

MICROCIRCUIT DATA SHEET

Original Creation Date: 08/07/95 Last Update Date: 10/22/99 Last Major Revision Date: 10/07/99

OPERATIONAL AMPLIFIER

General Description

MNLM741-X REV 1A0

The LM741 is a general purpose operational amplifier which features improved performance over industry standards such as the LM709. It is a direct, plug-in replacement for the LM709, LM101, MC1439 and LM748 in most applications.

The amplifier offers many features which make application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

Industry Part Number

NS Part Numbers

LM741

LM741H/883 LM741J/883 LM741W/883 LM741WG/883

Prime Die

LM741

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1 2 3 4 5 6 7	Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Ennctional tests at	+25 +125 -55 +25 +125 -55 +25	
8A 8B 9 10	Functional tests at Functional tests at Switching tests at Switching tests at Switching tests at	+125 -55 +25	

(Absolute Maximum Ratings)

(Note 1)

Supply Voltage		+22V
Power Dissipation (Note 2)		<u>+</u> 22 V
Differential Input	500mW	
Input Voltage		<u>+</u> 30V
(Note 3)	t Dunction	±15V
Output Short Circui	t Duration	Continuous
Operating Temperatu	re Range	-55 C to +125 C
Storage Temperature	Range	-65 C to +150 C
Maximum Junction Te	mperature	150 C
Lead Temperatuer (Soldering, 10	seconds)	300 C
CERDIP CERDIP CERPACK	(500LF/Min Air Flow) (Still Air) (500LF/Min Air Flow) (Still Air) (500LF/Min Air Flow) (Still Air)	167 C/W 100 C/W TBD TBD 228 C/W 154 C/W 228 C/W 154 C/W
ThetaJC Metal Can CERDIP CERPACK CERAMIC SOIC		44 C/W TBD 27 C/W 27 C/W
Package Weight (Typcial) Metal Can CERDIP CERPACK CERAMIC SOIC		TBD TBD TBD TBD
ESD Tolerance (Note 4)		400V

- Note 1: Absolute maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

 Note 2: The maximum power dissipation must be derated at elevated temperature and is dictated
- Note 2: The maximum power dissipation must be derated at elevated temperature and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA) /ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: For supply voltages less than $\pm 15\text{V}$, the absolute maximum input voltage is equal to the supply voltage.
- Note 4: Human body model, 1.5K Ohms in series with 100pF.

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vcc = \pm 15V$, Vcm = 0

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	Vcm = -12V			-5	5	mV	1
	Voitage				-6	6	mV	2, 3
		Vcm = 12V			-5	5	mV	1
					-6	6	mV	2, 3
					-5	5	mV	1
					-6	6	mV	2, 3
		+Vcc = <u>+</u> 5V			-5	5	mV	1
					-6	6	mV	2, 3
Vio(adj)-	Offset Null					-6	mV	1, 2,
Vio(adj)+	Offset Null				6		mV	1, 2,
Iio	Input Offset Current	Vcm = -12V			-200	200	nA	1
	Current				-500	500	nA	2, 3
		Vcm = 12V			-200	200	nA	1
					-500	500	nA	2, 3
					-200	200	nA	1
					-500	500	nA	2, 3
		Vcc = ±5V			-200	200	nA	1
					-500	500	nA	2, 3
+Iib	Input Bias	Vcm = -12V			0	500	nA	1
	Current				0	1500	nA	2, 3
		Vcm = 12V			0	500	nA	1
					0	1500	nA	2, 3
					0	500	nA	1
					0	1500	nA	2, 3
		Vcc = <u>+</u> 5V			0	500	mA	1
					0	1500	nA	2, 3

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vcc = \pm 15V$, Vcm = 0

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
-Iib	Input Bias Current	Vcm = -12V			0	500	nA	1
	Current				0	1500	nA	2, 3
		Vcm = 12V			0	500	nA	1
					0	1500	nA	2, 3
					0	500	nA	1
					0	1500	nA	2, 3
		Vcc = <u>+</u> 5V			0	500	nA	1
					0	1500	nA	2, 3
Icc	Power Supply Current					2.8	mA	1
	Current					2.5	mA	2
						3.5	mA	3
Avs+	Open Loop Voltage Gain	R1 = 2K, Vo = 0 to 10V	3		50		V/mV	1
	Gain		3		25		V/mV	2, 3
Avs-	Open Loop Voltage Gain	R1 = 2K, Vo = 0 to -10V	3		50		V/mV	1
	Gain		3		25		V/mV	2, 3
PSRR+	Power Supply Rejection Ratio	+Vcc = 15V to 5V, -Vcc = -15V			77		dВ	1, 2,
PSRR-	Power Supply Rejection Ratio	-Vcc = -15V to -5V, +Vcc = +15V			77		dВ	1, 2,
CMRR	Common Mode Rejection Ratio	-12V ≤ Vcm ≤ 12V			70		dВ	1, 2,
Ios+	Output Short				-45	-5	mA	1, 2
	Circuit Current				-50	-5	mA	3
Ios-	Output Short				5	45	mA	1, 2
	Circuit Current				5	50	mA	3
Vopp+	Output Voltage Swing	Rl = 10K Ohms			12		V	1, 2,
		Rl = 2K Ohms			10		V	1, 2,
		Vcc = ±20V, Rl = 10K Ohms			16		V	1, 2,
		$Vcc = \pm 20V$, $Rl = 2K$ Ohms			15		V	1, 2,

