

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC150463

1 of 95 Page:

FCC Radio Test Report FCC ID: 2AFRF-RCCM

Original Grant

Report No. TB-FCC150463

CamFi Limited **Applicant**

Equipment Under Test (EUT)

EUT Name CamFi Remote Camera Controller

Model No. CF-102

Series No. CF101, CF103, CF201, LW-100

Brand Name CamFi

Receipt Date 2016-11-07

2016-11-08 to 2016-11-13 **Test Date**

Issue Date 2016-11-14

FCC Part 15, Subpart C (15.247:2016) **Standards**

Test Method ANSI C63.10: 2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved&

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

TOBY

Report No.: TB-FCC150463

Page: 2 of 95

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	12
	4.5 Test Data	12
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	18
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	19
	5.5 Test Data	20
6.	RESTRICTED BANDS REQUIREMENT	51
	6.1 Test Standard and Limit	51
	6.2 Test Setup	51
	6.3 Test Procedure	51
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	73
	7.1 Test Standard and Limit	73
	7.2 Test Setup	73
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	82
	8.1 Test Standard and Limit	82

Page: 3 of 95

	8.2 Test Setup	82
	8.3 Test Procedure	
	8.4 EUT Operating Condition	82
	8.5 Test Data	83
9.	POWER SPECTRAL DENSITY TEST	86
	9.1 Test Standard and Limit	86
	9.2 Test Setup	86
	9.3 Test Procedure	86
	9.4 EUT Operating Condition	86
	9.5 Test Data	87
10.	ANTENNA REQUIREMENT	95
	10.1 Standard Requirement	95
	10.2 Antenna Connected Construction	

Page: 4 of 95

1. General Information about EUT

1.1 Client Information

Applicant : CamFi Limited

Address : Room A1002-1, Venture Building, TsingHua Science Park, No.101

College Road, Tangjiawan, Zhuhai, PRC.

Manufacturer : CamFi Limited

Address : Room A1002-1, Venture Building, TsingHua Science Park, No.101

College Road, Tangjiawan, Zhuhai, PRC.

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	CamFi Remote Camer	a Controller		
Models No.		CF-102, CF101, CF103, CF201, LW-100			
Model Difference	•	All these models are identical in the same PCB layout and electrical circuit, the only difference is model name for commercial.			
a Com		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
	1	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40):9 channels see note(3)		
	6	RF Output Power:	802.11b: 9.21 dBm		
			802.11g: 9.09 dBm		
Duaduat			802.11n (HT20): 8.98 dBm		
Product		137	802.11n (HT40): 8.96 dBm		
Description		Antenna Gain:	0.9 dBi PIFA Antenna		
		Modulation Type:	802.11b: CCK, QPSK, BPSK		
			802.11g: OFDM		
			802.11n: OFDM		
		Bit Rate of	802.11b:11/5.5/2/1 Mbps		
	10	Transmitter:	802.11g:54/48/36/24/18/12/9/6 Mbps		
			802.11n:up to 150Mbps		
Power Supply	:	DC power by USB cab	le form Host System.		
		DC power by Li-ion bat	ttery.		
Power Rating	1:	DC 5V by USB Cable f	rom PC system.		
		DC 3.7V 1800mAh by	Li-ion Battery.		
Connecting		Please refer to the User's Manual			
I/O Port(S)					

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r05.

Page: 5 of 95

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note:CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 09 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

USB Charging with TX Mode

Page: 6 of 95

1.4 Description of Support Units

	E	quipment Informat	ion	
Name	Used "√"			
LCD Monitor	E170Sc	DOC	DELL	√
PC	OPTIPLEX380	DOC	DELL	1
Keyboard	L100	DOC	DELL	√
Mouse	M-UARDEL7	DOC	DELL	1
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	YES	YES	1.5M	
Cable 2	YES	YES	1.5M	W. C.
Cable 3	YES	NO	1.5M	
Cable 4	NO	NO	0.8M	Accessorise

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	TX B Mode				

For Radiated Test				
Final Test Mode Description				
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			
Mode 4 TX Mode N(HT20) Mode Channel 01/06/11				
Mode 5 TX Mode N(HT40) Mode Channel 03/06/09				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

Page: 7 of 95

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	QA	theros Radio Test2(ART2-0	GUI)
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	20	20	20
IEEE 802.11g OFDM	15	15	15
IEEE 802.11n (HT20)	14.5	14.5	14.5
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	15	15	15

Page: 8 of 95

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	±4.60 dB
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dadiated Emission	Level Accuracy:	.4.40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	±4.20 dB
Naulateu EIIIISSIUII	Above 1000MHz	±4.20 UD

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 95

2. Test Summary

	FCC Part	: 15 Subpart C(15.247)/ RSS 247	Issue 1		
Standard Section					
FCC	IC	Test Item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)& RSS 247 Transmitter Rac 15.209 5.5 Emission		Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 10 of 95

3. Test Equipment

Conducted	d Emission Te	st			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
LISN	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
Radiation	Emission Tes	t			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 20, 2016	Mar. 19, 201
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 20, 2016	Mar. 19, 201
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 19, 2016	Mar. 18, 201
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 19, 2016	Mar. 18, 201
Loop Antenna	Laplace instrument	RF300	0701	Mar. 19, 2016	Mar. 18, 201
Pre-amplifier	Sonoma	310N	185903	Mar. 20, 2016	Mar. 19, 201
Pre-amplifier	HP	8447B	3008A00849	Mar. 26, 2016	Mar. 25, 201
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 201
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Em	ission			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Power Meter	Anritsu	ML2495A	25406005	Jul. 22, 2016	Jul. 21, 2017
Power Sensor	Anritsu	ML2411B	25406005	Jul. 22, 2016	Jul. 21, 2017

Page: 11 of 95

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 95

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please see the next page.

