

رمه دانشکده علوم ریاضی و آمار

نيمسال اول ١٤٠٠-١٤٠١

مدرس: دكتر مجتبى رفيعى

ساختمان دادهها و الگوريتمها - طرح سوال جلسات ۷ تا ۲۰

مهلت تحول: ۱ آذر ۱۴۰۰ آذر ۱۴۰۰ آذر ۱۴۰۰ آبان ۱۴۰۰

- پاسخها باید در قالب یک سند PDF و با نام شماره دانشجویی (StudentNumber.pdf) در سامانه LMS بارگذاری شود. هر گونه فایل در قالب تصویر یا زیپ نادیده گرفته خواهد و هیچ نمرهای به آن تخصیص داده نخواهد شد.
 - به پاسخهای مشابه نمرهای داده نمی شود. لذا بعد از همفکری با دوستان خود، لطفا با جملات خودتان اقدام به نگارش تکلیف نمایید.
 - تمرینهایی که به رایانامه درس ارسال میشوند مورد بررسی قرار نخواهد گرفت و در نتیحه نمرهای هم برای ان لحاظ نمیشود.
 - حداكثر اندازه مجاز براى فايل ارسالي 3 MB مىباشد.
 - مهلت زمانی ارسال پاسخ نامه ساعت ۱۱:۵۵ روز مشخص شده در مستند تمرین است و این زمان قابل تمدید نخواهد بود.
 - پاسخ هر سوال می بایست دقیق و متناسب با سوال باشد. لذا از ذکر مطالب مبهم، نامرتبط و زاید خودداری کنید.
 - حداكثر تعداد صفحات پاسخ مىبايست ١٠ صفحه باشد.
 - در صورت استفاده از منابع خاصی برای پاسخ به سوال، نام منابع را ذکر کنید.
 - پاسخها میتوانند به طور کامل به زبان فارسی یا به طور کامل به زبان انگلیسی نوشته شوند، و لذا ترکیبی از هر دو مجاز نیست.
 - در صورت نقض هر یک از موارد ذکر شده، نمره کسر خواهد شد.

سوال ١

- نمره) حل هر یک از رابطههای بازگشتی زیر را در قالب نمادهای مجانبی $\mathcal O$ و Ω تعیین کنید. Δ
- ho لازم به ذکر است که هدف پیدا کردن پایین ترین مرز برای نماد O و بالاترین مرز برای نماد Ω میباشد.
 - ⊳ روشهای مجاز: قضیه اصلی، حدس و استقرا، درخت بازگشت و جایگذاری.
- $T(n) = 2T(\frac{n}{2}) + n^4$,
- $T(n) = T(\frac{7n}{10}) + n$,
- $T(n) = 16T(\frac{n}{4}) + n^2$,
- $T(n) = 7T(\frac{n}{3}) + n^2$,
- $T(n) = 7T(\frac{n}{2}) + n^2$,

- $T(n) = 2T(\frac{n}{4}) + \sqrt{n}$,
- $T(n) = T(n-2) + n^2$,

سوال ۲

(۵ نمره) شبه کد مربوط به نسخه بازگشتی و نسخه تکراری الگوریتم جستجوی دودویی را نوشته و سپس پیچیدگی زمانی آن را تحلیل و درستی

⊳ برای تحلیل پیچیدگی نسخه بازگشتی از فرم کلی پیچیدگی زمانی مربوط به رویکرد تقسیم و غلبه استفاده کرده و بخشهای آن را به طور دقیق مشخص کرده و سپس اقدام به حل آن نمایید.

⊳ برای اثبات درستی، به طور دقیق گامهای ناوردایی حلقه (در صورت نیاز) و گامهای استقرا را تعیین کنید.

سو ال ۳

را در نظر گرفته و به سوالات زیر پاسخ دهید. $T(n) = \mathsf{r}T(\frac{n}{\mathsf{r}}) + n^\mathsf{r}\log n$ رابطه بازگشتی $T(n) = \mathsf{r}T(\frac{n}{\mathsf{r}}) + n^\mathsf{r}\log n$

- آیا قضیه اصلی قابل اعمال روی رابطه بازگشتی فوق میباشد؟ حالتهای مختلف را بررسی و هر یک از آنها را رد یا تایید نمایید.

- براى رابطه بازگشتى فوق، يك حد مجانبى بالا ييدا كنيد.

ho در قسمت اول، ذکر جواب بله/خیر کفایت نمیکند و میبایست حالتهای مختلف را تحلیل کنید. ho در قسمت دوم، پایین ترین مرز مجانبی بالا مد نظر است.

سوال ۴

(۵ نمره) شرط زیر را که برای حالت سوم قضیه اصلی بیان گردید، در نظر بگیرید.

 $af(\frac{n}{b}) \le f(n)$, for some constant, c < 1 (*)

تابع f(n)ای را پیشنهاد دهید که شرایط زیر برای آن برقرار باشد:

- شرط فوق (*) برای آن برقرار نباشد،
- رابطه $f(n) = \Omega(n^{c+\epsilon})$ برای آن برقرار باشد.

ابایت که به طور معمول برای تابع f(n)، مبنی بر صعودی بودن آن لحاظ شد، تابع پیشنهادی شما میتواند صعودی نباشد و با اینحال شرط متناوب نبودن تابع همواره میبایست برقرار باشد، چرا که در غیر اینصورت مفاهیم مجانبی برای آنها قابل تعریف نیست).

سوال ۵

(۵ نمره) با استفاده از درخت بازگشت، توابع بازگشتی زیر را حل کنید.
⊳ بیان پایین ترین کران بالا (یا بالاترین کران پایین) کفایت میکند و نیاز به ارایه حل دقیق نیست.

- $T(n) = T(\alpha n) + T((1 \alpha)n) + cn$, where $0 < \alpha < n$ and c > 0,
- $T(n) = T(n \alpha) + T(\alpha) + cn$, where $1 \le \alpha$ and c > 0.

سوال ۶

(۵ نمره) فرض کنید f(n) و g(n) دو تابع مثبت باشند، بررسی کنید که آیا روابط زیر برقرار است یا خیر ک

- $\max(f(n), g(n)) = \theta((f(n) + g(n))),$
- $f(n) + g(n) = \theta \Big(\min \big(f(n), g(n) \big) \Big)$
- $f(n) = \mathcal{O}(g(n)) \rightarrow g(n) = \mathcal{O}(f(n))$
- $o(g(n)) \cap \omega(g(n)) = \emptyset$,
- $f(n) = \theta(f(\frac{n}{2}))$
- $f(n) + o(f(n)) = \theta(f(n))$
- $2^{n+1} = \mathcal{O}(2^n)$,
- $2^{2n} = \mathcal{O}(2^n)$,
- $(n+a)^b = \theta(n^b)$, for any real constants a and b > 1,

سوال ٧

(۵ نمره) روابط مجانبی زیر را بررسی و درستی/نادرستی آنها را تحلیل کنید.

- $2^{n+1} = \mathcal{O}(2^n)$,
- $2^{2n} = \mathcal{O}(2^n)$,
- $(n+a)^b = \theta(n^b)$, for any real constants a and b > 1.

سوال ۸

(۵ نمره) روابط مجانبی را بررسی و سلولهای جدول را با بله/خیر پر کنید.

f(n)	g(n)	0	0	Ω	ω	θ
$\log^k n$	n^{ϵ}					
2^n	$2^{\frac{n}{2}}$					
\sqrt{n}	$n^{\sin n}$					
$n^{\log c}$	$c^{\log n}$					

Table 1: $k \ge 1, \ \epsilon > 0, \ c > 1$