



#### Foundations of Technology

### The Engineering Design Process

**Teacher Resource – Unit 2 Learning Cycle 1** 





#### The BIG Idea

#### Big Idea:

The Engineering Design Process is a systematic, iterative problem-solving method that produces solutions to meet human needs and wants.







#### Iterative:

- Iterative means a repetition of the process.
- This often means you must go through the steps numerous times.
- Each time you go through the design process, you think of ways to improve your solution to the problem based on performance or testing.







### **Defining Science**

#### Science:

- Systematic knowledge of the physical or natural world gained through observation and experimentation.
- Focuses on how and why things happen.
- Scientists answer questions.







### **Defining Technology**

#### Technology:

- Application of knowledge to solve practical problems or to change/manipulate the human environment.
- Focuses on making things happen.
- Engineers solve problems.







#### **The Scientific Method**

The Scientific Method is a linear method for conducting an investigation that involves making an observation and performing an experiment to test a hypothesis.

Make an Observation

Propose a Hypothesis

Design an Experiment

Test the Hypothesis

Accept or Reject the Hypothesis

Revise the Hypothesis or Draw Conclusions





- The Engineering Design Process is a systematic, iterative problem-solving method that produces solutions to meet human needs and wants.
- Systematically applies mathematics and science to produce tangible products that meet human needs or wants.







- At the beginning of the course, we used a simple version of the Engineering Design Process, which involved five steps.
- As problems
  become more
  complex so
  does the
  process
  used to solve them.













## **Engineering Design Process Vs. Scientific Method**

- Match the term to either the Scientific
  Method or the Engineering Design Process
  - Defined StartingPoint
  - Meets Human Need or Want
  - ContinuousImprovement

- Hypothesis
- Linear Procedure
- Involves Criteria and Constraints
- Conduct Research
- Follow a Process





## Engineering Design Process Vs. Scientific Method

## The Scientific Method:

- Defined Starting Point
- + Hypothesis
- Linear Procedure
- Conduct Research
- Follow a Process

#### The Engineering Design Process:

- Involves Criteria and Constraints
- Meets Human Need or Want
- ContinuousImprovement
- Conduct Research
- Follow a Process





Use the Engineering Design Journal to record each step in the Engineering Design Process.







#### **Define the Problem**

- Develop a problem statement that identifies the what, who, when, and how the problem should be addressed.
- The problem statement should be short, descriptive, and referenced as you work through the Engineering Design Process.







#### **Brainstorming Solutions**

- When working as a group, record your ideas and employ the rules of brainstorming:
  - One conversation at a time; stay focused.
  - Encourage wild ideas, quantity vs. quality.
  - Defer judgment and build on the ideas of others.



Use Mind Mapping, the da Vinci Method, or Inventive Problem Solving as appropriate.





## Research Ideas/ Explore Possibilities

- Research is essential in determining the best possible solution.
- dentify how the problem or a similar problem was addressed in the past.
- Determine what mathematical and/or scientific background knowledge is essential to solve the problem.





# Specify Constraints and Identify Criteria

- Good design follows a set of given or identified criteria and constraints:
  - Criteria = Guidelines
  - Constraints = Limitations
- Document the essential criteria and constraints needed to solve the problem.





## Consider Alternative Solutions

- Always consider alternative solutions and DO NOT allow preconceptions to limit your ideas.
  - It is important to stay open-minded.
  - Compare each of your design ideas with the criteria and constraints to determine how well they solve the problem.







### Select An Approach

- Determining the "best" solution will involve trade-offs.
- The "best" solution should:
  - Align to the problem statement.
  - Meet the identified criteria and constraints.
- Use a Decision Matrix to help identify the best solution.





### Select An Approach

The Decision Matrix is a simple way to chart your proposed solutions (x axis) against the requirements (y axis).

Establish a point scale to help determine the "best" idea.

X

| Constraint/Criterion | Idea 1 | Idea 2 | Idea 3 |
|----------------------|--------|--------|--------|
| Problem Statement    | 3      | 3      | 1      |
| Constraint 1         | 1      | 3      | 2      |
| Criteria 1           | 2      | 3      | 1      |
| Total                | 6      | 9      | 4      |

3 pts = easily meets - 2 pts = somewhat meets - 1 pt. = does not meet





## Develop a Written Design Proposal

- Once an idea has been selected, it is important to develop a plan of action.
- A Design Proposal is a way to manage simple projects, which includes:
  - The who, what, when, where, and how to deliver the work.
  - Often includes descriptions, sketches, and technical drawings.
  - Begin to plan how the solution will be evaluated.





## Develop a Written Design Proposal

- When developing a design proposal, you will need to plan ahead to determine how you will evaluate your design.
  - What tests will be conducted to determine if criteria are being met?
  - What data will be collected?
  - How will those data be used to improve the solution?







## Develop a Written Design Proposal

- Larger projects may require the use of a project management technique or a Gantt Chart.
- A Gantt Chart is a type of bar chart that shows a schedule of when/how the project can be completed.







Models can be conceptual, mathematical, or physical.











- Conceptual models are abstract models that use language and graphic-based representations to convey meaning.
- They can include:
  - Technical Writing
  - Graphs and Charts
  - Annotated Sketches
  - Technical Drawings







- Mathematical models are abstract models that use the language of mathematics to describe the behavior of the solution.
- They can include:
  - Statistical models
  - Differential equations
  - Game theoretic models (computer simulation)







- Physical models are three-dimensional models that represent the solution.
- They can include:
  - Mock-Up a representation of the final solution that does not function.
  - Prototype performs the final solution and can be used for testing/evaluation.







#### **Test and Evaluate**

- Project planning and evaluation go hand-inhand.
- Based on the information you projected in your design proposal you will:
  - Record and analyze results
  - Correct problems with the design that are discovered during testing







### Refine/Improve

- Employ data-driven decision making.
  - Use the data collected during the test and evaluate phase to justify improvements to the solution.
- The solution should be continuously improved as you move through the Engineering Design Process.
  - Remember to document all project improvements in your journal.





#### **Create/Make Product**

- Working independently or in a group, develop the final physical solution.
  - The final solution should represent the revision made as you followed the Engineering Design Process.



 The product produced should clearly reflect refinements made to the design throughout the process.





#### **Communicate the Results**

- Use the Engineering Design Journal to record and document each step in the Engineering Design Process.
- A more formal presentation or demonstration of the solution may be required, which should:
  - Summarize your work (includes problem statement, design proposal, evaluation methods, etc...)
  - Highlight why you chose the final solution.

