OpenGeoProver Output for conjecture "geothm_zadatak"

Wu's method used

October 1, 2016

1 Invoking the theorem prover

The used proving method is Wu's method. The input system is:

> $p_1 = 2x_1$ $p_2 = 2x_2$ $p_3 = x_3 - x_1$ $p_4 = x_4 + x_2$ $p_5 = x_5$ $x_6 + x_5 x_4$ $p_7 = x_7 - x_5 x_3$ $= x_8 + x_6 x_1$ $= x_9 + 1$ p_9 $p_{10} = x_{10} + 1$ $p_{11} = x_{11}$ $p_{12} = -x_{15}x_9 + x_{12}$ $p_{13} = -x_{15}x_{10} + x_{13}$ $p_{14} = -x_{15}x_{11} + x_{14}$ $p_{15} = x_{13}x_7 + x_{12}x_6 + x_8$

1.1 Triangulation, step 1

Choosing variable: Trying the variable with index 15.

Variable x_{15} selected: The number of polynomials with this variable, with indexes from 1 to 15, is 3.

Minimal degrees: 3 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{15} from all other polynomials by reducing them with polynomial p_{12} from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & x_3 - x_1 \\ p_4 & = & x_4 + x_2 \\ p_5 & = & x_5 - \\ p_6 & = & x_6 + x_5 x_4 \\ p_7 & = & x_7 - x_5 x_3 \\ p_8 & = & x_8 + x_6 x_1 \\ p_9 & = & x_9 + 1 \\ p_{10} & = & x_{10} + 1 \\ p_{11} & = & x_{11} \\ p_{12} & = & x_{13} x_7 + x_{12} x_6 + x_8 \\ p_{13} & = & -x_{13} x_9 + x_{12} x_{10} \\ p_{14} & = & -x_{14} x_9 + x_{12} x_{11} + x_9 \\ p_{15} & = & -x_{15} x_9 + x_{12} \end{array}$$

1.2 Triangulation, step 2

Choosing variable: Trying the variable with index 14.

Variable x_{14} selected: The number of polynomials with this variable, with indexes from 1 to 14, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{14} . No reduction needed.

The triangular system has not been changed.

1.3 Triangulation, step 3

Choosing variable: Trying the variable with index 13.

Variable x_{13} **selected:** The number of polynomials with this variable, with indexes from 1 to 13, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{13} from all other polynomials by reducing them with polynomial p_{12} from previous step.

Finished a triangulation step, the current system is:

$$p_1 = 2x_1 - p_2 = 2x_2 - p_3 = x_3 - x_1$$

 p_4 $= x_4 + x_2$ x_5 $x_6 + x_5 x_4$ = p_6 $x_7 - x_5 x_3$ $x_8 + x_6 x_1$ p_8 $x_9 + 1$ p_9 $x_{10} + 1$ p_{10} p_{11} p_{12} $= x_{12}x_{10}x_7 + x_{12}x_9x_6 + x_9x_8$ $p_{13} = x_{13}x_7 + x_{12}x_6 + x_8$ $= -x_{14}x_9 + x_{12}x_{11} + x_9$ $-x_{15}x_9 + x_{12}$

1.4 Triangulation, step 4

Choosing variable: Trying the variable with index 12.

Variable x_{12} selected: The number of polynomials with this variable, with indexes from 1 to 12, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{12} . No reduction needed.

The triangular system has not been changed.

1.5 Triangulation, step 5

Choosing variable: Trying the variable with index 11.

Variable x_{11} selected: The number of polynomials with this variable, with indexes from 1 to 11, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{11} . No reduction needed.

The triangular system has not been changed.

1.6 Triangulation, step 6

Choosing variable: Trying the variable with index 10.

Variable x_{10} selected: The number of polynomials with this variable, with indexes from 1 to 10, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{10} . No reduction needed.

The triangular system has not been changed.

1.7 Triangulation, step 7

Choosing variable: Trying the variable with index 9.

Variable x_9 selected: The number of polynomials with this variable, with indexes from 1 to 9, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_9 . No reduction needed.

The triangular system has not been changed.

1.8 Triangulation, step 8

Choosing variable: Trying the variable with index 8.

Variable x_8 **selected:** The number of polynomials with this variable, with indexes from 1 to 8, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_8 . No reduction needed.

The triangular system has not been changed.

1.9 Triangulation, step 9

Choosing variable: Trying the variable with index 7.

Variable x_7 selected: The number of polynomials with this variable, with indexes from 1 to 7, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_7 . No reduction needed.

The triangular system has not been changed.

1.10 Triangulation, step 10

Choosing variable: Trying the variable with index 6.

Variable x_6 selected: The number of polynomials with this variable, with indexes from 1 to 6, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_6 . No reduction needed.

The triangular system has not been changed.

1.11 Triangulation, step 11

Choosing variable: Trying the variable with index 5.

Variable x_5 selected: The number of polynomials with this variable, with indexes from 1 to 5, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_5 . No reduction needed.

The triangular system has not been changed.

1.12 Triangulation, step 12

Choosing variable: Trying the variable with index 4.

Variable x_4 **selected:** The number of polynomials with this variable, with indexes from 1 to 4, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_4 . No reduction needed.

The triangular system has not been changed.

1.13 Triangulation, step 13

Choosing variable: Trying the variable with index 3.

Variable x_3 selected: The number of polynomials with this variable, with indexes from 1 to 3, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_3 . No reduction needed.

The triangular system has not been changed.

1.14 Triangulation, step 14

Choosing variable: Trying the variable with index 2.

Variable x_2 selected: The number of polynomials with this variable, with indexes from 1 to 2, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_2 . No reduction needed.

The triangular system has not been changed.

1.15 Triangulation, step 15

Choosing variable: Trying the variable with index 1.

Variable x_1 selected: The number of polynomials with this variable, with indexes from 1 to 1, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_1 . No reduction needed.

The triangular system has not been changed.

The triangular system is:

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & x_3 - x_1 \\ p_4 & = & x_4 + x_2 \\ p_5 & = & x_5 - \\ p_6 & = & x_6 + x_5x_4 \\ p_7 & = & x_7 - x_5x_3 \\ p_8 & = & x_8 + x_6x_1 \\ p_9 & = & x_9 + 1 \\ p_{10} & = & x_{10} + 1 \\ p_{11} & = & x_{11} \\ p_{12} & = & x_{12}x_{10}x_7 + x_{12}x_9x_6 + x_9x_8 \\ p_{13} & = & x_{13}x_7 + x_{12}x_6 + x_8 \\ p_{14} & = & -x_{14}x_9 + x_{12}x_{11} + x_9 \\ p_{15} & = & -x_{15}x_9 + x_{12} \end{array}$$

2 Final Remainder

2.1 Final remainder for conjecture geothm_zadatak

Calculating final remainder of the conclusion:

$$g = 4x_{14}^2 - 8x_{14} + 4x_{13}^2 + 4x_{12}^2 - x_2^2 - x_1^2 + 4$$

with respect to the triangular system.

1. Pseudo remainder with p_{15} over variable x_{15} :

$$g = 4x_{14}^2 - 8x_{14} + 4x_{13}^2 + 4x_{12}^2 - x_2^2 - x_1^2 + 4$$

2. Pseudo remainder with p_{14} over variable x_{14} :

$$\begin{array}{lll} g & = & 4x_{13}^2x_9^2 + 4x_{12}^2x_{11}^2 + 4x_{12}^2x_9^2 - x_9^2x_2^2 \\ & & -x_9^2x_1^2 \end{array}$$

3. Pseudo remainder with p_{13} over variable x_{13} :

$$g = 4x_{12}^2 x_{11}^2 x_7^2 + 4x_{12}^2 x_9^2 x_7^2 + 4x_{12}^2 x_9^2 x_6^2 + 8x_{12} x_9^2 x_8 x_6 + 4x_9^2 x_8^2 - x_9^2 x_7^2 x_2^2 - x_9^2 x_7^2 x_1^2$$

4. Pseudo remainder with p_{12} over variable x_{12} :

$$\begin{array}{lcl} g & = & 4x_{11}^2x_9^2x_8^2x_7^2 + 4x_{10}^2x_9^2x_8^2x_7^2 \\ & & -x_{10}^2x_9^2x_7^4x_2^2 - x_{10}^2x_9^2x_7^4x_1^2 \\ & & -2x_{10}x_9^3x_7^3x_6x_2^2 - 2x_{10}x_9^3x_7^3x_6x_1^2 + \\ & & 4x_9^4x_8^2x_7^2 - x_9^4x_7^2x_6^2x_2^2 \\ & & -x_9^4x_7^2x_6^2x_1^2 \end{array}$$

