

AN INTRODUCTION TO IPSO SMART OBJECTS

Jaime Jiménez, Ericsson Research

March 31st, 2015

TABLE OF CONTENTS

1. IoT History

- From M2M to IoT
- Mainstream IoT

2. IoT Protocols

- The Web
- CoAP
- -LWM2M
- IPSO Objects

3. IPSO Smart Objects

- Relationship with other standards
- Protocol Stack
- Example
- Deployment

1. IOT HISTORY

MOVING INTO IOT

Machine-to-Machine

- Point problem driven
- Connected device centric

- Internal bus objectives
- B2B
- Consultancy & SI
- In-house deployment
- Vertical silos
- Single-app devices
- Proprietary industry tech
- Specialized s/w dev't

Internet of Things

- Complex problems
- Remote operations

- Marketplaces and Value Networks
- B2B2C
- Open web and innovation
- Cloud and aaS
- Horizontal integration
- Generic devices
- Standards & open source
- Open APIs & dev't

MAKE DEVICES GO MAINSTREAM

Go IP

- Reduce technology fragmentation
- Drive IP to the "tiniest of devices"

> Go Web

- Use standard web technologies
- Ease enterprise SOA integration
- Attract the global developer community

Go Simple

- Make devices application generic
- Drive value from devices to cloud enablement
- Break device silos

2. IOT PROTOCOLS

THE WEB

> HTTP and REST

- Defines a client/server model and a request/response communication model.
- Support of extensive representation formats (e.g. HTML, JSON, XML etc.)
- Web content can be anything (HTML files, images, video...) each piece of information is a resource.
- Defines some methods to indicate the server what to do. (GET, POST, PUT, HEAD, DELETE, TRACE).
- Statelessness, requests are performed with the information provided only in that request
- Resources are identified with identifiers (URI), either by location or by name.
- Resources are accessible via an uniform locator (URL)

```
PROTOCOL://HOST_NAME:PORT /RESOURCE_PATH?RESOURCE_INPUT
```

Resources can be identified with an unique identity (URN)

```
urn:NAMESPACE_IDENTIFIER:SPECIFIC_STRING
```

COAP

- > It is a RESTful protocol for constrained devices and networks. Similar to HTTP:
 - Client/server (although now tending more to P2P model) & Request/Response
 - GET, POST, PUT and DELETE Methods
 - Same key concepts (Media types, URL, URN...)
- > Resource discovery via the Resource Directory (RD)

```
Request coap://HOST_ADDRESS:PORT_NUMBER/PATH?QUERY
Response coap://ericsson.com:5683/rd/jorvas/room/541/temperature/
```

> The well-known URI

```
coap://[2001:db8::2:1]/.well-known/core
```

- > IPv6 oriented (using 6LowPAN)
- > UDP preferred instead of TCP, SMS also possible
 - Reliability is ensured by using with different message types:
 - Confirmable (CON), non-confirmable (NON), acknowledgement (ACK) and reset (RST).
- > Observe/Notify, adding an "observe" flag in the CoAP GET Request
 - Introduces a Publish/Subscribe model for constrained devices.

OMA LWM2M

- > Based on CoAP (runs on top) and used for management and control of constrained devices
- > Provides a set of interfaces for managing of constrained devices.
 - Bootstrap
 - Registration
 - Information Reporting
 - Device Management
 - Service Enablement
- Swaps "server" and "client" roles. A Constrained device would then run at least a CoAP Server and LWM2M Client.
- Also allows for operations on objects (RWX, Access Control, Observation, Notification)
- Offers a simple and reusable object based model.

IPSO OBJECTS

- > First introduced in LWM2M
- To ensure application interoperability
- > Make it simple to add new resources.
- Common design pattern that is independent of the protocol used (CoAP, HTTP, MQTT, SNMP, TR69,...)
- To provide the building blocks to semantically define more complex devices
 - Washing Machine = sensors for humidity, temperature, water level, water-valves (for the hoses going to to/from it), a pump, a timer, electricity sockets, a capacitor...

3. IPSO SMART OBJECTS

RELATIONSHIP WITH OTHER STANDARDS

AFTER IP - THE WEB IN CONSTRAINED DEVICES

- > RESTful web services to embedded devices
 - Eases enterprise SOA integration
 - Eases application development Web programming∂
- > HTTP or CoAP possible
 - CoAP (and EXI) for constrained environments, including Observe
 - HTTP-CoAP interworking
- > Resource view
 - Web resources web linking
 - Semantic annotations and simple profiles preferred
 - XML EXI, JSON
- "Open" means discovery
 - publication and look-up
- > Wrapping of Legacy devices

IPSO SMART OBJECT STRUCTURE I

Physical Object

OMA lw Object

Resource

IPSO SMART OBJECT STRUCTURE II

- > REST API with a URI template
 - Objects
 - Object Instances
 - Resources
 - (Resource Instances)
- > Reusable resource and object IDs
 - Common definitions for concepts
 - Map to semantic terms e.g. temperature, currentValue
 - IDs are registered with the OMNA
- > Can be embedded in a path hierarchy on the server
 - -/home/weather/3303/0/5700

IPSO BAROMETER OBJECT

Object	Object ID	Object URN	Multiple Instances?
IPSO Barometer	315	urn:oma:lwm2m:ext:315	Yes

Resource Name	Resource ID	Access Type	Multiple Instances?	Туре	Range or Enumerati on	Units	Descriptions
Sensor Value	5700	R	No	Decimal		kPa	This resource type returns the air pressure Value in kPa
Min Measured Value	5601	R	No	Decimal		kPa	The minimum value measured by the sensor since it is ON
Max Measured Value	5602	R	No	Decimal		kPa	The maximum value measured by the sensor since it is ON
Min Range Value	5603	R	No	Decimal		kPa	The minimum value that can be measured by the sensor
Max Range Value	5604	R	No	Decimal		kPa	The maximum value that can be measured by the sensor

WASHING MACHINE EXAMPLE I

WASHING MACHINE EXAMPLE II


```
REGISTRATION (EP Name,
CoAP S
                                                                  CoAP C
                     Lifetime SMS,)
LWM2M C
                                                                  LWM2M S
              </3303/0/5700></3303/0/5701></3303/0/5702></
              3303/0/5703><3303/0/5704>;rt="oma.lwm2m";ct=50;obs
       Success 2.05
       Get (Observe) /3303/0 Observe Token: 2222
       Success 2.05
       2.04 (Notify)
       Message ID: 34
       Token: 2222
```


ERICSSON