Exercise 8 參考解答

- 一、單選題:(100 小題,每題1分,共100分)
- **1.** ()若一元一次方程式 $2k^2x+k^2=(1-k)x+1$ 無解,則 $4k^3+k+1=$? (A)-4 (B)1 (C)2 (D)

【111 數(B)歷屆試題】

解答

 $2k^2x + k^2 = (1-k)x + 1 \implies (2k^2 + k - 1)x = 1 - k^2 \implies (2k-1)(k+1)x = (1-k)(1+k)$

: 無解

$$\therefore \begin{cases} (2k-1)(k+1)=0\\ (1-k)(1+k)\neq 0 \end{cases} \Rightarrow k=\frac{1}{2}$$

得 $4k^3 + k + 1 = 4 \times \left(\frac{1}{2}\right)^3 + \frac{1}{2} + 1 = \frac{1}{2} + \frac{1}{2} + 1 = 2$

)設方程式 $x^2 - 12x + k = 0$ 有兩相等實根,則 k 之值為何? (A)36 (B)12 (C)-36 (D)-12 2. (【light 講義-綜合評量】

因為方程式有兩相等實根,所以判別式D=0,又a=1,b=-12,c=k可得 $(-12)^2 - 4 \times 1 \times k = 0$,即144 - 4k = 0,故k = 36

)已知方程式x(3-x)=2,則此方程式之解為何? (A)x=-1或-2 (B)x=1或2 (C)x=-1**3.** (或 3 (D) x = 2 或 3

【light 講義-綜合評量】

解答 解析

x(3-x)=2 ,展開整理得 $x^2-3x+2=0$,利用十字交乘法

$$\begin{array}{c|c}
1 & \stackrel{-2}{\times} & 2 \\
\hline
-2 & -1 = -
\end{array}$$

得原式為(x-2)(x-1)=0,即x-2=0或x-1=0,所以x=2或x=1是此方程式的解

4. ()試問 x = -2 可為下列哪一個不等式的解? (A) $5 \le 4 - x$ (B) 3x + 5 > -1 (C) $-2x - 3 \ge 4$ (D) $-3 \le -x - 7$

【light 講義-綜合評量】

解答

Α 解析

將 x = -2 代入選項中 (A)5≤4-(-2)=6,正確 (B)3×(-2)+5>-1 ⇒ -1>-1,錯誤 $(C)-2\times(-2)-3\geq 4$ \Rightarrow $1\geq 4$, 錯誤 $(D)-3\leq -(-2)-7=-5$, 錯誤

)在小於 10 的正整數中,有幾個數是不等式 2x-3>10 的解 ? (A)4 個 (B)3 個 (C)2 個 **5.** ((D)1個

【light 講義-綜合評量】

解答

2x-3>10,移項得2x>13,計算得 $x>\frac{13}{2}=6.5$ 解析 又x 為小於 10 的正整數,故x=7、8、9,共3個

6. ()解方程式(3x+2)-2(x+2)=6,則x=(A)2 (B)4 (C)6 (D)8

【light 講義-綜合評量】

D

解析 (3x+2)-2(x+2)=6

展開得3x+2-2x-4=6 \Rightarrow x=8,故方程式的解為x=8

7. ()餐廳的牛排套餐打九折之後為 189 元,請問未打折的原價應為多少元? (A)200 元 (B)210 元 (C)220 元 (D)190 元

【light 講義-綜合評量】

解答

設牛排套餐原價x元,依題意得 $x \times 0.9 = 189$

$$x \times \frac{9}{10} = 189$$
 \Rightarrow $x = 189 \times \frac{10}{9}$ \Rightarrow $x = 210$

) 若 $x^2 - kx + 4 = 0$ 有兩相等實根,則k =8. ((A) ± 2 (B) $\pm 3\sqrt{2}$ (C) $\pm 4\sqrt{2}$ (D) ± 4

【員林家商段考題 light 講義-類題】

解答

解析 因為方程式有兩相等實根,所以判別式*D*=0

又a=1, b=-k, c=4, 可得 $(-k)^2-4\times1\times4=0$, 整理得 $k^2=16$, 故 $k=\pm4$

9. () 不等式 $x-7 \ge 6$ 的解為 (A) $x \ge 12$ (B) $x \ge 13$ (C) $x \ge -2$ (D) $x \ge -1$

【龍騰自命題】

 $\overline{\text{解析}}$ $x-7 \ge 6 \Rightarrow x \ge 6+7 \Rightarrow x \ge 13$

10. () 不等式 $\frac{x}{3} \le 9$ 的解為 (A) $x \le 81$ (B) $x \le 3$ (C) $x \le 9$ (D) $x \le 27$

【龍騰自命題】

解析 $\frac{x}{3} \le 9$ \Rightarrow $x \le 9 \times 3$ \Rightarrow $x \le 27$

11. () 方程式 2x-1=7 的解為 (A)x=4 (B)x=3 (C)x=2 (D)x=5

【龍騰自命題】

解析 $2x-1=7 \Rightarrow 2x=7+1 \Rightarrow 2x=8 \Rightarrow x=8 \div 2 \Rightarrow x=4$

12. () 方程式 2x-3=-7 的解為 (A)x=-5 (B)x=5 (C)x=-2 (D)x=2

【龍騰自命題】

解析 $2x-3=-7 \Rightarrow 2x=-7+3 \Rightarrow 2x=-4 \Rightarrow x=(-4)\div 2 \Rightarrow x=-2$

13. () 不等式 $3x - 8 \le -5$ 的解為 $(A)x \le 1$ $(B)x \le -1$ $(C)x \le \frac{13}{3}$ $(D)x \le -\frac{13}{3}$

【龍騰自命題】

解析 $3x-8 \le -5 \Rightarrow 3x \le -5+8 \Rightarrow 3x \le 3 \Rightarrow x \le 3 \Rightarrow x \le 1$

14. () 不等式 $\frac{x+1}{7}$ < 1 的解為 (A)x < -8 (B)x < 8 (C)x < 6 (D)x < -6

【龍騰白命題】

解答 C

解析] $\frac{x+1}{7} < 1 \Rightarrow x+1 < 1 \times 7 \Rightarrow x+1 < 7 \Rightarrow x < 7-1 \Rightarrow x < 6$

15. () 方程式 $x - \frac{6-x}{2} = 6$ 的解為 (A)x = 12 (B)x = 9 (C)x = 6 (D)x = 4

【龍騰自命題】

解答C

解析
$$x - \frac{6-x}{2} = 6$$
 \Rightarrow $2x - (6-x) = 12$ \Rightarrow $2x - 6 + x = 12$ \Rightarrow $3x = 18$ \Rightarrow $x = 6$

16. () 方程式 $x + \frac{x-1}{3} = 13$ 的解為 (A)x = 9 (B)x = 20 (C)x = 12 (D)x = 10

【龍騰白命題】

解答 D

解析
$$x + \frac{x-1}{3} = 13$$
 \Rightarrow $3x + (x-1) = 39$ \Rightarrow $4x = 40$ \Rightarrow $x = 10$

17. () 不等式 $-3 \le 2x + 3 \le 11$ 的解為 (A) $-3 \le x \le 4$ (B) $0 \le x \le 7$ (C) $0 \le x \le 4$ (D) $-3 \le x \le 7$