5. Pseudo remainder with p_{11} over variable x_{11} :

$$\begin{array}{lcl} g & = & 4x_{10}^2x_9^2x_8^2x_7^2 - x_{10}^2x_9^2x_7^4x_2^2 \\ & & -x_{10}^2x_9^2x_7^4x_1^2 - 2x_{10}x_9^3x_7^3x_6x_2^2 \\ & & -2x_{10}x_9^3x_7^3x_6x_1^2 + 4x_9^4x_8^2x_7^2 \\ & & -x_9^4x_7^2x_6^2x_2^2 - x_9^4x_7^2x_6^2x_1^2 \end{array}$$

6. Pseudo remainder with p_{10} over variable x_{10} :

$$\begin{array}{lcl} g & = & 4x_9^4x_8^2x_7^2 - x_9^4x_7^2x_6^2x_2^2 \\ & & -x_9^4x_7^2x_6^2x_1^2 + 2x_9^3x_7^3x_6x_2^2 + \\ & & 2x_9^3x_7^3x_6x_1^2 + 4x_9^2x_8^2x_7^2 - x_9^2x_7^4x_2^2 \\ & & -x_9^2x_7^4x_1^2 \end{array}$$

7. Pseudo remainder with p_9 over variable x_9 :

$$g = 8x_8^2x_7^2 - x_7^4x_2^2 - x_7^4x_1^2 - 2x_7^3x_6x_2^2$$
$$-2x_7^3x_6x_1^2 - x_7^2x_6^2x_2^2 - x_7^2x_6^2x_1^2$$

7

8. Pseudo remainder with p_8 over variable x_8 :

$$g = -x_7^4 x_2^2 - x_7^4 x_1^2 - 2x_7^3 x_6 x_2^2 - 2x_7^3 x_6 x_1^2 - x_7^2 x_6^2 x_2^2 + 7x_7^2 x_6^2 x_1^2$$

9. Pseudo remainder with p_7 over variable x_7 :

$$g = -x_6^2 x_5^2 x_3^2 x_2^2 + 7x_6^2 x_5^2 x_3^2 x_1^2$$
$$-2x_6 x_5^3 x_3^3 x_2^2 - 2x_6 x_5^3 x_3^3 x_1^2$$
$$-x_5^4 x_3^4 x_2^2 - x_5^4 x_3^4 x_1^2$$

10. Pseudo remainder with p_6 over variable x_6 :

$$\begin{array}{rcl} g & = & -x_5^4 x_4^2 x_3^2 x_2^2 + 7 x_5^4 x_4^2 x_3^2 x_1^2 + \\ & & 2 x_5^4 x_4 x_3^3 x_2^2 + 2 x_5^4 x_4 x_3^3 x_1^2 \\ & & -x_5^4 x_3^4 x_2^2 - x_5^4 x_3^4 x_1^2 \end{array}$$

11. Pseudo remainder with p_5 over variable x_5 :

$$g = -x_4^2 x_3^2 x_2^2 + 7x_4^2 x_3^2 x_1^2 + 2x_4 x_3^3 x_2^2 + 2x_4 x_3^3 x_1^2 - x_3^4 x_2^2 - x_3^4 x_1^2$$

12. Pseudo remainder with p_4 over variable x_4 :

$$g = -x_3^4 x_2^2 - x_3^4 x_1^2 - 2x_3^3 x_2^3 - 2x_3^3 x_2 x_1^2 -x_3^2 x_2^4 + 7x_3^2 x_2^2 x_1^2$$

13. Pseudo remainder with p_3 over variable x_3 :

$$g = -x_2^4 x_1^2 - 2x_2^3 x_1^3 + 6x_2^2 x_1^4 - 2x_2 x_1^5 - x_1^6$$

14. Pseudo remainder with p_2 over variable x_2 :

$$g = -16x_1^6 - 16x_1^5 + 24x_1^4 - 4x_1^3 - x_1^2$$

15. Pseudo remainder with p_1 over variable x_1 :

$$a = 0$$

3 Prover results

Status: Theorem has been proved.

 ${\bf Space\ Complexity:}\ \ {\bf The\ biggest\ polynomial\ obtained\ during\ prover\ execution}$

contains 10 terms.

Time Complexity: Time spent by the prover is 0.085 seconds.

4 NDG Conditions

NDG Conditions in readable form

• Failed to translate NDG Conditions to readable form