

MUSHROOM CLASSIFICATION INTRODUCTION TO MACHINE LEARNING

PRESENTATION OUTLINE

- Introduction
- Objective
- Dataset
- Attribute Information
- Data Preprocessing
- Exploratory Data Analysis
- Machine Learning Models
- Model Evaluation
- Model Comparison
- Results & Discussion
- Conclusion

INTRODUCTION

ในโปรเจคนี้ เรามุ่งเน้นการพัฒนาโมเดลสำหรับ การจำแนกประเภทเห็ด (Mushroom Classification) ว่าเป็น เห็ดที่กินได้ (edible) หรือ เห็ดพิษ (poisonous) โดยอาศัยเทคนิค Machine Learning เพื่อช่วยให้การระบุชนิด ของเห็ดมีความแม่นยำและรวดเร็วขึ้น ซึ่งสามารถนำไปใช้ประโยชน์ในด้านต่าง ๆ เช่น การเกษตร การแพทย์ และการป้องกันความเสี่ยงจากการบริโภคเห็ดที่เป็นพิษ

ชุดข้อมูลที่ใช้ในโปรเจคนี้ประกอบด้วย คุณลักษณะ (features) ต่าง ๆ ของเห็ด เช่น รูปร่างหมวกเห็ด (cap-shape), สี (cap-color), กลิ่น (odor), ลักษณะ เหงือก (gill-attachment) เป็นต้น โดยข้อมูลเหล่านี้จะถูกนำมาใช้ในการฝึก โมเดลเพื่อเรียนรู้และจำแนกประเภทได้อย่างมีประสิทธิภาพ

เพื่อให้ได้ผลลัพธ์ที่ดีที่สุด เราได้ทำการทดลองกับหลายโมเดล ได้แก่ Decision Tree, Random Forest และ Support Vector Machine (SVM) พร้อมทั้ง วิเคราะห์และเปรียบเทียบประสิทธิภาพของแต่ละโมเดล

OBJECTIVE

01

เพื่อพัฒนาโมเดลที่สามารถจำแนก เห็ดได้อย่างถูกต้องและแม่นยำ 02

เพื่อศึกษาประสิทธิภาพของ โมเดล Machine Learning ที่แตกต่างกัน

เพื่อให้ความรู้และแนวทางในการ ใช้ AI ในการตรวจสอบความ ปลอดภัยของอาหาร

DATASET

Mushroom Classification

Safe to eat or deadly poison?

k kaggle.com

<u>ชุดข้อมูลนี้ประกอบด้วยข้อมูลจำนวน 8,124 รายการ</u>

∆ class =	≜ cap-shape =	≜ cap-surface <u>=</u>	≜ cap-color =	✓ bruises =	≙ odor =	✓ gill-attach =	≜ gill-spacing =	≙ gill-size =	≙ gill-color =
р	x	s	n	t	р	f	С	n	k
е	x	S	у	t	а	f	С	b	k
е	b	s	w	t	1	f	С	b	n
р	x	у	w	t	р	f	С	n	n
е	x	S	g	f	n	f	w	b	k
е	х	У	У	t	а	f	С	b	n
е	b	S	w	t	а	f	С	b	g
е	b	у	w	t	1	f	С	b	n
р	x	у	w	t	р	f	С	n	р
е	b	S	у	t	а	f	С	b	g
е	x	у	у	t	1	f	С	b	g
е	Х	у	у	t	a	f	С	b	n

Source:

Mushroom Classification: UCI MACHINE LEARNING

ATTRIBUTE INFORMATION

edible(กินได้) = e, poisonous(พิษ) = p

Cap Shape (รูปร่างของหมวกเห็ด):

bell(nsงระฆัง) = b, conical(nsงกรวย) = c, convex(นูน) = x, flat(แบน) = f, knobbed(มีปุ่ม) = k, sunken(เว้า) = s

Cap Surface (พื้นผิวของหมวกเห็ด):

fibrous(เป็นเส้นใย) = f, grooves(เป็นร่อง) = g, scaly(เป็นเกล็ด) = y ,smooth(เรียบเนียน) = s

