Lecture 2: Prime Factorization and Greatest Common divisors

Fundamental theorem of arithmetics

Every positive integer n has a unique prime factorization.

$$n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$$

Proof First we prove the existence. If n is a prime, then n = n. If n is a composite number, then $n = n_1 n_2$. We can continue the process on n_1 and n_2 until we get a prime fractorization.

Second, we prove the uniqueness. If there are two factorizations,

$$n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}=q_1^{m_1}q_2^{m_2}\cdots q_l^{m_l}$$

Since p_1 is a factor of the right hand side, p_1 must equal to some q_i . Now dividing both sides on p_1 to get a smaller product. So it reduces to prove uniqueness for smaller n. Now we may repeat such argument to prove the uniqueness. QED.

Example

- $420 = 10 \cdot 42 = (2 \cdot 5) \cdot (2 \cdot 3 \cdot 7) = 2^2 \cdot 3 \cdot 5 \cdot 7$
- $729 = 9^3$
- 181 = ? not trivial, so it may be a prime. suffices to divide prime numbers up to 13.

Perfect squares

Perfect squares are of the form n^2 . Its prime factorization has all even powers.

Example

•
$$2^{10} \cdot 3^6 \cdot 7^{30} = (2^5)^2 (3^3)^2 (7^{15})^2$$

It is useful to memorize them checking a number is prime of not. Below is the list of squares of numbers from 1 to 30, split into three columns:

1 to 10 Squares	11 to 20 Squares	21 to 30 Squares
$1^2 = 1$	$11^2 = 121$	$21^2 = 441$

1 to 10 Squares	11 to 20 Squares	21 to 30 Squares
$2^2=4$	$12^2 = 144$	$22^2 = 484$
$3^2 = 9$	$13^2 = 169$	$23^2 = 529$
$4^2 = 16$	$14^2 = 196$	$24^2 = 576$
$5^2=25$	$15^2=225$	$25^2 = 625$
$6^2 = 36$	$16^2 = 256$	$26^2 = 676$
$7^2=49$	$17^2 = 289$	$27^2 = 729$
$8^2 = 64$	$18^2 = 324$	$28^2 = 784$
$9^2 = 81$	$19^2 = 361$	$29^2 = 841$
$10^2 = 100$	$20^2 = 400$	$30^2 = 900$

Factor counting formula

If $n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$, then the number of factors are

$$(n_1+1)(n_2+1)\cdots(n_k+1).$$

Example

- ullet $n=p^a$ has a+1 factors: $1=p^0, p=p^1, p^2, ..., p^a$
- $n=p_1^ap_2^b$ has (a+1)(b+1) factors.

Product of factors

Factors usually come in pairs, $n=a\cdot (n/a)$. For example,

- $\bullet \ \ 42=1*42=2*21=3*14=7*6$
- $169 = 1 * 169 = 13^2$.

So the product of all factors of n is $n^{\frac{\#\text{factors}}{2}}$. The number of factors is even if and only if n is a perfect square.

Sum of factors

The factors of $20=2^2\cdot 7$ are

• $1 = 2^0, 2 = 2^1, 4 = 2^2$

•
$$7 = 2^0 \cdot 7, 14 = 2^1 \cdot 7, 28 = 2^2 \cdot 7$$

Their sum equals (1+2+4)(1+7)=56. This generalizes to all cases. If $n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}$, then the sum of factors are

$$(1+p_1+p_1^2+\cdots+p_1^{n_1})\cdots (1+p_k+p_k^2+\cdots+p_k^{n_k})$$

If the sum of factors equals the number itself, we call it a **perfect number**. The first two are 6 and 28.

Homework Use ChatGPT to understand the relation between perfect numbers and Mersenne primes.

Class activity

Any prime number is either 2 or an odd prime number.

Theorem Any odd prime number of the form 4k+1 is a sum of two squares.

· very difficult, need college math

Theorem Any odd prime number of the form 4k+3 is not a sum of two squares.

· relatively easy, proved in later lectures

Prime table up to 300: