Quiz 4

Due No due date **Points** 4 **Questions** 4 **Time Limit** 30 Minutes **Allowed Attempts** Unlimited

TAKE THE QUIZ AGAIN

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	5 minutes	3 out of 4

(3) Correct answers are hidden.

Score for this attempt: **3** out of 4 Submitted Feb 4 at 7:03pm This attempt took 5 minutes.

Question 1	1 / 1 pts
Which of the following statements are true with respect to Neuall that apply.	ıral Networks? Check
Neural Network can be used to classify data with linear decision	on boundary only.
₽	
By increasing the number of hidden layers, we can more close function.	ely approximate a
₹	
Neural Network can be used to classify data with non-linear d	ecision boundary.
The number of nodes in the output layer of the Neural Networ	k must be always

Question 2	1 / 1 pts
If you are using Neural Network to classify handwritten digits from 0 to many nodes should be there in the output layer?	9, then how
O 1	
O 2	
10	
O 9	

0 / 1 pts

Incorrect	Question 3	0 / 1 pts

Incorrect

Let a_i represents activation of layer i, a_{ij} represents activation of node j in layer i, Θ_i represents the weighing matrix from layer i to layer i+1 and g(z) be the sigmoid activation function. For a two layer Neural Network with three nodes in the input layer(excluding the bias) and two nodes in the output layer, check all that apply.

The steps for forward propagation are: Step1: Add bias a_{10} to a_1 . $\begin{tabular}{l} Step2: $a_2 = g \left(\Theta_1 * a_1\right)$ \\ The steps for forward propagation are: \\ Step1: Add bias a_{10} to a_1. \\ \hline Step2: $a_2 = \Theta_1 * g \left(a_1\right)$ \\ \hline The dimension of Θ_1 is 2 x \\ \hline 4. \\ \hline The dimension of Θ_1 is 2 x \\ \hline 3. \\ \hline \end{tabular}$

Question 4 1/1 pts

Suppose you have two training examples $(x_1, y_1), (x_2, y_2)$ where x_i represents the training sample and y_i represents the binary class(either 0 or 1). For example, if we are using images to train a neural network to classify cars from non-cars, then x_i represent the pixels of the image and y_i is 1 if the image is a car and 0 if it is not a car. Which of these is a correct sequence of operations for training the weights of the neural network? (BP = Back Propagation, FP = Forward Propagation)

FP using x_1 followed by BP using y_2 . Then FP using x_2 followed by BP using y_1 .

FP using $m{x_1}$ followed by BP using $m{y_1}$. Then FP using $m{x_2}$ followed by BP using $m{y_2}$.

BP using y_1 followed by FP using x_1 . Then BP using y_2 followed by FP using x_2 .

FP using x_1 followed by FP using x_2 . Then BP using y_1 followed by BP using y_2 .

Quiz Score: 3 out of 4

4 of 6