ML in Control

Domain: Control Engineering

OO2 Thesis: Reinforcement Learning

003 Summary

004 Reference

Domain: Control Engineering

로봇, 자동차의 자율주행 모식도

Domain: Control Engineering

4-Wheel Robot Control Diagram

1. 자동차 부품 연구개발 2. 로봇 전장 설계 및 하위제어기 연구개발

Why Feedback? uncertainty, Instability, Disturbance, Efficient

인공지능은 제어에 어떻게 활용될 것인가?

Thesis: RL(Reinforcement Learning)

- 1. 사용되는 곳:
- 게임의 기준 시험
- 자동차 시뮬레이터(자율주행 연구개발)
- 로봇 시뮬레이션(실제 자료와 비슷하게 구현)
- 로봇 팔로 딱 맞는 조각 조립하기
- 빌딩 자율주행 로봇 네비게이션 학습
- 기린 사진 학습
- 2. 학습전략: Deep Reinforcement Learning
- 3. 네트워크 : DQN(Deep Q-Network)

002

Thesis: DL(Deep Learning)

Ref.	Learning Strategy	Network	Inputs	Outputs	Pros	Cons
[83], [84]	Supervised learning	Feedforward network with one hidden layer	Camera image	Discretized steering angles	First promising results for neural network-based vehicle controllers	Simple network and discretized outputs degrade performance
[85]	Reinforcement Learning	Feedforward network with one hidden layer	Camera image	Discretized steering angles	Supports online learning	Simple network and discretized outputs degrade performance
[86]	Supervised learning	six-layer CNN	Camera image	Steering angle	Robust to environmental diversity	Large errors, trained and tested on a sub-scale vehi- cle model
[87]	Supervised learning	nine-layer CNN	Camera image	Steering angle values	High level of autonomy during field test	Only considers lane following, occasionally requires interventions by the driver
[45]	Supervised learning	eight-layer CNN	Simulated camera image	Steering angle values	Learns from minimal training data	Oscillatory behavior of the steering signal
[88]	Supervised learning	CNN-RNN	Camera image	Steering angle values	Considers temporal dependencies	Instability of RNN training, No live testing

1. 사용되는 곳 : 자율주행 횡방향(Lateral) 제어

2. 학습 전략 : Supervised Learning /

Reinforcement Learning

3. 네트워크 : CNN, RNN, FN(Feedforward

Network)

002

Thesis: DL(Deep Learning)

Ref.	Learning Strategy	Network	Inputs	Outputs	Pros	Cons
[94]	Fuzzy	Feedforward	Relative distance,	Throttle	Model-free, continuous	Single term reward
	reinforcement	network with	relative speed,	angle, brake	action values	function
	learning	one hidden layer	previous control	torque		
			input			
[23]	Reinforcement	Feedforward	Time headway,	Accelerate,	Maintains a safe	Oscillatory accelera-
	learning	network with	headway derivative	brake, or	distance	tion behavior,
		one hidden layer		no-op		no term for comfort
						in reward function
[95]	Reinforcement	Actor-Critic	Velocity, velocity	Gas and	Learns from minimal	Noisy behavior
	learning	Network	tracking error,	brake com-	training data	of the steering
			acceleration error,	mands		signal
			expected acceler-			
			ation			
[98]	Reinforcement	Feedforward	Vehicle velocity,	Discretized	Reliably avoids	Only considers
	learning	network with	relative position of	deceleration	collisions	collision avoidance
		five hidden	the pedestrian for	actions		with pedestrians
		layers	past five time steps			
[96]	Reinforcement	Feedforward	Relative distance,	Desired accel-	Provides smooth	No methods for
	learning	network with	relative velocity,	eration	driving styles,	preventing learning
		one hidden	relative accelera-		learns personal	of bad habits
		layer	tion (normalized)		driving styles	from human drivers
[97]	Reinforcement	Actor-Critic	Relative distance,	Desired accel-	Performs well in a	Adapting unsafe
	learning	Network	host velocity, rel-	eration	variety of scenarios,	driver habits could
			ative		safety and comfort	degrade safety
			velocity, host		considered, learns	
			acceleration		personal driving styles	
[22]	Supervised	Actor-Critic	Relative distance,	Desired accel-	Pre-training by	Requires supervision
	reinforcement	Network	relative velocity	eration	supervised learning	to converge,
	learning				accelerates learning	driving comfort
					process and helps	not considered
					guarantee convergence,	
					performs well in	
					critical scenarios	

1. 사용되는 곳 : 자율주행 종방향(Longitudinal) 제어

2.학습 전략: Fuzzy Reinforcement Learning /

Reinforcement Learning

3. 네트워크 : FN, Actor-Critic Network

Thesis: Applications - Mobile Robot

Thesis: Applications - Haptic Guidance System

Network

Actor-Critic,
FN, CNN,
RNN

Robot,
Trajectory
Prediction,
Nonlinear
function

Robot,
Boundedness
of weight,
Real-time

Applications

Challenges

→ Reinforcement Learning is a trend in Control Engineering.

- [1] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath, "Deep Reinforcement Learning: A Brief Survey," in *IEEE Signal Processing Magazine*, vol. 34, no. 6, pp. 26-38, Nov. 2017, doi: 10.1109/MSP.2017.2743240.
- [2] Sampo Kuutti; Saber Fallah; Richard Bowden; Phil Barber, *Deep Learning for Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future Prospects*, Morgan & Claypool, 2019, doi: 10.2200/S00932ED1V01Y201906AAT008.
- [3] F. Niroui, K. Zhang, Z. Kashino and G. Nejat, "Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments," in *IEEE Robotics and Automation Letters*, vol. 4, no. 2, pp. 610-617, April 2019, doi: 10.1109/LRA.2019.2891991.
- [4] Z. Wang, Z. Yan and K. Nakano, "Comfort-oriented Haptic Guidance Steering via Deep Reinforcement Learning for Individualized Lane Keeping Assist," 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 4283-4289, doi: 10.1109/SMC.2019.8914219.