Shortest path posblem - Single source shortest bath booblem. Given s find shortest path from s to all other vertices Grisen B, t will concentrate on directed graphs only

Special cases. - Assume the edge weights

- use BFS algorithm.

Time: 0 (NI+(EI)

(E) = m special case 2

For large Lithm is not efficient.
This algorithm is not efficient.

L = maximum Mumber of edges added in anold edge # vertices = m L+n Hedges = ml time! O (mL+n)

Let be a directed frakh with non-negative edge weights: List (8, v) is the shortest bath weight $8 = 90 \rightarrow 91 \rightarrow 92 \rightarrow 9 \times$, be the shortest both from sto JX then for 1 \le L \le X $-8=v_0\rightarrow v_1\rightarrow \cdots \rightarrow v_i$ is a shortest both from 8 to V; dist (8, vi) < dist (8, vx)

d[v] a shorter path listance form stov General cone TTO - parent of v. Dijkstras algorithm Dijkstra (Ge, W, 5) d(s) = 0for each vertex $V \in V (38)$ d[v] < 7, T[v] < MIL S = \$ (empty set) Q = V // Q = a privrity queue while a + P. U=Extract-min (Q) $S = S \cup \{u\}$ tor each vester ve (Adrilu) if a[w] > d[u] + w (u,v) d [10] = d[11] + w(4,v)

11 JU - U

Running time! O(101). Terraret-min + U(E1) Thorrease

,	Q	4	11
X	5	\circ	MIZ
·	\overline{a}	10	3
	5	5	8
	\sim	α	14/2
<i>+</i>	d	d	MIL

6	4	
5	0	HIL
a	X	MIL
ط	\bowtie	MIL
C	\bowtie	MIL
d	\sim	MIL

Final table

MIL

Shortest paths

8->6->a weight is