ГЛАВА 1

ДИНАМИЧЕСКИЕ МОДЕЛИ ПОРТФЕЛЬНОЙ ОПТИМИЗАЦИИ

В настоящей главе вводятся основные понятия и определения, строятся математические модели, описывающие динамику инвестиционного портфеля, и формулируются задачи его оптимизации. Рассматриваемые модели можно разбить на два класса: детерминированные, в которых заданы функции цены покупки и продажи ценных бумаг, и недетерминированные, в которых указанные функции прогнозируются на заданном горизонте планирования. Описываются данные, которые будут использоваться для проведения численных экспериментов, и методы прогнозирования. Обсуждаются достоинства и недостатки различных подходов при оптимизации портфелей.

1.1 Основные положения модели

Портфель — совокупность инвестиционных вложений, состоящих из ценных бумаг и свободных финансов.

Портфель состоит из N типов бумаг. Количество бумаг i-го типа $(i=\overline{1,N})$ в момент времени $t\geq t_0$ равняется $x_i(t)$, где $x_i(t)\geq 0$. Обозначим через $x_0(t)$ — количество свободных финансов в момент времени $t\geq t_0$.

Через $u_i^+(t)$ будем обозначать количество ценных бумаг типа i, которые инвестор купил в момент времени t. Соответственно, через $u_i^-(t)$ обозначим, сколько инвестор продал ценных бумаг типа i в момент времени t. Пусть стоимость покупки i-ой бумаги равна $b_i(t) \geq 0$ (buy), а продажа $s_i(t) \geq 0$ (sell). Конкретный вид функций $s_i(t)$, $b_i(t)$, $t \geq t_0$ будет обсуждаться ниже, в разделе ??.

Таким образом, на в момент времени t инвестор покупает ценных бумаг типа i на сумму $b_i(t)u_i^+(t)$ и продает на сумму $s_i(t)u_i^-(t)$.

Тогда количество свободных средств в следующий момент времени t+1 будет равно

$$x_0(t+1) = x_0(t) + \sum_{i=1}^{N} \left(-u_i^+(t)b_i(t) + u_i^-(t)s_i(t) \right). \tag{1.1}$$

Количество ценных бумаг типа i в момент времени t+1 будет равно

$$x_i(t+1) = x_i(t) + u^+(i) - u^-(i). (1.2)$$

Считаем, что в начальный момент времени t_0 заданы начальные условия — количество бумаг каждого типа и объем свободных средств, которыми располагает инвестор:

$$x_i(t_0) = x_{i0}, \ i = \overline{1, N}; \ x_0(t_0) = x_{00}.$$

Введенные переменные и уравнения (1.1), (1.2) представим в векторной форме. Введем следующие векторы:

$$X(t) = [x_1(t), x_2(t), \dots, x_N(t)]^T;$$

$$U^+(t) = [u_1^+(t), \dots, u_N^+(t)]^T;$$

$$U^-(t) = [u_1^-(t), \dots, u_N^-(t)]^T;$$

$$B(t) = [b_1(t), \dots, b_N(t)]^T;$$

$$S(t) = [s_1(t), \dots, s_N(t)]^T;$$

$$X_0 = [x_{10}, \dots, x_{N0}]^T.$$

$$(1.3)$$

Используя (1.3), перепишем (1.2) для X(t):

$$X(t+1) = X(t) + U^{+}(t) - U^{-}(t), \quad X(t_0) = X_0, \quad t \ge t_0.$$
 (1.4)

Представим (1.1) в векторной форме:

$$x_0(t+1) = x_0(t) + B(t)^T U^+(t) - S(t)^T U^-(t), \quad x_0(t_0) = x_{00}, \quad t \ge t_0.$$
 (1.5)

На значения X(t), $x_0(t)$, $U^+(t)$, $U^-(t)$ в каждый момент времени t накладываются следующие естественные ограничения:

$$X(t) \ge 0,$$

 $x_0(t) \ge 0,$
 $U^+(t) \ge 0,$
 $U^-(t) \ge 0,$
 $t > t_0.$ (1.6)

С точки зрения теории оптимального управления, в динамической модели (1.4) – (1.6): переменные $X(t) \in \mathbb{R}^N$, $x_0(t) \in \mathbb{R}$ — фазовые переменные (зависимые), переменные $U^+(t) \in \mathbb{R}^N$, $U^-(t) \in \mathbb{R}^N$ — управляющие переменные (управления, независимые), динамическая модель нестационарная в силу зависимости от времени функций цены покупки B(t), $t \ge t_0$, и цены продажи S(t), $t \ge t_0$. Ограничения (1.6), накладываются как на управляющие, так и на фазовые переменные.

