8.4 ต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด (Minimal Spanning Tree)

ต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด คือ กราฟที่เชื่อมถึงกันทุกโหนดและไม่มีวงด้วยผลรวม ของกิ่งน้อยที่สุด หากกราฟประกอบด้วย N โหนด จะได้ต้นไม้ประกอบด้วย N-1 กิ่ง

การหาต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด มักนำไปประยุกต์ใช้ในด้านการขนส่ง การ สื่อสารต่าง ๆ เช่น บริษัทขนส่งสินค้าต้องแวะส่งสินค้าไปยังทุกสถานีย่อย และต้องการให้ ระยะทางรวมน้อยที่สุด การวางสายโทรศัพท์หรือสายเคเบิลเชื่อมโยงทุก ๆ จุดที่ต้องการใช้ บริการและให้มีความยาวของสายสั้นที่สุด เป็นต้น

วิธีการหาต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด ที่นิยมเป็นของ Kruskal กับ Prim

8.4.1 วิธีการของ Kruskal

วิธีการของ Kruskal ใช้ขั้นตอนวิธีละโมบ (greedy algorithms) เริ่มต้นจากการเรียง ลำดับ กิ่งที่มีค่าน้อยไปมาก โดยจะนำกิ่งที่มีค่าน้อยที่สุดมาพิจารณาว่าถ้าเพิ่มกิ่งดังกล่าวลงไปในต้นไม้ แล้วจะทำให้เกิดวงหรือไม่ ถ้าไม่เกิดจะทำการเพิ่มกิ่งนั้นลงไปในต้นไม้ แต่ถ้าก่อให้เกิดวงก็ไม่ ทำการเพิ่มกิ่งดังกล่าว และจะทำการพิจารณาเช่นนี้ไปเรื่อย ๆ จนครบทุกกิ่ง ก็จะได้กราฟต้นไม้ที่ มีผลรวมของกิ่งสั้นที่สุด

วิธีของ Kruskal จะเกี่ยวข้องกับการตรวจสอบว่ากิ่งที่เพิ่มเข้าไปจะทำให้เกิดวงหรือไม่ ซึ่งทำได้โดยการตรวจสอบว่าจุดปลายทั้ง 2 ของกิ่งว่าอยู่ในต้นไม้ต้นเดียวกันหรือไม่ ซึ่งการ ตรวจสอบดังกล่าวอาศัยเมธตอด MAKE-SET (x), FIND-SET(x) และ UNION(x, y)

```
MakeSet(Graph x) // กำหนดค่าเริ่มต้น สำหรับต้นไม้
{ p(x) = x; //กำหนดรากของต้นไม้
 rank(x) = 0; // rank คือ ความสูงของต้นไม้
}
```

```
FindSet(Node x) //หารากของต้นไม้ ถ้ายังไม่ใช่ราก จะหาพ่อไปเรื่อยๆ จนถึงราก
{
    if (x != p(x))
        {p(x) = FindSet(p(x)); }
        return p(x);
}
```

```
Link(Graph x, Graph y) // นำต้นไม้ที่เตี้ยกว่าไปเป็นต้นไม้ย่อยต่อกับต้นที่สูงกว่า  \{ \text{ if } (\text{rank}(x) > \text{rank}(y)) \\ \{ p(y) = x; \} \\ \text{else} \\ \{ p(x) = y; \} \\ \text{if } ( \text{rank}(x) = \text{rank}(y) \\ ( \text{rank}(y) = \text{rank}(y) + 1; \}
```

Union (Graph x, Graph y) // การรวมต้นไม้ 2 ต้น เป็นต้นเดียว { Link(FindSet(x), FindSet(y));}

<u>ตัวอย่าง 8.4</u> จากต้นไม้ที่กำหนดให้ในรูป 8.8 จะแสดงการเรียกใช้เมธตอด FindSet(x);

รูป 8.8 หา FindSet จากกราฟ

FindSet(D) เรียกพ่อของ D \rightarrow p(D) = B

FindSet(B) เรียกพ่อของ B \rightarrow p(B) = A

คินค่า FindSet(D) จะได้ A

FindSet(F) เรียกพ่อของ F \rightarrow p(F) = E

FindSet(E) เรียกพ่อของ E \rightarrow p(E) = B

FindSet(B) เรียกพ่อของ B \rightarrow p(B) = A

คืนค่า FindSet(F) จะได้ A

FindSet(H) เรียกพ่อของ H \rightarrow p(H) = G

p(G) = G

เพราะ โหนด D, F อยู่บนต้นไม้ต้นเคียวกัน จะคืนค่ารากเท่ากัน ถ้าเชื่อมกิ่ง ระหว่าง โหนด D, F จะทำให้เกิดเป็นวงขึ้น สำหรับ โหนด G, H ไม่อยู่บนต้นเคียวกับ F จึง สามารถเพิ่มกิ่งที่เชื่อม โหนด F, G โดยไม่ทำให้เกิดวงขึ้น และรวมเป็นต้นไม้ต้นเคียวกัน

<u>ตัวอย่าง 8.5</u> แสดงการรวมต้นไม้โดยฟังก์ชัน UNION

เนื่องจากต้นไม้ X มีความสูงเป็น 2 ซึ่งมากกว่าต้นไม้ Y ที่มีความสูงเป็น 1 คังนั้นจะนำ Y ไปเป็น ต้นไม้ย่อยของ X คังรูป และความสูงของต้นไม้ X จะคงเดิม

