Höhere Mathematik

Jil Zerndt, Lucien Perret January 2025

Additional Examples

Rechnerarithmetik

Werteberechnung ausführlich Gegeben sei die Maschinenzahl zur Basis B=2:

$$x = \underbrace{0.1101}_{n=4} \cdot \underbrace{2_2^{101}}_{l=3}$$

- 1. Normalisierung prüfen:
- $m_1 = 1 \neq 0 \rightarrow \text{normalisiert}$
- 2. Exponent berechnen:

$$\hat{e} = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$
$$= 4 + 0 + 1 = 5$$

3. Wert berechnen:

$$\hat{\omega} = 1 \cdot 2^{5-1} + 1 \cdot 2^{5-2} + 0 \cdot 2^{5-3} + 1 \cdot 2^{5-4}$$

$$= 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1$$

$$= 16 + 8 + 0 + 2$$

$$= 26$$

Also ist x = 26

Weitere Beispiele

- 1. Basis 10: $0.3141 \cdot 10^2$
 - Normalisiert, da $m_1 = 3 \neq 0$

 - $\hat{\omega} = 3 \cdot 10^1 + 1 \cdot 10^0 + 4 \cdot 10^{-1} + 1 \cdot 10^{-2} = 31.41$
- 2. Basis 16 (hex): $0.A5F \cdot 16^3$
 - Normalisiert, da $m_1 = A = 10 \neq 0$

 - $\hat{\omega} = 10 \cdot 16^2 + 5 \cdot 16^1 + 15 \cdot 16^0 = 2655$

Werteberechnung Berechnung einer Zahl zur Basis B=2:

$$\underbrace{0.1011}_{n=4} \cdot \underbrace{2^3}_{l=1}$$
1. Exponent: $\hat{e} = 3$
2. Wert: $\hat{\omega} = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1}$

$$= 4 + 0 + 1 + 0.5 = 5.5$$

Numerische Lösung von Nullstellenproblemen

Fixpunktiteration Nullstellen von $p(x) = x^3 - x + 0.3$ Fixpunktgleichung: $x_{n+1} = F(x_n) = x_n^3 + 0.3$

- 1. $F'(x) = 3x^2$ steigt monoton
- 2. Für I = [0, 0.5]: F(0) = 0.3 > 0, F(0.5) = 0.425 < 0.5
- 3. $\alpha = \max_{x \in [0.0.5]} |3x^2| = 0.75 < 1$
- 4. Konvergenz für Startwerte in [0, 0.5] gesichert

Newton-Verfahren Berechnung von $\sqrt[3]{2}$ Nullstellenproblem: f(x) =

Ableitung:
$$f'(x) = 3x^2$$
, Startwert $x_0 = 1$ Quadratische Kon-
1. $x_1 = 1 - \frac{1^3 - 2}{3 \cdot 1^2} = 1.333333$ vergenz sichtbar

2.
$$x_2 = 1.333333 - \frac{1.333333^3 - 2}{3 \cdot 1.333333^2} = 1.259921$$
 durch sch Annäherung
3. $x_3 = 1.259921 - \frac{1.259921^3 - 2}{3 \cdot 1.259921^2} = 1.259921$ $\sqrt[3]{2} \approx 1.259921$

3.
$$x_3 = 1.259921 - \frac{1.259921^3 - 2}{3 \cdot 1.259921^2} = 1.259921$$

vergenz sichtbar durch schnelle

Numerische Lösung von LGS

Pivotisierung in der Praxis Betrachten Sie das System:

$$\left(\begin{smallmatrix}0.001&1\\1&&1\end{smallmatrix}\right)\left(\begin{smallmatrix}x_1\\x_2\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\2\end{smallmatrix}\right)$$

Division durch 0.001 führt zu großen Rundungsfehlern:

$$x_1 \approx 1000 \cdot (1 - x_2)$$

Mit Pivotisierung:

Nach Zeilenvertauschung:

$$\begin{pmatrix} 1 & 1 \\ 0.001 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Liefert stabile Lösung: $x_1 = 1, x_2 = 1$

LR-Zerlegung mit Pivotisierung Gegeben sei das System:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$

Max Element in 1. Spalte: $|a_{21}| = 3$, tausche Z1 und Z2:

$$P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A^{(1)} = \begin{pmatrix} 3 & 8 & 1 \\ 1 & 2 & 1 \\ 0 & 4 & 1 \end{pmatrix}$$

Eliminationsfaktoren: $l_{21} = \frac{1}{3}$, $l_{31} = 0$

Nach Elimination:

$$A^{(2)} = \begin{pmatrix} 3 & 8 & 1\\ 0 & -\frac{2}{3} & \frac{2}{3}\\ 0 & 4 & 1 \end{pmatrix}$$

