Reinforcement Learning Project: Continuous Cartpole

Done by:

Simon Ging, Abdelrahman Younes, Naya Baslan

Supervised by:

Neurorobotics Lab, Uni Freiburg

Agenda

Overview

- Choice of Algorithm
- Performance analysis

Details

- Performance visualization
- Project process
- Algorithm details and improvements
- Reward function analysis
- Success metrics discussion
- Visual comparison of result differences
- Epsilon scheduler analysis
- Runtime Analysis
- HPO configuration space
- All results in one plot
- Best agent showcase
- Qualitative evaluation of 2 other environments
- Outlook
- References

BURG

Choice of Implemented Algorithm

- Choice: DQN^[1] (discrete action space)
 - Popular algorithm, can solve Atari games
 - Lots of possible improvements^{[3][4][5]}
 - Agents with discretized actions can solve given problem

DQN Target: $Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t')$

Figure 1: Schematic diagram of DQN Algorithm^[1] with Double Q Learning^[3] and Dueling Networks^[4]

	U
	~
	8
J	ш.

ш							
X	Experiment	K steps	Episodes	Evaluation (1000 ep)	Train score (last 100 ep)		Converged / Total
	Baseline	688.07±161.59	2851.13±714.40	303.42±177.98	191.71±126.34	Eval ≥ 400 (every 20K steps)	
	Best (eval @5K)	189.02±28.41	879.73±80.56	414.96±18.02	59.81±45.44	Eval ≥ 400 (every 5K steps)	
	Best (eval @20K)	197.41±35.29	893.93±110.19	414.85±12.16	81.16±57.91	Eval ≥ 400 (every 20K steps)	
	Best (train score)	512.08±162.60	1521.27±210.33	420.25±3.10	400.42±0.75	Score of last 100 episodes ≥ 400	
	Best (shaped reward)	256.03±54.99	1027.00±163.02	409.688±40.87	13.23K±71.80K	Eval ≥ 400 (every 5K steps)	

Table 1: Quantitative Analysis of 5 selected experiments

- Careful HP optimization improved the results
- Different success metric have their advantages
- · High variance, repeated experiments needed
- Highly time efficient
 - ~5min GPU runtime for experiment Best (eval @5K)

Performance visualization

Baseline improved significantly, eval success metric outperforms train metric

Figure 2: Convergence speed comparison of 5 selected experiments

RL Project: Continuous Cartpole (Ging, Younes, Baslan)

Winter Semester 2019-2020

Project Process Details

- Baseline: DQN with local and target network^[1]
 - Using soft target network update^[2]
 - Converges after ~700k steps, but unstable
- Experiment setup
 - High variance: At least 5 runs per experiment
 - Default success metric: Eval score ≥ 400
 - ϵ=0, 25 episodes, evaluated every 20K steps
- Algorithm improvements
 - Double Q Learning^[3]
 - Dueling Network Architecture^[4]
- Local search for better hyperparameters
- In-depth evaluation

DQN Details^[1]

- Experiences are stored in a buffer and randomly sampled
- Uses two Networks
 - Online net predicts state-action-values $y^{O}=Q(s_{t}, a_{t} | \Phi^{O})$
 - Target net predicts targets for TD Error with weights Φ^T
- Every K=4 steps:
 - Update Ф⁰ with gradient of MSELoss(prediction, target)
 - Soft update^[2] Φ^T =(1 τ) Φ^T + τ Φ^O
- Act ε-greedily w.r.t Q(s_t, a_t | Φ^O)
 - Decay ε during training, evaluate with low or zero ε

DQN Improvements - Double Q Learning

- DQN loss^[1] $L_i(\theta_i) = \mathbb{E}_{s,a,s',r\sim D}\left(\underbrace{r+\gamma \ \max_{a'} Q(s',a';\theta_i^-)}_{\text{target}} Q(s,a;\theta_i)\right)$
- DQN target^[3] $Y_t^{\text{DQN}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t^-)$
 - Target network both chooses and evaluates target action
- Double Q-learning^[3] target
 - Decouple action selection from evaluation

$$Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t')$$

- Choose best action for target with online network
- Estimate its value with target network

DQN Improvements - Dueling Networks

- DQN^[1]: predict Q(s, a) directly
- Dueling Networks Architecture^[4]:
 - Predict state-value V and advantage function A:
 - Compute Q values:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha) \right)$$

- Network graphs with image input
- We replaced convs with fully-connected layers
- We use a single hidden layer instead one for each V and A

 $A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$

Figure 3: DQN vs Dueling Networks^[4]

Reward Function Analysis

Figure 4: Visualization of sparse and shaped reward

- Environment has sparse rewards
- Shaped reward tested as above
 - Agent performance dropped significantly
- Final configuration uses sparse reward

FREIBURG

Different success metrics

- High evaluation result was our goal
 - Evaluate every 20k (or 5k) steps for 25 episodes
 - Mean score ≥ 400: Success
 - Sparse reward independent of shaped reward choice
 - $-\epsilon = 0$ independent of exploration strategy
 - Overfits the agent to the problem
- Train metric for comparison
 - Mean train reward of last 100 episodes ≥ 400: Success
 - Must be tuned for shaped reward
 - Harder to achieve / can be unstable
 - Probably needs more fine-tuning of ϵ -decay
 - Very dependent on optimization process
 - Agents obtained this way are performing slightly better

Best config, eval metric, evaluation score

Algorithm is stable, all 15 runs converged after 250K steps

Figure 5: Evaluation curve of best config with eval metric

RL Project: Continuous Cartpole (Ging, Younes, Baslan)

Best config, train metric, evaluation score

Train score metric is unstable. Too high ϵ ?

