Problem-Set: Asymptotic Notations

Note: Read Chapter 3 (Growth of functions) of CLRS book "Introduction to Algorithms 3rd Edition"

P-1 [30 Marks]

- 1. Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.
- 2. Show that for any real constants a and b, where b > 0, $(n+a)^b = \Theta(n^b)$
- 3. Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.
- 4. Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?
- 5. Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.
- 6. Prove that $n! = \omega(2^n)$ and $n! = o(n^n)$.

P-2 [30 Marks]

Indicate and **Prove**, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and $\epsilon > 1$ are constants. Your answer should be in the form of the table with "yes" or "no" written in each box. Prove your answer for each case independently.

	A	В	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	$\lg(n!)$	$\lg(n^n)$					

P-3 [30 Marks]

Rank the following functions by order of growth; that is, find an arrangement g_1 , g_2 , ..., g_{30} of the functions satisfying $g_1 = \Omega(g_2)$, $g_2 = \Omega(g_3)$, ..., $g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. Justify/Prove your ranking.

P-4 [30 Marks]

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- a. f(n) = O(g(n)) implies g(n) = O(f(n)).
- b. $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- d. f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
- e. $f(n) = O((f(n))^2)$.
- f. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- g. $f(n) = \Theta(f(n/2))$.
- h. $f(n) + o(f(n)) = \Theta(f(n))$.

P-5 [30 Marks]

The iteration operator* used in the lg* function can be applied to any monotonically increasing function f(n) over the reals. For a given constant $c \in \mathbf{R}$, we define the iterated function f_c^* by

 $f_c^*(n) = \min\{i \ge 0 : f^{(i)}(n) \le c\}$ which need not be well-defined in all cases. In other words, the quantity $f_c^*(n)$ is the number of iterated applications of the function f required to reduce its argument down to f0 or less. For each of the following functions f(n)0 and constants f(n)0, give as tight a bound as possible on $f_c^*(n)$ 1.

	f(n)	c	$f_c^*(n)$
a.	n - 1	0	
b .	lg n	1	
c.	n/2	1	
d.	n/2	2	
e.	\sqrt{n}	2	
f.	\sqrt{n}	1	
g.	$n^{1/3}$	2	
h.	n/lg n	2	

P-6 [30 Marks]

In each of the following situations, indicate whether f=O(g), or $f=\Omega(g)$, or both (in which case $f=\Theta(g)$).

	f(n)	g(n)
(a)	n - 100	n - 200
(b)	$n^{1/2}$	$n^{2/3}$
(c)	$100n + \log n$	$n + (\log n)$
(d)	$n \log n$	$10n \log 10r$
(e)	log 2n	$\log 3n$
(f)	$10 \log n$	$log(n^2)$
(g)	$n^{1.01}$	$n \log^2 n$
(h)	$n^2/\log n$	$n(\log n)^2$
(i)	$n^{0.1}$	$(\log n)^{10}$
(j)	$(\log n)^{\log n}$	$n/\log n$
(k)	\sqrt{n}	$(\log n)^3$
(1)	$n^{1/2}$	$5^{\log_2 n}$
(m)	$n2^n$	3^n
(n)	2^n	2^{n+1}
(o)	n!	2^n
(p)	$(\log n)^{\log n}$	$2^{(\log_2 n)^2}$
(q)	$\sum_{i=1}^{n} i^k$	n^{k+1}