【龍騰自命題】

解答

解析 原式 \Rightarrow $-6 \le 2x \le 8$ \Rightarrow $-3 \le x \le 4$

18. () 不等式 $5(x-1) \le 3(x+3)$ 的解為 (A) $x \le \frac{1}{2}$ (B) $x \le 7$ (C) $x \le 4$ (D) $x \le 2$

【龍騰自命題】

解答 I

解析 原式 \Rightarrow $5x-5 \le 3x+9$ \Rightarrow $2x \le 14$ \Rightarrow $x \le 7$

19. () 不等式 2[x-(-2)] < x-4 的解為 (A)x < -6 (B)x < 0 $(C)x < \frac{-8}{3}$ (D)x < -8

【龍騰自命題】

解答 I

| $2[x-(-2)] < x-4 \implies 2(x+2) < x-4 \implies 2x+4 < x-4 \implies x < -8$

20. () 不等式 $x-\frac{x}{3} > 2$ 的解為 (A) $x > \frac{1}{3}$ (B)x < -1 (C)x > 3 (D)x > -1

【龍騰自命題】

解答C

解析 $x-\frac{x}{3} > 2 \Rightarrow \frac{2}{3}x > 2 \Rightarrow x > 3$

21. () 小偉有紅牌 16 張,黑牌 18 張,混合後分成甲、乙兩堆。若甲堆比乙堆多 12 張,且甲堆中的紅牌比乙堆中的黑牌多 5 張,則甲堆中的黑牌比乙堆中的紅牌多幾張? (A)2 (B)5 (C)7 (D)10

【super 講義-綜合評量】

解答

C

設乙堆中的黑牌x張,則依題意可得:

甲堆中的紅牌=x+5(張)

甲堆中的黑牌=18-x (張)

乙堆中的紅牌=16-(x+5)=11-x (張)

故所求=(18-x)-(11-x)=18-x-11+x=7 (張)

22. ()已知甲、乙、丙三人各有一些錢,其中甲的錢是乙的 2 倍,乙比丙多 1 元,丙比甲少 11 元,求三人的錢共有多少元? (A)30 (B)33 (C)36 (D)39

D

設乙有x元,則甲有2x元,丙有(x-1)元,由題意知:丙比甲少 11 元得 解析

 $x-1=2x-11 \implies x=11-1=10$

∴ 甲有 20 元, 乙有 10 元, 丙有 9 元

故三人的錢共有20+10+9=39(元)

)試問x=-1不是下列哪一個不等式的解? (A) $2x+1 \le -3$ (B) $2x-1 \ge -3$ (C) $-2x+1 \ge 3$ 23. ((D) $-2x-1 \le 3$

【super 講義-綜合評量】

解答 A

依序將x=-1代入各選項,可得 (A) $2x+1=2\times(-1)+1=-2+1=-1>-3$ 解析

(B)
$$2x-1=2\times(-1)-1=-2-1=-3\geq -3$$

(C)
$$-2x+1=-2\times(-1)+1=2+1=3\geq 3$$

(D)
$$-2x-1 = -2 \times (-1) - 1 = 2 - 1 = 1 \le 3$$

)解不等式3-(2+2x)<5-(3-x),得其解的範圍為何? (A) $x>\frac{1}{3}$ (B) $x<\frac{1}{3}$ (C) $x>-\frac{1}{3}$ 24. (D) $x < -\frac{1}{2}$

【super 講義-綜合評量】

解答

解析

$$3-(2+2x)<5-(3-x)$$

$$\Rightarrow 3-2-2x < 5-3+x$$

$$\Rightarrow -1 < 3x \Rightarrow x > -\frac{1}{3}$$

)解不等式 $1-2x \le \frac{5}{9} - \frac{2}{3}x$,得其解的範圍為何? (A) $x \ge \frac{1}{3}$ (B) $x \le \frac{1}{3}$ (C) $x \ge \frac{1}{2}$ (D) $x \le \frac{1}{2}$ **25.** (

【super 講義-綜合評量】

解答 A

解析
$$1-2x \le \frac{5}{9} - \frac{2}{3}x$$

$$\Rightarrow 1 - \frac{5}{9} \le 2x - \frac{2}{3}x \quad \Rightarrow \quad \frac{4}{9} \le \frac{4}{3}x$$

$$\Rightarrow \quad \frac{4}{9} \times \frac{3}{4} \le x \quad \Rightarrow \quad \frac{1}{3} \le x \quad \Rightarrow \quad x \ge \frac{1}{3}$$

26.)已知在美樂蒂超市內購物總金額超過 190 元時,購物總金額有打八折的優惠。安娜帶 200 元到美樂蒂超市買棒棒糖,若棒棒糖每根 9 元,則她最多可買多少根棒棒糖? (B)23 (C)27 (D)28

【super 講義-綜合評量】

解答

 \mathbf{C}

設安娜可買x根棒棒糖 解析

依題意列式如下:

$$9x \times 0.8 \le 200 \quad \Rightarrow \quad 9x \le 250 \quad \Rightarrow \quad x \le \frac{250}{9}$$

且
$$9x > 190$$
 (才有打折) $\Rightarrow x > \frac{190}{9}$

則 $21.1 \cdots < x < 27.7 \cdots$

故安娜最多可買 27 根棒棒糖

A

方程式 $x^2 - 4x - k = 0$ 有相等兩實根

$$\Rightarrow$$
 判別式 $\Delta = b^2 - 4ac = 0$

$$\Rightarrow (-4)^2 - 4 \times 1 \times (-k) = 0 \Rightarrow 16 + 4k = 0$$

$$k = -4$$

28. ()已知 a 和 b 為二次方程式 $x^2-3x-1=0$ 的兩個解。試問以 a+b 和 $a \times b$ 為兩個解的一元二次方程式為何? (A) $x^2-2x-3=0$ (B) $x^2-3x-2=0$ (C) $x^2-5x-3=0$ (D) $x^2-5x-2=0$

【super 講義-綜合評量】

解答

)1 1

$$x^{2} - 3x - 1 = 0 \implies \begin{cases} a + b = -\frac{-3}{1} = 3\\ a \times b = -\frac{1}{1} = -1 \end{cases}$$

故以a+b和 $a\times b$ 為兩個解的二次方程式為

$$(x-3)(x+1) = 0 \implies x^2 - 2x - 3 = 0$$

29. () 老劉騎腳踏車,從甲地到乙地逆風而行時,每小時可騎 10 公里,回程順風而行時,每小時可騎 15 公里,今老劉騎腳踏車來回甲、乙兩地一趟共需要 5 小時,請問甲、乙兩地距離幾公里? (A)20 (B)30 (C)40 (D)50

【super 講義-綜合評量】

解答

В

設甲、乙兩地相距x公里,則

逆風而行時花了 $\frac{x}{10}$ 小時

順風而行時花了 $\frac{x}{15}$ 小時

又來回共花了 5 小時,由題意可得 $\frac{x}{10}$ + $\frac{x}{15}$ =5

$$\Rightarrow \left(\frac{x}{10} + \frac{x}{15}\right) \times 30 = 5 \times 30$$

$$\Rightarrow 3x + 2x = 150 \Rightarrow 5x = 150$$

$$\Rightarrow x = \frac{150}{5} = 30$$

故甲、乙兩地相距 30 公里

30. ()下表為小潔打算在某電信公司購買一支 MAT 手機與搭配一個門號的兩種方案。此公司每個月收取通話費與月租費的方式如下:若通話費超過月租費,只收通話費;若通話費不超過月租費,只收月租費。若小潔每個月的通話費均為 x 元, x 為 400 到 600 之間的整數,則在不考慮其他費用並使用兩年的情況下,x 至少為多少才會使得選擇乙方案的總花費比甲方案便宜?

