[letterpaper]article
graphicx
lineno
amsmath
hyperref
datetime
breqn
tikz
[left=0.98in, right=0.98in, top=1.0in, bottom=1.0in]geometry

Inverse Kinematic Solution for SkoposKt

Friday 29th November, 2024

1 Introduction

This report describes closed form inverse kinematics solutions for SkoposKt. The solution was generated by the IK-BT package from the University of Washington Biorobotics Lab. The IK-BT package is described in https://arxiv.org/abs/1711.05412. IK-BT derives your equations using Python 3.8 and the sympy 1.9 module for symbolic mathematics.

2 Kinematic Parameters

The kinematic parameters for this robot are

$$[\alpha_{i-1}, \quad a_{i-1}, \quad d_i, \quad \theta_i]$$

$$\begin{bmatrix} \frac{\pi}{2} & a_1 & l_1 & th_1 \\ 0 & a_2 & 0 & th_2 \\ \frac{\pi}{2} & 0 & 0 & th_3 \\ -\frac{\pi}{2} & 0 & l_4 & th_4 \\ 0 & a_5 & 0 & th_5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (1)

3 Forward Kinematic Equations

The forward kinematic equations for this robot are:

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & Px \\ r_{21} & r_{22} & r_{23} & Py \\ r_{31} & r_{32} & r_{33} & Pz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\text{Column 1} \begin{bmatrix} c_5 \left(c_3 c_4 \left(c_1 c_2 - s_1 s_2 \right) - s_4 \left(c_1 s_2 + c_2 s_1 \right) \right) + s_5 \left(-c_3 s_4 \left(c_1 c_2 - s_1 s_2 \right) - c_4 \left(c_1 s_2 + c_2 s_1 \right) \right) \\ -c_4 c_5 s_3 + s_3 s_4 s_5 \\ c_5 \left(c_3 c_4 \left(c_1 s_2 + c_2 s_1 \right) - s_4 \left(-c_1 c_2 + s_1 s_2 \right) \right) + s_5 \left(-c_3 s_4 \left(c_1 s_2 + c_2 s_1 \right) - c_4 \left(-c_1 c_2 + s_1 s_2 \right) \right) \\ 0 \end{bmatrix}$$

$$\text{Column 2} \begin{bmatrix} c_5 \left(-c_3 s_4 \left(c_1 c_2 - s_1 s_2 \right) - c_4 \left(c_1 s_2 + c_2 s_1 \right) \right) - s_5 \left(c_3 c_4 \left(c_1 c_2 - s_1 s_2 \right) - s_4 \left(c_1 s_2 + c_2 s_1 \right) \right) \\ c_4 s_3 s_5 + c_5 s_3 s_4 \\ c_5 \left(-c_3 s_4 \left(c_1 s_2 + c_2 s_1 \right) - c_4 \left(-c_1 c_2 + s_1 s_2 \right) \right) - s_5 \left(c_3 c_4 \left(c_1 s_2 + c_2 s_1 \right) - s_4 \left(-c_1 c_2 + s_1 s_2 \right) \right) \\ 0 \end{bmatrix}$$

$$\text{Column 3} \begin{bmatrix} -s_3 \left(c_1 c_2 - s_1 s_2 \right) \\ -c_3 \\ -s_3 \left(c_1 s_2 + c_2 s_1 \right) \\ 0 \end{bmatrix}$$

$$\text{Column 4} \begin{bmatrix} a_1 + a_2 c_1 + a_5 \left(c_3 c_4 \left(c_1 c_2 - s_1 s_2 \right) - s_4 \left(c_1 s_2 + c_2 s_1 \right) \right) - l_4 s_3 \left(c_1 c_2 - s_1 s_2 \right) \\ -a_5 c_4 s_3 - c_3 l_4 - l_1 \\ a_2 s_1 + a_5 \left(c_3 c_4 \left(c_1 s_2 + c_2 s_1 \right) - s_4 \left(-c_1 c_2 + s_1 s_2 \right) \right) - l_4 s_3 \left(c_1 s_2 + c_2 s_1 \right) \end{bmatrix}$$

Note: column numbers use math notation rather than python indeces.

