Fiche d'exercices n°2 : sommes et produits

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Pour réviser...

Exercice 1. Simplifier les expressions suivantes :

$$i) \; \frac{5^3 \, 2^4 \, 10^-}{20^3}$$

$$ii) \frac{10^9 \, 6^3}{25^4 \, 3 \, 2^{11}}$$

$$iii) \frac{1}{10^{56}} - \frac{1}{10^{57}}$$

$$i) \ \frac{5^3 \ 2^4 \ 10^{-1}}{20^3} \qquad ii) \ \frac{10^9 \ 6^3}{25^4 \ 3 \ 2^{11}} \qquad iii) \ \frac{1}{10^{56}} - \frac{1}{10^{57}} \qquad iv) \ 5^{108} \ 2^{106} \ \frac{11}{10^{107}} \qquad v) \ \frac{\left(3^4\right)^2 \ 4}{2^{-3} \ \left(6^2\right)^3}$$

$$v) \frac{\left(3^4\right)^2 4}{2^{-3} \left(6^2\right)^3}$$

Exercice 2. Exprimer en fonction de ln 2 et ln 5 les valeurs suivantes :

$$\ln(20)$$
 ; $\ln\left(\sqrt{\frac{2}{125}}\right)$; $\ln(0.001)$; $\ln\left(\frac{\sqrt[3]{25}}{8\sqrt{2}}\right)$; $\ln(500e)$

Exercice 3. Soient a et b deux réels strictement positifs. Exprimer en fonction de $\ln a$ et $\ln b$ les valeurs suivantes :

$$\ln \frac{a^2 \sqrt{a}}{b^3} - \ln \frac{b^2}{a}$$
; $2 \ln ab^2 - 3 \ln a^2 b + \ln \left(\frac{a}{b}\right)^3$; $\ln \sqrt{a^3 b^3} - \ln \sqrt[3]{a^2 b^2}$

Exercice 4. A l'aide du tableau ci-dessous, montrer que $1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

1	2	 	n-1	n
n	n-1	 	2	1

Exercice 5.

- 1. Développer les expressions $(1+a+a^2)(1-a)$ et $(1+a+a^2+a^3)(1-a)$.
- 2. Développer l'expression $(1 + a + a^2 + a^3 + \dots + a^n)(1 a)$.
- 3. En déduire la valeur de la somme $1 + a + a^2 + a^3 + \cdots + a^n$
- 4. En déduire la valeur de la somme $3^3 + 3^4 + \cdots + 3^{10}$

Exercices de base sur les sommes et produits

Exercice 6. Développer les expressions suivantes :

$$i) (a-b)^2$$

$$i) (a-b)^2$$
 $ii) (x+y)(x-y)$ $iii) (u+3)^2$ $iv) (x+y)^3$ $v) (a-b)^3$

$$iii) (u+3)^2$$

$$iv)(x+y)^3$$

$$v) (a-b)^{3}$$

Exercice 7. Calculer les sommes et les produits suivants.

a)
$$\sum_{k=1}^{3} (k^2 - 1)$$

b)
$$\sum_{k=1}^{3} (2k-1)$$

c)
$$\sum_{k=2}^{4} k^2$$

a)
$$\sum_{k=1}^{3} (k^2 - 1)$$
 b) $\sum_{k=1}^{3} (2k - 1)$ c) $\sum_{k=2}^{4} k^2$ d) $\sum_{k=0}^{2} (2k + 1)$ e) $\sum_{k=0}^{2} 2^k$ f) $\prod_{k=1}^{4} (2k - 1)$ g) $\sum_{k=-2}^{2} k$ h) $\prod_{k=2}^{4} k$ i) $\sum_{k=1}^{3} 5$ j) $\prod_{k=3}^{2} 2$

$$e) \sum_{k=0}^{2} 2^{k}$$

$$f) \prod_{k=1}^{4} (2k-1)$$

$$g) \quad \sum_{k=-2}^{2} h$$

$$h) \quad \prod_{k=2}^{r} k$$

$$i) \quad \sum_{k=1}^{\circ} 5$$

$$j) \quad \prod_{k=3}^{3} 2$$

Exercice 8. Écrire les sommes et les produits suivants en utilisant les symboles \sum et \prod .