Max Element: $|a_{32}| = 4$, tausche Z2 und Z3:

$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Eliminationsfaktor: $l_{32} = -\frac{1}{6}$

Nach Elimination:

$$R = \begin{pmatrix} 3 & 8 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & \frac{5}{6} \end{pmatrix}$$

$$P = P_2 P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ 0 & -\frac{1}{6} & 1 \end{pmatrix}$$

1.
$$Pb = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$$

2.
$$Ly = Pb$$
: $y = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$

3.
$$Rx = y$$
: $x = \begin{pmatrix} 1 \\ 0 \\ \frac{6}{5} \end{pmatrix}$

gauss_elimination Gauss-Elimination mit Pivotisierung und freien Variablen

```
def gauss_elimination(A, b, tol=1e-10):
    """Gauss-Elimination mit Behandlung freier
        Variablen
   Returns: Dictionary mit
       'solution': Basisloesung
        'free vars': Liste der freien Variablen
        'general_solution': Lambda-Funktion fuer allg.
            Loesung
        'rank': Rang der Matrix
        'consistent': System loesbar
   n = len(A)
   # Erweiterte Matrix erstellen
   M = copy_matrix(A)
   b = b.copy()
   # Speichere Zeilenoperationen fuer Rueckwaertsphase
   row_ops = []
   # Markiere freie Variablen
   free vars = []
   rank = 0
   # Vorwaertselimination mit Pivotisierung
   for i in range(n):
       # Finde maximales Element in Spalte i
       pivot_row = i
        for j in range(i+1, n):
            if abs(M[j][i]) > abs(M[pivot_row][i]):
                pivot_row = j
       # Zeilen tauschen falls noetig
        if pivot row != i:
            M[i], M[pivot_row] = M[pivot_row], M[i]
           b[i], b[pivot_row] = b[pivot_row], b[i]
        # Pruefe auf freie Variable
       if abs(M[i][i]) < tol:</pre>
            free_vars.append(i)
            continue
       rank += 1
        # Speichere Operationen
       row_ops.append((i, [(j, -M[j][i]/M[i][i])
                           for j in range(i+1, n)]))
       # Elimination durchfuehren
       for j in range(i+1, n):
            factor = M[j][i] / M[i][i]
            for k in range(i, n):
                M[j][k] -= factor * M[i][k]
           b[j] -= factor * b[i]
   # Pruefe Loesbarkeit
   consistent = True
   for i in range(rank, n):
        if abs(b[i]) > tol:
            consistent = False
            break
   if not consistent:
       return {
            'solution': None,
            'free_vars': [],
            'general_solution': None,
            'rank': rank,
```

```
'consistent': False
       # Berechne Basisloesung
      x = [0] * n
69
      # Rueckwaertssubstitution
       for i in range(n-1, -1, -1):
           if i not in free vars:
               sum_val = sum(M[i][j] * x[j]
                            for j in range(i+1, n))
               x[i] = (b[i] - sum_val) / M[i][i]
       # Erstelle Funktion fuer allgemeine Loesung
       def general_solution(*params):
           if len(params) != len(free vars):
               raise ValueError(
                   f"Benoetigt {len(free_vars)}
                       Parameter")
           solution = x.copy()
           for var, param in zip(free_vars, params):
               solution[var] = param
               # Update abhaengige Variablen
               for op in row_ops:
                   row, factors = op
                   if row < var:
                       continue
                   solution[row] -= param * sum(
                       f * solution[j]
                       for j, f in factors if j > var)
           return solution
       return {
           'solution': x,
           'free_vars': free_vars,
           'general_solution': general_solution,
           'rank': rank,
           'consistent': True,
           'matrix': M
104 # Beispielnutzung:
106 A = [
      [1, 2, 1],
       [2, 4, 2],
       [3, 6, 3]
  b = [2, 4, 6]
result = gauss_elimination(A, b)
114 if result['consistent']:
      print(f"Basisloesung: {result['solution']}")
       print(f"Freie Variablen: {result['free_vars']}")
       if result['free vars']:
          # Erzeuge spezielle Loesung
           print("Spezielle Loesung mit t=1:")
           print(result['general solution'](1))
120
     print("System nicht loesbar")
122
```

