EJERCICIOS DE PREPARACIÓN PARA EL EXAMEN DEL CUARTO BIMESTRE DE MATEMATICAS 3

1 (Contesta las siguientes preguntas:
a)	¿Qué afirmación hace Tales en su Teorema que lleva su nombre?
b)	Para que se utiliza el Teorema de Tales
c)	Para que se utiliza el Recíproco del Teorema de Tales
d)	¿Qué pasos se siguen para dividir un segmento en 2 partes a una cierta razón por medio del Teorema de Tales?
e)	¿Qué es homotecia?
f)	¿Cuándo se presenta homotecia directa y cuándo homotecia inversa?
g)	¿Cómo se calcula la razón de homotecia?
h)	¿Qué trazos se necesitan hacer en figuras homotéticas para localizar el centro de homotecia?
i)	En una homotecia compuesta, donde de una figura se obtiene una copia y de ésta otra copia, ¿cómo se relacionan las razones de la figura original con la primera copia k, la razón de la primera con la segunda "k ₁ " y la razón de la figura original y la segunda copia "k ₂ "?
j)	Menciona el nombre de 3 funciones polinómicas:
que	Escribe la expresión algebraica general que representa cada una de las siguientes funciones polinómicas y el nombre e recibe su gráfica:
	ción lineal:
fur	ción cuadrática
fur	nción cúbica
l)	Tipo de función (Lineal. Cuadrática, cúbica o inversa) donde el valor de "y" es indeterminado para un valor x = 0
m).	Escribe 6 ejemplos de expresiones algebraicas que sean funciones no lineales:

n).- Escribe en la línea el significado de la posición de la parábola en el plano cartesiano de cada letra o signo indicado en la siguiente función cuadrática, expresada algebraicamente:

$$y = \frac{1}{2} a (x + c)^2 + b^4$$

- o).-¿En la gráfica de una parábola, en qué puntos de ésta se localizan las soluciones de la ecuación cuadrática que la representa, para y =0?
- _____
- p).- ¿Qué es una sucesión numérica o figurativa?______
- q).- ¿Para qué se pueden utilizar las sucesiones numéricas? ______
- r).- ¿En qué consiste el método de diferencias aplicado a una sucesión? ______
- II- De acuerdo al Teorema de Tales escribe la proporción equivalente a cada una de las sig. proporciones:

$$\frac{\overline{AB}}{\overline{AD}} =$$

$$\frac{BD}{\overline{CE}} =$$

$$\frac{\overline{AD}}{\overline{AE}} =$$

$$\frac{\overline{AB}}{\overline{AC}} =$$

$$\frac{\overline{AC}}{\overline{AE}} =$$

$$\frac{\overline{AC}}{\overline{BC}} =$$

$$\frac{\overline{BC}}{\overline{DF}} =$$

$$\frac{\overline{BD}}{\overline{AD}} =$$

$$\frac{\overline{AD}}{\overline{DE}} =$$

III.- Halla la longitud del segmento(s) que se pide en cada figura (las *rectas negritas* son paralelas):

Proporciones

Proporciones:

x =

Proporciones

 $\overline{CE} = \underline{\hspace{1cm}}$

x = _____

IV.- Completa cada fila de la tabla sabiendo que r y r' son paralelas

a	ъ	c	d	e	f
7	4	5	12		
8	3	б		18	
	2		12	20	13
7		б		21	14

V.- Utiliza el recíproco de Tales para determinar el paralelismo que se te pide:

Proporciones:

¿p y q son //? _____ ¿p y q son //? ____ ¿q y r son //? ____ ¿p y r son //? ____

VI.- Resuelve los siguientes problemas:

A.- Calcula la altura de una réplica de la torre Eiffel, si la persona tiene 1.78m de altura.

