- $TIME(t(n)) \subseteq SPACE(t(n))$
- is the inclusion proper?
- intuitively yes
- proof: Hopcroft, Paul and Valiant 1975

- $TIME(t(n)) \subseteq SPACE(t(n))$
- is the inclusion proper?
- intuitively yes
- proof: Hopcroft, Paul and Valiant 1975

simulation:

Lemma 1.

$$TIME(t(n)) \subseteq SPACE(t(n)/\log(t(n)))$$

separating complexity classes

Lemma 2. Let t(n) be space constructible

$$TIME(t(n)) \subsetneq SPACE(t(n))$$

- $TIME(t(n)) \subseteq SPACE(t(n))$
- is the inclusion proper?
- intuitively yes
- proof: Hopcroft, Paul and Valiant 1975

simulation:

Lemma 1.

$$TIME(t(n)) \subseteq SPACE(t(n)/\log(t(n)))$$

separating complexity classes

Lemma 2. Let t(n) be space constructible

$$TIME(t(n)) \subsetneq SPACE(t(n))$$

$$TIME(t(n)) \subseteq SPACE(t(n)/log(t(n)))$$
 (lemma 1)
 $\subsetneq SPACE(t(n))$ (space hierarchy theorem)

- $TIME(t(n)) \subseteq SPACE(t(n))$
- is the inclusion proper?
- intuitively yes
- proof: Hopcroft, Paul and Valiant 1975

simulation:

Lemma 1.

$$TIME(t(n)) \subseteq SPACE(t(n)/\log(t(n)))$$

separating complexity classes

Lemma 2. Let t(n) be space constructible

$$TIME(t(n)) \subsetneq SPACE(t(n))$$

$$TIME(t(n)) \subseteq SPACE(t(n)/log(t(n)))$$
 (lemma 1)
 $\subsetneq SPACE(t(n))$ (space hierarchy theorem)

initial idea:

- all simulations we know are step by step (in order)
- what if we try to simulate out of order?

- played on finite directed acyclic graphs (dag's) G = (V, E)
- by placing pebbles on nodes or removing pebbles from nodes
- legal moves (illustrated in figure 1)
 - 1. placing pebble on a source of the graph (reading input)
 - 2. if all direct ancestors of a node u have a pebble, place a pebble on u
 - 3. remove a pebble (free space from intermediate result)

Figure 1: Legal moves: 1) place a pebble on a source 2) place a pebble on a node if all direct predecessors have pebbles 3) remove pebbly any time anywhere

- played on finite directed acyclic graphs (dag's) G = (V, E)
- by placing pebbles on nodes or removing pebbles from nodes
- legal moves (illustrated in figure 1)
 - 1. placing pebble on a source of the graph (reading input)
 - 2. if all direct ancestors of a node u have a pebble, place a pebble on u
 - 3. remove a pebble (free space from intermediate result)

Figure 1: Legal moves: 1) place a pebble on a source 2) place a pebble on a node if all direct predecessors have pebbles 3) remove pebbly any time anywhere

- goal: to *pebble* the graph, i.e.
 - 1. place a pebble on each node of the graph at some time
 - 2. using as few pebbles as possible.

- played on finite directed acyclic graphs (dag's) G = (V, E)
- by placing pebbles on nodes or removing pebbles from nodes
- legal moves (illustrated in figure 1)
 - 1. placing pebble on a source of the graph (reading input)
 - 2. if all direct ancestors of a node u have a pebble, place a pebble on u
 - 3. remove a pebble (free space from intermediate result)

Figure 1: Legal moves: 1) place a pebble on a source 2) place a pebble on a node if all direct predecessors have pebbles 3) remove pebbly any time anywhere

- goal: to *pebble* the graph, i.e.
 - 1. place a pebble on each node of the graph at some time
 - 2. using as few pebbles as possible.

120S:

Sethi-Ullman register allocation: uses this game on derivation trees of expressions

- played on finite directed acyclic graphs (dag's) G = (V, E)
- by placing pebbles on nodes or removing pebbles from nodes
- legal moves (illustrated in figure 1)
 - 1. placing pebble on a source of the graph (reading input)
 - 2. if all direct ancestors of a node u have a pebble, place a pebble on u
 - 3. remove a pebble (free space from intermediate result)

Figure 1: Legal moves: 1) place a pebble on a source 2) place a pebble on a node if all direct predecessors have pebbles 3) remove pebbly any time anywhere

- goal: to *pebble* the graph, i.e.
 - 1. place a pebble on each node of the graph at some time
 - 2. using as few pebbles as possible.

120S:

Sethi-Ullman register allocation: uses this game on derivation trees of expressions

- played on finite directed acyclic graphs (dag's) G = (V, E)
- by placing pebbles on nodes or removing pebbles from nodes
- legal moves (illustrated in figure 1)
 - 1. placing pebble on a source of the graph (reading input)
 - 2. if all direct ancestors of a node u have a pebble, place a pebble on u
 - 3. remove a pebble (free space from intermediate result)

- goal: to *pebble* the graph, i.e.
 - 1. place a pebble on each node of the graph at some time
 - 2. using as few pebbles as possible.

2 Pebble lemma

def: indegree of a graph: maximal number of direct ancestors of any node in the graph

Lemma 3. Let $P_k(n)$ be the smallest number of pebbles sufficient to pebble any day with n edges and indegree k. Then

$$P_k(n) = O(n/\log n)$$

 $\leq C_k \cdot n/\log n \quad faa n$

def: indegree of a graph: maximal number of direct ancestors of any node in the graph

Lemma 3. Let $P_k(n)$ be the smallest number of pebbles sufficient to pebble any day with n edges and indegree k. Then

$$P_k(n) = O(n/\log n)$$

 $\leq C_k \cdot n/\log n \quad faa n$

2 Pebble lemma

2.1 Trivial pebbling strategy

Lemma 4.

$$P_k(n) \leq 2n$$

- a node *u* is isolated, when it is not connected to any edge; for each such node *u* place a pebble on it and remove it in the next move.
- place pebbles on the end points u of edges in the order of the depth of u. There are at most |E| such nodes.

def: indegree of a graph: maximal number of direct ancestors of any node in the graph

Lemma 3. Let $P_k(n)$ be the smallest number of pebbles sufficient to pebble any dag with n edges and indegree k. Then

$$P_k(n) = O(n/\log n)$$

 $\leq C_k \cdot n/\log n \quad faa n$

Lemma 4.

$$P_k(n) \leq 2n$$

2.2 Graph decompositions

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \emptyset$$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \emptyset$$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \emptyset$$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

• decomposition leaves remaining set edges going from V_1 to V_2

$$A = E \setminus (E_1 \cup E_2) \subseteq V_1 \times V_2$$

with set of start points

$$V_A = \{ u \in V_1 : \exists v \in V_2. (u, v) \in E \}$$

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2$$
 , $V_1 \cap V_2 = \emptyset$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

• decomposition leaves remaining set edges going from V_1 to V_2

$$A = E \setminus (E_1 \cup E_2) \subseteq V_1 \times V_2$$

with set of start points

$$V_A = \{ u \in V_1 : \exists v \in V_2. (u, v) \in E \}$$

decomposing a graph into roughly equal size parts:

Lemma 5. Let G = (V, E) be a dag with indegree k and n edges. Then G can be decomposed into

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

such that

$$n/2 \le |E_1| < n/2 + k$$

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \emptyset$$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

• decomposition leaves remaining set edges going from V_1 to V_2

$$A = E \setminus (E_1 \cup E_2) \subseteq V_1 \times V_2$$

with set of start points

$$V_A = \{ u \in V_1 : \exists v \in V_2. (u, v) \in E \}$$

decomposing a graph into roughly equal size parts:

Lemma 5. Let G = (V, E) be a dag with indegree k and n edges. Then G can be decomposed into

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

such that

$$n/2 \le |E_1| < n/2 + k$$

- w.l.o.g. graph G has no isolated nodes (we can put them anywhere)
- start with

$$G_1 = G$$
 , $G_2 = (\emptyset, \emptyset)$

- move a sink s of G_1 to G_2 . This removes at most k edges from G_1 .
- Repeat until $|E_1| < n/2 + k$.

- let G = (V, E) be a directed acyclic graph
- graphs

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

are a *decomposition* of *G* if

1. V_1 and V_2 for a partition of V

$$V = V_1 \cup V_2$$
 , $V_1 \cap V_2 = \emptyset$

2. for $i \in \{1,2\}$ graph G_i is the subgraph of G spanned by V_i

$$E_i = E \cap (V_i \times V_i)$$

• decomposition leaves remaining set edges going from V_1 to V_2

$$A = E \setminus (E_1 \cup E_2) \subseteq V_1 \times V_2$$

with set of start points

$$V_A = \{ u \in V_1 : \exists v \in V_2. (u, v) \in E \}$$

decomposing a graph into roughly equal size parts:

Lemma 5. Let G = (V, E) be a dag with indegree k and n edges. Then G can be decomposed into

$$G_1 = (V_1, E_1)$$
 , $G_2 = (V_2, E_2)$

such that

$$n/2 \le |E_1| < n/2 + k$$

def: fat and slim graphs Decompose graph G as above and consider the set A of edges from G_1 to G_2 and its set V_A of start points. Call the graph G

- $slim \text{ if } |A| \leq 2n/\log n$
- fat if $|A| > 2n/\log n$

$$n/2 \le |E_1| < n/2 + k$$

• $slim \text{ if } |A| \leq 2n/\log n$

• fat if $|A| > 2n/\log n$

for a graph G with n edges

base case For $n \le n_0$ (to be determined by the analysis) use the trivial pebbling strategy

$$n < n_0$$
: $P_k(n) \le 2n$

case: G is slim

- pebble G_1 with $P_k(n/2+k)$ pebbles
- leave pebbles on V_A . This are at most $P_k(n/2+k)$ pebbles
- remove other pebbles from G_1
- pebble G_2 with $P_k(n/2) \le P_k(n/2+k)$ pebbles

$$P_k(n) \le P_k(n/2+k) + 2n/\log n$$

 $n/2 \le |E_1| < n/2 + k$

• $slim \text{ if } |A| \leq 2n/\log n$

• fat if $|A| > 2n/\log n$

for a graph G with n edges

base case For $n \le n_0$ (to be determined by the analysis) use the trivial pebbling strategy

$$n < n_0$$
: $P_k(n) \le 2n$

For $n > n_0$ consider a balanced decomposition of G.

case: G is fat Then

$$|E_2| = |E| - |E_1| - |A| \le n/2 - 2n/\log n$$

• start pebble strategy on G_2 using at most $P_k(n/2 - 2n/\log n)$ pebbles on G_2 .

$$n/2 \le |E_1| < n/2 + k$$

•
$$slim \text{ if } |A| \leq 2n/\log n$$

• fat if
$$|A| > 2n/\log n$$

for a graph G with n edges

base case For $n \le n_0$ (to be determined by the analysis) use the trivial pebbling strategy

$$n < n_0$$
: $P_k(n) \le 2n$

For $n > n_0$ consider a balanced decomposition of G.

case: G is slim

$$P_k(n) \le P_k(n/2+k) + 2n/\log n$$

case: G is fat Then

$$|E_2| = |E| - |E_1| - |A| \le n/2 - 2n/\log n$$

• start pebble strategy on G_2 using at most $P_k(n/2 - 2n/\log n)$ pebbles on G_2 .

- $slim \text{ if } |A| \leq 2n/\log n$
- fat if $|A| > 2n/\log n$

for a graph G with n edges

 $n/2 \le |E_1| < n/2 + k$

base case For $n \le n_0$ (to be determined by the analysis) use the trivial pebbling strategy

$$n < n_0$$
: $P_k(n) \le 2n$

case: G is slim

$$P_k(n) \le P_k(n/2 + k) + 2n/\log n$$

case: G is fat

$$P_k(n) \le P_k(n/2 + k) + P_k(n/2 - 2n/\log n) + k$$

- When a pebble must be placed on a source q of G interrupt strategy and
- using a pebble strategy for G_1 leave pebbles on the direct predecessors

$$q_1,\ldots,q_s\in V_1$$

As $s \le k$ this uses at most $P_k(n/2+k)+k$ pebbles on G_1 .

• place pebble on q, remove all pebbles on G_1 and continue the strategy on G_2

for $n \leq n_0$:

$$P_k(n) \le 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k \tag{2}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8}\log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k \tag{2}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$log(n/2+k) \ge \frac{7}{8} log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

base case: $n \le n_0$

$$P_k(n) \le 2n \le 2(\log n_0)n/\log n \le Cn/\log n$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k \tag{2}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8} \log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

fat graphs: first term in difference equation is maximum

$$P_{k}(n) \leq C \frac{n/2+k}{\log(n/2+k)} + C \frac{n/2-2n/\log n}{\log(n/2-2n/\log n)} + k$$

$$\leq \frac{Cn/2}{\log n-1} + C \frac{n/2-2n/\log n}{\log n-2} + \frac{Ck}{\log n-2} + k \quad \text{using (3)}$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k$$
 (2)

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8} \log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

fat graphs: first term in difference equation is maximum

$$P_{k}(n) \leq C \frac{n/2 + k}{\log(n/2 + k)} + C \frac{n/2 - 2n/\log n}{\log(n/2 - 2n/\log n)} + k$$

$$\leq \frac{Cn/2}{\log n - 1} + C \frac{n/2 - 2n/\log n}{\log n - 2} + \frac{Ck}{\log n - 2} + k \quad \text{using (3)}$$

apply

$$\frac{1}{x-a} = \frac{1}{x} + \frac{a}{x(x-a)} \text{ with } x = \log n , a \in \{1, 2\}$$

to get

$$P_k(n) \leq \frac{Cn}{2\log n} + \frac{Cn}{2\log n(\log n - 1)} + \frac{Cn}{2\log n} + \frac{Cn}{\log n(\log n - 2)} + \frac{2Cn}{\log n(\log n - 2)} + \frac{Ck}{\log n - 2} + k$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k$$
 (2)

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8} \log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

fat graphs: first term in difference equation is maximum

$$P_{k}(n) \leq C \frac{n/2+k}{\log(n/2+k)} + C \frac{n/2-2n/\log n}{\log(n/2-2n/\log n)} + k$$

$$\leq \frac{Cn/2}{\log n-1} + C \frac{n/2-2n/\log n}{\log n-2} + \frac{Ck}{\log n-2} + k \quad \text{using (3)}$$

apply

$$\frac{1}{x-a} = \frac{1}{x} + \frac{a}{x(x-a)} \text{ with } x = \log n, a \in \{1, 2\}$$

to get

$$P_k(n) \leq \frac{Cn}{2\log n} + \frac{Cn}{2\log n(\log n - 1)} + \frac{Cn}{2\log n} + \frac{Cn}{\log n(\log n - 2)} - \frac{2Cn}{\log n(\log n - 2)} + \frac{Ck}{\log n - 2} + k$$

$$\leq \frac{Cn}{\log n} - \frac{Cn}{2\log n(\log n - 2)} + \frac{Ck}{\log n - 2} + k$$

$$\leq \frac{Cn}{\log n} \quad \text{using (1)}$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k \tag{2}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8}\log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

second term in difference equation is maximum

$$P_k(n) \leq C \frac{n/2+k}{\log(n/2+k)} + \frac{2n}{\log n}$$

$$\leq \frac{3Cn}{4\log(n/2+k)} + \frac{2n}{\log n} \quad \text{using (2)}$$

for $n \leq n_0$:

$$P_k(n) \leq 2n$$

for $n > n_0$:

$$P_k(n) \le \max\{P_k(n/2+k) + P_k(n/2-2n/\log n) + k, P_k(n/2+k) + 2n/\log n\}$$

• Choose n_0 such that for all $n > n_0$ holds

$$\frac{n - 2k \log n}{2 \log n (\log n - 2)} \ge k \tag{1}$$

$$n \geq 4k \tag{2}$$

$$n/2 - 2n/\log n \ge n/4 \tag{3}$$

$$\log(n/2 + k) \ge \frac{7}{8} \log n \tag{4}$$

and set

$$C = \max\{2\log n_0, 14\}$$

• show by induction on *n*

$$P_k(n) \le C \cdot n / \log n$$

slim graphs: second term in difference equation is maximum

$$P_k(n) \leq C \frac{n/2 + k}{\log(n/2 + k)} + \frac{2n}{\log n}$$

$$\leq \frac{3Cn}{4\log(n/2 + k)} + \frac{2n}{\log n} \quad \text{using (2)}$$

$$\leq \frac{6}{7} \frac{Cn}{\log n} + \frac{2n}{\log n} \quad \text{using (4)}$$

$$\leq Cn/\log n \quad (C \geq 14)$$

3.1 Defining the graphs

3 TM computation graphs

• Consider k-tape TM M, input w with length |w| = n and number $t \ge n$ of steps. Let

$$\lambda = \lceil t^{2/3} \rceil$$

- divide
 - 1. time into *time intervals* of λ steps
 - 2. tapes into *blocks* of length λ
- number of time intervals

$$\tau = \lceil t/\lambda \rceil + 1 = O(t^{1/3})$$

3.1 Defining the graphs

3 TM computation graphs

• Consider k-tape TM M, input w with length |w| = n and number $t \ge n$ of steps. Let

$$\lambda = \lceil t^{2/3} \rceil$$

- divide
 - 1. time into *time intervals* of λ steps
 - 2. tapes into *blocks* of length λ
- number of time intervals

$$\tau = \lceil t/\lambda \rceil + 1 = O(t^{1/3})$$

• for time intervals $i \in [0:\tau]$ define the *result*

of the time interval as

- 1. state and head positions
- 2. inscriptions of the blocks visited in the time interval (at most 2k)

at the end of the time interval. For i = 0 take initial state and tape inscription.

length

$$|res(i)| = O(\lambda) = O(t^{2/3})$$

3.1 Defining the graphs

• Consider k-tape TM M, input w with length |w| = n and number $t \ge n$ of steps. Let

$$\lambda = \lceil t^{2/3} \rceil$$

- divide
 - 1. time into *time intervals* of λ steps
 - 2. tapes into *blocks* of length λ
- number of time intervals

$$\tau = \lceil t/\lambda \rceil + 1 = O(t^{1/3})$$

• for time intervals $i \in [0:\tau]$ define the *result*

of the time interval as

- 1. state and head positions
- 2. inscriptions of the blocks visited in the time interval (at most 2k)

at the end of the time interval. For i = 0 take initial state and tape inscription.

length

$$|res(i)| = O(\lambda) = O(t^{2/3})$$

computation graph

$$G = (V, E)$$

• nodes: the time intervals

$$V = [0 : \tau]$$

• edge

$$(i,j) \in E$$

if res(i) is needed to simulate time interval j, i.e. if

- 1. j = i + 1 for state at the start of interval j or
- 2. there is a block visited in intervals i and j but not in between or
- 3. i = 0 and there is a block visited for the first time in time interval j

indegree: 2k+1

simulation of time interval j:

- possible if res(i) is available for all direct predecessors of i in G.
- rule of the pebble game with pebbles res(x).
- whenever pebble is placed on node j compute res(j)
- whenever pebble is removed from node i erase res(i)
- space used is number of pebbles times pebble size

$$O(p \cdot \lambda) = O((t^{1/3}/\log t) \cdot t^{2/3}) = O(t/\log t)$$

• writing down G: space

$$O(\tau \cdot \log \tau) = O(t^{1/3} \log t)$$

• writing down G: space

$$O(\tau \cdot \log \tau) = O(t^{1/3} \log t)$$

- finding *G*:
 - 1. brute force: enumerate all graphs in some order. Try simulation for each graph
 - 2. or construct graphs on the fly. Once the number of edges in the graph exceeds n_0 from the pebble lemma, switch to recursive pebbling strategy

• writing down G: space

$$O(\tau \cdot \log \tau) = O(t^{1/3} \log t)$$

- finding *G*:
 - 1. brute force: enumerate all graphs in some order. Try simulation for each graph
 - 2. or construct graphs on the fly. Once the number of edges in the graph exceeds n_0 from the pebble lemma, switch to recursive pebbling strategy
- implementing the recursion
 - 1. parameter for 1 recursive call: a subgraph and some nodes, where to leave pebbles. Space

$$O(\tau \cdot \log \tau)$$

2. recursion depth $\leq \tau$

Total space for implementation of recursion

$$O(\tau^2 \log \tau) = O(t^{2/3} \log t)$$

• writing down G: space

$$O(\tau \cdot \log \tau) = O(t^{1/3} \log t)$$

- finding *G*:
 - 1. brute force: enumerate all graphs in some order. Try simulation for each graph
 - 2. or construct graphs on the fly. Once the number of edges in the graph exceeds n_0 from the pebble lemma, switch to recursive pebbling strategy
- implementing the recursion
 - 1. parameter for 1 recursive call: a subgraph and some nodes, where to leave pebbles. Space

$$O(\tau \cdot \log \tau)$$

2. recursion depth $\leq \tau$

Total space for implementation of recursion

$$O(\tau^2 \log \tau) = O(t^{2/3} \log t)$$

• simulating t(n) steps when t is not space constructible: try simulation for

$$t = n, 2n, 4n, \dots$$