Cálculo Diferencial e Integral I/MEEC 2011/2012

Resolução do 1º Teste

Problema 1 Seja $f(x) = \sqrt{\log(2 - |x^2 - 4x + 3|)}$.

(a) Determine o domínio de f, que designamos D.

Resolução: O domínio D é dado por

$$\log(2 - |x^2 - 4x + 3|) \ge 0 \iff 2 - |x^2 - 4x + 3| \ge 1 \iff |x^2 - 4x + 3| \le 1$$

Temos $|x^2 - 4x + 3| \le 1$ se e só se $-1 \le x^2 - 4x + 3 \le 1$, onde

(1)
$$x^2 - 4x + 3 \le 1 \iff x^2 - 4x + 2 \le 0 \iff e$$

(2)
$$x^2 - 4x + 3 > -1 \iff x^2 - 4x + 4 > 0 \iff (x - 2)^2 > 0$$

A condição (2) é satisfeita por qualquer $x \in \mathbb{R}$, e a condição (1) é satisfeita no intervalo entre as raízes da quadrática $4x^2 - 4x + 2$, que são

$$x = \frac{4 \pm \sqrt{8}}{2} = 2 \pm \sqrt{2}$$

Concluímos que $D = [2 - \sqrt{2}, 2 + \sqrt{2}]$. A figura seguinte ilustra os nossos cálculos.

Figura 1: $|x^2 - 4x + 3| \iff -1 \le x^2 - 4x + 3 \le 1$

(b) Determine, se existirem, o máximo, mínimo, supremo e ínfimo de D.

Resolução: Temos max $D = \sup D = 2 + \sqrt{2}$ e min $D = \inf D = 2 - \sqrt{2}$.

(c) Determine, se existirem, o máximo, mínimo, supremo e ínfimo de $D \cap \mathbb{Q}$.

Resolução: Temos sup $D \cap \mathbb{Q} = 2 + \sqrt{2}$ e inf $D \cap \mathbb{Q} = 2 - \sqrt{2}$. $D \cap \mathbb{Q}$ não tem máximo nem mínimo, porque os respectivos supremo e infimo são *irracionais*.

Problema 2 Demonstre por indução que a seguinte identidade é válida para qualquer natural n, desde que $x \neq 1$.

$$\sum_{k=1}^{n} x^k = \frac{x - x^{n+1}}{1 - x}$$

Resolução: Para n=1 temos a provar que, quando $x \neq 1$, então

(1)
$$\sum_{k=1}^{1} x^k = \frac{x - x^{1+1}}{1 - x}$$

Para isso, basta-nos observar que

$$\sum_{k=1}^{1} x^{k} = x^{1} = x \text{ e, por outro lado, } \frac{x - x^{1+1}}{1 - x} = \frac{x - x^{2}}{1 - x} = \frac{x(1 - x)}{1 - x} = x$$

$$\sum_{k=1}^{1} x^k = \frac{x - x^{1+1}}{1 - x}$$

Para concluir a indução, temos ainda que mostrar que, para qualquer $n \in \mathbb{N}$,

(2)
$$\sum_{k=1}^{n} x^k = \frac{x - x^{n+1}}{1 - x} \Longrightarrow \sum_{k=1}^{n+1} x^k = \frac{x - x^{n+2}}{1 - x}$$
,

onde a identidade à esquerda é a "hipótese de indução". Procedemos como se segue:

$$\sum_{k=1}^{n+1} x^k = \sum_{k=1}^{n} x^k + x^{n+1} = \frac{x - x^{n+1}}{1 - x} + x^{n+1} = \frac{x - x^{n+1} + x^{n+1} - x^{n+2}}{1 - x} = \frac{x - x^{n+2}}{1 - x}$$

Repare-se que a segunda igualdade à esquerda corresponde à utilização da hipótese de indução, e as igualdades finais resultam de cálculos elementares.

Problema 3 (2,0 val.) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida para $x \neq 0$ por

$$f(x) = \begin{cases} x \operatorname{sen}(1/x) & \text{se } x > 0\\ (x+1)e^{1/x} & \text{se } x < 0 \end{cases}$$

(a) f é prolongável por continuidade a x = 0?

Resolução: Calculamos os limites laterais de f em 0:

- $\lim_{x \to 0^+} x \operatorname{sen}(1/x) = 0$, porque $|x \operatorname{sen}(1/x)| \le |x| \to 0$.
- $\lim_{x \to 0^-} (x+1)e^{1/x} = 0$, porque $(x+1) \to 1$ e $\lim_{x \to 0^-} e^{1/x} = \lim_{t \to -\infty} e^t = 0$.