a)
$$1+2+3+4+5+6+7+8+9+10$$

b)
$$4+5+6+7+8+9$$

c)
$$0+1+2+3+4+5$$

$$d)$$
 3+3+3+3+3+3

$$e) \quad 2 \times 3 \times 4 \times 5 \times 6 \times 7$$

$$f)$$
 $1 \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5}$

$$g)$$
 $7 \times 7 \times 7 \times 7 \times 7 \times 7$

h)
$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$i)$$
 2+4+6+8+10+12+14+16+18+20 $j)$ 3+5+7+9+11+13+15+17+19+21

$$i)$$
 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21

$$k)$$
 1+3+5+7+9+11+13+15

$$l)$$
 2+4+6+8+10+...+98+100

Exercice 9. Simplifier les expressions suivantes, pour les écrire de façon plus concise :

$$a) \quad a_1 + \sum_{k=2}^n a_k$$

$$a_0 + \sum_{k=1}^{n+2} a_k$$

a)
$$a_1 + \sum_{k=2}^{n} a_k$$
 b) $a_0 + \sum_{k=1}^{n+2} a_k$ c) $\sum_{k=0}^{3} a_k + \sum_{k=4}^{n} a_k$ d) $\sum_{k=n+1}^{2n} a_k + \sum_{k=1}^{n} a_k$

$$\sum_{k=n+1}^{2n} a_k + \sum_{k=1}^{n} a_k$$

$$f) \quad \frac{\prod_{k=1}^{2^k}}{\prod_{k=1}^{3} 2^k}$$

$$g) \quad \frac{\prod_{k=1}^{3^k}}{\prod_{k=7}^{10} 3^k}$$

$$h) \quad \frac{1}{3} \prod_{k=3}^{7} k$$

$$i) \sum_{k=1}^{n} 2^k - \sum_{k=1}^{4} 2^k$$

$$\sum_{k=1}^{n+4} k^3 - \sum_{k=1}^{n-1} k^3 \quad k) \quad \frac{1}{10} \prod_{k=1}^{10} k^3 = k$$

$$i) \quad \sum_{k=1}^{n} 2^k - \sum_{k=1}^{4} 2^k \quad j) \quad \sum_{k=1}^{n+4} k^3 - \sum_{k=1}^{n-1} k^3 \quad k) \quad \frac{1}{10} \prod_{k=1}^{10} k \qquad \qquad l) \quad \left(\prod_{k=1}^{n} (2k)\right) \left(\prod_{k=0}^{n} (2k+1)\right) = 0$$

Exercice 10. Calculer les sommes et les produits suivants :

$$a)$$
 $\sum_{k=1}^{n} 5$

$$b) \quad \sum_{k=1}^{n+2} 7$$

$$c) \quad \prod_{k=2}^{n} 6$$

$$d) \quad \sum_{k=0}^{n} 4$$

$$e) \quad \prod_{k=0}^{n+3} 5$$

$$a) \quad \sum_{k=1}^{n} 5 \qquad b) \quad \sum_{k=1}^{n+2} 7 \qquad c) \quad \prod_{k=2}^{n} 6 \qquad d) \quad \sum_{k=0}^{n} 4 \qquad e) \quad \prod_{k=0}^{n+3} 5 \qquad f) \quad \sum_{k=n}^{2n+1} 8 \qquad g) \quad \prod_{k=1}^{5} i = 1$$

$$g$$
) $\prod_{k=1}^{5} q$

Exercice 11. Simplifier les produits suivants :