กรณีที่ต้นไม้ X และต้นไม้ Y มีความสูงเท่ากันดังรูป

จะนำต้นไม้ ${f X}$ ไปเป็นต้นไม้ย่อยของต้นไม้ ${f Y}$ และเพิ่มความสูงให้กับต้นไม้ ${f Y}$ อีก 1

ขั้นตอนวิธีของ Kruskal

```
MST_Kruskal(Graph G, EdgeE) $$ \{ A = \{ \mathcal{D} \} \text{ // กำหนดให้เป็นเซ็ตว่าง เพื่อบรรจุโหนด - กิ่งที่ประกอบเป็นต้นไม้ for (each <math>v \in G) $$ { MakeSet(v); } // สร้างต้นไม้ย่อยๆ แต่ละต้นมีโหนดเดียว $$ / /ทำการเรียงลำดับน้ำหนักของกิ่งในกราฟ จากน้อยไปมาก $$ For (each edge (u,v) \in E) //ที่เรียงลำดับน้ำหนักจากน้อยไปมาก $$ { if (FindSet(u)!= Findset(v)) }$$ { A = A \cup E(u,v) }$$ union (u,v); } $$ return A;
```

<u>ตัวอย่าง 8.6</u> แสดงการหาต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุดโดยวิธีของ Kruskal วิธีทำ

- (ก) เริ่มจากกิ่งที่มีค่าน้อยที่สุด $h_g = 2$ โหนด h, g ไม่อยู่บนต้น ไม้เคียวกัน เพิ่ม h_g ในเซ็ต A
- (ข) ดูกิ่ง ci = 3 โหนด c, i ไม่อยู่บนต้นไม้เดียวกัน เพิ่ม ci ในเซ็ต A
- (ค) กิ้ง $\mathrm{gf} = 3$ โหนด $\mathrm{g, f}$ ไม่อยู่บนต้น ไม้เดียวกัน เพิ่ม gf ในเซ็ต A
- (ง) กิ้ง ab = 5 โหนด a, b ไม่อยู่บนต้นไม้เคียวกัน เพิ่ม ab ในเซ็ต A
- (จ) กิ่ง cf = 5 โหนด c, f ไม่อยู่บนต้นไม้เดียวกัน เพิ่ม cf ในเซ็ต A
- (ฉ) กิ่ง ig = 7 โหนด i, g อยู่บนต้น ไม้เดียวกัน ไม่สามารถเพิ่ม ig ในเซ็ต A
- (ช) กิ่ง cd = 8 โหนค c, d ไม่อยู่บนต้นไม้เคียวกัน เพิ่ม cd ในเซ็ต A
- (ซ) กิ้ง ih = 8 โหนด i, h อยู่บนต้น ไม้เคียวกัน ไม่สามารถเพิ่ม ih ในเซ็ต A
- (ฌ) กิ่ง ah = 9 โหนด a,h ไม่อยู่บนต้นไม้เดียวกัน เพิ่ม ah ในเซ็ต A
- (\mathfrak{g}) กิ่ง bc = 9 โหนด b, c อยู่บนต้น ไม้เคียวกัน ไม่สามารถเพิ่ม bc ในเซ็ต A
- (ฎ) กิ่ง de = 10 โหนด d, e ไม่อยู่บนต้นไม้เคียวกัน เพิ่ม de ในเซ็ต A
- (ฏ) กิ่ง ef = 11 โหนด e, f อยู่บนต้นไม้เดียวกัน ไม่สามารถเพิ่ม ef ในเซ็ต A
- (ฐ) กิ่ง bh = 12 โหนด b, h อยู่บนต้นไม้เดียวกัน ไม่สามารถเพิ่ม bh ในเซ็ต A
- (ฑ) กิ่ง df = 15 โหนด d, f อยู่บนต้นไม้เคียวกัน ไม่สามารถเพิ่ม df ในเซ็ต ${\bf A}$

เมื่อพิจารณาครบทุกกิ่งในกราฟแล้ว จะได้เซ็ต A ประกอบกันเป็นกราฟด้นไม้ที่มีผลรวม ของกิ่งสั้นที่สุด คือ = 2+3+3+5+5+8+9+10 = 45

รูป 8.9 Kruskal's algorithm โหนครากคือ a, โหนคทึบ & กิ่งทึบ เป็นต้นไม้ที่กำลังขยาย

ประสิทธิภาพ เวลาที่ใช้ในขั้นตอนวิธีของ Kruskal สำหรับ Graph (V,E) จะประกอบด้วยส่วน MakeSet = O(V), การเรียงลำดับตามน้ำหนักของกิ่ง O(E log E), FindSet O(E) และ การ Union = O(log E) รวมเวลาทั้งหมด เป็น O(E log E) สังเกตว่า E < V^2 นั่นคือ log E = O(log V) จะได้ complexity = O(E log V)

8.4.2 วิธีการของ Prim

วิธีการของ PRIM จะเริ่มจากการกำหนดให้เซ็ต Q บรรจุโหนดทั้งหมดของกราฟ และ กำหนดให้แต่ละโหนดมีค่า key เป็น ∞ แต่โหนดเริ่มต้นมีค่า key เป็น 0 และกำหนดค่า $\pi[r] = N$ IL เพื่อแสดงว่าโหนด r ยังไม่มีพ่อแม่ หลังจากนั้นดึงโหนด u ที่มีค่า key น้อยที่สุดจากเซ็ต Q และพิจารณาโหนด v ที่เชื่อมโดยตรงกับโหนด u หากมีกิ่งจากโหนด u เชื่อมไปยัง v มีค่าน้อย กว่าค่า key เดิม ให้ key(v) = ค่าของกิ่งคังกล่าว และกำหนดให้โหนด v เชื่อมมาจากโหนด u โดยกำหนดให้ ค่า $\pi(v) = u$ และทำการดึงโหนดที่มีค่า key น้อยที่สุดจากเซ็ต Q และปรับปรุง ค่า key และค่า π ไปเรื่อย η (เซ็ต Q จะค่อย η มีขนาดเล็กลง) เมื่อ Q เป็นเซ็ตว่างจะได้ต้นไม้ที่ มีผลรวมของกิ่งสั้นที่สุด

เมธิตอด MST-Prim(Graph G, Edge w, int r)

```
MST-Prim(Graph G, Edge w, int r) // รับค่าของกราฟ, ค่าของแต่ละกิ่ง และ โหนคเริ่มต้น
{ for (each u ∈ V[G]) สำหรับแต่ละโหนด
     \{ \text{ key}[u] = \infty;
        \pi [u] = nil; }
                                       // end for u
                                       // เฉพาะ โหนดเริ่มต้น
        \text{key}[r] = 0;
                                      // Q เป็นเซ็ตของโหนดของกราฟ G
    Q = V[G];
                                      // ขณะที่ Q ใม่เป็นเซ็ตว่าง
    While (Q!=\phi)
                                      // ดึงโหนด u ที่มีค่า key น้อยที่สุดในเซ็ต Q
       \{ u = Extract-Min(Q); \}
                                      //สำหรับโหนด v ที่เชื่อมโดยตรงกับ u
         for (each v \in adj[u])
            \{ \ {
m if} \ (v \in Q \&\& \ w[u][v] < {
m key}[v] ) // ค่าของกิ่ง น้อยกว่าค่า {
m key} ของโหนด
                 \{ \boldsymbol{\pi}[\mathbf{v}] = \mathbf{u};
                     \text{key}[v] = w[u][v]; } // end if
            }// for v
     }
}// end method
```

<u>ตัวอย่าง 8.7</u> แสดงการหาต้น ไม้ที่มีผลรวมของกิ่งสั้นที่สุด โดยวิธีของ PRIM ตามรูป 8.10 วิธีทำ

(ก) กำหนดให้ a เป็นโหนดเริ่มต้น

$$\text{key}(\mathbf{a}) = 0$$
 และ $\pi(\mathbf{a}) = \text{NIL}$

เริ่มดึงโหนคที่มีค่า key น้อยที่สุดออกจาก Q จะได้โหนด a

ระบายสีโหนด a เพื่อแสดงว่าถูกดึงออกจาก Q แล้ว

Q	а	b	С	d	е	f	g	h	i
key	0	∞							
π	nil	nil	nil	nil	nil	nil	nil	nil	nil

(ข) โหนด a เชื่อมโดยตรงกับโหนด b, h ทำการปรับปรุงค่า key และ π ให้แก่โหนด b, h key(b) = 5 , π (b) = a, key(h) = 9 , π (h) = a

Q	а	b	С	d	е	f	g	h	i
key	0	5	∞	∞	∞	∞	∞	9	∞
π	nil	а	nil	nil	nil	nil	nil	а	nil

(ค) ดึงโหนดที่มีค่า Key น้อยที่สุดออกจากคิว คือ โหนด b ซึ่งเชื่อมโดยตรงกับโหนด c, h ทำการ ปรับปรุงค่า key และ π ให้กับโหนด c สำหรับโหนด h เพราะค่า w[b][h] > key[h]

Q	а	b	С	d	е	f	g	h	i
key	0	5	9	∞	∞	∞	∞	9	∞
π	nil	а	b	nil	nil	nil	nil	а	nil

(ง) คึงโหนดที่มีค่า Key น้อยที่สุดออกจากคิว คือ โหนด h ซึ่งเชื่อมโดยตรงกับโหนด i, g ทำการ ปรับปรุงค่า key และ π ให้กับโหนด i, g ทำเช่นนี้ไปเรื่อยๆ จนกระทั่งคิวว่าง ตามรูป (จ) – (ญ)

Q	а	b	h	С	d	e	f	g	i
key	0	5	9	9	∞	∞	∞	2	8
π	nil	а	а	b	nil	nil	nil	h	h

รูป 8.10 Prim's algorithm โหนดเริ่มต้นคือ a, โหนดทึบเป็นโหนดที่ถูกดึงออกจากคิวแล้ว กิ่งทึบเป็นค่า π

เมื่อพิจารณาครบทุกโหนดในคิวแล้ว จะได้กราฟต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด คือ = 2+3+3+5+5+8+9+10 = 45