Page: 13 of 95

14 of 95 Page:

UT:	CamF	i Remote C	amera Controlle	r Mod	el Name :	CF-102
emperature	25 °C	Time	33	Rela	tive Humidity:	55%
est Voltage:	AC 12	20V/60Hz		1	Commercial States	9
erminal:	Neutra	al	A ROLL			
est Mode:	TX B	Mode	3 - (ALL CONTRACTOR
Remark:	Only v	worse case	is reported		CON LA	
90.0 dBuV		A A A A A A A A A A A A A A A A A A A				QP: — AVG: — per
	0.5					20.000
0.150	0.5	Reading	(MHz) Correct Me	5 easure-		30.000
	Freq.	Reading Level	Correct Me Factor r		Limit Ov	er
0.150 No. Mk.	Freq.	Level dBu∀	Correct Me Factor r	easure- ment	Limit Ov dBu∀ dE	er 3 Detector
0.150 No. Mk.	Freq. MHz	dBuV 34.69	Correct Me Factor r	easure- ment BuV 4.81	dBuV dE 64.76 -19.9	er B Detector GP
0.150 No. Mk.	Freq. MHz 0.1740 0.1740	dBuV 34.69 34.05	Correct Me Factor r dB c dB 10.12 4	easure- ment IBuV 4.81 4.17	Limit Ov dBu√ dE 64.76 -19.9 54.76 -10.5	er Detector QP AVG
0.150 No. Mk.	Freq. MHz	dBuV 34.69	Correct Me Factor r dB c dB 10.12 4	easure- ment BuV 4.81	dBuV dE 64.76 -19.9	er Detector QP AVG
0.150 No. Mk.	Freq. MHz 0.1740 0.1740	dBuV 34.69 34.05	Correct Factor rdB	easure- ment IBuV 4.81 4.17	Limit Ov dBu√ dE 64.76 -19.9 54.76 -10.5	er Detector QP AVG QP
0.150 No. Mk. 1 2 3	Freq. MHz 0.1740 0.1740 0.2140	Level dBuV 34.69 34.05 33.69	Correct Me Factor r dB	easurement BuV 4.81 4.17 3.80	Limit Ov dBuV dB 64.76 -19.9 54.76 -10.5 63.04 -19.2	er B Detector G QP G AVG Q QP B AVG
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1740 0.1740 0.2140 0.2140	Level dBuV 34.69 34.05 33.69 32.12	Correct Factor r dB c dB 10.12 4 10.12 4 10.11 4 10.02 4	easure- ment dBuV 4.81 4.17 3.80 2.23	Limit Ov dBu√ dB 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.8	er 3 Detector 95 QP 59 AVG 24 QP 31 AVG
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1740 0.1740 0.2140 0.2140 0.5580	Level dBuV 34.69 34.05 33.69 32.12 35.82	Correct Factor rdB	easure- ment 4.81 4.17 3.80 2.23 5.84	Limit Ov. dBuV dE 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.8 56.00 -10.1	er 3 Detector 95 QP 59 AVG 24 QP 31 AVG 16 QP 08 AVG
0.150 No. Mk. 1 2 3 4 5 6 *	Freq. MHz 0.1740 0.1740 0.2140 0.2140 0.5580 0.5580	Level dBuV 34.69 34.05 33.69 32.12 35.82 25.90	Correct Factor r dB	easure- ment 4.81 4.17 3.80 2.23 5.84 5.92	Limit Ov. dBuV dE 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.6 56.00 -10.1	er 3 Detector 95 QP 59 AVG 24 QP 31 AVG 16 QP 08 AVG
0.150 No. Mk. 1 2 3 4 5 6 * 7	Freq. MHz 0.1740 0.1740 0.2140 0.2140 0.5580 0.5580 0.9740	Level dBuV 34.69 34.05 33.69 32.12 35.82 25.90 29.19	Correct Factor r dB	easure- ment 4.81 4.17 3.80 2.23 5.84 5.92	Limit Ov. dBuV dE 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.6 56.00 -10.0 56.00 -16.6	er 3
0.150 No. Mk. 1 2 3 4 5 6 * 7 8	Freq. MHz 0.1740 0.1740 0.2140 0.2140 0.5580 0.5580 0.9740 0.9740	Level dBuV 34.69 34.05 33.69 32.12 35.82 25.90 29.19 21.47	Correct Factor r dB	easure- ment 4.81 4.17 3.80 2.23 5.84 5.92 9.34 1.62	Limit Overall dBuV dBuV 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.8 56.00 -10.1 46.00 -16.6 46.00 -14.3	er 3
0.150 No. Mk. 1 2 3 4 5 6 * 7 8 9	Freq. MHz 0.1740 0.1740 0.2140 0.2140 0.5580 0.5580 0.9740 0.9740 1.5700	Level dBuV 34.69 34.05 33.69 32.12 35.82 25.90 29.19 21.47 28.23	Correct Factor rdB	easure- ment 4.81 4.17 3.80 2.23 5.84 5.92 9.34 1.62 8.33	Limit OV dBuV dE 64.76 -19.9 54.76 -10.5 63.04 -19.2 53.04 -10.6 56.00 -10.0 56.00 -16.6 46.00 -14.3 56.00 -17.6	er 3

Page: 15 of 95

Page: 16 of 95

EUT:	CamFi	Remote Ca	mera Controlle	r Mode	l Name :	CF-102
Temperature:	25 ℃	Call!	2	Relat	ive Humidity:	55%
Test Voltage:	AC 240)V/60Hz				3
Terminal:	Neutra		A SOFT		10	
Test Mode:	TX B M	1ode				AHAR
Remark:	Only w	orse case is	reported			
90.0 dBuV						
					QI	P: — VG: —
a X	×					
40	1000	MA.	× × ×	Xo		
R ~ NAM	^^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Marany Mar	$\langle w_{n} \rangle \langle w_$	~\/^\/ _\ /	1 ¹ 1111111111111111111111111111111111	pea
γ ν	A A	W "\"	7 V V V	A A A A	VVVV VANAMANA	Nullium"
	,	,	" "	h., i,	J. A. M. Albahalandan Jana	A AND AVE
						- 41.
0.150	0.5		(MHz)	5		30.000
		Reading	Correct M	leasure-		
No. Mk.	Freq.	Level	Factor	ment	Limit Ov	er
	MHz	dBuV	dB	dBu∀	dBuV dE	3 Detector
1 (0.2140	37.45	10.02	47.47	63.04 -15.5	57 QP
2 0	0.2140	34.21	10.02	44.23	53.04 -8.8	1 AVG
3 (
3 ().5540	35.12	10.05	1 5.17	56.00 -10.8	33 QP
	0.5540	35.12 27.55		45.17 37.60	56.00 -10.8 46.00 -8.4	
4 * 0).5540	27.55	10.05	37.60	46.00 -8.4	0 AVG
4 * C).5540).9940	27.55 29.44	10.05 10.06	37.60 39.50	46.00 -8.4 56.00 -16.5	0 AVG
4 * 0 5 0 6 0).5540).9940).9940	27.55 29.44 22.12	10.05 10.06 10.06	37.60 39.50 32.18	46.00 -8.4 56.00 -16.5 46.00 -13.8	0 AVG 50 QP 32 AVG
4 * 0 5 0 6 0 7 1	0.5540 0.9940 0.9940 1.5740	27.55 29.44 22.12 29.04	10.05 : 10.06	37.60 39.50 32.18 39.10	46.00 -8.4 56.00 -16.9 46.00 -13.8 56.00 -16.9	0 AVG 50 QP 32 AVG 90 QP
4 * 0 5 0 6 0 7 1 8 1	0.5540 0.9940 0.9940 1.5740	27.55 29.44 22.12 29.04 23.26	10.05 3 10.06 3 10.06 3 10.06 3	37.60 39.50 32.18 39.10 33.32	46.00 -8.4 56.00 -16.9 46.00 -13.8 56.00 -16.9 46.00 -12.6	0 AVG 50 QP 32 AVG 90 QP 68 AVG
4 * 0 5 0 6 0 7 1 8 1 9 2	0.5540 0.9940 0.9940 1.5740 1.5740 2.1900	27.55 29.44 22.12 29.04 23.26 28.22	10.05 10.06 10.06 10.06 10.06 10.05	37.60 39.50 32.18 39.10 33.32 38.27	46.00 -8.4 56.00 -16.9 46.00 -13.8 56.00 -16.9 46.00 -12.6 56.00 -17.7	0 AVG 50 QP 32 AVG 90 QP 68 AVG
4 * 0 5 0 6 0 7 1 8 1 9 2	0.5540 0.9940 0.9940 1.5740	27.55 29.44 22.12 29.04 23.26	10.05 10.06 10.06 10.06 10.06 10.05	37.60 39.50 32.18 39.10 33.32	46.00 -8.4 56.00 -16.9 46.00 -13.8 56.00 -16.9 46.00 -12.6	0 AVG 50 QP 32 AVG 90 QP 58 AVG 73 QP
4 * 0 5 0 6 0 7 1 8 1 9 2	0.5540 0.9940 0.9940 1.5740 1.5740 2.1900	27.55 29.44 22.12 29.04 23.26 28.22	10.05 10.06 10.06 10.06 10.06 10.05	37.60 39.50 32.18 39.10 33.32 38.27	46.00 -8.4 56.00 -16.9 46.00 -13.8 56.00 -16.9 46.00 -12.6 56.00 -17.7	0 AVG 50 QP 32 AVG 90 QP 68 AVG 73 QP 61 AVG

