Recursion

Instructor: Andy Mirzaian

The Recursion Pattern

- Recursion: when a method calls itself
- Classic example: the factorial function
 n! = 1*2*3····· (n-1)*n
- Recursive definition: $f(n) = \begin{cases} 1 & \text{if } n = 0 \\ n * f(n-1) & \text{otherwise} \end{cases}$

Content of a Recursive Method

Base case(s)

- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.

Recursive calls

- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

Visualizing Recursion

Recursion trace

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value

Example:

Example: English Ruler

Print the ticks and numbers like an English ruler:

Using Recursion

drawInterval(length)

Input: length of a 'tick'

Output: ruler with tick of the given length in the middle

and smaller rulers on either side

Last Update: June 27, 2023 EECS2101: Recursion

6

Recursive Drawing Method

- The drawing method is based on the following recursive definition:
- An interval with a central tick length L > 1 consists of:
 - An interval with a central tick length L-1
 - A single tick of length L
 - An interval with a central tick length L-1

Last Update: June 27, 2023

EECS2101: Recursion

The Recursive Method

```
/** Draws an English ruler for the given number of inches and major tick length. */
    public static void drawRuler(int nlnches, int majorLength) {
     drawLine(majorLength, 0);
                                              // draw inch 0 line and label
     for (int j = 1; j \le n Inches; j++) {
       drawInterval(majorLength -1); // draw interior ticks for inch
       drawLine(majorLength, j);
                                         // draw inch j line and label
    private static void drawInterval(int centralLength) {
     if (centralLength >= 1) {
                                  // otherwise, do nothing
10
        drawInterval(centralLength -1); // recursively draw top interval
       drawLine(centralLength);
                                             // draw center tick line (without label)
                                               // recursively draw bottom interval
       drawInterval(centralLength -1);
13
14
15
                                                                       Note the two
    private static void drawLine(int tickLength, int tickLabel) {
     for (int j = 0; j < tickLength; j++)
                                                                       recursive calls
       System.out.print("-");
     if (tickLabel >= 0)
20
        System.out.print(" " + tickLabel);
     System.out.print("\n");
22
    /** Draws a line with the given tick length (but no label). */
    private static void drawLine(int tickLength) {
     drawLine(tickLength, -1);
26
```

Binary Search

Search for an integer in an ordered indexed list

```
* Returns true if the target value is found in the indicated portion of the data array.
     * This search only considers the array portion from data[low] to data[high] inclusive.
    public static boolean binarySearch(int[] data, int target, int low, int high) {
      if (low > high)
6
        return false:
                                                               // interval empty; no match
      else {
        int mid = (low + high) / 2;
9
10
        if (target == data[mid])
11
                                                              // found a match
          return true:
        else if (target < data[mid])
12
          return binarySearch(data, target, low, mid -1); // recur left of the middle
13
14
        else
15
          return binarySearch(data, target, mid + 1, high); // recur right of the middle
16
17
```

Visualizing Binary Search

- We consider three cases:
 - If the target equals data[mid], then we have found the target.
 - If target < data[mid], then we recur on the first half of the sequence.
 - If target > data[mid], then we recur on the second half of the sequence.

Analyzing Binary Search

- Runs in O(log n) time:
 - The remaining portion of the list is of size high low + 1.
 - After one comparison, this becomes one of the following:

$$(\mathsf{mid}-1) - \mathsf{low} + 1 = \left\lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \right\rfloor - \mathsf{low} \leq \frac{\mathsf{high} - \mathsf{low} + 1}{2}$$

$$\mathsf{high} - (\mathsf{mid}+1) + 1 = \mathsf{high} - \left\lfloor \frac{\mathsf{low} + \mathsf{high}}{2} \right\rfloor \leq \frac{\mathsf{high} - \mathsf{low} + 1}{2}.$$

Thus, each recursive call divides the search region in half;
 hence, there can be at most log n levels.

Analyzing Binary Search by recurrence formula

• Recurrence:
$$T(n) = \begin{cases} T\left(\frac{n}{2}\right) + c & \text{if } n > 1 \\ c & \text{if } n \leq 1 \end{cases}$$

Solve the recurrence

• Recurrence:
$$T(n) = \begin{cases} T\left(\frac{n}{2}\right) + c & \text{if } n > 1 \\ c & \text{if } n \leq 1 \end{cases}$$

Solution:

$$T(n) = T(n/2) + c$$

 $= T(n/2^2) + c + c = T(n/2^2) + 2c$
 $= T(n/2^3) + c + 2c = T(n/2^3) + 3c$
 \vdots
 $= T(n/2^k) + kc$
 $= T(n/n) + c \log n$
 $= c + c \log n$ Therefore, $T(n)$ is $O(\log n)$.

