Probabilistic Modelling and Reasoning Tutorial 3 — Notes

Spring 2019 Zack Hodari

These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the tutorial sheet.

I-map — The set of independencies that a graph G asserts is denoted $\mathcal{I}(G)$. G is said to be an independency map (I-map) for a set of independencies \mathcal{I} if,

$$\mathcal{I}(G) \subseteq \mathcal{I} \tag{1}$$

A complete graph is an I–map since it makes no assertions, this means that an I–map is not necessarily useful.

Minimal I–map — A graph G such that if any edge is removed, $\mathcal{I}(G) \nsubseteq \mathcal{I}$. This addresses the issue whereby complete graphs are always I–maps, even if this is not useful.

P-map — G is said to be a perfect map (P-map) if,

$$\mathcal{I}(G) = \mathcal{I} \tag{2}$$

Constructing minimal I-maps

Undirected graphs — $\forall x_i \in N \text{ connect } x_i \text{ to all variables in } MB(x_i).$

Directed graphs — Assume an ordering $\mathbf{x} = (x_1, \dots, x_d)$, then $\forall x_i \in \mathbf{x}$ set \mathbf{pa}_i to π_i , where,

$$\pi_i \subseteq \operatorname{pre}_i \quad \mathbf{s.t.} \quad x_i \perp \!\!\!\perp \{\operatorname{pre}_i \setminus \operatorname{pa}_i\} \mid \operatorname{pa}_i$$
 (3)

I-equivalence

Undirected graphs — The minimal I-map is unique.

Directed graphs — $\mathcal{I}(G_1)$ and $\mathcal{I}(G_2)$ are I-equivalent iff they have the same skeleton and set of immoralities.

- Skeleton G without arrow heads, i.e. connections irrespective of direction.
- Immoralities The set of collier nodes.

Converting I-maps

Directed \rightarrow undirected graphs — Using the factorisation $p(x_1, \ldots, x_d) = \prod_{i=1}^d p(x_i \mid pa_i)$, form cliques (x_i, pa_i) for all nodes x_i .

Undirected \rightarrow directed graphs — Read required independencies from the undirected graph (using the local Markov property), build the directed graph using some topological ordering.