Linear Regression

Pradeep Ravikumar

Co-instructor: Manuela Veloso

Machine Learning 10-701

Discrete to Continuous Labels

Classification

X = Cell Image

Y = Diagnosis

Regression

Y = Age of a subject

Regression Tasks

Estimating Energy Usage

Estimating Contamination

Performance Measures

Performance Measure: Quantifies knowledge gained

loss(Y, f(X)) - Measure of closeness between true label Y and prediction f(X)

X	Share price, Y	f(X)	loss(Y, f(X))
Past performance, trade volume etc. as of Sept 8, 2010	"\$24.50"	"\$24.50"	0
		"\$26.00"	1?
		"\$26.10"	2?

$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Bayes optimal predictor: $f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2]$ $= \mathbb{E}[Y|X] \qquad \text{(Conditional Mean)}$

Optimal predictor:
$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[Y|X]$$

Proof Strategy: $R(f) \geq R(f^*)$ for any prediction rule f

$$R(f) = \mathbb{E}_{XY}[(f(X) - Y)^2] = \mathbb{E}_X[\mathbb{E}_{Y|X}[(f(X) - Y)^2|X]]$$

$$= E\left[E\left[(f(X) - E[Y|X] + E[Y|X] - Y)^{2}|X\right]\right]$$

$$= E\left[E\left[(f(X) - E[Y|X])^{2}|X\right] + 2E\left[(f(X) - E[Y|X])(E[Y|X] - Y)|X\right] + E\left[(E[Y|X] - Y)^{2}|X\right]\right]$$

$$= E\left[E\left[(f(X) - E[Y|X])^{2}|X\right] + 2(f(X) - E[Y|X]) \times 0 + E\left[(E[Y|X] - Y)^{2}|X\right]\right]$$

$$= E\left[(f(X) - E[Y|X])^{2} + R(f^{*}).$$

Optimal predictor:

$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2]$$

= $\mathbb{E}[Y|X]$ (Conditional Mean)

Model: Signal plus (zero-mean) Noise

$$Y = f^*(X) + \epsilon$$

Model-based approach: estimate distribution P_{XY} and compute its conditional mean

Model-free approach: approximate response Y by function in function class (e.g. linear functions), without necessarily learning distribution of X and Y

Model-free approach: Empirical Risk Minimization

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \right)$$

Empirical mean

Law of Large Numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \left[loss(Y_i, f(X_i)) \right] \xrightarrow{\mathsf{n} \to \infty} \mathbb{E}_{XY} \left[loss(Y, f(X)) \right]$$

Restrict class of predictors

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

Why?

Overfitting!

Empirical loss minimized by any function of the form

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$$

Restrict class of predictors

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Class of predictors

- ${\mathcal F}$ Class of Linear functions
 - Class of Polynomial functions
 - Class of nonlinear functions

Regression algorithms

Training data
$$\square$$
 Learning algorithm \square Prediction rule \widehat{f}_n

Linear Regression
Regularized Linear Regression – Ridge regression, Lasso
Polynomial Regression
Kernelized Ridge Regression

Gaussian Process Regression Kernel regression, Regression Trees, Splines, Wavelet estimators, ...

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \quad \text{Least Squares Estimator}$$

 \mathcal{F}_L - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$
 β_1 - intercept

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$=X\beta$$
 where $X=[X^{(1)}\ldots X^{(p)}],\ \beta=[\beta_1\ldots\beta_p]^T$

Least Squares Estimator

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \qquad f(X_i) = X_i \beta$$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\widehat{\beta}} = 0$$

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

Example – linear regression

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

When is $(\mathbf{A}^T\mathbf{A})$ invertible?

Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T \mathbf{A})$?

Rank $(\mathbf{A}^T \mathbf{A})$ = number of non-zero eigenvalues of $(\mathbf{A}^T \mathbf{A})$ = number of non-zero singular values of $\mathbf{A} <= \min(n,p)$ since \mathbf{A} is n x p

So, $rank(\mathbf{A}^T\mathbf{A})$ =: $r \le min(n,p)$ Not invertible if r < p (e.g. n < p i.e. high-dimensional setting)

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

When is $(\mathbf{A}^T\mathbf{A})$ invertible? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T\mathbf{A})$?

If
$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$$
, then normal equations $(\mathbf{S}\mathbf{V}^{\top})\hat{\beta} = (\mathbf{U}^{\top}\mathbf{Y})$

r equations in p unknowns. Under-determined if r < p, hence no unique solution.

