DEFINIZIONI, TEOREMI E FORMULARIO DI ANALISI 2

DALLE LEZIONI E DALLE DISPENSE DEL PROF. LONGO PER IL CORSO DI INGEGNERIA INFORMATICA (UNIPI) A.A 2016/2017

Sommario

DEFINIZIONI ANALISI II	2
INTRODUZIONE ALL` ANALISI II	2
INSIEMI	2
SUCCESSIONI	4
FUNZIONI	4
CALCOLO DIFFERENZIALE	5
POLINOMIO DI TAYLOR	7
PUNTI STAZIONARI	7
CAMPI VETTORIALI E FORME DIFFERENZIALI	9
CURVE E LUNGHEZZA	11
TEORIA DELLA MISURA	14
TEOREMI PRINCIPALI	19

DEFINIZIONI ANALISI II

INTRODUZIONE ALL' ANALISI II

- 1) FUNZIONI DEFINITE FRA SPAZI EUCLIDEI $f: \mathbb{R}^n \to \mathbb{R}^m$
- 2) CURVA PARAMETRICA (o MOTO) γ : $[a, b] \to \mathbb{R}^n$
- 3) FUNZIONI VETTORIALI (o a più variabili) A VALORI SCALARI $f: \mathbb{R}^n \to \mathbb{R}$
- 4) SUPERFICI PARAMETRICHE $\Psi(\alpha, \beta) = x_0 + \alpha u + \beta v \text{ con u,v indipendenti e } x_0, u, v \in \mathbb{R}^3$
- 5) DISTANZA FRA SPAZI EUCLIDEI

$$\forall u, v \in \mathbb{R}^n \ d(u, v) \equiv |u - v| \equiv \sqrt{\sum_{i=1}^n (u_i - v_i)^2}$$

ASSIOMI

- I. $\forall u, v \in \mathbb{R}^n d(u, v) \geq 0$;
- II. $\forall u, v \in \mathbb{R}^n d(u, v) = 0 \Leftrightarrow u = v$;
- III. $\forall u, v \in \mathbb{R}^n d(u, v) = d(v, u)$;
- IV. $\forall u, v, w \in \mathbb{R}^n d(u, v) \leq d(u, w) + d(w, v)$.

INSIEMI

6) SFERA

$$B_{\rho}(x_0) \equiv \{x \in \mathbb{R}^n : |x - x_0| < \rho\} \ \forall \rho > 0$$

BALL CHIUSA

$$B_{\rho}(x_0) \ \equiv \ \{x \in \mathbb{R}^n : |x - x_0| \le \rho\} \ \forall \rho > 0$$

- 7) INSIEME COMPLEMENTARE: $\Omega^c = \{x \in \mathbb{R}^n : x \notin \Omega\}$
- 8) PUNTI INTERNI: $\exists \rho > 0 : B_{\rho}(x_0) \subseteq \Omega$

9) PUNTI ESTERNI: $\exists \rho > 0 : B_{\rho}(x_0) \cap \Omega = \{\emptyset\}$

10) PUNTI DI FRONTIERA:
$$\forall \rho > 0 : \begin{cases} \Omega \cap B_{\rho}(x_0) \neq 0 \\ \Omega^c \cap B_{\rho}(x_0) \neq 0 \end{cases}$$
, punti né esterni né interni

11) PUNTI ISOLATI:
$$\forall \rho > 0 : \Omega \cap B_{\rho}(x_0) = \{x_0\}$$
, per opportuni ρ

12) PUNTI DI ACCUMULAZIONE:
$$\forall \rho > 0$$
, $\exists x \in \Omega$: $x \in B_{\rho}(x_0) - \{x_0\}$

13) PUNTO DI CHIUSURA:
$$\forall \rho > 0$$
, $\exists x \in \Omega : x \in B_{\rho}(x_0)$

14) INSIEME APERTO: $\forall x \in \Omega$, $\exists \rho > 0 : B_{\rho}(x_0) \subseteq \Omega$, ovvero ogni punto è interno

15) INSIEME CHIUSO

Un *insieme* si dice *chiuso* se contiene propri *punti di frontiera*. In altre parole se ci sono punti di Ω per i quali i punti dell'intorno sferico non sono tutti appartenenti a Ω .