Operaciones:

Resultado	
-----------	--

B.- Calcular la longitud de las aristas que van hacia el ápice de la siguiente pirámide cuadrangular:

Operaciones

Resultado		

C.-La siguiente gráfica muestra 3 lotes que colindan uno a uno. Los límites laterales son segmentos perpendiculares a la calle 8 y el frente total de los 3 lotes en la calle 9 mide 120m. Determina la longitud de cada uno de los lotes de la calle 9.

Operaciones

Resultados_	

VII.-Escribe en la línea el tipo de homotecia que se presenta en cada par de figuras homotéticas:

5

VIII.-Calcula lo que se te pide de cada par de figuras homotéticas:

Localiza el Centro de Homotecia "O"

Mide y calcula K = _____

IX.- Escribe en la línea el tipo de función (Lineal, Cuadrática, Inversa) que representa cada ecuación

A)
$$x + y = 4$$

B)
$$y = \frac{x}{3}$$

C)
$$xy = 5$$

C)
$$xy = 5$$
 D) $y = x^2 + 3x + 2$

X.- Enseguida se muestran expresiones algebraicas, gráficas y nombres de gráficas. Identifica cada una como funciones, escribiendo en el paréntesis: "L" si la función representada es lineal, "CD" si es cuadrática, "CB" si es Cúbica e "I" si es inversa.

()
$$y = x^3 - 6$$
 () $y = x/4$

()

()
$$y = 2x + 3$$
 () $y = -1/x$

) Parábola

) Recta () Hipérbola ()
$$y = 3x^2 + 1$$
 () $y = 2x^3 + 2$

)
$$y = 2x^3 + 2$$

XI.-Representa algebraicamente y graficamente las funciones que se derivan de los siguientes planteamientos: A.- La longitud del lado desigual (y) de un triángulo isósceles, cuando tenemos un hilo de 10 cm para formar una infinidad de triángulos isósceles. (El perímetro es la suma de sus lados).

Long. del lado	Long. Lado
igual X	desigual Y
0	
1	
2	
4	
6	

B.- La altura de un triángulo de 14 cm² de área

x Base(cm ²)	y Altura(cm)
0	
2	
4	
10	

C.-La velocidad de un automóvil que viaja entre 2 ciudades que distan 225 Kms, si d = vt

X (Tiempo)	Υ
	(velocidad)
0	
1	
3	
5	
7	
8	

y = _____

D.- El volumen de un cono, cuya altura es de 24 cm.

17	=	$\pi r^2 h$		
V		3		

		77 7						
600-	у (Voi:	umer	1)				
550-		:						
500-								
450-								
400-								
350-								
300-								
250-								
200-								
150-								
100-								
50-								
						x	(rac	lio)
1.	0	1	2	3	4	5	6	7

y =	

Y (cm³) volumen)

XI.- De las siguientes parábolas escribe las soluciones de la ecuación (si hay) para y = 0

XII.- Relaciona la expresión algebraica con su gráfica, escribe en la línea el número de la gráfica que le corresponde a la expresión:

()
$$y = -x^3 + 3$$

)
$$y = -x^3 + 3$$
 () $y = 0.1x^2 - 4$

$$() v = x^2$$

()
$$y = x^2$$
 () $y = 5/4 x^2$

()
$$v = 1/x - 2$$

()
$$y = 1/x - 2$$
 () $y = -3x^3 + 3$

()
$$y = -x^2/3$$
 () $y = x^2/2$

()
$$y = x^2/2$$

XI.- Escribe en el paréntesis la letra que corresponda a la expresión algebraica de la gráfica:

A)
$$y = (x + 1)^2 - 3$$

B)
$$y = x^2 + 2$$

C)
$$y = 3x - 1$$
 D) $y = x^3$

D)
$$y = x^3$$

E)
$$y = (x + 1)^2 + 1$$
 F) $y = (x + 1)^2$ G) $y = -2x^2$ H) $y = -x^2 + 3$

F)
$$y = (x + 1)^2$$

G)
$$y = -2x^2$$

H)
$$y = -x^2 + 3$$

I)
$$y = x^2 - 1$$

$$J) y = 1/x$$

K)
$$y = -x^2 +$$

K)
$$y = -x^2 + 1$$
 L) $y = 2x^3 + 1$

M)
$$y = x^3 + 2$$

O)
$$y = (x + 1)^2 - 3$$

P)
$$v = -(x - 1)^2 + 1$$

8.- (_____)

