MCMT Homework 13

Shun Zhang

Exercise 13.1

Exercise 12.2.

Exercise 13.2

Let θ be unit current.

Before gluing: $R(a, z) = \inf_{\theta} E(\theta)$, s.t. $\sum_{y} \theta(v_1, y) = 0$, $\sum_{y} \theta(v_2, y) = 0$. After gluing: $R'(a, z) = \inf_{\theta} E(\theta)$, s.t. $\sum_{y} \theta(v_1, y) + \sum_{y} \theta(v_2, y) = 0$. They have the same objective function, but R'(a, z) has a relaxed constraint. So $R(a, z) \geq R'(a, z)$.

Assume there is an edge between v_1 and v_2 with $r = \inf$. After gluing, the resistance is 0, and $\phi(v_1) = \phi(v_2)$. Corollary 13.4, the new resistance is smaller as ϕ has changed.