Figure 6: Evaluation curve of best config with train metric

Best config, eval metric, training score

Agents converge before training score is high

Figure 7: Training curve of best config with eval metric

RL Project: Continuous Cartpole (Ging, Younes, Baslan)

Winter Semester 2019-2020

Best config, train metric, training score

Reaching ≥ 400 train reward over last 100 episodes seems difficult

Figure 8: Training curve of best config with train metric

Best config, eval metric, quality test

Agents are very good but sometimes still fail (tested for 1000 episodes)

Figure 9: Quality test of best config with eval metric

Best config, train metric, quality test

Train metric is unstable and slower but provides much better agents

Figure 10: Quality test of best config with train metric

Epsilon decay scheduler

Agents are already converging at high ε values

Figure 11: Convergence speeds and epsilon values of 4 selected experiments

RL Project: Continuous Cartpole (Ging, Younes, Baslan)

Winter Semester 2019-2020

~	
5	
<u>m</u>	3
~	,
Ш	Ŀ
	\vdash

Y	Experiment	K steps	Episodes	Approx CPU	Approx GPU	Success metric	Converged
				Time	Time		/ Total
	Baseline	688.07±161.59	2851.13±714.40	799.62±187.79	636.84±149.56	Eval ≥ 400 (every 20K steps)	
	Best (eval @5K)	189.02±28.41	879.73±80.56	585.58±88.03	284.59±42.78	Eval ≥ 400 (every 5K steps)	
	Best (eval @20K)	197.41±35.29	893.93±110.19	606.49±108.42	297.52±53.19	Eval ≥ 400 (every 20K steps)	
	Best (train score)	512.08±162.60	1521.27±210.33	1584.34±503.07	758.81±240.94	Score of last 100 episodes ≥ 400	
	Best (shaped reward)	256.03±54.99	1027.00±163.02	720.96±154.84	326.83±70.19	Eval ≥ 400 (every 5K steps)	

Table 2: Runtime Analysis of 5 selected experiments

Runtime approximation process:

- Run each experiment 5 times for 10000 steps
- Calculate mean time per step
- Multiply K Steps with mean time per step

Configuration space for HPO

<u>Underlined</u> values: Baseline

Bold values: best configuration (lowest steps to convergence)

- Success metric: <u>Eval every 20k steps</u>, eval every 5k steps, avg train score last 100 ep
- Quantizer: how many actions (2, 3, 5, <u>16</u>)
- Batch size (<u>64</u>, 128, **256**, 512)
- Discount: 0.99
- Reward: <u>sparse</u>, shaped
- Optimizer/LR: <u>Adam/5e-4</u>, SGD/1e-2, RMSProp/1e-2, AdamW/5e-4
- Epsilon scheduler (first 5% steps ε=1): Exponential Decay, Cosine Decay
- DQN: (baseline, double Q, dueling, both)
- Tau (soft update): <u>1e-3</u>, **2e-3**
- Replay Buffer Size: <u>100000</u>, **500000**
- Nonlinearity: <u>ReLU</u>, SELU, LeakyReLU
- Regularization: Batchnorm, None
- Network Linear Layers: [64, 64], [256, 256]
- State Space Transformation: None, sincos transform on pole angle

All experiments (only solved runs)

Experiments sorted by mean convergence step

Figure 12: Convergence speed of all experiments (only converged runs)

RL Project: Continuous Cartpole (Ging, Younes, Baslan)

Winter Semester 2019-2020

REIBURG

Best agent over all experiments

- Our best single agent has a reward of 426.5±0.84
 - Tested over 1000 episodes
 - See _media/agent.mp4 for the video

Figure 13: Best Agent in the Continuous Cartpole environment

EIBURG

Qualitative analysis on other environments #1

- Our algorithm solves the Lunar Lander problem
 - 520K steps (~2400 episodes)
 - See _media/lander.mp4 for the video

Figure 14: DQN Agent in the Lunar Lander environment

Qualitative analysis on other environments #2

- Bipedal Walker is not solved after 1M steps
 - More punishment for applying stronger torque to the joints
 - Action space is 4-dimensional and continuous
 - Discretization is simply a bad strategy here
 - See _media/walker.mp4 for the video

Figure 15: DQN Agent in the Bipedal Walker environment

Outlook, possible improvements

- Rainbow DQN^[5] methods to improve the algorithm
- Improve epsilon decay schedule
 - Good for baseline, possibly too high ϵ for better configs
 - Try Reward Based Epsilon Decay^[6]
- Stabilize the train success metric experiments
 - Possibly related to the epsilon scheduler
 - Optimizer tuning / LR decay may be helpful
- Improve the eval success metric experiments
 - Use exponential moving average of weights
 - Increase time spent evaluating to get more accurate
- Automated HP search (e.g. Bayesian Optimization)
- Test more environments (Atari, classic control, ...)
- Compare results to other algorithms

References

- [1] Mnih, V. et al (2015), Human Level Control Through Deep Reinforcement Learning https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
- [2] Lillicrap, T. et al (2015), Continuous control with deep reinforcement learning https://arxiv.org/abs/1509.02971
- [3] van Hasselt, H. et al (2016), Deep Reinforcement Learning with Double Q-learning https://arxiv.org/abs/1509.06461
- [4] Wang, Z. et al (2015), Dueling Network Architectures for Deep Reinforcement Learning https://arxiv.org/abs/1511.06581
- [5] Hessel, M. et al (2017), Rainbow: Combining Improvements in Deep Reinforcement Learning https://arxiv.org/abs/1710.02298
- [6] Maroti, A., RBED: Reward Based Epsilon Decay https://arxiv.org/abs/1910.13701