데이터사이언스응용 (Capstone design)

김응희

ehkim@sunmoon.ac.kr

Week 11

Last week,

순번	팀명	발표 날짜	
1	YOLO	11.04	
2	2 AKI 11.04		
3	Harmony	11.04	
4	안시성	11.04	
5	H:J	11.04/11.06	
6	Ajsoftware	11.06	
7	제니리아	11.06	

발표 시간	질의응답 시간	1팀 당 소요 시간	전체 소요 시간
15분	5분	20분	140분

Main learning is about

SPACE

Fisher kernel				
Graph kernels				
Kernel smoother				
Polynomial kernel				
Radial basis function kernel (RBF)				
String kernels				
Neural tangent kernel				
Neural network Gaussian process (NNGP) kernel				

$$x_3 = x_1^2 + x_2^2$$

Original dimension: x_1, x_2

Degree	1	2	3	
Tools	x_1, x_2	$x_1, x_2, $ $x_1^2, x_1 x_2, x_2^2$	$x_{1}, x_{2},$ $x_{1}^{2}, x_{1}x_{2}, x_{2}^{2},$ $x_{1}^{3}, x_{1}^{2}x_{2}, x_{1}x_{2}^{2}, x_{2}^{3}$	
E.g.	$ 2x_1 - x_2 = 1, 5x_1 + 4x_2 = 3 $	$\begin{array}{c} x_1 x_2 = 1, \\ 3x_1^2 - x_2^2 = 7 \end{array}$	$x_1^3 + 2x_1^2 - x_1 - x_2 = 2$	

Concept of radial basis function (RBF)

Issue: how can we find coefficient of radial basis?

The RBF neuron

- RBF neuron stores a "prototype vector (center)"
- It measures of **similarity**
- It's response value (output) is also called its "activation value"

RBF neural activation function

Gaussian

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$w/\mu = 5 \& \sigma = 1$$

RBF neural activation function

Gaussian

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

BRF neural activation function

$$e^{-\beta||x-\mu||^2}$$

RBF neural activation function

Gaussian

 $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

BRF neural activation function

$$e^{-\beta||x-\mu||^2}$$

It controls the height of the Gaussian It is redundant with the weights

RBF neural activation function

Gaussian

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

It controls the width of the Gaussian

BRF neural activation function

$$e^{-\beta||x-\mu||^2}$$

RBF neural activation function

Gaussian

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Difference between scalar x and μ

BRF neural activation function

$$e^{-\beta||x-\mu||^2}$$

x: n —dimensional vector

 μ : prototype vector (center)

 $||x - \mu||$: Euclidean distance of x and μ

The output node

- Generally, one per category
- By **weighted sum** we mean that an output node associates a weight value with each of the RBF neurons, and multiplies the **neuron's activation** by this **weight** before adding it to the total response.

RBFN: Radial basis function network

Training the RBFN

Prototypes (center vectors)

Selecting β values

Output weights

Prototypes: central vectors

Prototypes: central vectors

20 prototypes using 20-means clustering for two dimensional training data

10 —means clustering for instances belong to blue group

10 —means clustering for instances belong to red group

Training the RBFN

Prototypes (center vectors)

Selecting β values

Output weights

β values

$$\sigma = \frac{1}{m} \sum_{i=1}^{m} ||x_i - \mu||$$

where is the # of blue instances in the green cluster

Training the RBFN

Prototypes (center vectors)

Selecting β values

Output weights

Output weights

- Using gradient decent
- Training input = **activation values** of the RBF neurons
- Don't forget the bias term
- Gradient descent must be run separately for each output node

Result with sample data

Result with sample data

Time for SVM to play its role!

Popular kernel functions

Fisher kernel
Graph kernels
Kernel smoother
Polynomial kernel
Radial basis function kernel (RBF)
String kernels
Neural tangent kernel
Neural network Gaussian process (NNGP) kernel

 $SVM \times RBF \times Scikit$ -learn

Scikit-learn

- Scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including
 - Decision tree & random forest
 - Linear regression
 - Perceptron
 - Artificial neural network
 - Support vector machine
 - Etc.

```
from sklearn.svm import SVC

svm = SVC() # Support vector machine for classification
svm.fit(X, y) # Train SVM on training data (X: a set of instances, y: a set of their labels)
```

svm_demo.ipynb 다운로드 & jupyter lab/notebook으로 오픈

• e-강의동 > 데이터사이언스응용 > 11주차 강의자료 > svm_demo.ipynb

• 필요한 package 및 library importing

```
# Import packages to visualize the classifer
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
import warnings

# Import packages to do the classifying
import numpy as np
from sklearn.svm import SVC
```

• 학습 데이터(XOR problem) 생성 및 가시화(Visualization)

```
# Training data (XOR problem) generation and visualization
np.random.seed(0)
X xor = np.random.randn(200, 2)
y\_xor = np.logical\_xor(X\_xor[:, 0] > 0,
                        X \times [:, 1] > 0
y xor = np.where(y xor, 1, -1)
plt.scatter(X xor[y xor == 1, 0],
            X \times xor[y \times xor == 1, 1],
            c='b', marker='x',
            label='1')
plt.scatter(X xor[y xor == -1, 0],
            X \times [y \times x = -1, 1],
            c='r',
            marker='s',
             label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight layout()
plt.show()
```

• 학습 데이터(XOR problem) 생성 및 가시화

• SVM의 decision boundary 가시화를 위한 코드

```
# For visualization of decision boundray of SVM
def versiontuple(v):
    return tuple(map(int, (v.split("."))))
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    # plot the decision surface
    x1_{\min}, x1_{\max} = X[:, 0].\min() - 1, X[:, 0].\max() + 1
    x2 min, x2 max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1 min, x1 max, resolution),
                           np.arange(x2 min, x2 max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)
```

• SVM 학습 및 decision boundary 가시화

```
# Create and train a SVC classifier
svm = SVC()
svm.fit(X_xor, y_xor)

# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
```


sklearn.svm.SVC

kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}, default='rbf'

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

sklearn.svm.SVC

Gamma & C

Parameter Gamma $\gamma = \beta$

Parameter Gamma $\gamma = \beta$

With high β : (relatively) few instances influence the decision boundary

With $low \beta$: (relatively) many instances influence the decision boundary

Demonstration with various Gammas

• Gamma = 0.01

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 0.01)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                           1
                                          -1
                                          -2
                                          -3
                                                -3
                                                        -2
```

Demonstration with various Gammas

• Gamma = 1.0

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 1.0)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                          1
                                           0
                                          -1
                                          -2
                                          -3
                                                     -2
                                               -3
                                                                        1
                                                                              2
```

Demonstration with various Gammas

• Gamma = 100

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 100)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                         1
                                         -1
                                         -2
                                         -3
```

sklearn.svm.SVC

Gamma & C

Parameter C

• Penalty for misclassifying a data point

With high C: heavily penalized for misclassified data (overfitting: small margin)

With low C: okay with misclassified data points (underfitting: large margin)

Demonstration with various Cs w/ fixed gamma = 0.01

• C = 1

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 0.01, C=1)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                          0
                                         -1
                                         -2
                                         -3
```

Demonstration with various Cs w/ fixed gamma = 0.01

• C = 1,000

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 0.01, C=1000)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                        1 -
                                       -1
                                       -2
                                       -3
                                              -3
                                                     -2
                                                                                   2
```

Demonstration with various Cs w/ fixed gamma = 0.01

• C = 100,000

```
# Create and train a SVC classifier
svm = SVC(kernel='rbf', gamma = 0.01, C=1000000)
svm.fit(X_xor, y_xor)
# Visualize the decision boundaries
plot_decision_regions(X_xor, y_xor, classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
                                              x 1
                                          -1
                                          -2
                                          -3
                                                       -2
                                                -3
```

https://scikit-learn.org/stable/modules/grid_search.html

ODPia 소셜맵 보완 과제 최종 보고
(발표용)

서울대학교 의생명지식공학연구실

2015. 12. 22

- 0. 목 차
 - 1. 문제 정의 및 모델링
 - 2. 상세 목표 및 전략
 - 3. 성능 평가
 - 4. 제한점 및 향후 계획

1. 문제 정의 및 목표 모 델링

■ 문제 정의

- 대상: ODPia 소셜 맵 내 존재하는 다의어 집합 (이하 관심 다의어)
 - 다의어: 동일한 syntax를 갖지만, 문맥에 따라 다양한 의미로 해석 가능한 literal
 - 문맥: 관심 다의어가 등장하는 문장/문서
- 목표: 문맥 내, 관심 다의어 집합의 어의 중의성 (Word Sense Disambiguation, 이하 WSD) 해소
- 결과: 문맥 내, 관심 다의어 집합의 WSD 해소 모듈 및 정량적 성능 검증 결과

<그림 1. ODPia 소셜 맵>

1. 문제 정의 및 목표 모 델링

■ 목표 모델링

- 정의역: 관심 다의어 집합 × 문맥집합

- 치역: 소셜 맵의 하위 카테고리 집합

- 함수 (분류기) f: 관심다의어 \times 문맥 \rightarrow 하위 카테고리

<그림 1. ODPia 소셜 맵>

<그림 2. 목표 모델링 개념화>

- 상세 목표
 - 1. 높은 분류 정확도
 - 2. 넓은 적용 범위. ODPia 소셜 맵>

<그림 2. 목표 모델링 개념화>

• 상세 목표 달성을 위한 전략

1. 높은 분류 정확도

<그림 3. SVM 특장점 및 도입 사유>

• 상세 목표 달성을 위한 전략

1. 높은 분류 정확도

<그림 3. 정의역 벡터화 도식화>

• 상세 목표 달성을 위한 전략

1. 높은 분류 정확도

<그림 3. 정의역 벡터화 도식화>

상세 목표 달성을 위한 전략

- 2. 넓은 적용 범위: ODPia 소셜 맵 토폴로지 정보 활용
- 토폴로지 정보
- ODPia 소셜 맵 내, 다의어 수: 5,610
- ODPia 소셜 맵 내, 다의어의 평균 차수: 2.4
- ODPia 소셜 맵 내, 다의어의 차수 범위: 2-9

- 전략: 적은 자원 소모 → 적용 범위 확장

 1. 차수 최대 다의어 기반 (Top-down)

 차수 최대 다의어 기반 (Top-down)

 차수 최대 다의어: 이역명·대조인, 명자인, 박숙인교수, 문화예술인, 스포츠인, 국내인물, 공무원/교육인, 국양관명 기업인, 대용본화연예인)

 대응문화연예인, 문화예술인(1016)

 공무원/교육인, 현술인/교수(SSS)

 대응문화연예인, 문화예술인, 학술인/교수(219)

 공무원/교육인, 문화예술인, 학술인/교수(219)

상세 목표 달성을 위한 전략

2. 넓은 적용 범위: ODPia 소셜 맵 토폴로지 정보 활용

1. 차수 최대 다의어 기반 (Top-down)

- 차수 최대 다의어: 이태영-(법조인, 정치인, 학술인/교수, 문화예술인, 스포츠인, 국내인물, 공무원/교육인, 국영/민영 기업인, 대중문화연예인)

<그림 4. 차수 최대 다의어 기반 8부류 분류기>

상세 목표 달성을 위한 전략 2. 넓은 적용 범위: ODPia 소셜 맵 토폴로지 정보 활용 2. 다의아카테크리 단번도 조합기반 (Bottom-up) - 대중문화연예인. 문화예술인(1016)

공무원/교육인, 학술인/교수(585)
 대중문화연예인, 스포츠인(250)
 공무원/교육인, 문화예술인, 학술인/교수(219)

<그림 5. 다의어-카테고리 다빈도 조합 기반, 다수 SVM 분류기> 12개의 SVM 기반 분류기 (약 50% 적용 가능) 매중문화연예인 공무원/교육인 → 대중문화연예인 → 공무원/교육인 학습 데이터 학습 데이터 SVM 기반 SVM 기반 (678)(544)분류기 A 분류기 B (2부류 분류기) (2부류 분류기) 문화예술인 학술인/교수 → 문화예술인 → 학술인/교수 학습 데이터 학습 데이터 (1,159)(433)٨ 테스트 데이터 테스트 데이터

3. 성능 평 가

• Top-down 기반, 8부류 SV独 분류지 知안 (다양동) validation)

	법조인	공무원 /교육인	학술인/교수	대중문화 연예인	문화예술인	스포츠인	정치인	국영/민영 기업인
법조인	321	0	1	0	0	0	0	5
공무원/교육인	22	441	41	16	3	0	6	15
학술인/교수	6	16	394	4	3	0	2	8
대중문화연예 인	3	156	15	367	95	0	25	17
문화예술인	10	31	29	72	949	0	21	47
스포츠인	0	0	0	0	0	457	0	0
정치인	20	57	14	15	11	83	462	14
국영/민영 기업인	14	91	5	9	21	2	3	307

평균 정확도: 80.3%

3. 성능 평 가

• Bottom-up 기반, 12개의 SVM 분류기 (10-fold cross validation)

	대중문화 연예인	문화예술인		공무원 /교육인	학술인/교수		대중문화 연예인	스포츠인
대중문화 연예인	673	5	공무원/교육인	537	7	대중문화 연예인	677	1
문화예술인	67	1092	학술인/교수	0	433	스포츠인	0	457

	공무원 /교육인	학술인/교수	문화예술인		대중문화 연예인	문화예술인	스포츠인		공무원/교육 인	정치인
공무원 /교육인	536	5	3	대중문화 연예인	671	7	0	공무원/교육 인	540	4
학술인/교수	0	433	0	문화예술인	73	1086	0			
문화예술인	17	33	1109	스포츠인	0	0	457	정치인	44	632

3. 성능 평 가

• Bottom-up 기반, 12개의 SVM 분류기 (10-fold cross validation)

	공무원 /교육인	학술인 /교수	정치인
공무원 /교육인	533	8	3
학술인 /교수	0	433	0
정치인	34	8	634

	법조인	공무원 /교육인
법조인	194	133
공무원 /교육인	46	498

	공무원 /교육인	학술인/교 수	스포츠인
공무원 /교육인	534	10	0
학술인 /교수	0	433	0
스포츠인	0	0	457

	대중문화 연예인	문화예술인	국영/민영 기업인
대중문화 연예인	675	1	2
문화예술인	43	1111	5
국영/민영 기업인	3	2	447

	공무원 /교육인	학술인 /교수	대중문화 연예인	문화예술 인
공무원 /교육인	534	5	4	1
학술인 /교수	0	433	0	0
대중문화 연예인	14	1	661	2
문화예술 <u>인</u>	19	36	60	1044

	아나운서/ 방송제작자	스포츠인
아나운서/ 방송제작자	562	1
스포츠인	0	457

평균 정확도: 96.5%

4. 제한점 및 향후 계획

- 제한점
- - 학습 데이터
- - 학습 데이터 볼륨 불충분
- - 학습 데이터의 대표성 검증 미흡
- - 적용 범위
- 50% ~ 60% 대의 적용 범위
- Lessons
- - 단일 SMART 분류기 vs. 다수 단순 분류기
- 향후 계획
- - 학습 데이터 질/양 향상
- - 적용 범위 확대
- - SVM 이외의 분류 방법론 도입 (ANN, 앙상블 기법 등)

감사합니다

Thank you