Cap Color (สีของหมวกเห็ด):

brown(น้ำตาล) = n, buff(เนื้อ) = b, cinnamon(อบเชย) = c, gray(เทา) = g, green(เขียว) = r, pink(ชมพู) = p, purple(ม่วง) = u, red(แดง) = e, white(ขาว) = w, yellow(เหลือง) = y

Bruises (รอยช้ำบนเห็ด):

bruises(มีรอยช้ำ) = t, no(ไม่มีรอยช้ำ) = f

Odor (กลิ่นของเห็ด):

almond(กลิ่นอัลมอนด์) = a, anise(กลิ่นโป๊ยกั๊ก) = l, creosote(กลิ่นน้ำมันดิน) = c, fishy(กลิ่นคาวปลา) = y, foul(กลิ่นเหม็น) = f, musty(กลิ่นอับชื้น) = m, none(ไม่มีกลิ่น) = n, pungent(กลิ่นฉุน) = p, spicy(กลิ่นเผ็ด) = s

Gill Attachment (การติดของเหงือกเห็ด)

attached(ติดแน่น) = a, descending(ลาดลง) = d, free(หลุดง่าย) = f, notched(หยัก) = n

Gill Spacing (ระยะห่างของเหงือกเห็ด):

close(ใกล้) = c, crowded(เบียดกันแน่น) = w, distant(ห่าง) = d

EHPLORATORY DATA ANALYSIS

EHPLORATORY DATA ANALYSIS

1. จากกราฟพบว่าเห็ดสีขาวทรงระฆังหรือ (White Bell Shape Mushroom) นั้นพบได้น้อยในคลาสพิษ (p) ซึ่งบ่งชี้ว่า หากเราไปเจอเห็ดสีขาวทรงระฆัง ส่วนใหญ่นั้นก็มักจะกินได้ปลอดภัย

2. สำหรับเห็ดที่มีพิษจะเห็นได้เลยว่า เห็ดสีน้ำตาล (n) และเห็ดสีแดง (e) นั้นพบได้ในคลาสพิษ (p) อย่างมาก ซึ่งบ่งชี้ว่า หากเราไปเจอเห็ดสีน้ำตาลหรือสีแดง ส่วนใหญ่มักจะมีพิษ และไม่ค่อยแนะนำให้กิน

EHPLORATORY DATA ANALYSIS

1. จากกราฟพบว่าเห็ดที่ไม่มีกลิ่นและมีรอยช้ำ หรือ Oderless and Bruised Mushroom นั้นปลอดภัยต่อการกิน 2. จากกรากฟก็พบว่าอีกว่าเห็ดที่มีกลิ่นเหม็นและไม่มีรอยช้ำ หรือ Foul and no Bruised Mushroom นั้น ส่วนใหญ่มักจะมีพิษ ไม่ปลอดภัยแก่การกิน

DATA PREPROCESSING

Data Cleaning

DATA PREPROCESSING

Data Encoding: ใช้ Label Encoding (แปลงค่าหมวดหมู่เป็นตัวเลข)

```
1 from sklearn.preprocessing import LabelEncoder
     2 le = LabelEncoder()
     4 df.iloc[:, 1:] = df.iloc[:, 1:].apply(le.fit_transform)
     6 df.head()
₹
                                                                                          stalk- stalk- stalk-
                                                                                        surface- color- color- veil-
                                   bruises odor
       class
              shape surface color
                                                  attachment spacing
                                                                                                 above- below-
                                          0
    5 rows × 23 columns
                                                  + Code + Text
```


DATA PREPROCESSING

Train–Test Split: แบ่งข้อมูลออกเป็นสองส่วนเพื่อใช้สำหรับการฝึกโมเดลและทดสอบ

```
[] 1 x = df.drop(['class'], axis = 1)
2 y = df['class']
3
4 class_names = y.unique()

[] 1 from sklearn.model_selection import train_test_split
2 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
```

- 70% ใช้ในการฝึก (TRAINING SET)
- 30% ใช้ในการทดสอบ (TEST SET)