16) INSIEME LIMITATO

Un *insieme* si definisce *limitato* se esiste una sfera di raggio finito che lo contiene.

$$\exists \rho > 0 : B_{\rho}(x_0) \supseteq \Omega$$

17) INSIEME CONVESSO

Si definisce un insieme *convesso*, se presi due punti a caso nell' insieme, il segmento di distanza minima che congiunge i due punti rimane all' interno dell'insieme stesso.

$$\forall x_1, x_2 \in \Omega, \ \forall \lambda \in [0,1]: \ (1-\lambda)x_1 + \lambda x_2 \in \Omega$$

18) CHIUSURA

Si definisce l'insieme $\overline{\Omega}$ come insieme di *chiusura* di Ω , quell' insieme che contiene tutti i punti di chiusura di Ω , in simboli:

$$\overline{\Omega} = \Omega \cup \partial \Omega$$

19) INSIEME CONNESSO

Un insieme Ω si definisce *connesso* se $\forall x_1, x_2 \in \Omega \exists \gamma : [0,1] \rightarrow \Omega$, continua

tale che
$$\gamma(0) = x_1$$
, $\gamma(1) = x_2$

SUCCESSIONI

20) SUCCESSIONE DI VETTORI

È una *funzione* $f: \mathbb{N} \to \mathbb{R}^n$ dove il termine generale della successione a_n è formato da n successioni scalari

21) SUCCESSIONE LIMITATA

Una successione reale a_n è limitata se è sua limitata superiormente che inferiormente cioè esistono m, M appartenenti ad \mathbb{R} , tali che:

 $m \le a_n \le M$, $\forall n \in \mathbb{N}$ o equivalentemente se $|a_n| \le N$, $\forall n \in \mathbb{N}$

22) LIMITI DI SUCCESSIONE

a. SUCCESSIONE CONVERGENTE $\lim_{n \to +\infty} a_n = a$

 $\forall \ \varepsilon > 0 \ \exists \ v : |a_n - a| < \varepsilon \ \forall \ n > v$

b. SUCCESSIONE DIVERGENTE $\lim_{n \to +\infty} a_n = \infty$

 $\forall \ \varepsilon > 0 \ \exists \ v : |a_n| > \varepsilon \ \forall \ n > v$

c. SUCCESSIONE OSCILLANTE Successione che né converge, né diverge.

FUNZIONI

23) CONTINUITÀ

Una funzione $f: \mathbb{R}^n \to \mathbb{R}^n$ è CONTINUA in x_0 se $\forall \ \varepsilon > 0 \ \exists \ \delta > 0: |x - x_0| < \delta \quad con \ x, x_0 \in dom \ f \quad e: |f(x) - f(x_0)| < \varepsilon$

24) LIMITE DI FUNZIONE CONVERGENTE

$$\lim_{x \to x_0} f(x) = f(x_0) = \ell \in \mathbb{R}^n$$
 $x_0 \in \partial \Omega$ (Insieme dei punti di frontiera)

$$\forall \ \varepsilon > 0 \ \exists \ \delta : \ \forall \ x \in dom \ f \quad con \ x \neq x_0$$

$$|x - x_0| < \delta \qquad |f(x) - f(x_0)| < \varepsilon$$

25) **CAMBIO DI VARIABILE**

Dati due limiti $\lim_{x\to 0} f(x) = L$, $\lim_{y\to L} g(y) = M$ Si verifica il limite unico $\lim_{x\to 0} g(f(x)) = M$, vera se e solo se vengono rispettate **tre condizioni**:

- a. $f(x) \in dom g$;
- b. $|f(x) L| < \delta$;
- c. $f(x) \neq L$.

26) PUNTI DI MASSIMO E MINIMO

a. MASSIMI E MINIMI ASSOLUTI

Sono quei vettori (cioè, punti identificati come vettori) che risultano, in ogni componente, maggiore (o minore) rispetto agli altri.

b. MASSIMI E MINIMI RELATIVI

Sono quei vettori (cioè, punti identificati come vettori) che risultano, in ogni componente, maggiore (o minore) in un suo intorno sferico, ma non assolutamente per tutta la funzione.

27) **CURVA DI LIVELLO**

Data una funzione f, è detta curva di livello quella funzione $\gamma(t)$ che "taglia" ad una certa quota f. In altre parole, è la proiezione sul piano xy del perimetro della funzione ad una quota h.

28) LUOGO DEGLI ZERI

Data una funzione f(x,y), il suo luogo degli zeri Ψ è l'insieme che contiene tutti i punti per i quali f(x, y) = 0.

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $\Psi = \{\alpha \in \mathbb{R}^2 : f(\alpha) = 0\}.$

CALCOLO DIFFERENZIALE

29) **DERIVATA PARZIALE**

$$f_{x_i}(x_1, ..., x_n) = \frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_{i-1}, x_i + h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

30) GRADIENTE

$$\nabla f(x_0) = (f_{x_1}(x_0), f_{x_2}(x_0), ..., f_{x_n}(x_0))$$

31) DERIVATA DIREZIONALE

$$f \colon \Omega o \mathbb{R}$$
, $\Omega \subseteq \mathbb{R}^n$,

fè derivabile nella direzione di v, $v \in \mathbb{R}^n \setminus \{0\}$, se esiste finito il limite $\lim_{h \to 0} \frac{1}{h} [f(x_0 + hv) - f(x_0)]$

32) CONO

Dato $X \subseteq \mathbb{R}^n$, si dice che X è un cono (rispetto all'origine 0) se

$$x \in X \Rightarrow tx \in X \forall t > 0$$

33) FUNZIONI α -OMOGENEE

Una funzione $f: X \to \mathbb{R}$, ove X è un cono, si dirà α -omogenea, o anche omogenea di grado α , $(\alpha \in \mathbb{R})$ se $f(tx) = t^{\alpha}f(x) \ \forall x \in X \ \forall t > 0$

34) DERIVATE DI FUNZIONI OMOGENEE

Ogni derivata parziale della funzione f(x, y) è a sua volta una funzione $(\alpha - 1)$ omogenea.

