Package 'bartcs'

July 18, 2022
Title Bayesian Additive Regression Trees for Confounder Selection
Version 0.1.1
Description Fit Bayesian Regression Additive Trees (BART) models to select relevant confounders among a large set of potential confounders and to estimate average treatment effect. For more information, see Kim et al. (2022) <doi:10.48550 arxiv.2203.11798="">.</doi:10.48550>
License GPL (>= 3)
<pre>URL https://github.com/yooyh/bartcs</pre>
<pre>BugReports https://github.com/yooyh/bartcs/issues</pre>
Depends R (>= 2.10)
Imports ggcharts, ggplot2, invgamma, MCMCpack, Rcpp, rlang, rootSolve, stats
Suggests knitr, microbenchmark, rmarkdown
LinkingTo Rcpp
VignetteBuilder knitr
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.0
R topics documented:
bartcs-package bart count_omp_thread gelman_rubin

2 bart

Index																					10)
	summary.bartcs	 	•					•	•		•		•	 •	•			•	•		8	3
	plot.bartes	 				 															7	7
	ihdp																					

bartcs-package

bartcs: Bayesian Additive Regression Trees for Confounder Selection

Description

Fit Bayesian Regression Additive Trees (BART) models to select relevant confounders among a large set of potential confounders and to estimate average treatment effect. For more information, see Kim et al. (2022).

Details

Functions in bartcs serve one of three purposes.

- 1. Functions for fitting: sbart() and mbart().
- 2. Functions for summary: summary(), plot() and gelman_rubin().
- 3. Utility function for OpenMP: count_omp_thread().

References

Kim, C., Tec, M., & Zigler, C. M. (2022). Bayesian Nonparametric Adjustment of Confounding. *arXiv preprint arXiv:2203.11798*. doi:10.48550/arXiv.2203.11798

bart

Fit BART models to select confounders and estimate treatment effect

Description

Fit Bayesian Regression Additive Trees (BART) models to select relevant confounders among a large set of potential confounders and to estimate average treatment effect (Y(1) - Y(0)).

Usage

```
sbart(
 Y, trt, X,
                 = 1,
 trt_treated
                 = 0,
 trt_control
                 = 50,
 num_tree
                 = 4,
 num_chain
                 = 100,
 num_burn_in
 num_thin
                 = 0,
 num_post_sample = 100,
                 = c(0.28, 0.28, 0.44),
 step_prob
 alpha
                 = 0.95,
                 = 2,
 beta
```

bart 3

```
= 3,
  nu
                  = 0.95,
  q
  dir_alpha
                 = 5,
                 = NULL,
  boot_size
                 = NULL,
  parallel
                  = TRUE
  verbose
)
mbart(
  Y, trt, X,
  trt_treated
                 = 1,
  trt_control
                 = 0,
                 = 50,
  num_tree
  num_chain
                 = 4,
                 = 100,
  num_burn_in
  num_thin
                 = 0,
  num_post_sample = 100,
                 = c(0.28, 0.28, 0.44),
  step_prob
                 = 0.95,
  alpha
                 = 2,
  beta
  nu
                 = 3,
                 = 0.95,
  q
                 = 5,
  dir_alpha
  boot_size
                 = NULL,
  parallel
                 = NULL,
  verbose
                  = TRUE
)
```

Arguments

Υ	Outcome variable.
trt	Treatment variable.
Χ	Potential confounders.
trt_treated	Value of trt for treated group.
trt_control	Value of trt for control group.
num_tree	Number of trees in BART model.
num_chain	Number of MCMC chains. Need to set num_chain > 1 for Gelman-Rubin diagnostic.
num_burn_in	Number of MCMC samples to be discarded per chain as initial burn-in periods.
num_thin	Number of thinning per chain. One in every num_thin samples are selected.
num_post_samp	le
	Final number of posterior samples per chain. Number of MCMC iterations per chain is burn_in + num_thin * num_post_sample.
step_prob	A vector of tree alteration probabilities (GROW, PRUNE, CHANGE). Each alteration is proposed to change the tree structure. Default setting is (0.28, 0.28, 0.44).
alpha, beta	Hyperparameters for tree regularization prior. A terminal node of depth d will split with probability of alpha $*(1 + d)^{-beta}$.
nu, q	Values to calibrate hyperparameter of sigma prior. Default setting is $(nu, q) = (3, 0.95)$ from Chipman et al. (2010).

