Instructor: Dr. B.-C. Wang

February 12, 2010

Duration: 100 min

- (a) You are permitted to use the course textbook and a calculator.
- (b) Ask for clarification if a problem statement is not clear.
- (c) Use linear interpolation in the property tables as necessary.
- (d) **Show your work** (or, **the complete solution steps**) in a clear and logical manner. Solutions that require unreasonable effort (in the opinion of the instructor) for the marker to decipher will not be credited.

1. (15 marks)

As shown in the figure, two cylinders (A and B) are filled with water and connected using a very thin pipeline with a closed valve in the middle. In cylinder A, a piston is floating on the surface of the water. The piston mass is $m_P = 500$ kg, and the friction between the piston and cylinder A can be ignored. The density of water is $\rho = 1000$ kg/m³. The local acceleration of gravity is g = 9.81 m/s². The local atmospheric pressure is $P_0 = 1$ bar. The initial mass of water contained in cylinder A and cylinder B is: $m_{A1} = 200$ kg and $m_{B1} = 800$ kg, respectively. The internal cross sectional areas of cylinder A and cylinder B are $A_A = 0.4$ m² and $A_B = 0.2$ m², respectively. The height $h_0 = 0.75$ m.

Questions:

At the initial state, the valve is closed,

- (a) Find the initial volumes of the water contained in cylinder A and cylinder B, i.e. V_{A1} and V_{B1} . (1 marks)
- **(b)** Find the initial heights of the water contained in cylinder A and cylinder B, i.e. H_{A1} and H_{B1}. (1 mark)
- (c) Find the initial pressure on each side of the valve, i.e. $P_{val, left}$ and $P_{val, right}$. (4 marks)
- (d) If the valve is opened, will the piston move up or down? Explain. (2 mark)

The valve is fully opened and water flows to an equilibrium. At the final state:

- (e) Find the final heights of the water contained in cylinder A and cylinder B, i.e. H_{A2} and H_{B2}. (5 marks)
- (f) Find the final pressure at the valve location, i.e. P_{val} . (2 marks)

Note that:

- (1) in the above problem statement, subscripts "1" and "2" are used to indicate the initial and the final states, respectively; and
- (2) the volume of the thin pipeline can be ignored.

2. (8 marks)

Two rigid tanks (A and B) are filled with helium and connected by a very thin pipeline. Helium contained in both tanks can be treated as an ideal gas. The thin pipeline goes through a valve which controls the flow rate between these two tanks. Initially, the valve is closed. The volume for these two rigid tanks is $V_A = 1 \text{ m}^3$ for tank A, and $V_B = 2 \text{ m}^3$ for tank B, respectively. The initial pressure and temperature of helium are $P_{A1}=100 \text{ kPa}$ and $P_{A1}=100 \text{ kPa}$ and $P_{A1}=100 \text{ kPa}$ and $P_{B1}=300 \text{ kPa}$ and

- (a) Determine the initial mass of helium contained in tank A and tank B, i.e. m_{A1} and m_{B1} . (4 marks)
- **(b)** Determine the final pressure, i.e. P₂. (4 marks)

Note that:

- (1) in the above problem statement, subscripts "1" and "2" are used to indicate the initial and the final states, respectively; and
- (2) the volume of the thin pipeline can be ignored.

3. (17 marks)

A frictionless piston-cylinder assembly containing R410a undergoes a cooling process. The mass of R410a is m=100 kg. At the initial state (state 1), the piston pushes against a set of stops. The initial pressure and temperature of R410a are $P_1 = 550 \text{ kPa}$ and $T_1 = 260 \,^{\circ}\text{C}$, respectively. It is observed that at the *exact moment* when the piston just begins to drop (state 2), the pressure of R410a is $P_2 = 150 \,^{\circ}\text{kPa}$. After the piston leaves the stops, the system continues to dissipate heat to the environment until the final state (state 3) is reached, with the final temperature $T_3 = -55 \,^{\circ}\text{C}$.

Ouestions:

- (a) Determine the initial specific volume (v_1) . (3 marks)
- **(b)** Determine the specific volume (v_2) and temperature (T_2) of state 2. (5 marks)
- (c) Determine the mass of the liquid (m_{f2}) and the mass of the vapour (m_{g2}) of state 2. (3 marks)
- (d) Estimate the specific volume (v_3) of state 3. (2 marks)
- (e) Illustrate all the state points (1, 2, 3) and the entire process $(1 \rightarrow 2 \rightarrow 3)$ in both P-v and T-v diagrams. (4 marks)

Solution ENG 1460 Term Test 1

Winter 2010 Dr. B.-C. Wang

Problem 1

step(a)

$$V_{A1} = m_{A1}/\rho = 200/1000 = 0.2 (m^2)$$

 $V_{A2} = m_{A2}/\rho = 800/1000 = 0.8 (m^3)$

Step W)

$$H_{A1} = V_{A1}/A_A = 0.2/0.4 = 0.5(m)$$

 $H_{B1} = V_{B1}/A_B = 0.8/0.2 = 4(m)$

$$\begin{array}{l} step(c) \\ P_{Val} = P_0 + \frac{M_2 g}{AA} + P_g(H_{A_1} + h_0) \\ = 10^5 + \frac{500 \times 981}{0.4} + 10^3 \times 9.81 \times (0.5 + 0.75) \\ = 124525 \quad (P_a) \\ Vr, 124.525 \quad (P_a) \\ P_{Val} = P_0 + P_gH_{B1} \\ = 10^5 + 10^3 \times 9.81 \times 4 \\ = 139240 \quad (P_a) \\ Or, 139.24 \quad KP_a \end{array}$$

Because Pval < Pval, water will flow from B to A, and piston will move up.

