HANA ONE-AI

주식 자동 매매 서비스

AI 주식 자동 매매 2팀

강태근 김남훈 박준하 심민정 이정민

목차

1. 팀 구성 및 프로젝트 소개

2. 시스템 구성 및 일정

3. 사용자 흐름 및 기늉 설명

4. 분석 예측 모델

1-1. 팀 구성

팀 원	역할	담당 내용		
강태근	팀장 / 백엔드, 인프라	소셜 로그인, 자동 매매 로직 구현, 오라클 클라우드 서버 구축		
이정민	DB 구축, 예측알고리즘 구축 주식 데이터 및 공시 데이터 크롤링 머신러닝 모델 학습			
심민정	DB 모델링, 예측알고리즘 구축	DB 모델링, 딥러닝 모델 학습		
김남훈	프론트, UI	매매전략 구성 및 프론트 구현		
 박준하	백엔드	자동매매 로직 구현, 포트폴리오 구성		

1-1. 프로젝트 소개 : AI 자동 주식 매매

Al 기반

주식추천

- ✔ 금융시장이 급변함에 따라, 다양한 요소가 주식 가치에 영향을 미침
 - 데이터와 통계적 분석에 기반한 주식 가치를 예측하는 '과학적 방법론' 필요
- ✔ 기술적 분석과 학습을 통해 고객이 금융 시장 '노이즈'에 휩쓸림 방지
 - 고객이 마음 편한 투자 환경을 제공

자동매매

- ✔ 투자자의 전략과 실행에 있어 정확성과 일관성을 제공
 - 휴먼 에러(실수, 감정적 편향) 방지
- ✓ 매매 전략의 백테스팅 및 최적화 가능
 - 효율적인 투자 결정 도움

시스템

구현

- 1. 머신 러닝, 딥러닝 모델을 이용한 주식 종가 예측
 - KOSPI 953개의 종목, 10년치 데이터를 이용·학습
- 2. 고객의 수익률을 만족할 포트폴리오 '자동' 구성
 - 분산투자 이론을 활용하여 위험 최소화
- 3. 추천 시스템에 기반한 자동 매매 시스템
 - 고객의 편의성 제공

2-1. 시스템 운영 방식

분 석

예측

✔ 머신러닝, 딥러닝 기법을 이용한 KOSPI 10년치 주가 분석

✓ 학습한 모델을 활용하여 종가 예측

all all

✔ 전제 : 하루 24시간 기준(00시 ~ 24시)

✓ 당일 기준, 매수는 '전일 종가', 매도는 '당일 종가'로 실행

백테스팅

- ✔ 종목별 백테스팅을 통해 데이터 이상치 제거
- ✓ 백테스팅 결과를 화면에 공시

2-2. 시스템 설계 (아키텍처)

2-3. 시스템 설계 (ERD)

2-4. 기술 요소

개발 언어

FrontEnd

BackEnd

DataBase

개발 S/W

데이터 처리

분석·예측

UI 설계

개발 인프라

개발 인프라

서비스 인프라

2-5. 개발 일정

선체 일정 계획													
구분	상세 업무	7/3	7/4	7/5	7/6	7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/
주요 마일스톤	분석/설계 개발/테스트/시연												
분석/설계	요구사항 정의 및 분석												
	기능명세서												
	설계서												
	화면설계서 DB설계서												
	테이블정의서												
개발	프론트												
	메인페이지												
	회원가입												
	로그인												
	대시보드 - 차트												
	백엔드 일반/소셜 로그인 구현												
	초기구성												
	수익률 계산 서비스												
	개별 종목 차트												
	포트폴리오 종목 리스트												
	세부 종목												
	리밸런싱												
	분석, 예측												
	알고리즘 수정 주식 데이터 갱신												
	종목 추천												
	인프라												
	클라우드 인스턴스 생성												
	WEB, WAS 서버 구축												
	Git 서버 구축												