35) DIFFERENZIALE

 $df(x_0,w)=\sum_{i=1}^n rac{\partial f}{\partial x_i}(x_0)w_i$, in forma vettoriale $o df(x_0,w)=
abla f(x_0)w$

36) MATRICE JACOBIANA

$$Jf = \begin{bmatrix} \frac{\partial f_1(\overline{x})}{\partial x_1} & \dots & \frac{\partial f_1(\overline{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(\overline{x})}{\partial x_1} & \dots & \frac{\partial f_n(\overline{x})}{\partial x_n} \end{bmatrix} \qquad (Jf)_{ij} = \frac{\partial f_i(\overline{x})}{\partial x_j}$$

37) DIFFERENZIALE DI FUNZIONI COMPOSTE

$$dh(x_0, w) = dg(f(x_0), df(x_0, w))$$

38) DERIVATE SUCCESSIVE

Sono le derivate parziali di altre derivate; si indicano come $D_i D_k f(x)$ oppure $\frac{\partial^2 f}{\partial x_i \partial x_k}$, con k indicante la derivata prima ed i la derivata seconda.

39) MATRICE HESSIANA

$$H f = \begin{bmatrix} \frac{\partial^2 f_1(\overline{x})}{\partial x_1^2} & \dots & \frac{\partial^2 f_1(\overline{x})}{\partial x_n^2} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f_n(\overline{x})}{\partial x_1^2} & \dots & \frac{\partial^2 f_n(\overline{x})}{\partial x_n^2} \end{bmatrix} \qquad (Hf)_{ij} = \frac{\partial^2 f_i(\overline{x})}{\partial x_j^2}$$

40) DIREZIONE DI MASSIMA PENDENZA

$$\frac{\partial f}{\partial v} = \overrightarrow{v} \left(\nabla f \right)$$

$$v = \frac{\nabla f(x_0)}{|\nabla f(x_0)|}$$

$$A \text{ SALIRE}$$

$$v = -\frac{\nabla f(x_0)}{|\nabla f(x_0)|}$$

$$A \text{ SCENDERE}$$

POLINOMIO DI TAYLOR

Se
$$f \in C^{N+1}[x_0,x]$$

Allora
$$\exists \ \xi \in \] \ x_0, x \ [\ : \ f(x) = \ \sum_{k=0}^N \frac{1}{k!} f^{(k)} (x - x_0)^k + \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_0)^{N+1}$$

PUNTI STAZIONARI

41) PUNTI STAZIONARI

I punti in cui il gradiente si annulla vengono detti STAZIONARI o CRITICI: $\nabla f = \mathbf{0}$

42) PUNTI DI MASSIMO, MINIMO E DI SELLA

Considerando la matrice Hessiana *H* (v. def. 39)), si distinguono i seguenti casi:

	\mathbb{R}^2	\mathbb{R}^n	
PUNTO DI MASSIMO	$\int det H > 0$	H definita negativa	
	$H_{11} < 0$		
PUNTO DI MINIMO	$\int \det H > 0$	U definite positive	
	$(H_{11} > 0)$	H definita positiva	
PUNTO DI SELLA	det H < 0	Indefinita	

43) **VINCOLI**

Data una funzione $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, si definisce vincolo quell'insieme $\Gamma\subseteq\Omega$ "limitazione" per Ω .

VINCOLO CARTESIANO (vincolano il codominio della funzione)
$$\Gamma = \{(x,y) \in \Omega : y = \phi(x), \quad x \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y) \in \Omega : x = \phi(y), \quad y \in [a,b]\}$$

$$\Gamma = \{(x,y)$$

44) MOLTIPLICATORI DI LAGRANGE

Dati:

- $f(x_1,\ldots,x_n)\in C^1(\Omega);$
- $\Omega \subseteq \mathbb{R}^n$;
- $\begin{array}{ll} \bullet & g_1,...,g_k \in {\it C}^1(\Omega); \\ \bullet & \frac{\partial (g_1,...,g_k)}{\partial (x_1,...,x_n)} \rightarrow \text{matrice jacobiana di rango k} \end{array}$

$$\exists \left(x_1^0, \dots, x_n^0 \right) = x_0 \cos \mu = \begin{cases} x_0 \in \Omega : \begin{cases} g_1(x_0) = 0 \\ g_2(x_0) = 0 \end{cases} \\ \vdots \\ g_k(x_0) = 0 \end{cases}$$

$$\exists \lambda_1, \dots, \lambda_k : \begin{cases} \nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla y_i(x_0) = 0 \\ g_i(x_0) = 0 \end{cases} \quad \forall i = 1, \dots, k$$