Введем понятие общей стоимости портфеля.

Пусть $w_i(t)$ — общая стоимость бумаг типа i, и она равна сумме, которую инвестор может выручить из ее продажи в момент времени t:

$$w_i(t) = s_i(t)x_i(t), \quad t \ge t_0.$$

Значение $w_0(t)$ будем считать равным $x_0(t)$. Тогда общая стоимость портфеля равна

$$w(t) = \sum_{i=0}^{N} w_i(t).$$

В векторном виде, используя (1.3), получим следующую формулу для общей стоимости портфеля:

$$w(t) = x_0(t) + S(t)^T X(t).$$

Задачи оптимизации портфеля, динамика которого описывается согласно (1.4), (1.5) и подчиняется ограничениям (1.6) будет связана с максимизацией введенной стоимости портфеля при различных дополнительных требованиях. Первая такая модель будет рассмотрена в разд. 1.2, а до этого опишем данные, которые будут использоваться для численных экспериментов.

1.1.1 Данные для численных экспериментов

В данном пункте будут описаны данные, которые используются для проведения численных экспериментов, а также приводится описание того, как строятся прогнозы для значений функций цен S(t), B(t), $t \ge t_0$, при рассмотрении недетерминированной модели (см. разд. 1.3), когда их точные значения не известны заранее.

Будем работать с двумя типами данных:

- 1. сгенерированных искусственно;
- 2. реальными котировками на рынке криптовалют.

Сгенерированные данные представляют собой сумму линейной и сину-

соидальной функции

$$b_i(t) = k_{i0} + k_i t + \alpha_i \sin(r_i + g_i t);$$

$$s_i(t) = 0.99 B_i(t).$$
(1.7)

Для (1.7) значения k_{i0} , k_i , α_i , r_i , g_i подбираются таким образом, чтобы ни для каких $i \neq j$ не совпадали периоды. Выбор функции $s_i(t)$ в представленном виде обусловлен тем наблюдением реально существующий картины, что разница между покупкой и продажей приблизительно равна фиксированному проценту, и таким образом, она будет хорошим приближением для используемых данных.

Реальные данные взяты из исторических курсов на сайте coinmarketcap.com за период ...

Тут вставить графики функций (НЕ ЗАБЫТЬ ВСТАВИТЬ:)

1.1.2 Предсказание значений

В общем случае, значения $s_i(t)$ и $b_i(t)$ в будущие моменты времени не известны. В настоящей работе будем прогнозировать будущие значения на основе предыдущих наблюдений.

В работе используется линейная регрессионная модель [?], зависимости стоимости от времени. В этом пункте будет дано краткое теоретическое ее описание и пример использования для приближенного нахождения будущих значений.

Линейная регрессия — метод восстановления зависимости между двумя переменными.

Для заданного множества из m пар (x_i, y_i) , $i = 1, \ldots, m$, значений свободной и зависимой переменной требуется построить зависимость. Назначена линейная модель

$$y_i = f(\mathbf{w}, x_i) + \varepsilon_i$$

с аддитивной случайной величиной ε . Переменные x, y принимают значения на числовой прямой \mathbb{R} .

Определим модель зависимости как

$$y_i = w_1 + w_2 x_i + \varepsilon_i.$$

Согласно методу наименьших квадратов, искомый вектор параметров $\mathbf{w} = (w_1, w_2)^T$ есть решение нормального уравнения

$$\mathbf{w} = (A^T A)^{-1} A^T \mathbf{y},$$

где \mathbf{y} — вектор, состоящий из значений зависимой переменной: $\mathbf{y}=(y_1,\ldots,y_m)$. Столбцы матрицы A есть подстановки значений свободной переменной $x_i^0\mapsto a_{i1}$ и $x_i^1\mapsto a_{i2},\,i=1,\ldots,m$. Матрица имеет вид

