Professor: Fred Khoury

- If $\cos A = -\frac{5}{13}$ with A in QII and $\tan B = \frac{15}{8}$ with B in QIII, find the exact value of each of the 1. following:
 - a) cos(A-B)
- b) $\cos 2B$
- c) $\sin(A-B)$ d) $\tan(A-B)$

- If $\sin \theta = \frac{15}{17}$, $0 < \theta < \frac{\pi}{2}$, find 2.
 - a) $\cos 2\theta$

- b) $\sin 2\theta$ c) $\tan 2\theta$ d) $\sin \frac{\theta}{2}$ e) $\cos \frac{\theta}{2}$
- **3.** Find the solution of the equation that are in the interval $[0, 2\pi)$
 - a) $2\cos\alpha + \tan\alpha = \sec\alpha$
 - b) $\csc^5 x 4\csc x = 0$
 - c) $2\cos^3 x + \cos^2 x 2\cos x 1 = 0$
 - d) $2 \sec x \sin x + 2 = 4 \sin x + \sec x$
 - e) $\sin x \cos 2x + \cos x \sin 2x = 0$
 - $\cos \pi x + \sin \pi x = 0$
- 4. Find the exact value of the expression whenever it is defined:
 - a) $\sin \left| \arccos \left(-\frac{\sqrt{3}}{2} \right) \right|$
- e) tan(arccos x)
- a) $\sin\left[\arccos\left(-\frac{\sqrt{3}}{2}\right)\right]$ e) $\tan\left(\arccos x\right)$ b) $\cos\left(\sin^{-1}\frac{15}{17} \sin^{-1}\frac{8}{17}\right)$ f) $\sec\left(\sin^{-1}\frac{x}{\sqrt{x^2 + 4}}\right)$
- c) $\sin\left(\sin^{-1}\frac{5}{13} \cos^{-1}\left(-\frac{3}{5}\right)\right)$ g) $\tan\left(2\arcsin\frac{2}{5}\right)$
- d) $\tan \left[\cos^{-1}\frac{1}{2}-\sin^{-1}\left(-\frac{1}{2}\right)\right]$ h) $\sec \left(\arctan\frac{x-2}{2}\right)$

- i) $\tan \left(\operatorname{arcsec} \frac{\sqrt{x^2 + 25}}{x} \right)$
- j) $\sec\left(\tan^{-1}\frac{\sqrt{x^2-9}}{3}\right)$

- 5. Sketch the graph of the equation
 - a) $y = \cos^{-1} 3x$
 - b) $y = 1 \sin^{-1} x$
- Convert to rectangular coordinates $\left(-\sqrt{2}, \frac{3\pi}{4}\right)$ 6.
- Convert to polar coordinates $(-1, \sqrt{3})$ 7.

- Convert to polar coordinates (-3, -3) $r \ge 0$ $0^{\circ} \le \theta < 360^{\circ}$ 8.
- 9. Write the equation in rectangular coordinates

a)
$$r^2 = 4\cos 2\theta$$
 b) $r(\cos \theta - \sin \theta) = 2$

- Find a polar equation that has the same graph as the equation in x and y.

$$a) y^2 = 6x$$

a)
$$y^2 = 6x$$
 b) $(x+2)^2 + (y-3)^2 = 13$

Write complex form in trigonometric form

a)
$$11+2i$$

b)
$$-2+3i$$

- Write $4cis\frac{\pi}{2}$ in standard form.
- Find the quotient $\frac{20cis(75^\circ)}{4cis(40^\circ)}$. Write the result in rectangular form.
- Find $(1+i)^{10}$ and express the result in rectangular form. **14.**
- Find *fifth* roots of $z = 1 + i\sqrt{3}$ and express the result in rectangular form.

Solution

1. a)
$$-\frac{140}{221}$$
 b) $-\frac{161}{289}$ c) $-\frac{171}{221}$ d) $\frac{171}{140}$

$$b) - \frac{161}{289}$$

$$c) - \frac{171}{221}$$

$$d) \frac{171}{140}$$

2. a)
$$-\frac{161}{289}$$
 b) $\frac{240}{289}$ c) $-\frac{240}{161}$ d) $\frac{3\sqrt{34}}{34}$ e) $\frac{5\sqrt{34}}{34}$

b)
$$\frac{240}{289}$$

$$c) - \frac{240}{161}$$

$$d) \frac{3\sqrt{34}}{34}$$

$$e) \ \frac{5\sqrt{34}}{34}$$

3. a)
$$\alpha = \frac{7\pi}{6}, \frac{11\pi}{6}$$
 b) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ **c**) $x = 0, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}$

b)
$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

c)
$$x = 0, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}$$

d)
$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{3}, \frac{5\pi}{3}$$

e)
$$x = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}$$

d)
$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{3}, \frac{5\pi}{3}$$
 e) $x = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}$ **f**) $x = \frac{3}{4}, \frac{7}{4}, \frac{11}{4}, \frac{15}{4}, \frac{19}{4}, \frac{23}{4}$

4.
$$a) \frac{1}{2}$$

b)
$$\frac{240}{289}$$

$$c) - \frac{63}{65}$$

$$e) \frac{\sqrt{1-x^2}}{x}$$

4. a)
$$\frac{1}{2}$$
 b) $\frac{240}{289}$ c) $-\frac{63}{65}$ d) not defined e) $\frac{\sqrt{1-x^2}}{x}$ f) $\frac{\sqrt{x^2+4}}{2}$

g)
$$\frac{4\sqrt{21}}{17}$$

g)
$$\frac{4\sqrt{21}}{17}$$
 h) $\frac{1}{2}\sqrt{x^2-4x+8}$ **i**) $\frac{5}{x}$ **j**) $\frac{x}{3}$

$$i) \frac{5}{x}$$

$$j)\frac{x}{3}$$

6.
$$(1, -1)$$

8.
$$(3\sqrt{2}, 225^{\circ})$$

9. a)
$$(x^2 + y^2)^4 = 4x^2 - 4y^2$$
 b) $x - y = 2$

10. a)
$$r = 6\frac{\cos\theta}{\sin^2\theta}$$
 b) $r = 6\sin\theta - 4\cos\theta$

- **11.** *a*) $5\sqrt{5}$ *cis*10.3° *b*) $\sqrt{13}$ *cis*123.69°
- **12.** 4*i*
- **13.** 4.1 + 2.87*i*
- **14.** 32*i*
- **15.** $\sqrt[5]{2}$ cis12° $\sqrt[5]{2}$ cis84° $\sqrt[5]{2}$ cis156° $\sqrt[5]{2}$ cis228° $\sqrt[5]{2}$ cis300°