A toy example – travel on a circle

Agent's action: Left/right/stay

State-transition:

Agent's action + random perturbation ϵ

Objective:

Collect as many reward as possible

Classic: Max_{π} . $E_{\pi} \sum_{h=0}^{H} r(s_h^{\pi})$

Risk-sensitive: Max_{π} . $E_{\pi} \exp(\beta \sum_{h=0}^{H} r(s_h^{\pi}))$

Numerical simulation result

Reward list:

$$[0, -10, 5, -10, 0, \frac{1,1,0}{1,1,0}, 0, 0, \frac{1,2,-1,0}{1,0}]$$

High risk Low risk Medium risk

- Three different objective functions:
 - Classic (Risk Neutral)
 - Risk-averse (beta < 0)
 - Risk-seeking (beta > 0)
- Implementation: calculate the optimal policy for the three different objectives under $\epsilon_0=.15$, then calculate The performance for different $\epsilon=.1,.15,.2,...,.3$

· Algorithm for finding the optimal policy: Dynamical programming

Robustness

Criteria for testing robustness

$$f(\pi) = \inf_{P \in \mathcal{P}} \mathbb{E}^{P,\pi} \left[\sum_{t=0}^{\infty} \lambda^t r(s_t, a_t, s_{t+1}) \mid s_0 \sim p_0 \right]$$

where the ambiguity set is chosen as:

$$\mathcal{P} := \{\widetilde{P} : \mathsf{KL}(\widetilde{P}(\cdot|s,a)||P(\cdot|s,a)) \leq \delta\}$$

Note that at different nodes the perturbation error can be different in this choice of ambiguity set

• Additional figure (with risk seeking):

