

program for calculating BPM of zebrafish embryo

Program BPM_ZF jest otwartym oprogramowaniem przygotowanym w środowisku Matlab. Jego celem jest ułatwienie pracy badawczej przez przyspieszenie procesu pomiaru rytmu serca u zarodków danio pręgowanego.

1. Obsługa programu

Archiwum, w którym znajduje się kod należy pobrać z platformy internetowej github.com, a następnie rozpakować do folderu, w którym znajduje się plik wykonawczy. Program wywołuje się wpisując w wybranym miejscu polecenie BPM_ZF(). Do polecenia można dodać dwa argumenty opisujące, po kolei: nazwe pliku z rozszerzeniem, oraz pełna ścieżke do pliku. Program może zwracać dwie wartości: informację o rytmie serca (double), oraz informację o szeregu czasowym (bool). Po uruchomieniu, jeśli użytkownik wybrał opcję manualnego wskazania serca, oprogramowanie otworzy pierwszą klatkę nagrania i poprosi o zaznaczenie dwóch punktów po przekątnej, które utworzą prostokąt wokół serca. Następnie należy zatwierdzić wybór enterem. W przypadku, gdy użytkowni zechce zmienić zaznaczenie przed zatwierdzeniem wyboru, należy dodać kolejny punkt i zatwierdzić enterem. Program w takim przypadku poprosi o ponowne zaznaczenie punktów. Jeśli użytkownik wybrał opcję automatycznej detekcji położenia serca, program nie wyświetli dodatkowych okienek. Niezależnie od wybranej opcji, po chwili wyświetlą się dwa wykresy: wykres rytmu serca, oraz wykres szeregów czasowych, a także nagranie zarodka wraz z naniesioną informacją o BPM i ewentualnymi wadami serca takimi jak: nienormalny rytm serca lub niepoprawne szeregi czasowe uderzeń serca. Zostanie również zaznaczony wybrany obszar.

2. Kalibracja programu

Użytkownik może dostosować program do swoich potrzeb modyfikując kod programu jak i plik kalibracyjny. W celu zmiany kalibracji należy zmienić wartości zmiennych w pliku program_calibration.txt Jeśli użytkownik nie zmieni tych wartości, program będzie działał na predefiniowanych ustawieniach dostępnych poniżej.

Nazwa	Wartość dom	yślna Opis
findHeartAutomatically	0	Określa, w jaki sposób program szuka serca zarodka. 0 - ręczne zaznaczenie przez użytkownika obszaru w którym znajduje się serce 1 - automatyczne wykrycie położenia serca
findHeartAutomaticallyMe	ethod 1	Określa, w jaki sposób program poszukuje zmiany natężeń pikseli. Dla niektórych nagrań, zmiana sposobu może zwiększyć poprawne określenie położenia serca. 1 - szukaj największej wartości 2 - szukaj najmniejszej wartości
heartArea	20	Określa długość boku kwadratu, w którym program automatycznie wykryje serce zarodka. Jest to procent wysokości wczytanego nagrania.
timeSeriesError	30	Określa, o jaki procent mogą od siebie odbiegać czasy między kolejnymi uderzeniami serca.
timeSkip	0	Służy do pominięcia początku nagrania, jeśli znajduje się na nim niepożądany obiekt (np.: wskaźnik). Wartość wyrażona w sekundach.
saveVideo	1	Określa czy plik wideo z danymi ma zostać zapisany, oraz czy użytkownik może wybrać miejsce zapisu. 0 – Plik nie zostanie zapisany. 1 – Plik zostanie zapisany w tym samym folderze, co oryginał. 2 – Plik zostanie zapisany, użytkownik może wybrać miejsce zapisu.
doNotDisplayMedia	0	Pozwala wyłączyć wyświetlenie wykresu i nagrania. Zmienna używana, gdy program ma jedynie wyznaczyć informację o rytmie serca i szeregu czasowym 0 – Wyświetlaj media, 1 – Nie wyświetlaj mediów.

3. Opis funkcji

Składnia funkcji:

```
function [
  zwracana_wartość1,
  zwracana_wartość2,
  zwracana_wartość3,
] =
nazwaFunkcji (
  argument1,
  argument2,
  argument3
)
```

Uwaga! Nie jest to prawidłowy sposób zapisu funkcji w Matlabie. Zapis ten ma na celu ułatwienie czytania argumentów i zwracanych wartości.

Funkcje zostały opisane w kolejności pojawiania się w kodzie programu.

```
function [
    BPM,
    timeSeriesErrorBool
] =
BPM_ZF (
    varargin
)
```

Główna funkcja

Funkcja uruchamiająca program, zwraca informację o rytmie serca (double) oraz informację o tym czy szereg czasowy mieści się

w podanym zakresie (bool).