MACHINE LEARNING MODELS

Decision Tree

Random Forest

Support Vector Machine (SVM)

DECISION TREE CONCEPT

- ใช้หลักการแบ่งข้อมูลออกเป็น กิ่งก้าน (nodes) ตามคุณลักษณะที่ สำคัญที่สุดโดยอาศัยเงื่อนไขแบบ ถ้าหาก (if–else)
- ต้นไม้จะถูกสร้างขึ้นจากการเลือกฟีเจอร์ที่ช่วยแยกกลุ่มข้อมูลได้ดี ที่สุด (เช่น ใช้เกณฑ์ Gini Index หรือ Entropy)
- การตัดสินใจเกิดขึ้นจากการไล่ลงไปตามโครงสร้างของต้นไม้จนถึง ใบไม้ (leaf node) ซึ่งระบุผลลัพธ์สุดท้าย

ข้อดี:

- ตีความได้ง่าย (Interpretability)
- จัดการข้อมูลประเภทตัวเลขและตัวอักษรได้ดี

ข้อเสีย:

- อาจเกิดการ Overfitting ได้ง่าย
- มีความอ่อนไหวต่อการเปลี่ยนแปลงของข้อมูล

DECISION TREE CODE

```
DECISION TREE MODEL
[ ] 1 from sklearn.tree import DecisionTreeClassifier
     2 dt = DecisionTreeClassifier(max_depth = 5)
     3 dt.fit(x_train, y_train)
₹
         DecisionTreeClassifier
    DecisionTreeClassifier(max depth=5)
    1 dt.score(x_train, y_train)
→ 0.9785437917692579
    1 predictation = dt.predict(x_test)
     2 predictation
→ array(['e', 'e', 'e', ..., 'p', 'p', 'e'], dtype=object)
```


RANDOM FOREST CONCEPT

- เป็นการรวมต้นไม้ตัดสินใจ (Decision Trees) เพื่อให้ผลลัพธ์มี ความแม่นยำและเสถียรขึ้น
- ใช้เทคนิค Bagging เพื่อสุ่มตัวอย่างข้อมูลและฟีเจอร์บางส่วนมาใช้ ในการสร้างแต่ละต้นไม้
- ผลลัพธ์สุดท้ายเกิดจากการโหวต (Voting) ของต้นไม้ทั้งหมด (กรณี classification) หรือค่าเฉลี่ย (กรณี regression)

ข้อดี:

• ลดปัญหา Overfitting ของ Decision Tree และทำให้ผลลัพธ์ มีความน่าเชื่อถือมากขึ้น

ข้อเสีย:

 ต้นไม้ 70% บอกว่าเห็ดกินได้ และ 30% บอกว่า เป็นเห็ดพิษ → ระบบเลือกตามเสียงข้างมาก

RANDOM FOREST CODE

```
RANDOM FOREST MODEL
    1 from sklearn.ensemble import RandomForestClassifier
     2 rf = RandomForestClassifier(max_depth = 5)
     3 rf.fit(x_train, y_train)
₹
         RandomForestClassifier
    RandomForestClassifier(max depth=5)
    1 rf.score(x_train, y_train)
→ 0.9922616953921913
[ ] 1 predictation = rf.predict(x_test)
     2 rf.score(x_test, y_test)
3. 0. 9885151763740772
```


SUPPORT VECTOR MACHINE CONCEPT

- ใช้แนวคิดการหาขอบเขต (Hyperplane) ที่สามารถแบ่งกลุ่มข้อมูล ให้ออกจากกันได้ดีที่สุด
- ระบบพยายามหาขอบเขตที่มี ระยะห่าง (Margin) ระหว่างคลาสมาก ที่สุดเพื่อเพิ่มความสามารถในการจำแนก
- ถ้าข้อมูลไม่สามารถแบ่งได้ง่าย จะใช้ Kernel Trick เพื่อแปลง ข้อมูลไปยังมิติที่สูงขึ้นเพื่อให้แบ่งกลุ่มได้ดีขึ้น

ข้อดี:

