7. Metrické prostory (příklady, konvergence posloupností, spojitá a izometrická zobrazení, úplnost, Banachova věta o pevném bodu)

Metrický prostor

Metrickým prostorem $\mathcal{X}=(X,\rho)$ *budeme nazývat libovolnou množinu X* prvků, které nazýváme body, pokud na množině X je dána tzv. **vzdálenost**, což je jakákoliv jednoznačná nezáporná reálná funkce $\rho(x,y)$, která je definována pro každou dvojici $x,y \in X$ a která splňuje tyto tři podmínky:

- 1. $\rho(x,y) = 0$, když a jen když x = y;
- 2. $\forall x,y \in X: \rho(x,y) = \rho(y,x)$ (symetrie);
- 3. $\forall x,y,z \in X: \rho(x,y) + \rho(y,z) \ge \rho(x,z)$ (trojúhelníková nerovnost).

Příklady metrických prostorů:

- **prostor izolovaných bodů**: $\rho(x, y) = \begin{cases} 0 & \text{když } x = y \\ 1 & \text{když } x \neq y \end{cases}$
- množina D¹: $\rho(x,y) = |x,y|$ je např. číselná osa oboru hodnot jako \mathbb{Z} či \mathbb{R} ;
- množina Dⁿ uspořádaných *n*-tic: $\rho(x,y) = \sqrt{\sum_{k=1}^{n} (y_k x_k)^2}$ (Euklidovská metrika).

Konvergence posloupností, hromadné body

Otevřenou koulí $S(x_0,r)$ v metrickém prostoru \mathcal{X} se středem x_0 a poloměrem r budeme nazývat množinu bodů $x \in \mathcal{X}$, která vyhovuje podmínce:

$$\rho(x,x_0) < r$$

Uzavřenou koulí S x_0,r v metrickém prostoru \mathcal{X} budeme nazývat množinu bodů $x \in \mathcal{X}$, která vyhovuje podmínce:

$$\rho(x,x_0) \leq r$$

Otevřenou kouli poloměru ε se středem x_0 budeme nazývat ε -okolím bodu x_0 a značit $O_{\varepsilon}(x_0)$.

Bod *x* nazýváme **bodem uzávěru množiny** *M*, jestliže jeho libovolné okolí obsahuje alespoň jeden bod z *M*. Množina všech bodů uzávěru množiny *M* se označuje *M* a nazývá **uzávěrem** této množiny.

Protože každý bod, který náleží M, je bodem uzávěru množiny M (tento bod totiž leží v každém svém okolí), platí, že $M \subseteq M$. Množinu M, pro kterou platí M = M, nazýváme **uzavřenou**.

Bod *x* se nazývá **hromadným bodem množiny** *M*, jestliže jeho libovolné okolí obsahuje nekonečně mnoho bodů z *M*.

Nechť $x_1,x_2,...$ je posloupnost bodů v metrickém prostoru \mathcal{X} . Říkáme, že tato **posloupnost konverguje k bodu** $x \in \mathcal{X}$, jestliže každé ε -okolí $O_{\varepsilon}(x)$ bodu x obsahuje všechny body x_n počínaje od některého indexu $N(\varepsilon)$, tj. jestliže ke každému číslu $\varepsilon>0$ lze najít takové číslo $N(\varepsilon)$, že okolí $O_{\varepsilon}(x)$ obsahuje všechny body x_n , kde $n \ge N(\varepsilon)$. Bod x se nazývá limita posloupnosti $\{x_n\}$.

Předchozí definici lze vyslovit také tak, že posloupnost $\{x_n\}$, konverguje k bodu x, jestliže:

$$\lim_{n\to\infty}\rho(x,x_n)=0$$

Spojité zobrazení

Nechť $\mathcal{X} = (X; \rho)$ a $\Upsilon = (Y; \rho^*)$ jsou dva metrické prostory. Zobrazení $f: \mathcal{X} \to \Upsilon$ prostoru \mathcal{X} do prostoru Υ se nazývá **spojité** v bodě $x_0 \in X$, jestliže k libovolnému $\varepsilon > 0$ lze najít takové $\delta > 0$, že:

$$\varrho^*(f(x), f(x_0)) < \varepsilon$$

Pro všechny body x takové, že

$$\varrho(x, x_0) < \delta.$$

Jinými slovy, zobrazení $f: \mathcal{X} \to \Upsilon$ je spojité v bodě x_0 , jestliže k libovolnému okolí $O_{\varepsilon}(f(x_0))$ bodu $f(x_0)$ lze najít takové okolí $O_{\delta}(x_0)$ bodu x_0 , že jeho obraz leží uvnitř $O_{\varepsilon}(f(x_0))$.

Zobrazení f : $\mathcal{X} \to \Upsilon$ se nazývá spojité, jestliže je **spojité** ve všech bodech prostoru \mathcal{X} .

Izometrické zobrazení

Říkáme, že vzájemně jednoznačné zobrazení y = f(x) metrického prostoru $\mathcal{X} = (X; \rho)$ na metrický prostor $Y = (Y; \rho^*)$ je izometrické, jestliže

$$\varrho(x_1, x_2) = \varrho^*(f(x_1), f(x_2)) \quad \forall x_1, x_2 \in X.$$

Samotné metrické prostory $\mathcal X$ a Υ , mezi kterými je možno stanovit izometrické zobrazení, se nazývají izometrickými mezi sebou.

