Математическое моделирование

Лектор: Лебедева Л.Н. Студент: Захаров К.А.

2020 г.

Содержание

1	Введение	1
2	Статические модели 2.1 Производственная функция Кобба-Дугласа	1 1 2
3	Динамические модели	3
	3.1 Модель Солоу 3.2 SIR модель 3.3 SEIRD модель 3.4 Модель Лотки-Вольтерра 3.5 Модель взаимодействия двух конкурирующих видов 3.6 Модель Самуэльсона-Хикса 3.6.1 Дискретная форма 3.6.2 Непрерывная форма 3.7 Переход к полярным координатам	5 4 4 5 6 6 6 8 11
4	Бифуркации динамических систем	12
	4.1 Аттрактор Лоренца	13 13 14
1	Введение	
2	Статические модели	

2.1 Производственная функция Кобба-Дугласа

Definition 2.1. Производственная функция - функция выражающая зависимость между затратами ресурсов и объемом выпуска.

Пусть \overline{X} - вектор используемых ресурсов, \overline{Y} - объем выпуска продукции каждого вида.

Property 1. О производственной функции

- 1. $F(x_1,...,x_n)$ является достаточно гладкой, т.е. $F\in C^2$
- 2. $F(x_1,...,x_n)$ возрастающая по каждому аргументу $\frac{\partial F}{\partial x_i} > 0 \forall i$
- 3. выпуск по каждому аргументу не ограничен
- 4. предельная производительность убывает $\frac{\partial^2 F}{\partial x_i^2} > 0 \forall i$

Definition 2.2. Однородная функция $F(\lambda x_1,...,\lambda x_n) = \lambda F(x_1,...,x_n)$

Пусть Y - это ВВП, K - основные производственные фонды, L - число занятых. Тогда определим функцию $Y = AK^{\alpha}L^{\beta}$, $(A>0,0<\alpha,\beta<1)$. Для оценки параметров A,α,β воспользуемся методом наименьших квадратов $\sum_{i=1}^{n}(a+bx_i-y_i)^2\to \min$. Также необходимо линеаризовать данные параметры при помощи натурального алгоритма. После чего получим следующую целевую функцию.

$$S(A, \alpha, \beta) = \sum_{i=1}^{M} (\ln A + \alpha \ln K_i + \beta \ln L_i - \ln Y_i)^2 \to \min$$
 (1)

Теперь нужно приравнять частные производные к нулю по каждому аргументу и решить систему линейных уравнений (3).

$$\begin{cases} \frac{\partial S}{\partial \ln A} = 0 \\ \frac{\partial S}{\partial \alpha} = 0 \\ \frac{\partial S}{\partial \beta} = 0 \end{cases}$$
(2)

$$\begin{cases} M \ln A + \alpha \sum_{i=1}^{M} \ln K_i + \beta \sum_{i=1}^{M} \ln L_i = \sum_{i=1}^{M} \ln Y_i \\ \ln A \sum_{i=1}^{M} \ln K_i + \alpha \sum_{i=1}^{M} \ln K_i^2 + \beta \sum_{i=1}^{M} \ln K_i \ln L_i = \sum_{i=1}^{M} \ln Y_i \ln K_i \\ \ln A \sum_{i=1}^{M} \ln L_i + \alpha \sum_{i=1}^{M} \ln K_i \ln L_i + \beta \sum_{i=1}^{M} \ln L_i^2 = \sum_{i=1}^{M} \ln Y_i \ln L_i \end{cases}$$
(3)

2.2 Модель Леонтьева (Межотраслевой баланс)

Пусть x_{ij} - промежуточный продукт, т.е. отрасль i изготавливает продукт для отрасли j

 X_i - валовый продукт отрасли i

 Y_i - конечный продукт отрасли $i(i=\overline{1,n})$.

