Codebook

Pitoni++

Žiga Gosar, Maks Kolman, Jure Slak

verzija: 30. december 2014

Kazalo

1	Gra	ıfi
	1.1	Topološko sortiranje
	1.2	Mostovi in prerezna vozlišča grafa
	1.3	Močno povezane komponente
2	Teo	rija števil
	2.1	Evklidov algoritem
	2.2	Razširjen Evklidov algoritem
	2.3	Kitajski izrek o ostankih
	2.4	Hitro potenciranje
	2.5	Številski sestavi
	2.6	Eulerjeva funkcija ϕ

1 Grafi

1.1 Topološko sortiranje

Vhod: Število vozlišč n in število povezav m ter seznam povezav E oblike $u \to v$ dolžine m. Usmerjen graf G je tako sestavljen iz vozlišč z oznakami 0 do n-1 in povezavami iz E. G ne sme imeti zank, če pa jih ima, se jih lahko brez škode odstrani.

Izhod: Topološka ureditev usmerjenega grafa G, to je seznam vozlišč v takem vrstem redu, da nobena povezava ne kaže nazaj. Če je vrnjeni seznam krajši od n, potem ima G cikle.

Časovna zahtevnost: O(V + E)Prostorska zahtevnost: O(V)Testiranje na terenu: UVa 10305

```
vector<int> topological_sort(int n, int m, const int E[][2]) {
2
         vector<vector<int>> G(n);
3
         vector<int> ingoing(n, 0);
         for (int i = 0; i < m; ++i) {
5
             int a = E[i][0], b = E[i][1];
6
             G[a].push_back(b);
7
             ingoing[b]++;
8
9
10
         queue<int> q; // morda priority_queue, če je vrstni red pomemben for (int i = 0; i < n; ++i)
11
12
             if (ingoing[i] == 0)
13
14
                  q.push(i);
15
         vector<int> res;
16
         while (!q.empty()) {
17
18
             int t = q.front();
             q.pop();
19
20
21
             res.push_back(t);
22
             for (int v : G[t])
23
                  if (--ingoing[v] == 0)
24
                      q.push(v);
26
         return res; // če res.size() != n, ima graf cikle.
28
    }
```

1.2 Mostovi in prerezna vozlišča grafa

Vhod: Število vozlišč n in število povezav m ter seznam povezav E oblike $u \to v$ dolžine m. Neusmerjen graf G je tako sestavljen iz vozlišč z oznakami 0 do n-1 in povezavami iz E.

Izhod: Seznam prereznih vozlišč: točk, pri katerih, če jih odstranimo, graf razpade na dve komponenti in seznam mostov grafa G: povezav, pri katerih, če jih odstranimo, graf razpade na dve komponenti.

Časovna zahtevnost: O(V + E)Prostorska zahtevnost: O(V + E)Testiranje na terenu: UVa 315

```
namespace {
n
```

```
void articulation_points_and_bridges_internal(int u, const vector<vector<int>>& G,
             vector<bool>% articulation_points_map, vector<pair<int, int>>% bridges) {
9
         static int dfs_num_counter = 0;
         low[u] = dfs_num[u] = ++dfs_num_counter;
11
         int children = 0;
         for (int v : G[u]) {
             if (dfs_num[v] == -1) \{ // unvisited \}
13
                 parent[v] = u;
14
15
                  children++;
16
                 articulation_points_and_bridges_internal(v, G, articulation_points_map, bridges);
17
                 low[u] = min(low[u], low[v]); // update low[u]
18
19
                 if (parent[u] == -1 && children > 1) // special root case
20
                 articulation_points_map[u] = true;
else if (parent[u] != -1 && low[v] >= dfs_num[u]) // articulation point
21
22
                      articulation_points_map[u] = true; // assigned more than once
23
                  if (low[v] > dfs num[u])
                                                            // bridge
24
             bridges.push_back({u, v});
} else if (v != parent[u]) {
25
26
                 low[u] = min(low[u], dfs_num[v]); // update low[u]
27
28
29
         }
    }
30
31
32
    void articulation_points_and_bridges(int n, int m, const int E[][2],
             vector<int>& articulation_points, vector<pair<int, int>>& bridges) {
33
34
         vector<vector<int>> G(n);
         for (int i = 0; i < m; ++i) {
   int a = E[i][0], b = E[i][1];
35
36
             G[a].push_back(b);
37
38
             G[b].push_back(a);
40
         low.assign(n, -1);
42
         dfs_num.assign(n, -1);
43
         parent.assign(n, -1);
44
         vector<bool> articulation_points_map(n, false);
45
         for (int i = 0; i < n; ++i)
46
             if (dfs_num[i] == -1)
47
                 articulation_points_and_bridges_internal(i, G, articulation_points_map, bridges);
48
49
         for (int i = 0; i < n; ++i)
50
             if (articulation_points_map[i])
51
                 articulation_points.push_back(i); // actually return only articulation points
52
    }
53
```

1.3 Močno povezane komponente

Vhod: Seznam sosednosti s težami povezav.

