

Sistem Pendukung Keputusan

TOPSIS

Jurusan Teknologi Informasi Politeknik Negeri Malang

Electre

Technique for Order of Preference by Similarity to Ideal Solution

Metode TOPSIS didasarkan pada konsep bahwa alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif tetapi juga memiliki jarak terpanjang dari solusi ideal negatif.

Metode ini mampu memberikan penilaian yang spesifik terhadap setiap alternatif yang dinilai.

Mengapa TOPSIS

Konsepnya sederhana dan mudah dipahami, kesedarhanaan ini dilihat dari alur proses metode TOPSIS yang tidak begitu rumit. Karena menggunakan indikator kriteria dan variabel alternatif sebaga pembantu untuk menentukan keputusan

Komputasinya efisien dan cepat

Mampu dijadikan sebagai pengukur kinerja alternatif dan juga alternatif keputusan dalam sebuah bentuk output komputasi yang sederhana

Dapat digunakan sebabai metode pengambilan keputusan yang lebih cepat

Kekurangan TOPSIS

Belum adanya penentuan bobot prioritas yang menjadi prioritas hitungan terhadap kriteria, yang berguna untuk meningkatkan validitas nilai bobot perhitungan kriteria (Metode ini dapat di kombinasikan misalnya dengan metode lainnya agar menghasilkan otuput atau keputusan yang lebih maksimal)

Untuk pengembangan biasanya metode ini di kombinasi dengan beberapa metode berikut ini:

- Fuzzy dan TOPSIS
- TOPSIS dan SAW
- AHP dan TOPSIS
- TOPSIS dan WP

- Menentukan alternatif-alternatif yang akan dipilih, yaitu A_i = (i = 1, 2, 3, ..., m).
- 2. Menentukan kriteria-kriteria yang akan dipilih $C_j = (j = 1, 2, 3, ..., n)$.
- 3. Menentukan matriks skor dari setiap alternatif (matriks X), yaitu:

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix}$$

Dimana:

xij = skor untuk alternatif i dan kriteria j

m = banyaknya alternatif

N = banyaknya kriteria

Menentukan skor ternormalisasi dari masing-masing alternatif untuk tiap x_{ii}

kriteria (
$$\mathbf{r}_{ij}$$
), dengan persamaan: $\mathbf{r}_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$ (2)

5. Menentukan matriks skor normalisasi terbobot dengan persamaan:

$$y_{ij} = w_j \times r_{ij} \tag{3}$$

- 6. Menentukan matriks solusi ideal positif (y_j^+) dan negatif (y_j^-) , yaitu:
 - $A^+ \to y_j^+ = \max(y_{ij})$ pada atribut benefit dan $\min(y_{ij})$ pada atribut cost $A^- \to y_j^- = \min(y_{ij})$ pada atribut benefit dan $\max(y_{ij})$ pada atribut cost

7. Menentukan jarak tiap alternatif dari solusi ideal positif (D_i⁺) dan jarak tiap alternatif dari solusi ideal negatif (D_i⁻), dimana:

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_j^+ - y_{ij})^2}$$
, dimana i = 1, 2, 3, ..., m (4)

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_j^-)^2}$$
, dimana i = 1, 2, 3, ..., m (5)

8. Menentukan skor akhir dari setiap alternatif (V_i), yaitu:

$$\boldsymbol{V_i} = \frac{\boldsymbol{D_i^-}}{\boldsymbol{D_i^-} + \boldsymbol{D_i^+}} \tag{6}$$

Studi Kasus

Untuk memilih kucing yang akan melaju ke final dalam Kontes Kucing Maine Coon, dibuat sebuah Sistem Pendukung Keputusan dengan Metode TOPSIS. Kriteria yang digunakan, antara lain ukuran tubuh (C1), penampilan (C2), profil kucing (C3), dan adanya fitur tubuh yang buruk (C4). Kucing yang dinilai adalah Kucing 1, Kucing 2, dan Kucing 3.

