lücken	Δ
Stetige Funktion	Ohne Lücken	R
Formale	Zahlenmässig begründete Abhängigkeit	Ableitungsre
Abhängigkeit	-	x^a
Sachliche	Ist der Wert eines Merkmals kausal/ursachlich für den Wert eines	i.
Abhängigkeit	zweiten Merkmals abhängig	
Menge	Ungeordnet, ohne Redundanzen	\boldsymbol{x}
Tupel	Geordnet, mit Redundanzen	9
Zufallsexperiment	Ein Experiment welches beliebig oft durchgeführt werden kann und	x^2
	das Ergebnis komplett vom Zufall abhängig ist	
Disjunkt	Keine gemeinsame Teilmenge	1
Zielgrösse	Beschreiben die Grösse, die man optimieren möchte	$\frac{1}{x}$
Einflussgrösse	Sind Grössen welche die Zielgrösse beeinflussen. Es wird zwischen	
	Streu,- und Störgrössen unterschieden. Man unterscheidet zwischen	\sqrt{x}
	Steuergrössen und Störgrössen	V w
Steuergrössen	Eine einstellbare Grösse (die man auch für eine gewisse Zeit halten	œ
	kann)	e^{x}
Störgrössen	Eine Grösse deren Wert man nicht beeinflussen kann	Linearitätsr
Faktoren	Aus allen Einflussgrössen werden die wesentlichen/relevant Faktoren	rinealitat2[6
	genannt. Es wird zwischen Quantitativen und Qualitativen Faktoren	
	unterschieden: Quantitative Faktoren: Die Werte sind auf einer Ordinalskala	Produktrege
Quantitative		

_									
	Qualitative Faktoren		Qualitat beschri		ie Werte sind au	f einer Nominal	skala	F	
	Faktorstufen				r in einem Versu	uch annehmen s	oll, werden	K	
					stufen genannt.				
_				ein Faktor nicht genau gemessen werden, so sollte der Abstand ktorstufen mindestens				(
				/arianz sein					
	Komplexität			nzahl an Faktore					
4	Komplizierthe	it	Unbeka	innte oder schw	ierig zu beschrei	bende Faktoren		E	
	Symbole h_i		Absolut	e Häufigkeit (An	zahl)			Z	
	f_i		Relative	e Häufigkeit (Ant	eil)			-	
1	H_i		Kumulie	erte absolute Hä	ufigkeit			L	
	$\overline{F_i}$		Kumulie	erte relative Häu	ıfigkeit			- -	
1	μ		Mittelw	vert .				E	
	σ^2		Varianz						
			Standar	dabweichung				-	
	$-\frac{\sigma}{\bar{x}}$		Arithme	etisches Mittel (I	Durchschnitt)				
	H_0			Nullhypothese					
	H_1		Alterna	Alternativhypothese					
	ω			nentarereignis → Teilmenge der Ergebnismenge					
-	Ω		eines Zu	rgebnismenge / Ergebnisraum (Menge aller möglicher Ausgänge ines Zufallsexperiments)					
	σ -Algeb	ora		Siehe Wahrscheinlichkeiten					
	\mathcal{A}		Besteht aus allen möglichen Ergebniskombinationen (Potenzmenge der Ergebnismenge)						
	n		Anzahl	Anzahl Messungen / Stichprobenumfang					
	N			der Grundgesan					
-	Δ		Mittlere	e absolute Abwe	ichung				
1	R		Spannw	/eite					
	Ableitungsreg	eln						0	
	x^a	a ·	x^{a-1}	1	0	tan(x)	$\frac{1}{\cos^2(x)}$	Z	
	\boldsymbol{x}	1		a^x	$\ln(a) \cdot a^x$	tan(x)	$1 + \tan^2(x)$	V	
	x^2	2x		ln(x)	$\frac{1}{x}$	arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$	-	
-	$\frac{1}{x}$	$-\frac{1}{x^2}$		$\log_b(x)$	$\frac{1}{\ln(b)\cdot x}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$		
	\sqrt{x}	$\frac{1}{2\sqrt{x}}$		sin(x)	cos(x)	arctan(x)	$\frac{1}{1+x^2}$		
1	e^x	e^a		$\cos(x)$	$-\sin(x)$			E	
	Linearitätsreg	el		$\frac{d}{dx}\left(f\left(x\right)\right)$	$+g\left(x\right) $)=f'(x)	+g'(x)		

 $\frac{d}{dx}\left(f\left(x\right)\cdot g\left(x\right)\right) = f'(x)\cdot g(x) + f(x)\cdot g'(x)$

	Produktregel mit Konstante c	$\frac{d}{dx}\left(c\cdot f\left(x\right)\right) = c\cdot f'(x)$
nd	Kettenregel	$\frac{d}{dx}\left(f\left(g\left(x\right)\right)\right) = f'(g(x)) \cdot g'(x)$
	Quotientenregel	$d \left(f(x) \right) = f'(x) \cdot g(x) - f(x) \cdot g'(x)$
		$\frac{dx}{dx} \left(\frac{g(x)}{g(x)} \right) = \frac{g(x)^2}{(g(x))^2}$

Experimente

Zyklischer Prozess des Experimentierens nach Shewhard (Plan \rightarrow Do \rightarrow Check \rightarrow Act)

- 1. Hypothese aufstellen
- Experiment durchführen
- 3. Hypothese überprüfen
- 4. Hypothese/Modell gegebenenfalls anpassen

Hindernisse für den Erkenntnisgewinn:

- 1. Komplexität: Hohe Anzahl an Faktoren
- 2. Kompliziertheit: Unbekannte oder schwierig zu beschreibende Faktoren
- 3. Rauschen/Dynamik: Unterschiedliche Ergebnisse bei gleichen Faktoren

Experimente werden immer nach einem bestimmen Schema durchgeführt:

- Ausgangssituation beschreiben
- . Untersuchungsziele festlegen / Zielgrössen definieren
- 3. Faktoren auswählen und gewichten
- 4. Versuchsplanung erstellen
- Versuche durchführen
- . Ergebnisse auswerten und Vertrauensintervalle bestimmen
- '. Ergebnisse interpretieren und Massnahmen ableiten
- Überprüfen der «Verbesserungen»

Prozessmodell:

DoE: Design of Experiment

Wie sind Experimente zu planen, damit mit möglichst wenigen Einzelexperimenten der Zusammenhang zwischen Einflussfaktoren und Zielgrössen möglichst genau ermittelt werden können.

Vorgehen

- 1. Ausgangssituation spezifizieren / Problem beschreiben / Ziel definieren
 - a. Kunde und dessen Bedürfnisse definieren
 - b. Liegen bereits Daten vor
 - c. Welche Probleme müssen gelöst werden
 - d. Welche Ressourcen (Zeit und Geld) stehen zur Verfügung (Kosten/Nutzen Analyse)
 - e. Betroffene Gruppen und deren Beziehung untereinander listen (Wiederstände, Supporter, Wissensträger)
- Zielgrösse beschreiben: Dabei möglichst alle Grössen sammeln und diese dann auf die wichtigen Reduzieren

Einfluss-Zielgrössen-Matrix

- . Für jede Zielgrösse eine Spalte anlegen
- In der ersten Spalte alle Einflussgrössen sammeln und in Einflussgrössen und Steuergrössen unterteilen
- Für jede Einflussgrösse das vorhandenen Wissen über Grösse und Einfluss auf jede Zielgrösse sammeln (z.B. stark, schwach, kein, linear, nicht linear)