	甲方案	乙方案
門號的月租費(元)	400	600
MAT手機價格(元)	15000	13000

注意事項:以上方案兩年內不可變更月租費

(A)500 (B)516 (C)517 (D)600

【105 會考歷屆試題】

解析

因為400 < x < 600,所以

若小潔選擇甲方案,需以通話費計算,使用兩年費用為24x+15000 若小潔選擇乙方案,需以月租費計算,使用兩年費用為24×600+13000=27400

依題意得: 24x+15000>27400

$$\Rightarrow 24x > 12400 \Rightarrow x > 516\frac{2}{3}$$

即 x 至少為 517

31. ()如圖為歌神 KTV 的兩種計費方案說明。若曉莉和朋友們打算在此 KTV 的一間包廂裡連續數唱 6 小時,經服務生試算後,告知他們選擇包廂計費方案會比人數計費方案便宜,則他們至少有多少人在同一間包廂裡歡唱?

(A)6 (B)7 (C)8 (D)9

【103 會考歷屆試題】

解答

C

設有x人在同一間包廂裡歡唱,則

包廂計費(元):900×6+99x

人數計費 (元): $540x + 80 \times (6-3) \times x$

依題意列式如下:

 $900 \times 6 + 99x < 540x + 80 \times (6-3) \times x$

 \Rightarrow 5400 + 99x < 540x + 240x

 \Rightarrow 681x > 5400 \Rightarrow $x > 7.9 \cdots$

 $\exists \forall x = 8$

故至少有8人在同一間包廂裡歡唱

32. () 小華帶x元去買甜點,若全買紅豆湯圓剛好可買 30 杯,若全買豆花剛好可買 40 杯。已知豆花每杯比紅豆湯圓便宜 10 元,依題意可列出下列哪一個方程式? $(A)\frac{x}{30} = \frac{x}{40} + 10$

(B)
$$\frac{x}{40} = \frac{x}{30} + 10$$
 (C) $\frac{x}{40} = \frac{x+10}{30}$ (D) $\frac{x+10}{40} = \frac{x}{30}$

【基測歷屆試題】

解答

A

解析 由題意可得:

紅豆湯圓每杯 $\frac{x}{30}$ 元,豆花每杯 $\frac{x}{40}$ 元

又豆花每杯比紅豆湯圓便宜 10 元

列式得: $\frac{x}{40} = \frac{x}{30} - 10$ \Rightarrow $\frac{x}{30} = \frac{x}{40} + 10$

33. ()已知 $a \cdot b$ 為一元二次方程式 $x^2 + 7x - 15 = 0$ 的兩根,則下列何者是以 $2a \cdot 2b$ 為兩根的方

程式? (A)
$$x^2 - 14x - 30 = 0$$
 (B) $x^2 - 14x - 60 = 0$ (C) $x^2 + 14x - 30 = 0$ (D) $x^2 + 14x - 60 = 0$

【108 數(A)歷屆試題】

解答 D

解析

 \therefore $a \cdot b \stackrel{\text{h}}{\Rightarrow} x^2 + 7x - 15 = 0$ 的兩根,

由根與係數的關係得: $\begin{cases} a+b=-7 \\ a\times b=-15 \end{cases}$

若一方程式的兩根為2a、2b,則

$$\int 2a + 2b = 2(a+b) = -14$$

$$\int 2a \times 2b = 4ab = -60$$

故方程式為 $x^2 - (-14)x + (-60) = 0$

 $|||x^2 + 14x - 60| = 0$

34. () 已知 $\frac{x-1}{x+1} - \frac{6}{1-x} = \frac{12}{x^2-1}$,則 $\frac{x-1}{x+1}$ 之值為何? (A) $-\frac{3}{2}$ (B)0 (C) $\frac{1}{2}$ (D) $\frac{3}{2}$

【105 數(B)歷屆試題】

解答 D

解析 化簡 $\frac{x-1}{x+1} - \frac{6}{1-x} = \frac{x-1}{x+1} + \frac{6}{x-1}$ (通分合併) = $\frac{(x-1)^2 + 6(x+1)}{(x+1)(x-1)} = \frac{x^2 + 4x + 7}{x^2 - 1}$

根據題目

$$\frac{x^2 + 4x + 7}{x^2 - 1} = \frac{12}{x^2 - 1}$$

$$\Rightarrow$$
 $x^2 + 4x + 7 = 12$ (其中 $x \neq \pm 1$)

$$\Rightarrow$$
 $x^2 + 4x - 5 = 0$ ($\sharp \div x \neq \pm 1$)

$$\Rightarrow$$
 $(x+5)(x-1)=0$ ($\sharp + x \neq \pm 1$)

$$\Rightarrow$$
 $x = -5, 1 (1$ $\uparrow \triangle)$

35. ()設實數 $2+\sqrt{3}$ 的整數部分為 a ,小數部分為 b 。若 P 為有理數且 b 為方程式 $ax^2+px-6=0$ 之一根,則 P=

(A)3 (B) $3\sqrt{3}$ (C)6 (D) $6\sqrt{3}$

【103 數(B)歷屆試題】

解答

 \mathbf{C}

$$\therefore 1 < \sqrt{3} < 2$$

$$\Rightarrow$$
 2 + $\sqrt{3}$ = 2 + 1 + $(\sqrt{3} - 1)$ = 3 + $(\sqrt{3} - 1)$

$$\therefore$$
 2+ $\sqrt{3}$ 的整數部分 $a=3$,小數部分 $b=\sqrt{3}-1$

將a=3與 $b=\sqrt{3}-1$ 代入方程式

$$ax^2 + px - 6 = 0$$

$$\# 3(\sqrt{3}-1)^2 + p(\sqrt{3}-1)-6=0$$

$$\Rightarrow 3(4-2\sqrt{3})+p(\sqrt{3}-1)-6=0$$

$$\Rightarrow p(\sqrt{3}-1) = -6 + 6\sqrt{3} = 6(\sqrt{3}-1)$$

故 p=6

36. () 方程式 x - (-3) = -5(x - 5)的解為 (A) $x = \frac{11}{3}$ (B) x = 4 (C) $x = \frac{14}{3}$ (D) x = 7

【龍騰自命題】

A

解析

原式
$$\Rightarrow$$
 $x+3=-5(x-5)$ \Rightarrow $x+3=-5x+25$
 \Rightarrow $6x=22$ \Rightarrow $x=\frac{22}{6}=\frac{11}{3}$

37. ()下列各方程式中,何者有兩相異實根? (A) $x^2 + 4x + 4 = 0$ (B) $x^2 + 4x + 3 = 0$ (C) $x^2 + 4x + 6 = 0$