$$a) \qquad \prod_{k=1}^{n+2} k$$

$$b) \qquad \prod_{k=3}^{n} k$$

$$c) \qquad \prod_{k=1}^{n} 3k^2$$

$$d) \quad \prod_{k=2}^{n} (k-1)$$

$$e) \qquad \prod_{k=1}^{n} \frac{k+1}{3}$$

a)
$$\prod_{k=1}^{n+2} k$$
 b)
$$\prod_{k=3}^{n} k$$
 c)
$$\prod_{k=1}^{n} 3k^{2}$$
 d)
$$\prod_{k=2}^{n} (k-1)$$
 e)
$$\prod_{k=1}^{n} \frac{k+1}{3}$$
 f)
$$\prod_{k=2}^{n} \frac{(k-1)(k+2)}{2}$$
 g)
$$\prod_{k=2}^{n} \frac{k}{k-1}$$
 h)
$$\prod_{k=2}^{n} \frac{k(k+1)}{k-1}$$
 i)
$$\prod_{k=1}^{n} (2k+1)$$
 j)
$$\sum_{k=1}^{n} \ln(k+1)$$

$$g) \quad \prod_{k=2}^{n} \frac{k}{k-1}$$

$$h) \quad \prod_{k=2}^{n} \frac{k(k+1)}{k-1}$$

$$i) \prod_{k=1}^{n} (2k+1)$$

$$j$$
) $\sum_{k=1}^{k=1} \ln(k+1)$

Exercice 12. Calculer les sommes suivantes :

$$a) \quad \sum_{k=2}^{n} \ln(2k^3)$$

a)
$$\sum_{k=2}^{n} \ln(2k^3)$$
 b) $\sum_{k=3}^{n} (2 \ln k + \ln(k+1))$ c) $\sum_{k=1}^{n} (\ln 3 + 3 \ln k)$

$$c) \quad \sum_{k=1}^{n} \left(\ln 3 + 3 \ln k \right)$$

Exercice 13. Calculer les sommes suivantes :

$$a)$$
 $\sum_{k=0}^{n} 3^k$

$$b) \quad \sum_{k=0}^{n+2} 7^k$$

$$c)$$
 $\sum_{k=1}^{n} 2^{k}$

$$d$$
) $\sum_{k=2}^{n} 5^k$

$$e) \sum_{k=0}^{n} (-2)^k$$

a)
$$\sum_{k=0}^{n} 3^k$$
 b) $\sum_{k=0}^{n+2} 7^k$ c) $\sum_{k=1}^{n} 2^k$ d) $\sum_{k=2}^{n} 5^k$ e) $\sum_{k=0}^{n} (-2)^k$ f) $\sum_{k=0}^{n} 2^{3k+2}$

$$g) \sum_{k=1}^{n+1} 7^{2k+1}$$

$$h) \sum_{k=0}^{n+2} \frac{1}{2^k}$$

$$i) \sum_{k=0}^{n} \frac{2^{k+1}}{3^{k+2}}$$

$$(j) \sum_{k=0}^{2n-1} 3^{k/2}$$

$$g) \quad \sum_{k=1}^{n+1} 7^{2k+1} \qquad h) \quad \sum_{k=0}^{n+2} \frac{1}{2^k} \qquad i) \quad \sum_{k=0}^{n} \frac{2^{k+1}}{3^{k+2}} \qquad j) \quad \sum_{k=0}^{2n-1} 3^{k/2} \qquad k) \quad \sum_{k=1}^{n+1} 3^k 5^{2-k} \qquad l) \quad \sum_{k=0}^{n-1} e^{\frac{2i\pi k}{n}} e^{\frac{2$$

$$l) \quad \sum_{k=0}^{n-1} e^{\frac{2i\pi k}{n}}$$

Exercice 14. Calculer les sommes suivantes :