Concluímos que f é prolongável por continuidade a x=0, tomando f(0)=0,

(b) Determine a imagem $f(\mathbb{R})$.

Resolução: Analisamos primeiro o comportamento de f quando x < 0. Notamos que

- $e^{1/x} > 0$ é decrescente em] $-\infty$, 0[, e $e^{1/x} \to 1$ quando $x \to -\infty$. (x+1) é decrescente em] $-\infty$, 0[, e $x+1 \to -\infty$ quando $x \to -\infty$.

Concluímos que

$$f$$
 é decrescente em $]-\infty,0[$, e $f(x)\to -\infty$ quando $x\to -\infty$.

Segue-se como evidente que $f(]-\infty,0])=]-\infty,0].$

O comportamento de f para x > 0 é mais complexo, em resultado das oscilações de sen(1/x). Notamos no entanto que, com t = 1/x, temos

$$x \operatorname{sen}(1/x) = \frac{\operatorname{sen} t}{t}$$
, em particular, $\lim_{x \to +\infty} x \operatorname{sen}(1/x) = \lim_{t \to 0^+} \frac{\operatorname{sen} t}{t} = 1$.

Como $\frac{\operatorname{sen} t}{t} < 1$ para qualquer $t \neq 0$, a imagem $f(\mathbb{R})$ não inclui valores $y \geq 1$. Por outro lado, como f(0) = 0 a imagem inclui o intervalo [0,1[. Concluímos assim que $f(\mathbb{R}) =]-\infty,1[$. A figura 2 apresenta o gráfico de f, para ilustrar as nossas conclusões.

Figura 2

(c) A equação f(x) - x/2 + 10 = 0 tem soluções x < 0?

Resolução: Consideramos a função g(x) = f(x) - x/2 + 10 = 0, que é contínua em \mathbb{R} . Calculamos o limite de g(x) quando $x \to -\infty$ como se segue:

$$\lim_{x \to -\infty} f(x) - x/2 + 10 = \lim_{x \to -\infty} \left((x+1)e^{1/x} - x/2 + 10 \right) = \lim_{x \to -\infty} \left[x \left(e^{1/x} - 1/2 \right) + e^{1/x} + 10 \right]$$

Como $e^{1/x} \to 1$ quando $x \to -\infty$ é claro que $g(x) \to -\infty$ quando $x \to -\infty$. Como g(0) = 10 > 0, segue-se do Teorema de Bolzano que a equação g(x) = 0 tem pelo menos uma solução em $]-\infty, 0[$.

Problema 4 (2,0 val.) Calcule, se existirem, os seguintes limites:

(a)
$$\lim_{x \to +\infty} \frac{2x^2 + x \sin x + \cos x}{1 + x \cos x + 5x^2}$$
 (b) $\lim_{x \to 0^+} x^x$ (c) $\lim_{x \to +\infty} \frac{\arctan(1 + e^{x^2})}{\sqrt{1 + \log x}}$

Resolução:

(a)
$$\lim_{x \to +\infty} \frac{2x^2 + x \sin x + \cos x}{1 + x \cos x + 5x^2} = \lim_{x \to +\infty} \frac{2 + \frac{\sin x}{x} + \frac{\cos x}{x^2}}{\frac{1}{x^2} + \frac{\cos x}{x} + 5} = \frac{2 + 0 + 0}{0 + 0 + 5} = \frac{2}{5}$$

(b) Como
$$\lim_{x \to 0^+} x \log x = \lim_{x \to 0^+} \frac{\log x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$
, temos
$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \log x} = e^0 = 1$$

(c)
$$\lim_{x \to +\infty} \arctan(1 + e^{x^2}) = \lim_{t \to +\infty} \arctan(t) = \frac{\pi}{2} e \lim_{x \to +\infty} \sqrt{1 + \log x} = \lim_{t \to +\infty} \sqrt{t} = +\infty$$
 donde se segue que

$$\lim_{x \to +\infty} \frac{\arctan(1 + e^{x^2})}{\sqrt{1 + \log x}} = 0$$

Problema 5 (1,5 val.) Considere a usual função trigonométrica dada por $f(x) = \cot x$.

(a) Mostre que f é injectiva no conjunto $A =]0, \pi[$.