【龍騰自命題】

解答

解析

 $(A)4^2 - 4 \times 1 \times 4 = 0$ 兩相等實根 $(B)4^2 - 4 \times 1 \times 3 = 4 > 0$ 兩相異實根 $(C)4^2 - 4 \times 1 \times 5 = -4 < 0$ 無實根 $(D)4^2 - 4 \times 1 \times 6 = -8 < 0$ 無實根

38. () 設一元二次方程式 $2x^2 + 6x + k = 0$ 的二根差為 1 ,則 k = (A)1 (B)2 (C)3 (D)4

【super 講義-綜合評量】

解答

D

 $\Rightarrow \alpha \cdot \alpha + 1$ 為 $2x^2 + 6x + k = 0$ 的兩根

$$\Rightarrow \begin{cases} \overline{m} 根和: \alpha + (\alpha + 1) = -\frac{6}{2} = -3 \cdots ① \\ \overline{m} 根積: \alpha(\alpha + 1) = \frac{k}{2} \cdots ② \end{cases}$$

由①得 $\alpha = -2$,代回②式得 $(-2) \times (-2+1) = \frac{k}{2}$

$$\Rightarrow (-2) \times (-1) = \frac{k}{2}$$

$$\therefore k = 4$$

39. ()試問以 $2+\sqrt{3}$ 與 $2-\sqrt{3}$ 二數為根的整係數一元二次方程式為何? (A) $x^2+4x-1=0$ (B) $x^2-4x-1=0$ (C) $x^2-4x+1=0$ (D) $x^2+4x+1=0$

【super講義-綜合評量】

解答

 \mathbf{C}

解析 兩根的和為 $(2+\sqrt{3})+(2-\sqrt{3})=4$

兩根的積為 $(2+\sqrt{3})\times(2-\sqrt{3})=2^2-(\sqrt{3})^2=4-3=1$

故所求方程式為 $x^2-4x+1=0$

40. () 某旅行團到森林遊樂區參觀,下表為兩種參觀方式與所需的纜車費用。已知旅行團的每個人皆從這兩種方式中選擇一種,且去程有 15 人搭乘纜車,回程有 10 人搭乘纜車。若他們纜車費用的總花費為 4100 元,則此旅行團共有多少人?

參觀方式	纜車費用
去程及回程均搭乘纜車	300元
單程搭乘纜車,單程步行	200元

(A)16 (B)19 (C)22 (D)25

【108 會考歷屆試題】

解答

Δ

解析 設去、回程均搭纜車者有 x 人,則

去單程的有(15-x)人,回單程的有(10-x)人

去回均搭費用為300x元

去單程費用為200×(15-x)元

回單程費用為200×(10-x)元

依題意列出總花費式子為:

$$300x + 200 \times (15 - x) + 200 \times (10 - x) = 4100$$

$$\Rightarrow$$
 $3x+30-2x+20-2x=41 \Rightarrow $x=9$$

所以旅行團共有9+(15-9)+(10-9)=16 (人)

41. () 若
$$\alpha$$
、 β 為 $x^2 + 2x - 7 = 0$ 的兩根,則 $\alpha^2 + 3\alpha\beta + \beta^2 =$ (A)-3 (B)-2 (C)2 (D)3

【107數(A)歷屆試題】

解答

$$\alpha + \beta = -\frac{2}{1} = -2$$
, $\alpha\beta = \frac{-7}{1} = -7$

所以
$$\alpha^2 + 3\alpha\beta + \beta^2 = \alpha^2 + 2\alpha\beta + \beta^2 + \alpha\beta = (\alpha + \beta)^2 + \alpha\beta = (-2)^2 - 7 = -3$$

42. ()若 $x^2-2x-1=0$ 的兩根為 α 、 β ,則 $(\alpha-2)(\beta-2)$ 之值為何? (A)-3 (B)-1 (C)1 (D)5

【107數(B)歷屆試題】

解答

解析 因為 $\alpha \cdot \beta$ 為 $x^2 - 2x - 1 = 0$ 之兩根

由根與係數的關係得: $\alpha + \beta = -\frac{b}{a} = 2$, $\alpha\beta = \frac{c}{a} = -1$

$$\pm (\alpha - 2)(\beta - 2) = \alpha\beta - 2(\alpha + \beta) + 4 = -1 - 2 \times 2 + 4 = -1$$

43. ()已知一元二次方程式 $x^2+x-5=0$ 有兩相異實根 $a \cdot b$,若a < b,則b-a=

(A)1 (B) $\sqrt{5}$ (C) $2\sqrt{5}$ (D) $\sqrt{21}$

【106 數(B)歷屆試題】

解答

H \therefore 有兩相異實根 $a \cdot b$

利用公式知 $\frac{-1\pm\sqrt{1^2-4\times1\times(-5)}}{2} = \frac{-1\pm\sqrt{21}}{2}$ 為兩根

 $\sum a < b$

$$a = \frac{-1 - \sqrt{21}}{2}$$
, $b = \frac{-1 + \sqrt{21}}{2}$

$$\exists b - a = \frac{-1 + \sqrt{21}}{2} - \frac{-1 - \sqrt{21}}{2} = \sqrt{21}$$

44. () 設一元二次方程式 $2x^2 + 6x + k = 0$ 的二根差為 1 ,則 k = 0

(A)1 (B)2 (C)3 (D)4

【103 數(A)歷屆試題】

解答

 $\Rightarrow \alpha \cdot \alpha + 1$ 為 $2x^2 + 6x + k = 0$ 的兩根

$$\Rightarrow \begin{cases} \overline{\text{m根和}} : \alpha + (\alpha + 1) = -\frac{6}{2} = -3 \cdots \text{①} \\ \\ \overline{\text{m根積}} : \alpha (\alpha + 1) = \frac{k}{2} \cdots \text{②} \end{cases}$$

由①得 $\alpha = -2$,

代回②式得 $(-2)\times(-2+1)=\frac{k}{2}$

$$\Rightarrow (-2) \times (-1) = \frac{k}{2}$$

 \therefore k=4

-)已知 $a \neq 2$,若方程式 $x^2 + ax + 2 = 0$ 之二根差的平方與方程式 $x^2 + 2x + a = 0$ 之二根差的平 **45.** (方相等,則a=
 - (A)-6 (B)-4 (C)-2 (D)-1

【103 數(B)歷屆試題】

解答 解析

(I)設 α 、 β 為方程式 $x^2 + ax + 2 = 0$ 之兩根

由根與係數的關係知:

兩根和: $\alpha + \beta = -a$

兩根精: $\alpha\beta = 2$

$$\Rightarrow (\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (-a)^2 - 4 \times 2 = a^2 - 8$$

(II)設 $P \cdot q$ 為方程式 $x^2 + 2x + a = 0$ 之兩根

由根與係數的關係知:

兩根和: p+q=-2

兩根積: pq = a

$$\Rightarrow$$
 $(p-q)^2 = (p+q)^2 - 4pq = (-2)^2 - 4 \times a = 4 - 4a$

則由題意知(I)(II)中 a²-8=4-4a

$$\Rightarrow a^2 + 4a - 12 = 0$$

$$\Rightarrow$$
 $(a+6)(a-2)=0$

$$\Rightarrow a = -6 \stackrel{?}{\Longrightarrow} 2$$

又 $a \neq 2$,故a = -6

) 一元一次方程式 5x+5=-25 的解為 (A) x=5 (B) x=-5 (C) x=6 (D) x=-6**46.** (

【學習卷】

解答

D

5x + 5 = -25 \Rightarrow 5x = -30 \Rightarrow x = -6

故方程式的解為x = -6

) 一元一次方程式 -3x-22=0 的解為 (A) $x=\frac{22}{3}$ (B) $x=-\frac{22}{3}$ (C) x=7 (D) x=-6**47.** (

