

ALL BRANCHES

Lecture No.-13

Calculus

Topics to be Covered

APPLICATION OF INTEGRATIONS

LENGTH OR PERIMETER OF CURVE

SURFACE AREA OF REVOLUTION

VOLUME OF SOLID OF REVOLUTION

MULTIPLE INTEGRALS

LEIBNITZ RULE OF DIFFERENTIATION UNDER SIGN

OF INTEGRATION :-

$$\frac{dx}{d} \left[\begin{array}{c} \varphi(x) \\ \downarrow \\ \chi(x) \end{array} \right] = \frac{dx}{dx} \cdot f(x^{x}) - \frac{dx}{d\phi} f(\phi^{x})$$

$$\begin{cases} \begin{cases} \int_{-\infty}^{\infty} \frac{d}{dx} \left[\int_{-\infty}^{\infty} \frac{d}{dx} \left[\int_{-\infty}^{\infty} \frac{d}{dx} \left(\frac{2x^6 - x^3}{3} \right) \right] = \frac{6x^5 - 3x^2}{3} = 2x^5 - x^2 \end{cases}$$

$$f(t) = t^{2}$$

$$\Rightarrow 2x.(x^{2})^{2} - 1.(x)^{2} = 2x^{5} - x^{2}$$
By leibnitz

$$\frac{d}{dx} \left[\int_{x^2+5}^{x^3} (t^2+1) dt \right] = 3x^2 \left[(x^3)^2 + 1 \right] - 2x \left[(x^2+5)^2 + 1 \right]$$

$$\frac{\langle x \rangle}{\sqrt{2}} = \int_{1/x}^{1/x} (\sin t^2) dt \; ; \; \text{find } \varphi'(1) = \underline{\hspace{1cm}}.$$

$$\xi_{X}^{2} = \int_{\chi_{X}}^{\chi^{2}} (\sin t^{2}) dt \; ; \; \text{find } \rho'(1) = 3 \sin L$$

APPLICATION OF INTEGRATIONS

P

AREA UNDER CURVÉS:-

Area
$$b/w$$

Curve &

Y-axis

 $y=b$
 $f(y) dy$
 $y=a$

Area
$$b/w$$
:
$$= \chi_1^2 (y_2 - y_1) dx$$

$$= \chi_1$$

$$= \int_{y_1}^{y_2} (x_2 - x_1) dy$$

Soln:-
$$x = x^2$$

 $x - x^2 = 0$
 $x(1-x) = 0$

Area =
$$\iint dx dy$$

Soln:-
$$x = x^2$$
 Area = $\int_{\omega \cdot r \cdot t \cdot X}^{x=1} (x - x^2) dx = \frac{1}{6}$
 $x - x = 0$ -axis $x = 0$
 $x = 0$, $x = 0$

MULTIPLE INTEGRALS

Double integration
$$x=a \quad | \quad x=b \quad | \quad x=b \quad | \quad x=b \quad |$$

$$y_1 = f(x)$$

$$x = 0$$

$$x = f(x)$$

$$x = f(x)$$

$$x = f(x)$$

$$x = 0$$

$$x =$$

$$x_1 = f(y)$$

$$y = b$$

$$y = a$$

$$y = a$$

First in X -> then in Y

$$\lambda = a$$

$$x' = t(\lambda)$$

$$\lambda = p$$

$$x' = t(\lambda)$$

$$x' = t(\lambda)$$

$$x' = t(\lambda)$$

I)
$$y_{2}=d \int_{X_{2}=b}^{X_{2}=b} f(x,y) dx dy$$

I) $y_{1}=c \times_{1}=a$

II) $y_{2}=b \quad y_{4}=f(x)$

II) $y_{2}=b \quad y_{1}=f(x)$

III) $y_{2}=b \quad y_{1}=f(x)$

III) $y_{2}=b \quad y_{2}=f(y)$

III) $y_{2}=b \quad y_{3}=f(y)$

$$x = \alpha \quad y = b \quad dy \quad dx$$

$$x = 0 \quad y = 0 \quad -1$$

$$x = \alpha \quad y = b \quad dy \quad dx$$

$$x = 0 \quad y = 0 \quad -1$$

$$x = \alpha \quad y = b \quad dy \quad dx$$

$$x = 0 \quad y = 0 \quad dx$$

Ex: Find the area of circle: x2+y= a2 first Y > then X; first X > then Y; Area = $y = +\alpha \qquad x = +\sqrt{\alpha^2 - y^2}$ $y = -\alpha \qquad x = -\sqrt{\alpha^2 - y^2}$

$$x = -a$$

$$y = \sqrt{a^2 - x^2}$$

$$y = -\sqrt{a^2 - x^2}$$

First in Y > then in X
$$\int_{-\alpha}^{x=+\alpha} \int_{-\alpha^2-x^2}^{y=-\sqrt{\alpha^2-x^2}} dx$$
 $X = -\alpha^2$

First in X > then in Y $Y = \alpha^2$
 $X = -\alpha^2 = 0$
 $Y = \alpha^2$
 $Y = \alpha^2$

Ex: Find the volume of sphere x2+x+z=a2

$$x = +\alpha$$
 $y = +\sqrt{\alpha^2 - x^2}$ $Z = -\sqrt{\alpha^2 - x^2 - y^2}$ dz dy dx $x = -\alpha$ $y = -\sqrt{\alpha^2 - x^2}$ dz dy dx

$$Z = 0 \qquad X = \sqrt{\alpha^2 - z^2} \quad y = \sqrt{\alpha^2 - x^2 - z^2}$$

$$Z = 0 \qquad X = 0 \qquad y = 0$$

Ex: Evaluate | | Xy dx dy over the region in positive

Evaluate
$$\iint y \, dy \, dx$$
 b/w y=1, y=2, Y-axis & y=x/2

 $y=2 \quad x=2y \quad y=2 \quad y=2 \quad y=2 \quad y=2 \quad y=2 \quad y=2 \quad y=1$
 $y=1 \quad x=0 \quad y=1 \quad x=0 \quad y=1$
 $x=0 \quad y=1 \quad x=0 \quad x=1$

Exi Sixy (x+y) dx dy over the area blw y=x & y=x.

$$x = 1 \quad y = \sqrt{x}$$

$$x = 0 \quad y = x$$

$$x = 0 \quad y = x$$

Exi Sixy dy dx where A is domain bounded by X-axis, ordinate x= 2a & curve x²= 4ay. = a 1/3

$$\frac{2x^{2}}{5} = 6$$

S - is a triangle with vertices
$$(0,0),(10,1)$$
 & $(1,1)$

Thank you

Seldiers!