Linear Recursion

Test for base cases

- > Test for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case. Each base case should be handled non-recursively.

Recur once

- > Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- ➤ Define each possible recursive call so that it makes progress towards a base case.

Example of Linear Recursion

Algorithm linearSum(A, n)

Input:

Array A of integers Integer n such that $0 \le n \le |A|$

Output:

Sum of the first n integers in A

if n = 0 then return 0 else return

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5) called on array data = [4, 3, 6, 2, 8]

Reversing an Array

```
Algorithm reverseArray(A, i, j)
Input: An array A and nonnegative integer
         indices i and j
Output: The reversal of the elements in A
        starting at index i and ending at j;
         i.e., reverse the sub-array A[i..j]
if i< j then
                     // what are the base cases?
     Swap A[i] and A[j]
     reverseArray(A, i + 1, j - 1)
```

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as reverseArray(A, i, j), not reverseArray(A)

Analyze by recurrence

• Recurrence:
$$T(n) = \begin{cases} T(n-2) + c & \text{if } n > 1 \\ c & \text{if } n \leq 1 \end{cases}$$

Solution:

$$T(n) = T(n-2) + c$$

 $= T(n-4) + c + c$
 $= T(n-6) + 3c$
 $= T(n-8) + 4c$
 \vdots
 $= T(n-2k) + kc$ (now plug in $k = n/2$)
 $= T(0) + cn/2$
 $= c + cn/2$ Therefore, $T(n)$ is $O(n)$.

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:

How to Eliminate Tail Recursion

```
Algorithm reverseArray(A, i, j)

PreCond: Array A and in-range indices i and j

PostCond: Sub-array A[i..j] is reversed

if i < j then

Swap A[i] and A[j]

reverseArray(A, i + 1, j - 1) // tail recursion
```

```
Algorithm reverseArray(A, i, j) // tail recursion removed PreCond: Array A and in-range indices i and j PostCond: Sub-array A[i..j] is reversed while i < j do

Swap A[i] and A[j]

i \leftarrow i + 1; j \leftarrow j - 1 // update parameters & iterate
```

Computing Powers

• The power function $p(x,n) = x^n$ $(x \neq 0, int n \geq 0)$ can be defined recursively:

$$p(x,n) = \begin{cases} 1 & if \ n = 0 \\ x * p(x,n-1) & otherwise \end{cases}$$

- This leads to a power function that runs in O(n) time (since we make n recursive calls)
- We can do better than this, however

Last Update: June 27, 2023 EECS2101: Recursion

21

Recursive Squaring

 A more efficient linearly recursive algorithm by using repeated squaring:

•
$$n = 2\lfloor n/2 \rfloor + (n \mod 2) \implies x^n = (x^2)^{\lfloor \frac{n}{2} \rfloor} * x^{(n \mod 2)}$$

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0\\ p\left(x^2, \left\lfloor \frac{n}{2} \right\rfloor\right) & \text{if } n > 0 \text{ is even}\\ x * p\left(x^2, \left\lfloor \frac{n}{2} \right\rfloor\right) & \text{if } n > 0 \text{ is odd} \end{cases}$$

Example:

$$2^{15} = 2 * 4^7 = 2 * 4 * 16^3 = 2 * 4 * 16 * (256)^1 = 2 * 4 * 16 * 256 * (...)^0$$

= 2 * 4 * 16 * 256 * 1 = 32,768

Recursive Squaring Method

```
Algorithm Power(x, n) // O(log n) time
Input: A number x > 0 and integer n \ge 0
Output: The value x^n
    if n = 0 then return 1
    y \leftarrow Power(x*x, \lfloor n/2 \rfloor)
    if n is odd then y \leftarrow y * x
    return y
```

Analysis

```
Algorithm Power(x, n) // O(log n) time
```

Input: A number x > 0 and integer $n \ge 0$

Output: The value x^n

```
if n = 0 then return 1
y \leftarrow Power(x * x, \lfloor n/2 \rfloor)
if n is odd then y \leftarrow y * x
return y
```

It is important that we use a variable twice here rather than calling the recursive method twice.

$$T(n) = T(n/2) + O(1)$$

$$T(n) = O(\log n).$$

Each time we make a recursive call, we halve the 2nd argument. Hence, we make log n recursive calls. With each call we do O(1)work. So, this method runs in

O(log n) time.

24 EECS2101: Recursion Last Update: June 27, 2023

Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the drawInterval method for drawing ticks on an English ruler.

Another Binary Recursive Method

Problem: Find element sum of an integer array A.