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vcc = \pm 15V$, Vcm = 0

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vopp-	Output Voltage Swing	R1 = 10K Ohms				-12	V	1, 2,
		Rl = 2K Ohms				-10	V	1, 2,
		$Vcc = \pm 20V$, $R1 = 10K$ Ohms				-16	V	1, 2,
		$Vcc = \pm 20V$, $Rl = 2K$ Ohms				-15	V	1, 2,
Rin	Input Resistance		2		0.3		MOhm	1
Vin	Input Voltage Range	Vcc = <u>+</u> 15V	1		<u>+</u> 12		V	1, 2,
Vout	Output Voltage Swing	Vcc = <u>+</u> 5V	2		<u>+</u> 2		V	1, 2,

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Vcc = ± 15 V, Vcm = 0

Sr+	Slew Rate	Vin = -5V to 5V, Av =1, Rl = 2K Ohms			0.2	V/uS	7
Sr-	Slew Rate	Vin = 5V to -5V, Av =1, Rl = 2K Ohms			0.2	V/uS	7
tr	Rise Time	Test on LTX, Rl = 2K Ohms, Av = 1, Cl = 100pF			1	uS	7
os	Overshoot	Test on LTX, Rl = 2K Ohms, Av = 1, Cl = 100pF			30	%	7
Gbw	Gain Bandwidth	Vin = 50Vrms, F = 20KHz, Rl = 2K		250		KHz	

DC PARAMETERS: DRIFT VALUES

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vcc = \pm 15V$, Vcm = 0V. "Deltas not required on B-Level product. Deltas required for S-Level product ONLY as specified on Internal Processing Instructions (IPI)."

Vio	Input Offset Voltage		-1	1	mV	1
Iio	Input Offset Current		-20	20	nA	1
Iib+	Input Bias Current		-50	50	nA	1
lib-	Input Bias Current		-50	50	nA	1

Note 1: Guaranteed by CMRR, Iib, Iio, Vio Note 2: Guaranteed parameter not tested. Note 3: Datalog reading in K = V/mV.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
05309HRB2	CERDIP (J), 14 LEAD (B/I CKT)
08337HRB2	CERPACK (W), 10 LEAD (B/I CKT)
09384HRA4	METAL CAN, (H) TO-99,8 LEAD,.200 DIA P.C.(B/I CKT)
09413HRB1	CERDIP (J), 8 LEAD (B/I CKT)
H08CRF	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000278A	METAL CAN (H), TO-99, 8 LD, .200 DIA P.C. (PINOUT)
P000280A	CERPACK (W), 10 LEAD (PINOUT)
P000291A	CERDIP (J), 8 LEAD (PINOUT)
P000466A	CERAMIC SOIC (WG), 10 LEAD (PINOUT)
W10ARG	CERPACK (W), 10 LEAD (P/P DWG)
WG10ARC	CERAMIC SOIC (WG), 10 LEAD (P/P DWG)

See attached graphics following this page.

NATIONAL SEMICONDUCTOR CORPORATION 2900 Semiconductor Drive, Santa Clara, CA 95052-8090 MKT-J08A CERDIP (, 8 LEAD \forall | DRAWN_T. LEQUANG | 09/21/93 DATE PROJECTION APPROVALS DFTG. CHK. ENGR. CHK. APPROVAL

> 1. LEAD FINISH TO BE 200 MICROINCHES / 5.08 MICROMETERS MINIMUM SOLDER MEASURED AT THE CREST OF THE MAJOR FLATS. 2. JEDEC REGISTRATION MO-036, VARIATION AA, DATED 04/1981.

NOTES: UNLESS OTHERWISE SPECIFIED

R V

DO NOT SCALE DRAWING SHEET

LM741H 8 - PIN METAL CAN CONNECTION DIAGRAM TOP VIEW P000278A

LM741W 10 - LEAD CERPACK CONNECTION DIAGRAM TOP VIEW P000280A

LM741J 8 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000291A

LM741WG 10 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000466A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
1A0	M0003575	10/22/99		Update MDS to full Release: MNLM741-X, Rev. OBL to MNLM741-X, Rev. 1A0. Update to electrical parameters PSRR+ and PSRR

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.