Page: 17 of 95

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	//m)(at 3 M)	Class B (dBuV	//m)(at 3 M)
(MHz)	Peak	Average	Peak	Average
Above 1000	80	60	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 18 of 95

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 19 of 95

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 20 of 95

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 21 of 95

EUT:		(aml	FIR	emo	te Ca	amera Coi	ntroller	Mod	el:			(CF-	102
Temper	rature	: 2	5 ℃				13		Rela	tive F	lumi	idity	/:	55%	6
Test Vo	ltage:		C 3	.7V	7			18				113			
Ant. Po	ol.	F	loriz	onta	al		A SG		1	5				1	
Test Mo	ode:	Т	ХВ	Mod	de 2	412N	1Hz		(11)			A	1/2		
Remark	k:	C	nly	wor	se c	ase is	s reported	1 1		6					_ (
80.0 dB	uV/m														
										(F	RFJFCC	15C 3	M Radia		
													Margi	n -6 0	6
-					┰		2 i 7		3	*		5			X
30					_		×		×			×	-		
							المرازيان والمراز	ا . ساسا		البنا	الما		may had	11/11	Mhhr
Mary.							MANALI ANNOTA	in Admittel T	at and high		الهريمالاتر بلير	As Park			
							Min i								
100000	MANA	ىسى سىدا	on death and	julennoje	والبهاياس	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ļi.								
-(0.00)	Many	Lucenani	on through product	Jedna 194	والمهما والمرام		yri' '								
- Armen	Marie Andrew	Luden	organo for transfer	Julenport	ethyplotoco	MANA	у г "								
20						~/\\									
	40			70 80		~~^~\\	(MHz)		300) 4	00	500	600 7	700	1000.00
20 30.000	40	50	60 7	70 80 R	Read	ding	(MHz)		sure-						1000.00
20	40		60 7	70 80 R	Read Lev	ding	(MHz)						600 7		1000.00
20 30.000	40	50	60 7 Q .	70 80 R	Read	ding	(MHz)	m	sure-	Lir		(•	1000.00
20 30.000	40 Mk.	50 Fre	60 7 Q. Z	70 80	Read Lev	ding el	(MHz) Correct Factor	m dB	sure- ent	Lir	nit	(Over	•	
30.000 No.	Mk.	Fre MH:	q. z	70 80 R	Read Lev	ding el	(MHz) Correct Factor dB/m	m dB	sure- ent	Lir dB	nit uV/m	(Over dB		Detecto
20 30.000 No.	Mk.	Fre MH: 62.04	q. z 114	70 80 R	dBu	ding rel av 29	Correct Factor dB/m -20.41	m dB 32	asure- ent uV/m 2.88	Lir dB 43	mit u∨/m 3.50	-	Over	62	Detecto pea l
20 30.000 No.	Mk.	Fre MH: 62.04	q. z 114 165	70 80 R	dBu 53.2	ding el iv 29 40	Correct Factor dB/m -20.41	m dB 32 37 33	ent uV/m 2.88	Lir dB 43 43	mit uV/m 3.50	-	Dver dB 10.6	62 7	Detecto peak peak
20 30.000 No.	Mk.	Fre MH: 62.04	q. z 1114 165 372 318	70 80 R	Read Lev dBu 53.2 57.4	ding el iv 29 40 47	Correct Factor dB/m -20.41 -20.26 -16.64	m dB 32 37 33	asure- ent uV/m 2.88 7.14 3.83	Lir dB 43 43 46 46	mit uV/m 3.50 3.50	-	Dver dB 10.6 -6.36	62 6 7	Detecto peal peal peal
No. 1 2 3 4 5	Mk.	Fre MH: 62.04 80.07 600.36 600.43	q. z 1114 165 372 318 724	70 80 R	dBu 53.2557.4	ding el iv 29 40 47 80	Correct Factor dB/m -20.41 -20.26 -16.64 -12.33	m dB 32 37 33 39 34	asure- ent uV/m 2.88 7.14 3.83	Lir dB 43 43 46 46	mit uV/m 3.50 3.50 3.00	-	Dver dB 10.6 -6.36 12.1	62 6 7 33	Detector peak peak peak peak

