A_{∞} 圏のホモトピー論

よの

2023年11月4日

概要

m dg 圏のホモトピー論と A_∞ 圏のホモトピー論が 1 圏として圏同値であるだけでなく, ∞ 圏として圏同値であることを示す。本章は [COS20] と [Pas23] のまとめである。m dg 圏のなす圏に入るモデル構造についてもまとめる。(執筆中)

 \mathbb{K} を体とし、圏は small かつ \mathbb{K} 線形であるとする.

目次

1	A_∞ 囱の小七トヒー調と \log 囱の小七トヒー調	1
2	相対圏の Dwyer-Kan 対応	2
3	モデル構造	3
4	dg 圏の圏に入るモデル構造	5

1 A_{∞} 圏のホモトピー論と dg 圏のホモトピー論

記法 1.1. 以下のような記号を用いる.

- 箙と箙の射のなす圏を Qu
- 次数付き箙と次数付き箙の射のなす圏を gQu
- dg 箙と dg 箙の射のなす圏を dgQu
- 恒等射を持たない \deg 圏と恒等射を考えない \deg 関手を $\deg \mathbf{Cat}^n$
- ullet c 恒等射を持つ dg 圏と c 恒等射を保つ dg 関手を $\mathrm{\mathbf{dgCat}}^c$
- s 恒等射を持つ dg 圏と s 恒等射を保つ dg 関手を dgCat
- ullet 恒等射を持たない A_∞ 圏と恒等射を考えない A_∞ 関手のなす圏を $\mathbf{A}_\infty\mathbf{Cat}^n$
- ullet c 恒等射を持つ A_∞ 圏と c 恒等射を保つ A_∞ 関手のなす圏を ${f A}_\infty{f Cat}^c$
- ullet \circ \circ 恒等射を持つ \circ \circ 圏と \circ 恒等射を保つ \circ 関手のなす圏を \circ \circ \circ \circ

 dg 圏は高次のホモトピーが自明な A_{∞} 圏であり、 dg 関手は高次の成分が自明な A_{∞} 関手なので、

埋め込み

$$i: \mathbf{dgCat} \to \mathbf{A}_{\infty}\mathbf{Cat}$$

が存在する.

 A_{∞} 圏 A に対して、バー構成により \deg 余圏 BA が得られ、コバー構成により \deg 圏 $\Omega(BA)$ が得られる。 A_{∞} 関手に対しても同様に \deg 関手が得られる。よって、rectification 関手と呼ばれる関手

$$U: \mathbf{A}_{\infty}\mathbf{Cat} \to \mathbf{dgCat}$$

が存在する.

記法 1.2. \deg 圏と \deg 擬同値のなす圏を $\mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}} \subset \mathbf{dgCat}, A_{\infty}$ 圏と A_{∞} 擬同値のなす圏を $\mathbf{W}_{\mathrm{qeq}}^{A_{\infty}} \subset \mathbf{A}_{\infty}$ Cat と表す.

定理 1.3. 関手 $U: \mathbf{A}_{\infty}\mathbf{Cat} \to \mathbf{dgCat}, i: \mathbf{dgCat} \to \mathbf{A}_{\infty}\mathbf{Cat}$ に対して、次が成立する.

- 1. U は i の左随伴である.
- 2. $\mathbf{A}_{\infty}\mathbf{Cat}$ において $i(\mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})\subset\mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}$ である.
- 3. dgCat において $U(\mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}) \subset \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}}$ である.
- 4. 単位 $\eta: \mathrm{id}_{\mathbf{A}_{\infty}\mathbf{Cat}} o iU$ の成分は $\mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}$ に属する.
- 5. 余単位 $arepsilon: Ui
 ightarrow \mathrm{id}_{\mathbf{dgCat}}$ の成分は $\mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}}$ に属する.