ประสิทธิภาพของวิธี Prim ขึ้นอยู่กับขั้นตอนวิธีทำคิวที่มีลำดับความสำคัญ ซึ่งที่เราศึกษาจากบท ที่แล้ว ว่าด้วยการสร้างฮีปใช้เวลา O(V) แต่ละการดึงค่า key ต่ำสุดออกจากคิวใช้เวลา $O(\log V)$ รวมหมดทุกโหนดเป็น $O(V \log V)$ ในแต่ละโหนดที่ดึงออกจากคิวต้องพิจารณากิ่งที่เชื่อมอยู่กับ โหนดที่ดึงออกมา เพื่อปรับปรุงค่า key และ ค่า π ใช้เวลา เท่ากับ O(E) เมื่อปรับปรุงค่า key แล้ว ก็จะต้องปรับฮีปอีก $O(\log V)$ รวมเวลาทั้งหมดของวิธี Prim จะเป็น $O(V \log V + E \log V) = O(E \log V)$

8.5 เส้นทางที่สั้นที่สุดจากจุดเริ่มต้นจุดเดียว (Single-source Shortest Paths)

การหาเส้นทางที่สั้นที่สุด มักนำไปประยุกต์ใช้ในการขนส่ง การสื่อสาร เช่น การหา เส้นทางการเดินเรือที่สั้นที่สุดจากกรุงเทพไปเซี่ยงไฮ้ เส้นทางรถยนต์ที่สั้นที่สุดจาก ประจวบคีรีขันธ์ไปพิษณุโลก การขุดคลองส่งน้ำจากแหล่งน้ำไปยังที่ที่ต้องการให้มีระยะทางสั้น ที่สุด การตัดถนนจากจุดหนึ่งไปยังอีกจุดหนึ่งให้มีระยะทางสั้นที่สุด เป็นต้น

วิธีการหาเส้นทางที่สั้นที่สุด 2 วิธี คือวิธีของ Bellman Ford กับวิธีของ Dijkstra

8.5.1 เส้นทางที่สั้นที่สุดวิธี Bellman Ford

ขั้นตอนวิธีของ Bellman Ford ใช้แก้ปัญหาเส้นทางที่สั้นที่สุดจากโหนดเริ่มต้นโหนด เดียวไปยังปลายทางโหนดอื่นๆ ในกราฟ โดยที่กิ่งอาจจะมีค่าติดลบก็ได้ จากกราฟที่กำหนดให้ G = (V, E), จุดเริ่มต้น S และ น้ำหนักของกิ่ง (w) ขั้นตอนวิธีของ Bellman Ford จะคืนค่าเป็นเท็จ ถ้า กราฟเป็นวงและวงนั้นมีค่าติดลบ แสดงว่าหาคำตอบไม่ได้ หรือถ้ากราฟไม่เป็นวงจะคืนค่าเป็น จริงและแสดงกราฟที่เป็นเส้นทางที่สั้นที่สุด

ขั้นตอนวิธีของ Bellman Ford

```
Bellman-Ford (Graph G, Edge w, char s) //รับกราฟพร้อมทั้งค่าของแต่ละกิ่งและ โหนดเริ่มต้น { int i; Initialize-Single-Source(G, s); for ( i=1 ; i<|V[G]|;++i) // สำหรับแต่ละ โหนด { for (each edge [u][v]\in E[G]) // สำหรับแต่ละกิ่งที่เชื่อมระหว่าง โหนด u กับ โหนด v { Relax(u,v,w); } // เปลี่ยนเส้นทางถ้า ได้ระยะทางสั้นกว่า } for (each edge [u][v]\in E[G]) { if (d[v]>d[u]+w[u][v]) { return\ false; } // แสดงว่าเกิดเป็นวงมีค่าติดลบ } return true; } // end Bellman-Ford
```

```
Initialize-Single-Source(Graph g, char s) 

{ for (each vertex v \in V[G]) 

{ d[v] = \infty; 

\pi[v] = nil; 

} 

d[s]=0; 

}// end Initialize-single-Source
```

ตัวอย่าง 8.8 จงหาเส้นทางที่สั้นที่สุดของ กราฟในรูป 8.11(ก) ด้วยวิธีของ Bellman Ford วิธีทำ

รูป 8.11 แสดงขั้นตอนวิธีของ Bellman Ford

vertex	S	a	b	С	d
d	0	8	8	8	8
π	nil	nil	nil	nil	nil

(ก) โหนดเริ่มต้นเป็น s กำหนดค่าเริ่มต้น d ให้ทุกโหนดมีค่าเป็น ∞ และ π ของทุกโหนด เป็น π π

(ข) จากโหนคเริ่มต้น s → a จะได้ d[a] = 0+7 = 7, π [a] = s จากโหนคเริ่มต้น s → c จะได้ d[c] = 0+8 = 8, π [c] = s

vertex	S	a	b	С	d
d	0	7	8	8	∞
π	nil	S	nil	S	nil

(ค) โหนค a → d จะได้ d[d] = 7 +(-5) = 2, π [d] = a โหนค c →b จะได้ d[b] = 8+(-4) =4, π [b] = c

vertex	S	а	b	С	d
d	0	7	4	8	2
π	nil	S	С	S	а

(ง) โหนด b → a จะได้ d[a] = 4 +(-3) = 1, π [a] = b

vertex	S	a	b	С	d
d	0	1	4	8	2
π	nil	b	С	S	a

(จ) ปรับปรุงโหนด d จะได้ d[d] = 1+(-5) = -4, π [d] = a

vertex	S	a	b	С	d
d	0	1	4	8	-4
π	nil	b	С	S	а

จะได้เส้นทางที่สั้นที่สุด ตามตาราง

ประสิทธิภาพ จากตัวอย่างจำนวน 5 โหนด เราพิจารณารอบ i ตามจำนวนโหนดของกราฟ – โหนดเริ่มต้น = 4 รอบ ในแต่ละรอบพิจารณากิ่งที่เชื่อมระหว่างโหนด(E) ทั้ง 10 กิ่ง ดังนั้นเวลาที่ ใช้ทั้งหมดตามขั้นตอนวิธีของ Bellman Ford เท่ากับ O(VE)