Fehlerrechnung:							
Die Fehlerrechnung wird benötigt um den Bereich abzuschätzen, in denen der tatsächliche							
-	Wahrscheinlichkeit liegt.	Vahrscheinlichkeit liegt.					
Zufällige Fehler	Nicht reproduzierbar						
Systematische Fehler	Reproduzierbar						
Absoluter Fehler Δt		Bei Summen und Differenzen addieren sich die absoluten Fehler					
	(gleiche Einheit wie Me						
	Der absolute Fehler ka						
	berechnet werden →	Δt = relativer Fehle	er * Wert				
Relativer Fehler	$\frac{\Delta t}{t}$ wobei Δt = absolute Fehler und t = Messwert Bei Produkten und Quotienten addieren sich die relativen Fehler (einheitenlos \Rightarrow %)						
	Mit Hilfe des relativen Fehler lässt sich gut Abschätzen, welcher Faktor verbessert werden sollte. (der mit dem grösseren Fehleranteil)						
	Bei Potenzen kann der relative Fehler mit dem Exponenten multipliziert werden. Z.B $r^{2*}\pi \rightarrow 2*f_r$ da sich der relative Fehler bei Multiplikationen addiert ($r^*r^*\pi \rightarrow f_r + f_r = 2*f_r$)						
Nennwert die Fehlerang							
Mindestens	Letzte Stelle des Messy	vertes + 1 Stelle (auf	halbe gerundet)				
Höchstens	Letzte Stelle des Messy	vertes (auf 0.3/0.4 g	erundet)				
Beispiel	Gemessener Wert (t)	∆t von	∆t bis				
	15.32s	± 0.005s	± 0.04s				
	15.3s	± 0.05s	± 0.4s				
	15.320s	± 0.0005s	± 0.004s				
Beispiele (Masseinheiten	beachten)						
Schätzung eines Rechted	:ks						
Länge wird abgelesen:		28.15 - 22.35 cm = 5.8 cm					
Fehlerschätzung beim Ablesen: ± 0.05 cm							
**	Fehler addieren sich (links i	und rechts)					
Länge des Rechtecks:		5.8 ± 0.1 cm					
Berechnung der Fläche							
Breite des Rechtecks geg	geben mit	0.9 ± 0.1 cm					

Breite des Rechtecks gegeben mit Berechnung des relativen Fehlers

Relativer Fehler der Länge:

//Multiplikation: relative Fehler addieren sich

 $\Delta B + \Delta L = 12.8\%$ Fläche A = L * B

3.

 $A = 0.9 * 5.8 = 5.2 \pm 0.7 \text{ cm} 2$ absoluter Fehler der Fläche 0.128 * 5.22 cm2 = 0.668 cm2 Bei Messgeräten ist der relative Fehler nicht auf den gemessenen Wert, sondern auf

 $\Delta B = 0.1/0.9 = 11.1\%$

 $\Delta L = 0.1/5.8$ cm = 1.7%

Messbereich bezogen. Tipp für Rechnungen mit Kombinationen von +/- und */:

- Resultat berechnen ohne beachten der Fehlerangaben
- 2. Resultat berechnen unter Nutzen der Maximalwerte
 - Fehler Δ ergibt sich durch die Differenz von 1. und 2.

Diagramme				
Balkendiagramm	Y-Achse: Häufigkeit und X-Achse: Balken pro Klasse			
Histogramm	Der Balken geht über die gesamte Klassenbreite			
Polygonzug	Verbinden der Balken mit einer Linie, wobei jeweils der rechte Ecken verbunden wird. Beim Balkendiagramm wird die Mitte genommen.			

Skalen			
Wir arbeiten hauptsächl	ich mit metrischen Skala (Intervall und Verhältnis)		
Nominalskala Sind zwei Einheiten gleich oder ungleich? = / ≠			
(qualitativ)	Enthält Namen die gleichgewertet werden		
	Geschlecht: {Feminin, Maskulin}		
	Ortsname: {Berlin, Rom, Bern, Paris}		
	Familienstand: {verheiratet, ledig, geschieden, verwitwet}		
Ordinalskala /	Es lässt sich zusätzlich eine Ordnung herstellen		
Rangskala (qualitativ)	$=/\neq \text{und} >/<$		
	Die Werte sind nicht mehr gleichgewichtet, sondern		
	intensitätsmässig geordnet (in Klassen)		
	Schulnote: {sehr gut, gut, genügend, schlecht}		
	Umfragen: {Trifft zu, Trifft eher zu, Trifft eher nicht zu, Trifft		
	nicht zu}		
	Qualitätsstufe: {Standard, Business, First Class}		
Intervallskala	Es lässt sich zusätzlich eine Aussage über die Abstände machen		
(metrische Skala /	$=/\neq \text{und} >/< \text{und} +/-$		
Kardinalskala)	Es kann der einfache Abstand (Intervall) gemessen werden. Hat		
(quantitativ)	keinen absoluten Nullpunkt		
	Temperatur: {-12,, 0,, 42}		
	Uhrzeit: {20:00, 0:00, 10:00}		
Verhältnisskala	Es lässt sich zusätzlich eine Aussage über das Verhältnis machen		
(metrische Skala /	$=/\neq \text{und} >/< \text{und} +/- \text{und} \cdot/:$		
Kardinalskala)	Hat einen absoluten Nullpunkt, deshalb Vergleich Aussagen		
(quantitativ)	möglich. Negative Werte sind nicht möglich. Besitzt das höchste		
	Informationsniveau!		
	Umsatz: {0M, 1M, 2M, 3M,}		
	Alter: {0,1,,40,, gut, gut, genügend, schlecht}		
	Gewicht: {0kg, 50kg, 60kg,,80kg,120kg }		
Häufigkeitsverteilung			
	——————————————————————————————————————		

Trading restaurant	
n Gesamtzahl der Merkmalsträger (z.B Glühbirnen)	$f_i = \frac{h_i}{}$
v Anzahl verschiedene Merkmalsträger (Klassen)	$n \atop i$
h_i absolute Häufigkeit	$H_i = \sum_{a=1} h_a$
H_i kumulierte absolute Häufigkeit	i
f_i relative Häufigkeit	$F_i = \sum_{a=1}^{r} f_a$
${\cal F}_i$ kumulierte relative Häufigkeit	$N = \sum_{i=1}^{v} h_i$
d_i Klassendichte	i=1
D_i kumulierte Klassendichte	
x Bestimmter Wert innerhalb der Klasse	
	i

 \acute{x} Klassenmittelwert

 x^u Untere Klassengrenze x^o Obere Klassengrenze

 ${\cal F}_{i-1}/h_{m-1}$ Häufigkeit der vorherigen Klasse

 F_{i+1}/h_{m+1} Häufigkeit der nächsten Klasse

· i	
n	
i	1
$- h_a$	2
	3
=1	Date
i	Red
$\sum f_a$	d1
	Mc
=1	
h_i	
=1	
-1	

Dichte: Wenn die **Klassenbreiten unterschiedlich gross** sind muss mit Dichte d_i gerechnet werden. Ist die Klassenbreite gleich gross bzw. die Häufigkeit unklassifiziert, so ist $d_i = h_i$. Häufigkeiten berechnen Häufigkeit für einen $F(x) = F_{i-1} + \frac{x - x^u}{x^o - x^u} \cdot (F_i - F_{i-1})$ bestimmten Wert (z.B. 45) Unklassifiziert: Arithmetisches Mittel $\bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i = \sum_{i=1}^{v} x_i \cdot f_i$ der Gesamtheit $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \hat{x}_i \cdot d_i$

	<i>i</i> ≡1
Лodus	Der Modus ist immer in der Klasse mit der höchsten Dichte.
häufigster Wert)	$Mo = x^{u} + \frac{d_{i} - d_{i-1}}{(d_{i} - d_{i-1}) + (d_{i} - d_{i+1})} \cdot (x^{o} - x^{u})$
Median,	$M_{n}/Q = \frac{n}{t} - H_{i-1}$

etc. 1. Bestimmen von t a. t = In wie viele Teile die Gesamtheit unterteilt ist (2=Median, 4=1,Quartil, etc.)