- ทำงานได้ดีในชุดข้อมูลที่มีมิติสูง
- ให้ผลลัพธ์ที่แม่นยำแม้ข้อมูลไม่เป็นเชิงเส้น

ข้อเสีย:

- ต้องการการจูนค่าพารามิเตอร์ (เช่น Kernel)
- คำนวณช้าเมื่อตัวอย่างมีขนาดใหญ่

SUPPORT VECTOR MACHINE CODE

```
SUPPORT VECTOR MACHINE
[ ] 1 from sklearn.svm import SVC
[ ] 1 svm_model = SVC(C = 1.0, kernel = 'rbf')
     2 svm_model.fit(x_train, y_train)
     ▼ SVC ① ②
    SVC()
     1 svm_model.score(x_train, y_train)
3. 0.9901512486809708
[ ] 1 predictation = svm_model.predict(x_test)
     2 svm_model.score(x_test, y_test)
→ 0.9868744872846595
```


MODEL EVALUATION

Confusion Matrix

Accuracy

Precision /
Recall / F1-score

MODEL COMPARISON

Confusion Matrix

Decision Tree

TP = 1212

FP = 70

TN = 1156

FN = O

Random Forest

TP = 1212

FN = O

FP = 28

TN = 1198

Support Vector Machine

TP = 1211

FN = 1

FP = 31

TN = 1195

MODEL COMPARISON

Accuracy / Precision / Recall / F1-score

Accuracy Precis	sion Recall	F1-score	
Decision Tree 0.9713 0.97	27 0.9715	0.9713	
Random Forest 0.9885 0.98	87 O.9886	0.9885	
Support Vector 0.9869 O.98	0.9869	0.9869	

MODEL COMPARISON

Accuracy / Precision / Recall / F1-score

RESULTS & DISCUSSION

จากการทำโปรเจค Mushroom Classification โดยการเลือกใช้สามโมเดลหลัก ได้แก่ Decision Tree, Random Forest, และ Support Vector Machine (SVM) ผลลัพธ์ที่ได้แสดงให้เห็นถึงประสิทธิภาพที่สูงใน การจำแนกประเภทเห็ดว่าเป็น "กินได้" หรือ "พิษ" โดยใช้ค่าประสิทธิภาพหลักดังนี้:

Decision Tree:

• Accuracy: 97.13%

• Precision: 97.27%

• Recall: 97.15%

• F1-score: 97.13%

โมเดล Decision Tree มีประสิทธิภาพสูงในการจำแนกเห็ด แต่ยังมีค่า False Positive (FP) ที่สูงกว่าโมเดลอื่น ๆ ซึ่งอาจส่งผลต่อการจำแนกเห็ดที่พิษในบางกรณี

RESULTS & DISCUSSION

Random Forest:

Accuracy: 98.85%

• Precision: 98.87%

• Recall: 98.86%

• F1-score: 98.85%

Support Vector Machine (SVM):

• Accuracy: 98.69%

• Precision: 98.71%

• Recall: 98.69%

• F1-score: 98.69%

โมเดล SVM มีความแม่นยำสูง แต่ไม่สูงเท่ากับ Random Forest โดยมีค่า False Positive (FP) และ False Negative (FN) ที่น้อยมาก แสดงถึงการจำแนกที่แม่นยำในกรณีที่ข้อมูลมีความซับซ้อน

CONCLUSION

จากการประเมินผลทั้งสามโมเดล โมเดล Random Forest มีประสิทธิภาพดีที่สุดในทุก ๆ ด้าน โดย**มีค่า Accuracy, Precision, Recall, และ F1-score ที่สูงที่สุด** ซึ่งเหมาะสมที่สุด สำหรับการจำแนกประเภทเห็ดในโปรเจคนี้ ขณะที่ Decision Tree และ SVM ก็ยังสามารถให้ ผลลัพธ์ที่ดีและมีความแม่นยำสูง แต่ยังคงมีข้อจำกัดในบางกรณี เช่น ค่า False Positive ที่สูง ใน Decision Tree และการใช้เวลาฝึกโมเดลที่ยาวนานใน SVM

THANK YOU FOR LISTENING