記法 1.4. dgCat の $\mathbf{W}_{\operatorname{qeq}}^{\operatorname{dg}}$ による局所化を $\operatorname{dgCat}[(\mathbf{W}_{\operatorname{qeq}}^{\operatorname{dg}})^{-1}]$, $\mathbf{A}_{\infty}\mathrm{Cat}$ の $\mathbf{W}_{\operatorname{qeq}}^{A_{\infty}}$ による局所化を $\mathbf{A}_{\infty}\mathrm{Cat}[(\mathbf{W}_{\operatorname{qeq}}^{A_{\infty}})^{-1}]$ と表す.それぞれ, dg 圏のホモトピー圏, A_{∞} 圏のホモトピー圏という.

定理 1.5. 随伴 $U \dashv i$ はホモトピー圏の擬圏同値

$$\mathbf{A}_{\infty}\mathbf{Cat}[(\mathbf{W}_{\text{geg}}^{A_{\infty}})^{-1}] \cong \mathbf{dgCat}[(\mathbf{W}_{\text{geg}}^{\text{dg}})^{-1}]$$

を定める.

定理 1.5 は「 A_{∞} 圏のホモトピー論」と「 \deg 圏のホモトピー論」が 1 圏として等しいことを示している。しかし、「 A_{∞} 圏のホモトピー論」と「 \deg 圏のホモトピー論」は $(\infty,1)$ 圏のレベルで等しいのだろうか。これは定理 1.3 から直ちに従うことが分かる。

2 相対圏の Dwyer-Kan 対応

定義 2.1 (相対圏). C を圏とする. W を C の全ての対象 (と恒等射を含む)C の部分圏とする. このとき、組 (C, W) を相対圏 (relative category) といい、W に属する射を弱同値 (weak equivalence) という.

定義 2.2 (相対関手). $(\mathbf{C}_1, \mathbf{W}_1), (\mathbf{C}_2, \mathbf{W}_2)$ を相対圏とする. 関手 $F: \mathbf{C}_1 \to \mathbf{C}_2$ が $F(\mathbf{W}_1) \subset \mathbf{W}_2$ を満たすとき, $F: (\mathbf{C}_1, \mathbf{W}_1) \to (\mathbf{C}_2, \mathbf{W}_2)$ を相対関手 (relative functor) という.

定義 2.3 (相対圏の Dwyer-Kan 随伴). $(C_1, W_1), (C_2, W_2)$ を相対圏, $L: C_1 \to C_2, R: C_2 \to C_1$ を相対関手とする. 次の条件を満たすとき、組 $(L, R, \eta, \varepsilon)$ を相対圏の Dwyer-Kan 随伴 (Dwyer-Kan adjuction) という.

- 1. 任意の $X \in \mathbb{C}_1$ に対して、単位の成分 $\eta_X : X \to RLX$ は \mathbf{W}_1 に属する.
- 2. 任意の $Y \in \mathbb{C}_2$ に対して、余単位の成分 $\varepsilon_X : LRY \to Y$ は \mathbb{W}_2 に属する.

注意 ${f 2.4.}~i=1,2$ に対して, $C_i=W_i$ であるとき、相対圏の Dwyer-Kan 随伴は通常の随伴である. W_i が C_i における同型射を全て含むとき、相対圏の Dwyer-Kan 随伴は随伴同値である.

定理 1.3 は相対圏の Dwyer-Kan 随伴を用いて次のように表される.

定理 2.5. $(\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}), (\mathbf{dgCat}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})$ は相対圏である. $U: \mathbf{A}_{\infty}\mathbf{Cat} \rightarrow \mathbf{dgCat}, i: \mathbf{dgCat} \rightarrow \mathbf{A}_{\infty}\mathbf{Cat}$ に対して, $(U, i, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})$ は相対圏の Dwyer-Kan 随伴である.

相対圏 (C, \mathbf{W}) に対して、局所化により、圏 $C[\mathbf{W}^{-1}]$ を得る.

定義 2.6 (hammock 局所化). 相対圏 (C, W) に対して、sSet 豊穣圏 $L^H(C, W)$ を hammock 局所化を用いて構成する.

3 モデル構造

記法 3.1. 相対圏と相対関手のなす圏を RelCat, 単体的空間のなす圏を sSpace と表す.