2. Klasse finden, in welcher der Median/Quartil liegt a. $(n/t) < H_i \rightarrow i = Klasse$

Beispiel für klassifizierte Häufigkeit

Welcher Anteil der Mitarbeiter ist < 45 Jahre alt?						
J	$x_j^u \leq x_i < x_j^o$	bi	₩.	ţi,	£i	$f = \frac{45 - 40}{50 - 40} * (0.5 - 0.2) = 0.15$
1	0 bis 40	10	10	0.2	0.2	$F(x < 45) = 0.2 + 0.15 = 0.35 \ bzw. 35\%$ Anteil < 45 Jahre = 35%
2	40 bis 50	15	25	0.3	0.5	Anteil < 45 Jahre = 55% Anteil > 45 Jahre = 100% - 35% = 75%
3	50 bis 65	25	50	0.5	1	Anten > 43 Janne - 100% - 33% - 73%

chnung mit Dichte:

= 10/40 = 0.25 d2 = 15/10 = 1.5 d3 = 25/15 = 1.7 odusklasse ist also Klasse 3, da sie die grösste Dichte hat.

$$M = 50 + \frac{25 - 15}{(25 - 15) + (25 - 0)} * (65 - 50) = 54.3$$

Lagemasse / Lageparamet	
Arithmetisches Mittel /	Der Klassische Durchschnitt: Man addiert alle Messwerte und
Mittelwert	dividiert durch die Anzahl Messwerte
	1 <u>n</u>
	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
	$\prod_{i=1}^{n} \sum_{i=1}^{n} x_i$
	i=1
Harmonisches Mittel	Ist zur Berechnung des Durchschnitts einzusetzen wenn das
	Merkmal aus einem Bruch hervorgeht.
	$\frac{n}{n}$
	$\sum h_i$
	\overline{n} $\overline{i=1}$
	$\bar{x_h} = \frac{\sum\limits_{i=1}^{n} h_i}{\sum\limits_{i=1}^{n} \frac{h_i}{x_i}}$
	$\sum_{i} \frac{n_i}{n_i}$
	$i=1$ x_i
	Bsp. Auf einer Strecke von 2 Kilomer benötigt ein Fahrzeug auf
	der Hinfahrt 10km/h und auf der Rückfahrt 30km/h
	$\sum_{i=1}^{n} h_i$ (2+2) km km
	$\overline{MH} = \frac{\sum_{i=1}^{v} h_i}{\sum_{i=1}^{v} \frac{h_i}{x_{i}}} = \frac{(2+2) km}{\frac{2 km}{10 km/_b} + \frac{2 km}{30 km/_b}} = 15 \frac{km}{h}$
	$\sum_{i=1}^{v} \frac{n_i}{n_i} \cdot \frac{2km}{n_i} + \frac{2km}{n_i} h$
	The The
Geometrisches Mittel	Ist die n-te Wurzel aus dem Produkt aller beobachteten
	Merkmalswerte
	n
	$\bar{x_g} = \sqrt[n]{\prod_{i=1}^n x_i}$
	$x_g = 111x_i $
	$\sqrt{i=1}$
	No. 1 No. 1
	Verwendete man immer dann, wenn man Mittelwerte aus
	aufeinander aufbauenden Wachstumsfaktoren
	berechnen will. Wichtig beim Geometrischen Mittel ist, dass
	man nicht den Prozentsatz selbst sondern die einzelnen
	Faktoren (Brüche) $\overline{100}$ einsetzt.
Modus	Gibt den Wert an, der am häufigsten vorkommt
Median	Die Mitte in einem geordneten Datensatz. Gibt es eine gerade
	Anzahl Elemente wird einfach der Schnitt der beiden in der
	Mitte liegenden Werte genommen.
Quantil	Unterteilt die Gesamtheit in 2gleich grosse Teile
Quartil	Unterteilt die Gesamtheit in 4 gleich grosse Teile
Dezil	Unterteilt die Gesamtheit in 10 gleich grosse Teile
Perzentil	Unterteilt die Gesamtheit in 100 gleich grosse Teile
Streumasse / Streuparam	
	abweichung werden in der Praxis für die Streuung eingesetzt.
Spannweite	Die Differenz zwischen dem grössten und kleinsten
Spannweite	beobachteten Merkmal
Zentraler	Die Differenz zwischen dem ersten und dritten Quartil
Quartilsabstand /	
Interquartilsabstand	$Q_3 - Q_1$
mici quai modustanu	
	F 1,00 -
	1,00 -
	0,75
	50% 0,50
	+ 0,25 + Y
	25%
	1 0,00 x
	Q_1 Q_2 Q_3 80% Dezilabstand = $D_9 - D_1$

1	
Mittlere absolute	Der Durchschnitt der Summe aller Differenzen zum Mittelwert
Abweichung	$\bar{d} = \frac{1}{n} \sum_{i=1}^n x_i - \bar{x} \cdot h_i$ Die Betragsstriche der mittleren absoluten Abweichung ist unvorteilhaft (Fallunterscheidung). Deshalb arbeitet man viel öfter mit der Varianz
Varianz	Durch das Quadrieren wird der Varianzwert sehr gross, weshalb
	man eher mit der Standardabweichung rechnet.
	$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \cdot h_i$ Rsp. vereinfacht:
	$\sigma^2 = \sum_{i=1}^n x_i^2 \cdot h_i - \bar{x}^2$
	oder
	$\sigma^2 = \sum_{i=1}^n (x_i - \bar{x})^2 * f_i$
Standardabweichung	Arithmetisches Mittel der Abweichung vom Mittelwert der
	Gesamtheit $ar{x}$
	$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot h_i}$
	$ \begin{array}{c cccc} x'_j & (x'_j - \overline{x})^2 & (x'_j - \overline{x})^2 * h_j \\ \hline 20 & 689.06 & 6890.63 \\ \hline 45 & 1.56 & 23.44 \\ \end{array} $
	57.5 126.56 3164.06
	$\bar{x} = (20 * 10 + 45 * 15 + 57.5 * 25) * \frac{1}{50} = 46.25$
	$\sigma^2 = \frac{1}{50} * (6890.63 + 23.44 + 3164.06) = 201.56 \rightarrow \sigma = 14.2$
Variationskoeffizient (%)	Die Standardabweichung im Verhältnis zum arithmetischen Mittel
(/0)	$v = \frac{\sigma}{\bar{x}} \cdot 100$
	1. Standardabweichung: CHF 0.85
	2. Durchschnittlicher Preis für einen Espresso: CHF 4.25
	$v = \frac{\sigma}{\bar{x}} = \frac{0.85}{4.25} = 0.2 \cdot 100 = 20\%$

Boxplot

Der Boxplot vermittelt einen schnellen Eindruck, in welchem Bereich die Daten liegen und wie sie sich in diesem Bereich aufteilen.

 Der geordnete Datensatz wird in 4 Abschnitte aufgeteilt, die etwa gleich viele Werte umfassen

gesehen eine nahezu gleichmässige Leistung

- a. Minimum
- b. Maximum
- c. Median
- Beim unteren Quartil (Min 25% aller Messwerte kleiner/gleich und Max 75% aller Messwerte (grösser/gleich)
- e. Beim oberen Quartil Max 25% aller Messwerte kleiner/gleich und Min 75% aller Messwerte (grösser / gleich)
- Die oberen und unteren Enden der Quartile mit Strichen verbinden = B
- Verbindungslinie zwischen Min und unterem Quartil sowie eine Verbindungslinie zwischen Max und oberem Quartil = Whisker

Zeitreihen

X-Achse = Zeit / Y-Achse = Merkmalswerte → Punktdiagramm

x; 1 2 3 4 5

Gleitender Mittelwert

Ziel: Glättung der Zeitreihe/Kurve, in dem die hohen und niedrigen Werte gegeneinander Abgeglichen werden.

Man berechnet immer das arithmetische Mittel über eine Auswahl aller Messwerte und verschiebt diese Auswahl kontinuierlich nach vorne. Aus den neuen Messwerten (arithemtische Mittel) wird anschliessend eine neue Zeitreieh erstellt.

yi	5		8	7		6	9	11	9
\bar{y}_i	-	6	5,67	7,0	0	7,33	8,67	9,67	1-
5 8	7	6	9	11	9	\rightarrow	$\bar{y}_2 =$	$\frac{5+8+7}{3}$	= 6,67
8	7	6	9	11	9	\rightarrow	$\bar{y}_3 =$	$=\frac{8+7+6}{3}$	7,00
у ↑									
11 -						/			
7 -	,	/_	>		1				
5									
	1	2	3	4		5	6	7 x	