3. 기능 설명

3-1. 전체 흐름도

3-1. 매매 흐름도

3-2. 메인 페이지

기업뱅킹 하나즁권 은행소개 채용안내

종목

머신러닝 모델

딥러닝 모델

자동매매

KOSPI 2,628.30 ▲37.07

KOSDAQ 896.28 ▲3.21

국고채(3년) 3.6140 ▲0.0120

최다거래

급등주

급락주

3-2. 종목 검색

기업뱅킹 하나중권 은행소개 채용안내

종목

머신러닝 모델

딥러닝 모델

자동매매

카카오

Q

이 페이지에서 검색할 내용을 입력하세

Q

종목명	종목코드	거래일자	종가	시가	고가	저가	거래량	시가총액
카카오	035720	2023. 7. 18.	51,700	52,700	52,700	51,400	1,455,102	22,968,412,093,000
카카오	035720	2023. 7. 17.	52,700	52,400	53,200	52,200	1,406,378	23,412,675,383,000
카카오	035720	2023. 7. 14.	52,800	52,300	52,800	51,600	1,900,674	23,457,101,712,000
카카오	035720	2023. 7. 13.	51,900	52,000	52,600	51,700	1,955,527	23,057,264,751,000
카카오	035720	2023. 7. 12.	51,600	50,700	51,800	50,200	1,658,795	22,923,985,764,000
카카오	035720	2023. 7. 11.	50,700	50,100	51,000	50,000	1,212,718	22,524,148,803,000
카카오	035720	2023, 7, 10,	49,850	49,850	50,300	49,450	1,068,139	22,146,525,006,500
카카오	035720	2023. 7. 7.	49,850	50,600	51,200	49,750	1,974,639	22,146,525,006,500
카카오	035720	2023. 7. 6.	50,900	48,850	51,500	48,700	3,139,685	22,613,001,461,000
카카오	035720	2023. 7. 5.	48,850	49,950	50,400	48,800	2,700,066	21,702,261,716,500
카카오	035720	2023. 7. 4.	49,950	50,900	51,000	49,900	1,445,459	22,190,951,335,500
카카오	035720	2023. 7. 3.	51,000	49,300	51,000	49,300	1,691,513	22,657,427,790,000
카카오	035720	2023. 6. 30.	49,100	48,850	49,700	48,400	1,268,925	21,813,327,539,000

3-2. 백테스팅 결과 조회

기업뱅킹 하나즁권 은행소개 채용안내

종목

머신러닝 모델

딥러닝 모델

자동매매

					카카오	Q
날짜	종목이름	종 목코드	예측종가	실제종가	정확도	
23-07-19	카카오	035720	51,250	Х	X%	
23-07-18	카카오	035720	53,100	51,700	97.29%	
23-07-17	카카오	035720	53,300	52,700	98.86%	
23-07-14	카카오	035720	52,050	52,800	98.58%	
23-07-13	카카오	035720	50,750	51,900	97.78%	
23-07-12	카카오	035720	50,450	51,600	97.77%	
23-07-11	카카오	035720	50,150	50,700	98.92%	
23-07-10	카카오	035720	50,150	49,850	99.4%	

3-3. 자동매매 페이지 이동

로그인 회원가입

주식 투자에 필요한 모든 것

AI 자동 매매의 기준, ONE-AI

지금 시작하기

3-4. 투자 프로필 설정

포트폴리오 종료 로그아웃

투자금액과 목표수익률을 입력해주세요.

투자금액

목표수익률(%)

제출하기

3-5. 모델 선택

모델별 예측률

- 1. 모델별/일별 예상 상승률 Top 5 리스트 나열
- 2. 장 마감 후 모델들이 종목 종가를 받아와서 분석
- -> 다음날 장 시작 전 오전 6시에 예측 데이터 결과 추출 후 예측 DB에 저장
- -> 예측 데이터를 웹 화면 리스트에 반영
- 3. 예측 상승률이 15%이상인 경우 이상치로 판단하여 제거

