1 HW 3-1

Problem 1: By definition of continuity, for every sequence x_n which converges to $c \in A$, $g(x_n) = g(c)$. Let's define the sequence $g_n = g(x_n)$. If g(c) > 0, then $|g(x_n) - g(c)| < \epsilon$, for $n \ge k(\epsilon)$, $\forall \epsilon > 0$. Expanding the equation we find $g(c) - \epsilon < g(x_n) < g(c) + \epsilon$. Choosing $\epsilon < g(c)$, we have $g(x_n) > 0$, for $n \ge k(\epsilon)$. Thus, a tail of g_n is strictly positive and converges to g(c), and since h(c) = g(c) for g > 0, h must also converge to g(c) = h(c), hence h is continuous at c. A similar argument shows if $g(c) \le 0$, then there is a strictly negative tail which forces h to converge to 0.

Final case, g(c)=0. Consider the set of terms in $h(g_n)$ such that $g_n>0$ or $g_n\leq 0$. If either set has a finite size, then there exists a strictly positive or negative tail of g_n , and hence by the above arguments, g is continuous at c. If both sets are infinite, then there exists sub-sequences such that $g_n>0$ and $g_n\leq 0$. For any $\epsilon>0$, we can choose $k(\epsilon)$ to be the $k(\epsilon)$ associated with g_n . Then we write $|h(g_{n_1})-0|=|g_{n_1}-0|<\epsilon$ and $|h(g_{n_2})-0|=|0-0|=0<\epsilon$, $\forall n_1,n_2\geq k(\epsilon)$. Since each term in g_n is either positive or non-positive, $|h(g_n)-0|<\epsilon$, and thus, $h(g_n)$ is convergent and equal to h(g(0)). Thus, in all cases g is continuous at c.

Problem 2: To be uniformly continuous, a function must satisfy, for any $\epsilon > 0$, $|f(x) - f(u)| < \epsilon$, for all $x, u \in A$ satisfying $|x - u| < \delta(\epsilon)$. For $f = \frac{1}{x}$, we have $|f(x) - f(u)| = |\frac{u - x}{ux}| = |x - u||\frac{1}{ux}| < \epsilon$. When the domain is $(1, \infty)$, $\frac{1}{ux} < 1$, thus if we choose $|x - u| < \delta = \epsilon$, then $|x - u||\frac{1}{ux}| < |x - u| = \epsilon$, which proves uniform continuity. If the domain is $(0, \infty)$, then suppose we've found some valid value for δ . Then $\frac{\delta}{ux} < \epsilon$, and $ux > \frac{\delta}{\epsilon}$. WLOG we choose x = u, and setting $u < \sqrt{\frac{\delta}{\epsilon}}$, we find $u^2 < \frac{\delta}{\epsilon}$, a contradiction. Thus, over the domain $(0, \infty)$ the function is not uniformly continuous.

Problem 3: To be uniformly continuous, a function must satisfy, for any $\epsilon > 0$, $|f(x) - f(u)| < \epsilon$, for all $x, u \in A$ satisfying $|x - u| < \delta(\epsilon)$. Suppose we've found some δ that satisfies these conditions for $\epsilon < 1$. Then, using the Archimiddean property, we can find $0 < \frac{1}{n_1} < |x - u| < \delta$, for $n_1 \in \mathbb{N}$. Furthermore, $0 < \frac{1}{n_1+1} < \frac{1}{n_1} < \delta$. Since n_1 and n_1+1 have differing parity and their reciprocal are contained in our interval, $|f(\frac{1}{n_1}) - f(\frac{1}{n_1+1})| = 1$, which violates our conditions, and thus our function cannot be uniformly continuous.

2 HW 3-3

Problem 4: A point c is a cluster point of a set $A \subset \mathbf{R}$ if for all $\delta > 0$, $\exists x \in A$, S.T $|x - c| < \delta$. By the definition of a limit, we know for all $\epsilon > 0$, $|a_n - c| < \epsilon$ for $n \geq k(\epsilon)$. Choosing $\epsilon = \delta$, we see for any δ , $\exists a_n$, S.T $|a_n - c| < \delta$. Since $a_n \in A$, this completes the proof.

Problem 5: Consider the set $S = \frac{1}{n} : n \in \mathbb{N}$. This set has a cluster point at 0. To prove this, we need to show for δ , $\exists x$, S.T $|x - 0| < \delta$. By the Archimiddean

principle, $\exists n$, S.T $\frac{1}{n} < \delta$, where δ is any number. Thus, there will always exist an x in our set which meets this criterion and so 0 is a cluster point. Conversely, there cannot be any other cluster points. To show this there are four cases. Let our candidate cluster point be a.

a > 1: In this case, we choose $\delta = a - 1$. Then |x - a| < a - 1. Thus, 1 < x < 2a - 1, which is not possible as $\sup(S) = 1$.

a < 0: We choose $\delta = -a$. Then $|x - a| < \delta - a$. Thus, 2a < x < 0, which is not possible as $\inf(S) = 0$.