Regressionsanalyse														
23 22 21		zw un	e Re visch id fü hne	en o r di	disk e Ar	rete alys	n M	essu	unge	n (n	nit L	ück		
20	, .	de	as Zi n be Iten							_				
2 4 6 8 X-We	10 12 14 16 te	ZW	an e risch pon	en)	K un	d Y	Ach				enh	nang	g	
Regressionsfunktion für li		_	_		<u> </u>	.,								
Der gesuchte Wert sollte				ı au	t de	r X-A	Achs	<u>e</u> lie	egen					-
Regressionsgerade \widehat{y}	$\hat{y} = a_1 + b$ Beschreibt den Zu Merkmal X und de	samr	men						n una	abhá	ingi	gen		
Regressionsparameter	$a_1 = \bar{y} - b_1$ Gibt den tendenzi des Merkmalswer	1 * ellen	$ar{x}$ We	rt d	es N	∕lerk			an, v	venr	n de	r W	ert	
Regressionsparameter	$b_1 = rac{\sum (x_i)}{\sum (x_i)}$ Gibt als Steigungs des Merkmals Y te	y _i) (2) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	an,	- <i>n</i> <i>n:</i> um I än	$ar{x}^2$ wie der,	vie	nn c					r W	ert	
	$\bar{x} = \frac{\sum x_i}{n}$ $- \sum y_i$													
	$y = \frac{1}{n}$													
Beispiel	12 Studenten ging einer Erwerbstätig der zeitliche Aufw und der zeitliche A angegeben.	keit and (nacł (Std.	n. In /W	dei oche	r nad e) fü	chfo ir die	lger e Erv	nden werk	Tab ostät	elle igke	sin	d	
	Student	A	В	С	D	Е	F	G	Н	I	J	K	L	Ш
	Erwerbstätigkeit	1	2	2	3	3	4	5	6	8	12	15	23	I
	Studium	39	37	36	40	36	37	34	36	33	33	32	27	
	Ein Student der 6 anhand der vorlie sein Studium aufb Zusammenhang zu Regressionsanalys	gende ringe wisch	en D en ka	ate ann.	n er Es l	mit best	teln eht gkei	, wie ein t un	eviel linea d St	Zeit arer udiu	er	für	ne	
								\hat{y}						- 11

	1					
	Student	xi	yi	x _i y _i	x _i ²	y _i ²
	A	1	39	39	1	1.521
	В	2	37	74	4	1.369
	C	2	36	72	4	1.296
	D	3	40	120	9	1.600
	E	3	36	108	9	1.296
	F	4	37	148	16	1.369
	G	5	34	170	25	1.156
	Н	6	36	216	36	1.296
	1	8	33	264	64	1.089
	J	12	33	396 480	144	1.089
	K L	15 23	32 27	621	225 529	1.024 729
	Summe	84	420	2.708	1.066	14.834
		5,6525	0.0000000			
	$\bar{x} = \frac{\sum x_i}{n}$	= = = :	\overline{v}	$=\frac{\Delta y_i}{}=$	$\frac{420}{1} = 35$	5 H
	n	12		n	12	
	Σ	$x_i y_i - n\bar{x}$	\bar{y} 2'	708-12*7*	35	_
	$b1 = \frac{1}{2}$	$\sum x_i^2 - n\bar{x}^2$	$\frac{1}{2} = \frac{1}{1'}$	708-12*7* 066-12*7*	$\frac{30}{7} = -0.4$.9
				5 – (-0.4		
Resultat für $\widehat{\mathcal{Y}}$	ŷ: -0.49					
nesultat lui y				tätigkeit ang	ewendet fo	lat:
				49 → der St		
				d von 35.49		
		_		r tatsächlich		I L
	-			och weitere		
		gkeit einei	n Einfluss	auf die Höh	e der Studi	endauer
	haben.					
	$b2 = \frac{\Sigma}{2}$	$x_i y_i - n\bar{x}$ $\nabla v_i^2 - n\bar{y}$	$\frac{\overline{y}}{2} = \frac{2}{14}$	708-12*7 834-12*3	*35 = -1	.73
				- (-1.73		
Resultat für $\widehat{\mathcal{X}}$	-1.73y -			`		
	,			eibt die Tend	lenz des	
	_	-		n Zeitaufwai		udium
		-		rwerbstätig		dalam
				anfallende Z		für die
	Erwerbstäti				zitaai wana	rui uic
Beispiel für den		_		e 200 Besch	iftigen (n) i	m
Zusammenhang mit				gruppen aus		
Häufigkeitsverteilung				ie Verteilung		eiblichen
riadiigheitovei teilalig				iftigten auf c		
	ersehen we		2000110			
	Tarifgruppe		4 Sum	me		
	Weiblich			124		
	Männlich			76		
		62 50 59		200		
	Reschreiher	n sie den 7	usamme	 nhang zwisc	hen den Me	erkmalen
				enzugehörigi		21 Killaleli
Resultat				tlich mehr F		länner
Nesuitat				figkeitsverte		iaililei.
				enen Tarifgri		achen
				iten mit folg		
			iaurigkei	iten mit iolg	LIIUCI FUIII	Ci
	berechnet v	weruen. <i>H.(Ta</i>	rifarı	ne) * H.(C.	schlecht	
	f	$i_i = \frac{n_i(n_i)}{n_i}$	ij grup	npe) * H _i (Ge	scineciii)	
				n		
	Bsp. 62*124	20.42		11261		C1
	$J_i = {200}$	= <u>38.43</u> →	relative	Häufigkeit,	weiblich in	61
	1					

Tarifgruppe	1	2	3	4	Summe
Weiblich	38.44 (43)	31 (32)	36.58 (36)	17.98 (13)	124
Männlich	23.56 (19)	19 (18)	22.42 (23)	11.02 (16)	76
Summe	60	50	59	29	200

Mit der relativen Häufigkeitswerten kann man nun feststeller dass es in den Tarifgruppen 1 und 4 zu einer Verschiebung kommt, jedoch die Gruppen 2 und 3 geschlechtsunabhängig sind.

Wahrscheinlichkeitsrechn	
Menge	Ungeordnet, ohne Redundanzen
Tupel	Geordnet, mit Redundanzen
Zufallsexperiment	Ein Experiment welches beliebig oft durchgeführt werden kann und das Ergebnis komplett vom Zufall abhängig ist (z.B Werfen eines Würfels)
Elementarereignis ω	Ist ein möglicher Ausgang des Zufallsexperiments, wobei zwei Elementarereignisse sich immer gegenseitig ausschliessen.
Ergebnismenge Ω	Umfasst alle möglichen Elementarereignisse eines Zufallsexperiments. Z.B {1,2,3,4,5,6}
Ereignis	Eine Teilmenge der Ergebnismenge. Z.B {2,4,6}
System der Ereignisse	Bei einem Zufallsvorgang gemessene Ereignisse, bilden
\mathcal{A}	zusammen ein System von Ereignissen. Dieses weist Eigenschaften auf, welche es ermöglichen Relation (Durchschnitt, Vereinigung, etc.) zu bilden.
Unmögliches Ereignis	Die leere Menge
Ø	
Disjunkte Ereignisse	A und B sind disjunkt, wenn sie keine gemeinsame Teilmenge besitzen.
Laplace Experiment	Ein Experiment bei dem jedes Ergebnis <u>dieselbe</u>
	Wahrscheinlichkeit hat und die Ergebnismenge
(gut Fälle / alle Fälle)	endlich/abzählbar ist.
	$P(A) = \frac{ A }{ \Omega } = \frac{\text{Anzahl der für das Ereignis A günstigen Ergebnisse}}{\text{Anzahl aller möglichten Ergebnisse}}$
	Wie gross ist die Wahrscheinlichkeit im Lotto (6 aus 49) genau
	drei Richtige anzukreuzen?
	$P\{3 \ richtige\} = \frac{\binom{6}{3} * \binom{43}{3}}{\binom{49}{6}} = 0.0176$
Unabhängige	Zwei Ereignisse A und B sind voneinander unabhängig wenn gilt:
Ereignisse	W(A) = W(A B) bzw.
	$W(A) = W(A \overline{B})$ bzw.
	W(A B) = W(A B)
	Beispiel: Es wurden folgende Wahrscheinlichkeiten berechnet: P(A) = 0,65; P(A B) = 0,75; → Da P(A) ≠ P(A B) sind die beiden Ereignisse A und B abhängig.