RelCat には Barwick-Kan モデル構造, sSpace には Rezk 完備 Segal 空間モデル構造を入れる.

定理 3.2. RelCat と sSpace には次のような関係がある.

- 1. 関手 K_{ξ} : sSpace \to RelCat $\succeq N_{\xi}$: RelCat \to sSpace が存在して, K_{ξ} は N_{ξ} の左随伴である. また, この随伴は sSpace \succeq RelCat の Quillen 同値である.
- 2. RelCat の射 F が弱同値であることと, $N_{\xi}(F)$ が \mathbf{sSpace} の弱同値であることは同値である.
- 3. RelCat の射 F が弱同値であることと, $L^H(F)$ が sSet 豊穣圏の Dwyer-Kan 同値であることは同値である.

系 3.3. 相対関手 $U: \mathbf{A}_{\infty}\mathbf{Cat} \to \mathbf{dgCat}, i: \mathbf{dgCat} \to \mathbf{A}_{\infty}\mathbf{Cat}$ は RelCat の弱同値である。また、 $N_{\xi}(U)$ と $N_{\xi}(i)$ は sSpace 上の弱同値である。

RelCat におけるファイブラント対象を考える.

定理 3.4. $(dgCat, W_{qeq}^{dg})$ は RelCat におけるファイブラント対象である.

注意 3.5. $(\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}})$ が RelCat におけるファイブラント対象であるかは分かっていない. RelCat におけるファイブラント置換 $j_{A_{\infty}}: (\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}}) o (\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}})^{\mathrm{fib}}$ を固定す

る. この対応から、射 $U^{\mathrm{fib}}: (\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}})^{\mathrm{fib}} \to (\mathbf{dgCat}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}}) \, \succeq \, i^{\mathrm{fib}}: (\mathbf{dgCat}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}}) \to (\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}})^{\mathrm{fib}}$ が存在して、次の図式を可換にする.

ここで、 $U^{ ext{fib}}$ と $i^{ ext{fib}}$ は \mathbf{RelCat} におけるファイブラント対象の弱同値である.

右 Quillen 関手はファイブラント対象と、ファイブラント対象の弱同値を保つ、

系 3.6. $N_{\xi}(\mathbf{A}_{\infty}\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_{\infty}})$ と $N_{\xi}(\mathbf{dgCat}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})$ は完備 Segal 空間である. また, $N_{\xi}(U^{\mathrm{fib}})$ と $N_{\xi}(i^{\mathrm{fib}})$ はそれらの間の弱同値である.

sSet には Joyal モデル構造を入れる. Joyal-Tierney の定理を紹介する.

定理 3.7. 関手 $p_1^*: \mathbf{sSet} \to \mathbf{sSpace} \ \succeq i_1^*: \mathbf{sSpace} \to \mathbf{sSet}$ が存在して, p_1^* は i_1^* の左随伴である. また, この随伴は $\mathbf{sSet} \ \succeq \mathbf{sSpace}$ の Quillen 同値である.

今までの議論で用いた随伴関係をまとめる. (上が左随伴,下が右随伴)

$$ext{sSet} \xrightarrow[i_1^*]{p_1^*} ext{sSpace} \xrightarrow[K_{\xi}]{K_{\xi}} ext{RelCat}$$

右 Quillen 関手はファイブラント対象と、ファイブラント対象の弱同値を保つことを再び用いる.

