

2° lezione dabase

Materia	Database
☑ REVISIONATA	✓
্র: Status	Done

Operatori Derivati

Sono operatori utili che si possono esprimere in funzioni di quelli primitivi.

▼ Intersezione

Siano R ed S due relazioni dello stesso tipo

$$R \cap S = \{t \mid t \in R \land t \in S\}$$

essa si può esprimere in funzione degli operatori primitivi:

$$R \cap S = R - (R - S)$$

▼ JOIN o Giunzione

È un' operazione binaria perché agisce su due tabelle. In un buon database le relazioni sono indipendenti fra di loro e non si ha una concentrazione di attributi in una sola tabella.

Si possono congiungere due tabelle in modo non permanente perché non si hanno tutti gli attributi in una tabella. Si utilizzano questi meccanismi quando si vogliono le informazioni di più tabelle contemporaneamente e la query richiede attributi che sono presenti in tabelle diverse e per tale motivo bisogna congiungerle. Quando si esegue una congiunzione ci possono essere dei campi che sono uguali nelle due tabelle perché si ha una FK nella seconda tabella quindi una PK nella 1°, si prendono i valori che in teoria dovrebbero corrispondere si parla di natural join in temini di tipo. Si ha invece una JOIN esterna quando non corrispondono tutti i campi ma vengono presi ugualmente.

2° lezione dabase

- **LEFT JOIN(sinistra)**: estrae tutti i valori della tabella a sinistra anche se non hanno corrispondenza nella tabella a destra;
- RIGHT JOIN(destra): estrae tutti i valori della tabella a destra anche se non hanno corrispondenza nella tabella di sinistra
- **FULL JOIN** estrae sia i valori della tabella di destra che quelli della taella di sinistra anche se non si ha corrispondenza

La congiunzione si effetua tra due tabella quando i valori dei campi della prima e della 2 tabella sono in comune . Si parla di **natural** join quando c'è coincedenza tra i record delle due tabelle e di Outher Join quando non c'è coincidenza

Definizione formale di JOIN

Join (o giunzione) è l'operatore più importante dell'algebra relazionale. Il join è un'operazione binaria che si applica a due relazioni. La funzione del join è unire tuple logicamente collegate delle due relazioni in un'unica tupla. La relazione risultante ha come schema l'insieme degli attributi di R ed S, mentre l'estensione viene espressa come il prodotto cartesiano di R ed S seguito dalla selezione delle tuple che soddisfano la condizione di join. Permette di combinare tuple da relazioni diverse basandosi sui valori degli attributi. Fondamentalmente abbiamo due tipi (più qualche variante): Natural-JOIN e Theta-JOIN.

Definzione formale di Natural-JOIN

Sia R con attributi XY ed S con attributi YZ. è una relazione di attributi XYZ costituita da tutte le n-uple t tali che . Cioè le n-uple del risultato sono ottenute combinando le n-uple di R e S che hanno gli stessi valori negli attributi con lo stesso nome.

In presenza di due attributi uguali, viene rinominato l'attributo comune in una delle due relazioni e viene eliminata una delle colonne che risultano uguali. Nel natural-join, quindi, la condizione di join è implicita, e lo schema della relazione risultante è l'insieme degli attributi di R ed S meno uno degli attributi uguali.

2º lezione dabase 2

r₁ Employee Department
Smith sales
Black production
White production

\mathbf{r}_2	Department	Head	
. 2	production	Mori	
	sales	Brown	

r₁ ⋈ r₂ Employee Department Head

Offences

Code		Date	Officer	Dept	Registartion
143256	ò	25/10/1992	567	75	5694 FR
987554	1	26/10/1992	456	75	5694 FR
987557	7	26/10/1992	456	75	6544 XY
630876	6	15/10/1992	456	47	6544 XY
539856	6	12/10/1992	567	47	6544 XY

Cars

<u>Registration</u>	Dept	Owner	
6544 XY	75	Cordon Edouard	
7122 HT	75	Cordon Edouard	
5694 FR	75	Latour Hortense	
6544 XY	47	Mimault Bernard	

Offences ⋈ Cars

Co	<u>de</u>	Date	Officer	Dept	Registration	Owner	
1432	256	25/10/1992	567	75	5694 FR	Latour Hortense	
9875	554	26/10/1992	456	75	5694 FR	Latour Hortense	
9875	557	26/10/1992	456	75	6544 XY	Cordon Edouard	
6308	876	15/10/1992	456	47	6544 XY	Mimault Bernard	
5398	856	12/10/1992	567	47	6544 XY	Mimault Bernard	

2° lezione dabase

Paternity

Father	Child	
Adam	Cain	
Adam	Abel	
Abraham	Isaac	
Abraham	Ishmael	

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity ⋈ Maternity

Father	Child	Mother
Adam	Cain	Eve
Abraham	Isaac	Sarah
Abraham	Ishmael	Hagar

Theta-JOIN

Nel caso che il criterio di selezione delle tuple sia determinato da un operatore di confronto (<,>,=,ecc.) si può parlare di theta-join. È un'estensione del natural-join dove viene specificato un predicato per la selezione delle n-uple. Esso è un operatore derivato:

Un caso particolare del theta-join è l'**equi-join**, in cui si applica l'operatore di uguaglianza, quindi nella formula F è una congiunzione di uguaglianza.

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars

Employes ⋈_{Project=Code} Projects

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	В	Mars