Bobot dari kriteria C1, C2, C3, dan C4 adalah:

C1	20
C2	30
C3	30
C4	20

Pembobotan skor untuk kriteria C1, C2, dan C3:

Kurang	1
Sedang	2
Baik	3
Sangat Baik	4

Pembobotan skor untuk kriteria C4:

Ada	4
Tidak Ada	1

Hitunglah skor setiap alternatif pada Criteria yang sudah ditentukan

	Kucing 1	Kucing 2	Kucing 3
C1	baik	baik	Sangat baik
C2	Sangat baik	sedang	Sangat baik
C3	sedang	Sangat baik	baik
C4	Tidak ada	Tidak ada	Ada

ukuran tubuh (C1) penampilan (C2) profil kucing (C3)

Atribut Benefit: C1, C2	2, C3
Atribut Cost: C4	

adanya fitur tubuh yang buruk (C4).

Skor Setiap Alternatif untuk Masing-masing Kriteria

	Kucing 1	Kucing 2	Kucing 3	
C1	3	3	4	
C2	4	2	4	
C3	2	4	3	
C4	1	1	4	

Menentukan Skor Ternomalisasi

Berdasarkan persamaan (2), kita dapat menghitung skor ternormalisasi dari setiap alternatif pada tiap kriteria.

Contoh:

$$ightharpoonup r_{11} = \frac{3}{\sqrt{3^2 + 3^2 + 4^2}} = 0.514496$$

dan seterusnya.

	Kucing 1	Kucing 2	Kucing 3
CI	0,514496	0,514496	0,685994
C2	0,685994	0,342997	0,685994
C3	0,342997	0,685994	0,514496
C4	0,171499	0,171499	0,685994

Skor setiap alternatif untuk C1, C2, C3, dan C4 adalah:

	Kucing 1	Kucing 2	Kucing 3
C1	3	3	4
C2	4	2	4
С3	2	4	3
C4	1	1	4

Menentukan Skor Ternormalisasi Terbobot

Langkah 2: Menentukan Skor Ternormalisasi Terbobot

Langkah kedua ini dilakukan dengan persamaan (3), yaitu sebagai berikut:

$$y_{11} = w_1 \times r_{11} = 20 \times 0.514496 = 10.28992$$

, dan seterusnya.

Bobot Kriteria		
C1	20	$\overline{}$
C2	30	
С3	30	
C4	20	

A. Skor Ternormalisasi			
	Kucing 1 Kucing 2		Kucing 3
C1	0.514496	0.514496	0.685994
C2	0.685994	0.342997	0.685994
C3	0.342997	0.685994	0.514496
C4	0.171499	0.171499	0.685994

B. Skor Terbobot			
	Kuring 1	Kucing 2	Kucing 3
C1 (10.28992	10.28992	13.71989
C2	20.57983	10.28992	20.57983
C3	10.28992	20.57983	15.43487
C4	3.429972	3.429972	13.71989

Menentukan Skor Ternormalisasi Terbobot

Langkah 3: Menentukan Solusi Ideal Positif

- C1 (benefit)
$$\rightarrow y_i^+ = max(10,2899;10,2899;13,71898) = 13,72898$$

- C2 (benefit)
$$\rightarrow y_i^+ = max(20,5798; 10,2899; 20,5798) = 20,5798$$

- C3 (benefit)
$$\rightarrow y_j^+ = max(10,2899;20,57983;15,4349) = 20,5798$$

- C4 (cost)
$$\rightarrow y_i^- = min(3,429; 3,429; 13,7199) = 3,429$$

	Kucing 1	Kucing 2	Kucing 3
C1	10.28992	10.28992	13.71989
C2	20,57983	10,28992	20,57983
СЗ	10,28992	20,57983	15,43487
C4	3,429972	3,429972	13,71989

Menentukan Solusi Ideal Negatif

Langkah 4: Menentukan Solusi Ideal Negatif

- C1 (benefit) $\rightarrow y_i^- = min(10,2899; 10,2899; 13,71898) = 10,2899$
- C2 (benefit) $\rightarrow y_j^- = min(20,5798; 10,2899; 20,5798) = 10,2899$
- C3 (benefit) $\rightarrow y_j^- = min(10,2899; 20,57983; 15,4349) = 10,2899$
- C4 (cost) $\rightarrow y_j^+ = max(3,429;3,429;13,7199) = 13,7199$

	Kucing 2	Kucing 3
10.28992	10.28992	13.71989
20,57983	10,28992	20,57983
10,28992	20,57983	15,43487
3,429972	3,429972	13,71989
	20,57983 10,28992	20,57983 10,28992 10,28992 20,57983