4 bart

dir_alpha Hyperparameter of Dirichlet prior for selection probabilities. Number of bootstrap sample size. Bootstrap samples will be used to compute potential outcomes Y(1) and Y(0).

parallel If TRUE, model fitting will be parallelized with respect to n = nrow(X). Parallelization is recommended for very high n only.

verbose If TRUE, message will be printed during training. If FALSE, message will be suppressed.

Details

sbart() and mbart() fit an exposure model and outcome model(s) for estimating treatment effect with adjustment of confounders in the presence of a large set of potential confounders (Kim et al. 2022).

The exposure model E[A|X] and the outcome model(s) E[Y|A,X] are linked together with a common Dirichlet prior that accrues posterior selection probability to confounders (X) on the basis of association with both the exposure (A) and the outcome (Y).

There is a distinction between fitting each outcome model for the treated and control groups and fitting a single outcome model for the entire sample.

- sbart() specifies two "separate" outcome models for two binary treatment levels. Thus, it fits three models: one exposure model and two separate outcome models for A=0,1.
- mbart() specifies a single "marginal" outcome models. Thus, it fits two models: one exposure model and one outcome model for the entire sample.

All inferences are made with outcome model(s).

Value

A bartcs object. A bartcs object is a list with following components.

ATE Aggregated posterior samples of average treatment effect (Y(1) - Y(0)).

Y1 Aggregated posterior samples of potential outcome Y(1).

Y0 Aggregated posterior samples of potential outcome Y(0).

Var_prob Aggregated posterior inclusion probability of each variable.

Chains A list of results from each MCMC chain. Each list element consists of follows.

A list of results from each MCMC chain. Each list element consists of followings.

- ATE Posterior sample of average treatment effect (Y(1) Y(0)).
- Y1 Posterior sample of potential outcome Y(1).
- Y0 Posterior sample of potential outcome Y(0).
- var_prob Posterior inclusion probability of each variable.
- var_count Number of selection of each variable in each MCMC iteration. Its dimension is num_post_sample * ncol(X).
- sigma2_out Posterior sample of sigma2 in the outcome model.
- dir_alpha Posterior sample of dir_alpha.

model sbart or mbart.
label Column names of X.

params Parameters used in the model.

count_omp_thread 5

References

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. *The Annals of Applied Statistics*, 4(1), 266-298. doi:10.1214/09AOAS285

Kim, C., Tec, M., & Zigler, C. M. (2022). Bayesian Nonparametric Adjustment of Confounding. *arXiv preprint arXiv:2203.11798*. doi:10.48550/arXiv.2203.11798

Examples

```
data(ihdp, package = "bartcs")
mbart(
  Υ
                 = ihdp$y_factual,
               = ihdp$treatment,
  trt
 Χ
                = ihdp[, 6:30],
 num_tree = 10,
num_chain = 2,
 num_post_sample = 20,
 num_burn_in = 10,
  verbose
                = FALSE
)
sbart(
                = ihdp$y_factual,
  Υ
              = ihdp$treatment,
  trt
                = ihdp[, 6:30],
  Χ
 num_tree = 10,
num_chain = 2,
  num_post_sample = 20,
  num_burn_in = 10,
                = FALSE
  verbose
```

count_omp_thread

Count the number of OpenMP threads for parallel computation

Description

count_omp_thread() counts the number of OpenMP threads for parallel computation. If it returns 1, OpenMP is not viable.

Usage

```
count_omp_thread()
```

Value

Number of OpenMP thread(s).

Examples

```
count_omp_thread()
```

6 ihdp

gelman_rubin

Gelman-Rubin diagnostic for bartcs objects.

Description

gelman_rubin() computes Gelman-Rubin diagnostic for bartcs objects.

Usage

```
gelman_rubin(x)
```

Arguments

X

A bartcs object.

Value

Gelman-Rubin diagnostic value.

Examples

```
data(ihdp, package = "bartcs")
x <- mbart(</pre>
 Υ
                 = ihdp$y_factual,
  trt
                 = ihdp$treatment,
 Χ
                 = ihdp[, 6:30],
                = 10,
 num_tree
             = 2,
 num_chain
 num_post_sample = 20,
 num_burn_in = 10,
  verbose
                = FALSE
gelman_rubin(x)
```

ihdp

Infant Health and Development Program Data

Description

Infant Health and Development Program (IHDP) is a randomized experiment from 1985 to 1988 which studied the effect of home visits on cognitive test scores for infants.

