

Author: Vivek Kulkarni (vivek_kulkarni@yahoo.com)

Solution for

Model Question Paper 3

(From Appendix B)

Q.1 a) NFA that accepts any positive number of occurrences of various strings from the following language L given as,

 $L = \{x \mid x \text{ is made up of } \{a, b\} \text{ and } x \text{ ends with "aab"}\}\$

	a	b
1	2	1
2	3	1
3	3	4
4	2	1

Q.1 b) Refer to the example 2.30 from the book.

Q.1 c) Let us first find out the \in -closure of each of the states.

$$\in$$
-closure (A) = {A, B, C}

$$\in$$
-closure (B) = {B}

$$\in$$
-closure (C) = {C}

$$\in$$
-closure (D) = {D}

D is the only final state even for the resultant NFA without \in -moves as only D is at zero distance from itself.

The state transition function, δ' , for the required NFA without \in -moves is given as:

$$\delta'(q, a) = \in \text{-closure} (\delta(\hat{\delta}(q, \in), a))$$

where,
$$\hat{\delta}(q, \in) = \in \text{-closure}(q)$$

For example,

$$\delta' (a, 0) = \in \text{-closure} (\delta (\widehat{\delta} (a, \in), 0))$$

$$= \in \text{-closure} (\delta (\{A, B, C\}, 0))$$

$$= \in \text{-closure} (\{C, D\})$$

$$= \{C, D\}$$

$$\delta' (a, 1) = \in \text{-closure} (\delta (\widehat{\delta} (a, \in), 1))$$

$$= \in \text{-closure} (\delta (\{A, B, C\}, 1))$$

$$= \in \text{-closure} (\{B, D\})$$

$$= \{B, D\}$$

We can complete the STF, δ' for the equivalent NFA without \in -moves as below,

Q∖∑	0	1
A	{C, D}	{B, D}
В	{D}	{B}
С	{C}	{D}
* D	ф	ф

The transition diagram for the NFA without ∈-moves is,

- **Q.2 a**) (i) aaaaaa
 - (ii) abbbbbbb
 - (iii) a

Q.2 b) Length of every string in *L* is a prime number.

<u>Step 1:</u> Let us assume that the language L is a regular language. Let n be the constant of the pumping lemma.

Step 2: Let us choose a sufficiently large string z such that $z = 0^l$, for some large l > 0; the length of z is given by: $|z| = l \ge n$.

Since we assumed that L is a regular language and from the language definition it is an infinite language, we can now apply pumping lemma.. This means that we should be able to write z as: z = uvw.

Step 3: As per pumping lemma, every string ' uv^iw' , for all $i \ge 0$, is in L. Likewise, $|v| \ge 1$, which means that v cannot be empty and must contain one or more symbols.

Let us consider the case when v contains a single symbol:

In this case, $z = uvw = 0^l$, which means that the number of 0's in z is a prime number. As per pumping lemma, we would expect ' uv^2w ' also to be a member of L; however, this cannot be possible, as v contains only a single symbol, and adding one to the prime number length would not always yield perfect prime length. Thus, pumping v would yield strings with non-prime lengths. Thus, ' uv^2w ' is not a member of L. This contradicts our assumption that L is regular.

Let us now consider the case when v contains perfect prime number of 0's. A sample v could be written as: '000' (three 0's), or '00000' (five 0's), and so on. When we try to pump v multiple times, such as, for example, $v^2 = 000000$ (six 0's), or $v^2 = 0000000000$ (10 0's), and so on, we find that the length does not remain a perfect prime, and we get a string which is against the language definition, which is '0ⁱ'. Thus, we can say that ' uv^2w ' is not a member of L. This contradicts our assumption that L is regular.

Similarly, if we consider that ν contains any number of 0's, then on pumping it we will get into a situation where the string has non-prime length, which is against the language definition. For example, if ν contains 2 zeros and if we pump it say 2 times, we will get the string "0000" which does not have a perfect prime length.

Hence, the language $L = \{0^n \mid n \text{ is a prime number}\}$ is non-regular.

- **Q.2 c)** Refer to the example 3.27 from the book.
- **Q.3** a) Refer to the example 5.6 from the book.
- **Q.3 b)** Refer to the section 5.17.

