

Programação em Python

https://advancedinstitute.ai

Programação Python

Operações Matriciais com o *Numpy*

Referências

Referências e Fontes das Imagens

- □ NumPy Illustrated: The Visual Guide to NumPy
- □ Parallel and High Performance Computing (Book)
- □ Learning Numpy Array (Book)

The Elephant in the Room

Introdução

- ☐ Originalmente como parte do *SciPy* e depois foi destacado como uma **biblioteca fundamental**
- Código é mais limpo do que o código Python "direto" que tenta realizar a mesma tarefa
- ☐ Menos loops necessários, porque as operações funcionam diretamente em arrays e matrizes;

Introdução Cont.

- Funções matemáticas tornam a vida mais fácil;
- Algoritmos subjacentes foram projetados com alto desempenho em mente;
- Os arrays do NumPy são armazenados de forma mais eficiente
- □ Grandes partes do NumPy são escritas em C. Isso torna o NumPy mais rápido do que o código Python puro

Armazenamento Otimizado em Memória

Operações diretas

☐ Soma de vetores (utilizando listas):

```
1 for i in range(len(a)):
2    a[i] = i ** 2
3    b[i] = i ** 3
4    c.append(a[i] + b[i])
```

☐ Utilizando *Numpy Arrays*

```
1 c = a + b
```

Arrays N-dimensionais

- □ Arrays de propósito geral e homogêneos;
 - Mais fácil determinar o tamanho de armazenamento necessário;
- Conseguem vetorizar operações;
- \square O número de dimensões e itens em um array é definido por sua forma (atributo ${ t shape}$
 - Tupla de N inteiros não negativos que especificam os tamanhos de cada dimensão.
- ☐ Tipos especiais associados aos elementos (dtype):
 - numpy.intc (numpy.int32), numpy.int_ (numpy.int64), numpy.single (numpy.float32), numpy.str_, numpy.bool_

Arrays N-dimensionais Cont.

- ndarrays podem compartilhar dados, de modo que as alterações feitas em um podem ser visíveis em outro;
- Um ndarray pode ser uma view para outro, i.e., mostrando somente linhas e colunas selecionadas
- Segmento unidimensional contíguo de memória de computador;
 - Esquema de indexação que mapeia N inteiros para a localização de um item no bloco
 - Stride (offset)
- Múltiplas formas de inicialização

Vetorização de operações

- □ Paradigma *Single Struction Multiple Data* SIMD
 - Forma de paralelismo de dados

Criação de ndarrays

numpy.empty - constrói um ndarray sem inicializar seus elementos;
 numpy.eye - constrói um ndarray com valores 1 na sua diagonal (identidade)
 numpy.ones- cria matriz de tamanho n apenas com valores 1
 numpy.zeros - cria ndarray de tamanho n apenas com valores 0
 numpy.full - cria ndarray preenchido com valor específico
 Criação a partir de um protótipo: numpy.ones like, numpy.zeros like,

numpy.array - Converte outro objeto (list.tupla, etc) para ndarray

numpy.empty_like, numpyt.full_like

Criação de ndarrays

Inicialização monotônica de ndarrays

Inicialização aleatória de ndarrays

Slicing

- □ Para o caso de *arrays* NumPy unidimensionais funciona exatamente como o *slicing* de listas Python
- ☐ Sintaxe similar para mais de uma dimensão

Indexação utilizando booleanos

Propriedades do ndarray

- T: matriz transposta
- dtype: tipo de dados armazenado na matriz
- 🗆 size: quantidade de elementos na matriz
- □ shape: dimensões da matriz
- ndim: número de dimensões da matriz
- □ nbytes: número de *bytes* utilizados para armazenar a matriz em memória
- ☐ imag: a parte imaginária dos elementos (complexos) da matriz
- □ real: a parte real dos elementos (complexos) armazenados na matriz

Algumas operações interessantes

- max(): retorna o maior elemento da matriz
- □ min(): retorna o menor elemento da matriz
- sum(): retorna a soma dos elementos da matriz
- mean(): retorna a média dos elementos da matriz
- □ var(): retorna a variância dos elementos da matriz
- 🗆 std: retorna o desvio padrão dos elementos na matriz
- prod(): retorna o produto dos elementos da matriz
- □ nonzero(): retorna os elementos da matriz cujos valores são diferentes de zero

Eixos

- axis são definidos para matrizes com mais de uma dimensão
- \square O número do índice em questão: O primeiro índice é eixo = 0, o segundo é eixo = 1 e assim por diante;
- ☐ Uma matriz bidimensional possui dois eixos correspondentes:
 - O primeiro correndo verticalmente para baixo nas linhas (eixo 0)
 - O segundo correndo horizontalmente nas colunas (eixo 1)

Eixos

Alterando o formato de um ndarray

- □ Operação reshape(): criação de novo ndarray com novo shape.
 - Para versão inplace, utilizar resize()

Dúvidas?