8.5.2 เส้นทางที่สั้นที่สุดวิธี Dijkstra

วิธีการของ Dijkstra จะกำหนดระยะทางที่สั้นที่สุดจาก โหนดเริ่มต้น s ไปยัง โหนดต่าง ๆ เป็น ∞ และกำหนด π เป็น NIL กำหนดค่า d(s) = 0 และ π (s) = nil ให้เซ็ต Q บรรจุ โหนด ทั้งหมดของกราฟ ในแต่ละขั้นตอนจะดึง โหนด น ที่มีค่า d ต่ำสุดออกและเพิ่มเข้า ไปในเซ็ต S สำหรับแต่ละ v ที่เชื่อม โดยตรงกับ น ให้ทำการปรับปรุงค่า d(v) หากค่า d(v) เดิมมากกว่า d(u) + ค่าของกิ่งที่เชื่อม uv ดังกล่าว ให้ทำเช่นนี้ซ้ำ ไปเรื่อย ๆ จนเซ็ต Q กลายเป็นเซ็ตว่าง และเซ็ต S บรรจุทุกโหนดในกราฟ วิธีของ Dijkstra จะใช้ ไม่ได้กับกรณีที่น้ำหนักของกิ่งมีค่าเป็นลบ

ขั้นตอนวิธีของ Dijkstra

```
Dijkstra(Graph G, Edge w, char s) //รับกราฟพร้อมทั้งค่าของแต่ละกิ่งและ โหนคเริ่มต้น s
                                   // กำหนดให้ทุกโหนดมีค่า d = \infty, d[s] = 0
{ Initialize-Single-Source;
                                    // S เป็นเซ็ตว่าง
   S = \phi;
                                    // Q เป็นเซ็ตของโหนดในกราฟ (priority queue)
   Q = V[G];
                                   // ขณะที่ Q ไม่เป็นเซ็ตว่าง
   while (Q!=\phi)
                                    // คึงโหนคที่มีค่า d น้อยสค
   { u = ExtractMin(O);
                                   // เก็บ u ไว้ในเซ็ต S
    S = S \cup \{u\}
                                    // สำหรับแต่ละ โหนดที่เชื่อมต่อกับ u
    for (each vertex v \in Adi[u])
                                   // ตรวจสอบว่าจะมีเส้นทางที่สั้นกว่า? ให้ปรับค่า d. \pi
      \{ relax(u,v,w); \}
    }//end while
}//end Dijkstra
```

```
Initialize-Single-Source(Graph g, char s) 

{ for (each vertex v \in V[G]) 

{ d[v] = \infty; 

\pi[v] = nil; 

} 

d[s]=0; 

}// end Initialize-single-Source
```

<u>ตัวอย่าง 8.9</u> จงหาเส้นทางที่สั้นที่สุดของ กราฟในรูป 8.12(ก) ด้วยวิธีของ Dijkstra <u>วิธีทำ</u>

<u>รูป 8.12</u> แสดงขั้นตอนวิธีของ Dijkstra

Q	S	а	b	С	d			
S = { }								
d	0	8	8	8	8			
π	nil	nil	nil	nil	nil			

(ก) โหนคเริ่มต้นเป็น s กำหนดค่าเริ่มต้น d ให้ทุกโหนดมีค่าเป็น ∞ และ π ของทุกโหนคเป็น nil

Q	S	a	b	С	d			
$S = \{s\}$								
d	0	7	8	8	8			
π	nil	S	nil	S	nil			

(ข) ดึง s ออกจาก Q พิจารณาโหนด a,c จะได้ d[a]=7,d[c]=8 และ $\pi[a]=\pi[c]=s$ แล้วเก็บ s ในเซ็ต S

Q	S	a	b	С	d			
S = {s, a}								
d	0	7	13	8	12			
π	nil	S	а	S	a			

(ค) คึง a ออกจาก Q พิจารณาโหนค b, d จะ ใค้ d[b] = 13, d[d] = 12 และ π [b] = π [d] = a แล้วเก็บ a ในเซ็ต S

Q	S	а	b	С	d					
S = {s, a, c}										
d	0	7	12	8	12					
π	nil	S	С	S	а					

(ง) ดึง c ออกจาก Q พิจารณาโหนด b, d จะได้ d[b] = 12 และ π [b] = c แล้วเก็บ c ในเซ็ต S

(จ) ดึง b ออกจาก Q เก็บ b ในเซ็ต S

Q	S	а	b	С	d					
$S = \{s, a, c, b, d\}$										
d	0	7	12	8	12					
π	nil	S	С	S	а					

