année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir N°1 Filière Tronc Commun Scientifique Durée 1h30

_Chimie 7pts ______

Partie 1 :Classification périodique des éléments chimiques (7pts) La couche électronique externe d'un atome est la couche (M). Elle comporte 1 électron.

Physique 13pts _____

Les deux parties sont indépendantes

Partie 1 :Équilibre d'un corps solide soumis à trois forces non parallèles (7 pts)

On considère un solide (S) de masse m=200g, accroché à un ressort (R) et à un fil (F) comme l'indique la figure ci-contre.

Le ressort de raideur K=40N/m est incliné d'un angle α =30° par rapport à la verticale. Le fil est horizontal.

Un homme maintient en équilibre un panneau de centre G, de masse m=50kg, et de longueur OA=2m dans une position inclinée d'un angle $\alpha=60^\circ$ avec le sol. Il exerce en H, à la distance OH=1,7m une force \vec{F} perpendiculaire au panneau comme indique la figure ci-contre. Le panneau peut tourner autour de l'axe (Δ) passant par O

1. Faire l'inventaire des forces appliquées sur le panneau, et les représenter sur la figure(2pts)
2. Enoncer le théorème des moments
3. Trouver l'expression du moment de chaque force appliquée sur le panneau
4. En utilisant le théorème des moments, montrer que l'expression de l'intensité de la force \vec{F} appliquée par l'homme s'écrit sous la forme : $F = \frac{m.g.OA.cos\alpha}{2.OH}$
, et calculer sa valeur