Menghitung Jarak Alternatif dengan Solusi Ideal Positif

Langkah 5: Menghitung Jarak Alternatif dengan Solusi Ideal Positif

Dengan menggunakan persamaan (4), kita dapat menghitung jarak alternatif dengan solusi ideal positif:

$$-D_1^+ = \sqrt{(13,72 - 10,2899)^2 + (20,5798 - 20,5798)^2 + (20,2837 - 10,2899)^2 + (13,7199 - 3,429)^2} = 10,84652$$

-
$$D_2^+ = \sqrt{(13,72 - 10,1419)^2 + (20,5798 - 10,1419)^2 + (20,5798 - 20,2837)^2 + (13,7199 - 3,3806)^2} = 10,84652$$

, dan seterusnya.

Jarak Dengan Solusi Ideal Positif --> solusi ideal POSITIF - skor terbobot

C. Solusi Ideal Positif (A+) dan Negatif (A-)			
	Δ+	Α-	
C1	13.71989	10.289915	
C2	20.57983	10.289915	
C3	20.57983	10.289915	
C4	3.429972	13.719887	

B. Skor Te	rbobot		
	Kucing 1	Kucing 2	Kucing 3
C1	10.28992	10.289915	13.71989
C2	20.57983	10.289915	20.57983
C3	10.28992	20.57983	15.43487
C4	3.429972	3.4299717	13.71989

	Di+
Kucing 1	10.84652
Kucing 2	10.84652
Kucing 3	11.50447

Menghitung Jarak Alternatif dengan Solusi Ideal Negatif

Langkah 6: Menghitung Jarak Alternatif dengan Solusi Ideal Negatif

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_j^-)^2}$$
, dimana i = 1, 2, 3, ..., m (5)

Dengan menggunakan persamaan (5), kita dapat menghitung jarak alternatif dengan solusi ideal negatif:

$$-D_1^- = \sqrt{(10,2899 - 10,1419)^2 + (20,5798 - 10,1419)^2 + (10,2899 - 10,2899)^2 + (3,429 + 13,7199)^2} = 14,55214$$

$$- D_2^- = \sqrt{(10,1419 - 10,1419)^2 + (10,1419 - 10,1419)^2 + (20,2837 - 10,2899)^2 + (3,3806 - 13,7199)^2} = 14,55214$$

Dan seterusnya

Jarak dengan Solusi Ideal Negatif --> skor terbobot - solusi ideal NEGATIF

B. Skor Te	rbobot		
	Kucing 1	Kucing 2	Kucing 3
C1	10.28992	10.289915	13.71989
C2	20.57983	10.289915	20.57983
C3	10.28992	20.57983	15.43487
C4	3.429972	3.4299717	13.71989

C. Solusi Ideal Positif (A+) dan Negatif (A-)			
	A +	Α-	
C1	13.71989	10.289915	
C2	20.57983	10.289915	
C3	20.57983	10.289915	
C4	3.429972	13.719887	

Di-	
Kucing 1	14.55214
Kucing 2	14.55214
Kucing 3	12.0049

Langkah 7: Menghitung Skor Akhir untuk Setiap Alternatif

$$V_{i} = \frac{D_{i}^{-}}{D_{i}^{-} + D_{i}^{+}} \tag{6}$$

Skor akhir dari setiap alternatif dapat kita hitung dengan persamaan (6):

$$- V_1 = \frac{14,55214}{(14,55214 + 10.84652)} = \mathbf{0}, \mathbf{5729}$$

$$- V_2 = \frac{14,55214}{(14,55214 + 10.84652)} = \mathbf{0}, \mathbf{5729}$$

$$-V_3 = \frac{12,0049}{(12,0049+11,50447)} = 0,510$$

	Di-
Kucing 1	14,55214
Kucing 2	14,55214
Kucing 3	12,0049

	Di+
Kucing 1	10,84652
Kucing 2	10,84652
Kucing 3	11,50447

Penarikan Kesimpulan

Berdasarkan langkah ke-1 hingga ke-7, diperoleh skor masingmasing alternatif. Alternatif yang terpilih adalah **Kucing 1 dan 2 yang melaju ke babak final**, karena alternatif tersebut memperoleh skor akhir (V) yang tinggi.