Package 'FuzzyClass'

February 14, 2024

Title Fuzzy and Non-Fuzzy Classifiers

Version 0.1.6

Description It provides classifiers which can be used for discrete variables and for continuous variables based on the Naive Bayes and Fuzzy Naive Bayes hypothesis. Those methods were developed by researchers belong to the 'Laboratory of Technologies for Virtual Teaching and Statistics (LabTEVE)' and 'Laboratory of Applied Statistics to Image Processing and Geoprocessing (LEAPIG)' at 'Federal University of Paraiba, Brazil'. They considered some statistical distributions and their papers were published in the scientific literature, as for instance, the Gaussian classifier using fuzzy parameters, proposed by 'Moraes, Ferreira and Machado' (2021) <doi:10.1007/s40815-020-00936-4>.

```
License MIT + file LICENSE
```

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports caTools, doParallel, e1071, EnvStats, foreach, MASS, mvtnorm, parallel, purrr, Rdpack, rootSolve, stats, trapezoid

RdMacros Rdpack

Depends R (>= 2.10)

Suggests testthat (>= 3.0.0), knitr, rmarkdown, maxLik, dplyr

VignetteBuilder knitr **Config/testthat/edition** 3

URL https://github.com/leapigufpb/FuzzyClass

BugReports https://github.com/leapigufpb/FuzzyClass/issues

Language en-US

NeedsCompilation no

Author Jodavid Ferreira [aut, cre] (https://orcid.org/0000-0002-2131-6464), Ronei Moraes [ctb] (https://orcid.org/0000-0001-8436-8950), Arthur Ricardo [ctb]

Maintainer Jodavid Ferreira < jodavid@protonmail.com>

Repository CRAN

Date/Publication 2024-02-14 17:50:02 UTC

R topics documented:

	DWFuzzyGammaNaiveBayes	
	ExpNBFuzzyParam	3
	FuzzyBayesRule	
	FuzzyBetaNaiveBayes	6
	FuzzyBinomialNaiveBayes	7
	FuzzyExponentialNaiveBayes	
	FuzzyGammaNaiveBayes	9
	FuzzyGaussianNaiveBayes	10
	FuzzyGeoNaiveBayes	11
	FuzzyNaiveBayes	13
	FuzzyPoissonNaiveBayes	14
	FuzzyTrapezoidalNaiveBayes	16
	FuzzyTriangularNaiveBayes	17
	GamWeightData	18
	GauNBFuzzyParam	18
	HouseVotes84	20
	PoiNBFuzzyParam	21
	SimulatedData	22
	VirtualRealityData	23
Index		24

 ${\tt DWFuzzyGammaNaiveBayes}$

Double Weighted Fuzzy Gamma Naive Bayes

Description

DWFuzzyGammaNaiveBayes Double Weighted Fuzzy Gamma Naive Bayes

Usage

```
DWFuzzyGammaNaiveBayes(train, cl, cores = 2, fuzzy = TRUE, wdelta, weta)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function
wdelta	vector weight each class
weta	vector weight each feature

ExpNBFuzzyParam 3

Value

A vector of classifications

References

Moraes RM, Soares EAMG, Machado LS (2020). "A double weighted fuzzy gamma naive bayes classifier." *Journal of Intelligent & Fuzzy Systems*, **38**(1), 577–588.

Examples

```
set.seed(1) # determining a seed
data(GamWeightData)
# Splitting into Training and Testing
split <- caTools::sample.split(t(GamWeightData[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(GamWeightData, split == "TRUE")</pre>
Test <- subset(GamWeightData, split == "FALSE")</pre>
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_NBT <- DWFuzzyGammaNaiveBayes(</pre>
  train = Train[, -4],
  cl = Train[, 4], cores = 2,
  wdelta = c(2.002/6, 1.998/6, 2.000/6),
  weta = c(3/10, 2/10, 5/10)
)
pred_NBT <- predict(fit_NBT, test)</pre>
head(pred_NBT)
head(Test[, 4])
```

 ${\sf ExpNBFuzzyParam}$

Fuzzy Exponential Naive Bayes Classifier with Fuzzy parameters

Description

ExpNBFuzzyParam Fuzzy Exponential Naive Bayes Classifier with Fuzzy parameters

Usage

```
ExpNBFuzzyParam(train, cl, alphacut = 1e-04, metd = 2, cores = 2)
```

Arguments

train matrix or data frame of training set cases

cl factor of true classifications of training set

alphacut value of the alpha-cut parameter, this value is between 0 and 1.

metd Method of transforming the triangle into scalar, It is the type of data entry for
the test sample, use metd 1 if you want to use the Yager technique, metd 2 if you
want to use the Q technique of the uniformity test (article: Directional Statistics
and Shape analysis), and metd 3 if you want to use the Thorani technique

cores how many cores of the computer do you want to use to use for prediction (default

= 2)

Value

A vector of classifications

References

Rodrigues AK, Batista TV, Moraes RM, Machado LS (2016). "A new exponential naive bayes classifier with fuzzy parameters." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1188–1194. IEEE.

```
set.seed(1) # determining a seed
data(VirtualRealityData)

# Splitting into Training and Testing
split <- caTools::sample.split(t(VirtualRealityData[, 1]), SplitRatio = 0.7)
Train <- subset(VirtualRealityData, split == "TRUE")
Test <- subset(VirtualRealityData, split == "FALSE")

# -------

# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_FENB <- ExpNBFuzzyParam(
    train = Train[, -4],
    cl = Train[, 4], metd = 1, cores = 2
)

pred_FENB <- predict(fit_FENB, test)

head(pred_FENB)
head(Test[, 4])</pre>
```

FuzzyBayesRule 5

Description

FuzzyBayesRule Fuzzy Bayes Rule

Usage

```
FuzzyBayesRule(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes R, Machado L (2008). "Fuzzy Bayes Rule for On-Line Training Assessment in Virtual Reality Simulators." *Multiple-Valued Logic and Soft Computing*, **14**, 325-338.

```
set.seed(1) # determining a seed
data(iris)

# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)
Train <- subset(iris, split == "TRUE")
Test <- subset(iris, split == "FALSE")
# -------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]
fit_NBT <- FuzzyBayesRule(
    train = Train[, -5],
    cl = Train[, 5], cores = 2
)
pred_NBT <- predict(fit_NBT, test)</pre>
```

```
head(pred_NBT)
head(Test[, 5])
```

FuzzyBetaNaiveBayes

Fuzzy Beta Naive Bayes

Description

FuzzyBetaNaiveBayes Fuzzy Beta Naive Bayes

Usage

```
FuzzyBetaNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Rodrigues AKG, Soares EAMG, Machado LS (2020). "A new fuzzy beta naive Bayes classifier." In *Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020)*, 437–445. World Scientific.

```
train = Train[, -5],
  cl = Train[, 5], cores = 2
)

pred_NBT <- predict(fit_NBT, test)

head(pred_NBT)
head(Test[, 5])</pre>
```

FuzzyBinomialNaiveBayes

Fuzzy Binomial Naive Bayes

Description

FuzzyBinomialNaiveBayes Fuzzy Binomial Naive Bayes

Usage

```
FuzzyBinomialNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Machado LS (2016). "A Fuzzy Binomial Naive Bayes classifier for epidemiological data." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 745–750. IEEE.

```
class3 <- data.frame(vari1 = rbinom(100, size = 10, prob = 0.8),</pre>
                      vari2 = rbinom(100, size = 10, prob = 0.8),
                      vari3 = rbinom(100, size = 10, prob = 0.8), class = 3)
data <- rbind(class1,class2,class3)</pre>
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(data, split == "TRUE")</pre>
Test <- subset(data, split == "FALSE")</pre>
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]</pre>
fit_NBT <- FuzzyBinomialNaiveBayes(</pre>
  train = Train[, -4],
  cl = Train[, 4], cores = 2
)
pred_NBT <- predict(fit_NBT, test)</pre>
head(pred_NBT)
head(Test[, 4])
```

FuzzyExponentialNaiveBayes

Fuzzy Exponential Naive Bayes

Description

FuzzyExponentialNaiveBayes Fuzzy Exponential Naive Bayes

Usage

```
FuzzyExponentialNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default = 2)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Machado LS (2016). "A fuzzy exponential naive bayes classifier." In *Uncertainty Modelling in Knowledge Engineering and Decision Making: Proceedings of the 12th International FLINS Conference*, 207–212. World Scientific.

Examples

```
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(iris, split == "TRUE")</pre>
Test <- subset(iris, split == "FALSE")</pre>
# -----
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]</pre>
fit_NBT <- FuzzyExponentialNaiveBayes(</pre>
  train = Train[, -5],
  cl = Train[, 5], cores = 2
pred_NBT <- predict(fit_NBT, test)</pre>
head(pred_NBT)
head(Test[, 5])
```

FuzzyGammaNaiveBayes FuzzyGamma Naive Bayes

Description

FuzzyGammaNaiveBayes Fuzzy Gamma Naive Bayes

Usage

```
FuzzyGammaNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Soares EAMG, Machado LS (2018). "A Fuzzy Gamma Naive Bayes Classifier." In Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018), 691–699. World Scientific.

Examples

```
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(iris, split == "TRUE")</pre>
Test <- subset(iris, split == "FALSE")</pre>
# -----
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]</pre>
fit_NBT <- FuzzyGammaNaiveBayes(</pre>
  train = Train[, -5],
  cl = Train[, 5], cores = 2
pred_NBT <- predict(fit_NBT, test)</pre>
head(pred_NBT)
head(Test[, 5])
```

FuzzyGaussianNaiveBayes

Fuzzy Gaussian Naive Bayes Classifier Zadeh-based

Description

FuzzyGaussianNaiveBayes Fuzzy Gaussian Naive Bayes Classifier Zadeh-based

Usage

```
FuzzyGaussianNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

FuzzyGeoNaiveBayes 11

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Machado LS (2012). "Online Assessment in Medical Simulators Based on Virtual Reality Using Fuzzy Gaussian Naive Bayes." *Journal of Multiple-Valued Logic & Soft Computing*, **18**.

Examples

```
set.seed(1) # determining a seed
data(iris)

# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)
Train <- subset(iris, split == "TRUE")
Test <- subset(iris, split == "FALSE")
# --------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]
fit_GNB <- FuzzyGaussianNaiveBayes(
    train = Train[, -5],
    cl = Train[, 5], cores = 2
)
pred_GNB <- predict(fit_GNB, test)
head(pred_GNB)
head(Test[, 5])</pre>
```

FuzzyGeoNaiveBayes

Fuzzy Naive Bayes Geometric Classifier

Description

FuzzyGeoNaiveBayes Naive Bayes Geometric Classifier

Usage

```
FuzzyGeoNaiveBayes(train, cl, cores = 2, fuzzy = T)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use (default = 2)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Ferreira J, Lopes A, Machado L, Moraes R (2023). "A Novel Fuzzy Geometric Naive Bayes Network for Online Skills Assessment in Training Based on Virtual Reality." *In Proceedings of the 15th International Joint Conference on Computational Intelligence*, 395–401.

```
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rgeom(100,prob = 0.2),</pre>
                      vari2 = rgeom(100, prob = 0.2),
                      vari3 = rgeom(100, prob = 0.2), class = 1)
class2 <- data.frame(vari1 = rgeom(100,prob = 0.5),</pre>
                      vari2 = rgeom(100, prob = 0.5),
                      vari3 = rgeom(100, prob = 0.5), class = 2)
class3 <- data.frame(vari1 = rgeom(100,prob = 0.9),</pre>
                      vari2 = rgeom(100, prob = 0.9),
                      vari3 = rgeom(100, prob = 0.9), class = 3)
data <- rbind(class1,class2,class3)</pre>
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(data, split == "TRUE")</pre>
Test <- subset(data, split == "FALSE")
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_NBT <- FuzzyGeoNaiveBayes(</pre>
  train = Train[, -4],
  cl = Train[, 4], cores = 2
pred_NBT <- predict(fit_NBT, test)</pre>
```

