Obliczenia Naukowe - Lista nr 3

Maksymilian Piotrowski

1 Zadanie 1

Opis problemu: Należy napisać funkcję rozwiązującą równanie f(x) = 0 metodą bisekcji.

Rozwiązanie: Metoda bisekcji (połowienia) polega na tytułowym połowieniu startowego przedziału w poszukiwaniu rozwiązania f(x) = 0 funkcji ciągłej f. Na początku mamy przedział startowy [a,b] do którego należy szukany x, taki że f(x) = 0. Aby zachodziła ta własność przedziału, musimy upewnić się że znak f(a) jest różny od znaku f(b). Wtedy wykres przecina oś OX przynajmniej raz.

Metoda polega na skracaniu przedziału [a,b] przy zachowaniu (znak $f(a) \neq znak f(b)$), a więc przy zachowaniu $x \in [a,b]$ dla pewnego x takiego że f(x) = 0. Otrzymując coraz mniejsze przedziały [a,b] jesteśmy w stanie oszacować wartość x.

W metodzie połowienia przedział [a,b] jest zmniejszany dwukrotnie z każdym krokiem w następujący sposób:

```
c \leftarrow \frac{a+b}{2}
jeżeli znak f(a) \neq znak \ f(c):
b \leftarrow c
w przeciwnym przypadku:
a \leftarrow c
```

Implementacja metody ma dwa warunki zakończenia na podstawie podanych jako argumenty wartości δ , ϵ :

```
jeżeli \frac{b-a}{2}\leqslant \deltalubf(\frac{a+b}{2})\leqslant \epsilon: zwróć c\leftarrow \frac{a+b}{2}
```

Zatem wynik c jest zwracany, kiedy $\frac{b-a}{2} \leqslant \delta,$ czyli $|x-c| \leqslant \delta,$ lub kiedy $|f(x)-f(c)| \leqslant \epsilon.$

Implementacja metody znajduje się w pliku l3_z123.jl. Testy metody znajdują się w pliku l3_z123tests.jl.

2 Zadanie 2

Opis problemu: Należy napisać funkcję rozwiązującą równanie f(x) = 0 metodą Newtona.

Rozwiązanie: Metoda Newtona (metoda stycznych) polega na wyprowadzaniu stycznych z f w kolejnych punktach $(x_n, f(x_n))$, gdzie x_{n+1} jest wyznaczany przez punkt przecięcia stycznej z f z osią OX. W ten sposób x_n dąży do miejsca przecięcia f z OX.

Przybliżenie x_{n+1} można w praktyce wyliczyć podanym na wykładzie wzorem wynikającym z linearyzacji szeregu Taylora:

```
f(x) \approx f(x_n) + (x - x_n)f'(x_n)

g(x) := f(x_n) + (x - x_n)f'(x_n), g(x) = \frac{f(x_n)}{f'(x_n)} + (x - x_n) to funkcja liniowa styczna do f w punkcie (x_n, f(x_n)).
```

$$g(x) \leftarrow 0 \implies x = x_n - \frac{f(x_n)}{f'(x_n)}$$

Stąd wzór na
$$x_{n+1}$$
 ma postać: $x_{n+1} \leftarrow x_n - \frac{f(x_n)}{f'(x_n)}$

Aby obliczenia przeszły poprawnie musi zachodzić f'(x) $\neq 0$ dla szukanego pierwiastka x. W mojej implementacji sprawdzam czy $|f'(x_n)| \leq \text{macheps}$, jeśli tak, zwracam błąd.

Implementacja metody ma dwa warunki zakończenia na podstawie podanych jako argumenty wartości δ, ϵ :

jeżeli
$$|x_{n+1} - x_n| \le \delta$$
 lub $|f(x_{n+1})| \le \epsilon$:
zwróć x_{n+1}

Czyli wynik x_{n+1} jest zwracany, kiedy odległość kolejnych przybliżeń x_{n+1} , x_n jest mniejsza lub równa δ lub $|f(x) - f(x_{n+1})| \leq \epsilon$.

Ponadto algorytm zwraca błąd, jeśli przekroczy liczbę maksymalnych iteracji podaną jako argument.

Implementacja metody znajduje się w pliku l3_z123.jl. Testy metody znajdują się w pliku l3_z123tests.jl.

3 Zadanie 3

Opis problemu: Należy napisać funkcję rozwiązującą równanie f(x) = 0 metodą siecznych.

Rozwiązanie: Metoda siecznych polega na wyznaczaniu siecznych funkcji f, przechodzących przez punkty $(x_n, f(x_n))$, $(x_{n+1}, f(x_{n+1}))$. Kolejna wartość ciągu: x_{n+2} jest wyznaczana przez punkt przecięcia siecznej z osią OX. W ten sposób x_n dąży do miejsca przecięcia f z OX.

Sposób generowania miejsc przecięcia z OX x_{n+2} jest podobny jak w metodzie stycznych. Aby otrzymać sieczną przechodzącą przez $f(x_n)$, $f(x_{n+1})$ używamy dodatkowo przybliżenia $f'(x_{n+1}) \approx \frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n}$:

$$f(x) \approx f(x_{n+1}) + (x - x_{n+1})f'(x_{n+1})$$

$$f(x) \approx f(x_{n+1}) + (x - x_{n+1})\frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n}$$

$$g(x) := f(x_{n+1}) + (x - x_{n+1})\frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n}, g \text{ to sieczna przechodząca przez } f \text{ w } (x_{n+1}, f(x_{n+1})) \text{ oraz } (x_n, f(x_n)).$$

$$g(x) = f(x_{n+1})\frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)} + (x - x_{n+1})$$

$$g(x) \leftarrow 0 \implies x = x_{n+1} - f(x_{n+1})\frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)}$$

$$x_{n+2} \leftarrow x_{n+1} - f(x_{n+1})\frac{x_{n+1} - x_n}{f(x_{n+1}) - f(x_n)}$$

Implementacja metody ma dwa warunki zakończenia na podstawie podanych jako argumenty wartości δ, ϵ :

jeżeli
$$|x_{n+1} - x_n| \le \delta$$
 lub $|f(x_n)| \le \epsilon$:
zwróć x_n

Czyli wynik x_n jest zwracany, kiedy odległość odciętych punktów przecięć siecznej x_{n+1}, x_n jest mniejsza lub równa δ lub $|f(x) - f(x_n)| \leq \epsilon$.

Ponadto algorytm zwraca błąd, jeśli przekroczy liczbę maksymalnych iteracji podaną jako argument.

Implementacja metody znajduje się w pliku l3_z123.jl. Testy metody znajdują się w pliku l3_z123tests.jl.

4 Zadanie 4

Opis problemu: Należy zastosować wcześniej zaprogramowane metody w celu wyznaczenia pierwiastka równania sin $x-(\frac{1}{2}x)^2=0$. Należy użyć δ , $\epsilon=\frac{1}{2}10^{-5}$ oraz podanych na liście parametrów poszczególnych metod.

Rozwiązanie: Kod wywołujący metody dla zadanych parametrów znajduje się w l3_z4.jl

Wyniki i interpretacja:

Metoda	przybliżenie x	$f(\text{przybliżenie } \mathbf{x})$	liczba iteracji
M. bisekcji	1.9337539672851562	-2.7027680138402843e-7	16
M. stycznych	1.933753779789742	-2.2423316314856834e-8	4
M. siecznych	1.933753644474301	1.564525129449379e-7	4

Tabela 1: Otrzymane przybliżenia rozwiązania $x - (\frac{1}{2}x)^2 = 0$ w zależności od użytej metody

Wyniki wszystkich metod spełniają $|f(x)| < \epsilon = \frac{1}{2}10^{-5}$. Najbliższe miejscu zerowemu jest przybliżenie otrzymane metodą stycznych. Metoda bisekcji wykonała znacznie więcej iteracji niż pozostałe, dając jednocześnie najgorsze przybliżenie.