$$a) \sum_{n=1}^{n} 4k$$

$$b) \quad \sum_{n=0}^{\infty} (2k+5)$$

$$c) \quad \sum_{k=0}^{n+2} 3k$$

$$d) \sum_{k=2}^{n} (k+4)$$

a)
$$\sum_{k=1}^{n} 4k$$
 b) $\sum_{k=1}^{n} (2k+5)$ c) $\sum_{k=0}^{n+2} 3k$ d) $\sum_{k=2}^{n} (k+4)$ e) $\sum_{k=0}^{n} (k-2)$ f) $\sum_{k=2}^{2n} \frac{k}{2}$

$$f) \quad \sum_{k=2}^{2n} \frac{k}{2}$$

Exercice 15. Mettre sous forme algébrique les nombres complexes suivants :

a)
$$\sum_{i=1}^{n} (1+2ik)$$
 b) $\sum_{i=1}^{10} (2+ik)$ c) $\sum_{i=1}^{n} \frac{5k}{2+i}$ d) $\sum_{i=1}^{n} \frac{k+i}{1+i}$

b)
$$\sum_{k=1}^{10} (2+ik)$$

$$c) \quad \sum_{k=1}^{n} \frac{5k}{2+i}$$

$$d) \quad \sum_{k=1}^{n} \frac{k+i}{1+i}$$

Exercice 16. Calculer les sommes suivantes :

$$a) \quad \sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$

b)
$$\sum_{k=1}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-1}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$$

a)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{n-k}$$
 b) $\sum_{k=0}^{n} \binom{n}{k} 2^k \left(\frac{1}{2}\right)^{n-k}$ c) $\sum_{k=0}^{n} \binom{n}{k} 3^{k+1} 5^{n-k}$ d) $\sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2n-k}$

$$e)$$
 $\sum_{k=0}^{n} \binom{n}{k} 2^k$

e)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k$$
 f) $\sum_{k=0}^{n} \binom{n}{k} 4^k 3^{-k}$ g) $\sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{n-k}}$ h) $\sum_{k=0}^{n} \binom{n}{k} 3^{2k-n}$

$$g) \qquad \sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{n-k}}$$

$$h$$
) $\sum_{k=0}^{n} \binom{n}{k} 3^{2k-n}$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n-k}$$
 j) $\sum_{k=1}^{n-1} \binom{n}{k} 3^k 4^{n-k}$

$$\sum_{k=0}^{n-1} \binom{n}{k} 3^k 4^{n-k}$$

Exercice 17. Simplifier les expressions suivantes :

$$a) \qquad \prod_{k=1}^{20} e^{ik\pi/3}$$

b)
$$\prod_{k=1}^{7} 2e^{ik\pi/8}$$

c)
$$\prod_{k=1}^{6} (1+i)^k$$

a)
$$\prod_{k=1}^{20} e^{ik\pi/3}$$
 b)
$$\prod_{k=1}^{7} 2e^{ik\pi/8}$$
 c)
$$\prod_{k=1}^{6} (1+i)^k$$
 d)
$$\sum_{k=0}^{7} \left(-2 + \sqrt{2}e^{i\pi/4}\right)^k$$
 e)
$$\sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k$$
 f)
$$\sum_{k=0}^{12} (-1 + e^{i\pi/3})^k$$

$$e) \quad \sum_{k=0}^{7} \left(\sqrt{2}e^{i\pi/4}\right)^k$$

$$f$$
) $\sum_{k=0}^{12} (-1 + e^{i\pi/3})^k$

Soit $a \in \mathbb{R}$. Calculer les coefficients α et β tels que $\frac{1}{k(k+a)} = \frac{\alpha}{k} + \frac{\beta}{k+a}$. En déduire les valeurs des sommes suivantes :

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
 b) $\sum_{k=1}^{n} \frac{1}{k(k+2)}$ c) $\sum_{k=2}^{n} \frac{1}{k^2 - 1}$

b)
$$\sum_{k=1}^{n} \frac{1}{k(k+2)}$$

c)
$$\sum_{k=2}^{n} \frac{1}{k^2 - 1}$$

Pour vous entrainer...