Тогда валовый выпуск определяется по следующей формуле.

$$X_i = \sum_{j=1}^n x_{ij} + Y_i \tag{4}$$

Матрица прямых затрат определяется, как $a_{ij} = x_{ij}/X_j$. Тогда вектор валового выпуска можно определить, как $X = AX + Y \Rightarrow X = (E - A)^{-1}Y$, а конечный продукт Y = (E - A)X.

Definition 2.3. Если хотя бы для одного положительного Y уравнение межотраслевого баланса имеет неотрицательное решение, то матрица A продуктивна.

Definition 2.4. Матрица A продуктивна \iff (E-A) имеет n положительных последовательностей главных миноров.

Definition 2.5. Матрица A продуктивна \iff когда матричный ряд $E+A+A^2+...+A_k+...$ сходится.

Definition 2.6. Матрицей полных затрат называется обратная матрица Леонтьева $B=(E-A)^{-1}$

3 Динамические модели

3.1 Модель Солоу

Пусть имеется замкнутая односекторная экономика.

Y - BB Π

K - капитал

I - инвестиции

C - конечное потребление

L - трудовые ресурсы

Имеется баланс Y=C+I. Зависимость ВВП от ресурсов выражается функцией Кобба-Дугласа.

$$Y = AK^{\alpha}L^{\beta}$$

$$Y = C + I$$

$$I = sY$$

$$\frac{\partial L}{\partial t} = \gamma L \qquad (L(0) = L_0)$$

$$\frac{\partial K}{\partial t} = -\mu K + I \qquad (K(0) = K_0)$$
(5)

где γ - темп прироста трудовых ресурсов, s - склонность к сбережению, A - научнотехнический прогресс. Пусть y=Y/L, k=K/L, i=I/L. Тогда получим модель Солоу

в относительных показателях.

$$\frac{\partial k}{\partial t} = -(\lambda + \mu)k + sAk^{\alpha} \tag{6}$$

Равновесие равно $\hat{k} = (\frac{sA}{\lambda + \mu})^{\frac{1}{1-\alpha}}$

Интервалы	Рост
$\left(0; \left(\frac{\alpha s A}{\lambda + \mu}\right)^{\frac{1}{1 - \alpha}}\right)$	Ускоренный рост
$\left(\left(\frac{\alpha s A}{\lambda + \mu} \right)^{\frac{1}{1 - \alpha}}; \left(\frac{s A}{\lambda + \mu} \right)^{\frac{1}{1 - \alpha}} \right)$	Насыщенный рост
$\left(\left(\frac{sA}{\lambda+\mu}\right)^{\frac{1}{1-\alpha}};+\infty\right)$	Падение

Конечно-разностное представление: $k(t+\Delta) = k(t) + \Delta t (-(\lambda+\mu)k(t) + sAk(t)^{\alpha})$

3.2 SIR модель

Пусть S(t) - число восприимчивых к инфекции

I(t) - число инфицированных

R(t) - число переболевших инфекцией

N - число популяции

 β - коэффициент интенсивности контактов

 γ - коэффициент интенсивности выздоровления

$$\frac{dS}{dt} = \frac{-\beta IS}{N}
\frac{dI}{dt} = \frac{\beta IS}{N} - \gamma I
\frac{dR}{dt} = \gamma I$$
(7)

3.3 SEIRD модель

E(t) - число носителей заболевания

D - число умерших

 μ - уровень смертности

$$\delta = \frac{1}{\text{ср.инк.период}}$$

$$\frac{dS}{dt} = \frac{-\beta IS}{N}
\frac{dE}{dt} = \frac{\beta IS}{N} - \delta E
\frac{dI}{dt} = \delta E - \gamma I - \mu I
\frac{dR}{dt} = \gamma I
\frac{dD}{dt} = \mu I$$
(8)

3.4 Модель Лотки-Вольтерра

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = -cy + dxy \end{cases} \tag{9}$$

x(t) - число жертв

y(t) - число хищников

а - коэффициент рождаемости жертв

b - коэффициент убыли жертв

c - коэффициент убыли хищников

d - коэффициент рождаемости хищников

Первой стационарной точкой является (0,0). Возьмем из системы линейную часть и составим матрицу.

