Lab 11

$Wiktor\ Soral$

December 12th 2017

Linear regression with multiple predictors

Working with many dimensions

Working with many dimesions

Working with many dimesions

Working with many dimensions

Bayesian linear model

- $y \sim \mathcal{N}(\mu, \sigma^2)$ $\mu = \beta_0 + \sum_k \beta_k * x_k$ in other words y is distributed according to Normal distribution with mean μ and variance σ^2
- note that μ changes (is conditional) on the value of x_k
- where x_k is the kth predictor

Interactions

- $\mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- $\mu = (\beta_0 + \beta_1 x_1) + (\beta_2 + \beta_3 x_1) x_2$ $\mu = (\beta_0 + \beta_2 x_2) + (\beta_1 + \beta_3 x_2) x_1$
- in other words with interaction term x_1x_2 slope of x_2 can be represented as conditional on the values
- similarly slope of x_1 can be represented as conditional on the values of x_2