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_m \end{pmatrix}.$$

Зависимая переменная восстанавливается по полученным весам и заданным значениям свободной переменной

$$y_i^* = w_1 + w_2 x_i,$$

иначе

$$\mathbf{y}^* = A\mathbf{w}.$$

Для оценки качества модели используется критерий суммы квадратов регрессионных остатков, SSE — Sum of Squared Errors.

$$SSE = \sum_{i=1}^{m} (y_i - y_i^*)^2 = (\mathbf{y} - \mathbf{y}^*)^T (\mathbf{y} - \mathbf{y}^*).$$

1.1.3 Оценка прогнозирования

В данном пункте рассматривается вопрос о качестве найденных оценок [?]. Находится их смещение, вычисляется распределение и дисперсия ошибки.

Для нахождения математического ожидания и вариации ошибки будем использовать встроенные *Matlab* функции *var*, *mean*. Данные функции вычисляют следующие значения:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} A_i,$$

$$V = \frac{1}{N-1} \sum_{i=1}^{N} |A_i - \mu|^2.$$

В процессе прогнозирования вычисляется ошибка следующим образом

$$e(t) = \frac{x_{predicted}(t) - x_{real}(t)}{x_{real}(t)}.$$

Рис. 1.1: Распределение ошибок предсказания

Данная ошибка была подсчитана для прогнозирования (УКАЗАТЬ КАКИЕ ДАННЫЕ) от одного до шести шагов вперед. На рисунке 1.1 изображены распределения ошибок прогнозирование будущих стоимостей продаж ценных бумаг.

В таблице 1.1 приведены численные значения математического ожидания и вариации для предсказаний.

Дисперсия D[e(t)] будет в дальнейшем использоваться для функции сто-имости этапа, которая имеет вид

$$L_t(U^+(t), U^-(t)) = \alpha D[e(t)] \left(\bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t) \right)^2,$$

t	mean	var
1	0.0007	0.0036
2	0.0007	0.0083
3	0.0012	0.0162
4	0.0032	0.0265
5	0.0043	0.0389
6	0.0064	0.0545

Таблица 1.1: Ошибки прогнозирования

где W(t) это собственно и сама ошибка прогнозирования.

Так как значения математического ожидания, представленные в таблице 1.1, близки к нулю, то будем считать, что полученные оценки являются несмещенными (ВСТАВИТЬ ССЫЛКУ).

1.2 Детерминированная модель

Настоящий раздел посвящен исследованию детерминированной модели оптимизации портфеля, т.е. случаю, когда в начальный момент времени t_0 точно известны все значения цены продажи и покупки $s_i(t)$ и $b_i(t), t \geq 0$, $i = \overline{1,N}$.

(ДУМАЮ, ЭТО НЕ НУЖНО В ДЕТ, СЛУЧАЕ) Иными словами $\bar{S}(t) = S(t)$ и $\bar{B}(t) = B(t)$.

Будем применять методы MPC, описанные в главе 1 для задачи оптимизации портфеля. При этом рассматриваются две прогнозирующие задачи MPC с конечным горизонтом прогнозирования T:

- задача максимизации стоимости портфеля без условий в терминальный момент времени $t_0 + T$ (без терминального множества);
- задача максимизации стоимости портфеля с условиями в терминальный момент времени $t_0 + T$ (с терминальным множеством).

1.2.1 Максимизация стоимости портфеля без терминального множества

Рассмотрим следующую задачу MPC с горизонтом планирования T

$$\max_{U^+, U^-} J(X_0, x_{00}, U^+, U^-) = w(t_0 + T) =$$

$$= x_0(t_0 + T) + S(t_0 + T)^T X(t_0 + T),$$
(1.8)

при условиях

$$X(t+1) = X(t) + U^{+}(t) - U^{-}(t),$$

$$x_{0}(t+1) = x_{0}(t) - B(t)^{T}U^{+}(t) + S(t)^{T}U^{-}(t),$$

$$X(t_{0}) = X_{0},$$

$$x_{0}(t_{0}) = x_{00};$$

$$X(t) \ge 0,$$

$$x_{0}(t) \ge 0, \quad t = \overline{t_{0}, t_{0} + T};$$

$$U^{+}(t) \ge 0,$$

$$U^{-}(t) \ge 0, \quad t = \overline{t_{0}, t_{0} + T - 1}.$$

$$(1.9)$$

Отметим, что в задаче оптимального управления (1.8) – (1.9) функция стоимости не ограничена, кроме того, тут отсутствует функция стоимости этапа $L_t(\cdot)$, а максимизируется только терминальная стоимость портфеля.

Так как предположение $J_{\infty}^*(x_0) < \infty$ из главы ?? не выполняется, то невозможно гарантировать устойчивость процесса, замкнутого обратной связью, построенной в результате применения MPC-алгоритма из главы ?? с прогнозирующей задачей оптимального управления (1.8) - (1.9). Также невозможно исследовать полученное решение на субоптимальность.

Приведем типичную картину поведения инвестора, использующего для управления портфелем задачу (1.8) – (1.9). Для этого приведем результаты численных экспериментов для двух ценных бумаг (N=2) при горизонте прогнозирования T=6 и используя синтетические и реальные данные.

На рисунке 1.2 представлены данные проведенного численного эксперимента. Верхний график показывает количество ценных бумаг первого и второго типа в каждый момент времени. Нижний график представляет собой общую стоимость базового портфеля (с тривиальным управлением — зеленая кривая) и стоимость портфеля под управлением МРС (красная кривая).

Как видно из рисунка 1.2, при использовании задачи (1.8) – (1.9) происходят частые операции вида: продать все бумаги типа i и на освободившиеся

Рис. 1.2: Детерминированная модель без регуляризации

Рис. 1.3: Детерминированная модель с регуляризацией

деньги купить бумаги типа j, i, j = 1, 2. Для инвестора такое поведение может приводить к проблемам, поскольку ему приходится постоянно перестраивать портфель, что привносит в его поведение большие риски. Подробнее об этом будет рассказано в главе с недетерминированной моделью.

Изменим критерий качества (1.8), добавив в него с целью регуляризации стоимость этапа $L(U^+(t), U^-(t))$.

Получим следующую задачу

$$\min_{U^+, U^-} J(x, u) = \sum_{i=0}^{T} L(U^+(i), U^-(i)) - w(T),$$

при условиях (1.9). Заметим, что здесь критерий качества минимизируется, стоимость портфеля взята за знаком -.

Если в качестве функции этапа взять, например, функцию вида

$$L(U^{+}(t), U^{-}(t)) = \alpha(B(t)^{T}U^{+}(t) + S(t)^{T}U^{-}(t))^{2},$$

которая характеризует весь оборот денег, произошедший в момент времени t, то графики изменятся (для $\alpha = 0.01$) как представлено на рисунке 1.3.

Аналогичная картина получается в численных экспериментах со сгенерированными тестовыми данными. Без функции стоимости этапа результаты представлены на рисунке 1.4, со стоимостью этапа — на рисунке 1.5.

1.2.2 Максимизация стоимости портфеля с терминальным множеством

Рассмотрим теперь в качестве прогнозирующей задачи MPC — задачу оптимального управления с горизонтом планирования T и ограничениями, накладываемыми на состав портфеля в терминальный момент времени t_0+T :

$$\max_{U^+,U^-} J(x_0, X_0, U^+, U^-) = x_0(t_0 + T) + X(t_0 + T)^T S(t_0 + T); \tag{1.10}$$

при условиях

$$\max_{U^{+},U^{-}} J(x_{0}, X_{0}, U^{+}, U^{-}) = x_{0}(t_{0} + T) + S(t_{0} + T)^{T} X(t_{0} + T);$$

$$X(t + 1) = X(t) + U^{+}(t) - U^{-}(t),$$

$$x_{0}(t + 1) = x_{0}(t) - B(t)^{T} U^{+}(t) + S(t)^{T} U^{-}(t),$$

$$X(t_{0}) = X_{0},$$

$$x_{0}(t_{0}) = x_{00};$$

$$X(t) \ge 0,$$

$$x_{0}(t) \ge 0, \quad t = \overline{t_{0}, t_{0} + T};$$

$$U^{+}(t) \ge 0,$$

$$U^{-}(t) \ge 0, \quad t = \overline{t_{0}, t_{0} + T - 1};$$

$$\frac{x_{k}(t_{0} + T)}{\sum_{i=0}^{N} x_{i}(t_{0} + T)} = \frac{x_{k}(0)}{\sum_{i=0}^{N} x_{i}(0)}, \quad k = \overline{0, N}.$$
(1.11)

