# **Fair Subtyping for Open Session Types**

Luca Padovani

Dipartimento di Informatica, Università di Torino, Italy

seller

### Sessions



- private communication channel between processes
- two or more endpoints

client

### Sessions



- private communication channel between processes
- two or more endpoints

seller

### Sessions



- private communication channel between processes
- two or more endpoints

client

## Session correctness = safety + liveness

Safety: no unexpected message is ever sent

"after paying the client won't add more items to the cart"

Liveness: all non-terminated participants **eventually** make progress

"the seller will receive payment through client's bank"

## A correct session (under fairness assumptions)

 $\mu x.(!add.x \oplus !pay) \quad \mu x.(?add.x + ?pay.!charge)$  ?charge



# A correct session (under fairness assumptions)

```
\mu x.(!add.x \oplus !pay) \quad \mu x.(?add.x + ?pay.!charge) ?charge
```



## A correct session (under fairness assumptions)

$$\mu x.(!add.x \oplus !pay) \quad \mu x.(?add.x + ?pay.!charge)$$
 ?charge



## A correct session (under fairness assumptions)

$$\mu x.(!add.x \oplus !pay) \quad \mu x.(?add.x + ?pay.!charge)$$
 ?charge



# Session type checking

 $k: \mu x.(!add.x \oplus !pay) \vdash rec P.k!\langle m \rangle.P$ 

```
\frac{P \mapsto \{k : x\}; k : !add.x \oplus !pay \vdash k! \langle m \rangle.P}{k : \mu x. (!add.x \oplus !pay) \vdash \mathbf{rec} P.k! \langle m \rangle.P} [t-rec]
```

```
\frac{\vdash m : \text{add} \qquad P \mapsto \{k : x\}; k : x \vdash P}{P \mapsto \{k : x\}; k : !\text{add}.x \oplus !\text{pay} \vdash k! \langle m \rangle.P} \text{[t-output]}k : \mu x. (!\text{add}.x \oplus !\text{pay}) \vdash \text{rec } P.k! \langle m \rangle.P} \text{[t-rec]}
```

```
\frac{\vdash m : \mathsf{add}}{P \mapsto \{k : x\}; k : x \vdash P} \begin{bmatrix} \mathsf{t-var} \end{bmatrix}}{P \mapsto \{k : x\}; k : !\mathsf{add}.x \oplus !\mathsf{pay} \vdash k! \langle m \rangle.P} \begin{bmatrix} \mathsf{t-output} \end{bmatrix}}{k : \mu x. (!\mathsf{add}.x \oplus !\mathsf{pay}) \vdash \mathsf{rec} P. k! \langle m \rangle.P} \begin{bmatrix} \mathsf{t-rec} \end{bmatrix}}
```

```
P \mapsto \{k : x\}; k : x \vdash P
      \vdash m: add
                                                                 [t-output]
    P \mapsto \{k : x\}; k : !add.x \oplus !pay \vdash k!\langle m \rangle.P
    k: \mu x.(!add.x \oplus !pay) \vdash rec P.k!\langle m \rangle.P
ladd
                                     ?add
                                 ?pay
                                                                 ?charge
```

## Session type checking, **flawed?**



### Identifying the problem



 $!add.x \oplus !pay \leqslant !add.x$ 

# Subtyping for session types

 Simon Gay, Malcolm Hole, Subtyping for session types in the pi calculus, Acta Informatica, 2005

$$!add.x \oplus !pay \leq_{\mathbf{U}} !add.x$$

- $\leq_U$  subtyping preserves safety...
- ...but not necessarily liveness

## Subtyping for session types

 Simon Gay, Malcolm Hole, Subtyping for session types in the pi calculus, Acta Informatica, 2005

$$!add.x \oplus !pay \leq_{\mathsf{U}} !add.x$$

- ≤<sub>U</sub> subtyping preserves safety...
- ...but not necessarily liveness

What about the coarsest liveness-preserving subtyping?

## Defining fair subtyping, the easy way

#### Idea

- session type  $T \sim$  sequential ccs process
- session  $M \sim \prod$  session types

#### Definition

- **1** M is correct if  $M \Longrightarrow N$  implies  $N \stackrel{!0K}{\Longrightarrow}$
- ②  $T \leq S \iff \forall C, M : C[T] \mid M \text{ correct implies } C[S] \mid M \text{ correct}$
- © coarsest liveness-preserving subtyping, by definition
- uninformative

## Why is fair subtyping hard to characterize?

#### Recursion

• for **finite** types,  $\leqslant = \leqslant_{\mathsf{U}}$ 

#### Context dependency

ullet the **same** types **may** or **may not** be related by  $\leqslant$ 



## Why is fair subtyping hard to characterize?

#### Recursion

• for **finite** types,  $\leqslant = \leqslant_{\mathsf{U}}$ 

#### Context dependency

the same types may or may not be related by ≤



## Subtyping and trace convergence



### Subtyping and trace convergence



- □ is weaker than trace inclusion
- ☐ always holds for finite (closed) types

$$\mu x.(!add.x \oplus !pay)$$

$$\mu x.(!add.!add.x \oplus !pay)$$





$$\mu x.(!add.x \oplus !pay)$$
  $\mu x.(!add.!add.x \oplus !pay)$ 



$$\mu x. (!add.x \oplus !pay)$$
  $\mu x. (!add.!add.x \oplus !pay)$ 



$$\mu x.(!add.x \oplus !pay)$$
  $\mu x.(!add.!add.x \oplus !pay)$ 



$$\mu x.(! \mathtt{add}.x \oplus ! \mathtt{pay})$$
  $\mu x.(! \mathtt{add}.! \mathtt{add}.x \oplus ! \mathtt{pay})$ 



## Convergence and open types





## Convergence and open types



## Convergence and open types



# Axioms for convergence

#### Lemma

 $T \sqsubseteq_{\{x\}} S$  iff  $\mu x. T \sqsubseteq_{\emptyset} \mu x. S$ 

## Axioms for fair subtyping

$$[f-end] \qquad [f-var] \qquad \qquad \frac{T \leqslant_{\mathsf{F}} S \qquad T \sqsubseteq_{\{x\}} S}{\mu x. T \leqslant_{\mathsf{F}} \mu x. S}$$
 
$$[f-input] \qquad \qquad \forall i \in I: T_i \leqslant_{\mathsf{F}} S_i \qquad \qquad \forall i \in I: T_i \leqslant_{\mathsf{F}} S_i \qquad \qquad \forall i \in I: T_i \leqslant_{\mathsf{F}} S_i \qquad \qquad \forall i \in I: T_i \leqslant_{\mathsf{F}} S_i \qquad \qquad \frac{\forall i \in I: T_i \leqslant_{\mathsf{F}} S_i}{\sum_{i \in I} ?a_i. T_i \leqslant_{\mathsf{F}} \sum_{i \in I} ?a_i. S_i} \qquad \qquad \frac{\exists_{\mathsf{F}} S_i}{\sum_{i \in I} ?a_i. S_i} \qquad \qquad \frac{\exists_{\mathsf{F}} S_i}{\sum_{i \in I} ?a_i. S_i} \qquad \frac{\exists_{\mathsf{F}} S_i}{\sum_{\mathsf{F}} S_$$

### Theorem (correctness & completeness)

- $T \leq_{\mathsf{F}} S$  implies  $T \leq S$
- $T \leqslant S$  implies  $T \approx T' \leqslant_{\mathsf{F}} S' \approx S$  for some T' and S'

## Deciding fair subtyping

[c-output 1]
$$\frac{\forall i \in I : T_i \sqsubseteq_X S_i}{\bigoplus_{i \in I} ! a_i . T_i \sqsubseteq_X \bigoplus_{i \in I} ! a_i . S_i}$$

[c-output 2]
$$\frac{\exists k \in I : T_k \sqsubseteq_{\emptyset} S_k}{\bigoplus_{i \in I \cup J} ! a_i . T_i \sqsubseteq_{X} \bigoplus_{i \in I} ! a_i . S_i}$$

### Theorem (algorithm)

- there exists a syntax-directed axiomatization of convergence
- fair subtyping can be decided in  $O(n^4)$  (subtyping in  $O(n^2)$ )

## Wrap up

• coarsest liveness-preserving subtyping for session types

complete (co)inductive and axiomatic characterizations

polynomial decision algorithm

### Related work

- Cleaveland, Natarajan, Divergence and fair testing, ICALP 1995
- Rensink, Vogler, Fair testing, Inf. & Comp., 2007

- no complete axiomatization
- trace equivalence
- exponential algorithm

## Ongoing and future work

Seller's dream

if  $\vdash_{pay} P$ , then P eventually pays

Teacher's nightmare

 $\mu x$ .?homework.(! $FAIL.x \oplus !PASS$ )