Additionssatz	Die Wahrschei	nlichkeit das A o	der B eintritt	
	1. A	und B sind verei	inbar	
	$P(A \cup$	B) = P(A) -	+P(B)-P($(A \cap B)$
	2. A	und B sind unve	reinbar	,
	$P(A \cup$	$\cup B) = P(A$	(A) + P(B)	
Multiplikationssatz	Die Wahrs	cheinlichkei	t, dass A u	nd B eintritt
	1. Sind	A und B al	ohängig	
		$P(A \cap B)$	$= P(A) \cdot P(A)$	(B A)
	oder			
		$P(A \cap B)$	$=P(B)\cdot P$	(A B)
	2. Sind	A und B un	nabhängig	
		$P(A \cap B)$	$= P(A) \cdot P(A)$	(B)
	Wahrscheinlicl → Da man nic	nt zurücklegt, ist	ohne zurücklege die Wahrscheir	en zwei rote zieht?
	1. Zug	2. Zug	Ereignis	
		R2 R1	3 4 RI \(RZ	20
	R1 Al5	WZIRI	RIOW	$\frac{4}{20}$
	W1	R2IW1	WIO R	$\frac{4}{20}$
			0/4 W1 ~	
Bedingte	Die Wahrschei	nlichkeit von A u		20
Wahrscheinlichkeit		$= \frac{P(A \cap B)}{P(B)}$		SSCEZUTING VOTED
		Verliebt 0.4	nicht verliebt 0.6	
	P(S L) = 0.8	P(-S L) = 0.2	P(S ¬L) =	P(¬S ¬L) = 0.7
	versalzen P(S ∩ L) = 0.32	O.K P(¬S ∩ L) = 0.08	versalzen P(S ∩ ¬L) = 0.18	O.K P(¬S ∩ ¬L) = 0.42
		s	¬s	Total
	1	0.32	0.08	0.4
	¬l	0.18	0.42	0.6
Komplementäre	Total Die Wahrschei	0.5 nlichkeit, dass A	0.5	1
Wahrscheinlichkeit	_	,		
	P(A) =	1 - P(A))	

	Korrelation			n!
	Die Korrelation ist eine Ke Streudiagrammen	ennzahl für den Zusammenhang zwischen mehreren		$p(n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$
	Formale Abhängigkeit	Zahlenmässig begründete Abhängigkeit	1	Von einem 6-stelligen Zahlenschloss weiss man, dass es sich mit
	Sachliche Abhängigkeit	Ist der Wert eines Merkmals kausal/ursachlich für den Wert eines zweiten Merkmals abhängig		einer bestimmten Folge der Ziffern 1, 1, 4, 4, 4 und 8 öffnen lässt. Wie viele Versuche sind maximal notwendig um das
	Kovarianz	$1\sum_{n=1}^{\infty}$		Zahlenschloss zu öffnen? Gegeben sind n=6 Ziffern, die in k=3 Klassen von untereinander
		$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	l l	gleich Ziffern zerfallen. Die Klasse «1» enthält n1 = 2 Elemente,
		i=1		die Klasse «4» n2 = 3 und die Klasse «8» n3 = 1 Element.
	Varrationa la si	Merkmalswertkombinationen (x_i, y_i)		$p_{2,3,1}(6) = \frac{6!}{2! \cdot 3! \cdot 1!} = \frac{720}{12} = 60 \text{ Permutationen}$
	Kovarianz bei Stichproben	Bei Stichproben verwendet man eine korrigierte Varianz, wobei man nicht nur n sondern durch n – 1 teilt		$p_{2,3,1}(0) = \frac{1}{2! \cdot 3! \cdot 1!} = \frac{1}{12} = 00$ Termutationen
	Korrelationskoeffizient			es darum, aus n Elementen, k auszuwählen und anschliessend in
	Lineare Abhängigkeit	$r_{xy} = \frac{Kovarianz}{Standardabweichung_x \cdot Standardabweichung_y} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$	eine Ordnung zu bringen. Binomialkoeffizient	Aus n Optionen, k auswählen
		Es resultiert immer ein Wert r zwischen -1 und 1: a) Je mehr der Wert bei -1 liegt, desto mehr ähneln die	Billottilaikoettizietti	
		a) Je mehr der Wert bei -1 liegt, desto mehr ähneln die Punkte im Streudiagramm einer Gerade mit negativer		$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$
		Steigung (stark linear abhängig)		
		b) Je mehr der Wert bei O liegt, desto grösser ist die Streuung der Punkte (linear unabhängig)	Kombinationen ohne	Im Rechner ist das die Funktion nCr(n,k)
		c) Je mehr der Wert bei +1 liegt, desto mehr ähneln die	Wiederholung/Zurücklegen	Anzahl Möglichkeiten = $\frac{n!}{}$
		Punkte im Streudiagramm einer Gerade mit positiver	(MILE I	Anzahl Möglichkeiten = $\frac{n!}{(n-k)!}$
	Permutationen und Komb	Steigung (stark linear abhängig)	(Mit Beachtung der Anordnung)	Im Rechner ist das die nPr(n,k) Funktion
1	remutationen und komb	IIIdUIK	6,	Aus 5 Bewerber soll eine Rangliste der ersten 3 Plätze
$\ $		Ist jedes vorgegebene Element genau einmal anzuordnen		gemacht werden. Wie viele verschiedene Listen sind möglich?
		anzuoranen		
		JA NEIN		$V_3(5) = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 60$
		Text	Kombinationen ohne	Ist gleich dem Binomialkoeffizienten
	Sind die vorgegebe	enen Darf ein vorgegebenes Element wiederholt	Wiederholung/Zurücklegen	
	verschieden	ausgewählt werden	(ohne Beachtung der Anordnung)	Anzahl Möglichkeiten = $\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$
	JA NE	EIN		Im Rechner ist das die Funktion nCr(n,k)
	Permutationen ohne Perm	mutationen mit JA——NEIN—		Bsp. Lotto
ļ		iederholung		Beim Lotto müssen aus 49 Zahlen 6 Zahlen ausgewählt
				werden. Wie viel Tipps sind möglich?
		<u> </u>		$\binom{49}{6} = \frac{49!}{(49-6)!*6!} = 13'983'816$
		Ist die Anordnung der Elemente von Bedeutung	Kombinationen <u>mit</u> Wiederholung/Zurücklegen	
		JA NEIN FJA NEIN	(Mit Beachtung der	In einem Einkaufsladen gibt es unterschiedlich bemalte Vasen zu kaufen. Der Kunde möchte 3 Vasen für seinen
	•	NEW JOAN MENT	Anordnung)	Garten kaufen. Wie viele Möglichkeiten hat er, die Vasen in
	Kombinatio	n mit Kombination mit Kombination ohne Kombination ohne		seinem Garten auf 4 Plätzen anzuordnent.
	Wiederholung Beachtung	und mit ohne Beachtung der Wiederholung und ohne Beachtung der Wiederholung und ohne Beachtung der		$V_3^W(4) = 4^3 = 64$
	Anordnu	Anordnung Anordnung Anordnung		Bei einem Ziffernschloss muss man eine 5-stellige Zahl
l	Permutationen			einstellen, die aus den Ziffern 0-9 gebildet wird. Wie viele Kombinationen gibt es?
	Permutationen	Anzahl Möglichkeiten n Objekte anzuordnen = Fakultät		$10^5 = 100'000$
	<u>ohne</u> Wiederholung/Zurückle	$p(n) = n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$	Kombinationen mit	Angeld Möglichkeiten $(n+k-1)!$ $(k+n-1)$
	gen (Merke: 0!=1)	Eine Maschine muss vier Aufträge A, B, C, D nacheinander	Wiederholung/Zurücklegen	Anzani Mognetketten – $\frac{1}{k! \cdot (n-1)!} = \binom{k}{k}$
1		abarbeiten. Wie viel Anordnungen sind möglich: 4!=24 → für den ersten Platz gibt es 4 Möglichkeiten, für den zweiten	(ohne Beachtung der	In einem Rat werden 3 Sitze neu vergeben, es bewerben
		3, usw. → n!	Anordnung)	sich 6 Verbände darauf. Die wiederholte Auswahl eines Verbandes ist möglich. Wie viele mögliche Sitzverteilungen
	Permutationen	Bei identischen Elementen werden diese in Klassen zusammengefasst. Es gibt dabei k Klassen mit jeweils n _k		gibt es?
	mit Wiederholung/Zurückle	identischen Elementen		k= 3
	gen			$K_3^W(6) = {6+3-1 \choose 3} = {8 \choose 3} = {8! \over (8-3)!*3!} = 56$

Zufallsvariablen

Zusammenhang Zufallsvariable und Merkmal

Zufallsvariable X	Merkmal X
Realisation x	Merkmalswert x
Wahrscheinlichkeit	relative Häufigkeit
Wahrscheinlichkeitsfunktion	einfache relative Häufigkeitsverteilung
Verteilungsfunktion	kumulierte relative Häufigkeitsverteilung
Erwartungswert	arithmetisches Mittel
Varianz	Varianz