FuzzyNaiveBayes 13

```
head(pred_NBT)
head(Test[, 4])
```

FuzzyNaiveBayes

Fuzzy Naive Bayes

Description

FuzzyNaiveBayes Fuzzy Naive Bayes

Usage

```
FuzzyNaiveBayes(train, cl, fuzzy = TRUE, m = NULL, Pi = NULL)
```

Arguments

train	matrix or data frame of training set cases
cl	factor of true classifications of training set
fuzzy	boolean variable to use the membership function
m	is M/N , where M is the number of classes and N is the number of train lines
Pi	is 1/M, where M is the number of classes

Value

A vector of classifications

References

Moraes RM, Machado LS (2009). "Another approach for fuzzy naive bayes applied on online training assessment in virtual reality simulators." In *Proceedings of Safety Health and Environmental World Congress*, 62–66.

```
train = Train[, -1],
  cl = Train[, 1]
)
pred_FNB <- predict(fit_FNB, test)</pre>
head(pred_FNB)
head(Test[, 1])
# Example Fuzzy with Continuous Features
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(iris, split == "TRUE")</pre>
Test <- subset(iris, split == "FALSE")</pre>
# -----
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]</pre>
fit_FNB <- FuzzyNaiveBayes(</pre>
  train = Train[, -5],
  cl = Train[, 5]
pred_FNB <- predict(fit_FNB, test)</pre>
head(pred_FNB)
head(Test[, 5])
```

FuzzyPoissonNaiveBayes

Fuzzy Poisson Naive Bayes

Description

FuzzyPoissonNaiveBayes Fuzzy Poisson Naive Bayes

Usage

```
FuzzyPoissonNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train matrix or data frame of training set cases.
cl factor of true classifications of training set

how many cores of the computer do you want to use to use for prediction (default = 2)

fuzzy boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Machado LS (2015). "A fuzzy poisson naive bayes classifier for epidemiological purposes." In 2015 7th International Joint Conference on Computational Intelligence (IJCCI), volume 2, 193–198. IEEE.

```
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rpois(100,lambda = 2),</pre>
                      vari2 = rpois(100, lambda = 2),
                      vari3 = rpois(100, lambda = 2), class = 1)
class2 <- data.frame(vari1 = rpois(100,lambda = 1),</pre>
                      vari2 = rpois(100,lambda = 1),
                      vari3 = rpois(100,lambda = 1), class = 2)
class3 <- data.frame(vari1 = rpois(100,lambda = 5),</pre>
                      vari2 = rpois(100, lambda = 5),
                      vari3 = rpois(100, lambda = 5), class = 3)
data <- rbind(class1,class2,class3)</pre>
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(data, split == "TRUE")</pre>
Test <- subset(data, split == "FALSE")
# -----
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]</pre>
fit_NBT <- FuzzyPoissonNaiveBayes(</pre>
  train = Train[, -4],
  cl = Train[, 4], cores = 2
pred_NBT <- predict(fit_NBT, test)</pre>
head(pred_NBT)
head(Test[, 4])
```

FuzzyTrapezoidalNaiveBayes

Fuzzy Naive Bayes Trapezoidal Classifier

Description

FuzzyTrapezoidalNaiveBayes Fuzzy Naive Bayes Trapezoidal Classifier

Usage

```
FuzzyTrapezoidalNaiveBayes(train, cl, cores = 2, fuzzy = T)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Lopes A, Ferreira J, Machado LS, Moraes RM (2022). "A New Fuzzy Trapezoidal Naive Bayes Network as basis for Assessment in Training based on Virtual Reality." In *The 15th International FLINS Conference on Machine learning, Multi agent and Cyber physical systems (FLINS 2022)*. Nankai University.

```
pred_NBT <- predict(fit_NBT, test)
head(pred_NBT)
head(Test[, 5])</pre>
```

 ${\tt FuzzyTriangularNaiveBayes}$

Fuzzy Naive Bayes Triangular Classifier

Description

FuzzyTriangularNaiveBayes Fuzzy Naive Bayes Triangular Classifier

Usage

```
FuzzyTriangularNaiveBayes(train, cl, cores = 2, fuzzy = TRUE)
```

Arguments

train	matrix or data frame of training set cases.
cl	factor of true classifications of training set
cores	how many cores of the computer do you want to use to use for prediction (default $= 2$)
fuzzy	boolean variable to use the membership function

Value

A vector of classifications

References

Moraes RM, Silva ILA, Machado LS (2020). "Online skills assessment in training based on virtual reality using a novel fuzzy triangular naive Bayes network." In *Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020)*, 446–454. World Scientific.

```
set.seed(1) # determining a seed
data(iris)

# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)
Train <- subset(iris, split == "TRUE")
Test <- subset(iris, split == "FALSE")</pre>
```

18 GauNBFuzzyParam

GamWeightData

Gamma Weighted Data

Description

A dataset simulated containing training data from a Gamma Distribution

Usage

GamWeightData

Format

A dataset with 600 rows and 4 variables with 1 label.

GauNBFuzzyParam

Fuzzy Gaussian Naive Bayes Classifier with Fuzzy parameters

Description

GauNBFuzzyParam Fuzzy Gaussian Naive Bayes Classifier with Fuzzy parameters

Usage

```
GauNBFuzzyParam(train, cl, alphacut = 1e-04, metd = 2, cores = 2)
```

GauNBFuzzyParam 19

Arguments

train matrix or data frame of training set cases.

cl factor of true classifications of training set

alphacut value of the alpha-cut parameter, this value is between 0 and 1.

metd Method of transforming the triangle into scalar, It is the type of data entry for
the test sample, use metd 1 if you want to use the Yager technique, metd 2 if you
want to use the Q technique of the uniformity test (article: Directional Statistics
and Shape analysis), and metd 3 if you want to use the Thorani technique

cores how many cores of the computer do you want to use to use for prediction (default

= 2)

Value

A vector of classifications

References

Moraes RM, Ferreira JA, Machado LS (2021). "A New Bayesian Network Based on Gaussian Naive Bayes with Fuzzy Parameters for Training Assessment in Virtual Simulators." *International Journal of Fuzzy Systems*, **23**(3), 849–861.

```
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(iris, split == "TRUE")</pre>
Test <- subset(iris, split == "FALSE")</pre>
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]</pre>
fit_FGNB <- GauNBFuzzyParam(</pre>
  train = Train[, -5],
  cl = Train[, 5], metd = 1, cores = 2
)
pred_FGNB <- predict(fit_FGNB, test)</pre>
head(pred_FGNB)
head(Test[, 5])
```

20 House Votes 84

HouseVotes84

United States Congressional Voting Records 1984

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to yea), voted against, paired against, and announced against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these three simplified to an unknown disposition).

Usage

data(HouseVotes84)

Format

A data frame with 435 observations on 17 variables:

- 1 Class Name: 2 (democrat, republican)
- 2 handicapped-infants: 2 (y,n)
- 3 water-project-cost-sharing: 2 (y,n)
- 4 adoption-of-the-budget-resolution: 2 (y,n)
- 5 physician-fee-freeze: 2 (y,n)
- 6 el-salvador-aid: 2 (y,n)
- 7 religious-groups-in-schools: 2 (y,n)
- 8 anti-satellite-test-ban: 2 (y,n)
- 9 aid-to-nicaraguan-contras: 2 (y,n)
- 10 mx-missile: 2 (y,n)
- 11 immigration: 2 (y,n)
- 12 synfuels-corporation-cutback: 2 (y,n)
- 13 education-spending: 2 (y,n)
- 14 superfund-right-to-sue: 2 (y,n)
- 15 crime: 2 (y,n)
- 16 duty-free-exports: 2 (y,n)
- 17 export-administration-act-south-africa: 2 (y,n)

Source

- Source: Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc., ington, D.C., 1985
- Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)

These data have been taken from the UCI Repository Of Machine Learning Databases at

- https://archive.ics.uci.edu/datasets
- https://archive.ics.uci.edu/datasets

PoiNBFuzzyParam 21

and were converted to R format by Friedrich Leisch.

References

Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases [https://archive.ics.uci.edu/datasets]. Irvine, CA: University of California, Department of Information and Computer Science.

Examples

data(HouseVotes84)
summary(HouseVotes84)

PoiNBFuzzyParam

Fuzzy Poisson Naive Bayes Classifier with Fuzzy parameters

Description

PoiNBFuzzyParam Fuzzy Poisson Naive Bayes Classifier with Fuzzy parameters

Usage

```
PoiNBFuzzyParam(train, cl, alphacut = 1e-04, metd = 2, cores = 2)
```

Arguments

train matrix or data frame of training set cases.
cl factor of true classifications of training set

alphacut value of the alpha-cut parameter, this value is between 0 and 1.

metd Method of transforming the triangle into scalar, It is the type of data entry for

the test sample, use metd 1 if you want to use the Yager technique, metd 2 if you want to use the Q technique of the uniformity test (article: Directional Statistics and Shape analysis), and metd 3 if you want to use the Thorani technique

how many cores of the computer do you want to use to use for prediction (default

= 2)

Value

A vector of classifications

References

cores

Soares E, Machado L, Moraes R (2016). "Assessment of poisson naive bayes classifier with fuzzy parameters using data from different statistical distributions." In *IV Bazilian Congress on Fuzzy Sistems (CBSF 2016)*, volume 1, 57–68.

22 SimulatedData

Examples

```
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rpois(100,lambda = 2),</pre>
                      vari2 = rpois(100,lambda = 2),
                      vari3 = rpois(100,lambda = 2), class = 1)
class2 <- data.frame(vari1 = rpois(100,lambda = 1),</pre>
                      vari2 = rpois(100, lambda = 1),
                      vari3 = rpois(100,lambda = 1), class = 2)
class3 <- data.frame(vari1 = rpois(100,lambda = 5),</pre>
                      vari2 = rpois(100, lambda = 5),
                      vari3 = rpois(100, lambda = 5), class = 3)
data <- rbind(class1,class2,class3)</pre>
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)</pre>
Train <- subset(data, split == "TRUE")</pre>
Test <- subset(data, split == "FALSE")</pre>
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_FPoiNB <- PoiNBFuzzyParam(</pre>
  train = Train[, -4],
  cl = Train[, 4], metd = 1, cores = 2
)
pred_FPoiNB <- predict(fit_FPoiNB, test)</pre>
head(pred_FPoiNB)
head(Test[, 4])
```

SimulatedData

Simulated Data

Description

A dataset containing training data from Gammma Distribuition

Usage

SimulatedData

Format

A dataset with 600 rows and 4 variables with 1 label.

VirtualRealityData 23

 ${\tt Virtual\,Reality\,Data} \qquad \textit{Virtual\,Reality\,Simulator\,Data}$

Description

A dataset containing training data from a virtual reality simulator

Usage

Virtual Reality Data

Format

A dataset with 600 rows and 4 variables with 1 label.

Index

```
* datasets
    GamWeightData, 18
    HouseVotes84, 20
    SimulatedData, 22
    VirtualRealityData, 23
DWFuzzyGammaNaiveBayes, 2
ExpNBFuzzyParam, 3
FuzzyBayesRule, 5
FuzzyBetaNaiveBayes, 6
FuzzyBinomialNaiveBayes, 7
{\tt FuzzyExponentialNaiveBayes, 8}
FuzzyGammaNaiveBayes, 9
FuzzyGaussianNaiveBayes, 10
FuzzyGeoNaiveBayes, 11
FuzzyNaiveBayes, 13
FuzzyPoissonNaiveBayes, 14
FuzzyTrapezoidalNaiveBayes, 16
{\tt FuzzyTriangularNaiveBayes, 17}
GamWeightData, 18
GauNBFuzzyParam, 18
HouseVotes84, 20
PoiNBFuzzyParam, 21
SimulatedData, 22
VirtualRealityData, 23
```