

EC4301 MACROECONOMETRÍA

Asistente: Juan Andrés Montero

Laboratorio #4:

Operadores de Rezagos y Polinomios en Series de Tiempo

Creado: Setiembre 2024

Operador de rezagos

El operador de rezagos (L) es una función que toma los valores de una serie de tiempo y devuelve el valor del periodo inmediatamente anterior:

$$Lx_t = x_{t-1}$$

Estrictamente, definimos:

$$L^0 = 1$$

$$L^k x_t = x_{t-k}$$

Propiedades del operador de rezagos

Note que:

$$(1-L)x_t = x_t - x_{t-1}$$

Además:

$$L\beta = \beta$$

En general, los operadores de rezagos poseen todas las propiedades aritméticas usuales.

Polinomios de rezagos

Podemos definir un polinomio de rezagos como sigue:

$$(1 + \phi_1 L + \phi_2 L^2 + \dots + \phi_p L^p)x_t = x_t + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p}$$

¿Cómo invertir un polinomio de rezagos?

Primero, considere que:

$$(1-\phi L)(1+\phi L+\phi^2L^2+\cdots+\phi^kL^k)x_t=(1-\phi^{k+1}L^{k+1})x_t=x_t-\phi^{k+1}x_{t-k-1}$$

Condición para invertir

De este modo, si $|\phi| < 1$:

$$\lim_{k\to\infty}\phi^{k+1}x_{t-k-1}=0$$

Y, por tanto:

$$(1-\phi)(1+\phi L + \phi^2 L^2 + \cdots)x_t = x_t$$

Conclusión de la inversión

Así que concluimos:

$$(1-\phi)^{-1} = 1 + \phi L + \phi^2 L^2 + \cdots$$

Polinomio de rezagos general

Volvamos al caso general del polinomio de rezagos:

$$\Phi(L)=1+\phi_1L+\phi_2L^2+\cdots+\phi_pL^p$$

Del Teorema Fundamental del Álgebra, sabemos que existe una factorización:

$$\Phi(L) = (1-\lambda_1 L)(1-\lambda_2 L)\cdots (1-\lambda_p L)$$

El Teorema Fundamental del Algebra (TFA) dice que todo polinomio a coeficientes complejos tiene un raíz compleja, es decir existe un número complejo donde el polinomio evalua a cero

Inversión de $\Phi(L)$

En consecuencia:

$$\Phi^{-1}(L) = (1 - \lambda_1 L)^{-1} (1 - \lambda_2 L)^{-1} \cdots (1 - \lambda_p L)^{-1}$$

Expansión de la inversión

La inversión puede expandirse como:

$$=(1+\lambda_1L+\lambda_1^2L^2+\cdots)(1+\lambda_2L+\lambda_2^2L^2+\cdots)\cdots(1+\lambda_pL+\lambda_p^2L^2+\cdots)$$

El AR(P) es invertible si sus raíces características son menores a 1

Sobre los tipos de datos

Datos de Corte Transversal

Observación	País	Tasa de crecimiento PIBpp	Ratio G/PIB	Adultos con Secundaria
1	Argentina	0.89	9	32
2	Austria	3.32	16	50
3	Bélgica	2.56	13	69
4	Bolivia	1.24	18	12
•	,	7.5		
	•	*	•	
•.:		•		
61	Zimbabue	2.3	17	6

Sección Narváez

Datos de Serie de Tiempo

Observación	Año	Salario mínimo promedio	Tasa de cobertura promedio	Desempleo	PIB
1	1950	0.2	20.1	15.4	878.7
2	1951	0.21	20.7	16	925
3	1952	0.23	22.6	14.8	1015.9
•	•	•	•	*	•
•	*		•	*	•
	•			•	
37	1986	3.35	53.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

Sección Narváez

Datos Panel

Observación	Ciudad	Año	Crímenes	Población	Policia
1	1	1989	5	350000	440
2	1	1990	8	359200	471
3	2	1989	2	64300	75
4	2	1990	1	65100	75
	•			N * 3	•
•		•	**	•	•
•	•	Ě	•	•	
297	149	1989	10	260700	286
298	149	1990	6	245000	334
299	150	1989	25	543000	520
300	150	1990	32	546200	493

Sección Narváez