Realisation

Wert der Zufallsvariable für ein Ereignis

z.B. Im Monopoly ist die Summe der Augenzahlen zweier Würfel entscheidend, wie weit ein Spieler vorrücken darf: Zufallsvariable = Augensumme Realisationen = {2,3,4, ..., 12}

Eine Zufallsvariable hat für jedes Ereignis eine bestimmte Wahrscheinlichkeit, dass das Ereignis eintreffen kann.

$$f(x) = P(X = x) = \begin{cases} Wahrscheinlichkeit_1 & \text{für x=Ereignis} \\ Wahrscheinlichkeit_2 & \text{für x=Ereignis} \end{cases}$$

Diskrete Massenfunktion	Kann mit einem Stabdiagramm veranschaulicht werden (Ordinate (Y) = Wahrscheinlichkeit, Abszisse (X) = Ereigniswerte) Wahrscheinlichkeit kann direkt abgelesen werden Hat Lücken und nur positive Werte Die Summe aller Einzelwahrscheinlichkeiten entspricht 1 = Fläche unter dem Graphen
Stetige Dichtefunktion / Kontinuierliche Verteilungsfunktion	 Auf der X-Achse sind unendliche viele Werte Die Summe aller Einzelwahrscheinlichkeiten entspricht 1 = Fläche unter dem Graphen
Erwartungswert	$E(X) = \sum_{i=1}^{n} x_i \cdot P(x_i)$
Varianz	$VAR(X) = \sum_{i=1}^{n} (x_i - E(X))^2 \cdot P(x_i)$

Beispiele:

Ein Zufallsvorgang besteht im dreimaligen Werfen einer Münze. Entscheidend ist die Anzahl an Wappen.

Geben Sie die Wahrscheinlichkeits- und Verteilungsfunktion an.

Zufallsvariable: Anzahl Wappen Realisation:

0.1.2.3

xi	f(xi)	F(xi)
0	0.125	0.125
1	0.375	0.500
2	0.375	0.875
3	0.125	1.000

Berechnen Sie den Erwartungswert.

0 * 0.125 + 1 * 0.375 + 2 * 0.375 + 3 * 0.12 = 1.5 Wappen

b) Berechnen Sie die Varianz und die Standardabweichung $\sigma^2 = (0 - 1.5)^2 * 0.125 + (1 - 1.5)^2 * 0.375 + (2 - 1.5)^2 * 0.375 + (3 - 1.5)^2 * 0.125$

 $\sigma = \sqrt{0.75} = 0.866$

Stichproben	
Zufallsstichprobe	Aus der Grundgesamtheit werden Elemente zufällig
	ausgewählt
Einfache Stichprobe	Die Elemente der Stichprobe haben alle die gleiche
	Wahrscheinlichkeit

Geschichtete Stichprobe	Ist es möglich, Elemente mit gleichen Eigenschaften in
	Gruppen einzuteilen ist es sinnvoller, Teilstichproben pro
	Gruppe/Schicht zu nehmen, um genauer Aussagen über
	die Gesamtheit zu machen

Schätzverfahren

Ist der Mittelwert, Standardabweichung und die Verteilungsfunktion nicht bekannt müssen diese mit Hilfe von Schätzfunktionen geschätzt werden. Ziel dabei ist es, von einer Stichprobe auf die Grundgesamtheit zu schliessen und dabei den Fehler einer falschen Schätzung zu minimieren.

Punktschätzung

und Standardabweichung

Schätzfunktion für den Mittelwert	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$
Schätzfunktion für Varianz	- 1

 $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$

$\begin{array}{c} \text{Varianz } \sigma^2 \\ \text{Stichprobe} \end{array}$	bekannt	unbekannt
mit Zurücklegen	$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$	$\hat{\sigma} \frac{2}{X} = \frac{s^2}{n}$
$\frac{n}{N} < 0.05$ ohne Zurücklegen	$\sigma_{\overline{X}}^2 \approx \frac{\sigma^2}{n}$	$\hat{\sigma} \frac{2}{X} \approx \frac{s^2}{n}$
$\frac{n}{N} \ge 0.05$	$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$	$\hat{\sigma} \frac{2}{X} = \frac{s^2}{n} \cdot \frac{N - n}{N}$

ACHTUNG: Evtl. Wurzel ziehen! Wir arbeiten meist mit der Standardabweichung

Varianz σ^2 Stichprobe	bekannt	unbekannt
mit Zurücklegen	$\sigma_P^2 = \frac{\Theta \cdot (1 - \Theta)}{n}$	$\hat{\sigma}_P^2 = \frac{P \cdot (1 - P)}{n}$
$\frac{n}{N}$ < 0,05 ohne Zurücklegen	$\sigma_p^2 \approx \frac{\Theta \cdot (1 - \Theta)}{n}$	$\hat{\sigma}_{p}^{2} \approx \frac{P \cdot (1-P)}{n}$
	$\sigma_p^2 = \frac{\Theta \cdot (1-\Theta)}{n} \cdot \frac{N-n}{N-1}$	$\hat{\sigma}_{P}^{2} = \frac{P \cdot (1 - P)}{n} \cdot \frac{N - n}{N}$

Varianz σ^2 Verteilung des Merkmals X	bekannt	unbekannt
bekannt und normalverteilt	\overline{X} ist normalverteilt	\overline{X} ist t-verteilt mit $k = n - 1$ Freiheitsgraden Wenn $n > 30$: \overline{X} ist approximativ normalverteilt
bekannt und nicht normalverteilt (n > 30) unbekannt (n > 30)	\overline{X} ist approximativ normal verteilt	

P = Wahrscheinlichkeit (Anteilswerte)

Intervallschätzung

Konfidenzintervall für den Mittelwert

Beispiel: Bekanntheitsgrad (unbekannte Varianz)

Ein Chemieunternehmen möchte den Bekanntheitsgrad eines von ihm hergestellten Waschmittels in Erfahrung bringen. Dazu werden 400 Personen zufällig ausgewählt und befragt. Das Waschmittel war 30 % der Befragten zumindest namentlich bekannt. Erstellung des zentralen 95%-Konfidenzintervalls für O.

Schritt 1: Festlegung der Verteilungsform von P

Wie: $n * P * (1 - P) > 9 = 400 * 0.3 * 0.7 = 84 > 9 \rightarrow$ wahr, also approximativ normal verteilt

Schritt 2: Festlegung der Varianz / Standartabweichung von P

Resultat:
$$\hat{\sigma}_P = \sqrt{\frac{P*(1-P)}{n}} = \sqrt{\frac{0.3*0.7}{400}} = 0.02$$

Schritt 3: Ermittlung des Quantilswertes z → Gemäss geg. Konfidenzintervall

(Unterscheidung einseitig/Beidseitig(zentral))

Resultat aus Tabelle

Schritt 4: Berechnung des maximalen Schätzfehlers

Resultat: $z * \hat{\sigma}_P = 1.96 * 0.02 = 0.04$

Schritt 5: Ermittlung der Konfidenzgrenze

Resultat: W(0.30 – 0.04 $\leq \Theta \leq$ 0.30 + 0.04) = 0,95

 $W(0.26 \le \Theta \le 0.34) = 0.95$

Der Bekanntheitsgrad in der Grundgesamtheit wird mit einer Wahrscheinlichkeit von 95% vom Intervall [26%; 34%] überdeckt.

Genauigkeit erhöhen:

- Konfidenzgrenze behalten, Umfang n erhöhen
- Umfang n behalten, Konzidenzniveau senken

Konfidenzintervall für beidseitig begrenzt:

$$W(\mu \ \text{-}\ z \cdot \sigma_{\overline{X}} \, \leq \, \overline{X} \, \leq \, \mu \, + \, z \cdot \sigma_{\overline{X}}) \ = \, 1 \, \text{-} \, \alpha$$

$\sigma_{\bar{v}} =$ findet sich mit Tabelle links!