【學習卷】

解答

-3x-22=0 \Rightarrow -3x=22 \Rightarrow $x=-\frac{22}{3}$

故方程式的解為 $x=-\frac{22}{3}$

)媽媽點了兩份早餐的金額不超過150元,已知每份早餐的金額為x元,則不等式為 (A) 48. (2x > 150 (B) 2x < 150 (C) $2x \ge 150$ (D) $2x \le 150$

【學習卷】

D

 $2x \le 150$

-)已知 α 、 β 為 $x^2+3x-6=0$ 之兩根,則 $\frac{1}{\alpha}+\frac{1}{\beta}=$
 - (A)1 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$

【學習卷】

解答 В

I 由根與係數的關係知:
$$\begin{cases} \alpha+\beta=-\frac{3}{1}=-3\\ \alpha\beta=\frac{-6}{1}=-6 \end{cases}, \quad \text{則} \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha\beta}=\frac{-3}{-6}=\frac{1}{2}$$

)咖啡店老闆將一個限量紀念款咖啡杯以成本價加5成當作定價賣出,可以賺200元,請 50. 問此咖啡杯成本價為多少元? (A)400 (B)450 (C)500 (D)550

【課本自我評量】

解答

解析

設成本 x 元,則依題意可得

$$x + 0.5x - x = 200$$

計算得0.5x = 200

故 x = 400

即咖啡杯成本價為 400 元

51. ()解不等式
$$\frac{2x-4}{5}$$
> $\frac{-3x+2}{3}$,其解的範圍為 (A) x > $\frac{21}{22}$ (B) x < $\frac{21}{22}$ (C) x < $\frac{22}{21}$ (D) x > $\frac{22}{21}$ (課本自我評量】

解答

D

將原式兩邊同乘以15,得

$$3(2x-4) > 5(-3x+2)$$

展開得6x-12>-15x+10

移項得6x+15x>10+12

整理得21x>22

故
$$x > \frac{22}{21}$$

52. ()方程式 $x^2 - 32x + 192 = 0$ 的解為 (A) x = -24 或x = 8 (B) x = 24 或x = 8 (C) x = 24 或x = -8

【課本自我評量】

B

利用十字交乘法得

原式為(x-24)(x-8)=0

 $\exists \exists x - 24 = 0 \ \exists \exists x - 8 = 0$

所以x=24或x=8是此方程式的解

53. ()若方程式
$$a(3x-2)=3(ax+1)-7$$
 的解為任意實數,則 $a=(A)2(B)-2(C)1(D)-1$

【龍騰自命題】

 \therefore 解為任意實數 \therefore x=0 代入方程式

$$a(0-2) = 3(0+1) - 7 \implies -2a = -4 \implies a = 2$$

54. () 不等式
$$x > 1 + \frac{x}{2} - \frac{x}{4}$$
的解為 (A) $x > 4$ (B) $x > \frac{4}{3}$ (C) $x > \frac{3}{4}$ (D) $x < 4$

【龍騰自命題】

解答 В

原式 \Rightarrow $4x > 4 + 2x - x <math>\Rightarrow$ $3x > 4 <math>\Rightarrow$ $x > \frac{4}{2}$

55. ()若二次方程式
$$ax^2 + bx + c = 0$$
 的兩根互為倒數,則 (A) $a = b$ (B) $a + b = 0$ (C) $a = c$ (D) $b + c = 0$

【龍騰自命題】

解答 (

解析 兩根互為倒數 $\Rightarrow \alpha\beta = \frac{c}{a} = 1$ $\therefore a = c$

56. ()若方程式
$$x^2 + 4x + 2 = 0$$
 之兩根為 $\alpha \cdot \beta$,則 $\alpha\beta = (A)2 (B) - 2 (C)4 (D) - 4$

【龍騰自命題】

解答 A

M解析 兩根積 = $\frac{c}{a}$ = $\frac{2}{1}$ = 2 $\Rightarrow \alpha\beta$ = 2

57. ()若方程式
$$x^2 - 4x + k = 0$$
 的兩根相等,則 $k = (A)2 (B) - 2 (C)4 (D) - 4$

【龍騰自命題】

解答 C

解析 兩根相等 \Rightarrow 判別式 = 0 \Rightarrow $(-4)^2 - 4 \times 1 \times k = 0$ \Rightarrow 16 - 4k = 0 \Rightarrow k = 4

58. ()若方程式
$$x^2 + 3x + (k+1) = 0$$
 的兩根相異,則 k 的範圍為 $(A) k > \frac{4}{5}$ $(B) k < \frac{4}{5}$ $(C) k > \frac{5}{4}$ $(D) k < \frac{5}{4}$

【龍騰自命題】

解答]

解析 :: 兩根相異

∴ 判別式 =
$$3^2 - 4 \times 1 \times (k+1) > 0$$

$$\Rightarrow$$
 9-4k-4>0 \Rightarrow 5>4k \Rightarrow k < $\frac{5}{4}$

59. ()已知直角三角形的三邊長分別為
$$x-7$$
、 x 、 $x+1$,則三角形的最長邊的長度為 (A)5 (B)12 (C)15 (D)13

【龍騰自命題】

解答 I

解析 根據畢氏定理知 $(x-7)^2 + x^2 = (x+1)^2$

$$\Rightarrow$$
 $x^2 - 14x + 49 + x^2 = x^2 + 2x + 1$

$$\Rightarrow x^2 - 16x + 48 = 0 \Rightarrow (x - 4)(x - 12) = 0 \Rightarrow x = 4 \Rightarrow 12$$

當 x = 12 時,三邊長為 5, 12, 13, 故最長邊為 13

60. () 若
$$2x^2 + ax + b = 0$$
 的兩根為 $\frac{3}{2}$ 及 2 ,則 $a + b = (A)\frac{13}{2}$ (B) $\frac{1}{2}$ (C) 1 (D) -1

【龍騰自命題】

解答 D

解析 兩根為 $\frac{3}{2}$ 及 2 \Rightarrow $(x-\frac{3}{2})(x-2)=0$ \Rightarrow (2x-3)(x-2)=0 \Rightarrow $2x^2-7x+6=0$ \therefore a=-7, b=6 \Rightarrow a+b=-7+6=-1

61. () 設
$$\alpha \cdot \beta$$
 為方程式 $x^2 + 6x + 4 = 0$ 的兩根,又 $x^2 + tx + r = 0$ 的兩根為 $2\alpha^2 + 1 \cdot 2\beta^2 + 1$,則 $t - r = (A) - 179$ (B)179 (C)63 (D) $- 63$

【龍騰自命題】

解析 $x^2 + 6x + 4 = 0$ \Rightarrow $\begin{cases} \alpha + \beta = -6 \\ \alpha\beta = 4 \end{cases} \Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 28$ $x^2 + tx + r = 0$