CAMPI VETTORIALI E FORME DIFFERENZIALI

45) CAMPI VETTORIALI

Dato $\Omega \subseteq \mathbb{R}^n$, si definisce campo (di vettori) in Ω , di classe C^k , una funzione $\mathcal{A}: \Omega \to \mathbb{R}^n$, le cui componenti scalari $(A \equiv (A_1, A_2, ..., A_n))$ sono tutte funzioni da Ω in \mathbb{R} continue con le loro derivate fino all'ordine K.

46) FORME DIFFERENZIALI

Sia $\Omega \subseteq \mathbb{R}^n$. Si definisce forma differenziale lineare, una funzione $\alpha \colon \Omega \times \mathbb{R}^n \to \mathbb{R}$ tale che, per ogni $\overline{x} \in \Omega$, la funzione $t \to \alpha(\overline{x}, t)$ sia lineare in t.

47) INTEGRALE DI UN CAMPO

Sia $A: \Omega \to \mathbb{R}^n$ un campo di classe $C^0(\Omega)$. Per ogni curva parametrica $\gamma: [a, b] \to \Omega$, si definisce l'integrale di A esteso a γ , ponendo:

$$\int_{\gamma} A \equiv \int_{a}^{b} A(\gamma(t)) \dot{\gamma}(t) dt$$

48) CAMPO INTEGRABILE E PRIMITIVA

Un campo di vettori $A: \Omega \to \mathbb{R}^n$ si dirà *integrabile* (o anche campo potenziale) se esiste $f: \Omega \to \mathbb{R}$ tale che $\nabla f(x) = A(x) \ \forall x \in \Omega$. Ogni funzione f verificante l'identità precedente si dirà *primitiva* (o potenziale) del campo.

49) FORMA INTEGRABILE E PRIMITIVA

Una forma $\alpha: \Omega \times \mathbb{R}^n \to \mathbb{R}$ verrà detta integrabile (o esatta) se esiste $f: \Omega \to \mathbb{R}$ tale che $df \equiv \alpha$ su $\Omega \times \mathbb{R}^n$. Ogni funzione verificante tale identità verrà detta primitiva (o potenziale) della forma α in Ω .

50) CURVA CHIUSA

Una curva $\gamma: [a, b] \to \mathbb{R}^n$ si dice chiusa se $\gamma(a) = \gamma(b)$

51) CAMPO IRROTAZIONALE

Un campo A di classe C^1 è detto irrotazionale se $(A_i)_{x_i} = (A_j)_{x_i}$, $\forall i \neq j$.

52) FORMA DIFFERENZIALE CHIUSA

Una forma differenziale $\alpha(x, w) = A(x)w$ è detta *chiusa* se è verificata la stessa condizione per il suo campo associato A.

53) CONGIUNZIONE E CURVA OPPOSTA

Date due curve γ_1 : $[a, b] \to \Omega$ $e \gamma_2[b, c] \to \Omega$ si definisce la *congiunzione* $\gamma_1 \oplus \gamma_2$ delle due curve come quella definita ponendo:

$$\gamma_1 \oplus \gamma_2(t) = \begin{cases} \gamma_1(t) se \ t \in [a, b] \\ \gamma_2(t) se \ t \in [b, c] \end{cases}$$

Risulta anche $\gamma_1 \oplus \gamma_2$ $[a,c] \to \Omega$. Si definisce inoltre curva opposta a $\gamma: [a,b] \to \mathbb{R}$ la curva $\ominus \gamma: [a,b] \to \Omega$ definita ponendo $\ominus \gamma(t) = \gamma(b-t+a)$

54) OMOTOPIE

Due curve $\gamma: [0,1] \to \mathbf{\Omega}$ e $\sigma: [0,1] \to \mathbf{\Omega}$ si dicono deformabili o *omotope* in $\mathbf{\Omega}$ se esiste $h: [0,1] \times [0,1] \to \mathbf{\Omega}$ continua e tale che: $h(0,t) = \gamma(t)$ e $h(1,t) = \sigma(t)$

55) INSIEME SEMPLICEMENTE CONNESSO

Un insieme $\Omega \subseteq \mathbb{R}^n$ si dirà semplicemente connesso se ogni curva chiusa $\gamma: [0,1] \to \Omega$ è omotopa in Ω ad una curva costante $\sigma(t) \equiv x_0 \ \forall t \in [0,1]$

56) INSIEME A STELLA

 $\Omega \subseteq \mathbb{R}^n$ verrà detto stella se esiste $x_0 \in \Omega$ tale che il segmento $\overline{x_0x} \subseteq \Omega \ \, \forall x \in \Omega$

57) INTEGRAZIONE DI INSIEMI SINGOLARI

Se l'integrale del campo irrotazionale, esteso ad u curve chiuse, ognuno delle quali circonda una unica singolarità x_i , è nullo per ogni singolarità x_i , allora il campo è integrabile.