1- α gibt die Wahrscheinlichkeit an, dass sich die Zufallsvariable/Stichprobenfunktion innerhalb des Intervalls befindet. (Konfidenzintervall)

Der tägliche Kaffeekonsum in einem Büro:

	0	
xi	f(xi)	Wie hoch ist die Wahrscheinlichkeit, dass der Stichprobenmittelwert
1	20	bei n=100 im Intervall (2.3;2.5) liegt?
2	30	$\bar{x} = \frac{1 * 20 + 2 * 30 + 3 * 40 + 4 * 10}{2 * 30 + 3 * 40 + 4 * 10} = 2.4$
3	40	100 Varianz-Berechnung siehe "Streuparameter" → 0.84
4	10	
		$\sigma_{\overline{X}} = \sqrt{\frac{0.84}{100}} = 0.0917$

$$z = \frac{\overline{x} - \mu}{\sigma_{\overline{X}}} = \frac{2,5 - 2,4}{0,0917} = 1,0905$$

Intervall von z=-1,09 bis +1,09 => $0.8621-0.1379 = 0.7242 \rightarrow 72.42\%$

notwendiger Stichprobenumfang n beim Konfidenzintervall für das arithmetische Mittel

In diesem Fall wird gefordert, dass die Schätzung ein vorgegebenes Mindestmass an Genauigkeit e besitzt und dass diese Mindestgenauigkeit mit einer vorgegebenen Konfidenz bzw. Sicherheit erzielt wird.

gegeben: Konfidenz, Genauigkeit (e) \rightarrow e = \overline{x} - μ

gesucht: Stichprobenumfang n

Beispiel: Zuckerabfüllung

gegeben: Konfidenz z = 1.96 Genauigkeit e = 0.2 g Standartabweichung
$$\sigma$$
 = 1.2 $n \ge \frac{z^2 * \sigma^2}{e^2} = \frac{1.96^2 * 1.2^2}{0.2^2} = 138.3$

Es müssen 139 Packungen entnommen werden, um die gewünschte Genauigkeit zu erzielen (wegen n > 30 ist im Falle einer beliebig verteilten Grundgesamtheit die Approximation durch die Normalverteilung zulässig).

<u>Beispiel</u>: Eine Molkerei liefert an eine Lebensmittelkette 40'000 Flaschen Milch mit 1000ml Soll-Füllmenge. Die Stichproben haben eine durchschnittliche Füllmenge von 1000.25ml. Aufgrund von zahlreichen Kontrollen weiss man, dass die Ist-Füllmenge normalverteilt mit einer Streuung von $\sigma = 1.2$ ml ist. Wie viele Flaschen Milch müssen der Lieferung

entnommen werden, wenn folgende Dinge gegeben sind.

gegeben: z= 1.96 (=95% Konf. Int beidseitig) e=0.25ml ($\bar{x} - \mu$)

$$z = \frac{\bar{x} - \mu}{\sqrt{\pi}} = \frac{e}{\frac{\sigma}{\sqrt{n}}} \rightarrow \text{nach n auflösen} = 88.51 \rightarrow 89 \text{ Stichproben}$$

Konfidenzintervall für die Varianz

Es wird die folgende Schätzfunktion verwendet: $s^2 = \frac{1}{x^2} * \sum (x_i - \bar{x})^2$

Voraussetzungen für eine erwartungstreue Schätzung: das Merkmal X ist in der Grundgesamtheit normalverteilt und die Entnahme erfolgt mit Zurücklegen

-Zweiseitiges Konfidenzintervall

$$W\left(\frac{(n-1)*s^2}{y_{_1-\frac{\alpha}{2}}} \le \sigma^2 \le \frac{(n-1)*s^2}{y_{\frac{\alpha}{2}}}\right) = 1 - \alpha \text{ (Konfidenzintervall)}$$

 $\alpha = Irrtumswahrscheinlichkeit$

n =Stichprobenumfang/Freiheitsgrade

y = Mit \dot{k} = n-1 und α z.B. 95% Konf. Int $\rightarrow \alpha = 0.975$ ($y_{1-\frac{\alpha}{2}}$) und $\alpha = 0.025$ ($y_{\frac{\alpha}{2}}$), in der

Chi² Tabelle → y herausfinden

-Einseitiges Konfidenzintervall (nach oben begrenzt)

$$W\left(\sigma^2 \leq \frac{(n-1)*S^2}{y_{lpha,\ k=n-1}}\right) = 1 - \alpha$$
 (Konfidenzintervall)

 $\alpha = Irrtumswahrscheinlichkeit$

n = Stichprobenumfang/Freiheitsgrade		
y = Mit		
Testverfahren		
Signifikanzniveau	Das Signifikanzniveau wird meist bei 5% angesetzt. Ist der Wert	
	kleiner wie 5% wird angenommen, dass ein Ergebnis signifikant ist.	
Hypothese /	Die Nullhypothese H0 ist eine Aussage von der angenommen wird,	
Nullhypothese H0	dass sie stimmt.	
Alternativhypothese	Die Alternativhypothese H1 beschreibt eine Annahme, sie ist also	
H1	das Gegenteil der Nullhypothese.	
Fehler 1. Art (alpha)	Fehlerhaftes Verwerfen einer Hypothese	
Fehler 2. Art (beta)	Fehlerhaftes Annehmen einer Hypothese	
Parametertest	Man möchte wissen, ob der angegebene Benzinverbrauch eines	
	Autos eingehalten wird. μ=10l/100km, σ=1l/100km	
	Es werden 25 Autos getestet. Dabei kommt der Mittelwert	
	10.2L/100km zustande. Liegt das Ergebnis im Bereich statistischer	
	Schwankungen, wenn 1-α=0.95	
	Annahme: Normalverteilter	
	Strichprobenmittelwert $\mu_0 - z \frac{\sigma}{\ln z} \le x \le \mu_0 + z \frac{\sigma}{\ln z}$	
	z für zweiseitige Tests: 1.96 \sqrt{n}	
	Intervall:	
	$10 - 1.96 \frac{1}{\sqrt{25}} \le \overline{x} \le 10 - 1.96 \frac{1}{\sqrt{25}}$	
	9.61≤ x̄ ≤ 10.39 → Nullhypothese annehmen!	
Anteilswert	1. Schritt: Wähle die Signifikanzzahl α und bestimme daraus die Werte für Z aus	
(unbekannte	Tabell (1-α)	
Wahrscheinlichkeit)	Schritt: Berechne die Annahmegrenzen zu	
	$1. c_u = p_0 - z \sqrt{\frac{p_0(1-p_0)}{n}} \text{ oder } c_u = p_0 - z \sqrt{\frac{p_0(1-p_0)}{n}} \sqrt{\frac{N-n}{N-1}} \text{ und }$	
	$2. c_o = p_0 + z \sqrt{\frac{p_0(1-p_0)}{n}} \text{ oder } c_o = p_0 + z \sqrt{\frac{p_0(1-p_0)}{n}} \ \sqrt{\frac{N-n}{N-1}}$	
	3. Man berechne den Anteil $\overline{p} = \frac{k}{n}$	
	4. Fällt \overline{p} in den Annahmebereich: $c_u \leq \overline{p} \leq c_o$	