일별 수익률 차트

1. 회원의 일별 수익률 업데이트 및 시각화

2. 장마감 시간에 실행되는 매도에 맞춰 차트에 수익률을 웹 화면에 반영

- 3. 수익률 계산
 - * 모든 종목(전일 종가)의 평가금액에서 당일 주식 장 마감 때 매도 후 보유 잔고로 상승률/하락률 계산

회원 포트폴리오

1. 회원(포트폴리오)의 보유 종목 비율과 평가액을 일별로 업데이트하여 시각화

2. 추천 종목을 매수한 후 차트에 평가금액, 보유 종목 비율을 웹 화면에 반영

보유 종목 세부 정보

- 1. 회원이 보유한 종목의 리스트 나열 (스크롤)
- 2. 특정 종목 클릭 시 해당 종목 캔들차트 표시
- 3. 장 시작 후 추천 종목을 매수 후 종목 리스트를 웹 화면에 반영

4. 종목의 금액 : 전일 종가 수익률 : 전일 종가에 대한 당일의 수익률

캔들 차트

1. 회원 포트폴리오에서 보유한 종목에 대한 일봉 차트 시각화

2. 장마감 후 종목의 종가를 웹 화면에 반영

3-7. 거래내역

포트폴리오 종료

로그아웃

盆 盆

걸래내역

거래내역

검색 1개월 6개월 직접입력 전체 🗸 종목명을 입력하세요 당일 1주일 3개월 거래일자 포지션 종목명 거래단가 거래수량 거래금액 종목코드 2023, 07, 19, 오전 01:02:17 매수 45014K 코오롱모빌리티그룹우 ₩8,170 244.79 ₩1,999,934 매수 2023, 07, 19, 오전 01:02:17 019175 신풍제약우 ₩26,150 76.48 ₩1,999,952 쌍용C&E 2023, 07, 19, 오전 01:02:17 매수 003410 ₩5,100 392.15 ₩1,999,965 2023, 07, 19, 오전 01:02:17 매수 023530 롯데쇼핑 ₩69,800 ₩1,999,770 28.65 2023, 07, 19, 오전 01:02:17 매수 033180 KH 필룩스 ₩442 4,524.88 ₩1,999,997

4. 분석 예측 모델

4-1. 데이터 수집 FinanceDataReader

한국 주식 가격, 미국주식 가격, 지수, 환율, 암호화폐 가격, 종목 리스팅 등 금융 데이터 수집 라이브러리

종목 코드

• 거래소별 전체 종목코드: KRX (KOSPI, KODAQ, KONEX), NASDAQ, NYSE, AMEX, S&P 500

4-1. 데이터 수집 YahooFinance

종목코드에 해당하는 주가정보를 가져온다.

4-1. 모델 생성 과정

GOAL 1

Data Processing

GOAL 2

GOAL 3

Full System Development

데이터 수집 및 전처리

Machine learning

- Featuer(여러 변수)와 Label(종가)로 분리
- 하이퍼 파라미터 튜닝을 통해 모델 성능 최적화

학습한 모델을 활용 종가 예측

학습 데이터 구축

Deep learning

- 학습 데이터와 테스트 데이터로 분리
- 학습 데이터를 train, validation set로 분리
- Model의 input 형태에 맞게 & 전처리 및 Layer 개수와 하이퍼 파라미터 튜닝을 통해 validation loss가 작은 weight 찾기

예측 종가를 이용 주식 추천

머신러닝 모델

4-2. 과적합이란?

과적합

특징

- 1. 모델이 훈련 데이터에 지나치게 맞추어져서 새로운 데이터에 대한 예측 능력이 떨어지는 현상
- 2. 훈련 데이터의 양이 적거나 데이터가 불균형한 경우
- 3. 모델이 너무 복잡한 경우 (예: 많은 수의 파라미터를 가진 모델)
- 4. 특성(feature)이 너무 많은 경우
- 5. 이상치(outlier)나 잡음(noise)이 있는 경우
- 6. 훈련 데이터와 테스트 데이터가 다른 분포를 가지는 경우