(ฉ) คึง d ออกจาก Q เก็บ d ในเซ็ต S จะได้เส้นทางที่สั้นที่สุด ตามตาราง

ประสิทธิภาพ ขั้นตอนวิธีของ Dijkstra จะมีการใช้ minimum priority queue

- method Insert เพิ่มโหนดของกราฟเข้าไปในเซ็ต Q ตามจำนวนโหนด เวลาที่ใช้ในการ
 เพิ่มโหนดเท่ากับ O(1)
- method ExtractMin ดึงโหนคออกจาก Q ตามจำนวนโหนค เวลาที่ใช้ในการ ExtractMin เท่ากับ O(log V) รวมเป็น O (V log V)
- method DecreaseKey เมื่อมีการปรับปรุงค่า d หลังการ relax จำนวนครั้งตามจำนวนกิ่ง
 ที่เชื่อม เท่ากับ |E| เวลาที่ใช้เท่ากับ O(E log V)

รวมเวลาทั้งหมดเป็น O((V+E) log V) หรือ O(E log V)

8.6 เส้นทางที่สั้นที่สุดจากทุกโหนดไปยังโหนดอื่นจนทั่ว (All-Pairs Shortest Paths)

จากหัวข้อ 8.5 หาเส้นทางที่สั้นที่สุดจากโหนดเริ่มต้นไปยังโหนดอื่นๆ ได้ครบทุกโหนด คราวนี้จะหาเส้นทางที่สั้นที่สุดโดยจะเปลี่ยนให้โหนดทุกโหนดเป็นโหนดเริ่มต้น(all-Pairs shortest Paths) ถ้าแต่ละกิ่งค่าน้ำหนักไม่ติดลบเราสามารถใช้วิธี Dijkstra สำหรับทุกโหนด เวลาที่ ใช้จะเป็น $O(V^2 \log V + VE)$ สำหรับกิ่วที่มีค่าติดลบจะใช้วิธีของ Bellman Ford จะใช้เวลา เท่ากับ $O(V^2E)$

ในตอนนี้เราจะแทนกราฟ G = (V,E) ด้วยเมทริกซ์ ขนาด $\mathbf{n} \times \mathbf{n}$ โดยที่ \mathbf{n} เท่ากับจำนวน โหนด และค่าน้ำหนักของกิ่ง (W) จะแทนด้วยสมาชิกในเมทริกซ์ โดยที่

$$w[i][j] = \begin{cases} 0 & \text{if } i = j \\ weight(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E \end{cases}$$

ในที่นี้ยอมให้มีค่าน้ำหนักติดลบ แต่ไม่เป็นวงของค่าติดลบ (no negative-weight cycle) ขั้นตอน วิธีที่จะกล่าวในหัวข้อนี้ 2 วิธี ได้แก่

- Slow all Pair Shortest Paths
- Floyd Warshall

8.6.1 ขั้นตอนวิธี Slow all Pair Shortest Paths

ขั้นตอนวิธีนี้จะเป็นแบบกำหนดการพลวัติ ที่จะต้องกำหนด โครงสร้างในการหาคำตอบ ที่ดีที่สุดโดย

- 1. หาความสัมพันธ์ซ้ำที่จะใช้ในการแก้ปัญหา
- แก้ปัญหาจากล่างขึ้นบน โดยแก้ปัญหาย่อยก่อน และเก็บผลลัพธ์จากปัญหาย่อยใส่ลง ในอาเรย์เพื่อใช้ในการแก้ปัญหาที่ใหญ่ขึ้น

วิธีนี้จะทำการเรียกซ้ำ (recursive) เพื่อจะหาค่าระยะทาง(length) สั้นที่สุดของเส้นทางต่างๆ จาก โหนด i ไปโหนด j กำหนดให้

 $l_{i,j}^{(m)} =$ ระยะทางสั้นที่สุดของเส้นทางต่างๆ จากโหนด i ไปโหนด j โดยผ่าน m กิ่ง \vec{n} m=0 จะมีเส้นทางที่สั้นสุด ที่ไม่มีกิ่งเชื่อมเลย ก็คือกรณี i=j ดังนั้น

$$l_{i,j}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

สำหรับ $\mathbf{m} \geq 1$ จะคำนวณ $l_{i,j}^{(m)}$ จากค่าต่ำสุดของ $l_{i,j}^{(m-1)}$ (ระยะทางสั้นที่สุดของเส้นทางต่างๆ จาก โหนด \mathbf{i} ไปโหนด \mathbf{j} โดยผ่าน m-1 กิ่ง) เราสามารถกำหนดการเรียกซ้ำได้ดังนี้

$$I_{i,j}^{(m)} = \min_{1 \le k \le n} \{ I_{i,k}^{(m-1)} + w_{k,j} \}$$

 $\pi_{i,j} = 1$ โหนคสุดท้ายก่อนถึงโหนด j ที่ทำให้ได้เส้นทางสั้นที่สุดจาก i ถึง j จะเท่ากับ mil ถ้า i = j หรือ ไม่มีเส้นทางจาก i ถึง j

$$\pi_{i,j} = \begin{cases} nil & if \ i = j \ or \ w_{i,j} = \infty \\ V_{\pi,i} & vertex \ k \end{cases}$$