- **Q.3 c)** Refer to the example 5.52 from the book.
- **Q.3 d**) Refer to the example 5.43 from the book.
- Q.3 e) The language, $L = \{a^n b^m \mid n = m\}$ is context-free. The CFG for the same is, $S \to a S b \mid \epsilon$
- **Q.4 a)** Refer to the example 6.11 from the book.
- **Q.4 b**)
- (i) Actually CFLs are closed under intersection.
- (ii) Refer to the section 6.8, theorem 6.3.
- **Q.4 c**) Refer to the section 6.6.
- **Q.5** a) Refer to the example 4.13 from the book.
- **Q.5 b)** Refer to the section 4.9.
- **Q.5 c)** Refer to the section 4.15.
- Q.6 a) Let us first construct the LR (1) sets of items. We need to augment the grammar to begin with.

Augmented grammar:

$$0: D' \rightarrow D$$

$$\mathit{1} \colon D \to \mathit{L} \colon \mathit{T}$$

$$2: L \rightarrow L, id$$

$$3: L \rightarrow id$$

$$4: T \rightarrow int$$

LR (1) sets of items are:

I0:

$$D' \rightarrow \cdot D$$
 , \$

$$D \to \cdot L : T$$
, \$

$$L \rightarrow \cdot L$$
, id ,:/,

$$L \rightarrow \cdot id$$
 ,:/,

I1:

$$D' \to D \cdot$$
, \$

I2:

$$D \rightarrow L \cdot : T$$
, \$

$$L \rightarrow L \cdot$$
, id ,:/,

I3:

$$L \rightarrow id \cdot , :/,$$

I4:

$$D \rightarrow L : T$$
 , \$

$$T \rightarrow \cdot int$$
 , \$

$$T \rightarrow \cdot real$$
 , \$

I5:

$$L \rightarrow L$$
, · id , :/,

I6:

$$D \rightarrow L : T \cdot ,$$
\$

17:

$$T \rightarrow int$$
 , \$

18:

$$T \rightarrow real \cdot ,$$
\$

19:

$$L \rightarrow L$$
, $id \cdot , :/,$

The canonical-LR parsing table can be shown as below. As it cannot be reduced further it is the LALR parsing table as well.

State				ACTION				GOTO	
	:	,	id	real	int	\$	D	L	T
0			s3				1	2	
1						Accept			
2	s4	s5							
3	r3	r3							
4				s8	s7				6
5			s9						
6						r1			
7						r4			
8						r5			
9	r2	r2							

Let us simulate the working of the parser for the input string 'a, b, c: int'. Here a, b, and c are considered as id.

Stack	Input	Parser Action
0	<i>a</i> , <i>b</i> , <i>c</i> : int \$	Shift '0' initially
0 a 3	, <i>b</i> , <i>c</i> : int \$	ACTION(0, id) = s3
0 L 2	, <i>b</i> , <i>c</i> : int \$	ACTION(3, .) = r3
		GOTO(0, L) = 2
0 L 2 , 5	<i>b</i> , <i>c</i> : int \$	ACTION(2, .) = s5
0 L 2, 5 b 9	, c : int \$	ACTION (5, id) = $s9$
0 L 2	, c : int \$	ACTION(9, ,) = r2
		GOTO(0, L) = 2
0 L 2 , 5	<i>c</i> : int \$	ACTION(2, .) = s5
0 L 2, 5 c 9	: int \$	ACTION (5, id) = $s9$
0 L 2	: int \$	ACTION(9, :) = r2
		GOTO(0, L) = 2
0 L 2 : 4	int \$	ACTION(2, :) = s4
0 L 2 : 4 int 7	\$	ACTION (4, int) = $s7$
0 L 2 : 4 T 6	\$	ACTION(7,\$) = r4
		GOTO(4, T) = 6
0 D 1	\$	ACTION(6,\$) = r1

Stack	Input	Parser Action
		GOTO(0, D) = 1
0 D 1	\$	'ACCEPT', because
		ACTION(1, \$) = `accept'

- **Q.6 b**) Refer to the example 11.12 from the book.
- **Q.6 c**) (i) Gödel numbering: Refer to the section 9.3.
 - (ii) Diagonalization language: Refer to the section 9.4.1.
- **Q.6 d**) Refer to the section 9.2.1, theorem 9.1.