CZ2007 Introduction to Database Systems (Week 5)

Topic 5: Relational Algebra (1)

Dr. Ng Wee Keong Associate Professor

This presentation is copyright property of NTU. It is intended for students of CZ2007 only.

This Lecture

- Motivation for relational algebra
- Relational algebraic operators
 - □ Selection: $\sigma_{A>100} R_1$
 - $lue{}$ Projection: $\Pi_{A,B} R_1$
 - □ Union: $R_1 \cup R_2$
 - Intersection: $R_1 \cap R_2$
 - □ Difference: $R_1 R_2$
 - Natural Join: $R_1 \bowtie R_2$
 - □ Theta Join: $R_1 \bowtie_{R1.A=R2.A \text{ AND } R1.B < R2.B} R_2$

Relational Algebra: Motivation

- We have the <u>specification</u> of an DB application
- We use an <u>ER-diagrams</u> for a <u>conceptual design</u> of our database
- We transform the ER-diagram into a <u>database schema</u> (i.e., the schemas of a set of tables)
- We <u>normalize</u> the schema, and then insert some tuples into the tables
- Now what?
- How do we perform queries on those tables?
 - Database side: Relational Algebra (RA)
 - User side: Structured Query Language (SQL)

Relational Algebra: Motivation

Relational Algebra

- A mathematical way to formulate queries on relations (i.e., tables)
- Has numerous operators for query formulation
- Example
 - \square Given: Two relations R₁(A, B, C), R₂(A, B, C)
 - □ Selection: $\sigma_{A > 100} R_1$
 - \square Projection: $\Pi_{A,B} R_1$
 - □ Union: $R_1 \cup R_2$
 - □ Intersection: $R_1 \cap R_2$
 - And a few others...

Selection σ (row-wise operation)

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find me the <u>student</u> named <u>Alice</u>"
- $\sigma_{\text{Name} = 'Alice'}$ Students

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE

Selection σ

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find <u>students</u> in <u>SCSE</u>"
- $\sigma_{School = 'SCSE'}$ Students

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
3742	Cathy	22	SCSE

Selection σ

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find SCSE students under 21"
- $\sigma_{\text{School} = 'SCSE' \text{ AND Age } < 21}$ Students

Results	<u>ID</u>	Name	Age	School
'	1234	Alice	20	SCSE

Selection σ

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find <u>students</u> who are either in <u>SCSE</u> or <u>under 21</u>"
- $\sigma_{School = 'SCSE' OR Age < 21}$ Students

Projection Π (column-wise)

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find the <u>IDs</u> and <u>Names</u> of all <u>students</u>"
- \blacksquare $\Pi_{\text{ID, Name}}$ Students

	Results
1	

<u>ID</u>	Name
1234	Alice
5678	Bob
3742	Cathy
9413	David

Combining Operators

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find the <u>ID</u>s and <u>Name</u>s of all <u>students</u> in <u>SCSE</u>"
- \blacksquare $\Pi_{ID, Name}$ ($\sigma_{School = 'SCSE'}$ Students)

<u>ID</u>	Name
1234	Alice
3742	Cathy

Combining Operators

<u>ID</u>	Name	Age	School
1234	Alice	20	SCSE
5678	Bob	20	EEE
3742	Cathy	22	SCSE
9413	David	21	CEE

- Query: "Find the <u>ID</u>s and <u>Name</u>s of all <u>students</u> in <u>SCSE</u>"
- How about $\sigma_{School = 'SCSE'}$ ($\Pi_{ID, Name}$ Students)?
- Wrong
- The projection goes before the selection here
- Since the projection eliminates "School', the selection cannot be performed

Union \cup

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

- Query: "Find people who are either study volunteers"
- Students U Volunteer

Name	Age
Alice	20
Bob	21
Cathy	22
David	21
Cathy	22
David	21
Eddie	43
Fred	35

Union ∪

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

Name	Age
Alice	20
Bob	21
Cathy	22
David	21
Eddie	43
Fred	35

- Query: "Find people who are either <u>students</u> or <u>volunteers</u>"
- Students U Volunteer
- Note 1: Duplicate tuples are automatically removed

Union ∪

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

Results

Name

Alice

Bob

Cathy

David

Eddie

Fred

- Query: "Find the <u>names</u> of people who are either <u>students</u> or <u>volunteers</u>"
- \blacksquare Π_{Name} (Students \cup Volunteer)
- (Π_{Name} Students) \cup (Π_{Name} Volunteer)

Union ∪

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>
Cathy
David
Eddie
Fred

Results

Name

Alice

Bob

Cathy

David

Eddie

Fred

- Query: "Find people who are either students or volunteers"
- Students U Volunteer ?
- Wrong
- Note 2: The two sides of a union must have the same schema (i.e., the same set of attributes)
- Correct solution: (Π_{Name} Students) \cup Volunteer

Intersection

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

Name	Age
Cathy	22
David	21

- Query: "Find people who are both <u>students</u> and <u>volunteers</u>"
- Students Volunteer
- Note 1: Duplicate tuples are automatically removed

Intersection

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

Name
Cathy
David
Eddie
Fred

Name

Cathy

David

- Query: "Find people who are both <u>students</u> and <u>volunteers</u>"
- $(\Pi_{\text{Name}} \text{ Students}) \cap \text{Volunteer}$
- Note 2: The two sides of an intersection must have the same schema (i.e., the same set of attributes)

Difference –

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

Name	Age
Alice	20
Bob	21

- Query: "Find people who are <u>students</u> but not <u>volunteers</u>"
- Students Volunteer
- Note 1: Duplicate tuples are automatically removed

Difference –

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

<u>Name</u>	Age
Cathy	22
David	21
Eddie	43
Fred	35

Name	Age
Eddie	43
Fred	35

- Query: "Find people who are <u>volunteers</u> but not <u>students</u>"
- Volunteer Students

Difference –

Students

<u>Name</u>	Age
Alice	20
Bob	21
Cathy	22
David	21

Volunteer

Name
Cathy
David
Eddie
Fred

Alice

Bob

- Query: "Find people who are <u>students</u> but not <u>volunteers</u>"
- $(\Pi_{Name}$ Students) Volunteer
- Note 2: The two sides of a difference must have the same schema (i.e., the same set of attributes)

<u>Name</u>	Course	Grade
Alice	DB	Α
Bob	DB	В

<u>Name</u>	<u>Course</u>	Grade
Alice	DM	С

<u>Name</u>	Course	Grade
Bob	ΑI	В
Cathy	CG	Α

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	ΑI	В
Cathy	CG	Α
David	NN	С

- Query: "Find students who have taken DB and DM, but not Al or CG"
- $((\sigma_{\text{Course = 'DB'}} \text{Grades}) \cap (\sigma_{\text{Course = 'DM'}} \text{Grades})) ((\sigma_{\text{Course = 'AI'}} \text{Grades})) \cup (\sigma_{\text{Course = 'CG'}} \text{Grades}))$
- Result is empty set
- Wrong

<u>Name</u>	Course	Grade
Alice	DB	Α
Bob	DB	В

<u>Name</u>	<u>Course</u>	Grade
Alice	DM	С

<u>Name</u>	Course	Grade
Bob	ΑI	В
Cathy	CG	Α

<u>Name</u>	<u>Course</u>	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	Al	В
Cathy	CG	Α
David	NN	С

- Query: "Find students who have taken DB and DM, but not Al or CG"
- $((\Pi_{\text{Name}} \, \sigma_{\text{Course = 'DB'}} \, \text{Grades}) \cap (\Pi_{\text{Name}} \, \sigma_{\text{Course = 'DM'}} \, \text{Grades})) ((\Pi_{\text{Name}} \, \sigma_{\text{Course = 'CG'}} \, \text{Grades}))$

<u>Name</u>	Course	Grade
Alice	DB	Α
Bob	DB	В
Bob	Al	В
Cathy	CG	Α
David	NN	С

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	ΑI	В
Cathy	CG	Α
David	NN	С

- Query: "Find students who have never taken DM"
- $\sigma_{\text{Course}} \neq \sigma_{\text{DM'}}$ Grades
- Alice has taken DM but still appear in the result
- Wrong

<u>Name</u>	<u>Course</u>	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	ΑI	В
Cathy	CG	Α
David	NN	С

<u>Name</u>	Course	Grade
Alice	DM	С

- Query: "Find students who have never taken DM"
- Grades $(\sigma_{Course = 'DM'}, Grades)$
- Alice has taken DM but still appear in the result
- Wrong

<u>Name</u>
Alice
Bob
Bob
Cathy
David

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	ΑI	В
Cathy	CG	Α
David	NN	С

- Query: "Find students who have never taken DM"
- (Π_{Name} Grades) ($\Pi_{\text{Name}} \sigma_{\text{Course = 'DM'}}$ Grades)

Natural Join ⋈

Students

<u>NRIC</u>	Name
11	Alice
2	Bob
33	Cathy
4	David

Phones

<u>NRIC</u>	<u>Number</u>
11	9123234
11	8635168
33	8213654
5	9653154

NRIC	Name	Number
11	Alice	9123234
11	Alice	8635168
33	Cathy	8213654

- Query: "Find the NRIC, Name, and Phone of each student"
- Students ⋈ Phones
- Note 1: The join is performed based on the common attributes of the two relations
- Note 2: Each common attribute appears only once in the result

Natural Join ⋈

Students

Name School
Alice SCSE
Bob EEE
Cathy CEE
David SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Name	School	Amount
Cathy	CEE	100
David	SCSE	200

- Students ⋈ Donations
- Meaning: "For those students who have made donation, find their names, schools, and amounts of their donations"

Natural Join ⋈

Students

Name School
Alice SCSE
Bob EEE
Cathy CEE
David SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Name	School	Amount
David	SCSE	200

- $(\sigma_{School = 'SCSE'})$ Students) \bowtie Donations
- Meaning: "For those SCSE students who have made a donation, find their names, schools, and amounts of their donations"

Results

Name

Alice

Grades

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	NN	В
Cathy	SP	В
Cathy	NN	Α

CrsSch

Course	School
DB	SCSE
DM	SCSE
ΑI	SCSE
NN	EEE
SP	EEE

- Query: "Find students who have taken SCSE courses but not EEE courses"
- R1 = Grades \bowtie ($\sigma_{School = 'SCSE'}$ CrsSch)
- R2 = Grades \bowtie ($\sigma_{School = 'EEE'}$ CrsSch)
- Results = Π_{Name} (R1) Π_{Name} (R2)

Grades

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	NN	В
Cathy	SP	В
Cathy	NN	Α

CrsSch

Course	School
DB	SCSE
DM	SCSE
Al	SCSE
NN	EEE
SP	EEE

- Query: "Find students who have only taken EEE courses"
- How to eliminate Bob who has taken SCSE courses?

Results

Name

Cathy

Grades

Name	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	NN	В
Cathy	SP	В
Cathy	NN	Α

CrsSch

Course	School
DB	SCSE
DM	SCSE
ΑI	SCSE
NN	EEE
SP	EEE

- Query: "Find students who have only taken EEE courses"
- R1 = Π_{Name} (Grades \bowtie ($\sigma_{\text{School}} <> '_{\text{EEE}}$ CrsSch))
- R2 = Π_{Name} Grades
- Results = R2 R1

Theta Join ⋈_{condition}

Students

SName	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

SName	Name	School	Amount
Cathy	Cathy	CEE	100
David	David	SCSE	200

- Query: "For those students who have made donations, find their names, schools, and amounts of their donations"
- Students ⋈_{Sname=Name} Donations
- Difference from natural join: Duplicate attributes will NOT be removed from the results
- In general, the join condition in a theta join can also be inequalities

Theta Join ⋈ condition

Quiz1

<u>Name</u>	Score
Alice	70
Bob	90
Cathy	80
David	100

Quiz2

<u>Name</u>	Score
Alice	80
Bob	90
Cathy	90
David	70

Name	Score	Name	Score
Alice	70	Alice	80
Cathy	80	Cathy	90

- Query: "Find students who scored higher in Quiz 2 than Quiz 1"
- Quiz1 ⋈ Quiz1.Name = Quiz2.Name AND Quiz1.Score < Quiz2.Score Quiz2
- Note: In the join condition, whenever there are ambiguous attribute names (e.g., Score), we need to prefix table name to eliminate ambiguity (e.g., use Quiz1.Score instead of Score)

Cartesian Product ×

Students Name Age Alice 19

22

Bob

Courses

<u>ID</u>	Name
C1	DB
C2	Algo

Name	Age	ID	Name
Alice	19	C1	DB
Alice	19	C2	Algo
Bob	22	C1	DB
Bob	22	C2	Algo

- Effect: Theta join without a condition
- Query: "Create a table that provides all possible student-course combinations"
- Students × Donations

Next lecture:

Topic 5: Relational Algebra (2)