58) ROTORE

Sia un campo vettoriale A definito come $A:\Omega\to\mathbb{R}^3$ con $\Omega\subseteq\mathbb{R}^3$, si definisce rotore di A come:

$$rot A = \nabla \wedge A = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \wedge \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$$

=
$$((A_3)_y - (A_2)_z; (A_1)_z - (A_3)_x; (A_2)_x - (A_1)_y)$$

CURVE E LUNGHEZZA

59) POLIGONALI

Una poligonale è una linea spezzata, un insieme ordinato di segmenti orientati ordinatamente consecutivi.

60) RETTIFICABILITÀ

Una generica curva γ si dice rettificabile se è possibile approssimarla ad una somma di segmenti per poterne calcolare la lunghezza.

61) LUNGHEZZA DELLA CURVA GENERICA

$$egin{aligned} \gamma:[a,b]&
ightarrow\mathbb{R}^n\ \pi(t)&=\{t_i\in[a,b]:orall\,i=0,...,n\}
ightarrow ext{Insieme delle partizioni}\ \mathcal{L}(\pi)&=\sup_{n}\sum_{i=0}^{n-1}|\gamma(t_{i+1})-\gamma(t_i)|=|\mathcal{L}_\pi(\gamma)|\ \mathcal{L}(\pi)&=\int_a^b&|\gamma'(t)|\,dt
ightarrow \end{aligned}$$

62) VETTORE VELOCITÀ E RETTA TANGENTE

Dati $\gamma: [a, b] \to \mathbb{R}^n$ $e \ t_0 \in [a, b]$ si definisce *RETTA TANGENTE* al sostegno (ossia all' immagine) di γ nel suo punto $\gamma(t_0)$ la retta parametrica:

$$\sigma(t) = \gamma(t_0) + (t - t_0)\dot{\gamma}(t_0)$$

Il vettore $\dot{\gamma}(t_0)$ (oltre che derivata) si dirà anche velocità di γ in $\gamma(t_0)$.

63) ELIMINAZIONE PARAMETRO DI CURVE PARAMETRICHE

Sia $\gamma(t)$ la curva definita come:

$$\gamma(t) = \begin{cases} x(t) = \phi(t) \\ y(t) = \psi(t) \end{cases}$$

Se
$$\phi(t)$$
 è invertibile, allora
$$\begin{cases} t = \phi^{-1}(x) \\ y(t) = \psi(\phi^{-1}(x)) \end{cases}$$

Se $\phi(t)$ è invertibile, allora $\begin{cases} t = \phi^{-1}(x) \\ y(t) = \psi(\phi^{-1}(x)) \end{cases}$ Se invece $\psi(t)$ è invertibile, allora $\begin{cases} x(t) = \phi(\psi^{-1}(y)) \\ t = \psi^{-1}(y) \end{cases}$

64) **CURVA REGOLARE**

É quella curva la cui derivata non si annulla mai tra i suoi estremi. Inoltre è regolare a tratti se è continua e se il suo dominio si può dividere in un numero finito di intervalli nei quali è regolare.

$$\gamma[a,b] \to \mathbb{R}^n \qquad \gamma \in C^1 \qquad |\gamma'(t)| \neq 0 \qquad \forall t \in [a,b]$$

65) INTEGRALE DI FUNZIONI VETTORIALI

$$f: [a,b] o \mathbb{R}^n$$

$$\int_a^b f(t) \ dt = \begin{cases} \int_a^b f_1(t) \ dt & \cdots \\ \int_a^b f_n(t) \ dt \end{cases}$$
[I pedici indicano le componenti i-esime, non le derivate]

ASCISSA CURVILINEA 66)

Si definisce ascissa curvilinea quella funzione s(t) con cui si "misura" la variazione della lunghezza di una curva. [γ è una curva generica]

$$s(t) = \int_a^t |\gamma'(r)| dr$$

67) **CURVE EQUIVALENTI**

Due curve γ e σ generiche si dicono equivalenti se esiste una funzione ϕ definita come $\varphi: [a,b] \to [c,d]$ di classe C^1 e suriettiva per cui $\gamma(s) = \sigma(\phi(s))$.

$$\phi' > 0$$

$$\begin{cases} \phi(a) = c \\ \phi(b) = d \end{cases}$$

$$\phi' < 0$$

$$\begin{cases} \phi(a) = c \\ \phi(b) = c \end{cases}$$

68) **COORDINATE POLARI PIANE**

Identificano un punto con due parametri $\rho \in \sigma$ che identificano il raggio (distanza dal centro) e l'angolo.