Usage

ihdp

plot.bartes 7

Format

treatment Given treatment.

y_factual Observed outcome.

y_cfactual Potential outcome given the opposite treatment.

mu0 Control conditional means.

mu1 Treated conditional means.

X1 ~ X6 Confounders with continuous values.

X7 ~ X25 Confounders with binary values.

Details

This dataset was first used by Hill (2011), then used by other researchers (Shalit et al. 2017, Louizos et al. 2017).

Source

Our version of dataset is the dataset used by Louizos et al. (2017). This is the first realization of 10 generated datasets and you can find other realizations from https://github.com/AMLab-Amsterdam/CEVAE.

References

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. *Journal of Computational and Graphical Statistics*, 20(1), 217-240. doi:10.1198/jcgs.2010.08162

Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., & Welling, M. (2017). Causal effect inference with deep latent-variable models. *Advances in neural information processing systems*, *30*. doi:10.48550/arXiv.1705.08821 https://github.com/AMLab-Amsterdam/CEVAE

Shalit, U., Johansson, F. D., & Sontag, D. (2017, July). Estimating individual treatment effect: generalization bounds and algorithms. In *International Conference on Machine Learning* (pp. 3076-3085). PMLR. doi:10.48550/arXiv.1606.03976

plot.bartcs

Draw plot for bartcs object

Description

Two options are available: posterior inclusion probability (pip) plot and trace plot.

Usage

```
## S3 method for class 'bartcs'
plot(x, method = NULL, parameter = NULL, ...)
```

Arguments

x A bartcs object.

method "pip" for posterior inclusion probability plot or "trace" for trace plot.

parameter Target of parameter for traceplot.

... Additional arguments for pip plot. Check ?ggcharts::bar_chart for possible

arguments.

8 summary.bartes

Details

PIP plot:

When a posterior sample is sampled during training, sbart() or mbart() also counts which variables are included in the model and compute pip for each variable. For bartcs object x, this is stored in x\$var_count and x\$var_prob respectively. plot(method = "pip") uses this information and draws plot using ggcharts::bar_chart().

Traceplot:

Parameters are recorded for each MCMC iterations. Parameters include "ATE", "Y1", "Y0", "dir_alpha", and either "sigma2_out" from mbart() or "sigma2_out1" and "sigma2_out0" from sbart(). Vertical line indicates burn-in.

Value

A ggplot object of either pip plot or trace plot.

Examples

```
data(ihdp, package = "bartcs")
x <- mbart(
  Υ
                  = ihdp$y_factual,
  trt
                 = ihdp$treatment,
  Χ
                 = ihdp[, 6:30],
               = 10,
  num_tree
  num_chain
                 = 2,
  num_post_sample = 20,
  num_burn_in = 10,
                 = FALSE
  verbose
)
# pip plot
plot(x, method = "pip")
plot(x, method = "pip", top_n = 10)
plot(x, method = "pip", threshold = 0.5)
# Check `?ggcharts::bar_chart` for other possible arguments.
# trace plot
plot(x, method = "trace")
plot(x, method = "trace", "Y1")
plot(x, method = "trace", "dir_alpha")
```

summary.bartcs

Summary for bartcs object

Description

Provide summary for bartcs object.

Usage

```
## S3 method for class 'bartcs'
summary(object, ...)
```

summary.bartcs 9

Arguments

object A bartcs object.

... Additional arguments. Not yet supported.

Details

summary() computes Gelman-Rubin diagnostic and 95% posterior credible interval for both aggregated outcome and individual outcomes from each chain.

Value

Provide list with following components.

model sbart or mbart.

trt_value Treatment values for each treatment group: trt_treated for treatment group

and trt_control for control group.

tree_params Parameters used for tree structure.
chain_params Parameters used for MCMC chains.
gelman_rubin Gelman-Rubin diagnostic value.

outcome Summary of outcomes from the model. This includes both aggregated outcome

and individual outcomes from each chain.

Examples

Index

```
* datasets
    ihdp, 6

bart, 2
bartcs-package, 2

count_omp_thread, 5

gelman_rubin, 6

ihdp, 6

mbart (bart), 2

plot.bartcs, 7

sbart (bart), 2
summary.bartcs, 8
```