Umgang mit Systemen mit freien Variablen

- 1. Vorgehensweise
 - Matrix auf Stufenform bringen
 - Freie Variablen identifizieren (Nullspalten)
 - Basislösung berechnen
 - Allgemeine Lösung parametrisch aufstellen
- 2. Interpretation
 - Rang der Matrix bestimmen
 - Lösbarkeit prüfen
 - Dimension des Lösungsraums bestimmen
 - Spezielle Lösungen generieren
- 3. Sonderfälle beachten
 - Unlösbare Systeme erkennen
 - Abhängige Gleichungen identifizieren
 - Numerische Genauigkeit berücksichtigen

QR-Zerlegung Gegeben sei die Matrix:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

1. Erste Spalte

$$v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, ||v_1|| = \sqrt{2}$$

Householder-Vektor:
$$w_1 = v_1 + \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + \sqrt{2} \\ 1 \\ 0 \end{pmatrix}$$

Normierung:
$$u_1 = \frac{1}{\sqrt{4+2\sqrt{2}}} \begin{pmatrix} 1+\sqrt{2} \\ 1 \\ 0 \end{pmatrix}$$

Erste Householder-Matrix:

$$H_1 = I - 2u_1u_1^T = \begin{pmatrix} -rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} & 0 \ -rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

2. Zweite Spalte

Nach Anwendung von H_1 :

$$H_1 A = \begin{pmatrix} -\sqrt{2} - \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 \end{pmatrix}$$

Untervektor für zweite Transformation: $v_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 1 \end{pmatrix}$ Analog zur ersten Transformation erhält man:

$$H_2 = \begin{pmatrix} 1 & 0 & 0\\ 0 - \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}\\ 0 - \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Endergebnis

$$Q = H_1^T H_2^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R = H_2 H_1 A = \begin{pmatrix} \sqrt{2} & 1\\ 0 & \sqrt{2}\\ 0 & 0 \end{pmatrix}$$

Verifikation

- $Q^TQ = QQ^T = I$ (Orthogonalität)
- QR = A (bis auf Rundungsfehler)
- R ist obere Dreiecksmatrix

Iterative Verfahren Vergleich Jacobi und Gauss-Seidel System:

$$\begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix}$$

k	Jacobi		Gauss-Seidel	
0	$(0,0,0)^T$		$(0,0,0)^T$	
1	$(0.25, 1.25, 0)^T$	1.25	$(0.25, 1.31, 0.08)^T$	1.31
2	$(0.31, 1.31, 0.31)^T$	0.31	$(0.33, 1.33, 0.33)^T$	0.02
3	$(0.33, 1.33, 0.33)^T$	0.02	$(0.33, 1.33, 0.33)^T$	0.00

Eigenvektoren und Eigenwerte -

Darstellungsformen Gegeben: z = 3 - 11i in Normalform

$$r = \sqrt{3^2 + 11^2} = \sqrt{130}, \quad \varphi = \arcsin(\frac{11}{\sqrt{130}}) = 1.3 \text{rad} = 74.74^{\circ}$$

Trigonometrische Form: $z = \sqrt{130}(\cos(1.3) + i\sin(1.3))$

Exponential form: $z = \sqrt{130}e^{i \cdot 1.3}$

Eigenwertberechnung $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$

- 1. Da A eine Dreiecksmatrix ist, sind die Diagonalelemente die Eigenwerte: $\lambda_1=1,\lambda_2=3,\lambda_3=2$
- 2. $det(A) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 6$
- 3. $tr(A) = \lambda_1 + \lambda_2 + \lambda_3 = 6$
- 4. Spektrum: $\sigma(A) = \{1, 2, 3\}$

Von-Mises-Iteration Berechne größten Eigenwert der Matrix:

$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{pmatrix}, \quad \text{Startvektor: } v^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

k	$v^{(k)}$	$\lambda^{(k)}$
0	$(1,0,0)^T$	-
1	$(0.970, -0.213, 0.119)^T$	4.000
2	$(0.957, -0.239, 0.164)^T$	4.827
3	$(0.953, -0.244, 0.178)^T$	4.953
4	$(0.952, -0.245, 0.182)^T$	4.989

Konvergenz gegen $\lambda_1 \approx 5$

Eigenvektor $v \approx (0.952, -0.245, 0.182)^T$

QR-Verfahren Matrix:

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

QR-Iteration

- 1. $A_0 = A$
- 2. Nach erster Iteration:

$$A_1 = \begin{pmatrix} 3.21 & -0.83 & 0.62 \\ -0.83 & 2.13 & 0.41 \\ 0.62 & 0.41 & 0.66 \end{pmatrix}$$

3. Nach 5 Iterationen:

$$A_5 \approx \left(\begin{smallmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right)$$

Die Diagonale
lemente von A_5 sind die Eigenwerte: $\lambda_1=4, \lambda_2=1, \lambda_3=1$