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \qquad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T\mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

When is $(\mathbf{A}^T\mathbf{A})$ invertible? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T\mathbf{A})$?

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible? Constrain solution i.e. Regularization (later)

Now: What if $(\mathbf{A}^T \mathbf{A})$ is invertible but expensive (p very large)?

Optimization

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Treat as optimization problem

Observation: $J(\beta)$ is convex in β .

$J(\beta_1)$ β_1

How to find the minimizer?

Convex function

A function I(w) is called **convex** if the line joining two points $I(w_1), I(w_2)$ on the function does not go below the function on the interval $[w_1, w_2]$

(Strictly) Convex functions have a unique minimum!

Optimizing convex functions

Minimum of a convex function can be reached by

Gradient Descent Algorithm

Initialize: Pick w at random

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_p}\right]'$$
Learning rate, $\eta > 0$

Update rule:

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta \frac{\partial l(\mathbf{w})}{\partial w_i} \bigg|_{t}$$

Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Since $J(\beta)$ is convex, move along negative of gradient

Initialize:
$$\beta^0$$
 step size

Update: $\beta^{t+1} = \beta^t - \frac{\alpha}{2} \frac{\partial J(\beta)}{\partial \beta} \Big|_t$
 $= \beta^t - \alpha \mathbf{A}^T (\mathbf{A} \beta^t - Y)$
 $0 \text{ if } \hat{\beta} = \beta^t$

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \epsilon$.

Effect of step-size α

Large α => Fast convergence but larger residual error Also possible oscillations

Small α => Slow convergence but small residual error

Regularized Least Squares

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \text{Ridge Regression} \\ \text{(I2 penalty)} \end{array}$$

$$= \arg\min_{\beta} \quad (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \|\beta\|_2^2 \qquad \qquad \lambda \geq 0$$

$$\widehat{\beta}_{\text{MAP}} = (\mathbf{A}^\top \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^\top \mathbf{Y}$$

Is
$$(\mathbf{A}^{ op}\mathbf{A} + \lambda \mathbf{I})$$
 invertible?

Understanding regularized Least Squares

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

Regularized Least Squares

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of b (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2$$
 Ridge Regression (I2 penalty)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \qquad \text{Lasso} \\ \text{(I1 penalty)}$$

Many b can be zero – many inputs are irrelevant to prediction in high-dimensional settings (typically intercept term not penalized)

Regularized Least Squares

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

r equations, p unknowns – underdetermined system of linear equations many feasible solutions

Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \begin{array}{l} \mathsf{Ridge \, Regression} \\ (\mathsf{I2 \, penalty}) \end{array}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \qquad \qquad \mathsf{Lasso}$$

(11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages available)

Ridge Regression vs Lasso

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

$$pen(\beta) = \|\beta\|_2^2$$

Lasso:

$$pen(\beta) = \|\beta\|_1$$

Ideally IO penalty, but optimization becomes non-convex

Lasso (11 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates, interpretable solution!

Lasso vs Ridge

Lasso Coefficients

Ridge Coefficients

Regularized Least Squares – connection to MLE and MAP (Model-based approaches)

Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}) \quad Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$

$$\widehat{\beta}_{\text{MLE}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n)$$

Conditional log likelihood

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i \beta - Y_i)^2 = \widehat{\beta}$$

Least Square Estimate is same as Maximum Conditional Likelihood Estimate under a Gaussian model!

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

I) Gaussian Prior

$$eta \sim \mathcal{N}(0, au^2 \mathbf{I})$$

issian Prior
$$eta \sim \mathcal{N}(0, au^2\mathbf{I}) \qquad p(eta) \propto e^{-eta^Teta/2 au^2}$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \underset{\text{constant}(\sigma^2, \tau^2)}{\text{Ridge Regression}}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\top} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{\top} \boldsymbol{Y}$$

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

I) Gaussian Prior

$$eta \sim \mathcal{N}(0, au^2 \mathbf{I})$$

issian Prior
$$eta \sim \mathcal{N}(0, au^2\mathbf{I})$$
 $p(eta) \propto e^{-eta^Teta/2 au^2}$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \underset{\text{constant}(\sigma^2, \tau^2)}{\text{Ridge Regression}}$$

Regularized Least Squares and M(C)AP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta)$$
 Conditional log likelihood log prior

II) Laplace Prior

$$eta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t) \qquad \qquad p(eta_i) \propto e^{-|eta_i|/t}$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