 $a \in S$: Let $a = \frac{1}{n}$. Then we'll choose δ , S.T $|x-a| < \delta = \frac{1}{n} - \frac{1}{n+1}$. Thus, $\frac{1}{n+1} < \frac{1}{n} < x < \frac{2}{n} - \frac{1}{n-1} < \frac{1}{n-1}$. This interval doesn't contain any elements in the set, as all other elements in the set are larger or smaller then $\frac{1}{n+1}$ and $\frac{1}{n-1}$. Hence, a is not a cluster point.

 $a \in (0,1] \notin S$: a must exist in some interval $[\frac{1}{n}, \frac{1}{n+1}]$, as $\inf(S) < a \le \sup(S)$, and since the set is ordered there there exists a minimum element in the set greater then a, the element after this cannot be equal to a, and so it must be less then a. Let's call those elements $\frac{1}{n}$ and $\frac{1}{n+1}$. Then, by the same reasoning in the above case, a is not a cluster point.

Hence, the subset of $\frac{1}{n}:n\in\mathbf{N}$ has precisely one cluster point at 0. Now consider the set $k+\frac{1}{n}:n\in\mathbf{N},k\in\mathbf{Z}$. For any value x in our original set, we can find k+x in our new set. Thus, for the value $k,\exists k+x,$ S.T $|k+x-k|=|x|<\delta$. We've already proved this as true, and so for any value k in our new set we have a cluster point. Since our set contains all $k\in\mathbf{Z}$, it must contain cluster points at all $k\in\mathbf{Z}$.

Problem 6: If a point r is rational the statement obviously holds, we just need to prove the case where r is irrational. We know there is a rational sequence of numbers which converges to any real number. Calling this sequence x_n , we have $\forall \epsilon > 0, |r - x_n| < \epsilon$, when $n \ge k(\epsilon)$. By the definition of a cluster point, we know there exists a point y S.T, $|y - x_n| < \sigma$. Choosing $\sigma < \epsilon$, we can unravel our inequality to obtain $x_n - \epsilon < y < x_n + \epsilon$. This point is within the interval $|r - x_n| < \epsilon$ as expanding it yields $x_n - \epsilon < r < x_n + \epsilon$. Thus, we've show there always exists a y S.T $|r - y| < \epsilon$, and that completes the proof.

3 HW 3-6

Problem 7: For any real number, we can construct a sequence of entirely rational or entirely irrational numbers which converges to it. Let's call these sequences R_n , and I_n . Then by the definition of D $\lim D(R_n) = 1$, and $\lim D(I_n) = 0$. Hence, the limit does not exist.

Problem 8: Applying the continuity criterion, for all sequences x_n which con-

verge to an element $a \in A$, $\lim f(x_n) = f(a)$. Or, $\forall \epsilon > 0$, $\exists \delta$, S.T $|x_n - a| < \delta$, $|f(x_n) - f(a)| < \epsilon$. In a finite set, there is a minimum distance between distinct elements, let's call this D. If we choose $\delta < D$, then x_n can only be a. Thus, $|f(x_n) - f(a)| = |f(a) - f(a)| = 0 < \epsilon$. Thus, f is continuous. Furthermore, our value for δ does not depend on a, and so we also satisfy the definition for uniform convergence.

Problem 9: Let's divide the numerator and denominator by x^3 . This doesn't change the value of the function since x is non-zero. The numerator is now $2-\frac{3}{x}+\frac{1}{x^3}$. The absolute value of this, is bounded by the triangle inequality: $|2-\frac{3}{x}+\frac{1}{x^3}| \leq |2|+|-\frac{3}{x}+\frac{1}{x^3}| \leq |2|+|\frac{3}{x}|+|\frac{1}{x^3}|$. In general, $\frac{C}{x^n} \leq \frac{C}{x}$ for $x \geq 1$ which by squeeze theorem means such functions must have a limit of 0. Applying limit laws yields |2+0+0|=2. We can do a similar procedure with the denominator. $|4+\frac{1}{x^2}-\frac{6}{x^3}|\leq |4|+|\frac{1}{x^2}|+|\frac{6}{x^3}|$, applying limit laws yields 4. Thus, the limit of the numerator is 2, and the limit of the denominator is 4. Since the limits both exist and are non-zero, we can apply the division limit law, yielding $\frac{2}{4}=\frac{1}{2}$.