Izometrie dvou prostorů \mathcal{X} a Υ značí, že metrické vztahy mezi jejich elementy jsou jedny a tytéž a rozdíl může být pouze v kvalitě jejich elementů, což je z metrického hlediska nepodstatné. V dalším proto budeme považovat izometrické prostory za totožné.

Úplné metrické prostory

Číselná osa je nejjednodušším příkladem tak zvaných úplných metrických prostorů, jejichž základní vlastnosti probereme v této kapitole.

Posloupnost $\{x_n\}$ bodů metrického prostoru \mathcal{X} budeme nazývat **cauchyovskou** (nebo **fundamentální**), jestliže splňuje Cauchyovo kritérium, tj. jestliže ke každému $\varepsilon > 0$ existuje takové kladné celé číslo $N(\varepsilon)$, že

$$\varrho(x_m, x_n) < \varepsilon \quad \forall m, n \ge N(\varepsilon).$$

Z trojúhelníkové nerovnosti plyne, že každá konvergentní posloupnost je cauchyovská. Skutečně, jestliže $\{x_n\}$ konverguje k x (tj. $\rho(x_n; x) \to 0$), potom ke každému $\varepsilon > 0$ lze najít takové

celé kladné $N(\varepsilon)$, že $\rho(x_n; x) < \varepsilon/2$ pro všechna $n > N(\varepsilon)$. Potom

$$\varrho(x_m, x_n) \le \varrho(x_m, x) + \varrho(x_n, x) < \varepsilon \quad \forall m, n \ge N(\varepsilon).$$

Naopak denujeme:

Jestliže v metrickém prostoru \mathcal{X} libovolná cauchyovská posloupnost konverguje (tj. existuje $x \in \mathcal{X}$ tak, že $\rho(x_n; x) \to 0$), potom nazýváme tento prostor **úplný**. Příklad:

Položíme-li pro prvky libovolné množiny

$$\varrho(x,y) = \begin{cases} 0 & \text{v případě } x = y, \\ 1 & \text{v případě } x \neq y, \end{cases}$$

dostaneme metrický prostor. Lze jej nazvat prostorem izolovaných bodů. V tomto prostoru jsou cauchyovské pouze stacionární posloupnosti posloupnosti, tj. takové, v nichž se od určitého indexu stále opakuje tentýž bod. Každá taková posloupnost ovšem konverguje, tj. tento prostor je úplný.

- Úplnost prostoru R¹, tj. úplnost množiny všech reálných čísel, je známa z matematické analýzy.
- $\ \ \, \ \, \ \, \ \, \ \, \ \,$ Úplnost euklidovského prostoru R^n plyne snadno z úplnosti prostoru R^1 : Nechť $\{x^{(p)}_n\}$ je cauchyovská posloupnost bodů

$$x^{(p)} = (x_1^{(p)}, x_2^{(p)}, \dots, x_n^{(p)}) \in \mathbb{R}^n, \quad p = 1, 2, \dots$$

To znamená, že ke každému číslu $\varepsilon > 0$ lze najít takové číslo N(ε), že

$$\sum_{k=1}^{n} (x_k^{(p)} - x_k^{(q)})^2 < \varepsilon^2$$

pro všechna přirozená čísla p; q větší než $N(\varepsilon)$. Odtud dostáváme pro k-té souřadnice (k = 1; 2; ...; n) tyto nerovnosti:

$$|x_k^{(p)} - x_k^{(q)}| < \varepsilon,$$

platné pro všechna přirozená čísla p; $q > N(\epsilon)$; je tedy $\{x^{(p)}_n\}$ cauchyovská posloupnost reálných čísel. Položme

$$x_k = \lim_{p \to \infty} x_k^{(p)}, \quad x = (x_1, x_2, \dots, x_n).$$

Potom zřejmě je

$$\lim_{p \to \infty} x^{(p)} = x.$$

Tím je úplnost prostoru Rⁿ dokázána.

☐ Úplnost prostoru Rⁿ₀ lze ukázat obdobně.

Banachova věta o pevném bodu

Řadu problémů souvisejících s existencí a jednoznačností řešení rovnic různého typu lze převést na otázku existence a jednoznačnosti pevného bodu nějakého zobrazení odpovídajícího metrického prostoru do tohoto prostoru. Mezi různými kritérii existence a jednoznačnosti pevného bodu zobrazení tohoto druhu můžeme za jedno z nejjednodušších a zároveň nejdůležitějších kritérií považovat tzv. **Banachův princip pevného bodu** (stručně BPPB); někdy též nazývaný **princip kontraktivních zobrazení**.

Nechť \mathcal{X} je metrický prostor. Zobrazení A prostoru \mathcal{X} do prostoru \mathcal{X} se nazývá **kontraktivní** (nebo **kontrakce**), existuje-li takové číslo α <1, že pro libovolné dva body $\forall x,y \in \mathcal{X}$ platí nerovnost:

$$\rho(Ax,Ay) \leq \alpha \rho(x,y)$$

Bod x se nazývá **pevný bod zobrazení** A, jestliže Ax = x. Jinak řečeno, pevné body jsou řešení rovnice Ax = x.

Banachova věta o pevném bodu (BPPB) říká, že každé kontraktivní zobrazení definované v úplném metrickém prostoru \mathcal{X} má právě jeden pevný bod.

BPPB lze použít k důkazu vět o existenci a jednoznačnosti řěšení pro rovnice různých typů. Kromě důkazu existence a jednoznačnosti řešení rovnice Ax = x dává BPPB také praktickou metodu přibližného výpočtu tohoto řešení (nazývanou **metoda postupných aproximací**).