Рис. 1.4: Детерминированная модель без регуляризацией

Рис. 1.5: Детерминированная модель с регуляризацией

Поясним смысл введенного ограничения

$$\frac{x_k(t_0+T)}{\sum_{i=0}^{N} x_i(t_0+T)} = \frac{x_k(0)}{\sum_{i=0}^{N} x_i(0)}, \quad k = \overline{0, N}.$$

Здесь требуется, чтобы в момент времени $t_0 + T$ пропорции в портфеле вернулись к тем, что были в нулевой момент времени. Идея данного подхода совпадает с той, что используется в экономическом MPC с той лишь разницей, что в стандартных схемах экономического MPC в качестве устойчивого

состояния используется точка x_s , а в данном случае это целый луч, содержащий значения с одинаковыми пропорциями.

Предлагаемый подход, кроме того, дает возможность сравнивать эффективность управления MPC без учета колебания курсов, поскольку отношения стоимостей портфелей с тривиальным управление, и с управлением MPC, если они содержат одинаковые пропорции, не зависит от текущих курсов.

Теорема 1.1 Задача (1.10) – (1.11) разрешима.

Доказательство. Заметим, что тривиальное управление

$$U^{+}(t_0+t) = U^{-}(t_0+t) \equiv 0, \quad t = \overline{0, T-1},$$

является допустимым. Кроме того, при этом управлении значение функции $\max_{U^+,U^-} J(x_0,X_0,U^+,U^-)$ в (1.10) (ПРОПУЩЕНА ФРАЗА), следовательно, задача (1.10) – (1.11) разрешима.

Теорема 1.2 Пусть для начальных условий x_{00}, X_0 из задачи (1.10) – (1.11) получено управление MPC

$$\{(U^+(0), U^-(0)), (U^+(1), U^-(1)), \dots\},\$$

и соответствующая ей траектория

$$\{(\hat{X}(0), \hat{x}_0(0)), (\hat{X}(1), \hat{x}_0(1)), \dots\}$$

тогда любого $m \in \mathbb{Z}_+$ верно:

$$\max_{U^+,U^-} J(\hat{X}(m), \hat{x}_0(m), U^+, U^-) \ge x_0(0) + X(0)^T S(m+T).$$

Данная теорема утверждает, что в любой момент времени портфель, управляемый MPC за T шагов, может быть приведен в терминальное множество и при этом стоимость портфеля будет не меньше, чем в случае, когда постоянно используется тривиальное управление (инвестор не управляет портфелем).

Доказательство. Будет добавлено позже **(НЕ ЗАБЫТЬ ДОБА-ВИТЬ)**

Приведем пример того, как будет вести себя система при управлении MPC-регулятором, использующим задачу оптимального управления с терминальным множеством. На рисунке 1.6 представлен результат численного

Рис. 1.6: Детерминированная модель с регуляризацией

эксперимента для сгенерированных данных. Как видно, результативная стоимость получается меньше, нежели в случае без терминального множества (рисунок 1.5). Но при этом уже диапазон, в котором изменяется количество ценных бумаг каждого типа.

1.3 Недетерминированная модель

В настоящем разделе рассмотрим случай, когда точно не известны будущие стоимости активов, и модель должна оперировать прогнозируемыми значениями на горизонте планирования.

Покажем, что для недетерминированного случая нельзя просто использовать предсказания и работать как в детерминированном случае без регуляризации.

На рисунке 1.7 представлен такой случай, при этом на нижнем графике видно, что стоимость портфеля при тривиальном управлении будет выше, нежели при управлении MPC.

Это связано с тем, что управление строится на основе прогнозируемых данных, и при этом одинаково учитывается весь горизонт планирования. А хотелось бы сделать так, чтоб более дальним прогнозам уделялось меньше внимания.

Из это делаем вывод, что необходимо вводить функцию стоимости этапа, которая будет учитывать ошибки прогнозирования.

Рис. 1.7: Недетерменированная модель без регуляризацией

В случае, когда точно не известны значения $s_i(t)$ и $b_i(t)$, наша функция перехода для $x_0(t)$, в соответствии с $(\ref{eq:constraint})$ имеет следующий вид:

$$x_0(t+1) = x_0(t) - B(t)^T U^+(t) + S(t)^T U^-(t).$$
(1.12)

Где B(t) и S(t) описаны в (1.3).

И при этом $B(t) = (I+E_1(t))\bar{B}(t)$, где $\bar{B}(t)$ это прогнозируемое значение, I – единичная матрица, $E_1(t)$ – случайная диагональная матрица ошибок, при этом $M[E_1(t)] = 0$ (ссылка на часть с оценкой ошибок прогнозирования). Аналогично для $S(t) = \bar{S}(t)(1+E_2(t))$.

Так как изменение цены покупки и продажи происходит одинаково, то будем считать, что $E_1(t) \equiv E_2(t) = E(t)$

Сейчас перепишем (??):

$$x_0(t+1) = x_0(t) - \bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t) - \left(E(t)\bar{B}(t) \right)^T U^+(t) + \left(E(t)\bar{S}(t) \right)^T U^-(t).$$
(1.13)

Оценим для величины $x_0(t+1)$ математическое ожидание и дисперсию:

$$M[x_0(t+1)] = M[x_0(t)] + \bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t)$$
(1.14)

Будем считать, что величины $x_0(t)$ и W(t) независимы, кроме того, сто-

имости активов не коррелируют

$$D[x_{0}(t+1)] = D[x_{0}(t) - (E(t)\bar{B}(t))^{T} U^{+}(t) + (E(t)\bar{S}(t))^{T} U^{-}(t)] =$$

$$= D[x_{0}(t)] + D[(E(t)\bar{B}(t))^{T} U^{+}(t) + (E(t)\bar{S}(t))^{T} U^{-}(t)] \leq$$

$$= D[x_{0}(t)] + \langle \bar{B}(t)^{T} D[E(t)], U^{+}(t) \rangle^{2} + \langle \bar{S}(t)^{T} D[E(t)], U^{-}(t) \rangle^{2}.$$
(1.15)

Сейчас можем добавить учет дисперсии в функцию перехода, эта добавка будит служить своего рода ограничением дисперсии при максимизации математического ожидания. Введем функцию стоимости этапа следующим образом:

$$L(U^{+}(t), U^{-}(t)) = \alpha \langle \bar{B}(t)^{T} D[E(t)], U^{+}(t) \rangle^{2} + \langle \bar{S}(t)^{T} D[E(t)], U^{-}(t) \rangle^{2}. \quad (1.16)$$

Оценки на значения D[E(t)] зависят от способа предсказания векторов S(t) и B(t).

$$\max_{U^{+},U^{-}} - \sum_{t=0}^{T-1} L_{t}(U^{+}(t_{0}+t), U^{-}(t_{0}+t)) + \\
+ x_{0}(t_{0}+T) + S(t_{0}+T)^{T}X(t_{0}+T); \\
X(t+1) = X(t) + U^{+}(t) - U^{-}(t) \\
x_{0}(t+1) = x_{0}(t) - B(t)^{T}U^{+}(t) + S(t)^{T}U^{-}(t) \\
X(t_{0}) = X_{0}; \\
x_{(t_{0})} = x_{0}; \\
x_{(t_{0})} = x_{0}; \\
X(t) \ge 0, \quad t = \overline{t_{0}, t_{0}+T}; \\
x_{0}(t) \ge 0; \\
U^{+}(t) \ge 0, \quad t = overlinet_{0}, t_{0}+T-1; \\
U^{-}(t) \ge 0; \\
\frac{x_{k}(t_{0}+T)}{\sum_{i=0}^{N} x_{i}(t_{0}+T)} = \frac{x_{k}(0)}{\sum_{i=0}^{N} x_{i}(0)}, \quad \forall k \in \overline{0, N}.$$

Результат применения данного управления представлен на рисунке 1.8. Тут видим, что применение управления MPC уже лучше, нежели тривиальное управление.

Рис. 1.8: Недетерменированная модель с регуляризацией