系 3.8. $i_1^*N_\xi(\mathbf{A}_\infty\mathbf{Cat},\mathbf{W}_\mathrm{qeq}^{A_\infty})$ と $i_1^*N_\xi(\mathbf{dgCat},\mathbf{W}_\mathrm{qeq}^\mathrm{dg})$ は擬圏である。また、 $i_1^*N_\xi(U^\mathrm{fib})$ と $i_1^*N_\xi(i^\mathrm{fib})$ はそれらの間の弱同値である。

注意 3.9. 系 3.8 は定理 1.5 を擬圏まで拡張したものである。実際, $i_1^*N_\xi(\mathbf{A}_\infty\mathbf{Cat}, \mathbf{W}_{\mathrm{qeq}}^{A_\infty})$ のホモトピー圏は $\mathbf{A}_\infty\mathbf{Cat}[(\mathbf{W}_{\mathrm{qeq}}^{A_\infty})^{-1}]$ であり, $i_1^*N_\xi(\mathbf{dgCat}, \mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})$ のホモトピー圏は $\mathbf{dgCat}[(\mathbf{W}_{\mathrm{qeq}}^{\mathrm{dg}})^{-1}]$ である。つまり, 系 3.8 においてホモトピー圏をとると、定理 1.5 が導かれる。

sSet 豊穣圏 sSet-enriched には Bergner モデル構造を入れる.

 $L^H(\mathbf{C},\mathbf{W})$ は sSet-enriched におけるファイブラント対象ではないので、ファイブラント置換 $(L^H(\mathbf{C},\mathbf{W}))^{\mathrm{fib}}$ をとる必要がある.

定理 3.10. 関手 $F: \mathbf{sSet} \to \mathbf{sSet\text{-enriched}} \succeq \text{homotopy coherence nerve } N_c: \mathbf{sSet\text{-enriched}} \to \mathbf{sSet}$ が存在して, F は N_c の左随伴である. また, この随伴は $\mathbf{sSet} \succeq \mathbf{sSet\text{-enriched}}$ の Quillen 同

値である.

右 Quillen 関手はファイブラント対象と、ファイブラント対象の弱同値を保つことを再び用いる.

系 3.11. $N_c((L^H(\mathbf{C}, \mathbf{W}))^{\text{fib}})$ は擬圏である.

今までの議論で用いた随伴関係をまとめる. (上が左随伴, 下が右随伴)

定理 3.12. $i_1^*N_{\xi}(\mathbf{C}, \mathbf{W})$ と $N_c((L^H(\mathbf{C}, \mathbf{W}))^{\mathrm{fib}})$ は $(\infty, 1)$ 圏同値である.

系 3.13. $N_c((L^H(\mathbf{A}_\infty\mathbf{Cat},\mathbf{W}_{\mathrm{qeg}}^{A_\infty}))^{\mathrm{fib}})$ と $N_c((L^H(\mathbf{dgCat},\mathbf{W}_{\mathrm{qeg}}^{\mathrm{dg}}))^{\mathrm{fib}})$ は $(\infty,1)$ 圏同値である.

4 dg 圏の圏に入るモデル構造

 \mathcal{C},\mathcal{D} を dg 圏とする. dg 圏の圏 dgCat に入る 2 種類の組み合わせ論的モデル構造を説明する. (途中)

定義 4.1 (DK 同値). \deg 関手 $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ が次の条件を満たすとき、 \mathcal{F} を DK 同値 (Dwyer-Kan equivalence) という.

- 任意の $x_0, x_1 \in \mathcal{C}$ に対して、複体の射 $\operatorname{Hom}_{\mathcal{C}}(x_0, x_1) \to \operatorname{Hom}_{\mathcal{D}}(\mathcal{F}x_0, \mathcal{F}x_1)$ は擬同型
- \bullet $H^0(\mathcal{F}):H^0(\mathcal{C})\to H^0(\mathcal{D})$ は通常の圏同値

定義 4.2 (DK ファイブレーション). dg 関手 $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ が次の条件を満たすとき, \mathcal{F} を DK ファイブレーション (Dwyer-Kan fibration) という.

- 任意の $x_0,x_1\in\mathcal{C}$ に対して、複体の射 $\mathrm{Hom}_{\mathcal{C}}(x_0,x_1)\to\mathrm{Hom}_{\mathcal{D}}(\mathcal{F}x_0,\mathcal{F}x_1)$ は複体のファイブレーション (つまり、任意の次数において全射)
- 任意の同型射 $f' \in \operatorname{Hom}_{H^0(\mathcal{D})}(x_0', x_1')$ と $\mathcal{F}x_1 = x_1'$ を満たす $x_1 \in H^0(\mathcal{C})$ に対して、ある同型 射 $u \in \operatorname{Hom}_{H^0(\mathcal{C})}(x_0, x_1)$ が存在して、 $H^0(\mathcal{F})u = u'$ を満たす.