wird die Hypothese angenommen, sonst

Verteilungen			5. Berechnen der Maximalen Schätzfehlers:
Zentraler Grenzwertsatz	Der zentrale Grenzwertsatz besagt, dass sich mit grösserem		$t*\sigma_{\overline{x}} = 2.060 * 0.34 = 0.70 g$
	Stichprobenumfang n, alle Verteilungen der Normalverteilung		6. Berechnen der Konfidenzgrenzen
	approximieren. Als Faustregel gilt, dass bei einem n über 30		$W(124.58 - 0.70 \le \mu \le 124.58 + 0.70) = 0.95$
	Stichproben die Normalverteilung genommen werden kann.		$W(123.88 \le \mu \le 125.28) = 0.95$
Stetige Verteilungen		Exponentialverteilung	Anwendungen:
0	überabzählbar. Das heisst, sie beinhalten so viele Werte, dass		- Zeitspanne zwischen zwei Anrufen in einer
diese nicht einfach gezähl	t werden konnen.	—	Telefonzentrale
Normalverteilung	1 1 (x-4)2		- Dauer eines Telefongesprächs.
	$f(x) = \frac{1}{e^{-\frac{1}{2} \cdot (\frac{x-\mu}{\sigma})^2}}$		- Lebensdauer eines Geräts, wenn Defekte durch äussere
	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot (\frac{x-\mu}{\sigma})^2}$		Einflüsse und nicht durch Verschleiß verursacht werden.
Standardnormalverteilu	Die Standardnormalverteilung ist der einfachste Fall der		Wahrscheinlichkeitsdichte: λ = Durchschn. Eintritt
ng	Normalverteilung, wenn der Mittelwert = 0 und die Varianz = 1		$f(t) = \lambda * e^{-\lambda t}$
$\mu = 0, \ \sigma = 1$	ist.		Verteilungsfunktion: (entspricht der aufsummierten Wahrsch.)
$\mu = 0, \ 0 = 1$	1 12		$F(t) = 1 - e^{-\lambda t}$
	$f(x) = \phi = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot x^2}$		Erwartungswert Varianz
	$\sqrt{2\pi}$		
	v = <i>n</i>		$E(x) = \frac{1}{\lambda^2} \qquad VAR(x) = \frac{1}{\lambda^2}$
Z-Wert berechnen			Ein Geschäft wird täglich zwischen 10.00 und 11.00 Uhr von
7-44CLT DELECTION	$Z = \frac{X - \mu}{}$		durchschn. 3,5 Kunden besucht. Wie gross ist die
	$Z = \frac{1}{2}$		Wahrscheinlichkeit, dass der Abstand zwischen dem Eintreffen
	σ		zweier Kunden höchstens 0.2 Stunden beträgt?
	Kleiner: Z Wert direkt ablesen	—	$F_E(0,2 3,5) = 1 - e^{-3,5*0,2} = 0,503$
	Grösser: 1 – Z Wert aus der Tabelle	Matheall Manhathan	
	Beidseitig: Min/Max Z-Werte herauslesen und Differenz bilden	Weibull Verteilung	Beschreibt die Lebensdauer von Geräten oder Materialen mit Abnutzungserscheinung
	In einer Frabrik wird Zucker abgefüllt. Der Mindestinhalt jeder Tüte soll 1000g beinhalten. Gegeben: μ=1002g, σ=1,5g	Diskrete Verteilungen	Abhutzungserscheihung
	Wie hoch ist die Wahrscheinlichkeit, dass eine Tüte das	Bernoulli Experiment	Ist ein Zufallsexperiment mit genau zwei möglichen Ergebnissen
	Sollgewicht unterschreitet?	Dernoum Experiment	(Treffer oder Niete).
	$z = \frac{1000 - 1002}{1.5} = -1,33 \rightarrow \text{Tabelle} \rightarrow 0.0918 \rightarrow \underline{9.18\%}$	Bernoulli Kette	/ \
Chi Owadash Vantailwa		(binomial Verteilt)	$P(Ereignis) = \binom{n}{k} \cdot p^k \cdot q^{n-k}$
Chi-Quadrat-Verteilung (Varianz!)	Voraussetzungen - Zufallsvariablen sind unabhängig und normalverteilt	-	(k)
(Varianzi)	Wird aus der Normalverteilung abgeleitet		Bsp: Wie gross ist die Wahrscheinlichkeit mit 5 Würfel, 2x eine
	Anwendung:		Sechs zu würfeln
	Schätzung von Verteilungsparametern (z.B. Varianz)		n = 5
			k = 2 p = 1/6
	$\chi_n^2 = Z_1^2 + \ldots + Z_n^2$		q = 5/6
	Erwartungswert Varianz		
			$\binom{5}{2} (\frac{1}{6}^2)(1 - \frac{1}{6})^{5-2} = 0.161 = 16\%$
	$\mathbf{E}(\mathbf{n}) = \mathbf{n}$		$(2)(\frac{6}{6})(1-\frac{6}{6}) = 0.101 = 10\%$
T-Verteilung	Voraussetzungen		20% der von einer Maschine produzierten Bolzen sind
	Freiheitsgrade: k=n-1 Das Füllgewicht von Leberwürsten ist normalverteilt. Das Soll		unbrauchbar. Wie hoch ist die Wahrscheinlichkeit, dass von 4
	Mindestgewicht ist 125g. Aus den täglich produzierten 600		zufällig ausgewählten Bolzen höchstens zwei unbrauchbar sind?
	Würsten werden 26 gewogen:		→ Genau zwei Möglichiche Ausgänge: defekt / i.O
	128,4 123,8 123,5 126,9 125,5 123,1 124,9		3
	123,1 126,6 121,9 125,3 123,4 122,1 124,0		$P(h\"{o}chstens\ 2) = \sum_{x=0}^{2} {4 \choose x} * 0.2^{x} * 0.8^{4-x}$
	123,3 123,2 123,2 124,0 122,8 127,1 125,7		
	127,1 125,8 123,7 125,9 124,9	Dinamiah sartaila sa	= Summe aus P(0 unbrauchbar) + P(1 unbr.) + P(2 unbr.)
	Erstellen Sie das zentrale 95% Konfidenzintervall. 1. berechnen der Stichprobenparameter:	Binomialverteilung	Voraussetzungen Die Experimente sind voneinander unabhängig
	i. berechnen der Stichprobenparameter: $\bar{x}=124.58g, s=1.72g$		Es gibt nur zwei Ausgangsmöglichkeiten
	2. Festlegen der Verteilungsform von \overline{x}		- Anzahl der Versuche ist fix
	X normalverteilt und σ² unbekannt →t-verteilt mit k=n-1		- Das Experiment wird immer identisch durchgeführt
	Freiheitsgraden		Mit grösserem n, nähert sich die Binomialverteilung,
	3. Festlegen der Standardabweichung von x̄		ähnlich der Dichtefunktion einer Normalverteilung an
	Varianz unbekannt, ohne Zurücklegen n/N<0.05 $\rightarrow \hat{\sigma} =$		Wahrscheinlichkeitsfunktion (Bernoulli)
	, , , , , , , , , , , , , , , , , , , ,		$n \in \mathbb{R}$ $n \in \mathbb{R}$
	$\frac{s}{\sqrt{n}} = 0.34g$		$P(Ereignis) = \binom{n}{k} \cdot p^k \cdot q^{n-k}$
	4. Festlegen von t		Erwartungswert μ (relativ zum Nullpunkt)
		11	Li wai tangawei t μ (i ciativ zum Numpunkt)
	1-α =0.95 (zweiseitiges Intervall!) und k=25 → Tabelle: t=2.060		$E(X) = n \cdot p$

$\sigma^2 = n \cdot p \cdot (1 - p)$ Gegen eine Krankheit wurde ein neues Medikament entwickelt. Die Heilungschance liegt bei 90%. Wie gross ist die Wahrscheinlichkeit, dass bei 5 zufällig gewählten Patienten mindestens 4 geheilt werden? $P(4) = {5 \choose 4} * 0.9^4 * (1 - 0.9)^{5-4} = 0.328$ P(5) = 0.590 P(4+5) = 0.9185Poissonverteilung Voraussetzungen Wie hoch ist die Wahrscheinlichkeit, dass das Ereignis in einem Intervall genau oder höchstens x-Mal eintritt, wenn bekannt ist, dass in diesem Intervall das Ereignis im Mittel μ -Mal auftritt. Hängt stark vom Mittelwert (μ) ab typische Beispiele: Druckfehler/Seite, Arbeitsunfälle/Tag Die Ereignisse treten unabhängig voneinander auf. (z.B Telefonanrufe) Seltene Ereignisse häufen sich (z.B. Bitfehler bei Flugzeugabstürzen) → Verteilung der seltenen Ereignisse Ankunftsrate: Eintreffende Ereignisse / Zeit z.B. 24 Kunden in 8 Stunden → 24/8=3 BEACHTE: Die Werte in der Verteilung Tabelle sind auf kumuliert → Ist ein einzelner Wert gesucht, muss die Differenz zum vorherigen Wert berechnet werden vorherige Tabellenwert abgezogen oder einfach die Formel verwendet werden. Wahrscheinlichkeitsfunktion Erwartungswert: $E(X) = \sigma^2 = \mu$ Durchschnittlich 1 Telefonanruf/Minute. Wie gross ist die Wahrscheinlichkeit, dass 2 Anrufe pro Minute eingehen? $f_P(2|1) = \frac{1^2 * e^{-1}}{2!} = 0.18$ Achtung: Falls bis zu 2 Anrufe gefragt sind, müssen diese auf kumuliert werden. $\sum_{k=0}^{2} \frac{1^k * e^{-1}}{k!}$ Bei mehr als 2: Rechteckverteilung Alle Realisationen in einem bestimmten Intervall [a, b] sind

gleich wahrscheinlich