Izhod: Seznam povezanih komponent grafa v obratni topološki ureditvi in kvocientni graf, to je DAG, ki ga dobimo iz grafa, če njegove komponente stisnemo v točke. Morebitnih več povezav med dvema komponentama seštejemo.

Časovna zahtevnost: O(V + E)

Prostorska zahtevnost: O(V + E)

Testiranje na terenu: http://putka.upm.si/tasks/2012/2012_3kolo/zakladi

```
namespace {
    vector<int> low;
    vector<int> dfs_num;
    stack<int> S;
    vector<int> component; // maps vertex to its component
5
6
    void strongly_connected_components_internal(int u, const vector<vector<pair<int, int>>>& G,
8
            vector<vector<int>>& comps) {
9
        static int dfs_num_counter = 1;
10
        low[u] = dfs_num[u] = dfs_num_counter++;
11
        S.push(u);
12
13
        for (const auto& v : G[u]) {
```

```
15
             if (dfs_num[v.first] == 0) // not visited yet
             strongly_connected_components_internal(v.first, G, comps);
if (dfs_num[v.first] != -1) // not popped yet
16
17
                 low[u] = min(low[u], low[v.first]);
18
20
         if (low[u] == dfs_num[u]) { // extract the component
             int cnum = comps.size();
             comps.push_back({}); // start new component
25
             do {
                 w = S.top(); S.pop();
26
                 comps.back().push_back(w);
27
                 component[w] = cnum;
dfs_num[w] = -1; // mark popped
28
29
             } while (w != u);
30
         }
31
    }
32
33
    34
35
         int n = G.size();
36
37
         low.assign(n, 0);
38
         dfs_num.assign(n, 0);
39
         component.assign(n, -1);
40
         for (int i = 0; i < n; ++i)
41
42
             if (dfs_num[i] == 0)
43
                 strongly_connected_components_internal(i, G, comps);
44
45
         dag.resize(comps.size());
         for (int u = 0; u < n; ++u) {
   for (const auto& v : G[u]) {</pre>
46
47
                 if (component[u] != component[v.first]) {
                     dag[component[u]][component[v.first]] += v.second; // ali max, kar zahteva naloga
51
             }
         }
52
    }
```

2 Teorija števil

2.1 Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$

Izhod: Največji skupni delitelj a in b. Za pozitivna števila je pozitiven, če je eno število 0, je rezultat drugo število, pri negativnih je predznak odvisen od števila iteracij.

Časovna zahtevnost: $O(\log(a) + \log(b))$

Prostorska zahtevnost: O(1)

```
int gcd(int a, int b) {
   int t;
   while (b != 0) {
       t = a % b;
       a = b;
       b = t;
   }
   return a;
}
```

2.2 Razširjen Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$. Števili retx, rety sta parametra samo za vračanje vrednosti.

Izhod: Števila x, y, d, pri čemer $d = \gcd(a, b)$, ki rešijo Diofantsko enačbo ax + by = d. V posebnem primeru, da je b tuj a, je x inverz števila a v multiplikativni grupi Z_b^* .

Časovna zahtevnost: $O(\log(a) + \log(b))$

Prostorska zahtevnost: O(1)Testiranje na terenu: UVa 756

```
int ext_gcd(int a, int b, int& retx, int& rety) {
            int x = 0, px = 1, y = 1, py = 0, r, q;
while (b != 0) {
2
3
                 r = a % b; q = a / b; // quotient and reminder

a = b; b = r; // gcd swap

r = px - q * x; // x swap
5
                 r = px - q * x;

px = x; x = r;

r = py - q * y;

py = y; y = r;
 6
                                                     // y swap
 8
9
10
            retx = px; rety = py;
                                                     // return
11
12
           return a:
     }
```

2.3 Kitajski izrek o ostankih

Vhod: Sistem n kongruenc $x \equiv a_i \pmod{m_i}$, m_i so paroma tuji.