$$\begin{vmatrix} a - \lambda & 0 \\ 0 & -c - \lambda \end{vmatrix} \tag{10}$$

Решая данной характеристическое уравнение получим $\lambda_1 = a, \lambda_2 = -c \Rightarrow$ данная точка является седлом. Теперь приравняем правые части системы к 0 и решим ее. Получим вторую стационарную точку $\overline{x} = \frac{c}{d}, \overline{y} = \frac{a}{b}$. Построим матрицу Якоби, подставив $\overline{x}, \overline{y}$.

$$\begin{pmatrix}
0 & -\frac{bc}{d} \\
-\frac{ad}{b} & 0
\end{pmatrix}$$
(11)

Решая характеристическое уравнение $\lambda^2 + ac = 0$, получаем два мнимых корня, что свидетельствует о том что данная стационарная точка является центром.

3.5 Модель взаимодействия двух конкурирующих видов

 x_1 - количество особей первого типа x_2 - количество особей второго типа

$$\begin{cases} \dot{x}_1 = a_1 x_1 - b_{11} x_1^2 - b_{12} x_1 x_2 \\ \dot{x}_2 = a_2 x_2 - b_{21} x_1 x_2 - b_{22} x_2^2 \end{cases}$$
 (12)

Приравняем к 0 правые части системы.

$$\begin{cases} x_1(a_1 - b_{11}x_1 - b_{12}x_2) = 0\\ x_2(a_2 - b_{21}x_1 - b_{22}x_2) = 0 \end{cases}$$
(13)

Получим 4 стационарные точки.

$$\begin{cases}
x_1 = 0 \\
x_2 = 0
\end{cases}; \begin{cases}
x_1 = 0 \\
x_2 = \frac{a_2}{b_{22}}
\end{cases};$$

$$\begin{cases}
x_1 = \frac{a_1}{b_{11}} \\
x_2 = 0
\end{cases}; \begin{cases}
x_1 = \frac{a_2b_{12} - a_1b_{22}}{b_{12}b_{21} - b_{22}b_{11}} \\
x_2 = \frac{a_1b_{21} - a_2b_{11}}{b_{12}b_{21} - b_{22}b_{11}}
\end{cases}$$
(14)

Определим состояние равновесия для каждой стационарной точки

- 1. 1
- 2. 2

3.6 Модель Самуэльсона-Хикса

3.6.1 Дискретная форма

Предполагается замкнутая экономика, предложение эластично, цены и процентная ставка фиксированы. Рассмотрим уравнение

$$Y_{t+1} = C(Y_t) + I_t (15)$$

Пусть спрос зависит от Y_t линейно, т.е. $C(Y_t) = C_a + cY_t$, а инвестиции равны $I_t = r(Y_t - Y_{t-1}) + I_a$, где C_a - постоянное потребление, I_a - постоянные инвестиции, r - коэффициент акселерации, c - склонность к потреблению. $A = C_a + I_a$ - автономные расходы. Получим следующее конечно-разностное уравнение.

$$Y_{t+1} = C_a + I_a + cY_t + r(Y_t - Y_{t-1})$$
(16)

Равновесие определим из предположения, что автономные расходы постоянны и объем ВВП стабилизируется на определенном уровне, т.е. $Y_t = Y_{t-1} = \dots = Y_{t-n} = \widehat{Y}$. Тогда получим уравнение

$$\widehat{Y} = A + c\widehat{Y} + r(\widehat{Y} - \widehat{Y}) = A + c\widehat{Y}$$
(17)

 $\Rightarrow \widehat{Y} = \frac{A}{1-c}$. Величина $\frac{1}{1-c}$ называется мультипликатором автономных расходов. Рассмотрим уровень дохода при изменения коэффициента акселерации:

1. Если 0 < r < 1, то равновесие восстановится через некоторое время при новом уровне дохода.

