Lecture notes: Trajectory generation and tracking

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502

Outline

This lecture note is based on

 Karl Johan Aström Richard M. Murray, Feedback Systems, An introduction to Scientists and Engineers. Chapter 6-7.

```
http://www.cds.caltech.edu/~murray/amwiki/index.
php/Second_Edition
```

Linearity

In general, a system is given by

$$\dot{x} = f(x, u), \quad y = h(x, u)$$

where f(x, u), h(x, u) is a nonlinear function. Assume the system has an equilibrium x_e , u_e ,

Deviation variables

$$\delta_{\mathsf{x}} = \mathsf{x}(t) - \mathsf{x}_{\mathsf{e}}; \quad \delta_{\mathsf{u}} = \mathsf{u}(t) - \mathsf{u}_{\mathsf{e}}.$$

dy = Y(t) - Ye $Y_e = h(X_e, N_e)$ and rewrite the equation of motion in new variable.:

$$\dot{\delta}_{x} + \dot{x}_{e} = f(\delta_{x} + x_{e}, \delta_{u} + u_{e})$$

and

$$\delta_y + y_e = h(\delta_x + x_e, \delta_u + u_e)$$

Jacobian Linearization

- δ_x , δ_u , δ_v are all close to zero when we are near the equilibrium point.
- Eliminate the higher-order terms in the taylor series expansion of the vector fields f() and h()

Jacobian linearization of the nonlinear system is

$$\dot{\delta}_{x} \stackrel{.}{=} A \delta_{x} + B \delta_{u}, \quad , \delta_{y} \stackrel{.}{=} C \delta_{x} + D \delta_{u}$$

where

$$A = \frac{\partial f}{\partial x} \mid_{x_e, u_e}, \quad B = \frac{\partial f}{\partial u} \mid_{x_e, u_e},$$

$$C = \frac{\partial h}{\partial x} \mid_{x_e, u_e}, \quad D = \frac{\partial h}{\partial u} \mid_{x_e, u_e},$$

The system only approximates the original system around the equilbrium point.

$$\delta y + Je = h(\delta_x + \chi_e, \delta_n + u_e) \qquad h(\chi, u)$$

$$\delta y + d\chi_e, u_e) = h(\chi_e, u_e) + \frac{\partial h}{\partial \chi} |_{\chi_e, u_e} (\chi - \chi_e) + \frac{\partial h}{\partial u} |_{\chi_e, u_e} (u - u_e)$$

$$Je = h(\chi_e, u_e) \qquad \chi_{e, u_e} \qquad$$

$$y'_e = h(x_e, u_e)$$

 $\delta y = \frac{\partial h}{\partial x} \left| dx + \frac{\partial h}{\partial u} \right| du$

$$dy = \frac{\partial h}{\partial x} \Big|_{x_e, u_e} + \frac{\partial h}{\partial u} \Big|_{x_e, u_e} + \frac{\partial h}{\partial u} \Big|_{x_e, u_e}$$

Example: Jacobian matrix

Suppose you have two dim function:

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}$$

The gradient generation

$$\Delta_{\mathsf{X}} = \begin{bmatrix} \frac{\partial}{\partial \mathsf{x}_1} & \frac{\partial}{\partial \mathsf{x}_2} & \dots & \frac{\partial}{\partial \mathsf{x}_n} \end{bmatrix}^\mathsf{T}$$

The jacobian is defined by

$$J_{f} = \begin{bmatrix} f_{1}(x) \\ f_{2}(x) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \dots & \frac{\partial}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{$$

Consider a nonlinear system

$$\dot{x}_1 = x_1 \sin x_2 + x_2 u = \int_{\Gamma} (x, y) dx$$

 $\dot{x}_2 = x_1 e^{-x_2} + u^2$

with output

$$y = 2x_1x_2 + x_2^2$$

Assuming the system is given a desired trajectory and input

$$x^d(t), u^d(t)$$

What is the linearized state space equation of this nonlinear system?

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \end{bmatrix}_{|x^4, y^4} = \begin{bmatrix} s_{10}^2 x_2 & x_{10} s_{10} + y_{10} \\ e^{-x_2} & x_{10}^2 + y_{10} \end{bmatrix}_{|x^4, y^4} = \begin{bmatrix} s_{10}^2 x_2 & x_{10} s_{10} + y_{10} \\ e^{-x_2} & x_{10}^2 + y_{10} \end{bmatrix}_{|x^4, y^4}$$

Gain scheduling control

gain scheduling: is used to describe any controller that depends on a set of measured parameters in the system.

Consider the stabilizing control of a nonlinear system with jacobian linearization:

Given x_d and u_d are constants, then

$$\dot{\delta}_{\mathsf{X}} = \mathsf{A}\delta_{\mathsf{X}} + \mathsf{B}\delta_{\mathsf{U}}$$

where A and B are constant matrix.
$$\lim_{t\to\infty} \delta x \to 0 \implies \delta_{x} = -k\delta_{x}$$
A-Bk is stable

The feedback control for stabilizing is

$$u = \delta_x + \lambda e = -k \delta_x + \lambda e$$

= $-k(x-xe) + \lambda e$

Gain scheduling control

General form of Gain scheduling:

$$u = -K(x, \mu)(x - x_d) + u_d$$

where $-K(x, \mu)$ depends on the current system state and an external parameter μ .

Example: Steering control with velocity scheduling.

$$\dot{x} = (\cos \theta) v, \qquad \dot{y} = (\sin \theta) v, \qquad \dot{\theta} = \frac{v}{l} \tan \phi,$$

$$\overrightarrow{y} = [v + v] \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \qquad \overrightarrow{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

Control objective: to follow a straight line in the x direction at lateral position y_r and fixed velocity v_r , a feasible trajectory:

- desired state $x_d = (\sqrt[4]{r}t, \sqrt[4]{r}, 0)$
- desired input $u_d = (\sqrt{\gamma}, 0)$

Linearize the system around the desired trajectory and obtain the error dynamics. $\int_{x} \int_{y}^{x} dy$

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial$$

$$\frac{dx}{dy} = C \frac{dx}{dx} = \overline{L}0 \quad | \quad 0 \right] \begin{bmatrix} \frac{dx}{dy} \\ \frac{dy}{dy} \end{bmatrix} = \delta y$$

$$\frac{dy}{dy} = C \frac{dx}{dx} = \overline{L}0 \quad | \quad 0 \right] \begin{bmatrix} \frac{dx}{dy} \\ \frac{dy}{dy} \end{bmatrix} = \delta y$$

$$\frac{dy}{dy} = V_r \frac{dy}{dy}$$

$$k_{1} = \frac{1}{Vr} a_{1} \qquad ; \quad k_{2} = \frac{1}{Vr} a_{2}$$

$$\delta v, \quad \delta \phi$$

$$V = V_{r} + \delta v$$

$$\phi = \phi_{d} + \delta \phi = \delta \phi = -\frac{1}{Vr} a_{1} (y - y_{r}) - \frac{1}{Vr} a_{2} \frac{\partial \theta}{\partial y}$$

$$0 \quad \partial y = \begin{bmatrix} 0 & 0 \\ a_{1} & a_{2} \end{bmatrix} = \begin{bmatrix} 0 & v_{r} \\ -a_{1} & -a_{2} \end{bmatrix}$$

$$det \left[\lambda^{2} - \begin{bmatrix} 0 & v_{r} \\ -a_{1} & -a_{2} \end{bmatrix} \right] = 0$$

$$det \left[\lambda - \frac{1}{Vr} - \frac{1}{Vr} \right] = 0$$

$$det \left[\lambda - \frac{1}{Vr} - \frac{1}{Vr} \right] = 0$$

$$\lambda(\lambda + a_{2}) + a_{1}Vr = \lambda^{2} + a_{2}\lambda + a_{1}Vr$$

$$-a_{1}Vr + a_{2}Vr + a_{3}Vr = \lambda^{2} + a_{4}Vr + a_{4}Vr$$

$$(2) \quad V_{r} \mid arge \Rightarrow \emptyset \quad snall \qquad 0 \quad V_{r} = 0 \Rightarrow \phi \quad infinite = \frac{2}{Vr}$$

$$\begin{cases} V \\ \phi \end{cases} = - \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \frac{\alpha_1 \ell}{Vr} & \frac{\alpha_2 \ell}{Vr} \end{bmatrix} \begin{bmatrix} X - W t \\ y - y_r \\ \theta \end{bmatrix} + \begin{bmatrix} V_r \\ 0 \end{bmatrix}$$

$$K(X, W) = Kd \qquad d_X \qquad Ud$$

Trajectory generator

$$\dot{x}_d = f(x_d, u_d)$$

where

- x_d is the desired state trajectory.
- u_d is the feedforward signal: Given the system $x(0) = x_d(0)$, the input u_d , if **no disturbances**, **no initial state error**, and **no modeling error**, the system $x(t) = x_d(t)$ for all t.

We also call $x_d(t)$, for $t \ge 0$ a **feasible** trajectory of the system.

Trajectory generator

Consider a chain of integrator

$$\dot{x} = v, \quad \dot{v} = a$$

control input u = a.

Design the controller that the system trajectory tracks

$$x_d(t) = 1 + t^2 + 3t^3$$
 for $t \in [0, T]$.

$$\dot{x}_d = V_d = 2t + 9t^2$$

 $\dot{v}_d = a = 2 + 9t$

$$\dot{v}_{d} = a = 2 + / 3 t$$

the feedforward signal is $u_d = \frac{1}{2t} |\delta t|$

Trajectory Generation and Differential Flatness

Additional Performance Requirement:

- input saturation constraints |u(t)| < M, state constraints $g(x) \le 0$ and tracking constraints y(t) = r(t), each of which gives an algebraic constraint on the states or inputs at each instant in time.
- Also to optimize a function by choosing $(x_d(t), u_d(t))$ to minimize

$$\int_{t=0}^{T} L(x,u)dt + V(x(T),u(T)).$$

where L(x, u) is the running cost, and V(x(T), u(T)) is the terminal cost.

Examples:

- **1** minimum effort: $\int_{t=0}^{T} |u|^2 dt$.
- minimum jerk: x is the position, $x^{(3)}$ is the jerk: $\int_{t-n}^{T} |x^{(3)}|^2 dt$.
- etc.

Differential flatness

Example: Consider a Dubin's car dynamical system:

$$\dot{x} = v \cos \theta, \quad \dot{y} = v \sin \theta, \quad \dot{\theta} = \frac{v}{\ell} \tan \phi.$$

$$\dot{x}_{\ell} = v_{\ell} \cos \theta \, d \quad \dot{y}_{\ell} = v_{\ell} \sin \theta \, d \quad \phi_{\ell} = \tan^{-1} \left(\frac{v_{\ell} \partial u}{v_{\ell} \partial u} \right)$$

$$\phi_d = \tan^{-1} \left(\frac{L \dot{\Theta} d}{V d} \right)$$

Suppose that we are given a trajectory for the rear wheels of the system, $x_d(t)$ and $y_d(t)$:

Can we solve for ...

$$\begin{array}{lll}
\bullet & \theta_{d}(t) &= & \tan^{-1}\left(\begin{array}{c} \dot{y} \dot{d} \\ \dot{\chi} \dot{d} \end{array}\right) &= & \tan^{-1}\left(\begin{array}{c} \dot{\chi}_{2}(t) \\ \dot{\chi}_{3}(t) \end{array}\right) &= & \tan^{-1}\left(\begin{array}{c} \dot{z}_{2}(t) \\ \dot{z}_{3}(t) \end{array}\right) \\
\bullet & V_{d}(t) &= & \chi_{d} / \cos(2t)
\end{array}$$

•
$$V_d(t) = \chi_d/c_501$$

•
$$V_d(t) = \dot{x}_d / \cos \theta d$$

• $\phi_d(t) = \tan^{-1} \left(\frac{\dot{y}_d}{\dot{y}_d} \right)$

Differentially flatness

Definition 1.1 (Differential flatness). A nonlinear system (1.1) is differentially flat if there exists a function α such that

$$\vec{z} = \alpha(x, u, \dot{u}, \dots, u^{(p)})$$

and we can write the solutions of the nonlinear system as functions of z and a finite number of derivatives

$$\vec{x} = \beta(z, \dot{z}, \dots, z^{(q)}),$$

$$\vec{u} = \gamma(z, \dot{z}, \dots, z^{(q)}).$$
(1.4)

- z: Flat output.
- in Dubins car: $z = [x_d, y_d]^T$. $z = \alpha(x, u u^{(r)}) = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$

Trajectory Generation and Differential Flatness

 $\dot{x} = f(x, u), \qquad x(0) = x_0, x(T) = x_f.$

If the system is differentially flat then

$$x(0) = \beta(z(0), \dot{z}(0), \dots, z^{(q)}(0)) = x_0,$$

$$x(T) = \gamma(z(T), \dot{z}(T), \dots, z^{(q)}(T)) = x_f,$$

Suppose we aims to generate a trajectory:

$$\dot{x} = f(x, u)$$
 $x(0) = x_0$, $x(T) = x_f$

Any trajectory for z that satisfies these boundary conditions will be a feasible trajectory for the system.

Trajectory generation

Let $z(t) = \sum_{i=1}^{N} \alpha_i \phi_i(t)$ where $\phi_i(t)$ is a basis function with variable t.

Formulate the linear matrix equations for trajectory generation.

$$\frac{Z(t)}{Z(0)} = \frac{Z}{Z(0)} \begin{pmatrix} \chi(0) = \beta(\frac{1}{2}(0), \frac{1}{2}(0) \cdots Z(0)) \\ \chi(\tau) = \beta(\frac{1}{2}(1), \frac{1}{2}(1) \cdots Z(0)) \end{pmatrix} \quad \text{unknowns} \\ \chi(\tau) = \beta(\frac{1}{2}(1), \frac{1}{2}(1) \cdots Z(0)) \end{pmatrix} \quad \text{unknowns} \\ \chi(\tau) = \frac{Z}{Z(0)} \begin{pmatrix} \chi(\tau) = \frac{Z}{Z(0)} \\ \chi(\tau) = \frac{Z}{Z(0)} \end{pmatrix} \quad \text{unknowns} \\ \chi(\tau) = \frac{Z}{Z(0)} \begin{pmatrix} \chi(\tau) \\ \chi(\tau) \end{pmatrix} \quad \text{distance} \quad \text{distan$$

Example: nonholonomic integrator

using simple polynomials of time as basis:

$$\phi_{1,i}(t)=t^i.$$

Given x(0) = [1, 2, 10] and x(T) = [2, 12, 20]. Solve for the feasible trajectories.

Matlab example: Vehicle tracking

Consider a dubins car:

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = w = \frac{v}{t} \tan \theta$$

where x, y, θ are position and turning angle of the vehicle. v and w are linear and angular velocity.

The system is "differentially flat" and fully controllable. in matlab, we demonstrate

- Trajectory planning.
- Jacobian Linearization.
- Feedback control for trajectory tracking.

T=10

VdiD

Conclusion

- A nominal trajectories and inputs that satisfy the equations of motion for a differentially flat system can be computed in a computationally efficient way (solving a set of algebraic equations).
- Constraints of the system the constraints for the flat output:
 - Bounds on the inputs, can be transformed into the flat output space and (typically) become limits on the curvature or higher order derivative properties of the curve.
 - Performance index can be transformed and becomes a functional depending on the flat outputs and their derivatives up to some order.
- Unfortunately, general conditions for flatness are not known,
- but many important class of nonlinear systems, including feedback linearizable systems, are differential flat.