Exercice 19. Simplifier les expressions suivantes, pour les écrire de façon plus concise :

$$a) \quad \sum_{k=1}^{3n+2} k - \sum_{k=2n}^{3n+2} k$$

$$b) \quad \sum_{k=1}^{n+4} k - \sum_{k=1}^{n-1} k$$

a)
$$\sum_{k=1}^{3n+2} k - \sum_{k=2n}^{3n+2} k$$
 b)
$$\sum_{k=1}^{n+4} k - \sum_{k=1}^{n-1} k$$
 c)
$$\sum_{k=1}^{2n-1} k - \sum_{k=n-1}^{2n-1} k$$
 d)
$$\prod_{k=1}^{2k} 2^k$$

$$\prod_{k=1}^{2n-1} 2^k$$

$$d) \quad \frac{\prod_{k=1}^{n} 2^k}{\prod_{k=1}^{2} 2^k}$$

$$e) \quad \frac{\prod_{k=1}^{2n+1} 3^k}{\prod_{k=1}^{n} 3^k}$$

e)
$$\frac{\prod_{k=1}^{2n+1} 3^k}{\prod_{k=1}^{n} 3^k}$$
 f) $\sum_{k=n+1}^{2n} a_k + \sum_{k=1}^{n} a_k$ g) $\prod_{k=0}^{n-1} (k+1)^2$ h) $\sum_{k=3}^{n+2} (k-2)$

$$g) \prod_{k=0}^{n-1} (k+1)^2$$

$$h) \sum_{k=2}^{n+2} (k-2)$$

Exercice 20. Calculer les sommes et les produits suivants :

$$a) \sum_{k=0}^{n-1} 3^{k}$$

$$b) \prod_{n=1}^{n+1} 2^n$$

$$c)$$
 $\sum_{k=m}^{n} c$

$$d) \quad \prod_{k=3}^{n+1} 2^{k}$$

$$e)$$

$$\prod_{n=1}^{3n+5} 7$$

$$a) \quad \sum_{k=0}^{n-1} 3 \qquad b) \quad \prod_{k=3}^{n+1} 2 \qquad c) \quad \sum_{k=m}^{n} a \qquad d) \quad \prod_{k=3}^{n+1} 2 \qquad e) \quad \prod_{k=n+1}^{3n+5} 7 \qquad f) \quad \sum_{k=n-2}^{2n+2} 8 = 1$$

Exercice 21. Simplifier les produits suivants :

$$a) \quad \prod_{k=1}^{n+1} (5k)$$

$$b) \quad \prod^{n+2} (k+3)$$

$$c) \quad \prod_{k=1}^{n} \frac{2}{k+1}$$

a)
$$\prod_{k=2}^{n+1} (5k)$$
 b) $\prod_{k=1}^{n+2} (k+3)$ c) $\prod_{k=1}^{n} \frac{2}{k+1}$ d) $\prod_{k=2}^{n} (k-1)(k+1)$ e) $\prod_{k=2}^{n} k(k+1)$

$$e) \prod_{k=2}^{n} k(k+1)$$

$$f$$
) $\prod_{k=1}^{n} \frac{k+2}{k}$

$$g) \quad \prod_{k=2}^{n} \frac{k}{k^2 - 1}$$

$$h)$$
 $\prod_{k=0}^{n} (3k^2)$

f)
$$\prod_{k=1}^{n} \frac{k+2}{k}$$
 g) $\prod_{k=2}^{n} \frac{k}{k^2-1}$ h) $\prod_{k=2}^{n} (3k^2)$ i) $\sum_{k=2}^{n} \ln \frac{1}{k}$ j) $\prod_{k=1}^{n+3} (k+2)$