4 Unknown Variables:

The unknown variables for this robot are (in solution order):

- 1. θ_3
- $2. \theta_4$
- 3. θ_5
- 4. θ_{12}
- 5. θ_{45}
- 6. θ_1
- 7. θ_2

5 Solutions in Generic Form

The following equations comprise solutions for each unknown.

5.1 θ_3

Solution Method: arccos

$$\theta_{3s1} = a\cos\left(-r_{23}\right) \tag{3}$$

$$\theta_{3s2} = -\operatorname{acos}\left(-r_{23}\right) \tag{4}$$

5.2 θ_4

Solution Method: arccos

$$\theta_{4s1} = \operatorname{acos}\left(-\frac{Py + l_1 + l_4 \cos\left(\theta_3\right)}{a_5 \sin\left(\theta_3\right)}\right) \tag{5}$$

$$\theta_{4s2} = -\arccos\left(-\frac{Py + l_1 + l_4\cos(\theta_3)}{a_5\sin(\theta_3)}\right)$$
 (6)

5.3 θ_5

Solution Method: sinANDcos

$$\theta_{5s1} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3})\cos^{2}(\theta_{4})}, -\sin(\theta_{3})\cos(\theta_{4})\right)$$
(7)

$$\theta_{5s2} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(-\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3})\cos^{2}(\theta_{4})}, -\sin(\theta_{3})\cos(\theta_{4})\right)$$
(8)

5.4 θ_{12}

Solution Method: atan2(y,x), arccos, best ranked, atan2(y,x)

$$\theta_{12s1} = \operatorname{atan}_2\left(-\frac{r_{33}}{\sin(\theta_3)}, -\frac{r_{13}}{\sin(\theta_3)}\right)$$
 (9)

5.5 θ_{45}

Solution Method: algebra

$$\theta_{45s1} = \theta_4 + \theta_5 \tag{10}$$

5.6 θ_1

Solution Method: atan2(y,x), arcsin, best ranked, atan2(y,x)

$$\theta_{1s1} = \operatorname{atan}_{2} \left(\frac{Pz - a_{5} \left(\sin \left(\theta_{12} \right) \cos \left(\theta_{3} \right) \cos \left(\theta_{4} \right) + \sin \left(\theta_{4} \right) \cos \left(\theta_{12} \right) \right) + l_{4} \sin \left(\theta_{12} \right) \sin \left(\theta_{3} \right)}{a_{2}}, \frac{Px - a_{1} + a_{5} \left(\sin \left(\theta_{12} \right) \sin \left(\theta_{4} \right) - \cos \left(\theta_{12} \right) \sin \left(\theta_{3} \right) \right)}{a_{2}} \right) + \left(\frac{1}{2} \left(\frac{1}{2} \right) \cos \left(\frac{1}{2$$

5.7 θ_2

Solution Method: algebra

$$\theta_{2s1} = -\theta_1 + \theta_{12} \tag{12}$$

6 Solutions to Generate all Versions

The following equations are the full set of solutions for each unknown incorporating all combinations of dependencies.

6.1 θ_3

Solution Method: arccos

$$\theta_{3v1} = a\cos(-r_{23})$$
 (13)
 $\theta_{3v2} = a\cos(-r_{23})$ (14)

$$\theta_{3v2} = a\cos\left(-r_{23}\right) \tag{14}$$

$$\theta_{3v3} = a\cos\left(-r_{23}\right) \tag{15}$$

$$\theta_{3v4} = a\cos\left(-r_{23}\right) \tag{16}$$

$$\theta_{3v5} = a\cos\left(-r_{23}\right) \tag{17}$$

$$\theta_{3v6} = a\cos(-r_{23})$$
 (18)
 $\theta_{3v7} = a\cos(-r_{23})$ (19)

$$\theta_{3v8} = a\cos\left(-r_{23}\right) \tag{20}$$

6.2 θ_4

Solution Method: arccos

$$\theta_{4v1} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s1})}{a_5\sin(\theta_{3s1})}\right) \tag{21}$$

$$\theta_{4v2} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s2})}{a_5\sin(\theta_{3s2})}\right) \tag{22}$$

$$\theta_{4v3} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s2})}{a_5\sin(\theta_{3s2})}\right)$$
 (23)

$$\theta_{4v1} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s1})}{a_5 \sin(\theta_{3s1})}\right)$$

$$\theta_{4v2} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s2})}{a_5 \sin(\theta_{3s2})}\right)$$

$$\theta_{4v3} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s2})}{a_5 \sin(\theta_{3s2})}\right)$$

$$\theta_{4v4} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s1})}{a_5 \sin(\theta_{3s1})}\right)$$

$$\theta_{4v5} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s1})}{a_5 \sin(\theta_{3s1})}\right)$$

$$\theta_{4v6} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s2})}{a_5 \sin(\theta_{3s2})}\right)$$

$$\theta_{4v7} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s2})}{a_5 \sin(\theta_{3s2})}\right)$$

$$\theta_{4v8} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s2})}{a_5 \sin(\theta_{3s2})}\right)$$

$$\theta_{4v8} = a\cos\left(-\frac{Py + l_1 + l_4 \cos(\theta_{3s1})}{a_5 \sin(\theta_{3s1})}\right)$$

$$(28)$$

$$\theta_{4v5} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s1})}{a_5\sin(\theta_{3s1})}\right) \tag{25}$$

$$\theta_{4v6} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s2})}{a_5\sin(\theta_{3s2})}\right)$$
 (26)

$$\theta_{4v7} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s2})}{a_5\sin(\theta_{3s2})}\right) \tag{27}$$

$$\theta_{4v8} = a\cos\left(-\frac{Py + l_1 + l_4\cos(\theta_{3s1})}{a_5\sin(\theta_{3s1})}\right) \tag{28}$$

6.3 θ_5

Solution Method: sinANDcos

$$\theta_{5v1} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s1})\cos^{2}(\theta_{4v1})}, -\sin(\theta_{3s1})\cos(\theta_{4v1})\right)$$
(29)

$$\theta_{5v2} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s2})\cos^{2}(\theta_{4v2})}, -\sin(\theta_{3s2})\cos(\theta_{4v2})\right)$$
(30)

$$\theta_{5v3} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s2})\cos^{2}(\theta_{4v3})}, -\sin(\theta_{3s2})\cos(\theta_{4v3})\right)$$
(31)

$$\theta_{5v4} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s1})\cos^{2}(\theta_{4v4})}, -\sin(\theta_{3s1})\cos(\theta_{4v4})\right)$$
(32)

$$\theta_{5v5} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s1})\cos^{2}(\theta_{4v4})}, -\sin(\theta_{3s1})\cos(\theta_{4v4})\right)$$
(33)

$$\theta_{5v6} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s2})\cos^{2}(\theta_{4v3})}, -\sin(\theta_{3s2})\cos(\theta_{4v3})\right)$$
(34)

$$\theta_{5v7} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s2})\cos^{2}(\theta_{4v2})}, -\sin(\theta_{3s2})\cos(\theta_{4v2})\right)$$
(35)

$$\theta_{5v8} = \operatorname{atan}_{2}(-r_{22}, r_{21}) + \operatorname{atan}_{2}\left(\sqrt{r_{21}^{2} + r_{22}^{2} - \sin^{2}(\theta_{3s1})\cos^{2}(\theta_{4v1})}, -\sin(\theta_{3s1})\cos(\theta_{4v1})\right)$$
(36)

6.4 θ_{12}

Solution Method: atan2(y,x), arccos, best ranked, atan2(y,x)

$$\theta_{12v1} = \operatorname{atan}_2 \left(-\frac{r_{33}}{\sin(\theta_{3s1})}, -\frac{r_{13}}{\sin(\theta_{3s1})} \right)$$
(37)

$$\theta_{12v2} = \operatorname{atan}_2 \left(-\frac{r_{33}}{\sin(\theta_{3s2})}, -\frac{r_{13}}{\sin(\theta_{3s2})} \right)$$
 (38)

$$\theta_{12v3} = \operatorname{atan}_{2} \left(-\frac{r_{33}}{\sin(\theta_{3s2})}, -\frac{r_{13}}{\sin(\theta_{3s2})} \right)$$
(39)

