北京工业大学 2016—2017 学年第一学期 《高等数学(工)—1》期末考试试卷 A 卷

考试说明: <u>考试日期: 2017 年 1 月 9 日、考试时间: 95 分钟、考试方式: 闭卷</u> 承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:	学号:	班号:

注: 本试卷共<u>三</u>大题,共<u>7</u>页,满分 100 分,考试时必须使用卷后附加的统一答题纸和草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题 号	_	=	三	总成绩
满分	30	60	10	
得 分				

得	分

一、填空题: (本大题共10小题,每小题3分,共30分)

$$\lim_{x \to 0} \frac{e^{\tan x - x} - 1}{x^3} = \underline{\hspace{1cm}}$$

- 2. 设参数方程 $\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$ 确定了函数 y = f(x),则 $\frac{dy}{dx}\Big|_{x=0} =$
- 3. 设 y = y(x) 由方程 $x^2 xy + y^2 = 1$ 确定,则 $\frac{dy}{dx}\Big|_{\substack{x=1 \ y=1}} =$ ______
- 4. 设函数 $y = \ln(1-x^2)$,则 dy =______
- 5. 曲线 $y = e^{\frac{1}{x^2}} \frac{x^2 + x + 1}{(x 1)(x + 2)}$ 的水平渐近线为_____

资料由公众号【丁大喵】收集整理并免费分享

6. 曲线
$$y = x^3 - 6x^2 + 9x + 3$$
 的拐点为______

$$7. \quad \frac{d}{dx} \int_0^{x^3} \sin t dx = \underline{\hspace{1cm}}$$

8. 广义积分
$$\int_0^{+\infty} \frac{x dx}{(1+x^2)^2} =$$

9.
$$\int \frac{1}{e^x + e^{-x}} dx =$$

10.
$$\int_{-1}^{1} \left(\frac{\arcsin^3 x}{1 + x^2} + \sqrt{1 - x^2} \right) dx = \underline{\hspace{1cm}}$$

^{得分} 二、计算题: (本大题共 6 小题,每小题 10 分,共 60 分)

11. 设 $f(x) = \frac{1}{x^2 - x - 2}$, 求 $f^{(n)}(0)$, 并写出函数 f(x) 的带皮亚诺型余

项的 2017 阶麦克劳林公式.

12. 计算不定积分
$$\int \left(\frac{1+x}{1+x^2} + x\cos x\right) dx$$
.

13. 计算定积分
$$\int_{\ln 2}^{\ln 4} \frac{1}{\sqrt{e^x - 1}} dx$$
.

14. 设已知曲线 $y = \frac{2\sqrt{2}}{x^2}$, 试在曲线的第一象限部分上求一点 $M(x_0, y_0)$, 使过点 M 所作切线夹于两坐标轴间线段最短.

- (1) 求函数 $\int_{-\infty}^{x} f(t)dt$ 在 $(-\infty,+\infty)$ 内的表达式;
- (2) 求常数A,使得 $\int_{-\infty}^{+\infty} f(t) dt = 1$.

16. 求由曲线 $y = x^2 + 2$, x 轴及直线 x = -2 与 x = 3 所围成的图形的面积;并求该图形绕 x 轴旋转一周所得旋转体的体积.

得 分

三、证明题: (本大题共2小题,每小题5分,共10分)

17. 设 $x \in (0,1)$,证明 $(1+x)\ln^2(1+x) < x^2$.

18. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,f(a) = f(b) = 0 且有 c (a < c < b) 使 f(c) > 0,证明: 至少存在一点 $\xi \in (a,b)$,使得 $f''(\xi) < 0$.

	100 000	
		1.7
		$\omega_{\rm LL}$
		ZITT
_	7101	200

姓名:	学号:	

资料由公众号【丁大喵】收集整理并免费分享