

TFG del Grado en Ingeniería Informática

título del TFG Documentación Técnica

Presentado por Alicia Olivares Gil en Universidad de Burgos — 13 de junio de 2019

Tutores: Álvar Arnáiz González y José Franciso Díez Pastor

Índice general

Indice general]
Índice de figuras	III
Índice de tablas	IV
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal]
A.3. Estudio de viabilidad	S
Apéndice B Especificación de Requisitos	11
B.1. Introducción	11
B.2. Objetivos generales	11
B.3. Catalogo de requisitos	11
B.4. Especificación de requisitos	13
Apéndice C Especificación de diseño	15
C.1. Introducción	15
C.2. Diseño de datos	15
C.3. Diseño procedimental	15
C.4. Diseño arquitectónico	15
C.5. Diseño de interfaces	15
Apéndice D Documentación técnica de programación	17
D.1. Introducción	17
D.2. Estructura de directorios	17

D.3. Manual del programador D.4. Compilación, instalación y ejecución del proyecto D.5. Pruebas del sistema	17
Apéndice E Documentación de usuario E.1. Introducción	19
E.2. Requisitos de usuarios	19
E.3. Instalación	
Bibliografía	21

Índice de figuras

C.1.	Prototipos iniciales de las pantallas de: login, administración,	
	visualización de camas y visualización de datos	16

Índice de tablas

A.1.	Sprint	1																2
A.2.	Sprint	2																2
A.3.	Sprint	3																3
A.4.	Sprint	4																3
A.5.	Sprint	5																3
A.6.	Sprint	6																4
A.7.	Sprint	7																4
A.8.	Sprint	8																5
A.9.	Sprint	9																5
A.10	.Sprint	10																6
A.11	.Sprint	11																6
A.12	.Sprint	12																6
A.13	.Sprint	13																7
A.14	.Sprint	14																7
A.15	.Sprint	15																8
A.16	.Sprint	16																8
A.17	.Sprint	17																9
A.18	.Sprint	18																9

Apéndice A

Plan de Proyecto Software

A.1. Introducción

A.2. Planificación temporal

La planificación temporal se ha realizado adaptando la metodología *Scrum* a un proyecto educativo, con los cambios que esto conlleva.

- El desarrollo se ha basado en iteraciones o *sprints* de una semana de duración aproximadamente.
- Cada uno de los *sprints* contiene las tareas o *issues* que se realizaron esa semana.
- Cada tarea tiene asociado un coste, que simboliza su dificultad en cuanto al esfuerzo que se estima invertir en ella.
- En caso de que la estimación del coste resultara inexacta al realizar el *issue*, este se modificó para reflejar el esfuerzo real empleado.
- Al finalizar cada sprint se realizaba una reunión de revisión con los tutores donde se exponían los progresos realizados y se planificaba el siguiente sprint.

Sprint 1

Fecha: 19/12/1018 - 23/12/2018

El primer *sprint* consistió en realizar una exploración bibliográfica inicial sobre el estado del arte.

Issue	Estimado	Final
Crear y configurar repositorio	2	2
Exploración bibliográfica inicial	13	13

Tabla A.1: Sprint 1

Sprint 2

Fecha: 23/12/2018 - 29/12/2018

Se continuó la exploración bibliográfica inicial, centrándose en artículos especialmente interesantes encontrados hasta el momento y se comenzó la exploración bibliográfica sobre otros métodos aplicables al problema.

Issue	Estimado	Final
Continuación de la exploración bibliográfica inicial	8	8
Exploración bibliográfica sobre otros métodos apli-	8	8
cables al problema		
Lectura de . ^a utomated Epileptic Seizure Detection	8	8
Methods: A Review Study"		
Instalar y configurar cliente VPN	2	2

Tabla A.2: Sprint 2

Sprint 3

Fecha: 29/12/2018 - 11/01/2019

Se inició la documentación y se empezó a trabajar en la visualización de los datos en bruto y de algunos datos estadísticos.

Issue	${\bf Estimado}$	Final
Iniciar documentación	-	_
Instalar entorno y librerías de Python	5	5
Aprender a usar librerías	8	8
Procesar y mostrar datos	8	8

Tabla A.3: Sprint 3

Fecha: 11/01/2019 - 18/01/2019

Se configuró el acceso al computador del departamento para probar técnicas de reducción de la dimensionalidad de los datos y algunas opciones básicas de filtrado y suavizado de la señal.

Issue	Estimado	Final
Configurar acceso a gamma	5	5
Probar opciones filtrado y suavizado	8	8
Probar otras formas de proyección de datos	8	21

Tabla A.4: Sprint 4

Sprint 5

Fecha: 18/01/2019 - 25/01/2019

Se hicieron cambios en el preprocesado, se probaron otras formas de filtrado de la señal y se estudiaron los puntos clave de las proyecciones del sprint anterior.

Issue	Estimado	Final
Leer apuntes de minería de datos	8	8
Modificar preprocesado	3	3
Representar señales en torno a la crisis epiléptica	5	5
Probar formas de filtrado de la señal	5	5
Estudiar los puntos clave de las proyecciones	5	8

Tabla A.5: Sprint 5

Fecha: 25/01/2019 - 31/02/2019

Se centraron las pruebas en las proyecciones con mejor rendimiento, concretamente en MDS [5], y se iniciaron la documentación de la planificación temporal y el cuaderno de investigación.

Issue	Estimado	Final
Cambiar a proyecciones con mejor rendimiento	13	13
Pasar cálculos estadísticos a funciones	5	5
Documentar 5 primeros Sprints en el Plan de Pro-	8	8
yecto		
Documentar investigación en overleaf [7]	5	5

Tabla A.6: Sprint 6

Sprint 7

Fecha: 31/02/2019 - 07/02/2019

Se codificaron las transformaciones generadas en los *sprints* anteriores (normalización, filtros y estadísticas) como transformadores de sklearn [8].

Issue				Estimado	Final				
Aprender	sobre	la	clase	3	3				
sklearn.base.TransformerMixin [3]									
Generar transf	formadores para	a las funcion	nes usadas	21	13				

Tabla A.7: Sprint 7

Sprint 8

Fecha: 07/02/2019 - 14/02/2019

Se exploraron otras formas de proyección y se realizó una primera aproximación de clasificación mediante Random Forest [4] y detección de anomalías One-class [6].

Issue	Estimado	Final
Probar Kernel PCA	5	5
Acotar ataque a partir del aspecto de la señal y la	3	5
salida de las proyecciones (MDS)		
Probar MDS con el ataque reetiquetado	8	8
Probar clasificador Random Forest	8	8
Aplicar detección de anomalías one-class	13	13

Tabla A.8: Sprint 8

Fecha: 14/02/2019 - 21/02/2019

Se planteó la evaluación de los clasificadores mediante el área bajo la curva ROC y se terminaron de documentar las proyecciones en el cuaderno de investigación.

Issue	Estimado	Final
Valorar los resultados de Random Forest mediante	3	3
el área bajo la curva		
Incluir las proyecciones en la documentación	5	5
Preparar la visualización de las proyecciones para la	5	8
documentación		

Tabla A.9: Sprint 9

Sprint 10

Fecha: 21/02/2019 - 28/02/2019

Una parte se invirtió en aprender sobre clasificación de conjuntos de datos desequilibrados mediante ensembles y por otro lado se realizó una exploración de ventanas para la aplicación de los datos al clasificador Random Forest.

Issue	Estimado	Final
Lectura de aprendizaje sobre datos desequilibrados	-	_
Aplicar Random Forest a datos estadísticos con dis-	8	8
tintas ventanas		

Tabla A.10: Sprint 10

Fecha: 28/02/2019 - 07/03/2019

Se continuó con la lectura sobre desequilibrados y se inició el aprendizaje sobre la librería tsfresh [1] para extracción de características en series temporales.

Issue	Estimado	Final
Continuar con la lectura sobre uso de ensembles para	5	5
conjuntos desequilibrados		
Extracción de características en series temporales	8	8

Tabla A.11: Sprint 11

Sprint 12

Fecha: 07/03/2019 - 14/03/2019

Se trataron de aplicar los resultados de la extracción de características de series temporales al clasificador Random Forest.

