PROPOSITIONAL LOGIC

CSE 511A: Introduction to Artificial Intelligence

WHAT IS AN AGENT? Intelligent Agents think like humans think rationally act like humans act rationally

WHAT IS AN AGENT?

Intelligent Agents

1

think like humans think rationally act like humans act rationally

OVERVIEW

2

4

OVERVIEW

OVERVIEW

Facts	Sentences	
If the head comes up in a coin toss, I win	H⇒lW	
If the tail comes up in a coin toss, you lose	T⇒UL	
Either the head or the tail must come up in a coin toss	H⇔¬T	
You losing is equivalent to me winning	lW⇔UL	

entail

I win

5

OVERVIEW

- Ontological commitment: what exists facts? objects? time? belief?
- Epistemological commitment: what states of knowledge?

anguage Ontological Commitment		Epistemological Commitment		
Propositional Logic	facts	true/false/unknown		
First-order Logic	facts, objects, relations	true/false/unknown		
Temporal Logic	facts, objects, relations, times	true/false/unknown		
Probability Logic	facts	degree of belief		
Fuzzy Logic	facts, degrees of truth	known interval value		

7

6

OVERVIEW

- Ontological commitment: what exists facts? objects? time? belief?
- Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment	
Propositional Logic	facts	true/false/unknown	
First-order Logic facts, objects, relations		true/false/unknown	
Temporal Logic	facts, objects, relations, times	true/false/unknown	
Probability Logic	facts	degree of belief	
Fuzzy Logic	facts, degrees of truth	known interval value	

PROPOSITIONAL LOGIC

Expression	Type English interpretation			
Р		P is true		
¬P	negation	P is false		
PVQ	disjunction	either P is true or Q is true or both are true		
PAQ	conjunction	both P and Q are true		
P⇒Q implication		if P is true, then Q is true		
P⇔Q equivalence		P and Q are either both true or both false		

PROPOSITIONAL LOGIC

Expression	is true iff
Р	P is true
¬Р	P is false
PVQ	P is true or Q is true
PAQ	P is true and Q is true
P⇒Q	P is false or Q is true (easier: false iff P is true and Q is false)
P⇔Q	P⇒Q is true and Q⇒P is true

9

PROPOSITIONAL LOGIC

Р	Q	¬P	PVQ	PAQ	P⇒Q	P⇔Q
TRUE	TRUE					
TRUE	FALSE					
FALSE	TRUE					
FALSE	FALSE					

called a truth table

10

PROPOSITIONAL LOGIC

ı	Р	Q	¬P	PvQ	PAQ	P⇒Q	P⇔Q
	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
	FALSE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	TRUE

called a *truth table*each row of the table is called a *model*

PROPOSITIONAL LOGIC

$$\neg(\neg P) \equiv P$$

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

$$PV(Q \land R) \equiv (PVQ) \land (PVR)$$

$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

PROPOSITIONAL LOGIC

- A sentence is *valid* if it is true in all models (all rows of the truth table are true)
 - e.g., A V ¬A (sentence is true irregardless of whether A is true or false)
- A sentence is *satisfiable* if it is true in some model (at least one row of the truth table is true)
 - e.g., A V B (sentence is true if A or B is true)
- A sentence is *unsatisfiable* if it is true in no model (all rows of the truth table are false)
 - e.g., $A \land \neg A$ (sentence is false irregardless of whether A is true or false)