Symmetric Encryption

Raphael Pertler

October 20, 2025

Encryption Schemes

Definition

An Encryption Scheme is a tuple (X,K,E,D) with:

- $X \subseteq \{0,1\}^*$ Plaintexts
- $K \subseteq \{0,1\}^*$ the finite Set of keys
- E is a probabilistic encryption algorithm with $x \in X; k \in K$ as inputs, so that $E(x,k) = y \in \{0,1\}^*$
- D is a deterministic decryption algo. with $y \in \{0,1\}^*$; $k \in K$ as inputs and returns $x \in X$

The Scheme has to satisfy the "perfect correctness" property:

$$\forall x \in X; k \in K : D(E(x,k)k) = x$$

y := E(x,k) is called a cyphertext. Y is the set of all possible cyphertexts. $Y \subseteq \{0,1\}^*$

Definition

Let X,K,E,D be an encryption scheme with deterministic encryption.

For $k \in K$ the function:

$$E(\cdot,k): X \to Y; x \to E(x,k)$$

Is called a Cipher.

Let $X = \{a,b\}$ (Set of Plaintexts) and $K = \{k_1,k_2,k_3\}$ (Set of Keys) With E(x,k) and D(y,k) defined by the table:

-	a	b
k_1	A	В
k_2	В	Α
k_3	A	$\overline{\mathbf{C}}$