Wnioski: Wyniki zaimplementowanych metod mogą być różne mimo tych samych dokładności obliczeń δ , ϵ podanych jako argumenty.

5 Zadanie 5

Opis problemu: Problem polega na wyznaczeniu wartości zmiennej x, dla której wykresy funkcji y = 3x i $y = e^x$ przecinają się. Należy zadbać o dokładność obliczeń: $\delta = 10^{-4}$, $\epsilon = 10^{-4}$.

Rozwiązanie: Problem znalezienia przecięcia y=3x i $y=e^x$ można wyrazić przez problem rozwiązania równania $3x=e^x$. Równanie to można wyrazić jako $3x-e^x=0$. Zatem szukane x to miejsce zerowe funkcji $f(x)=3x-e^x$.

Pochodna $f: f'(x) = 3 - e^x$ jest funkcją malejącą. f'(0) = 2 > 0, f'(3) < 0. Czyli f' przecina OX dokładnie raz. Czyli funkcja f jest rosnąca na przedziale $(-\infty, x_0)$ i malejąca na (x_0, ∞) , gdzie $x_0: f'(x_0) = 0$.

Metodą bisekcji wyznaczyłem miejsce zerowe pochodnej f': $x_0 = 1.0986127853393555$. Wartość $f(x_0)$ wynosi około 0.296, czyli $f(x_0) > 0$. Ponadto f(0) < 0 oraz f(3) < 0 Czyli f przecina OX dokładnie raz na przedziale $(0, x_0)$ i dokładnie raz na przedziale (x_0, x_0) . Nie ma więcej punktów przecięcia, bo f jest rosnąca na przedziale $(-\infty, 0)$ i malejąca na $(3, \infty)$.

Zastosowałem więc metodę bisekcji na przedziałach $[0, x_0]$ oraz $[x_0, 3]$.

Kod znajduje się w pliku l3_z5.jl.

Wyniki i interpretacja:

Przedział	przybliżenie x	$f(\text{przybliżenie } \mathbf{x})$	liczba iteracji
$[0, x_0]$	0.6190593193023233	-2.206123218329026e-6	16
$[x_0, 3]$	1.5121331706322962	2.374160310125717e-6	16

Tabela 2: Otrzymane przybliżenia rozwiązania $3x - e^x = 0$ w zależności od przedziału

Wnioski: Problem znalezienia miejsca przecięcia funkcji można rozwiązać metodą bisekcji.

6 Zadanie 6

Opis problemu: Problem polega na wyznaczeniu miejsc zerowych funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą wcześniej zaimplementowanych metod. Należy zadbać o dokładność obliczeń: $\delta = 10^{-5}$, $\epsilon = 10^{-5}$.

Ponadto należy sprawdzić co się stanie, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1, \infty]$, a dla f_2 wybierzemy $x_0 > 1$ oraz $x_0 = 1$.

Rozwiązanie:

Rozważmy najpierw funkcję $f_1(x) = e^{1-x} - 1$. Funkcja jest malejąca, czyli ma co najwyżej jedno miejsce zerowe. Zauważmy, że f(0) = e - 1 > 0 oraz $f(2) = \frac{1}{e} - 1 < 0$. Zatem miejsce zerowe należy do przedziału [0,2]. Możemy go użyć do metody bisekcji. Do metody stycznych wziąłem $x_0 = 0$, do metody siecznych $x_0 = -0.1$, $x_1 = 0$.

Rozważmy funkcję $f_2(x)=xe^{-x}$. Znak $f_2(x)$ jest taki sam jak znak g(x)=x. Czyli $x>0 \implies f_2(x)>0$ oraz $x<0 \implies f_2(x)<0$. Czyli za przedział [a,b] metody bisekcji możemy przyjąć na przykład [-1,2]. W metodzie stycznych przyjąłem $x_0=-1$. W metodzie siecznych przyjąłem $x_0=-1.1$, $x_1=-1$.

