I Claim:

1

2

1

2

1	1. An apparatus comprising:
2	a receiver support structure, wherein:
3	said receiver support structure has a central axis; and
4	said receiver support structure supports a plurality of receivers,
5	wherein said plurality of receivers are disposed at a first radial distance
6	from said central axis;
7	a first dispensing element, wherein:
8	said first dispensing element dispenses a first ingredient; and
9	said first dispensing element is disposed above said receiver support
10	structure at said first radial distance;
11	a drive system, wherein:
12	said drive system comprises a first drive; and
13	said drive system causes, via rotary motion, a relative movement
14	between said dispensing element and said receivers; and
15	a system controller, wherein:
16	said system controller comprises means for causing said dispensing
17	element to dispense said first ingredient as a plurality of pulses; and
18	each pulse contains less than twenty percent of a total amount of said
19	first ingredient to be delivered to one of said receivers.

- 2. The apparatus of claim 1 wherein each pulse contains less than ten percent of the total amount of said first ingredient to be delivered to said one receiver.
- **3.** The apparatus of claim 1 wherein each pulse contains less than one percent of the total amount of said first ingredient to be delivered to said one receiver.
- The apparatus of claim 1 wherein each pulse contains less than one-tenth of
 one percent of the total amount of said first ingredient to be delivered to said one
 receiver.
- 5. The apparatus of claim 1 wherein said drive system is rotatably coupled tosaid first dispensing element.
- 6. The apparatus of claim 5 wherein said drive system comprises a rotatable
 member, wherein said rotatable member has at least one arm, and wherein said first
 dispensing element depends from said arm.

- The apparatus of claim 6 wherein said drive system comprises a reservoir
 support structure, wherein said reservoir support structure supports at least a first
- 3 reservoir.
- 8. The apparatus of claim 7 wherein said drive system comprises a drive shaft,and wherein:
- said rotatable member is coupled to said drive shaft; and
 said reservoir support structure is coupled to said drive shaft.
- 9. The apparatus of claim 8 wherein said drive shaft is hollow, and furthercomprising:
- 3 said first reservoir; and
- a first conduit, wherein said first conduit passes through said drive shaft and fluidically couples said first reservoir to said first dispensing element.
- 1 **10.** The apparatus of claim 1 further comprising a second drive, wherein said receiver support structure is rotatably coupled to said second drive.
- 1 **11.** The apparatus of claim 10 wherein said second drive is physically adapted to move said receiver support structure in step-wise fashion.
- 1 **12.** The apparatus of claim 1 wherein said drive system is rotatably coupled to said receiver support structure.
- 1 **13.** The apparatus of claim 12 further comprising:
- a non-rotatable member, wherein said first dispensing element depends from
 said non-rotatable member; and
- at least a first reservoir, wherein said first reservoir is disposed on said nonrotatable member.
- 1 14. The apparatus of claim 1 wherein said receiver support structure is a
- 2 platform, wherein said platform comprises a plurality of removable segments,
- 3 wherein each segment accommodates one of said receivers.
- 1 **15.** The apparatus of claim 14 wherein said removable segments include a stirrer drive.

1	16.	The apparatus of claim 1 wherein said first dispensing element comprises a
2	nozzle,	wherein said nozzle has:
3		an inner passageway leading to an orifice, wherein said inner passageway
4	rece	eives said first ingredient and dispenses it through said orifice; and
5		a shroud, wherein:
6		said shroud surrounds said inner passageway;
7		said shroud receives a first fluid, and
8		said first fluid controls a flow of said ingredient out of said orifice.
1	17.	The apparatus of claim 16 wherein said inner passageway is characterized by
2	a ventu	uri configuration.
1	18.	The apparatus of claim 1 further said plurality of receivers.
1	19.	The apparatus of claim 18 comprising a sampling/mixing system, wherein,
2	said sa	mpling/mixing system comprises:
3		a device for aspirating liquid from, and delivering it to, one of said receivers;
4		a conduit having a first end and a second end, wherein:
5		said first end is coupled to a port in said one receiver; and
6		said second end is coupled to said device for aspirating and delivering
7		liquid.
1	20.	The apparatus of claim 19 further comprising an analysis window, wherein:
2		said analysis window is coupled to said conduit between said first end and
3	saic	second end; and
4		said analysis window is disposed beneath said receiver support structure.
1	21.	The apparatus of claim 20 further comprising an analytical station, wherein
2	said an	alytical station is disposed beneath said receiver support structure, and
3	whereir	n said analytical station comprises:
4		an emitter, wherein said emitter emits radiation;
5		a detector, wherein said detector is coupled to analysis electronics; and
6		a space between said emitter and said detector, wherein said space defines
7	a te	sting region and wherein said testing region is physically adapted to receive
R	said	l analysis window

						•	•
7) 7)	Λη	20	n 2 r		$-c \sim m$	nric	ına:
22.	AII	au	Da.	alus	L.OH	DUIS	mu.
		~ [Ρ		••••	F	

15 ·

a dispensing system, wherein said dispensing system has a first plurality of dispensing elements for dispensing a second plurality of ingredients into a third plurality of receivers;

a drive system, wherein said drive system causes, via a rotary motion, a relative movement between said dispensing system and said receivers to align one of said dispensing elements with one of said receivers; and

a system controller, wherein said system controller comprises:

means for causing said dispensing element to dispense each of said ingredients as a plurality of pulses; and

means for determining flow rate of said second plurality of ingredients into said third plurality of receivers on a per ingredient, per receiver basis, said means for determining flow rate comprising:

a device for measuring total flow of each of said ingredients; and means for apportioning said flow on a per ingredient, per receiver basis.

23. The apparatus of claim 22 wherein said system controller further comprises means for real-time adjustment of flow rate, wherein said means for real-time adjustment of flow rate comprises means for changing a quantity of ingredient contained in said pulses.

. An apparatus comprising:

a dispensing system, wherein said dispensing system has a first plurality of dispensing elements for dispensing a second plurality of ingredients into a third plurality of receivers;

a drive system, wherein said drive system causes, via a rotary motion, a relative movement between said dispensing system and said receivers to align one of said dispensing elements with one of said receivers; and

a system controller, wherein said system controller comprises means for distributed dispensing.

1	23. An apparatus comprising.					
2	a first drive;					
3	a rotatable member, wherein:					
4	said rotatable member is coupled to said first drive; and					
5	said rotatable member comprises a first arm and a second arm;					
6	a first platform, wherein said first platform:					
7	is disposed beneath said rotatable member;					
8	supports a plurality of receivers; and					
9	is coupled to a second drive;					
10	a second platform, wherein said second platform:					
11	is disposed beneath said first platform;					
12	supports a plurality of reservoirs, and					
13	is coupled to said first drive;					
14	a first dispensing element, wherein said first dispensing element:					
15	depends from said first arm; and					
16	is fluidically coupled to at least a first one of said reservoirs; and					
17	a second dispensing element, wherein said second dispensing element:					
18	depends from said second arm; and					
19	is fluidically coupled to at a second one of said reservoirs.					
1	.26. The apparatus of claim 25 further comprising:					
2	a first liquid-transport system, wherein said first liquid-transport system					
3	delivers a first liquid from said first reservoir to said first dispensing element; and					
4	a second liquid-transport system, wherein said second liquid-transport					
5	system delivers a second liquid from said second reservoir to said second dispensing					
6	element.					