Algorithm BinarySum(A, i, n)

Input: An array A and integers i and n

Output: The sum of the n elements in A starting at index i

if n = 1 then return A[i]

return BinarySum(A, i, $\lfloor n/2 \rfloor$) + BinarySum(A, i + $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil$)

Fibonacci Numbers

Fibonacci numbers are defined recursively:

$$F_k = \begin{cases} k & \text{for } k = 0,1\\ F_{k-1} + F_{k-2} & \text{for } k \ge 2 \end{cases}$$

k	0	1	2	3	4	5	6	7	8	9	10	11	12	
F_k	0	1	1	2	3	5	8	13	21	34	55	89	144	

$$1.4^{k} \le \left(\sqrt{2}\right)^{k} = 2^{k/2} \le F_{k} \le 2^{k}$$

$$= 2F_{k-2} \le F_{k-1} + F_{k-2} \le 2F_{k-1}$$

Fibonacci Exponential Growth

- Guess an exponential solution for the recurrence $F_k = F_{k-1} + F_{k-2}$ first: $F_k = r^k$ (r is a constant to be determined)
- Verify the guess by plugging it into the recurrence:

$$r^k = r^{k-1} + r^{k-2} \implies r^2 = r+1$$

This quadratic has two roots:

$$\varphi = \frac{1+\sqrt{5}}{2} \cong +1.618$$
 (the golden ratio) $\hat{\varphi} = \frac{1-\sqrt{5}}{2} \cong -0.618$

- Any linear combination of these two solutions also satisfies the recurrence: $F_k = a \varphi^k + b \hat{\varphi}^k$
- Find constants a and b by the two boundary conditions: $F_0=0$, $F_1=1$: $F_k=\frac{1}{\sqrt{5}}\left(\varphi^k-\hat{\varphi}^k\right)$ (the exact solution!)
- Since $|\varphi|>1$ and $|\hat{\varphi}|<1$, the last term asymptotically vanishes: $F_k=\Theta\left(|\varphi^k|\right)$ (exponential growth)

Computing Fibonacci Numbers

Recursive algorithm (first attempt):

```
Algorithm BinaryFib(k)

Input: Nonnegative integer k

Output: The k^{th} Fibonacci number F_k

if k \le 1

then return k

else return BinaryFib(k - 1) + BinaryFib(k - 2)

end
```

Analysis

- Let N_k be the # of elementary steps by BinaryFib(k)
- $N_k = N_{k-1} + N_{k-2} + c$ for some constant c (e.g., c = 4)
- So, $(c + N_k) = (c + N_{k-1}) + (c + N_{k-2})$ i.e., $(c + N_k)$ behaves like F_k itself.
- Using this & induction, we can show

$$N_k = \Theta(F_k) = \Theta(\varphi^k) \cong \Theta(1.618^k)$$

Running time is exponential in magnitude of k!!!

Last Update: June 27, 2023 EECS2101: Recursion

30

A Better Fibonacci Algorithm

Use linear recursion with stronger post-condition

```
Algorithm LinearFibonacci(k)
Input: A positive integer k
Output: Pair of Fibonacci numbers (F_k, F_{k-1})

if k = 1 then return (1, 0)
else
(i, j) \leftarrow \text{LinearFibonacci}(k - 1)
return (i + j, i)
```

- LinearFibonacci makes k-1 recursive calls. It's O(k).
- Even O(log k) is possible with pure integer arithmetic (by "recursive squaring")!!!

Multiple Recursion

- Example 1: Sudoku
- Example 2: assign each letter to a decimal digit

```
1. pot + pan = bib
```

- 2. dog + cat = pig
- 3. boy + girl = baby

$$0 = 1 = t$$
 $5 = i$
 $1 = d$ $6 = r$
 $2 = o$ $7 = g$
 $3 = a = c$ $8 = b = n$
 $4 = p$ $9 = y$

 Extra requirement considered next: map each letter to a distinct digit.

Algorithm for Multiple Recursion

```
Algorithm PuzzleSolve(k, S, U)
Input: Integer k, sequence S, and set U (of unused elements)
Output: Enumeration of all k-length extensions to S
         using elements in U without repetitions
for each e in U do
     Remove e from U
                                 // e is now being used
     Add e to the end of S
                                 // e is selected next in the permutation
     if k = 1 then
          Test whether S is a configuration that solves the puzzle
          if S solves the puzzle then
                 return "Solution found: " S
     else PuzzleSolve(k - 1, S, U)
     Add e back to U
                     // undo selection: e is now unused
     Remove e from the end of S // this is called back-tracking
```

Example

$$cbb + ba = abc$$

$$799 + 98 = 897$$

a,b,c stand for 7,8,9; not necessarily in that order

Visualizing PuzzleSolve

Summary

36

- Recursion pattern:
 - Base cases
 - Recursive cases
- Visualizing recursion
- Tail recursion
- Recursive squaring
- Linear, binary, and multiple recursion
- Examples & analysis