2. Если r>1, то при нарушении равновесия единожды, оно больше не восстановится.

3. Если r=1, то значение дохода будет колебаться с постоянным периодом.

3.6.2 Непрерывная форма

Перейдя от конечных разностей получим следующее уравнение.

$$\frac{\partial^2 y}{\partial t^2} = -(1-r)\frac{\partial y}{\partial t} - (1-c)y + A \tag{18}$$

Понизим порядок уравнения, приведя его к НСДУ.

$$\begin{cases} \frac{\partial y}{\partial t} = x \\ \frac{\partial x}{\partial t} = -(1-r)x - (1-c)y + A \end{cases}$$
 (19)

Отсюда легко получить стационарную точку приравняв правые части к 0. Получим $x=0,y=\dfrac{A}{1-c}.$ Определим состояния равновесия в стационарной точке при помощи корней характеристического уравнения. Составим матрицу Якоби.

$$J(x,y) = \begin{pmatrix} -(1-r) & -(1-c) \\ 1 & 0 \end{pmatrix}$$
 (20)

Найдем собственные значения при следующих параметрах:

1.
$$r=1.2; c=0.8 \Rightarrow \lambda_{1,2}=0.1\pm0.435i.$$

Т.е. при $r>1$ получаем неустойчивый фокус.

2. $r=0.8; c=0.8 \Rightarrow \lambda_{1,2}=-0.1\pm0.435i.$ При 0< r<1 получаем устойчивый фокус.

3. $r=1; c=0.8 \Rightarrow \lambda_{1,2}=\pm 0.447i.$ И наконец при r=1 получаем центр.

3.7 Переход к полярным координатам

$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases}$$
(21)

Перейдем к полярным координатам.

$$\begin{cases} x_1(t) = r(t)\cos\varphi(t) \\ x_2(t) = r(t)\sin\varphi(t) \end{cases}$$
 (22)

Выполним подстановку и получим выражения для \dot{r} и $\dot{\varphi}$.

$$\begin{cases} \dot{r}\cos\varphi + r\dot{\varphi}(-\sin\varphi) = r\cos\varphi - r\sin\varphi - r^3\cos\varphi \mid *\cos\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = r\cos\varphi + r\sin\varphi - r^3\sin\varphi \quad \mid *\sin\varphi \end{cases} +$$

$$\begin{cases} \dot{r}\cos^2\varphi - r\dot{\varphi}\sin\varphi\cos\varphi = r\cos^2\varphi - r\cos\varphi\sin\varphi - r^3\cos^2\varphi \\ \dot{r}\sin^2\varphi + r\dot{\varphi}\cos\varphi\sin\varphi = r\sin\varphi\cos\varphi + r\sin^2\varphi - r^3\sin^2\varphi \end{cases}$$

$$(23)$$

$$\begin{cases} \dot{r}\cos^2\varphi - r\dot{\varphi}\sin\varphi\cos\varphi = r\cos^2\varphi - r\cos\varphi\sin\varphi - r^3\cos^2\varphi \\ \dot{r}\sin^2\varphi + r\dot{\varphi}\cos\varphi\sin\varphi = r\sin\varphi\cos\varphi + r\sin^2\varphi - r^3\sin^2\varphi \end{cases}$$
(24)

Тем самым получаем выражение для $\dot{r}(t) = r(t)(1 - r^2(t))$. Теперь умножим первое уравнения на $sin\varphi$, второе на $cos\varphi$ и вычтем из первого второе.