Kod znajduje się w pliku l3_z6.jl.

Wyniki i interpretacja:

Metoda	przybliżenie x	f(przybliżenie x)	liczba iteracji
M. bisekcji, $a = 0, b = 2$	1.0	0.0	1
M. stycznych, $x_0 = 0$	0.9999984358191657	1.56418200014663e-6	4
M. siecznych, $x_0 = -0.1, x_1 = 0$	0.9999999642779318	3.5722067526222645e-8	6
M. stycznych, $x_0 = 1.5 \in (1, \infty]$	0.9999999984715675	1.528432491681997e-9	4

Tabela 3: Otrzymane przybliżenia rozwiązania $f_1(x) = e^{1-x} - 1 = 0$ w zależności od użytej metody.

Metoda bisekcji wyznaczyła faktyczny pierwiastek f_1 , bo ten znajdował się na środku przedziału.

Próba zastosowania metody Newtona dla f_1 , $x_0 \in (1, \infty]$ dała bardzo dobre przybliżenie dla $x_0 = 1.5$ bliskiego 1. Dla $x_0 \ge 8$ jednak, metoda Newtona zaczęła zwracać błędy. Wynika to z faktu, że $f'_1(x) = -e^{1-x}$ jest bliskie 0 dla dużych x, co jest wbrew założeniom metody Newtona w której dzielimy przez $f'_1(x)$.

Metoda	przybliżenie x	f(przybliżenie x)	liczba iteracji
M. bisekcji, $a = -1, b = 2$	7.62939453125e-6	7.629336323813272e-6	17
M. stycznych, $x_0 = -1$	-3.0642493416472606e-7	-3.0642502806097725e-7	5
M. siecznych, $x_0 = -1.1, x_1 = -1$	-2.4363308738037533e-7	-2.4363314673746166e-7	7
M. stycznych $x_0 = 1.1 \in (1, \infty]$	14.272123938290509	9.040327526296818e-6	3

Tabela 4: Otrzymane przybliżenia rozwiązania $f_2(x) = xe^{-x} = 0$ w zależności od użytej metody.

Dla f_2 metoda siecznych wyznaczyła najbliższe faktycznemu pierwiastkowi 0 przybliżenie.

Zastosowanie metody Newtona dla f_2 , $x_0 \in (1, \infty]$ daje błędne wyniki nie sygnalizując błędu. Odcięta przecięcia stycznej z OX powinna maleć z każdym krokiem aby osiągnąć liczbę bliską pierwiastkowi f_2 równemu 0. Zamiast tego przybliżenie to dąży do $+\infty$, co wynika z faktu, że $\lim_{x\to\infty} f_2(x) = 0$, mimo że jedyny pierwiastek f_2 to x=0.

Zastosowanie metody Newtona na f_2 , $x_0 = 1$ zwraca błąd typu 2, bo $f'_2(1) = -e^{-1}(1-1) = 0$, co uniemożliwia wyznaczenie kolejnej stycznej.

Rysunek 1: Wykresy funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ wygenerowane przy pomocy geogebra.org

Wnioski: Metoda Newtona zwraca błędy, jeśli pochodna funkcji w rozważanym punkcie jest bliska wartości 0. Dzieje się tak na przykład, kiedy wykres funkcji jest zbliżony do wykresu równoległego do OX, jak $f_1(x) = e^{1-x} - 1$ dla dużych wartości x, co jest widoczne na Rysunku 1.

Metoda Newtona zawodzi także dla niektórych x_0 , zwracając błędne wyniki, kiedy $\lim_{x\to +-\infty} f(x)=0$, jak dla f_2 co jest widoczne na Rysunku 1. Metoda szuka wtedy przecięcia wykresu f z OX w $+-\infty$, podczas gdy to nie istnieje.