$$\theta_{12v4} = \operatorname{atan}_{2} \left(-\frac{r_{33}}{\sin(\theta_{3s1})}, -\frac{r_{13}}{\sin(\theta_{3s1})} \right) \tag{40}$$

$$\theta_{12v5} = \operatorname{atan}_{2} \left(-\frac{r_{33}}{\sin(\theta_{3s1})}, -\frac{r_{13}}{\sin(\theta_{3s1})} \right)$$
(41)

$$\theta_{12v6} = \operatorname{atan}_2\left(-\frac{r_{33}}{\sin(\theta_{3s2})}, -\frac{r_{13}}{\sin(\theta_{3s2})}\right)$$
 (42)

$$\theta_{12v7} = \operatorname{atan}_2 \left(-\frac{r_{33}}{\sin(\theta_{3s2})}, -\frac{r_{13}}{\sin(\theta_{3s2})} \right)$$
(43)

$$\theta_{12v8} = \operatorname{atan}_{2} \left(-\frac{r_{33}}{\sin(\theta_{3s1})}, -\frac{r_{13}}{\sin(\theta_{3s1})} \right) \tag{44}$$

6.5 θ_{45}

Solution Method: algebra

$$\theta_{45v1} = \theta_{4v1} + \theta_{5v1} \tag{45}$$

$$\theta_{45v2} = \theta_{4v2} + \theta_{5v2} \tag{46}$$

$$\theta_{45v3} = \theta_{4v3} + \theta_{5v3} \tag{47}$$

$$\theta_{45v4} = \theta_{4v4} + \theta_{5v4} \tag{48}$$

$$\theta_{45v5} = \theta_{4v4} + \theta_{5v5} \tag{49}$$

$$\theta_{45v6} = \theta_{4v3} + \theta_{5v6} \tag{50}$$

$$\theta_{45v7} = \theta_{4v2} + \theta_{5v7} \tag{51}$$

$$\theta_{45v8} = \theta_{4v1} + \theta_{5v8} \tag{52}$$

6.6 θ_1

Solution Method: atan2(y,x), arcsin, best ranked, atan2(y,x)

$$\theta_{1v1} = \operatorname{atan_2} \left(\frac{Pz - a_5 \left(\sin \left(\theta_{12v1} \right) \cos \left(\theta_{3s1} \right) \cos \left(\theta_{4v1} \right) + \sin \left(\theta_{4v1} \right) \cos \left(\theta_{12v1} \right) \right) + l_4 \sin \left(\theta_{12v1} \right) \sin \left(\theta_{3s1} \right)}{a_2}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + l_4 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(53)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + l_4 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(54)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + l_4 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v3} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{3s2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \right) + a_2 \sin \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right)}{(55)}, \frac{Px - a_1 + a_5 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) + a_2 \cos \left(\theta_{12v2} \right) \sin \left(\theta_{12v2} \right)}{(55)}, \frac{Px - a_1 + a_2 \left(\sin \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) \cos \left(\theta_{12v2} \right) \cos \left(\theta_{$$

6.7 θ_2

Solution Method: algebra

```
\theta_{2v1} = \theta_{12v1} - \theta_{1v1}
                                                                                                                           (61)
\theta_{2v2} = \theta_{12v2} - \theta_{1v2}
                                                                                                                           (62)
\theta_{2v3} = \theta_{12v3} - \theta_{1v3}
                                                                                                                           (63)
\theta_{2v4} = \theta_{12v4} - \theta_{1v4}
                                                                                                                           (64)
\theta_{2v5} = \theta_{12v5} - \theta_{1v5}
                                                                                                                           (65)
\theta_{2v6} = \theta_{12v6} - \theta_{1v6}
                                                                                                                           (66)
\theta_{2v7} = \theta_{12v7} - \theta_{1v7}
                                                                                                                           (67)
\theta_{2v8} = \theta_{12v8} - \theta_{1v8}
                                                                                                                           (68)
```