ขั้นตอนวิธี Slow all Pair Shortest Paths

```
SlowAllPairsShortestPaths(Weight W) // รับค่าน้ำหนักของกราฟ { n = rows[W] // จำนวนแถวของน้ำหนัก หรือ จำนวนโหนด L^{(1)} = W // กำหนดระยะทางสั้นที่สุด ให้ผ่าน 1 กิ่ง ซึ่งก็จะเท่ากับน้ำหนักของกิ่งต่างๆ for (m=2; m \le n-1; ++m) { L^{(m)} = ExtendShortestPaths(L^{(m-1)}, W) } return L^{(n-1)} } //end SlowallPairsShortestPaths
```

```
ExtendShortestPaths(L, W) \{ \begin{array}{l} n = \operatorname{rows}[L] \\ L' = \left( l_{i,j}^{'} \right) \hspace{.2cm} /\! / ก๊าหนดให้ L เป็น matrix ขนาด n x n \\ \text{for } (i=1\;;i <= n;++i) \\ \{ \begin{array}{l} \text{for } (j=1;j <= n;++j) \\ \{ \begin{array}{l} l_{i,j}^{'} = \infty \\ \text{for } (k=1;k <= n;++k) \\ \{ \begin{array}{l} l_{i,j}^{'} = \min(l_{i,j}^{'},l_{i,k}+w_{k,j}) \} \text{//end for k} \\ \} \text{// end for } i \\ \text{return L'} \\ \} \text{// end ExtendShortestPaths} \end{array} \right.
```

```
\label{eq:printAllPairsShortestPath} \begin{tabular}{ll} PrintAllPairsShortestPath ($\pi$, i, j) \\ \{ if (i=j) & \{ print (i) \} \ //end if \\ else if ($\pi_{i,j} = nil)$ & \{ print ("no path from" + i + " to" + j + "exist") \} \ //end else if \\ else & \{ PrintAllPairsShortestPath ($\pi$, i, $\pi_{i,j}$) & print (j) & \} \ //end else \\ \} // end else & \} ///end PrintAllPairsShortestPath \end{tabular}
```

<u>ตัวอย่าง 8.10</u> จงหาเส้นทางสั้นที่สุดจากทุกโหนดของกราฟในรูป 8.13

รูป 8.13 กราฟเพื่อหาเส้นทางสั้นที่สุดจากทุกโหนด

<u>วิธีทำ</u>

	0	7	∞	-5	∞		nil	а	nil	а	nil
	8	0	∞	9	5		nil	nil	nil	b	b
	8	3	0	∞	∞	$I^{(1)}$	nil	С	nil	nil	nil
	8	∞	4	0	8		nil	nil	d	nil	d
	3	8	-6	∞	0		е	nil	е	nil	nil
								1	1	1	1
	0	7	-1	-5	3		nil	а	d	а	d
	8	0	-1	9	5		е	nil	е	b	b
L ⁽²⁾	8	3	0	12	8	$I^{(2)}$	nil	С	nil	b	b
	11	7	2	0	8		е	С	е	nil	d
	3	-3	-6	-2	0		е	С	е	а	nil
	0	2	-3	-5	3		nil	а	е	а	d
	8	0	-1	3	5		е	nil	е	а	b
L ⁽³⁾	11	3	0	12	8	$\P^{(3)}$	е	С	nil	b	b
	11	5	2	0	8		е	С	е	nil	d
	3	-3	-6	-2	0		е	С	е	а	nil
								1	1	1	1
	0	0	-3	-5	3		nil	С	е	а	d
	8	0	-1	3	5		е	nil	е	а	b
L ⁽⁴⁾	11	3	0	12	8	¶ ⁽⁴⁾	е	С	nil	b	b
	11	5	2	0	8		е	С	е	nil	d
	3	-3	-6	-2	0		е	С	е	а	nil

ประสิทธิภาพของขั้นตอนวิธี Slow all Pair Shortest Paths เวลาที่ใช้จะเท่ากับ $O(n^3)$

8.6.2 ขั้นตอนวิธีของ Floyd Warshall

ในส่วนนี้เราจะใช้กำหนดการพลวัตกับเส้นทางที่สั้นที่สุดจากทุกโหนดไปยังโหนดอื่นๆ ในมุมที่จะพิจารณาที่เป็นโหนดผ่าน (intermediate vertex) เป็นหลัก แทนที่จะพิจารณาจาก โหนดเริ่มต้นและปลายทางเป็นหลักเช่นวิธีการก่อนหน้านี้

กำหนดโครงสร้างในการเรียกซ้ำ (recursive) เพื่อจะหาค่าระยะทาง(distance) สั้นที่สุด ของเส้นทางต่างๆ จากโหนด i ไปโหนด j กำหนดให้

$$d_{i,j}^{(k)} = \begin{cases} w_{i,j} & \text{if } k = 0 \\ \min\left(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right) & \text{if } k \ge 1 \end{cases}$$

$$\pi_{i,j}^{(0)} = \begin{cases} nil & \text{if } i = j \text{ or } w_{i,j} = \infty \\ i & \text{if } i \ne j \text{ and } w_{i,j} < \infty \end{cases}$$

$$\pi_{i,j}^{(k)} = \begin{cases} \pi_{i,j}^{(k-1)} & \text{if } d_{i,j}^{(k-1)} \le d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \\ \pi_{k,j}^{(k-1)} & \text{if } d_{i,j}^{(k-1)} \ge d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \end{cases}$$

เมื่อ $\mathbf{k}=0$ เส้นทางระหว่างโหนด i ถึง โหนด j จะไม่มีโหนดผ่านดังนั้น $d_{i,j}^{(0)}=\mathbf{w}_{i,j}$ เมื่อ $\mathbf{k}\geq 1$ เส้นทางระหว่างโหนด i ถึง โหนด j จะเลือกว่าผ่านโหนดที่ทำให้มีระยะทาง สั้นที่สด

