Deepfake Detection System

Domain: Deep Learning

Guide By: Prof. Taware R.K.

June 12, 2025

Presented By:

Nigade Jaydeep Popatrao Avatade Rohan Ramdas Bagal Yashkumar Ramchandra Shinde Nikhil Kailas

Problem Statement

To Design and Develop a Deep learning Algorithm to classify videos are either deepfake or genuine (Pristine).

Introduction

Deepfake is a technique for human image synthesis based on artificial intelligence. Deepfakes are created by combining and superimposing existing images and videos onto source images or videos using a deep learning technique known as generative adversarial network (GAN).

Motivation

- Fake News
- Malicious Hoaxes
- Financial Fraud
- Celebrity Scandals
- Political Manipulation

Objectives

- Create a model to classify videos as deepfake or genuine
- Automatically detect deepfakes with high accuracy
- Improve accuracy and reduce errors in the classification
- Provide a simple interface for users to upload and check videos
- Handle different types of deepfakes effectively.

Technologies

- Deep Learning and AI: Utilizing CNNs and LSTMs for pattern recognition in deepfake detection.
- Data Handling: Processing datasets like Celeb-DF and FaceForensics++ for training and validation.
- Web Application Development: Developing a scalable platform for real-time video analysis and deepfake detection.

System Architecture

Deepfake Creation

Algorithm: Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN):

- Purpose: Used for feature extraction from video frames.
- Process:
 - Extract visual features like edges, textures, and patterns from video frames.
 - 2 Apply convolution layers to capture spatial hierarchies in the frames.
 - 3 Use pooling layers to reduce dimensionality and retain important features.
- Output: Extracted features used for distinguishing between deepfake and genuine frames.

Algorithm: Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM):

- **Purpose:** Designed for sequence modeling of video data.
- Process:
 - Capture temporal dependencies by analyzing sequential video frames.
 - 2 Use LSTM layers to learn long-term relationships between frames.
 - 3 Combine sequential data from multiple frames for better context understanding.
- Output: Temporal features that help classify videos as deepfake or genuine.

Algorithm: Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN):

- Purpose: Employed to generate realistic deepfake samples.
- Process:
 - 1 Train a generator to create synthetic deepfake videos.
 - 2 Use a discriminator to distinguish between real and generated videos.
 - 3 The generator and discriminator compete to improve their performance.
- Output: Generated deepfake samples used for training the detection model.

Literature Survey

Deference	Commence	Vasu
Reference	Summary	Year
Deepfake Detec- tion System	Hybrid model using ResNet50 for spatial and LSTM for temporal analysis; 92% accuracy on Celeb-DF and FaceForensics++.	2023
Al-Based Detection of Deepfakes	Explores Al-based detection methods to handle more sophisticated deepfakes.	2022
Deepfake Detection Techniques	Latest advances in deepfake detection using improved GAN architectures.	2021
Deepfake Video of Mark Zuckerberg	High-accuracy detection of deepfakes; focuses on preserving biological signals.	2019
FaceForensics++	CNN detects artifacts by comparing generated face areas and their surroundings; lacks temporal analysis.	2019
Celeb-DF	Large-scale dataset for deepfake detection; contains diverse and high-quality data.	2019
Face Aging with GANs	Conditional GANs used to model face aging, tested on controlled datasets.	2017
Face2Face	Real-time face capture and reenactment of RGB videos using face swapping techniques.	2016

System Requirements

Hardware:

- High-performance GPU
- Sufficient storage
- Computer or mobile device

Software:

- TensorFlow, Keras, OpenCV, FFmpeg
- Python, Jupyter Notebook, Visual Studio Code
- Windows, macOS, or Linux

Data Flow Diagram

Use Case Diagram

Class Diagram

Activity Diagram

Sequence Diagram

Deepfake Detection

Deepfake Detection

Result Accuracy

Results on the FaceForensics++ dataset showed that increasing the sequence length from 10 to 100 frames led to a consistent improvement in accuracy, above 94percentage.

Conclusion

Deepfake detection is crucial for mitigating digital misinformation. Our system successfully identifies deepfake videos with high accuracy.

References

- FaceForensics++: Learning to Detect Manipulated Facial Images, arXiv:1901.08971.
- Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics, arXiv:1909.12962.
- Face Aging with Conditional Generative Adversarial Networks, arXiv:1702.01983.
- Face2Face: Real-time Face Capture and Reenactment of RGB Videos, IEEE Conference on Computer Vision and Pattern Recognition.
- Deepfake Video of Mark Zuckerberg Goes Viral on Eve of House A.I. Hearing, accessed on 26 March 2020.

Thank You!