Page: 22 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	min is	
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz		MUL
Remark:	Only worse case is reported		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		43.9658	41.21	-21.97	19.24	40.00	-20.76	peak
2		143.8295	43.91	-21.51	22.40	43.50	-21.10	peak
3		162.0414	52.51	-20.41	32.10	43.50	-11.40	peak
4		180.0165	54.44	-20.26	34.18	43.50	-9.32	peak
5		300.3672	44.72	-16.64	28.08	46.00	-17.92	peak
6	*	400.4319	50.70	-12.33	38.37	46.00	-7.63	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 23 of 95

omnoreture.	CamFi	Remote Ca	er Mode	el:	CI	F-102				
emperature:	25 ℃		N _	Relat	tive Humidit	y : 55	5%			
est Voltage:	DC 3.7	C 3.7V								
Ant. Pol.	Horizo	ntal	A SOL		1 67	M				
est Mode:	TXBM	1ode 2437N	/lHz	WALL DE		113	A STATE OF THE PARTY OF THE PAR			
Remark:	Only w	orse case i	s reported	6						
30 dBuV/m	it you have the form of the last	wood neglight him had		3 2 X	(RF)FCC 15C 3i	M Radiation Margin -6				
30.000 40 50	0 60 70	80 Reading		300 easure-		600 700	1000.000			
No. Mk.	Freq.	Level		ment		Over				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
			dB/m		dBuV/m		Detector			
1 130	MHz	dBuV	dB/m -22.07	dBuV/m	dBuV/m 43.50	dB	peak			
1 130 2 239	MHz 0.3789	dBu√ 55.74	dB/m -22.07 -18.18	dBuV/m 33.67	dBuV/m 43.50 46.00 -	dB -9.83	peak peak			
1 130 2 239 3 300	MHz 0.3789 9.9874	dBu∨ 55.74 48.64	dB/m -22.07 -18.18 -16.64	33.67 30.46	dBuV/m 43.50 46.00 -	dB -9.83 -15.54				
1 130 2 239 3 300 4 400	MHz 0.3789 9.9874 0.3672	dBuV 55.74 48.64 55.27	dB/m -22.07 -18.18 -16.64 -12.33	33.67 30.46 38.63	dBuV/m 43.50 46.00 - 46.00 46.00	dB -9.83 -15.54 -7.37	peak peak peak			

Page: 24 of 95

EUT:		(Cam	Fi R	emo	te C	amera Conti	oller	Mode	l:		CF	-102
Гетр	erature	: 2	25 °C		e		1		Relati	ve Hum	idity:	559	%
Test V	/oltage:	I	DC 3	3.7V						(Tal	N'A		
Ant. P	Pol.	,	Verti	cal			LAGE		4	I W			
Test N	/lode:	-	ТХ В	Мо	de 2	4371	ИHz	(11)		2			
Rema	rk:	(Only	wor	se c	ase i	is reported	1.6			13		_ 1
80.0	dBuV/m												
30			the state of the s			HANNAN S		3 ×	4 X	× × × × × × × × × × × × × × × × × × ×	6 X	رون الماليل	dB [
30.000	0 40	50	60	70 8			(MHz)		300	400	500 600	700	1000.00
No	. Mk.	Fre	eq.		Read Lev	ding el	Correct Factor		sure- ent	Limit	Ov	er	
		MH	lz		dΒι	ıV	dB/m	dBu	ıV/m	dBuV/m	dE	3	Detecto
1	1	19.8	556		47.	28	-22.44	24	.84	43.50	-18	.66	peal
2	1	30.8	369		48.	29	-22.06	26	.23	43.50	-17	.27	peal
3	2	39.9	874		43.	25	-18.18	25	.07	46.00	-20	.93	peal
4	3	00.3	672		48.	00	-16.64	31	.36	46.00	-14	.64	peal
5	* 4	00.4	319		47.0	01	-12.33	34	.68	46.00	-11	.32	peal
													peal
6		41.3			41.		-9.53		.68 .64	46.00 46.00			

Page: 25 of 95

UT:	CamFi Remote Ca	amera Controller	Model:	CF-102
Temperature:	25 ℃	33	Relative Humidity:	55%
est Voltage:	DC 3.7V		COM S	3
Ant. Pol.	Horizontal	P. S. L.		
Test Mode:	TX B Mode 2462M	1Hz		FILL
Remark:	Only worse case is	s reported		
30 dBuV/m	Andrew State	2	And Market Market	Margin -6 dB
30.000 40 50	0 60 70 80	(MHz)	300 400 500 6	00 700 1000.00
No. Mk. F	Reading Freq. Level	_	asure- ent Limit O	ver
	MHz dBuV	dB/m dB	uV/m dBuV/m	dB Detecto
1 * 180	.0165 55.40	-20.26 3	5.14 43.50 -	8.36 peal
2 239	9.9874 45.82	-18.18 27	7.64 46.00 -1	8.36 peal
3 400	.4318 48.80	-12.33 36	6.47 46.00 -	9.53 peal
	.3721 43.02			2.51 peal
	2.3451 39.85			1.64 peal
	2.1295 41.59			9.65 peal
*:Maximum data	x:Over limit !:over marg		J.00 40.00 -	0.00 pear

Page: 26 of 95

EUT:		Cami	Fi Rem	note Ca	amera Contro	oller	Mode	l:			CF	-102
Temperat	ture:	25 ℃			13		Relati	ve Hu	midit	ty:	55	%
Test Volta	age:	DC 3	.7V					6		33		
Ant. Pol.		Vertic	cal		Akor			1 1				
Test Mod	le:	TX B	Mode	2462N	ЛHz	67	1103		A			A STATE OF THE PARTY OF THE PAR
Remark:		Only	worse	case i	s reported	1		110	11	3		
80.0 dBuV/	/m											
30					3 4 ₅			(RF)FC	00 150 3	Marg	jin -6 c	
1	2	Maring	and the second second	was a second		modulin	Medde Johnster		who was do		MJ.A.	A MANA
-20	1 Å		and the same of th	ns property of the		modelm	Maghin Johnshi		not properly			
1 Managaria	40 50		70 80	wester to the state of the stat	(MHz)	makalan	300	400	500		700	1000.00
-20	40 50		Rea	ading vel		Meas me	sure-	400 Limit			700	
-20 30.000	40 50 lk. F) 60 7	Rea Le	_	Correct I		sure- nt		t	600	700 er	
-20 30.000	40 50 lk. F	o 60 7	Rea Le	vel	Correct I Factor	me	sure- nt	Limit	t /m	600 Ove	700 er	1000.00
-20 30.000	40 50 lk. F	req.	Rea Le	vel BuV	Correct I Factor	me dBu\	sure- nt V/m	Limit	t /m 00	Ove	700 er	1000.00
-20 30.000 No. M	40 50 lk. F 32. 43.	req. MHz 0667	Rea Le ^o dB 35	vel BuV	Correct I Factor dB/m -15.42	dBu\	sure- nt V/m 56	Limit dBuV 40.0	t /m 00	Ove dB -19.	7700 er 44 26	Detector peal
-20 30.000 No. M	40 50 lk. F 32. 43. 162	req. MHz 0667	Rea Le dB 35 41	vel BuV .98	Correct I Factor dB/m -15.42 -21.97	me dBu\ 20.	sure- nt 56 74	Limit dBuV 40.0	t /m 00 00	Ove dB -19.	700 er 44 26 90	Detector peal
-20 30.000 No. M	40 50 lk. F 32. 43. 162 180	Freq. MHz 0667 9658	Rea Le dB 35 41 48 49	.71 .01	Correct I Factor dB/m -15.42 -21.97 -20.41	me dBu\ 20. 19.	sure- nt	Limit dBuV 40.0 40.0 43.5	/m 00 00 50	Ove dB -19. -20.	700 er 44 26 90 82	Detector peal peal peal