$$\gamma(t) = \begin{cases} x(t) \\ y(t) \end{cases} = \begin{cases} x = \rho(t)\cos(\sigma(t)) \\ y = \rho(t)\sin(\sigma(t)) \end{cases}$$

$$\rho(t) = \sqrt{x(t)^2 + y(t)^2}$$

$$\theta(t) = \begin{cases} \arctan\left(\frac{y}{x}\right) & se \ \forall x \neq 0 \quad e \quad \frac{y}{x} > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & se \ \forall x \neq 0 \quad e \quad \frac{y}{x} < 0 \\ \frac{\pi}{2} & se \ x = 0 \ e \ y > 0 \\ -\frac{\pi}{2} & se \ x = 0 \ e \ y < 0 \end{cases}$$

DETERMINANTE DELLA MATRICE JACOBIANA ASSOCIATA

$$\det |D\left(\gamma(\rho(t),\theta(t))\right| = \begin{pmatrix} \frac{d\gamma_1(\rho(t),\theta(t))}{d\rho(t)} & \frac{d\gamma_2(\rho(t),\theta(t))}{d\theta(t)} \\ \frac{d\gamma_1(\rho(t),\theta(t))}{d\rho(t)} & \frac{d\gamma_2(\rho(t),\theta(t))}{d\theta(t)} \end{pmatrix} = \rho(t)$$

69) COORDINATE POLARI CILINDRICHE

Rappresentazione a 3 dimensioni delle coordinate piane a cui è stata aggiunta la quota:

$$\eta(\rho, \theta, z) = \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \\ z = z \end{cases}$$

Rappresentazione a 3 dimensioni delle coordinate piane a cui è stata agg
$$\eta(\rho,\theta,z) = \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \\ z = z \end{cases}$$

$$\det |D(\eta(\rho,\theta,z))| = \begin{pmatrix} \frac{d\eta_1(\rho,\theta,z)}{d\rho} & \frac{d\eta_1(\rho,\theta,z)}{d\theta} & \frac{d\eta_1(\rho,\theta,z)}{dz} \\ \frac{d\eta_2(\rho,\theta,z)}{d\rho} & \frac{d\eta_2(\rho,\theta,z)}{d\theta} & \frac{d\eta_2(\rho,\theta,z)}{dz} \\ \frac{d\eta_3(\rho,\theta,z)}{d\rho} & \frac{d\eta_3(\rho,\theta,z)}{d\theta} & \frac{d\eta_3(\rho,\theta,z)}{dz} \end{pmatrix} = \rho$$

70) COORDINATE POLARI SFERICHE

$$\eta(\rho, \theta, \phi) = \begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

$$D\eta(\rho,\theta,\phi) = \begin{pmatrix} \frac{d\eta_1(\rho,\theta,\phi)}{d\rho} & \frac{d\eta_1(\rho,\theta,\phi)}{d\theta} & \frac{d\eta_1(\rho,\theta,\phi)}{d\phi} \\ \frac{d\eta_2(\rho,\theta,\phi)}{d\rho} & \frac{d\eta_2(\rho,\theta,\phi)}{d\theta} & \frac{d\eta_2(\rho,\theta,\phi)}{d\phi} \\ \frac{d\eta_3(\rho,\theta,\phi)}{d\rho} & \frac{d\eta_3(\rho,\theta,\phi)}{d\theta} & \frac{d\eta_3(\rho,\theta,\phi)}{d\phi} \end{pmatrix} = \rho^2 \sin\phi$$

71) LUNGHEZZA DEL GRAFICO DI FUNZIONE

Data una funzione $f:[a,b]\to\mathbb{R}$, la lunghezza del grafico è $\mathcal{L}=\int_a^b\sqrt{1+|f'(t)|^2~dt}$

TEORIA DELLA MISURA

72) INTERVALLI IN \mathbb{R}^n

Si definisce intervallo in \mathbb{R}^n come il prodotto cartesiano di "n" intervalli su \mathbb{R}

NOTA:

Gli intervalli sono degeneri se hanno estremi superiori ed inferiori identici:

$$[a_1, b_1] \times [a_2, a_1]$$

73) PLURINTERVALLI

Si definisce un *plurintervallo P* come l'unione di un numero finito di intervalli I_i (con i = 1... n) i quali non hanno punti interni comuni fra loro. In simboli:

$$P = \bigcup_{i=1}^{n} I_i$$

NOTA:

Si definisce norma di un plurintervallo con: $|P| = \sum_{i=1}^n |I_i|$

74) MISURA DI INSIEMI APERTI

Sia un insieme aperto $\Omega \subseteq \mathbb{R}^n$ si definisce la sua misura come: $|\Omega| = \sup |P|$ dove P è un plurintervallo che approssima l'area di Ω , quindi $P \subseteq \Omega$.