7 Solution Graph (Edges)

The following is the abstract representation of solution graph for this manipulator (nodes with parent -1 are roots). Future: graphic representation. :

```
Edge:th_12 depends on: th_3 (th_12-->th_3)

Edge:th_45 depends on: th_4 (th_45-->th_4)

Edge:th_2 depends on: th_1 (th_2-->th_1)

Edge:th_1 depends on: th_3 (th_1-->th_3)

Edge:th_1 depends on: th_3 (th_1-->th_3)

Edge:th_1 depends on: th_4 (th_1-->th_4)

Edge:th_2 depends on: th_3 (th_5-->th_3)

Edge:th_4 depends on: th_3 (th_4-->th_3)

Edge:th_1 depends on: th_12 (th_1-->th_12)

Edge:th_1 depends on: th_12 (th_1-->th_12)

Edge:th_4 depends on: th_12 (th_1-->th_12)

Edge:th_4 depends on: th_12 (th_1-->th_12)

Edge:th_4 depends on: th_12 (th_1-->th_12)

Edge:th_5 depends on: th_13 (th_5-->th_14)
```

8 Solution Set

The following are the sets of joint solutions (poses) for this manipulator:

```
('th_3s2', 'th_4v2', 'th_5v7', 'th_12v7', 'th_45v7', 'th_1v7', 'th_2v7')
('th_3s2', 'th_4v3', 'th_5v3', 'th_12v3', 'th_45v3', 'th_1v3', 'th_2v3')
('th_3s2', 'th_4v2', 'th_5v2', 'th_12v2', 'th_45v2', 'th_1v2', 'th_2v2')
('th_3s2', 'th_4v3', 'th_5v6', 'th_12v6', 'th_45v6', 'th_1v6', 'th_2v6')
('th_3s1', 'th_4v4', 'th_5v5', 'th_12v5', 'th_45v5', 'th_1v5', 'th_2v5')
('th_3s1', 'th_4v1', 'th_5v8', 'th_12v8', 'th_45v8', 'th_1v8', 'th_2v8')
('th_3s1', 'th_4v1', 'th_5v1', 'th_12v1', 'th_45v1', 'th_1v1', 'th_2v1')
('th_3s1', 'th_4v4', 'th_5v4', 'th_12v4', 'th_45v4', 'th_1v4', 'th_2v4')
```

9 Solution Set v3

th_3s2	th_4v2	th_5v7	th_12v7	th_45v7	th_1v7	th_2v7
th_3s2	th_4v3	th_5v3	th_12v3	th_45v3	th_1v3	th_2v3
th_3s2	th_4v2	th_5v2	th_12v2	th_45v2	th_1v2	th_2v2
th_3s2	th_4v3	th_5v6	th_12v6	th_45v6	th_1v6	th_2v6
th_3s1	th_4v4	th_5v5	th_12v5	th_45v5	th_1v_5	th_2v_5
th_3s1	th_4v1	th_5v8	th_12v8	th_45v8	th_1v8	th_2v8
th_3s1	th_4v1	th_5v1	th_12v1	th_45v1	th_1v1	th_2v1
th_3s1	th_4v4	th_5v4	th_12v4	th_45v4	th_1v4	th_2v4

10 Jacobian Matrix

```
^{6}J_{6} =
      Column 1
        \lceil a_2c_2s_{45} + a_2c_3c_{45}s_2 + a_5c_3s_5 - l_4s_3s_{45} \rceil
         a_2c_2c_{45} - a_2c_3s_2s_{45} + a_5c_3c_5 - c_{45}l_4s_3
                          -a_2s_2s_3 + a_5s_3s_4
                                     c_{45}s_{3}
                                   -s_3s_{45}
                                       c_3
       Column 2
        \begin{bmatrix} a_5c_3s_5 - l_4s_3s_{45} \\ a_5c_3c_5 - c_{45}l_4s_3 \end{bmatrix}
                 a_5 s_3 s_4
                  c_{45}s_{3}
                 -s_{3}s_{45}
                     c_3
       Column 3
         -c_{45}l_{4}
          l_4 s_{45}
           a_5c_4
          -s_{45}
          -c_{45} = 0
                                                                                                                         (69)
       Column 4
        \lceil a_5 s_5 \rceil
         a_5c_5
            0
            0
            0
        Column 5
         0
         0
         0
         0
       Column 6
         0
         \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}
```