Issue	Estimado	Final
Random Forest con características de series tempo-	5	5
rales Continuar extracción de características en series	13	13
temporales		

Tabla A.12: Sprint 12

7

Sprint 13

Fecha: 14/03/2019 - 21/03/2019

Principalmente se exploraron formas de filtrar y combinar las mejores características de series temporales para ser aplicadas al clasificador.

Issue	Estimado	Final
Filtrado de características	13	5
Aplicar Random Forest a combinaciones de las me-	5	5
jores características		
Documentación de sprints pasados y actualización	5	5
del cuaderno de investigación		

Tabla A.13: Sprint 13

Sprint 14

Fecha: 21/03/2019 - 28/03/2019

Se planteó un filtrado de características mediante un algoritmo genético usando el framework deap [2] de python y se realizó una investigación inicial de técnicas para la implementación de servidores de *streaming*.

Issue	Estimado	Final
Investigar técnicas para implementar servidores de streaming	8	8
Algoritmo genético para la selección de característi-	13	13
cas Avanzar con la documentación en el cuaderno de	5	13
investigación		

Tabla A.14: Sprint 14

Sprint 15

Fecha: 28/03/2019 - 04/04/2019

Se mejoró el algoritmo genético, se finalizó su ejecución con la ayuda de tmux [9] y se documentaron los resultados. Además, se inició el diseño de

los requisitos y los casos de uso de la aplicación y se plantearon los primeros prototipos.

Issue	Estimado	Final
Generar prototipo de la pantalla de visualización de	5	5
datos		
Aprender sobre tmux para la ejecución del genético	3	3
Mejorar algoritmo genético y documentar resultados	8	8
Plantear primeras cuestiones de diseño de la app	5	5

Tabla A.15: Sprint 15

Sprint 16

Fecha: 04/04/2019 - 11/04/2019

Se ultimaron los detalles del cuaderno de investigación con la documentación generada hasta el momento, se finalizaron los prototipos y se documentó la parte de diseño y de las técnicas. Además, se instaló Android Studio para su uso en sprints posteriores.

Issue	Estimado	Final
Ultimar detalles del cuaderno e trabajo	_	-
Finalizar y documentar prototipos	5	5
Avanzar en la documentación temporal, de diseño y	13	13
de las técnicas		
Instalar Android Studio	2	2

Tabla A.16: Sprint 16

Sprint 17

Fecha: 11/04/2019 - 18/04/2019

Se refactorizó el código de los experimentos para incluir el testeo mediante la métrica precision-recall, más adecuada para conjuntos de datos desequilibrados, y se volvieron a ejecutar los filtrados de características.

Issue	Estimado	Final
Refactorizar el código de Random Forest para incluir	8	8
la métrica precision-recall		
Volver a ejecutar los filtrados de características para	8	8
la nueva métrica		

Tabla A.17: Sprint 17

Fecha: 18/04/2019 - 02/05/2019

Se documentaron los resultados de los filtrados de características del sprint anterior y se comenzó la lectura sobre la documentación de Android Studio y la visualización del curso *Android Development for Beginners* de Google.

Issue	Estimado	Final
Documentar los resultados de las nuevas ejecuciones	8	8
en el cuaderno de investigación		
Aprender a usar Android Studio	13	21

Tabla A.18: Sprint 18

A.3. Estudio de viabilidad

Viabilidad económica

Viabilidad legal

Apéndice B

Especificación de Requisitos

B.1. Introducción

B.2. Objetivos generales

B.3. Catalogo de requisitos

Se indican los requisitos funcionales y no funcionales de la aplicación.

Requisitos funcionales

- RF-1 Confidencialidad del sistema: Solamente los usuarios autorizados podrán acceder al sistema.
 - RF-1.1 Identificación de usuario: los usuarios se identificarán con un *nickname* y una contraseña
 - RF-1.2 Rol de administración: existirá un usuario especial que podrá administrar el sistema completamente sin restricciones.
 - RF-1.3 Visualización de una cama: los usuarios validados deben poder observar los datos en tiempo real de las camas disponibles.
 - RF-1.4 Restricción de acceso: los usuarios solamente podrán tener acceso a los datos de las camas permitidas.
 - RF-1.5 Acceso completo al administrador: el administrador debe poder acceder a los datos de todas las camas existentes.

- RF-2 Gestión de las camas: El administrador debe poder gestionar las camas pudiendo añadir, modificar, borrar y dar acceso a un usuario a los datos de una cama determinada.
 - RF-2.1 Añadir cama: el administrador debe poder añadir una nueva cama al sistema.
 - RF-2.2 Modificar cama: el administrador debe poder modificar los datos una cama existente.
 - RF-2.3 Borrar cama: el administrador debe poder borrar una cama del sistema.
 - RF-2.4 Asignar camas a usuarios: el administrador se encarga de decidir qué usuario puede acceder a los datos de qué cama.
- RF-3 Gestión de los usuarios: el administrador debe poder gestionar los usuarios pudiendo añadir, modificar y borrar. El usuario debe poder gestionar su propia contraseña.
 - RF-3.1 Añadir usuario: el administrador debe poder añadir un nuevo usuario al sistema.
 - RF-3.2 Modificar usuario: el administrador debe poder modificar los datos un usuario existente. Igualmente el usuario debe poder modificar su propia contraseña.
 - RF-3.3 Borrar usuario: el administrador debe poder borrar un usuario del sistema.
- RF-4 Visualización de los datos: los usuarios deben poder ver, de las camas disponibles, el estado actual del paciente, la probabilidad de crisis epiléptica, sus constantes vitales y las presiones.

Requisitos no funcionales

- RNF-1 Usabilidad: la aplicación debe cumplir estándares de usabilidad teniendo una curva de aprendizaje baja y un uso de metáforas adecuado.
- RNF-2 Confidencialidad: los datos de las camas, al ser en parte constantes vitales de pacientes, solamente han de ser accesibles por los usuarios permitidos.

- RNF-3 Escalabilidad: el sistema debe ser escalable para adaptarse de manera correcta a un incremento de carga del sistema.
- RNF-4 Seguridad: los usuarios deben poder identificarse sólidamente con el sistema sin que sus datos o sus credenciales (tokens) sean accesibles por terceros, incluso el administrador.

B.4. Especificación de requisitos

Apéndice C

Especificación de diseño

- C.1. Introducción
- C.2. Diseño de datos
- C.3. Diseño procedimental
- C.4. Diseño arquitectónico

C.5. Diseño de interfaces

Inicialmente se realizaron una serie de prototipos básicos en los que se plasmaron las principales funcionalidades de la aplicación, sin prestar especial atención a los aspectos estéticos de la misma. Para ello se usó el programa de prototipado Pencil.

Figura C.1: Prototipos iniciales de las pantallas de: login, administración, visualización de camas y visualización de datos.

Apéndice D

Documentación técnica de programación

- D.1. Introducción
- D.2. Estructura de directorios
- D.3. Manual del programador
- D.4. Compilación, instalación y ejecución del proyecto
- D.5. Pruebas del sistema

Apéndice ${\cal E}$

Documentación de usuario

- E.1. Introducción
- E.2. Requisitos de usuarios
- E.3. Instalación
- E.4. Manual del usuario

Bibliografía

- [1] Maximilian Christ et al. tsfresh, 2019. [Internet; accedido 09-mayo-2019].
- [2] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. *Journal of Machine Learning Research*, 13:2171–2175, jul 2012.
- [3] Scikit learn devolopers. sklearn.base.transformermixin, 2018. [Internet; accedido 09-mayo-2019].
- [4] Scikit learn devolopers. sklearn.ensemble.randomforestclassifier, 2018. [Internet; accedido 09-mayo-2019].
- [5] Scikit learn devolopers. sklearn.manifold.mds, 2018. [Internet; accedido 09-mayo-2019].
- [6] Scikit learn devolopers. sklearn.svm.oneclasssvm, 2018. [Internet; accedido 09-mayo-2019].
- [7] Overleaf. Overleaf documentation, 2019. [Internet; accedido 09-mayo-2019].
- [8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
- [9] tmux. tmux home, 2019. [Internet; accedido 09-mayo-2019].