⇒
$$\begin{cases} \overline{m} R \pi = -t = (2\alpha^2 + 1) + (2\beta^2 + 1) = 2(\alpha^2 + \beta^2) + 2 = 2 \times 28 + 2 = 58 \\ \overline{m} R \pi = r = (2\alpha^2 + 1) \cdot (2\beta^2 + 1) = 4\alpha^2\beta^2 + 2(\alpha^2 + \beta^2) + 1 \\ = 64 + 2 \times 28 + 1 = 121 \end{cases}$$

$$\therefore t = -58, r = 121 \implies t - r = -179$$

62. ()設 $\alpha \cdot \beta$ 為 $x^2 + 3x - 1 = 0$ 的兩根,又 $x^2 + Ax + B = 0$ 之兩根為 $\alpha(\beta + 1) \cdot \beta(\alpha + 1)$,則 A + B = (A) - 8 (B)8 (C) -2 (D)2

【龍騰白命題】

解答 E

解析
$$x^2 + 3x - 1 = 0$$
 \Rightarrow
$$\begin{cases} \alpha + \beta = -3 \\ \alpha \beta = -1 \end{cases}$$
$$x^2 + Ax + B = 0$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \alpha \beta = -1 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \alpha \beta = -1 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -1 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = 0 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = 0 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -1 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow \begin{cases} \overline{\alpha} + \beta = -3 \\ \overline{\alpha} + \beta = -3 \end{cases}$$
$$\Rightarrow (\overline{\alpha} + \beta) = ($$

63. () 設方程式 $2x^2 - 3x - 2 = 0$ 的兩個根為 $\alpha \cdot \beta$,則 $|\alpha - \beta| = (A) \frac{5}{2}$ (B) 3 (C) $\frac{7}{2}$ (D) 4

【課本自我評量】

解答

64. () 若 α 、 β 為 $6x^2 + 4x - 3 = 0$ 之兩根,則 $\frac{\alpha + \beta}{\alpha\beta}$ = (A) $-\frac{2}{3}$ (B) $-\frac{4}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$

【課本自我評量】

解答 D

解析 由根與係數關係得

$$\alpha + \beta = -\frac{4}{6} = -\frac{2}{3} , \quad \alpha\beta = \frac{-3}{6} = -\frac{1}{2}$$

$$\pm \chi \frac{\alpha + \beta}{\alpha\beta} = \frac{-\frac{2}{3}}{-\frac{1}{2}} = \frac{4}{3}$$

65. () 若 α 、 β 為方程式 $2x^2+5x+1=0$ 的兩根,則 $\alpha^2+\beta^2=$ (A) $\frac{25}{4}$ (B) $\frac{23}{4}$ (C) $\frac{21}{4}$ (D) $\frac{19}{4}$

【課本自我評量】

解答

解析 由根與係數關係得

66. ()下列各式中,哪一個是一元一次方程式? (A)5x+2 (B)-2x+3=5 (C)3y+2=x (D)

只含「一種未知數」,且未知數的「次數是1」的「等式」,稱為一元一次方程式

)方程式x-3=0的解為 (A)x=3 (B)x=-3 (C)x=0 (D)x=6**67.** (

【隨堂卷】

A

解析 x-3=0

利用移項法則得x=0+3=3,故方程式的解為x=3

68. (

【隨堂卷】

所有能滿足一元一次不等式的數 x 都是該不等式的解 因此x > 3,即所有大於 3 的數

)下列各式中,哪一個是一元二次方程式? (A) $x^2 + x = 6$ (B) $x^2 + x^3 = 2$ (C)2x = 8 (D) **69.** ($x^{2} - 3$

【隨堂卷】

只含有「一個未知數」,且未知數的「最高次次方為2」的「等式」, 稱為一元二次方程式,故 $x^2 + x = 6$ 為一元二次方程式

70. (或3

)方程式(x-2)(x-3)=0的解為 (A) x=-2 或-3 (B) x=2 或3 (C) x=2 或-3 (D) x=-2

【隨堂卷】

解答

В

(x-2)(x-3)=0, 解析

)方程式 $x^2+x+1=0$ 的判別式為 (A)-5 (B)5 (C)-3 (D)3 **71.** (

【隨堂卷】

二次方程式 $ax^2 + bx + c = 0$ 的判別式為 $b^2 - 4ac$ $x^{2} + x + 1 = 0$ \Rightarrow a = 1, b = 1, c = 1判別式 $b^2 - 4ac = 1^2 - 4 \times 1 \times 1 = 1 - 4 = -3$

72. (

) 若方程式 $x^2 + 3x - 5 = 0$ 的解為 $x = \frac{-3 \pm \sqrt{D}}{2}$,則 D =(A)0 (B)23 (C)-11 (D)29

【隨堂卷】

解答

二次方程式 $ax^2 + bx + c = 0$ 的公式解為 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 解析

> $x^{2} + 3x - 5 = 0$ \Rightarrow a = 1, b = 3, c = -5 $\Re x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-5)}}{2 \times 1} = \frac{-3 \pm \sqrt{9 + 20}}{2} = \frac{-3 \pm \sqrt{29}}{2}$

故
$$D=29$$

73. () 設
$$\alpha$$
、 β 為二次方程式 $x^2 + 3x + 2 = 0$ 的兩根,則 $\alpha + \beta =$ (A)-2 (B)2 (C)3 (D)-3

【隨堂卷】

解答 D

二次方程式 $ax^2 + bx + c = 0$ 的兩根和 $\alpha + \beta = -\frac{b}{a}$ $x^{2} + 3x + 2 = 0 \implies a = 1 , b = 3 , c = 2$ 兩根和 $\alpha + \beta = -\frac{b}{a} = -\frac{3}{1} = -3$

74. () 一元一次方程式 2x = 6 的解為 (A) x = 3 (B) x = 6 (C) x = 12 (D) $x = \frac{1}{2}$

【隨堂卷】

解答 Α

2x = 6

方程式等號兩邊同除以 2 \Rightarrow $2x \div 2 = 6 \div 2$, 得 x = 3

)一元一次不等式 $x \le 3$ 的圖解為 (A) $\xrightarrow{3} x$ (B) $\xrightarrow{3} x$ (C) **75.** ($3 \rightarrow x$ (D) $3 \rightarrow x$

【隨堂卷】

 $x \le 3$ 即所有x 小於或等於 3

76. ()下列何者不為「<」的習慣用語? (A)未滿 (B)不高於 (C)不足 (D)低於

【隨堂卷】

不高於即等於或低於:「<」

77. () 設 $\alpha \cdot \beta$ 為二次方程式 $x^2 - 2x + 1 = 0$ 的兩根,則 $\alpha + \beta + \alpha \beta =$ (A)-1 (B)1 (C)-3 (D)3

【隨堂卷】

解答 D

二次方程式 $ax^2 + bx + c = 0$ 的兩根和 $\alpha + \beta = -\frac{b}{a}$,兩根積 $\alpha\beta = \frac{c}{a}$ 解析 $x^{2}-2x+1=0 \implies a=1 \cdot b=-2 \cdot c=1$ 兩根和 $\alpha+\beta=-\frac{b}{a}=-\frac{-2}{1}=2$,兩根積 $\alpha\beta=\frac{c}{a}=\frac{1}{1}=1$ 所以 $\alpha + \beta + \alpha\beta = 2 + 1 = 3$

) 這次小彤段考的總平均不小於80分,若總平均為x分,則不等式為 (A)x>80 (B)x<80**78.** ((C) $x \ge 80$ (D) $x \le 80$