ขั้นตอนวิธีของ Floyd Warshall

[้] ใหนดที่เป็นเส้นทางผ่านไปโหนดอื่นๆ

<u>ตัวอย่าง 8.10</u> จงหาเส้นทางสั้นที่สุดจากทุกโหนดของกราฟในรูป 8.14

รูป 8.13 กราฟเพื่อหาเส้นทางสั้นที่สุดจากทุกโหนด

<u>วิธีทำ</u>

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
0		0	7	∞	-5	∞
		8	0	∞	9	5
1	(0)	8	3	0	8	8
0 7 \infty -5 \infty \infty	<i>)</i> ·	8	8	4	0	8
∞ 0 ∞ 9 5		3	10	-6	-2	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				ı	ı	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	7	∞	-5	∞
∞ ∞ 4 0 8		8	0	∞	9	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^{(1)}$	∞	3	0	∞	∞
$0 7 \infty -5 12$ $\infty 0 \infty 9 5$ $\infty 3 0 12 8$ $\infty \infty 4 0 8$ $3 10 -6 -2 0$ $0 7 \infty -5 12$ $\infty 0 \infty 9 5$ $\infty 3 10 -6 -2 0$ $0 7 \infty -5 12$ $\infty 0 \infty 9 5$ $\infty 3 0 12 8$ $\infty 7 4 0 8$ $3 -3 -6 -2 0$ $0 2 -1 -5 12$ $\infty 0 \infty 9 5$ $\infty 3 0 12 8$ $\infty 7 4 0 8$ $3 -3 -6 -2 0$ $0 2 -1 -5 12$ $\infty 0 \infty 9 5$ $\infty 3 0 12 8$ $\infty 7 4 0 8$ $3 -3 -6 -2 0$ $0 2 -1 -5 12$ $\infty 0 -1 3 5$ $11 3 0 12 8$ $11 5 2 0 8$ $0 9 5 0$ $0 0 0 9 5$ $0 0 0 0 9 5$ $0 0 0 0 9 5$ $0 0 0 0 9 5$ $0 0 0 0 0 9 5$ $0 0 0 0 0 9 5$ $0 0 0 0 0 0 9 5$ $0 0 0 0 0 0 9 5$ $0 0 0 0 0 0 0 0 0 0 $		∞	∞	4	0	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	10	-6	-2	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	7	00	-5	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- (2)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D^{2}					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	10	-6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	7	I _	-	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^{(3)}$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	-3	-6	-2	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2	-1	-5	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	0	8	9	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	3	0	12	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	8	7	4	0	8
$D^{(5)} = \begin{bmatrix} \infty & 0 & -1 & 3 & 5 \\ 11 & 3 & 0 & 12 & 8 \\ 11 & 5 & 2 & 0 & 8 \end{bmatrix} \qquad \begin{bmatrix} nil & nil & e & e \\ e & c & nil & b \\ e & c & e & nil \end{bmatrix}$		3	-3	-6	-2	0
$D^{(5)} = \begin{bmatrix} \infty & 0 & -1 & 3 & 5 \\ 11 & 3 & 0 & 12 & 8 \\ 11 & 5 & 2 & 0 & 8 \end{bmatrix} \qquad \begin{bmatrix} nil & nil & e & e \\ e & c & nil & b \\ e & c & e & nil \end{bmatrix}$		Λ	2	_1	_5	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
11 5 2 0 8 e c e nil	(5)					
	$D^{(5)}$					
		3	-3	-6	-2	0

ประสิทธิภาพของขั้นตอนวิธี โดย Floyd Warshall เวลาที่ใช้จะเท่ากับ O(n³)

แบบฝึกหัด

1. จงหากราฟต้นไม้ที่มีผลรวมของกิ่งสั้นที่สุด(minimum spanning tree) โดยวิธี Kruskal และวิธี Prim

2. มีเกาะจำนวน 8 เกาะในทะเลสาบ เทศบาลต้องการสร้างสะพานจำนวน 7 สะพาน เพื่อให้ สามารถไปมาหาสู่ระหว่างเกาะทั้งหมดได้ โดยค่าใช้จ่ายในการก่อสร้างสะพานจะเป็น สัดส่วนกับความยาวของสะพาน ถ้าระยะห่างของแต่ละเกาะเป็นตามตารางข้างล่าง จงหา ว่าจะสร้างสะพานที่ใดบ้าง เพื่อทำให้ค่าก่อสร้างสะพานต่ำสุด

	1	2	3	4	5	6	7	8
1	ı	240	210	340	280	200	345	120
2	ı	ı	265	175	2158	180	185	155
3	-	-	-	260	115	350	435	195
4	-	-	-	-	160	330	295	230
5	1	1	1	1	-	360	400	170
6	-	-	-	-	-	-	175	205
7	ı			1	-	-		305
8	-	-	-	-	-	-	-	-

3. จงแสดงการสืบค้นกราฟ breadth first search, depth first search

- 4. จงหา shortest path ของกราฟในข้อ 3 โดยเริ่มจากโหนด 1 ไปยังโหนดอื่นๆ โดยวิธี Bellman ford และ Dijkstra
- 5. จงใช้วิธีการของ Slow-All-Pairs-Shortest-Paths และ Floyd Warshall ในการหา all pairs shortage pathsของกราฟข้างล่างนี้

