Question 1: Short Questions

- (a) We use a support vector machine (SVM) with a soft-margin SVM to perform a classification task. Which of the following types of samples will have zero slack variables ξ_i ?
 - (i) All support vectors
 - (ii) All correctly classified samples
 - (iii) All misclassified samples
 - (iv) All samples lying within the margin
- (b) Explain in which of the following cases the risk of overfitting a network decreases.
 - (i) Regularizing the weights
 - (ii) Increasing the number of the hidden layers
 - (iii) Using dropout to train a deep neural network
 - (iv) Getting additional training data that are very similar to the training data that have been seen before
- (c) You have a neural network with two inputs $x_1 = 2$, $x_2 = 2$, connected to the output with two weights $w_1 = 0.5$ and $w_2 = -0.2$. The bias term of the input is $b_1 = 0.1$. You use three different activation functions and get the following output for each function $\{0.7, 0.67, 1\}$. Which type of activation function was used for each of the three outputs?
 - (i) (linear, indicator/step, sigmoid)
 - (ii) (ReLU, sigmoid, indicator/step)
 - (iii) (ReLU, indicator/step, sigmoid)
 - (iv) (indicator/step, sigmoid, linear)
- (d) Please select the correct answer(s).
 - (i) It is possible to successfully train a network by initializing all the weights to zero
 - (ii) It is not possible to successfully train a network by initializing all the weights to zero
 - (iii) It is possible to successfully train a network by initializing all the biases to zero
- (e) The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number of connections from the input layer to the hidden layer is:
 - (i) 50
 - (ii) 10

- (iii) 5
- (iv) 55
- (f) We perform a convolution operation to an input image of size 28×28 using a kernel/filter of size 7×7 with a stride of 1. What will be the size of the resulting convoluted matrix if we assume that there is not zero-padding at the boundaries of the image?
 - (i) 22×22
 - (ii) 28×28
 - (iii) 21×21
 - (iv) 7×7
- (g) Which of following activation function is the most suitable at output layer of a neural network to classify an image in a binary classification task?
 - (i) Sigmoid
 - (ii) ReLU
 - (iii) Linear
 - (iv) None of the above
- (h) For which type of activation function in the nodes of the hidden layers would Architecture 1 be equivalent to Architecture 2?

2.

- (i) Sigmoid
- (ii) Hyperbolic tangent
- (iii) Linear
- (iv) ReLU

Question 2: Maximum likelihood estimation

The voters in a given town arrive at the place of voting according to a Poisson process of rate λ voters per hour, where $\lambda = 1 - (\theta t - 1)^2$ and $t = 1, \ldots, 12$. Using the Poisson distribution, we can express the probability of x voters coming to the poll within each hour using the following equation $f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$. We further assume N samples $\mathcal{X} = \{(t_1, x_1), \ldots, (t_N, x_N) \text{ that represented the number of voters } x_n \text{ that came to the poll at time } t_n$.

- (a) Compute the likelihood of sample (t_n, x_n) .
- (b) Compute the likelihood of all samples $l(\mathcal{X})$.

(c) Compute the log-likelihood of all samples $logl(\mathcal{X})$.

(d) Describe how you would find the maximum likelihood estimate of θ given the samples \mathcal{X} .