【學習卷】

 \mathbf{C}

 $x \ge 80$

)不等式-3x < 24的解為 (A)x > 8 (B)x < -8 (C)x < 8 (D)x > -8

【學習卷】

解答 D 解析 -3x < 24 \Rightarrow $x > \frac{24}{-3}$ \Rightarrow x > -8

80. () 一元一次方程式
$$\frac{x-3}{5} = \frac{-x+3}{2}$$
 的解為 (A) $x = 3$ (B) $x = 4$ (C) $x = 5$ (D) $x = 6$

【學習卷】

解答A

解析 原式 \Rightarrow 2(x-3)=5(-x+3) \Rightarrow 2x-6=-5x+15 \Rightarrow 2x+5x=15+6 \Rightarrow 7x=21 \Rightarrow x=3

故方程式的解為x=3

81. ()若方程式 5(ax+1)+2=a(5x-1)+11 的解為任意實數,則 a=(A)-4(B)18(C)1(D)4

【龍騰自命題,進階卷】

解答

解析 : 解為任意實數 : x = 0 代入方程式 $\Rightarrow 5(0+1)+2=a(0-1)+11 \Rightarrow 7=-a+11 \Rightarrow a=4$

82. () 不等式 $-2x + \frac{9+x}{2} \le 6x$ 的解為 (A) $x \ge 1$ (B) $x \le 1$ (C) $x \le \frac{3}{5}$ (D) $x \ge \frac{3}{5}$

【龍騰自命題,進階卷】

解答 D

解析 原式 \Rightarrow $-4x + (9+x) \le 12x$ \Rightarrow $15x \ge 9$ \Rightarrow $x \ge \frac{3}{5}$

83. () 方程式|x+1|+|x-2|=5 所有解的和為 (A)0 (B)1 (C)-1 (D)-2

【龍騰自命題】

解答 | E

解析 (I)當 $x \ge 2$ 時: $(x+1)+(x-2)=5 \Rightarrow 2x=6 \Rightarrow x=3$ (合) (II)當 -1 < x < 2 時: $(x+1)-(x-2)=5 \Rightarrow 3=5$ (無解) (III)當 $x \le -1$ 時: $-(x+1)-(x-2)=5 \Rightarrow -2x=4 \Rightarrow x=-2$ (合) ∴ 方程式之解為 x=3 或 $-2 \Rightarrow$ 所有解的和為 3+(-2)=1

84. () 換季拍賣中,夏季衣服按原訂價打七折後再打七折,至少比原訂價少 200 元,請問原訂價至少為幾元? (A)392 元 (B)393 元 (C)408 元 (D)409 元

【龍騰自命題】

解答 E

解析 設原訂價為x元,打七折後為0.7x元,再打七折為0.49x元 依題意 $\Rightarrow x - 0.49x > 200 \Rightarrow 0.51x > 200 \Rightarrow x > \frac{200}{0.51} = 392.1$

⇒ 原訂價至少為 393 元

85. () 已知 $\sin\theta - \cos\theta = \frac{1}{\sqrt{3}}$,且 $\sin\theta$ 及 $\cos\theta$ 為 $2x^2 + px + q = 0$ 的兩個根,則判別式 $p^2 - 8q = (A) - \frac{20}{3}$ (B) $-\frac{4}{3}$ (C) $\frac{20}{3}$ (D) $\frac{4}{3}$

【龍騰自命題,進階卷】

解答 D

解析 $(\sin\theta - \cos\theta)^2 = \frac{1}{3}$ \Rightarrow $1 - 2\sin\theta\cos\theta = \frac{1}{3}$ \Rightarrow $\sin\theta\cos\theta = \frac{1}{3}$

$$\begin{cases} \sin \theta + \cos \theta = -\frac{p}{2} \\ \sin \theta \cos \theta = \frac{q}{2} \end{cases} \Rightarrow \begin{cases} p = -2(\sin \theta + \cos \theta) \\ q = 2\sin \theta \cos \theta \end{cases}$$

$$D = p^2 - 8q = 4(1 + 2\sin\theta\cos\theta) - 16\sin\theta\cos\theta = 4 - 8\sin\theta\cos\theta = 4 - \frac{8}{3} = \frac{4}{3}$$

) 設 $a \cdot b$ 是有理數,方程式 $3x^2 + ax + b = 0$ 有一根為 $3-\sqrt{2}$,則數對(a,b) = (A)(-18,21)**86.** ((B)(6,7) (C)(18,-21) (D)(-6,-7)

【龍騰自命題】

 \therefore $a \cdot b$ 為有理數 \therefore 一根為 $3-\sqrt{2}$,另一根必為 $3+\sqrt{2}$ $\pm (3-\sqrt{2})+(3+\sqrt{2})=-\frac{a}{3} \implies a=-18$ $(3-\sqrt{2})(3+\sqrt{2}) = \frac{b}{3} \implies b = 21$

)解方程式 $(3x^2-2x+1)(3x^2-2x-7)+12=0$ 所得的根,其最大者為 (A)1 (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ **87.** ((D)2

【龍騰自命題】

 $(3x^{2} - 2x)^{2} - 6(3x^{2} - 2x) - 7 + 12 = 0$ $\Rightarrow (3x^{2} - 2x)^{2} - 6(3x^{2} - 2x) + 5 = 0 \Rightarrow (3x^{2} - 2x - 1)(3x^{2} - 2x - 5) = 0$ $\Rightarrow (3x + 1)(x - 1)(3x - 5)(x + 1) = 0$ $\therefore x = -\frac{1}{3} \cdot 1 \cdot \frac{5}{3} \cdot \vec{y} - 1$, 故最大的根為 $\frac{5}{3}$

) 設 $\alpha \cdot \beta$ 為 $x^2 + 2x - 3 = 0$ 之兩根, 試求 $\alpha^2 + \beta^2 = (A)6$ (B)10 (C)8 (D)16 **88.** (

【龍騰自命題】

解析
$$\begin{cases} \alpha + \beta = -2 \\ \alpha \beta = -3 \end{cases} \Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 2 \times (-3) = 10$$

)設 k 為實數,若方程式 $kx^2 + (2k-3)x + (k-2) = 0$ 無實根,則 k 的範圍為 $(A) k < \frac{9}{4}$ (B) **89.** ($k > \frac{9}{4}$ (C) $k < \frac{9}{6}$ (D) $k > \frac{9}{6}$

【龍騰自命題】

解析 ∴ 無實根 ∴ (2k-3)²-4×k×(k-2)<0 $\Rightarrow 4k^2 - 12k + 9 - 4k^2 + 8k < 0 \Rightarrow -4k + 9 < 0 \Rightarrow k > \frac{9}{4}$

) 若 $x = \frac{1}{2}$ 為方程式 $\frac{2x+3}{a} - \frac{5a-2x}{3} = 4$ 之解,則 a 之值為 (A) $-\frac{4}{5}$ (B)3 (C)3 或 $-\frac{4}{5}$ (D) $\frac{4}{5}$ 或 -3