Page: 27 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission which mo	ore than 10 dB below th	ne prescribed

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.035	45.69	13.56	59.25	74.00	-14.75	peak
2	*	4824.070	37.28	13.56	50.84	54.00	-3.16	AVG

Page: 28 of 95

EUT:	CamFi Remote Camera Controller	CF-102					
Temperature:	25 °C Relative Humidity: 55%						
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2412MHz	NO N	NO.				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
Remark:		ore than 10 dB below th	ne				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.075	43.43	13.56	56.99	74.00	-17.01	peak
2	*	4824.220	34.53	13.56	48.09	54.00	-5.91	AVG

Page: 29 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 °C Relative Humidity: 55%						
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX B Mode 2437MHz	No A	MUL				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.970	45.48	13.86	59.34	74.00	-14.66	peak
2	*	4874.025	36.78	13.86	50.64	54.00	-3.36	AVG

Page: 30 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102			
Temperature:	25 °C Relative Humidity: 55%					
Test Voltage:	DC 3.7V	COMP.				
Ant. Pol.	Vertical					
Test Mode:	TX B Mode 2437MHz	No A	MUL			
Remark:	No report for the emission which more prescribed limit.	ore than 10 dB below th	ne			

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.189	43.37	13.86	57.23	74.00	-16.77	peak
2	*	4874.217	33.82	13.86	47.68	54.00	-6.32	AVG

Page: 31 of 95

EUT:	CamFi Remote Camera Controller	CF-102					
Temperature:	25 ℃	25 °C Relative Humidity: 55°					
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2462MHz	NO N	MUL				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
00.0 ID.VI							

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.996	44.81	14.15	58.96	74.00	-15.04	peak
2	*	4924.069	35.81	14.15	49.96	54.00	-4.04	AVG

Page: 32 of 95

EUT:	CamFi Remote Camera Controller Model:							
Temperature:	25 °C Relative Humidity: 55%							
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical		THE STATE OF THE S					
Test Mode:	TX B Mode 2462MHz	1	NO.					
Remark:	No report for the emission which me	No report for the emission which more than 10 dB below the						
	prescribed limit.							
i								

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.153	44.99	14.15	59.14	74.00	-14.86	peak
2	*	4924.226	35.84	14.15	49.99	54.00	-4.01	AVG

Page: 33 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 ℃	25 °C Relative Humidity: 55%						
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX G Mode 2412MHz		N. C.					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
	processed in the		6128					

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.761	43.73	13.56	57.29	74.00	-16.71	peak
2	*	4823.950	34.06	13.56	47.62	54.00	-6.38	AVG

Page: 34 of 95

CamFi Remote Camera Controller	Model:	CF-102				
25 ℃	Relative Humidity:	55%				
DC 3.7V						
Vertical						
TX G Mode 2412MHz						
No report for the emission which more than 10 dB below the prescribed limit.						
	25 ℃ DC 3.7V Vertical TX G Mode 2412MHz No report for the emission which mo	25 °C Relative Humidity: DC 3.7V Vertical TX G Mode 2412MHz No report for the emission which more than 10 dB below the second secon				

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4823.828	43.25	13.56	56.81	74.00	-17.19	peak
2		*	4824.016	33.76	13.56	47.32	54.00	-6.68	AVG

Page: 35 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2437MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.159	33.65	13.86	47.51	54.00	-6.49	AVG
2		4874.175	43.24	13.86	57.10	74.00	-16.90	peak

Page: 36 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	nt. Pol. Vertical							
Test Mode:	TX G Mode 2437MHz							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.827	44.23	13.86	58.09	74.00	-15.91	peak
2	*	4874.002	34.81	13.86	48.67	54.00	-5.33	AVG

Page: 37 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX G Mode 2462MHz	NO N	MUL					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
90.0 dp.4//								

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.043	43.85	14.15	58.00	74.00	-16.00	peak
2	*	4924.248	35.58	14.15	49.73	54.00	-4.27	AVG

Page: 38 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 °C	55%					
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX G Mode 2462MHz	No A	MUL				
Remark:	No report for the emission which more than 10 dB below the						
prescribed limit.							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.852	34.76	14.15	48.91	54.00	-5.09	AVG
2		4924.199	43.70	14.15	57.85	74.00	-16.15	peak

Page: 39 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃ Relative Humidity: 5						
Test Voltage:	oltage: DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode 2412MHz	NO N	MUL				
Remark:	No report for the emission which me	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.051	43.19	13.56	56.75	74.00	-17.25	peak
2	*	4824.058	33.72	13.56	47.28	54.00	-6.72	AVG

Page: 40 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 °C Relative Humidity: 5							
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical							
Test Mode:	TX N(HT20) Mode 2412MHz	No A	NU.					
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.074	32.59	13.56	46.15	54.00	-7.85	AVG
2		4824.142	43.25	13.56	56.81	74.00	-17.19	peak

Page: 41 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT20) Mode 2437MHz	De la Maria						
Remark:	No report for the emission which mo	re than 10 dB below the	• 1					
	prescribed limit.							
90.0 dPu\//m	00 0 JP.W.							