Jako argumenty można podać bezpośrednią ścieżkę do pliku wideo. Jako pierwszy argument należy podać nazwę pliku z rozszerzeniem,

a jako drugi argument ścieżkę dostępu. Przykład wywołania wraz z zapisem do zmiennych:

```
[ bpm, series ] = BPM_ZF( ...
'3.avi', 'C:\MATLAB\ ');
```

Manually Locate the Heart

Recznie określ położenie serca

Funkcja określająca położenie serca. Pozwala ręcznie określić położenie serca przez zaznaczenie na wyświetlonym obrazie. Jako argument przyjmuje komórkę z klatkami nagrania. Zwraca położenie serca (współrzędne X, Y; długość i szerokość obszaru) oraz wymiary klatki nagrania.

```
function [
  cropX,
  cropY,
  cropLengthX,
  cropLengthY,
  frameHeight,
  frameWidth
] =
manualLocateHeart (
  videoFrameCell
```

```
)
function [
  cropX,
  cropY,
  cropLengthX,
  cropLengthY
determineDataCroppingFrame (
  firstPointX,
  firstPointY,
  secondPointX,
  secondPointY
)
function [
  cropX,
  cropY,
  cropLengthX,
  cropLengthY,
  frameHeight,
  frameWidth
automaticLocateHeart (
  videoFrameCell,
  findHeartAutomaticallyMethod,
  heartArea
)
function
meanValueArray
averageValuePixelArray (
  videoFrameCell,
  frames,
  cropX,
  cropY,
  cropLengthX,
  cropLengthY
)
function
  avgDist
calculateMinimumDistancePoints
 meanValueArray
```

Determine Data for Cropping the Frame

Określ dane potrzebne do kadrowania klatki

Funkcja wczytującą dwa punkty o współrzędnych (X, Y). Jej zadaniem jest określenie danych potrzebnych do kadrowania klatki filmu. Funkcja zwraca współrzędne (lewy górny róg) oraz wymiary skadrowanej klatki.

Automatically Locate the Heart

Automatycznie określ położenie serca

Funkcja określająca położenie serca. Pozwala automatycznie określić położenie serca na nagraniu.

Jako argument przyjmuje komórkę z klatkami nagrania, metodę szukania serca oraz wielkość szukanego obszaru. Zwraca położenie serca (współrzędne X, Y; długość i szerokość obszaru) oraz wymiary klatki nagrania.

Mean Value of Array

Wartość średnia danych odczytanych z tablicy.

Funkcja zwraca tablicę średnich wartości. Każda pozycja w tablicy to uśredniona jedna pozycja w komórce. Funkcja służy uśrednianiu wartości pikseli.

Jej argumenty to: komórka z klatkami, ilość klatek oraz dane potrzebne do kadrowania uzyskane dzięki funkcjom znajdującym serce.

Calculate Mimimum Distance beetween Points

Określ minimalną odległość o jaką mogą być oddalone punkty.

Funkcja przyjmuje jako argument tablicę z zapisanymi średnimi wartościami pikseli.

function peakDistance calculatePeakDistance (countMaxima, peakX) function [timeSeriesErrorBool, averageDisctanceTab, averageDisctanceUpperError, averageDisctancelowerError 1 = calculateTimeSeriesBool (countMaxima, peakX, timeSeriesError)

function

```
drawGraph (
   frames,
   meanValueArray,
   peakX,
   peakY,
   miniX,
   miniY,
   frameRate,
   peakDistance,
   averageDisctanceTab,
   averageDisctanceUpperError,
   averageDisctancelowerError,
   timeSeriesError,
   BPM
)
```

Zwraca informację o średniej odległości między maksimami uzyskanymi z wykresu średniej wartości pikseli.

Calculate Peak Distance

Określa odległość między kolejnymi maksimami lokalnymi.

Funkcja jako argument przyjmuje tablicę z informacjami o położeniach maksimów. Zwraca tablicę z informacją o odległościach między kolejnymi maksimami lokalnymi.

Calculate Time Series Error Bool

Sprawdź Błąd Szeregu Czasowego

Określa czy nieregularności występujące w szeregu czasowym mieszczą się w zadanym przedziale.

Funkcja jako argumenty przyjmuje: ilość maksimów, tablicę z informacjami o położeniach maksimów oraz o zadanym przedziale.

Funkcja zwraca informację o tym czy szeregi czasowe wykraczają poza wskazany zakres oraz tablice z informacjami o średnim czasie między uderzeniami.

Draw Graph

Rysuj wykres

Funkcja nie zwraca informacji. Jej zadaniem jest przygotowanie dwóch wykresów z informacjami o rytmie serca i szeregu czasowym. Następnie funkcja łączy oba wykresy w jednym oknie.

function

```
displayVideo (
  frameRate,
  videoFrameCell,
  BPM,
  frames,
  timeSeriesErrorBool,
  cropX,
  cropY,
  cropLengthX,
  cropLengthY,
  frameHeight,
  heartArea,
  findHeartAutomatically,
  depVideoPlayer,
  saveVideo,
  doNotDisplayMedia
)
```

Display Video

Odtwórz nagranie wideo

Funkcja nie zwraca informacji. Jej zadaniem jest wyświetlenie wcześniej wgranego pliku wideo. Funkcja dodaje do pliku wszystkie otrzymane dane. Zostaje nałożona informacja o położeniu serca, o rytmie serca, o tym czy rytm serca mieści się w normie oraz informacja czy szereg czasowy uderzeń serca mieści się w zadanym przedziale.