NOTA:

$$|\emptyset| = 0$$

75) MISURA DI INSIEMI COMPATTI

Sia **K** un insieme chiuso e limitato (ossia un compatto) possiamo definire la sua misura come: $|\mathbf{K}| = \inf |P|$, dove P è un plurintervallo che contiene interamente **K**.

76) MISURA INTERNA

Dato un insieme $\mathbf{E} \subseteq \mathbb{R}^n$ generico ma limitato, definiamo la *misura interna* come: $\mathbf{m}_i(\mathbf{E}) = \sup |\mathbf{K}|$, dove $\mathbf{K} \subseteq \mathbf{E}$ e \mathbf{K} chiuso e limitato (cioè compatto).

77) MISURA ESTERNA

Dato un insieme E generico ma limitato, definiamo la *misura esterna* come: $m_e(E) = \inf |\Omega|$, dove $E \subseteq \Omega$, dove Ω è un insieme aperto.

78) MISURA DI LEBESGUE

Un insieme E generico ma limitato, si dirà *misurabile secondo Lebesgue* se la *misura interna* e la *misura esterna* coincidono, ossia:

 $m_i(E) = m_e(E) = |E| = m(E)$, dove m(E) coincide proprio con la *misura di Lebesgue*

ASSIOMI

E, F insiemi misurabili per Lebesgue

a. MONOTONIA

Se $E \subseteq F$ allora $|E| \le |F|$

b. ADDITIVITÀ

La misura della loro unione esiste ed è:

$$[E \cap F = \emptyset] \rightarrow |E \cup F| = |E| + |F|$$

c. SUBADDITIVITÀ

 $|E \cup F| \leq |E| + |F|$

d. σ –ALGEBRA (1)

L'intersezione $E \cap F$ e la differenza $E \setminus F$ sono a sua volta misurabili

e. σ –ALGEBRA (2)

Se $F \subseteq E$ allora la differenza vale $|E \setminus F| = |E| - |F|$

f. NUMERABILITÀ PER ADDITIVITÀ

Dati gli insiemi E_i misurabili $(i \in \mathbb{N})$, allora la loro unione è misurabile e vale $|\bigcup_{i=1}^{\infty} E_i| \leq \sum_{i=1}^{\infty} |E_i|$

g. <u>NUMERABILITÀ PER SUBADDITIVITÀ</u>

Dati gli insiemi E_i misurabili $(i \in \mathbb{N})$, con la loro intersezione nulla allora la loro unione è misurabile e vale $|\bigcup_{i=1}^{\infty} E_i| = \sum_{i=1}^{\infty} |E_i|$

h. CONTINUITÀ VERSO L'ALTO

Dati gli insiemi E_i misurabili $(i \in \mathbb{N})$, tali che $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq \cdots$ Allora la loro unione è definita e vale: $|\bigcup_{i=1}^{\infty} E_i| = \sup |E_i|$

i. CONTINUITÀ VERSO IL BASSO

Dati gli insiemi E_i misurabili $(i \in \mathbb{N})$, tali che $E_1 \supseteq E_2 \supseteq \cdots \supseteq E_n \supseteq \cdots$ Allora la loro intersezione è definita e vale: $|\bigcap_{i=1}^{\infty} E_i| = \inf |E_i|$

j. POSITIVITÀ DELL'AREA DI UN INSIEME

Sia E un insieme misurabile per Lebesgue allora possiamo affermare che vale: $|E| \ge 0$

79) MISURA PER INSIEMI NON LIMITATI

Sia un insieme $\mathbf{E} \subseteq \mathbb{R}^n$ arbitrario e non limitato, si dirà misurabile se lo sono tutti gli insiemi $E_k = E \cap [-K, K]^n$, e si porrà $|E| = \sup |E_k|$

80) INSIEME NUMERABILE

Si definisce un insieme numerabile, un insieme i cui elementi sono di numero Finito

81) PARTIZIONE

La partizione π è un insieme di punti dell'intervallo che lo dividono in sottintervalli.

82) SOMMA INFERIORE

Si definisce la somma inferiore per la funzione f su una partizione π come

$$\sigma_{\pi} = \sum_{i=1}^{n} m(E_i) \inf_{E_i} f$$

83) SOMMA SUPERIORE

Si definisce la somma superiore per la funzione f su una partizione π come:

$$\sum_{\pi} = \sum_{i=1}^{n} m(E_i) \operatorname{sup}_{E_i} f$$

- 84) INTEGRALE INFERIORE $\int_E f \equiv \sup_{\pi} \sigma_{\pi}$
- 85) INTEGRALE SUPERIORE $\int_{E}^{-} f \equiv \inf_{\pi} \sum_{\pi} f_{\pi}$

86) INTEGRALE DI LEBESGUE E SUE PROPRIETA'

L'integrale di Lebesgue è uno strumento attraverso il quale si generalizza il concetto di integrale. Grazie all' integrale di Lebesgue si può scrivere la seguente relazione: $\int f(x)dx = \lim_{n\to\infty} \int f_n(x)dx$ una funzione limitata è integrabile secondo Lebesgue se e solo se il suo integrale superiore coincide con quello inferiore.

