Badanie zależności okresu drgań wachadła matematycznego od jego długości.

Grzegorz Koperwas 22 grudnia 2019

1. Wstęp teoretyczny

Celem doświadczenia było wyznaczenie przyspieszenia grawitacyjnego g poprzez pomiar czasu w jakim wachadło wykona 10 cykli w zależności od długości wachadła. (tu ma być obrazek z tikz-a)

Z praw Newton'a:

$$F = ma$$

Gdzie F jest siłą wypadkową działającą na wachadło. Na wachadło działa siła ciężkości i naciągu sznurka. Siła naciągu jest równa składowej siły ciężkości prostopadłej do toru ruchu wachadła, zatem siła wypadkowa jest równa równoległej składowej siły ciężkości. Zatem:

$$ma = -mg\sin\alpha$$
$$a = -g\sin\alpha$$

Przyspieszenie a może zostać powiązane z zmianą kąta α . Niech s to długość łuku zakreślanego przez wachadło.

$$s = l\alpha$$

$$v = \frac{ds}{dt} = l\frac{d\alpha}{dt}$$

$$a = \frac{d^2s}{dt^2} = l\frac{d^2\alpha}{dt^2}$$

zatem:

$$l\frac{d^2\alpha}{dt^2} = -g\sin\alpha$$

$$\frac{d^2\alpha}{dt^2} + \frac{g}{l}\sin\alpha = 0$$
(1)

Dla małych kątów możemy założyć że $\sin \alpha \approx \alpha$, zatem po podstawieniu do równiania 1 otrzymujemy równanie oscylatora harmonicznego:

$$\frac{d^2\alpha}{dt^2} + \frac{g}{l}\alpha = 0$$

Dla warunków początkowych $\alpha\left(0\right)=\alpha_{0}$ i $\frac{d\alpha}{dt}\left(0\right)=0$:

$$\alpha\left(t\right) = \alpha_0 \cos\left(\sqrt{\frac{g}{l}}t\right)$$

Zatem okres jest równy:

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 dla małych kątów (2)

Ostatecznie w celu uzyskania wykresu $T^{2}(l)$:

$$T^{2}\left(l\right) = \frac{4\pi^{2}}{g} \cdot l \tag{3}$$

długość	czas t (s) ± 0.01 s											
$l \text{ (cm) } \pm 0.1\text{cm}$	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}		
80,0	18,32	17,72	18,28	18,01	18,29	18,18	17,87	17,72	18,03	18,18		
70,0	16,66	16,73	16,84	16,93	16,67	16,67	16,83	16,91	16,68	16,67		
60,0	$15,\!37$	15,43	15,71	15,52	$15,\!55$	15,28	15,48	15,54	15,50	15,59		
50,0	14,16	14,14	14,17	$14,\!25$	14,13	14,29	14,32	14,16	14,23	14,23		
40,0	12,77	$12,\!55$	12,61	12,54	12,86	12,68	12,64	12,72	12,61	12,63		
30,0	11,03	10,98	10,95	10,94	10,95	10,73	10,93	11,06	10,87	10,87		
20,0	8,87	8,97	9,02	9,01	8,97	8,99	8,91	8,88	8,93	8,84		
10,0	6,09	6,27	6,18	6,20	6,25	6,49	6,18	6,33	6,25	6,27		

Tabela 1: Tabela wyników pomiarów

Analiza wyników pomiarów

Dla wyników doświadczenia w tabeli 1 obliczamy:

- Średni czas \bar{t} .
- Odchylenie standardowe średniego czasu $\Delta \bar{t}$.
- \bullet Okres wychyleń wachadła T.
- Niepewność okresu ΔT .
- Kwadrat okresu T^2 .
- Niepewność kwadratu okresu $\Delta\left(T^{2}\right)$.

Odcylenie standardowe

Odchylenie standardowe średniej jest równe:

$$\Delta \bar{t} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$$

Przykładowo:

$$\sqrt{\frac{(6.09 - 6.25)^2 + (6.27 - 6.25)^2 + (6.33 - 6.25)^2 + \dots + (6.25 - 6.25)^2 + (6.27 - 6.25)^2}{10 \cdot 9}} = \frac{\sqrt{0.03 + 0.00 + 0.01 + 0.00 + 0.00 + 0.00 + 0.01 + 0.01 + 0.00 + 0.00}}{90} = \approx 0.03$$

Okres

Okres wychyleń wachadła obliczamy za pomocą wzoru:

$$T = \frac{\bar{x}}{n}$$

gdzie n to liczba wychyleń wykonanych przez wachadło w czasie mierzonym t.

Przykładowo:

$$\frac{18,06}{10} \approx 1,80$$

Niepewność okresu wychyleń obliczamy w sposób analogiczny.

Kwadrat okresu

Niepewność ${\cal T}^2$ jest obliczana w poniższy sposób:

$$\frac{\Delta\left(T^{2}\right)}{T^{2}} = \frac{\Delta T}{T} + \frac{\Delta T}{T} = 2 \cdot \frac{\Delta T}{T}$$

długość l (cm) ± 0.1 cm	\bar{t}	$\Delta \bar{t}$	T	ΔT	T^2	$\Delta (T^2)$
80,0	18,06	0,07	1,81	0,01	3,26	0,01
70,0	16,76	0,03	1,68	0,00	2,81	0,01
60,0	15,50	0,04	1,55	0,00	2,40	0,01
50,0	14,21	0,02	1,42	0,00	2,02	0,00
40,0	12,66	0,03	1,27	0,00	1,60	0,01
30,0	10,93	0,03	1,09	0,00	1,19	0,01
20,0	8,94	0,02	0,89	0,00	0,80	0,00
10,0	6,25	0,03	0,63	0,00	0,39	0,01

Tabela 2: Tabela obrobionych wyników

Wykres:

Rysunek 1: Wykres $T^{2}\left(l\right)$

3. Wnioski

Obliczanie przyspieszenia grawitacyjnego:

Nachylenie wykresu m funkcji z równania 3 jest równe:

$$m = \frac{4\pi^2}{q}$$

zatem:

$$g = \frac{4\pi^2}{m}$$

$$g = \frac{4\pi^2}{0,0407 \cdot 10^2} \approx 9,70 \frac{m}{s^2}$$

Z programu Logger~Pronie
pewność mwynosi $0,0002532\,\frac{s^2}{\rm cm}$ więc ostatecznie:

$$g \approx (9.70 \pm 0.03) \ \frac{m}{s^2}$$

Dla Gliwic przyspieszenie grawitacyjne wynosi:

$$g_{\rm std} = 9.81 \, \frac{m}{s^2}$$

Zatem błąd względny otrzymanej wartości wynosi:

$$\Delta g = \frac{|g_{\text{std}} - g|}{g_{\text{std}}} \cdot 100\%$$

$$\Delta g = \frac{|9.81 - 9.70|}{9.81} \cdot 100\% \approx$$

$$\approx 1.12\%$$

Możliwe źródła niepewności: