Math 125 PreCalculus Fall 2014, 9.1

TRIG IDENTITIES PRACTICE

Kenny Shah

Name_____

Please practice on the following problems to be well prepared for Quizzes and Exams. Good luck and this worksheet is optional!!!

Simplify the trigonometric expression.

1)
$$\frac{(\tan \theta + 1)(\tan \theta + 1) - \sec^2 \theta}{\tan \theta}$$

1) _____

2)
$$\frac{5\cos^2\theta + 6\cos\theta + 1}{\cos^2\theta - 1}$$

2) _____

Simplify the expression.

3)
$$(1 + \cot \theta)(1 - \cot \theta) - \csc^2 \theta$$

3) _____

Establish the identity.

4)
$$(1 + \tan^2 u)(1 - \sin^2 u) = 1$$

4) _____

5)
$$tan u(csc u - sin u) = cos u$$

5) _____

6)
$$(\sin x)(\tan x \cos x - \cot x \cos x) = 1 - 2 \cos^2 x$$

6) _____

7)
$$1 - \frac{\cos^2 u}{1 - \sin u} = -\sin u$$

7) _____

8)
$$\frac{1 - \sin t}{\cos t} = \frac{\cos t}{1 + \sin t}$$

8) _____

9)
$$\sec^4 x - \tan^4 x = \sec^2 x + \tan^2 x$$

9) _____

10)
$$\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = 2 \csc x$$

10) _____

Answer Key

Testname: UNTITLED1

$$2) \frac{5\cos\theta + 1}{\cos\theta - 1}$$

3)
$$-2 \cot^2 \theta$$

4)
$$(1 + \tan^2 u)(1 - \sin^2 u) = \sec^2 u \cdot \cos^2 u = \frac{1}{\cos^2 u} \cdot \cos^2 u = 1$$

5)
$$\tan u(\csc u - \sin u) = \tan u \cdot \csc u - \tan u \cdot \sin u = \frac{\sin u}{\cos u} \cdot \frac{1}{\sin u} - \frac{\sin u}{\cos u} \cdot \sin u = \frac{1}{\cos u} - \frac{\sin^2 u}{\cos u} = \frac{1 - \sin^2 u}{\cos u} = \frac{\cos^2 u}{\cos u} = \cos u$$

6)
$$(\sin x)(\tan x \cos x + \cot x \cos x) = \sin x \left(\frac{\sin x \cos x}{\cos x} - \frac{\cos^2 x}{\sin x}\right) = \sin^2 x - \cos^2 x = (1 - \cos^2 x) - \cos^2 x = 1 - 2\cos^2 x.$$

7)
$$1 - \frac{\cos^2 u}{1 - \sin u} = 1 - \frac{1 - \sin^2 u}{1 - \sin u} = 1 - \frac{(1 - \sin u)(1 + \sin u)}{1 - \sin u} = 1 - (1 + \sin u) = -\sin u$$

8)
$$\frac{1-\sin t}{\cos t} = \left(\frac{1+\sin t}{1+\sin t}\right) \left(\frac{1-\sin t}{\cos t}\right) = \frac{\cos^2 t}{\cos t (1+\sin t)} = \frac{\cos t}{1+\sin t}.$$

9)
$$\sec^4 x - \tan^4 x = (\sec^2 x + \tan^2 x)(\sec^2 x - \tan^2 x) = (\sec^2 x + \tan^2 x)(1) = \sec^2 x + \tan^2 x$$

9)
$$\sec^4 x - \tan^4 x = (\sec^2 x + \tan^2 x)(\sec^2 x - \tan^2 x) = (\sec^2 x + \tan^2 x)(1) = \sec^2 x + \tan^2 x.$$

10) $\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = \frac{\sin x[(1 + \cos x) + (1 - \cos x)]}{(1 - \cos x)(1 + \cos x)} = \frac{2 \sin x}{1 - \cos^2 x} = \frac{2 \sin x}{\sin^2 x} = 2 \csc x.$