$$j$$
) $\prod_{k=1}^{n+3} (k+2)$

Exercice 22. Calculer les sommes suivantes :

$$a) \quad \sum_{k=2}^{n} \ln(5k^2)$$

a)
$$\sum_{k=2}^{n} \ln(5k^2)$$
 b) $\sum_{k=1}^{n} (2 \ln k - \ln(k+1))$ c) $\sum_{k=2}^{n} \left(\ln \frac{k+1}{3} + \ln \frac{2}{k} \right)$

$$c) \quad \sum_{k=2}^{n} \left(\ln \frac{k+1}{3} + \ln \frac{2}{k} \right)$$

Exercice 23. Calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} 3^{3k-1}$$

$$b) \sum_{k=0}^{n+2} \frac{1}{3^{k-1}}$$

a)
$$\sum_{k=0}^{n} 3^{3k-1}$$
 b) $\sum_{k=0}^{n+2} \frac{1}{3^{k-2}}$ c) $\sum_{k=0}^{n} 2^{1+3k} 3^{-2(k+1)}$ d) $\sum_{k=0}^{n+2} (-3)^k$ e) $\sum_{k=0}^{n-1} e^{\frac{i\pi k}{n}}$ f) $\sum_{k=0}^{n} \frac{2^k 3^{k+2}}{7^{k+1}}$

$$d) \sum_{k=2}^{n+2} (-3)^k$$

$$e) \sum_{n=0}^{n-1} e^{\frac{i\pi}{n}}$$

Exercice 24. Calculer les sommes suivantes :

$$a) \quad \sum_{k=0}^{3n} (2k-1)^{k}$$

b)
$$\sum_{k=1}^{n} \frac{1-k}{3}$$

a)
$$\sum_{k=1}^{3n} (2k-1)$$
 b) $\sum_{k=1}^{n} \frac{1-k}{3}$ c) $\sum_{k=1}^{n} (ak+b)$ d) $\sum_{k=1}^{2n} 3(k+1)$ e) $\sum_{k=2}^{3n} \frac{2-k}{3}$

$$\sum_{k=1}^{2n} 3(k+1)$$

$$e) \sum_{k=2}^{3n} \frac{2-k}{3}$$

Exercice 25. Calculer les sommes suivantes :

$$a) \sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}$$

b)
$$\sum_{k=0}^{n} \binom{n}{k} 5^{k-n}$$

c)
$$\sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k}$$

$$a) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k} \qquad b) \quad \sum_{k=0}^{n} \binom{n}{k} 5^{k-n} \qquad c) \quad \sum_{k=0}^{n} \binom{n}{k} 2^k 3^{2n-k} \qquad d) \qquad \sum_{k=0}^{n} \binom{n}{k} 2^{k+1} 3^{2-k} \frac{n}{k} \frac{n}{k} 2^{k+1} 3^{2-k} \frac{n}{k} 2^{$$

$$e) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}}$$

$$f$$
) $\sum_{k=1}^{n} \binom{n}{k} (3^k)^2$

e)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{5^k}{2^{2k}}$$
 f) $\sum_{k=1}^{n} \binom{n}{k} (3^k)^2$ g) $\sum_{k=1}^{n} \binom{n}{k} 5^k 3^{n+k}$

Exercice 26. Calculer les expressions suivantes :

$$a) \qquad \sum_{k=1}^{n} \frac{1-2k}{5}$$

$$\sum_{k=1}^{n} \frac{1-2k}{5} \qquad b) \qquad \sum_{k=0}^{n} 3^{k-2} 2^{3-k} \qquad c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1} \qquad d) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{3^k 2^{n-k}}{5^k}$$