Izhod: Stevilo x, ki reši ta sistem dobimo po formuli

$$x = \left[\sum_{i=1}^{n} a_i \frac{M}{m_i} \left[\left(\frac{M}{m_i} \right)^{-1} \right]_{m_i} \right]_{M}, \qquad M = \prod_{i=1}^{n} m_i,$$

kjer $[x^{-1}]_m$ označuje inverzx po modulu m. Vrnjeni x je med 0 in M.

Časovna zahtevnost: $O(n \log(\max\{m_i, a_i\}))$

Prostorska zahtevnost: O(n)

Potrebuje: Evklidov algoritem (str. 5)

Testiranje na terenu: UVa 756

Opomba: Pogosto potrebujemo unsigned long long namesto int.

```
int mul_inverse(int a, int m) {
        int x, y;
2
        ext_gcd(a, m, x, y);
3
4
        return (x + m) \% m;
6
    int chinese_reminder_theorem(const vector<pair<int, int>>& cong) {
        int M = 1;
        for (size_t i = 0; i < cong.size(); ++i) {</pre>
10
            M *= cong[i].second;
        int x = 0, a, m;
12
        for (const auto& p : cong) {
13
            tie(a, m) = p;
            x += a * M / m * mul_inverse(M/m, m);
16
17
        return (x + M) \% M;
18
19
```

2.4 Hitro potenciranje

Vhod: Število g iz splošne grupe in $n \in \mathbb{N}_0$.

Izhod: Število q^n .

Časovna zahtevnost: $O(\log(n))$

Prostorska zahtevnost: O(1)

Testiranje na terenu: http://putka.upm.si/tasks/2010/2010_3kolo/nicle

```
int fast_power(int g, int n) {
   int r = 1;
   while (n > 0) {
      if (n & 1) {
        r *= g;
      }
      g *= g;
      n >>= 1;
   }
   return r;
}
```

2.5 Številski sestavi

Vhod: Število $n \in \mathbb{N}_0$ ali $\frac{p}{q} \in Q$ ter $b \in [2, \infty) \cap \mathbb{N}$.

Izhod: Število n ali $\frac{p}{q}$ predstavljeno v izbranem sestavu z izbranimi števkami in označeno periodo.

Časovna zahtevnost: $O(\log(n))$ ali $O(q \log(q))$.

Prostorska zahtevnost: O(n) ali O(q).

Testiranje na terenu: http://putka.upm.si/tasks/2010/2010_finale/ulomki Opomba: Zgornja meja za bazo b je dolžina niza STEVILSKI_SESTAVI_ZNAKI.

```
char STEVILSKI_SESTAVI_ZNAKI[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
1
     string convert_int(int n, int baza) {
   if (n == 0) return "0";
3
5
         string result;
         while (n > 0) {
 6
              result.push_back(STEVILSKI_SESTAVI_ZNAKI[n % baza]);
              n /= baza:
         }
9
10
         reverse(result.begin(), result.end());
         return result;
11
12
     string convert_fraction(int stevec, int imenovalec, int base) {
14
         div_t d = div(stevec, imenovalec);
15
         string result = convert_int(d.quot, base);
if (d.rem == 0) return result;
16
17
18
         string decimalke; // decimalni del
result.push_back('.');
19
20
         int mesto = 0;
^{21}
         map<int, int> spomin;
22
         spomin[d.rem] = mesto;
23
         while (d.rem != 0) { // pisno deljenje
24
              mesto++;
d.rem *= base;
25
26
              decimalke += STEVILSKI_SESTAVI_ZNAKI[d.rem / imenovalec];
27
              d.rem %= imenovalec;
28
              if (spomin.count(d.rem) > 0) { // periodicno
29
                  result.append(decimalke.begin(), decimalke.begin() + spomin[d.rem]);
result.push_back('(');
30
31
                  result.append(decimalke.begin() + spomin[d.rem], decimalke.end());
32
33
                  result.push_back(')');
34
                  return result;
              }
35
              spomin[d.rem] = mesto;
36
37
         result += decimalke;
38
39
         return result; // koncno decimalno stevilo
    }
```

2.6 Eulerjeva funkcija ϕ

Vhod: Število $n \in \mathbb{N}$.

Izhod: Število $\phi(n)$, to je število števil manjših ali enakih n in tujih n. Direktna

formula:

$$\phi(n) = n \cdot \prod_{p \mid n} (1 - \frac{1}{p})$$

Časovna zahtevnost: $O(\sqrt{n})$.

Prostorska zahtevnost: O(1).

Testiranje na terenu: https://projecteuler.net/problem=69