定義 4.3 (Dwyer-Kan モデル構造). dgCat に次のモデル構造を定義する.

- 弱同値は DK 同値
- ファイブレーションは DK ファイブレーション

このモデル構造を dgCat 上の DK モデル構造 (Dwyer-Kan モデル構造) という.

注意 4.4. DK モデル構造を入れた dgCat において、任意の $C \in dgCat$ はファイブラントである.

 \mathcal{C} 上の右加群のなす圏を $\hat{\mathcal{C}}:=\mathbf{Fun}_{\mathrm{dg}}(\mathcal{C}^{\mathrm{op}},\mathbf{Ck}(\mathbb{K}))$ と表す. $\mathbf{Ck}(\mathbb{K})$ には組み合わせ論的モデル構造が入る. モデル圏論の一般論により, $\hat{\mathcal{C}}$ にも組み合わせ論的モデル構造が入る.

定義 4.5 (\hat{C} のモデル構造). \hat{C} に次のモデル構造を定義する.

- 弱同値は Ck(账) における pointwise の弱同値
- $\mathsf{Jr}\mathsf{T}\mathsf{J}\mathsf{V}\mathsf{-}\mathsf{9}\mathsf{=}\mathsf{2}\mathsf{U}\mathsf{C}\mathsf{k}(\mathbb{K})$ における pointwise のファイブレーション

注意 4.6. 表現可能な右加群はコファイブラントかつコンパクトである.

注意 4.7. ファイブラントかつコファイブラントな右加群のなす圏を $\hat{\mathcal{C}}^{cf}$, \mathcal{C} の導来圏を $D(\mathcal{C})$ と表す. このとき, 三角圏同値 $H^0(\hat{\mathcal{C}}^{cf})\cong D(\mathcal{C})$ が成立する. よって, $\hat{\mathcal{C}}^{cf}$ は $D(\mathcal{C})$ の dg 増強である.

定義 4.8 (DK 埋め込み). \deg 関手 $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ が次の条件を満たすとき、 \mathcal{F} を DK 埋め込み (Dwyer-Kan embedding) という.

• 任意の $x_0, x_1 \in \mathcal{C}$ に対して、複体の射 $\operatorname{Hom}_{\mathcal{C}}(x_0, x_1) \to \operatorname{Hom}_{\mathcal{D}}(\mathcal{F}x_0, \mathcal{F}x_1)$ は擬同型

定理 4.9. 任意の dg 圏は前三角的 dg 圏に DK 埋め込みすることができる.

Proof. 任意の \deg 圏 $\mathcal C$ に対して、 $\hat{\mathcal C}$ は前三角的である。U を集合とする。 $\mathbf{Ck}(\mathbb K)$ の台集合 U に値をとる右加群 (関手) のなす $\hat{\mathcal C}$ の充満部分圏を $U\hat{\mathcal C}$ とする。 $U\hat{\mathcal C}$ は \deg 圏である。また、U が十分大きい基数の冪集合であるとき、 $U\hat{\mathcal C}$ のモデル構造は $\mathcal C$ と同じものをとれる。 *1 $U\hat{\mathcal C}$ のファイブラントかつコファイブラント対象のなす充満部分圏を $\tilde{\mathcal C}$ とする。 $\tilde{\mathcal C}$ は $\mathcal C$ と DK 埋め込みな前三角的 dg 圏である。

参考文献

- [COS20] Alberto Canonaco, Mattia Ornaghi, and Paolo Stellari. Localizations of the category of a_{∞} categories and internal homs, 2020.
- [Pas23] James Pascaleff. Remarks on the equivalence between differential graded categories and a-infinity categories, 2023.

^{*1} small object argument の話で必要となる仮定だと思われる.