$$c) \quad \prod_{k=1}^{n} \frac{k+3}{k+1}$$

$$d) \quad \sum_{k=0}^{n} \binom{n}{k} \frac{3^k 2^{n-k}}{5^k}$$

$$e) \qquad \prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right)$$

e)
$$\prod_{k=1}^{n} \left(\sum_{j=1}^{k} j \right)$$
 f)
$$\sum_{k=0}^{n} {n \choose k} 3^{2k} 2^{2n-k}$$
 g)
$$\sum_{k=1}^{2n} (k+2)$$
 h)
$$\sum_{k=2}^{n} 2^{2-k}$$

$$g) \sum_{k=1}^{2n} (k+2)$$

$$h$$
) $\sum_{k=2}^{n} 2^{2-k}$

i)
$$\sum_{k=1}^{n} \binom{n}{k} 2^{2n+k} 5^{2n-k}$$
 j) $\prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}$

$$j$$
) $\prod_{k=2}^{n} \frac{(k-1)(k+1)}{k^2}$

Pour aller plus loin...

Exercice 27.

$$\prod_{i=1}^{393} i \quad ; \quad \prod_{i=1}^{4n+3} i$$

Simplifier les expressions :
$$\prod_{k=1}^{393} i$$
 ; $\prod_{k=1}^{4n+3} i$; $\prod_{k=1}^{8n+5} (1+i)$; $\prod_{k=3}^{200} e^{i\pi/3}$

$$\prod_{k=3}^{200} e^{i\pi/3}$$

Calculer les produits :
$$\left(\prod_{k=1}^{n}(2k)\right)\left(\prod_{k=1}^{n}(2k+1)\right)$$
 ; $\prod_{k=1}^{n}(2k)$; $\prod_{k=1}^{n}(2k+1)$

$$\prod_{k=1}^{n} (2k) \; ; \quad \prod_{k=1}^{n} (2k) \;$$

4

Exercice 29. On démontre par récurrence que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$ et $\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$

A l'aide de ces formules, calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} k(k+1)$$
 b) $\sum_{k=0}^{n} (k^2+1)$ c) $\sum_{k=1}^{n} (2k+2)(3k-2)$ d) $\sum_{k=1}^{n} k(k-1)(k+1)$

Exercice 30. Calculer les sommes :
$$\sum_{k=0}^{n} {n+1 \choose k} 2^k 3^{n-k}$$
 et $\sum_{k=0}^{n} {n+1 \choose k+1} 2^k 3^{n-k}$

Exercice 31. Calculer le module du nombre complexe :
$$\prod_{k=1}^{n} \frac{ki}{(\sqrt{k}+i)^2}$$

Exercice 32. Calculer les sommes :
$$\sum_{k=1}^{n} \frac{k}{(k+1)!}$$
 et
$$\sum_{k=1}^{n} \frac{2^k(k-1)}{(k+1)!}$$

Exercice 33. Exprimer en fonction de x et n les sommes suivantes :

a)
$$\sum_{k=1}^{n} \sin(xk)$$
 b) $\sum_{k=1}^{n} \sin(x(2k+1))$ c) $\sum_{k=1}^{n} k \cos(kx)$

Exercice 34. On considére une expérience ayant deux issues possibles, que l'on appelle issue positive et issue négative. Soit $p \in]0,1[$ la probabilité d'avoir une issue positive. On répète plusieurs fois cette expérience dans les mêmes conditions et de façon indépendante.

- 1. Calculer la probabilité p_k pour que la première expérience positive soit la k-ième.
- 2. Soit q_1 la probabilité que au moins une expérience parmi les 100 premières soit positive. Exprimer q_1 en fonction de p_1, \ldots, p_{100} et donc en fonction de p.
- 3. Soit q_0 la probabilité que les 100 premières expériences soient toutes négatives. Exprimer q_0 en fonction de p.
- 4. Les événements "Au moins une expérience parmi les 100 premières est positive" et "Les 100 premières expériences sont toutes négatives" sont complémentaires. On devrait donc avoir $q_0 + q_1 = 1$. Est-ce bien ce que vous avez obtenu?