【龍騰自命題,進階卷】

解析 $x = \frac{1}{2}$ 代入方程式 $\Rightarrow \frac{1+3}{a} - \frac{5a-1}{3} = 4 \Rightarrow 12 - a(5a-1) = 12a$

$$\Rightarrow$$
 $5a^2 + 11a - 12 = 0 \Rightarrow (5a - 4)(a + 3) = 0 \Rightarrow a = \frac{4}{5} \text{ } -3$

) 二次方程式 $x^2 + 2x + 4 = 0$ 其根的性質為何? (A)相異兩實根 (B)相等兩實根 (C)無 91. (實根 (D)兩實根

【龍騰自命題】

解析 $b^2 - 4ac = 2^2 - 4 \times 1 \times 4 = 4 - 16 = -12 < 0 \Rightarrow$ 無實根

) 設方程式 $x^3 - kx^2 - 4k^2x - 4 = 0$ 之一根為 2,則 k 之值為 $(A) k = \frac{1}{2}$ 或 -1 $(B) k = \frac{1}{2}$ 或 1**92.** ((C) $k = -\frac{1}{2} \vec{\boxtimes} - 1$ (D) $k = -\frac{1}{2} \vec{\boxtimes} 1$

【龍騰自命題】

解答

將
$$x = 2$$
 代入方程式
⇒ $2^3 - k \times 2^2 - 4k^2 \times 2 - 4 = 0$ ⇒ $2k^2 + k - 1 = 0$
⇒ $(2k-1)(k+1) = 0$ ⇒ $k = \frac{1}{2}$ 或 -1

93. () 若 $5x^2 + ax + b = 0$ 的兩根為 $\frac{-2 + \sqrt{3}}{5}$ 及 $\frac{-2 - \sqrt{3}}{5}$,則數對(a,b) = (A)(-20,1) (B) $(4,\frac{1}{5})$ (C)(20,1) (D) $(-4,\frac{1}{5})$

【龍騰自命題,進階卷】

層样
$$x = \frac{-2 + \sqrt{3}}{5}$$
 \Rightarrow $5x = -2 + \sqrt{3}$ \Rightarrow $5x + 2 = \sqrt{3}$ \Rightarrow $25x^2 + 20x + 4 = 3$ \Rightarrow $25x^2 + 20x + 1 = 0$ \Rightarrow $5x^2 + 4x + \frac{1}{5} = 0$ \therefore $a = 4$, $b = \frac{1}{5}$ \Rightarrow $(a,b) = (4,\frac{1}{5})$

)設 t 為實數,且方程式 $x^2 + x + t = 0$ 的一根為另一根的 3 倍,則 $t = (A) - \frac{3}{16}$ (B) -1 (C) 94. ($\frac{3}{16}$ (D)1

【龍騰自命題】

解答

設兩根為 $\alpha \cdot \beta$,由題意知 $\alpha = 3\beta$,又兩根和 $\alpha + \beta = -\frac{1}{1} = -1$ \Rightarrow $3\beta + \beta = -1$ \Rightarrow $\beta = \frac{-1}{4}$, $\alpha = 3\beta = \frac{-3}{4}$, 故兩根積 $\alpha\beta = \frac{t}{1} = t$ \Rightarrow $t = (\frac{-3}{4}) \times (\frac{-1}{4}) = \frac{3}{16}$

)已知 a 為實數,若一元二次方程式 $(a-1)x^2+a^3x+\left(a^2+a+1\right)=0$ 的解為兩相同實根,則 a=**95.** ((A) $\sqrt{3}$ (B) $\sqrt[3]{3}$ (C) $\sqrt{2}$ (D) $\sqrt[3]{2}$

【108 數(A)歷屆試題】

::是相同實根

...判別式 $D = (a^3)^2 - 4(a-1)(a^2 + a + 1) = 0$

$$\Rightarrow a^6 - 4(a^3 - 1) = 0 \Rightarrow a^6 - 4a^3 + 4 = 0$$
$$\Rightarrow (a^3)^2 - 4a^3 + 4 = 0 \Rightarrow (a^3 - 2)^2 = 0 \Rightarrow a^3 = 2$$

$$\exists \exists a = \sqrt[3]{2}$$

96. () 不等式
$$x - \frac{19 - 4x}{3} \ge 3x$$
的解為 (A) $x \le \frac{19}{2}$ (B) $x \ge \frac{19}{2}$ (C) $x \le -\frac{19}{2}$ (D) $x \ge -\frac{19}{2}$

【龍騰自命題】

解答 (

解析 原式 \Rightarrow $3x - (19 - 4x) \ge 9x <math>\Rightarrow$ $3x - 19 + 4x \ge 9x$ \Rightarrow $2x \le -19 \Rightarrow x \le -\frac{19}{2}$

97. () 方程式 $(x^2-2x-2)(x^2-2x-3)=0$ 之所有解的和為 (A)4 (B) -4 (C)5 (D)6

【龍騰自命題,進階券】

解答

解析 $(x^2-2x-2)(x^2-2x-3)=0$

 $(I)x^2 - 2x - 2 = 0$,兩根和為 $-\frac{-2}{1} = 2$

 $(II)x^2 - 2x - 3 = 0$,兩根和為 $-\frac{-2}{1} = 2$

由(I)(II)知方程式的所有解之和為2+2=4

98. () 設 k 為實數,且方程式 $x^2 - 4x - k = 0$ 沒有實根,則 k 的範圍為 (A) k < -4 (B) k < 4 (C) k > -4 (D) k > 4

【課本自我評量】

解答 | /

居析 因為方程式 $x^2-4x-k=0$ 沒有實根

所以判別式 $D = b^2 - 4ac < 0$

 $\exists \exists (-4)^2 - 4 \times 1 \times (-k) < 0$

計算得16+4k<0

故 *k* < -4

99. ()已知方程式 $x^2 - (m-2)x - 3m + 3 = 0$ 的兩根為 $\alpha \cdot \beta$,則 $(\alpha - \beta)^2$ 為 $(A)m^2 + 8m + 8$ (B) $m^2 + 8m - 8$ (C) $m^2 + 16m + 8$ (D) $m^2 + 16m - 8$

【龍騰自命題,進階卷】

解答 E

析 由根與係數的關係知 $\begin{cases} \alpha + \beta = m - 2 \\ \alpha \beta = -3m + 3 \end{cases}$

 $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = (m^2 - 4m + 4) - 4(-3m + 3) = m^2 + 8m - 8$

100. ()試求不等式 $\left(\frac{1}{2} + \frac{1}{2^2}x\right) + \left(\frac{1}{2^2} + \frac{1}{2^3}x\right) + \left(\frac{1}{2^3} + \frac{1}{2^4}x\right) + \left(\frac{1}{2^4} + \frac{1}{2^5}x\right) + \left(\frac{1}{2^5} + \frac{1}{2^6}x\right) > 0$ 解的範圍為何? (A) x < 2 (B) x > 2 (C) x < -2 (D) x > -2

【112 數(B)歷屆試題】

解答 D

解析 原式 ⇒ $\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}\right) + \left(\frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6}\right) x > 0$ $\Rightarrow \left(\frac{2^4 + 2^3 + 2^2 + 2 + 1}{2^6}\right) x > -\left(\frac{2^4 + 2^3 + 2^2 + 2 + 1}{2^5}\right)$ $\Rightarrow \frac{1}{2^6} x > -\frac{1}{2^5} \quad \stackrel{\times 2^6}{\Rightarrow} \quad x > -2$