4-2. 앙상블 모델

앙상블

모 델

1. 강력한 하나의 모델을 사용하는 대신 보다 약한 모델 여러 개를 조합하여 더 정확한 예측에 도움을 주는 방식

2. 현실세계로 예를 들면, 어려운 문제를 해결하는데 한 명의 전문가보다 여러 명의 집단지성을 이용하여 문제를 해결하는 방식

4-2. 랜덤 포레스트(Random Forest) 특징

다양성

✓ 각 트리가 독립적으로 학습하기 때문에 다양한 관점에서 데이터를 학습

-> 이는 모델의 과적합을 방지하고 일반화 성능을 향상

간결성

✔ 랜덤 포레스트는 결정 트리의 간결성과 이해하기 쉬운 특성을 그대로 보유

-> 모델의 해석력을 상승

확장성

✔ 각 트리가 독립적으로 학습하기 때문에 다양한 관점에서 데이터를 학습

-> 병렬 처리를 활용해 대용량 데이터를 처리하는 데 효율적

앙상블 학습 ✔ 여러 개의 의사 결정 트리를 결합하여 생성되는 앙상블 모델

-> 일반적으로 단일 모델보다 더 뛰어난 성능을 제공

✓ 각 모델의 강점을 결합하고 약점을 상쇄하여 전체적으로 더 견고한 예측을 제공

4-2. 모델 학습

학습 1

✔ 시가총액, 등락률, 고가, 저가, 시가, 주식거래일, 거래량을 Feature로 설정

학습 2

✔ 주요 요소들과 실제 종가 사이의 관계를 학습하여 모델을 구축

학습 3

✔ GridSearchCV를 이용하여 주어진 하이퍼파라미터에 대해 가능한 모든 조합을 시도

✓ 그 중에서 가장 성능이 좋은 하이퍼파라미터 조합을 찾아줌

4-2. 모델 저장

모델 저장 1. 개별 주식 종목들은 각각 독특한 특성과 도메인 특성을 가지므로, 여러 종목을 일괄적으로 예측하기 위한 단일 모델보다는, 각 종목에 대해 훈련된 모델을 사용

2. pickle 모듈을 활용하여, 각각의 학습된 모델을 파일 형태로 저장

3. 이렇게 모델을 저장하게 되면 모델의 재사용성을 높여주며, 추후에 해당 모델을 필요로 할 때 마다 학습 과정을 거칠 필요 없이 빠르게 결과를 도출

4-2. 모델 평가

모델

평가

1. 모든 종목의 오차율을 비교해보면, 50% 이상인 경우도 나온다.

2. 보통 오차율이 20% 이내에 있는 정규분포 형태

3. 이 모델이 좋다고는 할 수 없다.

딥러닝 모델

4-3. Sequence

개념

설명

1. 순서가 있는 data (ex) time series, text, 영상, 음성 등

2. randomforest는 inputs들이 독립적 => 순차적으로 과거 정보를 반영할 수 있는 모델이 필요

3. time의 특징을 반영한 'Sequence model' 모델 선정

4-3. 딥러닝

개념

설명

1. 기울기 소실 문제

: layer를 많이 쌓을수록 데이터 표현력이 증가하기 때문에 학습이 잘 될 것 같지만 실제로는 layer가 많아질수록 학습이 잘 되지 않음.

2. Vanishing Gradient(기울기 소실)

: backpropagation(역전파)으로 출력층에서 입력층 방향으로 오차를 전파시키며 각층의 가중치를 업데이트하는데 출력층과 멀어질수록 기울기(gradient)값이 작아질 수 밖에 없음

4-3. Recurrent Neural Network(RNN)

개념 설명 1. 입력정보와 그 입력정보를 사용하려는 출력지점 거리가 멀 경우,역전파알고리즘에 의해 기울기가 점차 줄어들어 출력과 먼 위치에 있는정보를 기억할 수 없고 최근의 정보를 예측에 더 많이 반영

4-3. Long Short Term Memory(LSTM)