Resolução: Temos cotan $x = \frac{\cos x}{\sin x}$ e observamos que

- Quando $0 < x \le \pi/2$ as funções sen e cos são ambas positivas, sendo sen crescente e cos decrescente, em ambos os casos estritamente. Segue-se que cotan é estritamente decrescente em $[0, \pi/2]$.
- Quando $\pi/2 \le x < \pi$ a função sen é positiva, mas $\cos x \le 0$. Temos agora sen decrescente e $|\cos|$ crescente, em ambos os casos ainda estritamente. Segue-se que $|\cot a|$ é estritamente crescente, e como cotan $x \le 0$ continua a ser verdade que cotan é estritamente decrescente, mas em $[\pi/2, \pi[$.

A função cotan é assim estritamente decrescente, logo injectiva, em $]0,\pi[.$ (1)

(b) Determine a imagem B = f(A).

Resolução: Os seguintes limites são imediatos:

$$\lim_{x\to 0^+} \cot {\rm an}\, x = +\infty \,\, {\rm e} \,\, \lim_{x\to \pi^-} \cot {\rm an}\, x = -\infty$$

Como cotan é contínua no intervalo $[0,\pi[$, segue-se que $f([0,\pi[)])=\mathbb{R}$.

(c) Esboce o gráfico da função inversa $f^{-1} = \operatorname{arccotan}, f^{-1} : B \to A$.

Resolução: A figura 3 apresenta o gráfico de arccotan (o gráfico de cotan aparece ponteado).

Problema 6 (1,5 val.) Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções contínuas em \mathbb{R} de que se conhecem apenas os valores indicados na tabela seguinte. Sabe-se também que f é injectiva.

x	0	1	2	3	4
f(x)	3		1		0
g(x)	1	4	3/2	0	

(a) A função g é injectiva?

¹Note-se aqui que a resposta a esta questão é particularmente simples depois do nosso estudo de derivadas. Como $(\cot x)' = -\csc^2 x < 0$ a função cotan é estritamente decrescente em qualquer intervalo contido no seu domínio.

Figura 3: Gráfico de arccotan.

Resolução: Uma função contínua num intervalo é injectiva se e só se é estritamente monótona nesse intervalo. Não é o caso de g, porque g(1) > g(0) e g(2) < g(1). Portanto, a função g não é monótona.

(b) A equação f(x) = g(x) tem mais do que uma solução com 0 < x < 3? Tem alguma solução com x < 1?

Resolução: A função f é por hipótese injectiva, e portanto estritamente monótona. De acordo com os dados disponíveis, é estritamente decrescente. Completamos por isso o quadro inicial da seguinte forma, onde 3 > a > 1 e 1 > b > 0:

x	0	1	2	3	4
f(x)	3	a	1	b	0
g(x)	1	4	3/2	0	

Consideramos a função (contínua) h(x) = f(x) - g(x). Temos então h(0) = 2 > 0, h(1) = a - 4 < 0 e h(3) = b > 0. Segue-se do teorema de Bolzano que a equação h(x) = 0 tem soluções pelo menos em [0,1[e em]1,3[.

(c) Qual é o menor valor de k para o qual pode garantir que a equação $g(x) - x^2 = k$ tem mais do uma solução? Qual é o maior valor de k para o qual pode garantir que a equação $g(x) - x^2 = k$ tem pelo menos uma solução?

Resolução: Tomamos $\phi(x)=x^2+k$ e notamos que a equação em causa é $g(x)=\phi(x)$. Notamos que (ver figura 4):

- k > 3: Não podemos garantir a existência de qualquer solução, porque temos neste caso $\phi(x) > g(x)$ em todos os pontos onde conhecemos o valor de g(x).
- k=3: A equação tem pelo menos a solução x=1, porque $g(1)=4=\phi(1)=1+3$.

- 1 < k < 3: Existem pelo menos duas raízes, porque $g(0) = 1 < \phi(0) = k, g(1) = 4 > \phi(1) = 1 + k$ e $g(3) = 0 < \phi(3) = 9 + k$.
- k=1: A equação tem solução x=0 e pelo menos uma outra solução x>0, porque $g(1)=4>\phi(1)=1+k$ e $g(3)=0<\phi(3)=9+k$.
- $-9 \le k < 1$: Existe pelo menos uma raíz, porque $g(0) = 1 > \phi(0) = k \text{ e } g(3) = 0 \le \phi(3) = 9 + k.$
- k < -9: Os dados disponíveis nada permitem concluir, porque temos $\phi(x) < g(x)$ para todos os valores conhecidos.

Concluímos assim que

- O menor valor de k para o qual podemos garantir que a equação $g(x)-x^2=k$ tem mais do uma solução é k=1, e
- O maior valor de k para o qual podemos garantir que a equação $g(x) x^2 = k$ tem pelo menos uma solução é k = 3.

Figura 4