N	o. l	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	r	4873.785	32.93	13.86	46.79	54.00	-7.21	AVG
2			4874.007	43.78	13.86	57.64	74.00	-16.36	peak

Page: 42 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 °C Relative Humidity: 55							
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical							
Test Mode:	TX N(HT20) Mode 2437MHz	NO N	No.					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
	No report for the emission which mo	ore than 10 dB below th	ne					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.884	32.98	13.86	46.84	54.00	-7.16	AVG
2		4874.035	43.51	13.86	57.37	74.00	-16.63	peak

Page: 43 of 95

EUT:	CamFi Remote Camera Controller	CamFi Remote Camera Controller Model: C					
Temperature:	25 ℃	25 ℃ Relative Humidity: 55					
Test Voltage:	DC 3.7V	OC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT20) Mode 2462MHz	NO N	MUL				
Remark:	No report for the emission which mo prescribed limit.	No report for the emission which more than 10 dB below the					
	presended innit.		6 1 16 16				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.158	32.91	14.15	47.06	54.00	-6.94	AVG
2		4924.190	43.98	14.15	58.13	74.00	-15.87	peak

Page: 44 of 95

EUT:	CamFi Remote Camera Controller	mFi Remote Camera Controller Model: Cl					
Temperature:	25 ℃	5 °C Relative Humidity: 55					
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX N(HT20) Mode 2462MHz	TO THE REAL PROPERTY.	MUL				
Remark:	No report for the emission which mo	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.113	43.40	14.15	57.55	74.00	-16.45	peak
2	*	4924.181	32.38	14.15	46.53	54.00	-7.47	AVG

Page: 45 of 95

EUT:	CamFi Remote Camera Controller Model: CF						
Temperature:	25 ℃	°C Relative Humidity: 559					
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2422MHz	NO N	MUL				
Remark:	No report for the emission which me	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4843.838	43.17	13.68	56.85	74.00	-17.15	peak
2	*	4844.240	33.04	13.68	46.72	54.00	-7.28	AVG

Page: 46 of 95

EUT:	CamFi Remote Camera Controller Model:		CF-102			
Temperature:	25 ℃	℃ Relative Humidity:				
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT40) Mode 2422MHz	1	W. Carrier			
Remark:	No report for the emission which me	ore than 10 dB below th	ne			
	prescribed limit.					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.157	42.84	13.68	56.52	74.00	-17.48	peak
2	*	4844.177	32.86	13.68	46.54	54.00	-7.46	AVG

Page: 47 of 95

EUT:	CamFi Remote Camera Controller Model:		CF-102				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	Test Voltage: DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2437MHz	1	MUL				
Remark:	No report for the emission which me	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.831	33.02	13.86	46.88	54.00	-7.12	AVG
2		4873.892	43.43	13.86	57.29	74.00	-16.71	peak

Page: 48 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT40) Mode 2437MHz	1	MUL			
Remark:	No report for the emission which me	No report for the emission which more than 10 dB below the				
	prescribed limit.					
i						

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.879	32.45	13.86	46.31	54.00	-7.69	AVG
2		4873.942	43.02	13.86	56.88	74.00	-17.12	peak

Page: 49 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	mperature: 25 °C		55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT40) Mode 2452MHz	1	MUL				
Remark:	No report for the emission which me	ore than 10 dB below th	ne				
	prescribed limit.						

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4903.818	33.56	14.03	47.59	54.00	-6.41	AVG
2		4903.892	43.99	14.03	58.02	74.00	-15.98	peak

Page: 50 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX N(HT40) Mode 2452MHz	1	MUL				
Remark:	No report for the emission which mo prescribed limit.	No report for the emission which more than 10 dB below the					
00.0 10.01							

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4903.818	33.56	14.03	47.59	54.00	-6.41	AVG
2		4903.892	43.99	14.03	58.02	74.00	-15.98	peak

Page: 51 of 95

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dB	BuV/m)(at 3 M)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

Page: 52 of 95

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please see the next page.

Page: 53 of 95

(1) Radiation Test

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	100	10
Test Mode:	TX B Mode 2412MHz		
Remark:	N/A	A WILL	10 M

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	50.83	0.77	51.60	74.00	-22.40	peak
2		2390.000	41.43	0.77	42.20	54.00	-11.80	AVG
3	Х	2413.400	98.86	0.86	99.72	Fundamental	Frequency	peak
4	*	2414.800	94.00	0.88	94.88	Fundamental	Frequency	AVG

Page: 54 of 95

EUT: Temperature:			Cam	Fi Remo	ote Ca	amera C	Contro	oller	Мо	del:		CF-102
Tem	perat	ure:	25 °C		111			. (Rel	ative Hum	idity:	55%
Test	t Volta	ge:	DC 3	.7V			1					
Ant.	. Pol.		Vertic	cal		1181			A	J W		
Test	t Mod	9 :	ТХВ	Mode 2	2412N	1Hz		61	112		2 1	111
Ren	nark:		N/A	Marie Control				U			3	
110.0	0 dBuV/	m										
60								1 X /	\bigwedge		PART 15C (A	
10.0												
23	332.000 2	342.00 2	2352.00	2362.00	2372.0	00 2382.	.00 2	2392.00	24	02.00 2412.0	0	2432.00 MH
	No. M	lk. Fr	eq.	Read Lev		Correc		/leas	ure- nt	Limit	Over	
	No. M		r eq .		el				nt	Limit	Over	Detecto
	No. M	М		Lev	el ¯	Facto	or	me	nt V/m			Detecto
	No. IV	м 2390	Hz	Lev dBu	el ∨ 55	Facto	or	me dBu	nt V/m 32	dBuV/m	dB	Detecto
1	No. M	2390 2390	Hz 0.000	dBu	el ∨ 55 96	dB/m 0.77	or	те dBu ¹ 48 .	nt V/m 32 73	dBuV/m 74.00	dB -25.6 -15.2	Detector 8 peal 7 AVG

Page: 55 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	and it	
Ant. Pol.	Horizontal		MIN.
Test Mode:	TX B Mode 2462MHz	No A	NO.
Remark:	N/A	(1)	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2463.400	97.83	1.08	98.91	Fundamental	Frequency	peak
2	*	2464.800	92.96	1.09	94.05	Fundamental	Frequency	AVG
3		2483.500	44.83	1.17	46.00	74.00	-28.00	peak
4		2483.500	35.47	1.17	36.64	54.00	-17.36	AVG

Page: 56 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical				
Test Mode:	TX B Mode 2462MHz				
Remark:	N/A	an's			

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	2460.500	96.28	1.06	97.34	Fundamental F	requency	peak
2	*	2461.400	91.06	1.07	92.13	Fundamental F	requency	AVG
3		2483.500	46.96	1.17	48.13	74.00	-25.87	peak
4		2483.500	35.57	1.17	36.74	54.00	-17.26	AVG

Page: 57 of 95

١	EUT:	CamFi Remote Camera Controller	Model:	CF-102						
	Temperature:	25 ℃	Relative Humidity:	55%						
	Test Voltage:	DC 3.7V								
	Ant. Pol.	Horizontal								
	Test Mode:	TX G Mode 2412MHz	TO A							
	Remark:	N/A	(M:13)							