개념

설명

1. RNN이 출력과 먼 위치에 있는 정보를 기억할 수 없다는 단점을 보완하여 장/단기 기억을 가능하게 설계한 신경망의 구조

2. 주로 시계열 처리나, 자연어 처리

Ex. I grew up in France...
I speak fluent *French*

4-3. LSTM 모델의 한계

모델

한계

1. 동적인 시장 조건 처리의 어려움

- 주식 시장은 복잡하고 예측하기 어려운 조건과 패턴을 가지므로, 모든 패턴을 정확하게 예측에 한계가 존재
- 과거의 패턴을 기반으로 예측을 수행하기 때문에, 시장 조건이 급격히 변하거나 예측 모델이 학습되지 않은 패턴을 마주할 경우 예측 성능이 저하

2. 데이터 불확실성과 노이즈

- 주식 시장은 매우 불안정하여, 예측하기 어려운 노이즈와 불확실성이 많아 모델의 성능이 불안정
- 노이즈와 잘못된 데이터가 모델에 포함되면 예측 성능이 저하

4-3. Time2vec

1. 주기, 비 주기 패턴을 파악

- 전체적인 시간흐름에서 주기적, 비주기적 패턴을 찾음
- 비주기적 패턴을 파악한 것이 더 좋은 성능을 냄

개념

설명

2. Time rescaling에 대해서 불변

- Time series data에서 고유값, 고유벡터를 추출하기 때문에 다른 scales(day, week 등등)로 측정되더라도, scale에 상관없이 time represtation에 중요한 정보들은 불변

3. 여러 모델들에 쉽게 적용 가능

Learning a Vector Representation of Time

4-3. 모델 구조

Layer (type)	Output Shape	 Param #
input_2 (InputLayer)	[(None, 20, 1)] input	0
t2v_1 (T2V)	(None, 20, 17)	376
lstm_1 (LSTM)	(None, 32)	6400
dense_1 (Dense)	(None, 1) output	33
=======================================	=======================================	=======

Input Output

4-3. 23/07/12일 종가 예측 결과

저나 조기	디ㅇ나 에ᄎ	ᄌ기	ᆐᄎ	드라크
전날 종가	다음날 예측	중기	에득	ᆼ늭푣

		NAME			PRED_CLOSE	PRED_RATE	∯ DIFF
900140	23/07/12	엘브이엠씨홀딩스	2620	(null)	2530	3.44	(null)
207940	23/07/12	삼성바이오로직스	723000	(null)	739301	-2.25	(null)
373220	23/07/12	LG에너지솔루션	550000	(null)	554737	-0.86	(null)
298050	23/07/12	효성첨단소재	453500	(null)	470231	-3.69	(null)
298020	23/07/12	효성티앤씨	352500	(null)	361403	-2.53	(null)
457190	23/07/12	이수스페셜티케미컬	297000	(null)	304774	-2.62	(null)
352820	23/07/12	하이브	270000	(null)	275884	-2.18	(null)
259960	23/07/12	크래프톤	182500	(null)	180517	1.09	(null)

4-3. 모델 학습 및 예측 프로세스

데이터

전처리

✓ 삼성전자 10년치 일봉 활용

- 삼성전자가 시총 1위로 KOSPI를 구성하는데 가장 높은 비중을 차지함으로, 해당 주가의 변동이 전반적인 KOSPI 가격 변동을 이끄므로 분석 대상으로 적합 판단

모 델

학 습

✔ Timeseries 데이터를 vector 형태로 변환한 후
Istm의 input으로 넣어 layer를 쌓으면서 과적합되지 않게 모델 구축

✔ GridSearchCV를 이용하여 주어진 하이퍼 파라미터에 대해 가능한 모든 조합을 시도하고, 그 중에서 가장 validation loss가 적은 하이퍼파라미터 조합을 찾아 weight 저장

checkpoint_best.hdf5

예측

✔ 학습된 weight를 불러와 최신 20일치 종가 데이터를 전처리하여

input으로 넣으면 21일째(다음날)의 종가 예측

4-3. 백트래킹

전체종목 평균 오차율

-> 20일치의 데이터가 존재하는 모든 종목의

'오차율 (= |종가-종가예측| / 종가)' 의 평균

	2023/07/04	2023/07/05	2023/07/06	2023/07/07
전체종목 평균 오차율	4.4	4.19	3.5	3.48
종목 수	947	947	947	947

THANK YOU