- a. $\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$
- b. $\int_{E \cup F} f = \int_{E} f + \int_{F} f con E \cap F = 0$, additività
- c. $f \ge 0 \to \int_E f \ge 0$, positività
- d. $f \ge g$, $f g \ge 0 \rightarrow \int f g \ge 0$, $\int f \ge \int g$

87) FUNZIONE MISURABILE

Si definisce f una funzione misurabile se la contro immagine di ogni intervallo $I \in X$ (dominio) appartiene al dominio stesso. In poche parole una funzione è misurabile se: $f^{-1}(I) \in X$ e $\forall I \in X = \text{dom } f$

88) FUNZIONI DI CLASSE C^1

 $f\colon\Omega\to\mathbb{R}$, si dirà che $f\in\mathcal{C}^1(\Omega)$ se tutte le derivate parziali f_{x_i} esistono e sono continue in Ω

89) DERIVAZIONE SOTTO IL SEGNO DI INTEGRALE

Sia una funzione $f: E \to \mathbb{R}$ possiamo scrivere la derivazione del suo integrale come:

$$\frac{d}{dt} \int_{E} f(x,t)dx = \int_{E} f_{t}(x,t)dt$$

$$\frac{d}{dt} \int_{E} f(t,y)dy = \int_{E} f_{t}(t,y)dt$$

90) DECOMPORRE UN INTEGRALE DOPPIO IN DOMINIO NORMALE

Se consideriamo un insieme E come: $E = \{(x,y) \in \mathbb{R}^2 : \varphi(x) \le y \le \psi(x), x \in E\}$ con $\varphi(x): \mathbb{R} \to \mathbb{R}$ e $\psi(x): \mathbb{R} \to \mathbb{R}$:

$$\int_{E} f = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x, y) dy \right) dx$$

TEOREMI PRINCIPALI

- 1. LIMITI DELLE COMPONENTI
- 2. DIVERGENZA DELLE SUCCESSIONI
- 3. LEMMA CONTINUITÀ
- 4. PERMANENZA DEL SEGNO
- 5. TEOREMA DELLA SOMMA
- 6. CAMBIO DI VARIABILE
- 7. TEOREMA DEGLI ZERI
- 8. TEOREMA DI WEIERSTRASS
- 9. TEOREMA DI ULISSE DINI
- 10. LEMMA SUL TEOREMA FONDAMENTALE DELL' ALGEBRA DI GAUSS
- 11. TEOREMA FONDAMENTALE DELL' ALGEBRA DI GAUSS
- 12. TEOREMA DI FERMAT
- 13. ESISTENZA DELLE FUNZIONI OMOGENEE
- 14. UNICITÀ DEL DIFFERENZIALE
- 15. CONTINUITÀ DEL DIFFERENZIALE
- 16. LEGAME TRA DIFFERENZIALE E DERIVATA DIREZIONALE
- 17. TEOREMA DEL DIFFERNZIALE TOTALE
- 18. TEOREMA DI SCHWARTZ
- 19. TEOREMI SU FUNZIONI A-OMOGENEE
- 20. TEOREMA DEL DINI (IPOTESI C^1)
- 21. LEMMA PUNTI STAZIONARI
- 22. MOLTIPLICATORI DI LAGRANGE
- 23. INVERTIBILITÀ LOCALE
- 24. TEOREMA DI CIRCUITAZIONE
- 25. C.N DI INTEGRAZIONE E C.N.S DI INTEGRAZIONE
- 26. INTEGRALE SU CURVE CONGIUNTE E CURVE OPPOSTE
- 27. TEOREMA FONDAMENTALE DI INTEGRAZIONE
- 28. INVARIANZA OMOTOPICA
- 29. TEOREMA DEL GRADIENTE NULLO
- 30. TEOREMA DI INTEGRAZIONE (CONDIZIONE DEL ROTORE)
- 31. PROLUNGAMENTO DEI POTENZIALI
- 32. TEOREMA DELLA DISUGUAGLIANZA INTEGRALE
- 33. RETTIFICABILITÀ DELLE CURVE IN C
- 34. TEOREMA DI INVARIANZA DELLA LUNGHEZZA TRA CURVE EQUIVALENTI
- 35. FINITA ADDITIVITA DELLA MISURA
- 36. MONOTONIA DELLA MISURA
- 37. C.N DI INTEGRABILITÀ PER LEBESGUE
- 38. INTEGRABILITÀ DI FUNZIONI MISURABILI
- 39. TEOREMA DI BEPPO LEVI
- 40. TEOREMA DI LEBESGUE
- 41. TEOREMA DI GUIDO FUBINI
- 42. TEOREMA DI LEONIDA TONELLI