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	54.24	0.77	55.01	74.00	-18.99	peak
2		2390.000	39.40	0.77	40.17	54.00	-13.83	AVG
3	*	2416.200	85.20	0.88	86.08	Fundamental Frequency		AVG
4	Х	2417.200	95.43	0.88	96.31	Fundamental	Frequency	peak

Page: 58 of 95

Ĭ,	EUT:	CamFi Remote Camera Controller	Model:	CF-102						
	Temperature:	25 ℃	Relative Humidity:	55%						
	Test Voltage:	DC 3.7V								
	Ant. Pol.	Vertical								
	Test Mode:	TX G Mode 2412MHz								
	Remark:	N/A	(M:33							
	Ant. Pol. Test Mode:	Vertical TX G Mode 2412MHz		1001						

No	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	48.28	0.77	49.05	74.00	-24.95	peak
2		2390.000	34.74	0.77	35.51	54.00	-18.49	AVG
3	*	2418.900	80.24	0.89	81.13	Fundamental Frequency		AVG
4	Х	2419.000	90.31	0.89	91.20	Fundamenta	l Frequency	peak

Page: 59 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2462MHz	NO N	No.				
Remark:	N/A						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2467.200	96.28	1.10	97.38	Fundamental	Frequency	peak
2	*	2467.200	87.78	1.10	88.88	Fundamental F	requency	AVG
3		2483.500	65.99	1.17	67.16	74.00	-6.84	peak
4		2483.500	47.74	1.17	48.91	54.00	-5.09	AVG

Page: 60 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical		1			
Test Mode:	TX G Mode 2462MHz	No A	NO.			
Remark: N/A						

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2456.100	85.82	1.05	86.87	Fundamental F	requency	AVG
2	Χ	2459.800	95.78	1.06	96.84	Fundamental F	requency	peak
3		2483.500	61.64	1.17	62.81	74.00	-11.19	peak
4		2483.500	44.63	1.17	45.80	54.00	-8.20	AVG

Page: 61 of 95

EUT:			Cam	Fi Re	mote (Camera	Contro	ller	Mod	lel:			CF-1	02
Temp	eratui	e:	25 °	С		10		Ę	Rela	ative H	łumi	dity:	55%	
Test V	/oltag	e:	DC:	3.7V			1			6		133		
Ant. P	ol.		Hori	zontal		18				1	٧	-	M	d
Test N	/lode:		1XT	N(HT2	O) Mod	de 2412 N	ЛHz	CM	W	2		1 1	A Like	
Rema	rk:		N/A	W						6.10	11)	3		1
110.0	dBuV/m													
										(RF)	FCC PA	4 × 3 × RT 15C (PE	AK)	
60								1 X				ART 15C (A		
									Arana Marie) (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130 (4	July July 1	
								2						
10.0 2330.	000 234	0.00 2	350.00	2360.0	0 237	0.00 238	0.00	2390.00	240	0.00	2410.00	1	2430.00	MHz
No	. Mk	Fre	 eq.		iding vel	Corre Fact		leası mer		Lim	it	Over		
		MH	łz	dE	βuV	dB/m		dBuV	//m	dBu'	V/m	dB	Det	ecto
1		2390.	000	60	.39	0.77		61.1	16	74.	00	-12.8	4 pe	eak
2		2390.	000	39	.95	0.77		40.7	72	54.	00	-13.2	8 A	VG
3	*	2416.	600	84	.25	0.88		85.1	13	Fundar	nental	Frequency	, A	VG
4	Х	2417.	400	94	.23	0.89		95.1	12	Fundam	nental F	requency	pe	eak

Page: 62 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	and the second						
Ant. Pol.	Vertical							
Test Mode:	TX N(HT20) Mode 2412MHz	TX N(HT20) Mode 2412MHz						
Remark:	N/A	an:N						
110.0 dBuV/m								

Ν	10.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			2390.000	47.88	0.77	48.65	74.00	-25.35	peak
2			2390.000	34.75	0.77	35.52	54.00	-18.48	AVG
3		*	2418.000	79.31	0.89	80.20	Fundamental Frequency		AVG
4		Χ	2418.300	89.53	0.89	90.42	Fundamenta	l Frequency	peak

Page: 63 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage: DC 3.7V							
Ant. Pol.	Horizontal		3				
Test Mode:	TX N(HT20) Mode 2462MHz	Distriction of the					
Remark: N/A							

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2468.900	95.14	1.11	96.25	Fundamental I	requency	peak
2	*	2469.000	84.93	1.11	86.04	Fundamental F	requency	AVG
3		2483.500	61.76	1.17	62.93	74.00	-11.07	peak
4		2483.500	45.97	1.17	47.14	54.00	-6.86	AVG

Page: 64 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2462MHz					
Remark:	N/A	an:D				

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2456.800	84.45	1.05	85.50	Fundamental	Frequency	AVG
2	Х	2458.000	95.32	1.06	96.38	Fundamental	Frequency	peak
3		2483.500	62.75	1.17	63.92	74.00	-10.08	peak
4		2483.500	44.90	1.17	46.07	54.00	-7.93	AVG

Page: 65 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102				
Temperature:	25 ℃ Relative Humidity: 55						
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX N(HT40) Mode 2422MHz						
Remark:	N/A						

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	48.14	0.77	48.91	74.00	-25.09	peak
2		2390.000	38.39	0.77	39.16	54.00	-14.84	AVG
3	Х	2428.700	86.74	0.94	87.68	Fundamental	Frequency	peak
4	*	2429.600	76.32	0.94	77.26	Fundamental	Frequency	AVG

Page: 66 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102			
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical		TO THE			
Test Mode:	TX N(HT40) Mode 2422MHz					
Remark:	N/A	an:D				

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	54.08	0.77	54.85	74.00	-19.15	peak
2		2390.000	40.81	0.77	41.58	54.00	-12.42	AVG
3	Х	2415.300	89.41	0.88	90.29	Fundamenta	I Frequency	peak
4	*	2416.200	79.24	0.88	80.12	Fundamenta	I Frequency	AVG

Page: 67 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102	
Temperature:	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	mn s		
Ant. Pol.	Horizontal			
Test Mode:	TX N(HT40) Mode 2452MHz	N P		
Remark: N/A				
110.0 dBuV/m				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
·		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2440.800	81.14	0.98	82.12	Fundamental F	requency	AVG
2	Χ	2444.500	91.68	1.01	92.69	Fundamental F	requency	peak
3		2483.500	60.10	1.17	61.27	74.00	-12.73	peak
4		2483.500	47.32	1.17	48.49	54.00	-5.51	AVG

Page: 68 of 95

CamFi Remote Camera Controller	Model:	CF-102			
25 ℃	Relative Humidity:	55%			
DC 3.7V					
Vertical		3			
TX N(HT40) Mode 2452MHz	The same				
N/A	(M:13				
	25 °C DC 3.7V Vertical TX N(HT40) Mode 2452MHz	25 °C Relative Humidity: DC 3.7V Vertical TX N(HT40) Mode 2452MHz			

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2455.500	80.98	1.05	82.03	Fundamental	Frequency	AVG
2	Χ	2456.300	91.50	1.05	92.55	Fundamental	Frequency	peak
3		2483.500	65.52	1.17	66.69	74.00	-7.31	peak
4		2483.500	49.63	1.17	50.80	54.00	-3.20	AVG

Page: 69 of 95

(2) Conducted Test

Page: 70 of 95

Page: 71 of 95

Page: 72 of 95

Page: 73 of 95

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC	FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item	Limit	Frequency Range(MHz)			
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

Page: 74 of 95

7.5 Test Data

EUT:	CamFi Remote Camera Controller	Model:	CF-102		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Test Mode:	TX 802.11B Mode				
Channel frequence	Channel frequency 6dB Bandwidth		Limit		
(MHz)	(MHz)	(MHz)	(MHz)		
2412	16.40	14.28			
2437	16.40	14.64	>=0.5		
2462	16.40	14.64			
000 44D Mode					

802.11B Mode

2412 MHz

Date: 10.NOV.2016 12:57:15

Page: 75 of 95

Page: 76 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V			
Test Mode: TX 802.11G Mode				
Channel frequence	Channel frequency 6dB Bandwidth 99% Bandwidth Lir		Limit	
(MHz)	(MHz)	(MHz)	(MHz)	
2412	16.40	16.52		
2437	16.40	16.52 >=0		
2462	16.40	16.56		
	802.11G Mod	le	•	

UZ. I I G IVIOU

2412 MHz

Date: 10.NOV.2016 13:04:09

Page: 77 of 95

Page: 78 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Test Mode:	TX 802.11N(HT20) Mode				
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit		
(MHz) (MHz)		(MHz)	(MHz)		

Channel frequency	6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	16.56	16.48	
2437	16.56	16.48	>=0.5
2462	16.56	16.52	
	10.00	10.02	

802.11N(HT20) Mode

2412 MHz

Date: 10.NOV.2016 13:09:24

Page: 79 of 95

Report No.: TB-FCC150463
Page: 80 of 95

Test Voltage: DC 3.7V

Test Mode: TX 802.11N(HT40) Mode

10001		ALM L	
Channel frequency	6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2422	36.24	36.16	
2437	36.40	36.24	>=0.5
2452	36.24	36.24	

802.11N(HT40) Mode

2422 MHz

Date: 10.NOV.2016 13:16:14

Page: 81 of 95

Page: 82 of 95

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(Mi				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v03r05.

The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 83 of 95

8.5 Test Data

EUT:	CamFi Remote Came	CamFi Remote Camera Controller Model:			CF-102
Temperature:	25 ℃	Report	Relative Humid	lity:	55%
Test Voltage:	DC 3.7V		CHILLIA		I WILL
Mode	Channel frequency (MHz)	Test	Result (dBm)		Limit (dBm)
	2412		9.21		
802.11b	2437	9.16			
	2462		9.20		
	2412		9.09	30	
802.11g	2437		9.07		
	2462		9.05		
000 44	2412		8.95		
802.11n (HT20)	2437		8.98		
(11120)	2462		8.89		
802.11n (HT40)	2422		8.93		
	2437		8.92		
	2452		8.96		
	Resu	ılt: PA	ss		

Duty Cycle				
Mode	Channel frequency (MHz)	Test Result		
	2412			
802.11b	2437			
	2462			
	2412			
802.11g	2437			
	2462	>000/		
000 44	2412	>98%		
802.11n	2437			
(HT20)	2462			
000 44	2422			
802.11n (HT40)	2437			
	2452			

84 of 95 Page:

Page: 85 of 95

Page: 86 of 95

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

Page: 87 of 95

9.5 Test Data

EUT:	CamFi Remote Camera Controller Mod		Model:		CF-102
Temperature:	25 ℃	25 ℃ Re		Humidity:	55%
Test Voltage:	DC 3.7V	7:33			I III
Test Mode:	TX 802.11	1B Mode			3 _ 0
Channel Frequency	uency	ency Power Density		Limit (dBm)	
(MHz)		(3 kHz/dBr	n)		
2412		-18.71			
2437		-17.90			8
2462		-18.12			

802.11B Mode

2412 MHz

Date: 10.NOV.2016 13:27:35

TOBY

Page: 88 of 95

89 of 95 Page:

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Temperature:	25 ℃
Test Voltage:	DC 3.7V		

Test Mode:	TX 802.11G Mode
------------	-----------------

171 00211		
Channel Frequency	Power Density	Limit (dBm)
(MHz)	(3 kHz/dBm)	
2412	-24.41	
2437	-24.17	8
2462	-23.02	

802.11G Mode

2412 MHz

Date: 10.NOV.2016 13:25:42

Page: 90 of 95

Page: 91 of 95

EUT:	CamFi Remote Camera Controller	Model:	CF-102
Temperature:	25 ℃	Temperature:	25 ℃
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.11N(HT20) Mode		BHILL:

rest meac.	17. 002.1	milital mode	
Channel Frequ	uency	Power Density	Limit (dBm)
(MHz)		(3 kHz/dBm)	
2412		-24.99	
2437		-25.08	8
2462		-23.72	

802.11N(HT20) Mode

2412 MHz

Date: 10.NOV.2016 13:23:47

Page: 92 of 95

Page: 93 of 95

EUT:	CamFi Re	emote Camera	Model:		CF-102
Temperature:	25 ℃		Tempera	ture:	25 ℃
Test Voltage:	DC 3.7V				
Test Mode:	TX 802.11N(HT40) Mode				
Channel Frequency Power Den		sity	Limit (dBm)		
(MHz)		(3 kHz/dBr	n)		

Channel Frequency	Power Density	Limit (dBm)
(MHz)	(3 kHz/dBm)	
2422	-27.90	
2437	-27.62	8
2452	-26.26	
		*

802.11N(HT40) Mode

2422 MHz

Date: 10.NOV.2016 13:21:43

Page: 94 of 95

Page: 95 of 95

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0.9 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.

	Antenna Type
	▶ Permanent attached antenna
Man	□ Unique connector antenna
	□ Professional installation antenna