一、作为项目经理, 你需要给一个软件项目做计划安排, 经过任务分解得到任务 A、B、C、D、E、F, 假设各个任务之间没有滞后和超前, 下图是这个项目 PDM 网络图。通过历时估计已经估算出每个任务的工期, 现已标识在 DM 网络图上。假设项目的最早开工日期是第 0 天, 请计算出每个任务最早开始时间、最晚开始时间、最早完成时间、最晚完成时间, 同时确定关键路径, 并计算关键路径的长度, 计算任务 F 的自由浮动和总浮动。

							Baselin Color Color
	任务 A	任务 B	任务C	任务 D	任务 E	任务F	任务G
最 早 始	0	4	12	19	4	12	24
时间							
最晚开	0	6	12	19	4	16	24
始时间							
最早完	4	10	19	24	12	20	27
成时间							
最晚完	4	12	19	24	12	24	27
成时间							

关键任务有: ACDEG

关键路径: A->E->C->D->G 关键路径长度: 4+8+7+5+3=27

F的自由浮动: 16-12=4 F的总浮动: 12-12-4=-4

二、某项目有 7 个任务, $T=\{t1,t2,t3,t5,t6,t7\}$,项目需要的技能是 $S=\{s1,s2,s3\}$,其中每个人物需要的技能和工作量如下图所示:

$$t_1^{tk} = \{s_1, s_2\}, t_2^{tk} = \{s_2\}, t_3^{tk} = \{s_1, s_3\}, t_4^{tk} = \{s_1\}$$

$$t_5^{tk} = \{s_1, s_2, s_3\}, t_6^{tk} = \{s_1, s_2\}, t_7^{tk} = \{s_1\}$$

$$t_1^{eff} = 4, t_2^{eff} = 6, t_3^{eff} = 8, t_4^{eff} = 9, t_5^{eff} = 8, t_6^{eff} = 10, t_7^{eff} = 16$$
另外,任务之间的关系如下图所示。

另外,任务直接按的关系如下图所示。

$$e_1^{ik} = \{s_1, s_2, s_3\}, e_2^{ik} = \{s_1, s_2, s_3\}, e_3^{ik} = \{s_1, s_2\}, e_4^{ik} = \{s_1, s_3\}, e_1^{rem} = \$100, e_2^{rem} = \$80, e_3^{rem} = \$60, e_4^{rem} = \$50.$$

并且,每人的最大贡献率 $e_1^{maxd} \in [0, 1], i = 1, 2, 3, 4.$

项目人员集合 E={e1,e2,e3,e4}共计 4 人,每个人员具备的技能和人力成本如下所示。请完成如下问题:

1) 给出项目的关系依赖矩阵;

٦	D	D	O	0	1	1	Γo	
	0	D	1	1	D	D	D	
	0	D	1	0	D	D	0	
	1	D	0	0	0	D	0	
	D	1	0	D		0	0	
	1	D	0	D	0	0	0	
\perp	D	D	0	D	D	0	_ 0	
1.] D							

2) 采用一定的方法给出贡献矩阵 M, 使得项目完成时间尽可能短, 成本尽可能低

122	献版P						
	0	0.5	05	0	1	o.t	1
	1	v.t	0.5	1	1	1	1
	i	1	0	1	0	1	1

3) 最后给出项目成本和总成本, 画出项目的 PDM 网络或干特图。

Cost(t1)=2*(80+60)=280 (美元)

Cost(t2)=3*(0.5*100+0.5*80+60)=450 (美元)

Cost(t3)=4*(0.5*100+0.5*80+50)=560 (美元)

Cost(t4)=3*(80+60+50)=570 (美元)

Cost(t5)=4*(100+80)=720 (美元)

Cost(t6)=4*(0.5*100+80+60)=760 (美元)

Cost(t7)=4*(100+80+60+50)=1160(美元) 总成本=Σ(i=1,n=7)(Cost(i))=4500 (美元)

项目时间: t1->t3->t5->t6->t7 关键路径为 18, 即项目时间为 18 天。