XII.- Escribe la expresión algebraica como función, que representa cada gráfica:

1
2
3
4

6.-

7.-____

XIII.-Tabula, grafica y contesta las preguntas de los siguientes problemas de caída libre, tiro parabólico y tiro vertical como aplicación de la parábola.

A).- Antonio lanza un llavero a una velocidad de 12m/s, hacia arriba verticalmente desde el piso, se lo avienta a Fátima que se encuentra en la azotea de un edificio, a 8.5m de altura. Haz una gráfica que describa el movimiento del llavero, si la altura se determina con la siguiente fórmula: $h = -4.9t^2 + 12t$, donde h es la altura en metros y t es el tiempo (seg).

Tiempo X	Altura Y
0	
0.5	
1	
1.5	
2	
2.5	

- b).- Si Fátima no pudo atrapar las llaves ¿ en cuánto tiempo llegan a la misma altura en que se lanzaron?
- c).- ¿En qué tiempo llegan las llaves a su máxima altura?

d).- Si Fátima no atrapa las llaves y éstas caen en una zanja de 1 m de profundidad, calcula en que tiempo llegan al fondo de la zanja (resuelve la ecuación con la fórmula general).

B.- Desde un trampolín que está a 4m de altura por encima de la sup. de la tierra. Se deja caer un balín de plomo, el cual cae en un pozo. Grafica la trayectoria del balín con la función: $h = -4.9t^2 + 4$ y contesta las preguntas

x(seg)	y(m)
Tiempo	Altura
0	
0.25	
0.5	
0.75	
1	
1	

- a).- Más o menos en que tiempo el balín cayó a una altura de 2m
- b).- Si el pozo tenía una profundidad de 3 m ¿en cuánto tiempo cayó el balín al fondo? (Resuelve la ecuación)

C.- Carlos y Manuel juegan competencias con sus proyectiles haber quien lo lanza más alto y llega más lejos. La trayectoria del proyectil de Carlos tiene una función $y = -0.2x^2 + 10x + 1$ y la del proyectil de Manuel $y = -0.3x^2 + 13x + 1$. Donde "y" es la altura del proyectil y "x" es la distancia horizontal.

Distancia Horizontal (m)	Altura del proyectil de CarloS (m)	Altura del proyectil de Manuel (m)
Х	У	У
0		
10		
20		
30		
40		
50		

Nota: Traza las graficas de diferentes colores para que se distingan

a) ¿Cuál proyectil alcanzó mayor altura	?
---	---

b) ¿Cuál proyectil llegó más lejos?
c) Si los 2 proyectiles se hubieran lanzado al mismo tiempo en el mismo punto ¿a qué altura y a qué distancia de donde los lanzaron chocarían los proyectiles?
d) Comprueba con la resolución de cada ecuación, la distancia x cuando cada proyectil toca tierra, suponiendo que los proyectiles se lanzaron en un terreno completamente plano.
XIV Determina la expresión algebraica de la regla de las siguientes sucesiones, utilizando el método de diferencias:
11, 35, 75, 131, 203, Regla 0, -7, -20, -39, -64, Regla
8, 26, 54, 92, 140, Regla8, 8, 38, 82, 140, Regla

XV.- ¿De cuántos cuadritos o puntitos consta la figura que ocupa la posición 25 y en qué lugar se posiciona la figura con los cuadritos o puntitos que se indica en cada una de las siguientes sucesiones?

		Regla
×		Término en la posición 25 Lugar que ocupa la figura con 3376 cuadritos
• • •		Regla Término en la posición 25
		Regla Término en la posición 25 Lugar que ocupa la figura con 19041 puntos