$$\begin{cases} \dot{r}\cos\varphi + r\dot{\varphi}(-\sin\varphi) = r\cos\varphi - r\sin\varphi - r^3\cos\varphi \mid *\sin\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = r\cos\varphi + r\sin\varphi - r^3\sin\varphi \quad | *\cos\varphi \end{cases} - (25)$$

$$\begin{cases} \dot{r}\cos\varphi + r\dot{\varphi}(-\sin\varphi) = r\cos\varphi - r\sin\varphi - r^3\cos\varphi \mid *\sin\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = r\cos\varphi + r\sin\varphi - r^3\sin\varphi \quad \mid *\cos\varphi \end{cases}$$

$$\begin{cases} \dot{r}\cos\varphi\sin\varphi - r\dot{\varphi}\sin^2\varphi = r\cos\varphi\sin\varphi - r\sin^2\varphi - r^3\cos\varphi\sin\varphi \\ \dot{r}\sin\varphi\cos\varphi + r\dot{\varphi}\cos^2\varphi = r\cos^2\varphi + r\sin\varphi\cos\varphi - r^3\sin\varphi\cos\varphi \end{cases}$$

$$(25)$$

Таким образом получим систему (1) в полярных координатах.

$$\begin{cases} \dot{r} = r(1 - r^2) \\ \dot{\varphi} = 1 \end{cases} \tag{27}$$

Стационарные точки для данной системы r = 0 и r = 1.

Устойчивый вариант:

$$\begin{cases} \dot{r} = r(1 - r^2) \\ \dot{\varphi} = 1 \end{cases} \tag{28}$$

Неустойчивый вариант:

$$\begin{cases} \dot{r} = r(r^2 - 1) \\ \dot{\varphi} = 1 \end{cases} \tag{29}$$

Полуустойчивый вариант:

$$\begin{cases} \dot{r} = r(1-r)^2 \\ \dot{\varphi} = 1 \end{cases} \tag{30}$$

Бифуркации динамических систем 4

Definition 4.1. Бифуркация - качественное изменение фазового портрета при изменении параметров системы.

Theorem 4.1. Бифуркация Хопфа

Пусть есть система дифференциальных уравнений

$$\begin{cases} \dot{x}_1 = X_1(x_1, ..., x_n, \mu) & X_1(0, ..., 0, \mu) = 0 \\ \dot{x}_2 = X_2(x_1, ..., x_n, \mu) & X_2(0, ..., 0, \mu) = 0 \end{cases}$$
(31)

 $\lambda_1(\mu_0), \lambda_2(\mu_0)$ - чисто мнимые корни. Точка (0,0) - асимптотически устойчива при μ_0 и $\frac{\partial}{\partial \mu}\{Re(\lambda_i(\mu))|_{\mu=\mu_0}\}>0$. Тогда

- 1. μ_0 точка бифуркации
- 2. $\exists \ u + mepean \ \mu \in (\mu_1, \mu_0) \ makoŭ, что (0; 0) устойчивый фокус$
- 3. \exists интервал $\mu \in (\mu_0, \mu_2)$ такой, что (0;0) неустойчивый фокус, окруженный предельным циклом

4.1 Аттрактор Лоренца

$$\begin{cases} \dot{x} = -ax + ay \\ \dot{y} = rx - y - xz \\ \dot{z} = -bz + xy \qquad a, r, b > 0 \end{cases}$$
(32)

r - управляющий переменный параметр

(0 < r < 1) - одна критическая точка

r
ightarrow 1 - критическое замедление

r = 1.345 - узлы переходят в фокусы

r > 24 - xaoc

4.2 Маятник Фуко

Пусть L - длина нити маятника

 ω - угловая скорость

g - ускорение свободного падения

x, y - координаты

 v_x, v_y - скорости

$$\frac{dv_x}{dt} = 2v_y\omega + \omega^2 x - g\frac{x}{L}$$

$$\frac{dv_y}{dt} = -2v_x\omega + \omega^2 y - g\frac{y}{L}$$

$$\frac{dx}{dt} = v_x$$

$$\frac{dy}{dt} = v_y$$
(33)

4.3 Аттрактор Рикитаки

$$\frac{dx}{dt} = -\mu x + yz$$

$$\frac{dy}{dt} = (z - a)x - \mu y$$

$$\frac{dz}{dt} = 1 - xy$$
(34)

Рис. 1: Test image

Lemma.