Step(e)

From the principle of mass conservation Mtotal = MA, + MB, = MA2+ MB2 : 200+800 = P(AAHA2 + ABHB2)

i.
$$1000 = 10^{3}$$
 ($0.4 \, \text{H}_{A2} + 0.2 \, \text{H}_{B2}$)

i. $5 = 2 \, \text{H}_{A2} + \text{H}_{B2}$ (1)

From the principle of force/pressure balance

Pleft = PRight
Pval, 2 = PRight
Pval, 2 = Po + PgHB2

i. $\frac{m_{P}}{A_{A}} + P(H_{A2} + h_{0}) = P_{0} + PgHB2$

i. $\frac{m_{P}}{A_{A}} + P(H_{A2} + h_{0}) = P_{0} + PgHB2$

i. $\frac{500}{0.4} + 1000(H_{A2} + 0.75) = 1000 \, \text{H}_{B2}$

$$2 + H_{A2} = H_{B2}$$

$$2 + H_{A2} = H_{B2}$$

$$2 = -H_{A2} + H_{B2}$$

$$3 + H_{A2} = 1 \, (m)$$

$$4 + B_{2} = 3 \, (m)$$

Step (f)

BIC the pressure from the Left & right sides of the valve are balanced, we can optionally use the right side to calculate the pressure at the valve location

$$Pval_{1,2} = Po + PgHB2$$

= $10^5 + 10^3 \times 9.81 \times 3$
= $129430 (Pa)$
 $0^5, 129.43 KPa$

step (a)

From Table A.5

$$R = 2.0771 \text{ kJ/kg.k} \text{ for Helium}$$

For an ideal gas: $PV = mRT$
 $m_{A1} = \frac{P_{A1}V_{A}}{P_{C}T_{A1}} = \frac{100 \times 1}{2.0771 \times (273.15 + 100)} = 0.1290 \text{ kg}$
 $m_{B1} = \frac{P_{B1}V_{B}}{RT_{B1}} = \frac{300 \times 2}{2.0771 \times (273.15 + 500)} = 0.3736 \text{ (kg)}$

$$\frac{\text{step (b)}}{V = V_A + V_B} = 1 + 2 = 3 (m^3)$$

$$m = M_{A_1} + M_{B_1} = 0.1290 + 0.3736 = 0.5026 (kg)$$

$$P = \frac{m_R T_2}{V} = \frac{0.5026 \times 2.0771 \times (273.15+300)}{3} = 199.447 (kPa)$$

Problem 3

Step (a)	From Ta	ble B.41,
 7(°c)	P[KPa]	Tsat = -15+ 550-480.4 (-10+15)
 -15	480.4	= -11.26 (%)
Tsat=?	550	7 = 260°C > Tsaf
-10	5731	". Superheated Vapour at state 1.
1,		

Fr	om Table	B.4.2, at 7	7 = 260°C
	PIKPAJ	V[m3/4g]	Interpolation
	500	0.12129	$V_1 = 0.12129 + \frac{$50 - 500}{600 - 500} (0.10093 - 0.12129)$
	550	V,=?	600-500
	600	0.10093	$= 0.11111 \left(\frac{m^3}{4} \right)$
			. 0/

Step (b)

Constant - V- process from State 1 to state 2

$$1/V_2 = V_1 = 0.11111 \text{ m}^3/\text{g}$$

175.0 -40 0.000762 0.14291

$$V_{f_2} = 0.000752 + \frac{150 - 138.8}{175 - 138.8} (0.000762 - 0.000752) = 0.00075509 (m/kg)$$

$$V_{g_2} = 0.17804 + \frac{150 - 138.8}{175 - 138.8} (0.14291 - 0.17804) = 0.16717 (m/kg)$$

B/c
$$V_{5} \leq V_{5} \leq V_{32}$$

... Saturated mixture (state 2)
 $T_{2} = -45 + \frac{150 - 1388}{175 - 1388} (-40 + 45) = -43.45 (°C)$

Step(c)

Auxlity:
$$X_2 = \frac{V_2 - V_4}{V_9 - V_1} = \frac{0.1111 - 0.00075509}{0.16717 - 0.00075509} = 0.66313$$
 $M_{g2} = M_0 \cdot X_2 = 100 \times 0.66313 = 66.313 \text{ (Kg)}$
 $M_{f2} = M_0 - M_{g2} = 33.687 \text{ (kg)}$

Step(d)

Constant-P-process from state 2 to state 3

i. $P_3 = P_2 = 150 \text{ kPa}$ From Step(b)/Table B.4.1

Tsat = -43.45°C

T < Tsat

i. Compressed liquid at state 3.

Use the method of approximation: $V_3 \approx V_f|_{-55\%} = 0.000735 \text{ (m}_{78}^{3}\text{)}$

V3≈V4 = a000735

V3 ≈V6=0.000735 V1=V2=0.11111